diff --git a/python/app/fedcv/.gitignore b/python/app/fedcv/.gitignore
index c855822a44..0f601e8bd1 100644
--- a/python/app/fedcv/.gitignore
+++ b/python/app/fedcv/.gitignore
@@ -1,5 +1,12 @@
+__pycache__
+wandb
+runs
+*.cache
*.zip
-__MACOSX/
-__pycache__/
-*.tmp
-mpi_host_file
\ No newline at end of file
+*.jpg
+*.png
+mlops
+config/exp*
+.idea
+.DS_Store
+devops
\ No newline at end of file
diff --git a/python/app/fedcv/README.md b/python/app/fedcv/README.md
index f8432af697..5b0991514f 100644
--- a/python/app/fedcv/README.md
+++ b/python/app/fedcv/README.md
@@ -1,10 +1,4 @@
-# FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks
-
-## Introduction
-
-![](fedcv_arch.jpg)
-
-Federated Learning (FL) is a distributed learning paradigm that can learn a global or personalized model from decentralized datasets on edge devices. However, in the computer vision domain, model performance in FL is far behind centralized training due to the lack of exploration in diverse tasks with a unified FL framework. FL has rarely been demonstrated effectively in advanced computer vision tasks such as object detection and image segmentation. To bridge the gap and facilitate the development of FL for computer vision tasks, in this work, we propose a federated learning library and benchmarking framework, named FedCV, to evaluate FL on the three most representative computer vision tasks: image classification, image segmentation, and object detection. We provide non-I.I.D. benchmarking datasets, models, and various reference FL algorithms. Our benchmark study suggests that there are multiple challenges that deserve future exploration: centralized training tricks may not be directly applied to FL; the non-I.I.D. dataset actually downgrades the model accuracy to some degree in different tasks; improving the system efficiency of federated training is challenging given the huge number of parameters and the per-client memory cost. We believe that such a library and benchmark, along with comparable evaluation settings, is necessary to make meaningful progress in FL on computer vision tasks.
+# FedCV - Object Detection
## Prerequisites & Installation
@@ -12,17 +6,12 @@ Federated Learning (FL) is a distributed learning paradigm that can learn a glob
pip install fedml --upgrade
```
-There are other dependencies in some tasks that need to be installed.
+## Prepare YOLOv6
-```bash
-git clone https://github.com/FedML-AI/FedML
-cd FedML/python/app/fedcv/[image_classification, image_segmentation, object_detection]
+Download the YOLOv6-S6 checkpoint from `https://github.com/meituan/YOLOv6` and add the checkpoint path to `./YOLOv6/configs/yolov6s6_finetune.py`.
-cd config/
-bash bootstrap.sh
-
-cd ..
-```
+## Prepare VOC dataset
+Download the VOC dataset from `https://yolov6-docs.readthedocs.io/zh_CN/latest/%E5%85%A8%E6%B5%81%E7%A8%8B%E4%BD%BF%E7%94%A8%E6%8C%87%E5%8D%97/%E8%AE%AD%E7%BB%83%E8%AF%84%E4%BC%B0%E6%8E%A8%E7%90%86%E6%B5%81%E7%A8%8B.html#id2` and run `python ./YOLOv6/yolov6/data/voc2yolo.py --voc_path your_path/to/VOCdevkit`. Then, fill in the path in `./YOLOv6/data/voc.yaml`.
### Run the MPI simulation
@@ -38,50 +27,30 @@ train_args:
client_id_list:
client_num_in_total: 2 # change here!
client_num_per_round: 2 # change here!
- comm_round: 20
- epochs: 5
- batch_size: 1
+ comm_round: 10000
+ epochs: 1
+ steps: 8
+ batch_size: 8
```
### Run the server and client using MQTT
If you want to run the edge server and client using MQTT, you need to run the following commands.
+> !!IMPORTANT!! In order to avoid crosstalk during use, it is strongly recommended to modify `run_id` in `run_server.sh` and `run_client.sh` to avoid conflict.
+
```bash
bash run_server.sh your_run_id
# in a new terminal window
# run the client 1
-bash run_client.sh 1 your_run_id
+bash run_client.sh [CLIENT_ID] your_run_id
# run the client with client_id
bash run_client.sh [CLIENT_ID] your_run_id
```
-To customize the number of client, you can change the following variables in `config/fedml_config.yaml`:
-
-```bash
-train_args:
- federated_optimizer: "FedAvg"
- client_id_list:
- client_num_in_total: 2 # change here!
- client_num_per_round: 2 # change here!
- comm_round: 20
- epochs: 5
- batch_size: 1
-```
-
-### Run the application using MLOps
-
-You just need to select the YOLOv5 Object Detection application and start a new run.
-
-Run the following command to login to MLOps.
-
-```bash
-fedml login [ACCOUNT_ID]
-```
-
### Build your own application
1. Build package
@@ -92,101 +61,3 @@ bash build_mlops_pkg.sh
```
2. Create an application and upload package in mlops folder to MLOps
-
-## FedCV Experiments
-
-1. [Image Classification](#image-classification)
-
- Model:
-
- - CNN
- - DenseNet
- - MobileNetv3
- - EfficientNet
-
- Dataset:
-
- - CIFAR-10
- - CIFAR-100
- - CINIC-10
- - FedCIFAR-100
- - FederatedEMNIST
- - ImageNet
- - Landmark
- - MNIST
-
-2. [Image Segmentation](#image-segmentation)
-
- Model:
-
- - UNet
- - DeeplabV3
- - TransUnet
-
- Dataset:
-
- - Cityscapes
- - COCO
- - PascalVOC
-
-3. [Object Detection](#object-detection)
-
- Model:
-
- - YOLOv5
-
- Dataset:
-
- - COCO
- - COCO128
-
-## How to Add Your Own Model?
-
-Our framework supports `PyTorch` based models. To add your own specific model,
-
-1. Create a `PyTorch` model and place it under `model` folder.
-2. Prepare a `trainer module` by inheriting the base class `ClientTrainer`.
-3. Prepare an experiment file similar to `fedml_*.py` and shell script similar to `run_*.sh`.
-4. Adjust the `fedml_config.yaml` file with the model-specific parameters.
-
-## How to Add More Datasets, Domain-Specific Splits & Non-I.I.D.ness Generation Mechanisms?
-
-Create new folder for your dataset under `data/` folder and provide utilities to before feeding the data to federated pre-processing utilities listed in `data/data_loader.py` based on your new dataset.
-
-Splits and Non-I.I.D.'ness methods specific to each task are also located under `data/data_loader.py`. By default, we provide I.I.D. and non-I.I.D. sampling, Dirichlet distribution sampling based on sample size of the dataset. To create custom splitting method based on the sample size, you can create a new function or modify `load_partition_data_*` function.
-
-## Code Structure of FedCV
-
-- `config`: Experiment and GPU mapping configurations.
-
-- `data`: Provide data downloading scripts and store the downloaded datasets. FedCV supports more advanced datasets and models for federated training of computer vision tasks.
-- `model`: advanced CV models.
-- `trainer`: please define your own trainer.py by inheriting the base class in `fedml.core.alg_frame.client_trainer.ClientTrainer `. Some tasks can share the same trainer.
-- `utils`: utility functions.
-
-You can see the `README.md` file in each folder for more details.
-
-## Citation
-
-Please cite our FedML and FedCV papers if it helps your research.
-
-```text
-@article{he2021fedcv,
- title={Fedcv: a federated learning framework for diverse computer vision tasks},
- author={He, Chaoyang and Shah, Alay Dilipbhai and Tang, Zhenheng and Sivashunmugam, Di Fan1Adarshan Naiynar and Bhogaraju, Keerti and Shimpi, Mita and Shen, Li and Chu, Xiaowen and Soltanolkotabi, Mahdi and Avestimehr, Salman},
- journal={arXiv preprint arXiv:2111.11066},
- year={2021}
-}
-@misc{he2020fedml,
- title={FedML: A Research Library and Benchmark for Federated Machine Learning},
- author={Chaoyang He and Songze Li and Jinhyun So and Xiao Zeng and Mi Zhang and Hongyi Wang and Xiaoyang Wang and Praneeth Vepakomma and Abhishek Singh and Hang Qiu and Xinghua Zhu and Jianzong Wang and Li Shen and Peilin Zhao and Yan Kang and Yang Liu and Ramesh Raskar and Qiang Yang and Murali Annavaram and Salman Avestimehr},
- year={2020},
- eprint={2007.13518},
- archivePrefix={arXiv},
- primaryClass={cs.LG}
-}
-```
-
-## Contact
-
-Please find contact information at the homepage.
diff --git a/python/app/fedcv/YOLOv6/.github/ISSUE_TEMPLATE/config.yml b/python/app/fedcv/YOLOv6/.github/ISSUE_TEMPLATE/config.yml
new file mode 100644
index 0000000000..3ba13e0cec
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/.github/ISSUE_TEMPLATE/config.yml
@@ -0,0 +1 @@
+blank_issues_enabled: false
diff --git a/python/app/fedcv/object_detection/model/yolov5/.github/ISSUE_TEMPLATE/feature-request.yml b/python/app/fedcv/YOLOv6/.github/ISSUE_TEMPLATE/feature_request.yml
similarity index 56%
rename from python/app/fedcv/object_detection/model/yolov5/.github/ISSUE_TEMPLATE/feature-request.yml
rename to python/app/fedcv/YOLOv6/.github/ISSUE_TEMPLATE/feature_request.yml
index 68ef985186..06e741dce1 100644
--- a/python/app/fedcv/object_detection/model/yolov5/.github/ISSUE_TEMPLATE/feature-request.yml
+++ b/python/app/fedcv/YOLOv6/.github/ISSUE_TEMPLATE/feature_request.yml
@@ -1,21 +1,21 @@
name: 🚀 Feature Request
-description: Suggest a YOLOv5 idea
+description: Suggest a YOLOv6 idea
# title: " "
labels: [enhancement]
body:
- type: markdown
attributes:
value: |
- Thank you for submitting a YOLOv5 🚀 Feature Request!
+ Thank you for submitting a YOLOv6 Feature Request!
- type: checkboxes
attributes:
label: Search before asking
description: >
- Please search the [issues](https://github.com/ultralytics/yolov5/issues) to see if a similar feature request already exists.
+ Please search the [issues](https://github.com/meituan/YOLOv6/issues) to see if a similar feature request already exists.
options:
- label: >
- I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and found no similar feature requests.
+ I have searched the YOLOv6 [issues](https://github.com/meituan/YOLOv6/issues) and found no similar feature requests.
required: true
- type: textarea
@@ -23,7 +23,7 @@ body:
label: Description
description: A short description of your feature.
placeholder: |
- What new feature would you like to see in YOLOv5?
+ What new feature would you like to see in YOLOv6? (你希望YOLOv6可以支持哪些新功能?)
validations:
required: true
@@ -33,7 +33,7 @@ body:
description: |
Describe the use case of your feature request. It will help us understand and prioritize the feature request.
placeholder: |
- How would this feature be used, and who would use it?
+ How would this feature be used, and who would use it?(请描述一下这个新功能的应用场景?)
- type: textarea
attributes:
@@ -44,7 +44,6 @@ body:
attributes:
label: Are you willing to submit a PR?
description: >
- (Optional) We encourage you to submit a [Pull Request](https://github.com/ultralytics/yolov5/pulls) (PR) to help improve YOLOv5 for everyone, especially if you have a good understanding of how to implement a fix or feature.
- See the YOLOv5 [Contributing Guide](https://github.com/ultralytics/yolov5/blob/master/CONTRIBUTING.md) to get started.
+ (Optional) We encourage you to submit a [Pull Request](https://github.com/meituan/YOLOv6/pulls) (PR) to help improve YOLOv6 for everyone, especially if you have a good understanding of how to implement a fix or feature.
options:
- label: Yes I'd like to help by submitting a PR!
diff --git a/python/app/fedcv/YOLOv6/.github/ISSUE_TEMPLATE/question.yml b/python/app/fedcv/YOLOv6/.github/ISSUE_TEMPLATE/question.yml
new file mode 100644
index 0000000000..a652f25ce3
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/.github/ISSUE_TEMPLATE/question.yml
@@ -0,0 +1,54 @@
+name: ❓ Question
+description: Ask a YOLOv6 question
+# title: " "
+labels: [question]
+body:
+ - type: markdown
+ attributes:
+ value: |
+ Thanks for your attention. We will try our best to solve your problem, but more concrete information is necessary to reproduce your problem.
+ - type: checkboxes
+ attributes:
+ label: Before Asking
+ description: >
+ Please check and try following methods to solve it by yourself
+ options:
+ - label: >
+ I have read the [README](https://github.com/meituan/YOLOv6/blob/main/README.md) carefully.
+ 我已经仔细阅读了README上的操作指引。
+ required: true
+ - label: >
+ I want to train my custom dataset, and I have read the [tutorials for training your custom data](https://github.com/meituan/YOLOv6/blob/main/docs/Train_custom_data.md) carefully and organize my dataset correctly;
+ (FYI: We recommand you to apply the config files of xx_finetune.py.)
+ 我想训练自定义数据集,我已经仔细阅读了训练自定义数据的教程,以及按照正确的目录结构存放数据集。(FYI: 我们推荐使用xx_finetune.py等配置文件训练自定义数据集。)
+ required: False
+ - label: >
+ I have pulled the latest code of main branch to run again and the problem still existed.
+ 我已经拉取了主分支上最新的代码,重新运行之后,问题仍不能解决。
+ required: true
+
+
+ - type: checkboxes
+ attributes:
+ label: Search before asking
+ description: >
+ Please search the [issues](https://github.com/meituan/YOLOv6/issues) to see if a similar question already exists.
+ options:
+ - label: >
+ I have searched the YOLOv6 [issues](https://github.com/meituan/YOLOv6/issues) and found no similar questions.
+ required: true
+
+ - type: textarea
+ attributes:
+ label: Question
+ description: What is your question?
+ placeholder: |
+ 💡 ProTip! Include as much information as possible (screenshots, logs, tracebacks, training commands etc.) to receive the most helpful response.
+ (请仔细阅读上面的信息先进行问题排查,如果仍不能解决您的问题,请将问题尽可能地描述详细,以及提供相关命令、超参配置、报错日志等信息或截图,以便更快地定位和解决问题。)
+ validations:
+ required: true
+
+ - type: textarea
+ attributes:
+ label: Additional
+ description: Anything else you would like to share?
diff --git a/python/app/fedcv/YOLOv6/.gitignore b/python/app/fedcv/YOLOv6/.gitignore
new file mode 100644
index 0000000000..354eb6e714
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/.gitignore
@@ -0,0 +1,117 @@
+# Byte-compiled / optimized / DLL files
+__pycache__/
+*.py[cod]
+*$py.class
+**/*.pyc
+
+# C extensions
+
+# Distribution / packaging
+
+.Python
+videos/
+build/
+runs/
+weights/
+develop-eggs/
+dist/
+downloads/
+eggs/
+.eggs/
+parts/
+sdist/
+var/
+wheels/
+*.egg-info/
+.installed.cfg
+*.egg
+MANIFEST
+
+# PyInstaller
+# Usually these files are written by a python script from a template
+# before PyInstaller builds the exe, so as to inject date/other infos into it.
+*.manifest
+*.spec
+
+# Installer logs
+pip-log.txt
+pip-delete-this-directory.txt
+
+# Unit test / coverage reports
+htmlcov/
+.tox/
+.coverage
+.coverage.*
+.cache
+nosetests.xml
+coverage.xml
+*.cover
+.hypothesis/
+.pytest_cache/
+
+# Translations
+*.mo
+*.pot
+
+# Django stuff:
+*.log
+local_settings.py
+db.sqlite3
+
+# Flask stuff:
+instance/
+.webassets-cache
+
+# Scrapy stuff:
+.scrapy
+
+# Sphinx documentation
+docs/_build/
+
+# PyBuilder
+target/
+
+# Jupyter Notebook
+.ipynb_checkpoints
+
+# pyenv
+.python-version
+
+# celery beat schedule file
+celerybeat-schedule
+
+# SageMath parsed files
+*.sage.py
+
+# Environments
+.env
+.venv
+env/
+venv/
+ENV/
+env.bak/
+venv.bak/
+
+# Spyder project settings
+.spyderproject
+.spyproject
+
+# Rope project settings
+.ropeproject
+
+# custom
+.DS_Store
+
+# Pytorch
+*.pth
+
+#vscode
+.vscode/*
+
+#user scripts
+*.sh
+
+# model files
+*.onnx
+*.pt
+*.engine
diff --git a/python/app/fedcv/YOLOv6/.pre-commit-config.yaml b/python/app/fedcv/YOLOv6/.pre-commit-config.yaml
new file mode 100644
index 0000000000..fd16ba2dc3
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/.pre-commit-config.yaml
@@ -0,0 +1,10 @@
+# See https://pre-commit.com for more information
+# See https://pre-commit.com/hooks.html for more hooks
+repos:
+- repo: https://github.com/pre-commit/pre-commit-hooks
+ rev: v3.2.0
+ hooks:
+ - id: trailing-whitespace
+ - id: end-of-file-fixer
+ - id: check-yaml
+ - id: check-added-large-files
diff --git a/python/app/fedcv/object_detection/model/yolov6/LICENSE b/python/app/fedcv/YOLOv6/LICENSE
similarity index 100%
rename from python/app/fedcv/object_detection/model/yolov6/LICENSE
rename to python/app/fedcv/YOLOv6/LICENSE
diff --git a/python/app/fedcv/YOLOv6/README.md b/python/app/fedcv/YOLOv6/README.md
new file mode 100644
index 0000000000..6ea26ee507
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/README.md
@@ -0,0 +1,286 @@
+
+
+
+
+English | [简体中文](README_cn.md)
+
+
+
+
+
+
+
+
+
+
+## YOLOv6
+
+Implementation of paper:
+- [YOLOv6 v3.0: A Full-Scale Reloading](https://arxiv.org/abs/2301.05586) 🔥
+- [YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications](https://arxiv.org/abs/2209.02976)
+
+
+
+
+
+
+## What's New
+- [2023.04.28] Release [YOLOv6Lite](configs/yolov6_lite/README.md) models on mobile or CPU. ⭐️ [Mobile Benchmark](#Mobile-Benchmark)
+- [2023.03.10] Release [YOLOv6-Face](https://github.com/meituan/YOLOv6/tree/yolov6-face). 🔥 [Performance](https://github.com/meituan/YOLOv6/tree/yolov6-face#performance-on-widerface)
+- [2023.03.02] Update [base models](configs/base/README.md) to version 3.0.
+- [2023.01.06] Release P6 models and enhance the performance of P5 models. ⭐️ [Benchmark](#Benchmark)
+- [2022.11.04] Release [base models](configs/base/README.md) to simplify the training and deployment process.
+- [2022.09.06] Customized quantization methods. 🚀 [Quantization Tutorial](./tools/qat/README.md)
+- [2022.09.05] Release M/L models and update N/T/S models with enhanced performance.
+- [2022.06.23] Release N/T/S models with excellent performance.
+
+## Benchmark
+| Model | Size | mAPval 0.5:0.95 | SpeedT4 trt fp16 b1 (fps) | SpeedT4 trt fp16 b32 (fps) | Params (M) | FLOPs (G) |
+| :----------------------------------------------------------- | ---- | :----------------------- | --------------------------------------- | ---------------------------------------- | -------------------- | ------------------- |
+| [**YOLOv6-N**](https://github.com/meituan/YOLOv6/releases/download/0.4.0/yolov6n.pt) | 640 | 37.5 | 779 | 1187 | 4.7 | 11.4 |
+| [**YOLOv6-S**](https://github.com/meituan/YOLOv6/releases/download/0.4.0/yolov6s.pt) | 640 | 45.0 | 339 | 484 | 18.5 | 45.3 |
+| [**YOLOv6-M**](https://github.com/meituan/YOLOv6/releases/download/0.4.0/yolov6m.pt) | 640 | 50.0 | 175 | 226 | 34.9 | 85.8 |
+| [**YOLOv6-L**](https://github.com/meituan/YOLOv6/releases/download/0.4.0/yolov6l.pt) | 640 | 52.8 | 98 | 116 | 59.6 | 150.7 |
+| | | | | |
+| [**YOLOv6-N6**](https://github.com/meituan/YOLOv6/releases/download/0.4.0/yolov6n6.pt) | 1280 | 44.9 | 228 | 281 | 10.4 | 49.8 |
+| [**YOLOv6-S6**](https://github.com/meituan/YOLOv6/releases/download/0.4.0/yolov6s6.pt) | 1280 | 50.3 | 98 | 108 | 41.4 | 198.0 |
+| [**YOLOv6-M6**](https://github.com/meituan/YOLOv6/releases/download/0.4.0/yolov6m6.pt) | 1280 | 55.2 | 47 | 55 | 79.6 | 379.5 |
+| [**YOLOv6-L6**](https://github.com/meituan/YOLOv6/releases/download/0.4.0/yolov6l6.pt) | 1280 | 57.2 | 26 | 29 | 140.4 | 673.4 |
+
+Table Notes
+
+- All checkpoints are trained with self-distillation except for YOLOv6-N6/S6 models trained to 300 epochs without distillation.
+- Results of the mAP and speed are evaluated on [COCO val2017](https://cocodataset.org/#download) dataset with the input resolution of 640×640 for P5 models and 1280x1280 for P6 models.
+- Speed is tested with TensorRT 7.2 on T4.
+- Refer to [Test speed](./docs/Test_speed.md) tutorial to reproduce the speed results of YOLOv6.
+- Params and FLOPs of YOLOv6 are estimated on deployed models.
+
+
+
+Legacy models
+
+| Model | Size | mAPval 0.5:0.95 | SpeedT4 trt fp16 b1 (fps) | SpeedT4 trt fp16 b32 (fps) | Params (M) | FLOPs (G) |
+| :----------------------------------------------------------- | ---- | :------------------------------------ | --------------------------------------- | ---------------------------------------- | -------------------- | ------------------- |
+| [**YOLOv6-N**](https://github.com/meituan/YOLOv6/releases/download/0.2.0/yolov6n.pt) | 640 | 35.9300e 36.3400e | 802 | 1234 | 4.3 | 11.1 |
+| [**YOLOv6-T**](https://github.com/meituan/YOLOv6/releases/download/0.2.0/yolov6t.pt) | 640 | 40.3300e 41.1400e | 449 | 659 | 15.0 | 36.7 |
+| [**YOLOv6-S**](https://github.com/meituan/YOLOv6/releases/download/0.2.0/yolov6s.pt) | 640 | 43.5300e 43.8400e | 358 | 495 | 17.2 | 44.2 |
+| [**YOLOv6-M**](https://github.com/meituan/YOLOv6/releases/download/0.2.0/yolov6m.pt) | 640 | 49.5 | 179 | 233 | 34.3 | 82.2 |
+| [**YOLOv6-L-ReLU**](https://github.com/meituan/YOLOv6/releases/download/0.2.0/yolov6l_relu.pt) | 640 | 51.7 | 113 | 149 | 58.5 | 144.0 |
+| [**YOLOv6-L**](https://github.com/meituan/YOLOv6/releases/download/0.2.0/yolov6l.pt) | 640 | 52.5 | 98 | 121 | 58.5 | 144.0 |
+- Speed is tested with TensorRT 7.2 on T4.
+### Quantized model 🚀
+
+| Model | Size | Precision | mAPval 0.5:0.95 | SpeedT4 trt b1 (fps) | SpeedT4 trt b32 (fps) |
+| :-------------------- | ---- | --------- | :----------------------- | ---------------------------------- | ----------------------------------- |
+| **YOLOv6-N RepOpt** | 640 | INT8 | 34.8 | 1114 | 1828 |
+| **YOLOv6-N** | 640 | FP16 | 35.9 | 802 | 1234 |
+| **YOLOv6-T RepOpt** | 640 | INT8 | 39.8 | 741 | 1167 |
+| **YOLOv6-T** | 640 | FP16 | 40.3 | 449 | 659 |
+| **YOLOv6-S RepOpt** | 640 | INT8 | 43.3 | 619 | 924 |
+| **YOLOv6-S** | 640 | FP16 | 43.5 | 377 | 541 |
+
+- Speed is tested with TensorRT 8.4 on T4.
+- Precision is figured on models for 300 epochs.
+
+
+
+## Mobile Benchmark
+| Model | Size | mAPval 0.5:0.95 | sm8350(ms) | mt6853(ms) | sdm660(ms) |Params (M) | FLOPs (G) |
+| :----------------------------------------------------------- | ---- | -------------------- | -------------------- | -------------------- | -------------------- | -------------------- | -------------------- |
+| [**YOLOv6Lite-S**](https://github.com/meituan/YOLOv6/releases/download/0.4.0/yolov6lite_s.pt) | 320*320 | 22.4 | 7.99 | 11.99 | 41.86 | 0.55 | 0.56 |
+| [**YOLOv6Lite-M**](https://github.com/meituan/YOLOv6/releases/download/0.4.0/yolov6lite_m.pt) | 320*320 | 25.1 | 9.08 | 13.27 | 47.95 | 0.79 | 0.67 |
+| [**YOLOv6Lite-L**](https://github.com/meituan/YOLOv6/releases/download/0.4.0/yolov6lite_l.pt) | 320*320 | 28.0 | 11.37 | 16.20 | 61.40 | 1.09 | 0.87 |
+| [**YOLOv6Lite-L**](https://github.com/meituan/YOLOv6/releases/download/0.4.0/yolov6lite_l.pt) | 320*192 | 25.0 | 7.02 | 9.66 | 36.13 | 1.09 | 0.52 |
+| [**YOLOv6Lite-L**](https://github.com/meituan/YOLOv6/releases/download/0.4.0/yolov6lite_l.pt) | 224*128 | 18.9 | 3.63 | 4.99 | 17.76 | 1.09 | 0.24 |
+
+
+Table Notes
+
+- From the perspective of model size and input image ratio, we have built a series of models on the mobile terminal to facilitate flexible applications in different scenarios.
+- All checkpoints are trained with 400 epochs without distillation.
+- Results of the mAP and speed are evaluated on [COCO val2017](https://cocodataset.org/#download) dataset, and the input resolution is the Size in the table.
+- Speed is tested on MNN 2.3.0 AArch64 with 2 threads by arm82 acceleration. The inference warm-up is performed 10 times, and the cycle is performed 100 times.
+- Qualcomm 888(sm8350), Dimensity 720(mt6853) and Qualcomm 660(sdm660) correspond to chips with different performances at the high, middle and low end respectively, which can be used as a reference for model capabilities under different chips.
+- Refer to [Test NCNN Speed](./docs/Test_NCNN_speed.md) tutorial to reproduce the NCNN speed results of YOLOv6Lite.
+
+
+
+## Quick Start
+
+ Install
+
+
+```shell
+git clone https://github.com/meituan/YOLOv6
+cd YOLOv6
+pip install -r requirements.txt
+```
+
+
+
+
+
+ Reproduce our results on COCO
+
+Please refer to [Train COCO Dataset](./docs/Train_coco_data.md).
+
+
+
+
+ Finetune on custom data
+
+Single GPU
+
+```shell
+# P5 models
+python tools/train.py --batch 32 --conf configs/yolov6s_finetune.py --data data/dataset.yaml --fuse_ab --device 0
+# P6 models
+python tools/train.py --batch 32 --conf configs/yolov6s6_finetune.py --data data/dataset.yaml --img 1280 --device 0
+```
+
+Multi GPUs (DDP mode recommended)
+
+```shell
+# P5 models
+python -m torch.distributed.launch --nproc_per_node 8 tools/train.py --batch 256 --conf configs/yolov6s_finetune.py --data data/dataset.yaml --fuse_ab --device 0,1,2,3,4,5,6,7
+# P6 models
+python -m torch.distributed.launch --nproc_per_node 8 tools/train.py --batch 128 --conf configs/yolov6s6_finetune.py --data data/dataset.yaml --img 1280 --device 0,1,2,3,4,5,6,7
+```
+- fuse_ab: add anchor-based auxiliary branch and use Anchor Aided Training Mode (Not supported on P6 models currently)
+- conf: select config file to specify network/optimizer/hyperparameters. We recommend to apply yolov6n/s/m/l_finetune.py when training on your custom dataset.
+- data: prepare dataset and specify dataset paths in data.yaml ( [COCO](http://cocodataset.org), [YOLO format coco labels](https://github.com/meituan/YOLOv6/releases/download/0.1.0/coco2017labels.zip) )
+- make sure your dataset structure as follows:
+```
+├── coco
+│ ├── annotations
+│ │ ├── instances_train2017.json
+│ │ └── instances_val2017.json
+│ ├── images
+│ │ ├── train2017
+│ │ └── val2017
+│ ├── labels
+│ │ ├── train2017
+│ │ ├── val2017
+│ ├── LICENSE
+│ ├── README.txt
+```
+
+YOLOv6 supports different input resolution modes. For details, see [How to Set the Input Size](./docs/About_training_size.md).
+
+
+
+
+Resume training
+
+If your training process is corrupted, you can resume training by
+```
+# single GPU training.
+python tools/train.py --resume
+
+# multi GPU training.
+python -m torch.distributed.launch --nproc_per_node 8 tools/train.py --resume
+```
+Above command will automatically find the latest checkpoint in YOLOv6 directory, then resume the training process.
+
+Your can also specify a checkpoint path to `--resume` parameter by
+```
+# remember to replace /path/to/your/checkpoint/path to the checkpoint path which you want to resume training.
+--resume /path/to/your/checkpoint/path
+```
+This will resume from the specific checkpoint you provide.
+
+
+
+
+ Evaluation
+
+Reproduce mAP on COCO val2017 dataset with 640×640 or 1280x1280 resolution
+
+```shell
+# P5 models
+python tools/eval.py --data data/coco.yaml --batch 32 --weights yolov6s.pt --task val --reproduce_640_eval
+# P6 models
+python tools/eval.py --data data/coco.yaml --batch 32 --weights yolov6s6.pt --task val --reproduce_640_eval --img 1280
+```
+- verbose: set True to print mAP of each classes.
+- do_coco_metric: set True / False to enable / disable pycocotools evaluation method.
+- do_pr_metric: set True / False to print or not to print the precision and recall metrics.
+- config-file: specify a config file to define all the eval params, for example: [yolov6n_with_eval_params.py](configs/experiment/yolov6n_with_eval_params.py)
+
+
+
+
+Inference
+
+First, download a pretrained model from the YOLOv6 [release](https://github.com/meituan/YOLOv6/releases/tag/0.4.0) or use your trained model to do inference.
+
+Second, run inference with `tools/infer.py`
+
+```shell
+# P5 models
+python tools/infer.py --weights yolov6s.pt --source img.jpg / imgdir / video.mp4
+# P6 models
+python tools/infer.py --weights yolov6s6.pt --img 1280 1280 --source img.jpg / imgdir / video.mp4
+```
+If you want to inference on local camera or web camera, you can run:
+```shell
+# P5 models
+python tools/infer.py --weights yolov6s.pt --webcam --webcam-addr 0
+# P6 models
+python tools/infer.py --weights yolov6s6.pt --img 1280 1280 --webcam --webcam-addr 0
+```
+`webcam-addr` can be local camera number id or rtsp address.
+
+
+
+ Deployment
+
+* [ONNX](./deploy/ONNX)
+* [OpenCV Python/C++](./deploy/ONNX/OpenCV)
+* [OpenVINO](./deploy/OpenVINO)
+* [TensorRT](./deploy/TensorRT)
+* [NCNN](./deploy/NCNN)
+* [Android](./deploy/NCNN/Android)
+
+
+
+ Tutorials
+
+* [User Guide(zh_CN)](https://yolov6-docs.readthedocs.io/zh_CN/latest/)
+* [Train COCO Dataset](./docs/Train_coco_data.md)
+* [Train custom data](./docs/Train_custom_data.md)
+* [Test speed](./docs/Test_speed.md)
+* [Tutorial of Quantization for YOLOv6](./docs/Tutorial%20of%20Quantization.md)
+
+
+
+ Third-party resources
+
+ * YOLOv6 NCNN Android app demo: [ncnn-android-yolov6](https://github.com/FeiGeChuanShu/ncnn-android-yolov6) from [FeiGeChuanShu](https://github.com/FeiGeChuanShu)
+
+ * YOLOv6 ONNXRuntime/MNN/TNN C++: [YOLOv6-ORT](https://github.com/DefTruth/lite.ai.toolkit/blob/main/lite/ort/cv/yolov6.cpp), [YOLOv6-MNN](https://github.com/DefTruth/lite.ai.toolkit/blob/main/lite/mnn/cv/mnn_yolov6.cpp) and [YOLOv6-TNN](https://github.com/DefTruth/lite.ai.toolkit/blob/main/lite/tnn/cv/tnn_yolov6.cpp) from [DefTruth](https://github.com/DefTruth)
+
+ * YOLOv6 TensorRT Python: [yolov6-tensorrt-python](https://github.com/Linaom1214/TensorRT-For-YOLO-Series) from [Linaom1214](https://github.com/Linaom1214)
+
+ * YOLOv6 TensorRT Windows C++: [yolort](https://github.com/zhiqwang/yolov5-rt-stack/tree/main/deployment/tensorrt-yolov6) from [Wei Zeng](https://github.com/Wulingtian)
+
+ * [YOLOv6 web demo](https://huggingface.co/spaces/nateraw/yolov6) on [Huggingface Spaces](https://huggingface.co/spaces) with [Gradio](https://github.com/gradio-app/gradio). [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/nateraw/yolov6)
+
+ * [Interactive demo](https://yolov6.dagshubusercontent.com/) on [DagsHub](https://dagshub.com) with [Streamlit](https://github.com/streamlit/streamlit)
+
+ * Tutorial: [How to train YOLOv6 on a custom dataset](https://blog.roboflow.com/how-to-train-yolov6-on-a-custom-dataset/)
+
+ * YouTube Tutorial: [How to train YOLOv6 on a custom dataset](https://youtu.be/fFCWrMFH2UY)
+
+ * Demo of YOLOv6 inference on Google Colab [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/mahdilamb/YOLOv6/blob/main/inference.ipynb)
+
+ * Blog post: [YOLOv6 Object Detection – Paper Explanation and Inference](https://learnopencv.com/yolov6-object-detection/)
+
+
+
+### [FAQ(Continuously updated)](https://github.com/meituan/YOLOv6/wiki/FAQ%EF%BC%88Continuously-updated%EF%BC%89)
+
+If you have any questions, welcome to join our WeChat group to discuss and exchange.
+
+
+
diff --git a/python/app/fedcv/YOLOv6/README_cn.md b/python/app/fedcv/YOLOv6/README_cn.md
new file mode 100644
index 0000000000..d7181bc02e
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/README_cn.md
@@ -0,0 +1,266 @@
+
+
+
+
+简体中文 | [English](README.md)
+
+## YOLOv6
+
+官方论文:
+- [YOLOv6 v3.0: A Full-Scale Reloading](https://arxiv.org/abs/2301.05586) 🔥
+- [YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications](https://arxiv.org/abs/2209.02976)
+
+
+
+
+
+
+## 更新日志
+- [2023.04.28] 发布 移动端轻量级模型 [YOLOv6Lite](configs/yolov6_lite/README.md). ⭐️ [移动端模型指标](#移动端模型指标)
+- [2023.03.10] 发布 [YOLOv6-Face](https://github.com/meituan/YOLOv6/tree/yolov6-face). 🔥 [人脸检测模型指标](https://github.com/meituan/YOLOv6/blob/yolov6-face/README_cn.md#widerface-%E6%A8%A1%E5%9E%8B%E6%8C%87%E6%A0%87)
+- [2023.03.02] 更新 [基础版模型](configs/base/README_cn.md) 到 3.0 版本
+- [2023.01.06] 发布大分辨率 P6 模型以及对 P5 模型做了全面的升级 ⭐️ [模型指标](#模型指标)
+- [2022.11.04] 发布 [基础版模型](configs/base/README_cn.md) 简化训练部署流程
+- [2022.09.06] 定制化的模型量化加速方法 🚀 [量化教程](./tools/qat/README.md)
+- [2022.09.05] 发布 M/L 模型,并且进一步提高了 N/T/S 模型的性能
+- [2022.06.23] 发布 N/T/S v1.0 版本模型
+
+## 模型指标
+| 模型 | 输入尺寸 | mAPval 0.5:0.95 | 速度T4 trt fp16 b1 (fps) | 速度T4 trt fp16 b32 (fps) | Params (M) | FLOPs (G) |
+| :----------------------------------------------------------- | ---- | :------------------------------------ | --------------------------------------- | ---------------------------------------- | -------------------- | ------------------- |
+| [**YOLOv6-N**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6n.pt) | 640 | 37.5 | 779 | 1187 | 4.7 | 11.4 |
+| [**YOLOv6-S**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6s.pt) | 640 | 45.0 | 339 | 484 | 18.5 | 45.3 |
+| [**YOLOv6-M**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6m.pt) | 640 | 50.0 | 175 | 226 | 34.9 | 85.8 |
+| [**YOLOv6-L**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6l.pt) | 640 | 52.8 | 98 | 116 | 59.6 | 150.7 |
+| | | | | |
+| [**YOLOv6-N6**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6n6.pt) | 1280 | 44.9 | 228 | 281 | 10.4 | 49.8 |
+| [**YOLOv6-S6**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6s6.pt) | 1280 | 50.3 | 98 | 108 | 41.4 | 198.0 |
+| [**YOLOv6-M6**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6m6.pt) | 1280 | 55.2 | 47 | 55 | 79.6 | 379.5 |
+| [**YOLOv6-L6**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6l6.pt) | 1280 | 57.2 | 26 | 29 | 140.4 | 673.4 |
+
+
+表格笔记
+
+- 除了 YOLOv6-N6/S6 模型是训练了300轮的结果,其余模型均为自蒸馏训练之后的结果;
+- mAP 和速度指标是在 [COCO val2017](https://cocodataset.org/#download) 数据集上评估的,P5模型输入分辨率为 640×640,P6模型输入分辨率为 1280×1280;
+- 速度是在 T4 上测试的,TensorRT 版本为 7.2;
+- 复现 YOLOv6 的速度指标,请查看 [速度测试](./docs/Test_speed.md) 教程;
+- YOLOv6 的参数和计算量是在推理模式下计算的;
+
+
+
+旧版模型
+
+| 模型 | 输入尺寸 | mAPval 0.5:0.95 | 速度T4 trt fp16 b1 (fps) | 速度T4 trt fp16 b32 (fps) | Params (M) | FLOPs (G) |
+| :----------------------------------------------------------- | ---- | :------------------------------------ | --------------------------------------- | ---------------------------------------- | -------------------- | ------------------- |
+| [**YOLOv6-N**](https://github.com/meituan/YOLOv6/releases/download/0.2.0/yolov6n.pt) | 640 | 35.9300e 36.3400e | 802 | 1234 | 4.3 | 11.1 |
+| [**YOLOv6-T**](https://github.com/meituan/YOLOv6/releases/download/0.2.0/yolov6t.pt) | 640 | 40.3300e 41.1400e | 449 | 659 | 15.0 | 36.7 |
+| [**YOLOv6-S**](https://github.com/meituan/YOLOv6/releases/download/0.2.0/yolov6s.pt) | 640 | 43.5300e 43.8400e | 358 | 495 | 17.2 | 44.2 |
+| [**YOLOv6-M**](https://github.com/meituan/YOLOv6/releases/download/0.2.0/yolov6m.pt) | 640 | 49.5 | 179 | 233 | 34.3 | 82.2 |
+| [**YOLOv6-L-ReLU**](https://github.com/meituan/YOLOv6/releases/download/0.2.0/yolov6l_relu.pt) | 640 | 51.7 | 113 | 149 | 58.5 | 144.0 |
+| [**YOLOv6-L**](https://github.com/meituan/YOLOv6/releases/download/0.2.0/yolov6l.pt) | 640 | 52.5 | 98 | 121 | 58.5 | 144.0 |
+- 速度是在 T4 上测试的,TensorRT 版本为 7.2;
+
+### 量化模型
+
+| 模型 | 输入尺寸 | 精度 | mAPval 0.5:0.95 | 速度T4 trt b1 (fps) | 速度T4 trt b32 (fps) |
+| :-------------------- | ---- | --------- | :----------------------- | ---------------------------------- | ----------------------------------- |
+| **YOLOv6-N RepOpt** | 640 | INT8 | 34.8 | 1114 | 1828 |
+| **YOLOv6-N** | 640 | FP16 | 35.9 | 802 | 1234 |
+| **YOLOv6-T RepOpt** | 640 | INT8 | 39.8 | 741 | 1167 |
+| **YOLOv6-T** | 640 | FP16 | 40.3 | 449 | 659 |
+| **YOLOv6-S RepOpt** | 640 | INT8 | 43.3 | 619 | 924 |
+| **YOLOv6-S** | 640 | FP16 | 43.5 | 377 | 541 |
+
+- 速度是在 T4 上测试的,TensorRT 版本为 8.4;
+- 精度是在训练 300 epoch 的模型上测试的;
+
+
+
+## 移动端模型指标
+
+| 模型 | 输入尺寸 | mAPval 0.5:0.95 | sm8350(ms) | mt6853(ms) | sdm660(ms) |Params (M) | FLOPs (G) |
+| :----------------------------------------------------------- | ---- | -------------------- | -------------------- | -------------------- | -------------------- | -------------------- | -------------------- |
+| [**YOLOv6Lite-S**](https://github.com/meituan/YOLOv6/releases/download/0.4.0/yolov6lite_s.pt) | 320*320 | 22.4 | 7.99 | 11.99 | 41.86 | 0.55 | 0.56 |
+| [**YOLOv6Lite-M**](https://github.com/meituan/YOLOv6/releases/download/0.4.0/yolov6lite_m.pt) | 320*320 | 25.1 | 9.08 | 13.27 | 47.95 | 0.79 | 0.67 |
+| [**YOLOv6Lite-L**](https://github.com/meituan/YOLOv6/releases/download/0.4.0/yolov6lite_l.pt) | 320*320 | 28.0 | 11.37 | 16.20 | 61.40 | 1.09 | 0.87 |
+| [**YOLOv6Lite-L**](https://github.com/meituan/YOLOv6/releases/download/0.4.0/yolov6lite_l.pt) | 320*192 | 25.0 | 7.02 | 9.66 | 36.13 | 1.09 | 0.52 |
+| [**YOLOv6Lite-L**](https://github.com/meituan/YOLOv6/releases/download/0.4.0/yolov6lite_l.pt) | 224*128 | 18.9 | 3.63 | 4.99 | 17.76 | 1.09 | 0.24 |
+
+
+表格笔记
+
+- 从模型尺寸和输入图片比例两种角度,在构建了移动端系列模型,方便不同场景下的灵活应用。
+- 所有权重都经过 400 个 epoch 的训练,并且没有使用蒸馏技术。
+- mAP 和速度指标是在 COCO val2017 数据集上评估的,输入分辨率为表格中对应展示的。
+- 使用 MNN 2.3.0 AArch64 进行速度测试。测速时,采用2个线程,并开启arm82加速,推理预热10次,循环100次。
+- 高通888(sm8350)、天玑720(mt6853)和高通660(sdm660)分别对应高中低端不同性能的芯片,可以作为不同芯片下机型能力的参考。
+- [NCNN 速度测试](./docs/Test_NCNN_speed.md)教程可以帮助展示及复现 YOLOv6Lite 的 NCNN 速度结果。
+
+
+
+## 快速开始
+
+
+ 安装
+
+
+```shell
+git clone https://github.com/meituan/YOLOv6
+cd YOLOv6
+pip install -r requirements.txt
+```
+
+
+
+ 在 COCO 数据集上复现我们的结果
+
+请参考教程 [训练 COCO 数据集](./docs/Train_coco_data.md).
+
+
+
+
+ 在自定义数据集上微调模型
+
+单卡
+
+```shell
+# P5 models
+python tools/train.py --batch 32 --conf configs/yolov6s_finetune.py --data data/dataset.yaml --fuse_ab --device 0
+# P6 models
+python tools/train.py --batch 32 --conf configs/yolov6s6_finetune.py --data data/dataset.yaml --img 1280 --device 0
+```
+
+多卡 (我们推荐使用 DDP 模式)
+
+```shell
+# P5 models
+python -m torch.distributed.launch --nproc_per_node 8 tools/train.py --batch 256 --conf configs/yolov6s_finetune.py --data data/dataset.yaml --fuse_ab --device 0,1,2,3,4,5,6,7
+# P6 models
+python -m torch.distributed.launch --nproc_per_node 8 tools/train.py --batch 128 --conf configs/yolov6s6_finetune.py --data data/dataset.yaml --img 1280 --device 0,1,2,3,4,5,6,7
+```
+- fuse_ab: 增加anchor-based预测分支并使用联合锚点训练模式 (P6模型暂不支持此功能)
+- conf: 配置文件路径,里面包含网络结构、优化器配置、超参数信息。如果您是在自己的数据集训练,我们推荐您使用yolov6n/s/m/l_finetune.py配置文件;
+- data: 数据集配置文件,以 COCO 数据集为例,您可以在 [COCO](http://cocodataset.org) 下载数据, 在这里下载 [YOLO 格式标签](https://github.com/meituan/YOLOv6/releases/download/0.1.0/coco2017labels.zip);
+- 确保您的数据集按照下面这种格式来组织;
+```
+├── coco
+│ ├── annotations
+│ │ ├── instances_train2017.json
+│ │ └── instances_val2017.json
+│ ├── images
+│ │ ├── train2017
+│ │ └── val2017
+│ ├── labels
+│ │ ├── train2017
+│ │ ├── val2017
+```
+
+YOLOv6 支持不同的输入分辨率模式,详情请参见 [如何设置输入大小](./docs/About_training_size_cn.md).
+
+
+
+
+恢复训练
+
+
+如果您的训练进程中断了,您可以这样恢复先前的训练进程。
+```
+# 单卡训练
+python tools/train.py --resume
+
+# 多卡训练
+python -m torch.distributed.launch --nproc_per_node 8 tools/train.py --resume
+```
+上面的命令将自动在 YOLOv6 目录中找到最新保存的模型,然后恢复训练。
+
+您也可以通过 `--resume` 参数指定要恢复的模型路径
+```
+# 记得把 /path/to/your/checkpoint/path 替换为您要恢复训练的模型权重路径
+--resume /path/to/your/checkpoint/path
+```
+这将从您提供的模型路径恢复训练。
+
+
+
+
+
+ 评估
+在 COCO val2017 数据集上复现我们的结果(输入分辨率 640x640 或 1280x1280)
+
+```shell
+# P5 models
+python tools/eval.py --data data/coco.yaml --batch 32 --weights yolov6s.pt --task val --reproduce_640_eval
+# P6 models
+python tools/eval.py --data data/coco.yaml --batch 32 --weights yolov6s6.pt --task val --reproduce_640_eval --img 1280
+```
+- verbose: 如果要打印每一类的精度信息,请设置为 True;
+- do_coco_metric: 设置 True / False 来打开或关闭 pycocotools 的评估;
+- do_pr_metric: 设置 True / False 来显示或不显示精度和召回的指标;
+- config-file: 指定一个包含所有评估参数的配置文件,例如 [yolov6n_with_eval_params.py](configs/experiment/yolov6n_with_eval_params.py)
+
+
+
+
+推理
+
+首先,从 [release页面](https://github.com/meituan/YOLOv6/releases/tag/0.3.0) 下载一个训练好的模型权重文件,或选择您自己训练的模型;
+
+然后,通过 `tools/infer.py`文件进行推理。
+
+```shell
+# P5 models
+python tools/infer.py --weights yolov6s.pt --source img.jpg / imgdir / video.mp4
+# P6 models
+python tools/infer.py --weights yolov6s6.pt --img 1280 1280 --source img.jpg / imgdir / video.mp4
+```
+如果您想使用本地摄像头或者网络摄像头,您可以运行:
+```shell
+# P5 models
+python tools/infer.py --weights yolov6s.pt --webcam --webcam-addr 0
+# P6 models
+python tools/infer.py --weights yolov6s6.pt --img 1280 1280 --webcam --webcam-addr 0
+```
+`webcam-addr` 可以是本地摄像头的 ID,或者是 RTSP 地址。
+
+
+
+ 部署
+
+* [ONNX](./deploy/ONNX)
+* [OpenCV Python/C++](./deploy/ONNX/OpenCV)
+* [OpenVINO](./deploy/OpenVINO)
+* [TensorRT](./deploy/TensorRT)
+* [NCNN](./deploy/NCNN)
+* [Android](./deploy/NCNN/Android)
+
+
+
+ 教程
+
+* [用户手册(中文版)](https://yolov6-docs.readthedocs.io/zh_CN/latest/)
+* [训练 COCO 数据集](./docs/Train_coco_data.md)
+* [训练自定义数据集](./docs/Train_custom_data.md)
+* [测速](./docs/Test_speed.md)
+* [ YOLOv6 量化教程](./docs/Tutorial%20of%20Quantization.md)
+
+
+
+
+ 第三方资源
+
+ * YOLOv6 NCNN Android app demo: [ncnn-android-yolov6](https://github.com/FeiGeChuanShu/ncnn-android-yolov6) from [FeiGeChuanShu](https://github.com/FeiGeChuanShu)
+ * YOLOv6 ONNXRuntime/MNN/TNN C++: [YOLOv6-ORT](https://github.com/DefTruth/lite.ai.toolkit/blob/main/lite/ort/cv/yolov6.cpp), [YOLOv6-MNN](https://github.com/DefTruth/lite.ai.toolkit/blob/main/lite/mnn/cv/mnn_yolov6.cpp) and [YOLOv6-TNN](https://github.com/DefTruth/lite.ai.toolkit/blob/main/lite/tnn/cv/tnn_yolov6.cpp) from [DefTruth](https://github.com/DefTruth)
+ * YOLOv6 TensorRT Python: [yolov6-tensorrt-python](https://github.com/Linaom1214/TensorRT-For-YOLO-Series) from [Linaom1214](https://github.com/Linaom1214)
+ * YOLOv6 TensorRT Windows C++: [yolort](https://github.com/zhiqwang/yolov5-rt-stack/tree/main/deployment/tensorrt-yolov6) from [Wei Zeng](https://github.com/Wulingtian)
+ * [YOLOv6 web demo](https://huggingface.co/spaces/nateraw/yolov6) on [Huggingface Spaces](https://huggingface.co/spaces) with [Gradio](https://github.com/gradio-app/gradio). [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/nateraw/yolov6)
+ * 教程: [如何用 YOLOv6 训练自己的数据集](https://blog.roboflow.com/how-to-train-yolov6-on-a-custom-dataset/)
+ * YOLOv6 在 Google Colab 上的推理 Demo [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/mahdilamb/YOLOv6/blob/main/inference.ipynb)
+
+
+### [FAQ(持续更新)](https://github.com/meituan/YOLOv6/wiki/FAQ%EF%BC%88Continuously-updated%EF%BC%89)
+
+如果您有任何问题,欢迎加入我们的微信群一起讨论交流!
+
+
+
diff --git a/python/app/fedcv/YOLOv6/configs/base/README.md b/python/app/fedcv/YOLOv6/configs/base/README.md
new file mode 100644
index 0000000000..77ef5a4e9c
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/base/README.md
@@ -0,0 +1,26 @@
+## YOLOv6 base model
+
+English | [简体中文](./README_cn.md)
+
+### Features
+
+- Use only regular convolution and Relu activation functions.
+
+- Apply CSP (1/2 channel dim) blocks in the network structure, except for Nano base model.
+
+Advantage:
+- Adopt a unified network structure and configuration, and the accuracy loss of the PTQ 8-bit quantization model is negligible.
+- Suitable for users who are just getting started or who need to apply, optimize and deploy an 8-bit quantization model quickly and frequently.
+
+
+### Performance
+
+| Model | Size | mAPval 0.5:0.95 | SpeedT4 TRT FP16 b1 (FPS) | SpeedT4 TRT FP16 b32 (FPS) | SpeedT4 TRT INT8 b1 (FPS) | SpeedT4 TRT INT8 b32 (FPS) | Params (M) | FLOPs (G) |
+| :--------------------------------------------------------------------------------------------- | --- | ----------------- | ----- | ---- | ---- | ---- | ----- | ------ |
+| [**YOLOv6-N-base**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6n_base.pt) | 640 | 36.6distill | 727 | 1302 | 814 | 1805 | 4.65 | 11.46 |
+| [**YOLOv6-S-base**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6s_base.pt) | 640 | 45.3distill | 346 | 525 | 487 | 908 | 13.14 | 30.6 |
+| [**YOLOv6-M-base**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6m_base.pt) | 640 | 49.4distill | 179 | 245 | 284 | 439 | 28.33 | 72.30 |
+| [**YOLOv6-L-base**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6l_base.pt) | 640 | 51.1distill | 116 | 157 | 196 | 288 | 59.61 | 150.89 |
+
+- Speed is tested with TensorRT 8.2.4.2 on T4.
+- The processes of model training, evaluation, and inference are the same as the original ones. For details, please refer to [this README](https://github.com/meituan/YOLOv6#quick-start).
diff --git a/python/app/fedcv/YOLOv6/configs/base/README_cn.md b/python/app/fedcv/YOLOv6/configs/base/README_cn.md
new file mode 100644
index 0000000000..b6b01d1448
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/base/README_cn.md
@@ -0,0 +1,25 @@
+## YOLOv6 基础版模型
+
+简体中文 | [English](./README.md)
+
+### 模型特点
+
+- 仅使用常规卷积和Relu激活函数
+
+- 网络结构均采用CSP (1/2通道) block,Nano网络除外。
+
+优势:
+- 采用统一的网络结构和配置,且 PTQ 8位量化模型精度损失较小,适合刚入门或有快速迭代部署8位量化模型需求的用户。
+
+
+### 模型指标
+
+| 模型 | 尺寸 | mAPval 0.5:0.95 | 速度T4 TRT FP16 b1 (FPS) | 速度T4 TRT FP16 b32 (FPS) | 速度T4 TRT INT8 b1 (FPS) | 速度T4 TRT INT8 b32 (FPS) | Params (M) | FLOPs (G) |
+| :--------------------------------------------------------------------------------------------- | --- | ----------------- | ----- | ---- | ---- | ---- | ----- | ------ |
+| [**YOLOv6-N-base**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6n_base.pt) | 640 | 36.6distill | 727 | 1302 | 814 | 1805 | 4.65 | 11.46 |
+| [**YOLOv6-S-base**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6s_base.pt) | 640 | 45.3distill | 346 | 525 | 487 | 908 | 13.14 | 30.6 |
+| [**YOLOv6-M-base**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6m_base.pt) | 640 | 49.4distill | 179 | 245 | 284 | 439 | 28.33 | 72.30 |
+| [**YOLOv6-L-base**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6l_base.pt) | 640 | 51.1distill | 116 | 157 | 196 | 288 | 59.61 | 150.89 |
+
+- 速度是在 T4 上测试的,TensorRT 版本为 8.4.2.4;
+- 模型训练、评估、推理流程与原来保持一致,具体可参考 [首页 README 文档](https://github.com/meituan/YOLOv6/blob/main/README_cn.md#%E5%BF%AB%E9%80%9F%E5%BC%80%E5%A7%8B)。
diff --git a/python/app/fedcv/YOLOv6/configs/base/yolov6l_base.py b/python/app/fedcv/YOLOv6/configs/base/yolov6l_base.py
new file mode 100644
index 0000000000..ef2dbbb239
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/base/yolov6l_base.py
@@ -0,0 +1,67 @@
+# YOLOv6l large base model
+model = dict(
+ type='YOLOv6l_base',
+ pretrained=None,
+ depth_multiple=1.0,
+ width_multiple=1.0,
+ backbone=dict(
+ type='CSPBepBackbone',
+ num_repeats=[1, 6, 12, 18, 6],
+ out_channels=[64, 128, 256, 512, 1024],
+ csp_e=float(1)/2,
+ fuse_P2=True,
+ ),
+ neck=dict(
+ type='CSPRepBiFPANNeck',
+ num_repeats=[12, 12, 12, 12],
+ out_channels=[256, 128, 128, 256, 256, 512],
+ csp_e=float(1)/2,
+ ),
+ head=dict(
+ type='EffiDeHead',
+ in_channels=[128, 256, 512],
+ num_layers=3,
+ begin_indices=24,
+ anchors=3,
+ anchors_init=[[10,13, 19,19, 33,23],
+ [30,61, 59,59, 59,119],
+ [116,90, 185,185, 373,326]],
+ out_indices=[17, 20, 23],
+ strides=[8, 16, 32],
+ atss_warmup_epoch=0,
+ iou_type='giou',
+ use_dfl=True,
+ reg_max=16, #if use_dfl is False, please set reg_max to 0
+ distill_weight={
+ 'class': 2.0,
+ 'dfl': 1.0,
+ },
+ )
+)
+
+solver=dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.01,
+ lrf=0.01,
+ momentum=0.937,
+ weight_decay=0.0005,
+ warmup_epochs=3.0,
+ warmup_momentum=0.8,
+ warmup_bias_lr=0.1
+)
+
+data_aug = dict(
+ hsv_h=0.015,
+ hsv_s=0.7,
+ hsv_v=0.4,
+ degrees=0.0,
+ translate=0.1,
+ scale=0.9,
+ shear=0.0,
+ flipud=0.0,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.1,
+)
+training_mode = "conv_relu"
diff --git a/python/app/fedcv/object_detection/model/yolov6/configs/yolov6s_finetune.py b/python/app/fedcv/YOLOv6/configs/base/yolov6l_base_finetune.py
similarity index 64%
rename from python/app/fedcv/object_detection/model/yolov6/configs/yolov6s_finetune.py
rename to python/app/fedcv/YOLOv6/configs/base/yolov6l_base_finetune.py
index 66e6600dc1..7e8dc06267 100644
--- a/python/app/fedcv/object_detection/model/yolov6/configs/yolov6s_finetune.py
+++ b/python/app/fedcv/YOLOv6/configs/base/yolov6l_base_finetune.py
@@ -1,18 +1,21 @@
-# YOLOv6s model
+# YOLOv6 large base model
model = dict(
- type='YOLOv6s',
- pretrained='./weights/yolov6s.pt',
- depth_multiple=0.33,
- width_multiple=0.50,
+ type='YOLOv6l_base',
+ depth_multiple=1.0,
+ width_multiple=1.0,
+ pretrained=None,
backbone=dict(
- type='EfficientRep',
+ type='CSPBepBackbone',
num_repeats=[1, 6, 12, 18, 6],
out_channels=[64, 128, 256, 512, 1024],
+ csp_e=float(1)/2,
+ fuse_P2=True,
),
neck=dict(
- type='RepPAN',
+ type='CSPRepBiFPANNeck',
num_repeats=[12, 12, 12, 12],
out_channels=[256, 128, 128, 256, 256, 512],
+ csp_e=float(1)/2,
),
head=dict(
type='EffiDeHead',
@@ -22,7 +25,13 @@
anchors=1,
out_indices=[17, 20, 23],
strides=[8, 16, 32],
- iou_type='siou'
+ iou_type='giou',
+ use_dfl=True,
+ reg_max=16, #if use_dfl is False, please set reg_max to 0
+ distill_weight={
+ 'class': 2.0,
+ 'dfl': 1.0,
+ },
)
)
@@ -51,3 +60,4 @@
mosaic=1.0,
mixup=0.243,
)
+training_mode = "conv_relu"
diff --git a/python/app/fedcv/YOLOv6/configs/base/yolov6m_base.py b/python/app/fedcv/YOLOv6/configs/base/yolov6m_base.py
new file mode 100644
index 0000000000..5670f096cf
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/base/yolov6m_base.py
@@ -0,0 +1,67 @@
+# YOLOv6m medium/large base model
+model = dict(
+ type='YOLOv6m_base',
+ pretrained=None,
+ depth_multiple=0.80,
+ width_multiple=0.75,
+ backbone=dict(
+ type='CSPBepBackbone',
+ num_repeats=[1, 6, 12, 18, 6],
+ out_channels=[64, 128, 256, 512, 1024],
+ csp_e=float(1)/2,
+ fuse_P2=True,
+ ),
+ neck=dict(
+ type='CSPRepBiFPANNeck',
+ num_repeats=[12, 12, 12, 12],
+ out_channels=[256, 128, 128, 256, 256, 512],
+ csp_e=float(1)/2,
+ ),
+ head=dict(
+ type='EffiDeHead',
+ in_channels=[128, 256, 512],
+ num_layers=3,
+ begin_indices=24,
+ anchors=3,
+ anchors_init=[[10,13, 19,19, 33,23],
+ [30,61, 59,59, 59,119],
+ [116,90, 185,185, 373,326]],
+ out_indices=[17, 20, 23],
+ strides=[8, 16, 32],
+ atss_warmup_epoch=0,
+ iou_type='giou',
+ use_dfl=True,
+ reg_max=16, #if use_dfl is False, please set reg_max to 0
+ distill_weight={
+ 'class': 0.8,
+ 'dfl': 1.0,
+ },
+ )
+)
+
+solver=dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.01,
+ lrf=0.01,
+ momentum=0.937,
+ weight_decay=0.0005,
+ warmup_epochs=3.0,
+ warmup_momentum=0.8,
+ warmup_bias_lr=0.1
+)
+
+data_aug = dict(
+ hsv_h=0.015,
+ hsv_s=0.7,
+ hsv_v=0.4,
+ degrees=0.0,
+ translate=0.1,
+ scale=0.9,
+ shear=0.0,
+ flipud=0.0,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.1,
+)
+training_mode = "conv_relu"
diff --git a/python/app/fedcv/YOLOv6/configs/base/yolov6m_base_finetune.py b/python/app/fedcv/YOLOv6/configs/base/yolov6m_base_finetune.py
new file mode 100644
index 0000000000..af5449ec19
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/base/yolov6m_base_finetune.py
@@ -0,0 +1,67 @@
+# YOLOv6m medium/large base model
+model = dict(
+ type='YOLOv6m_base',
+ pretrained=None,
+ depth_multiple=0.80,
+ width_multiple=0.75,
+ backbone=dict(
+ type='CSPBepBackbone',
+ num_repeats=[1, 6, 12, 18, 6],
+ out_channels=[64, 128, 256, 512, 1024],
+ csp_e=float(1)/2,
+ fuse_P2=True,
+ ),
+ neck=dict(
+ type='CSPRepBiFPANNeck',
+ num_repeats=[12, 12, 12, 12],
+ out_channels=[256, 128, 128, 256, 256, 512],
+ csp_e=float(1)/2,
+ ),
+ head=dict(
+ type='EffiDeHead',
+ in_channels=[128, 256, 512],
+ num_layers=3,
+ begin_indices=24,
+ anchors=3,
+ anchors_init=[[10,13, 19,19, 33,23],
+ [30,61, 59,59, 59,119],
+ [116,90, 185,185, 373,326]],
+ out_indices=[17, 20, 23],
+ strides=[8, 16, 32],
+ atss_warmup_epoch=0,
+ iou_type='giou',
+ use_dfl=True,
+ reg_max=16, #if use_dfl is False, please set reg_max to 0
+ distill_weight={
+ 'class': 0.8,
+ 'dfl': 1.0,
+ },
+ )
+)
+
+solver = dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.0032,
+ lrf=0.12,
+ momentum=0.843,
+ weight_decay=0.00036,
+ warmup_epochs=2.0,
+ warmup_momentum=0.5,
+ warmup_bias_lr=0.05
+)
+
+data_aug = dict(
+ hsv_h=0.0138,
+ hsv_s=0.664,
+ hsv_v=0.464,
+ degrees=0.373,
+ translate=0.245,
+ scale=0.898,
+ shear=0.602,
+ flipud=0.00856,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.243,
+)
+training_mode = "conv_relu"
diff --git a/python/app/fedcv/YOLOv6/configs/base/yolov6n_base.py b/python/app/fedcv/YOLOv6/configs/base/yolov6n_base.py
new file mode 100644
index 0000000000..8340ca6024
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/base/yolov6n_base.py
@@ -0,0 +1,66 @@
+# YOLOv6s nano base model
+model = dict(
+ type='YOLOv6n_base',
+ pretrained=None,
+ depth_multiple=0.33,
+ width_multiple=0.25,
+ backbone=dict(
+ type='EfficientRep',
+ num_repeats=[1, 6, 12, 18, 6],
+ out_channels=[64, 128, 256, 512, 1024],
+ fuse_P2=True,
+ cspsppf=True,
+ ),
+ neck=dict(
+ type='RepBiFPANNeck',
+ num_repeats=[12, 12, 12, 12],
+ out_channels=[256, 128, 128, 256, 256, 512],
+ ),
+ head=dict(
+ type='EffiDeHead',
+ in_channels=[128, 256, 512],
+ num_layers=3,
+ begin_indices=24,
+ anchors=3,
+ anchors_init=[[10,13, 19,19, 33,23],
+ [30,61, 59,59, 59,119],
+ [116,90, 185,185, 373,326]],
+ out_indices=[17, 20, 23],
+ strides=[8, 16, 32],
+ atss_warmup_epoch=0,
+ iou_type='giou',
+ use_dfl=True, # set to True if you want to further train with distillation
+ reg_max=16, # set to 16 if you want to further train with distillation
+ distill_weight={
+ 'class': 1.0,
+ 'dfl': 1.0,
+ },
+ )
+)
+
+solver = dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.01,
+ lrf=0.01,
+ momentum=0.937,
+ weight_decay=0.0005,
+ warmup_epochs=3.0,
+ warmup_momentum=0.8,
+ warmup_bias_lr=0.1
+)
+
+data_aug = dict(
+ hsv_h=0.015,
+ hsv_s=0.7,
+ hsv_v=0.4,
+ degrees=0.0,
+ translate=0.1,
+ scale=0.5,
+ shear=0.0,
+ flipud=0.0,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.0,
+)
+training_mode = "conv_relu"
diff --git a/python/app/fedcv/YOLOv6/configs/base/yolov6n_base_finetune.py b/python/app/fedcv/YOLOv6/configs/base/yolov6n_base_finetune.py
new file mode 100644
index 0000000000..593c3def90
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/base/yolov6n_base_finetune.py
@@ -0,0 +1,66 @@
+# YOLOv6s nanao base model
+model = dict(
+ type='YOLOv6n_base',
+ pretrained=None,
+ depth_multiple=0.33,
+ width_multiple=0.25,
+ backbone=dict(
+ type='EfficientRep',
+ num_repeats=[1, 6, 12, 18, 6],
+ out_channels=[64, 128, 256, 512, 1024],
+ fuse_P2=True,
+ cspsppf=True,
+ ),
+ neck=dict(
+ type='RepBiFPANNeck',
+ num_repeats=[12, 12, 12, 12],
+ out_channels=[256, 128, 128, 256, 256, 512],
+ ),
+ head=dict(
+ type='EffiDeHead',
+ in_channels=[128, 256, 512],
+ num_layers=3,
+ begin_indices=24,
+ anchors=3,
+ anchors_init=[[10,13, 19,19, 33,23],
+ [30,61, 59,59, 59,119],
+ [116,90, 185,185, 373,326]],
+ out_indices=[17, 20, 23],
+ strides=[8, 16, 32],
+ atss_warmup_epoch=0,
+ iou_type='giou',
+ use_dfl=False, # set to True if you want to further train with distillation
+ reg_max=0, # set to 16 if you want to further train with distillation
+ distill_weight={
+ 'class': 1.0,
+ 'dfl': 1.0,
+ },
+ )
+)
+
+solver = dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.0032,
+ lrf=0.12,
+ momentum=0.843,
+ weight_decay=0.00036,
+ warmup_epochs=2.0,
+ warmup_momentum=0.5,
+ warmup_bias_lr=0.05
+)
+
+data_aug = dict(
+ hsv_h=0.0138,
+ hsv_s=0.664,
+ hsv_v=0.464,
+ degrees=0.373,
+ translate=0.245,
+ scale=0.898,
+ shear=0.602,
+ flipud=0.00856,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.243,
+)
+training_mode = "conv_relu"
diff --git a/python/app/fedcv/YOLOv6/configs/base/yolov6s_base.py b/python/app/fedcv/YOLOv6/configs/base/yolov6s_base.py
new file mode 100644
index 0000000000..4e28c17858
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/base/yolov6s_base.py
@@ -0,0 +1,68 @@
+# YOLOv6s small base model
+model = dict(
+ type='YOLOv6s_base',
+ pretrained=None,
+ depth_multiple=0.70,
+ width_multiple=0.50,
+ backbone=dict(
+ type='CSPBepBackbone',
+ num_repeats=[1, 6, 12, 18, 6],
+ out_channels=[64, 128, 256, 512, 1024],
+ csp_e=float(1)/2,
+ fuse_P2=True,
+ cspsppf=True,
+ ),
+ neck=dict(
+ type='CSPRepBiFPANNeck',#CSPRepPANNeck
+ num_repeats=[12, 12, 12, 12],
+ out_channels=[256, 128, 128, 256, 256, 512],
+ csp_e=float(1)/2,
+ ),
+ head=dict(
+ type='EffiDeHead',
+ in_channels=[128, 256, 512],
+ num_layers=3,
+ begin_indices=24,
+ anchors=3,
+ anchors_init=[[10,13, 19,19, 33,23],
+ [30,61, 59,59, 59,119],
+ [116,90, 185,185, 373,326]],
+ out_indices=[17, 20, 23],
+ strides=[8, 16, 32],
+ atss_warmup_epoch=0,
+ iou_type='giou',
+ use_dfl=True, # set to True if you want to further train with distillation
+ reg_max=16, # set to 16 if you want to further train with distillation
+ distill_weight={
+ 'class': 1.0,
+ 'dfl': 1.0,
+ },
+ )
+)
+
+solver = dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.01,
+ lrf=0.01,
+ momentum=0.937,
+ weight_decay=0.0005,
+ warmup_epochs=3.0,
+ warmup_momentum=0.8,
+ warmup_bias_lr=0.1
+)
+
+data_aug = dict(
+ hsv_h=0.015,
+ hsv_s=0.7,
+ hsv_v=0.4,
+ degrees=0.0,
+ translate=0.1,
+ scale=0.5,
+ shear=0.0,
+ flipud=0.0,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.0,
+)
+training_mode = "conv_relu"
diff --git a/python/app/fedcv/YOLOv6/configs/base/yolov6s_base_finetune.py b/python/app/fedcv/YOLOv6/configs/base/yolov6s_base_finetune.py
new file mode 100644
index 0000000000..eb4d2159aa
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/base/yolov6s_base_finetune.py
@@ -0,0 +1,68 @@
+# YOLOv6s small base model
+model = dict(
+ type='YOLOv6s_base',
+ pretrained=None,
+ depth_multiple=0.70,
+ width_multiple=0.50,
+ backbone=dict(
+ type='CSPBepBackbone',
+ num_repeats=[1, 6, 12, 18, 6],
+ out_channels=[64, 128, 256, 512, 1024],
+ csp_e=float(1)/2,
+ fuse_P2=True,
+ cspsppf=True,
+ ),
+ neck=dict(
+ type='CSPRepBiFPANNeck',
+ num_repeats=[12, 12, 12, 12],
+ out_channels=[256, 128, 128, 256, 256, 512],
+ csp_e=float(1)/2,
+ ),
+ head=dict(
+ type='EffiDeHead',
+ in_channels=[128, 256, 512],
+ num_layers=3,
+ begin_indices=24,
+ anchors=3,
+ anchors_init=[[10,13, 19,19, 33,23],
+ [30,61, 59,59, 59,119],
+ [116,90, 185,185, 373,326]],
+ out_indices=[17, 20, 23],
+ strides=[8, 16, 32],
+ atss_warmup_epoch=0,
+ iou_type='giou',
+ use_dfl=False, # set to True if you want to further train with distillation
+ reg_max=0, # set to 16 if you want to further train with distillation
+ distill_weight={
+ 'class': 1.0,
+ 'dfl': 1.0,
+ },
+ )
+)
+
+solver = dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.0032,
+ lrf=0.12,
+ momentum=0.843,
+ weight_decay=0.00036,
+ warmup_epochs=2.0,
+ warmup_momentum=0.5,
+ warmup_bias_lr=0.05
+)
+
+data_aug = dict(
+ hsv_h=0.0138,
+ hsv_s=0.664,
+ hsv_v=0.464,
+ degrees=0.373,
+ translate=0.245,
+ scale=0.898,
+ shear=0.602,
+ flipud=0.00856,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.243,
+)
+training_mode = "conv_relu"
diff --git a/python/app/fedcv/YOLOv6/configs/experiment/eval_640_repro.py b/python/app/fedcv/YOLOv6/configs/experiment/eval_640_repro.py
new file mode 100644
index 0000000000..1f6a6217e5
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/experiment/eval_640_repro.py
@@ -0,0 +1,79 @@
+# eval param for different scale
+
+eval_params = dict(
+ default = dict(
+ img_size=640,
+ shrink_size=2,
+ infer_on_rect=False,
+ ),
+ yolov6n = dict(
+ img_size=640,
+ shrink_size=4,
+ infer_on_rect=False,
+ ),
+ yolov6t = dict(
+ img_size=640,
+ shrink_size=6,
+ infer_on_rect=False,
+ ),
+ yolov6s = dict(
+ img_size=640,
+ shrink_size=6,
+ infer_on_rect=False,
+ ),
+ yolov6m = dict(
+ img_size=640,
+ shrink_size=4,
+ infer_on_rect=False,
+ ),
+ yolov6l = dict(
+ img_size=640,
+ shrink_size=4,
+ infer_on_rect=False,
+ ),
+ yolov6l_relu = dict(
+ img_size=640,
+ shrink_size=2,
+ infer_on_rect=False,
+ ),
+ yolov6n6 = dict(
+ img_size=1280,
+ shrink_size=17,
+ infer_on_rect=False,
+ ),
+ yolov6s6 = dict(
+ img_size=1280,
+ shrink_size=8,
+ infer_on_rect=False,
+ ),
+ yolov6m6 = dict(
+ img_size=1280,
+ shrink_size=64,
+ infer_on_rect=False,
+ ),
+ yolov6l6 = dict(
+ img_size=1280,
+ shrink_size=41,
+ infer_on_rect=False,
+ ),
+ yolov6s_mbla = dict(
+ img_size=640,
+ shrink_size=7,
+ infer_on_rect=False,
+ ),
+ yolov6m_mbla = dict(
+ img_size=640,
+ shrink_size=7,
+ infer_on_rect=False,
+ ),
+ yolov6l_mbla = dict(
+ img_size=640,
+ shrink_size=7,
+ infer_on_rect=False,
+ ),
+ yolov6x_mbla = dict(
+ img_size=640,
+ shrink_size=3,
+ infer_on_rect=False,
+ )
+)
diff --git a/python/app/fedcv/YOLOv6/configs/experiment/yolov6n_with_eval_params.py b/python/app/fedcv/YOLOv6/configs/experiment/yolov6n_with_eval_params.py
new file mode 100644
index 0000000000..e7366b3347
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/experiment/yolov6n_with_eval_params.py
@@ -0,0 +1,76 @@
+# YOLOv6n model with eval param(when traing)
+model = dict(
+ type='YOLOv6n',
+ pretrained=None,
+ depth_multiple=0.33,
+ width_multiple=0.25,
+ backbone=dict(
+ type='EfficientRep',
+ num_repeats=[1, 6, 12, 18, 6],
+ out_channels=[64, 128, 256, 512, 1024],
+ ),
+ neck=dict(
+ type='RepPANNeck',
+ num_repeats=[12, 12, 12, 12],
+ out_channels=[256, 128, 128, 256, 256, 512],
+ ),
+ head=dict(
+ type='EffiDeHead',
+ in_channels=[128, 256, 512],
+ num_layers=3,
+ begin_indices=24,
+ anchors=1,
+ out_indices=[17, 20, 23],
+ strides=[8, 16, 32],
+ iou_type='siou',
+ use_dfl=False,
+ reg_max=0 #if use_dfl is False, please set reg_max to 0
+ )
+)
+
+solver = dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.02, #0.01 # 0.02
+ lrf=0.01,
+ momentum=0.937,
+ weight_decay=0.0005,
+ warmup_epochs=3.0,
+ warmup_momentum=0.8,
+ warmup_bias_lr=0.1
+)
+
+data_aug = dict(
+ hsv_h=0.015,
+ hsv_s=0.7,
+ hsv_v=0.4,
+ degrees=0.0,
+ translate=0.1,
+ scale=0.5,
+ shear=0.0,
+ flipud=0.0,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.0,
+)
+
+# Eval params when eval model.
+# If eval_params item is list, eg conf_thres=[0.03, 0.03],
+# first will be used in train.py and second will be used in eval.py.
+eval_params = dict(
+ batch_size=None, #None mean will be the same as batch on one device * 2
+ img_size=None, #None mean will be the same as train image size
+ conf_thres=0.03,
+ iou_thres=0.65,
+
+ #pading and scale coord
+ shrink_size=None, # None mean will not shrink the image.
+ infer_on_rect=True,
+
+ #metric
+ verbose=False,
+ do_coco_metric=True,
+ do_pr_metric=False,
+ plot_curve=False,
+ plot_confusion_matrix=False
+)
diff --git a/python/app/fedcv/YOLOv6/configs/experiment/yolov6s_csp_scaled.py b/python/app/fedcv/YOLOv6/configs/experiment/yolov6s_csp_scaled.py
new file mode 100644
index 0000000000..ba28843acf
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/experiment/yolov6s_csp_scaled.py
@@ -0,0 +1,57 @@
+# YOLOv6m model
+model = dict(
+ type='YOLOv6s_csp',
+ pretrained=None,
+ depth_multiple=0.70,
+ width_multiple=0.50,
+ backbone=dict(
+ type='CSPBepBackbone',
+ num_repeats=[1, 6, 12, 18, 6],
+ out_channels=[64, 128, 256, 512, 1024],
+ csp_e=float(1)/2,
+ ),
+ neck=dict(
+ type='CSPRepPANNeck',
+ num_repeats=[12, 12, 12, 12],
+ out_channels=[256, 128, 128, 256, 256, 512],
+ csp_e=float(1)/2,
+ ),
+ head=dict(
+ type='EffiDeHead',
+ in_channels=[128, 256, 512],
+ num_layers=3,
+ begin_indices=24,
+ anchors=1,
+ out_indices=[17, 20, 23],
+ strides=[8, 16, 32],
+ iou_type='giou',
+ use_dfl=False,
+ reg_max=0 #if use_dfl is False, please set reg_max to 0
+ )
+)
+
+solver=dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.01,
+ lrf=0.01,
+ momentum=0.937,
+ weight_decay=0.0005,
+ warmup_epochs=3.0,
+ warmup_momentum=0.8,
+ warmup_bias_lr=0.1
+)
+
+data_aug = dict(
+ hsv_h=0.015,
+ hsv_s=0.7,
+ hsv_v=0.4,
+ degrees=0.0,
+ translate=0.1,
+ scale=0.9,
+ shear=0.0,
+ flipud=0.0,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.1,
+)
diff --git a/python/app/fedcv/object_detection/model/yolov6/configs/yolov6_tiny.py b/python/app/fedcv/YOLOv6/configs/experiment/yolov6t.py
similarity index 83%
rename from python/app/fedcv/object_detection/model/yolov6/configs/yolov6_tiny.py
rename to python/app/fedcv/YOLOv6/configs/experiment/yolov6t.py
index be455de25f..afacd436ce 100644
--- a/python/app/fedcv/object_detection/model/yolov6/configs/yolov6_tiny.py
+++ b/python/app/fedcv/YOLOv6/configs/experiment/yolov6t.py
@@ -2,15 +2,15 @@
model = dict(
type='YOLOv6t',
pretrained=None,
- depth_multiple=0.25,
- width_multiple=0.50,
+ depth_multiple=0.33,
+ width_multiple=0.375,
backbone=dict(
type='EfficientRep',
num_repeats=[1, 6, 12, 18, 6],
out_channels=[64, 128, 256, 512, 1024],
),
neck=dict(
- type='RepPAN',
+ type='RepPANNeck',
num_repeats=[12, 12, 12, 12],
out_channels=[256, 128, 128, 256, 256, 512],
),
@@ -22,7 +22,9 @@
anchors=1,
out_indices=[17, 20, 23],
strides=[8, 16, 32],
- iou_type='ciou'
+ iou_type='siou',
+ use_dfl=False,
+ reg_max=0 #if use_dfl is False, please set reg_max to 0
)
)
diff --git a/python/app/fedcv/YOLOv6/configs/experiment/yolov6t_csp_scaled.py b/python/app/fedcv/YOLOv6/configs/experiment/yolov6t_csp_scaled.py
new file mode 100644
index 0000000000..e8ba99a906
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/experiment/yolov6t_csp_scaled.py
@@ -0,0 +1,57 @@
+# YOLOv6n model
+model = dict(
+ type='YOLOv6n_csp',
+ pretrained=None,
+ depth_multiple=0.60,
+ width_multiple=0.50,
+ backbone=dict(
+ type='CSPBepBackbone',
+ num_repeats=[1, 6, 12, 18, 6],
+ out_channels=[64, 128, 256, 512, 1024],
+ csp_e=float(1)/2,
+ ),
+ neck=dict(
+ type='CSPRepPANNeck',
+ num_repeats=[12, 12, 12, 12],
+ out_channels=[256, 128, 128, 256, 256, 512],
+ csp_e=float(1)/2,
+ ),
+ head=dict(
+ type='EffiDeHead',
+ in_channels=[128, 256, 512],
+ num_layers=3,
+ begin_indices=24,
+ anchors=1,
+ out_indices=[17, 20, 23],
+ strides=[8, 16, 32],
+ iou_type='giou',
+ use_dfl=False,
+ reg_max=0 #if use_dfl is False, please set reg_max to 0
+ )
+)
+
+solver=dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.01,
+ lrf=0.01,
+ momentum=0.937,
+ weight_decay=0.0005,
+ warmup_epochs=3.0,
+ warmup_momentum=0.8,
+ warmup_bias_lr=0.1
+)
+
+data_aug = dict(
+ hsv_h=0.015,
+ hsv_s=0.7,
+ hsv_v=0.4,
+ degrees=0.0,
+ translate=0.1,
+ scale=0.9,
+ shear=0.0,
+ flipud=0.0,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.1,
+)
diff --git a/python/app/fedcv/object_detection/model/yolov6/configs/yolov6_tiny_finetune.py b/python/app/fedcv/YOLOv6/configs/experiment/yolov6t_finetune.py
similarity index 80%
rename from python/app/fedcv/object_detection/model/yolov6/configs/yolov6_tiny_finetune.py
rename to python/app/fedcv/YOLOv6/configs/experiment/yolov6t_finetune.py
index d751eff06a..8be474166e 100644
--- a/python/app/fedcv/object_detection/model/yolov6/configs/yolov6_tiny_finetune.py
+++ b/python/app/fedcv/YOLOv6/configs/experiment/yolov6t_finetune.py
@@ -1,16 +1,16 @@
# YOLOv6t model
model = dict(
type='YOLOv6t',
- pretrained='./weights/yolov6t.pt',
- depth_multiple=0.25,
- width_multiple=0.50,
+ pretrained='weights/yolov6t.pt',
+ depth_multiple=0.33,
+ width_multiple=0.375,
backbone=dict(
type='EfficientRep',
num_repeats=[1, 6, 12, 18, 6],
out_channels=[64, 128, 256, 512, 1024],
),
neck=dict(
- type='RepPAN',
+ type='RepPANNeck',
num_repeats=[12, 12, 12, 12],
out_channels=[256, 128, 128, 256, 256, 512],
),
@@ -22,7 +22,9 @@
anchors=1,
out_indices=[17, 20, 23],
strides=[8, 16, 32],
- iou_type='ciou'
+ iou_type='siou',
+ use_dfl=False,
+ reg_max=0 #if use_dfl is False, please set reg_max to 0
)
)
diff --git a/python/app/fedcv/YOLOv6/configs/mbla/README.md b/python/app/fedcv/YOLOv6/configs/mbla/README.md
new file mode 100644
index 0000000000..d163124d68
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/mbla/README.md
@@ -0,0 +1,28 @@
+## YOLOv6 mbla model
+
+English | [简体中文](./README_cn.md)
+
+### Features
+
+- Apply MBLABlock(Multi Branch Layer Aggregation Block) blocks in the network structure.
+
+Advantage:
+- Adopt a unified network structure and configuration.
+
+- Better performance for Small model comparing to yolov6 3.0 release.
+
+- Better performance comparing to yolov6 3.0 base.
+
+
+
+### Performance
+
+| Model | Size | mAPval 0.5:0.95 | SpeedT4 trt fp16 b1 (fps) | SpeedT4 trt fp16 b32 (fps) | Params (M) | FLOPs (G) |
+| :----------------------------------------------------------- | -------- | :----------------------- | -------------------------------------- | --------------------------------------- | -------------------- | ------------------- |
+| [**YOLOv6-S-mbla**](https://github.com/meituan/YOLOv6/releases/download/0.4.0/yolov6s_mbla.pt) | 640 | 47.0distill | 300 | 424 | 11.6 | 29.8 |
+| [**YOLOv6-M-mbla**](https://github.com/meituan/YOLOv6/releases/download/0.4.0/yolov6m_mbla.pt) | 640 | 50.3distill | 168 | 216 | 26.1 | 66.7 |
+| [**YOLOv6-L-mbla**](https://github.com/meituan/YOLOv6/releases/download/0.4.0/yolov6l_base.pt) | 640 | 52.0distill | 129 | 154 | 46.3 | 118.2 |
+| [**YOLOv6-X-base**](https://github.com/meituan/YOLOv6/releases/download/0.4.0/yolov6x_base.pt) | 640 | 53.5distill | 78 | 94 | 78.8 | 199.0 |
+
+- Speed is tested with TensorRT 8.4.2.4 on T4.
+- The processes of model training, evaluation, and inference are the same as the original ones. For details, please refer to [this README](https://github.com/meituan/YOLOv6#quick-start).
diff --git a/python/app/fedcv/YOLOv6/configs/mbla/README_cn.md b/python/app/fedcv/YOLOv6/configs/mbla/README_cn.md
new file mode 100644
index 0000000000..ad399fe094
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/mbla/README_cn.md
@@ -0,0 +1,26 @@
+## YOLOv6 MBLA版模型
+
+简体中文 | [English](./README.md)
+
+### 模型特点
+
+- 网络主体结构均采用MBLABlock(Multi Branch Layer Aggregation Block)
+
+优势:
+- 采用统一的网络结构和配置
+
+- 相比3.0版本在s尺度效果提升,相比3.0base版本各尺度效果提升
+
+
+
+### 模型指标
+
+| 模型 | 输入尺寸 | mAPval 0.5:0.95 | 速度T4 trt fp16 b1 (fps) | 速度T4 trt fp16 b32 (fps) | Params (M) | FLOPs (G) |
+| :----------------------------------------------------------- | -------- | :----------------------- | -------------------------------------- | --------------------------------------- | -------------------- | ------------------- |
+| [**YOLOv6-S-mbla**](https://github.com/meituan/YOLOv6/releases/download/0.4.0/yolov6s_mbla.pt) | 640 | 47.0distill | 300 | 424 | 11.6 | 29.8 |
+| [**YOLOv6-M-mbla**](https://github.com/meituan/YOLOv6/releases/download/0.4.0/yolov6m_mbla.pt) | 640 | 50.3distill | 168 | 216 | 26.1 | 66.7 |
+| [**YOLOv6-L-mbla**](https://github.com/meituan/YOLOv6/releases/download/0.4.0/yolov6l_base.pt) | 640 | 52.0distill | 129 | 154 | 46.3 | 118.2 |
+| [**YOLOv6-X-base**](https://github.com/meituan/YOLOv6/releases/download/0.4.0/yolov6x_base.pt) | 640 | 53.5distill | 78 | 94 | 78.8 | 199.0 |
+
+- 速度是在 T4 上测试的,TensorRT 版本为 8.4.2.4;
+- 模型训练、评估、推理流程与原来保持一致,具体可参考 [首页 README 文档](https://github.com/meituan/YOLOv6/blob/main/README_cn.md#%E5%BF%AB%E9%80%9F%E5%BC%80%E5%A7%8B)。
diff --git a/python/app/fedcv/YOLOv6/configs/mbla/yolov6l_mbla.py b/python/app/fedcv/YOLOv6/configs/mbla/yolov6l_mbla.py
new file mode 100644
index 0000000000..7534b70541
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/mbla/yolov6l_mbla.py
@@ -0,0 +1,70 @@
+# YOLOv6l model
+model = dict(
+ type='YOLOv6l_mbla',
+ pretrained=None,
+ depth_multiple=0.5,
+ width_multiple=1.0,
+ backbone=dict(
+ type='CSPBepBackbone',
+ num_repeats=[1, 4, 8, 8, 4],
+ out_channels=[64, 128, 256, 512, 1024],
+ csp_e=float(1)/2,
+ fuse_P2=True,
+ stage_block_type="MBLABlock",
+ ),
+ neck=dict(
+ type='CSPRepBiFPANNeck',
+ num_repeats=[8, 8, 8, 8],
+ out_channels=[256, 128, 128, 256, 256, 512],
+ csp_e=float(1)/2,
+ stage_block_type="MBLABlock",
+ ),
+ head=dict(
+ type='EffiDeHead',
+ in_channels=[128, 256, 512],
+ num_layers=3,
+ begin_indices=24,
+ anchors=3,
+ anchors_init=[[10,13, 19,19, 33,23],
+ [30,61, 59,59, 59,119],
+ [116,90, 185,185, 373,326]],
+ out_indices=[17, 20, 23],
+ strides=[8, 16, 32],
+ atss_warmup_epoch=0,
+ iou_type='giou',
+ use_dfl=True,
+ reg_max=16, #if use_dfl is False, please set reg_max to 0
+ distill_weight={
+ 'class': 2.0,
+ 'dfl': 1.0,
+ },
+ )
+)
+
+solver=dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.01,
+ lrf=0.01,
+ momentum=0.937,
+ weight_decay=0.0005,
+ warmup_epochs=3.0,
+ warmup_momentum=0.8,
+ warmup_bias_lr=0.1
+)
+
+data_aug = dict(
+ hsv_h=0.015,
+ hsv_s=0.7,
+ hsv_v=0.4,
+ degrees=0.0,
+ translate=0.1,
+ scale=0.9,
+ shear=0.0,
+ flipud=0.0,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.1,
+)
+
+training_mode = "conv_silu"
diff --git a/python/app/fedcv/YOLOv6/configs/mbla/yolov6l_mbla_finetune.py b/python/app/fedcv/YOLOv6/configs/mbla/yolov6l_mbla_finetune.py
new file mode 100644
index 0000000000..6ea88967c5
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/mbla/yolov6l_mbla_finetune.py
@@ -0,0 +1,70 @@
+# YOLOv6l model
+model = dict(
+ type='YOLOv6l_mbla',
+ pretrained=None,
+ depth_multiple=0.5,
+ width_multiple=1.0,
+ backbone=dict(
+ type='CSPBepBackbone',
+ num_repeats=[1, 4, 8, 8, 4],
+ out_channels=[64, 128, 256, 512, 1024],
+ csp_e=float(1)/2,
+ fuse_P2=True,
+ stage_block_type="MBLABlock",
+ ),
+ neck=dict(
+ type='CSPRepBiFPANNeck',
+ num_repeats=[8, 8, 8, 8],
+ out_channels=[256, 128, 128, 256, 256, 512],
+ csp_e=float(1)/2,
+ stage_block_type="MBLABlock",
+ ),
+ head=dict(
+ type='EffiDeHead',
+ in_channels=[128, 256, 512],
+ num_layers=3,
+ begin_indices=24,
+ anchors=3,
+ anchors_init=[[10,13, 19,19, 33,23],
+ [30,61, 59,59, 59,119],
+ [116,90, 185,185, 373,326]],
+ out_indices=[17, 20, 23],
+ strides=[8, 16, 32],
+ atss_warmup_epoch=0,
+ iou_type='giou',
+ use_dfl=True,
+ reg_max=16, #if use_dfl is False, please set reg_max to 0
+ distill_weight={
+ 'class': 2.0,
+ 'dfl': 1.0,
+ },
+ )
+)
+
+solver=dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.0032,
+ lrf=0.12,
+ momentum=0.843,
+ weight_decay=0.00036,
+ warmup_epochs=2.0,
+ warmup_momentum=0.5,
+ warmup_bias_lr=0.05
+)
+
+data_aug = dict(
+ hsv_h=0.0138,
+ hsv_s=0.664,
+ hsv_v=0.464,
+ degrees=0.373,
+ translate=0.245,
+ scale=0.898,
+ shear=0.602,
+ flipud=0.00856,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.243,
+)
+
+training_mode = "conv_silu"
diff --git a/python/app/fedcv/YOLOv6/configs/mbla/yolov6m_mbla.py b/python/app/fedcv/YOLOv6/configs/mbla/yolov6m_mbla.py
new file mode 100644
index 0000000000..f84fc43d14
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/mbla/yolov6m_mbla.py
@@ -0,0 +1,70 @@
+# YOLOv6l model
+model = dict(
+ type='YOLOv6m_mbla',
+ pretrained=None,
+ depth_multiple=0.5,
+ width_multiple=0.75,
+ backbone=dict(
+ type='CSPBepBackbone',
+ num_repeats=[1, 4, 8, 8, 4],
+ out_channels=[64, 128, 256, 512, 1024],
+ csp_e=float(1)/2,
+ fuse_P2=True,
+ stage_block_type="MBLABlock",
+ ),
+ neck=dict(
+ type='CSPRepBiFPANNeck',
+ num_repeats=[8, 8, 8, 8],
+ out_channels=[256, 128, 128, 256, 256, 512],
+ csp_e=float(1)/2,
+ stage_block_type="MBLABlock",
+ ),
+ head=dict(
+ type='EffiDeHead',
+ in_channels=[128, 256, 512],
+ num_layers=3,
+ begin_indices=24,
+ anchors=3,
+ anchors_init=[[10,13, 19,19, 33,23],
+ [30,61, 59,59, 59,119],
+ [116,90, 185,185, 373,326]],
+ out_indices=[17, 20, 23],
+ strides=[8, 16, 32],
+ atss_warmup_epoch=0,
+ iou_type='giou',
+ use_dfl=True,
+ reg_max=16, #if use_dfl is False, please set reg_max to 0
+ distill_weight={
+ 'class': 2.0,
+ 'dfl': 1.0,
+ },
+ )
+)
+
+solver=dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.01,
+ lrf=0.01,
+ momentum=0.937,
+ weight_decay=0.0005,
+ warmup_epochs=3.0,
+ warmup_momentum=0.8,
+ warmup_bias_lr=0.1
+)
+
+data_aug = dict(
+ hsv_h=0.015,
+ hsv_s=0.7,
+ hsv_v=0.4,
+ degrees=0.0,
+ translate=0.1,
+ scale=0.9,
+ shear=0.0,
+ flipud=0.0,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.1,
+)
+
+training_mode = "conv_silu"
diff --git a/python/app/fedcv/YOLOv6/configs/mbla/yolov6m_mbla_finetune.py b/python/app/fedcv/YOLOv6/configs/mbla/yolov6m_mbla_finetune.py
new file mode 100644
index 0000000000..aa0bc816a6
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/mbla/yolov6m_mbla_finetune.py
@@ -0,0 +1,70 @@
+# YOLOv6l model
+model = dict(
+ type='YOLOv6m_mbla',
+ pretrained=None,
+ depth_multiple=0.5,
+ width_multiple=0.75,
+ backbone=dict(
+ type='CSPBepBackbone',
+ num_repeats=[1, 4, 8, 8, 4],
+ out_channels=[64, 128, 256, 512, 1024],
+ csp_e=float(1)/2,
+ fuse_P2=True,
+ stage_block_type="MBLABlock",
+ ),
+ neck=dict(
+ type='CSPRepBiFPANNeck',
+ num_repeats=[8, 8, 8, 8],
+ out_channels=[256, 128, 128, 256, 256, 512],
+ csp_e=float(1)/2,
+ stage_block_type="MBLABlock",
+ ),
+ head=dict(
+ type='EffiDeHead',
+ in_channels=[128, 256, 512],
+ num_layers=3,
+ begin_indices=24,
+ anchors=3,
+ anchors_init=[[10,13, 19,19, 33,23],
+ [30,61, 59,59, 59,119],
+ [116,90, 185,185, 373,326]],
+ out_indices=[17, 20, 23],
+ strides=[8, 16, 32],
+ atss_warmup_epoch=0,
+ iou_type='giou',
+ use_dfl=True,
+ reg_max=16, #if use_dfl is False, please set reg_max to 0
+ distill_weight={
+ 'class': 2.0,
+ 'dfl': 1.0,
+ },
+ )
+)
+
+solver=dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.0032,
+ lrf=0.12,
+ momentum=0.843,
+ weight_decay=0.00036,
+ warmup_epochs=2.0,
+ warmup_momentum=0.5,
+ warmup_bias_lr=0.05
+)
+
+data_aug = dict(
+ hsv_h=0.0138,
+ hsv_s=0.664,
+ hsv_v=0.464,
+ degrees=0.373,
+ translate=0.245,
+ scale=0.898,
+ shear=0.602,
+ flipud=0.00856,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.243,
+)
+
+training_mode = "conv_silu"
diff --git a/python/app/fedcv/YOLOv6/configs/mbla/yolov6s_mbla.py b/python/app/fedcv/YOLOv6/configs/mbla/yolov6s_mbla.py
new file mode 100644
index 0000000000..eedc76eec2
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/mbla/yolov6s_mbla.py
@@ -0,0 +1,70 @@
+# YOLOv6l model
+model = dict(
+ type='YOLOv6s_mbla',
+ pretrained=None,
+ depth_multiple=0.5,
+ width_multiple=0.5,
+ backbone=dict(
+ type='CSPBepBackbone',
+ num_repeats=[1, 4, 8, 8, 4],
+ out_channels=[64, 128, 256, 512, 1024],
+ csp_e=float(1)/2,
+ fuse_P2=True,
+ stage_block_type="MBLABlock",
+ ),
+ neck=dict(
+ type='CSPRepBiFPANNeck',
+ num_repeats=[8, 8, 8, 8],
+ out_channels=[256, 128, 128, 256, 256, 512],
+ csp_e=float(1)/2,
+ stage_block_type="MBLABlock",
+ ),
+ head=dict(
+ type='EffiDeHead',
+ in_channels=[128, 256, 512],
+ num_layers=3,
+ begin_indices=24,
+ anchors=3,
+ anchors_init=[[10,13, 19,19, 33,23],
+ [30,61, 59,59, 59,119],
+ [116,90, 185,185, 373,326]],
+ out_indices=[17, 20, 23],
+ strides=[8, 16, 32],
+ atss_warmup_epoch=0,
+ iou_type='giou',
+ use_dfl=True,
+ reg_max=16, #if use_dfl is False, please set reg_max to 0
+ distill_weight={
+ 'class': 2.0,
+ 'dfl': 1.0,
+ },
+ )
+)
+
+solver=dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.01,
+ lrf=0.01,
+ momentum=0.937,
+ weight_decay=0.0005,
+ warmup_epochs=3.0,
+ warmup_momentum=0.8,
+ warmup_bias_lr=0.1
+)
+
+data_aug = dict(
+ hsv_h=0.015,
+ hsv_s=0.7,
+ hsv_v=0.4,
+ degrees=0.0,
+ translate=0.1,
+ scale=0.9,
+ shear=0.0,
+ flipud=0.0,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.1,
+)
+
+training_mode = "conv_silu"
diff --git a/python/app/fedcv/YOLOv6/configs/mbla/yolov6s_mbla_finetune.py b/python/app/fedcv/YOLOv6/configs/mbla/yolov6s_mbla_finetune.py
new file mode 100644
index 0000000000..a9812c7166
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/mbla/yolov6s_mbla_finetune.py
@@ -0,0 +1,70 @@
+# YOLOv6l model
+model = dict(
+ type='YOLOv6s_mbla',
+ pretrained=None,
+ depth_multiple=0.5,
+ width_multiple=0.5,
+ backbone=dict(
+ type='CSPBepBackbone',
+ num_repeats=[1, 4, 8, 8, 4],
+ out_channels=[64, 128, 256, 512, 1024],
+ csp_e=float(1)/2,
+ fuse_P2=True,
+ stage_block_type="MBLABlock",
+ ),
+ neck=dict(
+ type='CSPRepBiFPANNeck',
+ num_repeats=[8, 8, 8, 8],
+ out_channels=[256, 128, 128, 256, 256, 512],
+ csp_e=float(1)/2,
+ stage_block_type="MBLABlock",
+ ),
+ head=dict(
+ type='EffiDeHead',
+ in_channels=[128, 256, 512],
+ num_layers=3,
+ begin_indices=24,
+ anchors=3,
+ anchors_init=[[10,13, 19,19, 33,23],
+ [30,61, 59,59, 59,119],
+ [116,90, 185,185, 373,326]],
+ out_indices=[17, 20, 23],
+ strides=[8, 16, 32],
+ atss_warmup_epoch=0,
+ iou_type='giou',
+ use_dfl=True,
+ reg_max=16, #if use_dfl is False, please set reg_max to 0
+ distill_weight={
+ 'class': 2.0,
+ 'dfl': 1.0,
+ },
+ )
+)
+
+solver=dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.0032,
+ lrf=0.12,
+ momentum=0.843,
+ weight_decay=0.00036,
+ warmup_epochs=2.0,
+ warmup_momentum=0.5,
+ warmup_bias_lr=0.05
+)
+
+data_aug = dict(
+ hsv_h=0.0138,
+ hsv_s=0.664,
+ hsv_v=0.464,
+ degrees=0.373,
+ translate=0.245,
+ scale=0.898,
+ shear=0.602,
+ flipud=0.00856,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.243,
+)
+
+training_mode = "conv_silu"
diff --git a/python/app/fedcv/YOLOv6/configs/mbla/yolov6x_mbla.py b/python/app/fedcv/YOLOv6/configs/mbla/yolov6x_mbla.py
new file mode 100644
index 0000000000..b7b9703c2e
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/mbla/yolov6x_mbla.py
@@ -0,0 +1,70 @@
+# YOLOv6l model
+model = dict(
+ type='YOLOv6x_mbla',
+ pretrained=None,
+ depth_multiple=1.0,
+ width_multiple=1.0,
+ backbone=dict(
+ type='CSPBepBackbone',
+ num_repeats=[1, 4, 8, 8, 4],
+ out_channels=[64, 128, 256, 512, 1024],
+ csp_e=float(1)/2,
+ fuse_P2=True,
+ stage_block_type="MBLABlock",
+ ),
+ neck=dict(
+ type='CSPRepBiFPANNeck',
+ num_repeats=[8, 8, 8, 8],
+ out_channels=[256, 128, 128, 256, 256, 512],
+ csp_e=float(1)/2,
+ stage_block_type="MBLABlock",
+ ),
+ head=dict(
+ type='EffiDeHead',
+ in_channels=[128, 256, 512],
+ num_layers=3,
+ begin_indices=24,
+ anchors=3,
+ anchors_init=[[10,13, 19,19, 33,23],
+ [30,61, 59,59, 59,119],
+ [116,90, 185,185, 373,326]],
+ out_indices=[17, 20, 23],
+ strides=[8, 16, 32],
+ atss_warmup_epoch=0,
+ iou_type='giou',
+ use_dfl=True,
+ reg_max=16, #if use_dfl is False, please set reg_max to 0
+ distill_weight={
+ 'class': 2.0,
+ 'dfl': 1.0,
+ },
+ )
+)
+
+solver=dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.01,
+ lrf=0.01,
+ momentum=0.937,
+ weight_decay=0.0005,
+ warmup_epochs=3.0,
+ warmup_momentum=0.8,
+ warmup_bias_lr=0.1
+)
+
+data_aug = dict(
+ hsv_h=0.015,
+ hsv_s=0.7,
+ hsv_v=0.4,
+ degrees=0.0,
+ translate=0.1,
+ scale=0.9,
+ shear=0.0,
+ flipud=0.0,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.1,
+)
+
+training_mode = "conv_silu"
diff --git a/python/app/fedcv/YOLOv6/configs/mbla/yolov6x_mbla_finetune.py b/python/app/fedcv/YOLOv6/configs/mbla/yolov6x_mbla_finetune.py
new file mode 100644
index 0000000000..65c57cb21e
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/mbla/yolov6x_mbla_finetune.py
@@ -0,0 +1,70 @@
+# YOLOv6l model
+model = dict(
+ type='YOLOv6x_mbla',
+ pretrained=None,
+ depth_multiple=1.0,
+ width_multiple=1.0,
+ backbone=dict(
+ type='CSPBepBackbone',
+ num_repeats=[1, 4, 8, 8, 4],
+ out_channels=[64, 128, 256, 512, 1024],
+ csp_e=float(1)/2,
+ fuse_P2=True,
+ stage_block_type="MBLABlock",
+ ),
+ neck=dict(
+ type='CSPRepBiFPANNeck',
+ num_repeats=[8, 8, 8, 8],
+ out_channels=[256, 128, 128, 256, 256, 512],
+ csp_e=float(1)/2,
+ stage_block_type="MBLABlock",
+ ),
+ head=dict(
+ type='EffiDeHead',
+ in_channels=[128, 256, 512],
+ num_layers=3,
+ begin_indices=24,
+ anchors=3,
+ anchors_init=[[10,13, 19,19, 33,23],
+ [30,61, 59,59, 59,119],
+ [116,90, 185,185, 373,326]],
+ out_indices=[17, 20, 23],
+ strides=[8, 16, 32],
+ atss_warmup_epoch=0,
+ iou_type='giou',
+ use_dfl=True,
+ reg_max=16, #if use_dfl is False, please set reg_max to 0
+ distill_weight={
+ 'class': 2.0,
+ 'dfl': 1.0,
+ },
+ )
+)
+
+solver=dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.0032,
+ lrf=0.12,
+ momentum=0.843,
+ weight_decay=0.00036,
+ warmup_epochs=2.0,
+ warmup_momentum=0.5,
+ warmup_bias_lr=0.05
+)
+
+data_aug = dict(
+ hsv_h=0.0138,
+ hsv_s=0.664,
+ hsv_v=0.464,
+ degrees=0.373,
+ translate=0.245,
+ scale=0.898,
+ shear=0.602,
+ flipud=0.00856,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.243,
+)
+
+training_mode = "conv_silu"
diff --git a/python/app/fedcv/YOLOv6/configs/qarepvgg/README.md b/python/app/fedcv/YOLOv6/configs/qarepvgg/README.md
new file mode 100644
index 0000000000..81b130d28b
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/qarepvgg/README.md
@@ -0,0 +1,26 @@
+## YOLOv6 base model
+
+English | [简体中文](./README_cn.md)
+
+### Features
+
+- This is a RepOpt-version implementation of YOLOv6 according to [QARepVGG](https://arxiv.org/abs/2212.01593).
+
+- The QARep version models possess slightly lower float accuracy on COCO than the RepVGG version models, but achieve highly improved quantized accuracy.
+
+- The INT8 accuracies listed were obtained using a simple PTQ process, as implemented in the [`onnx_to_trt.py`](../../deploy/TensorRT/onnx_to_trt.py) script. However, higher accuracies could be achieved using Quantization-Aware Training (QAT) due to the specific architecture design of the QARepVGG model.
+
+### Performance
+
+| Model | Size | Float mAPval 0.5:0.95 | INT8 mAPval 0.5:0.95 | SpeedT4 trt fp16 b32 (fps) | SpeedT4 trt int8 b32 (fps) | Params (M) | FLOPs (G) |
+| :----------------------------------------------------------- | -------- | :----------------------- | -------------------------------------- | --------------------------------------- | -------------------- | ------------------- | -------------------- |
+| [**YOLOv6-N**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6n.pt) | 640 | 37.5 | 34.3 | 1286 | 1773 |4.7 | 11.4 |
+| [**YOLOv6-N-qa**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6n_qa.pt) | 640 | 37.1 | 36.4 | 1286 | 1773 | 4.7 | 11.4 |
+| [**YOLOv6-S**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6s.pt) | 640 | 45.0 | 41.3 | 513 | 1117 | 18.5 | 45.3 |
+| [**YOLOv6-S-qa**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6s_qa.pt) | 640 | 44.7 | 44.0 | 513 | 1117 | 18.5 | 45.3 |
+| [**YOLOv6-M**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6m.pt) | 640 | 50.0 | 48.1 | 250 | 439 | 34.9 | 85.8 |
+| [**YOLOv6-M-qa**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6m_qa.pt) | 640 | 49.7 | 49.4 | 250 | 439 | 34.9 | 85.8 |
+
+- Speed is tested with TensorRT 8.4 on T4.
+- We have not conducted experiments on the YOLOv6-L model since it does not use the RepVGG architecture.
+- The processes of model training, evaluation, and inference are the same as the original ones. For details, please refer to [this README](https://github.com/meituan/YOLOv6#quick-start).
diff --git a/python/app/fedcv/YOLOv6/configs/qarepvgg/yolov6m_qa.py b/python/app/fedcv/YOLOv6/configs/qarepvgg/yolov6m_qa.py
new file mode 100644
index 0000000000..c0690f15e7
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/qarepvgg/yolov6m_qa.py
@@ -0,0 +1,68 @@
+# YOLOv6m model
+model = dict(
+ type='YOLOv6m',
+ pretrained=None,
+ depth_multiple=0.60,
+ width_multiple=0.75,
+ backbone=dict(
+ type='CSPBepBackbone',
+ num_repeats=[1, 6, 12, 18, 6],
+ out_channels=[64, 128, 256, 512, 1024],
+ csp_e=float(2)/3,
+ fuse_P2=True,
+ ),
+ neck=dict(
+ type='CSPRepBiFPANNeck',
+ num_repeats=[12, 12, 12, 12],
+ out_channels=[256, 128, 128, 256, 256, 512],
+ csp_e=float(2)/3,
+ ),
+ head=dict(
+ type='EffiDeHead',
+ in_channels=[128, 256, 512],
+ num_layers=3,
+ begin_indices=24,
+ anchors=3,
+ anchors_init=[[10,13, 19,19, 33,23],
+ [30,61, 59,59, 59,119],
+ [116,90, 185,185, 373,326]],
+ out_indices=[17, 20, 23],
+ strides=[8, 16, 32],
+ atss_warmup_epoch=0,
+ iou_type='giou',
+ use_dfl=True,
+ reg_max=16, #if use_dfl is False, please set reg_max to 0
+ distill_weight={
+ 'class': 0.8,
+ 'dfl': 1.0,
+ },
+ )
+)
+
+solver=dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.01,
+ lrf=0.01,
+ momentum=0.937,
+ weight_decay=0.0005,
+ warmup_epochs=3.0,
+ warmup_momentum=0.8,
+ warmup_bias_lr=0.1
+)
+
+data_aug = dict(
+ hsv_h=0.015,
+ hsv_s=0.7,
+ hsv_v=0.4,
+ degrees=0.0,
+ translate=0.1,
+ scale=0.9,
+ shear=0.0,
+ flipud=0.0,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.1,
+)
+
+training_mode='qarepvggv2'
diff --git a/python/app/fedcv/YOLOv6/configs/qarepvgg/yolov6n_qa.py b/python/app/fedcv/YOLOv6/configs/qarepvgg/yolov6n_qa.py
new file mode 100644
index 0000000000..b42d9ddb4b
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/qarepvgg/yolov6n_qa.py
@@ -0,0 +1,66 @@
+# YOLOv6s model
+model = dict(
+ type='YOLOv6n',
+ pretrained=None,
+ depth_multiple=0.33,
+ width_multiple=0.25,
+ backbone=dict(
+ type='EfficientRep',
+ num_repeats=[1, 6, 12, 18, 6],
+ out_channels=[64, 128, 256, 512, 1024],
+ fuse_P2=True,
+ cspsppf=True,
+ ),
+ neck=dict(
+ type='RepBiFPANNeck',
+ num_repeats=[12, 12, 12, 12],
+ out_channels=[256, 128, 128, 256, 256, 512],
+ ),
+ head=dict(
+ type='EffiDeHead',
+ in_channels=[128, 256, 512],
+ num_layers=3,
+ begin_indices=24,
+ anchors=3,
+ anchors_init=[[10,13, 19,19, 33,23],
+ [30,61, 59,59, 59,119],
+ [116,90, 185,185, 373,326]],
+ out_indices=[17, 20, 23],
+ strides=[8, 16, 32],
+ atss_warmup_epoch=0,
+ iou_type='siou',
+ use_dfl=False, # set to True if you want to further train with distillation
+ reg_max=0, # set to 16 if you want to further train with distillation
+ distill_weight={
+ 'class': 1.0,
+ 'dfl': 1.0,
+ },
+ )
+)
+
+solver = dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.02,
+ lrf=0.01,
+ momentum=0.937,
+ weight_decay=0.0005,
+ warmup_epochs=3.0,
+ warmup_momentum=0.8,
+ warmup_bias_lr=0.1
+)
+
+data_aug = dict(
+ hsv_h=0.015,
+ hsv_s=0.7,
+ hsv_v=0.4,
+ degrees=0.0,
+ translate=0.1,
+ scale=0.5,
+ shear=0.0,
+ flipud=0.0,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.0,
+)
+training_mode='qarepvggv2'
diff --git a/python/app/fedcv/YOLOv6/configs/qarepvgg/yolov6s_qa.py b/python/app/fedcv/YOLOv6/configs/qarepvgg/yolov6s_qa.py
new file mode 100644
index 0000000000..3051679a25
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/qarepvgg/yolov6s_qa.py
@@ -0,0 +1,67 @@
+# YOLOv6s model
+model = dict(
+ type='YOLOv6s',
+ pretrained=None,
+ depth_multiple=0.33,
+ width_multiple=0.50,
+ backbone=dict(
+ type='EfficientRep',
+ num_repeats=[1, 6, 12, 18, 6],
+ out_channels=[64, 128, 256, 512, 1024],
+ fuse_P2=True,
+ cspsppf=True,
+ ),
+ neck=dict(
+ type='RepBiFPANNeck',
+ num_repeats=[12, 12, 12, 12],
+ out_channels=[256, 128, 128, 256, 256, 512],
+ ),
+ head=dict(
+ type='EffiDeHead',
+ in_channels=[128, 256, 512],
+ num_layers=3,
+ begin_indices=24,
+ anchors=3,
+ anchors_init=[[10,13, 19,19, 33,23],
+ [30,61, 59,59, 59,119],
+ [116,90, 185,185, 373,326]],
+ out_indices=[17, 20, 23],
+ strides=[8, 16, 32],
+ atss_warmup_epoch=0,
+ iou_type='giou',
+ use_dfl=False, # set to True if you want to further train with distillation
+ reg_max=0, # set to 16 if you want to further train with distillation
+ distill_weight={
+ 'class': 1.0,
+ 'dfl': 1.0,
+ },
+ )
+)
+
+solver = dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.01,
+ lrf=0.01,
+ momentum=0.937,
+ weight_decay=0.0005,
+ warmup_epochs=3.0,
+ warmup_momentum=0.8,
+ warmup_bias_lr=0.1
+)
+
+data_aug = dict(
+ hsv_h=0.015,
+ hsv_s=0.7,
+ hsv_v=0.4,
+ degrees=0.0,
+ translate=0.1,
+ scale=0.5,
+ shear=0.0,
+ flipud=0.0,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.0,
+)
+
+training_mode='qarepvggv2'
diff --git a/python/app/fedcv/YOLOv6/configs/repopt/yolov6_tiny_hs.py b/python/app/fedcv/YOLOv6/configs/repopt/yolov6_tiny_hs.py
new file mode 100644
index 0000000000..70a74279c8
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/repopt/yolov6_tiny_hs.py
@@ -0,0 +1,59 @@
+# YOLOv6t model
+model = dict(
+ type='YOLOv6t',
+ pretrained=None,
+ depth_multiple=0.33,
+ width_multiple=0.375,
+ backbone=dict(
+ type='EfficientRep',
+ num_repeats=[1, 6, 12, 18, 6],
+ out_channels=[64, 128, 256, 512, 1024],
+ ),
+ neck=dict(
+ type='RepPANNeck',
+ num_repeats=[12, 12, 12, 12],
+ out_channels=[256, 128, 128, 256, 256, 512],
+ ),
+ head=dict(
+ type='EffiDeHead',
+ in_channels=[128, 256, 512],
+ num_layers=3,
+ begin_indices=24,
+ anchors=1,
+ out_indices=[17, 20, 23],
+ strides=[8, 16, 32],
+ atss_warmup_epoch=0,
+ iou_type='siou',
+ use_dfl=False,
+ reg_max=0 #if use_dfl is False, please set reg_max to 0
+ )
+)
+
+solver = dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.01,
+ lrf=0.01,
+ momentum=0.937,
+ weight_decay=0.0005,
+ warmup_epochs=3.0,
+ warmup_momentum=0.8,
+ warmup_bias_lr=0.1
+)
+
+data_aug = dict(
+ hsv_h=0.015,
+ hsv_s=0.7,
+ hsv_v=0.4,
+ degrees=0.0,
+ translate=0.1,
+ scale=0.5,
+ shear=0.0,
+ flipud=0.0,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.0,
+)
+
+# Choose Rep-block by the training Mode, choices=["repvgg", "hyper-search", "repopt"]
+training_mode='hyper_search'
diff --git a/python/app/fedcv/YOLOv6/configs/repopt/yolov6_tiny_opt.py b/python/app/fedcv/YOLOv6/configs/repopt/yolov6_tiny_opt.py
new file mode 100644
index 0000000000..95dbf3178a
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/repopt/yolov6_tiny_opt.py
@@ -0,0 +1,59 @@
+# YOLOv6t model
+model = dict(
+ type='YOLOv6t',
+ pretrained=None,
+ scales='../yolov6_assert/v6t_v2_scale_last.pt',
+ depth_multiple=0.33,
+ width_multiple=0.375,
+ backbone=dict(
+ type='EfficientRep',
+ num_repeats=[1, 6, 12, 18, 6],
+ out_channels=[64, 128, 256, 512, 1024],
+ ),
+ neck=dict(
+ type='RepPANNeck',
+ num_repeats=[12, 12, 12, 12],
+ out_channels=[256, 128, 128, 256, 256, 512],
+ ),
+ head=dict(
+ type='EffiDeHead',
+ in_channels=[128, 256, 512],
+ num_layers=3,
+ begin_indices=24,
+ anchors=1,
+ out_indices=[17, 20, 23],
+ strides=[8, 16, 32],
+ atss_warmup_epoch=0,
+ iou_type='siou',
+ use_dfl=False,
+ reg_max=0 #if use_dfl is False, please set reg_max to 0
+ )
+)
+
+solver = dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.01,
+ lrf=0.01,
+ momentum=0.937,
+ weight_decay=0.0005,
+ warmup_epochs=3.0,
+ warmup_momentum=0.8,
+ warmup_bias_lr=0.1
+)
+
+data_aug = dict(
+ hsv_h=0.015,
+ hsv_s=0.7,
+ hsv_v=0.4,
+ degrees=0.0,
+ translate=0.1,
+ scale=0.5,
+ shear=0.0,
+ flipud=0.0,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.0,
+)
+# Choose Rep-block by the training Mode, choices=["repvgg", "hyper-search", "repopt"]
+training_mode='repopt'
diff --git a/python/app/fedcv/YOLOv6/configs/repopt/yolov6_tiny_opt_qat.py b/python/app/fedcv/YOLOv6/configs/repopt/yolov6_tiny_opt_qat.py
new file mode 100644
index 0000000000..701bf4f1d8
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/repopt/yolov6_tiny_opt_qat.py
@@ -0,0 +1,83 @@
+# YOLOv6t model
+model = dict(
+ type='YOLOv6t',
+ pretrained='./assets/v6s_t.pt',
+ scales='./assets/v6t_v2_scale_last.pt',
+ depth_multiple=0.33,
+ width_multiple=0.375,
+ backbone=dict(
+ type='EfficientRep',
+ num_repeats=[1, 6, 12, 18, 6],
+ out_channels=[64, 128, 256, 512, 1024],
+ ),
+ neck=dict(
+ type='RepPANNeck',
+ num_repeats=[12, 12, 12, 12],
+ out_channels=[256, 128, 128, 256, 256, 512],
+ ),
+ head=dict(
+ type='EffiDeHead',
+ in_channels=[128, 256, 512],
+ num_layers=3,
+ begin_indices=24,
+ anchors=1,
+ out_indices=[17, 20, 23],
+ strides=[8, 16, 32],
+ atss_warmup_epoch=0,
+ iou_type='siou',
+ use_dfl=False,
+ reg_max=0, #if use_dfl is False, please set reg_max to 0
+ distill_weight={
+ 'class': 1.0,
+ 'dfl': 1.0,
+ },
+ )
+)
+
+solver = dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.00001,
+ lrf=0.001,
+ momentum=0.937,
+ weight_decay=0.00005,
+ warmup_epochs=3.0,
+ warmup_momentum=0.8,
+ warmup_bias_lr=0.1
+)
+
+data_aug = dict(
+ hsv_h=0.015,
+ hsv_s=0.7,
+ hsv_v=0.4,
+ degrees=0.0,
+ translate=0.1,
+ scale=0.5,
+ shear=0.0,
+ flipud=0.0,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.0,
+)
+
+ptq = dict(
+ num_bits = 8,
+ calib_batches = 4,
+ # 'max', 'histogram'
+ calib_method = 'max',
+ # 'entropy', 'percentile', 'mse'
+ histogram_amax_method='entropy',
+ histogram_amax_percentile=99.99,
+ calib_output_path='./',
+ sensitive_layers_skip=False,
+ sensitive_layers_list=[],
+)
+
+qat = dict(
+ calib_pt = './assets/v6s_t_calib_max.pt',
+ sensitive_layers_skip = False,
+ sensitive_layers_list=[],
+)
+
+# Choose Rep-block by the training Mode, choices=["repvgg", "hyper-search", "repopt"]
+training_mode='repopt'
diff --git a/python/app/fedcv/object_detection/model/yolov6/configs/yolov6n.py b/python/app/fedcv/YOLOv6/configs/repopt/yolov6n_hs.py
similarity index 76%
rename from python/app/fedcv/object_detection/model/yolov6/configs/yolov6n.py
rename to python/app/fedcv/YOLOv6/configs/repopt/yolov6n_hs.py
index 40b6e0c4ac..67607ba282 100644
--- a/python/app/fedcv/object_detection/model/yolov6/configs/yolov6n.py
+++ b/python/app/fedcv/YOLOv6/configs/repopt/yolov6n_hs.py
@@ -10,7 +10,7 @@
out_channels=[64, 128, 256, 512, 1024],
),
neck=dict(
- type='RepPAN',
+ type='RepPANNeck',
num_repeats=[12, 12, 12, 12],
out_channels=[256, 128, 128, 256, 256, 512],
),
@@ -22,14 +22,17 @@
anchors=1,
out_indices=[17, 20, 23],
strides=[8, 16, 32],
- iou_type='ciou'
+ atss_warmup_epoch=0,
+ iou_type='siou',
+ use_dfl=False,
+ reg_max=0 #if use_dfl is False, please set reg_max to 0
)
)
solver = dict(
optim='SGD',
lr_scheduler='Cosine',
- lr0=0.01,
+ lr0=0.02, #0.01 # 0.02
lrf=0.01,
momentum=0.937,
weight_decay=0.0005,
@@ -51,3 +54,6 @@
mosaic=1.0,
mixup=0.0,
)
+
+# Choose Rep-block by the training Mode, choices=["repvgg", "hyper-search", "repopt"]
+training_mode='hyper_search'
diff --git a/python/app/fedcv/YOLOv6/configs/repopt/yolov6n_opt.py b/python/app/fedcv/YOLOv6/configs/repopt/yolov6n_opt.py
new file mode 100644
index 0000000000..9b3db4fbf5
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/repopt/yolov6n_opt.py
@@ -0,0 +1,59 @@
+# YOLOv6n model
+model = dict(
+ type='YOLOv6n',
+ pretrained=None,
+ scales='../yolov6_assert/v6n_v2_scale_last.pt',
+ depth_multiple=0.33,
+ width_multiple=0.25,
+ backbone=dict(
+ type='EfficientRep',
+ num_repeats=[1, 6, 12, 18, 6],
+ out_channels=[64, 128, 256, 512, 1024],
+ ),
+ neck=dict(
+ type='RepPANNeck',
+ num_repeats=[12, 12, 12, 12],
+ out_channels=[256, 128, 128, 256, 256, 512],
+ ),
+ head=dict(
+ type='EffiDeHead',
+ in_channels=[128, 256, 512],
+ num_layers=3,
+ begin_indices=24,
+ anchors=1,
+ out_indices=[17, 20, 23],
+ strides=[8, 16, 32],
+ atss_warmup_epoch=0,
+ iou_type='siou',
+ use_dfl=False,
+ reg_max=0 #if use_dfl is False, please set reg_max to 0
+ )
+)
+
+solver = dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.02, #0.01 # 0.02
+ lrf=0.01,
+ momentum=0.937,
+ weight_decay=0.0005,
+ warmup_epochs=3.0,
+ warmup_momentum=0.8,
+ warmup_bias_lr=0.1
+)
+
+data_aug = dict(
+ hsv_h=0.015,
+ hsv_s=0.7,
+ hsv_v=0.4,
+ degrees=0.0,
+ translate=0.1,
+ scale=0.5,
+ shear=0.0,
+ flipud=0.0,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.0,
+)
+# Choose Rep-block by the training Mode, choices=["repvgg", "hyper-search", "repopt"]
+training_mode='repopt'
diff --git a/python/app/fedcv/YOLOv6/configs/repopt/yolov6n_opt_qat.py b/python/app/fedcv/YOLOv6/configs/repopt/yolov6n_opt_qat.py
new file mode 100644
index 0000000000..4e76dfd3c4
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/repopt/yolov6n_opt_qat.py
@@ -0,0 +1,82 @@
+# YOLOv6n model
+model = dict(
+ type='YOLOv6n',
+ pretrained='./assets/v6s_n.pt',
+ scales='./assets/v6n_v2_scale_last.pt',
+ depth_multiple=0.33,
+ width_multiple=0.25,
+ backbone=dict(
+ type='EfficientRep',
+ num_repeats=[1, 6, 12, 18, 6],
+ out_channels=[64, 128, 256, 512, 1024],
+ ),
+ neck=dict(
+ type='RepPANNeck',
+ num_repeats=[12, 12, 12, 12],
+ out_channels=[256, 128, 128, 256, 256, 512],
+ ),
+ head=dict(
+ type='EffiDeHead',
+ in_channels=[128, 256, 512],
+ num_layers=3,
+ begin_indices=24,
+ anchors=1,
+ out_indices=[17, 20, 23],
+ strides=[8, 16, 32],
+ atss_warmup_epoch=0,
+ iou_type='siou',
+ use_dfl=False,
+ reg_max=0, #if use_dfl is False, please set reg_max to 0
+ distill_weight={
+ 'class': 1.0,
+ 'dfl': 1.0,
+ },
+ )
+)
+
+solver = dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.00001, #0.01 # 0.02
+ lrf=0.001,
+ momentum=0.937,
+ weight_decay=0.00005,
+ warmup_epochs=3.0,
+ warmup_momentum=0.8,
+ warmup_bias_lr=0.1
+)
+
+data_aug = dict(
+ hsv_h=0.015,
+ hsv_s=0.7,
+ hsv_v=0.4,
+ degrees=0.0,
+ translate=0.1,
+ scale=0.5,
+ shear=0.0,
+ flipud=0.0,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.0,
+)
+
+ptq = dict(
+ num_bits = 8,
+ calib_batches = 4,
+ # 'max', 'histogram'
+ calib_method = 'max',
+ # 'entropy', 'percentile', 'mse'
+ histogram_amax_method='entropy',
+ histogram_amax_percentile=99.99,
+ calib_output_path='./',
+ sensitive_layers_skip=False,
+ sensitive_layers_list=[],
+)
+
+qat = dict(
+ calib_pt = './assets/v6s_n_calib_max.pt',
+ sensitive_layers_skip = False,
+ sensitive_layers_list=[],
+)
+# Choose Rep-block by the training Mode, choices=["repvgg", "hyper-search", "repopt"]
+training_mode='repopt'
diff --git a/python/app/fedcv/object_detection/model/yolov6/configs/yolov6s.py b/python/app/fedcv/YOLOv6/configs/repopt/yolov6s_hs.py
similarity index 80%
rename from python/app/fedcv/object_detection/model/yolov6/configs/yolov6s.py
rename to python/app/fedcv/YOLOv6/configs/repopt/yolov6s_hs.py
index 8b281bf612..60c7286a1b 100644
--- a/python/app/fedcv/object_detection/model/yolov6/configs/yolov6s.py
+++ b/python/app/fedcv/YOLOv6/configs/repopt/yolov6s_hs.py
@@ -10,7 +10,7 @@
out_channels=[64, 128, 256, 512, 1024],
),
neck=dict(
- type='RepPAN',
+ type='RepPANNeck',
num_repeats=[12, 12, 12, 12],
out_channels=[256, 128, 128, 256, 256, 512],
),
@@ -22,7 +22,10 @@
anchors=1,
out_indices=[17, 20, 23],
strides=[8, 16, 32],
- iou_type='siou'
+ atss_warmup_epoch=0,
+ iou_type='giou',
+ use_dfl=False,
+ reg_max=0
)
)
@@ -51,3 +54,6 @@
mosaic=1.0,
mixup=0.0,
)
+
+# Choose Rep-block by the training Mode, choices=["repvgg", "hyper-search", "repopt"]
+training_mode='hyper_search'
diff --git a/python/app/fedcv/YOLOv6/configs/repopt/yolov6s_opt.py b/python/app/fedcv/YOLOv6/configs/repopt/yolov6s_opt.py
new file mode 100644
index 0000000000..2676eb4f14
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/repopt/yolov6s_opt.py
@@ -0,0 +1,60 @@
+# YOLOv6s model
+model = dict(
+ type='YOLOv6s',
+ pretrained=None,
+ scales='../yolov6_assert/v6s_v2_scale.pt',
+ depth_multiple=0.33,
+ width_multiple=0.50,
+ backbone=dict(
+ type='EfficientRep',
+ num_repeats=[1, 6, 12, 18, 6],
+ out_channels=[64, 128, 256, 512, 1024],
+ ),
+ neck=dict(
+ type='RepPANNeck',
+ num_repeats=[12, 12, 12, 12],
+ out_channels=[256, 128, 128, 256, 256, 512],
+ ),
+ head=dict(
+ type='EffiDeHead',
+ in_channels=[128, 256, 512],
+ num_layers=3,
+ begin_indices=24,
+ anchors=1,
+ out_indices=[17, 20, 23],
+ strides=[8, 16, 32],
+ atss_warmup_epoch=0,
+ iou_type='giou',
+ use_dfl=False,
+ reg_max=0
+ )
+)
+
+solver = dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.01,
+ lrf=0.01,
+ momentum=0.937,
+ weight_decay=0.0005,
+ warmup_epochs=3.0,
+ warmup_momentum=0.8,
+ warmup_bias_lr=0.1
+)
+
+data_aug = dict(
+ hsv_h=0.015,
+ hsv_s=0.7,
+ hsv_v=0.4,
+ degrees=0.0,
+ translate=0.1,
+ scale=0.5,
+ shear=0.0,
+ flipud=0.0,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.0,
+)
+
+# Choose Rep-block by the training Mode, choices=["repvgg", "hyper-search", "repopt"]
+training_mode='repopt'
diff --git a/python/app/fedcv/YOLOv6/configs/repopt/yolov6s_opt_qat.py b/python/app/fedcv/YOLOv6/configs/repopt/yolov6s_opt_qat.py
new file mode 100644
index 0000000000..a41ea085c8
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/repopt/yolov6s_opt_qat.py
@@ -0,0 +1,113 @@
+# YOLOv6s model
+model = dict(
+ type='YOLOv6s',
+ pretrained='./assets/yolov6s_v2_reopt_43.1.pt',
+ scales='./assets/yolov6s_v2_scale.pt',
+ depth_multiple=0.33,
+ width_multiple=0.50,
+ backbone=dict(
+ type='EfficientRep',
+ num_repeats=[1, 6, 12, 18, 6],
+ out_channels=[64, 128, 256, 512, 1024],
+ ),
+ neck=dict(
+ type='RepPANNeck',
+ num_repeats=[12, 12, 12, 12],
+ out_channels=[256, 128, 128, 256, 256, 512],
+ ),
+ head=dict(
+ type='EffiDeHead',
+ in_channels=[128, 256, 512],
+ num_layers=3,
+ begin_indices=24,
+ anchors=1,
+ out_indices=[17, 20, 23],
+ strides=[8, 16, 32],
+ atss_warmup_epoch=0,
+ iou_type = 'giou',
+ use_dfl = False,
+ reg_max = 0, # if use_dfl is False, please set reg_max to 0
+ distill_weight={
+ 'class': 1.0,
+ 'dfl': 1.0,
+ },
+ )
+)
+
+solver = dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.00001,
+ lrf=0.001,
+ momentum=0.937,
+ weight_decay=0.00005,
+ warmup_epochs=3,
+ warmup_momentum=0.8,
+ warmup_bias_lr=0.1
+)
+
+data_aug = dict(
+ hsv_h=0.015,
+ hsv_s=0.7,
+ hsv_v=0.4,
+ degrees=0.0,
+ translate=0.1,
+ scale=0.5,
+ shear=0.0,
+ flipud=0.0,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.0,
+)
+
+ptq = dict(
+ num_bits = 8,
+ calib_batches = 4,
+ # 'max', 'histogram'
+ calib_method = 'histogram',
+ # 'entropy', 'percentile', 'mse'
+ histogram_amax_method='entropy',
+ histogram_amax_percentile=99.99,
+ calib_output_path='./',
+ sensitive_layers_skip=False,
+ sensitive_layers_list=['detect.stems.0.conv',
+ 'detect.stems.1.conv',
+ 'detect.stems.2.conv',
+ 'detect.cls_convs.0.conv',
+ 'detect.cls_convs.1.conv',
+ 'detect.cls_convs.2.conv',
+ 'detect.reg_convs.0.conv',
+ 'detect.reg_convs.1.conv',
+ 'detect.reg_convs.2.conv',
+ 'detect.cls_preds.0',
+ 'detect.cls_preds.1',
+ 'detect.cls_preds.2',
+ 'detect.reg_preds.0',
+ 'detect.reg_preds.1',
+ 'detect.reg_preds.2',
+ ],
+)
+
+qat = dict(
+ calib_pt = './assets/yolov6s_v2_reopt_43.1_calib_histogram.pt',
+ sensitive_layers_skip = False,
+ sensitive_layers_list=['detect.stems.0.conv',
+ 'detect.stems.1.conv',
+ 'detect.stems.2.conv',
+ 'detect.cls_convs.0.conv',
+ 'detect.cls_convs.1.conv',
+ 'detect.cls_convs.2.conv',
+ 'detect.reg_convs.0.conv',
+ 'detect.reg_convs.1.conv',
+ 'detect.reg_convs.2.conv',
+ 'detect.cls_preds.0',
+ 'detect.cls_preds.1',
+ 'detect.cls_preds.2',
+ 'detect.reg_preds.0',
+ 'detect.reg_preds.1',
+ 'detect.reg_preds.2',
+ ],
+)
+
+# Choose Rep-block by the training Mode, choices=["repvgg", "hyper-search", "repopt"]
+training_mode='repopt'
diff --git a/python/app/fedcv/YOLOv6/configs/yolov6_lite/README.md b/python/app/fedcv/YOLOv6/configs/yolov6_lite/README.md
new file mode 100644
index 0000000000..170d12d921
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/yolov6_lite/README.md
@@ -0,0 +1,22 @@
+## YOLOv6Lite model
+
+English | [简体中文](./README_cn.md)
+
+## Mobile Benchmark
+| Model | Size | mAPval 0.5:0.95 | sm8350(ms) | mt6853(ms) | sdm660(ms) |Params (M) | FLOPs (G) |
+| :----------------------------------------------------------- | ---- | -------------------- | -------------------- | -------------------- | -------------------- | -------------------- | -------------------- |
+| [**YOLOv6Lite-S**](https://github.com/meituan/YOLOv6/releases/download/0.4.0/yolov6lite_s.pt) | 320*320 | 22.4 | 7.99 | 11.99 | 41.86 | 0.55 | 0.56 |
+| [**YOLOv6Lite-M**](https://github.com/meituan/YOLOv6/releases/download/0.4.0/yolov6lite_m.pt) | 320*320 | 25.1 | 9.08 | 13.27 | 47.95 | 0.79 | 0.67 |
+| [**YOLOv6Lite-L**](https://github.com/meituan/YOLOv6/releases/download/0.4.0/yolov6lite_l.pt) | 320*320 | 28.0 | 11.37 | 16.20 | 61.40 | 1.09 | 0.87 |
+| [**YOLOv6Lite-L**](https://github.com/meituan/YOLOv6/releases/download/0.4.0/yolov6lite_l.pt) | 320*192 | 25.0 | 7.02 | 9.66 | 36.13 | 1.09 | 0.52 |
+| [**YOLOv6Lite-L**](https://github.com/meituan/YOLOv6/releases/download/0.4.0/yolov6lite_l.pt) | 224*128 | 18.9 | 3.63 | 4.99 | 17.76 | 1.09 | 0.24 |
+
+
+Table Notes
+
+- From the perspective of model size and input image ratio, we have built a series of models on the mobile terminal to facilitate flexible applications in different scenarios.
+- All checkpoints are trained with 400 epochs without distillation.
+- Results of the mAP and speed are evaluated on [COCO val2017](https://cocodataset.org/#download) dataset, and the input resolution is the Size in the table.
+- Speed is tested on MNN 2.3.0 AArch64 with 2 threads by arm82 acceleration. The inference warm-up is performed 10 times, and the cycle is performed 100 times.
+- Qualcomm 888(sm8350), Dimensity 720(mt6853) and Qualcomm 660(sdm660) correspond to chips with different performances at the high, middle and low end respectively, which can be used as a reference for model capabilities under different chips.
+- Refer to [Test NCNN Speed](./docs/Test_NCNN_speed.md) tutorial to reproduce the NCNN speed results of YOLOv6Lite.
diff --git a/python/app/fedcv/YOLOv6/configs/yolov6_lite/README_cn.md b/python/app/fedcv/YOLOv6/configs/yolov6_lite/README_cn.md
new file mode 100644
index 0000000000..23dd715e13
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/yolov6_lite/README_cn.md
@@ -0,0 +1,23 @@
+## YOLOv6 轻量级模型
+
+简体中文 | [English](./README.md)
+
+## 移动端模型指标
+
+| 模型 | 输入尺寸 | mAPval 0.5:0.95 | sm8350(ms) | mt6853(ms) | sdm660(ms) |Params (M) | FLOPs (G) |
+| :----------------------------------------------------------- | ---- | -------------------- | -------------------- | -------------------- | -------------------- | -------------------- | -------------------- |
+| [**YOLOv6Lite-S**](https://github.com/meituan/YOLOv6/releases/download/0.4.0/yolov6lite_s.pt) | 320*320 | 22.4 | 7.99 | 11.99 | 41.86 | 0.55 | 0.56 |
+| [**YOLOv6Lite-M**](https://github.com/meituan/YOLOv6/releases/download/0.4.0/yolov6lite_m.pt) | 320*320 | 25.1 | 9.08 | 13.27 | 47.95 | 0.79 | 0.67 |
+| [**YOLOv6Lite-L**](https://github.com/meituan/YOLOv6/releases/download/0.4.0/yolov6lite_l.pt) | 320*320 | 28.0 | 11.37 | 16.20 | 61.40 | 1.09 | 0.87 |
+| [**YOLOv6Lite-L**](https://github.com/meituan/YOLOv6/releases/download/0.4.0/yolov6lite_l.pt) | 320*192 | 25.0 | 7.02 | 9.66 | 36.13 | 1.09 | 0.52 |
+| [**YOLOv6Lite-L**](https://github.com/meituan/YOLOv6/releases/download/0.4.0/yolov6lite_l.pt) | 224*128 | 18.9 | 3.63 | 4.99 | 17.76 | 1.09 | 0.24 |
+
+
+表格笔记
+
+- 从模型尺寸和输入图片比例两种角度,在构建了移动端系列模型,方便不同场景下的灵活应用。
+- 所有权重都经过 400 个 epoch 的训练,并且没有使用蒸馏技术。
+- mAP 和速度指标是在 COCO val2017 数据集上评估的,输入分辨率为表格中对应展示的。
+- 使用 MNN 2.3.0 AArch64 进行速度测试。测速时,采用2个线程,并开启arm82加速,推理预热10次,循环100次。
+- 高通888(sm8350)、天玑720(mt6853)和高通660(sdm660)分别对应高中低端不同性能的芯片,可以作为不同芯片下机型能力的参考。
+- [NCNN 速度测试](./docs/Test_NCNN_speed.md)教程可以帮助展示及复现 YOLOv6Lite 的 NCNN 速度结果。
diff --git a/python/app/fedcv/YOLOv6/configs/yolov6_lite/yolov6_lite_l.py b/python/app/fedcv/YOLOv6/configs/yolov6_lite/yolov6_lite_l.py
new file mode 100644
index 0000000000..212c8c73bc
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/yolov6_lite/yolov6_lite_l.py
@@ -0,0 +1,54 @@
+# YOLOv6-lite-l model
+model = dict(
+ type='YOLOv6-lite-l',
+ pretrained=None,
+ width_multiple=1.5,
+ backbone=dict(
+ type='Lite_EffiBackbone',
+ num_repeats=[1, 3, 7, 3],
+ out_channels=[24, 32, 64, 128, 256],
+ scale_size=0.5,
+ ),
+ neck=dict(
+ type='Lite_EffiNeck',
+ in_channels=[256, 128, 64],
+ unified_channels=96
+ ),
+ head=dict(
+ type='Lite_EffideHead',
+ in_channels=[96, 96, 96, 96],
+ num_layers=4,
+ anchors=1,
+ strides=[8, 16, 32, 64],
+ atss_warmup_epoch=4,
+ iou_type='siou',
+ use_dfl=False,
+ reg_max=0 #if use_dfl is False, please set reg_max to 0
+ )
+)
+
+solver = dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.1 * 4,
+ lrf=0.01,
+ momentum=0.9,
+ weight_decay=0.00004,
+ warmup_epochs=3.0,
+ warmup_momentum=0.8,
+ warmup_bias_lr=0.1
+)
+
+data_aug = dict(
+ hsv_h=0.015,
+ hsv_s=0.7,
+ hsv_v=0.4,
+ degrees=0.0,
+ translate=0.1,
+ scale=0.5,
+ shear=0.0,
+ flipud=0.0,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.0,
+)
diff --git a/python/app/fedcv/YOLOv6/configs/yolov6_lite/yolov6_lite_l_finetune.py b/python/app/fedcv/YOLOv6/configs/yolov6_lite/yolov6_lite_l_finetune.py
new file mode 100644
index 0000000000..6effa765e3
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/yolov6_lite/yolov6_lite_l_finetune.py
@@ -0,0 +1,54 @@
+# YOLOv6-lite-l model
+model = dict(
+ type='YOLOv6-lite-l',
+ pretrained='weights/yolov6_lite_l.pt',
+ width_multiple=1.5,
+ backbone=dict(
+ type='Lite_EffiBackbone',
+ num_repeats=[1, 3, 7, 3],
+ out_channels=[24, 32, 64, 128, 256],
+ scale_size=0.5,
+ ),
+ neck=dict(
+ type='Lite_EffiNeck',
+ in_channels=[256, 128, 64],
+ unified_channels=96
+ ),
+ head=dict(
+ type='Lite_EffideHead',
+ in_channels=[96, 96, 96, 96],
+ num_layers=4,
+ anchors=1,
+ strides=[8, 16, 32, 64],
+ atss_warmup_epoch=4,
+ iou_type='siou',
+ use_dfl=False,
+ reg_max=0 #if use_dfl is False, please set reg_max to 0
+ )
+)
+
+solver = dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.0032,
+ lrf=0.12,
+ momentum=0.843,
+ weight_decay=0.00036,
+ warmup_epochs=2.0,
+ warmup_momentum=0.5,
+ warmup_bias_lr=0.05
+)
+
+data_aug = dict(
+ hsv_h=0.0138,
+ hsv_s=0.664,
+ hsv_v=0.464,
+ degrees=0.373,
+ translate=0.245,
+ scale=0.898,
+ shear=0.602,
+ flipud=0.00856,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.243,
+)
diff --git a/python/app/fedcv/YOLOv6/configs/yolov6_lite/yolov6_lite_m.py b/python/app/fedcv/YOLOv6/configs/yolov6_lite/yolov6_lite_m.py
new file mode 100644
index 0000000000..8f0de368d2
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/yolov6_lite/yolov6_lite_m.py
@@ -0,0 +1,54 @@
+# YOLOv6-lite-m model
+model = dict(
+ type='YOLOv6-lite-m',
+ pretrained=None,
+ width_multiple=1.1,
+ backbone=dict(
+ type='Lite_EffiBackbone',
+ num_repeats=[1, 3, 7, 3],
+ out_channels=[24, 32, 64, 128, 256],
+ scale_size=0.5,
+ ),
+ neck=dict(
+ type='Lite_EffiNeck',
+ in_channels=[256, 128, 64],
+ unified_channels=96
+ ),
+ head=dict(
+ type='Lite_EffideHead',
+ in_channels=[96, 96, 96, 96],
+ num_layers=4,
+ anchors=1,
+ strides=[8, 16, 32, 64],
+ atss_warmup_epoch=4,
+ iou_type='siou',
+ use_dfl=False,
+ reg_max=0 #if use_dfl is False, please set reg_max to 0
+ )
+)
+
+solver = dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.1 * 4,
+ lrf=0.01,
+ momentum=0.9,
+ weight_decay=0.00004,
+ warmup_epochs=3.0,
+ warmup_momentum=0.8,
+ warmup_bias_lr=0.1
+)
+
+data_aug = dict(
+ hsv_h=0.015,
+ hsv_s=0.7,
+ hsv_v=0.4,
+ degrees=0.0,
+ translate=0.1,
+ scale=0.5,
+ shear=0.0,
+ flipud=0.0,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.0,
+)
diff --git a/python/app/fedcv/YOLOv6/configs/yolov6_lite/yolov6_lite_m_finetune.py b/python/app/fedcv/YOLOv6/configs/yolov6_lite/yolov6_lite_m_finetune.py
new file mode 100644
index 0000000000..09fcd5c5fb
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/yolov6_lite/yolov6_lite_m_finetune.py
@@ -0,0 +1,54 @@
+# YOLOv6-lite-m model
+model = dict(
+ type='YOLOv6-lite-m',
+ pretrained='weights/yolov6_lite_m.pt',
+ width_multiple=1.1,
+ backbone=dict(
+ type='Lite_EffiBackbone',
+ num_repeats=[1, 3, 7, 3],
+ out_channels=[24, 32, 64, 128, 256],
+ scale_size=0.5,
+ ),
+ neck=dict(
+ type='Lite_EffiNeck',
+ in_channels=[256, 128, 64],
+ unified_channels=96
+ ),
+ head=dict(
+ type='Lite_EffideHead',
+ in_channels=[96, 96, 96, 96],
+ num_layers=4,
+ anchors=1,
+ strides=[8, 16, 32, 64],
+ atss_warmup_epoch=4,
+ iou_type='siou',
+ use_dfl=False,
+ reg_max=0 #if use_dfl is False, please set reg_max to 0
+ )
+)
+
+solver = dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.0032,
+ lrf=0.12,
+ momentum=0.843,
+ weight_decay=0.00036,
+ warmup_epochs=2.0,
+ warmup_momentum=0.5,
+ warmup_bias_lr=0.05
+)
+
+data_aug = dict(
+ hsv_h=0.0138,
+ hsv_s=0.664,
+ hsv_v=0.464,
+ degrees=0.373,
+ translate=0.245,
+ scale=0.898,
+ shear=0.602,
+ flipud=0.00856,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.243,
+)
diff --git a/python/app/fedcv/YOLOv6/configs/yolov6_lite/yolov6_lite_s.py b/python/app/fedcv/YOLOv6/configs/yolov6_lite/yolov6_lite_s.py
new file mode 100644
index 0000000000..42a52e373b
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/yolov6_lite/yolov6_lite_s.py
@@ -0,0 +1,54 @@
+# YOLOv6-lite-s model
+model = dict(
+ type='YOLOv6-lite-s',
+ pretrained=None,
+ width_multiple=0.7,
+ backbone=dict(
+ type='Lite_EffiBackbone',
+ num_repeats=[1, 3, 7, 3],
+ out_channels=[24, 32, 64, 128, 256],
+ scale_size=0.5,
+ ),
+ neck=dict(
+ type='Lite_EffiNeck',
+ in_channels=[256, 128, 64],
+ unified_channels=96
+ ),
+ head=dict(
+ type='Lite_EffideHead',
+ in_channels=[96, 96, 96, 96],
+ num_layers=4,
+ anchors=1,
+ strides=[8, 16, 32, 64],
+ atss_warmup_epoch=4,
+ iou_type='siou',
+ use_dfl=False,
+ reg_max=0 #if use_dfl is False, please set reg_max to 0
+ )
+)
+
+solver = dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.1 * 4,
+ lrf=0.01,
+ momentum=0.9,
+ weight_decay=0.00004,
+ warmup_epochs=3.0,
+ warmup_momentum=0.8,
+ warmup_bias_lr=0.1
+)
+
+data_aug = dict(
+ hsv_h=0.015,
+ hsv_s=0.7,
+ hsv_v=0.4,
+ degrees=0.0,
+ translate=0.1,
+ scale=0.5,
+ shear=0.0,
+ flipud=0.0,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.0,
+)
diff --git a/python/app/fedcv/YOLOv6/configs/yolov6_lite/yolov6_lite_s_finetune.py b/python/app/fedcv/YOLOv6/configs/yolov6_lite/yolov6_lite_s_finetune.py
new file mode 100644
index 0000000000..967e167664
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/yolov6_lite/yolov6_lite_s_finetune.py
@@ -0,0 +1,54 @@
+# YOLOv6-lite-s model
+model = dict(
+ type='YOLOv6-lite-s',
+ pretrained='weights/yolov6_lite_s.pt',
+ width_multiple=0.7,
+ backbone=dict(
+ type='Lite_EffiBackbone',
+ num_repeats=[1, 3, 7, 3],
+ out_channels=[24, 32, 64, 128, 256],
+ scale_size=0.5,
+ ),
+ neck=dict(
+ type='Lite_EffiNeck',
+ in_channels=[256, 128, 64],
+ unified_channels=96
+ ),
+ head=dict(
+ type='Lite_EffideHead',
+ in_channels=[96, 96, 96, 96],
+ num_layers=4,
+ anchors=1,
+ strides=[8, 16, 32, 64],
+ atss_warmup_epoch=4,
+ iou_type='siou',
+ use_dfl=False,
+ reg_max=0 #if use_dfl is False, please set reg_max to 0
+ )
+)
+
+solver = dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.0032,
+ lrf=0.12,
+ momentum=0.843,
+ weight_decay=0.00036,
+ warmup_epochs=2.0,
+ warmup_momentum=0.5,
+ warmup_bias_lr=0.05
+)
+
+data_aug = dict(
+ hsv_h=0.0138,
+ hsv_s=0.664,
+ hsv_v=0.464,
+ degrees=0.373,
+ translate=0.245,
+ scale=0.898,
+ shear=0.602,
+ flipud=0.00856,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.243,
+)
diff --git a/python/app/fedcv/YOLOv6/configs/yolov6l.py b/python/app/fedcv/YOLOv6/configs/yolov6l.py
new file mode 100644
index 0000000000..bfa6728b52
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/yolov6l.py
@@ -0,0 +1,68 @@
+# YOLOv6l model
+model = dict(
+ type='YOLOv6l',
+ pretrained=None,
+ depth_multiple=1.0,
+ width_multiple=1.0,
+ backbone=dict(
+ type='CSPBepBackbone',
+ num_repeats=[1, 6, 12, 18, 6],
+ out_channels=[64, 128, 256, 512, 1024],
+ csp_e=float(1)/2,
+ fuse_P2=True,
+ ),
+ neck=dict(
+ type='CSPRepBiFPANNeck',
+ num_repeats=[12, 12, 12, 12],
+ out_channels=[256, 128, 128, 256, 256, 512],
+ csp_e=float(1)/2,
+ ),
+ head=dict(
+ type='EffiDeHead',
+ in_channels=[128, 256, 512],
+ num_layers=3,
+ begin_indices=24,
+ anchors=3,
+ anchors_init=[[10,13, 19,19, 33,23],
+ [30,61, 59,59, 59,119],
+ [116,90, 185,185, 373,326]],
+ out_indices=[17, 20, 23],
+ strides=[8, 16, 32],
+ atss_warmup_epoch=0,
+ iou_type='giou',
+ use_dfl=True,
+ reg_max=16, #if use_dfl is False, please set reg_max to 0
+ distill_weight={
+ 'class': 2.0,
+ 'dfl': 1.0,
+ },
+ )
+)
+
+solver=dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.01,
+ lrf=0.01,
+ momentum=0.937,
+ weight_decay=0.0005,
+ warmup_epochs=3.0,
+ warmup_momentum=0.8,
+ warmup_bias_lr=0.1
+)
+
+data_aug = dict(
+ hsv_h=0.015,
+ hsv_s=0.7,
+ hsv_v=0.4,
+ degrees=0.0,
+ translate=0.1,
+ scale=0.9,
+ shear=0.0,
+ flipud=0.0,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.1,
+)
+training_mode = "conv_silu"
+# use normal conv to speed up training and further improve accuracy.
diff --git a/python/app/fedcv/YOLOv6/configs/yolov6l6.py b/python/app/fedcv/YOLOv6/configs/yolov6l6.py
new file mode 100644
index 0000000000..3bb77c5f56
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/yolov6l6.py
@@ -0,0 +1,62 @@
+# YOLOv6l6 model
+model = dict(
+ type='YOLOv6l6',
+ pretrained=None,
+ depth_multiple=1.0,
+ width_multiple=1.0,
+ backbone=dict(
+ type='CSPBepBackbone_P6',
+ num_repeats=[1, 6, 12, 18, 6, 6],
+ out_channels=[64, 128, 256, 512, 768, 1024],
+ csp_e=float(1)/2,
+ fuse_P2=True,
+ ),
+ neck=dict(
+ type='CSPRepBiFPANNeck_P6',
+ num_repeats=[12, 12, 12, 12, 12, 12],
+ out_channels=[512, 256, 128, 256, 512, 1024],
+ csp_e=float(1)/2,
+ ),
+ head=dict(
+ type='EffiDeHead',
+ in_channels=[128, 256, 512, 1024],
+ num_layers=4,
+ anchors=1,
+ strides=[8, 16, 32, 64],
+ atss_warmup_epoch=4,
+ iou_type='giou',
+ use_dfl=True,
+ reg_max=16, #if use_dfl is False, please set reg_max to 0
+ distill_weight={
+ 'class': 1.0,
+ 'dfl': 1.0,
+ },
+ )
+)
+
+solver = dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.01,
+ lrf=0.01,
+ momentum=0.937,
+ weight_decay=0.0005,
+ warmup_epochs=3.0,
+ warmup_momentum=0.8,
+ warmup_bias_lr=0.1
+)
+
+data_aug = dict(
+ hsv_h=0.015,
+ hsv_s=0.7,
+ hsv_v=0.4,
+ degrees=0.0,
+ translate=0.1,
+ scale=0.9,
+ shear=0.0,
+ flipud=0.0,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.2,
+)
+training_mode = "conv_silu"
diff --git a/python/app/fedcv/YOLOv6/configs/yolov6l6_finetune.py b/python/app/fedcv/YOLOv6/configs/yolov6l6_finetune.py
new file mode 100644
index 0000000000..2ffb8ada89
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/yolov6l6_finetune.py
@@ -0,0 +1,62 @@
+# YOLOv6l6 model
+model = dict(
+ type='YOLOv6l6',
+ pretrained='weights/yolov6l6.pt',
+ depth_multiple=1.0,
+ width_multiple=1.0,
+ backbone=dict(
+ type='CSPBepBackbone_P6',
+ num_repeats=[1, 6, 12, 18, 6, 6],
+ out_channels=[64, 128, 256, 512, 768, 1024],
+ csp_e=float(1)/2,
+ fuse_P2=True,
+ ),
+ neck=dict(
+ type='CSPRepBiFPANNeck_P6',
+ num_repeats=[12, 12, 12, 12, 12, 12],
+ out_channels=[512, 256, 128, 256, 512, 1024],
+ csp_e=float(1)/2,
+ ),
+ head=dict(
+ type='EffiDeHead',
+ in_channels=[128, 256, 512, 1024],
+ num_layers=4,
+ anchors=1,
+ strides=[8, 16, 32, 64],
+ atss_warmup_epoch=4,
+ iou_type='giou',
+ use_dfl=True,
+ reg_max=16, #if use_dfl is False, please set reg_max to 0
+ distill_weight={
+ 'class': 1.0,
+ 'dfl': 1.0,
+ },
+ )
+)
+
+solver = dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.0032,
+ lrf=0.12,
+ momentum=0.843,
+ weight_decay=0.00036,
+ warmup_epochs=2.0,
+ warmup_momentum=0.5,
+ warmup_bias_lr=0.05
+)
+
+data_aug = dict(
+ hsv_h=0.0138,
+ hsv_s=0.664,
+ hsv_v=0.464,
+ degrees=0.373,
+ translate=0.245,
+ scale=0.898,
+ shear=0.602,
+ flipud=0.00856,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.243,
+)
+training_mode = "conv_silu"
diff --git a/python/app/fedcv/YOLOv6/configs/yolov6l_finetune.py b/python/app/fedcv/YOLOv6/configs/yolov6l_finetune.py
new file mode 100644
index 0000000000..9b3012338e
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/yolov6l_finetune.py
@@ -0,0 +1,68 @@
+# YOLOv6l model
+model = dict(
+ type='YOLOv6l',
+ pretrained='weights/yolov6l.pt',
+ depth_multiple=1.0,
+ width_multiple=1.0,
+ backbone=dict(
+ type='CSPBepBackbone',
+ num_repeats=[1, 6, 12, 18, 6],
+ out_channels=[64, 128, 256, 512, 1024],
+ csp_e=float(1)/2,
+ fuse_P2=True,
+ ),
+ neck=dict(
+ type='CSPRepBiFPANNeck',
+ num_repeats=[12, 12, 12, 12],
+ out_channels=[256, 128, 128, 256, 256, 512],
+ csp_e=float(1)/2,
+ ),
+ head=dict(
+ type='EffiDeHead',
+ in_channels=[128, 256, 512],
+ num_layers=3,
+ begin_indices=24,
+ anchors=3,
+ anchors_init=[[10,13, 19,19, 33,23],
+ [30,61, 59,59, 59,119],
+ [116,90, 185,185, 373,326]],
+ out_indices=[17, 20, 23],
+ strides=[8, 16, 32],
+ atss_warmup_epoch=0,
+ iou_type='giou',
+ use_dfl=True,
+ reg_max=16, #if use_dfl is False, please set reg_max to 0
+ distill_weight={
+ 'class': 2.0,
+ 'dfl': 1.0,
+ },
+ )
+)
+
+solver = dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.0032,
+ lrf=0.12,
+ momentum=0.843,
+ weight_decay=0.00036,
+ warmup_epochs=2.0,
+ warmup_momentum=0.5,
+ warmup_bias_lr=0.05
+)
+
+data_aug = dict(
+ hsv_h=0.0138,
+ hsv_s=0.664,
+ hsv_v=0.464,
+ degrees=0.373,
+ translate=0.245,
+ scale=0.898,
+ shear=0.602,
+ flipud=0.00856,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.243,
+)
+training_mode = "conv_silu"
+# use normal conv to speed up training and further improve accuracy.
diff --git a/python/app/fedcv/YOLOv6/configs/yolov6m.py b/python/app/fedcv/YOLOv6/configs/yolov6m.py
new file mode 100644
index 0000000000..29fae396ea
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/yolov6m.py
@@ -0,0 +1,66 @@
+# YOLOv6m model
+model = dict(
+ type='YOLOv6m',
+ pretrained=None,
+ depth_multiple=0.60,
+ width_multiple=0.75,
+ backbone=dict(
+ type='CSPBepBackbone',
+ num_repeats=[1, 6, 12, 18, 6],
+ out_channels=[64, 128, 256, 512, 1024],
+ csp_e=float(2)/3,
+ fuse_P2=True,
+ ),
+ neck=dict(
+ type='CSPRepBiFPANNeck',
+ num_repeats=[12, 12, 12, 12],
+ out_channels=[256, 128, 128, 256, 256, 512],
+ csp_e=float(2)/3,
+ ),
+ head=dict(
+ type='EffiDeHead',
+ in_channels=[128, 256, 512],
+ num_layers=3,
+ begin_indices=24,
+ anchors=3,
+ anchors_init=[[10,13, 19,19, 33,23],
+ [30,61, 59,59, 59,119],
+ [116,90, 185,185, 373,326]],
+ out_indices=[17, 20, 23],
+ strides=[8, 16, 32],
+ atss_warmup_epoch=0,
+ iou_type='giou',
+ use_dfl=True,
+ reg_max=16, #if use_dfl is False, please set reg_max to 0
+ distill_weight={
+ 'class': 0.8,
+ 'dfl': 1.0,
+ },
+ )
+)
+
+solver=dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.01,
+ lrf=0.01,
+ momentum=0.937,
+ weight_decay=0.0005,
+ warmup_epochs=3.0,
+ warmup_momentum=0.8,
+ warmup_bias_lr=0.1
+)
+
+data_aug = dict(
+ hsv_h=0.015,
+ hsv_s=0.7,
+ hsv_v=0.4,
+ degrees=0.0,
+ translate=0.1,
+ scale=0.9,
+ shear=0.0,
+ flipud=0.0,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.1,
+)
diff --git a/python/app/fedcv/YOLOv6/configs/yolov6m6.py b/python/app/fedcv/YOLOv6/configs/yolov6m6.py
new file mode 100644
index 0000000000..e741bbc03a
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/yolov6m6.py
@@ -0,0 +1,61 @@
+# YOLOv6m6 model
+model = dict(
+ type='YOLOv6m6',
+ pretrained=None,
+ depth_multiple=0.60,
+ width_multiple=0.75,
+ backbone=dict(
+ type='CSPBepBackbone_P6',
+ num_repeats=[1, 6, 12, 18, 6, 6],
+ out_channels=[64, 128, 256, 512, 768, 1024],
+ csp_e=float(2)/3,
+ fuse_P2=True,
+ ),
+ neck=dict(
+ type='CSPRepBiFPANNeck_P6',
+ num_repeats=[12, 12, 12, 12, 12, 12],
+ out_channels=[512, 256, 128, 256, 512, 1024],
+ csp_e=float(2)/3,
+ ),
+ head=dict(
+ type='EffiDeHead',
+ in_channels=[128, 256, 512, 1024],
+ num_layers=4,
+ anchors=1,
+ strides=[8, 16, 32, 64],
+ atss_warmup_epoch=4,
+ iou_type='giou',
+ use_dfl=True,
+ reg_max=16, #if use_dfl is False, please set reg_max to 0
+ distill_weight={
+ 'class': 1.0,
+ 'dfl': 1.0,
+ },
+ )
+)
+
+solver = dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.01,
+ lrf=0.01,
+ momentum=0.937,
+ weight_decay=0.0005,
+ warmup_epochs=3.0,
+ warmup_momentum=0.8,
+ warmup_bias_lr=0.1
+)
+
+data_aug = dict(
+ hsv_h=0.015,
+ hsv_s=0.7,
+ hsv_v=0.4,
+ degrees=0.0,
+ translate=0.1,
+ scale=0.9,
+ shear=0.0,
+ flipud=0.0,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.1,
+)
diff --git a/python/app/fedcv/YOLOv6/configs/yolov6m6_finetune.py b/python/app/fedcv/YOLOv6/configs/yolov6m6_finetune.py
new file mode 100644
index 0000000000..83760d3a1d
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/yolov6m6_finetune.py
@@ -0,0 +1,61 @@
+# YOLOv6m6 model
+model = dict(
+ type='YOLOv6m6',
+ pretrained='weights/yolov6m6.pt',
+ depth_multiple=0.60,
+ width_multiple=0.75,
+ backbone=dict(
+ type='CSPBepBackbone_P6',
+ num_repeats=[1, 6, 12, 18, 6, 6],
+ out_channels=[64, 128, 256, 512, 768, 1024],
+ csp_e=float(2)/3,
+ fuse_P2=True,
+ ),
+ neck=dict(
+ type='CSPRepBiFPANNeck_P6',
+ num_repeats=[12, 12, 12, 12, 12, 12],
+ out_channels=[512, 256, 128, 256, 512, 1024],
+ csp_e=float(2)/3,
+ ),
+ head=dict(
+ type='EffiDeHead',
+ in_channels=[128, 256, 512, 1024],
+ num_layers=4,
+ anchors=1,
+ strides=[8, 16, 32, 64],
+ atss_warmup_epoch=4,
+ iou_type='giou',
+ use_dfl=True,
+ reg_max=16, #if use_dfl is False, please set reg_max to 0
+ distill_weight={
+ 'class': 1.0,
+ 'dfl': 1.0,
+ },
+ )
+)
+
+solver = dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.0032,
+ lrf=0.12,
+ momentum=0.843,
+ weight_decay=0.00036,
+ warmup_epochs=2.0,
+ warmup_momentum=0.5,
+ warmup_bias_lr=0.05
+)
+
+data_aug = dict(
+ hsv_h=0.0138,
+ hsv_s=0.664,
+ hsv_v=0.464,
+ degrees=0.373,
+ translate=0.245,
+ scale=0.898,
+ shear=0.602,
+ flipud=0.00856,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.243,
+)
diff --git a/python/app/fedcv/YOLOv6/configs/yolov6m_finetune.py b/python/app/fedcv/YOLOv6/configs/yolov6m_finetune.py
new file mode 100644
index 0000000000..cfe0fa9358
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/yolov6m_finetune.py
@@ -0,0 +1,66 @@
+# YOLOv6m model
+model = dict(
+ type='YOLOv6m',
+ pretrained='weights/yolov6m.pt',
+ depth_multiple=0.60,
+ width_multiple=0.75,
+ backbone=dict(
+ type='CSPBepBackbone',
+ num_repeats=[1, 6, 12, 18, 6],
+ out_channels=[64, 128, 256, 512, 1024],
+ csp_e=float(2)/3,
+ fuse_P2=True,
+ ),
+ neck=dict(
+ type='CSPRepBiFPANNeck',
+ num_repeats=[12, 12, 12, 12],
+ out_channels=[256, 128, 128, 256, 256, 512],
+ csp_e=float(2)/3,
+ ),
+ head=dict(
+ type='EffiDeHead',
+ in_channels=[128, 256, 512],
+ num_layers=3,
+ begin_indices=24,
+ anchors=3,
+ anchors_init=[[10,13, 19,19, 33,23],
+ [30,61, 59,59, 59,119],
+ [116,90, 185,185, 373,326]],
+ out_indices=[17, 20, 23],
+ strides=[8, 16, 32],
+ atss_warmup_epoch=0,
+ iou_type='giou',
+ use_dfl=True,
+ reg_max=16, #if use_dfl is False, please set reg_max to 0
+ distill_weight={
+ 'class': 0.8,
+ 'dfl': 1.0,
+ },
+ )
+)
+
+solver = dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.0032,
+ lrf=0.12,
+ momentum=0.843,
+ weight_decay=0.00036,
+ warmup_epochs=2.0,
+ warmup_momentum=0.5,
+ warmup_bias_lr=0.05
+)
+
+data_aug = dict(
+ hsv_h=0.0138,
+ hsv_s=0.664,
+ hsv_v=0.464,
+ degrees=0.373,
+ translate=0.245,
+ scale=0.898,
+ shear=0.602,
+ flipud=0.00856,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.243,
+)
diff --git a/python/app/fedcv/YOLOv6/configs/yolov6n.py b/python/app/fedcv/YOLOv6/configs/yolov6n.py
new file mode 100644
index 0000000000..74f9386d79
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/yolov6n.py
@@ -0,0 +1,65 @@
+# YOLOv6n model
+model = dict(
+ type='YOLOv6n',
+ pretrained=None,
+ depth_multiple=0.33,
+ width_multiple=0.25,
+ backbone=dict(
+ type='EfficientRep',
+ num_repeats=[1, 6, 12, 18, 6],
+ out_channels=[64, 128, 256, 512, 1024],
+ fuse_P2=True,
+ cspsppf=True,
+ ),
+ neck=dict(
+ type='RepBiFPANNeck',
+ num_repeats=[12, 12, 12, 12],
+ out_channels=[256, 128, 128, 256, 256, 512],
+ ),
+ head=dict(
+ type='EffiDeHead',
+ in_channels=[128, 256, 512],
+ num_layers=3,
+ begin_indices=24,
+ anchors=3,
+ anchors_init=[[10,13, 19,19, 33,23],
+ [30,61, 59,59, 59,119],
+ [116,90, 185,185, 373,326]],
+ out_indices=[17, 20, 23],
+ strides=[8, 16, 32],
+ atss_warmup_epoch=0,
+ iou_type='siou',
+ use_dfl=False, # set to True if you want to further train with distillation
+ reg_max=0, # set to 16 if you want to further train with distillation
+ distill_weight={
+ 'class': 1.0,
+ 'dfl': 1.0,
+ },
+ )
+)
+
+solver = dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.02,
+ lrf=0.01,
+ momentum=0.937,
+ weight_decay=0.0005,
+ warmup_epochs=3.0,
+ warmup_momentum=0.8,
+ warmup_bias_lr=0.1
+)
+
+data_aug = dict(
+ hsv_h=0.015,
+ hsv_s=0.7,
+ hsv_v=0.4,
+ degrees=0.0,
+ translate=0.1,
+ scale=0.5,
+ shear=0.0,
+ flipud=0.0,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.0,
+)
diff --git a/python/app/fedcv/YOLOv6/configs/yolov6n6.py b/python/app/fedcv/YOLOv6/configs/yolov6n6.py
new file mode 100644
index 0000000000..0abe3a44d5
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/yolov6n6.py
@@ -0,0 +1,56 @@
+# YOLOv6n model
+model = dict(
+ type='YOLOv6n6',
+ pretrained=None,
+ depth_multiple=0.33,
+ width_multiple=0.25,
+ backbone=dict(
+ type='EfficientRep6',
+ num_repeats=[1, 6, 12, 18, 6, 6],
+ out_channels=[64, 128, 256, 512, 768, 1024],
+ fuse_P2=True, # if use RepBiFPANNeck6, please set fuse_P2 to True.
+ cspsppf=True,
+ ),
+ neck=dict(
+ type='RepBiFPANNeck6',
+ num_repeats=[12, 12, 12, 12, 12, 12],
+ out_channels=[512, 256, 128, 256, 512, 1024],
+ ),
+ head=dict(
+ type='EffiDeHead',
+ in_channels=[128, 256, 512, 1024],
+ num_layers=4,
+ anchors=1,
+ strides=[8, 16, 32, 64],
+ atss_warmup_epoch=4,
+ iou_type='siou',
+ use_dfl=False,
+ reg_max=0 #if use_dfl is False, please set reg_max to 0
+ )
+)
+
+solver = dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.02,
+ lrf=0.01,
+ momentum=0.937,
+ weight_decay=0.0005,
+ warmup_epochs=3.0,
+ warmup_momentum=0.8,
+ warmup_bias_lr=0.1
+)
+
+data_aug = dict(
+ hsv_h=0.015,
+ hsv_s=0.7,
+ hsv_v=0.4,
+ degrees=0.0,
+ translate=0.1,
+ scale=0.5,
+ shear=0.0,
+ flipud=0.0,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.0,
+)
diff --git a/python/app/fedcv/YOLOv6/configs/yolov6n6_finetune.py b/python/app/fedcv/YOLOv6/configs/yolov6n6_finetune.py
new file mode 100644
index 0000000000..01100f0f63
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/yolov6n6_finetune.py
@@ -0,0 +1,56 @@
+# YOLOv6n model
+model = dict(
+ type='YOLOv6n6',
+ pretrained='weights/yolov6n6.pt',
+ depth_multiple=0.33,
+ width_multiple=0.25,
+ backbone=dict(
+ type='EfficientRep6',
+ num_repeats=[1, 6, 12, 18, 6, 6],
+ out_channels=[64, 128, 256, 512, 768, 1024],
+ fuse_P2=True, # if use RepBiFPANNeck6, please set fuse_P2 to True.
+ cspsppf=True,
+ ),
+ neck=dict(
+ type='RepBiFPANNeck6',
+ num_repeats=[12, 12, 12, 12, 12, 12],
+ out_channels=[512, 256, 128, 256, 512, 1024],
+ ),
+ head=dict(
+ type='EffiDeHead',
+ in_channels=[128, 256, 512, 1024],
+ num_layers=4,
+ anchors=1,
+ strides=[8, 16, 32, 64],
+ atss_warmup_epoch=4,
+ iou_type='siou',
+ use_dfl=False,
+ reg_max=0 #if use_dfl is False, please set reg_max to 0
+ )
+)
+
+solver = dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.0032,
+ lrf=0.12,
+ momentum=0.843,
+ weight_decay=0.00036,
+ warmup_epochs=2.0,
+ warmup_momentum=0.5,
+ warmup_bias_lr=0.05
+)
+
+data_aug = dict(
+ hsv_h=0.0138,
+ hsv_s=0.664,
+ hsv_v=0.464,
+ degrees=0.373,
+ translate=0.245,
+ scale=0.898,
+ shear=0.602,
+ flipud=0.00856,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.243,
+)
diff --git a/python/app/fedcv/object_detection/model/yolov6/configs/yolov6n_finetune.py b/python/app/fedcv/YOLOv6/configs/yolov6n_finetune.py
similarity index 61%
rename from python/app/fedcv/object_detection/model/yolov6/configs/yolov6n_finetune.py
rename to python/app/fedcv/YOLOv6/configs/yolov6n_finetune.py
index 7d1fab5a2c..03b6d1baab 100644
--- a/python/app/fedcv/object_detection/model/yolov6/configs/yolov6n_finetune.py
+++ b/python/app/fedcv/YOLOv6/configs/yolov6n_finetune.py
@@ -1,16 +1,18 @@
-# YOLOv6n model
+# YOLOv6s model
model = dict(
type='YOLOv6n',
- pretrained='./weights/yolov6n.pt',
+ pretrained='weights/yolov6n.pt',
depth_multiple=0.33,
width_multiple=0.25,
backbone=dict(
type='EfficientRep',
num_repeats=[1, 6, 12, 18, 6],
out_channels=[64, 128, 256, 512, 1024],
+ fuse_P2=True,
+ cspsppf=True,
),
neck=dict(
- type='RepPAN',
+ type='RepBiFPANNeck',
num_repeats=[12, 12, 12, 12],
out_channels=[256, 128, 128, 256, 256, 512],
),
@@ -19,10 +21,20 @@
in_channels=[128, 256, 512],
num_layers=3,
begin_indices=24,
- anchors=1,
+ anchors=3,
+ anchors_init=[[10,13, 19,19, 33,23],
+ [30,61, 59,59, 59,119],
+ [116,90, 185,185, 373,326]],
out_indices=[17, 20, 23],
strides=[8, 16, 32],
- iou_type='ciou'
+ atss_warmup_epoch=0,
+ iou_type='siou',
+ use_dfl=False, # set to True if you want to further train with distillation
+ reg_max=0, # set to 16 if you want to further train with distillation
+ distill_weight={
+ 'class': 1.0,
+ 'dfl': 1.0,
+ },
)
)
@@ -49,5 +61,5 @@
flipud=0.00856,
fliplr=0.5,
mosaic=1.0,
- mixup=0.243
+ mixup=0.243,
)
diff --git a/python/app/fedcv/YOLOv6/configs/yolov6s.py b/python/app/fedcv/YOLOv6/configs/yolov6s.py
new file mode 100644
index 0000000000..8d8b6739cd
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/yolov6s.py
@@ -0,0 +1,65 @@
+# YOLOv6s model
+model = dict(
+ type='YOLOv6s',
+ pretrained=None,
+ depth_multiple=0.33,
+ width_multiple=0.50,
+ backbone=dict(
+ type='EfficientRep',
+ num_repeats=[1, 6, 12, 18, 6],
+ out_channels=[64, 128, 256, 512, 1024],
+ fuse_P2=True,
+ cspsppf=True,
+ ),
+ neck=dict(
+ type='RepBiFPANNeck',
+ num_repeats=[12, 12, 12, 12],
+ out_channels=[256, 128, 128, 256, 256, 512],
+ ),
+ head=dict(
+ type='EffiDeHead',
+ in_channels=[128, 256, 512],
+ num_layers=3,
+ begin_indices=24,
+ anchors=3,
+ anchors_init=[[10,13, 19,19, 33,23],
+ [30,61, 59,59, 59,119],
+ [116,90, 185,185, 373,326]],
+ out_indices=[17, 20, 23],
+ strides=[8, 16, 32],
+ atss_warmup_epoch=0,
+ iou_type='giou',
+ use_dfl=False, # set to True if you want to further train with distillation
+ reg_max=0, # set to 16 if you want to further train with distillation
+ distill_weight={
+ 'class': 1.0,
+ 'dfl': 1.0,
+ },
+ )
+)
+
+solver = dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.01,
+ lrf=0.01,
+ momentum=0.937,
+ weight_decay=0.0005,
+ warmup_epochs=3.0,
+ warmup_momentum=0.8,
+ warmup_bias_lr=0.1
+)
+
+data_aug = dict(
+ hsv_h=0.015,
+ hsv_s=0.7,
+ hsv_v=0.4,
+ degrees=0.0,
+ translate=0.1,
+ scale=0.5,
+ shear=0.0,
+ flipud=0.0,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.0,
+)
diff --git a/python/app/fedcv/YOLOv6/configs/yolov6s6.py b/python/app/fedcv/YOLOv6/configs/yolov6s6.py
new file mode 100644
index 0000000000..091bfffca5
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/yolov6s6.py
@@ -0,0 +1,56 @@
+# YOLOv6n model
+model = dict(
+ type='YOLOv6s6',
+ pretrained=None,
+ depth_multiple=0.33,
+ width_multiple=0.50,
+ backbone=dict(
+ type='EfficientRep6',
+ num_repeats=[1, 6, 12, 18, 6, 6],
+ out_channels=[64, 128, 256, 512, 768, 1024],
+ fuse_P2=True, # if use RepBiFPANNeck6, please set fuse_P2 to True.
+ cspsppf=True,
+ ),
+ neck=dict(
+ type='RepBiFPANNeck6',
+ num_repeats=[12, 12, 12, 12, 12, 12],
+ out_channels=[512, 256, 128, 256, 512, 1024],
+ ),
+ head=dict(
+ type='EffiDeHead',
+ in_channels=[128, 256, 512, 1024],
+ num_layers=4,
+ anchors=1,
+ strides=[8, 16, 32, 64],
+ atss_warmup_epoch=4,
+ iou_type='giou',
+ use_dfl=False,
+ reg_max=0 #if use_dfl is False, please set reg_max to 0
+ )
+)
+
+solver = dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.01,
+ lrf=0.01,
+ momentum=0.937,
+ weight_decay=0.0005,
+ warmup_epochs=3.0,
+ warmup_momentum=0.8,
+ warmup_bias_lr=0.1
+)
+
+data_aug = dict(
+ hsv_h=0.015,
+ hsv_s=0.7,
+ hsv_v=0.4,
+ degrees=0.0,
+ translate=0.1,
+ scale=0.5,
+ shear=0.0,
+ flipud=0.0,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.0,
+)
diff --git a/python/app/fedcv/YOLOv6/configs/yolov6s6_finetune.py b/python/app/fedcv/YOLOv6/configs/yolov6s6_finetune.py
new file mode 100644
index 0000000000..2986c94ddd
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/yolov6s6_finetune.py
@@ -0,0 +1,56 @@
+# YOLOv6n model
+model = dict(
+ type='YOLOv6s6',
+ pretrained='/mnt/data/xiaoyang/yolov6s6.pt',
+ depth_multiple=0.33,
+ width_multiple=0.50,
+ backbone=dict(
+ type='EfficientRep6',
+ num_repeats=[1, 6, 12, 18, 6, 6],
+ out_channels=[64, 128, 256, 512, 768, 1024],
+ fuse_P2=True, # if use RepBiFPANNeck6, please set fuse_P2 to True.
+ cspsppf=True,
+ ),
+ neck=dict(
+ type='RepBiFPANNeck6',
+ num_repeats=[12, 12, 12, 12, 12, 12],
+ out_channels=[512, 256, 128, 256, 512, 1024],
+ ),
+ head=dict(
+ type='EffiDeHead',
+ in_channels=[128, 256, 512, 1024],
+ num_layers=4,
+ anchors=1,
+ strides=[8, 16, 32, 64],
+ atss_warmup_epoch=4,
+ iou_type='giou',
+ use_dfl=False,
+ reg_max=0 #if use_dfl is False, please set reg_max to 0
+ )
+)
+
+solver = dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.0032,
+ lrf=0.12,
+ momentum=0.843,
+ weight_decay=0.00036,
+ warmup_epochs=2.0,
+ warmup_momentum=0.5,
+ warmup_bias_lr=0.05
+)
+
+data_aug = dict(
+ hsv_h=0.0138,
+ hsv_s=0.664,
+ hsv_v=0.464,
+ degrees=0.373,
+ translate=0.245,
+ scale=0.898,
+ shear=0.602,
+ flipud=0.00856,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.243,
+)
diff --git a/python/app/fedcv/YOLOv6/configs/yolov6s_finetune.py b/python/app/fedcv/YOLOv6/configs/yolov6s_finetune.py
new file mode 100644
index 0000000000..d6fb27fe8a
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/configs/yolov6s_finetune.py
@@ -0,0 +1,65 @@
+# YOLOv6s model
+model = dict(
+ type='YOLOv6s',
+ pretrained='weights/yolov6s.pt',
+ depth_multiple=0.33,
+ width_multiple=0.50,
+ backbone=dict(
+ type='EfficientRep',
+ num_repeats=[1, 6, 12, 18, 6],
+ out_channels=[64, 128, 256, 512, 1024],
+ fuse_P2=True,
+ cspsppf=True,
+ ),
+ neck=dict(
+ type='RepBiFPANNeck',
+ num_repeats=[12, 12, 12, 12],
+ out_channels=[256, 128, 128, 256, 256, 512],
+ ),
+ head=dict(
+ type='EffiDeHead',
+ in_channels=[128, 256, 512],
+ num_layers=3,
+ begin_indices=24,
+ anchors=3,
+ anchors_init=[[10,13, 19,19, 33,23],
+ [30,61, 59,59, 59,119],
+ [116,90, 185,185, 373,326]],
+ out_indices=[17, 20, 23],
+ strides=[8, 16, 32],
+ atss_warmup_epoch=0,
+ iou_type='giou',
+ use_dfl=False, # set to True if you want to further train with distillation
+ reg_max=0, # set to 16 if you want to further train with distillation
+ distill_weight={
+ 'class': 1.0,
+ 'dfl': 1.0,
+ },
+ )
+)
+
+solver = dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ lr0=0.0032,
+ lrf=0.12,
+ momentum=0.843,
+ weight_decay=0.00036,
+ warmup_epochs=2.0,
+ warmup_momentum=0.5,
+ warmup_bias_lr=0.05
+)
+
+data_aug = dict(
+ hsv_h=0.0138,
+ hsv_s=0.664,
+ hsv_v=0.464,
+ degrees=0.373,
+ translate=0.245,
+ scale=0.898,
+ shear=0.602,
+ flipud=0.00856,
+ fliplr=0.5,
+ mosaic=1.0,
+ mixup=0.243,
+)
diff --git a/python/app/fedcv/object_detection/model/yolov6/data/coco.yaml b/python/app/fedcv/YOLOv6/data/coco.yaml
similarity index 93%
rename from python/app/fedcv/object_detection/model/yolov6/data/coco.yaml
rename to python/app/fedcv/YOLOv6/data/coco.yaml
index 699551b91f..d20d411e68 100644
--- a/python/app/fedcv/object_detection/model/yolov6/data/coco.yaml
+++ b/python/app/fedcv/YOLOv6/data/coco.yaml
@@ -3,8 +3,11 @@ train: ../coco/images/train2017 # 118287 images
val: ../coco/images/val2017 # 5000 images
test: ../coco/images/test2017
anno_path: ../coco/annotations/instances_val2017.json
+
# number of classes
nc: 80
+# whether it is coco dataset, only coco dataset should be set to True.
+is_coco: True
# class names
names: [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
diff --git a/python/app/fedcv/YOLOv6/data/dataset.yaml b/python/app/fedcv/YOLOv6/data/dataset.yaml
new file mode 100644
index 0000000000..6e02692159
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/data/dataset.yaml
@@ -0,0 +1,11 @@
+# Please insure that your custom_dataset are put in same parent dir with YOLOv6_DIR
+train: ../custom_dataset/images/train # train images
+val: ../custom_dataset/images/val # val images
+test: ../custom_dataset/images/test # test images (optional)
+
+# whether it is coco dataset, only coco dataset should be set to True.
+is_coco: False
+# Classes
+nc: 20 # number of classes
+names: ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog',
+ 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'] # class names
diff --git a/python/app/fedcv/YOLOv6/data/voc.yaml b/python/app/fedcv/YOLOv6/data/voc.yaml
new file mode 100644
index 0000000000..ba0e329719
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/data/voc.yaml
@@ -0,0 +1,10 @@
+train: /mnt/data/xiaoyang/VOCdevkit/voc_07_12/images/train # train images
+val: /mnt/data/xiaoyang/VOCdevkit/voc_07_12/images/val # val images
+test: /mnt/data/xiaoyang/VOCdevkit/voc_07_12/images/val # test images (optional)
+
+# whether it is coco dataset, only coco dataset should be set to True.
+is_coco: False
+# Classes
+nc: 20 # number of classes
+names: ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog',
+ 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'] # class names
diff --git a/python/app/fedcv/YOLOv6/deploy/NCNN/Android/README.md b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/README.md
new file mode 100644
index 0000000000..50b03db8a7
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/README.md
@@ -0,0 +1,42 @@
+# ncnn-android-yolov6
+
+The YOLOv6 object detection demo of `Android`.
+You can directly download apk file from [Android Demo here](https://github.com/meituan/YOLOv6/releases/download/0.4.0/yolov6-android-demo.apk), many thanks to [triple Mu](https://github.com/triple-Mu).
+
+This is a sample ncnn android project, it depends on ncnn library and opencv
+
+- [ncnn](https://github.com/Tencent/ncnn)
+
+- [opencv-mobile](https://github.com/nihui/opencv-mobile)
+
+
+## How to build and run
+### step1
+
+* Download [ncnn-YYYYMMDD-android-vulkan.zip](https://github.com/Tencent/ncnn/releases) or build ncnn for android yourself
+* Extract `ncnn-YYYYMMDD-android-vulkan.zip` into `app/src/main/jni` and change the `ncnn_DIR` path to yours in `app/src/main/jni/CMakeLists.txt`
+
+### step2
+
+* Download [opencv-mobile-XYZ-android.zip](https://github.com/nihui/opencv-mobile)
+* Extract `opencv-mobile-XYZ-android.zip` into `app/src/main/jni` and change the `OpenCV_DIR` path to yours in `app/src/main/jni/CMakeLists.txt`
+
+### step3
+* download [AndroidAssets.zip
+](https://github.com/meituan/YOLOv6/releases/download/0.4.0/AndroidAssets.zip)
+* Unzip `AndroidAssets.zip`, you will get a directory named as `assets`, move it
+into `app/src/`.
+
+### step4
+* Open this project with Android Studio, build it and enjoy!
+
+## some notes
+* Android ndk camera is used for best efficiency
+* Crash may happen on very old devices for lacking HAL3 camera interface
+* All models are manually modified to accept dynamic input shape
+* Most small models run slower on GPU than on CPU, this is common
+* FPS may be lower in dark environment because of longer camera exposure time
+
+## Reference:
+- [ncnn-android-nanodet](https://github.com/nihui/ncnn-android-nanodet)
+- [ncnn](https://github.com/Tencent/ncnn)
diff --git a/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/build.gradle b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/build.gradle
new file mode 100644
index 0000000000..8f40b22f3f
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/build.gradle
@@ -0,0 +1,29 @@
+apply plugin: 'com.android.application'
+
+android {
+ compileSdkVersion 24
+
+ defaultConfig {
+ applicationId "com.tencent.yolov6ncnn"
+ archivesBaseName = "$applicationId"
+
+ minSdkVersion 24
+ }
+
+ externalNativeBuild {
+ cmake {
+ version "3.10.2"
+ path file('src/main/jni/CMakeLists.txt')
+ }
+ }
+
+ dependencies {
+ implementation 'com.android.support:support-v4:24.0.0'
+ }
+ ndkVersion '24.0.8215888'
+ compileOptions {
+ sourceCompatibility JavaVersion.VERSION_1_8
+ targetCompatibility JavaVersion.VERSION_1_8
+ }
+ namespace 'com.tencent.yolov6ncnn'
+}
diff --git a/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/AndroidManifest.xml b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/AndroidManifest.xml
new file mode 100644
index 0000000000..ec48a5281e
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/AndroidManifest.xml
@@ -0,0 +1,18 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/assets/yolov6-lite-l0.bin b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/assets/yolov6-lite-l0.bin
new file mode 100644
index 0000000000..2084b07450
Binary files /dev/null and b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/assets/yolov6-lite-l0.bin differ
diff --git a/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/assets/yolov6-lite-l0.param b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/assets/yolov6-lite-l0.param
new file mode 100644
index 0000000000..35386a8aa8
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/assets/yolov6-lite-l0.param
@@ -0,0 +1,379 @@
+7767517
+377 421
+Input in0 0 1 in0
+Convolution conv_28 1 1 in0 1 0=24 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=648
+HardSwish hswish_154 1 1 1 2 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_0 1 2 2 3 4
+ConvolutionDepthWise convdw_270 1 1 4 5 0=24 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=216 7=24
+Convolution conv_29 1 1 5 6 0=24 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=576
+Convolution conv_30 1 1 3 7 0=12 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=288
+HardSwish hswish_156 1 1 7 8 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_271 1 1 8 9 0=12 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=108 7=12
+Split splitncnn_1 1 2 9 10 11
+Pooling gap_4 1 1 11 12 0=1 4=1
+Convolution convrelu_0 1 1 12 13 0=3 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=36 9=1
+Convolution conv_32 1 1 13 14 0=12 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=36
+HardSigmoid hsigmoid_140 1 1 14 15 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_0 2 1 10 15 16 0=2
+Convolution conv_33 1 1 16 17 0=24 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=288
+HardSwish hswish_157 1 1 17 18 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_155 1 1 6 19 0=1.666667e-01 1=5.000000e-01
+Concat cat_0 2 1 19 18 20 0=0
+ConvolutionDepthWise convdw_272 1 1 20 21 0=48 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=432 7=48
+HardSwish hswish_158 1 1 21 22 0=1.666667e-01 1=5.000000e-01
+Convolution conv_34 1 1 22 23 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_159 1 1 23 24 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_2 1 2 24 25 26
+ConvolutionDepthWise convdw_273 1 1 26 27 0=48 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=432 7=48
+Convolution conv_35 1 1 27 28 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+Convolution conv_36 1 1 25 29 0=24 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=1152
+HardSwish hswish_161 1 1 29 30 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_274 1 1 30 31 0=24 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=216 7=24
+Split splitncnn_3 1 2 31 32 33
+Pooling gap_5 1 1 33 34 0=1 4=1
+Convolution convrelu_1 1 1 34 35 0=6 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=144 9=1
+Convolution conv_38 1 1 35 36 0=24 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=144
+HardSigmoid hsigmoid_141 1 1 36 37 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_1 2 1 32 37 38 0=2
+Convolution conv_39 1 1 38 39 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=1152
+HardSwish hswish_162 1 1 39 40 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_160 1 1 28 41 0=1.666667e-01 1=5.000000e-01
+Concat cat_1 2 1 41 40 42 0=0
+ConvolutionDepthWise convdw_275 1 1 42 43 0=96 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=864 7=96
+HardSwish hswish_163 1 1 43 44 0=1.666667e-01 1=5.000000e-01
+Convolution conv_40 1 1 44 45 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_164 1 1 45 46 0=1.666667e-01 1=5.000000e-01
+Slice split_0 1 2 46 47 48 -23300=2,48,48 1=0
+Convolution conv_41 1 1 48 49 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_165 1 1 49 50 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_276 1 1 50 51 0=48 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=432 7=48
+Split splitncnn_4 1 2 51 52 53
+Pooling gap_6 1 1 53 54 0=1 4=1
+Convolution convrelu_2 1 1 54 55 0=12 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=576 9=1
+Convolution conv_43 1 1 55 56 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=576
+HardSigmoid hsigmoid_142 1 1 56 57 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_2 2 1 52 57 58 0=2
+Convolution conv_44 1 1 58 59 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_166 1 1 59 60 0=1.666667e-01 1=5.000000e-01
+Concat cat_2 2 1 47 60 61 0=0
+ShuffleChannel channelshuffle_18 1 1 61 62 0=2 1=0
+Slice split_1 1 2 62 63 64 -23300=2,48,48 1=0
+Convolution conv_45 1 1 64 65 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_167 1 1 65 66 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_277 1 1 66 67 0=48 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=432 7=48
+Split splitncnn_5 1 2 67 68 69
+Pooling gap_7 1 1 69 70 0=1 4=1
+Convolution convrelu_3 1 1 70 71 0=12 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=576 9=1
+Convolution conv_47 1 1 71 72 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=576
+HardSigmoid hsigmoid_143 1 1 72 73 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_3 2 1 68 73 74 0=2
+Convolution conv_48 1 1 74 75 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_168 1 1 75 76 0=1.666667e-01 1=5.000000e-01
+Concat cat_3 2 1 63 76 77 0=0
+ShuffleChannel channelshuffle_19 1 1 77 78 0=2 1=0
+Split splitncnn_6 1 3 78 79 80 81
+ConvolutionDepthWise convdw_278 1 1 81 82 0=96 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=864 7=96
+Convolution conv_49 1 1 82 83 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+Convolution conv_50 1 1 80 84 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=4608
+HardSwish hswish_170 1 1 84 85 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_279 1 1 85 86 0=48 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=432 7=48
+Split splitncnn_7 1 2 86 87 88
+Pooling gap_8 1 1 88 89 0=1 4=1
+Convolution convrelu_4 1 1 89 90 0=12 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=576 9=1
+Convolution conv_52 1 1 90 91 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=576
+HardSigmoid hsigmoid_144 1 1 91 92 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_4 2 1 87 92 93 0=2
+Convolution conv_53 1 1 93 94 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=4608
+HardSwish hswish_171 1 1 94 95 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_169 1 1 83 96 0=1.666667e-01 1=5.000000e-01
+Concat cat_4 2 1 96 95 97 0=0
+ConvolutionDepthWise convdw_280 1 1 97 98 0=192 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=1728 7=192
+HardSwish hswish_172 1 1 98 99 0=1.666667e-01 1=5.000000e-01
+Convolution conv_54 1 1 99 100 0=192 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=36864
+HardSwish hswish_173 1 1 100 101 0=1.666667e-01 1=5.000000e-01
+Slice split_2 1 2 101 102 103 -23300=2,96,96 1=0
+Convolution conv_55 1 1 103 104 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_174 1 1 104 105 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_281 1 1 105 106 0=96 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=864 7=96
+Split splitncnn_8 1 2 106 107 108
+Pooling gap_9 1 1 108 109 0=1 4=1
+Convolution convrelu_5 1 1 109 110 0=24 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304 9=1
+Convolution conv_57 1 1 110 111 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSigmoid hsigmoid_145 1 1 111 112 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_5 2 1 107 112 113 0=2
+Convolution conv_58 1 1 113 114 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_175 1 1 114 115 0=1.666667e-01 1=5.000000e-01
+Concat cat_5 2 1 102 115 116 0=0
+ShuffleChannel channelshuffle_20 1 1 116 117 0=2 1=0
+Slice split_3 1 2 117 118 119 -23300=2,96,96 1=0
+Convolution conv_59 1 1 119 120 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_176 1 1 120 121 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_282 1 1 121 122 0=96 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=864 7=96
+Split splitncnn_9 1 2 122 123 124
+Pooling gap_10 1 1 124 125 0=1 4=1
+Convolution convrelu_6 1 1 125 126 0=24 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304 9=1
+Convolution conv_61 1 1 126 127 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSigmoid hsigmoid_146 1 1 127 128 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_6 2 1 123 128 129 0=2
+Convolution conv_62 1 1 129 130 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_177 1 1 130 131 0=1.666667e-01 1=5.000000e-01
+Concat cat_6 2 1 118 131 132 0=0
+ShuffleChannel channelshuffle_21 1 1 132 133 0=2 1=0
+Slice split_4 1 2 133 134 135 -23300=2,96,96 1=0
+Convolution conv_63 1 1 135 136 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_178 1 1 136 137 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_283 1 1 137 138 0=96 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=864 7=96
+Split splitncnn_10 1 2 138 139 140
+Pooling gap_11 1 1 140 141 0=1 4=1
+Convolution convrelu_7 1 1 141 142 0=24 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304 9=1
+Convolution conv_65 1 1 142 143 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSigmoid hsigmoid_147 1 1 143 144 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_7 2 1 139 144 145 0=2
+Convolution conv_66 1 1 145 146 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_179 1 1 146 147 0=1.666667e-01 1=5.000000e-01
+Concat cat_7 2 1 134 147 148 0=0
+ShuffleChannel channelshuffle_22 1 1 148 149 0=2 1=0
+Slice split_5 1 2 149 150 151 -23300=2,96,96 1=0
+Convolution conv_67 1 1 151 152 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_180 1 1 152 153 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_284 1 1 153 154 0=96 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=864 7=96
+Split splitncnn_11 1 2 154 155 156
+Pooling gap_12 1 1 156 157 0=1 4=1
+Convolution convrelu_8 1 1 157 158 0=24 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304 9=1
+Convolution conv_69 1 1 158 159 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSigmoid hsigmoid_148 1 1 159 160 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_8 2 1 155 160 161 0=2
+Convolution conv_70 1 1 161 162 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_181 1 1 162 163 0=1.666667e-01 1=5.000000e-01
+Concat cat_8 2 1 150 163 164 0=0
+ShuffleChannel channelshuffle_23 1 1 164 165 0=2 1=0
+Slice split_6 1 2 165 166 167 -23300=2,96,96 1=0
+Convolution conv_71 1 1 167 168 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_182 1 1 168 169 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_285 1 1 169 170 0=96 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=864 7=96
+Split splitncnn_12 1 2 170 171 172
+Pooling gap_13 1 1 172 173 0=1 4=1
+Convolution convrelu_9 1 1 173 174 0=24 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304 9=1
+Convolution conv_73 1 1 174 175 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSigmoid hsigmoid_149 1 1 175 176 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_9 2 1 171 176 177 0=2
+Convolution conv_74 1 1 177 178 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_183 1 1 178 179 0=1.666667e-01 1=5.000000e-01
+Concat cat_9 2 1 166 179 180 0=0
+ShuffleChannel channelshuffle_24 1 1 180 181 0=2 1=0
+Slice split_7 1 2 181 182 183 -23300=2,96,96 1=0
+Convolution conv_75 1 1 183 184 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_184 1 1 184 185 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_286 1 1 185 186 0=96 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=864 7=96
+Split splitncnn_13 1 2 186 187 188
+Pooling gap_14 1 1 188 189 0=1 4=1
+Convolution convrelu_10 1 1 189 190 0=24 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304 9=1
+Convolution conv_77 1 1 190 191 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSigmoid hsigmoid_150 1 1 191 192 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_10 2 1 187 192 193 0=2
+Convolution conv_78 1 1 193 194 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_185 1 1 194 195 0=1.666667e-01 1=5.000000e-01
+Concat cat_10 2 1 182 195 196 0=0
+ShuffleChannel channelshuffle_25 1 1 196 197 0=2 1=0
+Split splitncnn_14 1 3 197 198 199 200
+ConvolutionDepthWise convdw_287 1 1 200 201 0=192 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=1728 7=192
+Convolution conv_79 1 1 201 202 0=192 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=36864
+Convolution conv_80 1 1 199 203 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=18432
+HardSwish hswish_187 1 1 203 204 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_288 1 1 204 205 0=96 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=864 7=96
+Split splitncnn_15 1 2 205 206 207
+Pooling gap_15 1 1 207 208 0=1 4=1
+Convolution convrelu_11 1 1 208 209 0=24 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304 9=1
+Convolution conv_82 1 1 209 210 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSigmoid hsigmoid_151 1 1 210 211 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_11 2 1 206 211 212 0=2
+Convolution conv_83 1 1 212 213 0=192 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=18432
+HardSwish hswish_188 1 1 213 214 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_186 1 1 202 215 0=1.666667e-01 1=5.000000e-01
+Concat cat_11 2 1 215 214 216 0=0
+ConvolutionDepthWise convdw_289 1 1 216 217 0=384 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=3456 7=384
+HardSwish hswish_189 1 1 217 218 0=1.666667e-01 1=5.000000e-01
+Convolution conv_84 1 1 218 219 0=384 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=147456
+HardSwish hswish_190 1 1 219 220 0=1.666667e-01 1=5.000000e-01
+Slice split_8 1 2 220 221 222 -23300=2,192,192 1=0
+Convolution conv_85 1 1 222 223 0=192 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=36864
+HardSwish hswish_191 1 1 223 224 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_290 1 1 224 225 0=192 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=1728 7=192
+Split splitncnn_16 1 2 225 226 227
+Pooling gap_16 1 1 227 228 0=1 4=1
+Convolution convrelu_12 1 1 228 229 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216 9=1
+Convolution conv_87 1 1 229 230 0=192 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSigmoid hsigmoid_152 1 1 230 231 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_12 2 1 226 231 232 0=2
+Convolution conv_88 1 1 232 233 0=192 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=36864
+HardSwish hswish_192 1 1 233 234 0=1.666667e-01 1=5.000000e-01
+Concat cat_12 2 1 221 234 235 0=0
+ShuffleChannel channelshuffle_26 1 1 235 236 0=2 1=0
+Slice split_9 1 2 236 237 238 -23300=2,192,192 1=0
+Convolution conv_89 1 1 238 239 0=192 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=36864
+HardSwish hswish_193 1 1 239 240 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_291 1 1 240 241 0=192 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=1728 7=192
+Split splitncnn_17 1 2 241 242 243
+Pooling gap_17 1 1 243 244 0=1 4=1
+Convolution convrelu_13 1 1 244 245 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216 9=1
+Convolution conv_91 1 1 245 246 0=192 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSigmoid hsigmoid_153 1 1 246 247 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_13 2 1 242 247 248 0=2
+Convolution conv_92 1 1 248 249 0=192 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=36864
+HardSwish hswish_194 1 1 249 250 0=1.666667e-01 1=5.000000e-01
+Concat cat_13 2 1 237 250 251 0=0
+ShuffleChannel channelshuffle_27 1 1 251 252 0=2 1=0
+Convolution conv_93 1 1 252 253 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=36864
+Convolution conv_94 1 1 198 254 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=18432
+Convolution conv_95 1 1 79 255 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_195 1 1 253 256 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_18 1 3 256 257 258 259
+HardSwish hswish_196 1 1 254 260 0=1.666667e-01 1=5.000000e-01
+Interp upsample_268 1 1 258 261 0=1 1=2.000000e+00 2=2.000000e+00 6=0
+Concat cat_14 2 1 261 260 262 0=0
+Split splitncnn_19 1 2 262 263 264
+Convolution conv_96 1 1 264 265 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_198 1 1 265 266 0=1.666667e-01 1=5.000000e-01
+Convolution conv_97 1 1 266 267 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_199 1 1 267 268 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_292 1 1 268 269 0=48 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=1200 7=48
+HardSwish hswish_200 1 1 269 270 0=1.666667e-01 1=5.000000e-01
+Convolution conv_98 1 1 270 271 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+Convolution conv_99 1 1 263 272 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_202 1 1 272 273 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_201 1 1 271 274 0=1.666667e-01 1=5.000000e-01
+Concat cat_15 2 1 274 273 275 0=0
+Convolution conv_100 1 1 275 276 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_203 1 1 276 277 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_20 1 2 277 278 279
+HardSwish hswish_197 1 1 255 280 0=1.666667e-01 1=5.000000e-01
+Interp upsample_269 1 1 279 281 0=1 1=2.000000e+00 2=2.000000e+00 6=0
+Concat cat_16 2 1 281 280 282 0=0
+Split splitncnn_21 1 2 282 283 284
+Convolution conv_101 1 1 284 285 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_204 1 1 285 286 0=1.666667e-01 1=5.000000e-01
+Convolution conv_102 1 1 286 287 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_205 1 1 287 288 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_293 1 1 288 289 0=48 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=1200 7=48
+HardSwish hswish_206 1 1 289 290 0=1.666667e-01 1=5.000000e-01
+Convolution conv_103 1 1 290 291 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+Convolution conv_104 1 1 283 292 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_208 1 1 292 293 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_207 1 1 291 294 0=1.666667e-01 1=5.000000e-01
+Concat cat_17 2 1 294 293 295 0=0
+Convolution conv_105 1 1 295 296 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_209 1 1 296 297 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_22 1 2 297 298 299
+ConvolutionDepthWise convdw_294 1 1 299 300 0=96 1=5 11=5 12=1 13=2 14=2 2=1 3=2 4=2 5=1 6=2400 7=96
+HardSwish hswish_210 1 1 300 301 0=1.666667e-01 1=5.000000e-01
+Convolution conv_106 1 1 301 302 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_211 1 1 302 303 0=1.666667e-01 1=5.000000e-01
+Concat cat_18 2 1 303 278 304 0=0
+Split splitncnn_23 1 2 304 305 306
+Convolution conv_107 1 1 306 307 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_212 1 1 307 308 0=1.666667e-01 1=5.000000e-01
+Convolution conv_108 1 1 308 309 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_213 1 1 309 310 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_295 1 1 310 311 0=48 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=1200 7=48
+HardSwish hswish_214 1 1 311 312 0=1.666667e-01 1=5.000000e-01
+Convolution conv_109 1 1 312 313 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+Convolution conv_110 1 1 305 314 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_216 1 1 314 315 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_215 1 1 313 316 0=1.666667e-01 1=5.000000e-01
+Concat cat_19 2 1 316 315 317 0=0
+Convolution conv_111 1 1 317 318 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_217 1 1 318 319 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_24 1 2 319 320 321
+ConvolutionDepthWise convdw_296 1 1 321 322 0=96 1=5 11=5 12=1 13=2 14=2 2=1 3=2 4=2 5=1 6=2400 7=96
+HardSwish hswish_218 1 1 322 323 0=1.666667e-01 1=5.000000e-01
+Convolution conv_112 1 1 323 324 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_219 1 1 324 325 0=1.666667e-01 1=5.000000e-01
+Concat cat_20 2 1 325 257 326 0=0
+Split splitncnn_25 1 2 326 327 328
+Convolution conv_113 1 1 328 329 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_220 1 1 329 330 0=1.666667e-01 1=5.000000e-01
+Convolution conv_114 1 1 330 331 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_221 1 1 331 332 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_297 1 1 332 333 0=48 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=1200 7=48
+HardSwish hswish_222 1 1 333 334 0=1.666667e-01 1=5.000000e-01
+Convolution conv_115 1 1 334 335 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+Convolution conv_116 1 1 327 336 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_224 1 1 336 337 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_223 1 1 335 338 0=1.666667e-01 1=5.000000e-01
+Concat cat_21 2 1 338 337 339 0=0
+Convolution conv_117 1 1 339 340 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+ConvolutionDepthWise convdw_298 1 1 259 341 0=96 1=5 11=5 12=1 13=2 14=2 2=1 3=2 4=2 5=1 6=2400 7=96
+HardSwish hswish_226 1 1 341 342 0=1.666667e-01 1=5.000000e-01
+Convolution conv_118 1 1 342 343 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_225 1 1 340 344 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_26 1 2 344 345 346
+ConvolutionDepthWise convdw_299 1 1 346 347 0=96 1=5 11=5 12=1 13=2 14=2 2=1 3=2 4=2 5=1 6=2400 7=96
+HardSwish hswish_228 1 1 347 348 0=1.666667e-01 1=5.000000e-01
+Convolution conv_119 1 1 348 349 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_229 1 1 349 350 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_227 1 1 343 351 0=1.666667e-01 1=5.000000e-01
+BinaryOp add_14 2 1 351 350 352 0=0
+ConvolutionDepthWise convdw_300 1 1 298 353 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_230 1 1 353 354 0=1.666667e-01 1=5.000000e-01
+Convolution conv_120 1 1 354 355 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_231 1 1 355 356 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_27 1 2 356 357 358
+ConvolutionDepthWise convdw_301 1 1 358 359 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_232 1 1 359 360 0=1.666667e-01 1=5.000000e-01
+Convolution conv_121 1 1 360 361 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+ConvolutionDepthWise convdw_302 1 1 357 362 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_234 1 1 362 363 0=1.666667e-01 1=5.000000e-01
+Convolution conv_123 1 1 363 364 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+ConvolutionDepthWise convdw_303 1 1 320 365 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_236 1 1 365 366 0=1.666667e-01 1=5.000000e-01
+Convolution conv_125 1 1 366 367 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_237 1 1 367 368 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_28 1 2 368 369 370
+ConvolutionDepthWise convdw_304 1 1 370 371 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_238 1 1 371 372 0=1.666667e-01 1=5.000000e-01
+Convolution conv_126 1 1 372 373 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+ConvolutionDepthWise convdw_305 1 1 369 374 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_240 1 1 374 375 0=1.666667e-01 1=5.000000e-01
+Convolution conv_128 1 1 375 376 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+ConvolutionDepthWise convdw_306 1 1 345 377 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_242 1 1 377 378 0=1.666667e-01 1=5.000000e-01
+Convolution conv_130 1 1 378 379 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_243 1 1 379 380 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_29 1 2 380 381 382
+ConvolutionDepthWise convdw_307 1 1 382 383 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_244 1 1 383 384 0=1.666667e-01 1=5.000000e-01
+Convolution conv_131 1 1 384 385 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+ConvolutionDepthWise convdw_308 1 1 381 386 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_246 1 1 386 387 0=1.666667e-01 1=5.000000e-01
+Convolution conv_133 1 1 387 388 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+ConvolutionDepthWise convdw_309 1 1 352 389 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_248 1 1 389 390 0=1.666667e-01 1=5.000000e-01
+Convolution conv_135 1 1 390 391 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_249 1 1 391 392 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_30 1 2 392 393 394
+ConvolutionDepthWise convdw_310 1 1 394 395 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_250 1 1 395 396 0=1.666667e-01 1=5.000000e-01
+Convolution conv_136 1 1 396 397 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+ConvolutionDepthWise convdw_311 1 1 393 398 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_252 1 1 398 399 0=1.666667e-01 1=5.000000e-01
+Convolution conv_138 1 1 399 400 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_251 1 1 397 401 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_253 1 1 400 402 0=1.666667e-01 1=5.000000e-01
+Convolution conv_139 1 1 402 403 0=4 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=384
+Convolution convsigmoid_14 1 1 401 404 0=80 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=7680 9=4
+Concat cat_22 2 1 404 403 out3 0=0
+HardSwish hswish_245 1 1 385 406 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_247 1 1 388 407 0=1.666667e-01 1=5.000000e-01
+Convolution conv_134 1 1 407 408 0=4 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=384
+Convolution convsigmoid_15 1 1 406 409 0=80 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=7680 9=4
+Concat cat_23 2 1 409 408 out2 0=0
+HardSwish hswish_239 1 1 373 411 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_241 1 1 376 412 0=1.666667e-01 1=5.000000e-01
+Convolution conv_129 1 1 412 413 0=4 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=384
+Convolution convsigmoid_16 1 1 411 414 0=80 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=7680 9=4
+Concat cat_24 2 1 414 413 out1 0=0
+HardSwish hswish_233 1 1 361 416 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_235 1 1 364 417 0=1.666667e-01 1=5.000000e-01
+Convolution conv_124 1 1 417 418 0=4 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=384
+Convolution convsigmoid_17 1 1 416 419 0=80 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=7680 9=4
+Concat cat_25 2 1 419 418 out0 0=0
diff --git a/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/assets/yolov6-lite-l1.bin b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/assets/yolov6-lite-l1.bin
new file mode 100644
index 0000000000..2084b07450
Binary files /dev/null and b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/assets/yolov6-lite-l1.bin differ
diff --git a/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/assets/yolov6-lite-l1.param b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/assets/yolov6-lite-l1.param
new file mode 100644
index 0000000000..35386a8aa8
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/assets/yolov6-lite-l1.param
@@ -0,0 +1,379 @@
+7767517
+377 421
+Input in0 0 1 in0
+Convolution conv_28 1 1 in0 1 0=24 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=648
+HardSwish hswish_154 1 1 1 2 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_0 1 2 2 3 4
+ConvolutionDepthWise convdw_270 1 1 4 5 0=24 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=216 7=24
+Convolution conv_29 1 1 5 6 0=24 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=576
+Convolution conv_30 1 1 3 7 0=12 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=288
+HardSwish hswish_156 1 1 7 8 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_271 1 1 8 9 0=12 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=108 7=12
+Split splitncnn_1 1 2 9 10 11
+Pooling gap_4 1 1 11 12 0=1 4=1
+Convolution convrelu_0 1 1 12 13 0=3 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=36 9=1
+Convolution conv_32 1 1 13 14 0=12 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=36
+HardSigmoid hsigmoid_140 1 1 14 15 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_0 2 1 10 15 16 0=2
+Convolution conv_33 1 1 16 17 0=24 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=288
+HardSwish hswish_157 1 1 17 18 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_155 1 1 6 19 0=1.666667e-01 1=5.000000e-01
+Concat cat_0 2 1 19 18 20 0=0
+ConvolutionDepthWise convdw_272 1 1 20 21 0=48 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=432 7=48
+HardSwish hswish_158 1 1 21 22 0=1.666667e-01 1=5.000000e-01
+Convolution conv_34 1 1 22 23 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_159 1 1 23 24 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_2 1 2 24 25 26
+ConvolutionDepthWise convdw_273 1 1 26 27 0=48 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=432 7=48
+Convolution conv_35 1 1 27 28 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+Convolution conv_36 1 1 25 29 0=24 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=1152
+HardSwish hswish_161 1 1 29 30 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_274 1 1 30 31 0=24 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=216 7=24
+Split splitncnn_3 1 2 31 32 33
+Pooling gap_5 1 1 33 34 0=1 4=1
+Convolution convrelu_1 1 1 34 35 0=6 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=144 9=1
+Convolution conv_38 1 1 35 36 0=24 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=144
+HardSigmoid hsigmoid_141 1 1 36 37 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_1 2 1 32 37 38 0=2
+Convolution conv_39 1 1 38 39 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=1152
+HardSwish hswish_162 1 1 39 40 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_160 1 1 28 41 0=1.666667e-01 1=5.000000e-01
+Concat cat_1 2 1 41 40 42 0=0
+ConvolutionDepthWise convdw_275 1 1 42 43 0=96 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=864 7=96
+HardSwish hswish_163 1 1 43 44 0=1.666667e-01 1=5.000000e-01
+Convolution conv_40 1 1 44 45 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_164 1 1 45 46 0=1.666667e-01 1=5.000000e-01
+Slice split_0 1 2 46 47 48 -23300=2,48,48 1=0
+Convolution conv_41 1 1 48 49 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_165 1 1 49 50 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_276 1 1 50 51 0=48 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=432 7=48
+Split splitncnn_4 1 2 51 52 53
+Pooling gap_6 1 1 53 54 0=1 4=1
+Convolution convrelu_2 1 1 54 55 0=12 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=576 9=1
+Convolution conv_43 1 1 55 56 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=576
+HardSigmoid hsigmoid_142 1 1 56 57 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_2 2 1 52 57 58 0=2
+Convolution conv_44 1 1 58 59 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_166 1 1 59 60 0=1.666667e-01 1=5.000000e-01
+Concat cat_2 2 1 47 60 61 0=0
+ShuffleChannel channelshuffle_18 1 1 61 62 0=2 1=0
+Slice split_1 1 2 62 63 64 -23300=2,48,48 1=0
+Convolution conv_45 1 1 64 65 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_167 1 1 65 66 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_277 1 1 66 67 0=48 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=432 7=48
+Split splitncnn_5 1 2 67 68 69
+Pooling gap_7 1 1 69 70 0=1 4=1
+Convolution convrelu_3 1 1 70 71 0=12 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=576 9=1
+Convolution conv_47 1 1 71 72 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=576
+HardSigmoid hsigmoid_143 1 1 72 73 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_3 2 1 68 73 74 0=2
+Convolution conv_48 1 1 74 75 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_168 1 1 75 76 0=1.666667e-01 1=5.000000e-01
+Concat cat_3 2 1 63 76 77 0=0
+ShuffleChannel channelshuffle_19 1 1 77 78 0=2 1=0
+Split splitncnn_6 1 3 78 79 80 81
+ConvolutionDepthWise convdw_278 1 1 81 82 0=96 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=864 7=96
+Convolution conv_49 1 1 82 83 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+Convolution conv_50 1 1 80 84 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=4608
+HardSwish hswish_170 1 1 84 85 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_279 1 1 85 86 0=48 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=432 7=48
+Split splitncnn_7 1 2 86 87 88
+Pooling gap_8 1 1 88 89 0=1 4=1
+Convolution convrelu_4 1 1 89 90 0=12 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=576 9=1
+Convolution conv_52 1 1 90 91 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=576
+HardSigmoid hsigmoid_144 1 1 91 92 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_4 2 1 87 92 93 0=2
+Convolution conv_53 1 1 93 94 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=4608
+HardSwish hswish_171 1 1 94 95 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_169 1 1 83 96 0=1.666667e-01 1=5.000000e-01
+Concat cat_4 2 1 96 95 97 0=0
+ConvolutionDepthWise convdw_280 1 1 97 98 0=192 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=1728 7=192
+HardSwish hswish_172 1 1 98 99 0=1.666667e-01 1=5.000000e-01
+Convolution conv_54 1 1 99 100 0=192 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=36864
+HardSwish hswish_173 1 1 100 101 0=1.666667e-01 1=5.000000e-01
+Slice split_2 1 2 101 102 103 -23300=2,96,96 1=0
+Convolution conv_55 1 1 103 104 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_174 1 1 104 105 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_281 1 1 105 106 0=96 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=864 7=96
+Split splitncnn_8 1 2 106 107 108
+Pooling gap_9 1 1 108 109 0=1 4=1
+Convolution convrelu_5 1 1 109 110 0=24 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304 9=1
+Convolution conv_57 1 1 110 111 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSigmoid hsigmoid_145 1 1 111 112 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_5 2 1 107 112 113 0=2
+Convolution conv_58 1 1 113 114 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_175 1 1 114 115 0=1.666667e-01 1=5.000000e-01
+Concat cat_5 2 1 102 115 116 0=0
+ShuffleChannel channelshuffle_20 1 1 116 117 0=2 1=0
+Slice split_3 1 2 117 118 119 -23300=2,96,96 1=0
+Convolution conv_59 1 1 119 120 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_176 1 1 120 121 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_282 1 1 121 122 0=96 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=864 7=96
+Split splitncnn_9 1 2 122 123 124
+Pooling gap_10 1 1 124 125 0=1 4=1
+Convolution convrelu_6 1 1 125 126 0=24 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304 9=1
+Convolution conv_61 1 1 126 127 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSigmoid hsigmoid_146 1 1 127 128 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_6 2 1 123 128 129 0=2
+Convolution conv_62 1 1 129 130 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_177 1 1 130 131 0=1.666667e-01 1=5.000000e-01
+Concat cat_6 2 1 118 131 132 0=0
+ShuffleChannel channelshuffle_21 1 1 132 133 0=2 1=0
+Slice split_4 1 2 133 134 135 -23300=2,96,96 1=0
+Convolution conv_63 1 1 135 136 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_178 1 1 136 137 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_283 1 1 137 138 0=96 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=864 7=96
+Split splitncnn_10 1 2 138 139 140
+Pooling gap_11 1 1 140 141 0=1 4=1
+Convolution convrelu_7 1 1 141 142 0=24 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304 9=1
+Convolution conv_65 1 1 142 143 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSigmoid hsigmoid_147 1 1 143 144 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_7 2 1 139 144 145 0=2
+Convolution conv_66 1 1 145 146 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_179 1 1 146 147 0=1.666667e-01 1=5.000000e-01
+Concat cat_7 2 1 134 147 148 0=0
+ShuffleChannel channelshuffle_22 1 1 148 149 0=2 1=0
+Slice split_5 1 2 149 150 151 -23300=2,96,96 1=0
+Convolution conv_67 1 1 151 152 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_180 1 1 152 153 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_284 1 1 153 154 0=96 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=864 7=96
+Split splitncnn_11 1 2 154 155 156
+Pooling gap_12 1 1 156 157 0=1 4=1
+Convolution convrelu_8 1 1 157 158 0=24 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304 9=1
+Convolution conv_69 1 1 158 159 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSigmoid hsigmoid_148 1 1 159 160 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_8 2 1 155 160 161 0=2
+Convolution conv_70 1 1 161 162 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_181 1 1 162 163 0=1.666667e-01 1=5.000000e-01
+Concat cat_8 2 1 150 163 164 0=0
+ShuffleChannel channelshuffle_23 1 1 164 165 0=2 1=0
+Slice split_6 1 2 165 166 167 -23300=2,96,96 1=0
+Convolution conv_71 1 1 167 168 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_182 1 1 168 169 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_285 1 1 169 170 0=96 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=864 7=96
+Split splitncnn_12 1 2 170 171 172
+Pooling gap_13 1 1 172 173 0=1 4=1
+Convolution convrelu_9 1 1 173 174 0=24 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304 9=1
+Convolution conv_73 1 1 174 175 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSigmoid hsigmoid_149 1 1 175 176 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_9 2 1 171 176 177 0=2
+Convolution conv_74 1 1 177 178 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_183 1 1 178 179 0=1.666667e-01 1=5.000000e-01
+Concat cat_9 2 1 166 179 180 0=0
+ShuffleChannel channelshuffle_24 1 1 180 181 0=2 1=0
+Slice split_7 1 2 181 182 183 -23300=2,96,96 1=0
+Convolution conv_75 1 1 183 184 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_184 1 1 184 185 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_286 1 1 185 186 0=96 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=864 7=96
+Split splitncnn_13 1 2 186 187 188
+Pooling gap_14 1 1 188 189 0=1 4=1
+Convolution convrelu_10 1 1 189 190 0=24 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304 9=1
+Convolution conv_77 1 1 190 191 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSigmoid hsigmoid_150 1 1 191 192 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_10 2 1 187 192 193 0=2
+Convolution conv_78 1 1 193 194 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_185 1 1 194 195 0=1.666667e-01 1=5.000000e-01
+Concat cat_10 2 1 182 195 196 0=0
+ShuffleChannel channelshuffle_25 1 1 196 197 0=2 1=0
+Split splitncnn_14 1 3 197 198 199 200
+ConvolutionDepthWise convdw_287 1 1 200 201 0=192 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=1728 7=192
+Convolution conv_79 1 1 201 202 0=192 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=36864
+Convolution conv_80 1 1 199 203 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=18432
+HardSwish hswish_187 1 1 203 204 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_288 1 1 204 205 0=96 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=864 7=96
+Split splitncnn_15 1 2 205 206 207
+Pooling gap_15 1 1 207 208 0=1 4=1
+Convolution convrelu_11 1 1 208 209 0=24 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304 9=1
+Convolution conv_82 1 1 209 210 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSigmoid hsigmoid_151 1 1 210 211 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_11 2 1 206 211 212 0=2
+Convolution conv_83 1 1 212 213 0=192 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=18432
+HardSwish hswish_188 1 1 213 214 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_186 1 1 202 215 0=1.666667e-01 1=5.000000e-01
+Concat cat_11 2 1 215 214 216 0=0
+ConvolutionDepthWise convdw_289 1 1 216 217 0=384 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=3456 7=384
+HardSwish hswish_189 1 1 217 218 0=1.666667e-01 1=5.000000e-01
+Convolution conv_84 1 1 218 219 0=384 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=147456
+HardSwish hswish_190 1 1 219 220 0=1.666667e-01 1=5.000000e-01
+Slice split_8 1 2 220 221 222 -23300=2,192,192 1=0
+Convolution conv_85 1 1 222 223 0=192 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=36864
+HardSwish hswish_191 1 1 223 224 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_290 1 1 224 225 0=192 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=1728 7=192
+Split splitncnn_16 1 2 225 226 227
+Pooling gap_16 1 1 227 228 0=1 4=1
+Convolution convrelu_12 1 1 228 229 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216 9=1
+Convolution conv_87 1 1 229 230 0=192 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSigmoid hsigmoid_152 1 1 230 231 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_12 2 1 226 231 232 0=2
+Convolution conv_88 1 1 232 233 0=192 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=36864
+HardSwish hswish_192 1 1 233 234 0=1.666667e-01 1=5.000000e-01
+Concat cat_12 2 1 221 234 235 0=0
+ShuffleChannel channelshuffle_26 1 1 235 236 0=2 1=0
+Slice split_9 1 2 236 237 238 -23300=2,192,192 1=0
+Convolution conv_89 1 1 238 239 0=192 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=36864
+HardSwish hswish_193 1 1 239 240 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_291 1 1 240 241 0=192 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=1728 7=192
+Split splitncnn_17 1 2 241 242 243
+Pooling gap_17 1 1 243 244 0=1 4=1
+Convolution convrelu_13 1 1 244 245 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216 9=1
+Convolution conv_91 1 1 245 246 0=192 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSigmoid hsigmoid_153 1 1 246 247 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_13 2 1 242 247 248 0=2
+Convolution conv_92 1 1 248 249 0=192 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=36864
+HardSwish hswish_194 1 1 249 250 0=1.666667e-01 1=5.000000e-01
+Concat cat_13 2 1 237 250 251 0=0
+ShuffleChannel channelshuffle_27 1 1 251 252 0=2 1=0
+Convolution conv_93 1 1 252 253 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=36864
+Convolution conv_94 1 1 198 254 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=18432
+Convolution conv_95 1 1 79 255 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_195 1 1 253 256 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_18 1 3 256 257 258 259
+HardSwish hswish_196 1 1 254 260 0=1.666667e-01 1=5.000000e-01
+Interp upsample_268 1 1 258 261 0=1 1=2.000000e+00 2=2.000000e+00 6=0
+Concat cat_14 2 1 261 260 262 0=0
+Split splitncnn_19 1 2 262 263 264
+Convolution conv_96 1 1 264 265 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_198 1 1 265 266 0=1.666667e-01 1=5.000000e-01
+Convolution conv_97 1 1 266 267 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_199 1 1 267 268 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_292 1 1 268 269 0=48 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=1200 7=48
+HardSwish hswish_200 1 1 269 270 0=1.666667e-01 1=5.000000e-01
+Convolution conv_98 1 1 270 271 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+Convolution conv_99 1 1 263 272 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_202 1 1 272 273 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_201 1 1 271 274 0=1.666667e-01 1=5.000000e-01
+Concat cat_15 2 1 274 273 275 0=0
+Convolution conv_100 1 1 275 276 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_203 1 1 276 277 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_20 1 2 277 278 279
+HardSwish hswish_197 1 1 255 280 0=1.666667e-01 1=5.000000e-01
+Interp upsample_269 1 1 279 281 0=1 1=2.000000e+00 2=2.000000e+00 6=0
+Concat cat_16 2 1 281 280 282 0=0
+Split splitncnn_21 1 2 282 283 284
+Convolution conv_101 1 1 284 285 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_204 1 1 285 286 0=1.666667e-01 1=5.000000e-01
+Convolution conv_102 1 1 286 287 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_205 1 1 287 288 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_293 1 1 288 289 0=48 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=1200 7=48
+HardSwish hswish_206 1 1 289 290 0=1.666667e-01 1=5.000000e-01
+Convolution conv_103 1 1 290 291 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+Convolution conv_104 1 1 283 292 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_208 1 1 292 293 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_207 1 1 291 294 0=1.666667e-01 1=5.000000e-01
+Concat cat_17 2 1 294 293 295 0=0
+Convolution conv_105 1 1 295 296 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_209 1 1 296 297 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_22 1 2 297 298 299
+ConvolutionDepthWise convdw_294 1 1 299 300 0=96 1=5 11=5 12=1 13=2 14=2 2=1 3=2 4=2 5=1 6=2400 7=96
+HardSwish hswish_210 1 1 300 301 0=1.666667e-01 1=5.000000e-01
+Convolution conv_106 1 1 301 302 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_211 1 1 302 303 0=1.666667e-01 1=5.000000e-01
+Concat cat_18 2 1 303 278 304 0=0
+Split splitncnn_23 1 2 304 305 306
+Convolution conv_107 1 1 306 307 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_212 1 1 307 308 0=1.666667e-01 1=5.000000e-01
+Convolution conv_108 1 1 308 309 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_213 1 1 309 310 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_295 1 1 310 311 0=48 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=1200 7=48
+HardSwish hswish_214 1 1 311 312 0=1.666667e-01 1=5.000000e-01
+Convolution conv_109 1 1 312 313 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+Convolution conv_110 1 1 305 314 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_216 1 1 314 315 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_215 1 1 313 316 0=1.666667e-01 1=5.000000e-01
+Concat cat_19 2 1 316 315 317 0=0
+Convolution conv_111 1 1 317 318 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_217 1 1 318 319 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_24 1 2 319 320 321
+ConvolutionDepthWise convdw_296 1 1 321 322 0=96 1=5 11=5 12=1 13=2 14=2 2=1 3=2 4=2 5=1 6=2400 7=96
+HardSwish hswish_218 1 1 322 323 0=1.666667e-01 1=5.000000e-01
+Convolution conv_112 1 1 323 324 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_219 1 1 324 325 0=1.666667e-01 1=5.000000e-01
+Concat cat_20 2 1 325 257 326 0=0
+Split splitncnn_25 1 2 326 327 328
+Convolution conv_113 1 1 328 329 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_220 1 1 329 330 0=1.666667e-01 1=5.000000e-01
+Convolution conv_114 1 1 330 331 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_221 1 1 331 332 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_297 1 1 332 333 0=48 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=1200 7=48
+HardSwish hswish_222 1 1 333 334 0=1.666667e-01 1=5.000000e-01
+Convolution conv_115 1 1 334 335 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+Convolution conv_116 1 1 327 336 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_224 1 1 336 337 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_223 1 1 335 338 0=1.666667e-01 1=5.000000e-01
+Concat cat_21 2 1 338 337 339 0=0
+Convolution conv_117 1 1 339 340 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+ConvolutionDepthWise convdw_298 1 1 259 341 0=96 1=5 11=5 12=1 13=2 14=2 2=1 3=2 4=2 5=1 6=2400 7=96
+HardSwish hswish_226 1 1 341 342 0=1.666667e-01 1=5.000000e-01
+Convolution conv_118 1 1 342 343 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_225 1 1 340 344 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_26 1 2 344 345 346
+ConvolutionDepthWise convdw_299 1 1 346 347 0=96 1=5 11=5 12=1 13=2 14=2 2=1 3=2 4=2 5=1 6=2400 7=96
+HardSwish hswish_228 1 1 347 348 0=1.666667e-01 1=5.000000e-01
+Convolution conv_119 1 1 348 349 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_229 1 1 349 350 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_227 1 1 343 351 0=1.666667e-01 1=5.000000e-01
+BinaryOp add_14 2 1 351 350 352 0=0
+ConvolutionDepthWise convdw_300 1 1 298 353 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_230 1 1 353 354 0=1.666667e-01 1=5.000000e-01
+Convolution conv_120 1 1 354 355 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_231 1 1 355 356 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_27 1 2 356 357 358
+ConvolutionDepthWise convdw_301 1 1 358 359 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_232 1 1 359 360 0=1.666667e-01 1=5.000000e-01
+Convolution conv_121 1 1 360 361 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+ConvolutionDepthWise convdw_302 1 1 357 362 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_234 1 1 362 363 0=1.666667e-01 1=5.000000e-01
+Convolution conv_123 1 1 363 364 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+ConvolutionDepthWise convdw_303 1 1 320 365 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_236 1 1 365 366 0=1.666667e-01 1=5.000000e-01
+Convolution conv_125 1 1 366 367 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_237 1 1 367 368 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_28 1 2 368 369 370
+ConvolutionDepthWise convdw_304 1 1 370 371 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_238 1 1 371 372 0=1.666667e-01 1=5.000000e-01
+Convolution conv_126 1 1 372 373 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+ConvolutionDepthWise convdw_305 1 1 369 374 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_240 1 1 374 375 0=1.666667e-01 1=5.000000e-01
+Convolution conv_128 1 1 375 376 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+ConvolutionDepthWise convdw_306 1 1 345 377 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_242 1 1 377 378 0=1.666667e-01 1=5.000000e-01
+Convolution conv_130 1 1 378 379 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_243 1 1 379 380 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_29 1 2 380 381 382
+ConvolutionDepthWise convdw_307 1 1 382 383 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_244 1 1 383 384 0=1.666667e-01 1=5.000000e-01
+Convolution conv_131 1 1 384 385 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+ConvolutionDepthWise convdw_308 1 1 381 386 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_246 1 1 386 387 0=1.666667e-01 1=5.000000e-01
+Convolution conv_133 1 1 387 388 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+ConvolutionDepthWise convdw_309 1 1 352 389 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_248 1 1 389 390 0=1.666667e-01 1=5.000000e-01
+Convolution conv_135 1 1 390 391 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_249 1 1 391 392 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_30 1 2 392 393 394
+ConvolutionDepthWise convdw_310 1 1 394 395 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_250 1 1 395 396 0=1.666667e-01 1=5.000000e-01
+Convolution conv_136 1 1 396 397 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+ConvolutionDepthWise convdw_311 1 1 393 398 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_252 1 1 398 399 0=1.666667e-01 1=5.000000e-01
+Convolution conv_138 1 1 399 400 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_251 1 1 397 401 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_253 1 1 400 402 0=1.666667e-01 1=5.000000e-01
+Convolution conv_139 1 1 402 403 0=4 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=384
+Convolution convsigmoid_14 1 1 401 404 0=80 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=7680 9=4
+Concat cat_22 2 1 404 403 out3 0=0
+HardSwish hswish_245 1 1 385 406 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_247 1 1 388 407 0=1.666667e-01 1=5.000000e-01
+Convolution conv_134 1 1 407 408 0=4 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=384
+Convolution convsigmoid_15 1 1 406 409 0=80 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=7680 9=4
+Concat cat_23 2 1 409 408 out2 0=0
+HardSwish hswish_239 1 1 373 411 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_241 1 1 376 412 0=1.666667e-01 1=5.000000e-01
+Convolution conv_129 1 1 412 413 0=4 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=384
+Convolution convsigmoid_16 1 1 411 414 0=80 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=7680 9=4
+Concat cat_24 2 1 414 413 out1 0=0
+HardSwish hswish_233 1 1 361 416 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_235 1 1 364 417 0=1.666667e-01 1=5.000000e-01
+Convolution conv_124 1 1 417 418 0=4 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=384
+Convolution convsigmoid_17 1 1 416 419 0=80 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=7680 9=4
+Concat cat_25 2 1 419 418 out0 0=0
diff --git a/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/assets/yolov6-lite-l2.bin b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/assets/yolov6-lite-l2.bin
new file mode 100644
index 0000000000..2084b07450
Binary files /dev/null and b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/assets/yolov6-lite-l2.bin differ
diff --git a/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/assets/yolov6-lite-l2.param b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/assets/yolov6-lite-l2.param
new file mode 100644
index 0000000000..35386a8aa8
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/assets/yolov6-lite-l2.param
@@ -0,0 +1,379 @@
+7767517
+377 421
+Input in0 0 1 in0
+Convolution conv_28 1 1 in0 1 0=24 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=648
+HardSwish hswish_154 1 1 1 2 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_0 1 2 2 3 4
+ConvolutionDepthWise convdw_270 1 1 4 5 0=24 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=216 7=24
+Convolution conv_29 1 1 5 6 0=24 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=576
+Convolution conv_30 1 1 3 7 0=12 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=288
+HardSwish hswish_156 1 1 7 8 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_271 1 1 8 9 0=12 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=108 7=12
+Split splitncnn_1 1 2 9 10 11
+Pooling gap_4 1 1 11 12 0=1 4=1
+Convolution convrelu_0 1 1 12 13 0=3 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=36 9=1
+Convolution conv_32 1 1 13 14 0=12 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=36
+HardSigmoid hsigmoid_140 1 1 14 15 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_0 2 1 10 15 16 0=2
+Convolution conv_33 1 1 16 17 0=24 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=288
+HardSwish hswish_157 1 1 17 18 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_155 1 1 6 19 0=1.666667e-01 1=5.000000e-01
+Concat cat_0 2 1 19 18 20 0=0
+ConvolutionDepthWise convdw_272 1 1 20 21 0=48 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=432 7=48
+HardSwish hswish_158 1 1 21 22 0=1.666667e-01 1=5.000000e-01
+Convolution conv_34 1 1 22 23 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_159 1 1 23 24 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_2 1 2 24 25 26
+ConvolutionDepthWise convdw_273 1 1 26 27 0=48 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=432 7=48
+Convolution conv_35 1 1 27 28 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+Convolution conv_36 1 1 25 29 0=24 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=1152
+HardSwish hswish_161 1 1 29 30 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_274 1 1 30 31 0=24 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=216 7=24
+Split splitncnn_3 1 2 31 32 33
+Pooling gap_5 1 1 33 34 0=1 4=1
+Convolution convrelu_1 1 1 34 35 0=6 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=144 9=1
+Convolution conv_38 1 1 35 36 0=24 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=144
+HardSigmoid hsigmoid_141 1 1 36 37 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_1 2 1 32 37 38 0=2
+Convolution conv_39 1 1 38 39 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=1152
+HardSwish hswish_162 1 1 39 40 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_160 1 1 28 41 0=1.666667e-01 1=5.000000e-01
+Concat cat_1 2 1 41 40 42 0=0
+ConvolutionDepthWise convdw_275 1 1 42 43 0=96 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=864 7=96
+HardSwish hswish_163 1 1 43 44 0=1.666667e-01 1=5.000000e-01
+Convolution conv_40 1 1 44 45 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_164 1 1 45 46 0=1.666667e-01 1=5.000000e-01
+Slice split_0 1 2 46 47 48 -23300=2,48,48 1=0
+Convolution conv_41 1 1 48 49 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_165 1 1 49 50 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_276 1 1 50 51 0=48 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=432 7=48
+Split splitncnn_4 1 2 51 52 53
+Pooling gap_6 1 1 53 54 0=1 4=1
+Convolution convrelu_2 1 1 54 55 0=12 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=576 9=1
+Convolution conv_43 1 1 55 56 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=576
+HardSigmoid hsigmoid_142 1 1 56 57 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_2 2 1 52 57 58 0=2
+Convolution conv_44 1 1 58 59 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_166 1 1 59 60 0=1.666667e-01 1=5.000000e-01
+Concat cat_2 2 1 47 60 61 0=0
+ShuffleChannel channelshuffle_18 1 1 61 62 0=2 1=0
+Slice split_1 1 2 62 63 64 -23300=2,48,48 1=0
+Convolution conv_45 1 1 64 65 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_167 1 1 65 66 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_277 1 1 66 67 0=48 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=432 7=48
+Split splitncnn_5 1 2 67 68 69
+Pooling gap_7 1 1 69 70 0=1 4=1
+Convolution convrelu_3 1 1 70 71 0=12 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=576 9=1
+Convolution conv_47 1 1 71 72 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=576
+HardSigmoid hsigmoid_143 1 1 72 73 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_3 2 1 68 73 74 0=2
+Convolution conv_48 1 1 74 75 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_168 1 1 75 76 0=1.666667e-01 1=5.000000e-01
+Concat cat_3 2 1 63 76 77 0=0
+ShuffleChannel channelshuffle_19 1 1 77 78 0=2 1=0
+Split splitncnn_6 1 3 78 79 80 81
+ConvolutionDepthWise convdw_278 1 1 81 82 0=96 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=864 7=96
+Convolution conv_49 1 1 82 83 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+Convolution conv_50 1 1 80 84 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=4608
+HardSwish hswish_170 1 1 84 85 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_279 1 1 85 86 0=48 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=432 7=48
+Split splitncnn_7 1 2 86 87 88
+Pooling gap_8 1 1 88 89 0=1 4=1
+Convolution convrelu_4 1 1 89 90 0=12 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=576 9=1
+Convolution conv_52 1 1 90 91 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=576
+HardSigmoid hsigmoid_144 1 1 91 92 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_4 2 1 87 92 93 0=2
+Convolution conv_53 1 1 93 94 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=4608
+HardSwish hswish_171 1 1 94 95 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_169 1 1 83 96 0=1.666667e-01 1=5.000000e-01
+Concat cat_4 2 1 96 95 97 0=0
+ConvolutionDepthWise convdw_280 1 1 97 98 0=192 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=1728 7=192
+HardSwish hswish_172 1 1 98 99 0=1.666667e-01 1=5.000000e-01
+Convolution conv_54 1 1 99 100 0=192 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=36864
+HardSwish hswish_173 1 1 100 101 0=1.666667e-01 1=5.000000e-01
+Slice split_2 1 2 101 102 103 -23300=2,96,96 1=0
+Convolution conv_55 1 1 103 104 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_174 1 1 104 105 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_281 1 1 105 106 0=96 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=864 7=96
+Split splitncnn_8 1 2 106 107 108
+Pooling gap_9 1 1 108 109 0=1 4=1
+Convolution convrelu_5 1 1 109 110 0=24 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304 9=1
+Convolution conv_57 1 1 110 111 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSigmoid hsigmoid_145 1 1 111 112 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_5 2 1 107 112 113 0=2
+Convolution conv_58 1 1 113 114 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_175 1 1 114 115 0=1.666667e-01 1=5.000000e-01
+Concat cat_5 2 1 102 115 116 0=0
+ShuffleChannel channelshuffle_20 1 1 116 117 0=2 1=0
+Slice split_3 1 2 117 118 119 -23300=2,96,96 1=0
+Convolution conv_59 1 1 119 120 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_176 1 1 120 121 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_282 1 1 121 122 0=96 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=864 7=96
+Split splitncnn_9 1 2 122 123 124
+Pooling gap_10 1 1 124 125 0=1 4=1
+Convolution convrelu_6 1 1 125 126 0=24 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304 9=1
+Convolution conv_61 1 1 126 127 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSigmoid hsigmoid_146 1 1 127 128 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_6 2 1 123 128 129 0=2
+Convolution conv_62 1 1 129 130 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_177 1 1 130 131 0=1.666667e-01 1=5.000000e-01
+Concat cat_6 2 1 118 131 132 0=0
+ShuffleChannel channelshuffle_21 1 1 132 133 0=2 1=0
+Slice split_4 1 2 133 134 135 -23300=2,96,96 1=0
+Convolution conv_63 1 1 135 136 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_178 1 1 136 137 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_283 1 1 137 138 0=96 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=864 7=96
+Split splitncnn_10 1 2 138 139 140
+Pooling gap_11 1 1 140 141 0=1 4=1
+Convolution convrelu_7 1 1 141 142 0=24 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304 9=1
+Convolution conv_65 1 1 142 143 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSigmoid hsigmoid_147 1 1 143 144 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_7 2 1 139 144 145 0=2
+Convolution conv_66 1 1 145 146 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_179 1 1 146 147 0=1.666667e-01 1=5.000000e-01
+Concat cat_7 2 1 134 147 148 0=0
+ShuffleChannel channelshuffle_22 1 1 148 149 0=2 1=0
+Slice split_5 1 2 149 150 151 -23300=2,96,96 1=0
+Convolution conv_67 1 1 151 152 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_180 1 1 152 153 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_284 1 1 153 154 0=96 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=864 7=96
+Split splitncnn_11 1 2 154 155 156
+Pooling gap_12 1 1 156 157 0=1 4=1
+Convolution convrelu_8 1 1 157 158 0=24 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304 9=1
+Convolution conv_69 1 1 158 159 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSigmoid hsigmoid_148 1 1 159 160 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_8 2 1 155 160 161 0=2
+Convolution conv_70 1 1 161 162 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_181 1 1 162 163 0=1.666667e-01 1=5.000000e-01
+Concat cat_8 2 1 150 163 164 0=0
+ShuffleChannel channelshuffle_23 1 1 164 165 0=2 1=0
+Slice split_6 1 2 165 166 167 -23300=2,96,96 1=0
+Convolution conv_71 1 1 167 168 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_182 1 1 168 169 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_285 1 1 169 170 0=96 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=864 7=96
+Split splitncnn_12 1 2 170 171 172
+Pooling gap_13 1 1 172 173 0=1 4=1
+Convolution convrelu_9 1 1 173 174 0=24 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304 9=1
+Convolution conv_73 1 1 174 175 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSigmoid hsigmoid_149 1 1 175 176 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_9 2 1 171 176 177 0=2
+Convolution conv_74 1 1 177 178 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_183 1 1 178 179 0=1.666667e-01 1=5.000000e-01
+Concat cat_9 2 1 166 179 180 0=0
+ShuffleChannel channelshuffle_24 1 1 180 181 0=2 1=0
+Slice split_7 1 2 181 182 183 -23300=2,96,96 1=0
+Convolution conv_75 1 1 183 184 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_184 1 1 184 185 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_286 1 1 185 186 0=96 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=864 7=96
+Split splitncnn_13 1 2 186 187 188
+Pooling gap_14 1 1 188 189 0=1 4=1
+Convolution convrelu_10 1 1 189 190 0=24 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304 9=1
+Convolution conv_77 1 1 190 191 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSigmoid hsigmoid_150 1 1 191 192 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_10 2 1 187 192 193 0=2
+Convolution conv_78 1 1 193 194 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_185 1 1 194 195 0=1.666667e-01 1=5.000000e-01
+Concat cat_10 2 1 182 195 196 0=0
+ShuffleChannel channelshuffle_25 1 1 196 197 0=2 1=0
+Split splitncnn_14 1 3 197 198 199 200
+ConvolutionDepthWise convdw_287 1 1 200 201 0=192 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=1728 7=192
+Convolution conv_79 1 1 201 202 0=192 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=36864
+Convolution conv_80 1 1 199 203 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=18432
+HardSwish hswish_187 1 1 203 204 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_288 1 1 204 205 0=96 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=864 7=96
+Split splitncnn_15 1 2 205 206 207
+Pooling gap_15 1 1 207 208 0=1 4=1
+Convolution convrelu_11 1 1 208 209 0=24 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304 9=1
+Convolution conv_82 1 1 209 210 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSigmoid hsigmoid_151 1 1 210 211 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_11 2 1 206 211 212 0=2
+Convolution conv_83 1 1 212 213 0=192 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=18432
+HardSwish hswish_188 1 1 213 214 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_186 1 1 202 215 0=1.666667e-01 1=5.000000e-01
+Concat cat_11 2 1 215 214 216 0=0
+ConvolutionDepthWise convdw_289 1 1 216 217 0=384 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=3456 7=384
+HardSwish hswish_189 1 1 217 218 0=1.666667e-01 1=5.000000e-01
+Convolution conv_84 1 1 218 219 0=384 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=147456
+HardSwish hswish_190 1 1 219 220 0=1.666667e-01 1=5.000000e-01
+Slice split_8 1 2 220 221 222 -23300=2,192,192 1=0
+Convolution conv_85 1 1 222 223 0=192 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=36864
+HardSwish hswish_191 1 1 223 224 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_290 1 1 224 225 0=192 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=1728 7=192
+Split splitncnn_16 1 2 225 226 227
+Pooling gap_16 1 1 227 228 0=1 4=1
+Convolution convrelu_12 1 1 228 229 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216 9=1
+Convolution conv_87 1 1 229 230 0=192 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSigmoid hsigmoid_152 1 1 230 231 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_12 2 1 226 231 232 0=2
+Convolution conv_88 1 1 232 233 0=192 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=36864
+HardSwish hswish_192 1 1 233 234 0=1.666667e-01 1=5.000000e-01
+Concat cat_12 2 1 221 234 235 0=0
+ShuffleChannel channelshuffle_26 1 1 235 236 0=2 1=0
+Slice split_9 1 2 236 237 238 -23300=2,192,192 1=0
+Convolution conv_89 1 1 238 239 0=192 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=36864
+HardSwish hswish_193 1 1 239 240 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_291 1 1 240 241 0=192 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=1728 7=192
+Split splitncnn_17 1 2 241 242 243
+Pooling gap_17 1 1 243 244 0=1 4=1
+Convolution convrelu_13 1 1 244 245 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216 9=1
+Convolution conv_91 1 1 245 246 0=192 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSigmoid hsigmoid_153 1 1 246 247 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_13 2 1 242 247 248 0=2
+Convolution conv_92 1 1 248 249 0=192 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=36864
+HardSwish hswish_194 1 1 249 250 0=1.666667e-01 1=5.000000e-01
+Concat cat_13 2 1 237 250 251 0=0
+ShuffleChannel channelshuffle_27 1 1 251 252 0=2 1=0
+Convolution conv_93 1 1 252 253 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=36864
+Convolution conv_94 1 1 198 254 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=18432
+Convolution conv_95 1 1 79 255 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_195 1 1 253 256 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_18 1 3 256 257 258 259
+HardSwish hswish_196 1 1 254 260 0=1.666667e-01 1=5.000000e-01
+Interp upsample_268 1 1 258 261 0=1 1=2.000000e+00 2=2.000000e+00 6=0
+Concat cat_14 2 1 261 260 262 0=0
+Split splitncnn_19 1 2 262 263 264
+Convolution conv_96 1 1 264 265 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_198 1 1 265 266 0=1.666667e-01 1=5.000000e-01
+Convolution conv_97 1 1 266 267 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_199 1 1 267 268 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_292 1 1 268 269 0=48 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=1200 7=48
+HardSwish hswish_200 1 1 269 270 0=1.666667e-01 1=5.000000e-01
+Convolution conv_98 1 1 270 271 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+Convolution conv_99 1 1 263 272 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_202 1 1 272 273 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_201 1 1 271 274 0=1.666667e-01 1=5.000000e-01
+Concat cat_15 2 1 274 273 275 0=0
+Convolution conv_100 1 1 275 276 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_203 1 1 276 277 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_20 1 2 277 278 279
+HardSwish hswish_197 1 1 255 280 0=1.666667e-01 1=5.000000e-01
+Interp upsample_269 1 1 279 281 0=1 1=2.000000e+00 2=2.000000e+00 6=0
+Concat cat_16 2 1 281 280 282 0=0
+Split splitncnn_21 1 2 282 283 284
+Convolution conv_101 1 1 284 285 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_204 1 1 285 286 0=1.666667e-01 1=5.000000e-01
+Convolution conv_102 1 1 286 287 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_205 1 1 287 288 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_293 1 1 288 289 0=48 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=1200 7=48
+HardSwish hswish_206 1 1 289 290 0=1.666667e-01 1=5.000000e-01
+Convolution conv_103 1 1 290 291 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+Convolution conv_104 1 1 283 292 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_208 1 1 292 293 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_207 1 1 291 294 0=1.666667e-01 1=5.000000e-01
+Concat cat_17 2 1 294 293 295 0=0
+Convolution conv_105 1 1 295 296 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_209 1 1 296 297 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_22 1 2 297 298 299
+ConvolutionDepthWise convdw_294 1 1 299 300 0=96 1=5 11=5 12=1 13=2 14=2 2=1 3=2 4=2 5=1 6=2400 7=96
+HardSwish hswish_210 1 1 300 301 0=1.666667e-01 1=5.000000e-01
+Convolution conv_106 1 1 301 302 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_211 1 1 302 303 0=1.666667e-01 1=5.000000e-01
+Concat cat_18 2 1 303 278 304 0=0
+Split splitncnn_23 1 2 304 305 306
+Convolution conv_107 1 1 306 307 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_212 1 1 307 308 0=1.666667e-01 1=5.000000e-01
+Convolution conv_108 1 1 308 309 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_213 1 1 309 310 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_295 1 1 310 311 0=48 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=1200 7=48
+HardSwish hswish_214 1 1 311 312 0=1.666667e-01 1=5.000000e-01
+Convolution conv_109 1 1 312 313 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+Convolution conv_110 1 1 305 314 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_216 1 1 314 315 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_215 1 1 313 316 0=1.666667e-01 1=5.000000e-01
+Concat cat_19 2 1 316 315 317 0=0
+Convolution conv_111 1 1 317 318 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_217 1 1 318 319 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_24 1 2 319 320 321
+ConvolutionDepthWise convdw_296 1 1 321 322 0=96 1=5 11=5 12=1 13=2 14=2 2=1 3=2 4=2 5=1 6=2400 7=96
+HardSwish hswish_218 1 1 322 323 0=1.666667e-01 1=5.000000e-01
+Convolution conv_112 1 1 323 324 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_219 1 1 324 325 0=1.666667e-01 1=5.000000e-01
+Concat cat_20 2 1 325 257 326 0=0
+Split splitncnn_25 1 2 326 327 328
+Convolution conv_113 1 1 328 329 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_220 1 1 329 330 0=1.666667e-01 1=5.000000e-01
+Convolution conv_114 1 1 330 331 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_221 1 1 331 332 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_297 1 1 332 333 0=48 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=1200 7=48
+HardSwish hswish_222 1 1 333 334 0=1.666667e-01 1=5.000000e-01
+Convolution conv_115 1 1 334 335 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+Convolution conv_116 1 1 327 336 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_224 1 1 336 337 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_223 1 1 335 338 0=1.666667e-01 1=5.000000e-01
+Concat cat_21 2 1 338 337 339 0=0
+Convolution conv_117 1 1 339 340 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+ConvolutionDepthWise convdw_298 1 1 259 341 0=96 1=5 11=5 12=1 13=2 14=2 2=1 3=2 4=2 5=1 6=2400 7=96
+HardSwish hswish_226 1 1 341 342 0=1.666667e-01 1=5.000000e-01
+Convolution conv_118 1 1 342 343 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_225 1 1 340 344 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_26 1 2 344 345 346
+ConvolutionDepthWise convdw_299 1 1 346 347 0=96 1=5 11=5 12=1 13=2 14=2 2=1 3=2 4=2 5=1 6=2400 7=96
+HardSwish hswish_228 1 1 347 348 0=1.666667e-01 1=5.000000e-01
+Convolution conv_119 1 1 348 349 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_229 1 1 349 350 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_227 1 1 343 351 0=1.666667e-01 1=5.000000e-01
+BinaryOp add_14 2 1 351 350 352 0=0
+ConvolutionDepthWise convdw_300 1 1 298 353 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_230 1 1 353 354 0=1.666667e-01 1=5.000000e-01
+Convolution conv_120 1 1 354 355 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_231 1 1 355 356 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_27 1 2 356 357 358
+ConvolutionDepthWise convdw_301 1 1 358 359 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_232 1 1 359 360 0=1.666667e-01 1=5.000000e-01
+Convolution conv_121 1 1 360 361 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+ConvolutionDepthWise convdw_302 1 1 357 362 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_234 1 1 362 363 0=1.666667e-01 1=5.000000e-01
+Convolution conv_123 1 1 363 364 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+ConvolutionDepthWise convdw_303 1 1 320 365 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_236 1 1 365 366 0=1.666667e-01 1=5.000000e-01
+Convolution conv_125 1 1 366 367 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_237 1 1 367 368 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_28 1 2 368 369 370
+ConvolutionDepthWise convdw_304 1 1 370 371 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_238 1 1 371 372 0=1.666667e-01 1=5.000000e-01
+Convolution conv_126 1 1 372 373 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+ConvolutionDepthWise convdw_305 1 1 369 374 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_240 1 1 374 375 0=1.666667e-01 1=5.000000e-01
+Convolution conv_128 1 1 375 376 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+ConvolutionDepthWise convdw_306 1 1 345 377 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_242 1 1 377 378 0=1.666667e-01 1=5.000000e-01
+Convolution conv_130 1 1 378 379 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_243 1 1 379 380 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_29 1 2 380 381 382
+ConvolutionDepthWise convdw_307 1 1 382 383 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_244 1 1 383 384 0=1.666667e-01 1=5.000000e-01
+Convolution conv_131 1 1 384 385 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+ConvolutionDepthWise convdw_308 1 1 381 386 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_246 1 1 386 387 0=1.666667e-01 1=5.000000e-01
+Convolution conv_133 1 1 387 388 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+ConvolutionDepthWise convdw_309 1 1 352 389 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_248 1 1 389 390 0=1.666667e-01 1=5.000000e-01
+Convolution conv_135 1 1 390 391 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_249 1 1 391 392 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_30 1 2 392 393 394
+ConvolutionDepthWise convdw_310 1 1 394 395 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_250 1 1 395 396 0=1.666667e-01 1=5.000000e-01
+Convolution conv_136 1 1 396 397 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+ConvolutionDepthWise convdw_311 1 1 393 398 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_252 1 1 398 399 0=1.666667e-01 1=5.000000e-01
+Convolution conv_138 1 1 399 400 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_251 1 1 397 401 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_253 1 1 400 402 0=1.666667e-01 1=5.000000e-01
+Convolution conv_139 1 1 402 403 0=4 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=384
+Convolution convsigmoid_14 1 1 401 404 0=80 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=7680 9=4
+Concat cat_22 2 1 404 403 out3 0=0
+HardSwish hswish_245 1 1 385 406 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_247 1 1 388 407 0=1.666667e-01 1=5.000000e-01
+Convolution conv_134 1 1 407 408 0=4 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=384
+Convolution convsigmoid_15 1 1 406 409 0=80 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=7680 9=4
+Concat cat_23 2 1 409 408 out2 0=0
+HardSwish hswish_239 1 1 373 411 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_241 1 1 376 412 0=1.666667e-01 1=5.000000e-01
+Convolution conv_129 1 1 412 413 0=4 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=384
+Convolution convsigmoid_16 1 1 411 414 0=80 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=7680 9=4
+Concat cat_24 2 1 414 413 out1 0=0
+HardSwish hswish_233 1 1 361 416 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_235 1 1 364 417 0=1.666667e-01 1=5.000000e-01
+Convolution conv_124 1 1 417 418 0=4 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=384
+Convolution convsigmoid_17 1 1 416 419 0=80 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=7680 9=4
+Concat cat_25 2 1 419 418 out0 0=0
diff --git a/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/assets/yolov6-lite-m.bin b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/assets/yolov6-lite-m.bin
new file mode 100644
index 0000000000..4fce03a2d2
Binary files /dev/null and b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/assets/yolov6-lite-m.bin differ
diff --git a/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/assets/yolov6-lite-m.param b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/assets/yolov6-lite-m.param
new file mode 100644
index 0000000000..5985c289f0
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/assets/yolov6-lite-m.param
@@ -0,0 +1,379 @@
+7767517
+377 421
+Input in0 0 1 in0
+Convolution conv_28 1 1 in0 1 0=24 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=648
+HardSwish hswish_154 1 1 1 2 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_0 1 2 2 3 4
+ConvolutionDepthWise convdw_270 1 1 4 5 0=24 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=216 7=24
+Convolution conv_29 1 1 5 6 0=16 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=384
+Convolution conv_30 1 1 3 7 0=8 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=192
+HardSwish hswish_156 1 1 7 8 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_271 1 1 8 9 0=8 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=72 7=8
+Split splitncnn_1 1 2 9 10 11
+Pooling gap_4 1 1 11 12 0=1 4=1
+Convolution convrelu_0 1 1 12 13 0=2 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=16 9=1
+Convolution conv_32 1 1 13 14 0=8 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=16
+HardSigmoid hsigmoid_140 1 1 14 15 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_0 2 1 10 15 16 0=2
+Convolution conv_33 1 1 16 17 0=16 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=128
+HardSwish hswish_157 1 1 17 18 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_155 1 1 6 19 0=1.666667e-01 1=5.000000e-01
+Concat cat_0 2 1 19 18 20 0=0
+ConvolutionDepthWise convdw_272 1 1 20 21 0=32 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=288 7=32
+HardSwish hswish_158 1 1 21 22 0=1.666667e-01 1=5.000000e-01
+Convolution conv_34 1 1 22 23 0=32 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=1024
+HardSwish hswish_159 1 1 23 24 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_2 1 2 24 25 26
+ConvolutionDepthWise convdw_273 1 1 26 27 0=32 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=288 7=32
+Convolution conv_35 1 1 27 28 0=32 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=1024
+Convolution conv_36 1 1 25 29 0=16 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=512
+HardSwish hswish_161 1 1 29 30 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_274 1 1 30 31 0=16 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=144 7=16
+Split splitncnn_3 1 2 31 32 33
+Pooling gap_5 1 1 33 34 0=1 4=1
+Convolution convrelu_1 1 1 34 35 0=4 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=64 9=1
+Convolution conv_38 1 1 35 36 0=16 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=64
+HardSigmoid hsigmoid_141 1 1 36 37 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_1 2 1 32 37 38 0=2
+Convolution conv_39 1 1 38 39 0=32 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=512
+HardSwish hswish_162 1 1 39 40 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_160 1 1 28 41 0=1.666667e-01 1=5.000000e-01
+Concat cat_1 2 1 41 40 42 0=0
+ConvolutionDepthWise convdw_275 1 1 42 43 0=64 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=576 7=64
+HardSwish hswish_163 1 1 43 44 0=1.666667e-01 1=5.000000e-01
+Convolution conv_40 1 1 44 45 0=64 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=4096
+HardSwish hswish_164 1 1 45 46 0=1.666667e-01 1=5.000000e-01
+Slice split_0 1 2 46 47 48 -23300=2,32,32 1=0
+Convolution conv_41 1 1 48 49 0=32 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=1024
+HardSwish hswish_165 1 1 49 50 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_276 1 1 50 51 0=32 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=288 7=32
+Split splitncnn_4 1 2 51 52 53
+Pooling gap_6 1 1 53 54 0=1 4=1
+Convolution convrelu_2 1 1 54 55 0=8 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=256 9=1
+Convolution conv_43 1 1 55 56 0=32 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=256
+HardSigmoid hsigmoid_142 1 1 56 57 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_2 2 1 52 57 58 0=2
+Convolution conv_44 1 1 58 59 0=32 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=1024
+HardSwish hswish_166 1 1 59 60 0=1.666667e-01 1=5.000000e-01
+Concat cat_2 2 1 47 60 61 0=0
+ShuffleChannel channelshuffle_18 1 1 61 62 0=2 1=0
+Slice split_1 1 2 62 63 64 -23300=2,32,32 1=0
+Convolution conv_45 1 1 64 65 0=32 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=1024
+HardSwish hswish_167 1 1 65 66 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_277 1 1 66 67 0=32 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=288 7=32
+Split splitncnn_5 1 2 67 68 69
+Pooling gap_7 1 1 69 70 0=1 4=1
+Convolution convrelu_3 1 1 70 71 0=8 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=256 9=1
+Convolution conv_47 1 1 71 72 0=32 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=256
+HardSigmoid hsigmoid_143 1 1 72 73 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_3 2 1 68 73 74 0=2
+Convolution conv_48 1 1 74 75 0=32 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=1024
+HardSwish hswish_168 1 1 75 76 0=1.666667e-01 1=5.000000e-01
+Concat cat_3 2 1 63 76 77 0=0
+ShuffleChannel channelshuffle_19 1 1 77 78 0=2 1=0
+Split splitncnn_6 1 3 78 79 80 81
+ConvolutionDepthWise convdw_278 1 1 81 82 0=64 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=576 7=64
+Convolution conv_49 1 1 82 83 0=72 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=4608
+Convolution conv_50 1 1 80 84 0=36 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_170 1 1 84 85 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_279 1 1 85 86 0=36 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=324 7=36
+Split splitncnn_7 1 2 86 87 88
+Pooling gap_8 1 1 88 89 0=1 4=1
+Convolution convrelu_4 1 1 89 90 0=9 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=324 9=1
+Convolution conv_52 1 1 90 91 0=36 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=324
+HardSigmoid hsigmoid_144 1 1 91 92 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_4 2 1 87 92 93 0=2
+Convolution conv_53 1 1 93 94 0=72 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2592
+HardSwish hswish_171 1 1 94 95 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_169 1 1 83 96 0=1.666667e-01 1=5.000000e-01
+Concat cat_4 2 1 96 95 97 0=0
+ConvolutionDepthWise convdw_280 1 1 97 98 0=144 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=1296 7=144
+HardSwish hswish_172 1 1 98 99 0=1.666667e-01 1=5.000000e-01
+Convolution conv_54 1 1 99 100 0=144 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=20736
+HardSwish hswish_173 1 1 100 101 0=1.666667e-01 1=5.000000e-01
+Slice split_2 1 2 101 102 103 -23300=2,72,72 1=0
+Convolution conv_55 1 1 103 104 0=72 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=5184
+HardSwish hswish_174 1 1 104 105 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_281 1 1 105 106 0=72 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=648 7=72
+Split splitncnn_8 1 2 106 107 108
+Pooling gap_9 1 1 108 109 0=1 4=1
+Convolution convrelu_5 1 1 109 110 0=18 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=1296 9=1
+Convolution conv_57 1 1 110 111 0=72 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=1296
+HardSigmoid hsigmoid_145 1 1 111 112 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_5 2 1 107 112 113 0=2
+Convolution conv_58 1 1 113 114 0=72 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=5184
+HardSwish hswish_175 1 1 114 115 0=1.666667e-01 1=5.000000e-01
+Concat cat_5 2 1 102 115 116 0=0
+ShuffleChannel channelshuffle_20 1 1 116 117 0=2 1=0
+Slice split_3 1 2 117 118 119 -23300=2,72,72 1=0
+Convolution conv_59 1 1 119 120 0=72 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=5184
+HardSwish hswish_176 1 1 120 121 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_282 1 1 121 122 0=72 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=648 7=72
+Split splitncnn_9 1 2 122 123 124
+Pooling gap_10 1 1 124 125 0=1 4=1
+Convolution convrelu_6 1 1 125 126 0=18 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=1296 9=1
+Convolution conv_61 1 1 126 127 0=72 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=1296
+HardSigmoid hsigmoid_146 1 1 127 128 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_6 2 1 123 128 129 0=2
+Convolution conv_62 1 1 129 130 0=72 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=5184
+HardSwish hswish_177 1 1 130 131 0=1.666667e-01 1=5.000000e-01
+Concat cat_6 2 1 118 131 132 0=0
+ShuffleChannel channelshuffle_21 1 1 132 133 0=2 1=0
+Slice split_4 1 2 133 134 135 -23300=2,72,72 1=0
+Convolution conv_63 1 1 135 136 0=72 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=5184
+HardSwish hswish_178 1 1 136 137 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_283 1 1 137 138 0=72 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=648 7=72
+Split splitncnn_10 1 2 138 139 140
+Pooling gap_11 1 1 140 141 0=1 4=1
+Convolution convrelu_7 1 1 141 142 0=18 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=1296 9=1
+Convolution conv_65 1 1 142 143 0=72 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=1296
+HardSigmoid hsigmoid_147 1 1 143 144 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_7 2 1 139 144 145 0=2
+Convolution conv_66 1 1 145 146 0=72 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=5184
+HardSwish hswish_179 1 1 146 147 0=1.666667e-01 1=5.000000e-01
+Concat cat_7 2 1 134 147 148 0=0
+ShuffleChannel channelshuffle_22 1 1 148 149 0=2 1=0
+Slice split_5 1 2 149 150 151 -23300=2,72,72 1=0
+Convolution conv_67 1 1 151 152 0=72 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=5184
+HardSwish hswish_180 1 1 152 153 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_284 1 1 153 154 0=72 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=648 7=72
+Split splitncnn_11 1 2 154 155 156
+Pooling gap_12 1 1 156 157 0=1 4=1
+Convolution convrelu_8 1 1 157 158 0=18 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=1296 9=1
+Convolution conv_69 1 1 158 159 0=72 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=1296
+HardSigmoid hsigmoid_148 1 1 159 160 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_8 2 1 155 160 161 0=2
+Convolution conv_70 1 1 161 162 0=72 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=5184
+HardSwish hswish_181 1 1 162 163 0=1.666667e-01 1=5.000000e-01
+Concat cat_8 2 1 150 163 164 0=0
+ShuffleChannel channelshuffle_23 1 1 164 165 0=2 1=0
+Slice split_6 1 2 165 166 167 -23300=2,72,72 1=0
+Convolution conv_71 1 1 167 168 0=72 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=5184
+HardSwish hswish_182 1 1 168 169 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_285 1 1 169 170 0=72 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=648 7=72
+Split splitncnn_12 1 2 170 171 172
+Pooling gap_13 1 1 172 173 0=1 4=1
+Convolution convrelu_9 1 1 173 174 0=18 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=1296 9=1
+Convolution conv_73 1 1 174 175 0=72 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=1296
+HardSigmoid hsigmoid_149 1 1 175 176 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_9 2 1 171 176 177 0=2
+Convolution conv_74 1 1 177 178 0=72 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=5184
+HardSwish hswish_183 1 1 178 179 0=1.666667e-01 1=5.000000e-01
+Concat cat_9 2 1 166 179 180 0=0
+ShuffleChannel channelshuffle_24 1 1 180 181 0=2 1=0
+Slice split_7 1 2 181 182 183 -23300=2,72,72 1=0
+Convolution conv_75 1 1 183 184 0=72 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=5184
+HardSwish hswish_184 1 1 184 185 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_286 1 1 185 186 0=72 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=648 7=72
+Split splitncnn_13 1 2 186 187 188
+Pooling gap_14 1 1 188 189 0=1 4=1
+Convolution convrelu_10 1 1 189 190 0=18 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=1296 9=1
+Convolution conv_77 1 1 190 191 0=72 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=1296
+HardSigmoid hsigmoid_150 1 1 191 192 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_10 2 1 187 192 193 0=2
+Convolution conv_78 1 1 193 194 0=72 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=5184
+HardSwish hswish_185 1 1 194 195 0=1.666667e-01 1=5.000000e-01
+Concat cat_10 2 1 182 195 196 0=0
+ShuffleChannel channelshuffle_25 1 1 196 197 0=2 1=0
+Split splitncnn_14 1 3 197 198 199 200
+ConvolutionDepthWise convdw_287 1 1 200 201 0=144 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=1296 7=144
+Convolution conv_79 1 1 201 202 0=144 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=20736
+Convolution conv_80 1 1 199 203 0=72 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=10368
+HardSwish hswish_187 1 1 203 204 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_288 1 1 204 205 0=72 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=648 7=72
+Split splitncnn_15 1 2 205 206 207
+Pooling gap_15 1 1 207 208 0=1 4=1
+Convolution convrelu_11 1 1 208 209 0=18 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=1296 9=1
+Convolution conv_82 1 1 209 210 0=72 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=1296
+HardSigmoid hsigmoid_151 1 1 210 211 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_11 2 1 206 211 212 0=2
+Convolution conv_83 1 1 212 213 0=144 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=10368
+HardSwish hswish_188 1 1 213 214 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_186 1 1 202 215 0=1.666667e-01 1=5.000000e-01
+Concat cat_11 2 1 215 214 216 0=0
+ConvolutionDepthWise convdw_289 1 1 216 217 0=288 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=2592 7=288
+HardSwish hswish_189 1 1 217 218 0=1.666667e-01 1=5.000000e-01
+Convolution conv_84 1 1 218 219 0=288 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=82944
+HardSwish hswish_190 1 1 219 220 0=1.666667e-01 1=5.000000e-01
+Slice split_8 1 2 220 221 222 -23300=2,144,144 1=0
+Convolution conv_85 1 1 222 223 0=144 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=20736
+HardSwish hswish_191 1 1 223 224 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_290 1 1 224 225 0=144 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=1296 7=144
+Split splitncnn_16 1 2 225 226 227
+Pooling gap_16 1 1 227 228 0=1 4=1
+Convolution convrelu_12 1 1 228 229 0=36 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=5184 9=1
+Convolution conv_87 1 1 229 230 0=144 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=5184
+HardSigmoid hsigmoid_152 1 1 230 231 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_12 2 1 226 231 232 0=2
+Convolution conv_88 1 1 232 233 0=144 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=20736
+HardSwish hswish_192 1 1 233 234 0=1.666667e-01 1=5.000000e-01
+Concat cat_12 2 1 221 234 235 0=0
+ShuffleChannel channelshuffle_26 1 1 235 236 0=2 1=0
+Slice split_9 1 2 236 237 238 -23300=2,144,144 1=0
+Convolution conv_89 1 1 238 239 0=144 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=20736
+HardSwish hswish_193 1 1 239 240 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_291 1 1 240 241 0=144 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=1296 7=144
+Split splitncnn_17 1 2 241 242 243
+Pooling gap_17 1 1 243 244 0=1 4=1
+Convolution convrelu_13 1 1 244 245 0=36 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=5184 9=1
+Convolution conv_91 1 1 245 246 0=144 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=5184
+HardSigmoid hsigmoid_153 1 1 246 247 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_13 2 1 242 247 248 0=2
+Convolution conv_92 1 1 248 249 0=144 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=20736
+HardSwish hswish_194 1 1 249 250 0=1.666667e-01 1=5.000000e-01
+Concat cat_13 2 1 237 250 251 0=0
+ShuffleChannel channelshuffle_27 1 1 251 252 0=2 1=0
+Convolution conv_93 1 1 252 253 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=27648
+Convolution conv_94 1 1 198 254 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=13824
+Convolution conv_95 1 1 79 255 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=6144
+HardSwish hswish_195 1 1 253 256 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_18 1 3 256 257 258 259
+HardSwish hswish_196 1 1 254 260 0=1.666667e-01 1=5.000000e-01
+Interp upsample_268 1 1 258 261 0=1 1=2.000000e+00 2=2.000000e+00 6=0
+Concat cat_14 2 1 261 260 262 0=0
+Split splitncnn_19 1 2 262 263 264
+Convolution conv_96 1 1 264 265 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_198 1 1 265 266 0=1.666667e-01 1=5.000000e-01
+Convolution conv_97 1 1 266 267 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_199 1 1 267 268 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_292 1 1 268 269 0=48 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=1200 7=48
+HardSwish hswish_200 1 1 269 270 0=1.666667e-01 1=5.000000e-01
+Convolution conv_98 1 1 270 271 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+Convolution conv_99 1 1 263 272 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_202 1 1 272 273 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_201 1 1 271 274 0=1.666667e-01 1=5.000000e-01
+Concat cat_15 2 1 274 273 275 0=0
+Convolution conv_100 1 1 275 276 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_203 1 1 276 277 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_20 1 2 277 278 279
+HardSwish hswish_197 1 1 255 280 0=1.666667e-01 1=5.000000e-01
+Interp upsample_269 1 1 279 281 0=1 1=2.000000e+00 2=2.000000e+00 6=0
+Concat cat_16 2 1 281 280 282 0=0
+Split splitncnn_21 1 2 282 283 284
+Convolution conv_101 1 1 284 285 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_204 1 1 285 286 0=1.666667e-01 1=5.000000e-01
+Convolution conv_102 1 1 286 287 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_205 1 1 287 288 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_293 1 1 288 289 0=48 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=1200 7=48
+HardSwish hswish_206 1 1 289 290 0=1.666667e-01 1=5.000000e-01
+Convolution conv_103 1 1 290 291 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+Convolution conv_104 1 1 283 292 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_208 1 1 292 293 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_207 1 1 291 294 0=1.666667e-01 1=5.000000e-01
+Concat cat_17 2 1 294 293 295 0=0
+Convolution conv_105 1 1 295 296 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_209 1 1 296 297 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_22 1 2 297 298 299
+ConvolutionDepthWise convdw_294 1 1 299 300 0=96 1=5 11=5 12=1 13=2 14=2 2=1 3=2 4=2 5=1 6=2400 7=96
+HardSwish hswish_210 1 1 300 301 0=1.666667e-01 1=5.000000e-01
+Convolution conv_106 1 1 301 302 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_211 1 1 302 303 0=1.666667e-01 1=5.000000e-01
+Concat cat_18 2 1 303 278 304 0=0
+Split splitncnn_23 1 2 304 305 306
+Convolution conv_107 1 1 306 307 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_212 1 1 307 308 0=1.666667e-01 1=5.000000e-01
+Convolution conv_108 1 1 308 309 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_213 1 1 309 310 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_295 1 1 310 311 0=48 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=1200 7=48
+HardSwish hswish_214 1 1 311 312 0=1.666667e-01 1=5.000000e-01
+Convolution conv_109 1 1 312 313 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+Convolution conv_110 1 1 305 314 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_216 1 1 314 315 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_215 1 1 313 316 0=1.666667e-01 1=5.000000e-01
+Concat cat_19 2 1 316 315 317 0=0
+Convolution conv_111 1 1 317 318 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_217 1 1 318 319 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_24 1 2 319 320 321
+ConvolutionDepthWise convdw_296 1 1 321 322 0=96 1=5 11=5 12=1 13=2 14=2 2=1 3=2 4=2 5=1 6=2400 7=96
+HardSwish hswish_218 1 1 322 323 0=1.666667e-01 1=5.000000e-01
+Convolution conv_112 1 1 323 324 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_219 1 1 324 325 0=1.666667e-01 1=5.000000e-01
+Concat cat_20 2 1 325 257 326 0=0
+Split splitncnn_25 1 2 326 327 328
+Convolution conv_113 1 1 328 329 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_220 1 1 329 330 0=1.666667e-01 1=5.000000e-01
+Convolution conv_114 1 1 330 331 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_221 1 1 331 332 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_297 1 1 332 333 0=48 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=1200 7=48
+HardSwish hswish_222 1 1 333 334 0=1.666667e-01 1=5.000000e-01
+Convolution conv_115 1 1 334 335 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+Convolution conv_116 1 1 327 336 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_224 1 1 336 337 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_223 1 1 335 338 0=1.666667e-01 1=5.000000e-01
+Concat cat_21 2 1 338 337 339 0=0
+Convolution conv_117 1 1 339 340 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+ConvolutionDepthWise convdw_298 1 1 259 341 0=96 1=5 11=5 12=1 13=2 14=2 2=1 3=2 4=2 5=1 6=2400 7=96
+HardSwish hswish_226 1 1 341 342 0=1.666667e-01 1=5.000000e-01
+Convolution conv_118 1 1 342 343 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_225 1 1 340 344 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_26 1 2 344 345 346
+ConvolutionDepthWise convdw_299 1 1 346 347 0=96 1=5 11=5 12=1 13=2 14=2 2=1 3=2 4=2 5=1 6=2400 7=96
+HardSwish hswish_228 1 1 347 348 0=1.666667e-01 1=5.000000e-01
+Convolution conv_119 1 1 348 349 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_229 1 1 349 350 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_227 1 1 343 351 0=1.666667e-01 1=5.000000e-01
+BinaryOp add_14 2 1 351 350 352 0=0
+ConvolutionDepthWise convdw_300 1 1 298 353 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_230 1 1 353 354 0=1.666667e-01 1=5.000000e-01
+Convolution conv_120 1 1 354 355 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_231 1 1 355 356 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_27 1 2 356 357 358
+ConvolutionDepthWise convdw_301 1 1 358 359 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_232 1 1 359 360 0=1.666667e-01 1=5.000000e-01
+Convolution conv_121 1 1 360 361 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+ConvolutionDepthWise convdw_302 1 1 357 362 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_234 1 1 362 363 0=1.666667e-01 1=5.000000e-01
+Convolution conv_123 1 1 363 364 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+ConvolutionDepthWise convdw_303 1 1 320 365 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_236 1 1 365 366 0=1.666667e-01 1=5.000000e-01
+Convolution conv_125 1 1 366 367 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_237 1 1 367 368 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_28 1 2 368 369 370
+ConvolutionDepthWise convdw_304 1 1 370 371 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_238 1 1 371 372 0=1.666667e-01 1=5.000000e-01
+Convolution conv_126 1 1 372 373 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+ConvolutionDepthWise convdw_305 1 1 369 374 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_240 1 1 374 375 0=1.666667e-01 1=5.000000e-01
+Convolution conv_128 1 1 375 376 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+ConvolutionDepthWise convdw_306 1 1 345 377 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_242 1 1 377 378 0=1.666667e-01 1=5.000000e-01
+Convolution conv_130 1 1 378 379 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_243 1 1 379 380 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_29 1 2 380 381 382
+ConvolutionDepthWise convdw_307 1 1 382 383 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_244 1 1 383 384 0=1.666667e-01 1=5.000000e-01
+Convolution conv_131 1 1 384 385 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+ConvolutionDepthWise convdw_308 1 1 381 386 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_246 1 1 386 387 0=1.666667e-01 1=5.000000e-01
+Convolution conv_133 1 1 387 388 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+ConvolutionDepthWise convdw_309 1 1 352 389 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_248 1 1 389 390 0=1.666667e-01 1=5.000000e-01
+Convolution conv_135 1 1 390 391 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_249 1 1 391 392 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_30 1 2 392 393 394
+ConvolutionDepthWise convdw_310 1 1 394 395 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_250 1 1 395 396 0=1.666667e-01 1=5.000000e-01
+Convolution conv_136 1 1 396 397 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+ConvolutionDepthWise convdw_311 1 1 393 398 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_252 1 1 398 399 0=1.666667e-01 1=5.000000e-01
+Convolution conv_138 1 1 399 400 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_251 1 1 397 401 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_253 1 1 400 402 0=1.666667e-01 1=5.000000e-01
+Convolution conv_139 1 1 402 403 0=4 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=384
+Convolution convsigmoid_14 1 1 401 404 0=80 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=7680 9=4
+Concat cat_22 2 1 404 403 out3 0=0
+HardSwish hswish_245 1 1 385 406 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_247 1 1 388 407 0=1.666667e-01 1=5.000000e-01
+Convolution conv_134 1 1 407 408 0=4 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=384
+Convolution convsigmoid_15 1 1 406 409 0=80 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=7680 9=4
+Concat cat_23 2 1 409 408 out2 0=0
+HardSwish hswish_239 1 1 373 411 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_241 1 1 376 412 0=1.666667e-01 1=5.000000e-01
+Convolution conv_129 1 1 412 413 0=4 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=384
+Convolution convsigmoid_16 1 1 411 414 0=80 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=7680 9=4
+Concat cat_24 2 1 414 413 out1 0=0
+HardSwish hswish_233 1 1 361 416 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_235 1 1 364 417 0=1.666667e-01 1=5.000000e-01
+Convolution conv_124 1 1 417 418 0=4 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=384
+Convolution convsigmoid_17 1 1 416 419 0=80 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=7680 9=4
+Concat cat_25 2 1 419 418 out0 0=0
diff --git a/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/assets/yolov6-lite-s.bin b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/assets/yolov6-lite-s.bin
new file mode 100644
index 0000000000..9f781b4368
Binary files /dev/null and b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/assets/yolov6-lite-s.bin differ
diff --git a/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/assets/yolov6-lite-s.param b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/assets/yolov6-lite-s.param
new file mode 100644
index 0000000000..85f93735e9
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/assets/yolov6-lite-s.param
@@ -0,0 +1,379 @@
+7767517
+377 421
+Input in0 0 1 in0
+Convolution conv_28 1 1 in0 1 0=24 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=648
+HardSwish hswish_154 1 1 1 2 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_0 1 2 2 3 4
+ConvolutionDepthWise convdw_270 1 1 4 5 0=24 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=216 7=24
+Convolution conv_29 1 1 5 6 0=16 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=384
+Convolution conv_30 1 1 3 7 0=8 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=192
+HardSwish hswish_156 1 1 7 8 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_271 1 1 8 9 0=8 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=72 7=8
+Split splitncnn_1 1 2 9 10 11
+Pooling gap_4 1 1 11 12 0=1 4=1
+Convolution convrelu_0 1 1 12 13 0=2 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=16 9=1
+Convolution conv_32 1 1 13 14 0=8 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=16
+HardSigmoid hsigmoid_140 1 1 14 15 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_0 2 1 10 15 16 0=2
+Convolution conv_33 1 1 16 17 0=16 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=128
+HardSwish hswish_157 1 1 17 18 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_155 1 1 6 19 0=1.666667e-01 1=5.000000e-01
+Concat cat_0 2 1 19 18 20 0=0
+ConvolutionDepthWise convdw_272 1 1 20 21 0=32 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=288 7=32
+HardSwish hswish_158 1 1 21 22 0=1.666667e-01 1=5.000000e-01
+Convolution conv_34 1 1 22 23 0=32 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=1024
+HardSwish hswish_159 1 1 23 24 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_2 1 2 24 25 26
+ConvolutionDepthWise convdw_273 1 1 26 27 0=32 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=288 7=32
+Convolution conv_35 1 1 27 28 0=24 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=768
+Convolution conv_36 1 1 25 29 0=12 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=384
+HardSwish hswish_161 1 1 29 30 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_274 1 1 30 31 0=12 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=108 7=12
+Split splitncnn_3 1 2 31 32 33
+Pooling gap_5 1 1 33 34 0=1 4=1
+Convolution convrelu_1 1 1 34 35 0=3 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=36 9=1
+Convolution conv_38 1 1 35 36 0=12 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=36
+HardSigmoid hsigmoid_141 1 1 36 37 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_1 2 1 32 37 38 0=2
+Convolution conv_39 1 1 38 39 0=24 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=288
+HardSwish hswish_162 1 1 39 40 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_160 1 1 28 41 0=1.666667e-01 1=5.000000e-01
+Concat cat_1 2 1 41 40 42 0=0
+ConvolutionDepthWise convdw_275 1 1 42 43 0=48 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=432 7=48
+HardSwish hswish_163 1 1 43 44 0=1.666667e-01 1=5.000000e-01
+Convolution conv_40 1 1 44 45 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_164 1 1 45 46 0=1.666667e-01 1=5.000000e-01
+Slice split_0 1 2 46 47 48 -23300=2,24,24 1=0
+Convolution conv_41 1 1 48 49 0=24 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=576
+HardSwish hswish_165 1 1 49 50 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_276 1 1 50 51 0=24 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=216 7=24
+Split splitncnn_4 1 2 51 52 53
+Pooling gap_6 1 1 53 54 0=1 4=1
+Convolution convrelu_2 1 1 54 55 0=6 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=144 9=1
+Convolution conv_43 1 1 55 56 0=24 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=144
+HardSigmoid hsigmoid_142 1 1 56 57 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_2 2 1 52 57 58 0=2
+Convolution conv_44 1 1 58 59 0=24 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=576
+HardSwish hswish_166 1 1 59 60 0=1.666667e-01 1=5.000000e-01
+Concat cat_2 2 1 47 60 61 0=0
+ShuffleChannel channelshuffle_18 1 1 61 62 0=2 1=0
+Slice split_1 1 2 62 63 64 -23300=2,24,24 1=0
+Convolution conv_45 1 1 64 65 0=24 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=576
+HardSwish hswish_167 1 1 65 66 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_277 1 1 66 67 0=24 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=216 7=24
+Split splitncnn_5 1 2 67 68 69
+Pooling gap_7 1 1 69 70 0=1 4=1
+Convolution convrelu_3 1 1 70 71 0=6 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=144 9=1
+Convolution conv_47 1 1 71 72 0=24 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=144
+HardSigmoid hsigmoid_143 1 1 72 73 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_3 2 1 68 73 74 0=2
+Convolution conv_48 1 1 74 75 0=24 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=576
+HardSwish hswish_168 1 1 75 76 0=1.666667e-01 1=5.000000e-01
+Concat cat_3 2 1 63 76 77 0=0
+ShuffleChannel channelshuffle_19 1 1 77 78 0=2 1=0
+Split splitncnn_6 1 3 78 79 80 81
+ConvolutionDepthWise convdw_278 1 1 81 82 0=48 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=432 7=48
+Convolution conv_49 1 1 82 83 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+Convolution conv_50 1 1 80 84 0=24 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=1152
+HardSwish hswish_170 1 1 84 85 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_279 1 1 85 86 0=24 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=216 7=24
+Split splitncnn_7 1 2 86 87 88
+Pooling gap_8 1 1 88 89 0=1 4=1
+Convolution convrelu_4 1 1 89 90 0=6 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=144 9=1
+Convolution conv_52 1 1 90 91 0=24 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=144
+HardSigmoid hsigmoid_144 1 1 91 92 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_4 2 1 87 92 93 0=2
+Convolution conv_53 1 1 93 94 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=1152
+HardSwish hswish_171 1 1 94 95 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_169 1 1 83 96 0=1.666667e-01 1=5.000000e-01
+Concat cat_4 2 1 96 95 97 0=0
+ConvolutionDepthWise convdw_280 1 1 97 98 0=96 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=864 7=96
+HardSwish hswish_172 1 1 98 99 0=1.666667e-01 1=5.000000e-01
+Convolution conv_54 1 1 99 100 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_173 1 1 100 101 0=1.666667e-01 1=5.000000e-01
+Slice split_2 1 2 101 102 103 -23300=2,48,48 1=0
+Convolution conv_55 1 1 103 104 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_174 1 1 104 105 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_281 1 1 105 106 0=48 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=432 7=48
+Split splitncnn_8 1 2 106 107 108
+Pooling gap_9 1 1 108 109 0=1 4=1
+Convolution convrelu_5 1 1 109 110 0=12 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=576 9=1
+Convolution conv_57 1 1 110 111 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=576
+HardSigmoid hsigmoid_145 1 1 111 112 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_5 2 1 107 112 113 0=2
+Convolution conv_58 1 1 113 114 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_175 1 1 114 115 0=1.666667e-01 1=5.000000e-01
+Concat cat_5 2 1 102 115 116 0=0
+ShuffleChannel channelshuffle_20 1 1 116 117 0=2 1=0
+Slice split_3 1 2 117 118 119 -23300=2,48,48 1=0
+Convolution conv_59 1 1 119 120 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_176 1 1 120 121 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_282 1 1 121 122 0=48 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=432 7=48
+Split splitncnn_9 1 2 122 123 124
+Pooling gap_10 1 1 124 125 0=1 4=1
+Convolution convrelu_6 1 1 125 126 0=12 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=576 9=1
+Convolution conv_61 1 1 126 127 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=576
+HardSigmoid hsigmoid_146 1 1 127 128 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_6 2 1 123 128 129 0=2
+Convolution conv_62 1 1 129 130 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_177 1 1 130 131 0=1.666667e-01 1=5.000000e-01
+Concat cat_6 2 1 118 131 132 0=0
+ShuffleChannel channelshuffle_21 1 1 132 133 0=2 1=0
+Slice split_4 1 2 133 134 135 -23300=2,48,48 1=0
+Convolution conv_63 1 1 135 136 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_178 1 1 136 137 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_283 1 1 137 138 0=48 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=432 7=48
+Split splitncnn_10 1 2 138 139 140
+Pooling gap_11 1 1 140 141 0=1 4=1
+Convolution convrelu_7 1 1 141 142 0=12 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=576 9=1
+Convolution conv_65 1 1 142 143 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=576
+HardSigmoid hsigmoid_147 1 1 143 144 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_7 2 1 139 144 145 0=2
+Convolution conv_66 1 1 145 146 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_179 1 1 146 147 0=1.666667e-01 1=5.000000e-01
+Concat cat_7 2 1 134 147 148 0=0
+ShuffleChannel channelshuffle_22 1 1 148 149 0=2 1=0
+Slice split_5 1 2 149 150 151 -23300=2,48,48 1=0
+Convolution conv_67 1 1 151 152 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_180 1 1 152 153 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_284 1 1 153 154 0=48 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=432 7=48
+Split splitncnn_11 1 2 154 155 156
+Pooling gap_12 1 1 156 157 0=1 4=1
+Convolution convrelu_8 1 1 157 158 0=12 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=576 9=1
+Convolution conv_69 1 1 158 159 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=576
+HardSigmoid hsigmoid_148 1 1 159 160 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_8 2 1 155 160 161 0=2
+Convolution conv_70 1 1 161 162 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_181 1 1 162 163 0=1.666667e-01 1=5.000000e-01
+Concat cat_8 2 1 150 163 164 0=0
+ShuffleChannel channelshuffle_23 1 1 164 165 0=2 1=0
+Slice split_6 1 2 165 166 167 -23300=2,48,48 1=0
+Convolution conv_71 1 1 167 168 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_182 1 1 168 169 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_285 1 1 169 170 0=48 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=432 7=48
+Split splitncnn_12 1 2 170 171 172
+Pooling gap_13 1 1 172 173 0=1 4=1
+Convolution convrelu_9 1 1 173 174 0=12 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=576 9=1
+Convolution conv_73 1 1 174 175 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=576
+HardSigmoid hsigmoid_149 1 1 175 176 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_9 2 1 171 176 177 0=2
+Convolution conv_74 1 1 177 178 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_183 1 1 178 179 0=1.666667e-01 1=5.000000e-01
+Concat cat_9 2 1 166 179 180 0=0
+ShuffleChannel channelshuffle_24 1 1 180 181 0=2 1=0
+Slice split_7 1 2 181 182 183 -23300=2,48,48 1=0
+Convolution conv_75 1 1 183 184 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_184 1 1 184 185 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_286 1 1 185 186 0=48 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=432 7=48
+Split splitncnn_13 1 2 186 187 188
+Pooling gap_14 1 1 188 189 0=1 4=1
+Convolution convrelu_10 1 1 189 190 0=12 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=576 9=1
+Convolution conv_77 1 1 190 191 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=576
+HardSigmoid hsigmoid_150 1 1 191 192 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_10 2 1 187 192 193 0=2
+Convolution conv_78 1 1 193 194 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_185 1 1 194 195 0=1.666667e-01 1=5.000000e-01
+Concat cat_10 2 1 182 195 196 0=0
+ShuffleChannel channelshuffle_25 1 1 196 197 0=2 1=0
+Split splitncnn_14 1 3 197 198 199 200
+ConvolutionDepthWise convdw_287 1 1 200 201 0=96 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=864 7=96
+Convolution conv_79 1 1 201 202 0=88 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=8448
+Convolution conv_80 1 1 199 203 0=44 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=4224
+HardSwish hswish_187 1 1 203 204 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_288 1 1 204 205 0=44 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=396 7=44
+Split splitncnn_15 1 2 205 206 207
+Pooling gap_15 1 1 207 208 0=1 4=1
+Convolution convrelu_11 1 1 208 209 0=11 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=484 9=1
+Convolution conv_82 1 1 209 210 0=44 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=484
+HardSigmoid hsigmoid_151 1 1 210 211 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_11 2 1 206 211 212 0=2
+Convolution conv_83 1 1 212 213 0=88 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=3872
+HardSwish hswish_188 1 1 213 214 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_186 1 1 202 215 0=1.666667e-01 1=5.000000e-01
+Concat cat_11 2 1 215 214 216 0=0
+ConvolutionDepthWise convdw_289 1 1 216 217 0=176 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=1584 7=176
+HardSwish hswish_189 1 1 217 218 0=1.666667e-01 1=5.000000e-01
+Convolution conv_84 1 1 218 219 0=176 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=30976
+HardSwish hswish_190 1 1 219 220 0=1.666667e-01 1=5.000000e-01
+Slice split_8 1 2 220 221 222 -23300=2,88,88 1=0
+Convolution conv_85 1 1 222 223 0=88 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=7744
+HardSwish hswish_191 1 1 223 224 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_290 1 1 224 225 0=88 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=792 7=88
+Split splitncnn_16 1 2 225 226 227
+Pooling gap_16 1 1 227 228 0=1 4=1
+Convolution convrelu_12 1 1 228 229 0=22 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=1936 9=1
+Convolution conv_87 1 1 229 230 0=88 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=1936
+HardSigmoid hsigmoid_152 1 1 230 231 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_12 2 1 226 231 232 0=2
+Convolution conv_88 1 1 232 233 0=88 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=7744
+HardSwish hswish_192 1 1 233 234 0=1.666667e-01 1=5.000000e-01
+Concat cat_12 2 1 221 234 235 0=0
+ShuffleChannel channelshuffle_26 1 1 235 236 0=2 1=0
+Slice split_9 1 2 236 237 238 -23300=2,88,88 1=0
+Convolution conv_89 1 1 238 239 0=88 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=7744
+HardSwish hswish_193 1 1 239 240 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_291 1 1 240 241 0=88 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=792 7=88
+Split splitncnn_17 1 2 241 242 243
+Pooling gap_17 1 1 243 244 0=1 4=1
+Convolution convrelu_13 1 1 244 245 0=22 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=1936 9=1
+Convolution conv_91 1 1 245 246 0=88 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=1936
+HardSigmoid hsigmoid_153 1 1 246 247 0=1.666667e-01 1=5.000000e-01
+BinaryOp mul_13 2 1 242 247 248 0=2
+Convolution conv_92 1 1 248 249 0=88 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=7744
+HardSwish hswish_194 1 1 249 250 0=1.666667e-01 1=5.000000e-01
+Concat cat_13 2 1 237 250 251 0=0
+ShuffleChannel channelshuffle_27 1 1 251 252 0=2 1=0
+Convolution conv_93 1 1 252 253 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=16896
+Convolution conv_94 1 1 198 254 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+Convolution conv_95 1 1 79 255 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=4608
+HardSwish hswish_195 1 1 253 256 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_18 1 3 256 257 258 259
+HardSwish hswish_196 1 1 254 260 0=1.666667e-01 1=5.000000e-01
+Interp upsample_268 1 1 258 261 0=1 1=2.000000e+00 2=2.000000e+00 6=0
+Concat cat_14 2 1 261 260 262 0=0
+Split splitncnn_19 1 2 262 263 264
+Convolution conv_96 1 1 264 265 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_198 1 1 265 266 0=1.666667e-01 1=5.000000e-01
+Convolution conv_97 1 1 266 267 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_199 1 1 267 268 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_292 1 1 268 269 0=48 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=1200 7=48
+HardSwish hswish_200 1 1 269 270 0=1.666667e-01 1=5.000000e-01
+Convolution conv_98 1 1 270 271 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+Convolution conv_99 1 1 263 272 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_202 1 1 272 273 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_201 1 1 271 274 0=1.666667e-01 1=5.000000e-01
+Concat cat_15 2 1 274 273 275 0=0
+Convolution conv_100 1 1 275 276 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_203 1 1 276 277 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_20 1 2 277 278 279
+HardSwish hswish_197 1 1 255 280 0=1.666667e-01 1=5.000000e-01
+Interp upsample_269 1 1 279 281 0=1 1=2.000000e+00 2=2.000000e+00 6=0
+Concat cat_16 2 1 281 280 282 0=0
+Split splitncnn_21 1 2 282 283 284
+Convolution conv_101 1 1 284 285 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_204 1 1 285 286 0=1.666667e-01 1=5.000000e-01
+Convolution conv_102 1 1 286 287 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_205 1 1 287 288 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_293 1 1 288 289 0=48 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=1200 7=48
+HardSwish hswish_206 1 1 289 290 0=1.666667e-01 1=5.000000e-01
+Convolution conv_103 1 1 290 291 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+Convolution conv_104 1 1 283 292 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_208 1 1 292 293 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_207 1 1 291 294 0=1.666667e-01 1=5.000000e-01
+Concat cat_17 2 1 294 293 295 0=0
+Convolution conv_105 1 1 295 296 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_209 1 1 296 297 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_22 1 2 297 298 299
+ConvolutionDepthWise convdw_294 1 1 299 300 0=96 1=5 11=5 12=1 13=2 14=2 2=1 3=2 4=2 5=1 6=2400 7=96
+HardSwish hswish_210 1 1 300 301 0=1.666667e-01 1=5.000000e-01
+Convolution conv_106 1 1 301 302 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_211 1 1 302 303 0=1.666667e-01 1=5.000000e-01
+Concat cat_18 2 1 303 278 304 0=0
+Split splitncnn_23 1 2 304 305 306
+Convolution conv_107 1 1 306 307 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_212 1 1 307 308 0=1.666667e-01 1=5.000000e-01
+Convolution conv_108 1 1 308 309 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_213 1 1 309 310 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_295 1 1 310 311 0=48 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=1200 7=48
+HardSwish hswish_214 1 1 311 312 0=1.666667e-01 1=5.000000e-01
+Convolution conv_109 1 1 312 313 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+Convolution conv_110 1 1 305 314 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_216 1 1 314 315 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_215 1 1 313 316 0=1.666667e-01 1=5.000000e-01
+Concat cat_19 2 1 316 315 317 0=0
+Convolution conv_111 1 1 317 318 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_217 1 1 318 319 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_24 1 2 319 320 321
+ConvolutionDepthWise convdw_296 1 1 321 322 0=96 1=5 11=5 12=1 13=2 14=2 2=1 3=2 4=2 5=1 6=2400 7=96
+HardSwish hswish_218 1 1 322 323 0=1.666667e-01 1=5.000000e-01
+Convolution conv_112 1 1 323 324 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_219 1 1 324 325 0=1.666667e-01 1=5.000000e-01
+Concat cat_20 2 1 325 257 326 0=0
+Split splitncnn_25 1 2 326 327 328
+Convolution conv_113 1 1 328 329 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_220 1 1 329 330 0=1.666667e-01 1=5.000000e-01
+Convolution conv_114 1 1 330 331 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+HardSwish hswish_221 1 1 331 332 0=1.666667e-01 1=5.000000e-01
+ConvolutionDepthWise convdw_297 1 1 332 333 0=48 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=1200 7=48
+HardSwish hswish_222 1 1 333 334 0=1.666667e-01 1=5.000000e-01
+Convolution conv_115 1 1 334 335 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2304
+Convolution conv_116 1 1 327 336 0=48 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_224 1 1 336 337 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_223 1 1 335 338 0=1.666667e-01 1=5.000000e-01
+Concat cat_21 2 1 338 337 339 0=0
+Convolution conv_117 1 1 339 340 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+ConvolutionDepthWise convdw_298 1 1 259 341 0=96 1=5 11=5 12=1 13=2 14=2 2=1 3=2 4=2 5=1 6=2400 7=96
+HardSwish hswish_226 1 1 341 342 0=1.666667e-01 1=5.000000e-01
+Convolution conv_118 1 1 342 343 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_225 1 1 340 344 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_26 1 2 344 345 346
+ConvolutionDepthWise convdw_299 1 1 346 347 0=96 1=5 11=5 12=1 13=2 14=2 2=1 3=2 4=2 5=1 6=2400 7=96
+HardSwish hswish_228 1 1 347 348 0=1.666667e-01 1=5.000000e-01
+Convolution conv_119 1 1 348 349 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_229 1 1 349 350 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_227 1 1 343 351 0=1.666667e-01 1=5.000000e-01
+BinaryOp add_14 2 1 351 350 352 0=0
+ConvolutionDepthWise convdw_300 1 1 298 353 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_230 1 1 353 354 0=1.666667e-01 1=5.000000e-01
+Convolution conv_120 1 1 354 355 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_231 1 1 355 356 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_27 1 2 356 357 358
+ConvolutionDepthWise convdw_301 1 1 358 359 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_232 1 1 359 360 0=1.666667e-01 1=5.000000e-01
+Convolution conv_121 1 1 360 361 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+ConvolutionDepthWise convdw_302 1 1 357 362 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_234 1 1 362 363 0=1.666667e-01 1=5.000000e-01
+Convolution conv_123 1 1 363 364 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+ConvolutionDepthWise convdw_303 1 1 320 365 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_236 1 1 365 366 0=1.666667e-01 1=5.000000e-01
+Convolution conv_125 1 1 366 367 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_237 1 1 367 368 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_28 1 2 368 369 370
+ConvolutionDepthWise convdw_304 1 1 370 371 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_238 1 1 371 372 0=1.666667e-01 1=5.000000e-01
+Convolution conv_126 1 1 372 373 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+ConvolutionDepthWise convdw_305 1 1 369 374 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_240 1 1 374 375 0=1.666667e-01 1=5.000000e-01
+Convolution conv_128 1 1 375 376 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+ConvolutionDepthWise convdw_306 1 1 345 377 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_242 1 1 377 378 0=1.666667e-01 1=5.000000e-01
+Convolution conv_130 1 1 378 379 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_243 1 1 379 380 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_29 1 2 380 381 382
+ConvolutionDepthWise convdw_307 1 1 382 383 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_244 1 1 383 384 0=1.666667e-01 1=5.000000e-01
+Convolution conv_131 1 1 384 385 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+ConvolutionDepthWise convdw_308 1 1 381 386 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_246 1 1 386 387 0=1.666667e-01 1=5.000000e-01
+Convolution conv_133 1 1 387 388 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+ConvolutionDepthWise convdw_309 1 1 352 389 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_248 1 1 389 390 0=1.666667e-01 1=5.000000e-01
+Convolution conv_135 1 1 390 391 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_249 1 1 391 392 0=1.666667e-01 1=5.000000e-01
+Split splitncnn_30 1 2 392 393 394
+ConvolutionDepthWise convdw_310 1 1 394 395 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_250 1 1 395 396 0=1.666667e-01 1=5.000000e-01
+Convolution conv_136 1 1 396 397 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+ConvolutionDepthWise convdw_311 1 1 393 398 0=96 1=5 11=5 12=1 13=1 14=2 2=1 3=1 4=2 5=1 6=2400 7=96
+HardSwish hswish_252 1 1 398 399 0=1.666667e-01 1=5.000000e-01
+Convolution conv_138 1 1 399 400 0=96 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=9216
+HardSwish hswish_251 1 1 397 401 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_253 1 1 400 402 0=1.666667e-01 1=5.000000e-01
+Convolution conv_139 1 1 402 403 0=4 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=384
+Convolution convsigmoid_14 1 1 401 404 0=80 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=7680 9=4
+Concat cat_22 2 1 404 403 out3 0=0
+HardSwish hswish_245 1 1 385 406 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_247 1 1 388 407 0=1.666667e-01 1=5.000000e-01
+Convolution conv_134 1 1 407 408 0=4 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=384
+Convolution convsigmoid_15 1 1 406 409 0=80 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=7680 9=4
+Concat cat_23 2 1 409 408 out2 0=0
+HardSwish hswish_239 1 1 373 411 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_241 1 1 376 412 0=1.666667e-01 1=5.000000e-01
+Convolution conv_129 1 1 412 413 0=4 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=384
+Convolution convsigmoid_16 1 1 411 414 0=80 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=7680 9=4
+Concat cat_24 2 1 414 413 out1 0=0
+HardSwish hswish_233 1 1 361 416 0=1.666667e-01 1=5.000000e-01
+HardSwish hswish_235 1 1 364 417 0=1.666667e-01 1=5.000000e-01
+Convolution conv_124 1 1 417 418 0=4 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=384
+Convolution convsigmoid_17 1 1 416 419 0=80 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=7680 9=4
+Concat cat_25 2 1 419 418 out0 0=0
diff --git a/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/java/com/tencent/yolov6ncnn/MainActivity.java b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/java/com/tencent/yolov6ncnn/MainActivity.java
new file mode 100644
index 0000000000..5ccacc2934
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/java/com/tencent/yolov6ncnn/MainActivity.java
@@ -0,0 +1,162 @@
+// Tencent is pleased to support the open source community by making ncnn available.
+//
+// Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved.
+//
+// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
+// in compliance with the License. You may obtain a copy of the License at
+//
+// https://opensource.org/licenses/BSD-3-Clause
+//
+// Unless required by applicable law or agreed to in writing, software distributed
+// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
+// CONDITIONS OF ANY KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations under the License.
+
+package com.tencent.yolov6ncnn;
+
+import android.Manifest;
+import android.app.Activity;
+import android.content.pm.PackageManager;
+import android.graphics.PixelFormat;
+import android.os.Bundle;
+import android.util.Log;
+import android.view.Surface;
+import android.view.SurfaceHolder;
+import android.view.SurfaceView;
+import android.view.View;
+import android.view.WindowManager;
+import android.widget.AdapterView;
+import android.widget.Button;
+import android.widget.Spinner;
+
+import android.support.v4.app.ActivityCompat;
+import android.support.v4.content.ContextCompat;
+
+public class MainActivity extends Activity implements SurfaceHolder.Callback
+{
+ public static final int REQUEST_CAMERA = 100;
+
+ private Yolov6Ncnn yolov6ncnn = new Yolov6Ncnn();
+ private int facing = 0;
+
+ private Spinner spinnerModel;
+ private Spinner spinnerCPUGPU;
+ private int current_model = 0;
+ private int current_cpugpu = 0;
+
+ private SurfaceView cameraView;
+
+ /** Called when the activity is first created. */
+ @Override
+ public void onCreate(Bundle savedInstanceState)
+ {
+ super.onCreate(savedInstanceState);
+ setContentView(R.layout.main);
+
+ getWindow().addFlags(WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON);
+
+ cameraView = (SurfaceView) findViewById(R.id.cameraview);
+
+ cameraView.getHolder().setFormat(PixelFormat.RGBA_8888);
+ cameraView.getHolder().addCallback(this);
+
+ Button buttonSwitchCamera = (Button) findViewById(R.id.buttonSwitchCamera);
+ buttonSwitchCamera.setOnClickListener(new View.OnClickListener() {
+ @Override
+ public void onClick(View arg0) {
+
+ int new_facing = 1 - facing;
+
+ yolov6ncnn.closeCamera();
+
+ yolov6ncnn.openCamera(new_facing);
+
+ facing = new_facing;
+ }
+ });
+
+ spinnerModel = (Spinner) findViewById(R.id.spinnerModel);
+ spinnerModel.setOnItemSelectedListener(new AdapterView.OnItemSelectedListener() {
+ @Override
+ public void onItemSelected(AdapterView> arg0, View arg1, int position, long id)
+ {
+ if (position != current_model)
+ {
+ current_model = position;
+ reload();
+ }
+ }
+
+ @Override
+ public void onNothingSelected(AdapterView> arg0)
+ {
+ }
+ });
+
+ spinnerCPUGPU = (Spinner) findViewById(R.id.spinnerCPUGPU);
+ spinnerCPUGPU.setOnItemSelectedListener(new AdapterView.OnItemSelectedListener() {
+ @Override
+ public void onItemSelected(AdapterView> arg0, View arg1, int position, long id)
+ {
+ if (position != current_cpugpu)
+ {
+ current_cpugpu = position;
+ reload();
+ }
+ }
+
+ @Override
+ public void onNothingSelected(AdapterView> arg0)
+ {
+ }
+ });
+
+ reload();
+ }
+
+ private void reload()
+ {
+ boolean ret_init = yolov6ncnn.loadModel(getAssets(), current_model, current_cpugpu);
+ if (!ret_init)
+ {
+ Log.e("MainActivity", "yolov6ncnn loadModel failed");
+ }
+ }
+
+ @Override
+ public void surfaceChanged(SurfaceHolder holder, int format, int width, int height)
+ {
+ yolov6ncnn.setOutputWindow(holder.getSurface());
+ }
+
+ @Override
+ public void surfaceCreated(SurfaceHolder holder)
+ {
+ }
+
+ @Override
+ public void surfaceDestroyed(SurfaceHolder holder)
+ {
+ }
+
+ @Override
+ public void onResume()
+ {
+ super.onResume();
+
+ if (ContextCompat.checkSelfPermission(getApplicationContext(), Manifest.permission.CAMERA) == PackageManager.PERMISSION_DENIED)
+ {
+ ActivityCompat.requestPermissions(this, new String[] {Manifest.permission.CAMERA}, REQUEST_CAMERA);
+ }
+
+ yolov6ncnn.openCamera(facing);
+ }
+
+ @Override
+ public void onPause()
+ {
+ super.onPause();
+
+ yolov6ncnn.closeCamera();
+ }
+}
diff --git a/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/java/com/tencent/yolov6ncnn/Yolov6Ncnn.java b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/java/com/tencent/yolov6ncnn/Yolov6Ncnn.java
new file mode 100644
index 0000000000..36038ef8a8
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/java/com/tencent/yolov6ncnn/Yolov6Ncnn.java
@@ -0,0 +1,30 @@
+// Tencent is pleased to support the open source community by making ncnn available.
+//
+// Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved.
+//
+// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
+// in compliance with the License. You may obtain a copy of the License at
+//
+// https://opensource.org/licenses/BSD-3-Clause
+//
+// Unless required by applicable law or agreed to in writing, software distributed
+// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
+// CONDITIONS OF ANY KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations under the License.
+
+package com.tencent.yolov6ncnn;
+
+import android.content.res.AssetManager;
+import android.view.Surface;
+
+public class Yolov6Ncnn
+{
+ public native boolean loadModel(AssetManager mgr, int modelid, int cpugpu);
+ public native boolean openCamera(int facing);
+ public native boolean closeCamera();
+ public native boolean setOutputWindow(Surface surface);
+
+ static {
+ System.loadLibrary("yolov6ncnn");
+ }
+}
diff --git a/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/jni/ndkcamera.cpp b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/jni/ndkcamera.cpp
new file mode 100644
index 0000000000..b4776de638
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/jni/ndkcamera.cpp
@@ -0,0 +1,771 @@
+// Tencent is pleased to support the open source community by making ncnn available.
+//
+// Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved.
+//
+// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
+// in compliance with the License. You may obtain a copy of the License at
+//
+// https://opensource.org/licenses/BSD-3-Clause
+//
+// Unless required by applicable law or agreed to in writing, software distributed
+// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
+// CONDITIONS OF ANY KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations under the License.
+
+#include "ndkcamera.h"
+
+#include
+
+#include
+
+#include
+
+#include "mat.h"
+
+static void onDisconnected(void* context, ACameraDevice* device)
+{
+ __android_log_print(ANDROID_LOG_WARN, "NdkCamera", "onDisconnected %p", device);
+}
+
+static void onError(void* context, ACameraDevice* device, int error)
+{
+ __android_log_print(ANDROID_LOG_WARN, "NdkCamera", "onError %p %d", device, error);
+}
+
+static void onImageAvailable(void* context, AImageReader* reader)
+{
+// __android_log_print(ANDROID_LOG_WARN, "NdkCamera", "onImageAvailable %p", reader);
+
+ AImage* image = 0;
+ media_status_t status = AImageReader_acquireLatestImage(reader, &image);
+
+ if (status != AMEDIA_OK)
+ {
+ // error
+ return;
+ }
+
+ int32_t format;
+ AImage_getFormat(image, &format);
+
+ // assert format == AIMAGE_FORMAT_YUV_420_888
+
+ int32_t width = 0;
+ int32_t height = 0;
+ AImage_getWidth(image, &width);
+ AImage_getHeight(image, &height);
+
+ int32_t y_pixelStride = 0;
+ int32_t u_pixelStride = 0;
+ int32_t v_pixelStride = 0;
+ AImage_getPlanePixelStride(image, 0, &y_pixelStride);
+ AImage_getPlanePixelStride(image, 1, &u_pixelStride);
+ AImage_getPlanePixelStride(image, 2, &v_pixelStride);
+
+ int32_t y_rowStride = 0;
+ int32_t u_rowStride = 0;
+ int32_t v_rowStride = 0;
+ AImage_getPlaneRowStride(image, 0, &y_rowStride);
+ AImage_getPlaneRowStride(image, 1, &u_rowStride);
+ AImage_getPlaneRowStride(image, 2, &v_rowStride);
+
+ uint8_t* y_data = 0;
+ uint8_t* u_data = 0;
+ uint8_t* v_data = 0;
+ int y_len = 0;
+ int u_len = 0;
+ int v_len = 0;
+ AImage_getPlaneData(image, 0, &y_data, &y_len);
+ AImage_getPlaneData(image, 1, &u_data, &u_len);
+ AImage_getPlaneData(image, 2, &v_data, &v_len);
+
+ if (u_data == v_data + 1 && v_data == y_data + width * height && y_pixelStride == 1 && u_pixelStride == 2 && v_pixelStride == 2 && y_rowStride == width && u_rowStride == width && v_rowStride == width)
+ {
+ // already nv21 :)
+ ((NdkCamera*)context)->on_image((unsigned char*)y_data, (int)width, (int)height);
+ }
+ else
+ {
+ // construct nv21
+ unsigned char* nv21 = new unsigned char[width * height + width * height / 2];
+ {
+ // Y
+ unsigned char* yptr = nv21;
+ for (int y=0; yon_image((unsigned char*)nv21, (int)width, (int)height);
+
+ delete[] nv21;
+ }
+
+ AImage_delete(image);
+}
+
+static void onSessionActive(void* context, ACameraCaptureSession *session)
+{
+ __android_log_print(ANDROID_LOG_WARN, "NdkCamera", "onSessionActive %p", session);
+}
+
+static void onSessionReady(void* context, ACameraCaptureSession *session)
+{
+ __android_log_print(ANDROID_LOG_WARN, "NdkCamera", "onSessionReady %p", session);
+}
+
+static void onSessionClosed(void* context, ACameraCaptureSession *session)
+{
+ __android_log_print(ANDROID_LOG_WARN, "NdkCamera", "onSessionClosed %p", session);
+}
+
+void onCaptureFailed(void* context, ACameraCaptureSession* session, ACaptureRequest* request, ACameraCaptureFailure* failure)
+{
+ __android_log_print(ANDROID_LOG_WARN, "NdkCamera", "onCaptureFailed %p %p %p", session, request, failure);
+}
+
+void onCaptureSequenceCompleted(void* context, ACameraCaptureSession* session, int sequenceId, int64_t frameNumber)
+{
+ __android_log_print(ANDROID_LOG_WARN, "NdkCamera", "onCaptureSequenceCompleted %p %d %ld", session, sequenceId, frameNumber);
+}
+
+void onCaptureSequenceAborted(void* context, ACameraCaptureSession* session, int sequenceId)
+{
+ __android_log_print(ANDROID_LOG_WARN, "NdkCamera", "onCaptureSequenceAborted %p %d", session, sequenceId);
+}
+
+void onCaptureCompleted(void* context, ACameraCaptureSession* session, ACaptureRequest* request, const ACameraMetadata* result)
+{
+// __android_log_print(ANDROID_LOG_WARN, "NdkCamera", "onCaptureCompleted %p %p %p", session, request, result);
+}
+
+NdkCamera::NdkCamera()
+{
+ camera_facing = 0;
+ camera_orientation = 0;
+
+ camera_manager = 0;
+ camera_device = 0;
+ image_reader = 0;
+ image_reader_surface = 0;
+ image_reader_target = 0;
+ capture_request = 0;
+ capture_session_output_container = 0;
+ capture_session_output = 0;
+ capture_session = 0;
+
+
+ // setup imagereader and its surface
+ {
+ AImageReader_new(640, 480, AIMAGE_FORMAT_YUV_420_888, /*maxImages*/2, &image_reader);
+
+ AImageReader_ImageListener listener;
+ listener.context = this;
+ listener.onImageAvailable = onImageAvailable;
+
+ AImageReader_setImageListener(image_reader, &listener);
+
+ AImageReader_getWindow(image_reader, &image_reader_surface);
+
+ ANativeWindow_acquire(image_reader_surface);
+ }
+}
+
+NdkCamera::~NdkCamera()
+{
+ close();
+
+ if (image_reader)
+ {
+ AImageReader_delete(image_reader);
+ image_reader = 0;
+ }
+
+ if (image_reader_surface)
+ {
+ ANativeWindow_release(image_reader_surface);
+ image_reader_surface = 0;
+ }
+}
+
+int NdkCamera::open(int _camera_facing)
+{
+ __android_log_print(ANDROID_LOG_WARN, "NdkCamera", "open");
+
+ camera_facing = _camera_facing;
+
+ camera_manager = ACameraManager_create();
+
+ // find front camera
+ std::string camera_id;
+ {
+ ACameraIdList* camera_id_list = 0;
+ ACameraManager_getCameraIdList(camera_manager, &camera_id_list);
+
+ for (int i = 0; i < camera_id_list->numCameras; ++i)
+ {
+ const char* id = camera_id_list->cameraIds[i];
+ ACameraMetadata* camera_metadata = 0;
+ ACameraManager_getCameraCharacteristics(camera_manager, id, &camera_metadata);
+
+ // query faceing
+ acamera_metadata_enum_android_lens_facing_t facing = ACAMERA_LENS_FACING_FRONT;
+ {
+ ACameraMetadata_const_entry e = { 0 };
+ ACameraMetadata_getConstEntry(camera_metadata, ACAMERA_LENS_FACING, &e);
+ facing = (acamera_metadata_enum_android_lens_facing_t)e.data.u8[0];
+ }
+
+ if (camera_facing == 0 && facing != ACAMERA_LENS_FACING_FRONT)
+ {
+ ACameraMetadata_free(camera_metadata);
+ continue;
+ }
+
+ if (camera_facing == 1 && facing != ACAMERA_LENS_FACING_BACK)
+ {
+ ACameraMetadata_free(camera_metadata);
+ continue;
+ }
+
+ camera_id = id;
+
+ // query orientation
+ int orientation = 0;
+ {
+ ACameraMetadata_const_entry e = { 0 };
+ ACameraMetadata_getConstEntry(camera_metadata, ACAMERA_SENSOR_ORIENTATION, &e);
+
+ orientation = (int)e.data.i32[0];
+ }
+
+ camera_orientation = orientation;
+
+ ACameraMetadata_free(camera_metadata);
+
+ break;
+ }
+
+ ACameraManager_deleteCameraIdList(camera_id_list);
+ }
+
+ __android_log_print(ANDROID_LOG_WARN, "NdkCamera", "open %s %d", camera_id.c_str(), camera_orientation);
+
+ // open camera
+ {
+ ACameraDevice_StateCallbacks camera_device_state_callbacks;
+ camera_device_state_callbacks.context = this;
+ camera_device_state_callbacks.onDisconnected = onDisconnected;
+ camera_device_state_callbacks.onError = onError;
+
+ ACameraManager_openCamera(camera_manager, camera_id.c_str(), &camera_device_state_callbacks, &camera_device);
+ }
+
+ // capture request
+ {
+ ACameraDevice_createCaptureRequest(camera_device, TEMPLATE_PREVIEW, &capture_request);
+
+ ACameraOutputTarget_create(image_reader_surface, &image_reader_target);
+ ACaptureRequest_addTarget(capture_request, image_reader_target);
+ }
+
+ // capture session
+ {
+ ACameraCaptureSession_stateCallbacks camera_capture_session_state_callbacks;
+ camera_capture_session_state_callbacks.context = this;
+ camera_capture_session_state_callbacks.onActive = onSessionActive;
+ camera_capture_session_state_callbacks.onReady = onSessionReady;
+ camera_capture_session_state_callbacks.onClosed = onSessionClosed;
+
+ ACaptureSessionOutputContainer_create(&capture_session_output_container);
+
+ ACaptureSessionOutput_create(image_reader_surface, &capture_session_output);
+
+ ACaptureSessionOutputContainer_add(capture_session_output_container, capture_session_output);
+
+ ACameraDevice_createCaptureSession(camera_device, capture_session_output_container, &camera_capture_session_state_callbacks, &capture_session);
+
+ ACameraCaptureSession_captureCallbacks camera_capture_session_capture_callbacks;
+ camera_capture_session_capture_callbacks.context = this;
+ camera_capture_session_capture_callbacks.onCaptureStarted = 0;
+ camera_capture_session_capture_callbacks.onCaptureProgressed = 0;
+ camera_capture_session_capture_callbacks.onCaptureCompleted = onCaptureCompleted;
+ camera_capture_session_capture_callbacks.onCaptureFailed = onCaptureFailed;
+ camera_capture_session_capture_callbacks.onCaptureSequenceCompleted = onCaptureSequenceCompleted;
+ camera_capture_session_capture_callbacks.onCaptureSequenceAborted = onCaptureSequenceAborted;
+ camera_capture_session_capture_callbacks.onCaptureBufferLost = 0;
+
+ ACameraCaptureSession_setRepeatingRequest(capture_session, &camera_capture_session_capture_callbacks, 1, &capture_request, nullptr);
+ }
+
+ return 0;
+}
+
+void NdkCamera::close()
+{
+ __android_log_print(ANDROID_LOG_WARN, "NdkCamera", "close");
+
+ if (capture_session)
+ {
+ ACameraCaptureSession_stopRepeating(capture_session);
+ ACameraCaptureSession_close(capture_session);
+ capture_session = 0;
+ }
+
+ if (camera_device)
+ {
+ ACameraDevice_close(camera_device);
+ camera_device = 0;
+ }
+
+ if (capture_session_output_container)
+ {
+ ACaptureSessionOutputContainer_free(capture_session_output_container);
+ capture_session_output_container = 0;
+ }
+
+ if (capture_session_output)
+ {
+ ACaptureSessionOutput_free(capture_session_output);
+ capture_session_output = 0;
+ }
+
+ if (capture_request)
+ {
+ ACaptureRequest_free(capture_request);
+ capture_request = 0;
+ }
+
+ if (image_reader_target)
+ {
+ ACameraOutputTarget_free(image_reader_target);
+ image_reader_target = 0;
+ }
+
+ if (camera_manager)
+ {
+ ACameraManager_delete(camera_manager);
+ camera_manager = 0;
+ }
+}
+
+void NdkCamera::on_image(const cv::Mat& rgb) const
+{
+}
+
+void NdkCamera::on_image(const unsigned char* nv21, int nv21_width, int nv21_height) const
+{
+ // rotate nv21
+ int w = 0;
+ int h = 0;
+ int rotate_type = 0;
+ {
+ if (camera_orientation == 0)
+ {
+ w = nv21_width;
+ h = nv21_height;
+ rotate_type = camera_facing == 0 ? 2 : 1;
+ }
+ if (camera_orientation == 90)
+ {
+ w = nv21_height;
+ h = nv21_width;
+ rotate_type = camera_facing == 0 ? 5 : 6;
+ }
+ if (camera_orientation == 180)
+ {
+ w = nv21_width;
+ h = nv21_height;
+ rotate_type = camera_facing == 0 ? 4 : 3;
+ }
+ if (camera_orientation == 270)
+ {
+ w = nv21_height;
+ h = nv21_width;
+ rotate_type = camera_facing == 0 ? 7 : 8;
+ }
+ }
+
+ cv::Mat nv21_rotated(h + h / 2, w, CV_8UC1);
+ ncnn::kanna_rotate_yuv420sp(nv21, nv21_width, nv21_height, nv21_rotated.data, w, h, rotate_type);
+
+ // nv21_rotated to rgb
+ cv::Mat rgb(h, w, CV_8UC3);
+ ncnn::yuv420sp2rgb(nv21_rotated.data, w, h, rgb.data);
+
+ on_image(rgb);
+}
+
+static const int NDKCAMERAWINDOW_ID = 233;
+
+NdkCameraWindow::NdkCameraWindow() : NdkCamera()
+{
+ sensor_manager = 0;
+ sensor_event_queue = 0;
+ accelerometer_sensor = 0;
+ win = 0;
+
+ accelerometer_orientation = 0;
+
+ // sensor
+ sensor_manager = ASensorManager_getInstance();
+
+ accelerometer_sensor = ASensorManager_getDefaultSensor(sensor_manager, ASENSOR_TYPE_ACCELEROMETER);
+}
+
+NdkCameraWindow::~NdkCameraWindow()
+{
+ if (accelerometer_sensor)
+ {
+ ASensorEventQueue_disableSensor(sensor_event_queue, accelerometer_sensor);
+ accelerometer_sensor = 0;
+ }
+
+ if (sensor_event_queue)
+ {
+ ASensorManager_destroyEventQueue(sensor_manager, sensor_event_queue);
+ sensor_event_queue = 0;
+ }
+
+ if (win)
+ {
+ ANativeWindow_release(win);
+ }
+}
+
+void NdkCameraWindow::set_window(ANativeWindow* _win)
+{
+ if (win)
+ {
+ ANativeWindow_release(win);
+ }
+
+ win = _win;
+ ANativeWindow_acquire(win);
+}
+
+void NdkCameraWindow::on_image_render(cv::Mat& rgb) const
+{
+}
+
+void NdkCameraWindow::on_image(const unsigned char* nv21, int nv21_width, int nv21_height) const
+{
+ // resolve orientation from camera_orientation and accelerometer_sensor
+ {
+ if (!sensor_event_queue)
+ {
+ sensor_event_queue = ASensorManager_createEventQueue(sensor_manager, ALooper_prepare(ALOOPER_PREPARE_ALLOW_NON_CALLBACKS), NDKCAMERAWINDOW_ID, 0, 0);
+
+ ASensorEventQueue_enableSensor(sensor_event_queue, accelerometer_sensor);
+ }
+
+ int id = ALooper_pollAll(0, 0, 0, 0);
+ if (id == NDKCAMERAWINDOW_ID)
+ {
+ ASensorEvent e[8];
+ ssize_t num_event = 0;
+ while (ASensorEventQueue_hasEvents(sensor_event_queue) == 1)
+ {
+ num_event = ASensorEventQueue_getEvents(sensor_event_queue, e, 8);
+ if (num_event < 0)
+ break;
+ }
+
+ if (num_event > 0)
+ {
+ float acceleration_x = e[num_event - 1].acceleration.x;
+ float acceleration_y = e[num_event - 1].acceleration.y;
+ float acceleration_z = e[num_event - 1].acceleration.z;
+// __android_log_print(ANDROID_LOG_WARN, "NdkCameraWindow", "x = %f, y = %f, z = %f", x, y, z);
+
+ if (acceleration_y > 7)
+ {
+ accelerometer_orientation = 0;
+ }
+ if (acceleration_x < -7)
+ {
+ accelerometer_orientation = 90;
+ }
+ if (acceleration_y < -7)
+ {
+ accelerometer_orientation = 180;
+ }
+ if (acceleration_x > 7)
+ {
+ accelerometer_orientation = 270;
+ }
+ }
+ }
+ }
+
+ // roi crop and rotate nv21
+ int nv21_roi_x = 0;
+ int nv21_roi_y = 0;
+ int nv21_roi_w = 0;
+ int nv21_roi_h = 0;
+ int roi_x = 0;
+ int roi_y = 0;
+ int roi_w = 0;
+ int roi_h = 0;
+ int rotate_type = 0;
+ int render_w = 0;
+ int render_h = 0;
+ int render_rotate_type = 0;
+ {
+ int win_w = ANativeWindow_getWidth(win);
+ int win_h = ANativeWindow_getHeight(win);
+
+ if (accelerometer_orientation == 90 || accelerometer_orientation == 270)
+ {
+ std::swap(win_w, win_h);
+ }
+
+ const int final_orientation = (camera_orientation + accelerometer_orientation) % 360;
+
+ if (final_orientation == 0 || final_orientation == 180)
+ {
+ if (win_w * nv21_height > win_h * nv21_width)
+ {
+ roi_w = nv21_width;
+ roi_h = (nv21_width * win_h / win_w) / 2 * 2;
+ roi_x = 0;
+ roi_y = ((nv21_height - roi_h) / 2) / 2 * 2;
+ }
+ else
+ {
+ roi_h = nv21_height;
+ roi_w = (nv21_height * win_w / win_h) / 2 * 2;
+ roi_x = ((nv21_width - roi_w) / 2) / 2 * 2;
+ roi_y = 0;
+ }
+
+ nv21_roi_x = roi_x;
+ nv21_roi_y = roi_y;
+ nv21_roi_w = roi_w;
+ nv21_roi_h = roi_h;
+ }
+ if (final_orientation == 90 || final_orientation == 270)
+ {
+ if (win_w * nv21_width > win_h * nv21_height)
+ {
+ roi_w = nv21_height;
+ roi_h = (nv21_height * win_h / win_w) / 2 * 2;
+ roi_x = 0;
+ roi_y = ((nv21_width - roi_h) / 2) / 2 * 2;
+ }
+ else
+ {
+ roi_h = nv21_width;
+ roi_w = (nv21_width * win_w / win_h) / 2 * 2;
+ roi_x = ((nv21_height - roi_w) / 2) / 2 * 2;
+ roi_y = 0;
+ }
+
+ nv21_roi_x = roi_y;
+ nv21_roi_y = roi_x;
+ nv21_roi_w = roi_h;
+ nv21_roi_h = roi_w;
+ }
+
+ if (camera_facing == 0)
+ {
+ if (camera_orientation == 0 && accelerometer_orientation == 0)
+ {
+ rotate_type = 2;
+ }
+ if (camera_orientation == 0 && accelerometer_orientation == 90)
+ {
+ rotate_type = 7;
+ }
+ if (camera_orientation == 0 && accelerometer_orientation == 180)
+ {
+ rotate_type = 4;
+ }
+ if (camera_orientation == 0 && accelerometer_orientation == 270)
+ {
+ rotate_type = 5;
+ }
+ if (camera_orientation == 90 && accelerometer_orientation == 0)
+ {
+ rotate_type = 5;
+ }
+ if (camera_orientation == 90 && accelerometer_orientation == 90)
+ {
+ rotate_type = 2;
+ }
+ if (camera_orientation == 90 && accelerometer_orientation == 180)
+ {
+ rotate_type = 7;
+ }
+ if (camera_orientation == 90 && accelerometer_orientation == 270)
+ {
+ rotate_type = 4;
+ }
+ if (camera_orientation == 180 && accelerometer_orientation == 0)
+ {
+ rotate_type = 4;
+ }
+ if (camera_orientation == 180 && accelerometer_orientation == 90)
+ {
+ rotate_type = 5;
+ }
+ if (camera_orientation == 180 && accelerometer_orientation == 180)
+ {
+ rotate_type = 2;
+ }
+ if (camera_orientation == 180 && accelerometer_orientation == 270)
+ {
+ rotate_type = 7;
+ }
+ if (camera_orientation == 270 && accelerometer_orientation == 0)
+ {
+ rotate_type = 7;
+ }
+ if (camera_orientation == 270 && accelerometer_orientation == 90)
+ {
+ rotate_type = 4;
+ }
+ if (camera_orientation == 270 && accelerometer_orientation == 180)
+ {
+ rotate_type = 5;
+ }
+ if (camera_orientation == 270 && accelerometer_orientation == 270)
+ {
+ rotate_type = 2;
+ }
+ }
+ else
+ {
+ if (final_orientation == 0)
+ {
+ rotate_type = 1;
+ }
+ if (final_orientation == 90)
+ {
+ rotate_type = 6;
+ }
+ if (final_orientation == 180)
+ {
+ rotate_type = 3;
+ }
+ if (final_orientation == 270)
+ {
+ rotate_type = 8;
+ }
+ }
+
+ if (accelerometer_orientation == 0)
+ {
+ render_w = roi_w;
+ render_h = roi_h;
+ render_rotate_type = 1;
+ }
+ if (accelerometer_orientation == 90)
+ {
+ render_w = roi_h;
+ render_h = roi_w;
+ render_rotate_type = 8;
+ }
+ if (accelerometer_orientation == 180)
+ {
+ render_w = roi_w;
+ render_h = roi_h;
+ render_rotate_type = 3;
+ }
+ if (accelerometer_orientation == 270)
+ {
+ render_w = roi_h;
+ render_h = roi_w;
+ render_rotate_type = 6;
+ }
+ }
+
+ // crop and rotate nv21
+ cv::Mat nv21_croprotated(roi_h + roi_h / 2, roi_w, CV_8UC1);
+ {
+ const unsigned char* srcY = nv21 + nv21_roi_y * nv21_width + nv21_roi_x;
+ unsigned char* dstY = nv21_croprotated.data;
+ ncnn::kanna_rotate_c1(srcY, nv21_roi_w, nv21_roi_h, nv21_width, dstY, roi_w, roi_h, roi_w, rotate_type);
+
+ const unsigned char* srcUV = nv21 + nv21_width * nv21_height + nv21_roi_y * nv21_width / 2 + nv21_roi_x;
+ unsigned char* dstUV = nv21_croprotated.data + roi_w * roi_h;
+ ncnn::kanna_rotate_c2(srcUV, nv21_roi_w / 2, nv21_roi_h / 2, nv21_width, dstUV, roi_w / 2, roi_h / 2, roi_w, rotate_type);
+ }
+
+ // nv21_croprotated to rgb
+ cv::Mat rgb(roi_h, roi_w, CV_8UC3);
+ ncnn::yuv420sp2rgb(nv21_croprotated.data, roi_w, roi_h, rgb.data);
+
+ on_image_render(rgb);
+
+ // rotate to native window orientation
+ cv::Mat rgb_render(render_h, render_w, CV_8UC3);
+ ncnn::kanna_rotate_c3(rgb.data, roi_w, roi_h, rgb_render.data, render_w, render_h, render_rotate_type);
+
+ ANativeWindow_setBuffersGeometry(win, render_w, render_h, AHARDWAREBUFFER_FORMAT_R8G8B8A8_UNORM);
+
+ ANativeWindow_Buffer buf;
+ ANativeWindow_lock(win, &buf, NULL);
+
+ // scale to target size
+ if (buf.format == AHARDWAREBUFFER_FORMAT_R8G8B8A8_UNORM || buf.format == AHARDWAREBUFFER_FORMAT_R8G8B8X8_UNORM)
+ {
+ for (int y = 0; y < render_h; y++)
+ {
+ const unsigned char* ptr = rgb_render.ptr(y);
+ unsigned char* outptr = (unsigned char*)buf.bits + buf.stride * 4 * y;
+
+ int x = 0;
+#if __ARM_NEON
+ for (; x + 7 < render_w; x += 8)
+ {
+ uint8x8x3_t _rgb = vld3_u8(ptr);
+ uint8x8x4_t _rgba;
+ _rgba.val[0] = _rgb.val[0];
+ _rgba.val[1] = _rgb.val[1];
+ _rgba.val[2] = _rgb.val[2];
+ _rgba.val[3] = vdup_n_u8(255);
+ vst4_u8(outptr, _rgba);
+
+ ptr += 24;
+ outptr += 32;
+ }
+#endif // __ARM_NEON
+ for (; x < render_w; x++)
+ {
+ outptr[0] = ptr[0];
+ outptr[1] = ptr[1];
+ outptr[2] = ptr[2];
+ outptr[3] = 255;
+
+ ptr += 3;
+ outptr += 4;
+ }
+ }
+ }
+
+ ANativeWindow_unlockAndPost(win);
+}
diff --git a/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/jni/ndkcamera.h b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/jni/ndkcamera.h
new file mode 100644
index 0000000000..ddd30eb8f3
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/jni/ndkcamera.h
@@ -0,0 +1,80 @@
+// Tencent is pleased to support the open source community by making ncnn available.
+//
+// Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved.
+//
+// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
+// in compliance with the License. You may obtain a copy of the License at
+//
+// https://opensource.org/licenses/BSD-3-Clause
+//
+// Unless required by applicable law or agreed to in writing, software distributed
+// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
+// CONDITIONS OF ANY KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations under the License.
+
+#ifndef NDKCAMERA_H
+#define NDKCAMERA_H
+
+#include
+#include
+#include
+#include
+#include
+#include
+#include
+
+#include
+
+class NdkCamera
+{
+public:
+ NdkCamera();
+ virtual ~NdkCamera();
+
+ // facing 0=front 1=back
+ int open(int camera_facing = 0);
+ void close();
+
+ virtual void on_image(const cv::Mat& rgb) const;
+
+ virtual void on_image(const unsigned char* nv21, int nv21_width, int nv21_height) const;
+
+public:
+ int camera_facing;
+ int camera_orientation;
+
+private:
+ ACameraManager* camera_manager;
+ ACameraDevice* camera_device;
+ AImageReader* image_reader;
+ ANativeWindow* image_reader_surface;
+ ACameraOutputTarget* image_reader_target;
+ ACaptureRequest* capture_request;
+ ACaptureSessionOutputContainer* capture_session_output_container;
+ ACaptureSessionOutput* capture_session_output;
+ ACameraCaptureSession* capture_session;
+};
+
+class NdkCameraWindow : public NdkCamera
+{
+public:
+ NdkCameraWindow();
+ virtual ~NdkCameraWindow();
+
+ void set_window(ANativeWindow* win);
+
+ virtual void on_image_render(cv::Mat& rgb) const;
+
+ virtual void on_image(const unsigned char* nv21, int nv21_width, int nv21_height) const;
+
+public:
+ mutable int accelerometer_orientation;
+
+private:
+ ASensorManager* sensor_manager;
+ mutable ASensorEventQueue* sensor_event_queue;
+ const ASensor* accelerometer_sensor;
+ ANativeWindow* win;
+};
+
+#endif // NDKCAMERA_H
diff --git a/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/jni/yolo.cpp b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/jni/yolo.cpp
new file mode 100644
index 0000000000..ce01888c91
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/jni/yolo.cpp
@@ -0,0 +1,416 @@
+// Tencent is pleased to support the open source community by making ncnn available.
+//
+// Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved.
+//
+// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
+// in compliance with the License. You may obtain a copy of the License at
+//
+// https://opensource.org/licenses/BSD-3-Clause
+//
+// Unless required by applicable law or agreed to in writing, software distributed
+// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
+// CONDITIONS OF ANY KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations under the License.
+
+#include "yolo.h"
+
+#include
+#include
+
+#include "cpu.h"
+
+static float fast_exp(float x)
+{
+ union {
+ uint32_t i;
+ float f;
+ } v{};
+ v.i = (1 << 23) * (1.4426950409 * x + 126.93490512f);
+ return v.f;
+}
+
+static float sigmoid(float x)
+{
+ return 1.0f / (1.0f + fast_exp(-x));
+}
+static float intersection_area(const Object& a, const Object& b)
+{
+ cv::Rect_ inter = a.rect & b.rect;
+ return inter.area();
+}
+
+static void qsort_descent_inplace(std::vector& faceobjects, int left, int right)
+{
+ int i = left;
+ int j = right;
+ float p = faceobjects[(left + right) / 2].prob;
+
+ while (i <= j)
+ {
+ while (faceobjects[i].prob > p)
+ i++;
+
+ while (faceobjects[j].prob < p)
+ j--;
+
+ if (i <= j)
+ {
+ // swap
+ std::swap(faceobjects[i], faceobjects[j]);
+
+ i++;
+ j--;
+ }
+ }
+
+ // #pragma omp parallel sections
+ {
+ // #pragma omp section
+ {
+ if (left < j) qsort_descent_inplace(faceobjects, left, j);
+ }
+ // #pragma omp section
+ {
+ if (i < right) qsort_descent_inplace(faceobjects, i, right);
+ }
+ }
+}
+
+static void qsort_descent_inplace(std::vector& faceobjects)
+{
+ if (faceobjects.empty())
+ return;
+
+ qsort_descent_inplace(faceobjects, 0, faceobjects.size() - 1);
+}
+
+static void nms_sorted_bboxes(const std::vector& faceobjects, std::vector& picked, float nms_threshold)
+{
+ picked.clear();
+
+ const int n = faceobjects.size();
+
+ std::vector areas(n);
+ for (int i = 0; i < n; i++)
+ {
+ areas[i] = faceobjects[i].rect.width * faceobjects[i].rect.height;
+ }
+
+ for (int i = 0; i < n; i++)
+ {
+ const Object& a = faceobjects[i];
+
+ int keep = 1;
+ for (int j = 0; j < (int)picked.size(); j++)
+ {
+ const Object& b = faceobjects[picked[j]];
+
+ // intersection over union
+ float inter_area = intersection_area(a, b);
+ float union_area = areas[i] + areas[picked[j]] - inter_area;
+ // float IoU = inter_area / union_area
+ if (inter_area / union_area > nms_threshold)
+ keep = 0;
+ }
+
+ if (keep)
+ picked.push_back(i);
+ }
+}
+
+static void generate_proposals(int stride, const ncnn::Mat& pred, float prob_threshold, std::vector& objects)
+{
+ const int num_c = pred.c;
+ const int num_grid_y = pred.h;
+ const int num_grid_x = pred.w;
+ const int num_classes = num_c - 4;
+
+ for (int i = 0; i < num_grid_y; i++) {
+ for (int j = 0; j < num_grid_x; j++) {
+ const float *ptr = (float *) pred.data;
+ int class_index = 0;
+ float class_score = -1.f;
+ for (int c = 0; c < num_classes; c++) {
+ float score = ptr[c * num_grid_y * num_grid_x + i * num_grid_x + j];
+ if (score > class_score) {
+ class_index = c;
+ class_score = score;
+ }
+ }
+ if (class_score >= prob_threshold && class_score < 1.f) {
+ float x0 = ptr[num_classes * num_grid_y * num_grid_x + i * num_grid_x + j];
+ float y0 = ptr[(num_classes + 1) * num_grid_y * num_grid_x + i * num_grid_x + j];
+ float x1 = ptr[(num_classes + 2) * num_grid_y * num_grid_x + i * num_grid_x + j];
+ float y1 = ptr[(num_classes + 3) * num_grid_y * num_grid_x + i * num_grid_x + j];
+
+ x0 = (j + 0.5f - x0) * stride;
+ y0 = (i + 0.5f - y0) * stride;
+ x1 = (j + 0.5f + x1) * stride;
+ y1 = (i + 0.5f + y1) * stride;
+
+ Object obj;
+ obj.rect.x = x0;
+ obj.rect.y = y0;
+ obj.rect.width = x1 - x0;
+ obj.rect.height = y1 - y0;
+ obj.label = class_index;
+ obj.prob = class_score;
+
+ objects.push_back(obj);
+
+ }
+ }
+ }
+}
+
+Yolo::Yolo()
+{
+ blob_pool_allocator.set_size_compare_ratio(0.f);
+ workspace_pool_allocator.set_size_compare_ratio(0.f);
+}
+
+
+int Yolo::load(AAssetManager* mgr, const char* modeltype, const int *target_size, const float* _mean_vals, const float* _norm_vals, bool use_gpu)
+{
+ yolo.clear();
+ blob_pool_allocator.clear();
+ workspace_pool_allocator.clear();
+
+ ncnn::set_cpu_powersave(2);
+ ncnn::set_omp_num_threads(ncnn::get_big_cpu_count());
+
+ yolo.opt = ncnn::Option();
+
+#if NCNN_VULKAN
+ yolo.opt.use_vulkan_compute = use_gpu;
+#endif
+
+ yolo.opt.num_threads = ncnn::get_big_cpu_count();
+ yolo.opt.blob_allocator = &blob_pool_allocator;
+ yolo.opt.workspace_allocator = &workspace_pool_allocator;
+
+ char parampath[256];
+ char modelpath[256];
+ sprintf(parampath, "yolov6-%s.param", modeltype);
+ sprintf(modelpath, "yolov6-%s.bin", modeltype);
+
+ yolo.load_param(mgr, parampath);
+ yolo.load_model(mgr, modelpath);
+
+ net_h = target_size[0];
+ net_w = target_size[1];
+ mean_vals[0] = _mean_vals[0];
+ mean_vals[1] = _mean_vals[1];
+ mean_vals[2] = _mean_vals[2];
+ norm_vals[0] = _norm_vals[0];
+ norm_vals[1] = _norm_vals[1];
+ norm_vals[2] = _norm_vals[2];
+
+ return 0;
+}
+
+int Yolo::detect(const cv::Mat& rgb, std::vector& objects, float prob_threshold, float nms_threshold)
+{
+ int width = rgb.cols;
+ int height = rgb.rows;
+
+ // pad to multiple of 64
+ int w = width;
+ int h = height;
+ float scale = 1.f;
+ if (w > h)
+ {
+ scale = net_w / (float)w;
+ w = net_w;
+ h = h * scale;
+ }
+ else
+ {
+ scale = net_h / (float)h;
+ h = net_h;
+ w = w * scale;
+ }
+
+ ncnn::Mat in = ncnn::Mat::from_pixels_resize(rgb.data, ncnn::Mat::PIXEL_RGB2BGR, width, height, w, h);
+
+ // pad to net_h net_w rectangle
+ int wpad = (w + 63) / 64 * 64 - w;
+ int hpad = (h + 63) / 64 * 64 - h;
+ ncnn::Mat in_pad;
+ ncnn::copy_make_border(in, in_pad, hpad / 2, hpad - hpad / 2, wpad / 2, wpad - wpad / 2, ncnn::BORDER_CONSTANT, 114.f);
+
+ in_pad.substract_mean_normalize(mean_vals, norm_vals);
+
+ ncnn::Extractor ex = yolo.create_extractor();
+
+ ex.input("in0", in_pad);
+
+ std::vector proposals;
+
+ // stride 8
+ {
+ ncnn::Mat out;
+ ex.extract("out0", out);
+
+ std::vector objects8;
+ generate_proposals(8, out, prob_threshold, objects8);
+
+ proposals.insert(proposals.end(), objects8.begin(), objects8.end());
+ }
+
+ // stride 16
+ {
+ ncnn::Mat out;
+ ex.extract("out1", out);
+
+ std::vector objects16;
+ generate_proposals(16, out, prob_threshold, objects16);
+
+ proposals.insert(proposals.end(), objects16.begin(), objects16.end());
+ }
+
+ // stride 32
+ {
+ ncnn::Mat out;
+ ex.extract("out2", out);
+
+ std::vector objects32;
+ generate_proposals(32, out, prob_threshold, objects32);
+
+ proposals.insert(proposals.end(), objects32.begin(), objects32.end());
+ }
+
+ // stride 64
+ {
+ ncnn::Mat out;
+ ex.extract("out3", out);
+
+ std::vector objects64;
+ generate_proposals(64, out, prob_threshold, objects64);
+
+ proposals.insert(proposals.end(), objects64.begin(), objects64.end());
+ }
+
+ // sort all proposals by score from highest to lowest
+ qsort_descent_inplace(proposals);
+
+ // apply nms with nms_threshold
+ std::vector picked;
+ nms_sorted_bboxes(proposals, picked, nms_threshold);
+
+ int count = picked.size();
+
+// objects.resize(count);
+ for (int i = 0; i < count; i++)
+ {
+ Object obj = proposals[picked[i]];
+
+ // adjust offset to original unpadded
+ float x0 = (obj.rect.x - (wpad / 2)) / scale;
+ float y0 = (obj.rect.y - (hpad / 2)) / scale;
+ float x1 = (obj.rect.x + obj.rect.width - (wpad / 2)) / scale;
+ float y1 = (obj.rect.y + obj.rect.height - (hpad / 2)) / scale;
+
+ // clip
+ x0 = std::floor(std::max(std::min(x0, (float)(width - 1)), 1.f));
+ y0 = std::floor(std::max(std::min(y0, (float)(height - 1)), 1.f));
+ x1 = std::ceil(std::max(std::min(x1, (float)(width - 1)), 1.f));
+ y1 = std::ceil(std::max(std::min(y1, (float)(height - 1)), 1.f));
+
+
+ obj.rect.x = x0;
+ obj.rect.y = y0;
+ obj.rect.width = x1 - x0;
+ obj.rect.height = y1 - y0;
+ if (obj.rect.width > 10.f && obj.rect.height > 10.f) {
+ objects.push_back(obj);
+ }
+ }
+
+ // sort objects by area
+ struct
+ {
+ bool operator()(const Object& a, const Object& b) const
+ {
+ return a.rect.area() > b.rect.area();
+ }
+ } objects_area_greater;
+ std::sort(objects.begin(), objects.end(), objects_area_greater);
+
+ return 0;
+}
+
+int Yolo::draw(cv::Mat& rgb, const std::vector& objects)
+{
+ static const char* class_names[] = {
+ "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light",
+ "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
+ "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
+ "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard",
+ "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple",
+ "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch",
+ "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone",
+ "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear",
+ "hair drier", "toothbrush"
+ };
+
+ static const unsigned char colors[19][3] = {
+ { 54, 67, 244},
+ { 99, 30, 233},
+ {176, 39, 156},
+ {183, 58, 103},
+ {181, 81, 63},
+ {243, 150, 33},
+ {244, 169, 3},
+ {212, 188, 0},
+ {136, 150, 0},
+ { 80, 175, 76},
+ { 74, 195, 139},
+ { 57, 220, 205},
+ { 59, 235, 255},
+ { 7, 193, 255},
+ { 0, 152, 255},
+ { 34, 87, 255},
+ { 72, 85, 121},
+ {158, 158, 158},
+ {139, 125, 96}
+ };
+
+ int color_index = 0;
+
+ for (int i = 0; i < objects.size(); i++)
+ {
+ const Object& obj = objects[i];
+
+// fprintf(stderr, "%d = %.5f at %.2f %.2f %.2f x %.2f\n", obj.label, obj.prob,
+// obj.rect.x, obj.rect.y, obj.rect.width, obj.rect.height);
+
+ const unsigned char* color = colors[color_index % 19];
+ color_index++;
+
+ cv::Scalar cc(color[0], color[1], color[2]);
+
+ cv::rectangle(rgb, obj.rect, cc, 2);
+
+ char text[256];
+ sprintf(text, "%s %.1f%%", class_names[obj.label], obj.prob * 100);
+
+ int baseLine = 0;
+ cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
+
+ int x = obj.rect.x;
+ int y = obj.rect.y - label_size.height - baseLine;
+ if (y < 0)
+ y = 0;
+ if (x + label_size.width > rgb.cols)
+ x = rgb.cols - label_size.width;
+
+ cv::rectangle(rgb, cv::Rect(cv::Point(x, y), cv::Size(label_size.width, label_size.height + baseLine)), cc, -1);
+
+ cv::Scalar textcc = (color[0] + color[1] + color[2] >= 381) ? cv::Scalar(0, 0, 0) : cv::Scalar(255, 255, 255);
+
+ cv::putText(rgb, text, cv::Point(x, y + label_size.height), cv::FONT_HERSHEY_SIMPLEX, 0.5, textcc, 1);
+ }
+
+ return 0;
+}
diff --git a/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/jni/yolo.h b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/jni/yolo.h
new file mode 100644
index 0000000000..d00977b271
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/jni/yolo.h
@@ -0,0 +1,52 @@
+// Tencent is pleased to support the open source community by making ncnn available.
+//
+// Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved.
+//
+// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
+// in compliance with the License. You may obtain a copy of the License at
+//
+// https://opensource.org/licenses/BSD-3-Clause
+//
+// Unless required by applicable law or agreed to in writing, software distributed
+// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
+// CONDITIONS OF ANY KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations under the License.
+
+#ifndef YOLO_H
+#define YOLO_H
+
+#include
+
+#include
+
+struct Object
+{
+ cv::Rect_ rect;
+ int label;
+ float prob;
+};
+
+class Yolo
+{
+public:
+ Yolo();
+
+ int load(const char* modeltype, const int *target_size, const float* mean_vals, const float* norm_vals, bool use_gpu = false);
+
+ int load(AAssetManager* mgr, const char* modeltype, const int *target_size, const float* mean_vals, const float* norm_vals, bool use_gpu = false);
+
+ int detect(const cv::Mat& rgb, std::vector& objects, float prob_threshold = 0.25f, float nms_threshold = 0.45f);
+
+ int draw(cv::Mat& rgb, const std::vector& objects);
+
+private:
+ ncnn::Net yolo;
+ int net_h;
+ int net_w;
+ float mean_vals[3];
+ float norm_vals[3];
+ ncnn::UnlockedPoolAllocator blob_pool_allocator;
+ ncnn::PoolAllocator workspace_pool_allocator;
+};
+
+#endif // NANODET_H
diff --git a/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/jni/yolov6ncnn.cpp b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/jni/yolov6ncnn.cpp
new file mode 100644
index 0000000000..88510783ea
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/jni/yolov6ncnn.cpp
@@ -0,0 +1,281 @@
+// Tencent is pleased to support the open source community by making ncnn available.
+//
+// Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved.
+//
+// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
+// in compliance with the License. You may obtain a copy of the License at
+//
+// https://opensource.org/licenses/BSD-3-Clause
+//
+// Unless required by applicable law or agreed to in writing, software distributed
+// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
+// CONDITIONS OF ANY KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations under the License.
+
+#include
+#include
+#include
+
+#include
+
+#include
+
+#include
+#include
+
+#include
+#include
+
+#include "yolo.h"
+
+#include "ndkcamera.h"
+
+#include
+#include
+
+#if __ARM_NEON
+#include
+#endif // __ARM_NEON
+
+static int draw_unsupported(cv::Mat& rgb)
+{
+ const char text[] = "unsupported";
+
+ int baseLine = 0;
+ cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 1.0, 1, &baseLine);
+
+ int y = (rgb.rows - label_size.height) / 2;
+ int x = (rgb.cols - label_size.width) / 2;
+
+ cv::rectangle(rgb, cv::Rect(cv::Point(x, y), cv::Size(label_size.width, label_size.height + baseLine)),
+ cv::Scalar(255, 255, 255), -1);
+
+ cv::putText(rgb, text, cv::Point(x, y + label_size.height),
+ cv::FONT_HERSHEY_SIMPLEX, 1.0, cv::Scalar(0, 0, 0));
+
+ return 0;
+}
+
+static int draw_fps(cv::Mat& rgb)
+{
+ // resolve moving average
+ float avg_fps = 0.f;
+ {
+ static double t0 = 0.f;
+ static float fps_history[10] = {0.f};
+
+ double t1 = ncnn::get_current_time();
+ if (t0 == 0.f)
+ {
+ t0 = t1;
+ return 0;
+ }
+
+ float fps = 1000.f / (t1 - t0);
+ t0 = t1;
+
+ for (int i = 9; i >= 1; i--)
+ {
+ fps_history[i] = fps_history[i - 1];
+ }
+ fps_history[0] = fps;
+
+ if (fps_history[9] == 0.f)
+ {
+ return 0;
+ }
+
+ for (int i = 0; i < 10; i++)
+ {
+ avg_fps += fps_history[i];
+ }
+ avg_fps /= 10.f;
+ }
+
+ char text[32];
+ sprintf(text, "FPS=%.2f", avg_fps);
+
+ int baseLine = 0;
+ cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
+
+ int y = 0;
+ int x = rgb.cols - label_size.width;
+
+ cv::rectangle(rgb, cv::Rect(cv::Point(x, y), cv::Size(label_size.width, label_size.height + baseLine)),
+ cv::Scalar(255, 255, 255), -1);
+
+ cv::putText(rgb, text, cv::Point(x, y + label_size.height),
+ cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0));
+
+ return 0;
+}
+
+static Yolo* g_yolo = 0;
+static ncnn::Mutex lock;
+
+class MyNdkCamera : public NdkCameraWindow
+{
+public:
+ virtual void on_image_render(cv::Mat& rgb) const;
+};
+
+void MyNdkCamera::on_image_render(cv::Mat& rgb) const
+{
+ // nanodet
+ {
+ ncnn::MutexLockGuard g(lock);
+
+ if (g_yolo)
+ {
+ std::vector objects;
+
+ g_yolo->detect(rgb, objects);
+
+ g_yolo->draw(rgb, objects);
+ }
+ else
+ {
+ draw_unsupported(rgb);
+ }
+ }
+
+ draw_fps(rgb);
+}
+
+static MyNdkCamera* g_camera = 0;
+
+extern "C" {
+
+JNIEXPORT jint JNI_OnLoad(JavaVM* vm, void* reserved)
+{
+ __android_log_print(ANDROID_LOG_DEBUG, "ncnn", "JNI_OnLoad");
+
+ g_camera = new MyNdkCamera;
+
+ return JNI_VERSION_1_4;
+}
+
+JNIEXPORT void JNI_OnUnload(JavaVM* vm, void* reserved)
+{
+ __android_log_print(ANDROID_LOG_DEBUG, "ncnn", "JNI_OnUnload");
+
+ {
+ ncnn::MutexLockGuard g(lock);
+
+ delete g_yolo;
+ g_yolo = 0;
+ }
+
+ delete g_camera;
+ g_camera = 0;
+}
+
+// public native boolean loadModel(AssetManager mgr, int modelid, int cpugpu);
+JNIEXPORT jboolean JNICALL Java_com_tencent_yolov6ncnn_Yolov6Ncnn_loadModel(JNIEnv* env, jobject thiz, jobject assetManager, jint modelid, jint cpugpu)
+{
+ if (modelid < 0 || modelid > 4 || cpugpu < 0 || cpugpu > 1)
+ {
+ return JNI_FALSE;
+ }
+
+ AAssetManager* mgr = AAssetManager_fromJava(env, assetManager);
+
+ __android_log_print(ANDROID_LOG_DEBUG, "ncnn", "loadModel %p", mgr);
+
+ const char* modeltypes[] =
+ {
+ "lite-s",
+ "lite-m",
+ "lite-l0",
+ "lite-l1",
+ "lite-l2",
+ };
+
+ const int target_sizes[][2] =
+ {
+ {320, 320},
+ {320, 320},
+ {320, 320},
+ {320, 192},
+ {224, 128}
+ };
+
+ const float mean_vals[][3] =
+ {
+ {0.f, 0.f, 0.f},
+ {0.f, 0.f, 0.f},
+ {0.f, 0.f, 0.f},
+ {0.f, 0.f, 0.f},
+ {0.f, 0.f, 0.f}
+ };
+
+ const float norm_vals[][3] =
+ {
+ { 1 / 255.f, 1 / 255.f, 1 / 255.f },
+ { 1 / 255.f, 1 / 255.f, 1 / 255.f },
+ { 1 / 255.f, 1 / 255.f, 1 / 255.f },
+ { 1 / 255.f, 1 / 255.f, 1 / 255.f },
+ { 1 / 255.f, 1 / 255.f, 1 / 255.f }
+ };
+
+ const char* modeltype = modeltypes[(int)modelid];
+ const int *target_size = target_sizes[(int)modelid];
+ bool use_gpu = (int)cpugpu == 1;
+
+ // reload
+ {
+ ncnn::MutexLockGuard g(lock);
+
+ if (use_gpu && ncnn::get_gpu_count() == 0)
+ {
+ // no gpu
+ delete g_yolo;
+ g_yolo = 0;
+ }
+ else
+ {
+ if (!g_yolo)
+ g_yolo = new Yolo;
+ g_yolo->load(mgr, modeltype, target_size, mean_vals[(int)modelid], norm_vals[(int)modelid], use_gpu);
+ }
+ }
+
+ return JNI_TRUE;
+}
+
+// public native boolean openCamera(int facing);
+JNIEXPORT jboolean JNICALL Java_com_tencent_yolov6ncnn_Yolov6Ncnn_openCamera(JNIEnv* env, jobject thiz, jint facing)
+{
+ if (facing < 0 || facing > 1)
+ return JNI_FALSE;
+
+ __android_log_print(ANDROID_LOG_DEBUG, "ncnn", "openCamera %d", facing);
+
+ g_camera->open((int)facing);
+
+ return JNI_TRUE;
+}
+
+// public native boolean closeCamera();
+JNIEXPORT jboolean JNICALL Java_com_tencent_yolov6ncnn_Yolov6Ncnn_closeCamera(JNIEnv* env, jobject thiz)
+{
+ __android_log_print(ANDROID_LOG_DEBUG, "ncnn", "closeCamera");
+
+ g_camera->close();
+
+ return JNI_TRUE;
+}
+
+// public native boolean setOutputWindow(Surface surface);
+JNIEXPORT jboolean JNICALL Java_com_tencent_yolov6ncnn_Yolov6Ncnn_setOutputWindow(JNIEnv* env, jobject thiz, jobject surface)
+{
+ ANativeWindow* win = ANativeWindow_fromSurface(env, surface);
+
+ __android_log_print(ANDROID_LOG_DEBUG, "ncnn", "setOutputWindow %p", win);
+
+ g_camera->set_window(win);
+
+ return JNI_TRUE;
+}
+
+}
diff --git a/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/res/layout/main.xml b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/res/layout/main.xml
new file mode 100644
index 0000000000..e8a4512529
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/res/layout/main.xml
@@ -0,0 +1,60 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/res/values/strings.xml b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/res/values/strings.xml
new file mode 100644
index 0000000000..70e639bc51
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/app/src/main/res/values/strings.xml
@@ -0,0 +1,15 @@
+
+
+ ncnn-yolov6-by-tripleMu
+
+ - lite-s
+ - lite-m
+ - lite-l0
+ - lite-l1
+ - lite-l2
+
+
+ - CPU
+ - GPU
+
+
diff --git a/python/app/fedcv/YOLOv6/deploy/NCNN/Android/build.gradle b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/build.gradle
new file mode 100644
index 0000000000..5c8fc4ab50
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/build.gradle
@@ -0,0 +1,17 @@
+// Top-level build file where you can add configuration options common to all sub-projects/modules.
+buildscript {
+ repositories {
+ jcenter()
+ google()
+ }
+ dependencies {
+ classpath 'com.android.tools.build:gradle:8.0.0'
+ }
+}
+
+allprojects {
+ repositories {
+ jcenter()
+ google()
+ }
+}
diff --git a/python/app/fedcv/YOLOv6/deploy/NCNN/Android/gradle/wrapper/gradle-wrapper.jar b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/gradle/wrapper/gradle-wrapper.jar
new file mode 100644
index 0000000000..7454180f2a
Binary files /dev/null and b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/gradle/wrapper/gradle-wrapper.jar differ
diff --git a/python/app/fedcv/YOLOv6/deploy/NCNN/Android/gradle/wrapper/gradle-wrapper.properties b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/gradle/wrapper/gradle-wrapper.properties
new file mode 100644
index 0000000000..3a02907943
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/gradle/wrapper/gradle-wrapper.properties
@@ -0,0 +1,5 @@
+distributionBase=GRADLE_USER_HOME
+distributionPath=wrapper/dists
+distributionUrl=https\://services.gradle.org/distributions/gradle-8.0-all.zip
+zipStoreBase=GRADLE_USER_HOME
+zipStorePath=wrapper/dists
diff --git a/python/app/fedcv/YOLOv6/deploy/NCNN/Android/gradlew b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/gradlew
new file mode 100644
index 0000000000..1b6c787337
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/gradlew
@@ -0,0 +1,234 @@
+#!/bin/sh
+
+#
+# Copyright © 2015-2021 the original authors.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# https://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+
+##############################################################################
+#
+# Gradle start up script for POSIX generated by Gradle.
+#
+# Important for running:
+#
+# (1) You need a POSIX-compliant shell to run this script. If your /bin/sh is
+# noncompliant, but you have some other compliant shell such as ksh or
+# bash, then to run this script, type that shell name before the whole
+# command line, like:
+#
+# ksh Gradle
+#
+# Busybox and similar reduced shells will NOT work, because this script
+# requires all of these POSIX shell features:
+# * functions;
+# * expansions «$var», «${var}», «${var:-default}», «${var+SET}»,
+# «${var#prefix}», «${var%suffix}», and «$( cmd )»;
+# * compound commands having a testable exit status, especially «case»;
+# * various built-in commands including «command», «set», and «ulimit».
+#
+# Important for patching:
+#
+# (2) This script targets any POSIX shell, so it avoids extensions provided
+# by Bash, Ksh, etc; in particular arrays are avoided.
+#
+# The "traditional" practice of packing multiple parameters into a
+# space-separated string is a well documented source of bugs and security
+# problems, so this is (mostly) avoided, by progressively accumulating
+# options in "$@", and eventually passing that to Java.
+#
+# Where the inherited environment variables (DEFAULT_JVM_OPTS, JAVA_OPTS,
+# and GRADLE_OPTS) rely on word-splitting, this is performed explicitly;
+# see the in-line comments for details.
+#
+# There are tweaks for specific operating systems such as AIX, CygWin,
+# Darwin, MinGW, and NonStop.
+#
+# (3) This script is generated from the Groovy template
+# https://github.com/gradle/gradle/blob/master/subprojects/plugins/src/main/resources/org/gradle/api/internal/plugins/unixStartScript.txt
+# within the Gradle project.
+#
+# You can find Gradle at https://github.com/gradle/gradle/.
+#
+##############################################################################
+
+# Attempt to set APP_HOME
+
+# Resolve links: $0 may be a link
+app_path=$0
+
+# Need this for daisy-chained symlinks.
+while
+ APP_HOME=${app_path%"${app_path##*/}"} # leaves a trailing /; empty if no leading path
+ [ -h "$app_path" ]
+do
+ ls=$( ls -ld "$app_path" )
+ link=${ls#*' -> '}
+ case $link in #(
+ /*) app_path=$link ;; #(
+ *) app_path=$APP_HOME$link ;;
+ esac
+done
+
+APP_HOME=$( cd "${APP_HOME:-./}" && pwd -P ) || exit
+
+APP_NAME="Gradle"
+APP_BASE_NAME=${0##*/}
+
+# Add default JVM options here. You can also use JAVA_OPTS and GRADLE_OPTS to pass JVM options to this script.
+DEFAULT_JVM_OPTS='"-Xmx64m" "-Xms64m"'
+
+# Use the maximum available, or set MAX_FD != -1 to use that value.
+MAX_FD=maximum
+
+warn () {
+ echo "$*"
+} >&2
+
+die () {
+ echo
+ echo "$*"
+ echo
+ exit 1
+} >&2
+
+# OS specific support (must be 'true' or 'false').
+cygwin=false
+msys=false
+darwin=false
+nonstop=false
+case "$( uname )" in #(
+ CYGWIN* ) cygwin=true ;; #(
+ Darwin* ) darwin=true ;; #(
+ MSYS* | MINGW* ) msys=true ;; #(
+ NONSTOP* ) nonstop=true ;;
+esac
+
+CLASSPATH=$APP_HOME/gradle/wrapper/gradle-wrapper.jar
+
+
+# Determine the Java command to use to start the JVM.
+if [ -n "$JAVA_HOME" ] ; then
+ if [ -x "$JAVA_HOME/jre/sh/java" ] ; then
+ # IBM's JDK on AIX uses strange locations for the executables
+ JAVACMD=$JAVA_HOME/jre/sh/java
+ else
+ JAVACMD=$JAVA_HOME/bin/java
+ fi
+ if [ ! -x "$JAVACMD" ] ; then
+ die "ERROR: JAVA_HOME is set to an invalid directory: $JAVA_HOME
+
+Please set the JAVA_HOME variable in your environment to match the
+location of your Java installation."
+ fi
+else
+ JAVACMD=java
+ which java >/dev/null 2>&1 || die "ERROR: JAVA_HOME is not set and no 'java' command could be found in your PATH.
+
+Please set the JAVA_HOME variable in your environment to match the
+location of your Java installation."
+fi
+
+# Increase the maximum file descriptors if we can.
+if ! "$cygwin" && ! "$darwin" && ! "$nonstop" ; then
+ case $MAX_FD in #(
+ max*)
+ MAX_FD=$( ulimit -H -n ) ||
+ warn "Could not query maximum file descriptor limit"
+ esac
+ case $MAX_FD in #(
+ '' | soft) :;; #(
+ *)
+ ulimit -n "$MAX_FD" ||
+ warn "Could not set maximum file descriptor limit to $MAX_FD"
+ esac
+fi
+
+# Collect all arguments for the java command, stacking in reverse order:
+# * args from the command line
+# * the main class name
+# * -classpath
+# * -D...appname settings
+# * --module-path (only if needed)
+# * DEFAULT_JVM_OPTS, JAVA_OPTS, and GRADLE_OPTS environment variables.
+
+# For Cygwin or MSYS, switch paths to Windows format before running java
+if "$cygwin" || "$msys" ; then
+ APP_HOME=$( cygpath --path --mixed "$APP_HOME" )
+ CLASSPATH=$( cygpath --path --mixed "$CLASSPATH" )
+
+ JAVACMD=$( cygpath --unix "$JAVACMD" )
+
+ # Now convert the arguments - kludge to limit ourselves to /bin/sh
+ for arg do
+ if
+ case $arg in #(
+ -*) false ;; # don't mess with options #(
+ /?*) t=${arg#/} t=/${t%%/*} # looks like a POSIX filepath
+ [ -e "$t" ] ;; #(
+ *) false ;;
+ esac
+ then
+ arg=$( cygpath --path --ignore --mixed "$arg" )
+ fi
+ # Roll the args list around exactly as many times as the number of
+ # args, so each arg winds up back in the position where it started, but
+ # possibly modified.
+ #
+ # NB: a `for` loop captures its iteration list before it begins, so
+ # changing the positional parameters here affects neither the number of
+ # iterations, nor the values presented in `arg`.
+ shift # remove old arg
+ set -- "$@" "$arg" # push replacement arg
+ done
+fi
+
+# Collect all arguments for the java command;
+# * $DEFAULT_JVM_OPTS, $JAVA_OPTS, and $GRADLE_OPTS can contain fragments of
+# shell script including quotes and variable substitutions, so put them in
+# double quotes to make sure that they get re-expanded; and
+# * put everything else in single quotes, so that it's not re-expanded.
+
+set -- \
+ "-Dorg.gradle.appname=$APP_BASE_NAME" \
+ -classpath "$CLASSPATH" \
+ org.gradle.wrapper.GradleWrapperMain \
+ "$@"
+
+# Use "xargs" to parse quoted args.
+#
+# With -n1 it outputs one arg per line, with the quotes and backslashes removed.
+#
+# In Bash we could simply go:
+#
+# readarray ARGS < <( xargs -n1 <<<"$var" ) &&
+# set -- "${ARGS[@]}" "$@"
+#
+# but POSIX shell has neither arrays nor command substitution, so instead we
+# post-process each arg (as a line of input to sed) to backslash-escape any
+# character that might be a shell metacharacter, then use eval to reverse
+# that process (while maintaining the separation between arguments), and wrap
+# the whole thing up as a single "set" statement.
+#
+# This will of course break if any of these variables contains a newline or
+# an unmatched quote.
+#
+
+eval "set -- $(
+ printf '%s\n' "$DEFAULT_JVM_OPTS $JAVA_OPTS $GRADLE_OPTS" |
+ xargs -n1 |
+ sed ' s~[^-[:alnum:]+,./:=@_]~\\&~g; ' |
+ tr '\n' ' '
+ )" '"$@"'
+
+exec "$JAVACMD" "$@"
diff --git a/python/app/fedcv/YOLOv6/deploy/NCNN/Android/gradlew.bat b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/gradlew.bat
new file mode 100644
index 0000000000..107acd32c4
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/gradlew.bat
@@ -0,0 +1,89 @@
+@rem
+@rem Copyright 2015 the original author or authors.
+@rem
+@rem Licensed under the Apache License, Version 2.0 (the "License");
+@rem you may not use this file except in compliance with the License.
+@rem You may obtain a copy of the License at
+@rem
+@rem https://www.apache.org/licenses/LICENSE-2.0
+@rem
+@rem Unless required by applicable law or agreed to in writing, software
+@rem distributed under the License is distributed on an "AS IS" BASIS,
+@rem WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+@rem See the License for the specific language governing permissions and
+@rem limitations under the License.
+@rem
+
+@if "%DEBUG%" == "" @echo off
+@rem ##########################################################################
+@rem
+@rem Gradle startup script for Windows
+@rem
+@rem ##########################################################################
+
+@rem Set local scope for the variables with windows NT shell
+if "%OS%"=="Windows_NT" setlocal
+
+set DIRNAME=%~dp0
+if "%DIRNAME%" == "" set DIRNAME=.
+set APP_BASE_NAME=%~n0
+set APP_HOME=%DIRNAME%
+
+@rem Resolve any "." and ".." in APP_HOME to make it shorter.
+for %%i in ("%APP_HOME%") do set APP_HOME=%%~fi
+
+@rem Add default JVM options here. You can also use JAVA_OPTS and GRADLE_OPTS to pass JVM options to this script.
+set DEFAULT_JVM_OPTS="-Xmx64m" "-Xms64m"
+
+@rem Find java.exe
+if defined JAVA_HOME goto findJavaFromJavaHome
+
+set JAVA_EXE=java.exe
+%JAVA_EXE% -version >NUL 2>&1
+if "%ERRORLEVEL%" == "0" goto execute
+
+echo.
+echo ERROR: JAVA_HOME is not set and no 'java' command could be found in your PATH.
+echo.
+echo Please set the JAVA_HOME variable in your environment to match the
+echo location of your Java installation.
+
+goto fail
+
+:findJavaFromJavaHome
+set JAVA_HOME=%JAVA_HOME:"=%
+set JAVA_EXE=%JAVA_HOME%/bin/java.exe
+
+if exist "%JAVA_EXE%" goto execute
+
+echo.
+echo ERROR: JAVA_HOME is set to an invalid directory: %JAVA_HOME%
+echo.
+echo Please set the JAVA_HOME variable in your environment to match the
+echo location of your Java installation.
+
+goto fail
+
+:execute
+@rem Setup the command line
+
+set CLASSPATH=%APP_HOME%\gradle\wrapper\gradle-wrapper.jar
+
+
+@rem Execute Gradle
+"%JAVA_EXE%" %DEFAULT_JVM_OPTS% %JAVA_OPTS% %GRADLE_OPTS% "-Dorg.gradle.appname=%APP_BASE_NAME%" -classpath "%CLASSPATH%" org.gradle.wrapper.GradleWrapperMain %*
+
+:end
+@rem End local scope for the variables with windows NT shell
+if "%ERRORLEVEL%"=="0" goto mainEnd
+
+:fail
+rem Set variable GRADLE_EXIT_CONSOLE if you need the _script_ return code instead of
+rem the _cmd.exe /c_ return code!
+if not "" == "%GRADLE_EXIT_CONSOLE%" exit 1
+exit /b 1
+
+:mainEnd
+if "%OS%"=="Windows_NT" endlocal
+
+:omega
diff --git a/python/app/fedcv/YOLOv6/deploy/NCNN/Android/local.properties b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/local.properties
new file mode 100644
index 0000000000..e471f500c5
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/local.properties
@@ -0,0 +1,9 @@
+## This file must *NOT* be checked into Version Control Systems,
+# as it contains information specific to your local configuration.
+#
+# Location of the SDK. This is only used by Gradle.
+# For customization when using a Version Control System, please read the
+# header note.
+#Sat Apr 29 05:42:51 CST 2023
+cmake.dir=/home/ubuntu/Android/Sdk/cmake/3.10.2.4988404
+sdk.dir=/home/ubuntu/Android/Sdk
diff --git a/python/app/fedcv/YOLOv6/deploy/NCNN/Android/settings.gradle b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/settings.gradle
new file mode 100644
index 0000000000..e7b4def49c
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/NCNN/Android/settings.gradle
@@ -0,0 +1 @@
+include ':app'
diff --git a/python/app/fedcv/YOLOv6/deploy/NCNN/README.md b/python/app/fedcv/YOLOv6/deploy/NCNN/README.md
new file mode 100644
index 0000000000..a2a9a55977
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/NCNN/README.md
@@ -0,0 +1,76 @@
+# Export NCNN Model By PNNX with TorchScript
+
+## Export TorchScript
+
+```shell
+python ./deploy/NCNN/export_torchscript.py \
+ --weights yolov6lite_s.pt \
+ --img 320 320 \
+ --batch 1
+```
+
+#### Description of all arguments
+
+- `--weights` : The path of yolov6 model weights.
+- `--img` : Image size of model inputs.
+- `--batch` : Batch size of model inputs.
+- `--device` : Export device. Cuda device : 0 or 0,1,2,3 ... , CPU : cpu .
+
+## Export NCNN with TorchScript
+
+- Download tools from [PNNX](https://github.com/pnnx/pnnx/releases)
+- [Usage](https://github.com/triple-Mu/ncnn/blob/master/tools/pnnx/README.md)
+
+ Unzip the `pnnx-YYYYMMDD-PLANTFORM.zip` and add the `pnnx` to your `PATH` .
+
+ Then run the following command to export ncnn model :
+
+ ```shell
+ mkdir -p work_dir
+ mv yolov6lite_s.torchscript work_dir
+ cd work_dir
+ pnnx yolov6lite_s.torchscript inputshape=[1,3,320,320]f32
+ ```
+
+ You will get `yolov6lite_s.ncnn.bin` and `yolov6lite_s.ncnn.param` in `work_dir` .
+
+ If you want to try int8 quantization, you can get more information from [here](https://github.com/Tencent/ncnn/blob/master/docs/how-to-use-and-FAQ/quantized-int8-inference.md) .
+
+## Run inference with NCNN-Python
+
+```shell
+python3 deploy/NCNN/infer-ncnn-model.py \
+ data/images/image1.jpg \
+ work_dir/yolov6lite_s.ncnn.param \
+ work_dir/yolov6lite_s.ncnn.bin \
+ --img-size 320 320 \
+ --max-stride 64 \
+ --show
+```
+
+#### Description of all arguments
+
+- `img` : The path of image you want to detect.
+- `param` : The NCNN param path.
+- `bin` : The NCNN bin path.
+- `--show` : Whether to show detection resulut.
+- `--out-dir` : The output path to save detection result.
+- `--img-size` : The image height and width for model input.
+- `--max-stride` : The yolov6 lite model max stride.
+
+***Notice!***
+
+If you want to try norm yolov6 model such as `yolov6n/s/m/l`, you should add `--max-stride 32` flags .
+
+
+## Download
+
+* [YOLOv6-lite-s]()
+* [YOLOv6-lite-m]()
+* [YOLOv6-lite-l]()
+* [YOLOv6-lite-l-320x192]()
+* [YOLOv6-lite-l-224x128]()
+* [YOLOv6-n]()
+* [YOLOv6-s]()
+* [YOLOv6-m]()
+* [YOLOv6-l]()
diff --git a/python/app/fedcv/object_detection/model/yolov6/deploy/ONNX/export_onnx.py b/python/app/fedcv/YOLOv6/deploy/NCNN/export_torchscript.py
similarity index 52%
rename from python/app/fedcv/object_detection/model/yolov6/deploy/ONNX/export_onnx.py
rename to python/app/fedcv/YOLOv6/deploy/NCNN/export_torchscript.py
index 6d5040ead9..35afe21d2f 100644
--- a/python/app/fedcv/object_detection/model/yolov6/deploy/ONNX/export_onnx.py
+++ b/python/app/fedcv/YOLOv6/deploy/NCNN/export_torchscript.py
@@ -6,14 +6,14 @@
import os
import torch
import torch.nn as nn
-import onnx
ROOT = os.getcwd()
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT))
from yolov6.models.yolo import *
-from yolov6.models.effidehead import Detect
+from yolov6.models.effidehead import Detect as NormDetect
+from yolov6.models.heads.effidehead_lite import Detect as LiteDetect
from yolov6.layers.common import *
from yolov6.utils.events import LOGGER
from yolov6.utils.checkpoint import load_checkpoint
@@ -21,12 +21,10 @@
if __name__ == '__main__':
parser = argparse.ArgumentParser()
- parser.add_argument('--weights', type=str, default='./yolov6s.pt', help='weights path')
- parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
+ parser.add_argument('--weights', type=str, default='./yolov6lite_s.pt', help='weights path')
+ parser.add_argument('--img-size', nargs='+', type=int, default=[320, 320], help='image size, the order is: height width') # height, width
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
- parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
- parser.add_argument('--inplace', action='store_true', help='set Detect() inplace=True')
- parser.add_argument('--device', default='0', help='cuda device, i.e. 0 or 0, 1, 2, 3 or cpu')
+ parser.add_argument('--device', default='0', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
args = parser.parse_args()
args.img_size *= 2 if len(args.img_size) == 1 else 1 # expand
print(args)
@@ -34,47 +32,41 @@
# Check device
cuda = args.device != 'cpu' and torch.cuda.is_available()
- device = torch.device('cuda:0' if cuda else 'cpu')
+ device = torch.device(f'cuda:{args.device}' if cuda else 'cpu')
assert not (device.type == 'cpu' and args.half), '--half only compatible with GPU export, i.e. use --device 0'
# Load PyTorch model
model = load_checkpoint(args.weights, map_location=device, inplace=True, fuse=True) # load FP32 model
+ # Switch export mode
+ model.export = True
for layer in model.modules():
if isinstance(layer, RepVGGBlock):
layer.switch_to_deploy()
-
+ elif isinstance(layer, nn.Upsample) and not hasattr(layer, 'recompute_scale_factor'):
+ layer.recompute_scale_factor = None # torch 1.11.0 compatibility
# Input
img = torch.zeros(args.batch_size, 3, *args.img_size).to(device) # image size(1,3,320,192) iDetection
- # Update model
- if args.half:
- img, model = img.half(), model.half() # to FP16
model.eval()
for k, m in model.named_modules():
- if isinstance(m, Conv): # assign export-friendly activations
- if isinstance(m.act, nn.SiLU):
- m.act = SiLU()
- elif isinstance(m, Detect):
- m.inplace = args.inplace
+ if isinstance(m, (NormDetect, LiteDetect)):
+ m.export = True
+
+ print("===================")
+ print(model)
+ print("===================")
y = model(img) # dry run
- # ONNX export
+ # TorchScript export
try:
- LOGGER.info('\nStarting to export ONNX...')
- export_file = args.weights.replace('.pt', '.onnx') # filename
- torch.onnx.export(model, img, export_file, verbose=False, opset_version=12,
- training=torch.onnx.TrainingMode.EVAL,
- do_constant_folding=True,
- input_names=['image_arrays'],
- output_names=['outputs'],
- )
+ LOGGER.info('\nStarting to export TorchScript...')
+ export_file = args.weights.replace('.pt', '.torchscript') # filename
+ trace_model = torch.jit.trace(model, img)
+
+ trace_model.save(export_file)
- # Checks
- onnx_model = onnx.load(export_file) # load onnx model
- onnx.checker.check_model(onnx_model) # check onnx model
- LOGGER.info(f'ONNX export success, saved as {export_file}')
except Exception as e:
- LOGGER.info(f'ONNX export failure: {e}')
+ LOGGER.info(f'TorchScript export failure: {e}')
# Finish
LOGGER.info('\nExport complete (%.2fs)' % (time.time() - t))
diff --git a/python/app/fedcv/YOLOv6/deploy/NCNN/infer-ncnn-model.py b/python/app/fedcv/YOLOv6/deploy/NCNN/infer-ncnn-model.py
new file mode 100644
index 0000000000..567dae50a3
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/NCNN/infer-ncnn-model.py
@@ -0,0 +1,262 @@
+import numpy as np
+import cv2
+import argparse
+from numpy import ndarray
+from typing import List
+import math
+import ncnn
+import sys
+import os
+
+ROOT = os.getcwd()
+if str(ROOT) not in sys.path:
+ sys.path.append(str(ROOT))
+MAJOR, MINOR = map(int, cv2.__version__.split('.')[:2])
+assert MAJOR == 4
+
+
+def softmax(x: ndarray, axis: int = -1) -> ndarray:
+ e_x = np.exp(x - np.max(x, axis=axis, keepdims=True))
+ y = e_x / e_x.sum(axis=axis, keepdims=True)
+ return y
+
+
+def sigmoid(x: ndarray) -> ndarray:
+ return 1. / (1. + np.exp(-x))
+
+
+CLASS_NAMES = ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
+ 'train', 'truck', 'boat', 'traffic light', 'fire hydrant',
+ 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog',
+ 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe',
+ 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
+ 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat',
+ 'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
+ 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
+ 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot',
+ 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
+ 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop',
+ 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave',
+ 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock',
+ 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush')
+
+CLASS_COLORS = [(220, 20, 60), (119, 11, 32), (0, 0, 142), (0, 0, 230),
+ (106, 0, 228), (0, 60, 100), (0, 80, 100), (0, 0, 70),
+ (0, 0, 192), (250, 170, 30), (100, 170, 30), (220, 220, 0),
+ (175, 116, 175), (250, 0, 30), (165, 42, 42), (255, 77, 255),
+ (0, 226, 252), (182, 182, 255), (0, 82, 0), (120, 166, 157),
+ (110, 76, 0), (174, 57, 255), (199, 100, 0), (72, 0, 118),
+ (255, 179, 240), (0, 125, 92), (209, 0, 151), (188, 208, 182),
+ (0, 220, 176), (255, 99, 164), (92, 0, 73), (133, 129, 255),
+ (78, 180, 255), (0, 228, 0), (174, 255, 243), (45, 89, 255),
+ (134, 134, 103), (145, 148, 174), (255, 208, 186),
+ (197, 226, 255), (171, 134, 1), (109, 63, 54), (207, 138, 255),
+ (151, 0, 95), (9, 80, 61), (84, 105, 51), (74, 65, 105),
+ (166, 196, 102), (208, 195, 210), (255, 109, 65),
+ (0, 143, 149), (179, 0, 194), (209, 99, 106), (5, 121, 0),
+ (227, 255, 205), (147, 186, 208), (153, 69, 1), (3, 95, 161),
+ (163, 255, 0), (119, 0, 170), (0, 182, 199), (0, 165, 120),
+ (183, 130, 88), (95, 32, 0), (130, 114, 135), (110, 129, 133),
+ (166, 74, 118), (219, 142, 185), (79, 210, 114), (178, 90, 62),
+ (65, 70, 15), (127, 167, 115), (59, 105, 106), (142, 108, 45),
+ (196, 172, 0), (95, 54, 80), (128, 76, 255), (201, 57, 1),
+ (246, 0, 122), (191, 162, 208)]
+
+MASK_COLORS = np.array([(255, 56, 56), (255, 157, 151), (255, 112, 31),
+ (255, 178, 29), (207, 210, 49), (72, 249, 10),
+ (146, 204, 23), (61, 219, 134), (26, 147, 52),
+ (0, 212, 187), (44, 153, 168), (0, 194, 255),
+ (52, 69, 147), (100, 115, 255), (0, 24, 236),
+ (132, 56, 255), (82, 0, 133), (203, 56, 255),
+ (255, 149, 200), (255, 55, 199)],
+ dtype=np.uint8)
+
+CONF_THRES = 0.45
+IOU_THRES = 0.65
+
+
+def parse_args() -> argparse.Namespace:
+ parser = argparse.ArgumentParser()
+ parser.add_argument('img', help='Image files')
+ parser.add_argument('param', help='NCNN param file')
+ parser.add_argument('bin', help='NCNN bin file')
+ parser.add_argument('--show', action='store_true', help='Show image result')
+ parser.add_argument(
+ '--out-dir', default='./output', help='Path to output file')
+ parser.add_argument(
+ '--img-size',
+ nargs='+',
+ type=int,
+ default=[320, 320],
+ help='Image size of height and width')
+ parser.add_argument(
+ '--max-stride',
+ type=int,
+ default=64,
+ help='Max stride of yolov6 model')
+ args = parser.parse_args()
+ assert args.max_stride in (32, 64)
+ return args
+
+
+def yolov6_decode(feats: List[ndarray],
+ conf_thres: float,
+ iou_thres: float,
+ num_labels: int = 80,
+ **kwargs):
+ proposal_boxes: List[ndarray] = []
+ proposal_scores: List[float] = []
+ proposal_labels: List[int] = []
+ for i, feat in enumerate(feats):
+ feat = np.ascontiguousarray(feat.transpose((1, 2, 0)))
+ stride = 8 << i
+ score_feat, box_feat = np.split(feat, [
+ num_labels,
+ ], -1)
+ _argmax = score_feat.argmax(-1)
+ _max = score_feat.max(-1)
+ indices = np.where(_max > conf_thres)
+ hIdx, wIdx = indices
+ num_proposal = hIdx.size
+ if not num_proposal:
+ continue
+
+ scores = _max[hIdx, wIdx]
+ boxes = box_feat[hIdx, wIdx]
+ labels = _argmax[hIdx, wIdx]
+
+ for k in range(num_proposal):
+ score = scores[k]
+ label = labels[k]
+
+ x0, y0, x1, y1 = boxes[k]
+
+ x0 = (wIdx[k] + 0.5 - x0) * stride
+ y0 = (hIdx[k] + 0.5 - y0) * stride
+ x1 = (wIdx[k] + 0.5 + x1) * stride
+ y1 = (hIdx[k] + 0.5 + y1) * stride
+
+ w = x1 - x0
+ h = y1 - y0
+
+ proposal_scores.append(float(score))
+ proposal_boxes.append(
+ np.array([x0, y0, w, h], dtype=np.float32))
+ proposal_labels.append(int(label))
+
+ if MINOR >= 7:
+ indices = cv2.dnn.NMSBoxesBatched(proposal_boxes, proposal_scores, proposal_labels, conf_thres,
+ iou_thres)
+ elif MINOR == 6:
+ indices = cv2.dnn.NMSBoxes(proposal_boxes, proposal_scores, conf_thres, iou_thres)
+ else:
+ indices = cv2.dnn.NMSBoxes(proposal_boxes, proposal_scores, conf_thres, iou_thres).flatten()
+
+ if not len(indices):
+ return [], [], []
+
+ nmsd_boxes: List[ndarray] = []
+ nmsd_scores: List[float] = []
+ nmsd_labels: List[int] = []
+ for idx in indices:
+ box = proposal_boxes[idx]
+ box[2:] = box[:2] + box[2:]
+ score = proposal_scores[idx]
+ label = proposal_labels[idx]
+ nmsd_boxes.append(box)
+ nmsd_scores.append(score)
+ nmsd_labels.append(label)
+ return nmsd_boxes, nmsd_scores, nmsd_labels
+
+
+def main(args: argparse.Namespace):
+ image_path = args.img
+ net_h, net_w = args.img_size
+
+ if not args.show and not os.path.exists(args.out_dir):
+ os.makedirs(args.out_dir, exist_ok=True)
+
+ net = ncnn.Net()
+ # use gpu or not
+ net.opt.use_vulkan_compute = False
+ net.opt.num_threads = 4
+ net.load_param(args.param)
+ net.load_model(args.bin)
+
+ ex = net.create_extractor()
+ img = cv2.imread(image_path)
+ draw_img = img.copy()
+ img_w = img.shape[1]
+ img_h = img.shape[0]
+
+ w = img_w
+ h = img_h
+ scale = 1.0
+ if w > h:
+ scale = float(net_w) / w
+ w = net_w
+ h = int(h * scale)
+ else:
+ scale = float(net_h) / h
+ h = net_h
+ w = int(w * scale)
+
+ mat_in = ncnn.Mat.from_pixels_resize(
+ img, ncnn.Mat.PixelType.PIXEL_BGR2RGB, img_w, img_h, w, h
+ )
+
+ wpad = (w + args.max_stride - 1) // args.max_stride * args.max_stride - w
+ hpad = (h + args.max_stride - 1) // args.max_stride * args.max_stride - h
+
+ mat_in_pad = ncnn.copy_make_border(
+ mat_in,
+ hpad // 2,
+ hpad - hpad // 2,
+ wpad // 2,
+ wpad - wpad // 2,
+ ncnn.BorderType.BORDER_CONSTANT,
+ 114.0,
+ )
+
+ mat_in_pad.substract_mean_normalize([0, 0, 0], [1 / 225, 1 / 225, 1 / 225])
+
+ ex.input('in0', mat_in_pad)
+
+ ret1, mat_out1 = ex.extract("out0") # stride 8
+ ret2, mat_out2 = ex.extract("out1") # stride 16
+ ret3, mat_out3 = ex.extract("out2") # stride 32
+ if args.max_stride == 64:
+ ret4, mat_out4 = ex.extract("out3") # stride 64
+
+ outputs = [np.array(mat_out1), np.array(mat_out2), np.array(mat_out3)]
+ if args.max_stride == 64:
+ outputs.append(np.array(mat_out4))
+
+ nmsd_boxes, nmsd_scores, nmsd_labels = yolov6_decode(outputs, CONF_THRES, IOU_THRES)
+
+ for box, score, label in zip(nmsd_boxes, nmsd_scores, nmsd_labels):
+ x0, y0, x1, y1 = box
+ x0 = x0 - (wpad / 2)
+ y0 = y0 - (hpad / 2)
+ x1 = x1 - (wpad / 2)
+ y1 = y1 - (hpad / 2)
+ name = CLASS_NAMES[label]
+ box_color = CLASS_COLORS[label]
+
+ x0 = math.floor(min(max(x0 / scale, 1), img_w - 1))
+ y0 = math.floor(min(max(y0 / scale, 1), img_h - 1))
+ x1 = math.ceil(min(max(x1 / scale, 1), img_w - 1))
+ y1 = math.ceil(min(max(y1 / scale, 1), img_h - 1))
+ cv2.rectangle(draw_img, (x0, y0), (x1, y1), box_color, 2)
+ cv2.putText(draw_img, f'{name}: {score:.2f}',
+ (x0, max(y0 - 5, 1)), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
+ (0, 255, 255), 2)
+ if args.show:
+ cv2.imshow('res', draw_img)
+ cv2.waitKey(0)
+ else:
+ cv2.imwrite(os.path.join(args.out_dir, os.path.basename(image_path)), draw_img)
+
+
+if __name__ == '__main__':
+ main(parse_args())
diff --git a/python/app/fedcv/YOLOv6/deploy/ONNX/OpenCV/README.md b/python/app/fedcv/YOLOv6/deploy/ONNX/OpenCV/README.md
new file mode 100644
index 0000000000..ef986d87f5
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/ONNX/OpenCV/README.md
@@ -0,0 +1,92 @@
+# Object Detection using YOLOv5/YOLOv6/YOLOX and OpenCV DNN (Python/C++)
+
+## 0. Install Dependancies
+```
+OpenCV >= 4.5.4
+```
+Only **OpenCV >= 4.5.4** can read onnx model file by dnn module.
+
+## 1. Usage
+Change work directory to `/path/to/YOLOv6/deploy/ONNX/OpenCV`
+### 1.1 Python
+
+- YOLOv5 & YOLOv6:
+```Python
+python yolo.py --model /path/to/onnx/yolov5n.onnx --img /path/to/sample.jpg --classesFile /path/to/coco.names
+ yolov5s.onnx
+ yolov5m.onnx
+ yolov6n.onnx
+ yolov6s.onnx
+ yolov6t.onnx
+```
+- YOLOX:
+```Python
+python yolox.py --model /path/to/onnx/yolox_nano.onnx --img /path/to/sample.jpg --classesFile /path/to/coco.names
+ yolox_tiny.onnx
+ yolox_s.onnx
+ yolox_m.onnx
+```
+
+### 1.2 CMake C++ Linux YOLOv5
+```C++ Linux
+cd yolov5 // modify CMakeLists.txt
+mkdir build
+cd build
+cmake ..
+make
+./yolov5 /path/to/onnx/yolov5n.onnx /path/to/sample.jpg /path/to/coco.names
+ yolov5s.onnx
+ yolov5m.onnx
+```
+
+### 1.3 CMake C++ Linux YOLOv6
+```C++ Linux
+cd yolov6 // modify CMakeLists.txt
+mkdir build
+cd build
+cmake ..
+make
+./yolov6 /path/to/onnx/yolov6n.onnx /path/to/sample.jpg /path/to/coco.names
+ yolov6t.onnx
+ yolov6s.onnx
+```
+
+### 1.4 CMake C++ Linux YOLOX
+```C++ Linux
+cd yolox // modify CMakeLists.txt
+mkdir build
+cd build
+cmake ..
+make
+./yolox /path/to/onnx/yolox_nano.onnx /path/to/sample.jpg /path/to/coco.names
+ yolox_tiny.onnx
+ yolox_s.onnx
+ yolox_m.onnx
+```
+
+## 2. Result
+| Model | Speed CPU b1(ms) Python | Speed CPU b1(ms) C++ | mAPval 0.5:0.95 | params(M) | FLOPs(G) |
+| :-- | :-: | :-: | :-: | :-: | :-: |
+| **YOLOv5n** | 116.47 | 118.89 | 28.0 | 1.9 | 4.5 |
+| **YOLOv5s** | 200.53 | 202.22 | 37.4 | 7.2 | 16.5 |
+| **YOLOv5m** | 294.98 | 291.86 | 45.4 | 21.2 | 49.0 |
+| | | | | | |
+| **YOLOv6-n** | 62.37 | 60.34 | 37.5 | 4.7 | 11.4 |
+| **YOLOv6-s** | 137.94 | 148.01 | 45.0 | 18.5 | 45.3 |
+| **YOLOv6-m** | 264.40 | 269.31 | 50.0 | 34.9 | 85.8 |
+| | | | | | |
+| **YOLOX-Nano** | 81.06 | 86.75 | 25.8@416 | 0.91 | 1.08@416 |
+| **YOLOX-tiny** | 129.72 | 144.19 | 32.8@416 | 5.06 | 6.45@416 |
+| **YOLOX-s** | 180.86 | 169.96 | 40.5 | 9.0 | 26.8 |
+| **YOLOX-m** | 336.34 | 357.91 | 47.2 | 25.3 | 73.8 |
+
+**Note**:
+- All onnx models are converted from official github([Google Drive](https://drive.google.com/drive/folders/1Nw6M_Y6XLASyB0RxhSI2z_QRtt70Picl?usp=sharing)).
+- Speed is test by [dnn::Net::getPerfProfile](https://docs.opencv.org/4.5.5/db/d30/classcv_1_1dnn_1_1Net.html), we report the average inference time of 300 runs on the same environment.
+- The mAP/params/FLOPs are from official github.
+- Test environment: MacOS 11.4 with 2.6 GHz 6-core Intel Core i7, 16GB Memory.
+
+### Visualization
+
+
+
diff --git a/python/app/fedcv/YOLOv6/deploy/ONNX/OpenCV/coco.names b/python/app/fedcv/YOLOv6/deploy/ONNX/OpenCV/coco.names
new file mode 100644
index 0000000000..ca76c80b5b
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/ONNX/OpenCV/coco.names
@@ -0,0 +1,80 @@
+person
+bicycle
+car
+motorbike
+aeroplane
+bus
+train
+truck
+boat
+traffic light
+fire hydrant
+stop sign
+parking meter
+bench
+bird
+cat
+dog
+horse
+sheep
+cow
+elephant
+bear
+zebra
+giraffe
+backpack
+umbrella
+handbag
+tie
+suitcase
+frisbee
+skis
+snowboard
+sports ball
+kite
+baseball bat
+baseball glove
+skateboard
+surfboard
+tennis racket
+bottle
+wine glass
+cup
+fork
+knife
+spoon
+bowl
+banana
+apple
+sandwich
+orange
+broccoli
+carrot
+hot dog
+pizza
+donut
+cake
+chair
+sofa
+pottedplant
+bed
+diningtable
+toilet
+tvmonitor
+laptop
+mouse
+remote
+keyboard
+cell phone
+microwave
+oven
+toaster
+sink
+refrigerator
+book
+clock
+vase
+scissors
+teddy bear
+hair drier
+toothbrush
diff --git a/python/app/fedcv/YOLOv6/deploy/ONNX/OpenCV/yolo.py b/python/app/fedcv/YOLOv6/deploy/ONNX/OpenCV/yolo.py
new file mode 100644
index 0000000000..87a65b687d
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/ONNX/OpenCV/yolo.py
@@ -0,0 +1,149 @@
+import cv2
+import numpy as np
+import os
+import argparse
+
+
+# Constants.
+INPUT_WIDTH = 640
+INPUT_HEIGHT = 640
+SCORE_THRESHOLD = 0.5 # cls score
+NMS_THRESHOLD = 0.45
+CONFIDENCE_THRESHOLD = 0.45 # obj confidence
+
+# Text parameters.
+FONT_FACE = cv2.FONT_HERSHEY_SIMPLEX
+FONT_SCALE = 0.7
+THICKNESS = 1
+
+# Colors
+BLACK = (0,0,0)
+BLUE = (255,178,50)
+YELLOW = (0,255,255)
+RED = (0,0,255)
+
+
+def draw_label(input_image, label, left, top):
+ """Draw text onto image at location."""
+
+ # Get text size.
+ text_size = cv2.getTextSize(label, FONT_FACE, FONT_SCALE, THICKNESS)
+ dim, baseline = text_size[0], text_size[1]
+ # Use text size to create a BLACK rectangle.
+ cv2.rectangle(input_image, (left, top), (left + dim[0], top + dim[1] + baseline), BLACK, cv2.FILLED)
+ # Display text inside the rectangle.
+ cv2.putText(input_image, label, (left, top + dim[1]), FONT_FACE, FONT_SCALE, YELLOW, THICKNESS, cv2.LINE_AA)
+
+
+def pre_process(input_image, net):
+ # Create a 4D blob from a frame.
+ blob = cv2.dnn.blobFromImage(input_image, 1/255, (INPUT_WIDTH, INPUT_HEIGHT), [0,0,0], 1, crop=False)
+
+ # Sets the input to the network.
+ net.setInput(blob)
+
+ # Runs the forward pass to get output of the output layers.
+ output_layers = net.getUnconnectedOutLayersNames()
+ outputs = net.forward(output_layers)
+ # print(outputs[0].shape)
+
+ return outputs
+
+
+def post_process(input_image, outputs):
+ # Lists to hold respective values while unwrapping.
+ class_ids = []
+ confidences = []
+ boxes = []
+
+ # Rows.
+ rows = outputs[0].shape[1]
+
+ image_height, image_width = input_image.shape[:2]
+
+ # Resizing factor.
+ x_factor = image_width / INPUT_WIDTH
+ y_factor = image_height / INPUT_HEIGHT
+
+ # Iterate through 25200 detections.
+ for r in range(rows):
+ row = outputs[0][0][r]
+ confidence = row[4]
+
+ # Discard bad detections and continue.
+ if confidence >= CONFIDENCE_THRESHOLD:
+ classes_scores = row[5:]
+
+ # Get the index of max class score.
+ class_id = np.argmax(classes_scores)
+
+ # Continue if the class score is above threshold.
+ if (classes_scores[class_id] > SCORE_THRESHOLD):
+ confidences.append(confidence)
+ class_ids.append(class_id)
+
+ cx, cy, w, h = row[0], row[1], row[2], row[3]
+
+ left = int((cx - w/2) * x_factor)
+ top = int((cy - h/2) * y_factor)
+ width = int(w * x_factor)
+ height = int(h * y_factor)
+
+ box = np.array([left, top, width, height])
+ boxes.append(box)
+
+ # Perform non maximum suppression to eliminate redundant overlapping boxes with
+ # lower confidences.
+ indices = cv2.dnn.NMSBoxes(boxes, confidences, CONFIDENCE_THRESHOLD, NMS_THRESHOLD)
+ for i in indices:
+ box = boxes[i]
+ left = box[0]
+ top = box[1]
+ width = box[2]
+ height = box[3]
+ cv2.rectangle(input_image, (left, top), (left + width, top + height), BLUE, 3*THICKNESS)
+ label = "{}:{:.2f}".format(classes[class_ids[i]], confidences[i])
+ draw_label(input_image, label, left, top)
+
+ return input_image
+
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--model', default='models/yolov6n.onnx', help="Input your onnx model.")
+ parser.add_argument('--img', default='sample.jpg', help="Path to your input image.")
+ parser.add_argument('--classesFile', default='coco.names', help="Path to your classesFile.")
+ args = parser.parse_args()
+
+ # Load class names.
+ model_path, img_path, classesFile = args.model, args.img, args.classesFile
+ window_name = os.path.splitext(os.path.basename(model_path))[0]
+ classes = None
+ with open(classesFile, 'rt') as f:
+ classes = f.read().rstrip('\n').split('\n')
+
+ # Load image.
+ frame = cv2.imread(img_path)
+ input = frame.copy()
+
+ # Give the weight files to the model and load the network using them.
+ net = cv2.dnn.readNet(model_path)
+
+ # Put efficiency information. The function getPerfProfile returns the overall time for inference(t) and the
+ # timings for each of the layers(in layersTimes)
+ # Process image.
+ cycles = 300
+ total_time = 0
+ for i in range(cycles):
+ detections = pre_process(input.copy(), net)
+ img = post_process(frame.copy(), detections)
+ t, _ = net.getPerfProfile()
+ total_time += t
+ print(f'Cycle [{i + 1}]:\t{t * 1000.0 / cv2.getTickFrequency():.2f}\tms')
+
+ avg_time = total_time / cycles
+ label = 'Average Inference time: %.2f ms' % (avg_time * 1000.0 / cv2.getTickFrequency())
+ print(f'Model: {window_name}\n{label}')
+ cv2.putText(img, label, (20, 40), FONT_FACE, FONT_SCALE, RED, THICKNESS, cv2.LINE_AA)
+ cv2.imshow(window_name, img)
+ cv2.waitKey(0)
diff --git a/python/app/fedcv/YOLOv6/deploy/ONNX/OpenCV/yolo_video.py b/python/app/fedcv/YOLOv6/deploy/ONNX/OpenCV/yolo_video.py
new file mode 100644
index 0000000000..ecdabad93f
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/ONNX/OpenCV/yolo_video.py
@@ -0,0 +1,130 @@
+# usage: python yolo_video.py --model "./yolov6n.onnx" --source 0
+
+import cv2
+import numpy as np
+import argparse
+
+INPUT_WIDTH = 640
+INPUT_HEIGHT = 640
+SCORE_THRESHOLD = 0.5
+NMS_THRESHOLD = 0.45
+CONFIDENCE_THRESHOLD = 0.2
+
+# Text parameters.
+FONT_FACE = cv2.FONT_HERSHEY_SIMPLEX
+FONT_SCALE = 0.7
+THICKNESS = 1
+
+# Colors.
+BLACK = (0,0,0)
+BLUE = (255,178,50)
+YELLOW = (0,255,255)
+
+def draw_label(im, label, x, y):
+ """Draw text onto image at location."""
+
+ # Get text size.
+ text_size = cv2.getTextSize(label, FONT_FACE, FONT_SCALE, THICKNESS)
+ dim, baseline = text_size[0], text_size[1]
+ # Use text size to create a BLACK rectangle.
+ cv2.rectangle(im, (x,y), (x + dim[0], y + dim[1] + baseline), (0,0,0), cv2.FILLED);
+ # Display text inside the rectangle.
+ cv2.putText(im, label, (x, y + dim[1]), FONT_FACE, FONT_SCALE, YELLOW, THICKNESS, cv2.LINE_AA)
+
+def pre_process(input_image, net):
+ # Create a 4D blob from a frame.
+ blob = cv2.dnn.blobFromImage(input_image, 1/255, (INPUT_WIDTH, INPUT_HEIGHT), [0,0,0], 1, crop=False)
+
+ # Sets the input to the network.
+ net.setInput(blob)
+
+ # Run the forward pass to get output of the output layers.
+ outputs = net.forward(net.getUnconnectedOutLayersNames())
+ return outputs
+
+def post_process(input_image, outputs):
+ # Lists to hold respective values while unwrapping.
+ class_ids = []
+ confidences = []
+ boxes = []
+ # Rows.
+ rows = outputs[0].shape[1]
+ image_height, image_width = input_image.shape[:2]
+ # Resizing factor.
+ x_factor = image_width / INPUT_WIDTH
+ y_factor = image_height / INPUT_HEIGHT
+ # Iterate through detections.
+ for r in range(rows):
+ row = outputs[0][0][r]
+ confidence = row[4]
+ # Discard bad detections and continue.
+ if confidence >= CONFIDENCE_THRESHOLD:
+ classes_scores = row[5:]
+ # Get the index of max class score.
+ class_id = np.argmax(classes_scores)
+ # Continue if the class score is above threshold.
+ if (classes_scores[class_id] > SCORE_THRESHOLD):
+ confidences.append(confidence)
+ class_ids.append(class_id)
+ cx, cy, w, h = row[0], row[1], row[2], row[3]
+ left = int((cx - w/2) * x_factor)
+ top = int((cy - h/2) * y_factor)
+ width = int(w * x_factor)
+ height = int(h * y_factor)
+ box = np.array([left, top, width, height])
+ boxes.append(box)
+
+ # Perform non maximum suppression to eliminate redundant, overlapping boxes with lower confidences.
+ indices = cv2.dnn.NMSBoxes(boxes, confidences, CONFIDENCE_THRESHOLD, NMS_THRESHOLD)
+ for i in indices:
+ box = boxes[i]
+ left = box[0]
+ top = box[1]
+ width = box[2]
+ height = box[3]
+ # Draw bounding box.
+ cv2.rectangle(input_image, (left, top), (left + width, top + height), BLUE, 3*THICKNESS)
+ # Class label.
+ label = "{}:{:.2f}".format(classes[class_ids[i]], confidences[i])
+ # Draw label.
+ draw_label(input_image, label, left, top)
+ return input_image
+
+
+def video():
+ while True :
+
+ # get frame from the video
+ ret, frame = cap.read()
+ net = cv2.dnn.readNet(modelWeights)
+ # Process image.
+ detections = pre_process(frame, net)
+ img = post_process(frame.copy(), detections)
+ """
+ Put efficiency information. The function getPerfProfile returns the overall time for inference(t)
+ and the timings for each of the layers(in layersTimes).
+ """
+ t, _ = net.getPerfProfile()
+ label = 'Inference time: %.2f ms' % (t * 1000.0 / cv2.getTickFrequency())
+ # print(label)
+ cv2.putText(img, label, (20, 40), FONT_FACE, FONT_SCALE, (0, 0, 255), THICKNESS, cv2.LINE_AA)
+ cv2.imshow('Output', img)
+
+ if cv2.waitKey(30) & 0xFF == ord('q'):
+ break
+
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--model', default='models/yolov6n.onnx', help="Input your onnx model.")
+ parser.add_argument('--source', default=0, type=int, help="video source - 0,1,2 ...")
+ parser.add_argument('--classesFile', default='coco.names', help="Path to your classesFile.")
+ args = parser.parse_args()
+
+ modelWeights, video_source, classesFile = args.model, args.source, args.classesFile
+ cap = cv2.VideoCapture(video_source)
+ classes = None
+ with open(classesFile, 'rt') as f:
+ classes = f.read().rstrip('\n').split('\n')
+
+ video()
diff --git a/python/app/fedcv/YOLOv6/deploy/ONNX/OpenCV/yolov5/yolov5.cpp b/python/app/fedcv/YOLOv6/deploy/ONNX/OpenCV/yolov5/yolov5.cpp
new file mode 100644
index 0000000000..9e039c15d9
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/ONNX/OpenCV/yolov5/yolov5.cpp
@@ -0,0 +1,198 @@
+// Include Libraries.
+#include
+#include
+
+// Namespaces.
+using namespace cv;
+using namespace std;
+using namespace cv::dnn;
+
+// Constants.
+const float INPUT_WIDTH = 640.0;
+const float INPUT_HEIGHT = 640.0;
+const float SCORE_THRESHOLD = 0.5;
+const float NMS_THRESHOLD = 0.45;
+const float CONFIDENCE_THRESHOLD = 0.45;
+
+// Text parameters.
+const float FONT_SCALE = 0.7;
+const int FONT_FACE = FONT_HERSHEY_SIMPLEX;
+const int THICKNESS = 1;
+
+// Colors.
+Scalar BLACK = Scalar(0,0,0);
+Scalar BLUE = Scalar(255, 178, 50);
+Scalar YELLOW = Scalar(0, 255, 255);
+Scalar RED = Scalar(0,0,255);
+
+
+// Draw the predicted bounding box.
+void draw_label(Mat& input_image, string label, int left, int top)
+{
+ // Display the label at the top of the bounding box.
+ int baseLine;
+ Size label_size = getTextSize(label, FONT_FACE, FONT_SCALE, THICKNESS, &baseLine);
+ top = max(top, label_size.height);
+ // Top left corner.
+ Point tlc = Point(left, top);
+ // Bottom right corner.
+ Point brc = Point(left + label_size.width, top + label_size.height + baseLine);
+ // Draw black rectangle.
+ rectangle(input_image, tlc, brc, BLACK, FILLED);
+ // Put the label on the black rectangle.
+ putText(input_image, label, Point(left, top + label_size.height), FONT_FACE, FONT_SCALE, YELLOW, THICKNESS);
+}
+
+
+vector pre_process(Mat &input_image, Net &net)
+{
+ // Convert to blob.
+ Mat blob;
+ blobFromImage(input_image, blob, 1./255., Size(INPUT_WIDTH, INPUT_HEIGHT), Scalar(), true, false);
+
+ net.setInput(blob);
+
+ // Forward propagate.
+ vector outputs;
+ net.forward(outputs, net.getUnconnectedOutLayersNames());
+
+ return outputs;
+}
+
+
+Mat post_process(Mat &input_image, vector &outputs, const vector &class_name)
+{
+ // Initialize vectors to hold respective outputs while unwrapping detections.
+ vector class_ids;
+ vector confidences;
+ vector boxes;
+
+ // Resizing factor.
+ float x_factor = input_image.cols / INPUT_WIDTH;
+ float y_factor = input_image.rows / INPUT_HEIGHT;
+
+ float *data = (float *)outputs[0].data;
+
+ const int dimensions = 85;
+ const int rows = 25200;
+ // Iterate through 25200 detections.
+ for (int i = 0; i < rows; ++i)
+ {
+ float confidence = data[4];
+ // Discard bad detections and continue.
+ if (confidence >= CONFIDENCE_THRESHOLD)
+ {
+ float * classes_scores = data + 5;
+ // Create a 1x85 Mat and store class scores of 80 classes.
+ Mat scores(1, class_name.size(), CV_32FC1, classes_scores);
+ // Perform minMaxLoc and acquire index of best class score.
+ Point class_id;
+ double max_class_score;
+ minMaxLoc(scores, 0, &max_class_score, 0, &class_id);
+ // Continue if the class score is above the threshold.
+ if (max_class_score > SCORE_THRESHOLD)
+ {
+ // Store class ID and confidence in the pre-defined respective vectors.
+
+ confidences.push_back(confidence);
+ class_ids.push_back(class_id.x);
+
+ // Center.
+ float cx = data[0];
+ float cy = data[1];
+ // Box dimension.
+ float w = data[2];
+ float h = data[3];
+ // Bounding box coordinates.
+ int left = int((cx - 0.5 * w) * x_factor);
+ int top = int((cy - 0.5 * h) * y_factor);
+ int width = int(w * x_factor);
+ int height = int(h * y_factor);
+ // Store good detections in the boxes vector.
+ boxes.push_back(Rect(left, top, width, height));
+ }
+
+ }
+ // Jump to the next column.
+ data += 85;
+ }
+
+ // Perform Non Maximum Suppression and draw predictions.
+ vector indices;
+ NMSBoxes(boxes, confidences, SCORE_THRESHOLD, NMS_THRESHOLD, indices);
+ for (int i = 0; i < indices.size(); i++)
+ {
+ int idx = indices[i];
+ Rect box = boxes[idx];
+
+ int left = box.x;
+ int top = box.y;
+ int width = box.width;
+ int height = box.height;
+ // Draw bounding box.
+ rectangle(input_image, Point(left, top), Point(left + width, top + height), BLUE, 3*THICKNESS);
+
+ // Get the label for the class name and its confidence.
+ string label = format("%.2f", confidences[idx]);
+ label = class_name[class_ids[idx]] + ":" + label;
+ // Draw class labels.
+ draw_label(input_image, label, left, top);
+ }
+ return input_image;
+}
+
+
+int main(int argc, char** argv)
+{
+ // Usage: "./yolov5 /path/to/your/model/yolov5n.onnx /path/to/image/sample.jpg /path/to/coco.names"
+ // printf(CV_VERSION);
+ // Load class list.
+ vector class_list;
+ ifstream ifs(argv[3]);
+ string line;
+
+ while (getline(ifs, line))
+ {
+ class_list.push_back(line);
+ }
+
+ // Load image.
+ Mat frame;
+ frame = imread(argv[2]);
+ Mat input_frame = frame.clone();
+
+ // Load model.
+ Net net;
+ net = readNetFromONNX(argv[1]);
+
+ // Put efficiency information.
+ // The function getPerfProfile returns the overall time for inference(t) and the timings for each of the layers(in layersTimes)
+ int cycles = 300;
+ double total_time = 0;
+ double freq = getTickFrequency() / 1000;
+ Mat img;
+ for(int i=0; i < cycles; ++i)
+ {
+ vector detections;
+ Mat input = input_frame.clone();
+ detections = pre_process(input, net);
+ img = post_process(input, detections, class_list);
+ vector layersTimes;
+ double t = net.getPerfProfile(layersTimes);
+ total_time = total_time + t;
+ cout << format("Cycle [%d]:\t%.2f\tms", i + 1, t / freq) << endl;
+ }
+
+ double avg_time = total_time / cycles;
+ string label = format("Average inference time : %.2f ms", avg_time / freq);
+ cout << label << endl;
+ putText(img, label, Point(20, 40), FONT_FACE, FONT_SCALE, RED);
+
+ string model_path = argv[1];
+ int start_index = model_path.rfind("/");
+ string model_name = model_path.substr(start_index + 1, model_path.length() - start_index - 6);
+ imshow("C++_" + model_name, img);
+ waitKey(0);
+
+ return 0;
+}
diff --git a/python/app/fedcv/YOLOv6/deploy/ONNX/OpenCV/yolov6/yolov6.cpp b/python/app/fedcv/YOLOv6/deploy/ONNX/OpenCV/yolov6/yolov6.cpp
new file mode 100644
index 0000000000..0e142a0864
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/ONNX/OpenCV/yolov6/yolov6.cpp
@@ -0,0 +1,198 @@
+// Include Libraries.
+#include
+#include
+
+// Namespaces.
+using namespace cv;
+using namespace std;
+using namespace cv::dnn;
+
+// Constants.
+const float INPUT_WIDTH = 640.0;
+const float INPUT_HEIGHT = 640.0;
+const float SCORE_THRESHOLD = 0.5;
+const float NMS_THRESHOLD = 0.45;
+const float CONFIDENCE_THRESHOLD = 0.45;
+
+// Text parameters.
+const float FONT_SCALE = 0.7;
+const int FONT_FACE = FONT_HERSHEY_SIMPLEX;
+const int THICKNESS = 1;
+
+// Colors.
+Scalar BLACK = Scalar(0,0,0);
+Scalar BLUE = Scalar(255, 178, 50);
+Scalar YELLOW = Scalar(0, 255, 255);
+Scalar RED = Scalar(0,0,255);
+
+
+// Draw the predicted bounding box.
+void draw_label(Mat& input_image, string label, int left, int top)
+{
+ // Display the label at the top of the bounding box.
+ int baseLine;
+ Size label_size = getTextSize(label, FONT_FACE, FONT_SCALE, THICKNESS, &baseLine);
+ top = max(top, label_size.height);
+ // Top left corner.
+ Point tlc = Point(left, top);
+ // Bottom right corner.
+ Point brc = Point(left + label_size.width, top + label_size.height + baseLine);
+ // Draw black rectangle.
+ rectangle(input_image, tlc, brc, BLACK, FILLED);
+ // Put the label on the black rectangle.
+ putText(input_image, label, Point(left, top + label_size.height), FONT_FACE, FONT_SCALE, YELLOW, THICKNESS);
+}
+
+
+vector pre_process(Mat &input_image, Net &net)
+{
+ // Convert to blob.
+ Mat blob;
+ blobFromImage(input_image, blob, 1./255., Size(INPUT_WIDTH, INPUT_HEIGHT), Scalar(), true, false);
+
+ net.setInput(blob);
+
+ // Forward propagate.
+ vector outputs;
+ net.forward(outputs, net.getUnconnectedOutLayersNames());
+
+ return outputs;
+}
+
+
+Mat post_process(Mat &input_image, vector &outputs, const vector &class_name)
+{
+ // Initialize vectors to hold respective outputs while unwrapping detections.
+ vector class_ids;
+ vector confidences;
+ vector boxes;
+
+ // Resizing factor.
+ float x_factor = input_image.cols / INPUT_WIDTH;
+ float y_factor = input_image.rows / INPUT_HEIGHT;
+
+ float *data = (float *)outputs[0].data;
+
+ const int dimensions = 85;
+ const int rows = 8400;
+ // Iterate through 8400 detections.
+ for (int i = 0; i < rows; ++i)
+ {
+ float confidence = data[4];
+ // Discard bad detections and continue.
+ if (confidence >= CONFIDENCE_THRESHOLD)
+ {
+ float * classes_scores = data + 5;
+ // Create a 1x85 Mat and store class scores of 80 classes.
+ Mat scores(1, class_name.size(), CV_32FC1, classes_scores);
+ // Perform minMaxLoc and acquire index of best class score.
+ Point class_id;
+ double max_class_score;
+ minMaxLoc(scores, 0, &max_class_score, 0, &class_id);
+ // Continue if the class score is above the threshold.
+ if (max_class_score > SCORE_THRESHOLD)
+ {
+ // Store class ID and confidence in the pre-defined respective vectors.
+
+ confidences.push_back(confidence);
+ class_ids.push_back(class_id.x);
+
+ // Center.
+ float cx = data[0];
+ float cy = data[1];
+ // Box dimension.
+ float w = data[2];
+ float h = data[3];
+ // Bounding box coordinates.
+ int left = int((cx - 0.5 * w) * x_factor);
+ int top = int((cy - 0.5 * h) * y_factor);
+ int width = int(w * x_factor);
+ int height = int(h * y_factor);
+ // Store good detections in the boxes vector.
+ boxes.push_back(Rect(left, top, width, height));
+ }
+
+ }
+ // Jump to the next column.
+ data += 85;
+ }
+
+ // Perform Non Maximum Suppression and draw predictions.
+ vector indices;
+ NMSBoxes(boxes, confidences, SCORE_THRESHOLD, NMS_THRESHOLD, indices);
+ for (int i = 0; i < indices.size(); i++)
+ {
+ int idx = indices[i];
+ Rect box = boxes[idx];
+
+ int left = box.x;
+ int top = box.y;
+ int width = box.width;
+ int height = box.height;
+ // Draw bounding box.
+ rectangle(input_image, Point(left, top), Point(left + width, top + height), BLUE, 3*THICKNESS);
+
+ // Get the label for the class name and its confidence.
+ string label = format("%.2f", confidences[idx]);
+ label = class_name[class_ids[idx]] + ":" + label;
+ // Draw class labels.
+ draw_label(input_image, label, left, top);
+ }
+ return input_image;
+}
+
+
+int main(int argc, char** argv)
+{
+ // Usage: "./yolov6 /path/to/your/model/yolov6n.onnx /path/to/image/sample.jpg /path/to/coco.names"
+ // printf(CV_VERSION);
+ // Load class list.
+ vector class_list;
+ ifstream ifs(argv[3]);
+ string line;
+
+ while (getline(ifs, line))
+ {
+ class_list.push_back(line);
+ }
+
+ // Load image.
+ Mat frame;
+ frame = imread(argv[2]);
+ Mat input_frame = frame.clone();
+
+ // Load model.
+ Net net;
+ net = readNetFromONNX(argv[1]);
+
+ // Put efficiency information.
+ // The function getPerfProfile returns the overall time for inference(t) and the timings for each of the layers(in layersTimes)
+ int cycles = 300;
+ double total_time = 0;
+ double freq = getTickFrequency() / 1000;
+ Mat img;
+ for(int i=0; i < cycles; ++i)
+ {
+ vector detections;
+ Mat input = input_frame.clone();
+ detections = pre_process(input, net);
+ img = post_process(input, detections, class_list);
+ vector layersTimes;
+ double t = net.getPerfProfile(layersTimes);
+ total_time = total_time + t;
+ cout << format("Cycle [%d]:\t%.2f\tms", i + 1, t / freq) << endl;
+ }
+
+ double avg_time = total_time / cycles;
+ string label = format("Average inference time : %.2f ms", avg_time / freq);
+ cout << label << endl;
+ putText(img, label, Point(20, 40), FONT_FACE, FONT_SCALE, RED);
+
+ string model_path = argv[1];
+ int start_index = model_path.rfind("/");
+ string model_name = model_path.substr(start_index + 1, model_path.length() - start_index - 6);
+ imshow("C++_" + model_name, img);
+ waitKey(0);
+
+ return 0;
+}
diff --git a/python/app/fedcv/YOLOv6/deploy/ONNX/OpenCV/yolox.py b/python/app/fedcv/YOLOv6/deploy/ONNX/OpenCV/yolox.py
new file mode 100644
index 0000000000..df7c3ff619
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/ONNX/OpenCV/yolox.py
@@ -0,0 +1,188 @@
+# https://github.com/hpc203/yolox-opencv-dnn/blob/main/main.py
+import argparse
+import cv2
+import numpy as np
+import os
+
+
+class yolox():
+ def __init__(self, model, classesFile, p6=False, confThreshold=0.5, nmsThreshold=0.5, objThreshold=0.5):
+ with open(classesFile, 'rt') as f:
+ self.class_names = f.read().rstrip('\n').split('\n')
+ self.net = cv2.dnn.readNet(model)
+ self.input_size = (640, 640)
+ self.mean = (0.485, 0.456, 0.406)
+ self.std = (0.229, 0.224, 0.225)
+ if not p6:
+ self.strides = [8, 16, 32]
+ else:
+ self.strides = [8, 16, 32, 64]
+ self.confThreshold = confThreshold
+ self.nmsThreshold = nmsThreshold
+ self.objThreshold = objThreshold
+
+ def preprocess(self, image):
+ if len(image.shape) == 3:
+ padded_img = np.ones((self.input_size[0], self.input_size[1], 3)) * 114.0
+ else:
+ padded_img = np.ones(self.input_size) * 114.0
+ img = np.array(image)
+ r = min(self.input_size[0] / img.shape[0], self.input_size[1] / img.shape[1])
+ resized_img = cv2.resize(
+ img, (int(img.shape[1] * r), int(img.shape[0] * r)), interpolation=cv2.INTER_LINEAR
+ ).astype(np.float32)
+ padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img
+ image = padded_img
+
+ image = image.astype(np.float32)
+ # image = image[:, :, ::-1]
+ # image /= 255.0
+ # image -= self.mean
+ # image /= self.std
+ return image, r
+
+ def demo_postprocess(self, outputs):
+ grids = []
+ expanded_strides = []
+ hsizes = [self.input_size[0] // stride for stride in self.strides]
+ wsizes = [self.input_size[1] // stride for stride in self.strides]
+
+ for hsize, wsize, stride in zip(hsizes, wsizes, self.strides):
+ xv, yv = np.meshgrid(np.arange(hsize), np.arange(wsize))
+ grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
+ grids.append(grid)
+ shape = grid.shape[:2]
+ expanded_strides.append(np.full((*shape, 1), stride))
+
+ grids = np.concatenate(grids, 1)
+ expanded_strides = np.concatenate(expanded_strides, 1)
+ outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides
+ outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides
+ return outputs
+
+ def nms(self, boxes, scores):
+ """Single class NMS implemented in Numpy."""
+ x1 = boxes[:, 0]
+ y1 = boxes[:, 1]
+ x2 = boxes[:, 2]
+ y2 = boxes[:, 3]
+
+ areas = (x2 - x1 + 1) * (y2 - y1 + 1)
+ order = scores.argsort()[::-1]
+
+ keep = []
+ while order.size > 0:
+ i = order[0]
+ keep.append(i)
+ xx1 = np.maximum(x1[i], x1[order[1:]])
+ yy1 = np.maximum(y1[i], y1[order[1:]])
+ xx2 = np.minimum(x2[i], x2[order[1:]])
+ yy2 = np.minimum(y2[i], y2[order[1:]])
+
+ w = np.maximum(0.0, xx2 - xx1 + 1)
+ h = np.maximum(0.0, yy2 - yy1 + 1)
+ inter = w * h
+ ovr = inter / (areas[i] + areas[order[1:]] - inter)
+
+ inds = np.where(ovr <= self.nmsThreshold)[0]
+ order = order[inds + 1]
+
+ return keep
+
+ def multiclass_nms(self, boxes, scores):
+ """Multiclass NMS implemented in Numpy"""
+ final_dets = []
+ num_classes = scores.shape[1]
+ for cls_ind in range(num_classes):
+ cls_scores = scores[:, cls_ind]
+ valid_score_mask = cls_scores > self.confThreshold
+ if valid_score_mask.sum() == 0:
+ continue
+ else:
+ valid_scores = cls_scores[valid_score_mask]
+ valid_boxes = boxes[valid_score_mask]
+ keep = self.nms(valid_boxes, valid_scores)
+ if len(keep) > 0:
+ cls_inds = np.ones((len(keep), 1)) * cls_ind
+ dets = np.concatenate([valid_boxes[keep], valid_scores[keep, None], cls_inds], 1)
+ final_dets.append(dets)
+ if len(final_dets) == 0:
+ return None
+ return np.concatenate(final_dets, 0)
+
+ def vis(self, img, boxes, scores, cls_ids):
+ for i in range(len(boxes)):
+ box = boxes[i]
+ cls_id = int(cls_ids[i])
+ score = scores[i]
+ if score < self.confThreshold:
+ continue
+ x0 = int(box[0])
+ y0 = int(box[1])
+ x1 = int(box[2])
+ y1 = int(box[3])
+
+ text = '{}:{:.2f}'.format(self.class_names[cls_id], score)
+ font = cv2.FONT_HERSHEY_SIMPLEX
+ txt_size, baseline = cv2.getTextSize(text, font, 0.7, 1)
+ cv2.rectangle(img, (x0, y0), (x1, y1), (255, 178, 50), 2)
+ cv2.rectangle(img, (x0, y0 + 1), (x0 + txt_size[0] + 1, y0 + txt_size[1] + baseline), (0, 0, 0), -1)
+ cv2.putText(img, text, (x0, y0 + txt_size[1]), font, 0.7, (0, 255, 255), 1, cv2.LINE_AA)
+ return img
+
+ def detect(self, srcimg):
+ img, ratio = self.preprocess(srcimg)
+ blob = cv2.dnn.blobFromImage(img)
+ self.net.setInput(blob)
+ outs = self.net.forward(self.net.getUnconnectedOutLayersNames())
+ predictions = self.demo_postprocess(outs[0])[0]
+
+ boxes = predictions[:, :4]
+ scores = predictions[:, 4:5] * predictions[:, 5:]
+
+ boxes_xyxy = np.ones_like(boxes)
+ boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2] / 2.
+ boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3] / 2.
+ boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2] / 2.
+ boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3] / 2.
+ boxes_xyxy /= ratio
+ dets = self.multiclass_nms(boxes_xyxy, scores)
+ if dets is not None:
+ final_boxes, final_scores, final_cls_inds = dets[:, :4], dets[:, 4], dets[:, 5]
+ srcimg = self.vis(srcimg, final_boxes, final_scores, final_cls_inds)
+ return srcimg
+
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser("opencv inference sample")
+ parser.add_argument("--model", type=str, default="models/yolox_m.onnx", help="Input your onnx model.")
+ parser.add_argument("--img", type=str, default='sample.jpg', help="Path to your input image.")
+ parser.add_argument("--score_thr", type=float, default=0.3, help="Score threshold to filter the result.")
+ parser.add_argument("--classesFile", type=str, default='coco.names', help="Path to your classesFile.")
+ parser.add_argument("--with_p6", action="store_true", help="Whether your model uses p6 in FPN/PAN.")
+ args = parser.parse_args()
+ net = yolox(args.model, args.classesFile, p6=args.with_p6, confThreshold=args.score_thr)
+ srcimg = cv2.imread(args.img)
+ input = srcimg.copy()
+
+
+ # Put efficiency information. The function getPerfProfile returns the overall time for inference(t) and the
+ # timings for each of the layers(in layersTimes)
+ cycles = 300
+ total_time = 0
+ for i in range(cycles):
+ srcimg = net.detect(input.copy())
+ t, _ = net.net.getPerfProfile()
+ total_time += t
+ print(f'Cycle [{i + 1}]:\t{t * 1000.0 / cv2.getTickFrequency():.2f}\tms')
+
+ avg_time = total_time / cycles
+ window_name = os.path.splitext(os.path.basename(args.model))[0]
+ label = 'Average inference time: %.2f ms' % (avg_time * 1000.0 / cv2.getTickFrequency())
+ print(f'Model: {window_name}\n{label}')
+ cv2.putText(srcimg, label, (20, 40), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0,0,255), 1, cv2.LINE_AA)
+
+ cv2.namedWindow(window_name, cv2.WINDOW_NORMAL)
+ cv2.imshow(window_name, srcimg)
+ cv2.waitKey(0)
+ cv2.destroyAllWindows()
diff --git a/python/app/fedcv/YOLOv6/deploy/ONNX/OpenCV/yolox/yolox.cpp b/python/app/fedcv/YOLOv6/deploy/ONNX/OpenCV/yolox/yolox.cpp
new file mode 100644
index 0000000000..dcdff4d53a
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/ONNX/OpenCV/yolox/yolox.cpp
@@ -0,0 +1,227 @@
+#include
+#include
+#include
+#include
+#include
+#include
+
+using namespace cv;
+using namespace dnn;
+using namespace std;
+
+class yolox
+{
+public:
+ yolox(string modelpath, float confThreshold, float nmsThreshold, string classesFile);
+ void detect(Mat& srcimg);
+ Net net;
+
+private:
+ const int stride[3] = { 8, 16, 32 };
+ const int input_shape[2] = { 640, 640 }; //// height, width
+ const float mean[3] = { 0.485, 0.456, 0.406 };
+ const float std[3] = { 0.229, 0.224, 0.225 };
+ float prob_threshold;
+ float nms_threshold;
+ string classesFile;
+ vector classes;
+ int num_class;
+
+ Mat resize_image(Mat srcimg, float* scale);
+ void normalize(Mat& srcimg);
+ int get_max_class(float* scores);
+};
+
+yolox::yolox(string modelpath, float confThreshold, float nmsThreshold, string classesFile)
+{
+ this->prob_threshold = confThreshold;
+ this->nms_threshold = nmsThreshold;
+ this->classesFile = classesFile;
+
+ ifstream ifs(this->classesFile.c_str());
+ string line;
+ while (getline(ifs, line)) this->classes.push_back(line);
+ this->num_class = this->classes.size();
+ this->net = readNet(modelpath);
+}
+
+Mat yolox::resize_image(Mat srcimg, float* scale)
+{
+ float r = std::min(this->input_shape[1] / (srcimg.cols*1.0), this->input_shape[0] / (srcimg.rows*1.0));
+ *scale = r;
+ // r = std::min(r, 1.0f);
+ int unpad_w = r * srcimg.cols;
+ int unpad_h = r * srcimg.rows;
+ Mat re(unpad_h, unpad_w, CV_8UC3);
+ resize(srcimg, re, re.size());
+ Mat out(this->input_shape[1], this->input_shape[0], CV_8UC3, Scalar(114, 114, 114));
+ re.copyTo(out(Rect(0, 0, re.cols, re.rows)));
+ return out;
+}
+
+void yolox::normalize(Mat& img)
+{
+ cvtColor(img, img, cv::COLOR_BGR2RGB);
+ img.convertTo(img, CV_32F);
+ int i = 0, j = 0;
+ for (i = 0; i < img.rows; i++)
+ {
+ float* pdata = (float*)(img.data + i * img.step);
+ for (j = 0; j < img.cols; j++)
+ {
+ pdata[0] = (pdata[0] / 255.0 - this->mean[0]) / this->std[0];
+ pdata[1] = (pdata[1] / 255.0 - this->mean[1]) / this->std[1];
+ pdata[2] = (pdata[2] / 255.0 - this->mean[2]) / this->std[2];
+ pdata += 3;
+ }
+ }
+}
+
+int yolox::get_max_class(float* scores)
+{
+ float max_class_socre = 0, class_socre = 0;
+ int max_class_id = 0, c = 0;
+ for (c = 0; c < this->num_class; c++) //// get max socre
+ {
+ if (scores[c] > max_class_socre)
+ {
+ max_class_socre = scores[c];
+ max_class_id = c;
+ }
+ }
+ return max_class_id;
+}
+
+void yolox::detect(Mat& srcimg)
+{
+ float scale = 1.0;
+ Mat dstimg = this->resize_image(srcimg, &scale);
+ // this->normalize(dstimg);
+ Mat blob = blobFromImage(dstimg);
+
+ this->net.setInput(blob);
+ vector outs;
+ this->net.forward(outs, this->net.getUnconnectedOutLayersNames());
+ if (outs[0].dims == 3)
+ {
+ const int num_proposal = outs[0].size[1];
+ outs[0] = outs[0].reshape(0, num_proposal);
+ }
+ /////generate proposals, decode outputs
+ vector classIds;
+ vector confidences;
+ vector boxes;
+ float ratioh = (float)srcimg.rows / this->input_shape[0], ratiow = (float)srcimg.cols / this->input_shape[1];
+ int n = 0, i = 0, j = 0, nout = this->classes.size() + 5, row_ind = 0;
+ float* pdata = (float*)outs[0].data;
+ for (n = 0; n < 3; n++) ///尺度
+ {
+ const int num_grid_x = (int)(this->input_shape[1] / this->stride[n]);
+ const int num_grid_y = (int)(this->input_shape[0] / this->stride[n]);
+ for (i = 0; i < num_grid_y; i++)
+ {
+ for (j = 0; j < num_grid_x; j++)
+ {
+ float box_score = pdata[4];
+
+ //int class_idx = this->get_max_class(pdata + 5);
+ Mat scores = outs[0].row(row_ind).colRange(5, outs[0].cols);
+ Point classIdPoint;
+ double max_class_socre;
+ // Get the value and location of the maximum score
+ minMaxLoc(scores, 0, &max_class_socre, 0, &classIdPoint);
+ int class_idx = classIdPoint.x;
+
+ float cls_score = pdata[5 + class_idx];
+ float box_prob = box_score * cls_score;
+ if (box_prob > this->prob_threshold)
+ {
+ float x_center = (pdata[0] + j) * this->stride[n];
+ float y_center = (pdata[1] + i) * this->stride[n];
+ float w = exp(pdata[2]) * this->stride[n];
+ float h = exp(pdata[3]) * this->stride[n];
+ float x0 = x_center - w * 0.5f;
+ float y0 = y_center - h * 0.5f;
+
+ classIds.push_back(class_idx);
+ confidences.push_back(box_prob);
+ boxes.push_back(Rect(int(x0), int(y0), (int)(w), (int)(h)));
+ }
+
+ pdata += nout;
+ row_ind++;
+ }
+ }
+ }
+
+ // Perform non maximum suppression to eliminate redundant overlapping boxes with
+ // lower confidences
+ vector indices;
+ NMSBoxes(boxes, confidences, this->prob_threshold, this->nms_threshold, indices);
+ for (size_t i = 0; i < indices.size(); ++i)
+ {
+ int idx = indices[i];
+ Rect box = boxes[idx];
+ // adjust offset to original unpadded
+ float x0 = (box.x) / scale;
+ float y0 = (box.y) / scale;
+ float x1 = (box.x + box.width) / scale;
+ float y1 = (box.y + box.height) / scale;
+
+ // clip
+ x0 = std::max(std::min(x0, (float)(srcimg.cols - 1)), 0.f);
+ y0 = std::max(std::min(y0, (float)(srcimg.rows - 1)), 0.f);
+ x1 = std::max(std::min(x1, (float)(srcimg.cols - 1)), 0.f);
+ y1 = std::max(std::min(y1, (float)(srcimg.rows - 1)), 0.f);
+
+ rectangle(srcimg, Point(x0, y0), Point(x1, y1), Scalar(255, 178, 50), 2);
+ //Get the label for the class name and its confidence
+ string label = format("%.2f", confidences[idx]);
+ label = this->classes[classIds[idx]] + ":" + label;
+ //Display the label at the top of the bounding box
+ int baseLine;
+ Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.7, 1, &baseLine);
+ rectangle(srcimg, Point(x0, y0 + 1), Point(x0 + labelSize.width + 1, y0 + labelSize.height + baseLine), Scalar(0, 0, 0), FILLED);
+ putText(srcimg, label, Point(x0, y0 + labelSize.height), FONT_HERSHEY_SIMPLEX, 0.7, Scalar(0, 255, 255), 1);
+ }
+}
+
+
+int main(int argc, char** argv)
+{
+ yolox net(argv[1], 0.6, 0.6, argv[3]);
+ string imgpath = argv[2];
+ Mat srcimg = imread(imgpath);
+ Mat input_frame = srcimg.clone();
+ Mat img;
+
+ // Put efficiency information.
+ // The function getPerfProfile returns the overall time for inference(t) and the timings for each of the layers(in layersTimes)
+ int cycles = 300;
+ double total_time = 0;
+ double freq = getTickFrequency() / 1000;
+ vector layersTimes;
+ for(int i=0; i < cycles; ++i)
+ {
+ Mat input = input_frame.clone();
+ net.detect(input);
+ vector layersTimes;
+ double t = net.net.getPerfProfile(layersTimes);
+ total_time = total_time + t;
+ cout << format("Cycle [%d]:\t%.2f\tms", i + 1, t / freq) << endl;
+ if (i == 0){
+ img = input;}
+ }
+ double avg_time = total_time / cycles;
+ string label = format("Average inference time : %.2f ms", avg_time / freq);
+ cout << label << endl;
+ putText(img, label, Point(20, 40), FONT_HERSHEY_SIMPLEX, 0.7, Scalar(0, 0, 255));
+
+ string model_path = argv[1];
+ int start_index = model_path.rfind("/");
+ string model_name = model_path.substr(start_index + 1, model_path.length() - start_index - 6);
+ imshow("C++_" + model_name, img);
+
+ waitKey(0);
+ destroyAllWindows();
+}
diff --git a/python/app/fedcv/YOLOv6/deploy/ONNX/README.md b/python/app/fedcv/YOLOv6/deploy/ONNX/README.md
new file mode 100644
index 0000000000..d42f3c8c80
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/ONNX/README.md
@@ -0,0 +1,132 @@
+# Export ONNX Model
+
+## Check requirements
+```shell
+pip install onnx>=1.10.0
+```
+
+## Export script
+```shell
+python ./deploy/ONNX/export_onnx.py \
+ --weights yolov6s.pt \
+ --img 640 \
+ --batch 1 \
+ --simplify
+```
+
+
+
+#### Description of all arguments
+
+- `--weights` : The path of yolov6 model weights.
+- `--img` : Image size of model inputs.
+- `--batch` : Batch size of model inputs.
+- `--half` : Whether to export half-precision model.
+- `--inplace` : Whether to set Detect() inplace.
+- `--simplify` : Whether to simplify onnx. Not support in end to end export.
+- `--end2end` : Whether to export end to end onnx model. Only support onnxruntime and TensorRT >= 8.0.0 .
+- `--trt-version` : Export onnx for TensorRT version. Support : 7 or 8.
+- `--ort` : Whether to export onnx for onnxruntime backend.
+- `--with-preprocess` : Whether to export preprocess with bgr2rgb and normalize (divide by 255)
+- `--topk-all` : Topk objects for every image.
+- `--iou-thres` : IoU threshold for NMS algorithm.
+- `--conf-thres` : Confidence threshold for NMS algorithm.
+- `--device` : Export device. Cuda device : 0 or 0,1,2,3 ... , CPU : cpu .
+
+## Download
+
+* [YOLOv6-N](https://github.com/meituan/YOLOv6/releases/download/0.2.0/yolov6n.onnx)
+* [YOLOv6-T](https://github.com/meituan/YOLOv6/releases/download/0.2.0/yolov6t.onnx)
+* [YOLOv6-S](https://github.com/meituan/YOLOv6/releases/download/0.2.0/yolov6s.onnx)
+* [YOLOv6-M](https://github.com/meituan/YOLOv6/releases/download/0.2.0/yolov6m.onnx)
+* [YOLOv6-L-ReLU](https://github.com/meituan/YOLOv6/releases/download/0.2.0/yolov6l_relu.onnx)
+* [YOLOv6-L](https://github.com/meituan/YOLOv6/releases/download/0.2.0/yolov6l.onnx)
+
+
+## End2End export
+
+Now YOLOv6 supports end to end detect for onnxruntime and TensorRT !
+
+If you want to deploy in TensorRT, make sure you have installed TensorRT !
+
+### onnxruntime backend
+#### Usage
+
+```bash
+python ./deploy/ONNX/export_onnx.py \
+ --weights yolov6s.pt \
+ --img 640 \
+ --batch 1 \
+ --end2end \
+ --ort
+```
+
+You will get an onnx with **NonMaxSuppression** operator .
+
+### TensorRT backend (TensorRT version == 7.2.3.4)
+#### Usage
+```bash
+python ./deploy/ONNX/export_onnx.py \
+ --weights yolov6s.pt \
+ --img 640 \
+ --batch 1 \
+ --end2end \
+ --trt-version 7
+```
+You will get an onnx with **[BatchedNMSDynamic_TRT](https://github.com/triple-Mu/TensorRT/tree/main/plugin/batchedNMSPlugin)** plugin .
+
+
+### TensorRT backend (TensorRT version>= 8.0.0)
+
+#### Usage
+
+```bash
+python ./deploy/ONNX/export_onnx.py \
+ --weights yolov6s.pt \
+ --img 640 \
+ --batch 1 \
+ --end2end \
+ --trt-version 8
+```
+
+You will get an onnx with **[EfficientNMS_TRT](https://github.com/NVIDIA/TensorRT/tree/main/plugin/efficientNMSPlugin)** plugin .
+
+### Outputs Description
+
+The onnx outputs are as shown :
+
+
+
+```num_dets``` means the number of object in every image in its batch .
+
+```det_boxes``` means topk(100) object's location about [`x0`,`y0`,`x1`,`y1`] .
+
+```det_scores``` means the confidence score of every topk(100) objects .
+
+```det_classes``` means the category of every topk(100) objects .
+
+
+You can export TensorRT engine use [trtexec](https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#trtexec-ovr) tools.
+#### Usage
+For both TensorRT-7 and TensorRT-8 `trtexec` tool is avaiable.
+``` shell
+trtexec --onnx=yolov6s.onnx \
+ --saveEngine=yolov6s.engine \
+ --workspace=8192 # 8GB
+ --fp16 # if export TensorRT fp16 model
+```
+
+## Evaluate TensorRT model's performance
+
+When we get the TensorRT model, we can evalute its performance by:
+```
+python deploy/ONNX/eval_trt.py --weights yolov6s.engine --batch-size=1 --data data/coco.yaml
+```
+
+## Dynamic Batch Inference
+
+YOLOv6 support dynamic batch export and inference, you can refer to:
+
+[export ONNX model with dynamic batch ](YOLOv6-Dynamic-Batch-onnxruntime.ipynb)
+
+[export TensorRT model with dynamic batch](YOLOv6-Dynamic-Batch-tensorrt.ipynb)
diff --git a/python/app/fedcv/YOLOv6/deploy/ONNX/YOLOv6-Dynamic-Batch-onnxruntime.ipynb b/python/app/fedcv/YOLOv6/deploy/ONNX/YOLOv6-Dynamic-Batch-onnxruntime.ipynb
new file mode 100644
index 0000000000..517f557470
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/ONNX/YOLOv6-Dynamic-Batch-onnxruntime.ipynb
@@ -0,0 +1,737 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "1c455423-ff75-4bd1-9b49-6e9826440c58",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Thu Jan 12 19:52:56 2023 \n",
+ "+-----------------------------------------------------------------------------+\n",
+ "| NVIDIA-SMI 510.47.03 Driver Version: 510.47.03 CUDA Version: 11.6 |\n",
+ "|-------------------------------+----------------------+----------------------+\n",
+ "| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |\n",
+ "| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |\n",
+ "| | | MIG M. |\n",
+ "|===============================+======================+======================|\n",
+ "| 0 NVIDIA GeForce ... On | 00000000:01:00.0 On | N/A |\n",
+ "| 0% 57C P8 51W / 350W | 777MiB / 12288MiB | 0% Default |\n",
+ "| | | N/A |\n",
+ "+-------------------------------+----------------------+----------------------+\n",
+ " \n",
+ "+-----------------------------------------------------------------------------+\n",
+ "| Processes: |\n",
+ "| GPU GI CI PID Type Process name GPU Memory |\n",
+ "| ID ID Usage |\n",
+ "|=============================================================================|\n",
+ "| 0 N/A N/A 1245 G /usr/lib/xorg/Xorg 70MiB |\n",
+ "| 0 N/A N/A 1830 G /usr/lib/xorg/Xorg 293MiB |\n",
+ "| 0 N/A N/A 2014 G /usr/bin/gnome-shell 62MiB |\n",
+ "| 0 N/A N/A 83267 G ...RendererForSitePerProcess 146MiB |\n",
+ "| 0 N/A N/A 606472 G ...AAAAAAAAA= --shared-files 47MiB |\n",
+ "+-----------------------------------------------------------------------------+\n"
+ ]
+ }
+ ],
+ "source": [
+ "!nvidia-smi"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "2296312e",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# export ONNX model for onnxruntime\n",
+ "!python deploy/ONNX/export_onnx.py \\\n",
+ " --weights weights/yolov6s.pt \\\n",
+ " --end2end --simplify \\\n",
+ " --topk-all 100 \\\n",
+ " --iou-thres 0.65 \\\n",
+ " --conf-thres 0.35 \\\n",
+ " --img-size 640 640 \\\n",
+ " --dynamic-batch \\\n",
+ " --ort \\"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "6ec4c01e-dac9-417e-b4cf-7c6440e274e9",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import cv2\n",
+ "import time\n",
+ "import random\n",
+ "import numpy as np\n",
+ "import onnxruntime as ort\n",
+ "from PIL import Image\n",
+ "from pathlib import Path\n",
+ "from collections import OrderedDict,namedtuple"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "06a9a121-40a2-4eb6-8a79-94894a01915a",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "cuda = True\n",
+ "w = \"../../weights/yolov6s.onnx\"\n",
+ "imgList = [cv2.imread('../../data/images/image1.jpg'),\n",
+ " cv2.imread('../../data/images/image2.jpg'),\n",
+ " cv2.imread('../../data/images/image3.jpg')]\n",
+ "imgList*=7\n",
+ "imgList = imgList[:32]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "007a7721-c49d-4713-94c6-4a57790acabd",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/home/hasib/anaconda3/envs/logo/lib/python3.8/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:54: UserWarning: Specified provider 'CUDAExecutionProvider' is not in available provider names.Available providers: 'CPUExecutionProvider'\n",
+ " warnings.warn(\n"
+ ]
+ }
+ ],
+ "source": [
+ "providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider']\n",
+ "session = ort.InferenceSession(w, providers=providers)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "fdf1c66b-37bf-4c94-9005-2338331cf73d",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "names = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', \n",
+ " 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', \n",
+ " 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', \n",
+ " 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', \n",
+ " 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', \n",
+ " 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', \n",
+ " 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', \n",
+ " 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', \n",
+ " 'hair drier', 'toothbrush']\n",
+ "colors = {name:[random.randint(0, 255) for _ in range(3)] for i,name in enumerate(names)}"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "bf8215aa-918e-4c5a-b67b-70b5c3f1ba15",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def letterbox(im, new_shape=(640, 640), color=(114, 114, 114)):\n",
+ " \"\"\"\n",
+ " Preprocess image. For details, see: \n",
+ " https://github.com/meituan/YOLOv6/issues/613\n",
+ " \"\"\"\n",
+ " \n",
+ " # Resize and pad image while meeting stride-multiple constraints\n",
+ " shape = im.shape[:2] # current shape [height, width]\n",
+ " if isinstance(new_shape, int):\n",
+ " new_shape = (new_shape, new_shape)\n",
+ "\n",
+ " # Scale ratio (new / old)\n",
+ " r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])\n",
+ "\n",
+ " # Compute padding\n",
+ " new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))\n",
+ " dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding\n",
+ "\n",
+ " dw /= 2 # divide padding into 2 sides\n",
+ " dh /= 2\n",
+ " im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)\n",
+ " top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))\n",
+ " left, right = int(round(dw - 0.1)), int(round(dw + 0.1))\n",
+ " im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border\n",
+ " return im, r, (dw, dh)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "b9ce7a13-31b8-4a35-bd8d-4f0debd46480",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "origin_RGB = []\n",
+ "resize_data = []\n",
+ "for img in imgList:\n",
+ " img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)\n",
+ " origin_RGB.append(img)\n",
+ " image = img.copy()\n",
+ " image, ratio, dwdh = letterbox(image)\n",
+ " image = image.transpose((2, 0, 1))\n",
+ " image = np.expand_dims(image, 0)\n",
+ " image = np.ascontiguousarray(image)\n",
+ " im = image.astype(np.float32)\n",
+ " resize_data.append((im,ratio,dwdh))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "b1cae709-f145-4c63-b846-8edd6716f06b",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(21, 3, 640, 640)"
+ ]
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "np_batch = np.concatenate([data[0] for data in resize_data])\n",
+ "np_batch.shape"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "c382a4d2-b37a-40be-9618-653419319fde",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "['num_dets', 'det_boxes', 'det_scores', 'det_classes']"
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "outname = [i.name for i in session.get_outputs()]\n",
+ "outname"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "b448209b-3b92-4a48-9a55-134590e717d5",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "['images']"
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "inname = [i.name for i in session.get_inputs()]\n",
+ "inname"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "id": "ef8bc01f-a7c6-47e0-93ed-42f41f631fee",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "2023-01-12 19:57:07.254824624 [W:onnxruntime:, execution_frame.cc:828 VerifyOutputSizes] Expected shape from model of {-1,100,4} does not match actual shape of {1,4,4} for output det_boxes\n",
+ "2023-01-12 19:57:07.254846126 [W:onnxruntime:, execution_frame.cc:828 VerifyOutputSizes] Expected shape from model of {-1,100} does not match actual shape of {1,4} for output det_scores\n",
+ "2023-01-12 19:57:07.254885372 [W:onnxruntime:, execution_frame.cc:828 VerifyOutputSizes] Expected shape from model of {-1,100} does not match actual shape of {1,4} for output det_classes\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "[array([[3]], dtype=int64),\n",
+ " array([[[253.06871 , 138.688 , 632.50146 , 579.51575 ],\n",
+ " [ 6.398224, 59.98767 , 396.8999 , 579.37256 ],\n",
+ " [196.22235 , 252.42177 , 255.06839 , 470.97644 ],\n",
+ " [ 0. , 0. , 0. , 0. ]]], dtype=float32),\n",
+ " array([[0.96785927, 0.9659759 , 0.88554263, 0. ]], dtype=float32),\n",
+ " array([[ 0, 0, 27, -1]], dtype=int64)]"
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# batch 1 infer\n",
+ "im = np.ascontiguousarray(np_batch[0:1,...]/255)\n",
+ "out = session.run(outname,{'images':im})\n",
+ "out"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "id": "d0376a85-ec36-41d3-9067-ec5a8ec5a231",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "2023-01-12 19:57:15.736633297 [W:onnxruntime:, execution_frame.cc:828 VerifyOutputSizes] Expected shape from model of {-1,100,4} does not match actual shape of {4,12,4} for output det_boxes\n",
+ "2023-01-12 19:57:15.736653351 [W:onnxruntime:, execution_frame.cc:828 VerifyOutputSizes] Expected shape from model of {-1,100} does not match actual shape of {4,12} for output det_scores\n",
+ "2023-01-12 19:57:15.736688267 [W:onnxruntime:, execution_frame.cc:828 VerifyOutputSizes] Expected shape from model of {-1,100} does not match actual shape of {4,12} for output det_classes\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "[array([[3],\n",
+ " [3],\n",
+ " [2],\n",
+ " [3]], dtype=int64),\n",
+ " array([[[253.06871 , 138.688 , 632.50146 , 579.51575 ],\n",
+ " [ 6.398224, 59.98767 , 396.8999 , 579.37256 ],\n",
+ " [196.22235 , 252.42177 , 255.06839 , 470.97644 ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ]],\n",
+ " \n",
+ " [[ 49.866028, 276.0028 , 188.26932 , 410.7658 ],\n",
+ " [ 19.034882, 103.10443 , 460.10065 , 554.6846 ],\n",
+ " [423.22244 , 108.52466 , 632.96655 , 552.373 ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ]],\n",
+ " \n",
+ " [[199.23047 , 33.711823, 526.24176 , 504.84067 ],\n",
+ " [110.09387 , 317.3111 , 379.1754 , 591.08984 ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ]],\n",
+ " \n",
+ " [[253.06871 , 138.688 , 632.50146 , 579.51575 ],\n",
+ " [ 6.398224, 59.98767 , 396.8999 , 579.37256 ],\n",
+ " [196.22235 , 252.42177 , 255.06839 , 470.97644 ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ]]], dtype=float32),\n",
+ " array([[0.96785927, 0.9659759 , 0.88554263, 0. , 0. ,\n",
+ " 0. , 0. , 0. , 0. , 0. ,\n",
+ " 0. , 0. ],\n",
+ " [0.9629164 , 0.9580741 , 0.94588554, 0. , 0. ,\n",
+ " 0. , 0. , 0. , 0. , 0. ,\n",
+ " 0. , 0. ],\n",
+ " [0.9518894 , 0.93344206, 0. , 0. , 0. ,\n",
+ " 0. , 0. , 0. , 0. , 0. ,\n",
+ " 0. , 0. ],\n",
+ " [0.96785927, 0.9659759 , 0.88554263, 0. , 0. ,\n",
+ " 0. , 0. , 0. , 0. , 0. ,\n",
+ " 0. , 0. ]], dtype=float32),\n",
+ " array([[ 0, 0, 27, -1, -1, -1, -1, -1, -1, -1, -1, -1],\n",
+ " [32, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1],\n",
+ " [17, 16, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],\n",
+ " [ 0, 0, 27, -1, -1, -1, -1, -1, -1, -1, -1, -1]], dtype=int64)]"
+ ]
+ },
+ "execution_count": 16,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# batch 4 infer\n",
+ "im = np.ascontiguousarray(np_batch[0:4,...]/255)\n",
+ "out = session.run(outname,{'images':im})\n",
+ "out"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "id": "c0a50aee-fa52-4b6e-aa92-bbb1f12d5652",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "2023-01-12 19:58:02.921052203 [W:onnxruntime:, execution_frame.cc:828 VerifyOutputSizes] Expected shape from model of {-1,100,4} does not match actual shape of {5,15,4} for output det_boxes\n",
+ "2023-01-12 19:58:02.921072390 [W:onnxruntime:, execution_frame.cc:828 VerifyOutputSizes] Expected shape from model of {-1,100} does not match actual shape of {5,15} for output det_scores\n",
+ "2023-01-12 19:58:02.921108019 [W:onnxruntime:, execution_frame.cc:828 VerifyOutputSizes] Expected shape from model of {-1,100} does not match actual shape of {5,15} for output det_classes\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "[array([[3],\n",
+ " [3],\n",
+ " [2],\n",
+ " [3],\n",
+ " [3]], dtype=int64),\n",
+ " array([[[253.06871 , 138.688 , 632.50146 , 579.51575 ],\n",
+ " [ 6.398224, 59.98767 , 396.8999 , 579.37256 ],\n",
+ " [196.22235 , 252.42177 , 255.06839 , 470.97644 ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ]],\n",
+ " \n",
+ " [[ 49.866028, 276.0028 , 188.26932 , 410.7658 ],\n",
+ " [ 19.034882, 103.10443 , 460.10065 , 554.6846 ],\n",
+ " [423.22244 , 108.52466 , 632.96655 , 552.373 ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ]],\n",
+ " \n",
+ " [[199.23047 , 33.711823, 526.24176 , 504.84067 ],\n",
+ " [110.09387 , 317.3111 , 379.1754 , 591.08984 ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ]],\n",
+ " \n",
+ " [[253.06871 , 138.688 , 632.50146 , 579.51575 ],\n",
+ " [ 6.398224, 59.98767 , 396.8999 , 579.37256 ],\n",
+ " [196.22235 , 252.42177 , 255.06839 , 470.97644 ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ]],\n",
+ " \n",
+ " [[ 49.866028, 276.0028 , 188.26932 , 410.7658 ],\n",
+ " [ 19.034882, 103.10443 , 460.10065 , 554.6846 ],\n",
+ " [423.22244 , 108.52466 , 632.96655 , 552.373 ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ],\n",
+ " [ 0. , 0. , 0. , 0. ]]], dtype=float32),\n",
+ " array([[0.96785927, 0.9659759 , 0.88554263, 0. , 0. ,\n",
+ " 0. , 0. , 0. , 0. , 0. ,\n",
+ " 0. , 0. , 0. , 0. , 0. ],\n",
+ " [0.9629164 , 0.9580741 , 0.94588554, 0. , 0. ,\n",
+ " 0. , 0. , 0. , 0. , 0. ,\n",
+ " 0. , 0. , 0. , 0. , 0. ],\n",
+ " [0.9518894 , 0.93344206, 0. , 0. , 0. ,\n",
+ " 0. , 0. , 0. , 0. , 0. ,\n",
+ " 0. , 0. , 0. , 0. , 0. ],\n",
+ " [0.96785927, 0.9659759 , 0.88554263, 0. , 0. ,\n",
+ " 0. , 0. , 0. , 0. , 0. ,\n",
+ " 0. , 0. , 0. , 0. , 0. ],\n",
+ " [0.9629164 , 0.9580741 , 0.94588554, 0. , 0. ,\n",
+ " 0. , 0. , 0. , 0. , 0. ,\n",
+ " 0. , 0. , 0. , 0. , 0. ]],\n",
+ " dtype=float32),\n",
+ " array([[ 0, 0, 27, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],\n",
+ " [32, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],\n",
+ " [17, 16, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],\n",
+ " [ 0, 0, 27, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],\n",
+ " [32, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]],\n",
+ " dtype=int64)]"
+ ]
+ },
+ "execution_count": 17,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# batch 5 infer\n",
+ "im = np.ascontiguousarray(np_batch[0:5,...]/255)\n",
+ "out = session.run(outname,{'images':im})\n",
+ "out"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "id": "2a72d2fd-14dd-42cf-b807-3e8a82b971d7",
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "2023-01-12 19:58:21.709671287 [W:onnxruntime:, execution_frame.cc:828 VerifyOutputSizes] Expected shape from model of {-1,100,4} does not match actual shape of {21,57,4} for output det_boxes\n",
+ "2023-01-12 19:58:21.709693881 [W:onnxruntime:, execution_frame.cc:828 VerifyOutputSizes] Expected shape from model of {-1,100} does not match actual shape of {21,57} for output det_scores\n",
+ "2023-01-12 19:58:21.709738336 [W:onnxruntime:, execution_frame.cc:828 VerifyOutputSizes] Expected shape from model of {-1,100} does not match actual shape of {21,57} for output det_classes\n"
+ ]
+ }
+ ],
+ "source": [
+ "# batch 32 infer\n",
+ "im = np.ascontiguousarray(np_batch/255)\n",
+ "out = session.run(outname,{'images':im})"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "id": "f3ca9301-ba52-4a8c-9ae0-55b28be8a904",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "for i in range(out[0].shape[0]):\n",
+ " obj_num = out[0][i]\n",
+ " boxes = out[1][i]\n",
+ " scores = out[2][i]\n",
+ " cls_id = out[3][i]\n",
+ " image = origin_RGB[i]\n",
+ " img_h, img_w = image.shape[:2]\n",
+ " ratio, dwdh = resize_data[i][1:]\n",
+ " for num in range(obj_num[0]):\n",
+ " box = boxes[num]\n",
+ " score = round(float(scores[num]),3)\n",
+ " obj_name = names[int(cls_id[num])]\n",
+ " box -= np.array(dwdh*2)\n",
+ " box /= ratio\n",
+ " box = box.round().astype(np.int32).tolist()\n",
+ " x1 = max(0, box[0])\n",
+ " y1 = max(0, box[1])\n",
+ " x2 = min(img_w, box[2])\n",
+ " y2 = min(img_h, box[3])\n",
+ " color = colors[obj_name]\n",
+ " obj_name += ' '+str(score)\n",
+ " cv2.rectangle(image,(x1, y1),(x2, y2),color,2)\n",
+ " cv2.putText(image,obj_name,(box[0], box[1] - 2),cv2.FONT_HERSHEY_SIMPLEX,0.75,[225, 255, 255],thickness=2)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "id": "ff5ce6a4-4fd9-4804-9afa-e8e8a3e20b41",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAIYCAIAAABymspaAAEAAElEQVR4nOz9WdMkS3YYiJ1z3D22XL616qu6t+7Wt2830I3GQoAEh4tshpvNSCRnJNO8UE/6BVrM9Kx/oDGTnvVK08OYRkOCNHEEgDMkQIBAA93oxu2+S9+t1q/qW3LPWNz9HD1EZmRkRGR+WbdBGWUGt7KvIiPcjx93P342dz+OL/7s9xARABABABARkAEg/c7fBAAAiH/y+wCAoMqfAjb9zt8un3s/+T0RWX539XNPSj78tyKS/tL/rPw5+Mm/EREAKP8CsIgsv/d3O8sG3/8tAPDCwOJ/879cvf23/9R7zyzIzN5n09vhf/1/Kr989H//P8fH7+l4+Ob//H9Vvnnx//5/rZoGgIgX/+AfV+8RsXxfZajSGkOPiBf/4L8qX1799j8rH4hIRJgZAO7//RVW17/9z0og63ZtwMr6+ezv/MM9HXXzO/+8zHZay3b7u7/VwOrs7/6jev7qZyMzADiQ+3/nH1WfUFhEUARNICKeocQUEQgFAJi5QhgREZWIiIhRzloLAFprRHLOiQgRWa9CE3jv2XutSRC8t6QVAZb9IyIoZSeQiAhyZ8M3oyBQUmBJcB7NVjfWOrZdHBHLETkk1UGVzxWQPRXVc7bhtFNJJ2UqSxERAHgnhALAgiQAvsj9YmqXE5uOvM1RWKF47ysIBChAAMQIAEACAIzADH6FAEs3bijlWJTDoYSBkAGkhANIACjgCKDsfAAAUOsnBJaqT5gVAHubpossG8/my2WWZ0WxSJfW5iBeRJACEQFeNVYQURmlAyJjdKhNrJRGZYwJUREigugGzo3+R1qxiPKn4xVZIiKtSIUBGNHAZs7WZt+acTXHEXy93rJ/AADIVCwBEat6y7Foj7smIiJEFBFXUjsiEVVkWCcqAPDeVvmr8UJE8BUjWg9iOVOENkgjV01jdoiqbCAilmBACMium+MBCBERFCI58XW0q6RgH/er6oUW5TfyVx0FQGucEQBwe0Sq3vDC7c6s5sim5lp1GyCy+VShKbVyQoiOO7Fl3oxjHSZQozkbFKCLn2PXrK8PKwAgUtW6eo0VN0BEavXjLjQYuljnIcV7P/m9Q3ImP/6dzvfFb+yTWG2mcyBWUJH+Dp6L67S/6tdKInKzLSChJtSreus/b1v596R25kDpLcjllCTy+dLbQhEEgQrDIDAKEcU7Y5TWRATCzhaFLTIEDozKrAdlUAfWSWE9UoAUWAeI4sUhCdGaFSoAYO+996VsIAASQWaupKO0Eq+TF2ZBAWJQQhvuU6fsds+3OW+jov39Vh/oQ4Z1Dya7cjbg16mrQl5ElFId3LkLz3btjVaU/bnNEWrqpmzEbfXm8ESkiTQRlTwEUZU/6xXtSW20281ExLX0hZUs6ZqPdSpq174L/72IdVBR9bX90KaxPVRRH/FGk3cV6QRbSvHGiJdaRWfBBtp39k8n5gcUpB3vt+BAF8fePRzdaVcnV6UawwTb3d6JRpXtQL5xeGpP1fJBN2hORHC7E7dQREbYIpo63FLQNhOpds42hPIh+fHviAigAEv6K/+gylb8xj9Uf/zP2sWrhhHdPfCdtUNtSpQ4NAZGBBDx1f/nvy/N3Ht/7x+X8nK/4K+3q8Kzquj6d/55vUgd+Sr/7e/+1mmXrdxZ467MAOCsrZ6ZeWUoiQRaMWKpEQp4ZhZ2zOxzLklWax0EKyvf2lyZmIjEWeediAB4IiIix1a4KK0A66wAAEphnVHRWlF1AisTjJmBqS5dNg1RG95dGmaMiIAguKXbytqVAE3NepdUbvR/o+vawwR7GWgT7b3m8q5PIoJIG1unxVhZREAq2hARJALAJpA1Drs0j/KBa22XDoYDgt3SFxERtoBvKLw0vLbBEZFnAGDAcoiobEL1t81VkaTyEFU4lqoiIG83GQF4F99s89aq1C7OA62hFBFoEltH2zsR6EztbHVuAzUHyTpfjRqF6vnruJUTdFWAq4JbVh0ibllva5u+qRF28bHmZDmgsev89d6WBsV25d+awmXqnIO75lGjirb07YSwS+7uwva10i5hBzUqrVQivZlQh+Gx/MW/1ais87lM81/8mwDQ/+nvt9nfNroAAKULOv7Rb5fvox/+KxHJf+0/34VJOZcFoJQEdfwb1TVGpfF+v1q0a6JWvXTv7/3jxqddvQEA53/3HwFAXQADQN0p3S5++nf+YcOubcjaekXtzOc19FZucxABsMwsKMiCClERoaJAARCRtbawFpwlwLJfCZGtc8ykINaaWfJs4ZwlRBPH1tqSi3jvgyAwUUhA4EtJ74UF1mIfAIAFoOTPiIDVELAVAJCSTZOAKEQlBBp4xZABuG53InXK1/aYSq1US7vqkMpt+qmnTlUPd7u+66DqlLMlImp1lTZrA5PVM8g2V8RKOpS6Sr2xG9c3dLAzAuBS+dtu+KY5KIgoAEo2XxuCDdarDGUiLBWtbldtXfSuoHX21wb8Vn9WildnXpFNz+ySebCXBWOt/HbplQKksKNUB9Z3CelGP9dIdKc91xi7JljkUlTLShRXYni7GZWrtqKZ8ueOhuziY405BZvx3SjQ9Y/dOLdq2fMGujqhM3V2/m4N+CA6OTztpKiuSquh73BB16cKACx/8W90Pvc++v1GwVLctn823nfWsvilv1PHu9KGdjbpb/+T8v9Ss47/q/99vZ0HWiT1nFhL1ac6H6/SeW3BdU86+7v/6Gw7Z1WwDqEufW+2BXOV6hK3/jz61/+iPXxVBhGpZ77+7X/mva/4OyitdKBMbExojCHSzOx8US7uaoVGkSIgZmJW4rWbQnbrJ1f5+KWbXVM+jSTvKR8hxAABciBW+xxsxoulnS+gSCVf+nTp8rlLZ5wvwC7ALuxiUv5zy6lPZ245LebjfDZyyxGnM8gWYnNwBXgn7MA7YAFecXmoDQqwR+H2v7KxDXa/R/nrzLOHz3aS5Z18GWqEXY1OJ+TSb9+gwyp/XSRDF8dpN7yRp7ZSt/F08Y78exoiUolkEfEi66VoZCSpHC0r+MzY1dUNbt5obONlA4F215WsYD/m+9vYeN9gAp3jXh+LelIoBNz1DwhAIVZ/6wNxIC01cOtcHNyXf/3mkBrbBeFOPaOGj2D3v9WaZutfu7oDO6SJQhcbr9Nbg9I6J87Xq/oQ3DZ1XX34B9WHupqZfvev7wFRSt/KbdUpYqvU/+nvN7INfvJvtmvk+Xf/s/1Iqz/+Zygg4P1f+1/uyfbR//V/y/Gj+Pi9sH/yxn+xynn5r/57qA1ktQnr5f+wcWu3LZsKt6pg3dhtp5vf+ee41tTqorcUqyWs/cL7Zts1DS1jt55KS7fO0Pdkfvmv/rsyMxFULkGWtUEmnp0XXzCzMBdFhixhoDWhK7LFYp5nWYQ5MxdFUTgOgqA36IdhCIKAYZYt82xpbY6Ivd5R0htobebpgpnF+ZVJREKwQVVEKna5tp8YSSkTkIkpiECHpIwQIa+4WzmnK7uJoMkCVl1BzU03DS5f77GdI3HXClObQezK36nDiQgIITCiCBKLsC3cfOLSabG8bW/CAijNf0JUjICrtdHVJqwVUG7K6TV+svI6rHrbAQDVUCo7Vm3/rBZflXRvwsqzbL6cLbPlMl/Ol7OiKAgQEb0wEa3lL5IKUBlAFUU9Qq1NrLVBZRAVKlJKldKna4y4Y0FRiLHcXKOgtOqQRTwAKxXCNlft5J53stRKdFQmellEYbcEwppxVheDeIAI2SJFaXtWSqpeZwAQ8AeqRyU6qyZIuXix0w/fTpWet8632dC0i9q7QQnJDsndXq5e09gddiQAoNQRqDjCJicj6DVzk5rfCxG9d1vsoqIWtdX/Dfjt+d7ehNXFWBC7bPe6KqDre+0QEXZ77avUtn17P/m9xXf+1o7Mf9D5vkKlxK//4b/eI4PDP/kXbv2s//C/dX/9f92Z7dP/5n9DJoK9inBbja3Q6Pwk0u2vaKRy//N+nr4fyO3v/lY7w67F3crPXMdtV+ab3/0tbQxWfI1FmOfT8WpSiyB7cTmwY+/Au8VstljMhJ0BRPHsLbOjfmyMGUShCeIw7ukgzJ1dplkAi35IR6EWBgDK8tnt5VWe215/WKnnIh5YmJ2I9HoDKW1ZRCxVARFg9tkCibwOVZiQ66kwBh0pZdijlFOLEHG1HiwAIhuXV12jFN7HLA6RvvsFavvTneTRZtblRMMWWxQRrbV4y86zcAVZRLBFP1L6LRHqwKu/pdGJZSXYxTEFALqXhLdR714DLl8Srf6VLu0VRQEggkhtaLat+W1o5ZuqlNRecilo1w2mBnNCRKk6s2vtENdLA3V6uEOEbIDUK3ttAXZ3v27boAKNPc9NXnQIF6rDhBq9HY55Z4b6806ByliX0+vPDNt6zJ04HMK6sYVJSQn1VC0JNVYnK17RWdF+Bt5A5rXM9PZYrEbq1Ye/B1DfrI9v/vD/AACf/pN/1wnog3/6Nzrft4t05vz0n/y7wyHsqe6QuvZUtx+N/enwqnd9PRDC18v/usD/Mv1l+v+L9H/7/tsAYNkiYimYFWBlAWsdNbZ8l5y3IYDrkqnDrEF01RoNVBoeISJtW2wNCbf6WxOrtJ2zSpXvp+EaXQmMlgDeKr0+hlQCafSPrA4aVWjL6llIBNoCoqGI1CVE012EGy/gLqlTWa6l76T6xL4rs0gJs6NzULcVqXpxRKycPaWetGpIDRIjgPW4vSqxtoa3HWbrirhr6zsAlGvb7VbTnq7Y9N6mbLUnA9aUucLn+sM/AAApkQZ46wf/x7Jwxcf/koP/ZfrL9JfpP4b0f/mjhw3BUzFxXTtvXX0CgHI1up65yxbptvYOT23+uyUwtj/tellvzg5vweZ54+HYdtsKNQuuiuxw7ZaCoY3GHtO5G/7efuvUderINXpGRGS99lSKMQLk9THrei95qZvdtYYoqu07k8pArlSfOjHs8S60lZIyKaU6cF6dbugu3in4V+pGh4L0l+kv01+mv0z/MSVN5HfIiYb03ZM6nc+H+x7bqcG7vx60tgzArQWL7rp24bMHga+nYeyCcGBLO9tycC0CsLWUsCVBoZ5tU7COFhFVArgO5xD8d2FeL9hpsnc2p918DWu1YZcMfvpX/psSc9V0WTRnwkbp21o3pdI3spb0a9e8bPAuQVXzZ/VQwmdZb9zl8hllc2iVmb13yOKzxeTmq5ubJypIIH4rOfkGxb26i6PW/l0nhrmeE2qD3ejEzp7tTFufdq2drEe3oadvddpWE1bkxyB1zbcXGMfg2AuQMQrBTSe3o5urQLwCzLL0+uWz50+f3FxfZcs5Oztf5AjOBChQ5Oncc24UIaKmgVLGGBMYJLDDXnDUH/jCH58n5+cn6dL5jJfTF5GeGcFips0gcMIzl7MBALCLhS4ceRm++0HSe9TvPzQKPv7kDx6/+CRM4vd/8VdiiRCMokipMDCh1oGIZ2YVGbaLYjktfKHDvjKRVkFkIo4SQi2oBYlBAyCSJiImJCLSRlFQ7tgCHYAiqp95XTugEJGUWXfVJjzNgaPc/lqfcnsmM+5eKBIABAYAARJBX6RuMfKLqc2nbJ13BQnXJn+5QlTb5dPe+MpSp5mNy0s2ORUgS7GjpVRVUVEaAAgpYqcAPZThrRC9tcvZIlss0sUyW8zT+WIxKzdvM/Pq3P/aDYykUQVIOghiRaaKhEWky0hYZUyreh+2+/N/91efNxtbS1tMo5Wq8epkoJ12amd6Lbm1C+whsrkSLQ2c26D2I7DHgK6/6STa/Rh2Zt5jMb8u2JZ/QqrNASWQan23TjnbtTLgztBWsN32nUC6MncWb6D6Wml1mruMr7EHD7Xdj7tcCnsorJMmZGvPxRZA2dZomAVqImrjTloXrx91KA+h1ovvT4jI652iu9wR+18erlJ1ZtuF7S5hoJRShCt/kyAALPLUmDCMImZO57PF9Mal05jd1YvLr7766vL5M+uyPF1MxyNm1+vHKigE/CLP00WBCL2kp1VQFE5rUYa8uNyyd0vnKNCGQGVfffXk+Z+DgtPT9x+cv/nq9mWQBGFExWISDY97vYvj+99Cdfzq8tn09ov57KvPPv5x1HvZSx4kSV9B8q13f4PCAef9Z5efAeDx8em9e/e0tllxlRdTgWIY/jqpUIcBeEZyKAVb71yR5TOlDKFBbZACJEXKCComANTgDagcvRMdIjMojUrBijxIZLW5lLEeepChtrUH1/28S0M/3Jg4ZBoflFbhFUu/Ia20zx2KY2Na7fKY7Xm5G9vVUeBVwe21NKVU6Q3GVeTFFYbCCnGzdwwARDzBShtgZsTyn8AOoSjrrWSdCNMGva2C6xXQrUZUfzsrquqqt7oLTpm6Q1o2UL2TDbaR2ZW5wWkPsSARsc427zQe9mD1/+O04Z9cCqKNZbu2d6HmYa76hGHN/1f9Q1IrtYFQ36NV6TdVqcoPf2BqzLg9XbfrUwVBy4588Uf/Pv2F3+z99N+vPwnU2EAl9vboaPX3G+qpKaS7lK+2UbineUopZik3ymqtUSlQSmpBglpYcQNC1bo9tdyJRuf7rQmwH8RhFa0TiYiwgGw8b2g0kF/Mx/ligS6n5ezlZ59+8eknn37xpVbKe5tlKSBHURQEmpmHwwfM7CLneo49MIsm00si57MgiBBx0IsC4zVyP4xt7qiH0eCUAjp68O2T8/eKo8uk3xsMzrOXbOVqMv1yfPthQDEUeWxy7Mf5uLeYXs2mrxSZ89O3w+BREpwWgA4ulwubFbees+HgxBhDcGRtHiQ9u8yzInc208YAsreQetaRYVSoSKtQmRDIWFIghEYJKPZKyJB25B2wAwpcEJVkRqSEEAEFCQSwNCjLszLAsjkBv4lzCytP0MpzUw3Ka03On2NYN5kREcADoIAvh/t12WNdpavZiFDfNb0f27piXf9awi1DZtaU4E0GXAfWKt9XuruICPhS6S+FNLbO9lTsrL5RpcpQSvq2NN2lxDd6oN3kQ9hXVUvn+78ouXUgnE6ZehCJHnBWeBufXRjcQTad738eVaCiClnH3q8kqIhsxZ9BruZvRZQNTW6X0ny43fjzpzpAjbhanm9jlnz8R/WXvP11l0xB3AqtV8sPsJ4liKsgPnc2r8pARADCzNW5iLXkAQ8CAN6vDsmRgPeeuka6rfC2n3eN0K4WHThzdo10m0DreHYQLunVIUteueXLAUStF9MJFUtj88c/+9mPv//9l5eXRukoNEVRoMLj0xMkybIsK6xSarkIwsggWZYFKK8DRvSeFoTGixOWZc6ACBpylyulht/7T99+68LNZ8V09vRnP5jffPpyujQ8hNMCOF/OxkUqIIFFgcCxlrPe+4V/nDmb5fbV1WfPX3x18eY79x+9oeHNi7OeMWY8Gn/+2Y/iRN+/fxpGxhYz61Lx5XEzQlRxrOMoSuczBoeMDILExIUvhSkHiIgWkYzSBZtCuUTpqFSgAZUQgdJAQoiCihAQUESBiBAg8vog0y7y29B7gyI6B7cxw2s/ZUcV1CZ+RKyfO2996iChNoS6Hdn1ch/F7ifmlaxdMbgap0MF4EuLuQxbVhq8DESE1RHHSliXoeuQSsujKb9XD6XnfPs8DwqXcrne/Kr0IXrwnpx3mZjddNLJ2feAOuTlIcbuIekQ4bHfgOvMXwH/Gpi02eAd/HZ1tAlQ1jFZazpfKQ7qOetwOmftLn57eFt2pdbEv9vPgYgam5i24JYotmpqdOUe6q9/abCq9fDvdsLs9eRIdd9O9QweRWC9RRBrzbtT0u/5+vXy759sewz9PRZPqWcQiiKE8uCDIABfPXvaC2h29eKjP/vjzz/9pMhdlCReADCPosA5N0+nRVGUNXKRL7JPhjBEVHlhwyBWFOeZTdPcwyv2wszscq25H6nj3tHZyXn26rNn88caxAhOb5/dvHo+egWKx4Mlnp4e3z975BmRkjA507pHQbS4eXzvwa9MluOXl8+KItOBf/XqsycvPgtCINKEOs8LRWF/8EgEXzy/evL0X/ZCc9zv9Y+GSKawKZMKlGRZBsiolFIKkEEHRgei0drl2mjVrHJlLBiLOhdxgCikhJRSBpQCpRURU4iIQIyoRBAQy+h8bcLuHKYDR7kt8+4sW+XqrBERAZtRGiopWGWWmqCqTatmXXuk7/p9cy6LlEs/laxdVc3MzK6KeLXWkvXqPKgAbB3FUYibAypITf2y/bM8z73fSfY1zMHDh/V1Uydnf93idQivC2oXt9kDp7MDvx6fvJMfHsxgcculvC07qj3wlVW2sei24G9C3zZqx5auDAc0uZMOKwZ+4NDj9uG3spTmHd3SGZ9d1p4ebPl87kwrLFsNgK43WFvMWFUt3WvAK4177RDj9XVglZawiwTv0Ly+btpPoG2K3z94bc1x3Wpxzrk8z9JFvlxYayPET3/66eOPfzS9vjTgKQ4Wzs0LP5k8K4pCRMIwDsMQEbUyYRAc978JwIvlhP18sbQ3t9fW5saYKE4AII4C4CIM8LgfJ3F8dv7g9unT5/aydxSgDIZHb37zne/0Bv08hSzLjo/PB/3jxWTk81vjx+Orz9KXY+md3L/33Yfqe++/nWfpyzQfP37xajK3Hnx5JwQCCSsQncRDRdHliw+96EIzJjEGLNYubc52iRKAAmC24hx7UlZrS0ZTuf7tWcCJ9+IBvIj2yCwIRAoUiTJKB6gNEIlWstr0A0QkRMgA1KkOdg/o1+aMr5VEpGQfW5bfapIfqrxXZF8XVIhIhLsuzOlMDd1C6n9rcnfliiorbbo6CYCopkBsUBIQEaX2eaTak1S24exEdXuw2iO7i/m+Lh+QDT9sVv1a6UA29TWA71LxXxdOG+zPCWEXWGkqxuVLvyLgpiMaAUrdrhpQD+VGrZZqW6VKfkNtduzG51AnAdb06QOT3gWdoLyKBgSAgBGQyrtcqeICd6uZAFBNmfWQrzanOXEAAFhuh8ZyFqOAbFxb5Ym2Cj0lJMJOhAQ9opLVjk2PSN6h0dFSPBJ5zrUmZlZKQYM71Kal7HZHdzanru8gYhkmELbn3i4I9VQfb9wO4l+hRESAasWLVyu9sFo2Y43gAJAFZ6ldTtNEwUW/98mf/N4Pvv99FemLd955fvXyy6fPZvN57nwSHCkzCILIGKNIK6OCUGutr5ZfTkaTPLNhGBtSntkEUa8f90/eYFccDYaDZOAy9/Di7I2H51c3T4upX+Ywu7yMzJP5+Itnn8HJ8YNHb37jGIvs8Rdzu8x5rnsnpv/uw1//rynpmYLYz2xe0BJ6cbi8fHYxyC/M8bNiobD//PJlwcXxyb3JVI5O+/0T/Uv331ksCMJl7/z4/un7L5/9+Ref/+szGprkbfGgRGtRoTHacOFnPi1AnTE7Ee+cS3pH3rsCHXDK+TgMQ9QBF+LJcJigjxhIhYyISKSUYqWBAgASQAMkmkAbwHLNmFGYRBh1e9RKsm9rTp10tc6wc/MUIjE7EUAEAe+9BXSImohBWxIERhEUZEDn/capIyJVkL/SJCjV0zaFA5Q3aax+cl2CbZM3s6sRMFfynoQZkImEEMvrDYnAxODycrc8ZgtjFDtAoJIrlMSKWrEIgBcAD2AoIiKFRERqbY1XdSFuLffuko6rabDO2RiItZqyNSibCbUNsMqM2wBlO3pi5+yus4LyCoROC6mdv5GnzoLqO3vbmeud0wALAIhcWTe7qK1+bnibGfLa4uy4BK89KJ3vEVfBMTq6Ysdm5NpFk1v5mRt8dd1FQiJr66/cECcgAoTrQK0I5e5FRPQgeh2sdq2mQxX/BLYnL9T2FjQIr63J1funPnY1fu7LT0QbULKZm4K4tb+huo6wmTp1RgGhzct98qbRwl0ZKijlnN3jcN4FRHgzGRA3m7zuLNj5fGCR9oy6E0h9kBpwOkGttbz6VwEAQSiynF3eSxLFxcXJ8KQf/9vf/e0f/+BPTKSPTo4vr159/uWXs8XSBNHJYOhtOcQsIkhgrR1PbufzOQBrHQQmVhSgMnGojVFa69n8+njY10Fh/Sgrll89ffr4WX51/XR8Oe0lcDIIA4xU1Du5f+/iwVvDk7MsQINo8+Is6ikuIlmOP/kfr59+yXTrM+cLDhPwCt5857+8eOcX5+rpvcfX16OvMEXrjmw+z/nFVz/9iDnqnZwkvTeP751xPrx6fv3kq+ejm5EBiXERmuDq6mmRu+PhManY6OT49JHjGQB4L/24P53NwqjHbqFMqEgXi8wrpU0ASudFSjo0YeTZERFpzdqA14COSCNpBwSiQBAVo2ghEVgFHO6kgYqydtHY4XqYrIBgLenyaJ0wg5TrXluej06S6+QRtZyyJWO6MKlDxppzS9YRl4iI1yy+znxlHXG3NDgaERhLKU5EpFRDhDQqhRrHqMvFTqHV4P4NsNCanvtZXHsOtvleZ/EG2gfm3wV5l8Tdv0H38LqqLesV/Ophf0c1kdzLWe9kvIekr8mcsWSXqrSV63ge3ktlao9mg1T2INxW9WBtaFUEX7fgNexOZa014/5uM3H1XCt+N9LrZeCypOwY4dZUaQKvC+A9SNYnzCEj3al4thjW3amuNTdAtZ8REVeqH9IKYV92UeF8HEXay+T6eUw4vXr1u7/1hy+ePJ4up0VRfPz4s+Uyi5L45PQ8y4o8s7awYRgC0GI5zbKMmbXWSqs4OoqiSCmTZ3aZWiEXx3GEgBixN5cvbhazCXinySuVO7/44P1HoQ6TKI6CMI7j03tHJolu01tzO7uafOY8Hr/3N6CwXz7998vxq5PozfDe+4tFFCX6/OE95+6FcbzMP5rPbhJzHp1evH//YV7AF48/9wXOFgsA5a/nT7/8Qcr+rXeO3n/vVwYDZfA74IJ+/I0gAD41gLkmfnV9y35m2ZrQGR1qHeS57cf9wjlEBu9RSJzzVoHXSIaBQAXOG4+JUkYHhpUBUqQC0BEpzaCRNIhHMChCooUQQcv2Zijc1p3bdNVJKrtyrjPXriaSrXlbsl/sKtiAxpWLdQdK2NJrd/GXXQhvRP+W/bSyLOvLPSLbDazlZ+YqSJCsl5OwZZBXoPCgcwObFrXxr+rdVaTz+eulPb33WlRxJ26vK0t2FcRt2w63DuYpACijU91ZXVuiN9//HHjWdcG9SdbG8b4xXdPtHfJol1F0Z2/g2teyUUm3JU4dgUq70m0QW294M4v21A275/Ae2qq3bU+r6oK8nJjSUFe3pzFup05luS1698+TxvB0ugd2NbBdY+fLhmAuBxLXnFpkdaeNNobt8ubl08X46sXTZx9/9Omrq8vlfDF3EyRCpCCOANV0Op8tsiAI4qSf26JYLAFAKRMmsTFGa+09z5cZcwZAgEjlbl0EZ/Obm/nN9Ys8TQdJfDRIBv1hFB/PRoOX2VWc3Ny/H0owiHJf8NFi7q6f/f750beOoujxl/86CPv66Nc++N4HwVGh88Hc/VSkX9iTsHd5dfnvZWxOw3sT+tLoYRQYY5bvvHHi/ZsvL29eXT2eL2ZhgASQzvmnP/lYRE7Pjgc98o5Gi4X3Ks2yxXJijIoinMyvrr96eXx0Epq+d/L+u99QiN47IvaWtVLCUuQ5kTZBBN4Vc49UiCIuNClDKvA6JB0RKVQxaE0QAkSoWBQwaAFF6o7FoQOHeM/Q02oFuqIcBBGlFAvJxqe4lfZR1wFeH1x7jOoAO0VX9WnDLyo+sJ5WIuuGKCAiECQSXN/TvLbvVwYrdhnxsHsKwI6JiTV2VGcCq1q2t8Y0qmtJnY6GMze7sW2sH5gOLILbVhG0WEEntE6G0zZn6+1tFFzHyt7GRmhtAr2G6NyjJRwixRvptfKXLmtciYASDdylvO7UEtaU085Ql5edqB7C8HeJGBHZaQHTenZVf8uR2hVHqqrgEDWhU8WrZmknrrBWsbdArYIANKdZ563p0KUEfY15tSq4A8Iusm2fa9xV9aobZbXDexWcaH3kN9Rye/NqfHX58umXH/75T19dX4vIeDrhEIG9iMxm1lno9VRgIgT0XorCEVHSHyZJ4j1nabFc5I4tMyil4rgXBIH3drGcjMaZ82NNoBVcPOwFKmC7nEynN6O8fwRJcvTuW7/0zsMPNOBi8fJ2/HQ0eVpQMIdZqJKT+K/EcTxb3szGP4p9TO445A8Snd+++mRZWLZo1WgKIUWnQXTqRYjMB9/5wNDpL36Xx9OX11fPptPxV4+fj+bTrHjJAJm3Alf5T38cRf1752/YAiLTf/ut95bp7POf/fk8u3Ee2I7juP/RZ58+euMNTbA6/oIKQASIRby3IuKcMwrEIVtEZUgb0iFTQKggSEgHyDGIA5NA6URZS5H92uFBdLJLKtc9S5ucW7Hjd5FmHbe6sOzMVkcDEdd7C5rolf+v4WxN5E7g1c0Hlb5fNxJKKpc1WNghffek+q7u+svGvDt8gL7+TD+g4IEspc3c9ugfUGvdfjXlTpYCtUFsEM9WkdZeOdgmAwCAchNfx+hgI3+76kMSQbeX+wA3QvMY0v5BOXBY26Jq//g21vKrVL+Moer2LQG8H0VeY4Ab2XaHadsA0ugOqT9XDatbq9shXVp01u1hqAjia8+3XfjDNlHuZKw/nzOqBYoBkAAFBMrok4txNr6Z3Fx/9NNPrm9vF3nx7NlNFMF0DFEEJ6f94VGQZ0UQRIjKWpvmNgjjJEmCIMjzYrHMRDAM4sU8PTk+OxoORXye595bkELYxnHibYoAzJjmToE6PT4NI50XohTNFuOfPf4jX6TEXqEG109sgso8m30VJ09ALOVAX6pB0HNDTvPbIIiQuCiKN87/mvHfnOVfJL2/EgyjMFTOwdLz5YuPnS+A4xDuxwmdnxeg/TTL0gymi6LIOdDW+bTIrxTFZ2dnVzej8ejFeHYNSl2+uo7C/rJwV6NbQHzv3XdBaZTCCyMoHWgAsIUV8EQEnHsQ8IBei9fgciDtgcSmSgfiEy0OpTw+TqBUY7Bqcu7OIdsilV0ZPPu2cMKa/6oU0GuSljYXW8+aDuDVVxEBaTpzdzD6rRi5lXhrk3qJIaFWSpGvxzNRpd9yxYNqoHbNl0rJqAuD/dOkocJ2Wi3t1rXh1FHaL972ILMnNWA2uV+NlZd/O22GXUTYifMOvaoeR6FpEG8RlWxluHMF4C+qoxrpECuuWW+5B61GPwgAwIh1aBWdbK2F74RZQ2YXYjtJeo1JHQ7WnDT18dppAdeHkKFJ5fuL7MGv42vtKHBd7u4ste2CrusUlQDuHMXO6X2Idraro3fl7nx9oDpWUzVKLySuNvMhe8fe++nzr5787KMPf/Tjp5cvn1/fZs4N7x8DuzdP4yxfgpgw0HHUZ4Yid1FogjgGAGaeL5bei9FxGMZBEB6dnw+SntZ6Oh4tZjeL5UwhG6NsFsVhPwxUEkU60hqp34uDUL378CFIYf20yEaFtSCWJGfm48Fxct7TchGZb7BY7z7Ply8WoB6cvJVeH3ESD48fDeR4MMTl7U+Cwg3s1fLZeObz8Xi+XEwKNyLCo975MhhGsTk7fuiycLmck8+R86NjOOp/4L1P82Iw6Be8fPzsppcEZ2dnV6PxMrVWls75OIofP38ZJcdHR8dHkSBA6VIvY4YLWAIlAIAg4oEdi2JfKGUQSaRgNg5yAc/MCoiQNACgqY9Oe7gPnJCdo1xLXHEEBIWlR2e3freHNcBe0bURWntRkpYPc/OMm7N/q6VfUNUacJWE1wW3eVAJnJlXh4C7lAloTdJdsrOzjQ3Wtp+V1/v4Tvu1kwAOQWlXhv0coPPTndrJ/gzYbcasU+127ZJGBBi6yPt1BWQnGndmq+XZWGo7IDY3tyIiAiHU1rDXMES2AqDWkenQSFqYd7YC95rajU8bFWGN824BDDtlyX78GrxjF6KNxqwQAtizlIVdp6wqgih5gW/5DRro3Yn/rvdN8/c1zdn6LuhOUq7PEFxbJFU255211hf2+eeffvKTn1xdv3r+8tU4lfOH90ykFEkxyw2FBGStJxJmds73ej32QETe+TTNiXSY6CAIAVUUDG7Hk3S+YF+IqDgIo1AnSeQhTGKVpdNlOkIWtsXt2Iq4Jx7CMIh6veHR0XB4roPIGBOGsWMFEsDy2fX4v1ViRzfs2Yhyjz96kqZFL+5Z+/3ekcq9nS0hSc6Pev9SODg/ObV+Op/O7p+/B0DGoBcdaewPe5Hho7OLq9vl06dFsSyejD9NBj1EcQAvXlwriL/9/n86nxUm+sSDf/7yOWqFRo1m8z/84x9+8I1vfff9oQkiAC7ygpkVehR2RU5RH6FcoGT2jOgQWCmDXkBYED0uGI2oUFPoUZHS9XGpRqqTjNsvsabwdtJDGSNqw+/Wlq9SSpRiT8grh6usvLlb1AjbYqa0dNsI4Fr3r9CjGj1v095W2Xpj18VXIlYpxUS8SrC+K2Ujd1e9UauoSsxMtcyy2eXQTLtkcKd+AC1Odwg/7ZRYhwxuG589LPiQ4tDV3vKhcXvPrsydmOwpUjW/CiC4C7c2ye3J3KEXtmAfKIMPTytoJcjSjkdB6sBHtuPV7AJYtUVq9y4fqHns6i6pbcJaaaKIRKQbrokq+ZpLHVHUBpCvvW+O0CpPXbVqYFcR3NpXzmWon9UxLqkWOwHLI9bdo1W9VMoAkoWCFVrvSCkA0LTF/vbom51p/3SCmusMWpS3y3CRTQi9kjttJlq90k3VFrEf5Cn00TsZBfFJMZ+8/Oh/fPrqiyeXt59/dcNazu5RHAIhpuncujSOe/OFRa37veFg2Ivj2HqXL5beeyIKTeR8WQXnWfr06Q+dkyAghai1NjpgBmNCLb7Iiijsndx/EIahiCiloijyi3SxnCj01rvbyVhrjSxJkvilH2kGJSb5Vv/k/M1fezPpnQoE8b3esJe4dH7z7PFi9HJ5e3X17Mno+tWThbm9nqFfavTvvhWi/6wfmPPwLec/c/PhOFsuCmC59+Cif3rqR6ORmy5GkysyJnuVvv/G9y7efBti9jw+D9+bzm7fe3Q6n/Plqxej+QsVwGcvf3Z6/ktv3B8YBCWFYifAoEi0wfIcrVrNTwbw3npvlTLIQsVSuVwxAyATIQlwpkxMqjSoGRFAkFgDceXOqpMzdEVzw3UAgfUQ15biGAWAUAmiZwYAUmDBM7MrLDpQqBjQIyIqFBBSgOJBEJGgjDZVokFr8pH1mdqNlr2Ru1SSnfe1dT7akk+r25DWspZW586pXBAWERZhQgIRADHGFB7tImPnwbMJY+/FOUbmdXhtRFQggAIEjAIEqAgIUURIPKEWEna+MqOrSbVrekrNgwc1XtRQIGqj0zRx6gKvPV6lrtNgGiLNfdTVResiUjqosI62AAA49vXb4GupcW64EocrmI2rftr8py4e1nC46oHGfbSwozNbktLXIG9sx3XZDc5EGytpfVMHrduxWuncWgetBV/bRGWVZgycqmkCW4bHJqkaT66PNa/b6zdwSACYEWClwsJKFhA1jxvU2kXVlKmUnuoMWENdExEkEaFaL9W6peXFwZpGWG8yM+87htSZdukvu5SahopXEc3XdGG0keHNMlKjinrt+9XDRoY71ZxGKdir1u2ZAI1S9fmmQnROMS8ydIEaZrPpfPT5zfX0B3/y9Omrr1QMF+cPtD6ezG/S/JU4r3XQ7w/DWIbDo/Oz+9fXt8+fPxeEdLFkBkQkZeI4DuMEENM86/dORaRcAA5Mcnx0KgKelaKIuVguWdhGURlTjPXUZ9l4Oh1rRXFikjBwjgjAQHD0Zm4L6if3Hr35/qB/kuVzn8/DkPKXN688ZMvcpksFqt8f0lsXR2dh6K367knhgmAQ3Xt0xqSi8JHNeid0lS4tiLoXRZqE3YLt9P6xfrwI589lfDN2cmOnN8+u/vj+6bd/89f/F5e3f34y/ObzVy9+9viPpnkaR0ciYovlD3/4p9Fv/PrRIHFp1osNobbeK6NX85pXqtNKaiECcLn64a0VyokWikIQojgWZ51HQRISpZQiA4rqgQJel07kgPWOO9OKutfW5gbsRhB87VQ/OMErlaLiKbgV/9KzJaIoipzPrHfO5dWxi1K/3OM/24gWrP1YLz/t6aL2J9k4jahT4r5uavCrHVXX7M5Wnx/CQ3Djn9jiPA2u3clV6qrVupavP+6NHjuEPjf0t4YA291VF6i+pb40sjUgt5q2/nQnWl837WHdbTRqDB/+QoTYHceQ1i/30OIdqU5ndRnZgFFRpFQ/m9cRsuyQVe03IttxK7eRORD/XV2/B4dOG2hPFQ1SrhdxykvGvdjkXqwN7fTJzbOP/v0f/vDzpz87Pk3ifj/P1GJ5RTpLwigXMgYmswWzeAfTyXI8nWRZhoikFCgCRCAkbbTWhCoMIkXh7e1tr98/P3tTRBhIBJ1lDzd5ngJAIeZ2YpfLpdLU7/dNcBQOT4f9hEAUkdZUZPZ6Zm/nkSIQf/XRx59rKnqxGOXZZxcnb80XUxE/GAyiZKhVz5g3zfDd4UX/5HRIBN6ReErnN7n9+Hr0MzPRHmwQaw5DkBClZ8yJxnsn8Wn0xtmsPxrdvJyMb7TPl+MvPvzz/8fpyS9//0f/5snL5zkDaUjdxOdgFqEeZs9fXhr9sB+FubMAEIahs84QCiIAbi6rJixXikC8gKBDlgUAGVQIYpGVFhUoUqWoQBHxXspIbdXCZ23Qu0M81omkznahS0BVvICIys0O5UxZy7OdGt4a7F1MH2Brs+hGE8YGQ2kriCUOiMiyFf8Z1lcNijBiGViygsOVf73OlOtYVWaiiHRoFa0mQI1N15jJoZN6f9ojwg+E31b923ZeXcDsYrm7GEtb2rXL7kes/qbBmeuEemcDN9lk++dhfdVuiNQ9ye2cu4kf9rauie1uIJ3ZOuGX49Oocz2sr6dn6/362h7MDkmIWF2WUGdYbaHeKFW1YT+prSAD4noNmIik6UG6g9zvbEK3WD1gShxeXUNLAIC84AQLZEEVg3OTy68+/tEPnzx9evHWIDAXNqe8eOl4pqFndNLvwyJLgT0ps8zy5XLknZgwEBEVRLKeXoXzk9lcRPI814AXFw9PTk6UUnmee+9LB6l1EIYn1to8z8Pk+MHDoda6KIplls4Xy/liqZWyWW6tHfYHFxcXy/lEwBbZzKazXkTD/vnFg/vDXj9C59yFMT3v4eX1q+niSX+oTk57A/hG9vJ5ENB4fDmbXnqXZsslgqKT+3F0lPQGjHoyXcwW04JvnXNvmPji+ChQmUnUMDieLbLRKF/OB654dnFvODiNb6cync8nk1dawaP7b0b95e3tbWj0e++8rVTobYGgkD0QIAsicOUTYxEQJkYWAhEQBqGcBInBO2ETskJEiIEUCTGICCslCIRrxenAcd8jVBppM1lga4pjawNEnfDWDLtrKXoVsmYf1bWY78YNuD6svFl2KbELgsD6wjm3uh1EAWC5rtSxm7eannUmsKbKZtv390+Vc8/7XVJtD8AGu2iLme0aaybjjkhVu3HYpVhsiecOyVTV2CEh6mve+xrYaae2aWYPhK2IfjXR2+ZgsJ97y9ZC3s5sm7r22cB3ks1fiH62DWpLQnXKiEP64e5d0J0/78z/umXrKt4edGsAt2ZaSQF1bbqc6zU9fSsWaB2xXT3Y0BAbpb7GJN/RlmpVZFMvABCGpGZZjirsZbPHn330w09/8vjswbmE/flsOV3cCGZxco58lOWzwr8idRzHsbU2y1IKwoKz5XzR6/XyPFNKGVLGBESUpqlzTkSOzk6Hx0fLLGXm09NT7/1sNtNGW2+QKOklgyG6wl5dj6fTaZYvtYYkSQJjgDFJ+kQwm82+//3vD/rF/XuPHtx/rx8NjFaostv5+PntF8rJbD5GsoN+nIS9k7PT0+HDKBx+PJ5evvokCO390zcv3vv7R4M3vF9EiSO5d3P95fjms+no8+vL56PrQgpU1L/ExeAE7r9xcnrvjVdXcnykw/6r0ezjI30P3P1vfeN74TCaL/N+dFqk8y8//4ETWiwWL16+UqTfevRmGMXOsZSBxNbKGkAZgXxlAK6kHYhiZpdxDgIWlQIQywImRxOoMNImVoQCpXxCYOL1rbcIqrzkYD9V4Jb105SvdSW1DeEvxAWHWyb4LmujtusHBUEhAJQ3mnMlJkgppdRmFzRsohmXK4Jl3CsCwPZSaL2ZUvbEaqEZQGS1aijcoaKzB1LQmpLQZWg23u/vlk5QdVQPgQPbQ9zJajo5hNQ8YdtEslW2XdfhDKc59DvQft1Uif8ytvMKSEVfpVejo9KdwrfRaZW347Uxq4VxrRtLuyzp/Spd9bCrG+9Esv6xvk5/twsaWsrOa9F0/XxbvTHtqhqUJ91+b6wf1F7J15qUrV42NLIdWucdqS2D26V29cadGkwDYEMPCBXl3iXxCefpn/3wf/ri888cxmTUeJyn+Y3zmcKhLQjUjUfreRD1+7ezcZ7nzjlmtl6YQTnnvRsOh71+35Bi7wGgF8VHR0ekcDQaichgMJjMZ845Ilhki0BDns/TzDvnptPpYj5LkuTiwdnJ0Ume2cViURTFfDotimIw6L397jtvnL2htc7y5fMXP5tMrzxnzud5AQ/unZycnLxz8eje2Qm7xWx8efnq99LlxBh17+Td8+gbj44f3d4++aM/+Vd5nhsdg74V55VTirEP/fNHSRQnqIy/GP7a9/5BP3j07Mljp/84zb9y01zGcDMeEVkHcHLyYHB0mvnx1fXzNC+Y7XKR3dyMbm5Gt7e333r//Yenp1nqQZW3FpRdjgwiIMhChLjaE4fMDsR7L5AXihQ7CywoFilCRvTlWSYqDToGEZZSHgB2SN87GfeazrterovV+P8+/3OdhL5eEhFc2/WIXVehbVeapgtrLaIqrzxhZhFWSoEvpe9mLQkAEEvxvFGIS3VZ6G6Md81cXFuNnUV2CcIqw50Mty7IW7KwKSz3INxgILukYH1D2VpNbLD+TV7YZuLbadeaq9rxfoPnISyxak6Vu0SvHvJzS8HaLfDu1DAOSYeL533SbQc33lV8l/wCgPLGk8Nx2xeIo/a+5dfqshcbDdijirZhbt7foUI2a6y+Vgm2Z9Gdfi1sHZFuw4eueVU3r+sv25mhqx8669ooLj5ln5jEvPjZD774sx+OJ1NI4lc3c8+8XBaGBkHUW2Y3y2IZRPFw+M54eT2azOM40pGZz+dam8gYzxBEYa/XC8OQrUPEJAqTKO4l8fXtTRwlg+MjZnjx4pky+uz8eJEuFQ81Jlk2n87GSh298+hdrXWaps9fXBkdOsdx3Lu4eHMw6BHBZDq6nlzdjl7OlzdIQggaBkeDt0+OHhydFYv5+Ecf/dBms0ipOEz6YT+O7983QQ+iF08/e/zsw5vZ5Hq+zLwSii8g6yX6aKhNoqJ+//Tizf7JQ8ZAe/2zT/7k5upf5PmiFw+PkvfvD//qUTC/mv35zeirq5cfvXr+VOmwfxqGcT/u3V/MLrOCrYd56mezp+D98Je/G4eB0xq5vDEaSm6GCEKrywRq1MjAmQfNyzEEVpe7I51wAVYEnQMVlFcqSXl8gMvdlboyD2vjuJJBFQVuS8puS7fy01SmREP9Ld/KGk6druq0t2vy43oraknrdamwqnKHg6cSDGVFzOy9995XEwdREAVJaqcgGMoN2yvXZdNbWwnRql3bnzr6p8uc2thhjfd3zv1dLYUd07PKsG1LNMYdAFaxCrq4YgdWu8z3+std7KhOvXsa29Dv23AazLOuMQBs2SGtnilPne3z/7dTp3Q4ZLw6QX1t1XN/dTsHd234HVLF/kbtvI6wM90p27dM2B3PqzfbQUgP7ERs+RDWbAFXzIuo/NlJ0wdW0WjO/tQmuzvlfR3yrirYzoPkvdvx80/+/N/xMi2cv81uGfqTyU2/d5QkarF8uUiLJL4fhMH15JPnl5wkCITzxYIFgDC3Lgzi09OTOIqdc+z9oN/vRWGR5ddXL4/vPdRav7y80Vq/+ejdLF+OR2MQEspGo1FRFINhHAVhnk+nsxwRo6R3fnYvjmMimkwmn3z2uXdFnqdeONBKmRMUGxiKAr3Mnr/89FP7IRACARwN1MnF2XAQx1HQT6LBt7/74PTdN6159uQjeflnx+c3T59cscuO7g+gsBrj8/69o15f5jIfP86dz8efBrGiYhpQGCVvX72cqOAkiofG6kHvYglXqCZKqcvnaOJ7v/4b34oenTyczp4/fzaZTBbT2y+/fJFo/Cu/8stKGUYW8Lg+aEOAiOA5FxEAJqIy6AkiCLK4pRN0QmAtujiIJQCttHIsWmtEJAAhAmARYnY7gp/unH6I3ctaG/LYIQirbHXKqbODr8fF6hpz3bgqeQ0RQU07FZHhcCizSZalwqiU0loxo2erYX3BWkNK0aa8VImlHIbVpy7Xa7PVtebX5cGB06oNsP1mF8Ban280b7yrwxuCbZf07RRIULsNqS3OD28m7O6ZTpF/iNHSiX+9lpWU2nEdoVrtoaiArGgY9Z5gxwelNvK7hMv+UasXqesfUKPD2tdq4F4PW924pqobOVntbBIAFAsrqqoHT9lJFp1qaVls1RgAxvVqQcn+VuOCQJs9m1Xs2arS9TzvCaSknEbtLYOaUTAIMBDytaiZ1HDitdW9Bnq4TtC1ORDX10vB9pwRERCqXaTD1d+6eVGvwgppQM3snAODQugca1Kmfz+bP7/58A/t1dXNPH06V5kLQvuyF/TDQC+W+XSJOh56A9fjyWJBg36MCOnSBUEMwEQ6CpMsy4KgX1iriPq9ngJczJbWWgAc314ZY06Ohs7x86fP5vM5i+v1etNsQkTHZ6dZXsycOz69NwxCpdT9o3vMNs1mtzcvR6ObPM+1DgbD01D3BDyhQ/JFtpgtZgrw7Py8fxwP4qNePEiiXraYnx4lg4GKYl28fPLxl5/MZ6NlOjk/P8XgPAoXpq+O750OkpMH9944HiT9mJ4+/iwS5WcZnP6yFwkiVkafnNxjmo1Hi+V8HPSOuY+5n09maRjoo5MBQby4Xd4SRtHRb/61784nN4FyX33xk2dPP/mDP/29h48u7p2/MewdM4OzQEyAOdCSBcIwLgqx1kZR4r21zsZJ5MSDpOhYiSW0yMLOgQ511AOnRSdiAiFkEkSFKlhd10dSmT5rktrSzCoiZA+EWJ61JUJBRFDCxDYTESQNKMBMzCDKs6DeuLYYgYRWnlABEEFkIV6fnFcA4MWu5kfpbK8MxPIG0tW84vU8RqlNNKz2gQEIrO8FQQIQZi5DeWRZAYCCDEayNANRIEZR7NnB2ryuSF0hAYAuj5B6R1qjALPTpBFB1su9ZaXVOdQupknAUs5KQqzYOJQ76rr0bCcd14CyiFpL0sa8XokBxPpCJiOoLQ17xaJEhFUJvPq4FpzrTQZ1S4kIgXE9ZBUH24pbUmFSDUf1c5tN1Vc97jDj6nk29dbgrI60siBiGfShOo+LiACq6tiSuta0BACbm33rnLCshYh8LcQprsMzAKJbX89XcXUkrA5Dt/uBYGtkK3za/dOpP+2SwY2KGvKlCuDcUJ4QkT2WjoGqFWWGdlyNXfiUP1/7HHA9Xnw9Ha6Ldaa2xvFaABuZW6CadbWL7EFsV3WdemItyH7tsrna9xJA+SwCqwOXCKiIYYOqd9nti8ezyehnT19+/vyVjs8Msgd1/+EbN6Pr8WTiCYDNdDxO00JrE4RSFIVSZPOs1xsgBctl/v43voVowyjM00WapkkYFc4C4P379wH9aDR6/OxxnudhGPeGkbU2K5ZRGKd5Np5MgyAyYRjHvePTE+ccgEwmk+ubyzSbh1oPh8dhGBORc85aZs8gQjro9U7jKEri3rDfM0YhOOdTL8vr0fKzz0aT8VhkkSTRN9//zluPvjefz54++1Fe2Pe+8c1vvf+bcRSGBpNYv3z2WOtTFDs8Skyvn7v81auX16Orr17+ZJlnIjIYDN6I/rPFGAZBTP3T0eQy7omo0Yef/Hae995+692TWANANBh88J3vvfXe20+ffvmDH3zcH352/+zevdMPTk/u94YgTEU2UKqYz5dRFOlIZ/kijpI4jm9ubuI4BvDEBQsiIDEp70lHxAVhSMaRj0mjKA1KC5KgFkQUAlyfl0NFNV25TeFrnRaqQAfdFFVTFutfO+dIJ7liZW1Lx+RtMOjO4p0MpUIMETtXwetVbOnzspJKNTXltdOdVlqZFCCs7hqvv+4oWhfDrfcb/23V5JWYqQnynaB/vrQL4IEV7eelDRG+0T+qn6/DjbHlk9gW9jVohBtFplJEYP/egwbOzeeqljaH78S/QUKN/HXloF2wXnVDrL5WOkgA74F7J3F08ojOcT1ESRGh2oHL8pkBYB3fhLB2Q2oDZp047mzCgdO7q12NTRCV9OVOgLRaOyRBFAS/vogwn07n108//eQnnzy9KlQSIPs8HZ6cXV1f57ZgpVikcF5EtFZKKRbr2RUWhoP+bLZQZH/1V37j7Oxent9cXl7aPNWK0iI/Oz1PkmQ0mT598vlkMkl6gzfffBTH8WQyWS4XUS+Zp1brMM+ys3snb775prXWW5fE8Zeffe58AYTD4XEYhoiY5dZmNrVzAA6UDiMTBYlCMibUJljMXV6M0vRWOFvMJr6Q48HZW299+5d++R1vg9H49o/+9HfSbP6L3/61d9/7W6engXPXl6+WF+f3tI6ivgr0ic3g2VeX44/+7Wy2uLm1w6OwPzzqqehmdJsu5z98+t+dHF8cH12Y4NToZJ5Ox7fXLIpkefn8Z4v57enJvdHJsVLqjTcuhvf8e25+9XL5s8+vP398Negnbz78zqM33uwfeckDrcQ5F4YmDE2aLfNcHR+f5jYDYAEvPicALwJcsE7JB4ChNplyMZsAtCETkhdvYiBCRdXdB2WoHFjv8GoRG8KObRAboV2Tc9zwxNTIu8yPO+mVqo3NO/TU0hHVLX4608YuISr/7oloWOUkIiAqDQuEVeSMhi6732SpeGKHDt1VeVuUdvJKaXm5qiHY9HDrmsJd/Kru3+pUXPZYC3c24c73uzLXPXBtOA0UdgmeO9FoSN89peribc8wHZ52idL2z87UztOmil3VdSLTaNquRn2NSFjlbrrmXrvOrmyjW5OLq/d4mAaxEZ+IIArAIeImDhlsafcCzQXmCvCeib0fczhgIEtWCQBrzX6N3lbEOqgsYAAA8Fjyd1pFjSECtm706tn48snnn306tRgMT8Auk9g4Vk9fvkh6sTIROycAYZwY5iJ3hWWjgyQ2o9E8CMx3v/udwTC+uX4+ur1M0xTYDwaDQX+YFfmzF5cvr26UlkfvfuP8/DzLsrTIB8dHqNVoNDK6lyT9i/tvDIdD70DrwHv71VdfFd4RUahDAMjywjn2BTOzCmNDKorCKAwViM2LZbZYLGaJBgDOsixNZ6cnJ+++9e69exf93tHHn3z18vqnRT7pxaff/OC7F28EhX91+fwoCRZGhZcvnj55+uFw6G5uRuMR9AIYmu/ef+Pe/Ue4zBbzdA6G4/NIyAfuarm4nMxsEBxbX2hj+wPz6mYuAmKzWfp8PJ31rge9fj/p9ZhxePRe7h6Lycej5SefLb988v333nt2cf/Rt999iKQBoXAW2BtjCE2e52VICRRGFPCMwAAWWLEnwNC7DHyEJkITgEvYOBZQWhMaJF0GZ2NElC0pu0VmyOttK+vDPSRIK2sAsVmwMsJ28fEOUtwQ7UptbUqdrlKwzTW6KLyay+UVhPW12C0tExHbgnGlUMD6XuFaRT+nF63dkPbPOmfstJDqDayV/TobZf6jSruwutP/0cjcGt87aqmP7Bb5IUoZmA7rN0yL2gut/fLO3m4Q1WuNzi6CrKuADTl9iIyoA79bAO/AuFw57m7b/kE6pMa1Xl9bCtrwMiojl65b7kFWywkr8Vzeg7EFbQuZejf9hSiYjSQihxD0ZuRWK8okIgqFBPP57OrFs08//XS8yFiFo9niLKG41//4q5dxEmeFB8dBFBKitdZaCyxhNDRKTafTwaD/K7/yKwTyox/9ESL4whHRoNdXSl1eXr66vikcR3Hv/r37RkdaRf1eNBqNnj196ZwbDI6OT87CMPLWjUaTwWCQ5+lofNvvJ8Ph0No8yzJrrYho1EEUIqIOYiIghc7bzOYuXzqfCfs8m8VR7+T07FHv3Xv37oG4n3z64dOnjwc9OB28df7wvThy2oTzURzGcHov7/G98exxll17zh5/Ufg84WJZCMjJ549HHy/mbjQC66FwYGITRAnZVCnwfmoCZz0GYTI4Ole6/+Tq0nnHLJAXYeQVkS2K+6dnzvF0MZLpxARx/7iw1n/+1YuffPTi5uUbf+03f73f692OXiWRCcI4W2bMoFYbCEpdzgN7Zg2kkQEkg6JgG6AxKog5tOgds6cgAkxIoyABEO0lIUQEKSPKljSwdYrjdQXRStStqVrKNUUBwEo6qvVqX83qXZHf6sXh0xbXswwAZD0Zoea4axdZXd0AjMCrheTdjdyrZHBDO1mnjS5+CI+Wel/dlXlbm9lAkFqw/s7UtoSgq10i9ZuO7077DYafU49Zobohk9rlv3s9xI2uWzV8BaEGE2BlphzMfhvd+FrqWqND7lJEdiLTWemeaXKI9gCvawEj4jr0cunUqr507HSALmro1EAP6VBEBKFytgMgSM2xtspAZWj7kjs0yq6I6nXk7pq/7Pvaxl9ko/UjyjougYjUj6lsXIzAAopEBEr7BwQLO7159ery6edPLpeeWJx4yV3wajRLrQ1EW8+GDIguijzLcgQmImG8Go2SOPyVX/418e4HP/5T8UUUBf3hmS8sg1zdXF9fj5K49957b5kg1IrCMMyybDwez2aTyERnxycnJyce5PnzZ4RK62C+XERRECdJEIXee0FSJkClxbMIOmb27CQgFBHPLvUuQymALIADsPPlQiAUcrMvnr26esaQ9o+GUgxzwXmRob6nbHhz++J2dE2+N73+/qvLfD7PIgPf/i68/ag/6H2zFzzK8sfxQP3ie/eSOC6sffLseeYsapNnby7S2TKdT+YLz3Tv/HgwuF+k8/sPwtFolM5nufO5dfNF+uzpC6PDNJsac37vXjwOny6Lq+VCa60HJ9kXz56P//X81371l99751E6ny2XaRxGeZEBEAoDQrnFhJGBLYgXLyLEYNEZsppdrpylIAd27HMlXkImHVUnRff7VFe6Gq40SCLyXd4/ka0wjbBjslRmRK0kljIYZE2KsDlvClvT4VAnW2Uj1sxxABAkKK/ekrvAVroydlnAB8j+u7tik791HXLd/bRjRDa5qudSP+6w8LYBVBm4290FW3FOXj81mr+LDNqf6kpdl+lfcx2vVLGmzOsYnd0dv39QRIRqVzOU6K4o6S/OC1KlA3u7W4HoIrM9UnyXOiY7OMAdgTh2o06lgVpp7u2JsSt1yuD2z+6y6wUtAEBUAqstl9W0hu3a17S4ExNoLXhsS9Pm7sT97QKAcnMfANS3QHdyIlh9Ro0KiAEAWAi9S+ejyxePv/jyemHnhWjkfqDHS3s1WQ77g5urWRQHgYm85zTNCSE0gYBPszkp+cVf/IXZbPaTD38cGjUcHovIbD7v93rj8Xi5XD58+OD46NR68NbNZ3NEIQU2y6IwHAyiPF98/tkr0RRHA0R0zg2Pj46Pjx3bLEuZhRlY0FkuY2kRkVZKaY8CzIKISimCgAWEwZhzAGCgy6tXRVFYa+N4MF+Kc1xgPCuyx5c/GI9m8xF4C8IQa/3wzcHf/+t/9Td//Te+8c4vDJOe0fnt6MtJbuIwUMLj29vZeDm498vOm8WySJfLi4uzy6un09l1GNGzy6dPX3yUJBEU8Un/KCR9c3NzO545ryZz++x6lpA5PqWj0/5F+Iu9+J3R7Pl0drucJxIVXz6fztM/SjP3/juPUKm8WGpNngFRKZAy1HGlwAk48ASAKCxima2wY2+1d2Ai8U55plDQhABGts/e1MddREC2hENJwLtIsaH8tQ2ynUlWdgvW90AcrLm3saq/r9aA128AdsxrtV4DXiUkwQ27b/RSnZncaXOseml3BulcM97b6naqm/h3ZishHgj550mH8Mz9pdbobfof1wpfg6U3+rnKX4e5R4Y1hrj+ab/i1SbI121vJ8K7atkzB/cUPMTz3JnnNSzg2lDtVLteN9XV8OrNFnF0O7WoWnyqyq8FcEfAF6z5rGpqe5NWOpvQrfbuofvNMSRaO/pKVa+hUq8gCSOCAvErXZrF59l8NHr27OnCY8bqLPJ5vkwL1Tu5x/my349ZxFrn2LNjHRillHgOQvjeL39vPp0+e/qi3x8GSjvrTaBDA6PJiD3fu3dvMBhYa9NlUXg2oZvPZqFRSRIh+fHoihl6vR6StrboDU6+8d4HgnB1fS3gLXvwkud5nufMrEkZo7XWpMDbDKAcJQzCONQKidlbYX1z88r5GYvt9XoDfRxGwyy1UTxfLG6Kqc0XbjKBOIL3PngUx/Hf/Jvf+c63f+32ajRz6f/w+/9U4Wwyvj07ujeMzm9vXmTz615I89k4TQvrIIr7Uwn//HNxhfrGe98+PX9YOCxyXCwWGnkxn9siT5JemhU3s0XSGw56vV7Mvfgs1IkJqNeP4l4kTGn6lUU8u+i7zP7pD3+czRe/8MF7SRTZbIFggDZDJlLuwhEihYQkgsDMzotjQGImAfaWQQloRK2QEAFbx/y6yIlL4gWoLvJrrs6WhnInd6sIEuAg66EugKuzSV/DBVp/qCPWyb8aaMtK++hYrFkr0oeupR3oEmzbfA3M23pSp96zH4H/oLJ2F/xdfbW/D3dZQbBuEdFOsPVse9IdGXgrJGop8omoKwDpTuT3oHcnVp2jWf2VLrlTn7yyHbgJq+2BXbHBcfeikl4xGan8VN0tqczEcsmDVhkYABkBQAFrQK6YyDp1W+SlqJS1j7ciBUREVIjA7EREeLVDZXWejAXK+0XZgQgAM3gAYQZDUXnAMS9SCI+01p4RhYBRRFABAIl4JEFQdRWsaulmxa5EpsSHSMQjwvpAWBWkHnArXFyt32jzpqxB1i6dqidrz6A0+2wmKD5I7KI4wfCTy1f/04d/+Mmrl1qbs+FpVnAqKC5DXi6XyzCMFZK1ubU26ccnx8eIuFwuH5zeu345enl5ybYYxJGTIohCL3728sYxvPPeu2lu09zOJiNbpEkYFBgkYQTiXWpJk9GhNkarKHP+wZtvnZ6f34xGr25urc3ZOgFPQYjCpFSgtfc+yzKtlDFGmAwp770OzPBoIOCn05G1LssWYgJljCZxKN75Ih0ppSY3l94RiBkcnX3wzfsPLk56EbLYD//kh//q//kvUSiJdK+HH3zzvffe/mWtwtnNV8+/+szZ2fHwKI6OHjw8zZx9/PzLqyktszR39tPHz7znQW9wfnIWaIMU9QbB8vaqKPIoinyWZ4vZ8aCXquN8Pj3CItR+PhlfX916D4/ufzBajpazuVLmdjL/vT/+MQP9yjffjCmYONaiCAkBhAskJvJAAj4ABEaWMqQRCPmlgtzTkqQPxIJAiCyMEoqmgCJA9ESAqjanWAAVIWFpapcKGjkvTApJg2MgQiWOmcBrVAVv3NQAZbApFBFayWy/Id2VNwWqBWBYBcMGRMRVThCRMsBzeZqxMT2rBxEUYUBhZk0aEdkXgBYIlUIuCkOq4EJrU7hCyHoJAYGQCACFEBWBQgBEL0KEGgid90SglAIWIFpPuK151MlhRaQWTgvX9+CKiKjVPbVbS+llPzDWftLKXSZ+a79YVR3R6n6aVZRMAUQkAe8trvdvb4rIVndtQcOtnzV+vVHI1rdblD5YqvNPRAVAICRgK6mAm7PF5aK+VF1RCYP60vq29GidT12tasiGj2HZ7s020o6m+fWGmzWAMkKD1hpqcqjCqaHH1B0J22wfq/eNEVlju7asVueqEQEQV5dDVMU31WEzbsSqLlAAUkqtFTK8Ys6demRDWFS4NXXQdcXl5ettJVJQAKGMvLdqBgFUFvCdisPXUu72bU9odE31plFNSXWb571K2Zowqp8CyFAtWiMDNCHsadd+5fdwFayhKTfKEpFS4Fm8K3pxOHpx9YM/++FXX3yFCMaYtMgJg3SZA4C1NooiIrVYLESk3+8j4u3tbRAEJycnRZ5fvXqV58X9+2fW2yRJluncOTc4Hk4nsxcvXgRREkWRiCciRlACpEgrYwgRFTMzgjHm7OHD2XTx8qc/nS1SY8xgMMBAM3NubV4UIhKHYWgCLMshlrcynJ2dDQaD6+tXLC6KzHwx9YAnpyfZYjmdTkyg8jxdzKdhGEZxfPHwwf17byhlxje3P/3px75YaE3a+/sP7w/7oSLqhf3l0v/Bv/8jpXlwon7pr/5ttEZJ9M7b33x5ffXjD//s9OKvnDygy5cvb8YjHdnlIp3MZnnmjgaDKPRCEsexCii3lgicK66uX96MJ0lsvO33I50kg3feO3p1efXi5fN5yuPbDARMqL11f/rDTzm1v/adb0a9pSuywrKiwJiQMLEszjJRthpH2eiOIuJyRyplrxRrJUAgCjxxwEYRaSr1MqwYgVorZwLb68S1hy0Cqzb7NA24tQxo6+y7xOquKjqTiBAhElY3C8J6ohFReR/D9vsyrkfJpVhWcTmUqmzfcpdELdVwQ6h9aiOzv0WdqQGp6qUGA4UWq210Zhnyepd42FN7G9W70N7aTSZSE1cbmtkHaj+TbGZu0cAe5lavoiFcO03GRn6oEeodWLU9FvsR2pH2t6U2a3Z6FxoIt9FuoFefp/XJsgsHLaXm2PrQ0FzaFTczI3e8PCDV5VNlHbY7DtfuaOYt+sPapF1lw7XELf+ufG6lb2NzXdqBovcQXtAQsZ15diVmVoQESJ5jQx8++fyHP/rhdLJQUchA6SIFsK4MjeQtKkqXaRAEWmtmzvNcRMIwFJHZ7Wg5y+49OBLkuBel6QKZlchkMh30B0BKkV7MJiI+MBoAxIsHJ8xASoiFwSjPIM+ePZtNF15EB4Exqiiy+XzuisKEIQEYY5QiZm+tBRGtdRyY09NT59z19bVSip2bTKaEOjBmPJp6tsYY77z3kvQGURR98P63FovFl18+vr29TeczQun34kHSi5Iho5uko6vL0e0rYAvHx/DmI/PGxffSie9FMl8++5M//cO0SNnT5Aq/urrJbZFaAAIKUCHkLh0t02MVKIVaG/Quz5fMTFots4U2PBzcUyZeLPM8S3v9SIdB0o8ZZ8NhL0/zRe7yHCwsp8Xo2ej5mdxLooQSsPkyzaZkAiJi9uUxvPrIri7cBBKxLEsREbEaHMERcOxZQBkxAakAQMtqflYEs/qzRW8ka2Noo0pWgeca/PcQdnkgKe4uLIiEsDkLi4hS+pYEEIEEuNwgoBR7Rtn4k9bHf9We2fFz4XYXhHL6HjI3u3nOusOValqQe6rG9bntutTp5Ki1Ml2XKKy41rre7coPl74VDu0iB/HoVhX1vqqaeacMht3sdA/m+1PnOFYPXU3u1E460Kirhp12/H7h2EEqArAWP1z+JNSbiHl7p8HdKgDiOh5c9RJXe7V2INR+j7jxoKyq6PSndxFihcbmunDxiBqAkRAARTziyrHU7qxtTbwb+J1dsd0bzVKdyjV755UBwhAgm43//Kc/urx6Newfp95a7x3TbLaIk573XmsN7AWglLjz6QwRj4+PlVLX19fLm+Xxccgg7It8nhFCsUiHvV50HCGpLMsylwFAr5cQIXsrIqVXhxGICBCsl9liMZtn1lrSKs2Wi+UcAIhokPTKawzEe2+dEwHxSZIMBgNk6ff75W5q50AQVWC01oUVkSIKE0CeTqdGhxcXF6enpz/9ySfO51mRChe9fjjo9aMwREYTBc8vnxvtzs7uffuDN++d3lMqt34q/jZPAy33uDiy2dLmdnazeHE5L1QsEGaLxSLnIKIoCpRGUsoLadAIGtFp1KBIALQS8e76+hoYHz169O0P3n94cZ4Vs9lsMr6aAAsRXb68Pn/wcHRz1Yv0Tz/92TCc3L84u7g/DEJEjQAOUYWR5qIWZFJA1sxdE4Ew8BJc4XOLwMQegp4EjpVRHEsgpARESmmEauUtRFl5owhREfkNQW600rqZ0px62wS71khXIn5FbF+HzVap1AMYgNaRAgGAQaS8jGErFqCAeAbEchsEokJEoTLkRre43WYLG16xS7Dt5/K7UrtIu4p1hq1dpaV+BADVbUK7WEFryq/8bbixFFfld+BI678rDzDWrm24k/98Pem1C0idD3emphtmfU/wndZ59ak9HHvwed2EiKv9yE0Ia5Sq3cp70dhfxVb+dWO5al017l3m+6p46YLe1VPtOXOXgiNbW5T3um2rBjQ0jl0EWnKWFoQmoawEr/c1rDb5cXsxvDY3duplHWjs/rSLcdTLNiQ0EQkSiPRIffnsq48+/tA614v7S2dBtIjnVWw4BSDC3O/3l8uly4s4CHu9HiHN5vP5Mu3FqtfrLfJMkEWEQcIwAIAwim5ubrXWodFxHHvxaZoGofbWBUGgAy0iTthaV+SOGQAIEI0KSLwtsfVcFEUZSYSRCMUEBsAgYlEUmiDP82WeOQFELKzLshQRT0/P33jjjdls9vTpY01mMOzdjMc/++KLyATO5wBOKbBSTKa3UyEF9PImU6AGvb5zAaNllQYmiJIH01yezNyTP/vR7c3l8TGZQBYzJ9jL86kH8AhxH0yoPRe28FpDoPphGBoTBDqIwt58Ppsu5gDauZQZCutG49mf/flPf/wheE6TyNwfniRRgAL/+d/7Ox9/9tkyNJ98+tNsPl0E19Pscl7cf/vRm0eDY3HiCiFWpNMy2BWvNvEKlH48zwAM7EG58odlj3lKcQEmJLECLNqDDgEUgkLaxDFGxPJluVxSk7ssILhRmrd08BVt77yWrkGZqweE12NtRKsQ0FXcWxZhEUKNJdsFJkKN5BFFWCmNVN0yJSws4IVEY9SYZSvF4mtZvwfO1nXOmr3SZevUf+5SxDeDsp2tYQw1uFybv9X31+GGe6MIl8HTVqMEJSdkVDWPdB3OtiFxp1JS4d/qoNpjy7Zpp3pFe+yWzvyHpE5FbT+EPdL6TkH+WujtVxrqLzsM1HKBHaAa4NII1gQto3P7eYexW3uzkf2NtpU6491W4Hal2/S6c8d1831dlMrKSilvdsP1Boem8/mQca37r9p01qmNdubpbDgiElDBrAHJu2dffHZ980LHIVuITDRb5LPZMggiRSaMzGwydkUBJnLOGWOGwyEK3IxuM+ujyPR6/TQrwsAwM7ObTtOLi5M8z1+9ugKA++f3PDtrbVEUWZ6aoG/CQBnNiHmRZ3lR5Dl70DoYJAPL3tk8z3PrC6NDrRSIBkBjTBwFxhhEZHbWOmvzOO6l+WSZ5swSRGF/cPTOu994+OhNtu7jn350efkqSfpKqdF4ZvMsChNCa7NcxMdJGBoj3htUSZKEEToLkYmX2ezzL76YTkcK1Xi0tPni5PTo6DjqH/Wy9FYAHrx5OkguXP5tD5g5yS1b9kW2mM1v8mzhjWNrmXQchKE2rrCz5aK88bdw9urmejSZGmPCMAyN7g964+sXcRC8+eD8xx/+0ZdPn33+5RcILg7UrKBCIHs2Hk/yNx5cvHFx3gsjb/ON5gTI6+v5UMCzxXIuiYD3DJmIAGUaGXyAYgFYQlYACAZJmBEJFIBfz8zqNoSGmriyPld7/mv6dY3mOwm5w6x5/bRWfMvnTUhnrTWhLqdbuesEoMSRcbOTlQER1/sSd82Oas5Cay/MgRh+DYN4tyUKsGONE3YI6TYTaCjiBzMQ3r7ld9fNvpuCBzZ8f+Y9XKud2j1T5d/FV3dpM408bfPskJHdhWentSMiK2KsnddFKpUk1S6+K72Wob9HRiCiro5a4LbbYX/DduO0HasMVHkJ9542NOi7AR1ryrvUPFRUOaO2l4SJaK2ql5tOyzvxCAREnHQFo283atfk2RrIA9jEIXlKWIrU7OrV5598VBRZPDjlpRZ28/mySKHXi4wJ2LF4DwLe+16vF2rjrVsulzb3YUBxHGfOM0sxXQ56vZvbWRiryXxOSpkoDLVZpovlcmmtPToa9HoJA8RRkrs8zbLSi+gsK8RA6fl0JghkSLxDAXFWQIAlCkNjDLIU2RIAgiAIjEHE69ubq1c35/fvf/DNbx+dnhwfH1tffPLpz3720cfM/vT0VJO6ubkBgCjpTadTjZkxRqkEAbPUK8AwCYIgNDrIs5nFZWGz+WQpnqLQTGfjQSA+tSkf9ZOzNx58bzAYKC1K4avJ9XiyGE0n48ncex+EaIxHYJblIs2IhwYHiBgaOjkazJazYoYiYtnZwjtmQWMLW9h0ODgplnb5+WixeAqoeslbgQat5P23PnDO3t68fP7qMl0+DRQHD4aKPEivc5SFyrMBZYx5BHbsAblgYXCRF2YEhSAIGqPyuDihYhFBQdlcukJEjLKKUlCKtZXk61iDbGrMezX9xs+GobaX4TLi5qLuOrTVdk9gAFCATARe6uJWEJGQ1sjXbbhV0S7uvIvzvq6ghZaXvlNqtvlp3XKtp0bxPUxSXid6ZQ0UrmQDrnYAbPGfLRN8C/lDLIG99b5eapSqm8J7hq/K3Amn6vk28K+BXlt5aucqwa/yc0c3dr6pGnhn1zWGZrX7o1QAcGUNH7oL+rDUOAOwtUWzjVxdaYJKsMHOIo2E6y2C1c9ysku576OUwaBkdSIIhVFwI+AP8Z98jXQIudRbhywQkFb68vrmyRefW28jIiS9mCwXU45jFegAAK6vr0MFw15EgwF4LtIsmy2890kSmjAQANIKAUgFVy/Hp8e9sBdOsqVjP0h6GmkyHsVByGABQCkliPP5fDQZpylECcRh4JwrHIhbpKkFgLgXBHEQGqOU0qiTKC6KohQPpMAYw8zX19ej0U1ydP6f/M2/8e677+kgynL7/MXLTz775NWrV/eOhqWtvEiXIuK9d3OnVRBoTpI+iErT3Gg86veMxjzLF7OMtJ1lk+XcaghHNznR/OJhdHr0Lcuz/knc7/cXXCCxQX316rKYT69vZkzB2299Q0Smk6v5/NYVHqKlXUqsDUDAHpM4ChPjOc3ygAvxwgzo2Gd5jmK88zneSJ4qzsXz0fFpxovlsrh3fnK7ePbs6YuXT2+4gPw87EdxQvH9+0e+dtCFBFZ7GEs5Wl7qhyDAIgzgBUA8k3gmpciACoQCQkUAQgGzp5pYrRS7tVhCwNViYFtaNF7+h0vllCQiBhSuuD9672W9Pioi5dkVjVQG8xUR4NVZaQAviKI7VAdcX51Sb9p/6IQbB+/mzX5+eojW3pmqLeJVaouc9bOUGlzNt4wAzFKTImuURaRR+X5uhuuNvocx1dcbhTJ/tfu33ZnVcwW5ytDZ7RWNbec/FJ9OIXpno3Zh0kYeW5popfvW21X/SUTlVokmVgB6fUhuH2YAm0sfy8Xtcom1vL+8Fq6gvsOz5CHcuDd3o5tUMUCQa9QjLKWiV/rcNmtgvNFQEFGDuJKeDRhP1rFnhc4xEIi1Ti2JB+XBXyitDkJEVe+INadjWN8GUxvvDq9R2xTuHLBdsWG3DY7qQidwlKJNTJHNp09e5enFyaMkMh9PXi3S7Pgs1CaIYrVcLgeD3v2z+4hobX49vs7yTAgGJ4ktvGUPTFS4PM8EOB5qq53NXRTFSZKMn7xwKOEgMsM+cJx5Bg82d5DnymHfkBZj5y7LgAEYJTrWxpgoiI0xBEoBEih2EgQM4IIgUNrMZovb8fTo6OTXfv0/efvbv6AQl1nx9OOfPf7qq9lsJuKHvYQ9ZK6wLs/znIjiOFGKvPeD8IhBnHcmDI0xrNQ0yxezpS9GhIwEb1xcACul1KAXIrLlRVEUN1fF86+eC1t2RRga7wrmyHtrjJ7KrfVFnlnHXgi5UEYFg/5prz/IlrliHWo6MUPu60Ua5Jlz7IWd9zMTRSpUkMWBGYqIhHYpsMiyNMMXy3T86ip3C1YAOnx1LROZfOOb72nleia5zkEpMvltGJoZJIgY+6kFA+VuqtIPCwDegwgSeUmt98ZlyJkRD2S8SgJrRROTZkTEAsUBMpByOTOXPJtXm4yBhLG8HKK2eaQ0ktYGZxkykzaTHzcOrXJyVccoq1CUAjXbsOb7rKIgSXmiVzZXuq4OwjqfawPakeFemuVKGYSMiLyXcoqV1xwjEKFCMqQVADGQKifP+qoSwfKcfSlsmmEsO82X6txnXQPB9f3c7dtYhVRd5wZeL8J1bChZ5cGNU30jO3fJiUpnquckIhIAWZ2aXV88gQAgvraWj/WqccUZ1pmZV9Y7bphVvR88ljdJS2UWIyLCOoBGXVETAOGNJlftm0NEaJ33lW23QV0vrPhn2+yu87T1YvYGQhcXrTI0RGMHvy03ImzaDlK10Si91gWhHDURzywVLQlv+zxqJlg5g8r3StVwVuuqAZwv1m2vu0aEavcib3qj5SCp0/Ba8KzEpIgowMMvY+hYxqiTZNeQbG3Ev7Oidr0b5/NhZmXN/4zVaegKmYqS2tCk9arRd9jq2fa0/Hr6u/cShGYxuh6Pb09PT7zTk9FtkfsgCCz74XBovQDQ2dmxc24ymSznMx2YINBa6+UiM8Z475WixWJpAiRNiEJEWus0y25uxke9ONIYJjEycGZd4dnyYpE7AK0AwOe5D8Pw7GKgtXbsFSIpUKhwFaPaeS4cc7Eser2edf7lqxsv8qu/+qvfeP+DNE2//Pzz0c1tOl+kaWqLQgCCKBwOhyC0WCyiKHr48KHWej6d5XmWJMlych3GURSbwkOWLadpWhSFd44te4ajob6+nR71h9774GQgbGfTVwAQxHEYmSJjpaN0mb984TzOkwTipKAMBYGIAhUopSIzHCQxsp/cXAfamLCvFB4Nh8FR//Zmem1vC2sFRWlNQtZ6oxZ5AdZ6ACZDaeFn89z7nEyEUHjHRZ4jwxW4n/zsy5PBe7EshGITGGRdsPfotNK+PKWDTTpHRGYnSChe2IErvMvZpgihDxR5I+vV28q7WNJwZQHX5Oihac1ovgYxvkYqw4uW6xcVG1qzpyqV9i01QuTWFzrbPVa3e9r11hXctgRt2FiIuH0VY5X/jt1GbRz2z+66tINt4dHI2SnIt5hqS+3YU3VDX8GaWKt6sq09YMuGqwNsCpUakrswkZaFWrWis2os1bsdqc63u9uLW3y4Ie3qvLoTgfqPCmb96pStS4Ba/b/qZ25Ba8NveSaa2mQZPWpHP2z2XgLAeh/TztQJ5xDS2c8q7pS+pbJWSVz4WvK+zuYasnYrT+v91xO69UYFJgm1YeTbmxeLxSyOz71Xk9tMAAb9nnMuy20cx87x9ctXzjlXMJEnIqM0a1ZEeWGLwgICGYrjWCm03qVpar0YQ8Gwx84XubN5ns4ztgAAzECJMmEYaK2JkiRJksR6N5vNAtBRGIahEfB5nubFsozdIaCWacFp8fDNN7/5rW8rpf7sxz988eLFcpkrpZIoJsQkiYIo1EEUJ4nLi4uLC21Kewj6/b7WarlcRknEzPN0UXLwosjYOe99FA/I5UiqPxgOB8PTk+NiObu5vXHFJEthGc36/UGWFiLKO530bNjrJUlMCmy+9GyZmRQNot4wPk2iMApRofOuyPOFoImjnhc37IXAx9EyzG1ugRFQnJ8srsMwBiBrXbZw88x7HxgTZ8yogkhpQicisyz/4598cf7w6O//6i9NcpdlS1vkpNFESmuVFxKotSGzosA1CxMWdkAIbJ1NJZ1r6iEYphgASsfMilMIl+ZgnY0eSEtU89nQ68vf/QxxTylcWXtU2nyd02HN07eO95SiUQSq2LEHMpC6lVz/Wrd969KlDqCTI+9Kjao7OanUPF4N1fxO+G1b5c5su3CrS6C68NgWn9Qu0m5OA6U6nLa602milN8bGglsD0r54vD2ImKnCxcRYbM9v9tekhZj33xq1dseuAb+m4o6se9KdZRwjVBVka7n62o8bclgAKRuC7gTe2g1uzF5XldSNiA3ZmC9T+v6eH08GgO5q99hN8F9bWyhyRoEALyDzKf55Hp0+8p6pxxkmbMFaANJv8fMSZIgquuX18wcBREHXGR5EJAtfBwms9nMC3svcY+CwCiFXriM2BxGSa/X8yCz2SKbFChgFChFonSo9Okb91xhga3RZDQ5m4JILwn6KhARcNaLQwFNxjq01pqgd3x8fH5+rgPz6aeffvnVV1mW9Y+GR4MhAIQmEIQ4jpN+r3Cc26LXS4IgIOA8z7Ms896LsNGaIJjNZpP5rDTctQ4ANSsWVA7ARGF/0Lu6evXiyVfeF288PBWOTOhy6yKmsHdsTIAsRoda6yxfpotFkgyP+r0sXSzmU7YuTiJO8/5gMBz0xuOREh8GsbNeM/eDIDwKkjBY5lla5HkuhYc4DpmhKGzh2CMFocmdKTz7QKNXAJSlmfdOa/jyJXz0dPRLD65MFCpgMMZ7z3kKEGFLilS3hoEwgkcGccLAhAEHM6MNO0JEJF0GUUT2Ah5B+ADeXU+ra0ErLiOtaXkYZe76uStprZVTihURldFo63YLAiPCalFzY7g0L26ptOcGAnWTutPIaAi5TqNnDWfPp+7e6OTCXZx9y9qGVrSyXfB3fWp/rQuw3dKuu2ALh/oGnRWSdYFb/V1/3YVtnX9WolQacQ93sf1aQ7pz1sm3UWqjJWxL3HovtdNWwVaXtjWPRtq4sms0WX5pIH+Q1tVyPGwE8O4hpIb2uhP6bmHWiWJXjbVPh3GihmgUERbuuJChhcZ6JNYzfK/DAV6/r3dh29AElVLgeXz90tlsOBy+uBz/7IsrMjAY9EQkDOPCuRcvXrjcDwfD2XQa92JltFKGrVva+XLpwwjixCgFpFVuizTNiWgwOALSs9liMV0qxEABMAgQahP2k2jQ81kh3moFoSICawtLRFEQIOYCwgzs2LMQml7SV8rE/dgY8+zF88lkgkRKmaPT3oMHD4zgfD4XYIW6dJJ7LA1xheUavkipG7F3wjy+nVtmRSGuomszKR0FShQFoSRJ+OTJFwGpJDKE4bNnt3EcnZ1dOOeUMsfHw16vN7q9TbM0cObs6HT46O04CFyRvXr5jIJoOBzEgXIFLqfjbGYB3BsP3zw5Ph+P55nL89xPFxk4rSmIjF6SzXJnhg+zrFhiznnh2ZWBO3JrRUgDxiYyumCEZBjO5ovPno9fXo0uzo61AkSDAGBzASIydcZUZ82ESAIsTOLQi7gUXYacsg+UUsIaCMtD+7Q6u79J1RrhnntYtyhKVpUerinu51z7C5YZmHkVkWM9q9ZnpLFkOIiIWEep4z6+A5WANoepC9RKClYd+Fp6c4MvN/j1mud322f7AR6SZMd61pay0vq5p7pdSkZdbtX1GGl6wndZHU2wqwytyxtW71k60eiCvJWaOpaiSkkodbpSdZPtIh3PrdrbEwTXhpm0pMCugXjd1F7zKL32d1xHuE60/1BaJ1rr8dvxqRrdg5d462PfJq/G5FxdelaxtFI2c3Pyv9YkKVOn6g0HD0xdzwAAbZRWyigKtRlPx9e3CwToDczFwwfGGFTms8++yDJ/cX4qXgDAgYRx5DMrzMvUJYnSodJB4Iq0KAoACoPYGCOs5ovFbJbFCFEUMnOaWzQq7MUqMIUv3GzRi4MkCEINwkwKmJ3LOfNLrQOj4zCJEwoIA0BCVHmx/OKLL6Io6veGaZreu3d2enp2fXs7WcxE0BhjxaJVcS85GgxPzk4RkZ3Pc1ftjnG2yLKMGYi0Mcp579kiKCKFQGk6F7+c6yKKA58VWeYHSfTgwdF3f+E34yR6+fLlqxfPJ9fjxWTKzg2HvYvje8fDYRAESpiNCu4/mI1Hhc3z5ejkaNDv9aKIBoNeHPey3BHIIApDZC0UEC5zKMgmSvmesqQSlSTG6sVktJh574kUKvDeAanyvHUBRb8fkYab22w0Lx6cK/GFQ0WoNDpkyxiIEigNgc3EX3HM0gpDYBAULsBl4AqkQlgje/AKEFnKjdPc4DuHU2OdFdUtv9dKrzsdGrYFrGJmVYmRqAz3v57p5YJxufOxyd875WsDpW2G2A1hu0g9omfFfLcs486mHaITdOIme5dL96d2wf30UJfKq9prUUfq7xuQcbddWP6k2mau6msluvabUm0MO1va+bORXVqef6zZZm0xub/Selc09K1dpeo9vF3wDidEJ5xNQ+60gMtBqd0usgoquaVl7KisUxdrYNAY7/30irVDwB11rb0lFeT2nvhm+9v7xXcgX89cz9/e7Xw486rjk2XLENhmqXi+ublFnbz93hFopbVmhpcvn19dzZNEeceT8VgjBVHoHadZRohRqAaDgQdX+MIJE2IYBMbERW6n05nLrUEYnhwv03SaFsrg2clxGJlsuSwW+elwYAKF6NJs4b1VymitCRBUX0QYKdJBHA0cy2QymU5muZ1HUaK1XsznShutTbrM2bIgeGdLzeb46OTi3v0o7iEpVDSaTPM8jcOQ0Y9vR1meBkrrUDNz4ZxnK+JJKRGfucIXxdFR3xcpIhepfOOdtx7cO9daa86w4Efnxw9P+sBSZMswDE+OjpfzaWyUAsmLQqzrh/HgvhF2OlBhoEMTxGFARDazCHB2ejwdj2KjQxP0knC2oHm6FFZKhwX7RZrNnGejoRcXoic5LxcLbZBELZZz770ykOZZEvWzRfZHP/7o0cXJ2XHiUTmbo/MAApHBzUpN7Zggi5QXeQkQIKKgeM8WbUrBANgBOwENiOWufqy21K5pviLvOyhKoFJkV3bwgbRYEeRrrgGXeG6u912Jw/XJwG0HJmIVBLYOYQvN9vRZdcW22NiKfLlDk97DTGqc9I7Wdb7fY1NCbXdxO8PXVKp2+MM7kakEcLdsk+abToZcE0VbwrvKWRlUDcldgS+NnUPUl0MSrlOn7ISawwNaBNOQlF3awybnrghxnXR1J/20ITRUQlgjo+sKztfupr1136UBfV1tEWqMo8K/4gtVROh6dQ2pWdIKrAQwwjYtln+9941u2W9570O1K48ypBivr19li6zXG/hUF/mMkIwxl5evvnp8E4UQx/Ht7VgRRFGCRi9mEyeiRZLjY2stK7HOEWIURVqFWZovlxkzGBMgytPrcRSq4fnR8OhE2I1urjXwWxcP5ja1NgOxgE5QmK13giSBGQwGg16vVxTFy6vLm5ubPC9wHfJpnNs47r398I0giEbjqXNcFAURnRwPj45OwiAqiuJ2NAEACxxFkdG6KIoy7CWLL9KscJlSiogBHLMHYPbOWqsY0aMm47L04cMHj954+8H9iydPnuR8nc3l9PhsEEa9eBDoe1EU5cv04s2HeW69df0o1gSBVkYrET+avfDWB4ExOkjTNAxDEwXT6TSJQmeFQWkChESB5IVDBOJURRgHcWDQjS17iSkcBnBrJ0Yr7yGITBjr5XIRqpA8WqVNrycKU+sVQhwoJ+CEFW4NdCl9obZbHhEViBcvznpXEPvyE4tDUQgC4qtNWFAd3DxoHjQVTZHy/NLdpRp/6+8PKb7hvyIswmUc6LppAqu7jwDgTi9avS2Vjtspz6DGW8q62rfQrBY+Wpt3fs7UkEkNnKufnRna0NrStK1zNPKXqdGu2ri3RONdtk2jlnXxTU+2xfB+E7NdxSEstJ2hYtqIm+hqJaxGd+2yU3HtJpGWy72sZyM46mvPtY1sSikRKbf6VxNZRKprMRtVN5Sw6oEAG1cdlwV1vXwdOWZfK881QJvC0lVTo1tb+shW9WUnbC4uLc9RlihtQ6M1QwMGQWYAXp0SBiKyNmfkcvKj1l6UYimDcTCIICOWC5K+OX+kBN5xcK09sRGxvE+0bE8NQEMBbLYXEUFWoJi5JCoR8d4H0cBdPlHB7OkCJ5OccazoVBtxtshmiwjAWMrHOQHq2KSYHaXap05pOD459t4uFwuFEBmje5EvZFEsi8J5V4aDBhEJlD4aDnq9uFiO82IxSEwYxvN8qpXKi5QUI0CWFYTm+OiklxwNe7pw9vGTz25GI60DFAYLyFAYyW1+enb29tvvxHE8mYzFL40C0zu6f/9+GIZ5nr94eemcHQwG3nsSsQtfiCS9AQDN53ODkgQGtPLO+cIZ1M7mKlREjgIfq0QrSZe5MeHw9ISBX3zxsyNFbz/6ttYK2ClkEOsKKwqS2IBzidZoDMDK6PPCzDKILySw3tvcZYE2BMi5S8LY5wURozAjxEGolMrzvCgKK5FiYPYnUci9yE4XReij85ieT5Uhz1a8cZYUJcykg+g2nVyPp6cPj8PCMZCniEgMeMYAgAm8F4dggYUIFVFWiNEBAIiTgoTJG1+EYtllQCiKAAGUiHfMDCsSXsWEJindbexI4YpuuT6takp9yWh4TW4ryV1y5HIKAwAgC1UTVqN0rFs36BYRyiOPKELEAJ6ZBY34BQALFEoDZ6KV8d5rA0VRICIqBKQy+o0iUkLsQSlCREIEIBCppEmTIWxPwG3Z4NfaBTY4hKzPs+L6NGbJbDtFgojg+hxnI0PdIOlMu74iYsms252JDR5RK1Jve6PUmuOrzRFbQkBe2bmwCTFWZRYAhbWT4mtGuuqyVm93dn75kkFQbTbcytq5Ta0eK4sIl9fq4ir72qSpaGhTEXd1UTXcanOJQvmG1zcA13Gr9u6J89XxP5G1J5OwdouUB4CVXoKw2kpcogZqJTKwnDuyfo9lDe2R2ryh1flr3N591jgmt9FEEXF9OYeqtVdXo7Jf89r0F5HUnAC7KHUPBd+ZcD2B6rXXDOat88EVi6l0QxFhdmrbsbwG0j1z6gj/PJg3irf1ykZOIiqKIs/S0Xh+dX3j2Pdi4y0TmcV8eXOzAAAgzJ2NkyCMIuuL65txEFLcS6y1y+VSKUqSntbaep6MJyVbWTgfAPSSKMuyOAmVwjxbiPjBYGCIyouVijxfLjNjlPf+4cOHvd5RHPVvr24/fvqcQVKXm8AMh0e+cMwz8IBav/HGG+f37pcxsPI800oZo6Koz959/tmToiguLi76vcRaa4siiuMoitI0G49uvPdaU6h1nqZKoQo0YgTsiiJjZmaPBCYKmQsdGGeLy8vLvgreOD4ehipfLpPTI6Mi9hZAJWGUxLGzrMoj7Czee4GVtURE4lnKW80ZShUHcXVCd6Wfrg+tlVeIJ6itF8TCex8ZnRidOvHLBRh0nHthgx7Es8+dOK1gMkmfPX3xMFGgdKmbO2cZXWAnQIjKoNKiElbaAgqTxkmDHkqFer3aKwirq4VJwMPOtIdXwl6jZFeqNPo2KNghZuqfyhrL7VflV2YWZgRaB7aBUhiuMu9ozv7G7sIBWi7Q/aA64exhCNVI1TPvgd826fbk32Um7sa8u0hbhiE2Q/PuYuOdNR6SGt3eGKldrW50daVgdeLQ2e0NWq2otzz+tilba13noJQxPRpg20pYZ4vacwTWYmoXId05K3V7kBqVwZYo7HCJNPDeA2f7Q7dMwkpl6wIlQgB+3TBCFJZVIC0kItJVr1VKZVvJ7ZSRd5LjgfS6SwB37olBRK3U9Wz69PJ6MlsEQRyGWDjQKnj85LoQGCTGOa8U9PpJ7tI8zY2BwaBHWs1mC1B0fHamtR7f3E7nWRTFWZYBwOlwkOfp7TKLDbDPeslQgNLU9qIoCIKbm5ubm5EwFAVc3O/df3D/+Pj48vLy6ejpzc2810dUZIwOo4RBlnnGIHGvd//+g7jfy5bpeDrx3g0HA2OUzfJsOb1+WUaZPvKFXUxnYRAN+wMHfrlc5nlhjOklsQIsIxmSWBFhJ7ISgYKISiEqrZUYjQVIFOg4CaM4SIIgy7IiSyHQRhMJFUVhtCYirTQAlKZ2OboEWKq7q2m5jt9ERKhIBEqXgJfVpjBjDBFpg95LrrT3lgRYkJc2XRaswIOgAhYHjoW9kBTCgVaT2dxaGwVh4TwrRwRhHKrhqTjvXCHsyLNGV+LlVmwRqr1Ipdwib8kb9AxKRISkvKp651n7iulUP+sMQhA6w75ia3G3wVYaTLAhfVuzY3PmsjSLV3chr3ddeO+1CkWkuo2blAJgEQ9gGph/vVRf89tu0c4iu6rrlBm7ItnVU1ucQEscHo5G42vDNt1CdavGDsZbDvcu+bGnuq+HbZ3Z1jefN4qLbO7mqxXfKaobFdXfVD1fk8Er47qTybe1zJWJ26qx3SGNehuQO3/ukvqdLS2Tbsy0ztSucreAfD01HLat2xa0XWXKuxhKl3W5bKZgdfsCAAjgJv5lpYTXV4vb7dqvSXwN8bxfU5G1pyvU6nb06vHjSyYVxJH3mQnQCcxmWWTKS2Lx+GiA5JfzPAignySFtTZLidQg6QHSeDK/mWZJFOeFY0FEWaRzAOlFaAJ1MkiAnSI8GvSsy6+urrLMxnEYhcG98wf9aLhYLH/w/R8v0txoOD2JPDqtNWiDiEVuWSQZDk6PT8IwnEwmy+VSaX18fByFZjqd3l5dA7owjIdHfRGZz6dRlARBsFgsKFDWWkJM4oiI8uWCmY0h7VVmnc0LQVDKGKOYvQmUMSYgyhYFij89PorDYDIaqSQ5PzsqzzfHQSgizjlE1FqXofW01oLE4ktTuLTG1gJ4JZqJCIlAKa65JUuqUEpJXiAggQBSaPAoDKyHJaFGEABSxB7IiyECRMv+4el9YfLes7cCEIYGSFQUqujI2Vzl5IslOk/sEZgEuLYfsBI9zA7ZinfAHnnt+NpLY518eSvRah/Yfs7bmarZUXGrOqfrrJRqCbeSEnH1OS0izI7U3W2sM5DOnIcwqwNTo6J2vQ1dp20kHSjhdqW6IOnk/uue31jApdyqqLpde6dmUKZ6AJN2zq7UoQpK5Vhuwa+H+N1Thezd7ronrW8a28TIXPP6riuxW2kjg7cvaa5iuwpwfUR2obE/zy6xuAfI5j7g9lg2Cu/Kdqfs2dOSprbe1iWx/mlt6sBmfZqIZL3vo1Zwq50VtM4Z3on/nfrsnWmX0tTAJ5/cXr98dvnqFpUCYC4gGpjL23mgyAMvl0VvaExkpuNbAjgaDPLc5nmutR4eHQGp29vxfJmGobI2Z2YRICKlSGsKIx2GJgy0c06rAIWm40m6sEkS9Xr9XhzNxrPPXn6ZZrYAGBjUGhhEKSWEJdc02gRBYEyIikajkdZ0dDQgotn09vlsRgBRHFkrg8HAWjufzXu9ntbaWhtFkYmDOI4VyHQ6XSwmRGQCo5Ri9oYUEQGhUkprIjTDXr837KWzWymW4JGLPE8XlBUu0FpTv5+U7INQ9XqDIAjyPEVFCsvQK0iA4mu7JASYxXuozvaRKA24FszlmzWFg2hUohSjoDIYoRfK+8mR85PF0oEyJiRBBWKZURnPlKbp7e1tUuRBGELS957T+XyQLhBBAyCAU+jEMBAAac4q+3StCHoRQe+A3dpwI0QQICDc5YauS8Q2ga1SuVFim4YRt47Ud/KOOl9r2E/16iohvc6jlFIbSYBStx5rbE46UG2leuv25O82sAC6XUw7igDAOgb1HtO5YjjYAN6ova0W7BJvlbht872G6K09b2qUWv61gGybCpsYxVtpa1l03awOAE2EO6G1mVu51tMYRNm21KFFjQ2AdfG8KbItMutBvwGakWs2CMjWmw1W3FE7bi+R1Adol7y4WyHuSu38d8eC3lWyrSy3s+HrbNeGHcNT01ZK/lWezVACbv0Vobz0dx0XCNfuvhLgmvHtU08aHX1nz76WhBaR6rqrSg8oyejq2ePJ7Yui8GCU9y5UWhsaT5fimQjiBINQL9MZER4PwnS6zJwfDodBENnCptncF1YhIID1POwFIqKUOTk5QgJr836/HwLMi+lsOl8sUufg4uLsaHgyHo+ffvU8TZkB4kCdDwbO50pJr58UPlPKEGnPIp4RtbDLM58kvTRbzEdzQCaiINTIwuziuDefLZVSg8HAmNB7H4Xx/fv3RQEJFzZzNldIg+EQEZ1zQDpM1ADLMNMFgcTG3D89D+Pgyc3LYZQUCOPRbc8E9wYDpZS1RZ7nQRCEYaxVgIpEEWijQAARWBhEmEFEIxGBZQ81dlYmZub1NC433JWndZk5DiImReSZlUEgIlHaOX7T+sVokoGlODFgXFGI+CAIoyg6PY3jOEYpIwJAEEQmGrg8RUQRz8jCHoQNIKHyGwpZmd/rAAKuYvGIyAKM0MF+dpDrpmkAUI9CRCsvJOyRta+fGgwXEf2K/684QLX5s9wxVM77tdIs1b2Fsk67mtN4fyCDk7rFfXBz6rKzofq3q74Tk22pibt4YzX3d8FsKQoNlO5AVaq9BRUDbMGvQ9jVqnrBPYTUUCka/E1EVrvit86blcV3VNyCX4GtV1HPVuklnZg3X1bh2HaE7tolEXYhWff07MksdaOuerlHAHc2Y1eGnzP9f9n706jbtqwgEJxzrmY355yvv/19XfQRgCgoFiRGIFpVlg02NejCMstMTStptIYtEpqjRo1KQJDUkZUgmmaaOaQyABmmikpRpUMJsEtQsgSifRGvf+92X3e63a215qwfa5999um++72H+os1vnHvPnuvvfZq5prdms0aw4irS7Sy9pEGxxuyFIURW01z90q7zzeAdesQNlmef4ejW/tih4YizpqfP6rm55lNAoHWZNkUxaxxwTBoS4Nh3ogPwQ3zAXpxZdCDJBsMfeMuTi8aBq1AAYY63L05qOs6SwdJkjV1Mxjmo3wwmUwuJrO6KbMsu3vrNirjnHvrrYfnF7PMYJ4Z513DgcntHYwQMQQfmoCoiIAAWZA4UlK5OD/VVqVWOWbnahRRZDRpz9QEvzcYWmuVUvv7+0mSNOwUqrPTJ01dAvBgMLBaVY1jAGMSba0AiYh3pEBGeX7r+Kgsa/KcpISKirqKaXPKco64z8xIOsuHWtvGOyBIshybCgBAuDexK6u24guOIL1ATQCAgAsvF5HAnpkgZvIQoyhLzL1h9shCCMDigjAhg7B3dQghy0Yi7EMwrKuqsqJ0oim/AcGLr0EKBYwSNAiCC9u2GBIAcGd0JdjaLF3hMbMLoUcI5x4Njn4/sI3T77e2AfArILr20e5n/wh2hZpi19pCO4UggiCEpDrjjLXWEJHfTtyurqzt6Ktb2EWE+lSwu9NlW3pqI7uePhVzXl02X5GlCLGssIuK7+o5byPY74wbg1UgiTDQP4mA1Rne2p8rcHKfRetzM12FLsISM1PvYTdFW7949YDWam5ut66ssz4bovbb6oCGHXOx+k5PpLg2aL4zGhbnc61LGz1sj34BkGXdChqQ+7YssqrS2dXPtyXRvoPSb1ZE4mmlUkp8FeoiMbZCttZiTRcXMyBtDTKz917ADbKMGGbT4uToIDk+dM5VVW2MRu9dAKXl6MahQDkc5lobRTgY5sz86NGjy8tpirS3t58NsqqqZ9PLaVGJgDWoUCWpMYzHN48FhYjOLi+SJCWtnHMhiDVJaiwR1U1dluXBwUHV1EU5c+yISIHyoXFNY/MkHwzTLDfGZFnGIvOiuH379mw6FRGllCFNqk0fmyQJelDKiNQAYq1NtRoNBgd7e3niJ0fH4ufcVCeHR8eHBxS8a1wQTrI0TdMgIMErpVCpuq5zpQCgTVPPkd4wABgyKBQCSICITyPsrsFVhyCIKMZJRAIDBhFRKAtyWFXHA1M3rnAzFjOymfNhXhbG3LHWhlBleXLr1q00UXXDjQt5eRFAEFmhZqNZVBnEM1so+usuINTDGYJtGhZB4ivhroPSNQL2dFFid4O4Glpu/ek2HNRSgo2bC5y4OEtD6EJvxHPifuPXxPtXo+9rbth1fmW1D2vIfXN6n9rVNdzSn7fufr8Pu1DQU/uz+NZ6zY5ixfuaVL8/y26sxktYihnvCH7WRh13+tV1ljflKUvWf2uJ1QOTAAASUnS+CszIQkr17Xm38h/9FdlG/tdVFBsVYOv9fv2tr+zqUr/oXTCxmseX1rhz7P1uMwr32uj7Cm/NUiIiCAqxU1thd+bfpYUSAmQUWiixuPWkYl7oWSCIiCgtoVZEXoSMDk40asVKIABy1H2BRAvZ9U21RZ7oBKbFWGRVodT9pB3KG95xqIKIQCiMITCCGE0SGm5KlrpgxVpnaMrmklTeVDnNC9zDPM88O0smRe283zvcM6OB1PXl+VlR1YKABkYHaZaYopi4gAfJHoIi0Fro7Px8Mpsf7OVmlDPzuC7mlxPxMjBGfAiOfRaYcLg/ChKCa5qm0SDcVAyiSBvUGjUiOnaePRgYz85EcDopjdE6SZpG9kb7+yf7EBOtixcG15AxxhpzcX7uylnjqiQxqBRoDWRc7dFzWc5F5zY/SBFwfpF69/53PWPSgcwfpUiQZfPppbXaNc0wHZVeJ4EpIFNKJicUYq9AQGlBYWZEIKORFQfvo0WuCAARaUEF7DF48EFYAgsRERJzkMV1QNGaXagtMQC4+Cy4TPPhoXpvefuVL7xh2aQGaiyTgIXJDxLjq/rG8/cPj4/Pzh+JR61SDnWFBQAgKBAX4UQDaQRACMBAREAkgkBC2iEmKkVlkEg0Ko0iAg5FlFWmakpERlIS2iyuwF5oaa7RFRFRPXgmWEIpRLTcGqks86n0fJ2WQtEu4gQACITIkeYK6MDxhN1rI8ajUTYxWdN4EWERUlbYIygEhcyAXiAAxoiUuotfT0RRAdj2cJvt8VY8uEnkOgS9qCkb1daxZEer1rixeN358q5FulgLzdhrs9PBQP8ooDuqXJtbAl4SDFkicaG4YO2iLO73T/oChMXQSLosUutzEvUfslT7tv+3kAQAIP1gEbvozeqNNlDUDjqEiMzboahd2C5nEaCAMPNm4BTs6Vc2112AgBgAvDDGGBWESOiZVyIhLq55mcR6FYfHxCE9rXh0l+in+0VQC0FT+jEwVvZF+5x68ECIGIJfq7OVJ+gurlJBrxKndSZiWVOuOrvaxfFdcfh/NdeJGwfmsMrHba7f1sZ3MmhXliVHtnhp7Vv9bFGrHwZg6bgtERFGZjBGRQkh+OC8U4pFJE2hqQV1o60ypKLnrra2LMt6Mvfei0CaJTZLZ7NJOa8OD4e5ViwVqUzYn11cFnU1GBpAPzk9FxEiCiIsUAYHCCYzt24fAoBIqKrKu1pElDJKKa1Ak9GgnPOTyaRsSmWUSU1dVlmWDod5luVZNuAA1qbaqMA1gkJEdr5qXI0Y2/FNnWUDHxprlUZqnDPGXF5e7o8G86pm1OkwL4J77r0v7O8dzms/Hp8jCQvu7R0wMweYF7Pg/Hyus70j8j6EYBKDwCLAAUhTN63Q0olodIwiIkwivt1N2GK6bj8QkbQHseKbJkrnRKSUAmpV0wmY1Jo0UeW8CWgjBkiU8q66d+/deZrMi6lSKmYRNqLEbwEGiI46SBBjUUIMfa1QWySNZIjUgisEjcRE7Lnz7bkaFK9TNtnrXrPtVYeW+3X6u2OhOeiwSYsKQggxJXD3oYh9RCQSAhHpR7eWbSY21MvbvZXcXjG0a9bcVWETA2yd83izT49lxZCq3/LOOezur2W7wgUGu8Zg+4qHtye2Ii7csreVTQT41Pm8flmbtzUmZrNs0uC28koqrb6J/spA1vrfEazeiHaRw6uoxtYiG0ecsk2i6xPNNUiTzgp6Cwf0NOq9cvOdUtNr1sdt7oxLVnFNddDi3cXTdlJW5mjX9tj66bXrrTOwnNkdknG7aSEAxoj03C5e4KapWAKzKDIE6L1HBGuRiDQZpTQHb6xFovHFhSsCEWRZAojj8VgpPDraTxIDSlxdl8V0PiuKAoZDSvNkNpsBo9HaJJaocRyMTZMkyfOc0Dnn6rpyvkYBrS0RKdLMrqgK13hkDLDkHNMky7MBACqlmJmFm6ZqmkogaK2NMYgYp1ZrShKLSTaejvf3RyzeuUCIj04fp2nq6oZYwM2LaZHn+vkXns3S0dn4YVFOjFGI1pBqqto5xygcXFEoANBaL9JNkgQmraElrRyNsaQTrdpjPEFRRCDCICDI0PmLx0UkbIFKKSLq5BWRFmUkQsM8PRplD+qpShSDB2CLPjMooRpPSpNlWZ7WswsgYq2oFxygg8/lFyORjc7qygBp0JaMpUiJIVoUilrY0DwVLP9DFlm1xY0j4k6Bv+oysNinMRxKV9bz9HXIi1aR6CYN3tyA27p3XWblalq7VqHf8prs0evndgK8tZObFKLfWkd1Vqd0XYaGDSFk6xDW5m1NMNg6z5vEYyvZ2FquXoK1p2+rnTWsKyIxYOKi2yvuWFtp4cqEYF9jsSz9CVmZHKElzW7vR2VADLDFsjw62q7L2dJm7+fObEibExHf+RVGVl02ew30srIzd1RYQ1MRNEVkbWN3qOH6e/WK/iCun50sH+0aVwSjVjW0iBGhjNYxIqAXMcZa9iSBBWGY5UAY4wUnSaK1qb2rXEgNMLbhsUKAw8OD/f3RdDpuihJB+cYD0N6eBsLJZFY7ODjI4/cZOU3t3sF+pDeXlxeyMGHTSimlhMFxaFw5n3vXQJbRYDBQhkQYkIFUCCwi3jOiJyKto9ESsxffnesoFZxygDYZDvKhc0Epalw1nY7Zu3LuZpW3VqeJVgbf9+VfNhqNtEqHWe5DnSYDre1s6q1N2RVppjx7IEzyLM0yVBaJWLwgGmPERyu2SNmielcLIizCKRORCAp5EM3chlkWWQSxW+AbRK0Ux9OQhTJKEzGxz1Jz62B4MS2MMVyziDfs9gaqmF0cpMMktcaYGoSIPAnKUkW5OHYBEVFKt4Ht2kIMSKjJZqRTpVMgLR2OoBVzGxFZMPk7Ob+rwbVFrICbGGoNJzy17SVjsZA/lDLWWudrEfG+EQhEahEBMfZ7qfLpSktmcEvja93aKhVsJYRX0OBdfExHWtaklk1xcOu7ve9urbL+9a6pvj9uJ+ptJX67+tDO7A48c53+Q281d8UuXqv8DtjBRVPYja4/2F0NrqUF7N5de6WjRX3W8BqdeQq7tujn8udT4QdJ5GrzjWWf15mDVgLeOoA1TrDHcezU0ix/rrSzs1rX+NUM3dVF1uTdVeXPZifXti70p3LbW+1Zb5S2e19da7bfztZ+LoJx86ItBKU0YJ4Ph8M8Teall8Bc1w5JkhRAgjEJeiYia61zrm6qNCUtxAxN06R5dvv2gYhcXFwwc5IMy7IMHrVKfQjFtFaWTm4cieamaQggzbNhmqUK55PJfD5nzSoGwlCKAJnBNS4EQRGtwWhMEosKQggAopQiZbwP/bgL8SBHKyUxtBORMSaGl2LmoigGg4wlTKbnxWwas8aWZZnZhH3IBuq5+/fe+8ILTdOwAmTvQsgNQau/AET0vmH2h4fH0f5ZkIiItcLAqAyEgChIBLISBTjqk2FBYUU0QyMIANQ6CbcooA0565zrtGSyUEQTETc+MeEwURpDUzmuGFTYM0ZCsZcPbp4czGo3D8Fai9QjThsGJh0ZkugihIrAABokC2SEiFABEKJHREGMXw9htYV3lFsQehjkHeDQZ771B+LFm3/12zs01zItiNiLhAXARISM0Sq1E1C+6UffjC38+H/8oX6XtpJbAPia7/mR7vqf/tlvuqJvH/nuj/d/dpVxVWzdVa6mN/1qve5xr+PSu+i3sDKuvjoENkjjJv6BVRx19XrtwpiygyCt8RndxTUB46nVNvHq1a9fwffsuG5zCPU+pzqdAWwM+YqV3dQQbK3zVNhY1iRZBvTYeLFPXzYn5+l+wFezVGpx56keFOs/d7gIr5DDRYW1fi/J9sYCRFp+DR5HrrMMsAPy1t59aiNtNVmxYiAiRF3XjbWptdpUIhKapjGG8pSr2uU6iykCvffT6bThJstTVzhUNBoOhsM9ACiKQhiVUsjaVeIdeF9VgQcDe3RyTJrm9Vgb2s+HWimu3Xw8nk3mCsEMEiJSCgGEg4SYykBYEWVKASlUFNErESJAkpiy9J3FZWTkQwhKKQFABG1Nmg6SJImPOOBsPrVWTy7HRTEbDPOqLgfDHFGO94b3bh69+/nnXO0EyXP55OHLaZoNBqO6qNPMFtOJUTyfTvdG+dHJLWMSF4Q0ojIGOFAI7FSLDgUAojlea/0ehwGCbWJeiX7BS1yDyxXsTluXiHvh469sblS9pyhhmE5K5UHtw36WHAzzk+MDhVgURb63l9qsLEsaZnFZqafo62G3xV4FJFSkjVIWkABIGIFaRx1WClkDNJugtUaDr4OgV7rRk4B7ElhLSzugjv89/0d/aK2Fe/95S4kf/rd/orsZjZW898xBa50khiE455CMgHzjj7zWb+Hr/+an4sVP/F9+U39yus31m//Cj659NN7ZJMObNbubn/jYR7cOH7YhkM2a/WpbadXWxncRYNiGOUUkdAkwsCe+IXaJ66+JTK4oay203djd+PW5lutUW+tG/PjWk+DNZkWEaCnsSatmWGkTlxEPlxL81q5e3b0rGILr7awofy8UztjSYIEAuLZVBQAQaBO6AGC7wrpfcLU8NVbAWtmIVLdTq9N/2q92fbh8W7DbfW5zujfbWYDCEjLWenjN9UZEUgvpi1FEQi1ax6SQopSSwDYhUpAYJAKtCQBm80lZ1UqhsSrJ0jxP9/f3AeD09LSqKmNMXdcPHjwui9p7LyJ7g+T4xglpeHL+JBXat1lmrCvLy/OzoihIYzpIFBkA8J6dc943IoEUKk3CAIIswXvHHIgQBb0LMXdQCCEEh4h5ng/yUZrkRGR0kia5NSkRhRCaxjeNZwneN2+9+ToAJ6mdTqd7g+Ewy5PEHB7u3To6yk02uZgAS1NOmvJyODhQZABYuHGuCr4h1M/ee25vdKBVgqgUaYDIwQDDUmZdlBDzOhABIIOESFxXsphtgJ+IKNWGc+oAlZmdc0AaNe1Zc5AlqgHtiARzQ3dvnwzTpC7LNE3TNNXaamtiXodNICeizloe44kpEaFCreNHO4SCpAFVQFrIlCvI/WomeFe5Yru9s3L7j/yl7rrTFnQswuLnOvXtl6/7az+72aWv/d4f21V/jdz2ReTNsiYW7yprHXjHs3T1i4ido/mWan0BoI/0usncCqvXZLnW3oINsay3a7Y7E/dJBa6Tk53jvc79p071LlDvi8JrdbbO1e4vcP9PJMS/ndUjW7/5135o+SKSxCOktZ6srfXafD5FAu4tT8fFi2CrAPl3u727L/an7x3AXHxrV882yfkmQd3sBvR0CLt2wtWMAokEkWhRgYjdZ0ej/UE2iHQLLQGyMQYQksRycMDsPZdljQiDYQZWJ9lQCIt5OZ7OYitnZ2fzCgyAMVA7thr29kfOV7PJNM3M3aMbiDgrZo/fPHUBbt0aJknSBF83nhlYAgDTYqOJUGBHWpNG533tnQ6BgEREGUWEaZqKiDHJcLDnvZ/NZmS0tjZNU2ttTFYWxz8+P5vOxoogsFcKjw/2m8aHEO4/f+9kfzgaDiEwM1xcXJw/eU2kIhrN53Pv3GQyZvFNwzcODt773vcZk5BWVltlrQTnnFPRUDl4AIA27FQsLCJatU4z0h5ACiKKokXopvX1gh56igEyY0xpZELEobXHw+Fb5AxbJxWyIEhd1xDqfG+vKKpAPs/zeRNiqoG1VAEYVxugs0FFVEKIoLTWqBRGHA0kEBhEGEIIzAzxIBmjoijC5zpEbYLo2tPlRV+TtGQlV96O1dfE3zd+6I8i0L1v+a8323fOwcI4zntf17UPDRF9/Q+/0a/2Y998/xt/5I21d/ucytd+39/qP4oi71Yxt18+8bGPdvO8q3KHu6Sn/eturgXcwOU8r8gAmzO8ts1XKyyvtxrjiLRR7Ddf75Z3KwLZhNXrl3aiVlF/1+DWmNJr5WpIu7patyO62e5YzK1jWWthF/lvByVEan2Zrk8yVmd1/dHV87zrKzsAY31yup/UPwDb9QHmiBMQgAgUgUJURBoAGCCyEH28EzMrtn8S//oliARBDyRdnrhOh7729eWyQa8ytQkmEbH1+0RNZAgNggGhTk2BAgqJsA0MpFbz/vYRQWwzBrVEARQgwI7P6I4GY+mcBeO7m95+m6vlKYBiAOCAwkQYAxU0tM+ZUTrMmKa14CDfzzOlc6W1EYeJHk7GhRe4/9ydND8wkiH5qpi6utSkGsfnF8W0AmVUUABJAgaTwwOVJWU5zyzdOz5oXHjjwVtvPng4GJnbt0cBpKgbBB3qRthrrU2aiDENi/MioOYcpk3TNKAxTSkXr7xnZpgUBZokgPVii5ofnj05n55VPDOJTfMsSTIFSgui9+Xl+aPXXppPzgwKCVgy6KGaF0eD7P3P3z9CZQI5oYvZJLHii8u6qG1yCJCSdsXsiTSlBXf35v2v/drfme8Nam0r79hXUs3BO4sGGbBhCkQBFRMJAQcQJmBS4AIiGKWMQo1CBApBgRADMRCiUqCQYyqENk80siCLIaWRKIhiSEhDptS8TNT+QU5B8xNEjZDndDPVj89m5uge2ZRAEpvVdZlQRZggGgnc/okIYUBsGIgoUUgoggpNQjoHUoBZQBVQ2AArBCBi0MhoNCoCEQ4uSPDiAZhW8csaF9jBsCAstimuVesANWoEFYiOluAgSIC03GixvP4D3/bGD347sCDIWz/0x7r7N//w9wMR6ZQIlIrRiISISBtmcG4pEPytjz73Yx99XsD82De/58d///u6+/+HH/hHDE5QUNYPMj/xsY9GevBPvuMbl3c34oP99Hd+c39QP/2d39x/iohRFgEMgItYYz1U21Vba3YFG6yoQJdTDbA+UaulL1RJ/6MttiUCljjfLXphiX8dDllbWQYUJCBEpUkb0goVxcQza91Y4yf6130FzxrKisYZvUiiAvF8IUIRAsMyHf0VtC2OGlGUwvgXhxc3V/dHAiSA3Boq9qlPS6RX6y9fBAb2wD4q4UQCESiN3jfxZzdqQk2oGVrt13LMLBAYWcU/CICM8Y8EkAMEL95B8AReYUBxwA0yQmDktntx3ogIUQEQAO2aE1wrEgi4lZLbKWAhfgrl6NraNuPr+x+3cVj/3kuP+HVz1A9DuFb9OuPtl7VdtHUDd+hgVyO4Tc/TPpI0z/bzdCAM4JxBSEiDB+fc/tH+xeWZ1vTcs7dFJLqfz2d1Ma9nRVOWddNEhyWdJMlwmCKEfJBqgvHFpSZ1tH+s0D549JbzTZaZqDIdZkMSmF6OgYMCDM5X84obZ5VRqJt5PRoNkiTxoZlMJpPJtHFVEBZkIl2WZVHOWJxAU9dz5xtr06YpgINSwtJMZxfjiyfzYsLBJ4lpmirNkjRLOLjn7t/7NV/0IQ2iVIagJ5PJYJCwNOfnp9YoQrRmyhUV87OyfjJIbvz6L/sKmzTcZBAPPSRAYPGBg2MfQvCBGxbP7Fk8M/dxRMdur5X+SuGGC03ERCEE733TNL5pnKsB2SoyCJbCIKFRnp+NT2/dvXF0crJ/fHJ0fEsneyY9DJDCxpaLoAEAAp1WWQEq1BqVEVxixr601IHK5p664v7a67BBJ97ZfuxaeOuv/V/XHvVIOxCRQorK/M0W4jD/9v/5S9feXUPofUMqRPzpj30DAPz0x75h6xbeNtXd445gL/V2/WnpN7LWn6sn4YrSb+2K1ek+t9Y4bohHW/vwVCq4VvM6ne/TlX79Ndbt6ka6QYkIL0p7hxAUgSIhDCA+xknHJWB0w5dFdN5uIGtrFC/UIoisiHQZNfp9XvScUXiRCjPG7lhROy9e4p78uKUsI0TJyjCht3bXmefNEl/Ra7+vrn3NRyu9bO9Rz06rDY7Svns97Uf7lQ0pnhQEEOAOghlJNg288HpalEWXVoYm29QRHdDAtu29o9nlUolAqzJNDvLBcZ4PDF0ys0FQqA0ZM8gnk0nTNPfu3dFWnZ6eGpvPpuXMBe/ZNd6zCGPEe0RUlAUh5MaUxRQFbty8YdGcPzpFYmuMUgoFqqJkBuc8MAoyChilFChhQAFf+7ryc++jr5RCMIkxxggJM7vaa03ela6ZK4V5nudZHuM/V/V8Pr2siiqwT7TRhCrTjWv290ez2RgB3vPC8zcOD4r5dJAkoDEfJIcHR8R8+ugRgsymp2U13xsdPHjrpcTY59/9xV/yoS89OTqsKp+mCsSjCARmcAAggQVYJAQOIgGYRUJMxgAcXW+XWWL6i762XkopBhGRL/mr/3Drev3MH/iIUdroZG+U7+fAzKNUffs/eWuz5sMf+M/qqtRYiQCQQg7Pfezvv/zdv/Pd3/kT/Wovf9/vRVTPfOtf2QUhT37if1iCCuIL3/aXN+u88kPfsQJRAMz8rm/7i1sbfPkH/8T1wR4Anvv2tm+v/Tff2kd8Wze41roJ3A+jAUAi2y1icKGJX7u/dqc7xI0y7k9/7Btgm/l3rNaZXK0c/XbUV1ocjTusXNYI1dYKfeDZ3so2HenVE745n2sUbo2iIK1pR9t88rs6hD1detcUM/cncg0q+sJ3V3+Txmx9tyudUnBtINE/oj/bcfe13gqbimXo80/rZ9iIiDH/WTc/m8r8GGCRlxWwFxd90eBSVRO9MbvOiKzh83WeUjbOKZ46OV0hgc5lCQUQVr28d11v9mCNP9rsR/96UVTv+lr8wlaytxUddFpuaP/dfqi+yVX1l7b/73V6uG3tr9iorcVNv6aI2NGN/PBGPtozqdUGEQEQjbZKqfFkcnR0kGXZfD4noqqqptN5UfrGMYsS0IIEQI5DUVdNA85BXVXShKO9QZ6a8eWT2XSWZYm11lqrtXYujMez2bQKIQih5yCCDFg27vR8Ppk1jJCmqUIlDIGhrvxkVs5mVVHVGrXVWiOyd75pXD2vitn4/GJ6OZ6PJ2VRaMKD0d7B3n6apiCUZnaQp3fv3Hr+uXujYRp8jcFZrbyfNE1BQq7k00eXjx48fPDWK6G5PH/wSKO/f+e5D77/y+7dv12UU/Eymz5BAYiElgMHDxwgeAgs4DBystyqMoUwen938LnCjEcNFHN3+IeIX/Jf//iu9frwD3+CmZl9ZmmQgBZvxG2tefvb/7qimIlXAODZ7/wJAHjhY/9grdoLf+bvgLZXg9NTzzKe/5bv7f8UkV3UFwBe+La/tHZnK/a/4nNXVSBNRIDdSSq32tRtLWzSmFh+8/f/7e5m/yj3a77nR37z9/w4XOn9/JHv/nj829Lb5XnWdg1hX0JY69WW1raVrahpVztXNNJVXsNFu1A8QHvGsPnR1TrrssGur6/pYLCNaBb6fVjDb7vaxNXStrY4Fol/3Ulfp45u1bGL66gP75dWQ87L4wDsoXeNpJEUIAnHv6iyBmACJmCUIBAEAkj7J+y7C2EPHIBDTM7d/xeFgQNI6IvRkXKLLDvc/SlYOF5slBV2Z7XOuu7r6pm9gmFce7SD0O40ur7O17c+7UK7ISzMSoWXKVk2Gu9Aof8H2+JHXr2LrtiBT63f23LBDPdHxyfZwREYBYTaKtLogGfzyY2j/dFocDE+J62Go/3xtAiiGieBiYUiWHkW79g5nydDYVSkjw73hnlSVxPvysOjRGsbQiiKajYrm8YRUpKYLMvsICObOJGidNMy1Axkdba/j6BFEEAptABavIBgluS+qYtZUVdVYjFNkEOoywpEjEoGyfBguD8cjKy2SulBNjo5unm4N0qsPtgfHo5G4mslPMryUFdDe3BycHj66JU33/rMxeVrs/GTUb4/SI5GI3P76EO3bt67/+xJMVdBfAMPjc5axYkEaXMIxjAkbT7BBWQQkUKkDp+0a70o/QmH5X54Cpb8rf/zL4YQrFXHe/QjpXzfF3byts/9iY/LqnHmZnn1L330+T/2N66ocPK7/mDcYi/8ke/apJ1def5bvrfPAT+1vF1AhR077uFf/+Px4tZ/+v3QauyFmQUZF9k/lTJd/a57/SV4W+VrvvvH1t5aO+5dKz/z59d9ljap/lr3dpGWK+jfFWUrk7FZrmjhCnF8o1rMvhrtXdTyp8DaXzxv3gUwEeSi7revz1gTW7dKt/0SyaT0SqSdUT/XbyHmmFEalUZS0NkVCwQW35I9DhJ8JITtT4l0cbGjJZBsIfnxCwBMC314Z5axKF7EMXtmLxJYXHzcVpblgfeCd28JdhSU42nxVqvpXTO8yQn1afDOZAxrU4zbTymejgK4p3COX4/agc7+Yq3lK9AK9vTV2IWiJEHGGMI34l6OyRQ6XnK1zx1UbW3/6qnYVeGK0vu+9PjxKDcIALCCNM/TJAMPwmisceyapkptlqWDWTljgCxLT0+nk4KVsp5dEACA1qoXOQ6rrEur6cbxUZZhORsTymh/DwBm06qqm7IMIpBldrC/Z4wBgJmbIULjoWw8CAyGqbU2MAffeOEYLp5D8AK64aBrq4EUaU2GVJIkaZomSaa19jVlWZKkBhGDcyFwdIWySlJjyumsFt4fDoJv5vNwfHh0tH+/Li4fv/X5R49ey3L9nne/e2BveafOL15Khvbuvfdqe1S7qVIWm2w0yua1B4Ae6xbzgihYyKP91UFEUhBCwIXwJAtdHEvM0tMx9Sv09xe+5XfE0994ivkVf/3/E+9/7d/+X/7pH/g1Nw5HXc1H3/27y8D54R4AVPPZs9/x9xYNOgDgVY3ny9/7OxGViCAZZYfd/bOf+rhVKWpkUgK4/5HfFe/z6r77wg/8cUZUgMgMyrzwrd8X77/wrd/38l/5M2uQ9soPfUeHF1741u9vL77tL738g3+iPxWrmVnx6i28xGurlAMRldIuNP2XRaTf2jf+yGs/9tHn4/Xv+5uf7jfLzIws22JJfOLPfsNH/sLSLvoj3/Wjfe/eq92QIkkFAEBeCME7wxNsbuTFSKMyoz9YEJE1K9HulT6fcU1q/TarxQAU68lrY5qOtVdkVZ+3xl6sVehTRFg1h+68y/rEAxcbadHUyqc7irT2afahu4/xuwCA6L3rvt5nkXHRz7WhLczEBEVJ9OYjJsAYjqM/A9BGtQvAAv3lWbJcS96rR0rb6HUtZem09/EZEbISChEMUEBoRcbrlR3WxAIIKIs8HJ0u+lpnwJvEePHv+iLtLr0z4BaY1pmI65O3dZrdQyN9qH3HjW+meNy86EZ9xcZbvU/Q80ntTsskeFfXrqwUq5QMCREHo2GQpNPZtHE8Ojiczoo3H13UHsADowiHRYMtJSHCAGH/YGATCE3pvVfKeK8vp7NyUouA0pQMsjzPSavCVXVdV1WpgJxjdkAEwFJVVV03CCACigExGIJRhsPhIBukWmGSJAjKuaC1zvNcKXTOpaPEN258MfOhUUqlaWqM0WgUe2AepgkAV1U1SNK94ShJsssnL33uxU8Hno3S/ObJzb3BYfA8HOQPHzXPvHB85+4z5+PGZmRhRPpkWp4qZUAoRn1mAAQRIJCAokEEJZ4koUiQqBrqTX4bdGIBEoiIFIWGNl5ptzayMEWJN//5H/za/+h//CeLdmSQL1XHtz7297au9bPf8fdf+77f0b/z8vd+3QLsEQBIL6XD49/WEpXxz/wECE1+5qf2PvzbLv/fH18LKtBHfALw8l/5Mx0NvqKIyEs/+Cff9W3/1dr9FsctrnHj0a7SZ1y6QlqRjwKTILUSAwr86Dc++00/1voBf+PHX3lqb7vysx/7prgKP/Od34iIv+m7W430R7774/Dxr1qr3KfKnRa6pdYYOa0F4r1GmMAVmrGtesfub5Y+9rsOhtkkkB2PuCaUd+1j1PD3eFAA3MSfm/3ZbHyzJ1Fui7JLlE0R0VrrgsdFgSXRbd2oto5rjUWLF1Gb3TObavsTmBGxOyHqWUSuW1zHpjh0BraAiyy60gaEb/sWU28tRORl6Yh6pL6yMK1q77THxdvtdjEGO2MgAhB1NTCJrMdYXZ+lHv8b5eCrJOCnCKOrH+7r/aAHRru29vUpYr/+1rfiPHaqg6tSQ1yj/c3uPR09vc0PQRfBDpnEzSfjcjKzoK3JpPKemyw3ZVE612T5fhP86fml88AIXlARMMd88gq5NeBDwbu384P9wWx6oYQHg+FkXJ6eXToPw0Q7F6xN8nwgAOfjy9pVWuuETNN49GAJETFUDYMQwv6xztNskOQaQSElVgOwD40xRiudJntpOgCAui6rqnS+mVxOWTwAK4XGJEaJRgDwg2xIBD7UdV3uD0fPP/+8FnzttTeevPFvFJr7t997cnyvafzZ49PhSD+4ePVLv/w9v+7XftW8afaPEq0Oy/IihLlWNwQuu2lb0NpF+iMRFl7sqBbk2i0NK9YZcc9TG7V1+3pF2XczExFpNczT663tGuqMeFNEICrHn/zwn7vxB76rX2f/w18XL+af+MkIw2pt/29DavA0jP+2dtbVpfvorT/casUf/w9/Grp57ozaiDQpAOVD+NFveuabfvT1q9tcw9fd/W6xfubPf/OH/8vt8u5axKtPfOyjSxr83R//xMc+usg9CnClgL+JxGA3vrriRXg74u/W16+oKRsj2CoObV1x6cm7zLz1u4utQTGKjnMuir8x0Gy7TguvtmWvtqHitaBU8XOGVGwwhBBdiOLnkiQBgC6hlixUvmrBzPU/h4hhYfEHkYwtP419cWtJvPsXi0cAgBKwmy4JIMu0hF0TK3NIUa8iIkICggFBdXPbX/duL1y9+9Yq6F2gszndiz0ToxnL2mfWfvYo2XaVBYBuVQG4iFYkBCJAvjMUYySUALj4XIzXhhCzywkqRFCsSKUMM5XUqBMBTRpBLIunaHrDAMSI2LqDbEi3bfdCL//xDi64G6YsA+6vK8937S6USBVgyYqhJlJ15cDq0fFg9FA9vpjZ/FgxUTP3QsrogHo6d5OxFw+J1sHXOgDE3ILBI2CildWgFZzsD6qqTlWmyE7Gxfl5BQQH+4OKJR/liNi4EIILVQMejBLnRARCm3BU8kwfH44O9vfYza1OEp1URcmCoIBscvvW7eBAKeWcf3x2enlxNr48B4Y0BUQYjBRpE8JAQ4ZCEOosHYXGBfHsi/e/5/lbt248euOVi4dvhGKyv39y//Z7bh/fZV/P4OLw2ZFOh19+76tsPhzPSpWkgTEET4BCGdiApRJhRCAiQGTxrZVGaBCxzdIqzBwgMrZECMRBhEOEW6VBJISmCYLRXCP44EOBYWlUxexDWJ4R9BexrsBisnVN++Wlv/C7iEx0jl8ULxC0ykQElQGbi9178hP//Y2v+0Obrw8+8tvrn/yfFGDfvpVIsbAXppiTpc8WrJ6rLWAMAABXOVBhwCiIIwOwWmyuxfZeNNuzn4oiU4RoXsQ66IpSWgRZwBpDiJpM6WfUWpUHUigCf+ujz33Dx1/tv/V3//CX/57/7t+0LaDG1czZUeqNpcXFTxE2ur4yAHziz33TR76rlZgFgTmefQJAmx4UN+xXOo+pbke3mLGVhJZy6mK6+unwlo9IqzWRA7r3t/Z3B0cFPdTcB8LObLNXn0VE9VzX+ri6b2NIFHENh8DimtFo1PhQuyZJEgYsm1opRWiNBgvw+kuvfurzL7326EE2sP+b/+g3vPtd75+djsVxmidseFrO9tJMaufJKqXiHiQi5NZgBIILIcQTGGbWymhlGYTZv/Hg0XhSnI3nF5eT2WzG7I+OjtDYQZ7fuXnr+GDfYFDSENeumSXpYcM1KalqJkwkgDUc3AxViqBBhAVAhFgh6Uial5MmEmkqAnAM1AOAndlHS5Fdf9Gho9kYWjPhFnAisSf0jIhMIkyMgYhi9AClNcST9eXSECMoXjNQX2y3HQDx9FjQa6UPZ1cA0zsr2IvkvEnRt7JdayxPv5PtkiwYbgAgxLDNU6Lf/zWOZI3BWbu5skWvLXb097DWdqG5VQSFhMpqzWhAGW6aKnBdueDBASgWrW0IjdGqaZwADKxlXyPQvbt3x+PTJMk48HQy4QA3Tg6FsKoqZj+bj33lmIGIvGciQLLgmcUnRu3tZ3sHmVGhqWfnFxe53bu4uDg5umGtRWX2jg7n9fz1tx4oBu95PJlOp3MRSBPMcp0lBrAupjQYpDdvp0YJ+jTRJP5sOLr9rmfvPffM7cePH37mk58KdZHZlAj2br77+PBkXpXj87MPfPA9xzdvJPmoduCcgxDYOQWIoBYWFsRKAzCvn9y06WaljfQclR9BRAhbz0KGlnGFVhjdYLlwZUXiFpJVZ0QAMEDY0x6/8Rd/99qKR/AjUriBT7EN/EKICkERaSS6+Mc/bnTCoEjB8DcttdZHv/33P/zxFSelPmK9ApD+XZVX/5/f8twf+yEAuP9tP/DmX/m2xTdENjJMrBEtIi3SIKrW7RkAAP7WNz8PC1ZVKUPJEDbKT3/H13/N964Yom/dWTvLRowOAEAS4MXxGABvhMGC3WLKUz/673bCY7macd/1dBe2WZUTWkUrIupsOC2bIKyU8iwMaE2qtVaU1uX8ydnlz/3iF37pMy+XLD4Uv/S5f/Q1X1P+tt/8lc34cdnMFOaD9Lgqp3lCIUAkvVprEqh97ZoGALJ8SOAhhl81GIKcPhk/evLklTdfG0/mVcPOizIZEk3G89cenjIgERmlh2ly79aN977n+du3DnWWjGdzbQQ5uKbKrA7C3otWJogweGCN4pgUoRAxoopRYBdlJawHxPO6lj6E1o56oXxe+xdEAFsaHn9GlCAkCEishTjGrSICAcXM/eP5pWi+6ufy1HKtUJRv99FatStgZfMR9o5gt9ZEXGXwIUSFPwiCkIhAey74Nvq59tGrt0S/2bf7IdhAMeyc0cnd+/fOTx+VjQuCw9HI++zh6bhxYVpU89KRJtWIZ/EcEmPmjUuN0URlXY8Sdfvk2Fdlnu0758qiKYsGEUXIsStL5wEyAwjgGYDZKEgSq5QKUp4cD4+ODpB4Ojm/LKosgb1hgtoM1d7xyQmiOr+cvPnowZPzs8tZdXOUAaHzjgiS1A6yVBEEcJoOjo7h8GhPAmjR3l1cXFx88P3v++CXfFGq4NXPfebxw0eH2eDk/jNW8aOHb9y7/77Z5Kxqpl/8677o6PD22XhKVXl4fIxYAioBBRxFuDhLJMYgInHg4IRDNHMnYaVUjGwfOSwiQCHmKC8CIqIoRt/RYCBCwSglIiKi6sIkAcAidBpHRu4r/8Y/7h5FY8l+zQ5Iolb82e/4uwDw2vf/3s2FRtQiCAJEWimttD38nf8JABQ/8w+ZARHn/+wfCuDwq3/78pV+CEMWwSUovl0Ob+3OU1/eCsARfd/+z/5y/44IABAHINQiSKgje8ciXSaGH//oC9LTnP2e/+4XNtvurj78PT/2sx9b2jAj4kf+HzvtrZb93M2XxPnqD6H/Lm6oZK+e4U36vfZo6yubDBksiOL1i+xiIHiJD3d1GBb5vEUEjQ0+aGOttU3TRE1LOZ+/+OIvPHjwKIB5VFSPG5l5ICDrzN/5qX99687dL3nfkT+fayYICKKdbwBBIzGza2oAUErZ4ZBIB9EAbjKbvvHGG6+/+aCoag7YeHdZVVXVNIzOizKYpmmNaUPg6jpJrIh6Mq4fX7zyudcePP/s3eeeu3//ZMjs0DfcNKBKccyKPBKyFxVDLWuFhAqjJVZnnLUUwziICLAXEYHFQQlLm8G3l+lhBXuzLBBChBAAREBhaKViZGSMucOBCJhbhVnL6i9TRKwoop9KFK5KxnAd6tttsKs/c3W5+kPXYYq7aos63O9YnOt4xrDZ1OqLO/vW5wBwt0cW7ihbWQ1EVEoZmw9Gh1mWZAmMcnWwv2dMNpvOnQuVc3XlQYiQBARRGu8MEXvnmno/M8f7I0VMwk3NF+fT8WUpgsJqNi+K0mlFR1nmHdQeRoPk5o39wTDRVoyV939g//CIGndRzi80qeP9w8PRncze2ts/3D88OhtP3nr85NHp6YtfePNsXO0fDOdlycxJng0PRmmaMrNzzjseZUcnJ8ehLrj207NzFaa/6Td+6fufe24+efyFz30SXH2yd/Ds7fuHw6NHD0+NzhIwEJp8qPJBMi/Lg/1bhwcns9lMax3PirCLZaYIENGmKkkpSZB0Z+mOtLQ5wNVAoQBt8B0iItTR7xAVEWmlTLThaD/RC4T+5X/1J4EQSAHhV/z1f9Td/6e//ysZJPSW7t6f+p9jdNXo/vHMn/m78f6zf+rvAMBW/wREBFSkzOHv/aNPh7qeR9wL3/5fISItDDvWnICvW1Yo73X9AO996w9u715bOIL0B//8T/yG7/lE1IcjEAB1muev//jL3eu/929+tnvzp/7ob+0Ic58GR6uruE2++ruW1PcTf25HXsJlZnXsnxaLSJsdqze0PjbY3NFrk7A26qsx6abbTxdi8x1w51e0H0NX9tuHDTy2Nsb+06IoYtic2eSymk0JpJpOX/zUp1566Zdn8yeeqhKKEsAjoDVe+THL3/1HP/vgvMoPDnwoOMyzPEGVKlAtLg0BEa1NvcCTs4t/+8lP/eOf/tm/9w9/6mf+5c+99vDxuGgeX8w+/9rDJ+fzSRm8aDK5FxzPirLxZLLR/jGDnpWe0epsbzz3P/+LL/6Df/TPfvnFVx+dz0UsMJSzmYSGUOqidL4JrglN7UPjfROc5xC45zQcSW8I3nsfs8uIBGYfnX1ZPHOAEGI8Swlu7S94v/hz7EPnAdW+zg2zRwkQGJmZgzBH9yRmL63qO+BKdgcG2EJu1spOCfipBKl/vZXA9KvJNu3x4tGVHXg6099m2EWInqAIuGK0KTF5RKdtuJKKr/Vw62DfcekmoY8ClDUmyYfDk6PDG7MbYxHjKTw5PWVAY1Ndi3O188AACtBaE9h7FzTC4SjZyzOjCVkU0YNHpxwAEYRRgBUqpUApVZRNbvI0Tzw0s9kESQ4O7GhkvW9QSJMSowwm1uaJzY0x58VFURRvvHJmM0qShDSMRgMizQi1d8StP64CGWTJwd4R8tzKrdFeFtzp/q2D9zzzwf0snU5fV8nAAlhUhzeOi7KZz8o7t+66ujBcTc8e3bp3hMCH+wdl6UGZQWJDCAKCqFCAYhohECEh0q3zmSIUAmkDqDGzSDyBYhVT+2GML9xidlHRdlqrqClSGgCAEYQRkVBHa7GufNkProfO+MR/8mE0mjAB8T/3LV/9FT/0z+L9+3/6b8NGefUv/j4AXIVXEgEFKNEKlJaHefmHf8dmC3Fcgfn1v/F/f+Y//b/FO+/51nVjZgB49a/+2a1c3ZXbkBBAdpjOduW1/+Zbn/2jrRo80uC1cvY3/2x3/fyf+uF48VXf/6/+/h96XwTs/unv13/85c0WRAShdR0GgJ/5zm/88Pe02ZD6dDeWn/7z37S56z78Xf/Trv7/zJ//pnZztZYl/UBdvQ7sOG+CHdT37RZcujl0hLCjmVscNAB2HhLuIqi7OrxaealuJXb1vCaiUZYqpcYXl6+9+vL56cPh4EBbe1b4R08uSw+kwXPjg5DVn3vtwU/+k5//P/7vv1JzmRkKLIA5qODqSik1Go1Y5GIy/vwXXv7cF77w1qPTEEBbleVDUKrywSHmw73LSQHEnhtSzCDOORGpqqopm+Ew01o7DqER0dqSIkX/5J/94gffc+crfu0HRzqtqnECwaRJXddDnQIwkiJhYA8AMecKRp8Gae2kmH1LNWNwnigNBwYRRGaJfkA9i91FEV6ZOmEl0BqmEWkCgdZCQEAIg+KO4wEACRITpyBF3TUs9NIRIYGsWDz0l0zvWsXrrPHVd57S4JUEG3acAW+vjBh3WhsjGxGoNWaPZ8Bdm3Ef7CKrfRl37c5m/WtqGLa+22/Bs7fZcO/o3u377ypm43lRnM+b0nmb5rWg9ywCCskANhJCUw9z7QGODgf7g7wpK3beM5yfz5oAmlBrLYyBHQtIAJagQdWurMYFashH+uhwaDWUs4nVRwRACrRCpclBNZ1cVk19OW2YwQmkKqkbNjrJbPbgwenevhZAZrBKaYUGYZDYUZYO7HCQ0eXFw/e8+97No+OHr77s9ka3To6m8/lhPrx14/Zs1mirbt07ceWsJDh98PIL9+8c37njay6o0CYrZuMkVaRtq1RqXQ0QAJFilEwREVRa2PsAyCCoIJ5MEiFFV4SYQQhpGR6WqZ1nBABBVoi8sHkkot3h/AAA/tUf+S0xXCWghkYN9kZv/eWP3v3j2xPevf59v69vd7266AKIgiCEl//gvz34nX9k1xcvf+pHENtcTC//wJ984du3kF4AeOWHvuPt8oLL+kK73FeuUx7/j39SKYXbqBoiCjAibbdgXJSf/PbfhGD6dxDxn/25b94kvQDwif/iqrAbm+Vf/BcfRVx4gEeVkURbrPXc4bAIE331TO5EOFfWvIJYPrWdXdWuj2/7QhH03EQzo0MIdV1flGVd1+PxeFaUymQX0zA/K998cjkdgwYInhgk1bqSmgH+xc9/6s7x4f/2q99LMveNF/FGoxdItCaNjx88+eTnPveFV14/u5iQVcygkwSNqSo/nhRl7YVRvJg08T7UzgEiaaVJN02jDRVl5ZwwgyZQChBRa+0C/PKLD4zOvuQDz+ynw3lxESBopX2oSDQKxHjqiEgChMDLUEyCElACSwAWxiDRTbGjtVE0ifAvIj1Da1ic+XbHwQBehJijs0UQ0UJaUEhERAsJxRxyRBz9SwUAkUUg+v2jxBiWiFuYvJX1mrz8/+sv2/E//8/jxflX/7Wti73rLOntgnIn+YqEFY2NCjGwc0vhOEjfZysau3Po9MnCjbCRUKKvpudPJtOXQaPIMzK6nSY5as2CqFonM5R1RnMJr/KUUfyKd9QK59tpxQnZ18HPirO3Pv2FT/6L84snDy/dyw+mVQWXs+LxxayqHIFCFi8eFezn+uTGMbummE+tSZvGn55VXsAadE4QwKhWO6usThJjQJ6cF2Tg9t0ja7SrSq1wkNjKodZkNAXxzrl5U82LqmygqcBobYwJIRTzJrO0v783n09ZSWq10So1OtNoEDJrR2mOjR7uN/efPQ6VrufV8aE9GI4SOkqMT5JkPJmqZHh8806aps304pUXP6nJfeCLv4xpMHeCWp3cPpnNZolKAggqTaiJlNAiiR8ikGLvQJg4hKb2dQUcFHWO+QjAJF1A1xBCWHoSQhsBR7roeizsAzP/7q94HQBe/Oi/2LpU791wPO3K2itba7740X9x/Rau+Nx1vnXF567uxtXl+p/e9fSaLbyD+ltX7R2P9FfLr5b/YOWHP/NBWKOn01f+bb/GJgFeoyudjcgV2trN8o4JMAkLLNUFkWh1BFhEhGuQREKJvpmePZnMvhAJMO7fjQQ4MKBqU19Rm1tnS7f7BLgvbXf8yzX1P7vKGuPSqUEQQll4bHziJ29+4V+/9voXfv5TL/7Si4+y5OCyKC+ndVU5VzQMMBrak1tH+4kui9lsNvENM4AAISVAWkTquqmLRgCy1IxGQ5tZUqBgLkjKJCzKNU2ibKK1r+qJexIT64qowNgwFjVXtbM6R0QENZ/NNEKamLqoEkuN4izLUkMaQm7NKLGHg9HeMDfsrbU2kYvxm8NkePfmewY2v3vnwM/Ki/FlOhzdeu7dQchVpQ7l5cM3H5+99IEPfuXBzfc1gqx9UU8Sm7oalBKlDCmjlI6nv0opICRA7z0IaxBxTVXMgYNRuvEuamERYJHPJACAQmFm9iES4BiLLh7aRDem4PzX/YY2UkSHyn8Vff9q+dXyq+U/QPnhz3xwRQXdUcaVg4rdpae4axV9b+vzSzVv74Ba+u4Lnha3WSQwgnQqxmW4XYpnSCICYgBrESGw2hChDgJIFXpmwyIMSDHsHQKAQuibRErvaGbV1Gup3r/yEGiNPF9xCLdi/YgiIEgAAtYpznyTWpL7e3cKe3nx6OwyTY4v4GJ6PpUpGbQNwMENc2PPvOt2/vlXzmf15cnAfuWHnv/iu/fyVJOhPE0fl9PPvPXqpx8/fOmteVW6qhoTZUihVjbXNpQOlKC1Y19LeUaNc55Am8YHhegrLkuXDLIky7hqirIkiZG1wdcNAAhTqtUoUT4ULCDB7I8OR5kaZGxEEJvL8/H+3o07N++m2u6NckUZZmiK+Y2TI23svFEqNxmo8zemw/TYu9q506DS0IgFC41PiQQVgQCwgCfWQhgCICOLMAIa7VmCa1CbwDLzpZUYDdGFEKzVish7DwAeTQgusVq8m11Mg6vTNE2NakSFEFgE6CrDw18tv1p+tfxq+fdXCJBFOrp5rTPg65RrWiv0jqOeUkF6zcqO8zq8hnPF9q/vLh1NvXpETz0KuvIb2J0NsDCgqqtaAaV5XlR1XbnAfnJWBwcm4bKpDo/h/r3ju/vHF2+cHsjl7/nAh77qi37t8N5NlxjDWlHijbkb8L333/yN49c/++aDn/3FVz/52uNJOT85TliIMGhtnIAPoEUHnxIrDVjVYT73JB4YMAC1EZRBKaVicEcBRmQEQcnzpChmpODG0eEzt+8fJKmRCnyljQ4hPHPvvjVplqb7wxE48a4W8XtHx0GlgSEzmBtVjwsWdXL7jskGZe0CgbZWawSPEry2CWIb2DqAELQmz5qMkxAgiAjGrolyQizAgooSBB+8BAyIGpUiRAlBRIQRlYKgvTB7QKNVL8/aWvlb/+oWLgLmxQzkgQHFuXJO4CeTy2yUvuuDzwuG0HoaMzND8NHAeuHFBEJtAAsEiFFzG6mNSZQeUn7DHDyjhidiBsYYRqL2bBIFCIL3xWUzH4dm1lRTqObAIYYEBWBFGFg6k6KoomhBqXemSwv3iuhj0zGs0RpteQi6sANSIIArB1SdHggRo94Iu/h/AtGYXJAYBOaXRTmrm+lkcuF8fXF5WdeuqiqtrTC05tYYAFiRVcqgzqMjllIJKoukkTRRzKKxjdlVy0A3f+hDrVXXf/+p53hx1o4Le8oY0o+pDSjYM85Ytnn9M9Rd9dv7K8npYqyGdmIRUWjFtWkpbHAv1xAsU8evGJ0IrfxctECk1+53n1sbS7yvAAMIAHkORKAJi3L26ksvPXz46MlZrQbkxbsmdRwenD+uvEmJQhAB1QScTAsXEFB7ARA3yHPPMMzTUE1+y1d/+Ye/4outNCVDYrCYXPyrf/lzX3j9kUrTNsAAmqb2tRdt0qOTm1/xG7/SpslnPvOpz336M5eTcVU2RIqZnWNUoBRioGi7HA9NRSTmMgtxk6Owa/ZH6d27J6mhspg8Pr3k9vQWRGA40M8/d/+F55754As3lAs6iA+VE4+aMHiuq4BtmvDo/ruMB7Xi5c+d5owW8x8W4C+wzJFMFOURBYREGhEJTYcxEDECPCJ6MostQ0ppJB1jAPzHX/TZ/nqJtLGZdX+9rwbTXzmR3lXWYHENRT6dEC428FV1nkYa+yhg06TiqaXX/11n5GolZNoCj4jWWiurgtU0n4bPvfjyo8dTlSDXTfBACp57z+GNO0dHe4Pzlx5WZ6d/8Ld+5O5zz+wd32ga72bC+0OXpPPK33DaDm4+O8pu33luNDy6ffLKL7z80qPL+tYwrbwj8vOiqliArJs7SyZI44W9A0OoBBjEl07Iq1QrpTRCCIIEWpNiVIYadgHhaH+4NxgYlLoYm0QZhQq1NmZvuE9ECtBqowwKByTIDk48GiFMoKamml+c6TTPDo6VSTwoBgghRB2HIZQo6Xbzs4jpWjV1NGEE79k59EE4SOAA2jcOAADj+a6kxpKQZ/YcLddAJzZaU8c2GUGizda21UHEaEUvwoioFHIA58UaVTa1m7qm9qiADEYGiohAWuRIBMELRZIaV1fa0EmkdHRQJg4QvARGxcwcCUxf6YQ7wZj6uUXaatJB7FYgXD006dWJ+2XLkdDCSrHfk83tv8ryLoP4d5hIemaPfR76qWWNBm/uxK5axI6RvAIs4uatJ0t458hqbeyrJJl7H2KRjanuvdLvMHRWLHhdlLK1V7tuLuCQBEACKwUGidknxpw9Hp8+futiMnNs0mRwfnZ6fjo31pYVkNZ14xhBWJROAUETePapNoLWhZDmWRPcYDh49c0HF5P3Hu+Pskwr8UV5WjRB2UTZQVM3GrF2wbMkaUpkzs7OPvPpT5rEvvjii5PJJYqkmdXKaq299wJBG1PMqqZpOAD7IAQgRCDAkKbkvGfEaQAuWE9hVk7KsjSczcsqgCjUIvLWzL/6+JWf/+SDr/n1z96/cXL3aJgQ+1CBZ9UGqGqNQBYJ0BYK29bXN9pQLyRR5BgzPLRBHiMwdyEaFbdsk2BQDB6xzeQbcQUsQnO314gAxNEuWAiJ+nlHEDs0pwD4um5Iu4BmDQJ2VbjOJsQdzrUdSV692EKqF7C+w3bxSpvG6wqvq29dv4gIYi9DSyQDKJ5ZHBulCflzn/vsv/m3nxzP4MA2uYWDG6Mbx88M9keNm7z5+ZdxPP2Gr/vaDz37ZRMb3qpqOy01Q8M15FmuVKnJJyNvjnNsvvSDcu/Gvk7UT/2vn51Py7JsbJYUtasDGANl4z0gg0erkswqpaRywN4HB0hScwieNQVmhaAVkQYgQHIHg2xvb08RlLPzkTWDZM+QtioZDoe+bhBRWajr+vhwvyxLUoqMRZUCOC7GF2dvlfNqdHQLdcqkO3vn4LwIA6naOyJSConaUKssHISVMloppVSoqSpr9n6Bx0JT10opYzSRIhQQqco5ay0MiIKklE2QdEwO3SUA7wfn/+yf/j+9/y/+vz71J76ZWh8hBGhTVCqFoWFrU+8KrdW8mBTz+fHJSQNNXEoiIaQQAkTBOobNYIyZpHBhm9nKTOw51BJqYQfskRUv3HvjphVqBWjEKN3SIh5AS142oe76e6r/c+Vig9O92oa5IzYIIMit+y/GYAiRDOsFqHdfXzbelSjF4MISYhnjty8+7hggQRszpz80WTc0/ZWKCn2quY5nsE+Dn4Lf1jiYTRn3qd1Yq9zN4ZIV67EIiBhCiG7xzB5FkEM5vdTA+TCnJPeAs3lzeu7TQcAEBEhZE5NJaq0HWVKWtQ/ArnEACECZQuA7N+9W5ezzL7+ZffAD84uz8dmTN9945fHFvHASfD0vC4WEpJl5Nr+MsbB++d/+IiIqa5RGENU0jWeJ+QfruvG+0UYDaXSh8RwCiEgARAQW8T6gJkMoSgVUygybaQN1kQACqqiYiYF1QuM+8XMvfujdY37fc8/cGCQKnfMBRWsjnnFhPwQQPYUihJtuJls3LQgg0OUpAoCYQGXxiwADCsbIOUQA3OIXiLxsrNOxtuABkYEoBkBWtNgNW8tywzx94+24/xSQWoOe7uI6ANjfAys4qOdQK6uV+2/14RI2xrgmbmzV6lwxlt33d6JF6XByFzKNAQ2GBhKl6tnZpz/zS97B7VsDbc0okdFoL8nprQevHO+lUFe/4Uu/5Es/+EWnk5Jem2Z1DSPtDdCTaaZUOhzMRoGsMvpG43C4f+uuyX79+2U89j/3S5+f1pArpCQbKLbWAtYIiSLDxKCVBIaEyCgA0FpzE6LWkgC0RmOVCBJRnmlFqpmXWZ7lmb136zhT1BTzwTDfH+1NJhPnXGKM1toLgyI0pgleKWmKmUwuptNpko+y4V5QmplFOEmSxCZBqaZp/CJgHIPgglkVBER0zmFMyu0cM8dAVAJUFDPvvTEGkaPZFTM3VZHsHxJRwBjLkhgFovkVYQyR1pfgguBn/tTvR0RcJEyNpBQRXVME55m5qMqa/aycvfb660fHN0jRQo/disIiwuyJYmxzQY7Oby3gMQAJBPbianG1uIqUBa1RzAKWF+NtQ3AsVK8iS1F1Fe42t88VW3gX67kVOFeoNTwl01dHURZelVftjjXeOr5ORG+LWK7t8T5H3q91/QbfYUFe1UWvd++qIgSdE9QKTiBY1YbIBnu05GB2F2bWWjvnUIIiqOpiPpsSMCM5DuOLsmjYM9RVyFM9KypFgRDyPFcIx/t7Y5garJhBexiM0r1hNhyl4kqD+Mu/+Evgw7QsTh+9XswndQiVFw9BUAeWYlZlmQ6BRXg0GlVlU1XVnjFexFqldR4DSHkfYhQXZUhpbQzoxtWVcyggSKSKqgGA3NphkpRlXU7HeZ6DKxMERmEJwQdYiJyRhL7+8NJqUnDr2Rv7iqhp6jhf3WK1QSjb45go/7SzLh0juIK3eRWKIl8O0Q+TiACIxffYo4XX7+KWoIoabEaFaktsx64/WvrE7EoZ8er7V1Rb+8TantmEs82WF7R2Xd5tKy8Gfp1yneH0Gc8utlGf2wCALqjQ9T+9+u7iHE4pIEgUvPrwldMnD49PboYQHp8/oDrZ3zdVPVY0vjh9dDIY/MYv+ypLN/fklTppgmaT6NQarxMnEtD481JP3sj2Zi7dg9vPiD65fwe+6l2PXn3jSf3woiycFmMSYfY21YImQanYi0YhMCbRIM45QLTaeI9GoYgohYnWIqINJUqMMolJTvYP93LMU4POxUCsIYT9/f26LPf390f7+9P5zBiLynJTa+Zqes5NbQf7e8c3RWnvyjh1wZMnDMyCqE2qYhoDRM8MEBQqRCCiJMu893XtqqJq5iW7pnTVeD7ZzywKuKaeVWXwDRFZTah0UdbWWkQkFCICBmGwShEuzOZ7y9UFdI2lj96YvSg9mxelh/PpdFbX45deO7z57DPP7imlOjmkPTbm6PkXCScvACXiWRIJKMKhDqEQX2BItRiWZGmP2AO8PoYVQWGIh8lIK2C2lKVoGWRmDRDXhLPljrsejG6lvu12A5CFQwQiCi8IhvTyAIr0P4U7CgBSL/d79y9eaSu3wCEAS11S+53lRztF4hXK+Y2yCy8tcXZbp5WDd+HMt4VL+29dUecK6ttNYAwn530jEDJlnXOCEETm8/npxfzJpHACSMTCSilCd3Q4IgCjEw4hsTrUJlHADEdHRwA8GGSkcDYZ2ySpXPPLn/7lIFRXc8IQhIvKB2BNyjdOAfomaKUZpGka52tjDCIii3cx0T2AX6TPImBmpVqfXkUkIowEIMoY5tA4pzUJVySY2TyzUDvwAQKAtUopJV6iw6FBPZ02L7/+eJio/SzdS0ACi2paflo4xp7t4jVBZwy7jIhCC+luyQDBglRHDbUIITIIxcjHABwToyJi3PFdIQAhJGYGjUQkQUT1N0K3hJFyLyVg2SYqb5KltwtYm/UXlXe0g8vrVnmwm+PDpxlh/coJ8+bTxfWu+rsQRyv4Lqaxbcq5Rgk1ZfnZT/7SeHLGIZyfX9QlPHfvdpYlk+JskNjJuPqiL/nArZt3uVLzNx9VxzkeD01IJKAbqJAYhXSkbrrxw2b82Df1dLBnRofDvdF77z/zaz9wGUJ4+cnE1Sje+wpQGw+CIB5YZYlCUoo0kGsCixA5JFbKEKkYxpGUyq3NU9kb7B8O9g8G6UB772oDMBzuRb5wOMpHg4FJEtJK21RpzWiwmUs10b5mk6WjQ5UPQwgkZYwBKa6q2AsosolKUgksCMxRFobArJQwc1k7QWJmH4LnGEpOGOl0Vlhrmdm72iqdpkrbVGvtiwJaJRUk2ggwMngC9o33npl1LyIVEQFHh6VuX7TXQiaAmbh5w2oScO5xVlS//Pm3jk90muZa6xACtJpAEcEASJEhX1hzCCG3qhcW8cBN8LX4SnMDnC5xaU/3FYV+IpL2YCkCi0IEgV62rhXwW9nba6Jhew0iC6XlLla7L022pHHJ0OPmbo2MKSJGjL88A17E2l3bMpuaqq0/l3d2YJto2tZq7FeYjjUtQc/uSZZdkl7i1CvKJsHuwGNxkARdHtk1yb7/en8eukfviGVf6VKXPXettcg0h+BjnBkRQdI3bt2u69rWXFWTEMBYa7QSqBXK3l6uwCdJYol0lg7z0c2jIyJltZkV87pyHLiqmiTJgeDw5PjJkycBKc0zlsY1NRABAzCjQJbkk/kcySsF1lprrVY2hGBM0jSNCy34KUWKDAP7ENgLsHAQhYCafJAmeJtkzgXnw3ReWEs2z0Cbg5Mb5+fnmdaI2NS+rBoRSJVJMitliUaXtX90Njs7LrKTXClFFJzrQkC3WLcNy7M8rI3s8iKruhLp2DhkWiwpAYMQQ4ipkBGUSABYbpaFigrjHzCgYJs+mBVjtNNcXccWqBSsScDvACxgA+a2Pt3yU5Z3+khha2uyejoVGeerVTFbunElIV+D410j6m+nfoVNOWPbu0s7rO5aaSQhV5dvvPaSr6uq5Lqs7t/Lb94eTIrSmry4rG8e3Pjg+77Eh/p8/Mglg8MmN2NT6FAmamB0rq3HMB/kaG5WMwwofvzagXIkkB3cff/zjx6fX54XzqMFbpqmFIHGOcWeNWmT+Bi5VGkJaKxVSkQoS1OtNQJoJGPM/mjP6io1CTLNJ/P8SDN7VMY5N9rfGw4HxphBmlWNn8/LwWhUOy9gFAc/v8zT3NkMs2EtkBidUpRoGwAyJgGbiNJOgJgFIWKNwEEAvA+MkCa5jalDq2Y6LyeTy2k5nVbzWVGPRiNDqJTa37OGkmnjQ1nvJToGkGNmR4Regg/M4Osy+imJtd2KkFbcOGnzCkPEa8yBmc9nRdOo82k9d7OZh/OyFjGffe3Rr/3gPgDk+RAEmQMixsi4gDaaSsW4OILxFBMEvEA8F/bAjQTP7HGVavZpR7SfFCIQlNbCNyK6TV3rlvK2NkX3SkdmVvRua0znasOLxMmwiM8dpdgVTdUmT9/KcFE64TjnWwgwIm49OIvvvmN8tZVBuf4rK93oervtrb4Y3fX57fZ2rRtdyy2E9LUFiNgGZxURCCForZm59o1SdOv23dlslhcNyDRLDdmsmPq65vG4yYeUDcz+3kihTtMcQWkyVVUFJBY5OTl544230nTQ+Ho8Hk/LwkkQUYqkLIras9ZaHHOQ1OjxeD4cpsaqoi60JhEp6qppvFHgHWiNyhrvfQiiDTEwMAUOwXkA0spoRdJ4COCrUltljSlrh8owmXFRD4f76vSxBuDAEHiYYJ7mXIdJOc+BNOq68Q9Pxw+PLo4HKjEu1KVJVnJ4MzP11JnQ6vz769VnWFcmPp4jAbDEQHKyFCD7yqoFYxcEFAQWFOaApGFDbyEikfoioo70btGDdSjp4g0tAYjWKCgBIMWD7O0IoruzUPchA0DgJVgTLkVDZmhzkzICaGrP7YjjyKUbOYosuA+lYvQxIFRKiXgOddvnmE8mqsPiTliInmsz0if/m0zA5nbdldWk40zX3kLVxkzroQAAgGkR7u3vPXr4S4nys3GDBGkOJ3v351MYkT11Tw4Os3eNbh1lB0anPJ3vpViGpmQSx4MElPITD/n+DQBRg5E1WI8vzbz24YndPyoP8vfceOH81kUGzVuz6cNJeV4Ckgdj2QUU4FmZJUnTNDVWw+Ggqko1iKIMSRDvmuH+3sH+yNUFmIH33Mh8OEhcI6iIrWJ2A5Pkg72GceaIyBAHEYVAyp03vsF0r4mE3NcqHXgRNgPHJSvQBIBePCIAISElwXtmDoEDiDaJMtozz8uqurh8/Pjx48ePRcJoNNJppp1XFs7Hl0U5I5LsLI2ON4N8NEyGWusQHIikxioAYrFKB6wPM5siZ/3kvmiUrrmuNQfvxA6OKqZJVT06vZgHeuv04aSenk3OXVNkSVL7WuD04ZvDF559rixLAFCKtNZVVWltRDhCOot0+5wAmAyjIAoScWi0KzEE74M2jIJEwkgCGMmZFt0E8J4hCEgQEAECZAAUVhG8AKMejyOiWDuMXJKWzlB4YWwSi4r3ERecOAKAsAC14lRrSStADETR5wpEhJD63KfWBAzgQ1NV2hquyxAch6AoJRBAJkIBLcACzOKIDKJBNC2NBkaSNovVom+8EH0RgeMcrqETisZtsgw4uRx5289FJ9sh82rWoG5rb5LwzV3fp6O9iqvIFMIy5XC/wYAAgLCOT3aJK/08vl2FKK8zc4z438m+sC0hdCQAFoAFRIS0Ca7J0kyCa8oGQSeW65JdWaJqjg/13ZObx4fHhZtkyQAAUpV47yUEVzVVKD36h4+mpH3ZlJWvgtS+YWttU9U1E9nMkHfOEQlpzYjDG7ppKjSD/dGtEDgxKh2Sc07pmCgBtLLxbKis5kVRmEQRQV1VTdOgFgCnyR8O9bwIEBgFcqMVg9SltbocPxwN1Sg3z925qUG0TUYn96e1vHk2efLii1U9zTR4gM88eKJH+btupimCL12SJ06apqmstUTIzhtlg3gA6nnxiUAQCYo0My+0ThhaVwhNjMyMLbSwBAR2SARkYVU1IiEAYlCCwAgIHpQAACFp6lntiQiCEhAAZsSlG9JWHm2N77sOA775ytWiZL8ybCNsC5C8+ssrsmnHJwKRIKFstwW9ukuLnXDVU9jYS5sfamsKt1Yti3oIICKDLG2aajKbx0itReOswcRm7ARY8nxYzcZqTx8fHF5MJppIRCmlYmYkkSCMOk1BacXsfI0C+6NRI1BVJabFcDBUxwcffP97MVXD6WQ0mdn04vFlEUONoYCQOHZevLCUZdl4p9imado0DQrsj4YhhLOzszS1xenZ4cGezQZaW6UksTZLUw6unW3ULeogAWCRgEhktALU2pC2yiRKKQFQRHmSuqaaTydN1aRZgopq563RzME5F0LQ2nBwjx8/fO2N15+cXRhjYvKlJLNKYVVVZ2dnubVQF6osArvp+KIsK1c3SilIjTEGAJqm8Y1TArlJBnl2/85dHCZDQ2r11IJswr4OwTsJyH5e88X04uHlk8cPTmsJDy8uQggkUM7CcG/AxA8fPizL0hjjnGuaRikVj4R3QhS2Bh1twjLVItAAogG5b76BbarEvgqaJYBACAyr9C/C0C6YhFVKc4Xup1d5tc4y7c5COO5x4YgYmCN56IBcaw0Q02O0NswCrbvdFeKmYF/p3RP1tr2xOM+7iljuHuDii1vstpb3N5u9vqwMWw6q1vuwq88rQk5PL9ivuQvn9IvnEGUkrclqU5ZlZvX73//B1/+XfyksmmA4zNNUcwgArEmODg6qskHEqiryfFjXtbK6mJbT4lxaPgUcuxCCMhoA8oH13jvnRDwiEyGCECnnQpKkcS8kSaKUEoQ0s4xBBAlVdJ9l5oEZjfb3o+FAWZbFbB5CaFzlGbjxaZp57+vG+QCJ5aHKjTHMfn+UPXf39rO3byqU2slkPhtPqtO3ntR1A4DR6rsq+fTJ+EDzrX2jMHr8UsyBhguWBREjjwdLaoXLY4UdZWPrdf73a5ZJ0XuSiIjBIysSkcC8LVwVIhKgfipNvWbpwGUHQeqL9RRtVPsVNkVGAABcuIZesYFX8Qvi0kVyrVx/i67efMr8YO+QaWubi5bX9WaxvkJxjfeOUSWuaYqJZCfonVMq4aYYjvJXv/Da/+6Lb4kT9CwusE0gMIRGIQgrQUjzUSBjTZCyCY1nZF83s/FENU4P5jnS0dHB7elRmtqTk5OToxv/62dfvJxXDqip2XNoXIgpfpVSe3lic+WcU0h5nmpNikCTsonObXZyeHQ0GiQKtIQ0IWNs5TwgLYJRoGqzEzXBOxRQZAEASJskRWUCAJEOPtTiEcgmAxe8R1AMpHXjihCEED3711974403H5yfn5dNHeWCNE2TxM7H4zdffbWua611aZiIJISymjdNpbVOrarrOjRVMXchhrcgtFmmM2DlZvNzV4LsDY8PD7slMJq8x8AghDpNWMmknL7x5OGbj9668LPahVqJtWk5LZsKnJo3IpeXcHl5eXR0pLXulIHMrNS6WWwrqbTUl5CM0onSKSiFiJ3eGREFGQBIYmT5SB5ikBZBQGYWkKiqRRJYnj+p/rfWwC9KTgsUuo7fF688BaRhSXp7g0IERFREgVr+w7tFXFVAEmFeJDXfolRbK9LzqFEAYeH/TQtN1YqQJ8BvE191m65PvbbuxOUAV1/vN7JZ3u79brxb63f/boouazzQ1oEAQNM0SZbGIBRpmlbsp/OCvXvumTuXF9PHp/MQmtTSMBvmaSYSgLUwK2NEZDwbT6dTESnrylrNzC54af3EVAhc+cbY4L0XEWO1ocR7rivXNJWxWZYP4tGL1jomPjLGBJYQPCFrjTFZoFIqy5KmCmlmR6O9wWAYnC+KYjabeu+tTQMzUlUUdQjsnEOEsix17ZLnbFmWGLzS6Yuf/cyrb01LD5lWiVWJsg6Va/yjxxe5CnvZic1UCAEIlFK4mEBhQYoonaPPn0AMP4S8I7YJSLTeWtgJAsdT/63sGkAM9MHAiggYfAhe0PXNI0UkRvuIOvCdfsDXkXev/UrXRWoV7LLkuDuSuUbCcWHcsJQal/XXafwaV4vRHy4EJAJaEtE1wF9DNLCxFbENWbKscEXZXL/Nm1u4E/ZpOjy+def+M8/eOHqZ3enR4T4R1fX8eG/wyoOXjYI8zSSE4Dwwe0YMwVczygxAJkqbbOg9MNcEXDsXmsoFTtOUtGqKWYE2ScwoHbLz+2map8PTJ0/q6RujveFkXriGywCkUCn0vtHGOsfee5ukUW+DGJQmEhnlmTUmWhKjRq1tYlK2IZ6AkjKKCMEjcPC1BEcqUVqLCJMGlQARCxKhMlaCD8CoFCKwoOOADNV8GkKYXFy+9uobp6enWts0sYRyWRQAcFFMm6pWSuV5bvOsqovLooj5FQK7xjVWJE0V5onUc6PUXpYRkXMutdlotJ/nORQzFLJJkg0Gy/kPXotCD46ZFM4n48enjy8uz0JwjIwKjJLpeTlM4N79Qe2LQPDhD//Gk5OTzqs4pldL09Q511vx3upjzK+o0KRkBsqkpAySBsSo1e3DsIgArqQRRQCiuG3CJju4DsArSKEP87gE791Q3MfviAjAW0E6FqWUtNFLYh+YULjX/hLUBfHKvON9dNbTEe3kifv87hpx3Vr/6ptXaS96tPA6yPCpOHNjhvu4a6WdtT5s8jG7mAabJkTUVBU6zPM8z3OFVMznBGqYDYscBEya5/v7hxq1c0FpZa1lEdTq9NFbjXeoSGtNiiSQAkRFhgiA6rouyhohEClltIiUpQ9BsnRvMNprah81TyIgCK5xzjlmJq05CIPvzly99/M5A5DUQaPE8xqbZEdJhsCX42mepsPhsCzLqqpExDkHgdGiDzwYHpyfnb3+0hfeeHOKCFYDKTFWa6OIsQ48mTVPzsfP3DneyyEEUSgKUYRJABYaJhEGWFAXhDaezCoUSMxrushDgMiwEnsOkReUq7cciMgxQAeG6Dcs7IGVhN4+Ao4HQRFargpFuZV5hGsA4loz2+9uKIJwRevSZ6K3hA/s7fzlna3Xu8pTd+bVTV3BNV+/DwDgvQeLw4Pje/efv3//C2UxHuapMaqsGwI7GU/yVA/zvGka5xwyhRCkqXxd2HSgtVHpgIwhDuJFkVGkPWgxbJOUiPxs7p1oklE6LKczhebmIPt173lPivikKgy4yuIgFZNmyuhiNiUS19QHBwcEyK6xw5w9N2WZHxwM0sQASPCiKA5daz3KByI+BKeNjYIccwjBCwdKBqS1CCJpVAoUUbRTCKy1rhtXVGUkqCxYFMXrL7386NGj8eUloUqMsakdDIdpmj+fmMvLy9lsxuwj1Bpj8vzuHHxVVcPh8OTwqGmayeQyekA28/lsNot6MGNMVF+X8/Igy24dH92+caLM0girqueWNQZWwgH4/PzirTcePHzyhBF14xPEUZrfet/+3RuHxewck8GHf8uHj04GiDidTgFp4RMMQkrI92BjSUMAFSpFOic7omSkzIB0iqSlh4tFpE3izX0KusQQGL0dthgirNzp74j+/uqCZ64R4E2mc3Fzmct22UNYGkJGpNR4zyG+ywpJa+1dHXrUFLbJbetDWGS+6t6KHtyyDW8gdgFOlv1f4dqv+NBuXHE1GmnvrEfa6ipt1y5ubbPr5Fo/Fyh+seQrI9opI20WEUFtyroEAGut916CQ6VJGWaLYDM7StKhTRMi7QOYJA9ST8tiOp0C4ayYK6MVKUaoZrWyJkkGxiTRRTBLOR84kKZpGu89ohoOjVapTfIkyULqyrJERNKqruu4GeNYtI4B41gpo7VmhhBCXTkOIFa1TwPXdVnXddSpZFmWpmlRFD40iGCtdk1ROHr10fnnPv3ZoqjRQN0AEg72BoaCiGMWJAgC89pN6urEpwhCTEIxgakgomA0pIqELAI1wOKUpKMp/U3UU4Esybb0Qs1Aj1ACQIyPRqIQg4hi9si6b6sQtzZA62f/dBX0NQnJNWtG3NTb5O2LHWiKhFURl/sS8ObOxFUPh27u4kICUfQUjt9+uyPaIrDuLlsRQbdgitZF+VhNKVXUgYFGhyd3n7n/1psv1XVBqrAGppPTJAGtKMuyEIILrAnFO19XIgLamOGBGeyxCAIzIWmV5gNOs7ppHAcQhpTDZOY9mjSx1nrvjMIX7t4ZJckvfOHTKfhJ6ZtAoDVpZUY5SHCiNSEJBO/K+WyQJcPDw1GejbLMWm0UaoUYXFRDJdaKD5E0AgIw+6YO7LS2RikCxUSdQ2f0mBX2dQjOORvjW1V1WZbz+Ty35vn79/ztO03TIFKSDQRhMp3v5YO7t+9YRZPJpKnrLMuyLEGBeeVCCCgEAGz4Vn6olUKUyWwqIlYrpZT33nsvwAJgVH18eDAajkgtMZomaOYFgENhZgkhpHl248Ztm+VHw707N46ORllKzfjRa3uZfeEDzx8c4GQyiY432LNHraoq3usWFjoeERBVouyA0j2V7oHNSWegEyKNuDgqXYBOF5kZEYVZABYs+FbojH64S3G5v21W4HBnE0u4BUBZPamKplKwLeIEAJBSAK1BaBdhm5mFosoOu4FcTYCj6ZAgdiJIrN8ZT13d7eugr20cxpam1l5ZLsT1zoBj2SoEbxJjWdUwb9Ljzfu9m9t7HqlF0zQiGH1wq7rQqEX84ydnnpUyA6WrSGgEYF43zbScFmcXl5fM7L1X1gTPiUFXOyRlbZ7nA62M9957VkoNdGKUTOazIhSk1WB4mKZ5YKwrp40KIQgCCTdNIyLapiEE70MMLR84BAGtdUx6lqS5c8573zRF1EsTKa2tkHjvi6JAxGiYRoQIkIwOX3z59UGW1qJKB3sHewPSzvnRaOiqaVNV3jMoDQh1gMuiakbaWg2t/XNLdbEVfxFWnWiYw5p6tFsm6k58BAB4acOLDIiLxeitL2P7FBQKgwSQ0AUDb+u0XxXAVRX09SnTZuneXYOJrRD8VDBdlIV19JXoY+1Zx55s7eHVEu0mxG+VEjabXavTH/jav/2JEpE0TZuG0OT7x8cf+tCHJqevPzh7g8GDlN6VCHBy47D2dZJl7uKCFErpxDulFVmr8yGZtKwrzeI5IGqlU6U1DsGQUBCaTXk+QyWkYXQ0nE6nVTlVTXGU6fffv/kwMW89GV9WblrOSw7GqMAuH+2V89IobRSGuklHg+ODfQRmX4lKAiChMkTGqCQxVmmmOspXJBRCaJqGxSdJwswMDemUSIUQiBARJfgksfP5nCAYo4Pzlxdn0/HEe58n+XQ6BYajvf1kMDBJRsrcvgMxQT2HcHR4SIChcc7XgZmDy9MBe5nPCwBQStVFOZvNBsMERMj7hPBgkAoyM6Mimx1lNhGA/tGpQvbEiFKU80nVlK45uXX3Vjqy+dBa66rxeT0eUuVsc/vOrbvvfeaymGVZHtfOORdPoyM97mC1j7sRUUgpbVWSq2SIJieTibKkNSBGG1lZHMFE76MFMeNIu9u4PSJxZ8dWRQTbdN8rEiH0CMYaR98D5qeSE4588JqfRp+OLvgPrZQi1DHqPcYwJ1vwAO12ju/ZjhCSLLdJFzG0313udX/rvtvafr9+X76BHTihP4FPpb4r2/x6aur+W/1Z3UWPu273ifda37pVRkVKEXtXN6X3XqXGN2E6nb765MI1QNqwhCY0AnQxPT+7nJb1RASTJAFUytgQgrBCIGXEhWZeiiblPXvvEdEYY7JhHqNzzIuzsyc2zQb5ns2Sy4sJC3NoTfOUSRAViEYIANwdPoYQEJTWOkrJxhi02i+Ob5yrCchxiOrrEII2pBB9aAJDkpiqcWmaeu/rukzT9L3vef7ict5UhfccAhASEPnA5+N5eWjS1BIpcRUpRASOISQX9szR8CpmMr1qfWOUDumgWuJ5MO+gFwAoEJAVYBBEECUSBFatoHvL+zb0G9cpm7xkb6jb+dA1kR82Bdw4ZU/bD2uf7p8By+p589bS7bdd3OjazV3u/P19svloc1zOOYZEa5MPRs89//zF4/fWn56fXnrfVE09MwYAIM/zeVnkw2H15AJ8E4JL0kzpVCe5KF3PZ0QICgHJOfbiQ2KV1cH5cVG5amZEK9F7B0NU4s/qcjI52Nu/fXAALN6DLR3AeF43+SCrawSWLLGImKfp3nAwGuQIoEmN8qHSyByIILFmMBikaQqBlVGAgtHazwf2HoCJCISDAAETtTKaInRBymoK7ENwVTEX54nDME3Y63lRpTZJkszYREAxM2PwwgZIk0KA4DyzeO9d451zE2neOHv8+NFpUVSpscaYNLP7+yNbTtMk0YQG4hbgLDF7B6O5p8Egaxrf+KWcV9d1EyqdqABhXhfjqqKQjC+LonxjSHh8kA1sVVZn73325nvvP1dNG42akZ1z1tpWdFvi0z4270vABKSVNmSs6ESURRXj/7TVowYMFgQ4BBdCoKXlVISWRRym7hOywN09pWW/rGF2WTixwNIV8hoFO9+YZbOR8Q9BOs+Z+EgppbUOqwR4Scx2fKEfC7q7gwLSYaY+jmuZlmXZ5GvXSkeuNmdjZaCLn9Hxcq3CFf3f/NbWR2vt92/GvsXJ3HwFV/l46M3HVnzVOY5mWVbX9ZMnTx4/Pn399TfnjIgmM6b2/uzJ6fn0clYFm1ghNCapnVNkyrpOkswxa61F6qIoRCRJkiTJjCEi0hoFWHzwvmGOR8RSlNPxdFwWzWhvEF3wR6NRkg1cI96H2pWNq0IIWhMihMC1r73vBssAGJgJUWsyxjRNE71XuG4keo0iMLPRejgYXJ6fiaGmarJMGwUX5w8FDjgQglYAiBZJ+VBOpoVzgwjwofXvF1kNJrG+QNHqHyK57c5augh0vT0QVyya+3OkTUsIEYyxt1iEQNqcMosUELAYctcK6k1GbA1iRGJUyxYOaIMeSQwNssh9sjG0ltHoNbhOn/qgJoJR6wYoiAriYRi2PjxxiAgYwwYjUIBGhAE4QMtHIysGUDFIHwoAC9JCdSDBc+uhtLo5mX2H7JYDXxWYlv6dhJtUdnEnyKoZNmIk2Ap627vDpzZAiXNPmUlvZrl86Ye+zErzc//6Z98UP0xtOasU8fmT0+zOAaWkDcjMoQK9tzd84QOlUUl1OQDHwarqdHpeuBL3Tm4VfDktxlb85I03KNTJyVHDAT2gHt24MWz2xo+fvOlBHQz282f3LybTk4F1wVdNmDDCSDd1bU2itcoVHA4Gk3mxd3SUZsOymATfpLmt5zPaGyBpz5444cYZVWqdNOBFkSYTmgBSkTEKg7BHVOJ9YNaAwlC7wI0nFEwTSJPGO3bheE8BIhrrvICI1QmIDBU1XHPt6mmhxJyejx+MJy8/fvjm4ycXRT0vJoEBAXINexncPEifuXtT37qDFEQbUtaQVSZDbZqgSWPtgiAbtVwyR3bE8PJ49k9ffP3zLz06exRIv0QAuYfD+9mdSXIyoK/8il/37Afec9FUifbGF4zaGLPGNSKioAc01AbKiatrBBQlOWT7kJ2AOTQ6Q2VBKUAEIGAWCADEAkHAi/gQlEkgOA4qBC9hRScsIgChdeFvnXV36mxAoBfei7qIjL1NvnS+B4DoJhdD+Ug0accYDMQhkghKq4giAGQWhRpRCJmlIdJap/Ny5gIb0x6sMbRJF0A8oFpQVC9AIKRIK9QCoAGiR390n4wR/oBj4K91pCSB10JU9pieldKtTt86vT8/a/O2VfpcxY0sIovwlvEOAYAsVOUUtSACwsIQ1vyzOyJKqx1AYJDIVeyivu0FKRAJ0uaiQEGMMiIA5GlWRx88EGqKJBvUzpczP6vca2+ev/7GY8BMayMAZ/PybDIpylJIm0yziNFZUzcKKXbM1SUBOofaGmvzeGzkXB1Ip2luktQHAkVEoJQPzk0nhfMIqAbpQAIziE1zVIlrRNpYKySstDLBO0RUStdNJcxKJyLgXIhJR0MIdVGJCIvyzoMEgaANinAIqMgC8LwolE08yOh4n32Yl01dezRFVRVGY5okRTGzVokCB+yKqpjP7OHQZqlzAUNAQgGvVIpLtVCXGpKEVYw+AdClWGBAAFEtn9wu4kI1jTqS1hjOtl0vAhSMltNIABStwgP3MsBEn2CE1phrJR3h1oIbOt5/T+Wp2p5YcFUj3U4fyiof3U/AufKJLorbCoexu6xxpptIYUv3dk/p2qcRIKhEi0NfMgMNjof39NH5WwcHB3OqcTLbH/nUqtqXpFgREep5XeR5YtIsCACLQazrajody/RxhVodneDN/fDkbH52Kd6pummUUBIzBoH3TJqsGR7SnWI2ZyGow9HB4fHJ4bwsz87HRmc11KiTqmpS0oejg9FgmNpsOBhycDGaDKJo0yamVUphgBBCcI6VAglEZIxBpSj+kUYiAZSonwKYz2Zaa2tTiCkImVOVZCkSJs7VIqK0U0gibjKeFEVhGhrXxeO6eH18+enXX33t8cWkAAA48pAS3LiR3Dw48FUVynk5ry4vL2/sHQ5iTErvG8/7A2vTBACMSomAvfiwtJYyhJdN/f/9+V/455+5HA5gcHsQgtch5MrOyuKUy1/z7vc/e/8WsNNKlKKmCZuKj8WKqxVYijwrkjK5NhnpJBo/Rx9fxpjOFhFJgAgVCaA3ZG1Vz68GradC17JOJypRD+pWgX1Zf9dXF611Ze3z3X0iiCGQ2jZ7jKx0Av2V/d8c7NrevE4Uye71NQ3t2sW/3yK0dULXZuBpuCSWLuEd9o2AQuOzLBMt0+m0lDaIW13X04vJ5NU35mVVOn85KU7PJoExG+zP5/MmcNnUjXOMACIcEFAa13RSAQB4xwigtTYJKqW0JgBmZkQKIVRVdTA68oFcRfFgSKFCo0glzjkBDMJBIveGigwixNRM0SkOEYm0sWk88XXO+ZYqq7hedV1bmyJAYA7BB+E2mAORIoqGqESkM2uMUUjAXNZVXUtA0QM22hBRgBAdkWNkBaN0jC+HJAuLii26WMSly36c9sX1InHOGuQsTnMWqxMrLdimRZystvR2HTMvFEsAwEsjrK36ky1PNwB4UWcLZMfOrbWMV2qStzZyRXUi6nHLi+TemyRz0UQ/ilu3ydf26joieztlK5bc1mC7NA6VkQCu9KzI7ieDIzs8GKX5QWOLsr51cCJIF5MndSgsDbxK0jRJhnmS7wFpaHw5O5+ePryYNEOLe8/d1TdvewZf1QdJnlj/ZDa2o5GxSVHPRQIwsU5Jm2S4JwxNw2UxI5RBnlurifTNE/349BEiTnRxeHh4eHQCAJZMqs2smntXa2ASo5VWSCBCiEma+sZJYPahVX8pEgQi1S1HHHp8aq0FQhFCQUIk1ZrwFMwAoDGwK8umbJrmclrUlXvrrJg6V6B8/vUHb751ISXcJtrPhwXOhom+f/fOszdvzS/G1XyitT+5sS+Bm6bRWqc2s9YyCIOkaco60UgeSHHdrYsVefHhWy+fXgJArg+dcj7Ut4fDbO9wPjOz8/Frr37hlwZ8//lnbty5Uzc1ku6vKVyF0EmIiBJlhqQzUAkpA0pH5loQFRIKQ9wgEcktBJolqesFfO6h7HeylfpguabSXNzvtbn6Yq8/K60tFlc6SZGIQliSupb0IkKMZ92+smx+GVVvIVssHy0iPa0pmd4uBd1Khp9avz/YlbeQI1QDwMI7gxbXq6LtLiZpHUXsxKvrLy5RcRBGo9T44oKI0iRJ0/Tx6enp6el4PJ5Oy4vxJSqjjb0cz6smJOmwdP6yKIq6alxgbDGqiEfEEIJSKq4ioY6QGF34IlMlIsxCxCLee1+r0iYmz/PgmwLKqmEOHLjxHjj692jtfcOCVrf2z5EG94Ek8goRfpxzVVUhYoz2VZcVkpCIJmIWZg7CEECAOm/7qmy0wuiIb0zGYeYqKYtaa6NIEZLWNslyUoqZWQnGrAzAiCSrERuXgI1rENiB5q4FiYHeu8ed+LemWAoixMKdTMjiKQATRu5k5Qx4K2vwVIDoenD9d59aum26a8t1m3/x3ZWIQrAhtXc0uEMZ/X0iIquqZugWYHUr9k9i4kT3d+y6OrpfelzIgvxHoxUVEJFMZkPg+nI2fTI/fQDeWVDOJMfHhxdnZ2+dvvH89F0393NBIkMNi0YwKoGqnD953Mznw3yU3rvdKOvGdULpQI+aPAh5q26lyjjnJ2enWZ4P9o9EYxAQNFk2MBq0Sr1vvHhuPAVhCTcOD2dlobU+PjkxOpnOZ1Fhj8GLq8kgAqc2s9YAMKIyOiEqJXDwjbAnIlIGACIXLFEJGc9ESQAgyxIXfNN4Dhwt1QmDDz4Bca5s6sn56cOzs7PLop5ULpAd3Xj3nSQbZEN3HjyVJdVNaC6nEzogMWp/fz9Pc8qCeIeGG1HWpkSaSOvUKpsIUBBEZVBZaaOFLBc6eD++eFh7yFUSLutJUxzmcJwM5kFlg/xm7m8cZ8KF+JJD470f5plzq97qS/Z5ySZGcY9UgtqCTlHlSAmTIQBGWJwLxZkRFu4T4K0bp0+1rqO8WWyNBfUSWAInLtUw19vvfVMsBUALLIbdo6jJiPG3+1hsrUHV+0UouIrytgoAv5Ky2domD7FZtmGGtbAkMbpXd5PXIOHqgezCDGrNc2nxDKU1uBUhAGYRZgFhFBoNhkD4+uuvv/ng0fn5uSAQkVAWIGEvs6opGlYmFaXLsp42VeN8CAGQoolGpMEQeZ0QRIQUKaUYQGtdNXNEYVYd3xzVG+Px+MbJ8Wg41ArVRAnPvXcQGEDFTEFIQBSTLTgIzMxK6WiryMwx471nFhGtNRHGFCkdYfaVA2mNlhCRsRUrXRPdhZUA1FUVfDvbWtvhYG8mM+8CBRBB7zl4sdYqBTGahDBzYKXBGOodwV9BpDaPfjYXMi56273l3hfp+EpkERRkRuptFnai4tkLiQT9DpjKp5atA+vDJV4p1F7Rpc1HMYBnj1nGdRQQSfK1rbe2Prq6Sys/43+bZ8OwNDEjAWFmCCKCrqzBaiTVFM3jz5+98svj11+xpEZZisSZzR41zfnZeDwd3zkEVJQkWa1QbCoifjorxhcmSYY3b4XRUZg1WAINdHLjBPbzZn6pnPNlMS8nk7PxMMsHg4Ej09RMgM4w+8Zay+yL8URE8iyZFy7J9HhSJ/mAmWfFFEBsokEch4aArbGaKE/T1FqNFMkrEXGoufbAwSSpMYYRgTQQMUSFg8SgZihc1S1FF4kew4LCyIHnp9PzJ5fnj5+cn82qes5qUkEjyh+UNw/2BreOD565PZpPwuVlPeVQu8CsDOXDASAm+WAAMjwc2oxGxg6HQ2MMM3jA/z9zf9YsSZKliWFn0cXM3e8SW2Zl7V1V0z3T3QBlRjhYhDuEFOELhIJFSCF/AB/xY/gHKHjkGwkBQAjJIUgCMoOZnmF3z3RX155ZlRkZkbHezd3NVPWcwwc1Mzdf7s3I6nmgPUT4dbdF1fTo2c93YmxijCqkbQQiHeoQhiNLsiDmADArSGC4vDy7fPSMMJi8+5Mf/tE//KNnT86pgAFo0zQ5y0zTspkPqgKNTiTHRgzsKDRIS3ARXARmGFsGIaCKUk2vRAJAZgbnwPuU5qS+o6tJEuzr3V9zPChlD8j+Pg8WzAXt+O8U4hlA0KqGoFqIwiSQpg9Y46MAtZBjksQ7+2M2zYNhHxijH6J8HJ/wtxfte8KbbEqLBVQAm6qEp4d+iAutMoRxsni8WOP9h/vUhjz1wqYJn3766YuvXv3uiy+zKLlAjjUJeCvId9suZ0HyBLTedn3fZzVgIsDqOqaKIWm1x8DYGIPBE0u26vadRj7121BVMK1Zck1oYWVEzrltKbrNWVFNjEwJDK1oEVAy9OyACRBJjVkV2GUVRTazlHIppZrIIrnv+0VsRXIpSTQDGDB5F5hZU8o5911mh/V8AEq55L5r2xhjFGcg0Pe9AazaJbJXzIP3fPD91xg6TlR3sL/Gj3PpO1vorzmmCuOp97wCIpnSwP7nZypAIXCI5B4mlFF4zM75htL6eKoHjzvpELvvVidPG7+cm+AERzMaBfFpT/vxneeGzvybun7HWYtwxCD2lOi5PxHEQE3UTAJL3t7ebTq4+WL7xV/ePv9FVPrB93741dUGO5+z5A5ue3l/d+UQ2XvfNOZ8u1ip5G59ZTnFp8/o8okVOm/POLYSQ/KGG9WrIm9uNtJJt2Fz7fLCtcssSFqCkSFsN9lM1QoBLs/PYnvm3t1cr78qpYu4SGkLgDFGB3D7/q30G4TShJUj8EwEaKoILIYhRumK9FsEYKj055gZkA1RDZEUAEDFUEGlWkmEZqCa+m5z021uu3dvr67e323WKnq2urhcXDwSFvRFJL1/+7vUX23fJU7AqaESHCwvF08uz4OnrttqX5j58vz84vHqMrTOOVFVVSan6AyYvSfnEBHEFfS7BTVamy7OIITo1+AaCk28yustpKVsPn70/bYJ7MDF2AuqAM8Z73GYY496CMmxa9B55FBL0ivXA0Cr1Y2mc1fNAQUee2U/5JiLvV0MePqnUt/s5PnzDu6zf2MCw13Xgbm+P9bcs0Mth7kXI7sbWbnBBPiMNiBF70957/OxeH5YJz62ce/znz0svw+eMtO6pgtlzmQMhqXEe8qmj+d4wADvE9O7oRohjg15wP7qp3/1s5/9vM+SjRRwc7cxpLZZ3ty8ExERC7Ft2uVms7m6vao3YXaAhkZmVoPphsDomdmhQ8QQPAAok3PkzTMzkRuQFICqqeopbLdrAG2iX63OQ9N6t950Wy9eTDddAssqPYJi7UQvhoaShIgqShS7gIJZwcxqPmONvAAAMxdVseoPUgBDs6JJiTxzRfYAHdSFqrPknImAGWOMXZf6bVku6OOPPw4RzdAwGyqSZ+es5JSyC36+yvtksC96hwU4TSe207YHlb6mdFVnxXxxzYRmUtwgAxiZMyM02EPCelhZu+/XA0L/2yibNlYcfaOrZtvjoMPUcM+JbeKcLc02+Xwljmf6e8/IZiB21egDAFRTq+AQQ+4Dp1t4/zy/+ay/eSWq6BcxLDzehUXz7qtrMJ8Avnr7puTeN01/Y72WJRiUDKkPISwfP+3PHof1bV8yAjugdHX7/ovfdl+9jpoU1TcxtE/byycltCkVF9AZAjsjwiK2jKtlZOe6BDnnfr2OjkklMoXQdJu7XmV7c2Um3ruzZYugjoBAa3J8NohNA7nrcnbEoCZF0SNizTamUe8RAzG1wAtDEBE1ZSiIZqXk7QZjXFw+Wj5+Bi6EuHShLYKE7rHE99v+1d2aQnP+ybP00aOb9c16c6dls8Cyfv+asvV3nXPOdN2tzx//8T/IIoYY2jawk6ypQAwOshKzAfGsKN4EvnX5vb/vLntg7EBM/SLcXF1TukXbMCiAFWDvgpRiJS/atpN8mrMbzQsMKvwksUPniRmZKqAAIg7eeSI0GNsf24TbfJ+KWWv5PpwUccwEOb7V/MNJUp9tqJkEHTnOYKxh9aHZvpk706dxeEo9cArf4C6rBUHh/hLhk4ryB07/5KwPZN4DDz1pPY8erJ3tO/m2ZnL69FB3Ev3UwGAUwBMjmt2t9sKqa0I4QrU8/+r5tvS+WdzcrK/v+j4boON1WSwbE6paf5RVBgABAABJREFUzt12c3t3nVIfYyBiE0UbwrGqaqiISOgInQ/ITDXRmjyZSY3UVTPDzHLOZqJa2Llt34kI06pt28hUlsKeUu7MjKAmaguhMROZZUAyyyUZESAPUjMlNUJE7z3RINqdo6Zp1ustAAATsycwM5MsWRLE4JwjxFIKGomImrkYhm5RYMgOQGu5VN/3ObPzyMyDe3RU9WqEezSf5qt8j757334cqnugVi9VgjezOXCNWW3YZwC7MiRVqZwCEQHcYVLJwXGfqviwMH74GEn860/7WrN4EKi4Ox4YyVyrRcSqRh2XIcKRon3IWU5PZ8ewHmBtBzo+Gbx+f9Ws3/LNi3T7OqV0W/jq/TW8uAsLX9pFzuI4KsC7d1fb7TaeL7xrN9KbmSMgtKylM7sruPICCy8qN89/m7966zabBlQXvKDoEZmRl2c9O4zsEX0uWYpzLvWppAQAItL3CRFJZRFCn/qwuljG8O75jXewYL7LpQlhtVhK7mtaIwKx9zddF10ws1ISh8CAAOCQZPQQ1PeHdburaQb2nn3E3EsRRndxdnbe+A5Dzpl9S+ycC2zQbbagtlm1Z3rm3refJF2v14Xg9frtl69evruRQLq5fnW2vAwBHl9eONLLRXN9exeaxjlX1JgxNC0U3Ww6Fo2xIUSd1fZIVx7B4x8G17cYzl13vb7ebrvU/fDJo9X5x1AyAPjQbHth52Ns+80aw+nSeTwuFiA2YtqnTBtKAxGGKqFBnNXCDnQujULrAeo9oNWT46lMZzjBYOI1B1L5AcV6etxsHRmBANnGOvjKo6v2MMBxINvoLT+2aG2sg0IV4IdACP42evz8mG/Gr53s147nSDoecrNjO+TwwwfF3Y+ngAcPdd5v+i4ikwvIul0nZHt8cX5999a7GGNriH23BYAYAzEQcCkZDaL3ALDte1Ehoqxihp4DDMDmGUxEhF2YSopHbqmIiI5NpZTS59SlnpljjIvF4t3br4i4jy5lQTQ1rYi1nrAGjwHRTIsYpL7rtrnU6K845ypul4iKSNM0IlkKmgkjoIGQllJyLqpqqojYNI2CdCWXUlSEmcyglETONWHRbe9+/ZtffZs/rog+ZpZLVrToOMbY5wS7dPodbewvxE4YH++vYxoYv69SdsjRqzEZAzDDefWfagFABEVUgOJsTGE/6VMd1qDCydqOeuzQyj6RmTI9by4dq0kOAJMbC/chhAZVAoZnSS2KRkSdNOjaJW34l8EXSYj1tsQUi3RACpYRGwBXy7qIQNTMGGZ8YRqVqk41YVONL+xSyXcvZF4IcXI3GiHoLk6GQzGksToM1suWkby2phmhvL971a613Hxetr+6WdtPf1N++dW/evotwv5y1fxdhMCmd+vrW4HPr6++ev/2RxeX/UKeXIfb0i+pb9O6iOUX7xx/RcugXb+5vrp9/bINXl1k/zg057p+LQTiGH0MJTsrgFyCp5uu6zrvAxHf3d0SQdPQOtyW0knWs8tvffuTH/zqVz8HV1x0OaXVavn42eM+bcnUOQohZIEs5fHqsrt779kFF29urskvLs4fCVMNhJCpSS5JKjoHEUFEg2IGxAAYTJxgo6QxLhpEMyiliKqg8dIBgO8zoy0WUbjzMeacoTh3vvrBo0d3dzeOwEwthhigiedN+8SnO02b7CO3S/aRkdCRiZiW1G/ISNMuCxq950WC9RpyT2fLsMIfPn76vccXq0UjmgLAcrlUVVJ0CEBF/WA+j3RuIw0AigNgQ0GqGb8GauyC+QY5IjhD1mozIWK1PwhIa18/qh1ytRgzW21HWP2OCGhQnY/VcgYAMZsqUhztKXb7tE02QhlYBduC4QMA1F8BrZbRY0VVGLbkbHcYmwFarW80AQUABbTNZuHj1daC89FtSi5ZkjCz1R7AAKC2c9+iISkAMxF7IBYkAiPkqgHTTH1BRKChmdzhQbu62/nxAP85Zq8n9ePpmKTO8VU49c7Yi/jWmMtoUY32vcJYaWaEiAQIRgSYLc/vPOV+7tvc9XN11KMCZC0ExiC57xDd4uzcKS2bxeubDbgmhPbxeZOLbm6uycw584RJtE/FyIXYmplu17Xap0DthMKoaIbsjVnVtlqUmb1v0Khkg5BSSmrCxAhkhMEvFotFd2dNs2Qr11e36/XtxfkqxLgtxXkGw8vlshTNORM5M+u7zI4DolrZbHp0HsmXJK1btA3nnFPpBUxAVFRUQMGsABggq6mpVoBXx0Toaoqi817NRIyB0VCLKaBoESztApJZAXh7I3/9xeu/4z9Kuj2PtvCtY3+7Tu3i3Ds0UVBlNPRkJkWLmEWKMwm1c15WhXKuTSISIiJxLVe30bWD4ADI1YzyAaCOEAiQ5gIYRcEEgAmNaHRBP6Bx///5cXrk9w8eTxnWiAgjth/MmBQAzL0HR5ec+DygiACMDslxrzopJaFpbNrcpbvNe2/bxhLgpy9/+z7k1W8//+e/+/J5XML6vfvOoz89e7S8W6+7ogmJDLZd+d3rl9//3veoaeSmhKu+PDvrL5/0mw7WV3z9Re7P+r5nxPO2KarL83N39vguAYePyvUbyttAmPxZt+0g9Yuy7TZbNEipR0RXE5YdbjZ3iPzRs484LK6u3krpFk0sqS99+fjjZ8vYEqojCmFRQfSD8zfdxnsf2MfUGeJisXLkTdBIEWrGhtYWXUPgD3eionozh5Z2o0XFSMw1xFxUdRGDqSKhuSb3BCqX5xeXl+d9L3dto1pS7nMRA1TVkvroW3Leee9cqGutolqS9tlxRaieLxy33q2atmy3IMVRYEaOjplCbBGLiATPPDYzmNuysG/MjN9jjQ4ebNqHD0ScNO4h22Wg4V1B4TFJj7R6AOA8rzI64UeFUVzt+2zuH9uQwYKIQEQwutGBIeeEiKUUAKhwvlLKOGmbfKoIdPj0/QFP0u7kG9v7RgfTZC5u4V83s7rnbodO5mGeIHOCGn8Zkn3276Z6/1CPLLDhEFMAijGaprztAaDv+1dvfpeEBIJar4KOOUaPJJr6bbcl9rrZrLs+F42LFkxS3w/osCKllIrLhIiOoBQrfVcctG0EgG6zBaAQGs3BgXfe1R5HpSioy1sizio9gDABmJQ+OSRichzIgIiEpTCZQM65aG5Cc3HRnFu4vrkrikC83ub15g4pANdcKqug0EQUG59Sqsph7ZwgRaCUUop3AwBOrV+KMRJhrZWqC6EKqS/OU3TeCN9f5y+/2tLHTb/Zfuvxar1dE/s+3RBiG7yoJimOvSoUwxgbKIf76HiB5mru/Pdp7yNSRXAflbyBvOdmm6oiKEFWRCjgxtvhBxIxnohSHB4f6OqZxr2v/f0+pX471xYO7OKb3eKUZ+/gmwf+nH+eQ9khwKgRm6ASASmllLZ5Ay5Tv85vnj//9T9/3H7y6Ze/fn/z+vLReULXdxYbMhNZ913SayHNCAafvXn5b0viuEjtXXPb45Mn6ZPvuk2/ff0lvfhN+/h7KuK9Z8ebLhXuY+x9aNk/6a/flPVtWm/48qJpl2rv8s1XOW1ibEsuxBzYAaqIpm1Hrrk4f1TU3l+/iwHOV2fbW75cXKzikgFBwDmPRikJGDnHoSGHWlKfiiB776JZRfUvw5qYgSoCExIZ6U6jhJGtI8Cuz+sI8mkCqFpMTEVM1ErOKUnuCdGRy2XrzdQAkJGBOPg2LhcNuehCDLGNMTJ7k6KlQBHUYqYpE87a2sTQYtHLi7Mu36iV4IJjcN47Bu+DaCqlRHSOXckC1e86hUIPY34GCHNpeGxFDd8ftPCe5SvBKf/zXJQeuFsA9i3C2UYeclh2+/obwLieOmrmnI6hfSDnSlJi1rEoJ/omp/UUO653nb+QaWpzGTzaGYfJaIYn0l9Ih6TS6dqTkzqwcY937ofoRiffyXiVzJoj7cUOxxMQgeurUAQCUJBxmfdi3vexyulL7/02l+r+DSE04ezq+u7t2y+v1/2m115AcgqOHWFK+e7ubrGI6DgVNbMm+uBZRchMSqmlYiICogBEzAYQXXRtS1Q1WHHOIbJqcRDNxESzJlUQBURTVefK5m5Tct8Ef7ZsiUhVCMwzs+PGB8+OEIkA1bquKyiGCQCWzy66nN+8u0FNl2eNQSgqYloU0BEqi0gv/a67FAMjG4IoGkIpRUSIOcYIACICAgQoTKZWq8YrwqWLEQHf3qXb37xDfPqHP/zOu/XWM7cet+l24ZfgmRUElJkRueQKf33K4zKjpVPql+0WynAq8JtWENGQDGDXYBSqS9gqjyzM+92QPkw7+31O+KaXVJvgQFX/2luNu3ivo+o8hXvidAci//hL+DC95JSixBV3E2csFRESlJaCN1z3XcqbljL1N9s3L895+ed/+f+4vnnzre/9/Zfvzq6uPw+Lu9++/uu2/8Ru0nXKX92u050tVu63b1//7uWXf+97f297LvDVLV6/X118gp/84NqzdddFkYg2m7t2sWpjXHfb25vfPHr0BPzSuq7f9F/+9rN4vb54+lHbhnXXUtqAFkZDE0MlsD73hPj0ycc+hrLdouXgmABM4dGTZ94RogFzrX+vEWyCskTMqb+7er++vVsul8CWJamxSaq+miEPC2qdH+/eycyCYcAama3I51gR3kQgi/Q9EYmk3Cczi96XUta3t4EYvC/FCMgRU2gWi+WyadU1zscYovMR1EwNTEDFA5qYmMoeGC8TaOsdg0nXG3EG5KZJAkROSafcqIlIDrr0TAQwcvQd4RE5ItJRC54LGDS8r7phaD6hY8QFd1fBrmRlRrT7l3+g8jpX4XGwv/fE1UT5ww1xvPlgiyuO0W3nXNcrITMIGsFsy9Qxz6XdXFc+eIEHB+KQjDnHvj2Y7cOTPRDDBze/79oH5O7eTzg0ZoehGm1apzEPfAfQMXgvbHQJHNz2YEGHq8ejOhgQ0TmvZjc3N59++vnf/PyXW8TbbdfXkoK0yUZ9Ljlbs1yJCEBqmibGmHPuuy0R3N1lROQZ0lOtyQFumDxg6VMHKiEEIlM1o42gqWqpKcrsvPfADOgErAZEanvByhACO2Z0jExKKgGZHYWWxSyEUAxubtfQpfPGNT4UsaQCuUgRh+y98+yqiK0eXQVgcMCmOuQeVpwfHJsb1ryt2mdJybz3ZDWGjSWbSFk9epK7u7/82Zt3V5tPnl5859nFNm9iEzddbwiBgdEkF2Zuvau0cJ8yN1+a2TkjG5lnOJsg0tyBWilEdYe+p5IBlYAYweZIWL+HEP3XdUz6xVzdmP8KFTvz9FUw7oF66MEO/6bD2H/u1xwnN/nEO+opDGAGbKQqAD4iiZayfnP34ne3r1/+9d/8v9Z34T/+3/0nb27yv/wv/9Gb6+f5Kj17/KO86awr2yS9qPfsQvPq9ubPf/WLv/f4D923lvn2vb7+rI2wWj6mP/g7bLbuO+s28v61XzTLuAjr7u71yy+ff9r6BuPCLZaS8vrlb7xctd//ia7Ow/a667bex5yziQJjba8b28V225eiMYQKNtI0Tdsu1bbI1TjVUhIRqeg6d67PUlJJ29a75bJFhzn35AIUQ6xdOLHKXTRCg5r6WmshqpIFBgqAZESEgGqqpagWkGyq0ndGpGAVQZiZTYTUDApTrYDxgEQhNm3LzI6DIyZEUDMtJopFzURUiZh9cDMgDjVk8jG0y6bVLrOpSSEDRUspuWZAEh5UMSI76mQwI5g9RXZAbEae0wbiIRlXUsEHncCza098s3d/2FPA50mde2Jw/ObBe86lwp6RV4+a21FKYcYanMs5V1il3Us4msWBAJ4G9cBeO2khzKfygXv2ax80nXbEausPZAaw1/13cj4fSt+D1O6aR3OMon9gMN03HsKapAJ9v33+5YvPvni+7nPvIFtGp4wOspipD3ARiafkbDORnFKXUq5rYmNoEmsnTSQi6rrNZlsAlAkBLKUSgmtD3ORtzQ1iZh3cVKpqLjaPHj1ySAzGgAQcnI8xgnQM7EBIwSSLAnl2CM5gFQI5ZjE2SALbrLdd5xnJgUcqgKWi4DlCz2IqIrm2VTKrbidyDtk551S167pKZhVskqeUZkISAsNSSt8nt/QCtrxsf/fl5vPPN4/OX/zR3/n2auEerRiSxbPGMZR+g6bBx5J748OOQdPqHLid7lPdRgI7cFYLUgVRmZ9mpkXJQOHrgThO7tLjkZ0czd/yuG9s93x/6EM4zV9mLkTY29JydO3pRx9/OR8MAZmRDZFjI6tVv+aNTK2TjWzfx/K+3L1+/sUvf/ebX7y+2v5v/6P/pO/5X/3iv8DwIpf08Xf/kPgy9Zvr/u5227cuLB5F9ny9vvvrL55/+aOXH3/3R/bk0e3nz7vnv5XzDXzr22Vx3lw0PdoFPfXOKfhHi3PW9PxXd7q52qbkkBwm3b65ltvm8eO0+KhxJCK125JVKw348ePH266AUQy+jQ1g8UR47kLb5NzTECu2VHoCVJGUUpsEmdrYcPShaUVBzJxjGCFha2WkARlCxa+e3jzOQpsESICAhCpgBlJMlFWLSi7ZECqSTkpJi4QQNps75xyxj7FhF8D52CyJGEFQwLJJEQBALTXJA9ijD8QeZuj8MTYKZllXq/MkyYxqxXLNHmPmWiYhaoSEiCLK5GGSZ6P8MDPnyBCmRMbdDhx7DGCFUKq6ZL1wZsVOdDWADBCZ1jyeIZZh99HzvkzaI+yx4vYkW5lT7zFRTxYwYq3/xUFDYgBEU4CxlrSeSURFAYhV8wjLV3+uiKM7tOGDoyZh2WgsnzhhPjY6CF0feuaPpezxZI8fcXDMb7I7f/BH0LyMarpiFL17tUPzGyIOEzkoE8aj5TsYTHA+lZwlee+990Bo7FYXl9LfOXEqxUxMDcFCCBQiGrbBO4Su63LWMcFYFiGoau2QTWaIwJ6dc2K9B4cEZkIE0fkQHTO3/hNEJOS6OkNuGkF02MQYyYGJAwvBx+CYkdh75jYGxwjqGaEJntA8xVJKTjmqRCmmGBt/3l6sc9+nss2WFdWo1CJFsywKBGZQwEQN6o4gV7G6zMw5hyN1InNVcmcJ2wBqhLBZ3zWNv77bAsGj84ub25s/+4svv/3J8tljf7YM4OKT8wa4KIia2Awq8mBd7iWSIbYAExYpQHXajtYg1iYbe027AaB22jRDEzOCrylDOj4+RPr+3sdp3fP4nLnaeHTy7zcqg13ZzPDF8MM38xDsMTs1Balf+tQXoi5dd1fPl/3r/tWnX/3u5y/efPHk6dm/+tm/LJTevvtM+7z0T67fd/Fs/e7t+t1mI30OAtiSiASOv72+/mfPf/rvf/db4eIZf2T67vX6zXOf+s2jy6ZpoLtrPBQhaFtenX/r4uzi0fnVqy+ev3rXp3UvvRXBAlbMlaxIHLxUGDxmIIpt4733IXvXioCZIolIJqJkuVme2QTDJEqIhoWM2Bk6H5qoQAXIFMnYGRlNeBdTASshjpmhAzub+/QYAEHUVEGNDMxAVD07IVUwBBJQMCRiIlo9uvAuWtEQGnJBAdm5XDSaCogKIjlmxhF/3YWWvAfn5+vofExF8tac86iYJaPD3BdyzMz7TtpDGhgdM6dp4+DMgxPoWFs8dSHMTGTY/34nh+ZPuadV3+wEmPuxJ9F7UgbvDWbAqdcpVxENGJEJehHHfgupQiFKSWCEyESgtS2SFkRkxp0/+kgoTl9NXKVqJQdnFrADWXuSVzwshh/eyAd6zO6baXhAgDoTzIcxXQBAmjtGeDrtWO+fhjSfzvxHKQXUGh8c0+3N5vru9m69efn+drVaMQuqac6g4EPwrhGAwESOHTMAJCne+9g2fd/3BQHRAdQtjMxGCKgx8GKxIKKce2Y+WyyJoe97T6SqhOArbDkUIgjONwv0xJ644bBoQgzMBKqpcQsy8J6ZwMQRqCM2kOub95fnF08uL7ttOltEQbzr+hev37RtRDEwCMBK3oCKiqqutx1BbfZEiFIMCInZ9VJyzmhQY8Cp71XVOVdEyA0OaofV8yXOIYNP62QGT588Xd9tCrH05XZjn7+6ujiDV+9vf/jty+8+O194Sio+eh3k+71uoROLNcrggRWgARy6ssxswmwZvqmVPSZqamIOvk7gnRzKwSUfIji/6XGsqh94bCaSHV7ckCRSof0OAeVPerAPvrF73f2nh3f6h6EJ3Di2aYCpT6gFeodd/+7Lz3/+F1+9+DwueZNv/+pn/x/nlo+fffKrF7/64s3bpz/su2u7ue2Tx7aJ3KeEigDnq4tX12/+5etf/M+/+PvcfqRPPvFQ6MXnZ9ubskAC49KXLBrp7NnFrdFd7pePn0ZHz5q4cuzANkl6pRiW67vrSr45iRkyoIiE0NQX6JzLqSCyd0FVyXlEVLOcCw49ZQnNPAXnOHkkIouNFgMgT4wmmoA8j3zVJulLRLX6Rff7tw8CRsYkkYo7oGZmORdybGq9JERsYjTVlBJFRiaRAV0WALG2AjQBUzUkB8CIhAxYAAqAZxdCQ25nhGxTv2zPNtvr0Cy89wLIHJiZmBGx5qwMhX1jZcIBK5/vCJtJMqwQB8T6ILuf7jPdVcfDVMcU5Pr8D91l9bQJonVfQgPsUiuGYX+tQJrTM0yWqmjtltj3PTPXUKUBDE3cao9BsArpgPT1L2Ga2oGIms9XTPFUNtnJWZwU1XiUTfPASO7/yWZ/TTRQbaBq68N8CohoCDV/DU3giNWcfPpwghoTeXbv3r/96U9/+rvnrzpBH6KqkTkGUVQfeLU6I9ds+s5MUpfIcQhBM4gpKhty121qgr2PAQeuJKkAalqvJYQQY4zOG4gIMHPgDoDaGM4WTXBerTBCCEFL8uwWIS5jDI4dKTtgitZjKYUBnCGQc4xMYMarb39kRQJBc9YQlNttt4j07Y8fX63Xbhmj+r7A7SZ1KRsAMy9ik6Q4dV3JZlZAQQ3QiKhpGsml73sz885VBA8DIGJDhQHsSAyUGK1A5GjO3rx/t1ysGmbx+e3Vhi/OOyifvtyUklZnLZG3klfe0SzPcZ60fHKBEFFtjnOAdccDgMHoysbJ24xzfXs0Y2panu7aEe4TFgAMqPHDI0dlfCKO6fHHisM+3e8Mhfk4ZKYj0v74xtsOTUwBwIzQtKrYalIzzgiwIg4CVdBuBxQASMWIFEkRDdDGHTv8g6ccy8NsAaq3bcL6rS9r/0UPI6RZLuX0vZk5MjASIFEVMK9q0lvuC1oXri/1W+v3//jVp1+8+uJzVMhhoa824fK7P/zJj57/6p/Ftvzkv/fD5FdfvfilC61b9+uCPiyiRnKw2d5eqr54lf7pF7/8X3z/k4vg19TCd/7wvUgDEPvtOid3tgpNLO9fLBYLcD4Zxctn/vKjmgrUdB2tb1K3jpYFLJccHImoiCH7ooDoyWGXO/RARAUyB0Y0Iky5MIEDM+lBTQGKDxx825zVhClERQQjYyIzE8jVqQwABoioiKwANS+WoS4hEZEoqCrVLEcBAmdWTNQBO44YSayg5cBkZIqEjqMPyaioOs9EBLUkP/UxBFIUQ6i9EHxjRBaBzGJwgKQwwd4BALjV0uXiXMjJc7sgvPHByCBA09sdc2jalSGIFKLqSWUbu2kBwNyhqNYTBCJPpgAFrKh1WROIIhlqLUGvNioBEiOhkpmpFeQMNUmenKOKXGcV3RCgFsDbGFRGG8p5B5KjgfZkt30GTGqbaas27cG5CjvsbBsXZLapYZS4RASggBXJi2FIsyLX+n7dITnn43p9S0S5bFOfvW/NxKqmD0qERMzEWXtmD+QrxxCxGh5jdlVlpp2dCUOjisnvO71u5Gpwmg3lbDRUYZ6uephY01xVqp8np+W0i+uftLe+uwP33ueOIchRmeKgAEHN8q84B4i1PTuyTuebzRswMMVSEjE4RyI1iZ0AoEAA7Vqnn37285/9+pfXW8vsuG3vNmvP4axdakDv41Cok6gvN84FVcuS0Mj7UErSkrAUETMiDN55D44AvAE4dCEEQkMTBHToQdRMuV227ANiQ66NzjvfRkaVVTirYQGi3rMLroYbLLRMFCZ4ltl7loJQSgkhnJ+tYvClFES8PlteXd3crbeF+NF5TNZe3W3eX99kWphnJVgszxi3rdPNpjNVp7rdbpMU58g5J1YQMTS+pHx3s724WIpCKSXERbFOVb0kAO6zuOg32/UiNqUUQvQ5b9fbszP46kr+27/87f/43/mTT1YB1m8LLwEAwY3Er9UMtxE470D9xbG4SKXsFl2BaFpfHBpn4R5AKZnS0N4ezcwd6JtzMqrxJ9vpzofE/bAieaBsVjXhA63kudL68CVEtdJ5t83qqzldvfvgaI+fdQCSNd+rcGruiChVIzZDqEh7YEBKTtLVWfrk6t063/xGX//Z+5JuFu35ze1Nho8/Msb+YvHjH33n2+9d/he//KvATop2qdRemVnS9m6dU48InZZ/9uLXP/7Vt//kB3+Q2mZLJW4Ac+6lCKIzElE0caJI5gbkAKzqAhIBu0IOVESSVEdzGdZ5CATDAK9PVF1WAKhEZCVTbaLHCABEjskhV3BfNVBApcFpuCNZRBwkx9Qpcv/l2YBvgGCAwNWAQCIzQnQIgMhiRYRVVbVUOFkEbtlKEShqZqKqashihBSDNyRkJHLsXQzkmIik9IOkn6G/uRC2mw2x9y4SsBZTBvQoo59WRNjtqcO675mcEw/ioQOKbKiHxcklozuMRjCZ36R+1vmbOaawDz4OjD8cBQjeWwf/DdxXcwk07ThmZlYbJzXXSqsgJyLc7R6sEeV61sGAEU8L1Okg2EW4cfQ5PDDak7t7pm3scbPpw8nzp+MBzgkAZMMQD/wQ991tRBOznMVG0BUpZiYq6f3729Xy/Ic/+PFnz998+e5qe3MbPcSzxjnHrsIogeSEaDG2pahVwEWB7XYtIoYQYxSRIlKTjdFxDSovgg/RkQGoOUZP3LRt0zTOuYjoFRbRR++ch2VwbLxcNACAaAyIZARopgTg2c83uO22iVbgvCquag6zmbXR22rpOBSBpBiQiFZN4Pd33bp0nZTN+oaB0Mg5yioM3DQNliwipWjtOKSqwXuitF5vfQiIWEqJ3gNhymtV0QJKxczUKzMDc9r2nrGJS6O03qS//ptf8g8++uRsYbKTIGYKg1/tb+vTHbbeHhSlApQJgGXo13j/tjxBN5NeOffq3DeCg5sckPvJC3dc4wMcbmZmu3/22Nmc7nHcbXDPpprmNVffvnaQB7eyQfwYmaEpiKiZARV0S/w+xPfN+mdf/M0/utnCo48WrSV8/2O4+N3SLfrbqybevXr78qsbW/L5pls7v2AuYlospSxdTuzcKq7e9eufvv7in3/xqx88ebZsLozARULirlNmdM4bsAqICKPUulVmQsNihoDMHjikks3QBMSkRuoQmMEBIJAzk4FdDiurCIMTFABqV3kiJnKGCKZUBfCQzkxoAkBVD8Gxy9gsVDYQeeU4CIxc8cUQVXSAPOZBpxpy2gMRieRSAM1qRpQDBTVTBRWyirRkVnJnHbrIMbjQuNhwiIZYKkQiipjBrAxJFdQ5DxEse3DOmImcc4BQWxeVlDnGUUjsQrcHqz9n3za4mGSkJcUx/xVrVWwFz4HBHJ4Lvyoi68NGyMr5Fhs8m9Np07UP7d9vGBg6tWGP+cC8lGuSvuzcDsAKERFdLckDAEfDV9MdEB0j2UxA7j+9zuvguWOnewQzq5rd7uzT09nJ+Mmsn/GDnZFwII8PXsVJ6XvSCDm+atAvB+Z+z0BBiaiSilX3ppFZWS5Cu1j8xZ//2fPnLxbN5aNze/12g8HU8iJER+ydk6KMlqUnBECuDsEKMC4iagUAzaiIiIw+CQAQEbO7zTbGGJyPngkdgkDJUHgVQ+s4AK2aEAIFT6vWO7A89PclT4wENAb+7CgWPileFYGrCuApKQxKwRga51PRTSpJNDItY5vTerFwT8Lq6nZdMtzddUyumKWcAYiBi6mqkiGiqamgW61WOWcpRax479um7brOLRooopqxmClkSshE3snGmDFtM3gEps+fb799tn6yfGbSMflqqc6Wac/8hdlGu2/HVWAcRDzoIbZ7MyBqCiME8l4SluqeK9j2Hwz7G/Gkzng8oP3BzT/P4hwzy/hhWb67at8dZGYPMJo9PqUnhn289/bew1HYbz6AgwepEVYPhhTTYkAChsh8ub7+9Ze/+xf/hwU/uvg3/vj29vq7q//hP/30/xKvY0S+7W5fvfzFn/7Jv/mD8uy/+1efvuV416Fz3qxkzWLG3iHwthcndHtT/vGLX19+/Ox/Aj++OD+7a1DNMEZWY/AIXBhAQDX7GEWggneiqBoSkTmHORBlAFIRAqWhVNeIag3DZPfX9zZUtvHE9JkNuCiYqaMqd8FMawoEHLMqo5EDjsKmwsErVsc1IjKRMRIoqhmUIYsUWW0EocVacQAOkYg0FzNAIHaMSGoGQIaMIfpFG9ozt1hyWID3oiAlw3aDNRVolu6OTNxG7dA65zl69gSMaIIagM00pRQhThJCke4jMwSuIMk2+psIAExgbLIwFaTj6DY9OA4orZ6rUJOZ6tVzUfH15vGkg87EwAnecZ+ePf9cURhx8IdVUNpDVXV0nAwibbwDIQ5BNYYa0DGsOeW1oyoZoCLRwQD4qMEfAHD16U6aymzg9zUhQpzfZyeuB7N5JpknBer0jQ4i09P9T52JY7Kh4uGa3ssqyUyVaKxbMwIEIiql+9nPvnj1+q0U+M1nz3uhNrQvX19/9Mly0bS1R4KBEKqWhMy5tyrkcupFiw9sRinnEAI7V7VeESmSSJCZP7p8FJwLjs+Wi9ViyQRk6p1zZIvgFs6dL2KIzKStJ1KJHIemXmqqqpbNjAxcaCahW9e+6pk4U+Vx7L6Qc3aMMTgEFrNtl7a5JCkpCzxabkpZS1ZPEOLSt7fbvr/pHaOKGVhgZ2SKQ9gl59y2bdu22+1aM4Ba7pOJ+mWrffaiKApmmkXRvDGyzznd5N41FJaeoH95tf34qV36oUcFMdRw08jW7iGsr1nQE6l546GqhsgGhkj34qHvCOdBP/MDw7J9GQlHO/9rL/yQg4jUdixgMt1O3vlgMAcfYF8Zh2/ig9pXKWa8CQzNFPX1zRv/4r9+stDw+D/c5nT56Mu+obx9U8Qxve9u3//JH/57/9a/9T/6x//iv1nEu5vsPz579vb9m7d3V12fjdBxJHKagBUaTJ++ePtfxb9YAP/33Y88xkIGSCZqWZjZcxj0RIWCioJqVvcLIhs7Co0rGXFjQ5y7QmGPburZBKcp115giITkazjQho7Ge16HiSlWZGHUymeHSsgazR/PpkkrQqwRER08GUAjJsdgSAEocC3KsdqDti9WXdcVypKQqus7PL5wIWBolJ05ZOcRAR1ChziWw0wD9t4nTYbI3i1X57lstv0aXXaxNnyS1PdkS533f73nmItGq+LFtOKPgxrWBug41loBqg3pXTaCPtd29zM6HDCnhrZu9yh8B6bfdMOTpFtZ+wPjn32eiJnmlwyhWsTBgTE7KvNlwqoYTeosIRMOzoPqOSGicaJK4HBKFpgdNpXN2t7TRxD9fS0Z4SAb+WDANkvzHvfmLv0Fjnbx8ZuZjJM5GznJqeYnMFSQ7w9RmLSmJ9RuRWbFsfOOX7z44q9/+tO+5EV7cX3z+t3VuihEB6vF0jmXux6GVAqCwabl0fG356UQVWbm4EtJRRIBrtrmbLV6tGwBgMAIkE09UnCuiTE2tAqhZVq13jlUK0SKYN4N0BEKSqCqVLMHapXgJICr7auqNntXk5YGAKwgIghoiBy9d5gKbKA0Fxd3KX11fQOIfUqNXwTiVdNs03az7buuF6WimqWooTGows3NzWLReO+dc6WU9bo7O1vkUqqVCWrMoDagZdV0LQVIvWUsbUsvX6+/+1H/9OOoqgZiRpVtgZGaTM6S+cs8ue5mhkhzT8B4ph5vutFDNrOAT7pT5r8CVM3xhNw6aQ0fD/RDzNzpQhz9Nses5IDpnx7t/QT/wDSPpe8kkueDtzH5ZX7V8K8VrE5bYgIjUyjZJOPL34bw3Scf/a8+f/nf/uLFix/83f/o09/+X8/ct57+4Gnpb//eH/3xo2ff+md/9t+8+urLJiyfPL0sPZpK6QsQEjWAzpQQ9e3VtgkNXXWf/er5fxbDXe7/4UffPXt2ac4QjVRIARwWI+szDt0pFYHGTYngoiOX+x6QzbKCkda2WWLmcOdlxfmGMUNAQmRkN84U1GyqhsPq4cDKfGsgmYcLoRZvAOLUumpE0yICZBhiYGhWk4wUiepLHpEwjIxhQO8AMGLnUKmuiuEA8Q/Exgw+gPNGBITIIAaq6plLqbjrO4JJKakWcuwXyyZALne33TWbCwQEvoCklBBx53qG2o31pH453nZq5qFmMmsySIpDhj4O2Tmgo9gY8g2xxpiRqzKpVn0p9exRzt1DxnjklTkpS8wOP8x/PRLDg/kLMEQlJ2f68YXTUQlt8q5N3xMDoxFV1QxpQGkZzOLDoU42xOxBNJ14MHeA+/q24ujSn2ZUg1U4lB3u1V8hHor2SRcZp7xfr4UnXzIA1ET+EZ6wXl+1uPs5X43LICKAMtcGHPrbL593IF3Om3wHISRd5ww//OFj772qAiogEnlDAHJaxDkqJY26kaWcVQCZan2BkRHRYtE44kWInqkGTT07JjAtZC6wb2NctrxwLoAx174DQOwBylwRQfbO4dDjoZSJJOam8PErGrgKkJUiWvcXNo6ZgMBK0mV71sZmm8rr1+/73IHasm22IZD2li2DWs2ORkUCz67rcilJFWKMbYj9JmsuighqTFjAGLFyuaKZHJORZctmVIC4udtu3t5s6ZMlQKkbzmww2U3vNT9xZnHNfVdHwkWPv5z+VC33AnEg4s5PBIMeevCYgSN8QJj2+M8DqXYwsYN/H755baqKs2/ADHdNjXbf44kXdG8yxfHA5pfcN+taCgOAggymJFn7tfR3z1J5s+6+/PX/mRmlgU9/+48W5Z0/+3fiZfOdiz9+//bLv/r5P3n+1atHq+9/+6Mf/uXLt7/7zS83fQJwbXMB5FIut7c365v+roOkwAp4B7/61ad4fYs/3vyofOfs8UWLzgBKQmwce2+kpgo8TpyJDEWEiDlE3dwBO5PBSDGQ2jDMVIiqcbBnNCCxEQOwIRoQmqgWNDUjAayuWQIAIEAG5NqQYMeRd2+LzAbxXoV0DXZajbASEiAZ2QCIMeitoGagiAxgFcyZat8pm5bCExFyHVvN0DAH6ABRpeRsoiZ6IIBLysFX05DItX7ReM9M6qwAB1TLedc6aU4Gp8iSAEDHZLOxGk2QDHFIZgRTqxmDE7yG7d0ZB4sTjBAUx/T++a8THT6kRM5Zw32nPXD5A1/iKC0nq2uSrzUGjLsNZWBD7VmNGk7eKSICQmYmGly1xy8WT8k2otEVDACHsuweCxhtMn8nATFxrw+f+4SJdvA25mG7+fl1bLXLE0+4PPcn1tlY/aJaEAFJu357ff3+q7dv3rx7Z+iZed136OCTj5eAmWipWsg5NUPVnIQpFEx10YtkBdMB9IbBXIxcJIkBO/TOewQtucvJLxcUgw/cMC9iiMHH6D1jAPAGZEKKZITsmZ0ZOfZ78hWg9naYs1+R3S5DHrLK6+pP1zKzOkcVOR+RiAKFEELZ5q7ks0hni8VF429v16+u3t9uX7eLFbRMGjZJMakZJTMBNZCz8yAi3Z0wJI6tc5R6oehqHmlOCQhNAQ00qTsPRFhKVgN2PhWNCLd3m1JKDY5UH1a1fekoMjJb4r0gzkkhMiVA7B+7inAzc9Ong1OJyHC3K2ASbKcs4FPju5fO4BT/mjOLndw9ZQHvzhk/EA5oZNMOnw8SZzCWc8v1WC87OYsDO3j39JPt0gDAMoHLhgZkhlKSdOuyvur5Zvvp//Es0PbJv1t+9U/f/+rLH/3Rs439bBH+3ecvfv721Zsv3sLZ+Y/fXz3/xYu/+dVtCCmFEImaLmuxQkSB/a32Z26ZJW+CPG7d+UZur67/ev3KXtp3tX/SnLtGLRWOPoQwgDaPFhszg2oxQyL0jtkjETDVFCskAkOi6lQWoqmFlqqiqvrgCRiZAKhiLFON5NasKSMwUwBErqZSZUxENEUuYbod1izxaR1NVYlcjSwSIGpVBsDMmLxaUR0wlUGtwtlrKma1dgLMGCyjIZizIgl67VI29LFrl2cAoDmVlLB23pyte9M0ZF2Wsum3nkWp6vRYUh/aJQCA6OBBtHvJdfbnJBxHz7Ce2KU7iwrIUOd3xgnmAkfkDeKKOzXJuYPN8NAG2dWoDpvO9k84vurDDh09HLtNMeZhHeRCIg4pWr7KaxxN56qm1CK0+WAOdtnxs6tneqSGuQw+PZ1h/gcR3H1Wc/JxD/85fXPv9weOsSOIhoOjlFIxnmpFtarc3L7//IvPjF02eP3mbrFM5KMgnF+szs6bboOqxswpJTHtco5NZKMia2JExdT3YOjDApFTlpQSO/TOIVnOmZiWi9X5okWCGCIzEpFzLsboCVVLxMaBuRpwIlawCh9b8arMjIirVlXHL6VHAFUDU0CdmnQhkI15vvVtV091X7KJEKIpVoFN6Bk4NKZdDuwA+dGqWQRbnfM2l8/frpuzZQx6vSnUZ+zZUi85qUoIIeccAiDier1GoOB9Get0iwEhuFrdDyIgPjjImnsxxffvt08vYNP3KaXqB8BapAtDmeSxgvXwgaO6dcAfps+TpjUIYBjFIeIeQHzNah3eNQw0hLyLUR2L0mP6nhM3ItasyGEQ4w9QA4M2mgO0u9Zm3gzHk/Y0eH4UzBBIzHnsVcCcIamh86wmZMOdag0kDskYY6DxaM/f975OHjayW6o4i2oGUt2r3s42csdNaK9ywnc3m19+ksP64mz7F/9Za8Df+9/L2dvf/OfltsdV/1Vc/PixX74KH3959/am33S37v1NuNrwwhLGKC4aegMr/bZsyqbvjcFhr0U5wXUu9LT9eLHortY3y7Pb7g5cydpHiu21hiwxRsEtNi1xAMCSBREXjhGS9ptXV68ACxGJOTQ1QwKTkszBKDon00SIzIAHOAWVGtohdsDOKw3420MhZ/1zDPEVQ1QYJMeQiUNIyIjAhgN9EzozMEDHDg1SSWjI7FWLEVpGRPIYRUuSjKjsXdbUICPQTbcp3jUxuNLzdktinUmnxXJJSTYG4NiiY47OOWSmWd6DFVFPIhJCENO4/Cie9zdvPrtcsrmkfW7CWd9nXrqsaRlWlqQc+ZRGqsyIOMZrCwERZXYgO6oFYDYAMTJDqowJHVbEKEQkUhBDNiAyEBMGMigH6ZRTaHSUxx5Q0cRMoLrkFcx2LtnaVqheK3WZB1JH2mVsAgKZGiCMSekwFToCIAApKlJNZ3UGmESJXK1MM9BSMiM2jDmn0Vld5WMdpaA5tsreChhSbWSs4nhwtxzuMTxhfCAOjm0aeQPufjrhS4OK3UGIA8saWpPVqAUNrxEABnDy+mlc3AMFfffvtPLTv/usz8zMe28IBqS1FmngojrFxsZVGPsHazVljVzI/dYTaBGH1IZWi12ueLtJSdLTR+FssYzYNEtdbzbbPiE7UPWe+v49IiLEvuvNwLum7/ubmzsiYB9Ic04Vbt178ueLy8smSNqmnJuVNqtF69Fj8gjLpgmeG0/M7ByRZxqgGpRYEbgaPQA1D2usOmNnZoRsSIbEaKMvZyRUs8n/REhkY0k9iSMyE5ViZkAUPBcVBNMibeuZrWVcfuvbm83dzfb2aQNXnb66k7cbI3b9lkxS9CYEaaOS0JEZFmVARE15QaRFswFFooWnlLeYqbko+Ub77QowbcKbLH1aXz76uOs6AGN2qetDYFW9L7Qxbp09t41qOdJB52sNAEBgJqV+C1UAPyxvEA8TPT78mAu5ucw2O9Hf9OH74Gyetpe8ozspXY+qO9xz+5PS9+SYD/48UCZOmh0AEP02RWC4EsIWzbXfd8tn7rP/ontzvfrJv/3sk0/+q//6P70r8N2/8+juXS6w/Ozlqy9fv3h9c4MYs2JSaNoVQiFs1km3qeQMOUsq2QB88NAZoHpG8hScd84hQN+lTdfH6IuIlG6reb3dtm3rvWtQLW3QeQ4R0dY3N29fvbh69+rxR9+ZL0ddEURD4nkD1+GFVle/Ko9scYfTOIA7i2n1T9ZObQIwKFVWU04RgXa2MJOv2G2ICEaAxsySi9TOg1KIqs/K5ZxrEwQdENudgZSSPIVu0zFYICZk6VJJENl3z1/xIjbegxp0AqIFUgEpbZTgQwjo444YyEqXTWqyBhC7s3aRY2ulg6J1eDHGAhYDqyruU86x0qaqAMqD4CJ9sBq9MutvtBHuu89MDuGYanXaLJ47JKaMuW9kDc83L86O+hOzh8GxUc+pmhzjZDEj4pGb6ngMhicsD6QBVwc/IDhVD55Bf8+vshFvZ1rH8ftvdhyzi2l4O1/5sC67n47vE0Iwg1KKAyVCE5G+K33X9yAp98UA4OKiefroadM0/baTkjebbRYF5+veBGTHzoBkxG51MTSkqiqqVswYmqY5P7t05qHkrts0kR5fPmpCOFu2ixgig6vozyOTO7RSgEfXw27G+/MYQ0sjixbcOZ/VZD718T7zfwc2uwtVmNXEaRJmjOzMpw6cLxSAc5tly9Al6U2Y2YNXKyA6WEiiNUms+uGgAo8DEIAjCt6zJAdOUcGKjXjXMPoLpzF/7brPxfBO2/6AbYXzMqQPOR4g+pOEdby1pvHtdauHvfSE+2Tb3lY56PJmozqLo4f9cBiHvPJgVPfNa4pbwOwVVxpEgNqVDFDZoDrGct9piAE2vFysxK3XvBaW5/9vJ6vu8f/g9u6f+Pf5J//mT14+h9Cvb9zbT3/34t3N+17LxfljlzkL+rjMpWP0Rbttn7MMRfrsA/vYd3eqgGTE00g4p1QAhcgcIbBmTFog9xny9t3GueC8B4Dtdnt99ebu+l2/3Zw//nioAxmcAgJIs/emAGxmBDrAiQgiUc1NnZf0mtXUQat1B4hcg3+gamZkgkPxSIXoQDQHhoYGQFgxYoY9bcRIxkhWzAAV1dQKohGSGRTNhOgciljOvSNnqiIFmRmtiOasoM6fn3HwwCR9VxgcsffsPaOKgZEocp4W18cwhAilQBEiaV1YhiZtO8sJzJjZuZDy1sdYSmHcq3bZZ+hVRxlC5IgOKACPyWhVzxiJcJ70a1VH+X2V3Ikyf7/Lv7HorUrDzJ9dnc9DSJjmxnrdZTRUrUyCurbh4R2Ph1Nb8qQCjaN+caz6zJ679+XEHI9ONkSYIJoRK2Tgacb6wDs55nu48/rvnXNiJLMLK4+pfmArmrqu7zaaOyvcRE8kKUnVeqXkCkoDaGZiyqIgiqqoRF23LaUAsZmVUpECsZS8WiwRbcDBgIyWffBPH19crpYI6hkCmWdmsIAYfRiE8OhBrAdRbd5tAHCQdj4A1FBNM+Rq+ELNrx70LTAGGh1IaGPb1poUMS7rnjJkRgCemRHJlCMxe2IjImB2HG63fUf0dr3NHSgie3J+5+qvdxvqoGqfcdEKam4lIxozmIJIplpNs+vosEs+RThBXTaWe0zUMl9fO/IKnyShShXu4Kvj8z78mMv/abs9fIkeyGAAOLW1HtgDRGTARErmYKZl3z9CmIYH9+/k6Tg+YTxtZDFkCFPIVIvFpS1ZV+hUABx27377ZzfPf7Z48snlRz/a/tVf/IN/4399c/ev3r287Tj/6vMrl1VADWHdJ0/MHJ0jyLbt+5xEFcyAiJ0DI665zGYwgKBpBjPHTOi6lLdd2jRuGRvXNo68mm1zh6LMCcnl1N3c3HR314Ho8eWl5MTMFWy4SschGjlwWCCoGQRVU1K0ATwNRrDT2dvY50FqAGZqZNUQK7XajUZQUjMzASNFZMAJCUsJkB2hmiBqEUEzFahtwtAAVQFYwTSBidUKWdPS91YchQUaiSqwt+o64wU5l1ImUASIWKPye20QEjHHloi0E2BCUCLnfcwdQ84uYLNoDQmMrJgZoCOTw103Z6lESGgICOTQefZLA0YmRNKxwzw+6FI6IMJqJX/gvjypBH/T42AAJ3fxAYsZ06wYWUcz4sg9gFjz0ap9BQCIhiMQx/Fz7x3bqfntqeb7h04NqmaDr9cAjAr0YNafkqOnpnzf0/cutEMz4ORobawrKaUws/dMgH0p67tby2nVNncv35jmtmlWC+9j470XESRgh145qZZSskBNvi8FACA0kcjlJH3uDYmJEDFlWa4iEeZ+za5ZNn7RenaG1pMBAmsBA2XH3rnIjnBCObVp1PvTmDoi70+ccfI/IqINHTmgAuoB0RAQUR3KC4EMxQxVC429BYdah7mSR5kBGdmMicg5c9g7K9lHxKWhbbL0JsBKVLc6TD42rGXsTAyMiiZFrVgRdYMreRHBew+D5T0tjdVXfbBw8ymfpIqJnuci+T4CcPNrTh7T/vvAvX2a3O/5FeoKfB3jqNriPeecFPOnA0gnB3DfwIbhjRv4FGOach0B0VjNQJNLZ8a3d6T47obgIr+HT//zLa6+9wf/y/7qb87d6q9ufvPi5eZ3v/2stKv3XflkufSBtttt12dwQUW0CKptUimAxL4mzZJzWS0lYXZEyREDVXNMicA7l7NsU7/oOXoXPJBjMxMUFxalFCmlqDkf28U5WDZ0tWygdlWHgVCkplYYCFktQq3JCLXaCKuNh2iGs41HWEFtYVcMUmO91e1gZIAqwA7MUG1QoU1AyMgAmXlgxxW+uOTcpy1I8YGZKYOKmGoBRNOSpagWh1DSbS69askqZsUhAwcf0ANZX1i9j0EanyihWnB+k7dEjmKI7WJaRLc8w5Jla6AlOlbpc0EKLYW2bG6a1UVz1lrFoBdxjmuJ4JwGdpqvEjEBEIEBmBoxevQR2M1gOCtvUUD3ALlXVjcpiw8fw22hKjcfKn3nCvtJyj+m9gOT1DlnJU+/TnaDTQjqw09TrHrumpvGAEMo98iljKdiwHCKncGRJnTw0/GM9p5VcfUPBPP+3OcOsJOjOj7GbYWToXsgqw40hpqBZWZd2kpKuesZ3fny/HK17rab0m2b83bZLmIMKSUiyGJAqKrbXgBdCI0pppR8bBDYDIuZ1uSC2ozbAA2s5FIKsVvEZhGcAymdLGLTBvbM0XEMwSGoZOc87vtWag3dlF019+gA1KjCLL8XoPIBR1TRuFCRiIhBVcFgzN6qSOPDu1UtQ5qR7qJjlZK8U0MgBYAQAjSKBEiSuwKOV+zp9d0Wtgk9iYhkmDQbM1NVBXOOkcgIQMGkEBoRFIDg8HLJ3vtxfXcEOVm6x8exS2O37h9IHnXd77vA9uBsvvHxwLXH465pHvdtoWO942CcBzHgWgBz8N7m7Ow+neXh6RyMvMIWY9XmTdHUQEAF8brbvuvzomm5T3r36vOwffWTv/8fPHryP3v/1X/5fvsvr6y7uUrbdPl2excewbvbHgOVUprgPfmcJUNRpm0uBaMOe7imRSGojMl94Bl9YATVnEAKYlORqlQ1lx6AyPkQGqQGMSMAA9Tk1Vz6LpdGVa1whQsnAKsvXypJVLAj0AE4DU2qP8mYwNi0VDeqERA6ADFytc1LTXoEIyIDNYBBczItRM5UCaTCJigoABPVlC1nQ5MGJQJmVjQiRCKo/Y4ICdTATARUDCB3t9uc1QWOLSpkUQTxgXxcigh5x6ula4JHckitC3x3jQBIjlyYlvXy8Uda0ub96z5tQaGUklNhciEu7m5ftxctRVfAovcpF3RUtBDt8XGYiJYQEV3FAAY0Q0EGDqMviyYkS0RE0woABjOatA/evb/HMd35JJb1wTkHX07fzz8wcxnlLoxsDmZCBXeXHLSCmQ9AJ9i1o6eflKYKD+7i+yY1/XtaiKIeOFSP9Y8HZPBJLxqeMn8fUBRgMAvVFGKMHAJ2TqG0TbACKQFeWC27q3kGRERKhG5KchSwUkruNedNyZakGIL3rKqplFW7AlQCiE1YRheZGsfRuaXzbWyCZwYkBIfANIKdANQIwW454cDzjLsXWwNJtCurGRRx8kS5FAQAGjqPm5lVvJHxPmRYizW8WDnwr4z7iysTcwRIQIqrQBZdytvWuYvYlAyo1qFugIrmoaDXQEQGtVcVsOJiAdfO3YwA5FEul9E5V22tauvR0Yrvadv3E8OHqLPzL/egKE8mbnzg8U0FdnUyzEOOBxovjv6Z+Z1tLO4+jAGPGR9T05j7njv99CEG/cF95pcQESBM/KDabmAWyRXs/ZkPi4a/evXmi083Bj8K4We//D9d6mOLP4Du07Zd37bb7p19+VdwflEoQtM4F9pNRjPE0G5z16mq5WIBiLCgiJTqt1VQgQLigUIIRJhLryaoopIlc+rBxNSTV3DOGRUiIu+TqUpSRgIHRIwVBNCGBmmTCVsbpA8qfO3OW9QMUGAsYbPRThiEMBiijr2lzRRBsaJkwQSXZKAgCKiGNS0XqAqqim4lBoIGRoSOXWATM7SsmQyRURWlthoEE8mp67XvkLxfnHE8w4zaJdGSUtrCJoTgm4jLBZwt2QdQ7IstIlsRyZOPFADAJLOPRM6KlJw1ZRD15DNwswzPPn4sbGqFRytOtNA+eutsE456S3VkkSeOQB6BjJiOGDpM2KgjCf3e0tdOJmHtxyBPfoYZc7lfMOxuizjsOhiZ7PySSRWeP2Incuat1RDNZL5VjxnusZp+OJ75c2ffH4rDmTNzGhsR6bB3x6ebItKH8ISD41j6jpb00WiPaWB2rcgIwO5c2zaLzbb0SSUhCBOsFvD44hLYAZKZiAizNytE5H0oYtsudV3X9zn1kpIUBSJ0gYkcOfZkYEJm52fLJ2eLpY+Nc9EhmZ6vzmugqKZ/mxmAUYXEHJcbcRfUm3smBuO6zhoAiKfQqcJY/ouEGAjd0ERZBdQBFVK0oXVjXe4B+0JlqCq2WrykZgBmJrV1GGD1/KlpYFi17jZZFmyBzp230AB0fTFzxGOicZ2EEhiAiqALhAkFqBKvaGj58WrBzIOoNjMzoqHse0r6O01dR+s+P+fkVQfqxdcnYdUX/CGkOR/owSh/D8q+bzAHrwCJavk00cgnj2yLuTZ9cjwPaCjzmi04fOmjj8ZMrYAqilBZyCIy89u7bvXmq5sXn/7N3fVv/m//6Xd/uFhe/Ie+/ePvXLz8f/7Z+i7e3ryLZNxbISGGcLUt3d1m1S4Wbvn29s4Qi4CiMTCA9n2/zQWIAkWALFJ9Mc57R6jMyFVsmhCgZ+fZMTpTVCyEhGCExoxErKSlDFDgNpD3rFRgqAs6gPPU+gMiAgjMWKchgM6SiqzCFltWQa0tYWdwWoRSMpFDIgAErA3e1cycczlnSZ2JigiBMqGqotaaB805gxQySynd3F4tioSLi3D5RGFBDsmX7d31dtOd27I1ZJRU7ixje+kbH9lgA1ty5IlqF9t63F1fAcWy6SWXCOScJx9M9LYrl4/Pn3zr6TsVQBQRzwgETHjUfW6fMs2QmJnAefKeXbAjQJgd/eBhRPM+GXzabht/Gk/Yv8+Hua+P5d8Dw9hdgliRleZ5K1UbnnbK9PyxRn/+3fDL0Gt59uiHn14Z4vEgH1Yd5rrCVJA6ipSdWm/3R20fuPn8DRwMdZTvu5Nnzzp8DjskZADMIgbI3jWLlSP4hx899e6v3l2vGeluux2zqKQUTilnUURUtfV6vdl0pYAWLKXO05mZiJAiM7dNbD0t28hIWiTG9vJs4djASCUjQow+eCaw0RAcFnS+LohIOLmOx3UHRsQCAxIDAg9pkwAAWEQcovcesHaG0KplUDEbaIMrJVQVv04QdGJKI6wHOQRwyASiFfojeM/0iHF9qyVpR9q4ss6oWsQ0st8tDRMP6LAW26ipQyCR2vMMG+8vV0siGgXwbk9VqjkmSJz8Aveptvtf3nMHgNoNqX7SnTkHAJOPHlR1lzxyoKtW7XI4bw++arrPCLgwnDOdPh+RjXWjiGi2A/5D5F2jU0JVs9Fort3+wEBRVB0gCiakwhQ72yIngmKQcZCRtfssihmd2qu2Xxy9P9mZ5xAGfQoANgBL3rq0LMI5XmdAhOjwHdH1dv3js8X62dt/8uLTv/7s9ubzl81P/6r78Zd3/5t//62+ufjFy1V2z9/8AtzjPvbnSHdQ4O7d1jfkAt6Um+5GHV2oZSDtJCfLSGzsuBfL1pe1oScfjHLf3ZJ7tFxdqoKZAjlVl8QcKKOAFQLnDNDEwAgM1KwkMAvIZlkEa/NBN4lbRAEFAEVQU0QmdAZkKqZSwRQMazPfurvVOQIEkNq/tN5EVYX7DgAMiJiqcawKaOaBTE1Eas4Vs5EYoGRDy4aSnYGrnRqM2LWQ+tz1YLlB6fP67vp93228AX37x6FdEXgtAuw4NMFBvoVNur7dvgtdbBdRruXqF2vJBVRdCKvzi8X5BcYAF8O6p+tXoLll74Pr+zU1sM19g9KwPv7TP3nfFSbybABWUExqL9xKkKQIZDuaIY8qAAhEMXMD4RLdKgsG31QSIkBDBlA1VRBQQqOq8qAjM80qCuYZE2gBqwZi9VAQVlZlA0jeYHnUlOxqMVQuNtS5qgkzT50BwWCwP+pGH7e44s79q1o9ylAZEI+JoDPZT8NWAgBAxzFhx86vtzeCAIRtaDZpa1gDwxU1lGrgr7JqIkZkUEYEGAuyUWGuowyOsR0POeBcp2UYIk7MC+cxAgBQNAOc6uaqY3XXJKHCde2aESPc54vedVyeXtp0wMwPUZOeVGp+KE4Kruqu0GWgGQAYk4SremtmjJRLWpxfcGzW6/W7V1/88PvffXy3ef3mfeCSc5aiyLTevDNrpcA2db31woUbR9Bg0a7rsiiF0jQhxtA2TePDwgsxeHaLtnWguV93N+Xx+Rlh5z17R7VzRM2lA9BUpCbWDTMFBBOAERypJtCZmhHs2oywIRrXk8lAUJUcGFJRAnPIxi4W6XPu2TuoRRamZtm0qBRQRfJmqlAMDCuODTtERO0REURtyPm2Su+PmjZab7I2tu69njdnffIo/c3NOobokIkJUEULe1Arvmw36rKlluxuDedPz7/740eroa2FSU7ECGYp92wU2CnvqLCuGg7KgQHQgM3MNCawzoLHI2HUGpZTFAU2ZUEjDt1/4fc97hP1R+f86zSIT47h+Mv75n/w5SR9p+PAsJh9iU5cD9hDJuw49b40ZiiuL6XxeEPb2/X1zdXtq7c3tzd3CAh/8ef6rUd//Uff/4NObzZ95whTb5J6RPXeAVjJoGjee2YvCiImALWmWcVEJGvtRACEDLzrIImIRDAhT03mJhExDaHq8TRCZhuMVJ1PZzd3Opxw5Z0wkocN6gxAtV90NHfUDAfsPQCYugKbmZmYQtW/Uu1tyI4AGcSKZskiwk1AHVrAgJmZiObSG7EW7XPaWu76tM2ivFi1bQshMvPQ2R64Qhu6ENzVm0jElsrm+vbuenu3LrkXka265eo8LJcUInxvnNrVbVk0SQsiGML25i4w3q3XH//o+zFGAMAdLAwC7DxmZka7CpbqghNERHLoA4YGQuviwoUWRujsarjAqMOZTSrd2HIbcU6rZjYXP+ODKjP8+n16uMWsYgvbqFPueWUftiAPiQHRBtx/Q0TnXC4ZAIqpiDCTDfkEhIgOqTo6vumWn17a4ZfjsA/GRhNjOQhy799nvmumu87/1NPgZXsjefilnVQdptXce59mMEvzHBt0gqqWUkopRPT48dM+J7jbmlkpRcSylLQtaGd9usuyDXEZ+COmstE7wd7TUqBYSmZaSmYHZp4Iuq5rF9FE1uu7lffni2bZNLU4xzEToUNCgqFmDGAqLZsoHKrxQkPKzjCXCvmLbCZEjLUUzQgJDAzBBpw9ro1GFNE8eWakUidbUzor2hzUIiEiAqOaUmBmNTtkBAbavfbKJrIaAHnvfS4x+D5ZEzgVQoRSsgKCKqIRoRYDo1SKAjrnGIr3BmCOwBEPChZVbkcVFwXGJhw0k25jFshwAu57TY7F7cNwWvcmYe0T09dI1pMnDIQ+h9M82ga7a0/5hKet8rW7d3r6jlwOf93bSPPzT07ha/UJti5rIy46veJuzZ0qhmzmwplLKFefvf7yb16+u3tzW+62HRNfd/Lnf/388ePvZ1gAtRcX/OWbq+2mDw6YvRqWnEgNKTi1nGoXBQAgVTHV+QsQQzIrKqIqWggUkYOj4Mg5NyAPqAlkRCTc1TETUa3uBbWazTXq5rM2t7gDjatco+6fqcfOFLOsqc+Dn8cGC8AAqPJAnpwrtcdRGR6BbIqgyUo2BkQzLaSmKRFxAZLawgGKllQkA2tOfe62WoqqQoi8WOJyQRSqjK+6KJoZgo9Bvv29VIqCeO/Pv/PdpyFISdu7tbtb96msu75bb3aLCFpS6R20iwC9Xi7jZrNdXLTxWxeItY/vzoFZmzKMdqdV38xEJ8UQiJECcINuSX5BbsGuASIY+rNOBw0vchK6I8kRHSRCjPJ2kLw4sfUP0ZXHBRnONyPEoeHyXPrWNZomch/lz3cWIuqo4yNi7TkxUtHYxmo2zqrGjO8RBJB3FSyToMSJ4KqOON1kd+geHzhWl099tpNn0rCM88LlXfLR8LQ9vrljINPGgQcPMwOaQY2eghbZ6XNEQzckJBHJOdeocLtY9lcZkZk9YSZvHrFPpQmtOe3v0maz8U3bNK1Ivl6vu/4KAFzkGGNwxAhoORcII2wfA0bHbfRN8GzKQytnpEGZHWiwqvGD5LXd6o+rXrXPiq9SASkZCGvVrQHVOBQhmAkh4Zg+jQiExM4ZyJAQaLWBOBEQoJqJqg4hsKFrOM4tozl9mhkYoVFw3rO1jeskLyKWQjFizgrAOQkHDOxUwQMXFUMOwZOocyYliYhIQYfD8EadQ6Wi+u8dM+my80I/IJyOjboDKeNO/vDAcUx5o350eOY9gvBYMRx++luaxQcTe/hmx8864H3HczxUgWnN8IylKSLbsjYCR57L8nr91aP8ZPPmZ198/v/97fOn79eG0Z48+QE/e7m909+91HXnUoqrc/M30PWQMrisUit0wEq27FArsj+oKGjtdUAKhGoAMrTMVbWqrROBY2Su2OMIozg0E5EM4AGgWm/EAEBmArXstv6ge8x3/l4GhgiDPNYhdXdYRdOBrU5ngxoSgRoaIDpDGchPrcLDogF6pyBmAioiRmgMlftAMTbzBYWRGAwJWKTr1yn1kgoBeRcxthBb5YaQa0FP5W9FlQhdiF5ZQpUHknqRUgiYMLqnDYp4QxEB+Hkd8taSSxYWjcnWUWfdVrqb80+e5oV4kaniaCauaGTZQjC4PQ0rqAQhBXIrCmcQlxjP0AUlV1XqwUie3JuKNaFkpDSb9MIpcGWj2TRXH/cJ+ENkQL18gpzkvTrogTDwAYkySdn5nzDW/lYKrNZwvQOqjatuhE5HtwGTVVZafek62VOzvTjnVaYnNvAYMjxxTO9tPnCYZX3P3hsAgAqO068HHbyZI5n9DTCBJ3t3+mJ0cOvUuXh8p3shajMTlSl3EQA2m83t7brvewXLUgypFups0jukBeKjnG96eReaSNScNR/d5NcAgGhoGYCJyXkOnjwQgHoM54vmbBEDMVthAk/oEFwFGR3FD8zYAhEPu34AAJ8MmBpZGDFYAADZiABrWSGgoeFQtmcgM0RVrEigCmpKAGKIYKBANtQH4ERoIw4SlrKDqapfjsvGANk5511ZNGGbJIPG3s5W7c1tZ4i5AIkRsEhmCkYVUgisqCPsc95ut9str87bulNstHeHztZUZ7MjicknsvPm7puL026a1vSkaKuv96EkrA+RiBPF61638MMT7rvVXLBNZx6J0r+VYD4czD0b8lhHPp7IXNEwipyLlTdabhSXEpZcEnd3sr52JtTf3q3T+07MnT15fHYZfvLud7/dCnz68nOk4BdtKEmBcxEA2HTFAHxgBUgFWIzZV6NXFUSMyGrPQBFlqhFYAAIiYK5daAjRVLVI4hIwIDvEob56sDMmi2TP4Jgp4IPeh7s3YCNEU7V0DYDMyA2FejaIfx5eiqiNxhBqfXuDKWMgqDVVzUrqALS6k0wll5yHlJEIhuCQ0RMaqmgRK9Jtt1iUABHZ0BMHcgt2sUa0bRJgVDcOclpbSYiIZFmy9hkB2ezN1kITY2hqY+N6dF3X6tqtLt7cvGxNvvjNz7/3w+80LUs03O4Ez/EWqr0VycBqNiUScGS/4niBzSXFJcYluhbQAcwQLKmK3t1rhzFD+JhQj4l+EroTcX7t1jiWqbtHVzY9zvE+6Tv/PJ1ZpSsMcxp6A9dqy9qaTFXByFgnehI1AkBUQK3/ApChupEgh4FNJuYpr52ZzQXhfHj3vYoP+36ed3KodY1/7j13x2dnV83viJOsRR17X1X+c+BW3K1j9VWqSEVmrRo0GKWUUj/0HDIkMEiiUgSJnWsvLy+v1+/fvFkTbC4vPg7RAQAzOkfeUSAiVSiZfIjsGsfR+cZxcMQMfuZknmsuMKrd07BnglYn6Tt4bJFhrACGI7ol4lE3mhI/wQwUwQjRUK12ZJirLAQ29BKflmuMRu/8l2yqqs6GhqaBqQWMAXoBRyVGiD1ixsxQa5BElEGreiAiKIZEUqTr0rbLctbwuKbVuTwqSMPyn6KfPWfqA8fxOdM39/YDvk9oz7//kGd/yOAeFM9ff/k84Xk6wA7ZRz1rbukeGLUnR3VyimYmumpwC/iydYj0rdJf3735G7j+CvH8zfovv/zss89fuDebdwXO8PryBj998YUExqv029XyadNc3t0Y2FL41qkVzQZIEEh0UzqrLQ4YzEykZkOYFRORMjQ8J0NFBGZ2BIRmJs4TO0QDVR3iEFYAEZnHfS5gUBNzJq5xkBUySeWxt/YofUeZoaooikSmpqpkADz0Aa32OBIhQEXMMjNQGW4z3ZNATdRq9qaKGTOjixSXA5oSmuS+36779VZyv+1z0zRxsSBygmwcEIjMq5U580LEOqTSuL6v6ZRsjiTRpk8pdZfNhSQp3d3c0Cm3Vx2Wu8+/ytrdpjta4JPvf4TLuNXatvaQVEwRwJAMwVDHtBx0gAy8Qn+O8YLiGcYWXQRyCLOejgPo2MBscY+/7D1lT/CPqEITNZ4U2KdoFBGnq6rVVZcRAYZOB/PtPt89J9xZs7HVPyvlDBnOAARYHaeMpAA1EAEiNrJ3FJkCtYhqIFLNIGSbjaQ+GHFIhjpSi/fGtrd/Z988zKMOJjL5zA++39OTAFQLzN7RhNl08kH11ddA//jTCf2+3unABYVjOk4dADGISNd1ORczQ+BioIaMq6Jdsrdqjt2iCdx1m5u7l4jkvW9CiI2PjASGUsj0rG3O2mYVogODoi6E4MlMCccWfIiTgxkAHPs5O50FgwcQ0cGiRa560wjEMbRsMautPWBiJlPhbyVCh2xgikYVDK+yJzCi2rCneoBGLrSfp7K/vsZoYhY8F9TWuz6VxtE69Y1HM4jRi2mWomrFSvUCDnnUyAiQimVBVQUiIiCDXR44oA6dkXbysb6rGi8Yp7NDrDzyxJy2SKcP7ogcv/6wU96qiYaOT/7aG+LMML1v/3/d5ff+dPDLfL4HCscHvoRhRkXFqzn0JbrN+u7L/+7mxT9dlmV7/oOXX/z5519e3aQLcR0U6Lb4avtFYFy2T13oinlNOcnWtXHJVm5ui4KImYmY5QKYeicGTESUh2IPUK3Nck1N1YwQqKYdOUeEBBac82N3MBGRXOqWmUB3wayUUnuETvx90jN2Qpdqz+DazXcohlOzMTFhFM9SHeEgIDTCy1V/Ig+ZS2pgitUJRVA97GZKaqmIKjKRd44aCjGEhnyrJYlsoaR+fXN3c5tSQUQfz13b8qJF55GY0BM5BGRjq+rqgACOYiCpbG7XzrmmaayX3IsVazA2zpXtTV8yAMxDDTfvX7arNuftckHJ8k/+9O/6p4/Ee9lsHZmZ1GzeYcWNEKszbXQnGiIwkSP2EM44nKE/B14YBSAmNLNC4A21euN2KjMiEtVcchg4L8kJ2TDR217/A5hR733bCwfldS6uZgMY/FV16R9iGUcicNAobMyDB1EZyFfK2GrMaOgyCQpjl1AFEEA1VKohliHfXqeWwNNw79uJojscsoNz7nM1z/ndnH2P39Mst66accOfB+xeZBDAk8d1rsrPn7L/Jm0EKYPxnZ/gnIPcNUNEZha1UkoVAzc31123SblLSXMS4SyGprTtt4J9l3OX+xjx4uKsaXmzvfXkHTsysCIGFLxbLNro+GyxjMzekUfjMdV7dC/DSBhUp4iIRG4mf62GKsxs8DDDBC8DQ994JKOhzYYioCgRmSoDAqCaoRqYDFbQ9LoMgAzEDJVA1QpzHNPF94TCTHjbtLhmBiBEQGZN8L30MfjY50UM19t18JwyRk/bLKUo85B7SgxW1HtKZgq47UqXLefsvSfeqX04FtrA/i6YXspuKUcB9HsIU7ebyakO2B943PfI+6TanPV/6P1/z6GdePTBwHDw+BOcmsh9Y3S0FgydXISNuTe/ufvs/y43vz5/8j999fIXLz9/cbMxbJ8xLFRSiBbgIt9uvFtcrH5AtEr23uW3BtbJhkY/hyE4Jo/mvSfkdbf13pshwJCSx8xEbNIhYJW+3vsQgvfeub21rzSKSBXfrnKNfZ/ejojnlwDUNzHhkg+6kZmNwRgzG6r0YDAKdQecWLdqlS9YC1FUYQRzNgSz0vdFEhHF2IbFElxQ8khOmfsu582ddjf95rbf9ORD0yzOn3xXCDKKILngfWgYAxYtKRGRAhQVRGQkEMmqi1YAJKe7kjNI8c6ZSLfZqAMXXDFdb9fTW1jLLVn4+KOnktfto+Xy2dPrImhMGAE6AKgyGAAQhgSVXARACayyDiMk9uC8a1cczii05hoZQr8IFW9k7nWswgbnXaoHV+QDWvPxlxOjf0AAAwAYzQOK0/c4pNDtrIqHmYZV6W02meBEJAAiUvN1p+TPJIWIUNHMSs0qqs+lQXUjGsLA1SkyCWDcT8K6bxjTLA7Okf0Y7U6ij/blnGvPX8jBfRB3jH7+oRaJHqwLTuH9fRiiSb8fh6tjp2cAeGh2owAutSomhNB1HREtFgtk2YhKESDfNItt94rdosUluVIz/lWAqZWUA7sQQgwuEAQmB+SQHFHuOyq0Wi4roHQu0LYREQ5GPvxptVL/0H4BgF0qA+LkJaoFijUny0Cw6uuIjj1iVq2J8JUAiIhUFOeOBzU1USue2gobpza2MbUdoRoNvGgsLqdSqrVqznvuusDkGZvomSB6XlPBIZkZYusJyKRjCgqZiKU3KbbtUpdERGpwasJsPxC68z9H+tnTGucvcH7mybWeznE4FrbudxyfWdw4xBwBhqK543Puk/wHFAljleFksU8X2qx8CoDRbGqYRIMRVvMvZKayow0IiqPSCgTEDllUHABWpsDDZgeqCN2nLfVjzOedHjRjoLX9L5leI174uPrqL7tf/fnbzc/Pmp+U/PizV59+9uIV8o8ef/KtYOn2Z7/ewHlvi6XnNbwIyxYbUO0s6+1Vd3OVsAkYKDp3e7ul4A3R+6ioCnL5+NHV1VVJuRSI0YOhj6GUohkKbFxgLRCRH59FpnK3kfPVWc6ZmZtm4ZxTq0U9rmZm1ZfjXQTikrLk3iQRe3QOEKvXWqWYSYgLBBty/rV2DwFkzGBIWEt40YBhbHMjWt9zZZ1AVF05Az8krB0M1UxNVJRYF751vg3Ls4yY1KL3bKD5Jl9fWdKmOb+VW7cMZ81l6862DIpesIntom18Kv1Wcnt+VtKi79eBgQuVouJcCMFrD0D9VgkWCtlcUtmmm6uGCEhK50Gikxbgtq6miG8wFIA1w0/+6A/Us0OgQZt1sHM9ac3OEBVg1cwFnPcsnHsRIrdonxivzAXzrI4R2YBre52aLE31rlYxhwQQkEhFCZmZswqoUG0K7EJJnaqSKSCCKQCBKdJYkTkVes0apQnY6BOscH8kWurORcCK5r23u4crjEbfs55gI3U7sCEaAY4Z4AgMRp7Dbdc1iyZ5xXWQJMxscqviSy4AgDyk3JsBESgBOnOkTpWwmrKOiJMWMsIRsNNsSIBGO8G8Ku4EjCzggMkAzCX0qFgfOZPH/X6Y81zfa6XlCmI4vVszYxpA3KoPUlUIjAgAaQQGqyy5ZvaDmaICETEQAJTRwzSFxmqgqO4hIiJgsZ655jJ40G10hNYtCHoXbzu47QtxJO1uNnfIbrX6/vXt1Xp7Awy1kMhURdOi8cwIopYLeeejCyGwp7ztW+9XTWhiBTU3HpoGjkGRAfxq0NeJJoCRHUHULb175yY2WsA2esvMSgVpMA7IIARCYKoACqKAUENFSAYKNUImkFUYiLxrFKCWuRMQkIwyVwhcLhmVEC2VrKYOSQhrQolD13d9QBa0y7ZZOc2r5att15yx9og9oEBJJaxa6mJ3Ky6CYBO8nOO2rOHlTf7hR81ZCFZ656iG90yzBxAYIbFG6TC0VKzum0GlqtsOKqofTOrd2JNzTqKTj7qafN+sHeF0r2FAR3e/7/x6fIjJ+4D++9AjZkUR3+javZsAwD3W+Wg3gFXMC9UzPs/XX12/+KnrXksh4BWF9Yv3v/v05ebb3/3EeXr11bpLti1dDE6BLy6fnp1fbro7xy0AgBFVVCYEIgrBMbOqGlZb3HLu6yLVIIRzDgA3Xc9gsW3YW869qjriNnofW0Tc1SABeO/nnVCHqSEAIREJkxVTVVTF0fRnZrNdRuuUDzn8qwNvtNrAxIZ8VhwivFMvK0Mdzqtf1Ne3e43OgwtGpAjKyM45Ryry/sVXnticfvX25u06FcDLCzhb0mW5Du25uQWABPBNXAk78q1rQr9twTIDdqlkKX1JQt56U4HGe0Tr+h7JN6tLVni1vlo2y8ePn+a0mQSwM12eLUTLk2fPmBmn8Bvc66EhcuCAAJAUEJiDCy25hbmI7IncmBSNcx/a8TE6E2Z+iIkvD5y6XnxaXzw4cPQnH1Dsv54Dj4FiAcakoVKKmYlISqkUHZtm2VgbbohoBOAICoKZqjjzyMCAplgJCwcPsMJoCUzgageWx/GX9Tiuvxw41an7wL4I3//epowHJNMRy1xUKo3XWGaNp8z8yZNRqDZDS54v8cPHzjRUrc4tsHJ9fb1Z32alvt/2aatmA15EKam7JaLlclmsiCkHXi6jc85SUREz8963beMcptzlXs/OH8XgYvTBETM60MmRPsZ3T5jCBx8Axq4LtR2b7d6tDc3TRow8mxYQiWoABRFJBYwqeMdOfURgIMEx2Do+C8EYUBDBxpr7GjEmIhsjtd7HUoqaMqABBkBVUE2r5fIqFegKo2vaQFZqUVTTNGIikLucGNBHyB1sNl3RpY7pklVrNSMDuS/f4h5r7YSn9mAnHlz4oQL45F0OPhzvikFhn6mfJwXbfX/CKFxPjmfgT4hjcGXvoccgfw+D7t6nKMx06hkIgNnCyu3t+/z+dVBFAoTiPL292b6+Vbp5Tx1++vnVVqhAMukMGgUvxm/fvm3imUHedJ1mMFVwzjm3WCCzTyXXRvRmKrmYFFX1CIROAXJKYqYAj8/PfDBMcHl2vmxaMqmBXh5jwFUYz5P1ZxPE2rxRkKs3Y9R/yQDISIY47w6RbthsEyBaLesc+ZSzXdMUrKWyo5I8/rO/LiGQi0hsXPVmVUup20JKfunf3Lz7+We/xeUzXjy9W1t5/+X3V7Y4751fgkBkir6hEJ1v4mIpm3XJPXpHzgdESV2STpsnWDaCzkdPzQIdbu+276+un3z8B7kvN31HWqYhnTWLsHCblJ99/BSZRgqxeeYAHpRmaXUIFTFTIPaNcyt2S/ALdAE5ErENEbKvwTWs3PmAdOFwc50W5GangzsfeHzzawfIwFq4WDc1EUnR2lbLzFJKpRQkUzXRCZaLqvmvomRkCmRgWsiTqTIzkCEQKkzSF40BQEGP+cmo8p3gM8dYB/U0nX3e//lEkhfAtMUHK0dp9K6VMbytyM4muH4zA6Nqpg1jm+krkwC2cZwT1yIi3OczNKLrMHHTNJK7zWZTJHu/LCalJIPB4yoC5JjRspgky0UIVUV6o+g8EzWxCc6XkiXJMrrl6qwN1AYOnoiAwWrtL4BWpLqqfeIY4SYiYj+92z0BPEGkAdEYtazV5WqGYEZIwEZDtzZDRWVAJWSAguBUBQ1MawDHKqAAoTOWmlFfyYDQGQoqKhW0Xa38AFQwOmkIHYJVpDl2xKZ1gp54GZpF7vNGUCGEYGZ9l0pDITgjFAEzROI+ydv3m5zPVQcPDIz2hpoOmez7b8BmyInTW6ofZPiz/jf7PKPV+Z/3CuAP3KLHjGDSBeYrd1L6ftNjX+gOnHFUdD/UAj5WHXbKyyn9YK50zxVF0XfB0sovG3IbeY92Vbot4ZPC2+ev3/T5dt0tOcYu32nqg3tG2BTRlJJhr1rUWIoE5+rWbBYtAEH15SCWkitPsQIheGbedF0q6pz/1rc/fvTo8ubqlUrx7ByjQ259M8Vo4Wjt5moQDBFa4uARcYo72Ihv5fZeo1WLAIZQzxSSULAK1GxKVBMWAYAMFHSQwVUVgKFczgjNEJmJmZ0nRNAaiSiSZf3+XYwxl/U6XfmFixePzV9s8iZRab73pz60JrK9en9z9Za1XzRtbBc3v71ZGJoWdaTGC/IMhRu+Sc5bcQRApMSChAqPlyxZVk3o+5uUb6c38/Sjj3tIzVlcrJabvFFAHELXUJXh6aXZLNqCVYaYAQb2K4xn5hryDbE33FV5wn3K8/BmR117fP/1YGaraT5ECntVACc32vFxLKKO2cSBuWxmh3xiPH8c43wcCsCq6hjFpJRUb1vEFNA0qc4gLJBQccy0MWAARUNyqghqKLU2aXi3YxoUIk6IVPOBFgWa7cfZjObG6BCrPvmWZq9ijyPNX9G4j0zAYIRjwuqWNkJQFJ4C1jNTb+48kwNcgWmodvTN7LNVeG1m8N4Hh8zcWQmODKSoGFgWAec1F9MiNqS/jRWEBiAxLAmQ0YggutA6XATXBN84iBEbh0zATN5xDXmO8nZ0QRNXPR5HBLcDpRCMAGn33omQiIl0HrIEqH0arCLjMcJsNQe2o5WBI5KNULXVHTJyqMGtJiZstYnhWIRcC9DHSU/iBtBqViSwQ8+u8WHpIfm83fZ9SghMAF23CXEVGi855CwCVtdw8D4OPSFG+TUEFO6zAE8Qz6llPUEG0/E1FvDxHfesw3EcByIWZ8eBEWZTddA3lMVzoXvfZA4e9I3ufNI0n6YwzQ5r0SpYsoLYEZbb7abH4sv23VevwXyRfrNJQG61vLi6W3fdRhH9Qt1qmbMgmWopoOhD1i0JGFgpZbE60xETgWp4CM37KNIDQE1yUdDWt9/6zrdBJKXUMp+1jWfnTKpcqyOvwDZTksJUBmJDEyK0inbj3aDAj7ODQcnYtWGYvxO12va4agigqIhmhKMjykCt9v2q9jOan2hjfJNkCFzzVgqYlWEv52J9nxDvNrfM/Hf/zh++W8fnr9+sN1dnK9gmbc7aZdPG6NPKN9G1y4WxO8/b7YtX12/f8urSYdB1unl7LUG8IUL66uat5OJ802fxzI8fnSVaYeu6bnNzcwVwXicVL86uylcfPftIQGTolYZjP5Y93XFHacSIAoRojGHB4cyFFfmFkkd0lSMPxfun6GqPRB8kyN1pD1LyfIvNnzjfknh0229y6Kjl6uglJgClWSzTTHQQHlCkn5SJ2h6HkEQBrGfzQNUfXWoJG4GYOUQePVayYx5gejRz1V2o+kjX3CPaycN8wMH2uddJCxirc2dCQTIzBXOHibj1xxOe+dlzcXriXPXZjXxaIEQkUpCpIY+aBsfV3Z2lFDFVzaXkXBAolTyIG8eNd6UUzSV43zSBDZrGNyEGokC2jL42H2wbbr2PwTGCI/TeO+cMgQej11Vg1/qBiHC0gAfNbBx/XXedmTFEhORQCwAZIVYXc3VmwNiFw8C0KFRPNJlNRGVgCCBEDqCYIVUHcM2eNx0gpxUQTWlMx943n0ZGpyrIiMwUzC8W8WbTeYQ2Bh/kZl1IS9sEUVGtbSGKmQKhb8L5WVs1kaF198Dk2Rnlexb3WPoOgyHcyTY7oYXzPqF+4xjwycP21Z/59wdDPGIudt+f9x0feNo9F54YxvFpJ0+YzaUqcCtL67dXv377elMippRffPn69famQFCIprEv/e36hjgs2qX3XFS6zXVKG3JQ2AmyApS+qAPDjMBYy3fUmNg5kIKLZWOGfZdVCxNHRkegqrfX193t+qMny8vVWfRMogbiXAsAtTCJmWGMV+18AzDmACEaoSmpKViNwFXYVoCp7u1IiVMcM5LGYkEjQDWojm4Ziv6gQrIYmKohMg3XjqnRA35FkVzEwIFHx8wxhGIlxLaNqycff6e91TbEt69Lv3l3+9kv4vZGlue3m3XR/PTb3/YXH/XKz1p7+2rdRfnB3/sHF4+f8dvtu6++lDNaUizp9vXLzyTlGM62d+t0+35NWddvPv31Fwpy8eTpJIDv8qY9b86fnosJEQNOE1dEd5LMbBBoTByRz9CdGUd1hMRSwQl2TX4q/N69tFq1doC9U+YxYJh0F/gg/Ofj+3/4TnlQPJ+IAduOrmxI4lOQYkUGj3TtJT0CsQGgAhZUEjY2U1ACqbWXMGYKDA9DADjdNKX+ajY//cjlM2ghY2zlFHKkDSFnOOaPqjo6HmrzTAAkNAMT2Ef/Hu9AJ5Z4H/Fq75eZtxxP6f3OORPIOTNySinExaYoETsf+9KLqZacs3hnKfXFwDnHgGhgWqSQAwzURIdakpTy/6Ptz2JuWbL0MGwNEZm5p386453q1txV1dVDdTdJk80WbRo2IYE0RdHTgwFDsuQHP8oWTdmWIVgCJFuQIFhPgmEbFvxgWTQtDrAlyCRFdVWTTXazh5q6BtatunXPfP55752ZEbHW8kNk5s699///91S1FMD5z965c4iMWLGmWOtb6GxWlAfTqXdaOPKdsdsBaCAh5epdlAWxA3Iwkr43MEPm7A8zMzVEpFxYlKgAAMtIztQteAAlcjlHTDo1o6vSYZzj7LKqRNkOVtUOU6urX8IK0hc9VFTNvrShb4hoIIDW57ibmVHeJE42KcqiTrGtReJkRtraeh1cxRITsHSy1iDG2DSoWppZzp0TNUQGhS5kbtuQ2BG9d6yyu1Xe/OsfSgCPp2fQvnfspz3ZfJdZML7zGyj+t/665VC6pcO33Xan//sqhZmaikbQNlyen766aJaUXi9Xl5fnT9o2mClVou76+qxJ9aRYcDELUDdLsQAqgVwVVVbrpvAlSkyqMYoRg4EKiCg7duR14r1zdd2qtmbmCJOaI6qXq/PTs2Yd3X0CNRSdTqfOObC8m9wVxKYRsPAWwyLELBi7XEBTTQgAhgaQCw6Pzb4x8QkYdZVDe1UW0ZhAFIC6EEfoxbApZk8RAGBXNsQIAUFAFczYEEkZWZGY69VrVAexvL6sp7OD46OjhweLFx89XddXl0+fNunD5aoGz2xQFtNyevjy2etwHaaTw9mDx2t0CVo9un/wyfuhKRzFB2+/j0baQnl23px9dPHygw++9TuXV+uHjw/vP357qGwTdPXw4UNwKFF7Vd2wAwa4mdIQyMyImHjO/hBpauTJsTJ0Nk+O4gI167wOH9sQc2ISjolth3T/S2l3i+SB+G9aIIP5u2l5rIZQA3IMEUEI0RlYLnkOxnlnjYkRHRibIRiBMYLHYRep97soAnZBTGmvD5tO3qTT71i6HfNR6Z0ZnSfdoDe79u4AAGDIYNIfYegrWJigWR90aAbGnSGMMGgn3ej1EOJ3sN+ue9tMvEdh39TFCSGQ8nK5NkXvSw6J2ScRRY0prNsUAjiXZpWflJVjdIgH0ymahqaeeHd8ePDwYHpQlQWh9x4x+5+ZiADZEBw5NxRdIIfIhjmGv+cAfXeHIcKBM5CjXglTIE9eEQgRCAG63EMAEDNGAjJUBjQEBshYQGzUFQ1HBDACUlDoBbZhlr5GQIqGhKRZeOfH9FAZzBhFBq0Vux1cVJVclVVSEJBiMhXQpmkkCDmfrQQDNZMYYbVqs9cREEw7JZhEFRX6elDjv4MPZF8qbyfD3UoAA8H8lFHQ3bzcpN/1U7aRvjvqJ4zcL2/+0NtO79fALVe9+TNukr676zyLXxFUic2Vj6BNJWKvVs/x9Ss0uIxu1dZlceCL6WV7hQWsW1FuxZbNKk2oNFG1tGral6fJKXcWpCIC5Q2eFKIDdMRVVWaqYmbLhVdVPfPrl6+uLi8LhKPFwaQoM456SonJZ+ezmakqux6sBwDMxjWOEJGQkMlINYEDs+zkge2Vtj1l2seSUP8/IebyR0hklqtHbJCKupBC6rK4wLpIDcmXOGYAIDTAYBJMZlOPNmU+CIpmVter+ezw8HP3X5w9O7u49E17WEykreXZk9fLJfpyner09LRaHF6+eBYnswUzzwopsFJr1tciq0kxlWTzyjRdP/ve716HtHh0WBwcXq6awSxbHJQHx0cxtYYOO0hFzQwpaY8TuW3gMJOZERe+mDg/U1eBd+So0/0Bxgm+WRO6kdh2KBN7AbzZA8a8q/VGpPvmDXuP4k+ntm9OM0DNPaUcuu+cS+wlEWFGNzIAIHQGaKZMBSEROQQHwIhM5AhZzVSNNlWnsn9yKB8IOuoObvZHdgWwJBvEeT7c/QPZ5z+wbSqM70OUo7ilc3UY5TtYF2V9y+DYIIM3wzoovlnI9AO+q9APpsuQUmxmzOy9Q8Srq+Xr1xc1eiHfgZqYMTNTsXA+9UFwRDQtS+fYIRSFny+mx4vFQVXMHM4YC8riD4igC8/sZqwgNCIidICsQFljRCCzmxWgjNJD7Ed7W4yIwI4R84ZU3mzKwkhUd6JB+5FBMNIe9mSb7TBAhuru1xLlJPwOzGA8cd47BRUWNHPkEEkNVWNVVcvrc5O4WCxqFy/XwRQOpuX1us1AIJJEVb3DqrBq0oV2ExIjDeP8JugTe6T1k/mcHPQwzrvSVDtODbABRkdEo5F9ebuIH1SDgby6y/vgQ9zzHY3N1mxfDYrG6Ey0vOOf54xJzYEm1Ghmhg6pAiocaMIa7BjMIwpiQqvMCDDmzOHbxMwNPbFC4No0zXDWXj639klYXUks52X84Ae/fRHXbXjxsDg6nYXlKr1f2Ivy05fL9en6tBUJbQNat+FUFA7nD9pURyzbZagbmqJrJRogqapqu1qB59A0F+fnMps+vHeyQimZHFGbkvMemT3oenkNSRRAPRTErAk81xamPPUu41EJAROAaTQ1IgZCtITKlDd8CQEYyKlENQBgyW4cBlIrgEwFei6woYWsHXZJrBmMrtta1BwriJa5bn4KqLHL8dHZFQuIREYZFAvUul1qsRwz68tCmtIQEqwcl9qugH3CtRbFvbfecn5Sn19xFPTaNOt0EZDl8vwJM1++enbxN/7G9ODw7Ho5PTz8yh/5lXLx1hShWWtbvyKR0x//8Ad/8Dvry/p+9dCACnc4zs568N5bkhDA5Veh3ppRzX3O4WWCgERkIKpKHKOyUAVuYdWEyxKoEnWA2CMHbGDpaC84aPM3Q3WrERFYp6+klAwkQ2cLoClAjiun7HwYvLVbPuFhaeAISyfv2feheQjaGf1EueZMv5p6c3/s80BEYAACQ1MipuxRt1w8jQjVFEkBNUYBJFc4CAhEISYin1+120rnzsRN0jr0ZI7UiAiNQEFBsHSIqAaqYghERkymyOQyykdRFJs3Fe79tzmUARAzangg12V/iUp+V0QkckCYIaqhq7xLZqimjjBHPFG3f9gFOUvqPiMicY6EEwMRBI9kqjEkmk0bibNiKgnY9+6lHAndkTz0mc2dd71bUDZA3GA/HfkUFUuWoPRFTBJFptPq6uq1tOuy9NV8+vriynmYFn4VUiDXmEK9NgMwqqppaGsABRRPWB1O7s3mC4QZhgmCJ6ayROYCMxodOXad2x9BNPhykXMrzJQIcvGkqC2UBQBQj3fGzMwuJY0qx8fHItImnc/ny+W6LAokioVaEsJcdwgR0blyuV4X7BwyAIm1SdSQFZyiqyjGGElyNhSKJiB0hU+KOcjGJGpSRQMmUFOJRNSq+KrCNnivzWrtjIIKGhNoSa6NSdrokFM0IKmqqS1bMAFNliJisWqCAjZpPUlzg1CUIbVTiVFTUAETZU9q4h1BxsqNhm5LKnXra2/LdTCLh8VPfVzjjgq+o4s4uEUI3XH8p2v71vrd7Y7TrCdn2BaWgAJdWfJbS5fshI/vCPgdvdjMVFpg5xCa+nK1vIAkjhdcVPX6jIuZgZ8Us4R+Np3G2LSNeO+jSNOEpIJASIrgkXC5XCqIoYao67WuW0CAwpcIsYl6eX1VzWeIOJ/PESzFqKDJMIUGAJhRUUNKJlogGlrGwGL2RFQ4dsj7c7VxQnTrH/qv3ftivyVj1oXdD7+O5+vu2UEczoTB9MCs1fXhsziS6GaQcRURUdHGYgQ6pknIbP00KeDRvZOD+UFYrqUNEzmMbdM0zSf5E03TRBclSv30lNp1uLj6nRcveV44TwrC6EpfWAyTqZ994h2rXa2tQ5oUfnBBV1W1X3Hs7mYGRB65JOeJPRADcr88d9sdK6h3vfWnDfbELWRvZrBNnDuEOpa+d/TELDs+bf+qO3rbC+CtpkCIbGaaNAURMVVIXQo1KKCZiXZ44OTFhBQSG0ULzoAkgSEmYWZDzFt9iphAVTVq04UgxU0cTNu22ac2pOcimoKpKscIAKbDAGb5F3DLYdhDq6o6LrIAzsM+wKwSdT4k6JRHNYtZAXWMEAUIwTkgSCkVuYjQJtKxG6zRpGzvKdjORGwG3zknKQ54WxlfDBHLckJUp6QhriFajMmK0nsvyUwxw7NMipKJ0AANKu8qxx6gcL6qiqLw06oiwBjbqpoQUYwxxkjOeeeRSLIBTJQMmigpRRNFZNIYJTHzbDZz06kpChAWMPHuctXOZjOzFI3KyTylVHmfROazeVs3TR0mkwkihiTT6Tw2bUwJVEwigiKYA1ayICqiJorWlz/a4IZDBlrHXPjJxNCMCkMAgSQWRB0SOl+4ol5fqQEgKqPDIgEgsMUApm1bl2XppHaEk0m5XsWicBpUVFKIruzVZFV2g61o3ex3oCu7Amv4atvO3buk1c2rqWsOR37anSft0NB/ufL47ja8pPUYeNAvubGQAADoqyLDjsG919nxm34Mpxt/peiwcIjr8BIgMC/K+YEwokk5v98mRqocuMK5oiyNGQLGKDEkLpz3RYptTJbESClpDGZBAQi9BzFWAonKBbuymEwm19fXZNDWdesccSVJVCITFkURJOUQ0GxVFVVZVFNmJkDvS6dkeLOfrduNROvwATJ1w9YOMeoGCGmfBjZju7lvf+FOCO6g1gxIZ1kYIxB0IYFZcdoYah1jVyKnCMjEzMicM1JAUlEREUHhqfRh1aa69eyKamLNLFTBIaJKG1amEiVcXV1Rq9IEQaKiKKF0boHzA4OgvMRAqjKdlABdSWB0iD0ewD497B7JO9jmmSfsZ66Yo6uMCqOt7dudq/YprRtP2G0jFr5z8kb42S2qN3RzvTN3dstLbY7vSN+71/i4hyP8SExRJYgElajB+uIcZorZigczY0pq4IwTAhOKdtY54YQ5hwVZdmZmDhjTuqqmAICyeYUmpqGTqir9swDAOl/SULzdOjyQrXdP1lejaiFlPP0tpgFg2AlyRMyg5qpgYAJSqEtN68sSQlsUXmNSVvWMve6JvXt/a7T7n6zfMR0UgvFpzBxVBYTYIaKIZLvz6vy6rYNDMvJmEkRCSHWIJTkDzactJpUnmlflfDYpGUrGCfG0crOydAU7QjBzzgGqZQAgYnZFDnrwbhJSXK7b1bpZNU0bkmp+Ea2qarqYni3Pr5fLopydnNwjV4CuEXF2OGPSJkbnnK8qLt2UCmaqZlV0bdLExI59MvVVqSlIFCICM82gb4iJGBwAJUZCy15YACPmjnMgMBKYoQmZaUaPZ+cBjZIaKCALqCuqlJIRxpCQSEGZKEIi4rZZI/qUAjuaOLq6bFnBIQtIjLGsSrOMuSjO8Y46m7dXMzrC3Ytih2GSbv1ktHv1zvc32gN+E9G7o+6Nr9rR9cZCdF9JfJP+7DzUjMAIbiovs7mtdR8GyMk3fByxgjqCZNpWlfPuvpsfr9J1dXDPTw/Mzxwk731QqyaFRgdtm1+OkAFQEqaYAD0xgzFYIkTnvSKigpkVk0IURFVMZ7NZQGqvlxcXlwcFQxRQK7zLqAWAiA6SgACw9z3WlXliVELaYFeNx8cAegs4lxbYsNouVVdNutBEMOgS9u4eorHeZ5tqIQDWlSjGfBYCYi54kiOtFWCUp9SFUoIBoGMEh5B9hoSc16SaEUiTDA2dMkKJIECGbM48Q3ChWYNaVR2YpArt3uO30sWqjW0CQ1+ymyBwkrZuFBGnhQ8g3m3eqMN8H73pTWpZtsW7kTCakJtxuUA3ASqRXC5Cvj84MJJqvQW2pa+MY5t73X93BdnwYUfvvGV2+iN7CcSjbWnYoH/spjDd0XZOoIz6qwCKoKiCUSwmaFPdvwgRUVd4EkCCoONkSmjAXZULgKwOQpaFikDocidFLISQbzI8NAYZyp6qqiLkaBwzY7SRALYBZ2OwcTPbyfSZBV7ek9kA7QKYWZsCAPQFBjptwHL9asbQpik7CUqeRQSYOiluNxi422TQOQa2RnI0SYM6u4mRRiyKwhWxKsr5BMQ4elFyErQ0hg4xR1W19EXhaVIVR5OqwHbq3aLwi+m0qgpDBRONyU9KiWpmjgsi7nZWmc8uzi+urk4vL6/XbVATpRiTiHh2R0dH5z/48HJ5fXLvQVGFD56czhcH86pAxItl87nPfPbw5GR5daFIdYiANJ/PAZKRTmbzJFI3q+l8DjGoUU4csRhVWrXkiNgVSorgXeaWIsmSADgiy0WaLGcQmxGaGCISIBCpCTOLqJGBWOWLCNgCgUXRTmtxhIbGDtjAM5IYmHRhFQLc2SSoBhmPhGjIPuhGPk8lMwveoMXeIWg6LrEn9W5rf1ggjo+9fGyw33jmWKn/2O7uP8WGElpb99+Fih3zslvucxOSTmd2S8q1iMgjsxrGpAUYV7OD+2+lS1tMS3MJY3H54rpf8CxiMYUkyfuyrOZtHYqiQkgaNa01JUNyvmARUQTnXEppWk0C1M4xgtarZa4oUk4qJEraBSGjgSCQ85k+cloujvactvrfeXyHt9YMzwvQj9owbtaXF9zzbXZDNEpfw/74zhOzGpuVxmwE573K7nNXg6AvqwKqYAiKZMQMVJhZZrjdCxkCWlufT+YL9NgE9QUuykVc1dfnF8wo2hhEcpRUQ+bgrIrRnCIqwDq0ue5CchwjGAMeTidNu4TxuyCN33RfWI7ekYjQ3IT9FN0UXGXkN8O4rWLepQtuBrQPvNitEbvb7lgXo/M7RzYAIJLIDcUJuo59nMqLNzmcd9qwlWNmhqRASawVAcuVfwFzCRztJ9QYDJypgaqKSqf/WXY/I2dhSEQ9IjTGEEWkKKrhoXUKImr9c4kImXJa54AdvTOSgwCGTHADO+LuQwe91Eszoy3iz2xZVZHIOxfqWh2VyD5JRKnMDeas9SFad8z+cNtRD0eOUGY0EFUDpByx5jp1hBXa1LZJmih1HdtWnSMzc84RQVUVBSmbWIqLRXk4KRdlNZuU5EkE0CwzB+dcdgCIApBJSprkgw++f72uV02r5NF7A5dMkgoAPXn2vI3RkJ48e1W3Twi5ms5Q01tvvSUfxu9994N33n787ruP33p0n4iwLJ69eP7g3v3Jwfzi4sJ5P1kcrENbKAs6c2hoBiwCgA4dm3OkCiqZXJT6Egjd/1mxyruMaIDeOQUBMU2SyQ9dIdrmcgYMkPcUPLIDKn3RSHu0mF83Oq2qqxSv63Y2L0DcZb3Omm9W1tDlLectqwwRb/BQjVbH2AKB0SIaLhzUKbhz8UIuR3i3lW3bnpMOjKE/CCNWNe7iHY8cv8adv/b3sXGMWH7imIh5l1nsAMvv3Xnn7bp3vCWlHtUhGRqym0u7Mm0ACUVDjNX84N67n3olayQ9OppzoA+fnZ5dXLQhIAMwYCLHXcEiVQgSJFiKYrmYARiprJpQTibT6TR7X1NKYlowqSqYVtPJbD5fxqhgzF5jGqDfoyRCRhTELcSN3bfraaM/pj1E/ohNZDaU4W7dDRB9t7NpgKwBbJxIBkyAmE1Lxhz0jOPsPTMFYEMwNcQBM4vVLGNVd3oVAAAUhTeNqVUEdFwQiiuhnHsXJEksS+/Ir5frGRfk+PLysigmgNE0AKhjVkuaxDRiwZqkqqrr5gpg0b8Ej19nvJyGJTT6SkRkbgLFFH1p6JUog0gg3LTncadymVe57XmDe4E+1l8NccuK3b//cMOt2blpfW0L4BtcVm+yeAGg2+HtWwQNZrWIJ6d5D61HtABSRKScuqWEgBnmK++LJLQO+aHH0DYzVXC+TCnFGIskQ8TZsq7NTMBUc5obAWGO1SLKskp2hn0bonIT1xm1HSQ07E36oFr0kROoCC4FCS01bDxxTXCAHnhRFjtT1t+nhy++exRHVxExaAad7ix17/1kMpk0sU3aagIyVzAnKERFopiaWVlQig2WXJBVHg5n0/l0MnGOqUuOdcyMLiZ17I3MDIidIZyenT9//vzl6/OkYuDQEyoDyMQ7rsp6nVKI3iE5b1IXs4pctV6vAeDpjz+azWaL2fz5k6cfffgDJvvyl7/08O136vXqirFZF4jIhJpkVk1SHYgdokewpAhOSSWjBQlIt/UOiOSIHRGlEAFAMZlZxrZUNENoYgAAYEpA7FhSULUmGrMm1ahaVFVoWue8GTByRhc4vbgEVcfoiIiL64s6TygjpiSEIJhyqGUODs+WW+Y/XQdu4YcCG11246bKaZ57+wt3fB2XI7x14d2xJvfI7jafWN/FzTm77petk0caxHDVuOsb5TGHZHTezLuo/cbFcLceAABEHlEFrKiOm6hqK4vBQQUKXM6P7n+iXS3jxbPSMdTBUjg7e90aAntEJEfIZAjrtjGlGKUJScQYHTtS1RTifDoh9m3busJ774tJdX110QS5f/9+aNrZZFpOZ5fnF6LgnZeQEJHBUohN3QqYmglg5mA7Pd/mzkMeJJhJrtgxfm3uVU64RXHDvSOjiYDN+OPmIPZ5SjnBIn/tuFqG3UTEXHSTDIFpk6qPZjmnj7hwIcSk4n2pqmtNhFAdzClBgSgh1nXbhHXlPFNRoISmJdaUIhEVlVOlJgWjgiuwxkJcz+Ybi8oUyfWd33MRj1TPTi4SUSoqdB64NJeLvBGhEqjcArywM1BjcWs3nbCt126mErYXyI4OvtNuFvbbDs/8P47m680bIopE6yK1LYmEFGuJTYoNZN2RgMEM82ciNGudM0IDEkLJ5WYBQEyZ84YM4GgPmDmYQUqpiXFQmK5XddbLkmXLFBExg3CR830k82Dy5q80RDgj5hQjMzPpy43kn7L+agYSUtYtRvoQI0KwFk3RDNrWT6t1iJUvYo9dpdhF8+7M5t6kbLSxsYY0vDX2tZFTiqpaluXBsbte1Xa5XF1dXotRVQGQ914taDRVqUoKsfGz2WJSHi+m06qa+NIhIIJ0AZIEYGCckmQajjGeXV8+ffbs+auXhBPHVTmpymIGzISuKKpZNVml9NnPfjaE8OMnH4aQltery+ure49Ootj19UpDm5gbobIgSPHi9auS4frqyt1/VFUVIs/LR0VRxTZiCmwETIjomYGdgZkoOoeIhE5JAZEcAhEgQuomVcCSJUsxa3hXqzY7SOq2IXQhBFBrmziZWgihXddHh4uoBkwxBAVzSM5hhrxlQGZWhaYRzxxypJsaOkgxApr3nBEUNuslM8zbRcOO7TscEcjwHYBq0CVt3mXcuttE78dKpjc5eaxX7n79WGF5uwUM28Em/Wk5ol/gTiY4TqnKH3osnl2QgfyBzSdYierEz9nXpKsYVqBgAmY8Wdx7+NYnX65Xlpqri8t2XccogiiGpkJgnp2Zhij1OgABIhJAENGUsozx3vuiakVDCE3TgCgRHR7MDo6OVtfXvpgQc4xRRAuXETbIDGKMbdvmEAxRBb55K2HwWIzet/e82aYOUg48JkAgkBFG7lgs2fYe5JbcBYBOY1Tcjm3eIlDcuhwz3usQrpWTk5EQcWO0oK1D8r4q0amCATrvzayREJDL+yfctkUbZkfT5up8vbosp+za62LqRUIbg1GbVKhKs/lknZIv/bI++9xnPgtw2T9gpPPuCq3NgbEuSOzReXAOep8DGYAJ0G7tqRvbsATM+h0C2KzQMQvYjNtm1/YG581+6+/9Ru7Qn7oNUg0AosZWUkgpmq7rZGZAjhkQ2YwMEA1UojNkQkBjRjIjcorKymK5Qp2aBSJnhGYGTeu9V9WY0iCA67bJVWTNrINnBcgjr1Gy0ELMMMZoZiKSa99mPQB7k1dVRbsUgAynPLxUVc3NRDWppc59DYyIra3Y1BED46EuEjEiI7mUEgBQlzlKG3Z0y9SMfx10rDxlKoLZPDWIUc2sKAoxKctyOp1MmjKEFBnbtglrK6aOVYlhOp16TNOyKCtfejcpS++9A0MyJIxJc50LYsopvKLw8uXLH/z4R+u6ns6mjg6n0+nh0cnRycm0mhG6wvvCV1YRER0eLj73mfdfvXolIqu6/eCDHyWzk6OD1y9PHXN9da0FHR0vrs5O3zo5PKgmHMNyuSwns+aiOqtfiuliXgEysMv1HnKCj+gQAUe5DEROGzc1dgVkXkFJoiZJIqIq66QhShPD+fk5GKnatKzMLGBsmmZ9feUmZUyhYCdIzJxiqKrJ/fv348Xy7LwVEQNXlkTJdwIYgRliFEQsSjfQRnaBZxFMRLsbk6OpHCZx62C/FYL9r/vUMF65bgPRsE0cIgn71rmS9oTWPkntHLzD+jakAbwwh/50j+j4+e75Y7AxBADssmsAo2iLDCYKyMQ+n5DVWdSMksiAXcLdLZppbyCamSlALhaa4ZQNBUk4WltOZxKB5SJKHcB8sfA0rVsww3a9vLy+qiVVE7TGjhcHq0YkV3SF1rR2vjBgpgLIIkRy1g1hOV01zbQoQwgEGiRh6R9+6n2rA6MDgOVyqaFlgNA2XDhJriqokdUVNGuxA5igWEuJoewGEjuJkv0wyRQQiTiX98g8hTqIVkVEY2BwgqgkZqagaEBAqopq0m8WS1JEZCLIIPUGSIaIKp1lzdAVKoEcXkbEzDn1F8CYqIubYY9MZqaaMnYsDGU1EYE68jfu5qtCAosqAQwBGMyDGSWbmVibRMQAhBzMj8vqQESKk8LMUNRrBItsSTRKilMIF3FpJR88fmsQwN5leP8bJBmjGTkzNBTT1gDAH2p1DH5hOFcrwTyAZsAnAw83kdYODW+p2Bl/zwCZVMUIQQYC7+OJRkVgUDsxjF19lswZVDeFdyBZf7w7H7B3jAx59znhDHpvbd8XtBEEKQGgARlgv+oQhxWdNSdHNiG+TCDJiiBFSFERl7GIskY0kBBS1gOI0BGxqU8JECOREG0Co7znLMsVAYERQx4BdmVTN2MxDwDn60vvfQySMigVUEop57Ojw96ZzBasz+WluFxtxnykNTYigwCGDNqaN2JXK1VFIGAHRiKiIIiIbctlpShHE53E+phiHblymLAsiBwBgQKyEZoJ58AuREOy7P0xQGCjrRirDLnVKUzKTIR5gzwF0FYAozrV2KzO5s6XMvMQ2rieTqi+TMtlLAim5SzV6f6j+/ODOcQwda4A0BSk8IikomwAQEC2aurFbCYSz05fnp29YsDjw/vzxcGDx29Ny2pelaUviABIDAFIzUpGXF6fAerBzCHywdTuz99/8fRFMamKL77zwQ8/VJ2+enkq7Wp28HDZLGeTeZtaM4OwXp4+AxVLoXWPvfcMqgI99zYySG2DiIDcxTsjKoGYkVkb6mZdhxBevT6jYvrhk+fLJoZ4fXl5WTcrZjaTul4DwGQyEQiPHnwCxV/88Ec//zNfWJ/XELSYaNBpCOuS4oHXScIJTMTR0qvUMKl83Yq0WhXO1CUI4GBROdHoHaOpJWFmMEhm1HmJ8pLZLOc+gRutz0vvVXmHiIADBSIhjwMJd/iA2z96GxPZEfVjat6xh3DL1bzbxtZGv6pHHTCDbaCBMZ7f2Iy744bD5ywPfjobIF8mIkRsSGqWeqNcUjPxC5N2vXytuj46fvDkavXqunl5fUFox0eLyXzGLtUxXa+uDFJZFqlBNFDc6C5EjhlFpSgKdIwt5KqW6LzEtLq+DiGoat00WU1DRFUtSteapgivzy9fXSxPqrIEcogKiqBAqFmXMDI0NeC+mGD/UBq4/PhNu2q4ZpICDFaUGQ014DYYorcaXoBgvdBQlczMERFgw8F3RjjbkLlrPQGQog360BC1nucyWywiCRVy9I0mAU2YhQRLDMv8vh3YukW1KBYzuP/sYOEKP3Tg1mzxbTsyi0tCR+SAmRwjZcaafTn96/9UbefCDlsqg2H1YO7ZYXQjHY813UztN64FGHky+q8Me7EnN369TbFQ1ZRSElHVpFCntK5bse62/dxxBl2T1GYbNOOMDegflDYuYiPEzTZtY2YKZiMorPNV41CSqlnOIbAk3RutUsiFBMxidgwROe/9oNAM797rOBvHr43DXCSogmlG4MpbpkZE1AoVOe4aD6uqEmxJIlvr2pKccRctBZb3Ae928HUDOLwYIhqoGahpjip1XBCRqq7TeVWdNKvkywuoa4kFUjVbXBAXhK4qJoAKmjQly3kQuygInZdrMZvF2F5fX6/XjePi6GAyOzw5PnngnCsL570HgJQSELuiIF8WfpZSEkvOlUyYUsIoHui99947PT2tfPGFz/9MXdfHh0eqOplMQqpBxUBSlATOCld4j6XTFA1BewbSjTOyxoCKZiJghEwFozEi+IIvL1Znr0/PLy8uLlfLJr26uLpaNnW7BLSmaXJ+VIypbds2iBmu139wMJ9VdPDNb/3oy196Lyzjek3okIjRmS+EHVjTChZMYCghxEzZISUFBLAU25zSCQCY62cCQMeyxksGN7LmprT7G7nBPrMdX3IXEMdw/ceQ0ugZAzsYOnoH1xiu3fp6E3/vMeFsQ1tbMLuUgYozwEKHsj1wEEREzRzMRkglt70KbvbeCECjqEMCMFEQMMfMTB4BAheT2MqVw+C4fHnevLpa1yDOcDGpEKmqKipsVS/bkIwYkQGQGQ3IzEJI2T+WNEyrSc6OV1Uk80WxXq5Wq1V2nTVNo6q5eqCo9iB5dLVKp6t2reRiKggdCiIyECAZEhAaghC4DSvsBmN/TsfcNkjMzIMMrJ/EXgpirgIGsEF4GqZP+22PbvZpOAXNwEyImGjQzLo0pCyAhywb67wXA6GjSobEy5cYKqmIJhWRzHdEoqmYGZgAQNvW2G02CwAYJNUkGglRCI7vnfBIAI+pcYdcpVt4XQAUIgE7ZAfsCJnYK0GnlPQA0HfSVU9eG7/27k8bGTDaJ4bNgtr1OeUZGQQm9B6wzvm8Udut/33DIMYvns/ZgEl0lLArxcfiGQAw18AFUUtiGiWtQ7xqmqbFnkJyaTkhUmav1g43wa5YBZhZxrvrFMS+mGN/JKOVb6yHy+W6rfMoQZCkkl+TFKAVIYpZu02xg7jy3qcQc3pJr+V3f7ELiu6Um+75CKXDjCgiBgCCCMzIjNoAuCQARRHrgxjYpQgpdpXKYItoAckN5Zjubht6yONgambEzjlD82ZWtzyZT+rVOZJk9wYRVVUVAgwQCGaWUuCp85zxYZVMc2VMRIQceSGpXq3Xq2siun9ywm5azRYHB4cdxYkqALF3vuSiIl8kMSNmdMagBsCGvkQ1hvZwcdA0DZHOq3Ly6N5qtaqq6ux8ySiEiB59weSyPAVJAUHZzIgBkYk0K/qxBaBsFgs7RkIlBVidXb188eLs7Ozs9KIVefH6UtCF0J6c3G+adeHLEELbNkSuKHC5bObzaYzpo48uH91z3rlvfue7bz24r+o4Chgj22RSLibF62UdkjhXCGlKUDgyEzFwDhlxVlJREqiZSQ/EpQCAN5VUz38FZCQpNr+aWe/Eto5N3pTINDSHb8Y4biSdnWvHa3Xnw0/RFIG2I0cQ0Yyge3Pr3WqD/aSjr4OPbovLGMrItL7hnfpLGDt/AnvPaAoaqcMoJyDyRKuUPBAIpKa+vrx+dfpR3a6TYGxVYlJtgMqcu8u+EM1wP875gpVdk9o2igCiJksppbCuYxuyRHLe6uUqQ+EYgCoAExGpGREnaQ2JfVknfHXdPL9aRqV7PKvQiI3RABUNLIc4gA3QoTsjedvUFM5Jl+qRRZCo5pI+bGYZCDpLuF4Yd8CG2MvggQ11pgZIFuiI2MNAdokfI1hQIupWo1Let6bs8kHMCZ7SyzhRBUBFDaoKlkyjpJBSSBIzK8zW/MBrDdUQWklAuDg+IuZBi1PY2q7eGiLo+BcBAqIhIzFSAeSQx1t9WeOl/Sj6N9FcxzMydi30YhjHSsD+/W5iAVsK1mBmbVbrVsY83ukFuLmfGzbEXfC9qiaxJuo6QIrQj322vUgNRFVGUipnZPadHPIvu7fp3j3Lv+0KEKFVEUaEpBqCigIRd8VclYOI5ToKRmaUzEIdMsBHvpzygxHBgABNBHufUIbqZGZTQsj14g2MkAyAzLJzGPsQk422MqQfDLbmjsWzr+zuH4TOydFfiEjE2bl5fPzulF+trp/zuYcoInWMdbNmgA60vCoZDUCF0SEZdZjtgl1+fteadi0aHRfVpFzMD8hVgE6iIkREJOaiKB0XRqzJRNrouSorYAqhTZKIiJymlLhuJ2WZQtM066IonOPCk3c4r8qydGBkznIJcwAQA4KEhmCSU0mytAdRi4Eop+QjWLSIKZhaujh7FZqVxEa01WSEeni8WCwWqnry4MFqdb1er2cP7qmm5XL54PCwSRcmxzNvV9enIte6eOCofXAfwzIRGxMUhTs+mLy8WjVNNraNAdBITQkBkarCv/Pg0DvSGMFyFuVQl2V373U8j72dOUxrlw/Sf8XeUh52WgG6e28I4yfLA8ac3HeT83nnw09sEPSfx5at4pDhPo6CpgFKcPw4G1lyOa0QTLHr5EYxuf19Oy/f2OEAAN57qa8ptQUX4icpqKXEBn5RALKFIjWpXr5APPcU01Kr0hE6ZB/VLi+vQtLJbCYaVRyQ98WkTeacc94Tkc+x0LFt1jVjlxAOitk+DlFyMSEiEu0RWcnljcf1qv3w+WtH+t79BVezAqEk9sygaqYYBU2BVQwGgI68l4+jQkn7s0BEoAZklreTDRkxmWX9sNvvyCZEytUFe56CAAbWFc2GIb0SULWfPjPrA7+yCgU53YKIECgDQ+c1Oab6fj6s04osb7xkMymZJpGYwzpEIlNhCOgoawlgCkCKZhZdVc4W8zG4P3W4mVu0NIzKlsGHBMRGDEiKNIgvyCuNcGzx7IznHZJ4xyUzImAkIlPoBftmZ+emru62HWVi76kEgL0YzuiMsunPnlZ947N6yIvuqm7xQrdokbqOd3qFGWWFBhABCQihq0+ASmQogx6TQRIAzKQz+sfvoey5A09lQCYCJlOIaowEaGqKgMQbOMkCeWsorEO2R9d1fohENDNmFNFhECznrCcRkIIckCkIMTIDkQEmA2EqoA/sYnDdGAwlxUYjtz8jWwofGVrO1sMuhcnMzEpXTBbzk/n0tKgLQg8QiQDUsaGZaTAoVJMBEqNJAvCU64FCLsvbNUI3qWbsIiKTL7wrzcBUvGMzQzUJIWJEKpwvXVEVJJbWGhRSy9bhYDhVdu76+rL0xbSs6nodQ5hNyhDCfDpBxChqqgCWocsx794xIxF2hXBNJaWUwNQ0IhIYSspGeEwphabOFYvn00lIdnBwcPzgMQBW7MxsOquqqsrDq6rL5fLFxdN6hZfXddKDjz76KIiu6vWxOSIy1CjmHM8n1aIqLptaRdi5oogSQADFQFMsKvf46BBRkcwErIsH60DXx8S/ta4hTxHAADuECB0ADI5C8eE2r2umkJ+mHOFYKdhREN5Q7n7M/Tu9CKCvhbInOrPTcp/F7JohBoIjOwC3XXB3NATOZ7bNMl6/wnBdTBaM9wTAzCm4NjWWoL5eri9OX7780fXq9XKlIvDlL//sug7nyzolCTEye0QWU3YFU4HkRELMbivUpAwKMbSqyl3MvIUUk6lGiUlUFZgI2VCzABYwREJJktLp5ZWkZtkcBy7p8eIQZo4dE6BKp+er5CpHGVa3F4GbXeE8XzTSmUyViFBNWExQNJkpdRiYpr0kGEZyBITbQUt09+yf0iuFXWDROBcslyKwHPWBAAZdLsfIzIoSM35C5rCWVFJS1Vz1QVVFwZCIMzRzqQpMHhEVJHvWTJEMIthsOi3LckyiRKS3WYDZmQfYSSlEBA/oFIg2ZvPgZt9ytNy2aMen3eiChrEw6+zA7Mga5wuNn/gx1IzY7UbesEKNbBP+xkM0+LjnO9J3xFMsSa4PhBk7LWu9iKhRkQBIsnJm3a2AOQs6IELsfCeaw1rAjLqtX4UuMB0ZCAEBUMYKioGZiEhKXcFhUE1qImAWEMETAqCmaGqEwMxjKOnhvSzvsBggjjTFTqezHqOt9xtlNw4lhcxHNDveh31lM5RkREpm2JUH/gmcH8OrIUCuWwCgoAYqZAJRS5i9dfj22fzsdC2rOCdiPrjSyGZIIJraFAyES190G5k2njIDREPwULJ3hUgUzVCdAEgOmTlJUDNC530JYJIaSWGC2tR1SIm9K4qCiBiJma+1dc6pqkoiIjbLJXXJF/lpXUlyJIGeKWQNT8BA0URS0hgQEyiJSRLp4MlUTIRAS88H8/nxwbGAzeaLoqhSSmw6m82yN252MG/bdrVazY/mD09+to5X3/v+B6bvVjT/8ZM/0OTOz9z9+Qy9b4KiWOn8QVkyrc0Una+wWkcFg2TKBrPKL5ygEW3icHNGmdyEPrehojzAO0eyJrc1s7dowx9jAe+cerdk3eiMt3+4sfXnjD8PvrLNaYrAuVYNDjkDGzsYkc0EkTHHK+YCzmO0I8p8vyvxdttL3Ni9GJtUX8DyJTZXHshXx1pMVKTAttC11S9jfbq8WjYtRoNPf/5n3nr73R9+9HT56nxZB0RG9pfXNSJOKkLmPD0iopY0aYyAxiDKAAAqAoJgMbaSSDv2L6oZFyebdDFp6Z3E6AgB4PV13RpeNmrh4Vv3j969f3QycSWiB0PoEjoGa2AYZFUd9hRxe0yyCDQDBE1q/a+qkqwPq+myLaAT2DYyqZEw19FC4l7GE3WB2dwDEG4x+szWrZfZiDR4WRBzgcVkIhkITFWz5zABKqISg0Myl0OyAcBSt0OhMcNEJLCIoKo6m812SJEGyXYnNSCiIgMSkoOh3vjoVwAeQKV31ttdluheG0vx3f7YTs6u5SO3uXX2z4c9g3v83H1L9+4lz+wRs4suYwaSI0AD8g6gL2mfF1wH0NLJYu3q03WIGf0PkjN0te+scec6HqPqGGpOD0cGJhRDETMEctC2gAiMGd8lVz8CQB2nuyNuqN3Msk6Qnz8EJ248OmZoXUCFKuT6sdAn6WV4COxx5TYpxZ1NxLf59gfysB3urtgV3TJDQ4YuUX7Kcw7x3sH8aDY9KNsXFzFJNDZiYegy5pMEACsKV/ounZaMjDJKYK8QECMQOSocETlVNRXnitX6mojKsiyKQlWuLpdXV9dt2569umTvjDDDfWTRbmYP3nt4eHCQ6rbwvvLelaWYFr5KKTnnmBmZkExVwIDYGxJYDtKIjIamlqJKIEgAJGJJUjcSKqa6mM1FZFrNMjhgUfgQahSpplNJbR6fq8szZp5OCjOrV9ee4mfeefub3/7o5GAh6f7zly/PXr+cuZNZcZ+pQIOSbVIWpXec2qipIPAemTixzibw3tuHpatBHSISEyio5pAIHjxD+63nYz219Bpb5q/QuXCwT3S8hclkC/g2HjG2cW+8eF/Tx1H883DhjTL4Nothc/y2Xr9pG0XP9jaZ0dh7vXt+71PsxH/+UFaePUWpU514euynJ76cJNFwfd1cvnzx9Juvnvzg9PTy8spWLfzM248ulsur5fXV9XIdJAFrai+vVvfuHYmYL9g5570vyxJQRWKMSaMQQOGdqSYxJEqmScwDOMfoOLXRGBx32RrAxMyiLRAaYjS7btI6XpbQrEPrHDmYLko2Jq+MZs75XnB2OSn5q3Mjy3U0w4yds1BAVZNq5qAkG5Vfx+XTQXUIVeiZS6dUmfWxDD2nMzMzQXTjSR8EMCLmrNouKAs5x5u0bRtEVU3VcilDIooxIaJzfjDKuz44MZOUEqS8cyyAls3vHBM73o8BvbWY9NCw390hIsMOswlxK944M9Tu8570vVGw3RhsCKMo6Fwjt0do21qFw9PN9m+z9fQbV+jmdkaAu6tvIIrhvxv76V3huMgz5whyNR4wy7WhFARAsUvByXqVDcXctY/PMABHDAACmVyI+hcwQCRUsHFBYGVL0SS7dslZsmjJDInIFSpiSYEZyDs0TCkFMefdOJdpkxQh0iujZmZEaAaiQI54MIV7pDQiYGAgA1QiR+gQmck75xGViPLeEIxI+ic1gTHXj7SuhwSaZbDVxXr1pOBQwHRWWFU+TyqKlWJTOA8Z6gQUybL8Y3MDfXbDDgBg7FxUE1FkMtMkCQ0KAu+9c85MXrx49uzZs/Pzy9IXB4ujh5//wuO33vJV+fL1q7OzMwDQJNfX1z/+8Y+fIB5MZl/64hfr5QpU2TkiZs/EKKoiSVUR2PuiKIqYVSSzzGAJAQkQIUYxlB6UQTPxoIkBhRCqaioxqYhC6wDms2lQm0wmqhpCyEEeOa35aAYhLIDky198/+X56dXl4vggLddny6Uv58fAnhU9YVWWVeFcjE0bBNBXE/a+1nh0WL33zv1Z8VrMiBxah0mMuAlAGi2QESnqDULNtphAJ4/NdkSojs40pyOs1C2sBOppCHHwK5qZA9ysCIMbbfS7rd67bYKM2g0ABAzYeRrNwLqEUkBEIwDZ1DclAjNSlex0youYrKRcbxYcGCGKmmgiGrCjR51BzBlpHRgNZH00m1z2mE4Yp17qcyzSkV7o5fXrH3+YXn/v1YuP6rOnH714dpkoOvzsZz/ppF03dXP6RNvaHy2aJaxfrA6n1TrVzhUH06lzzq6vtW3SOiQ1MMbK+aKwJCm2itgmUYGiKGNoAYANctpMl0SfhAya2HQ7VwozLtAARb/x6mpJPpGL8eQTJwdHE1ZOjhjblhwDMxCDlQ4JKYBGVR7S37sRQUZkyUEZhESlJ0ROGFpVBYeQkiVBQ1NRVHLmmDuvf9ZeEIAgoSBiBuUg3mwxqqKZIQOqOOJuyRKJmah45w1AMYfJMACYYlIDLLHgAosUWhTJ/oMoyVyXqUwKBqIdMjBnoFAGACUDSEERyPtiXV8UkwKrsh1ptaKIbldZzH8JEuZ8BCLA0rgydsCCCcAJsCA6AzI1RCNIOxYz9MJMZNcy7uEjUFWZHQAIABqklOH30BT7nMksp5EyiwXoUY16kNzd3XwYwDVRBw228xh1csdyGNFA9mioiEjKuX5zN5nYLW4HGTaVKKP6QJdML7JC9YQT0XPjlMREXUyg0hIRE/QxzNChpSJCz9IGxCsAExh8M5y5FQKYdvuvO6iylqxgLyBBRFM0QIcY0WIUZAICMEtiINKRI4KkNMwFGYBBdp0zEmhP+L3ZQA4tqfZhVWag2ctgRmw57LubGFC1EFNzgFMzS5YAlJUZGckpGCJnfsWYHemGlJOddbOnMDKShcnMEDWqkGMEp3WakNP1M2u0AWjq5aKStw6qs1VoEwpNktSiUNHs0eLwncP5QeFKnAELECr20Q09ZaskBnCEIjG1CdkRUd2sZnR4fXb5+vzs6bNn4Mr3PvcLXE1fnZ2vL8+/9cMPnrx8vYqyDnGxOETDw8NDcMcHBdaxXX/965997715Udbr8+li1gYDZEI2YwR0zjnOuWfgmFNSQATQEBMhRgNkJykRKJGFEKIqsyNPYlqVHiEZGqBxOXW+WrexoK7ghxpOq0lo6oJRVVZSKgi6lqI9ODhZfHb25Ln/4Y+u6uVpe304mT5mpGRNMfXV3NvFslJIyaRRW0s5hU+/W8wnxO4tiTWqAUKeN1VBREYnlkaLuvdeKPTQp2YgvTShfkcjH+B++AetMrduLyb/fdM94Ltl6v5p+9r32OK5WwZ/7AnjNtqJ6YL4R1bOVhZ/1uf3DY/99xokNAIAJobprPqU4Duk6bq9uLr83pPz3756+Zv1ql4FuHfPvXP4PpQnbYur1fo6xpQSA6xW7WqJZtQkICyqappUYh1DCDGlpELkimpSzicppSjqvQcg4NiGGEIY/IxjXQH7Lb1xt/M7zs2dvTj/+mrdtq0QvW2LI+fmDtkjqOYQKuCA7DqMCbHhntaLYCIQyH5NBLLOHHMMCdCEsjRSy4SYEzCGwGbMZ/e6Te9pHNwyW6MtIhmnkMEhM/ZZdYNiaGbQC2xijwZOTSDkEA8kzEE+2dVoigBqaJzRLdijAeZ6n2qqSVUdMRFRBgzpW44tH77aeGyNsuaumnpvPYE5HMFHj2dhY4LvGZ033Hy0Ijuy7E1OeOP2E528d9XYOwXW4WDc0Mx2kfIyqSQR1U62ZTJhct5j0wFp7HbP9ug2fx7KE22dZpgD3brB6RsRiYhZP1RZJSFEh0CsqpI2lkf203Qpat2ddzmSme0kdDLTGGVo8C1LV+8YevS5jtXkyAYbNRiRwdgUvqEDe+PTXWW9qU4E7I7uP2jWV94VDkJVFPeK6XWdooQELiX1wKXDwpNjMIh4a5ZHB8IDhqYCospkZq+b5y9fvG7F7r37XkL+5gc/+uCjp9H0rHVf+NLP8oPFf/NXf+2d994PIb54+uy3f+u3vvFbvzkv8Y///Beenb1EffH5z7w/W9xbrS+Js4aSDAysC4JDRHQlOedIcw8wr19EJs5DJyJJuwItIaRk4JkAkJmKsjDgKDafH0w8rVYrU5lU1fXlBZoIkkMi8ipRY4wxmDIiTCaTw+MjTafsADCoOiIjYsdVVZa1tkQQLCHo4QEsJgWBhrrNyRfUlxhBG3bExmy2p+E+SG6HmHfEzc607jfsYDverP0UMni/cwNdvtl93rRj3fkjVKOeDWzyX61jrB8j+3FHAFMwI4RDLkhjHSXKZFqcHL598D90wFKDaClQhJRevvjwVJ5+dHrBjmbTycW11tctJMcIU3VtjOkyxbZZr9fJFB1Pp/OjkxNgXK/XDCgS2zZmZDsAGLCdP8Zh0L/7RH0L+vJ8VevTNcDPvffepw8PyVDUvNeiRA8JERXREAXJZ6FlMIrEMSLqktA1GwQeANgMgBiSGSIoKKqq5QQ+kV54MxEYwBB0ZTYgE3Uu3E2HNcvanNAMbIbGigqIOX8RQRFIQRkox7eSY8yVXCHm4CgyZ4qKOiT4c18WEBHIASmRganGkGEZqHQeusjnfrod44ACsU2upE5RDRSgU3IRmdBnsIgcSNz5l3q2urMCxwTfm01jvry9VrPE2LNn7yBU2Ncld08A2NvH+Um2pHttqU/WGu6pQ6IkGlHeASUiYvZmwcxUuxjjHQ41Ho0dVrDt7kOzG6qLIqJIAkAzNMubhlmOIaihEWHn1NxI6BEv2lawbnLR7zGuTW9H3GPQOTahD4jZEU1E4x2Z/SG9YzkTIEEXLKxmRMjMVs0F5HrVVtU0qpOzS3C0mBRtFAVuydhsWvC0coUjNM3eIzKwLnUtg82BYupSDgA6mjcGs4vV68nRpF6G3/ve915erMVPDt9678uf//xnv/zH33rvE/OjYywK58vFbP7//Rt/8/e/88NW3Q9/+NGLZ8//yV/71Weny2py+ujefD4rEwSxLrOoK/yHiMTIxL7IXv0U2m5SCVVEJKaURLMe7xDZLJbF1HJhKEQVFNM21i9fnhVkZjKdTkPTMoJ3HjQ19QqpAFAG8QBKQOTn0+nBwcHq+gJJcj6/qoAqKhAVZQmIoYZUMLz3eH7/cFYwigZ2JY2gQnBPg9xvO0Jtm5zG6uYuWxhT/k8WBb2vDr/RJZuufHzLVN7bAuPXu/lkBOgxfbivKkXdEO72nOGNuzFcZayaVDCAc0rGdm/hv1JNP5XobQ8KcdmsL8/PXyxf/5AXcMRl+VLv3z+aBHcRr9HaGpJX8MHEWtAUQohtUFVi5wrPhRtyhPL2RpQBiaLrwHh2M+Pe41yZdWnhqoRyuWq/+6MX2kp89613H9y7V5QTwgNDNOWYQIBypZQxpElflkc1IfduFkRChLyFDMDGeevNhj0MBQCIsc2ct6soZ12Xsosm28FjUaHSI87nB+ZXE0FkIrYBccKMcchhZwAwdmBKmNm/guTQZALMzmbgnPeMBLmEBjEjgolpQNXWzHvPSGnkgrZtRXWbtNghJjTIxQSQmQrCSnOs77a9aJgxum9QPUc3xPGHsQze8PfRyXcIyp+Ihm+59mbv1NDIgEadUARAoEGIIiJZp7GN6hICDHK3e9agKDAgAuZR6k82RNxA4Y48poio0h8YOWpVYIgy7f9mDI0hyrB76KAd9h6arXEbawDjX230K2yPM3U++M6dPojb4dq8kKkv4X6r9L1l6ogI+5ofG6OZ8PDk/uriTA0nkwliOSvPrpvIJRtCAgAkTzzxflqUhfM0MqqpK1DWU51pH0CeNBkAmWjTNC8uXj59cfH01bXQwad/9pc++3NfWdy/N5kvjo6Ok9RN9NPykDD+Z//JX/9P/uZfa65OnauOjx9enr/8m//5V//Mr/7x73/4kerJzx5/sg0tmLFEZgZQQEV0RJQsl0vDvKmumJctZhS1GKOi9a5+YldgVxONm6a5XjaXy5UBxRhFopnF8ERie3gwe3B85MwmVZXawM7YgUeMZohQFG4xm4f1FITJIaCgtaJt09RtvZ5MJikFRJhO6e1HR4cTV0APmG+7ixRGUtasm/3+V7JbLOAslHZI62ZieBMkrJ+0/eHvhiNLYuutRtnAm3M6musT9jPk+u5Q9iOIu9GJOyMI/cjlRUgGlusLMCImFUziyB5Scc+q1MYrwOWqPnXzuEiLRydH16cnk+KH5f0DuUwHs2JWwXIFRGm9boIETywaQcE5LsuSmbMvq67rdl3nqLnCkRoEUYdbrs67XRkA0LKpNIg4d0W8br599YOL64vPtu9/5ujRvYMisT8oqDTwAqzGjMkpdr7P7BsAM0W1Tgr2A0JEyo4NDUQtdOPSVQS2bOb2HHUToISj5EtVHew6M+sy183EuoWISgBA6ISF2ZFZl9CCjAY5mloBEIjZGxEJSIoDdgMQkFiH4idAxWQAWlIA51zBHNlc4X1VIpPFdBsBbCmqmAsYsyEaOuaSuNSsLSH3ZEKICtBFVO0T543aZ68w4VhaW7+7eNv8/lfXum7s2cq3tW5/cdfDnD2x0sukvdImezJp9/VhM2jZ/B2vx+E+zKyqkiu057UuPXT2SPpuejuK/8eRjB93bNwlHCm7WzzENnbz0LIHVftGRKoK2e7cq88Nd+pV2JvXOTfdTC1jWLErJ7ODg8Ory1Ox9PDkWM8u6hAcGJkxUMHlrJiUvvJUoniDDeFRTuRHREQBMEKN2ratRGX2bdteXVx++NGzy+vo/HRxeH+2OFwsDpjL168vnKdqvpgyRG1//md/7mu//nfV0tHRwfOnrw4Op2aH5xeXf/93f+fXfvlnn7989qn3jq0oTKJZjtVRADEUy7Hlo2FDRETdaEigRC6PJBESOwttWU1fn569PLu8//idiv3ldW2Fmx++FWML6+XU0asXz15fPiGVdx4/WlSTwsCD5eQ09EXheT6frS6PEQpERlUgBUsxLJOIiZiac/DgZHb/cFJgRI3sWEyGrUvE3pECQLcWWdGbXFCGeMP5d/BtNz5jvPxv1IvvaLedPFIZ3vg+N5gjG8SfnQW2rQ4PvCwziZEUH9ksN3Zm57abmwsaeDQHTKpBLRo26kRWSBq1bcNyXTm/KI5mVr0+vbAkNGVy6XDuT478RYwJoambCACYY/K7W4cQ0rWGENq2NdXOrkACA7+7b991ZuBZY16fDwZUAmMDp0bETYCPXp2dh3h2dPXoweGn3773zsnhSVXM0TEgiSgpdjG9GzR/MyXtTBIGyvkLjIyMiBMxAqu1S6DMaSRCDKqSJMVkhBlipCTa+J8zRx72g5l7aMwOyYFAiYhMFQE0xw71UFiICBAAOEv0jociE4li6uNZ1EBEopliwrIoFRGRVRU0V2tMBnF+cuSrUreSJDMS1g2BvgagqJ07EJmoAlcYOyAmctCxURqBhtxq9e7I4GHucM8C3qfMXjfaWhH/FajLA7Pp7rxBBzPQIXyr80d1e0MIDH2lP8xI9Cg9wugN/irb4KFuZNswCIiYp3ewaxE5B06PRVY2f1Vz5EdnZyBi3giGzqnSPYWIAFRkV3MdVEgYjzD0XtM9C3i03LZ8TuNn3Ti2N1lIW1ra+LI8FNh3I6sjCrZaraBtcgi5tu2sKo/mc9+2dbMWRfY4K8tJVXl2OXSuC+znrucEXQ1QIkZ0AFQAijdmJvYhyi986ReevHgdwTXmv/eNf/Sdb3/zc1/4+Z/7hV8i80eLeyJ4fnr9//h//sf/3D//P/viZ3/uL/75f/qTD+9dvj49ODk4mEx+9Y/9slw9WxxMl6uLo8PPxNBoDL07T3uQne67WUI0yj4QDTG0SXK8J1n2rRABILL/8MmzanY4uz/99o+e/cEPfugnU+fLVfNB09T3T44enBzef/SJ+vKCwL7+wZNPPb43n/ijRdUFU0oCJEdwMD8KCQlQQRiNCMyMAaQJhHAw58ePThYlccoGFg3yb6x5DZTQE4P2thzcKGjvmP3xRI+/3uWC/olk8A6J7x/fOeEnuvMd3G0s4Af4wMw6dldajuy4RZAPB7dXBSAACBmQCZgpsjApoWkTPGMknk7nZMokmOqAp/PJEZ/cO3gwXZ6vwPGZfvTiNTjwhQfPrJpExJKt0kp0BQACVlWVc04k9kOHRVGk2I77OTIObH8AEZGilWVpKkGS8342P2hivHzVfOfi6cvLi9Or6+cPT945Onl0MLtX+QnDxJWQgVvMdbSFiuiwh6aCgd/kHS90qIAGRiFH9qolAMqmTc49kK6gDxLpEMIw5lyb11HFvoozZu03RiRCUyIGTATMrA6daCT2aL6bSRMUzUj6gEDYpY+CKZiYgXbbj52FYmYAyqgP3nnLTcqogo6HVDTErfKUWyQKOf26MGDiGbupOaeEOai1A7zpKG0rF2gjX7edFjcuihHVbcGP3HHmPsXCTe02W7rv1e4dcgWPcZrwEApke09RMMcOgLaRX3Uwv/pNjB0r+eah7o/s+Jazj3rv0R1uJeVYAlUQVTNkJBtVgkPIalKHsZWP622DMpjON1j2venWJQjt9n9HpRgObmgAt49sm/6wTSGjsIlO8XDEy/VS16uTg4WvaSnxcDGbTCYvXi+TKFExm7hp5YnNIFpfchHUbDQziGhcqmpZFWU1V1UxkKm42XRWLd5+/E5QuW7DZ1pdruTpR9/967//W29//ssP33nnk1/80pe+8kvPf/DBVz7/hcVkeliUVy9fTheL189endy790u/8kf/07/yH/gQHx+5spqZgWiHhQmbZBMFE1MxEwQjUJUYQtu2bfYTZJ8BcyGiq7peLpvF0aMPX59/58NnX/zlP/JP/6l/8uD+/cXB0Q9+8IPQ1t/4/d/79b/3taknqVc/98UvHjx498np0wfH82rmZ2UJlsDAJJnodFpqHQ2NJNcaZ4suBSicFBVMp9N7h3ONKzR1zjeQPNqAVH+rSrVNGLBZTTd5Vu4Uc8Pxj9kD/knt4J2733jkRmn6sTccK487P2XrKuM39Z6fLUTW4XIEvrFgMOIWlOBodQGiEipjUkysUU3NihSUpk0KukzoygcpJaXQykVbuLff+tT07bfuPX774vmrAPrB9fLF64uCJjEuo6rlKpgOLafbe5eLDeTtEOe8cy4mGXJX7hi9HeWjsAqTJbBEAGgqwFbO3CRJ/er0+uzy4ocfPXnvwb2fefftzzw6vndYVVbk+Kf+EYxISAaSiDpAvPEjTJnZ5+QU5gRdnJYmSYgDjgGklEQMIFZVNfRtTNIpCfS79GhgagJqKYkBM1PiLg415wqzqUYAICZVUBFUQxCwnJ7cexcJhmp9AEqc9yvBHIMheU7GR/fvUeFjW+fCLzvjeZNIAGBGKgxKdiW5EtibG5zPu228UnZk8I3zNfyQpW8WwHcHYf0UK/G2tq/A3RHRtdXtXqIw+1Fvsx9ebOOh3X3KGJJzuJWZ6TYCVxdUnBO1CLZ1m+5a5ux7MEn5iQgAfX3ZPJrYa602IGyM+AHA1hrfGgfHm9gFRBw82CpChrrngh4+aF+2K2s3HaTGG1vA4w5mDqaICuALBrWmXh1MC4F0fd0SQtu2xIaWiMkX5LwhihkYCWhvmdnOqzEAIHvviygpNREJy6mXNs2rMmEqSnxrOicsP/feOyr07Pn58+996+t//6u/+bfeny6OPv/o5MmPPnxQ4DpQAQRqbz9++9vf+u7FxdUB2v17D9H57BQxS+N3tM1mlQEAmiaRFAIAeO8xo1cCAOqqqU9Pz2dHj7/zw4+knPzKr/3pP/an/9vl4Yk6t2zan3/wNhP87d/4++dtPF+2TuLf+Y3f+dxn33t3BrVIK1qImAgiEqNHEozUiCIZKgCpuNBi29BiJs6h98yMbV07h0XpRJIjGwLyiTotwsyGYRzESib126PNdyUx7tVNGi8oR13Ope1cucX0R5Si20xgcBDt6Psjmrsh2GFz0+767LaS/HN3DgL0/hPLEc7ZnkFDHLTLPsnbVME6OLuc30KkRGaaQ32xw/eUYfHvKq0bXX4TwWYMZqhswQSACQsCSBDNRy+HbTonU/NalAtSUoXD6XFK5fHsXkVFndLyql4keudk8upqZREToSKpKgEUrgC1GGJBIG1j7KgolBC0K00qUZ1zQGQ9DHyO++xl18ANuwBa5bxRyg4YBQ0EUYWgKgtTFJHlMn1nffrsYvX9i4ePHt//bzyaHc9wVoomIV8wTxG8M1a7ztE2GQcXEA1URBwSMBM4VQQkXzG7IkmoG0whqjaIHTCTSFDVNkRCR84rUUpESR0hM4u0zKyIYAlzlqSqqiAYUxHr2pcTLnyIjUGRhAuBpm6Alt57dg4JTFRVhQomEFyTiSenEk1jNeFzrmbO6fLSa5xW8OL8pTn90le+jJNJjLEkZyPlBo2IxHICLDIgCxggo2NJwK4ANwE/EzdXN2OsPBTSJ4kiDrBHmJ3VewbcZgmMVmOfcgqsaJZz3rtYNEsGzjgwmWeTrrSkdaXz9gXGrpYJN7UhNSD/zSm6/W86WF9gkpGI88wTsiASgxsWePZFIxIgGkaNCUwMkZ1G8JxDCiFYB1oCADkPsKtH1ucsAeAgq7Le0Y9SH9CMiNzBOapucS5A8b5YN0EVrFsJ4IlUJHEO2LMcBpUlI/b56Mw82OZkQJBjDU2xg1fFHMBpGESREBiTCqjlosioFh24aEBorojEKFgiY4URdMZccOGQkB0yESCjSxoRsedsmUUhwFB2OXtQFAb5ZEBEhoRoqopgRFSn8LAoyBoszA4PuZ3eE3vx+hUlPS4/cdr8wbSYztx8Psm10koDoU6XQkiUOUOOT4eUmJwJRIhIbjpjUU0pqZIYEBQTV0AkRDmYMCI+OPrEl+39p69fr2N7fG/2s49/+fry04Xnq+tTED0/fW3WzOvvfeVzDw6ODhef+EIQioiGDhFJRRIQKpZ5tpOhATuQkH1uKAGtnZRvn15ekwv3To6e/ujsatkgtN/66u98+b/1Ty2+/BX/8MGqoHb9gsE7KguVf+/f+T9+53d/78HxyfLqum3ral797vd+HD51v6gOZs/be+8drLGOGmduCitlZj+pmiY4AFfS69fXCXUuEA0ez49PDtiF83J+wCUGXTkUBj+KB+w854SdEmYmakOpPWZyKQXcRPV2yRcjsXKHJq1mNOyIuluF7o7CPqxh3JwwvmQsaO/46WMb7um8d7d95QJ7BXj0dfxSu296dyPI5fLArEc/NkCkCftVODVZTov3xap189oR3H/rc7V8SzB+85tf/83f+u3nL16pgi/c4sAtL1rpAZU6rVwVESVXQe25OlDX893ozaFoH26S1aAHW4Y+bQn7KI9h7lZN7dEzM7lCLV1dLX/wQfv0+bPwqfCZR/e+8PDk8XxegLekYuvozZUVZFR7FUnCSMyOvetihx2zAAMDqnCkSM5PUurSq5p2HWLMpnGzrsmx04kTyOxGCD07dD4nP0UFNCBCAjYkSCmkCABRrNCSmWPbOudCYEVABDHTmNAEcy4vrSzFlFpGQq4SF4mIfDGXUEQRtDbWdQg8LR++/fjBO++9Xq5gm4A78iAHZogOqABkhLwzTkAO2VExQ666QoTkgPDNKWf8lB2DODPkO+iwk6xZ2+6PjHXH4Q4f225UBbqgRaMboSxHC4ZuMfg3huD21621v8UQ9pze48/jy/tft5jJcPJg6cIQUWXdpslgre5csvM4BEBA7aNKhh/JsuPekCjr/ZBR3yyjpphzLmGMOdGfmYhCm6AoBiMYVYlyuZobcqh23hcA9IaShbuwhav1ejY/UA3kyuP5cQ12uaqPZ5PF/KiOH+bOmBkRExDYljthTDOmhpCAXQ5OZmJCI0TNahxqF9NgyIgKBCpFVb3z9kNRMMIQmwkfeXYzFEa8Pz9k5unBgr2j0hN7Wa8doDGidA4AAIsxevJ9hJqBGaiJSAhBEhk2xQSYFyq8DpdNbImrP/Xf//M/8yf+9GV59Kmf+9kHR7Pf+we/KY2U5fzr/+Br3/v2H3iEqS8jrxTpcDZrlsvv/uD1o8nkrclJXa+4AmNKIYpkHLkeV04xxigiTHgwrwqmSVFURSkiqlSWPqSbFdntg1k7HdYg70/xT8EctlzQd9xxj31sdXFH9N74effmuyt/L2wS4A3KWvc339thMt1ahAD4Rve6qWX5BwKKSgYIahaXZ9ft+tRMcs3QogQkV+P85enTJ9/43W98+/t1HR89fvcA/frJi8v1tWoXrQmIoCpmGaeWkGBU3Sx338wyRBSoWi+drV+ag541MMEt3ro9zmVZ5rpxiExCorCuQ920vyEf/OjVqycP73/p7Xc/+ejeYeVLTgVYHcUzM5Jj9n2ZcVVDTFlBGOL8CB2hAEBZgJTTopqsl8V6vW5DnVJiJjWLbRMhZKWhKApC0eAQBwsgQzgjIHhGVC3LMoQmtDUzN00znc3EzbMFIwgmEc0cgifWNnjvPVuMbYzXCuqYAdQ3V4IWUttIOz2cvfvpT8yPD5+evi7KyY0za4CKuc5giVQQErADJoKC2ZOvgAvjClxB7IHcG6qH29LuZlfQlo57k3sWtpP+BvXR3oCUdzowuvmN1266NgYJ/9hHDOmwWSCNPei3P+vWts/v9p+YutRzGvyBw0/7PGo4Yv1/+Vzo1Z988hjtMyc15Rnpd7IJAMqSYxMiwJyZ2ackMcaqLEYrsZu2fUST8VCMuwR7XsMdejCzREam1fywXByFpgV288WxBHLOAQAzZ0euiDjOuUxbrLhXkkxNCD0CABCR64N7iQozE7McT4dZLyAQYpVUe1cUJUdJAJbMwuoK1m0Toyho4VrvThaPytl01bQYhUxATFI0UWQCYBHx4DMAGWofLKFmio7Lpr1C8ocHb5mk84uXZ5fLw4NP1WZ/7zd/8/1f/CPf+p3fm06Lk4Ojj65evFqff//b36mvlrFtPnj9/aN7R0VRiMi9e/eevnjx8vLyvtMKlo/fugemUWk6XYRwBQA5U07NYoySxDueFlgUUJW+LD1ABEMiB5oGk3Vgp2NVCREH0KqsJo63VHIS7I0kfVPb4Htg1oa2p2qLFHbk642rGnpf6H6nbdssvn1J3wBcPgicu9nN/iIcxNXuDfGnkcH9qOTe5wzUpCm0YZWdlk29LBxOK395ef7jJ89+8KMf/vCHT834U5/+VDWZP3l1FoO0bVTlJGoARCBmpkY5i4WRmZicbZvmRgQiXVAGbRxZParzWGbvGhzDUFjei1IQMejzBh17ImzX8cPVqxevT//x6/MvvP/u5x/d/8zJ9J1FRUYgSFkwEQFhEklJMnQ0mFjOl8qkbZBrfDok51xVTqfz9Xp53TTN8voSAAAkq1Eq0tSxXgtSwczMvkMt6CP+2xQAIIQmg2YgYozRUvSVIaIhqhmosak5Z4RWTes2agoEwXE0bSCoBqjZ1TFMj+fvv/upyeHClYUSz+YH2bze0U6AUICACuQKuFKukHy3A00TYibngQvNm8F5m/x2obIvdGG0jvbEg+2cZtu3ekP6vOPM/dWKnXMsLzfaX3f93T7+6Z0nuk8FRsQ+++u28enE3F33HAknHMTkTa1TT8Z3N4CsryKAWRccaCCj7VXse2AAgoaI3Wl5588AeguUENmwq/aEgIjMKAZ5QeUEQhFzbgvIqFuPo37tM6J9CumO5wLo28aMKSYSNCtdiVSt2qXG5IpJxZO2vVZV54q+D9nKVUfOhhfu2QUiYA6GMseWnaDYhbiRqIJZLrWSS2IgGgK0sYlJ+8yhlJqmada1MzSA2cFiupj7auLZWTJoxInEFFNbm0REIyiAgYhM1LqUDgNNpinr0yotY5EMr64u7p0c/9zP/9Lr07OXp803vvobi8fvvnzy8r0vfvETn/30q2a5ODkokH3BSDadTpf18uzsfDKrju8dz2az86vXq3pdR9+2oBJALQrFwhCYUYNpjsw3EVAoC/OsE4+OFEGLoiBCSWoKhiNteDRTvVI5nuVdcgWAXA3oFmq9uSEQWO+CvlFZ3lcnbxPA8CZL9tZ2k+07egjZx8hgGKT7HulnNdN6S4KI+iIVb9o6HBkwswz1ADHWzeqSOKLOUmxj8yrgub6qv/f9b3/zm9/8/vc/bCNMpvPQStNctU1yrqiKsq3T+KmZCzCzERE7QtJe5e6fShlFb0MQOQqzhwneWfkb66OXyvljijmcpMuZMUA1VNEZkACHVj549vrVdf3hs5cv3n/0xU+8/Ym5p4KMGSylFIQAyXHpqYt8JjWFPm/AEJl9n4QJ3nMWw7k0Smjb9Xod2tqGGohgFWbMbo+ur8gKAAC+KBCxrmtmzrmezNy2sdHTPMFowAjM7BITkVufhpCIqKxo3V6n1Cymi6Oje9WD48N7R9V81moSVSNsQitRXXHz8kAuiQt0U3NT5glygUSIrFgBkZEDJiQ2ZNgrNDYe/7GqunPa2LDb0WiH47CnvFKHhdZv9P6E3q2N+nuDb20keo0AB3k8pqibN7G2xMO4ac4u+5guAYxsQTIAUNkk3ebL+xHoPVvjW+QoS1VVExUzI2JTVOvioG6wIm44AoOhOpSvpgy6bdADeyEhGm589CHEyjORqmqM0VXToijuft/91x+6l9+Xxlt7MLI5RjTTxPVBVYoQqk2m07q9smAPH719+uIHVVWJYNu2IqWrCkaOITjajavt6WfTDUSGbrude6xA7srUaKf6NPXae48gKURCTikR4PHxcWvinKuq6WQycc6FNrZX1yLiCg71OrZrRnDOiQiKMDsJkbw3VQBNsbUUwZSILi+ePpx/fjY/Wq7Pr65feTf/xCcfPHx7ff68uW41hqtv/J3/9Dv/YPr4U5/kxfzR2+8cHMy8p5cvX5pBNaGq5Fevn52d48msOizg4HCaoDk/P58vDqpqaqgeCUHQRFXJeQJkhKqE+cQdLSZMFmPwiwNCizEw8x1VeuBmtSlzg82EjsofvQkldHkPTkdEdLc2Pbr4RtfWx6vtNxnBuvMZbYvN0ZttCe+r3vu65/6RN2nMpJABGzMKsGoIYb0M67NqelA4v67PpG3PXp//wTd+99vf/UY5eVhOy6YN16ur4+N7ZfLtullet12GwEg5RSYgQnJEDgkwSVeGjxABkJCIlLQLBOjhWob0nvF63n/HkQXssq3ZPblzKlCDsSI3UU5Bl6+X376uX9fL715d/MrR/cf377336OHJvCJQ0JSR5buyPCRoYtZJYFRIKkTkuQQA1WSq3jvv4U/8+//Bt//y/+ji4my1vEopqZmq/vn/6B/mfv7NP/flRJQB55iRiC7Wy+l02rY1Iq4aCiFMJhM1c2EDtItMwISIYrrgGqkKEV6sVjSB9z/1ifc//eWDg4eNnRritcTyn/m3MyvS/9f/fD6ftjHAHg4DAGD2P7uSeIJuAq7MBSTwj/45G5EU/d5/MQzsDoUgovzcr46P0O9/dfh8kw0KZga/+Cc7kv29X++npTehNmfeYC2NRCDst9Hj9uXuVh8BtC/t0EmZQUAOdnAXeLB3Me61nZ/6noytiu3b4A012hDHHuP+/NFeknX5rLYzMmMX3u5O18hs6OpeQwd1kfHOuztnSBUE4g2ARoeoZ6BgRAjSOZ+G1ZQ/dHucmyrRu3ve47avOvdHtonTOl+FkUXVkktfTmJaAygzGsh6vfbeO8cDGIiRDWW/N93oxwWBzNABETnsyplxzyJUTJBBQCzXvzAkorIsnXTcQ5JH5NlsEUtm5rZeL+tl6TypUQoeMMUkIWiKReGI8lavYErMbKpgpiIak0pXnvnkaL6+XrfCXKj3PgVs6iTYPvzkW+nJ80cHi89+8tH5xfL0yY9enZ09VXhSXz88cBx9kFSWfj6vEPH45OjEM8T66KCqjDs0WufIO1ZlUgAFNQJk5sLDrMSjaXU4m4W0sq4clmmuk7aJosfxZPUfx2J1bLJ2UDyjyb153sczPkCdA8CtWNBjtX2HenZU9f3TbhTS4zsAwJ776wY7+FaL4w3aWNO8bVDu6Of4Ptkh2y95BVQETZenQC35wimI2uXFRy/OnwVwcRkU2hjDZOrdEs9Or66vr5FAY64H0iVLeqZcCCxJ5hmYA7a7EqoAgFu8TDM2EBMBjXUm27ac8luNX5AMQFSS5IRIIspxXlEJ0bwhIjtHMenzFxcXV8uXk+fvPnz4paurzzx68OBgPvfe5Y3PLv6IjJAh11cGI9Ck/VpGgsJMRPXT/9t/DwC++G/+33/4r/5PJcUY27ptvvLv/tWhY3/2b3zjr/3ZL4uImRAaEdUxDUHJZkbsgygRTWKBiAIgqiFaAG1VmxS/2Vyu1q/PL66Srn/mi299+ld+sbp/sqqt/Iv/e4CtggnuL/7bCYAB9P/9L92gAhojOACn6JC8Y6d/9M/uk4H+wj+RP9DXvzamGf35P3nDyf1B+v2vDk/Mf/fPt1/4ta5D//BvbR3v9ghvkN/7n/+wzWi0kLnfIb1BrA5tsBSHt+tB0PrObzvr8nsMkvjGzt/Ic/bPwVxi+ib/3CDybzQSsBfA3eardiHawxiQgRJmwwbVCDu/pKlyQZZExLKHxvqc3R3bqF+xt3V/y0cyRq3CTh/aOZnJabtqXVmp6vX1ZWqvQ4unTz5aLpcAwMw5nz6lhBjLgk2Ge26mrPtqNKB6mxmSIhEmMjBETgQApH1y32QyzUNdFIUBOs+GHA0wikZBUQ+EksCAQFQ0qRGDB78BsZekRAQoJKCCJqACAGSqqmmdyDcTfxDNS0TvDB1c1fDq/Oze/cOz01evnjfHRw/eu3/4aOothqPoP/twtlrdR4DLy/PZbHZ8fHh9ff1gMVedO4ZF5QtHCLwOAhJKIk+OiAwCADqkwsGkcoxmksgACWOMTEpEAx7+zhyNBAQOaTs9vQ2TxTtVfz6mbTI/EQC29oDHp+3sNW6skJsk7rjrO4L5hg78VLnFP2kbL+a87rJavfPoj5XBqGZDeTIwRHSEnt1M7fzFd4LxxH/CRD96/sGzs9eTo/c/+eDdl69fXK3PNTUvXn54uYSixAKwbrsqZ6qKBK7wVVkxc6ib3Sd2S96GUmx55BUy3Pxu//M0iegtU9PtwDAgMGQHnqRU+jmiRhBBIHYkyjG6q/DdGF/UzfOz1x89ePDFd9763ON3Hh4dlUXZSE2E2S6Hjl8AgOZoiBACWLa1PW05GgiJfVkV1eR7/8o/+7l/7f+aj/69f/7P3HvwMLZNbJuUgoEsFouQohlHUV9UyPjsxav1en1JDsgpWJPSdYqrGJehWYd21cyWV0sn8Pg+nNTh6YunDw6P535xN1XsTLeZETkiB84j+xx5lu64/qabfGx7Q4IfCznbVMbcrKafYtUMdxzW+B9+5Q3sqSPLrbZxosJINA6X7t1MR0BsW9cyot40dKqKSMykpgAyXDVWBcYm4A0Fk81Mlbb70r0UAuTiE71PgjOUh1lKMvUeUUIIKaViPnFcNE0zL6fDGswte3Ft3yGXfd2jvGQdBS3jxo7vepkvbNt24X1dN8twmlIIoXn9+jLgvWlVpYbbNoC0iAsiUlGzO2wWQkMzA8lOxp49alfeLKvroAoEZshobdsWhSfHq3VNDstq2sQ0V2yaxjn0hQ8hpBgcAzHHlNh7YlJNKgLEmBX9GMHUTCiXYzJTUxE5mB2frc+gdp7vo/etXhEUjmczJVu3R5PZmt06rkgcs3oHb5XOHVWvXzUHBwf29vHpq9dzr2+/dZLacHz/0apZhbaNYpNJWZG6qsTrhpnZYeqpiBl8QaFp6vXSe3bepZTQATsSEdcbPDv0NqiSvWY1COAN2Yy8F7qt/H9MQ2TXBXXtSc2xejuGFdyZ4G0la/f4bSfvnzB8UNhYm4OhZwDZMtI8AmDdYlFDQ0aIXZ1uVkUm0pTQDFGMzEBEgHIlaOAcizQ8dKSz7mJE5yYijOgMk5kBJGDlkvzEP3xXPmq5vWguvylq2HJl8/cePJ4f3r9ctqunp++88/7BQUovn0MIZYoA1NTaJiiZymnpS5fTc2dllVJKEomJvc/4skSEvvDkBCWFCGaMZKiassGM0CEP5IBGAkDiLcegUYewaCQGXZw1QN5qZO9ZJOToGTKwGAEAfSHMJwDtuvnh+ur0qvng7PpTLy8+9847b9+///5sOl9UIdVGhmYpQUmFhsTeQIxVjc3QEtoQhwkASRDAI5oRjXcATo4e1akB1qQao4o4XF/jBC+urg+jm/Hi7/7gH/9nH/w4zGawgtC0WR1U1RAiKDBjaUsxwIquEl2ui+9858k7B4f3/tJfGx4R/+N/yTHjn/s3NyT9F/4t+at/abxCmDFSg+QdGToycumX/8zm/K//ejdourFc5ed+lb7xtc6Z8eWN53nsdh5O1p//k/h7vz4Qm/3Cr23R2O/9OiJubOJf+dP61f8PFs5aNEMiYkBREjAgIyDbyOORDrGB3VbaLLHOPuwZbecRNTDaaO6Z72fbVwHRcthdF4dkAEYARhlJQNAM0eVyzUZI5NQSgaApGjpkg8jORAyxq4dDlCvDG6AZd9VCCdABInDeifVEqmojYzRDPEvK/VcZsRADNhMDyxUoHXHS7C+hqAKQC74jAIJZ3vXw3nUoGdCtaiNQwAI7TB4wwxFxcupiRCQnPKCCGTIQ+hQkoTpHzmHS1Eg7qabOsZopoxKaqGYRi6kPydnYtUiGtnFfIeJoLkCtW6KICGoKZt2esKyRwBnLsrm8OHv+GkEW1eukJxXPyK+FQLUIGqcOIFTGwswEmMEgCR0BdoCyRIAoGlkQHZOBJTFyZmBGeROUu8ADUIeErAaWtPQFE5KspiZtgKL0EqKaQpLCT4Im9r50mkIrFgEVzHJlbwZARpSEAGaJwNQkhoYJ6qDT6h5zaViHtObCkyLLVVktUpS6ri2EEtEzAEJKyZUzCeFgcQIqHvnxw4chSQzJO2pWy8r7apJlmRKZNmtgYwEvVQvgyVnTzBkcSTU5AeTJvARQM3RcxlgXJWtXVAvZBk2uo8AdATFUs8bN9gH1fg9GIAM1E+sKbzMib6F2oAAQGeY6JD9ZNaSdtm9Nwk1S9rb2sWbEbaYG4kbBROwghAw1F3TsJBDc3I19G6j/4Yb3yjazjRQUZGJm9r7xi8O3Pmnh7NXT77148WzZLmfzclK5Dz783tXF5WxePnh4bx3i+ao2DlPHwPHyYl03qSwn5KmNQVJ0roTsG8q6M6H1EWfDQ8evCSMQg6Hz3ZHROyrCUFpr+/U31kaveYwVL1PV1Ab2jhw2Kf3w2dPXp6fPXr18++GjX/zkJ961RyezcsqeVAM0yggTHyzlsiugmpFnaYTVwoxdAVdRFfn2X/7nvHPr9doXxaScXl2fo0HFxeV13bpYXNs7vDhD/NqTH/3WRx9dnqf46hIdiAAiFExEVLFDh47ZYuMMNBkBtW2QNL24Wg3Pbf/KX3aOAUD+6v8CEekv/Ftdf/6Z/4P81b80piUTVU4qQixAGyWMv/FVAMKu6ifw1782bPTum2X89a9tWf2//9VBrI7PtNEJBCx7J8MI0ckGdyui7RSm/2nbNuWME4t3u/qxzTrx5lXVOZf/MsOw/sYmKfTrDjOlbq2vvRfrlYZOHo0041yLELrV0cFSWu/c3vHSYUYXHr342NVntsGWzOZoZh3ZEhyvIEQcF4foz7fxZvDGwXDniO1EhN122vgmKan35gg4JbJoKlGlXTVFlUIIIQbiMkkwy7Cg2gWld5BbNIyvjXI1zYx7dwNqjnTro6UHvmoK6HLBCxXI+YKKwGyoaqbMHgBy4hE6QmIiEugC5AAEgQcwA1UFlYx2mjsgJqiAquR45NXDGBpELApnkpqmqVfL/MMEFdQQlMAAgQBL7wp2xOacY2bQDpgMwByQQM56MAAVjYhaFFBNXFG4qqrKsjCTDBDdT/Hd03LntI7njgbwrPHCvyHdINtIW8UY/jBtX/re3azDUh961kVm7gjIm74Oj9szrzfboIjIsNnzMOhyKrcesfHD3OS8zb8SEeJmkROisiNy5cFJ67i5ptl997l7nz98+Kr97X/0rW/+XgsutqmqqqfPn1+v1k0jZiwNFFVZTRVQ0Pm8Z6BqIoJ9/MsgYsdPx1yPSDWrAWP1Of8/Vg5GA7WFInnbe8GeLDGzSTExMmOKCi3Ium6Wz19+dLl8cn72+Xff+/zjR5++f3w8rQxdRIumvigoIWT2Orp/d0MQJAMjQkRmQgyQuCwUVFMqHIe2Xa2DqXkgTfGFhN948fJvf/Pb63M94EpBHQnySH9SM9MYkydi5iTJFGOQKPDH/vX/Xz4n/kf/K+cdAKgkRfMM8Nf/Rfjv/Dv9PcaLwdAUNJm0oAnGwAi389JuSMeW2f5O/PbJ+8fHCpb9zt/Fr/wp+a2/BaOtnw4bAAER9U7O/pO2XZbxxmt2X7fOu6GZRPt8pK0HjawE6PTikQd7/CEv7e5z94zs6NrtXh6XQfBltCykrfgj7Nt4arbGPDtlRh6+/CK2B/aX41WHC7UPt4YRvuaOujwe2J4X38zg91nQ8DX/5H1BBtLW0DZO4/HhARSTqLRaNTHGtm0n01nbrmezOQApKmeWTgja3zNzLTAzoyxxO8EDiCiSEbuAICOhdaacZ8+ohI7IiYh2iUSUUuCiAGY1SyaI6DwX3oU2mgqoahLVhMjGYujJsmRMGe4NTFWHoe7KsRgCAZIBEQsoM1dlMfG0dlDXJiKMFNs1IjICgpEAkXPs0Dukvnhw3ruWjEkLZkaWo7JQVTybVVCUeUYMEVUlJTNNZsIOftIkorun0gyGinA38gRFIERC9zFAHMPa2H/e/mq88SYfp/HRaAd7Y6fjTbYvYlcN10ZHtC+Npz1sj+VdHEQbnD+dtFYYwXHskP6ODN7wBUaAjJjRHVcgQUr1KYqRVZ4eMODjB/d+5RdnhwcPf+N3/2EbG+fo/Op03cSinMUU2hCXCQUImGKMZsbk0ZskVEib9+1lMUC3KWOMqARg2SmlYExd+mzuLAy8pk8/UAQC6pAKEHGz7T0O8ejDPxEyeh/AALuLKUkSQYdlMVXVNqXman16uXz2+uKDex994d23v/CJdx6dHFToiciSgrFDMhBFULBP/6//3eExn/5X/30A+Mf/yr8AGaOO6Ev/u//Ld/7l/3Hbtik2amHdrFfL+E/9h18bLvkL/Yc/VsyRSU0dO0TMxTXIUYYcyhNORKpgxKKbt1vXF4f+WCC7Q9kQRfRGV4+ZMRmoqgRIa6INTHS2d/n3vwoAsh05tR9Mn01Y/vrXcC8iGgZHxXCT3/0vFAB+8U8CgAFkH7X9o7+zmZse0kJViTtb8/ayaD9Ze0PpuxGZt0hnzPWCe3BjpEEydWrY6FbdrtGm3i122d+WE/xyeOC26mlgsHcr5ynFbbdQx+MGU7WzM7MPHBF1VLBI+wJciAi9a3tnQAQ6Xz8AGG4qQXVCt3NL2s5VN49R78m48UzrF/zu+dt8idCl2LSra1gvKTSTyWRycL9WjvKsqRkACCSm2nRuuKERM0NkJeXOKci9WQaQmWCPupHxKoHQCAk4QzAaAhEjIZMHYiPJtp0mLtj7ooDUtm3LReU9i0gSaZvaJGqKqmmQ7gCQJMDg6sg436omwB5EwUwAM9QJETCiKaglERVmnk4qJpQQAcDaNQI6zIyRmMARs3NGfeUYFQBQRNWYw8LBiBlLz3VqkJQRkMQX7AvOrgIAQFB2Oe9xa5o+1p68TcyZGWyHdJnptmjjDodybAF/7APGj7lD3L65Nj265w22bD8Eb+QXQGQgRCXsUhoxR3VmJ96mmJrZANg77m3f55tVDTPru6EAZApmCEjh/CNTtRhJ7HodRP1kMnv84NM///PxW9/61nq9rtfXqybq+lqQnXPrFhEKVZcjVZjIOUZAUekZh5nuBpkDoBFmbLsMeI+j18l8p+PXves3bwQaAm7iTLZE7zCqNvJD9no6BBUlICQCAgUUJCiACtV0dtlcLD96enH+0eXZF99971MPHjw6OSbL++u5sIJ+ZiR9h/aZf+3/9J1/+X8CAD/zb/yfAeBn/o3/2z/8F/6sYjy9Po8G6osbp/U3w/K/RrRmzNOpaH18KggYqyoIF14kEbqQNlv7z189EZD57MC5wgxNTe1WigU1sATYGtVGBf3GX9E/8d8dfpS9oGX+xleH+jb8ja/Kl0fe4z3RS7//VdhfEb/4T4y/dVHQv/OfD93bZdl/aO/UuO2z+DvOHH/eOTnDlcQYsxFcFIXZlfVYkuNedxf2hXK7g5ufbvAN5A+dYbrbJRs6YARoOVSrB4a+6T47b9QtGTPLCXUjPUNVB2+87TmHEHGQ64MD6Y4BvLsh7mK67E8HIiI75wooJhrbGJt8RBUXi1mKhxITkqgkMwQgQ0HyOWMBGAiyOZ/zGLNW3qVB52JSQOhckV/JCIEY+tp8Rk5VgRiIJPcNjYhL50VERX3lq9KLxObq6vr6GpoGUEFDxrxGRAVTVRUhgpxunHflTdTMUkqqRi7rEMMOGhVMUaNIB8TNYBm2ezYpu4Q0zRPhMtczyy9qSqSaTYBcsXKj37RtDaDOA6E6x4iWUkDqii5gB1TuBsb7k0qxbb1KeuJhxOHrTq5vFnoEONoD3l9jY3F7Y+c+VvreQaDbP22QAfAm2xf2GEdnCveab64easPEUA75k1HH8q4wDQnXIx0/28277oJea4YM79ZJdARy7MtqWi2ePfmD58++eXX1dLVuAe9h8Ymrpfvu97/38uVrci6BoWdRjEnXdQu4SMlMldiZaUoJkZg9Emc9XbXLNerGJwnlrfr8aEIaEGU2zrRR6mGvaHTSd5g1G7OSTYnAEevZmtBcZw4zdBxQX1UMkX2w2Fr86Pz6sm5evr56+ujtz7/73qffeTAri6ljBEwav/2v/4tf/N8Mzt6ufet/+c8CgI6qIKzquklxleC/91f+wW0UAgB/X/WXZ5Ps2VTVZGpJUE1Vc0kc6qDSIYbNzV++Po1R3n2X7h3dC0lNnadxBaSxOoIGAoqgEUMN6AwRv/Yf2q/+D27sD//+390gyZkBwo4MHrchLOuN1vNX/uv42387f9Qe2YSIoMvU/Pjs/rvbTct2TP95mmHz55Zrd45bv4XmnKMcNtYRXndCdkpjN00bb7BAL4S313oHWwhgSNZBxm1+Nd3tGBFpFy49MKu7bNOemnFYSjtSttsJHlWJAADJx23rvcYZ+Ts3ARiBhuLW02/s1Y2D3K1TZC6rwnFyICLovS/LikFoEmdHqWljWgKoCoGRYUM4R8TeXUdigqOV3nW1fz5aRtnL6fWsnB1peUY9iBgiITpkACUwMdUkklLhvXOEJmenr6+vrkDEYsiVBwEMmQgUOhVKKRfdtoEuCABSUwMyFAWZEnv2Pm9koOOSnGoyUVBh9o4ZEUWimWmS7EAxJMyv7VxnOxlQp45JVq3EYkoppdDWDfQwQYgGaEmCQ0JkUzWDlGS/SNptkmh/KrdnP/8/OF95B/pJEdDIgBQBc9G3257xk7Z9ar7z7EzLwzk3AOPtN7xzD3i8XYSdDMkhLf9/5v486JYtywvD1lp77xzO8A13vvfN9Wqu6hq6qumiB4FaICAQAkPgEAoBBgUWkgFhhByIwASBsGxHyOHADlsKE5INCgMWWEZCgBsh0V3VDVXdNb2qrqr36o13Hr75TJm5915r+Y+dmSfP+b5763V1K8I7qu47X548mTt3rr3m9VvU2bEbddPP5oytANaEsIcJUhER0WYOAK++es2YfGzuviOPHn778fHhrH57XlHVGERk1dkyRiSlXCmvo6fWxOxeKooqMIe+icKG1w4MYuc6awsTgaH1tm8tcpujbtZz3uIIW0/U01bPc5M8TkxeNAoLiFKbZUIRhFWsoCKUrliJLJfhnerg8Gh55/D00/ULN/b2buzt75SZRQSUX/mL/+4n//JfTXf89p/7YyCKRCgc2PczmUeaNwL5uD/yx370s996782TqtovJraOv1i1GVUaohIJIqqahMtpDFpMCxglZI6YeehBmi0l+FNrrcboXJZlBdkBELRuuuKVEQTZK5CEFQHBb/nDTyMJ/tRvMt/4ee36hoICf+qnn3ayfOqnehl8Mc997UvDvGj63M/gL/6jHtuhZ5VbTPyHGD9QA3hfKsLm0LaPc9t0rwMQ3fAnQet73LjLto67sSPXpyEipizswetq8w1TGnQXuUJEoj4BZ6BSb+Y6bDuNVQHXms0GJ6VkpLTn88BKVoX+RtBtpX7CFy5pN8vtr57N4vsdGiVGAKtWXQF5YWxmHVGMAdCa0tlyVZ2Mi7ybSTex9BBJ9QEwPbtNU9Wu7AgR0QgSIqGxxloga8gCoc0L7z2wkIpqIBWJQXwd6gYMgaVls4q+On3yRCVm1kVphTOgOM0TwgAAZB2efHoXCEZEAAgkKmoMoWkaq0SpDhBFRQHJGCMaBMCRSZ2tJLXPIF0LgF5hTPSgUSQqR1BWidI1i1bVEAICJC3cOnLOKUiWWWutRCaDMFQ6VX+g9B2+oK3TujS+zbcPG0JH1vqQ+eGTsJ79k19Huf7sOci6RWdrxabm7OYp7uvz036GzwERjTGEggrcuRGIyGS53b81cePL+y/cuvzJD7787uOT+99+57uvv/vme29HZmEGY62x03mNqCXCKIRTZ0tF8t4DcJZnAOCbyLzmEe1NwUAXCOxZb8qhUBHT9cBCRNVBNln/FF1qyXCfp4n3D7XleYOBQxtYDJIxCAAMGpEZSZFijBLVIo0gA5tF4UezxRnLYf3og7ee/8SLL7945fKkyHMkMygc8ZFRhUSZQ1NV/fElOnb4B//2P+6P/LWvf+PCV0CA1OZVQIKDBlEyBnIkhSYEYxxzHHbtid4uQv3gwQNfL/b393d3LkfrR08hANsHyzVKbOB3/Pv9V/ILfxdN4kdGfux3pIP82d9EX/+51LivR+cAaGuK0oif/In2Cp/6qYTFsf1QXRZ0ktDDlOnWAuvUo+QXAfq1yuD1PDc19x9i4/dDVVvQQUTvvW5CUWobum5bqxpYy9mNBUnm5jlnbOdUFsVh/Cw5gdr9LrJ2gfWlksOHSgK79xhtaABdElbvTiLaWJz0b5K+KcdbVVggxRf7sXXHZwxsVfCBsH9Kj/PhcFnmfYiERTkhkcKAqi4XZ6wiYkBNjJGI2qaDlpLHABERjOJ6eufvYhLZW2cQMfX7ss7YjKwDQwikKAwBRSGwBB/8qqmWCKKoZ9XyyZNHjtCglNZxsxRTSGTmKMCENk9QLWicxRhj0lqICBASwaCCisTGB17aIGrtyGaK4LICFUSiQXTgDGDwddM0CAbbGjhWVUVCg9SFUBVYUv6XtvdSZemWAjqmFwOnDozQFZ6wRkQS2U6ifIZQGL7Qc9K3tbIAILken9bOILkWkKjv8LAtzFN31/VlOy9Pn4s0JNOeBC/Y2E+xifueK4NvL4BrX69IMhFFEUFFExBOwtAGAIPA2LqrDDkACknnSlEDVEVBpb7FyVBEDW+0dVxVFb1AUhEJFVUgiFaiZH2xfwn4mrjrO3sfupL5lz//6Dcc3K5PzaLhv/cP/vuvfvMNwswYiXGl4p0diYhqNAaBXGQVEVYBSQjyBtAQgApGAgDIrA0xBmUltNZiJPYYWTEnYUBImoGJKgkeHiOgSWW92OVToRIa6ov9tffUqSoZ6qtFMVVkKCoDgVGF2BOTtKoMo0EHASS9OINmpxyDwMmxvjZ/8OR49ZFXn//wi89dH49zXXuDZ74xBChaNWHpB/Uk6u2GW/jpwxnp346kfA0QhNjouCzB+1CFVdD5IAmrYSmyvAry8HA5X/HOWTMqilfXV9xw53J0AFEpoFH7r/7l/rj87P+NiICsGgvW2i//vfiF39N+9aO/Gb/6j+Xz/3J/cvbaz4dUGqekqsPKIvnUT5lf+QUYQM3Sa19UVaW2ve5wU2Q/8dvDP/lbRNbZnGPsaXKYrdPz8TQGnMLIeuWJul6zsEnb/UVUqSVwTGXHBgERNGGvIxJgKr7Gdc7fYChEi6OgM8AIkCuiK5SMEWFjDOK6PiexkaBt5yskMGkyogDCCp1F2+ZvtP/jYIiUkOOgfzOCb8vfSVUVlaMIg3bQqJiIvzNSTbedt3z4qppCnwApwxmgy99EldZcQYIOD8QYYzRKbtmDUcrJgbWMUBonwCoROSKhGtO9VJMygYecUFVVIwywMrpQEQKAdjIAO76bqoSVxRmLoAxgJ7sivPShmOyMpJi9cuXwF2eXQvBeAfMdE0/DXk4x9ZVgDKCEZAAgqFprAY0gETo1BMaBMWQgspIlQkxNP8EYsQYNRQ2UG6fqV2f12UOONYIDMSuQDGI1Ox47DFGaKFlmgoIDakRU1dnMOhJUQDa5KOYx+DzLVAgRiKjyVdSokkWqQYPxxpl4ePeNFz7w8ay8wXHpXGasY2YVVgFnkcAwc/JLS2tJkyiJooWYKp6NAqJtkQYR0OSNP0Zb1EujSGpYlDO9UhaIEK0hZVENzhAqGMqjb9rY5WbLUUna/8CGSZ9jjAOp15Oo9vXfCmuleSPFus0lcAhO9Rxy9692vE8N+n8kgxgRL7xu2uhtKl6vMYggyHC+F+kv5ywkMBqFVWzqP0BIBjIyZCbL+RkpT3cLCVSv/Di//JGXP1eH937xy798dHIWhDGm5mlyvl4wXZzIiHT9Tdv7thh7zAIABkmhhdVRTVGONqSvnVe9ZXM9cEo3//bzD7vwW4tzPgjZwgaxNr5uwqPFannw5Oil69deuHL9N67PcVVdRR8EFGEtcSkfn9TVuUtuj8/kbvhScMOXiKIRABSJGet67d9umoaADIkYWGoVo8xo0Qvgw6NH0JnDaKHMyiANcxh6sfFn//ciuSqiWhUidSABvvS34Kf/QHuGrG9nvv4/CCpSyiDt3uy3vyQ/0rqXdcMBeZHd+c0v9plZOhjJNZZqSC5cnx9oPz1tXKCSt0cUuoLRDe373GBmVWVmYwxzg4hN03i/Ee4ayh5KFIRKHdABUIrIbFXWdc91LicD+rff+Z81WbGAAKnf1+CctZfo4vVpV3jT7sF1hKv/s6M2WgfHRYS7geg2RawqgIpesGE2l6VnBc9moek0AcEESd1mnxFd/dT/5M/+0S9e/utv/+0naPAsLg5XuuNMVMAu1bS/bn8LVABq+z5pGx1g1LY5aAruIBEAOsVQreKqUd+oMnNM3DQnDKvaN5Uj45wzubVFGVgqrNUIKqOqEVdSNrJTZ8qokE0Kh+SbFXAk1d18MnH5cd0wICAKS10to/fL2ZnNLqu2vZqAEJSAkhlvnLPMpAgi1IXjQJXBUtLYVEQhocKgInIMzhZqbBNmIS7GIzOd7qOOjEVjDBFulsxt5S1fbKRtfTvYyD3LvSA17/wV2l8aIvrVC+DzBP1+COiHGPprg81rxc+5sNNT7zVQfIY7xIFhgIQ1gSBRgqgiKXIocqtsG6+ZmVy5Pqnr+smTJ+/cfu/LX//W/UdPRJFa/R8RbZR+e7b7e+N2a2YhSVZLYtyECdFN2yTMp+Zepncqw9SRwbMMT7twz1/47Btfbd5UEJIuZ1wpZOpQPzieny3rR0fz+zdW/9PuNK8mgm04RhHmdaJyLMfzEIYX/NEyH85wQw4hQoLS7F6WqgIqswEgUOODzFZrRM8YYzQWM1QgVuOjDHN3njx5Ai+3n09Pjw1Gl6HLKRskY1fLhc2CEoIYQVBxYhyg6/VY9Yv+ZI0BEMEqKmqn6m7W7W6qiYndDRd5My/6/Si171PxfZ/jh7iatdZmCktwzhGFLMvaZPxz9AYAqprs616ICUIbGDvnfN660ZAUVdVaK21DsFYNTd9v2bg9f+SnFeCyYu8q6m+9bZsCdsZLx3bbz8NIcLoREbVKMCBsXnlrYue1CthU0YajKzVGUE0yyRggBzsf+4lvvHf3pU9/4Xv/n//n6fLdl1/+UCbBOQkBe8cGQgtG1j/LQGwIAIAgUQRFEE6taQkJVKMwVlUzm8XV0nDN0XOMCqzAwHF+cuRXy2w6NVmuLs/KCSNNTFzOZyH60tnxZJKPdiQbN5Rrlo3LnJvKkMsNCHuheVyxMQYYiIjyAjlaa09PjozdnV7eN86icSCCKMgxZc6QSRnaSkKqzKAkiSml9z6EqWrbpTpbBvRRToCaLJuWxQ4ipiRds+Gb6ByBm7T3bKkx+P0GMj9sdxXbluKtYDKESNt1wD/E6G/wtOme1yze//ghhHe/LiKSovOtPy1Zr0ADd8HGXS5cKVUNEtvmIKlJDhsCRcKUPkdkMIcg8/uH927feevd997+R//wn7/73u1lFdA6ACBKVE4ovWa6zh1FRCZsO6MNxnoC3QciEpNEMXY2VdceoYsWyznMApTt2OEWOxuu2A98leeHqiqyNcbYUkRmVTNfHT48mvcn3D48Ho9Km5XJYOmPPzpbvfbGW1+4Nv7yk+XwamkOKR/yG7X/0TJPYTbTMm7UVFeGyMoAQmhVqAlae/mzP/nif/yLdwDgj/zNb/znf+BThTi2qR4Bfuv/+Uv9XWaLVf/5/v2Ho1GT5VQUWZ6XPZB06VzDvu3EhSTcGHGKawte/FnP7yVWSAY1A0QgSarcpraiMEC80rYT3AWL7P/Zz9IAAla7VUt0/OsrdN//GLCqjcHMMcamaWKMMUbU/mRUbWN+iJ08gD6zGKQLBytu7/Etmtwa2np6kmq99jf0yvpF1snFqZ1DS3djUPsU/bOnD8KM5yRu6pvZ43jAuZ174cA+f+f8021yy3ZLErR4JG0gjQT1sz/5hde+/49XDxYwzp1FPJnno91jmBcw7iPfhIM87e5mg56HaVMJCotGjBZNQEQFYmGcz2U1l3oJECQyALCySMyACKTI3Gg0wnLElNuyKJ21y0ZJYFKOJhM3HgVb4GQ62rsyuXG9sPbg/t3FyVHEqIEACzEybsZh1QiZzOZojbHl2WwZqqXAXuJxRBZBAQxoIEVATY3LFDwiGVVEga4BZZ8Nk14hIhgbvZegDVlflGBNDmqNjS06aksfmMBAVHmr/2Z/ta00vXPnbDTk6Ij/ae6lbTIAenod8Psf50XXBfbTuc/ne4d2TGe7qecPPdKW6D1pCEhILBFgQ+FMcvF8A9Q0BzWsiiIaQ9JuLCKiUiEjdL6R4+PT+/cf3nnzzXd/4Rd+6Ze+8lrk3BjjsiLquvrLGBc5dugKA9eTEoIBBcW2JFEhJdiDQcttFl+rXBtjGEBDm9/fJoDQkNukUNgmW9GNx3na2OJ358loeGSosmiok0JHAMY45rBq1sboL37rW5NRYanFS/rXu+Pf+O733n33zhBz6OtV85ncqaox5qvLqj/4uTyD1gBQ6LqYpheIbRcKjmyi0LxZm9R/9G9962/8wc8jay3h9/ynX+6P/9N/72fswFT65J/7bwHgG3/ld5ajbFSO6//8j1/9o/8pAOjv+ov4X/15aOF5mUGF1f3uP59+Ff7R/w7B6s/+n8xv+1MAAD/xe+RLf4uwFEoKtgU08GO/JZ1Mr30xgRv0RrF86icAgL79i92fF1cxbS3+eUCoH3o8w4PSyrZO6D5t8wKAADAzWsPM1piUWTMUdk+ToABr6/D8PLTPUYCLnT3MLJyKitEYk+6pqilkA2s20vKQC5suAECb5HLeXu8EeYKf7HVlEUAR2XxAbAsIO2ysNn2dQNdV+Lrl9HrKLtTzWTgtOI8mRJKUhmkUhVWEv/R3/5Ozk9ePvvsA6xNeLXCkrhgrsMZWxU/rvN6zICgMxrbaQ+uMSKBYLJEIg8R2zSVG0zRWokCQWIuIsc4QNtFn6LIsAw2ISGSVDAso0PjKc67eFW6yzKGzYpAQMFRVVeWTiXO5tVZ85BgzsmUxxrGvtPGsYCwIZqYwVJfO+qZWVQtkjANCAlJwFm3kGpSIrJKiJlAUAWTttB9Eoxr7xRQG5hi1AYhFkRf5KMsyMqn4dv0u8IIi3cHib9LGlhNw4/0CQJ+HMHinemGIYQ3R+GvDgu5v86vSzX84u1Y3/IhPWaDB51YQrR2qayjU7V9dNP814RKCkigIqE31jqgSQwxPHt578ODJvbfee/fLX/nlr37ttcNjbw3s7ORZkaX8T+NM8BwBWAVSS18AxNblkTZ4d+u1VE65fm05ymCeZA0QamRVUU08SFIWqKqiuaAqcUtkbmzvQUJmb+P0kvVpPPq8AU2oIgxCgOiInHFq1j6Gv/Erb6cPXyg3SPONN9+uKt4tsi+MRl9etSbpN5sNpzQAfCZ3yfPc5rgmeL21pY5IqiJRxYvMln742z/0X3z1/CPEIJi103jzX/9n6cNn/8I/+PJf+M11UZVFfbU70/3e/6j/1RYGVdI5ENezxZ/+A2ld9Fxfb1QGBkQUIPOtL/VlS/E8asfXfx4GjhDoyJhSHbrAeSr9Icb5XXPhaYgIXQ34004wxmRZZq3NsuS+XIOb9qSiHSiSpmZiKa6ineolPNSFz1PpBbMarEwvK5nXuR2Im2UF5+zM9B8amA1Du7mrqVhzT+zKK9LxXtymSDCRM93QIXE+Pfli/Zjv430qrt1CqgoCgqBAx6996f7Je7t2N6cwW7I+X6wsu9oBhPUtQHWdi64KCsqqlJQbUlBt0VHSaRA5GcQUo8RapGapAwcFNJRT7qyl2IiQiazLupmOoMwLIBSEo7i0GWLMau/JN6XNsjjHZXV0dBanOySx9J6EhSE0NfuGo1hXYOGMliheYkUE1iCooAgqI2ZJH0JDikpogAiEkyYCwJS0IaIU/0/WkiK3zhY0LlMfI6LL3Gg0GlljRaO0zaQ3XpMCExrcJInzlD9kgOe+3WjNucUnN0/uTGoAwV+9AL6QOz9DBl+4nfTXFdv2wjGUx+ubbhi+7R/nUQ6GjIAbtRYdEYBaIwSr5dnxyfHB/Xvf+s533/mlr37v26/fOZs3WVFeu7aryoYyS9ZzkztHZCKKczZ4TlBsa+VUWgda4kR9uia2DKudYctKunkiopAms081pR1Qz6+3ljodN7gNV3shYV24gMNftRh10DlUu1tFbrkVairUFRH+3CT/2qIZXu3LlX7WbrDaSZktKr+zv/v5yeirA7dwPz6d2Q0+rqC4pn7CrK09JQbQygfx+od+5Pm/8e175y+Vxt/747/BWUN8AfDWYjGbz+fWzI7//G/5jf/RP3naFQCg+Xv/694gCv/1X3K/+y8942T88t9nk3VKkQFC842f58/+pvNn0mtfOn9wyKO33tEPocU+dZIbQmh9/Wfv0BijQAIzxxijqqY2EkMdrhfG2NY+JosDMBXmowBikDXr2HjGi54PO8HbCcg2HCsCzm00auuVAH2aktHtMdUWX0MBAKGDcepcYgNAJYD2vv0S9Q/bOttbHozn6qoGj3WRDZCmszXP7s9OOW5LexEBweD1G5N8ks2PZ0e+ysfXTs5m+S7mUODAUNPhEAHElAzaAn61pSEtuBeIKgcRhdhwCNE3db0IcQVkiAo0OZA1CMI62tkDkATRnFkTQrAKY7PI8jKbjGIsVrNVamc0zrNLu5egmiPHpl4JewMafBVjDCGYLAPrDJZOs2Y5N8ZoZAwBkMA6MFHJphK1lIgomN4mtYHFdp0D4gBeCQxiYguGZQkYMjstsh1EZakQDRF3+EIGVHoGs7nm6w9bPHNwfOjBXRs/IutMl6ExvPVmEZHI4g8XAx7u2B84fh05xfsc6+nhBh9pd4dun7k1tiZs1FpwiNrEulnOTw8fvP39b7/15ve++do3Tk5PlyFevmLyMcyrqgmVsXmGpcssEmSZrWovImU5aupFF2xob7HeJGusKQRYY1X3oPwAsE4kMWRN1iKdbk44piOqfVf0VgCbbSCClqTOLdrAZFlbMP2HtjRj+JN0PedSaRKK/tu/9N/13/71N1/7wx/69PDPP/29b6aDf/3N1/7db319ePetk9ORP/Odr51/Oz9w/PU3XwOA81cDAPj3/lr68y9s3vQX/1c/lVkbRRS4rlf/9M/+5L/4H/8inBvh7/5ZRERbUkr/EQ9A/r/+i9nv/ssXnPxz/w8gR2RbAGQwYATFECF9/efkR3/z8GT9xs9DZ7S1tRCD/Z8sF9rkCP8jDe0kzDPsgDSMMQk8yFor4rMsc9aWZT47abS3ejdjoq3FSoiaevNte1w3p3LBcUQUZhGQhAjb+YpSTKZzC6WQXreh6EKptv1Ze3SaFAAyBJAkunYYXqkSAaDLukivKcYYTUzFuIApnZYu2GBbi3xuDr3xtDXbvs+3KqCCoZZ5v3V2Op67aiXV7rg5Cq8WOxMbF+JLaHEChmr3ltKga285tn0v07cSWViD59Awc4ieNeZZZl1BlAsqgkGHZZkTyuzktK5rH3i5WBCRf/i9o3kNo52bH/jI1ZvP2cKGZrXQClanwDIq84i+blaCEqK31hrI1YFnZWXnDBjjXA4A9XJlAmeKVpEyJCJDhIg+CLZNsjsQa1BEjLEetseAjs+zUFXPI/gin5bFXh1OWfx4dEkwddvsLWBIgGvP1nTPb4SEGt7/hU/xpF74ThHbFGgksj0tbG1sGabdtnBwPcLZBfb1UFPYOLJ5/fNTHEqLfn7Q84I+JpS8Q9AGqAQ0gSQDKSogGAFVFCEBACtZTLlwoKiKYJIfUVVbo1/XryFh+uQ49tIoerQsEgHIklPFYjxplmfL+ePT4/t33/3+m2989/bt27PZAsHevPFyFengeF7VdWG8hwii2bggpDKzImLJlrmp6xVaAF6zGwJQlAQYp0CkoNJ7dDtlitbofRZJFSWIcGRQtEgCzEEkoaVjFAaCpMqyKgL0YlhCJKKU7dIKV9PWFyKiodbxsiXRu7dALetRpQ7oAFILYdC+d4RRD1z8W1/9/2692VbsvY+Dzzj+w433ebV02it2oqokrKEG8SD6c3/6c+LG1toyz/M8z6zJ83w0Go3LEmK9u79XVZU1GVniGO0/+g8XiwXmOREBkioqOmNzsgWh0YSGb6wqAZqAAQ3h1/4xaIrGkRJaJBVh9hak7l46dR02AZDR9BsN10iiAgCWKKVNgKbaCgsAUcCSZwFBEoOqDBIJOesrmiRdRJCSHFOxmTKZaKy16IxiBIhOIlOGmIiUgAxAQgEkhKyqjxFRBAArAEEsfDgwxgFEFiVK1GUAWCSu21W3W9609ZoYup7EiUQxJdYgXpA+hRARDKVkRNGEwUMGyBBHhQ42a4OHMKRuOdymTUACUYG2/A9Sy7y0+4wxqe84g6rGRO1ACArIysplgdaAsaAQWUITwi6MjM2ETBTJkAwogIABZcBB4pkB5NagNcn7CAAABhSwqwpqn3FTLTDGtsgShAQgqVAbNB4/+OV3v4lmlZmMdNK4JsQ9xyvpUK8SOi8hgIoyWFuktVcR0UBKLbB15hgjgqAKCnMIHJoYGl6dEhgwU3BTygsgBI4IBjNsRDGfjveyarmIoRrv7+7s7S6ee3nn5Ojozjt3X/va4/feeO4DH9zZva7RmYYBoJqtmrqKwY8KYyAePnzAnFlrJ5PJaATSiHjKskkjDbkMNIiv0FiXWSIXVWKUzDqNDATIDNDi0YKypVwgohJrAAABTlg9AnNjR35V2xIbXTJgXu4welSjqoCSELaYA6AaYxNydtcEdE1yKc9OlVUhoRMmedECbncvKrm1+13ZXyKdvyH10ABlBg2BsUgbWNDvh2dtyekf+KstFe9p1/nBd3l/iv8Pmo9YstwqtZrCrWTAWAxybF2u4JoGVOx4PDYkq+Xy8Oj1J4/u333vzXt33z58/GC1rEs3uvrSjYPjo6BUeW+NyZ1N7tAsc8aSo3ZLq2rocHNAVWVoE9DWTtt6/B7Zp/sWEdEYwxwtElqrrfNNMMV4RJOXGLVrBzNUeH81AYKB7bLh2T5vPahqDLJbTmdnR89c9v9/HwYJCdhmwqocOGXcxNgAMHNjsK7ruq6XeV5k2aJeXLp0KUgdl2IyFxbBWuurJTib9CFEQQZUZkDBgMaSOtRcyAI6EKeGDAGCUQUU6nYrKZkt168mnrtpT3UvwiCiNZnnqMBkwBjD4mOMzGzJKERQNYyoBEJGcyILjIwR0JNFynMkGwVZIOdTUrLWISlrUAUkVJMh4oXuYEQ0SExr2SkdMNUw/pOMSLiI0i7U49dvxBiVDc/N4Nk7FNULiHPDzaOp7V032iAOgqpaa4bgWV21T4s0KX38u5PlBCogzCoiMQqiMcZkuR2aDWm0PHwzGT5ZnRdQ3rmhF2VjtdNuMyGAiFQwz8ZRoghwCFW9ZJ72ge1e2+7/jTEiasrcxnV2NHjvnXMAEqJHVQLxTbWYneXGUOby8ZSyQpCEozHGWbtsGk21FdZQ7qjRUDeLk7PJ5Rfg+XJy/dLekwezBw+Obt+vL1c7N6/zvBGRGON4NJpOx48eP3z88K4xeOXqC9baKHI6mwNqWs0UI1SWiBF8BUSUKZJFJAVSkqQSIRvBKJhgmdbJUN1oIQL77HSEFl4QRcHo0NdARABESFtAKD39rFnopizbot6tl/gMMdR9lfgz2qed2u+r9ymYnzaeLWgvfKQt4nv2FZ4+EsY6Qm0AAQAASURBVLDO9m9T7KrVfFFZY5vAieyb2uBoXOwiQrM6fXJy/+To0e23vnn37u3HD+9rDOPR9Mrefl2F06NZOSp55UE1t2ZUZDEKq5R5SQREKoqCmvqBcIr9ylYLBOpf7PD5+odtUyfWB9f7PPlkkvRNgh+IQCTp8iwCoqlwR9uO5U9dws0pnXdyrlnnALO6ZXzps3N2saomu0V/zR/5+b95M3/pweG3cDUzfmUoF7fjg/qzJ3F+eBLC0ek8qL1+4yaQfe/+/YcHs3kd33g4D4qN19B4iBGUQQmIYgy9uw/X1X7obM7gYY35rkWBo7G7sWcmO9Ozs7MRuReuXH35xtW9/Qk5Yh98qJp6QQb/4r+8AwB/4cf+k/YhhYksGUtETBSBVD0KxxiiD8lZZIwxVW2tHY+yqqqa2BRFYU22k1tmJqBJkQMAawyBRUCoRusIDZs5igEuwRaIOVCBJgOxYFmRlIyoTcUI0jKPNsoOSjpA4DjPAtK/TWBVQCIRCXGlKi4zo3Fx5pHAOSSLQAIIQaQBrkMpBo0BFz37k5nEYA07QzTKCCJKNMYCGUELYIIYm5DUWh1AIDlsEBQSLP4g2prsy3USQ9q5G4kXPV87r5d3pIhbfHBIu0QEIm1SMKy9rN2V1obvFn+UYbBWVQYTGE5GRIw1KkL9PGVd0o2IIopAadP1sm3r1agqdE3YcDPmpaoJC2g9O+y1lu2449N0izRcPh6NpidnZ4I4yvMssy4z4luvlXbO835ZqKuO7StnknObjPFNRWhzZ2Lk1XzWVEuDYIsRWodkkaw1pIqqwhqtGlYRQHDGaKGqGnyzio09jUayjEZXro/y0erkmEnYz0Nka+10p2SOd+8/WizmV67duHz5sssnzOy9b3wFANa5trd01wBaQvRQW4TMYeaMCIASkKAQkIAYABFVgwIgqbhUk+okoNIWTQmCSX7cdaPGFvio03STBrmtZWLXPuS8CrhFt8OXC12cZfOEcy7oLu6uz86C7qn5abccnvkDxeQWmZ6/4JCaz0/jvBreajsXTab7yQUlgMZCam5ERKopnYMAQEM5KQqLMJ8dzmdPZqcP3nvv229+/ztHT46dseOysHYSPc+WCxWbFUXkBlUd4Sh3RDYErn1EREMKqKBJQIK0wQYDwL1a2gOmiCSo2wt8A1uL06+M6eJeRKSE2hvBkBRCVBYRMYBI1KJqDS574eL3X/V2wPmvzi9yy7mSIa7rTOEXrtw8uv0QZmhgUo72ssnEW+erudgdnMJLkl+/Gb2oqJ6czUZ5tru7P29OM8OxUUSbZVkUDU1ElE5h31AO0q0JhEVTjmg3GTCgVYiXy/HIs18uZtV8HqZ7ZmIJyZUiEqhW9dsPwyIpdkcGkVK5IUrtRZgZRcSQiARWw2pzq8Y+fPSkLMtxOVotFqPRqK5rC9ZmzjmTOYtgOLF9VlQPaIQYuAHM0JRoc0OOo0UyQJmSFesQjLAwR5SAysPgCyCqMmxTetuOVykpmmjQWWtFfYxh3lR7o1yAJJAoBQQ2GjMVE6bVXhOOPd93RbN3fXxl79p0dDk3k8dnsVktmtWpZ0/GGWtAUeNaWwcUVAJSACFtk01QFLitpFRVR53QXROPQotXtaaoNfG0hLRNaR0ruIDqABRQoK3g1LV+qeuNP/ylbF6lD7X0H3RgKgEAEqYy9PX6K0BCprOkCkRWWAEgZRJhvkbz3Z7uubElj3t4bB10TR1earhK2DNkkcisiEU5xVkBGqy1AiwSOQrZFKnr7X4hsohobIvqg5RwQiChhRALsJAJwuKr5Wq1INDJaKzFWBEVbbfsyCwc2GEmaARYFdCQcRZUiLWiJlfKggElX5S8vweLWTxeup2x9yEsg4hkRf7ytavOudPTU1167z0AOOestTGICjrnKJlMBAoCEtUHMNaI5ZZKKNEOACgQoiis31TPJFVVJDJwX1VvDAHEjbXdVHToHL+FAZcbkmj6fF4adoyI+287atw6zbTuTzSItO6GdF4cPuPP4cHNm+n5by8UvU9TK55NxtsUfP7nFxwdmMKKQKyswhijEFnCnIjIwCQrjo4enJ09PDu9f/e9N9595/unJ0ciMhldjux94BCjKipR5BijKAsRlEXuGNDIyOeKBttiDAwiwhqSs1tQN9jnMD/i4vJOVcXOddaxldapslbNCPvwlURGY3o+Qrp9tUQeG5r1OXv3vMjfVHqSOT48J7nsGpvbyHl/9PD+UsJhQ5ztXdFyWjWLcPIEV6fUVFWIR83K5Bk5C8qj3L760gsv4OjSo9N5/dWHh7PaN9aNIMuU28Lo9Izdcq2nGhoPpOiQnDWAhLF0mhOUbmecTc1YH89nq3pZxxVD4BgM7TqXi+SRt9UyZWGIiIhgyKCis2QMg2IACANGzCI4O1uNx+O6Xq1W9SpfGtTxeLw73XEmM95mWZZlmXGW0IKxxhgQC0qKLCCKAakBlymRYEHGksnRFKi5IkEUDQFipdEje5AAogjURpfWKMnpXSTLyYh453JEwyGqIBmXG6ekqyAgjDJHaVAbEyICq7I170x2dqfXX9p/7oOjqy9DeRN4VAd6bnV3dfT4+MG7s9MHIXgH5KwxlqCj3VSN03l92QAitS1o+teTRBeR9s1/N4JfT4lGbY30rUhftrc+OdF/2uhpW+DAW3heuU+bpRfMMoyvr3FCuiI3RESMg8bS/UFEjHGI20Vpbv0PE20ONmzrCegthF6FHNq+Fz7+eRYKnQc7CQkWiSGIyHSyE/l6U89JIMbAzNZaadV9GKyJIFqWoECAhqBPyydE9L7OskwkLmZndV1bZ/I8F0JGsMYZZ9OaMIdUudGvYdqNaIxxuXEY49JiToyelTOXj/bzYmqa5snZ48lkAgAa2VpX1/XZ6dxaq8LWGGNMnufWWgAgImut9z6p3IqQchc0BEZSSP2EY3rbAJCYfZeAteHwUNUogZm7dIHOGMEBPoxuEmSSXwCigqnaMWUI4UZQID00QOpK0NGbducPwgxPI3IlpDYFGhGfDsTRUdWzagHfz7hQ0A4XbEtyn5fNrfz+Nbmju1VDbZpAZA0RgnHGIEKMta+bNx/88uHBg3t337h79+3T4xOjmaEJRApBBRySZeDIPoSQtqJVQ9ZYRFEBEGPRsgW0RBoZmCWwMKswaMrabB0d/ZMSALV1wOdc0P2a9OSyphVNXTfbcI72kWDEEEJ7Gq3DBzrA3Hn2exyysPPrvHlkTY5lljcxIK1rezRolOWV/cuT/WkEOj055dNHhXqDJgqaccmisa6jr0NdmZLzQndN89y1S7PFalHVAGCcRc1FxEfu6VC7tNe0IIQgKCLMwbvM7Y3LS1M7yjEvdpygdcUxwKqpzubz09l46txoVBKBs/kFfhFqdzJiBEmdZZBMnpEhsizCEkQEmFW1DkoKRCQxiAYVPnhyWlUnO5OJMSbL8qIoXDZyLs9caVxuxAIigLKqaFRgCEEIAbxapxzQeDQ5opPIFGMIC+WVxKVwVKZ2a6feQEAb+poSggCKile1zIKiAAlSULlZAVVKC+NCmReXJtf2Js+X2W59BYrxCzB9FdxNUKx0geWcJh54bzRl2a80Nov5oUQG8GhV1KzdsMjJDE6taagjXINb0qgPUqxjKMnp04uhZ9DhmsjOkWsLc9G5r0QFsXXbBNW1mttnPidGvkHGiU0qS8IMbkM50DcuTE71zuLZlKmEKDG0aq41mbUbIbxNJga9AtKuyTAtfMPT1O7OC1dgrXcO6pSYWZGRqCjHIgG4yXIiQhTTlcp33FtT+WJSplNNI7cWpAoiOme8r5u68t6jQZNlajNBJGMUJUafpkGAqsjMrE2aKyqgogKpIQG8bMwKtHGYZfmECo2hUa2c2796XSN7X7NoaBoVcc4ZY8iQc05VQwg+BudyAPR1g9YgGWNToABUUw8GA4gqCtwZNKnrEbCwDod0MN2ePWsEIgYFFVRk5pSv13LUQa+k7aW+IEpygcP5PMM8zz/PS08Eg2QRDZEhshbeH1/eEpNDEnnGby/8Sf9LOPf85z//aiXuej6t0NnmtoQuz3JDJCEEP6+rs4Mn9w4OH915+9tPHj06PT5SEcIMjEEyVFgfVqosCKrMrCJgwBCgdhAyopCCEKqIBkWVBXzkGESSFacKW33FO+MSu5UdPnv6IJvL3ma6tj7JllkIaMqtRFEmERZEdMYaY1JvE9NjvnTX6YXxhVrO0C+X/vu0t7P+E4Aoq5s1/OSyfphBfmX3amjqan4G1cxOdkfTXTfdu2yy0Sibn50dPjngauU0GkOzlff1rLQ6zbKzXIICswIS2tTsZrAygymTswAcmYXVGby0M37+ymhaUMQsN7qzu18v9x+dHhyczMb5KL9yPS+8tdYYp6rnqQLXIqRbdrLGkrEZc/BBow+qjAqTIhPx3te5wxgq71fW6Hw5r+fvZq4oJ+PJeLcsp2yLaEbGOpddQkPGmLZMRUlZUBAgglrFCOTYNAhWo2qMGmYSaok1MCsbRQeIIKKdLw0RE4ZLcseWRVFXHqQp8jxzFELVNHPv65uuGu9d3Xnu0+PrL9HeLSiuAeyA2MIutM3SewKKZRSYBWhic3ZgQpUBjW0hWVFHLyIxhhaBVRRMS0LUBVhUNZm/xiSw1aQvGoBuGTvWnUgYnxrpvMBf17/uLQ6TSK83g9b0QOuC+A2uZ0hEKPXCA6B1dlhL7V3u2Ia+C9jF5FVT3QpS2pIUYwQgkQs6DQ92azsLGBBtJ0e3aO9i/tavlciglUungBpjkDS1gAwhoEQiiDFybDGT13y1u6AxLsWtQBPEKkJbWqyr1bJpmjzPs6KIgAExy0uipN4yiBpjiIxG5hCY1CBRysUWZUAhFMKzJuooy0bjLCuwiSF6QXBFATXWcWVMbtFUy0WRZUWWL5eVkAopAGiqT87IWAMMjCZ18lJMqIHKbAmiGgIRZYHUjlC5o8DEX1sHIUuMHGKMCpxyuxLxScdvofMAYws+KB1z2yjfesZo1/Ypnsv+uK7tn+2ftzsDUXGQhPUDRenF8+g+P23e58OK6Xx55nNuXVC19f2/z4l1c7swBjxCpKauz06fnB7de/LkvXfe+e6d996sl75woyzbA8EoDFY9Liu/HFMJKR7BLCzIBhUNkVoTJKT1TXV0AmoAkqXErEFaDRQQDWDYeBwEaLd6cur1jzl8Hf1+7tOoAZIxj0QEhBTX1xSRyBEBe61cVYWQNrjb+ka6yQr7Be8/DLWEc19Bf7W6CmoyV65ncu/Rtz7+yk/Nsuns+AiWs70r14tLt4KdEmZ5ZpdyVt68dmvvxTA/CfPTulo2q6NFhFjXhmBclLMGVlVFqNYmYbPtkUvmfgxCDowh52AyKvenk91xOTYRcmcBX7h1JcjqZLVYLqr5macrpWijmkIEFmAjDMygBND7MxEEkaIAETlDRADKylEUHCHHOsZwePjw0uXpcnUW/PJzn/80ItQn73m/WJ6dzE8eIOZlsTOd7o9HO26s1lqXF85maKwAIRoVBPSoLMCKGVIktMIKkYVr4UbZM0ubmYmIqMyKYIgUkoMRCVARTF15ArBZBhpPTk84Lq9f23nhxQ+6F348G12j8qaavaCiMkM5Uj4184KlDjwDrUlDFgkDYCCIoL7W5VIbb4QskRCmyC5AtzKSmpwyqGEOkoC2U/VO21w37XfUgX6pm4xpTYFPDUJ1LuVzTM4Y4wOrqii0FaHaSdAW53W7rc0QFYuIoLt+3zeiVbe601JKJhFhR2+DVEhFaqtKkt0cY1TNtjYsdPwK2+pn7JWM4UZ7xhhMbMCcO0wrRLTWlmVODseYBb+sFpVoVFVnbWSmiwyYZE6CqjGIZBCR0CLifHbCEsgAEAoA2Uysi0AcgrPWWoqefVUn1YqIGFhEEgwzACAZtQYIeedSoeRUY90EZByjY7Qs3ubjifPNChT29/ej93Vdl2XuMURhALJlDgCeuWkipkKPpGJxZGZSA+pRyZJTUZUoIiisqgJJBpuBqyJZwCHGgAYV0RgjA15HRNKhkrfaFYICp0r79XscLJ0OXseGEokbTHXNITeX/bxUHb5cJNpAJ9qgXZAeVVihS9XrHOJDptzPbONfaG3cLUHbSZHNgA2sgyWde4QBWjMTUvVVAmBKTaQFVCFFIdhYkUhkEUQjG0BMvIyMJBg/0iisDLkpSzfi5tHxk4NHj+89vH/n9nvv3L9/P9TBuVFpHSFx9EldwoiqmklRRSRCgISEqUoRMUv7gBSIjGok1txZHzhE9gCV98vGc1QBFBRVBYOWbF8wvi58bBuVb6xk+yI7Y5RBFTtnNbRVjKoKrKhA1rCKj9GkQmdQX1dKPs/zzBlmz2REJaVApor79v0bUlWRiCDQuteMqioCIRowoq1rTpHQEHS8WDulLkEWKEIuXA9gIHO4tXPrloleRmOcjAIwh3mZW1ZeRZdhbgUQVPJRw2BtfpVkdny3ms3zS5OTs2VzfOQEKqA6y3IStCQiGltVpk35BqhsfQkmLMWZNLW1zplJll29fsNwlRdF7ui561cfPXzwcLGq/Pw0zsawpwIiAdRvqa+RQTgiGke5tQQQmZsCCgAwowOb7cWYTa7A0QmP94uT26/z2P/hP/cnrsQX7x79afrQv3b15v92dPo2zz3L4Xz+vUcPv/rk3q8sjx/OF3cXx1AUV3YufwTGmcNr02KnHPmTszi5XKofaSqKEa/qFUmZhTVWxxKihEZjVEEBi+QQnRIjWZFMMSeTAaIKM0RjC0s+LJYAs6u33PXnf9Pulc+Z3QhmH4yBMI+LQwmNiStcnUp1BsuAwpl41Yaih9BEX4kPxeIuSxPoGk2uah59CNbD1FZLckk3oU5FESGQ6FBIvcRG2Nf1KoSGHAWWKE1iLZp4SNv+1EEC8JU2cRqgYybKfXQpsVDqTIREbMN2RlHUYmKpqbksQDK3RUg0sdiesSTTiIAsYmrCm3wfbcjQoSoSkgIDQIeqpgqQfFvaBa6SM0mkZYN5niePV5TgsqkaFY2qrEgqiKm3rqRmZoxg1vGv5DQbwPerKvWuy44kabOAsOcJpmXHqIBKBFlpFZvV/PLezTO1AKW1TqoqVZxrAj9QVWQFRsDCOd/U1hUEpCbzzKMC5ydPzmZPynI3H+1n5Z6PTEYt+sxxzaZuGiIKGtBgam3jyIWsdMs6L91xWBGZHSizYjo3tGNWvqqdm0IgFS3GRQXVEuoJ5NHXOWSGbGpb6XIj4B04TVUNAoiGKHmbBRElCgclRQQLIIpRsfasFkEoxhgAQEWAgcjWcW5tVjeVCnjvq6ZGYyKFRePzshCyBgQIDIrNcwEhVZAWQbpNUwBCFFIDXT5X56VIEse1OAgasW1mTcK6PnnTWEpIAJAQvCBBpBLIuo8LGkPWKaEA0Q8BRfm08f7N0/d52pZOkY5IiwCha2ORaxQFNSoUWQBUMcSMUSIqhBoh2vHONC9guTi4c/+7J48PHj9+8M5br9+7fyc09agoytIl33K6o/SakSq3SrEAiCijKqhJeZKQLNvUkIcCRwmsUTmweI6t7Gp3FfYb6tmrN1R4e88BSoK96DRZWUtr7NKhsd3z6ziRago9C5DZuksavmkAAFENpSgRAVygOCcKHahH24+gqiEwDJIJnn/+OaNhtVqGEJxzgBbUpqJrYxOIJrqsQLIswCQWxi+88MLxyYF/dLaczQBQQD0oiXiJo3KMqdKAuypABACwgsEIIJoosfY1BzaYOXKucFnmfX1pf386HR8eH4TQnC3OdouszJwhTW9t+AghehAGIDEeqTCODNkzS6APR/wC+VVhAiyv3BzPlmerMve/69/8X+5+/M80cO+V+m3IAZBDNcFdyMy1y9c+fvmF3/HxTx0184ez03uL2cHt7/yDN9772rUrLxuz4p3nK1/mo4xXVwSPjTo1BKAgJBpZhIVBOMWLUSRVz6giooRGptM8CjfNmTWOnAXCIstymp0dmL1r9NwHPrl7+fM0sYwPjf/Ikg6JyISG5sf57AiWc2liDGD4BJsalmdYnWlYCgUxolbmO5Nm4UP8FVntKX8ic9e9Wx6GcYkRUFNgMUUTDSqC6eOmfY4CtRGtztzseh91NKNr0/YcE7hwa3R7Zv0VEaX4cquODn7VKouEvYWQjvdJVW1DLUIiox2PTJWkAK2Nj4K0AZ3VObsTEglgFB0+eH+vDdNlY6uvPZDtOdsRwcFXT1+KjZ8gImJWlGCtM4jAPkxJREQsEW+eCYCqBKA+MhkDQCmgb62N3jdVLaYsdy/Xjfp6lZdjQJ3PF6NxFhueTCZ1tTKRiyyPCclSxFbNXpYvzmZEkmXETf3k0cn+i89VdXnjlY9UGqeT0eP7dx7fu3uzyPey4p5RU2YqxMErODIoYlQkFRMncKsYG+0w4JLTu4sMMCogAhMSixqjg4YADKrMMUYRiDGqQBfO51adQtza6UnDW1uxvXhRSmf2dtH6pQxiIgim+xU87S0ZY1RReE23nddtgwz6Ljq/Ps0YtjaV6jr9sT/+q5LQrcG96fnELsk7+QwVEAisOEIlQwGECVhA2EV0llDFZpkzuQ1+fvfRvSeP3z09ffydb7x+dHSwXJxmuRsVufeNSJ27grt2gd1O7r1kqsqqrCBdCL8VeMnDRISqGEQjS1CqfYwxikhKVd1Yk6cv4PDDgD46tjKEPWMBAKFW9FoAJk7ZWMpJX5YIYltBvSF9+1e09qUkkpQEsKOqitak/EPtkAIVmGAzaWTASVOaNw8erqrnRwd3U/muczmhITWxiclfaF0hwsZaBHBFbsA3De7v71+/dJ3CSVUHQkCCIGqEWaBICLCASJTyLwAEDOVsAgGC2hjDYnVWLWuZEIhzDgEkclnm169fvffgbuWbg6PDy+UEEUeFO58pr8pAERVUkTl6QEIu9bhwLzVeaRxZxqrgLCO46y/++N713z+TWaSxK/biopb8jnuOm9Pg4whkZHTPFs8Xo1ft5cNJczKdXmm+8jdn9892JvZxfNfke8VIR+TLCTrnMiyISJA0JVnHqMIiQTkIe5FUbhsFjQRg37BEjcHYQhljw8Cu9tl4Un30pR/Nph9nyqkYySqLq5NCH5pqLotjWa6WVcBq6VZH5eqkiQYoivU6yuDac/baB/NrH8LJLa8wWpzA0Xf90f3lTGs5NnkNhRHOBCRV7kG/0VFYgmrKTk3l7p2/pKdlWDMvUlDSwS4euPI238azFXTsHNqdP7UzLi/aSrJmpEhtzEu1qxEg6rgKUPKxwYBxDY2bxAdSF0TokCmT133I9/ornH+ETQ6WNnIvKFMsdlsF35oDbDIQRCTryFhniEM9nkzCfM7BWyVAGv6qWx/1UcZlrgJkHBpnDdbLZdM0o72bEZ3J0Dnnm9oYkxVTg05plRs7my8tUDU7PT2dTSaTpmmcy448r2ovmakQc7XVYqmh1lV58P071z78ArxwjQy88vGPnD54+KiqzN5O7rJYV8umMgqAlhUVWLXpFRU0hADKEkJAo20dPAiIAGgK5hnNVFWk9QxqErqqoqjMCRuflRUlahRgY0wfZWgVwJYb94XXrTS9gMzA6PoFdT5cpU24yqcS3lr5Uk0sVlT6li4IKR0kDfPrZgFvzeP82KLLZ8tjHDi0oVM5+la+iEaASQEUAUrWJnLNGpUjqqIY5ILDMivQ8+njh++enB0/efTwjTfefOuNdzKHzpmyLFGVWYiMQeKompigQpTkGkIAFFGkNcRPn0EHAFGjAYwCosQCPjArsIAPMaY0w7ZoY/2w543g/gHPW8CMDCy6tn0FgAQT5IagtBKZCCwhGvIxrIsnVaOKaWF3L9jbiJgZJyLMkjD0jaa8LdSUXdqdCG3XlI3YVc9lVBVY0LhYrVsDfeeN1z/8gZuXr71UFuOynCAYTl4fE1I8M4WpQoxkrMnL5alqlP3p5eu7O2N7dBYBDaUnR4DGR4NE2JfDJAxRIbF1jNZaFPVVPJkvjlaT2XJhJyNEzHIb6uq5m9ffeHOyODybz+d10xRFJmLawtnBsCZXQFSA1IFKVAmykzNzWWxZz+dXi90qyl3HnwK58/rdX/joG3/uxY/9b2T3A4v5amfaADy3WlZO75Jhsg0AIxAgWXfN5FeyF3Y/sPjuV9792cU8w2m+qMTM6NJolVe7eZ6PRuOiKLKsIDAGVRKkgEgKgGlkSeiSiAZtU83IQGEQuBZGBGMiLnl5a3c/KyYQQzg7iWGFAA4FT0Ubkpmn4/fGsztiEC69GG79aD7dgXwKk+swuayjvehshSrAgJfL8amxV7Lm+4vVl8PyBHnPTdBDJG07i6kqKiZbqG9Tj20eKmPnk2v7hyBA37QDYY2PrB0AbF+oNDAydLBfYBCQ6wmPWURUBLvsm/a0Hr1ovd0AAMAMgbVFEhPBDgeno3LqEXv6CuDu7mv7IbUiHm7hPuR8fl8P/9zkzmmDYiqJ2eKCGzvr6QMRBQhB0DplX44nXFXMjCbdV/r2AKAGkFNI2pCLIjZzZJ0xWKkiYjnZr1dzJM2RKr8MjKCZx7hanr3zxttWwKjEqi6L4uBsbq11YDTyZHdvtWxEVQzvF2V1tphQM0Wz/ObXj7+Fo+tXx6++DOWOuXIj3nnXlGVcVbha2SwzlgyaLC9DdDH6EJoQgiTsbjJkjcS0/qLaGkGsIbAvIAewkErzEVWiSEyrlKDfWEQ0ikaGqBBtm3OWklUlYX+lxcEWqFc7PIZWR9l8X3RhnZj2PP0pg5lTpS+RUU0ahA5776IhQgtEQOaHtICfraUO5vprRdEaXgrW0rfV7BJQHeQiXjBaFJehGBKxATF62zw+ODg4Ont8ePDu7ffefed2vfKjcs85AwAagw9RVY1xCYcoSuy1XWjx/6DPkEJEIkNo2kCpCiIKQIzCiJGhjhoUvQiztv4tSh4s7fWg9eTPibTzz5vwoVOmczIWkhlCHYgHcOs+awGzYoAWRB5SLgwAMKgZNOUe3qIPSAOAgWRPG0Rk5kHenraQ9Kxg15Q3UCsBAKIwmfXFH5+cvFpfRmFLoD6IBhbw4o0zSBwk1S6TiDiX27wgZ30lmXOv3rp66737Z499RDSWMEQAjAoAgoQGCRBJRVogAQQUQraEPurponlyMn9cZBnieFLm1tZNNZ5Ob9269fDgTEQqH0aBPUersnYntI9jVK2Akprk0jBW9fr+SWXjbOfmzeureVwuD1bl//3Vj156vvzxO+/+bUtv3vrcf1nuvhDDqa3mI2sC7BhCtAogrAKQKRZgXBjPd69/6rmPf/nd79yfxs+IOOJiNjtleJJleVmW49F0MpmM8hERAYhBTK31UFRUURlUlNAAKyvZDNTUi6U1RVkUwFjIwbXLHwPYYY7OETVLDAtdvgv3HunyGCXQ5Zvwkd+Htz4Wx3sR0Y0LZfCRRNSgZFw7rAFCXD4gaUAysz+e2Fvh1K5q9BosKyICKSIRWgVBQBAwFskAahtLSz35CNueqInkzMaG3f58IfEPxU97nU2iRfwBHLC/Dl4EgYnd6KoKOsejtgxXN7F9eobADITrGuJ+DM+Bjulh56nUzUttTFEJtntXPutxtgziruESMVLhirwcwaoiItgk724iqGRVVRDIZibLEBTJ5HkZ2eeFm50cLk99qMNqGY9PVoB5VS8sUqhWozIvrLEiRBRCUOuml/ZGk10fjiRyUKlEnHOP/aFpZAxZVvPy4Gjx1p29l54/rlZ0euScbYIPIZg8E0JBzopivLtvM5tlmc0phNCEoDEgYqpTEOG0QgoqMcYYLRWG8n61+waRopJqQ5lZgBk4KqMBa21KCIeOZ3Yv+uIVbk1eHXAGJVUl00III+IAZWwrkjAg7JT6j4QE2hrNhANPJJEFQ4QWiRB+vS3g8+PZuuGzf3X+X4AW91qTYQZah0OKJtNJRoWIxOZodnr35ODtB7NHD+6dvvXmk4ePTlklz4u9vYLFMxdN0wBAnpcAUNe1KmdZtt5LKVKznknbWYXIUgvyjKqCBlU1xihIQbTxwav1qfFv1ziv36WIyOsiyI6/9H7mBBCP2GYFgCKkgjfBJMyxDWAJKAwLCrmtTkmVCalBTRK9xjhEDCHABlPbXk9ENJCKE9o8flAWBey6Y7b1UJ2pscUFAEAZVn6V2zUQRyO0qsLybIYsMbSV71ElK3KScbSxKAqD1hjDKqDissKTsZaeu77zwpXxm489s1AqUQBiESBAMWgQRRlRhQEgEhgVo6iWEDGs4Oho+aDMdjLn8oyoMc74url5/UaZveFZ54tlWeZZTmJgSwCHKIaMs9YgKUjkOkpzEnS/2L+0G6ontx9W//2/8Ps+88kf+4dQ/DjYUt/92sNHf+jk9b8z+cQfRXsLRmdsa2OyhPodk/ZjjXFKGMvpc1T/K5/48fsn8//m4TvLS1cviS7qOiBl0nCIVVNzXfvRqM6yDBGNqAoCWETGZCQBg4ASK4AEADHI7KxIWJyezl66ITv7t3T0nJdYwkKPHvH8/uLs9dHlK/qRL8i1T9XjayRseJmFY2dNc7ZnpM5hAVoBCETrvfOeJngaomU9IQ4SrpH3GO5AzWozQEQ0CkCphTWYhJQNzCIxyS1ERNJezUNEgwiwdjX3x4cMAVuav4ADPI1RGGMA2pCHinaO8XV7EOzQMVswyPSuB8IyUVbfYKZlJADQ5YehrreMrr3c0m+Z9BRbGdcXjvOm8MYRNdit3oaCfpHE3bosogInn7kBRJeXXDcs7XqICGCbMp0cqqTCzMlzIQgiavMiy0tWcZZGRX54cnrv3n0Otok2cL1arT70kQ8Xo7zylQUox+Xy9GR3PHruY58LEME3V0bF6eGRGRU+cGgYw9iOs6Vnl+Ol8ejg/oPm7ju2XpGbYFAbGVUROICocFPz4rg2jrKRG03yYlwU1oUoTQw9/pAqo6KCRAXPUlULRCEyKaivqiysKsycfNEKrMBAgKLGtV7eLlmgX0HBNbZXH1YbyhfekMEbWtQ6OQ5R4SLfdf+y2qoVZTBkzAAJsw0JG0ADSkK/fklY73M8zeZ71vkpC21jS7QDEae0g8BGvcTFfHl2dHj37u3vPbz39je/9/p8IaHJrBtZ0rqua4y5y5q6KooCAKqqEpE8z4koRq+awA5aupfOUu20eNN91em/wqoYOCo5FgisUaUJqWvlBjoaDDQv3HTkDp90SzwP+AViAnduvRmb7iyB1KIsyyxAK4Yxccz0IDJMOthefFIATOQCyqKqiY0qsJJtT2gxHzdA0/rnquuaMYaw9rE8OD47PNgp8zEIB98Yg3meR2GjI4+ABQOhkCFbBomgnOf5ypq8dNMKrk7cTgkHlaKCBahbbzqSCoIxrZZiVDWSWhYUaQwp5Rh0OQsHS39rVeWrKsa4uzsNIexOp1cvX7v78NHZfDaZjKfj3Jxr/+zDyrnciAMDCp5xibC0M0Kwt49WxQvf+SN/6s+XN/4K56sTIIKzS6/81HX/V+fh/02rJ1ReDTSbQ16iJwJEcugQUZGFQwQu7QvZ7nQHfs+HP7t6/Oi/q5Z1no/QEGIBBKxQ1b7xcbFa5i6z1o6sVVXkiIotgmnS9EURKTQRUbPMiizqZuny8MoHfkLj9TpymVdwUJ3e/54W8+lLP9P8yOcmzoKqLlerKnCIBMHCUmCmgbkOFCJJUPBI0QKvGKIWkZfYVDAzeQUO9hTcDA5bJiQoyKhEIEomxpjyQpNsHThUtn0tAB2KVkeHG5KsI+atb9dEvpmE1UFOJkpoI8GqQ40ZoNtskApdE/iztHHjBGrYd+AG7RIYO22YUh+FdptLp+Aia5sCSbS2qM6LWN1wI2+UgSa+DwAD23cj/Wdj0S6KRvcfUCStjDHGc3Qui2hii5QXsW2i27MURGQVzIpSERI+R1FOw2qFmQmi4+meRnz86FTATKe7jWcWc/vBk9/xe3/XvYOHTbX6+Kc/+ctf/LnnP/Sh/U/8yGl9XB8eiATL08mNa17An1SXnsjoytUFmWsvv9TUq6C4uzc9eOfdJqbaTIqBSaKx1ir6KmY2Xy6XpwdPwMFkf7pzaX80no7yURNDkm0ioNrKWiKq6jPrIMuKVt1SFWlLgdMJrK3LWIANYVeAPmSqqXrebC5zhx64NmF1SwZDh0SDXWB0GIkYcFeANmKc1EGBLolv+HLbTK5O0/tVC+AfqPT1D3yegN7nLXrZg4M/kZJlMPg2XXA19c2T5eqtg9N37j+8c/vuwZ23Hz249xjNnnWuHGOQhiVaBypl01BWaBPqlCZnrYnSSAKZA0LBfhP2UDibU1vnIomIKnIUdEkqoyIJcI+8k7bvts57bn2Gi9PvMVUFVJU2YWS4kl169WBttWUKCRErXdCYloOw9BZ81897PX9VYYXUtxEoKRkSdVAi2Vu+PUZHT4VpAkG8K1yo1zHg+4+Oz65c3TtbEKrEKsuNsyKBa4YYZcdR9MgKxTQ3xiBAZsaZK6RcWIwjh9PSnFRMCtaAcspJFQYyqkhkyCCBqlbqrQALBCtkDARuGp7HyMzL1SozEwBwZITc9es37j94vFqtQghyEQ1GbmKMbKNzJstiVmiem+meX9I70+fdv/G/eAf4FcijVOMrBSiUFXt3/RotP8OuMADOl3t0hrqHKqAMMTIzoXFuAi4LzZnbwRJ/7MMff3x68Mtf/oePnrv+hUBViNE6MgjMKuqtB595Y4xkBSpYAoNgU9BRFIBj5Nw5aV9KmC0elwV/7OOv5Jd+ps4X4p1/MM9Ovrhrl/j8v4gf/xeiLQSV6hVWB+PlKYQGoo+RS1+BSsOyiiH6WkNNHKxExoxJgs/Yz425bYi97i6EC3IdxTIKArCSQVEAISLryBlLBL3SmajCDCAIkvQdGgwDs3jD/N3aEa0I3BTAMbSlfFtbs/UMp2hVZ+OqArS5FK1qYJD6aHFvy6afICoisACR9DYuaGtSW2s5ROa1k7mf54Vm7vmN39lGG+p12l3DZ99imxeOtG6ECbONfBOMdUgWhLvHVoGIgr2uAKIE6Jxr80rQZJlFY1vXktD+pesf/UTx5GB+cLbIRqNxNHcOHt15fHDp+VvL5Sy7tP/Kxz7WhLDIs6svfGQxKe4+fnjzledHN26qLcc0vv3aP7G7ex959RONG+Oi/vDkenX33gufuLnypxK5ni/nJyexbpwzKBqXywwzKjCzMA/Ls+OzVdXsXGqmu3to05xJJDCLJqZMJkoEECJAa0XW5dohBBFJYJaqHDSEENBI5sq2igBSvKpnX8mS4XZR0hm4TpLaHOtEWuyc+QPsjovei7TobKkwvcPPGcbvkk8ixXLA6mbEZX2tzuLu/OfphHWAAbvRUdG63hwAuixrHDL9nuQ2JM2WXZb7ULNVZ9BhJEABE0V8lIIogjSgkmGORnx1fHp6r64fHZ/N7t558PZbt9979/7xyYIwK8vLUSRI1Lao20RVkaCq4A1AG2lg1gQJCa0ilBz4SCraxUcZOkQIAAZOCjczK+VVtbJlFqKenc5DHSMSCnJoyx4SeMb6TVILGgCQQBTWy9jnVfZ7T1VBJCVOKACnmkLVNPVtpVgUQB05AeE27EC+bjjhJTG0Mjg3RCrQFVH06nynhKVa/sTIJEZkToEKYwwYwxqVENuG4KgsGlmYEQAaGPpYVkt+fRau7VdIjIhRTAjsMipcmK8OMoLJpctqtWkam48ATM2Z23lhXrl9e3LrUu4cW8gaQLaccwxKDBiVA7MTU6A6Nag6zsqowSLkGpWXWpjG0PEB391dfbQcofdVqMWYKZn9PC933cmxPz4+vnH5EtH2TquXNJ6ayp8cnfCN50Yf+8TzCIVVe2n3q1evfQ4evCfNF8EeHIVfBnr1hv2XyvIlwQLKLwjuslmyeowTAK8cCBAJGBGI0KlCyKhqJKfJlMLnP/2J3/3ge//Z/cOvmcu3psohjAIZxAojEe4gchMPmS41q1i4cn+yU/uVJRmVo9h4Yy3gHAJnDprZdbP/xR/76T852f2T1ZP/Fz+cT3y1PLit0/38M78lXvtYLKal1lCdyvxQV3Nerni1kOUpNovAEphDCNHXzXJJ1lViqJg6Wc2WpyZDkiC1ya0Zjf2VAu+G5ppDB46q3DvkXaWoDGPCwxByRus1hiZDcQArQasQEVsHUpeBRZ2Q6vTRFG2FJPa28wQ74afa9uUdGsQMgJrScxBRQVlJkAAZoWt5BKogAikOoIo4jNquWdnAQUXrZl+26yqWtqqxbS9hCABKNhOG2EZDOUcW8QgmNeoNiI6AEjwUILSZVgCp76QiQ29oJRCDNqK0EVDcfN6NaFGvlAAAoKR6XxEhsiIxy221mmWY+lIroCIJYfssDOCD2lVT7OTogEWqRie711b1E6SyAhRnpi9cnot3i0WO5cqdXN0b69kKduN0sn9ce3PlSlwuIldukRXjvcvXX4EbV/YmVx+Gug5aTi7Thz9py1tjNPP9ecAn44U/KfDqSz9jm+Xsve/be1iYrK5j5go8PFTl/as3q8eHb/3KN3d29vSsfhQfzg4eZpOXd3bLazd2D45XWZZVVcXKWWZzHOfZjld0mePGG5O6HXlCkxxsghBVFSEvM7TI2vQ2lSHb5TxDj3DWGh3J06kEZLulFiTsZLOwpPdIkhLkCVWBJVhyQ1Ow/9eZTEQUBIGAciSDaMWY1AoCABStABq0aC0OHOIXjG1b8+nnbNENngMEef9DFiNnhAwLN1HFGkskLJxni6bKcroOGS7P3j0++/7p6TtHhw+/++0HDx8+fPTwIAQti8n+3tXgpWlCSnbdmhV24OxrDbQjbtnQW9cOVWstDRIp14MTEJqIYKrD5+Qt7U+gdhWesXqwyXo2ucRT1meYUNfrOL3vSzVGHxVSXj5iC3mqhMgMCUR3s8vb8P0OLwgAKtpfRyFh8ilaQkxMByxR5jJAk6rj06jqcHg8O7s6jioIcU+1mDpf1yGKzQ1LEIlGhQhAJQoTYFEUsSxxsjOZTPfHo/ewASVk1F4FVYTUZ4yBU+/stA6GjBoAo6QsXNf12RKX4zAtXMbtc41Go53J9PTkqGrqs+XCmCnAOmINAHk2RTo7Xd27fPn6Bz52fb6aOWevj7P9639w95VXw7QU/6Mk78nZzz88+GuH2X92pfqfT7OfsiOXxwO0lw0QIERuoWpUBUSIxKSgJN6UeNdmB2bnBlz7wo2PfOXBo9fyw2nDxyYzxSgPvKybitwU7U7dIPhFlhUhhPuPHly/elkADk9muc2pXOYh0GXTLHZc9qWPf+rP2pv/xtmjrxZ8CfyD2eO3yV0xNz/W5JnovKzmsZlRs9D5mT85CqeLOJv7s0O/PAleBG2Kq8emdi5f+EguFIBkRBSawCoQVZaL1bXp3j6Euao9OnG3LjfkYG7yq/t6fJo7RyawZ2Z2zuSFw4UqyNqT15sMrYCRIZn1H4YGpXb191v7YrhZiExrwrUR5CRx1/TcWxtJ3xXp9IB2ShuBHljPcMO7dv5fVUip09g2bLBJae53DbSRAlFUER26qc+DvT8lgHjBWG/Gc2wBB+coIZJFY4dJWCJdLkXCHOnBwkSUrHHGKGBjAKBwGRAhwtWrVzG4o0eLvUtX7pzdPjo+OKkWV1+8ubNXXt2/VJFZLOaVtWfNwoyL0eW9g9P57kvP+5rPqpv03I1KxtVilU12uNxdxidXrz2f7+YN7V2/esm4+r2333v+R35KWUc6E5eZ3dGI9m6sXjGaH95+cv/e2X5W5Iujs4WdrU5tDstqlWVZWeY+NC7PTV6QJWstiEIEBINgOIp0tWEAYIyxmSVHEpvhqxks4NO4q2x+S93nviJk7cXBgQXca41Pe32p+8LwCCIKQsJgsfgUa/oZYuDZIvnXODIKKg6MA6NIM0GUWIR67EKem7hYvv746Lsnp+/duX33u6/dvfPubLU8ybIsz6fO2RhldrZMoVDuwgOwuTo6iPdsPeP6T6QuYNBC/7dljKoAqAqgJMoEEFkqD5ExskZQUbBrVrLmMnJB+BX603oq6cmoZ1rPGP2Lbz8AGKLIHGMMkRUUAQXRACa1O2HYQovH1ioKgusqI+ygP/pCZ+3kfXLXQ9rnCpoKP1UU1DqnZOwgaLLy/ODx8bv7+bXL07HjMsNJdMF78bE0I2aOwaPzTiJqAEE0ZI0ZTXca3d/bv3xr//C1OyuIaJkCAigZUgVgBRTwpKpikbCNBRqQDistqhc/m+FsGidFdLXP89iIH08n1y9fuf/4aFGHo9Mzm7ktAYymPjg6292/fvOlF7GA2eq+yoPyysefu3llsvd7gacwBsCP3Rr9rps3vcy/bVhjdb9ZPK6qWOwoFVlkVJNjgvkXwUQl0QOCojdxamgHkOPO3suf/sQ73/yuOxC4dCUGc/pkbnPZvTSt68XpcraztxtrVy8rYwwRHp/OEkbKeDodQVOdZsW+OfS3f+yFn7jx/L9zfPjFSzRurCuvfBjn83hphB96BS59ulSGw29DzLVaxtPDeHgQTuZ+dlqfntSzUzuaeCChjIyJrAYVWQyF2cnMTUp1hrI8yyei1cHsyeTm9Obn/hAvZ2dnr89Pvlc4dOPLeFgTNT6GLt9AAZCZmYNzJpmmCEOKlz4w3P27Qca66RLrDBQC2HD2QoplDrePQC95e6d02rI9ULCIdnoAYlIkB3ZFv/n6CQy31ZZQJyLUdSclIrIpYI/Yg3EmBTcFgPB8yfm5LYwA3d2fuscv/q0CiLZtJwhRLVhHWa51IxBRDaICWJHYRz0RQFVjjBijyS0aVEFrXWSwlgQxep/nbn9/9/T4zKn78Ade/cpXf/n77z36E//+v3Vj7/Kb33+9mi8++BtuHjx5lE/HYujk7BTVQmjOVtXY7ksF5V4ZRCpttJyY518av/KhqlouGYWs7O5d+8iHy5vX96Y7i6O3ziD74Gc/OXvvznNZPnK7B4+/4jQDk6HN5qvlyfLhjZuXRMKNm5Pp3u7p6Ule7rrxGA2hgtgQggcAJZMASxEl1Qcliwi3+2hJHz3EzUKy9yHIumS+zYNb1LL91rDtegRKiAbBAIT1t5qAj0BUWwv42VbXwMreOHLhyb9W2Wy99yv2CIZUcwc2M2U2dVA/un3n248Ovn/79jtf+fK37rx7mGfToih3d6/HGEPgtn1s5mKUyjfWtihvAH2mxlBNbp8Cum3Qaaz9CSahPybsvAEoLmpyMImwQmCofKgjh1Q9iwCphKlbA/lBkrRnBJ09ve6MduH5522C/njSx2NLL5hySRjUdOB2McZe0qfnTZFjM2BQsLFKOLT+sSuOE5FUdxdVnDVEZlCFBEHxdF597/4Tj/LSlUkTw2IxQ0QhrJb1OPOhqRlRjc2S8AUbhItyzHhpf+/qS5eeTEaPmxmTElpHgu2SQmRVZEZESNmDqZ+asKo6NImRzld8WvnpyBZVk+c1E0+n0yu7l4t8dFStjlaLspoA7A7XsA5+skcvfnjXlEf3jw7VRFW87//hy/ipfZmCYyFueAmm8PB4d/dHdPE2z3ycLwAfZpkl9yrG66wPExwKCxtjkKOEqMp2fJmceDq2ul9mP3Z5/Cia/+be8Tfm1dnV3Vu7O7eE89kZoMsB9OH94/2dsQrW7Efj8nSx2Nm5FHz4/ju3r5ZXr131y3swEr6y+1z9K//H6Q7C/m/Jdl+E5ja8/IHJBz8FH/gNVQR7emAah8uTcHbiDw/C8XF9dladzfxiJT4QrRRtQFGiEDwH3zQNOsfMFkpypc0ndVOxqqibTvaKD/z0Wz/39xiaCSAullpUORQyvawnd0iRFIBFASQGlWgSjSTp21ZMCkBKkIZ+f+mgE1xysKSttbZQWksVccuJpcBtuxtlRZGu8l2pg1nY2FDnNezeAqZzuXg9zW/qCrjx8647AnRR57WrqR9ERJjK6ze3rW4dGXqhhmty7ofbzkhEBKFUbEGIokaJyTmTlVLVnXsAASS15Gv1aVIRlhDQWnQZIqmwQRs0qjAYiDGyMBJcujx9cue0nIw+9dGPNdXi7/wXf/21b3ytCvHhg0f/9ksvfeKjH/vuG6+zD1f3LwUF08Rrk+ny7nHuJQsMKtWqETU02V2JAZiM4gLCAqfXXnz5yuzopDltRns3PvfT/8p33/oWutH+jRtx4cXGcicrMb96+flldbiqNS9GxsLu3iWXm7wsRrv7rhwxs/imXfYU6kCjytKtZ/oGAltLw1epKp0suED64trrqZ3/YMsC7kV4X7emWxfZfnFAXeU4kVmHvRBTM4v26r/qJKxni+rBbX5IMRx4DNm8yICohHqkq6Ze3Vstb79155u379z7pS9/6923D3N3+dLuBxVXrDPvx0RtKmCoG1UxxmSZiXEdkAYAVWAWEWnT05+yfC2dt8cJYO2yVk0ohqiqKiAKIlA1cVlxHUQUBQGwbd6Tri+4ca9nr9W2vb6ZiaddfP0Z6luSwaaFM++BDtbZW4gtv9BBM1REFABHXeZnh9uOiNCi/4ACeO+pM3laNkpowCgiENnBTMjkUfX2wRyJdif5TpnxfGUJizLzHJfZ0hW5I9OsThHRlWMlGwLnRQlclpPJzb3x1R2aV6IBLBFp6r0IVohVVVAYGCBGMSZ5hVK+BhAQETQ1HK+a/Um2H0SCVBQLhWkx2Z1OD05W86qeV83W+me5fuQzH4726Mns3cArAS3Lgu85/NQ7QHWkYg7zwtgS8lKuB3OGNEZ8UeWs8u81R1XOasujnPZRVEUIwIBCbKKvkCNM9sAuFSxWBSwePTz8+8Wrb1+9an//T/+lG9NLb37rrV/6hW+GEK0oi7+8u7NcVibHJngK1uajs9nCGrUFnuQPl+8dQrj9I5//SJFPq5Ov7Nz6A8ud2rBr3G7+oRfgpY9EKDDO1DfgSRen9eFh9fgonJ2uZqezs7NYszOZNxVTxkYEKDRLDlT5xmZ5sXtV8owyh9ZRlHGWBX/65MHR6Bv/1Xj0jj18cFI1O6PLBvhwN3IDu8aocgiBmR1lzjlIoJ4XJbOc19d7aj/vkO10/Y1N0X/VZ1u3hR7dvhhKXBn0AMZBQuVwMw7LeaHd3Ru+yuGlAEBSJwCj3gumcnnVEEJuUvKjMCu1NUUgqYvGRTK1PXJBNQRunfMMvqGqSAi8th+QLBpBm3erGlENpC7XyESuy0dSEEaOyoHT40U1SCIREXKbhxDU8N7lMR3x2Xy2X5Sf/djHv3/n3YN7D3E8zqfTv/93/u7bH//4r3zjW0Hhs5/8zHh//+rl6zuX9s8gvLxTHi2fNLN5Wea2YQKT+Vg19WiUoRs9vH/HN3F3Z+foyeOdq5cPTo/RwJMnT65e3nk8P1qdnU1vPTeCAhGn0+m1G+PRBEejshwXVbXM8pGbTNAZFRaJBK0SFlVBNaqwROagEBHVGJOydpIaNljSdp3fpwhrf9ihVG6iWlJffTd8KWmBFdsMKkQUJIMIQ3hTNJJq5BAhCeD3P6Ge3M8d/HXzS4thkN24JNTawoPKP7pz93tvvvG9L/2zr927c8DR7u9dEQpRnxCUoR4bG4FbvdU5K6AhhKqprclhMzyTlA7d3GzQLeIwtppcrB3gc28op+Y8CAoiXHtpoi6bOK9CTFZZimD1D9IFloYMZWsMucZ5XjNc3vXcLoo9YGdAKwAZQyQxRum87TDA62ldygoCaoj6kkdBGMImdKu0/hPJIhIAqQKLiChSm+0Hm4SIxiBAo/jweHnjtJoUpfV1TjhVyHMzn52Ox6UxBmqoaQ5oaJwTkRfmAEQ0GePz0/zuUbUK0UUwZEyCuqfUl0hAGRkDR1VrrVKXlabKBLb28XReLfby9E4jmUXtnckuTfctPa4bma2qrbdw7bnS5TRfRjImBhbR2i9nPH773n+5t/Pby90/smt3mE6r1SJHpfJqpG81cttLULikcQ987koC5s6HjyAamzpUZ7nF2dGs3NsjyhFmMDl44ZUff+Vj/5otfhuANvd/iehxVriz1cwCOMTFohIa16tVVmbLKkyKoq4X+ztOePHo++99/gOrz/7e3//cJ/+Kf+ud4ko+y26N8KbAbSqvF1c/yMjN/P7IO1z41ewxHD/xx0fV0WE9m83mZ7PlMmqW5SO/rBVZYCUxhGpRjgqyLh9NTVmasowEzA2AknOZmzy8+/j09G+extPPfu43Xrrx8flsxuFJGbnId0ODoGiMszZL1JLc5h1UGULbEinh0XSh/JZ6L7Y+t4g/4aFufkPt9dvsLUU0oIiEKnG4oTYqhYYyVTc2zpB3bW3DoYBshVznBeyvr50veuuHwxjwM57xQsa7aZZd/BUkVpaQ0Sk1bkFFhzZuTrznYwIdi7CpHCuyipKSqma5Dey95zyb2NyteCEad6aj+fzUIe2Pdz/+0kduHzzKd3Z2blx7/Rvf+qXZ4uWrN0+q1Vtf+9ZJXRnPAvS53/1bi9KNd8aTvMAQ69DYIj9tjsfibz/BwsHUhcv7l55EM7cFLR6dPoieq5uXRpkx3/naa5fGl/NsL2e3rE73LxVXru4q+NG48FGi0N7enmmz8QWUEUGFRYVZrDUQJLBvuAaI1hpjjLW2A0bdksHbetjgFW94QAGk+5xgNGTwk2S6XOyJVABQVIPUep4NGkOb1UaIba06pFSCp1DIDzPW8mBzWu9/ZAZQDSD46vi9B7/07e/80pe/8u1f+dZ9Q7K7cy13OyxBmBVC1CWSizGVvkkUVlVCS2TzzKXq7OGshvtqS+HdtokVh5DsiJgYgQoAaIwSo9RNrGJc1bFqAqsjsqABUAV6iPaBMOvz7QZLBZt7Zcv5jBfoyOtnOf9BAbirWSRnQUX7POqUxkeU0lJIW8xFAADq8/OBQUXFnLMn0jXVEgGiaIyRQwjCqc0tOgebrCF5wpWKVVjeP5hb1h0HlwqLIqBOmKvVyhjjSrSca6ouMBkjYxBjzLi0L+6Pv3GvmhMUokqsipBIGhHUgCgoaxt3VEQkY0A5KREkdlZVq7qMkX0TI1m/XF1100u7e7mzJ01crjZ6EQLA3t5OE48wP8nNbFGrxMKzyoR++asw3vkTn6SVG//PKL8kuaghI3XgB42fo14bjWKg09Wqlnh5fOnDKWwJABJDvZpzsxyPijILTmZclxFGdvJqcf2DAFA3j/mxSjhomneXy/ugY8CdxgenJvAqoo6y7OxwRpLv7exWi7vHJ+/8zt/6wR//wn8IH/5Xw5gX9O7e7m8bFQd4+yi7ksvqoRyQWV0r6opn341HT2CmZw/eq09Wy6OT+cnxrFk2xtrRDo53rJkCCIc6rmYiogImG+ejXQ1AgA0HAeHA9fHCGjveu3b/8M2rOy/svvTjZ/cPDMyz3V1zdOYuY8OgillWZFkm0jAzoTXkkAL05QQtPaeUAh7ugDXB9JEd7ZVkAABJlbKoG9JaeqyPbUEu3PX3TLs0tY9IxXwDS7QXxlvJjP0uw4Hg3Nx3YJ0LockyF0Jwbqqq5zM0iUhROj/6dgy431Dr+/5qHIobmoFBUFRccwxQBDXYu1vb8uYoQsliFhFgAaPEyiESESABCiQXtCgzG2PJQODgIeb7pYrBKlyd7ItnLIqd0Xhx/aZXPT040XH2/M1bO+KzKp5Vy+/+t//D9//pL+xcu3z56lVgKPamr3z6w8Wl8b7FK/l0dXr61tdfCy9/oJ5cn4yyu6+/9fJnnrPIX/niV0b5iJc+57yaz0ej6aSk3WmeZcAqQYL3XJSTnd1LVZMw0kVi0Oi9ryMaBrDIDIGlYQ5oUtqKiTEOtCLoE3p6SvthbMUEtaptMefwvQ0v2Hs40FDXs9AMmzEAIGgqvUFFWVvAvy7263D8cKIdw6RavDU/e/3dt773pS+99tWvv7n0Or1ydceM6+as8g8BKHpnzNgYYKljTLjb1qJRTehUGjhk1gD01av9Jl+HZ7FFCSMFSoHedeIVpmZnaT+n6C8m9Tl13ggheM+eUwGpCJAlElbsUhBlsDEucBo8fbnSr3TAlbZO6zXr8+JZVZWQjLHQaiQJIautmQNUBQkxQSJ0TZ82HH2qKp123y6XarpIJFRVVkmPLyIEVonSCudu3W+LTJqSFbCHJ4u4XLywPymv7KCuEO3u7m5dV2RpmjmTRHgazhbg0Lpy5K7ujEflGTTsIgZVBSFAixYRlaTDKkORyMxpo6UVtmjBaOPr2ocQQl3XmtngVbPdnXKcW6d1TOhgwyFmeePmcwczuX94vyyzk2WYTOju66udfbp8/QNu8luVxhU+zGjXqIPlnBfO1w5kQRQ5lE4v7+6M6xiRTCo8Yw51VZnQ4Djn5S1oXicDWL64MIHBOC6wjuMyvP69r77z5ldCtSLYrX0DMicTmCeIuKzqPC+FYbWYnRw9+H2/97d95mf+Dwf2zPE7e/fosmYgj47ufWcXNDzaLfJLYXV/RXetg0yCnp3NHr179uRemIXF8ezk+HgF3l66ku9MyvHuCsgaNGHVoPjFrGnCkhceRpd37ak/nktz68UXrzx/7fDxo8XyrK792M5P/dnJG9+p8Ahhlvm95trzZzXsmmzByxCDKhDa3OZEFLzvSHhI8tipm+m9bWiZIhvBuZ7yh27k4R7BzWBq7zbqD23tGpG29KeTUr2ROtR3+x20VpSHOigRqbC1luvGWlvXNRElLp/OSQX4F2rMW6N7wPVs+1s/7XzcnNLw234Z17m6LQMZrk/7HCwcFcg6YlHwYpy1CAkNEMWYnJlFgrWWTGkvyfzA1/NmVI5ztS9cunFQnx68e/v61RvHy9mLz1977Ff33r6f3dhdzM/sqLg+3Ts4eHz/0eFZeX8MeR2aN37+F/du7OJOodVqryzv377/5mvvnMxnhyePLl/efXCyu2rOvvnzX5MYXrn14gu3rp2SJzu/cvXmdK8gbLI8D4pkcDyeKjoARlGQGJpam8Z7Dy5Ha+t66WMTYwAQMqlflnAEdEMLpzeukim0DfYCAJ0ypwOHczq+HVLBgfl73jRqKarDIEv9A4ZknHgvdHVQtjPXtml9QAJdFAWgs763KWDLadM+SGLxGUaOBEJkVZBZAMBaC7ASJqIJqGOpnQtExDXO5v/g4YPDX/xnX/3iz3/l8GC2v3fl5t6orusqnCIiaBlZgUAgclQRNFioQIhJoLRk6NBECQAAwxKF1FBB1iDdCcyt3ZOIKfGKqMWCap0YAoBqjBBAEA4MkanyuGDrA9beelHG4DUoiCUjAKqQkvKwc14ZQI2pvAxVEiwlAJCAEJJIXOvjKKn/MDC0AONbdRq29bgmrIOU60FEhkjaKggAUmMQAEk1qkICSgAlNDa3wMIsogGUO+SsNo6loOwMJM8eJIXEICAAoUZVVWVBQVRCNcykqqhEJIPyK2FghowqJZ7Vnhtiw4uifvGS5lyvqlExWk13dkHGDkfOQgyNy/azUB/mzCK7df7CdOejryyefPsI/AichlCPykJVWaTMyxA49SxDMMGzsWisJWvRQQ2AjKXZOTrht4v5R14qRs0Shc6amVhz7crV49M74VwM+EMv//YXXvzR7zz8q0+Ox8t6PtqDwyf8wgfgT/4H/6bR/8tylZXjutRrHBt1lT/5+cXJEgK4vAgRBBUKWYi45iDoxBXT6BtdnWRSBYQVG86PVbLCl341G8WI+e7qbGnNqnn09aNHDw9PJyseuUxRTkWs2udRTirvIF+yYOHcw8cHP/4bXv7Mj/4ZeXD3cjEmegL1fQinh7cPs/ncHz7RsZ7EItt5DvOxLeh09nhx8KiZz2dn1bKOMHGoeTxa5D44ylcRJFc0xEHVZDSaLpZnKMuT0/cWq6uL6t6rn/9tH/2d/86b974vkuXVWyYeePfiCMz3v/7lbJy//JGXvaLODi8Vu5VQPgo8G0nkADMPZJw1bTZeywcY1Kh0eVh9qCK1EWsDchazpOMmLqNtSQmQtYnoRdZcJap0APpKZAMHa22MkRn6KvqUjNzzokyp50aIKCbty9RVQkCVEHoMgz67CrsoL3TagDV21dR5Tr6J05v73vu9yaSqmknhmFnVWpO32iRZgAzAKzAIpbCUqhAgoEbSBEzSssm14229btsM+CKhC6KQCpR7lygBZSaSrf3MGkU1IMaaXEJkEKXMGMMIPnpFcHmGCN57gNRk3YKCoSigwihQqDvbGRuqkReVB2czc3m6uyvFw4Oj/cko/8JHPv/iy1/5v/6t5y7fguezxTffOprUt1796OO7D8bBEEcMUDrSx2fVsh4V+YPHD65fv/b622/U4j/8yY+bUXG0evDw7Xs715+faLE7mdRRSiNXr112l6xYseR83bDAeLLj8jyIEghL0OgR8eRsmeUTUQ1NgzY0TR0B8nJKDiPXKDzKUVrfWFqbxDOT7r6dWt+qLCmgnqSv6tp/gU3rLk7RJVSFANDiLWkP8g+QSq4Z1RgyxgJlAAbNtsRUAkLQ5NP+tbcj3PDcbo50JAY0bcY1E2XGWCQBiD7mJhsxB8R5bkdcmcOTN07m33rru+998Rf++evfe7ssdp+79eKqamZni9FoFHwFgJIg2IAQU2ttSZgmujkAYGj0b+g72P4POq0zvRaiVGjdojEzQFtBi0QAqqhtBTewCqvUta+jeu9j5K43THJ2Ue/4hU7R7vAikSHRQKtGmc109m6yCqnAdeAt77U2HViuQ0uiI5E2hwq66Fdmbb8mmBQLAEAw1IJrbmJVQt8oK0XYEFWRBEEVmUVYAcgYp6Qpxhd9cM4Nk/lEhAg18qxajUta1THKGea8a9w0Y+LQlAxiiCjEipsluonNx+xGagw7iiW5ki5ltJdDtVoB5M46ACAFQwYA2toXjgmIgDltHbLWEiGIxiB1FWofYoxsnPch6mJnZ29nZ8+5uyzbbC4v/Z0HX2Wm8Xi8bOYExdXr5o/98f/A1H8K8jwfN1XtxkVtqTx58lXrRdUAUeq1ji00JoqKxhB9E0OjMYqARo4+UMkiGoQFoKoa9B4iNuHJyZP37t69fXI8Z84BA2KBYGeLBaq3dsKCIOqbuszK567dgsUZ60Lhamiaoj6a3/+2Pzo+fTzDxSoabqDM9mtvMspIuZaq8Yvg2ZCzLJqNL12yIwa3Wq2wzI3NI0duIghmWZbHPDLXwdt8Zd3ug/vvPn7rn5tod/d2nzxi66dRa2CJ3qOrq9WynE6UqIkhxhhjVGh1OIDInNL4YQjdg2sq7Yl5bdWpKiivVeQ132iTTba+IqKkwSO2El1EmCG2OaoXRGoIULs7Jpb3DPN0vQMHW6anagEFSI2YWrWYNv3VolGEukhEy5dVW4d8ZzbpDyhO+tUMHHjLIGVypD6JyAiSmKCgqGJyg6URY8BUGtGB70rK0VIASt00cDyd+DqSbdQp+xBr7/JsMt79CBXV4Ux/9rXTDzz5/G/9yaZpXvjwqw9/8qMf/v6jq6+8sKqaJ3fu28zN0df1av74YHR6qKpK42jxcz/xk6YYP/eBV9+9c/f+u98dcTSI09xc3h1RpkFCMbEJlyuKiCqR6XwMEYW5qX1d13XNKhojWoPGJETh3shMD8jMhtxQzvaU2C/XkLtqGwOWtbMS+889Z6ZEGj0hpSMd82wNZUq5MprUTUIwA1x96C/YboofTgAPvSLnSWHroEUlygAKkcjaCIqyigDCXoyL3BkNtJjdq+t33vz+a1/+4le/9OXXimK0t3MDwKyqoIrGuKqqAAWUun6QDNRhyHU9TAA6PPa039aQkABdXLZ3dnWrj7CuXgBo62LXz6HABosoEZVVNUaOCg1LHWpR0xZE+CAYAdrmheBsy5J0XR4OiKkAQnsUDNVUggEM2DlV0/9btGc6J18BAPrulE99Nek/PXcYXiG9o9RTKbWD0c7D1vnb1RCl1hCAgEipoA4QNYpyKrJDylwyC5jZsKCoxHXRRSpDybLMeFBFsm6xCtWd0327c3V/ZMiDNsJLkKapxThjTUTEKlJGYyh2w2R3XDWv7od3dxbfPq2AY+acRAZSQhejJ7KIiNak3NO0yISpWbNhjSzsI1dNWNTBIHkfIdRZVo/ywjlXL7ZjwF/65//kk5/7wIOH954cnYx24L0369/0L31gNP4zjacqHozcZWcIwhiqN218VNcijIhOwCoyGZN6eqqKcCMeOXiQkNJiow+leAAXQdkE7zlDdVLPz95+4+1vvHf77qqKZVEGz0gT51yIpwbFIYYQkWzjG4q4M9qdHz40ZcOuYEWen6we3a+PTxZHAdnWzUkxNTsFLSSezisRyUwu2RTC3JisqYNal+c78/l8cXJQeD+iSwIUYrCI1uWZKyIvvffGn0B28+z44bvf+Ee3XvjRbG9XjFpb5pRLCL5uIHA9m02nU3SuYpiMx6vVmUeBlOwWo4gQ2h7x5zxlDplGv8davF9I0TXsyj/WfXm3xCoiEqFSBwkNgAgGQZ7Cfzp19HymFfRqQbdNBECgz6PEpF0BtFsycUwYzqrtdjCo1lNgTPjTT9mhv47S99ylkYhCCi6JACACA4kKRo0KoNriyaedC0RERlU5pTSBIiApAxEq1JGLstQ9WcWFj57AGSWuuc4Qb+3KvKm+89aTt96+9emPvvvW906q5eXJlUNi2CnKl29NxuWN8aiZzSYfs6enD1TVOMtRrbVvvPH2bD63QHh4cplcMcnLvJhOcg81q7ppThZDE1iiMc5mLtVJqoKV0NSrqlrWyxUiRRWLJqLOV0vnXJaVxrRdQBWiSEzYlD3DTzWlnay9MK5xQfNBuMiwVFUEA4Pjw3MIbesyBANojHFIdtiXvRe9mCq1z83jfY3zJ69V2q0jtALYASkRPGBjMAKUgCPrBHTy/2Puz35uybL7QGwNe8dwhm+4Q957c86srJGDKbJYokS1SDYtq9XobsCwugEbhvxiNPxitP3gv8BP9pMfbBiwAbltyy3IblNUS92U1JQ4icUqslgkay5mZeV88w7fd7/pnBMRe++1lh92RJw45/tuFWXJgAPIm+eLEydix95rr3n9Vrd+en715x9++Gdf/f2vfe3L33366Orozh1XeBHouo6Zq6qKEtZXbVWUWfqKKRiCAKDJtDBueGreW3t1eJORj2ZuHm2vZyOhmVKPA5tvpZAtd4WcfRtFo1oTUxOTEKuBiElMhghqOStUk6hjZcYef4MQEZkEACGDC8BYjIhqkjTjSODEUrBBeE+t3nFWJ8xr+yH1fRDBJpLbzCwkyRgCjhFx0PQM0n7ULd+ZlBCxr6vrW8qYIVgSGJK8nHPIpKooxMoikrqJVFMR1SaFuqg2TVuVFRE1sVs1cFHEw/IjvJxVtSEXXg5nxQKAA1F9UJbF4ZW7vKSCePb6wYNP3Y3fP3k7bIRdEdvIyNiDEJEiuB7g0KAXAENiqioSGfo26eW6YzACRoLVagOAy9ny7PJ0jyS+9vXvh+KjTp/EhF0DB8t63T66PP+Tg8O/CpQA2sIrNJur8x9YwNCZmWcssyMVuXCuAGQEI1PTzjRCX7EmoIqpU/QJkrJAct5Qm2efvPeN73znexfnwdESnYsxoSiRkesAyi7FrhVfcpQArco6aXlSVy9sNlpVZdO62eFbak3lJK46unjfqCb0jBFSVCEAbypETgRiMIUeSE/DRijGiqhYgvNExbYlAHIIbTGTuef1B98vj+6s5Ba42lUJgMDFFFrSq+5yJbdbXFRAqDG3iQsAfSawd2VdC9EKcJJbMIozGvfpHkr8ENTfMo2tuQxD14TxICJVMNOMBcOMzhEAtGl72z2esMOUsj4MMPX3ImJuejbhEjubYnd4/fYcj+EFbbCWJsAjgKPMvdHyHkM3NyIRXz+mLzWKE4M+Izpzv2RqKozIwEpmoGgECKKRxMAcAKgKGuXHi/VY2QSqpAQJkYOIc1TMC+kcmEAAM9UuLpWBEG7fXp6t5peh+9bDD+XyxcVxum011345O7+6iqDg8GJzeXa5Obj30np9eXH2FCwc19XMy+bJe5ePntRcLmfzg3oJgAYJSOqqZk8Ilp2azjnvSiICTWIKbSNtm0JsY/KuQIOocdOuUgq+dOzJyBDQOTJwlvZ6VY1FWDaGP7Avb+l5/U6u334n4G2C9FAsspM4tYU6QRw+EwASOUDObV537mcEOVcO0d2olv6I4y9yzc7YsVSJAAmN0GqzChERk15dnl9+fHr+gz/9xu//5n/7+x+9v1os7tx5eUnGbduqAnsnEs8unhHDYjnrWlEDkb6l9pAXbtnBDZMmff3U2I5O0GsdgNQ3+d2qPH3Nf99IxLIPpp9E7HMrVCEphASdaJesEVk3XYwpSgJAGpy7iKgiGlQwASGhM1JEhATsHRLt6E1qQ0vuHeE6iFu7PtVmhrvlDVMZ3CvjWXXv1QrQJJmhYY6SbWeDKUPrAYGR6cCaMl0iTuP9ZhZjnGr6+SbZ+WiqcZJT2uefJ6sX9aZpQxQwKrz76OPLRYdHM+YyrbtwJFYCFoRq0aOGiw+6q4tnTz84PfnIrtYVVK+9cPip9u73vvsUzXCo98gsEZHMMuJyL3TNINek1r4Q02jWRl01sfauKhyqxZCQ3fLwGB/vC+C2OfjBOx+++lko6Wizujw4XF6cPcHuq2BfKGKHbBA32j5ydHVyFs0YiYF8BvUm5zOgCJihimoCTQak6MCiiUq3Bj/vLCCYx9LS6uTx97/3zT97771TR7cKP0+xM0PRpKEFCiIOJZhS6MRIGavNZVveasmcTy01oayX5a1XMNV6enH20TuVq56dPW4+eBwgmCJzEULbtgEshSSgBuRFxJXFEkprV7FZz2YH5fzQEXbnrWgkorquLy4upXy6mC3Tqj1//P2Nvw/+jrpo4pDAVTPoQrvabM5XhaupWsQYVTNEmssiMMbYNPslXtNj0At3DJGpYQqDbTpoxsCAE+mc0zKwV03BVIEGnEntu2PvOI3zHa6PZNwsw/U7jQX3+AYAIJokVcpce5t4lU3/MVcjd1rSvn0AIO6AUOJNNvq/1nHdQBrviYhGQEaQq18wDZ0JzXIzKDBNEkSZxUEJCRWBVZG89uASmot8MvBBXdftai0q9XLOSOvTjXRhVs7bRemDJs/u86999M6HB428Obu/aTbFw2fPzq+gdm3bvvLWm7DeVOv16QeP+LS5uDyLFu7duw3t1ckP3mnPzxdlfefefUdc+LJtm65dV8vy4OgQFA0TAJDzrvDo2Ew1dSoSLi9TCFmyAqGZtt3mcn1Gjskx9ij3CECeUJgnetjWDs6Lf6PpOPl7Kn3VjLb8eaCm69K3v0mW78QIlD3PRGy4Yy73PzfIoQo3nvqLm797x3UrbXoe0hLoAmBFWCPcBvESH7fp8fnDD7/57a/+i9/67be/e0LF/Nbtu8l005KFqxxATSE65+rFPIRwenY2Kw8kadSpcFIg5IlXeToSRzxoPVtNBxFH1HVERBquACABQyDOZmS2/wyANEMQAyaFNkEQ7KK1ETZNm6/MOdhmkpKKSIZDUlUQTJBy7zwbCvLyJHMvsMXMkIduM30MOWeF9TAc1xXwvR28/ZaJRpQf6zVrVSXuES5RycQADHPDhiFNP/+bQ0QAIIw58SqzD8O+05ykwMyGTNn+yJY9gAGwc9U0GAbCjitfdjEuZiWGHKhLQeHzn//8X/+rX3IukMq8Ogxx/eTJe20n8d5mvX58+fDh5eknra60aTC4Ttyhu2AESQGgB1FnZsstgvKb9sl0oKqaTCxVXCZTBdk0su7igVROUUXMGRjMZgvH+8aGWJ26Q9ELAprVh6cnT1498KvH7y75naCL8qCDBjaXa5FNkg3zXQTOLn4jRvboPJtTM7COchkSQg6cgyaViE4AFIQ9YLP64J0f/vE7bz8MbVEuChWIGTkLYggtOYiSSuTS1VfdmkphVzSbkLqz1enH87svJIPZrcMNHVpxF9D59gkLh8vLzeZS0obZE4JjE9MkUVW9K8A5MSw8K4arzRlb9FVZHd1C0LA+NVTvyNez9eUJpo2Eiqqj07Oz4mDBdhQdowkgcDEzDSmG9fkV1It6tkSuHBeReg+EajKQLJVujAHvRuOmkmPbXGSQu3m34rQVWP/bbC/3mzc3XEeRnHuxE6kZb6iDEKTdnTORwc/Fpp2emY6fhvbbYwOV7fv2XKVnI2BTtQAR0QbP3I2NuX7Ecf3VcIz75sZ7hADkfcneqymoqZKC5Zg8DQo/IpomEwJSAQDkrTMgmzSgKgBdyB5BQvRVWcyl09CEVfWkvSzoBS7l6eYn/9Z/tzu90O9+tBGcLxhJQ9Pe4/LxH3/DKp+aeOwqe/zdQ9Co8snb72BZ1skdLV8hdPXBQdc0q3bTtRsFOawPZ7NZjMJOIZcykjMzkygxpJQ2q5VYSimBoYiEFJr2SrSdz2siSJZy8agBDMGFTCMwZu3d6GTeKmG2L3r3Zxt6QdvPPAKM/YoQ+9SusXiVCYmAUBH2gTgmCEtm/8ZJWNMh3ngySee8I6pBFPSsa64++vi773/wrX/5O//ku396cXWBd28fcaldowaMvOai7Bl+ki51HBQRy2IZRUVNpG+YrLlkyLbRxx1B1du4+fw2kTJTLIzBpGzj9ryAAc0Uc8pEJl0AABMRSwohWhe0jdpEC7FftmzjEpGYGoKCOHI0JC+ZmUq21Ek7MVQkA0RFZDfYAW5EmYbsfsufbDvmG5PmYfotYg9ND2OBI/amgyOOOeqTEirlyUHXK2XYQwsNLZKIDGkoG8lvr5KSauqTu9QUsiYxZmtxNoPGITEzM2nSoJ1nR0ieqY3wubeOfuWXf/Gl136iWT29ePaY3Yw1XF1trq6uXrz72vLufQxaMys0F2dP1utmnviFC6hq1zbJMQJA1m9kyGPMthINRpCqGFhKSVGBuBNdN13bzUpnJtqZkSMD9H4HCBoAwHUff6SH9/nefTZpzeDsiT45/69vz/9TtzgAfgR42IYPV2cNW0EEmufKOSBg9oSZWSiaYI+bRkqghqoCGgGCI0ItncHFs7ffffdPz85S4ZdiUbVTYSan0IqZxrmxJBEiT+SCNZiga+Xi4jEdLKmqWi5jNUsNhNVVidoyCiGXXgwlgKhF6dBH9qzoCqfkHbEzoESgWnG9dI648FTXaIKFc44IkEv/6quvApsrluXBYeHscD6DEoJfEjZBhbgEm3NK3aot1s3iVopiIppSCiGIRu+5rsv5XAEun8cfpiJkqysrZVNtIOZc/pF9+Lb3KyICAxkQoDLFZvq9DnyxJZJrR65+zVQzXtlLKM2ETX1JwSBGmcnAbLh+9MdMS4HzeZyotuNIbpyT7Wzg1CP+44/xhhmbPffSywzAMMM+iKFan16SU723b5rtAVRlx+NjzSwr/4oKAGHdlmUJBYc2ILvF0ZJ5dXl6cYAHXUnt+Tmpe++9937lf/y3n3zu/XTy1P3W1yC1la8cYFHPXv2pzz0+Oe0uVtVlgJTmiwNf1UZ+3QVfzMq6Xm0uQ9u07YZYF8tZUXshjdKBOiBWoCQKpiadhDY2m66NQCai5LiNoWlXITaz2td1nUzNhJxDwt7czwbOBAJ6dHKM5Wf7dLLvdt5+O4jYqf//BoThcW4JjQiZGbNNRLbXgQ2H5AL8N8+CHo+pVT6eMTP2a+fvQHd0efnhavWthw+/+eXf+/KXf/+Pn10dLpf+wauFdNiuAEDZRQNM0OMMGzpQ7bqEwM45tSQiKpAN3z6hHGBa1jno2v1E4y7O1KDkwkjsNuRk9uMfSocMDbTfuqopqkmCkCCG1CXtgsRkyDSC4VnmyN4BkCYlImIGRUkZnS53NIuICGqGRsw4QDfbbsLGOH6TkSVtXQujnr5HQPlfBchdxwfLAYkog7abqEDff4OZHWA0ndBTL9KYWQbtMdeFqCaQpDuF7YOHP88mQTLFiaMPGZMKKiyXy81qHWMsC48Ab7z5iqa2XBRXjbQp3j4oqvK42ZycbVYWnfp75UFRylLa06YU8FKbW1/obLaO4YrZi6Jm7CuVnJGXxz5OGhGZWAiBSu+9R7QupKZrF1XpiHNzRlUlv0/zAmdMtzYXHG6Frr0igq5xTx4e37r/v71r/yuK2nYPSeam74PcxUHZISJyjMQZbJ2wQEpACRGNeAxBiQhKJC5AGSSeX3zw+Ol7Id0pyyKmMzVhOIwJogQVJKgVL5umE1SsvQFs2i5KvWku33rrHh49WGu1DnFBqOcrx3S6EnbBcdqktgsNu7mSN0JhQPC9JwkQfWUIhFqzSWyBXN+ljR0zEwKi3b13G6N3h/WG60V9y6dnznfrdDh3GBICE6TS+Xq1uaqaVkNHyI4Lx9IjkKfUNOur1RUR3xwDviaDxq0zNGfdEvP0AtyVZNY7fhUtiYwdU0yvOeHGW215aD6puze85rcbN10/gMk2UcvtnrcHDZ1LVNUMzbJkHxOkbzasd574b2YK793KDLIvT03MQLIDFClbAmSMaAIipkCIyjlkOby1QF9zSnVZGKIkRWBi8I7AamJ79+TqIFYOS/a8+tr3v/rx/6V+9cHyJ95o3nrx/JOPP/fmm59858+V3bvvfViVs8P50UlRgAl472IbQ7ucledXFxfPTtkUUb2malEdHx+4mpN25gAQVQERRMRUIKUU2tCuzDyYJVX2ReraruvE4mJx4ItSQ6MKGVRAJZr2PVVhB25lp6x84v/YrvtkIrfCOHtMxy53A0kaTUrdwKb8b9TDBrto90E4aAf5W7fHzW9e7wmqYkopO14yzeGYbZuEHBuRoDNQk8jGzs8gXmzOvnW5+eDDh9//8pe/8pU/+P75Cc/Kz95aXgBAuzHDBCWZcTRKotbXm5pKjy2HKqlTZRQFtR5gDABUVKMWXMCwkTRtAcNckdVStbELb+7WgDDad6qa25sgmQHljAlVQKOcZa2qAEbomhibNiVgU4sxgqWu6+uLkFEtgZJDDwCWXc4KZgaUU7LFALx3OTMWAAUB83cAhJrrwvr2PtIv87ixc6nyuGzMvi9Q7j3ovULXC35iIDATUyNEBmohomeEHrEcCDtJEY3I9YFzpExkqhBCKtgZZfc7GAAZmRED53S9UcUZmR1bYt5BG/fmVUXVx1VzCP6S6/O0+tWfOP5rL9SFa85TuH304Oqjt0Ng8w9w/gr7D88/+ldl+1aMGpMahWJRwWqV1u3n7j744vrJ74TLy7Nwtzho5+5Sm6VhqXyJSoDoGLLagai5PTmwdiF0bX04h9kySNGlqLZKvOyaDXt3fLDcp/D0ltmTD9/tXn6tvHv46UdP3gsdAl+efXz6sm+RlpAen60eRT098m+0XDB7dB7Qg5HjGTuvqqbiXCkJCZw3AGvQYVQt6Dw0d5yD0oXN5UfnJ49OHpEvySCC1aAqEMESYQkEKpsYEBw1YVWsZgIHcCDvXm6+9FOf7R68gfiCTy21P3h68kEKt5pTK1bBsLy4TEELqGZB2rKQFG3GM2BKIQoDO3MgYGaOsThIl6Lts9purWnmb9+VJ+86MHK1ubtSIriiLsuEsZkdM3NNMXSx9GXOdxJf+NlBbGN78uzW8RsrWZN0XuZcBbGnFZTo173m0aOUjuWOlBO+RhFpNhq9aWQ//a7Jh2iGZptyw5QSOycizCig3lNSNTAloGg5NdMmbA4nyZgCNjb+AgAmzMkDMNFoEXN/9PwLyhwjM4poisioyTMrGDgvpiISCUoAB30sTBEJmAAzFNfAP80GoA6jHZE88mazrYQYjRkcgL2mPHw8Y2aogFOeToTLOV6czYvyUhQcQ5AkCcuKk1NNCjFhdOQc1wAgnfZ9zHIaBZNzY6Y09dWMnB2ZkRzNFouXBNurZhNXpcXjWaVXj6++8/ji+39Wlctqs4n1M1Ssl4diKbZrXc6rs4aIdN12oem6JqVoqgwCQMmSX5Y0d1pZp12JVYmkEQufe5JHlSghdpvYNoaMTbd2Hi83Z20Mfu4Z5x2hxJYY2TlSQ0gOCVgB1CxbPmN6VG4PpXRTDo2ZIbCBwNiyOv8EWHVEZAOzXCYOAKiytaQNM5IvITpgAnK5AMkUAQiQEScPxQw9g2aE+vxmDCMRjGZi/uyc2xLWxIdZzp1GlMQiCUnKikG6i7OH3ebhxx998rWvff0P/uCrH3/0ST2fH9+uYnwqwpDTcYFyKYJkhdlyH7Fe+8yUaaaaMHdTkEldrAIIyDgYQCCk8dv8uiM6R49RBb1iYgA5yglgaKiwDSBnrTpfrKKiMSRNSYNol5KIhKG131SDHqdobwttZz5bvYg4CR0Nav4w7ZS91DjR3SYW3oC8sX3l3ZXK3yJux+Ccw74RRdYMxuCUZWtg9H6Nz0ViRjKEXHcEAEiU457Tl+oFMDHQ/msCIjph8Am4k/WnXrvzC1/8ubsv3bp1/0HlZ9RsNpcXi0VxcOjWq7Zrrj46OYenz+rZ7aOjB3U1D2KRA/tAnl65P/v0xfw7zfrKQtmGGmMgL4aOeWujqMHgQteoSKYGUaXruqajNpKaxNg6R+SYiy1oVz+BnDTCpm3OT/nwDVssFmcnm/MLd3z3k1X7J0v+q11DCC6l44COqWRyzB6QkPJeIEQrS68hBO2SdGJokBSUEFerpMWHB/B6WRydrL/84Uc/3Kzj/BBsADAfk4ARmMicQZSI5GISY2o2G7NqPl90AsjJQNrzy/bkdHO5Rpl73Tw9eaztJUICNERvWJGHhB5SQIZcZxI1AjGBiimgtpt1s9loWRW+rOdLaDeGgBoQkIAYnKHLbftUrZgtMsQAOhclJYC2bZ+ddMvlg4PF8apZm6SUgne1SlOUGQ9mJL8e8We6TaZUtGdi7hxMpFvyHg8dU7CGnfGj7csffezTLeiYs5qrX0Yag17GjVfruCVvHMDOBgcAGHnmv/Zob5yf6ckpC8pJSdNixcwWGFzOXQJDVVWJvUffZMumBm4PAESoYGCA1nNaRgLC2d0jKn1z3minUaMjm5WlL8skZhLOT09WFxdVVRloSJ22bTxfYfZXohICMYQY2nbjZrNyURWLspj7pJrRmx15on7AZpJiDG0boyDw1arxhVfQmNLJycnhrcOXXr1/uT4HFOhVHxicJVsC25ulHx0KQMQhfrw/5z2P3d7nGseD6z8kHCzgPfDz6ZXuxtXdHTTaRLTAxNUzFo+a2bPz5vjg2HOi0DBXcRVPzn541b3zu7/55S///h//4M8/Wc7v3L3zlqRN11ySCwoHw21UhqRHM4PcbsiyMxUBsnEISUENJcvJPt0IAVBGSBK1fhlyj26QYYf0OmMGbMqyCbHP8cg6JmJumotmJrkeTnsPhgjEmKJANAgxRVEFFgmIOZw+EDrqpGfwdpbHD5oL4XO4KGthaj2Uq8H0V6MMhhzj0X61cl/TbMzcuPxD2bFuob7MHDEZWA9RC5BTwPpchaz+DDr/wHe8ZRgsExEVgZzgRfvVHYP2t8XX7cmDkMEn6CDWLUMi/Xe/+BP/zs//5aLyxbKqgderzeNHnyCHxeHLSDo7WCbTwumsdLUvGMuE0aBQnxD1tXuz9uzoZJXeu+qqQAumC4ZWtRrqAbKiPm4JcgDqQgirVRtSJNaDufelh4QAZIaz2WyPyBU6ckVaw7Nn9OZbtlwcPvzo7P0Pr+68fHqy+j0Pn1pfPjF+hFxS7ZALJEJyBIwZ5AFBDR1j1BjiOmpEYs1F3kD1/Kij04IX3Wqz7t4/O7uo6sMYI5kfAZOzn1XBkJASmrHmdpfetU1jhoVfEJCiEmh7udFH588ebTouE6xPHn4AxN6X6CtfFFTUSpwAKHZEECSICHtf1o4dq5ovIIVN7DZCS++JXb1JF8CpW1+g87mxGCCSL5gLZQOgIEJEnol8wb60rmvWm7PzR7df/FTh5wAJLXq3SLEj7rvPDvTwY9yrz5PBI+fak6/Yp1z1Ysy22iP0D9193o+QzRND54ZgHvTCaKLd3jT4PYX7/xfHnp69d358+jhOcg7Zawp9T4ys5KkKCKACZrtfRQQggpomIcc9cqKN0WtTzf4IRMrMNCNPU8KklXMLnyCmNkgISTpuuZwtHcTYXpGlAlQkMqCGljUCgap10gWNhmCkxbzEmauWFVfOlUVInXPOFEUNKaP9gJmFENZNJzEy0vLwdttdPXryYUhNl7pNuwYgS0YF9PwcaexBBD0zy+u2bSN44/SOUweIADxceQMk+EgzWU5ljQ0gexJHb0fumIeWMX1vkr42+eymy/l8Wtyen1pgoy5ARPPli608qh0wVWF19uTZt7/6td//F//ij779rR8sFgcvvvKyQ2rbC1VlLDV6Q8vm7PbtsiRVVM29xvqch/6DgVovjEG3qWSWs/4Hz4ypISID9pJYE45BVlUkc333HoARUgcREdkNr2mmPcqHqaootlFDQlHsoiUBMxRjt11s7APJvSi/xkrGZUbMlA4Gmn9iWVfYmeE8Lb2rZNx1g+dqx5txwzJtaxABFYf2vojY26m9Lo82qCyWb5tVIAQ1zRnRZmZJ+lA6ASAP6uUOSYgJGk/5U8bJIjBKrtP4wr3yb/7ln3lw6+56VqXUOUihXaUUzs/PROTo1t3F4md9pIJTjBaDpgisrqqqrokxtYdV9en7x4+acCknSRhpXqGuuAVRQsxOjykTZMeklhImtdRK00kyRuchhhhjUiG3bwELRCQvBk8f2cVVs6gXIvDOhx+98qnDw+Ibc/z6ptVYf0TVazSLaA4RQfNmBwIGI7AMwJmrDy2HPkCBgNtuRaWryzunZ1998uTdd3/4zPED6D0vlP0+qrmiHRDJkimiABlCBiXaNPHp2eYQP9F5cprsctOctSdPTh7G9lyumounR8vDRX14UMydrwyRHAoCGYqmaIIMZcGuYEQyS+hQQqehidSS+qDWhOh9BpqXHGIFBRMTNgPy7ETV0DGpEruiJCu0a589+6RavOigQgBQQ/VgHNNgL14jztH1tye09pjadBdcvxcRJRmAPmz4lY1Z/zvHlrEOf051R9x28RrTMPNz0wgXvGvrbMFid9Tl51jA49MRcUgyu0FFmMxSFn7bz/nPSRLvjpp+/WT/juzIOYktAOVZV0IBRUgI1pd1qYnELJti7Dx49t7ygxRzCD/DmhEgMaNzmV2qGVjigv1yZkVKTZQ2xNS1STbr1sQYPBIEbULbenYiYhgNIJp02kZLXPhqXhdVqYUjj4JKlpxzhE7ARAw0IKIaxhi7NqaUkkhC2Dx7OptzSM3l5kJAutCuVpfz+Tykq7H6QxE4gwgBTDSzbW8MAHyuJKaeT9o0S3nqXgWA/cWbNNDr10ImV2QLeOiht7/c/ZnnuqB3DZ0tKY8pf2P2bM/94bSk47huV5ff/8G7v//P/vlvfuUPvnt1xXfvfirEVdu2RKqmaJzUqxSCjY1Hb00CAKiaqiaFPqlhqDjJHlkZyT3nGGQqg5xujoiYgXRki7aKg/NAAcAEEmWBCX0jButzfjFtwwODHFYVaYTaIDGBJBIxETWEseZ+KjjNLCNHTfekDSpPnzc5zl4fzB7bRey4dve0fps0VhqgYUxVwab9StNo+MIwB4gIoj1rzwi3QztCmQzbBo9e/tT3GDcY6xZUddoeaodOjABhb8BASFZwyWH97C//zE9+9vVXQhcMKjJcb56u1qfFvAyqQfn46L7psaeaTa8uT7vLp4CryhHzDDSFkFLE2y8cfsls1cavxXDZ4NyorhjSDT4iMxOJ5LiqipQHT6SAKgbIZlFF7JoGk6I6QlH65NHmgw/Syy/WXPpnJ/HRJ3zvzruX1ZcZv5jirbI6VmOG7LoQyNYBGveqEhEyoUewrEGCGjGuwsWR/yzEENMPH3746PKZPzgCV7hkWZCQmSUTFTA0QgZRqjhGYaIkwTn3+OzqT7737s+86Ph4ZaLxbP34dP3xuvnzq9NnuuYU1z7dcVoiFISqETSyJ2UA4rLgoiq99wImKbdPhRDaZnUJdKC8dL5E9oi4bhvnS67UAec6G3LOgErHhoWxA1BDZ0iGZIabzfrRo0e3iqK97JoudJ0VRSGrHWtsqo2OuunWmTfoxdeJymzw/u6d3+4U6r83soxTdY1TbbfPKIltj63tXJB16NEVN7V7ALa8d1TNrw9+nxtsraLBoP63dFwXvdunoyPmKJBTgnMrqiQJMet0RNmmgaGaOUUjysBBhmRDmexQYZ9MFMk8sSApIKsyoHlURGbimWPxIrK+2jBT0oRInbbrtC7MpRQkBctFOhXNZgfFrGTvBMxVHGMkYlOs6jqlhMg9RAOipNQ2TeiSISCTiJJPHz96eHr5zNduWR2GEJ48efLgxbuQo4rA+YfZ7mJAvYG6eGuM7c7bPr/d42aTOR/P5C5b/Vcgw2xPL1Yz68Gln49/9mOyoK/T6/h5/Dd/8EbN6vTpyZ//wVd/7Z/8V7/xzvdWy4PbLz6ou7QxkJR6/wARAUK0BnKsFywbEFn3MjNVUgURExsDlmRm2mcngUy2h4IVyMZgSJChMBRyXTnTkE+B220LoJYRa4ZJBIBsKovadgbVDEBERTQpiKoKRRnUhT7LDnASM5gu0lQ/HWds0iMaAcBBrmowFZ22TkJEItJtHydQsBzYHolj+/qDkTDGovJ91FL2BIwvzkOSFA4AAsiux8jNojcX/WZuodanHox+NsJpvUL+X39/x7ZbZJlDR5Z8pK728td++qdU4bK5Moge4eL84eXVMySHTF0QwCKiJC0cYEIvpEBCaBkHp/DShfX84Oitl144W9sP1x9+dHXu1fnSa07UyLrIWBua3fmQkdG5RypKMeu3hAwMcA0LOkXnCprXd87On374fmR3qcSK8cnjdP7G1eH8W7eqL5b22oxf0uTNRQBDZTNEKNiyyYtM4Mkn4hBBNUGKaAlUyrq6ffut9uqdhw+/9r3vfLg8uM8eUupT92WAVBIDUEyYPAKRAyM0gyTE7uRq84ff/QFepPL42Azj+ertRyfvt+tHMRo6c0sSXpJPxH1PclEsC1/PAIAdMnNSTUmJuCrLsInAV11zxdUa6poLz76IMWkMlWGdEmggJVbGBArWtWKOgWoDIvbChaID9B718uKEfX369OI8rGOsitLxrm6D2Jt+edtM6X/LQGB/+2QytlF5neyjQd1EIgLdauM7T/yLHflR2Mcns4g1AECyvh506PXX76ycE9I75MQGFHqcHHDT3v8LHniThL5RxP4I6YuIQMRF2WHGze75g4hw7gRjhugGXxmCqqXQGwaMQAhbfcUhmonGLgKAK2auKAiJzVmuFWMGRFU0AzQ6KI80WQgR1RBxXgKqUcIQkLxzhUeH7Bx4NlRQyxhqRVkSOkSMMQ7dN1jVQght24oIu8IQ2tStm7OTi6fzg0VZza6u1hK1LqEuqy5u5SJBnwAEiJDyek3pQaeAY9MJx5wBDr0mjTD6OTTnKQ8z/FzqMjMDMUOwXCaZnd6ZQHeGYdYDkvfsc28Jr993j6RsAtrQs3tVVeXWPz35V7/+T/7v/+jX/mx1Xr70yitVaZdn6mchhYhQUG53ZQkgGQgR5dA89DXpWYRAth5EcxACwXoVYigz6N3RwyuhoJmRKjCOjRmyWN1WSeeaVTMD6LtkjM5sAMjrpX3iIshgO6tBMhBTAFJVS4CIoCYqzBQkTbnJ3qSNUzoeTG6UndMfEtF2NfpTuXVgzrLeNk4RMDF1tp35EekGhi68cIPbJAe/dUzNz9/q4KfRwQee4UFAbYcpIiIRMBGMnHTHMtCMoTUVwKoK5HV+Fj/8/Cv1Zx+8dHKxvmpXbnNSGDTr8xRi4crZwcIZWuy4AJGk3RWkS9YASU3RlMm7YkZdWjddUS7vf/at6ueby3Z9dXUV6rYEb6O2zmNaPwA6BwNmtWqSBJoSaJGSAiQUSLJvcsWGPUtVHiKdPnmCfnZ+eCt558/Or56dwbx+hPhV5k8VSh5fThpNTQAZ2MxUSpMSAEVbgAAmmkQ1mXaSNgBR+Fjj6pPHv/uD733zycer+fy2oSKJijMTG2QTAGa3DSIGSY4YJXgAQWyVPzi9enb23WJeluS0sdOmPXcRHC3NNcAxKLNHs9A17BkYHXrk3iGiZorkSlf4sigqIGdh07ZB4rrtaogBDC2pZ2JIEjbhSmGN4DyVXs2IHM8PEMnQe8fgy9QV6EtMpqlZNc3FWbvSSPMaLGY6lIHxq9pUM9uzIaYktneNmelQJnft26zK9zsJJmJ+fzveJKhGZjo8KD+l911hL3D7y4ghY8P3DT2J1GRvx1+XvnsvpapAPaPDwUb/ix9TnX6883Olb07DHno69bGk3H5GQMCIUAGI0HJGJ5glE0zCDsFR34AFzEzMSleYSCObFAQUiQjZgAtDYCYiEomhazEIIjGQSCJH2cte+lo0OiUPlfeeiJJIlCBJmNmzCxaLovBcAEAMQVVTCuQYEoQQmk2XY50icdU1V6vVxdUJucIXi7aF2ezug3v3QFZPn1wc35ltZyObWwhD2U4Wxjk0eQOjns6kmQEI7EBmbLsM9B92CRgRB08ijTSgmoj73CCDXPtJe+W+NrGVf3wdsJltzR2AaeJflr4xxhDC0yf/5T/6f/7Rb/7LTwq/fO3TZezg/JwIoGuDqpm1mjoA4KJEKEPXOdIxn16RzMZNSznbOWU/K4wFDL0qKkOHg+xTjVGIBBGFgBFxAN0eY0iYH8A4aBI7sHMwXJ8ox2p6vQUR1UAsAytSSikl0L4JfCT0e9xkkK06urDybUe3syFmewd2vc08ZPNmj/qYUUw81DMNq5Cjs454cmcYm6Y5x0NQYIgfT152/HfcnD1cJQEY5JYLkP34NsbUbTvPzKyDY3Ai9QEgpYQGNAmcqICiFrwIHXz2zfvHRXXe6SY2s/ayazertrWIDvnWwbFHaJqLwlFIrbv6WMOGYwuCBDWhRt+SmS+7Zt0WB/7uy8d/efXJx+cffeMh2LlTClmvmYJhmfUVeczsvTchBjVJEoNzZYzRemjvnUMCt+2aXRmibBqcHaX6GJzHJtjVeXU6Wzfyj2ezl5A3R/5XoJqBqAGKIRpYiibRgEJYowQTURUwQYua1m1aH9z+7LsffON73//NkydnD+6/hs5dXoYRGWY6k5nIBSVGqVwFYlS4DsVVVdvBOTI2zcwwNZrqco26MIDLBtxcTQpDiyGkUGJl6ES5CZ333qFzzs+KovAlAMUYna+xmrVtm2KzWp9jsyYA54qwfpqILHapcOi4rKvSysI59gfOYUJIoMAESGKm4EyMHYRVoxFVuSo5tesYYMzVNzMYWNaeiLKJaLwe2hgUOxvjNeNBfePLfouMDuchl3HnwGsB2nEwk5P5DttBZnY3XsnEfW7jmNC6+4jxw41aRX83tcHJRaICzz9s4rgeZ2n6lOcpMeOhqpb9uAPnJCIc0O/z3sz9u8Qg2z45J4tQUXOGDBmqKbrSMc7SZqMQwQTNQK1zWeUlZEdmZEBITLRpQ66KNjNVZTQzYU8qGFNS1Wx0Vc4DoqlVRVGWpaopQtd1ubpMLFnktm1DCADEDrsU1+urq9VlVVVJCbG8/+DlF27fu7o8+/CDd51LR7fng0/CYCjlgJxdjJSbGpn1zvU9xWVvnjMlXF+C8dsblynfZrybmvV17dmGtgz1PyXCvtFI/rxTUzR9zG6kbLvYghq7OCuWKQVXaVy3D9/7zpPTP/i1f/itr3/9Tx0Xx8fHXRMApKisbTdtm5VHBiMBTG1ETIgsxgAKqKK59hcBCIy6LpqZ2hC7tdxqlrZB0wFbbiBlBDVEcOQEcr8PyAUik6YHmOvjEdEgDdjjO12ARLHHEzMERBMI0dqgBi4KJPXRVJIpOnMYQJ1z281gYLkPL3LSrWNqDMqqqmokYufJzDRtW0XIcDFnOzINMV2ElBIiusJDL+esLkpNuWwAUEX7zB0AgNB1zjnHrGr5GiIiJDEBRGYC4Bhj1B5pw8JQZj2QDhkQYvJkZpwh/EcOKJrMMPfXBDXL/nlRVQtAbtoxGlg7VL2ix6DwxS/8hKUyhUd48QGn+xu32mzaOSuCaXUbDmrC6GQJ6AlLk9a7qolN0rUrCgKe0RLlTVj9sJCW4MW3XvvsZz/86KOz1cmmqc07B2ZRGAVYFRwiSQIhEXGMUVqV4D0DQMF1kwzQq8QpaFc+Qros8aDk8rB68ePHDx8+hOKgnC9idwGbFVjnP3oUBD7u3vxTuHfvheYzhqvl/D7gjFlK1XgRuGwiPKrXdzZXD9flarae2bNNu/DeFyff/2fPLn5wWM0Ojl45u9TTxwRCDi87c0S5CDNpbi2SNGoKCGjQSYMVqoJGICVyVKVoZgnQCmKJS2Mwd1F7DutHAJ9pzmf1y5sKO9wAHBxKo1VdVnVVL11ZoYKJmCZPDBijn7vaKKXSLlK3Xq8vUuzS5vLOCw+KwwXVh9XhLT87AOehrIALY7KUHJrEJlhHhUcJVjtYOaGr8/ikcMeWsElXc1c9jW1W0whyPT31mjMI7Xg4ERFE1JPrUSy0tw6JCIB8xkAV2U1bQolJxESBANA5NQySRMxy4qSONx80zonQNdiKNMsyimh0LEOGwDTOWrJjRMAUu1yoHwXIyKNn0MKVKYmqAkMIAYpyyjxtgtKQAYGt98aBqmTozcyoB/dAHmJ2xeFwj14eTJMuJ1O3rQ/O3Hm0zxxidKgg2HT1bN7EkMS8ooCgEZIacbJEKSvi7J0l67QTJwmg8ujRHCH6Qk2SkvOHt6VsRUQQysIZmncluQqRBLyrMXarplt7z8yoIgaSyZqdR4Dk0SOAiYqYRQQh9oCYYKbAwCGGDVLGLWCJ1HarzSYSgUFcb3TdXqyaZ+T9WTd75cUHLz64l0Lz4Qffjt16uahB0+nJ1dHRoqrrrl2nFIqiZKYYo9FW35rILwWTvj9g3yhawMxMaOxfu3Xo0Y1KTj//QxZNBohGREBTi+RKAgVNmpDJZYN86ggiAwUzIDMFej4QxzQ5aPqhUPX1rVU4PTi63T56/P0//53f/cpX/sGv/zrGuYjevr2MAdouAQATlMUiyTrGlFIAckQu03/f895Qe5+zqWawJhDd+qXNzCCDMmZYtWwS2g6tUxbVJiLZ8MuVZCk7ZkddA4D6O2QjLnuuEAyzkWmoOZtGTE1NsueOqIlJUk5w7ZVIGnKYt/rKRD0ad/6eUqy6jQTQ0MUMEdNuVjlMGESPNKumYDQJeQ7v3s9A/rPvkjsc46PHHwIgEWXHqdnWSp4O28yICQ0QbOxmAZM3ytfopB/qRJ/boZymaW4fwZ07L4jEFDvHBYq1mwYRs6ZcliUzm4qZQV/zYAbGzLaNDlAydVyvnp0cv/QprW7/1Fs//e7JN55dnAIWuY0zGSkCY26svvWeE5Hjoix9dopmt6iY4jVnVAhtSrN1FITyzq3jNZw9fpTqI/QG33inbbk4ODy4Wq1Wf/52G2/R3XcP+efSWhBO0bmOOdEJ6dq6N8X9cPHp2+XZ6vz8G+c8r84vH1399tJ+tlqW3/rgOx8+Pm2e3ZaLVM5nEe4zt5NpdLnHIRHZCNhrOV7fZzsOxK8jseUMCSTXte355UV3cM/PS8SkgOv1uq7qXNWb54Jzzrslk0hEhS8FY9O0VxeXsW3Lwr/w5s8c3bo9mx+iL7ms0Hlg8t6lMX0QJbfIzM9PEQYxhmXphdk5l1IzeMh6lWw0KJlxVHZhwlW0bynvYIBk6smVCXuv73alzMw5B6CiogoKYkCIyEzTuvnnHbsG69YhBABDR7I+VD3d3dvKxmzbDer7dEeMB5gBPDfVGSYb9saB/Vs5kB1R3+loYDNsKpARKHPPGOwR6aNE6B2vBBQR0XtGxCjJzIqCq6qq61pEVEVVK18C5jlQInJl6R1I6bXTgUJVNTNQQ8Q6+7M1EaCaAFImqKJwzmESkmQpKRGmlJpN13XJ8IrxuOtw1XzUdIJ4XM67L3z6LxHg2enTq8uzwjH5olmvmDFuUlt4z46QAWjTtaXzzhWq4cZZ/YufHL+6vmRmO0s85fZmYoaqml2oAGxmOMF6M8sdszWHnB3submnz4DtHhvPS2O4vEI+uDj55Orpn/zaP/iH/7df+936pcO6A+by5GSFAIvFYl5VoWuSiPdFSBZSQhTHjCi5LIzJZVwaMxTNSBFgZmlAkDHIJbymqgK5LxFM8y76VrWGGcHZTMxIQF12h2qOf+Aog4fgbs616Jv/mA0JRJSFvKqqJFVAATDIHYjzzhJABAMkY9juvb3pmpZbTL9yzo0C2MwAdjb53mKbGVJ/KxGxoe1PDm1eJ5cpI9j1cm9x9XLXOEfYS6OJfy+PI98jJ1vlx6Ft8+cnbu0tA82Fbmo7LWBzvDlpvH/n6M6t2+EqpKYhtZC60HaIJBJdUdZ1zeRNOlXN3dQUTKxHK1MgRAaDqpql2a3zi5NNe1IsXv70a5//4icnH12ePTmLouDIISLlHqYIyts2x2jkvCvLgtlHkWR9AoZcY4CbtrntqC5nDMuPn4Qnj89eqBY1oEF7ctIeLdW5ywMP6fzs6ff+6Rfv/GdzuwdtY/yRSq12ybN5FV8AfxkefKks3yhfN7z7T+J3fotWh0cfHn4dfvfhVz5w6wO5qp+t3yuOXtuEgm3jnBuQCy3HTTKJ64A+MS7yQBJjGkReTVQEBIwGWLj5cjZfzpNHEXauqMlQjYY+XQhIjgAsBWVi5zzXBFZ59iKCi6Plcu6P3qDZDKqKmIFBJKEmZYQ+t0AzPQyqEZmgJ74KiV1Z1VXDRJgD7TdgMo/jnp4fST0HQibUiFvfMm5B0fPFTNwXek344HQzTndH3rejTjwd0vbpO+1xhmht/84GlCv3gJDQcg/sbYLk9Im94vsXkKb5odvJ+bd6WJZv3qnFXGFFRAQGiXJnnyEdRIEITSXzSRCAhEgREZGdc4AkJl0MogP4EhKQgfYAfzn6g5abvUQsS8qFE6oQk1LMJoI3SwkUDJkRRBSAGF0BlHKtUYyakgJo1zXr9ZocVP7es7OPFZPqUROeHd3BW7c+69EePvywa1sC65p1Se7o6Khr2mSaupSK5Kuy8JBSMmRyXsN+2+/9JbDR8TBd85uPqRi2rQflBj48sB8xZUQlFNW01/bXev8rgoF73u32qHb84OqyaZtlde+jy9/+3/0f/ze/8V89Wty6EwFcNTPRTRfJlLiLMTrE2byKymVJZhi61Glg9ll6DS7lHNwlHZCwdCBOAQHYhnJVaCucsp8430f7dHCm3JIMk4KCMSIqEKEAZtSN/POsF+ZQgSkCYnYC95ldZiIqBmJ9IlhOkLG+WHA7P8xDcAgAJrN3444yM++dWW/N4IST7rUXHA+yiRNiAggw7nDcjQ/ZaJvmGDD1BbI4sonJz7OTe+KBHoQWoiqS9cCpcJP2NyWM/pohDj1eQESO3P3bB2VZp/OGVFIXu3DlySmaqLrClXVlRKkxTcaekD04pykxEymI5K7XcFDMzxfI3bOrJx/emr1azQ9/4q2Xv/P0g7OrdQwA5AkKs4DZsYNsGgEwK6FmiMBA2Cc7MVq6wf5QwZRSp1eabFaVt+azZw8vNg3UJTQr9/Spv/V+euNlOuLy3mceHF69XBZJ2MrqVWNK0ngK3dWZwffxJWnnr65l5Q//ozd+4b/35Lf+51ezWfXJB65z33/3sqxtxq9AxICPO5jPe1wW0gw3Nla1TsWJUZbNljNHBwUrAxUMxj4rxKIufMHofVVB02DXtc6XqIZoZGqEQEzOkZqlZENvrnqx5KJE5Nls1rlSTLsYPDILChghkCUVAVCViGgmSbUv9SUsiLBputlswaVr0aL0RNirc9sDiPrs+6n6OEgsNhhdOzvu1uuCE/pml4A9mA2LZrLfCazuydrpPWGfmcrA/YbxWF8frDAgnFPu80ej72R8Cx1anE1toH5Zd/rR9jr3OIbre+rG8/mnzzl/86FA7JiYDVHGoiyj7AdSQ+vLRBTAJYKMJ4N9Nk8YZ8w5T0SMpCYpATlmx468RSNm5wpwBSKLdKglO7XcKRKS2ZBGDmCmKkFSNDNyjOgAFckxc9SQknZtTIJJTERCiobmi8VV86gT9cWyS1dHt45ffun1dXf5wftvEyCBMKIvyti1aRXqusYkXdOJyHxel7OSGc2s6dqCdtnUsAqZBV63fK6fhGu0t10SyxjDAz6VbZcJAUHFiMlEMwoFs8HWRLEcdQQ0E0R2MBHpO8/uc7LHR/ajWeHlwn/+4tHv/NP/5v/6G7/5QZrfmy+69YlclY2ZeWLyRdOGjYb5YuaSA8CinAP6JKvYdQYCA3+RPipOACiK2dbUiR/VdGxakj1yg5uyx0YGGJKZEdEAcxcF6E06A8TM2HppP5h6uQVStvam+kfP4wAV0ABzx3Ex7Ht/Z2UZRs9URgbpeWHPcohGNJkswTJPgj4tZZCpBohjQfC+12H7ZxIAyHDHksO6jsccolGTmtIKEY3A0bm8Jct3xG1rUkQkQtUJTUyfKzoaXwPaRC/a9xhNP+2YmfwEOJMJmQD0xbu3HbrWgkdU4IihII5kCsDeOy6igYjE2PliAUXlfC0xDMADRkSm6oJKVfC8tNW56xqYHbzw4oMv3Lv9g0/C6XlHRIgOUkITAzQiQyYURFS13LA5KQCzWQToVS7YPRaLoxACOj2czx89fNKebo4O4D/5mU+9/gVvZfro5Ozjp83pQz0/aX7xM6+5R+dxdhJmR4nvi/dVdWRiT59+82n4nZ969Ytucc6uaAx09cli9tnlF//7P/nBf/BnL/69NfzxO+9fhaa+s3x5XswTPOraqvAVImfPHvTNJGSQvjgGAgEyONC4KSB/HuS3IeOtW8dVVazUKl+t1w2Apa6VFED79rUAgOydp+wHaKWJmjy7opoZcKLCQ5NiMiG0wrwHx8oumhLkPtxRTTR2GpOIiKlD1rRummYxPwhODFASej/RIXbjMiMrzMdWFqrZTbJnIiN3zme96vojfuwx7pdh6mC0fbOSMKTL7u7BAVhfZYu4j7uNsf//6lAwx945l3D0pCGi5Mwb66c7z4OYoREaQO48leGx8vJE0aIooATnCnZEzIhsloGNnTEjOwNCK1wB3vvYXmoSy0HWjGSZkqqm0ERJBlj4MncIQlRwCtFSCimJmahC27ZJhditmk1K6fbdF56enh8eHz148ZVHn5wghYKIiBIYqDlCLApNYmZFUXSdxS42xM45VzqFJMmwvEF7Q8TrCs14ck8IbvXg4c/rdDqxcPotCQwDwA6CsZmMCWL9fSxnGGZfkfxrdEPKd+Fima6efvPbv/7/+M+/3KWX3N3V6XlcunrTbcwsEpUiaskzqcHp+cW8npclO/bOFzElM8sN2xW89SC+fWJCyrXNZmCU5Z3CCJQLNMzO0MS+P/q0XjYzUjRUhCwOCNlwcDUD9F4GNNCs2RKgTKLjiGiK/fMhx6Q1Js09OYYE4xwqQQAYu3DjAJSRj6yKjx7d/GCD7FvE62uM11Z6b+1d730HMyPANDKRCecaOcJkd5kNod+R/eVvsY+ZpZvUQMBBv8mzlHExx8FMpe/0h9OIcv6cNLx49xjUgrRegnNFK612AkXOUC6MUIVEo0QrUbCoXdFotwbrs8OYISUzZO95TQ5j2z370B3/ZOlvf+6VN/70/fP1xWYTAxCjWfbnIHvKSKKYF1FCSCFF8S4zbgFz19xNqtrF5D2jxgOWv/QLb/6H/8G/93Ovv7SoX2L/KmCr/junT776x7/939x+9sct1sgVly9quwI88PbfCW04X70/P/qJJ+8+Wn3lP/vUl/6TZXEUP/pydfzLG47w+S99dvHS//KlL//Rd/9f//VvfXxy7i/Nz2cuaYNohMVQf571t9ywilQlU50BqoqI5DCdAioOXBRIFDQIz2AxK6rSXV5tYkRHXDu/SklCjCkwESIpmENGz5DUV2hmMbSASM6jK11Randh0qmikhqpczN2BTLl56klSElTSBJURMVYoe2uAFK9OBBYYVBEVxQecUexs77WEIl3DNCJOMw040YSFcnQW2P3rX1iy5tU1XQECqCdGPBg6Dz3sEkMaGsejVBXvYrQ95EYRjUqoL3qQ0O7FJscOGir0z01eejzY4r/lg4BRCb2DrP5kbMiCA0YBhCxEdgHQCWXZSJjP2aJMZqZY+orbFWJZsRoAJLMlRX50tVL9IWqxdBBUFQpnE+AGEXRkHJvUDBN2cdAxH3Gl5mZWIopSQghxJhEuq5rQwsARVEkbY9uvXa5enrn/vxw8crp08cG56kr68JvVuvcgzmGUFVVsSjW63XOqYyJASCEhIjsoGA3QHBcJ4MfnyvwvGNnNccP/eKNFnAWMqMRjIjBdlzQAghmnNP/HUy46pQOtprs7giK4FbytX/8T//gG9+Ve6/DkydPD4uXm/AsKRdFYQJNl0SEMSEVgMhtEDFX+KIozKzrui4FVc0F19lJaJRBE9HMyEiGbutoZqqG2w0jOhqjMIo9AFMBxOzzURIkQkNLYGDAQwVeT05gCOCJrPcs9036pO9nIgImCslMxHJx8HS295IS+xnb3VQ3bqfMYPtfDRkK+4u664GksQPgcHK3AvuGB+FuPGO8uar2MEDDl9yjEfXPnaoCe9gIMvEMjrreZJz77C+zGAR88YXbvcokCcErCBuoKrNn9nmcqhqknaEaOHYlEIMooiKqcz6lEEpaoHW06Gxzef5+1b5m9fFLL7/+hVcePnp8vrqKop4tOWLo2xv0aK6ILJJCCG3TVY6RsK9k4/09efLk6RufedmxnXzy+GfeePVXf+6nZ5eXb5/eXS4e3b29ntcvuPSzd29/4Zd/6ScvT75zevZtf3G3aksur6i+c0rfPGmfXNqTV47+Z907v58WD1bfeW9RFLp4i7oSXBlsVb31Aj/9W78y/ytf+sx/+6/++B/+4feab79/6/ZBTNKYRqSCqBizWsb0+HFxM69PojZU7GRWr6ZE5Nmtu9XHH71/79W6cBWaeM/Nak1+nlJIXUBXEMNQ5s3BrIdJIwTUqNGpB3I8PyBuKec4ACGyIw/A0QKaSogoUWJQ1T58I7HtruaLuizLABvrhKkcaWmHnm8KsOXI0UDLO23tM2XRTX0OEHFaNt9/j9tv92Rq3iT7lLkN2fbD3JlwJiQygOyLI4DB87Z9kA15iIMOsaObmv2oJCwYAzfb3/4YdeFf7zBi8ugYBp2YiHNYSpmmRlwG0ssOyOxzIQMzTSmpqq8qD0RiihJCIHa+KF2JUFZc1L6ecVmqKiJECaoJySMRMpBF04QEgIZUkEseCYnYl0hkZiEkiXHddiHGtt2EFJIKESN75PLB3Zd+8N4333jt8+xmj0/e9q6wOJtVbbeRxWLZdV2MsZ7NROTi6mpWVUk6A2BmA2nbNsWuqlxZedtd950ZuumrGxUjnDTF+RFrNOXkw03MLIHSQJLbEImqYh8RNdyrA54+Y3rT6ShZm9/58q//o994Z3nnThvODvnFED8xrRm8Cq1WK+dcXVUphXUT2CErdDFUWs3n86rCLsXUZju46wPAyMxMRH2Fpika4RDAAABQVDUDsUkRME4OsxxsQKTMeS0L7nxZAhtlMAwMIreqmm7OrO3mxB/VND4ox3onK9erAlMGYdtvp66znX2lqmO0CIZQLOXeMcOxt/CjUYu6zYLOGp8NRRQ2WE9pQBqy4Q6IRIYwoOGMVjpMAgrPU73zcBSMYP/6aWnyILVxj3JEZLlY3jo6BADvPRPFIEZaFVWniYgybAhijrknVFVywA6REdPQTwLMpCE+FrlVHX28Og3porl8Vro75WL5hTde/fY7jx83642Zjj6JpA7MVBHBEQpASqmLIXRFVReICDm3a/dAtC5GFX3l3otfeOMzdWK36uInX6M7n3nWPN7cflwdviGIy9d/cnH/33nh4k8vHz7tzr4D3YdFOF/De1guf/Kzf3tz8vAxvH179vNddXBY1U3kZ4sf3mrKWNfrp2m+KLtiXh/97b91/5f+ys//9sfv/Mb/+V+41VWTohZlQUQpJjUh5wa9rqdepj65PSaZrlWOXKgqGRNis1kxAhF0XTdb3hIpopCpxhhZE5NZn/gK1Wweug1GImQy7KIk7cD74vAOQYOqEkNqW9EI2CkQegOTlCJqUBHN+MBEZiKpnc/nRFQ4b9QNEBzDhrCRDhEB8z7CwVmylZRGNkl3GCkt322HsCYElimfBv3YbgqiXf/VuFl6tjGMoU85zHdgQiLMnWDGXalGNI5cpwfs8iLc1YCfN4y9k/bjTPa/+GEIRoOHvO8SkDsVEBElGvSnwZuYqydwklZiJiZ62V3MF4tqVgIYSDYBvC+qJBpD1xGzGgGkFDNwvxoZIXlSZExRLJACYEKokBwSKyECqiaJ2rahaTq1GCXG2AFhXdW+XCK4JyePPvOpnz27fKr2rPQHm/XFoiYV9p6apiGiup5l3jifz62H5gU2ACRNKft7HXGyOK747oT3mtQw4T/G9zDuxB992ZYHqhgx5DARiBmS0ejHhV4QGA2LvvX87D8DJXtbETKkGTrn2FXts3/29//xOx+ctG+95C42kRAoVOaddCIpFd4jWowdoqVkogZQVN5HscvVxnuu6mVUurxcAaKaIjkmrwYpKhE751RFTVVy0hPmKmBmZ6LWZz/2+6YnKZO++FmMDB2xopkpSS+NiMgYRsDu3LCRjEaUABuYvSJA34WJTA2N2DSJqIGq9SK7L3XXGDvuwdgUDBwXiKhiwLkuGRERBkuXiQx53PdAqCpgoIoOSwMDGosb1EzV1FU+++qZPWZXUf48GL6KgBO52CPQMIIRoKoqAzKgEQxp8YZk1COOacS+aD0TY76JqDpXZLbCgGP9/i5t9God9KaAmUXiCR0bdV372ktwdPw6hLZIITAab+rkWmkds8naufsgS8YY2lMP4KAURHNVMT/sVs9MxJGJmPe1l9RycWmXQA7VYPWQloft8sGdu5effvEPf3jaXlzO7lZlqxuYLRebTawqMxLpIFc0KbQB2rmvoigZEek1YHRrMDU6L9tfePNzt7i4MtmkVb1Znjz6ZD4jblblqi3mt6WTcobt3Z/3D0K6+HR78h29+sivwxz85Scfr1efHPKdavOooO6yXZr5WXBaAnSL0pfSJfIVcJnqt2bLN9947e/8r9/6P/zeb/7Rr/3J1eWmu+u9uTrSypxQJrgs6aCPFCAilSRiKtxjmGsAjMTY2UGIH//Sz/6l5fKnKn3cRAiXa+EDoBRjV2vHMtdkzrMZIlkwQlcXNUq7SWHDqMadxqSXVBQeHXWACATWxnXjEKguQtuYCJhD9Y6daBO1K+IVGhTz28Cl2ZpQGQVUC0+qYAq5L2hfAIsqKbuiUXSapGOT7IG+S0qvJw2deqcuQwLsRAFAAGVoum2DK2XwRm0lIsDWs7yn4wpkqYRooEPtPhEBmEkCM0ZE53JZhBqUBaeUoqovoBMl9iLG6gyhSzGKzxXn+SUniu2+o0tyycCu8b3Dd3f9B6Oiv6egD2Ke+z7iSGaGBhyueH5A86P1k9MK1XM0dg0b24jdo6MioggpZUUfEFFG24YQfXq2elK25fHhcVUudN10QWixxMJ557S5QuaYknMuSDJDZ+idUzGJQSUSiGjXtmuZqac5QoEGRKIprDftxbPGymddF9ebUNQHd+7cB+ev1iuRcHR0vFqfESCBU22LkoPmCKO5woGaSHJEiH3DOkMuPEtUteR9IZJSSJ2L5axMEs3Eub6WBBGZ2cz3ld9biMVMJjs9NnDiTRn/VEtZWiAiDgVEBgZqgL3/zVBRs1hQQSGQBMpTCExLKKZoZA5Un9uOMBsKI4DzIKHlnXfe+f733p7P67YJhC6EtuKilUTsYMDfslxgCwAKIQQGQDIPzvrweTGbzVardbb/uq5DJO89IoYUaYA0giE+lN9ftjkpvQ8nv3+S5JBGz7Cq5r5B2RAmIkC1Sb/dUaKMW9Qm9bWmICqDGm5imkSgl0P9XsqJTjtNM8xSSn0cdKjBh5s04fErom1S907ziOHIKByj+pbdvIOF0Y+fJs29t3frzXQYP10XombWW/ai02+fTwzP9bEPhLE9kwOZD164V9WlW4eQS3Iz0quBZb8/KJIQAjuPZqrJckEROmavEhH6wmUTZuaqqlJdp1W4uri05UVd3zm4c+v+3ZeOl+3DK+k0mCmEIKQAfX4sYS4t3uY9o2NnlK7VIalqiHL84p26mpdlGSkxeBGJ0ZqNgDUCRZl8qd4IWT/E8MbR0Rfp8FPtye+dPPozCBEt8WZTVUeV3MHOJVxTiYKLJlS+cmqIIsbiWJklq1l68D/993/1c8d3/u7f/conzz4+rJbVk/nd106aqzqLjJzjgziuqRlBpnNSU0ZSQxXp2s2tu8vXX3+d+YWnZ+ebiEVRzor5pl2HrsmZCrxd1t7WI0QjInSGGVlTunZVWE3eMQIwk4KBRDVoYxKlPohjJim3aYXU+bJyjhOapSymZEIeWykyPnxLYxPTZEJyg1nWJ1v0uIjTnTG11YhIc5+RnYgJTHYBwBhquXaMF+yZo31ix2gZ9yw4b3BXOueKfjsQUVEUUzZyTUZuP4/vO278caDXr98d3pZlTb8dHpoMcl7AyFhcFwMRVVWFoQkhKBqQ64HDtg0HMes2dJPrLuc/ZobWtq0qOC6QKbTr2Jj3HgAcF1FFfW8nJGInDodCDwVDJl9UKEuiLuk5gFLw5+erq9V5uaCPHl1Us/nte/fq2YEYpNSVhVOwtm3MDMmYgKiA1Lfd6d8et2SAwx+Zm3HfgsHALAYR2JRl6YtcqyLZcah9PHHPIM43noQtJse4uMPnfcfhlHOa9aLDdsMQ0+vVEigCiRkC8PP7Afe9eHv6A7DcTOadd955//0nB4sH2l0o5KRqN+kTD9g3ju1r+1QliEAH4kRMCysYsSzLrutEVGIQJeZsoqGowE6Oxo7lviVW3orbjL/BTIOSojm/WCwRUR8Tz/74cW6GMoypAM4JpWIqIgpkhvnzSJ2IoKNDA4HZTYckGkX6zIwtKWMP/Z9/MjqsxpXL0tcGt93Yojj3rnHOZS4DA3aH7sFs2c7mGRj1SGFbvjCwra0iliEwe7jPoaJ3JKYpN5mq5Ii4l8VgJkSoO7mjlMRee/XlwrFYShIGlIncATxazgmHpIjelxZClxrvloDE3rFzJo5MzYzQ5fiDZ66LeoWX680Vnp+42VF1uHjlxVdfPr74/slJAKjNMZCWTpJwn/RmeTGLlEKMidEhqqHIfoEgoQtBDo5uuYKNUEQCqEcghZAQOoVNJ7g2YiS9Xd9a8cm6CkV17I7/ysvzLzTrHzw6+ZanhyDnsVuTP3az0tUHrjoEqMkVCihgKFHQUCmllELncLWuv/TTb7Z/p/nP/z5fPTy/80q3jnOVkInK9daUARgagEpv242xFTBIUSW180V1cLTUVJftbKaLpMieZoQxtCmpxFQAjh37MiwqoCP2XBgEUBVNCtZGELYSHQ+SHwxBUjKwDB1gpiYRpLPUBQnVfF7UlaUICcxMLTCxDU5hGEnwpmMifUfqgpFc++W76ccDaxi5xFTFBMS9KyGDh8CE7+bLbNyYBjhWUphR9nKNGiwCGhBhUsuREdjl0aMAnuyRna8y98SbcmjHh46fx5tMX3ZPOc7fJkgAfcNKwOw3RwBIAqZQlrUrihSbqqqScTSGFKYP3eox29aHW0mfqxmZnQJs2iaEVFWVqsauJUTwHpGpEFRFFYsJALRggcR93q+B9G5rkCsDQOXVOrXNilyMcPbD995+8PLPelceHN5Cx5cXq2QxZ1dlw4Oxb+RH5KzXmHdaX9DI3IlVRvaIjM4AVSxsNoTIVObE2UwKqjJNF33eWlyXiTaYwlMBfOO6DDSWBQ+YGWraqa+Tvu+eAhD9iHaERtobUoqYcbbUklxcXCEgMTpXbJroiyp1Rp5SHItWESk/AgHQkQejIIJRY4wppeytPVwsLy4uWxFmIsIYo6GNMIETsdf7l7YTwTv9EKcayjiJZgOKWP9tn2pKiGgw5Fr3GzwLYEAyBFMTw4yAl60HROonfdz8ZoDb3gY09AcEyLUiPF2enOQlIjwAyMMkYxkMDGTCaLBvxWGTgQ1dJQYiuGHP26AZDBPVk4IBjEnRYDTmfCMiMpGSTbLEh0MHHtpfmD8MNDSRvtjrE0Qkk/pakQgAr774wIElSSKiIoACagCKkHUsBUiIriiXCTZiyWclgD05j8lpSpi3HBNYr8P6opQ2pM2qO3/sKnrh+N4b9z9ZPjy5XEuBpaldoVG/vJghLgAgiIQQpC7VUGQHMyQfbQxptYkxiYihFr7AlMTU0CN6AK/iYheALkC7i9bB0kEHIUUHi8P5YT379K2iTEqXm/No565YuuolcMfGJRaMUiAIqUrqLG6iSupCSqG09cXJ21L95M/99P/C7B/8F19/9+kpLsqFKiOyDithZtZLC+zbgm2z30kzaJtCCB1o8r70Za2NAHHhCYxSSjHGGahaol6oMwApEjmHBlAAhCgWAcREUyeYiNjDoJ4SuWw3qKqkABrZxJs0IEfLpa84tW2f+IbiXIHYXfesjpt0kLsTlXFbL4sTXjbxd02O65JpdL7cyFh7J/SPi7luDaxhqNv2pgObcI5ErOtChujqk29jLKjeWj+7DxpVYZsoxDvpilNZeBPTv/5G4+G4sCFmBX0HFAAAZhdCoL6LnyjnQEbvwxhnaWsG2P7gewE/xsBFIkTVFH1HgJUrQQpEJI2qACmmGM0MxQM5zcwq++pEzEz5PG7KTYOGFuT8nR9+K0p4663PHb7wen5QF5qoQTWJxK5riqKa8vyRAWZQkawaDk5gBADvyqAB+5I8YfaIRUqBzHVtNLOqKplQRMyEHedmM5NZ3q77HlWM8nhXQ9pP9Nu7fvqVmaFKtrFGGayWMuMlE1Cd9lraX36EwZWM+R9QTSmlWb2MsXMKTJ5YkzKAOufHhTQFGXp1+bICQAA1QjFMUU0jM9d1XRRFCEkBRPpCC8sNOmzcgFuVox/WxOmaTNWUmUEnEFGI2Fe1jUrsDkPIdW8Gpqaj28EQQAQG/EvJjhQwQMb8cOobO+YRAhhM4BhxqEZAxFy8a9xryoh9KXPWrLMs67tA4VDIOCzBmOaKiGPyF0/uz8ww6R9uNmElz9muPXdQzHAHiL1+mX/Y91DK+uGE7ndpLicO7BLJEDtxzhEr6Zb9JQl1zfdfeME0oQkRAIOqIhkhMiOoJyLnUYBm9VEgQjfMABOyB2QgUaHsjWUkIFb27GunhBrj1bPVvL47X7x29/aLh+581USZObQQ4xwqJOzzd5CNPIC1MQDNBCyZOr5B6RSFZ5cX63B44F1RzGKIVLACCBICkplGEUuSupBk4e9Wviir5Ir1pm0UZvWtnysWn59dPonWzheHXB0ZMpAad2klZqCWLMUY29g1KXaWJHaFdyr63fPZp7/02b9xcfb3/+5m1V4BFGYE1oOz2lAKoIicy/MGNwqBESJ33SZGAgDyDgMpIHJRz2YxXqkqiEjsTBJIAp+xmLnPP6aCPDtCMiAikDapmqY+Rm6Uk5OxJwxRFTNBy60mkjko6yW4Pj6HiIgydrkf/cbDptyBtp3ytUl9+ZbesFfRctPrHTdYj3EBGdwDiAaMHdlB+YBh06e95it7+2IIoIyjGh0MezpuTk+Z6LjjvoHpnzb4HseNmc/ssfLpGMbf7o0Te4scxyv68wCI2IUI0MNJZsHQ99nkfCubzevuEjQlAy7QKQ2VF5NX652cw7EzGLPMw9UU1EQajsERR+x88GBUFIWIeO9jFDQAz9iHkPrgaEpRRIKgcRvT6vHpO08vTg4Ojj/z4pfq+qVO17OqijGEGIFMk6qmsiyZs72BuVTEJqJrmJYeo3RI6yEil+uLLRtziKpacR1jTCElSkVVMOeGpKSYdvwkuzUjP0KyXj85pYGRbscfk0GODJglNAQo+utFlEPudkEwsTj3HkzQlz1sbWrsoZVNfdKOE1X1vI2XhAfJrO9qMphdufsxAMSkxOAcM2fbFZmYiVRkVldmeLnapBTZuayy7RDu1AXfS7CeUGS7wwnRVMAAiK0PwZoB9IVt/QbLMQ8da3u2+ml+RG4vCEZiqmp9k2c2iWlaepTx/wBRFAEZeWjn5zgr0hoUsv+dekIZXmQb9NquVu9VNshydfK+E8N6NIUhY95OdNUJw9IBRHu4NfRmf9axxg02hgYUENAx90VKZnm7684I98hjYJNbXGsE3IYfAAAgxPbuC4d3jpYao2pC0LGxF6IxIJB3yBmDoSiWZiacENGQARmIkJ1qyra3iHB/FOAqC5JSwM1leubD8qVbB+Urx8WfP1wFtT7KrJKbf6khE4OZaOpiCDH2jaeu2WfkGBCfPXt2tTo6IICCTMRhYQAJTU0wgQKJighGDkV3SnAJ7a366FPqD1prOjlBZj68y1AIStIWHaL5sC4ctSACKpJibDbtZhVDZ6IpnZp741Z7CrPvPLr74Cc//+/9D09/++91F4WVbALgJFfFj1nyyKKSRFUAEYlzvbNT1RCSqhalI+/YeXWQEfDElEFTbJJ0FB0zGwKAM8K+/EGp7xVAkiQgApgSIZiCokFSJAIFUERDUzQFUEsxxehnhSuroBvjiIpkgJCGpt27rHyXsdjEAh7P5P9PaAwBdooUdq/MOyI7oiEbJTcqoIh9mvTzRB3ikCo8Rr6SIfZ9Y6e/ykSe0dmzX0G92zO7r7/pVLTfYOpMxN542TiY8fPelOY/K1/0F4wuLgY0WK3Ws3ldOBRGNGNm73zTaeaTvcNrcLDlBjKqGX98K4nNzKGLg65nCBoTinq2RtTFBGY+eklWFEXWhzBl+TBWN1hKIca4DtrZ2enZe8j4+hs/fXT0MmDNJZKRqrTtpu02o6AtiiorZDaUscDgv8wIMkRIBDnLm3qPQn7HnNXgAABEPTEikKMk1jSdqtbzmohijM/zQE+l71Q5u2HVnuNuGchpS6I4GH84bRZngaQQ6BE7djAqr1EPGppkSzG3NwGu6zpFowJYveWMGmRAU9HpHQatFlOSnEAFRASOiZjZO2cmZVkaYOjSRvv4xF6UdByJTnDdrLdB+4nIVNSvmYCYECEhWC5PEusbP2S/LqJN4j3TKgKzDLwlvTPHSNF0t3Xd0K8l6/hjny8ZxOqu4BwgpfL9xVJWP3sP6UTcji8KQx5K3lLTSicasKB3FZR91WwQkMPO3Q8vbRNAsmBDRBwGbIQ0WAPTRbx2860J3q+OAE1asYvCgxdvHyyXKbYphuz1xSGPABCImIiATIIhlsSV8GYLuAJM6JA9mBmZ9UtsxJ6LGrqooUmygUs6t2Xh4VN3ln9YrlbRlMkxS5SR9gblXiXhum3KsgSkcM0LHVOSiCfP1ifP5oceXVUeVJUxGaGCWK5qNDMjUwznpzXc5lkVXRP03dnhraKqrKMGn3i38LxQVbXowRM6RHIIESTFkEIbuy42Xew6M1PycfXdFX1usZar+Gh+9MJPvvn6G89+//1nOe1xWDxEAEsmyTCElFICIGbG3B0EDBFjlBBCUSoAceG1gKSSU2OQQSRpDALE6gENXQmIRA7RTAlAURnNgB1KRORejzYBI2QkFQXJ7hPVjMqhKYXF4S1f1WGzwT4SYcSDf3wrVkYguD0S3Wdt18XMRFW9gRtkeJwMA6+539yueB7vSX1/2P7h/TW2zaFE7HOABxUUEHs4mnwzRUBCEe0bjPVVjlvleI/vTT9v9eMfVyg13dd7+25621FAqrZ9tLU/0SMEzGcHjt1qdebRitJpF42SBbXixk3d93zEoa37cHPNyIQGkAMiCgwGksxMc28TZ2bJyjGzLCVybIoxxmRKBGophLAOz2IMy+OX799/a7G4D4QKqw6eVsXRZrPaNKsYYy5sY/YInjnBtVZAZpbDHDmPe0cAJy28z5q2cxkBxJwjFWEkRYcSQwhE5IqMPfDcJfgRCzSSx+itnMqO6SLClvx0SOzfXUxNSkQCimhi2zKkvUeqCuDQ5MuMhlDowcEBkfPealefbxrykIFGk0xGOYgHyIBTIopiyOAMwSE7ZmYgIyqcn81mUaULCUzZje1otx4qGKTF3ntm0hGR3NcE+qiwIRJY9otlQ60PueYLto0N+shwfytClB6FBwBBEVRURNzgVQPcUclzwhUAiKgNvUvNzDk3gmRt41v9BsbpFPUpWyAApD2/3frLTTVbbJIU+wR6S0mYJ+s5cR857lknbr1MO14vHNJABhlvZoZEsI1g7RDcSF77jHLHODZEUkXvt5ocEdy9e2tRV5t207s0QJGADHMpBKNn9tR3JnbMXohgAtZthGRkxEpaFEUMraoSF2W9SCm1qYNoFNp1sz4o7N7RYln583VO59WBMFjEzMQo5Y7PXQzomBHaGPdIvSr9GmDdwJPTJ8eFS6rl7Re8q81MQQlJ0QwxiaLCjOvzJ+twSIvbdUpX1qwO9J63pZ+9Ku1GXYvkGGo1Vm6RNilWsQtt20rXSAxmBkZoNj+nj2a3hT9pVuDOA91arF96/a99/NUfnkQ21tzKG8fSTBOxGGOMceibNjTn0p5li2mPYeQLMU0SzAQR1JJoNOHsVHCISA45p0omQwYABSR0RtZXPSkAAHFuPolmpiAiyTTRAClQz2bsvKGxQ4TsoshYciOb6v8bBfCNQuV6Jv/0ICLb0YFvuAn2ZZ0jke+IwzyI607o6+J/2L8Mu37jLL2ZKdfSM5P3PidITh+H158xGUPefdi71rfXjxx8qlvvjXPK5cf9DtYRkfOuKF1VVfOqLkvvva/LOz98/4enT9avv3R3Bumjd97tItX1wTp11ofMcHsMsLXT+08/mKGYSE6fUYiqioqKmiSqiYgO/cXbbu0KD0Zt2yZT5wjIkgWB9PqnfuL28asKTqFTDGBIdLRZX11dXYhI4ThGIXKzeoFImqFTLdgW/taIct92hz0LwVEAI7P3hVoUScT5jcAVnAKIRCbCokqWuq4zhLquVcKNIhjpZv/zdGVttJ0GnIa9b/PCTJQG2Jve/jJNgISiwIMFPBUM/cFkgKDESGamYsjgvTOZIYnEIsK6KDlKiRxM3XbnGWQVxcxEstwhTBjUYkgbZ+ug3ITCubquvXezYx9QN6enDN5xGSD2GOIA0DfohYxNAwCZfGkCCcTGAKA9bpwCkWWdXI1zW65eQ+fMzNQCmKFRrjXIS6zCmquJtb8MzVABkcT6kvYxLwQREUjRpK8XcXnxVFQVJdvQqqrK5pGy7wc8z8yEcseJDNqVO0FNFn26OXObIaY+RdySEFHli6z2Tmkli2cBAxyI0kYlBWmAZMutF8HIEAzMC6KCghoYMCECqaEM+TYAiJzDbJIZdMawBIB+h2STFSklXLi1bqVaF+HFO3cgsoYIKZaeRXxUQTJwRmARYVHNIUBFEGDFFbhYOkZDNkJ2lTYbSxERjTnExOXMQkyxKxi14EC0TrDALjabEMIRy2v3y4+unqnVpdTigohlSFBEY2ADNNNnjbzUAINRWe1tsFSlV2p88/atw7pOrSR6+lRObz24r3JQl7fZzTF4IQFO5NMmoHNutbrous3h0RKb5qJ+WC9q1zwu6iOxOgk4j5AaaVYFa9u0ZlKARNRkKppiajWpVDZvV168YmxlzWs5Bm5f+usPPvzth2exLGvEmXSphBe0fJfkrsFaoQxoplcukbcDQzZqVmSvIlRYttQVRWGdP4uPSz5cX125skom3vvQxqJ00LRcVFqgy53KRU0ToSnnvkeGCIY97jQCZmnsySyBkXNEQGJdG3VDrIuDl6OtvFdN0MpFG0O3wcVMxQAQkIdGTIhAAKYZ1mWwt3InqC2vHz6PwthwDBtPYsBEhKYRzDlOqCLGzJaS9klq+/aoquawFwCIKCLkcjhVxcFdnrPYRl4Zh4bceZMSMQCoSEJEJDBIKWlMuTGUSKTEVBMyCRgjEzDYtsNKFr6ACkZmCoCdaOULxwgpSQbrRzSzCudd6gyVPQNqtgu992peU2RIDpJKh9YtZ8XyYL5c3j6eUeEeeCwKWdhydiZILT/6k7/3za/9k5/9K3/ns5/6xbe//f+eQcPu3lNo58jGGCE3mgFCZ4QEDlCZCVUxR0lFLIQUJKUOkREYkdhyrYQSo3VmGIgECDxZSJ0mA9Xk4eK8q+fzxa1bSG7TNiJyeOfu3eOfQzRlQRRIoaCibdvlcv69989euHfn8vLi4uLszp07ZVE0m3Y2myGgxKTJcmQ3c2WkweIk8t4T9RgGxGhkSQWRnK/BDFgRkwIoCDliK0UjCgkkibqWpl743HypLAoAiDECqHNOdp2dOCSsTW3x0eowEO/9da2RcpuprT8j16bveHFUExEgRFBDmHSV3zsGlS1XIGzDfs4RM9kokcwGVWWbrDtNLdtVPlFVQzCiJDGqqvdcFIVzbjabpahd16Eb4J/GqAzA6GQed+z4ASdtL2H4iarCxGudEbLGeTHt/dGwH5KhMfNU+w4M20St8WIbLMjhVztDGldub7QqEYbAAPbVJQBDavb1yc9xU1WFnYLjsXnLzZoyDDbBljiep5hnVkjTquX+zYd3yjKMaQAo2Bthvq/3XnAnz6Wewd07dwxiBiLPHJeIzJh7llSgY+wdf7CF6EJEpB4XZdAut7yMKZczMTlmDqELcBWMGIpbjkrGNuEcegNteKkhPAHg2Z1dXtw9WBRuPwnrl37qUz/x5iv3D5ZzZm+hbc836/OLp2ezWcQDmc1b8zNDp0qgZZJUAJmmmALQyrfrouB2UznnFkfR17e4mDmBlNayOe8sAM8hq6KpF23IzpFpaMWQVQ3IkKKksnDHt+781N36gzb6BITRENE9auRODY0pppS6LoqFAhlI2GdPMtu2MYsYGCOZJucckpk54i1IiiKAJlOwDJgufRo1TKrIEPs0h3xq8EyCqWoKBBJjV1QFOQ8iSl4127+e2Yew3t5k3B83h3JH9XH/GuxfJ8d3nmuUII7eATODsfxv7/o9LjmGGIfnXr93f/+9b3J1u6qiDE8ZzICxGhAm2/D6SDJHraoKNIUgZMDk8osYQqtXvvaKmFIiobo6AMXQRsQzMvDE81l1tLxzcLBYHiyqqirW7pkuy2qTUvXxwWmVgB5+6xtf++d/9o0f/rW/8cv3X7nXhat7L7z6iP48SVdWDJM8DYQ+9oRAar2DDYYct6IomDmFaIaiOfZgIlFVFYSxADNViCmmlKDvL0iz+Xw+P57NDkKSmHQ+O/BVuVjMzHocBRFh9m3bHh0dv/3223Vdd10HALPZLE9UWZZE1Kc4bFNn+ml0ztkWnXd0JIwoZjDENXpJkYuVTcTMCYgpqqmhuC67u9kUDTI7hVzkvbdY0w/XRc/ID3eEwnPIdWcLmGq2gNHMzG3zh5/jI4JBjmLvMiIi0pwecs2YHwXw9V2Xn5LlWkom0KeqzmZVUVTz+bxr49XViidxyu3QEQkYcIvG17+wIkwj51tvqtH054M3w0Y3r2EGOTYzMBp6KPWtQvb06HFjj3Otqv320y2gLRmMwIHDzzVr+ogZXhONEE0BsW9JiEBbxWr3QVuFQ/rqzV3+sqeRTL/dpQkAmCQSomI2goeZ2V+7oXkOIAKwUZ+Hmc/pgJ81GUPGDNkudF3QC7eONUXVNMIyExCgQxQjQ6qc8zm8BNA3oh9Z3vj6MAhgVQEmAsp2CBeeGk5iEs8bm9fqH3g3L+hS6NaIIL9He8Bkutls9HBhu63rAOCXP//Gi/fukIpG9X5RL6t6ueCmabvL87MPN21xcHxntrzvcCniuWADVLAoqVm33UZ8QRI6LkAVijpxMWNmCRttL0GDVYcIDMYpaUoggmZoYAkIyJQYDYh9myIzzw8Of/bV175y+r1PTtyxJ8duwxeyOlDWbJzEIGKGJMSKBMqQcd4V0MBliUqAElsRQSYmQmQjNiQBgxSctiasyqoKmqu2DFAFhja8Pf0YgJrl4LeqGaloigjSxfbohTsIzoCISEQ8sXOOnUsKRGC6w7N2VNyBSvcY1pSYt6vWC8lrq4mARDlbcGTTcI197RL21tetPSJmb81cf+j0Prsj3I/U2O6rXX+F6wdlJL0xg0RNVABNHa/ajgnmVa3J1pfnpDYr6+WSjw+Ob926s6gPiqJC8GIWQ9wsq+OuC+kgLdO9eP/hN/5Pf/on3/mnX3nyN//659968xfWuG43F8eL+7O5W29UgwA6yCmq00LCAU9wO7zhcyQSM0kj8CYmFVXO/uicfu5c6V25nM/ragZZvQPS2LnCHx4eosvVFqkoypRiWZaxC8vDwydPT+vZImpYrVbMNJvN8kNz8A4GG2aYz22lybAWE8lno+QC2MvaM+ob/yExeUAWEDNrm1hWntmrqoFmF8W0neXzFL69xZ3KzSkBIO/4peGaAppfylAyyKOb7JNrRlXuXDAUnOQKKJHYQ29j3gg0OFFG4QET4TERCYZIQJihSfpygpQSojGz9wUZpxDjmCOTq3ZtSHbovdtofcOw/AgckwhgWAfrU5wm2oPh2LUwA5dCDwKT3VA7czT+lanThuqj6RSZmUM2s6kW3NtqqGBGg592FPPseBgjj+v1I5Z5KkSRphA2P5Jb7Z5BzOghQ8J+RmPIjd+HjtyAaGhIpmADU4OsSCopIUwxvwBgbCGVn5hMLQkXW/2xKv1BVYoGk2AqBoJISIyIaIwM6Ct2xVCykgur2MxGB4aNUUQzpJxJR2YkQADE7IEJCE1XTcJSDu4WfFzbx61iboc18QkBAIACmEQVJjGRsC+A7y8WXnJvKAQgdkV9cFDV85nMu7Bq4+bq4rJtbDZPdXXgyDQJivRhDzQvqBEMpFk1bSSkBhFROwsbSI34ll3p3RyhUAGFDKCoQOTYQ9/F2KcQmy4Q0b37X/jF47f/3nnbCB55/6Etl7KWskKJmOMZ0NcjhZQQoyQlBwqEub+XIplr2vOYOk8V+YLYETlkZwhiyhoVBJFxyHzfN38BMwQHAEBOMDQDELAIFoEkSVweHpArRNpM2zS0v53ojpNdcw2NI0/1KIP3CHhK2zjcapeqt2ISB4eTyA18LI9NRBC3aYzDNTeYy7t32BmPmZFhTlAZ+gLvS+vtc59/5xQTInpiAFLpa+4RyGK5LBdEqVmfp251MKvu37t75/jocHngfYnISaDtBIiKoipn81g+urL7EC8Ozrp3/vDv/vNv/uBf/kn8m7/4+V/6G78K4Zj9uVAbQ81OJW6q6lBjGkWXDdBDhjLmsowvnv/lXEasucV4/xMR6Tph74uqpsITMaEjIiJnmtbrdZLInmazmStdjF1KOiuKELr5fBFjLOv69Nn5arV68OClDz5+V0SKwlfVLO8CQBWNhA57mrEMQZFHaNan0xIgoOYmi6NU7kX1DtkMlEvI5FGVlFS1jUECRFB2QMSIOWJpds143eOxEw2g//v6Zc9TAfdui6BmYoiqzwfiyFxwrzGOgYW4UUsOCyJCzS8wEXu5XclOVuGujxf7jZqTLAGSiMQYGV1RupnMLq4up1otZDMX0Xqs02kZe9/l48Ypm2zd7HZGA8C+cW1esIxOD3YtzWOrFxvhTTV8e2o7ai88xg1JbCqjBFUAQCXLUFC7UBvXZWr+MJYE9/+jTI29fLE8zC0u0pbNqWpftJ7Xha7xv3F+BrcBEUHOI1PbJi33SdEwLu44NkUYoXoZGBHdpMPB8eHBYV1LCmrJhmpyBCIkJEfeuXJGvlCcRKcnTr8+v3SYzNwOK1d05XHnhEkjB6LZM3ZQlS8u/bsXsQvQNybsoRwBAc0IQEG5g9SZ1m5/PthVBua8o5IUwSwhYGTvq1m9vCMiXbvp2qa5PNlcPJ0VnJIS+7KcgSuYvYKLQoCW0DwjFR4BQVOKEBslt/FerXDEWdnJXJu0Nx8hhBYRgF2SsG7a+fzVX3nzc1++/KP3HhZzkEKXvm7XBq5PwWU0UsQkhijOmwnVdeG9D1wyI7AhuNg22c9G7Jyv+88OiQhNMAtdo0Gn1V5qEoL0rmwAQlM168t/NZEpmmgSQ6xmM1/WbWqMKOfSp5TElBwjXoP63N1Ve5xu3DUjgY0JxjcqmoNd1GM007aoQZ/3k/+vj6lRYSKIzhMDKQDI8LixEneqf/wIRpxVARNIKaKB98yEAFqjdc1VF1bz2r3y1qdevH+3Ln2KHbmjIIJA7IuyYhXoJEmX6nRf3Kp6Sl//o//9b7z79m/8Hv3Hv7r4n/ytX710VWq59Ny1jfeL41t3nj55JrIYB2SKmZWYJDNC9ONrDk1xzMy8dxmeQVVt4kMua4/skNkVBTKZooiE1HXtJkksy7KoSudAtDWQsirQkImbrquq2arZPLs4X87mT0+fANhiMc9uZyJnoqIxg7cPE9XPY5bBqprlJW0DJJoroKwPKOyse4/0pwrbAA2AgnOViEAQQgJiswTQd3SYyPLt6o+DGf/dLuT+yiJAj5Y4PbN3KwAFYFADMGB1U+rfPXKkVCFnIeVCHpOYgqoi9XwzVyYM1sMQKYGdoY8CTCQDYCIYjQkIAJRSSpSYuSgK732MccwJVCBFRYSJJjyOdt/8z+J5DMFOJOKQMm5ouv2tTbTgvTB2xnycCvjdG26DSWTbr/J1/Shp24QKESUFIDSXnbGThjxGNojTCd8BoFELGXzavYTacdHvUcaUeobxjCH8/OP+GgFDA5nk8iGAUd+Ntw99525svchHhD6zxiyDiec7IiJPIPXh/gt3l7MC2isTxdz8Mk8aEyCyK1xRsyts8KvbYKLn7ZZdGgPbg35BM2AYISojsHdlMlIjAIkQ3Kx67Wj+zpOzJ2vjsppOSG6ODUCO/To0TQzHi4N9QvcFsKgamjrn2HsAUkdiSFCWVXWwREnNanWy3pxtrs4kma/nviqJDMhEVUMgKBERlB14MCCuqQQUhNSlCKYboJAzBKFPCzIzSylFSQ7AOQcgorpRe+P1L/3yo2/9F0/kWdvMtQjHM726cDwbCU/NTJNjB0yo6fCwqqpK2GuB1CBhESQxc3YJGrESARIh5Ex5yz4NVBw1KRp6VRLkKM3QRZxUFUwsewjUYoq+LH1d93AdZo4QQDPOqC8Ksw5uUvny4k6XZuAMY015b3Rvcz8QEVF39WPrsxRyoQFMMC6us8TtRrBrpYwTS2arWQLs7uUpkajRUBycr5He137T2xJO/QrTgwFNVLP+RQBoMbUaQ0iXB/PFg1dfvP/Cg7qoUoQQXFXdUq5JkqoIcm6BjIhFgWxEH3/8lT/5L//x1y9/+49n//G/3/yn/4P/0WVYROHKgbTJFA3iwcFxOducbZqqKqYWcK/FmJgN5Ri49SZmfo5IyNYH142InIA5roDQcmKQmmkyFbOgFovS1TMPoGrKwMTIgDGm5eHBatO2oUtR77/44PTpyeZqtTyYzedzxOyf6FecmafN6/sZyhrrcICK9ck6mFNMhgXNvxt+jQpgSCbWh/kYSQkq52KMolEEgRQRkNAAYVJ+eQMX3T16hfVGN6QJDBBnE51g4pQzUMgtgQXVdmrJ9zn74GkcNw8ApJQGwTLUj+aXvybFx7WcyuBhW+GE54KqhtA65xipLiszCyGoKqEDsAGRB6ddFYdH8NR+nQ7AhiMnEFmfgk+je3l0blMPnmK5o7CN9AkAOEXq2fEP53efQr3nORr3OSIi6QCgBiqSZaG6bP/2y/68YyKMbfyMuYz42rE3tmle2IAiwgYynOyXIV+wzafPP2evPS4HGGUXcO8Pxiw8pvBhAGKKhDDJIbxz67ggCr2Vzzkn3QgzpBdx6XxJ7AGHQG/Gr8N+8DQkYY00kzvTiQgRARkylWWZvGddoHQBGl8tXru1fHN58fgKR11w6Caipn1DDnD+fL2+dzC/Nn0xIwsieGJGBrNIKkTEjIbaGriyOpi/fOxeefbw/ZCiK2Z1NROxlBJYApVSS9Uc2wFVYHKFn/mKdXWlKlGjQItMhA6dz03+ehLqq9aBnTOVTq+uDu988aW/9O1P/vTrj7sY/P+Hsz99liXJ7sPAs7hHRGbe5e2vXu3VXb2v2NEUSCyECIqiSBDiNpQgG0pjxpGN2YzZ6OvY/CE006w0G6NpRAqUKGpIEARJoAF0N9B7o7q2rqr3annrXTMzItzPOfPheERG5r2vOZyw6tv5MmPxcD9+9vM7fceIySHWNzJYhRwXx2x/b9bE6rykTAaHlgMUhzUPxBQDqlqpKgQ2MjAy9nI706LbQIGzH3RPADQxVFNTVdKMBiK22NsP1WwlAmQe5hdNIRKADsDmk01xgSfs/BNxs9CT77d2wc6mGK+lAjsP0xTWi2x0KmJxMKem+2u6u1UNB8ycDdkXC97UDLeQcIZHjCXng8/vIuN2LmqlVJJDCGaS+nXAPJtXz119/s6tO1cOr2VFEeTZnLjpxCz3GJhD9GboBMpEjLS8+4fff+eb/69vff+rvw1/9y/c+Ht/47/6MD3TzDmoWT5nqJuKV+sjkYoDVtSYJZgknJh5Fg/lnCe9QQs/BAAPl0BxYBESKlIENoMYqhijonVd17XnfbtKqd8/vIGIBJh94yCJWBZhDl2bqnr2wf2P7ty503Xrvm/39ueeReyDESk5s2YyNocucncjgDaW1WQ+eQscd3Koig3+Uh3s+4CUQUMIKCaSzYQjEyAQMuFldLgr1MZ1N7tkiS8V2BdoWADZs4fMcNOM4TJ5PnHlIbrrMedeB7TCUVskIp1wh7EWioh0TBr0p4xMFhHBnNWrqhhoFgpYVVVKqYfkImDky6M2ANu+hvGdacAmK9tp0vTeJlHeUUBO4ozmArVciK7ZlmEPKRsbHIxRpcDtnUalLjltTdrwgQy8u6MWJ4BHldy/sOuymN4fLrCSnZWeLjlu/K4DMTGOVu/0r2OzOdSoEdDQ3NANNPdVOBrrxbGNakHRW5GmLXYP9uZo4FlnNl6L6FzeiDAwM+eJLEdkUYWN6VsKqTz+FIm8SXhARiyJmqmqMEuQrtXW4uG1vfmdvRCaqJ3CdF0GXaTPUu8vztZHq1W7Q+farzqBUM1CYDECoxCbmLqsKWlKxpEb4Fqp7i0898nPr1Yrn4Hl6Qnk3sDQxAQoUMUVctVbLuTDmbgx7VWTgYCKklKmjAjkpYQQqkpzMktlzLR8nOfPXPu5rzz3nTc6OzqhveUJHNSQwT3JrOyiW71fgeQmBg6ofYlNKqCYgoqrXFVVharJ0hMIEao4sAl7XoTTgEMcjOBDZV2HLeCOIzNDZFOoZvMYahSMMWYGM0upM9OUu9VqBSN7uoQyn2YZT3Xeqbzcsk0n5Od9sgAAEBw+r8jscd/ZRO8fSyIBYIQTUJWnWMxbgxkPcjesqoOyDCfbGEuavp3ZVvBu6z5EWTxpUVPqU+oOr+49e+fmx268ZGaSEYlCHTJRwgyBoxiiZNWccyAKHLRL5+v1m9/9vX/8R+/98bfgL/06/OX/9K/m7lO3ePlEsvXI6SwYJOkXs1l943b7vR9itW8X23AOW8znxAbnv9d0Q1FhxScklwUFF5xt267Wy+XyTLRtar6yXwNF0WSGkQMiWyYzq2ITQmj7dHz04Nq1a8enJ48fPqiZ9vYWIqnv+6qq3eWJiBxCzj0RK+iQIDJ0XADcNK1xzYkGnWmzUr5qBkMV68B9C9IfmCGgSxlmTikpGcdAxGI66iU7xsxUe7v02DlhRyhcSkuoYl6zDAMW9GUPYAgz1RW3Ehd4rtbADZa3W4XA8wACiTB2qLOsOScj9KwUKNJ3TBqyDMDln96bRA1RkgghEgUAzVmRoc9rpCqGWV3XWeVstWpmjfXCgAScIbuTuxC3w9+BaC6CUxEQaEgeAd4OW/qKimiowsDZzcAQS91wmWvadOF2N+wYS9iZ4vK9q8ZkiCjF0T0khRkBbPzGUiGoQFZWImQKDEhKMDpvR2O6aAfApn5/InRhiYZEY+sxv5CKF7EUVqLyRs0fdI4C4knFX+etQz0YDohmaDp6cHLuichTnxSMICCiGFaI6PYkqqMLMRESZlNWFl2NdHN9P8ZwLfEyVHWW1rQvSdfqQNCdpE6iUGgMCSQDGbgZDRnFDAjjLOcssmRUMMp9RsMmVmrZTZ2sqYeqrnWdeE4Ix49bWNx65mMf//B731nNb4SAoEvrkOtGyCCnGYZ2fXIiV+Yzle4CpYvpLOIeGaXU1nNCTa0yUQhIYKZtCynRrKvrerWcoUUCM1DiCMTQp4YqrSpkTqljwhgrMOo1GVb1AeU1Si+kAcxAQEGAVJRDrDmgiKgKGGdQUJtJVfXre89Vv2I/8+13vvtbq/uHzZWutT4d7e/fODrLyxXMZw3IWrJCupJgvV/trRKBLaMdCB3XQoxY6tcBupwg1HV9wMxZetMzQVDIZEDICEQaFYBIxEwBAWgwAbOZpZwRMwFCRrDe6OTK9WeVF2Amp6uo2JlVi2v46EFUFrA6Vn2fAaFo3gSqSoFUxbMuRiARTxFgjOM6yOgdc4+Rx6EmKYBIoMKRUdTYQFWylCpe3+6DYqo4uKYFQLx6rYoAkIfYVuCJOeVy2vd1NcQOoThjVDVnULO6cktDqib2ucsagSyBEjIDRwqAKJaJIoKkhFVVAYDmoacIACIkxD7DoomYz7B78OkXn/vsx76kfdOxIDJRIAwAQAakAiIAdFYd1PikafsUZqGuVx+89e3v/IN/+Fr7jd978Ge/cPB/+Dv/BdY3H+XV1St74fg4xLXZvnSPGdY5V61BOGjS8TJUC0PPlVMgAxF/a0aSlDULMxMFzWYiSoYBVZzHEGMIoKpZdD2j5uT85Hx1klUwVs3ioG72M7BiVaWTGnRptdYHdWRIqao5Y/X+3fd/9c//8muv/eD00YPr+wsPWABUMRIiiKsjaFnUgLJmjBTM+45oBnMQeiYGUA8KOiQXeot0YCIYPDeKBGAeI1NE9Ao8LiBAAAgV113qzaCJc0VNXScp1XWdDAGUABFHNEMEQHiKhxUZSsnvoBS6+B8KasATjBARpwFHAM8MJQNUQUfN3bm1H2ZDozoMnifm55W7u8zzboCjxrt9uf8lIkQCQx1KhwFMRMfzTd1gM1VNORNriFRrve773CdEJGTVjIQAu3bh+HlAkoIxgVMH/d1gy1T14rOyncfw5yTx3cbaXByF95ZCfel62LZBPKpmI0NhZMRgHlkfOAUOPgMf+XiHqfVwUQUbvilvjUBI5sF/dOyMck+c2qC4Y1VfeAQMkhsGwDYcDoaNgl9W+7IiKD9ms5mq9n3vGRxDx7SBtxZTZVPx5dfjUM+H0wNKjp9Z8UqUGj7jyF7PzQAEZIy8aPDO1cXrS1AQQqJQMRCiIjCaEvCNxX67Pv/g4TFsH8sWY0wBz5gYIio1KnWIamZqQoAcqhCIMKhCYCQ0RlbEEOs4E2ZhIBgqJUoNumNLoRgwlwLHDjRLSuo9kU1FE2oYKCEwChJHzh01NxKsrv/Uz376wbfOnpyct03Ya6p5u+5EJERCxBgDUFivOyIC8ITVrFn6PkMPIqq+5cxMx7wHQGCkYCago/gxQEMgG7sc4ia+NdK/ghBizhkAQqzVkJmNOfXmmTtePBoCTlXVnT3iCzpsqE14ZaSfnZMH6Xi5KYmlerVwHrks9wuxJD34PoOSFo+49aitoXpt5JT4/YIqIjP3fZ8z5JRU4w7TMHc+F1g+rKro+5pCQUhWsSQiBFcO5quzk2DtJz726edu3+r6XFeekYubt8bizuh4tX+aLNw8W7x/hXJ3994ffedf/fM/Of76v37ycz8N/7v/7V8mu0lw83C/PXny/pXZ1fX6zNszhxBSSrPZ7GD/Sne29J1WJo1QCT3FfWzLaEYOM+C2St/37g1WBZEW0UKkpqrvP36QcgdI9ayJVRPrWYgsYtXqg765foq8T23kdglX4sGVx/fvdhCff/7Zr33tayl1e3t7ADaf743oFlOW6zUpxTeqE3qw8UwAALTSd8BzBsUSeIMqIjNURe/s09QzM8veMNGKR87vEzmYmYKCeA8Z9DpgJ5IxRjmIm0soeXvkI5EU7+w47IsM9uLxVAEMAGaChMgDPAWod+kUEYEQsIRSsOwlmAwdANVx6YipeIAHqjdTRYeh1lFwK1jO3nUuVVVTIzSpPj9f1tUMCDRnpDgd5+grIyLd2U9qtikVsGF+YJyNi5MIBfRuwwi2s7cvXwPYlov+mcc9CVL8yz4CY0MDJid7USUAGpzV47DG8207yDB6qrclvY0/b/plTkZFRFO+tM3gdvHE/dcC/aOKOMBVljTpS97ad46ZIW1+PjzcF02SepFU8rEpKGBZGPNmZcKcoVg/pCjuoHQQyjEZxHP/BpouwtllcGRKGQFIDUQVKc9jeP7qYu9h2523xjXGRgUkGwY0gZSkoRCxSnEXivLsdLk4qGJmYuaqNg6iRiCAAMCKRoDZAJNAEsJIISATAsbZDEPI665r++CVUSCmalkggINaJyNkJmRSzt1KMHsCpEIiARmSeAmRPFpAkgyqNZ0dvvClz3/m5+/+8Lfekir1XEVVaJq5EUq3RLMYQs7MzKbcdV1vLWfRLJbFDAFJFbJBdIMAcHCNRFVWSA6pjqiIDGDZiqrkhdejBlk6eKoysogAY2xqMwRSYki5R0SPI9qg+anaiFU30tWE9gbVcCKD4enH1q/OfMRjvl4+4nYybMeScYzjjhHfTdZk6bR4+UNHDoBT5RjcISQAQABee+MvDlUFOH2F8uYIKo6tTe5l9KRViMzL5eMmykt3nnvxzotVnCtYDsoYAGiS/gbmVTdqEWVlR1X9XHf/u6//8F/+wQ/v/utvPvnEbfrf/Ge/cfvqCwYzqNrzlexVNyw/AE2gYJKBYdX21XzmkriZz4BQgQyRVEUw9ybSI/AYUhz2nQx5M7mYdwFF86rtc87rvGKOTTNvZnvMDBRAxSQ3TX1+9nj/1vMrCTNNoX9ycnx85YVPX5OT4+PjnPsQwt7e4uzsLIS4Wq0862IaHHQ6HGIENq6mWyPkqpQHps1Us2dCIJlKoXlGirH2zOq+OwdQb94wGKYKANJRgfhNouKy3EQyRsaxeAcEERFIVbbDa5cGRC5RMWHwPw2UdrlKCl4HfGGHAADEIaw7hr6ZEExUQdRz2QulMpMKj6VH42Os1Fdhicb6riOE0tho9BFZAAYwMZAsISWOgZkXzWy5XHrMVCet5IdxDs9i2sLcKL/BFHvCBjMQAJiim1/jJaoK2x0IbBKXwm1T7+JEXTqzoxoLUBjTmCdSYsyDZ4NctMAoX0YTYSLaCWnMhbbCv3RoKu53gc1ij4PZNZ2nnzlc/uuUbtCgJPXhRn/xLbFZ6ECQt/Igrh4emiigIqg70BVKX8vi7BA1yWACyCXREdA9if4Ciq4fEACpt89A9HqpMYTfVNwnDhRFNYOSpors9kF9dd5/cNZ3mRpDEMmmDESKcW+R16qqbd5N5bt77/s3rj+r/e35gutZgjmFSJoxhBADAYCJei05IqoJQYwcqKpmVQ0A6/P1+fEJmgKqmYokQERFYkZCzd4CzOMZFQWHszBHZzTxqAeYoZCxYbZQwepcrlJ3FG997Bc/9vwfH91/dP+oTtcCNXWkrlv3YoymUgIoXaurs1WKa2+IItarsaG6/8zMvC0hF5XLGRqjQcmPM9kUveGmihoRqTjTBCQjQ859qEPTzHQwZD2DzzGoZYqqOtxh800JQk02VEH52BWEOzS583uMEdHLpUgBRMwG7NTxWisR2a2aiPEOpRR4O7lh1ANwAvswSibwgI+5EQkw4BGZItD2a7q3xkoY0k3kpEqlXgu0X4OsXnrhuU++8kpuue+w2q+TLtnihE0XNyaA1bnW/VnqV7MHH/7w27//T77xx//qj09vLeB///f+o0+88JOrZRUXncB5FW9AR2JimtEcN16ZY0pJREQzMiASIgOhGQOYkpARDMUso45S3q6AJHopiqXUte2q7/vZ1T3mWMU9jrWIaUoGWSStQ7x60HSrY62vrQw5r/b39qq6kfPH9+6999JLLwFASinGCEQUAm2wrggmTsoyk8Mku4FnZgCEqEOPnKQqzrcDIDEBsOPAq6ScOlWdN8EKGIOXGTuUt051PkREZFMxg9znqooUWSQN1CKAOnST26VMItolTSen0khrQ1oXjpFbojmMzuU3mlysqgGJEUBznwSGFvFIyDD0ErlwVVEhp97LYsYhAJoagJcFkxGSO8FQ+5ywoxjrGGMTKzFTleFtL8t+GhwUO3+n5UPTD6OrbZpWCmCeZOv29GgKwwX/6o+fLvS61a1cuFKo5fUDiGjIHkYdS63GY+cVyvW4MY49m2CoEQKAobXwBqTNbPjsRfTjYl2YjcvfyNVDBO8Y6Q1QMxE5IU4HCYOioKYTgwfm85lIAjAs8F9b6O/DqhmIEnmiO44UUu4KrFgcEQBi5Aa2V8wM7xhDJA4cwXKSLCrB8n5TPXtQPzqCdS+oBtnMBDkw2NHq/Pb8JqP16/OdtVufP3735OT88PGd5168cfO2kmkVkQKAtzoQAGAgAESFbt06oHdF1MwXVTMz4L6XtDp1vYRBDQTMUw0MOTJaKYSLGkAF0SSTZFU1NC/PUhx0DeVQabZUy1Gr1z/5qa/84pPf/kdHD7vuHCL1vXRdF2OsI7edqHVGdL7sj89Oae9KUDIkJMhqTKCGjvshlkWC4FZi1KitjxRubvVucxmHYQATEFDLTdOEWPcYzKQkhZU+cUREMVaIqazyNvMZWd5FG2J6wuZXQ1MD29ZEJy7BnW3plLhNSDT5FcdHj3+n+24zDwOFT7cnAITAKqACmqHve5N5oBgcwdHMQAACAAHYgB2rIQRAUkeNIkTLkLP17SdfeemF525qygiRY0gpCRuJFiY62UtmoBKfGO/j7P3X/h9/+N1v/+H3ovXwX/8XP/W5T31x3eXD29dO1kxwReHcaGnrfcsfuV8z57y3d325PlfLs7oSESNgIgRkZsQaEUMOjobkwYVxEsysz4mZEa3v+y713rxusVhIJJcxOav0yUyIjQxAchf2gGihZyetXvv4T6Pkh69//dzkzrPPqGpVVW3bNk1jZkSBaNp/YmN4bJsQAMOKJhGGYi9lMVNDBCI2MRFza4FYESGyGVnqbdME0JAoEBMiCp3lLJ56xsyq4gZNbpMMpfZixu6uH/tbXxABTzNsYLK/4MceftWPA+JQUx66ITETEELqz89XDqqumhEVEC1nA1MPNePGGDJCAAQtU6ybWl6zUSqbm3bgLkgzxJzd9KmY6rpp131S4Rg0G07biA5vp1CgfKaT4inHl77wiPED6l6rLf+Ae57N7+Z8ZNOW8qnm75ZCMNxp8LOZgagpU0RExQGcSUv3h427FdFPKAqEAQyx7fITmMLQd7m8J2KRrx6w3nqXcWxTwbllf2xIZ2LlK8IA6gWioooIpRvlZZNQapYmgwqBJAma2GRm0HO2AjMjkJmJmZIV8SZDCsxk/hxDsbBUvZDDqUYKGIiGSgPLYkx0Z696u6EnvUrKQVRQVDNa2Jvvn3XL1emTF2/BjgT+xCuf+fDDt09P3svp8fL0uWvXXrh2487iSkCV7N2BED33VVPmoL2CJOmzKLEa5axSyhCR3GWuZmSqioSBfXrBgAwZQ0TLJWCppgBkCt6oGE2RSLNCjHSWCOLyhG9/8c++8sM/ufvkjXeWAAZaAxAhm5pox6E2juvOutTPI+Q1QSSswCAopFHSqGrOPUFkAvD+vhO6NTNT9KHj4B2gITnPXxvAKcFmi8YIAVmlA9iqrHV5TCQ4ZQJlVw6nFXRAHChtywu9xdc2hvjWTk4p5VzcSQrgDjnYErFblGKafQd5+xxVj4UNcHrbAnj6YapljncOxJmkAOqqt5+KBiJWHF0EyERYvOKYRdSwqiow6buVSX7p2ZvPP/NcpKrrddZEAlj3fSAGzVqq7L0XIjpaADWH1C/Pnvzh7337G//8T1Z9L3/vb3/5l/+DXztfzuv57LT7sJnflO7Kcnm0N+9bh1cE8GopIlqtzjX1gS0DIBqQEZGb+SEEQaShpeFObYupZs1qlqU30xCq2Myqet4PPWhAspkAKgEZ8MrCAsxSeyZ4cOvlEMLrr33reoULnF07vNJLNoXFYuEdvabLulkC81KMbBMtcDRpiNAA3fB1iC5EY88YI2IOHENVhViFwnSxI+9Jb5Zzzl3X933OuWmasfMpAJiJKSIGE5HeDBPHoTCQYBM/3T4QcUTNnH7pFsYOOU1l4s5hZgGfIqhNM2CFiAKIQ4ph166ePD5KKsUaYzAzEUEaUpYGMx82qsA4uNGpa0CeeOvfosEmcSOJIYom6yVVoe4wITIiI8q4KbclDY5l7zggYyAiDoITh0sK09nUPeuw4Q0AMATfduM9d+ZlZ6JG5jWdzR0ZPCTTI07gxRUMCAnIDe1JIfmW6uR0ASNXIq8EsbHpG5boQEkX3ICKPF072xHGl6/74D9gZhy6u156ZlELzGh7cqhIK/H+7URRYRILLxmA5jEHhODZVYOZO9FmEDchddiMxF+8BTBDUjARQFOATqQCujUP+00I5wKiYGIoSYUV64ynfXvjKv+HP/XJv7/9Iq9+8qeef/6Fe+/98N77796799bJyUmfljf12WY+q5qGiXTw/yNiYA5EaABJ8rpraWUGkTlv9SZTKiV0BGpIXqLrL0WGDMRkBfl2e/LFSGAVNILhQuVspfLc81/6c68ePzx9+8nJGik01SylTlKnmiOHBLHrRVQ5Un9uWHGoA4RothKUbOItMVRBbZSMo8dixGAZipJKpXdxwLqamEUIQXI2gsVioS7OhlL4IbZaWMEFwhsJg3ZKNhHRNvjTG4t2mMPxwi2jtnTdHMQGIvAkn3nQ0SdG7Uae7lreU8tm3Bd64bRyc1FEpqJhlLqdnLPiyEamgwe31UUECAktpZY0Xzmcf/z550hDzjFEFhLLPSNwJgVFR/YyUEAEAkVERmzzB9/+o2//j//i26v7R/arv7D3a7/4C+1qb7ZoOtEuB6Jlbs8OZs3y5CSEtSRUVTEF5LOzZbteq2SThMGwAKIxmFdXEjMYoGqBIZrOBgfvFKcVVxwq5mhIXZfrZi6WwATQqDSaIzOtF4f9yYNmvn/t2VcfHh0/vvfVZ6/sneZqf9Y8eXJ09erVTntihuwdwTftRwsl6GbJtneEKwMb6GLN2QxLXpvhwdUFAgOErLjOdrRK6/W6bVujdYhUxzBr4rwJ9aLaP6iJ4OxoHaoKVHNSESkwP2Yx1DmnDBYBuCZFdbDGi/xzh4QujNmncQT0ulz6jkT5VAt4eMBELc2pbdcnJyc5ZxwQIXx6OPCECreMJJd8Rhuk7FIPOrU7Hb3dlxPMFFU1Z2maOVGgks1UtsbOU0oiYuk6CAzF97XxP/i7DB90s+oAxVNtAMAhuG5lZt4tBCbb8uIGm/7TJsJyI+8nUY0xW1KtGNb+beFxWNC0scTIL5Hum8lEMlQY2zggjarrKOKGtUAcVf0LY37al9ORD+kqvl6XH+hlUrTr7hs/jP/UoWuWqoJlVMWJ5Yw7MhwRkBFNjWBAo50KYKDgEWQvCARyeGY+bHAxiyEYCQYkodJpA9c9g33yYy///Bc+9/fh/ekrzObXrh5eu7J/67k7rz588v679976wet/8OzR528+c/vWM7erpnGq8I4/XdcjQwgBlHNK0PVETGDINPSeteK88EkAh9BDAVNiyMTMaEFVHZy5vDeagpKhVcxnXcv7+8B93AvLD/DaF7/y8lvfeHx+8v0HadUT1UMyL/Sp7ZE9OwYdGNqUERFZTcfZLcqLiQ270N3KtnFOAFgCHADIBhksIqzuYVLVjIhVVfkyeEPcEqUrVizmtJFG079QmNeWA9xDD0NXbrPB/Xvh5KdYCGaqJgIlZeZC8GvYAv66F1zcw2fdoENvUe94eFpZRcHUYcjAq9KJyAPSBcmn3LNUdNioIhMCqOY0q+j5Z29HwlDNktbJMmsPmMEIc4VRzADVBLz0CgEMEc4+fO2tb//W7/3+yfc+6H72c7P/6u/8r40Oq1Cp5ZRXVw9fXJ0fB/wA1JpQd32XTSGbKlCg07OlSA6MaJZEIo24h+T/AwAp0GqViw1VFhEzFU0xMnL03QWABkTIoGQCBuKmqhdNIbIdvT979tOHz7z0/ht/OtO1zOdLgUUdzezatWsi0jSNu6D7lLL0NEQ/EYeKzeGfpWx3i3Qt5c5d5aYYmb2tpCnc/ej9s9PVR/effHT/9PRE+wTiUPYwE00AuWI43KMb1/du3Njf25t/4ZO3q1ibmUKnqs68TDQSL3tNOXEkBociUVDx+rGLpOUIrNNB+szuKHAXefgOKW4CezuHMEc16VbM14RzWi/rvcP3z1/7wbsH1xen1iWtg6Y5gvIsrtcrqIPnFQ0+VTZxcg1OxRsqN9RsuEkJgdISB71ZeNX3fdJ2bzZXkNBQbvssPXNUMUXggAzoRIIK4GWFo6OYCu6EpyxaUfUJBt+z5lxivQZeQeiRrNxmACAkAVNTHbyykQMWgyCXuoJyed6ImYm/28byf/PEGyAMagX5OCA5L84mgECRIUny6o4QKAZ0V7MpT9oUmpllQcTIQbKrriU5yKVLoJLEZFa6mMIg73kyNtcynVxGRAIojsHxM4CnsAMSUghhChs0jTQbACJQJpmvQrdpsrtPV1Z5WTEmJTFSESJjYrYAhqbsidYGyYS15JQGACmggwReimcO1DSEGFwwGKhAJ5YqJoloDYMSroHFAHWdVhjinfnsg5gfpFUKdURiBaJ8isoz/MVXnn212d8hdaotEzVXb965cu3wxvP7i2cf3P/wwf3v9O37qJ++fuvF+f71LvVK1mpuiJKpKDFGohlCI0oZQyDLlq1kfSOSgXQAlAJwjhQiIBFU6k320JQyILLRZFZFNOMSuzlWuMo91RyQFmn14MpLf+7Xf/TGD24RH7cpXuvCmjTBGdOVyoQNiUIdU79qct1rxXNdnHdPlDmqYOoNTAlRREWlCjUZmCdcDHEgD7ogk1HMWdAAtPfO2EoJclAR08woaBVDDSCVpmXujVC6fn8+u/foCOtoPYhlIBAx9mpyEyJGpQwZEakAw6EZEAKiyVDTaGZUupMBFJePp7pMFDOCtk2IyEiG6o2XHJYjl4jHxnM1KWjxvaCIw5dD/49L+COT81Dvg164JFOyHGMww6wgYlWcWwIgckf0jDmABTBDU81VCCtqA1RVjhlFYkq4/sTtF1/av93GJhkAdsEMMgASMGRYC8xpmWx/pbSo+7xMj6v959qT916/9z/91p8cff319tO3wn/zn//6Tbx21u6vriTOWMVZd/4RSjKdJ8miyZT2dH/Jj9pVntNNy3exP52FqydBWDpFxDhnCuI7GMkyYtTADNlERBVBnXtgHDR7KMW0QGhEqnCukAERMUjOgIBgarL/zKclyeN3XovWZzAmDAGZwAA9vSb1mZBzEjMA40IEaqpiPEFNAfXgFQGbmeROtHO8vsB1DPMk/fny5NEHjz/88P7Dx6sP72MAqwlmNd7caw4OZ9UsIMN+PWv7dHrWHR2vTpf9W++cvvb2UsB++5tv3LlBn/nEjU+/+MKV/av5LC9XJ2rdMhJXe1FluT7mvD5cHFSzRvLSgAE2DNDMHM93y6cyEajbkWtA2G3468ne45k/zgIuXA/UDIgCWD56crJatUPMwGdNAJCIdDvvSVVG3PmL5uM43Ru7bZP7UE4u0IPDVaOiisgIzqCBAfOA3b896sHqmkyHbZvm089jscEAgQUExRj1ukAaDpiYYqPuP32vTd0CCNjY7GHAU9SCy+j4Z4gb63iMkSMAXagR2hmwbS351himv46q2c5PuONLod0Tpq+5MSK27ePyF2HHOvY1d6sRRj647WDfOWwoNth64tASZThp20ZBZA5+MLMZmiCzBab9xXwxT6HtFRWAFATAKovVfE57C6126uKH9g9oHHDvytWqCtdv3772/uytt9/4wQ++eef44cuvfGK+d5VyI8CASRGRZCRL81RuJlLPtNy4QAHUBAzUxMF93CSKxmbSTZtNjzafSwohIDMFYwRkQITP/vQv/eqTf/oP7p3m9oks21lfdVeNNUmC1bo/Wa2udl2gigzAsI7VWhXQo2UqIiTATIhDrw4DRCNDpICoNtHSyDZrPRVRZua96zbEU8ovSVXRgJHqqiLqzRxbc2z5V2zqzcpOchF2SHFCewBDx7Md6iq04dhqhGrFCzy91cWtjYMfZ7jnZdJ3tGa0YCOVcyYmtaNeIyISYCicAacnA5hZTU27apu4qGI8OX3wwp3b167d6GETPvPshxFJV6zlxXlMB8f9ql3ozG4ulv3bb339j/74yWvfe7jXwG/+nb905eBF5Vmc9V3PTOLeA1Bv+lN6nXXdOlOPE/eVu9lCZGBGplI8TYyG4tFqEd6ZCi2aPAyuKR1AAFW1qpqu60RlPl8ktSxwcHCQurWqiiQACCEwT51iYGYEkMuieqTXQcgLmtU4YBEnQVK1nHMWMSMm0szH5w8eP77/4P7JR++vT8+truDwavXlL9DVwys3r17Zn9UxEJEhAzDltgshcKjEaN32J+fLJ0fHZ2fLd/50+eiI/tkbD/5V/eDzX4o//cWP37r1XDpt2nSe5L5hu1ftI1V9t+7TkjnGOLBTcJBnj6RsiHmzO54SzL1IYNPPYZefbp+KyICCaoEryOfvv//++fkSgQHILDv1qCqNoB+Ivt6maO6Z1C0JsbPxBh6N4/djKrxLPhvyZr0NBiMN4CTku9pKOfkonrcY/fivzQQN6vaod5ctZzb1k4MDRxJ6TaSZTQc5lRMXlmGcZXTLsrStw2DbCkcBXCYEIBhluRoRMVF+Osb1xc/ju8CEu02559abTk6e3vwiAW3d34Zk5anfGMDGmO5wuH6tImZGiJ6njQ6DtJ2pZ2ZgCiXTyqsRtOjBbJB0qMcwKw913zQhskh5FyI3oPuinBkcLpqr8/bDo65XE/dAI4YelHiNMDX9/WBDA8immilGbg6u1PuHi8Xi1p0X3nrjO/fee+vs+MPPf+Hnrt98+ew8h1rQi7rdgAOX/IGUEKNqBoCh3bKAEYLnvHNB9AECDgiI3BIOMGg4khMakIKBAhGAKZkiKCHOb37q11/83r88/u6Hb3VXE3dNXcvybKnYhLXA0Vl/Y9XCojLlXoGBc86oxDEXDVJAxBjJJLmb2h11VsBQeaR5G8ND29FNX4KxYY6aUmkSR55WY2YhbCmOg7CxEVN2h7TMDKcSffKTqiJc8hNSsZINsZS5y+RuF8K6WnJNBk+VwU4V4vQoO1q3fi3YzqVnshEjsENJCTFMBXChVTAAiBrW2lmlqnkv0Es3nzncO+xT6W9apO8Gnl2BOuXcnaT5lXDKyit+8u43vvOd7/3eH508eQL/+W9+8Ss/+UVOVzshwFwDm9ecaVbNaAJWzNqUuhw6s1qGKL4qeuKVuwi8vmDwU4JqRKS8jY4AuOnqM7JUn5AQYtv2HGpiWK7T/v7BfLF/fn6u1vkuZeYQ4hiYn3IVLy4WVTPLvRARIrnEcH3dzAJXOYtaF5lDpCx2cnJ6fnr25mvvHB917Rr29uG55+dfvnFweHB91lyheByI2MM5be+opIjIxNLnBAkRmooPbuy/dGtfwb7yWX3/wfGP7i3vfqh/8LXzP/jaa1/+xLs/85Vnr9X7UfepO8zrzqiNM6iqiiOp6PZKCcKmB+Au5Tw9VLdzjNT14yxgBWMMBr2q1rHJ6dGH73+0XqUYG4AxibzEYGCiMtugt5pbBBe2x1RIAMAY7zEzUyhQLFkVlIjACLxCw89RVANQQ8P81LFvqa7D1Ozai1ONAWDXkvNvQgg+Tp10YDazobRzsA2Hg3gQcpvYlppZdoHk7MbnQc3MMDDiAGyrpYKQJqPdDGYi7y+Kz6GqsthSAAV/8uKc7Ajg3Vee3H+0WhDRE3enUwdFscW8+xQR6cCm4/eM5YBEyGTIhAhGCjC4YxSMoeQ6FfsGCHfgjdCDvYiEnLQHIIQhCuwVIKB96mbVYq/mCnKXwWJlCAExW587fHx6bOs7u++smTgCoRhaliRoZhLqa3dems/r2zduPrj/Ue771eq8rvdBJasY5coMvK+nApF4zyjkYFN/DGpBtZZUfO+EBmRgpVsROjXjJmuDg0E2g6wKIglNRaOxwMELX/jpXz//4X/7Xr9M83RwPhOs4mwl0md8fN7dPDpvYmMWIUGBxEKjUFdNTww5m28lJk98MkNQRBMjC0iDbmOGZKxFRSKw4tkaIGWG+lczRbNiX1p2JThj8UYNUqgk2igCeHmkTahiKil3V3kiIHfo1H8tMpcQFRRNdIQD2pWsAwVOBIyi2ZBxckHpZEAdFfThDkRkIqoG5B2tTEHMxDAjNlNVfuAQQBlmTZOslXb52edfOJwtUFGYyHu/u9At/EEAQLmV9dVsbUU4z9fOHr3+vXf/4Kt/evb2+ye/8udu/sZf/Au43s8sPUgNDdkqS0YD1QyaTQ1NRbKKeFWRQEgpORodANchdpAK+/JSYDTGoGDISgjujvdMMM+JnSzW1q5X1Rhjygk4HBwcEsfz1RKIre+AkJFC2ZFkZgpQlQ5qZX5ExFRtSN+DIiNK9g+YgeQ6ECC1q7MHD+5/8P79hw9Pl+dwcAif+tyV5559Zm9xwBBMQCRlOWNZWDJRJMCKmQN7HxcCcK0DyRDBkngUmffqj338+qc/deX0vHvr7fC9Hz587Y31t9546yufeeWzn9t//rl6fcpnTwgUAdbancxm1z1C6pwc0WsGeUe3+P/72BLAU8IdNgcBdgABIUo6P358ImJNww70qqpERVTQkMsuMNhYg9a8c1zK+ieSG6arNZ6vqgRUUOGtlAeiFfcpDskgsC3ptRRBuXzbPH3YKrsW//h5/OUisxh32uTkzTk7onF8kFr2glgZU77LDG0SIsCKMogAwLte6OmYdwThpbNafrLNsC/5tXz4cXrb8FCbvtqEk3rHhs1oGUuuDw93NjMkRCLk4Fwc3GylANuVdjaAGBgyGE1do5PBsMfwEDMRMQWmQCQEhsA5Cdcwj1CTnA/KH6FJDV2/fnD/0eNbT+BTW/eUlAmZQmSO7hNTzRDorEvMhy+8/BOHV49z9shW5/SnqqJJVYEEgFR1kgXgCYMjwXjYgcz7qHnoEQGR3ROgCLQ7/aQo7tvxvsHZMq1Ol8+8+rde+rkffPwb//DB+nCJq2iNxZN2fdrqw9P+5uzoyqyZz6664dil3hSRq3o294JO06AusNAcoxzVkFA1A4Ti8wa3Vw1AYQIMN/Wylv2Fvt/dg0UMnjiZccwxnJIYjF0FL9k1l8nLIZNyEpMa5rNcYbbZpWa7VQvjBhkhBDYPGYF1/308h2732HClahbLo2N260x3/JoxQ9sur8zqOzdvMVAvKi46NrxCxsslE60a2GtPT/NNWb517/e++u67X383vfAS/e2/+Rf3Z/uy3hPKFJcESc9FIRGAA/CjiaqoiEgCdYwXzKpJVMAALERKQsjMIXLdmPdGMSKQkqUfARHFvMWu+IYdt+T0HQ1BNAHzYrGINa+Wqy6l2WxWQnSBiRitaDBhzG9QAzUTlZRzzmaGVJnDDFhmB8hEU9O0PD86P33w8MNHjx6lHg72m5/4/KvXr90OMzIQSeu+WwPWkSsw05SyUmDGCAiWZN2l7Awm1lVpY5wEwKoQ6ibOqDrqHlnaS7kKAF/49J1Pf+aZN989fe2H97/6pz/64Y/gC1+4+eUvXb32/OLkAfbn86s3ZsmyI5QByFZFnCvOrqtNyeRi/eul5DRQXXgqIaJ6RY9BTxBBIcl51yUwRCCRfhCT4InXiKWsh2CI0ID5Ql58tpkpmBsNgKAe33PfiJSbOoYPaqksyjlpYJ8CQyAsGnUZ9jYapY3VEeWJl7//yF+coYwWsG1eDMQGiEfcDgAjjCjThVsQAYDkPEissv+He4KRQyVtCvyJyHTgH4hK6O8rqiVZ/4KSjhcs+OlbX3xH3PEkb8vvHWq4eIyX7LDL8Z8KJp5TMRyBMBDkovYCOPodBSAGc6cTEQWkgMRIwVcJh3YtZp7JxMCMpfh+MxwwN9a4gDxjCX4QBRABEOQQCGaBZpE5gQAwGFjmGrSTdz949L3rH13cJKqKot7n1L2bGMislhzOO1Xai42QrdruvA77wK7bZdHMykACigJWqlM8Pai4hZxDl8KJQVmFIYyEgIS2cfpasQYKUDYqArs6j319np/Mrrz0i3/n9OG//uC149cWsV2ehRUL9AnPO1ued/VyRfGAQ8MhglGXe+xWTTcLgRCjSojeyQeH2jfCjU5g4gIPRWHSfaSQMhEReU8eVUUujJWI3EvkKwqDdBkt4EspavrPi4rj+FCYlKePJ7uFjQrFT2pAVmDyLqVtAMcPAECFYWMi2gC8tjWkUeTAYHtbCZYDegQZwYZ+516Xv8n52OwLMzMh1dQ1YC8/+ywalZab0pd01PIUQxhs/LSAsGpz2qtuHf3oGz9473u/+80jwsVv/s0/87HnPr48b6sojPtIbd9+FOG6W9IGgmaqAmaq2URVUQEpBMLyXzZDM8aAHEKoKNT+VHAJEtA0M0QgFJYRlgC2kQ3HD9kQiPf394nCyckJYVgs5uv1ehYbr0ookymIpc2rZ1mbiEjKqe9LpQkZEyEaAZikrl+16/V6vTx98oQI5s3sc5/99MHBQR2bnLRtu37VSG5M50S92FHXPQFBtEY5d11vpsRQRwyRY+QQqes6jjEwR6tMFYzETESu4asJznO9VgpdimTw6TvV5589+NL6/Otf/fDffP3hm28c/ZmvPP/yi1d0Dfc/yAfPDGF+gBI7G7raTOfn3+uY0mcY6ebivRDZBStSMEOVNQEaqGgWzeTB/NK9LhN5ojqZlV6zOMAXb1PnJfJgDM4O55pZCRqNicfokcYiuhjIU3V1itU+NaR2DMSdl58ObMNohmobc83BNqUal5x84f5l3I5M7Y2H0YaQBCpuFmw0KUZLiQwMgYiEzYb2LtOJGh9R9GvddaAVNeIpq2ljUcQwzq0ciR9rAZcHMW5GhBu8fh740fRhkNJwIQMAEnvWvoAFYsSKsCKKiBFc+XG/LEBpMEKIFpgiMKi1A9/cegpzFHQpz0SBSIkMgELVqEFFNq9DaCWbGBZ+HTXePV79zjvvAHxsa8AD2oxKQkV3REibJFus68gVsHTLFgFnYU8QHIoaAKTvwDBEJkYopWuO5DKwaABkMjMQNVMw77NLpqIOzOmcDgCG6iUzKTWSiApqGcwwK8XDOH9w+vDq1c++8tnfePX133q4Xj3gPkClkLKtOuuzrNdrrFO9hxi4aZpepE+pbVtmBrVAjjGAYkaEhOwSBRGBGAagYwMYQPlHBd+JCyVL3/cpJQwIVgLAqspIYOJLfJEjDXdydfD/V6/d5LmbL1V1wIIEdOArczUXJz7jbW7jGf6FwwwXD1vnUv0Vh/MLdZSIMxCxQsEmMeSxGvjSwUsQ7Pvnrly9dXBdlHojBGCQ0aDfkW2VQqpbaonaJ3/8o29+9fXTk/vwN3/147/607+YV0ShSdChVtxj6gUwGQiqmaqomKqZeNUJASOyby5zyTFMDQIbMmEQIgAlEGFETwiHLT8DIorKlgY2JpFwdf369a7rjp6cNFVdVVXqUh1rpAqsdNYp15iZWdZU0Luz5JxTSo7TkHKPTMSoOYkm6bu+XfXt+vozN5p6Pq9nRCRi6y6riKGprY2fAGW1qGmm/R5gzzHvN7VnOdRNVdcREVWSiAQKBIxGrkeNwijLYw5sUJkpA3oGeN/x84vnnvvL1WtvPPr9323/6T+7/1M/+ehLX7h19dZzbf+E2UJkGvDwcdRQNl7GDb39O4+d055qAaP7kBXAhBBN0SAzxaLLiHAIw2DYwxjO0xVLPkDBzpUNnur4LDOPA44yY5Ka5F2vB/xCx+sgQuZkhKWV3qZHzmTPbN+/CJup6QYAY0rFxJ6bylQcMD3IBtf6IKg8oRSGMiTiOL7X1BM1NJQ2ALASTzFEhMGl43wqIIlIFuEhOYsMnSOXyjOPEF9QWWB7646rRgXzfZxnG/7uJnONQ918+RQzekoSzmp3KcSK/2XqhdGUJOfpaVi6P5OaKlBJnsUAOOATgyLKlJUhIlIw2oKqGJ4GABBC0BCyKHMOIYgYKzArInsTrSoQQfZLzDJkWjT7Z6BfvXt/RwCbITE5NB2aqWUCa7BJnA101Z2pZiJoqJEu9yEzM8cAnifICgAMKAWSdVRAhykiJDUr4VLPWlVVYRrtsRE41ghwwIfxWktDc3Ep9thopnUCfvmnfvMLdz/48Ov/w+ls1rYIsF536zalFPq+h67dmxkFbhbzVdf1KXkskJFijBICMdDgKHONYWjTPgg7BCQyz9wZ4M9w0IYdW7igDSni0DBbVREtYGH4YEjg6LUIQARDNTZsEfCUxkbVeYfGpmzJzIp8dCw9s9E0HdurTS9ARCs4WTC84agHD6+Llw+p3Ecm24cMzUbrh4h025UycBMzgwSyYLpz/SYJQmxaVdZcESSb8sPNo0nOWq5uzK6+8bX/4Vt33/vm2/Kp2/Cbv/RlOjusZquOqJ4frM4egIVFdWfdfkQavamJx33RnEHlSDO0iMDu3fYJJAYSz9gOQEzIgMpAQJohgYLAmLE1ZGXLhqVP9aBnn/vYw0f3+3VbVwswSL3FEAnJsx9MBQAJCLHUQWTNLnc1i3jXBMQQAkhOitZJzj1BbupqMb+KeK1nCBjNQpdMRBACMgKhtMdEMfXcp/MQlwc3Zk09N2sqclCvQBhEVEQCE1e1h/BUs0hWy2bZk7SlAdJQa5wDAmivfctZ92C2OgG5+cVP3br1/Pt/8Idv/eGf2KMP4y/98pwxAxCxm0wM4OC+W9bX9MO/r0kcpqx3yog1AQBQLQaznJc1JcYbOayzGQausO7aVV1VgNznFOug7lp1GQOMBbmpFNSiGpqXkg1YO1tZ0K47m6oRYih7rPhBzExUgKIrtAglEAEOXCyKg8OkvAcNVw97AkAQi5fUEaC9SMhMDYGY0WPrqjpA+RiWnUai6CgKWp7oNs0Ov9g8XdXMApZKIodJJqTSLdidi4jqeS2BPcypZlrMJuePoGKlVxaCKyvg4tSEEMfmwaCmCN7d3ceDJb2/MNURg9qfPtjnNELOlmduOOD4QqVNsoEb5EKElhXMmNnAHBCtR5t1nGfVhnKEVVqmrIqOm0hFz4ZIrJbQAIwBmckM/UJW8/qXzA5QaVkJJFCwmVCylEV7GOqcEVm0BzJwbGUKxqIZgKFXq1u7JuHwYL99cl8NDZs1BaySyUkNMYTDnYbAVYh9qJbnbd0QzQiSNRZa6gQoZ2RqWHvDtrceZ7ywSg2sV64rjjUxA+ZsCFDpuP+YkKKVeDYaGgRFMwVFFQSICAwkamKK5ICibEnURMEAldCG/lMICkAc02y9vxRL2NWvPv+Zv/2Z+//igw+7j3ihuDw7127Znt+obvXV3qOkL8Q45/pK2z2KaNavoAo9WegkUMthDygGioTBEBSVTTFnjMEDJCCmIirJTIEMmHK22gucUptWx4FTht4QQhPas8RIWS00i3yqpoMtAAEAAElEQVTaGisbdGsl8hpZY0ZVUfKcQFDY8sRc8N9uxCFDyZaY6mVVqNu+A0BkYmMBBBGxrAqAgaZFR66CGxB7NyRnjugqHCKFsOmSBJ7JDwAAAja2ACdEx0IKgVUzQlAFJI2RiUGFSCtEm83qbp14HmM963NHMVLAcPL+i69+KhwcdhgCSYScJSVAFTbNIRCAuenmSklrcIX2P3j7T//ozYffeONBvYa/+Z9+qbn1calbBQpI1p1XXPfdSvolQaOyHgSeEZSmq0RhKb3xCppP5LN7BwFWFoLxCjqzDnGmnIgEQBjBCHxnoZcGsKoEIhVvmuxFHyoAhBzPWllce+Ynf/bnv/G7v40GkQlNB88sqKrJSgUQOcbawHJqc7+S3EGOZgaeMGEGZgqacm+aEZmIqqYmWgCyYEDEmKWo55yyprZbSt8BgCLFOiwO5yFcRUQiT7cOOAD3KwAF5uh6ABK7R9ZrFONYBOKGhEhKIgQYMMyEcyfSJMIun9oz1c2//qvP/eG17/3bP3j8j/5n/at//Rq1BzOJdXXlcX4jzpnzQSWxs25wjzp3dURCG7snTUTDFrehbSfQ05OwzLxAVdTACCiGara3dwXgrog4wnMBodxopoMlPiRkuaXLRSgCIngGovPcCdPf/B300x3zjrLlUTKMZ8JoT1+IaNpTVBEb7QsAxM10TINeF2cDJ8fOdO3IYCrNDAYjeJLIANuW+vS4eFudVMGa6ljtcAnaX7lWhwuNhmbEO48oSNeXmRqXjgSGVZgQroAVOFkY/Arj2w134NHI2J2fbWt7YodtLrbtDmUubgGyX24DouF4DlExXplZVdEEA89m9QHQwaI5WYLmbEbMCkCk4Clu0+PR/YcvHR6uIqxCE7Rhy60lUAM19mY3BV7V0+XIbUR0V4UD6w7NcvCiHVZUTSzm79ChVtQtDAAwAxMpoNOjC8PbBo/T1S1Sc2rKncWz1dVPf/pzp7/54J/+X5ZZTvcWtn7//P3rN2/vnx/MjygfnOUFz/cWi8VCuiUQZlOmgjhzCVWXN7QdkkBEA+bQE3Hq1hiwruu+k9xb4hyITYg5IJNqVs0iZup1SnkKCeDWP+Lunh0Z4s7+3dnROz8xsypksUKL7l0i0AnZeByolC3svNFA/Dv7ffCYGofgpO77bXRu+XUAIyf3awkRu65jZDPL0rvPN3XdlcPDWd0EYhUzNCyasTGxIauKSAYAZBpionM7f/j4+KPX79/98F39s188+MnP/VkJPUGpFFVVzRnUQGUo7i1jw2FywJHYkTHGjChiRIQMaETiuHF+t7I+YlhF6tuu71sVUdWc+5RSzhmYQohd7tqcOIabN2/V870//sOv0iSMMG5/RIQ+BWRmtH617ttuvTLpmFCHOSTCGCMApJT6nKoBRIwpDDqZg9jklLq+71UymCBaM6tijIYxxhhjCWYhDtjjg546MufSqc/jtWWGyEx5XGIe6ojU3LUXAgoZGFax7tKqt/YXf+Fnnn/+6L/77//oH/63J3/tr9+O9PHV6p0rV5/r8hpUz7onVVVt87dLZMeOaCj7eqiz9e/JzJ2+Ch6h2hC7jooqAgFQCNXB4TVETCmrKiCLQs55hygBAFChdDorhTej/HBbEwDQwHnc+B9uP398Ab9qswkmH3ZOfppQGd/W39zN2c320wu78YI3HzeVc/8Oj1mp0xj0kkFsbET4zvnTsU3P2dCTWcEUm2RBjz0bdHekW0Qw4RRbj754znhcHOR0YkfOtbMcl3unL1uRnbrJ6SU7I5we7v9B2L2w7GFmHlA5IhEyUIRZgEVElF7NExSUDMCMLgjg3/3eD+49fB9zHzqT1lRJKrAsoIagaCWOiJ6atTkA3RVRkoeTo1sXygfwfsBInmFniKUBl7texHSocTeRlKVXzd4CdlzfYUkAAHo4hw4CHVbd+RGFqy9/4e/+xMe++CocyTn3cny6OsLzbl3jeSVyktM6xqqZzRTRFLvUS9aUUp/k0sRdcAUUPAFyK72AUTlYkh6ZAjfdqstd3xAxRBWgUAGhaiZTVTUIo0i/dKW2+AA5KMSuiJ2ODbd9vFtkVuqInBGPve22vMqTfb3LHLeyzDZ7DUqRjLcYAcfsBCmuWfMIg6oXjwEiMmJKiYaEo8CIllHyreu3F4v9gIQmIB6E8MrcDCAiWcE82GSIhjyvmyd3f/T17371tQ+OGoO/+ks/f/3q81aBd/A1M0lJJbFlNFHJJbA6EcP+ahhQBUIIajmLxRiJjZlDqJBD2UeICOyAu4TBvDuKiHdK8NoWRsxZMgSB6vqtZ5p6/v6PfqSr08Lb0ZMvHWY8q+agAKlL7VlqTyCvGYWAQUnBKHA9a6qqFK8SUVPVTDFwFUKIjIEAtbW8yt3Z2fLBcv0k53OkVNe8WMzme3vz+fzgYG+xmDVNU1VVjDHG2hF4kANyoOD/VRQqDIyBq9jEUIcqhirGGKuq5liFqvKTvdsex0CBQwgxxvl8j4w05b16Zql/8vDu83fmf+s3vtRE+B//30dH+kDq+dnJKXV76/bh3pVrU/Nmp9bnomjY+TzSnk2xoG3bBT3SK1EgCyKGEA8PrntaJiASkSeUk7fwG2K9OLiYkIxwA9GAiFOrDrwcwsarxp22VX1vFwpPp0LLhzd9w+mbXnwXAE/wGSO7Qy2alncfn7K50BAGiCp0FyPi9OY7Txk3w6bDOSIiSkmFsME37Xu+tCm8+OhtG8LALSb3YLhznSbj9NrZgSaMdsEEfPI3k4BbM/W0Y8rUNtxquxGmv92UM4o5ILIBTOMAE2YHjFvceRSrMior4wMMGVGBGElBEZB0qMCeiufRAibMgmYkNdk+w33VpMCI6ple2XS7JQAA/NMfvHVfl7/UtZ+48ly1b3kGKsqixKqKoIWBEkfmCCiOaIWDMkdmZt6TwrFySrDDdl4REAQABRGNyLKUPpsgWti9hxgdO9jA0IZeaUAQu9xWVRX3rqwfnMM7J4vnX33pV/7G5976wVu5fwLVEtrjo4d4bV9vXLXUrNiqONvb79Zn3kYGaCgymbJsTzP0z6i41deKjBAVQaMhUgwmakA5pdXZk4NbNyU3vaFBEEMzC4xEZMQCJuM+JQT28BCD6cAYtsjyoiownIA7kTb/frR0EZEKWqTTpw5bePgDxTQYSeVSIi+PGOS0U3KJN7ky7SMkwMHcKnqRDde6GYWKaGgZpL+yaK4dXmtiA+DVIBk9fUXUTJBJQVxNzzmDITNJ++Cddz/4zlv3Hnxof/lnn/n8p778pDvdr2fJsZdMVZJJIhMAU9mqgNrA8psBqPt4VAWAYwyJOjBEdg0oEBEAlSIzwzZ1Vtz1pqnXAvzH69QDRkC+8+xzOeX7H96d16EO3OswA0OkoLi1FFQha0Y0DNyECiGCUuaCEiEiXnUViJg5eYzZwCyLZMm99J2IJMqRQ93UTTOrqipQ9DWqmnpnybA81wccJktMZoaBwIyNzcxYxvVycCAzJUQ28YJWySp9X1UhdUrA+83B4+OHa3n86ot3/vbfrP6v/+AH//i33vy1X3v+4zdfBn2w1zzT9olxy9Vsm3LTfzdfHS9ExKcCcRCRQw0joxmpWFVXBwcHBQeE2ZPrhhgOEW0KqwfMCoCp0soOg+s735A3fHy6N3Aos9nVhSflNxePp+3kyatuvfYgVGSqMYwnTEdVRrJ1u0tM5J3LbTBPwwDpbNPyg+0Bj++7dZ8SJ5985S7MMOBa26AGjIwAAaB4EYrPv6TNl/Suwqx+zOgvs+n9g4i4lWmedGPm+5aQyHbNFOSgudgPI4sfHu4n01P88QRFkpXKS0BUZCI1ZGNDyGRclgB3j5IGyBbruK94c7F4v1q3a7MsGTkqmyHqLnzLm4/6D77z7vFR9xdfbT/3sZeauNf3Q2mQZyAgMDNxRbEhSIqAyBS8ksq98WgmQ3WTAUrpyz19L2/PYOzGmKP/qSqCDWKJVJWJvELGRU0ets+Cm1NmS0/aLDNZtWm93vvUX3jlS1//0vf/ye+2J2fx+P0HD7jZP2j21whYCVmMkSmah0mzBibve+MHggJg6Vk+FNZvFh0RAY046DxLamb70p5raDHL/Q/epdr2r3wKAMRIFIkCD23GpvTvtONLM/RcoNEtOGBRT7XPDRHSJlyyVXxZUjxcCfY86IFR2DTdwdPZL7CE3V02bvbNft+MeXSPI6KaEIFAYXnlQWqqysww9FBJqZsR3rp2WFWz0uPcScIlMZQSZFUFJs2567omVoz8wd0ffO/e3fcfzQ/j8q/8yhcVK51hkJhRzcA0g2bSBGAmWVXd5+57S3FjVxEYGHvGX+CGA7Xo0nqIhFABCvV5c9QBVEmpyzm7WE19r0qhqW5cv3V0fHx2drZoGpDE3j/TDGAoXh9ccX1GDDFUofjrMNZxHmOddNl1677tfKIis5nk3BOyaU45q4ppRhUDIbYr+1dCCDHWzOxmunsXptGTcb8DFEC04lYBr7mwYUF9bEqKZZyoAVxhdiR/RkQTMUtIpArzedO2LQDeuvZc27YPP3h4/fq1v/a3bv8//+GPfudffHTzN/ZvX9k/X+bWukVVjUz7x4iei8fIUf1DmP4wvQ0DJlUFRTIAYWZgzKaqGmrvRKGISIgCNkYVVN2hbYPVCOA9WMijWyUL0rfYpeNzMD8crEy/FSI6hvWUS5gBIo4GzU7BMdoFkeZCEYxh1JXKtgm4Bf14UWu+KPuL/jsNAxRNGQG8XZqhNwAexA8M4qhM1NAoArG8y/h8KMWLxRCYWsOqvoVgUNxt+OeYPgaj6QkEKkNCFhSIRBzxey8TxFtqweTF/XtmtpIBW6aLJygNZQWLq8Cmt7fJJEz2D23nfw0aD6CXRgx1wwbARGpApoxYQuJmYJNuyr4Pm9iYiaQcTQ4CV8P+NTVDYiYMu7tlDov1/fN/s7y7zO0K85dfenn/4AAADEtqLRFwqENsMNTITIpASDEQESB5qhlp4dwTgim+6LHq1rH4Sm4xobeqBffHUKWqRI5FCmqslMtGMVPVFusIocajrjms8YZ2J0dh8fKzv/Q3Prv+g+/+4EeP0qOTfG15tD49Wi5MqlgbBAwhhL7tDVBS5qYOIQxUNAjgEUHNYfituGuNEIUAlTBKThSDADPPLMu999798MHdT3yerly7ldUMa8bS00UHULwJzWyxm832cUDJyQlwmRqNo145HIErEVETG3oOlf+K+8GvstFHMlLdlLanIxw3pn9JZoSYwUaRVvgbAjra8sTBXhSJQUcXyWT5YG/v+v4CgbPK5rmoQGayZVqoakBoYui69kfv3f2TH7197679Z3/x+U+88IkjXdfVLWmVgpko5GSS0VRt43Yek5ZtKoAJKTQCBmQxzFTXomuFYGpUVhkBzUMihlqF0Hfrrm1T24lmAMwGvcDewcHh4ZUHjx50bdqbVZYzEbV9olAXtkkIk6ISrbgApgHHSESBkEW1W57nnE0SmAGaIppmUzU0UwflUELjGBpuOGA12+cBSLpU0rBvdg8D8VThhqKrkTfyGVbWs4tkGB6BNwVRAyBkNBNBBfP8DRQAMqtCtVwuMQgypGSY0ZRnsTp6+OhTL9/8q/9R/p/+2Yf/8l+99ht/5Vd6uDur9z3fG5FKa8wNXY30drlU3tkIYQvdY3KJ7w13kZkZMeVufe/eOymluq4BLHsvJzNTGODGfFKGB6Ca96vCjak2+AgchdZcjfIURB/32IPh4nBH2t15s+meh8k2m0qOKet3wTJexUO9//RZG2kx7OQxIj6eMNVlNuPyDTnxUisWH1GZHdx53K6fbRxk8TIhjFcVd4IhEbl8GzeATd59usLTaRnhLS8VvRcnbWc+d6bRmVbOPWyVFIOIXCzP+DEe7y3+OLoHLhkYA3h1NgGAEalunBmjAK5DWGsLkoLInMMsxhCAMATNBTeNd999xlSH6njZf+2th90yn6+6n/vsqwfzBQRUBEMNzBwCxoAUOLBHE4gZuLAcwLHNNA19p9XKwNiggJ75SwICjm2gJ/5w9w06lgWQoDKgIJQSvWR9Q1WEvUymwiGEpT3o95/9iZc//Wuff/2/+0Z+0NuVJ+tnmqPH824R+XBxbRZwVs0kJWdDVVXVsVFIk9neWlMAxz/amfcMQbKKmJJFhCqv7MFHH2b82ue+/BWOe4SRqcopMQqQc8ktvc1d3Z6L6WoZEQ1QF5vdPK7jsI9KNcB0LEQkUkK/6NLSI+q6yV8zM9jmfTt8YMq7L5Kid3ofPhdEFCLSjRIJ6OlCBqrKGP1bIkopHczC7ZtX64oN2VSQDAhMpITaEFRKhztUJNOqqtn00Qd3v/vu0evvpedu4q/94s8KHlSBtMstaqWmuZPUo2Uz0+xrMSkb0g2CjZn1liMvsgiSUYx9OhVJiJEYoNTSmJOZzyGb5q7t1yvJSUTEiKp6f2925eqNd370ViA6WNSp65lIARSw5oFt4pbaHYgEDAyJYoyRwbp21a3W3fosBApERiiStOQekmkq6gJFZqyqqooxhOB7epMowK7T6rDHiwsNcbB3uWjfZfcNhEcWRjoBMzMy8ibSCIaMOiKxMDAAdCk3i3lKnXFu6goMNatqnlWxfVJ/6sXrD3/i6OvfzL//zW/90ld+5vzJWxxmg1CgHSrFiRN3SoE71Oi/0s6V42dPkQ8huGVrqOfL03fffTfn7Nd7Ou74mEuTGmCsmh3yZqdDvKicjmrdjq66IzBscoxJXtMX+zHmned9aOEF6BB6Y+ueHd1q9J/jxNGxM2MXxfbFjQ0eSt/+D5FHhW7nhojIO/1EnHeodw3TPEyR7ohYf/1Re5i+zoX5uHSoU61ies9R/5hqD2aWcx4rpP3I2/+8+LgtKT7y6KfMmxXDclOPWJJHJmsxviYRiYgCUuAqxv1m3jSNx4YDAql0uWvTrgtauMNa9mneHcc/ePPx77z2w9fvvpmy+8dK7hsRIZL65kUG4gKWiWAIajgsqB+GaJ6r4qtsSIO5Pxj9ilrcgKgOCwfkHUbGd/GInf+zpiQxt3aD1gn0hGfXs/VP9MmN5z/+H3/5hU9egeMO3n1wdv/06Gj1RI7PT46O1+tWRHKfLFu3bnPXt217kWLHb2h7Mosvh7qqpkFsB6b5/uIqQ/3mW++cnR/1kpEqokqyIeIAwb9LXTgUGe4EoXdgJqdEOAxyl0F5ITK4W2LsDLGFbrFJEtyhqOk/d4gQJvJ1h6JK5KWkqMnWVWYFKx6BAmeVqqquXb1C4J39yq3UTCxPWBOPlzNauzp/5+23vvfe49NT+E9+7aUXnvnYCphhEXOXIzjsgluQWKBqbbzVznyaWd/3ACWzGoz6vvdUgxDZmTkimskQHdeUUt91WRJ4bphI3cxvPfPM+x992DQNgab1OaMUjkpxnJPpEYkBUxVwXld1iNbn9vx8fXa8On9cByYDEDURHrz6KXWqGdFi5KZpZrNFVTUcKkCuq+C9fgEVSZiBGYhlXAjPvRrZ/viNZ0dPxcG4g/zXwnXdp82RhnohIGTmKu4FrgxSbFCha9N5PeMQjTl2J7pPz/7Mz3x2fnX9r//t4+Pjtq5IZJOOeikBwwVRePEws6C2ZUZsfgyhsrZNh+tIV+EYwqE+/uY331xXxBWxiIBlJgYA0hyY+pymz1MExEiIlgQMRnhud2JnRSQr2RlYYPz8VSgGKHLFX4BF1dRo0qmeHMgSEcwcgMKsYLnw4P9XYEBAN0jKRAm4mwiRCB0Zcnh9zqYDApX/t2Gl7lhUVb9DQfdgGjzKNoQdcAwPo1cQqnnW39DRQbKZQcECxMlSXTw0JwQIk37GzGxEvu9A1YHWAEpDbRp2uw1pBmW3A294jf8xALVNOdp2SFumspNwwNMfGFbwcgtRMN8GAVBoj+Rsc4eqDV1QZBMlNCIkVkJDNCQTE0JCE8tZjSiAAYlJACnOEwYPOxiSoaLXkJKhkZfJOqyUGHthBxFYNAYUQTOsODcQux7qiBzP63qlmlAXFCpFBYIdtQYAshDTXLhtoonAD+6t+9nJ9fmTa4fN/n5NWJHN0YKy9rxGqxGZgAECDiUigGqABZa8OBtkwEH1Ph8GNCAte1APM3hp9aaBgZkBm5gJKqKRh2lQQUEz1tRlCE+0boBIV8eHOCeVd+ezX/7kz33tS0fvPT7+oIe3Prp/eO3jZvefJzi3FgNrU6/adhZDzrnvUtNUAMGAzQDEEFAJMmlQYObgBT0AaMBoitivOEEbqwo5qbVIpFhBWHTHXXfeXr/SLPNyJSd9EORZd/4RUeSh7lAL1jGogoFDZZGZoAECAxiRDODfYAU61vUqBBhg9WSjMIll5mieRA7gmD1cyio2VnVZhi0lEjxf2jfIWMs38isBc0edEiSvliezgg6GJl1N7LFWIDBFETMEZMvrjmcNGsm5XJ/hS7dYpTN+keBsrG0idEtd0WDF+WpeROETO8XYBDj48OFHP/jgjTfePv3MHfjln/4PiABNWjirZ4uqjUmeIACyaRbHsgBVMNPceu9xAPNUfTcqgopUC9a92J2fLw4XS+5sBhy4qk6X7eF+iFy1qSUOQCooTe5kve5aNayAqqtXDheL2XtvvkV5aUSBA1FlRkiEQJEwxlgMKhs9eYyIaDEwqWq3PG/XZ6YZAOZNo0BDKoqnFhojMVdVPeeAISAHZGbCgBhMEbmHiQBzDz9TpaBAqGA4cOzy1xQB0KsCXb1wxWksMcfBtYau52YzBCOg4Kqi97U160Q08j6aKWusUs4ZkVfc4OL906Pu6s35r/3yM//4H+V/8v/51//l3/2p7tGjGm+vl8d7+7O2q9XWdS3SzY1SGfylbB1gCKIboDr68K6f1g81AauYgFHAajB5//5HDz86RXRPgpqiiLjma6W4auuhntc+TMHGRJ7GzEfF7aLhOx5PUyLGC81KLxSAjdbpTHCiIcr0KYNA3jx6fNClj8PtAzb68kRtvqD4XKLW/Ls8wDs33PnSr6UhOTPnXLB5L7g7Lo5k+tzp/adfXnz6xbcepzTn3Pf9aKKNl7jvZDP4sgp5vBAGU2h4lrsrNnHu0S0/Qj1PX+fSeRtnBpi8riBWVV3XdWiqEHGSJHmRxoa55cAVEZ+f5x+9/d4//tY3H56sY+JVWq6pzdbm1ZoJEIEIiAERp5UwQDj9DwvYdYCnkIrP2zQ1HYdqSAD3WW85Ui/dGooQRNYHL/7aJ1+6/nGYG6xO4Y/f/LBN/YePHx+fnackDMyAqevbtgWAJLk4LcCG5wAN4ylLXKjC1T5Uk75NKshxlo2PV6uHJyc5w2w269e9qi4Wi/l8LiLzeT2+4shSLtLzBdIate2t9S17dOuSTQnT9GTEqQdu42sbHz32Eh3O2fWZjV9Okgq2KH9S87MV5BKCnIGRUNf7i7iYHXCYGW5pVUOetpnZLMy7/jxBqqoq9LO2O3393h+//k6v6/znfuFLh4eHfdJQzQNXfbtCSCY6Pnp6jMkTm2cU250NVCUhRZOkqqKJEdvV6vDwMMa4bvtYNTFy1y6tbx8fPz5fLZkxa54v6sjw4fvvAWQgJipwm0QUOTR1NZ/NCBDUNIvpoDGbmOaI0K7XJ8dH58tTEWGOIQSmoCBi6v955RXHEN3ODTyuAiLCBDhhZ4nNzMGahpysQfr6CYQjooBvHnChg1tuvynz9IRw/8b34EV6AAAgVGmJ9qoZnJ3kjz3/4qsfP7737uz3v3a3mV9dduez+V7XZg4QQmjXyrx5nYsktEP2/iLbZUhbR1ZbICliMq1R+nfuvffgo/OqmrkkYGYVICoN+zyvZ5RkMLipY2SYkCwgeFdfHZIJofjBRpmxNdCL+3Z6+CMYt/zbWoIDE7gGs2KWbMknRERDG9pabJ4Lk3/bVh3UVuryhFy23mU61+OH8ekucsZwBeLuPafPHX8dhzGdGRlaHNJQLLGz0mW+J//cWeXpa178dTr40RkLw/YYv8HtNPKchYgEyNBBCAzcFlcFRVZzGUyoahmNAEMBDPQ0FRun00Pd7OVJMASGfQxE5I1Oh9RXz5NEUUJCCmKBKPAsVhVn4Vg04yEef3ESXG/gUOV+vVrm3/7OvduHt/aaan+BGs5PqYsQr/ZVH8eyMQNAM0GH3oMtfjHefOwQDOMqIxgAIymReguKwe0JfhsFm0CbKdpWmoI/eBh56Gy5f+WLn/7sr95948F7q0ensfpo9eb1Ry9ce0ZiMl7Pq2pWzXLXtm2/qtZYMUJiZkRA3zju5CEEAPHCdSCEsg5IuYkhZ+izJuNl6h+t1o/X8sWPP3fz5u31ChFZsqhq3+U+j9GPLUq2IakQNvbo7i675MNlFLsj0cc9Mvlmi9StuN8QihPLVahLpG+51dh1dKtfobdqQUJUlCkrl0h9NjZtsL1xeHWvuUq4yJBRStzfwWg9kQvAonJP1tMq2h7D/MOPfvDDu9//7hv9S7fgF3/+p5tm0a0DYQAAkzXZykqhjI5gADvzMApjAAcyBZROqReqpW877RUE0Raz5mx5tr93c7a33y7Pk7SU2/XZKYaIRKuufebOcyLy6NFHdRXW63VVlQZHLvMiExOzB3qHmXe24xCYfZv6tst9j4gxRiZS1eSFdpOlGT3GLoCIN1D/CKRgzHFjoQ0bCouCNoZ4vIKZEdE7t5T1hY3IQMQRsQcRHOgCcdM3z9NZbQjWMgZn714Y43YiAETsIu+t5Cyns0W+9gs/f+vdt5Zf+9r551+tOGYRy4JV1TOFViqLCbaZ8GWH4qTv/CaQtiX5AYjBIAKoSic2B23fuf/Bekkxeo77BhyYNvnPBts0TbQNm2kFM58mgZayAGhEwDydvs1x6SuV0U6apo1f6rDHhoW0ccOMKcGbLUc44h5Mn3iRmY5fjo+7OM6d+0x+07ERvS/D8BYCoJf9d/m7T+kSLuNcF0eL28d48s6dy5eeHGhAnlpnMAKkFEUbcYz9XCr4k2TwjbUxat11PzRiU0M11QyioIYmk5kZsh8BSj92554lHZoRWN3fxAE5ItNYAYLIxAECR2IiElQimHGccWWTcV6kpUIXHFXAjOtq0VTz9RL+l9fe+J23f9SetHHZtbLqWehkmdNacu9d0HfcKr6ojlReHO6TRJXp8gxMhBEJKAChv0hx5AzMx3Fbd27r7aRGWy9YFDs9uf7qb77yysdehjM4uMr0g/dOHpy1J21edZZ6dfwQd5z2OfWSPU5vQwKnmW3MBXPcEAYgA1IQVSXgWM8F4sOT5dFqjQ3evvmMpgxqkTD1PYjO9xaD1XcJ3V48yjtO9suWgwpkx/z1Sy5GPS/eeUqTU2t4XPxtMXbJ2HbubCV3zEkFAKj4/yQZB4Qo6+WVPbx6MGOcAzZi/Tg8B2Yqzd8QLPVVvRASTSFg//qPvvvOe+vTNv/qn/nErav7qYfYLHKG3EoTYs7ndJmWAIQKJIZSksAnT1OQvGbMLVQgXdaEkcxUs9R13bbter2sm5jTenX8JFh/er4+X7dXDq9plpOjY0JEtf3FwgOuMcZZHesYmRnJ1EqJSnFCm4ikPq3abtWvVyqpijyf1TEEdWi0AaguhBBjiDGOAtilME0ORGMmYt75j0MgZqJqk0CDTMhjiLe4pGiwp5EB2eFNcOiZMeF/gxQncmFfxAQTBaYhwAxEhmzINauIGUQKy+WD/uWbr/7Uz8IHj/Kf/vDDxf7V5WpNGNUSANTVvkj68TQ/JXIVsCkQxy4JKpqJmbCpxRq6o/cePDGtiDBnsQGeQtWITERgUgVkQ15iCMEmQBwwwcwaq4amIg23XanmvvLtY7zP9GTY3VQ24ksPHk6/WEUGi6l0Uiktj4Y/O0/fSJ3xs39PuJse8mM4zrh/ChZhecolRdvTm+x8LmQzMaZHt7+qDhW+7mvbOHIv3uppo/VXJoZhzrf+MoWdW6m3LkYTE5jMhmSjWZw8XQkIXAcC9howM0ELZqqWyRgNkDxW7eaCt1obbW4CUk8+LehRpSXwlu5Y0sIpBMQQRCqpctgPscYua+biGN8y1sv4BJChrusOIHVrRuol74XFW++f/Q6/9izyz73y3N6sApFlt0qdwSaPhgzICEkJyFF+xiKnQl04paUha32YSUYSAjPkMfnYkBHEkJADWkJAQAYDMCrp3wjuRHLeESJY6h/Pb372pZ/4jz917xv3TtantDzTN+/dN66aqvKmb2jATMgx55w5i6ZsiDrmAA5bCQEIDcwp1QyBsG37SBFCfdQ+eef+B2fL9e3bt0H09MlxXd8AkDrwyNhgYoMWYbFJeLjkuCgAp6S7+6shwOUbf0IMgJNyuw3DGXT9QVBtXNZTKtLBAjYzGjIGzEAN0BSwQKWKiGgSEQUOpNCvbl57Zt4sxMjN5Q33gI0agWhgyWAWQsWpfnL67lt3f/TGD+2Vj9Ev/NwXSTEphoY055wSR8qWDIIDBVoBs9ydq50pUlVLy2omndWcj3vAUFd5ba2kZsYJtG/PKQeUBCbt+XJ53j9z+9mmqu7fv5/6vo4hp0RcVczMxOzAHZuQiJogoAeWHLdSJJlZDOxOTdVsZqLmuS8Oz8m8MX9g2Ndu+MIg0Ycu9+xUCKVGvPA0c8iK0ROGbCWxlwcbC0qNOBRD2MxKOztH4hkmC4ERwbVnxqiq4DAiTh7MCIZDGi9TvWyXzaJOyz0kWD4OX/rJ+R9+6+SPvv7epz/xfD3bZzA1EbEQQsqldHMkyEv0uxKe8Kr5Lf/AFlNWYcGMYAErjLQ+ff/9+8cGWKJfk1DuqPDiYHFOBZVnAxryCE1gZh51GtWTkfQvhoGntxrfahwqItIUd3r4XkuWfh6VaAMp9VSj9wk3w/b1M4SNojr5rzT+3P7p4mB25/kproWCK/z0LbRz+TjVcMERPVmCp5p3kzm/5M6XTu/ODI9n7pgdI4MbQw9+ZDVmBmSdyOBNXREq6oDvaIaqpl7WKUX6ltiB31ChmGQb1zdigcj3uQEjA9IhJURHOzFiU8W9GCJIn1Z6WWJ2GZxq3/eG6rSNiCJmkRuhu3fXv/P23dfP2tAyr+QsWmrb1LXad5ZSMd/VTByoSN0y9gkbEFGKEV8WcaC3AVCCXZu3TZkZmTdYREYOZeNQ8dOIDaBjQ7BZqDPd2zdZ3n71P3nlsz/3Sv4o5znwo5P2w0fHHzw5fbI8X+aMISKFvs+ToxdNYlksq5lH6crqqq8BGWFWbmZ7GOPd++9/54ffv//k4cF89vKtOwHMUiaVfr0MYCh5uVyGsJUIMm6ui0rPSHtTvjF+vvR8v4QHXr5NxrueoR0CNtvaO2457Ar3yVbY2REXNmiBhmBmywbazWd29fBqCHuGZJC9P6NptpL6kG3wl3AM6/U6QE3av/7ud9+9vzp6DH/+Z1++ef0WUkM863PLnCJC7jIRuee59BGaHDssFNVQDcRTc9amvcb9qAohUoiEVVPP27YFTfOIZ8cPTx4/Msnnq/Wd2zebwPc/uqepbSKB5YODfVBrKq6YmQxBwERBDBXIGAFNNafUtX23ltwjgGche5KUY6yGSBzQQJCRAnEMjgoZKnYAyGG1eOxbTJPk6tEs9s/TjOvhF3CXkBuvSOUOwIQhAnuntYAYiJjQWzQG9nJhQiAsJQb+HzpWFg6pt6W6AQiR6lkTcndc87NUy+n6ZL+++R/85N4HT+C737935co1gwwWzSzLyktspuQ0fp5uiuJyR8QpEtYO70aMhp1ZQAgW7OTo3sPjNZNXQHrKIoZQjWBSMJH8XFoFOwwWIvAYBUY3aDbpx67mjD9v+vtu9JXtY7xkI3jUdEhxdFEKalqwTjZi0k8uMmMwGLFA5hA/3cu9I9hwMDphW2KNH8owLvVDYwEKH+3gnWm3bVV91MdxwDQfbr4FDGIT1AscIgw763JhDnefWE6+OFoARJQsOy/r+yCpmG45KswMQyzRjbG+aPBOmqixgRmqGYkZO6aHgnu3nNuVlEUA2ABjYUGppKHn9Mi4B4eYGQAIkhqYGmqIeFjH/ZpDAMgwDOQCNwVO2numHhFUMaReE/Qzrru+//b7x4c//BHl/NKtq9SQ9YkMemAw4mjIERkQ0JSBBMxAEckroQeAUERjItvMj78XAhgp2FD7678CIYAhIAOZOUwGKiGhGYoIYkAuyqyZCShUe/O0fhzrl1/94m8+fOPtu4+OHiIZPz46JzTAw7oJdRMbpK7rOHDmnFIiMAId/Krg6CZqJaWRC35lSKJdbh8f33/tR6/fP3p848b1jz/z/LMHVyyfW+prZqjicdtVkdGkqiqAfkoJ41YFG/fRhvhGGXyRPs10aGiydVyqsDr9jtfihLCHLbOZ+elmmdLz8HfYNbBR6AGACHDTM6l4VmPFnNng9Jnnbs5nV4wWRqTQsYLoUHfkq+QvhSA6UzgmuXFy8t6fvvn22x+kl16Jv/jFzxpEDouUzPSUUJnqvu8poJmaaEGThmE/gQEhXoAg9pcV6fp2We09h0eGsZbcVmGuJPN61uYur6WmdLo+Q+Qbt58PqG+++XoVaF43s1ncPzxIIteu76EoGAmYiKWsWcXUgVezqmbJohkARomYcvbNCd4MbOjdUjf1KEoRDYegDNoYD/SNXByWNPRmmP6K6C2rt46Nw3kMgyLRhl3z6E4zspKdNdibiF7GXRisQWnnimiKqABEXCbTYF7tt+dnONMeMSxSf1x/5bOf+cNv/fF3vv3eT37+ZYqS+hBjEF0hBrNd7goXmPzwDQKUp+KUBP1gaoyWJmyCimm9erxuc1UF9zCo+lSSlk4GiriRKEQEWJzdIxMfdojHUDBvKuoKKhOSIZJsu1nGe07lhNnmm1IIpEPOCBOWh4IN1atIW06tqWAr5TtmPDgDdrb3VOpMJ3fM9d2Z3A3FwIB/NrzKjt7wtGP6yjv3nC7n+CLDN5ev9MXbTi+fsKTyvccOdqQyAITAO3fbGcz4k8DgZtgmRHJPmkNY2yCDwYFozGyUKYY4NrQfb1uyHA3cIlYkMiAQosCkyozgHlMhHCz1KtCijntNM19odzLkNF2mjnh0SnLv6pFqRs1djhaa4+Puq999fS/mxbX5s13oTdAIoXdfWQA2F6YEZkZGQArABOoyeCMDYHdbTj7TCDVgAK67oAGRgz1p6U1YsJ9sFGxmhtjEhvMqNYr55Vf+ypOf/Orbv/v3H+eDDGfn6xBt/6A6Xp03AevZogm1SAeaNZOwZUPS0uNe0QdhpoqlaMfbVtZvvv2nb997/Swtb79w+5OvvHqnOWg64UUQba8eHlA4fPzmDxkBQVdn51sv+FRiHFYaTLWYMgVUe2trA26DHJiVLrM2kaKIuHngRMCPFD6h7ZKEdZFox1uN9vdWH08EouIEG+E8AYCIgjFIe/PG1UAzgwY5SerQ4rBOstllqGDQJapqoxwePnznwwcnHzyAv/aXbn3imefPNabMXWrrRjWvI7AA5axTvW2jEJiBlXAMDrr++LKq0vXrerYPaoGrvrOGqw56FZlVNYAeHT+pq/jssy8rhXtvf+cTH3vOzGZVPdtbJMlAFOsGOleLoc+6bvu2T11KJtr3nUtWGJ2gwKZmhMxMBin3WTWUX6EU9ZbZLi9DVAreiRxYfZPAmFU9smaDt9kvjhM0wGGxALHUhBauAON6oSKgUXF0ongrXxzwEouwh2CWyufAJgpQGmGZGQCbWZdbaOuD6rnTfBfCHQir/ri/uf/iCy+8/MYbb9+9e/fjH9tbL6FpGEgk7YI3XMbtS8Kp/yNMrebp0ctJhQdA55KrOXbr1J8/qoHXiDWi51tDzr2qIpIq2ABLpGoylO4FL55zxufMiDyHBllLDSsiMsfJHkswwEwibkJmU4HhDyqVwWFwgaq5OQ7kgAyGWHwKrjeWhmsMYEaAbptQwcZU1U0Pahz8gRNpOjLKcWaHjWBANN3MxVMLBXlmrBbQiSTF0SCsuBqkoGxqqBDGUkWzjTVPtNUQxnlAoTkBzWYizJsxT56+cYbsMKaRRPxv4EpVUYuHwMAbJ/v4L3FNz3Ldc570SISzDtu+Q4qWzxAyw15WRBLGzgSFKwRBFGIyzJqNQmQipxky11INPVVLzWEBAbMPxoAUsgPZIQCFqKrIZrk3M1Ml4B7XM8Yq751I11Jb09raFTYzUyXRHbvBFxOU+jYTVnXNasJVXAlFBjaLFI5X8s+/9Xab5Zd/6lOfr6+1dTjTfj+FisMZpVhXtRrADBAUBMQIETkwIhgauRYmqmQmBAoIiKrEZghCaGTqsAmiZkxgiqpGAEjGFYOohxpNM5lYzkCVEgJF4JDqY0tc5ascrV8+ufL8x/5XXzn/Nx9+9bXXZ3d0/XDZzjrFDzMvZrVw6Jeh3qsWcwbTFhADhUgSiBElGlHqegBYzObM4ejo6L333vvh3T/s1/1itvdTr37xmes3AxLkDLO6ao9OKn5MzecObv3c4TP/6uxbsFfhR3s1nZxYRRSqtKrruIQECE2/B/Ehen1tMeMAvZuCK9wDZ8aisxoRA6jKrjZc1ZyTiogjkJmIKoABOQqmwdiIzP+OQd+Bejf8ZEPG4w+IjAalJ1VQs5QSiaEBRWwzitXY9KnPAWqVD3N//RzPP/FCfbi/yPUCQh97CTY/lkex6BMjwg+DIgLXevp+Wn2yP3/3o3f/7dtnn7kGf/lzn+viDCSKnc6iYg6gM5EOQEkpa0IomVjuXvSs6IiQPfpqAgCKXmaQFWwhz5+cPbqSq4c3P4ln37wZPtvam5GudlRTwIjdyy+8XDUvSDo/efjdl+/cKM4qJDSJTGaofWcBVCLhrK4rDq2dHad2mbp1zp7TNM0uFECIQB6oDuQQVK7KxEmwQF2qEru+ZcgwBIdDyS4ECFw8FoQbCxgGZ4hXHKhzNg7g3j5kGArUPOVNVCl4JNLpixHEBapnmZkaIAzNxZEYzFDAgDBEVhM0BOCU0izMMuQOUtCrpCtZN1zZ/f6jX/vi/utvwO/+4NErn74R9Il2c40LhRZKmx2GojqMJD0cBaILgRRAwtNiYwNfdpVK27bt+356IxsC6eRJp0Nfo5GsbQCCmPLr8Vq38cew4lTUTRn9znh2vgQXD5PvzArk+YY+RiPPqWD7fSf6VPFtjioMbh/Tkyfzs+twILrI3/38HQ1uF9ty6+Sn9HtwvjU+nRFlmD26YMHvhIenYhgG2Tw93z+U7qQTATwiSF9cFPAyG95S+nLOVVVlZO99O55oAy16GRKqen7OMDB04TSdD2epO+Msw8ACNYQDNI+qACKAuH8fEIkoxtg0TdPkbq3Fq3rZ+gxjMIICZl4DsBmoOPzK0Sl89637miF+7uM36Xozn0GQTtvQElG1jmEmqohkWpKYQAF4SBpDMAZWLNjFMhDydq47MoAYoKEVByh4lYV7ZwwBFDCUGROzgACL1dVc9331INYLgCvn+/uvvNT/H3/iT//PR8ujh/BM5rtvPtr//F778NHjK1WzmO1X4dHJ6f5+dfXgIBOCKATrU664ZsR6bx5Iz06e3L33zvv33nvy5Amy3rn97AvPvXjj8FodIxuiKaitwuGMTufrj/rDO/rMz768fnz//Ptvh3ULIUKqomakrE0FCRk6bp8W4tnW/7ZK8uyCA3qqPmrp91UIZrCkwbbjwU/jb1NLxcYlGKNmrrr7gxDQIKvFGCEbADRNYwhiESlU+vj64c2m3kcK2XoBIQACRlVw3JitFE5d6vLW4pV7977xw/ce9kv9/BdvPf/iKykrIKB5NzCxAerZ06+0YGwMdi748oMRjhQ0/EqAUWBdNbJa3Tvcv/rg4TzAmVWhhfpK1fW9pOYTV67u9UffPT56v7nyEqyPh4UoE1Ocd4RMAYxUU993KXc5e6ukXa7oxxgg25ERw819EjY/8WgobCKvfniLgeKIHqTv4LMlHMB3x/zBSyxO/6XsoWG5y0JY8VzaELOyYUqdA8A2Q7YLh6oK2MHh/PaNcO+ds8eP21t7s77Xvu8XszrnDEYj6eKEtLZuC6We66lZ0C53PUIkIm3bppSYp/6ELXE7tAbbkkmqOn10YejbscmLQn1c2ulpl7yDrzd67wK/P4y40+V82zp/+ojpoy+VpjuSdfphh/guUt7FybThTDPznog4kEmZq0EX3xnSzhhoTK/dPoGZR0DNnb87s72h+wvrtblwW9e5OPnjIbCrFZ2enzNzgWyErKAwtgZyhoKKWRSJAwMaqKn3phzuQJvG0ANRDX9hmPzxZBwLzEhEtpive8CqGJoqHK8SmG/E3VcwHKfLMij5U4wQBE0CcOC6zd2P7rcnZx/SAv6cwmdu39QofV3PwyIapRY1CBtAAPPe34rAMCR2FsxYYzT1rn+jtjoiudPgbyNEgDIxhp6vgFycfKOH1QxNESToDCBl7tlqgXjSzK49/+J/+ZO//Cf3/9H/7et0sqwOoLv34M0bVz9xLaaHe/PVydliFhuIp70ExCZQrJq6YdLq9OTo8eP7Tx5+8NFH7yzPnhwsmudfvPHMrVeuX7k+n88hiYoQEyPnnLSuGBs5/uhkdj9e+diLd75wfvbum8erNx6SpowxCwXLOMvErKdxzbpLRcOLP5UVwPaO2FAvmSduACDRICgn5qzf59IsjSnNT/jvZkerQSEAv2rwbLdiMwaCbBmaKqaUssZe8u3q7NnrX6jqww44aULoQSvWYNbpADEKjC7JVaVnuCVXf3j/T7//5pM9gq/8zGcWhzcer5cVD20QzeMAWrSMIhcMi1vVvc+lmhyZ0Fg1oSKAMmKGAHEdGNv13duHX5zvvyjpGOPVQ67P23DtxotVaD768PuKR1du3upPl4Y83fVQkLpdXIFq367Xq+VZt+6ymGrAC/tnFF3T5S25TQMb34E3IXY3ZemubQPUKyKWqu0SA56k2k2kNQHBdhHNsOd5InS3ePKG56uOXHiL8GwU9oiDM5uIxtAGTsAPRAUIPvfZW3f/zQff/96Hz/7CS20vxCoZfdv7E3CjDVwivPzDlgC+dIe4quiNmmOMU/Y3TL2YlebSO3f4MfLMUbkH3rS5286G2bnbRZnkLc0K+7r46KfLeACYxmh3Puxs1J3d+2NebWvYk9xLGw4wmuoFHhrUSTff6WzAZQeWNlAuj/0500dvXkRVHV64XFeaQgASEtIosMfXtMEBQIOhOE6VKgzm92TsUNJxp3bG8fFxFkFkA1LATWi3HAICCgqqZJ61740HNhNoYNtvNtDGcAIRqZTGdjDFVkPjQJQBCL36gxAIjU3Rc6XgAlX5/QfjCYomREqAACTZACqsIc6z5aNWf/tP37uie8+ExSHHxDlHOpC66aOhqCmAI9yhx7oBlXDSx9TII1OIhDk7EqpjJwCYAtDQZNSJxJFbzfv2gnsKA5ANyruS4XJ2MqNFLXWjM4LuYVx2s2r/uS/81//hW1o/+L//brvAVj+E+3s/2j//jNLptapJag+Pz5qmeeG5F5cn/Zvv3kXSk6PT1dm55HZW041bz33mM5+5sjffW9QzPkRgAuIKGQFQJfVG2OAq6f5pvwxPXj+sMFz52O3nfvZnjv7n7yzs/Uew7gCjMKzBgpmCZbhA3nCBJ4zM7uKZW2Q30KQhYkni2yhWE9YEZkD0VA447PTSxGF6512xjWDieH8iCqpZLBHOuv78+dtw8+oNs5lvbLFkoiRBC85eMVuL7weQq/3zB+/dffj47kf65U8dfObjHz9fJa6jZXE2gW7y+ggHo9EIXSFxAiYiMRks9WFagAGAmWPTrNdq6Xx5cnx4ePvx6UPrr1aab9357Lo9P3nwB02dEt5cLelKlc/6FhGdjQ6ChxExmwJYyl3Xr/q0NjPmAMai6505HPj2YIkNeZGen6UgBXiqpC4PMrjgnLNfUMQtl7QJz8kiInXvPQCCGg7dJAazdlwgl76b9RrSg8Z/bpHTpU7HsvYI5imdCKAeopbSI7mEh/3zer38+EvXby/Of/D9R7/0C59QWDNgL1rxNm2jwq5oAq9M89O2BPB0oLh92fSmO/RcVkA3OQujKCUib8l12aZ6qoF1cbdcMonjyVQAZB3D1saElgvHVJQOLzixqC5s/lHeX6oTXMoXLl4LAzUUEWXT8glHmy0yETbfAgztIqZ33hlG6Vfrny9oDONBA/L7uDrTD5fNEwyUONzzwluPF5pZYJRBEPpxfr5KaoCl0ZaZmXf1GYQoGoALXRNUAg4XJrPsQx/NDlnusPLNmCd7DxGNkICYMSBQiSkCGuglbcKUiBwTbXRMCTGziSUTwdwFYoOMAE/u2R+Ej+az+qfizethr5UzI7ker6iwgvdtRSQxRSI2wFIGapNMC89/tt2afUR0k9dnFqY6BwxrzUgANJmDzB3lPbO9HGhO60OUluPyyrXPL379v9H//oPz7/3T3589D+tHJxmb+585e2m90CdHj05Pj69evao4Pzs7Oz66f3A4q5nibHbryp2DxeLK3uzq3qwmaGLEoihTDBHQJPVAGKta03GAvcz7bXpQH3/Xbv7c4tqXP7332k+88NHySXq8nDXa1iH1wACzmM9HJ8jT1Eq4sIPgwkoRkUg2AwN1keGTlE1BnDJLDHgjpJ/yuHI2ACJMUmdBjRAKOthUBebIqrkOoAZdTsBa8Sza6ct3bs3qK2sBoBTIslkvXRSv8zAwBUIqVIcA0ITFgwd/9NqPTnOGP/PlZ/f3bjxZQXXQaFqWHtvbOjGqx9QMoASDtjhhGTkrIbn+ByoKCNdmnNrl2cGNa/P9WdU9L6E9e/DDrEe5CqLNgSABHbUSaJhtL3jzeUAMQOqlTaAhECJaTyrFXtrRaRARQACG8C3hWCY0JlsNWnLZnszRhXbxM48m8xD6dSgMN64AwIwREcjHeYFmjGBoee4q+o4QmOhbgztt0LT8hb3UHgkBi1OvCPWhvgYmJXNkkPLq4HD+7M39H7xz+tHD9sqCcsqhaszyOLApW56MeMqBdIv37cwpDhBXBJ5EjiLiMhsHZcfMPI1ZJ6z5afec/rQTsxzfbcdxNDlnWj47tVZDeVXfLwaKJYUS3DC2HV+ECyQcHE/la+fCODEEiw4BmxYLfr3/v9jWAo+PcBEzLvrwLug9fADHW9HuwpRvdyfq4jGqEeRlW844YMKtsfQ/Ryj5GztrYd7EGwtxFx0NPVttkGQDgp6VNr1bY5iIcNXtGoEu9WYGFMCNYMe4B2FvC2GGVMDzVNW7suFIlEY2xRUdOgRD2RBOXf6WDN7wAqUYro7JrGm0Zpi4iVVTx3kdcE2ennFxPr1jhxkZOsiGdysCJYRIJoKmIMqoiHAL9n7w/uMzbo31V+rF3EIX+rOmbawGQSIkFVdJABSZMLMWpQNK9f1oY6GSDAiZLlJAfIRm4i07nbsAeCUwEDEioJsMhIi4kD000JjOqgDQ1DazZCexI7j5sVd+6v/05z548P6Tr78H1x7EvfAAnn8mCSeV/StX53tXTs/XCHTrmdtNTU3Fjx8/fvjoUbvu9xeHe/u3g+YAEJsWAESkTT2aMiNhMBOh2SKve6yPM+WjB9fivfn+y8889/M/0f/Oe9fWZy1CAgygrIAUnb89Ja4xIcstAsOiZO5QnXmGtg0KrQFY9pSFrWW1bY70NEa0w2o8aWXKmvwgQBUBQtWQ1JCUcr5xKC/ceVFxngHY1lEhCaplFQDzVpKeTq2KABYQIUi+f/Lua++1L96KX/rU822iuo5dlyv3Vw0VkjAxbMzQt6qZmRbc+ylPA0ICdydBRF736zpcq1glrR88ereK3SKvV6uHWR8GsgXcQauTnJueEmSAUOTmpKrHzMDEK1wCkjB7D7aclXh0EI5MwLkfTo9xSo3RS+H9P0BCIgOdGr6w7aBGREOm4fvCFFGniO7eiAwGJWwid4redin/fBpTxUkm+eg09XwumIinMfsdEfus+1A//2z49jvwre99+Jf+/MdXx53omJmOE6zDS0w1M/HJe2od8PiNqjJyXddVVa1WW/Q6kjgRTcJaMD2BMGxR80TvuDi48Z9TqXnpC2zOcdAUAyzF9aXCFya42OPdC6/zs3Djj5wqAdOdOdVfduYHty2zcag/fp9flL7TS6bhFXoaRorYBIZic9udYY/30QHSZXrmRTVoc+2Q23KJmrl9DIIfACDGTR57ztnDljv5EU7NpGZoHidBNUVlUQglEAVmqGCehjpUQo2LhRN1ylmGgwLa6ItmICUCAi4ZjhywjlwFh9cRR1rePYiwBFvVigKDFQoTqpFwQA1oZpAQLNRBOnjnw+XvxXcOefGll56tFqGd9ZEjIpokd4aiqpiysTgTKY5QUCjthgjNDG1IxBu4LBskLGzXZ80b0QqymrFXvhAzMSIxElU86/6/lP1Zs2VJlh6GfWu5732GO8QckZmRQ+VQlTVXdVfX1AO60OiWRACCSIkEQOhFfKBEiXqQmUyPfJEe9Ackk8n0AJlJpCjRZCBolAgJRoCYqxtd85iZlVk5RWbMcadzzh58raUHH7afc29ktbZF3rz3nD34dl++5vUtN3BrrbPeuAl+gbH3oi02N7/4TXfjP8L/8X/99/bu/epu+AgfXX7ruRuvHe7PZ4u92WzO5BczNwwn9z7+8OT40Xy+vHnzGXIYx05tNAsBGkLPzAx2jW+caxwNQ9d3o8e+uU7HlcCt9FL78GGDlm4889nj59+8df/h2frOY88WnBmsV8/YbhlS0WpNYFv78ULCcy6SiqmZIqq0IPaMArmT7pDvjAvvqboVs5z2r3fIxM+WMjNARKJQE7GgDdgRj2Fz9qlbB4eXnt0Erw1cv4a0JjBIkNEyK1aCmSqYHAhuOHrv7Y8ePVjbv/WdZ25fee5MZN64ENBOwy4SzsysxLerTQSKiHhIPC36b+I1c94b6NRopePCZHz44EOnmz48cQfL9tp1x7P2bICGEx7Vwj4NnaWoIjNT7jJuRqZBgo1jiO2XREY1IYb3jeUQddWQOzXurf9FoCpyFIE0ivOWiIhccTIzF0ELSh6MShuInwNEnqaEap58hlXdWu0bq2XnRBYVAUQHdaXhJbyBih6SAKaIM58TVDU2YDYna//CC27R4BdvPvqTv/Ri4xfrMDa+pNbWDPkCUNX4i9+VUtUIOG8P55IAJsopZEk5i+pASh6u0N3SOaoJXWiHy6NKkShiL+oXpSxqR7xVJui2IDRDXIDi5DQABpfgGqqrduVlMW0LuaPaA+n3yC63xSGQC8q2Z+wv+IlV1rNV3udaKam1gZ1XnvhCtKx4ZwWnS4q43Vnl+hG1SCYiTWPbslTOs876IKK6Sjg2b2Ek6MRpHnJ7DJfvpKpEZmwwSy9FVcZWPS1ZW6pZdqVs5k+YvacgTqnC/8u6bSz6Jt6VwERTL/dCaUsmJfQAc0toTNRASnoPR5dmPAN+/eHRf81vtE3z+rPXD1u1A4utH1UDszONqQ0kNjJ7RxJBbzii5W+vSNznYgaxJKpi9oCpkVkYVdUzs4HUopvQsSdHBAre1qBrPFvY7NiCkTbGS7/olOZ2eHJL/9pv/wcH4//tf/Ofz359R8ZuPD15MpvP1+vTftTWtcQiw6mhu3nrxrVr1w4PLt+7d++Dj9aXD/21w8Xce3Ic4yZMrGpdN8ZNOu/DZnZZ9d6eOXU3jk5PRN9pbz93+/KnXr/1s7ePwodnsw6zvbAi6lee5tu65nmGQ8kvVTm3aPe0whYjaJ4YmFNFn2QXNKLbsk5yvtDVxBPxTKyDCERGSHj1TJlNA9GXbApqmlnDzrTvnr/xrG/21yO1c1PrpOdgUKcSNkzz6EG0BL1oMGOmk0e/fuu9Y/Oz3/rSM/vt1ZVyCEPT7GPo0jY0s4wYrKqxNa5NOzqDm9Z5JEQEFihg40bdoQzhaOYWe+38ypXL4dRmcs9d+nqzacloQ/2I4zYEWHMcmlkT75CSiq1Yt2wiImMIQWOphXPcNM65JtrCIhKZWRa3W1hmRbiai79PiRrpTGS0Dcc1VaRqEUqI6HHXK8EV1/S2Wo+n8CWrimPKQlvx7wFRdFT0wBqr5MgBoXAXK8U+28bVbLZYHQ9Xn+crV9tHD+zug7s39q5z4ynb35W8OF+8M3lz/QXeHwCAE9PZYGHWWoORuL2EmcFMxgA1FZXcrUVEyLFKwulW1bwZUsBggip0PNXeUCCiyt+T1yyzwrrtRpzA8krlJhr9M5EiCXCM6pxa3phZEgejTNKr2vCc6wUpFhJPsPLx2aVkOSG2SLVpazGgcWHVzMyBNEcmaklfy0imiNiiRNFFk+qyvE29zbVaVBErdJzsz9RtMxUxwxhTImjJjs6BHDMzKWJsor+s7jUu+TJiOw5TIJgZwU8XWOWfaJuDfjjlZvr25P5jNM6xdivveAEb2RFhNmzG5UyF4oorWWB4s2ACNjHfRFXECLGGJ8JHS8hZmmwENg0wByLiISaZGhowiMl0IzIOwcy8MMiLG/sBjdtf3HSP3mKMAeznF3ihBZHXZ+sKAIJzMgaYd07hBnNqIhDzzONI0HZE+NGvH5L7qTWf/gJd0fmqaS/P7FIYnRflRpSaAWgkwJSVlUaAjRzIsWPiGHCmmL7I5gjBSEZxbdt0uu66ftawYygrk3qHpmmapnG+ib3eyDsiUqI9mw9qI/VMbmwQ4KC4pnhI40BXFs8e/OF3/rtXL/3X/5d//PZ/+UM7GR4sQr/nGm1Bl68ubfbMs88tr1976eDS4cG1zfr47Qf/6mg4e+XG4Y35pxs3CzLGmqo41+w9q2PDSo4QTtnNujBqf5+g634mdx7dv/7y71z/7If3f3TnZHX3wZwXl6DHqqaxtUYMDRTUKkCgmSyn3AUiVpWUL7HLJSFiscq/IR8MphLpRaO+nREhzMw0wmlM3WImfhr9mhV/iOaDI40UUTZ4REBUHuaby0/mR9dWvWzOVuHwymX74o3PH+PGshl1tQqDU+paIIwYlEZWI90THiD7NO88PXD62Y3/1d13fvSxfe5T9tVPffFxN9Olb5Wa4VQQEuijahSDZEqmIfezySMnM4vdkFErcGSOyAzsN3Iy378yP109/Bf/zQ+fuXbz2euH/vDTBA28VhlsHJ01Qg6EReNGTw271KBcjRliDNhmQ2MIoNHRMPZrCjpvl4vlnoiEEF03GU+buVZ3kuhidr6NYsuxw5QmmTOcrdjK06EAnEsxr4jTwAmM2hlbFgGKyXhLYoKQgq+WpstVaaGZugAwJMQvDEbG2c2khsDMphAdHZyCVAMBSioqohIkGITYyIzNNtw3xHrGt5+Z3X1w+vY7/Ny3r/XjhyLLCOHgvXeUOgTW84Noc+Q4wieVIcWdAMAgsYuFhIBZ+roYhZMimX9GYZQUnNpM2dFnlUCTZNp5Olfic2ds9Se1/LNslKOSjrsXpk5rE03XN6Ts7VFCaVlfv51NVvL01dMmEAYHykXJkzzfua1VhjgVmB7d8mmXq5ybNM2diakHk3/f8snk1+SIXLY1k/n/zKzFxKyGqtvW+fR5zgwsDxpl7IaNS5FViIgpmsbFFPrCZNlAkToS7kEsFM7FOBe9CG1VHzkilcovwszgpmmMRUSMPBo0ajrzTet9wyqcjenzK5UJvv485ZvEBvUJ6059gCPn4bz32uCDB8c/+NWHLc0+71o5OBsu0czPFsKkLCCZex+gGpR8WlkCYgfSnOGalj/pbHDORX3LMwiQMIiMRNzM5k0za3zLHNtAOQIlVTontiRvHhiA6Hgwn52ZO161V+bf/PzXX/xbe//o2Wf+yX/6j/oeaFtcnjdXLy9me8/dvnzjheUd3b+1nM8av//ss7f6zaJpGiUxltgoLq5LpIBIBs55U7KQ6MGIVMM48n63Gq5/+gvPf/yLxx8/OEK3OaaFWzrRMYuQktSdyfL8clC0hquNVk4WifWmKagc45RJfc++xniVqkYBXBTWwh9UlaoylaQKb/u0yrdJIXbc+9N58BuMB+r7fvWlL704O7zaASKjyqgiKmoqGkaV0XEbxARE3AhYVWfkN+vjX7x/ov36d77wZUKrDAsShD2rCsxi0D8hgqU/t5u+1MMr5k2ZHCKSPdec7B137t78uW//nb/+vb//v3950dPebbOuoILk2WTl0pjOIVWvm5gF0xDGxvtx6E5OTgBcOrzCTdv1Q7RAGseeOUwx0eRG5qmIyOdpd5YTqyJ9ps/jKldCOa+in8RKhZSgmWpsOzyWWWtNTgYQkj4n2GJ9KSuonsmyyvUn9YfTCHM4T1XFrGUxNNevHkJPP/7oMRCxtzLfqKhr5+b1058qgDG50c0sat+zEM7M0oYst7aKUyOL5jLuCgN2Cs8AEU26HtAkbomS4Zg+oenrMjXn2WU9lbUkq4/EAcufmRekl9i+X5TBwTSqAjG7MuF65ZzG89OaXpVAOon/TBYXjBbYMo7rZPL/vw7aXYUooSdJWVNhcePUArjSMOJVMVUqJ4XQdB9UMjjoyER1lu8ow2ZYHS4ve++dODVWMRgRs6oZCcBUFQcn2In0RJe90FqXGaBShnYdI3l7sHlzRpK2HGUmFd2KzGw2mqa2JztTh22zHoCJpl0nIdM4AWD186aFqBE5v3h0fPK9N+8qX7pki0tGl+YKtAMWaA4ITMOg8EQkEGbjmNwNjtYeKOJFc4xpkrGaiBEkqCozmUnMglks581s2TSN9y3BgWMLbCoaJpWDOXK1jfMzcvuQ3snQXl3sffZrX5JP35y9fPBf/Sf/38V7fX94fa3dyeHitavX9wZ8aq/xjjHf33/1ldclnF2/csN7TwwintafYgqnERG7RoyMldTBeegopjp0w9HD/tr1F5597bc/eHK/k7cfsWE+G1apZq3aN0UVy39OaxEF8DbnnK6KnDkCpVXUuMXjsrkLNUNGN0SyodUiKAy2nph4a0XeZddEgd07PQzLo3mYjc2CNt945QUsLkcHXwjBVCAi42AyEpRNTU19C9+MQmZh39nDo4++/+uzy0v8wVe+OOpMGjYEExMKRfpGFWLndTKvnF6TyWkEg+MtgTH6mcqTD+8evP53/sNXX33x/s//4Xx+1LFrg1rUXdJNOTK0JDINIBdhalQlSHCM1Wq1WZ0w82w2I58gl8ngiNkzETWWw6JAUCHyFBsBTLFeomwxcISDzg5nnmCbU8IzV9s57/TJdUE5ToxSBl0JgthtLdFKNF3IGQkkajOa2csuLV0wydUnRdhTdSSyUTI3hNHfvHq55Tsf3Tnp+95Zo4nYjCd63u37UW6iqk9vR2gQEU9sZgSKPR1jXSmVpmA0GWrZyq5kABxsi8rtnLpRvXZyDGgFP4ktkrtg7mjbCqTKwIJtMeqdx03DyGu5W6sVx0SwDNhd70nKzrTzSkBd5Jue8pTBx587DTSQIeApF9Dmr8o/q0/GeQPOtiLfqoFyIkc92orTAdWypdy/aURZo8QFLwtALRAgFWTgEHQ99o4bZo/AzjVmQWAMjCreNcjS18wsVbkYK2tW0rge0EVTB4DI1ftJ0851ZsOkh6mqGhM1nr0Dk4mJ0cW3Liub58GiRzpQKrwmZjUjT751YQwmI9Pc+fmjdfjRr+8S0bf5+o3l5ZmMK4fBzfeU58M4zomUlczEAcjtJNXMw6woGWYMKBtLzPWAMJFKMJNmsTg8uIR27rxnbiIhxo0dR0pEW1oLGUD9Qmlwe+B2vt7ovSdne0vcPnz+r/6b/60vXL71d//v/6D/+Qez+c3HWPz5k4++1j7/8iXaWBD2zbXL1727vj+/BGXDSEh1fiBARQFiUjVCw5Eo2CBqENXRTI/OHu0tG8xe//IzH38sb70zNnbUu9x+7WnSt3xItVy84JQim5HrW6K7COXEJMjTyVt3njbvOcfSeRqrmYaZDcHYw3lQi1Wgz17nl597tTMPkzB2Mm5IRx1D6Ae1wTm2IERs3Bp8r+PMu5noW3ff/eAxfvczhy9eu3K0dja3xsgRjxYcfBlhPT+UelLEwPSu/4mITFPYMX7Ibn7c33vj56u9X5796F//n656sF0PetpIMChllUUJBAYTgxjOwARWgppFPYLGYXN2Oobx8PBwPp93QxAJbdtmqRThmpEjgyRjKkMgInZTjlUskIi/xx6+SWTGvqc0VR7TDspTRCev3rRQe2TXRgoQtHgXo8I1cVEYxzYMBIrVdNPNKzO6UNSFh1VHeREAjcHsrN/4g/3myj6enODho5Nb19pBN86RA2vC7jUmuqDvbPGsPO3B5WDGlGVaNYWtR1aGhWJJKIGmHXWhrKrPPz8XMdmMsu8RTzF8i6oFbAknO7eR8gVkul3doBegA5f71H+ef3qZh63X1EkDICJOxb6TV6C+T5GjeY3zlD5lSBeyjJ13L29XzKPyVZmoGumaiJB3Ziz5zxdbwsR4it8mv4uKTklP60338PHJq5fJzMYwNqyIuMcZ3iPH1w0QUleAqMhAJHDeIKSOqMB45MHnXyz1e1YikuyNNKWULsTknCNDECULDdOybdomcJ8QNs9P3Y70BRJKLWLaLZvnlKUysPQ0xswfCjp3zWD++HjzT956l7C+1Iyv3LxKczH0Mic4g6ROiY6gZhyg3iUXABhQYk9ALosz5xzUERzJKKpEbrHYm+3tCzUplTStVFyOGAt0E+WkZbUFeuJZb42ZgTGbNaq2Rt9df/Uvffs/urb3f/h//r/e/PGv5x/zUeP+9LqdhJefb93CBEwtzCR4IoIKM+UkBFDJFGWSAGLHgJkEduAkCTZ2trc54cWLt5/7/Of6t757NH5w5Pab9kwSnvnOptqhZztniDztMLPsdd51S1rmx2WxC8Gnxa3ciTuC9kImZWZCOMSVjTvCgDAfvvPas8uDl9bmbNyEcSPjQDLIGEIYACXCGHrX7lkK2Zr3ja1O3777oSh/8yufRhDhBiYOnhzIHAqkn1HM8DZFSdEkJcuBBs1MscCzA4BxzAKR9en+4Y2vfObZX//D/+s6fP/l16+xX2LzEDyDWUnHJXLglAgFJsTmoFaa69jZyZF31M72mHkUiXtBRKLBQJT02FKu2VKbpCw54tjW3jOzUTqBHEfQYkR64tK71yH1uHUEMkgSH3ml4hqm5lS562iO45iWBGNjSg42AxDR6aN3YCISM1QqTtbSqDguP4HYahlMREwkhGA6N3f9int0Ir9+7+GLz7829mtSi/avmcS28fXNCSWNrkTdakZczst5cVHCDWM/DIP3SQCXqtM4JoHFvr/pH1hjRkF6Ta7/WWq06PInqB46DcO2d6uCjNiIwa78AnY7XXtTbWsVzqlnrTzFaIcPwF3El42mZK5adNVb9QLZb6l1diyOKjcvb8fVsT3nkyZRL3l9bd0Uc+fR5fety9U41gKAOCpkxmQ7CPV0/tHV3WTnH6DlXywzq/PsT9b9r975YJDg2zmzN50Ul8j44mEacj5UVOClTF01+N30/e2lZKtgV+KeLf6u3H9anadZ4xtmh10pe37e6qdYpabEdrzG5Bo3mphnP5uriI6hITjGejV+752P/sHPf/2zj4+td/uBMHSnCCEMIhL7Y2oYRUeR0SSYSmwsZrFrtZpBzNSCmARSM1EYzxd7y/3Ls/lB0859M3PcMMfSbjGTDGwbe61pvRDL06s8uhXLaetCs/StY98pnzixlVt/6fP/wf/03/3db77erR4v3n9ydvfBj+9+9PbZ6SOTsXUtUzOE1N8k5TnmsLXRBDnICcnIMzXsZszeiMHj6Vr09L6/+tKnX/jcH97E/tyP3bDDg3aout4755ndzkqd3x3n+6bkBZ0Q0et7xq+isMkVNVqKOHZujiTs4WW2CTZ0ePFK+Marn1rzZRhT6CC9jd04dDL2IhLlfvRamwmpCpSZj+8fvXPv/rOX/OdefnHVA62HKEYR6tlcZBYWwVqhlhhenvQykozOmEXUxELj6895s9x76fZNd/STv/u52bDH7qz/eN8tYk9iqs4kdnHJjJyxiy791Hh4HDSMTeNmsxmAcRzNzBUcKsoMLqmMRN61bdM0WUfc4Wmusn2JrHJQg13asYicnAgOWSoxM1FqBlwLhUjqmZGElOSr05KZRUTuqOQmxkn0NBy830Bd9edTKp+ESFwOdPnSvgG/eu8Iru5/k9CHdh6xI4k+wQVtMVsHgJmuVqvVarUjGiM7kx3T0KYQtJltG5sXDKgeGSg1bzDKeblIGZh4SnB0W1RMe+xpM1iGGuuW6s3PmMp7ACTc/iyq01tTQq76jUdpqJAeUb13vcbOOWTBQJQU3k+Ypd/w0G2fvFnsbz+J6p11mWas0iS2Zmlbz9h5FgAizyxEUxfYTSe/ePO9x195fO1w7r0PY++ImJwYwRTOzIxVlIigIHVEcKkkCebMxMwRazLsKk9RniKinBJU5jp+pTEfU6CqxV/niF3MAIfETN5PmECr+H5hyjV5OwGTI/ZREKmO8bFXsDw+OvvXv3okmA3iX7t1Ze9w4dxMyXmvcI7jXjNl8sRelY1AuX4PZhARkTD2JoFMVeFcs7c8nC32A1xCjbYEZouo6J6jwzJLISyCO3E0tDSHSD+csYbWH7TSbZhOm49v3f6bf/uvX5v/s7//r34yv79Q+/CNcSDv/ZXrl5qmURgQDCNhAQPIYAxSouTXYk6NOgB2rgEhqKgqucWq71p739urt2598/eOwnuPfv2DETFgoKWxRx5rxTTPMYqStrb9eczg0apY+kKlCgDRVOlQS1/klKvzrBaIrqtdZ6+ZiXZMsDn++PPLF599/nGA04CwQRjC2I39JowGsGsaNk8EUhnCZsmLAQal+3cefHgUvv7KM4d7+2eyUGezXsj8yKMPjVGY9ICqnpMMmmaDallrKX4h1TgJgChMpO/ff+1le/W5a6OFrj9ezK5m17zFFIGU70gkFqG/nJEFCRLCOAwyjItZC5BJSHLazMwa9sKaG99ZRKqi2C0kYRtQ9GRNlhUTVxLXigSKEWhiIhcdXXRBuhkhZ5lZ8d5FrM48RUn3qrN5NCawJa00cVSmVPIjAdvyohDAJGLzxjeLj7oAVIvMDDOl3mG+v7dQd3zn/vp0vZo3jcbO4pNk2bIiCpvFbxTAlrAJgohuNpvNZmO2V0sSIhLkHMlJANcuZWf6G3xKk5RK23vrQ7MLgPixLRio2snlWfWy7YjnndekuJst2ayxjjBK353lKaPijNh1wetsaxxF7aLKy2FmsVhWVb1vrRLVdA4LrF4OqzxpNvkhz83nBFlnhIj0dA4To9Ki4vDKQ2uvfizeJdqyRWvFQgG3nT+qwh9/9OjOhx8tX362MRMxl/VfFXiXJiSuaXqdmC0Zs1tTYbDhXJuHMp9E2wk4RGAiZSJl5ygvDRE555hHT/COUikhf5IAzhMLZlekb9JqCQRyXfDzxQh04zDjpm3dKH3QYam+tcVmFX709t1Nd3LUPffll158zl3vWmMiY1YEAFCHxDsExsaqsUtBYiqBDWqAGqlx43w7AzXrbmycxhQYE4Fp9GMUdavoJrEkhIiPD+7NOOzLgjcLAOL7kf3Yz5/Q/NLsJKxnZ6574fU//h/MfYv/7M9/hvUhjo/uts0et+Hg4IB4ya0nyvy9dvDGoLjj5MCwmNjqJG403p/Zau1ptn5wcOmLty595vduvfUrvrJ5/zSurJRNty2Ad1ZZNWVv7qS8mkXUQlZLzQqJiJlUpQR+I+1mTnFx9KRpmrINk2yq39GQNY10uVMEXi8ZenXxnc/daC/d6NbdXEYbhzBuxn6z2WzCaI5nDTlyoW1bmGgAz1p2EJGjhyfHHb78ynU2tmZvsG5p8NysMWpozVWG+DYH2EKIABBrHbfnJL6xmRmW3Jxx27/+1S9thrOxay8fXB/6VU4RqJUfB6KI6MecglDRApYxtM4ZscbWfuy992YWwoDGIe/6KEPBUR0rQX42cLQ4mZxmhx9RqgehnKZbaABluYzNxrKvawHp3IScOHFCi/3ThJCLFWEwMTOO+c+aPQWVVZ1Fw0QPhQ3WClA8CvjGDon6hruBx9AxLrdtSw3OOjs6Pb59eNkiRMmUo25cEXFN80R0HoY3HS2aDQsFtnYx6964d//oyWpv33WjODMzKJAbPCG+eFUKlioFyEypmT5nIMtTs+2uYXGOVK2JME+W29BGpNYI1UsEWPS+lCApM0uyCaLjR80sLnncXciMuIhYF/ElI7nDDAYGcTmBokM0kjqBE8olJUgUMQuqfrv0raxfMtyZiGMNfqxtc5QrZtJ+di5GUyyMmGhRKZbNAQoOIaQasshJAKrdzkQlkTiaKNN4LNXQASBqLbbvAMAu6TIEJmfpDyNSK44jAih23o2C2cUHOJcFkkoUgpFMyfUKMLcTac5mR6vhH/7izz//wl/1LOsZZiIUzBbEPgg10cFBAFPKSaLUvZmMgpEzG81c3KRsDkldUJAamZApScavc4SGIq2ROtLR4JxrXBAJ6g3MTWiXy/0DfPiRIOhiThe4tVF0keimyw6XSDalcQgRqWex4IjmnsyGoMbsWHk9rpq9hRk9WclP31mdHH1wfDp87fPh2Wbhr1/ttHPez/1MuoFkDvgYUQGRQmDKKhYGC2MiOwXDtzwL3dDzE984wHQ0juncSAWurmlggmh3RD+HAkbksNS5ifUANWeRR5vB3HrfxjBgtrimwzhK9/zLX/s3/ogOZ/+ff/zdTevv6fi4sd9fvniJfVA3zltnqgohI0exSt0BMDDRQLlxvSmNwZRb17I/1W4+LuwBVrOz+cmVl175vHzxr57+9O8u+frD9uxS14+4rPudnbXYW7tV7AteW5tIZk00sbe9UkrzedP34xg47nZTCEwEvsklKxlCNd61tNCL65sWUbXvRu89jE2NmWOG6TiO7CJUN+fnGpHBrHNYUPOoH756u//2575wcvTicl+k7zR0q7M+BDeMzabvwnByo702dOOSaeX9cnHldLXWg/niyfG/PP75Mwd48aXPnQxNuzhzQgNzwFk7OuXTZFNhS/SaWYjxBY42axIDbLGOPDPTpExHkFJBsGV7RcYANzqM46YzIoZTsEBjMgPMIMFzQ65xxIAFCUO3GTdrQpi1PEQDktgREdRkBODYArU5TZY0plyAMTk1orJP0dY1Vl84g0VzN5eDo6mq8CwrWmJMta2S6kIp9XSPC4LM0tXYBc3zppl7OWaSMGRqQuIP0biNoHeRdHLESjV6CgEoRFVGMyM1NvXcRMgRFTGNtdmkgg6r1q7P+eq62xxebg4YCvvosbxyC93jzYyXGsAtuKFhM87bqSNLbV99Uha0mpZonAz93YePx3FEjC9XFuEkPZHWJP8evYRU5z4UNldJbtRflfHlJvAWia8+AcnKzCZvBthIWm/2WxVtK164Uy2HfElKCKJ6XpJ+GdUsbN8nU/sWkhfO6TVl7PFxtQI1SdDqT8pxHStIiTl7MGuIW7NUH3TOxf20Y2eEf5Ezz4OFGU1QVXEvmVmlkSPWG/z67bv/+q23v/qZ202MMHkiOAG5c/NZHjm9S7n/BUOjJHejB4uUOWYVkFlKQSrLp6oiFkKILYobF3KS5G8+CqdG5RyLa2EZthewUg3fNN5CMELTzMT0zoMzSDjeyDc+de1ZlcO95ezyvrINbCTiV/3Qsks1RWSmJpJq/lRLzC/Wt4wjq4lrIogWV3k02bk2KbIacdKgViK1ReqkKhIbIEpsSjoEaRp/+/nP/MEf8Lj8z//8v7nKlx4/Wf7T8Vdf/dSrn2U5WB2Ps32NLqGgApXI+NiZhayiZZ8EM5uxzWQJMru81tB2d2jxzN7Vz7xy++7XVg9/2bvQN4etdsOZEcZGZsJhe87LmhcmsxtSmegkJ34Sqq6O8avJwiaaqH2Huqxyb0TwBEoqfrpP/ewZgAazxv33v3Btufdc52YkPa9PVv3YdcOm79arzTiOIYT1ulsul262cBa6Dm6mM13effzGk6PTF2/t7e/vKzsR0WQhRYQsr9vpDjWvS3nouSUDx5aeVkWsd2YseYe2UlW2aJs9cvKzKEAQGbrNOnTr+PphwpjcZnF5dVJAtwZxdqWqkI1TUwfKNasxG4td8iQBsatIve4X/V6NfWKhGTc+suKdF6y4a138U3FvRTFvgen3KI+1sn0jpRVXZSGh+DoMj5QjEZrGtTPYmh4/XhvdjAUsnIGSSgB7Z5zxhk8XwKSenRp5h1V3/N4HDzUEN3MpVWYrWEqIwEVmljdJFITx6wvFLS6SJfnR2PZ5ATTVo+bPErVNfkJEhwgVGVlIRyufpML4XLv7qQP6lndncvNGM7QMmM9hLJf7Vy50O/+atezPn/M2rewKpCKAywbbuQ8qwXB+MqkqvdgZw875hVPXDyqvc+HJhVi1ogcm7xgP7x/98zff/tTLt2/PF6OOo0NjLEQOIfq+KEmywOyJYkonlwm/8EUi2k9eVpuYvnE0cyRFuyvum09rG/aO+CLrd5sYpsnJrzyBnJtFvKEkgDl3klFTBwpmHsTsVJvjXs4+7u5v7t9fffzt9We+evv2wribb6xt57OWguioROQdVGBmYhrhUVSEwAQWGFR4HMnBm0veDprUTQJgsTnKJLdUQ35zrhY0+vkjfTolBZNv3TCGVSd7zeFzz3/ur7R+hv/ip9/H2QOh69+7d6d5xj49W8x1DK5pmB1Y4YiZYRqkZ3iKBTJMZI7Jg03hbTY2nev5cGPr/fVHYf/S8vClV154/Q+fPPzV0K/eX87n3YrEEQ807I1t4N2uUDtHzWkiqW39aUD0Kz5ll10YyEC1cUpiIKptmy9EkQJz4FTG28/J3/zSbZq9EMjzuEH3eOi5H2S9GTZdMMMY5Gy1ns8W6trG7Ex51uhCmjfuvXu6wp/89muzxbIbwpjtclWFIZfyXuAqZ4OqUYIOBxArP1kr7H2rLlHVqNBBdNLV4ByRaSw9Z4CMGgHD2JxTgoRN6E51HL335PwYNLYOrCeqzFtOdU5FDSkknwoWmJgYLsM7Z0ho9hxtX0LMAN3hYDvrssWCts+xrUMYO+dscd16SjOnmiRuNK9LFl75ubMKNXkUD7ajVk2MxiDDfNkuF7An9NHHJ0EY5ATSOFYzyv2jLjyodkHvTITF7sZsBDs9e/z2+w+gQuRiHgWy/CtALdN9gOIx2NGhLjzKaUkluWi0qTl5VGSiV6FQnlpyUUYGpZZNkwg5XErphZmjWyuaGGVAWbpozcjyVy4COliBYJ1kMCF5RvNrJn9H/Wa/2diybD4SVS5fUj137W+Yw6fYtbXiplkTLOtSzp8EjJvaatZvM9llgMDcNmzvjpLBzA0v3vzo/tt37r70qRdG6hXC5MHeNDU8sKnEW4kc1ChhlwjIk4rtkg0DkuUrA1JuEKOQ0V0s45D8JsyAM6Omodls5lH6svyGGHA9IXXxfu7imQscs8MwnhngHRsxNAibm7XLUeXxmX33vTMJd/zYfvaW7B/MmkMJcAFwtCAhGUtCfkR3VQvC0ZWTLWA3EhOEwSBlYMKWU7PkHSIDcpNRi/BYwgAKPhGzT2F+NxeDkXLjeaahG057hdKtS5/5k+/8MePvv/ETWT/CndWfmQ7PPveZeXtoDGOCOee8c6QyiAhRkytD2GITP3VEBgojmMh5cptx1W4e7zV71y5/+svPvfeF7sMfPJRBqPUQdSZjzF6tKadagFSvsg2croXWMmdMzjCbKqonuyfF1yu2vsORY4gnhqsmqWBsldgmOJAy8WmgP3wFLz37ykNcB22kOxu17/o2CI3BCXkmMg3rdRcOwyYMl3jOjXYj+3H17kcPnMenn3upH0Vs0vKJSNWCSREptbkGwAwMUq2NQQOsyvMAqrdjg1m08gSZSRJgpX8wSMwRKFZFEHsJvYw9ycgQkDOC5Ro/zUnENkliR5Qa/KYbJo03xiYAcqCU8EyUkTcos+6convBiudPLMcKp3dO4Hwaub1p1i0sNUtAxamK4mIT6khkrTHcmB+UqSgeZLH/W/wDpqYwym3xasGcT2GQKYmqzBzvL1tA7z/YrDdCzus4AiohpqldnDAU3/SpFnCA8SjqGTLce/ThB/dWTBR0Byu/zr2qbpy/qgddz/WOqKh/16prSnrV7ZPJJlHA2woa51qWWvDXNzGbkmcn9p0MhahVxEe5ojRE3TMtai5pUFW3jfZei7S82z9JZE7vS3lC8g8AgCs+AFUFctfMc9NV5OvOxJZPtMoeZ5rCB8V3Wv+sf0mK24SIydHgiQwzQrC6Yoltr6CZta59+Pj4xz978xs3rreXnLPgIQJv2ypXHmf2b5jG4j0AMKmEdHlhJsAQmL1qMKCgwURBozknZYfeGhez6y6sid89Mj1gMjUhlmq3hNkxERSqzhI6CpmfKQJrIA0q6tk7JjEZxvlP33/SbexR333huRu3TKXvmlljCzYJFEKqdU4514HTtKSZDCHEAjLnYnAyAhRYyhUvvJgVBlKBWVJOSSxh5pAZqYZouDD2GCTSKwL71i8dNEjopT/dn3/1r3yHPf1XP/r+KnT66OEvPcsN/zrvHTD2DCzBnIDZN35uRlAGogsz2lViYI/2jMMc/dKaNQ7d5vGybVz70s1nvvyXzz68/6R792Pst9iAWvEyGynsOJzy74kcLlAoLaW87jqx4tdU7kPFrbXLcGrOgG3LBpbLSKBECXGCyK8HWhz6v/1bl8P+5zcyW8pH69XDjnjdjd0gvVhQIqIAkm4YwhhCGGnfFmvdLIbNvbfvHV27jJuXbvZBYnsgU4tGNjOHoGaVZ7TejArjZJU/jVy3uKVFLiYgrfx5HCwQ+9RmwiylkxD3QzduVtKtYeYYomoQUKOoUIRp4odIEYckfcGUIOyBUgNIRFZVsVbvkgK89VrvMMlcK5WAT1OTpwQhmXy+kFDJ1ItNjrLotm3gZR0rO2uRHMlbHKloeIiKRyKPQjBmBo0pkGLKZLaYO4aerPRkNVw9aCX0WTsnItRK5M7xdBc0UyNwziGMd+998PCoa5oGmAaa9bP82oXLx9EX62a7fKgm+osfzNv9dwFEfMKd2ECZL8cwi3pauZCJNMvC3adnijBLKQxsIMC2Hpj0jDj3kTWmOyN2TU/dkHY0jPrVsm5a1vV8k5/pZ/msljfnFZGdz8tRKxbJFz0phNUwqjvXN6kHH40GIpp8GRY5RZ5DJmS2qBSbSVg97MRG2PyIt39951dfevLZy7cWrBCIji41HJ3eNFakx4mI3X5gYnCsRhBLBmvcbzkh1CKIj1eNApsBVgvIyABlJCIpiDNvuXHRlVKHHf9CR6lRLp8wR4cximrM7MZ+wySN8xCVcXDeWqbluL9C9/NHp3eHd94/Of36i8+8cmX/2p51tmqahn3D7JP1YGIaw2eTaiIiMlqAtc6rz1pRlA+qZGpxvxixlc4kBkDdQOKIGY5hqXgTEBmDcwxzKkZMYCYxwIXQwtaX9n7/299o2f29X/xksz5ZP8SviPyV689cvflcMz8IxipCxMxzkxGspo4plSsqMaCOZ9YAYUNGSstheDSuHzftC/7yy799/cWfHd2581A0MCQ0xp23mHJYNk6lz3MB8i3TvsMWKKXfkplJ2FLxd64q++gcu09GcKT5KWGlhB9ze64zG/7gpfnvfv4rx81t0o0bTmU47dH047ofwhg0KEFFYYg5B0y9Qq2f0+UnTz7++KT/xqvPLRcHPQbnPBHlFMvk0qmDj4W9ElHsUlkPmM69ILYsZoMamZga5Y6FFvtdEohjvpOjhAOhw+pJGDqV4JhAbWSh3rnYsqVIXzhvyfVUeCoZmEr6FSZeFk8rzDcPL0u2XUNlqxa0cKWkTFT7LrFBldjG5MK1rogjXmlRD0MaYsyx3bKDs1Ml3ty0YrlW4umR9qp1kSCcXHbeAi9mjih0AY+frG5cvaT9KZKzjWCMixI/4618/fcWdTKRgRuvfXf33vvHG5s3nrQEbCpREX36OU18qlojqhvclvuflx9lVeL/UBUBE6W3dAn7ZDo7iQ1KcRvasia3XpJ3Mpan1YkTmkyc+C55EjQRQ94hljK5tl5hR7EoIt+qpZqeu83EM3VOUBLb1KbF4C4v8gnzliVlNZNbT0G59Y70re4wObImxSXLb51yeSaMs8K5tmv4GEDwdgkHR6fdd9957+YzV2/utyOJGrtkxuXFTS4lhUfBpyyvk7bQlppSHpTvQESUcsyn0pVqbNHHOG9840d2ROeCHBfO6vQhbWm+iThSrUKeW5jJoKrsHZwXNZCxM8M4SNfOmlH8h3dPu1VYd+PDG1deu3XtytAtFnt7iz3v2+SXY4vzHOs4UpK8WQgBqmPTNNEF7yy56lWCWYynA9H0hZG5WFgXRmZR8qwsUFJSjmV+wTvHFCOPXlU0QBTaUKvPPDn7+NrVL3zza7zZ/Gfvv9evT1eP8BbkzHm7dO15N9szYos8igiWAgGcyk5U2Rlo6VWl3ejY8kA6Oxlwafiwnd06vPpbv32ze+fB/bfusQuB2KBbtFqz2pTREQMNhVAZXEH7xfw7rZyx9XZLdFugVLZlsGVVXEQiwFO+ljBhjcQ7K0DNDP+jby2bq18dg5vTAwpgtW4DNRIQOQ9ICIMjGnQcxt4FG1rVURsZ3nr/zobx2edfE5CRE5RUsq2sn3zUdg2ISCmZJVFrVVjFb+JEVJp6AXiZyk/ZLLbZjaKI2YHIQhjHsZfuDAkYkuGYwUaOGZY5ITFbTIUmBkralbNptjnzGCWkymAiY6RHAslxFc1aStS+tVJl9Z9WhDmVlSbRFPfl1NquNniQDf/zWztynhTW1aLtGJtZkKJPWyaq4vy3CfojlrQrNRbUvFuYjPNZy9yp4PGTE+IXY1Yvswe5nTTknfd6qgUsEKixo3HsHz95tOnC/MDHjfEJYsCi2Z7hc8FE20DK9fnnZcC0DJS1pjxHzNiSwTZxZUUseErrQ9uVxzsykrctv4IOnzewRkjxxPvTf6mHRhTAieNneLYi3afF+4t4Oct7JA2g+CgidaEsfBRSqLT189MelRC6SLOpkFnSd1EghRDOKwQ7n1hxLeQ/0ypTFYjcnuRydITLbvmoG3703ke/+4XP3ljOzRGR5wzUuTUDpDwVy0UjTgg+M+ILbJe0E7JawMxV5mt5a29GpjabzdghQ+o8dSGsMi+cy2UtldZIBNKc06cWix3TpIW+8eC2GZV701nbwmG97viA3Lrfw3zfXwuiP3z33od3P37YvfINObh0ODJ43pgZkcXh0eiUnGOfSydV1TSoyijMDJd6S2icezWwWsYDo4hJQAAgFgDPCGLOWKEMUyLnXTB1omzqvWuIG3h4+M5minGPrw2b4+tXX/rOt/+H/4z+y1+9c1/6kydPTNmNxofXnp3N91CzTiIyZyykqd1QBxwSn/G81+EKNkEPzgItuw+Xi0vDwWc/ffmdzz179tYTtBbAYGmLZlgLlLLuuwdRKigtyr+ZAbLdYnKHLO2csUW5ixdimqsZb52TNhSA6Gkw4MWXF//2Ny6fNK823WrGJ0E9zHfHZxb1EWYCBEZmIYSu64b1Rufz0PM4nrz/wSNt8Ny15zddpwunoxFbExW0cRSRQkVFAJdxUlR1ikhIAELb6ULVpldViBZxlSUR2Du1mMkhDKeqY9+tN2fNuOGmMW7UWJRTu1UZ2bcAkAGkKIeBmbkA+wBIWyCjTkwoOSnjiovSX280AAWjkbYZcuwfmZ5XXRJnycGK77POzyi3rRd9h5ul03TipXUYOKOixeorJF6QM5km6ZbP4Tzb7BozbRwTmypO15t8ZnDcIhUN7VrAZWC72M7ljEZ8aDYutBJO7j2AQ+M0WHL6pTUng8vlWToOSeISVGAQI+Kq5139iPqtykFbzh9LgCoFiMo3BsT+MGYR9dvMzMQxc0JXIGemSlFya/3QQpFeLaJZEREcI6NFNjZXVYUYGTyTczCBgeFCCELqnIv9HUXEgZx3NJECamKyZB36MqNEXG+Y8u6q6lwT8yPMTDPaEQDvXC4KhEsdyozhcFFWZ3zFegDTsqa1ZwBk0axXEY1OfUriDVFNRgUwy7mQPAZIUtmAIeW3U9oVDupgJpNfl8UYtK9uDcGivffg/p/94iefvvF782b2xKsfGZRCvt47VRUV37SsabdObT9ZjIhtBABjwFIH8NyLmYiIPVSMNPZgMKgpTMlxE2SwVAMmgLbm53ZmXY/llfOzF+OjqdEqlCj9lkLgUEqp25xTsSIjiMwZ5DiIMZwFcxTmrJCgSrPZjAdnzjYWgMCBmfeOOv5HP3384Pj0C8+On7+lV/bnmM/Zta20e2iAQEtnkCA6I8cmI6m0btN3Cl0we3IGFdEosa0bY4p+JCgDAsUCxzbYyMZkyubhwPAGlcBKYAazmK3VDAQFL2i+2ZzBKc0W66G/8sztb3/rr+3NvvvnP/rFvp0OeucszCBhee36ornkaR5mEXIIzsjDkadxNDX1JGciRtq6xVod+35OtOr2D48/6K9du/TcV//b/Z3j9ePvvj2ntdf9M17BMYtx3MhgUhtElDmGRaXWN3UgOCZOaVdKGsxMQYRc9T7phWUXTIUS+Zy0ZBo7+VhcyJjHN2rwBuLGdLwa8CHjkpvfpe5/9/WgN/4dhpIfu973Q9hg5uZPbEMgVWEyJrigQye9OMH+5bPHR4fNwak8+tHj069fpWU7nsx43nhSIaROikyE1ACUEUM5BmTpo5qaJ1vihaQETSFwBmKQMnYC0mj7emCQEUEo3ZkEZgxSAXzDS0dt6EO3OdXxrMUQmqVLmilbinoavIttfuHYLBfjMTM7wBKKsxJSKT+bmrKfipIi7pnBTGIdcBEBRASKqZRVnk3Gi4YRWYCZqsSYSZGOPhacZ+4KJNT6IoCyrVSEeWwETbHADFmKc85xY0oNC8nUgRTiPIFIxoCgPiZWmIYEEqsGIzZ2uT2Pn3Xd6axpVNdhkP1Ll137kMfm7fvBe1lCe2mslQajbQhuN/6YWGVprvC0o9LL7NyHxQxCBVoZXb4JTlJVqZI32Pb+l7uVz7GlzIFsaxeVc/INo8138cjrJ8bdFa8NIVgeN8euZnltAE0AHSKkIacUGDtkKiQA3hcT+amW7id8tfOtSFWGcVELxe1j8oHXs4FcyHjhswpMTH2UB5lN01hOq98uWszQLQKof174sgJCsNY1Z+LevfPg3XuPXn/p9tw46OjZOZfwxhJL3L55YaA0RSKmb2uCiQOn6kC2XfLeTo285vN54zxRsHPaaH4XyyZ1nqLICpN6glLUb5VhkYdU5lPj7xeqZVF9jl/96P0nJ+vu5Gz9+jPXn7/aLBY6+u64HXwwbwwYEzsCm0EVI8ZYzcGs6oiNyKIPxmWve6k7jERLbGRQKBsZCSspB2hWVZEw7ov3MozBon1FTsHMfOPGja/81m/P/OlPf3H20cnRJf5B179245QXL7XD0nGAGZzzrnEqY9/1Htjb2+vXozlnkGilm0aoWj3pumZ83CwvXbn+pc89/PM3F6v3Bm4GN6o0DsxmJAYVEVXznuVCohIBInwV8kbY8j3W5FHmv/6z0G0BRKMc7YgcZj73sg5Bnel4BtyYLz7uZ5+/0f321/7SfHm4CQCpaogFbX0/RLQXIlI1Zib2zH6zGvpB2c+D4Ph0te66S1eutu1cmwYxPmFKGnvvxoBmxRLPWSWSEYiBhP1JlMOjpeqmAChKiK6haKUmWjUSJe/YTMbQhRAMogQop+qgqE6mTHJHzLBk11IFXFVmeCckVG29atznViH/nuGDtpc46VSV8pTwgNTIcnlL9FEV/pOHsiOe8u3SsqKWL5P0SkAXaUtS9VX8mfvg7YwzjtA551yDiA2kBhNPYNijx2frzegi4oeqQWMXqJ3Ly/EXFcDVfEckbKPYoiMxUSOdjD8qgTG7oOqjfqULftl6/DTinL1a47J9Un1VTdP1oopIbj2ZXYspDKPFt6aqRBbT+UqFvomW3gwXCuBzIm0SYOdXsf5zIlZyO36V8695fsZ2nr5zmNJWQftTL5nEeXy16PM5f+da+iICKp67rUXDQqlxMyezX3/w+Mdvf/D8M7cOuF07Q8TXUZMQYhA/DCO3rhpmahMCNTiFxXyc5PUBAFLEfiw6PTSty/Y4iwBezhdt2zKNQXZnOL9RghaKhgjbBW+NSQrXF0ZiS8GNajXVDEFCGRuqDXW2ad94sLl/+uEHj09/64Xx9edu7h84c8aYKTSWhgczVjMxC0otyRgG9DDvXBIfSlSADkqwk9mgpCpEFDHHNABsRA6ssT8xoMxsFIM9BGA2mzGbYbRxVKN1N7TOXb1+61vf+Bt+/x//4IfHwwlE338s/UbHqy89e7i4pDCJyaBE1HhOyGgRq9Abm5mLbgtRWptdXd/tZreXlz//9ecevvXkZ+8HHR6xm8Eci8YEOliAGZhZJM7kzsaJOtLEY8+TZVn3C7k/KgY9fUvT5WEIDgA1RF3n4Td+pNXf+T1+7fVvqnkJA2mQcSAIkZF6NYJjBgUR57wjMLWrdf/4aLVYLte9fPDRg9NVuHb9Ge/aSMNmwppwWM0MscjLLmBWAKQCvAJgud9pkRXp5AhgKaoaIl0AUKNI0UbE1BA509CPQxh6ImL2Yuay5ZpMcHYxaULTUIlKtCk5jeu55NgFB8nZNh3V/NfBNSJEL3LKKcmvadNCR42QLKWJqJHJtG3O2YHYPqYPzVABaxTnR86qEhLTtASiqsRJ6EaZDESLO07DlsyKfyoBjqObzFTJ0Hg0oJMV+oA99o4aQVAN9IktBz+5GcOWSyc/O0ahJpKti5x2Ti4f7ty2FlG7k1i2TZULzbEOOArI2ONxultdClUtT05+o1xgFFEns79uEpZpQ/MkbJisIEmO0nvvHXFJw95xJu+82vnXrM8ss1pOq/sBg2CWkz/TVa5cHq8Suzjykff2zqCgCFSeDoAsY0xOWeLp2du3tcwgogXs+WIvCpB68VZPNJgpqSdqiJbN3vFm/ZP33v/iay/99ku3B+/HcQSzi1CDsX+1RccygXxU20nVin88G8EXKDHT0k8gnfXOJCJmapqmcdR6do6Hcx2W6guzw2b6kCgak0Xpri+MEYE4S9NYcvJhyhugnBHGuXebmc10pqp3V2cPVw8eDnok9qXnrj57MBMenXMEFcLgnFNO5duiRjBmGQyOzCFGXjTWRhvHgpmITEJMaiPIsbGqkWNVpuj6c6Spss6DKaOCoh9HNYUKQM1spiMPYcPEw2z5ra/9ya3Z4Z/92fcfnAwmH+w9XmP4fPvii+3+PrezPgxENG9nLDJ0mxh5Iadkouqip5vMem51fTzqvNl/4YUbn/7t59795enq7WM4bmNGgigahnMwg0p0Y0T7YyIt733IZk8SLdPWn5jJxRJ3h2jrBkoVAWswYob1ntkt3OMT+8wz47/9R9+i5lq/UYYFHVWDWVALi9n+6dCxmoFYDOTIzPnZGMbj0y5QY52899H99Yi9g0MiMtHYr9nMkJKkNHsQd0cbmVsIIZMxx4rSEoaM5Kowshwqql4/F7OyEcG49XOxMI7rcehUg3MNO+d5DqbIZBRgciBHoJgfPzEx5goMLlsgXNSjSfiWCc3sq/bSEWFqurAjJSYHKkWfZWwpZTBhMc2CdGe32sQcKl4RP49TpLlvXxTngCKWwZe+RhLPiSHhxPdy7HpbCa9ekEhyhVx8tCeeN/DAOmA9hMO2hbLEIKOKSgDm54kQv9ECrh8ZGfhW8D8TSpmalPySXPVb8rgs58Vyt35iZfi6jG7BlZeSKjjMHcnxtFcojC8p/pUiTPmc9KFDKY1QC7GlYO6/kig7VSJtG4i1qoUdV+o5vaT6MwrUqIDFUaVCPWwzlEjlTLxzq63B/4WPMiH1W9BFlnpSsHhSBWzbxD8/HoWxKRxE+qZx3hbvPXj4i3ff+eyzN9xsr+/HoIHbFo4RY28NWyJ3gaUHscYaG0rwZSWrkyYVZHsHMmHKOKsnxznnHdqG28ZtziEv5fEXjTPdI9F9VTlcx0S2tdIL9M541EB0Vh3rfr3v5vs0X0v/1r2jfpBh3X/luWeuHzTMbWNETs2LsCc4BzeOo8EBEAGROU/ee+89IZWLxIoQLkdq1cBGDpUSkGbJvCKQuYjmCSYRcZ4FjmDet+CmNwkiygS6+ZnXf2825+/+8McffLwa6bSjn9/9oL/2zDP7N55pvRc1EZAZO2cIIAf2YCUnqg4QBYmwsM3kidEV3bv9+uVPffPqz47O+OhRIPa5DNeDiZwFi1GzXQQD51x0tSaHZTX5EuOo29X555Z4OrZ7pkznL3l+TF2DgXWhYeww/nu/51751Nf6sSEnLSSsgyMeNAyhZ9c6JwRjhnOAIQRrZwcDdb3ANmPoho8fPTHHTbukmN9kwSxQtK5UgNhh8AIbL/ODScOOTpoogLMcj5auxe4dRYNM+dIJbsODWC0M/WYYO5jEpoEgdr7RlFnqiGMHe7KYvVzGkNTR5Nbi6PIBTZ5kIsQEpCkGXIH3RaspnUwosrmafitKVipiLj5ngaiaIENFlgWPbioimOzaxCnkn2dzRwBxlNHpCqVs6iAHmMsDaqm3wxWJSCXmghAZkRo3aBsGQg88OVrdutUEFWKQgX2jF/g1031+swCuzwaRxQdPYbbYGgGk6QRgIm1Kno3JVLWkiExTtnV/ANuGbzmXyJFR7JIKIOf82nm+l2QJ18oXarlYD49iKaEZgGABhBibp4R/or7xRJOzKPbjdM5pmAD66xept3r58Pz6ldMiBmx0sRrtfltdkt+lihjV2sz57OhMfyXZYQrSl1HRpKLu2ug7IrYk01MFrjvN9jn1gomEtRs2M5ot2/nJavPTX3/wlVdf+/TBYesS/hozm7oYoY+KPABQ8mqrKhnBOauUpGrMkSFMRtD5kVBUpSMUpce85VnjMFxsAdcCON6yjkxzKahI8+Ysg6YQEYxjskNUDrRsewLr1kqVJ8qSxrBZCs+a2Vrkw0dnJh8fj/rNF2/ddO1V9r6BwYQDoAJxSDWYqjHlJit8KUhP4FLDqqakyRoGclZdDFU6ZQIbK5EHDPBwRkbOe98QKcIgQQggdq2yXbJLp8PHrp09/7m//J39y//6u99/54MH9+zRpd6N4/GVcXX5xu3ZYi+oKNR5Z0FTpYhzUAdyBhgZs+uMF/2ZDU+G+fPP3vj0104ev3t2/88eqcnQuMY3XkQlRdA1JuaYbSV5qIUM/R65pHFq6kGxBfrT9sV52qiTFrcWyHEQXFpiWNNqHV67bf/uH3xF3EtBeUaDDutx3ZHjYBH0hKPrxYHgzNAaeLZ0ArcZh5WOw2n/5HRt7MxxXCzV0UzJpGSLxpz2pwlgcqyqaqlrCwBTIriYO1LSlEyETAtEsBGJxdxsJkBFN5vVMPaq2rata7yWspHc1AQgS5kZUIt1T9FQTVZHpKE0qsgEiABiiq2xcjJCZRGbWezCGdcKFx1mqRGCmWWonyRIY5f5iOqV6ndtquulipsVl8C09BC1CcjdrHj+kM+UmnXsJNLH5t8GKm2Ga44Xl43jZszmYtM4w8igx0+O2+ef7/pT5liix/J0K/GpArjw+ipzJIorX7caTgpPVhniGBN817buUItDZJ/D1uO2xMaW2gLEGk8YiEwzWPSWLWi1Q2p7K9YirVB42nv5IiUtKT9p+QFPqRQklbi5vPkRe/WkG2bFj+pH1+O3bZOxHmT1mU5Vdnkq8+UZRi42utq2qHaeuPNnNbZaUdAM/lAev2UK79yKmSUIJQ/HlgjPZVO7lzidDT5oYxJk1sxOrXn7o0d//sY7zz9zq5m1RDbqyAQ4Vg0mUgLwAIjUpoJsQ0r/dAAilldRUG2SmrsHE2vub0lEs9Y1jWM21U8C4qCs81LGBjm3XrabRWJpToiTlom04sjEszUz8ed8vrTNupfgjWa+laB3T1frj+4GGz7d3XwtXL6652ZzRuNSHaj3MSzKDGaoWghBRBrnmc05MzPnI4eM2Vixj5MWfpEmSgYTx96ZWXQGGRjkBrVghuS5I0fOzeYNmvXJk/netbU8frLSy1e/8a1vL/3eP/7ZLx4LPTx5fNIPawnhyvXbzWypjoTMUSQIZySWyrSgQKu2MlFrF93g2qPFpauvPvP6tx6fvnt9c3IsIqN3c4GaifOsJIbctrFiXqrJC5VeB8XjaNvkvTXVFzCTpx9nsm4NTv2IwQF/+/cPX/rUN1d6WbEZw5r6tYkaOIj41vdrY6PWNcZRQ2XXzshoXHVPHt2n1m9ONoNCHTWzFoCImI0ASCWbI2RG2wj002FmloDMcpPgSGwpabRqza5KphEUjogkchMACcslDOGUwd55ByZ1xIg4aQSKShLH0l5wqjNO8zZxNoIjAuWehhQNX7MI0xsz2BPrysopEcXICPIy1ktQJCUmXqcwjq2eY1dBmFn8ZQsZsL7DtO61AC4SqpbNlGPAqgHTyVswk1uTX8T59gEggmsUoeMctTNPNDrXHB2dtG1rZkQcQbbULojfxWn5RAGcPZC1AHaOVcksAMldgMrETCcl7VW1AunfkU9PY0zl5fmck8gsVyFX5++oJzvnn/+8XL71CaKTOWerWnBGzMzehTAGVWZufEPMGstADd7VbvBJBpyXiOdXt/42IhinoU7SMparbrUBKNeeF/Z0TlQ87SCi6MvdUQjqt6jJrhi+VSa5UaWwU+rfuKv6pE0+JzoL3prGLR4en/zs3Y+/85Wjq1evNjMvIuao8c6S90ym7oo2AQrSRTpBNRsAESYdyFXzM00REXwDx9OG/OSjEE58dHT3UaZzq1rMml5Qzh6JKEbL2E2hhC2OcLRxy2Y4cOsQGh08OwWO1qt/8dbjVb/xNuLawRXMWjSOPGDBVMUU8E3EUbBYyQ1W55w55xsHA5wzCsxMnpFbR0QukzwNQYnUIOwaMSMYmzdn3s+C9ACca4wAURHrw8BXLGzO9u2azMaVniye+8zX/aXry3/xpz9+g6kbzo4e3/1QAg6vPTM72I8tcaIiCXKgoBSFPI2bM2t901xhccPqI9q7uX/59teuvfXPu/lb64f9GZgDERGDnEajbWqzUk0vVVUAqjmNxlDidWWZoss9zVJF5MiK4w5RxZ8d6yGazUYG0pc+deXv/MHt0L7ONGPubBgYMmuajYyjimsaI2Ei8p6IesTMpgZAP44PHj+Y7S/71egaMPx8Pk+Tz8oTaTHApaz+QiYWQarrked28Qn80cxyab0BUUJTCdOoSQhhHIIj9b5halQ4BOXGw8FIWSNmPmJn96iREbkKdz0h4SN5thhgxLy/CtDIsduJmOYpnSK+W/OfhW7F5hUl3SeZwRp5gSFBM+1MRdybQNRJqjRppN1f2Ffhb5YpxqZS6dh5MOE47XC/etj1EV3ZoyonAex80/hmI4MeHx8TkYg4IzX1yQt28eGLrwDYUsJMOvGLPcfa9Y9p3lof7GBmuh77CbkNBhCDmFmzn1YVqW+lWVm6/A5a5obdpJUkUHczs1jzY8mnl3aaIyInIqYwaxpHRMHUJIDJERUY1do0CbHfSKpZy6FrtaZpQghaYd+kHCKL0xrpwanZCIFKbvrBYsoxA5eYOPlkABBKTYAB8JSlVMbUiGoKuVgWHNs7h6xCqqmP1XX5kpQnidTBl7KunzgMJ+VmiyZUY/eSwuh3ayLjagAxpyVm0Mb817LmycWjJW0BiKV/qjqOo298VMXyLcmBiSlg0sTTYEhBUGdeoYEG70TWc6J2fvDmrx//8zd/+Te/88cYBri2Z0Y3Lrzv0TEYlaeXSInZGDIGImJ2xEABQ4ZTEcAZg2CqUJgQlEnUG5taEA0xIUjNiDHw4Q335EYT7la9OTOpx4k1A0X7mIjhUuIGM5cKRGZO6dhF0JKaRv2DCY4QCxkRC/xMYjZJIo/k7HOOiDpZq1gD15I3J6pCpi7Qepz92ceP7o/dXx5e/C16DkLSdu2S227pFizjaCPN53tK2GhHrY0SjIy8KVSDjaM513jvnQ0ay0xcg+wVJ88SkyjNTIU9zMycGYhVHDk4n0pSSInRNI3rSUgH2sBJS95C8IcHr331j93+pZ/89EdHj0/ZnR2HR+Pm3vVnX10eXA3OOfJE3swRyDkVCiodNQsHAKcnXbjcHPIw8Gxx8Np3/tr9//j/cW3vx7Jy62CzeefHpsOeXV/zQ3YEc1Ihl0kEEjVSM7FE5w5mMHVpX6gqEUyVmZxRrAMhOIWh1O4wI1U6EFdZnGR2GCDtKEv49d7f+IPNZ17+5kqvhXY9786GHn1AoC7I6HW56YJAfMuPHo3z5YJaR54bLO4+uPvhvTfns+u3b778Mb0/3rl8+SpdMXok3ELMGtOBoGBn3ARRVoMFk0hVhMhIBUSO4aCDRdR/sMEUqlCCDezYnBOQKrSDhWhGaEOmgDiAVdSk07BW3bA7EGNzjNgeILmYW8vuXzaKGISRAzJ5hUUG5MgjJe4leazghG3puHSLjVpqLBCLjmkDEE21SedIEltNiBzABE8xiG0KEjamlBKllDKnCEQiNVZn3rlmijGPf/KHANAghNzMPEtTsWCWPN6ZN6oZG6V+GCXSHG/SsBskEMXO3dEkTPECoeC1FRcG7m3wrWDhrBv5EocPN1dGYu8H4sM5nwVs2irTtjgMoyH0SVnQEUU3hK7vxvjmpTSlPi3JzpK3W31/Xq0rIsGqV804KmmF6Fx1r8VktZgdHr1qJXZetRqslZ2CAIVcwsQRfSDIlEN4zpK+0GQvYyjLX56Vzqni1kXnKpfE04rnkygSRkJ+L3pWvLD8fFrOcdHOygDyEtTK2q5Ntn1mHNWW+X7+nufvYGaiGssUiCg2BTjvOqvGkOcqTxmAN9/+4J1XP/70C8/RuG6ZZr5RHYJZy7uryTxZscjALyk5slIprTqKnr49EiDWvLPz3run+vq2PBkxBTf/McW0YiR26+Loaj63QHksE51Q3laWs99jYWssTWYGMx8cLLk/e/jBo3+0OjsN/ddu37522I6DkY39ppvNm7addTKaKDmzQUYTkaDmVBvPFBOXQqjR78YypSIWQ8WOvAEmiPFuAguUnEGz6kBgIjYPA1kqkYcjgrE12uIzn/vqYnnw85/99N69e+N4stqMZ2fd9VvPHl55Xf1IHMx6tcETMbVAo9oR6Tgok22GkbnxMztYLl577Ytf1DcerBd315vrDnbmbRHG8Lhe3DLTjlmZTUGAqe1wibwa9ZpOtldWktMKUql6sGlrEKCEoEahvXFj9e987Xdl9rlZ6Igt1gPFBOTiCWdmEb1568p63cnoHJwgfPDhu6J8uj49WZ24hlXHYQhj6Bo2qCocc0sIRJRbICnn5CPE7KwEj5LQ/C1bjNnCUVIDCRCxiQJsNIwwZvISyDnnPIcQ+qHTcQBp4xdGTM5TjIsUxCriWD4aJ02Jc/cO0yqxOf/iKCb5JMd1tT9iHVE6MeX6AWC4ChFzWlBLjl/AiJPYFINANIHtQHNXCcuSYuLS5zeaZczImuXWxFOYW3yTi8azdcR5tuqe5bTyezRIJHWApFgcKAIJGkJIebVKcBfb0NFB/Uku6JimEHTTbdRx45zTcaiXpJ4IrXpspeelMF6ZuK2OE4Xo62k1s9zwtHxCqILnETQuL0duUzhx+N3SppKwsTPai9/XDBmZOdoqALLqV7KcGDsDpskthqxYlPeqXjbkcUbZ6nbuU+62JRSftjx5zNXILz7qu33Cted1kfq0cmY0L3I+7W4BUv1EZEBdqlzEzPzGu/d+8Mu3n7/9jGOwmfM0jgB7I9SOhOjujuWSxtPnhU+l6TIzxBgaivILAKlDQ5zBtCLOueaC3th5R2EaZNxI9bSU/UwxX5vJtBDzdl8pTQDv+dotYqh2r0QAImYyc2rBzETMd6NT6ke8d9SHDz4aA7767I3nbxzY3Pqh40Zm1GgIUGqcswBjCyHLoqbxDNWoXE9J0VTy/81iMRKRgtnMccxEh1Mmlqm0mqKoBeB8rP8zUyAQgzwc0bAaX33ty97Pv/+9P338+JGF9bh+sD5Srwd7l/bmh0uhdgwWgrARu+jl4mDaEnWbvmHveJzPm+df+MrXT39952Rz79jJ4OZBB6BndeCUlrfNwSMoRIqATpGI7axAqtBUnr73zytqRCQggp4Mzd/61vC1z3zzGM/M9YiGQapjjCWkkS64efjoY09ub3GZG//jN3647k4fHa3OVpvHx6v9A9eH9bxpfUtwooNos0cIDs4gFtRUDMmFYjCV7E02qEoEYzKwxE8S14eqEEtkEKqjyWgQ52KiSsuAQUSHEDpRaV3ruFGX8JyJXN7qsZlZzmCI0jVFlVPIKeuflRJJiJ2UpsyXss8t1cwmvmsMQm141NKTzID4WmxmMDEVkMpEfvEQzYizsAzHGW9YiVub9KvM+S8qcy1DrT8s0nSHluI9iwe3PnCOo5pZG/UbYBiGcRSKIZJ8eU3CpTaa6OlIWMwMMSLq+uPVWcpc14tYuWUrM7JmM6sT3vKyWcYwsQhQ4Hgrk+X8T6BMe+K8iDXIOVyxtfzVrdIk1nV+QIlk0zYiXbkqURuMjGNKd65Dzf/UiJLfnCoTHJWYLFpFLcnynymxyJLvBTFSBoQsq+JtEvxkrc1cIDS2D8qKTvmgvGAR6mkYmYaYp2/LTZ42mfHzMm9UKU/VALYm4cL7MPNqwz/51Xuf++yrn37hGkkYgxiT5wYipmbIm63sLjOKAGUUGx/FYj4DogO/bIocKiNFDqbb9HQlU05c5iLIMFKKN07bg+vBF9kMQKFEnDikZtM5v32RwSUIF7PxE+1V8xAR86cZNmemBpH1RhaN3zs8IDw5Gv9Z9+449vv+las3nBOyfhx4DW6jY9liPjaCqoXRCKoMx0ZEkY7TOamqkVk5OgaFDcYEMXNmjpmtmSnECUkE1TYXibJ1M1BQwDTASChGiajdu3J0enTruZf+6PLlH37vT99951c2rI7vr/rVSbe5tT887xfXiReOzbkeOoCcQiHgZiYyDkG533jv3fzW52++/t6T7985u/rrj8bD2cAj20xJqAiFckhQfooKPe01AJOXr4IOPqcsphtVpWUGNG52SpuDZf/v/cGLoBe8bDbi5nIWwhBCkGASch9iMyN0g16/dWVY9aFTE337nV/5/eXNZ198YTG/88HddX82my1mM980s3EQr3B+BoVoKDlmZmaQmGml04dRLCsiTHFCgiLN+IkkaswmJCImYmxMjaOm4SaErpe1aM8OzrVMMyMfS76JXCw6SnrKtHNJJxuWwVHviSBZscKdsQWCS0Rk5JDaATOlitGMmaVs9SpUl+UXzJDGGrFmNAE+6tQJOPo9rbDcc1bKNIE2OZ/PP/RpH9byuxK6aZzMDNPaCNoS8M45xw6eIWBmqPexrAB9P/bj6FwzJlPR2W4Z0iQffwMQh4icrR6dHA1EFJuy0Xa5Sz0yutgU2372FobG7kFbfoMtW7PwfcHWukaRn6+a7pmiibS1SGbRtVaGjSKVpqcAgFMT3fY/MHuiiRpKRvTOPBSpvyvbkHw7AHIJxO6F9TxUmYF5eE8ReL/xsEqk4ZzNfX7wFz4lqFKuao0hG8RUl6fb1pUbI1UxMDPx8u2P73/vF7945YU/XDCtdHAuEaExkboMFRtjYcrsY0IviSpbyukAFJJ6h+XtByATW6YfM0DiVvfMzkcMtHNJWEn6phtHVliUFVVNGWUo996ZNBBRbsOb60CUwFYTZ5EQ8cKYfDeOY6RbInLOOW6wQIBwsDm3g9qD7uynfH/Js9+xW5cPZ16crEe38Mq2GcUnaAYYAUFVg3MJ+cvELLdCgYLY2CBkUc/UIGBhY4YKxJhBnojIgUThGGTGniLiD9hSx18DNSAyZ6p0eOVmvzmaLw+/8c3f3T9Y/vRHP+47tO3RyXHXDf3ysNs7vOHnSzNvItFXoUpiFOv4RUeVfmhx9cZXv71+fGdz972T7qzDcmTGknSDlNM5zXY07tUmt021uyvCu9CRU+16VT0fiYjE35itFH/nj5Zf/8yfHA/+YH+t49IwxpxzTQeCqYJEtW3nm82xiO4d3Pj1u+8fr1bXLx18/Zvf2lte+mH74/c++Nk4HJ0cb/p+bPbbK4dXT4PTsVcRk5DMOTNVlGYA8U3ihreYDmxQqJbSViUAKgxjqInEgHIDczAvMgYZZBiFhJmda4gbQgOWqGAm7d8YCW4iWRqJbqeUN44zWSY5wjtP7D8peKxQTv2UUDYSSKMXmZG35mTFwswyjkVmy9OrxinZlam2/Xv55EJOSDnbud5xRblBZUaXu23LkUwPzHIOt6cc0f/HxGBHZO3ME5TBQx+GISznzix6gT+JV3+SC5qZzORs/Wi9mjr/lOGYbcX/0mPOOZBjX8l0DlsBWKljpai4dnYF1OKNAUjMyqOpMCuOwW3jXBfJ51xc05RMmRH7KAy7nvAidSJ1FxQRTQhHvDOemBRW/DZZuOaF3J7u6VlwVgRDOlmq555XRy5etgu1HMvKR6Gw8xfu8KNSv7Z1Dsp22eZ8BTkIcICZSUQ61ClUesErX6RhzPzsZHP2k7ff/cNHv/XKrRteVFhZBbnNcKXARNszhrsI5khhnAJCWRfSoiObCdsEjLc9seYczXzTNM4/FcB0SzWMg0h5Z2wlCxoOBnNwqhZ1BWOiCQeLy7ISmHMzMs7JgDubPA81TiCZYWz9YiQXdOVHI1qG+dHR8E/xYUv62Refe/7K0kOhNkiAKDXOJGWFqVHMh4sFchIMDiEmxZJ5sOXCWs5xRYvQCsrqmGxkZog65wzsOAotLzJa0W8sZje3ZiohrIe+beehl2D+K1/55jO3bv/Zd//VyfERxk71I+c6x6c6XGn9ldYfkF9pAJwfgzlgHEdnbuw6mR9h8cyrN//wt07/45+e4e23Z4LBBk1FnEC9ESYEZLPaRXShTVyvZtG1C++esKC3Fc116JZL/Id/9WW0X+OwFnVzWZ2oqoUUJgCJQjNAsyMZRjrYv/rWO+88ePL4C1/++tlm/c//6T+7fu3ZzdnmcG8/XG/ml8OsXfRCp2cd5jOToKE3CTkEm2GhgQjgp2YAS+ribAJTgRbaIZiQmoPCxEQkxjCITKFDf5r0ObjoPPJw7BvJLwsg9TiKU8c5KzM5llKBYlQCKKNDa746ZtbmItBkMSt02z6O0mFXZNbfTnIuCdoJZieRaS1BjaP597SbnF90w7niW1LAYNsBo3wUMNfJlx3dbxe5shEhjYU0G1Nm1jhPBGY/jsMY1DlvY3Q7XDjENOf+QoYeX9uxU9X15qjbSByfZ5bt0ZTLiajADlPy+sbRZVHH0yX1U4DUei/firdP2wWWOnftLhBmvI9DTJW0mp8yJyhpywU2RXhQinGm8kOjqLwws6sDn6UMUaaY7pYALpRdT45ZBNPKtAHkzLBJdO1cSFVypu24kfOHO798wjGt1/bs1Xc7f8NajNH26NOfNEH67SyNqk170qZHNEZ+vvjwwcPv/+QXz1y+xu2s788WsSt8nRdWBJqheKQwqQe14asxTOhAtfTdORxx07jFrPF+Fworr1HUzCJYqZaaqPo0VQVn/4Rq8ZVtr51D9BVluTtNZrVSBSFkW/8zDIGdMzZldcoN+yGMJ6v+zz6+33kG3bx1OPNuNMR+drHoIOb/c0ToUIWIJC892GBERmrmIryrapLYMJMcVDM2BcfTxZkzh8iYhSIeb/ItxiY2ymgX6Nb9oOabmWenkMOrt7/+7T/63nf/ydnquF8NJHdDv2qb4+V+zwfmmIzYcSMyMmEcx4asH3TWUb88nB3e/Nzzn/2j1U/lWN97ZOjX8FmNqxwWcRPHJKxCVBTHdW4TxAnPc3tOAS369/YOegz8+1/HV17+4lFYLmZdtx4a6XoNTVo1VVURjc1klZhMZu3B/Udndx5+9IWv/Nbe/tVfvvlmN/z66PEjz957IxsvX74M0qZpQF5DDx1gI0xMWc2pGpfyC5jCVCFRw8gO55j4FUE9I91LrFeQUcLAGJ1XUbIQTAY4dhzLuZioQeoMmMQnCl5hYbaU2UvOtCGiqQCDCOxcnkOiCINF25QPM9lyQhQYD0Qv7q64tERRRQznZKzInyG1guUiYNGO0Innc51gvJUKUB5ZlhuZgexIX1VFBdw0MW3Ly5JHMsnmXJGhJmSmphHFhOCCIoQAaktDkV0WXYVon2oBqypcIxI2m7OYBa2i7iJdYOf9K8EZLcgLHJJAclnszAWyh6RayOxAQKzR2TJeLRekU843KTfcifjauUq7Wq6g9DgqI5kENrbHufXnjjJRJOX5B8FFRJjIThK8oVpo3Oy8DKPsgr5wtrfnOZ3DW3WNk3B92uU7HohCWPwUy9s5F9N3BXBVHD2C/vO5wIRqpsiJy1nkW7PZ4vh09cOf/ux3v/KVS9cPxnHcnzeK6MVVmJFl8Uea+AJFBdZdWK534YB3DjNjZu/9RSEU5GJ/jS5uZo5x+R11R1UBY3NRH1dVNSJ2eg41tuh2xbWluTNYFLoiU4V9+ZCZrwz+xI9r6pcjGjQ9UXB+ru6t0yO6I5dbnvvrC+jMM3snw2hMDlSSctV0HEUE7Br20WlhAJgVYIo+QrVcYs4R75MjL9as0Vh0/sLM4AphMceIIABgHDezxbxbb7pgy3Y+dBvR5tZzL/+V/077y5/+5M1fvtGdBhlW49wGGfrw6PDSq8w8a1qDwAHKzGwmftjI/Pik9Z+68XvfuHv84Qsf/HpN7WBGPk7yzlZybjcJi55iQsSvUGrW63UBJiCgiiOrmS3n/7M/um542dxGmgUen4SlsE5uPBWYmeQkbDIxXfz8zbcfr59878ffXy6eWZ+tZBxnbatBmLTxeO6Z686RsA59TyykIwMgU4kON07xC0oS0dQ0NlWn7LBNmEgwS01vBEJmJqPoABrjJSrsc+4ac+N9C3JGUA2xDLIkL+P8xkkKYpkhQu50FD+rO5TDmJjALqYr70g+JPt5V85tPS2yQAPIqJJyiS0bLKOTcC4fu3CJp+dWj0NladQXEuU07iwgLOdnxPQ3ZI/IeQa+8xZcegpEz1JS3AFAAdWK/Z579+pgH981nVFxZFVVavc37779mB+u+ZrrEfwZD61t50VY2p8sSkwgEsRMPSEiNAQtCgtlqakhBN9OhdV11/eSYZv4ddypzFCOI90yF7BFT3VLPslxFMpuLAliCTRfAfM+tbqMrLmX4EBgS2XMjolMNTiXwAxUbcImJPKzmaqKiIaUoRZHMmpsHF35MuIApteNVB7PbyIUZS2AE00QGYqZ7hLXULO88wtuZZ60qncCEloI5UZ/W2I1ddPYnbH09OpEqsC5QgglBWuaViDWTkuFyBrL82NRDRGJiBgSIA7byrnZyfFlO3zj47N/9sZ3//ql37vS3DixUy8jA+QdlIOZM2ImZoYETFBrMDNUjMBAzF7ETE0MUDiwqECUtGhpEFFnZN6zjTM53d0FRMyNQWKaaaJqogjTDh9ZRPIJxUQVEZEgauQcU9WsLU8gR30zmDKKvWaJKICIJFkTPGV3zonrKNA+tQbrAJA1YDI8s9r7WXcyto9m871XbGy0s8XhppkviRWBeDSMQeBdy4Qx9A1sNFZ13jlPiKnkIA5D74iUjAwi0GiZMrNulMiYmH0sdPcWIX4Dou+HVQDJ4DCNvxasdy3I9aMafOP3tMNqsXj+S1+7eeXGp37+8+89vHsX/VmLMKxPnpx0V27cGueXuN1bj8PM88mwOdhrOpldWn+s8xdOZzc/89pX/mh4dP/h+p+ultf79Wa2b64LNCGXNS2rulF6Io6F8k3Tdv1IxNGEJMRq37QWkv4j5IglDGbKZs65TmTZmgxXFY8XHmeM0+Hq/+QLj6999q+Yn1+S5Wp1Ol5ahXU3X9860Y8Mfh0QlEeNVbDNsF4fLOzJyYOHxw+Oh/XpcOqbD7tVuHnzU1guXadKe/38o0Yw23uW1pvN3M/FKVoxFUFqn6CiRgqBQUEqiA0nIopCxMlQtQATy6a3GRRsahJIAgHkmBpnJELM5M2xOY6+4tg1QSotP3UrdJ6JLJdjmFnq8kjxHzE7Ikq2YWamSSqSJlDolDftOUFmxkbwSIqsQTHGPUvZv0VmZkKGMGrbzsIoBnjvhtCxJxYXy50RoZ5T0o+AHaCqgYpRagywhxA5U4quCTOLODVa4fpuyU8dMwdD9uhZJA8DW+npF7tUk1gIFyoQ0R9MUEdk0hCFaFapbgDcD7PnzRbaGc8akmFH/ubaa7PwSTFgx6o6Pjk6NTPnnBo5ohw8zzI7Lwzl8G2KtlLmOttmyg77zjIZhQjqV7UtW/a8rVwk+gVGXn2HHQWtuk/6hDMoXzmHsz8zhFAJm8mCiV0quYKySCDVTASqbxVFbQ0lvjMnW/NZ/VmdZp9wWqawKYUSGTWGiCg2ltCt16/fqJ6und+fdg62F/TC+a+V1rLziYgg4Nk4jiH0b/zqztdfefLKs4fNyMSeDaDoj5teiaNIS7cymx49LTFVs73z0HLEcrVZ07RtuzPaFMUg5eqiev6tKhWtiTBpt6rRsVfNQ5X1RhMRlgHbuZLl6fNqruqNsFnylVVz/4P7f9rYgX9x3iyPx2GPXBACCRwpEeBJQZ6ZmhBCDBupiBKY2UVF1qf3iy8bxw8EjaRs3kxgZAKhUY2YPGCU8PkjujQ0u9OZU5InG6t5Uh3CCJOXXnrp6pW9n/z4B2+/9dZR3x0sF+ZO7368uXb99vIArOTY7+1d6Ted7a1mYb/pA806PXju1Zuf+9bRL+90q3cf7F8azgKjbybglLhSMTh5fop2SLHM5HmCj9/O/awfesXJYbM/0NmA/Sv+8d/4zhduXn5h0FmQR2Sb2dhg1JGOGbTqOjInoqKjGY3j0DQNtzyiny/39m9de/+DtzabYb0KV67Is5cvh9P+yfHRtUuHwzA8Pjletk3rGx1DsZ4zCcGSEUQZZy8KAwVIVQUkqTqYzMhiWpBFrmjOOU9wzhGzT9zJwTFFbMjk5E0uqiSA88zUs1FOyvPm8kbenWpcwCUyGplZCcdFTKtYKorCiicOT2ASE4WZKRRBhMwYFTJgtTV21hp5/4sIEZg85aacqrFs/SnojzTFNOPMx0KstCLIbv7kfZmKzetdaVUWhYhClR2cc22LfoQBfd8TzVTVcSTai5kqkgt6whqbDgM1bH2/+eCjJzBh5kGFLGaLXSBQp1mL3XaZLNfs1rNZmFFxgcbVLp+X3bLD76hyPJ7n7PnDrSTkiTrOoQ/m2043MZs8HumGMNvuboRsnhJRyh2MmQhMCoulJy57j4tbstx/Z9J23utpK7Qz7Ol9863y1FXKTfVeSdOrfTgXidvzk5ZHNRlqZQbqE2q3fz1R9e9lmVSVaWS31DAG2M/euPPTl9+7/cwNBzJycQZj4q0RyMSyGlzefXuacgwYAOl57NJaAAdTBs0aP2t2d2Zi6zyhyVt1UGlOVs0Ys4NDtB0talx/4RVMt8XWzO+MGdtrDeAUw1VqV13/xp2jS36meuPZa3sHbatqoKgbtwSnICGLkAlmEBFTFaKGAQ8DLJAyPBeNgRiqgMiYfCeIiRKkgxJREwM9ZpRDFkaxKfjAEKQUHmfGJCZQdgDcZtzMl3tf+51vXrt2881f/PL0+MSFzf7e3tnDOw8/unP7+VfN9ntq2vnhwA8GaWcW1Fa69+wrz/+WDKcfyJv3euAhdCRfTb4yWJHrIXf1+0+UELsfjiE0yxmHXimYzTqc9SP+2ufxl7761YaunFkT6OGCBN3MBunoEawdup7dXDWICLE3M9e2D87OfvTGm7P9S3uX9uW9d5xffvHLr8Laxw/uH7Z7jhGCPLz3MMBxOzs5OZ37OZAaOYMJMbsKqfpGBcE0ul2TZ9QoRoXVnET3txEQuz0KA863ziUQNsccQ12xsSCS3j95aHIBZLwLFz9z/Cw7myMFMlAwqgnIvrBJyWTL6JVEhByjpSzQYjorG9WrQ2ULTBstwhAFswicvJuNXC5P+yb7qDBxzpwTmvjhrtFS00YRVcUFjSSPMgRI4tUx412KsKNd5btwNqRVIWocjwSGbrrBtQfAijmXKT3lyF+Q7bRtV5BnPVk9/uDOk9glNKSOIxdbsWlwubq0+AmxzVPqaa3fZ+e08mdx0NXXXjitNSPbkQFluuvpK0cqLMglBvXamBlSAcbWv+i7BlIpe3yQVPeMS6IppULDRbA9n3D/OhNthzufn65azBQdtnjyy8/yCc6xqvpWePrxFzkH2WNRC+atZYWAPM9m7Xzx+Mi+9/O3Pnxwp3Vt7LUgoIJyZVVUe9rDlnIwY7S4TCMlLVuMKXYyUUL8F38XCKAN4Xz52A511dSSmL8lmExK+nLiZXlKJ7T3ndteOFfnNvDWOl54KwDUjauZO9i/Sn373Q/v/+DjB5vT8Wy1CtKpBhOFmuPkOTdInv+UrxtMg8GMYvKOKoKWoppoJyeQCZMxhEHGQaVX6WUMMgYNwURMRgtioiYKDaphCqQRWwLp4H4cFCzwoObV1z77zW//wYuvfFoVq7MV2WrPh5MH7z25/37fHW3WRxw8RJV6xdowuoPnX7j9+ree91+7eWYHex3vLzCUSZCc0Qk1oojH+9SsBVRM8/zMKzCEbu64abEOJ0YHcGd/6y8d7l+63Z+pQ0NEg8p6FFGiYCEIKmRmM/PtLIz6wzfeufPw6GQYf/LLXz18svnUpz77la9+YzOEYbV5fHwUwuBBmz4crTa96P5yD2DNremJqOQSKyBGWfqyGeKiWIoGsEVPT0RNVyUVmBCR9955T+yNCc4bIVabGCE6moko5ujlchKDUURZFtPzpJjokBlcISnVsplT4DOJgyw6ougtplgtUtJuqjiPERtBLNYIAAC7C2qBMHGPnAVtCWMnMtpI5ykaqAqgJAPtLPrOHt/5sGzWwmpUt/KubVvWwMwT+1gOHBNwNPc+IaxWK+ecwIicVVYctnkvdpKwtng9HNn4+Ojh3QfrxrGZBegsJ4lXL1PdzqXnpAUgAmHHgpweRFo+qynAKujXmoWpPtU7Vw2ecO4Nd958Z3ULB4nIh1adHDOCSpLXzlGDvO+OhyI+diJFgSG3MLpQBNafbC1BnJDortk+iFJUsrph1bmhvmckfS4ka5Ys1wvs4J1RlSnFOS/C+YXYeZEd12tFM9ZroJZaPwtz/uX7H/3infdeuv6Kc6ZKRmMM4THIIgPZaiSSEpUB5KxOIUPGs93aMFR5U4iInSOyhtA8XX+ghH8JM3Nwamq5pihiQ1MsTIq6vkVlOSrbE5wqtnUj2FNnaUf6ImviOzMc/2zhB4fejNRvNsPPHx7fmLWvh8PrN/ZmrR9tUFVmZu+AYEyaWjWqmbFGICoxM4ZTUknuBGVjS2W5Jtm7wxz5miP2EkZjJmVjjpmOQII/BwmpGtiMCWTcEtEwrJeHl8Z+02/Wc9+OQRb7h9/45u9evcx33nv/yf2TxaxnPgP1R4838729efOC+aNuPndqzebeSfsSrn3+y/2d1cn3H3Xy44FFppAB9x685U9WVSKuW1dtM4SLzWIzm3O7kUHNsZA24zhe/uprp3/4lS/J8tkwjkvSYWzOJPTUzRxRt+zHtW9mZ+vRCKIK0sY3Dx/fvfN4dRrogzd/tV5tCPbkpP/T7//48dnm88+/tDjcOzk5Onn8YLPZ/OK9Dw8O9694zkXMsX8lDBF6xgzOSEGuDFiMRBOik5lBTS2QBlY1iGMQeUdwrU+wcURgYjBii0a4ZA7lfGalZOUaDJzy6SIZZp0y/kwVwEg0nrSEZGVHKVUCugpiU4NL+fQGABoDetEMTXPO9a600qRICGRQUYmK1IWdUqhKATv/lVVIwPktqK5M2Ra9FzzhvIsUFQPZuQnl2hiKEi5+E41ggyoMWK87M5NgYyO+gtmqiTAeHgnTNysz5TzvoGd37n3w6HhoG2dm5JktKqEAimMw7sZUgl1zW0QuSempVLznlb5fqyGUDLgoEQv3v0j2PKX+up7xHQlRC8jC+zQjGKpqVB4isksMjynM5dSx+v7lckRMruztiBBKVtNvvuj81O9O1JYojZ/ULPiT4tz1J+l9bctjXM5M+zCJ6mRJxm/yc4kuIlBskQbqgIWcq/yJTFyrLY2tPeBGW7dgjFgul49Pz3741odfe/3o6pVDjgyIQSYwUIwGlVfL4yxDncZTmmnb1lGPnxvnmb3j1u/mPdSKQpnGnDzIEVvDzIg4KVexymg6GYlqqlteOIeoFtq2GwWWr7Qq/J8WFFBq5kInctYQX6Hl/Qcn/3To9uy15eGeaxrPYZSBAzvyIII4qlY5GjyiZojd7aKKI2m+Uv8PpVyXZ6SW+hWqc6biyLuELGsemr0pZGrZMc1ExkSNb/Y3641jP18cDP2mcX6xN+u67vXPf+3mzRd/8oMfPL7/MYm6cNYfP3F0KfDeuGdhfnXRG6Nf8xXev37z1td/d5T3+x/dPese3F2WCdnXdkVjXI7YD4704r5GqLY88i7Y+kTVNQgGF4jmhvHRf+/r+7dufe5U98w9gawxksEbbUZV2SAYXNMEGYwgIDWIyAcf3Xu8knuPTwYVdq2O4U+//9P5vH3updvHq+H6iy8dn52JeuPZrz78+LVXX1pYIL9UUKp1lCoXl2DkjNWMTaHZ8yk6mpJaMFVYIAhzINPG+QRl6uKSZTp3HojF8kzgPDsU6SxGBiO2aJyr3BY5iup6I8f9mwtZpyS27b0DifUCKZFbp2tjvyCFUUyIijdWKyDPDAui5mBBx2FonSdyqVq34pl5exqiGyDpKBGxREWs+KLyvte8W7cGm/5MgIxIwDKZM0WLJgYi8xM5lvfXlLO1W60ALHJMFHXEAiJCCGHqw+guztKP30ZmpBOLK1+zD5vVh3feOz0bmVtVCCspRcCciXFU/bFroq8FzM5XtUTMfHVi1sULceFw65vUQit/tbVstQyuFnIS/8VInT5MRRrTUZy6ZmZTlhO48TEpArEAk0hhlAv8LbbwTWt7sTfyaTrEzgsWcbIjR3cmk3M7xfJ29bf6lFXYGc/5Dy8knb/IWxR3UHmF+KdhDnfqsLBO3TLwsvnZ23d//MYbv/87XwFAMUHEnJFEtFlcOCSN6ruSQZPvP3r9t0I7ZYTMLKREmPnmfAw4v8KuvpLfJMWA89y6PJ3FhAXxBEeNyLYKnZyb1XhNaQB+/tv6tLJqQm4BczaIc8StrvDx2P3r2aPFcnb72eZgyaQD82AEipmhMaLN5Yap9gyc2hZP+ZRBEEE+q5RsG804ImUZmNi8MTOz0MjMxp7YI5W7TCD8AG26sFwemoz9Zt20C9Nx3XdE2ARaXrr5re/8yf2PPnjzFz8eVk/mM78+Pl7rO+Cbs2axgIXZzA8PXVgM+7dvPfu7f6V7crR+/x+t1h+VpWjEpIBax8lJEAoXctsddlRvgYDggeBoL9C6xzM39d/80mfQvNh13YxtFU4t6FyVQhiCbkzEOIwhQkIqO3b+bNXde3R058GTXnDl2s179x70Z/3efOEWe3cfHYWj8e7q7PTo4fXl3tVrt+49+vBX7773yle/1EmiKcvJ2pqC2XGEqeBWU78H1jDGeKRBnaljdTHy5dl755yLNWNMJW+/AAeV4HlNzxFRMs4RwxDLQeNkarJgySw3EipnUiz/M1cbA6SxcBNZrU/PsLQElhMkC3Ou9HRLgJfKJqMMo82Y2YG2lqn8pOT6KqYtJrRXIqpU83OpICinYXu71YzCLDoiSGVrlorFvOMep6whlb4wFJkPiNkrGEwRJMp7P27XmpSREFGxBi5AHuj7zYNH99fdeNj6SA8mVnsELXs4UURUJQAKK7wwBC25ISDRVmONCB6U8mKyBKovPC+NqnnZtcZqGbzzCUWNsJavefxWOVGLpYKchZBuzQmzppB59JrmUHP0z5hmJ0C5cEc27NTjlnPoXF5PrUDUnyQ6yF7uknRXGC7yePJTt4axM0XnqP+Cz7cGcFE/BqTsRNpZC2ZWah2bA4XRRPvZYu+jj49+9tZbX//yZ1xM5YzUYpwLNMPuKyeglIst9RTYhKWqlFT7mt7CMTxfIICJKEdXCubX7jwDoAgKmOiTOOZr8Ja/a3eWtudmZ662+Uuaoh0tKh4Lv+xxNoMp5MyFS4t92XT/8s7Ht4m993xj1jpxThwTwDCXk6piTnmUvgQImGJjtZhBk5xjAZhwZqJPLydDQEicsWrMomY286oRrjLW+sXy/FRgNV/shSBMbrZY6rBRo6ZpzEwUmz40zl+/9eLlwytv/+IHTx582AB9f+TGq7P1oI7GZnk4nLb9g3vNp3xz/TO3f+uvrR89Olv9IE/Cse99iGUzyPwRJey1s8Umne+chwPR9Re092FGM7H9r/3O0Vdvv9jJ4dypmzerYTBZN51yJ/CgOazjTTcoSGHEzrez9aP1uuuJm2buHh8di2jTLp95/sWHR/fXYTNvmvXde6Q9NuHSlavN/uFbb7/7tdvPHly/pYGL3WKcEqU0V2Mm+OeiOsfsJCibEol3aAiOSDRXbEaqZQKRBbNSipLQqorfy1IQNjIWizJmOmpSpVw1kKbLphm2ujtOxVVqjl1WoTC3yJyrBkeJcwBgxEwncSBPLNhVoDPDRz2Y8pVLk1Ch/TOYuepeuM02t1l9ed/kPlPKEpdBE+e/kEWXDUvOkZGq6AhNDYOqHneear/3juTy0BhNxI773beL9ckv3/6IdFTMBHuz/bWsKSxsZqknR/IMEEUsXYeLBsouOSYyqXAWtCAYRZet96pqSiKqFIrcLa5zIkKun4isobzOdsxsi2lGBSQGayP0bgjBCKlHer5NShpyDkRgb2yQoJFBKcFFx6OVaH/8XSVELk2c2vJpnlTNKgJ7LvBXJZb8tOWsF4YmKM1k18XPaILqhEnOqGcG4BWmJil+SmZkROS44Dum5chugq1GRoa4bwnIN02WXBlP3gbRhZXGbDDHboeap4qHmEBbBdHNzHTwuj+Y2NJIuN2EW1cP/+ytR5/9+bv/xld/x4X+oXT+YInTrpHRL/w4EmCsRX2OGzfViSlMjUCOSCPsM1uApjiGRtcYQEBjNs721I2LZqorrSffkWeOmPcgImWADARmstifAzAghM4SYq4DNIbZNBhtKSKTkmeatxcpWRwuzNS5ZMbFrotZW0WyP1AhupASk8qGjOEPQxhm6lbjiqFXevp7D1Z/cvn49zG7Pke41IymDa/n2Iw8z0OJfNZiBFcHNTJmgEnj5oWQKWlMXIh2s3niVNY/OGYDc3RJKJH3wswRHwFEIHNkxInpBAlMlOo4vcuNd82rZxqHcRPQz/ab17/6W4/u3fr4zkdN/4F17wT+2Gav+W6xQRjXdNWsO/zSweJzX1wd/fUn3/s/52md+3lY9K5f0ChyoOu1HlrTSrPygxumTVS0agBqkl4srzXMHPAE+y/pqWtnH2q/vDz8b//gC3L1d05sdkinugqN+ODaTTN0pl0v4xgI8N73/egcdLOiWfPGe+88MrPNR09W7qPHwXt6/uZhv3ngqXNi/by70l559ODoTM/k3fG5m5eOV90/fvvX/9ahrfvF/PDWMGy8nWl3JKpBl87W7FrTRowBz84Ug0hwRKZKGBy0IXLk4GZq5FoTC1kt8swsRuQaigFgQ0pjjuXtIMcpCctgWfzHlKkomimjTpISDOxstEgizMQOjiMeglNJJjtyGCsiiRTiFy3ZPVxVf1BehAR3bZBgjmcg8s3M+T1RDWYNUYRAQEzJjFFrMOUMjyz5HJMHEDQHOh3DCQFmFswIFXZKFYI1UjXVHH0pZmcY1jBiNEzeLFpSatDYiR4gsBGzioDJCGytw6wfBpPAjlkNzO18MQ/9SqUL4gONDnvMg4yMqvSx7lT0Sc0YZDw5O330+ISZyTAOQiLe8bZQLLZrZutZD5oYUAWxa9lijr9nL2VVG1YdhWXnB5Ss2otddki+kMmxUN9xMsddrm9LqJQJkTxeqcmHqTG9mbwDc8EpNbPoWs4ZBEZ1snF+QdpOOUbiCBd7dy8UyRbLy4CCg/GUM9M+u9gYPDc/W4/ervh6+g3Ki1cW87ma7E++sB6582SWowxmqhLCICJv/Pqd33nlM89dPuS+xyhN0zDFtppAdgPbrj05jad2olRKNsoVEZvGs3PnK+5UqbBsl5SO2vVNVfHFpCdVPRywS4fVtfVUAKimseyC82tUFr28R0qwtITDQORi6lkzDj97+51D/+zvvPz8Xh9aXc8O2uOhm7dtFN6cUkbzGESjfApEzohISwjVgBi+J1hgeGWiXcS6MhIEKRenJY5jjmE/IoIpMZERN2amYWA/84wwspi089mN2y9fvvbM+u6105OPRj3q9Z4PDa2vmYn3J+jelubS/PoXv/zyukxLOO7bA+eawUMQ5mPbaRjDKKAFsLmQ1GOtTBm9mTGRERa2OWndctPfbw///a+vX3j96x21eyRhHCUM4ziGcRxyA4agGkIsDGm6zfrw4OrRqn/4+OTDO3c3vS2XB3/zj/74+s0bP/7ev1yf3HN+2bZifv90bddvvjJu1vN29uqnvvDx+7/66J3jX1x+//Ovf+v45GE7c0MP8Lz15sbZoH5Ui1VjAEBKpOyEFcSAMRNSwzaiTPWxWxERIBOAzlMrXpJ2AmeclehCt3n9kLVFYo+qaQwbYNVDKhpG9oQBoHOpUjUZb7e32XKaFuqSbQmSbx7tha2EnrwvjIg4tncyUtWIXl62OeX6YGw7qDMHCrHwV6IaEvWK9DNySKaKVZbD2DQIoMRmGYYoPL1zw3QhtpI8nt6OUMOT49OPHzzyrvWOOlEC+YYtlPWa5jfeNwbdzYwwSSDLsbHCczNjjJbJbj5zLZZQ8dV8plZzoeeY/2Q3E1Gxvaz0gyMi5wr1ERNENY5TEpBGckVkAUqV9C2/TJqBTbwyezFisGwr9vnJR7kDKoab52HXd32hyORCstUNU6Zieot0psCqusoLRO9v/KQs/Se8Wk2vO/OWVEuzFBFGQgL/yRvvvPn6h9cvf65lN/ajb2fKLBqqNkSVVyqnXD5tDLY99UQEJu/b2WzW+ubCSy5k3590Wr672YWKQXpxKbG4WEKTlcjszp3kceYUKe1vR6ITkmgrrxfz/9phPGL97p1HYzP/xjPXr1nYnHbtlaXoyMykEUPNRfZkCdFQATZTJN88EyvBKauLqDEGGIJTZ1SKrKgyLgFE7D02FrMYboj1GDAfhW90PUT7xGDKSo6cW5q6cejCOHg4bg4u33hptnfj5PT9Lnyg/Qf7sznJcjhbMX1oC6+Xnr39yu8AP4wPHciGjV3lwXsMqjObG3frRpugVnGMadJSTWqqtS3rRoCnoJ5OB756uPkf//Gn/KXXg7TYdCJj/BeLrMRUojeCeegGwLduPg54650P7j86uXrz1ssHl68+88r//H/xv7py/cZ/+p/83X/w//57Dx7eO9i/1Ot6E9QP0jbu8rXDdu7BxN4djXsfP/zwmcNLfdfvH+wdrSGjhf5swCFZYNa2dYZxHDrVkVU9mEjBcEhouxYFsHM8MdJCnM6AuMUJiFHWnEZVvAJEVf4pMlRwlHBZpyQjBiHnORhMkNvTFPGYyTI/fRujqfCiiqdVBXtUrUj8FgaCSsGHmFyqZmYRqzn5iqerHBlgFMMrZlCNjRt3UvPKc9U0VVOnlB5ThapWUaRa82Ygo8mi9rEbMaKkZ2YJFgV9GHX7iWJZNakOqU7IFnAGOZi0J5b+5HT94MlZ2yycDUBDzpMFFJldcWE9Z3HuSIvzoqhG4CvybOe0ei856HbCbYQNTBU+lZxGydGovb5RbXfOxbuL5bZNZhbTx0XMmXPOgcw5ALGENwqA8tBdPcgMMQd/e7S2PSGWqabW7Mrk1JOw8+7b94RlC/68QXb+z/qGRrtZA7S9RvWq7Tw3D3J6Zvwmwgl8gsA+P1eqWup8EKkOzjtm0ruPjn/45luvPn/7xuV9WZ8JBfYcQ9gpj4Op1q9ToLd2elTEE5+lGRIvTgERNc55txsDdqAMhloiZE+tLi2PUJrm0Kqaq/MTEic80VtskplPoW2xUSkuW/ST9jwlAN0SXjKQs9Evrn70ZB36D2+0i+Zy4/vNlb1FoJAahRnDqXNNVE+Jfdy4qqpkDqQamNk5g5IQiJWT3GUjODXlUPZXnmZhtKkvVUwrzb4xJrXYgYliB4coEUDUxfbk3DQzojCwhtHUaOFnzbOXmsPVulW9q/6e2cyGy64j2J1Na+PBS+h+GOfhmU/h3Q8RemiLgaU5w+h9mIXF2I8XBncsMUDOuU5lkhVYKu642f/ya93nXv3aUXf5StOvpTMbRUYTGTNYtxoUpoDAZOguX7r+s1+9/da7d077/tUvfXav2V8eXLp29dIwrGbzRmGt84f7y0fHJ6Z27/7Hl/YPjlfLP/vRj06fPJ63/ufvnRw9ee/3P/uVg+X1+48/3rvy0vrRcLg/nnbk2DmGjKvV2fHQda2fLRd7oeuzcyECgjoCJyEYZ/7/R9mfxtySZIlh2DknIvNu3/7Weq9e7Vt3VXdXL9PdM8OZnhUcjiguIq3FMCHDhGRJBmRIFgQYtADDkAHZhmzD9h8bBGVuljkjyEOaHnJmuoczPb1vVdW116tXVW9/79u/766ZGXGOf5yIyMh7v9eUEtWv73dvZmTEiRNnXyAWf9RY6GheDotFwpXDrlgmUb2DyIAzt1SoGBWPD4t4aFtDoFBQmMUzBWGw7V3fsfpIS0MSVqd7VimeD4UwVXQ449zBEhVlEPCp6x0A56UI06sl6mCayB0NoonjJOAEAKjwpj9iNBJAFEA1hD0U0EMUAUYRNHUnOSJTPDpI2TnyFgQl1CYznUW6+cl4cjKrEdbAsyAJiHc1kU3PJ64J3Q3OV06x1hoEx1iyJFOCk4RibB4QaKWEWOTx2pm01X0FQSNglq6cEGtypP5JRNbamr028GJEYBTmUA85aif5upjZJsYuubPZC2R5PiwQ5UKKzrBcJlgiyqs0evVL7EiOkrb1UYgoUXNKo8kqDz4rnakd4dHaZFpXzuUitM8YTURi00a15rZLIYuYWhSEyqsggoDw5ocfv/LCM5d2XunZovKuKIqY7gIpND1JErl83S65jZZsmbN+dqFcLNsVxooZ4NqJxmcDBCJxYQ5+X4wKhBIvOcv41hFuMK9H2gbNtV8BMIv6hqUbAEFE7AQRhZli4J7G2jHhYrzo2VFVuR/euO2vbT1/cXNyMBtujMSiMDI1IgjgiYyIGBO8dwgEwl6r4IW+ywiAakGWWPLEs0dGJM5KuwgzivfILETGGDSELCDMntEggBfd/WjNBISetU3TqGMFtbE0CAF76jfcUH+41X+laTaqxb2F2x/11rjuOZoU8/3Gnk8w+u2X4Q8auXcHPPd61lbl1DP0HMmKZNyCHYKDgig2ugMQkR7BdNFfvzT/9379WYefJx5KPUXy0mgpEue9dyy1Y+eEQRZ1jQS9XjHzzdsffnRrd29WNwcHe2abHuy++8df/yc1y1tv/mQ2PQVx89NDU40Wi7mRtcXM3Lh1JOINYFWPi/XNvum9e+P6q5/uWVqfnEyMcfP5YlhyXVfHB/uT8Ulpi+2NbQO96nRuSlIfJxExhoAjCp59ta5jrFolKKZlbR3NIWiNzCDAURvuGKu5Cz9F8lTHClR8Ew8Sg+BSM4uMh7WPZxQ4oXFu71xiH2mqxhRdogeIGpGK+YNnvitdgSnGqkqQTm4yAXmv8VZ6RBFil5HYBg1D9TDb+o87XL8tNa2xIoCg1bOsmnYpkQ6vsbltjLOaiCDEoFkAOLNnIbrFyWReMfUQjQY0CQi3Bt4EcF1DznK6hDrAKLKjCPdVjVkVhZjGk7hL2A+19QswMsTCy0SU2gPnhBjyhIpIlwODhBBBQIBA5EiTicRaozc7CWFWKKAWuVTTSURCFw8BUkkicpdQlq3LcTskeEU0139zO2SCJ0BrrmmBjATRR5IgQ3AG4VkCRft9ysvORshfCqubcpYiK5CvdOX1GXqsMra6dtFEr8ViA0b17Nr9/ZM3r3/48pPXzq+NFk3jQUhrpIMGMwujOrwlkNT2DDME++1ykGTLiAnFCQH07UopSgQBUbmSWu00TbsDljbfXZI4CBgN/jkEEvq1oxFqi4j2OHQ14EQsoLv1oCcZSAXKtu4EGSysr9x6z6KxHz7YF/GDwejxkTFVo7FlAOC9FtYIPi0ACFF6EjCCkRyLQQgBhiBB3KUYrCIIwDFNnwBAXC2EJCRgDBiMAj8zIxrEEKilMIAgChtEEkF2DTOHJANYh+JQbC1uw8LTIj2W8VyOrEhpys3GjdxhAuC/+ey2TI7+wRTme+WIYbYGNIG1So6KnvHLXSYDzAOHUukdBWJ3RYRjMP+Lr5pnn321Lp8oZOEYkCuJpfFEUBg9o2fxAMAoyMWw/8nD/Y929+8dTQabm/fuPbh/5/79uweffHz93KXLXriejU3TXNh+7KFrfDO3/cHx+Lgc9IvSNE1jjHn/1sfDJ155/CJ88OD6s49/7eJGeXD8Zuk2d++/d+/2HRF85qlnNze2To8mlWu2N3fmbq5CnqjCIphyMUICNxKIsGCosBFLSEYTcF6OCgFEQo5Nhz3n1YrVrBysTQiIqGGlLEIR43MKEzRsfVvXLbRk6Xkkrcg/IEIIv9cpsUiHkKbTEfmCDyIWqUxMGh8ct5GXGDACsAeVxvNjKInpIC9NTw+sl2QbR0TU7kcMgYuLiBMnpD2cl4XvM9er1yN9wODrk8nUQ0lEVhDRePQ2i/fpEPdg+kCImkICturxkPHU+Gyig5Gjr9CszlxZ0jFnZgFBFDCU51/mTGuVAoo6q0CDWzUBScsLAqjzIyAXYGherPHWHrKGIdFAEdJvQgJ2iO8VAACTJym26JJDfYnC5p/zJSunW9qWJUtsO4gEjpe+VzapFU7bMjTxQC7BOc32TE6cX4gdcW2Jx7RfnjlJAO9ESEQLK2XyViHlwk/e+vDD955+/OdefhkMOeEetAFfHSAgSBYA0EGe/KWt8i1IgCiFpX5vuRlDuj9SgMQL221K/FXfQkQgxFkiRy4g57sm2GXp2Zz1yvM38t3HJMgyR2lSAMAAKi1g0DwCMxhYloV3xtParb3FT8r7/vnHDNTD4RAArbWQ+W69T0HRqpEwCiIJoBFkg8E2RCH1WQ9CaFTeBRSSEAJ68OoDDiqyhnEhMiGRNoRARJwtGlv2iqJAITQF9QrgCsQ3Cyh768zTyi0Iy2J0zbmjxWKvRxN2m+hmW+VeiiF9+bGv/fbiz+7WB9+205N73J8DACxAhApkB2cirel0iqeYNzdz8vyTk3/nV77o6FPSE64n3jdcNZ6998IemIEZmcGplwksA8wb/uDmgzHbnavPPHnt2p1PPvr4ow+HfTo5ONh7ePD0c0/tbGy+8szTX3jp0//VH/1hdVo79rNm7nBONZVlaaGYzemT/f133vvgf/+/+vdfevrZH3z7j95993vj07qH1ZXHHr98+XFrepNxbYp+b2AbcFoSMpRlVeEPEBGdRC24g8AmZqMkG2wMbcnyjnLwcIavSh/C9+IILQBH1TikMIWsihhJjSEnEERkSQjtdIHobg0ipsjW/In4oqhoRu4LmX4t+X+i8oRymcBp1DOFLBpAl4it/olCbcJSqx2F3nHYOcUAGTXopBqLiIA1hedGWBBJc1DIAPg2JBQwcqKcIEAKKgJYZsAZmxDvptNpw6GhhffeebF4lhN0yfqQQ7QlTenmSBC7K0RELc+S+jIuvSVJXiFLHYEIyZikAQNAzuYk6sF5KJb33gCK88HbgcjMThggFHk3RMYYPbPee/EMJoZ9AgDykt0mX15Q5oRTEFa+zdJNB8o/5wJKYt4R81oLf0gmIxTSRE4J5D3Z91euKDR0flz9c5Xur96vb49waAdfffOS5JFmot+XZZkOgKEM6RsiW97bnV7/+KOXn33GrPVExCD6mJBzxtLSGx+xulxYDsdSM3BWZhypVVvtPKVSYOTlerWWlZzbr0C1M9WMB6fODjGqORgANCdeYu5cGjOyYNa6RxZdhAaqXosNSl8qXBANe2Z9PuYP7h/giM/vbLEHRCzLUqRI07MhBo1E+3ml/kJkEFFi1FYIrg+EnCH5sEOeNFgbxtQqTboEa22rOjGwtIWWqBwA2YbRexY1OjCy98Y6kQGCNb0T8HPnhwLrts/UHDeLk2PxTQ8TA6adr32+ufVXme/S0Z/uwrPzNUd4qz8e1dPos3wE9qpyEHRfJIFTKP8nX6xefOZLUF47bfaKkpv52DD4xunlmRrvvRPnWBC4ocHacPf0+KM7d01/7St/7teuXbo0Pjw+t3Pul3/xK1cvXfyn//yfsfc9sp/91GeM9zUMphWNRsO19fL06Hg0GLz87GdufXKrAntz94Ot3uif/P9e+075T/Zu3HUNvPKF8y8++QUEC2BZyBZGe1tUXBfUA8KYzS8qDCGBeLVBUwqw0n8NaatEiAknYQdbrSCTEaOU3lKA+AHFC5DX2oCBhUfLT6JUcUoBtTtgD/8DdVlKdoVDsUKX4iiYBIszc/Ghe9ZCbS8GZpFQhYEQwfsqf6PSHO+9xE7SGKXIKHYbxEyejhinnkeVI/PJiyCRAaYQjKu24S4Lb5nw0hIz0mS9MBFqsZXk3wUAqU5vTfeLKQ4GvQNqjGnIzRveNNblFA/BaDRMaUtprTeB2RCRb2rEUBMkCChG+40mhhTNID7b5kikIAitmsUtGrGsZlvvxfvGGCMg4pNhNuSZ6MF37IFQc1WD5wwRyZogNHgybIW994YK3SYR7ewGACAmwJaQyBAC+UAurVqiWZi43bxgvms3njHEFKBgRxJMe5kwNbJSQqTUEgQghPMxMyITkQlmUSFDACQ+dj4wMewiGQDaFwSsjaxd2/zpD8xqdAeDaDRbOiJowraOtJjs2PEbWRLAQl41JrsUSOZJYu8hLNKSFttAD8LzEWy6TTc9/sP3P37583tf7T1+NCxdVSLNgF1EJyAxAp6ZtZhukMyYNRWAyDitjWIMAqD3msiEiFCJL7xIr0eDpQMR2zOwmjv0EBW2aBr23quxJFW5bBq21hJhkkgQQNjZsmiaRqP2FIzhavPDI1ZIuy1L0fKYobdCjtr0TfQMYKzzYm3h6gYBPLNrFkC9ojcS5z2fFD1wsPbODWeava+Y0VrPTGVhTb3pyoLJFKWIARCthAVR5BYB8A1GLZZIZUf0IGUI4gH2IUNaZZLaOxIutBCiqlbeM7OH2Mg5NmQmsmg0eFdrs3gGQDJCBFSQ1hRgAtgAFDEeoCA55wHJ4prIbHwK63Grtkj6/8OvDf45+29uzurv/GTiK7jWpyPH4OwcKyygxB5VVgAZG1dWArBWIQAfrA0vNbO5t+LcFM5tXjn4D371abBPHvYuDKpbw3Hvoa+LvqunNbN4kNo1tfcMCITC0hS8JuVbn+zdPG0KsUVRHNaLZs4Xr135S7/0m7fef0+qem7n09r9/p/+IZTF+OT25Z21xcST0GAwMH3aOLfefDRnM7hw7sWS5t9663vPX4TPPn3us9deurL++D4cA4DmvkYjMVooyCiDUU0zKPAgQMaBiAiJ2JDMgswADRNSCP8OTlARQUNRQ0ACouCGZBAjCIAMgAgMQoGOekAjKAI+9t1jBK0WgMIM2nkpht8ikQGbm5+xtbg0UWr3gByrJAhJkTJUW7umSFB7A2VBihUlCTucBSJMrLNOPEBDxN43tfMgxpgCsWiaGoB845gdsKvqGSJKbFwIZDXtXcNSyDPhUr8npduaf4wGLYtTFm6EG/EiBQl770kMoQFh77Hwvsb1K+ubYxkPkGAuZrjNuAewkcgjAGgeszb7bK9cypjXi+m8EZGk9iEac1Zst35omkoXZkzKdvDe+xhnBWdeq3LQmZJREihk5csYHNR+neq2POqN6YMSyEjDOSNAbTnMPKk/oE7XS53PpyM8dXXcVEw8TVs/t07+/25Xmtjqv2deSzrBEq1X5SccsARkhQt2lrA0h/RhRWaMj0RVsvu6dgQWTpW2BQCcryoPhurx4o13rj+ztbM1PFdxZUhIza4gwiwsS04a6Zr3Mbsgg3CawGpdtpZqZNcS0JI1eynDO10Jf5RkpJcya1hmSEYkLaofyx6llyZIJnwI4le8lqdNaI0FACh61io9bQcUkTsPneVdMXRts5DT2Xw0NOvbVQMlekQNU142YOoqBNFmkHBJV4CQwqHfGyBBccI2JOizKFHWIovaXl5EaysSCFMN2rMhyHYpetKSsBhBRCAWjwyOWAD6KMTswLTO3Xt33riy8/NH5//qL36ht9b/Q3L49bft7vFss7d16qc9oZ4DkaoxFVhAtlJRnywV9URoZ1bPpbCGqYS95uA//63RtSt/GYorAofgdxsopBkizUXmzI5ZdQlovHhmx1CUdjw/2d27V83HC7d4/92fznxzfLzfDNzv/NN/vPvJzQZ4OFxjrK+/+34lMKJBPURzfo3BmYN5PZs/fHAw3H5sf3L3eP9w2y2+9OTmb/785y6d26gaf2Rrcllwqwrr0sGH9tdgmKFWdRFRI6qgaH16yE46AMQ2ssIiyBzVE0TCn0GZoZuZkh+TM/EfMoKwfHwyKTwcE2jrAbSyaSjItmzVExGV6pZuBoCGTg31XV1UU0HsDXrkeTadHRnsiYi11kFT1QtfV843RWEE0VABmNAv5MUkyr+UdxfXFU8dhjJ56cwSkTgJlQ+ZLQEi9AfWaPS9xlR2Ups6hk+L0UKWaK5edTObnDYiPkV/oAjSIyl9ijfOybGoiT4zJaTkjRy4jxiyM+OcuIQ/MbxX2vRKAAiszqMQkvblCK11BBCAwaeaHsEoIQLQRkLlr0szTCiY730+w5biU2tXhKyeUZp2si3HJ9QGmEpqC8lyPvsqNrfzjDD/GcA888Cs3vnfhYuLdNrORFa9zFxFJMvrx8zeBYAYxHnhrEgTFAQCQKMhVv7Hb3/w2eee/aWdC7Xx3nshMgopEQahZNVXqIpA1gcJu1e2tGhpMtH8ka7QNEZTJkMgA2auje5iO9Er6YMyYE1aU2+TATQmaBRpqBZ7pfM4rJzMpSs4NURU8mdmBiFAY0zQDlC0Daw+vnuKJ3yCfRrA9qWSKttwUfekr35ZACTTmigQTUjs0mlw0GIRUTxQMLyAFigkinSHSQA1OTQCW6JtPgR9h90XQqmENaCRiIiiRwalAOPBc2jCAaDReQA99oBIxjAE7RCOTz5umhPqP3F5+K//0nNPmeHfhvXZ7//ZaFYdb6BlwBp8JUACQ0ulYN2wZwMlNAveAG6gP0K66eCzL/r/2Vef62/8/KGZ9+DYCjd0BH6nWnC0VXLD7Dw6lsYLA44K+/6Nj4/HJ5tbo6PD6Yc33judT8711+4fHn/v+I1rF85tr11wwg8fHlULIWsf//QLu6cnk2rWnB5vFWUzGtx+eH/CgPsnn35p6zc+9/kvXrtcCiwWrkau/WSDhgkHQlabYmXAE4MYzRUhjxBBiJFiI3ItaQgoDQKyBBaexsRg8Qh8goiANLZ4+fAmfATIsg9EluXWRyOtrGTHhKMaQzWIKJSWDk8RgF9i22kovZjPOIwAgLQ2WyzA12XfiIfppJIGSrvt+HixWLjGV1XlvRdCERaS0g4QkawxpsiF2lgXOeMFme1qedmiuQhaSIoaZiQ99QBI4qv1QQ8BvGdj0IHPQ8wxpfkIAIBtY+S6wtDCz8ZjNQo7EBJhYBByRG3mSUvXANTslmsbgQJmbuPUs00J0KM2T7IsTAVzB4falbRb2CFwYQi1V+j3SmsYggCu7reOOhjSwEEZQ7LbZg7gJc3PkBqXgZBDoGUwJyc4hKrGOp1UwKAdCUUghj0wxCq9IdA65uRJd7Ed2EZ+D4++UsiVvjxyLGkriYZMfErhD/H8eOgKtmcM3j1m+aWsLDzFKYk++q4hgCkyYCFmQfCmtFLevD/+3nsfvHruMdgJopIHRFFLjKZdh0YY6ttNJxJiPl++ZWFu2rQBZKXkeRsIlh7hLP87SrsZ78x2pAWLBG9C2O54MpLzxXuvRlkNEXB10+JeF3qPEpjSnT75ehDBew07EGpvQESgctos3rq9O2jcl65d3phD05zYDXGuMEZQK01GV0KgjkEHZkYssvaLBoxRJ0s4gh0tPyS1gI+Wc8FYmQjBpDBFhhrR6CYykIhmqZEnQcaQI4cIgoIgBhFKFgGPlLkMihIXi/3e4u6dxQnxpVc2fu3f/eK3B3L6g3fhkweuBzAgWLNQeZjP2RMggcN56WwB7rQwI1x4t+Zo+J/8hXrrwldmKJXc3/SmbrZqmBiezF3FzN5L49h5rhm8GCAiNET2/sE+FUUPcDrfl0XluDn2DXm48uwTX/78F67f+OD6jQ/L4ejJp15cTOe71emo6A1rQTcxA5z7CY7H14Ybf/3P/9wrn3lyNKhms/GkxtIOCw/bo+F8EUhjtuEiIoRZ3RjtSx18UiCEqa5hDFmISdggHBI+CCXk8mGi/qTBmNh54dKhwNTvThL3zY7DsjYcT3p0PUPSsagNswUDGCIKWz4fzlEI8G0rskIIs2JmZHHBfxHUm4TnzP3CQsOnk8kReDamB1TW9cL5qpovGue9F7S2V5YAUJSlMT3NR1WOC61MHJKp47RCYDhR6P6+dEhJKySGUjaCkVQ2XjzUa0MjzrMHLMmDN2edaFWzLED0sndrD8yq8ekpoyGBJpwQLBw0BMul6XSHjGmbKOT0GsEor01tCQAg575LVyDo3c8S03VWWU3iQ/G9BCsN9UQEWVBD9WMH7KWogXwtCcRpksli3JLdro6VrzqfZoagsPSTfk5ODgA20NZJXB1tCddzZvwoLrj0YL66zh7pAYXlyecjrC5Kv1xNo6JYNPtRMwnvNRRs3+wBuIeI1jrhoRmwm7/23ofXn3j22XNPIhktKIMBWMTMPnrURRAkljnqRmEuiU3IxOwleFU7EZhpwonJicTSeohLKkIO/EQREgvXI5AYbQ46klaWWmpUnu/Io1BIk1gkCt1sjFbXbLwzYMCEquOh0hliWTQF4unE//D+KdnR589vnV+Tpj5B2BSJZdUp+h3AALKEfrEiIo7ZoAmteSSJ2kEUEhEvKdeRIw9WJNcx1e7OasgUEkIBcQCGKXh9EFFQNOA6FAIQ1ciMgENDCF7A+qz9izWjvkwnzVP15H0pvz9tnn7R/MK//fybhb37wBSw15gae4geecLgkYa9ix4eyKLsgZ8UIgyfcPWbnyr/xpd/Hda+UJXj9TmYCme191yUOJuWwBXUjmvPNYsHEgSiwhh77+7BUeVsb/1k7yGAWR+t9fu9WT1b83Bue+dofDSZTE5PT1/49MvXrj15/Z0Pmo8//swv/BqY/nd++oM7e/c2LPylV5/6C5/7wvmN0WmzN59OysGwItvvj6i2i6NDGGwrFkA4pwHyoSuRZsxjgm3IxUREiOXmETExSgl4qxHCqeSRqPVCEFL3zJwXruB5pH6t/Wj5OECXDrCw6mfSGZaIMJp2UThUthThJALqugDAOxePM4ZXaw1apd4IIAI+HXmcLx6SEDuwMhLyzs0n0/uns+M+XUTE0XATjAXRsB/oD3rOOYyuRkX+cE5juCAAAMaScwAABkJpVRNdJ1rMVCRT/xCNc1oFHQzA2rCQpkEswBB4tpmrd+mAW4OSUrPz6+hk7+SoUmqlp4/QAlQpJ0dvaz+ABwyHUjc7l+Dank1h7v8SE3TOUbQvR4gazW/InhNu2VVSshFDAAHGzhgY5Efkjj9fWUiIjsv1En1vCkzNOW6iv/kS0lO6qRSjfEUkBdouLzUCQnXfZB7P8TxnltDZdU1+W4bh0v2rV5qhis5xhK4Kld28+oql8R/F+1cvDQPGqFMyM3gPwFwYY9E3DZr+mll7uDf+8c1PHnvu8nA0QjAinoEMBirNzASUtgyyXcuV4M5+peiwFQasdjaN4yOTnLMdsWNVckqDL21Nzn01vsgEWkLhXRxTQ86CXi4k5TsSa5KEmgwpzB4TM6W2owMiCixKb6FYO6j8D2/tbpJdH20tprM1HnKZYhkJQ4VhbtMFkbSXsGrYRMSgQFXLELMnErHiGZEgIDajEIBB1BpGzKKHD4GEmNGYUnR5REYbPqPGZ6HjUL+2ldgQDItoNCtCTryGk2YoOC6oZ+D5Cvx0sHjs4pO/fdw3j9/4YQ3v7SHa7e2yudCczmo3nu/3+lhDBYZGtT/yAGvNf/prJQx+/sAUyNWaOwf+wNOxd6bxTsDUjM6jE2FRR5B2rsf5wt07OL718Gg296987tW1sjzc3T2aHfUb+9Y7bwo0PcFRvxxPjk6n2+yr9dKAn+3t3+/Pjn/rxcd/48ufeuXapeb08GBy2hvYvvSkgj7QdHzMzFvbO7Mq1H6P+w5B9QjFakIQFmYZYgnx4mlHQQklgRAhmDpJmXTQeUh3KBmWZMUeFNE4IrW2SJdEJaQlCF35m0UYxYd4WMJQrwZjyzswalQTEfHavQkTwU44TxmRj/0+WjYpbUErH0i6h6peoDgCWVSTg9PDRVVRYbygANUMJhxGEvGu8VpPDENxDA3aYCJiH11LkfsmMisioUuSRB8wIntGNJ59CmSpa4eICDTou/UhATNhn2UlPUsIgn7vQU3QchatPjzaPxnX1hKSiEMGBjIaX5dPLjdhBIjEK1ioouYXHuzylTMJN8adSa9ob3uE2TnVWQQIelVu6JAoUgoAIrH2v1qZPKzwFcTEu6VDB5dZznIQTcbewjiptebKaj0ioE/UPORoJJETzuKIaUqpmNzSQv6l68q5S8xya/n68hxXvsmxc+ml+Rvjr51hQ2eF6INXBjx3zqJA7eYlIADX8O3rH7x09dLLr34KIKQ86i5GvopLO4CAID6hX+JSiUZo96TVICzSojkuOCA1kErrxcIKsi3JKEvQNtCG0OsKg58t3dy1rzwKsPmfeo+2XXOgHcRAELywZ+4RMQKEop0BvCjCSAugwpYD5vFs9vrDAyjN5fXS4oK5BACRwpgQt0FkqRP8aVJKPaIRASWdWrFTMyaQDCIwMsVkRxEREgMGkZDUe8UAnoRQo2pFBNgYIbKI6n7w7F0O2zbIhAnIo9aETRMzFtegv1ivqO8Bh9Bb9Eeyvvi554qXrwz/v+cf/M47+z+9e3AwhXWAvgFrHTuYkh8w9MUcgv9LXyx/5Rc+53Abq5mx7LkGP+kBTUCmTcOMzkPN7BhYC1ywExRyuLd/eFovxNLGxojZ3b39YHywh31xrp5XFVnA2m8O1+7fvmlEeLZ4WM+/9Z1vfurc+n/0r/zKi09fOji5e3/3Vm+0hmum9jAst1DAcVX0LRbl4XTet7opXksECSNAq8cEB5f6AKTVTQWVYxEiCBCKIEWGRx2K0aomkuHJEgFcpq7S6VyicmqL2p10GgYvnpGjbqoavDaKO8sIl/xGABJKu2TsI1Fc6V4pmyj9Sw0VALP58fHJnmM/3Lywff4ZsH3yVVVVIMTAZAgtsgcnvjBG4/TV5kwoIRSatHYbJ4GgdZpHNpUxAo23IvEioA1L/GKxYGYG0x9QzxIvPKH14qRT5qS9EBGALSQjffc6mZxUC7HWEnpduaBwppktUYrEfhIQldL5rBZoLjpJZ6eXptW5pOPSb78M/JaCQJEGCO2VcqqHsVVRvLOFpJBKlyxM3dZDSfJKuSL5Sn2WF5uWnC9Tr+RCpiwNKV9yvtpVNrkKCnVdcMwi/dnc92dc+TGL087giR07wSp/zT8vMZIcVnG9Z0+AmSH07WQWIOYBkpAYhxuDtQ8Pxrdu3nvh5eeIyJqWNCCStQTOr2Juzn0lkwUBYo0ePAOqBMisvU1AyIA6cjEtfDmM7lEwV0yBtMUior130uPcndJZUtHS3NI3ms7uvA+h1tkaPccGSTGZGAAY+w0xV82GLep+//2Dw3lTf+2Zl84PHAAYi8ZQFG2jl44i+UvgElFjp4hH1LZ+6hxsi60KIsaoWhHyLIiMSr9ikSAEdk06JsG7TEQE4HwtIhTKOqj4oufFMirxareY0ZlaxgPo41Bmp9XosA8b1dhMzm+u4af/+oVbX376vd9/6+N//A5/eFj2PKxXdc/AiTVF5ZE2Sjj6D77ymFz9ZVdVO26tlpMp3ZTKgTzm+GjKi1E1cOw1WzgIOiLALNIIiUNx3Bgs9g/2cLHoGTqox5vD7edefamqZ4fvf3h6fLi+Plocn8weHpQ79s+/8tnfevGZ7YHbPXrf9+36aNsuynlxKDisuGhcZQtgrgpv+nYoUEOIE9bOzRKUV/CpLYG6YVaPUkQSBKAgJYWWoMEbJyuPcShMi/AIY0wiCO2f3V+Tj0m32LMPXRASUcoIbjoB6Ryx5F7VRNYJKTqDWHLlR5lvqq3hvdfP1ezOZDJral7fuHLh4mP9jS2HWHkmWTCzpcJ7cU0lIt5TWZZ1XRNpiAIBcgJLtDC1uK2zy1hPOw+dQIFFBBQCQNM0zODBW0uATpxHixxKyJ4BYQWSZWupETANQR/nbeevm2MsXCOWKuqB4b6tpW5Gsl5BE8vEBl4WjAO1I0QyNtjtQ1KyIcpJJAkLCIAQkweMPvdouEMMgbEAUTqLy/OU3hhmjwCI6JqaiLRFATOHBRMSGd84yZi3dmtxDrWzBghJbogG0kCGaLIAEfGNs9YyC4kYbf7FapEXQTCGtIB2ChkFgCSOKu3WetciIhTNL638qrq+EZHUfl6/QEQEDK2lQuq8a1mJBh+BaAUWxFBVJNvaVt4kayQm30E8D4CBpAJiaCiCEJP6cpxs07FSIWOM50WSH2GJwbJHAA7bl8fNK9vw7BwAEvu6mgmINdazEJpRudZUtWUcz06Ha8PzxeAbt/ZeuX7nsVeenkqzKWQcLQyK8YV2q9L0wcAs1UYUAsmScKaxgd57V7jSG9c0E7dcs9ATY0nGFkq/GBG8IBpEg+yFHYgYKDV8wPmQKswMAU9BfWCgFSJRrVisonEmNQcvSSBKnEV1tfgWakaGTdRwXL2BvSCiJQsA7Dx7T4CAxAiav0hAEoyUyAB9Q1R7IF8RisjQDE9q/MYnt0qzcfnSVo/ZTKdm0Kt6hXHNBhTcL9gxkAAhmUARyZB3qaOJCKMAsCASeBQEMAIqZBAZZBTWRAmWEJ4FYIBAEJmERJM8Xa0n0XuuazEWNSY6HlKryOv9FBkBy9wZ47lEgz3Pgh7LPnJRMWPf2QZmfFOk/+TjX/33L7/ytad+8ifv3v6ze/CjBzBqNi+WJwJ0C6Z//qvrv/Klr/o7hq5s1PWJa2pptl2xcPWRqZu+31r4pq4XhkrfNMb0hMW7piiL2lX3T/cHtZ+DwbK3s33hhE4mIs9tXzn3+HNffvmV7379D0oecc/v7U4vnZt/+Rc+929+/goiMs4OPZtyuwASJxXNrWwAAcCitCBYGCi9QwDWuOVIBNR/4VmjzgkQ0YfoXNGTRFSICAgwEAYdlwGEwYaKvdhh1zHhW0LSbyIGaDBWJUytqwEAQ9loARSU1MqFRUiECcUa/caLkAhY1ratUU9jJLIIBoO7Fzj2NodQza01fsd4DkEAWczssF97bfsK2vKv4YZ6gvW8cFLXawtfoFmgO53v3TmYzLYvXrnwzDU72vZAc2Hj6z43ngpjQA9m2dOY5MI5N+wNdSGg2BnJmlZ3jl1PgztAREQcwLJD0HsPQFO3EJFCYOrHYNZPZraP9aEMvzp054f9vTEX1jE3hTtXD4/a58MbNUUAreYvwIoAvr93OJ/Py9HAECdDBHfngV2dL3A76NyzZP+OBD2qF1GmoNZK2Unz0N7SGI0xsHKlVwdGnh6MrF0hGn5CJKSOA7i7liXtBCm1/g3eCKKQru2F88isqAG0un56hV5KixEx+f/CzFcyjoLSQG2eX7y9a1OKjK+z6pUrj99b3bJHXfkjEmzvuPprDsP8QkxR7piDIv3qnWfntHYSEXnmqqoWi5k1xhg7Wl8T4cWivnfvwYcP7l544YmyAMeeip74BgVc0/SoTNkLwQUQN3ppJmFrunnYq4sNuxRj4mTJXqJCMULOIPN/Q0dRVQ5i114A0OgPReCExiyCZFb3JQE8n2TagqUJhzuzNUJm9WkrkMTLOTevq+/cPvgK4/r5QTNAasp16vWs+LJhTwIetYWvgDrjENtm2BEMjAoIQCL0qEXZUNOPEmlD1WUxFG7PMjhB1d/wib0AGCow5jJpVUuA0C6x05ZZzTOhqDVpqQr0anEX6jeT2XxSLTb79uWXP3P1mRdf+HDv2g/ee+u92c0FzEp+xtf/ya880xtchAGdLBYjqcHVrqmapm5c1XDjxDtsvGhJIPa+AjLGApKMx+ODk7KRtbk73twyTXPipgdPbm7gYmZO7v7gW/f2J4ezvhyczr/8ysV/7StfeG57fVaPc5KihDFRibh89f9RJxsoBsNiZuLyQf9ULYVgJTqhJYD2DONKfufSNzl9lgyxH/VgRLDM/gwCgNpfrh2hPRfRlwGtQzfqJ533RuQAVzW156IoiqJw3mnh1cl4WphtNFDTw5J4NuYHuw9s3z/1/Kf6a5vFcIOJ2AMiGDSiOajZsGlJFGocYcuDswN4Zuho3K7WCAcA1lph5733QdikqlI3vt/e2QgNfgBQCLEt4L8ERgCwzExilr4FgOOTmVeLkx7MkJ4gocaZ/hf9zwk5lqcePUsakEHxQVTZKjuU0GLnGbOEs7AnR9CcxIcxPSOLLh0x9M9izO+B/JGlaF6M2o2qUFrETilQUHPojPcyc0uyly2WsjrhpRE6K03SbvY9Zgcvf0pEEsYvQSlHqUcerQwUOQxXYZ5D/lHDhiXrukigTSBkANBScM453zRlYYqi0BIVa+vDuq4NWkEoy773jSDMF7PXb954+ejlJy5sz6RqSpIFlEgOTAIuAIAQsIsMaVn0ySigCGooo+tMmEUIKVhVAKN1LAmTCglBj2K6VcA6kEwMeOn7wFFMYkIiIqGMRvuspP2SIPG03v1VuqDI5jkEnXYwIXsvYorMEhGoa3fjqHd+MN8c8nYxLBswruGysliXMdKQNagZOU0mbjcms7PKKsG9EnJ+AwOORYsBBFDTkoFYMKXkMSO0KSVaG9xFsQbVpC0ihlAt2JAXf9VuQIIggGBBTOhL5p1U0u/1XYGzmpsKtsu133xl9OlLo+9cvf1Ht+5/6xP3W6/Ab3zxZTbXmtOBsx+6ZuCbBppKXCPOe+9r11S+Aew33pOlyjVEjGjImuOT8Zxlsqih8X1hPx77+XzR609OJouHt3o7I0/+2Z3tf+crv/TLn35uPtufun2hPiNo/m48JAQpXgrQh7TzaCpDFG4zf3S1RCRI3b3XYAdQ2xu3JpVQpBlXDvIq5pyJMKC7jsvSuXSNz6tIm8IyGIDAhNBI6ITgpEWmB6XNTQLJGuogFERk2PnGLWZVU82JwKFs02Pj+vBkerxmypP9W4f7ty488fy5q3+uHDoNLwDnKGT92TyWS6I4qX8ahFgAJOfQAu3R47QLcY2U9DkAkOApQADyIlraj5knM88CAosrV55sGi8IQgIeLILvBn3mVyq/0ulFCADjaUNYGoOePQC1wXi+pTQK/VbYQYDo2M8CieLmqrwVjU0hJFUAohSv3lbvlzWY0Aa4K4C0KBJBnaMUsrCwqNEDQFRrNYREIdWXObkIw+Sh3bCcUwJobfp2vUEaErPkBdFtMFmLTcgYcIJZ1NKiqLG6ooiyXQacTuaZCfGpwtmK5hSl6c7goMpFQvpWNz1z8FaKOOso/uxL7WEZ+oolYwAdiJqIAdEYMxj0vffeMUdsNYYKKt+9t3/jxidPbm5Rz1TQGIACKDTVAy1NY0Rahro0vcgsSGuQAoCsrBG1wESiDppNR8Esp18yMIHlGFQCXWoC7Z52pEnItjA7z+17829yHpy/YmnA/HvprrfzOZbVc96r1VhZo1/Im/tHrux9Ge21NdeUE7B+HahpKiKrTuxEozGWzUmzaPUwTpIWIKoqjADgGbXuDZLWnCGAUMZDBFK1Xsra1DInVG9Jv2owLIDYoV4x71sPFwGBMAhyOV93JSCxYFHXeLRoRmt07vzaX/+ll1/dq776xumf+/KrsvFLe84VfnFuMByf7HkvrnHs0TM0jSxqWDTAbOq6BoteWBiJjC36LDRvdvtFc+mxSwd7x+P5YufyxSNxR0bMGj43Kv/q5z/zuWcuncwPHpx+DA1tFBsz9O2WYZs5QmgZnG+rLpDy5Tx3Mu8kmBnIMJgDAUCIqcUDjPkxcpYWFMZkyOgxRlzFJH2H2QjE6OUYuwC5ktx+3wqFGDdMLIIXSNMIMhdkEQP6uIcOzmN2jrwTYywisvfMTWGsKahZzKf8YHy6KAp6uP+xm50+/uKXRheeshv9+XxBwOg9Chtj1C/TENgYOtBSuUAKNJNYZxJVI0BADauOGY8AGmyotpggMWCqpIle1V8vwkzGNp7nC+1MxZcubtZ1g4gCHgXJcOZrhrizUZMOWBKjEtNN+/unzrMXz+IQSwICIkEH0lE9M6SJOgegh5zKaCKbaPM5EFEPWbCqLGFJpokiYlCgpf0+Iw0tPxaElDsSuC8zcux7AgDBdEyYIlaUN2UUrSWjcXWKe855Ior5w4GywErY2hJMMEsDhaivhDV21ytZoY/8A0cGvAznFYYdpcg2LCtjCR1xGDJ0lMwKJDFoHM+yQGA0Ccab078h2G2VJS9/gyzcfmmMKYpCRKy1IejYmrrWmuFUFMVstgDxzIgC+xN4493rn3/+hbXR+sI1BsA5hqjYgeQ5RbHCeDb/dIWJZY1FlyYoBCKsua0E6GPZltSQRaj1Iyxj4KMhkLHEQGXy+aSbl7Y1R/WwkJVNyREgfdnhnRj0IQzJJygiA/L7s+qth34Tp+tMOxtGynJSlyU7Y8RaG0tVKT5EQaetIB8oMHshQkBgES3OE5QnVlKgtbrVjICC1OaNIAqLGB9fAZDFKuoNFCplQaz+Hi7PgKF4NGm1D4jZaDha5/rU1+N+OeiPilmNU+8W3m26ybM7V57/St+df6ku/Ab0cL2aPDip/amrm6pydY0NFzWXzBa8cSxVzQUVIEbYClhDvcKORn2Zz7yUfRisndvcufL4uU9uvrsm43/t85/91c995lzhjk/vV33sDdfdKUBtzVC3loDamF4AcMJRhQoImZmICFr0JAiVSXLEoIBIkBuWgkwZgJkVc5NMKEy40eL8EhlPg5wlYEsuocbFLFE80DxyNkHXgqhniFD0op45h4woCZGp69pzYyBkkda1m84WMzru9e3923eL3uCxl3+xt3XVl3R4urtVrKOgtYjChgiJBJDIojRn0sOlt6ePELwo6WafFro0Qwm6VlTVDJnCzk+a2oGgXSvq7c2C61otzyQG0FOmNS2d/cCApQtNADg5nQMZa23jGkMIQh5AwBMVZy6GM0NEG9QmkgJ2AiZhyBKLTVNa6OghtGQ4o+mIGCwChMIaaS+xaIQ+zogh0U1EYlStSC4SRGteMsetAmJpReFPgcQFM/yLM8sIHySmu9KYPR8ZsZPIjoic+dWXtqDLOxMHzYftHoAVRqtkeGmxESk7pulskkkXgfybR+m9siqKhW9Yu0rEd8Tcdhb18xXGAoQKpojIXkPuLZFtGu8aFs/WGnDwwd3dDx48fPXSxgAMIDvPEsxc0YyghJ05LTQtHOJGBZxgXOW/uYE3MACjncj1IQ8ogpozmyKF8QxQp7mASBqzq0+E77pFW1epEmQop3iV2o1kLDbw11Z4ytojCjsAYAztCNX+LsxFzw+qYjalNw8mPWy+aDa2y/4R8nmDQITRJRY5IptgHKZULVwnLtKGoXFkugDBbmwJOTWCYWZUgUYXoAHVRCKIXFobl99R5RlIK1NKtjsexIioRSve6QEYgE/Kue0JLHzjT9AToi1taXHoSp7Orm7BYP/uj5vv3bi8c628+EpZNPPK+6aq5+PZtK6ccTBku0FmCOALQ0RkqWQhBNM0vqqqesob6+d8zy5sfXx0d7vc+62XLnztC7/6WIOLYnGvWRQb59eZYOKwwPHQ971l5mhcQknnLQgigQxCIIwUVAlEba3H0BI5ABAgEcCQhiSMlFwPaiDOMSe/ck6ZGNIS0Qifo0HlTJyEluAsI2r8g6LRsxXrWUJWaLiFhWOpuHx6kPE2W9immnnvibCuqmrRmH4Jtmemg8O96xeGm+cvfq43eHpez2YHD69u7cyljolwhgWQGZHMI6VSPYYYRQTfzqFjSUrcV4ST58hLjNyWoKySMUa8M1ScjA8ZgIUeO2eHPeC5YEECDFQw10iPbIFqc0DkKZKzBVtT2gIbB+KZhYMpvOV83R3KqE8LUAQTVR8WUTmaukwLzmL/oNmiiHnvHcxKkyewMkKQuFi898qAk2VGqUKoBe21UFdI4eCVkuWrc4BuvmbYEQ3YjtW80/eJCC7hViK+q3gvspyWmt/2CN6WRwm1W0Ar2AbRNpWGyn+CaNLvcI6z3hg/wOqFmS1lFW4AALHGCyJqUCER+bpRHYvZiXNgyHivZ8EbaaoZETnngD2BGdrh3mT2ow/ef/apq+dHw4o9GwQOdTMipM7MpDtbTVy14SOEakFBfxMgQwgM3nlmlhCHDCT5ODlpA4BU1ieDDEAGnRX4t7elAXOOm5t8oKsTtxx6eY9alEuvA0QEk1paLZw3DODxwbh+HfywP/zUGvXIOtEEJ4+p4jwiIBOWcUxKDaByhE+vC9NBj4BOyEjQucNksuKDKTCHiJKbGWJSRIAGGhEgYOj6F0SDr9QKzl6YRRyAaxpnixJxU4zDAtA3wMwLV/GWlNPq3PlzbBf7/v70u3T4cHPrWjXzvq6b+dTNT+aLauF7DayzGdFoA22BnsGUBGitnUyO93bvWLDN7OT0/seX14rPfenpX/viK1dGJc6nuwO2db1NfZLidLHwVtaG/aKuJGT+BxExqh2tSx4otN3TgxwXHrwkqLwOkciwZPIckATzPYUh075rGEMOqwx/ltASVwh4wOeVbxBzz7RE1pUNiIiIDoTUqx0Er3jKWCgkUIGk6J8gOcVpiDCH/KLFYua8E/DeoxNGW9QMh6enP/rODy5uP1k89eRWz9Snn4DrX9rYak7uw2AoiJ4MAwUQIxOg0PKhCK9r29V1Ki+14FL/ZaaqhWWEP6MNOpoxhMGDHJ0cC4ADeOrqhdI4L8SIjFwQOVkQ9ld2ITxu47jd2GOAalF7KESkaSriQsARltZal/loV0++RE1UpT9hJk9J+JPYRDUnNGnXEZERNLV5CWN4BZQt+YtvlFDVIdEORd+WXTGzc87aMvAG6eS5LhGvhKBqOkOUxOGMISJysZq8PquaHGTEtFuRI5t81/KzRGehcxKWjoMKSR35dIkoQ3a0FLyOPXTPW5xh+zmHZ96Ptn1x9BMvseef8U0rAUjnp8La2nkAMMawcy30ALwXInHOba6tL+ZTEfbeF2bt1M3euXVrf+/gfFE6bmhQpkCEJdB1ONmSqYeME9ADuDRhdU+sxh8ENI5RLqh15s6yaCEiawHvcLXhNo5jbZAVWOUMLH9pzoCXtPNVUCcAIiJDQDkRIYPihJlTcxxENMZYGc5NQ4RY4+3D+rvFpCjLzw0H8zXrvRfpkSVj0FpLBgCWIhPbVyeEz+cmEmrhJVqFyaKZLBMAAEZiijB7EOAUcdZuKIloacMzElUlW7gT9sBuB9atW1+w8VacmVd8WhKXvbJPRJP5UTmdgOlt92bjpwZHN28sZut8jmQBTeX9uKnG4ylPqqKSXu/c1eHaljGjordGpuz3sa5mR8f7TX064Pqrr1z79S9+dntYOvaHh8fFcL0CLIZWxE3q095WzzupJrM1O6zQA+QnvUNgNTytFSCD4SCkooK0PxERR+s9kRUKojaFkk4rDOZszRWI7BKtwJDuzks2odURloCf3gWZkiMiqyWdIhMEgjBVvQ0ylUCkjcZlZtdULFJ7J84TGCC8fefeN7//5vsPYXv+8CLhlfnxp69tPr5d7Hn0ZngOvAdCsEwYYuc9A3oGk7L7zoKJj2TWB+7hWwCma0nayIGjicgAocfwdDIXBBa8fGHHaF37sHLjXbeB7xJd6jFWYhknA19OTZsHfHgg/WEzHbPFIRnxHoVrYZseTwvDUK9OT17QE1LHXy8hr0DAp2cQEaxRE0BaUnCyWhCWYNGiEKpmAIHb5qmBK8d8bXXrAoeSk4hYGMvaggW1xrYhARGP7EN/VkPE7fYjsO1ootpbDgHRiGXmhj0iGvUEi6CBQoXUaA1ideIjFFG0yaNY9Y2gyBskr2XbctqecDFLSKkLuQcYZsYZdc6k1Jwxh1BUZBATphxEogx0HRM0Rn9cnq6TBBEREeeRKM9DU2hIrFORrVSruyAzazRkoMWARNR4R71CEGsRMj0AYAZuQhysrxsDeHJ07BoOxmCZlX175+HkB2+9+/ILz/lZ7bgpMTZMDoESWkMDA+UmAS+C4T+FegPEIgi8rP8CABoRcE5tSOJBlGuGmHkxGGqsMiAzFMn9AcAYHcRlcPWFbmXJ86c75YSJCK2WYWTv2BZG2LMIqpWOWX2v6uP0jfNxF0SEwff7fQBwLtSN8t43TQMAhaUQPIXIYABYO5ixN0iWEIFFm0aD1jHoWV8tjOd+sS5N7+DO9HUQ/9Ll56SQprZcF7ak3vpCCJCLUgZsW7wC0oApESmKAjpilqqwyF4AQAjQBpz1AIhCGrQVPeEaNlQQsTgGirtFoLGEws5XhTGIJt8xRGQxIgLiMeSVIkgBWCwMIc6wBGAwjodSsNQNMnADw62hFvMST4PG+8sD78DfB6nrejKbjE+OxkenMHMgaI9PT7a2ttbWt+tirRxu87w329u7tk5/7oVrjz/++PmLF1zDR/M5IpYbGyKyLoLOMUDfjqRGFJFCFuI8AphYw1mCausZOHShAK15qEFYCMAGuPXfoQhqCQFtNgVAYBCpUPE/mLUysEBUVTkyRGWNEkYTD0JG9UNpxQIWCTHIHZlVRGxsIpJHbyAag8isoewQqoGLF/FWki4XunpIWLnVABDE6Jli9tz0yC6YHRExmJoNgwBXvrLe1M2CwTPhieM3Prj99R9dXxRbfO701syd3Ktee/uj13c2v/rys0+cH7709PmqOSFrCGE8Ph0MBoUxgODFEBrnPCJaW4pI0zTsPBGpCwDJIHLDjfeegYliHQaRmPJConn9UIsX8CQehUk8sKuZm1pofQ1mR+T9+oLnRzV4sB4Wn7uC9cTWpUfhIQycmxoqvJsCrCXYAoDK6ABgwQAwgFhhw76lr865wlhClEiSBYFZliucxSttkvaNktawvhydFMh6FMSy3Q3knoiSAIEsyrdTPet8KAhxC8Ce1fmuOOSFk40416eNMRxEdS1KGAv2ZsKECj7IQOqh0bdo7SE4Q4/JoZFaiCSYLM0WVmy5q2lCiX/nIk76KVkdoySDS+MkeIZxsujxfD5LaVfp15+xuqVvgoi4cqcO257q/P70itweKwIAtXep671nn371TFbAs7tx9877t29djA+XjAABAABJREFUPLcudV2zlKlodpzeEmDTktPSRBiRHHdykPJBVhcbiUhmlsjAgNI+nsO/kzWUuQYwW7XEKwNha65XO0TadBHRIvLp8eQZYeZkzUv+5jSrZPdNO+sqb8AgiuPGATPx/fEYb/mr56+ax9a5bOqm2eJmgHbh2CCCaWGYNjRHnqVTnJDW+8yiHtAQRJtnAGggUsPeCsS2sCjCwAiokjWFZMosqKJpGiIDIBQjoaMqGTrAIwBoFQoibVwpXk1oQmgRDBgCIQKPZssa6Q2asn+JescNHk72T49PK1u6B6cPjH2wvn1+55Lb2T7/9JMXPv3MJUKPhibjmYgYY0xZAJBzjlGitQPbBM3wv6D7YnD1iizbGtteopH9JRWWQ4oqAKIhEmmLKmfHvovAqCGvKhTG7wJTDGJ7sgDHfynev3JFDGU4a38TqRCVHqW12VIM2RMRFpei7Tg10gSoPdfsxFhg8FxbQSbfuFoq33jXW9s+nM1/7w/+eG+ONZULjyXTzvrOonbUK+4dHv43f3j7xce3Hhy/+NKzFzYHgxHQdn+NnTPIaBEIietezzLzYnHaNI0WcRMnJD1hL04Q0QKSQxEC0FLQMcUf2kyeQJG8ZwaOpmkAMMbMZ40xpS1gMq1Ox+DEPXZubW195NmJSCqcwNwxK+Z0QEQsgwf2yAhoOKt77r0vbUGoIq26KnMW1fLLCGtIs087IZGBSQp2R8SsSnM+SD4/g5RMFipdZ7VDu+jiGVlMVtZUMQ2icyLMhxNX8zHTMVA6D8K+DdLLiW/k8YhtE+loWhRGJTFRWIjl+M7G5paDrhCsdKjSzRybK+dgifBcNjrlo63ej3lCOrZPnclnJZqalwaR1sPduTju7+qrl3Lt01QV7hTl4fzyIAJa+U+AUJOUas9DXyDU1+/vv379xm+d+2IP7Zyngr0zx8+/y+cfEgG1csOZE9ZJpx+RBTwgAwiIDU2GBLTQgQQLa+dlaS84dn1oyWUqcRdlOGn5dM7JWMX2ZOxJ08uLj+YIo6jCzEQ2RtS3GxXOS3wNAiBjURQC4rxnA96Yw6qa3Du66nuvrI821u3UTQuo17wpXGOo75dPhAqjbUxWDuf4l5rETetLzmgCgLYoDIQYTKhcyeIRgIVJGACFxImgSO7dd84ZI2mXY3BpCJftnCAEBAPgJVjSSdT+gZaKQoQXLI0XI1j0hxdHl85fpRc9155PDz4an56C0LlLj+9cukpk3XwOzaIcbtR1LeIULZlBJHVgVP6q9b8Cr1WyGXNAKB2j0HA+bQmA7wi+nUBcRNTWVWAIhXLlJ11LxyjVrcy+C7IjtUpeFM2XgjEzdJTsiluPioYBCWP7y8imY8GN8L/wlOpjxqje7EL/dYyo7xpGtAaFfVXPxTWNd+Vw86fXb/7pD986beDYIQzX+uWAj6pr154WKt794P3xpPq5n/v8e2+99smffP/p93ufeeGF5y8+9tzFC1J7cQ2UUokrsISq8d6L89basiyZuaoqKcV7AC+otJFYWPMk1ZAWLWuMwsgxDc4Dq9eLUdu4kSWaT6VfeCj8w6PpfAEC8MyTw9FocHJyAiBERkQQDTNr5PLSpSCyXnPQ0HqCWJIMAEA8I6Iho6UniGIiilA0IrXcTZjbloe49JqAJdjtZN7d144aEeiLQK6YAntI+l+mZLuqNsZolQPVZUm7eKcYaFZTnx5ZRCckMcILIGRMaeuzLuKiAIaCQADQ9uSSJNPqHLxaBVKJyU6sTfq8yk3DWx7BrR9VkwU7mvFKPFGmcCtsZSUqe3UOj/o+P2D6LpLlm0mJXXcVIrKkGufsJNXKUI0PEZmwoEKLvQgRMJvYU0iAiC2ZweF89tOPP/nqp1564tz6ojpl7HCv7ovOXJdHTV7NKmD8DAio/MbBv5CV9EsKSgIssnYAzOegFxGd0fhIAIOpVkP6O+HQudCQbTRmNLoN5kfE2N9bOYG2shcAISBY2SwBACqQRNgJOEQqbMGN1HP8s6P94d3Rq+e2acNOwaGbDpzBxjcmSrRd3MiRfBVuUUQwiX3mWMSY/ARqokdArcQuGlwNyAzagXilAonzoLn5gJDtTCedAABEfZuWKCVxgojOxwJAaWtxwI4aYEAUEkO+sO7FF1/2jWuapnHQLOoampKw7PdniwUAWGutLZ2wGiSsKZKCGHVcjBpUhFXMF0I0AAKU4iJVuFMYdoLzU8l9ARHQBEqCDBYIoIneEA5UJKQCsHIYAyngWH9CBFhSwMpSo3sl6SDKRfNApJCOF/ATUmhBwtLAeRU9AUA8a28DEfE+OGgkMhEC0m/Zu0Vdedc03nnfSLn2o9ff+/YbN2G4+elXP//N731fmsY1Dr1sbW6/+Mqnvvej71578upf+R/8tRufffmf//7vf7R3OK0/ed/e+bmXX3jxycd7AAWALWwDpTgPYEwBzvNiUiGiKXpVs2jj/gRAy2UQkNOUXy8i7LWqMYggs/4J7Q7r5ZmwbLhe+Obh4YRhYGD+9LUBonjfFEWhNFyFYzjrUmBaAbAEjZAHz1nKuwiStBIXogHw3HWzJ2KxOnTazlA5lwgwl5jO6CWgP3Q85xJKe2MIol4mTBAVjqDeEFlEMMQZFUj3QJb+kTSMfPJJsaCAxt25gaQJS2y03l4rPXby1XVe06WLeZgYQE68OrHTZ/LpR72uM8IjopTTjB41choknLqVYdII1FX6NcoOpMNXIMajaYp262JIPgKK2yKK/Ro3SqUx4BjAMOJHd3bf/ejWla2XxYOYQMdgWeQDTEwgu4QFkRovfqUDWy4epb0wAiLqv0TKmkh3WK9a23T52KJZ+9JocgxDi0is0JlzJsiOTMrBzTeog0irompXQ4UIzbQWaVtAChtxwuIERAwCOWFvCcxeNf3Jg72B0IvldtGDuhRTIDbex/4f2LawfOSlhBgiG9aZBHEBGAQNMoJBIkZtYOiD5TlUKIsxsYDOizXIGJKR4laRsE+qmgeMvjsSXArXEkBCASHfHn/gKK8AMxsyVBjU9nDoLaJF83BvPujbnh2Q0QIZKCK196pCMXPtHQJZUwCAY08hBgJTQGc0MhMEVUGinJlME8SRy0GUv3IirajfbqQmg8TUo6XrTEK6KhjlH9I9SokBIJVEDvW+AThP0clxtVMeLgAfQxISpwYKIF6LIRkq2HmJyfqJrHnnF7OJEez3+4SFYw+ewNuvf/+t67cPjr35V//CX33yqaeu37x1eHzgXDMGfnj4cPbajJ1r5pN33/zptceuDmzv6nOfefqZp259/NHv/eCnL+0dfObpa889dsHMXb+om6oW562hgowN5KiB2llEIPQgDF6drrEwJUfWy7FwtbigFqgwJAzi2TOLR2+orHlesTuesAezXsILT24vqhkg24LUd57idfL9yvmjZdD9BUZnqKVNRnPXfOu7CjldK2k2CaHzXffRmkcpXydvT7Ska+afDaVOLIHKcOwfG+zbWkM1bL8prIY3E1HR71kb/rRlEQi7QAjK0aBBCtRZFAQsIkKAHiBljwXKER8PkkBWSzIepBbX236I9C89CdJde5u3rl/oLJg5SiCJZAPEFI4zuaacdT4fdS3NbXUvltinanK5BiyEImf0E9XHOC5zaVbqvVP6xOmN2EakAyKaltKXhpxzyFRi//Rk/tb1jz73wtPrxbDxbnX+GQdq16ILMQgM4FimVfWoVXctyqqfgACI1mFRVSaTZykjTNEW1JW6RKA7H2zn2TEFQWi+xIaWe3frpc1IBaMkqq6PEHmH0b6OkNLxk0kwUnAAIEE0WnceDRSkflYnBfW3G/c+z+T0aNjvP+cLulhWfXSzuqQSs67YuTQAK5uLoYCMEuUcJgDiEUjQWJ0bRk2dkQEQRG0fwsiAxCxoVUzL84BFTARgtMDreiVK6DHSJ+TzAEa9U0SEKRTwEkEr6wAojI0AeEdU2AILQ5s7w7qazuoaDRZlX5DEO+Taey+EgiTMSIBqcmtANVpVVTMpNZZrXlFG85hjwezKsuOCVSCoLkbVWlg2I519rfYdDxDTHgwAILFBnah/XVNCCEJgcHhSzfsILW8Oc872XUTrgXSYNOgr0gWeg9evpf8i0nhXGDssBkdHRw8PDrcvXJpMqj/+o++8cQzcg5rKG598vH1+2/umns/7/f761vC7P/zJL371C5/7zKc//vDGG6+9/kf/9J95dutb544mi2PHN0/ne+98+JM3P/zc01c/88LzL10qBr1e2StABNgBgPO+WiyGuEakzcQ9s4CwihrOlBKK4IUrShio+bdLaM/CIORBphVMFljD7Mkneo/vbJzuHYamZNjJtTtjp1QDdoxDolo8GGdNm66k+fshDTIUsxKMjfDSPNoTzsw5TU//n6J/g20GAVKl/uXZhDFjaVDUUu8gS/uX/kVEJgQyJNRF5jAlfS0Rtfng8cBAHMEICkDqSkqAEJpidESNnPToHJcmn0PjTHCnj/n3rSB51jdpsXmeRgC4yOrEliac/7rEcdP3Z7LJpbdnH6JIDgDddIKllS4hSTJsKLuF+IhSSjU16hCBoxOCkjFwnthQr+eEffPhvYc37j/8whNXdcfydXdmu8IYjDGLyoGYk9OT1VTgFibpj4iE+a+dxSIvNXjATEdMQCPq7hQAiDCztTZlIqZHmBmh1aHTS0NSXxzkTJwBISAtCicQytC2G5TYFaEnQICCCAXEUwOGGiMDsScsH53MvwMPnWw8NdxYQ2y8N4wCXsALWGMMIbFwChRIgyfIpemxR6SsEQiztrR1wMQAIEiMKD4kKJOgoGAsEY/GlIAawJ3tiQf0ocKOAKSUJwCOldokcAIFHiFCCSAIwSENBhANCkrNYIh6pkcWEYGFmRsWLwsALgqDCJWbV40zwD1rqsYbY7SPEwD46LESblWDHK/yigX5lxIyfeMTegR0ZokMZhIVZlaH/CzDyomOO3I2a9aQsJx9Bp2htVXEuH2AkLWwQvSimJOhXIaBAS27TQS1KUhafmJsC99sD0b3b99HWzz1wqe+/5PXb9188Ou//duX9yd/8CffFHHvvvOGcPXgwX1hKzCo6/nG+uixy9euXL6CUFx//93BsLC94vrH7z882ls4X9o+GaigeX/vaGo+uf7R9PKlS49dOF+icU2FKIPRsDfYHM99YZAECC0SGRQSYHaL+SJCWScYhAYGI7F+sIh48B7Eg7BgVVVQ0O7BYjzzBuWzr1wzTSOMZa+n8YNE4L0W5DrbCg0AltASIoj30FjopR+UjUdDYqQdhlIN7aSiASjdaUOoc46Q0YvIU1UllxYV8st7n2o7a2jVKrmBjOQ54aIoQtc5ZvGOiFR60PEpzR9DBEykdGGWhOiXk5ujJa3LfdOqurU29SLwnPA7x9qcEYoanbLl5EbLbAKgqjxkNC6e/I7ml/+ac8ql6QXOkQFwyZyYtindk5hNzkHPvFZ3Z+nXfGCdq1IJVfYVh4wxHPva5iTHgBcDZC1VXtDsHo0/un3vUxcuLoU1ZAsPDHgJbTQlmtFMJrOUErB6LckNZ2BehFWu74iwhplC5KPLIn/SdjqKcqeKdXopdPGttQ2szJCZtUEhYhuxiSCIYsmgziSL2hMRAk9imdGBiBGHAAUAiXf+nO+NJ/XrcoAjt3NCWwzN0GrX1UQ3EwdaxYeE5+2OtCtVICAiCKNnBvAajhwWAmIy7BUBawqBhtnlHIUZwCsm+9D1M7yRU61DhljnF1EEBUsBjxQMLoioMrbpsRdXyQIYrbVUWGAEL76ujDgGz8yAtt8jEBFfjUabTdOo61fDCFbOWuiUHJefoIEpXk9EoI3aRMTAffWvIHCCRDN5ONhxWzu8XHiZ+0bMOeM8IqL3HvKowKhgYDD+B5FVRAQy/6DqzYFwKTnK+hPngZbtcWnFShJouKFU5SY29AUAKs3h6Ynpl0jFd3/043/2pzeeurb28qtfwru7P3zjDaoXJ6fHb7/1em8wODmtyVsSIuH9vROE8u69h1wUM+cRnC3x5PQQPW32hnWzELT7i4Ubn+4b+867d8zbdwZlWVoLwB48GtpZL3qF6RfFyNr1Xm+tZ0si8bzeLxDRGBMyaUhLknnf+BS8LSKsjTu892SbpikKevjwZOplYx2ef/by9OiQqLDWzueNsWjI1HVtDHU3qnMeLTI2Zka+b5uRH26lm6ymIGlvXwmGIGlcIJTMEtwqhrWPqQntHEizRYMPDxsfojoFAIGTYOhiuSrT+kYENOkybqEDEfCAAAbISyjxAdFvAcAIPbIkiF45LaldBRH1ZU3TkGgnYGRmF5ubIoKHBsEAghNXs9O3WnW3ACkDFi28EPRy1kwACCUjktMyEErRAjWhgWsgoJy5I5lZw8HCIxHjI353uLVKjgwCGPT1xjMAFKbQuYhAbMbHapZIwQVENv1JGb8niG4yAWijo2MDOAqyb44iOVVF0rTkoPoGiwa125GfRB/33aSEwkBHEH3Q58Jjhowx7DxKCCzBqCKz57oc9mVBi1PsWWdHp0fVjVv3dj/73NXeGgN7bnpF6WfOGiPkG6wNgwhJDPkTBLAAzLVzdQN1Y06ny2lIkbIojwgFEebSABASCZIXBA6AiiZ3hFhdWc+n2MiREdBQUnw9N6CaEZN4p1oYGXLcgFpiSCNVEJGKside6xyT2mnUcUrWNuwNEcZECEREQ2QMWfXkAcSQY02RDiHllBK8I4FuCs+sIWzosIcFM4s03toF+FGvXCzwvY9PR7T+ta3tx6rmsDfdkZ1hNeSFuJFvDBsu+zzAXhXlekRjFEuZuaBSeTUz64wEtD+wGpsdkYYkgwgBGNZCMcAcujIgC3kR10ysVrzi1svhwSPVAgRCKKRhwkCCCCxGoFHZmLAApHBS/VjbsCCjElEkICLPhUBjsUBAcgYAWGqW2mDpGQEsEiIQexCxhHZRaxSPbQNlgy/ARgmJwVCS7wEKA6i5vBIM7SAE6LSBr6ZWGEKDEZdSjSZEhNhivPGeRPGOBBDYAyq+FVounuJZFhAU0jgoEU+Bf4sq9wQGBEXARxIkAsxipMEQnaO1AVCwBDAoNSGilreSNi0QoRDxIo0IIhQA2sZAm/IBCjCHNDJFsZ4bSokVVCANuFqcEzK+MPyw6RmcVu4bb7/x3mThnl7/4KT+3a//2d7+/R8/mF7rFxsLOP/ZV//jv/W//pN/9Pf/zj/8h+cuXxGsf/z6j4vC7Jzbrt342tVrd2/fqrAYlGXfFrPJdNZURUmu4r6AiPmN3/pXPvjw/R/84EdbW2tENB6fIuJ7t+Ty1SsnJ/tFUTSLam00kqYmwB5Pn7x69eL2xs7aiJv5qCytMdaWAhYRG1dZg4vFzFJZNwsAmsyONgbXDk4+nM8YAb706ksbm09MJ3u9slfXtbVW7T1l2VcqkHA4D3JCRCvMnpiI2LPJRCdltDlVVXqaa2wB1SIP0mOvFqoWh0xIsAoYGy17xrSBpQChzSGIkBiIVXNEJHp7ZclyC5FMdyTuLhvQ1QaaBZjisNKviRcaJO50uASvzFk18iCJEsTyDyiCZtlyG96Y0bvYLAwgVtRKb0z3rIqxiR8vLRaX2GGy4jJDtFikYdOBeUQMVgdiS9PIv1+6oQV3Fud55oTPmL8+GnEx3zjpNttY/ZcKWzeMhmxBu3tHD/aPrw7WMba7Z6NVdR9lfYs7RVSzr5vl3mAtcYkRYcxZeC2iVpRYHTxvJ3L2lmU5e5o+ABBi+I1pg+9aspvlbYdn41tN/D5I4lEE0+iHpXh4IpIsojKfG8bWvdkvAiBaCcE5IaIG7Y0HD7ZLb564tDEtG+MOYUxEPSlKbwlEsGnlgG68WOY8azcXoHWGdrhXkB10wiAxeTCf8JLxznH8TkA3BkVd2tCBW+xOor5VTQoKcmvMkoJQBjfOGWKoTYJY9G+KiGCQhQMJ42WMQDQazh22O0VZ6a5JqAAoCJC2OgJNINZwXAkOUGEeYm4qBjMecVQxITtKIBwkzxSizKxlWAQ5tMhFDVmVIB0sb4rSXg4PRZ04TAbQUCEg2gYzPuNFPEmwZrST10dMXYuMp/PBsFdQzze1tbCYnFQI9+f2Wz/9+J27k/WLj73wzLM3Prr5X/3hn4zW5C/94ufv3rz5xp35F5+6MgJugKCkul40TTMc9r33g7J4/otfeuXTL9748IOvf+fHVJSHR6f9fm+t3180s89/5dXN0ej6e+/v7h2sjbb6vb61ZVVVa2ubjPzcs0/evHmTjDVU2kFxcjwujEWWB6b8+MN757bG6Ou1wcCgzKez4XB4ud/z3vcKu76+TiACHlmIoMLB2DWONh9OD/t28ODB/uT0YH3QbzqBzB21aulL/WANgkcqERihxCbdR50yrZC4V8PeZB4gUT+LIQ5FPyHF2XccC1qJJiKcVsuSFZIpqKaVDk4ETS42MG+xJDPxJVYXUDx2tSQizRBftfQGlhut4szLNZIk54UaXSIt88iJTg7i3DTXoSPd+Ni0wCUGnN4bhs3Ku5kusVuaRv6USPsnZPfns1plGPl6W7aR3y9h59L7I9AZO15VBuh4Q1vmjcj+Ee78rmCY7tHCYcYWvpoTQq/fv7s/vX7rwRcuXy16pmHxwkDoUYCXs6Ta7RZkFjR2XtXTxXIQVveNmKxkiAhoEs1D3cbQgl4y2iyJ3CS4pYtDlzHTJsjH2kZL2yfRQZ5/CRmg0m0pSgRi8GMqUMrM1E1EWcUxzBwWacLCTIDeeSkKIHvvePI6PizWR7883OYB1GUNyMYNeoxI4qhBtJHxk0bOJgmmM/9WFO7sePZB357KcYSLGBhl6XCEHmFB8NHlxxIFSABafEPtsKH2OICWYw4ZwyAsLALemCJspDgtuK/m1lgoQgQJ0wDEyd/JHqLU0jmAHIxmBAEZRE+FJpAKEiBq/hUgxsxFjdYBbHuYAiShTgMwKXHJTti8qHUyI2hRePRR19EvE35CKNOW6KRILu1lg/uOpN09Kd57AW1LoLRF70RxrRkp4rgAQC0z782gX86nC+fBAs0mk7LAO/sf/dkHh6/fQ7A7bn++vXZ4Mp2Ne/a//A//5l+8fO2A4Zf/47/lDg/e+uYf/7f/7PfPXbkKi8Z7f3p6urm+dvOTj0rDn/5rf+lw70FV1aPecGNjY76on3jqqd6g3xv0p5Wb1e6b3/meiHjGRSWD4UZRFMbg+Z3zt27druZVXflnnnlm0F8/OTnxjbPUZ+t2d6eXLpzfvnDlvffeIbJ39g/unFtzdeNczY5FwCCMRv2NjY21cvjw1lujQa9/buvw/vzOrf2D/Vvntke1OOjStzPBmD7YwpgFWDU8Fl1fcTgJj0gBhKQcBAmOBAQpuSq91g0xDCDCsVgPqV8BAbUvjRo8U6YGoSZipbdzJxctoU4kIoisEl+SCRAx+BZjFd/o6BUJEQcSeTMB+UiAKBsfYyEUADHJHMqsGKxusFSgIKFvYDlxph3fWyc5sqPKrNZezoEcTk5GUnPgxy3oDLu8fWdobme/LkFmiWR3uL4QCGRsOL4UlxSVKImv8I9IprNlBs7GS7fp4yaE5BEVpYiYsjedzm7c2Z29vNgebBAYEWEKOeyEyCF6uROyDgAiKEgns2oyny+tfYldqacqBYFq2SVATBRQI/wxkGFJZWLOhioYSP62HEDcIjlku9mCZWVrYsv1FqSMbX1WyHCGmbGLJ/mvaU/zt3vmorDMyLUzvZ6jYn/qfvLJg8cvDc5dLIY9IfaOmwVaWzCRRx9wPhDcxAZaKXAZUdOX6REJrDF8qaEreu4xBD10uodJMMaKJKtGrPSkiaYxBwoQKaiDHNTlcBCQBDxrUVHxGBgJx2dZhV4ADMHZGF6cpfNKzLpWVisQfRjhOASnlUOhENqpB4YMRkIjhCKhegAuccEIygwHMgqsCIdskFL8lFqCIqlUCUhbTiFG7WKJimZ/tgU0CIIZErU5X7oHs/lwaD+FotGTqJvRtHsX6pTpSxsB8bVv3HrZOx4fM5pibeu7b/x0e7N85bOvvrX3OpGbH57cuTGzw8JXzff/7LV/+3/6yn/z9/+R8fD9b/zpW9/8Vq+/Pt4/8N6PRqP1cq2uFiJy/+69f/D3/u7d2zcHpZWmqZqmKIpnnnr6aHzy/e9/f3205j0KWEAoBmVV1deevDwajR4+vH/nzp2iKOq6JoOTyaRyzbxqBoPBFvLR0UnhnSwmJTclynw2GVga+J7tjQ6nh1zVo+GQECd7U3fM1WV70jQNDnc2B17GBs1oWNa1F+gEzEJGolePNiISsK8BPDtEJNcqBw17J+xBhJARGEGjv9TFy+qu0SQnemTVCAAgFfhahhoTq6RtHZgC55BbCpJHsiyVvlu9IqJivvJEYjAvLcShL0usLtlhaaGGVku1RRe+RDska6C7Cl8FVzhKFDNAVroqQZcq5XNYWgVKZ5L5Ecr3OMEt3XbmvkDGCPP556PloF566RIO5Z/z61Fnfmn++eTzzU1r0U7lzrmyLJmdiC8GdPvB4f3Do0aAiGLaoggui4/5uhCMBzpZLCZ1AytXel02jVYjX4WMdB3feYhyB3kil034nCC/NDKsHNQlYEIs4RvKYlAIL6DYsyHf9zOvn/ETALBBB4xq3ardyKwZGT58MPnT2/c+OpjwXHo1QONr4AaD5p3LTGm7V98SWSlAtundz1oLWiRS7fwzwxLxosSQ4m3ArFWXU1gQpWEZCIQASLS4HoQMHxWzmkabqiMACQMzsBdhEjCsioJYAPAiTuuiITESIzCQF/Si/k9lvSFXUxi1CibHWE4A0HrdZAo0BZqC0KIhyH0HQiAEaDD+B8YKmSyymlt7vFCOLR2IsRN2icpBl6TkkFw6npAacHpm14CCVf/zrAUHwXOiY3qvc845V9e1jxd49tl1OgNX8QBlun+PgJve4OuvXf+nP96bmheK/hWoYHx8Qn1rNzbq2j2+U/zDH/7or/wX/1n5mRf+/t/9O8+/8gyg/4UXXnjl/PlBWRgQZO+9Z/bT+ey9997b3T/52i9+9bd+82uFNH4xvf3J9RsfvFfP526x8CzOc6/sey9g7OHB8XxW7e0e3b1/dzIZO1cZCw937+0fPiSLFbuFVNJDX4D0zJFbzNEtiGFYTGcn/V4xHPR2zm1dOL+zsbFWkDl//vzGqNzZWt/YXD89Pb7y2MVq4cuypGLws0/Z0rlARGsEmAgRyqKE6jT9nM6zZKyCuy1Q1AbF3SZl4UGB0AaAM8uzAa0MJyLCnmN7cwFI1ZFQlvIgA0XjlP6EkGKccgvMUgJuwrEkTgaEU3YIbUS0SuCMiAKoNp8upiJiiPCC4FFm5rLod18X4Qai1Sgx+Hs66bBLvA0ROZQmTgaoaNXxglmveQglZUTjvSPt6ziMMz6xvHFnbH9riQpADffTozRgSsJy6P6qeR0ZlcmnEW2D3Zc+wieNiNDV8tNVkHEgDUtJiOJ943q9wfF4+s7dWxefuLxuCcSjEW2fkSKBM64Wap0DQNW48WzWnFWKsoUhBCbnk40x7BoDoIDPUy8Yo14VXXRwlrCSGFXI4MoqS+S4kYOi/akVIMKuEYaIHj0cYfI5+886jHWnpriVDoKypHBYDJna1QWRMeDrBpGoKJxr3jzeH+6Zc+bclfXCDoxHLyzkCVETLdSt2JEXl3Y2Sgk+25R8oxERiEAk1L5L2Ks/5iGkIprECm1ehwhqHKdaKUJWcFRdVVsljJVERbRARPRZqTPYECAaEWDxCBYRdZe5lQVFu1IiGtAe8xAWkyOTVkoIzoXwSgg6qiEkG3T6dubZ09R2R0IN3sw2MFm4ESXko0cXFQCElj7AIKzN4ThzJ4sIxz6+CW6ZuNY96Z6ZnYAvuvnoEg4+sPMiaoVGEBYvLF6iAIYckFsDdZm5Xw6gkt29w50L5+7Pqn/yjW+9d9/NEX/ve3fKvl/buTA/OaqKwfNf/uobr73uxidufnJrTn/5X/8f7Wxe/H+dO7fxkv2P/ub/+Huv/fB/97u/ezo+3t4698UvfvHO3Vu7D+73huvj6cH6aPjEtcfPnd958ODBu2+/2RsNz22vsxMgquv6+PSk3ysBYDKZzGYzAPACVx6/Op9PHz58OBwOAcn27Gy2mDZ+bX1r0YyFhqen9XwhZbnW1E6GdlK4ecnGYFHKpF40Q+xdXPfHe7PxpLfTtwQF8loPSEDQL1FOyEyqS9/rZVFEjMWqQkPNbJzfR52qh1Hq0eNhouahJhRK7LN1dZGeiDiCGIEYkS0ADB67R1HdBszc+o0Vu7pKKhImATAVQUw2Xom1SyxF0Y/bsfLXkcSiAcEU0Got7W0IZIKJG+O7l2T/JYAmWOVgF5U3sn6F+fakfyUP0UIQEQNq6gNE1OjuSJcS3Ycl+LTw/Jmli2TF2pwGTwMuiQ4iFMT98G4tfAjLPBhZeJkPhUWlqeaK9Vnm7vx+IsvgXV2VBJ61agq+eevjz37u5dH6sCAEDvMIyJPlkaflNM7Pq3qyqJZDsLprbyNLtJgwIkUfh4gXFiSCbnVPRYzWSN/1YQsjAKkoFRn5ci8/yHAmmiQTAw6HwlJIC0wrkhVwdVHrjM1NdyRMg3haDRMjevDGGLHgxBm2UpoGm08Ox33G+aWNq8WwbypwpjY9YwSE1L6jbQJ0Iun4tNSnK2QsHZZ4EbQtVwERg4WBOmEiafVJHMSQmICipUnUPwVqdQtRUwShTp0XDGJAegQIhDRFWQQArAAiWhBkjPUhBVkagIx3tuKy8lGVeCjI9gCIaLAHMfgUQCPG2u7mLXzajW5rOHOMjori0Sq1IQFOBYuC7p3lL6CwhAUqqohF9FpcMXh/AdRlk1IuEcEjAKN49g3EWuuIERAiINKwA2DRssnshUFAWFhlgJbWiqgGLDJdVFW5femHN+99/SfvHNfQX9uc7J/MN6tXPvPF2Wxy87vfnI3Hzzz75KULF/7B3/sHT64Pxp+cfu+ffwPq059854df+fKXb937+MOb1w3CYDBY3xiZsnj8iae2trbu3LptyuLt99+/e/fe8fi0HA7WhsOd8xc+vP6RNabienNzs2nqxXxeGrpw+dqNDz/o9/tMvWef/VRTz+7ff4honGsavzCmGJh1buTC1sWT/RNE2exvNPP5YDBcLKazu/u+bpwAXSjtuKKJ++j193sjsHbT9sRDuX//4b/6ay/sbOxMHnxkBuv5qUx4292+9rNlZgbrnEPnqtOj/DcdKDbExZz6YwzHSd+oOJZ4no8Nlnu9gpmdMEa/vIiweENWklzP0tqhQ5WcNGlJUb4RG4JanB/vXH9qz3TsCR8qgGeLSod5ldwHshUby4R83Dh3fXde3AS7VytaUt7I+gwDbOccdnlhvn8dEVuEvc8IXEc5yCHQMuCzLcSdR3IyveSLTR9iEA11Fbg01c6wAJhnH2X34+pLpfsuvVKWl69maKyhoqlno6HF2jH4oihu7o3H1ZzXBxgcf8kOLDEcpZ2PiDjH86qaVw3LMkRSlIP3nmPCH1qjP0kIKw3YgirtJXZL7UFYAqxeLrYuzjd3FSyQkFA63yQUUmO7PhMCsIJOI8YYwgBtDcI6Y9gM+DnuJYwFL6W1DTROvOkVIFRx48SPTPHweFLNFqbk9XUqEFAK7g0AGoVPLJ2Z5FfB2M0pw4cO/ueImltHE2QQNQPpUdH1CG0VKQrUII+MU60PRMCzsDEhxoWZNZgKEcWDWtJEtG9mCIRCNCAoZCCAWNVMisQkcF1ERDCIyFLH+ad/SRBNNPURi29NR9DNcs82e9nS3n4OYQ1B29W1g7SyogCEGGuATPrMxxHKS0jCCrnIoxeD77ZpEt6mdG0RsZoGqS/3zJ6ZGxaHECxzad6qqNTVqe1vfP/d699+7+Y+k2DfzuoRwOT47tHB+eNT9rXbLODBR289eHDYM6a6wPOP+D/8z/7zZ56FzYvD73z7B8cH99+6fvsU4fy5nb29vbWNrYsXLz7xxGeffPrZP/qDf7Z94bIFqb2vquqJ5559+vkXdvcPXeUKQ7PZ1BrjffPFL//C5ccu3rt7GwDqyt+593A06FvTa2o2VHgPpignzXRjY8Mb8dajyNzNbeF3Dw4JYTDoX750cf9gdz6vKue3tzcPj07QwsbWFY9703mDCK986ilf1aWNVZHbLQ6n9Cw0BhGxFeIIuARbmd50+mb+ZOJ8khxyiMDBwBq7FXkIiq8VEGbxvgnbjCAAdTUHQjCUpkKsaXEMAJrhrKkpmjPqpNEXmVCKS1luqOqu8jYYrRsLIqh9NZQxEhEhoUHJ1BQP4gGVLhBq1JVmcAIwoJA6FUT8Uv1nJS1N5QDAqO5NEe2Yba/UM+nYe2FDBglZm2aLOMeaNopJDbWICCChpjmkZpoYkD4Hu8T2i7k0oNGUNosWjsqkvqUjHmHuMtBdyw6bCIj+JCLiPUYmhGCIVF4hIsSU242CrPH3QCaxHPYQyvjkhiyyqc7kktIPAJyZ2sL90hKFRBf0MzOLtSAOAGxpqoYBC2DokdmrzAdvP3z+S2u8aWaN70HRM+YUZkNXMKEjz8zoWTx4kEbAFWtHJ4d17V29rANz1AwMEXij++PV68BIoc6hEBMKgncQOITmt3gNx6PCgufAGnVRIIBGj48IICgqo9qQeUVg8t5FFAhOO43HJqJ+2RMRx94gNU1TVxUAWMKyKBoHABBS51XnC4puFlaYikIg1K4mCAnigOCBmcQxF4aFBRkQCJARxYIYxrIB7vcPBX94b75wi688cf6JTTLuuC76hAac71EB3jM2NCxqcAX11b2qxyfxAJVLiQwiMXPjPCIWReF9E3GMiIzKGBKMBoKM6FrU9WhEGk3Tx9geBVEAvZUSiAAKAA4yohCiIRAt8QuB9xCQRSJA8B6ExSJpdqESMfaeLADHXs1EQBaNAanD6RGIfNwDEGIBgIygYdwQ7AGUhB8JYWNeRMALGJ9EIjV0IyCRrWLmLgDFrtUcvCcI6t6O+8naf5wR1K4WsKVpPDcmhLca1IKLQYhhpzXL41kjNMAiLGIMsogqFQjCFpDIAIFP6QAaiatH0ruamZGMgK+bWWh0TeTnlSkHHtEhCy/AO6warl3Vo+++9tGfvHZ7/fxwsJhPZ/PG9hcllEKvvfG2MH3t53/hpB7/3d/7F+cHtOPL6UNXD+yzlx77d//ibxHL/+Hv/c7r79z+W3/z3/rw7R//n96+dWG4ucYNj+sFzd56cL0YnH/hiavT6XQ4HM5m84vnL2EjF7bO3759m/qDnrGEwnXTH61dvfY0C5ZGejy/9/H7i7oiws987pWbN29PxxOQhcwr6S2OTo9Ka1HIQHEwmX7uS1/69Odf+fF3vzM/OiALvfXR+vnzdbOojk+2ig3h3YcHk6IZ/cJLi0tFNZ0frtOFGpoligew7B7Nf7VCgs4x9sWN9w52c6q0JIgtka3EAeK/MRu9VTQ9gBgyodBgkrtzg1impeUCe5ITw5dqU6GY1gepYCSG/N0451Yy6PbHbZE+m7y6VSHMJ/6EkOxEEvNTU8oJRJm9aZpQLCwrtQFpKumwtKoMnHmlghU5SBNMtIueZKMluJ2pHCxtfLoNV25bejwMmxXgzH8CAO/ckvqSpiEieWmwwDtdG/u2NBSchU7LKJvuOdNgCQjs7t6/N55fpX6JBkHAsS+MDQUBwnaoxkqCvq7dvK6aFe679MYUJ9WtH+IhCmGQxTosbUfUY5ZOjSSbQdhfZQPdtWFnnztgUciEiVEIwlI3iHMOsVjCbege8iinBXgaY4KtktvgbEshWjgdhHQuZtL0zNCymU/nN+7fXysra3Yuj6ydNb5HY+MdY5+InNgGTWHyQDOdQDJKS3al1Z2t4WKoOAlnBRJqXwcAADRaOwIEfcjakdjprjX/ZnuR73JE1KwAQJAbvWRtaADF+yxjJyd6iAxgQutDfYIwJIYEChKDr9EC+EwVUj+uvoAYRFs/tDMMWMfUNeCnzwJavCXOM3YPM9rpXVn7ynHOohYiCFmbVYiEhkVehA0iOw/RqKke4EQSmbV7n0dECwQC3jnqD9l5dIseuvH0tByunzLNXfGNH//kvZu168H1vdkT1y4+8/KTr73xRn99fXYwtus9i/Y3fuWXnK/u3L4hHmbHi6vPP/bqy18YHI/Xe5bXhzdOxv/ev/EX/8Iv/Xz1C5/9h//L/6Nz5uOjg6P79zbQjMcnw2bztTd+ulgsTsbjC5cu//SnPyWys9lsNOidzqYbw97hwcHO5uabr792584dIgLww9FgvljUTTNcW1ss6tlsNh6PjTFeYFYtjLa30mBhgS+8+tm/8tf+2o+++c3J6XjQ6zdN4xwbg5vrvY3N7YcP7mLPLhaLF59/oSzt8bTRXqUdXD0rLDG/LBpE30h5Dt3Ht+7fhYtn37d6wvOzhIiq+KaDh1HPicah1u6hhqKUI2QAJQuUl2hca3FOCAlB6z2DJviBxjh0mnilia1YPvM5a2GQuIDsWALk4SpptoH8xTRFIhIEJFJ9xRgly8uHJAZw6HD8KDYCXXdgAiaidu+JI4OIBotFL+ASL4TuTqdx0kJBOowzv5lxGUsyeYKhS3dCjpkGmMQ7fUvkASD0kczHWYVP5/5HIGhae5wz5UFpA1ve3n14MJ0MN7d7hUXn66Y2fdOSisjVGISBplU9nS2qpj6zqSqkuGsRCHSqhVUXqq1xKGckLC2tw4D0agV0URYIcipkxyTfJn3XUuDFWZuSYAjMbOwy912CMHaFLQzcwoMJxxMEGNrItOXRytI7scyGir1q+pPbdwEbuvb4JWIspRYGrq3tGwFsmATZImSG5cDkmEkARBijo1dCY80z9iJcJCtnUliDFgk1Floket+FUVSGkO4qDLbwDDvFAjF6kTmUHVB8ZgQmo6mMEoK0NLhP1EebqFPL+IBQtFILIFIKRmERNQy1Gx3aHqR9PHv5KHqefFCaH3E6hNsqlsBBjCAi0spc6UiKyBKmYWyIoj+CsA+d8BARRYy0lfbaTexGvIels5AW+HNeDDeLCboapAbXTKvmg3uHP3jzw5t7/MtfeXHnsQu//8fff/VzX3nuU68cHp9+dP362mDQ39g8Otz98N03929/subcSeO5Z5957FoxGrz21pvO1Xfu39tcL/74B9+7vFFwCZZsn/vDHu0fHs0BR6NRM21++tbb6+vrjefJZNLv97lhXzens/lLLz77xS98/rUf/fDDjz/xrrz50Y2yLJumrup6sXBPPXPt8Pjk7bffttayoDi+cuXxg+OjRV1tbWwuJlMDWCJMJyf/n3/0u3c/vrnWLybH44mDtWHva1/7pT/9F984PDw8f/78paef/NaffH/QK+u67vV6ssKPAJap69JPVpBt46Q/kun+jbsPcwacU/klJpEz4EA4orqCGpil0VhqrckOkW4lSmgrbLQrim5tFi0VRoa2uhNakxRkEMDo1FHUpxWqmhN9zLI+QgWiFdRnINNOFNNSUnC+09kyK4lMRXHjooKYrwWyMqoXZO1HseCzmDeARrdhcORohh8RGewEjp1Jppd4m4jHoNDnpt/wOa/VFZ9hAMG2M3S0qWbqLDMrNCDo6MtqN0lwOuSry/didZ65Ef5MEAEAgpEYzVSSPRxPb+4eXLl6ziCxNCIewHTVJWIQAfHi5otmMp83nlfHDxDJPFiIqEbUkGgnIapTREwMDkj8OICJQ/ojIsZI6ZaBICKEiktnUNQl+EDC/3iJSFEU3nuMAYoAQNT2sjwTXGnwfIPU4mLAIKJWVNDLtMjcGc2gaZpGsLS9Hjp3MF+8++DIU/mVx7bOiS3qGlxVAxBZYOg5o6nJkopoCEnwWAsAgM981JGsn0mh0pnNv1TjtiIcEQFTFH9J61il+wnRBU9tOD4BGzEElqdKESKCaNqS8cYCAIvXlhYAEOpAmcSAw1wibNN8MTBEIRBg9CEVXn00yAAGgIUNJL0/iJgAIsisGcbhl/ieFFOSUC7+CxiaurKL6juqBVgkvxOS2tO9AuTZgffBXphE3hB+nuWGQQijSb5IEe+bYBUTz9V4rzA9BrOQXl0Mfnr95o3d8cMpbw4vPP30s7/9F3/1wqXnfnj9QdUsWJrHti9g33y8/6Bn+Tvf/Bd/+Ve+Zi3tef/T65+899593B0fL+Tog7uDYlDT+nv3D//L3/m9YlQi7IxP9hdM53cuzE+q8XQ2GNKot22Koge2LOzzz78AwB+8+95iMbPAzzxxlefj999/v1+UU1icnp7ubK8fT2dXrlz8td/8je99/wfXr9944fmXbty4cXR08uKLL35866bzF194/tk/+fo3mqZ69pkn3n7j9Q/e/3ij3yPPjYP1srC2d//OffFydDreWB/O5tORLR+/esm7sXONEwfFMpy7aLN8EXtwwgBudvzwwzt7P/sYKOIii/b40//0Twz17XQjWcDnKb8YywIn+qLPthHFscjAmRd0GQB0hYNVigPdilT5s4nM5YMHXMdOlwVorVWRc2TVfFLpx5xiLoEO2sCys/Nx0zhLkdXp/CjFYdcGkT1qnKUrDbX6SJgStloPRiUgsZCszwyoL8oiWaTcp6sjpM3NX5Es6pxdOVOBlb1b3Y74vUmRpQCQ+pCD8wuG9+7cWzRghEKPcYYwMWgh2bBvPE/mzWzhGi9tOed4qcbRQt9QLlot7eyZ+LOkEJ915XXQOpUj017n71rCc9EAsSy1mmKt4ATkR709wTk/BSmtX09iqm23tAWICHNH1jQFzX0DjD0qjhbyvZt3f7J/8HBSmzmVM3azel5XjkFLBACzRm/qB4pF3MJiPefoLd0rnzesGk44ZuNJ4n1pp7S1MAKQ4oz+6xhiwi4yUPrPCzOI0jBARLKARtoMY/QQ6h8IGkKLYEKqbpidoiW1u0mIYFRyZRCtx05oI5Yo6YsRa2fRnwABbusiAHRA1EHI1IlLBJglxpnm+Gk0RE1v0FWxYBpP+wT6tnKW5mFq7ei0X0vnt2lCFVLfuLquq6pyzolIAc2iqqpy4141+H//0Q/euLX/4mc/f+7c2sezo/fu3/nmaz/83T/4J+/dfP+//se/sz85qgtxXq5cuVrX8Nu//du//Mu//JnPfObevXsbGxsfPXjw8JPb9f19dub+eDopZH17u4cj5J1mOqdtW/X8J3fuVmyHuIaLCZI5ODxaLBZrm1vT2Ww+r06nkyeeeOLxxx//1re+9Sd/9k0ievzala985SuDfjk5Pd1YX9s72J/NZqPRaLFYbO9svvTSS17gow9vXLlyZWt7AwDOnTsnIkf7B5PJ6c7Wdr/fn8+r4aDsDYZPPvnk7Xt3ReDypSubm5u3Pvl4a3NtbdD3XGGMW/rvdVkDBIUlmJ0c7H94bwJwTn/QRpsh6S6qLCJiVjoJtmcVQMADYvKviHAUADOyq0lyuaktN5AGYdIkyq6IC+LilAARBYEEUchpnnF+VrPZ5ei4OuEOyaIQ2MWaCYgxwFePZ+Y4ibESS0O1Ucfx19Z++zM2gKL5PZ+nZHb4/GyEU9SlzvnnnBOk9+paEkAwfQiviwaMpT4qyJqbj5nojdHDmjgxx8jwHOYmq4wlmSaXz1y6eg92qW07eUh0NoaXCwJAAeR7xe2D4+PJ4lK/BwBgrHeaxuxD/TARBvQitefT+XxW1czSrZrcTlIvItKcleQDZg5BPUYDVdSk3C6knS2G5Jn2Z2EEdAAx2RpRURcQtQ1SBgFRXUhNLDk0FFZ1XQOA6mfqB2GlztARNFcxc+l7TYyWVrJEBDFaxu6swAJLxhE6EvRsBIyY2vuF4Lc/vA9Nrzh/7tJ6jwi89zU2CzSAbcLCKo+BiEUqyzKz0pWlTU9bAp3T3NrTkAI/a58SDUGDwBQhiL/agSCWVcG4F+qzT6IYqR9XRMQ3esg0CBEQ9d/AD8P4GGz3kGIkjcZRa8wBhAhHigAHEQ9CiJzMv3GLA/8jAhDSEo8iXrTDh3Z+VPtZPLcYzhRRiPxW/y2hdhKJnoXW6Bfti5CZN5gZglGnUxoWo0inSSuZbJf4PRAiAToEH+JvkIUR7RyLb/347RsPTz562Fy+PLy7e3p0OPmFL/xcr1f+P//e707mUuNs3rjN7S0Brpvm4P7EInzjT7/zpc+++sO33947PNnaKZ/Y2tw72l0fFegmvcrtmLpeTB31jyeLgV9MZ/VI+NdfeOonN/ZksOltMR2PL168OOwPdnd3p6djEV83fufCxbXtCx/86Pu7hydFr4+mmE6n1loLPB5PTGG//kffODg6tD178/bt2WRy8cLm7oM7x6dHbPD0+ISInnjiif39/d3dvY3185/61KfffuunB0fjy1vnj05OFouFINiyWFtb8/e9ATk5PhqI7w9KX/8sUn/mZYmt67N1p4e7RzcftFX6En1st7A9FGexNGwFW71Xz34IwspQAbvUdikMAxEJbXpFG4srEEufhaD6pQLES4MgdEhYGlA9Txh4VaaEBUNxZ1Utu8LA/1ALulJoNhzirs/g7pm9F3nV4p0uzlpE5BPWgh4ZmwQAyLtqrJLLfKcyCHeoWM6M06VkpsOEdLTUqzTCR2IeTjtbBIZQwiwuVxgEKe+p1hLiM40Bq3T/LBGn4wMuwNbl4Gg22907emFrnQA8YypKrQjjGZi58b5hP5vXdeM6VuPsSqp8G2cQgu9avJWzLC4duUE6fccQTPAkirR56ll8Xz5Cgo/3qX1bR4rKYaWIqvSRzBnSWNrE/JvwIhYhQmQ0pMpoSjFYXo4+WBhxrvBckCFDjXcMNLS94+PJT+1exdUr5bnHi14BDOAnVJc1FEWRdjytBZVTRI8+RRGtBe9SWDh4iQJ3vlFEVnN/NUs7zBaZRJtcaPoSAWKMCsXIjwEEmCVahoMFi5EE0aCVENCllcyBjDGmUIABIrYgClpsCnvOtk8XyzougECojx9iyyXm7qpnJx46z8wIgZ9GmuuTUWZ1U8I+Amjt6thZAwFDyBsyMETro8YlMkkmfINoSRIWCQ571uKGwZjdUXwBIKb4CgCEGlfsBUEInXeLqhpL8aOfvvvR3sRuX3rhs1du3Lhx+OO3Tmfw565sXn386Tv3Dw/efndtINujnZPjBfZpOp4MBj0jvfdv3//f/J//r7uzE2fIz5tBf3t9s384X9j5fq/GtQHZ/mBsCsvVejl8+GDxf/tP/+dffXrn73z3h7/7L96ewtaONV949fPM/MkffrK2tlZXrj9a2zs6xo9vjyvpDzePjo7u3L0/mUym45N+zwrQhfOXRhvr4+nElMVkerq3vzfs9QnFu4X3dOvWrWeeePLZp54+Hp8aVx+fnjbCleedc+fWt7feeeedT734HPjF7sHpu8e7gk1RjtZGPVsVs6aCCssBrW7W6hFOB9z6ht0I/Pz09Hi8d9wy4EQR0r//0kEzdOyQFekWrzCABFnXFMkGZxHT6sfQyo9iYn0fdZUoR0zN/iCbZGjAljHTXLKz1gDE7oq53un/JfGxS93Xl85e4l64Ys2TztPLl2o8qjQsGRIllBHAfCGPDueKN8DSwiGfVfqVYzL+CkvOhS1p0ylyWhlvYM2DFVlKrmXmnAHDI/guZGDMfV355eUMry0iusov0BG4h3sH7qnHbWEQgcgkZ1VArijFV03DDOrWXR1tVXAJhCzvW8DadhNXz0La62xhFEeGdDASqsStOcPw61yLk9HZJgBQFEX6M8iOqu49ImjrUaBm7xENWWtRmJidB88sjAaXbtY5nPpqHWyfxTd1XSD2CgtC82ZneOH2ZH/v3rTuzaw/f7UY0FpZF+hck5xNlLV8EOisWlecwNjelSYQD0wuSRhAIAsAatqVYHkWEbV7E0CwCCTJBwL/jXwNQPm6idk7AME+LIjIXJAREUFji4LIqr1cAExsUYBIxhjC0JcwVrIDxLZ4AERfe5b4G+qlowCkTHpiRTVh9hLLmWW7ELP5lqUTSLYuYIg+vpia6xGRWUJZMQHQaGlJdasjOofiVSHcPJCvSA0ku/RPZbsGsPbOe+/RexAQrOv6ZDL+w9fvHs/mX/zFr9nRGpWDd99/nxtrzNrrH71xdyHv70+a9aICPjk96e9cGONsUNlF45lxY7Rx6+BwcGnrt7/6iz/++rc+qv0Ay+2R2dufX3zqmZ1zo+Px5ODB6UXYXUxmnsybb77551/+Oe/uDqAZ4s6h39/b353PFsPhsFrUTeNY4M7de3ceHoGr+pZsf3B6Ojl3bruanVoCAFhb23j5lZd39/dOJiePPfbYdDrhxs2mzTPPXuqtb7z33gd7+4ej0ahpfL/fv3r56qUrj33729+9enWr7Pd6g/79+/evXbkwWl+fHIyvPn119vDUOYfeocH+YOBhudfLz74sFhXO1s3i3k9236mqYYvr2vdXM3QVk7ygAAqFqkAhGxJ1ayD4zlpNLpEV5bgQGwa3ZyzEnbJIyPpgYGJtiIxIJIROWHviYuzA3tXKo8SYNbnTKuraF5SsSbgrAgyikXsQ2r9rBrCIiFE5UQTB6BFV6V1xXcBTlAC8OGY0SMzsPSNqllwQLhvvKMAhLTYIzHH2akULReGMGBEJjb4RY9roGXUclZrACs3KyXoSBaA1FLctUFoQIRaBQIUsaoy13VnYBfpgAaMdA1Fqj1q4AFkTPLyGU3rA0DEtoY5V5pvkiaQGiQgJE1FK8wibAkDQMSRo0CyAiDhJLCo3yZTVDg4nC//B0elDU18RR85OiqLPImBBPHJTGDtdOObhdGbvn9Tzmg2LgRVJyzPE2Drt7lcU2nTZc+iIndV6BGrr+klWaBWoja0BAAx1+DnY/gJANMMzSZ+K9hrwJSJN0xAIO48CzIwAqbtJVTtDJOiBEAhZ0FBBWOSnIUebvPmYYBtAhCWJMDsO/McYEWAv4iHE3yGSEQluXD8SEpQ5ghgCBqgZEMWWY5pvELkT+vEH9ezJ3a9evPQkDQo88Haj8d40zqLx4huAol8Ugz4vamZBY4DIg2dhC+Tz8nCa8prYc6wcYLLSoYgGwIAy1JDT6gU8sKDped+IeBPMzASMBCaPS03SFbCwKdEYQIxlTWIdAu8QrTEFUQFCwN6AR0TBkqiNCXUhhhkLIjUjeCAJXSzRABVG8+l9xArS8AUWBxCq2cRUSdFZgBa3iqilR1r5o5IiTjQTpAjmPyNaO5YFxDM3aqjRpSqMmEGECZzWxIYQeeMFvHhHpic+hHG1VAXANQ8NDcn3F3Mpyp5zMyiaxk+8s076i9qQqWu/j/2N7314+vZH8/dqvyFr7757/9zl8+9c/zYyIznb631y8+D19/+k7+1nvvill1+59oe/999OqsMd3FmMFr2JGLbTabUA9+tf/LkLj13bevK5j1//4Quf//ynPvXiBx98cPf2nSvDy+fLwd7u/kK2i5rtlvm/fO/713dP33t45958MrBznhzd+uj62vpmUdrFYtHv96mpe/3BxNW2NOK5ms7/xr/xbz12+eLf/tv/D+fcrD714G/eunOwf3Tu3Lnjg2PD6L0UOxvThvl4MjRmMj765FZtCzw9mFx9djhYW/cElZs/vPexlWY2XTzYN/W+O/f00A3XHxsVOxvN7m6xRjinuoiUNmd2OWXDZK9AAC01PugV1dF8d/ekni/SjcpT88BX771zrt/rASQ0iZF+Z9W+gYguq9//rEtfpxWVGcBoWYeOSTxfWGI2+VuYua1gxSx6upDQ2HR/ktA59ksJ48QTgF0/ZXovxiL4qwqHZE0aMmTu7IFKnemi3AzeVaxzMD4Kemc+uASNs2XnJYXtrMjkzq/6LEi2MGX/tPTGM+eTbiBcNtEswRmjxTvc/4j2jkDGe+9Bjo6OJ7MFrPUsmjgzBwENnHh2zk0mE+ccx+zPpamqiqwbR0hLkJcMHyBpNtmVoeUZBsMz/8wMPO2lX1L0xSZzYdM03vui7BOiilOirkJtfe47EJYYi5DjXg7ncLHk3DrKN3EV0oqPS/BXLZyZPXkGw14W0/nePuwWg3VxRbNYH5nCWvSlmFJrO7iGBOtSGS0RUNt7e3WSkL0s7M7KKqB7vjSVRieLmEbmFK8XJdHWykKGEt7qT0lGNNaKoKAWB2JBQLTGYNP4TKTOUiuxhVWK79NyowHSKWnnLBNFDoS2vJpILr+3YE/CVkZXWTxyMkGpD0YkWS6DzB+LOedRb5nXP81BUnCAuTCeTMhMy6Fp/Kxmtr5kvz4bVPX+0SYNwZQ39vjHd9+9fQxT1y9sXdbN+zfec8fDo93ZE1CWw9E746MdgkujwaSq0c1Gvc1nP/PlN378WjWqFieVhYLJ11BfubLzg2/92dGzuz0REi7QX7l4/r23fjo+Obx7+5P5fE7gJ5PFDJrfevKJP33r8NsfvnveuXVXmbWh7w9r13x86/bW5jYQeu8XdQMARVkAS9NUvcHw8Pioqqqqcd77czvrH3988/yF2fr6+sHBwWht4OpqMBgMtrdnp5PFYqyAraoKWEwB77359vH+3qBnT46OLJn+cMCz2cb61mI6d9X05OHuE6Nzde20lzaU/32DsNAykDWwOz6+v3vCzG1YgjKnzOlIRNZaLfDUKk+ShLjMDNul3QnzcmKU/5sTX1sUkKkI6FnPm9Aj2QN07cB5sOjqPUnXhAz7ZYVLQZcn5TPH2AMukTnW/t4A3vslQSQt05xlAIB4zM4k06uDrC586Z5V7hsWAi18AlcxZ2nYUbZaeotSuU50W6vvnWGAzeG2xFkRgm8Kloi7GlTjOxhDambiVQk4+oFRiLAs+kfHp/sHJ88ML/UtWf1JQ3uAvRNBaLw7OjlumiaaQFYKO0ToEZ3dvDHfl0TEV9a7AsmAV3Dm/Xk8ud6pGpiE/ukCy4FgahCIOQWhFVmoIdi67aMIuPTSTMrRCWW6ZmufaL3s7QhdV04ELxYGrKxDr6ammU7t2HPTa4qSGjdnb4k9FWCtJbLimRuHRSHdAMAl2J4B9JX8GQUCaV8MQAQgMAKiLV7S6lhzZHXV0IllUfhQ1hQBM0e1iAgVgABI0cxhgPQZScpGhB+KCAMDAgO1CUlRYgsKQHYciAhN3pciI2jxqTPBklCUz7ohI3fStqnITh9qeKCISEZaASSUuW4xNvkKpzPq9wYIi6qZ14uKqJhNPYtBVwPyfT/94O7x27vjj/e8KYZ1NestuDaABprTxfPPvlDN5rcf3P7SZ6/eevdePZ43fdh7cPOt1/qvffTxyPbnsFgvRw0CW/qVX/1yj/jH3/3ue2++IWB2NnpvvfF6NTv95NYtYW7cfDgqR2u994/H//f/7d/85a1z/8V//Qe/8+6HFbhNMouGT6vF3/gbfwNt8Xf/3t9/+eXP3L9/f/H/p+5Pg23JsrNAcK21tw9nuudO7775xYt5yoicMyWlMqUEhCTQgBDzUFiVNQXVFHQX1rSwFlU0mDVFF9ZgUCBEC4QKCiEkgZCESFBqTEVOkZGRGRlzxJun++58Jh/33mv1j+3ux8+594Vk1W1t3W5hL849x337Hte8vlUaDIIsLZRCHUbpbPbiSy/PZrNZmq2trU2n4yAINjc3p9Op1j7YSBVFMb2/HSAVs1wELj9+eZokezt7g17XJNnh/ftxEKSlRYVEtL65BUoLubI002Qara+zdcysAm1bi4iL+kzrahwLAAAakNCVB6O9gyMbR0FTqg0rlJl5c0oppYBdY+P2a1Yts8cvbI5WQxGOE9ClzrV3CSKiVp4StHbV8oY7kQktXWwsIpLUQFWAwvNYoYaULLV5/ADUysEyvWhvWQCoXMuthOAq+KI9tGbUbU7GDwTQWJqu35Zmvfe0vPd8Nn/WVV+OK3nzxYU6aVRqwLHjr27z3eMjaprC2nflFRupebBIjcZ/bCv7B42TTqBCrdJ8cnt77/mzpwMCQudvVgDWMQsDkHFuNEuMs0BIcnL15eNDPj6WZmMvLOVCC/PPjabRHASoNTNcvDzJg0Yc8QD5iyYBdUJtRGz3p92TehMuD629i7DlrcTKxAUe4hcWYJbBWWkvVut+a4yHPYY0V0eFS5QZRF20yGxLywAcSRQGMSkClrIsGUGhN91KVebiJOJQjWJeE2VRoGRkqEfnQ4ZQ+wKDiFjl2taAyQCIIuIYqkmVusEqob+ZltbEetlaV+I1ozA4rsq/zCehSYtw6AuHw9KRkRqRpk7dJwFgFvRD5nkjUom9zST4bi2tacXC6zVtYF/mFVHEB42cILv7Ca2HiB74Sip2Pb/H/+wZcByDLXKxLlQRWAYi6wrSijI5NPRrb7/7+r10ZXWTXVQWRW9lwJ2ugjw/Ovju7/jOM888tZPsPDFU//vf/+lv/zM/PNrdjQMorf3iV7586vyWWBcBnz1/0aAczUY2L7bWNwKMcymi1RWYjNnCzas3WTiOotWVtYsPXXrjjTdKgPd1zz906dK3vu/+v/nKKzdieEQHRWHOnj1bFObpx58IwxCAn3vuuSRJvvHqq3EcZ1lWmDLudMZJ0ul2yRQH4wlYG8c6yzJrOYqiLM0QWClkAdQURYG19tSpU8ZVOLv9OLLW2rwIFCBLlhZh3M/yPC/T/jCOHMZhrtSQoQyCXmby4y6Pk645D9YARFyORvu7R4VCahiwMQYRqbYtM3vcbT4RR6j9yjbBbRiwtGwmJ3HfOT0yxgBUiYntnDnmquBze1RLW6canH9jrbsvne3avcdtWUFE3LyoIrTbp9p01qKVIiLcGlpDBBcJygn5QtXMtLRMPinI6HjPm3seFM3UOI/bczt/Y7tSSnWAl140N2Aen2GZa3KA7UJpiIgLCzp/ywMoCLdiO9v7pLm9KXXQkMsFOlK/14tSzMBCd3YOClYdAedKpQNE2wRtOpDCcVKUpbPs45KPodVgU2S39U17Gk/kQO0BYqV7La9X3U5b/qjms60Bty+ttYhgXf9DalWYiBCgFnOBPQo1YaBb/t1aMmBmpU7eVI3DpRljrV034p3vZNW142P3T2lRxlkSp0AZS/dn6WESnOr1UaNYLlxZFmVpy45wBKhVS7DTgCBSwy+3E+/9NCFWcYPQ2iTN5bcKeh5Wqf+ASOCZLEAFGVfl3XrIdWFGqTxHvoJCzYsqYWKO1CFVam/Nles6oFj3tZq0uj/UdNC/TqChIFUBYvDvcwKAgm7RxtAaf9U+ATT+IV/UsH01DzJ7vGiftVtHGixCA8qSObApcjNntF4gmhtsmuBnm0yAMQxDa8x0moTdblK4dJq/du/26zfGh7m+cOZRxyVE5Yizu3uHWXd0sTPsrq7cz5MzocYrh5dWLpiDydlLZw/zIpzxnYPRJz/+zF/7K//dX/9b/9O7r1w56IyZ7ejg4N3M3MQgK0CCzv5sNiztIA5zY5GCPHNlwYHuDFfWTkXb/9cf+Zcfev59X37ht8514Jlv++arL71zVKRmf/+rL7340ksvuqJIZtPnnnvuK1/5ig/jAIAMstX1tdFo9NTDT5srdjqe6BDzPH/77Xd7vV6WFUqpKIyYbaD0bJKEinQU37h1BwCiKGBjyyJ3DpQCIiis1RFOJpPNU6eywPY6a7OkWOkjgQoCZa2lBfnnvS/y4XAaUIHko8loZy8HN3+6kty5qobEzBXNmx+MBRQez3uOExSsawcdJ2Qtct8yB/mtfaw6bHPym0aajXWc5aD3l3jXtTBITcKaasQthI0l4v6gay4jNKyiNis1xHRpEppI2uW3HJOSTugDL5yleZv1q4+33FCN5vOJwsqxk784xnl41PxYNuNvkpH8TyQApI4zSACoXRX+M7daAxHBE+S4BrATa6hfv0wLCVpN/7XW4oCdpSA8HGe5ZeqG4jKGEFAxgBN2AoXjrLS5cWVpxMOPHOvqgiiwqBK1J7bpRnti27sUWnJV02ZdYmFhFRYlD8SWFdSBVMkrVNXfUEhKK8OM88ehwQFur3h7dy6uyPLBbN/mP9XxEADo5s3KCX6KattjKGQQJaa4VDAtzSiLkRUFARNK6djYwlb2XhGnfNKtIqA6hPMkf3xrqk+mZKR8SisLWwAf9MxQ8a0quQkrXz4BgEaywoBMoLycBYhzw93iQhCRVAvh5lyZfFzXAymrAuQ61dAnwQGwIFd5UcLiUwq986OhsdQym3iBvt6BINDUFG/Kc4nU4BtYIRZAvVHb1b+khaHRcNRmK9cVW2ru6xwE2LqRfawPM4sJo0gnySh35eDMqYOEX7p610DIpy5s2DP2XhJ3V3KazZLtPOPf9djjn/70+3/hC1/46pV7h1/5si7di1/6/Osvn7o5za5du8YqOrOxcZiO1jZWQ7BxL1zp9ibZ+BPf9M13r97a2zkc57ljscn4iXNbt+9mriwHK0OkYDyb3rp19+bt2wCyWsIv3Lz+wrvXuwAffv6hP/38p74Ynf13X/r8ZGf/3p0biLi51t+9d/uXfv7n0qLs9ftxGDhnNjfXkyRRShVFESjNzKAgjrrj6TSKovX19f39XWMMESXTdDAYsLGk9f7+/hNPPDEbjV1e9obDSKvpdGqMIQIRFwcaAUiDKTkZz05tbNiiDEOdT/OwFzm3IGC9B3PxXj2NWpks2T/an05NqDvzXaWUD1FuavlpbHxLjfDeLo03F8ChRWiaD21bXPvCVoQ8AHhrW2MYaXCGvWZQd/3kgKylZqFFB5tv2ohC7QvmKFdLmk3FB1qjaHTlSjtpSHZ7mM08YC2xzhtc7GH7da1xLQv+S11qP7vELU64s/0iWf5VWgroiS+d348AxxKqZDHUrp6ZZT24PSG+ieopBB+tAyAKarWsYfUnqcsAEOhQSlZIhME4yfZGydm1LipwLICK2VoWASpKM02zJLfG2iZN83j/G0bYvMUToyV+dtz8IPNgPVpU1pf3aiMSNcekPbr5S60AANcYEM3lnKXWaVKklFKoVCPkHdsYJyzTfEXqH/1jRL7urmry15vFah+69pZwJTCmjklLR1SZ5HY0wSy10TBUWoUUWQVixbAhkzvnAglRESgSrIUzJVLHgS/N58LWWnRq1t83UMkKRNUqaB1wTKRIAVQmqyoTAKqjhwCIitTc+N++kIUq7ZxBhKoSaH6eWke1+cy2zgmrffdVZlQVnOy5rxOHLAAMNViSn8j5oWiHm7UMA036FszZaF3QbHFpqu60itAsEjhAAMeuTtxCZBQRtsCLl6eQpTUlaKvjmQT3j4rffPnNd7cnH/ymT144d/be7qv7+X6ecGKzLLWX1lb+qz/+x77/fedm1rx87efXdeeVL31euvBumfyP/8+fXO1hv78+SXe21ocvv/Tq37f/8uo7tw04TaFJy8cff3J38jJ2onxn+6/9mT/26Wce/+Gf+aU33nz7wsWL4+lskibdbteCCcPQ7O7/hT/0Xa9/4Sv39sYH+8W//dl/fyM9yA4PA4WTaRkCpNOiP4iSyWgwHNoi35lM+v3B5cuX37nyLgpcu3JVIXbDyHFprQ0CrZRaX1+/d+9OUbrhIN7YOn1689T4aFSYnAmjKLBFjiK94eqg21ndWH/nnSuhIkIKNE0OD0BBkmSagq2NvjEOQg2w7AyCRdm9XlFqwRSBVipI09lkOnIShGHY/FCZoFtwd96qp5B88idWHheog/4WJC+oDci+naYrS0Rn3qvmwDtXaSEVqPQ8IWHpaugmnEToPWwWKiJv0CLiRZLU0EFuYbi3f1180dxLV02LLJBjz9SbjN6mG0241nF/c/UBlxnA8oItMUKa03FYIEnLDLj5vn2zyDyjZomk+i/dIiZz06u5ANEOvwKAxRLCrc6cIBC0yev8kWrUy6b4NvU/PhvOOTQu6MSFmMm02N3btw9tIqJlJiKu0E+ktG6WF4W1UpU0XoiA8FcztEaWakJRoLUxpCVvQYvA+V8rjPF58lXbA9I27C+scpvPOeeMMUEQVrMkULfGzKyUwpZNxX8LDkhXGbcACxtp6ZQ1/awG28JjIlwQGedbhREJ3APy4xF1EAJaJEcCxjhIEsmSvNcPibQKtEZmMeycMaVFC4DIVfoZg/MnCBYD8dpXUwWIl/enQ2BhJo/93GLfItKyzyEAiiCL9cIMNBYV0lQDmPuY9oUFdQ51nVeHWENoOQHVFt3mn5zzEU4AgN6c7xhZwCdc+ER8YOQqY7i9xdur394SJK36vPWImif9b3NNq01Uyed8LCgA/nFfgkJqyx9JVevC1/1d4sEiAnF59fadUgbv3Dq4uj8dq8BtbLx4651X37lzlN6NeqWWdDCVqOjdyif/4vO/dHT06C9/9rdW9XoJPNzsrUA+nqQOggDA7O/TVmyOilKiX/7CNzrGdrYGZppff+daPOjtJmPqxaWVR1eip7j4ru/9rpe+/rWD0UGvvxJGepZPEeVgNPm2b/vI3/zkt9/5+PP/zd/58bv3JrDZ0Wtqdazvjsq/+X/5Pz788MM//dM//Z8/+/lTZ4dpVjJDGIbWmivXrkwm404UR1Fo0hyrYtUE1kynsytXrly4cMmU+f7+7vNPPHnv1u00TYHQWnvnzh1jeL3fycpCAL7tU996/fr1QNNwZS1NUxRREUEpW5unVoddSJPClr2w02Z2J+7q45cuHXV5dOUwD4vC9OZR1MIIiKKqxScAQb/k4sSKbZNXj83mvGGooc7OOWDxhemhduZy7bkRD3clVX1hpXWVS6rm4A+ASvwRFLYeErKJCxVBRUqRlBZ9OvJimHTDZoh8xd9aUVAV1lGdAQwAGlsgjvNsThIALw8AAEkV/YEic3ZLREAKAT3bnfMGRKUCAADHCBWNa5jZ/Pi1qF7zfZMy0aKJc8aAXNEmjytfqeawnFbUvIL8bS33lTTljzyVr0p9++GDnuNOMFDlz2IWrcOatWA7pprrotHtl2ItnC2p34gLJK/eaVVZ0qaf1Q2KoDU5SxzCiVWxxtzFQbin4f5oBjNRK73CGmQhJnLKIqGOZmlZOg4xYMcsJR0L//bbwq8sOiAkRejRLEWkcV76dXHeRycACB5X17tmlJDXShBAWsjPVJUOZKwTyz0NVBg6YWsdIPuaWiJCSikGa50AoNaViRIBCBWRtWW7TDojV3n4VSL+Qj6YUkEt8y2YWJRSzjkGIUWeDVthBCRFCAiimBE8uIRPcC+rdP+Gx/vh6LC0pq80lZR2sCsZ7R+Orz0ansMiDgLBICBllTJFztYUWYndiKBwZc6mG+g+6MCqkiG1phNGASkGYEQSVgCkg1AxAToBc9xnL4yEgaCuAiwVADKCYmZ2QkQVIDM7ABYMBAC9mRYRQRCcACMjAUojqRAhkQCgAiRiEY+IorXfoQIyz6cXEWADFeMUqOqLCziuDIuIbAoQEfFEzMNyIQBAaZuQEb+lG7ongFw7Gpp1REasVHnxwpLUQXbCtraT11UPeVkubP7EQEDIFiUJAYuzpVLKWgu5Vp1gko8hUkYyyMuhjjktrhZkhpef+eZvfe0Xf7kbJ5i5cVlMDlMNecBBmanw1JmDZNt18k4Kk+u3XphODLuo39k8dyEQOdi5Gw/NJz797f/pP/+iYVjbt8pC2CUlJhr2pweTwpppXsD+3mZvYHenFOAP/eTP/vynP/HZF15c2doobJ7vpyC2yMvNzc1Jtp/ubX/N6d17RTI+CDvy4QsPX3z4kf9EL9x69/BPfeixtXO4/cTWzp1HP/LRD7z0G1/+6rTcCGAymWycOQuOJ5NJt9ORMJhOpyjQ7/cZJMsyB/J9P/AH9vf3P/OZz+xt350d7bksY+bLly8Xju/L/uq5S3t3rpdx586Nm86igNaoEaAz6IvIXjn7fY/O1jjfZw2qW8pRGJI1nlhVtHyJtgMAi23nu2sSSJPpZDITWDAHKaUadEnvdIGTBNL2qZDacFqTHgQFRZYDCUmV9++xHACA/Z0nCQsidUihVykQpJWS0Zbsmg/MjFJVAq47N99/2LL++SAvgHkSkXPVoBb491x4rOg1ESHNX9qOhpXFnlSU2lVYJY6dc07q8gYLk7YIuNE+Oc0MY8v21Zzb9r/+A+kmE2PemQc9BcesqccFN5wrusdcDA2oDi5PWvv+B11tPtq6f0FjnhOgB5jitVYV3iUhWJwms8yWVArpAGv3s7U2y/Isy/Kyyj3jpeaqprQ/KrVNsrJ2tGWjdq9aIGseQ3mhY80oao6L83lr3eYziBB9SSJpr0sVFVgn4tc8z4qId8Q452qA3gdO/pK80lyNR+n4na1ZJoEqnlzXJlNumUaUUgJWaoGJAQTZMCSFyY0JQ6eIUIEClEAhgXMqN4cau5Hqs0IDI2IkiQA7UiFaO0QvFDKAghoAxWcVNf1iZlKqyiWvpVeuqoDT0t5uzv7SoWBmAiLyaYG186j1iqWbEeuQaZ6f9LaJvzqAUgO0HLtIfNw2Lp3EhYVwjNDYJsWD4wBWwDvoPcTsvPgMzLWh21/cMmjPQ7sbIR4RTeaIBBwJonVSlEZrJ4TSNc7kkTFQ2E7c2Xdwg+XmweHmxff/mT/7X1946umf+Pe/snswRiRnTT8OpTCK9KmtjeFwqMTdujq+fHnr+/7gD2z0OsHLr3/mC1/hopjmycH+/nd9z/c+/6EPoZJf/8wv2zwXQGOL1Dooi62tU3/lT/zhsTH/4J/9eG4SS6hUJ5/JT/2bX7545kI6TU9tbR6VR0We9oMoOxhd6g3ffufuf/+3/6dsOkmN6G731eu3bo9mb791rUzLH/v8558/vfaf/90Ljzz8ftAD/fhD8sLXEw1hGBpjtNZaa2PMcGWlKIrpdPqRZz56/fr1PM8R4PDw8Pr164iYOzPNcmJe6Q+U1lkyWVntr62tHtzTzHzn7t0wDPM0TbN4Mp1RqHq9IU5GF86fdVVFakekrHVe8agXemGHtA9d871WBKPJeP9g4hZIbmXN8Fc7O3LJ59Q0VCFn1bu5zRgQsTJTQ1PEQ4A8/Fsr9bPtyagw16sug4BHnpKq5tgcMk15z7QvSticKG93bplGCbGBohXxlQ3mh64+U1UvqqFVxchOiCyDRfTmNvUiAV9y2FZmTwIAy67lQZ8fwhOFjzbdr9WOBy7he38pJ4c7Lff5JK50UlOIAEB1VQh4AAXHYyb3976qnrd4efUizwIfgOEpjCTiSysEoEeTJLO2K8TWiWVy7ARL56ZZnhSFT7nwHo2T6wG3e7Io7iz/yvOEk+YQPEgKwdo+30xUs6zW2pq3V1ieFZ9m62VNn7DefDbGEoFCEgAHFdhnYzNvyhIgVsUQWRbK4zRdahbOxyO1eBV6Lya2zmG750vjEgCssgeQlVgQsXA4LrP1sNthTZZAkVaIIYgAynQys0yWuBMFgQJyPkoqAOWsZYWC6IuqgYhhAdJBxYNbF7MlVcPKUX0wmASAyPoAd2+h8seZAASWfczgzUs+S1CqgO+Gnixtwjnz5gqRDer5atrzojU37dSF3epz4bx4ibU1rm6gppDVGW8vxPI+AgBvsYPKCGEXsOcYmwpKS+p1cwwDCo0xZZ4HQaA0osbcmSzJg8ChhZg6hjG10c3x9FZZfv367p/99PN/+8f+17evX7t5425ASgk7V5bjSRwNyrL0u3qW5YB0d2f/yvU71wD+46/8qkS9WzeuEjtT2G984xvf+X3ff/vW9cKUprBPPP3E+ubazt7u3s791ZX+ZrfnkikJGyXdtX6eFlK6YaeHOa2EA5twvzME0bnJk2yW5lPtoIw765tbwWi8s3/w6q278b09NnS+P/y7//O/3gA160XxtdeemY7euHstAKdUmKbp3t6eVDVFyRiTZZkKg97K4MyZM3t7exog0sH2nbun1jdK41QUB8yzLE1u38pM2Yt729t3x7N0Y2tzOp3mRbqxscZskSAr8k481La8dO50VtwHQSWB1qE7qdy4LCpdS+KgDpCKfDaeFADILWGzWT8Un+2HAIAsbslRVF/tfES/TXwjdYUmDwnZcMQ5CWNYKBBdAURIhfzgd1/7RcfH4w/kQmVOAVebyxr9w1+KiKvQQOddN/6G6mD4LJhF7tgcWlxM6p/PVdvOIOBBdLBObhFpw2PNO9mmj0u/Lq1fw4DxWN3c5sF2XpHUMhAe4/TYOGLbVYEqvzCIwIIQ1iK+zJZqoApZSCX67cHH21ebri1MCNSpkFLlbkPNE5q5aj/ipTFLIAJaaDRJj4qyCzGics6wcwJYsmRFmebWOA8U7Cu2Ls+zc4LooVSkGlETiL3Y7aWLBE4cdvvmdmxEyxDdHhFgA8uEyDUaf3tLYLOJa1h18MA4pMQLqI1BiH0lAmxCX9tTJyIeMQYRmzBcqGN+RBC5CSXydb3Eec8lzrvgaxYQaSFXjxEYTMlwOLJT41ZRSKFCBq1YEbBooCDczPJRXo6sdLuyHqk+oxAmGkNEJcykANHzKgEApTQ4RhJpUTQRYWOJiFtIJt4sJU2lZ5HK2uw73Fo3v7X9/Fox82mpw6LFQzdLZXWvWhPxO74G/6i+JqkglBuJpUnXZmYB60lYc8xExJfuXVqXSoOXRvOeq+9+l80j5J2rQ72qahxSh0CLYOWraxCymqAqYQCwRRGHQRAEwDZN8tIa0mEcRW6WlUpPtXr34PD1W2++c2cSrvRzF00YvvbGm9dv3l5fXc3ThMuiE4dZnpRlSQBXr123ppzNJoVlY+HnP/OfhqubutN3zjlb+G15f2fnx37sx66++QYwhp04K40RGK6v5cns5tXr/+KXPmsJPvbNn7xxb/venVshgIOyH8VvF7f6HAWFwtyuxN0PPfX09evX9w72105tnHro8pkzZ175wotGQA96ySxf09392eFG9xQqfWS3z6Bce+0wirqmG0c6mE6n3W63dNaXUEySpNfrHU0nr776ap7nAHBqYzMOo7Isy7L8+Aeef+3lryfjSRRo64QA8iwxWaqCcPPU6e3dHR0EZ8+e3t/b6/Q6g/WhTctzq+H6Sjc/dEga2ZIKAZSDE9JKF5jFIv/SaG1h8iS3SLoBFvfrB5WYyACELCDC4LB1tZliYav83eonmPPgdlcaxbGdTsM1sKvUHpH2sanubAF9LL29ur9uoanQ0L78iKoq6w31pwruwUEVRiFSGX6wxt5o4nIr3rDILKuf6pPs2UaFjK2U1PySiBqmdfxaYsztlmujwpzXHhdBoLZAnNi4LDKw5hXvwTCX+lm91LGIx5Wue4gAWFkmlh5/D368xHpbA1nYo8c/H5slAikcimVUrA9myd3JaGttI+4NGI0gC5KxkGRllhVlwR0iv82Oa/stOUMqCGWcF6hfenXTKzXfswK8pGhV9zT+iKaRJrZLqaDt+JAmjg/F206wtqL7xxVSkxtDUHlbmNmbWyrmCqo1lveaf4B5NTA/BOVVx0qZrnJl/GlrgtRqHgCIiEqTanCUBYkBIcloatgCamRCAVIkBOgQsNPtOsjSJM0LB2yctlGglEIwXrHzZmGgGlGKHfiCvKpdv1m88d0n/jUBK/Mjc/JWPyk9solFaH71q0kkNUeUptnqG8/v61fWprx5JIdDpjpAhH3ImZeNvVLO7JZLxvn2lw/jAmVjQQVAvmZDoz07W5mmPVS5iAgyeJR+ZrY1tWEQa61zzliLFLMtnbHgmFCBqLIsZ6Z/5e7OG3v376b5Qe5KBZ1C0MKP/sj/fPr06TPrw9HoyIFoRff2js5tbR7t7ve63cceupQk03Onz4zjzsH+vgW1P8ucM7EmNm7s3OlTp3J2X/zi5wcq6ERxVuTT8eT0ubODbjgNIhtFL159M1L6j/7BPzzo9bdv3hClpBPeOMr+wsef/cR3/N6f+NmffePOXRO63oWN84Pg4OuZ1vrNN1+/d+9OlkziOJ6x01oXabEyGOyymHT/p/7KX3zqwuk/+Tf/9l5iNEVJkvi58jUkrLXguCiK9fV1pXU6nWlSk8nk13/917XWq6urRZpxaSIVBCooi6Qbd8oi00S94SooGo+P1gYrs+k0TWdCuLIyTIqDDzxyLiRjSIdaG+s82/5tryWCph3b0mRJ7jDUAg0OhzfOcEUtPfKsj8asiyIsb3R0UKdPACKAsDALE8aVU00AhJilci1rggZQHSr4hfmRaGm0flRusVrO/L1UDYXRW6SgieFqYx00nFusYQQiRQAMwsjGzUuvNOyhIvFzkRcQEemEs710bEJUXDsRQZEPeEHy8WwnXgsS09LyNCex+XMJwKFNJh7QPs2N6q2riTrGxd8aSbyhOEuvmK/XSXLDe8wPnEQK5+RvkW2fRKeWpEgtAIwMoDoqyqTYnYwANhlEkBjIMpTG5YUxxvqlrPy1J9u0W3o8LtgY5rPRGG+9ygXiM0yWYIywDsFoRKhmxzbmECJqXHjYmJew5notOa9l8KjQE2tGLuK4lDLqxNUNLe7bnKMHrU6zr5ZCEOq5UA1og9baxzBWfKUJw3ZQYThIgCBKCRLYnA6z0lQliHyEkqBAoBC6BdAKSjfL8tQklguGYSQDh4UGQUQNYJkCaDR49gx4MUzaF++pIpN9Dyq9lhaGMB+mT5X081/V+0MAAKJ5qo+I+OJg0rIkL85J+wZYNDhVk8wCLcestwsQacQKEstH30Brb7fPSKvBefRlzVgZnOfrrRTt5q2CzNw4DryaIT6aC6qi0c45JMnLxBSWSAdRtzC4ezi9c3/n6ohHabI7S0utA90JAuWMgxDX13rIJj06DAA+9OEP375/TwjH0+nWxsa3fMs3nTq18aUvfak76JOCezu7nUFXdKzKDKSMut1I1Ora5uH0qBuG6JxzjoB29g4uXcrPnrpwz13PsyJYwycfvrx/52Y6zbudlRQAwjif7v61P/UnTz3+xObW2n/xQ/9DGOLh/fvlwVQfTCbrQlrt3d3uhhEonB0erQ/XICIyWLj08fc99Hs+8bEu8ge//eO7v/zSgMI9OxsOh96P0+l0giDohNHNmzd7amUyHqdpFodhFEW7u7slACiavPqNdJqsdPtpnpXW6RCsE7YWivzg4CBU2hb53myW5ubM2VPT0bSjzdMPrZXJkYMQATRYJ0yqkuOWTtzCn0ItcwtqEUlNluaWggDFtJ7iRt/yXBMWce/ax7tihF5arMQ1bnm/lMeV8PGiwijAjaY7hyCnBZLt4cOboOoKzrguSSRSpxyoiiuiv6dmKOQF61acMAkgErMlQAbnA1+BiMTBHA+oGWCtqbd83o1Rqq3ZHJ9ohXNgWKWUzzM6kV0honPVLC3RjvY3bX9zmzo0tx2nsLDIM078tc2AjzO8pX5iG99/Dv/z2xifj4+rudqkrbmtGUu78+13zVsTZGYhQuZAhYlVO+MxODaWHQKSYpDclEVhrGEFgXiN5+ROqtarkZRCBI/Rt9RbacVDzHdgzSnbU9rcvxQz0dBc9uVXq7mvZE8issa24w19aIVzzps3lyBam9XHCjvOXyQCDdDje+yNpldSKb7c8LP2nc0YK4kBkYhKxlAheLC8+uiZEg6TIjOWuyogECJ0gMgKiJWJOx3gjmURsYxiuGCLCin0ieDMAtYRKqWElBYn6FDc0kFTFTurhJXmS1CLgDB+x7YESgDwKTqVOku4AMIllQEE6jG2Nx4iijM8v3n+qN88VAth3mfnaZHUBuE25Ai2Ux9bq1NLWk3ym6u3marhz9z8cbEILZxw23D92groHWYiTtj5mD22RMSiMiuj8fjm/nR7lBxMk0zHrEIIXZkUQQcsl0VRMEKPhgfbe5vDte3t7SAInn322fiD0Rc/98JGp/v8c8/eunUDwR3u7xwcTdbW1ox1pphFoRKWJMk3t873huuZzaOUbOlmaTro9QYI4/H46187vHv7TjegXth97rnnb1+98+Wvf82qAIOOpEXXwj/5F//qL/3wD//4P/2XkeBK3P/KV19mK1GgtVYbcX+amNI4I3zxzPkgiO4We+sYb0hy/80rf+mf/ONPfcsnvvi5lzc7A2MLD8uvlCqKPM9zRNSra0EQlGU5nUxW+n1blkVRdPu9YRydPnf2/u0bDqBwRsfx6dOXDkdHYI0AJ0mystI/c3br3o3b3UB3NK30hwfT8el1uLgRunzmqM9siMiSADrhZXr7oD/9SmkisLYsSosUtf1/c4LIIr64X6uq3jL3BVg0sXroRhIRy45q1kkNylI7FbnVLUSs/MGVJbnSVxgW3KiNHQ88M64H6Nk/+l7VG3Gpq03wswhXoVtERFSWJc7Dx+ddYjf32zU7vvHDLbAxREQ0pfFoO9ZaBKUCjQLW2qY+brv99rFpT8LSbQ35a4azRCCWWlh6dum9/k6lF/KVYZ4OCydeGsnCwtvbB37ppSc3cawPbR4MLXLYnoc2S1vkPZWRRoSQxVjeOxpN06TfW1UqAHQMVJYmz3NjnLWkwCHRiXhGHsWztqb+ji6ptZZmhn0dw6UOwyJOS7OCIhIFXS9NsohzTqAqh+cJByJ643MVxGetCnRNWdkxCxIppYJgadLmgsIx3I+lO71Hf87eBNpJ0ghKwKGAc9YbS3QVZu/ZBlS1hhAJFID12qEt3Sy3hXfBALIP9WZUQFaIlKG4CEpmHihQLElh7nfVaeuxskREhAi0cgCgtBJhXzpvcdq91FMhR9XHAGFR4z9529ergAJOcVVl1Zs0GvODTzus+fd8YluL3t4m1JJjqoiZpaveVsdPTXuHNyxWZIE61qzaNQEEPmzeI6yJ3zxW6rRgwtrC47zuK2ydY+bVbn80ne3uH41yc29WXN2bHhYyc3CqW65tnto4e+bKjZssUCR5FAT9bmd18/zB7nQyzUnr69ev//m/+N/8y3/+E4GGu3du/fRP/esLF89fv3YVSZUMosJOv6+ZbZEpxLjb290f7ewdXbiw0e1EU+JYKwDMimJ7e6cweb/fQ2ALw6s3Dq3To6wYrEdQJnqSXgL6h3de/9kf+kvp3mxjdQtnuKn7RzbZunAuU3Dv2p0eBUFv5XB08IFnP3A0TUc3bxaB02W2JfCLv/rFn/nMF59YPX9EOYZ88eLF6XQKda3PMAzzPI+iCAA0kohEUTRL0zCONjY3Dw8PkyLfOre1OlgdTaarm+vjPNlcOcPG7t3fXl1dzdKZcyCKoyAcjUZxp7u5pld7ajIWrUI2TisBACfWe0bqrdiy1D7gnGoFhbVaKe2KKdEciMNniSEiBoCOoKIFVRSIiBCR1hrR2xgcRFqYwRewri1+CKC9ZMkivn5NtVu1q4iXVFRUhBRoUiV7xcKn90gTHLsEpNXsXVsaz0E9Oai5CjhAUkpjJT8SkRU21mpF4Et2YXV+eE4WUYBRmnxNAQD0WLsojHUGc13hwZ9GhAra3svbqBX5erfeAmkdEGqtoS5r2pRSltpJ01DJ5vSS+DQtBBCpI8yQUCntFwVw7qauSsu1fHVN4z7aFo/BkCEiW9cwdX9DHcfe2io+SA0QAGwtgDejrkWxE4AamNlrZK1arlVcu9LkTWSIFSYvVGB+DRnyEpQCACJkLqHWFVrCkxRhgkYNuJO7JOmYCDvFgZmpaM3oXJeODVhnrZ5IZIIgKkSU+NIcx8OzrViqfP/koQMFADUKc7sop3i8QFQKGhhwbPyyUvEPfyc1rMLa0s9tpeTN0VqcY791kWubgmMTRCEINK5WcYwAoQ6sK8DDHiN6P48IWmu1DgUAkCvbKUkVeMRt4biuWcasCTyqOwAIkdSh/kIgKKAUSxV5LlKZoj28cWkY62Rx5zjSbHIXBNpSqpCMUWEYxhFnBU5npR0qIWEXEEUsyoplcVoFURS4vmUwJrMA3SgYpmakRUU6ioKQEVkYURkUcZlCiFCLme8h60DH4dyAXp0dAUKfL6zQkTAIMBBjCETKMdT5QZV4DyIgZNkLOuxYACrTGlcxf+CRYXw5BhERURRU1sWWp0xEGGy9MxErdClBxMqAyKUVQWDhhosjAFQ548wMNdOtBBoGn5dVe4gM5Ap1gCQC1prC1zPXSlvLAiBojGMGjQrEaYQpCbvClpkrs0F3YHMHEmqMXriy8/q1W/uJtRRfuHhpuLVx7423+10QWtt66ulkf6LgXhJKvLqC07xQ6tJj59Lde/s373ZB9nf3/94//JHw7iQvillH/Xff+UcvXTj9P+zvv33zRggwOLUi1ppSKQpztuNytoJqxfLuzSS6sKazKC0z0S4KtLYmDKLCuO5wkExHv/bl3+oEtB537JEcGRP3+owQjErn3Hd8x3fc3b514/V3OUlJqe5D58Pt/almUSabTocrG29evT7avfuDH3j+T3//t//w//ITN+5MzmVqAHY829GFe+rTn9pcHX75y18+HI8UEYAyeYGdeJomURQYduSNKIT9ft/m2cH97f5wnYJokmdJlu7cvjvbPxxevHhUpqvD3mPPPPNbv/GVQS/eOM3jgix3OgwfOBNPXKdAE2OBIRRWNIhItCT4tdltRQarOCrwSDQPrF/YltGWWmy+9MfYq4PIogR48U5YNHa1n23/VSEesBgAqUFuqYLHm/dn6YO/vBCALSWjebySjRtso1Zxp/owNCe55bqrnXCLV1OVR0AImqdgzsMaeAoAT7OkPTyqo3ROlCT8N1gHxTiA5XlvzWojPbXnsz3h7Ulbumfpp6UOLHWvPee/A7V2uX3fp6Xvl2wS/k6ee5SbCs1ciXE0b7A9EAVIWoPXX4kQVJZND0dHFwdnxAkyOoYkK5IkMcZoWVb329dCOFXdQ0WqbedoOux3wPyqk0OI1NLKtie/mc/mFdAKkG7fwMyey84ht3wRFK9e8/xOxJOHc3wVFg8d4GJ4BCweagBopF4/1qU2lzYY+HhsDYhoRbJMstwUttsLKhspoRCCAuWFuziMuKOR2VnUSBQOizSbJpnRthOHSiGAOGdLxEiRClEHc9NRoDUfQ+bybmFgH8tcW3eplphaB7zpc7V09So0iyWVJWb5zvYFsKDFCld6PgAAI0qFkMOVSVuAhYEbVG2u8zDr5mpq09i30PssqrDNKOiYws7KApiVUqS0AIgRkzEROWBkIUILrjSlABR5HqugAx1H3dyEd0326u07t0dH432bOSgQ8nw2cK7f6xQxql5na33j+rWbB3fvo0A5y3rdAekgyfJ8e2SjKIxjAwaK5OCdiQ2h01UKnBvKrh1lZE0c2ImFcWlCilDiTnxmc+P63dvTw0kA0A2Cg72j9d7qs88+e+vWLUsElpMkwShYXV8bl7Qi03yS2qi7ZybPvP/9t67ejONsMBiE/WFiaXVwaQbb7txA9vfXtveuzmZIWmlNKkzLsjPsKIDv/8E/+B2bpy/9+E9853f/wbMffOrGaKe4uRcOw9t3rsf6sbIslVKmdCqgoiimadLt9L7lk5+4e/vOzZu3dBiubqzt7Gy7QxvFoRepJ5MJl/Yg2VdEB3t7SZEPYm1s0e93syIYHU1VP9agCMrhcAW4RAJmbhJ3ZBHX4T1OJaJPmmN98glsXV47aTatQrXEgH1zxCIiPovCG6i8SK5aCfIL4kBNcAnq2mmC7EBaVfwaMISGyR0fiWoldTSHjYicOHBSazYVdkygaa5bzE/UXBpYop6+h/6L+rM/oq7tBm5GNGdpi58BqrKDFdpA9ZQHs52rlW3j1hJtXZrDpcvT1fYji+PCRgxauud4a8fv9LPU3PigfXLiJW02X3vFpDbltW+r5a1291zjiW+61LTmrNEYWmuRAAWUUmlh98ZTuEjggFA7VLMsT5MMWUijRXjQyWDrmto7HhSqpWMtj7pZ6ur7OV7HQv5le1ywJALXB3W+Nq3oKgBo50phZYaoLlfxlNoQW/ueofb6wLEtVC3l/ICffNYXNth7rnB7IUREofYmKAAU4CSBSWLTwg0ihc4xGiXWg2pZxwhOB0FHFNvSAACKMHV6Kxxak2WzJIujII4DJAFRlp211ixSNF9mFNFnlM15pDelgTBIla4lwqhAwNXZ/0sjXSgzBMc2dn2oGz5bRZLOsQRaj9eB0/PV91+LMLAAio9EoUXRViqS6QAA6vBpRCTlpTRxzrmiZARExYpKZjElOGZmVCEhllnmbKnDwAmWxjFgTyInwZ5xt6fJtb17B7m5vbPvkEBF1AmyaQIKbt6+i4gY9aeZm5XFnXs7XVEksBb3pkejtV4/S2Yvf+WV/vkNl2fdTrwN2XoMf/oHv19b+/d/5pf+0U//q631tSs3bzgd9oG+7Znnv373ypXd3UfOnL988VLp7LYTk+ZxHIe57fcHW1un3377HZuXK/1+KDIr8yiMKU7cfR6urGxn6XOPn37hx/7rf/dz/+bv/qtXWOmj/YOd/g44PSutisOw3795ezsJKc/N2uoqk+p1equrq0f3bv7Kr//axh//nnuffesJjH749/6B6KFT//d//k+++uU3Cjh4bVY+9NDDb73zznDYPxwdhWHUCfppmq6vr9+/v6PDYDgcRlEoIlGg41B3O7F1zpalInLWhGGUTKcWJXHlO2+9PR6Ne0GU5NNO0IXMnVrvrG8Mjc0BLDtRFBwvJL5EwI//iogAVFUk9n8cv49auxYFhFlaaQ/VPf7ks3BTwKemDr7xNlEAgIqGzBPhsXUzMrRZ1AIRlEWlTWplov1nm7qISBWV7dUaqnD4lk5axZ+s9Y7FpRmsglvqwFIEbzya111pGvFkqGq/pfdLRdQWhOt58LP/Z5EbQUt1bLNJWdRo2wNpArmXZulEcrvEWpZ4xhKzr9f6REz8EzZZTVyaecYWY5BKiOGKpTcqVpNqBcukcE7R2r8qJoVkXIkkbC1iZB0cJVnhHDshTaXQtLRlaREAAkUsFd7KSX1GASAUQkKsDBHseWQlz9VdkiZNs+5MIyIsc19/USt4DVuq59JGbYbWvKtxKCIiaSU8Rz6qplTRieK21LaZZmUX9omcfL7a37dnf2EtpNU+etBHaI0ItCYnMMt4kvFKRwJgxhLEGXCi/dEDgBJRBwGxY2eNYKiDSMddo3U2m5XGKAU6iJRCAjTs0MwjQ21uvW0XFRGQoDQmKGBEYQSqgpWEgB0gUhPWtDhwbiFGNdQMqwriLXYN6AEeq6DUZkIaxo8tbViEXSOw4rx2mDAJ+a0ji9aOZufUyLiVbuR/dY7RAipwBE6sc44YAq0iiveycSQ6L2fgGAgNK+sCC3rkyndv3Xr3/sHdUZ446IZdTtWw09tjI6Xr6W5pUklSUoFzrrPSv72zrZTKnelHnbzIlaKcbRTHa4N+miSDjc0wyXIDK+fXf+/GY7jR+8xD197evvnu9ftbZzf2Dg++60Mf+7Pf812fv/ryD/3kv82L4tqVq8l0evb8+el0Otk/6FA4m82uXLnS6XSo052OJ3Ecky23t7fPrl6Mt+LRbqqP0kc/+DR89Lu+88In//V//p7ruy7fm97MX525UhnbnfZd3N3fCOD+/VBrEjKldTyzcTjodn7jtz738y9+bjOF8NLw1+6+cWGnP9rdXxl2U8erYZhl2ebm5v7+fhTFeZ6vdLu9Xu+Fz71wcHBARLPJdIaCLEqr6VEKFJbWIIlY040jY0w3Dh2CsB0dHrDhcNCZ5ZCmWba/99TW2V4nODwYRToQYJRqb9AxAKL3YMP+J12TAoVoF45eBSleb8Oad5zID4iI2SEitGn3YlRz+60iFW4kV9i/BMC+6EJbLm0/2OY67Q60U3vbryAihorrVa05YTpW/GRBa1kgi9X3NTpxu/MilTsbYIFLVaeNGepxUBWKKQrb6nLVjTZ1nl8+VK3+bonbLc2DNFKILNywxMnaPPX4nsDFXE84diEiwMk/nXhJ7Tw4vi5QY5nNw4PVCZPQ6vnJr9ColAosWSQnjn203P54mhRlgABIE2OmeWktk4CTqpSQND1rXdUqNGQUq/XC1tWsrHMO2pWeoZHDTrCpQC1uLo0LF0PqnDB6fMcWoE37NMGiDCu15Ia11nVcxkKfAtSMerGdE++fL1NLu6PFLdSMjq3zNAERnbNaa9IY6VBYjIVp4XLDRD7ZR6yIWEYEZsvWIgRKKx2AYxuobl6khLoTd1aCIJ2N8zJncGEQxEGIWhue25zL0oYKhFAhCnp0Ru/FBiW4NBDw+sMD6lXD4oGaTxJ6+0LbZ0EgVTBKxbDbmjeCtMofVcvKqJVqZhFlXtOp2WZN6IDvQ1NcQUSY51DwGtk6a6z147PMeZ5by6EWjxBNQZzpeGeU39jdu3d//51ZkkwgJHAOAqCiLCy4o3SsB2vv/8BzV99+c5KnK73ueDoL40gpioIoILW3t5+VeUS6vzYcrA4BYLq9J51ANga7R4fng3B26/DVvb13r71xdG9Hh1qUtgZKAwdJ8uaNd7d376+EIQJvb28XRRn1umEnBq06qHcPjy5evNjpdO7evkNEHsw8DMPTW73do9kES4niGy++mXz1Z37kH/6jdD8o3SwIKZsmuku9XqcczdLJ9NHnn723v8MORoejtfX1w9EROZNnWQDwiF3JNnC0N/5Xv/6fzG46NDSKaKUzODo6mk6nqNRsNguisNvtRlE0mUxcUZBl0ni4v68QNQE67oaUTKadfi/uRpOjkREurYu1SrNybdDrREGstAZggekkAevOrBJ4eSiMRKBa4WOVRX4nBFO3Fd/2A5VnFxEJgeeMFhb5EDRePV972kME1IfAS4HHu4KISFpE5oF/RG3mXTfe5ihSv7dROyqTE4BUsAlNhSIRduDPp++Ap2vUNqfX57R1Et4jf4sXpBNk8v1va94wz0WRk2hcPQm82PICgZjn1z5g7ZZM8VJHZVPb67zQ+YVzDgBYkZI5QERj+2oz9aVuI54wove42oJC1YjPx1pMw/VSV70RGJYJIrfbaXeAmUsxqACIlENCpZQeT9JpWa52IiCaFGZqrDCiiAWhBwsQ7E03Hp/U73ZYWO2GYlaT39r/DQN+UJBgk2bW2tXLxokmdw4RDbuAVJUrXIXyt4EgWosiwnV2XuvVjeC2PMxme9ScY2EXqVYaT5s3NNashuX4R6y39DCCAmYGEqUwCAISsAxZ6UqW2OcmI7EDYVYKAcWxQWBUkdJEDmyZ+UIsxtpA6/7qWpZO0umkyHPu9XrYQQqaQYnzaMj+LAMTo6AIQi1tAGKVn1ONy9UiPVSstRbpsJ6EamhVZcwqXV/AYgtaBVuKMtYnqulSa2YIKmsWi1Cl8TLXiR0CAIwstaLc1pbYzjOL6pKpCAA5soirIp+ZLUtpwTrG3OluL3Ny7zB5e+fazf1JroOcpRd0XZxZRsPsFFrrAo2JlYtnNzYvno2HnZe+9KXdo7GKKJcygmCyP1tVKtIU9DtbK2sGEAKVHIzuZZNuBjDLbag4L7th+Fd/9d/EuRmwRBCEw3iUJbQy+IVXX3/55rXJNNMaEmbDyNbcvXIdepEzpiiTbhiuDle2798fj8drq0OTF5qoyLPp/uT25ObenWIL4m/c2Bl+4q9ubZx/vhs8/sSlr770jU44UBIeTmcFyg988uN//ju/52/9x3//5Re/KhKICAGXWbq6ulrk5l6R2Zk5bdDeTGcEhPHpHPXFtWT3cDDoHU3GcSdMs+Ly5cuo1e07t1eHw6M0jVTn7Nmz6WxW5rmwGMOOoNvthmGYzZI8LdZXBgYYbUmkk2QmJVIUrQyGu6PZ1go8+/jpsjQaSWElB9XnyLX3zIkEs9qLNWT0YpHd1n1z6iALZpMlk9q8RUXePSo14m5bpl6iO623VCnCAFBDRrRvbhNfgDls25yUPHCc4COZKklTV+nCc4ybNrOpuVrbZFd76aSVboQVd4da2nVtcEFumSvb7KfuuT/grSn2vKhl0ifEZlZbCwHHKHt7Vh+0xg3JaN/5YLGgmeeT7Ra/c+a78K4lc4IIUUu3WNwknqi2WloG3VzoD6jCGhWAEkESEgx0NJllR9lstdd1qCdFMS0KqNJ70Nm6ZPoxsy1DC7vQn445BZdmMpvNRu01bDlQTlwjbuUBtzlf1VSV2oe+Y57yWkTNrVdXok/1GQihlWvYfpf/P9YWbG9KWdpOFcK5zDOopHEDHF8+AB+Ou0AlqgYZsYIUYKn8L6QwJC3onDDXiQwIgQMEqErTE4hP8EWSIESTF3EnBFR5ZsBC1Ov01RAATDopikIYuzE0saLMYsBSHdBEwEhEDH4Kq6moTcTVWBhbckvNCev93F5cWDIFLfLgmm62MMsqT0WFT+LbbJaD2Xs8fFh0xU1RwNW1N6pfRCrV2YHU+bxcrT6LiFPEVsA6a60DcaQliCAMbmTpnSvbb1y/c5hDIqA74drqhkkSSd1wZTNaHfQ21vcPD29dvSmAgcLbN67HcayjcP3MOeswS9PBSu/+wdEf/fQnn33k8V/56pfvTkf7d3epE032d850Vv7A7/n0G2+8Nbq1jQDhsDeZJE+evrT/1q08JpWV42nZHQ7AEfXiQ+Df/a0f7zN/8d2395KkF8WS29K4ja0tYtcP41e++hJoNVzpmTxDxF433ts9PNo93BgMPvXhx2/f2nF7+WNdevLRwdSunV5f2ehvPPfEB9Kk+NKb38iLYmVjTcStrHaiTuggSoqydNYwf+Tj37S7d/jGu6+d6w+PInNwJz0Vdfey9Pd99JMrH7l8/60b165de/rpJ7/61a/1eh1ry9k0PXVqvZjNiCCIwuc+8Pzh0ejundsuLw/29gIPj7W2qpQKNZ27cH5ndLiytWFH+dF0lwuIhtjfGshovLXR39rQZZYGOhJGIm1tqTUxuJZyuHyajl9+q+hmByzd3c7in9MCZqB5tYcFZkAoUsX4yYPDOJoH2XEd+bJERNqG1hPUxDYtaPrWpmv+X1KkANk6ax1UUdBirQ3iTnU86rSWZat9RY4rtYYqaHVphiXAUvP12lOIVNUdroPFWssg9bE/PmkAoKTK1cFab64JnDRftod/otWa6uqq85ceC6RalHuwbVJuT+Dxxuv7f3tzyu/k0lgXha1DBkTEOYfgUaJUxQNRRBZ0SljUwzpxXKYFIjg2ygUMgKiSbDZOMyMAziV5npfGOdakENGxAwCFJ/hNUSts6eW+fVL6OOtdmh+sxasTRcDmHqovaImMCyndLfO1H6MR5zP6qhQ7QmtNu81qgzbyXd1zbFlK/Yot7brlVy/Kc+3vK0ZuHJw0QFWl3kKThi/AIk6RADKDMABzVW2RgcjHJ2MlwTtnmAKtg9VhlGSptWUQ9gIdlsYporX1zVzDZDJJkkQhNgzYOUfAMK+GS8tDICSqg85YTuw51IpEO39svi4Lm79pgQDmtRCamWrLVSIC4ETmsXjQyOn+R/Z3NEpSdZuHGPQmx7qEmi+nyMySGgvWEbtABYA0zYrbd27vjiZfOkwLI6VTg7X1kCESCHOwu5P01KCcHfWK9BOXH94IB25qZ6W1gNF47+qrb1AYnj578ezm+aPD3fHRSDu4vLn1Te97/u3bN75+5S1tucwEEM5vnv7Bxz7W7Q9+dvc/9HLenSZ//X/3p//bD3/6n33hF/9P/+rnHo5WI7J5Jh1gI+XaMPoj3/RNutO7Pjm8f20CwLFSSZlduHju/c+978qrb71942YQqSAIPBlM0/Tppx453Bl/6/PPPXT+3Obq7c/+2sHdo97OSzt67d7rL/GqCuKHnfRVAFnHwq998cU9a1/4rReEolmaXb58dmC6e/vbmTOH09nTly79oz/1F5KQ/8ZnfuadL7weh71fHV/9XV/Pv/HuW4oCrTWisNg0TfMiT5IkELt+evPO/f37e7ugVOmcCvX62dMd0vd2d/pDYAbSoROcTJMzq6uj2b5zEAdobel33dbWMNIuKWwcd5mZKIAKcMk78ud7bOnfE4mDBgUOHCnFgpGa5wF7YAFEdI4rCi8CApXptWW98RsFGQGQsOWO9aeAlJdGkR36KFNEQXDclEWss5eQQURRXZC82oKAiEopW/piAErEeXOTP8nap4u4Ku3RVyrzMc+WXZXtClAl+xKKdYSISgmCrayKgIFGU1OlyqbHIsDMVEVx+zTBKoWXSClEZnY+ktkxIlWFa4S5JqjgTawV9J3UjL1FxAAY5gzVlyCryjbqZV7ol8OKFZGGYRDUvkpqIwFVWbUNIj9QRbIFoMLK5gpPqNJcXMsy74m4f64u5WxrTYh5nlg8J3wLbFIAPOBasxkJK4xScNKkmQrUMaUKSbwvX9hvoRZdPI4WBACQmkxpAVAEHVEgKkPmMtVpYiaiev1+Os4xzUEx60CsOGOVUqLretSty+d1VwNB31lCFESoy5iza0z0rkGw8v96EA/xMOjSPn8iUpt228lXbVbnN2Cb84Wt9CdFVfawYybw1cAYCQFEAEkAhVydh1o7a6up06qu31xNZuVmBmKfbIq+GJKX6hTV5llpHAFeAwt15Nj4bS+oBNmhKEWhQmZhkLIslSKbFxqCKI60IGC0P3WnVsxQ624QppYhCNGmgOSFW0BQWhQYAGM5DDVoBHEpO6t1SBiww2j14kY3G+1tHx7uA/T81M1MFkEo1lBQhhREvlYyKwJy2ioKQUgsEClv/lVKtaVrzzQBqpiVapjgADwgKPjqHr4QhUhVKNtvfJ6XiXEAQMjMjh0rCp2r+CYAEPlUJHa2ErOYLQEgVqDERCgCtlV6wSMVF5nqdrtOCmuttTmDUBjM0mlHYYEkcf/u/vjG9tG1u7ujEgoEWok3ghgOEjs+TCNnM5ja6JB6n3jkscuXLn358y98/cUvD1Y29u7dOXX+LCuXzDSXpcnzvZ07p0+fnk3GYMxGGP7IZ3/5Czeu79y5ZqyjYdR3AY1mr91+8+98dQCTWTfqhuXsLMPl9aFR6dFsbz3o5AEYJE2qZNPD7nRa/tTLr5TG5Ia2ehtplu3bbG1rfbZ3uP3OjW+8+8Z5gNS4aURsOAG+dPr0n/vYd74jh9944fNRWF6/dmWIzEHBaNy9fBpB6ai7Mughxhi6Pt2dHu58/nOM8Qp1upid2tra2dnhXF9948rY5ufPb6aqeN+zz+IvpuOB20o03Rj91PV7l7v9w9nhiy++qAK9tbW1ffdeP+5Ibh997rkwoCKZ3r/y1niU9oer0zx/5n1Ph2u924f3hsPe3va99eHqaH8vMLx//TY5O9DoShwleTcPVvXqpTMCNiaVOC60Vk4sKi6MQ1QKFcu8ngLM/X3tb7AmkiJCujr/XJVBad/Xlp1rdrvAzNuEY3GXtz7jQmUeqW2PSikRn1VRvY5QIy2oAo10K3WxgXbjtdmHjndJRIRFnHe4VCJ6o/swMwsAoUIEqnAzm1Evjagp64uIUAfUSG2Kb+5siCYFej5vVDEqb486URhvWmiPov3TUn+qOvW1ob72bGEzdGhb3Jo6yq1vKsYAaqk/C6pSzSMdgA8mwdpc3E6+8rBNx7stLavmsdGdYG4BANTKy0mO64IfhAAIi+rafDYQGkjMpkERmaXZNMsnaTaZJaV13tBHQB6XjtTyqKHanNXYmyQT5nmb6M3OArDogml6RUSGHck8cQ7mJ+i3sUEtffava2a1ejuRuHmdWq6ipFCYwWNEC839NbXpu3WI5vN2YlDhPJcJvRg9V5etsVLXAodKoUdENKUj0nW+HYGIta7ITdgNHbOxXBibl9DVxMzAtu5DzQ/n/N6RUojEFkQsMzERMoopAqU2Tm31+p1mluI4dJkfODFqUUoAHVrHQopq6iJ1PJQf1AnwZAt7TwignRmxnAfvVWlvzm+WAOqMhtY8VwjVHueExIdpSxPf7BmwQEmohdBaZ0onIkoFAUWlsoXJTVoWeR7oSIMuMzsIVu5Ny+0keWvnzTfuTFFDEIQMOOivlOFkfDAOXJCH4c4kOwsQgHFcXMrwfcPN8cULv/XyK7uzlBXtb+9inR59anMziMK9vT0A6Pd741lCpX3h6y+fiuiP/p7vmEb6Vz/7awhADq99/esDHdEgPhzPQoD/27/+yZ+//NDr197RhLY0/UG/KIpABcAuZ/erv/YbKta9MI6jyJRlqHSZ5Vf3rt25eese2PPrg95hAhPDp4YrgX54bfja3rvX9/auX79zb3QwLsqCIWQRdgpgNegEik2cZanJUhNgEJewim4cajaZsLl963qSJGKLbDrNXfa1d8b/4cuf/9v/7Edf2rlz5qHL7ubR0Wy6tRYXWRHH0SwvPvzRj6DA0e7+bDZb6cUbGxs3b1wVgaNRGkfRwWgkAFmZ0QR6QXSws0sCca/b6/Vu7+2fPXfG5eVkfBiHeqWvBuur4/17w9VTgozL9NNTrwdawub3tW2TIhq5UqeWCOJCNGbLJtyYaNpkiIjcSfxjftTmGKcAwMKgGjAq3+4x12b7zPADsJdFxPHcRNY8KyKuNNQOfpi7JGtXXJMczwswhMcJ9JyKITYgcccJXMXYwmAOBE1ERJaZm2ziY7NEDwh6Oj4z/qcTs2iasTeru7hqVfnjamIrnfjk10mt+zbfOxCqeHxFoE/sQHP9ty/+xnvf8P+d67t+x3eKNKhsUglaIrUTViogVakYFTxI4GgDZrX2RsOAjy891NsbW3ug9eDCWRAgAObKZEAi6ECo5TiAxa3S+DLbr2NmXOx++xQ3XZpbLkTYOVLz2F0kJEBgsQy+aoL4KBQEdJLnRRwpZCycS3JTdMmxh0b3NmlZ7CcBCJJDICCHiM6AgHEOAVhDCKRV2OkFEcDI9ydNpqH0BREsugJKdk47rVApRI5qcEy/gq3hnHSoF29ozTYqqRRlbodbEen5PdxIwFgbMABq525duJdxDn4nzMwO2IEFITGIRKgira3lMjeZKTmYZllBGATdbtCN945mt7bvDoZrv/qVWzOU/dK5SK+ubY73R+j4U5/+Xa+8+bm95MgacSp48rlL/fHs6ObdjT79xt5bX/nVG0Wex724GOUKSCnKbREoAsAnn3r84Uce+cqLL7791rviuBNEMUves2dPnT3TWy2xNIh9HWWm7ETsTJ4ZCeOoV8K724c3k2JgUAnneZajZMZ6EKSV4WpRFAZMVhY2L6S0pNUsT9fWVsIw/Iu//w/uHN3/3K/9cj7J+7Pp93znd57ZWP3V3/yVt67sPXHuzK2jfUtht6OjXnd7f+f7PvHR//Mf+eP/63/4+Z//pV82QTA1pgN5N4yZwjAQm+aEcHiwF5CKlXJFqgnCjZV//pnP9Hvx1tlz929vr6lut9tFUKk1Cmil199Y27x27RoAGQuhlnt37t67dw/YXbp0No76127dNq7c2dmh3EhWTpISAZxzk+lUCD7xbZ/46ktfZ3Bpmq4O1/eP9oYD2FztF66gykQJjW8RQATsb0seoU0KRHQbEGAhumTRVVnRdBFZ1ORkDimw2HTza82y6t3IAAAsThwiYSVYevMpirBSC0owtGjEktnTf8P2BLwhAJC6GOc8D4SIkJqwUfEmUG8DdL6ExFx3mQ/Ew0yCR2EVBvZYdA2BI6J2ziWDeDO471JLLmmqEi1aC3D+uT13IidozCLSJGVUErfnHAAgC766prE2IT6uB891o2beFp1g8wfnzGD+fbtsAPz/+TXfPIiIyITgqm+qAl8+AnYRAxxq44cKg+NueFi0RvirZrqq/qvRqPxPbomb1tOLXPMJ8HZyAFh0kx/fM+0TUX8159YnaoTVuZhznqo0ri+SSLW9pyYYyBVaJxhAQUiK0gBpBdPc5QatQKhqqEsWrOMzGxwMJEZwIEjKAmhxBGAdWyXsILKL9ZpGo8NeWCodhmHEjMawY2CtAiEBB2AbXzvVhaeYH4D4BqopeICgRFwVQ7qMZFKnijmsVseHtZNU88A1voxrLTqgtbnHVxARx74aIYtgGPastc5YYwpjjGFBIFSay9UoDnNH1+4f3Ny7fuvgaG9a6k7CzrLAsBdr1NnObswMEe0c3FrvbVx3O5b5U488vnJpa2/73p2b8Mnnn58G+NUvf211EAWg1geDcZYlrtA9wFLESjIZ79y/75yLOyE4yMsCAT794W8+21/59c9//srRPjJaQldKWZa93mAt6uaJGE5WIaaUeqiSchaHQZHnQRiGUeSY88IAEIXR6qCbjyaC4iyf2tx89rn3bW9vX33tG29ceXOw0v3g80+/+qWvvfvmW7Mzm3fv7/2ZP/596/HqZ1968StvvKO0nuzvXDy3duH81vT+608+9FD5WR1Gve//7qd3793+wit3Yr221uU0NSYrSStSIeTGOOj2e914hc6vPvzIQ6PDo+lBakDYYkcoCAIWyfP8hRdeSNM0CAKl8IknnywZNjc3p6OjU1tn8tyGYbi1fur2vduBgVIgJAzj6PDw0Fjbj8J33njLIfVX1kqTJ2kx2h19+7Mbpwad/HAU6K7XJP05BAABJyxIc3j297hkrgEvXs0dc6tsWxIX8PVHm2vpwC/t8vavWDtWoVZG56S86owD8GmzIFJBSbNX0KXSy7xLzEce1jr6CegcAKCUIgFgwTo5Gtu0w4/R+bBMQCLjaipWn8E2+xdEzZXyzCLYMtMtjV0cI5LPbW1ljyzkdLanqJE2lr6EByhDbTtYW1CgYyIILCpYnlEv1CdvkeDjzP74VTe7gBrRFKz9Bx/51F966XO/bSP/v3b9o498mojmma91bXaN1LjFm2nDOiauvV6VvksVpDkgkPLgDSLCiNqz2NbyvddUKxX46jVKEZFXsBigKpQgHoq4ZZUBmO8iXDR+NBse5sisNe5SfR07oVBThuUduCR2Q3WAUbwBWkBYnMM0zS0HmmicYlJy4UQpQrZcu5axeVCqxCGvOyIGSokQsxN2YJzThEpU26wX9wdJckg2jF2nEw/CMCLQzrEIaLGI5M0TdbwbyiK22vLlIburwovev8Y1dWOpHq6cKSwWEWtrmaAgAaNI7cFjx67hwYjKlBbAw7YrqTKLwAor0XlhyjwjhTrUAUBubGnTWap2du/c2TuaGt5N7KEFVnSUlt77/cyjj8ZB+PJLXyMErdVLL36xJyvjkr/7Y4//7osXbxzce2f/dhjAtdeuPPb4U0+fe+jGvVuXH3n0Wz76Tb/0737uoVNnv+WjH/6Vd955/Y03r9+4+vbbbyeF0wrW1zbzPJ8ks84o3xnP3jzaLhIZRJ2ETayDgg2HYbfg3XQaEPW4CLJiGqBzoAMMw7BkzrKMlIqiCBGjlc4g7JhpkrP1nOPtt9++dW/bKlhfi//OH/uLZwZr/yOo3/ziS6tvXzcduHn9uts4nafJxsb6we7+f//Df/Wv/M2/8tkf/6f/5qf+yTfeHSfgPvzk07/7m7715rW33nl7Z+PieQlnVJCxR+tnz7Oxo6RgcIOVVcmsDajfXbt/c7ucpSrWVngQ9j74wQ+/9c7bzjlUKs9KEAqizsF4Ulo7Gc+Mszdu3wGhOO48+eSTSTo+Opx+9EMfunXr1s7OXuABeax5+5XXO2dOxQXEWs2meT/Uj5zt9QgT48Kg4aHSHMM2ZTjxiB2/qoiqBh6h+aHxZtEiaEDT6HFx+8S3Uh3lKx46qkpIANSBzC8fSIIeRhUWuClCjaoxPzgtNtN2ScIxNsxQHREAQGZUtZpb836SqgyiZeNJLVQ/e6JDjaju6oq+xwVqPpYNVQGAsDAKIpIvqXzSdLWZ5UKmcdPNWkOtZ6Ze6UW+TKiadWm3H5CCVlEEBKjBTxY7XCvx8/VqiwLoC8L7l7UsIovq7z/82LfP02GxtWEWKlW/F1Zq01qLwZyMLEMNVLhj5xyiCLiiKNbObH3TRz9248aNu3fuTCaTSEUAhB6FhaoA7OmPPuMb2fjzb7XDDuazgYi+7r1UEKFSs01fsqJx+ftOVo7hluX5eID98e26tFehticteTfat4kI+EhGAAQFNDefNh2v/11I4qqiqRFl8SC376k/ILS4ONRAHzVBYBRQSK6KChatCRHZOucYka0R1JIZnKYuK9FYgBC40hXQEwARgSpLEOr8bF/6l0GIAZ2wokBcyaAI5pGha+unZyHleZ7maWGLbtSNo34QhEQEQooEkatw0ZZoK4vHs/qmFp4AoCl+LILtIBqpKyWIVHjlzSMoPsxbnKnd2+wDqnyOr0VCryogMiM454yz7Hw+UQnIGlXhbFKU49ksKfMMoXO695Fnn1tfP3t35+D6re3Swf7hKM2jm/s7L799ZbC2lnU6UhQ6d5GOZkWpQvjg+5761GNP8EvZz38psQ72JrMup8998uOj38x2d3eP9vd7QfD+Z556/slHr5T566+/UWQFafKF0OI4jrsdtRqdGa5PFT/xgedH79xHhqiryr0jFEpNMRnNVteG5599tLx+7+bd+/2HNvpT2ds76AxWAlLMXBRGIyTJLF6JR6NRXpaCeO78+VOnt65cuXJ6bS0rJ3qc39i5c2vv/r0794bDQcg6IklM2Rms7O7uTo07vb7+gz/4A2DtQw8//Jsv3VRRNOzI3r0bX/z8YO9oVGo1hV0ZM1inSHu5IY3G1lrjeDWM9maT2zduj48mnSgIouAwHQ82Nh598om433vppZdKU0adODdl6czRbGKNZLbshPHRaJLnxbkzZ+/cuDk+mGAUPPbMU0fTiWOeTiZa0Npyo9/LxRbTQjBd2TgTlLPzm718NO50VwFLAK++UV3r5H/LpYHnFUCPi8PoQd8AfIYiShv8dsHDAepkwiqVtFxT1fm2pqXj4QV0NsuP15m11UngOvUWAJhZ4TwqG2oO5E+YZfZZ8J4mtdMivcXKv7KhjFy52BYYQB1b4aNA59lZwicwVEQkH57KleBMXqQ45pRtd7V5k+ACBzreePOvyAI0D7cIOiI2ZgasuboC4LkPGKB1/9JsYy0zNb+2w4YbOnacri1x9HZc2/IrFu+sesVVtypds/6PF/u4xLSq2mwiiKBQa7JiZX9vbzwaGWNCpQGZHWsKGsmv3SAiurpcNGJbJwOxDkQUYJMrBfVPS4voL8eOjts5WybQ9iNN/9tSTvNN+8uGGVfW5uoOAkBGQWYfZX385Dbz3OZGzOyD6ZakjXYfRKqtW41LhIWV1LdxpfwCgXfH+PhrBvbKMKJiJmNwmtqkcIUFVJoIGHzSc9WNZn6wxldHEMDKzqs0EpLJDUCm2yqs6qysXQ7TSaqOynyW5DNjijjqB3HHRx0LKADx0RoiuDQbC1uuduqL+BDoOrNfzMKc+Gh+gQrpz29srpN8K+8V+KJYPv1Z2O9ccszOWSEUz4Ctdc5ZYRUiIs6y6eEkSUob9odrZ8498+T7N9c3u91+Ok3XNs3HPtpzgnfv3U/KUsLg2v3ta3fvJsPhnRs30zwHMCnw6bXB1776tZVZ/tK1650AukE42Fgrk/ErX/48lrkr8s996Qv708nNFz77pdntbCcFgCBQZelWet31U1vG8p3te5tn1tceunB6rX//61+7l2fxymBtY3Vn74CEoyjQQfiBD33w1JnTtybmbjl93yNPX1jdfOHzX9zZPxCGIAgUSjKelM6O9w8VoA4DBrEoaZGLSJYksdMRwN/6mX+tV+OtIlzXvWuz3W9+6vlP/t7fs/3OlczZwXC4v3P4d//e3/+BP/q9P/mPf2R15cJseggZ7Ozs/PydnQx47ezqrRu3OhYiUUbgYG8HAAAYQI5Gh9TvFkXxxhtvRJGKibPDpBfGV65djYIgSZLJbBZEkWUJo7jT708mk3530FU9YQbjNCkSuHXzeqAAg/jN198qiuL9H/rgF37rBXGWQjqaJb0VJSCFgeHa+nRnutJXZWmlF6LNARCqSCIPgEqI72FvWbjq3Yi6/dUSAZVWrG/N1BbuabbpiWxj/isAQJUO0Wh5pnSIiFSh1SNCFRG9eGx8v5RSPrZQRADEh7RKS8M4LhOQUh55lVga8Z/Rl1Hw6U3zt3CDYLWkBuG8gKw0nTv2RqwRFRBRIVUR5n5lEAHA/Xbr0uKVVePHuWP9U+3rrZXiSlNrvaHpFSL6esZQm0iaATYKXP2h1ti8D7Qqj+YNjDXlrYjmguK7RL5b/ax+bRP0Bw1fRMQ6rFNmmx4KiKgTnsUqmdXPAgE4Ik0oSqk8zXZ2dsbjsVgbBLrSUbTgSeERbdENWhZmAPCY3scFhbbi275BRBDnQVjtUsHtx1vvbmICAFqT6aPuod6WvprkvDJSzYKhVsvb89+8ERGbxptu+yuMg3afmweZG8CNBQbcOE/8U642aGut63PEKD5wCXSgnGV2aIxkbPPCGSsMpBF9QUYAYLYiIsA+/Y0NYMufI8BISEBFWYCIRo0tkTwzTlM/jII47GTZQTI5yPOCEbqKjAURcUzMAUDgGbBSSmvdWqBlWbCaAY8hXQkp/nzVhooGLtQtMGBZRKBjbwHwc4OaSBlnjDGGnbezWeesKw270s3KtGQHQdQ9c+5sZ/X0YP1sb2XDdgd5bmxWWkJc7WWByoty/cnzZ4u02xs88ci5ydGTRVpcv3fnME2u37+7tzeNVHm4N/m5oxc7p8+URn3kfU+HF9e3X3ltVub3tqdPvu/hg8Npt+xGlm9+4a0yooceOgdAV67eMcYQ0WQyKks72T74if/wb4fD4dG9PWcxzWl2vxj0uwcHR5CnlsuvvviVC+Hw7sE9Xl8xb+++urIPisIwdJadMYNe/yjLttbWdL+7v7eng/DUmdOzLL352t21bteW5YHuaAG20CspSfMS8n6389rdd8f/0U7v3HegA1Tr6xv/9F/+5I//9E+e73dQ93TQGW71t3e3BeGpxx86v77x1uE39tGScwRw7/bNqBN3gLqdaGazg6zUGH/kIx+6ef/2bPfeerdDQWysvXr9uoh0Op2yLMM4ysuiYBt24rwoPHp8XpqHL14+3Ns1hV0ZdnZH08O9/SLPACDudfN0ls7sxsZKViQhq94KOKQgDFUIHd3dKcyKZhBCrDPW6iNyjBD+NpcW1hBRRGmi+lFrr6N3oxJ54c7zPyccQERaYZXixoBISpFSDuaCbbNTRYQqlMja0QvCDK5R10B525R/VEQIfKFpr24oooo6OGeISCkCIAbx54ECja4+VNTgLiGhAuM1EgLlaZln8KIUOhBBqEZhnfgoG2ALtd7atMho2Vbn1jEgeshMZ52IawAWpMpvhopCik/HJ0GuTNBQWREcV0+1SX9b4wGfW0PUEERpGQCdc6Tn3LQiK1IpcP4bZgZABYiAwuKgKhjl22oidasYT5iD/SKi1tqYohKzpFq1Fun3dIcAyK88VuFmXn5ybYsrectEhQ6GDWcSEURV++8rmEBmoUAJgBBJbXGpYAwfwOCRGUSc+AbF2tK/Fmy2fes2IiFpJwQAGIAFoVCzD3ZvtVSI88U2RBMQAjtkQWaPverZnjHGB+HXVmVAnCM2e0u7iHicAednp7bDs3NEBCBESKQ8wlFt9qzkHBG/fpV1wVkXBApqm5PWKCLOldYBEQVKO+dAmEgxsDM+r1QaERBazJjnqKUMUJV8XhJVm3XR1OAgVp1jBuccCet67wGA0mG96xgFlNbGmCBAAFBal8aISM9oU8Kop7dzfqwEygsJcwr6TXxZwxQREMin9dfunUohtt0wYhJrbV1GCAAgkEwBsxOlo9W1i0Ew3N+7VxQJwTiMhmmWl2XY6fRIQh0AQmmdQxm0pZNGUDbONNGUIkBAVeFtp5HEGut9DSoISpM75zR0nLUiDpA9u3WCRKSzYFZkuttJylQpFC4CyTSymQ2AROkyk2xaFs4LKqUNMVxdPbN64ZGVc5eD/tAyAFsUyC3GgwERcZEBQCcMh92uMS5ANZum1trVjW73wsblx0+XWW6N2b2/bWy5vb2NiPe27yerwcF0B97cDTTJ1K0oOLq1IwLaWBWGjz71PuoEZ7ZOEUA2zbcPju7du4cowxhM4ew0v7s3W1npGpM9sv7QU08/89JLLwOOOlbNGFyRvjVNVgbR6ZXO1Wy72MkfefyxPM8n6WxamrW1nsnGuNrb2NrKZykiZixJVq6FcZlm7/vQB7/pgxdf/tzLL924Yw7zQS8cpXknLzmKbrx7ZT3sbkpsxmmu+fTptUB1RwfJ8BT/7g9/fHVr8z/+5M8dFeVz3/zJ9SB6+fY1uj8yGg3j2TMXLLjx5KgfqXAiSPFTzzz5sY8+t3F95Vd/ddcON6OwN8hLZ1MSSGazKI6ZgR1EYeiM7evICI/K7JGnn3ji0cfefYtuv3PVpBAp3Dy9ee3OrWs3b630Vka7h71+T8W9jgNcC8Cag+T+VmnPxPGtxK53RQpV0d+W/ZkFCFp4DHXq5iL58lzSoz2IbjblEo2TuaVobi8Cv01bEjrUDzaOw7b6JYuBQu2uLPGe5vs6sLb5cm5hb27jBh5S0NUwXh6UqkLcYG6n/Ug9TVIHTbSv6gaQCuWvCjIiaTl3l/rZ0LLmVDc0twYo8o46FBbxqfzzLJeFBhsieFw8h2PX0j3NswDAxzK16uFVSVxL1gI4CcKp6eHST83A24T7xE4uaVfHx0W+bl31YFVwsDFOtnsoDxBQ6oYQwHs0AaCVoe58aQPA2gnKVYHVk+eTHRORsEcVZqxgoedlBJv14qp2DQC0TSbV6fB82sc4zTd/7UCth7Cw1eGY2UlEiKjB5feCKSJorR07Zob2FCEsJWEvtrz8TdWHGsJleaVgeZKrbdAqzLDQVF3kgFqQef4nK8xIYiXLiqw0jB2tg+MtL35mH21Sua6FABkVaqB20BgzK3SAVJalMUaHwdnz57N0mkzGaTZRFChFAsa6UkAppRQGRZF7Pdjb2GxtaBHn8TUYrBMRpwiqVTYE5ESgkZ8ckFBhtqE6bgpAI2pichbGao+1i8n0yYmoWVEm1qFWOe5qlPRoUjgX9tajuB93B2dObYWnH9GdTme4prsDVIqZUUQT9dMsCAIiYOl73cY5p5XiIFzvD0gr42yapkVmREiH8bnHHgfH5x95NFDh4eHhE3fvAylhuHfvBt7dPspuZkXqBJyDLC9v3rqWGPMmwpkzZ9Ii13En7HbKIhNwnULS3MahyotCAtXZXLmye2c7PYqQyjT75Mc/NhwOv/zSV2azSeggy8pIBzfeudLt9SAxlzc2852jqGBz/+hwWpRsURHf3+soCla7xVH5xIXzD5995uBZ99krd4KVXu4wJtaRHqFJCsBQB0GI4HKbDjCYjUdijU57a93Vnf2DmRQQw2c/+4uPD1dXOb/nAEBOb6x/6pu/eftw/zd+49fCSAdEWelWVlb2Do7efPPNOI773Z7WoSnK1JRasNPpZHnuDJw9d+7O7dv9bq+05SxN2Lnx/qE5n7u8jOO4NFaTQhalVBCqo4NpQIjAQahiXLl/Z/viubO3x5ONdRWFPRkfmjLT7xnL8ju/NNbWoeOkoT6cADCny9xKGpZjVr2GwSydtCXq2dzTfmn1ZZOGxCTQwhCReTvtR3yRhIrMebACx8BM2o+oed6fcIQFqMv55cMyELGp7FjZY/UCJELzbBMsw4uFgbF2XqoKtwR8gbLmnqaRpbE/6MOJE3j88kUpqLZJcq2bwTFCXP+5zGgb2WKpA0uyAqIf37L9dqnPS9upfU8lL83Bsefr0qb1DxLR/IdF32erq16lp4qsiwgBKqJG7jq+9G6xVEMzD22LTvNsu6tQ24T9/QqwXc0aK3mgbcpuuVcWJ60ZoCJyniMoVc/SXGhbEkqUUtKa7YbTnyjS+asRHZrb/OMsC0U+Fk6xH2DlQpqvLyIysy/x6fXFanZEvNF1Ms1GWTfnTl/8WT5BtptjtopAk+KIDthrBppbkhMzFy6L4i5pKi0rwbjTDYKAVFAkE2NMWs48VFwn7CMEgAFTgiBO2CcwVxZ2T2BEPN5nZVUmBGDjrALFzolIURhr2BgDAKE6z+ysy0ubs5SIOQCwWEt9gWI8S7LkKAjJISdcFLllCFxWiNXrpy5efOT9vc3zGMVhHMvK6SAIiNjZspxNiiwxWWZdubm2PjnKiiLzaJ1a626nN+j1XNR33tKD0B+u9Pv9LMvSJBtnBTMP4lhH3Y2teH39DAVhGMTGvX9v//Du3btpmh0dHe3u7k5GozAMC2vDIBiNRuLKybS009mTTz4yHh/t23Go9ZPPPX/96jWT5Ve+8SpbCUpTgFy+fPFwOt4fH6GCtGARCcNwb39y+vSpPM9PbWxePH/hytvvxEA2y3JxUTeyAkqBKwtbSmn4S5//jbtvX712ePv9F9f3kzyz2I17R8nR6bXwqQ889etf+IbS1OkOtA6zJA+17qyo3Wn6s7/2K2XscBAlB5OzHfyhP/kntC1+6J/+5N0792MV7G3v5GV+emMznYzLnLEff+2VV3u9a7u7u/3+SjIdR2FnZ/uu6gQqiq1zFOjVtdW7O3d7vQ4h7E1GQaCBebJ/8MqLL5V5VpaliJDDvZ19Lk0yniaTMYhoBOHyYJwPht2tc6feublz+fk1ARUFMUECrdjA/3cuLS2zZPtgzMNZAUSoisuvD79XKBp7TnNMlxgktKKp2xS8IRZtfuOvOp+OsPLRYt3O3F2t6kRbwqpiDEkFcIgs4B2xVcsN2WxodD20ypNa/SgsLWmi6fP8u7ZsgS1AXWiMAfXnit06ARBA0EhcB0ydOEWL3WtmpuHN3ngONbMPWu1UY2z+5ZYDj7Ea4wIxbc0DLJJCqDSwE6j28TuPf3OixNC8usVBqbI4zMfLLZ14IXoLaxf1EndERNekd1cWc4RKa/G2cUTAdh/a5vGFPms1N8LzXDoTEe+O9eaNeTDUYh7RfD5dC066VS5n0TIxZ6VQy2qNkAsLM6Z8WjxUPWlsGN4xUfFCrJGtji+EtETGJqTt+M3NI+0qVcfpQPv7qjqL922KL8ng6s+oSDtgIgUOktSOMptY6Dipa3Asb4n5uxBAsAnedmgRFTGQmh988QYdV+ogjgJlmWdprrXuDIbduJ8kk3Q2KU0+YXbO9eLVIECtA3ZgWZQC1KoKTnaAjF42Zq6tYgwAYi2wE2tZERjjBMUYCwCF2wcAII+CrawVx4aZbbltoDTgytBGcU9TfyDRqaBvuEg75drWuVOXn1IrW9HqZtTrpOmMsqScZdnsaHq4Y5IpWyOC4ji5082L1JiSiJRGBBWGYRzHvdPnoygKurFHGxaRjkCnoyHoG1MgAHAJlknpMNQ6xJA7uL62Nuhrrcsim0wmyG5lZcVZm6cZEO7sj/an6UGS7ezt3i5mK8O1qBePt7djkKNp7mnKqc3Bk88+c/v27Tevvo0IeQ5bp1cee+bJV199tSD4ju/77tdee+3dd6+aGPvnNrK9vSjqzvIMRjNmJwEB8WmHf+KP/MAr77x+8/U3/9Af+u6PPfLwP/4Pv/DVG/ccm34XfvN/+ZFy//qPrRT7Vr+7PX3trdtxb1VFurTl2unT9/a2IeCNlb4IrHUGnW4fMhAApfBodHD/879lUFArjUChmqbZxYsXh8Ph3t6eK824TIBHzObRR58MkN56481v/dZvmeXp9v27nZXVXhTPiqkSNOwiovFoFIdBEASoyKXlwd5ePOwdHu4DMwBEceDK8mA0+dCzl9MyC4Xf9+TGZJYHSIEiZ+sNuXgtKA+LNsXjl4hoTyAaWbj1oy+S2pCtyhlMpLHJbfVHl+bPtnnMe1w4j/1Z4GoAtbl2kU+c2ELzFLUoHvrAY8LGcN2YftsTtPS5Fik8a5xryYiqIRNztx8A1IS1LYJUhN4J+bqEAoKMWJVka160qEstc1+Yr9nydC2x8OMTUnUMpCnkDi1TZPvxFvN+YDtLL2oLZO1un8jYAObh4u1xQWuDilT2Rm8naK/RidOy9L1frNrN2WbP9VPgfMABLKr1D3pLG4a/UbofMD/YWqn5XM3XtP6mvXOaDd+eT1iU3qAu81fdj0BaiYh1TlGAtJjHDYC+Jv1i92oe3+rwSQx1aSmZF/KDm6sR7rCx2dS2qBPnh4icMAATkHU4NjIp3TCSuIU40O7Awp9VgD4CACoG9km63BRjELBhqJwzzKyDWCE6AeOsoA4g7vWDKOpmyShL0mk6AYAu9gUjrEIolDgfBUYiwggiJMwIikFYhB1bYXROxBpjQh2wE6er1VGBZGVmyswpY11alDNAE2qKwstah3EchP1+ZjjPZLhy9sL5R6aT0hKsnT/X2zqTArJINjkY3b9LSeLKLJsd5bOJmFKpAFAxI6czEolRCBANMrNJpRTZu3Mj6sTdQT8I49IaY0wUdXq9XthbV0pZdmEcIaGg7oShE+emqeSpFtFOhURxJ7bWmiwNQJLx3spg8MjGyvuffNyp4P7uLsEn8lLyotje3dk/OALC/f19v/cGve6s26FTm0VRqFXV7Xavvfnm45cu/c2/8Tdee+21tUE/Sye3bl2bJjMjLkkyFrXaicW5P/zH/8gbr7z8gcuP/f7f/Xs21ld+5sotQnnnzTeS8WhzdXj/5tH5sxqsuby68dSpU3sOH7n89K3r9yEIDqfj3kofDsYdB+e2TkWdON8b39g9+sv/5EeFy3E6pUgXhXni6afDfv/lr30Ng5DFakJCtbKyMugODg8PQx0g0upw5dy5c3dv3lIKiSidJUEQjEdHemV1fXVtNpmubWy60gSYzYqi1++CIgdlWZYr4drRURGIV3vEsut3usD23etXz691Hzm7Ot0rWVj+P2N+BvAmaK31kiMHagxkAGjhY5EXfBurF3jXbwtE+jh1O67w+Ytb8LOLpFm1ifsS2ar6IU2CrJAmbqm/AiDz5MKmn9JUKWFmmcckVV66SvkABSC1DE6IhIA817QWlNTGlIe4KH/4soyVROBtdj6NpLqhPaIHcV9oRdtSK+8LT/RkHp/tVkbxku4INcX3seci7bmVFvt44FuYGWDZou4fX7xTIS6t+5K9ev6jn6w2tz6R+0Jr3jzuhY8jq0Dzq2CioGHtAADICOQxk5cYQN0nQKnN9Y0Y1/JuQovZSLW/TpDhql6BX6N6ver843q/zef/RBAxRHROtK7tTEBEin1YIjgiEvGxjd7xcgIWOrS20PHBQuu4Hb+WZ0ZERNjnfwOQPyVcm44q9IwFN7B4DRUFhFGIIRiXbpwX57p66V3z3d5AWC92jIgEhR2rBXu1c76ipbCzhVJaq0CQ2LqSTRCoKO4SgdahLQvnylly1IkGURRpihHFWWu5qpvCAF75RXYiwmKts+wDz5wrisIGhXNGWSzLElDS9JoTAt0JghUVbqz0LsVxv9fpJWI1oBhDrApTDLfW1x96WG1u9tPVsKMtuJkrI6WL0cHs1g27v3tY5sxW2AI7BJ07MGVZGLsCjAgCzqc5KKV8YFooXBxOssMdFQZI2lo7ExgpBUEvCALLrtPrcUAOabC6ZkS6TiNJpIPUWgo0KQVAs8nYlQW48mhnCkBQZhjEm4EKQz3tqrWNs089fikM4/HRpBt3RvsHcaAnxroPfziO4zCIRqPRwcHB0Xj09NNPn+t2ilNb3dIcXrtWious7fS6Oghmk/TqztEPfu93fOr9z++/+cY33nzlIx96dnLrTjErf/0LLz/6+KNv3Z0N+yubnc7RYfaX/x//4FK08crXvvzt3/5t5x86q7Q+mI3X1laLPBGthhsbn/7Ut5XOJqN0tHf0jSu3Lz984aGHHrr67pVeHD3y0KWNs2fv3ru3v79PpFdX4tfeeGN/d0cp7HQ6QRCUeSmCBwcHk8lk0OvduXVrPJuAc4iUp7PUGTY2dVJkZW7N1uZmEEWHoyMLrMNOGEdRpwtlGcZalA5iva5UOpumuXni6Q0oCopC7Zyx2I6+OJH9HT+PJ36vvb9BKTWHOV66j9HnyS29TETmEbSLr3nQCV96d0NwF3iYqor2iPd8VHW24TjOX/WIA689UQvuWBCaaI66V3Py502U0Jo1AWgiLfEYnJC0Jf/6niatov2l/58gkACoClTJm4KhtjS0F2NpbdqMllvF1Jp7TmTAWKcCYxVaV3WjzRCXuHv77e2XwoPX7niQV/vL9lN1g/O+Sa0Itnoy17cEHCCALJdJaB5carwtsdWGgXkepyjFbLG6gVGqkD2fp740/+jLzwlAzcv9dAshG9s2PrfefuL0+OyUyuriO1L544+Z9JfkjKbnUO0rn3g6T3oR8dV7uN15IkJaHtGJM4YtDfg495X6Oj75/u0q0D490MuDtahaj5HIOdeE+IkIMzrNKKBEgahp7kZZYZw6vq+qNy7go84/ugqibgH8PAjIGFaKkACY2VpEJIWkyGBZOnKMhEG3t4ZdU+RZmaXWpCDW2QJJsY+uCzSgQnGuLGxpPIartaUxxpc7NOyKIldOjCsRxThDClA/tjpcGaytB50O6QBYnDPiGNXIlmKt6nVPD4fDU5efHl54aGa52zeBmPHe4XhvxyRZenhgp0ddrYoiN9Zaayt3hxARaUIGpRRqHQIAs4cwYBEJiUAHwGyduDI1xojfCZT5xJB0rAUIgyA/PNBBUCABQBRFZVkKqqg72Dh9+tSpU6VAcrDXDXD77r3DvZ3h6vru0X6ZZxvd4e7NW71Tp7IgUv1uxklnq6e1Pmc1IlprVwarmxurZ05vClKWZW+//mqo9bnN1T/7X/yJsrCH07EKAmvt4e7e9vhoY9C9/sYrj18+d/vz7/zoj/49mOWdvv7e7/qeP/2X/w+dH/7rP/cz//7P/Zk/cf/+vV/4zd8IqY+p+S8vXvjg80//wPd+xz/+qZ/nwsnM7Es+WA3uHOyOpxOF1AftFHzq2Q+Vdnr97XcJ+LWvf1298+744JCt9AadoijWej1T5qm1GxunAHBntkeK33rrrVgHk6NDACiKPA7CIpnlxhSliaJolub+FD321FPTJNkfjYgw6oQ6jkirYX8TREQRKyrGR90ORmHvsYcHLmEOJVTaZhHAQtWj+alphW02h/r4nc2lfUAv0VIt9IW6s9iGZVh03Na5fXN7cktXWDjMS105Xt2ofU9DWxtW3U5HwYaOO/YM1lM6EfF1vlhEe26xAJa7EIdcFcCp39ogDCDAcbSmNgP2t4Th3AnfWKcR0XngBUIUQCTn06gQFvj9SVppmw42VHVpSkUEHrCc7WerfysSuSDoHKezSwzpPRjwcVmhYcBY2zyP0/d249jynVc/Yd3sSeaQE/0j/jMJgGNwDCJI4JdTmpIJ7CpDshMAYWatg/nKL/Ww9vQ3PUEi48sj1lPXjpNYqLldy3xhGEKNSggANUIFWnYtyaN6uw/Xx2brtly5qLUxhhmUQqgL35KqFE2oY8XfY4dU80PzOYeWTLn0OMwtB6q5oeHi0kg3AEgIXGXzA6GPLcRaA7a2ytvxX/qcCCeQlmWSk3Pxskww/7BMeeouecBXaP8ahIoosKUBdlqHpBCYBa2gQm3AKXbIrFCpSHd1N4ijTjbaLbJsxg5BBVEcRhHYgC0g2CLNTJGJYyRgYwtbOOd8ZpxxuaAyNqMAWDnStHH60srqMOx1clsULidioNK4rMv9cZ6FK6ce/+DHJeyLjh2WtkhdcbRzf7vY24U0y7IsLcq0zHZsDmnKQKCVDkOFSGhDxEgrR0MgAYVaa5Gq+qXWGgW6iB5GEFDEcVmWpsiCOEins04Ul0Vh8kJZyA8PO50uhDrPcxgMdBRa4OlsHA76q1Ec9PuroaIyuxSFs0kymY4219emY7CBNdYWY9w8e1YBj4/GvV6PAY9II2K3270/PUCtJAJC0kHnoTOXgyAghnSaBlo/3nk0SRIkwvKyyjnJ0rvjg7MX1rPRbhzrtQtnZrPZeoC//DM/ezbQ/9UPfEdvSBfS3rMXz+0V+QXsv/6lX375i5/ZDYcokCRZV7pDLu7f3v/84W9Nre0BdkQsw9071zbX1+IoMGk52t0v1QEzbq1vHh2NSBMqEBFnbZ7nWgf94cpslvYG3WQyjXSQJelTzzw1Ho93y0Ks6wTRcLh6+vy50Wy2f3hw695dtmItK4DCGuPs0Xi6uXYqnUydyHg2deNkJeikaXl6K+yEvcNyCqSJghMZ8IOu9+DB2mLUC7v9bsilSU+l7d+4xuJAUPOIKDaNFIwswA48vwp1lR0nopG8ZUyYKdBSJ63XpIGohc/clhf8l8YY54w33zccU4xrs2F/zlUY+BjjaoAsyF7ZUs75Y+yEqoROf6p1J2pbtrmyQwmigC8h3MS1Clrw7aFWWrf0ZmSx1qpAV0QHKlJhrNWCoEgIWaTyAYMQAyGwOCDywSbCogC10sabXhF8PV8AEAAn3GRGcg19AMgirJjAW/7bybWOSVFlUEYErpA/2lS40VEQcSkftE2LpS4G3NygK3wJnNNzdlAtJeK8GpVHOarltgCg8RyjXxzfqNd3qw2GiAqJiBgYuKqq2jAZQixZVFN+2Jcu95Xqu6FjduCQUIjYF+lDCKUUZ4zhUJO1HIWaPCMuM6UUqqAtIDgGRQTMda1WUETC7MoyDEOpk1+pTk0WEdR1yi57B7MvDk3sPNJHreh7sP5WWpHfxXVSn1gRRcpn8c7dGQLOlgiiqJLYlJeDnQgBM6MTAvSpZSAWlaBHT675bn2+wIEDAS1ESAhIgOzYa7TQ5t/1UVZ17EDVEQQEREXArBB9RJvHR/ZpAqjI9w0IPbCDf7ULUBUOQmWwkIwyig9TLMRaZ+IwBsdCwATG2ZCQAJ04RESgysMFjASERJUEthA45myiMKBQwJFwKc4BhSDoHACjQiCNAAxcFK5ARK1odfOhosjybFaUiSlTazIFiIjWGqVUEGjRUpZlwaUgBEFQOGaTRYiBQ4S4MLqzeWbjzLloMAQCC05pjCh0zqCEOo6AM+z0zj72DA5Op7PCHB4U4/v5eC8/HKVJMZvlxhhBO04ns7zorgxjh6SDIOxSqJlBEDEMJAjAUBh1Or1up9uPOv2420OlAIg16TAQRU5AnBW2Ns/KLEdEZ6zSpJBsUbJzzpmiKIrDd4IgYM4mowmRjqNusXNnlo3jyx+DsGPDMuy59V4Buzs46Jw6dzYdZ6dXVpxzDFDmxaDXN8aoMOzFvbIsbWFjpTk3NivAcQDIvQg6HdY6CmIKo7QwpSMFyoSBADDQhy9ffuVrv/XI4+eefOKZ/cMZnENUVBaTp597uNfp5mmSdjtPPXXJTWdFlpfWlNasJ7M/9/tWpkWWmuJopuI4nk5mR5NxVpQH+xNxcGN7++zZs48+8eTnvvz1Tggrq5t79/fHO/sYxC6ZaqIwDONe37BjB9PxeGWwOmNes2rMxfCx8089+fjdG3du7ux2B2uczk5dOl9YW5SpSWd7o4kKtAZAjWqS7l+5GiuZ3L7hFPXPbM12poNT/f7qhUv9t8524sk0iYerKh0zLgBGtE2DIt6o1hx5OOa0wrmiB6BFXLfbX13pISXSgulTGgWAWXwwS+0GndPupYvreqVtQRtq5XhJt8NFkbxNO0REKYUoVeFrIhFwzumWzD5/KbPgPA6IWj62pkGsDdqNUtW8rvmADSRCfXlGA7VjT6TSgKt8VULAZY2zUo+8OoO1OYIq1dxzYnEMhCIAdSVkgfnj7QmEBacjAIDU1SCgUu4WhtAIJQBArXk+7ms/fi18j8sTXQsry0nG864eU3wR0bU15qUpQi/JLBiTGzWxrcaJiFba8w8AqKBAEYmlLcC1581aIyKdTqhJRRGwc8zMxqLSgCLAbZOnEvAp41jBbkizvds5SNiorVChinh/RzO+psPtSW7EzeWV9a+uLUDYDnATaPJrl9ZIo2IPJyNVsrlXRlm43dXm1aSo7T1tz+rxc4S1BahZLKiJRCUP8fKZcjWaCFVII5WFQCtCrUSDMKDTgFgYl1u23nUtAvNcLGKu6kxjXSTTv6u1cxZs1IgolWwgSArAl+iugtUR6iiu+mZGcAQqDnvRSg/66AEjjXVOVqKgLMuyLIU5iImCwJWltZbAdvt9AZcXRsfx+tbpweYZjEKmipRiJWMpAQDHiBgHWIz3Z0Enz8vR7s5493YxO5wcHhY5m5KttUgQRcFGr6uB9GAFdBB2B52V1c5gNerE3U6v1+0mJtc60FojadQBEomgYdcBBEIr7CxToEIK4ziGgeVeDzwUq7XWlgoQAZxzpnzc2dLmaTLaM9NJkYwm48Nkerg+2lu58FC0ec6qbgGB0x2EAKztr2+pICjStCgKALSEoEKnwnx24Jyz7Cr7KAkhMFI5TkwZg1akAxWFAKRAQlLMRqtAdbv7+/u5xaee/XBmuLe5ipAyUNSFMIgRcdgddAfrwjY+q9k5T7EZQUUhaCqMiUWHYZgk2XQ6LYwbjUbj6SQIosPJ0eWzT5/bWAnDsNsf3L2/t72ze/X6zcGFRwaDwTdefSXoxQB4tH+wdebsbJaCdhM3YwRT5i+++GI5S3uK8vFRrIKr77zrQNiUw04PO7B7eBSFYVby5srAKRFn88LkhXnuoUd2bty/cPb80f707GY3jCOXZDbNSWFA5NzyCa0Pl3fUNCfR/7tg42kfQG3Yxd3B+koH0LZxmNsWYFgk6MffCnV+sL/qCrLzk3/8xW1iIbWPkIhcZe5T1mNUKRJBYwypAI5ROhEB1UaVmnP0yipJlZjvKZ2rbXpLr0ZEa93x8CP0mU7Vm2r25knqSUYFT8gQsa6y7MsX+l4BNyoEEAIwVkFQAAALDnj/+STeJsuxcnOu1opurWagNg4vdbK9IkvfA0DV/1pGmxNu1QJaegAdl7YVf67HLgfEQcVl6vgyXthm0OByAwAAeRR8rjQ1B4IIqCsGv5S/joiEgZNCBLIsDwJtShOGSoXKGq9luoXKEJYdOb/1pJX6RUTWLUcFNwOpAvNEqnQ1D75BC4t1/MPShldaVVhXSmGNQInHdtV8Nb3YWn3djoBjX6y4EUUQhdTC6vglW+pSNZa6Ra9qYksyrl/TMM5mNV1j6sc6ObhZBVcasmCBETgUTApzOLEHE9roa8fiVV0ARO/brY+RiPyOEO1JQEBQUKGvdQYgvvoBIVHNxlGaUrxQuLJWR0ChFhLQipSULKLCKNYI7JwzZS4iWqlAg2UxooNhf7B+qr+xEcSxA9Gka0EHCT3kNTIxMnbDoJwdTrl0pdu7c+3+rZvT8QEoPZuVgEEYxiISmWBtEBBgQur82UtnH3p4sL6luwPLXBbWodKSIqIDcCDM4K2Jzrm0yJFISAkAIWoEECfOWKAw1CTA1gEQoSALkkohCuJBb7DRXzuFRVomo/HhnjNlcvOVJE9ob78zPN3pDbFMGJSwEonF2djnOoKzacbMFqAfgCBkZWGdoygUkcJaRJScgTNSAWnFpY8w12wLsRmqeG196/WbV06fOd8bbphprnRXO3QgjkEHUZJlnU5Hq7AsS9MNxbEYa4oSWUJHIFTkwpQ6chTBMFoJw/Di5TNlWTrnOnGkQEaHjxAwEWVJLgjGGEEVBMGtb32m0+85llmS9YerxvI//YVf2jmadvqdnXs7h6X0gzA3Zb/XOZrOtNLdfpeiyDmXZxkCbG6uW6BCbDeMir3deGNtNejcu35HdzsBhPf37n7b+x9DCkUV2joXkTI8J4aLx/wB1zxka0lp0QwSBIPVXsTkyLVV6TkBbb5Zemv781K1H8+D5zRrkRwwcyva+f/F2Z/9WrNk94HYGiIiM/dwpm++U80ssiRSIilRkqFuuBs20A/9YrgBA/aDgQYMvxn2H2U0DAOGYRs2PMCC5bYMSLJEUmRRVcViVd1bd/jmc84eMjMi1lp+iMzcufc+3xW7E1Xf3WfvzMgY17x+y2YhRAySzdRMB8lYDQGLg+pE0j8hbYhHlZQGWmZDXbjh/A4U/Ji1zBqcc9Y5SzhQ+UmDo6PxFhRLtOP6u1Z8NwYAhgiiA3T3BHeMJch84FtmxUQ5mStPfagwY1FTdE9RQWDemZmBd4SjhgKjhIOCBaNr72gRzcyAANAOaoqVvtuMcE9vOmEqAHAye2Obh3us+AvwoF/BLKFo3BJwMLSYFLY+uQaMEGAIUisGXpu5t1XVcXDs/dIH5zrqipsZVV3wzrm5ADmUchhbLrrkYYbPDpiZ8QzNCq1EB9p8TuY3Awwg/ufCyvTN1G0r8b3HEpIdruFmRSpyHJdOyvB9uaZDeoplPWyEw8EZ7rSj/hyqZo1VScxyWbIDnmiWEsU9ne65UO6gCCOIiM4RqLbRthFSVgHzJYN/CDBkFRmzk+dnGRHQzhzDwxpBGRdj0Z5VDRBUUQhVgR0AWEnmKfyeQA1AZQwZp5IXlqVnADMRSSklTckTURUkmWRrlqurZx81l5fJNCKE4FUBEGgCtzFGBEYU9d65FPfaptxHzHt22scu8+Lq+SeX10/Dctl1Xd92VbW+WFxdXF19/IMfXj56nAR6g6zYxiTSeY3jJsxmVqoOg6qwOAjMjETFhibRUszQvjXm4jshQE1RcnbO9ft9CBWslqGq6nrRLJawfGwI8OKzt69e3r17ubn9+bqu+743QGOH/DdN0yyWdd/3AJBS3zSNc+7Vpq/rOucsprxYIKLGSESCZLEDQiCHTKaQS3FYx3Wo0vZ++/71k5v1b3/x83p12entRe2QEMUAxGl2GAChaaqdpLJA7B0akHNAyN4pQm+KiCJ5u+0GkCiw/du3qWvBpPFO+v7+9j0BVD5Qbtu+/8HVZbY+gt5c+T7fP3n2/LuPH33zsy+6vnWAvq4zIHJ4tWn/8O/8Qdvvv/jqtw5ht++cw6uri15yt231qtb7Ow9kiGDy9edfrl88u313rwl+/NGLdt8D2pJcSyBph/5Q93d+3if7CwCMEEMAZ3lL05F25Mi4uVw4cuaxnu44CXktflNE5Fmwqs2CQlEMcSjtNxzLo/zDoxebWTHBnTC5EnQjImZaVAoRQQRmlkEOP0j6NtpyYbITDvQdiaiI9iMCtJX7EQeAQjwzFX7oKjSHYCyGg4NntUwETt7rE/P1MPLDDcVGx3Yw8RUgBprNwIT6CQATjsR86k4UlPlVUPuHQOvZ2p1U45km/MGlma/F4ZuHZmlO8c8bKXccWjsOIIdjg3m5BAzHKO7DHABAHkvCjax8qBZhDzfF7JlRRCrvFcB7H1PnvTcGX9UhhLkJBB2XLJRxrhRG5I1pwudDO5+E2efDbcfTQgAIgPMNAiNw+hTDOOdhD67vIKCQA81qampkiMBqec5QZ1LOqdx8HsQ+f+NgkpkNFmZpBecXDXVcDOBQchuGw0HAQABsyIpR4K63XlSNgehokw8S3gMejcngNH+9kqoAG1qxWyJiyUErGJYGoIrAZSyACMgkyoiIXKwuJYxAVT2rSAJJbAooibVPoimCg9XjR+vHz7FZ9YiG7NiAsEBXltQGVQVTAEJGlSorILkyFVc3V81ygS683y/+wT/9T5998lkE6jXmPnqqa1eZC81quY/9drtlBDSVviVTBjfY0ss2UzMQBlAFBTGJU1Uu02yGlLtuH9vdvkRu77e72PchhCpt7tQAvbJfXFyvrq6dr6tmyZcfPbt4dnP/+tXnv8LcNlVFwH3fi2m72+TYCVjTNMxexNp212bKCqaoGaAVNIsxEVFMO7OidnrnK3KsxSwqLmb55c/+6unTp2++/LUC2v4uaW6RQghd7IOvQ11pWyvYxcXFZb0SzYaGnkQVLKkCoTjxmpSIUAGyEWFVBWTSdYjVwjSjCKO/flJ3u+12cw/AUThuIxH1Ke7jtl6t98maKJdrd7vNL24uF4+ffP7NV3d37f/sf/5f/uHv/v6//Nf/8u6f3aW+2++6x48fgfPfvHm1FE3brF0OQKndL5qlB9C8b2P+9Dl8fLO+3X5ZMQGqKZAn/RDdGw44jArGA9x3/pQTEMLqaunZgR2ZoIvkO5FqHX2pDzc3UHYd/MgzIkJTn6YTO5mz4IhdgaqWKisTeR25PqtmGMicjSMEGJEWHqDFpc6r2gQINe/ng2wDB3pwYMyICMVHeIzCMfQNgEZNyMZUKGEyQkBEhbnfdDKWImCpZQaIOvpry+jn/ZFTgIvCEoZ0JrChntrQTztwxKLWzIgyT5N8zDWPmMckS+EY7jTjN6M2f8wYjuW+g/Vyzg/m0zW/4TypDPCU8ZR2aCrhrKNUN1uFCVawiB1m5j2bWdd1gMrMzrEBsQtZc8lwm0snQoCzxKL5hjyPXSj3FEGn/CETeIXZh8px0mznTFOKszxyON6NJzLWxFOzWBmgFhkSTxX0OdfHEQwOcahxeX7Whm8OHT0IPkfLVLBo1IbiU4iEjt0RMsy882BZlEQBUTWLinQR3t2nfSd5CRUTgBooKqAraFolrqFYigwAoeB80XQqD+0rqIEJDjVCxDJyGSYNhEABUAGIDIAQTEQyQcnyIBuk/KJiRjQAyAYmljOYec+OFzdP6tUam0VvYkbOExCmKIelLBujqPJg5CrTBMhZUjYLi1Wz8sr1Ij+7ePrdvda95sXFhVtkUBQMpnnb9aq5aSpS3d2/l3bDzC27aXuUkZb5DMjFFjauqgGxgSSKwFB7ZocEGNbLtm0ZULYk+7brura929y+vX1ZAUBVVYur68ePnz158rFfXIlZu7vrN+9xu109fua9rxfLtut2u302vb65WS7Xe2gr51PXx7YjNUk5xoiINVvqoqqaYlIBYgBIKXpX3d+/23e7qgl377dXV1ftftP1+8XiKpnmvu93m/V6vbu/FVPt9xIhSXbO+SogM3sXQgjeKZChGgIFF4IDJmBWs7ZNzI59AABUYUCslj36oNH3TnMMDA44d30Qf/v1r19cXv/3/3v/yf/p//B//8e/+yP39MkvfvULIvhf/C//V//H/83/9vbu3aNH19LHbrvzvtp2LbJfNnzftjkpkD5aPpLU14uK1Da77X/0w+vA0Rl6z7nLsAes6SQI+vhYHRmSYaic7eHsQkSXVRpXP75ek4e0PRD9KXSzqKqTQzHnfPLK6WAPpNBg7i888LYZFYZjE9/0LIwcl0ZJmYgQ6eS0z9skOtCCudez8F0jpFlJV51pCfMhDBTnDKivPFJUopPxlsMsMNQBgAIPMqjICAMEtOLIhOdvLNWIbQruHSgHzD8b6CyJ+YFr4nNFWSE+JBnbeMEQM3Q08w9e04MndBwAJsP+oTN2RPqnm3ES+mCwdQ+PjPN/+Ga27sNPdLS4h/aRbQrpHqU/NpRZsfSyS8mxiBQGGSrXNM3FxUXOuSwRZtUSXz+faFUmwtFGgjMN8nyucJIIYZT+ytvHph68/4T7nsslhyj3YfM/HLRVeHaJ+YfRaW0iCDzkMU8xgzgV2T28d2gBxvpTx+1PSzOfh6H/5MxsUtnNgJAAsAjENgM5H/cAmSF550ApKzMb6r7TfZti1iaQAwZQKKorGoAzy1MfxqU/5CbNF6L0BIoqbNkBZwBHhCg4wMeSgdHgg0EAYF/qlkp5C6ChM0KkzCIpJ425Twa4WK6vbtYXV251mSQnFcfE3iGi5oMx38wAS6S8mpkCegZRNEQxBFcZcEx6ef342Xf+ZLG8ev36bc7ZM6bUExFhUumRyXs/lZQAZCPKoxFkeFEpUoLU5wRATJ6ZgRCQzESxAHFAcN45R6DrK9OUY4yMLqc+tvv9/X3stt12c3/7dnN3b69+++Uvf/H8+XdXj59dvHiGtce+WVx5DtX7u/vdy7dc1VWzuHn0JCwWnSpK3/dZshk6YQD2vmnKFjWfPXEpsEGhcsGrqk/4uej3f3J5/fR5c611vUqpbbutZkOTQH63ve+T9n1Pjt+9vcUcDQ+hiM65qqoQMbJzVXDOIRO7UC0ahCBo69oBUkxCPqhxTKm+vvnk5uabn/+ZaG+p79roQLjf7Ldvvnn18tnzP/zP/qf/ozdf/PKJ07/8939KET66av4n/4P/4f7+/e393XK5ZAUW299t0Pvr1eU337x81FRvtV9fX7Lg1y/f/+gnP9q8f9fFzd/53vdivquQCS07q6PvtPN0qC9yRCvMTamV305vyz1OzKpqcXmx9J4tHx44QreZkYmT83bYMXqkgA60DIegnumEz6nPg5SuALsjUlEvCiLMRN3O+fqMciHNcKMMSo1vKMxTAVRE9ACsc3zgx8aPvKEHDjEnT+XPCfySj6nkYCUyExVQGaJ2Z8Ffh0lDJMelGMsJny0MHlABJk/5SJfLn4hTBmr5ea5R4UzlPWyMscMnwscJFdZZgfrhhuG2o85PCqLAtLKD1aV0k+eh+cfMwEaVfZqxk1WY9zDjwHSHRQUoaSQnwlJJZwcAlZxyVtWu666vHglYFRpE1K4XTQIwg/8HNCCmsQRsEaXGOq9neeql58zMU2qymR3KKk/pWEeMc9q6J6fjMNKyi0p96yw2C3SYn/CBAauYGbErLYgIjv7jqc2DoICIo+/czEolZz22Vw8R/rOQvZPtYYPmB4hYosamg3k41LNVkBxF0GCsWghohn2Urk856yAlHETdka/PlrMkH8JDl43YP2pGAEPhqqFo9WBaK/rikApmllUQEaYCkZrB1EA4e1EFwmZ9cbFcY7OwUEcXdl10npjZQCRHRBx8VzNIGWRixBIk5SATqDEquCaEvk8x9k+vblJw1aq+jJft3V37/jbHdrlcZtmDNwdVBks5a1ZfLzXLdr9dsdMSFA5oZlkBEdEQfYGTAQWEEovn2BFd1I+KKz31UVJqquAWrsW2k67yYX316PFzZSTNeXN3L5K+evn57tXLd998/vK3P3v0+vnq0XOkCrh++/lfOx9uLq9unjzJRi5A1953XQx9m1JiwAFOyzMiJdDonDE7H4x9ioJIGVmA6qoS55tVLaGJir2GsFw2l48x9pL6yrG/fReCM5F6sdput93mrWdGxL7t+rZTiLLrJCakFNZrIdx1vSEvVktfNciUQkU+tCk3qwtXLQ1AVJPqsx/9AUj+5vNfy36DEkHg4qr+4tXtRx8/+/r157/zg4+fadjkze2n6/vb9PJXf9P2+ebxuvZud7eBbHd399/7/g+ri9Xu9l3X9s8ePQoX65e/+uL5xx+Hq8tX//6vfe1/9OlHIq81Y9p1rq5Xod5De8IRjj6UBIkJ4QAUzlS7AwOupdth4xCQ+37RzO8ozYnMJGgB4gPhLoHPI4w7jS48NBjTRs0wcKEyWsKyRtvmgFRAaEYFPYOIiYhMh8AYZUNQ0RIuNJGVOXkys5KHyohqIogjwj0gMo5RYDpWGx6cRiWjVnQekCUTP5vmqtjuAABAJJkZkXMcCL0pcAlUslLydmBSqsBMqoqirlA+NSNQxJKxQMXaaxmREa04OEFHk6yKDVnFxMg4AhqYodmYP1OCVsby4CN3HGK5xj9Zh0smr6dDghkQ5iGmaeKshV5LQhwBhgerLxIRDIwEi+BvYz0MXzKVDZgZbASOICpBQCcsnxAHQWS+dxGACczKBoCxFC5iEfiKKDKQ1TE4x7z3BYOp+CxKtEhKCbrexkye27t3vq6UtOt7KHGyRLNUO+BSWHoyvRjSkPaMJdiHpv1TpogJRHPOUOaErAT7IQLBVB/UBneJAQCIgXNu2q5Tuo7kDKNVc5IakQnUVBQR2XERGgHAMQsaEqFYElPJRiVrwEk+MP6JBIiIQULEgtw+HB8jU5MhJNiY3SBIoZZqUSWhHEY5u1RKTl1Ex3qM50WAaDTwQlEZikKCqRF7JuPUK+DeG6lwpFfv4ZuWPgbO3T5UkMww1KJCmkfwtsHQDWCFcpmd2syHvYIF7VzEEgCDEWLIwA2yAamCwpB5CKgGEsCZGkAuUPZlGQQwc6a6olC50FjVoHfoHDAG9OVpQgYYClvOhddx3yKSY2SvTdZORDxTTNwm8Zc3sF5erR53+x4p9bbLnIQtWlIDTM5UiAZalGNWFeerbY7OOV8S7DSX2hUKWPWQCSITOt+slgE9iTlg7e5T1+7evU37jQO9z9LnDoGVHACRC81iGeqGXGiaZVVV68eX/Xd+sHn/fnt3+9e//PnHvPy9P/js9bu3q48+XtaNmd3e3xNAfp9zTMyMLIwMrnLLpbogwCEENvUxVcu614gxVpb6TWxRm+vr29d/s3v/8smjH7ebrSMH0MIWkDgZKFhWCNfP2HskM9PlYrW6fiIpi0jIsU49AqhKbDsG2/etppwEQWN7F3t814TqXbYQ6ov1Zd/12d0ZO16tkB245s6a55983PH65ddfBZP64pHr/uvq5un+12/j++27qvr02bOPnn/8+v3tX/zFX/z0nrf3u+5ub6JMWC3rt5vX6f5lF9OjJ+vlqtrev7l5cfnR88c/+7O/MLO/+4SNKt0xILF/zF6+uX955Zf9wF8HfsREYKg65sKOgaUDyT7LbpjosENEYq6qKoTQzVKJ5hrJQbgGNjg68NNtk0oEAJMHd9qy0/uleHjMqFRSMysFVaZGpto0g3VidA3OS6vOjsGgq+nstpG1HO6ZRmGjyjK0cEJVZv7psW0o7J+onMZiE1aAEUhk9vzwug9YHSZODyO3s2ne1KYuw6jWz7mX2SFCWCTDMcGdtzzXhE7AMue5YUcPHpuCH+z8NPNTTvD5I/Nnz+b2tHsn3Tj5Ho+M8yX35NQ+jAWMYmY9Hp4ikhJEoFa4SBRJMbIigIHq3FlLRGhDovY0/+VSnKUOzK4xCW24StzWYQkGqagYbxEA8CxfcBrjyeRM81aEyFJfctjMdii8Pd1pQzbBQXPF2cVcADfm6KcHVncSA394dgZ/rTOJoYyrRD6jjuVGjrnjcfeK78MBDSAh27bvokKNiKAilrMndM6lmd0VxgM1zeS5YR8ACIZi2yVMTEDMLJcwqyJWjBnSg8CBaiaKZmQApABgRHVwLnCoydcYvDEbExDCkJFxOqhphk/OSJd7QCXvqmZ1vbwBboTAeX/39hWA5tj3+zanHkCVyblQ8jsIwcxUcvFHA8BlWGaJuVUpBZG8Q3akmCpXNXXFSASXi0UgfP/y5Vdffb27fScpSruVGBmKVGFAqP22rmtC97rvssJisVos18650DxSRxePbx59+p1H3/3BKtT7N/f3v75/VNPbdt/G3tWVXzYYXN00y/Xi9r6t6oULNfraO66ZHVHbtt12u9u/V7N2v312/ShLVKL723ew3RaqmEXqpjIBF8jUHLIhADnnHNKwdESkRi64Gkk155QA1BGbmQJqTg5JY0z9LnXtfreLqhcL17bt3ZtXYFQvFgKm+62vqy6yWz1h662HF9dX3n2626fK6vV6ff96e3FxEYhut9t9lFWz+JN/8EfPv77/7atvvnj1foewulxeXd202/b96zefvHhBBG9evru+umiaKngiVFH43T/4iWt82kZPjOjMNDQXXWLDftJER3J9UNjme+bB4z9dpRyhq6pqUdX3EE9+Lofy8PdkORrNvCcvG87k8YunOKMxgGawUQ6KKQKPKUNWQp1ngyimJUQ8T1Ic2fCB+w49Ke7TsUGYnepi7pzTu3NGcsIhSqzlEF1c1NZvNe7PGTOOruLyTekujbomzF49xCqPNxgNtY1PXnOgUx9gY1PfJqf1fLA2CjEw1y0mAO2B4B6eotlUH4LIxssOUMwHWjlnRedsdernvBvzXw8CyrRAx+GG00uZnVlJXS0lNAixiKERx4VIfTRRkQyiWPLIjydNRJj91Ksh8mUKYjRQO+DWTM+WydJpV5mBqo0V3QkGg2e56NiaOk31HKDjZOFmE4InEzhunEMo2oNbYj634zEZj52bUsmnqWYYUVqnULiyJ+1go563fLTuNNZ6Gm863I1jXJcZbru0afu0rItF10zMGI4DxMqts2fN5u+eXSWqWQHMwNQUrLMeEckYIbmiT5sCWMGEkyLuMhoCojMgV1XmvHkHjo3JSp6eGvOcLBwW6HhdZgvqEdGJakxSWWiaK0AnqleLxgdOqV8GfPv2beza3d0tAChYCKGqGu89GZWMbUTctx2isWNwjXPB+cChQiKpmkAQUDHF+y+/ePXlb3b37x0hdJklOwDzlFISEzXMMTNY13WDDcPkfvPu/e1rVXUpI/Ll1U0UdXXz6Q++36b8+LNHL9/d1k8erUJAgLqur66uiGi73V49/ayqgqnG2O23G9QIIne37/bb9uL6anG53vfx9u3btm2bq8uqXmyjrFYrx16QQ6hzzj6EGLvg/JizNExqGW9GRUAjAqOMRIiZyMw6IXLkqjoszKfL1LcYtqqK3W0VIMdkKTuV3HW77ZaIWPsef9MvaPX8B9gsYLVc3VTx8aOrq6uf/7t/u9/v1TkEcIySI4D+3kcXP/j48uV2/7Mvfvvrr9+9/HJPGDxQ7CIieg6x658+uXn39vXz59eL6rZZVCn1vgq6T4zax4TsErDHUq47l01CdKibd75dv+VypqiqVQh1VaH2ZxsdYVZ8Dc40m+l9RHwwb87ckzSKzwAwMFEmBFAQIAIr/FJpDK6WWdLKsGI2suazC0stWTi+Hwa0vOGdMzKnZ8UDZrTviB/M7yncvCQuj9+PVGNG5nBG7E4WYWofRl5R8rVAjbCkqZYqijTloeacqUAjji4xNZsnd55zXDsubFeugnZX7lE8zMyBOp9aO069lTa7zpcAZkiN827YzMt7wg/OW5hz9DmDL1vu6EHCYoUfwDrwaBHNjIxKfUxJust7cszMjjzgaFA52ht40g0YTQIwIKUcd3KWBFy6g2dzqAgHmRJgHt19MgOHMcLRXD14hudPEZHC0QJNN5xt4JkRaNZO2ZCIh0eGII/Z9hgYopYcu6OOmRmSAWox5IwFqex4So8E5V7cZpfipdcAzFyElZgi8MOFzU/ks9N5KH0GJAAhAJWi8QIAGpENkR8AIAUcHgEIkRwwETMCCyNMmGZqdpCHhhKZD07+eSeRHICK5D62qu/7iOwDMgG2Yb1eV9WTyxcvHj1yjkt0y+t33+SkXde1bd/3MYkUwkJ1DaAZCJigIqoDkgfiUAWSuH337v6bL7v7d6ndgaWUjcVSSgWQOwv4xWrVNADUXFynlBCxrmvnXClajIjRS7tpMeb8fuOXK3/5+G633ar8zp/8I83imEE07ts2Jkkp9ZDTmx6x2293u22735Im77htWzCWptppRpEI2qyWjGApi+n15eMQApW4XSZyjqEi4iGWdMgsVzNQ1RBCzrkc4WLsFNWYeqQmZ20hFRM9+IpW6Ii6O1lchNh2d2/fkKCxZ0ZiNHbLqnnz5tU3u5+nDJD773/vOx/fvJCUt9vNarWylCBn733f9zF22HCM+Wm9/PQP/v6r72x/9psvfvP6dVLd379Lar3Bs+vVfr9XzatFc/PdK7m9+/lPv/md7zyrFzd97rPFVbCMkdAZCCKrZpHhhJzDRH4L0SuXK8zScfDea56hRI1K6ST7DydtTqxnHEjPiHihFDD1YLxjvF8RlQhBi/gsiEjEOsOEmptM839Il4cZDZoYxiQTPMhFJppCD0GLzcnNnJrAMcWEgz2wWAUG6jynHPO3GqHiAGlZWmAY4fWGkSrK2NWhwyVVY9BKH6TR9lCvhp8QABEGNyoCjIh943TYUYjcA/Uf4SxYd5o9oyn5e2BaMDrw4MNk9GSGD7N0zJzmQztM11gJbM6ei8/YzAp6clHIxETzECMtqkZIeKSRFv/xSTeG/PVpxmYTawBD2D1OMNfG408PXidYXUetPXRWx2BjG2d93MAHUaPoEWXVjoSP6YOdmcIQsUTLTXWWyhMH2fgD3gEkNAQ9ESNGPfh8gZxzZkMMs6qaDrtll/B2H1NeiBkBSRGIgei48zj29kHjs02y74h1VYpNGpoWIblYnQ0MTAEZUYrJuYRSkQICoCIROSr4LIRgaIBK6M5LV81GV6jd2f7MZiCo6BFQU27vc2L2ztRvc9wyNU1jZsvlkpnJ0Wcff4RUyr9i36XNbrvZbPf7/abdqaqieBcWNTeNM+ScFbq79v7+/Ze/3bx5bbkDxD5DUm1cZaFqmmW1XIS6WazWBTcD/KquayKS1Ktmzw7JRERB7ncbrsJ3qqq/vwfJFzFR1u2f/nnf94qQTfd9l8FKNgH0GxGJMZZ1JOfW68uqqpC8meQIyBTqxfryQkTatlXiark04spXveYQAiD6EKYoCgAhJMBBQK9s2JDsWEnJQERIq4q5NwFJCqaE7JyrPQev9CyEivuuB3aEqW+zZADIYKpw/fy7deV3++icwxx9VfXdVlK/bpq2BJSwc448153mUDWxj7fvPqdQ/fFPfvCD/fO/+e1vM7p3d/eihsy73aZvd5Avbz67DvvNF19+9emL76+efW93/4ZVAmeybbL1AF87mHOMyNEI/H5+jk4+T2ffISIC1SHU/gijYEaY7PjhA8uZt1tifgaiPH5ZRPWCEjUds8nBOXQFBxEVEZiH7AMzowPLLu8+Sa4aJAFyiMfErzwro6EMjpWwua8a5zXyPsSAZ6h7MJgkpTjSYBZTamZDoBCOfZv/d7qKn4lQYTYnEyPEgVUrmCsxvUM9AAOAIeVxUsuPJYl5gT/EeRbKgVNOsccKhypvJ2zg5PrQrycTCMc4DwPDmEK9Zo3QqXXg4RcdOPEoK0yqZBlOjFlESijf9IjZSD4Amd2EH55zBueJ6GBVnz1S2hQ4CE1mBjjGBNgBMQoBbHQ727FqPunNAyD5OP+ED6fMfmgSDGZhCAgDS0CcYhcKgx4tJdM+O6xmuSZjydRJHPrMCAg4Zr0Ajvl+DDDAvwwzOar045E/7HPEIzoyH9rYk4MvuThu7lvZ7GOyQchQ0yGAbraf57P0IQY8GqqNhlLPZZLH5Sh4G8WnUwgIHQxyCkYmokSQWUUJUAkwAxAjAikhFUvbePZP8c/Px8vsUs6ahT17RkA1USRBohz7rFYKJ7Rty8zM2ARfpDfngq/CsllcXFwgYmXUtu3b929ev3797s3nZFRVVRVqcxh3W4Z0ebUUqbs+VXV99ejx/WbrfVUtV81i4araE6aUkrQUt7vuLuecY5/6KKlPfcw5+7sNO9fm2OVoDr7/w+8B609/8e+x7Qo1jjES0XK5VIT9fr9eXYopATTLlSELoluuyIWqqipXrVerTdsuLtaGsKxrzApXHJZLBGYfoFNAVs2IiERghdooohFxETCl78CMnSMhSTmKEBEjWb+3nIgIzZAJLKsJKiMvutgj2NXjJ00VNptNH1siko143W52qd1sH714ZvXyT//F/+Mf/ON/ktqdxL7TrJadcwUtBE1rCykrVlVVhe12u/vmtw3z33/+9CuJ16sQFqu/+Muf9X2OHYjf337z8i113/3h71brj3apcfXjAHm7+cpbk7IgAREQkSmYqczRmL/tkBfQ2uGEu0LQQgiVD3Mz70F3mSjg7Pvpm/n3s2vGv896ZWZASDY4SHFUy2Am5s/gdkeSzaf0i4YCLANiwIHBlzM5EM/hc+FcCJhnBGt6ZE7951QAcUhMMkUb8viLWmAlmGze1Allh5l6UaZxUB0m99LYW7HB2TjhfCEN1ZkRj2gcItoIwDuXLSY163w408rAscH8ZOFmazpT0fR00eePDGR6iuCdmRkQj1CN5+/6EMk+x2may3/zBs1MwEyxhKbRkKharA6oloue6phprOZrBXlt5t6er/VhbofeA54M+PgqBF2LcUi12DBLEHjpJ869Nnx40fSWk0N0tCiz5YDjYDSYK/qHxTpK4T1Zxwc0tmE3HhJtEblE+ZXb7eDIwIPkgVgk7MKY55M27/88DmAUJwARnfNd7jf72CfJibiar+/Jch+m5fzCo4UhMkDQoerzMFgEKMy3JCkQjqZPKCLFELtlpnkUEQVtKB1iphMa6BEROD4y8x4aEygpoykkMUZCIkNX3CCOWAGAOMYIiIC6uc1EDpgKuiQzu+CZ2QlXVVUtllePxMzubt/dv9moaiaoK285xb7zVXj84lm9WvvQrG6eG2HK2ueUutiaSN9J3/Wb29u7d9u7e1AjNE0ZTD2xpMqRXqzXn330PHuy9YWt6+9/58dV//7+/W233TEgZu22O8z65KOFcG0gzLxcr4E4CVSLJbKvG4KowYeFq5fXlyLJpSw5P3r2jJidC0k0hDAAEaoye0Qt0VdoAFBmmBxlVUUqqo+UImmIkAgMi+1KLAmodl2HiGGx3Nzdq2rtA6zXKLJuqlBX3aNgt3kJDe1vX37xBS+fpNe3i+i/vn9dB3aI3lVZY5syIhMzCVtOOaUM5pzzDWGSzf3u4rK+ub7pUv7+82ebzebTTz6KfZf7DpdP/ug//u/u+9xuU+WY/XVcOAwX7u5n5UTMz5eq8iy2429zudKE9945N8/Gm8zZZkcHfgrSOTnzPOYmElEpTD4nx+VS1cEcOqN3iIgEiKwAYoNBD3E8b6PSJsfCweGi4eQXjk3jGMpBOokMmtPBkltSblBVxAMSzbzPhQXbwQqtJXS8kEqYEbUxQ1EnZmzHNj4sBnlEgQL2crgGUjWg+iAQwphXOvmAbUSBOFngMUBssO3MwmHKzzz1cOINc+aNdJgcMyM6Um6mqSjMbDREH6kp89Z0RFg8h58c+IR8yLT4gKX6MM8Ak7tXoBTMGRJ45jZeMxMxopKsSyIiYkTEjs2sFOw6JuE0e/UpY57XRjgIHExkkyB2FG94wrZHr+hRmycdmHPi+XkZ2zxMy6GC5Jko/OCf0644YMjYkZQ23QZwakWYt1nChMZ0OIPiSx3TyaZDcv6gjUGhQ4o2+T4PBYdC7ZUICqwYTZnupwcKzi4iGhPAD1NU2DCRA4DR+aAASMhErlSYmaK+CyBWQbQiNAJjpAJ/bkPBTDwp/DW/ptWZutdp5z0GrlXYyCt6RE/gACIAkGMTc84lAefYUNE8EQlqKR9oCCEF732ihaWtWjTI7nL5ZF3Hrs9tX4elmaTc9n233+9fvv6G3r+7uLiB+mqxWGBBh2KWuM99r12XEdfXN6v1Ze56zeLATDTnvPz08smTZ65ubt9vus3+Atfwdpfb5J5/fPHsO/YcEBGZC5ltmqbdb1EFCaqqMrMkWtULINxsXpNTTVAtQ0zCDvd9l/oYls1+25KjGNvFYpFz9hySxGzqShEzSwZFXAQickh9n1KSQhWLuUpVs8MkyGaAwApkVlS1ePca93sS3WVt372MIuBYVQ2r5wvd08XjFfnaf/SjH3J+9xZkt713hH3XApAahqoRSSl2vVMCpIwuSlIA56Wpk/fLKBq7y9WaH92ki6WmfYNZXP7JP/2nFx999OZnf3W1utzfv1fvX/zgjzpZS/6q79uYejOdwI5mm/9vy4NdUB/dRvD5k7BVd334oQSFqwpqKWGCpbwXZjIAtMkpWFIX0rDRueQvEBEiF+uTjuBW7N3MxTWIPGAIagaZkGHQdwfTZYlnKfYuGmGhzI5syxSRqGRtGIAYExiVhL9pLkTScDMNtnKDwmnYzMTUzJhk7nRGJCpJR0PB3xIrMPAYGdNwR3HaELFU1UEdkZXUoFRsQARCYRQABiQgV2xlBmaWYo+IyFjwe8wUC9ggD9HXUNSsiU+Mosm0UnnIhCYABGIaOe5QZWgWDm2lkM1sMDAj/WOzmPOAtEBuYOpiBU7sKLLaRnSIg7WDEIGgaIfHro45p8GZHjzHUZnTtemSwd45PT5kbanlIvIZaulYsQ24Asc/lfL1DkYASzrTbPWA5zHXDgufAwdkZFbS0A3MLOdMI4a5qdnEIHmcyWGk0440LYxqrMw8bWBPPktBezUcLcyEWHYjTk7/wXSCSYQQR5sVZSu5t8KOhzVUHEBRCJHIMiEROQQFAQFQIgJHkE1tmG0wGoDecMC2RZwJJQZm0KdUnO45Ry3xMkRZNYQwSHsAMh5qM3OjPKSqAKXoh2ZN1R5e1/m3cf+d+AltNV3vMqZrWbaWilJa+j5tlXOmPuwHPdLsbVDkJ18yjL4DUBBVwUMIkKlmHeiJeg02lELRYkNDpaF0AxZxfIYhikCHHMVDDDkAGC7NXnuogFfJ9clcDZXHNtECiYUQiDKRo0otazKfJYkIARA754EQwZkSm6hlVjMAIsfc0HKtNRh4JvKkVe4ucm+pv33z+uVv/sYZ3zmfTC9uHqH31WIZ1ovlk5sGw3K5JMAYsylqzmZWhcbMGOzdm1cYrh9/9uLdq9++/+Uvt19+01eBvHv69Onl5fXj68fgAtSLN7u3NYlzrt/39297R0yMETCEIJtbRSYiR5z6fp+Sc44Zbz//TQhhd/+O0N3dv12v1wboidp265umqhe3bd+sL9QwiS6XS+l7ruvc7lGlpBQ6R2rZia5Wq939hoNLvSKzgd9st+vLRygosa2cbO/viKHf9IgI5t69rDv5lXz6uw221PXLnV48efHmF3/pySdIisiEfY4pK6BnFUMEH9DXnHNKySQtmFuxxWL5/n6HiDlb6qWq+X63rQDalq+f/x4RrS8e7zfv+l5U3jaf/Bf33/zf+u2fLsFzvsxq2ecIeQl1ObqTWGkHkxIUImlj6qOauayKyE2zXC6XRPfTjTnn8qSOxlIzE7DKF8I90kXE0TI05rjDBCEkJfF9ovKHvCDEqernnDTD6FXFIfMHpsN8LmKUt4/FjgqzGeJnqMRXP2CXGxGp5hL96JOe85WTp0ZGfgiQOSgW887PJnr8pvAbIOfm3wOAjWX4Bh3izDoKxyrmg9f00yEiZgSdLxfzkUlk6vNJtZw51XtQgnvQoT7v/3xpzl83/3DCxeF4j568+kQ5O3+j2VFgIAAAjdmveChLN3/dfPbOvykfJuUMBowOMDNmziJl6QfgralqJ829nqd79WRWEVFH6whymUwqcuE4ioNtf3r8Q30+zNWsfMK0qYY+oDMynC0EEcEIpnHYbDNTxInrmojmp6YUoZreNe/tdP9wMBUNLatqB7ud7Fd97UCFACuzwQBTyMg0wGnSHjyMD17zc3o0/0XqwsGGNHw5eqxUFVRxiKcukVtDt09iFabxjqRp6KHCe8dPyWKyO8ePKvdEc2rT3jkCKvHqQ0EmUDVNbcpEhOxd8ECTG4WMALMJiImKaMYMRgLoNSoCFSkLwTfL55+tn3382a9++dcxxrjfffPqpYCB4dXVVdM0IdQ9s4gg02q1cs7lnPs9QBKqw9PnF+t60d1uiJYXv/OT+OPfje9uv/zqq7/62b/f3d1drZbPnz+/efoMvSOrLy4u0CR2nSAxs6Z8lyPUXPQWGitwcFU7gn6/QxURYedizHexL/GizXItfd9mqZ1L2+1ivUJR0NSlLrBzngCITHMJyENbLtZ93wtyqCoFzjmL44tHS1XAsFg0i3a7WV5VSLByLqWsi/C9x59eXDafv78FjV+8+TzcXNzn7d3dnfNVVVX7vs85G6B3RMw5Y6mqrTbqdsYAFoJLqWOnxJBTp9bX9SUh/tmf/9s/+e/8R33Sr7766rKplounm82GHGd8//HHv3/3Krx/+fOaxIWQxQI9fDzP9vBgT0UcSppQ0yxXq0UB2ZiemZ3kIdVP7WDynhuvpvWYdv/4yjk6xynWspmVmirju9SsqDHjUfwPeIMQpphVGKJ1UIpOfYjzOqELEwWHybqOSEQjaPApC5wGW8jidALnDGNOeQuxhjH7mZmG2J/jsN6JBBTIxilOBEYOOlf75iznPGp3aHAsADVQmjLAYxfyfPbmssK0ZCcfpl8nBnnOUOef55tv6ud5b7/lOl9uHusxqxxCgkuCls2u6f6sUqabjpVOOvKkjJfohPQCx5tEVW2EXC5rWkypU51gOxYFHpQqTtr80Fyd79K5mFIuYsaT1oYTdog+mDgNFLsSiI0q8fQUjfbV4VyPg6VZmbNh6kpg6shZaTC9D6Mo9vw5t5v2J5xtIRUwgJTgbmvbm+3FqvJQqxGiPLg9Hlip4wX6luu0QTxCLUU1GKhk8fsqqCJmErJSgecMfqWM+fwwlnVp6px2ATXRMiH4riMf/OX184RUiJta1iygyUAANJk5RM9k7BDRyBDQCJlRlcAI3OhSIXaOXezEAJAMoY/apeR95Vz94kc/lJRNpNu3qY9vX76SfffqzTtt9865nGMXWwM1EyLw3ldVte369cW1J28RPvnud68+/bjXfmWr3//o+5/++O0vfv5Xv/zLP//mz/982VTLZbNsHl9cXDSLyhE3TdNUNTE6Ak3ZOUgpCQ5kpDchotz3SiA5swXMOca2qioA6E1TVudcVS+6FDH1Rgx9awzsiYnNTMQQSnqYv9vumqa5uHmUUkLgi8vlfr9v2zb4cPNsfbFavnv/JnU9ETWrJTMrguT+y6/vfvHrv/rB7/we3729+dGPN+/eLlZLRMytFotFTjElYefI8QjUCEZE3g+I/Zrv72+ztCIppx6R291+u+n+4Nmzr7/6raKv6wodAnAGXNarrLeKzy9u/oRocff+rySJB5YYzR0FC5/TwHEPW/F0OEQ0JU/Vogmgp0Ac5Rr9SWiGU7zGxP+gEIEDMZTijznpxOnZsFMeCTNRevDk4GG7n9w2NcOMhXGWMqkDQIIBugeBjEaJYZgIxFH1xLm78eioH2jBxImJTtXKE06AIzA1jAz4aB5sEvdBYSLcaGZj0dbT6JsTQn/y6uFXnMUMAwBh4V4P0jgeyrngOEQAM0BAGkaHH9Blp6uM94ijHPOVk1/HewrGYNH1RrgoHJSE860y2QAOrGhWcmPq3PQum7/LDlVlbcbPTibwZDJhRmQPMz8KXgGc2QCaaMNMHlVYmrdw1JOHz+HDTOV8d51M+/xPHIUuKA7OwSliANN+KDYnBICh+tAkPcyV+LMNNg69/DoQXByqkx0eOe3P8CVOkj4AEGsS3uzTXW6fMgdgMjSL83edzMCDG/5D14dmGLEkf4+7AgxEi/RWJkJVGclIEAkGmLBzInAmUoxyRuqj4+SCz+IyxPVF5Sq/6e/WT14MLaQs0Fk2UCOmaoGIqFQitQsxYUBKWUXUjBySgSUTQmSgTCymBEyOKwqqIGBdigVRxPlw+WjdePfo0ZPcx+3mrt/cd123uXsvGkUUzHLX73b3v9q856hf9paNP/vJ713TR+1XXzijx5/+RBxdX1z+k+98/7Mf/PhXf/XTrz7/Tat09+7l1+9feu+bplnUtXNU1/VyuQzmmqYpOc0cKOecY4eIVVWZJElR0DTn1GcHYGYuS86Jq2rXteTd7ctd1dTMvMkpLpdcOAUhu8CLhhEX6ybGiBgcAnpfWr66utrvOyJqRarVJdf58vIypaRgGBVp7/z6R9/7/mp9nbpfKoftF18wc9d1JYDLB973nUiq69ClBEBgZFPlVitQFMjMOUuMW0QMPmw2+6fPPvmjP/qjzeaOq8WiWW02m+vry6fPXtzvW/TV3bZfL64fffr3lOXdV78A6WrPCU6F6Q9vVAUAB2wq5ImaBRMdcll0usBMR2dkMSLjUSTC8CY8+IHMBGYlmQ7kbKRKczXuhK3Ow2f/NkcPjzNwzAzsYLueN26jID+5LQcECRu9mMfUZPxgE3mi4+yLh3pizrlBAx5Dr1V14PSlA8dQGEea9AAsfES7p5bn9OicNU5CAKpBkV34yEg+vaXcSTOC8iBPmlO0QoZP2pnfjw+JR+ck9XzGzqcRZsQOJ+zomXA2zduBJs7a8WOhbPtAh0857kNdsrFe9XmU43TDfH5OGO1R+x824Zy0c2JWmd12Ko2djwsRCQ+gYWRjZgEAzsW92aWqcLDQDy6JA/b1Idr58CIbuzTfcicdngY19nwcBQIqbPb5fde3UrmcHLpkeSIUD+7wkx3yLfN5MifTivCsqIYV658ZiAJByfIjczYaEWavNoAjyXXab5O8MgQA6jLDN46vLa9227eA1VX9ndAEKYIZk+OA7HL0miKqeGZVzaal2BkjDTo6O8QBtMJUSURREcn8UrMIAGZB0EBIRALZqGHEruuQbN/2yMR1WPBVfYWEZtgAAMhISURBVHl5hfgsp93d3fu3L/ebe0tJVS9unljMbd9dPH36B//kH7Vt+y//2X/dv9suH//V7/zB37356Fln6pz73o9+vGiWb16/Tp2LMZpZzDlvd4hQdXHfxWBDZnMIoWlqM0PHzJi3LXNUVRWYg+CKSBMqMMgpOs993EeNzWKhu72BCbAhmGFybH2vCFF7EVmuLswQiXPq+5Ql7lfrtYiklAABSVJu2651zgkFo4Trm+cX33t3dwuNk1Wzb+9z1qzqHAFAEjXJqiKSc+rBCIjBXEHQL+xAojA6x6HyFTPnTNtt/x//R/+07Jy6rvt2p5L3+/3yMrhQeV4S7dt0R7q8fvp3U7fbvP7r2oUCPTvfgSeiW9lNMDNBqxkw82oZqgqmisA44S8OaBzjBjUCLUVUUaAcYVRTzwSu5N2VHV8kxAKhfGBtiEUufiAUFkrmjR3sh0O+h6qq8ll1mvLnZPomGFgvICI5ARliOyatCMHMGA4awODL0cHJN+dzExAJHvtQTzj6OVm3g6W93HBkYCwwmYM8oobziRj7Pi3YKQv8Vh5mg6XRYIjiQUS0M8Z5MnvzxssHtSO6czLS8+7B3E0L9i2s4qTDUweGxs9EpWk5yr+zsHyDAg5ANNmZD3M1xRDpfwOWD3BO91Vlgj23wYBtNEibM5ljUoYe5PEfejXyEL4/b/DAk0cSPz2rJ+f5oWWlUZ4wKwauA6wYjIxuahzxVFQ/EQJGiUemNZoYvJ3J0NNGwlnqVwngnywWjLbr09t92CRaVMk7zYg42+T/wZX62wg0J/8eINBPDDNqNhTaGsZbgKKPYq+mRwBgthVtdkZCtXi3ebfd08LfNJ5Itvv7O63N3I6Z2VcuVI7YE2f2qoJWYq6HUhwlnlxTzBLJSEFLp4gADVWz44YZUHLs9t1+F0FKpVbAuq7r3O+Nue06V3vvvXeM9SLGCExXT59dPnqSuv7u/e37t28/XS/voV88fySgf/Gn/3b78q2XDI2X2y9/+W/f//s/Z/SVQypvf/bkBuN12TlZoqpWVcXMfd8bO2KOXdsKxK5nwGBGQkkNMdc+5L6v6xoQu5xVte+6q6urtm2dc7Lfm1nbtt47zFH2g0ElK4hpH7ya1ZUjok3Xvb+7dRyW64sQQi+wv30LAPWiadse0d5/3YXgLi8uIAXo3smivuvclz/91+TcatfabkvLi4qZmWOMllNV+ZzjuzevXKiBCIHJKbJndkbDnog57XatdxT8om1bIP/kxSfv725jtqpegVpgun9/i+SWlzcEC+Becdcmv3AXj178GKx79c3n1014cDfOriPe5wSGYOa68c6fmpKoBP6PgjISWqn0Uvh2ec0I7zeShsPjOAA5HzIsZwSa5r0pnj6YEeU5V3jw7A2EWzKoIpbyXSiFBxDhUTzU4f7BUjfS7rmoAjAnoNP5n8VJzXjb/Nk5sTjw8iFuBRERCUENZ3XYZulSBVBp6CWO4JpzwkRnFs6T+cExqKdQQBhdAyd3Hk2mHr6fj8JmdOrkkflIJzp+tBxnOakfIpfz62Rl51wZEUtx5YHJlYwpPQ3Kmz8+mazJDj+hgTIiHlyk5Sq4pycDP3TjoR6e33YykHPyDbPZm941N63DbFnpbDYAjkS9w7uKFb/c8YCpYwiyI4ARxAMQWXHGlWdNzgXcYdcNkR9HQQ9ljCklPN5aRzz4uDNDqA54tNj1drtxm617UmX0rFQx9ONsP8xc/zZb6MFrmOoBLWs20uJ1OtSFsamWKs0c6ifX/AxOofsppS9ff/mP//F/crl+9utf/tX92x1nr7E1drZ/L0DJN1A3Q01lNTSQgkAyAHBqUcdFrCJBMlA0zUREjhVURDavv9AsbIqSc7tru44YiEgFOue6rutzyjk755bLJTL1Ss655fqSm4WiW6ya5eXjRy8+vf38l61AyIpo2svlxc2jp09e372voq6vr7Bq+i55H0ANAzfLxXpxjWNwjEgqWu/9/f3y8ko0xbYbiiiIeO9VJIPFGJum2d7dCwMi9n00M0WKahmQgfoYy4Tfbzds2ptoluBr59gj+eCAsG3blBIhr6omhLC7v89VQETISURkVyWV9aKR3Od2s2t3m9f77v2vX8pfVdWL7hf/6nf+s/887PuaXAuQUjKzUn25rkNdB9Vc8lUBxISJZKwwDs5bu+9T6gkdsa9q/NHHz6PEPkX2Tc4ZRZWtqUNdVX3b1U1t2QW/FIM+devm+eXT+Oa+l/wGDzFDH+LBZYOqAbhJTCaCuUGu6zrnHDMjkx0qER129slGTylNf5qijfL7dLBVh4CXec/ogP12RIbKNfmAzznQdBviIA2csJlzsj4ctjI7s+TXIb53TNk94TQpp8KtVVUt21Qf5rgzc+pTGPAR3KOBZ3d08wEquXx1yoemiDacyd0T4T6ZfCshJUQESAVe27QQ5/O00WEJjs3ph5mHB6gqHBcJmHpS1NBBAlA1HBTTE74CM7o8553Tl4iHdOT56Ca6fDIzxSJyIg1M7Z+0DHpA0YLj3TtN7Pz7E8Y5DGf8DMfJ1mVv4KzO47z/OmKPwxlnmhjwZNssn0f8rqNO6lQPcRrCrOc0nsq50KCqjmiQGWXI1CKyAkE1mk+PNOmT3TUdmTHod7i5DN/hFBdyWOhpzs+PHmZQ1Kyw2fG2pRhjU7Nq7Xh0A9vhfpht7P8WDHg+UQ8AA05zpXYScmVms0jvU5Iy3/CF+6aU/v4f/+QP/+g/323e/ebX/+ZqfXPRfHyXuhYydVsxa7tdbCtyNSADECMJE2LJO1ZVU0mSkqTcbr9BYM0WY0ZE50hBYur09n2726NB5b2k3MUeEck50d4XqIOc6xB0v4v9drfbVc1lRrbNrl+szYf64nqxvnBNs/zBx1dd/OJnP3fO/cHf/+NMEGP+6Hs/6pK7uLlhF7b3m1XdiIiyGWMSibEvgYcMwMER0XK98sasuVqsHaGkjCbB+T621XLVdd1yuXzz8htEDCGk2Dvnuu2GiFZriLGj7Pe7TajC/f19IJCU+r737MghAISmZudShKqqDCWlVMKVHdJ2u60RKhdS12lKX3z99W57/+qbrxzhXbK///0nP/z9H3708T/56fbfwdNHn3/z5Y7VE6mq994z7HbJDJbLJRHd3t6qQhKQ4l+FpKpJctdvkkV2mFW6rnNV/Xs/+d0+77s+Ln1zf3vXVL5eLlLqb9++C4ulr0IVrrpun/Lb4Ks+L8E/+f7v/fE3f/p/LixvHsx0socREUbEZadIldxHurzCa1cdbmqaWsGkoKg6REAQhXyoxGcAMGSVghG6Gai6jdvazKQkHZZQCAMThYF8lP6VDhkOmHtWkPSnI3ig2kzFaqeSVLWoljz5ZowlK7MF57Jp121DWIhk1cxQqiigmhloKQAFUuhpqZhKwLDv9oQATDpiXRUmQ54AQGGoJIqIBAg6jGswrxmYDlCUg9DAJCWLuKCMnGHbykjfZgFuNtgDEGGQh6Yq4gemMgk0Rywf0RuAgQ75pEBjzu685vF0s5mBYzADHTRFRTQEBSA4MKQjpqtHkgfM0rcmFjLktBSojVGambNem9kPyrxplvL3tE2nGwbCnQTNuPgjyjzYEBp9QE4deQPRUM+8sO5igCih4BOS0zGPVJgCBsdi1YPzHgfh6FDAGCCqsAHYIZ+nzAiOWubJYGEmGZSP0xgZStKPjQ4zIgAmG/L7St3lIbihJApnJEYmUzIR0uJHYsEigxqCzAHLmWZ53oOcQABAxkXvUjWcrRE7LObwiVioiJlR5RXARKUAY2LBhSnoFaV0mZYpKK3JFE4x30VqwhmFQqCv727fdD6BB1XmNEuHKxLroD0MYz+2WRSc52lc0/fn52uaCJrkMMQRSd0QVECRxEzMCJUVMyIie1Ur0AZlDQfBBQnQiSbnAiGq5kDmHKyD/86LP3z79Z9tbt89WT2zBQDzlV7RthWnoJnM2FTzPpeC1WDoGIF8VS+aFRLnjMbehQVCt727bbf3qd3F7RZS59EYkMIiEINajgnRmiqoqlpCYxMAQmPXpmwAYEqr5ZvdPjgvb3fy+uuqanzVrFarq6ub6yePbb365Pf+nnOhj9lzqNauC1wbxRzZJGn/brdvqrrbdjnnxiGJpNRTVZlZdq4EXmVHjJglI1YRs6/DRgyXCwCCqtkmaR49RsSUewiOQgj1gpkNyKma2SWBab7IkTdtnzrNopbjro37Xbrrdt09YdczOQ5AvBPgUKW6YebP3/763bt3aPjym9d9Z4DON+vHT59977vPnv3+j03C61f/5tf38A9/9Pd++rP//RacI6g8d2mvvRZqvu8joH/05JOY+67rur5PSVLOJRNt6eW3r18XXP53b3c/+Tt/9Ozp89d3G2+oXSeAWvvbtl0sFoi237035BB6Zg68zCkrtS40jj+7/vT3v/rlT59cUtaYFIwD5ORn6UWl/Nq0ewuokzKz934KYIFRymZALYK8gYiYqHMPQLUpHn1zIAOzD+WQ0SGF7vCi+XNznWne2qRMDCzw7GY8bkg1F4xsg0JuCvkF8AADtyt1zAZC78gx8xC/pbNDOzY5741NsbhTZgaAjaHOwzX2Fh8KgTkZ3fjNQBFhpmgCAOLBoDHx3ZOpPidAg3rEh2cnZcXMGAdGBZNZA5GPnz2Z3vn385GevLFczKyqJXsSPxA9Pr9OfrLxmlwY05wMBsCj5JJTE/EoZxzMvNPGO3rpWGkYR7zCaTwT1sp8jDxaLOZNnazI6aTNjsnJ0HESWaw46we45klqxhFhxyYTiOoEUFz28IPVyeaLUrbixIBVD0LevDsl7x/gEAaIzGTQ5cTzksNjAebS57OB28kMD3+WFUBGYDBNCZOQChogj8dkQrr70A4ZX3qKz3x+lM5vmM7obKaOCdTMAnSYN4Cp+93ubn1xgcj7tnfOtTGp0kcvniEEyWBYhxWbWRJwHB5fLHPOMXa573Lqc84AUiTtqKIiUbLmxK5GZGIiVPJhsVxXVWXpsru/bzd3sdv3faQuloWiwdxScDSHVQUAlQyiJZJURNaQKLu+7zXFuKVO9RbgdVV9/P1/wOuVLRtfE7jgQ532ne73/fZORAhtv98DAARfLLfbpi5RF223b9u2zGEIwUHZSJSL78z7UvioNQqVA4CUMzN75zw5yFoxsfNGKKUoAhoxewz0fOlyRkRilJgkR8yqWXK73++3u91OU2bEFOPrl1/d39+ztm3b5qwx5mrRfO8Hv/Pk+SfPP/oYwW22W4Im5s2jJ49397u7zf3l5WXbtuUcqapYNkVFAoPdbgNgiNDUVQiWs/ZJRAzS6ubqI0OVHK2Gbt/+5U///Pknn0Ww3HUcqr7vvfcI0HUdM0vqBY3AgxloVoWsWYmqxfXlzbN29yr4IhUmwiPYwxMq5wCGQFPv/TyApsh9E70DUZyd2ImyjFTmCPRxfukcu3iG2DzjaIfSdSf9e4Do2+BHLW2WogI0IzqK0ynT8X+FrczDfo9eV9bJld1NCAcIZCAiHXf/1K0CAsx21LehwbHYLxHNfMUPj+5oukbnk5kVd/bUNyya+jETmjcy/CkPFEg3M6Qh17PICjgYGkYT6Mi2i0xTlJWJCh34/exFJwzmhLuf9/B0iuZ9PmNIU1M2abQDwTncMzgyZs9OH6cpmrPbqZMjV354CcpdZmZ4ZAaYd96O5c5h6caI+nnPp9fpQ+xk2Loz5llCB2C+T1AnZlN6VZJpRoGi4MeV2LvDAM/HW/oy7xI8dE5h9DLgLGFaEU0UHA0gcIg4hg7YAdfzgXiu+XKYGaghB1ZUhRTtbtfvOk6NK0elLCEeV3b6MBzkQ+3/LW4rH8+ftVH6GdgwHu1wGLME18s6pz4mAeIQFiKqlsk13a6rmmW9vFk1lQF0XQcAzJxi1Nzk2Enf9+2+67pSfS8YRcgpa26zcmTvgZwQeiB2VQhV8M6uHqe+ExHN8e7NK1XNMcUYJcekqgWpIybnHCIWGZeZTVHFomREGYBCyVRy33Xt7v7tF/8Xf7X65Pd+/Nn3vkvA7cu7d69eV959dfe2OBQMJDheLRbM5NnFN7hYLNi74GuxXLDSOMfi7WNmFSAiSZ2vAiinNnFdExGoonNGnE3NzHmvTohIVESEwAQATfc5i5lzzoEzclh5t2BQC1ePL33Bvm41du1+e9M+c8zUdX3f7/f7++1m38XLRzdd7l69+frJ44/u72+fffRo81X/2Xe+54j7Pja1K/weRHPOWQWMzFARUp9UNVs2MzUs54mAstbXl+so+/3mbrVa5Jz/4t/9ma+rm+tnfYqMlPtYToCI1HWdYodQMAsHW1FRcht/cfXk06/uXnsHDGYi5Os8U45OtqsDAFVABud4KvQGkw2NcAhmKXrn3CZ5dp7nNGt62ZxGz/8dbxu4b6E4BsZjoaGDl3SiBYUxiOLo+pXjISkCjYRbLQ/ECmQs5UuImOGAYTu+hcDMpDjkERGRdFKC6Sgy63DhgE85q9RGR+wWR4o+jXfq53xaJm8iwFAYan7/nKfOp/H8mswDR52cUcYTxiCmEw8bOmxQbPtTH07eiw+pfeWon4hN0/eHQOWZJnrYA6PCiWOC6byrOMb+GMAkENis1MHJNfG/c06PiFEyjYLMfNJUD8wVpo0EBuxGeQcAQEfND/BhS8P87MB8gx0vxGH2RruD4sh9begSIs7fopqLC2bqZOG+ALP8hGPuO7+mOTmfnPnC8cxSAnIopjT5HYr2NVULtcPcHu2uB19hqsSKZKba5/T+fr9tXVr7KhjAEK19tKY4KHknU30stBxed/7SD13zt9jswmkDTHLwcXsKGHMMoUbE/W4Dauu6xhwZ87JmDAthJwgVe0IFzegYtTYJ0vXes/MUu15VRaxWH3OKKWcQUFRNkk3Ilzq+0XsAQPLkKgzN9UdV8TfnmExkANsx6FNXimmmGFU1sDOzGGNWYmZy7JxzzplJjF1OKd9+45xbEHz+b/603e2ryr/d3yeyq/paREyzSupEW3sLJkTUrC/TriHHTbNE5nq5VgKVlJ0zU0eUJDlyOWdxCgIkmnYJCL33atpLNkMfQtf35B0RS0HwBSMiAnXGbOacA3KFLBSswM45A5KcgfzyatWsL2OMwbv+duNjtzR7bNa2rZhuNhsR+9Xnv845Pv2Utvebj77/HBTQcc4ZAMxERIrcY2CqhdhqzinG2KU42OeIELnbQ1U70d5UQ3DbTRs4XFxcJYkAkFLqYl+lVDlvZpbFRBRHB5+qjW64vVDTXIflI823zGZqBJjglCLBeGAdkTOMRBRCqKqDH3d0sB00Sjg+ZnNteH62zWxuEpwzhkM5PNWCe3XY4GOBvvNzMu9ucZ3PxfuDDolDXHWhGqIjQi2ADZm+Q2Ga4cGBBxRaUt6oRFSqF4iJmQ0O45M+lNclKUo1I+kYQmXn1GEcy7n19Zxk4AxKcOIcJ2xvbmmY82Y6xgKc6G+2h31jBfMTcXK+jzrxcf3ak/eedHu6c3rp0djHC2bEbv7UeTsnn09jgma0fh6XN3XATq8H6gDO/yREmb8XR7nq2Fp+6Lya8ekw5x/m4x1eN/487bSB++KEMlNQIWEolQECOO/zwbVcxjKPKkI4nfAHp3Ten5NrmjfJ5ib30Czyv9ghRWQKJC7zUCSTMslHPXqofQBQzYBCYEaw7fpNTL3mBmQUvI406W+5zP5Wtx069AHjExzvSRgZ8OQUUFUoBAYRALokxBUzx9ShpoWvPKa4eXf3/htkDc2Vay6c90zM6AQQmUByBhVKRM75itCZWdrv0JPzxMxZxRBFUViMycb4dAETUSvAtwqIDJ6Jq1LrnpEQsXbkvSeDlJKVLE21vu/FPLMj74i55CVq7lIfq+/+MKXkyOvizTXg5c3lC83q8dJARFLqJed+v9/tN7HrRcSjmtm+i30S55yN8ShhtRBTUVPLA3Z2iqoaXKWaJalIIu/UkJkd+xwjZEH2VAI1TAiM0KBLhWcIWM4ZEdk7U/QXy9xZ30XyYRE8gleTmNnWFxZrT6ySrq8ekconH7vgXSupb/fVo+tlVUNwd2/fxhyXIRBYyRs2SYBc4jtEVDUDKDMGpd4kpZzjEFq72XXksHb1brd58/7+x3/3j148++w3v/2bEIJI1iwJ4na7vbi4yFmJCytXAIARlIaZu4y+CZePPrl9uSPLBApjpZAHj4ZT1WLDYocFPKxcTGP6XNnuJT5lrnzMtSs63uUz1eokY2T6/ug8nGkVJ2fGzGC0jprq4E+bk5sRbc/MFAwQEJioxF1N/ZS5vW6g0KMCyohE5NxQlHv8/mA/nyhg6SvNiB8DgkEpFHdy4O3Yfnt+MSAcQqVKHUKDE6CJGXm1M5EfR9v7oJSMT5SnjysZHF00YmQCFIiVQnfyyVrBkBX1MNsrGuL0hunfk3kGOBUmps7PWz7heUdvpKPQ36nNk/lEx4A46i8ERRwEIOISDfcgIT68FMuigI2Sp4xOVwIccMrmO/fQyClU59TPeScPkhMiIE77FhxhSVOZW0TsUNPXRnUZdaxpjYPCdj6lcGwYhzFLEGb5aTDuFhtbyeWR8tMoohJRkXphlKGL9PAgI5zv2JOxZ9MAwo49hgh5nzSmPPatcF8azHh4WNlvX6yTIX/owkNvT3t40o6diWvTVYUm57zvWu9osb64ffNmd7958ewF3G+j+apJ6wvxdSMizjnnKKkhKKQMOlQ+FmQR8SEQUbHkp8xqoA5Uqe8SpmgIJiIqpeaEGmbTEqZnZmBEksvRyJ4qVc/OEI2IDQwgEWHuJLOBT4lEEqNZ7vvYtZu+R7z56MXVdz9F0e39VmNe+dV9AO89IjbON6DLlBBRRNLLrwEgxoiIKSXnfc4ZzKxTMkNSD4hm3ogFzLCXPoRAjnLOkoyZc8r3uXcAqKXiAA5FZTIYGlVO1UplG4WMgCCSNMubDTCLWDR8vd0As/PV8mJdLZd10wDA7fv3lhVFTHG73VaXS0e063o0ygAQk6scoiGiZskSAYAIdCjZQVEUEIwY2FDyQJMgAwk7Ye+StHGX2YXvfPf7d9sWqISDcHBeFfo2wspEhN0QBzoxR4ekaoQ+Jq3XN/h+lbqeMReLwrSR9Hh/OVXlcYOGcNCAmUu854T+PDjeJlY55wRz9gAAk3kNZozEzOa69GGj48H2iIg22frGOwc2yUM6FNqBpRkYjGDuw+tg4KmMpTyiDYuhGUto8WC9LsymQAQDwFBGsGTgAWgRygCAhvBpmHPfInOcEPShY8elqYafZhFV86GV260gFY+m7CLlzOfkhJPBMcUZOb3B3CAwKvY0lk8f7YVoIwjeuUTAcJSXgohDlM8HTL7nBHf6d+7OnLo9d5Q+KF7MRzctPU5+38HxDzDjfJOUAYPmegTYMm39Mdb8iOCqKsHBgDH9W6DLrCAelO6dBd8+SKlPD8KxoDBnz4Uk6YwlmJnOQsqLd2b6M8ORiV5s5rs568N5x87XBWacCQDmwU04BrcDgDOymU9dRzljNq6HOdbRwIkGTB4jYN8l2ffQJwMjG1xCNFGaaW8cbadZx+Zz++2s99t7NbTw4CyN83SY85xUclU1vq6+fvXmX/3//ny/i//wH159sqqFCdvd3X1XHOX1sq6qyrqOGGmo9WYAYAqas69qMyMRB0SsqiaqRrZchzZgzqKq2EvKSRVAlRgJPNkAoEvExASAoEqFI6rmnPuxVsTCs2gyAyAGVCYEz5IgdnfrywuI9y9f3cW2I7X1ctXeR3EN1UZEVpFzgdGHuhKR7ikDaCUS2MXUg1rftwCQ73dIaCZElLI4wiRKUADCiqgOqGqqQ9SVZ2UlzYYEQCBZrLhRDERB1CRLyoVK55xDVcdun1JSw9QhIopzun9r9XK1unChWlYBEQmqnGPqRbs+CIS6WS9W6NgTk0NJHflFYY3kGBBVpeRxEJWKfFJqlapmQCXE3a5lR2IK5gjs5tmT6ydPb/ddCOH23W1VNSDY90l36j03y4XzdSELs7BiMzMPkqNmdvXlk33ekGZENcgAftrD823mEAv6LyGiD3yyEW3iPaMBeVL8jkjMmVA5I4iz3JXZIweh4Ig22bnmVwKYC+HBcQw4WsDK58Ms6HAZFFovDDjZ8YgBZIJtgknYBoBe0yxPZgDYwvGC8dhPxICIijJAdkygz878CYvCs7kaL5iscGY2YfbCaK0sg5unBp0sxPm74CwVdZo9HBlwAewvql2hOSf9n2gWnslb8OGiCzpLEZ6G+WCuyDQtc8Y83T9nG6UpmuK3j0cEA4HW6Smc2XILotm5eAd4MGDM9y1MhoGzTp4s5fmCPjjG6cJRMIXiN5kOyCxNqzC2WXyAzQolTZvxgV7B7FDMJn/esaPeTg0elobIzZZADnBgYGM9DB5rMs434Zw1ng+Z0JkkBRRgMe16yYIHrXc+e5NS/tB8nnBQmO3MD034gz99iHMfLcFs6zJoTJmaetvGf/+rL3/6m1d91O7Pfv7d1+F73/nk2c3FspIqoKtw28Y3t/3FUKxCANQ5VzULZGZiLdEmhs5xKYElIirgMII6cwwAgagF7fs+5dxudlgK5ZoSOed9CMG5EEWFuTgIBlHJOe+9OadqxgGQDRWYSMU4+xcfUaiIw82qqq6qDObWiw5SMK2qKifNhAlMVTNYNFlePsox9u2Og2Nmx8xNTURxuSSimBKStbu9IVmKSLzKOZfqfqZIZJo9c7NadtIjABIBsZmBkYoYGBe0TVFMhkkH+1eSbW7VcnC+ciQ55r5LXU5bMF7p8h5DdfnosTArUcwRPJph27Y1kiNOOVveiaTFoo4ypF0U6lfYrSNCIiYCZGcoqiJsmlSlCoskKfWyXAYVl7L2KV4/edzf68uXr+rQqFlKSUT2+65ZLqYYFxzNqlTqtZh1OfaJFxdX3X2A2AKY5jQx4JPN5jj36ppdtstL/0zqwwYlUrWJJwHQKMsNB6AEo0/7mAhEJJsdrJpmaAClTq0aGKlmM2UwImNDHIoJgogIDtVmjEaOOxytwQCjXRoYkfOAKDh0koe6xTYYXW0qDJoAgMwMlYh8uS3ngckBlNrbagWNwDw4QgTNpsiMVSBWSkkcOytIDuNeR0TnXMkoLcYDEyUYyhgklcGlN1AKIgA0yCWFxUoU4eAmFxE0V0JMS2k0QlJT0ey5wmMahGMS8AnVK8SiCKEw42TDBHoHcDAND8TogGoNDGAjzoPOpH6YUVUzI3IntH6gUjpIP1kVkUokmqoyQLHWztFX4BgoY95P1Ty+qJSxmIKlDoAbBWcTR+4LACJ5mJmhdQGPVHhZFjUDJmZm71If5wLB2B6UYGIico7NsIjFhEgZqOS74YSYJAVr88Gx5LEn0w3l7AiCQ4Shnl1GcoaoYJWrYk5Td8yEEEzFhTAIH2YFBWywZJS0rpzByJXcWlWZWbmHbTB1z0gFTA0dl6LIQ5sqE1UqgwIAIkR1w0pny5SnBs0O0BOGwN6VdoY0M83jEUWRZKZFrYNiQht5AwGS7vdkdaiaPqdk97F629FnXaQamEkkqyrzAe47DbaHQkCGS8BKHYXx9M2VjyNp4LDHIM8i1QwHoFyjrEaILAholhAYEbmU/QOwsVgSACAyI/aibhFqtN++ff/Pf/Hr+y5cIP+LX/z0p3/zzfd/+4PLy6vHV1c//sH3L5b14+tV7vV+1/rARM40dxZjm0Nw7BCbJaEryZyqWjYwOxKxehlMElgG7W6uGrQmpbR7nbs+3m72d7tuG6WNCkRVvTDIjEzo6rBsmgYI99YSQW90ub5w3hKiWzbs3f715v7rtwK7Z89e1Jd1X9Gu78j5vOvMgLCTGJvVytjtY2JiNKg4pL4FAM9OsgVXNYv6/vau7aLVi1VTc44xxkdProBJxJDIk3ZdF0RzivvN1szYuxaAsco5g6EnDyYxR0DyofJobY4G4GqvjDFGLSnY3ucuQ067tifAvo/eVznpstm/++pVNnj39bJarC8eP11dXYdQ7fedSoe7tq0vb9xNWCxq1Qh0v32rxSSfMwKHUJuiqjLVqkpsDrxRBbyAnHLWWlNnCTxqG68Xl19/8XK32y0/+djHS/bNrt17dkhCiJt2v5Ib7pKhNk2NjH2MaBhcJQIGawq/TYkru1munu5u7wIGsm7OdEcqpIglDxgBiLxr3LGr+HDwRtGWRsfwuNcPtKzkEQ71CkZlgpBSSY+Zp5sCYElbGll1yW4rO3Lus5zOEgxWrDPhHQ+1XKZoL0ZCghNf5iT+D4dzaK38a2aWJaKACKEOSOJE5BxCMTKo5JTErEgJh7zC6ajPekVj+aPp1aZmNDcGjMk/NICvmln58kPZXBOvmijU+Q3zmfkWheBD12xnzGb4+MP5Vai5THU6dCB3J4/8N1VQpvECnCTyFEkLCpTp+UhLTAMzD1gqsz324LtssvSoTm2OLcskf5QAPSIyOTwyp/jnUtHQ1Im8MqW65aLdHg4LAhDRFFV+Urxz4GREpPN8J5yWDGfXNK6yW0TSZIOfcspPJoHwMHZAnbdzMmnTfGLBuRw9YWW62LmjuMvyLyAROx7nCqBP0TAIGIwAL0REVJB1ir/uSNacJgGPRcDZIj7sEfiAgfz0cVUFEFNkTzaz048TisTeLGXB33715u5ut99mNIpsr7r3bfq5pFyH8Od/+fxq1Xz84qlDvVkul4vFxWq5qkNwVDmusjnCRpJYH0Iobg4gTJKdc4ReFJg9AYcakLlyfrHk9Uc3iChJU9tt77dvv3nz5tXrtt2861NK0vWJyFWhZmZm9nWwto0+VN5DqKr1sg+ekz1a0dd4pavlRuPt7et+d+9Aa+9Wi3pff4RAqRNfO+8rREQVzdLF1jmHhIzY5172ktGWVxdqGGMsYV85Z1NEZMmZmQidq91yuVwsVyVMTzRDhKwCAOTJzDgmAPCOu/3Wr0LRPXJMzRJKVhUgq2WTHEJo91tmn3NGxT63BHWlVtcLVX33+tXm7jaE8OLjT9ivE8jVIljuYm9du8upZwrgGNGcqgAi8FB3LibvK0NIUUrMdhv77Xaru30W48qVGvbv7++ur681ZQ7+j//Bn/y//9n/c1lXZtZ1va9gt7l3qxoRJaj3wMyggGhIqNAjOCJWzQANuSbn7iRFYk4uHBCqqvdUV+tQH3ar6lEaok7RocdtTdeYt0A4Cx890IIB8mH0VhaWZEc0tBx1PivIOZESgLFEwmj0xjF2F2a0dTgzJb0EEWAMBjfAmdcNEc1wyKccpN6JrgEzgydmS30mIrQh+toR8RRZZjZkZw1SxQATMb63dKsM30AHBR4mS7xBcSEU4jVIKbPBnszAg9e3sMZJOPjQDd9ynbDhiQifcBoogcRwmDcoii/i5Gg/6f/UwhmLObz32yWM4aciiEyW2DGAeerHsCLjs3SWpzvvT1mjIWoaSvjRwAjHDXbgeXBseB847gFU9cgy4cbS1KXrcBDXhv15aAEHBKZx+EcynJoxERLhVPnzbKVgtugGQuinISCOaFgzUJf5g/NgyfkN01jg2NSfc0nrYoM83sPMdL5TR0kBeNzVzLxr26jLXnNjR6VL4XxPnLU27+R0/S33+WH7gcw049FFYkojLThpj4gA/L7XX335creN0sNGRBu3XK/BOTVKSK/ubl++f/vl65exb30Iq+Xy0eXlo4uL69XyatU8uri6WK+uk0+5d1WPiC5wqIOZGHFOplkcoWP0oVJVQ4fsZcvkHJHVzfXiih9/Zt+LXTblN7eb3f7d+7vb+83t5v7+/W3sevSh1b5VyCklNXGOnVvUy4vVqrn6zHXsnLtePKuuPwOAlBKzd01FjGZmWZAVpJiRJQRf0jzNKMau6xERr66vc9Z2v0W0RVVny2rIjnEIWSRVyMzgqHh/SL2vGzYF0JLC4BoDVIcU1ldFaNAsKaUSp2ZmKSVVVctVVWGzIiJNamaXi+VV30JOkLPGNvb73ebu/TevtndvLjzUT793uWrU8O3tLYNdXl5uNj0xOQQBI0VDGvmKdt2+z4nQAWHXbtuuL6gpHGi/3V0t11/++ssnT581y/Wmzx44A/7hP/yTf/kv/j+LurlYrV+/fXN9eRF7R0Q5qVWFrUjJfSISkMBsWSPSRage9fIF0wP253I5BRDLBlSFi2ZxArl8qlRN9Gjc7gfyOuXalnzYYu4SGSnpMQku+A9z9+T84B6L3sMrqBTDKX7NWQTySbpIKcY3d6eZGRgNPPsYRUsRC7K/lvzXcrPIWJCJDK1kHjJzBcHMCGfVDAtowbGncyCwxzSuDGXGjeZERFXHlNlD+qybk/ip/ePVOfpzXmj9nNOcs/D5/My1ivK1zaCqCzE6iZGZPucH+egILDXv0smrT585696Dfx5eXf7FwyYtofhErkhUQ/7w4KMhQDl/9dHOEcVSq32GSo1DHo6YDS4DQjQYkjJg9GVMtUimB6eWD/uz2KURYNJlwYBoPB8Fl83YDeZiG8MJyzWolTpT9XAU7x6aPSIqifUj3HxZvhk+5X/IJnHCdKcLh1A4K9OvNkVGlxOUR2vWtFDlVIExMBgikHNt3+9j2kVeNgGAzFQkj6tDRKcp/vNXT52cfiOi89F8+zZTVYCMiIBKA/CoER2E+5OmBLo6NF+9uX11t829gVEGQHBETsRMUZB2fTbJMaX9bmNU+bv9V2/uGh8qx6tF/fjy8vLy8tlq1TTV1eX6ydOby6qSlEB133ce65yjYzKTRVOlvt3CzgxVY3AODRBhESrnyAFWiO998E8Wz168uDF5+/btb371+dtvXvWiKvVqsaxDwy6Epq5Xq3q5Ck0dX/4mbr647aIhVvWCXBADAAit99Xg9UgEOaacs/feUBGZvKvrhUfIlvs23b9761yQ2BNiQhJVM8wASI59kIKTls0QjIiJ0aEYELIYmZmhIBODKzMcRUBzidhB0y73Mcblctmnjtlvu975qu8jIaUY93fvTDTud/3mXvoONN3fvX/9+mUnieJu9dH7Tz96/vTFx+gYKPRR0AEKIiqYAqLZiP1sqWs3+651HBShbfuYknPOB+bgC+bX7Tb+o7/3AzNM+zZcLDfb3dNHT/74H/3jf/HP/1+pqRdNdfvmNT95wZ5izFVS4kIJMyECRtMlcBaJjleuedx1X02BR8dHzBDRIWJBfgpuvVofpNFSg6HseiIGGxjP8ZE4fB5cPjbA5CKiqooqOX7wqCMwGIxoEDgnK+fEd65tyIy2nxBTsoNFuogCR+S5VK4bNSHFQSwY+BCAgaiOBWiLom80RGOZlVT3pGIlEbmAGc1imIdpNTObQUyMszQnfMWvBgffZ7H4ERJPlHEaMsyIIH4A8/aB6T3WU7/9ziM+9FCGyfk3s7Ec9Xa6Z0qDmfdkfvO393mmFx5anqtociDwNo/nZuIxI2i4FebrcsxOdIZvWtYFoOTEzWn3zAaOp+Xqzqn8yczTkCU4SAMTe0Zyo6D2bQs0DZwH7HQ9pBicWcLnTx28vCCIPLiTLDtlG7X8aX4AAEeM8WmWypVFjQYWa0OarAGeVE9iACkCioHO+zNMuBqaJVUwQCMFbBPs+9TLIqtCQV4GOiA/F2ycMymBxqJMwyk6W9C/zTUN8GD1AkEcs7bObjZTAjSMaNVvvvr6bdullFkJmNCMBI1IIauICgRmySaZKDhTFzP3KabU62v14WVd1y6nm5ur6/XqJ7/zw+989OxiUT97+phNUzQOjfMMmkK1UEPNJiK97rMWMwbcpWSGw6btvLIBEzomcS8unz9dPK5D0xGEEBDRDB0HCg6cp+B19+TNy69399vcd/vNu9y2hGqSyC+qqvK+8lUI9UIBs2qoK1dSV5F9FZwLoV6YSt5zor7yrKo59s45JRSRwFwSlopQVnxSosrMkuIgC5aiscyApmpITiQRomNWJFUlteAININmJTMTVDTNopL61nKbY+ratt+3sW9zzhzqT7/3o4++++mScl48jfvNPsr102dvlmsldqZRk2jKKmYmqjHGlHLqo4igaco9oWuaqhR68qHuYlvXdZ/y5fXyy6++ef36dTQGpvVicbfZ3Dx++nt/5/d//de/iLG9XC27bl9hLSnHGEMIRUchIsCMyKSSwJyr2C4BlznvPhyENaquwa8vriqYwUbPT+P8RMGByhy+H8/G6ZkZdvjMX0UGgFAs8jqWjZva/BD3LfFBOsXqjtfEkLAkEpmBGgKU2k42JvgjDrE0pf6SjFSPiAyhOHnNTFVMUBEZEZiByDmMMZqMVFgUzYBpQsKiOYzwLLdnPhAcTfcnUzr9OZJLmb6fM5vpmzmnhGNar7NSif8tqNLJhM87cM6Jj/5kAj10poyIRj3NBgvCA0x33sVzKWEivnZALoOJVxnAPH9EwSbDhoigTawCbKjeY4zjSx/qydgHBBiwGMkXxXeMxB4INEs68o/CqG6eCCjTDao6hAhSQX4eJLYh0hCBeVKfEQ4AOADjVjoshxqoFc273K8z3+35NW2SUpQCJj17vgRn1ubxtA7XJELZjN+bGQyFJQwG8ywVJWNqc5R/BmHVMWcUFQVwqiYIt/vUqyvmxxJaQVQg5+VBqWI+sSf9efDOk+tkSzPTaOsZEINL+CfgYfg2GqLNzNe+28UvXr+767NkwywYHBHGmLz3qANegoDtt7u+7bmCuq4RSAGSohmJUGxzqHj37vbnn//2r3/71aP1eln7T5498849ub66uLhYLYJnXi6XpuqQqqq6cFeglA1KQnEGVI++ChSiqibNiIgeU1Mloohade1udxfVGIkAUkpKXK2XC/E1+tWjjxaLJsbY7ja73e7u7i7Ifc65azeSK82CTEqcTBQdEWWVdgOKsFpfIiLlKEoXFxcAkkSoWZDzgOSQsiQkUhVFIPalLCwzg/SjzGoIiioGgAZ9tzcz8h6QNabi0SAi7RKZakqLpun7vmJsu0iWVXPtia2qnCd/43zlQx2aen15Ie3797vI7HPqr5885VD1XWIUlZRil3IGgKTS932MEYxVlZmDD4SuFDBh5qxoAibarJaXN9d/+pd/8/v/6M2jJ8/393dXqyV5//rt29//wz9arpp/9f/9F0lrL1JoTs5KpIiFfBccMkAjRBRMgLXzN2m3/dC2dINnVNVhtVwFgLb8oFqiBMZQVTsQ/dmOP1VuTg4GMY2ZQzB65RBhQBUYjsR8u0+2rLNTN2rjp8L1UGRpVHFGh+54qdmIpVygKgAPGgniYMM0MyVzOOaJFrnADECQnXMu69A+I+mERn1GzYdwpNmZhxEqgQcno9LEts1UBEs4eCm6BwBgJTkB4Ij1fmj95nT/hDWeMOm/5YVHAta3kbmB187yZYdJsCGqrjxy4lx8sFeIOF+06b0wp/jHPxk6AJge00kPtgHLeyh8dL5hjtnkJAMBHJDaAEAkHU3FuNZz9/wxQecBfvYhpjXtFhtrLhVLj81U8HnhxZNVKLsWBlvrQXU7QeWcnsIh8Z2JyOZy7THQcSGL4zUHADk6knhm/MADIhvNcr2YiNQijlxr/ggRQh6io6OKAtxvul1nujzFnDl50fzPedg5IoIMnixEnFUS+eA1MdTS2IgSP1APEYECvTtKIfO3O65evXz99rbd9sYQAASQiUjEQKTv+6GqFTkAXK4vdn0nZpBScWo65zwRGjZ+udls1Nz7+77thBH++vOXiBCAmqZih8umXjWL4i+/uri8WmhAXgR/sVxcNcsAGIh9Fe5DzYg59jl2iKjE4DjUTbfrsAlhWYcQKCluN0my9e37d79AdgI+2uX66aML/3jTdquuD12/22z7bq8p5pRUBcBEJIuEuvLeO+eSiErc7/ddu2WqY7dlZkDs2zYsluR8irEOlZqqZEAk56hIXWDJTEVKXCoAFUcDAZooEZV6aDnnIgXlLJYSEBqSiOSYDIFAneMOF6GufbZsuliuqkWT1WJKb+/3QRKF9bphpO3t+7ckUgfXblWiaRpcZwTgiSGEulp2XQdAPtQCmPe9qiIhsKvrBg1CCAZ7Q8g5WhZJ/f3tXczpydOnX7/85ulHH//BH/3xv/3X/+oFeVs1AFBEB2ZGQDOQTIESGBK5ZHuDpq6em/vqQ3uy+BoZRE3Z+yPigmOU/4D3MaMs8z0Nc3JPaLOITSa2IVD5UHHBRr6Ex5rWnI0/cBpLrSE4oqfnB2yoLlBsHbOrHNgT+22hOhPdLG/XEWaoPMbIzAzOckpYbKpgRWyfqMbAiuiAwTFRtSkf6fDNaPYrKYDsStC1SbZivZluPhCaYxvvCTUcpmeMjsYxcH1ahfObz0nqya8f+un8hoEWjwvDgMRERPNKRAcOd0xn51zqQx2bM4z5ZkMeZLqT+5m5qJfTbBARE2pODw4km04IpjBjwKUO9EBVUc0GCzDhIRttmu1JyDifVQI0IoOSComjf1qBDtR/5FiDMj11bt6giIxbjuaeoLFuxqGpcZZKVo8frFImxSp09MbZJOOc6394/Q+ylJuilFXH9Hsz4xHV2kZkGxtGXGyn7FxIKQLydie7fY+PKxhS9svNw5LpQ/nl82kvvZk22JDL9x9yuExjLyovgZsfWFWlmQZ82LQAWe31q9u2k7aVFVUGSRSdsaEpqDFQYALqU9q2+yY0gjaQPhEQ9eQqQ1PrN/v7N+99VRmpDy7UzZt3b733Sx82m25zf7tYLOrgNEu37y8uLsLCS44oeVWH9cJ7ssrxerXA3f7Jo0c3q1Xt2Hvvl83i+tqHZt186i6XPcNmd59zS65xFVMgWf3g0aPrrus2uw3uqa7Mq7u4XKebddW3zgRTu71717V3aGom99u9mElKAoKI5JyvXNPUkCh1LXhP3nX7rABhuUx91+623nsiCnUVmFS1jb2KFOgiRSBDM8lZQXTkx5BzHmpUOG9mXdd5RMlWLZq27cGw67pVE9iwubwBAEm5AmDmbdtFyVVdAwFztV6sLd5frJf77aau3Js3b1EZFYm8AwYyosoqM7M+aV0vsliMUQCdc1m17+NivRSxi4vLL7/5+q5t6wX0ff+b3/yq8f7du3fovZp576vK/+CHP3z37s27L79qVksfajJ1LnhPiMjMbcpNZQCMQAIt2mJVX+e6AniA/gCAM/BR7n3Id6vqxtYAu2GnEo50DMCKM5VUDfiIIBaL1ljTdKAXE8x/VsGD0jM9yAg84JLhAZqr2EzyaIIbGcng0JJS0mmMNUWDUnm+IFZowYguXLCki4y4wUaIBDrRMlFAwAF6nkyEAMlQFJAYiYdaoFISqxExZ1UDM88AAGpg4NmpJxgAlYEAEdkMVAHQqRYcVylaDRCis5KNiIigptkMFZFCqNHUsokqwhAvqygExj5Mud4wY8kT8Z3I0JBqYqUOK6hpAQg7wYSarolVqKqNQBBIlFXNLOADGt7UztQZHJPc0cAdXqRGJiBZMsAYFAZQUFRKazyIQDpW+SDVgsTpRl3KSk5wub+qqnJEaUyoH34SNQQba1ITjAWnY0YsZT1BVQsQIBERFZQ3hZmJApjCUOjZiAgdFvFfRIKrijcYAVQGdu7YpTyWsJ6Ue0R2TlRhyhHAAeCFmA9hVFGJiBGNCgb1GIEoA6dREENTQaNiGUIzQzM0QEXwPNS9KTk9YgBgBBNLGjaJaAEBFqASOFYKdBmAmYJORbMGJjRoe4DEJa4KbNRLQBQN1B3xwoMMVDigHvYGD2GMXLwAODhWDAgBSRBAjZn2sXWe2KDr4cveftinp6FCk56JmV0URI4kqJPkenCKOcKsR9ggSFjMa0nlIBxMvQVAdIOMgkol/aKYzTFMsj7iaPoCQMhgbOYIudhOVbWqKor7X9y/fxPzuqHY3TkMFbnEncsVEZvE1CdG1/exqhddjKGpNRsCpJRcXfUV8SKQWbfbU/BZpambLPDu3Z1mEM1bdGTswzL2ys75RbNaLER03ytitdvm9/e9Uc4iHNhsW0f27qu68RersFxUtcOr9eLxzfWzR4+vry8vL9er2kfdZ4mL4EGgavyS0vXjy/56fbe5f3v7Hh13GrHaM5GhY1ctm0/W9pkkSSmt46s+p+12y4Ap9qRYKcMutewuLq+7bm9Z6josF67v7j2B14Coy9XFrm9ToAyYIDsHPgMzg4HkZJodIgcmhu0mp5QCsiOWnGLMzjmHpKCAliVdrC6S5B1Yj+y8o35bYLBVtY9CpA0jaGvIEFbWbds2AaTnTx+9W6xber3WWzX21IBfA7JYl9Jdytu2rmObG7f0bgV9DHW9beXxo8/2m8/f3r7dtN3F9XXc3F9dLP7yz//VJ5982nz8Qw94dXX59qsvnz5/tt0YEF999OlXv/yb3eZ2uaoRQtd1la8RJOWucpREkTVnc7mqQx8lRv99gJ8NhBRILRKaQzIBN/JFcuzregZFCaiTTjoXCY9L/04Cqc0vPDoGJ9R/MnvB8VXyfIrwO5H40paO1WB0sogagAEBppwKJ54aKdakKfiruLSmzqgojIVfCqmd3ImH7s8NsIgFg2JUC4Yat6WS/DSsiTCx94AHflmYCpJlscl1OaVUqQjT0TQCAM6AFaeJmqZrSqeZvvzbhGXNV2HOtucoGZMOPb1rvqTTNyeq3pTihjiQwrERmIaAs8uGPFdFGBwQiMQGpcD89K7zGZi+KezUlCa+Pt9LitMEFu1MBSxL5tGPMb/ZRkCJSYstFzMjDXHU08zMn53GddgnZ/M88PWZ0jmdlKmFo0eMAIrQNlM0h/M24JmMi2FmphPLOLYlzPbeA5psEWUmgYbGQDmRVFKFdbS+4izj/KSrOGrJeOYjmGZ+/JMmbOeTyQGAPktMpGLEBwoyD0N5qPNHYuUhBATn+/BwnSw3wGDdMkMc0iOKyjtYnlV1jNOUCQ0GEd/ftXe3+902gjKhz4KQgOpARKNgRNMsEVFd16gGomaWcy5Vb7NIQZzAsYzgaFxEESkZGVhw3c1KRTbnXEpiZuQ8zNp/xXsDgxa4B3qjknNAbBb1Cn3dhOA4OAKURV09e/Koqqq63zy+efTi2bOLxYpUXLfDGMV0ffk7yAwhaOBcV1AFaVxu/Dr+rsuxuRIiYAddv223m3a/rbvsMFysl76qXKj6lNCvV5cXr/r7VbPYO5f3HKNrqvoiuO12q5UzQQBCYwCvJqlPOWeANqdOTECtlIHy3pkZK5tZ3APGyMzOzBGm/Y4XlzaUIlZiX7acql7WtNvco4Enylm7fcuAFZBffCr9PjgCsn23EdHQXHm9XsXom5Citn2b232fu7u7+69++zfv9vGrb7a/+5PP/ov/8X/5v/6v/quvvvrm82/efPqD37u5udne3Xf7tq7r29vbJi8fPX324sWLnzFvNpvLm2sDZpIY41hNHrMKD+CSBABG7KsDwhUzo3k0RUAxdeXkI7L3eLFczffuSFIfsOqM2/qD5sQTxnxOCSayemjQzMzYDYg8gw8faApXAYAJ+RkGq5cNkS2lken40eCjUoQpPGfAFcoDrKaU8BpRKGRohqqDk34AgEZANkbQgAKgKgxoPFAi2BSBbIBxGFx8B1JYcEiKZmpkMCVilgSoESFh/BJPZ/KEgpwTsvkNcM4D9JRFTex2EIYm7bbQXH1gueEDpmz4ABRloSnT604AHW2kdzDeVMY047U8YZWcz8OBExtMoewAgxB2xCSOeKeYnVLn+QSeTOP0TeHIiKWFB4Lj4MyoizN5FI5t7w+x6lnU2xA6cypSTXwRAAyh0Oapv0ddGipqDALr+eWcm3oIJQqy1HUfeRuoQkm+IoMscDzMw1hGofVkdwEUSeKkRNLsREChupAF2n3cJewFFohGapoVlAZTUmGoRzOhYufb8JiQnP96YOdjvbTZg8XMoGJICG4AZoWBuhCBamb2APDV67u7Tcw9GBAAO/ZAAcEIoI+xeOgLjJpjB4Sb/S4QB2Rm9lWFwSFiTKm4Ek7NOeXZLCBSJNqi5QdCAOr7vZg6RJlwCQkbRiA/7LBSuV0g9u5X+/vKByJyBJISmNS/eisi2Pd15daL5qIJl1W4bKqLxi+CF//TEMKiqtf16nKxul5frJuF975/9kxVXVUbYLVcU7VeXl7lpOsFJckxq4Hjuo77FpBgffnRXU3e7ff7pr7IWTtgv1yR8yL3agqqQEUVRkmaclxE0sygxGgBGAFJSDVHzmaQYkqp997XywU7zpKs3QtABrHR2ac6qE+Oedfue9Gnz56bpG7TXlSLSCFpCyqV4yq4hgNwte+ySvt+d/fy7W1YLLQOt/3+F29f//I3uSJQhd+83v/v/q///N/99ZciIhF74JTE11Xuuqap9vt9znm73a4uLx4/fvrVy68kq7C5is0MkUMgIMw5q6FzDkFFhYDIzyAmQdEAsZgC1Q1xSAJMbrVezHbnqDgaARahTM2QRuwLxKNzNbSOo2A8bvEHKdSDR+jkGvn38OcYJjfAn5qpDRqMwwKZqQPbRiYi6nOCGW2alHKcarxP9u0T3xuA4mB6UlWzjIroePR/KxEojFHQOHAao0ECH4c8eekmhR/5OIIbEYEHhodjCOV5zPCDHO4wrpmOcs5ITpjfdBuOWCKIiAY6JVsTPeAA+1bX2nEEzcR3DGeSxAQwMhBuxGI7HAn5oPfPpZ+SvwMApghGYKZSXlf6BsOvUFK1Z7PKpKpqOkCY0UCdisXiZBPimHgNx6Z+HYGspxlQ1TF555SD6iHzbZzzuUY+88RPAywbCY9DouaixvQ8jjFuqmow4KwOGxkBoKhYB7Fspno+LKXNubWNFpRBWJlS4QfTLig9fGin5uavK7cOSuZoVBr+P0bLmSkoiYkBKMJ21296nzIUnJwhOnKwsSk8JDCN0ALjeBHgbIfPRzcbOB99sHGrF7kYBUBGg0WZ2MTG5VCIyOev3nXZCjuEnJuwIM9R+oCuKHAAkFUm612ZkYFgMYNBSmm/3zvmwYQzWxSRIZwMBJiL+ksICui6ruu6zgwySZSMhGaYUwpbIY+GKCrAzhRBFSXfrJ4wkWYxEzQWEY1eMpK72eZ8d5flXWewA8hMRkSXITlHlfPeudqHZdXUdR2c+2zd1fXi+urRcnm5Xl0xVavFhff+9fV1CMGHpYpVvIC6MgNtJa2D914oex8oZ0TsrA+r4N6H0bzEHgnRewNHxk12LAUwRE1EkmVV1YxUVRXXARFzlu12u9/vd7vdo6oy0ZSSSIIpGkmto5BU6tXShXrb7RbeX15evr57nUK3XPjGrdCILfXatfH9Pu6XzMuL6ql/tu/1t2/evrprt7f1utFqdeH//+39S69tS5YmCH3fMJtr7b3POfdef4S7R0ZEZmREJiQJVSkhVKJoQgcadPMXwH+gfkRJNGjQANGnRUmIDi2EhIoSqqxSoQIlFRGZEekR7h5+X+fsx1pzmo1BY9hjzLnW8cxKEVIq8Sn3c9dea06bZsOGjffjlH/x7bd/+n/8P3/48KRassg337/+yT/7sz/+w797fnj0OLtTyr/6xS8r7Gc/+1v/4q/+cl2LcFsW1WpYXJPLkiiS3SkJWjGzUF2qS12JpElqGrBWgnx6ekBIgjATzLjB+zwyjju+OcjLh/s72ilGYzfnjtIqW7FfA0VFRG7a0filqp0BK4BqmoweBD9fGgTfJnuqQk0gTK3b2qCGSklzzdMqqzBYZTcBpfY6t5glOLVqtMHl0mGlJEY3iG6kVQ/Tl9aNHECNXGp/RS4buYgF/eMAnHGPB6eM+yOVH0NJ58HqBUnu7Vew9d2fnrlee0+citRQGt0U4fB0AupBzfvuv0086gHprqY7OffkIuJgWrlTh+mgtzWZqd+fcGwPtp9wS41wUcxbxHMHwPnIjTbsztdtu+acW/Jbrc7aU0o7IAVjgFU150X+iBc3J1yeGCG6vpjaAT5eOsUCCEEXhHz4Nj2dLQ47ugYd3b05ZiZmhKJlCR7YOTo5GPJigEaEZ8BnbzVGeoF4GBV4eSsfr+u1Gi0JTKlKFQ/ZuKfAk82+FMWIu5j/eZFxhiZ4efvxjZhSjE4rqWY0VEBSSi8vL7/87vu3rZiZ1tW0GIsxGYq3DG+Glm5tEpF0OrGqN4RnKZITgJySai8j1LK5fFOUOds4oa15tADy+vp6WbdlOa+1lGrnh6ywdS0p53w6KWpRU1Yv00DyoWarsFJpsFoS+XBa6pL09aPkJA8J+VFhWylrLbXW1+d3IvIdbau14KppNX6E8MsMkW8Ff/54EmH54sPTlx8ev/ji/Y+36w++/PKHP/yhQL/48O7p/PDh3ZOICH/0g5/99CnZ2/On8+P59P7pu9ePeXm6fvmBSH4WqgigKFXK9WQipWzrWmsFzGqL4Ln+xZ/nmqlMWVRLrZuALKdP5cXMqm66tYgQTyzMD+m6XZ/yF8u7p03tqmU5n5CXx7zmJNfXl23Vh6d3p+XhtVwp8s8v9uu//tUvfvndL/76e8ryk9//w4evnniFSmFeiurp/LAVXa8rgH/yn/9nf/wHv//4+Ph3fvd3ry8voNatPL9dHp4el/N5XddPnz7VYiInYTKUUvH07kNjrmZWlQIylVAXueU3i5E0am5FEJUwPj4+YiYsiUeFWqtZAQCtPIqI9aL5t8I1PTUhfB8PsNnsUX97bEjqPqlUtfGJJS/Ot5oEYSC8v2NrFe6BV3CqZCqDHsnkf4Bn8PbCxa1mIrlT631CCSSpIs203xiMwYgkYG0JnRVmVpqfGDC7X4PaU2M5IEOYeHOFBuFhQR1VEm6Z7q3CNOA8bK3Yk8vby2/LlMlMPFi3GS9uSO3NFh+2LHwfCXEzMLgEsnvOQEJpyV+h7v5vBZvIjMBUDuLFYBylFI8vatMenEmrYHAzRa/NktLiDoQ9h5g9A8YaZZ/Ua0pTagVaYtWEM3pmXeuydA/h434duMLum1YSfP6gOoVIM3NXLeBhioZe3TUOJd4FZDwSTCP7Oc97xr8xiBJopdptRk4GlGvGW2Cw4ca8fadScOImP1skDeapNUloSrcwXFf9/u1t3SoekqBFtLWEh55ktUe5xLDkHbR7XdujphCO0n5fPJ3QW8x4AQ7xCgDWElf97SaCb7/99rvr5W3bqJYT1bDZmsHTKetmTMIk1cNRKV7dupqiVgMhklJyfs7AdOO6JKXa7FXwlXsP203rtm1mBqEaJUtOp6qbqlZItUqyEl6SW8SS8IptkZQyE0U3VdULr9e6nZdaSaliHuBofDShLev7FZQFOFdLRgGTAbDv6pOo2baKLbq+XV+uf/7PvgFwOT8k/tWSUhI8ndLj+fTFh3fn81nWTz/+0Y++fHr/yPx7v/Pjn3z1Q671pz/5yfNST6fT6fSQJUEEVGiVWvHFT84pnZaznJkptZS6lZRS/Uf/nW3btu2aROq2btfXWur69rbYV95vpmqx4tYwU9VF6unpsaqe1LKky8vLp+++S+dU1zOZtlQvi77Wy9dfP//5X/7q0/PbP/nm+fXlmuSstpySLPXy7fqJXJ40g+l0WopprRsoT4/nb79//jP8i1rr0/nhy4fz68vLs31Eyi/ff3o0rbU+Pz8L87JclmWhyLVsy+mJ1CWJs07nnBbESXpwYpNsNaNV7xMAjw/nwYCJ5K4Q6zme1ru7Rzq4O/wDxfdIf5/uWBD7u8ajZmQaxBeBvh+OlXUj19CM/f86IpzVOvdtk1H2B8lMUSqa8jdB45c3GVaKNVIAo9HgqTXS+rvDDFqZ3BMJ9aDTW+Z3qz2MS2HoiYeAW8fR3KPUIwSCwTCaNA/vimDXnsz92VlVrb1QCRtJPaoOcTvifHBzHSYz7j/2FYBRFVRvSd8MgaEXpFngu51s3S42NlFGU5SbzzsIcL0bq9VbLniLmYc/VXVUurBWmNRu8fMOYPe2UNvTXOewY5n+FfZcsx1gtprF/g16hI7RJT/InqHeyk/Y40nqHVd8deNuyclh5Z51Z7ERbyK3jgLK/HL+SVj03Uo72QCaxkkPVN/W8v1F37ZVNXfoJVqC0ezqFpDDjjBUE4sAv8di24qBbgenBSsLO5DFbd5j2KqaefKCpI5L33zzzfevqweYp5KMm4gIc0qyXTcIISxbMUOmlFIkM59OalsCU2JK6Xp5q1tZr+uyJLiQJ+JBoCKScmPAg4qKSFEt62YU8ah4kZwzk5S1iMiSslAUlrmIWa3UUgSsT6lWW7dCNdMCIU+ZIq81k5YkiatRaqakcq1Xku6IA5HZ+sw/nEspWlgvW05pqXLC04OZfcll3a66KZf0ctVP319+/vNPCpUvWP78FwJkysPpDNOc84endz/O2+P5fFoePLBRQEAN+nCSp6enx8fz4/t3X77/kCUlkafz+Zx/ejqd3j09fPmDrx7O7yW/o9j6cHlurTya9gUAtdRaF6nXtwuB9++/+vbjx3PK9enp0+W705c/+PV33/3y++3n33z7J3/xV3/5y2/U+PDw+Ih3tqVSVMC358tffPPnFfji8eH5dNLnj6/XS6n1Bz/4wV+/fKPc0nL+9vm5/MU//9GHD//df/gPBby+rQ+P6eX7jzjnnPO6Xsp6eXt7eXw8Lw8n1bptV6jhdHo4na3l8cxIVexkRDWxbFYzF5FEcFmWeF/HSF+vMtTIjUfiwIBt8MZ4NsKZGQwYgbVY5/V5yWPMeLRKKc5QO3ltEYbDm9JqEyZhC6Wug4ig0y+SqlXSrIg7CgPJyOt1MqdqTeDy/oFC6RksPQ6cXUzGkMoJuSEEg9VBW/VKkhR6ri70GA3b4JnmLkSa4if2QHfGZk0ZYpZwOvKJ8Yj2MIa59ttaB/2KJujb0Wy/v/G2ttmdB4jLNKqgNsnQQ1FtQnWgmEc/dahot45g2jb7fo1XZLRekI2j90DfemN08c9eQv0AfHTN2MxCayAO1D5sGcle/5KHoQZU2aL6zXoa8a7I5dC/SXUxF/PyOR0Yz2E3b1d3++fYxzEUZ89UMzOPbHCXhLoT/ea9Y1sDKcFg8W0bKloSV9sjNdeoVa0ljgvBUnBd4Wlm9CUyERTl3UhoM4OlgU2+Kc65DrnLAUVjKewBDe3mrASzZuAymgI07yszxjGzT58+ffvxovZeuGxbKRXLQ0ppKWXbtLqYXmulh8tUT3R1bx8ATb1fb05yvV5H2XZV3bYtpeQKU4PVkIfNSikepe8zkSX7i1JKm621wswWLjk/mKoWMWPeAAU3JE+jgohK2cq5CMUIMJlnqFWrCn3C2XW02lQYVgW1Lm+ZZX1YHmqtKS+XepElK6xur1lEEyTL62XNp0UeTkKeN9ZavZj2uqpZPX/x4S/++df/LKWU1iQXx/smA1FZS1oWN2eeTqdEnFN+//RukU8PDw9P59OH90+P59MPvvzwox/9MKf0g3xyKi8ipyWdTiePRuL5/JMf/vjrv/7rX/3lr2VZzMrP//xPrDz//NN/9Z//v/7i6+eMdz/97vX9a2Je6mt94ctfn86P1ez8cNLKlJJWvmwo66fz+bycTuV6/fj8fDqdq1nd9OFBDPInf/anf/t3f/Y7X37lFMBK3VJNidu2XS4XM67vn87ays6WbUuCdD5VULcC2XUwUlVxq4VQyAw+FLw8kHZKV/uDietSqhajCVMii7GWqoplWVqjAquoBdrqGKx1beEGgM7oPlpVM0tgTsnMSq1IsizL9bVQKZ0qtViVLKpAys4QWoFlAGRWeqQV4IVFtbEEcWUflFZVkwjJxd7K1yOcvfp4XqpZqdUskcaUVIstWjdd8gJATCGipqKac9q2SlB6ihTJ1NIYCoAKeNF8MkmWnJKWI+lwTpDdCN0ZRkULyQ7VOybzE5EKbaYq75ADgJScWef4s8iRWQqEeLCQlBL0Dr32CRgFiQluDpyMZxC7A82NVxALWuHlSNPReGd7SloJFDMzvW4558TFUF0+KqK11mwpSADSSw1XZFFVqCLBG9pRm5tNCRDFM32XbNlQqw5hSMiu7ahqHgw18KRkqSZL7pjfJ1hrdWtqC25IKYlgGKpHiNasfkWLwB/7WDw7GR4F39VHYbYEODNSmOfu0owV1bm8GAgvziXInsnuOm5KyVOcrR0GAw0UaeqvNMmw85tdvlltSGVZBPDXb4Jkmo1uCIN4W2dVLQWShyQxNsjMWvi+tI6EBhQY1FJaRM1YPbEbXgS/KiBqQk8KXgCAVc+y/Orb7evfW36yvv306Vy3WiWv0JPUql7Di1GEUAK2koktI8Vl6KJVU1oilg55RWtvAwVMB7CJtv5ZTExGg1Wzraoh53cP6fryvLz7gZi9y9u3by//9LutbO9Tkq1+nwE1LDlRCiGnlNVYa82y1FqvWtL5wXIqb1cASJLzqVT17PgEUhZJuYjQVMjzcqqmr9f1wxfvymV93S6n8xnCa9lMlQYrltJSVfOClLhdrlDLwvUKL3xRVct6FZH8mMwMOel1U8JozDCorHoy1lMFhxUPZoAkUjTnVnLVNjPzSJa0pFfbkAlUE0O9ANBtI3lFdl9+reW0JMJYr6p6deOL+68Jkt+/fcpPp6V1at8kjXIrKeez1zJKKalVq6WAZbPn128kLWZvtX40s5TSckre96y5imDn8+nh8WRV63al4R3th1999fzx0+P54R/+g3/wH/8n/8k//sf/+Be/+uU/f+PPX3/5Bjxx3epzsvKYzpc1L1+8W9cVCzbX+JxcJ8uS1RG+qBX13oi1om6PL/X1fLb/5//nv/gf/fv/Q1uxbvqmRfRkxpMxmV6v16L2+lJOOW3pjaRZ3rSWUqrpeTm7lN+IoVZbKPn99fX6eGYeFAqWz+dzpLBNVEczjDiZ1tmSUxmI+5IyAGe3GJoHxdJMcRvvaupsfxHCpZxnLqgH1gJBrUno46kYtNXyroLmEZeDzh4OOlCDS6ipK2l60Xu6ZCtnOh4R8aANVborV2iotQ4NadAsJ8SREZp04eIztlzA42e6aX0/3TFs7vT0VtHZDXXvFXMT2wcORevw1Fjv4UWdnezeMsj0dDIckkRzUgKmLUErScbU+DrXn4zwc0vziPGxrWZG8xKhcxz2l0YIxHD3dV2RXAhsDbDQd01D7vgBDsNaPhYIQKZtZgelQ6lzdH3N4tW81ElEbF9LdYhB91L5xsjo7LUZBxgU6AMA+59zR3z51XQUmWbP3I2h4DdL2OFVa6SQXEQIgmAHUUrZhQbS/Jw6wmnFdV2LpmozLP834/NhXSTtM4+Y2aQJE1y0Ge4Ns0oMAzh1YLuy6GbL8vzp9fVtVVXxtPJhqQZUNYkYp3FomAQjPsRLwBY9U6uWKoYlZyRZ1xXByFRr2a5XXQt7d5uxF9aV4I54M/+YU+acl+stTPkWRHfPVyQC8dfxdvOUvlhU3IyUw1AMYhBCssA4Ox313fgBV6pSbotCt9J5tSyRTFo1vVzeXl4yoaiaRD4t/Kuf/yVUrX77X/7lXy7L8r/7j/4PHz58eP7mu28/flJmRSLphgT3v4zDPs5yrbXVK276Dkb0gwHGdF23l9fLp0+fPjx++PbTt5qw0repmlmp5fn5GQA0u8FMVf2NtVZxW98ArxtJ1SsRWbbuVjHVx8d3t+AGqyqGBB0JQTyWE7jdKkQDai+gsS9uPLi4ho6E/tPoVuQwGgWtepSNYz8Gwg1/c6QOdsNo45d9nB0RlE6FkUR2wS/kPVNbNB2TbHpGVewJVphVU2IdMMOTHhNed1QCgI1SFYGHdR6DG3Z49zjdmsQD5ZpjdYDotO7egC6+a3weSSzxp+NMAhXyAinuGpGeXd26Ak1hIgQQhbXEaWjPJDZnvegKIneQ7Bxlmn8PS1NrJVYaIbPDO3dGBVVNaWf/H1usWnjPNz+YWvur/cNRe1macUdJ5pyh224LTAzVzGwfFtwP407bbt90EaQDbby4bYU1e7Z1zVAjbNn0zho3NP66O0SdqJLMFJLFN2c8a8Soyw/XvyYJVq1bxeulXCuLGSX3MO9df+Xb7bj98nZzfQID/6uZhI1rwJ/3tm4vzlxEllqrVjUuv/76199/WuHZrMFB42OVbaullKKtooCIiFvldtKhX2qmsGRtU3UrfgpyTtUsp5RTWpbldDpZoW4lLaxrtT7tWDRXRue04G/q9agF7hNsGU2GzyT39+kdubYFHhxh3lbdJewJuy5/mlkMDPTzFRmE43kpBeKN4Jq6RnhvEdt0G1spJCC0ClWj5bwQVutWSiXMo3+++Xh5eDi9e3qfROq6vdXyza++Ln/19ROQJVHSdi2nhzNaIiu9NPchN0RVmTgMSIA32mSFLqSk8/Pryy/1mz/95//sH/7xf4Owd4+P1+s153z1YGTD6+vr+XzOwnVjllRESynWnQg72EoSaq1bIiosD/jWog+nWQkrEhdD9Vq4TsricAOhXamNB6CZ5pqRbFKEhMmCBqx3exyZhMErzWbZLWNcw1cX7bciUq3Mol1dKADg5ySi2niXiCAdy3EAaVAoeARB19XaUy1rQNEaorS2OX0hjUSlNn9VjhJdaqG5UwxqhZk7hcYkdx/UWjq3g6ifFQsK2Vxdh+qBr8QCBeOKFe3jaJGaHB7pCs/YtZH0ouPBOIdWwj+RHnrdNy8KLkDAgdsJ7KfQ/WlGQ8Iu4OuzAOzXsiyb7vKDJ61U3P0e0J7k3ZiRv6iGoozhZlByA4g0IgPAegcUtNycubpbFtIgvN8OdaMyrNgAWD87x2SwuQWYlp55wK0Fis896nP33NSZXjigShJTnzGqkT2us0sPrW4JQKauTujEOhpMzawWvF631U4FTCZuw/i8tt+BHG0q+59uN33c6RW974yozsYqkWgGNSZTLTAh8l9/8+nj82qVKlAPHkwiKUEERrVqRg9nYwBrNJO0NDYzM4x9bBpYrVbq5gI8WWtd13Vd1+u2btuWIdL7u7gu6BqLOxgaxYsuPPGici2L6m5E3m4TI64ynpEjAx5Q9VhmuBMtZKx46PrO9uJDyQzUaKKnh2Fac8OTkijwFIWsA1zjpUQS2lY0ZwqhrbeSKszUfvD4flmW14+vqvr09PT2/PazH//k+fm5XK6n8ztj0m7Yq6aC7DqriLg0M6ickgkwgkm8izgSCPt0ef5CHlPKYP76m++++8l35/NyfXurZjnn11pJpiTbtpVSNmFacloyk9QyIlqsBr8heCJX0+qNxrvtBbM6XYedDkXEkRQ29cLx37GvGqwiIaJ1dE2Zm80dqb0RrpOYqgeitLkZhlWq/xv434Fhj6FCDsMN79kpjv5nhSHJKExYa6VaEtmaFA8nu2yUUP01bYSio4LVsBTFwTmyuQBa9QzEyW1uuCPd02xdCR6AAma7eJtmiVEDJMJzENLb8e9ekdeOmeMejYt/xvXeY/NHjbO68UNE3LSiBiCBtd8p0ooY+yWS4uDWGbBJ24nGxZvltTHgfnT3JAad7YXpeepOxK7DSuPq2Muz3IVepFPjQVOD0Ct2kVTnwWoUMW1HjK0Tba06Tdyfg3+EBrv0ZfEaObr39qtv2UQSVbWqaEWVZ9NMhBN0y9UiBR9SCElT3Vk8+jt3Al9rh0YR2Wp9uZbNpKp4uh/MLIVCX/vLmhx8/7qFv9fcngcNTXeTlvBcxRxnJgKoFbGkqjmfitrX3z+/bKSMNlbOZpu4kXNu8Kpt1zxW8JYIBOC3K/VWlGqWREbA//V6vW6rlmLGhGStes2sA2/DMhcW61etLfsY1gdUBSyqLxFXh2F4UHsnceO4xbcMtPA/q3dK7hrJzTb51XL/+mjNxiQyg8ta3hnRAxwIDW1Lmvji0Rg6Som5bm9l3S5Xku8eHtXsy4d3z99/BJCXx7VoSkxLVq2AppSMWJZlcDrrdlbAC/q0AEhnwE4cPjw+pZS3tXx8vfz8l7/46v3Tv/vv/Lff3t6KqTdAq7UyJVW9Xq9aNkhalnOt9bJel5SdoazrOiEjJ2AVUzFWIk+a6OEeRwhOhw1o5CRqfasGQngH3tbkBz0IyEMKRwqQNVutiWQztrCp4H9tuNuF5oG+Bzwel8JAMPnp9dKuKLWm3ATDSFvNLPU1kgQ6TncFwu2QtSp7gGp4Kbs6R0DQ+jmxeqkTNZDOwjHomh91EREppczKPuLyViejvvB+Nbo2mVknecL4iFkraTDoYARL4IVTuTls7m0Ht1gDcn/nkeSN18UbPrdH8RK1dvChtVaopZRyzmVbMdn5FONuSYBjYEMQbWU6zKwKUg9Eup2G252iiAlvHpx3fZrHWtzCh25CxuDf+4Ejdt3+iU70zQzCIcpFQDUEEHMTZ0qg3DFPBG63sxUhnI6GcjLv7AQzTmgsaCeGpmbSrG5TGGg2vHHxJLLrOdLLwAFDg9JBogeL8Efb5Dnh7NHpz5f1rdZrrUvKVNpui37TdVc0ub3MvG1yP2IAzISeNQiz6sfIDhdqzvLp5eX7j5821QdJCi/cAQ971opq1UppupTXvvWUCUnCXQN2dpM1UitCqV6FnrRWZI8wLMuynM8USSktklitXIsSiyxOQ8yMLUdj17h9QGMoP17tQOlZAAd/GcK/Y0+BQDcOVOWw9YOFe8o0m8LWaXj3GAKtS+gAfCAUg86IGtWqmhoUVlpkbtfg/dnTaRGBFZNm6AKEIsKEUkol1sVUNT/l7VLO53N5Kdu2QU6L5F5iMJnVnLMz/qj+OlSorTg40MIyTLldX8tyEkhaHpjy98+ftlqeX97OT+ecs4vL+ZSyYNs2q+RlPZ2uJHPO6dE7IiuC2ZWymDoTEqNkxwZnvpE8BSnpvixMCoclbb9h8dCyGezC9lc1VQuBHuONIqLD/4fpYYqoLCIxCGuPTHMOu6N0o5z5zQcqPZac6WU2AvXfK5cDKc06H26w2hlPLMRhucQcinJp539DY3AhtFlr/M7D2slmfJwbcXNg4hkbjx9IVb/BRlkJM0MPfb195HAOxxZjHwQX2c/niGPSVvzKe0j50g9hTQj1lXz81Adjf8aDfIe9y7OZjU0h7pHJLdric1O6s03hmyi9DW5k+8qgE8FuYNW2nVJh3NeH4FC+XVazMu7vKBtrQXkU6C0CA4DHr8OCM94gvSIHeUTyMckRbeTEYliUB2aOyUREGn/6h9H9uvUgF2EzLmJA02+uvQ1TiJJz5JXLtbxt27plZhB05Yf39suJI3D8dfCPwwmNUI1lw+fGmSuKBijUkIbtQQGThG+//+7jy7N68r/ViUhNqZZ1LVZV2/AGqkgaBBCB0PtLhc0Ga2Zq6rHu8JzArfqWu6l5yYvW4tTOny2lQNXzKUZ7Skf1YX1sfahScn3Ey255962JM7vYOrM9cXPaSN4hd6oqYi3BoR2HdmSqztpH7IYo65QfgSwEsEAkt/uUFebNjrp8J/3Q5WVJRVczekFaA2oLGjzVS6FI0WrYcs5vb9fzcr5etkTJp5QyDVUStBnVOPjOAa+8lsk4ywZ44ddTJihV8fK2nlG/O8l3H58f379X3VxzMLOcc0rZVc1a69tlJfTxsXULhpadzSxlq0wNyXNuW9h78szbuus4GsQiVRqkZlDJQaTGqjwqWFWdrfaenag3PfXms7aT7NptamypSRSRhEAaBhVTHUSH7B7+vfEHGPrkjjaRtFCyoxXCdVdEymGnpoI4YCoJLbGYaiZrKS4ZxSg7V78AmPbcqkZK7vC2cQ3IxC9bFEa3Y5m6FG+OCrh3jW29Zckuzqo2cj+2MoZc+iMjOXLsgn9Y1zVyr9tDe5wMGuMkhYlqtdaKesgyby8VkaJVpGdw7VbUklbZm0KamQIpTNumta9t6M4Z4yHNe7WAQYg8mIIRsDQu029Id/pPN4gIWqc/p2qEGZQ8NV9az9lrVfi1HIDWUf2+QCYUVY2sJZDR43zChpr22rEpiYC1bKHtdz/FJlWPsR3+1AgT9dPuSluilLLuXupv1FYPK0nUpB32+bqV61rWWhzsRtUbPrrfguM3Y2tu799tU6Q54yl0EWavqLnI9Onl49vlYnza/dQasIvLOmYQ5t5cpUvAnTb6mTLfIzMIU0qWRUlT1eoZQ/b4+LDZlV6OcbtWU+RFVZdlsVoAlFK2bUsgc5KUSmkMGB39HH9GxotzQfOSavd6jMbjfItXjLXPgtRVq5KbMHeSOyX4cfoQOQWPZIc9tpkUNctsRpTkcVBdItfSzWPMIlLXKiKpt+iu2waAYmdNiemcFlC2y/bV+w/r2yUhbywP5wdVLWXNOXsX7ZRSrS1Yclw+H1cnMTUu8QSG9e1yfpKzPG6XWrS+vL398pe//MO/88fDl2ytk2kesV2lFNPy8PBgZnXbSll3mMlkZsKsqpqRtV4ely+u5SVhec4/GLep6rpuqppzRiI3mhoo0mUQr2HhuZhIwqLNJemsd7iB/WT6mL39VhWkJWWv/KSN3pnZuq4ppYrWqtZFEfeZjT5CDH44kqMwBQBQR2VBBEo69j6lpNdrT4BRkWSbqRIbROopi+srG2rR4mnvxuJBFqoqksUr1JRyRhr7Z82VQqcxipby3t5vbuAiAOkhdgNrU1o6ds4QR5LMYmamMzWkYXnycTqD7LX4bW/K9iWLCIuSXo21f+liClI7JKqgB1ZYrcVNNHc892ki6wztVVuWxfo1KJ2FNn/snab8T2+rTNKsogfisjdFOFAHAEua8lzbcaumlpD8sBYoRZIDVlUpLjKrKmgQURci7zVjEJHcJ0YSPVqUbITsYLJW1a2uzQXlOyXIaSoiDlmghWh7spWGiqfiPaxJSCvTYOKpa6YoHUM64dNWSsfMaikjXKvtTk4ksVVBMlqxCrMkSYxe6KefR0MTt/04wg3cLg4DWNdibSPywJ+2cYk0dq+RecgYDKq25OymV6bk2nlZtwLdCkRaahedQtAkmacYmzdNzl3ANTtbvZh8vcrfo7K84PS+aF1OdiOH+L6YNTdTGRFGJAEJVU3SwB+3Oobn+yhAqRtFZMS0k6DSUrKNeHpWLFo+XPFX313/UiVfrT5hfdmsVEAotizL6/VCUuvWELs1cFtEhMZKnHMmoKVWcNOt0uSUVWhCqbZe11pKzvmUFwBvn94Udj6fTZIwnwirMMr1cuF5MaGpLhSo1VqZJJ2pVqCEiUhW0GgppQcu1+u1okJhRBaBcN027xjv2jlJmLQSQ6imXsY+m5okOgn1oFrPnm8b7ZYS1SWdAFyvV1U9L43ri0FIcTj2A0VSMqb3QWgQdN+dG7a0GKhdNzItjfJkTxqHVWym5om5ADZTKxVEkgS1epIK7/lt+cTXyydJklKSgm27Oq8FEwEPvBqJYuN0u0u41kqmlE6qupbNHaqlriv4kO1y+V512VLalstf/fJP//DHf3tdALXl/ZNCzu+eLuu2LEtKlrLUupG8XF6h9eHxJDmt62XSkMti+pTOl/XymsqSI8mL5El7QxifrSsEtVbufKhg5yWjlF1fcyNJ0tM/fNH+VIuk8+jovlUmRA8tSCmpm6AJkCC2Ho0pImCPRRIuXYkf/TV9+0+n06DaCNkyS87OtdBjDUSEMIoHpArQSvF5Zls1IdtWDW4BwDYddGrYhDNZ5UbGbNLogZQ0ljkIt9m0BCAI4+MaHCiOEPer78hRD+h1llvCSR264zR43jHpH66xcAx7QxMg9kH2fdpj94GdWdvuqchx1f717cIP09MxWpfXm7ySdkaFMX60CsaRa7Azo0W5++Gcvvw4Q2EWirSsRzdYuV31fmSWTZUL0XMSGXbfOEGgDv24sPMNU1XsPQ4IKoVgt0DH8Nsp7XYqwDNCLJ4aeIWPz+zUQSYAZFlmKW70Sq/sNsnxlkltqm6bvr5crxepp+wYqcWCUX835w6TCeHfvMbPVcii5B6JNiFmPQQ3LykxvV4vH59fSylpeSeiKSXL2YyWZn8OdKI00L4bh4btfRdtW2rNOQMUEQtNCVNKptU5n1ubckpZUpVKETr9ydkLTUO41WoVXkXeLcOwZGYejtu2iXN6AFRNtXgEJCW3SfZo/7iPFlReC74Sv7wxXUtb78abUtaIO5yu30ZmO/SH8TK1t3Y/UjtfN4l8Y3rtz/1uRiusp5xo73fSKqyRre87kHPWOo21B8QYEBi4nZBSsm3btNqyLOD2tuHlev10eT2dT6Up+p0xkaSu6+q7WWvdts2HiIU4ajGgl7GRPDPQD7jry2g8Ro3SJB3txurWAsHMBfadCbGlcM1Da73XXsQGYw8s9PobAISjZODIXyZJIVLooBes1uPYRFAeqO2Yhmt2bisy7eZA30ilKW1KC3SSpzYZ23jR2C2v0juiq+LcJup0YnfY+DH5WzzgPlh3Ajbw3QOtxJ7NTDrO7nF0ncqtUjCG/N3PUbE44bHk0bZhvNQmw5jXqBUwgOanIhon4ocoqEVI3i4f4eDdzjxiRVOJP0+j6RWvZD47eD+DfHNYYKRTFvzHh6mOK3n4YnNqNBvvNHYhBr7Rg1MGWQmgaCVu2rQ7JTus7oAPEWK38LTwK8JW+hUF6PYU6ginDTYSJ1mdH4t3kJw7CYhHixxIans86Vbx8rq+rieFUIRdm7wLz7iKuzs7EOCWwh7+9GoiGFmGTrtzKrqZppxPn162755fddPMlj/q+QtJMskki/aYDwm5QP1djR9He1K3Csz5mJl2tuEZO66AwqzWWrcyCKmHhfZusJ745DX9m01eDF7wfHoPd+VWqOrNuAgeeqfuPlt3mU0LlkwL1tgX5zFla4aiIWrHg2DNtN/3moweQJLee4pInuzerL97OoA99jJghXU1qV8z9XFQwpSS2uQdEUMO+CAi3lS2Rc43A5LWapAEsasWqXi71l9886u/89Uf+AjruroIZd1kNcYMprV5XUtNBEyEWXoPnxtbj0dVqA25ld1QfLiN3NV5BhCT7ca2VezoOEnU0l22rkZXiCjBuiMHVCMpSZDYal9I89oYYDCUFtKGLhuLtzeo2pRKwCOWARAsZZsmbo+tCMDq723bo6poNX86Px4AlYlnu02VVvzdgr9woHm7J26/Sc9oAJnRuxNawNTb3RkvPbArC9FDjSYymVWqaVPgUPdCJUn3lUaqF3nzGNN39+bXij2VHLK/BeY9GFW42eKXO4za5y9Gwj2/n5oh0AiTUQ1yx3ggIrqVW7rs2+q1V7S1serp2mMQcndc7xEs67W7x2L3r0ACK6w3JfBuHoHBWBNJG/j8ax1ANkDciWVdWrVZUHr6huO/rTTV/mIQ7G7BHjEZDQp6QCeKmjXrlXNf7EzBrXKnp+nVDk0vjNcsAGz1yhrKkTC8XfVy1YIWcEHtXAXY6zx3zBj/etdAPG3/JACGmuXhohXbmvLjx3X9dNlqQWWtKFarqUJEcqqwnLO3xmOQ+IehKBKxCB+vHxmrffn3RWvufcDaxEpV1VY/oKqqomqtqkSt1mrz+WmhJSaR5n+eSuSwA4t4lg2TkDLqqg6T7NhuF5pvzki7ImJbUBZVdTl5LAJGeLPBo8x2JS8QVk0GT/momrVnvd2cELSOEMBvZj3FrI06vnelsyU+GEdyisiM6dmfmkoahSmlZI2nlFK06pIXkVR02+p2WtLF+Iuvf/H7f/BTWBWYbmVd17ScPGQ4Cqy3AASwbnVxPy6EapMBm9kO00W2rZiZl7KqpZI8pbzWwnsHu0VwMIjEQhGpdV9uoqtiu20AzJ8SSkqj6BVDOCWCjYhBw0uhBNqB8nIvdMfvpfUu7Ay4thwVEVGFiB5EjXioHDhVK0mxHeUyM0FiZ0HjqYPxMG480NLO0KrIuQdrwPI3qae3Exucb9zm7ElVAY/acBdVS+BrsL3R9ubj4/ue5jg5BwHsQsnjVL248fieXQUMY+5ij2MF/AMDPgxys0LbgXS343fMEvEaThMAMAFqv3NX7mrH2OTOTxMc7ba4Zd12bRjWHSXuV4TwB1pgxUED6L/KPGLo4s5YciReYz7xz6jTRGVikLkduXSh3syTXtrWU1Udf6YkJy17u4+GvuONxJJQ68XLVJt53MykFjJdr3i94lo0lWJmCa1h6i1wPnccdgAcSvD+y/3jYqbeaNWJljkvU1PUDArSNy+v37+uUKoYhWBSb6UpLJuyRyAOqA4Yqiq6d3kSAT8+jfFM0dMPxbIskpKqbtvGZs/kOS/VN5xNpybZ4ghcvu/LbK8GhgUbwUKTUvJILiKZ0DwxHQpMe95oVh0xYcgT46R4zI1107q7Zs08feOOWhnhPw6GQwAWvZNtMjJ0473iOw697YcdkLe94Ohzc+euN0hD6GQz5ud0FoBWBapwl/ro69JqkgUs1VB12Yo+X55fX19PqRHDUsrT+w91KwIrHlZaK2lMUE3jqPpVC9IiRAJXM4shvrtrzKC1Rhml8iY2D/USADxoSrpVp0LZcpsZ6QLVvHFmQ9DhHoB5wQ1JMoozjJSkCrNqUIPbum1U/Cago4Di/phNY2xEAvasOPWt9ANg1hmGBHugAKJVSZh6yyAbTMuRVRuK7PJDSXp1z4FK7L7AOBPsGQZs8GB0g82OFCKMME77+PNg2p03D03apro/8n37NBDRbsAtvtdNUuNYjio7oyBzfJBkSnmMMKlS8PFEBnx4HPsrnsYAt8nmzMzbrIzCg+PmMQGRMZ94eqcqqapmTQUzM+4lsPleThOxr79NeFfq4Dj5sdF063G02bQpC3sTwMh6+9ur75GndTYGQ4hXLejP7/BkD8UoYE2wD+q3n+24bf5qrQ7F3Cadck8/OO6lVtJD4nzhfli1U9DeB3Vo27CU8lbt5VIvpZ5NsySEsmJ30SN+eVhg/GWg2e1ttSFQNzh1fC7rZg84J6Hh1x+fv3+5JJ5SSqV2ltaC500M21aj62RMT1UlHY2FfjUBqMsuqup18nOS1B8XEQLqfZ9DOtBUSJLU6ypIBjNl788H2ow0dBwY6Oehk2qKxGqamRiKn9+CNGr28Ry5ohI3wplcawKws7tY1612O9IWXmGNBNFMzUiJtBfjvX5F49yRFNzstXPfERZuENfsg9h6ZPBICb0sBMmcM2mGalbKpptty2POlrYVF2z1yb7/9usffvletFJwXd8eHn73ahdBS4CutZZSaKg1HXTirVKSAEImGPItbxgbEE0ZDWtr9ehP9qiKJqwHX5GTGOnSTRxZer0iM2MSq7MPu3chHVWNTFX2ZrrDwRucwD3tCPEgaBr5ZzMZwpi9kosZkEa0Z7dGa+RqZjOk3ufvXDKOyc6YHSkj3G9V6gOnYQjUsr0PLK49+N7uXL9hyY5sbDHbmna4eyTQhz8R9ldEmGSo+C4GHdZy++fhtLCJJTPQI36OHCjC7fB4nOHhRPUPu4DMW5j4m/uO6xjWuvIUptQpppVbVMQduj/Bbi1UoOWAkq3B7yCO7NVJAWBW794LzhjxZk2zbGRogJdHVIzohPkujveiLw17TSJuimfaNOKFGtA7RmW7BY8+a9BUupDCIaAb2Azj7OKCmZEQ5q2sz2/17VrfPeKUJWkquHN+99T2/jVw6bBBETKHAa1N01qnLZqZ1XX75vn1UnSRrEattTXqIiWfvChdKQUBGcZLU0rOj4Zja9zzuRNaSnHrNHp1rbJuWjUWiml02JMeu5HGmsTvDVO7C9lZY/dDe8UbIzByGWBirUgDu6csBpliInZAGMCzHga2aE/t84finYFedWrW65uNM9XrEAjpLrIp2B1QUW4E4v59DsCfQG59+fqh9svjoeIWjM85Z9VmDpH2uLIrVmYtw9vKUuqVWr//9rsfvn+iMFG267osy/V6FdArfJlZrdumW97kEKa6liqsVVMymmnuROeIHKbqBY17TF3TtdOhK05/REQGb0ip2SjMzBMExrCDqasQ1uqNNawFE+Xir/PyVhQjlDBVVO3KTbeHiAAz4mBEAfTN2xnfImYEDCCbGLjj3/HK+TTq7FM4EkmbrWZfEsR6BZWRVtj9IrMofEfEgdwy2QZyLHCzn2q7xnmOwukwHMXb2oMiTdz2IwkzswrL92p6j028vazUqqMQwRRKliQHCPifA1Bx/vEUjR1xIuW9qPux2nW42vGD/qwXjbOeZTJ6xsRc8KjZCyS+d37mkMFdnkjez6QG+XsMSHI0qh0UZ4gvd7nCoCMTRIFURRB1SjSW6Tpxh3mvg3YYcJL4QSnu0foDMcWeATNIrrcTbpmXtW49vNaPGtkqAXmRjXEAAYUltgn0SOOG4RCR1jrTYwu2YsZ1LW9v23V9KlrNO8Qg3YammI4SkP+qV0SbPSju3AkgSzKWsl5XrJeyginJsrpRt6NASmmrBWbbtrkcHrUcT8ldtVrwkvrFbkS0UgeQne11h11tFTaABCIlS+KNejxD3GE4sREpi4FIFNIIrts6ijWO7TYzU5WcJKWUM5KgqmrVHoCNrsseKMkBbXxFrvO48TmMwIA8ocaybqN/SaxS3lnjDjhOoO4S7QEu59Ds6qz7rAeQ5zHtkc++Hdajo3v8WWMme9I1LeRmVmu5Xq9WsMiCJLVeUSVLRpVtq+t2kcQkknNea12WxYkJQ8xarZpW5pxTmti2rqugqGaqCixLKmt9PPNy3SwtgVMuWVVLLUacHs4Od5pU1ZRSCgHSbfqqqSfFNpmo/a0VbhMn00IRVVUDt0o/yk2KFzUrpdowfZDFat9NE6XkZkZAkiRixFqr57lypz/BzCRns2EUYTOBoTvtJbmwq6qoxVQ3sYpKSea9ktlq8glIZsdgUxACq6aa4CJSO2MGiGQyIW1mtbhCYI1DMLV4/VGFw3oZgl6dv+kJHRdqxTwPQ6oYuxtx9IB/8XsAxb1VhJFKI5jAhJ2K4JFu6DYu7Gl3O3gISnkNhgE5Si39ABxVXg6J2LeAbmBDApMkdRrd/AsKmKISzEw3hxYkixtfhDRRVavN+JZyYwO1VtSW4UqamnYf/y5M8XRKjpBO5Ypu3rU2zQh93zOP3LPUYwCb7cZgXsFOqtsD+3rbtKsovXCmmarXuCXJU0hY7+K/mRXVFsfBFhAr7eyY1ForW7isSFagKFJOHrsf/dlmVmGokx5JV+1rV2FP6eSH2hPBjbNUp5m5HOAhEaWuLhZ6GVca6qbDXEQmkZmSd85nVa0wEZCo1bQUM5MlU6sB1Wrt3BeAPcgj8fFqvyz515p/VjVbXXOiTaY+8ZAtaArUruFLq1E/3TcjLoxuc5103MaBgrGSFGQAptYrq+HCC+wpZ7s+X/Ty+LbZ4/J60rzVUjatWrnktVxN0vXldUmZ0kIU1UtAi6iZx/BtpWjrT9oUBrOKUiWlVaCiiTDVoipZTstZ6yZMp2VR1VqqUZwMkgle6dKL1cPK5Zpyct+gESKpmMK8g3KrCWPEqI+2LIsJSim1bFSmk1BZjFWxnASqpZg3bt4qNCPnXLdV3VJBtm7VpJmt6yoi7l6lgT1YOqWMIA76QSulpHQi6SAhO08wq83AM4uLmQooVbem2li1WT3NqOJV0np3bZCJhDegI+nderxcsgsjLTaZPRfDCY7fjmaiHwSqNt6hIgLFWlYzezg9XraXYpq50N4nqWrPy4M8l3zdvvvlX377ez/5Wyd52/StrFuSU0rXa9HlfCIJrUx2eXl9enqK5DRLfv5+e/1Cv3iqiZJbxC9ntmubUKNozbXTjnew9EZZu3GUnhTb7XcAYHvPX6c408IwmMr4k0HwGeRbhilGiN5fgjes4nPcaHwZiZR1qx7IZVlSSr30d08Gz0cf+WDzVTfHSYZQZ9WN+3Z1EZ7ijc77dTulsIrEIC2O0W4hc/vn4WqaZWeZ1pTzo8Z/O4fD/OPn+MaOJ3NufZePAatzLZz4Yd08e7uKKHzEefq/wVZ2dPKxe6oguwXeBVRDuSgiBOyNkOkLdNyYq0spmVFRYTJqY3JYQbshlx584AXuhpDalzAw30Ig5dggn6CIOA8ZFW/GDXeXNsBi96yyB9lIvA5X3cW0m5lbIPxEJO7OaR9kh6LWkv3sOPLYaIWnKfT7CTLnXIq+vF7XLxczk0wUzxDarcvDj7obvi+n21NvDp1/GEJtNLnPD2GlMA8xUWPm2+Xy6fl1W+sCiCYXm8apqbWaVSE9GHNs07gnSXKNyuouUDylpELdFDVWAzwSQBd9rLcdRMR/Yoho46XsriX0xGL0MDvfEUHCSPYrrcXhsizq2SjTi9dmsiyLM2CHkUu0tVanJ3Bp2Oah1tknfprT+unYobdfB9fSgYa07RZpZhVrlUDslhiiyfENo8BRJqhp9oCZpZRcSvKwo671/SbK6buckyhQrSTz+PBksKKmhqLbtl2rFS329vaW07krnTOXrKcjz2Hf3t7W6/W779af/finn777PhMLxQPSalQOSik5LwNk6gmxsrN8YlKl9qeLXb4sagvE6rcN4bpBL25MF9CPhR3GK5iSG8M9/t5KMy+MSMfDlHbP3tKdSJv2vG1cDNoqYs9tJMCUxSM5RDxoIjnhSeHVMUCpoV1oESb9tj6rfSWNPo24EAvSw+eQ5u738ad2Erwo4A7OGMws/nIXqmEmGm87TPgwiB+8for2qvMIMOkOEa+qU2+alfZxGA/8GD8OeQiQuR2HvQH7/LOnTd9C0uGmtfihDpslgEHl8IZOICLSSTsfqtFOGDV7BJSIyDMs3nNwX9dnBLKD7hh/gs+4g8XazNwSUPrjyfU22eX344Aeh5ljhGeH2UYZo5mzVEdPlFJ045aZnl/Kr77+/uOXy4cTUlpS7xTym6lkWJtMxbc9CATccEV54Mk4ZAOZ27+6lZXMD9+/vn7z/GJIZEJebL06W21I1Srsz2pFrgHbEFZOi3KHuoEdeqhOi7p3+iOSRxyyb5F7H9x2Yl0lMDP0uCcAQomM1qxVjPJqWQP/AWhRijBNoZZkoow+iu7FFwGoCstOosNhZ7dRh7M2j3wPU92dgVs3WTTmHXBpnOX+RgyTlZkty8lz39FD62/p0pgSSRpaFHQr+AACo5D7buY3NGTH1ASqVatW2CkJiWKoq64Fl+2y1jcXqp8/fvqdn7zfyvZwWlQ1S7rmbLUuy1LXrQaeplpVS5a0bZsZsxlhW/fH7xBmwsW8ReJ9kgQqTEUmL/SIKrMYqnrfAze2AZjW8wDKEFnuUHR/qnXxirJNBtDm7GPG4uO77dnJmB5DtpMhxk+dBhYAQ6rabxUNrRuoCFzWd5XeBUkERWFOpldvRpj3iEme5Cz4LwdS4t41Rr7FyN3CB8zBwXhu0ZFTIGi/ai+McJeHZUoNwSbNQp7E9kFwDDx7N3MCv1H5HsJ+XL6IuMGlr24qGWPCZrb3It4XXKJPvfZqVWaW9umt4d84jjSCEODc79xJMMVMrFfwtunHQse3SIZuLwCNdfk9t9sQ3nX7TYSe9EAADRUhxqaPos22bwQ5vQ8dMfJI/xu6JwCgNhcSR9xpw42WZZCA2mQ9A2ApLYKcT7Kt109vWAsV6SRwo3dE3b6NPu1xXrTX7JkItiemIBmJwb/sHCmrwuTj29uny3VZzomiSGZOAkRykhH7qcp9utEYf6iMUGOwi1zXVZYsIkxJjNU235UxK1d1tM7CtG2QPnhDHlevpeer+fiGbWs1vdl8Jt3oiDQKKfvctFRtqYlkPzUK6+ZJNpsnYB6zm1LOeW/x6lij6v7BAQENkY+3YSUiUrS0M9sPcUeJAcweB+siXRbnvrU7mOE1J9J8b7xCbISptbanvQflHQQYCGM9GG282kwNIEQphKgWU3vdcK3Xrbw+PZzPyJfX55Rl3Zruu+T88PBwvV6hKKWc02yN9fby6fn7v/7J73y1bfV0esisgFTl/fzrTlNmEKw2n0o3HQ/SERSARljD2qybmgH0uJLJfa3z2pEuHZ/127RZLTx5vN8ZSoXEmwcDwz19YkxSRHp2YiNSGpygbmYc2LOfrS9YhYuHTWl1VTjXoBFy/7rI22xmGU1/av/GS3/svh+vjlg+PkcKe7inkc6Yp+S5y90YPh4fN0RY3VKWA56YaiILAngbNTly3Ln8LuGO79HFoLiV8dfb+ahqP7dO2ZtIFJcQcWOfsB/f0hZVW+c0xPVHwLIb1sZZRTBgDgiwTbK/V1GdjKIXB/ewhJCmIj2iIoh9R3PCwMzOCSb9Q/jwX/ca4C2Ot0IgGxTO2XqaipMVRvpoO+AcZov9rrWn5uukhV8amJJtCssGvFzx6Wqb2lJrwpEU3L0G6bj5sqNrC+YK9wTFdOD/+FNyWoqg4tN1e1MTnlDXi64GJlCB3M6NqSpLLTr7oDtJafG3qIZq5j7g1nS1O/EyoM7grMLYvMiNCilHENPQBIbaMNBjOGUPu+AxRyQZI2EBDQWO2HSMxqHT8It3c2BKCcVNvg2xdOd06NC7waIB/zbJe2YY3KDr4bM1L8yubMC2bYNyoiNhvgmIGR/MMPolwKtVi+Sci04ny2AWB/JyWIg0U1VqOcoiCmxma92u5e09HxLTul5Iy9m9v4aE08O51roVj386BaBtWldqfXg4ffz+LZNJ0oV1sX31w4C+hsktpJe+FPTaeH26kVEhd1iUg/y6V+QiMT0s/nD54t2qo338YpWhItWBN8Tvb78cezAWq6qlNMFTvWYbEPNBrcmJ9LKjnhHXolFgZnQl0Dxdn4yF4KlGYrRv89okfo73MG/WQUky7FERUSyI+Qg4F0bYfTkO8AC4nzEN34wP8WCMl0qvWDu+jE+pQoQJqTWFbbFFLQfcPsODb3/aL8EO30S21Iby6GtDE9DRsn005C+K3eFnh/mg4VWQcpybKw43D8rlK4iT7EX/HZeOpabEgIZFFO8EBTIw8giGuNcD1AGvxyP9qwCWu0Ttc6Aeg1SYAVo1vGYGo1ok/TUsbQLzKCH5h4EwzfYI6U6W5DGRaOpd2TYlTSEvV/3m09vbD08plffnk+1FWKDvcSM1TUZyRaij9p1rT3FmiNDdmzetsPP1un13ua4mgiS1uUgR8N/MYNWTnj8H2LFvcf9k8SbtrLparVUrUoJkrU1PZUdFYU4pKSYjbJtipqqZaainBCpMFFTz2iAi4qF5u15b9FrQfqgpi2ixUUZ0TFuYjVLLasJmx8Y8hAxWMXZRUERGrYi42Ih7cReifrw71PuCPAGSAvbUx7AR7LaF49aTklOttVVUI8dxZvO8Ofb25HsYe6zWgEa7qjF7QKHCjBSnFUXPq9br+lzrF9Bctmstl5xPsOb2XpZlOy1qJaWEsMbt8l2S8uVX73xrslmlFCoNNTZrK6XkdBqNyQLwh5gAVe1pflMQG+S1PYWmN3TI79ieHtnP8d9IxcxtPp1qAKEr340kyD3pHNjgBNQzanxjB7CnuWNkUwCSaWbDgWS9MxK89ki3S8FGjYH5RtxQfC9J2Ja2s5v2VQ5AhyT6iPoHLrIjLgH444ZugJoMWxoAfSe6y97RtPO+W5PjAcUHpo5SKgyZbK4o3J3hcbbjFV2j4jh4AAGXWOOeNlt3vqMhWdcVDpN3ef92JuSMpm2INJLRe79V7hpmmM9ux29M0Gu9HVlgj8LtU9olQo7bamds0RZ9gF4HMmqt6P77Wxa1g+0NQ3KKJdFcT/RYWc+bHBWvZm/U+PiY0sxWCL1BnSwwRLjs6az0EDb01E+aN6U0Oz0+qr48v6mhpZnfXdTNkelzk4a7BwVtbBbZSs/v6f4RSlvRk+SXt8vz5boZllLFLCWWAu3t9rQnv6aUKCme0xGLxJB50oBAcjSdrNVaNUIxp0tIZtNmI6EspUO1lt5HwTtem4ItQ8njYnwGnqc7Xjqoopr3a+4lM91GSALVWtS2iUiSBWApqrV1KxojxGPVjn+3iJgZZaLBzvc8OrGamfecMCulHIydg3DdD8iFxXgOi/ahe3Te0UA8/suRIAnI0iPm7IZfaHAP7w4dE9TcCi3SyrOp2VrSVtbrdrFSDaqol+vL09O5lJJzvqxX99G4QeLt7W286Pry/RdfnJ4eTy+vn57e/yCXUnTZmu7GGfQ7enR0Mwg7cLMT524e1yaIS8v1GYBo9jRZpIdueY/egRYHKA8o7OA7IKtWass/g28GITkxIEE8SAd2NT5IL7rmm42+wY43Oe8Ijg0RYYpFA5OyWS2bUSylJMwuaVgXrw7EcSyTEYMBtkq/OzSyEPwS7mRc5oHNyE6jCizfg9qCnNu8v3keEoTjOoKhhjl0HInI/8Z7l0OPPBMRScBIr7qd8GGxXTy8b/wYGBLfHjHEzMiGn9pKJDpiKrXVppdQFyW+XURqb2ZyQMU4lXhoa61jY0myR90F3jlGqDDUUgeZbsijzVAeDnwLsTlEuOx8eJxUzDveuwn+vo0vgG5sXFy4TybemZLU7nfsnNVUNcsUCseE3f058kfjFs+D1mW4JrB6NO+Q1zvKrXWVqgoCaS14fnkrmxfjnIh9d3Hhg6/rjkbLbtHt0DjCZ4wzZ55kycvr69tWtGjFthkqzjtHb8wxLXUWLJqniCy1ODzTSPQnx7FqgVopiUiBqerSg7AiGzAzTzDt4qMHmHh259QFETnHMDsrRwRyA5O7EoRUr3Xk3e3MrKI2GkhSzbZtO3u6sHvxg1w7MIRsinkLksqnSKkG1tUuyGrPfzsQKAvOL/bEk6ZhNzuiN8XZ9Xdn0/IR2qvv2Lm1qs6tr6iXr9i27XSaxRwjqGud8XQIAdieOWo9XUq6znVZdS21FM8OYLF6ubyezx+2reSc13Wtldu2uVjy8vICnP29f/RHv/9Hf/h7PL2uWy2lZD5s0B9QU1q2V3w/4cLFjCP0/Hq5kNzWNS+Lp3j2M5bGBrs6bG23Er3tZwtKAgCR7Jql9X6x/W3tjKWUqqmrYqZG85ARiEETRbIExkaDlhlK6mERIbJ0V9Fi0CCtSqYsrLWyqNFIEVnquq0kmUaNoVpVDF5+fpyICjMaEjbdxJBETrJQoVAlRECIVlMUEaHA8cfMmJKG/HQOxZscwoyDSHqkYiR5cSHxy3FQW65hywRvvwAGawUBRAVOq5g86bFFtIXqr2at/rZ2C8Ho9uiuakWoKKIws7oANjPNXFr0CNoZy+AGkn6WaO4TS2YGaSp46jEjAExGnoCqIucWelpr9TTZlDz6yS2lDhZHsCbK0CACBZvapUrvSGRmOluD2Tjl/ai3fEAzOZ0M8A5xnk0uNMBUwV5QDKR1n4iQVppiJCI0U/WWUAsAVIUYhEiClAwQrW51jNGhfog4RJye+2eqG6bvynoaHoAaxLxumZ2aAVvl4BZZnkhA1LyciJm5t5eLJK0FtdLVIBq0kEwi1WyhUM22CkBSIriZnno6illFP/eqKovbqpxgdaGEQNlMxNkxgZzb0bZN9d1ZtJ7Kiyn+8oI/+f7jV+8z7MlUJWGWPgGA4hXrxokOl/WcYAE8xsIMStlg9Dwl60HHWtX7YYPN+dVTJ6mrnU/XX75evn5++KLoy7J9n+X9hWKpKnheIBnrlio1LaMDn0hTRl1yACGFYKuT3JiQ0YSSE6ouEKNspaoql/yQzpe3t5RSHtnhNBGKpLJuHMXkwdosCAmptiOF6v5SUzV1057R86DUaikkl2UppWEnh0mZyDlX01qrQ7TCBFVETkmUSsKVZnahwcy6NdycVTuZSimV9ZpzTjmbmTvy3B1+Op1cAhMRiBXdAORTWl/X4VcFCTMBk6RSVm9UbTZ7eGgFzKsh9XPqycBkLebRzqqK7vGttWZmlGpkEveW+sEE1Px/JKX3Z1IzmkKdHhldD7FKMy9ioUBaUkpUA1QJbCjVPmj+9Ncff/H7P/1Hz5eP333//P7931a9iABaf/7zn3/1/ml9+e71u2+oG/BHjqZ//Pd/Rtm2DaZL1W1X21l2AU0VUHJWAMZQp26uLnsNZuDnYaih1WYOQCMug9oOK9agL1NgbxxqBsigc6ChK7iAM06jhQC8yLcOIlKXU+eDg3bv7umSI7pYp12azhxl9byQLJu53lfauDjIFtAZgXOgHXE5LXx6ry+Ob8hZimv82uc2Az2jHuPeD2F2VU0Mbi0eMxnrPQI//DqFnsCqG3uw44St2z/QNelWxMMMNk1J8xEvbRYj3vu+w618N6A4wDNsKLvJvSGJY+JtJN24nAAg6Itz+SOhjqS2hpvjCOxmcrMdHPAnR5ydC3ItJ7Y7MgaEG1AjokYEDpL+rRnW3ystHLyZ4EjSRlYgELTFOP8DZCKyjYVwBk1RcsrSSgYeVj3m1pXC6VRLrWr/vMW/z5JgydSAbFbWFR9fyqdXfXc29P4Fc/4y6U883dhZIuMlfd3xCmGSHaps36gXir9uZa2FTDlnJB2PVBhVvdKvL0wOIrJvxD1DuacAeQYaqzazqnAYEm4XZXtlETtTTQIICIymQ+hWJmqtXkOa0kKxitZh7RvvUlWtKnmWrkRPNBIRDQpiwy5XXi02Apl1gRgqLQO70g4Y6DQMIDcONZKxDcMBCIc/4zdev3N4D/290ZXzOXJqZrFrRadsuxd5T9VG7Lz4v6k02mK1VskgqFpoOOXl8SGbPn73zfcvn757yvr83V+9fvo1ytsPvvpyDKt2retmZilJSks2db2gwvbm137FBTeH/D3QHMA0vhQzgqjdE9lhUQORjfezyzijlfntsGOGYwQGkxe6OQh7KuML4Y7EgHskGwvx25JI6ebB9lJMG8Ug2Q1SjrjV6wzcQaMIognbpsANpNkdkjn4b4QDAJttLXb8xptkoJeI0JBdtmMh4UQ5Hh9MzWhaBVveoDb34YFtz6G6bEtK0p7+TLKflvZX7/pswXuEMJ+DzBfMfWGzwl6HTel5wCH18HZTKDsMmaO1pTX5iV1J8ul0ZmqDfcLJ4Qia61Ys7X0T2/2N6bJbPXaUSHVXeKIRs/0uHK7YnrnRuEF69tREGlfud+7tKOPLcS46HKw1vhPRUIfVuo0k7gtJ923274/IRibO+YqZiSYtWVUNFIrW+nKxT2v+iSqbqysELSP1rpG3GnCzvY2WVg3srVr9UJrVMEVVhzqZDB6uLACuW3m+XN8umyqzsLLXJ5FmTcYe2eb0SEqv+99rysYjLCI60MBakBOD7zMurWEXdzAMpLhVETagFTprJSktciPv2mtmklLr6xDOqYcpjcOIPsnbksOTPgQh9bAFQ1UTyTIaJJsN4zZ7ciW83jVaq4nGlb09Ysw7v1GZEA7d+D6ypwHq2wfH5+4PVc86ZC+8OMjveNGoS0MyeXcHNW+eAeHrZasFq65vl5eqNRFaL1bV6ob1WV9//fzNv/jZT3/we7//hz/84VcTSra2SjIwVWYlRKFUIuUgKqZMQ2WPBUALDN4lLMYzLNZ2t3GCEC0RYDGBYsPeGHwz7OEb4rXm9oBGoBfjOuQAjO+pzdvaoG/9f2HAIf/e2el7YpeZDX1iIgRbhf3OfCbfcnupW0ql96mNSGDWekON70eQGsnDxCLMby9BQq+6N4Ima1VNllwX8rTk/YARqm1WIxiKNyehRVs4LUNKyVoTt+NGY28NhnBUu9R4JHTKH2NrSIbktjaZSSPuzf9wxiJYBkZxj05znt02MwKhD28hE3eBYL6Jrlk2rgrCTLh/e5ubq50tUVXVanNwhrQikndmFkY7Ljkscdad63olvOXzvuRLJEwHEA2KNoAZz4mZeVkGT/R01b2qiR1B7ZeGynfAETf6CQiIrVT3SZoJuKk8X+1TsVprbrFgE/jeFPAeqNCoZ0veG/QUg60epumY12dSez8MS2BRe1v1bSuq2QXX2srhTvo+JEWPmVA242eKRQXUzFsr9o0zgKYJpmJW1VOQAI+o2qWoDtySvQo0dmqi9H5Px/TiN/E0jelZVyTGU9alxrsBJf6IBCPEwKgYu3N7tZRlMxfY/VS4am5BmTbx6lqTwscleB/fNsi0lnHbNp9w6Cerh8fj2ncubDNTQKbo78Jet2PPVaPvgpAgRISL6KrGUqzUuj2ez6zl+eMvrlf7iz/7f+vbN3/8Bz/4b/3hP/jx73zJhNftOnzAgFe5gVaUWrIZvT6e8IF1Cpvncy7XrZeHHW7Ceg+bowq/i/jY74paL6Dh9e4DSk3ONIqVDDhB2pcHVhTRK4rJN+/dfXOLJQ5ZVRU/Yq5IdBbMEC/mpHastDFRH99XqBrCKGqUpyKzv53/YUrxpYd5DkX/uMAQhetv7IV1FpBBj5oH+PBGv5pAwDbjsaFuanNzCUmPufMwjcNkDie2qZK1l/JhsxGh1UTapS5Y14MRyEQwbe1Ek/FUBBcnwbLD0m4RIH7pp2AMODBKDKN7I3uc8NzyPQx3Cw/CwfDPeAIb+imK1u/Dto5vKmxEWbcv46uDvjtUy4SWfDwgO4AQo8EjeOMWICCJE6bihmAhPQZYK3Me+rQPNuZ1IHxjOfNFmM6uxFJYCFNbraZN67fP29dveNu2d8ujUA55euk+kUdF9MLU5j+8kYcCkH2xdL4zfso5b5VrZYGQFLCikmmtV7YUqEANBnL2clToIoiWutvKXmqDvXFFNbOi1jtDc9/XPE71lg5guGlETHcRwl5y+cCAG0MNqp4F7huvMIch9wzMdE/wUGXabpupmUa2jT0h8j+pNtJEaCi1jNX5s+O9h/XGJdieK48R0CX+SAcGSu/g1uFP9rcYTTFKGI6nfMCcc/HwIm9BIWlJOaV0tRUbSk0nlFq3x7x8/O7bl0+/+vbjX3/1/vxHf//v/O6P3j+e5e3tk0lqXU59GpqsrSiJILdgOir1RN3Gfe/eP379+vWip2Fr7ZO+s1u4oWvx89hLkoP1Rh5wGGfcAHhlAByAjhB0yl5th/vLfcN3pze3LUyg1poCWd9puvdXV50Zu3/bSMI7KzDqM5OukdrK3mPwQ/QCEQFX2hwO3Qz39xy1dv/5lnYDSEjef9YLMKHtvUcS7CBzGDwyJ/GwItf8zDB7OIKtpmA8MyTp2bDtjKppALXTNetdrcQgvcNBH2RHzj6HZoeVxvPZN61xhUmP9o+LSN3KmKiEDlpm3ndHm4Zh9MDuibS7OcztaNOIv3YrO0bGl3nIEAHY7EXbQO1P9f1pBDouLZbi20GjY+34RbBj1tHgH4EWxx+f/fucs29BGY9wqk1xU/yRnPMtcrJl6nVUb9YiAqioSqGYblhEBLys5eO1vq7b+fHpBI7+FoCXk8Ddq7902J+j5+I2W7fFalA6I2nRWwRwLfa61mICwrSqVjGklJBnswovTWWBEIlI6pxEPQjNup3AhVfbRb87JONqeCN2HwImDnRVWvk9kRbHZ+y1qZ0GRdHKVIU7uRaBzvg9w++rqpHWDxaAvUfglt32s7P7ZiKY2ihA1CBZtTaZtBEE2Td3GeNEEO3oW+hPHJnx7emIoCNJZjK0gmjPHl2urf6xNAsQDKWUWmvNG3Qpm8lDqrpmefj48dvz+foP/94Pf/I7P/rhF+/fPn13WaFgTksshtGxAJ7TlAGIYWPNlqMh7Kuvvvr1L3+tqiktpbiJpXrDD9wzTRxI4VT4EmxUieuyry810Mqd5DLHCQh6G0ez49P9p9s9QxjhMH68ItwPGHDYyziIH7Pq2TigCEst4/CPFQUr+2ffOxiwBYvrYbbcS0A7vNQj1jabTNsJ8RwwMSR37wgPS4tO3wMtxohedTWLgEEJ1NZ4/DBPM0uYElJNLSqlJUwHyzPVrKXwTyCo6u0EjmR9r3kfyAo7E7Kp69zBivG4q48+gDt4UFv5/clq76X8BIpwp789gkI5Zk0CJsOEGydm0RfYZ+oqF0NhkIgGXvZ1vis4T1IwKpiHz1A5smL2S4iUKM6/YYWb3rThc6Yo57MRD/fbMcVis4NhcABWwGSoZsg8nZJs5dPzqz5ftncfbNm3tb/dgLmDJHofJHIEkNCstN3pncdnqi2JGeHR7PRmdrlcX65bUZxEzDZFMUt5yd76rnYPq48vwVgSSRNJ6YVNMTyv0ropDlAMf+RwgEQuIr3mM7tSOx70EGgmD14ywMDZsDkeB39dGo7PvebjQUY+uHe6a1OqW7yN00hb4yH1mw+adGS6smPG0wcMuj43C8caoGZZZthvPPKHAz6+iVFXwQkth2DViUI720AaEQPd3YtBfv1dtbtUGvxri19JjwLkCl2WZFbPeXl6ePy7f/STv/u3372+vj6/fLecF5D1cq3lmlIClv7SthxVBTTPhVEYiPj790/j8KiqmxpVK2+sFvdOwh3JBQCowJGF9OPRAJq8o5SPiYAB90T+8av/NPYSvXF0vMHX7MXKDyMwKDHtpZ1wq+71no4NKVA9dpkugeimlWaJUqBlozdGNY6uP15rQYgtsj33jQfyMOEIYXaVPR7RfoA7EleYVm2h0buRdwfm0ACuf6+1etkT3PAAv+ISAEANZtjr99Jju+aZ7DFZ0oMgBwTuhqXMZ3EfMo14cRdaz04lDw0TXNLXMEh7RCO+2T6o9XYv5peBPrYlV1Viyl8deJMLWm9u7YfwlsRot+4e9nouNvDg+dseJsNAzXslOSM6HUDqNRM80sLEjpbVMNVByMZxc72z4eG6tfZwgMgyICZpQcqqaroBYiZvF3z7qaylFkVzGM553lf940J8ZM62J9O82FfnNblcAhg45vxBAGxV162quQibVitkcgGiaFXv4VhrSgl0u1aroiw90rhl3djOeONnR2KDr47wtdac7gR4S4iFJHv5+vaKAnjN+eYXr7XUWsx2dWPG7qSca0iDHDdoYFTac4hrrQj8DNjZPAbpGHTmQKbcV96XecRPx+dStuwxTWOQ1vl4Rx7HsKZ0UXbyC1Xn36305l4sGJp9xFUAarsM1WGt7JOfC/F/c0q11lq16CrCRFlyTild9a2ivL6U7UFftpdt2x5O+e/+4e+vz//CqknKTOfn548Pj6cEK9sKPA4wA5DUpPZsb1IfCuu6LS+axk34d35q/1ezd/mD2KsSqZQt2ZIea0iIHssm6U2eTbU5cYkKM1juBTlTSrULGjNCp11NOmtRoNWU8K6wYkbDqHkW19BQoGwEck9Gb4SKZC/v4tuQkETE2Lo+mee9NMee0UyJ5qEYFSRAS5LoiWBqZqNBJkktWxu5n6KitXTWyymUFQ91rFtJKY0ChMMcVBsJYCk6uCYAs622PNHc2ZKRKcmiqh4L2sGosRtBxEUXOFBVTV0dMWEVVFKCmDl20094dOdMPiFeCMJ7crqGkawrKD6IGNiZnPuIvVj3LMFjWIvn880YS48EbXKlEQqBKOGVfkYGyEHm8Ioz9LwsE7d8btt2klTN1q2kRSiidUs5+8Ea5XMHkpuYVmUS7x3SdlNNS+VyasK7wqS1aihaz5LdKuVZJdXVU4oVpbRpqGodRDBNupymtmS51zqmB+koCa+xEEgbp2V+ztwsNVG9pTfOoyGu6ZrZUVlsdgsCHqE1Y97MOVbOJ7NaawVVjDRNkihWNqOflj4NhVXTFKq2kS1LGoB6ZUu0Q+3UvJQC0AQp5UxxoZNCVd1oZ7BY0Zxeealaz4tc3959/VJ/XN5YrlLnUqhLdSPzrlK6db4bLO4KQwFgmkDvMGEWAsespxcPXdnjW78A//oi37wuSa+2XFbLrJnptVo65cUEWmtO1EJUTWkprJITSCSxJG4WqrXa9QIhkaw7zmHCxHTO2+WSchaR19dXOZ/P53PdyqizQrHUJqlaN9Meh6XqJmLXZanZM8YNGPU1T3lZy+ywxCATb7WlaxJAq8avipqZzL1IZE4JKYNMKePy6mbKlJJkb0isqkpJLTWe3YficiNaMSw04aArIeksCc6NheLVaUg65xeRtGTzWNSiJMu2MQSHq5MuMyzqdq3ed6qp1FWV0vo0qGfxuVMatVXfNKWlJKkRjZQRpPyht2grxAH2FE3T3naJrRcFYKparQplubwry/MnS6jvzvkFNMunX/36F1+9E0El6/b2/OHxAcDr6+XhYTLWRnK1yf1O3FUVoqqhRsHDcqJ4HROXYSm2aUvZvjWcwisxdobKnga0Cx7ZM1FHsVGarjPUfipcA21lm270nLie9tWNGTzeYOOSniRKTo2/w91GhSygmUdC/K3j9eG9h2vIgwiGown3ucQ2yZhXGn9yXtCBlsyUngW077t+gIbdCH2q3uqeJmyanAGfMcXHCRz+jMNGtr3/d86hBmsEg5EjVuc57J2bo5uRqi9QZ4O2OQ1y5qz74ONEeepe7cAUUFXrurlF5BCsZ2bJ2yNqC0cXEelNvJRNj/cQZvGcH4/0GckSqgRSkhLwd/w7RI0Z0jXiS0MwlIiM7R7E67AX0R04v4RoiKI//Hr3CtEuu9F01GMXERDQWitUW43cALGR6RsXC29+FSI2Itoftm98Jqk6y2/597Xquq6Xy1JK9hi43Yrhms1uUWNWdoPYnytdMB6M9ME/lKpde2u00u1hFq54nEWEnUqKiJtZ1XvYo5UO9sY1FPHYFH+Xz81DfG6PHrtPPRr2xoTpBcy9VnPr66BqmpppblBQdKNVBHtwkR5RphkMGq3mnS3rn4fRiujxHO2nzug70s7HBxgndUL8NWzoHkXj53inhH4M8cPQcDx7bBAcVZ1lrUSGmDheMe70q5Qaq3+M0pA5ZRRcr/VatncnKap1Ky8v+tW7s5mxCdtTE7tFOf83S5qWTw3xDl99+eHhvNTtmhclJSWpLPGcH8BBtaYYebiBR2oIGSo6Ha6IzRN83V4RQT9yY8ajk3YP4HZnQ9cKWy2egFicm+j1UaCccUmNBYwN8Lw07LYE7GmXt7veMWKUmUI7mW52HgbtfSRzaiX6jlcoDk4Xb/xrDfDs6HLrgJ8brF7DRCijH7PbBoZRaMfLj+ftcOzndk+Dz+7OuGVzB5vo6kQnuygdX6GtruHO6uXIdMCc8euAoTCPGOM4kyyJZDUVg3Udwm4I9LDpzX/dqteizgAY1Tx9lWqWwNTMuC3DEqTtGFvEjV6LYneqo6NuQizaG/ZHDOGwHEjSPAjmDuB/CQ+OmBM33c+uiLiJo8lS2mzlFmfYITPLh01z1E0KQ9iRA7XtVs1EkpZcYSUJk1rrp5fT20q1JYf90jv29Qmf8a64ob/hugUyyc1sLeW6DQ+oAKKW3IWkqqgqSMZaYWiB8xQR7Pt1ellf576uCjtAPGDYzLRW6WWbotS+m17H7MHeJrURQJytC9lCNOyGsY37e9fBu5fGiHFPdRm32pSKHd8G6Pz/HtwTLTS7Oj8jbCgiKskoWIxzcbjt8OeAT/R2+eWG1R316HwhVkoRyehyApu5cUeT78YJjdeNJpullFOWZUEtMEtgrbVuW9lWCt+ZViSQrLWK5H3NR0Q7Dcnce/m07KBx14+/+uLd+VReiyZ3ZCYRr6Kn7vU+kOyBO42HJUmUJElDZHXEsAOKzEsbHUk9YrOBw+YIAz6O3A1NCapNcDcWo600lZq7EcZ2T2xAKzHBboNF171IttqDDjmD9nsPTpG5LqcCgPXPLpfIRAIZNt74ujHUjkRqSzLG3sJ2wGbcsMB5m5lH0Jh4R6YWj9M2/J5C/7nPcXrj1T0KGtgXHxlVFKK8cofEOGBFhieWrqz3FK9hQojnjWTvhiSD4pgREDMtpVTY+byQLNfKlE6nU9n1MZ0TaAKNiAcWjaCS2sFqA7YGqGHpVfLVCPTG8hLzvCPozPOvnQahd8kMbuUOhCHo3AH7Yfn4V7giZt5HjP3llolg2hV6bquLoPFBP6baaue6LXrUVz9onOwc8Zauxfd2HtPLyYEf3+rrWq2dngGE0oK/BsgGNdBmtSJpwVNYdaZgxK0ZkIwgIlnNLmvZqrL5CNjOnUgL01PSTQWg9eAmM6NH7anVWrdt62ZkNz4niDpxozCldL1evUGeP7ssC/bTQN9x3VuSDjB0VQfsSouTQzNnyWigmsR1TKn5+8wcgUkDlcwd1qM0x1EVDhsaJJieBj1KbuhsHzC8HO2DuxS9mYrus1esm74i/vi/uv+m44MhyNARzxOleOpjcnsOSEriqDTsj7gM7a66GHxjTSPVnNNY8ngLyVJWeVh0LWA2KWvZQHrQw5hzrUaa10KJixrzNLPssBHJscovgK/ev3s8n77XVyCrUQ0mNiJWog+vIUfgwSatZxbprbAJUAeyuOzUoem/TrIus499rPKDoIpFaq7cV/w5Hk560K2NTj/m2dR7DRut6qmFCvJ3uUXz5o104YATHRvggfEtNENd9mwNULnz8prZzM+JuEVSK2DOtf3szeYhN8fQyNk96TCUiAz4aEulaT7ACfMAip139p74eZeKIW6hv9c3qO8mW14NR1RnJCsiYqUFTcR6Q9jj/UAAM6MJAujM6DX3r9drOi2JvRAPAO8GmrqpJzy1LAtkFoRxs0mThU0Ha3UFN0JJddpOEIJL7zBItSTCru+6lYmdMQR8bpa0Ulo7ubg147bDK0iqTaH58Oq7+HCH5I1n2XG+4ZJMgnqjW88BMfOGD3iJPWodeHAHCHvOjmuHiaSqfrrW1+t6VVlCM/PKjVjwG6/xloYq44Wt/Y8Ls7sMoDE3kmvl5bqVrUKEaOk3fmhJthZGBiOHz81rGkEkdUOd1przYubSVxPNtIUWTiiNs9aqEt8DmhOaWK6yT1hbPonq2Li4rYcwjtutOVyHG9oDLpIGTsyQkjukSIOauvQzTEGj89UUJhg42SCGt6+2z5DE240GWtAJu9yKnXGlHxabuQy1VsosGd2b008Sd4CVl9G2Hm49rMrbVqncCi7Xqg+2lus5v7teqrvprZnEmm59G5I91phbUA1T17Ta9cWHx8fz6Xt7SSlRmz3WVBQ7k90YaGgSSCJmgJiZbiWOGaEfl2oWnWR705ABQvUaazeCvKruEtiFk7XsVMOZn1BhzWOPwL/3dPNIScMO+WHw7MEDQWmIokaaeA1xNcKEM/g2oqPepPCPVZt5XpyMp9jaCgyGFBnkZzVgM0tGnQkyZj3WLJpA43rH2bgdKm5inGpYVLiz+VLbVTGN8JFMzHe55aPHuN2+N4CCPHCOFvIFVbUkT+/eASh1rarptAh4uVzycvZ2tnHADx++rHUrpdR1a664okjgkj3/gCGqD0IhXFDwzXPaRI963bdXuzvzW0Pi4SjdUoH9Mu+PPL/sYPsNxHZQkPhqAFW3AVv2O83slPLAt07OYGZMiV0W8bjFTBGRTe+kf+xO9P7L3iDAw4OLSBLhVspblU/r5brh3Sk8QoXaLWTuoQQGH/osLBqs5oMkLxteVy1q0hpY9aEoNBGrvVj30Dhc8wPQHPmJJqytlM00ybsMzVpbR96cc855aGCSelDbZ+wWY6BuMm1LRVX2XJ+mbZA7Ly8IHA/14FKI8ZtiXrXP36JmEA8b5Gin5gF0/d3jPEqpMwPK03vinOO++Pf1noZjNjw2Tc2bdCtFI/lOGTj8eQCdaSszjYAYfZ7tcMu+WxqDfHCgRdYDipmtmJWKl7eVXyVVTUt+fn4u5QuR3HI+pzKzCz2JU81KzUhiLKYMuPrjr756/+5R7GsvZKgwUjxHKFLPsdSg1TX7j/RC8IeNv0WvSHemQK2tOiBulK3xiKqOUv3Wzol/gCUvgCZmpoRaRSszDWCGt0XiotqiPV1JZSCXEz8c8ZwO3bvYx7Ku67Q/Qw6AdXE4paR7EEUcIpWE6cij8IozyWync1gvAnoX3bUq3KPZKIIpIUAvSjw30XHu1ns0135D+Nx0E19n4RrjDKf+gRDvF0vndfAoeAPZgybD+INHjPZhqhj5pmb21Y9+eDqdrterqSdcmVDEK+L2Ijg7KGWhCZKIivYUGrFmVvHQWBNp/gzCSh3v6tNuEQQWIiTiDQdo+IdDMJTZfXo0vjzY2cysqXEdtkc8/AwTjtsUse6W1uw+3BtMu/LRi3cfD/thPvEcDQj4lyll06IKp26F26Xy9W19W6l5cmDrvsnb9WLPSifAP1O548B3h1y4bnZdy1btnP2cVjKBUYY1VUKtifoe3TuLCQN+ruvBHd5bN87I03m/qlrHvXGQHbXieYzzT27M8jZcfkZC0kfEukNYaISPUw/AhgGmBU4rS2tSTbI3uXN6ogNobfZm5uW1+0vZvpunIMK8PaIHA9JYY7j5QH8OZtc7Zzn8NC5T2HTx+rDz8QNY4utIppS2bYuneOCwJK/cedqKKmStZVmWy2Xdtu18PqtCpHkYb4ypuznntlSTUTrRry+++OLpPFFf3AHdmw+6Pdc8RpQkmVMuWmutaqA7gFvr6W3sxADKAaUGwpFU1HFzAtwEg8AmAbd1hHS6MEjv2gM4CfVuUzDntYZj/ig5FGCrtSonyo69bLvVze+dLn6GAQf+OhbrIaYH/HBac93WuPwDMrUPrLDmMhmJLof7d0AIz5o3A4QwdZuwmhKxFjeCRHwIST1MJn4TgxfaokJkb9R0vbpNRMSohznkF8rYLNXOgCl3Z8Lug0Q4LX68f/jDHz6/vly31dn5uq2W8uPj47oWY2uddumjffr0CQtRFR2TAU81qCKJblfzHAmlEgqDUlIS0m3XJokikqDbOvZ9IonZspz9EDok2Pnl6OI1qe2NMrcLKhkEZWDXztky4HNH/b3FEx194/sERpS4ttSWdgrqVkTEYj43SbIOH3BKakBVXxRjd539HG6/QZBUaq2laEq10Q3ldduua6qP8SHpvS2Ol+y571jdcHkc/r17kawFpcCMHHliVMrc0Hb4Va3RdhNJ7CZNAK6j115c/NAZaVqeetKt+ziGBtY54R1hYickmaZmoIF0QRFq3nmazexng9KMWBN0H3CHWxuuPdXh0HRE95dJ46l9WAcLRqClwXLKdnN1Q3Skb5NuD5y3ICgM9B2uOj/pGnBm0KhbQ86kVK1CZ5swASJVrZje8XafPyX79jNjhttW3A1cawVspD4qYEmWdKr1bS2F9SIipaKU8vDwYGaqXBYZafF38c3M8oIMYEOVlCQUbLsy//d+kv/J0+Nlef/0+qua3omlT7ycNDBwr48DGHDZVulRZaxmqRbv+5sX+L5SZG6DKYq7waRnrJvXe+tOUe2yLqp5ZxHSREBVKgHLICRpP9iDMLm7BvCKKgogUdRUawGQcla10ctl9LUGJKVlESmm1VS1qCgTk+6KhIYdavhEEgZK9yHJlSZU0qRZhsQkiZZJQwca1VqTVw+H0W8P4WBRRWgVK0WqbjZ09B7sQErZvI/m9H36rhcX0M1YzLTFsYuI1ioDm53VtW5rJiI9e651UEk5JW20snQgN0K5Xicf7QcjJdm2DSlRWG1r3CclKNW80WwCYLUMgXpme6oK3FoBLyRdawXa63qwFUSy+9dzTj3TFI+PD5f1bb28iVang4nLVmqBgvBGyyHAE9vrxfNfDdUtKJISIJtBytaIUXKaoAnMpJ56elg11aqrotWpcHGRqgWDYpLe8izK2u1st8aQI5mnSSceJW5mQNfX3cNn0xwXzrOLhU4EAU//ddXMqgmRk1pBwZIAnt42O38mK6duhV7WQQbjIUkT0+alaqjlbtWckxPo7bqe81LUsiT3lsF7Egxdx9PnjGAyoMAkLwAqKCASvLxzknN+OMHs+raWUiXV76/nq30QG/ISeF3tRDPApGfgJ9NkhtoqXgF7cjwKXJi1Yly+nR67rq3QAMAE0IwF27dYHqrkc31TPp6W18uL1Cc+FbUCQ6KoqPckEYMmUysJCanlUVRTMz0vJz/gXqDDt6mU0tOnW3L8tm2quqR8WpYhiIxiCZKTlkZrcs7snQZIVsKLF3i0P6zC23XvRdK2ubVKbgUonMe64Wq7rnLKpVYIlVa1ZMmLpHVdi9cDQLP8WOs4XEMwhDANwVGst3jvFULI5lNoRMyhQdK7wi/L4t8g6Oi1VuiMEYkuG9Sq/adW4k1rqeX08DgEXMARgymlWp20qzNqkMZCeuUCUa+m0gmpy0CtjLYbNUA1K9u2LNkpRpJsSi8h0fC2cisv35pu+YdfLGXbvl15+vo7e3q/LfkCPa8bmVMplyU/DRw220Ul5w7No1T4/sOXJNf18nh6l5flslVB6T6v4xU5/J5L9WbUQaDzgMlYnJXB77hrJxJuKEPyGi8FGFSi+G983fjsv44a0V16MtNqXb2ungnjJ9T2HZK7ruFimgUmBz+7k7c2W4oOJSXkv46ljXOSAo0YpukINAtx9ofuoVGtjOWjx+Bx2AGHtoQkIpIcRB5lo5pzSikVU1/RWKG6bMoeTEWKTd/nARNU1WOpxhZ0xjNvG8CyYLm9e4kIeju58bnHCjRehWYEs5eXF62VZNXq3m6OkN0ww4AbjQTYhCrZg04GJMeEo5gsMtjAXk0Px+n2vDRoALCWxdsx5+hnaaNps9rcTj6qv4fXNJt5MUmpWjWDmWZpzrnbuUVzwu0WmNl4V1yv9tzriKvxszNgAJzdbOY92uisf0nUSkBEzudzwfW62evb+nqeEz6dTle7CSglzPYRpOE6mO4HiXAdkFQvGckmT+NyLdtWjBABjbVUhVEA0pShVcAgOAcTxTQdW6jsPYDMhMF4xpSiKZX7U8OQiXdLZgejGnTjLn0GUIuZTaKHXo6bkJRcMW0W5q2WGuznvvWRao23RyuXF9AYcxvqQa3TZTMwh72A/2GS5PTmRGyZ/HUPhxtYtcrh/cE6H5em2pSyjTmM0axHgx8n0+r8dIQf/bAMJFLK5yQsr9u2XepW1krjupYRMEtSbbu7cePKg0wf7nt699WHD++WbFULmRQVrRrBvA5ndUdVb24bVMw/5JRvVX4zW2Qyqt/wrjbOPQY8gB7pJgOJH4d2vBtoWrr2ZjFmJgD3RexuCVZcXfsT3VzTKTi0JRMd5tOQeCsk0bMMTbWVWArNosfSIqseVzt7va56NMuQ5BKDg5qRx0gFRZo66K1QDXBLtwnFZNIIMyRUU+mp9+4iNTd5pTtR0x5UMr/vHMnMhrPJRz7gBm4QtH8fpSiaGcXjPz21QUH/XN9etpyzNIFaY7dK3PCwEIvhNgzAt31X5SNsbg8ujbM1s1KKBwDeTHt+GJ/748lr/Nyibnx1+zIk6B8Oc2wWFGdbgJMIjUtaLtsFzFqrJB48JwMPD0g1vu8aT4wHTCLiGqdj6ab1lLLH7DCO2B7x/7QSYGzHrv1oXsTRzQFeuZNMSdYrXl62jy+lfDkdYWqz0Pr4zoe9VSEGNA570SZoFV4j1AytAFm1as9v9boWM3PByqu9M6FVQr/ZoHZAwuVvHDEKA8j+56HJ8bhh0Ksx4dsX7RFpckG/5DfXQE4LYF7ApqdWUiSXUphEqyp7j17XFhjpj91Ow2kPOtc/oGVc1yHcoQPtuEeHxyM1s57epntsj2dHQm+6MTcfWUTsWEniziBjMkNdMbtf4IUkVEETyWaoCo9NPqXl+eXV9CsYzShJqlly6f4zl0fQNLtFJCFpefzpz378/l2uK9ay5dMZtsJSrJYVr0Ef2XVA65YTdCwZAHVjxcSwYJqL348xbXayOu4Zb6KII4ocYA3As7KqtfnQPMvPzca76hBm5nLyYXx+Jk643yF0Bk/tzeaAXuv/MJ+5iqoeACwio+p9vHPytmKAVygEQEHiyOSDqTqEW9i9+2+ss7pW8tPMWp1qPfjRAVyrLi42RKW5J+LXZhVG+zJQbX98sDQbq2td3EzNVLHkow00UpzBm8eAQ+kf/gX0AiDjwYEz7YMqwDRaSjcLcL2zYWxVPAnYDK2Tcep82Bj9MRApTl5VvfqwCVvpDb+z39PnfNRxOa9dEZIb5MVoWBtV2LtTanADnp4ekgogGwuRgI2m/cgfrzs2kvYhlIsHhnXRtEG+Vc9fWKvKnFIgao5O6KJYuMbIJrJIhnLbtqIVRVXxdsXHN1ttIoya3fDZf8lle2Y2wSqtsrCZwKq5xgt7veJtaxXcE7NZ5awHGveuNT5TVfY0cKCFVqgqBS4UNhiw/TkAGNm2eXfgG11FZKb+Wz+2/mtOjd8cEOUu0YPHhYUKB8P0Wsqak5iZTqlrergAxGCXKAHEY2shStnMjLNpowylMRpFVL131JjPQLwolCMYz+JWHs9Gp6X+MQKw/6xmMowEGIpWP90kPcvGujlhHEtJLQAzbr8BAtu2TZNiQ60qOQMiSK8vr2sxF0mEZLWUhUGAPphk7p9GACk/fvnlh4xSoabI57y+vUJ/UxLeWDbZyhdE0BxoxDAF++LHZtQyGood9Y/PvHH35+ED9sLLmNIoMcNIKdo9BpuhLsHmvXvLzazan6mLO37surx/p8mBi3jnZdHelc96sJKqeqK6Rb7iw9pE9AOEA0zmnzEKYGj5tdaz5A6BeZ4A1E4zNMTpxHdhHAwvWAE1NLLYluvTa4Gixo6+UHSJ5A6NiKv43DHrP/mAI7jGnN079TstZy/dnXpZFW3hGLvXjUu8JNqYWNcthDKO4oFScBczTP+z9Hzc2D3PMKuTdBs+0MoD9ZBetmITHlq73OsLG/FzGAPMPHP3/rqWhb/zwy8fRL7/7uXlZdpn7jKwwVAPg9hR0NxlV7d1BQJt0jRyjYZoaRhweKlDxuHcppFEqlStRes5L8X041t5vYbXi9QbpPgcfbhLdub3/bPpCCMRgNeSihK01vaHKUka/vcx4Ge2po8ZXE4DW6xngWNPFYccfHcJhyMTz35kM2P8uOR5ZmPodVt0E8Gd15qFJOlQ/7WPv6MAY7aRucpnTMdpH11/uOLkGyQ7wYw3iEgpZTL4wJtHs86+rcc6MB6d0+dTUjphf7V3cdf6ooPFRvtOM5tHDzAokDxS/PlyfZ/y5XLJ51RWrGt595igEzF+AwvLzSx5Q+/y8u7d44kspirLqaDWumU8MjQIi4/cPbokt1pcDyObkKghiDeO0BjPXgYfe3nowqS9sAb38k58cHx/y5AwbMjay9RL3PJGEQ0sVoQSPYLtRV1IClvtfyfAQDUxDyaCesuUEsZvhh0vSDeMLWLivflUdTmw1RFWHTT+cYNqc4IihM6SrLWWHrkQNyjCyn9wxzwA7Zg3NsjMUJW5J3E1ABGtJP7RfLqjUN3l5OgbT29fyh1yNjZ9RKLN/fIHRUZFGzRCEOijGqra4JoTB3ZAmKjUDn5E5kRU3kzP9sh5+GmAs4biMIcRxpetw31j/ztjT/wwYv0A6bpv+2D7yowHZnnKy4+++vDjd6c/L6/Pb/y0FpO92rW/ooA4zg522n+TDJr2wF5px4xJFAbxhrIec09M+wj6tANA2AM4us1g05paQ6Hk4TBbxdtqazCpuqXhdskH4nWL6gPC4xH1UA8VhSUkMhGk4lpQkSQlVWWP91JUMzGD5w9EPBev3dX7bSAcq8iNJmA7bztg0TiS2B+H0cM7vjSubjzYyJ3JrMljTdkAULSQzDlPVadWrTUlmb3HkISC1phrJxPcBWk8IPv1TvIyotabWtJKGO26GXLY58kRjThsXYf13q797kWSUxXisDB5ATKGuMiOzzsr2lh7rXUWfg9boKpyOoEJwMu1lKe0bXV5f17X9e11++LduVWS93iYmnYTC9P+rAb80//iP8DvAf/Lfx/A8+du+rfiuu8z6VcjJH9jb7985vv1b+yNfl0//9Ptqz83yX8Dr7f/Ojd/+t/8o7+pefzrXvcdPP9q18BSAhvw/2h//Tf9P7IvB/D/W5Te/uW3/Otc/xT4p+FPVSCNRYxSkc7KD3FD7YrcIsoovQaASwuJRjVDxetbrYYlJcOmqlrMxKoWyrlJJUHLFIFXeYhzPvBdBj8oQ+/LKLGNAe+JC7sYi0i+I/+b7DlMJjISo3dgdHtVZ7losccpZ+nRnZKSx2a3B/3p/cR6JMSuChuDzjCkkziTOPOhgh8kj+HG7lms1cxiw8Gxjy6dq05fO4BZ7Scovv5TDDM8gN0Zc5QDfJBSyrAYicgojd40CnLTuuS81SLLqWoLF/308vKznzyQu+DEz115ymu4te789vrt9dvrt9e/Kdf/4n/6d/7G3/E/+RGA17/x1/z2+rfkugLPwL+YX3y1//3otI02M7NedYxAYoby5//oP/wbnOxvr99ev71+e/32+u31/8eXF4aCkEn49X/5H48fdh6b5aH8/D/9D/7X/6v//X/0p18+4qqylJcNrQ6IBa97M1ZYbrFzSWYwESxmzsRJWG8QjRaQOO02w54Q3ZnD16tmZPLyb0yCrVm/SI9P2tlkxquHy6GHPLT6qcN7ujycPQW+mgI7Y0W0q8y5lUNsV7PGJEQDUfBRxTaCmLFdci9IwdcyrD3sAVPoFX+G+0SnA8dsb/9pC0crtTNh6+3k6gz5Hlt5WKn2ND4vybaLjbxJ7TAz1BnCEIG/2/edn3ia/0cQU598T+Eos/+uX96eJ0Ymx0C5zObPFhGkmTJkpY7tAPD8b57x+bfXb6/fXv92X//b/9sLQtwiyaMPePAbhZ0e3v/uT36QxKoiwTYDKNHXEgNqPKTGzLR6QSSISNo3Wdxxx1341dTKI2EdlH18r4ewTD1azQ9892DrHzeIiNeRYIsommF49MZNe0MBAstpgIIcvrk3kzA9tpqaZlZ6zL94kb+byAuEacf8toNHITKzWHIv3pA8mjrE1iP4om7dJNu2jZeOQQ6Ra9aveBv76qKrZkBveDpGfvNhCXuG6vmZBoAe2mNdJiBGjtatwAFg9GAZpRkCvs0lv/uf/acjLpTk6D3XJ59o6oF2feCB6qlJcF3gcykn1oEyVNRW9lJrCzvvYlN2IaaU9XbywLFvB+LrQwTyiLVWzMO431D+D/778j//9/7H79P7f/LP/rP/+59++3/5r35ZX3CSRTk6yCR0Dyp6B7ohY/Ug8BRD4cZ+qfbKU7KTUNs0QgxaCjPs89dR5r2jZfIiqQBS68v2pvnD9eXTv/v7p3/v7//gd3/n6ZxE6lbkfm1kQbqV6sxanvrtOc3gpmTeyIXbE9Pr6en0Z3+2/Z/+5Ltff/3JsBjzul49xzPLwiSllJi74bCSlKSX6lRVK9VUveq4sRWMOxw3dk2gluJ1ilJKijrgM3p51VqznIfgG0VkySRnGV2Yaam11rTkSOvGeZR9LbaokEhrKtyrZ9S6rittkouiVVVTWnLOo4QqANXij8fvSWKU+zJLnNW7pGdFjll50wKEgGrVSV4a6LxiIOHwbN/0Y35aHiZZ64fUzKQXfokEk6TH/PiEnYK595eyeIdmEXHlhGqlFE1RM5yxVAIaxJYNFSfNf/cn+PHj5W99+Ufv3un29vr3/vjHv/8H59fnl1P+SkG1F3EKs0dCC5Wwbi85nb74vR9/saRaCk8nWWknhSYONjCYloho7YAjtEOKcodL+fb3Zh7u4/9N3md/XZ2qHpW9OKlZ3veJu+VPcZCx92TLvXc2ObBTRFQ5Wnmw1b72ZU34Weh9e3u2I8sZr6bnv9L7k3GUduLI1j/EZej8bDbDCuNy7r79zvFTj2Ft+dYePssw2lCj47THCHE59rmsynuvvrsjn8O3sQUWWDhJ9BZGDDwVbsaZ+xE22gcRMmzELVaM2mcA4H0vG0FrRPxQxD/MzWFoZubNc9FLcEyiDNls03btBEFtpbhb+bMx7JxMh3OUDz4HtM9CE6jA9a0I394//vB33n/503cfv3wnv35TQEdAsomH6oOA91ED4VFNjvFG5JA36fPxMm0e1U/uMnsP6BFBJ/CeNK2rbgLYG7FxmFLaiky9UiOMxMuqbyaqamIaIuFvVtx2fkSbmXm0Ue5P7Gxj1VNr/DcxI4rpWkqtnnpC0sR6S+/OUeIa2/lqeDsH9y0XkdjCDzcWPttfLQwbrhB4wHp1RNNQQWEunL2TjLXGTOPtETgM1y2+RYLDIXuZ5ZzrNgVEacUbmBJVZcwHIX18/5ap58yQbL9NWwaoV7I7TDXu7OEn1erMu7+mKxIhZzcC1cePh8g/lFJ505eMpKE2K6YatJoZDKZlJFMcqJ91GgKwFts2rQ8sRUWkGj89X4h3Zl6xiD2b7M51JwqavXxBOn/46Y/evXtaPn2vSYi8yDYbGs/sPZKkh3enlJhEO96o1tPphL14PjeqXyITOT53jWdNSOxgcTha7X5tSk/LX7KZ4onOhwZaqKoX6ndaRHoXQR5eESjFTOg4oJESrtGCNBkUqmXOGECRRQSQetNTYYfE0o4WSXRiQQDNjmpjvSTNZpGshk/9UtXIHtokVWMKUKQso3TU4MrzLH0manHu3T3pJx4/Oy75vrSE/ZkZgJWbn25xpuJYvEYMql4BOGDIIP12sJbvdtPCLkdMiGWvvIrTgKGElEqoNyw6WjjY2zIcCGJc/qCP7dU3S759aqyaJCWVqya8JSk/+eqHP/vwlz/5cPr+24sVM1QYjVkApYvCMijEYfzu2hjmHDp5vTnEiJuFHdwQj+aYrqoqMWryWN+TVsuCdoKmlJ43vqzYanlICZIkRAXHqw68YufBXgsBdy4HaBOC+0hasVVdt1qrJWkVfhLFV84gYOGmbgkijyF577URaO4lGTtYa/UgZIms3dAafQwaFQA+JCcOkApNcSAp8/5Y9C1oUMuysGcXjleP++Nn9OO/Mx0FRB10Q0N2opMw6W0Gm+a9P91xYqNLEoMYKuJlTcycmaExYNn3qGU/+APgEQKREB2+J1lLK5Rt8JLUO1gdnh3n0YyJWU23oma2ls34YJC319VLcMZ+w3OEUF50V4oyzmkzJR9++JS//OLx268/oVolqDQezmeD4ChjZqrWGarBXNMfN89VBf69I3O9OsEOTKSkZJ4jtt9+rXeKsJP0dgsRZG0aY262A4op2CthjQbOY+Zx8n55on1870Ca8WUsnd2O/LiNwp5GeRg8Ltxa5yy5vTPCP15HilwVXu7WZ+X6l8FEGw7BeotggzQDngXhEXup/3alczI4XvGIRmAe7sFNwl94kaGVYuybRYWYt2Xs0+B+vHnapZfrOgAq/Mn9n6Mox/3qwj6f2bXaiQxp8OLYttUNVBoEXqAgWa8g7DJESklyKm9vNzNpf94F8s1Gz+9bQem9vKiq5YpaPoLbDz58+N0v5Xfe8S8WrGU870ovq1mvRnqHsQ00GJJWN03fIRoRM+dEfe17nq3cLWmHWL59SitFRF43+3gt20YuqJZSP0S3UzXzsmu+oZ5Us/81TtUSe49ttBnqVmopXTfyHXQ6j5mfejOgkIkNG400mEkrPweYWKvAIp2PN8ystSIkJR/ABd1R7cjnxv46NM0dNH2P7oPlM9cYB7eng0m1mlXPVkIv4COjgA/pKdC7aWO2SxnTJukNu+NMog7aISAREeKYIiJp9OyZ2sJuQztyRWN7hIDtPZIDhe7/S1CYmOo9lI4jk6ww1arAtl2rZZF8uep102Yo4qnv/h2inW8X41fRaun8/uH0ox98+NM//VTLakuCmsmOFg9o5nzyGCZVYx5+I4u1SXckO9TiYIA1brzF8dz2D58TvQOLCqQ/DoVGRHa9F/0QjmdF5oNHN2e/0r4Be8eAA2vcF4Jv62tiYCKZEqt209PeadprKTsjuN2gOCvb1yeK6NVzEAMaNbZmt5MPm7DbXzMbRdUPRHYP5COUEHA67uZhH8ldiQiSY8JDo8UonhAknjGNOdsYHaYHxTHi0m7ttwfMdJd3P2470Mou14BobmpV71SWzKb0OdibjeaGN31eOQwnZtjnQR5i32xKHiApELv1xyus4nL9XlEezk9/60dPP/lw+sH77Zdvu/krGq2Xu5O5sXmML6fAHV7qPkXHrgA6jCX00ELCWuHoUWginmkRMRPUQqZL4cvF/XS5GsV2gtpccl99O+bW58wdGs/P7gsKxKcYNq3WQlQjHEgk91ZGMrKjUWF/YXYgPmMokgiQGUAzm3SSHXwd2eooHDEGIVlE3QNM263raKkOW2Z7fEZk5CEUdBxYH298qeqomIcyfTf3ukEszCHCIRAQ15THn+wlcRhlvoNcPve3fx5Hw2E7fopNIMZTEYyHMUcpSrK5oyCivcXTIMzx3DUVjjBYAUhUW1UfmZZa366X7d1jKpumtMOBSeFJ/IZCHGaW0vL0kL/84l0DhCwDfOPDkItLKQ6snDPzdJ57A8WxDTaFvoFLMSA5dBwK0VvwJu2kwPF18qrUBznQ4vHSA7it+VR4sMoH/G6V56KrI+DWxKf9ATsGOwx8O+C9NbJtJLNI64F109pBOiKaGbvWLt19G5d2OAMMF0LJzyZT91UeZN7xuEiKAw6MMbPRo+lwmMfNtvf3xA8DiR0f+hLm22+oxn1Xot3TtOJGtDqinSwO3Ni2bURBsxuQzSwlr/d7X6MKZ3sSrNuX+ntzzqkZEsVLjquqD44uZKiqFqu15n1lt3jdWhHHZ06DWNuawfMOMAGwCC7lDWI5y4++evzBh9OPvuSvfv1pCOPG2lwd9zAnvtr2JtDbKPdI9+Mc2HCN7tJxoGkv00e2tlPuHHQNR1y7ytnKFUir6lrMVIS9n2C4AmT8J/c3sVv5etWwm831ebVd7gs5mmFQ6bFdhgiZyAtjC4Xm81fjvgYFgGH98sKocSv9z7J1gczjgHrkY6OQN4UePYzUVLWr5mqqZmlPnyNS3YHAuHqcnZfH8lUczvhA42H8GwL3AG+Hz6QhDhNfSOqroBqy10sepB4MVpaIVG11ta30IIjs8XCnEx5kEdcJhz54QPK0SCkFMENrD2C0qjUxH4hD2AiqmtG8XS4FBlVVkWQbS1EIDTW+rlHUoA3/fwGHWLdBY1+mcwAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 20,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "Image.fromarray(origin_RGB[0])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "id": "d13ed2df-ceb8-46c8-8bfc-aa7ff3750f03",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAIAAAC6s0uzAAEAAElEQVR4nOz9ebhtR3Ufiv7GqDlXs/u9T3+ko16AwAYM17GNO0AgBNi4Se8k9yV2DEiiEWqORJPcxKYREhIIkATYuXGcfHZsPweDMWAQAhwbCMaYHoQ61Byd/ux9druaWWPcP0ZVzZpz7SOT926+9933UR8crb1WzZrVjBp9Q2+47h8QEYgAKIFIichDnQqYAK1UVD2YAJDCKQCASOFV1asysyoxMwAArCBWABobERERAK9kfwIQeFUFQBAiss8AVH16CoCIxDHB5EREVe1dIkIM9UrM9joAHgqAma1n+h4AEbHCg4gUABgQ9d6raumcj93ERgDF+YTv4yCsqiLCUCEJC2GCsoCIiH29ZA/13gNwzolUakOSs6VpnCGIQKKqDAeAwtOkYW/TzqhzrvJKRMxM5ABAlBWkSPtPcXxmJiLARgYRERwAVQKIOS3Q2+bYU7GxEOzFToUApcoGTz0EDIDUA2Ivskl6EAAFh33OtlFVAQ5PA2RzUxDDa5ow0kzsKY7nm8NSOlMAJGqfRSTsAykkdCA4JRCLqpISABe2N86KwvJFhEFE5ECjCp2iAEREbLYeFGYbTyefkqLK4QThsBlg2+F61XYXvHfOKQRKzCwCFeecU4xtMxMAh/OAU4M3UhtbCSpQVbbjtm0ntatqPznmsHs+XBwiB+UIBgDADGJlDXNTVaCAMqkjuIqrghiiJMq2+VTDJ0DK5EBxq5W4tGk74rRLRGTnno7PYEPVAwUgBufWUwTMbFc49UwHZH3sVxs//ZtgxsDAOpAXaSIBW7dUntJC4FUoXZ/6TAnhMxwAkEA0YK2IMNmrEJQQUKjdLg1AFccMk7Qp1TPJZuW1sqNReDsUOyOCCzsTX8rMFPFb2uFsQK7BjCRuMgAOm6+cOqtqWRSGA/MLZRchbrtT9V6FSJkR9kMMCXOYA0F9VUN946BzrAJVkvAuBsQWC+U0bYZTjMGiChVHVKiKYVUA4SAMG8AD4tQJPAAlVlUVYiIVIvYABKqqHj4cOsASQEVV7TjjhMNavPcJ9hJcqUqET7bZGp2y24McBTlXb6MBvSgrVLhSESWGc0SkIFJiLciB0MDyqgp4hSFgZRWhgIyVwBRpG9VgJOKBIswVolLveyIMqkoqMGRup6OIIJJdD63hAJFqgkCojzMchmHaeHXtXU7hofHqUpohK6BQ1YIpoEPRbH/rz0Y1FDXuS31yYJI4MpEzbE+KtCfpQeecqgYSZdeoSdGN6qhqIsyQetNacwDgXCKBoqoEJiKOCHFbuLevDK2rpO6pQ7M/CTTeYY6AooZfajgBwCRE5MXH/UivMyygcV1Ga9OKNL0URCRQAhsMUvgaFLEJEaSBGtLMa5gRTTxZvfNgkMTuCjCUOABRmmf234iLoQj/sqr6+DglHMdNBJrmU5aliPhKYk8kECcqIhKsX2/nThSuOjMr2eZnpxaPVQ2NxMcNvzNYSZEBbXiFGFgYLxHJEqXFCwhQtoENNAAYIQxYDkJ2+qRUI+J6N9P+E5Ejziacf6bm5xwRi9Z8TI4E6+cyjEQ5dOUtB/W0jTkYaJQMEv+XKESOl4B0qk0oUlDcWoUnNBZlD9eziXuHmvilX2v4yZeWN2YGSBVMhV0ZAMxkuDS/rqqqkl83ag4oWV/DWq5+qdayiv2b+LwWxqjxfBRpiNTuAhEpIplQApOIGFLhOJnJMeP30mDBw4YgvIgEJoTEm5P2UFWhrDkkEAAWJJ4egSMElESN16HwgL2I410yxDN5EJPfZKREE3gnocVQFSTwb0VTcrC9o8guELFjx3AMkAa+sFBVY97tCQOdAHYqdsFZIREmAggnEInLE/UAuQkIy9k0VY3ynR2AppOIB88kmhjP1qYkfBd4W6rBOr/DbFyqYwAcjpYQx2Rm9V5VlUP/gllEHFE6qowYq9Rza8AWYFhMIqlmQElJOc1Z442VNAIBgghkNS3xzU0z2TctKgdlY0KtJTgmJWIqIj5KT5EN5eoXKcIVYsOA9eZTDtkS1qPpCHzgPbVmcm1Am092guFVTIHzCPSWFQCEwofwOMERKRQgx4i3TuOaYahRa94/PcsJnbLRC+RSFAWWI36AiidiDgyfaOQCA8PHcV/CbVEQqZA4pK0jB8AxST1/e2OESa9iGoI0AdGgT0nHR/F4lYmZGSq2TiKDtIATARiBTqCl8BGJINxPY+caLEXAE5SjrbTbBIUyEamQ6T+EGGJqLyiDQKSqngDiIHIRHIEpshSamJp4mxJo5ZxHYkazuVkHbn5JBodNEKo5nqj8CNI2QIBPzzaGUrvgUNEAMxOcHuL5Tj4e9zkXeqLkrQB8IBQRvmtswATVwLUHYKJc/E07M9laNC+TPUyO4EiJas5v27HSlFpjqnIgEUSikjMQtrf5bqQzJTX+KKxRSdItImJSJZBGRkdEjDCnkXP8mZB/c7p2BxuoIKPHAsOdNfsiAJgKw7STDFlABAqvSiREDkSQcPQaZcW81XxuPYhpFBrKNmTwkA5ocufTZIWaZxr/x0x+7B2bKCNilIVEVQuBbwxXI2tB4vsgHBftI3ZAxggQgSPzmNFLHz/EjYhMJdToUGMfKSmsbMciR1mfQ1QwhqFAqoHIcSYHw+6ttoE1cceqSgwmkog9J1BAzcmjeX9ySk9EAg7zVIWCSOFqOj15igCckXWOgqx4StJeekvEwq2mxiuGO2OIhsPlJ0n6EASCpwyahD5iBYlpHJu/mEY9SAwtDJW0Z2zXgAKEsAsHkZMCu0gGt1FpFS4zg7X1WgKDXFI5oon+jBHJFL8AWJEJsARWIhDbxlHAVpRwvQ3FDSYD4To5kASyiJpYJrJq5g8i44cYJGjsTPrsKyFyRC7q9kWh0MR7OQTGSwy1QdO60p03tjKpGdg+x32mpNZm1aDChUi2mwmBGgELsCdSax810G0KGg42fjg+G94aN0JA5LQwjiiooogAUmYK8NCmtNRgOCabmAUgrZEZSZmcrSKg4xYtDOfYhM/8oqWfNCpFfH0ELY6gNVvbakJkdIx9zGeb05gWACRGX0zTkBghg4T21UBaXRpZQVBDPAQIwfT6hqUUUTvRehAZwWsR4JxytNYeCSoZBW2MKeGmhYm5BoNVo+jYBMpJY6+a6yEiQubITiXFuMGBzzCGYQhTE6ZpZryasvESJLVcQcqAaHwiYd1w323r0wvUUJaCKevZ/jeqhWpDW8b0pzOl5iORBhtWlCrNXOKrk2SryqpVfUxMRZT0aprBRvXYyFujRTbTjrzNDxBRJLqaZpmTRjv4cIQINhgJa473KmeRo824eTkpB6kWIOafW9+ETZHG3W58zqnOGZjWbLTAT8R+lMSXBPdvuP2v7Le3vObH0xzCmWnAnPXNScIWlJm8FyJ6/bv+0ka46XU/nV5DuThISsLX3vapM031joMvSXcmwpKo4qpbPpZ3e9/rfz7efEr7kB0FkyrgEeEv0te20kbil0k6TAsnIhIFKSm0xa0TQYIYETj9sFiCQkU1nilHvoqau5dmwhE8WmxTZHiM6XLRHK7kfK6YDs9yYNEBCDTtXAuc0ltU1bkyTFlZ4YPqhJBM84H6hn8BYu89UxCjkyaQ2THXr0Ag3jBDUNLth+XDJQBMMzG5wjQKcf2mTzYQtW5i+sK0i+BwczXM1t7l0koTTZBoToi7EUThACdNi0Zro+wIIiZA3qfV4rZUAOd3ypBVjU+iYZip1kY0rjae8EUU9me7lizQTVjdFgwo8JUa0QICwg64IuqBKZm0t11ysvJEN5fGWyYfqW/Wdigx/pnubGPRqWeNlxIumxRbAYAhBHAyaZu3QVOZ355b/rgCphMiIg5KnCCcxUtbm1qD0iPqSJJ1JBfbtCm3xGaCRND9ponphFyR/9oiGWYZTatoyCQkgCa7bf543IHAcsXLBtVgEjKNV73JUHr9Db84sdX5LCUdj0a3HXNLcUHKIWRUJ9/9OKHamp3oXMShycJihin75Ilqy1+4bwAxxLf50GzNQAZJyFY5uddG5ilyf7qNHkyTuiE5Z8Vn04s0boWxP+FxD3njuz+HM7S3vvYn6tGCGjBJyQ3EkUhvq9187XONyyMyNSGuu+0zZ3qdtfde/yIjpmbIueKmj56p5/te/2JBQWo0MnxJCogGx7rwlSRNiZgWJDF98amG7T/6s6hqMhkmLVDuxYAJ3sgjUjg0yWo0YYabE0+QOZrSc4QgyoUDVNWTMlEBM76oZyfpauVQqirMLvCKhjziWPkkUwciCjpMIdFK1TMpEUBFfDBxovWtYQR/IhGJvmAuvaVWippnSjaBupFKxpKnqTKzxD0Pu5RciiLWImIHym1yGWkpCc4EdyKCRu11JA9JOQ+AwcxsvHPOlk/SjElakhBf+ibHg7nRIUeRpgzLCXA8fU6fWxzY5ExqbBDIYnTtDKdTIXPRCF9GiyM39xwZ8kkTCISqoY6mtNVpknboIpVzJZRFBCTOEQDvA8WeJK75XWjCbYMqYKJZv9bmhJ6SYWlAVSUqwG2LNLM7jKqx7XZZllKZl1MDhOIEAqGSbGIAmLS2wiqTScAq1t8cezU79EmNoKrZjGsFg7mjGNLI9K9KHLrkuhaNsnLaKxFJrlhj71PPDM5RH3FwjiNqgm6mo+Vg7vamBICS0Rp1FFzhhJgl8BwZ7YmHoapC8FAPFQKJOpjTT9hsyc63BeKq3rqoWcIo230yY8I2wJFfxcas7DY6SheYABUx/UggXxMAl9/2/KfGOLUypm4AERhKFPpOMPW1fc4OhgwuDTFNriu1N9z++dY3gnr/TTdMomeivgAO3voZ1tAzd2A5U3vvtZeRppXiCagvgFe+7WNhUrDLIKpe1UflrRArcVMHC84crFBvIQBjTchpNE80jbhk/wNQu9FmqNNGcSAHKiiowmyTG+/IkD7VQp6G8eAIjqlDUpAG97P4Lk1WqLiNDLCCRYmDyJwk6nqGyfBZj2M8gE2blTn4AAOmE4rsqTKUoQW0IHLMBblCiQVEjp1r6GaTAoKCW0rJXIRXU7Jw1rxgmikzO2YNJvUEt0zKZFMLMG8oAEIQBKf6OEIBZmXn1eRvpkwUDsfEpPGNiPIT1fe1gW0T21F3rj97NC9XAoMEM5OAkX/Tot+5H1Z+cMhaIi1oULJ6hvmzSsGsGzmkyFBSfJzMIxFCGdsaGbIJRSESX5V3q68GiVniVb29i7dbAj1hy6+JNcfMROF/zV/TTUxtcny7p6Z/8t6cooPhTyof/ajZoBANciBmPN32IIhIwJIoJJCznk+wXpBkiEiIiBTpWnL0GtHI/WOCuOQj23+T1JaTeqVaVPApRKeJo/KhtNmMOxQRQXiWohQKIVYU+cyoZspUNcjsAc6iVKlinpEu2aTTZciW17Arp70wnifNmwKVVyLKNAnCcLlhKz7uiRwFrYO5voZLniPE+qVRXEt7nc2zZlTN0K0UgoKCRy6CC4Q9xaqS85sUpAafvy6aFm5891/lMzGRd5LuIqoTbO2k4KiGueH2BvV929U/1aLHEX+FAdL377z2Belb5kBbnN1tZgBX3PSR1PmuGy8HGFqo0pU3fyjbO2FiRL8wOxkzt6RjCvve1F+ZN5RGU2KwlSrHbvWhp1UgzDBQVqKG4EIBCqPw0cSzFMk5I1ywOjgtZ5VAZEYVFIFjNEg3L52oETIcRZR8L+MKU3CUFyIq2EliJTV/S74yM6+qfSPRf43giKF1JF5lSzDkxeycc977zO3PwNiBzFWVICAGKDr3KQGsLByVZgolTRubExJTYkd6EoWVfD/tBANWZSItJNxWQ27akvnSW5r8Zu5c3cAMRI3X5WuM97VxVdNpxu/FOVdDERFlUlGOWCkzAOdRfI1ZgipzL06uiJqQTOYnTMgd5yntX01mw/eK4JGpALG5DbqoB83jhRK9z2XNAP8AKYSJk33H1mqTyRebPYv8y3wDW/sZvDVzVA8G4BCMFvnjAOAFTI6ix4bCgZTATFVVOcedTqcsy831LVViLpgyYpHh/PA61ohQQxOJoa1B4EHyzJ88r8YRw08AYXChVK27OQrRLgZ5rajU+GD8LKqcoY4cgRg2y/TzasabjErXy9Qasdso1Jx8a0VMbI4rRqS9iHHrChJ2KBwVIOd9IVISCFKNhw5VESRphbJHfd/snrRYWs3sWyA1aZgdSYgjDZeNoRDvVBnONHLZs0IEhoseE7BvLCCnIQ+pcuYGY+weZbxNuAkCk24F4cwcMTM750oiR2CoIyiTh3oN4Vw2T+dcHThkujjnwOF3yizYb7v6p2963c84VzIXb7v6Oen7N9z+eY3igvqwTCX2DPtfNsJP3fS6nyaim17302+7+qfT9wff9RemLcnUrdZE1SuJKTtNK6AkfkJQvuvgS4lKIgcSYn/XjT9Xg4WoSCWqXoQAhiM4BcixUohOTdsukoIKQKTsqCB2YAd2xOYAxlwwF1BWMcZevIYgV7Ig5vykiFo7jGg0c+kHIxQKTr+FnSfAJFdKTqMggfPKFfGQGaoQUUBAFSBEXBKX7JhZSZQEJApv6gUiYgarcCTDY1+psHhSqTF7AAwuI5oDkVMUoBLkHBdAzuCHZvAs1VjVm+wrHgQL3GUOimsBVeac4hyZ2jeQCoEqSXRl9CoQYcCBiEqgC+9YSwfnLOw5jkxcIbhfOCLHyqxgVAWXzCAWQFRIlZSECu9ZKvLKqiRKIMdcBP6YFUF5nkxfJEoi8AIPViXxWtlngQoicFIe/eKIyKsINIiVHDzd7PpbyKlzpRJ7hXUjxwIlx/V8mMixhcQg8uXbejISkZEWYymMubER0v/I1f5HiAQscGSZ3o8cawy/cRq9XonIsZKACazgWognUvN1yEmUIUxjd+L3LMKqDigCHEaxNQmvk8G7hv1ypGefI0gVlClvSA2w81igpnah4EzoJyWYHhRMXDhVX1Wjra0NpSocMURJEJM6iATlGVmMr7Rdn0zfjqBF0agKdACU4CVYpCRoaAnpbqJWOxGpUikovEAs4oyCMyWDChCpJ/WkykzOsUQB1fYtYoPgqWEIhpkZKJ0rnSuYSQvSgk2QgVllzIOEVSnBf82xRSpj49gH83oomI24pH1WEc43PQAZvKraLTIwMjHc4N5eJlopvG1HtqQa0adp5cxa+px7VdiHpANRxbY8UAs+smPON1TTS7cZYlKPkQNc1hJQpu9zzUPeIX9vK3MCESEYOYSI3nb1TzV/Aox+U0Onmg+bzxPQ5IeFpm2s1T+SpfCnywJF6glT45HWS/O7anqeJEm0Nra+zwEF1FxXjR0g0TXZMKlLS84XLjHWvbWcJz7BFlaaON8a8BJyby1Ws8+tF+UfWi8l0nzydmtiN0cxKowCa0CkIJjFRKLiPZfezNlGQCIexqnkCyQyu3K8UFHdzGwRIc6RK8i58L0SqoihSAia04zAt0WftJh7xxLjxIMLqgVHzCyFU+YGqNi/HkF3VW+CryII1UaHXCc8eZqYsF6lnwxajBBaT26ahBvnmN3NvG37Tdre7EDTcWvCY2khLR8Xu+wi4r2n9t1p2ywayl47TdcC41qQaG1avsxE3e3PxI7Wr4vW4hx0iWpfp22PoLVp9TaKppXmu6FegvCgqmo3uh2EElft0rk05jnxdnsw6VMdcYonZmbHnPQ62SDG1LKqOoRj8tlUjaWLjhem/wVrfaHy7W0dbsLnMQ2UmNXPOAYNzt5CGf5JI2jkMM4E1Y0PREWKqU1YICq00nqDupGImEnEA9HZjwjAK9/2Z5NvAnDXjZcTUdzYwBdcedMnJnu+78YX1RYDEVV91TvuvvPgZVfd8sm8250HXwjgyps/OTFAaHdc/8J8F668eZt3vTf2AUJIpaq+5gxjvvPa5+d/arJhZ3YCVaXo+nH9Oz9rX779mp8l81yJKtkM1deaMSLS6E4ePGO2MU5s0xLcXPOOe9KXV7+j7Qt9x8HLiYii+uSOg5dfdfPHAVz59j9D8HwGgFe+7U8nl5nhFYnzo3afCfCdmKcSWaSWmDKbiCwArg6xbWKW1gInbyyQ72o7+C17MKVSIspMJJYVrLWc/Nn4psYqtJYVJp2wFGCGhLNjivraGI9YxxwbxTIjiDRCraPpizlafxUgH/JwEWfxxCnVjuURC7bqOILAdEvsAuaNuReizaymYTa4gtgRQYlJFQQXbGpMRFAMVR2rA4rGLhEomgYpk+/VSzozre1HDUacQ6gO1fCzHQSlTbMI5hwG6tsnwllPBBXx9qNhO+NfC6pb1CsdcZp+ymuRFhV0QrYGrimH1qbPegca/o1xtPT21qu3+T7NkxuQn/dJqwhvjHJAvuR04xJvkWEkBfDiG99rA37splehSSDTg0CIWRCx+IjGPr/44B32zUff/qptzyJuY/YnQMBLb7zrz266yl7KkTtvjfDzN74vff7wW69IjAIzx0CMmJ2IihTKxc3EgvnueaPnEzDgVJHMKCZcK6CsVCsP0u5pM3dhGoSZU+Rk3J+wtCLrrTERj8TrDUQnydRNpCIiCup7XPnWMzr1XHHTx9//+svT8CrbBERbe+VNf37nwRciBhi86h13YzvyeeXNn7zj+hec6XXI7qGEmI1t2qtu+eS7r72UYmPVV7/j7jMN+Lpb77ntmue1XgIN6ShqWI+bm80kUN96Ytw+leY5nZmInUFOnaQfk+2qmz9+1w0vgmEHbr2xTXfTyPZfboBLg4NuYYpJVo+oYdQnUyAZJYub0UCpZzbXBZSRfaMTGo7JB3Pcuo0w0UJvYakaMWYgMJDGqtHkorIxA72MU3US7MqKuA+qosqJqhOxWWuzLTX/T0/UzXFEpPdRQkqZjMJsa69LVeMCOQq+CrCxAnHHTNGXu32Y26iqwsgzgQ1zIXiyINwkMraAEGM6mYnAEjl20ighZbz/dnQQpPXppFswCczB5E/xLmUnKFLHSBj+bh/TNvcrP6/62ZR4Mkm9iVLmc+M69aNL41DgxpqryPBsnABPRoLEl26jx5pE35OfcyqbLk4+/9SZ4n987huRvaGlVLjs+ttb80mU+ONvf3XW36UMPGpJWslR3IrLr39vPsJLbgh//tnbX9VYRdg7KFlsGwF46Y3vB/DSG+/48FuvQEZ6077lpNfay95wF4D/9hu/ThRi+pNjPMBQMXsNKQmUYiKjyT3XGJyXY1cVgmgTlJlVxXKcZI83DygzDsZn61hkwy4hb2yCpODY5M1zOWvePDnzeRs12RbE8/aKt308TfHKmz95xdu3EUmtXXnzJ+MOnJGuvPe6S6+65YzEEhnNftU77n6Cnq+59VMtTdETN+vmWhaUqERN3fLdSBcyH//m637SPtz4zr9KNzzNwkYrqHEfrJmWI/ev5mTu+LvaFW//83isHpC7brz8CTq//w0vM9tk9FHXBj7Vxp9xmdtEoOU6meCzTUEwYTU7ZUM1l2PkfBwgBQKLcZ5EYCbmbfw886G2uxJ1S/rUcIgmOJlROboYW5+Ctn9FNmHHmfKQooicXpqMi2YfjUZQiVgwaOpCyHFzG7Nm1NHVmjdx0enUR79cZ/8TLoWd6cxSVqZszg61BpuZzeZJZqRNDs8Un2IqmTtMnWhbNHuUqcG83VgAySu4PnomyhSJaFyQLLixKcC1Tj/fijMdd+vEgVzCbJP2/BFEJxRN082Gak0smVHDKyJvNDFmBrqNF/FE58ZycnhOPROSyX81u1W9JE0WcHZZn9YO1yNE1N26y62NmmyX3/AeotrqSckypY1pt6hv3l4aKTFFZUI+TyH8/OvvrJfFTgiVJahyIcBvkvqm9sv/9reUo12SAkCaFtpgvrXk5lFun4hec9+r8GyK3NsGUTfgqtkoOmNTZKMBKKEIOWZN9o2BVKpBWm3yp5LUBWpGgowC3PX6F2lUxahqorWvvOnP77qhIbbeccPzgJB/iJiveHuLUjau4nuufX56Yw4id1z/gjwnTiK9LWvNnQcvq7cPeFXUaV918yfuOHhZ69q/57oX2DdCtTr3mts+/c5rn2dqLgeoQgHfVtPaLjW2G02YbvEWdlp18YD0fUZlD9762Vuue649dd0tn867mRJPVd913aU21Xddd6kNxVFXeVXckytv+fid119uc9hWLZ/PSqX2f0aQzAjKxNtzFfHBOnqVovyELLiI4i5JUw5IHXJ8R1HoaqVVmsRx339LL01jhvTgRCB1MdCK8v8TbS/ENYbVoCKKM1IVjuoOzdRcVNNmVTUFCUEdOeSoXMXXwENB4rSEf1keXfvRZNmhkAcZHeUYb02JO4vLNvBzEcAintaYnjOkCgk3nYiCbKsFQr4ZQsxXmSDfRgkrVSghZTSLor8KgZjg4/kS0XaCWuuw8vs+eXGQWwRtxi0zLZnoXB9Ma8DGHoVXULqV2oBSUjWXzxwaEqi3sXZrRdmH2uGmDlqLc8t5FI1H2NqHujE5bWP5NPnWhWIQwbJBhIO0u5ly5qQ5vOjgu/MB//zm1wDIv2wyJRnfo2SDtqjvx25+9YsPvqc9+YwtQLiJqgro9pdNCAWpCOXkGcCH3vpyVf3FN/5Wo7OIEjjyzWGTzfmcHGkjygDZ/lszJVV40LRNBBCpaMowE77RioisDE8YSr0GHUkTti2mJJNp0q+kKMJhswLCOQQ3BZ0EH3mPxpaJD6y0KoC7bnhBoqwpja21q97eoCWpXXnzJ++4/vk5+/DeSFQwcTpJwL3j+heq6p0HL7vy5k/cdcOLzoSX7fs7Dl52VZMCTbLeBpeJsCEaBpDdJU5JfuPgPIFBsr+s+oXmvjBhHE6muyg3qL7jmp+97rbPWofr3/GZbZeDjG69++ALDZeaiKzR4njXjZdfcdPH686sV2QG+A+88efT55e/5U/jhw/99htfBpIEL2F7IpqOVKGeQ0R8Aa1kwg2lwEqqu8M64Qk1hIY8KeNG0s3P6NmZNiajtXDJLTP8FitwNA0CAQukP02zmi5n/T3FamD2FOKOixIVgFoEAdRTMNxAKQWs1RTCWGmoMy2xVdgKY7ISIVTFqdkgJRJYnltlZEZlAByC+iWkQAyBShynHDTiLmbzDtQ4JHIRqyaiMZc4CKmQgNZ33MNggsiBQrCzvStyKqpAzPaHiMU0ysEuMzGIsT3ZiSPb6skrnB5MxuNkOG2d0eSz21LfZk+Tg2tosZ+YzeatthVW1qwGrUj3QaF4QOulk68LMExgtGh5m1onuktE9t7J1TVIvvGUsKCDmBHdmI9MTZpiee3xgkgI5k3d2rePv/3ViWB8/O2vvvyGQEQvv+E9RpWzCceU783r/PFbXmVC50duuoqZXxLJ8EtveO+fZSbhnMNo0VcAFNN6R/6hbh9+2ysAMOiDv/nyX/o3H6h/MOZX1DNcKncW4sxIdRtvg3SVMoJnYRYNDK9ZhksiC0ZzJmDbbguYmnlqa1ob431s8BB3BgIhKjebLqntmcUm2vB9z6U38ztvuSWnH/PI4L+r1RxKpnQKWljzw8rbVbd88qpbPnnlzZ8wDyzezj3YdiNPX4Cok2mZQGreZBLBi0KCo3+rbfu+/FIREVNx8Nb/bt/cct1z0xwiYQuox6b0zmufd8btscVMYJxcWQqEgNHWYtOfH3jjL9SrUv/+N9RhSP/6LR82djR7WVt71loyZVqy9BYGMRy3WZMIZhOb3Jh8U1JpLbaF3VqzSp8tkmfyEY3JGo26mD46fylgoQJROZxw4hk0oGEmsWIdEbFL5eQs+7pCLKZUOWTXNPTqCAWZebWRiEBSsCMROeeKokhxFyEXSuQgGKXRIwdypI7IOXIhUn+CGsHZsy6tjRzDMRempkNImaJwIYTcFcQu5g8P2XVginc0NZlJ6UfJeTiargWKUAYmNUla6xS8kQ9ITURWk5mmtrb+EHy2OTd/JFSSa3ERMeO2N9d7r0qto+dmm/RAboNERkEToNojloO/PpHQNA/oykGLo7NVGjkgC9HcVmKLCuJvIIiaporoNV3ElKRhE7LUVw3454bC1qy/+a8UhPh0BK6F82uZkhnAx255TWufLW9Jeu+21BcIkVTm2Zd++pO3vcKrEgXn/A+95ZUA/vjNL1dKc8vUP43WkCrTAhtAlWX/VtVKQ4nbMG2YrUYjf9YeJx1E/j1CrKB6VaEaewMoLPMZkZKSeXYZj6nR0SEXhVyQr5MOIUegLlXGAOAlL496JqLYaHdc/3w0eUlVY43t8QoAKe687gVXbuc2ddUtn3zfjZe3YoFignvDfg0QEd+IV67nOqkMUVIi4SAIUot9BUCFoKHccLEYXsImzZBEIQpGQUaBkEoqZQEhEG674dJr3t7wan7XwRdcfXNYOLmAgA2obIl2/QpXwHwUmwJ3vi0kYwQU07Hout9+08/96zeHNB25Nsy2zriv5nFT6kxEUfcTQF6TN2DI6RlvuEJjRQSK8nSA2lwjHRyOVGoXfSRgzjFs+xxM2HLmp+qNuAYRLXpUOedSrVMgsCkpiXyNOJyGWon1ppnDHROHTLEqDuSAip1yJcQWRVtJcG23pZii2IOkkqosOqoMV0IGoEpEHJVERSUVUwEw8Vi80X5RJfEgUoUn56QaOFcSVyIC7QBj5r5iRAC0NLVbpVBRZmYdEpRciBgmlOEeSQkSDiTcIi2YlFV9ZJ5IxZnBihDyCgSOjILHMQBfAWDibH8UTsO5AWxlCVzImw/KUoTEJga8mNDLAfCAa/Fhpt2RVvHg4PuqTALNUtgCgIsmFcAllEpEAKsK4F8SPXVb7aO3vlaguacLKVoaWmufuO11NWgCAF503e1/fuvVL7ru9rzbx9/xWiJ60bW3TwwQx7n1atWad3nB626b7HP3O6+hyDgmz/DLrn3XtgPefevrbJeccyLQzFE5MaQiAhEiEqpXF2TcyO6giTpirhJOcTgAvEqsmdRuVjmRMu7fotdSZkoH+rkbtzmFslcOh0NRYWaf+9kDDu7n3xAI9n97yytU5Y/f/PI0ZzUMptoWYVUBFhCrgDxipiBAPMSSfDE78TUoGmjFLLnRHhyrrVhJIyiICRTrAlBIjMdB02YJVshTSLHJGtWdAgAFNZ1Pc95hm93UdrbPyQfD43CTfawFQhuJU5KQtiFsIW2PiMbECgQC33H9CxNevuLtf556v/Kmjyejbz2Rtuki/vCESLzxDUd1KAWOIOPQFSCw6X35tut/9ppbPgvgmnd8+rbrnpesLK2EACHFLlzIIdjeMQWIFe86eGnCd9tO2L559ds/8Z4bLsNEDGJLAm6wQVGHp6pE7SWTlQgyLj6m+08WrCynayKEBCD5GBiqFGiOnREqGJHj9GpPTXibvO1EASgC+5ohhfypbQGy7nmGX9MOtD43ZpI9at9bxJl1B1WKiuCgjks/quC4p1oQj4nUgxx14EeQylIIdYrOaOzLsiDAEwHknBORXq8jWjnnxiNfVcKMaHFX48eZSu/Hnc7UeOQJ4rij4ohFvMSopIQ1FFCO6DGUOySmejOMpzFsHMQjipXVJzdExMxalPTeje3N9p8C6x5AhTWqDlUhKlnYBhHlbqJtnEMAULRgMr46nkJjwmfSe6nWZbYDPEfRVhUvum4b86S1l1x7+0dueXUwd2dx8JPtsmve+Ylbr05rMXL4ogmiePl1t3/itted6XV4ItVd3V7wutvufuc1yMD+hde884ydr33n3be+DoFzDWKJ+XdYB02u5tu1MxGCHEg0aj6gOUoM3dJtbW1dst9RrL2d2oduuvIXbgyUNcVY2/6n79EUl3/5je8HYAS4MXnKPudWjOAQymFP7JaFB4wk1TZ4Zo5CYHvhIqJMwQECgKg0Ba0gxkhDnWjj5xvFiGUBk9YrSrfhNVGaDpkSzqBkzs+GVPWqW+r41InObOothLsmV95yz5W33GN/5rQqHYBjxBwvfMUtn8jig/WuG15kkTbZ6PXynHMpOUxLDZu/Iv6hdV7UietATXiKWIy0DhLlFttBliqBFJDr3/EX9axADpaEiC2vCmUVgonodbd86uqbP0VRa24zeu3b62DlpA17zU2fAPDqzL3cXNgJeMXbPpbPpHWR4lZI8880CqvkiSSTx6xjWNG9wjnnnIuqywaKZC4sb44ywbFy0p+S9wmottXFNcjw5OWfxBeTfFU+TpYwK/hjsyIH4JT9CBrSwwclStKQZiMjwqclljJR0MQMD2UnrjMuSlEqVUpmCG8SkXMlM/uKmHoF9f0IKtLr9QB475l5PB6Lx3jkmbkoCgC+UkJZFn3mwnutKmHmqqqIiBBSSQOmYHRFUUQ5WyFVTCOc3KRdUEeTgCpiT+yDBls5wF5d7VsBmEY6ZKuOOaLt9EMuAmlscrO1rQYuJAXi1pjWTVrO381ztLPLvdbrAwryu6CJNNLIOQhFku+yaf8dBO/nrn9P6nzZte9qSbR5M6J7ht0I7ZPvvOayMxNLAC943W12xS69+tZLr771ibulnE1PvARu2tfsQ5IKYuArEA3D1oJc1LQoJS30iw6+V1WTD5pZHhP/12oUFUHtSxpLn6lqLv7mgwSju5BWyhMeZ63299/0gfzPFoVqfa5hAwkeArpLYX4a1R6T4yTMVreMNLioHzDgjrEF7Rqs6a8iVoPfjrWp3x2ZpoYapzG5q2652wy0Ler7nut+pgUoV91y9x3XvyDyFXrlLZ+x76+85Z67Dl6aq+lDICUohU8leTeqLds4mvMKgU2ZmAh5HFRcRUvearNy9j2rSpAugh+QWMC/JRxNuQ6yB695x6dvv/H5XmnyniTaAODqW+4BTNgNP702Oq+99pZPmYMVmiT2jtdfbjlaW2FIYWIiRHLF22rFwAde/3NPgBpUlQi/+hsfrseJm6J1lJTL0wMllAawcyQikOCybNlQmeF8UC9qEL6iFAJkKhjXCqXKEXcQM8OumxyXOUtvi/ubwwXNhYSshOmJSZpdf6MUBf5253i+JqVJ/GyR+rYd5XjERcHqN0V9UXQceii4qip2XVe48UgAV3bLqhpbwE9RcLfb85VyqUaJq2qTHREXUEfoAEMics4Re5EKpIQyoo9uLGIc4NZmWDI750zzqhp4I5AAlUIIBUCkTjUItYqQKiueby0jhu1JvjzGL4eNTZgnCZdWPrmdy4LSUWQkKlDQiInsQ3o2vyD2OXrEIx0lNT1+zUSvMYeoGXKDIbpxfPHtGfj8+a1XB3gBoD7R2suvu900w6nnJ6xnpAeXXXdbWikmmkmraSPq7991LSKEK3Dpa98x+SyAT73r2vzPRJUvvfrWT7/7+hYMf+pd1yaSduk1YVbPf92tJgSn5RuQeHCqbbatKJWvKB3uRAeN0vU2zMfl17/3Yze/2h5/yXaO0NZyufZDN12ZD6KqBRVeLVP6NgT4g2995S+9oY5K+vtv+sAfv/nlYTmZ48kkMgfInP4jGbRY8AbsMSjGIDcYygBNRI4KEZFAXoMu0KJaUv6fiCsITAiOrQ1LKBPViTha55DoU05riSgS7G12ZDJH1Z0HLyU4yzFw5w3PuzL6P28bpHvXwUsBxLqq9TRUPUWVWWpPEFIM4H0HX/TKm/88zmqbnncevGyChUCzcnbdqKHJJBgWCKoMSr9Yt9uue9417wjLfO1N90yO9q6DlxrqUqLXxn24+uZP3X7DC+0Q3n3jC19zU9jJM6XowgR3llPcvP3WG19KE+L8r791mxQc1n7n3/5SunJJ+klSSi1VSFDVcOEaLA+g6lU5xqskd2JR8xVyacygZQ3LabpOpNGYXJJv7N3ITGXpkdoVJTL4pDDjQBKK661r3nNMiC+tyQS5MJgMGKhUY5oaLU0agU57r6Rauo6KMGM80rI7vTY6SVSOK18WrjvVHw63hLSqKsIUExVFR31BzhVczs/Pn1o+4ZwjrsbV0FdjL0LsHYhQEFxRyHisRI54pMKMqcqvOme+u2kRlvmZmSlcnLgMW7eKEBUWnGMlbZK5AZH62gN2+cgUARnzQUQ5gst3j2KGmkyiYrNWtvCggRdnIyCyEmG0zJpLFvuhrIrkMZreG0hyiJtkWOATIbidp9wgmTTWoiix1DERkYp84rbX5dJq3vNMBtcXXvPOmtwCiNQ3rStvL4ik9FO3X2f/Xvrad9z9rmsniZzWDg16z+3XPT+S6lYKTOuQ8mB86rZrEg3WpkOQJnNYtrsAcsbVgVqOQtu2dIVrnAB8/JZXpUikbQOQEI+AtaFJ/uBNV+SaS4Ss5mFFLQL8wbe+0sb54FtfqaqmhQbw99/0gT96868DIDRk7pzxKtj5kBVHEjCoF3Ih+3roHFXjlFWw8JFhTQtvSaTZPSJmNt12FIpcRKrhcUSn9LzsQU3qNWQ/qN8U4dgkoTMqolOLtl5HFJSZd97ws2fqfFcmArZ+qnkxxfsOvghnbu+/4fJ0Zu87c8aJu264LMNLZxQNW3OIIBAxPlFLRZw+P8E4t19/ac5atl6R1OxPMMJ7bww7YPt/5w1PtCEfeMNLiJDQ4W+94eefoDOA337jy3wst5BJQl5VrURBnGdqSirmjsjM5i6b7kzYn5gLmkMNaZt8K7u25oOeaXqUI+h60yjtOWWHgqZiLe8f/2raxZsXtfVerhNAhqoSABHK6Nwk4kEs/emCWKCu05mrPOC00+27ojs7u2vkeTgegYnA/em5XrljY01mpnbNze/rd3bOTO06fnSddGpu/gC5qUoAx0XBRAqw417ZWdgakpIVUDINoZV50ESHOFbIqKqqjYA0aICB2pwZsYap0+sE0RQ57zimVdNqY/wcAwSME31so4NrrfLNPYe1GXORtp23vxQNShksI0LaFG015hKvK1KbGWW7852Eim3PHYjeZ99PmxASiCj/0sht3i597TvsfyYTT749n/C2FKU92wlRNae7prBXq3XQrCKQX4TcOTmNlly0PnFLkGu3nYOqfuzmq7adW6u14jZ/6ca7fuHGO192Q62O/vnX3/nSG979sjfcQUSTO5Mv7b+95RWtn9L0mhStMYgQC0nEaU6kakXxmJu3Zgx6yJJkJDvKvhyzhbfGb10QNG2jFDmzaDrKVFi5amI7mBBihtK7nz0A8Gps3y7+vefgR7b5/p2/95z7fuVz7Z4Anll/847fe859v/K5M41w68QI9SDP+Dt6btvttjO87vb0/TPxP9Xu+L3nANj+1c1XvCfO8OLfew6eXn//7icY4elotXdu1zn0/6F255vP0Dn0f9oZF/WD9j/d9v1dHfYCuL/+c8f/wrn8oE22++KHV+/5H2f66VX7vpj/eaZ28e89B7sbD16x5wt5h/cdfw4Rffo9B5/36psnH3/B1bfeM6FVTiRkktpNOoVRjFtp/aSqgBV9D7EMuedFoi75UImhwbYcicXToU1d8s8fu/mqFzfdy8+UkeP7ab/wxjs//NaaqH/oLVeSRp2cbq+ztLYtX+W1UiUfwoKTHEq5J0KV5dJpMfFB2acKcDBxtey26eAqTUZSMxc22KP4oQ5mQnOvz+D4F2Sg2581av0QyMP30b6fnk/c5//edz1Bt+//Rf+3v/p/9u3/6zr/oP2g/aBZ+//44rxy1+c+cPKnAHz6PQcRdZU5MX7+a25pichGd3ODd/4rN4stEgVD0ARdJFUxhyZVJdE6u7IVVo9E4s9+85Uv/TfvA3D5De/52E1X2titsNps2IY4TjFhSOIVPnbzVUb7U7nuyRH+9G1XTob/Tjajvh9+85Uve9OdNm0VTaVsW3J4zrUgszg0O5AVOEfI2GEmG9NpeoEiVRIm0srnAzKC+5UFXeZHEDQNgBmloJlkK4poSqh1eGR2bm3TZASqjuRdEsf3AFTcJFn+QftB+0H7Qfv/j7atfuiJO38/hFlVn/+aWwDcc8cNZiK5593XE1Eiw2burVvm/aTqiRq4vl0gSKIefsIh3MJXQr1dU3M2CoQnK0H2mA/qUhEA/qVvuDMfsPYIsSSjqmaTtiFM9v3YzVcRkSrIsYrk4m94NSuEPnTTlcjIm6r/xdcHg+4H3/pKCrH7Dkn0BF72pjs/9OZXJHHTQ//hm+pslLnmOSfDSUVs1mQXmIqCg2JYzRVLQ2VoeJXgfh9ZEFVVDnHtIsKFa2U/NZE1xJZUZqQnRwSL5FRPyqwxU5cIuIRyMRGiGqaWl3ILux0DRrfV/r/2y918f9PKs86N9A5k5m5tW6RcQdHGFriVsHETPs+W96IiZUvUE40u5kEgjXqrNrFtPJ9zC4HNVjMHBDJvo+QCNxHZPRlBEX0h8qnmm9A25AT/XiuMaHE7FqxmSYsU8AJLNXBmO1CafOKV4msdtL4bwVHGAA0lovNFvl5VjZkK01CNC9osLkvEgmhyTYcef98mwCRlosx2oGmSzJYQIASekVXaYQJUhaGebbvYWTSKqhRUUjRDNkaumNmSPvpsG1lZLTApuaFYAnegImhRlOORJyrLojsej8FKVHBJw4F0e7PDzWpx/mzicmNwWqlz8sixrY3R3MIeEjfT7xw6fLQzPb989Hi339m5c2k42Oqwq6pqdXVlenaGqdgarF100UV/++Wv79i1dzDaevTQY+eec+HaxmB2dla9P3rkOBGxw969u9jJzvnp2dnZtbWjszM8Ho/LssvODwbrg2oN5Lvd7mg0JseKkXgURVdEzA9LNYQzinjnKF33WFwhihGC6BpFBh9ERFmWAGoGStjOa6z6VUet2I2WGku0EHxuddfkX5M7dQYPc8m7k7mMRSDGxF2QmB2IogtY6KCqUWqJwytTIwTuvl/53KduP6jqFf6FV78rfX/3u659H34ih977fuVzd7/resvaS0TPe80t6ft73nUQWeD7+0/8pL3x5Tv+0r55fuyctJoTdK/Rnvfqmz8TxWWAfvZVdWoOZm45jLZkvvS9ER4RUa/pT4pCoTnN0YSM++I3vvfDv3lFnFubolMMKr/84HsRaa0N8pIbAql+8cE7Pvr2Kw02cur7kZuuCitSw9Yt5FODAWtM3yFQbVTS+4U3vf9P3vwKAAT8wywA6Y/e/OsZrstQlubYZjv/MhJLRAqQC+CkpKEOcb23oklhoFayqLkzNnEAHJJPxuEpZlAnU1onhxIqgrfhZNBFExVG5TZju/nHg6k9DFu4FQCTqBCR+fg0OjSgUFmkdj3XkEmgDkGp+7NCrXZzKAKaiIm5xiPe1uxBtJwq8lcb9a0nHHgfydeVd84ANyIXizHPNAf5bmCS2BADarHhLkB6SBnErAT7mdNjOVJrjVbPTZnCWsz76Uz3XFqjZZ+dOeVHFMZEbPmV0h4kRpiIW+G8+aonYSWw1ppOok6MhYmEvarKkJBrJn0frwCIAtwyUUjUFRIiE1ycpqJZuRNgouCUKCIWYsgQ89RVJQYEaoGW4/GYucNUiqgSup0OU38wqtj1R8POzqX9jz281u8XJ5ZP7zvnwtFopfL08CPHekW5b9eSjPXE0RNl0d/Y3NCTx0nHc9MzX//at3bv2Xtq+chZZ+0dDja7neK+7353YWHH6unTu3bs/pu/+dsnP+mpjz56SEQ2Nwf9fr8oeDAYucJzseP+h747Ndtz/TlyPUW5tnqs7A7A5IpCCUXZHQ9HXHC3U4xHFReFqjhXVlUlIs5ZWHCWcIoaDHEMy4g6sngm9b6FZDQZ80o17BERKdSLnUz9AuPc4zjhm6TQqzWcGbSEn2r3lAiEDUDKgVY11Me1Ahv5dTMHZwYF/y1VIUgsgpHapa9tm2bveff1IaGS6qfffX2itS+4+hZMtM+856D5oE3+NNme+6q3P8Gvn3nvDanDc7czGH/mPdcB7CZsvZksUU9DYti9j16PCPFpCLnhYkg2gD+88V/+o5t+xx582b+5a/LVH3nLFaxQx0Ty4htrWpscr/7spiteemN4MBHjyZaHNeZLaHVTVc5C3f7kzVf84pvC4L/4pve3Ov+/3/JyNt9lVdKG4z1lbvMmtsZ3mfBgynNVjW78UaQwvlzrgp4NAVJIEGt32nuy2xTQuJj7YoO3sKqjAeyjN3/mvhuITXAR1fg/m7DmJw3gPdf8LID3XvtcFdHgY1dnSNLY7JOhwjo/sIb8GOlfAJIVYY3rAZEx202Env40pTyZllxVLVen3e0zUKkaFOqWn1by0sw/pGSz6csi/mkZc+2bgjmFY9tEJcR4hzDt8G+IxgMiATflBImalp+S8L3d3PLJMzNb+ImmjAdtSqZC4mEpFKycn70D0RUQcSsbmxNSCjNCIbxtdrLGwGyCi1BMR5tWx1Hgqt1fKaSDpZpTbF9CBp3p+NImhKfY1uUsA5Oq2j6UzhXEljkiFtwMMgDFfNFx4XWiBkesvqu+S9oXQbffIUfMbjyWUUVz009yvL+qph555NRXvvL1++67j3RmY82fPL6uUmxuDg49+pgfDjfX19ZOr7JDNR4ONtZnp/rf+NrXR6PBaDhYX1tRjB301LGjm2urUo2rreGJ40ePHj168tSR08snVteWh1trG2vL89N9qTZPLx9bO7G8ubwx19lx8vHByaODjdO8OHX2bG93x83ImKUSiHLhFCxK/enpTlFCQIqCnXqBqCNGJqoaXMRttIKJNU3FRCMizfUWqV6h5YWImpVUSiiV77Q9rTFXPEeCYypykOYsGW/j0JvZyPO7UF+BWPUyb8xMLuV/pqjStMwgT0Qs737XtbFIVACwe9518EydTU4FNXKKNCrCWrc7rn+CN372jhvTutLn7d51XVQl5oocpM0XQV6/QQSWyGU89uOx96Pw2Y+lqlBVGA+r0agajarx2FfjbXOihPah33ilDa6V974lxtTZeJ5ghI/cdFXGJTRIybbUV0Qq7wUKJst98SdvvmLbkf/4ra+gxI5HNUAL5NqA0cQnDVkxQ795uGN6xP5khSPNhqwxc4tKTuxMwKWqSle/6qeRXarEDU1iWPtoMPneHw1OWK/9m06+oTUuzngBNAcMHbJKOWnwXHIy0TPdXoKFLNfSjCHZMSqiVv4FUhVmF/X+jb3L9lqQ6cNSUaw8CCjxQflWJhapTiKfsZzsapqhtY6aHDWeTwsPThZBpouyYyZotGD6TCDuCg6pvq1YMAQUE2RorTcO72XLMenTl/YgRLkI7h4WUBRtBJyU1ZRS7YuAxHTjFIh0JmtuRzijKPZ3AmjY4XSRaJt0gI2NpxCMxOAQicKWxBGi6hUCLevHsmvpK037j+ysVUgVjksuoaqu7G2sVzNTO7a2hlP9C48dXzu9eqIajpZPnl5dPX32gf1U9E8vn5ya6q+srBQ6uujA/kceO3RseW3Hrn2z092V5RPPfuaPfPSjH9u5Y/e4Gk5P92YXp5dm+1r5P/343Ze+8MWHHzt06vTq8sbQy3jHjh1MRTUeX3TBhVtrK72Om54uNjcGAj21PJxf2Dm/MN3rzszO9Hbv6w02lzs9Lzz23iuJ9+PuVP/06bWFmf5wOJSQOVnMSmdSWr6NhjvytadrmuOB+G/so+Ai5d8nxJviQJ6YY57x9AqJH1x6UcwQQqzYNs9RJl4kGEDErTlc2Z+TEBU7RxCKeciV6apdn8eZbb1PYNDdPjBhos/3P8ITvO77edcTvO6Jp/HE7ft/9Zl+/T5HONOwT9z//5vB/3/b3vqdZ5igyBp0P/Taq37KfosArbkRtPmTGSwB4I6/N7afXvOlMhVISRcjR5ogZ+W7WxQdyim8WlUTFkgch6q6aGzw3jvuxKfzlEY0RpUbXCny6Vqr7xsqKSNO9QITZXIx4YOVx8nyALQ4EgnpGIKprG6Z8qJWZRAJoIpEgFWADK8FZoqIol3KMKI0kU69dc0TTTiImczYVfcPReUICIJvjAGVZh9TgZj1jsiJZmrbSJtDMLGhTmZO0mSAjUm2IOPG0kpViM/ow9dijxAnVut/kGkvRTwRm60y8AFCpAznQ4Y56ywKCDFU6p1R1ZRjxAgwYqSvrV0tMw5Kr9qfnh8NtdOZk/G0rwrvxw8+9Njc7K4HH3xg9675Q4+dWD61tu/AYllMDTY3wfzd7967Z3H6x5/51G9++95Hjy2fe+45U/2ygM5Mzf7tV765Y8eOcbUJqvbs3btnae7o4SNf/Oo3XnDZz339b78iSmveHz1y/KmXXALRnQuLD91/3/zczK6d8wsLc0dWDp04vjY9vbRv3z5QVY2xf/9+otFUtyPYVDfasWMHORYdcEmj0VhGm51ObzQajcfDomRVqarK8lwmuI3nU9O/dF+S6ig/QesSj6YZQp3MLuRIQyo+BgXtVLx6tTScCbWT8JwfdD43ZFeG0lCRkU1P5dJPHvcMAJArdn/ePiU8/v8gDP6D9v/09uZ7nyEeRM6RAtI0tJgXhlr6j4BUJcrE1iZqlEePuKBNhGqs9mkjmfzUTKWEGIidrlDe6m+UVBFThdTu4GpJTAQAXFQmtdD0hM6yMeHAfQA55bAvzZKTWwKMAKVuefoerfFRKIiRlDiWlJGsQPOE71Xrz/SvUMJlSpoL6LVWf9tBbMm53iyUj4j1hIwkkZo1gpmM+rrkW2a4WMxpK4ibSsQpPUO2MKP0tXtXzZqlrhn1zbZom7VPIlacobVoc7RJ26mRBHVLoWEKtV4dSsQ+pI0PxCNUNErpLIJOFaQeUBVRV1JBzo+LTrFzfUXn5nbcf993Sen08rof8drp1cW56aNHDh8+cnzH7tnlE0dUtex2AVo9vba+vj6qxitrq5f0uyePHzpr794jjz8yPVUeP35s564FJhRFp9oar61tuE53dX1NvZw6tULTs52yJBWS6m/++vNn798/1e9sbq67Dr72pe/s3X3uzPzU4PTpmf7UbH/65COHnSvX53vrGyf279+3ukwbG2tLO/udnkflq0rKkrrdvvdepHIFWGLiX1NgTBRXSIdmmx1Oh4J6IH5fa27QNASYUb51mYlCij9VIiGziLFVkqnf0wSS+JqWEqh5u8OHjBhbpiHrH4T1fOTo3vh31zz4QftB+1/XVDXU5iIAKBISbBGwFjIkCsws/ESSHQBAVflgdiUgXnIknWrzqhtqDyQi/GQiFosEcdk5R2Je9eTYatoLFBGNKzme1Dolojh5XRE8xaPeNfSJaGXCwdsKQKiqA0sDsdTIgVWiEKyxZhJRFKAppmPUrDwfMtSQ8x+a8qQzadIESKRPubi8naUhVSvKNXJRAgjO9xTqn5ix06eqiWFRUd+eDIQ2UkvW0ZT1z8zJLiqbc9S5HVNFob5cMgy7GCpHqmp5HhM8JDmG0rESkBV0ZkveJCCQiATfw6iGEfEMKwbGpoR0LjpRhyj+IBg55qZjMASAF8dT3o/g3MzUziOPjQ8dWtu5U8fV1sqJsfflY8uHuh2+/977pRp0e1g+vXn65HHn3O79Zx85duIp5591/OTy2toGyE31F//7Nz5z3v6zT51aGVdOhTvldFWN9+zae+iB7zrnqqoaDsYry6vT0zP9pV2PPvLg0sIz/vZLX5jq93bumH3ge/e/4LIX/P4f/v7OpQOu7JxcOfqMZ1w8WB88+NB3jh4/edb+8x6/f/lH/96zhkO3fGrtvHMPPP7Y/TOzo4XFvnPl5sbW3Nxcv9/f2DxNYiyLywp0ahN+GkQu/KnwgQtr08hYdyTdNUUqnU5QkItmXRN/i8Kx5s9KZHPbBLhmxVD7mTYuZiyF1JTRk26DcsbOvvHRWOHbHAIAfODkz1BQq4RcvvEWUAoGYTWsFZljIqhXVUInGJoo5EQOl8gUKoRfW/h0eMvKc+3ZLFdw7REtUVEnIsGY3WQ18qsEQL2ltVIAvqrTWo3H3iy1vlK1YqChpzdXLBnHcxfrUVhVC0vh7qEpgykREYOYzRrlnIODkhRFUXDwO+FUcpgTnm9kjowztyhbE+ZC/vxKq4nVNR7UULqbgYYfe5IJBWAL5zWkGjEXSQ0eaagcq6gqwB61sZyYoUrig5cWq2lxvDo7FBPpOMZ6BUf0VGtLwUqkSHHbrhbhCMAbLvnWJOABKABTGAEIie9JAyYKa4hFnkmgqPKbAMB7tcowpUv8J0LWaVtYurwKUxXa1Q0OXjBPZjseJQJUnHNEJDJSELvA23qAjWhrnW3EwDl+Rh0dp2q2WFVwhj1UFa4IBdIttZhFLwQuP20EzAPZBDu7cTkNTvIeUa1CCNMQSTZvK6aYk1uTkok5lkElZUkZzlyAQXLOebthgOntRAABERNLOvKa5pmimASiTIYmIgEmizxTU1A7ZxOuQFWwj6fylgARFcyqosLBkVhEOeq37Qw5WPS4IMmQdn2LiAI0N1FhwFBa132KgXQcdB1RpNYYzsjMaucgKl6YOLlNiQiIQsp0ctGpwdwLfaT0VOe88x3iMRHGYyqKDpGOxqOymFL2Dt2Su8rjSiugYK2EB0LktMe859BhGQ42pzubD9/78MKeXQ997zv79p67fGrDY2MsY3BB3Cl0WLj+lgyPraysrZ3es/Mp6v0jjzz2vBe/6LFH7rvkkku2NnU8ZA+54MLzVk8vn71vrx+sfPfBBy5+2g95eniwtTHc2jj7wN57H/r2Dz314vHJ5a2VjSc/+8Kvfu3Lz/rfnn3ft7/bK6b3794hG8NnPPOHDh177K8//2WPHvf63dWVs88+B2O+774Hdu3ffezow6WMe1yMxfc6YHUll9Vo1HEd8RXIqZTEI7sXAcUTCIVShzBIpweoEquqBM9wrbLTNCh1hYXhBXsPBYdEMvQYuEgQpBY5E7drXFfde7tIAcPXNZsQKW7uPmOYQdVqzgbeFABEmQjEEmu4cuQvE17KGwVphEhtwhRk+WhHC5iw9hBXb675bFo+Y+aCZ6/BnDBRszhx/brsUqQs3ogw7+IcNfKqVjLLcF3YGV/ZvZFKfcor6Y2ClAAoRCpFc7tCtCAItFIIoA7mZ6telTRmCYUyh4V4b7RYQcEzxrMws5aq4qVQx0Q+1NNkcq5g51hZAfICjvJMxMISEUg8StROZOkclbQE5wGEajGHZCHJBHYSTgxWmh0CMqfqiOcSfkj7HLcaRCCVKFRoAdbot0vRNhfYu4j5nRIADtcBVlZTwVAOSpwEYBY94cJaPCI5aSYiUbCSREFCisgDJ5g2Kt+wAGUQ3wZfIkKoD430LvMCB4g0OscFltZRelGNuRt3j6mMO1ZwqAZOULhE08PFBMyLPLu6OWS7WClGw5dBzLHMLMS1P4i9LdLZdLxhhsl/JK08AlXNxubbknN/Jiknl6W8M4dgDVj+3JpIx32gWIXNHnAc7biBK9JA53LKp2z6ARWrWCNEzM6BJC6fAPPAQh1QhImmVvPWhddBRNTqLzlmhSS2jqku7tE6BcqUk9nImiZMtSZB4nccaim2djW4Ixak0KT3nnDYDOfi7RdhshjiCDRKIPIycoVjVw2Hw15vDjI1GK/w2LtuMdqCotPtz3rZJHFFx5XYed99KydObezbOzfa3Hr4wft7vbLXmzp54lg12Oj13dbmRrfXXT29cXpx6DpbC51yfnZmbd8+GdNjJ49Rp7u2tfHpz93z9579ox/7i08MxqPReHx042gp6Hfp0WOyPh44R/uWluZnu/352cFQirGct+vA17799Sdd8qT1Yyf37NmzsGv+G3/55Qv3nLV84vAzn/bD373vvs9/6YvnHDj/kUOnzj3rPFU5d+/cqROHB8PTRXf/Jz7zl09/0sX92QNzND0cbIFka6jggtB1BakK8ciPO8QjYg8tVQomT86rbuZ1WRCjI0CkzUNsXYSCyPhphTfPCgrCaJJtExPWPqx8NJowRTnndIL65jel5XabizuBEw9akwZ85m/5zLtvfO5rbvr07TekYYkaMJu9Cwxz8o/7E7RD9YBx4YChHfWCRh29esn5fZ+Yv49xienXSB1rl2wRqBUhq9NrUGJBGgxNcKKMRNr6i1jibKiEMM8QxUkksDKhzpUafNq9iGilwkpEhS9QWBVsoiJO3gFeAZAycZAO47KRWLR8H/IPsJtv/HQLSAIJqA83AAyQp5qKe944u7Tb4UFRosBEWR8hgMgJFBBVbihA3fb1Dsh8SZDFmjZAN70XWST7NpgwQBcXKZV9DgqJ90S7GpLpApop0GznM4ghCm7Jlm2Two7Vi0n3jSac1yM35Jk5FbUgcmnEBvUFWuGMLqQqa2QR0aBwUEPcTJZaPvIMZNyMjcB2sIgrz1FDzoiIRM1bxmQhXoB6SokCgGtHFeuZICOuvUG863eFL2pqm5mUKUriYKvI5gBmqCAUoWlW04LAc8qkGowKwXsFwb2Z7TBjfSGWUMY78POBuRJt5FPPgsdsSa19y9alCDFx1EIrgHG8AlVOIgiLmntzOAsrTCcuMp/BsmlaBCZSKqhMBmAJWj5WQqeY5mragiLLUrrdcrAxLHTGlUXBvFlV44o6JZdulsvu6upobVw8fvhUJYO1FfGD4a6lHUceP+o31ofkNmg4GFVLC9Mba1tz0zPQ8nuH7t+9Y+dD9/3tzqWdj508/pSnPe1nfvGX95171ot/+R9PTU2tr6/CMak/vbzy2IPfw9h/66+/PqKlv/7OI4cfeXjtdKXOSTE6cOGFAz+cL6c71P3Ww/f+/X/yy9+495v92dnDRx7fu3dXr1t+/n986ck//CPD4daOPbtPr66ds2dudPrUt7/xlf3nX3D85PGx6NAXJ1YqX7BKtXPXQuU3p6ant7bgPRUliVRwQwVYe0TkaUyB37YtbyY7jHgBmTk9ldPg4PycVHDOgMOUiKzhRFIpJMqiitNt1Qw8mkDSctW2t2iwQqHdv/1nfFkKBq1vXfOpz77n9fnbM9LYmGFoEcg1yDaTLHhYnaUaBiCNLZWILevWwi2TGJ9i0EGiYaoqUBWIh9FgEUAZUEIe2EgafiK1CDMlO24JiSagIJHMkyPUxTKGN6A1ERGtRBWkROQrFWYtWEpmTyIipTp49aWaEtgBGRpMbLZpU3KqyRGuqOnxWuPPpDw1/kKVIEElpp5itVNr7aTNE0QRUbBRgtTFjoCgINHwEYBhPKPPOcRKnYVoG4oK5PHHCYZrKSAcaMheAzhSKuyxPIQ8CSgJApCYweA8nRkFNSirKYmPRtINFpjU2I6gw8w2RUBMMftBjqkNQhqyXX4lkF1ggEzLFFhFBSbyTiTILhA+JFNtPSBHY49lLo1ZdWQ7Cc9a9NY2bjsjP/Vlb6AzN1Ece1u6nrY6575heMPYba2BO+Kj+I1lEFNiYgeoegRxNUISQZW8BBsPB2t0PQdS0+hwDAHyMCaJiUU02L4coDHTi+VFV1j6Icsua2JHrn8zemzcW1COpP3hQAAS8VaOjjuAFyHjiijcHVbA8AqZJ3MwJyLmh43nE33dvSoDChqNxwR142rY6ZS97tLmabexplU1mpli7km36PhhdXp5pdfrlR0+eYrvvf/bHsO5+e7qxkZHwV138vFjq5sDKnpKtLhj18njx44dO7JeDZ914d7nP/0lT33axc997nOf9oxL+n04EEsJFbDLjpJEibgYDsdFxxPR9x569HOf/twXv/gX99/30P/4qy8f2LP38ZPFgfldy6O1nefuGo82jh8+tHNpB4rxrh17vnvfQ4s79yv3N0bLY6+jwfjcs8558IGH11bXd+3Yec/nvnDW2ecv7FhaPr128vTKeWcfWF+l2bnFzY01dqVjVONhf6pfVVT5EYiYTPs1UOkUmB5jiJAnL2bnU2Vlsw7WQXSRLzXqlFmaAgxLrqxq3pcaJwbNChqyWtaISKziHiWKH0p950xqukSqQUMTkUmQBykzKk5qeiYJf/6jPWTsnt27+je1BRfRHSIN4jx8QkKTr2t92eDUM/nYXtEgxvbZ6o6LqJD3IhbZry6orLS2ygMhjk7VrMUaMnF4WCEplZCPMrwilEAyoRgKrUZVlC7ExjBLsFfPVHjvWJQ9s7BT7zwVDBHnnGtycgIqordrvZyAXeuNCP8Efw77rglEIeYzSkehw4TIm+82Yj7H/Js4zhlaSL1AtXK5OaZLqTCoFh1JVCmUvG6sMXFlDeZQQODwGxeRttc02BBxDcptoGnPOQcaBIZHU3AocRBShY2oNPQqre0jIkBiTpugjSRw0Pdy/UbVKApLdBrO9UU5rGcaj/QlZfK4rVfTKkBKmnjfJifennAaALVPKUU6GjYwTsnwXbOQpwgXBWUzzO5k8EZP52YEhbfDGoF2BTO6RBFBVZWorhgPC5KNR6ABlWiK7DIeNi6wdjvPZ4G4pDBmsjLHGZk9Bs0WUZhx41kINTyro+iEkt4TVXz2lZqxIbxU4EUcF9GfjuMRCykrxjBMRGIcPYNVtChL8dTpT9PIdUteX91YPTme7u/qdKe2traWlwcOvbKYKkvnB7K2sra+Sg8//MAlz7ik8JDR2POg0sHAD6VYIq2OHX7k9PKJiy+58NU3XPGzP/Oci849j6e7g8OPPvDlr371d/5ysHb88JFDvtLDRw4dP7zS73dVPPnR/OzM+vp62e388DOefs4lF3SnZxcO7Ptn/+jH/sWv/uPhkB984N7//hefv/sP//TLD371kcce/5VL/+Gjj6zP7di3tbWxe/+TybEnKHcefuTQnj0zW4PTvY7rF3x8eWVuacfq+toPP/lJjrtHDz/am5n23p8+vcy8ONwaLC5NiWwWZWc8FlT9gneBjxG2CAUJFKOM5oJCNVgC4EKRXPuewEklm0giqaZbH3RUlNxVrBtHcE2kJHF7TZKTUyNVZSpyqSBatRo13YyZNtDSemQkvoDjU0/Q0lXSGPCWXy6i4IkZheoaj5M506s0+zsK+UyEm4mDJglwa+HpzxblDf+RgLSqynurmyesFO+ToV1VKBuFhum+QupJy+8LIL2CIBZO4lRVpTb9iKiFQogIvIh40UpVhYJ3EpGQukI6LFqIijgtSFxVFBCBEwEK58gINie6K40y0dscYo7DmVpaa590EippmNwE0NhqDSqyFoU2HGhqiZDfSsGqZtC3XcmeqANiAYhVbFA2nTxqsAnSeYv6noFYpAMFgb1K4aIwkihOeHmwQzPVdDz9WA/NMUNvsj24cPGiQBQ7m5bfaJURGGrKvulWUnR4ZgazU1WJwZo0scjUQvqSJNClBaP+oobyFhUBnALaqIUJwBFVkYfKKFMmJVB+i7Yl1RHi4ZPNM/7ahLnsWSJSsU0g0/yoRKE92YABZnYgSzaHoAkAsaiQUXpmDRoQNdZJGQ6c8W4qIGE1CwKpidc+5PQhTvxiLA0tBrKGUlVIyXG9zrjhrKhzayKKxSaNiId5mtRHoBEH2Z8hSMY2mZm8V5CaSlzEkwhHb+fA0hnCUVtHBLnADEEgBKdSgnoFT3tGWfDW1iku/O59WF3hbr/f73dWVzYHW6uouieXTz9++OSevQcGG6tby6s7du06fPTQ7HyxsbU11Z9/9KH7iunpf3rlv/rVX/3nz3zauf74o/f+9V//n7/9vnsf+t5oNDp2fK3ozn3r/u96Kp79rL832Jxa9dNd3xnJQLWaHnYq3/veNx/4+uaDO7/48Ne+8IWdM/PnX7j3vPPnnnTJk57505e+/Bd/7OX/+tePHV/5gz/6/c9/9ENf/OJfPOvHfnZrXOxdmivceKzjU8vHdu/av2N+4dixEwcOnONQrmysnL//wl6/PHXsBFG5VckCsLi4WFWrjue+973HyvK83lTR7Zbdsnvi2PqO3TsL3g9eq/QUFUMnHVVWDCxmF0aDg4OBXSsGxJA/RYtKAB5z0wsHL4GNtzrQiQ1NV695E89EjWqRtcX3EybFSspst5l0HeyJ+bAt8Sh/PHv1NnNjNjIaGMyobIsW1yxvQT1mCO4oVJV1QgJrvjF/aT6OKSNSzur0vYiGqr4mRElILxqotlBUSrN4VVFDDBYgYBfYbF8Opt5zdo/tfIwFseRZjiBeqmokldGbIKFUXBF59qUUcN5JWZRKqmB7XeHV3KoLtQLQYabJiy3RrbiPJObMTCASaLR8NXK5q2qejLaRkz9uDNX9M1fqmFo/Y+80yisegEKFLG+RGvuZNjM/oKTqUCbJMgokTG7kwA4jvUuRsjHW7tZBHxCjMArLKWpTynWmLZCtN65JMFxgwYJfGgW/5RhDQglQASUXTcU5vCKD+EDOa+OKMXFteA2UXkkTvddaQkqTlAzWJ8l2Gq2xnMhrOtN45aqzBglXzoJzIkBYQGoSSNsbqDGxWXwjITJcaVdrpBCOVSjUoYhhwSYS5rJxbWWHAxFULUsGqcVUmEZIJWYAt/ENNIkDnxXiaK2PRmapBmgyFZ+oq5kkwJyQm4WzWrBrOjwXfBFM2ww0NSsERKe2ZBgCYJTTtOhBUQ1FtAhKDkUO7KPCMMT1SkoeIiQ0PbNIVIhUVTWWst/v7twabg3W3ebWeqdTgFRlWI0Hm2NaX91cObU63d980kUXr6+d5p3z8OuuXPrKN76z75wLXvPvr7/u1b/Ww/jhz/33P/o/3v21b3zri1976PgaP+mC80+tLp9/8VNPrWwcO73xkz/5k2W/6C3M71wbPXz4kDq3sHPP0uKuYydOPvvHL+j0pw4feviC573MdYtvnTj1mS8ev+ih71X/8YYDM9095+/8ub//slf/7y979at+9Zvf+t5v3PR/fOWTX5ruPWX//gU/FEc80y8H6xvHTxx+wfN/6tDDDy3NzS7MzT7w0ENd7k73eicOH5mamqo2B9NT88Ohn56aOXr05MLilEin13f9KWwNVnqdHcRQXobzjJ5WDsWQxBE0CJ2E5GNCCsCR0eAkWwobODhu8LWs3lGReLHEC6WMuJFYti8mEUUwi0ef5ey1hyhdq208m1gksahB4GYioaQNavmiGlxTg6gbcZU6XiWANJEGt8akFzWavI3+3DRKdUbPZtjxpLjWwmxE5FVCzBgFlyEAqmyOZd77ypsTb0SPJjmIoqa+EG+CrzOnRDXDp6qCAQtFKYkk8PFkwwsAsdgkciKVeVZHOTjcSm+TK+BKlaLy3os6J6UrTOdXiK9EuBCWQpxj5xwJsTMpwuhO3AQK/1KzZGGUERum03Bi8Rek0KPs14RXW89JhmahChFwFFsBgTf2nYnMAy5vZtow85+YVlNIwS4HTmaKeooArBoYjsBQZInHrdSQkjoSEYmuj+GekdnWGCK+Rqn5zan9oVrLrq9KRMTBCVoSBk8/Rb6twXjaAkSEuOYrxRsVLMYyLprOF0RMVOdTbA0VONWcM42fU1xBzukUzkn802W4IxfsGuNnOiKKh27iY4p5aE5JLTAyjBNXoBM2LduEDnUrrQhsvhOiZNnLxjrmGjPW/ET0txTA0mGGOapWwWzGxoEqQCKVemZXQ7BGcBcRUqU6bA9k1WmYw5VIkVkazektPVuNkQ1/JTVO7CYKx+lPo6VxozXkBI3gJCIFW2SCaPQi0cxMHoEqJRhPyaths4YWAoaW3c6s94put+T+rh3FifERZh6PVLyMR2DMwFfrG8tQzM1NHz52uLPYV8fDUXXvdx/YPfBv/I3feOXV/8odO/Int//mX/35x8ejmS3evVbNoNx1zi7P3V450+/Pdkcnjlx88dn7di9uDobMxQOnjm368Tln7VtfXl0ej3fPzT/4yL3fO/TwgQMHhqPOgsyPjjy2UGJq78LR4qLHetNHTmx98Z1/NHjjO172kz/2/H/8y3/wn9//3e88/LY3v/1rf/GFyk1f8qRLCtITxx7v9Yrp+c6j68sXn3PRt+97cHbH4tT09IkTp4bVeOfS/LFHHttzYHEwXB2NN532RMqimBlXg7LbWV0fgU8VnTFpyTqvAkFVcreSqgGuql6VVR2FgEEHDrGqluEq8VOAxXcAoswaPJXsaJjYfNFDRJPLfDsyptPlxNigidkhlk9g9YiiCVHkPRvxTUiQBkBFUpG58M/fVSZBk0mrSRTzlqeuNcIMaAtlhxVxg8nIm4WpbDO4MRzBPyXwEGFuIt6LiijIey9ifHyNM81ryrTNUA75i2xFsZwBowCJkLBzAJwLdd5M96mq6kXUizAwSgehzKqFildVP65SkKuWCi++JMhYqOPgS5Q2pVonqqpaIOBblxNPQysww1NUCubbEuQ3ZOmdazKF4F2aUjAgxmHDoMKk/AaGD6Bqfi0KEkUIztToOwQrMOUBatUjsKka2Yz2zZyymBsLqUqIbSFExWeQjpouVqbA1kCAA9UMPzNiWvtItHOuTVXZNWweURYT5lgGzqtRV0OIjrphNw2kjFChIBYiaBPoI0pFTFQkICYwIAVxEDoTJidkZSXiVE04jvrwBjMU9zGH+8QTVF7jGRnZUG82IYnuymFaCqNBLW1SoHgCpoBrck1ImHKtcFZVIiYgeCHWWx15HRmX0c8LqkZhFcRUBF99suhvezI5LrFxLbYEUi1cXwnej1W1cMIqHuoKUrGcWBI8hZmgDKYOWNQqx5Cqp6CVF1REmfIgMCumI2fzywtxdilWnaKSKZJpUYvsjjQX8QYgpno2RELRH1st0lSJSC2hIduthFPz5wIb+0+kzpmqpwDEsl+rkKgDOXbOY2u8NcOisjVY924wPHri6GrBu8qp4uTJcacYb64NhlvlxkrZ6wyKYnDsyPJSuWv51PpnH3r0V17+a6+54TXz45WP3vjrd/zJ38D1Fnef3Z9dOH7yWFHwmKXsTLtCdy0sFSKz3XLfeedvrS/3yx4PKh1tPvWiC8fj8aaMuq7/2MMPTHU6PcXenTtOHT0+u7ijKDEmpfFo9fChkSsPnHfuWU/+iUcf2/e2D3/kP9392R++5o03/Lur/uMH3vTdRzdufsNb//oL355fWlxzw3POuaAYlft3L548tn58PDh3aXH9xAkU/rwDu44+/uj6xvpZZ+3/689/Ye/uPWefve/oqdMPPnxybmFmZrZXjkauA4Vwv1NVAweFqEOBgonI+zE7Ci7u5OBFnFM7XaIiJKBIYK8WzmKVi4CCQd4ELLMghhIvUSUdJYzsrA1oJVh1GlQZABWI9uh4gwPxDb58gQlQBRguevwXhVNLniDiXLGN7JvhHEMgHC2myZRmfcTKm7FplUMt1/C4Asg9ziwYOZAuR4Wl1EjNsg4IE0mN7pJkGd4owckolUu0C0IOXuG9VzAzmdtzKC0orErqxXshhRcHOPN1VCgVCh+8rSTy+oGFFVVVS0IgIvCV9+S9dyiZQSMeyhDOK4lXpjEghEqFxYvQmLhwrlcU3PHjypxISJRElQkFKbggB1QKLotA/jjkLRKxgGOLOianCEZohpArNSuBIOpBAoJ4Zq5NYungnCNVNis1EVIqQFYnYnHbDEjQAzAReVXyqmSpGwWAOoVzbPUoBax1lZygKSTAEsuYv5tFZiOidBGyk3BEcIWIKBQFm+pbVCmrXZFuhSNyMS1DUAOkVRlxS1CYIBXG4GSqamM8iYrEr+WdU8tcrqLJkLSVYil7KqDlwDppzcskcpsoQesiUfxpWzazNbH0INVJIWJTcgSPUPcUiWJQ5C0yxXjGDYXeKSMIxWbX22iz1c1QS3Sg0MhXRp2SLTPk5cn3U9Q7FCAKEK+K4CFiZFrzFQVjGESJwBwy7CB4p4MUZLoZSuoeVfXkIy2XBiuXuM/sFFjhLWDJaj5E/+Z8DpGXaqkiOPqIBbVKw18CDHUaahZp7rshIY1LI2DQiEHoIGK7S6qVEoDCOcfFaCDdLhFKV0yJkIiUHXrssSNlWRYk48HUI8cfYV2o1pelGPWnFgbdk/ff9+ievXN/8OHfefrTzv7i77/3t2/9T9/anP2pn/mphx98dDCuRidPba2szi5Mg2Rxz8LexZ0bGxuz0zOr/R6JH4/HRX9qc3OwNDXbdbx6avWSpzzlm1/7OhHKTvHjP/5jW4ONpcWF9dXl8Wjr3AsvHI8252dnSuK10ydWl4/1+lPVeOlZz/8HWyeOXP2G3/2xP/zsr/z6L73/v77/gx/84F233e6WywvPPbuHrVNjNyw3ds5Pnz55ylfS5eKxRx7dGG6+5Gee60abFxzYO/T46y9/dX0kiuKsPXz04eVzzts5XXY3BqdnXKcD55zTQgcjzyy9Xi/wfhQTpBQOEJfF/qmaayAnuZNomzs18SFEYcKQYwbVtYCi7es8cXfDDFrdCMbnZfcxdjATzN8p/nLy2pp4r+mT7SLlXiaBgsa+TWzDyWWsOXHDAdCYTkQzjlajwyGyi6xRXkz15Clau0VEFSJWXpFENDIEdZq8UE6NnaoWMUGEqrpozw4IU6xUYWERR1VVeV9WhacRjUYj9hCVqgPSqiIaV0ObnvdeRyqkTgkonfNSGBZ1Xgki3sMEIqgCLmoU2RyzSNpGASJSuCQi1wcRnfMTukjb0ugWxiAVO/e6s2XWFZKgJEAdHRoYvSRNhTg7Si4s6V0whUyWqCC9MigHla32cpxHPEptA5UtwEhEUXObsVgnEknOILImJM0ECIajKULw5PXLPifzp+k36woNNfiSQXtA0JF0gSwzZaJk2xHX1pet4jnpwVSNpzXVVu5MGBsb4tNTN9N8qKpyymUIAsjH5acVWeMgv4Ya92bt14zzLQ1HKDl2AERFg3BbwxwRFZbLWJXEETGoIphBJ8Li5I7AMIQncWwZwcy4bncvWkYouXFATLMoFCtVxYCllH6y9lWmoBIXrRh56rP6HONuuJjcjuO/KSuIR4r1Ex/NfMxcaCpwpkMhilHfNjQBhHCDhTKHLI1Z1czHsSAoOxUIpCD21aAa99bW151zq2srs7Mz/WLq+In19aEfbD4wTb3lwdrK5mBtrAe6uPeh+6993ZVvv+3Nx75893v/2fVf/M6RtZn9P/PjP/GVr/7NaDTquO70TGek47GvdszPr59ant5/9nBrU/2o47iqqumpKSba2lzfvWNpfWV5YWb65NEjq6eX9+3fP7c4Oz3TPX7kkV6n+9jDj17ylCdvjccrJ0+cc9aBE0ePTU/NbKxsFlO9kV/3w5ODvlRPvvBro+K+m//gR//kI1ff9G9/8oUfet2vXvPYt+5/xsVns9ukQmf7vY31jQsuuPCrX/yb2ene0v5dF11ywZFDj//V5z+/96wLjp7aWN30T33qDx85eqp07vFjJyrxS4vTTlRFRsMRChZ2EGxsbDGj2+vYDXPORMPEmNax41FLGi+vaVy1JsU5L2j/OtdQPud3bVv6nQeQ5D/RxDdP9CezqRNzd9lGF80ptz3RKt4QfnQB+FCvgoBGxgwCLAgWQqCQjSsfyCUplJoSghEJBC9NdXlZQ5guWGEkVmN9L1X1qhJ8O6JB21mtlKAM4FogKaiOXUS8dawIyiwRs/56X4x5XFVVUYhz5JyTsRtRFUuNkcKziAIKLyLsRccM8hoNWsoKVfFQCDvE9HbqlFGYvBqXHBUbaCY3bJyQssDrhD002zcCRIWz4N2GQSGdIqulgtgm1Y8SBz19cj8im6jUIGoLi5IhMjCmTAmazz+wTU24I4oZGgCy/HH2dRgxsSUTBNU+iyC3AWfm5Uamp2weQTWv6kPCdBdEsMglROGVCAQVJYrKZtWYDo8Sgdz2uqbzSP/WCeSaPdP0WuQZQExwVn8pRsCIABQM1ZDYIcgBRCQppzYHLxWJoRpE+d4Hb3PjplEfFYHTRbXkuWHX2scpDszEpIFBUa3saiLGJaLZMjQXeB3SlAQ86ts56DDMIzu41MQkFnXAsYEHU0ojY2wdg1xExM1319iZiFLpIQRkkralVoEwuWjDMxbVB4BmcuY5XaM5hPJHZP449kiwlXMopoxcMlPv2VWK0crqiJwv2EN8NR6cOrnuRzLcEqLp0XCr8pvMixWtfO5vv3jnHW9+xSv+5adu+ze/9f7f9QsX7j7/R1Xo2MnHjx87de6BAydPHZ+d68/OTov4grpQUvVTU71up9i9a/HEiVPz87NEtHPnEpM6Rlm6L3/5y+eff7734x3zc6vrq9O9zmBja7rfKQs+cWr5wvPPGw0GU/3u9MLszsW5Rw4d+/EfvmRuNHz83vsvftqTTj52vOwtfOwzh+/95//+muuu+K9/8p//y03v+dTn/nLW7d4aHgLx4uLS6snlza2N88/ee+kLn3f/Yw89/MDjnenFouwvnzq0uGvv9x6+r5LxhReeP1wfYAnjwbjTL4ajkXOsHlzweDSYnu6LVMPh0DnX6RQW7GIJqZDd9HCOQDJVJvSEjPFt31MJIh5l5oZsWEkEPn9LPkKwAgaVT8xhqYi6n0bnxA+wC6qmNoiiqXNpoogGjp4QZYHaNJg1jgkVyAEai1A0lkCEWH5U1RRsdcZpay5TNdXNPHcyXWC8REzEADOYyDmQMJg5Zbe13Tbqy1GMYkttHbClt6TWqpb6qqqqwns/qnxZlp1R4UdlWQyH7MiNuHCFo9F47GXsfbyx3utYhdmDnHNaODacLVAlYSuFqarqCIBzVi/V0nlti4fj8uMxhbCISakp/mm5Gx1lUn1OpFNPFoUrbPdaHYz6hmCNmtZGJJbVqEbsbcyYmeFUjUvS5JwVzqhl8kwABrExYzGG5s/bki6Ey7Mt12nlvANPFXfHlIWiGvI2RPWRRKzf3koNtRYSSxG0vkBjPml308ekgG3dicmFJH1vi7fwYv7GksKNVYg0j4sVBJMPEVFQjHM9eLJr1ZPM5HsypY2qMhUh2bWYtSB185nxI2cUIuuqhMi7RslSw0aSC8S1zs4TgIDUdpzZhfiQwKEbwxjQaKyiK8yFRfgnVUG+jWlWgcVAcKuZgIf6Ec2kHPuYaHCCNFUNGXQC3HqiEHhg1yn4fgctN1TVcfw+0mAiAli8MDPF0guUcvmKFxXmYuX02p7dM74qVDrHTp54/PDGSP2BPeeTH/W88zjxvROP3/EH/+myH7/k1n/+D+754iO7n3rpmh8eHQ0XvK5W1b6z9hUlzxS81OvyoIuCF3buqKpxURT9qbJTFguLs91utygKESkKXjm9vLRz6eixYzt37di3d8/xo4d7JT907GinKKZn+pubm6dPr1x84UWjavzQoUN7d+8ZLB+f2zdPRE+++OmHjzy4dO6B8UhOrRye3+/2PnX32trgX/2jXzn4in/4D952cOnj5//bf/WaAxdeMqW0ODX/nW99Y3Z+5rmXX/qFz39+eufi8qnTB84+79vf+c789DxXmx2HJ118bn/KTWPhxONH/K4FV8y5suOl6hSFc0XR76r6siw7XG5tbYxGlXOmdbJt5/y6IYgapLWajvIDbcEAR8c9F2iwQ+3K0YKc+l0Jhinr27pTUUwgitKJkRiNmSyMTNpbm7hhG541jTzZIUPZZDggy/vRCElAFLgp8YuNAYMsbUJJAO9cnUbI8yCmKguqKp6iUhcqRu0dyDEcKzMzETsXKG4gtMzGIhv1NUOmA2kguqrwKemHqlfteO+9Sjka+XElZTkuR6OyLItxOR4NxiM/JDfiqnLj8VggRCQq6qGVCqlU6pyAghWISKVSWI5rpxF3EmAxtVFiRR031jIFJojK68O0PtRIyYKwz3CC1jga2ckscGmcTKxM3E39K3zILhC/lOBiHEhTwtLpsEhD2uNtp6GWcD96TwTdR9oaajJl9fMNd/H81zpQHfV/jNQnYkRxbRpyTNVezbXsH5YhQF5VI7MPtahsTRgM3lv3szYDWLIISuVQWpsSNKEU7e/KnoyhiN6hCC5ghvgFEjVGDZNAS5VtNyynXsgwlAN5BNhKyuSchtX/AgqvQq5I4TdMFEzURIRqIjly2BaIbyaJajcOoqaVoNDkrpjjRwY8B3enerVKCDagidTM+UFk/3J+gLkfQN4zWB8YRCTeEJKT6FGXAboAHO+TC7vtQnR1HCq8cezFkeeSttZGq+VAxsVDDxyGdkfjkwNdXF4+udgbn15ffWz51Ac//Af7dw3+7T/9J99dmd3/rJ9aWR8sH14/d//iuDMsN0b96X5BvpyfGY4GcwtzG6NBWbjpbqlS7VjaPRysD7bWlubmNjY2u71ut+M6JQ9Gwx1LC7uWFqUanbN/32hzo++wY+euXq/nve9Pz/Z73ccfOtQtC2YMTp7uXHj+9NLm1tqxPbsWK8bxo+u7zzpn31l7j5w4ObV7aeG8p9z6Hz5y7/LK9XfcPP/b//HfvfXN0wN0FunEieOveOWv/eFHPnhg/1mnHzlywe5d48HW/HSv2y8YUhSOt7akqr7+wDee9NSnrK2tTc1Pz0/NFDQS8cOt1bKk/lQP0PFgUDC6nY73Y4IRjAgJGn2f1Vz6SZVibpn6ak7+C8A5B8urpSqTibwzsNEm+NE20GgQGYVvEBGJZNEQ5vlrFwqNcSZB9AlmMvk50eC0JxzKysT8TRr+yfiJesIKBKeNNKAGFwxtFTVXjmUCcvGXRKxCGgGF5SVkMKFwjhw5ZuaCmdkxGxlmZmORC+dCxGZwqzTDjQClbS+JVpZwQ0REumVnNBpVw1HhXFmWZWdcDjvFYDB2XJbleDwejUZjPxYREmLzvfBeKi8MRkkQlKxCKuKduZUUIgof0/A1NZqRuAGt/PaRpNEZNCsiFRE01kFPDxrx0wnknI9s0qJvH1Rg7PIcD4agG9XWMyk7yIlEtZYo4xcTLqrXEz+KSIHtmppfTEKFVLtoTfJ0wcMtq8cZuM7gDmBBmSbbNpNIQ1Mu6JTekgghxDPG3gM1dFJ0rp68kJOyb9op4wfN97bmJZCNo5ZImczjzn53ygqtyJI71vw4IhsB1EwHGe1uugnkB0CZFt3S2NjPHPNaaAYcOSQ1doyEUEVzESuc1fuFSqhppYi1jzTQHpgXp2OQpWKPQFK7xVGSElQgJtQyILkanMipeg78B5BQW/Zr8JAK5dgDKTW6Gxnb3JfEA2S8L2WeI2F71bTwavWmKHpN2A/Gxhq8tdCoCe6p4huFMjNadPuj0brrlL7CxvJWoeXpk2szi4tzncWC19dH1er67LAz9ccfuaO3eu+/eM5rzvuJFy0d6C8fWy2A3UszZdnpsV/T9f179khVnTxxZGu8Nb+41Kl6051iz46lka9KQtHtDFR2LS7M9qcG49FgsDm7tOPw0SM79u47deqUjke9TrmysvKsH3km1E3NTE9P98Hu1KlTu5cW9+7ccf+DD/Y7nWpLq+HqzOKuTnfp9Oby0hL70WgM6aHYWD4y4LWnXHbZb/+XP33ms//bC//xZe/7rZvfcv2/++yX/uqFl7/wwe/e75x75tOf8e2//OID93333AuftDAz88D3Htq7d7fTstPpHD12fN/Z++eXFk9vbQy2qtlZsmjpTqdTdMiUz91u1+grUBJpyHmunDnYNS6XVVhpGjspAl7dfKWADxch4i6KSRUSCssHiePXf+Yn3Tr3BD9KhKiatndJFnQ+IR5RUhZaF2aOkQ7hGnItJ8RraPBpG2JPGRnOdHU2nclJ+qbbc9rJOgVj0hspi6hEKqxCQfYNwweZ1lHh1Dnmkh0zu9QoUGJTRxfsWKEhM6uZpYjIqQ8hFUra4eA9bq1kVxXleDyuqqocj4ti6ByNCh6Px6PxmAvmEVdVNR6PAaiQiEhVhWIo5BwKuHDU3ivYA+JiyFml4pJIkol/acOy5BUEQH0UPDK6qFBL8Rs0zxLwAmB+mnUksZo7J5F5LMdvSHUy2tgg3qE+8OD5rwgpgFSDV2oQIFjJB1nLPP5aht8WMteg0wZCOUIkGavuHTcii9dssrThZ2aQB0DqEIqHUhLyiJwtWmHuegyA2WQUiTUPaxIVCQ/H3BFBHCO2zKXBGty4/3FWzRGyGSqiChOimkL0gECiYoZVEGmoVEpOLZ+FiHMOEu6Vqoa6lESKcbjekvyDGvwOxSYiYK7RTPwpHFjaaCtEGis8MRVJTZS8Rh3IxagLQag4iRAgG52bmin1HVjZPLCch7cEZVGf6NLyOSiGmUSZnLKGdHahlJPhTYfon2VXQShkuZHkEhYEfg1+2gG5eISjTzEekqEqIlIRH/lH5m3cVm0HLWrRIF9NwRZen+WNY+aiKDTzdAMwHg/L7ljGm0uLiw/c++2lxdnVtVOPHz9+bLB53q6zH3/0gR3n0Yf+6D+v3vupd73t/Rc++x/sveTcQ997ZG5hlofVeLzWKUdzM7vYF9pxs9O9sthLROpoz3nnnjx+tOi6PQt7hoON+ZmZ2X5/NBjOTM30qi7NTlmsRVEUBXRmavrEsaMXnH/egQMHoG59c+Ps/fs3B4N+tyMiKysrZ+/fu7m5Plg7efbSk1c2Ts7SWjEab1XjqpjZOHmYO0V1YnjxuU/motp/zoHfet8fuMXOs3/8R+783ff+i5e/djgerR079guXvfjB79770OOP9KeXDh05WlV+cWauJN69b/fp4aZbmJldXDyxvPzY4ccvuuiiDpWdqc5YNwVjZqWy49hqBnsI/LhyZWH82yQhackWyGXWRIAzBi7cm5jmIh0WOVejoFq+3KZNUt902WvGd4LQJgw7ib7SNBrfxFpwdf86L2+D8wh/Kif3l0h1jarL5P4QhNnVoUcKjUkNo8ElUV/UqmfVZP2NsqKSc6RMcEyFY3bMjl3BrigK51zhnEnARoYBWJgKaaGqlrxYAWKlaBM1EqUUCLCqlEXhRUzYdc4xkWPudDrD4dCNBuyoKIrxeMzM3vuhr1QhlfcqDPIUQjWL0llFiMpeGiQ6peCrYa5sEurnEmnIuRerwtuWCoeigU3gyfdWs1xARMQKb0IFG6+vAa8yJZfyHHi2gTcFWL1UBMc1fTH3t3j6RASQwoeKAIqoegFCWtczNQOqgthFmteYhWNzm7BSkQpY6U9RlejrBwAEbxnyo8DuIhZ2UActOGiTw9Q4IHRPxJa9LpRjsa2PuY6j9iDwsEBg+PJ7peYvC8slIhIORiwyNSnLqaijuswDPjj/UkEhow0AKFegoOWMp8tEVCiLirF1ZBZ2FVEtYK62zFCxbJFkSbtibkaYghqWG0jga6BxjGjoN29qIlLxjtl7xLQG3hzB29yTOFjJTBoTWTRsIWIXjAAXRUMiIgeqVAilKoLM7RghtUsZZggofAhUIyhppT7WHra3i6UQERGzWXip2O61iKoHXFQcmOObJwIxVC1RrnPOBUVI7blSU1lzzWNzBzObIiPVcROwKc00WiLBDqoOpapaIKrdAyJ2jr33Wps90jGg69jLNHi4uH9QPLB06NGjI9k6tTzoTU2fWl/BQuf3//C3Hv/Cf/2t9/zJydkfOn+nW3388cWZflEURx4/vGtx946lBV+Ne7sWXL/cuTC/2S16ve7Q+363PHD2WR2mbrczO9Ofn5n11WiwuTE/P7O2tlaWPdaiVzgimukW/X5vplPOzcyctWuveDdeGJ08eXKrKHlhYXV9fbY/tTg/f+L4qaJbHDtxvFvwVL833Ng4deRUr9eZ271DVTFb7liaOr28euF5e2an5w6+6q13/Pa7f+gnFv/zB97yml+74dxzzv8fn/j0t79333nnnH9iZQukC7Mz4/F4ZmF+azhaWVvZsWtJRhvD9a2L9p/dVXnwgXtn56e9jKf7M7vP2rm5uQlm7qiXilnKTs97zYzxStm2tlwEEh2jKKoGmSaWwgzp2UMp8Iyo+zGYnGVKFwUHRVF0N2qQTI22wPii/M0gsy0bKUypMDjE6BE1EEg2+ZjBxd7nhZmRU9ym0jjnKoiiFTzXBsVw/xaRMF5AvThmU0THFFVgUCi1FJGGxDJETDT2IQGreA1CBBzBOWYHVygKCqS3KApXFC6SXudcQRw8FlU5S8+Q+ONW0WKjvgCqqhqLFxHTZlsjZjceFyZhc7HJA/PbHI0G4pxU3qsvqPTeY0zgisHqSrWstV5Biko9e2Xiyguzs/q0zLASy4ALIXAOogpWUZAQozBFvQ/p34mInAOTiFAIjo4F25iUIIBjJyIq6rhQhkjloebQmYMNK0Et9JertBlRAnRseCboOlRJxKuGODPV2p8ZAEOSgxMprD6GF1/52j4SBC0JdoqGCjqH9VRwNmoRkwmdc30TEYfsCBzFNWKqfa7G0UcmdI/vST4dNehTVNISkajGwiy1S5SiocE2FwMVb5sRC3ZSAOKwjQoEvtjgTWupSABnZEQJGvNhEFkKCzaukxQuLjk+axvBUAaxqiP1QmLBf46CO6hBthBCWmaLrU/K3qC9yqCfOC4rqKQo8xIPfRxDEcI0iRCy8Jjq1+iTaNC6AYCH5lnQwiaA0UxIQtw4d+YiY/nTzhFlaoZ6NGr7B5o6GgCZ4J2rcohigVIzmwlgJBzMHdhREcUEgkF84Ri4EAYJHooBu3HUiARmVBWZQs8IMwDnelU13DG3bzBYXDz3sZMbp5mn5hdnfYmTJx/+sz+/e+W+z73zpt/d//TLu+x5c212777hcDg3M3uqc7LbKfq9brc7s7m5yQXN9nu7ZmeG1bDbm9oYbE13O3t27dCxJ9GZXqfgbtXrTU9PT7tCoFDqOCnLspru7Nqxc2399FSvP9PvAVxV1OXFrdFU5f3c1BR3OocOH2XB5mDDqczPzRXBbZQWFxd3LS0dOnRo946l5RPHNzcGO3fuPn7s1IEDB95x/RvedMftP/RjF3/gP9z0z/7313/+/kcv/YlnfefrDwxd2e90Vk6fOufss3S0OR5j3475nTt3sLr9u3bN9Lqn19a2VtY3CPNLS/d977GvfePLz3rWs3r9zpaven1XFAW8aSx8Or4cFPNUkQGao3tz+gZApsprODnXzWzJISDN8mtIumNNPbRR0EYK0pwjDx/if3KwpO3EptxdA3H+yXiRPzg5Tuul7TmoEgUepX6dc60H0gopwm3+uzEslaWE1CIyAYaBXYR4cuwKZ350oZXsnHMFu4KYEPPHsTqYyiiE1doAyR2aiEzKNGt6VbmuSOVlLL5gV7Kldqaxc6PRiIjKoigLtzngAZQZ1WBo0vN4PDa/kMLkxvEIZUDrxlSwMGtytmrwdghZgYjIdMhBqKPMABouuMUlChw5NTQY2UQPhWiO3yx7tqmVfba9ceF1zxDtGQ+99kivjybTs0bQ0Jbjtb0Uiri3tTNTAjMNDxbpW0OmE9CmwUONwBYSAqrjtwCF5cxiopE9ZCkXNVMyRfVMrV+iTJmZRooE0ly0E9nMgbXIo4ezB2MHRUpQF7I3JEZYA45Q5vxo4q4i5Y/Mhg75ZiTEygY/LK0PjElDgkanJCwupJoMQjwAhk8EP1H4pC8lDTr2HKcQzJquiN4ktrKgw4uAaxHZZDp2pViAyDajLh/HscKExkIybH5UGdjlFguC48Q/qRJrLNWeq+Bqe3aGxajWxYVk7xRlYo0cd8jrT4GbKyJellBSLXjWaPASJWS26tobNgxRX0vEPdRMMqvdy1VVu1NTZfdvPvvlTnnxlmx2p/rl5szWcOvhRx/46B/9jhz90n96zx/tvvg5M4vTnfXNuR1z8/NzKysrnYIuOu+cra2tqhrtXJrbubQgflQCO3csauWFcPaenf2yGA+HMwszo8Gw3y27hdNO2et1+yVXVeW9nyrJy7g3Nz/dK6fKeVYU7NmhgvZne6rdza3h+uZgemHeeaHxcFRNEdSVxenVjQP7d+9YmHHODTc2+s6VIkNfbW2sdc86a2uwsXv3zvGuxd+89g3//m3XP/VFP3rjTQdf/k9e/cA3D5Xd3srG+vGjj/3oM5++Y6G/fPz4eRdewIWbLd3s3MyRw48+dPTIxsbG3NIu8cOHjh0657xzps7d87df+puf+pmf7HQKQKWqVLVT9qqqVqU2L2xNjc6sZgsQlQAzXMZIlTVz+w8O/HARbeTXPDGilF/QFrlC6x5ljCxixMu2BDX/M7XW+JNP5aJwWmo9jmXXosZTmrpkka+pvlOiwXkDkLgWo+tQJg4RgKZhNurbcUXhCseudEXHFY7ZkQkwQkQFO2cpgJoprG2SEUdrkoC9K7z3lfdj8RW7MTsHcoIty9/EbqADLUr0hKGbJF3tjolkXKkqiVoSafIs8I6Cb6uJNCIqogwBpVCFepFeWZKneNpbDXkjkn6UEbImaywMU0NpplWmiDNhxZjOoG3Oj9UlJEOEkOu+1pHkPYmIAdUalRJRJeKoeaC11iF7F4f8WUUbhmLjjNoR15IoUSvRsVMgukBb2kg2dE0UchTG+jZE0ZEM0RyYgDjBtEhj75CccoOOPFZfsKBDmINUEiuNQwp/hhFikBbCha9zsRqaDvxL4s2TkVKDPZ+BEO7DRESCSlN0T1DdUzgu1Cvi5B2Q80/GZGi078QwmrqF3NAkUZiIXgYhDw87U+kJK0BihFfVx8yXTjW4bceKQzafYF41LyjKFOXGMCZ3eWK1uEAA7DjLzFxrIImKqBdJsB4SjzbdrCiR7bThxOMwH7XkOGX4yRgpU0QQAySxRF5QO+SZHgJrTLkKITKbEUoDGgw73xvRsSPLfqyPLz/42S9/6VlPefqO2dlvfueB9777HRft0Dtu/s/Uv4infbW1PNefAXXEj88/75xTJ04uLszNzvRGg03Hujg73e/MsfipXrdgJyLT09NQT52CCuo5OCJmYQKo6na4KIse90C0tbU1PT09Go2m+n2pfME89r7rnEGp68KPxoUfL81MuQNnL58+tXb6ZNnvz8/OsStW19f6/d7RRx9V6XX7nXE1eNLFFxw+fKjXcRtrK9OLCzv2HHjTNW/4wJ23/PALnvOGt914xa+8dn7PntMrp37yx350z/zMsUMP79u7U6vNfn/RV+N77v7c8uqppZ2LU9O7XH/P8um1zdX15aN/c+DCC3/k6c/4+te+8qz/7RkEiKrjsqoqbnqrZhd/G6SRYkjCr8HyZES3jkzNB6GmqypRqAMyObhdrgxvNChxnbwwvK7FNGw/ZIuI5hR3kvrmS9NtFhLwUiC6goh16s1JGoIkM02O36K+zT9dpFPsQMxFAS64NFUzMxfsOlw4dkxUQAtyzHDknCMXwwGSB5w1ZgbVa6mjnlzhVbz3ZVVVzo+ZTcySMYv3DBLxROCClMWj8jqC+kq896IQ75XGIFGUTplUwBKYK4iqF01OMK3GQa3PQMNpt1bP19vFzOq9aqj3ZqjUwXIrmAtI0M+l0B5qhsllp+MtorruECpVRFtYQN2GhsXlBDEOIwaBFOSGbaFI1RsjYl6vRSvqLv8Q8whq5NEIQd7KB4zerYbVyWW7GkpfhQsAQJKzK8XsSO2NyC88RRnYuCoiMDkKxa1i8Rx1UGGKqbWgwY64TVQwpwfjKwKjQNSullJTETIizxryN4ptiy0p5DaFACFWgM2/X5MmxRUkqlrBW1pkU0skqsaaLVMCe5HdZ5sN1+upeTGyGl4hujfGgzsLDafIVpKkcld1ZhANCQHU1DIUQYZCgCCCkVYl7HOb2c8xV67kUGUg2WmS4ZbqFDM2q3giGRXPBzS+h5RJYwSwxg4OLg+/zk7TaLNxnY1JEtFMv/fA2saWL/efu2fzM5u9Xv+B79z7L//1y1723Gff/Kpfq5Z+qNPv0vraJoZzcwtTRTE/O9N1vGtxrqqqxR0LU/191dZWj3mh3y8clwSIdvp9PxoTZGqqV+mIuqV6US/OOahySofObImxOmUplS+dE5Fu0SEi8R7ed8picX5m7H3hWLm3teH27FqcW1zqT8+eXl0n+PF4ODc/s7A4t7K6unNpkVyxc8fixvrW8vJp9mPM9l1//5vf+Bv/fv7NP/9Lv/iFK7/2H/7P3/lHv/Bz1WDwza995fyz944HW5tM3am5j3ziYydPDy648LzuzIIv+ssD/9Djxy+64OyLLzznf/zVZx966IHn/PTfe/D+By75oSePqwhuZ5AYcvYrD143whifSs+SOSW1xjTU0aZD3GZKGwxcGKEOSpmkhQBUagihiDpz5Jueba0oh8AcfppcO1o97ZfwZbw+fiKZ1+SKWutK742EsCbAydbIcEzMSgxyzpnFt2BXsOu4old2iMiRMqh0JiIjpRFks29HUpyrRtNMRETVK4G9BttvTH0shMrR1tYWFzw1NTUejzcHOpai0+tVIiIVhAnivRghUlLvgQrknDAXzGa1hffRGaqeQTzZmtg0D6tWBkT80Diy/IxMMAUAiCprLCeY73OOYxNsGCmjoK6wwQP2NAOhRMkjvS6FmNsxZUQ6HXFTwlJV0iTvFam4m70sxWUSBUsnx6htsjxt0qBUpvaNmNcSrccVCtSYvsASmpbJWaqy6LkbXKiQy8F1qgyrKRgkKSILZDIB19ap8UhMfxVAPzHIAW8rcWQAJeQgDWJVkN0DgxXYn7rGA6kKQhUjgojXaBtX8Yg1vgiCEL4YzGBiNbGNBiuDrIB8tEyQEAXeSr1ywkqBeQJRChiPjB/ySo6U+cib06XtSbCfMShmCgwabFJRdgphqWEuQUnY9vC9t4O2k7XMZ84VCbYiELO51FkRs8Rp5mo2i/uPoElhTO1k18bCwT2RQIsWpgNCrulwuzhoNZQsnX3Qk2egSAAsrCJFAQJWEIbWq+HMrqXexvzffvXeC865eDjWxbP2veq1/+yDv33nhuwlGvUx3NiqFpamSpKyXzpSPx4tLcwDqKpRr6CFvXs6hNKOCXBMLJ6ZCnZba6vdXqdgVw299951iAoHaMGovK9ULS9H8KhnB6+W8MQ5J0QYj7rdro4HqrrUm11fXu7v3buwuCRg8tIrd62vr46mp0Z+NDXVmV/asbyyWrhVeOl2d1PZG7Ff2rn0rcdP/f5dv/tPr5i68fWv+8oX/mr5+OHB+saBs/ZtbKyOpaRR9cWvfnt+cc8P/fAFM9Pd8Wi0vjHcWq96ZV9o5siyXvqil37z61++++57zj6we9funYs7FrxIp9PxvmEDbnH02UWtfY40SXjZg5jgLOMHU1A3gnCQI7jYIiAhA7D2qyni77weUY5n0Wy5Hi5NKV9p/vjkwuMFakBga/D8zzzLRGtWOYGP36T11nI8mxubMklIf5U8pMz060itak3puIwOVM45pM5x2zjLRx1f7QESy2AFNXJDUZeoqh46JhVfkkiFymtVlmVHOwJUVaV+rJ7VWzSQkAgRee89acHK7BDzsCQOI2RuV0T0HIRUjogoRopQ2p586yjSwnRwIuLNSFzb8uu0ytuWojIhgaKIklCiIRAmiuAc/yRSDUmNdKIiQILGWG0mFOLMwIIItYamiMdAtV9coD3CoBCnC4RlEE9mZovgVRARgaFqAaOG+GFo1FylbV0SdPFmHKJgLrEbqEQMrjNi5vBKlAQ+1HWqSfLE/ERk7mIp9oDqpw3sCnPcDUISLFl2w0huqtTwK7lE3kJwISzvdhUUzKloQYxnDTCtGnLWk0BCgSaLrqeQfAoAKhJL3MpEEt1Y7EW1MgAxCQXYDNLRqhD1vRy9yAxQKHGMkvw7rIaGctBo5JxWQnYtpBOBlVvd4q927naaDcVIhCg7Do6qIyVyIjWFBpjYKGwsTUGEKNyYLZfSDQSIQ00ohBnWbJbNJ7+KhoLjfJ3KkDyf3FzlmYXNY8c/+8W/+PAf/5dv3vPpL3/pu+PZPTPD8fzSvNvXP7s/N7uTfTHTA3UKxwLRqnDU65ROpYArC1YlqUbkiphFwff6XfWasuWJqItz5BheYBtVFIVWvigKkcp7D+esAJn3nhXMTkT37NxZVVVBrux2uwvY3CynHA9H463RUKZnN8dDJi0c7du3rxKsHT2hUpYzaxfsOedT3zxevfOdV97+72665a3Xv/zXn3ThRasrp7vT/bJ0K+tb+886dyzugYe/M94azPVnZ+bnp+fm55aWZufc/fd/bbS554d/5Nk79ix87StfPH1qZe/evVuDgfeNamOt+4iEmSZ+taYQrgsZUevZCNsRwqPeIsLnJNlLh75Nq/tT+Cd/XQ6333/btn/ry/+pMfNNaIzAFOuL+ZwXyeLomAikjhVWZZ4z50NHXBAXzjlmUjC0dM4yOTsXiHBOgNNMUosCiUMEVANm55z33nkDBLupVIC2FBsiTNTpdEBCiqEbFkWn4HFFpALvBeqjLkBFxAnDS0h0xNHJXaM8qWHJCAKjRERq/EGAQd1Ock1/+gipquoo1kuLiFQDmQnlYwDUficIqu8o9ca6kPUZaS7IUpxTA5LjTALtt/G3A9cgs4EBFBZHT2wSqSYhmGMgALMFgJEGB/HGVJCpwpmZCFKJSAWFc445aKQpimIOpCRMhJiEK78bIuKyKB6rhcBRO9mGWoC5EE1agUh5yAFIdYLTVoblKGuz6juRIwrenhkX03gRiYKkIGfJQkXVIlCpoSsrABaJhvMEJULGz1hkWmFpNNSMAcoxxUT9lDT0AeZDZccpIScIM7MF7GmwzsYIXAryhwSyFucfX6IAcYBEW6xpZ5hZggGbCaF2iBIIITY/v65RbmANGRsasAWbNBV2oNE/gKAkHsQeMEbAwq9dRJkVCCFLCBFHLzpnPGmAAAeKyg/NdNqRbYCCmKMjib2XnSvgioFssU6P1le6wuvHj/zcz7/wvIsXD97wH875kcvWN06W3V2Ou/sXpmame8rldIcWZxd0VJUED+ecq0YjL8QlicB7XzpHllhRtCickqIsSVH0CiLyfqzOKVvtOU9UFMxKpF4UKiJFUYivyk6hqt5Lp9MZj8eqBakUzAtzc9VorKpV5XtccLdbOozGfjgerQ+2KvEdV+zatavyujEYbCzN7vbu8Kn1QXd0YPbsbz527z233/n8a2/8F/+vf/LRj3xsx8IO8f7xxx/bHPmNzc1HDx1bHo/mp+ZmpzqL1Xhfn3eW5dEjh+d63VOrqw8+9PDTnnrR3HT51a/+7VOf+lQi8tAiw9et2xc+N29lSLOUWN/IBDGH9Cy5C2e8nxrwH9VD5uKjRoXWmaid5s5c27UzPZgDdkOMzsj29qs+g1RdU31m8b71a+FcnYjDHo9PEZNoBV8PojEplWptTiZD0kTOcm5QEdJdBUILR2TUt2DXCBCIbuX1fwEAppxG7ldr+2CFJkEUnYwKEV9yR0iZRoROwaKFjEZWJaLjOlJURdEpipiaQ0k9vJNSSTXmsmgGs6EGkFyxbLJELYwCKAqXcySRPDcOLj8FJlYmX6kSHDtVVS9ehR0lmE0aawp25wkOkgkxP0GyeqAZuDUptFAdvlzTnay/gUDQQBRCACxHSZCpQFqEFEscslFBg3XegupcPZyjQglKTn2lccs4JiAVEQiBqeCCqFRVVQ94IoUXEBE5CSWCBORNNgWUWB1gqloVu6AuxNuQmPgPAOLtjMJ1JRNKPcPiUAFYndCw0YCAJfr4BtkYwWwsmbehuQI588UEIPCk5KWK18CppVmhVCLGEQQYa0A9rKqIkr0j1ZCe3abiNBQJgUqXxKpjChQaU7URCdQhRPJ4VQGBtROqu3iDgsIFHa9Xkrj5Lp16OnjjScToITkmFhLzTSQNSR6D8zmcpUxRNh0Aoh+ySCyPaCMbLQ4Jq1QtCV40IZPqOFo3qqDvMH6zZlkaFjIBU7AhJPcxwBCrcrRPq4X9NcyEHLC+iqWlD8HYFFm6ajTudFzZWTh8/Oj89N77Bw9u0vjf/OYNH3rLwZVy71Nm5waj4Zi2+n0qClQiU6zkSYbDwlG3LEouSbSkskNu5KtCUDjHoNIVTLZa1+107XWj0QiQsiy9yXECFuaC/KgiIuecKrmyqwrudEjFvJxMF50nDyHHBKivQNrtdsGs1SZ3e2Wv2+n3XKfcGoy2huOBH813yvWh7/RmdO3xrWqls3D+bb/30X1POf+fXf2P7/nklzdXHv/Wg0cfWqEd03pqqxqDn3T23osvvniq3+8W5dTUVNEtFmd2uk5ZDUfrJ9a//OXvXHTxuf1yfjysXFkUtAXtSjJqep8H6tTQlbQOiuRboMHG1KRtdQEcJaKCuEIKt+OgCiRYAErAbqpmfUljqipyQxgTF44ifbI91AxH53JSjgpz9J2j0cQxxPzSNgilMNOaysZPOUoO3jcipq5M36uVhuXog6Mcys2Tirfqokyq6kW9lcdVgUJIDTuSg0K8OivoIgJR5wKr6phLxyUFtbNzhcUbsQUeMZHCKZGE2i/mUGPXMj/E1LpUeKjE3PLm1VwKS+kqKXu9HpiqqhqqQgsmZYwsHpe5IHJAJdWYnMPY5F0vSpVWDoUjdWSuYhHfEgTqLCFE9AtJZdI0JsCw+Ih6yyX+jEh3zGgYV2RqbxHxVeCEiFXFxg1EgKIijbJwLDBZ5g1WBbkIPIbW6hQLIgIiiZ5riN4uGsFMSKMTbianSTDIG9QVpN74hXSFVOHhS5PTKBqf4+SsKE8NxKLk2GoYZUDMwYWMWSd5z5BngW1tCIp+ArFzpTNpTYz3stROtck6gXKCGG3YMMxIGCOTAneVbodPlyXyKHkLO6C1MjbsOCLLlHHlEhPLpyn5eKIcO7BGFXHYq5zpyxz6DMskbtgWYaltCUTONNuwqCUEfciEIivx1BlazN4YqJ1p901iiKWcrFueIc++cckNgQL/2hg86xyijZuLTRWQGMGDevswgDBUcBxzNRSlDSJJmUqZOaDaBIS1DqlmsaHw5qXJToW91ynQw48eW5jdufL4oZdf9dq1e7/4mb9+8Mk/+pL77v3unt07+v0uM/r9/nS33y1dr9txqkXBrixYzdYDJbjCFeTI6pd7b3mGAJihlJm73W5VjUREoZ1Ot6oqjbrpoii8951Oz3tPivFgyBw8ExJDE1YYPTbNcmxSWqfTqUQIMtXtjarxcDhUPy6dc66c+r8Y+7OY25IsPQxbQ8Te+5zzj3fKOSuzqmvoqh6rm81ukk02xREgaVENUSYhESSktiH7RbYAwdKTYNiGYcD2g2SBfjD8INOWIEGUQYkESFOk1KTYzVYPanZX15BZWZXzzZv33n86/xn2jljLDysidux9/ixyI+vW+c/ZQ+yIFWte31r5EHYOoW2bfugFFv/X/9tf/z/95Ff+rX/3f/Zv/OIv3dCq8+7Dq8cPj45/6AtvvvzwweZ2d3F91S1XMQwmU7bbbRB64cGLYZB33nmn67rtZt+etI4669ij1Uod0nM5zNqoabL6PGmmBNlcHh0kkApyCBGApew7HE2WWuqP3wCAaBybaqfva2l651G286hATDHw73zZuoCviOfy5+Gc1I9DzDkZJm6TnzFpuGWoRSfIeFhm3KdEUbM06lCuCVmscBRwivdJ1iaIkKo1MS5Sm6RY8XBJhWDpYGaDp/SAfRAzuJ1zTB7RumYxkycayltEldhHIhokoqCIkDrLyKlekAEAp1Br1ou3Yu/GG81UxxnbT2POwBq1LmX99zAzKVuELA6kABioqqqUbADjHokpZ89KPWl2GiWD2GSX5lyiKc2M46zUxWlZgXOUrY0kv4FS6lAqf7KqrDRWAGCCCr7D0LHQwAhTRJwoRe4oS44i0iqpMAI4CECqAiRiFa2K98vETT0DWIrnCDVW8ohUAYlAgShF12l27VSElC+zqADIcKlp4gStZFkz5lz1IlCWPL9XrWWbT9tUSMbKwoY0lQQgCvMNbyNhNqUbVBBIAMBaXdVSHyo1H5TrOmZFyEIxzk62foilxpzqimBjiZT8w5TaYSpAcTWP7HLsf/DP6kACAAU6oF6C6SVYbzCcvd3oxMjiliYiv04bcIjARBJzPRpJRB9PPn26fvbk6gtvfOHP/6nf/3f+2r9/9NqPPn263t+uW/di61hVDTwIFTRE4GTrx+Sek6DJI1TcAEGVmZEgQjSUA5FgfgJ2DIAxStO0+/2+aZqoCkwxDrarrX1NqQBRVUmqOFrxQPaOatCgEL1rUKN1qZLFqt8PKNr6ZrPZXG6uwn69XHRdy588/fR20P/xdz/5f/wf/sN/7z/6D3/sL/ziX/+P/8ZPv3T6pVc+v6Dl+nb7e49/rw/Btd0gguRAsGm6B+f3dkO/vtwuT1cPXz6+3dy+++6H7VHzpR96Y5AdM0epGqNW4i2tXa0QjxQ+ic9ZJiVizn3IqQAjVYzXabkcEE3BKok06aF14EMVKtlTD68WaYfEabK2psZaHs/pE1MwCEp4DqurpjL47i1gBSQ17ZfM/0p4JBGSq4EsJSpVHgKKCCOBKjGVigkzZam6awmpGsaW0rS2c3JQ1t6TvWZWRy4HJQAFUpQs6YEb54ZhcMTONd7Hvu9toDhVs1Q1aiAZnGCQiEouaQOAavhTh/rcmOUOYAnJUy59Vy++tDoAkHF8YWTpggYGVDk2cv5XMNWiJpV6clJ1iaZnA+Q0nyrXpCx90ncKXnWWDflmdcRTseBRIzhGjWDATxmrAhERBSMmPQgAXJaa6Mx7OS4fZikycliYGEBWHGVaDpIWrZMzpKaZOGp7M2VmAStEqICyJ3RbFEnFBNZvMQYcR5UeopZIVX4QqjX0Sh4gFvuSSyENWP9BQFCMOcafr4JcdkEZvkoQ0XxHRYMr/5pPotjZkECnXfalafKQA6EFEUAVUAFFY8q107u8CUUCVSWGaga2AWSmSnw2OO10spYYOZWc8CT+svQFsLcXACkqnmp5fUxrokV9V0Ax7bXMHk4ZU1ptE+lT5oipRbT9nGqhobAMtQxSwtRMraCh5PtnpIXkIw0hDVCp8e2iO33yGB49evHX/uGv/Lv/2v/q+Tf/9s2at+ji7fNl195cXxIe47k2jVu0fuG9Rkn2dBQAJOeKGhdjJPKUUfFLzsRutzs7O4sxpoRnwL7vrW+M995MhGEYLi4uHz58CIjee0gyQBFTWyvNLtMIEEJwzhE5e6nYRxTFKKDaEJ8fH69WqyGG69u1XMjNbdM2qwjwla+8ef/evacfXf39v/3bf+I//n//b//9//k//OW/f7w6vXh+/TRsHOu610FAYs9ts11vGtc+XHbrXjbr9fExeun2+/1Lr728OD4Kcfe733j7tTcfLpdLTPkZbGRGmS8l5lVvqMJ0KiGddiggFBib0dGST08LWaTmqHVpVu3H83EMxdm3SmWjjTpN/Xm2X8qWqeV0TbHmgZmMsGwLYxQ6Et54z0r2H4rhbJ9NnXZ3qaQAlmGpoAn93+KoKe9Qk1PC/M9YHOlRcoG/Vfigoliuhj1RENL6lafr3U+3cENWB7A2HhDRMw/kmINBT1t4wnSSVLBkeRhiYeyo6kRAYnIYc00bmlKOMNsPIxVVojTxT4Hstk//K5MF04WoXkoSCmE1fnMzCpRoI4pM9Mt6+fKq2RWQ8OezplWjPQvmSo0DP035TAqi0a5mQBIRjJiimNmmiTLU+wpG6idW4WnwTkgCSu5KNrF0R4UOBHNjJTsoNRgQIyCHNJbWTK0ltWz1MVO9XM7VwJKnZbJL5+P/TOUUkkSxhCmdZpnlO1gDTrRaeCIlBqSp8yQZN9mLWB2Kdxxc9C8C+8+6h1g/HwAAJOXJ3e72pxnp17eGAraVH6SG2wXJVTV9TZJke+b4sWBpO1FWoRLwaa4kwkzQQtJgqu0KbOBohaEiouX1ce6bNq6L0hgk1gpyr1rlQlqz1c9/GsMCTsVahMjM/n/8xrcZ8Pj85A//1Ju//t/+1/7+j3z83odLj23bbrdbZl62Xde2jIQKKoEBWQFFERTtbkmpVc01BsxMjgEgxnB5ebler0s0F7MJu1gtgRAIkYmZ7z18YAwr59eMhGFk03Wd994lIzsatl/sBzufiBrnGnLLpl02DVkSHOLDhy+cHp96omdPP2xaBdbTz73yd/7m31x8/M5/8L//3/36N9569MoLL7z8MA67Jzebqz6uo3x6s+4Vzh8+8Mtm12+71XIv4dOnz88enH3pR7/ULJv15ubs7Ozq6kpVvffmhIwxIkxAFk00FHuwsJ7ZRjvcd8l5nJEfALKFPN1B6eRM+HrXAZnjl2hcTSp3Pr0+Z7phAZILcmIZj4MEANSyY9Md8n93PqW8AiqULY/F/J1vn9GYNW5OQMXzCQB14uedYh6mcr2eKJHUXSl9H1MtUDw4JElOiVomFgFIo9QzxphyrS0mqqqUXEES+iEM6erydJPKaSbN/TNpHjOy03pfgHkya1aZ1sv8c2Pe+PiUfJN0XwAya0oEVS1tzVIpVTWqUHUcEmGhDFJQjSIhzWFOCPgsaq9peHok68IhsGUl5ffB7Cewu1AuA0umIKrU0knZ8pTG6iSbXXOkqWomSylJjpl7Fr+u5jbUmXQwgvJUtSzrNFpFquWDFkIsDlWs7K3854jTVJ5VzSwCWPDYbDgzoEi0ZEUx53aGIkLoMBVZqUBq1qZqxXOU220CpFwiNcFwuA4ZMGX8AtLClihIxAoECiv7srwFma9iQgrJMhNkw4tOMR2QTNMjCJpgcjykjPHRuUYpHUq16P+lh1JeILHVsTKzfE7BfEbEBOaVX0fraYdKiR1ZTK3TCOb+VwQ5vRa1uAOTp0hLyArQkU+UTEiRQgi3283x6eLb333nF//in1i/+xuPb/zZ2b2P33l8uuxee+lB27n79+8fr4689yKx7wcL1jGo4xTCEJEUwQNARGbKgDBJ9XnttdesVmMYBntBC/rqAMVEsEIQJYwxlkCLRFWQaN5sxL7vY4wGOm/zkO6jATH1xRpEUAQ0yhCOFssH9+9vNmHnhu1u7Yg+ffL46mL96hfuf8r9r/6tv/Nzf+nf/KO/8HO8vry82txuoFt1UWW73TjHi7Z7/vSTo6717BRXm2Fzsrp3cn7ym7/zWz/2lZ9sG376/Nn9h0sRCSEgoveeiGIIfd+bkpFS4XRcyMnKTuVKKYgreiSidSnN51P2qmTEq/o+c9/t1G1YMgMmX04NmtkGrEpFRwosVArT45CTlpvPLsniLZbi+Hw+A1TNZynVO2QWMdJ/fdh3mmJ0ipBjSPnkmDlM+UY1qrKIAFExyFJ9rTkwsmkrdyFDpRsZ7MFc0RGbaiIiMqGoxMAOnXOwB5EAAIyEmlRMChGcE/s3FeqlN8up8qOuUE3ySEL1T+VzvaCY0n7GtZ6tRWWvjvJyQiEJ70rrweRrefL0fPOSCZxc6XldlUAzxgRnVW5CYxATqh+IKjpgRwC5BskOMm8HIUlKgJow1gkVpozxERy4VCBY8k7O3uasqkxyndI209R6Ia8xlyIiopyAUNE9JgtPBQom0khA9QrZPS1nNk1ohkkeMy+hODzLm44zOt14TJnX2+jsjVTr5U9IZHkZLM4UD9Wg6X6mKVaUvfio0SMglozEiSd8qgKXcurKMLUoNoCF3xImZXaeJ5CYXDY+DqGaTC7/pvm3cqAkCmN9WWkbYrNWb5tMORl3S8enoEIkqHtwAkz0CVO2qLj+yjbNq1/nShgNm9eE2Ru3+OjDD7/1rW/9R//B//qX/1//l3uf//mbq+u29YPgNvSr5ggAYowaoulDvnUOiUCRiZBQgZCYKSODiNV7i6Q4hCc3DMMwDG3bwsjaAAA8+xBC0yz2+733vmnbfr9XILMhVUqXrFqJhCGhdkQVsTQLe8FhGAaJMUYk6nyjx6sQ9Ra2gGG3WzOCp267edb45cXHgV45ef7syQe/89/9b/6df/Mv/aV/46x7FD2hyNXl9VHXHi1XjW8IcLPrN9vnKq47Wizbe0z+h770xXfff++s9fuBnCH7OwcAIYQwDMzcNE2Z7Ir4IfEC09qmCT5gBfBpN9nqiUAk5joWWPO+spqJ4HVkBIeyMN8alQpe+mea47MvZyfDwS4rjyiDvPPaclW+lczKe8a4W7I0JjUtenCQdXhVKQ4tkwDWA0wkdcELMRJgRCInQ4xOsx+r6iGPudUEIhaTVDNyZ/3ud342m69+ccZkiVo2FnmqUGABERkYATUKRtGoMUYfeXwsmMTRFF1Hl5cwaXN3UsJsVFjELQKMwmJyFGFk9zRHzuS2OdtjpIz641SWFyezXSI5qG8PykgGudt7oZyJWqUAVseBqpEsyA8AyVGGiX2QknV7rmiXAMja4Y2jVwJBBl/Lg5o673QLm/MJ6wMYDYvTMbElzv+gbZl/mKBJpAGYZM0V6LUbYZLYl+5/BxRO/Q2nLiBzDSCnG0z0dJwIGwIgwgJ1oocPwqlCU4/NgBpUowFOlcjKbALKfWrqzKRnTBBUS2/epJKLSCV9WVMAwm6SPDBlJAQ4IYOJBkZZr5KpAjHx6NVrV5ABynZLBD16mwlyDyWqXNdlVOnBNKbXjYSOtpmRkRxxdkcrgOw28JM//rVmuH37w6fdyathv+5pC8Tn9x6cnJ061zRNY46pApMdNClAAhpBo+ogERFjjH3fD8OQfMjGzQhNLGn2Tquqa7zVRN7e3hJziDGGIBEQsfhLich73zWNWcAK0XxcqGJCPUaNUUWC9bpRHXOOSAGDOkDv2LegEL3vGnes2ESld7736eOIH/7eb7/5yunXf+7nLtfbxnlVvH9yfn72oPWL7e1+s+33Uf3y5PTkvGmaze2WlF544YWvf/3rH7z//qsvvXx8fMzMIaTkMjN8a650eCTSqERLzpAyjxGWooZ0cg35m5n4TOeuHwcHx4w/1JuiJsI5F6oNvmrwswvTh/LfgdE8ExL5uMOWnZ02zo+OTb3yGZqKVRIgoRJDTf+1X7d2HYcQhhjGPyX5k5MzGbS4lMsxXjgMwzCEEKyJiP0rIjEOY8REk++6elk1tEujzzRpefU1iohAFM1daXAaN63rL2YL9FmLUi+o5XTVRw7WVJnCmTOojuWLxZsFh5LF0pUOQiGTmBGPtZHRMijzUKe5ZZY4PYGKIhpZmWPOSoSY9xEBkJkVUvc9q6tMhr6oumnOgkueYQQAhATclRJ2EKxoN88y2oecYpPj3pysZLUMIACNCAmjykIOmEGm8sKACmCKCqc0Y8ieKwBzBkewLoVAgA4UEIUAMGhm8yigoyWX9rAkKy5HIzATOrMvaiARKPQApIpALmVFiqqSI4jmKEppulFVSEFQiBCglFGqLSgk6zZlcpnbBxFVDX81dUUciRJcss0lRVDS4JOHxCgnFWJGEI9Y0cQ8Cs6AgoKFcwGbRmGDJCJCp8lvhFYLb9kWWdmMCA5ypBkAFBQ0WnzAJrToHyRAuQ+XvYn9Y6vLtWGhadOYGyaTGmXlOA1VUqPiDF9nbl4VYlDCGIiQQZh4F0MXcf0n/tgf+vT732715PLyaRz2X/nCl0/Ou07ECbStZ+bGk+wH7z2oG2Tv2cUgyOCIEYSAIJBVq5rM6OOu9R4A+mG/WiyBUImiMhENMlh71l5ht962vkEA9T4yq1OChNLAnodhcORCCPb6BGy12iLiCIIIIIjuB4F93KqqQ2Dn+iiiCM4LDBzc/mK7ud0GibvNzRA29x6ePn523TYnv/yb7//cv/q19379l3/pX/+X//Tf+kc/++jV/hZkCP2wvb25bZrGc9c2jfceyW02m51eUsvH5D/58P3Fcrk4aoMEiUDoJIqpCOZpTxm8pGj7LtEwmgcMSqwBEJQkaE5+TPkDoIDIpFTid9WyT0yWIviN9pATelHZFLVuGpNFl43RUgxZtTSeMMf8OHsFQARJkV3bUKUGGoQ0782RJDGRn1a2fuYk7vBZIpLcbQCqkQDBknIJMSoDAmCsDTBRMu9VFI02HyQqxKoRFUWjRB4YNYhiVCQvGp0xFBEK6DwPrKTE6orNE82ENqNNxKRseWI9JxkrYdRvgkRVtadZdoXDhjR48g03O9wpAntHrZd9L2lVbUo1QozCIoLC2QcizjmCVLaKmI0FoNqcNbrRfLf6sF8NDiHKmGuV4ZPHFbH7iwbLARUVUGBKeEE682SYrEIgY3cABMzEEbJTOwYSNa5HCKnGm1KMHAjUOiYSQSX1AUCzsmUpas4SnWvdChEZMI6gXObzS1I4JaYXCsk05pLj0tLHa+LOS5ub1BoD1RQeLsUkWQ+qPZP2FSEdBFDt1jhqyqNKnr607t7GFFIgZOxNDQC176XemRMBlb+B8lbjkWKcIqFu4ygpU77cxmhqfjdEAOAKPW12lF5+jIY9rICkzFzmPk+RQUdFnALPQuIp9WxPeJD9G6u6CExK4lhmo9PQ0XQ25gaH/Wk8JX1TMTjDIQWoK8zunOTEOstDs0i+GwK1vEtSqogIvHl1EzYqOaVGob263PzEj37p3W/+/3paLZVubreWorzZbM4fnIN1IB/QE4UQnCNnIhCp2N8i4shZyW+qurRqDUDHXlWZWBGRxLQikTjse0AhAI0hgDjHMQ6kOgzBovNETBT3+705ighxGAZUTRn1BZS/kEVulg5IAMLMC6Jdv1913cUl9H2/3mzu379/td44dauFe/97H+386ubd7//kL/78L/zRn/72P/mnwzCYrX96erparYjcer3erreCsFgeOecWi5UC/+7vfetLX/5Ct1yZBY+oSVMHq35OrbGTajVGZLKdkVcnb9N5FLbsu0PSqvef8fhCjfWFMG72O1zH828U5E4Cmh6J3qril+ThEaXKY2f6djn/UNDOdtmEXNMjADT3Wh9jTOlgIiXSFL1SlIRzZ8D4BqYmAGakmqwFRgINIOwABiENzKyAGpWUmNkgd8uMlefWyWtl9qgqqQBErBpmpDOpRHCFCHKvB+y65a7fe+8lZieQp7EVRIJuNThZyPI9T44FKE3Q4oROEFFEE2mVbGmzxKYLUY+zJqp6DxXmXH6y14TaCsda9o/xuZpr6WgRoGasCiHkKhJhNVc16eFEIUBHZFAblVNIU8J7PjXtIvPtUpxOW+mvToXWx6iDINBcboEV+VAurIYsC+3dNcdvUvE4UqpxzoWeKV1oGiO8q5Nx3vwVz1fFiKqgJFp8CzOmUM+RqoHT6FxcZJgWNfil3PuWcrNhRM7lPblAen7Y1i4lTyOpAQCWa1LeclqXPGGT0QIhKAMgUfUukFB8BUod8DxpPEKyJGZsAu6g2vkIy2k4npwA1rI/gxLsq23hVMCXK6mKI6iajpJHBtUgQbQUgyhO9LOygiXmR0QELkZBJOedKvQ7KwlvHz54ecm7i2fPYfnS9fVamRFlsXDkHRG13nvHxSejGhNzBI0xMHrnfQhh0MGrtXMBRCWgGEVVnaP90HtQ9g1b1qqqhLCTAXVw5BkpKoDE0IfG+4ZpL9I2jYgAoGfnvR/2ewJBjTFGw5WACXkLZH1IRJRUNFV5eHaLxeLe/fOrzfr09PSDTy7W6w3Tst9ujlb3v/neR3/g8y9/+p3f+8U/90f+7b//jz//6uub3RZA9igXTz9RQSJq28VR0zFx67uhj2+//f0HD1968aVXP3nydNktvPdIiqjOsaiKBGYPuSNzxtKYwAtUNIOF/RQWOSOkcQ/qHZyxFhiIqYCthu84PMr3imNXuFQ1dPcV+SfNCTUyygBUFMh8EBPT+gy9+Y4xHBxk7ioAy7EHSAh+VvIvDGMyDgA4IknluVY/CqoqGhS8gFp+nAm2YDFOUAYUcc6BI4AIbH1gWK30HLMzVlN3XgnZAjajyzZssRlIAUlTJFFBNJivD1CswscEcON827Z9DAh8fHTU74OIeO8hef6qfFhNcBbVnFRB7qK7GHe1yUxWZpKSBXQdMAFi1BQCFac6pLeanEaGD1zWVCtDm5MrxPJlVJFxeiGMvAglUU+08J6ikE74VX0U/cDZ/sjNAbPsVKAMEoyY+vCgpkQhqjzagAKKiiBAJONL2lPIlOPMbRWgbpxgSbZJD0p8u+zqNO7yooi2AiWHKFUFYUEFKWb+GFIamUK6cxoFSEb4qpekTBNpApjGrLEm/lAndpGD1C8ZMlaXCQMlcopQsi0qRjOx4zVBE3D+s6bIkp2mlS8g8bKZCNSsfxiBJh0WWFBzxtM8Ug4AQUPKZ65uV15wpj9aDjDcFWMjSVGqWJVVGOQApsThERy7vCOhjpkEBUGj4jtaxgMJoc4YHxoQPWA92joDSwGYPHBC+hQEUnd5cfvSSy8tm+Fmvd3RK3F/JUDr9U2zXDp3hqKOkhtfQLvGzFyMMbIDx04hbjZrAOm6DoEUYoxC4LhhYwYigiB932MU7z0DEwA5x4jSp54w4MiSVjSKIqnq9fV10zTL5XJ9fT3s9wSqRBolOU4hJaECADMHiTGECLFgHaiEoEBEu93m5uam3+1RwRGdnhzdrndPPv3ohz7/xR6ab3zruz//029+/O3v/Nk//ef+z689ggAaJYReQD07dChBGzaULn14//xotVrfbh698NL69vbk5GS322mQrm2ZKcbIjpjbEHoCHqlwWiRaUfLEWwaTvTBhjkW5ri4cUwoOBfZnWbN3apMTVju1ReqbZ56OaTgynoNaeYoSlc2PO5979yjzkMymFqtlkZDvozODCUko5uxKtTIiFIwgGgkgQkxlORZupQgoGKwrUTIJVCACqZJqAYyzyiKBGCUGqw/KUVeo9hQispD1N0QsNUkiEggESS0+zQ4BwKHrmsVms4tRyXGUwVI+zDnFRKRACpyt4Zw7YpW6hNmywQPfJKJxP1Q1fCJNGS2prWExoqRuM1NHcMtyT7l9FjWgChCTYgGjuZJ5sU7Xd7rcBj2VCnNofHq6/0xg15I+9cjLt8vx0UzjKS8rjVQB6pzofMccByph2mprySxrWhFSi91UAp7mgvLUEFo/JU3vDjmTGxDRQKjNQUqIFQCNjIp2apw5urbG3WuojmnLZZlaT2jZjVxkwGiPTeddUvwYIGZ3dMygcVHTreruYwlgJN9Y6u/r7sjTyTWEE3vQpHPq7M55xpLEtGkqWkdFoHmWijKSFCMoC4eVzojZJK20xaQIYHL5pu8d0jiBRFraqitBVYGdVcKC0wI5Y9AMkDQySmGYsVcjpoQUBkhQRBOOnGdAJPrGR9UYB6tedd5/+vTZyy/cf/rJe9uehdztdssNdQu332+dc8tVx4QSerdceWJVBYmC6AiHYa8xMIF5IHf7TQuclaNI3Dp7A7EGm4o4xKHP215RoWsaRDR9RhUa7/vdXkSCDL7xzLzb7VSTl6Pf7UIu9gUQS30CSACc2fwNjBytj1sIt9tNjBFQrq4uHFLrHcXdfrdbnR7tRT693Rw/D+98+OTFo2Vz+ezP/Nk//v/8a//p8epYVPp+JyLL5bL1narGOBwf3T8/Xnbe8dnxcrFE2PfDpls03nuztZkZASUKUwtaCqUmGzyrbqbKj1RakoYKHY6kWFnJmhMgphSe1lckYUSXnwovS3ebsabKx3vnMTdlcMIHyvdYQ1TieMPZCCe3musiszETQDRru7YxbJNgTlI2ek6PTPjPxjZj1ADoQxQgHQy4XSMAsCYxF2P0hMzsgKOKWsDDjQwhy2ANIpauFQRkliGM6FIKqDoiym5RLejHBJy7QSwWixBC1zQhhK5rYhzQeZFAROjIsXeWXjuymex3J6WMslkp0yPfnoq/wgZFFSAD9Nrip/CZoEzznsq/to6WCgrJAw/Wrg8ASi2lohj4T+FwNmFlcqoQNSYnBgAScEwnkyZwGBWQKQXWPNYVulBVRLECVsEJJaOCoqgCJkizObUhIgTI2TEAxZBSLWV/iAilu6/pFgmmMe8pTWy9aIA2yuJ8Nl0Js9GDqEgGGXFA5VjLqvRSScwnQ3UMeBRWfrBRC1pFUULqWHrM407W5zgANHVgXJzilT3UnVWQGMoIq0otq0VGzO0Ls5cG82n5DhVB5COFzQTnMWZErGMEmgxx+1tpGgQqYhimRANZDOMBj9MSjMmBZICJ468WvWgvR6C5PKDcpIwhJSCkiU11jeVdypnl0aMKxSmPIyrstsPXvnL//fd/zXePPnzr+8zD2ekqxN1Re7pcdo4QJLTdioE9NxL3jCgiRBBjlBC9I8/IjDEGAQQAJhIJGigSESMgOHaWzzIMA0hsmsYzi8jQR/IG1qbaB79YBKKo0TnniHe7HSIerVab9c1uu+26TkMAEUOs1ChMlloybvuk18ZgyXZd193utvvtjoiQooR4cXFx/+xsF/Fy2PT9TdBXvvGND7/2p3/qw2/90z/58z/71/7v/5/jlra3AxAcHx1714qIorzw6NH9s9Pjk+W+X/tGowwEcdl1zrlhGIjIexdCgtcWEToI+hzKubIWM21p/mcddL3rDoVgPusczUUgh4OxMm3IStsPEMb1I2ouBACYuvmN0d87x1OL2Jrp3/UKFU/GDCM4bk8hBbWWCZJQ7UhL/Z3m/E3roAWIOCgIIyqIOCIQYSKKjE5dsHRO5xlYYt7LWQCLyJCTpQeJElNpE2hMlSlEjsgRiicGZINOVOviigzMzI44soZh7Yi9Z88oTcMOt9utZQsDk2VIZ/TzJLazCAYEZAPCRczwvXPL4c61s/co1SgzPQw1uw2rdZmzsvHjNFpqEdSsH9bPr5ZywtJVlVRUkx9SkzNfJsWy08MhWTETQbpTyuzK3RciocvuGNEMFVkOVrb0fOWIqNYqbuSDAGpBb9LsUwIAzD0G5/qjOaytO2b9FAIGCAA1Eqik7j0mTsgex9mBMMsbUjA3gSpWd7ZxFvY9/d6seoXkJU6fTXWdDC1TiI0KMLmSKAHHKWRsjbxgMBGfqirmVTCtn7Pq5xGL6W/bs34jHm3opPiMii0UbVrmchQylWcqxKJpIpJonCheU/ZRtkTNaCIAFFD5cppW1nCygzHjHpNlJSCm5LjPfNwYX4Txwul4CjcvM2NIkEjMzgMAEe/3su/h3mnz3e+FgA9uL751/OA+M7/44ovnp2dd1w3DEHpyR6uEtcvMhJZQ3fqOmSUOu37fKq9WCw4IAI5TbTQiMLlUVycS+iHGIXFBY0wySB9i0KZpgGIAINAQg/NeVRdth0xDDMh8dHIqEjxi6HsRjcMgIsTmyTAsMVQrcCowgVFEQoPceHZEm81mPwwvvPTi0+fXcbv55OryeNGdntz77d9+66/8hT/2/W+/9eM//tKPfe2H337rraNmedQuurbNNb4y9HG327368ksP7p8H3SA480WFECBbn8yGrhCJGD7DwsjsHXO2/2jZ1OoRzGR2glLAw1/rf4koJofJXP7hDxDRWYNWmCrAMukEmr9VgJH/ICaXItLs4rmEqDdFOWfyGQCsw0n2O6mB/ypgwnA1C1wN7CnCWCufhDNDKnmxrRejCCiCSC9IlurkKCap6UmUo0qjnlkDoAF01ONUVaumG2IIIfQxlKRozT5e88dERwqszllhskkBAlQiIscsiHG1WvW+D3HXtSwSRLDrOoNcBkJrn0gMlpNFRAwp2Zg0gXvTtGJndmTiyQuaHZlkvl9jQZoaM+RmCWBfmtgBACI3wVfIxh+Z68v4MWSum2VUPlkrG4yqVQUCjBpUNZWha3odgdGESERXXQwAzkobYaaTZqeZOUQAIAPzzgVwyjUtCqMKZPfgSKB2rVGTUjGKSgtGBKqdTloym5Nuy3nGZ4uh1ivT0DiYRqGulb5k3kAD20LFWEWDtHKRlQHnZ6XUHq1kSa2OQZIiAKmSOM0SK5QeXpCVbgaOd+j4k7UoA0gCLLVeKDKVymMpgYtNbA5782INqLkadMzMKv8alVlVCFnHxwNGCSNpVoma1RSVebAvCVE1pq4mhCqTTqv5btkeyj6dmoUZY01PTyQy1VhNJOe7mXdofKn84s65oY+a2dyiW91e3qzXt8zD7Xb49NnmZNn2EW9vb186P100i8WiXXVN07g4BG5yD0zCrluSCiH2fU/olkuvYdhsdqfdcYwRlHI7LUqUiQAAzOwZQwgS4l42AOCalogQBGLYbfvrq2GxWoLjEBAxCjtGF2Mk5xBx2G9L5UwEiDJo6SWlhiErzjkkYqQ+DCCRBFrnT1ZH17cbVR1iWO/6zX4HMmyv+ld+6IVG5Z333v/k/WfN6f1w+dGP/vRP/PbvfvP0pN3HsL8eQuh9w0OMLS0f3j+9vb1lRhGSqEMYjrpFAFVVw560AiQiijKQ5tyLCtaqrEKhk1SvPGspMzGXpW6TVROYVsnwMcbZr7OjkM0POEdV5YC/HwjO0duZX0R1SquHTzl8qMG01jlfKRlCEx4fFvvMADmwFreJZYXMRgw4Pm2LlHPAJloURCIIBvMUp1Qshz56A2qOMTaNR1VWZIsM5bm3iY0xhhiGYagLiNOWB7Y7dOrs+cSE1lYp677mf/beI8Aw7J1j792SEHYUQogJYRCSBHaYo8Jzzdv+jaCGtDWb3prXzYgEqrTt2d2gUpqsijZzyiRBMJc5GIYX5nwxAGv5amF2gIy/AaMf5Q5KUFVgSrJFkvu29FWsD5MQBOAWi7N+2GkM1sLXUFYQKXubNXeuLW8VZlODiABC1kaWE+AwaFSNpYWOqoJkVEuAgiaS6AkiFhkAkYhVzRBmStlMKMrZVBVEBFQ0AYN1knPSU4hMJ6roLMuDukB76rvW2gWaVSQh8qoRQKMiEAkAMoGFZtSS5u3ObCabadmqUUEQiIhVMYpmdM/kRrYYNpIqgBV9IngitjpgSjBYRewVvVWZeLr2iVKNBBnJQkSAFaayCmIq5bJ7iQiIEKFS5gfmKCcrF0rpkYjIKaaSq42VCkypRapsqKYYqGV4CiKpywPGHLgFq4wsLRcqaaqavN9o0VAD0Mi+9yLG6+Z9VuQwkdBJkF8Dnrb+SHE7xLjeXF9f9SdLOFm2H13opr+62smS9xiWpOw9cQoVkJB1RkN0PkgkQgnigZbdYoiDIjjf7vf7bVTPDToPBKLRNy6GgRhJfev87bAOqsjUx4gxera+MahRUIUIiGgYBgZAVET2jLv1brfbEdHR0VHXLfe3a+e9ahTvgFRitBpFAWgajzEQUW99GoSc84oarm9FwLuWfUM+bD593pH7ONy+8crD83N3sdlScO8++eTLr75x+f53//yf+up//p+c8vbmedDGtc2iIde+9PABkvMnL+yxeXZ1e/+sFVX0K+EBZaywZ2bTbBy3ElIHxiomapzGeHdMPNREUEYynaTL5avSnyAAUFIHamW3yD9LBiwnJF0zqdajxpbuB4CIMU5QsSacPXPGmpBUQSTLANTstpm6cyp1Fu/SUFEUiVV1kq8qCgABY2FYtsssQynBUlIKaRKROI5hAAKNUYlRMLU5JlAQGdKoRQeOLJiLwQgRkSPEGDy7pmkIICLuRVm40dyEKydhBUlW7yCxH4YQ+xBCHIIlaBORcw6o7QWduCT5GZEUFchbZyEWFu9IBVvntV2ogu73rWdEZcGogmwF4kqArMDIqkhk+HLZL40cVUGCwlx9V1WowBbzN6awiFliiGZsFHsjuUITh0EzXVBQSUEVLOaFSDHazcFmEyzerMl3mCPABKYcYOL2qfpUEQzlUcUpAEBQTKvIOdl7mhhIbDlkSkpkAGBEFOPovbRstRg1gVXMjTOYHBjSFwbnkCKt1TRV8wiZreNB380SBJKYLX1FQNSUsDxRrhGxFPCkba71pqVqpwCa/zs3S5k8tPozxjBdb7PGWKwVNsQ6TIUKVbvciYU33tnUieSBJ1BJRb2jsg8mvyGVVClAauaDKctsvPmdT7EJsz0nIkWxReTEztRAOK0eOttSaMzFJB/N1shcEROH4YEOdziqxLxk5Iw05iJOXCYAgAapceB+mCm5h8ZTeVyt7U4nB3T/APhG1DX84Pbm6cPz893NxfV6s9mFy4u17x6o6mq1PD5a+M6tjtoYI7tltzxyxFHUO1aVrnGgEoNy40SE2SFw3/dHyxMJe+dcjAMTm9LmmEWkl71xNiaWMIAIaGIvIUQ7c4hBFR15Akh1H5C6L9i67/d713SbzRoAmFkwKigSiUbIBh4RtW0LAFYDut1u9vu9WS2r1cp3K+bF22+9t2B/fH6uKsvl0rfdex8+/dIbb+yDvnZ+etS5GPvT5fFut4vDfrvrL1CJ3Ev3Xt7d7kDJ6s+JIEj05G1B64rwGGNNErWBmNc0WySoxm7mmb2IFYcsNxr/KKVlNXkUvjGylDyAQie1aJxRSE1gP+BPo968hScawOH59fcVKUIm1NlFgDlEmG6bXxYqz18BlCUisxIkppRPi+iBqNW/qSKIBhCT9AQJOYsJQiBxvsyGwbQFg9WDxIHTK4uCmOyJIiIhyhDM24HsBTGEwMyDDCTeyvasayeQqewSQWMciIi8Y/GNRAGD12O1htgEgkIMxEiEDgmRSjOLxCTV+iwSVDt9OuG1ByIbskJQ2aMw5Q+QE6ehVLFWv2VysikaiY2BFBKksFGSpjZMmBdrkpGnucNx4mzVcO4mG+PiKALghrDPnRHL2VJGA0rTbhUASkj129Zib3QrGecuQfYEYGY3QAAEAgPVyzfXQtCEyKCp+1Fu25dgaGZvVc21Jt0vdTPEcuc68xmmcfaUXlWJnDRBMFbLFR0KR71VYBS9WI0IVanEgKspwrxbpaRHFVFqPvxKAZ+wj+plJb8vzpIFLLyFOj0fGa3AOq8sVqq6Zi0P8oIDgmXNG3aYVZ5V+AWZ32UiSfGEVOaE1auZqlMi2ZPmj5i9X5ht97zTsnd6EpiZSOU792Q5rfzJzaDQkRsurz+Mu9U3f/Pd77z7jmAjgsvVyXsfPokxXlw8a/jslRfP286dtKeLRYfgkJwSExFrBI0Qg0roe1GEmDvAbDYbkCG4oLGP4giVrYuX6i70i8UCAELo4xA8EgGGfY/q+r4noujMQI+633ftEpCcZ0Qchv0wDOxbIiLndtu9a1qrzkRgbrxlyqD2iMJZrTGXLBGBYFCx9mar1aq/vh36vu08ADz95IlfuqYLEfyzZ1tuoAd6tW3/5B//2b/7t/8ebQffsGOHoPvd7t7x6fZmHR/c63sZhkFVWtexehPzRSWlpCsXepgLobHcrywQgebuv1nEjlIqkRfMl/4uW3myL/RAuE23zER4wz/rmMnRtFPGFiTz4wfL8tlQ7bB+QTgDLa8uqO+Si/dKDpHFq5OKLCKYrFjraBQ0Z7eoKqG5K0hcQoMSSIAnZIpRfiuBsfEwKjAw6mAKFkYhImRxSC7DTBrSpB2EaPXuROIcQUyKWlTxKgFUEZk5WNUSqaIoKTIwIxExEiMBKhdMhdR9fIKePVuUNGqAPBW168W+nLgiCgPPS2L/l9LL69hHYYxQcXMECKMslMK18lUlOzIVx07VSQAAlDlhgG0CTgvuhmGPWHLDIcl0iKXrIYzUqapq3oLJM4qtk/u7AFi+NKUsmpzxh5gAGTQnlQBQIrXR7nSIqGKmIaaXQKylflYVqXwsZJEU1mxSc+3ClDT+IodqdYg5xX3LDYMY+BGCAX4pgMWqq7efsgPMeoDklkrVmWQyTSoBj2X2aiKgSgecvHJajjuU8dkdyp+EqDFZsVl21icIAUQ0uIKklaUO3lOEzjy36bkZbWQEF0oDU8VUjDYXnCrZgZyyEibIa4hk1EyTbsRWd5HcjLPZmIWRRkLVW3btbh/uPzh763e//5u/8nsfPL969MUHYZDb29vG+SHsl7A8Wiw750+OjlkQkfsQl8uj1jFpdEhhv7m6fAoAorpcLpl9jNFzE4cAhA3EpnF9DBqGtmmGISKicxD6HQA0TUOAEoKqOuZh3xvJ9WFo25YEdtteBZld8M57JxKQKQ57JWeUSejIUbY1BwF1jR/6aJn/QQaw1hGm04kQUeyH5aqL213j+eTkeLMdvvfp93e9cHt+cfns+PT+h4+vnj5/fnRyjjdXP/rlV//Gf7H/wquvrvv1+uby0dn9kwcPVk23uV0/euGF87N7Ua+Plst+tzc+bqsvMiKBICKxaY3z2FttuZYvE/3otMT1M2i4/rdmi/ZvCT2MW9fOjBnUPo13mhb7GQJ7yt/yl1GKvaAyobTD88tgJjQ/PmQey6xHgp/xU9IAICKZJysBYY1jGAEj1UD/SvIUWTsUROcYAMgxx0DCZtEmW81WgdDYMyI6ImVmFadNjAoehCz13XvP3vsigA3HmFKhHahi6k3pnFOJKqxCMXoRNtTSGKMERRCIwMKMyORcAoQHAmJAJDXAY1Vj9gAJPVBVIfdZz0s9IYyqYnScxjKHNkdStDGAJI7SkimApmKhMN4wrYJOCC9xVDBoWNFSjq+aWwchQAZXKc0kYH5ghrkwlA5nOZAAqZ4q+wRqDF7MvFgAcv7ySIClN8MEugFqGq0BjIo6UZIk8zeZggVSMrNWNxHzxsCYzmaXcJUUVvQR06SqWO+dB1YYSwDFgk8TV946xz5nk1lruDouJyCwJrfBRELkF4Q8V1wymSdqV9pXULS5fPCsDvgHHJbBnbexmNhLr0RJZ7HRCgLlks1cHzZvL2EfRJLsJx2XuJgpNtvJNrJVrdmojCuJmhs7F+U1/UbFcVeYkeb0n1IqNZuuwwNpKTE2rm2axdXVs6fPv/PgwUtvvP7yer2WGPt+6JxbtE3XtCdHpx4YvWu7zhomhtATwXa/efLRB/v9vl0u9vv9p88vVqtV61qA26ZpQgje80q7xqOCyH4Loou2M0sRFSKS4d8n52uMjW8RcT/0do6B3Z8en4bdLuwRUMg5AGg68t7fbtdh6JuuZWbrbGgih9gb3AeZ/s6iqn3fM5JD6hbNZrsFiY3j7e0NQCCHEvHp88s+bk5PF8PA3/3uu7/v6z8ZdvsvvHavXbZd113vL5fLVR+Gjx8/Hnbb5eJssfTb3Wa1hKHfOXYQVXMTLEaOEk3e1zKpFjyzdZkLtkpdm4m0+vuZ4JzdTbIRnW6SQ0sq8+15eIe7CWbccTCjfDM0IcFVzdxOo/Aur1N//kx5n7k/VNu7vqrWGLDEjchwrUdtOKrmXiHJpy0iMQ4xFgwAISIrJdcxqYXGOgsD6EUgIgFwiAGVQVulQF60JyLnGue9894xO3SMjhkcc0aXhBK/EhEfORJ75ug9AChzjNGL9HEQCQKAzOQJCZgZGcAxkAKlOlRAy/lJM2n5kLHKmao5w2yxDmd7IjsBDg1RLNfm3IK8ClIKLrKOkxJxQRVyrrXm9n2oMQvjz9wI9SFj0Z0AqDW1RdWMZYmIyZKw20h57XLHGtlYzZkJo+tVJ8/OmXKVV0fHYAYUu3skSgTQONUcDdwEE33r1HhKnXdLWrnWA1Yc1YUEJ4wWc5171guAAKIGaxFVtd+ZqPmIiBRzMcA4sYBIeRqLJ7xMFMRaildSZ1wMALCovFZRjeplHQDUmGX1ACb8yERmsqcB0cr3EzmlMiSr9q6aDAKOMKIJyqr8pCk3NHduVpsHANPIkFK1VRU2k6RdlRXGfEDe/BMCKBRTKSKjH7Jy0d+xIvW1hBR83w/DMNx/+NJuv+769aPz1y4uLmKMz58+PTk/9YzHR8vj5cpzA45ijEfLYybY326v1hfXz58N+/2+j7Ad1us1Aw5bAbi5vb1dr9er0+74+HjZNstF6xgX3q+aZqOxIV4ulwBg3WaseYDGCITWPdd6CgEAOhSBm/Wla7z1Mt9sNkSuD9E51+8H5xz0vTFZTEEHQHKWteeAQuhtpaxYue38ftMTw7JrLi+fbtY31ze3UXE79AKOnHeLlpz/9JNrYHd1cf0jn3/9zddfl76PQ/De32x31+ub11575X/yZ/9MgK3IUhUJ2O5v1gOBUG5UXhZixvXsm1n+ak2ftUqZDOWqFnFCxp99JGQSOCAbzhV3SRuekNOMuu4cYf1nTX7phM8YVGWK1arDXTI4O5nvfGL5d6JfKlFK3eUI40zaIwRHbxgykZAqBREUjaokFKNIEI2qUdWlO1vbDM580qpCHFEQaJFAKWJkdgIOkR2x956dc449O8/M1qAze8iMFTCRlf85Ky12QpaGRwQAHCgoRw1Ayg4FlQiIGZAExxJMzEBLaaUyfHy9IuX1izzO6LFzGTz7E7Mgj1UBEmbfiehY166qiKKY/CmoU4WvNoVTJgcVplczqDsIYPql6UOufpkiCwFSeA+nlDTbXWk0VdRzzg0BxMCf8t5L1hcS0t31AMmPPdF3zC0pNZpx9RoRwKgxG45W65axOASTyzTNu8Q011RebV60WvjL4brmczRLwfQW1voI55p4Fe+5ixdoAqOP1RgE0d3px4PR5ZLUJABz29h6qYEFpDOLigeITJi7LkRFVUCiBASdkw0LZ6zb9JaHAhjIM2b4MCgaGyXPQV0eJ3AXJZQFJcSx6LMCB5ytbN5gMqfPelRTqYyI+9gvmTpq9sPw6JVT3yy3N3x7dfng+AEgd8vl8cnJ/bNl17XOUR/2i8VZ2yxU9fLZxXZzfXPx7OOPPgj7fnl8stmsQwgN4cfvvXt1cQmEQwjsYLVaAUDX+rOT49dfefHF+/cd4/HJve0QQLRxDoCsitcREru+71Vj0zQA2oeoiIoaYNjvegT23gdRZoUwRNXj4zPVuNntyXHXdeap8N7frteq2nqvyDGmnlSqyog3t1tidEKR4f758Xp372qzjlGAsN/2qrFddc9vrjbbe/thJ+IfNexEnjz99PTs5OT4/nq7vlrfNL776te+vN9cnBy3q2Wz328dMzjwVYgEMvsTkeRKqVRhmB41u5zRfBZpRlfjav4gpOZKEBZyLZ6eO8+/c/PeedrkTyswPMjJKNZnPZjP0kKyijv5SSrCns0J5FAClEcDM4iAyCS3I90aCNFUaxSV3GeKnYgLQWKMKJqRLsrlhGgdZ8mbD4OUABlSrxinSsRMLhUmqQCAQyLnHLPjpCxm8IxJpExV7ddGHDpF0R4wIkVmjYIIBBQEFYVYEYWImBiZDDYKrJZXABSIzd+QDrL6K4g4MclqbT5mTji67n7wumNGjy+5b6QlGD6/PEjKB4LEw9MtYLKCDBohoZRNJMhdz6fc4BkBwJUKqsLvEMysmcgArSyPuhTYer/Y+tuJZb3TPUGjConxbiJLE0uu5uo2eULF0EPU8rbs0SAKySgbB5TQLRSGvBIJbcpyEawzjQ04WE54ek2ow+kAk2XTbPgal1EUyJm99VQAaOk1a+dnpBGV1E7Lfo1mUiNiwenMUTSuV6gWJDNhUz5PlzMpyEXPQBNmooo6vYoyiDdK5lyIZF6A5GCzcH16PZk9sSYmTWCnWEqoMUW7K4QznPjeZ1TEqW13Rv9BhJwUWvsb6pmZzvwdHvvC0RCRfQOBQIddf3tycv+v/tK/9l/+Z3/76vkn3ZdeH6J2y4WIoENyrKSLRWcR7e12d3u7ffr48dtvfSf0w+c//3niMAgfN8thvdaFe3D2agRFpvXN5sMPP7y+vl4tl5uTq+H25ubh09dffaU9PmUVFYEA3soJJYqgOHSO+r7XKOQ4xrgfhl2/R+qfP79EcIvVqaFNee+b1m22/TAMfd8D4enp6b2HD5j5+vJq2O1VVZZd641/kgSKMarKYtHdhr3ztN0NQ79jR03TDLvhdnurQmf3Hzy7eP7C0ery6vZ2v/PQLhjPjlYfy0dHi+V2vd32+wf3z1944YXHH7//wqPj7fYGYbFcLofYB1AUmaTEj4QK9SpUlDlZoHpz1VRtO3EupSxD4DO4J2aFNZF/HIlEEWYAO8VS+izxXFMXTtU+48szJbh+i5oOy5d33r9+F2Oth/Q8o+T0mgBBVcWAJlgREIGSzWBXE4ICkbWDATCYfBcV4hAgCiowM7Mncohc+poTERF7x8aRHXJJmXUu9jHEMBZkAgA5ZGbn2TvvGJlT6nIuW80hW1UmUmYTQRQoOAkS4xBQkcCaFURkRcsRI4q29UsZW07FLNOTp0UK3uSBVKOMX4TF6DiknwnfqAKmRempCMD+HXtR5OA7AYBK1HymRwAgQkxNkXIyLwD/M0nOak+M5TrJYLOQC+2tzZrqWMCEALmiV5Em0VCVYoCP5QGUaybMR66aZa/1TQRVVRZSHKEwFABURJTRq/VzYyAGVQX1AAQQQAGVFADJ2XhyViGqUH67VA3mLBMawbpSKCjpONciKWSbl35UbJOAzJW1kmZfRQKUFkOiTKl8KMmnmBaJKzUWIAFlGXWImOJDWWVLrdYgedFH0VXXldc0NM/PQsmFxQWOG/MuVQUghjQznJOiFYgSgidm3woCICGlNsCISFbSZGNCBUowYpJvjwhIyXg1Ukn81CR9PeCZLB8HryAV1DPAPPZcziyWwYSzJ1g0hFRlnq50AAMEFVw2x7ub7Uufe+0P/+k/8v3vv/fscrMLCq69WV89Om9OW+/Q9coL55Tg08dPPn38web68s03P/flL3/59PT8ZOVV5eryKRGE2G/32zDEbb/fXazvPzj+5je/ubldbzfDFYVlS9eXq853fHzOviHvhjAQhBhj13Ux7IYovmmiIYUzXDx9vt1ub68ub0N/ub6+3mxbt6LI25vrRdvh2enZ6b3FaunZffDRk+673/OeVeOyW/m2eYLy8ssvLxYLEXUOUBXAeSbe7YDIoVOgtllKJArBtwvqFhDD+unt51969L33P5W9Mm1C6L74xS/+k2+/062vV+6oI/fJ+ubFR+df/7Efe/7pB+yGbdh68MPQN+wYFVhFBiRnO0NEvHcYY8Rcqw7oHcsQECCjCU4WC1KdBlhZbfpVJ/IsL+tc9xrZMyJUDbORitaIKjIqkAiiUmJ4+gPN9MKay0aOWpU/VbBMowVmjmQcL6w91XafqKoSiahOok7+WE1NhxQgtz9Pf5p3lBSs9Z75xjJSOqACE1qbVQAAIct7JscEyIiowIBBRZ2HKCLCSM45YmbnANmTb9l5ZCZGSNlUAGA9fgTEg2OmwUk9LS4nXTliz4RMlpdqYVJUBaIgEEmYGUQTHIADUHM2I0QUEc8OkBRFGIAomUQCAAIkadJQBYQggWYgGhQRZcRhi4YTIgmCdXKaqnRGLJpcBZU9WmgQsphTMSsRUy9gM5ZSvlLBjkTIELkEqMlqAkTs088KGCnViBnQglqJMGZzSwnvMN8zdx+7RpdJn2l5Rvf2FohVcrLdiwx+ckyvt5uXzUOacliTgoGpslhign6udkhhu6Wtd6I1RIay3tmeAwBFyak7uZAOyQqjJcm+hAU2e8fqX6mSyLQuYk7vIoIo5nLJOhQb8O844gO7bfQm5amIlUI9MybK5/q5kzFMz6lF2oyDmLomWeqbgBtHBfVSjA9KtIJWYoaQIdcxp1zV5s54YfbDzEp1Z1xv9iDNHrYSIbdLSnrt/EFVI5qak2plKhk7tg+23uxcjBFUr64uXnzxEZEjor7vQ6SO3dHRkZXSOmJ26ICePX3CCD/99Z987eVHnl2/3eH2tt9tVgghDCwRFPYxqIhbdV37ysnx0fe++9Z+u9E4tF2z3a7f/+j9F16K984f7QOw9YoZIZwM4dINMW62WxF59uyZV3znrbcWy6PG+e9+8y0V9G2z2d3qwEqohMMwvPLKK03jVsfLV15/7XozEAE6fnp586Nf/dqqbffboWmXg2iMfbtY3GyumbFtuL+47Lw+evHBdjuoa6+ffXJ6dvrkk2en3K7Xa7/wA8ujlx7REL3i7W578fTZq48eHjv8nd/69Vdef+H4/N7N5dXt5a0jD54HQiZUiEwcQpBIy+WxqqpsJPZN14U4AGI/DBJj27aY98WoQU5q9CdHvXfqfTHbTYUjZQIfv69uRSIyqphJUZbZjq4vuVPHzdokQvbRfcYl6eQqD7EiWkiW3J0YwDrpfzN+mzhs3QYbzIMGmAHzDe4Pwby29hxmJMZkmLK9RbA28mhQo2b+2r/1hxLRz+0eIMZI5oslLALYTnHMaA/KgM4MKJiKFxywrRmrCihHIKVgmhABiIoEMIFKZsUJEZkZHpN7DomYABAEk/StSpQKHlye2FiRWS2z0hJoPbUm1aoVtJioVDiHKIaNUEk3BCBUSRXrWaYWfjVbU52Qwejhw4yNWNOJprIPdYV3Q3a/lETHka0bF1fQkhSZD0pBk4kRCQDZMhPWIrcgOZWtHbWjGXXm5Kzk5ywCWBGQFAxx23wDaBgdYI0Kqnk3IrXp9gCCSmBdkZPgtxLXcaj5c0pzB5C0voW5p/Ihe52aCwhW61EmVyvYW8QEGlnNZJXWUY2hvkm9TvVnRCSisXx++lNFf0qAqbWnfYkJ6DzdJJ82k3ZaEhVKcVj1qxtjCqN347MsgBnrLDehUQDnadEMcp9Pm2S+WES55Flg/ZRxjazczcbjnYsJTC2qUj8EAHz99VffeudisVhcPL+mVaMhImLbtgQ47HuBYbVavProtZcfnGHY9Zs9Iw3rq/321iSKQzRUNse4HSKRnh4vvvKVL+22t5989NFmc804gOt3u9t+WA89HXULJnCMEqIqWBnStt8S0b7fbne3i2X73uOP9hp1v/vWb/7Thrt2sdzstlHD6vj85VdfUeSze+cPHz588cVHQYb1drO93l2vb/ZDf7Rcfevt7z66d/7o3jm32O93jlqB2HofYt+13qOQ9AH60PdPnjxrXbz34P67b7/36M0v3m72J8ftMOwxxmXb9X2/2Q0ny9XXv/qjLz76nGCD7ep2L0HoqFv4hvuwZ3SIxNz0fY/gvafdbjMMQ+ubpjsahr0ZGr5hFTeEYCjZ02N0Hdfi9nAjFIqaC6cph82OIs1/ApipkaHDVROiYZG+tYC/86iVuVSIV3C1TNrEiuGO6JtzRlzuRgZRUSNhmfn1GQNwGWzaeiGUnRWzQmOOPTALEcCyzlIKpCmYFQC+MJtPnpHMzVYL3SSDAXNJEVmukaoaqoyOxn++MGddEYmzG2Y1KEHmIWleeuPkUQQFlRXICqUAUNSgbwms1CVJFQBBZZMRhCgIGDGF9AofiFYCVIZGIIIlKf4HLXGWv7maURO7AIACaa4aBaHKQsAkXjCkbAeIktSkSXw354qlQ7DUL8VC7RMQe01tHwGBkFytXR7K9sJeLZMdMgx9/W41Ky8jS26WEgouLBvSBgIC1dwgIadG55m3OnSsQgPZTh37Slh4HnWiAUyMQrOFU8+lPEufoc/GDEadmgMCJPcFkRMRM5STHqJRdXSuQgWc9lkUAAAuFT7TuHSmyeJ4FOkCB6zqzj/rk4v0TUoAYC6ITOnQDBlv1i6ZDu+OQtt8c8uZsgsKCRfd5c7RmvMtQSBNxjl58kigh/qHwqyGsr4KJ4oqYNWdMPaDaxtNDdPk9OT4+cU1Ob65WR8vV5ub7WZ97dyr3rVJUxVggpdffPHh2XHod2F/q8MewqDQs6N+2HnXRhkEgB2x0nLR7Ha7q826aRpaLl586dHt1ZVzTjAO/WZzu2bAzlHbdswcojKzuRb7vi80cnHx/Pb6+tHDB1fXt1/48pdWq6PX3vy8X7XNatGSWyxWbdser05AAkXd77efe/HRzTZEkcePH99uN0H0/Y8f74b+tddf8hL7fqeChM6T9xRPTk6Ojq77T67XV89bt3jp5Re++XvfvndyGkFv1uHsQWxUjxyt19cC3fnx+av3Hr799tuvvv7aCZ08+/jiaNmiRL9aSAxM7XHbKvq+jxqapu18Q1F2R8eyXosAi/aeHUiUCICA04ytTEtw+GWxS+XAMzTbQZrIe06f1eoDogEmpPlN3ikYuVm9s37wUbaSQIK+SAZgfe3BbQ7oPEHCwmcY2Vh9VS5EhWiF75p6DABghOJZ5Zx7AURUkmDQOgaio2mOei2AixFs/NxAMOxCRCQErdMvSK3Jrg2LMUV97RJicUiqMbMCRCQgjta9LyXEEAMgYgRgAQBSpGBdvAkJISIQoYgIBDO3GMk6a1vTpwIApQg2uNpaK2tU7ITP4OoHlygU9wYku9oWUxRIFXWiTgkAkZojW1PMS8DCGygTitKS0jtddEzIWFMayLYQoDpblToSXIvhIoxHBjcFgpAM2FuLcCu4Sedj5YcxwhIAgmDQiamudxQnRofl/fOzMvg4AAFnSy0Z2aMwsJVL+VYRMWUGEYgC1wBfn3VMF08QUQxeInk+JEn8PNqDS+bOZKj2ZD2N5agtg/qnMqX1n3pQ5lGPvRZvWeex/ZEyMKlqb8CaY+TGm6wokJBGdI08HlP6UrBv8o5lt8+EKCUc3cnJY8Wv0oyFqeqIVmbIG+NkugJVBgAxd7BIyIgwjsRuxcRDCNZtHgCGYWjblog++vDxd9965+joREJE4K5bNu0CQALQovXNwu+3N7Jdewmhv5XQM/Px8XEYxPuWsY1xIIKm7VQG55wiBNW+37eeG8fr9XULDCJhvyPXDvvtQAxIzCQRnbNEaFGF3W6jGsOwP3tw0i5Wi9Pjk5PT+6f3G+8BgND5hgEGH0lvLha+WTadPz4CouP75865N1558eJm/eFHj4fAH37yIbf4cHU8DLHrlqLhyJ1G4JMTfuGRfLqOT9e3kRdPnjxrXLs66nb7/W6PsY9d1y0Xragsl8tu1Q0QHr346Nvf+p2P31vovvdICijEL7z0IjN2Xeu7LgZcrk4i6Ha/PT3rlsfeL44aj4/une22N61nBoghEprjYcZxAOq6/ymFz6i9ENLopD3gp5U0RcSUtAzZ0Knodt7dFj6DO9e/TpTIvGdrnFc78bPeIl2rP+hB6TVhdKaTmtU98SeJBJGQczizbZ7TcThZjIDW6BcdETkkYAJItqVtkCyAs+c5b5nsIYUitokoFt2aS0sgY6FoyVMms0coxrz9nZICRk1TZxOQpUDEhHGNSafJbIEBVRkx5pVEsyCBLClFDeIaiVAqJQxTaYuq1p6wen3zhwnv1ex+y2pf5dEUV50pgJJinWYPGkwmmtt/vtzj0xFY0rvVy12fR0SKoBotzdfBXSJEVYvzpkLMQMyQaOUove1ExfwtOjVDAVEQGFOHr8QuFbCemjI4BaCcYKk41tEWEVsSqURzHREmJbgCeVFVTphMCsnUNPPPcq8meVL581gHVs8vgRhShT2rtKaQONGADj/AVBjXArVOK9UKJrO+/M4vq9GW2bvjuZPLTYfMWnQ+OcVWGDLCgIJiageJ9Q2zvC7ZhtkGnjBNqKgcMl/M2B8GqZZd2kCHMV1VZSCt1MO6Z8ak96Kmki8CzKQ30VQkCjN7x33fs4BjD40j5rOze133EUhofTMMQ7Po2rYLYSDC9c1FowPvb52G0A8x7NrW7/bgvDZNK8BHq5WImF4oMLDbA9Fu6K2010ddcaPbW4kQgrQeh2EIvneNd64RC28TKETVOPS7MGwfPjzX/UC+ae8tFXnYXztdMLrF0h81zrmm7/vO+2G3CRqUuQ/7JQEId93ylfvnq7Z598MPiM7ef+/d1ec+b43QEbxIcK7pWjo9Pf/a106CyG99651hr+dnL8Q4DDLcrnsH55e3N+3xyqNn5A8+ffzhrschDiod6OsvPDo/OuGuEaSrzTUpEHZtx9e318uj5etvvoFE+4HuxbP+8uLRwwdAp845ESsnIapAAu40OkcTsDptsmVyHVzxl+WrRjKbMlxIZ5plUwwRGZMXxr32z+GCnv1ZqBpnOmN1pmYbH4qaW15Nf5AXh7KxhPnaiQZgsHRWLWSY7jk9FAAoe6KJmJFMtjIzZ7DbbK4gATKSY07oj7WnCrDUnxhTctkaqpuWminiKMOzp1zYdJiAYKSQz2cyc1aFxCxgAWPm1k0izSkAEDqioBKt0y0RDSpobWVNYmdwAgBAZNVoKUFqvt6pc6XQUk05s2/saxjRoZJ/pcjjapHM2p2veyqoQazvnP5NEi/zoqz/zYDToQqDOtGIiMTJmrQfokSD/SwiDXN725Hll9tNNdCZCBmnIKMyQBKQ6XOKTUq5jxahrKqUEKAUzN1vfglI2iNiCf7BKK8ReRTtFEcHtaFQBgPBn+lNs3Wq5Io6REEwJoNmf48WZjq5XD4r65rJYxjD20XAp7qsQvGHCrUd9Z1nv+J0gdOfmDWV6s5aRlv0ody5AS04DxMvouYa3/R0QrxLYzuch6zgj/XBhbrKv6M4H3FUsL5P9TqVnmGuwQOMFMguIBWRCMzMCMwcBkBmEH7lxVfe/s5bRL33vlsso6r3XiX0MpBsJWw3t7cx9MzsOueXp9h0btk27Hy3BBADFULgjpohCCgRuuDjPoCntg+yjYISF0TIntk3zjvngHmz2SwWiz7ubm5unKPGUS9BuqZbLoLGZeMbYq+yaJrOt0iOkRZtF6MslwuJ8Xp9tTw+ahEunz3btTfL1enKd2++9NLziwsWeXZ19ahtBXSxWAzDfpDIFMKwU9Hz5dG91TH4OOxvHTeqrIhDL+D4k+ef9hp2u13Xteyd9nJ+fA7Sf7q92XtY+cUrr7z06NED5xzHdnnkv/ClN1ZH7b0H5227kBBDCMCkEm5v147YiFqnynm1g/CQLcyIx1iHJUTOyH525OYl89r91PLLsolS7fgdwq/y79zNnY3Oa0EIMvHYYFbHZ6+pWWuYfT97XCmXGtVcmTvmtLipmM2DnrZAMoQJAMj0agDOrXadc0TkyRcBbLORjOAprNCdukjhEojWkQOVzMHJxMCWcBOh2JwjDIJNHSADCqDUmeSYgoCJgWCKKQAgp+b1ttvrdgGgGi31TBHsfoqMNQaREkBUwiIOx38BAFFyELuWTWVuMw5MmXDMQElVVpeSPd6kkmoK4I3vlSw/VADSrLJUGYLj61SzJBKKXc5Ikyzokn4FADEOlH9NDBGtlG1O1mmxmaESPCMljeYOAGY4CFSKCqaxZjFsHRgGFaeaCmWSSENGGEQw5U0X8CbLwEJIKoZFG4pDm1U1JhWTCkpibuOqMFVtcmGuFNmfcCLNfSukgABklpmIUEY8rrnA9IZ4+GWZrrI/iwuas+qR6mtk5A5lQ95VnlTY0PhcgFHp0irKXJwZBBhrcahUkPYOpPskjWV8taLJfrYqkJ5FDgBQoyV8SJWFotWYJUo9Y3luMdu5tfIxz6ypx0zM6ijEyMwgEvrQLY4eP3n2jW98w4G31kOn9+617cJm+vbqQvrtdnsZNzc69ATI3ArCyb17q9WqaV3betOr2FQWGXa73QpBry6HnQLoYrHa7XtZhRCC6xbtouucN/hcBFDR5XIRZGjYOef2/ZYIj4+PxDdMPsrgEBiVyEUSIVwQM3sQFQiwCwRw7Jeby5uPnj9vuqUDuA1XqxOCEM6OT05Wqyeb200/HHVt32+9J9fDatk9ODv99MMPdJDV4uhi/5Rdp1HWN5tPP/10/8X7BPj8+fMBIQLirifQ5fnJw9Xx137ia7/4F//8r/zjX37+5BMMEIfQtu3p+b3T06OzB2e73Wa/3283t4hKIBIBLXxoSRjIUYUqSTWq5jqnH6h2R2H6Ca901OHgziPj2SXiLndmtpzzgFMAtYlJM6XOit1XKq8kU+zwNLhrm09ltXFRRQV0fPjWs/sUEwysuwYhkLUJGkPjBKKKgmJAC2kAJhIBCJiQidCivMzsgAFSkm2S7inWC5n15THbBqskShUOE0a2ngG2+SzsZ/1fyyTEet7sg1oXenNkm9FljCXnxmcQPbIeX6oEqc7Iks+IiTIWCmSNCiQCsyJSDkRCgh6cQ5BipfbZTM3VKRAd84LHSAeqmK8QkhXCte1aEfNB+np+bjITxgDaxDIZT6X8WVQRnNFaEqJV+i4QW60PEinAECMDETEdPD7tpUrb1SrpURVUIeZ63yQDiMQBmryUlIRlEtVTEtRQllpJorJFZKsqQ0KvolEGAEBKe0ZArdY85vGkTGAB1UAZ6KPMaRFOMYa8F8oL8vivVVllgZjr95QRKaPDC5jVNaXyTNnj9Aqq2btEyBRDJCLT41JdrS0OHJrCWKBhy/iJMFF7FYtVc8EBIBMzpX4kqRwt+TEyi6EsvgkS1veIQm7vYRoPkVONyfpES28jVVVUUaGc8QXJh5EFtIKEIb84REGssEJVUpapNULOxXOkWvLaYoraJLwtyZSrRK5oMFm/UACMqE6AgSQIMO2GwQFdPr/8zjvf/dpXv05BfSfdsmsa56HZb3f9ZrPfbmi/c1GGqNK27ckDbdurj99+d3216XsJ3DRHx6uTpYc9DQAbbo5fpGXfhugl7pUUFYn9UqQnbNgtqe0iMUCHQEh7VSUhx7xo2yBR0KvzDKugG9IuYliB7/xRf+IRFj1q0/A+htPFCYnu+r0DZY246eN2K0OIrt+Fvl0dQaS26R4dHV3uN4NE71sZegRuCXnhO9eud7f9fttqE1QA3c326ccXL7PCEHbP9r7Druu6XnXYbFXw8eP33rh5wGH9xc+/svqRr5wenX700UdMQkRd14EOy86rRO99GKJyO6LXKwCgRmEkFbWi0olWakjFuaNUYj5RS6tTVS2lShoyNhvNN2kiSVUESmK/aKgWCc5qNSnUYygqWqxzko0VpnAsltOiCE6tHCs9gJxaOMtRjRpK71jOLQoQSoP38WmqGsd+xoa+lFwHqsroEhRTmTpCUIzJsgbVSIypITciEyMioUMkAvTETOyQkRkVEBWtLCj1VWSXncZJ5IoIYlDyaBi6luqqiEgMDl0OjVmfHsomKVmuBmeLU1RVhRH2GgRFGBRQA4goCKCiAKV8YJKk4SCkvUqEEItGnjzb0dwJCGA1OSmlgNCwqwARQwhERCiEJAhWuVPKKCDpcwERCTkmp60WKYeYmgGXJlGq0RKtEAUIEgI1kSokQyUtmiJEVUWbKmCrTUIM1tQGxUUXENkmM9EMQKxohq1KJ1mE6DQDIRZRlNbpLvVN76xgu+vQ6rTJbqy/AtDiktXsviqpUmW2VDMWP0wyY1EASlLSPNuiKApJdoFg7u9UtKR6LIU1FGWnlnPTUdtgMK2b3TALwGLglTS0zD5s2jkTycTWPJhqysgnk3k7XBFItsJ4cvU4QEWd1unW44FqhLbZVNXCQtPzCdKGNZXIYsYpoqCpfyxWL0uYUdpVKg9KegOtzjT1MkHS2P3L8o8TcZfZUb8FFOezlswAFRF2HlGI3Pvvf/zaa6/HOGy3ty+//NLJyWnXLWUf9/2tenaKIQzPh5u2bTsYLr771rPLK//w5bPXP3eyur96+Ig9nbkGWx5It+9/8N53fuPD22/fd4vm3pm4zm9h4XiHDkSbpgUmZl4ulm23WPimDy6GHntotenD3nuP7Pe9KG9JdjCg+na/XK6Ojs6PaYHHzvmgfN6uoqdnH368RLcehj21fHSy3tyC9I0o7PaESsujZ7v1yjEiikRARsdd1/UxqGIUObt/fxP42TvvY+ud56urq6v15cXN2neLt976NhEgCIW4arrT5WIj+6985StXVxfPnnyi9+L29tY76haNCooGRmx8FyVINLsq3rm7EUv5ypxcU1ONWqeskjfryNmdl2eImJE2DN58dkm9m2YMDWYur/JlfsghH0isQHQkM5kzAYOmT7Ifs4eZDvqmmzPPZkkqFpoBKlO2dlXSaXmMah0goVQnI+KkSyLiWE1ERMkyxikTwywFQTWnrSoic2RJ1cBAiEyYIPOSeACyTBokS4uyLMipDWN7jTIqUBx1oaKLg4X8immoBZp4tnbIxCgiZCkp5Ily14kkLEAVmT2AoLnWskKPFdhnXkezdCeEeshCMZd3QiFLkhx4npS3qI414jCSTSy6X2H/WguxAzJIFckICJBSXaxsuAxIqrPtG8ZEUvNU4jypVG3I2easv58Jvyx988gsblFJHVUFFExw0HckU+TpSCHGAkECkNM5BAFQUcxlDXflxc3Woyi51TDmb1FepNQnAYCAcmYT2b1Ubc5K4mLWNmyvipE6oqABYYylNXkMd3GPXOFcqc7lQUnjg4QdPacETGYlVG9jGGaTcdpjwHbniNszRttR6kGWm5OqFBiQWqeZSd9EYDr6OzAB0lH+FyH3LLWraDK26lZWuYDJtGqaZtcHFUZw3//e+xdPL45fP/7Sl99cLGjRrRrfDWHTNiw9bQn2UVvfDr3sh7B3y6Mvvjz40+9+44PN5junrVfZB68rbsIAX/mxH3nw5g8/fbq6fP8xfLRumw2fLZCOPHuNElSY3GKx7NpF03bsfdc1/ebm+vJyCFtH7Fwjog5kHxwIgKPNbn35+OMPt4M/PTtZvYweI/bHnWsW3aI7kpNT1qHd7m+vhzhEr6Hf36ojQeG+Xy1ORKNzpErOOUVC72W3a1zrfbvf7/u+f3B+9un19cXFRZAQwrC5Wrdudf38om1cjHHZLZaNv7j49JVXX/75X/j5977/1oOH9whwsfAEqBJT4qqFABTNAIoxOs+JNJIqPbqmZtvcPlv7Qo2ZDLJDaUY56XyzNu5iIxPyz2EUo91qS1oRMCKiNU6202TK9A/3/sEGgZHWi08rpZ5MJBxMJXdRyA/vWZJdxn4kIJDlRILKEStaNcGgBk2YFfcJm0VEJmRKNb5o4HogkHoZGAoRAaRCe0ACiWL2d3qbKIBiydNpiMnuV8w6N1ae6tKqURTM0yZpg5bWwgJqWb4mkAQpSuriWtjQ4cybeKu9FCImUpHIKWgGcI7OOREARdFQJFRenTF53jQNq6aqThtDb3WV9sj0kmmUQr8zxquYg3rJ+phXgY/JvDSWTtUvWzNiQXCWDYaIkqXF6AO565hx21GSVSPVg+TYyRvan0mhrZ4imrEgbNMLAheNN3P8kXFnApoPNRGQVe5qgvsQMIsZD9M3ZsdMacj3VFKryavl1fjZ9BrCKfpcdSSfvHmxaUx6JGaNAoBKWAaEhFCrydUs2WVTMcZAoFNUNlAqeqbRE4ACjIDvxYWb1yvVDtnumTFQALD+Y1YDXc1ejZdLJfahCVVraqFW81Bz6mqSpPZwZGKMZRglcY8yiEu5Q/qeVURF1fs2BIlRvW+fP7t21P7Ej/04klxff9p1j05Pz5mol8GRLLsuHh3tYbu/7m+ePn33m99bB33v8vn6Ml7st0u/2N7udgiCALI7UuD/6uhL50fd8eL+cfvKG/defeWLwyUs7++61T3PLgyDQ+fIA5DvFkjULhrnaLe52tzsB5AYVBSYXddv1hdPP316/fziSYzcvvb51dkLq+MXm9P7L5/ef3L99Gr96fp779w8fu/Fk+Plg/sPTl9s7p2tb572+4AR+81Nt2AItw4cUOOIiFnJSegRedG0vl0g4mLR9QGIyJE7Ozn13veRbzbxZr1pu46INMTrfX///vlf/df/8tOnnz59+uTNN15HhdWiC3FQxRCjdy4GiVGZnRE7uzmRI4GqjIU11RbT6ki1DTg5xwi8sLI7awUzDR9+CbU1VejWkgBlWjN5h7DXUSbXvOWzzh8vTNmTKSe29t+pRoBDNJLCOtJ5AKAaKSvrWE2K6ctG7ZJMdAXUhLuuhJBFI5VNJASOyExYw5mTnKysOY5TWWakSiooouYSjSKAqMysxfYtLgdRzUGgtI5SljQlzZBCyBLdStHE/AVVzqommaZoZWZQ3ngUyoUtKI6la0QkleDUzDyzBEgXc4VzgsiVM6Y8PCEil0nRqRJW3c4qnSwFKE/fJJ1ec9tcOwgABAUtam+pXnUJbj4kuTnSijvV0bVRn1f2T9lqB+yynrvknYZsCtfz8gPkXERgU/oM27X8NKby2punnKyyAMXHUb4cwf2rA1EFJvOLWMuPyZuWD7MlyZMPqFTyDuBgx5bCmNmF5bMKKlj/53EjooKlFRbhC6a2jiIQcarNFF0EcocoyEmGmP0BiPMFFYRiJRzqH/n8UbWvTrD6fUhw3wSgUBIqR9U4123fyfJqMTk7yk84Kp6Q9/bkwvpuh44dqDZVjJHZIcrmdutweX724PpG+n6tYThZHZ0cnQ67Pat4x0h+sWn80UPnV6ynH73X/+av/9b7FLuBzo/v/Uv/y7/y1//z/6T/ve83TfNEtFsd+aub1S/8oa+8+dXf/lt/8+Pf+8f6R/THf/8fCkQiQuQaz845QsfsnW/Ru6Axxti1y9jvQ7/zvgWE3dA/vdjE7fX66vHl9dXAx/zhp+7Ty4/bd4/b9tc1vvkjX3148sC98qOv/fgffP72t95769vvrb9z/9H5+QtnCrjZDe3C9zpQwGz3NEwkhKLknOuazhHFGLfb7WazBUBmfvXlN5aLVpar3/jW99/75MnDsweby9t7i+XZ0ekf/Mkf/9zrr777vbcfPHjAzAjaD3uDzGVm0QJjDpYK7p2rvUSFoup/Z6uTEJ3uWv3D87OeqbNzRm5zh4t3TnJ2jFFnmMNizBj64ZBqYUPkEkJ+GaIAoJmn8w1V6LA+33rcZXEKZTbstBnbtFwPGnOyLXtDAVSheOMl2csgkEAp2PJF87slKYK57kV1PgmTN82vjyVPOOvBs5MrA2i8kBRA6ipwgQQWnrBQtEwJaRQxqH+r7sseC+CcUoNQl0QLoxKCiDBhBCHCUMVByuEQLW6curcBw9wJRzo1fLMwGd8xrWb1yuPZY5KTK++FyKOoj6HwbQCI06KS8sTyTa4DvsuovZNdzo5DQVubwncI7KzuYZb6Rjs1FxYpLsccigDQ3D8HpjsnW5ZzgWrCQAFKriHMJfFENtQHTjdDdY5ytqPrWSqbnCYC2/5NTaJs0QUBxr4F4693CirMWn953GQhU9cntWqEArwnuRBxpkZYTSEiFoy06YMKMc1FXRbbKfvAUhgR0Ur9uA5HEdwJ/DsVsfPXrCccU7fmooukX90EnxIQESWCUkGsBavYzvYxKO52u8Xi6Pr6Kig9un//+vLjuN+vlot7Z+cPzs9kv9nvQsce9n3THOExLynGl6TtVm/8yFff//Tp+x88Pt/4Yzj/V37xL/+Nb/4fT+PwQ51bbrbhhdf+pV/6txsI52+++vRXv/Gdv/f/PUL4ub/wV2+unt1crRe+YXStax03oti2HWAIWxskO+6AtgjikI5O/LvPN9/59rvvfO/Jiz/+Ix+9/dvvvvf4A1iQ3/oIL3fHu826Q/0Xfv5n3/jRH37tR38E6OrJhx8++/ijVx+92K5OIuDCt8yEqf6EmZyiOucEiDkyeUQUCevtGsAdr452t5sWwNHiu+88BgHVeHJ6erY8vv/wgUB8/MF7qPLg/sP9ftt1rYg45xBoP/QiwuwR0dyDVv18CAiTGRPlzTtlKfWeMtGVkxMLS1JVqFIfaqlW0uDrcwDKPScOm/rRKbaajZ56wAZJUaCy6vFPtk+KVY/Igul9QUAhgqXvaOZFcvigmsjr6TKoi1rlPTw5Af4ZgiMaHKHhQSTIClUiJWOPClFHgA4zYKwwDwFFAEppQcUtq6kDMQtVUlGkml5tPwdNcVFETCnLEBVEwbxiyfCtxHPKihFUwaggxtgFFQUVoiqJBFFJF+by2nGGJwJ+IiNHlpgIKl9ivjcRAQELSFfmplZHJp9yQwUwIPxcb23mFFUWC8z5WKIxgFSjjBZ3q9nafPAAQjQ6SFxaI5iba/Yn10/6DJ0TpyrkbHTlh3qHlFNNWlvBUWqPgQBURaHLPRFTOBWxaDBTOTFuD0S0GUXU3I2BGLCUrk1J8LOU6fER1Zxkq3BaEcTZElWAGeAzZrM1pzbQ5HvRJDjR7oOW6lyyEBHR+j9qFpyIoweHAIUUYGygRSBSfAnmKStiNcXXuR58ngdKV6RrE+BUvVFzGCklJqReLQemdr5wZKy1AJ7t/zzmvHAAmO3oejU/a2kw7yPEXE+ohIghBuv/tO93J6sjIuq3NycnC9+1n3v59TAM/XbDEhlZF447F4MecxNV6AsL/+Rp0Gbh3VvvfPCP/8bf/AN/6hf+xV/6K9/4tV9bdEfL5ugXfvFfObr56PF3f3d1HfxLZ6/8T//iN3/1v/uZ7aePHrww7AMrW+IpkSNy1qKk8000s9iRa+Ro2arK9z/49nf/yfe67qs/9Vf/5c//sZ96+7/5R/Kf/mcnp/7b7w0L32xUNifdF3/q63/7135z/8u/+uq906/eP/t9f+CnTl88uxz2q7Y9PT6LQd1i1XhPTasBW9fGYQtIBp90fHQ0DMPFxUWMcR9iGOTh6TFKHG5273//3SU1/W5z1K6A9OU3Pxd4/f3vfOf3/9zPPr14ulh1fQgaJQRxxAJA5KzdOqKiY0ba7+PYHOgzts98P1a/qGZIgamHzrje9AaTp2DK0cPMErUmqjtHojjnSLN7Hn45184RoKoLSqflsr0st1Mmxjj6fP3kBXXKFuyzGipv7S9NajqAIiqpAqJABCAC1QRAYY8jQBOB1jeSVEWIeZrMOuon2QLWAOAUQEVVhCVGBAnADpwk2A02hqXVRAVVNgMJoco3BbNiI6iAomiyoKJohAiqGmFE7Fc1XymqiDmtzWi2/keF1SeeWdjFVBibL91KkpIBHaceFivZL+bvZO1GAXwXXeisvDkvli3fHRZlfQ6m5PyEo6moADqRFDPuN+INfZYKVt/98KfCW+eDqvy6ZQbrx8cYEwqmqjFcyfUDkJv6UV3xaUr0HVZposRaUhbNWkAEIibx4lGp7PnZktz5yvWclBfBySWpkyBk37uAHl5r3+TE5vlTME9QNT+oxZWglNOSrWQiNYYqN8Nk/wFkTd+6leT20HcQWcn6K+91MCfT8l9BQq6KLxHAWnlOpk5HB1c9VXMLvqYHyJGDgwFA/c2UtTECOhr590RlNmh45kEiiThHMUZiWDR+u1k/evTohRdeIAWNe40R2TskR146Fg0U5KylfsX9i8t7L7+5OD3++JOLf/oPfxWDfPXHft/JS/ePXXvz/m9+8oFrTs5f/dJr6oeHx/d/+Kd+4urqA9fsiMj0MAR2xL7tdv3gKTCiQ0bEGLRtFkero+fPnnz8T7/1E3/oD8OLP/TuJ+/Itz784R/62d9e/Nc/uvv0jRVwD7+zDX/qL//Sz/7xP/Wdr/7K7/23v/ydD7/3O4+ff++//Ftv3lv9wZ/5evvqKzvo2tPz2HaLrgXXiobVYrmX3nifNRi+d3p6/+GDy/c+Ojk5j33smnazXj+/vOiWR6+99trF5ZPGew3D8XLx4oOj/ubyyeNPBghHJ8dBhiGGtukQmAGIKEoIsffexxACgHOu2G3TpaHZYlWCcy7tVFUjWHIWZOpFNK5rAq86M9sxtSxP5h5OiK1+rhbItzJCnZ9TyKyW4jVFTSD87F/LalIFgFJZNHlObu5Vs3ic9vUa1WKs9tX0nWvm6YhUrB8JIKWMJCt+HN+3dPIlHqtpk7hSAERJr6Mpy1NtrDGJZgUQVkamqFAwIepZssQo6208m0YbvFTzoKpj7lWSvKqWV25QwSC5mizPYPaAIqb0bhGxiJKqELkYI7nSwqDylGRhaIgjIpbUAjHGMgk61f5rijQlABNSZzL1ASb8DXFMtsXyXkSY0McIIEL2w1msV8HcFjOJPia7uCqJOSF4CgIQsaKCZMcLWY1o8TFOxz0XZoXyJLuIay5vl0hGBIVMxEQGumakYzWpVvFCiAwSyg7J9TCApaqqeGymVSuMxAawaFjblhOYCL5ocAKgih4rGFt7a2vfM55UEbS9F0PyxxYloFhvxc9gohcrPJ3SmAiSBWzaRa002x3QtLxR9iM6o4HKhCUFRIiVW6NcQkhFc69ZoQUsRQJkOJH0dNGxTK1cJaoaK7dJnl5CIkbLw0oQodWPB5ghABOWl+q2RaIqZUY5I5KyW8Y3opwLUkr7zX8CMeN4NUgU+kGBdrvd6fHJ7TYuopJ3/eVw7+zectXs+1sX3aLtIkqErmmdhhgCt6vlbrd5cP6AEW622/a1R6+8cm/9pRc+/vD960/f2X/y9nPAl19+sXv99dZJv3u+wFZks2wGXR7t1re074+X3QIwDnt/ehT6bbfwwzayawKRd64BHUCvt9ur2/2f+1/8eze31x9++9tfcqC3n8Yl/cV/69/5rf/mH8vH37xg92f+4B/+md/3B9/7h79x8zu/9+VXHv7c7/sSL1ZvvP7qg7OTVefZercxsPdtu/DsBuSrm0sAROSm6TQMLSosGnL8hddeu7ld70J48cH9Tz4JCo3aygABAABJREFU2+3tw1cePuqAVsfXcfPKK1/4oTc+p3SDRNfb4fzs9HY9kMO+h5vri2Hfn5ycdV3nG2yc1yBYIEiLGaqFbhEQJJYIZRabigAJtdvCFsjZTV1XH2ESApVAwkyxkLklKYrl3yKAg1HCRUU6SHI2Rs44EvlESh6o4KoKNEp4GyFkg2Hk3Yk3VoFVyP5JJfNq46HRbHtKFMaiIwAosP6TDaKEps0ycjAzVUBRAIntmRIAWZXMkmFiqzw2hSbX7WjCd1XzL6asYhCNqDGQI7SETyEw6MMYVURYGHjCeQCS8mImMSW0aa31eJMdkkLlMcigqAIxqIgG64gUVYIGRSCCoJrTQhOpMCY0aVVViKSEKVJQ8sCRmS0RR0VAVSknA2WaC5YCpsKAxf+siViLMofjc0CAkKQR1RhEVazFlAIoMpLkPLtcnIwARBpRlQAJLHc7M+Mko018mm+PpNb7iEHVSrlYVd1MqTxQJSf0OjVBx3eDSsQeXn/IiDG3mbQ/cwH7KJ+KbFbrEVVj02iulcEUPpk9t8iqQtYAk2EnAYkpip6CRDqWK2TKSwH0evzlWXkrVq9pdf2TthZj4AqrKTLcMvupAMvM5g1zz4nq7bhgF8CBXXs47VkPmOiwOs5PBgZJMASAiEpaWMP43IlyUE0yABCCTPJh6mGMXG/6Zf2NfajbSU1GO1U+6tWxulJExITAljznAgqgzjkFiRJuNztQP+z2x6tOh1XjuGm87AdHgKi+YRJkwKCxax1iXLXNHqI7PztaHj27eHa1vlk698ZLr+JLr7bkEKBp29PzM+dc27ZItNnu9/0OmTz52Mpu6E8Wx8tuAQAyhL0MbbOIwxZEHRIBEgKxu39230V6sVsc//CX33369JN3Poi/+bsvfeGHfv7P/wvg/txuc/v+97/7rf/+75HKm1/9XB/wc5//0msP/NHx8qUXHg37rSUUDBKZmUENy6Vpmm0/2JzsQlwulyQqIV4/v46g9++drW8uvvD510Mfca8RnW+7Vxre3Tx7/vzx4qwJcfjoww9OT1b77d41vmnc2cNHjnm337NLGQDOESGLSAiBmesVhAPDF0cdDsZeL3gHhUy083yfmm4rJhPFStUPzjdcr/xduooBgojJYDjcI4S1C6eQov0xiuSkQ09xArJRh9U4jbEmjePgiXmc9SEzqp+xysJwEZFSh6KaBVv0NOdpgYqEmLQWM700AUWpBknZ0RnyMfWdNe+xA7T0OiJwzk0GPG69cfwKOdxbz0n1gvZrBBURUVHQqFbAFO2yaIgnaAwn3SeCIR4lhpjvb6we8jlaZl9yWBqqh45Td5foGYdaL7FCTB3w7A5FbERRLbSoxQLMYczDRxQ5D5klzahOZeTeiFhc0DmZPjfSsqC/cWX45ztmMvizRDIWE6/M10SRnM73ePecTpbFFVb7pObO9ffF0i9y0+YQzDrPKQ71wMZZrgYvBxLP8qeyL2IEwCwb1UbEGTG8XG83HM1VTkXz1a82P1jGPyYxjgZBstFrvNPZDM+OmtnVr4ZmJ1jLryn5QvVGNZccjwoHbjZj9RweHmXVLOmxCOAZ/cwGUw+++lVH80iRPMUYUQFVGud3LEj+9Pjk6P79x08+Wa1WTKQE3jM5GsJw1C1AIjsGUEZQ0kXXrqhd7cPZaqEAIrLbb4Y+VYwwoPdtpRKo4+gcXV+vG3ar5QqdjzFqiALarpahj2G/ZyRyfgFW+8HoYDdcbW9VJTTD0B35Z7f8rbe+8ck/+rsvv/b6N3/3mz/9Uz+jy4ZWzRtvvuo1tro/bhsnw7NPHt9/+CCEQJ49Ygg9Oy84QASPJAJBJZASkSdunNch4BAb5kahc/Tio/vf/e73vvzqz/wPD77zrV/7jT//J/7o9c2zy6ePP/+Vn9ytm2/87u+2/qv37j/s+941PvTDdrvxywYRRFBisIQjAMiRl1E0zsgMAEqjM53mJdX6OiHFnNxXU8WByquFZ2AuC5kRUiKhzFIwP7+CVyyDqug3+WLvJNJJkZINODfpG/V+GwFV7uX6/NkNM7+T8tByRv3W9dtJTgYyI8TuqqpImtrPqKhGUQRw5h+AtGdzvm7is6rRoreV29JQ7hEUiJQ4VSlOctYqR7TZ7ulmJmHLABCEdIwhKkAEjRqsi0lMGVgxqIg1+ZUInHACACb7ekIqBjSXJ6f4tzHnDyW3tlRB4sp7N7tbEQ3p8mlZUc5HGz0u1R3GFSGgAtKgWIhuXDsEQCXBCBXZVzQwskcldCNTq25RE1NUpVJqd6DDHT6gHIebs9BW/bjZ3ZI5aP0wIOXYIqJO/TnpVVFnOU1gLokkcKX+HgkLXkiqEAcAoAJHfTBO1FwKM2tncadugYi5oVD+JrVkAQCrtYLMv+4wGmZPd7NMrsTF7M3sDRNW6Lid7prPWkHBFDSqH6SSk0cw1USVEY8llVSpbDDdJLXCYV9kIpRDPaY+xqKxqo9pfeYPEOFVqm2lrgKAkkjwTBKib/wwxG7VPX++OT07vry60qE/Ojq6vb7xqouuCyF0iw6B2CEBhKFnAs6NDttlF0KqbI6dV8Gost8PrILAMSoCeecIdZAQQt8iRwUiFwYBAJfQRVVESSymElVjAwyOCTGqi8v9UXu0XB4tl2f3Ht5AjJ978hI5vHd6Aq6NBMu2ibeb42W36tpF24Qg9+7fjzEujlbX19enpyfO0TAM5LgPQxwCIpJADIrAi8VitVqtFsvlgxYAQty98uLLjiL2O+/iL/7JP/H3/9GvbvZysjrFGF596aHCQ8Dw7be/+dWvfhUA+l1wzvlFExQRiRGQfaF8ZhS5e/+WyMKUzPLiWgAwKZOgOBNbk4syjY1SufAHI+PMBO3sCaYVGhdTgWlMqt5xI2vO2m6htwMNYHL+Z90QAEph6OGuzPxwnuBjx0GYcG7PpU2Z833NiLAkI8uPU4yCKMKzFzH/tdreDwkdX1UxSVZTCZCZwXsAjCoQI8F0M+YTMXW+Ukg94lNuM4hWgzMEDLVGONboN5oPWkTAaod1jGlhKZvMkMwIVtwxbwOZ50RGxcsslkpeVicXzX62dulyMOweVg0AgkiEpGPsXFUVUvdFzQOhfMMIgAQMVfHxdP3I/AR36WEoYIXaYC5oc7MjWQQElRQySkhyZYx3wUmDpvJud8b8ZpQ6ah858Wp2pqX7IqZAQ4WJOLGQqi+pmIOYQJtrg3iGLokAJSZdjR9AM4RtubZk59fyoKQ6AdwtV+o/sjKVVIQ74QXKabOpQEwBrTFrw5ImAIoOUe3XnP51MOdQiTH7niY1x1D8hOWaYjFI9Y4KUCeT1o+YurgP8BmqWTI3YMmPqznd5E/zuFR58Id0orlcBEdbxKrOEjiOc7QZelXcDwOiaoz91eXCOc9ORIldCME7MgceEZFi17QS+sb73W6HhOiwcx1oDPudqjA5RWYrt0CGIN57Zu53m6DSh4GFHDnnGg8UVS6vL07u3afGu34voJJhUiTEroGm80fNyXq9HobY+O7h8YNzOY4U9g8fMbfeezMpWGC1OqZmQa51w5qbtunaPggSr1YrRo0inhkAxKkOoiJI7GgIpMSAqN5zv9mvVouT0/PO0ZOP3j86OrrcPH395OU3H93f7Lbnq/vff+/d7739wYNXT19+9eWnzz653Vyf3Ttfr9dBGRWGvUNEdtg0zjmeWRVlBe9c98NfVdXCpJBdYHcqWJDzBEcZmcONRRLPbwtQQI4mwzCAiQOxWk5QPWhPDWO6cqG3w3FKdure+fp5SIeTU1cZjDezh8xeSrUApAOi+evKy8ay8VVRJAAQkVOIMYcY7b1M6kVVjRGjWL2+qlpyUCpZFAM0tdQQQ90frRcdo/WSkO8qJI7yplm9KD/FbG7r5IAk/VRNDtg8kzWrS7r/yPm15GRBtjfqJ9YznNfoboK0Q6pLVDUPA4sGAAC5E1ByElittSKmctnUNGkU/PURCpUiAKSk9QOyVASLDqiDUtuUuXAu3xmp2aKbgDj2Zjx4tyKAZ5tzxrULq62kaZZAOnaKLRgiVMygykgqHBwRNPfFrMOliLXxPUmErK4tPAIBVICyjEszaKGJUiBvp5VrtRTKZdW+vDtmX2UtkQ+lSHoKjqU/9Xzm+rX0Pxh9aPna8XW0+uJuX9adLw7J+Mzad94Mh4MEUwVw/BN1ck7+XIh74verI3AHqw9Qe7mLbz4judWsvL42f5/WGhETpouyRPXsIA5N17Hzj87Onz5/R29vBN1mu5YQlbDplhoGiELMqJqw1ZFiPzCgY+z7QRlQBREb7xh5GAYZ+r7fLRYLZkbUOOxDP2BEjdA2XRQE5UECiHrvkFRiJIJ9vw/7fdNw2y1hv8cgvmkg9ifLk+16SyG4ttnzMmg45RDD3nvXtqsYo2+b51eXC8cL1wb1xF6ArAVG0zQaY+N87IcQAiIiwdAnMKL9fm/n+IYHikx6vGifPflku90e339tv7u5f9y/uPKLBhdt2zaLTx4/vd4O++1tww9++7e+++bnPy8ijx49MsR+yPJPhMzjR4xY5YjW27zeAlBxA4OP0ANn46Fgq2hYyw3ulJ3lEapKqUP73ckEn3mImckVmzp43J0axl1fSv1rxQTGL7UojkrTfOG0fUw05psbB074NsnpgDmnEjTVUwOo2rqgSBBrUAUMEBV4FLQiGsXKjQAiKgAyESEoihKnlGRD5QMexZvhtEPOkS49HWbHrM9jIgPLVQPDp5PcNcGSW4oTCyCZvAoAlqA3LofMCSzt9yw2ZmshGcS3mtVxhtN8Hixd5iGSQxdjv2MBhIwPalNfwB4wV8vezaNGo0unz0qrbH86TkuoWPt8MpLqNMhtKsPcsTyTuzPqnw2u/FnK1BC0zCnA6KTF6R3qWE7FgHHG0KdPn3ifEBEARSYOA8yKRxKCKABU/BtT825y/xrsAlPsPNeAjcrMfBIOCUJL1XfJoje1toIkRWBTUwFLvrHWE44Hi3L49LQrDnhTUrGLkWsiXbNhfiDC63vWFXPT9dXZdNVst5xfsMNSTKVKarUz0NS+vJ9nJJTOyp27i/ODiIZh8N6HfmhdK9vbzZOnbtgCuf124xyLht3+tiGnAhBAVR0ihOCd2+23TeMYYdl4AFAJQUSjRggA0DTORd86T8xBIe6F0REDtz6CatAoIH2EJayWHSQYuwhRJMI+KnvXehIBDy4IL9oBj3C786LQaR8ZtFnK8RErkGrTNIh6dnzSNkeOmmbJyHRzc7M8Omo7P+z2zvvNZtMqRgVKRSMooghCKqjQOHKkx6uVZ3z+6RPd9S3QUYtwfb3vboEJJO7CZb97Hm4vvv4LP7O5vQn9/vLq/ddev7c6Our7HhVF2uJsLNhkCDTr+XoocSf7MUveQ8qs5M1MkEv9U03GMN1HeUgWoB3jfEbCicZMXZgyaxybJiXKUs1VAAcsbhxbjtOk51r3HrzbsXwoyFVTg1NU1NHKLMko83cUUCzTbtKXFJKfNE8CmvSNiBQxIDJiRCEFASUQAVEWjKKi1h/cnJ+pmSQCoKT6XcymVC19VU0iVJZu+nF0UQikgHCeoTQhVraUZzqbTwAzRqTZu3c4b6ijTLVCn5H51LZspgSdJvHMCGxGSBVZMlhIxCyv3Bt4XHdCK4uOSV3jMsQSEIFZxkwRqDU5oRg4hd103qK5PJIr6N08xSIwp/6CWjUGA6bicEaCtbRW1WTKj/fMNXX5z3pay+X1OTg9yrOIXIksZklWdrhlUkjClGAix4YSZS2Q7SAiHCHKGatQJeb2I+Xk1DcTMPcPGFXEeqg1zWFWLA4ZmaoCEqC1uGZFUCRRFuXJfEKcuWor/jXhXLPqLHujevZGvecu66G8xeE8zx5dZufwTcsHxKxuTx2MM65Xf58mmVM/KxFJjooEjpYfhyJIIYj3fhiGxhEFaVVPGk9huL2+jjIoxBD6GIft7lZCv7+9hhAghs47VnEEjOpANUQUJQDHSAwKkQgXTXtyfuabBh2jY2UMKpsQlT0wcdvc7ntEdMQ2QibYbTaIuFisorIAe7dgYFDyK45IvmuxCTvcBE9t22K/bXb7uN0GBWw7oebk7NwvKHKPJKDh5HjZeoIozCxRG9/GISBACP0wDIgIoiEMxOiIPTsjktVqcf/s/Me++iMn3XL//HFz23/y5GIL7WKxohYe3Wve/eZv3N7eXl1cPrh379WXXv61X/lVibHf7/thP4RNlD5KiLkOEA8yhGuSwJGfTBIkbe3grn3xg4+avdTZ8vP7VEX2+RKN43Vz+B3I+2LMPxCtabJ+BBxsrjvfvb7kTnUYEUFQdebBVciM9M5H33kfYzcHcyUxRpFgrxxjtNxmEQFR1PF9AUAlQIikAFFijDFGzKMCqSZuepS1KPW1d47ZmNdkQrJvbFJ7Vl0LB3zejskaZayIdM5Uys4uHHnp7EF3Jd1R6p4US7gTAFRRYpEaoCMsGIjYf5OZsaBvkYn1tIxPsuQJFAIgBRdBMU+WYAI0BkBQUAVrMpWGCISEAkEr3wkRgWVeWPdGkVRUZIDUANYuF6biZwwEQsmyRrbMX+Xk7yZFTDFLzb0208ym/1hVmSuZREijVpiQGqyuy7DTRcQhpYymXGILahV+lCU0j7qLAFjfTRhVdUTDpCDNoNvjwPiO3nk1NeBBZY7L2Bk1idhoENDQvS1ikOPPWM7BCkcll5fZACy9MBZ2qdn3VUV2R893HZfV0TMxF5xFuUsqfOWBmfG1UkZMB5zLEatapqJ5m5MCUYofIDMj44+1e7AsNGIZnSAik/2kAOAgCuMOwHuPgdg7vl0xxLNu9c7tE9jdOpHdDm+H7XJJ+2txHTQh7mOI0Ruxd8yOnMZeYyBER03EqJwnUEQQ4i7EEPo+qKJHAkQPbrvftU67xVKZh0AuogPWYejDwIy+bbqu7fteGgwqfkBuG3B0BARLvLq62mzD0jVRYwPaaGz6PbKT3R6IWu8DkSI470MIzpGu+7DvG8drEEbSfWwJB5RegyIMfehFB4oLxiFK1y3PH70Qnf+Rn/n9v/0P/sFLu/1T3p36JshV48+b9ujJ1Wa4XDeLo48ubr785g8/u7l+8tGH9x88CApgOp8qVkDfVoZUGFxhx1xtdovPFGaUQ1TZHk0JvCIilPWq6X6p3SsIZjIkdJkJd7MOssTJh1Rc1kTIzGLOGBlDyNVGSxaU5f8LKJJF5xJnL2QfYzQFvji2kosyJshDKC6vsmUOuoQRoMRU9lpEN2i0VrsCSppgig0+wRrdKkAORqnlBMYM46Cq1nQIQYkAwRmInsSAkvEbFDWI9WXI9UeKCqxACqDRBDaoI/SRqHFIQCCimMoTAABQMXe3HQQYFFCISCREFVWMqhEiEMaIAioQJaVMi4HvgpJKjFYhjIpqPJjSxBQnrSiYtVCkKRqPSDJHLRcqZWkDAlo/YU7MLYVva15dG/T2jYggkAg4RyICiKKhRPyosmkQESGCkGWJaXKfg4gysKrWkXICAOBgPgPMHnLEWQtLtYI5ogAKWlmcI63gREOw5PJC7tnmGA+tnNxExFChst1luY7vhghAM5d8ZVYyIptEmdT2TO2tcmHa8uPfNq7RdCOisXhRU4PD+qjnoVxCMCkWZMCSan/nGxWuNHtrnBjQ4yMEZrkXReOjcRiAjGTjZ2aiNEv1DeshEQER2MllMLb2s7Wr3/0HfPgBLzVfgjxgygdOD62O2dPL91iZ7LNJs0MPjvJlJHGMLJFEwWGPuht67QVdc350cnF1uYG4vr3A7Xp9fTH4IUh/u7mO+01/e80xtgwIEmJvggVyjbJzjoiccwDa932Ifd/31uqOHCvEABIReokhDojIjCjx6tmnIjLEsN8PIYQ+DMjknOv7XjVKCBrFSopP79+j1u2iAS8zAAwx9P3OxBSIoEaS2G9uMfSy2YIMDmR7c+1Ah90eVUI/aIjeudAPqnp5e3GE/PKjh+75ZXjrOy97+MLD+z/29R+//+DRozdff/z4owGHBv3+crt6eO/xB+99/723mAKGvTp45fVXP/no46Om64fBxA9zgi81EVsQ8+8wLmmy0On7aYfpOxnC7MgMJOE9/HOSX7nQaC+ZJjHqP5/BrZWnp3xzp2+mPgq51ifLXY/CAz0DADAhIswrKqGy9kbbtJyABbZRpfxctYtISxODTWNSarPeYCavaIgxFhvOLOb8TciPHK1eqXCzDy1j2395M07sYy2Zwjhfynrtyshj1Yhl1tKqfI8EUNVn6lwuYNH/7lysWWF3mkqksXkPE2Z/6OFSapa+5Q5yF/2Yb3+CuJqjugRMiA4zTDpkIxhxntqnGVHFLp9MFpbSJAVKeDeYddd6H85vWJevICKlfGZLvsmkBZDdjKNBlt6vjJHK1+nv3F3RLrMVKFn1iGDIrWDMPc9+VIQpHSAiA8Yc+UjdhWn+RvW2t5eb/YSIhTzKnEwW6S4+Ysg7ErFUKufJlMOTASBl9U9JRdW8EMl/UoK8msMk85tA7rIGAAfAp5oDPDX7k7FrynyTcPWI0Sk9tlmcqEd37kZE1AwEWIc/6vPLWuQvVTWa1I4aEYnJM7fhtj8i3Oz3cdh7jJvttulW29v1wHHBzOyHKBj66P06xuVy2bYtREsdjc45INzv94jYh8G4j3OOYAjD4Nn1YdgOMcYIMfjmBEAIlQk7xyJ6dnp+s76OMSBijFFjaBq/X2/as+Pddte2LbA6z0fnp88++oSDIKJvG5sxE3shDBiRiBgEetnc3qBo13pPOgx93PcqEIe9IAhhCH2U0IBG6Redx0VYsWw+fLtp8b//u9/5Y3/6jz+It+88/ZWj48Vpu9iG7aOHDx+9/OB7b3/7x3/m61dPL292N5/73Gu//u57H333+2eff3272XnvTdVgZrN07wwxJHqw9mNZBSciIGQAjRNEtnIVUQFruiMAoaCAOgLcZ0F1KMILSc82F+Vq3sPsqs+iupqo4IAnpA+F7YoQTnMX8iFYlfvnmmOQmHNTRMQKoBKqJACRJn5mlAyqoGm/adGhK+eUkqKgKkSIosBqSKiAuS6WFKxCV8RgoxVEDUMKQWNlWYkIxiEEnau846sZK40RgFFVLaas0aqhxG4mOC10NEMZABSyMayagBXyOiIe7uIUFLOQNUDqVlkv/exf+xBzPdJ4Hx0rkRAximgCi8xOzWRkW3JcGnw0Mx7w7rA04uj5qJkzprXTalYhS59051z1Zk4FV+hYSpqriWGZkOC4bWYbhVAlpcBRztnVTDcmntVcIVMxUysLFnm1JbaRcP1uyaNKIzqHQp3zXE8E5Z84S2aaljXXVIWmBykBgMCoc5VbIaIrkKnTPi2z51b/KiLU/S6ycoPTSzJP4eRkmnVvZvYwPWYSDqZsoi4Dq9kZcSpsrZ8uFT5lGnl5Oo1cssYKGCd/Bph+IH3HYRyMf6aKlc+HfLD+CXPdWp0ucDdbREwIdY5ZIwehGFW1OzvWJ+3J1S3KXlW2uL/Hfnu5186D7DY9CLqFd7v9ZrlcahTvKAwDZv+ViFAI+6FPRa4qMUZQjTFGgD4MQEjoBGW5OGpcIyLb7bZT13i3H3S73Q67wTdOozBSVNAYu0Wz3+1c40Fk2PcRtWncCy8+xCAhBIkSQnTOgQQEIMAYhl3fL7pF7HccYwhhG4ZhGIy/mLoGEPf7AIRBJUS3G+jRG59//4OPrp982l3uPvzt33n55IXlEW82y+88fqyr0+eO77149tY3v7k8Ptk8uybHAMDMMoQvffWH/8F/8V/9q1/7pX0/mA6nqkCoQQ7XsSxuYSZKoMZAKnKaLBZWfxZf8F1EDuO2QgAWLcbW5BKZhodnf5acT6nKbev9cvgW5RvMOmlNk8XOpPx0yPwk30Ggit/ZyeWDZqsFACD1HuQDuaII4HILUchaPABETaIXzKCy4KRqxMgZGjoZf2oLAKgUJVoA0lp7iwKK+brLJIyzx4hCAKogJftVM+tIKc2qMYImTyLm8qJif5lIMbAKSe0SqwlE82ObnlAYUMWpFACArO3DKGVVFU3PHiuy5tJ3Skuj9K1fs6Rw2flWcgHoEnqEYDT7Bc0HOnIzA99VKAWTmMb6GenJIFpyicoLoiTrvJjh1WV3bAFARMpAx3yw98rzRjfFZ2i10ylOeU/jbzTh6ZnNc1GB8Z/7mG1RO7ik5h6UU/H03pSq1PO7T12ph57V6THzvtLsboisiJpoM82eYFYI0lQQ0OSY3Cv/OWNGswEXKwqrB81nWEej9s7Fmk37mMShqgd6VflcYNjKCYcrUq7SA9fNSBHTqYZKrzy8BBFBGcGLQIzROY4QN7vt8uj4jS/92PLeo6vbW0cu9sN6twkahu1tv91vt9tNv9uE8Hx9u9n1zF771NKgaZq2bb1zqmoufVXd7/cAuttvYhxijJvNJoSgIbLQUbcAESJCInAuSGQkjUAAGiT0EUT//5z9e9QsWXYXBv723udEZOb3uu+quvXorupHdatpqfVqhHjLgEDSDMg2xgZZHoNtMGtgPDOLNfbYxuNlL8wAZmatmbENYxgbjwEZECBhwAghEEJS01KrH2p1q1/1vlX3fb9XZkbE2XvPH+ecyMj8vmpYE6v6dn6RkREnztlnv/dvkzs5um4F04bFh95WHTTZkCjZ8uws9X0TQhQh9/5saeueBkUakIa0Ou9WK6hBrV/13bJbrc+Hoe+1H5DUbdCUyDvXtQzLR/efevraN3zo/U0791lc+HDQLK/Ow1eWq7fvnS5ms+PTY1ueOtlTzzz/8M4DTWj3FwG0fHL2zHPPXnnq5uc+9akrR4dD38UYQwjZFz3NuhjXNHdfH70UNPHK+mVe3Cmv2CGeStG5yc+Gw44ZQF6DFFPH75QgpwPzYgxcJuCzS3bi3R3prVycsX6371/drequBGTn/A4pZvmCbc0D1fO32SObX11AC6Ftx/72rsmyzLnwj8JL2EFmZI5SRkNEIHPPaVlpbBc4Ds+qMu0X3AnuViAR6/vm80JesJt99F2PNzeH5qZt0wkhoiq/tnPPbJMiME7UxDYofY+dt1hQSYXZ7oCR8bx2VmH7F1XQklzCPHPDovyfETkTkSDjJWP3YKppMgbafqMLfPjiItajvGbY9AyoojfDLpSI/8QyQzEoLwFbyDlKxUrKhU7MRR/JGRdThbdIiIDJfiibCrXnTrF1anbGpGHwWGM6ObO5sxN420daBw6AUMvOiMh94j13R4VaHm87op+MRLn9CrwT/SoLXOfz3YTNiGBVhmFlDEQ5UaI4EkabYKzb335frlqX7QxsOp9EkklkZxt71jlz7dmFEAu2n7Xz7c5sjFsXOfBWp3trG/hWwcDObXfOXORZ48qOg59eufPWA3kDBGV160nRRjTRTrr28OaHvvu3ple+dPr4SWMyeD+kVWMYiA8ODkIIyXxxuO+Sc3eCO1wt2cChYBSQe7I0DIOIQM1Mk+nJ2XqxOBx6tR5NiHCOoeXAe/tzwwBEStg74AzZMQwDYEO3FuJ2FoTRr1ftbA+kg7n3Kb96Sml1vhyGoQkxR8S6bp18iDH266Wq5nJfgJjRrft+0MSkOTQL9Ckl1XTeo09HFq7NruClD83dw/LRDfNFI689PD1Odv/eQ0/nz9xctO3eU88++0s/++m3Xnv9hfe/dHr/0ayZHZ+df+w7vv2T/+gnP/CRj7Ztm/qBpERVs+SbElX1izIA1+S0tS5eelFvU1gF19tIhAtOFCIq5YpkXm3J3f2+7brcIYnxzkR00bAgKtA2xTtdTeTJTTZiaftxNr7P2KRh+iJEk7rCy997i8IBK17AjPQyRlt8d4rK5nWUWsGNHVyc2HCAzA3ZQCRkPL/qCM2ghmYZ92AnlDCdVWYhqhiBZhskfvim9S/Ma6TKi6qzZYMKSDc3zkLFaurq5vV9kgaTlTygdhPK2U9T7pF9jI5sCJcYaGXUl4lAz3Pg+UdUkNo20nE7W3sy3g0VTQjmskXdPM98JEWrNEO7MGdecKiYt6zPQoh1BuuU559uHKTb9JNpl4GCJLxRrHYLopk2VuzOyxT2XRZptMw2gta9duEmGYXieOzcJ0OhC42QDl4uL7m7PH2DcZZzIGdaHk9EEKq9Snb1UHfssKHpeNx9jPTUkzTKfp6onFvDKHCVBCDT1ehsYMBK6qPWweavhC6I2PreZVZHAvXtFxnHf1FCX/r54oB3Jp+3L/CpH9s3nVnrNWNd+zjgXeIet02+w8UVv+xXOfVSmLlLw2y+v9i/srxzgj0/mu/NJa5St9fMeL0KkpYGcVmoW+oEtHd4GIj7NAAIUfr1ipmDhhBCTuYXIjMnxnp9qjqcL1fJMGv31oYQaSbRCRRECSZBzZnhPvTdwEFi2y67ZYSA+Z27d5++caURFgnr02MDzw73u6En4tliwdWlOfQDw/ohwVJyTSEkG0bLgxx93zshJVWRoQZZzSy5DWdP2v3m5NHDwyt7s/ltufc4DSeNJiI6Orp5yu7sAXK27q8+9dRqvW73Zo/uvPPeD74vo9KvTs5vPvvs1es3v/ylL37owx958OhxROQQU+ouIY+yjpXQzKcKN4Mw6Wo++eEuCY2rOZ6sIYBN2HP08U6zmnk7jX+HUCsrzbGkSwp28yVj4i7KyC7hElU+bZPopQGpyzh1GXzVBeqLGwCDAr7FfLxQ83TCd7dqcah6Tq0GzCq/8zxOR1Z+jIxADCGAqrONiCJKdmcIPFrnlH9flQwny0VlRA7LIL62aUdWmctUhtUOLTZ9cXa4C1X1wgG3AmgN4xHsMXP7kihvyJlWuaMDUBsPMXlxTV/kSCOG47g6uWPcRvSOisKG/5dy540Oly1vLYKexiu3snBGT2r2WJRi9Oy6sdxqyqedk+ucKJjIiITdKdczTQl3KqOyJjWBQNslrFzBjbrpsut8TI3Lk7XZBXkImxrluvy52mciXLHZjTIWrebxjIx4ejERYeKtHEl5BLFk5lIDM1mw8TNNOgk6bZ4yeo/HPzePw+5IJvPD9bdhyhQuJgYDG0/zhv4m7zUemZgu1Ddjx39Vv8meFhn/A5ghkzOb15keO2fGTbUTdxhfB+9+7PDcnZfaVTm3z4yXXbz+IgVOj4aIBGvvXTiQeG9unCjeevoguD57sLdHOF8P592gvWkSY5wtlzl/eHl6ujo/61Lfp97dh2Fwd1Xtum4YBiu+5bBarXIGadevr127xszCQdrWhBLo5HzpLINqbOcIkYI0i3loIgKzBCXnIBzCyfFj1yEnc83n827oOQbj3O2cnKiZtRyyv1fdnZ3W50vX1K2XXX++Wh6v1idua0tqZsMwpJSGYRj6XlWHIWmYSXNw5vTMc++5evOWz2cHi+vt1dtQLK5cdfPztNrbO3rw+r1n3vfi22+8cfXW9bdffXU2D4MNg1vLzaOTk2/5+Ld97Wtfc7U2RmZO/RBj/PpLMNZqj2Jy6n/+51nBvOij13fn/HT/jrRRNJJtv/fOPacNBDcnJ1f6ZaGNOn4dnaWjUPGKU7GzwcfBX3ypCdOQ6fhLiH0yQ/m0YotZXcqBizt6nFiqwe8pe6xuV8/fBgkh5GhCjLHEWWIMIQjxGGW48Dgbz2xWwbzOGwME52l0b4e3CIhr99ydJbh04/ukN/B0MGU2cnexcbGIdp43Hfx08ncGlh+d3BSuyEVdGaBwI/usDnU65hJDqeXj+RzVwGIZABUY1ItUl733oQgXK+igYzeooqMVSUKScdQzQuTOrghCRKkfRCSjGebE8U3ql4+WXH5YCNmRMgmHeE7Y21xG0yKhTDvjBI/np6IRWdUbv2QamzQWvwkAAvNmt9CkJSKsmMcxR300z15VRaQW3lVnAFUPVXlYRupEIXsARq7uzCy148XWpE3ojOtsjxOiGSWnGN8OsBsJ4Cxe2yZObxgoDjZMaS5PVr0YPgK+5LchrjpNIY9x/6N4pAvSckk7MlhZw0yKhTmqDZLDBJZdFyOYpXnBTQ25tC9XX9MIJG4OcClJ4K29gQkrnK7ydPNfOp/l9S1YMCHARZkX7n7WH73w9N7i2pO7b/aBFrroxU6OrYGslw8XB1cHG9Yg5j6G0A2DCPmgBIQQ3CBRRGS5PFss9rtVZ5Z8feJM54MfHDy7CFeJaHGwl9bdWbeig5mwDqsnwUMbD4zArl3qGqc5NYNoEA6Evas3Hjx887DXpl/LnA2piVFCszo/t3WvqnuzuaYUncxosdhfr9cME+HHJw9jI6kb3NkdapSYkipJCCEaySp1/WBQk3Z2c7a40syuzxbDk5Oe4uGiVUqB95aP39hrMFNSuD453w+tW7qxP3vr0WrhrYhwkKTJlhauHn3gAx/4zGd/4Vu/5dsfPHoYZrN+GIQ4EqeyG8bVqUj7vJVVMDLQHbIf7aeSJlqpsOxFMyBjINQah4pMkCMmOc7jXhJhmCWlYdzXUyLZVk63GJe5g8Eg5IaJ7igFuITqNsxvJxKhxe1szgJ3OJNNYX6r/CMiYhEj490HIrlxqexVVEitAlZF2YIhEKRExwpDyCnoCGwKghMTiNkwwhoTO4hzo6L825I8BHJ1AoGJ1ACS3GOcAzNLBvqRELPxyyxSc0eISzqOORNBjcUBS56sxoBrQ0InJiZ3QwCcLEENADGoVBNlESJO6slNCWAK6qU+CshsynNfRQZGN6q7ZS9q9vO7e8YLzvZbyRrecOOyCvVz7d5YT3pNzRsp0MkzOTl0TIIr3xKyszzjT/iW7KfilCGijVjIw+Cp5jXK+Ck32zbBaztCo0IOU3KZEs/I/i7ir4y0rjVouoEYLA6BXZ/VtqZSz5Sc9aqEFmLebTu68/nSw70UzZf7TxxC4y/HvbnFR5BxuKkKkk2ScEmSqrNUp8KpCrNMRlyNbGbKsX2vTGF8U9lGcMTW6tbhbfzFNC5NFvHTEsMisCcIfDsTVe9clIfJJGXptzVvE7E+KmDjeZ+cHx9R4tmjU/3CUYrjkbPjFQXhGdgM+6Jjbaogb387ftjJBRtPWnLTzN3UDUnIWK/N9vuT09X69Mre/M7DUz6YE5HCVKGqBF/rMhA0pVnTeBEmCQhZyV2tVrnvkJmthrXMZ6enK7R7+/Mj035xsBho1aNv56zDuTISpX4l6/WqWcxDChqHoR+63meHC+tXClxZXO3Xx2er5dWD/T6tjdRN6XyIxB0Y0L7vNaXsTk4pz5CnlAppBTGzNGRoA3KHi5+dnloICDFv+JDSzRduv/fF9z555346XcYeqafm2ZvN8y+d/+0f/9jzN955sNIOXUqrs9Vz733PO698pV+uTldLIhIRM53NZvfv3n3xpZc++clPnp6fNU2TTN2dhVNKvvH4bSSxiJhZll5TpWqUxBOa3ECHTu/jNcGqtOkeCZZQm5dtQ0WSwdlMp/QwIdpdLW1KpZsEGwJ5KSKwCj0x4XiU39qykeBmGUWVMy/eMlKpahK06bFUKTlbODvOqrLHJqgjnis5LqSnETGN4BVVNntpSTg+OkNGZq0dNAlFs/CGJzsAERHiEFiYRDiv++iN01rL565UKsVGUxsZ2KRMkenIqCtDdwJlcAwPcIU7iregNo2sHMGJaDpTJVLrxZ9AozNAswFVYtyeoZW8SlDfrNdIRVST0pNqNkEKfU5ntax/qACTZQybz+XONN4z/yLnQo2Tv3n0dkbbxfRDql7PLEGqccaUZXCp/9keX757lkDTgW69QxBMhpjfMxBrhrTaiNKtfGaMG6ayZfKicowX0GjdYvckdui+DnW69+oF9S9zTHIrNttMtvKhKOtfkzuHSZAbAFE2RjcaFnOWx5W+szOoUsM4mPo6WfuDVIfFdLQCdwrkipw6Qag19ASQVB/+dA5382Imz51MzvTkbveqequ8yTNhjcrBaEhcRr5UUjbHZ2wkNBkyIG018nPzrpz9tSEA3uqGOR3VyAEvXeuLlwViGIPJNJFzb9rOZDhbPTx9EPZlOD8PbtKGGDh1XZBGh96JiKTv+yDSxijEDKz7bkg2n8363ifSwZvAJ+tulZhC6LtzW532HS3VZdbokAI8Lc9vXLtyul7NZrPz4yexIQ9KHHgZ9vf3uyANhTQ08zgfXFc97TXzJiweL8+aaDYMThHgYRjS0DFMNZkZBSLjXgdmVjNV7Qbt+x7gOGvM3FIKTUSIy37ITuBFlBeeeurJq681nc2O9lOy28+/9+CFW8P69N66u/LUs+8cf/X8/MSPmk995fO/7Xu/50tf+PSTO/dWOjTNLCWDAZHath1gN59+5pVXXnn55ZfXZ6chNupmhB1ZsrPpxjN5rbfhZndWbkulJ1iRHhmUv9qQ7mUH0CWUm2++SY/1CanUTVocxRepa2ccErJRM71zzjM2ZHDN3C9vNDMn5elbh7nvACrkfKGtl0Ud5KVtbrZGWLXw6qmqyZM0bvbRPisVPz7yzLI6hbFtpGwAM3PG76vn8nXIKTtM7hvMbN8giplnpA6gwgx4btpRkO0ZzkzilJyY2cxrxjY7SoGU50qiUmqUAaMsF+wosGlXuBOvzdqeAznivVXFVtcrT9Fu4t84j9kpuD29VBK1ptNO74JzQJNnTK/XnCP27rUhqLy6nrSQFypfBYL5xMW6Eae1ZRfTtAd7vixfP2rE+U0ElKPowjRORCUYGFguzRHcrpnx3CeeiHwrz2KH3C+eARBZaiXclkY87bK3M0F19nMukY/+hR3pOO4hopBToqb3mYqKIpAnx3hNNreNMIJz7b5RMZy3R1iXhqEKdx/t+Msnc+ee2/86lUj8RVCF8RqepEq9C9x84QE5W5XcaPQubu7JTuDCBGs14E5i/Ib0L7zLOKVTYYwLtm9hEiBmVgIRBThEVsMZHg6nabm/P1/fe7RK4BtHM4mJO0JU7Z2Im+ju5j4Mg7aRQE7EMaiZiGRAwJQSk5i6D1gsDh8fn9y/+zbOH5nZwc2nceXg+OGD6Ji1cnZ6n8n3Znv7sz0/71d9N2/mtL+vZ5CTlYS9+eywne+fnzxmpDAsyXD95tXT0+PFbL4akrurJ3dVy543JeX1kMyVhFWHZMi1ucySUnLi5EjuYDW4SCCiZ97z/Btf+nI4W370wx/B0zePb632B3n04FGz7E/C4fp0/dTtq69+4d7TVxenb7yxCHuzRbt+eLxermaxOV/1McqQ0qxpTk/O3/ve9/7iZz57fno2a5pkrtncrEswbnl3z32ZLhGPk4XOSph7SWMlohwOA5BDHvlWDGQwiTETCLnycpP2b0WnJ4eP3RAKIHsljzH9pSADXaSrcbSGqu9OTjpqkNUygCJTlrquPunTOn7gDVvPXYl2N1dNEfo6TiOgaqgoIm0z2vHI8bXcGgDI+HwlbJT73WePOlHwHCnNVT1gnuS1TN7dq5JJgJsZsTPVrE83J/MSEE8AXDOopAEVWXKCx56DpwInRgIDyJFhn4CVqjlg5kRmYAE8Y0XYjoe17vFCZtvcYOIL9AnXKm/mblbZChF5BWUqJErk06Lw2o9mZ563J2qavbW1IpS9ERNJNBXt27kyBYMxXxBy4lJWCTIvLf/VFx7vUt7yXeCOc8lj/iwgqkHTy8uKt21ZBnFZJ8bG/K+28lYN0tZ4sNF8NxrJpcND6aZ7yQVUPRVVaFZKhY3G6mYGNoKCQWPxwAggajWOnq/cinOX302WTXCJVg7AjZiA6hajjeo3WVTfQM78c3C97ftvXZy9xKMko4t3orFg4/K5LV/VFAHOjsFxTgBxKAGlIOWym3ydVxifu3NNYRjbd+u1D6Ex18jsmkTC6frh6rh78YX3v/P4TnqyfNh1tz7ykkUWj96BILmSQuGA92lYr9dRQjNr2/lMh7TuuibGHE4yuJI0i73T8+58eZKG0+O7b33yk5+693j98e/9LR95+YOP7r1D6B3JXVsJ82a+BK7u3+LQze68fdKv6eBw7+Dq4uqibW6BPTTdlz73yS9+8Yu/+fv/pcPrT52eLil60qSpV002pBijgvohLZdLNZNAgw1ORiRZ3nZDr26z/YPUD5ZIRIahb9uWm/hN3/YtkbyVpgfPY3P85PjNr7724V/zWx6m1f5BnNPRL6f7pljeu3f2+NHN67d+cTWcPTnev/UUe88Ax9CvV21sU0rP3X72nTt3PvjBDz4+Pg5tq268bYeOMvhiFtKFbVt45ddZ7ko2FyiklrONauLmqxJEy6w1U8vm86U0Nqp05c9J7d84hsL16sYjchndLRMja+dWDLJ36Y09PmHTDm5brd9+8RLS2iF7AGVzOQCrpkLZEeY5uq1EWclneN7YhbMQO5EDBiKD8LbnLE8ikxdZ6+pQuOe21u55ETSj7NPEn0dETKAMmeNETkrUOIZcjkEhseXsM1U2hRk51DPav3FWASyVvLZSRjMRPciXFDdeBjDKLzIOvrxCFjuV34OZvToKppxkSg+5WsTgF4lknJmNXrdNJuMkTDnSJUu2e0Mlok3zn0JhNTRCXut6Lzxp90wGj1TLKWmjAZ2fagTeeFeKNOINEjfIQSxUBW3VqTehXwfcIRegry4bEqFAapR3LtVsW/qIjMPLc1r17nIfrZ+cBFWDpmIFYrqdxz+ICJD85u5GzERSghbVPtiMsTacL1XONX19876TLHfaegSmNyHkFqEbCX356hThekkoYnJ9Ee1eOtgQezF5sxY9JdzdR2S1keBuglApRsqbktV8rnxnHZMs3mW073rsyOC6vrtI6yyThp9CqR+uXGu/+rW3b9x5h9IyUmjnIQF9IEkcmAViZt2gaAPcPIR1Gpi5N133PTsNqvP5fNV3TdMCkgQkUWm9HNIAx97cmubB6cO/8Vd/9I1v+eaPfeOHVuuzvj8jtxCCSDw4evrO1z73iU985me+/Pa1SL/9m198+Zs/dO2FXzE/mO0fNW7p6dvP7h0caj90yxVykTicmSFkBiOoatcPVgwOQfa8ZcSvvFVYAIQmqpO6EdF81l5bLILTAGXXBmKz2Xm7fO6F51etfP7zn9/H8td/58fvfOlO04buBG/c/ertZ1/oE1ZPzuTZZ82TOzFHYyGi9fnq8MrR/fv3T09P2xh1u3RtYhPQBmv9EkdFQWacWgbunv0l1c7QcVkvetouKFs8vRWN5WqVtV1GUVvIVNOf5z+57tbtjIf8sJwaWjrWjOkL01v5NPiy/QgAJUmTt7+yOlEXGhpmlcImNUujIUVEdasCcCI3sELVlfMNCXAyKAzkDEfgSETM2cBVdZcQcppxdrPkUuvNLkOewwyHYpmBGLx2HRyhnou9xhTyLBk5IVdagjyX7RHAmj3Xkn2QovBsxmej1szcyUVRsYMyhCg7at2OZSd1JSd1pyxWqz5X5w2ZTXsW4nBSLz08iEhH/WYMb0yWgybK1mSqNyb4pee3ThbIhi2hczErfiSYDRoGEVUkyOICnZq/7CWEQds0VgQMIUOg8TSwVy6QERxjSkDlgwP5W8fOV5t3rrGM8cXqwu/+ZFrFNEKAbjPurZqB8QbunkMOY3cLKpkCzJP52dpOXFRFd8fGrS0gYrCPhWWbZ2RKHKNCksvzhHNeV8UExQa2ZOuJZSpKInphRpN8rvF1Nixsa/8XyLzxmovzXNURBphLrwpzuNWCZmwfOwvN2+frg2q0Y6OWGRl20Pm//rGrcH7drxrmoQACuRGs765cCbNn93/hZ37h6aPDa/uH+81cz9chNIa1sUSucDwEikFCgKkLg2nQRE6LxaI3kxC7vo+zuSohWSOzGBbnFsPBtY98/Duefnn9zp2HvemdR08WLVypW/ch4uBw/837X7z3+bunSZ69fSs9uP/G/fXTp6F7/OBpObh+87mD+fxJLzcPbjuTKxxJeyMimGUFbtB+3a/SkBtRUnIDWJOqq5mRcNM0oYmn625wdiYSns1m5JiZYrmMQTAMq2BrkThfyJG/8+iNO7/4y9/wwReaFrN2dYWuHdx6zy9+7tO/43f8q7NrR8cPH6kUFViHjgAoQtN0Q7r19FPnq9WVK1f6vkMIl64CTWJmGzqpxmNpKDRNXGL4hmNslF0iMnrXRb+UDIgsq92ZR11kjheP3XEWIvfc0oCqLZEPoWKOeM6GwdZ2Q7WGy/asKAhT91/d1SV7qOgfNHYwu+y9CGYmE6/shBdZ4QfZ8K+N8EaJriVlTMnZnNk9IOT8dHeAg6oSw5BAgZytBPrqhrWMCOXulp3zY94zADOtTI+qQ1UJRByyRZbnzN0bN2UjoIeTS3YMJGgjOhBByeAOM9Ocxs0hGwM1pF29aKP1y3CHW0bg9A0LotFHW9alzJgVooC764RhECGn224rQMXl7+4jimo11XbWqHihpwzQmQrSCmVPH02r1S8eRDULeir589XFtiiOnSz9NnJwayB1fOOHjURkNojXHKWN3J3IRimqYWkhaQxgAya1qe1FEeG7euuOzpl/VY3penFx0ezMwyjhvAbPR62Diu1oeZE3OkpZ1EmKdd5TYLiZK/I2qKPezEmevy13k42IattvUOBsxtfZUhZIDFrd8uJQzu6syX229e4pjUpNh8Y0rDuuWh5w0WO81H1wVsZpdIVteRdH59d4n50Z3vybcylrVO4ymn7XY9xjU210nNutEupBPUcoCeomHE9OH73wkffxE3315z/n15+R9vCGPf8EvAaRSOBgZCxw9xhbI2fh/L5JbW82zyyVY4ghEod5cFdeux/uXfXkDx+83hxcPZTu6Mqtdq9VpNXZgybO52HW7u0jNAe0eO67PioxPHnnHTl+YkhnsxbD/tHRURBRtsXNo+NHj1tI32vThmEAs1tKQ+pFxCwpNMwE4L7vU0ohhBAaNlNyCrFp4robum6Qdhabxgk6pPl8vmiax6ePz5+cvP/2SzTgyek5Vv3161c//Q9/coXe9cntGwe0OLjfDbKP+PajBLr67DOnp+ceMq9TJiE4hNd95+7zxZxBfd9zDGo+dUFPCa8aJVvngQ2U+gYJqaTDOCqLHGl13JV2ISVgqpVepJ9CCba5w9chqikzGQl7ZDIyCtk8NnNnAgxjasiUPi8bzO6ZHL12WI6ZVp8UXWCnmLBYZmbiTcrxNgJJ/Yk6yDyZ5b6DXnsZMTkJEbObmWJgIjAzBc9F6GZCRuQsQqjFqIWTZCPW3A0lc3Wr5RFN/Fil8IyJ2JnEiYkkiycGizsrEWOAkfFgIGZi95RAg7rl8LJn7UHNXJkClWgnORlAYpK7GZb0gazEcG6isLGAx1nKCc+5SrnMEpOrbVq8T1zQY2IKESHLPSrx+3+mGrgRwMwMSqgNGGiT3DONAVfepVSgKfJ3TKPQyj/I7ZZz7C93Qdn406feoVxW68gJUxlR2Ut4nEEkDFWrltAIkg7mBiiKDnJggE3hAaFKNVDVyLAtfbdkPIXSV2L0IXAOadNIItNfZZikCrXqRGwKooYIgEqeGhDMCCzg7GGfinMiCjmoWaoAczTW4EwQZ81zQCVReZQNuVFJjh6VOtoil0eztagURQ8YsQUweTqb5rfyotONgrMmN+XOpgCDhEgp63mZObqDmVgKWlme6q36egZK11ViQITYcnJeyQnnbKyPzYbHTRmYibZC/lN+SpRbkTtxoJGuqXA9I+fsgbhA3zyh2q2Ctu3zeeRElEgDy6BiRExq3Gs68NP7z37s5bO2/9qPfe7k1bvf8ZGnUtPONKZ21XUi5G2YOdTMZrMFM1yEW2EImDx5M2tKS77AhtC7xShPXb1ydW8xi82Tk8fzeS/tYujOYyDdn50cP3SAF4trV2/Mw35K/bo7S2ZDuwAQLLz8ofcdHu03Ihh8MWv54LDrhiiBQT2fu6NpGhFZdit1b5pZLqRomoaYBzWRQJFgMMOQTCnuRXIeoObNlaX0V1O3kCZce+7J8SuPz06FFt3ZGdvAfPPP/MQ/6OB33nr41hvHL3/bx//mD/2tjzzz/N3V/db9+pWb90/uXcH8gWrimUePZgkqIq4GdQ4hpTSTmVuBJZnouHVXqn0dnuXZL1npAtkQ2UGEdiUqMVTaFlHubl5c1vn3PNWh/7n1uXzkGOcuLVXxNrbhKrsvKxBONa+ybOHdInVAM2OpDrjJyzNlfll622rJu4G5CZN7DXJRzb9yo1x0TCQjDw8ZTJFyaQEZGeBkSqbuGDzBDJb79WQUpwFKTuLEgdjdCvcnBgIxu2pyFWIImJm9WKBclHVjZvWkboATO2U/gREQ3AniRhm6UhicgwoF1IhgMAa5wM1hYM75muY8b1g59SklNVWIk4Ic1qN0YnUmD2wMIhIwnNCbqZsbu8OIkiqhIQ4lHmEKJCOH17Ilp4wNnJkfM+e+6u5q5CArNpE7WyhehCo5cnQvI0JkAqkuT5paNSPxlL1AYOaRDZYrtxhbxtopdwg53DImcruPrJ9HFKkRlebSlN1MlryNClZlKODMOThPhIo+misJKoVWUWo84m4D1cy8oPOOZD1uueyWJSrJfr79q+lvS/qf81jDPrlnHrCMqjpy5jeZV5fvpNbQJrlENr5OXSeMGdCbOdluaZy1G9rEvKc27s7iFSE2fj2SQw5H1ZctT7Xcc4IrEIob1bWsUZPNzatmvXHXl2KO0jos85TdhJrpe1065jJ/E2f4CGvg09Y3nhtSu1So051EFJ94LUZP+8j0dRTtAErpgkeJakbEqkmCOCCRzcPZ2erKU9c+8Ie//wuf+8oZ7KAjme2tHXsNdBjUjQlqcIJIZEYCibkzh0ZKGzaQJ6fAjQgaMuIo4ZlbN29eu6qk3Xro+hWR67C+fnglsIhIG+PhwbUQ+Pjk8e0bt6zv2Pn2C8+DQ9sGkZCJJMaWOcAcRk3TBJAOfQgSNDSh7ft1QmqaJm9TkuDugxpzCIGHvjdhCHOM8JhUF0N/xdd+vm4PDj7wwvsfPXrHdL2/11oz/8VP/Pwvf+7z77t+3c6f3Ht479bt529cOXj75FGzmL/6xqtH+3J2uk4BHrgVXvZrLTYInDmZ5f0zdJ0Ipwn0YF6CzPJCCJVgfSqep8f2SSYi23TKgTsTyJARHko3qrIBhaF68YYXjymXeLdHj/r0+OdUyb78DkRUFIhd+t95qXH77Awp68EwzwVVBPgYtc2ZMVwMZKZADJiX0nkKZilDbnBti0oMSpazrtyd4YMrWwaI5uxByF3khd1B6izERiTMDjeYGZe8XMreaS594XjjsDJLOQXaCaQGGGAMAbG7ZmQrMyPSgvDFm7bpzOJgKVi0xvAciWNSHVklD1AyyxVPIBi5BXAgjcRBkCFdnSBmRGTmauYczaX3aBA3MYNRIhN4Ugfx4O5jXtq4BBlyBXCu0A4FrYhzrXBWP7BBcp74TSsIJbm7EGcH/RbztpwzQ8bwi8bEhMzGzwHVI7Shj8I3kZKPHd1HzntR0ywjMEfNGty5QIgoJ1GNVOvFuZ/N9pJJXyoIsk+jOtHH54JLsMQr9ddwT15FqsF/e5fU4s0ZslohN4agsg9pWgVd//+C+J/s23GP5cfthHO2kAF2tihV5MvaSG73uJx98DYmy9aWl6w6c1GhSmEYNmKMibDtYx/nREb/m/kmZc63Ev3zxVbjzpOblwZnW1rRxdehKQ+q+t54k53qzlFbuXir8hMq+F6bqvmcwaAGgoQczS/vpUPzsF9cbXlt61/xnd/05K3z9eMVU3eIWZKeEEIzY5hZgnPx8VAwuMIjUa8DEYmzEQUHgBBC3maMecaAPDparIe5CKlqFM58M0qQ0EigvVkbQOQ6i/PZYt5rIlYmDsKaBhFJKUHB7q2ELG+YWETMnUjmi/2uWw3DkEyZw6idpJSYORDIvDEZPFgI6/XyZPnwaH2QzpZx//Cgje+88w6R3Lz21H/7N37I3fs0zBaz69ev7y2aZ69fO3744KWbt08ePThd37t/pgCSKdhDaGAFwQAoQAohSLdax/mcdgljkxA3JYDJ/n2XMrayixiA54BgdoqVJgI2vY/qxs3j1YE7pUMfzZN3OS4d22YwF0Ty12Mjl52pAxDmsQRg6+YZbsGpllei7A33BBIwEYmRCUIWZkgZP86AHAy20g4v92wgGBlscHMHuRs0WVa0jbKlAXcBubGDhAkiRAQvydAAsUOMLdsnVCyF3K2heHzJ3bXm/DmRE7uRMcyoIThIaj2kFWbAjGodORXEMFOwG1iYlDQRqYHh7GC3HmwgZWaBB7GGUiCLrMIU2ITUuZSYmFlSUo6O2KE1BDUalFSDJoOrqZKRIbmnKZxDfpeRAbGxFVvMrRRB5ZBx9m+M68sojmWqDpGi9IwkAMA9V/ESULriarbc+DIKqWdCBhtzGm3TLTmRWUPeWtk7saN/jrerbtUtIymrE5SHXWTAaCrVcYxEmEu/s5ym8WRm2VQWtUZ3xq9qrhAKxOhEYZm+58UNNgr3upG9TOKYc1S8TJjOzPTppVhx2xycAnDWfZzTni/ZujuazfiBJu+Aej7ra7aJsJWcuHEiRvCv6sByANmH5blndtZQsuN/N2ycuScoO5jI2Eds7EK7dWCGyWxMJrMojNO3mL4XVSa+sy7VZfmunssxUj29aGS4o+elPEiCk6l1BNEUmqY1kNvMlvHeyWmg+/M77ywWt5u9+erJuQrciUPkIOTCwhTES5Yrk5AbJfSuJhIBJogT5ab0xJEZMUqU0IToGEKcBWmISALpkMhxsLfoNYUQtO9iCJEFpjrYYr4w7gNxGnqR6O6Bo1ISZtPkmogopQRgGAYAYJIYkmkThJmTgYiTabdO0ogLTMlJkuts7+DOl+7e+/IXae3twc3FcnW6Xi5X9sztF/+zP/vnf/b1V56+cfX+2emCnWEy48U8hm7W7i+WT06vPXP1yVfO1k/OFrEdXB0sRkWhy9qle/GEmgURnejy45pOFcqpJNsNHtSD6tp7De2N+8K3739Ruk/Jsm7mjc1y6fXTPy/uxwkZu5aefpun71zs7thUc1h+ieJCqir+zo+8aOsgBnkRBQRi5uxZJ5IaygOxCIhClgUD5/44ZFyc5+pO6uqezFPpym5EcHK4uWWHiYM8A+tkzZRgLiJKWlCyiIzImImcN2xVHImZASNzUPbLGzM7SXYOE+VOTCm/MkthvJnZM5GwOBNZztAmNjNCMibTXPVCxG5wgRoxGzyBtA0xkrWSGrEgEE4hUKAkAeVBgMGTRaWQ0DbUDs69MhMGElCyxAZWUzcaI/UOzVjgNRO+nK8SLaN8FvOkoIWWiICN64YiIICsLG6OXGvjWXPKZY2exQOPpHLJQUSh9H6aRGJGlprj2JmON/DcFzbSuAFoY+RQqfYBnKxCBOeC7SwpIDX/q1qN4y2IJjy9opaPS7u1T6rw2yQo5k/TaPFkt+zqvJlUrMgpd3fYxCDOmRLbesnWbifK+WLjps3inMi3n1KGtNmEk5jrtHJjvK3ZbiBtdHnvpKFtgmSTk6jhZKAG2ev7jsO6yH3qCCsZVCdBfo6q04Q5jr8iKk2QiHYdD5sZmGgo0xQSKhnu4+xdcni981TY53vmWR6Bu3JLUDMYWY7EGMkw6HK9Wp4vH7x59/Cpa7efe3F9/mbngw8hYJZ8EBEmTuYMhBDdycxiiK7gIERIKQUWAOrGOXgTRArEXQ75UKBg5NksDtIEEURV1RBCnEVPugJijEQ0DNaEYJbMYWzHT04Ojw5yi8OUeiJ2T8xscDafcYgxJtNkGkIYhiHGOKibDWCklMzM1J3bQKFhOR/WzV77y19789Wf+zLCzatXh3hjve7t5GH3n/yPP/r3v/rZj73wnK9X69lieXwSZvNm0fKcz+8tj27dWj1ZPfPCzS9/7uE7d+4ePH1tuTxv2gWRj1B/mSzBIYQ49ElmPGbxTdGCLtKV56YFcokEHrfVxEAoIaSaLFKW3ixlnKZJ+U25uWdgyMIadrf8P/PYuWwr0WQyzskA85MKX2Z2FKukxLbzLy5mg3tBdky5z5tVHl2zoyMoOAWCEIOzzVjyknMjI1DJ+lXjRGYKdVciFbi6khG5s0tJlzIufumCP23IvkZ2dw3MyS0HaHkzaSaoXSKoz5BqAIjcmUoprg/MnMWAyCZTPIsGKniWApESyhXOGVfqbAo2sDGbEgJR7+7JwUxiiZmE0LC07C37TCyKSfAYLZJBKMsgdnIS5Uax6KzpXVgJTp6rcFxMSOFOEUKesovUqLRwzP/jaoP4OGxCk7PkDFq4aglqqQMOz+he7lkw08gMDSCqCJJEtUNwWWKMltAFksv/1oyniQ2BXPRGRCLDMJBkGBM2G8YtMd6rDLXIi5Foq7BholoAuCVcAUKZzZHupztn5z6o23i8ybZ4o8qP6yAuuJXqlaXMbJpVWLshTCQ0MNp5xJuLaXLYCGucn2U+yZqb1u1sHNE7TGpHXPlU8d/e85vuo9v8YlqpMb5z/e2Wu3sjnquZsa02be5cTVjJBMoOgK1QiE+vxM4KlacrYVNpDUBqDNgnhYz5tfJ7joN8Vxk8CZlgMi155DUrwbgmbLk5haAKIlLFfLY3m8Wvvflment4/PbyV//Gj9x79DgkhNmM+yFl2iuuAazW60HoQPbYExm5WxoGztBY7iDvhi7GCCFNcHIR9kFVtZ03OZ4yb6IQVB02ANbGRkGytwdnJ7QzURvMcrYDt22bAXiHoQsheBpqh8Hilw4hqJqZN20DdINm1CinXCMXKSGJqnCkZHkW3nh0+hqFH3vlrcM33z71IUj7M5/9pa+5hdhevbJ3eqKndx+0wnS47123f/VwOD69+9qbL33gw2kYFiGdr5aHfKuV2K9XMbbQ4nTLkKjqHprY9z0uWLo7mvqOyusTKKqLuhpKCakVEnXHFtLQ2KQ967jbel4ViVPC+GfS0sWTZV9PFMRcP7lzEDtt4PWw22uuxGjyBrwggysSjZegmzhysSwIkVzgDZgBBTRn8ogrCwITmZMnQgI7GYwTWXKouWaPc4FRtqKLOtSM3MlMWZ0lc3WwETOclAnipuZEucmrEU0caqRuknOGiYiMnHMlZXAHYVOHRkSl3RJPVGSqDk3U8mp1J3InVifNSL/SU8o9IYiJWYSpZW1ZF5JiGKJYjNqwCjsLJBe/UXRE40WPFiqeci8NStkdwUxGzEBsPCXi3pXJ1XKeLJkagyxbOQ4d6069WFNaK4YdgMK55KhO6ixQlNFNMqGXz1SjzYqMXE1euhdtkdFmljLc/I5XMGcdARBQImIK7axdr9dZmbmYqZql9UiTpTNBCWLnFtBCRAxBLQgmIlhF/CjJTXVkk7avk123GffOh1oGNyqttdTHaoJinqPRdM6bzbPDlquD1wky1v+huBqyzujj69TnZuyMkrpUo+1lhSZp27sJa1PGkWkU29LlUsYxVSfc/dIaR3fPWRVwL3FiFK0otyqpN9rcNq/79A71X8IU42B8aK063jVGp9Jx8mGiymy/TgYdg2WPY/65TaLIOzO2pXCU5XbkhlHjg7JfLjvfPBETITK5w01dmJqZHh7x8ES/9Itv3rh19cMffuHh2b2u69hTkMDMQkxEamaqBOq6rhHuXWEe4H0aIkvOWQ0hkLApBk0MCswJzgIhFnDDPCcAth66CG3Edd03TaOgQZ2Ieh2EYJbcCWbtfKaqzBiGQQhqKcY4aHImZ0p9MlUDQgwZ5bEfBgDuULdcmxARnT0FPVVOoT19suyOz595+tnjRbw/nDUnQ3utvTvrDzE/f3TO3oON2zish8PrN5r1k/0rB6eDNcnXQ3e4t8c47btlEFl2qWnDoA43NlR3HJkpiZAI1FCN2hE3kbbrgKeUUAhsklmJbePAqk8vd7mhCZA9Tyoyt3W4S45d+vznOL7OxZNXuIT1AePMTP2TFUriwvVeknKZCqqHuyNDTEFagIlC4QTuOctHYIFIyIidzQhOrCBTVYcpGUPhmpM+mEQzQgXYnQzs5hm/WXJU3eBUZLR4stKdyZRBbsTOzKEmITuErBYHS7bJhSOX4LQLQCOENTMXzbtOac14zV5uULZQTRxmMHMT50DcFQcuR0aMaNla0YUMIn2QIQZvOTViTFGiOhOROMXOBS4OMnM4D8SBycARbgK49iTMSizsQXUAK2DGBii5uqtz1vKAIpmHKaqP1QiCVjdniS7SKGSz44C8lvASEYTG9F4vCTe647PZ0h2JwphGn6mWpxacWQgNiPb395fLZc5vpG2mmqvlihFNVNCdwDTaiyzkcJIpmoYQWwUMmYh/ympTXb+tYv9pn1FMjNHNJmEvAn9356A8F5RpcBT2+chGcKEqOFUcDEAIYj5Mpa9nn5yAareFXG9++ZBGx7URy4bpjCh0oxk6fdNSNlRT1W2SjLaD8DcV2OXmXGgjl+VltwuN7msio4ISO81Wnd7wYlJYZU/F2bD9RKYJhlf9UAsl84RuRc3dVImL25HIAdaJQ2a81USc59tYFrRGNb0S1UahkjdC5iAI2GDDoCEE98QcLDmhf/HZvX/05U+/8L73/9Q//Ln5UTy6euRroj5w7j5ZcxZjjMLoug6RkkMoNLM210s6OVypS6yBKag5iJIld22bVocUQxQy7dZMztpLDEjJQcPahSO5jxU6IYSu65TIdXC3pH1gSqZuRsKKDEBtTMQkiyYqY911s3YO7s1Mh17Vm4b7NLQkpupRknuM8/sPTx6dnVx//ws32r2zVXj17VdfuvbUPjXUzAec0eIoPjlR1SO0pLDAR7eu/vLjR3u3Dp+5ee0MNt/37vRY1700rZKK5yKGjcNGFerKLKUt2CQSv0NI459jDvPl1mf123jtLwLfsKP66GJljv7hS/XU6flLldRLz0xPTlXkMgYbz0yumbrMK5mX1wDnsgP3/uI+ImJ2OAlL9JLdbeZgRLiAQ9VlcgkNJEdb4QyTkhZOXAqo3cgZSjAyy1kAXlUF15IXnc0wYqj3DhKDs5M5SIHEoJwkbTYABvXAxZ/OHIKHDB0NEkaT95lZIghlr2YpLpURyncjdysnZxIwal8jdhJzVjfhlO0uITaoCEWhKDKPfSveiEVRFotB56INKSOyqIlTmJmRqahDRBsLDo4qg3EkyWXIxiYcEMylJR3YkvkAGoTMrIcnWG85+zwzQIIj5XASjNMmpCKqW5VmWdMyS8XiKp75jS3h26mxOwQ2Ja18PqSxf/Ama6C0mnDAbXDCg4d3hYlyfbBtauqB2ig3ZykDGa+tOjKEiIKKu1NxapO6wciYZNKzECV0mh+tI4L5VDjVGcmbe7KFyABm5EoxNiqadEaXHFMqS21r1W9848onys4uS1nwTZ9LBJiQbIRfKdVVL+JuEu5lZncVBK8oXBsZwlVgAEoAUU6h4+lWr2VOnHfm9mqN0n0qg6fsRn00F6pGBTiT5PiP50JGHyE78n2kxl9LtjOTR8lJHFJHYF76ieXl2maCWv3g1WZ2Hr0RU+k+eiPgTp6xwkoAUXL+c87Gr0jjXhWO0rgs16c5Uy5GBITI3C1z/lIazURkFJXWUcxUDS04nT9eAfMb8/0Pfej5T/zCL7//vUd/98/97d/1f/g33ddJenZx1wAOzF239hC4jTyfr1dnB/M916F3pRDNPARe9x3tt21nkYe0Pl1HvhqvMscGNNAgwzBr9rxLLK3s7bs7Wo6drshlvuCuI05s2i9XzCGlxLAB2mvPwxClSWLrOfOyL0YHC8+jqvY6aDIWIpCIOAEDmDmlFJwS9yT7CYM5Ey8eH7999eatGzeuHz9avfWV15p2xvP5gcVjhHil2Z/j4Lnn33ywOtdzTkniTCB7N/Z0tVqm/vDqzdNVWA/LWZCz9WmkmQdkJKGRzGLutmnwvPHTkDU5c0/uuVnLVIcrNClZzc3WHrz4ZosnKXPAUnHk7ig4yVUcbvzP7g4r+MwjQ8iwISOW3HiMF4wawAUlYGw0siXR84Zjz+40Kx5Lqt0OcgFLdXxPLfkihNiJjCybTRONGZE4MjdOYkR5UzmZBU/EhCZAmQyeyJWZAqUIFxnYjc2FENkDK2hQ6wgdaWJJGNYAkjOo7TSxIZkA0Z1cy5yrORDI4aSwLCtIQeYpVJ81aCAfBnNmYWpSWhuFQIEowOA6AJE5gCKYWSDZLkak0lmGSYQ4VP3LABKOXJD+yJgcAmGDi6qSszfkAC9JhkhYRJ9LP/cYeT0LQ0MWKUXWKImZPCxFGufGWSCIrKUbNglJtCZybDsTqJgSqxgFcQ2eNLmqmifTtdqKyE0703PXzrSH5T4mgwurO5kBVmKSFVOsVOFSYnIQwYk9KFtePVSpDJYMvjsluUyyUwGsblOcqEA1/3lCglZdJQqWInKsENo0CajSXI7wys4GyAWy1aW82RVZSQKhJt1NoTaQg+k7G3j6gbzKyfJFSY0r1t8mMzmnI9b7bLalbD5uBO3u47B90fjik6kcC1Onu3o39p514/yrCiSP8Ym26bm1627dGcB4zY5Gsjnp9SWz57n4G4p6MWoDOU00/1l+lRcvO9y9JoUD08ETAJLsbtlZfRTTepyWi9bzbhlxnWeqATMQ5TbfmyXYTCiXdfTJwJio9kK74LrX8xBn/bAO7mRnEq/E/fXDsxWaW9/y0W+7e/f0rVdP2m/6vT/61177nd/z/PFrT/xontRysWEOx5oZJwiFlAzmgzqL9etzDr2B7cmK947Olx1Ls0/tSb86cn7jjXt6/jiau6u4Xb95Y763d3bnnYZkFSHGe1euh4PF/tUD25+vyc4fnYZZ2/XJUu+ahr5f0RCbMPeQRFSVmUWk6zozdYKqpkGTFV2EiNhKvjH5wn2AcmdDhL7z+B7fuLa3d+uXPvdTP/HKG7/hxQ8cHlpz/ejaWZd0kZYnjx+dveeFZ7/wy19qmhDFn33m9s91QyPpmeee9TBr9xdny5WzCAcAqS/ydVw1rSvsZjl/MKW0SST0EmIYl9uLuK4LVNwWEzLYsTgzkWxZDLwl4SaD2RGoO3+ORsbX2d3vQpnYpCKOqrNPAr+Tn+wMALBcUCDFVzR5kTADN8JtBnAy9iLgnZjJjZgDYyBXNiIYuxOZuLFbYEQ2ocSkQAIlI2UywkBQh4EEJFQkiLuHOuysxY4MoDjGs36OipkFV5AytMTdKFk1g3YmcFMakQ9hkrxJt428ElS0mkVLxKXOWAQiRpZyOnOAsqBhb4XaiBkPMfRNWDfUxegx9MTJyMAzl9JlT8jBFAIHYmhgC24tWUsW3Zg0JgiscdfkZoaUkuqg1kZrjWBppdpYWmlaK63UVrZB28gOfKukKPk1MnxCLtHMatPY1mk0kApxXkYkO0fB93YHEOBc7LUJf6+GYPbpl55f2fhGbemaj+wodveMW1ds3wvGK2WvKEA1yy67ezFJqZiu6zZPz4QzyvC6xu5Zt94MslioMn20Z7qp6Ff1vJD5Vmlynv5qlI/TunmFbQf49DwmXCMjWOxctrn/CGw90nR1cE138naqc30Rd78QAxuJQMZc4ypT82erLhGiTVUYinwt4YP8Vuylcy+KTbzBws2ubLesQ2y56aazXRuiFWsaULDz2A0CTCTYKmTbpDaM02iX+QZR+4oZQcA7+ITjJACQQOvhRHifQh/66wPSwcFNXp3eef2eP23f/z0f+1tf/K1//I/9mduLv/YD/+J/kSiyQQ0Brl4yo0zVzVqhzJssDSK07AdSjTHOaA9mzeEeLVP36Mnjs3t33nzjwb27eNQP5+cmGp329/f3Dw6645PkKcEXV67sHR0dXrt+5dlnDp95hmeL2eLKcn3cDWtzdQwadE1o3Zt1QmAzdx8CvE99IWCCuqsqmHN5GDPlqLCSk1jQmUgbNJzfWy9mN+bub71xbITTs0fHD66uju96fOrwvc2z11/w9OpnPvelWzePjg72hqE7PxuIpE96cOXoeDXcfs97Y2wdPGgSQ9vGlLbLKLFpDkCU+yEOzGzY6PFT4s+sF9uZ0pgucVUcNy7oC4cXRqG4bE/Vo1RH7561LZf4jgz27MWpEe5Kij7uZlQ2ONX/JiPYhGB27qwXGvyyHIBbQiCWDFkAgBQliURASAxiNyYVJCZnJPHEZJG9EWXKGb5qMJA59cY9cx+ZenJFjhaIFzRK09wOwQXmOauSKuShoww849yZG7lqtn7gGxzczEWYMsAkeGwbXPCpcryRhHnCsbPwzly/+EJFLMsHZ+bs4GEiFUYkgvuMfB5tzjYPFoM1AZEhkjiYszK7B3NJRI2zEVzYyJ3hlpidyaJ4FG9hkb1NiMHnClezZJ4GS9qrreGDmaXUma10OBuGcxLG4JbMraIZbt7d4OYbg81qORbThHGN3xb1y2ol+oTqpkSbY8MEZIEaePLddIegWGwb8xRkue/RiCANlGRmyqsEjO17AXCJZlZ56+OoStjVqticKrMOrjXdm1FNBV4m5skAeHrlzvWbOwBU+nVY8ZdynZ2iGhJQuvkQSCd2qm97gLPaTptpyfKMuXTn3jCs6Qef/Dn9NrevyWNQbBy/46N3BDO2D5po/VPWdvHz1hShCPbNW1QZnA+rykRG+cymcFVKNln406ej2rBZTR7NU2cHwSyzbFB1v+8cNmFtWxy8JPpvXmFaoIlio1RaJag1xNC4tK6BnbvIg+OTvWZ+bWaP3n7lTvhD/48/+/Mnb//ZEzr77NtnTx/O+vVaRNJgZsZwsAUCkw/aE6DJvCfJjVjUYbTm7gr0/tmD9Nq9szff6O+//uQrX71z7975Qbh+80bHuvDoDzonHBwdLiNimJ989ovyePn888/ffOm9+wdX3vfRb5TbN/bj3GPs+2SDuukApdjMwqxPPYCuH9BBRITZsqUrDCNmVlVTiGQWRiGwKSdS1cWTJ0/6c3nPB17+0muffmN5b+bXfe9KF/TJsQ7yzkG4Pjtqulf7mzefuv/ovjMNw7DYPwhtM5vtm9B8b9Ec7a+XPTOzRCFOfe85q4OKt8PdR/evmSFzP3ODhxBG5/NmBemSta4Lvk2ZBQdp9/oJ/RflcPrDjVycyNctfudaGUD+6l0HMykpdGKvriAae34TZwQ8qxq2u0MkV0lkeOTR7ZwDczK69wBwPAS3MCbh4FxSUZIjB4PICEmsJzMmC9AGKRAinEkDDcwWyYUcZuoOJKc1uI+clDgQ1DG4CJE6mZmpeEGdJhKBp9yVlykwnMBMRu6AWm5LSETOBWWDiCXk+hfL+oKQiAjHAtCc2ThlsUtGFmpjPZSsjPKV1w6VVPM1GU4MEmFWERIHgWfsrVgj3obURG8C5aJno96DUxCQcjCFMlPOJCM3dm4JZCwOhrBH9jb4rEcTab/miKOP1vdr85m7Ju0l9KYzlRm4oQKYYpzWbnBPRGAKTjBLZmnje8uQn1RrSFyrxVvdBtWYGpm2X2DgIwHn4DE5gnAEJh3czGuDsNpgrxhnJgXsd9cFnefXa4/uUfqRy8WSoSpCqpZQzcGNZNoe7WaxLV/AOzIMtm2nln8lF1hPRXF94qZIppxhmjYCnYwkl7vp7nkAIzXVzYWRF1QNgyejGu1pqfV/m7eeGqx1QrZe/xI312WHv8tXJUPdi5StBRD1R5vnUXaf0RbLLN1dcuviqeuJGLlrXg7A+kYlLPC8VN1cdYnd4WO6U67jn7gBpoG68VaYiORy3tkzGmF+l0yM5SfmzmmdaEG2bq0b9mZyeq4He4fny+6ZK8PPHfzgH/8T9+9/4T+cNdr1+z/56Z/4A7/517/15ZNmf+GOlIYYBUwIDIJgxoBbb3DXwc3Wy+UwDCsJZw8f33twN73+sHt8cnpy3/da/lXffrOZX3v6xiqoKOlyYAkHV6+Exsmovfuof/Torbv3jr/45aevXD8+Pbnx4vOLF94T5g2bzsxJU7KEhrq9NruQnHgY+lYkv7lmUPncw3z0IAhnaBrC4ng4ldnswclJatuuwQu/6Q8efubu/a/8VNc+0w3N0/uLO2fn1w8Xs6O91To9uP8owZlCszdfLs85hvP1Ks4XyyfLqzdvLu+f9n2fV0qYU16DjXgzZH5DxfkcJA7D4O4hBKt+6SKGYSNu/GRZt+p2pq6mQqK09e3ktwbAdyvkt66cHlNV4BKfyiXHpTb01CMtNNkdmfLqnYufPEsgoLr9MuI9ACDIHDLLbQE9tzgwA5mYE1EkI0+szj4LcPGhcSEngQr3zH0gjxlRgR1waDJaO1YCCxSFwAxGA4oMI1dAAEauO3FibpiNCSRe+gBZgDt5AwzuigwvTkTERLkoV5yFnMDCHIgDh0DFrhWwZFwOLzoLOM9PTlkfu+iUepGt5QaQs2iiMMCBMCPOLugYkoTEohB1VpNEwTw4ublEdjg7cW5eJ6AmOolxcAkuASQuwUJLcU2kzr2xGoMTEakGh4qKWrAkxLnnSlkLdVPvvIR5i5nn2cPhJYOh6J3umd9lvp5ljrvXzlQTP9C2s6cQGW28uZTh+N2dc6ocQDzFdincG7X7RPEaT4hYJKJKVncfHUpj/8EcB9nILaYcDag0uiWhUbyUm91CG3k2RdHavBhvn8yCcyrFNjd3plwIX6/csHUuuIbZ1ek0sedKqdLE1NtWKfImpdEUzi8+cXfbtvjkbQ5EFYCzjGpUhGyTe30pK5m+GlHBnqNc3lZFUtHSs4vPCznVMfs4PNoWulSKMgtKxqXVkIVvmhPJlGWNt6LNlUWLwLarI6Oxek3qv/S9xm+3n0sOHeE7MtceJXCzz6uOBcmCPFrHWVzyCR/Nnrxp3/Tf/OP5g8/+kYhX1nRNYD/7kz/9+379/yqEmnqayQM50kmwkOuTmoi+Xw/92cnxg7PT0/uvvX3yzl0+XdPSv/To0Se0e/kD7w9fO/8V3/7yb/1tv+PNu28dzBZuhiBHB/tn/fqFp2//3D/4B59656eOXnjv67/8ytd+6Usf6azvcKihPVpYg3YWG+FZM2+bmBzCZO6xbTIWgwESQuqSZ3x5z4avJLeMedD1y6UGDYs2NOsl3Xr26bdOH37+5/27/uhfvfPv/torT97Q8OKprZMMxnF5dn5wcHB4mNbaHV45evOtx4Pp4mD/yeOzvcXBwwcn3dA1TEEIZBJaHdI043JjDGSHjRuX8ZBXxOZtlf+iv3cMQG4tNHa8KbuUMHGD4zIt7cJvxwu+ftnSzn2wRaLj5poQJ2VTZRwPjUiHk1tlUiQmBsXxWSJRWMAcmJGRzJnMiFwDSCi4WSAhlwgRF1ESsJARWWSNGbuUAE+MLkjvvjI9EyJ2FebA0oh3tbykSIvC2kAsJNlTrNnd51DOqfZlgAYHkxMzcW7eIELCIYpE4lCqG0ic2FnAoQhmEtTog00dkuMM15TTnO9lZq5Griwg8kAQsoa0EW1EQwSzGyVi9wCO7IFcmEAknPGpnABoxgRkZzYEOHnBtBR4ciOyZBQIPSGbk4ncjN2TOTEJcyNiaHI1MJv1Ata0ckvqBaFERBw6JaxM3WMpzRhTryxuY6K8m+dnbCbr7uY+pg5Wx0IJ4zl7UCgcBHBuNW/ZAb0JuAIY6+5H0UuUSxQwyo4qRje+i1yiTFQ7jAOcO42X3bUxwypZ7xq+45bIupVUW9fzaMfM7o2MHKUyZ0+ComJWlbMZHq48dATdZC6SOGOGqOe0IyrdGou8d9QodWka5eUGm/vXVaFcfj+medSapGrwTeTK9nGRy+wIrcvZUGWIZX64jGGTZ01UyxfK9XXlMJojShCb3MTdx66F75IIU5uiS+nIkl00OS+vDj4nxNpEgcO7H1v6R+2TMYr2TPoMcgiaztfzZMdy6LTeD3tvn/iH//KXvue1v/ffsf+0hTnUCHTn7df+6ec+/dGXbq/OT2MQBllyDmQEkRKmcodZWg/dcrlMydarvjvpH9w5G866wxvXPvbRb7v+4Pj+6w/vLN/6/On9v/7OG8Z+0M7ToHfu333+qacphi8cPfUj/+jvnL919+Urt7786N55g3de++p779zVT39+/8rBwTNXnvngCwdXD2/funk4m/nQmwizEDiGUpWoyYtbL8dQOBAR1JCxGZg7c9CiOxtiF0PwB8c3fuzvfOL5E/9X/8v/5Sf+b//u6YN/wn6Y1v7U9SvveemlL3zqF9/zwu354f6jh/e7bt0u5gf7R2/feWDmi9kcwBtf/eoHvvGbZwez9bKbNe2g6d1WhJnVC4QwisooG0C9CSe+VLhim4Dd/bISjkty/neOnZ0y/fPiPvo6w9j6ynl0q4zjH+/mlX0h12BsVyWVzU8wYplE6xoSJnIyyVCTJV/W4SQG0CBs5BCQGInlvmOUK9SjeCQPSARzWhPWiTrGUmQVWQaBmARulIxhnJE2xq1KFJk5CDFVtmzkThRKayNy5pJiRiDKrJCEWUgisxAHZgGzUzaFmSlDVUthHk4KKkwc8F3WBXc3UzM3h6qpKrwPMBEX1kip4dSyBu4Dq5OagMVI3MUhYCaEBiTFVMTgPoATYOYZaRMCI0uOQK4DFBiUaTAhdSIWlgGekquKQxI0t0ERnoVgpkhhnZygg8PcE6CUY+EbZTIbDEAB1c9Rfs0aBkoD9Ur0E7K7QHIGUAm4uIcS2ChabTHP3Ik5wPIwnXMmW7YCp2MCxjQEM2Mv3SsxkSjO2cLb6kzAXOqnqPhgy7cTS6skM9cXoZ0kjimyIxE50ZbZCwQKRlNMgHLTMUzto2gqjnSMBcBUWTsmtvJmYi8jr/EaogLsYrUuiIgyJiqqvT5GnAzYaTC1m6JVDdjxzEXBXM8X4p8KJCLKDQPHu5UPtPVSztuTv3n1Uro13hBALjUpb7o1zqn03YxZi/qymasdfkeTPPwdTj2emd6wvhdNXRGoOZ/S9b0wWyuQ03vL/cPZcv6rfvjzv/Ynfulef+fPNjIM2sCTxZkN87/yY3/3V/6RP/zw8YM9agPczQJHYgos7ImY1NMw9GCa7x1evXLr6pXlr/yV33f64PTkyfHT+4vDvUVzvE7np/3xg3fW/vq9t17vT6/cfjqF+Nw3fsvZ4+Mn56fX3vPCv/I7f/ej7vRj3/Jtf/m/+e9x1hPRlx7evRp5fXbenLSNyrBan5+dHS4WTdMgIQRWVWdiYR+s6/rs3SXKwEbISbMkUNWU5okaEluvzzs9s/39X/zcTVmcvfFPfuYnm8Pv/Y9/+Cf+X7//6Mlnvnhy95XHj997/87eIj45O7n17C2zwd3ZrV+vDw8PRSQQt21rfX92errYi23bDoNN9/LGl1R38TAMRKVXnqoyhy3fx2XSLgsAd9/KLwGc4FtK3qbvwo5MHX81tbYvUs7O5yn/uXhZ4WwAlZ7qKOFe0JifMJYeuW88ggAbGddGdSgJCjmRJUzReGLI3JGLpwXmBGIXR2AyZHWVghMZkZIQB7AYMVMkipydXANhYHSGQXhg74WbKDYoDZwrhWYj21S4Zwx/ZubABGYHEWewE1I2dx+cqpGVw2ScOylEESEKm47sNZ+ZOYDzZx4nZNIUZ5tBkXnuKmzIXYzMSFUZA2BCqRFr2FvxhlNkczojWXFYURicO6c1ExG3KgvL4eMM2oWUK6HdGY4cuyb26Dmj2+BQEFsGfHIiJhMyV2lhMDYiRYnus0NYFpx6RQB6Zjao++DmhFCC+hm+oeS+SFZcSierwiYzaveuCjil0inB548BlHv5ISdcmxXHrEKdwMSCTYkLMwNhmijBTiV5gTePLKjZvDFbx0dmhY5AOaF97Hpd+8tuyli3X8REws7+qRYYAyBHruqeUoNA8h6qW6VWDgHsRWC7u3rue5w5+qhx5xqqrCE4UCLshc0DBirohHXMnN1rHFTVAGahjDTtSlbiAVbqMXJnhXFBcwEVAdCKCVcmE+CqRFeWtAW8NU7GODm8WweyWfVSG+25jQqDrOpbXkIGzpnZGJnBHQow5zwndyEqOd5Vc3J3L+2Q69JXHJT8SIzBsVos6D4whVpv4kSs0JwWxxX1c/RqAsgac4ZhUU0ACkQ5GflCB5O27wcIoY3rNOwnbmhYfu3B4w8+94Ff/Ws+9tf/8cEPfeLWHcXijb97xq8MeuAAkEyHJlz5pS9+4R999svf/p4XVk/u+lzcvFOdz+NqtZpHZo593wloEVuNmLWLwyvXbD0cHM5uXTuCgkCyfziXp9hevPXg9Jve9yJSd3L+pLfU9f3RBz7YDWnZtNe/4SP3798/++Kdf+1j33E0nz/zwu04b++fLVXSzReefvvhm2fLEx/6vh8ajhwDx4aCk2lKiciZebVapWG1ODzqB3UGk5FrUlkq9RYlLJ6cPT6Kbdg7PFm97y2fR3zO53t3fvlLf2kRf9MP/tl/4+Nnr3zy56/s64/8v/+TX37z/tXHzTPfcW3t4cny/KWX3ntw65ljS507oszbvTNLnrTtsZSeqHVHEOqHFbGoe8Ysc4BBuUeymYUQjEod/IYkfZTF5o6cT+HulqHrKoXnvK3SlJwzqWwZneP9SglcAXpzGqPLviG2QoQTsTcSZw64bid5VRSnvJu97EIq/emmqmQtkgPIGV7KceBkUB79oVKSiBkUeSES46SIqyUnduFEJZfK4UpMIdevG4iSuLKbiIkwayBfRwzkJuSBlZEYRG6KhPgWWTJTlVXyjmUmGkLo19Y7tYrOLAbMSEi9SYCQcbZa4dkohEUrDZGisOWODky5m69AGBKI2ZmdAjiwRGJ2itliVyJQLqFiZnYKxiJMU5gSdx/cYNmXk1SRlJKqUS9AIIqcGlo1tGrRMzriRBy0eAcSC8DRhMGBSBxOZF6aQRGgjEGRwGJI8IEgok5E0Wnw0FtiKAsSc2/o3HtVahRwU1ZqIJZSr5YFqji1oDnxYLZ2S8heCi8In+ZO2Rgnc0sVHwlFtrhTcRCXAO6o8BHRFrt2BVS9ZDUFLmAMORdvY3Ru/h3hVcadsB25qf9ern7umG4jBjZTkKlBs4WfPN620P0I90qTgycqbeXXRd3bvM+FAQOQyV61atRSKTCmDLuYvSlOBJsa4hifRTWJesx+8swyzIioZqTBmdgDbcCyq6QkTLiVFe9pGWpmcfnVtoqPiQjbJvIFSXy57l/1sLJM7n6hrxXcyLbmCUSy6VVUxOHmztVXPYnSThKcs+1Qxlk2DAAPHHxUMMgNxAgpWQhcFYicl6DF5rMM7z5+W/XxQQjG4Syt2lngnvuT9bV20Vl3/spr+p2/4Xf/ym/60J/4K3d+9JUrZ3ZqPjy5+zlYR8TOwspmOmAAhf/xh//St/6f/qNEkUzEzB39amggfT+klNSMiNq2nccGHESEW1VGN5zPmwUUy+U5N7OD/UV88Wrr7HcfPXP9+UT+yZ/+ab/zylMHhxbWxz/9qfdcOZzfvnb14x/h/YOT875nOiRHA7bhaG8P1iWBpXR2frqYF2gvd+81qaqaas0xzpMwmCfDQN71tvLOnQRQ7Ujmr94bhniYLATVxsnvPfw7P/nTf/8zL/6OdvEbvuujv/f/8g/+wO/+Zm6+9iu+/ePvnL791I0bZ8suDcfvuXXUn5yKsbtfvXGwf+Xoyfn57PpiWHUhktrCFLFJ5kn7bPScg+aVDNzMzGxM7LiUDq1GiHZyrKora9dQ2C33r1ds+mqP5wv1bnpaZzyPkWAqMe+UFwOFlW9gqn0S+r1oK9dtbqPrZcz0ZC5IQ3nQgTgKC3MUGvdZG7Q4cYuCabn3L+CUm/+RiTsbCMrkTCaqAS34JMhjcSVnps78ofCJrJWRhDSAyBEAghGUGcXgK62UnYRiZCpGee5RT3AlCmCibJ0SyKW4L92cICy1YCgwM3HIZvTIgrcm0jnnCtiEHxXCALnB3c1d1VTJLRGpsAp1gdaRh8i9hFPmpcsanMAdJJk4s7sQiI1idipkM8p9ACkwuDPRAAiTEgGmTkqeADbpZiSBQ3TuzZhIHOJOHtlcGhARDQEcnRuDERpCAwrwCB/GhHYzdYyhhorxyFzcInm9a3wzgyj5xMNXiHardRKyJzRTcs4dF1S8j2yVmlkuy5HaoH5bzm0deT3MNlgzeXV2LODyGZINp1hFVPmq+qI3u6WONa/m9Axlu7xcWWU2NuV6myde8NxO6aO8EYGADErOTg6DQ31Mxxo1Hd/IwikJ1raA2ZPrcGbOqc4ZbzkX80yVGCqpWEzbOUYTbWZMAymrSLTlns2yeWcb0AUnW75Jhnwb04x3Zilb4ZaBNqY/HF/UqmE9+qUniVU5TaDeFtuPnh7F5Zis3ER1GCVuCA2wFWscGWi2sYqrMzvWVN2dgzvF3lq0nevVBguKd4/v850n+9/1vb/nW7/pqT/y//zS33vrdtOE9dlbZFeGh68Ej44FTAgtQG4ziU+99sbJ3/snn/6eX/ext1//ymGzCBQU2lMfGwHQtm1OOyYiUwWRskvkdd/boHNuQovBVk+eLAM1B3Exv3l1SeJD+qbv+55Vv+Z1185nnobbL70Is+M7d/1Bl9Aru0SDkKdufxZd58ulWVIRESGzpOr5rc1MVc1UWLquc4JDNPlasVacdYO3C/JB3GLDa5U31gdDDM7zfnXWULfoTxCu77325T/9F7/zPA3Dav/f+t/+1//zX/zXjO6xyP7BFV+t3z7tPvr+95yd9rNobYhXrj4T92fLe6uZzRt065RYzrgd1oMzRRG3vm/CYhqIMrPaWWNXenndIGPF2w57kuLx2q2mLUClviWwp/fPm46ISttQ21DmhkR3CjEnVZ5bgyzKJXvO5dmyXcaHTvea1R3KxWVLgloJHZyYaBaZ2WPcKLqtdCQcpM2ZwkTOWQW13C0K7AObMRLDgEG8ozCwdwwPCMQD/BR0Sn7uOgROxqrkA1kAmFTIhJSRewVuTVhm8hlPjpndlIkYam7M7AogJ7k6M9xVsreahIkzxIcRGzGq67ketbUwb1jTKIPVM1RUcmN3T5YsZcFigVOACXVRusgWJIn0JB3IEJbEg4cENsuFTNKAWi44U5K5raMnX4HB1jgRUYAPcCJ0THBYcHZqBBRATBDywBSDiCM4CwszhKJDTd0Ckw5EA2jPKDmSuREUuTF9tv8qWqMRA8ZUU5Urp3JSGHN144xUtpOXVqygkuRLgb3gNjOF0XAmdvJNcTomondHBu+Q+3hmFH/TpBvK0NE7JvnWSCeZyeOvip3Jo0WV/QJExCDLSf+g3V/tGGHjgLe3EUZRxEVDLx51lGQrbN1hV4Bt9vBGHO+q7QAMxY98YeqmevzF4u7dYzp1OxYDMPXeb9Zl1Bum8zBdIxBy0DvjrZUM1wwoNto02wgtdfY2eVhEVLOuxpnKgQvffSJC6geQMwtzTilwswTk5hBc3ytXM/kwDKNXI0+4AyzSmxN1wRct2iHeefBwebx65vaHftMf+N98y8Gc/vT/8NqPfuUGZquTJw9l/hTdOaHu9cC0dkXRowHqnCLC1b/yo3//m3/Fi4uD/fXJ6ayZpyE1EZ6oCexgwHLaSIZ0GBLUjUX6fr08O2bTkGx/tjjs5aQ5iy3adk8DuWN/MbPFbBH3Z+IPX3sNy7O24SGks37JTeQ4UyiRWLImxJ6lh0rI2NSaUlK3ZJa7AhtcUSIWSb1X75TO+zS4MAjr1SzEKP7olO75NWuNEBbL8+E+Dzebk7fP/uj3Xz+8smfn66duDN/1PR/55C/82yfrxYs3pZnr8tSb/vjpxcG1g/Ua4fhkvRQzjZS6oXsYZI9tCJibxyBQ7dw9xuBu5KU4+KKluKFhQgmsUlXo6rqOe6cmbW2k3UjAJa06K69MuTNPwQUs9y+sIX/OGsAowDP3maq4O7wrY0zWdqiVSic5LjvifEKceU+JkxC3yG5YoiwimNAwtREiFGXz+EZSzoUqBzJ4juXEQUZiKCgxJfgQ0DN6xtpxktOkiHqjc2AgE/cgPLA4i4m6MAV2YWNxGpJQwyXH1ikIEatqiG3R5qkkERnBc8c+EQaZMcEdSkKegQon/ZPE2SFOBM7/cQbZ8NzthWoQvIgi0ZJQZ+pqCs24IGpwF0niQ4BGDA0NkTqhNaN3GpwH4pVLDzYIwJ4hi50EHkZu5TCGOSmhd1o74B5gBGiBqiVlNvKGaGFuQhyYIiOJs5LAhZnhQi2yTUgx14u7uyMlT64OdFV8UHVJjnkNI9kTKkZVtnS3d8RFezKz1tFW8VBxXlDZX1aHwlT2eKHtwoIvsnLApyXn9fy2ICmrSpggGe3cyqsonW6J8gAojaBLkxhn1U43Wtl08+xI350R1mcAtRKa8iC4Kg+XZRXt3H+c8fFbRQmyUinCAuXAzWRCRnXlorid3m37FTYmLLaWZve9pn9y0RnLeSsect5cXsuUxp+XAdSS4I2OkFHaqhGMAqMzjkemIxTINCKY8bjhIBY1BZmwmA0AWGxq5myUGwKICv+t4NXMrGbDMAR0LW7por/36Hh5/NSLH/0Xvutbv/mZK+sf+kn6j//IP7jysQ/s356/9fY75HwIvn//3NIjHXFfMICM3W1QsD86W/+t/+Wn/s3v/60Pj09X/UkIjWMWtDML7k5uFJ2ZyXnQPoRZt167JXdVpMF02a3O1+ePB1s07fL4weH+wd7RAVNgEkv+jt/BeedDT4t4pjQAa3FnPSKPTUPk627NjBCiwdVtSD2BDZ5t35QyZn1pEW2Gbki9yXKdzntFE2k9NDbs7e1Z6h+s5g/SfO8IT4Bly8FPfdh/+rT/Xb/9m+HYaxOl2Yfff+2v/+U/9iP/85v/5//0r+2/9G03PvrM8Yd/1z++ke6e9C/sPThKn3B99SA8fhtNhxvmxw0drk66+aINMa2TMyLg7h0hTOXZdN9t75HNH1OqzrREIK1laFMC3rByd4z5SbtEvhMw2dksxQU1OsbKaC/a09kmHnGrfMw/yFI2d9XNI9xYzFn6MgeimbAEAiMJO5NGQsM8E2X2IBuu2FBi4oY8V9BSvjV50RFc2ROxQhN5TzQwdYTObSBZgZ4AJ7BELpCBaImil3pgYyE2sDirC5mQESmXkjoH3Eq1DBkhEIHJc6oXiCiYWak+h1GOThOIGmSLmEOJfUJqEyeqM5bjQUI56Fbmn80MNHYWgpqrmkPZNcADUuAh8GlgC7RmOWFegnvnDmFZWiaw5rrmkg5blpULpqm7kxLUoaAue8rKaorD1TEAPWgGMuZ5sMAu4i7qgBBy7Dub/LNcQhzFRYSZqAOIdCA3Nu/J2V0dKWOajDWZFU+BxhjcWAswYeBeRnvB7hrpNOTMl8nO4Zz3obojwEY+e1EOjYk/WxYwSlRlhJHK8GVZMBeBvbk4VzYTEW1tJILUZmSatwr7WDdLGFOubecNd3cmtlnDqJeOnH/coo4M7lGSh3jSD7joO7u1qVt+ggJ1Xjv4jSMb62+z87zCcVxQU7adCtPzI0u6TAF6V0nMvKmgGPnaDmrg5DcbTQvI3guDO4jcLvGWX3jupqiQrNTijwwuX6mamhj7LnXJ21nrSJr6EMmNLIeMSEBkuU6SOQRWTZveUGbuLhL3pH3id17/Er3/w7/1f/17f+OM+8/8wsl/9l+f/r23g+0fXH356c+93s+FXWmN4xnOT3GSoGCrS9MyYM5CgkhfeeWVLg2D9gjOljrvci8uVRVCSuY+RAnu3nWPmchSUvVuGBjw0J6cnIK1f+e+dcsGOHS5euXK+fl5YxTngjiz2UxXkZtWhA6O9omoTxLboDqISLb+m6bJK2Kehhz8terDUMuldetk685XyZa9dqoxiA2rq3vtfNGcnw/3+8MlcKPdewKHksz9+JH8+o+0199/dHaK5mD/8f2zwdf7++l7vu/m+9/3+/7A//Uzf/dze9/4q5791HH66V/EPH7kevPrPnz1jr31+evxnx7KGxFX13Qe566m2mvI2aG5t9yOl5NHEVuoIpNFRTTdoKSNhFbYTekBtwmB5X/N3QvwUNn+GWGRLkBoXdwjl3w7pmz51sXjpqAKMVTHs+Wdrh9GlihOwghMUVgiSyRjpoAUWQNZw9wQCUuYWCWt9MIxkJKIcKz9ReBQdsCNkNySUwdbA+eONWEFwOic+ASmDgIn9s7NXMVL6yEEgjCELbAHSj31DCZW+DAMShRm0uY5HtG+vJYPuVd0EVdhlrzEgJOAmMG5003FLxI44EyQ2j5uNPIyYhrndjvZVZG1K1N1S6BBWAN5oF5o3VDXMIJ0wmuizjGAetAATi4GKbJiktKVVz/7DBKcnXrKhhMx0IEDw+FqPrixYx9IwEBoiZ2BaEIKkgQyV6KM+5Xhltk7nmXunUtCeqKUAuvKbSDv3dkpkYPcwMUJXqmCiszYCvqOciXPz9Q63do4oe6B+mVxGhPRVr/Y+oNdgTHKSi9pxFyrhLM3u3iguCpYGFOMphqrT0z1iayDM2+HirnU7vL4W6oerem+wmWbkCYJF5vLSqdbEpGJsfeuMW+b5GTlPTmdzXwwc8k7MMN27BbYsiC9ZoxfemzU9nrjr/OC45Xjh+nPxw/Tgp/xJhdvODlPY8HYjh43vfOGsY5Pz8J7DIFQ7STsXZSFGXXrFELbzpohWRrSjg43Pir7YIMIVZ8kcwDT195+MITnftvv+YH3P3fjEz/+pf/hH9GPPzk8/PDT/Suv7N06eu2YZ/39tRK3LXtcUscUzBvQjEwcAl8AIiBLyXmNaE0r6z5FmVlK1CAlYmYWZiklcM7u7hy4+pm8CcHdQ6Qo+323xtPXhtXs+P6Dh6l75c1HIkL7s2a1mMcow9lBmO23sQsUAyIFIs9R8CZwblrjlkIIrkgpDcMwDMrMpij9hUTVsO7sbE2rhE4tQ9GDh/lsnyPOV/39foEmhCRqQ9CG42KP41M3+5hC3EPv66T01JUDKPUW3/uR9sf+3Ef+1F88+Z9++st/7g+/9NxtWg/Dg9XsnfsvPE7v+dovvSxvf+HZ8MX21vnhwa3VsTJFER26ZdvMu34QbsYkj5zLOIVRm+6ZQhsjwYziucBe7WqZU0rz7ZCtV5PabFcJ3rnDeJjtttfcuXjcLCMA0A4x7/AWghBAHIRb4dgEa9gFiGyREBkR2vDYvGjzrJbXJEOgABKGAWLIPUMVBHiCD6A1Se+0Bjqn3tGDz+Fq3oCTc0+UzMl9RqIiomqBKTK1gkGhooEhZEwqlEDkiRxq5mZGSsZmuXGCSUZdCERGJDnezu5EcOHcuQgEEjgTy6TIlaf/TSQNuY973N1Jcw5WmTQN6AWDwIQ6wSrQwJxAK9AASc49JDk7RIlBLBkshIidJMMJlGeRA+reAQYkxtxAIAbIKQJCaJw5YG7oicS5K12LqSEHm9V2jmBBjrSCPVc2OwtLQxwpROlC0rmnc9XOdEUOh+WQGSrilda35dEOBlEJYNaome1S+PTPgCrbJgx6I8Ontl39d6sjnojkZLeanlq8BG7FVqe6S82M3Ji4ZvBsbFyfPNHrFkX9UC25EusdB1M3T7GELw5451WnP5zORZ4yu6BYTK+fTlEezIa26pHHY55dGayqAEJO/Icbk7vTzgJs33YqCHde5//vI9tYY2FGGacBY3i+FICXOqudSRs5VJ7f6VB3JHr9RU1cJ3LnqVO6rCOS6hBCc9KtHz9++8bNo6vX5l2/NFNmBoqLKc/wCG3o7rlHUBNn56vl/QeP3v+xf/FbvuFjP/H33/7DP/JLn1zvPf3tHz18ocHSzz//6uLXffjh8ZNF2u/m6xtP1qdNajFbenJ0QG4a7MAqqSE428JlODlfArM2Hp2eHF87mKe+j6FJKbEzgVkIQDK1pIlUjCMHHfoY2FyHYSniHtMhRZtdPzy61vcpNI0TtFsToQEHDrFtOmAhTTAAvfCsH9YxxpQ8xrBom7NVT25dn0ZIKVXV5MLsSfuUut7O17pKYTmwE+YxuqXFPLRRuKWz0+WK90PT+OCenEVDE+lG+os/evyZ1//p7/nu67/vB1/YuzbvIsG8xcA6gA7/wx/Yf+G6/ss/+DNHv/Ij773WHvVvfveH2+/8uLzv9754kj74i5//DV/96U89HH72uWcHGubrZWxm835YBz4wXwO1YraisjiyIHbU9pREOUnHR9nm21TEF/S/8i1TtStGEZj/3bKkp1SNmviZP49s6lKFdXLGpfBKAJJy/d32eCpllj+JiMDCUUIbeRmYIiGSNeIR2oAiazYbw+ShQmsiFpkjBypNiaiWXwBIQCI2IDkrKEEHIMGfuIHATolocDDbzKgXdheLwhBLQgMQxVPKximEnciZSYRUkVISjkRk5mbIEsJBZLkekkTY4ebJPdcjCnkxcKc1XSiWrkxNIADwqqS6u2dscCu58aXO0kSSsAonkV5ERTric+YVuAetSVaQDuy5KBeMMTcJFIBIY1JoJiLSAqbskSiodwRyU0IAOSGAnjg1oN6oA2aMhjEj5gbRiRwMBytBoLmtIrVE0SmytNmvMBCGtByQQ7uDW/LcobAgVzImimZBGaaigdaiD65toS6hvSxqA2p2V7U1N1x1FD8jWZvlOp/JkpTwAef+l17UFip9gt1zthhVl3i2N92xKdSBZr2Waux1smHMHdnRUjYVS5j2e6cMHklWMTL9QtXQzibcbF2mUft2QOxSv7Rl611rIChLLVfjDKgKQulxBBCImSzjjiavUF9lh3ltkD01NOtijPJsfLWLn8c/dy6YDDq70Kfsg4QbjCg39UP2S28UKXKjkmlFuSvS5NFO4p5DdlQMmUs5Zvms9U+aKi7unh2tKYnTsErL2UFcLu2t1945Pd1/z4vvcXSgrlufDkYRh55cm3UzEKV2EAvWEyWfLd568+6Vw+e++7f/4C999ehf+N99+lNPnrr20oc//PLV5fHq7FEa3KGeaLE4Phka7K3tQehx2sUmOq6D78NAQDAdvAenmEKiUxl0rdYP9+d7TL0cn5zvH8R1P0QJMhc2MDtSHyW4W8gQ6YxmFq3vxRHj3FTVGaAWElrWIKv1um3nmC/KLLnOAs/nbQwhRokxqpuIqCZm9H0CMG/my+WStE+KdZfc3VTdVT10qoOm5Yr6oVkNlryfzQU6CDeHca9pGqFw8s75/XO0T0U6W0NtQNibH5y9ef8D3/7y524c/Jc/f/RX//bP/6f/+xd+w697vhfrNLbeuHi/1B/4vhff/2z7L/8HX3399MPPfPBDf/dnXtP/z1d+81Nf+4Hf+dz3/s4Xv/WbfuM/+dmXPv0zP/mhmw+bveWq5xj2TJUIA9RMgktgGPVAEo0KdrPsvCqmkDCI1ZPlxoU5QTIXCOQq/EotPMHvc81ESKOLD1CHqW342aiym7sUHpWZfn10RVjb0Re36ZYqep0RGdtoCRQ2oiXGKLCUH0ocWUSCinTs0sJa10gDQ4VTIA3iEczi0ySs6B2UEjsjkMyIonN2AyiZw09AyWlttmRfE60g565rJmFJjo5h5iAkZ0OTzJwEIkLsStp7J4QQvJkNnRmn0DBUVJWUu2FwEQYxMxvnuWoI6rQ2FgapK7MwJKdesoVNVinlCqZALCDO8LNF0liuChMHGQxW4gaDl6prIgQz4iTUCVKER+ojrRoZZrwGesPSaYWgCAZhp47CYMxgJm6I1dHCW2IyJIbAkSMRtXfHAKzdV4Lg1IJm8GgewAzbJ8/C/AB0SDgwcmeGW5Oz5oQRRT20SQK1BBeGk4DJ7ZAQhQIPp8yMdWTnIVnSwXLquBGzq3qpnKHcpZPd2dyZAogtc7ySor/tH9WCb1NqvLyCUGwEw+XeyMu68QgXO3Wi8/oEP7YgWFUbKHv1di3sd8l1ooILvpWm6EzsGwuMKrbieMMd6fuumq/7tANaDlQCNIljbunZGwFZzfTN4+r9Mhpf3aVV9sDUNBcqTJvDXDSsp6+589zx7caJurBGl1j809KjnZmZPtprF5q8jnmcFwa2e/OdV5jSyfhhZ0hmFjlCuENad+ub16+uZus777z9+c9+7huff9/he45m14+u2OAaT/ulnTfDYTA/j8l74UDN26+fffhbvufa7e/6o3/hlb/w2TvXr3/4pafijeuz88fDk/MQzWbpNJEt+yV7Lx7I1PteU4+Gwt5Tw/kXiWYON1/ml1OKDHE6OzlePXq03AvNYn/x+NHJ8ZkeLKRPgwzgIAQCg+EwNDNOaYB6jFEtROG+70Xk6GhmZqaabXeR2LbtbDYzsxhjdsBHphhjEwUAi3BBOd3Yu2a2Gmy5WrPEvu+zujR0nRGfroa+53WvycUxRA5BZDFrY2BE0v783hJd2PdV//j8mNbu+/vp8b3FbPGQ966e9tdfDp8anvr3/r/873zhU7//D3xbaroz9X0Y7TV9f/6rvvnpz/73V3/gP//U3//pgw/+qvfH21d+/NNv/80//ujX/LW7f+bf//B3fcfzz9z6nf/T33z1w7PPHtx65bw7EV7AY8MO0KDLZJ14w9QOpbueb5JivVTGg1CUctS0xAkJgYwnZHORcgo5FcNt89spaZW9SDQGskYt8yJ9Xrx5JeNxc285qBXI0oZIMt+MRJGooRTYAlRYo2iARrEZOXNf6n7GgztwABQI8OTEcAGc3BzK0rn17ivmjmzlWMHXHAaoEg0EApydgQBXcqeQPOP3BQRD42gMyjqjZZImhWhpNVAr3qi6Gbmv3cyczaGWIaadoUDMdo47SaBc+m9wyThCXGCONkqM5yZL7JJlIEDmYFe2DAduGYFLiT2wMyWhPkofJUUZoqwDnzH14N5lzbJ26Z0TkTsnZqcgnrlPEQ3ZRHdYzv9iZDiO4iGFoyMA6AkDsDYiyqhVCIQFbEHoHSvQGXwOmrnvA0HAghAZapyYHBwoRFATRGHwCIAw5KA2OSc40JklcyNKPIozIi/A+TQ65N19bOFjZtM0+/JtFQ1mWz6SXbk7pctsvDFvICHLA+rVGON22wKPOcOfFRmFWh00Pq7emUG5vGgjG7zW3e/YfKVu7UL/n1HClBqry7zQeJdNXrOgx4om98vuj3F3yjgtmzjW1hPJiYvRuXlTB3jXwB33+c4S7Ax1KoO3RPUEQveSCbkg1PPjdgCzNoa6XWJz10kt53Y6RF363JFOppPs7kMahGLbxNQPb915lb156b0vXjk8+rnPfyF9pn3PB2/cunrz6Orq8JkDneHB8fJw7yBePeCzr95/vPgt3/Pv/din1v/+f/XZx3zrvc+m3p5gdpTC0enZ6Wo49SDKViKm7OSpS10aVqTD0ATMPirn/9hlCcpxNDDDdAXnEDgN/uDxo+vP3TxZ9e1i/vj0jM77xWKxWndhf4+dVst1PGiI0HXr2WzmSVNKbim0i6Zp0jBI5Kzbtu2cmZN6jDGEmNIAgBwSckW1ceBK4RnDVXNl8zAMg/mgcPAwDHnGuvXQG7p+OBm07waSRnU43G+JhkU7W7Rhbx6HoRNev3o86O2rnpbdehV6beeHg+vtK9dPodeu3Tz58v3r1/aPvunmf/BXH7/y5t/6k//5d4t3K92fO5xs0P7gKf2RP/mNf+lH3vljP/zqFx6f7s/pxrde/dTZ6nv+9OM/+Yea7/t4+wf/rQ/+dz/6get3f/i5p35JzxbWnOng5mTBmfc5sVtHtgdZFwGZYaeyj9rchCh7ksy4gMtnl5LlSvKRVC7dsyi5hLWj1zZp5U1xIRpS+NEO8V9G26OCW9qVXLzMspqKnOXCWRK25A2GSIicIqeGNVBqaGjYmddExJMMD8MxkKPDDA8lLZOdoIACXrOu8n/nhBUouXTuxkg5B5dyw1LKxUGg4HAKJtGoNTMktW5QdNb1HsTAJuxurkNPHqqSLQRCYAYHR/ZUS0UJI+JiO9DmGGunMr4mg8WJDeQOU3dPnnsgmhkcMIJGM2YLsMDacorUNTw03MXQi6xMVsQDwhoyQMzFci8FInbCVHPxrB3kqLMHuIOs1nMzlVZOBl8DGdonZfEPmxHtuc2BheMQfsS677hBFNhnDbW56FudQN46m1MiciaCERELkQh1RBqZyDwN2ntSNoB9BK0iAIjuWtKKIWUeM6aET7FJtg4nmFv4OorhlC43TUA4bDd6YFQRdMEmA4BAPNbAeKlRdnPfCixMhO6lSgCKk31i+OYQR43F8raEzldM9/O4i6YBnhH+2WorIQeInCb9f3wEyikKdqlLrkAoG/WZtp84jjYn85dw2WSev/7M7x61P2lG1i7napBr59pLF2Ic0s6HyTVEVOqBkQFJ6pVEtZ6yFuKOKEI7rGo629MLmAu/5RhS6t39+o0rDHz+s1+8c+fOx7/147/xN//6n/nMpz//2S+/hl9upQlzf/Ej39DE2/3+g/VP/UK48dFbv+X3/cE/rz/+Odt/Ojzrx8Py1tHNeOXm/NHDJ+kszSxSvx7SQOtBBu1tgOqqW6IfuOvAZvsv4KEYBhi7t8TzeTzS1q8cXX3v8y8/c/tFdV0uTwC0kfcP6ezRMAyni8XMTk6bGPZn7Wq9joFjwwDirCUDNzN3iESiIMJtbFS1aZoQQgghTwHzou97mDVNQ66qA0tBUc46SsbcUFCvZmZdUlPtuk5EUsL5OnWJl6u+k2hAcJ/NY9vIvEEr2GtD08rJ8Sou7MEZLEZBoLO1B0TVjvh87yAYQt/ro/NnX/iG4Wv4pt/08v/9R3r6P/7sn/hT3y5iq55mTeDESQFO//q/8r7v/T79mz/65o//VP83f+KLq9Q/2nvq9/zbq+//Tdd+8Pv3f/+/dPgXfvS7X3tn+fyzr6bHN6hdsZlogCb1xrlhOjZEK5mXtGUHO7KGbW4CYsA8Q6+UbM3tLbPtTaHyxUXa9m030tdJzrp4XCqMM0bdeH6Ss6mwgossICEP0EAeSSN75BQ59yxKDTSykvQ7+ZWOR/C55B5ATnB2KricgLoNRIPT2m3p3hN6cO8+uBsoGTRjL1UsO9R6XCOBCDUBSc3MlGKK1nvqvW+dEtiN1U3THJ5V9cr7wELi+a3gTu6UgSSKP7RK3FJ1Uvx62R/p7EaWMS+QLd+h9kp3ZgTWhofIGshbGSJ3kdaBNPAQSYlduSdRZ3cGBB6YhMBqxLlVuxFz7nAw9jnwUOssCJDCakhA5EhwBSmhc18zDe4BdAbcc2rIjtyuM5TQuwu8gQ8EbcidOEHc1E0TUwM2IQvBEd1nADS5RCKYajdY73mz2uCU+wFLpb0x5DqqdECBRiC6lAkTcemsUqn5oh0DVE2jhlKYx54FdQ9UH3Q541sO4cmtNtb31s+nmsTEy10+eL3swva79MiX6baAzzp2iT8Lb+AVCUQ1ArStI2enPpmPzaioBt0zspXV+tRx6F7qDplQWyG5j0GuiUY3lmCgCraJpjwK/nHv+2WLVxTDXUF7cQUvCviLC70jjMufXhzR9QKqg8kLIVsglBPpu3O4Zy9reUH1BCaonp2dtIvm27/jW954/e4nfu4TVw+PvvNbf/PDD975zCc+cXbv5Kg9eP3Vh93rf/vLbz/5wHf8R19+6ff91F86ax7cv307npytur2DsL8+OLjSH/fL4/Nk6rnTSxNUjbs09GtKNnRdA2d1As2ffu/5ay9d2af5/s3nrz0d9+bufHT92rPP3djbe8qV2/A248n+vOlX61wt9OTJk244O9zfC4GVmKACZ2l69aZtKMhMIjkYWMQmSmiaBpayOJAmMnOG8Wpj4+7k5s4xCoB1t8yGLxFl6TsMw3K1VtWu6/rV2swUcr7sksezVQ8KLogxxIBZQ/MZzZuwaJt5G9Kqmy32Tx+8capzj7o6PgsDEvSE0q2DwxM7fvbGjZNHT+Y39mm/W3dD6Pc//mu+7b/99Jcf/aF/+F/9qV/dLJqhF8QhGnppe7Xrbfd7f9fz/8bvwoO7Tz85btPJ6deO2zcepX/6hf237i3/9d++90N//bu/8uYPv3z70fnZTcgDRnAPaM48HaWBeNN/Dwr3kpPp2Q+UOYC7G7n52PfUiaxkmV8IYYwUV//aJenxVxmMC5MqQaLdJi6XEefuKQBAbvS0USDYHXAhEXImZQIzsefkZwvsDVvDLmRMPbFDrCTNjoPBE/JVhtMGUAFhiiPErSNWosHRA4mQYOowwNyV2Ny0aAkMR4KLs2cOBgazx+BmTpwI5DQ4MwlEIkvH5CsRAjRH3YkRAEpwCAvAlg0QZmHJBlJAhkJgZBmc8RuccvB+yKLFMnyYqudwLMiN2QJ5QynS0HBqeAgyNLyK0jVBJfQe1k4rF3VRYnVRF2chkiwKJL8PUyCg5MjmD3kWAUCAXDngjkBIGTMEnghOUPfknkBK5KDOSeFiHgkKtO4tstsVEhEbMiMzTtE5OSdiZUu52TlLjHO3pBiC7sW0du16XZGlbIVVT3iWvuruPlYkl/BfTSydHEQElED3BnCDJnG+LJaouDe9lnwVa3DXeKp/j5bxlOJ5W0gQZc8sxt5DG2k9kdMbIbFxg+9KDs/4d5Nt5ZM046of5S/gWTkp+Bp1yCX9Gu6e+wsSqq1ZQFpxcdv6RNtAfdL4yqZVoy9h1Au1Q/RuUmrnqHNIl11Q3c7jnFw0Onf4zniHi2e2JrDeZOfR5VdUOCqAMeEZwFQY+3hhuWxDM+40anSzWQQTefjAB14cuv7RG3d/9of+PGZ714/En1k8eahvvPUTi+bll/+dv/Gpow///Ce/0vYn6wNZL4fZ4qbs7d9+9trZiT8+Pk1kjXgYSCSCcdyGdLakNHCyJrnAEznDbX7t+u1f+6EXl1euXLVO17p++plbh1cO5nuLHqcfeP+HmhN+9Prrt27dgPU2CIsfHR28887/j7H/jtdlucoD4WetVdXdb9jx5HOjrvJVQCgBApGxsQGPMdjYJCPAYAyMbfzZnhnnMZ7fjMHYwPDZHmyTjBHGQ7ZBJn0iSkgooKwr6Wbde9JOb+ruqlpr/qju9+2995Hm69/+nbN3v/1WV1dX1UrPetZNM2LvVFfTSaUxoUnj8TgYb1dj75wzGRWlF5ealhTCpXR5lQY1IlPVyhcAYoxqlLOPVLulm5JGtahpUdez+bKJIaUUU2zbGCIdzpuEpGDvTcwKT9OxF8Rx6UelH4+qBEPSWGB2q36m2YOoN5udnMATB62rEWRcgT5+eDR94MGJFVKUTsMzYX7va+/7jQ9M3vCt7/j+73vlhUsTWnLjSLwKYpqPl14bcXuXy4sXpZW956kW7FTrk5bms/obvuLqz/3yl3740Z/Z2X66RKqKHSinuiLXptLxWm9cy8XMiTaYlpnt1TLEsaOXAqDWCew8izpP33q55BQZoAcPZlVeu5W9XoOniwF8stk+UC7zFWy90/zMZbk6aaYZdFBH0TMKgiPzBBF1nITVUXISwQmcIGaWQGHQ0sKsJmoIosRmti562OW3agAlgRmSaqQOVasGg2YWhC4A3tsoBCIwMZs49qoQs7L2CAW0shRNTV2KzlLUVCdFUk3RgIIsMaQbwkys2P1OuQpXThdllo7vgzL7lRsmF/WbZw4JmpAJq1DylDyFglqPWHDyEry0hTTORXY1eGHcQNScmSg5g1NyXWTOSDbGELqUP6j1HJe9JdDtMwzEjVcAClKzQBaUAsGzFgCUI2huWpoJ8dRMoZ6sIDQOpUcydmRqSpEtqgZSISMyIiFxLB7mxJXOj2OqJZVmkQCziC61OkN/BD03OHXo5Gwfn5pOZpZhBGSwpC6t9+X1P+hCof3vG47lYeBwOK2z12KIvz1j5uYhVerzrrrRAtalEXoBe0YFPrMahrI5M66vXbK2djJn/WPA75S3AJgRUdIORjlMzd8I9g0AmtbVEc7rL500JwKQ1gVQN5bwpmObhgeO4qyjd3L6DEHBJ7ZN86dr5mvrB3bzGANheVZJOtfa2XHeqJkDu7Z3RJ9Wh+5ymJGZdvq4WVaiu8fnDpudR4VgQo6Zl4tmWS9v3rxZueLixYuCnQ8sn9LDOLvjHrl1m4vw2j/9Px88/K2/8tH0+PvfvydsVrkgPC5S6e+7sD9vVsvZsgyJI8rCNe3yaHkw2tlCQcuDO367Uo1IMQknM7TBKkvV1XvuO6iXx0nowfufs7+/O5lMUhpd2p1e2Lv48Wc/XsokKWJsitFWvTwZT7YuXNo/OpwfHi4uXdxtI3nnYjI1IgjAjpwYMt+sL72GmKl9WYSMjTNkk3NKjRMxo6id5znHy+q2TcmaGI5O5ieLWdu2URlJV6u2iVi0GjVtbU+Iw6jgyciVTidV5VhHo5KIVGMwGnk8cWsxm766jN7M4uoEUF9smaWLVXXnxm0qtqfVTmkajFYkW353Pj+ZvPjS7z5Vfdk3/Pr3/72Xv/Z1zymVkNI8FNEHVbWYTubVsabxSHdGxWyViPxOqbtuRE37VV9233sf/6uPvOv34+IDR3eWGpYXLlOkso60NTBAT81eNdVkBGZOaYMPiNYFV9aur1x9BmYD9W7T4JqXtAsTUr8uhmw5mw1hswSGevknmMNDmAWtgQ6ZiF/BDAgpwcS4ICoJnkxEPVnBVnIsJJIEk0Y55vAkeLW5AbUg5CSWjlYJRqDMycNwMCVY9ktTjnFRMotkmn1uQ3Mg2woQmIEEbBAH1USUBM6BSqJEbFgoCFJQ42PUNpYJBVIEihy0VA3kvAgBloxZwQImZywgM+Ic6yVQNn/zzYGkqlng5a3duZz6HD1nP3OoXHCcyh57VUggag21ckM+wkUSIafGRpLDflnTybV1ySzBYiZnJKJMFbnmVc4uze795xgxsE5+MyTJ3eySoJJSQ9LCaqIaxkbRUhAEstZzBVMzl5haQ2A4swx7I+1A3+DCScVcMY+ISqNGjRQQSkRExtiYd9lxy8PMzzMzjdFht5CLMZy/LmenDbdm/QTpPcMv3vXTja3JXWGlvEdrp+qeKuO7tr3WC6bjCDfLqQUYLsIB1hE9iGPd5w0IqKeCyrLK7Cy2ioi6vN7Tzt6ckLNuc/iMw34Oc4LNTMQDHRah1xHZrDP7uzEZeBqINnnVpwT2QEDedWBxejeh01dSf6wJhoZ70EaJOSWGeeDO6E/SqXudH41NC6f7ONzO0OGx86Ah1CG0mpIx3IP3P1g4t5gtV3Tr4Vd87vs+vDpeXvzLf/nlH51Nfr/5wre85cAdPbHHLipE2BXTYmt8eW8SEo5vzrSuBdRaSC2LYykdT0sv1CwX4wvjRVIrxItjhqSQpiX8Q/Pjxdb4yv33XhxPt10hnqZVEe677+rNm09v742Wd5bkpmXlT+LMF5jND5mrnf0LB3cO7xzM/ZU99i7GND+ZV3vFY489dmFr5/5r92gTzAOUQEmcs2Sq6pwrfQmgjdGxrAsZQS3GGGNsmialNF+sQop10xwdn8yXiyYEg9R1zVysVilJ5UvvPY1Kvz2uvLPSS+HgvTMzCJlaY3a5cM8cL6trDy9nbWMpLU5YAWsbV5aM+eNPpmvXxsoilIQLRe2VoqPjcPW6HO187pf9T4/8qec/89X/w6VXvvzC6J6tqS8lAYy2XXFN4VDb5dHu3kUINdFHa/wYPqSXPKd48NoXfeD9nzsa3VnMPvJHv//2MT97397FE2vJdMg2s54P3cSTgZMGaiba644ymE4bYqy1ZqkGkHY12LsAs5rSuj7men6uZz9ENZ41BvpjmCg82Nq41xYJMMvEsqaJiLNH1swBDnBEDuYoikBYhSNLAkVwNG7IKqIIHpQYyfuucoc4660SzoZ/puolmJpaIqYMJmJTQ0JXXNzWnlgzJSiRgaxjoSATNq9sgAqRJkgDT2QsrMx1G8xFrtXUHFBrkgSIL1JKjZlzzoGNTY0SMuyqc5/2owEQcXaxkpopcXJkIkYMJ0HYSolCradYSChcLEQ9z5xELyviGhwNLXFkr4nBHSkzG9QgBEcQopjfNKtk1CIRiE2TEjRbnDYwG0hdR47R+6IJrMaZctJsAajBAyVIgWQczTTXBDSNhMSUhCAJQvBdjvNmr8sbFzOTFM5VIgWRJ3j08qRPD++C5UaKrqSv5OUOO8W2JCJkHYKY+xoB3bSjXugatMty7RXMbPuegUCf2YLzn5k5YcA53K0HMUpmauqcgxASpLc8N/Kgc/isM3i6gRCQdarWhtajn4hGmQByoxFlTYn6B+vwamamKdFayHAnn6zjfMc6pHtGrvO6hmB/k/yLpoFDrANPd98WETPLlaxsneKEU2LKBpm45+XuWq6vk7C7CWEbhrJT4nbwCtab0Zn3tYaJ5kqu6z0RnXeA8jU5Nrn+HacO6oNxBkBAKlGjEZGAo5EhAJGiZ2nJCoVLQKaIc65YRUxc2Wpblq5t4OVoq6ya9pY597o/9SXX9j7ja5+/ty3FL/7WzV//leqD8yeq1W1w2aRUeO98OZqOxlvbdcLtg1u0apccyjZ4EceUEo2rcWs6ubA9/+CHF9e3fIzBOWqTMNWjUsRWk0t3jouXveQiF5PLl65tEz81O7h67YHVwfza/vR9b31vWYfCmroQaVzSuSdKUCBtbW3Nl4vHPv7slSuXdhwKTrps3vTGn/sTX/wnLl7cb9rZNIkz8d43jVompTFsjSdCnJIl0zq1ySKgIYS2bZsmzJd1G5tGY5Nw52R1fFJbshBjEzRFH9QlyPa4HI+xNYZ3MVFd2bhiLWnbkRUAmTaJhIxSeNvTrC/1fDivGpy0LIVzrJFGWDQLbUa+sHZJNomMlIydElESrhfVVHT02Z/y0x9+9I3/8KO7qz966WV93nNke29SN/rsjfTxZ+KJbW1f2nno4Vt/9nMufOkXXCwLkJbGdWqKabXC9uKHfmn6JZ/5WV/3ja9+82/97js/8tYXXE4Lnha24JaSZ6NAK3Fk5pypwpBCzFx2CaSJHXceIYNG63J+GSRUqNlaVyUx4lwIi7IohHb0nNzRyQzMgLWqjZjPbsT5KWHceXTylgUYoKoBJp2cIyVkwBEzAhuTcUlwBOJoFLyACR6tRyOkCjYBkSMYu6DWEprB7VZGyPRLAAAHc2ZklkBRmGHJLBiMYbAIjbAETgQzKFi7Eubaq87c5TqqKcRElcUMihSjRWdlgTJC1FgoARMnbRPEaRUTmTYgx+xIA5CYmSxBIzGIWQ2EEWVsSrczR864aDazxKTMSQjC6kS9mDdzDMfqOQk1ldSFawsfPC2JIziobyGNuUQCZTLxSYgYKrCcDQtTC0QFZ2xaTiYyA5aIOxtLoHNM9ntpLtKmBiRlJUS1xETECRahDFKmCDRqN4EF645qRTClYNIoEhkxq4OJRTYV4oxTzxZqAjFzDEiJ1DxQgEoTR9aagTbVsc2QLOoaMZ5nYKbHOCUy1UBqTBnut7aAs25FvY+T6FQK26nt/szJM+eHRlWvOHUhWAwTcs4ZfGeFUB/EJUPqI0NEGzhPvpZPQw3XR9r4wzfeX7pbxmqnLPdVF4fn0TMGDKV+r1hsuj0Q2J9wuLq/aCOD18L+zBfX/Twznt2te5fAZgjOaAbnjvVor23fYd/6kxsvQr7gjPAeDAuwBp0S0krISTQijkRLDY55i8pAcVs5pLSqIMyuZZ9a3QIvjqOStIubx6vQqk/HNz9+cOFTv+abfu/RS7/6W/XVwt1oVr/3ztnueC56x/w4WiyKqqq2/GRabG3VGtr5glf1KrZjS7F0VMc4ctak0NTmRzx2xVHNITVmFBMgIYQiEqIVF8s7z170ZSJB2zYzL5PJ1rjkpRMJ4W2/+bOf/5mvSmppZd5RjEXm8IMlX/AYo7qub9868hcvrELjdf7SV76ynEyOD469wwKpLKhNraWUUsobZV0vhSwYylFFIrnYV0hpPl/OFqs6tinqKurxbHF4dBJCUFBdm0JhzGKj0k/GMqrIsRPi0vlRIVW17yaRDcISQioomZveOlo9Mbs0rp57x/5YQgOV0hBH5f50e37jjhiq6dZR3VS0NSLEZEXh0ggxULts2lCb0X3Xri4fuBBuLd7y9LO/8cfPIgYqzY/c/r33bV988ODy5ce1ffOvzH/21z/6vd/xnMvPXbZhXBXa6ugVz0t/488UX/svH3voOdd+4M9/4XMeeunP/8KPv+iem+R2lhxLRUhCFS9bOI1mZmAzZaYQm6LwyYKZ72dXt965A9b2BSiN1SJpFg2cBU9XJikHlbpKAncJrww11Luti836XV+wxn5uXD6qAJzzIuDMMSnEnAsCmaMkiEKJWI0iyECBKRoCoTa0wztyp2Bk6x8d/iwvpm4fYCAp5XTXDmIMgAasQfkQETXTXM+JMmgJCivU4AA14SQcWFgcB5hRK2xCFi0lY9XCbGTEHdiIwWRkIGNHLjN/wUAG19k0nFl0mSJIhY1YPamweVEnJm7liBwFR6nkxru69CsngZDAiTgaJ4gRmzExG3HDIiZCJJTrPYA6tyMoG/y9LkUdp+2Zd5hphMGAGolBCELwllEFqjDNFSiMjKlhUoMongQFM8eGDsBFiWGFIBmCoSUITHKZyJis94eg3/mZ2UwSmE0tM+ttYh2nEuHofJ+7qhGyxpifKmmCPuLb5wZ0vvXhBD1/nJFnZ3Z5Y+nxOMwDPFg2W90ZHES3Cvtr+istu6xzaLoLMm24ujCQMes/h6Jx2M/zF3efcrcLrAO0Z0TgeTEJ4Mzq/USX4ROM4SdqE6fH03oyMpzWWtZXrmX42u4/b1Kfv8W54xTCbt3qWhj3j3Bq9FxZJG2ZWlWwTKVACMssbSymQopFSuKcqpXCKTatLJfL+vjo0vbFh1/0KQ/u796XcOFGNCL9lMXt37p575NPnVzfo5N422RcpFr8lqsmPNm2cryKtprN4/xYYps0Ksm4wQJWtolH5e3m+OJBSiOOzspVGEdakQVPKUQmQptsLE/Ve8LLvb0iqastXti90Ibl/uXL733TL+/TsaMYkokWyg1TwRyYQrKWyBVeUnRtEz5+++TCqDy0xf691+apSbdu7IwmwlhKymUVQgixbQF1LFVViXdRg69K530T0snJyWxV123TalrM2+NZfXB0uKyX4r1zPsETEQsXHuMxRpWWReHFVb5yZSoLn2xeEBV+h1J0zrWtG+24P3jbH9L9X7yqYzRKywWTqkhDKIE7R4d+ewqwsrRq0gYPRwLneLlsk6WCJDWNcEHHN5m42nej8oIt0rJZbl/cG2/t86TY8XiQC1za+cDJ/ld/77v+zd+49tznj9GGWPjKpi98Dn7s2+Qv/OAzr/neaz/5zZe+5Rve8JP/+T9tTZ7e3ru0XNVs1qRQ+pZSEWNwzqkmQAgSG80EU2ZmSCDK6QkpLyvufLFAyjARhVlScH+ZEUDSF0iwgb44XOCb+Zxn/nC6d/W2yAyWq+7gbjsD5Y3XMRuziqiwOVIHOKizRhCJIyiAjBAJLdDCMp55mel+AZilTU0nyxXhbAA0SchC15iQtCsYmPoI6Prp+vThvL8xGZgKWDCYGUf25GFQFTKhRFBQEnEUuZC2dm1U0zROBkNQRGDKrARP2dhnEoEwG1oiIVJmSK77CgXMkbJAOAklYfOkTpQ4FWwireem4MZz4zkIJyYyaUARkliSOVUxEjNhcgbK0d9ccpj7IGXnkIdlPvksZ5VMMknEJqk12wAwzqzUcKAE64mfLdOLaLbFFDVJCyRDTapEvovm0wqyzOLQk3Mwlx3RZJThpjGoxkySg46mlKEkkD7KCFoLveHcGYY1htMpl7XI5fJADhmxadRDufLBd5Ujn0CR3EQWz19JtKkmi5zmbjhjCg+bOmUW9xZjRnh1H1GuMKRrEd+3c1okr9dh340z2u4ZjSH7Ws9YhxjkX5359JObrecGbjNEZ+5718G8i1zvvdt3ve/mMsBOl+k9c82Zl3WmzTP9+UTvdP2pmanW7CimyGCLUbX1nlOqWlmOPAljUrhFPdcWtxZ1G+H3H374VZ/5ylc915cAB4Vn1GTujz/w9I/98tGjSy7SE6vFqHKyoqgYj9zUygrjUdRUHx/bfI5U16lxzjnDoqnVyWRctiVstlgxTS7tjwuPw1W4vGur1oWgKUVPolYaH45GH/jI0Z/6/N1bx9GTZ2Zjx/XqfW/9jYefe998djSe7o6ISJjAlAwGJmiKICoKR0Qnq7mk1YLSaOw92X5RMSIzLCbnnPdeU2zbmojIWiPmEFdNsNm8LMsmhpPZrCWt23h8Mjs4OFktgxm89+xc1JiASTEuCld6jCrxYt7BO3alQMQ5J5YKc4LD0FTj7elxs5g6eesHfbj02c/efHRSFIugThEqLoqC2jBfzcd7W7pqKl9FNe8hRItVA3LeiYa4ahpoSqlxtpMQTJfaNsv5crSzM9m7RG4yHo+T4oCDu5Mm+3Tryiu+/h+9+xe/v7hwac8ZDHVs5OGH7/tv//Dkm3/44Av+wdY/+fL97/irf+3nf/LnbnzsHfc+yLHYibOlsDRKIqVZVEKMoXSlpYwMSOs9bIM7AeX4sJGSckKnqWfgSJ7YQwqhDAC0dbnubi3Yxoa466Jch702iH2wmVIiMkPHvsTsmB2zEMVsZAkFpuQoOJDn4DgyRVAwioaGs+eZA1Ew1MDW6XsSeq6GU7kDlqmhM7+AmkWmCE5QW29xaw2YOO/5mTQCChZTNYVBWUAsCIhJKZVsyonMu6BFHLnok2myVbSQjWClRc9a7Y0ik2N2AoJA+qxfoS7GDKhjllx7GMkhOIFwFNKSk3BwrvWycpyYIigaJ7gGkowVLplTYjPHzFAqwA7kwERkQAIlQIFBHtt6bJAInafkvFFppEYKzTXsu9gBOoox4fV2q21HFYwD09IsJ2Q4kFMOoh5mYoWDCZkjc4TMW5FSstgRbZoSG0eVju6xe2W8jvJyj1UadvOck5bX7kbXT0Q6zaS1kYWfUKicaZLXnB6pf2IzMxmif61nVO6PBFtHgofH+r7Wh2Ez5rn/eLBm+iIHmWJr7aBe16OkQSXRT2LKbz46lWlzF51jPUp3V3DOKxZ0Woz1pByf6Dg//utJd3fb/ROoMp/kFmcE/MZhsKEpO9v+oM1Ojcj4NHXQ2I7ddkqxpcjlloYoerQjo0VqbxwuLIx2tu8f799z5YXX77n3wXuvbrkKghCSqVGZoI5/8Bc+/N0/5OmBK5PZDRRFKGQpoeARy0UpSvNioW5X83hyQCFT1Su17VwbLfzY8MSdZy5W5d6oXKwW05tH9VbhmtYKJrjQtExmQZsYw2pOk+K33zH7ws9+iNPJZLpPSacXLj75rj9AfWuy/cI7s0VsWmx5UxAnJGMDkShgqo7JOG5PR6ujk0bTvA1iqZbVkbfR1I9lFMOJmapFNojQarVi5kt7+8koMYidgeqUjpbzg5PZ6qRumlVRFGU5MuKkRERV5SrRqkRZuMKL8+y9dwWxT+JFsSh9YUZtLSwcbCkyuf3Ynd87frB40ZYePV6O7jkJ0dAmGV3c2g5trUyxDaNCVGNKRa79kEIExItLlGIC2GKMcM6SOfaNMvlqeuliA72wMy0rDiGl5Knwx0/esb0LN67tfcvffcvP/OjneuUQSh2l2Mzvu779pr9HP/3b8bt/avHWD1T/8m/9hY/90d573vUbW3tPlzv3rupUpDq7B1xZqOqqXYkQc4J56+JFGMZRMhAhg0g0u6pFRIQG8RazPmepU7/vptCfXqrn1gX3heQ6rAjWGAczg3XmENgRCznHJpSEyZMJm1BySEyJOBm1oEC0MmpAkaTJ9RU+wTo6syczI2SPcy63xxaBZBZAjgbJn10yJZS48wsomRFUiMmZwGIBSmJgDsygZGD1KUQUwa0KbaONQxqpjqKRwQwVka5zQImMKBIRoUtA4s5GNyajrgyhOlai4KBOkndKlCp3RGyeSdhACa4xWZo0JAJSYjWnJFAhEjJmYw+inA7bBcUtAQo1IPEgQp8BU8iOaSjZGdyuAR0e25AIyCWENUWCrpOIzZgtmSaGV1uaPcNJkSP4sVCCUUOqBJfTiRyrsMqGtYIBznnKzMLk0wZH1HE5rzfSMzNNzm7X0mt+DE3rGHB+A6fMxPPm4Hmpc0ZC9zP41FdwWmZYH9zFgPXwvKQ/I4PP9mRNXNX/mZve5OnkTFkb6MUDK/a8enFaGimADHk35OohG0p3GsSAzz/p+T8pl7u4W6j6k2g5m+flvDDoTP/PN7I+k1OAcPa9nB3Yu9zO7v5yh4Zyd2F/ASOBXR0adsSkpnP2LjTu1s1Gtu576OWfdv2B59x7z9hZ64VS3d643cxOomEV04V6udranv/0bxz/y/8mV15UNocfPnFV0u2JBONLVIojjYX30OboqJ0fxbhQjbHRQpySa2Ice7dczivE42VdjMvpYTs/PLrv817z2O+8e2veLi3AQRJz0laVCCNNzyzlN37vzpd89r2z1jTG7cn4V377TQ/ddzGoc86RaWRlIzMVRzBOUalPsGKxEXmabC2Xq3rRxtCetCuk5XRSjD0XRTEdlzG2IVvAZOPx+PbRYavmy6puUxusSXbz4LCOobRCXMnkYkjJ4L2vKl+NXGmxcOYFjrl0viy988SslSiaQllnTVO4rbJcLeflxUvFf/ylP7p1/z8YHx1oWzd0K7XHNN6Zji8Urjg6uDXZvThfNimFlpNXaG1ccVVVi3mwSBne2TYBSTEaCyGFuGrCePeim+74yWi0tRWB4Oq4Wi1XwTAub9f37N7zjjvuf/unj/6jv/cASu8RzE3aGlJNv/Lz8VWfH9/4e/F///HVF73icz7/K1757rf8Wv34B3Q6G+1MQmiklBACzDlhtTpCWXO9klPEpTbMVLAuNS6qYpO1uPZvfbJQi/X8lCAM41/dMulr9WSFvu9ARlWbdeX2OJdeYJiQkYGztxTGpp6NKeeeRkNLaAgNcQsKhpa6+iXr5eQA1sFe0KcQcndfy4IkAgZSUAZ4q226l+Od/Rh1HEbCuQQdkRJEGQJ4BXuhxAwhS4JWVkHLqFVQJK3VUjKojZgzCyZrDjT3yZMW0zrji9gEfV4lciw5ZS+0c+pEWbSkQGREsC7cG+AVTBBVMhYzAbLdKAJmdFDrnI7D6PdbPVO9DwCULAyVMww2c0MOEadNaknv40Unm5EpGFVhpEwJaGC1EokWsNJoxCggC8HEURRjR3CAJ3KUMQGZh6tjvGIqmAvNVN6WX3HPkXJaymCNWT9nqnEmYKGMgrazk5gG4cbzEvSuFtighW7B5G+Tag5sbORu70k4L5Vxzk/bvYEBxdeZ4y4671mL8Axu61RMd/Nv568CNo78jS7SBRTOaTf/r/3ZnBme/gQs0+vrTz0FbV7HIOX87HHm9W8YUDSdt3dPj8Na90rnB39ojg9HrPuUUASKvgoVYlxRHZp6NQtjKp//qV/4upc8/56iiPPaPvTI8l3vDu/6qN5cjU5qOfGLg1gtF/Ot0hCrZ24sLt7f3LrzBPM2YbYXm1hNpt435rgchbggTVovBVEZKVlqQ2AsqZkW49ViaanBYuXu2cHJyfHBned+9msO7pyMppPl0fH04o7W9dIikrmUWqzckqaXr7/xF9/7ipdcfeEL9k9m7Z3HH/n44+955ee95qmbJwJKiMlGldemJQErJWIQIhKRd4XzoU2udNZQ0mBmTcJyEQ6PF5ZWVVlubY0LL1XhnGMAdWqa1SwmM3FtG0NMqmhTHI/HBQuYYkzsuax4XInzQGyKsXcOzptzKArnWRwTU4L5wu0yEsuJ0mHbsveXnz34yK8+8emXvuJ1H3zTz124dr83Z/MQoCiRVqkhnl68PHvqmeOTo0tsprxoMfFd7DBzDTQhtstVQRBJlVRtQEI53r4yHu/vXRrPmyhRfcTxnXklnqdE2z5ouv/F13/88fCWb373t3/5C1/4PHnOg4UfJV4KqtRy8Zdel/6HV4Tffmf53se3Hn79X8T8zkff8guPffz9k4nbnZYiQUMiI4EfFiFbi978VyYRy6lH6+0spWSbIsS2VjvtbrbBmamrOb1Yz87t9foxoy6kmLcBArFnLoWdsDAiMxNIuohlrrlLYCNSUCQKQGNUKyJRMgSCkLnN7Vi6B7TO3WgUu1UEpjwOnaTVzGxhpNbBktYMCpILPmrHuZYPMZgJKUycIgdZI8hBohUCJPMJwWJITUpQK9QoYmUIjGTGZt6oBEVb0z4zDXEnmUCTDMItk7JoFsBMkSWxZMM0qLRwrXECGwkTFeYCZ6SXwISJAHZgYTLLaV0ggDbqRM4704SOzFC7QljZsZqrjFvnCMnhyJ5rLREBlmsaO4D70h9m+RmRjGBIgBKD4lztFhkDBVkJeJCKksCLkSNXsBQsOagULLG5XIpRxAsXJmOz2owJ0bpwBxFhnS7bjdt5B6pBOsWMiMh1KQDdNP5E8BxgIJXvKn7Wi2RoKRIBpGSsSGditHniMXK5grvgmLKPXQa+lzWv2zlhc+robq0beY/B+ryryftJ1ItBDJjWGsmZEiunvtUTY5Bt3sQZwXbmW5/oQc4+Vy99hyM8HLHc3/73jSTuLFWgp7WGGYi1ZwlEv9LETNfg0vWNzo2eoSdhU7NYVQhNc2MRdDref8n+lQdfce99L3jBZXB44qa96XcP3/lo8YE7bjme8NQV45RWzVG1H1b1/ZcrN2o+8ME7bmd1uGoI3ix57LZjFBQCs3hvZoIQU6ts7ApukmfIyDOoUqtTFNOVpvG9+/ahxzy7q6940aNPPz2W6uLVK898+GNHYTGJySfUKXFYmTONqW2STB78iZ/9re/+u1+wdeHeP/jFX7rn+naMySEtVzFou1dtW3PTyyTEWmOAmROkpEgwpkJ4oc1o6tj86iTUGsS5sGpaLZuos+WMLFaFF9fPEyvEc922JFyV3rEVhbNUt6lxrhTnqqosi0S0cFywOBEhR1KIeHZeCMYKZqYiIa5Ax6Vr2uWVyOXegyc/+a8PFi//1pPbH8FsNX6RLG4eYabllav3vOQ5h295ZHLvpbS1Nd5vROGJ20YDUdUqFVyU5aJplbioSqzc6uCwaBxTu5gfjvemkwvVZFpYUiI7Pl6sFigJPCn9uHKsDWx1Z3npwn0fDte+5SePt4qTey8cfea15Wsf3n/1p+7uXauBNB5t/cnPahatPfWUhu29V/yZr3/prTsf+tBb3/fuX7/nnsnW2M9mM++qlFKXX4rN6s5TLsZIRNRTymZbVkSU0sasJKSUHdFGhDMr4szi6ibzqb1L15TC/beUjKmr9NKJIrAQiaPIIJfzfkiIyDETaa61baJABLVEyajNspKIwBsBTNxnrK6l8kCpFXaAZQVBKMskMeQy4kbrushMBDImxzCjDJwCQCIZLJOoNjPK9XwTEZNjqFIZozOS1CRtFc5QZigWYUHwIFUDCIa01nd6ecjEWe0hQJ1TRhRWZmMKZoE4ksRECopwCRzIGZHlmK6xNwbnLFnmRAwWECEzTVpmGuiqtpoxhKAwM0XirjCCmSVC5mbMFm3mYc5uaiIz7kPlZgSTjCZQNULqL9YcxjYzImFjIwMdqRFsGzZldUTMVpKSmHMwYfZCpROYEVGExiSAKJyIhxVJzRQd3Hr91k5ph/1EHah9roupdsLEDestnxcMZ0yf80JiOMvNepN/s5AoVxCmjUgmYtaUuOeGTd2b7phBbO1b142GS9TXBuiX06bMJ0C2rg5tHT/LQPTmYlHdMss6xGCdr2Uq1h6qU6YqdSjNPg674bXIAXp0VBVrBwgT99ecaqorgKpqZs6xKXKFeVt7yQZDmpfp8KN8K6auMlju9ia7EUgpI6U7t0z+iqrm8smnSerzCwl5Luadq8u2Es4MIsmUhal/R0QUU+PZs0qbjCsiq9umcNvV8tYzS5re84Ivvf95L7733qkXbYO+9R1HP//7s3fe3LpVXR7tp/F9cS/pQtNhgGvGvq0vbleLk+WzHz6wNmmKjqPxWHIJcTdRP2bJdbajtiG2jbYtIUaLCFEMcD4483VaxnZ3f1vf+5GyLLY//SW3HnlamhoXyrlv3a6nW3Maj9q48qbBMGpjILS6ml4cv/+97o1vfP8//e6X//A73/zZD12brWouZbmsiyjiQhNZQgLgijKlkEIAm6FhrhLUJ3HGVI1DSD60GoOUhbR1DKFNgcyaZmU9SJVoWZZlIQ6aBIWCQ4IRCuaikKJyZamF92TiWaqqLH0BNjHnWYBI4qgQJ47Fa7uQYjtZMInbe/LWX/3YL518Hr9i5/DN7ymlROmPb95IJ83eZ92jN46WpYx9MS4ruvc6J7ZZLK7I8mTR2nREWsJG4m6H41HhjH2Ird5aHcQ74+2trctXtsejkmQWdHZ4spzNpfDjixeKUcHQtkmzk8RUGvNOyfe+9lJKlw6Om//y9OqnP7rY+vWTV+7hJQ9tveaFq1e9vBiV9ryHjFSOj+JHx5df/Clf9sIHX/tf3/wzNw8eee59e8fLKOAkS68OFC3Ay35NRxGrke4macwsdTFUpjXJXWZlpj4bntR0E/SKpmbmiHNqryUY4nppExFks91FNSBmTp+et8CZRmJKpgrveUxcMkwsAr4QEyNml9BWWaGVNnLrSInZIEYMM4HAYpLS4GHVYNllJV6sZ2kAHBtUtaNvyB/nmKjm0Jt0G4yosRm0g0OTwDzBDIlIIdBcktbAKHNknGGEaBRzrd7EIoqRGCkikqI1BaxpdCIChkvWZh+2EZsZkyPOQF4BmHJhPlZvZhSJs0saxC1xBECuBidiBSdjQLLQFrAyszIZCwkPastmqBDDeog3k2kCsiuCHTKDAglZ4ihJjEFkhgRzHejJlGgFEFSUWtPUgYBMCRG0IQYnTmSumyqW3e0Gq8w84Yh1K5EnzcpUUJuQsRflshgl44LMCjVXqjRqaoGlhI5hAnFRUQirRcrFvlJkZmIyA2mHQDql5A1itGYDDwnu7r/tRMInss9Oi/pTNOjdFweu5oGcRuadosG9Uq/n5qD8WpCcusv6TtpxVA1rkA27vdEb+hS6/OTdSus14o3OMcj0pjWg45y1v36uT+QwGFqNsI0nf82Zl28BbIToXSr3Efo6zRt9ygY1BM90y/o8pUELdKbNgSIVgVyeyNAHyLtPbaORWOoJi3NTpW9XlcmBCFMoI6is5Pjjj48ufcaLXvmneVQ8cIX8Cr/65ts/887Vh5YX/aXroyty1VITi5PWsa1KL9Vcip3FqJrcfGZ++5mbQiCqQ6ydK5LAuYJFWCR7blSDtitbrUSTWkqanCIJL5mIbKQ+tavJ/qh574enRTV99cM3H3+23Nneoq3HP/rI1v6en4yWhyc+iMWoMARtqWUOVctzfby4tvtf33z4wI/++OWyjmOvJ8m74IIu4/LCSiCOGI4yOTCsNRaYEnNXg1yVzMw5N6lKtG2rISlSNGJjg2oeWGRWXYspGhxLaGvvvTjvGNXIVaMiUwASmXe+LH1RFGapKkfVqOOUFpfJl5K0cTSZzGJRtRGle+zRZ7/v97b0i77u6NF3rG49M75+eTk/SR97Svaq/dnBE4+8b7L3vMWyrvb95MKWhRjiipu6qIo7y9luOd73vDIt1Wtdl1N3o21lXtuknEy2RqMJTych6snt27PD46qqxqNiOipisNUsnJzMJ5PJ9rasmtQ26c7tKB6jib9wYddhlxXvSfbOx/DDbz958c8dfduftM9//fVgy919fc1Oev+j6Wm9/Gf+/Ld98O1vfd/v//T1l3nXlAhMMqmbGYmPMpNoY+zU1DpsFNhzWj6yqk3UsWBpZwx1Sy/BkPr9HcNVwGsn0PnF23kslBLMiJi6grjMxsQMBZQoA54SAw4sBDYHtLC0TpdV0g6rBLfmBwaw5vQlkjVzYbY4c3GBNaDIzJiyfQxktzSEuId29N3teEK6La7fJFlynQKwEQPKYGUlqMKIIpMSGxOcKcNkgghmQuj2RzaCMzMgUleRMCFXXqEESgYzSpY9lBSJU+dId6DssGAyJmNiJjAJiRExk5GY9foT1rYQr3fNThb01W+0M3uAXL7GgpGgR2D177H3RAICyrjmbE114qW7JSksz4tcchDgnNQMkz7NJjKSITpSB02kjq2EJCYjjpYABErAGGgjJ0LFzJpgHAld+FtgxpbpURhY88i4gYk1tGmBLuf6LsfQQDxz5syV+YxqOvMpERFJMgXBcMrAXTebPedn4ppdHYj+33xSOgt2A7waSI7U+WGoS5Dr4A3UAaQNZ+6w+frmFxv+vimZ0K3qIfqd+qyJu3kFTis72ULlTS1CI8LGcj118XB41z62c47rtUl6RtvI39mcz62dftjhd62L1p+6y4ZphMj6Z8wnpQFokfxItJi3cbJbHN48vvDAn3jRZ3/GblVuufCO3zv6//735dtsb/vq5Su7sYY7DNFIJaZKJNpkFRc7e2OV8ZOP3VmeNCmlOhwKR3EFQUrnhMFEIqJkQWOyGKyGhaIQXaTWAqrCqxA0Bq1jchfG/n0fVY7huRefet9HCikapXla7k93KGoS8tNRPV9VhavbFWPRxujVY6nixzpW0M6/+L6nvv2LX+FXt56lMI7eRkWbYM3MlyWozgEUEWEBwcVgZCYZDIrEMMcUyEDJiSWxKJrz8rOrg4hA5kWQATvOmap3VHkuCj8a+aIkEXGOy9J757w4QKvRSBybJWbnnTBn2gdmX7Zt8oLI46q48Z9/IR2/9h/Ux++fffQZLFcjP8LRjJq5PG//8JlnVrd9ed2V4xGci0z7e7thNq/r+YiqJrQHxzrd3vZeNNiY3eHqDicTkdH+7u7ly9XObhTMD46P7xwKUTnx165dnJ2E46NmfrIcV6Pdnero+DChqkYjYQBY1GlVt8KwGKbs96YFnrP92GLrG//Tza/+8DP/y1ddm04wS3cefmj7wfniV94uL3zZZz7w/Ou/8H//6P7W8dWd8XF9i6oKaFKIRC5o8J7ydtJP31NrpFuPXU3hXrRSV5olbxEdYqvnF+qNYBuumnWbaxA2zISdamTx7PyGediMOBGikMKiJ4ipdHhcR9SCYreOck0B9jABe8BtarOD2ZgyJT6zWldSIju8c1gIxr0kJoDQJ0EIWQ7H5d4QkXIcruu8jGGkudobMZlpNvPYqNMciJhNhQxkDmBTZlJYMkRCDvMydUHDroIcCJQThCgaonlBZvrItjUJcghcCCzGCbmeoeT6DZbZjpUA7niF13vS8JeNSdPZ/mSsZH1+rFFf1iIXYcs8HWufaMavmWXbP1vKSpkdjQGQsjEykwiiGTRXymEh82QFEoMitCEr2Zyg8gJPXIokdeCUoETCZJTRdhFGLqZGogNgKqarbEIyy6mdXDOYf5Nb5UQ21imROy9Wh2fOCNQzv6x/z7PkHAtEZ5uuLVG2uzdOvWv1kwqzzR0NfVnIjSHbMUl2E5E2GOBO98GpdN7hM3TiJ++rGy1hIPYGBQSHghlnWhgca+u2HwFlZNfTqRE+J0Q3N8mu5jP1TU+Z16e/tR69UwpTttdOdcwAMJPqRrkZtpl90eutyvqDS/HmpQ2t1Lvb7dM3a772RZ/7pZ/DWH34g3f+w88cvuWwkudcvW9Srk7qm8k5rccENV6YnCRz0uxW5Kh99NHV8fFcU5PinEwJ3swX5YgEZMbE2eWVLKpGMyXRpl7FksrohSR6pnlb+IK3qXnHh9RxvLx39PhTvjGZTJlRjByLzg6OImO6vTWbLaRunJM2iacYg5GbI9U44Xk68Jfu+6m3219/3a3KV/UKKS45EW0XTYDL0UVLROScI3hNIcaWHYvjmALIiBUWGFE1kKljikKWtEP8ZNIYJSESVrEojjxpKag8iyRmdU5Go7IqS2aUznvvy8r10zYBKFxBRJZUyKMwa5vpdf3Vn1j++rVvmYyb+oNP1LdO3G5FZTl/9ElK+tB0dzE/KvYv1JVeurATKjdJlFar5MHzVVsQq4W4uqnJjXf8uGhOjuLJwrXRjatqexvj0hVuPq9v3LhJptfvvW/n8taNW8uDO3OGIzFf2cHREYRGZQkOISaoJxMlgYAgTSmpbctVsVeGi6+++ivPLt7+Tx79u1924Qs+90KDNC62vuJzZ29+5+Lw+N43fNs//vmf/rcffertDzz30nzWEI+IzGLjuKhD6wY7gd3NM2dmCrB1c1XXUdL8KYGsqxw68P2clr5qtuFQ6NunTNAhbC7nMpJpVsVAiTKEhwB0dfKoFwmUr2MDkZondgZh8ujZKIlchp6y9QDJTm9WpRylywWgmIyzkFv7CFNGGmUR1SUGpb6FvIy5/4uQaYMNZKJmYAcltYqSJBYygTEbm4GMTaKpMxRMHuSNnHWkFtlj3ivypJbThJzBPJCYG+sezZO0kGBIzAKGEkhy1GC94xARZZLl3hnYC1yAehOJuhLJ3faoZkxZkJJZS4Zcjd4sEWBdhSiQ5s0yZjHcY6/YwKcrauQQXgI5ZEArC1BAPcx3/bHIpp5VCZ5JIF48xCnBKABQa80Ci08sFL0KGVQTWQowZLQXzMgoezyMMwX42W28Y/4ynHJB9xPlLAvEmePMPM4btNzFkj4tZQctDm24jSk8sEGHd+fBeduI1f4lDoXHsMGhbANy1Q4zwxqPnRvvRXjvyt74uPKyNFub3P8vI7B+zPUF5wXz+eMTqR2U+dh6NAcN6r2c2mjMclQpf7BpSjv397kOrC3gu3TeBiwzwwAzgDq0AktWjR3dPDlu6FV/8Ys+x8LyR9745H9+6/7qgXv9C9m1fnnQpLYyW9YyCim0icls6pr9bbcK7j0fm6X5bVCCLYVTSmxaVOWOqrMSTjJgkTQml51xTUrNIhTM0djEgUiVd8bjanL7rX/Qekp7O/HGkbOkJVNTn3iVO/HilUtycswxLZu62J6kg2NyAj+hloVXMUSwca2FbEd/+1Z9+Wfftfwzn3aj0ZMSjp0crOajIEk2qQXOOVM4EVVTjVVRxEghKKDOcVlIM69TiJYSNMHUstoLzgANcszEDIzKUeFROBqVrpyWZVl57733+SWwkC+y7cuFd86xFyEiIZbSF97fmoXd6+NHfuf9P3z7S+Q1V44f+fjhzRkgcsGpa4vp1L3kRTeeunH4xB/tXH3o3nv/xFHJjrVdLVo2dgLzDuAEs/pw2ZaRR2Vxklb1waLwfnzl0s7urlVlE9Lsxu3VfHHp+tXRztatZ2d3bh+L+BhWTlJSEu+q0STajGDeFVFDDJmwHr6gul45GiXfjrTwt/WB/cniwrVv/eX4JX9883/7uonfbldh73NeFd7/IfqtP0hf9bXf9Ju/fP19j/zu858DPTLlBiU3aTkm1+o5eXn6UDA6kloDOkRFztjeZPkkMDZa7FmfU++1tgHTXJbjqjAjs0Qdw6GSGamBs3zRHN8zUA/z0U6EkBgRwQOe4G2AsAFJT0aZ/cbIyCBAODsrmYBcn9GZpc5rKGz51paG24SR60TGeueBAGBkdsoONU1wUK/iKI2NhVCQOrLMNEkwhmMokzmwZy4MrBDLCbKbzTn2EDmDBYIHRaN5LmsICpy92ogmRJyy8W6Z3rcrXdX1OjfR/4ps85gZZX+GptztoQlkZkjJqAGItTBKZrmYXa42hk5RzqRXyAzhTLlaspmSUu9sIBBIMmgPkmHnnrhS9dltji58Tp4psAikJMcmxgDnjHAlgot1YCV2FgFLGpKFWjWRQrsqXaCcZcR+GJntX14XMwCRW2t/543gux6fxG47d/R1JIiArBqeNdfOtIy1uL1bc2f036EpvH5dvUFMp9rvg744JWI7YxpDcbRpfPBoAwM4q9ZrKTUQ0qe+PrRHu4uhOJWae9alv0nBXRvb2Ylpncc7Xz+sxGAbNMdGk8DGSj919P1k7SB5vI6g6DqebX0xuG476AbWgMpkZW019sezW3dmn/qX3/DlaTb/lu9/zyPNPTsvuRhXrR1RMKzMGYXCRrM2JhSi2PJpZ684WOrHHr0FFeFlippiZOaicKaULEghxmVeSKYxqVlMmpoYGkpJkwY1X3pOiaZVIHv8139nsi/++qX22QW7yhlEtRnz1Fj8+GQ2H21ttyeLVd1s7+23CU2z4kJSDEU5qoqdOi4SH7SN0qosy+adJy/Z/sj89deODoloNK3MjRKaLmUiqzVIaiLkTUJMROaFonMxtsj5NJ7qZWOqpgkJuVA6G6DmhArH3kNEy4qKQoqxK8aOmUU4C2Bm9sJF4Zihaixwjr330k0hxyTzeLg/vlx/5OPf8/uf8synvcI98djy4wfSJpmMp6OiOZrhwtb0nge5numoKfeu33jfRx/4ss+/+eQNb3yYUhVdQXTEi7FMbNWqCcLKYl03i7YO+1f2y62JFKUvi/mNg9tPP7N/9dL9D12fH9U3H70T0bBP29tb0/FWWZbiRTWKkxSpXSGGCGrFM8NZLCSVVoZkPE+gAmERS/ArXjp98+PlG/7xne/+q+XzXqQW7AUvlN2d5S/8gvviL/4z1YNX3/6LP/Opz2+eVc9htRXd3CU/oNUdmgRr3X09yftpzzBm6hzNRITUYzzXS+CT7myntVtWVSYzRJgREpMSlCyia7XzbBlCvoHmijDqwVlqO+tqxK53DmHjLkqRDUGy7IO0nmGXqPM8s7HZJjkZDB5WfTcj9plukTpSrI6QuEtqoT5dmSrigq0wKkEOVGbfuSkDrGBClUOhxLnDDAiMc6mHbL9aZ+ITERkCiEABRNCVos0gaRCBEnMAkpGCs8s7D8pdiBzWA57N6+wJOHV+cJnCiBKyn1LViKgruAW1SAayQIhZVsMs859kts+cQJpBad1YAURQS2QRgBGTsMKDGBB2IuZAzkEciRmDnbGAwewyFCDkqDk4kXnEhKTt0rS1ziUDswRi7rKQTiHtiSjXL+iU++GcPrNff6KZeuajXnBydrx37XRVYFVMunk/qO5wF+nb37xPwz7dY0M0HYrwTTska+6tu/aZ+gOD9XxKFcjuDl3z4GDwuXZEJ7k0x9ojPbCKz4zboC4p0Hm5uuuoyyc23sAxzqo+wz/X0v2Meb3+5bzONNyncG7nGt7F1j0imK7NYuu8CDxolgCiJiU/2qoXT92cveib/uqX//EfP/b3fuJGuPSp0wf8nVuHSFNX+VlEMIGmWR2JfOmaqmSZ+MdvLA8+PiMLUQ4RYkoqKCwZOV+MiqjMjswKaKuaiEw1xtiYtoYmVCJ1GI3HbdPwlT2+M1/84ft2X3K/Tkfx2QOMCmEqeBRCkPmiodpInApPx1b5PTdq2+B2p/Nby4lUOoGmBKios3BRxhHNsk0jfzH9zrOfdin8zotfiJIktrJwwYvn7BwkSykxk2p0jg0IoWUWERJH4jk1KEdVWK1C0Gx0AMQwIiVHQuQE3qGovPPkK1cUQkLOORFh5kKc88IMIguxLctyNBo5phBCAqpyzOyakIhHTI9+z0+NP/ayP6eHj80+3jQncyIqdxz82OZLKXw4Ojw+vF3d95LLn/tFJ+9717NvetvkNc9//Mmn7h1fPKCQKBUYUa5s29aqqQ1yfOvW3qWdame3Gk9L52PdHD79bBvjztUrYYGnHnmyWdTV1G3v7Ey3JwCD0TSNL127MlNOyQRCjglEzptxZKBNgZ2UcVw7KhBK9+yt5X3X6OMXpl/3Q3d+9K/wi1++M1+eXLm6/ZVfdfIDPxy/6k+89kXfeOmHfuTfvPzhpjzxiUqRlWUUVTfBZTjDz0zmNZeudZKR0HkY88fa+YEGaYHrpXpm+QAgVrDviD5MyQCNRolhThJpcqyEJJQMEaRGoRcxGSiS6wqIkTtPmqhERGKU43VZs82euS4ulp3SRNyT8UMzSotgJiAFnGk0M2JnZsyK3rw0zcp6toCzKPVApaiIKqKSyCl7iFMVmIA8IKRjAlvnUAcRC7jz47KgQ4Pl6rdsxqBoFHI6NMEzlrDWrAIzsXYsYIggA6KRoksfzYOUTZAcItxwd3du/Fy+HkRkbAKQIlJ/OZOBcllIzU4Eyx56TQRkzmdDghpZ6rwbank4ByKw4zwhSwwYAkGNjdjIBCwAS84IJ/LgAmTGRiwQ6bxIlWkAlK3JYoEsiUWVErFJSFmUwJiJe/GymcforDlb78x9PtK5Yy0Asgm7kUino5Lr88xMJIKuXsT6i8MpvjHR1pHjPC66+Wh932FPtNMxBwZlf30nNlQ77pi7Cdr1rS2d8wacNp3Pf4pzci7jls9vB92/uvZe07Dl4RiynBrhrOINx2f4COceZ3PZ+isbTDh6vpqBG3nTdE6YJMle68EDdu4E7aV1fsZMQZ5rIlZVdfvmjRurV37jt379L7zpsb/+72f0wKcWI9c8c4dkdyHFcROtXXEza1YnlsBBQ7J5g48/enjy5LM+LpwmH3yKECLiWI0K4TKFqiwuEu0m9lYU8GJQsug4lqyFhiqRq8pl2+zt79v7njx694cuffbLcWFcLYvy8sVib+J2RpiO3Xhabu+a80psdVo29fjC7vzwxDlXk052dq1djsY7VlSNZ/YXmS8qX8Dk/mp8wcctu3Llv9569SL6nSoFRCoq5wphD7Cwp77IJqDecUopGyLe++3t7dFo5L0bjX1ZsHdcVm5UusJJ4TPeyvlCisKPxqUIFaUT74w7QHtX8iylGCOAsiydc21bhxCcc865EEJKVpVjN2n/+X8c/dZL/nKtTxYfPKpvH5YizomfFiehnuxO/Li0ee1vzS9Od8ONO/e98hXl9UuH7/rgQxevPLs8LhM8waUgrMbCmkzrO7duleKq7XE52vJSENHJjdtHzzx74frlrQujpz76xPzGIRX1zsWd6c5Oq9YizsM8id0+mbdtm8KibQ7VliBNyRTWWmsavfdliNWSA6dj5TalSorVbDRVGb3sga//dyfveM/R7ti3K9svt//qt6Z//XMHh3jO3//rf/sD79md+ZW4uQZndkqRPT2Nz65TM4PmSlTJzMjyBAZbrvKDnoHh1BEHunLXrFpKidQAVY2Z4BBQyRAmWHbXkqXsm+qwwUBO56OcEmSu2/34FMQ1Zw9bhgYPNrfcBTt9dMKY2EhyjVojrKGmJGxgAxsLkYAd2GU8F1jQ5do6kDfyxCPiijAGjZjHxiOSMcmUZJvdrvodK3ZRbJvfMr+lbqJ+osXEispchWJE5ZiKMRVj+JG5MbktSAUZEU9JtshNIGPI1LhSciAHErAYwYgNzBA2IRDWiZtmObq9CS8DmVvszDisrbLePEhmphrNkmrM7yvTk0GTarS02ZnXMmWQS8OdjpI9/xZg0RBAqjmW3Asv5jyW5gERccRd+V4W5wrvSu9LJ5VzXqR0UgiXzAVRJs+WDgWdC1QZY+C2HB757fMwDxiAQATCliPYzMYUlZNxsvzOHTkZ+FUUBvCACJp64i7WlJ3dGyk+GErLJ0W6SanrPNoejZXPdyzP2jtA8nd7z3Mmc89NKTgZZUDj2dykftGyk1xlGn02dF9Ss+uh5XcjCjYjza3ll5qdOsRgobUEXX+a/00p5GvQB6SxjuCapf4pUkpJI8gMCg3WMbD3kWx042NmmRFXiLNY7XrSPTvW1vU6PUlhyTSZdmMkw/VPRKZIqcuSqUkbJEk2owgNkihCmDQlj6CcInkeV2BtFjfuHH3s1mLrwp/8pjf8hR954we/52dx6Xkv9M3xcT2fkVutVlJHbdC0uqqjtT6FpkFYLOqT27ea+sQEiVLQOiUQm3jvi5HBkYgrXUIwjoYklrhdUTqidJvigXGrzpHCKXa3J0fv/9ByfrT7aS+aa5Iaqy1NQsVky4223GjC4xG2Jn53e7sa0/YI5KxNexf2jo+PUkp7xbhhSm3rWMAVe5Gp6MiJZy1GNh2PKdrl17z5g/dg1PCqcrDGOwBRknNualXBVIojY1WFpTasiK0qx5oI7HxVVtvb5dZkuj0qPTmxouTRqCwqN5oW3osvC2E/qrYKPybjQgoXdCy+ci7Fhig5x+KImQMtTEtScm0kM+f3bFoU9NgP/YfZz1/8a20VFk/dXtRScNvWNNrehzdOcHv7nqVBK9vjye627owOnjrc/vSHV8v58sadCxcu+FERVVcscdWwH5dp/OztO0jttcmFYrITx6ktQsN267FnPPx999zbPHbn9lOPFzv++r33bF3cqdEytFChILPjhUsmllKMTD4Rky+k8NqEMlcKjNYqWgBKLkYL3LSuLRZSj7aXdfWCa9/+I/bRj+qoapsQrpZb//P/WP74rx48eufi9/yjv/HEEy9/pklTB+i4hbZUuOCZ2chTik4rZgewGSVY/mlJA1FisHfGlGAqpEIBseUUNcflqd98Tx3JLKXU7VQQI5hSJNPMJGEJSITkVAvWvCeaNoQIXZHUgJImoDbUAMiYu7IQZaZkigPTJ2+NRES9mgxkFDSQaxVkLykJgbN8MrOORqfLqSWQB5Wwstt1uTApjL3BKZzCgcqOtZlG4B3I2MTBOSsE4ozYxKkrtChMXM7NBROxEHtiD/EkzoTBJbHTjvWqMK4gJXmHwpmr4ApyAhbjEWSsTERjwlithHlCySiZPJFgHT9OasoET5BMSLIOHjJTpvMElDgB6xIdHubyOJAm0wDUsDaTSbE1ZEvTpLYyNGSRNbK1piGlXktTSylZUjLO0UdJRGiT1QojS2xLYAmwIIEdyJOBISBH7NgTUccA4zkyArNjqVi8c670VSGFSGHiqajIV8zONDlh71zHbUQi8Gu/bt6tiYjAAnYkvI5ndDMSKeG04pnLGhBw2izrBHZfnnZtF66DuGvjeiiH6PTJ4a2Hl51ZJ0Q09GCjN1vptIcWg2SnjfQFenWya7t/8XfRqbtb97rS8Jbn9PF05otElBWRM099l2c5dT4Xz7rL7rB+hPWNhq2dGczzNxq2gEGsF6SqGsmntKO8ZH+5JgWvRlZQs4yGclkU3heFq5fP3FjMG/e8F7ziK7/hL/2NP/1nX/s/fvcf/pu37u99yj2zenZrVdJKY1SLKcbYtm3bttkKCSGEptbQWgqaWo3BUqKc5E3ZRzfQDMw0prBaNqFtoW1IRMQGDi1SbVtihTVv/4CYTl90X3N4spzNjUmSFSBW05RM1Tnx3juWugSJKOmqqan0lfNch5vSTnb3ZsuFZ3HOBTJyUoiD86kQjMfJe7fr3pk+5e1PbpX7lIiLtinc7qTaWQUNpQ+IQQOLFp6YksagIZjZJojr/Xg8nmxvTXe2q/FIvCNh8c57V47KqqqK0vlC8gEAXoxp2SxDisysFrMR7G1S8Co6470tuKIqk6Q7P/DGaz+59/WTrWfxkY/RvFnG2y2X5d6eu4A66NbOnitdapt21ox2LrjtrUKpEHd4Y3X5U17TPH5nUpVRzXxZrCKaGeni2aObe2myffUB293yLCOunNHByXF88ub+PVdWpX3so4/4EC9dvzLemq5WC0sBaovVqq5r51xVFqFp27Z1jgvfoXWYuW1bVW1iWE9XIooxmhkvJwvXrMjtOze5p/im/3P21NOzsqQQ62sT93ffMP7B/9y+45nqO7/rz9dHL78Rjid+24jKOJs7RDRqMYoEv8w2rtLGlcXIRImboNJwKZl15MKfqADKxhJFSr0Tq9PXu9wdIiJYyqXUQUqWzBJZMg2GYJbMUs/6mzOApW/8LM2RbaJra2hY7zEjA2nqV3y/tocppLQe6g1qDN3TkWR7RoiE2ZE4ZqacVmBsKgoxOJgzcHZBE3sWzyIkTE7gPIk3cSQO4kwcsTcRIwf2YG/k+hETYwExQYidiCMSZCYT8n2ZXhCtR99s/SCfzC3K652he6E09Fn2fsfMTGnZqGlNIzSYJUMgTQyVDbZnvT/3kTgavovWbAFdwVawlFkqrbPJlTIY3TkA2R04nDDEntgJu1w/irlgytB3rP0qZqaW7C4gLALQlXO466TUHkPSTXQevFc7I4o6T1ovgRiA5G8PPN/nV8UZoNA6hUnpLnJx3e3ubQ7ekPWUQ+hxXnQOxb1uLakSG3GXQ2anL1iPb9aV+ldwVrYNZsxdROam51lz047VanjZacG5pvn+ZJvI4MwpAT+cvoM2bf2TTWHr+N16hxvSCBX5mSZJ7UkhBczXIUY/RuV1NEtHR4d3jnj7tS94zTd++pd99Wd++otvHuAr/+YfvXn50OWHLtdHi7nCbBEpaUwxxti2sQ0as/xNqtFCjRgtRaQIC8SpEz7MWaPMyU4phbau2+Wi0phWi3q5ojqlulWk5eqYpkyLxfFb39PsFOnCePHEM/HguJrVxweHabHQ5TKtlhZCCgGqloKqElTni+bgJMyWdV1XVVUEmEKqwm+NV6u68qUyk3PkBF6qcRkjxE1CbMbPe9mvvnM/rObiJqUXdTWlOunKnIpwVRXOsReUnsvCee9ZICJVVY0m47Is2YkRyLtyMp7ubI9GVVl5X0g1KnwhzuUN0USIDHBSpyZqqkpfeHEsXji2jffiR9Ue7y6Xi9FoJHrwwz85+onxl0+mxcGtg7CwuNKi2GU3572obZLR1tbeTptqbYM2tn3tnkactKmJDZbx8uV77fqlj7/tPZevXsBsVjXRj8YnN54ZH8yKyxcKV7qyaL05KoypffLZWNLV+649+/RT9e2D3Qev7m9P2tgIiJM1TQgxsneld029XK1W1OsfjqChzb7BBMuaRBYiCtbMuQNtUhGTzGap2vWra1f/9r+1eXCeirrVe3erf/Kt8bt/fFm3F77lO7/mxq1X34xPT9kZbVdSriInawQ+Jih1oajh5GcQTq++U8t5sI7OxH37S9Na+mb4larSYLF0STgU2VRy4QNLpi2sphQohSwMsvzI1vlaWJ7aIDbCfp1xsNGJ17tKRuRm+z6aZhJFDIQurFveazYK65zeQsTEDsREzsgTF70v2jEXzAWz738RIqfMJt6kABfEzsSDvbGHFGBvUhAX7DyJyz9rrQGdesEgIS6MCeJAnuCM/Ck5uk676jqb0BMIbt6CnhquTn4MmZ0yCA3REMgiTFWj5b3FIiyZBmgyRFiwrnzvZiYM54Oiy/KCNYqlYQadKbWgpKSd9k89CI3MLKklxangYyZaMRYiz+YJYiTK/ryNdGYarJWnfPKUutGfVXRloXDmU+POst18pF3JtuFl+aO1GD47EdW6rF/rfl/X+KTeos1HvmD9nnDuIMrYRKC3fbvzp58fg7W6WZx9zHitNwyF2bqpM4Kwb/Z0Z4xglKO/w/V/5t3jtCjtJt75h+oJIM/c4XQjp57rdGD+7BaD0/Ov+6xdmUrhx4zaNCqSeJC08cby+LAt733BSz/zW1/0GV9yz0P33r+Nt/3BM1/5zz7yxKVXX7v/YrsIR0pBZbEYncTjFK1Z1U1TWwoppRSipoxLNLNEZgRlhstlRvPk47x7pJRCbFexXYZmuVjcQb2qFk2bYghpsVq6/S27cXjwhx+g6/vkZPbEs7PDo9Xh0eLGLbtxe3XrVnN4EE9maTG31ULrZbtctvN5uH1cH55USrxoVotVtb/rpiMczGNI25cuwktcNUVRKBOxsDjVMKkmqirK01F9p3zl294dtrbQ6KiR1mIolSwmr84Rm5GlKMSjoiwL58h1Xh9mx770hfe+KDw5Fi9S+NFolMFWgDKDGZnNXYRSaChq5YQNq5N5s1oQ0Xg6RqOJuGFsbW3j5PgfvvHBn9j7+mp7Hh59lG4ttFk4ads27I2ujaajJLRz6RJ5Zg3L2cnetavj/Ytgl0JjZlWFk5PbF1/1kliVJ+/444v3X5hNsHzk5uFTB+7a/qiSWEUUGJOLFptls3jm9uT+q7XGoz/8wOTS/sV7rtWhVSTTuJovmmZlTCJiKdaLOVQnk4kvHJExWQxBUyKipmlsHUJSmJESVLUVFExN0CCymLeXd8J7qfr/fO9TEETvJOL59/p/8DXVN3/vzaDyHd/+F5545jktxUhLm0ep2Ehjo9yBPO4mRAdCd7gi8kLpYkkwxdnFmMyixT4ezEZO4db+u24zhGaODJAa1JBYI2tLuoLWpjWyyxTZ1w29C9SkX5wEY8pLoDPvNmL0lHV7WngTdRKXFLS2kvNHALFRZ7hT3qK9oeNrJBIiR9JFZ0GSk226wk5gpU4qKuXiRIxMo8UZFZUhWmI9mX+WAhmuZmB0YLWejJNyjY3OCAYLmIY1YT/RcXb7pbODSGQMZSRCNDSEyIj5T9JElmABqTVNsJQTwzlbZZ0kzgauZtOJiYiVacW2IJubrdRqskSd4UVkylBNwTRvaDBb4ww6Cu7uX3RpxTrA39DgOBUDPr11b970Xe08W1M49ccZaNUZwYmBlBp+OvzW0FY7ffSu//6yM706K/XM0hpOpmZIanE4MbsHGPSBmfsV1d0iI+bRQ5DOrGTSU3+u+4keptR/rKA+SNzpppvOr1/Jedl8ZhjNMkr6rKoxVCPODdpmNO52dM+FwfzOv7dOxFEb7yQaGVdlMTk5ubm4015+/qc/9Iq/Tntfpbv71y/KPTv2Az/27jf84Am/4KU7o7K+VR+v7rTNHSwbSYti5WITQwihrUNoNbQaooZoKaQUTXNsW0HJSI2JSNjBTJO2IdahXaZYmwZYMGpXYRY46GxVxzjevzj/yLOzjz7rX3TfJPJqVVNZVEUpItw2sV01h8fxaBYPj+LRcTg81pO5zeZpNpc2MVEzX0ZTB7p557a7sleOqhSCOrd3+UpoIiUYCbHz4qKX4MyNC3NYzlq+7943P/Wiur3jGAjjsdsp3ZTUiwg5KctclFac42y4CrEZpagak6l2UKAQ6uVqNV8sl8uUUozt2n+VXZcMOFXWFOt2cXIcY3TOdYbjiCVu05ROnnz2b/6X5/3y1VcUOKifvrMIOq6LSM5oW0aKaYp1GG/f40eVQcNi0aZ26/oVGY0Kljq1ydSHqJLqg8Pnfe5n3Lh5dPiH7985aWZpfslP9kbbSdqENgKuGkHbetkETVsXd46feEbn9cUH74dZjRRjWMxnoVkRETMJYbVcrpbL0aicTEfMrJpIjU3NrGmapmmkxyyYmSYjSFBrG0JspBRBy2kUa3f/g6Pfv739v/7bW1NYG2Ib+TUPr77jK+Qbf4AvXNz+jm/+pvd+bGtUpDBeWD1hziYLJdWkyPBAO6faUs8Sf2ZRDFfZ5ivUAaOIMmEH59gisyPnRUQyjIqdiHTCCr1VYAloyWqzFVkkC5SpIYE+rpsjWYMVis1OmNMcwSBOmbkrV1myXkvILuUcxUDHVmV9PI3yRpbRuxma0z0gkPuYjLq9pNuwMg9U35sNm1ACQGroO0z9Laiz6UE57zkH3Ls0V1Za+8PZOsEjmUdaOwaMLHLOYFBo/cf6/BA3evagzV7dS1CDBUNLSIwESrBEmmAKS9BEFkkTkmbGr/VNe3AS0FEyka3zmGxFOoMeW5xpWkIDLDIiWTSNrJFVLUUytR6XamaGtAbh8KkJxvnxzkzO4ThI/0M0qFKbu9j/axmNJQOHZ5Zzeg5MmPXE9dyiM9nu/e6/GWImErY+SpxHdhBSXaucmeyt+zfrI0MzV3sWGwGtIY69+JfN2jvtDSbavIl13wy9AntagdhkVZ17nA5aScP5cUp23n1KrS/Wzm4ePI8NVQCcFpmnvnvu/HnlCesK0nfzBzBzdNFaIO06v6V1/fHHn772gs9/weu/7W0ff80ffbR9wQP1Kx50lc2/6x/9wT//ta3q017YNlgs57exbCxN/bWTlattsYoSQsoFMFJsU4wwgyULIbR1SgGWCAoLpok0ZU+Jaoyx1RSsi9ykqHGWVlQ3s+OTVtLEjU7e9ag/TtWrHvZ+FK9eKPf2y509TCc0GcWdiZPCg9vFqpkt4nyZFsv66DjOl5K0bVsBjcoytAmLMK5R17XsTmEcQqCq2Lp8aTlfeWJyYixettXIovPez2PgsT29+/DvvIV3d2pqg1IwpwoLnEicZxHxzrmqLKvCOYETLr1457JszlVjR2U1Go2KogAQMxy3d7znADAzxkU58m46rqbT6WQ6mk6nRVGIOFIeT2a3Hzv5O//9Fb977yt2F7G9/XQzr8umXrpkPhLJZLtyOxM/GU33R4wY69Xx4dF4d7fY3zViDbFu26ZpYhBLRcnF7Obhlc/6dGn41gc/fOHg5tVPf+4hryDOB6GWdNG2BUVGsTXx0Za37/j7r+zs7MzrhpmbVR3qRoRZ1AvFpp4fHfqimE6nBkSLMbV1s2Iii2G5mk+qclwVXlhVY9SQVEFJ1SutAhBVk7MoS0rp0N3zkuLn3iP/5VcOqxFSSm2z/5Wvu/Dq5598y79aPOe5O9/0hr/5x49s00SSRUsGFqXijCKLgb073GTOy+B1bOvUcspAxS5Gw0qcIFn09XzOeZ+UgRWRqRADa8tWmwagGVgOnHekdd31U4uUaG2AGCnIwGb5nnk7lt5FuS4+PDCQchgw9za3n/1/G9ROBmevy8h3RrYSWep2SOtM7Sy9iXKQm9GxfVEPEQMpkxHlFN/OZZXl8zAStslM6bYyXn90BtXcdQ9D6TsQQNS9wd6m7F6smWFY0N1CdjKTNbAGFqDBNFkvfUGak4uySO6QbBubp+sSacoZ/qbRdG56QHbAdgSdky7YGlgLC5RaQWQNpG0KbcZzWdLuFzPVmOUWtAMpE4lQD0Y3CHrnaH/I4IUC66qxg7R3dF6LoVP6rDv3zHZvGV8zMHMHz3xKBm+G8twxvJGcvmx9hroY0GYtCWjd8pCkIneFBj20DqtM587ktlKelIo+1Z1O+ZP7/uj60+5ZSPOPIik2moRZV4xB18m165k3kLtdxnxGXw94LocjeW64zkbuh0OXxw9AR/hugyUxGFJvE+cDqtkTTz9Wlnuf/ZXf+K4nX/Vv/t3sRS8++St/cfvB6/6px+uv+va3vemZFz/48gfcQZvaWQRGC+VW75zc4vY20Nar4x54FVIKGloNLUJKobUYLDSaGrKsS7amMaerqCoPXW3M5OSCTDAdy6gsimL+wceLhOLVL0wmxXjiJ5Od7f1qf7+859r43vvGV69tXb5cXrkkuzsYj1FWVFSRSQvnJ+Nyb5fH41h4PypVtV3W7e3ZeGtabU0Q0aQ0uXKhHI/QqnNFYDgTL47UxaYWrdNiOb6+/d8+8sKPH1WTHWslspPSAeQd52ounP3MzKraMqJ0aYwmQhkI5hw754pRNdraLorCFUVZliKZ2Jmd46JwZemVEE3FOXEF2DFzSunixdE73y/f+SsPfuDCw+7k5OTwJC2jiwlArUdbcby13U4v8uGy2bl4NbmCNdXHS3HV7tV7ptv7y7atY4SqA1rvVKpW4VStXZSf8+J7v/Qz5lMO73nk6n1XD2PdFGypSbHGqhUhnng9mZ1Qe/n65Tone7SNhaQxJWR6vTi/cye14dKlS64sQopqllIKTR1jWCwWzLy9teUzykw1a7wpqrGECOXuD1cg1i76FZZ0/WUX//4vnzz6sXlVFShajfhfv24rOvk//n37kocvftbnf81jH5LxdEZJIaxW91vMqc1dO1bgzXLOk3wdCETvMIuDvTDzHPZEVgwQyBOYWZid9DKYTawr4NItLjYQoNZCG7Jgppm7OW/E64DaAAPTLdI1lNWQQGbZnQwFYo40d6lEsnFMZi2dhFmYmHsRRmDRXh6TcA4bD8G2tC7ukG3zwQbeuegI6PIvNF/ZyeDstO12Dev3Je0ViPU+dtd81I3NqoRsKwOn/ckbz3nejgad5vNyYbD3dtQSiSzConbStzUEZCYsirBA0IyMWzspKTui+wwoAmhjWCdgCTokvUN2xHpiaa66QFrCGlhLoSUNSFFTSG2jIaaU1mCX1CW85Y5lznEQiRsEEWQw8gCyCO9+cjWkTAO5tpO6KZKQK/ENBvcuscnz54cX0MAjdFcRvg7J5E9tvbbQ49G6N9WnraP/Xjd91qLOOHNvkwKi1BVvWDc+7OddH2F4KBJnipKBLDyrUpxjBKOsHZ+OXPQuIBPiPHmH2lC3DAZ6xpmubW6x0XHlTP/P6De9/z3jQZQps7HpqWcnEsbJcTpuqs/5vC+5fefyd/7Tkxe+yr7/n11xlRPm//rrj/zjH74dnvt5WxdDu2gtjCMfr5q5GvlYIgSloPN5pN2UIa9GDKRMWk5Zg05mqtqSBOKccxXVQpIcScwcOVHZOT9iM9E4JdKyOvzIR4tre+Mr+/Uzx+PJJI2cb5Uno1GdQoqh5FFZ0jYQa2labUNoWqgxk2MxMyFDSiJiizZoqJvaLet6sdzav3D4zE2Zjpes1++/7+kPfbTcmiSxUgM4rVIiQbEoawuTnfaZ+1/2s//92W/6Gr9aprLhqddFLMyOPVVWeDJlQRsTIxIZI2kKUZPBOhpe1RhVYapUiGcGkcQYGebFOWbHkpBGkwok1XjkykJVzbA1mv7Ur8x+9JEXL69uudWzfCfNiMU8QxVa8uX5VlPsjdLxZO85+0W1c7I6DotFu1yVk639S1dTtKi6bNvKOFiYJhcEMSRIXK1urh67FXx57fWvO/7Nt11+5Kkr912e3T4JpdSFLzAZGRaFO6qXwlTuT9tm5Yjb0C5m86LwReFA1jZ1vVxtb29nGyuqck+REZp2NptdvueaZ2pD6NhrmEEUNBagllXMJW4r0CJZxaL1qGZ4ipcffODv//Dxj3/3ItnEF0eGyT//ivnX/ZviZb+HL//Tzzu88advPvLz169vHdvChVzNpLM1hzw3GHihh9rzuRV6eqVrNmdzrjsLORYn4oRFyDk2ZskRUoYwGXMgdCXjCT09MtDLBuTlvL73+Z3GOpMur+lkgJEylAaZk+iZ+Igol1WwvuairXMsFeiQNwDpIHRlrNlmJIMSCSwXMRxGYXmTBcKKvJ9S9lR3iKm1PY+eP5Ks911nu7dL5D09yB1nYA7VCywSm+ZauYbeGDWYDQvXr99G31xfGWnw7rr9NtOqaIa15p/UD2nMKlYev36MklEuaUy9q5gMcc2RYlCgFnLQ0nSutgCNTZeRKzVvVKbYQonApKYxxajRokE5QTMqCzAzthwU4JRMcpKqwkzBfGbarY0kdB4ANaitNYIMqhLkskIb6TvULodD04V7rPOgDrQ/rL9La+90b+Otr8kuFoFk/lUoqaJL3RuEn0WGjG5IGVhHRmQJg5wE7cHVKZ4yUs+Z8mdkqvVrY6NG5IgykpEmi1FDb+aawjLP16n50c9ss1xhMLPVIAd8xDg7RTR1wPSsOZlZ0rAOZw07ltMtLJd87mYuZ/obnO5t/lZWdDJAQDWzN7bECVqqF2ekMRklTuSLKoIOPvrsA/sv/3Nf+XX/+r/Y3/u+x/72d977PX9tlCpn4v79//VH3/VDx80rXre3b+k2zWOqk4UQqCG0bUorwSw1izqVsa05Kke1Va11SyEhBkoxhUatNoSgKSlyte5kUTUZbauYxZCoIhlR1TAtIJwsjr1bHZ1cec5zdy5fO5m3yXNo6lCvIizG2ELJFx5OXEHOEwpfTsutve0LV8Z7F7cvXKl2dmU88dOd0c5+Md3Zun6t2t7f2r7oxtPl7WV9PL967z2L2UyXTSz91kP33Tk+nsq4dUJuIkQaEdG65cnqqJ5O6TfTZ/7qbzbP2x0lr3NqptQCFSXvwd6XKdJkNA1ty2qO3XS6PS4LjUktkkAtWmqEdVSKo8a8tIyymApPVXNtcm8CJ2OTYlwW88Zc4be8+8Gfte9/+mXtpV2dWzyuA6JoB/IEW1s1+1sXBRf00s5WMU3tjDi2y+Olx9Y997hqspzPU9M4jVG1Kreic6tmrhJ1Pq+fOqhnTcVCR6urX/j6Dzz5JDfLiPkyzqVt/NGJJi6EV088XSptjbZqr4YY6rql4FQbS0KuPjwRBu1PSy6yDQBLTbNiR8d3bm+X1XR3Z9HWTUoJ0moy0mhKcPWSxMzDxTRawZP6CFFSZgR117eLP5bq+39iMXJNU1eW0v33XfxrX9x83y/xx2/Q177h9X7vVQfL2vGOWFIKziFFAxQSwTGXFlCFgbMzCpso21k/8HDZmpkgB7mIqSDygJj3RKXQ2MQp2Jm4TEFFnkmJgoCYHbGaRbUIU0qgaKQpV30jNdNVigBO5U52C5YBSUZJEfrdQ8AduriTuWaZ0hggJIUhRxa7YFp290qH4SIDqWPzDGGIkUvkzJLRChRy4Ja4JdSMmHdbSKtYGBoSMAWGdUZvJnSEdgjg3tGmBOasa4Epcbfj9STVQC6o3OHDKGbqSlBMFNlIrEvC7q18hrBSr4VQLp8oMIckTEkGxlbe+tRi9xcSKID6NDBEkGaPtFkmVABDxaJZyEUcSFNOW8p14dWa3lAxssaxOiotJ3bHA053RJcuRd+03ITYtIhN/jGNZmJIam2IFjRpiC7BqRFRtKhkliJzz6YsxI6I1Ezl1KzL+lDniXc9ALiXT2tJcrqE4VrMiJy1wNaCrfsiSNdcUIOKQFk5oh5APFwYpz0nvfpIBDMwwSylxD3ZW5bMXfab2mmE2TrQsmlfe9boM1rVmT5g8OnwlzPjMGzhJX/xb7/vjd8DnGYHI9A6Ra+v0NJpG5SXUJc5bTCFEmSDyD9jHAMPf/V3ve+nvm9997VHZT1Qw49ybs/wZQFQt0BaJkzEMy+Fr06f/6fe8Pi/+I+f9cVf+PtP0lf++fe97vOe9+O/eP2eZnmnHY/j8h/+4zf92BMvuOfzn4/jxe1Dqkr4uVvyoYY2xpRSoNSShqwKGiTF5p0/86p1t1/2Z99iIgBiW4uIl1yESjVG4ghJIaJoiAoUPD/k1W4og7plQe/9kZcCAJ77+m9472q1clWZmtqgptq2bUrqi4pyhXuDOPf7P/FwvuPrvukDcMl7n1IwceykYy1Qe/d/ejXOHi/L/33Bt31weTxvFsvR9jSkKGXlLKyWMzDiKsod9g/u/N+Pvf4F7/6NV7yMnz2RhYcZO2kK9m1sxlWxWq1GRdE2jVrUGArGZFSsVovjkyMxHY1GAlCKpK5oo8U6jqwqvZMCEEKdYGz1drl/1Mb7Lo0/9lT8nt956A+q+/eqRTNvNSAYK4gTmDkxtJC9ra1E0MpdvnplsZpbaON8lYj3Luxt7ezGGFNKdV0zS+mcc+7g1u2iFO9xe35sjsbTUVmWbcGpDQ99xqfe+M23XX/twzfq2TIsarCjWNdH8Ylnihc+1wWlGAOsmS8LEi1EQHG+DCeLtD+dTqepSU1K4t1qtSqdX8znIcXrVy6ZpkzB14aGiEJTs/PapQ+SUeeWJrOShEExJthi3m4//8Hxj/7R7c94afUZr54qLKyWf/6zLrzlQ4f/5I3jf/sd+Mq/9FX/x7/66GvuP264EPar1dx7b4jWloYoEiwxMWPgl9J+qeblu14pwyVvRhGaqYWJLYPXSbyQ51yQszeemDMjIwkEnVkpxgRjM4XCVM0i1INzeQgiTTDGsICCGuXtiA2UqEcY5QVCxIpcRoLQ1+qGgU7zH2zWNUCcixqZdeRFnbbBnDmiczkoAyVFIGoMBJR99Qo2U0I0EqAxFABzdj3n6gVKxn3hIiXjjFDJ1Q6SaWJEZB5HJNNE3G3YuTdqAIkZG4HA6O1AMzU1kDKyTM3GqyETTFrSxJn0KO9vzAI1Iu42R1JkU4UNGoFkmktyGBNgakjaQeQAhfGpLd0sUeYOg2nnZTeCN6NkNemccKI4ZBsRBCZgMZ0kJU2WEkNhlnJEUVWTKvdIQGY2Es2PbLBkfQoQAaf8mr3478ppnqqGxHdNgDlt6p35dF1MPm/93e4/iHIObc3ujPWf6um20Ol8MChBMqlpli4A8akig4OKBEB2Sq3vOPBVr9chOk/K3Z3PZ/RiDK60gQt6/TuAl/zFv41eBt91eQPo6kPn+dLb6dSHcWzgPutveqozD3/1dwF4yV/6rvf91Pd1TpmBMoGBsjL0OuQz68Qqr6HFhGTc1sflvaYeMeEAAQAASURBVNPnf9EbADzwt772G77ht3/pZ2b/7Mdf/7VfsQ3g6XK8fTj/jn/69t84fvEDr3no8MZxGcrWmvnypLQqzI0QkiYNreqKUkixTZHf9TOvPTOS7/n5T8+/vPTPvdmSqRFxIjEDwVJMNdHIlyWsidbsFhKW7e/+2KuGLfzOj74UwKd+zR/60TiFxpJCRDVpCjD31h/7lDN3/P1//2IAn/c3nuIQyUdmZnYk/OYfuPeu7zofv/GvX/QF36wfe/8jrir9pEJCqENV+GW9QjKbrUqT+p57/6/3vep/mr7twqVgy23ycxPXtq0IW4pMqapIyK3mq4Pbz5KGyfakLNz+7vbyZHZycMDOjUbjVFZjVSejVlehmRu2xj42Jjvl5Tp5K9LlavRz/z//fz7+/Fu7ly6jns+S1QmJwazJKDGB2LnR1lTHBfni8n3XZ6lt6xonKzINyvu7+8655XJZ13UyK4uq9MXs6DiG5uLFS7P5HbCRd7mscGlYpTAqyu2XP//Z93zY3X8hpgi16E6WTz7G85Ote/ZjDI641SY1bVGwCjmgni9j027v7Vbi5zpPIIlZ80vHtw8mO7vFtGpishgAMLuMCRdF09S+GrETM4sGNhJCMoKpgMblJOqqaUdXHnzO3/lPH/m1F0yrsdpI2PRvfan8pe9f/Mh/n7zhT46+4kv/wpt+5T+84AG/XLWFH5su1dgssBQpBaFg1uOz1kuxWx3Uhxu7ZTecBt2+TGBiEiEphAtQwSRELXgDVmBNAMGY4WAt4GCu9+UCANTAiVQAYmLNgZ+78SyYresmWL+K+bQMzhzMG3PFsuXbeQ2RH4sA46zTdzYHiDrRyzAYTI0TrDUocTIFUOQsKJCBEhAMsTcNcm0bUbguNmuEnnqvo9s3M8rWZDAk40SIsGiIQMzWdi6BkOmuGIUhOwzFNEcYO1wYrAUAS12gGuhKB5rAKFdToG6sMk8kd1BZS0QAJVACUq4QzF20WynlSoXaDUlWZPqQRNYEugnSzwgAOZkGohYX0GPottmIWKBikTWlpN5SmcUjcUbCw8yiaV/XuQfroSAkKKAR/UscsqkwC3Kwm7LvOu/Xdjb+bXZqPvdT+qwA5p72+cwXqZclnYO0d/12Tdkmwbf7Vg+jO1/Jp8uS6/ztm550x0DH6Y9cEAPnWrrLmXzyjNWIfmVggMMapj3cRWAP/lyzKK/bVFW1qBaz3mR3aSHzUm7yFIf4aOqxVOvHHN4xr9L8CoajlNO6lCeIPsyP5bkPPvC+J9ff+u32NW/+w8/7X75ie33mG77zv78DD9/34ofuHNxsmrDUWdSFLnyzTIRViq2FWlOjMYbQxBjf+TOvu9twdocoOOWhMMs4QFJYZFu2OA4cojpp/e/+2Gfc9evv/MnXGjspR+wK55yIM7N1Ms/547f+1b1whStKzwXBsbnP+c5nPkn3AJAv7nnug7PFUti3bcuF51GhBAaFZb04ONw6vvmx68/9F+96YHUMLUe1qnBRlSPnipRS5qAQod29nQcevP/ChT2LoVktNMaiKEajUVvXx8fHs8Pbx3cO5icnWmOr2JpMLvnJfePxpGa7sGVch//9167+y2c+c7F1z4VVvbq1lOST+FrhyDmIOaayKIpClduivPK8hxb1CjG5NpVENenuxSs7uxdj1FCH1KbJaDoqx1A6unMwnU7LUVHXq7wOExOqwrdKaofzeXtlBxe20hM3aTZ39Qq3bqePPO4u70xH08NYk+N2sTJLwowYLOnyZDbemu5v77Sr5QmCAcmiiCyOTlLTXrx8oU6haVYxBFO1pBTNGbVNQ8CocABSytSqAnaqlpIBvIogorYBVzjQC9/97z4Cp03LMeHea9Pv/GL5D79TP/pM+ILPedkLXvDFj99cjbdc04ixMRUi1rYNk0vGmQbk1LICcNpLBGAIYDSzjEIlCEgU3JEnw9lgv+q2LzbpUbtEwlwQijVRM1RJE2mynJCaMxqS4vQyN0POZGXEnFXcuZEH98oe2i5nkmjz0+frKGCdsbtxd2WBnQVzT/GhRgpqTaJRDco8jktgaaiBFtYCDVkktIY6szyaNmQNrIatYCvSFVCbrYAaqMlqs2AIoARE6tNwQQlozULHUZU5tHPmj3mY1yiavEWPVJB6tgI62vykEqmwVJgWBE/kgP5HKYfUtY9Y2gDNTlBQ4owjg3ZRAFWGdkzdm7HtkUXaUwtThwPvoPA8ZfLMzAZKiWNEjBxbSq3FNqdKOoaIOCl6PqHe00kgiEgp7EUcdzUGZSD7BkFbUEcYZcwQJjW2u3ubT+1W587c9aNTonFtz+mZWWjruwwvzj9n5NypdNshylFtnbdz114N7/L/54Ocb4pO93l4rK+5O7fOQBsYJlmtM5X7G5wq6tAdmYVl6KI/R6M3TFnWXtvQ3hlCHTkozKjRCFuML209/4+e5r/zL9YtvP+H7FNebB+4E9ZnPnDti+Koevrxp9uVUt2kk7peWoumbY+0rmNYWWgtNhrbFKOGOOzPS//krz38RW8annn3z3+OqbIxGyyRRYOaMIQWbMGSIuiv//tXDr/yBd/+9PDPd/zEK6tqrxptsxQsXsS//T9urn/dtzz6+m97Ynj9b3//dbA3kkwX7Nh/wV+//XnfefNzv+2Zz/22Zz7zWx8bXvz6v/KBVWjd9tbWhb3DO3dKX1DltSjGW1MDBaglmx3e3q3vPLb7Wf/u7S938SlyoxSaug2ruhFftCExczmq2DlXuul0euHypen27ng69WVZjSeXrlwfjafbMtrauT7eK5PIKpUpLn2gGuM9N//gR/B3fvfTf7Z9FTsr69lqVQVCSkaQ6fZWVBVXsBOpiuSoLcrn3PvQ4mQGYHnzdmrbVIj3fv/StWhYzJekVFXTrekOszs5PEHSydZ01TRQS3UkZTiv4kLBKaVEoMNV2BqdHB4tPvbU7YNbcbECib/vqosUNTmQLZZEZmKiiItVOFlMrl4kokWzQgwEFRFtw9HtO1u7O9VkHEJTN0tix+Q0pBS0XjaxaUejkRlWq1UbY06NjVFj1BQVgECMKm8h1Lj23K3/+r7pH7xrPi48LC2Nv+Jzdl5wYf6Dv5ZAiz/7FV+AdO9sBlcaswtxock7xwk1U9mxGJ4DrOQchPUqGy60pJpygCzjjyhTLW6QIgxisk0klCTLRiFHWIuKDH9RpA4AoTEhJmi0pIiDrS9DstGaBbWw3hbWa/oMrthIia0zhbOoyGI4b96D+n2AbuJYnRQndLxYIE7MOSjbGM2BI8OR6onqUtPSdGW6Il2wLQhLwpJsTjpnW7AtDCdks/WPYQZbsK3EGqCGrkxrQwtrDC2hJQ05N7ezBCJlZYPNi3mxktVTKhA9zJsyzJs6WAUdwUbQkcHDPKEgFKRCXT0D7qlRhLKqBM71jDMUjjLzRhYWfUrqXTf6fg504fPNoKEgVKDSWECUjWmOsc8JViEWES/OOZdlsIgnYSMGCYn7f9j7z3Bdsqs8FB1hzgpfWGnn3d17d2611Ek5IyEJhGUJBAiDEsbHxkYCGzBJCPA9HAkEwgRjMLaxAKOWbAwGGzAWQQGEAgq0ulux885p5S9V1ZxjjPtj1hfW3luy7zn3x/1x69nPetauVV9VfbNmzZHe8b7Emc9Kdhm6lgd02g1tlwW3CVSebsZdiVPY8yCvuPvLds4nECVwYFvS1OmVZlO+7RdaqPgunm0WW3P7AswVElMuFRavqzZ707AFIF7mB5gluaspZnjqMe251uI2y6W3F8W2BXiBK7s1bP87JnyWLZh5qLPM8Z5V4AqJNEQE2JNSXjzzYhLC9kb5Nk2xQcrApA5pZlXHOTp/zeSnfvDXw9N/aHp81+cnd2S562eXcFzrThNBbLCltNSECYeJKUQntSiJmSqImARQeeC/v2z2wTtf9j4EAJHbX/zHRPS5D7yiHdIoiMhMaABMZIAqrMGQWeUj9z5ndoaX/vBJG6KYfc0/WyeX/ekvtHF5VvRj9CgBVRY7GZ7/XY+nt/GF331GVT/ya9fNBiEgOkdooMiohkSKAKgY5+P5ou96bDScdJZ6k9DsP3zkzLCKMVLmMfc5sYpAdKGqggJuWL5/+697zys/Hf7xcz5VuZV+1plUo6ZpiqKDpk3TiGqWZU2sUXH/wQOhbppJJUHH1QQ4E6cc6r5b890yOhezHvfikjV/8Ymn/IfwzGHZ7cqp0VBtENDHArs1mUNqqkBZpsBLRX9QT7oH999w022TyYgnoR7tdjqdPM+3trYOXXMtMu8ORzFqmXfKTg+dnwy3Bzu7q2vLRe7W19ebwYiVwLPzOZhNVHLKCsXKGo/erj8Cp88vl70mGN5w1Pf7GrQAZhFoGiIKGrpFNriwvlR28+XeSMMo1j1jcGoSm+GwHo+O3XKTmWnVpNSOiBLieDIJIRw8fAgZhtUgiuadkohVwUSpbZ4BUIihqcVybQbOr91y9GfufeS9ty4VOWWxFkff9YrOP/j3u+//2MqLn1t906u+9d3v+bdPunMw3gJmD+qAAlMeo0yXn8tfmdl7YXaFG9uGB4jpbtAz5QyCUwLlVgTJlKaM0EnThwgQE6myY2sAFVTMktAvoSM1IXI2y9ymV9siGKEGwGiaMEFTNo3Zy26a1mczs9S5gGYpgzmb/0QAaJLWq/QdUVEBiaY10vYrgyKgmQCCGRkKQgRiAg/mQXNELzYL0Hhq6mBanAY0aoFk2iKEEKgN+SAqNAACFsGEsLZE2QEKiKgG4AAI1IERIrf6xACJitKoapuGLWXVBUxamI6l3HLKVAcESqoZCC5JEyoKgAEk7k9FRDBAmGaDFx9u4mZpxxrQoM1mtDaYkrIhIioQoQcsFTIgQAsGtUqGJAjGaMxk6MCcWlADsgzMAEViJeCQM0YwQDaQWBlAgtabKV3mCuylmHRfJtjVmSd4mYXYi3maJ09EdcbnbAlyRYh7U0DpSF7g0Fi0Z4v00amvDhd9lAWQV5u3X7RD0+IxLFhBAACTy/BlqXFhZs9gahFngkvTU+hll8CZquVez+SyBMD8yjPba2mKpV7FlroMpp7JZRZ9NiyXk2XvHcP5gFyRAE9rSlv8V+Q6umP9D72zfuWlA7/buXlmgM9NRt4X+fZGfXhf2jM6dyZitBAlz6rqjDXmiMApVpRFq0lB1GIAUVsI+m9/8R8m6LvEaGbAc4uOKhoTSS07sGREHVFjECfzyPuFP3Q2bA6LvJOVJSAuwlaIM0TyFNWav/43x9LOF/zT04LsiAxT1oRe+r0X3/+vDj7nTSezLGtZeZFNIzOrqjkww7/+9ePp48/9J48zUVZ2YlAgC6aHj193+tHHl9gzohDkvT5Nqhg0SqDBrkLOh/yHw3P2fTr7hqd+elJhUeQaMcsyCbEsiCivm1FmMqomdWjIcdnrV6MqNwDKqI6RHVsedATF8n7TS2fzX7v07I80N7qSYfiIjLquUSELMHHal8xptKJTRjHvilHdrBw6sv/6a3d3NsyBjIcuSrHcP3P63HWHriv6a1GAfFb6ovAdYDeqqt3hqNMp1g6t1dVw99y54aXN5dUVZWbmDhKTN7EgQlkOk3HZX6qOiKsl9hyjIXKlEQCihsRsyAIhhHp3tO/mW9BxtbMTY/RZLmYxxsnOoN/plsv9qqpkUvteES2SIIg1oer1er5wm4OtqCEr+g5dWnvBwDERmZhFQN9AVuajKLSL+Uo8vXvtf/3Q9re/ot9ImWF46u39v3PHiV9//8G7b4l3Pev6p3/hJZ/70r3Hrz3SVDWwmGIQZSbdQyass1deF15GuGxx2LNNxd+oZftpCVMBkuAAt8GnESFSgrE4MAQQSwBgQgSxhC1CRMzADHgOskGpARigAlDEOA0hEBSM5wQUyIQGCoKACf6UFuTpYjW9+oLQGbQrTKvEtLhQTL8vAkZMRWOIAAGAkQIAok5dl5a3kQAjgBJw67DYbNWCGc8GWALTBUQDTHoDAmYGlHi1EDxY66OkYnVKJuMUAYOWtVbQktthYAKoJgAYFRLkKYClrIYDqDXZy6S03XbU7MnDtd83KUeaAE7L5rOiJ6cFuWXtnn8MDZEBc6MSoQPgrM13G0JENMfkHSN6UDTwCGCQIyiiiM9J0MzInCGpAgGpgURVa+jKhTz5BEgJk+iSQZ5pRHyF8A6n5UxMzs3id549ny8zvfcQNSNy23w3t8Fk0GKs1AzBTFMq9Z43/vhVT/jAe356djYzu+u1P3rVwz77n34mhciz2ruq3vW6H7nyyM/c+w6AqZtpZgZ3vf6t99/7U3e/4ccuu66Z3fX6t8723Pm6HwGAB97zMzit4tzx2h++6s3cf+87WnDFtH1xFg1fabkXjdwdr/2+y0714Ht/cfG/Zgaod3zbP7/qdd/17977+JeGl/bvvvM9/3C2cxSzW/vuu19379v/5HvTnmG9G+qYOYehhogZkNlAuBOVkQaqHkQgisa9jPYak++lYgAAJLe/8L994cOvBoAH3/fyu17xPhOIqgDMDhxQJYwSy153dgYajHtYRqeGCoRR5CXfP/jAL/YB4P2/tPKi79uJaiKLbwtnef5Xv3QAAL7qzecQjYi+7oe3EREZvIFGQTJTdM4HFTL40L8+NPu093kIdd7p1qMhBoleisxfc+y6M4+f2Ld/f3TWjCaZy92SDIIG5GYyzi4FPrjy+9Xt2YOTr3nylyajpiiKpqqLLAdURgXnMeMCMpfxZFI7dmVZSjQgrULVdUuDMsvz7JDxRzZu+O/bLz3p9xXlCd0d0k63oUEE17Pcsw44y6Nw5mvRnLK6qg4eu/7w8eNnLp7PvE12h6PJzvXHjp+9cKksu8XySowkKFmnTNTww0E1mozr0Nxw5AiVYfPM+Z2z5wpgRrLMiYTMHCpFRJdlTVORwXg4yYpiEEfdsoCLW9QhAalRPaMwolFGOBgMESCudQAgbuzm3UIK0jqi5+HWzrXXXouZG21tuaiRkIAQbHNjs8jyg4f3b2xv7Q53yl6ZZQUAhCBokLn02moQnQTrlRkFYQBGqMeydm3+Xz81+frn4MraZByxQ8WPfP2xV//Kxd/58Np3f+PkFa96yec+e38IZ5JkMgAB1mA9aPmS0s+Zw60p3DGzhGReXKzmeWkFBRMyZSCaBnBoyCn2NV5ITc0Sv5Y6abTlUTZDUGnzmoQq1taBZpeLNYADqdo+n4TpNzBUVNNppyWJAzICMAQClHZ9mJ6EUtZPkdysWkdMiK14qkOaxxKWxF0TQ2fKE4oZmqpZAGgQOdWZ2yu3JjcCCphLlmOasJxyVU55FwnAQJAQQBUDoqOU8W85AgnUp86uaQqWLLkKSSLXckwFOEtkzQHQQARAzAhAUrdumxHAaMAwz2K1bU5m0YxTK5TNt73CDrNnjYhqAgFmcgapWm6WCKIBc4SuYomYE2ZMzmPZCDgEcax+yoxmygxaK6IRqVqhgoLGQmoqMQipYQ1AKKiW6EuvAOOhptr2nBJyMRxM5X1NYIppdTY9bGe8WDMGwitxWKmoPSVU0RmfZasrAmJmhObA2DT9xGn6AhlmXMqXGb/FLZlAMwO1u1/31i932B2vfUs7z6dlIbpaZAkA97zhR7F1lARA0/mvvIG7Xv/WReu7sP8t6dF/OesLAHe/4UcxAbsQWowIzT2DGQwtSRQDf1lPCADufN33z35vg3/KvtzB//CfvO6aevvWu5/zDV87h009/VDxc+/8zd85vTbbE9bPNbvnw/b6ZOOSjrZCtRMrwyaUUlnNKKpRojSS1Lumm43H3DRQ1xRqjBEk2kKuOJiKKahJE0wgBMG65o5fzCdP6sq4Ns6CgagSQbK+aauDgKKHfLbnr3/5SLK+APBX/+bIh3/t6J//4v7JZOK9B7XED9tIjBDHzVCt+dC/Prg4Gn/1K0c/9u9uiLFh5xSJJ6EOwVY6S0cP7+4OM3Mu89rP1BVl1o8doty7QJNzQy713fHuD3zpKRYs1E5Zokx8zurAu07u1vK8RM4zXxBmglD2807Gy92jo4JW3TAf5r9z+ut/Y/LNFxg69aNysdKxr2EM5jLnNEfTTgFKPjPOPPkwrg/ffGP/mv3n1882WMWdSTOYXHP02Mmz543d4SPXTDRi6fIyy3zZDGD93GA4aTqObjhy0Lp4+uHPXrr/QV7fzfJcOgwM5LOBczWJOhckosQwmVijzjwQxVHo95dqE3JMCFw3CKLUGGIzHBdLS51+Z3hpvQ5VlmVaCxBtb+0we3fNga162AyHI2dkJKbj3VE9qVcPHVivtjdHG4Ta6y1JtBiVpAU7mUGjPKoAnSdRjghqE4BKM0+6npe//1c1aJZFC9H2r+F3Pmf87k+Ov3jSra7QK171ykdO5b2ek0hsqsaNNdP2yhb5nHjp1FijgSIBg+Jl9NEAgIiqoEpEGQBIrEQ8oBAKJllwSL2DwUwAlRKplCICG1ljTYSgGi3WGGqME4wVh4abYKGxJmJo5hdThTBCiaYCEkxriI3GJlWOKUaM0aRRq1ADaiAVECAVUsGWOCk1PqVap0BiJUlKuiIE4kgMW1ppIAMWYiVWpEYTVhkFMADVxOI4IIzRTYDHQBOAIeOAcUA4IWiAd4GHwEOiodHAaMdwYLSTfgEaAg2RJ2oj0QlgRJ2kHDIBoyGCR/SmztSBebQOaolSopRkBVkBkJvkYBkAmxJCgZqbFiAZS4ZCFkmCM83SP7aCoQBzBmzgDZyhN2AyQLJEE01ADtABMqADJMFUjE7Pru1INUIjEABp86uGmhTZhaIyEiqZN1sFLJmZsoLzzLncU+Ed5VmRZaXPCl8u+azruJO7ruMi44I5z3zpfI9cDuxTN6pDuHwdx7bEgKAtwuBqZcj2l1kOGRF52piNV7NhlxFqzzqMWijYNDrEhf9Op+V8W8wUfbnY97Jb/Qohe9qe8m0/khCSAHrHa3/4jte+5csdedfr36JThpgvd8z99/7U/ff+1JX7H3jPzwDAXW/4stY3bTMfrX2LZL5/hinTaUr8K5/qjtd+3+xcT3nt9935977nKxy81LNmuxounPIPf+d/vu2XHzp+6/WzPfVu1ImG0QiaaE20EAkNVUSimVoTQSKoJXmuxW+kqqZioqBRo2icF77QQEI0ETLQKKGOtYntho0Lm7NjPvGbdwgxBLNGkqLO4p2zz5Q4Xh3APt/+8l8fUSGwbOYOqyoIqOpXvfnUlcd/5N/e5LLS551hHVEgDOvVQweK1ZXBYNTvLmlS4C6K3GVlVk5QDVEv7ixF+o+T53348dtzGyD2XdavTfb5Xln4csl1O8t9xl4WmTIlriOLW6J+vW9Nz9R3/vvh976vdyvqObc1hnHAxlA0Y8fMvsiUMLJqTuqIooa6OXLXbSv7VzcuXmpIslEYDofXXH9sqx5TWS6vrIFZgQR17RGxrspcrjncPX60v3awrJqNE5/6m8HH75ez582BX+lwpwAji0KAqJY6BkNoqwBBJSuKqmrq8QTUMCqqETnnPKqZSKybvN/NkEc7u+gdMoWmQdU4HBdF5plsUpnEnMkjQBOHu4N9+/YVjuNg3AzHy70lElSLSacyK1xWcBXq0WSSOmOCaaNQiyWcfFPHolvc+/GLg0sjKMrGxQj+7/+dA4dXwrv/AgPUz/2q2685dMf5rY3Sk0BOLmcNaaWKMc66Dy6rf135UqfXbFaBMklUSgE0GESaMtKjaUuMbAaW1vGkxBDYomo0Td0NUSRaFJWgIhCjhgbivNSi1VirsYWATWOhZa0BiSZqqokvAtAggchNVBqVGhLRcfsVZNZSurCUMiIboREpotEeFaGpGumCgo5RS1K7GDVh0pRtfya4ziyiRERM6DNupY5nfwJoMdqtpmpbRXYAiVuDE8IZ1Jk4U2+agWWmXprMJEfoAvQBeiYd0w5Ih60DliPkCA4RAQUpIjXTBzb7ZjRjl5xlMhaetZi0bEjz+7wyDAWYIaUBgMBjqvITAisyMSMze++zLPPeJ/BzlmV5p8yyLM/zPM+zIvc+dy5zzhE5ZGaXsc/JZYDcrpd2eao8PTkicrObnj2h2e+I84pCS2Wlhti2ME/vP2VE7KoRG06t/WX7zYzpqvijq2/3/fbbZsfMDPPdb/ixz7znpxZP8sB/esdcvhBhFhkrGNGe0PfB977DrCW0MrN7Xt9Gune/7q2fec/bLruPB+59WyJom05Hu//et939hp9If73/3p+a3vmeB5xMcrrnO6dJ77vf+CMP3PvORXdkNnsWx9/2dt8/+N5fXDxgMfy9bAwfvPeXEFHBkBpp+J6//wNp/7kML9AuDZt8qQ2Uv+uHfmvt1tddPD8HEjM2MjYho7z1ihARSA2IiGIIqIYWTQUXDTAI6PRRCgKEPc3lUaYcuhzrRsDKbpmpZ999/nc/9JFfvTUd9aFfu+WFbzqpoGT4/l+ap4vT8Dnn7Iq58cI3bavqR/7dPIL/6185+NXft42c8fT9A0z5G3vhP3nctIkqH3/XkxeGDolcb2Wlqaq8U1RVc/T6Y49//qGNnd3uylL0DTdNMAANGYGEGCU0G1vZtfob4xeee4j+wR33We+6rOFxFMoYFTkvWYvJuN9MNrpWhq6I2JI7+ueP3Pw/9BU7xTDfOFdX5iQOquCViqKYxLrolGLmMqeA5HwtwDHecM9TIuHpC+co87Y50CA3PunWx0+fNMKs6LgiR6LQVBAwqHgLxBJqHZzYunDq5Ojc43DxDO4YH9zXOX7I7VtSdhhDalUkorS8xxiDihAAcl7mEG08HEEMpoqIIjE9tqaqzay/b1km9Whrpzy8L6iQqDa1jCZL+9YcoY4qAXNAFDUOxma2urrSTMbb5y90up1e3g0RGKBpamJHDFWQ0WQMzhd5TgDBzICiQMYx9xQieA8XcPkPPrL9+m/qgXqnTeDOO74F3/jL5199Yv8zb9Bv/bZv+pV//eha/6xZxrEQKNIahzPfa7qezBJ77Wxd2KY7U3osKqiBoCFMgTMtjz4CGrAJggBFhAgYQCegE4AGVVQjigCoEis0YIoopECUDFKbvOG6BgwmAKjEifqSlBjI0Ai8koJC4rwXSOVajAAerU1rQ3LRCWGvjMu0zTRliQXn3cNzXXZM/cMAiREpvd1mhtTmqQH2nnNWs1vsdZ7+abbsUMvEmUYrgZMZzAFkYB4sB80ACYwR3PQ0BGCADtrVV0EUUAkQSTUaQmMwBsgAawICxaR5iKRt91CKXW0OrJuuojr/r03JFNGwJS01BJwW01s6ULPksSCAgiESKnglMqzJSmbnLUfOBBwROXbETskhIOWEJEn8CUEjmIYEwwugjsgpOyVOQhno9uKEppCjpBu1Z7hnUxNxHuguTuLLFsKp2iKayazQa1ecc48HqgZX0KZfuc2MLgA89dt/Iv1TsPvufft9974dAO679+17214hNaFfGRYnS7wY+5rZzKCa2Wfec1lQu8eUpn46s8V/V32T50YXAO56/VvSPwB48L0/m+Lmz7z7p2ex/p7OZkh4jLaFQHFP1XzupO8dsTtf9/2KcNfr56VfhZG1Phctul0b2KnOrbvzw9me8/4ZErerUTW/CkO/W3KRoWPyiSLNzMQ0qgQIohI0CoiaLjh0akkZ2ySCaYqDZ39EtdRaVtd1jFr4gqt4dn29XFltRpN7vu3jsyM//GvHPvJrxz/8q9fsfRBAKOwwy/Ywxrz4zduptPTc71p/wXddmu2XEFQR0TmXM/uWPQ8M0UKoJTTP+PsPzG8cIzKQETie1GPPNBgMjj/5lsDQjCbWySIzdXJ17PPcFXnM2Ao3OLPesYt/hs//V595rmyfdlkPOiXlwMVaX5mgp1VTeqclb248tLNpv/z5F/528eIdv55vn27CRJtQB/QZUreoSPJ+lzJPjom48MV4Z9R3+U13P2Ws4fzOpo/GJ9Z7rly+9YYnLl7wrlzrrB5aXiWi7fHGxvqZC48/dPqzHzvzqY8//Ocf+Owf/M4T//M944/9CX7pC35zbAdWsxuvya85CFkGUZm5FbZTqOsaEVtdJnZGWIfgyw4zh6aRukLE2FINU6zqbrebLfd2L1yEGDh3TawRsWkaVPNL3RBCGE0MgIhCHUeD4dJKnz1srl+I1WRlebmOYlFjNbHQlEVGAOPBrohkzqeOMTGoBEQpqgK7RrKdUXNg+cAv/+nm5sVhxzWQITRw+w2dN341vut3RLU6dm332S/42pOn0BPHRYT8XGDNUvkMFmMjxT0dfZo06aZ5XYvYFt2klbcFJERGIwNsMUGpPtqYTUyHKJVpMBVN9PwaYgwSamlqCbXUE6nnxRoIFcYa6wk0NTQBQ7AQIQYUVYkqYqIoMS2PCMnyJIVWQTBsE4TaUgWrYJLhnVZw2597F8AkP2yEs+ZGTK20s2EwUiCjy5dNBUr/5uvDFWk5WuybSgxTxmAZQgaaA5SgHiEDyww8QGaYA3YMSuOCfYacAXpAp+SAPKBT45YMGZL+cgaWgRWgOSilDPxl+KlF5C/MUahTsKsBJbniaUQ/02ic9aiknQiNgZoFRAZMShzMlDvnaLq1amaIYARExOyccz53Pve+cJwRZ0yO0IExCKX8AxE5mlMpz4dYVFX3rGvzgxBBzaDV10x3mRRdgQ2vwPO3ZU3UBLSDPRY3ZT8IEgwOFJCgVcUivDyy0TnQ7mrb097Yxp333fv29jWjPWZ+fktk97/37Xe/rg2XF6dOMremV2FsB4Apaeb04He/XZNaRauXorYXnT37OOIeavjZNgt/P/uf3smclFX2RMB2xceu9EwQMfFqgdH99/783W/4gSu/8qf+4y9451PrL1gXi3mad2Opz2c6YXcymwgHnvLU6uJO1p9/XLlfO/S+MELHnog0AftVJQQ1AxVQEQkgcxOb8m+oCUZotofzHQyEEmU8c7fIlpeXzz38WO/IYWOqt3fZ6Z1/70MP/pcXXzloC0MxEcW24RIAAF76TwcJjN/G6AtTJTRGhM6hI2ZEATNQ1Tht+KRFYfC//tXjL/juR4myTlFWlY3Hw7zs7I52j91w7MzDj5UDLHvdWFekVlPNytTwIE72c29nNM74xKflRe96YOV7XvA5dqbW8zzcJYtQY85adzvuS+v88v9x9lUPHu10ds/iZDKOYEEIMi5Uy65FQ/LgWZBiBDMeDMZHjl536Pg1j589TWrZuBlP6n2Hj/Bqb/fMhUiegTrdbghNVQ82z52y3UG1vm6DdRiOaDQimQjWQDntO8wHjvprj/nVZej0WTBzFkwTHS+iUXLRYqNg7DgRKQaLyGRNMxkNi+V9yQmzscUmdA/sN6bti+u9Tllk2aQOKlJXwZixyOu6nozGfrlPzu9uDYWgv9IfVoOtrY211VVFiE3D6ENVl52iyHg4GU0mk+7ScpnnCqmlnZsmZOw585PG6sYMbV8OX+pe/+u/+9iPvumOph5z1g3K//RVa9/28Z2PPHjwhXcMX/o1z/7spz5ZVU9wARCFiEUkNSimdJeaishs+YK9VHoAIKZoaIDEKNISZSZxUzRAQkrwKwPEtPoJW8PQkFVoA9QJaCVWm6ShNREwFDAmiBaNcE89JVYVcUQmRDAHJoTeg7GaIhMAJZIOZCEC4LaY3SI8TACZ2h0KgAQELSmvzVKVAGA4FbjD1symvyTarUV52TaQbVOGnAKSOS3uFeDQxf1XvqUAYKlP2RjMAzAAA2ZmBIA0bd5FYiM0S0LGasiIGWlq5DUxdInDK7UXgSQ0shmYCZFDI0hUismILnagpHs3AGu5lVLcC+mftioTe6kEp7E/EEDABEIwwZS0t8zME5JDFiZBMqJktNLaiIiQhLPYKws6jyKOvFBo9Svb0d2TM7Yp6DgN+FV6iqZy2nscIpyldnXPI5k9p8Vt4e80NzZ7H9lcjW7vRxYf8H2//bbFOHhxe+obrl4hngW10GobX+W0s/9edTJdZpLTOQSmOLGrOQYLF4X7733HYhy8uN3x2h9uKbESiEIkxjj7pC3Qa5DBnjr7lDHHLOliX8X8AwCxAvlGFShr6sHhY3MuxkFv6fRknWQe71b1AJd7oT+HO3XXVmB1mft9KjtUFpB5pbZRT1VRoolIiNY0EhegJRJRp017beve3NeJTZBQx9iAhrqabFy4YN45T6PtTUcGhNzI01/1F1cdLgB4xrd/KgwvSrWlYR67Y0ZUUqrNFEWR53N81sd+/aCqNk2sqkaiOeezrCDnFSkv+kW5lOed53/no7Pj62Yy0aapJmgqBKNqxEHDZHz8luP1xo7sjBiRy07Z6QESZ75f9gd+gqHRDQvFmT/n2//Vn90VabWTaZRV9k3dlOY2m7D5wQe/4d7z3/LAfu1eeDTbGmAlajEPqz1iLlxkLYqiU3adL5BzLrqQZcefdGv34NoTp04S0XB7p9vAdceul9XO9sY2gu8XnX2H91cYtwcbFx7+Ujh5qn78CTt3lje3ySrjGH2Hr3965/mvWnn+S1ee9tR9197UWz5YctdzRuyTwl0GRER5lplqCIEZgVHNyLXiYR4hVhNEi6aJgzHWDfXLuq6lmvhOoaFh06ihaRooMy4yaYKE4JlDI4PBoLvazT2tnz8nGvJup4lihJO6AtMi801T7exsIWKWZSDACqqggSw0mYOMeTRu6kYzl29pc9N1y7/14NpnH2xcWRqL1hWh+0ffiD/ze5sGvZWCv/kN33LqPJdIiaMXp6yTM34eRGzRJXvrh7OpZEAGTozAqCVbQiZyRMQIDonQCI1b6oSAUKFOCMaoA7MRWAMW0aKm1FD7UocQQpQmhNA08zclVHWoaq2DRsGoKGpBUITUQBSnzEKgAklTwghlGiHozHWwuUkGNZjmHdscwJ4INeUwp0tsoqjEWbCbxBNSftoWwuI2JLj6er5nmy2JZgZGKTuYepkMXNJXBiZgUmJjB+SNHVIGlBnmQCVRB6BQyBU7iCVzF6wL1gPoGHTMcrBcjMQIjE0JgNvgeKbpDkKmkJSDW2FYI7VUZ2llLVLnZNIKSrR8e3kYAVVJDEdmI4IxgiAioiAyp7FJYRMaEYHRNJyjltMKmIiQHDBhK1HVxq57vZx2a3P+amhweQS8SKrcfsOEdJ/21V0ZMk4f/0IJc+49IczcMJxzUiOiJa2oPbFfy94Bsxw4IgB85t1vBwDDqxhd3NumbIu8zaqzyi7snZj3vP7HUgB91bl12f6F0DlV8q0lPts7PgDQzglEA/jMve9I57nnDXv6o6buSJsaQ8Q2EJ85ntCCiC9zSmxO+wxPe8MPXnnbAPC0N/zgZ977C0EzJMvL5uTp/Uenf9qCzoHbjn/2c1962rNvSnuKrDPOuCh686t0HLJn5AQhlRABVUwtqohhFBABCSqyyC9AOhMAb/3nh+//jvSnW5/1XnKEZkTmHaHocHeQr+2XqnGAIhImDUczaW58znuomoSmgRg88SNfbAFlzdkzlGWcF9bpALR9wDHsYOYQs5Sajjq/GQAwEg36sd848tx/eIExR++ZwPssMSGrxQ8ugKJNWTUKIaLlLq8n1XAyKDKPGd1w200Pff4L5b4138stoi87IoFGFfguoBJMms3zRc/e179188/kx7/68eV+Mzkden5j/fS1//nRZ32sew/4J1abxkgqLDyEjDr1coXYJYI+gLAj9khch9DpdldXV5tQb29sA8L2mfPXZP19txw7b83kwma36FKWr+1bqqrx9sXzOydPhYsXdXuLNaSmZ8OOrR0tD167etstft8+jdhBF8ESL6AkalZCh95xLiIIBCqZY0EvQU0NAIqiqERKn4XJxFSlCYRooowuW+oOdnasieZRx2NgZ0BWh/zgCpqF4RhFMsDJYJcN+iv9yXAwunSxu7yUOBxILdR17r0hDMYjMe32+ggUQiCiiFjV5h12GJramqYpi15OMIlZt5HlY0d/4ndP/be7jk5AXVZagJc+delX/vzsr/9p+Y9fkd1y69GvetE3ff7D71k65rQxaFdDbLthkplJXFdXe18QEYDNCJGJM8cZec+OmNUzEhkxoBmDEgqiADSINerIYBdxRFihNckKmoEBJr5ZU0RDEwNrAAim3Qn1pGan6sR5RmM0nvFagSIAoQNKDP1gqGhAhkBJLxAS9zOgJgHBtLSyJgwUGABay2o5F8tJ5zZTAAJC00SgQYpgUxmINk6ertg2vdA8c3CVQZttDOmeCFotYktlTbI0tkyIWWoLRnQGROQMCVSTlqK1KBxCUGPExNgFDjRiIpKylh9xbnenXgJMc4etuTHTZEZTpdRUU+LSku+CLe9YYt6GlrEaEjjLEFgBh6hdoAHIMlhh1CAqEVCy7iZkIAk1HMWsVRwGgZZOhRCQxdQs9YarYvvnyzKcrYlMhnVxTG1hmz6/eZI22eDparvwSMgSskOnTGDTj/NMRWTRmbrs98VHe9lTv+eNPz6DXJnZZQFxSkcvTpGFisie/Z+e1owvGwKbFlYXTftVPQxGoykkcvEqV253v/4td7/+LTAtmdz37p++f29hWKfxboIPXjV5gAsph9mIpZzB4rO87z0/j4h/e++/nO3RoORwHLYOHT38X//Lxmz/LuVwDn7pB35xtieAz4pDBc0j4HLtun7RYZdneYd9zuydyxAxIUutiRIjREGJGOf+zEOffzMZTBsl90bkBqCmEmJVh3qCpg7MFWU9qcwkSgO1PPhnX3v/+1/ZJY/IDEhBdTwP0yenT05OnR6ePLn5xInZzuHOxdHupdFkvWq2GtmNMpr96WU/uFsU2Sd+4wgAfOxdh4aD8c72aDyJptTEGEQWcufw/DedcJx3Mh8JAiIE6biCiGoJoZps6vjmp99lGsOgEs9NIgLuFDkz56QuZ+zJcDtrTn7S3/0T73/m+cHS/lX47ENrP3fqa/+0d2Pg9VD7OIgTzdFHKXuxW2Rlx3c8lf3Y77leX302DrJ24Mg111y3s71dDQfaTOKZjWuX96089dZHdi7q1nB1dZ/r95aWlsdhtHnh3O4TJ5uz53BnF+ramCB3unaNWz3Uv/G68paD2AfmQCU1ueMiaytDTODbN6tRQ6IQgsaoqk3TxBi99845ANAQc6ZmPGopzACbqi6Kwnd7O1vbGiJ4htiuPiix6OQQw2hriw28YT0aLvW66HD30iUMstTrEZHGGOsGzbKijKajyRCY2LsgMU3pRnRSxSJznnQyHJnGXonYNIWG3d3mwJp7bD37/fddKNERRMWKXP7tz1/9jQ/Hs9uWQ3zVq57eX32GjpSZZ/EuTkG/M+958WW/4pVNevfknEtIV2amtrtSHSm1pP9J8F7AGrAaExcjRgMRkITxTluMEmNsmqZpYl3Xs8vUdV3XITRNbIKEaFEsSgqeTUTb3FaikhYDad15JGo7a+drZbJZigrYCjAazlFUC17+DIzWShebzXe26y1ZYiWedZOmX3TBGkzvg8hdERATJuG9PQPaRovJHWJINFjIiE5TCEs8q0kndAI5hy0ozCE5oIwwJygJumgdxG7i3J7a3PTYWsDzFMxlOHu8Uy5vSn1KBrPi/2LxcGGsEp1iBdCATkxr0xbonsIkdpRml4SYGOnTs1aFRPs/jzkxiTMnXaY47e25PG08H1U0TbW9xB6uOncezUzBzBF4FoIIKbG7Z5FNwHSJSZ2DCR2ho1bYKhjUiGIWDGqzFNfPUOwIMAdCp6DQLJVaCZGf+u1tufeeN/64pL6dKxzZGR122u7+9h8PiQF9b7jMBrQ3CfC0N/7EzOY9/dv/xWz/p+79ycuIOwkdkyfMEDyBT/evC/imVq8XyMzunsa797zhR4GpZd24DLmA2DKzGYAoYDQIao1aIyBGqEQBIGTzT931uh80kRjVoj3tdT8w24/WIPhFiYKn/f0fzMb1tWXnI4+/6Od+7+/P9kc3GY5GrnvdbI+VZV4Q9+b52wIyoiXnukw5s8vLwlBjbBjVkjKgRJUKtDab20hIxaZWilgeffAfzUeGIUaBADCWz/75az79vm/4/EdeH+sRmsik9maff//XtYeWedFfLZYPuJW1x07O4/s4utDsnoubp+T8o7c+qfUePvUf75mceHx8/tTk0pndc6c++C/nqGmhaNm8qvKJdx/NHGmUOgpGirX91a/Nw98M847vGpVF1ivzrjgfmbq9JUc82h1xXV8cbazdeFwFmkvDUh0hGEdwqAiQF+Ayg0JHLqvPne4t/eSHnvvz73veL2y8/jP9lf3ZBlUuWmNZXnbyvN/LPZau0ysO+HxZvSuzMkQS9odvONZd7j5+5pQg7GwO4la1dOPxzo3XP/74hb6trCwfUfZc+orq3UsXR6dPVmdPwnhLscFObkUXlg5mqwf61x0vV48w9UA7aJ0Mc0RAm1juCHOl3JJWnyNQBKiaIOgKp5CLemAAbpqqYsvJilyE/WQyYrHGKq8Ay4VA4y9tlrkbTyYAQI61qshh6QpvuLNxjjWMmqjkO/u6ze5ocOF83i+5XJJI5JxpBAUkraoxABU+k9ggpD4ojFUsfdXx2biGSVPnjlUhcDZCzjJt1iF/0sGf//2t0ZgSq4EBft2d0Pfj33yfCYh39A2v+7bwRMejibpcPDlyEH1wiERJyQ4w/YQ2czt7BzKEgn1JzpMrvSu8IiKSMRuwhbSyOESPzqMyNGQTggHDBmtF5gDUICBaBAsSRIJJtNhoFI0aQ91U8zakcRPqRprITdBQizZGamQNxNpEScUEUJwFj+pBWKftSJiwstO8egtsViZzMOU1ICLiJAmoCIotweMcY5ssHTIoCJChM2QESqJCqEhzhuCU62zV+lLFsw1OJZLINBeOCiyAEQDAGMAhtuRZhoTsgBDIEBGZjJ2SE86UC+UCXQc5B+eNSQmNnZIXZmUWZkEP6IVAUAQJwafIT2d95K0qKSEwEJoCiqambcJkzrRlG4uKorhAnQ86CynRNAHewTAFVxFsF2xMMEAdQBCzEVINKKhGEMzGJjWoxiBRNarFVotS0YCURRaSo4qkjEZgZgtZOtSpqSaMaA7mXsBcTzAdl6j+SFvsAiV6yIVADRYiHiIC2xMut+1hLd3Vnk/hQnsxXJ61bm//M+9++yz8XbSRs+1v3/22y92xBZTWbPvkb/9fbK1v8ul73/70qWG+8shP/dbbFAlA9xR6LcxkfYEJkLQFZMFl9/aZd7998Z6f9vqrkHN99j0/S0QpLyIpNS/tdEpzV0kBwMj8XnzcPVd0GN/3nl80cqo1qd3/279w97e3WOin/qMfAYAb9h7ckcwjhKKc7SnLMssycHP6DqKkIWaMThuTurEgJgpRQFQ0okYzA1EwveXmdz78SHtLX/zsm678prc9/d0ClrtMRb/0qdfP9j/4h193+0v/0LkZMSwAwIPv/4Yrz3DDsXeYOhQQEwBBDDce/5nHTrwFAB7801deefwzvuVjvuyUnl/y3esf+NU20/6Rdx268kgAeN53nlczIs5yNjOJwZlPglLOZdHFYVN3NBvXm0effOPGY6eqrZ1ypRsNHUZ0PobA3tUeOQjtjiLxxaL45Hbv+JHy4PZQoHCuitghPzBxzKQdxzER6FFX/HBSd7rd5eXl3fHupcmo47OdsxeXl5f3X3ukMTp9cX31wCECrkE7vU4G8dyjT2yeeMS2dt2oIWRlRM5cp+96Pdy3BJ0OdEslhz4zBAZ2jpqYqdVEgdCpZN4oYkSKse6ai009liiYZWpaVbtLLq8VRyKrTdx/ZN8oVIyIQEGs3+vKpK52RssH9gERqlkMTQyGoKjD4S5sj3n/IZXQKXP1NFzfrJtqpXcwEjAYG0zqCbuOQ5CZOTEAUTSox5WG2OuXADAej82s3+8HjRbReYpajjEuETzG+/7tb9/3Q991ZxO5CqPesvt7z6j+/SebVz7av+um+vqby2e84DXrf/Kb9Yu6zVaEicQ8gzxA5AbBtZWj9rkv1rwQmMkDeXRFG9wRsDUMwKQZYUbIYGSCpkApDg6INWoDGAAEULAlM0ZEVFMTVAVTiQoSQWTuzTeNoiJYsAKJgERQ0mUJEE1TlhiBQQEQNe2fp8/bGiAAIBkISOvJt9/LZgdZu5C2y9R0dW0j6NkCnnYjUdLTBQDFVpjH0IjmmVOdVfBQKbFBUPreulCLxSQqlXqOtbUxlCLIxAo5U4YEAkx0+y0dtAEgGBiBAZApsJC4pKfWSvNOS5NgZikY1GiqIEkvqf0TqCbUFU6HBdumZmwBWTgHcU0BXWngAmA0ZLAdgJ5BAdZBK8kCWiCMqMEMTaMKoWDCvZtESBoQIhJji4VPqomaqpkMprg3qIOppSOcc2vMk8OzZ9YC8Q1IzaW5cNX0LBEnsAIkMnLkuSJ9AgZPJegXchqL1118MWZJkv/lduXZrtw+9e63MSJMtbrQbDERvbjdf+87iIgBAVrlzLSpCRKwIyQAU5EAoMj8t791eUH6njf++Dhe3nB92TZq4riOkyCTGGvRRjEk4ZjkpiCDERgT+q88Bp+69+eiDdEcGrkiF6VP/dZPf4XjAzhUKW1ubvOym2WFW6BulmnORGITq7oej6RurA6xCQigEsyE1DACBDPRW26+OtYsbVGEDTREVX3SV/3ebP+TvvaPAUDEYoy3v/SPv9zHb3/+77h9B3n1QNZd4bwDyKqq9fjLHX/b3f9+9MRDO49+/swjX1h//OFnLDQ4Xbl91ZvWAVGZo3dVVAUE8llesiuMsry3tLT/YFPraFwVahdPPrZy3drywdXB+U1tAJgtis9dRMmiMGOdQT2e7OxePHTgsIzXJ10dU8amVrBqj30es9wELHecewux9rx/35HOUufi5sXJcNSrYfOxszfcePOhm27aCDIKuLLvKOadhoF7uVp14bFHBo8/FjfXbTxShJhluLSM+9d43yqtrbjeiu8ukctzl7NpBoAaMDaMAwRGyBzWjkJwPkKuiA53WCdWhxyZRSREnxdKzFGwV4y2Bv1OiWjMHKtGFbIil+EERpXvlSAqIhQ1WnRlzoUbbW0W4wA5x2ZSdDLRMLx4gb3v9pcimCCoiIJyhgwmsSFQhwRqGgUN6qpC0SLz29s7o2qSFXk0RUTv2bTJcxrDeGebD9xwzS/+SXP+5Igzx9gFXnrxk4t+p37XX4AOAoTqmd/xLO3d8pTHaioBsYTYVEoA6pgBoM2BJgDOgstO5Ikzx6XjzBM7AkTxJA6js0AQSIMDYTLPQmgEkaFmqBHrtF4DKC20soCiqkmEGCEGCGGRhwOkhhgsaKrVgSqozHsLzRAVU9hqrTmcgkVm2wxlNt2SkMNMbA2uqHYvLI+LC8oCriVBTmYdStRCOgxAQRTEkt8ICqDMCKRAlr774lUMKSWykWY2xYjIyCxJQKfH4BQZiAAIlVpQGCT6wzabzchM6JCdIacAcBrNkxmmrEBLCqQCLUeYtRxBV1gEm1aLYa/9mu0BAEiqIBgAxqY7Zltou2ATixWECUtN1oA2KA1oQIkSmxBCCCHGtvRgUaakLmBJwmPasGpmi2OfEhstNFB0RsRxeTCpCA7nThe0JfrLE6o4+9MVhnA6reCqG05x2LOTQxtgmxnc+8P3A8C7f+g1APDz53/vss/+wOHXLP736d9+lfNfdszidu8Pvuayc1558O/+yGt+/vzvfYWTAMB73rLnPOng//qj/1v3/L+1/UB7D1de5arbf3rLVb5XOsNzAN7TX+2PTs32PGN2zH+BtOfp/5/c2n8rnwqAN9/2M4986XJmsZvu/A0iUKIsJYRwr4BH0nJFUAkW41O++r9/7oOXh7/3fONfuZU1LAuTiJNK60arEYYAsT5+3U+i6hNnfnJ28PHDP07MSKyEhgRcVmbE7panfuHh+/7BZWf+6u89B4rsUqcfIqiSA0RUAWgLpQpgEI4ev+nCyRMXLl3af2ht8/y5/tLq0dtvfPyBh/Neli+VsWkYLO+WTdM4hUDoYyajSwoMqJ2cSTLWWHAmMfbACXM1aup61N+/f2l5dWtjM4wrMmuGk91R8/RnP2+AslXFolxlcOiwaerl5X4z3Nw6f3r75GPN5iUYjRw7zHMtO9Dr+l7f9fvF0pJzjp2PpgDavlPJBdZOF9GIqphnPovNOEM2zRqwaBipsazhyC54p1m0sYlaJ2suNP1Odmp7M+OMlYDQORe3twkQvZOmBnKOGEQzdkgyOHe+kzljZIW8l+3s7DTbu2vXX6fOEzECNiGII8+oqrEJPs+QTFvojMUY86zLCHVVAdLSUl9BzCzE4HKXEbjYHcZ6BQo79rSf/ref//mf7jlVkOLYzZ3nHX78jx9f+p2Pymtf3uno+M7vfe3D3/OOm16FD2SyHFxfmxH1yrDbkGsLXClzu7gcoScsiDMkT5RyMsIQ2ZTASCOyIghTYBSyNhBjTAVaM0vS8IYmNA06U5QlEURA9/TrJYpbVIW2UTMZEuVWW0iiEYGJWduAj2rGC019NmM1XBQswqko0J5tuva2QXD7Ai50YSEmqgECk5YtCcHAWt5esgQ2TYlD1LmdthZ0BNMiLAAAklkkQAYitLYbFQgT2klJCA1Qkr/QRssIiKoJPIVIM30aRFBEwkSmcvk3SnQoGlsJJhW1FvmM6YHYnlEARFADQjJIzSXQQth4EW6MAGmPmZhNwEYIFUENGk3H5AqEJgXiplHVmaiqpQiYACSqtnjHFm/fwqESImEvAn8a47aRt4MW99t+yfndE+pCxTc9DCPEKyKzZJJpymw19TISbnuudXhluhitbWKb2e/08z0/8sDiYf/7puv/u0f+Pznm/465/fLn+X/yvf7v7flfbq+e3PffO09FlJtu+Rl2BfoS0McpvKOV4orivA8aJYY773l33NeHwhMzmkI7QaMJ3PM1f1iDOueBHLkciZkdF6TOQQxV1qGm9qGLsdG61noioT5+/TtSJpwAiJyqQEzyKWayzWhoEDb0+MG3wvIKrx30vWVaXi7KblH2nMuY2ZFvm9KzLoCy41SmYXaiNQAEsQPXXjfYvnT+7KmVpd5ouJPnnTufcecTDz40OrfZW+4xu/GoQscdyilqzdhwJ8udGzWK9YR96ddi3PGeKofDrdHS0tLK9deFZnLp7EkqMhxV0sT+0urBp9+8XjVxAr28B+QmFtGkk3OzeXHn1BNbTzwuWxtsAp6QM8tzWu6X+w4UvT5k3pjUa7RGiRDIOWp0mt9jH3CCHL3LmqBQ9KQeo0TnUOpNNAzQr6DOy4okavAQJ1nZmYybZjLpFAWYSFByzntfD0ZEZBIhCHczMbEg7BCbOl44bytroamXlrsKsnvyFEcrV/fVSrl3oNqYGaEDihLqUGedIuXnmDFIVLOidCGIiNRNPRnXRS8HECRmVMPI6kqC0QQPruX/9dEDb3zg0jPvOljXdc78jc+55hMXJ//5PnrJU6vDq3zT3Ucmr3/N6KN/QncNmArREYoAeTRNkNcUnCz2LxAyMCf0HydFIxOTaGBASqiEwigIAhYZwSM7Q1QGYENFIMRIJKpGhKzatuS2AEyUaIsZsRT1YhSNaI6NEDTpERgZASqAWCJJMEJDME4pXkNM8qup8JnONrsQwBTNu9gNvBdbA0SJ32PhDdapDuGeVd9QAdkAEmwAABDQCESMAEw12d40iqkJp8WMEidwKU7zzAvclqlHCQANUQwZMDF8KCbLrwnEbS1UGVPRNLUug4GCCRpgahfGCCZgkUzMDKOiSIv8mRI4YItybm3wVPhgYbCgPTHS1DdrjaAhNKATxAHCBGxs4E0bxBoSvYYJmBjotJaMoaUgjRqjxDjDZFni5aKEhNwTnS7Gq3vkCK8MZHXKOdF6O1eLZ2fp5YVp0ZKXzmqb06vMNf6mJ7zK2a68xP9/+//FTdQAkBBMKK0iU8IXVbSohhRUiAir2ogcoYB5nwGpRWMUM2AVMpCmwdrIiXik3KNLNKxkmSuApAmohhJjNdGmlhA0RAkTEEWJqMoSTSPEYCECo8QJaGATrAY2WtedM023o91rrb8Se30su75b+rLLLiNyUtdElOd5RDADJjY0Isoj7krTXVtb7nVPPvZIJ0po4hkNh591+/ChU2dOnuofOyjGbLYTJt2i5BCcuai1lt4CsIPdemuJeacaSzXYf+Rav3/5/MkTOQF1Mjm7wXn3wPU3Lx05cn57F5HLTmECUSJ3zQeB3e2Nh784PHUKdnZy0GCqRZ51u9nSmvV7WBSRwBGgJ6Ay89Q0DTOLSFmSqJgpQsjI10HJxbLIRrV2i5KKehggL9bG27tlrkha1YYSwMaEzrMbRtu+cGH/jTfvbG2PJpXL2ByG0RgdiQiagWgQYQT23kZj2BnI0QMokneL0e7O+NylpUMH0OWK5BSaGMWMFbIsG44GifgtqgAxItQhKEIT6xADgO5f28/EGhQRnEMUrZUi1H0uNylKw3zt2n/78KVn3oXqqGnw6U9aetpfPPTBzZv/4M+3v/P1S5nBzd92x8X7N47zxiPjj5VZL1OJym3joCX6Q9oD75jSzaEBohIoQUz9Dpik5DUiCYM4Uo/JiCCwQ3Ngaq1ycOp+nQq7qZlS4v9Xhb0tcntaHBMMxxKTMzISJtIkS80ORJBqUthGP0Bke9fqlKxG4KRom76JtXCb9sd0gVVVmWF92l9AwS5fb2eB0KwoCQYAOo2vdHGd1/RXbHtjLKntGrRs0om9dybxiAaUbi5RWEjCu6BM5WVBwTSR3UJCnmMkVDQDULEApmABIIKG5OOAGamZWur3nfpZhqY2V06cMkdNQ7yrxISoYGAoSGgqCLXhGHQboQDLUSeEDaMnYwIxCGZmRqCmYGIQDcBUTEVFWsB5iw83YtM91AjpJhQstf+5BC2epTAYsE2jEBrY1MdpHwnZ/CHNvsOs3Jt+T49qti3irxJzy54k0EIeAK6wvm94592Lz3t6G3MgxWXuwut/7s6ZvQ+mbjb7AGBacocptkD3fjwRhlLrvLEoKjgit9w/1OmvdJdW8+5KVi7lRSfLsizLEjE3toOSQj8gNKVEVgZmRnOHW0naaZBKO4aJJRQ0cpq7qoZqqhpDCCFYDBLruhoOd7e3Ntd3ti42zS5pZdmE1bF1A41iKArH43h25dCz/vuJV/3Oz7930Iw6x44TA64uheXeytj7zEZdvXaAP/efv/snn/MdDz3zlQdcMIHhpJIQIYZYjaM0Utf1aAhRUARigKaBphGNBKYWQRJ3ZkTQV0/umw0+G6uaRTGO5D0ASnrRiAzAsZtIKDulbo8aR1kUUSHOCleCAzFtbAISGxWX5dCAGpqIRLTEUciI6HPygTi9V+Q9iHhVEbFYSR0gRlRTiyYKMUjdeOQm1mCRpZHxQMcD2J3A7hD8qC66oexBp4v9vu8tuW7PF12XZUAYfIbeoy8MMkO1aKiuY1YFaQiuveb46ccecyo+xvWN0ZFbb8g7+clPPNA/uM9WSlb0dQicmUeH5DQJrwSR4XCgRw9c171+385oPPzSY/2OG20PdHOyduNN+48dG4NdGlXdrI9Rq1ibQ+Rok9H4/IX1h79Ub1yAeuJMhVid4/4Kl13udqAowXHGjtkZIaHz6CMCIXrmTtYzYmSqcoVtyMulKtRb65sHVvdvPXr6/IUT4NzqdX2/QqOdxlnmPRhBrMBM4kSK/vJ4e3fFZTFGRcgznEiNk8oRKGqD4qNIjMwsjPXGBsZoZpn3nLnqzDlEKg4sS4hZp1CToJWaLrlSySaTCWIK7wxAgsQYY5ZlRb+4dG59e3Mrz7rdrNCgAjIcTJaXugqNWV5h3aX89HBw+ED24SfKS7t6oJ9NaBegeO2L9n/qf+z+0fm1F9xf3Xk3dZcLf9PSTfEp9/V2V5rTE5PCRAnTCpzwlVdS1WFrcRFNEYyScLwIQp2sL6EyKUFDJCgGhK3AmxmYIlFSR6KFPqGEebI9aoQpAaxEjExAiOSQHTIhMTABO2Bv5I0JGDDBg6GNh6EF2LR2UdtV7PIAxmb0CZcHXfOeUgAF2ENXd9lh0MZUMv0ikCgO2/z1NLBMF2yPMCOVFtCEimhKqcM4QVuUEkCZ2vtQBHQKyVAhQaTZSdEikoA2ZFFRAGOSokILYDVYRBMzgSS0oEqJhiwp2SSq7HRHNPN1dAZGm+bOp8Cx1DSURoMQkQ2RyJkqaG06QRgjVqY1YEWUe9BGAxsTKGNuzC0fdeoZJ9QWPE6pIQh8ZmJgarLHYqb4PI2Dm2aYFygs0kAkOoiFPp8UT8O0t33xqc88poXUxzTXLXuA04kgbBZqJzftqme47PfZf1twdnr8YIv1xXTv7amQohq1cxVxwY246pxTbkA0CiA4QO+Lpf7KkaXlfWXvSNHtZZ2u84VzzjN5Bo+gJEStU8mJ9wQQAIWE25faAGHKho7qFq+bHhSamXFAJjOMqX0KWXMScU3skoZOWFpaPrj/4I3j0c7W5umdzQuDnYsx7oqYKxxCHQfbR2993nv/6p7fetcf8JH+6r4jkJfRHVpaRmHGXgTiDOuDprk1W2vX9nLMDLYHQWKUupJ6Uo8HGhuIYpOKxCQ2KNFCYzEiiUqMMTpiSNN7oQKRUkoEFmIDzjOU7TMySG5JHYMxIqJWFa0txWrCZSlBJXUQIIP3nt1kMnJ5ZmWh2Hp+AMCGDEypvZ0JCFNXJpkiIGrg4KmJaeoEkUQZ6KNEkg54oCwSgoNcajt/fnLyNIYnoBprvWO7OW52Y15wZ8mXXctLn2eaedfpYVYAuyzLiCAWnWgA5FShcu7QjddffPQxoIntWzn16GMrq2t3ff1LP/vhv4ETO53Dq7teCJslXZqAGZMKDbZj1x289ub9RnZhc8tABs2QNsf93mr/aXd3Dly701QZeYpYEypa5pz3trO7u3Pqscmp03LpAoaxgkiWcVn6vHAH9uWdbrm8rEUeDYhd1skxZx9tHIZZLw8RuVw6tTEyyESxG3aqfIlo80m88aJb93/wwQ+88jnXv/y2JzkX/sVv3Xe2uh5MPY4ksGpJuquqGaEV+eb6xvVZRkQhhE4/m2ik2JJ5KoFTbVSVWXMXB2N2yNF8lgeJw/UtV+TaySTGwvnQNNEiiJaFq0ITqtoXefu+A2gMgJZl2WA8iCYHDhwggNFwSBmT46LoAKFojgYVgdPgOWpVTPLVv/zY4DUvXy2bIvjszjvXnvfRz71vkP3ug/zkJ1Wcd0bXC7x/fPAlb5w88P/qZGGUdfIgluj7DAz3msS0FKMBGFlC4IKJIhqTpiYdhMAgaJE5oMUkXACQ1kEDElDGaVRHqaGWgQhiuxbNr0WESKl/F9ouWGYgNHbEXtlZMslESO0BkAhzU58vGhrpXlhWolZdXLpn62F6XVv6DkRkgnS66QkQZ5wltrhEQ/sRSgwuKaxExGT3U5ZrMQQzQECENtbXeUMHKqXsb4o/KbUdgyY0NKYOMTBrYzYiMhAksVYsPqKF1BINFs0CgCJqUjMGMxBFwxRM4pR+MpmA+TexucuF03R8+/s0O2CogEiYpaQEgAP0Zi3rBlgAqxACY2SIZIIQkdCTRwVSUwBWHzUAzMJyNCQkT6hgaii28NRijG2yBBEQnTNWXHB8CGZcD4tPZfabRMO5yYNZ8DdjnVRVS+ypqbkZcBYcL5rnNkGNrfL8l8s8z0xmozZlBQOT9NnWr/n0b/+fT//2//Nv3/2T0xlAAEAaoCUTV4eIaKCoZgQMKdoEA1akxizTmIEYsjOXZZ3VpdWjyytHe93VouhxWbKjLHPOkWecDhS46T3TNKuTBpmTXBe2XTbTSWaXITBnyXxkDwBolhEoGIApkXfOO0H0KlkI4ksr+t3u6uqBa2/e3bq4fXZnff2LUg8dytKTn/Ybf3D83vd8qHt7v792uHE59zudbhfB93yBIXjbOce9OwePb+Vq+2/zWo3rrAmbJiHWkzgeY11T3WhTY2w0CkDU0GCowaRRATMCRIOoiVZ34SsYAoAAsCOzGq0CK9CYmdFEkdC4AMUqaC9hb8iGFSopsusWaMQKSrx0+IjrloCZRglxoiFaSpchIjlRdT5PY5h5BwBq0ZlXJ66DCYCYI6qqKTI7R0jsjbD03hM7hPHKgXrfQX58JWyvUzNGrVQqkELqkex489hwSVzWWYa5p24hvSXOuuAGgmDeY+7FdLm/dPyOJ50+eTJsDLP9/eHWxjjU17/sBbufeeT8F7+w8qSjVvZikXmTsL0bR5Nrrz1a7lvb3t5utIqDUXVmvddfOXDH03pHrxmGoE0NWKoJ5aERcyI03hjurl/aPKmPPWKbqrrtzGXOTaAvoAeOPAkOFz3f36ml3sB91163AluPPzH0EcuVQg8d1DOnrludbJyLL7udjvV2bTJ80+uf8d8+/Ncf//TGf37nN4DBDc/61099zuHXvOLOD370YxfOXfLLNzZlJbICblMUYlASUU/Wc/nFZvv8ybXuvvVwRrKeS7VM0lxibhYhoiHXUIBd2tpx3hqmA/0yjAe6u1MeOQgV02pehd04GQs4yn3MLWwPq1D1VvvRAohzyKEJnrnIeHtrE4Ky47IsjbxiWhDDaBQRMp9Bafk4RqyxctZZsk+dtFeDIWWuCejdG1++76O/eekBf92JJ/T4bWF1tVs+8YVL+T3F2nfw1q95psiNWV5UdZ0DoYrOYf8ACkHIZTHGLHdIglHBEYBE0wCaIQMIWEUWESeEzixTTV0lDIAKjJGS/VBSZlChlpeGYAr8ml7MDBwCKKIDckZGDGm5F8/ASC4BfQip1a7n5B+wmUUARkzQIVOtIQkqgSKyKmryAJgB2nxnG1iltT3BfloKdTMTRG75+JEQdQrDmlN5KGiqOlPyJFCny7UsBJQIZgwABoIK5NCcGqMZEaSlxHEByLM+FEhVbkr9Vq1FUIpgCiJo0UwNGsAmqTIg1WABAAAF0UxQTSmZgNSRAaQWAQTNGFgtodyMp0V1AEzeOaigZwOdavYwGLWeAKTaRCDM1SkqAywBloYEEQhVbKJSGHvDCQg5y4ENyIsIasoNc1AwE7CYmEWRCdUp+5Svm00DZlI1ABIDE3Ez67sYhs6M39w0mllrDmnRjiwEqbb4EWplSSTqVHxgocY8i7MXJ+jMCZjtmQG7ENEzQCsa1VpunKpRIWKyvrPrAACQh5TbN4gWHRCgIZMaGwQDRczQchUSDWBBqb+0fGBl+Zre8uFef19WFHnhs8yB846AeWoRUmEFIYEVF7e5q9WCIuCybdH/mI9VW4ZCSJA3BAZToMxRog936fUWn3sMuS9zd2Dl4IGd1fMXdraGF9/+NvvQFz934JnXQ484X+n113wn62UFu6yua4dxt6YiX37hmU8+uHKDHTnIw/XJZBCtlt1JMx5JXWGIFpoYaovBzFBriwE0qgqCGBgYTx++LpJQanIYkFQVENLCZAAKRoiElOxojHGqNqNgFsaj1FzJ7FUj+cKYI2E/69SuNmHtiIhIiKBAhIwZtjiGNBPMgUNEVVJVQyFUbqUwCQ2QgVzWDrJqFHE+W17dr2yD84VeugAVIQQLtTUjJpYJKuWAmRKDI8izpuwyl0NXdpb61CmwLDHPtzY2y27n2I03jNc3Lpw57Vb7nbq68MTjB595S2//6sMf/tjhO68HtIvn19fy3g1PffqlarC7vo6Tuj55SUfNyi3HDt19V2UwGDaluWEGXhswj8E47OxuX5Th1s4Tp8P6Od5pUALmjNipyvJo1jv05CPrYSM/8KztM5dedV12ze30ex9/3OrsV7+zc6i7eqk++5ZfPvXL/+z4N37tk7/xDb//k6958fKq+w+/8cXrD99Tbw4/eL/98rs++OZ/9MJ3/sJ333W8/4XPP/qNb/5Lf/xZGgZSemZz0icAaMZ1WkfLDCfNeDxedStQeA+uqYM6ogkZqqpEAFUwdmbGIY5j3WePHT954lKs606n04AQmIQgEhBbpoSqmaRiFqOLADGoiHU7OZiEuiYAZm5iREJFyDLnHHvvt7dGVR2gs6yqMUZU63XyL53nkyd3bjzWN+cnsbr52OHXPePcv/1E9aGT+H/chpYX2faJahfCDXfj4HlL9pcIS1nIm+7YmhpgH9H24vtoINPyioqJQ1BrzIRA2RQsEkRIQnjgFAxRkxkCmxbCCMjIzBxaxHY5n/XKLsqKMgM5IkIkQk40UQyIxok0gYwQk6ZQSyCogAQmmJj35lnDmeCgmhG0L2nC6+AM9zotAy+GsDBjM0oZZpyaW5gmtsHaSBfbsqVJsuKpBcgALM4/lZY5g1YRDyHBn1IkSaBADkARxYATEdMsvE6uO6ZiHShgRFIQxdS2RMk4C4CiRbHYCkNBQLAknGwmQIKxbQLGmQmDOYnFguhTm3GcrcvphltDZAag1GKeiNirMUGG4IEJzNCMIJJGskgojiACIBpP2V3SpafqNQlzAEQOQclFwnn/p+qUtjll4mdDmRLLSS6jlXpYMBvziYS6mFe5LHEx/WJXdGQlw6V7rO/s4L3nucpmZsTJd2vZPaefmuWiYTq+7V3pPK+SbHX62qJpHQACNcWoAOyXO539vbXr+0v7+0sHy2IlK3LngH10DpmJpoo7adZSwjZ8mRvGGVJt0bnYW49ZzPksejmYZgQCJdVKTDUUAEBjYJd770qf75bV2tJS0dfdL8iNz3licqw5N+ja6qGy0+OlosxhWbEirAuuJsA+3AbF9ec+8d5bXl5muBt3diXyTtThyOoJ1A1YwBgs1KARATRUpIoSycwodSZqmxg20AWpQYNgif5GFUBjjC6fTul5LyCGENh7REyFDxYNo7GZ+m6PCQwhGGTOK1ielZ45pL46HyCIxEjEtHC2mfAcAiC7LENEU5DUHQGC5DNIiAQFIgdqQBnnJgcP9otuXS7XF89htetkovUAJRAxSQWQvjtY9FZVQt4wG4+6mGeSF8Xyiuv1hqEOdXNg3+q15c2nHvziuNfpLPfXP//QsSff/mz/NZ8+/dns3MbhQ0f61x55bGM9VrVu7fCF3YPX31Tcdh2WnWpjjBG5360JO3UA1DDeCbazvbU+unCBLq7DpUsuXBJjKwF4/9INR9bPjn7mX9z2um971vs+cP8rf+DTr37B9f/+Z6/1ED/+6Y+fmeTf8JLndAr34b+szl4cjBojyP/x65/6R3/5yDe/+Lr3vPvkW38YHtnY4etf9s4/+tzph//4nT/16sHg9Fd9z5917/gW584PdkZGxKboQ5iI5jU2hICQea3qMB4VBzNzpKoWYvSUqyCiSHQIBgiMMTY2Glqscs+1SX1xA5wzQs4ASWJdSQzqyCOLyGg0KkqHlmBYLGoAkGVZPRnWk6rT6XDmFZKTZqqkijHGlZU+oE6GdV3VyZkCgQ2yz57oHjs2JFjxkBk33/Li1d/99IkP33/zP3gZF10Y6C7uwjnG3k3fsvvIE/vcdm0DU8fIkYZO5lw0ohHRJ3pSk2CoxikIVDQlUzYFMCQBMkNGqwEikqKpaQRTICZqcbtI4AgipggWPGGkvU46tx1iRslQtpVgQAIiS4SO5JIKZEIjA7VeLABPEaySlqIp4jkpI4G0XUoIgC3OCBcIc1Pub7ZCzUgXAFJkDvPoyNokLczX0jaXPmWsSAF0ezyqqbRl1KS5i0lWWQAV2u4jNAjJ7oMlqgOZnidVshPgWYBUE/6ZTFUAo0EDFkxrsJiQcZBQ0BgR2xT/3NYk4wcACEh7GJgVQduAFwFZ9y7f0yXXEBKtZoauNMsAsjaPoEaqoA0aEzaAHixC6v1ulXXCglxsIvV0qZnXyMMic2Lbe2WKYKbuSsu3YDYXrC/iZWnkr7BZ627IZdWFdtbY/DBcKD/Dl6nRtn8SvZKgQxHmjfCJkXzqCSXjhtbSUScIQZox7b2BGTL7pe7SdWv7b1w+dG1ZlnmeO+e8B88GkEqQCYmWnqtd2XL35UZvT/5gun2FTPv8mFSpaIdasGVLR0ZidgFgpZM19QSQ7nxmfvzO7qMn6a8e3Pn82T6VZLkQuVhBDOrIsIkD6L/w1GdPbH3hsdt/UnYGzcSwGjf1iJsGQwSJoEGbCmJjiegqxpb1zoSmgMrpHJfF8n9io/VmYKAAKpL4btQgijjnABGIomrmHZJL0bMEccxWh4BjAeh0ukYQm6YmLoqOB3aAig59Jk4WxWSgXQukrWg4A1FDTsBHIsfM4Cgp0DGSmjJgNARCnxWqBF3ODzC7vN7dieNt4C5JUK112tuBoABshqbgSXS0y7GQuh4PR9zvZd0e5rsntreO3Hrzoec9bXD/w1uPncyP7z//yMMHr73u7mMvDqOBabOxeZGHI39qG8WOvuA5sVuMYrTtAeS+7JYUJGhQjOMwroebzXh9+9KGrW/R+hmbjMVHZw7ssBw+EFY6ef/GP/jj9Ve/Rv7uS576z1908VVvXM5s+S//8gMf/az/ujuu1clE8EBlRGV+YTwQkBe/8Obb5NbNx77Uv+6omnNSXnrsdP/OI//yr9f/7oceuPG67Nz2irsNhw+Mh2T7shJLkhonBfjGqan3WY446eRhZzuQ9ouOIHpTYLG6VhWLYq0qiwcTbGqQ2pVZbIIMxp0yj4C5J4ihGY9A1dDn3oeqDiH0l0pVRVAjUtUsyxhsPByiqPc5kQsGCMpMBhojOqTxsMpKVxRFqEKMUUJoKnUr4YMP2Ne/sFOHkGM2gVj07PnHq//0F+cePLnyFJfvbmpd67bI2Xzl6Mo3yuavRrfsQ7ScsOGwsBSKBDBMcq1mqKbAe9BJqXlFzRSEIaVGK4QGTAFjwpYYK6ZWVDREYExgTGACRpDF8yU+SZrmY5ExEVAAIKR8NKVcaOrIBZwtIDi1i4qU4tGWKn4Gt+Lph2Ae4WhrJtP5LXX4mk1RGu0NgUyRp1N4VVq4prT8CdIEAKllarp+qSWEmCYiLaQk7pNsYIsOFjRNC7chArK1XcBmbXdNgusmPXlp9ZitrbyiiWkwiAANYIMawCJCgm61ulEwS0MYJNn2JLWZ8F8wq6tOSfcXV5JpFgGmaYqZnhAZsKFTcAgZJlksQzQFjQkLpuAUnVgmQhZFLc5zum3JmwB5WmPHRTB8GytPA3aXhjIJJ9AUwZRyv4shWro/bKV8r2o59qSgp17b3AecW6bkSNm8EnzFqebbPGstCnR187xwqzDDvLUfNDFpzScCIHBQQIqAZi53fs0VR7qrx7trh8tOv1NmWQ7E6skYKalNJc2uaVZnjqS6kpj6amOy54t8ueOvuk1NnSEZGiVAPwIWTocQnSv3d62rE09FflwOLa898DB96PHRQzscLOSZKymDcRTmJeg+/8T7P7zvuurgjXb+CQ2Cu5OmmnBTqwSTWkKloQGJidqNzBT2QD3aV1Ytobzn30jTRI+A4MzFGEwiOwdqccq8nWYCM0t64Q1cnifKemY2QAyVWCQtQg7YGGiH2aWQ1yG6wsUYzCCqTEc1aWUaAKEjpswQYmzMDMwjIlHNSAKCrT9uRIyIGfgGfOwzZC6WOY06MK7iaIJxAioqYSqqCIlzR1AAIITgDI01bm5WOzu1Y7+8cmFS77vm2DXPe+rWxfPnPvxpXh2fcrC6GjGjwcbFwQMP78972S3H+ObjG6PKj8KSy7XIqyhiEiDkVRW0muyery/sVKfPFLuDenxB4qZZ7uMyHFjDA/v7awdpbbVTx1MW8jgYN2s/9Y4XNFAIqi0vVeHEy57hu53Vx0+N/s6Lbzgy+sRyfdtnP33ikY3xa772tj/bbRKV/2rX/7NX+mffPfne+4ujNx0+csPBlz/tk3/0+AXpUdmEQe1WPOzvd59d7v7lRpn1FUAUDMusGU0Gg50jBw+c3N7oMEJsYtNwDInxAJDQCETRAjY1F06rqhmOOtkykDnmejgOowk55hw9Z4PtHURMfASEiGqqluc+xLqajJjJOSeqCa7h2afqVVNXqk5CjBoBtfAOES2ahOKx0ejhh/XGW7wGkIbKLLtuJb/Y1UdOwB1loaFnnmzXXcxj95p7/M7tXXoEYCnITi69iiezCRxjk0Ie9l4FgZKqXXLiE282YBs7RdQacGA2AmwQI1hiq0BsJ7klT3UGwkopzT32l9ruAMTUcUQJI7Vg1fYwFqblq13X5p7/dH3T1rooQAtrRUCFRbX25JvOltnLIiucPpE9O2eXbiuHAtA2FyXekTY5BzjN3WpbGQQDUIRoLcckomVGMYHbEAgstJefc40oplylRVNBTXIUChZMBSCABbSAEAkELBiIacSUe0itPSl7nHqp29xvW+9GBF20wel7ERLwbBSQUqMPtIH4dDyJEi9X6jfzaD4JHJAiGpioaAPsRVEiiAQTTWRX2upCpLz/VN+RUjTcbjLl4E3Txk2tlzKkhHaiLsK2fo1IU0g6XEGDBQu5U21F9NKnAMCmDWdzQZL2I8nMT228LZzqK4TXKamCiIYymzJznpA9SV2YXncWuoOCmbIZAjWIHXR9o67Sqi+PdJYOdZaWuh2fZewZIWUq5uhpgqkPOIOPz++qfdxzmNtVvwDuneVf7jteFjS33qdOJ0faR9rDTBU0izhxh5axl48zv5QDZNnk8BfHXzxHJ8duUmQluCbijZON3uf/4r4bXzJuQhxdbBoRkLyBKiagSdoig7YIq6lUdPuk0jowAzYuuhESDUhYCB0QooCFxrnciElMRAhRxJg5FSCYnSJARFcAxKhqItEhxlA31RjLqGUDXWXuIHsGSm8UOaeqNHs9VFJaI9WgY2xSzoOJ0DS96ikiMVQDQCZCZ2be5eg8lc4aMo/cK2HSjHe2OSxpCNrUFgNanD2CgOa91xBjiCAtjw6pxfPnwO1siw0tXHvd8eu+7hUPfPKT8thFfDL262L74ZN3PO2ZsrY8BKi2KnJsPq+NvLFzhGYssZkMN3Yuxu31eGkYNs/jZNOkAsywdxiXl/trh2F/x+VZL/Kwd2D77BOcr/3UL/3uD77pm//sf3607C4dPNwrHz3xoue+9NS5nUdOr996421f89xlX+jqke7v/4ePftPXHr/xyKE3f0cFGP7F93xVXmYf+sAnR5dOXFy/5dLZE8GyajAJvPWka6577e37f+xTuy+X0TfhZ/68eUrZ9w5oqCZmKHG4vbVy7bWOWJpKx5MpHz2CGYKRgYWmkQq15tyNtgZSV0zLxsRgzXhsIQIRMwPoZDTwjomZmc1MRIjYez/e2axH4/7SCjEHTSJ1CiqaXnNCDUrkmHBUNxJCVvQErA88YPjzB0dvvqUfkn2MVPbqtfzAI1vF5Oz6pf7S4x2zbTSzYY/LQ6/Jz/y0dhqIDmiCMK/GxVAbGAEyiBqCA0jNwCZgASggRISGbMJaIe4abQPsGjYCbSjHe5avPe+yIwgMvId6GhiNE230rDlzcTFJL5oCEQKqJrYHimAMAGCaIkacmZmk9gggNs3vwgwfkxqAFGCq4I6zOA/mKCojoIUl3cwArU0SYLtQJckCtHmdGKYWQQ1bkkgFiJDQv0AICMAGAdtsc6oTIxkaKCingi4Cp6+TqE5Qo2kkVbNoVqPUqgG0RmjAGoOIlgiwFNvCNMx4PBPWJ8HKrM3ZQercbumysU3mmZm1GYhkHmZNWcnLSCrJ0raLAgK4xLmdnCY0TAA5kwhCqqxTSfe0dBCRGRqAKRq2SW9cKEVoWwRuTZUDAE52CwSMEiZr5hnNDNtXsI4zG7wQxcP0Ye9J2C4Cji7bZgvfZW7anqu0H1xkYpsV1RerywbA0sp5ECMAkppZagJwfaQ1cAcEc+DSlavd3nKn7OU+Oob0eqQ411Tb+uuCVU0AjMtunqbHzJ2ML8PNedUBnJ0Z56OnUzDFngE0MxCHHtSNtaGlMgsAGecHHXS8LS+v3HYAT27Lxx6Cv/2C7nq/u1Ldef5CHF46e/SuenSxCgFH0UxqGYIIqqoKmvKUj4yJUqJ5Wp4BMEkUh6aGZHuGQiIiGlDqKyAiiY0zZWBFjKrEqKrkvBgqATtmRMzZzMCR58yqiUQNVWWozfiidLomje80ruiCy9RITRmdISJP2y1SDwMRGeadgikTCVFCCLVqQEQUIufQsWHWNA2oITMzq4EYGrhOsZxRXuOuscsztnENMUJTQ4imiirtImfWiJLLqWMpwRVjVET2XVd2dqxarqr18+vZ4YO3fd3XPv7RT1X3PR4D3/WsZ+ys9AKzVtFT7rKchCTDaFqHSkNF493BzoXmwvnq1EUbDCxcihKcX/bUw+VDcLjQpY5fWsl8NYJGq+H1h/tiVk3cj/7o763b8Ke//5VL3d6P/9Btd9yy8qd/+Df/8fc+84qvuul73/Tsx04Mmy149IEnvv/HP831xfu+BP/zo+fGl3Zsp9zpljfeeffXveVsttwM4jG3POiNj14zhLfe/NDP/oF79o0njl887YpnQjOCbs6BMfM6rBoLl86d7XW6o8E2TKLlHh2jJBoOS7IcSIqguedqd8giQOI8xWrSDIceTJVcxqGpmroqO31y3pAkigCUZRmlGQ0HFsUVeVufI2RAVU089qGumDpNHUiVEQRNVSMgSKNF/qGHhv9wJHmZRUAAuOWYc5Nzn6/22X/5sCxdvy2xhxQ8bWxP/IEbi0tfkzV/4nilIXELKZzYBCUj0FqJPHrkCJx6WoEasxqkJhwjDhhqxC20HeUxJNbPBRIpsxSfCs0ArW3O03ih+TDNIp7WZmc6Cel9JwMwAdGE+gEwNDFCk5gyiYhgEluei2kyN6GfCOaOfwr8jJLxSP21aJYac2c2mDC1PQOhxjkzQxvUMxkIWiubAdJeMwXbtlAKRDBtU9RkIcV8iTkLFQHYzAHVAIKWpRgIkYEiGIFpm0hoXYpgGlEFNELiXoYGrQarQWuEGiAiRIAIKmCGJqbtiwkp6PoKa+tUongqNjHfruR1NIumjSXOS7D2uSEIqIIs0G7PJYFb4klLhQNWbD2BNsOuCovQmelDT4/D8dS+ioiptgp6YJyEndPkmlF1X1GjtfkcgtlJF/87+2NbRd3LOgl7jdZlZ9gba047vdpgKA2kTE/YUo1NzybACAaqYpr6qoiQwHmmI8IddKVhTn6pKPd1yp53gEnrCJVA1cDMCBgRZ6nmResIMEt12OKfrjpEl33NyzZcwBQapkhaEVBaHFzrbWBbvxH1kQzROpwBGJDVJefmBftaMnd55dB+u3GpuWdl8mcndj94sb75xBfPl9nZzqFyY6cCqGEoYxVlliAiIALTWZL6DWg6yQAVW7ZuxSnmeU8XogoTJTkYVANKMBk1MgYyJCanEolaZAUxG4JodM4ROmanSECJr0BsUlVNo02NK8JiUnQoyynLUnIrscYYmCEQETvKaGV3d7C9fQHR1vYtL/VX1ULTNKgUVcUiUNJqIzXQKEzG7CwQCnpiK6nxE809FjmGhmNpQUBARVSCgnTMASgzh7oGMCLWpvHec9YrOr5c7sQsF8Zqd3i2qZ/0gmeeefhgd2VpUmSj0SAz6/kM2U9MXcakMWqdx6aebG9cOF2dPmGDHRkOtR4CChb7aflwfnCZ+/3+oZWayp7ySFeyfr596uKrv35fhpOvf+bBl/zkhTs7R7/4+M6ZMycePb/+9n/zl1/62/VP7u777h/76BeeONMt+HB35WX/+J8fLTb7xbXf/J3X7etaU+/ednBlHGR5hf7eWz700dHTl4aPnTsrN921tm/wsH7sr79hcP03rT7w+/ftH+Z0Q1EOUCxELrJ4cbtcXd546MTq8eNVCBQNi4KZlQggKoBIagbmWioNIYYGYtgdDfcBTMajajJi702RGZu6EglEYIoxRhUg7733k8moqqo891mWJUpQNGNmMEV0phpVEJSmK6SIJKLHnYbWVt1DD8X17fpw3skpC1w/9danvOCuh7c/Perdd+6hr3kZmC9rGLlxWeTnGzt43XO6X/jEsD8Wcv1m/m6KRhCNYGDkECS6CBghCJtyY9gIjBXHYAOlMfHQcEwYtF2NEgFyWzElAzWCligKAdo+4MWNkVzqkJzBhlpPL8WvMoUZm5kkbh40VBBqOaWmKTEzBFKL7Zo8F/3dA7pSBEOBqRYOqMzaRzG1x6ZOX2j1VxXBQJCYLAImcYJ2KU0tnNAGCZaym+lGCZIhV0AzFQNSEBRUZBBRCgweUdSaxFvS9gQht0U8TeuagLXc2SrBLDgLagEwgEWD9LPlfwYQ09gyuiTMs7VAZoRpamIhbLIpW9f0u9PVV2IjhQigoFExgjUKMVGEIICZKLhoKqbRopmf0hOl5UvNUl23lQfeCwCTq2aOWwM8a/UhohQ6gyEBJuWxlC6BhV5eaBMV7YnmCNUFCMDsGmlGpnO0w2Fmqed6NgVnLWKpPKxXGR5L2ZJZTWKa2cYkwY2QphECMCZuMjNDieaYgE3Uk9+f9w4U3a6DzrCySeyEWC51V1ZWlojEMTtu/cqUskhmUffa1+mWvvKVhnnRI77cFzEzZlZVM0m/ALEKhEYRMaZmMgJH6BybCROoCjEkpu22sk+MSgqKoIm2nSknMyUo1Ls+FJkVEfMO5ku+e7DZ97fb+z/wyb+tlzBfayaPhLHJJGgQDInqpVKtwbR9AiBIJlHbSkw0MSEiAlJVl5KPC21IZI0pYoPGLjJA6jyyaMQBGg3OZw4nDawsqyrUInXjet0CMGpiJkrDx1mvH8EQd+JQRoMGdce0KWPP+quEGZoq+CKPjRSFNXUU7BeTTTt/4vQzrl//htfc9He/qnzz//Xgxx+9oXuom0WLWSiyIhJl1nRcztAM2S8NYm3qEFyGQc25zDLC6ElLnYyC8yYqsWFA0phZV1UpgJEhk+91RMTMCuuamRWlFaXPOkBQg+QQiuC2zqwvX3tNVVX1qMq5w+gbQseuIMqTbtlkvLtzabR+bnz6VLhwgZugABkw9q+h/ftx/77VteWzoffWp/sTj+z+anX4/zgQD7lLv3IIf/Yj+Kt/8ie1Hbjm5jvvuCW+/yNDT3j73S+/YWWHet0XFeVTbjic927r7+uuYDiwr9i40Pngp04/6eA1f/XZx/7m9z/55je/4l/+5h99x7d+9e371//8cw/qUrfwnRe7J65/9PNw8+CtB95fDOxEeNJffePWu/707O8duMPbMBYdKycTbbr7D+6eO+VyFzXza311pIw+CIt3HQyToJghrOtoHGNFcdsBdVxva2vDxRodc+a9w+HGMJGaqVUgniF3hh5tUA/retRfWVXHhJgDWlRgdFlmZhrUkWennl1sogoaOucIkCwKOJmE3Qtb3WuOgEVQRaD4za/a9+k3/z4sr3zy8PW8GzdyWNJMNeLYPbxyHR55Zf/ib4feUlgEMYAzszCZYO4aQOEGtXFlF2SocWBqxEOAzUg1+zHLhAggMLEYJqQUIUSxmHTgLRGgIzCYM2gAkW2RAknBFAlVVSzL0FraY0Aji2aohAJEptrGLRgFlABAIyHKbFVBAxAESt1QyazOa7cWpsY40Ryn/DAatmXdFKfQNDaaN09qItRsb9gZwbT4JLP0ngFbCw6FqRuShM1NhNBAARM9j4phTRbROqaKiQEEGcCDIECEtm7cioiARoi1mTLUao1CbTYhrQwahKgQ0BqDkODMBJLy8ACW+pV5VgrE1vqmci4TtYY5uR0gTIzTgqGiIRASgZI5JkUzYa1RBwBbiktqE4Sg5kzExFC8KZtZ0IlZIVpr9KoaBTXxcUk0VWhzByYqTkQs4QEW7AeRtaSZ5q6MzKbB1pz9ZGZOvlwYd+U2Mz+t2V7IMF8W6dri8XqV8HFmmzE5mNNSxOxmGFCm80MRDU0BUIkpiqhA2esfOXD0pt7SgWAoE1aH490gZN2VTlFyXhhQTZRBggldxeL+L7arDstlZnjmcxC5NNulsbpumtjm+b33RBA1MpOjxChBAEaU+hRn5e1ZDmr+mIjI54KgrLHImMi8Q1d2XXnseH3XH/+7zYs760sg2ShCbWEyFlBIsCNTkJhULcVisvYpYaImKfGMiJo6EtXMZJYUV41IZsqAQOYT26tZ0lNMHnrGmXedbl1VqAiioFIjMxMZQDBpJEbFMis7ReyWUoywqsh0Mq6NvPNVaAwzF3Loy6RqxHG0ct/Zz1x8yfVP/PCP3/G8Zz+JsZnsxDe82D337HA9DJ/YCZe2/PbFTZyE3agZM1TVBMFfd0ORWQghzz1TorjMmoZYGRCbplEJsXFoauKTV8e+rXooKqumgCTVy2NVkRg4Yp8ZsuYqGTe7A0Qkckye2rwSqEodRpPJaLK7UV+4IBcv4foAKgFm53xzsJevXIMHytXygCx1aFzefOGJr1966NdOrLz6Brxu+LH3dL5mdXll8+gNS93O5he/8M/feNDFg2cvblx73G2eg6/56jtPXIif+vjnbzjWP3Pqie9/64nf/52n/8TPf/Cjn+te+vpnvfx5T3nXz//RIxcv0NideHRj/+G1MB7qPu6W/ede+NgL8ockXHzS9b3tS/KDL1y3kw99bvOr3TH2AqZZaGj5YiOHejD248GY17pl2Z1UwRELkrGJiEfG3CNM6jjkutFoGMFTU4/GGARzMEUL0ergDJPPrVGRzGU+NNVwexcRi7LLSGCElKYFtU0dpkxusf3MTQltamBUXOof+ZvP1XffEQJHNYxqz75x5cabBo9sXffQvtVsJ0rHdTkKeYXRYEiTw19dDe/b13xWaHX+hqIqKFmMUZlIBAxjCDsORxEHwio4EN1RiGpDQ1K1VMtq2bDS65xsaNqrbc+t2bThY8/KYAu5OjMTQCawFtNrkEqXqfyLYIYRCUwBmMyUEpAtwZ4ANJlTmiFP5+U5M0NkSL2w0wu3pFMIMC3tGuxZh6d8xdPE5PQXglmQOQVR7/lKkuBgBgEkrfOpeNq255rVpE4pyS45Q2HgdJ+S2nwTV5UG0AjaqAbRJP8X1Bqy2iwiaZJqmCHDDS+7DZv2NwPM4t3WWZkt5nP53fk27dQmaMx8Cm3MRmY7oCOyfWaiIAqgQo1ojBajqnItMSqLgqiqRtWY7iDNX1BVFVKNEjQ0Gus9tzrdWhAW7LWXM5wRztBuU4azxTh4cVsIcWHxbO3FpqXyK+8ApmXmK3+/4si2X63Nw8wsXHriwApKCLM+UVKrVVy+srbv5n0Hb+4ur4LzJBQIWVhskHdhea2bleQzY565BZc/oP/lttjtfWXpd3F4zVKvAoaoIjCpZThoolie53nmENhMDRwbRwE1cB4BlYkAwVSInKpOQ39eHNLZoGVZ5oEzDCWDd1r4vPOSe16WrT72UPXJs3Xe8TbybGTNCCSiRdRGQ6Oq2JKLRzVrOVqn6wWkFq62E3GhBmwVKJoyGXHbbG0aA/qMmAxEYsPEWbdTB2Xvok0kNph1ENv1tii7LiuEyJA1X8r2lzDYlN2xmUkt5ieQSycryILVh9b2uZ1NCF+477e/58hr/u5LQWEk4LPsgYvnqib8i++7lUOD3kETAPPGyXhju5osDxv89H0P/fNf/0R9w13JfCoSADifGQAZGXgmZHRohGpKEQBABKet5ECOEjRNQGPUZhIn46DmvM/7fQRUzmIurMQ+o6RmmkCeGqWph/VGNRjUG+vh0gXd2oohQKekbgeWVg6u7B+ucN8t69rSEuPZ6O5r9n3jraPvuf+LVq2u1PitqzLurf/RI5nvSEX9Bz5bbZ743BfO4kufNRpequ64/cY7j3X/+C9GN1T9bdDB8uEnXXfomuuO3DJeA9CPfeYLP/yj33rN4fKHf+xbj64UP/W2d2ewAtW+H/R/87XwUPfgpsbeRGzlAFf40K9+4Dmfvu3YsVgMscFMMTaTajdOfLW2320+oUueyUsz5izjvBzHSVcLtQZ6PQWthutZpLGMpe6TVM1wmAVkA3TORGVcJcCRxAjoMWOXuWqw3VRVp9fjIlMFACVszQiAiakYOEQwFDRLVTQgM9MoLjMZ+/zQyvs+8+ibvvWAGvy/OfvveNuyozwU/apqjDnnCjud3EHdLXVQamUhIYESEhlhjG3sCzbYmGBzMdjX3HdtsP38np/Ds699sQ0OGLAJBhMeYBAmiaCAck6tljrnPqfP2WmFOecYVXX/GHOtvc7plv3unb/W0d5rrz33mqlq1FdffZ+EwJDgdP6JJ9/zrLc+RZhSArdHcbS9kDStOYcHJvmGG/7i8p5/MqoP1zcwM6sanF3NspuaczLNnpfghbs6z8xmDnNticKaCrmO6iXDuXtxZfch+xKs9EKvhcHYDYi+sqszM3YlYoYADjNwMfAzuJOYGw0eRIDzUB4AMDNnKQ/mqjszdJ191SscctK6B7h+cFck1YFgOQBRxZMIGxN5q8Dlq8MuK2w+CeO80YaD9wOvGkOydDJyITWQsEeHOjKTgKQ0yWXtW2DqlkkTrAcye0/WOTryFpSYkns2zih92EHkdzj/fsIhxzWhF74x/TwkqYLUDtdvBScYhEpp65bhSjm5zqCHgivmIwMlr3uv1CSbZCU16y1nlaRQ16xJU7bcqiV4NjeouhvMSM1y0nzVOOUqbhuKHeFV2wBOuLtuMqquydObr6+z9TXvKfdlufRrEHzI30yuA3UeV/eGv9BWFgGr6bhr31kkxYCCy0AcyXk0uW771E1nzt+xffqCNJUbp96NcrffG/zM6a3JRGIAgyqKWO0BQ079v56KVwe4ecbWXw+f38vZoLbXo8Pl7HhRNfVojFCFUum6o8+WUgYQKxbxWIVAAMJAbkQe2IMbHWKgNI4jEdwQKYTK4R6IuluuuwP43hvkP7376Lc/+tCeXT/3BchgufCw4EP2JRioOG4O90dR0AFRsZ1wx7ontz4skFOZ5DMnhhfPBqnqyNAsTSPNKIzB2Zwd2rO6hIAgRqJ9Su7kCCQxjnKoWEw4etel2YKFRnV18ARNd2rmi5fuarfq/d/44Zc+74W7bd/NKpukusq5X/jLX3Q7O8+0osjHy8UP/tPfeusbXv4nv+KWqS7P5+rZt77w9z71uf9673xvb6/vW2YWEV8RFJiDCMGLrlZ2SBEUgBQyABWAYUVvBGuznHXpeJHduO8J1hPUbWtrh1iJ2d1UM5taavvFcTq+ki9dyk9e0sNjgoftLa/rMB5Pd66jydZ0nKeT07XnlvgFF5r/dnf4rgvX/z9f+/nlfOv07pWvevS9PDr3R+n5cxNZxDN7xuncnU288cZdPJsfvu/o1pvDm1/7/Oecs/knDm4af66y15yfH4X++DPvuO66I3vPA5/8nUeP0zEe7dp33Xf68MLzv3X/7h94zn/Dgizshtjh2GHtH3/whf9176bbmsMlbyvHytHKNEviRX/u1KlZ3bh1h7Pj2JQ1H3GEmXE/4/EOeJqvPBT52bBDtFPtel8uAzfuHmLQrs9dG+qGhE1BkUIlZnkxOxa30WhiLKYFuDVnd1esaBzMPFTAvOq+iIhIJb1myBbueoA//skrL3nBuX5p3NDsPR+dvn/2C9/3oqcOsJVGWifW3I7MPEzMD2btdLy3ff7P6ZP/avNRZQ4iYFeGuRrYiIkDkxHBi6AqQFB2UQBkQqu0tNJpApmv62JfF8hPW827Izuiu7tnMzZlyw6GlumlSOyuVsS2nB3ZiQnFobfUxqvCoyyK4QMVZYgGBWaljT/sbJRLT23I08Nof5E9KwJ2Trwhu4H1VPxVQYw25k3Kt1irag2bDRl8WL4XMZMAdyeBKyCgCARfiRa7exkaJnfyBE/uPSHBOnjP3sJ7t46oByWUs00OLh2AVa+3kGdolRh8/clPqv+rr4OV8esi3j1kZcAVZgo3UvVk3s/ZngLDbKqunVFHlJyyu1rsM7U5qEqvptDiQugGMy8vmCmpqSbKnWtSTRuntJyfYaD3RAnrmm0zoa6h42d859N/5eSardkBG+DzsGykUrnS5q8/fYfX3AfDld5YEPjgZ124OupW+hRM9c7e2eeePnvrZO9UNamrqoFz63mRvG0XzSie2RtPGhpF1AIhKoT6k9P0fzcHb563q9EGInIrIJXRfNYeHc7McHq7GY/ruiqKyug7XS7yfD5ftn0zqqbjsWZn5jrC3SQUO9I1NDfcc+7OxYjIqThsi7CTh+iRt294TsB2/gtbQLf/B++8V+oq6xFpdMvmmbyIfhQRb9sY9GbAh6ECwormt3EhLAMGrhxqWYmN4bQy7+QYc9tXVcVVXY3F++zitpyZsQPCTMRURn6JiIjdUlLImKdCMovUUSVHj1786gv5kwfTO1/S/JnXteeeff2LX7i7WC7qOm7lGiGlVB1cPH7pS6837xBl6vwH77n7P/3bwz/xBlV475LYd9rF0eWjsjJwH2SIVmgKcWAiQJ2ZixAwi7BJGXFYX0eBeSFfxzo0I2t7nc/boyMIhMDQjj00E4RoIHLLXZcWh9183l16Mh/POZtUUUUwHdc7u+PtHW3G2PJA5yxTK6Mr3f6v3nF3M7n7/ofPfukF2aFDr/zVp69oPHjtePSL81frqSd+792Lf/4Drz584rF/+KPve8OrXvKLf/RHT7UX7rhjO4/qWXvd8mW73/afPze/4c767Pb3vPOJXrPwDYjNUUgPXQ5p79LkyhN//cYPIvvSjGipszyp4/5TuTk1/9Ht937/o6+59yZfhNj3MwfCwVGa7M5mR5OzZ44++Yl44bxpYm5ExMuJ6XqudlCd1SfvjdfdDnRsx33foe+4qXpYYFoeHyEpxkBZwTEzc9culvPjwCIiGQgc3Eonjtw1mboPo2TrZz+7lUFMIkpOvS9HXoWtUz/zW4+85M4zFfOccv2L733gxhd/luqt+fzS6XCqr52wEIgus4/qOH7yMJ268CIcfBXwudX9LYTBgwHOxejWzdzYLTjKF8X4qDLrRIvZ/Dq9eSmzaI0AG9yHwpfs2oIiO8hghuxgWxXBWZmZOYPFqQi6grlIV7kZWHIpLMgHTmSJw1SajifxqgyzWJmmWiGr5f9yGW9BaQUznVQaA22H3G31IvtAsxpOfvn3BPG1ARnjk1TnQyxyAlJxOXQAXrwoa6aKyA3BYUAmKpO4hbNW5vuLuFgLz7AlWe/WmbfkiZDc1T0R61B0O5EUHcMCqpes9AWbgLg2fZwE5GHyxAF3t5ZydK3IiFLv6RBKoKTpTI++c2o99qDeLZknkz5ZStqbZNNkybOrdmataQ9Lljtoj7yEdq49bci/rD7PcIYDrbanfUp2z1dB01+4TvVnGvTG1eln/bqv3/C0pPuMCX5ljGWGq6Dsq3/FCWbuhgiaONfNzi3j3ZsnuxfG0yqOHI7coe/TwX6nqufO7uxNq2mNSrQK4p4Y9WbC/b+dfa86A9f+yElYsy26fHw8T7nb29sbj6SqIKzkTuDA3Kf54fHR4cF8Z2erig0XNhaEVEURYwRW7fCN5ZGZOphYhKV0kQwQtqYh8Uk3YkT61j/98ugffdsfPTGiYMENVroD5Z/hQ9qwWC43thcIupzhAmmciAsM8xhwNjiZiatZFo0Q8xByTiEyBwoxJgQSIndLOZOze3CMRKKwB1F2YZ9QQyStC02cRFLq8qOP/pV/8LIf/Lvv/Iq9L/+T3/LqnJP2qRrVqp4oT0jufuDJ8SRsn429knOX3f/z71288IZnf8NX3DBL5JDtKJcffvzT91Z7t+71fVuMDfu+DyEQs4iYZcDWjm+0qaQ2hB51Q159a3Bu6nprq1Pr+wXN53WQSFgCtSauagfnPmk71+W8m8+9T61mE0gzqUfjemebx1OMmmloIGNQTxhR1Y7z9B//sb/tTXVs3p8uN3m0pCdzE0l8+X+cecf8HvqDZ7/4pz946ee+5jfPx+S33fDh+y9Mv/xr0uKJfPnxh7unbl9c/rs74e++/515IueqynzicVRtZR/Zbbfdecv0yoPLm/7s2x58afeeLmyPqpRy00iNeb+7d+pL6gf+4vtf97FX3XYW1oSYcqa9mGdzNlvO0vTM9jhUqZ1PdnZmbTeqx2FJ7o4ePAFtnU0HH+DTh0TCOPa8QD/PoXFCrKpuf6aaiMBAn206DgyfzY9T6nd2diUGNThB3RhSbAI0qTsFibxiqZiZqnLkYgtAHmYJeU7nbtr7lT+6/399Ynn+nMxntvX2T7zjdT948bjbk1pbJ8p9CJ0utxC0hiu7VA/O7KabvwoYimARcTUWcXNmYiImuHduAg9u5l5g3mBmppkIol5IqqsVPw0w0LAOLuDxwIa+dr1apNuMSFkNplB1ZqfsVqb5YOCSWlHoN8xO5dZzWv1TWpsnQ1DrumhVmYLIV95EIBIDABVIGZEtYNwqSBWM4aR29PXsaInnK0rs+jh4VXOfRLbyBtss7JzMHOIWnM2R3KIjEAWClDlvODvU3bmwhz25JfJE1qq18J6tgyeQARliZOQCIiYERwYLDSKXqw+/cbZXneiV/sbT8sq6KC6T0uROJu5Omik5ZXh2yzPzdtmf6dC1JkvjVrVzncOSV9m976XL3FtWTaZq2rm2juyaXVvXJXJP1gIt44S7WlYvq3NlT4OgN95HJKVnubFi0v+hFiNWiOs6hK1fwUYC3kAhAFybrjZ2pcNPeU1e8KtXDCc9docYplSdlfrU9t4dO6euayaVBAiCg1P22TwdHSy3JqNzpyfTEddikYtroFw9YfMFjuuZmM/YOJxrXrl6kVE0WtnMyLwSjtPJqd1JU3EMhVyxJqxJTiCSGOtYSQgEcnV3pdSbm4dIIoWeMaiYAcwcs4lb8XEmJQoSxJFCGxHPLvr67BTp7J/6mhddXB5/4B379YgJJmS6Epmiwjnyk8H9NWdhTav3jTsJw/qMSIphkpplslB0mEXiMHkniDEiBKIaIejiqIyU5Jy7tgUzUcVZEnIdAzGqekxWtcunSLobtrfueMnzEn7lpls6NtMcckNNzhYQFT0WH/nIY1/xptuVqfc8ovrw8O7ffo98w588q1BBT8KG9Pvv//QT8cL5KMulssgqdrlnBYyYIMwOs8hI2dhVc7IQCUUqZ3UzF30bDgwE51HwbEfWd73uH2jXS1bOias6A5qy5eR9l3JHbU+OqhlVTRPqhkMTOQhY44gM42a84DTuq1rs3ds73/H+W//NqftG9CTtNyGQ5vly1ky2Rv/77R/8ukfPXXr+s978klvOna0ffvAj3Xv+8eff+fjxxx5/6pG77niOn+bmtW/54pf/6m8eXH/H733qPe5wMIVRzERV+7duOPs9t77qK5972g+Ebdv9IOqid652R/MD/wcf/JJffM5XPUuatr3sXUdLqEx4drzU+VLqbKBpM+7mi2UYx3GLtuEqq2Zy6RfN7vXLS32Y3+8BbgfoWrRLH6cwqYLQYrk0zyTsau4UJXjKabkQkWYylhCye3IFsZGZZ1VlGFEUIl6pCw+ItAiJQIrbdHXU5e3a+PxtP/KTd//QD7148Su/T8c3/Or5mygll+DmOk5TRwUW4uRA9ljhqM2Pndpd38KRCYHJ3LMECcyJCcTqFAxR3dxrtapUZ6aByIkywdzKSo3ctVS9mt0VZoCSKTQXHwfXDffzbHBnqLO4GLRg2AyQE8E5DVDTsP4txsMYtKDNnYnXQW+gx5Y1IzkXkIaGKIhCAS7vLFP6KNpO60fZ7aTuKv6IwBr0W63FNzDnzcAGgM3XbJu1NgcAIHnRsvYAD0SZLBEHeHQEN3GKJ0UdyrIFTkam5J0Pss+J0DolokRsIHPLqzhfEpKAywAqodhG+Do2D8mYaSAErRYtAzPaicmLVx0XzqkXeZBckXWwDsroI/qQcpd9Nls+1Ppspv0idUudLX06t0mLeunoU+yy9K6FCc9IbH1OnXkibYGetCNkpuR0TQL21TQUhfWrqxx5Ussyn+iUrcosG8aWNl7f2O9GS9iHr8uv4GkpqjAe169/ocL6mh9ds+gr3TqskodTcJlKfbaaXr+ze/N4WsUqV4EZvOhsdtwdHnZEsrs3aUaIgYQphpjMmcNJF8QHtY1rsuxVGhSbjLOnJd+npd7yIlStuKA0TX3q1ClHjhUFIbi6GVMwp76zvs8Anz1zYXdvMiqYn7mZw6RXeNs3qJiJVw9juW7OBhEygBRmjIoJnvsRNW3tFfkOCy5sJaO/+NXPnz/w5KcfmoXALGVwayBAmtowijac480DKwv7jQRcaHG+enrdyzwfleE0YXdXVTFlrqvQQEDgOvfzbqlmLkQxcKDcd323DFu7TCQMlWrko6renWnXzQ+Xj8x+6ef/1oiXCzeKIfRocSTttK6rB+7vTp9vzpyO+57FLAb80q89dHTXlW/9R7eJTzhjYX1d+0/+5qW4/SVd17GgDLszB1UVEQxoXRkvDgQqL4bQ96l1d/WiLmvrMy2E5OYEGY8r83R8mNoexR8zqzSdS3ACw43gRl6H2sNoNIrjSVcFa2qLIcYocKHY9SDyHpaX+VVn21ey/fp9L3zrBWrCUwZ41QTqu0VzXdz/ud33/cyL/G0/93MP/u4fd/HxqW7nqobNzkyqH/rqP3Phsx951s6NP/SKlx3e9tyv8YuXdi98+rMPfPr4iZeeP/39r37za59/Ax59YH70RBV3gx1S6vo85tHyyfuOfqf90p941ou3JnPSrPWkxwOKWVimbPMaXB1hKfPxuTOX3nt3/YLnWd/lkdUe3SyhjUnr6bklVWgfRoiaD3XZoe9ilGpc565vj+dMqKrK+lRvT5i5nR1bSrGSIoQnErNpjCwiqppzTySyyr0GzzkVjYMVC8G7wHXXVXXdz2znlua33t/8T4/7Db/2zvfe/Ka7pd+bx75O9QjBqmXrgYOLa1qOKdg88ChePDrCZLh9hRlizGLuLDCwOxEqgsOzA+rBPGZ1gsowB+vEykyDjHGRrlQ3K4JRsNV/qqaKvDmG5GVoUnIZ5jEydZOihOyqPRXNGc6usCJIxzRIEvIgcDUkxSGhuhejbnUUOjIRabFDNRtCkGyWKw6sSMuFiiVuGSRFQosG/adVjF3pTF4Vigtd7iThOVBo7DygaJ6Bgp053JySmxCUPToCQX3oQCtWUoZkcCRYApKjJ+/de0ZyKFA8iTNTdU2K8GeAS8tSYyjn1xPbq88/qIDZCl0vnsdkK6DLHQrK2UsPt9dObdk+fJxnxynPU9fr3tKnx3kyt9hZ1fahVUkwVSW3CpkpicO8A1rxxKRMCWyEa7PbOqkFIlsVOsMSAa48qEhibQpgVlLy/9i8Ycg9gxQLqDD315/gpIHyzIIVg3IYAKBwvFHoEi6qiYVOkk6xSHJ2zU5ZEak6g3gzj67bOnf91pkojXAUh+Xsy0W+dGV+nGy0Ve/s1FtjqQKYOZkG5rI6Wn/CZ0Sf16qTw9frlrY7nulAVodzIjzCzObOTAjajI25kkEs3Yk5q5qH+bI/Op5Xsd7Zi9vboYoqBHdOmQ6Pl6m3HuykEKkiMZObMUOtN2UmI+KsLCJU3P84MmtU46pWz1tSP+s8yZ3P/fY/v/gX//J3H9lvq61t+FycEoIHODP1pdIYPrMOR22Aurdk7cmxWSYer7tDDAJ43boj4UposdwPGcJWMTcErbbyDtn+ZdMUhYg6FoROZ/v71Wzfz5yux6fD2Iwi11unRrgnPPyHf/zJb/2Lb3zs0caoqyOaGKZha0H94dH8R378U9/9rS9dBkmZx+Zw+/K3vOr3f3P5ipefgesxdafr8R/9/js//OB07yXjZX846Iu5OzqnoJliBWAgCQ6KBU6Wyyh9kCBsZql3dxpa1d6bi4iaGxxVkOmEiPKijQfHakbYsejVqHF3cKh3tn06VfVURa5jEA4hEAc34soXrlt5th9PTeiwieGBxye3nL/rrXd+qNsHe3SC9GMdaSS12fZzpw//lT/4yNeeG937ypt+/IHRY3n/VdJ875tfeFOju08+TGd30+Urzz23HdrD177pTTxtulfeMV/YqSp6f6z3P5yz81YTlgsPqthCfRTS7pkLi4sP+2h72kV2CXHhDU/m1bFp1x8nXrYUa58d89md2HTV5Sfme8+Sdrn0JUkDh8xSN4rYvjUdfqaJZ5yWvfaSj/oQt+JuXh633k5oGlgcYVvqPnXLdpb6fuvUmShjNuk5S+YqMnvWlKzXqopEICESJjOR0C0TF3V64mSEfqkYJaRI1ER/5I7nfvb7fvkFH7T//O1viL13gZogPVsk5MorMmewN0sgMrxV42Z9/1bMRFtt8rEcBK4iLYrSOLuRRuLkeSuBRQ4JlqUxbdk9cAV2oyKOyGqaemSFZsrJU4/UI6skk95S2kjAmhkspFLIbEnZiU0zBQ9K4iiZnMRBxOxE6wnWNRNtxTgiMlE3LpUVD6B0KZ/c3Y0gxU3BMgDiweSdNrSfSu9aiOFrgQ3mAvusZ05WG5+USX4S8FczPKRuG/RMIoInp+RwWEUQogRnIMCJEZ1pQBEcgLrrYDLoCu8wzCyCYAUAhTM8M4Y5X3eHYdAwMVvz0bysGIamGTO8eKOaDx7Nq9BedP4FDnZBVs+umlmZsyCRJlJLySy19azNy+Vxt3y06+ezfHCctw91srTqKI2zxmScDRRUWDs3mI9CIlZCUrIoTkJOpFe1JolXWphmFtx5DQZg9TWuSqvXFqDPuF2TTdcldVm6rt+zWRpes7env+ir8Sd3NygGqTda7R9WvFUITCOSSahOx2Y3TrYm022nQIArknnfYr7IXcoE3zs1nkyrEI25aK66e3KE9fDVVR/pCxfB/5127zXn4aodOpjBJEpEhW2xAm+YOSfr+w6wZhTHozrEQdWdEJgpSHUwv6zqMe66MxXVZhJ3CNc2wCm2wlrW9asws7lFJq54Z7vBDae+6FUv/p+/b/JjP/Fr9z9yOY7PGrfsS+/GyqmMSSgRVmx/d4UpkGHJLV97hGADiiSsu7sZVMWVh+WauCugXMT04SGMdvZOzY+PVBOFGkHMwHXTLheYp8AWKPuk64HYVTe+8DX/7D+8/7Wvuvj8O84eWoXK7KnZ3/7Rt3/00Qufefji13/R+Bd/9/6/evNzT8VmWYfe0s279a03bu176vpwpm7e/e6Pfdf/67OjF31NT4d9zkJURc0JrFWozEOXUwMxIioyxWZuymALoQKymYHKKq9cSvPCc2MOITgok7NpjkGqqG7U9WiX7maREWLVjDiEQNJlJaKBbcbCFADWTscUVEZj77LGqhLn8V88eNU/afU75Y/bcaTodc7CW72lerTsWr5xd3Ld1t5rrt/7U4d32Oxwct2eLQ/5eGYXqjy/HLqFj0G0ny437T5tgwjedjnOF10UGXPTZQ3TwLOMAGx5uvyTD3/lP9j66mCHkYWIck4iEsLwVEA1e5YqU8p09tbj+z8zOXemXYxind0cJhlPuW6HeENvH+O0L6C8ONJkWzs7XnN3ZU7qCITA3hkF0dTmZVfOtrEY3FQZTDRoCQ0EdWFn2owG5VfKNehZFP2OVjGia/XW7e4r3/2BP3zpWz40SqefiscV2Gy80L6RhinDa+cezhkK7QWcTx5bU2+455DcuIIoNSEsS6XqTE5sxAZSB7tkVXFP7ijj70ilqHJFTiUBI2eoumaoateb6qYOBxREIHNRc1UQiMSzeVZPMGZIYUOpEZXJIxsqI/bBmHTltOCAlSmSQWyyqGHAXUkGYaUSO4aKWYYgvGZnDdU1oEXAFQLQICw44LInAZk3U8F68mpVTA8nc/iylJ2liCpTUp0V3ydnIDmYKJELzEBkpRJzs4FSbvA0fIFEvuKsFoy5gMvruDpYCdAKhBsSWHmL2TrrEUON4M5whrGTELEXr2VnU3IjVqPMntmVNFObte191nmXeNHZ0WJ5tLTjtj3qjo/z1jLXszzKLsnECCQqohVTIPYKwghiVYATnMVdZNOVY20TTSDiAOcVklkKOUZpOUDXOWadRU7SyUYhO5z4q9W2nhE3xtO2ayFlXO04u1FlFrZiQa7cCIPaGsF7Q4OwzeG0hVOgCVPVmy9aE3BF6mrHx3pxf7ns8tbWdDyJVY0i+ywrrH2jo/w/+MB4elb+wtn3C21EXoS3MDh5mIiYEcwmo1oCNaNRXYsAhSXIA/KE49miilFK4ewwLaO3xswSaKNhb2YmEktcExEyj1HEQCOkRDfddOq1THX1lp/9uQ995BOPx61tdgH3jNqY12pkRCBTt6yW3BOsh3U4kbM3AMQVc3QuRtIyLJ7VmNkpwrhPy8ILZQnC6HuNo2nlyO0y9500dT2RUI+uXHnMj55akoNPjWPNYZTRj0/RAb3kDX/5Pf/Ln9l78+tu5dT/b//kV/7wiReee+WFI9v+3rfuHCL9i//vR/7a977y/G79oz/+2//1HfZLP/mmptmeow9Un7vh7HNuOfWBzz4+vX1UjyQvpe8SvGchT5WLGjpk5iBUKDhUNHyDs3NwUlIgBJixWTYjB0KJZQxjCmSaDaGHJFfLXcfM5KqVIHCsmtFoLKEJyVZ4ZSZyLg8d0IWOECcQp7pr2+nkikf5/u5ND41e9lePfvX0lhv6nI8q1J6aIGiTV5d6s30Sm2zFo4fvbjiYbe1/8j3XvfQlrgHM9332oZufFUeQQzmOwNimur037g40Z0qVV8dGXlWA7V86uvHfn3lpH9sdaizWRUoU7qYaiAyMnCg4gLRcxJ3zs/TR6pH7RmdeOO/bYLC8QO7N9mO9neWM5UsUnefHRNTsbLearO2lzWFLetNp1STklJKb1bEiib1m4SoE5kDuqqnPWYUjOBRf+nJ7FZCXi9kkwTRLyqGqO7ZRxgM79Q9+5I+rnfATr37Lfpe2KNYGqzwRiaMaupQMQzIlItNSRw1b3n1Ltf/frDprdOCZGq5JGaEHoYDHClHXbB3DEzrniiiDnTDYfZGTGuVsOUGz54zUIylyRp+husmYQFZACcKiyJmJwcoq6LOTayjiV+TEWsiQg8IHU5kPJhpypg7jNw4wr2ZaSpIkrIcHh7Gc4etsduJAUJT+rKTYIcWvI//AHDNat9acbCMeDq47Q9ArnLESB4d8QURAdgJK0xlKLisOCZNzIWHxKl2WXTFyMSJklM6Pkg+Gg8BQ7A5heYg9JSdg0O/CoCmmsJLrdLBxYjC7CymD2EGMmpjIxYjJ2M2hQgrWjEzIZNnMRE2WlhcaulS3KS96n7c0m6dZ28466vpurgdZJUPAxFFjIIpEEoAKQZjLxRMQMa4mGDGt26YGhI2ZFlsdWUky9IwZ6BnzzfrsrH9acmpp9PqKI72Z0a+pIL9QGlvnwjICTjaIQhGRc5n8Jgkjibsq24qRatAWh0fLead5HEdkfZsvXlk+dTAn1u3trZyze2QnKNSoND8KLW/d7Rj69kMr45m3Z0zYm4e5+QZaj8Zf/a0POlYBIMCZabrVjK2CUCVwGBMBYk6a0bbJiyIfM0B9dpj1neVsVVXVDBFeE/KZwwB6rzD8MgJVBRk1FGJ1M+0h3zZqJv/ux9/x8U9cnpzaNpeUXKS4eQzDfPDs1pP28ATv3NNJAmYhCUYBJE5gEoIQ2KGwnsiJKnNNXUuaR6lHCBRCI1uATSSkqjk62FeJzWicjHdPX3f05COYtx32VbrJ9lnx8XHX7k2bxYte+nd+/jM/9KPvGiH7hVde98Ktbd/vJ8s/vPvgr37La6kJ//FXP/O3vuWm//Kbj7y7/do/9c0f+OUf/+LJqclx0mffeMPv/PSf/olf+Oj//JOPXvesW0j6ZZtEavWcc0IOoZIiCQx2sAEMJoe6g5wgHIjMGJocRdkP0FzAMoA4VjIuKJ/Zcmld8q4nglWRq4qI4WxgaSo4uWnO/Xp9SaYMJ0rHttwKIWp9lPb2quShe2+sv5NOx+Yu6A75VtKlVJCUxbPZbGEy9SrNn6obrupxvnT582/5cx/+zPu+bjd8+qMPPv7X/+b4999xXdzfGZ12ZFvmBz53343Pv6muOrdA6fQV7Fw+evTT/Rv+LX3RZ+L0nC768XRsqVcRkZy07/sqBiVB11HlZshdrhqmU9fNHnr09GQHza7NF6AlEVt3bBI43GTpovbz/ujJ8WRah3qeWm8T1KQKvRuPorHmts3LZb29E2PMQiCwOUXN6rnrAfJAygAITJrUV8r3zCxSJCl0kdsdo7qpntL2xsP62/747X9865e80+PZOY4qHxmUsKxk1yiXZKBGyskZ7FXmfqMCvnT2K3a7RzjdL3wdyZMNjcicnWFMIOVgFs3J2GwIteZsRokcDoMpjNRzztCMrMgZOSN1pRSmrL5ZlKgxjKDETMzgDBGogomSm7kGQxQQlXe4D9PAw/ArSplapA6MiFeykc6A8gkF+IR2tGp2goiGYty5LEsG0521oC9O6mkfZCalFGSEqwoOvyqyma8LFbYBRPR18CQ4G9mgxDiMQpVxLxr4vEWmf9AwzIAVEceSfYdB1iIsvAKZ4e5q5DbQjExpMCL00qEu5DT24BBAwAIWIoEGGIC40seGq8GYTFzJ04o3p9Tn0Gftc+5y6HukRMkoKfXKOWnu2r7v1Ep+ZSYhc7gzgjCJqAREkcCDw+/TseGTdOAeiu8N0cZ5HnjwK/8ZXJVRrikW1/taWwj/X6p9n/71uq+w3vmQyx0rqUk4shOtpMUmkKnyRLnJxl02zd2st1BJN20i8vFRe/Gp+fGiG4/DdDqfbHE/psQCQmAiEmbwYC5Z1hCE0gh5JirWf3/bPPxr8Pan4fA23LcsJUcyEwUqPQxiI4ibOxGzaMZs0R0eHIdQTafjAU0ytG2+cvlAJOzu7laFEAhPWZmCEKmpyMmaoNzExGiaKiTYhG6++UaDffdf+rIf/fd/8On7D0Y7pyvuPHdKSq5mClfLHVlH1rsN2ugbhysEAUUDY20z4k7ZVHotAAyzWbY+535R1TWFWDBz5lDFejSalJ4oxyryqfFp1YNjQkXOOl/0Eps6zs09Hz/71Tf7QXXcP8qd5YsH89OTxZE+8ZgeA6964Y2PPHTptd/6rod2v/i267oPfe7M13zr7//ST3zZubMx8WiZ8Jf+9PMfe/ief/FHl05ff6pjNqZkORCTu2UlYXhWF3YGOwZ7NR16H+xsxYokDRgPw93ZzOAAU6xkZIWir2qmassFVxLr2sdqngleiViJq3DLquZmCWaSx6EGNC6zhtBJ8suazkp9d09vOHjjP2ov/Nm990bynI+16yzsRBfbmoyqyYN3fermW69PCY888OSNezuvHdnbD+XRs8+/+/bqDe/8o92z9qu/9Z6333/p3PbkrkP7jaOjF7z3o285v/3Ew/uTb//mB279Gx971/H8TJgvjk6nvGiaiKrP0SWXEctQV2Q5m2F+jHqPojRKtuXj8Zl59eT8sbvrm1/U2QzJVJbedwqROLFlBZXu+PNnLnwpL1PF8XgxB1Oxg8wRtlz0i7m7SwwoVjLkwclhntShMTQSKiIyd15ZFKi6qsa6FhHLObWdpjSaxLCo9s+OvvN97x+j/5mXvnlBdppCAlJ0JKucrILCGBQVGZSdKGnO3m2oMnyui7vnv/pZD/8YqRFtGy2qSsiIKA5mciCDmo4zyMnKCKgO7kKDhlI2aMGfDalHTkiJc0JWy6vptbKZRzJJSszC7MyOpA6BKQQOJ4L40HVyM8DBPhQbRe+jNK4IBDdTGWonNUIhYDnhqud9Iy6tCn9dFaArl9ghYyogReF5hXKfMGTXX7h76TRh46cDWrbSXCoptQwoEhENbisEKIbOgqm7rKtoFAjWvNhMIZRmz0rVx4qtKIZ614vyMoMBtVJClfXwSgVlGEgmhge3ABMoOUenCBK3SMbOVBRDYeSZYAJvSi87K/eZ22wpW8oha5+NLYspqcIsG5zIq6oxd2PhSBCEQFUVYpQgHGTQVSWiIY0+zdRuSMBWlErKqVyLOA4U5nU2vVa9+Zp9lR+tVSo3y7tr3vP0Snfzdnn6znFtCmcAxChiYuZMqDicdt5RnmaveqX5sj9atG3WMKofY7jlrs3Hxymb726NpltpMu2aisljHbgOFKNF9+xOiJufkJwHz2l6Gua8chvDM5XyuGY9cfXBbvy0MMNddYCpmKl4hIDATJt3Z86567o+tXU9mkzGEogIqn58NL9yZX86ne7sbBd/8KINuewyMxO7GGIl7h5oJbSrSiTEPm7EUD3n5tso23f/5S/5xz/89ouH82oUzBPB3DJZ75ahrdtapOZqTw+qnAKRMAuo9FfADLPsvROzQatQJ4em1C+OqtFYqpExRw4KUvNY1W46W7bsltynu3vz1F+ezcdPKY9Zd5dN37LsOsfFfEnZeg2EZcjUJuPDS1/z+ju3KH/2U/f+/Z+858rpL96qu6OncO452/c+dMs3fc9v/ewPv26M3qWvz51961ue+09/91H4dYbs1LoDCEC24sdEQqzuhXBqq7jB65uhPE7ZVFWFBGspQag7UayECeZkZMtF7vowb6Va+HiCGL0qmAE7k3Akctfc931AgC64w3asOtBcUXOeIrQhbKvOTp/5gXzHZLH/FeFzTaA8ffajC0wnn+keO/zx3/3Ef3r4kVuuu2DHR+9vD/767c/+B47Xf9t34M9+2Zc+eHjq53/sv/z0T/8/7n3kyST5aC7SY6f+2GL6mYfSwpbfEi24Pt4/cvvhmcel6xDYuI95QlMTZO9CqJqtiR0cmZP0Cnfrcyb2VFtV8bhp2/34yIN0dts71W5GcKMMJJYxw3N6Usb1cv8APHJNxoJYIB5pD46t72IlIUYzI3Z3JSY1tZzgTlJE/Y2K2CDg7jnnXBylmNt2mVI3tkrq5nHyZ12hb//Y7/zhLa9++3Zz42HXNzU7CTglJDOrIOqSiRxJSBVVjw5oN7xeHnxqsX3hhutOvWV7/7914TR8qRQi9wUOcwdczIOiAtTRKFLwxAPXIpSZ31L4aoYZckZK6BVZSY3UrpoZ6DUEFhawCRncNTg80yrzOUAkau7RC4tYyZw5OBUh6LImWAVDGuyhhpjDVIjRtGHMd1IEr4Mtga529R5oXkTFIKF0k9fxfKhG1u93B3Rz/xjA8M2wgFLUFRG9gcUMAEzmKMilu6/GWKgUsCcs69VUZAZKXi9jWaU+Mic11sHEAQoqBF9bTWAPQ1ZD+gNAysZCFoiiU+0aAYELnMkdLnC4ElxMWc2SUTJWy+oOj+ZZjbKGlOGWWbxuTKJXRJkcRB4YQsyIUSSEIAgsQoU4KEzCJGtV83KMjGJHBT8R4gCKT/HqXD9DFbuROa7idJWzXtxYN//SNds1aWm1zlqLka6nak5u2s2+spGjeAIATshgp4ZkiuqM0ZZiO6Fa9nZw3B8c97MuiXRJ++wgxL5TMu87U1wxTW1np/eana1mOgljCuYmTOzGLO5lWvfqdd/avHnt+3t1ZfyMhS9w1ZLlC2RlBkxE3LVgMgWKKIT+chOpQURGddzZmdZ1EyKIPCUs5u18vgghjKfjqomlqDAzzbh8+dANp8/sFrodM5thdWWMWaqKzG1LKrP2wg0XKMa/+u2v++f/8reWCwa7e3btYAnaewGfqTxGCt8YHKcIqsv+QVx0UgY7cTcOrEghjtU5d12L/Xoy9TihIAZIDCl3w+/CIFx5N0vM0+ZsoGza6UE8ssVoNJV2ESqK0JDHi9NH9iSxcpuxO/rnP3vvmV/4/O88OJqfffle7LNNWI70Ck1vOPO5i3LH//SpM6fylOozexxZJqfPJfTGiSwEi8Sdu0HGcDXPRIFdbTVPJbhW7Z2Ei4vcMIDhXLi6HtmZYYWdz+pIKVvKebbs4lFgQpBKalAgFpHg5Caiqm2kaJUnyYJR8GmKC3K3bpTblna4PZpS+J7Z19wav+T08eLsi26W9K9/5R//ZF+d2ReenrnpqWV7jPimW182mtLfftuvvbltHvrMh3HpIL7jN+Yqj/ydv/HT//WX/9JH7jsVz8/6A+Gjutpq51XbqfVzC9sHDWJnZvBIjTPHDhwAEAdj6i1LVXvfBzdL2kfiReh3xvxYZc14cXSJxyEEoj4aDjV17r1RZNuHZWNbzmc8cc5qgV1YIGROSS0nidGZBFYF6c01JRM3M2F2omwaPAgRm6ka4KrKzCEEM+1TC1dp5Ipyd5r+7Ps/MCH+sVd9eWq7URNRWepBKbjFXnJ2i8wxo2NVBRTJOW8yeIFuIfc+5Tee+pI724eZ7gm6xdkt2koFiszYydxTIDLLzGaWSRkQgps6qSWlnE0z6aDUzzm7KhysgG6wb7JFV2YrQZ/VXA0Ae17nGXezwA4mJicy4SGulukgL/8yEREbhgGK8j91MNO6Afz0bQUmlvi5fs+6hFhN/w8uSque7TosD/3a9WTqVaJgG/tZv8RcJoXWbyrv98LdIgql5B0ktdzdyrsHQQ0voh+2wmzNzb10xmEo5ryDkKXCByNvKSbHDIILcSCq4NEtQCMwBtfgGgjQMAD6NkiqWBLNnLJ15p1LbzmZZ5MeSQElg3gIoQ4mCNnRZ3NCJjUGCQ1dEnKRULiERUvVGcS4xgPCCsfNQbQSeCunYH0qYU4yBCM8rcW7ed7Xhe81SR7PlH7W9S5O8N6rMr27X7OeWn88d7cyhweok1EgbihMlZte69ZjUp7P0/GsaztV477LLpWKqHrKimyz2eLJSwePPRSfdePuTTfuXTh/+uzZrZ2pbI1lXIUYwe7DyhfGxYya7CoC29XbNYf5jDl4vX0h/GDtcoFBbri0zN1dmdldzT2EMBrVsamJiNmIuG375bJt236yNd3Z2QoRdRAzdF1q2/zoI0/0fa7qOEXFsaokDMPyhRmA1ZiN9FvblfGumrz2FfbkN73yR//dO8Nu7dbDkmkLzbC+qLCu5p03jyIQ8WCLzRtDgzY8c9lVhAJHNUrdvG9nFnaq7SblrpJQlgvNqCZB3/c554gmj5rZlYUdGW9XHKhix5Y0bQfULdQkndHJYSDidjSd/updS6rq3XNnJtomHy1oZtucssjyeHxqZ2f3Op1cmh1Nl/PZcruaVn2GRh97yuRLJHGuLHTs4gC0XACgtKeuFl51d/jgvJltMFAr+JJBlV3dpKqDESUN7ZKz5UWLaiZNkKrRSomDELPDSMo01NQ9qaHqLWPhopyhAmABDpqDBJIUmqc+45iHfPuVJ1+yfd2TMj1/9tR0fiz9krhH133Djn/Pt3/bvR/+w/b+933yU+HJMf8vr3r1+TNx+fDFW3x6/WTrcu6M3FCBlyQ9WczitACHLtGoAoycmVNuwBnMztTnlNXG9SgtDihlGEQto8NoSjyt8nHervPFI5yvxSVbi04pzEk4pyXFKlnqPU8jp+VCdvYS8liCzVvrO3KPMZJwzjmoEUCgnDO5F6FnLUQ+AmVTVayWj8ycc845hxDGNRaV3LDffccnfv23b3zte+rR9XN09SLE6C3abNE5qHSeKqlVMTMNGtzQE4mvhCcBADHXR4vlx6vR+e0vv+nKgxbCxLgrDUhP7qxODHNv3HvoREnZxq7EzkB2M8tq3udEOZsqqbpmywpVV2IFKW8kYESgDJ4GdxMjUxTNcc7MglySo1vvHgkMhzgXclMABtkJWufPk4jipXoygpDZSVm06sW6l+S9YjytqSLDE7t+ESf0j3WBOyRXc3cCrwhZQ45cvXVV49IJM9psEzpdp+0S4Y3AbgbSIq2BIfZSkZwkrMhigw0cTAtfuuDL7kZu6k7k5k6mbsZuhTFdGOMVvCGqYZE8klfwMaxxiw4mVO5c/CCKuGZAXVbWDjciEzXKiuA0cvEQvK4UyOJIjuCIsVVoLhZVTCKxjDmIcIGfecXpxNXM4iFKroDnk7neNQBLRBRYbeh9YSMDEV2bXTaQWDmJVhhawmZGhd/uBc/1FZQwDNoXO3cGxItqCfnVMKevvFCMAUY2ixQDIjxItUd8nnkqNCKtFot0ZZ5midpMvfYVVfBMOZlqdk3mamaG/cv9/U88efae4+fedvzsm09fOHf6wvnJ7m6/nSqvwJSnQZjQqzNL9AI4gRiqyrxaEhbGGoFPTub6XNsah988irXv8sZZOjntZcB6vR+idSZmEZhprGhYUContdTb5SsHzHxqd7eKVAuKQaZmHBzNn7pyMJ/Pz5w51VTnUkNECLT6kBA4C7EzVDkSthrw6Salvbd82Sseuv+zv/G2+yd749aOCYllqW5INdXlaYmlTlptAQyRkZmDjLgCkLWLEnLnlaYum9fTvs+j0fSwO+76mfhxn0fC6DV3fT+a7PR9JqZ6FA3BmPefOPpLL9laHPPvvO9ea/ki3EZx6znXhS0JbbW1k9VHU6X5/PFmNJZpFeA19WkyWki1K+aK0MSOJ6k/cBgOJuN43J/d2e5mKQROk2lsD5ORV21sx1lbk6S5VOGVNELs7sSsqjk7M5mr09BziyLMHMwN5DxcenIwBRIx7XjUGCHC9fAYXeuLTusFqqoNVT2OwY3JIZ6cWJrOW2IKFlDUGcDEIBdNTmKWkpsI+TR3WzA+0uaMgrvl4gh9rcE4L2PcOdtg8fbfvXl3q25GszPy2ctPVA/f/cFPHMbnveTOL3vr1zz6737synwXO11YELZVDy16CiPBJWp2G7VEFL0OIaouKVPykH1RGRmPejpSbStP5jFwJW0eWZid2dEnr2DuPh3ly0fKfeCs6ND3rofMPdJBO28d+7rcQ8hOmIZRb8dcT3K2JDquYOoIlZlVDDOnfk6xSeamGqtIbmrmMDbkZAzjSjgELJKjpczOYVb5D3zs3WP4f3jtG+ujPu/QOI/nS+tNzXLn6sDUgiuWUMt15w6Qp6wO3lgHH9vBVtp9bD+96+z5bzr9teHgbX0dlaE5jjT3dai0JRWScZ/hmMMqwag0IGA1GTS30FEyTTl5VlfJWTW7gToagSVvLFjNxpmIshMx5cyQMgKbA8ARppVmNu8lsVsmiuDoouRE4MzMQkUyEQAUwutEaz7ktTK+shFGyN2VBm6Ur6yMbFXerkNQmeYpjbWTknel3zSMHzu7G5UMD4A2xpMAA23K5NGwRKAyZOPrTMzrINivG8g2FGMGwAdZDC5N6NJrd3cpqdbdVaHGSpTJVT2bZZiGkobdYRDiRj0I6mhj8pq1Bmqgca45VU5CiCWvuTsZsVEH7hwdOBW5bjV3Z7FGglJOwbQOLHVU7V37nMFBjQ1uzEqgQAVjrEIofmgkzMQDFO4nOXRtb1Vw/rUdYfkXpTXt7quFz7V129ObuM/4+tVFMz+9OToAz14+02CLZBsNhvXOC3BBVhS4TLV3qTnuOe9p3O7D+ayjpJSxMGJCy+gqp46VAEtmGZQCJ2hiU+WGlzk9eOn4ydlT9z1x8bk3X3/HzXu3XD/OpyfNqApMHCUENlZ3VXgcvEK49KgKWkSrj/6Mp+iaM7N5fjbfv07Yz/iL6wpsKLYKld3JCEIeIu1sT5m5bmIVuHAPc/Y25aPjOYe4s7PXTMYS4ganrez5ZB0gHMw8RBmNsbs3ufGms1/7dW+563O/cM/9D8TRrtqxmsHqOEbqE4cRSJziem8sFTgSkTOIZEWCGK57NiNyY48xat/GGLVdpsWsrs46KVccBKNxFBGw5JzbmEcVVdKgeeKn/sFr7vrUzgc+e7i7d/r+e45/6V2fXxwdnA6nP/IEtQcZbNu3nTu6+ylrlyPun+pGWZb1+YPFMlSnbhjldrEl4tV+xLg28zDS4PXWNGobYl5gNKLlstueY07EiYtW7hCqVE9u1KLKvzHFvp5VJSJVzSkDEJEgrmZcV2YmVZTxKKu2llU1LVvqUm460RSiKNiJGMTBc1eWpChycyeGrjIMVBPQa3azIHF/tjgzfsl0uiNZElC59dV05/CS3/jG9+4/dNfH73mf3n7pFc+7cv6Jn1nc+uDDd73wfZ+7+5GfeziOq2arI+cyFE+oF1YlDiKdq0qh47K6OsGteOoNB1g14/boULveRfqUKsOyX8am7pwhDM0k7MaW3fKcMIMVxYRejx6S3fMul71HkMOuj9VW082PNPVCxGBVJTYhM0NSNXgtQiEEFvKyLIebIZCX0fNYNR0fk7N55c1xvXXj8fG3fvQdv/XSt34c4/EoUxKvXTstD5cpuZsTuzuCsKHv1Z3MjHEVUCduy+M02vX75unTu3e8vnnFLL9rbLsQX1Cs07KTnYh9TgRx1QkswGGmlrO7U5Gc1JTdiwqsZlMVczcnJTEi9ZPnJVEUZ2FPgBvDUululhYoRyd3FisaOMxubuogto2I4cSFmunIOjCZB/hykLNjFhq03AF4YTMXWhM2VDho5bbpA0l6eNVW7J9B2KPEruErA9aqeScxbYgG11rtlkDnmyNMTgV+LkXNybY5Q1wUMx2DnXCh+5wEFnMuo5vq5DAzOLmzGUzNnbIRKLATUeNUw8dsI+EKqNgaoDKO5MEprh84X4v6OsNk6HDChJ2Dc88SQlWZsbGYGMhAgUBcBFm9XBdhElmDwSceMzwcztUnZwjvpQIucWAdp1di3Bun+Olg8tO3TXgZkEGzkAfwYf3TdYAuvK9V1VyumBkgG7t3X6t0QchL9yDDQ9iS5qYUb0K1vZTTqQsdWYpjTMcc8ij1ntqKzPqut7m2vXUpGyUiE26Xx2aBYnPc5bse2H/wkePP37f7shfd/MLb0yjK3tZ4Mm2C+KgO40noKUswX4mVFBFYZlnfQKUVvFnvbkKXz3iWnvG8Pf3bDWiBSrFV2iMU4E5NxadO7zBjVEsIAMyck2rXZzM7e+HsdDTe29uTKgTSlXGoX/X3jUqTRtxCpJ2dUUr6gjuf/ae+8ZX/+l8/uOyuSOXm4p5VI4sAtZP4hpYOSw2qDMxMIPGyhnVVcyBmU88aJ6NejWMMbpw1zY7q0X6oJ2nuyWTZWqzrEs6qpnbm8blTP/2zn/2nP4Tv+99+/WVf/OJ/9vee+/c/d1/96MO/8BPffOHW+iVv/Of/6oe//Q/e9pkf+6nP/o2/8vK0aL7jL93x0OOXrzyS3//JR//E1zzv3/zs+297/i33X5w9erFV2n7gYH8nTC8uDurJdYf7l2ajs551TnnCE9oiW/ZSzd0mIGI58Vcezjmzr+a4aDVQx3hag78MSbo7CxEkRIwAILil5ULbvpsvKFaxahKxU1WkAZktxmjEXHK8F8IKCai1pVl2w8CsZg6hunx4ZT696cy5Zz3xxF2MsXs0A+rpt/zcz+/Kqef8rX9bfcMb/PzIHh19z024s+9+/R0fe/c/+Tf5sz/dTLOmKUdJpGBUu9d3s1xVwZgoFC0XNWOKkZJ60Yoo63aJ5tC+j+Nx6zYiWeQ0bZoUq6wJqs4Bpfrw1q2Fd47ksDz7g1Df6b3AiLoA6hAa65bIKtUg1VKMYNUs51zCqTjBvBBvnMgc2RwZhNgE6b1v6Yqm6LFfqP3DD74tc/vPXv5KWqCuKtRt5qZ40yczN61YKIgTspoZ55zXaqmb613SURuWu/10ZvS7k7A3ftVLDj+V0EUbtxSX0gM5pj3FRUbdqZCBXWFqpm7iyqpB89zK1ylbzkk9g0GUTYyDnwzNI3ljzuoWDMZZDbUKKLsb3DiRM6AUAwRwJ4eDyqwanAwGIi9GpKsSFIBzcW9YL/Hz8KPhNuXBqLuQPk9C6woKoFUyHm5pX7keXt3QLRGPyK7l+Kw6hmQbcsfDrgkAr1XkByR0eHAU6+kbMAbeFlZ18FBbrxLTxrfuKGDm0B5OGabumdSDO8wjoVaqXSeExmnKPFatmWLAmBGLIYS7oIRxo0KndCv95cLOzg4jgrARI4RcwV0yhyxKbBpMswurFrIsF+Hu1WJ9xX+mEybY5mnc6Oq6e1hpew06mVfh9etk+QVamOvdXfMGL/PRZLSxq/W/16acjex7NUkC6+tRTv7w2WhqcjbJ+Y73Mk27etQqloJZHRah7kfkffa+rZJK3SMeWjhSmfdtm9u+z6ncvqYdjJhHi57veuDw0ct3Pf746efefP3Zva4Z48ze6NR4lJdhtD3JADlyKKod7u48eKGEjQ/5zIuSk2P8wtXwOtE+vZi+5qSVFxku7BS5qiJQdLVMLalWXZeOjo7d/fTuznRrNBqHShCEePXsXV18u6oxMwRi3jRha7uZz+vXvublH/rQvb//R+90m4ICorvXzMO8L8BAV3ZiEBCD2cp9VoTjPZsxcQDA5jKu9WgpIRK7eG5zr3rcUNOpO8fsHAhJlYiYRsLTdHzft3/rjWOhEJ74/u/+7ne97967P3XwLd/1ejmzu9/mF5/def1LT1++6+w/+uv8Xd/3oo9+5IHTO9P3v/Pd3/j1b7zh2dUrXrT3mU+nP//nn/exj3z0Na9+/Xs+/CDNT33JG276C9/xHxz7f+J7T3/g/QfPvWPvgcuyuJR+7ROXmlO3HOVZWN3kVmb5V+rl5bmwnLDqMzA2bBmBos2kNigimbGAiSwzWSUyaQCzZZeWi1jXaTQzsDkEdaBBfmi4nhvRMJe+loPJACFyJnaSNusVmcXR6e7QdnabhedKMxFj9KL/8hu/+ou7N/3Bp3D+4/PzOvual8ZxQy+45RXf/PU/9eV/4Use+e0flNOJrpjtJtZKtp5z+aAPTcUSnFHgTHcPIDBbysycjUQktQCFoAoYm5kEUgdxGE3ywYyDmQWiTFC3AGOgd/REZPnKcvbbo8X3eLyXUmLPKWfSTKrswczInRluOfWdKoo/lZlRVqFS3LGqqZEaReGxxyV6my9iCk/snXnzgxe/7D3v/s/f8B2f1OpMSMaYSH15vgyoAcq5FyBUEQR1Tzmbcs6Zy41+zVOZoWNdmsUc2oP+/WfP3Ljzxu3DtyVUEfOOmtDPndX7JmsymJuwC3tUq03dNaqaaW2mpqTKrpLMjchIjKJTND5JwIrGnUnVxd0ZTsmUlIh6Eg4mDMtIVDBIViISLo+tAQxSZqzFdhgrhAwoVdtQxK7mcMlWtZQ73E+s1wGU5U7pxGJowfoqwtomrnkSiIio6O0XeuI1qfnaEm/9eUotOHyyoYs9YOJMWLGPVixXGoQ0fbXKpw3WOgGrPGlkZOaaoZk0u5m7maNSBHiE10DNNjJrRMdCTbDKqCavHAwEsLhyIV2au5qbs1GRunSiYq4KIg/BzJOxUWZmFM4oGZMbcfFxHfhxTiXlCW1seKbUuc4X7h6eKXmUC1eg/uGyDn0B9836+Krf2UgqQ+YufX9aJdanYdfuvhp4wnpm/eqPS1hT7U0g5l5LdZ1UN+VqR+tJz+Ol5ZbCQtCRtEJJBKFCVZk6TDGZyGivGR3x0bFgv5sfXcmg8sA7XE0ccDran73ro4uLl/O5U81kbLfcsPus0zt726PtRNPpuK5QOziQIA6fyXlNczA4aL0QXN1PX7gIfvqVuCbRrlPyNecXQxYF8yBpuUaV3F2TpjbNjo7H4+ne7lbdUJRcVWGVMHjzqpfBhiGREBsju03Gzekze/0yfO3Xv+Zz9zz48BMzGdVqAQ7VmsSdBHSSgEECEqKVe6ubQwnZFSBhRDU3yzFGZeEolpem1rZtCEuEkYhPtuu+TUQhcl3ZsuJlffbUx66MvvJvfPjh4xc8/NDhlSXe+mW33XlH8+jn73nlFz3/G//K10epv/7PPC/U8YHPXewOc66Wtz3nRZ994NKlSxeP7dzr3vyq5by98ujUkd/3wU/9uT/1MgB/5299w+H8ILThT//t6w+eWkoVt3dq/hcf+ZmP37Q3CgtYmQRz94Kir4BoWydjZjZjAKpK5GZWgtkwi4RSxYJhICIWl+B1zWrkrqbatXl+DAocas7BCMXV3ZkBK/wNX/nuhdBAjcFmKiABa+7rEOdP8PXPfcN9H3u7U0DfjcbNpadm/+qn/t1b3nSTvPeRf/i1Nza79cOPL+970m+5meYzu2l7+b3/9Lt+QJ/Eb/892r2hz/und8OZG25/7OHEVWQPZBkUWARQV5iqW17dhI4YKTRkmnMfiTr0Ad63iSZTXH4cUWFaaJGCoB5ADHdQdp9g8aHQXkSTLS+wyLrt2idPPVViZlJwVO0195ohseF1kDYDQS1rNmHOTFITDJ4WdCg+WTY8/Tuf/I/HL7nxnz/nJadn8/HEncZPLRa5Z0Mu1UxdRWZWNWdK2UpfX3OGuIgMkpbl/g2pbmMrxxHjU6l+5Gj54b0vekO8R/AQehtJMJU2LKPFjogpQU2tgqvm6CuBOHMzTa6wDC8DMsRKQqhBwegkARuNQCScHQZiA8xZzcTYLCWAjIUke4ICTsKuRL5Wj1wJ1hdQetU0HAT1rhnbxQqnOlnrXy1UOJyBMhc0IJC+zpHgk8yxCtFrveiyxxOybGkF+9MCV/nWVh/sJKAVlMUZ65EpX8XPITWvPnMp5jcJvOW/4oVcJrDd1ckMbmwO9aCIRJG5YWrYGrPavYFVQOUSoULEhGrIvoXP5W4k7l7EREAexHLwgBwtE7NrIgElZ2Y2T2bkmZjZTQmFH2dkRSGYnkZJviYdrBPzSQ949QNfHfA69a72UprzNJjFbu5s+P8vULF9oa1M3ZRjLra0RPR03ZD1DiX0mUi9CryjvNv5VGmaPLTat2adhMTuxgQiJqmCgVXd+sZ4h+KZWB+h3pb5oR5eOT4+1j5JFdWQNddCIca5yycfvLR9MWw1fO/9V248O73tlrPX39ifP7/Y3RlteVDjSgINZLP/ngHDM5709dJk8+Q847l6Oqjgw2MBLgKcJKsLtLpTIaradalbdNvb2+NJNaoJnh3JSbyMvg/1tg8UIrjI0IQOwtorkU9Go91T9qI7b3vzl73uP/3U76PaApsTgwkQ4pX2bPlUTCzsWPtjGGmCJpi6RDLvu2U3n4cw0RjckocognY5q+qROQlL6rQsuyV4i3HXdbt1/UQeHx5sjW5/4et+4IPTiDsvNJ9+6Imtif251188tTf50XsefP3r74gc7/3cXa984a0XLz32ii+56Ud+7Le/9k0vveeT97GOuE83PLd+9InDZ53f+ZXffPSmnctf940v/Oj7rsz9uOf6//dHH/rKr3jZyGbv/YSNx2OnnoiEGHaiWlDAZ3cjopyzMBdVWRGx1XnEqiUsBZmDg2BqTCQiiuCuXkcAIXXIWZet1B3y0p3AQpWYZTM1uJmVEaUVZlVU+AiemeCurjYZV3ffn9702je86782mmdjCU89delVX/7d3/2tL/nofbM777j+wul0SPyiC6MP3nP80CPbd57tLx3n59kT/5+/+e0/+Ae/KHw/dTXt+WT3zJWjy3vbY9FC+S/0llCWHczsCiYyM4k1xSr3C4zGTLFDP4K0XVdVFZNYXkIU2T0b4MQOjNzn7nOXFNS7gz+OO6/uZ095Pxfd6vrkqQdqLne1OTRDDXqSOYjcXFWtxNhggAWWuvVW25ml4/3m/Pd87n0vfvQT/+h1f+PRJKe49nHQZIuDHJyquu40e1ZqwkrDwWFkUC4mm2ZEdFUZHKVKcMvutK9aL+xuoZu33vTig587xpIogp3StIsHrVa1VW7uKZnWbl5UatzZcy6uR2vwQp3VRbhyjrbBmXAOxsSAwwxGQ7dNyrohuwt75pOOaC7ntajkwcoKR1eq0Hx1GAaGZl0hNJUUBcAV2EzVTwtTJaoMdC53uBsVBzDfFCYCVnNHtHI5OtlL+fMFIl79u6qRTdc/LjsBAOhQUp94Kq361r4Bp8PXzWuAhIo2uznMXMmU1NwUxf/RHOZBERUN0DDq8l/gSjU6RaMYcgUJTAIIhpK3oP1QZy34NoGZxD1yNuEmcseGNZZcnHtUB1q5aZkqc3GBKBzO6/J3XXZeBQ+vwM5S4IZVXCYM3n7l+HX1VNAaTHjGbTNbbF7j9WqIruoNr7fSbzcrtRNWQcxpc2Zq9Yvu7hA3rTluS7NtsaZQZcUyZyX0yi2hg/emBbMmBqBOZEQqTJV4dTrXjU539kZjri/Pjw67rjNNIMlAMq6r4MC8teWsu2TpgYefuufhi8+/7ZY7bj/9rGedPn92vDMOk5FHKSqdw5gobdxY61c2b/Rr6tprTp2vHB6f6Q1WJv7W+xwWvc6br9AwMi9ExgypYs7W930dKyaYwphT0q7NqhpZYiUhCIEycuC4OsmoK0nZLWI8xalTp974ppe/572f+9x9V8JW415pbsGRcNXVAUkJIuUzwAzawVqYC6m7ptR1x4fjregxULIcJSZ3ay21OdNkspe6XNUjUFLqK3NtKkesY/vsOlw+nD3rVS/uDuYfPV7sPP+mpeZ/9q4rVejFIL/2mZp11tJbXnTP/Xc99NZXHedkv3P4+Ac/9flXv+6Om3ar59x53bijb/rGl77rHZdNRgRezsPtLzhXe/6GN73qzHb4qZ98z93HF64/s3XQitAV41LaDjfwKgEP/cKcMxHRakm7EqosVcVgbW4FwDFzZgIHELF4qDIgMOTsXcrLmYhIdIsjVaZiaaea3Yk4CEWOmSilzrWoAbOpgtzgVVM/1h3WZ7bNriebWcVE2//r93/3kxf5kfuPX/bm8cHcvJohbvmy/fLf5jPXb381H/2Tt+6+5QXhv7zqlR979+fq2GzXz7nYdrrUeIrUST0JargSE+BmxiX+mLurkbhwTl2AO4HVB9nyzM1kupjvgwDPQK/UkSvgcAYiLEF0efmT9fiVszTvl7NJt7TUQnvXhNIhc8spISe2gJXMr5k5kmoiiuxRnQOCGHW+TO2sHdltx/qdn/7Nx5/96p9/xQvrJ1O1lZFocWjI/Xh01slT1xORiAgRgNz1OSs0i8igejQgFqsHMFNqHH0YZ7ZFy9PRo9nfqxfOxddP/XcTnHnEaktpYk4GMiP1QG7qlbkS1N1VY3bSMh/uBuZM7Ch0xehcnzwvXBGTgZh6BcNFiAyqACucLLipKnPhKXlx3GWFFwdbK5BisZnj0i8B0clgVWlAktNKKmgIRHRVmMI69V1NjN2M0usfsQ8YJAA1OBkzAN5EQclgNFTYV+X4VcIqPygxjVcYeZn/fXrtsVnglXKwjAnBYa5SsppCdfC9yMPXpC7urBTNK9BYMSJvBJVxFbhmq5XqTJGUmAOVBqLDBlkLNgfIilchOdg8BLZCSuAy48PD3Wu6ukLuhd+2ytwBpAx4GcQc1nrXkGyLuiqGHOxhXSy7n8T0ElLd/RphSHumU3btGVyXWj5Ubif5w0+y++rGoMLgJXf2kzJ6c4flD1qeku1M924cnzpro51c7V1J1C8Wi1noLC9dOi6UQckMZQ0kxOaeNRWeUGCexnqCuD1udsbbl+dPPT472M+ezEVCTYuESCwkCBKqpO0DD88uPvaZRx++/s478223nrnh3PjMKZmMUdUkARVfe9f+/7ltIipmllIqyBhtbBim6Myv0gQtV4FPGifDKoeIiISn0+mFC8VYghTEFAjo2rxcdvP5su9yjLEZVU1TxSiTUTSzYtLjg1Gx15GnW03f5ltuuuGtX//aH/6RX0OqlDuWMZ7W6qGSl1avmGWyTJZhTlCQSeR+frS1tTdfLHZio6ZuOXjVzubVRLYnIVnMSubBNMUwFkWPtvNGdY7xWVpeoqY+Gyy1T4F2br15y2IjFJYxsuYq8/svd7jxuh/+6BGnG5d5v2pu+rmfOJTA53cPz03D1rjf2T594fzsP//BI6++eXJ5uX/+7OXrrzvVPtD/p9873LvlK4/wSKOjzNGQLWvB39aO12UrDpLlYHUlNaOlRUlEQIGviVzd4IWoZZRNwMasbs6ILK6Wlx3FeeAIDjmzUHFocSuan6xOyKpsaq6O4pir7mQEJvIr/MjyzGu+8s73/tYfjmnbaPSsG3f//O/p5fbcG4+Od7Z3WtT9YvkzH6ed5zWPhfTBJ3eWvmgYd9x6w8ffPXWZ3/bGNzx2ZafRIyFdEhR5xAPnOeWsbq5aMiGD2pRImLVkZiU1hYoIVKvxaHGcyQIoOXWAu2egByCYqC+z1pXdg+5uohvm80vb/fXeZzfLOYtqJIJ57lpNFiSEEFaxwkqKZHYmbwONKFU20875KC9OX/jGB+++5fjSX/+Kv/nko+mWEPs6xoNFXiwho8xL66jv+9FkXMdIBDVbLBbZIQUcdVdX5mozoHlURT1VnXO3F2JnPXfxcwf+wQsvfcPlj9b6+c4uWDUTC6PULaI5g5jJAzz7IPGU3cXhjlAMYgxFj0uconM0yDoCu4gLsxs4GJTBTm5OZpahceiFu1phRA8JzFbCUCwlbsOdATdGqeeduDSGh/etFBnZmcpokDsxFQ8AWj+5m+GITsxVN59u9lXlWhAgQIcJGuNVF3mYgyKEAUzexFMBos2Euq6S3X0wPVz9rY3wePI1D7XXCl4appPcFGZuVsyU2MxVLaspyMFKkRBcKvHoiCbRLYoFokgcCRAE9rAKxewsK/PGzCuU17kIeQxWTCYqbtHEyRgg87LUK1fG3WzIyFoYYwSAbM1G22yZrwMLCbN7WJslEA0aKMWfoNyp16TD0hPYdGV3KFNgLnTKXGQUy6mjgdJlw/J2IPQOw8DO7APQ71IiEUGx0VwFyINZT0HgwV2mZ67bOnPzeOtMNdnyyvcybtqqrozDk0t7eK4XOz7svbOswY3JKqjBjNkJAaiJMqQlihOqaqqnW00TJ6PZlSvLxQL9UY6jwBYAJ0tqRFRNmmT95x56cH85uzK75fm3X7ixW153ttneGtdBJOaqCg5Tc+FYHpgNNSuoenFHeDowsLoMZIa+cw4eYyGvEzNAQ1txTd301fSLmZUWCa1ouhiWox5jzKk/c2qrVGsCJEPOOXf5+GD+1JV9gHd2tmKMAGvvvVgIzKWtAyuzTu7GVNXT0e7Z7tVffMdrPnDru99x7/jszYt8HIiy+WYFzCCGEKApB5LeFsCxmYd85L4bvHYJ+fErB+powuFoR+otyuah71sG8ORjlyfnroeq28KrHXNQgGtVqTmPAzQ106id9HW20CAvkufFEYvEOHJnkRS3mTns3X4mpaQ6Tqnz68ZEdY7Nw3HcW5078fvdU/rZu1PTzZxM7cGmijunvqi2OeuWBksccw9EF4drFmIjIIh1aR1QzLLntGoGZxvUQymX7OuDjAegzuTMTmZmBK9CDfOMHgKkxF1ufRYn5JThLiJQd9Xkrqmv65qItPTDLLsOnJgAt7RcjuiR++fXv/gr8LZfj1GuP3Xz5/cn946rbqf7e+/Y+a4XtU91bofplxf1dWO+KcWLx/tP7Y9vbsKtd0w1krT5eS957q99+qja5eUsR7ZII2PnKMUx1d3cemqXZqQSa2IejeazINbXqXFJnpqYZn2VFvEc41PQhVEOlo2zIZO5Y6R8Bc7FzaPd/9B4cqF76iJdmGWgso5TSJqnzsiJ3XXZ285IKLp7oiSg1PdCDOLsKm4WuEuMxZPHY7twnP7yA297/02v+xUZ7yB3k9Av9HjWihlitlT3ua/ct0OMQHLM205zpja1tTtTrMaUMmUL8aQgYYsjzVkkwI88VzlEl0a69x/W12997Qsv/4c67M8TNTxf1lE8O4uxuTuZMDUOU6IgnefBTNegTuzMzoFCgyAkYc2ZEK8pOwWHU2AQOGsSVkdj2d1nznC4uXmGMhGbAVGEBrkrWkGyTsTIRjwg6kRiZIOHY8FmaA3dMpVZHsJabbjQSZjIrUjGgmgt/wkqSiQr7av1yt8AlIYWEwjOMFulV4euPX02uaXm6wLaqCDMJfsOJVlRkHe7qossoIHq7M4OdjJzJoKRZfdyDcCFKq/ZtDRDEJKzepGEJUJlPiIaSW6ca+MoEIEgNtkBB7PQqtXtgJrAxVUdLgISpyKnEjPlbGQGzhQ8OwHBXD2XsWx19aILQnAM5kPqXkaAUcRa80nGPDHYzYpC5X068rAuYdff4qrtJAqvK10Uf0svTbKyK4XzCY2ZqDS8h5Hv1Z/TVZgb9rYJQZANlSKhnkyb7elkdzKdjppxpcJVdk1eTdrTGm7q4v4xnryij811n3jGNDPrTJU4RIF58uzBqi2qO6coodoOdSXVdmgO45UnlkdPWcqurC7ETtIRp2K4EerpwXH/0Y/fc+XKwUuef2NqT184K3u7E1iVHVGYxQBTUyIh2jwzTgRbHc41p3FY8DBLFHeoqqoyUwiBCCwnep+rMtfX6AKetjACEALqJqgagUGm6gbqO50dL4+OjkRke3t7Mm1C4DoICn26wKdmpbPD4kQS3EeRt8aTC+fPfvVXfvEnP/XYfNmGJri6MOnGUi6rUfDBu8R6aOfaQd2tl0BZEnFOs8PcXuQgMtmNW+ebyTaFbnGkzd6ybibtpVm1dT7I6WERoMoOEgGTIAiPcw6gnjVr7uAmwZlDWX2Aynlzd9cyfaJQde4ux6pp6sW0GYV6VFcTkQmcRc727Mmz5Uy9qpkK90TsFkqXt4A0hKL5LiKmagMiTWZqZjFG04yyHiq3rg06+UOzwGDau686FEU7zx1m7m59MhDFiuEI0cwKAl2g0WF8cBNGYl+hRLQzyfd++uKL/vyf2L7xf18++UQ1OjymHMdaj/2+B45un1R7p+jcc5u/v3/lB+5L3pz7qjOj/eX8ZqsfebKRdPnMjS+sz75u9vjd9fi8meWciQUiZlbCVSGDYjWYbmYsjBhMNbMaE1g9kyk7Upju5MNHEZGJyDsUjxRyR8XUmceMqN3nnT6JcP1s8aSAPLOqiytDujTP6ZgpODp3BaTQXt2yQsCZpSIK0VIb0vJ4cdjc8Nf23322PfqBF3wNuYsg992y63Lf1jHEEODuyTTwMhhqybnvl8eak4u7sZnBPIpY1r6/yu3U1YkI5KqqoMx6kFClxYfrG24YvTUe/Oo4hi4FieJ9AXwYzsrMDhNmZyUCi7sxyDkSgSW4BAsMlHGA1dQAEzHMykSlBzKCGcwKwKxQdyEwUYkmpd9jZsWN1MxLWVTqmQKdFiqTra3c1gwmJkDYrUTmgaJDJ1H3JAoV7X+sdDkchcG8bs86sCm767QZrjd0p9eh6ZlShhcB5NJupEJbUvJVexGreU7AfCXatJo+KlCsqRePhtIVHmaHvFiFmimbQQ1GJTKIZeOgbEU3x8tcH0A8sFnFHCUCb0ZaESEz9UHqLoqk0iJ0KsKSQqwgZqaV9cEJtdxXH7vMI5Wys/TNN8lxg8j28GvFRXZV6W/k4M0ov0ZNS0x5eku4qKsDWBdtq8tibiWuUWkv20rs3leX6qpLC2zS9YgIQtlIQjXaOT/eOT3e2hpNqrqCizVOcBJtFlmPq/7UhG48Lc9vq4O5Hs7aI53c29sDnR0n08i1UKWSTL3mwAKGxVqqU81oUo2b8fFkceXS/Hip2ZsgLFXOmc2rEFt1EsrUPPDw0cH+5y9fmt1x29nrr9+9/vxu6Gw6lknDgxdJcSx2WxktnCxrnhGmLs9z0zQ5Z7MCEtCwvHWsJd9Wpwp4mm/xVX8CVkVWZmIyE1VL2ZeLdHn/gCSc3tmZbo2aJjgMUGZR1aLRshq5QbGbF9Y6Yntr0p/KL3/Fra/70he87Tfvquvt7E4cNnWwWERX94mnFtpR7t2y6rwOrL0KuaUrNnvCdeZStaOdvHUhTZ4TOR7vP9k+cXnrec9fymhnx6t2SuO62EKqek5KJCIhhpCFgzn3nBOZ9w70mkWciYlIQEzsQuzBTQipZVdDblPILr12jXPVsEQBeW8CclACil/JKGdj6lnLZMzwILibZaFAzMxaSFIWgruvpyNczQHSoano7sW8QS0XFkxgQQHLytUxkJmlZGYaImB5WLyi0BBVNcGYWeKaF0krtjWIsEWTh6y954HmTd/4Xb/5L//fl+pP327H188m77mLfvIrKJytHvzExf165zu//MLh7z98bid/26v04qXRf/xMetenl07Vy1/98iuHp59aTM6NATVX5TqU5J41Q9Vyr6nzrJr78oTGGEOMrq6uGiDIZm6ZQH01Odvv3wslUOspVbRILk4tLBAIfOwYwY5M3yv0lvZ4v946k3xOOkZK5stsatmkjHMyCinazMwykQsqEenRV05y6IkX13P+y59577vv/NNv24pnmZsKbVos5sfoUxOnYmj7nBbd6NS0nkSqkBaLtFzC1AmhnopEEalCUM6bjw9DhglaAwBVTUgmTdX5Q7J43/YrvnL5Ueh9EkaUUkJBsxTsxD644hqBxKVgeuoMJ1Zh4uASQOIb3VJliHCgAFemQGR04i3G7mRO6hAmJaIis0iDx0pJEr62611FS4UzgVdl3Op1GfBgKmNmyg5nXufoddAoGO+qM7wO8qX6GkhUa7YzkYABPVnB0Fr+cCP9bESkgcCCdRfSUO5oHzgzDpRBo6Kk7o5ih7qRYQpZaFV9eCGwOQr3yhSmZIqBEV1kXIQIktkDEcDlugWQuZAzmazUdXjlAl6WLMMUIlDyuq0no0qgZmeyQWTjJPuW+bAB9Xczw0bvdSNEXwVBb57A4HTVS+sfXP1imXUpO+BnSCYbdbOtdLbKJyE3kAiRDowAcbKTuR1+Gjfvqt2bEcBSNdvT7esm03P1aCtKWCmOEEOyY9JQM5aklpPmkd0wlf7U6KDDs1o8fJjuPeYHO5kRdwFM1hFZBLGF6IhC9TRUUaajuo7VeH9+cNn6BTSMwxiSLffkOatfPlyOm0l/kN79oc9e3L/84hc9Z97Orz+3E+LIzSrmGKMwAN1cglxzaNd8W0pkAlYnTACYuWpm5sDs0PUQ3f9wc3ciGyyBh45+4bfQdDrZ3duqKo4VM8y0NJJ5dU1LC95KYedwZm4qGY/rne3qLW95+Qc/cv/lfeJxk9J6ehUAogTF8CSZJXhP2jplaBtCsEUHNeJsfCTdU94dY2HLw6nUZ2I12g3nHv18Nz+4uPuCNy9vOMzj02O9AAlGbEQQMnXPECGWuhqJxxi6YNL1fVd6sQXhdxFnQAGSGDmESi2ZIplZRsXEWT2asYaeEIJKABAowlTgLoGL5jYH9QQXeC7DETbMpRcRAxKSMv/PJe26F+F7N3PzVRb21cNhBVGz4cFks0RqueuVyAmWGzMLoRIRX8WXwvbKpquT7OuFLzO3fTp3qv7Qu+/99m/6xgu3/NyTD3zuR/79//EH/+Vf/8IfXhqPG8kMo6962+L731i9+Ux8+cvapY/Pn7X73vX5h+76Keb+RX/iO3/2HXft7dS568ucVWQumnkwMoBK0WN5eJBF4DBiseITR8QGgE0MC1TbqLekf1jFQAmujgwzkKg7UeU+h0/Rz9Q/jCu31BPM9KhJ256s9UPkiL5KtGj4LJWFS0qeB7tYgjCzSJI+tLOjI7n+r939jluEvvuWN0TuqgDAUurUUoyBRdys7zMJTUZ1TWiPF7PL++1yOY51Xdcy2ooxhsBVJRYGoLVsIkQUsykcxe8ge+acsMTC7NPN7Jbtb7rj0j/TkKMmci7mRmWFNjzLzOaFcuXO5GWolsVJQIGYfUMLGkNfjwjiONEGKT25Vdn0zOHCB0jYTl43dj5p/ZawTIwyr351WCg6v88Q5xVOJ/GWrv5/Hu5/GPvwLW1A0lgBob6iUl+dSq5G/gprenALHwqSwYWhSG2gaMgPj8wqFw7gEYo4h7sNTIH1fz584RuuwUVVzhlgsBAEHuABIEIECUo+PYHKaZABKQ7BqyfO1bNvyJCtZ6VOjn5VwvswwVUY5EOmPNn5tXKHmxdis6S5altd2uE31xLbbH51jiyaJsJr/75hs/WX5FZsLhUg2EAYZFrpOxFW/j9D/bfeBQGgUE22ts6Omp0qjiJHJglFFcudoLHiYSknpCzW0MLQZq+Snen1/Kl43ZHc8hjuPrL7nJccwKpwY8QgMTBHQgheUx04bk0n01F75al+MSc3EiKW2OeuXWbC4UKb2Ijq+z52zz0PPf7alz/vjtvP3XLj5OxeszfdZoW6xWrt8vTMpOjNa7BCbIyZRcis4Cor8i3g7rLmqV3dDqBNTbHhWofyUzMDQYRFfDSuL1w4524xShUAT8QcguQMVVsDJsxY9ZSdQ2SHs44n1c7O3q13tK9/452/9IufqmSEjHVDAYBnDSFkGEzJWtKWrCNOjl4kal5Y7swFPsl2HNCzL9iOaPbol//JV3/zX7jjM5+6/+1/+O53/8En48v/jN4WR9hC02SpnCRU5IlSSuzBsgsJhyZCVCqCoF8wGKxgL9R9xXCimHlcVV1KqiBS8s4V6AGvcpyyBCOGk1TipkkTu7GRcHCBEwypMBnFIoCcc0FiiUQ1qRW2lbo71LwsoUHZkhV3YICcIIBZHvSzQEQsRXrQXE1haMnVDM61c1URGKYrtxeQl/QjJwV2YWOwuB4vsn34M92Xf8f3/ce/+12//eu/8Ou/9e3f/OUv+dyldPDEwQee2Np5ef0jDy5/tjv74of0Jdw+6/bx29/5ifzE51/1xV9x5aZbHrnnM9c960y/bK9CtsrfKA4+Zp61KDzEquKcQeI5k6hYAClxiO6dZcNEtm+kS58VDc4pWwTNyCqnDM+swRBAvdsY6YE8+yAtz4Aa7Q683VZz6pa6XPaTtF3VDnY1y1lT5gIbEBm4ITqazXpqb5qNv+fu9/zyK9/6vlF1gyvB5u18Pp+TeT1uJIaUrDcdb4+kIu1Te3iYF20Tmmq8NdmeSF38szNLIf5sVMBCYHBmrHMJPOX+2CZbFc8O8PYzvL39dWePfgZh6v1yFTqLbwpQhkK1WPoA5GVBYxSJRUv5u6GdvqquyjqtDD44uTMTD0SqAncVpUb3UooV0NFg4uRrTatSMTKZM6Gw8Que5YOhCIrxQ/nDgBRZJF8RtTY/0jNGp/XCnyDDaFOhZa0rVFthfcOtz1hpNmxWfSVg+BqvpuHIh5xUfsFOENaSAr1IRJaMUtyKylhZSbcrElYhwmlhmq0yYUHy3GAKiJENjXI4E4l5JogV6toQQlcsKC8tbF+jvGuuOG+Qxjc3G8ZoV98TuZnwAFXaSZP8WhLW+njDyRm/+ovVtWF3NyoDygTgZCIKALACIVUxLGFWO6IiHbV687obAVlh8lf/RVp9sKvXfSRVtVWNdsshJVPOTmAOYKHigreC8sHuTghBx6IpUIo8TrIbcGacTx/i9FN83zE/bpyENFAv2rCSSBXJcuXVaRlN6mZ7e2u3O3xycfTUsp2bGRvB0PU9C837BRlXsXnsUvdbv/PpRx7df8XLrr/92buHW+3p3a3ptMlOkSFSBMqutQZbP4Hro6OiDCwgIuPSz0Bxc0gpubu7ABxEaGP19YUemwGncic4MUcBahpVIzOrIxFb4XWYakqW+tJ15hgjC6oqgMtcGBvA4lVN29vbuzv7X/qlL3jHH33u4tE8VFXeEJwzz0INO5llt851wb6EJaAlopw4pzlp656AZFQhVKAu6eXbX/zczz/24A23T1/TLt77h79+8JFHtw6++ann3HnqhpuaU+cSN+TEQjAuc/xWem8cYrXiL3gGsROcXIKE8iBndXcO2+xtj5m5mlroqaJaWKSiqqjnEDhyJkdmMTgLRxYWSpSdDBkKsDNDCGRW/DHX5iIn0F8JKisiMcNyzqrGvuYeYhUAiZgRgpkFBxXiZpeykxDbEHNWlAhVESlhrDADABhrrCtb1mfPhg99/NHbv+3Pvuz1f/jRD/z8t3/bd9zyy78cb9r7c7+vH79Bmj7Vk+byxH9d+Ve7qvpo98rv+JNf/6ZP33B46e0/+/C57R1PLYYlFxPJ4HmsZjnlvvOUV+NYQiTGylVFXQsxmDuRkcEVaqntuD5tvMN2yXTkcUZWM7K6I4hnZWwpH0IXwSc5vaM/vHn71Bct54/54pj6C5aWyEdC0ciHUSzNrkndmatC2ZnNfWyXL3rzV+55x+m9Z/2rm15UtzPempp3i8Us932oxhwrM3Rdl0mqSfSK5vP58XLBHLZ3TsftidWxLtyfwl926AaCKhGqxsSUyYzcFSzZAlGnfd1xuniYPnb65V81+3Cvn2KJyD6YpW0EYipAFob8WcpcJ3YWZrkmAbtnYi+NyuICPwhyuIINZCurmnWIgA/Zd4Vp8Yn2rWPNtgGvXIKGwquA1QCGtELF6H6dGk+qgnXLzze6hyvq6FA/rAJO8RF0Bw8FuRutKm4iWs10rxQ0hr1epdy0WaJtWjMMVf5wCmnV7ixHswKb1tmXVnmPzEwdaq7FpLu8xb0QA3wl2THkS7PCKyJRAwmFkymhgYc6LA6K5DUJr92drom66xugfKtwL0Qzh9pG3SxcBu3wBbawuZenv89X+MZw3a4Co6/6lXV2WRdnWqh3XN5zlQVlOcvrv/y0rL+5MSj0CZQ899bOukhcC0KMVS11TV74q+6heFg5FEzqjfGiZgRrJI8rvj7GGwUXtru7ngxPqV8xygGZLBf+QoCIxDjhECSGrcloa297/+Jjl598QlUDhUokm4U6BJbcp7puuuwf/dQj+wfHs9ntt96y0/V2xnzSjDymqopEBIO7rpV3njFrFtb0+hsmsMCIACQAgJmlBMseIhd4efN6bW5lpggrCoC7sqAiVk3NqBKGqrMQwNms7+x43s5msxjj1vYkBDazponEZOZCZWGQq2h7u7vPvil98Wue9Rv/7X5xs411wCCP7DnlDr6Ez92Wzh3Qk2nKmfSYdd997qGFB7Ng1H3xS176wlvPPPDgpy7Ojs6cuzDdGR8efuDK3R3Nv85md2zf8oJ46nputmOoQyRVB7MBg3oIS2QGoH3X5c68LP+YpIxtiOP/5OvPY2bbsvsw7LfW2vucU1XffKd33/z69cwW2WSTlEmKsiiJpGRKjGWJkCIlkmU4sCPESSAkThAoDhwYsWEIjiEbgWMJMeJIie1EUmRD0QTZLZGi2GY3B7Gb7OnN775352+sqnPO3mut/LH3qarvvicVGv2+77s1nNpn7zX+1u/nTBxCiCZ5HC2NmTIRQSwsLXctt22A+JiCOziEJpgrWWDKGeLeUyGB1QxYmQ3LuQyCcEE4FrExACUJdi/UGsLFiaqZOXOZdnVVtVKEmsJkgIKB1A2jumUiJwGBhN0m6LtVWgwh8sIUDYQxZunHy4v57Phv/rX//k/+uT//nT/25VYv/vRv8jsf7g2H9tklvwzEuRK569i28/NF/ObX7MErn7378mfsW29cPLm3F7s0DlBr246ZY2zVMwlbgZiaCTHY1b0fhsjEIaoQAwzPBnODDTA3HdAKZp/05YVD4MraoJRV1RxsvILOiM8NIMP66c/vH7wepB0uH/r5CXnklDjPnJDdkLPrYJqEiAUhMMj38pOnmW+u0//k8Tf+ymd/+pdvHN3t5079uF6v1+tI3EhDhpRyzrlZzGMbck5XFxdDTnvzg7CYxS56aSvWuYxSpt16xKYlTax5wuI6EblxaszOs7VDc6TxjS7/1uHveuHJt+ZQ1CmYUkctAZmSFFyUK9jIndiKAGyITrRT4IWxCchdGVYmHRzqSA41UwpgLsSyRJV2yt0BJ3+mT1fK2FNKW6qgxfRv+1VEBC/l/Wpd4B+127VKWgP3a2aqZKvuTly4Ktmn/nO9PkPtIfOEDSoQMLn2hgXi5RWbvfMlrvFUlEtCydEmPBawy69lVODZZsWVFvYplMOk6maAwsgKnSSK6yww5DIQU7LlqStfOQwwaf7tpBYlhPGdcuOupa2+vK63mKtXhLm7ORUpFUclyCu9iWuzWNc8ethZBaIpAa+d8s3nXb+Ij3UAH6NAaURcyL2wEYutmPitw7brW0t8RzoRzqWLuFxrLynSGPvEpgEuTehmPGt50c1CYGqrrisRsVMgNlofpXYtogtZJG1F0fKNVXx54f/kcfq1czxN0VgSubFL8AyS4By70LbNsBeaRYDMYnh078PxYhCQNC2RMVk3EyL3YIH37t1Pv/CLb52eHn/+M7dytps3SPaCiPwznOVOHvwxOkhT8uRNE1Rd1XLO6nAP1O7UF3ZuGWrc4xMEkgCYQUTAFAO8ggPIDKpqSldXq7fefufi4uLo6KhtXxGRISVmCoGJwExFp3jW0cFibzFb/vYf/sTPf/n+Vb8uXAvTHSdzYx9dB3gCMiiDMjCqJc5PkB/7cOlmEhpC66aC/mf/5O947+q7GXTUHPZ+sU4328VPDrbeT0+efPfXniyXJ5/4voM7L/PskENXEkS3StDvjkZCiC2AAEceS9jrDgZBKBIPlkmahg/YgqaVumYfzd2DNOqtEmLMFJxEEFIZb2BmigEga5XhKsosngvNZIyxZKIEiZEsKzECkWWF2kQj4ZoyOUIIsGxqxZlxyQvKAL0Xi4kaiRtULXPgYAhbviQB5dLdClJ8cLnNK7sAu7cNG19dNv/d33zwk3/urz997ejma8//3GX/+cO9L714ZWHvfqb1WhrpggwnF+H8M8OvfXjxnfP5N/7oJ1d/6Xz8zmVz2OmYIJX7xbNZzpbzOI7aD8GMHMQ8qjaxbbpufUlGTq6O4KLQJBQMg2eExW1f3iK+53YIPAVmQIKHwCk5ARm2ZzRGb9Pw/uXp17uDH/bhg3T1Pnev2kBNH8DRLGsekEbNI0sUIRao6xLDYz/8P7z939yeHf5HP/C7mitbHOWLfjVeLtMwzOYHrTRqVAoG7f6cifSq96v18WJv7+aJMbNbBxrFmd0UKRnJlvYAQNPyaGZKRBRYCiuZEPUWlfqlSyf58nL41Zufu73+PXb5/7MCTABKb8GIuHA3wCvanQpOVpwDi5Qk7doJF4Za2XFMzKAgQTwVWSoREeOJwb8iM8xKzQRmzjT5UPLCWmSoY51Usmbfmehlxnao1kB1uqeionx6eumDeZ07Jd+sT2kA2sYfFTxWabFsXT7X0nL9oqWYVxqkcMaEadixVwYn5tK1KT3TjQeegoDJxpXMrb77BooFzSjEqapwF/cKy3J3cjImB2U3gcOKXlExtYXlip1o2ykvzpOq5p1uiu3V8mybtwTwDhFg9bG09dbupfbt20Gjabpht6/6zCP4Tpm0mhKU6KWE9DvjqAARlSLV5vWbOQmfKISqtLlwHQlHnq4fQEVduTtXYD3jmqdXku2bB3jWsO51QCIfZbjs09I8klvX0cE8zBft/kGetWF/3s5iCMQcAHH1HKzNLUNtZmTETaA24Io0NmG/kTsL/Nrj4a3B+yaKezfayALJ3qChoKFbNbFx2pd9yDw8unh4dsZkLAixDYnVjQKxRJ6Hs2H9T771aBgtZcrKwOIAtJg34mhiJEJKQwysth0ymZLU7aDXbuVg2gGZQyCH5frnNKpams1mhaa4npJJfhg7Qj1e1OMLrxyLmYpI6SZaRkq6vFpdPDnvx2EdlhcX593sJpEMKbvLfBZNQVWiOLWtnxy2L9+988lPzX75K49mJ/sbk5IphsQgAp9jfDwbfC19OdDkK9ZW0wX8Aq3rOs3tvYM7t//l/9kf3p8/PT1Lgfdh1A8r4ht68KIsH2mb97gdvv3ry9UT9F9cP/fKwf7L+/N9U+1aWa6HwK1mJDGKARKkDeNy0HFpOkaO7kqukJkQazZCiG1nuaeccj/OuGX0FpC5ETQibpQBJ+JsKhIIxAoKJMbGIxuZkeUMFrg6SFhQuKDDaKrM4uIOV4UEIfUsYppb4SKdlTUVngBmYZA41FE4mkqEJRwApGEdvGN3L7p1DFAuuqakEShU2+JEwQWWk7Kb7T1/+K1f+ia9/iOvvfLyj10lvNz9nfPhP/w7Zw8ffAVP3l976MelNj989ANfaDL/5Osnv+fW8nfu4S/+3te//MEvyTijbpagTaSsvbqau2UNNrqQJYJ7IJq3raqSNIxYEGnkQyRXZ1B2zrBl8COdvaTjObQ33ASWRcQ1mYMCAY4MeCIlCvHh3wo3v+TjmB+cN7eWKST1vPDEiT0N62HdUANzDnsQa576xTLdXr/9r33wzl/+fX/ym+vwybme6RWfrofVeQnChpwicTInDnsh2NifL0+5a2d7JxENIQngLqQyjkXblYmxq1kbA+21snYdrZY4GASwWFqndubg3h8dtNan75z8zA9c/CO2ZULqfH2ZGwsQVaMiyKFKBGLm4BScxIncYTT1H4vlKzSViCyJORFGLvU9FgFHgrgHLumlMsCCQtTJgBfZBJuy1NrlKE1XwYScoSKvYA5mcxDxlEdxJczaZORbRYVw7e/AjpP3SudU55S8fGQpbhPIueR9Jcx091IHp8JXVTxbbZ9upOkLAqukC1I7pRu4TKH1qS6pmDUveTxAXjSLCkmYGzKQiwFUJjOHZudMgSwzaa0PMMHVLJNFFaJCq2s1n+eCCrPSIBZMxSp3A7TwmQbm5J69NJ/YjRxsLKBctBHZGa7sHopqHQfVvDHRbmbZaWe0Z2PkDc6MDSHIdF8m016DFLINfarvPAc7j+072vWPAeC+5fC7hhjaPnbchhcHv3kTAzmCejDl9Rr5anm5ylfLPqfUNbK3aA8O9vb3ZidH86Oj+dFe1zYcQmhaMdO5wN1YUA+eIyvJjLtgHHUxj7dj+81H9o2l33ceYkhtv28tOc5nRupYIc730IYo4cb++cH65sWHT/OoWZI0xtKJGxFJIKEDUr33oO+6s9DuRSaRNkZqg2WFMESi0T91Emk3ANpdW5Ho7iISQo2kVK1gZgqHc8mhufII1rDrn12oKIGyajJXDvTCrbsHx4fjOI7jKNLmnJoQxqQioeobmcSIxV5348bx937hpV/+6vv98grz6d1yHzmte4WtMFz0rhIa5KR+7ppHWc+0X+c1zF6+G372j/+JT39uLw4fPjw34gAZVGaDeQZ1N17LeoGx8zsHOSU6vTj/jd+Ilyu8qml942Bxm4Q4kBcEq4GLEJE3ITh5diPNWsJ3NhNiCmxmDondjEfOY5/yoEiNsUjLnAwMCVTD/4quZGGiaA4xsEvO4sQlVSUqtIAgoI0zTdktE5ExO5FrcleDUGycUGh5wIFgrgYu9mdzR4hAAkqaq56SqhcmHhZXc6apjUDuZOZwdSKx0eL+Hmfak6cPh7uvvzj88MFXH67fmM++/r/8d/qv/N+xjPHs/SyXjVInRz/7n/3tD7/I/u7wl/6b7/6nmp4/eP73/mj40vff+uVfOJvH/XZetIOymlHtmrlnLTmTmhWt4GJ2drCelY8S5oBk76Vd+HhQW3kWvXZOdhCI068jVnT/l8KtL40P7tHJTfPcpTGltUtAGmJ2axBGOiAfRlvL2dkY/4+//suru5/6d/ZffaENa17KenW+XuWU92Z7IQSHDHnIOR8eHQTG+XK9WvVHR0ckYTWOi72GA2VzNsuK0UCOyN7E7QEpGCkRQAyVi9/cKQnUrBdmULOmZP6bUZ8//onn7v9lNDbmVpoLTQaPLmt3hzATTMockXlNPL3GT9Oj4AY4aJnKZI9CyszMKpzZmYmFhSEgCBy70yL1DpDByRzqIrzzd5gSTaDo4pyfYdDDxuGWLuIEz54i+F07IQCIK85/8+Ka4v3T8Ceb+77pCJf+ELO7yza/LfV6LX7Bq6N5ltraJ1dCVOlDam94grm4136wmrvzRlXQyAjG7CV9DQUbXcexyierEQmI3ArrdSlUXcOfFzIsYifdXgbcqIKRq7+bctwSfGxIqwEQSaUnKy/beZSMs2DrYIXEaifxKstfDxt806PfPOFjHclHEzjfNPM/5pnAxGW/+/Ly4B3gviEkk75HGtI6eD8Mqz5fnC/zkGp2H5s7hwc3b+2fnHS3b+0v5qEJdLi/17RBI2IT2iCqOQBMJDCREMXDQPuse7dwOLMbZ/TrZ/bm2mZ9l4KukFXRaQyBdSGUovFeOxx1B+c3Dw+e3L//6OyM0RC5cMuiTuoECrPe7P0HI5qnHd8MTSakw70gAjUwMwyEXEAGH/3W2HGWvtN4cHcWi8SqrmWCkSSrOoQFBTi5XaqpTvGMO9/cmvo8MzMLITRt3Dvcv3Xr1rpfXl1dtW0bQjP0yRpuW6HKiGLMaJtwdNC99qmjmzfnj88ycFXfPK7H1Da+HtIZOEhY5jyKdSGk/uJpnB2ufR0w/sAP3flf/K9+6vTsw4cP3gx9I00MbGusEySILNpAe8+t3/5leeVOQBCLOSqunsTvpKTr/tXPNNrO5IAEEoqAFbu7woI0TRs8suuwvFzBMxOrk8BZxGEwis0czj70Y9+3s85ktDRmJqbIhTzInUXMnZyrdrYWhIJw5CDBXVWVg5bRHTJzS6ERWACQdJQYNAWTDAe5eU5FEalhsXHQcv43xQmbZNNBFJiIWNhdyQUVFCoOJmImLiVEg6NM0ktjFxfLIfnZTMbh1Z/6Qj4+Ovv5d0+vnvzRP/TTX/vul9+69+Xl4eH+/mv57CzGW7PPvv7wy/ff+7vvzS97QXyCX/9//o0Bh3t7e3sVuuoUpCHOOQ1qCWowL4x8SuAYiCj3A4m4WUHnbjYRABgl9NQs0NxBTmyjAeChTA7uPIi85mF2/mXa+x5prD993O0tbBw9Z2DMo5IRJ6Al7ahZjvezfu7h+//y5aN/73f9zFVz0tJF0Ob09APr+9DttbOumAodVUTm824c0/ryqotNDLNsTiE486CZnU2zallV4oBdJiywS6AQ0RondStpZ2FdMnhWF7S9eLZ35vbG4Y/un301jl81Pw7aDnqViMS9h4PJOaCkmyQOrnW+msZuF4IIYGKCkDNbgMVADTMTIjjUZEHKVDHXemYBRruCqi6wAA7e4eSZbG35GJvSVivCAKg8Z5vbUgaK6r18NnB33jYft16pgku89F0nU1UtzJYFhIrf2LVgk8+45mB3kzEHqBTYi08SKmRfmCaeSma8k5fBHalwzzsUyF6HEKrbcndXN+MiXDYtkBdBDuFiOJ0nktcp7dw1lUUVwQrfN7GDrbI4u8J1+jrVJTumiX1sFrO+z643nL47TfPTBgSnMs9zbXV2/DERVSzZbqV6dzVrIotCilufsn0320RqoFphuIYV+FiHVB7ZQ68yWoB0bhRCmLc8REnrfr0cRiOHnX5w2r3XHh3PXnrx5u1bh4uODhfrg/1Zs2gP9hZ7aIIQB2GGGxGTq81DEAHiOJvpyTwczfjWmf3mJXrVHnRJTSTMkThSx9wwkezDAiIfRpudHJ6+/1BTGr0JwZ2HbBmSJcTVmN57/4zTuB5Z/dhM1XjehRirQJVvWxpcahQbOsmPrsNmnDqEEqKZKRsK83gWkRiZWEqoyMyTojXvbm4ABc4z3TUv4Kz5vFsczMxziHxj7+Z77757enp648YNU+cilua1VB4FscF8Hl574aVPvTB//Ojdzd1pRlsTsa1gA+yKEBqKZmO2RrohuKa4ouT/0h/7fe+9/66ePt2bH+SFibknjmEeSCI4EI+EkLzZP3D2GBZATzRgOL9877eQ9PT5UfEK7x0QdcKBHL2ROhgQ4dDMGGHstcgHOcyUiNVdnUXAIVLTrIfxqu9XJUJu3NEBYAgTswR2rRomTATEAoJzhEBknkWzmalq1pHdbQTgTKHiGyQSjcZCBrgq4AYjM4ISE4fKRbOhoFMtM5GkpuZi4gQS1eShicQuIZSDXbLPsklEZH2lr36i+fyf+KHH1D1a+rqLb/6fvzY+MFj/d09v/ov/l7/6/f/oF3/+//Zvf/Ctrx2cfPJP/Pn/8I23+rf+qzcWN281NzSDxj7Edp6ThcBZipCam1nKo6YBqpaygJjJ3EOQ0MRiBSRGHYe6ax222aem4JSsRXOM/JTEoBkUJ/hg2cpEKOOHYImuZ/r4b7d3/oV0fs4xjrI8yHklzoOmyOp60gQjGnNaXfGf+s4/evjZL/3lxfP79HBPmwen56uzq7aVxd5BDK2BCunefK9jweX5hY7p8OQwqxphrwllys4ImgsTATUBbfQo14AXQoiB3I0SjwUHFEiJ2RRmGbwOEIo62je75uTW/+DTb/+qUiAN0eeJr5QCIZf6rIGIQxHodrBTmQZ+xk66kBApi0YeA8YoKTACxYB1gAqBiclVacIAT71Kc9edv2xmkbc+wxjEsFzGaMjgbBtTW03NRhz2OtEeNj6D6s/m2wSpcAsUGpDihrav9ZrnwZ/NIibItBORTbQbUq9norCsCocQIi+MbDvV2GKyyspNY6quRqZFQQ9uMAOc3dVrz9pA6jC3DDKW6jXNjK9n2ZODrKx22wcTGRGoMkwS207Ku33UBXF3d+JNnWinWlAMuDyjZlQRyGX6mShUNvmdZ1QHvqXYqoTG+Gc+NvvgmZRu+wS+5sJ3q9C7i7Jbx1YEjnt73a353u3E8xiju1/dWJydXT16+PTp2frx6XKtenGaH56t3rl3fny0uHWyuHk0u3l8cPvu3o1jHfpuf7+lOaJUzhNmsNgC6LIk40UXwgnuzHCH1l9bx3eWYXQQWe8GcFSyLntD0IXKXOSobR692jaPP7j/5Gp0JQEHjq6qrEww43c+OFuntBouP/HSjRfu7LtR2+S2rV60zpjt3KdnVmkThU3LUvqICIEVBDdTUkulfCDCAAkX4/7xb7X5GajbnpmbJhwfH+eccx5jlP39/Xv37rnR0dFRGX4FUKAi7t4IdzO5tdd8/vPP/+NvvL29OxaY+1HPOTNIk+9BrsBPeLhhyxwP22Zsu4Mwmw0XD69kdrAeBxFJrMzB0SXJnGPGwuIqRIqB12Sy2PPcjOMVhZzX5/TWW+e2stR3N16NR0dt2xbPDbCZmnoMHCTEpq3aZObEZJpJhAA34YYWdEBLXw/rlBJzLyI+EqtLixBnnpQqWJBLHM0cvPZojZzVmViZRViIiJrG1XzMIBeEQFBuMwZWBVVhwZQSHIhKkV212oxaT2MqWJBSYzIjwLIaI6kysVgqT5MoRFRUS51IFvx4Sf/gL/3KcBlf+le/MOqZ/caHs+950ZPlR+n/+hd+89XPffb1f/+vzn/ly1/60pf+wX+5/rWvfOXmF15BXKan3MdEOQQiQjPkJNKISFY1VZhDzVOmXPIkB5HE4Ew6Zmdy4ZpYqJWagRWgVq2OjyLRw4GnnlDioomMvs6rMlUaBRjmvv5aWn1u1rw+Ls/zLGp/BZ5nRjYwjdZQTPpo1E9+8O2fzenPvvjDLLpv4YN8ifWjEMLs4EbbLTgIuS7XoxO6+Tylcd0vuzYC0GyzVhgwtSaGfrRBg4Ba8pmgIeWdQXZyEgKkAFXh7mTIpGyhktHBE4nBwto+CPTmyedeuffjMvz9LAvyJKlbtauQyanoyBR3J0SE4n643r7pYYADHtiFTdgDmZSfyYVVAIYGGAgC8VJ/tI2/dJQCTSkxGBCsTCJsrC5RmdV19qobuMMVaUR1srbisEo6ZDt1sl3aEDAK20zxgc+krdfrarv0iM9UoSe8S33uNLa6gYdPuTKMt2CmjQUr/2/uIIZn+CQ1MVUToSVSqONGZm5FHMEtk1TilJIHby6vVHOMLNRyw46FZCqFB3LZpT2p8QQqxKWyZU5zwF4mnYiu55YfP//itL0pVlSZ+CNeUyt1p5s6c2WpdfeNatvuO+bi6kGomdN2Zad1dJCV2fOdAKLmWPinP0J7sL/33OL4xcXiJodIRCmPfjJL6eTypTuPT68+ePj0m+8+enD/6dXagnRX/er+w8soeuvG0esv77320gsvPH9iKWlq5l2cz1q4oyEYTNnIuaEu4mbjXcxt1+09yL+e02+tcZrRcAzMZwFE2SXMYuFYWHjwlOnmq5Ge3r94eqWDRY4kKKBGJufQPHhykfI4DEPOzz1/e39/jw+Ys1ETJpoqoIDBC3PZbsVm8/P0/zutlABXBtzBqjqOVXzNgziIr7/PZuXLCm9OKTMTqbsvFrP1et33PTPv7e3FGB8/fty27WwezUprmQpyXwI1Tejm9uprx8fW3ZFmAAEAAElEQVSzZsttK6NpT7gyuULY78Y49jMLL0lz5f3Xu/bgyv1nfvazlFcBEZ6brsnJxVwI63FFghZz5xsBOdkoXRwuVkG4uXk7NYtmXAXDYD5++NbV6DlZay/o0fFsjsizGYVcTgHUiGOMFpiSjuNoQp7BVuCORkShW7SqTsg5FcW6FkADZKLRhDuWCELRhdtokJRzBwZTcBeQEkcAcClyc2Xw112ZQuTYuGcdPSYxi2aqqiG6qWc1TZ5Gd4VRqcKYg4yZ2aFjzsJELO6kqu4qsRERjkE4OkFVXa1rWwx5UM5PLP+NXxvu8ur52zci4XKvPWyef9R/+jvvH53r7/65n/7yf/rf/unv+95//l//A//6v/v/+K2zz8XjIOtoMFupN6smHhpTypmLCLFnc7gaAZoVgDSRmXPOptZIzDF4QdJcS06MxTyzU1YdYlik1JIEMgWJQypkFkwkJRVQc2LAop7+3Xj7Xxsz0+qsvzptOa5FKZnwOARb8XrdL/+VN776lU998Zee//Rhvr/kNlx8+FRXRycvnrQn2s0YqkmzjtLMYozLy7Ocx739o5SNJDJzKdeqkmYes7fBQkDDHsl0J+TNg3ooMF8wIxQWEHcB5SAJGpVadXIFUVrrux7evvuzr7zx90TGkTMIYtOkGFHRvTW4eelbMl+DzYKFCMY8MFlgiizCMXIOpIESi5MrA0zFdlsRPnHlSrBfG8CoQ9nVQRjV5092taRj7jRR4k52f+qqTpdENULapVqykhnVJxA5T3xV1+tqKBlarYVcH2W53kcjmgRtuY7YTM/ZsXLuBPYCJ/fpo6uPqIs3sZTUS3WHG22pcN196xQzuzrUvfzPzYymjueuh99kgAzSLSrtYx7bErFv1nNbf9bJGX/8Qn1kcRRT2Z4pyDP+eaLIKPoOTgVJv+U323XgADbV8EpJSIXb85rbpykm3vW+NnG+P/NVd+sB+we3jm4+v3d0s+0Wk6eOBE8p3ThZ3Lp98MILN1559bl33n/0xluP3nnv4eXFVdM0RHR++ejx06cPnoyfvuhffuHo9q3FycncnVphJhJpvGjAQAN8L0pgQaT5LbshduM+/9I5f0A2dzoAVtSQS6/paMZjyk23L2E2rM9uvjBrm0erp2fDqjdnZoFjGMcmSgixH/ztd09Xy3R1eeuVl47VadHCOo4RxGAUolHebLFdv7t7L7AdiQOxCygwZ4Dcc+n/14cUB7wZO94uft3KlfKU2JmZBdFFQxjXPRHFaPP5XFXH1M+pKX56ujskIk0T9o5vvbLXfKZ5hHRQ3lmGR04jbGl6ATtJQax9HnmYDe++whfvPP3mn/k3/8AXv+fqwVvvMfZFUzYxrKMzBTRMnjlQ0nDAazcXp8DdgablLDTNXLTtDMLDEmM/PP7ALVsedHzOjm7O50cUO8RGAomwO0RagRF5VlIkkgCv8El1YxaO8+imepl0jcHIKRIAU09opKwbBSnIS0Ut0Lk7OzO5uREJWMwsZxVwjGJwsGrOEIBM4NavCV01BqYptuOw9hakyXJyzTAjza4GtTFpIJgRWMwpEBEzCYcQSNiJNTuiM0tsGiEmtJmxCJc4nH1wmehydXh8wy8cBz48tFeP3/zP/5OffXL/9MmHT//o/+bHLoazzN/5P/2bX/oX/q1vNQe/TccHFlpbZOE5SySBu3OgNKRhGJByAI3mZlaUMRVbwTOOAZsxEodvUCT1L+aalBlh4eMV07hNX4r5dyoNl2oCqKPx8bj8+zz/KU2P+yePeH7QpOTUjCkv0nABfuHJvR9I/u/9th9Let6E9ury6Xl/2crejXg8NNJQgNkwDO4+n8/HnK7WKxEaS6zUtHAuDcUh5aSB3IJQiIZAhoAdj5hz4VgpFQZmMwkwgia4g5k1iykZzEOz0HRxGr918+WjBz9zuPyvFZ2HJUPKYc7kDjcWZwIXYEgtnm4+LhBHMmaSgFgk8chYPAgHKtPeLsRcZ7+5dBhd3F3cncrUu9cWnimISM1lIloo+w61dMwlrtgaAqPrAKoqQrBJgRzlrhcnDoaUNlltjpYJ6I/W2a6bms3PWqZNmTZ+ujrjLc0koUwJl2SvINeY2J/9hFJbnjLRYhhhGz0Ggxv5VAAvhlXdyNVL2d51k8uqZy56e1yrFGGqrm/QSht/yc5CtGmoVMc1Aa/q+CMqYqvOm5lXuafrZd1nDHtp5ZQ0+iNMWJvS5zTAVOOqwnLKu2qB23UnIqvVpmv+v9657SzX9oNExK+HDMVy7Trgw8OTvf3D+bxruiYGJM2FNlETE0k3S4dHi5v78uKNvU+99Pzb955867vv3bv/qB8M4A/P/fTygyfnl08u73xiffOFdDgcphuHB3uIQzew5H1vTGVtQoI9cMe4aAU3oxA78KuXWGVoO44WSMcmhFP1rgnZU1ARuml9c3Az7s3apw8/vLxcqhLHIKGFrZg6M+p7fPhgOQxDysPd9cHzt/bVbeZBghG5UBEOIyarmNfdks5HyvjuDgIXOnRzFkSSpDnn5G7MpFpoHDDpkZdHlYwvZYuy10VIRFQ1SNOvr8az8xBCVjs6OgohELmZlfm2AtAv9Q+Nfvvk9j//0uKNN+tbDzgLWTJzwA3qumTeLr99W95rZO9d/b7v+fGXfvR77Dvfujebh1GTRgQdxMXZB80IrXrgbqTD+ZjjGOZr4nb/MF9e+TBws0jUuPOsCejD5eWD9Og9yqyJslKGz+b7DfZDCCLs2eo1SqfqQ6GCyyAYCamOhiChYyhgwp5zHsfBnBp3UJN9UNWm6USozCUUgp3AsXRnpsKPhBK9cQs1YgZcRCwIByEHqQpLw6RjUlWz3IQYYttrYs2w7JYrk15SU2XP5LBxgFVsCACRWPwwRBACcWCOIsLMbuS05r2D5pK67sjbZL6iTNov5y/u/51/mO+99TTy4j/5i3/1D/0Pf+JXv/n2n/uzf+8Hf8/vlO6kHVcXNN9LvBQL3BkhhEY1lTNeDqwmVVUyl0aYeVRlEiLKKUtlrn/GNkG1YIJK/U0lznQMRFTANFPmQj4JxgtDzQm98146/UU5+uc8H+vFg1Gfy+4zD36BcHsY1vEn3nnnO6988uvN7WO5HFdnq2Ue4c+dPHcR0cpMVV3zer3mJjRtvOrX4zge7c16hTDFEMFQdYeZ85i8jdwEiFByd6XdihtBKvNwLZk6kRPMgJidCGsnZbAJgZRYLvKjw/jkuT/QfPPLs3ihenPVvYe8MHMlVwYLmEWJrBYKr5EHE7mIBIqBnMWYE1MSNmYWagiDuDNMqBCUGXxqf7q6g7yMpXgd7nEzBQsV4XBmdmezkpUJUVVaoKoCVIHVG+59d9q8+cbgbHPfqW9Qxos2X8T92q+bB1/nNCguoxi0jbhCmZTakLYCKKO3O5S9E49vUSjZpr+ljLz7K7zOk01Zr01JMNzNwFo24taEkhmU3bOl6FxYKbjwwBiIPXDcJIfla+58l/IZsJ2cJ5mq6gYCXZ5JQDGtW/u7HROdLsQBLrxsjjIHXCvMRma2mZOTwotteetfy5gQrkHGyWpTuQy0M3MhRqkTzUyV06tMOludHAOQr88s8RTd6E6MFWYHcbZounbWNiwWXSw7ETVBXLUJQVVn3Y3Zer1/tL77XPPZ14/v379487sP3nn7g7eeLjWcvPHW6vT8zdOL4fLS+xd9HPPx8ckMHqOtIqOcFzaL8OCBxxMNAeyUm4fdVx7l8y6yuVK4NL5iPzQcCK3n1iTvaD8hUiM3u+7g6aNHDx6OqzRv90KI5mB4YDH3D06v+jxenl4NqzsvvHAjpbzXhRDZiRAYBFMPsBpskgBUSF+8KiNNYWMJRc0NGgJzsTIuHMjMxn4Ak0AseXCKkeEwK4MuRkX6eTKeTB4ExpwxNm14cnqekjZNc3i4P5vNolBgLnPDXoW+rQnhKIa3j2cPPvtFvPkb5Y1eO/1bF3LQN7MmMPpA+eE+6Wgv3Jfn8t785/7w8fvv3eu6jkhIclYTCuRuICRgto6j9zqfz/YvSJtuwd1BI/Eq7CtasM5AazFfHGYcdGjG5YfD4zc5X8GXQUc7GodZQjen2VEyFKgFEYWmsZHIk3NyR87MNIMm92QcuFlA3dIlm5otFSrsMliYzdUNcSYSnVxdJQZWJydzJaIuNtktF3YqCETctSm6DgZPXlpxTZyZGQcmZG+imXHTRR1B7lnT2HtObIronsfG2cy4nQmXCQoPIdT3L2EuxRibIE2llhW0fGCj8YxHXWk/BCa1ccyt6dMsx+PIn/iMr4lpoB/60d/2p/6n+m//Gz/wg//q377onld/cGXtrMy4xCJDyxizuCeYpjEPA4bEQSCcYJEDgNwnIW6pHTgwbHNgzTJXbuKlI4EZ2gOZmz1Na0J2jERGcHOFd8SN+6laBCcnhlLA8Xj/r4UX/5ie7YVH9/XoZdJxcF+PGldPX3v64T/8wd/js9XBOX+YKJ2fHp2cWNfuWRwxLLkP63F9cX7zhbtNE8ZHV4E4cwiMiIDMOYKJRRvtExO1koQ5kJBnh+8aR+XcRmEXy+aEzM4B89SOQRVQY9YiF0mSnaQZmC4fX337pZebB3/41tP/OIa9ZuiSRCdmTiSNgpKroUMD44Yq7nljKzOJcQCByCGMKEEggpFpFTwEokYgbGArdUo2OGHifjJyMnI3V3UGF/U0hE1ntLggLpUMLhxQhTzTCy8uyKuYTvXrqGoM5hNxJVXqzuL+pgFeYxevEiM7WQEVHgg4UUEobRgTa09989SiNF/7rNhkvTRlvNVlw8BU+7VW673uDgNzZQYBaHL3Nel3dyXK5hmjeksIQmSw5JlhcBMzLpMODnAoRq0QuQuIqNJpA1OfZeriOwUmB7Kr+6RYX9h3ArFWQNoEDac6g1iMdnZzVxDLMwO6pZ6kDlcCQslErSoXTtGXWUlFn0mli2Pe6bhvOXJ3oLa4/pJpQmmndG3XnylE2AyT7zBhSYihiYWsePMdiDxUMVs3s9BwDDqf8XjQHR/vP//crZdfuH3/c8//w1/6J9/4zXvS3ji/wNd+9TefPD69PH9l+erR7avl8y/cWMxbcnSNE5mqBuk4G0tonKmll066HHAK+c3H/bIJHKOYkftgdu6+CIEbHoKZzWglc5stbnTctOdnj5bnD0mOiNysRx5mzYyMHzy4WC3TcrDVerh7d6Yni65tRSTCJSCGhiuPbPG1xcYZ8z9NJ4M3JWIi0sxFzTDlVEqp7p5SDiKh4Gmt5r6oPWAHJIRgZjQQM+/PF8mUmUPgEDjIdmaPpp49MxPZjbncuHFyNV3HWfeSphX3uIhXMz9I/omni6aLd9Pp/Z/+2R8McRjcAaSUEKhpWu1HIjZPIYRk7OZtWDTdnmVp29adDBTazglK7ObdfM9y5j1Yc0jkvDyj84sxv+lqYJ8nyzktRZQCSxAOQSgSA+SJ1FVViQvBjwAemITJYoucPI1uOo6ju1KYWWAni6VCwIEI5EgoCpuVYqAcU1d4cGYmrf0z3wA+WZxALEQSJDjBLAPwMRARBe/iXtbRczLNjblbnljgy2pzHQt2CyE4EZgoNs5czkNEUDM4GW3mRlhVldbzi1uHe9++cfvkYvn4v/6Fx31+66/8Rz/6E3/+9/8Hf+H/vR6O9nrWsfFWsmcFWqvKLWaWUtKULGdT3WyeyupfCirm674fU2qnoHuTHBAXsUUtyBM3JxJIC1tVmuCiDFZbjwRqYFUMaICjv4/Tf9QufnI4fRyPXkzWt5enyW++8vhd62599cZnkFYX63VanjP5bLZA8j5kNuiTJ5dnF5r0aP+gv1yPV6vDw0NkskCxjagT/+6jqqp0MS6ikLnDDczXQCddG1VzCAhCOSsjJFMJ1IBHB5F7xf+CiJSW4MVSmkfL9ent33t8+v+1+MHg+2KpFFPd1SHw1oVhXPSRrp3bovtJCmTimnAzOTMCU0CZdc/gYgqYicRZ3YjIbEc23b0MrrsbqAgSwMVRvQBtji25w4q/qmnmdcvMuy+ZNlU17kS07exOSSquewQA/pGatFb0RHHl16p6vluM/UhrefKzHylyOzvZDnjOdi5hqzdfO951Xm73TTY/m5fO3/SJRLQJR2gqHW/SHoDMC+C6uDGY+2YOeJsNo0YemwQaqOIQ5aMq29dmfTRPK8kAQpFtcRRYYxVxZGa7Xgjdtci7i1P8ojNtu0a7pYyClSw/UJn02vaSdxryBuDZugYQQhNCCEIwrXbQjSsxSC2JMxC66B5yzmnmfsAHe3JyTEeHP7A/b77xrdOzlbbzxXfePH386Ors6uXvef3WaHTzZP9oP/te07VFg9ZctYsilrwJLOaiV0qXF/zdEcZwt+iUBInFjIzQss4Cd94ENODQRrnR8n6kR0+uYujA7IFSSubgsDi7suG7H56eX16ubq77dHTYHR0sQmjVrUwmOozIRSol4a6Z2N2juzeCJ1S5u7hrcbe1WKKZAGax6+LP5fnMJCJd16lqtKbr2jK4M1/MYoyhyhT67quIiONeF9rnD2fvTBd2hrveSYiLYFcrCS6M/mxcrY6OP/ETP0bL5bLE7VRoLFKeriQSQU0DOalxiM574CNSDNDQNikpcTDNoZ0PGKQlbxqhNnDE5aPx/HRw97EfXnjl0I/FlLqDNJulYK01oggUEEHkngdXdVcmYokMA9iajmGZWYc+pV4TZM6eEEjZQW7ghikQi8KEhRzZLUCEmKlIqCum2BuAiEDYCa5iZlPLnlWVuCXytuncHTAKHtHlPBani1xbU1VDrKRRVsobXAafUFDTpQTlRCBVp6qT6CkPOeck1ttjnR3+2X/rr+s53fmh3/m37vkLv/2vJTlIR0fdi7dzuu8+yxYltvWGTvdXVWHqSVnr+Ka5F59jZkRwt9hFWUlhCwERE2mCqXKRECicuHU1iEOLLI4Azyi2vz5aQgJcODoIEikP6fGvOn0+z45lvGx1djn2ostPPXj0wa3by9hgeLwcLni9CvN528wcnKLr6nw4e3h1ub790itowpOHD0BMLH1KkYOIGHmpa/Y5g33RAaxKyAZzhMBhByPhm7l8NiGDC5EYjMUFhEwMI5Ly5cyjYKQU+6dy787s+MHP3Dj7j9vZ3qjkbIaQXZ3YicFu4EJDeS0BLpkvVBiBLTAFJiGP4sLUEEqIKOVpBHIrsE5VJXeiYohqrmpwcjJ1lC9MbuROVtC65bKrx95NfZ5tSZZi9zRo5PWK3Z0qkbE/Y/+fMdHVVT2Dwtp81tRbpbJ7wFOv1Seq660jmOKGOoM7WaHa9kaNP55N8MrzqfrMEjybu9K05kDR25wu2J95wNhBVU5tszhW56NqFm87enTFuVb3S4Bv3SI5rOLKr4Nhd0KxGhtNKxk2K1umgbe/FrjVTr3e3cuXeyYtLpj3ZxzzxznvuvBlYqwMXfqmauHXXjjdPylfQz0LhzJRWFxMeULhlCiIQBFp3N0pCmJYLDrJ42dv3rr/q19/+917o4T5k/P+F7767dPT/jOf0k+9mvKNDrqn8yZEkZjRxAbGgZg9sh7Z8Prx/OK58Pj99NiSS3BTgI14MCRNeyG6WyDLDQ0yg4d5bPfCfhPef3R+qZkHgZIys6VMGpaul289Pj8fnz5ef/pTxyAn5NlsZsEL7QJgZnlCS8kz92lncWjKUI2IRdiNADJYSmkcxyhBQgXl0/TYvFXZ0WVuuOsaM2ht9lOMoVBXlueXDTZNEVjrl2i4uXW8vTsYWGd5OJvNFjwMyisKNOaTlz7D89v26I1VEyJPuIGcc9FxEY6ae2cXodVyXI8aj/eUFq36CBWCiFAICmRzihEciFKzD+pu5a7B+SnWvX/4ztqdb636g34O6whBOjSeRTgbMUTEEXxSBKNJgEs4eJwVcjeDaRotJS3GTpWtJc7G0c1yIEKgkgCD3EkBJycugU6lmtNqB00kFvEjMzAzsUxVDaiquTETUSgyz0RUYGDlPtZQmoRUhSHECAYqEBIvsFqFNUE0e0ojiiDuOJA5pRbhA7p596/c26dkB8dH8fZoL/5Iq4HR29VTQcyNOK2oaUSLiBgsay7gFHPkbJoYZGYQcYIWcgk1dfM0FqIud05pgClgEtmTVulTN1AuinDk7BTgrWMAtAJNiEAtq6KkfuoRsHik44OZ/nKinwkfnq7uDpn0cHl2bOs3Xn5NVf1yOVxdUtYQj9U5RLJhefbBO/l8KW174+6di/Vy1a8PF3shCuWRjHIeOUQiUfVRre04RDhYzUczLaybO9yQq/UoEk09Bm2FTHOUkMzBxDB3YpCTFZJhRQRDHGr0LvLhq7//4Kt/K+BDw6JQpTjYAGd1gRUu18lp1MNbDD0RV60tZlBgF/ZQpJnhwhMUsMQ3lousHFjKERYiZVQnUJUbyLjAf4wrUquMsk4VW5Jq3q974mrYPzKHsrEYu3+0CQm/id7o+kvMTHYnOBhTzXnruWmi5kBJnaeC3+77+OSxN/8yOZFdG1jdyu7LC6MbyMFl120RaPUb0fZnZqbCeFNZuXmXcWyqdU8qh9MKGKrEusGzm5mpa4brlEDaNECyc6nbr1B/5jL/VUP1WoIuzyjW1sxcrYLZP+6NdivaRGRumxL09mN2dx5tR9LcTUvMYlOKDv9Y7wugtg4KHmAb/NS3KutYCn1TblfKs00I3ET51Ou3Zwu88PzRV3753a9/836fdLTw1d+49+jpcnl597OvHY+r9Y2bBwdH++zWRhmVA1GIRBRY/UZLr57YK5fx4mLdx5gRCOrJnTgLXxp62BjyfhOCCeUWRNnCfqAwu3h4/8EwrjUQZbDS2C+VvV+Np+cPH9x/0vcvAsx3ibkRSU0QFqulPy+yHZsyBZU7slNUwHSMSt2eJBDA7ORs4zgmcyAaZ1UKgUtm/LGP8k85Z+JQF7MkLjtGahMHpNmeymoxa7avz9lo2VJ7qUs4OgRP3YK++sd+8o+sHrzXxmhmInHUTE4xxjSMHAJkgCp5iE3z5LJbDdws4roTXw3xZD8tr9rCGi+CIrBaSMwiedMqR6KGL5+GcYX7j3P2vu8Vnj117UGjTYytI2g9Ji5CAlHXnCtY1AksAUxCVnJJUrO+zzkhjN6ohCyhc1VTUg0hNEzkTBkoBaLg0dxBiMzZzdRK9qAT19CmQEFEhQWFxAVNUWaAq5kAQKESdBWQkWU3JhIJjIIkcZHSslTzzMSjrseRch4sj6oppxGqbs7UW55jlW4v4ASkK1rNU3vFqiYMdKvAwbGgvaSF/B7kKPIwZoacPGXPConJTSQWHCkJ5zGZmaZ0LRSru0INDgjVlEDh2ZHcR2IiD+4RFU1igBACEWcwxKAgYlWILCIe/86f4C//jSdNnuUAOb287O3dg7u+fEqrMV9cWRNm8xlJSNYvP7y3evyoDfOD/aMQYn96SZoDQVRbJndAzdg856FPTtZ0bXFbwzppUgCNNrpTyhySYyRmalXCgmJHqrnoZ5DRWHp7hSWBjHMw9cxZI9lZPr194+rgX9rr/30K+9lYRUEBTE5m1noFmGLXTZEbl7oduZQyC7EwhBBYApgFIoHIGQ5jeJkBTqjZMzF2mKynUjQKEWi152DZ9IO5puDmYNm8lH0iZC4Ob8ekbhz0xiPsPooPLvQaZNerx7tNyanDWPJV4u0iPOMUvMLftgI9KFMwUyVpM8ABu1bq/kgeXt55kwMXCLphJ/HdfIWaKn/kjSa/WA6po0xD1ESn1p/LX7SiVKuG2CZ39N2s16jIAE7LcO1Sy0R2MbJhdx23SzOJ/m587SajegYFbQTUqtXHFiGmT51Cp90bUKoF29CjimFuHXnZo0WgQ+ucl00580Tpx2VjFddbrgYNEXF3g8xxfDhPB4tw81b7j7/y5vlqrc3822/cX1+uLs/vfPoTh89dru88l49vHDEn5hibRgAmCMc5485s/OyN7sEqvzvaGLh1puwm5uyeMYYwuCTQIdBS9kaS7y05RJk/38jjR/fPzy/JKedslPsrSymr6urJ6te/fk9CF+KMZCRmaxAbFhRp7m2au1l5XFu67T9RHf12Fph5ISopeTAAYjeLzOEZCpipWFMpSENhaEAZcxI3mOXNOODG+M7E98kXvGMBslEYBxuQcuTFwKPnN//Qn/q5G691j77DckjudUbc3WGTVkeySJEsk9hZH4YcWyY5Oh6v+sXzt07TaYAhBAaCNCMg7MnJKSggseHFvjMN606uln5+KX1KifLNvj/sF91ioTNIhzINgpKhGYNcHERwENgZMFDTsJkYMAxQ9ZTHrGbgRht35iTeVB5KCZUrmEkoek5GEIkQRrZy7msUiwJaKWy0hFrgJObAADFg8CKOB6hngjEHKRjuHeVKM1NNqk5w9Wxl1j/1/TASzLKO40BEAs95TDHYGFlSUoVRUIRmyIZkvcfjkQaHB3hOZi1Fn6XUixupuRpy8iFZTjTxDHBFV0wbz71pGh97SwORMzOI1WBJ4c4Sih4NXEEZVuSwBNxUztzSknUnjsYjqCMeWSQHIC3F56dn/OmXLq5+oP/5//4xP39zubw8b46WB93e8vHFcunLHt1Ru7dPZBdPH13df9A0TbM4aI8OlXgcBnKERtZpDBxdQCRs3K8H09Ttz+ZzYfez09VqtQLQdV1oXHVrlEXiem3CbEYiaA5IyIkYzkoW3QE3QAGCE4Nsrda4UGPdZa8PX/kdzW/8F9Qu3cQ4G4WSBJtK4dn360S8JQ1juJAylMkDI7BJcCbECr8DozDH1/rVJolkmE5YY2KwkVUqFwNABmHwZGVLZxIFC85MZh/XXK13ma6bb6v6CjtP4gpXdgKV6sBOcx871eliUqp34sJNUTLdbWm3YLwqkME/4hSKhhP5VIYu6C08Ew/QJNYwfd8aPFgVQ3InMzL5iBuuwUnVY6gussDWnMnMjWqdtrjq6nSnnHvzg28r6dgkhM7+bFJfYxF65i8FP4KNGhIRUal3TVMrvFNP2GCmyort5qmbl+9motdXqsYINf/wUm4mLkWIiUTlYyIugCdORDAT6vW5uxUq/DJbXWLzMntfrq2ETYw2hqODg64ZZgs/2J/dOjr6xX/8699+/3EMBw8erZ+cfvODxze+8NmXs0XiJnjbHDZaMd2ZAjXg44W8nuze0+bREz1nJinyxoxsDbJZWCYCu0id4Avg1OzFNVr40d2O+MPTBw+GcVjlEaP0Yx8id3v7Z71/87sPpYmD3jbF4f5sjhDExVyEKvnr1K2gnRtRTuO0yGy2qfCUu+wTCCu5e6CSHihRKIV8ABthrGklKwrD3T0rCU9BsG0ioXJncs7NrGkW23xamk79CkzEi2Q98tnP/sE/+BO/43vefuuX5idJxwIBq2Q9OWcRyZbd2DjARgR9smTTGTnaoxv92+8SSYwxLwdqG+bgmxFCl8JKwKzcNon3Rw7BaRhHGsfm6WkclXvtD5Pup4YGbmYcWiIiK9bBhTghM8DT2RKO3AJgJ9ZxILXsqqqaRqKq/ctBDJmZKURioRARnArBgmd1qOeSTmhOTdOaVYHYotVG5ByQVTFVan2avicicy2q7KXWxO5l/ss1GcEtq6mZmo5pGC2PngeouZuqomjBmcO5W5vOz6+u9g/EPM+sWV55EzkJdWNaRVp2csIcNAanwXg0c8lqWU1HmFtOMCN2cy21SmZWM0uZi865Du7KAMw1ZSATEQfWlCq3Qzm4hWGIyMXJhSjUL0sGJ4IoFvCGxqBIUAeNiK0P/OYvnf7Rn37+V37rt5b5Ryitz27cMrm8OM/j5amul3vNHWl4fXa2On3EpmFx4l1sZvOU0rBaS2RqY9YUmlYq0yc85VkbZvPGHOvl+ur03F1ni3nThaaRIFszE8p3BZBp3ae2CW1TsnyDmwgRITOEYMp9UMkdua88M8vplX14e39x8i8e9H/Z2J1iYSNyiiWlKN73Gi82GRMxEkEZGShdJCM2IuOpO1dPtBtV5+F1Gas5Lc65nnpMrghwFPXjnUfJgKvRQL1LmwyKiAhC9Ay3Ek+4rq3fqiQQ9X6Sc71QslrsnUZ7q//nzY4oeGpzyMb7ToW9YltqKZqmivS1THdq/U4YocnL7iwFmKFWkl4iZjiMIFLI1HmXfpFQGlwyFUq5kLwWi+o1596GEVs7+ZGEG0DOVlpLisruUsIlmrQV2KZk9RoUflO/rX3UUOyjF3zTdvDXdxvjpapA0416NmYpg8/TEzZfwDcolemboDRxAUwDUpvlJiIUMa2PfN1CB+HkhbivoGl8QqyVBkoRtQZQlpcdDOU2ml1KCF13k+ny+z8fjjvZ+5W3f+Mb7y5ziAhf+/oH9+9f6Ji6xmfh9mwxKKENLcmoQkxda3Kr6z9xOP/603xq3rtGYjDYZMTIzJEog57CL90PCIeCQJl9b0BH1C1uZB/65b0PLi8HgYe2UXdlzNvuvF9/84331T2vL+/cPrl983A+C1EczaRmVqb6dh67C767S8pGjFFSUgnE3KhqSml32XcfRDTxlBIRwRzmVObSzJ20IDh2ybNyzmxzyEhhhyjUWByki9ysQAdte/NHf/yVJ6d/fzGPOYc2hGEYQhPLfEIIocD/OMCV2IV4drFsmBZR3PbC2kjVu9lidTkIwMyqihhNiQn18piYpREGk0fC5ZJVLY/j5bm7iyon7RczUefGQmgiuHTHsqWy85nJa6VLnDgaaZmEzQnJ1d1zLkT6lDTGGEJjHMQdEsjM0igSFY4Q2bO6MQhEUE1Dab9BJMBrETyKCOrAIFhKO7xQPgLsXMZOlVzh6kYpDTJmMKWcUhrcldxtHHJKOg5d22rSPI5N02S3NKY2Nh4Uq4OT1pY2psa73Hbko8DMjFoOvtYocU3O3LdOyoEBmGbLSu6W1bK6ZuEozJV60ExTZvei0FCGfWs7H+zZVbUke9u43CtfvzmBGCzFsBeDykTKJjbCOwQKY1Y0YzNn8HeerH44LH/u9x3+5b92jw/3Hi+bqA2W76Zx7XmchwDY8uqM8zjf3181bQAW3Wx9uaLVeHjrOK8Tg6EgcVWnnKE2bzoRLJfL5dMLNp3vzfeO96UrHCc75sU1iA/jKNIwwno1xtDQFCNNRNykgDH2kvYsCnMNBsjQj8P++fM/3n37/yUR5B0olWFClqQuAOtOcw0oDEXFrWaClromyIDt3EdpO7MrqDQcrdhjUjdXmqZm3as04ZQI1raFGzs/e+Q3ZnvHgJR3YZ9AUTvGpJoa3hHpKcZ9Y0yeSetR1HUnqURmdrfq6c0p0LUnb8L9+p8pMthkyTvlYaKNvatXsvlqG4Hd+vUJTOzM7rzDcnyN8HiynNdabNu9sPX2z9bJn/lobF2hoHCHbKrQBRPitSmPf0pZuHYMiAAEMxAJEdxF3Yt4grs6Byuub3O8ADa3a32Nkp4SGYjEXT/CbMWlDVYbcLXSRT6JB1ffT7QRds67aGrh0dOsSARzIWeBaQZA7FlzudlexRfLFlEUqUZ3kMcYAXikk7CQYLE9mu9//uig/Yf/+DfPnqZucfDdd0/3D966eTxvFtzutXsdz/eErCEQzIi84fmdI/3Mvj04w9UM0DLqOSYSMTQMZxgV/m9aMS8CzQM6CQ3vr1NOR75IctF/JyfylBfdgVCgqMRytbZvfvv9q9P9l18eV/3y7u3Do725e7Q2sHhLJFGSjm7OzJpMREhkB3a/uQVVdyxGNrPsuWlDaGJZ1UrCvm2cF/5L2gTLIJgbKo9H6WpoQWJukPbkZKFnysFnO5+8ViwQTyOOc3r8u3/3Dx+dPPngfW6la8J5zrMQgmu10aqK+p5kciF5EWWV1i9gFrLFZgGDh/uPcPtwiQRhzmZtMChRJCYmHjU7yehO4giBadGiSeu1Zi30y/nqQlyRD2iWyVO2xiAlq3OQBHb3RO5uIlxq9xZCQMcgEzEC1NQyksOdY9Yx2zjEGEmik4iIEUvbErFazixFqkgLbMoDFXFChXspYFByj0Vv1QxImdgnhgNxU/dsWUQsjajKLTbm0d0tJzNzM3eFmsCNMeYRDI5h1EzmIpwtQ8TbvDZnb2fGJJ5JSSES2RUWnHu2EJidqqDT6FlNSfNwcYmcGGaqRC2cjcBAjFEMabmGewghC8PZPTNBU0JOwqTK7lyPrdZSM1zgMbolvu32kD2CW9jo2WV2U/vzVli5Uzx0DjM9WtOjdLG6Om9e+NTF7/8ds7/x3w4v3JEx9Wl8yJdnenHa7P3w0KsMA+YHzpExtrMTD2G5PDVVik1yC05AVovOtkx9mDe0147LdV6ufFge3by1ODrwgBCIaOSdDpcasdMsTqUaj5TY20xgqJGIqrMwiSs0NYhmUGPImEeJ3eOLZXzh5dn9nzq6+v8McTHLPsaZEqCNEHlBbF5Dxhi5gSl6J3BwT0HZEHIU0SxDALEX+C0VqTu4chl4KSrtBCcIgYMoqU9avEQAA0zOtsHfuju7TDVehUnNTGs7kMt8kglz8esTw0Yu+eyE6d9gQkEmoEIDWaRLnEolyAkAk3lpKVZ3RQYjcDbUmp5VyTGiApt1+ET14T6F+wZjYQfcJqqXa/JLtTzOTCJQcSiK8ElyM8sgdTInc4rl7BM5sRE5wQIclRMZXs4XUyH+JoN7vcKNvzc4C7ExSMDiVhdaqeKNCtKMJyJPIgJZpWHFrszg1hH75PIczEDYza7K1yuo9JL31+vwCpiy6/Vn1JZ1BbztBhrTZ9fp3k3sQwTychd99yUVe3k9YKg5WXH/Rcag5g+ZnTcftItRqjsSbJ6JiIWCBwAcZu5O7Hfvph+ffYKjf+WXvvnw9EJC99Zbp1+/fXp0c2/eXnR3T/pxDFGEgwiZWSNYzPz2oR+dh9Ne0SbyYCoUgptpjfyMmJRcHZ4MUTJyFKJmkWOiveHmS5/sn3w49gOXid+s1DAZ5Z7ev/9k2a+uro5Tj/Sc7y2aPWtiI0mCqzMHFHFbuOZEk4jsdvFrzAGqbIZc+BzMqhjZZuWxGz8STSWdbY95WkaeKiDbfymVhhB5f3+x+fQgHTlEbvbrxz/y27/4s3/86P233p/P2dNSxyOX/pnIsdxxcxIKcLUsq9wZDLlHd2PR4Mn737792k8aPaaUkrdtHj2ymZCTAU0IOWcH3ExEzMFBmq5zVag5k7v3fS8IThYYYtm5YWbhCCYglMqwFXALIMRglqZhRs5k0DwmgAvIwtJmHBBm5iyOQJCheG6RojRHRGSFxlaLDk1xpWZWdmJBhBW93ZIBl9vioJwzwRMgcLWkqjlnYXMvoWzRPnBM+Q199HQA2Glq+k7QbbZlWEMh8wIzs+XsWhCdJX0hIwKTskEKtadnVcu5bLv1eq0pQXOzkzaoTjNUpWFHm7ahg0idKDSe50CCEUHclbgN7TyNgCbClTS31SJAfV4Iaf+AvvTj6298+Nbp6Sd9SHYFGwe3xIE1ZW5aJg4sOVHTtlmTjilGKWlG4R2EYhgHFj7Ym2Mclhenq9VqsVgcHBzmjLROHkWCpB0Yk7MJAVJqlQTkAVmUQ1E3cSCQuRJ7YLCyUunqkwubIyv1A/Kt353P/x7FfswZTioxjCl1kGepH6cjhgGsoARK7oloBJKT1bp1TY6MCskzNhM25VEYrwxwEfIiD1i7lV7iv6khOvX1nKmSbVKhqYRj98LItv1en/RuK7Bnp7kLKmVIVJiy1+p22UJMZDBocVpVXKBqRpgxV4EK37YydyzYtohSS/daxmonlo9tjf0jj/KutQwAKhgFB3Fh2yDaHoFr08PY/NPmV9pphO8mu1VswSu8vFrDGsyivERRalpl5rPU5a+JVVw/t6VoUNgwaQvCsmm+EIBOSJ/dS/TpJu364NqjdTeZavk7WXx55qYoUoyIkZMTbFt82N2j1xJs18L6WZF+hQNvutRKZjnRgExx39b0oNTEyM0sMHddo9pF2ldb/tD3vTJv5Ku/9sbbH5ytk/zKN964+/x8MT88PhqFjaijUJZKu0gL45cO8t3G37mi3BArHEQCN1ZzI4OAjJgxmo/g5TAuwLMmak9hdjRvO29ne7N2dXHaXw4wV3UfNDl1gVzkydO0Wj6+OB8+8erJJ169RbcOmqSzvaLRzp49ZxURkDscqrs7Bted62ZjTYnvtgC14w6vFYW8PkoJwadNuDl1XvrwzJAwzvZ2xOb0ac4LxfjFL979V/6Nlz+493YbFmnIUcChz+a7n7KzAZnVlMy1uUoLZyD10nber1jzEGCBCH3P8BRUqNvYnokETigwcyY1Em6iJx3TAIBJclaMK2IlcssdySih8ZBDaPJUVHeCUWYQRASkVXOehaMFIyEzg9bKtJllJLXMJO5KJNCROZAGZi6y2xtyoBJPFtErz9mhlZbf3FTN8kb63JmKXh4za86DZc9a6kR5o8FirrbtFFjWamg3XwQOIGyo12U32dqGvNgalMLgZ2xu2VwNpmZm8ALMlRAoiJeAIxfmTrhIQJO0dyfVVOb94FLRTITaQoMVvR1yUkOQ1uTE8gcEEIn6GOHcPpfTE9gp04LlZrIVQCRXXdsPY1xd2B/6gwf/5X/xzfXFXR/XPq5gI2CeMoRhSMPQr9a3XpilfhhTP286dzdXJ3FnymZOsW0a9v7qYnVxKqE7PLm1MgyDwqRx7uza1M0+Sx1lRmFudjbk5NKAy1xNCOxeGOWckA3OnNXJGULmtO5xcfsL3Xtf7PKvuJw4reFZmbK3QArg6zVox3RzJ5gHgQupvxNDnCpLvAMEYhet7sUFmEypAXBxJPfaDN60GakSUF9rVJH57t4gB6NoNNPG5Zcx3YKmJeygsLbjORt60ekxVad56iTWkMPhvDkRjokSi4qzKE6rjk+hRAhk2+lWqpXQ4toL2usjKR82lg1gQEsCOwXEHAilExl2gxegqBKUtLDI5xQNZ2euGjWbT9ktIE9DwOyEgt0ys1LytDqd4wUlXMoLPrlqfPyDAbCDGES0ZW+YDuqW17OG/9gJkT4ymVr31eRftz8U414wGTuRVNl8NJkSTM3g0lugqZK8XYesnrWU9zYZc6H7KpfNoN1PLN63PLMkImo5pVTcUhMDlG7cWIQQye7O53P7xW+8+8HF6Vn6+jfev3v37snxZRP32rYtQQ+LhzB2ubkRw8sL/SdLPE1tdCdSGom4zAoSOwxQJziSeZCwThrNuhgWe3shBSKX+f7x8en66YOrR49Xqz5Ix5whpmuOsdVsb7//9PJqdX6xev31O3du39gnbyPNLRA7swBQVSE4bXvqu264UsldD33wrAnGMz9jt/uCTURLpQiGqf8CmKmOw5Dztl/1P/rTn/n2N+/Nuhs/98d/7J13fr3xO0BiZ3c1y+yyOTiTf3e4MynASs45jN6iCRgswPJwsbj1Ukq9MHfNbNDBxxYG5czEAi4wLncHUdLsRBwEEHNnxOr5zBhw09yPMEhsADC5lui/7rTCTk7uMC61UyKHiGhhrCvkrNhuIQDOTgpFBjObBVFToWJA63dUImEOpW5kWljgYVCQWVYzk2KDi1tlqJam81TzI1LVKCWLYZ+aBLUVOXG+Ol3zIhushhBXS+FTZW+HeZGICKZq5A5Tt6zj4GPWPMKciKo+ubuqWsqozNUKQAKN7qUPpe5m2U0nfBBRqWxu8iRVkBERxxuWP4xQhYASacbiAP2V2Ir4RacD0AeE9vbtA9VTazEs9ejQf9/vPfvPf+EpvGFkeNK0luYgEci0v7oiR2zD6vxSU+aWyJVcidldCwRpNpvlcTx9/IhUb7/4vHEYTofsFucdBSBes+bDmgrWTwnGpXgEQoZ5F7kUVM2dhYmdA7khlKFyCAGkkpM93OP57d/X3Pt1WSxGXkrOOc6CsTMpnHYSbnJjEGHiFLJiOKisYNjCr4oor4uWgSQmcjIxUMHpMbMZCkak7F9MHVOiAlZ81lx7YcVy54kS0isUoqSlNfelWhAGAKcqxzRZksmnMlWgQK130OTJJ4+4zSTLX3gy8lwkWakMJdNEzmG+BWeVGMI3TfjpENTvs0kSADgxuBKKTUkDlb6sEE2FJsiukQQ2L7n2x83VFulN3XxazdHZN0QcVBjy2KFlPKkW7lEGveovH4lVdnOeMtJdc+mwcYQ7ay2YCps2lTJ2L3fXghcOLSLKboxr4nebagU+5rHr8usvjDL+tMXZssMsby3vTua3LTvTxsHX65r+qTaYy/urqoiEEMLeSdPqLOaumTXtol+PZ6e/dr7K3/7uh594/f7Nk+Zwv5nPTSKEpSBs2uDzKM8v7Dj4wxHUZnaGKQOQMi9dAmgYYOaaxUZnuEcLLXexaZoTZNgg+8SdxIf33u3XAwexISUNUbMIi/LwcPX0YvXofPnZz+irLx4cHs40p1krs1lwoyghCOUJC765L2UdOGyVMKa7uVlr3b2DO9Q32523ad7XyGZnCKrUQwMLQYJ0m1f94G9/8Yf+uefJwgfvf73l580vnJRYADKNzLbZsuX9aGpPjQGjwrIoBcRgI9HynMPAzz03rvJes2fZ94UzqRk5sbuPY6+6wdtb/f5lVzBxE4tnYzAHNoOpsqqJkZmqug8sEYBznW+vUlwKkVi2uoiIRvNcZ9ptA7rXjRUzd9XMrG7bg12hzczCZWqrjF6g9tDLwjq5U5EuLX63mF4zo2kKIuecc2YvpPDbQGe6jOmQTnS+5SE7Q2bbW1xUWcwLkSGDiNng7NBSHs9q4+g5ISm5TlAe9cykxpV4zrwE+u5uaqBCKzZVzHwTehNJ1d2rMxRqPnDcs34GT+4MzsjJAsB7ZIruRDmxtgp64cUTssskV/uRri5w94bePBzff9SzJbf18snDbu9OPyZKaby43Lt9G0zaj4CXpoOrSWR1HcZ8cHQSmE4fPhnH8ejoBMxXy9FVu3mz2KeU0/n52dXpOT5Vl+utt96cz9qmnSFEZ+EgMca2CTllYQLF1BuImpYVxRV60VYicjJnkKtdDuPqzg8uHrw49weENniTOXMalGSDdK3WjFzICSND2QciJSRGJs4EA4GKeBADhfKh5BFglAFFq7mXmTH7hOTYboxy5Am0FRzcROG1LrjdUZNY4Uds+47BLo3squXgtHkyCZOWqLRUpmkDZiZCYWXctS218rzjhWhKdsv5nTDVU3WOiawCqwqyfvcsbL5puUIJROZsoNIGF651KKaSs24+6/oPxi4bnaDtRe58hFc+7vrFK3qj7H2CEVspzZoTX3vVLmnFR/OfcnqrtyL7GJaG6vkhTtj50Ont7NpMlk+xDJdA3StqGkBFNH9cJl7vx64JK07UCqJoehrUirTqpEO8za3dXQ1AIbDAJPtTF8isLAoRFb+7LVNzGyS3QSW2LBFG3/z2O1/7+vtn2n7r2+9++hO3rm7M5/M+RuEYzI09dNFmbbw599tR31hntFAEogQq7BfEOxmkG42jBpYQkCwNklPTcAQGn4WTcaCwCLdflMf3Pzx7eh6EQrA8ZsCJOIbZcvDl+OjJRX9+/vwnX7t958YMaoTYNE0IEcjFYfj1BxGV1bi2s+vd2U5y7/xdr1caNlvn2tN2/ynrssz4b/746IOzcbTYmNDC8ZQouLN6cooUk5lgE+nRVqTSveI3U3ZDJEZKPp6d2ijzu88vH52u9bKZHRjiKD28DaYlMI9SAX3uHpomj6MQKZmIlK+fzQishbkKKOju4u0EhKjMzM7CtYtcykw5j9N3ZGaGhcKInEv92L001zERVpWftO7eCWfBBCBGDyEUPpiapkDJhXmzqsVyKUo9Q6TMQlhKRMTMMcbduYCPBunlXpj55jhs4nSdGDy2QW2pD9UqoAs5MVlKlkfNo+WRXBkGB0sd/3U1Mp/OrRuDnV0zALVElY6fiGFqMAeDSJwFJHA2Mi9fPV2GuI9wjHS/Wtd0BoXIwpBCmAP3Nef9/Tsvv972y0dCZkOnMcPaNtxjI/OMtB6ePl68RnlY0TCk84v2lZdV1VMWImPKVc3JLKvENgrlfrVeXhHJ4uC4H63v0535QRuRnl6effje+eOn4zDg99SVvLo8S0PTtGtuZiyRY4gxarcgSjGKMPohO0tSloA2gpgEUmwcGExChDT61aybnfwOOf+LFO5kmUm+Mpc6A807CGdTeCY3NiMCu5VBHYYQoYwDOTnVYdbSKXSHsQenog2iUwzqRJHZzfKuEcAm7KY6T7izhcxrOdu9unllcKUqww6Tf7HoG0tSX87FktQkZ5eu4fqDrkOCJkxRPUGVWpW5bOJyOVQ+iDHRMcKIazxCIHJmmG6S8G3mRaUAEABlqlhcRhFj5jpuZOBw3QdvzgjtPEqgXFvgU4S/S6BQrS4BVKCdu8CjXc9dQ5iNIf3oKZ6+rLhzeOb+baMU3tYCNu/Om7nrnYfBCRSqlEKRhgKxQ0hACQaaWsU7N8loU3MGlbqOA4DuiDGUXKeAU6iK3TpKZzermk6dTgOqcA2q5dgMYYGIqvZA6YyGsY2smZPR3qK9c3PvB7/3s99+88H52t+/9/Deh4/v3l7s77WzeSvC7iyUhQI3fjC3F+eYX1ivjRHExaiwlrmg9jPM3MfcxoYBN5cuZsoX2h+2nRCtRw4Ht1JYjIT2brgxO378/jt9GoESVktKQwhhOYxPztaXF+Pl+fg9n73zwt19hEyxDWD3ApPZNG51c2s2McqO+6xia7vR2cf+/Mw2Ki5l8xdzAhhmabw20sbcLxaHeUyx1TQGdxIJwFqzs4dS8zIUZ1jLmyjlLpXAOqgn7EU2J1tfOmOxHnQ+766u/Hz9REK7f3AwPr40JocHiWbeioy5aHRlIs953J4BAnNwKph8r6RNak7ZlZTIC+S5VoycKjDfC66QIZvklSA6gd2sqI8USg53d49FJwogZpBPS0w5q6tqDGW40CHublpn64hIYYBbxdF45FiCyxIagonBOefC4L21F5tz7jvjfDuEPm51uGD3VRv7sj1xBawAICmSeko2Zqi5OxVKiPLOpWikalrkVN1USRMzaBKg9TQAWjtVTi7EFoyDexHLFFDGmA0U2zua7gHMzhln7ZioiT0FouCjIOD7v//Ozf18+uA8dodmyVy5Oz3ubrxp+xAIgy+vQJlzSv0qpjzbP+j7XlM2MyeYK8hd1bO2+23DePLwfuqvTm7ddQpDPyzaDtSfX63v33+/Xy9nx4e3Do4eTGty+4VPmJk6uQRnsSL+mpRgqz43gYcEhw/jGBuiLgYBkQcmlL4gw9kFvMyY3f6d7eXfDFgTjaxq1MDNq8r7xuwmQpbqdA2UiZ1r4lInSZwYXH4o4urCpDCnqaq3ubOlqMwcSoFqR3W0er5nQEY+bZ5qcr14ZDcoI0ybhIwMVCR89CNOtrQgridg9CzDUn3qDpjHYe68O+9USgO0SRBL7l6ADdMF1+IyYWopXk/0p/+Bqx8vmbQVy0RS/rkAoUuLBiDCxOh5fRLJrKA4sUkLr1cIt+Og5enV01770uUG/TMik+27gciNHcSV7bbeFfOJiJ9oK4mz9ecOp+u1y7pSmMwrF0/spGUOY8vzsJMDAfV7fuzl7d7Lzc8lXagR1SaRKk01UoCIt7uixgolt5iInIo9JSIgmiozd/OQdOzm9uprx6+8sv+VX39yeq4f3Hu8/ORzKSXVnD020ggukKKTzRq9OcOM4zLBm+wuVhDyzBUAqkimHTfmFpgAU+WmDSLSUwpCcRFXoKx7Idwt1B83kZ8+fnR5ecUZTTClPuVSxOFvf+fJ2aPTYXWu3/vSXb2R1HMX511k3rWt2zX8yACYXXfGdWU2i7Opz1+7ldv2wZS5Tq4e1hKtkp5vni8iZpmkT2NUV4BUByCECBsbl7UWsohCowP4hM4XYqdhNDdfBFdIHscweNqTAO8X8XB48MGtu3vnbz/53EF8u+lSSjn71dXV4dGxa5YY09CHEHLOxBAOhRWdJcA9hACrW9FhpijN4kGTgXziXd18WWNh5siSSwQjgVB6n2VQQECFJRnF8ria5uzuEoOIlGITAZEF7pqyMqmqSAGAsGkqpwmFkEKYhcuWLkFhaavnnIW4uFKFO5QdU1RqhboWNf21azI7voXYbMwrOyDbWzydF3WtdUwktTy6ZTOjIEwy4UXZ65ctukgiqIroqompSuRwCMhaqZEgzMGFXaW0BWHuPrp7jAcZAJicgKH1K4vHoBN2IC+aefMjP3Yynr/ZzvZGG7tZjKMh6ct3+Ku1ue7W9+PYW0qexpmE/cODB5cXllVVwaSqgVhTNrVZ2+S0Xp4/iRzm8/lqvQ6xEbb1+vJyvVLGc69+8uT4piq2DvjWkTuGKrZb1JFz9lgGRcASG1FgHJ2dx7UjQNjRslk2IRcCqKUw5DwevKDxexy/xG5C8DCSlQbW9ogVAizQCMrEI/NI7MTOYixlsmeC/BZTL1xBUGQgKSTjNN1iq+hcdZcpDykJn3MJDp+xq9OErRfYU0Wv19ZBcVBWImXB5BRq82hjELZVS9ra8HrZeLbyXEeWaxpvIOLAVnMk29gu2nltCY43i7DbW5nQzrXQzVwdWXFAJFwhgJhgz3TtMb1TCUqeZU02M5YpCpnSwg26yAGj0qu3nbfa3ijf/sruZQYN2wnbjzw2QYyCg7pNBTsFlIo2IEzZqRBXWT3YhaxF8vU3Fbci8ioMs1rZdifAFMQoQ7zAROc9DbjQJAxM5GCYWZnOCLZlGzYz0wTKRHOzTORSJgRQWaCzu7ioaiARoZyTT/CrEAIQr8FV6m1UDlFVmWzWtf18vr83fP+nXvnN3/xg1cs7904vLi5W60VOIg2M105tQ2MnfNXYYUMvwO4Jd3AjM8C8CNRA1INSZ9wScgMN1jG3RHPYEWFPA2Vy1jb26/3ucnXYzroFWkh7PG/w1nevlvlKVQZQ7JL0TS9DwMUH5+t+zBo/t6LnX0h2e0/ZO+UQXYIDxh50BAs09xtykul80uRmrnlZ5k2kvG1ObH4uB5ho+m9B3ANqNlivmjy1221kERiZGoILiUIz2OBJmXlwIyFyMptMg4tr9igEWDQ91duXagxucXgZTiWNdPHBrN1b3nxhdvro0buXf/DTT/53/9uf+In/8V8fX/7BT45n//M/evhn/8IH4Xtupjw0CMmViuRMGRwnMh+JecgqHMtINJzIsksckwkzaa7yb0xDzkQsMcioRppYiaikpwTEwADnnFNOZibEIgKznBVU7Z2raTVjhaGiMLuBlMzM8khEJCz0bKxTBEUkRFcFIJELB04ljjaPLBX9OWEyiKjALInAEohIVcnKkK4XOY3NVnd3ErYi1knMRGMeiIjccu6RYGPvlsWtzEFNho/JyGEwZZiSIVtpWEcOzIFDY2PvSCRwGxlatFmMODQzeIYZdCQfjY2hsnonHX3O+QawdmSx44vlveP9l8lf8sWhXz7+Xb/rU/v7j54+moWoEc1oMMI4yN1bD4UXmls1ielpXKWspgky30/BNOVBU9O0bbIVJWMOV9bdPEHIp49PL3q788rtFambtRKzpvOn72cKr7z8qUbm549WMt+aFydTcpFqhYpptpxmbUusITgRrQflJmSDsfUZDB8txyYwyKCutsqBuT926fd/anH2KzFQygiAGzHrrvgScSb2YC0LEWn0JtZ+YA5kUvQE2Z1AiISSEppb4Rcrxp3gWshciIVhgBRy4im2dr5OYlhLPu7sDCYoOYGYmMhUQSTgwqBlxVTXaNmAUi5yAKAy0wh3kLAVVWIrI1mTy3IGOZEaOTnbxM1KDgaDxeFmSgRQIBIym8rlmNyYG8FdivuAMFzcrXS/icsIbhmp39R+YeQshMRggQmYnEQpBAc5OzFRIMTSlzUkoSZwZcwu2IsavqiVENsqKI+sCIA5M4SdfQL8GjERiSExlcErNmhJtbMbdGdStMb6uw6TmW1C5hH5tgc8RSLTrwUtOuF6yLfTZLuPbdo1Jbjl5nudUPNSGt35ECrN4UJgVm4SphVl513pKLdCdgZ3H1PfcsteuBULkVjIOZdavKpuWF4rrNppAixsx2HLdfqURotQ04bD/fnNmycnR/vvPVifnS/PztdDGsexTw01LKWUIuQN06KRWSAxZDcNoTAdigFmMFeHE2VydhNzAccG84Ab4idu7cIulrZcR2pJ95JRk+R2mktzKievRfnw/umDe2PKyJx1rTHkpUfGo4uLn//qb3x4+vSLX3jt1WV/5+Z8b75/eLTAmOZtJ4EzKQcyRxHiLvlrMcfPONdaT94BW+EjtaMSHpUm6qTHZapZNX80Yy5Bt1XmFrc6uYhah7GS8RZGobK3a2yUydrZ3tsPb+fQRtLletibH5+FPLz/7vjZ7wtYhW6f3/iH/+7f/d9/+N1vXJ2Ho8P5m7/4a5//gT/yh378jb/yje7o1nM5X4HLkUBpiBY74F4wQ8lK6l+nH4s2GZcWlFnVTlOYmUWORiDXirbYEXBk5hgb1Vwzd+ZCLcLF3xZEDKqoS/lqVoZiAXWISGC2iXRsd9mJSKe/m5mWcAkoAi1U1qsAOM3Ns7sXu1oohuot9s3BrLNP0/4vNT4j81KYcrWsqZgPzaOquiafGn71wkpLvFhyVTNzs8KFPI6jpYF0ZHZLCZRhphsrUjRnOZI0UBcec3IvYzwwln3LS4AcA6zNyu3+bLzCcy8c/dAPN6ePl+CcFSI9276Rqaaj/eHl51ZvvRm5a64un85DIALWI90+1JR5nXI/ksSBnUCaMpgP5nMb+8uL85PDo/3uoB/zLDaehsePH7Q4uXPn+V7Delwf3OmaOb2z2cHkgQgsLFM9E9BoLGgiM2kg6iKGPOZk5LPyXYlIKzGGMXPTYszpacLhnS/qo1umj+KsoRScNYjzdUJHcg9BhV2EWBDYNlXoWrKZ6oRejbdXcR0XF8CVjOCTTUQ5AgyulL3Xyl3Yprw7qepUMXbnSbCotIZKy9G5+OBNwlzeYtOQquVrIiLmMhdZnBZTiYV3OC+3F1Ki5ErmBMCngbxtYfxaVe96QZsIz9A5bq6rXJEzUGYCS+TKbiARqk4bqLSjLJNofSkDbPzCrlczqppHO5/ykabrtavbtAYYbqDqgD6a4dQXb70vMYcw3W5CmWataDfj2o/evrLMe30sMea1gkfdMfBr0h3XF26iaynfuJB5lSCI5doHuJGzZ8+slnMuk13uXiIXM8vZQhRTU00Vj+O+KbFuPqX8zMwbgpKCBhCh2Sye3Ni/e+fovftXlxf92fm6H3PSbGZEjVkupCsNsIjtQYOwRoIoGTmzMumU+rALaBKPQCQcEu4KXgr5RrCAfOc433d7sFxgr7WDvA4YhtvNrf1kaG/Em2188s7bq/UycU6rpAqaEeBPLoeLr79774OnX/jU3c9/+sUXn1+v1wfHh3No33UzERn6gWODrJtvujvSvZvdYscBbLsDO3gEK9RLQNmfPqEuy321j2zFcibVS7oNd7cJ5FUnGoy8ZmY1lCbA3c77+W89fZGb1tLgETbo4rnPPvnOPzh69fX5/q1H4+M/8wc+eXzn8OtfeQSy1tNZ2P/aV975t//cT/2VH/vP9MahQNWmjT95rvLBpbllpRYiTswgcSdzdXc2hsDdmYMEcVMrrOjCZDT1g6+tGAxqugG0snmJ6Kq9MwORqUG4zPxUtg33ooNYdmMNgwu4aTr6dcXKjSjUw2YFq7xd3gkw46bEAXDPakwiYgRzC8Q2se/WpMOd1Eo3N+dxS+Lhmcx1HD2NnnU6IIyp4FbvtWW3DFW4mhlBCcoMS0riIDCx+VgBKs4ggpOETuEGFl8hZzCpJbGR2xuePiBEkxH5cbbLbv/7+vvv/d4/clfyfbXIM7MxRgwFOGJmHS6+/3MX77xxy+gp8X21qyA09r0czTXzmHoWRIIOfQSnlPjkeBT0j89TP9y6e9s1B2AYhouz0xjl5s2XLIrE3DYtB85paz0reNfdzNlRd0hoUkrICKwUKMbYxcgtj9abwrwa+k2rVYfcNfOB8tM2dIvvdfo71O+hGcWdyQJtES1MHogDJwmQOgyjws5SEqpsE6UUaFtl9DpRWo5T6QkpduVfvZ5wuHPlrdvun40xLeoD9bzX8NSJNnijYgSw7WrxszMsO56m+vJ6gdsLmZb12n8xETls5ooATIHFjnvzGh5MAXsNCohsw0fyjCPcXDATCUEgTDadnqqSyxMynxgQbOvPNPFNTY54k6js7JByF8iA8j9QmborWSIZTYFGTffL53rpTNOudd285/SJ1VWF0r6d0t/t+PDGsLlXLQfa/fv1t5vCHDdirtVtr4GGVCxAnR77SLseQEHY11vqu28+mTl3YlJVY9lVnmfmnMcy/uPutYhXarCFTqVcjCoVOHSMVCO2ytNCcBZfzMPJYUPk60Gfni1X65RzVlXNoNI89iQqLedFFLnynjj0UEANyVyIIiMSxbIviYV1Dtw0fU7HG2F1KBZ5MPHuCC3b/SE1+3M9kvef5ivC7M5rV7LnwicvKz19sHz8CL2FbpbzGIUdZuofPry4/+Dx2x+e/8gXX/jkJ19Imo8OO3efzeYhtGPKoVRISs8Am4b3tXs/rb9Np+8jZ2CLw8qTjymlAhEROO92mn3KkaluT/edNd/uYKLNviJGMmtJHg03z9KNQGnMHGPI4yrceQ5vtPlbXwu//aebcPijv/vm2IeAA8EqnY303M1f+Eff/TP/6x/6ie/b/4XT5ayZGaXCxQozJ3YCGRWtEnbyUhvyRFJ6W2BqVdXB5KSmzkoezIylMTg7U5CiTu7VWW4WRWtyWawbA6Wu7k6FqqJkwqDSnystHIXDVNOUO3MoQ7pERE7AlrN3ukuEqVxY9NdqMcPrMppt6G/BU6ZUfiFgpwhZA3DTxMymlvLIzIFZU/aUTZNlnUieiYRKqs31EKmpVUEcc7i6pkBOTIOr5gx38wx3kDHIyGAwkxAihUL0EdnVnOCKtJb2Zr5yhxAiw7S/b0df+sIPPn39E8PFQ4ozMRoDNfBE6B0jIfSXy898anl81J6dH6g/kCF53jfq9o669XiekDkQ64hEDnGn7vigX67W58PhwUlsRD2Pav16XBzemM33eBayDM1c2M2SYWfKYugzFV1AZivTG2SsMGM3IhY15ERqpjp2s64cGghAYEYUxICiCd7Cr9xWx99LH35lIQNRI5QDPOzU81rxJpJIihJFSJiESYIzM5jrLCyDJoNZkERu21MK9yLLTuYU4O5kZbuA6nBK3ZbVMpfzWyuM7hPbXQ0gS72HuToRmuz5BJ8uexcTs2I9zraZw4UX4kkCCcNyjQW2G7NaWAAoCg62gT1Xw7I5ZJV+EaUwinIAS54NKjErilJXbfVO/p8nVonSIHbedIkFE4EykQAoLKSbTs2Ox3VMEbxdT7+9Xhp2X0LsrFTSLS2HvYyGlzZ1OYNOXBPYrZmtF8wB28yHAmBWzv5OtRlTOOPT8k/l4jqntb3EUmneMeV1irnyI9YvWSdqdx7bxGv6oj71IK89x0sry0m4oEY3aW5xDDljHMdC0FO+LTNP0yJuVoi0JlgBs1QuN7iDSJhZhNpW9hetEI2DXl71wzDmnKtgqkxXSUasXTDRxoglWSFEZ9ooDEEJIOwJHTE/H+3FaLfD6ogu25BnvFLHvIsHrd9Y82iibbf3nLzxkC+l0b0bYtZDFxyeS/Kk/9DRk7tlSCtDGp3JEn7ln7x5eX768HT4wudfeuWFg77vjw7yfD4nn85FraDmCf73kcLUVPMvyeomzZ3CW928ZJNfUmkQUhUS2d7CibB287abbVA4GmBF22OHE9XZDBLow4ujlLxVU+koD0rQaPMXP52/+2tXr38xrSTsn1xdmTAsP02KyOkrv/WgkZuff/3gy3/zwj6zsD6JGJF46cUXLbdiZSZaNJRYwxgAa8HGixFZzmBWVXfSaEAZwjFy9klhiiYlMqD24CoGSx3AhuN6s4BspffmamOxce6uyUiCEzlvjoM4YDxt4BhK91eLgFUIqlq8r5mReWkYEztPQdWmjIapkrETNjlRkQ2DZQ3B3RVWWrnkKSMrZXPL7hmb2B+FiCi7VXEXuJGbk7EZiFyt0n9qIehQZip181IENGF3IYmkgAvB6jTruAqLV0Ezd2IfDft+uez3V9/7w3dt+XUOHXzg3DglqDgnInJ2HWZHJ8sv/rb53//v2sCH6fSdHF6KbWia/bNexZBzUqh0caU+PzicxUYfXrhZM+uU46ofOQSZzWWxPzucO7SV1hLWl1du/a42QD8YCbE6BTATCxPEKMcoxqaMGDhEEsNy2V+ew4jNyQhkKsFnUZqWQ5cPFqEd5UIy3fkxeve/8vZtMWkCBcIuf2cXrQveMIJ4DBKYQwjCRoEL03gpUpcBVgClGbej7w6qVed6owlTbQNl6C47l2FzgquXojeAHRIrmiokGxNKJegUJRNnMMhcseMaNwd+8xf6//P15/G2ZVdZMDyaOddauzn9uf29Vbf6VPqEhBAhkEQibeSDEEBQwVfQIAJCXuEVAYFP7NAPefEVRRFRUFBADBAQiARIQvq+ulTVrds3pz+7W82cY4zvj7nWPvvcCu/61e/WPvvss1c7R/OMZzyjJdUmiaiWNJTalFLVp91d+2Ihyk8AkOFRGzIAdspC2paKWu97LA+WpL0siIhkrSwmJrUOS7VzUGwlozqfl4RxuoCGYBGpnbPPOr9zFG+nwKINaO8Gn+fpMh0xMxJGlfov2Cx2+O4cJ3g+3fWIrnEkxGHzQgICdmScBAukN1Mk4Iied1hHt6ftMuuuIyICpjDt2NzfZN24zaznUtNgCsCL3r1lvZu1PSci0DTaJmTJMjKH2JgZHFW/SVURIKb+JVMiIu9EBENA72EBek0iZEzQKzJmrENT1Y2IaUxuyQzN0IMDInCkBaKPAkASFRE9IqVSA6XubMssnkC6v4DzhZ3uyaoLhdYeYiaBi0aiB+otn4jj6e646RfDtdkkb6Y2yTD2VwAIrN+r8tMMuzs3AQDZlUGiqVOqyrKf9T791M7OXnMwnk1ecs/996wgUwj1oF+kc08JP1FqGLj7TiFiW25ABT1CoRdX1xy+1k71dO6KEREXNO1iKrEn14aC3YhpbZHgllNp1o5yRmQzdMaYLT93O5e6KvIlFgUNDWVau+LcmcNnPnl49Tm0aHZ/VZFRaRENwQnf3sn3tievf8PDP/s/39PACQzR1AAFFNMIgcRwboujXegmXQoi0CAigUciNu0631qTBkQaj8oTYuqI29XYvbP42ByFFF2Imwo0i2V4gHas0NGiJUJkmCPYkEZ7tdNLQRFMRBpEh7CQ45qYgBFZOw8n7bs9WTCQTlakO0JBA9AYGxQJYEbMoNp6X1EQTWTm+ZzQuddv674qahEkgnW5MgAk6QnnLDRdXCZMECWikgqxK8x7qPNWKwRF4wwpo2xF65GqGswgTpppXcsGA0WrMmxIVpUnhgRGpKxQuWxwOC4/5xUHH/j0cnm5L4czPofksobZmpGpaIzAjhpRpJX19WZaNuWsP+xlvb5RPhgugZE5WFrrhdCY1GUTQhX6nOW+AM8LDzAhIkQgEyIgQWITRkCMogaGEB3xoOd6Wb8UjlGbYDGYRLKIswjlLKLj0QyWe7gG9XSZs8ELN+rnmmUijUzmFzpJc2cZW87OMxILE7rUq0ppwAIhteXAbrlyh3UuYKHaJiup0LVgKwWVTKNGSbR91BQHEbQ3iwg6RFO1zWq5fQ5RwUgwVQLTwJy54+8y47mdTw+zUZqtbboAdFvnOo+SWcNWzBzb9NpSB1Uaa4hHWB0Aq0VqsaWunjLPxxMLuh0vaG1GdDxhTdWQ1PUHRtiOj03/oQElVZ/5SS1YRZzvDhaG985D8O7c08ET2ZzYRGBgJkaQrgger54DHMOVobNMc5twpAWd3G36KRnpboW2rxNQoXjXKWOXBh+9c7S/pDm6WA+wJL6Zwhw4SvAxOU3ocIN0GKIaOzKtMHPqxsSFjYi8y7ruYTJDEUkqRqpRQlAVl2BrgNZAtxkSAiC0XC0xM2CMTaibKjQSg4iIgabMCUANvJlmaFl0iRuWGDNEQJx05ggQ1qm52PcvGOKpfrPSCz1qqBJtGsehnNVolvdGqOOh92C+rvaWebnHGQzycSDXy0wzr1nRt5P9/uH+9vjwIMsdiJYhgGFZz4yL27vjP3rvp0ejSVU+VM7kzMmlWd2sDAfM7HwH+LfPZisKveA2UredELajoBfX1fz1EeWKGIE7EBYWpSgBFZJAYrc8WxX1tlqcDkHnfio58RxnM31gb7yOoJFRY3REjnOKCsMNd/IeN74zLccSX16XlXfDHHoyKREIc9id7Lzq8+7pDcZN7UyiirVrgFIcbAaGBK0wjZnGCKlPHc0xI5EGha41UEHMkFxbVbPWjaIlzUZKmBJAAnh1LsHN0BWQ2kWJAIRJrQLMoI1gtPuxK6+1Yw+O/LGqNjFg1wIkGlUCIQJJknFovTgRgKpGbLkwQl0EoJoGx0TtHLAjMo0GYGIxFXGp1TA0EY1JYLJ1vkhICCIKFrT17EkE21DFTFRFQ0CIDlRiiYgEARA01kRkJoQKEABMFDPMgdmgZ5TiMUENqkrZhjaHZivOV2pTK29t7Zy0dWN2qsQQAVHZWFvAkDhMK9pYrd/wRe53Lh/YrHJZLX0WYmwIygZUwaNW1fL6CZdlh9vbJciK7+WDpUZYKy16vjdwTV1KNQ6zKu9nLlOPEoTr8YIyBlPLbQMjA0ZjABYiAM/eqQHEqgzRNMuJUcmhQ5AMGJgoaawBIuyOJzv7eIF48wVx+fxfqZ77U7Yd54ZMQu6IB+PYPKF35B04h46JEYgASMypAWPb0oralioViJPMAszLfNghzElNufXLYoZAguoB0qIkQCNNnrXj0rY5pQKkFBCTCmlCA1PYmpyIdkzVdJ1gjmljUse4mwtkZmksFiYYOf1ri4juXHnrSEutfbIBu+GCkpqhsMOfj/mmtLRTTtehuwBz48KIiMBgSZTNze0YoWnbSdc6FwKcp92IHZAwR8sB5gc9N4kLrym5doQ54XQu8d76FzFtdzJniiw0Pt11Xm4xDYKFSGf+Zkv4XLjei58hIl043MUUYf63iV9JHbKdLiGlZrS2Jelok8Wo7qiTOIEMrZiAgaoBQjvtK8/zKEcySRKViGKMrXaJqFgEAEJIc+uca7WNknpZylqiCjMDiaqqHGk3ooloEvgyVQMzjGoi3gEwKqE5FVCP4AC94T19d+9admEFVn09dCFXbUTLoHWMB+MIWq5moYAVFnJaFryMzWQc+gEL9dkIxUE/o1NxIIN84Ad9djrZ29HaCPNg2IA5KglxNNb3vf+x0cHoc1/5YPngqVObyyKh1+sNIHeOoK0UIbVkq8XBWCkvxfm1nXvozuMiyFzxjiixTaxVGG2a5tiTBABm2haLgSGNBgVEtBbKBU29FkYABKJ5Vl7Zy0blUnRNhMb7fgggEojKQCsr5x7e+8xHnDPXo1jGjeX19f7BSErf97PewROPX3/DG18Zm0CzkQGYxVROgiTkJAoIoWlSMdfMUsM3gBhACA0zW3RGyMxELhV7NXatzthWuw0AVCXqfJr3PMQwaKut6brhQr5i0HpWSvJY3ceSQE2i+0DL2cIu/gNEFQhExOSTUCV7p92WPggASWjaEt6lSVcXDcA0Wkr3wUAVTc0IVQEgRvGMzKwqMUYQRVHthEzJ5uUfAEy4extwGwAmhN3UTBANYnSeAgI7kxARlR1KE0ECEIDWaGSxaQ8SHRCSgJil4Z3shhENLGowRQ/xxu72K5oH+sxlI9FBUCpMm6Rl46mIMvJudTKavfxFh0+/eOPJp3ZPv6Qf10y1ApVsGgKFKiNnbnNjrZIQpqV3vLx8UjGrqvFy0c/IQJoMJVa1TSc3t2aNWb/fz3tF1j8a50V5+2CTGYKiGIgVBCxInojBOQbvgjUqmKE4ZmSOMYpElVTZZ+f14tJSgDA6xKtPS3Eq96e+6Z7tn6VV4VQV6TZPnDlyTpmFnTmHjIxoygYsAJToxYrQ2mt0SJY0ZgG6gXdpnYFZO3cBLY2ftTRyGskcoJCSmc67iFvNyOSQzNLQPZ2nd4iJMoNzMGwxiWotcZuVzkfrmJqaMh4lZK0dJ1RNhclkAAg6Nu6c0AAtQT/B5B0I3HlrRSBaENalxMOaCw0BLpDUuuYkQGQEUmIE7oLs9tvaqnc7nbD7loWsY/5ikd+coo02iz/uiedd04iY9oUJKtd5Ytm6OZO2sfnY13bXFADaNKg1Qe2RaYdDAiIqMiCqtePtunphu6lGRDTQpOAjC7N6zCwacBejpIeK1dAAxCCCgqaGak3hR4upLKrgJh4KsUWwpG/AZlbXtfc+FcyQWvEsQrbunjVNE5s6qcWKicXo0XImBowcHDiLwYgBoZEZUoylSgPQTJkyMQCJgBYBRQSdQ1KKqBi8CYQIMQKsM5KJEgkLKqMwoVUP5v5FQ35kGE7mZS8POQgqGxR1NSrHk8nBqKpn7E6GSEHAHFVVPqpzDU69lrGO0LNBvypcVt4febPob550PQpP3B7fUqspy0FBVaIxsA/qP/zYlcPR6HDvgRc8fOHsmXx9fTUu95cGeZYzGjLmps4wqgoRYBJnRjRNN1HTxUygwvyB0CgdQmCqyqaMFGKDihKb6WR3fndCA0hihgyY7r6CQWpDjwroAWrCHlgTYmRHTNZEUF67sX9PDeCj9n1/PBs5Yk85YKFNrWc3ereHk62dj31q76FHqqK3cu85/vhszPmAtb+/Y8Necd/K7LFZLIpaRJB6CGhSqwUEjxjJSLsCLUHLJzUzABWJiJGdYwYgNWRLaVBHmEekGLoH2FQ600IGzGxd4bblhsc0C8k685HCcus0cbo1dtSei6pq2jaJpQxUO460QANJISEkKUvnyamkAduprt/IQqSt8yCaSGJU1VREagUzzUhV0vAfU0iNtFGAgFQMunVqAICE6AjbYg0omEU7avQEJhBfeUUCrNGcJ6m0Ojh1uljOs6efeS4bLjV1DpkGiJ5FikzLgaMSIKqJC7sND7y6gEGtyMCa5uDOjkztbF8+zbQUtYSmIUxNmxAhGPTJGqLCxuO3ftXqP/vp69VWmT2yaVPFRhsyAnOixfJyLx/c3NqKSKc2TouLo4nbKHq05IKrsIm3blzb/cwVQzhx+sL5jTO4kkfnfSxuz01h1P6AMUMgzLwjADbwBGUVzHwoZW80g6FjxvUew1CRRKRpUIGg4EETABxAJMaARJsbAH18bgo2fNPpw3du6pOYD4riyI15zpyvHRc5NLmKA1EXjBGIGMkAEjcaW5/R5prQNup2lMiWvyLUQemYihjQKp4KRk5V5CTEhmYI1OafSIRgDPPwLlWU2ji64wsDgLYJcNv0hIhELQtRIBWVKXVgJi+O2LKOCNG0FQhM6wLSYzvvLYgGREDY6k8kGBIs9T8BGii0TCCDFClamhfFKX0XmFe0E/eTDZmI1BCUGNiAATFFqo7BIYGRGosZ2xwibq+ImhGiEZqmKUEtEK1oqagVgboqqFmiPaOaBXQCoTERsbbkliZrAGBbpTUAM6YuVT5yajZ3w2bmaIHTkW7t3FF3WZFA+ywoIana4td1FqEVmscO/+xiK0NYJD0hHKX3KSsQ7CrBYEQGizOhRAKpVyIRTtUCM1OTVGwDAETrhJtQQToqqJlZUNF4lNyLSAgBM8TGam36RY6IoiDRmjoEiWVZp6KvI0S02Eb0bR+zdYqY3TmaJkUGh4aSmgILh8uFGxbWY80d9BwV7CAaSiSjKthoPCtnk35vqJaruUA6qWy/0km0GiEABANDs8yj880AdZapYu88r3K2t3Wlrg9ZSdh5DhpKQBeMPvX07d398f60fsl04/y5eCqsoA1XcJmZDc0otk+sIaRR2R35AjoYc9H7pn/TmWo3VyrFVTFWdTOrm9nirSdyKpBkiY7CZwNgUmlSYyECMymqVwCAZiqru/WJrN8rd2/0zdhyMwmxKdgzoBVM2Qrgjf/8n9//Oa959OUvPX3h3vPv/+A+DQoJdRlGAHT/xbXHHx9TQWpiEgFNrTElBENK0we6h7Cr4GpqNAFIqIuqEjkkACZpAhGBmZoCdYLh6SlPdlBUokiIqb8I8Uh2ew78AqCqdJ61bTRO+IGEpn0IE+9ZVQAUiRwRERKbqHXWihypqIgCiUJMilcMiKjSHtLCCkprpA6pRAIdXzKdskNSVVAF0KR4F9FQLeriOu0sgibJBVWJqmk0uZCZqaBE4EynjbdaOUJNhd/7jr/zxtGketnLLly5cuWf/pNfzYa+sQqmS9gbZi5KsSzjCVCGqKEaF+sXK/AIYNCo9YBlfLA7GveHfTCI3DYktOoK8xjDA8Qpbpwp/9I3uf/4nz507/1vHRPWuo9GPvN1DKuDfh2asqzXN06puXKm3k/rpUE/Vm4fn73y9PjG1bUzZ86/6IGBnixFa42+8fny0aXLlqwqd2R3Ys1M6tF45/bW1nW/c6se3bTmFjTb0IQMV2Lv3Mp9j248/CWr5x9dv7C6tgYo0EQJWDJ5gzw0yn2nWg3A1ldlEnr7q1+2Hi85E2f1fHeaUw5D56fMwOSIGQmFhNiQBCCZYlVsia7dgkoeFrAzZWiQcLsWX6QkHd1aWXQeTFHMQAnZJBFZMI0x7UhHbbEZ5w9wlysDqKbqb5pq2rWLzBPSOWiyaAda97TwXCZWc2KbzA+7LQOraWJyEwIK6vNHJ7foGs75XAmom2NCXV27TYWt5cchos5buKgrBi+Mpmhtwl012i41v+sAnv/v/EXqFQYgblEt6AKRY/DwXd/2/B8x1YDvQhvmSfrC+5owREyNg4ufnifvz5eiJUBMzd7drTEzPDpbpYQnH/u+xW+P0jgoYjIQ0n55qr3FGCnxYlyaHmNpZkNXzzUzCyEAgPceEZPvJCLHvmkaR4iORU1EyrIcj2YHhxMRQ2fegXdJZcZUI5FTtRijiEaV2A5eNgMGgsYUzEiYAZ2XnIEpIjYINbExhgiNaCnaRGlEA4LVIWgVxRUT5RuN7QhPhCrGaBQJlGDmyRwC9BHzTHNVLhBWHI1uXtGyRlARUQkGitxjGtzaLn/33R/bvnnuZS+5+OgLGo3BBAaDgc+d95xAfeta6Rf7iBZirCMHbJZOVhafEjMTDVVVhVDD4mY0rw91/3YkBFIwTmaCANQYEX1eHZRn7sQTLi+tNoAcrAxSAfagCGa9AEonB9mt6bXnqp/6Z7/667/9fw2HGe7G/HQeBLZu7aLByZOOPrWPtmEaAQKgIQgkui8KoEtLtxvxk85Ruzl0ZhqCCLMQKxubglGbJrc9kWmlEaKqgCaJHAYE0dS2AR0cnQgVmGRhANE0qSunDyjIUbSLadkCWioKqIgqcNsTzG2rokmqEHQQd6oNHx+xAG1BuQ13KEWZAGrR5pG1qhqLhs72qZppaExVQ0yVvzYATitXDVnNJIlTWovsC5gJRmioMBBbERiTXfnxH33LlWefPrN29pd/5Rff9m3fet/F4aXrBfcCQynqnMugtxnHV1GHwMHqwyxbLXHIdqio0YS4afZ3d/bvu7CUayyJXfIdySEcRYfEvYy271SvefGZ0Rt333flmj14CptljWNzgHlWLC8fTMabJ06x70uN0CsyMdZsauNyb3+yt33injMX7n/lBMLe9CBfWfVZhqE5vHl1Pg3pwm//SL19qd55pppeZ56e7cUHtdkdWWkwFqgA2hkplR3sw+ij/8yyB4rTr1155A3De1++evrh1c2hz8yjySCvp9WSU+IBUeULGBUvldHyihv3uQ8wTrvLnSEwuUAExAzMqfsNE/07FTzQYbKKCZ7B+a0GMzEQMu6UWNJyThJXacZ6eiwRAIwRgDSNFIwKqIl+lXhYYF2rC1AaeJjWeVuCtiSM3EGXaoig8xm1HYFgIWdLaNNRvTeVsbocDGCBX8Kd1lf7VV3leMGeUILcaVHMY2G+0NwoJRXo5FDbAS/syNjQGRCQS6MHu8+ng2lbNJ/vg22hddY6EszRj9gFIkeRAXHbD2AA83t1TCgbnud6n785OFrVBh3FMglZzD+Uzr4V8HyeA56727YRuWsGbcu9C+X0xIvrOsOOlIbb29SSeI6+X2MwEzNShCT8Y/MmV5Vomk7AzILOE7WYsjfvPXQuZ57JhRC896bQSENGohhCKOtm/3C8szcKYnkG/Z7PPHe0rXQYjYRalSVqiKZg7cw9wCiigF4RAGKwabRpJdPGVgqKIjXFKDGCUeZ7zEt5IS5z3A/aq224H/tbTf/Q+lPlEACAgEEYKsJAmin2hlwFb8N1Uio0ZytGt5+rD/fUsTiHii7WbKBqswAf+9Stg0k1LSfhxefARDUu4zIR0UK9BJEXGnzvTnwXn7x5r5eqIoqZxNg0TRNitXDrVTSmwgR0uWZaEhKF2NC8WjTr5n+TkoO92bkZr+U4hUZ9xtNYGSAxiOSaA6jo+jnTk/2N/I//4Lk/eudjr/yCF/3HX/mvgOdDBc89exMA7nvghPzWrq2smxmCYPLvhmqCIIQMACpiCXEjxlbAvLMXqgiiKqhi6g1JFIhc0pOct4y3ZXLT1L9P3UVTOQYRtY1OC71AsBCGJrbpPCFevPIAYJSebmT12NXHwLgN4kmAqOs7AUxDmo50tcxS20aAjqCg1hLgAdREoyVsEATb/t5AaSxdstFHYb+aqUlEFTAFU07m1QRVfKTgq0or5wPsbv/Nb33p45/5iDWnXvO5D7/nI+7G7e39SeAMJI5Fhz4XCWpuk9EEUoU+gDkqTli5Y1YAqFmEuto+iHzfwOIEwM3ZFtbaCgCACOYd5T7uXtv/4tdm9NzV37pxsoCROTqcjJdXznE2yE19XtR1QMrdLOSnPLpmsj29cePT65v3nrz/wf2yjJVfurBa3rjzYr187+QDDw+3396d9i981/3sHojyxfvj8c7e7v7u3uHhwWhnf3Iw2xtNnruzc+321mGtd0z3HVWgJJ+urn26vPbvgAcG99L6q1ceeMXyvZ9z8uEXr59YJdc0AGqAFGTl9LB+eY9/H2l1vl6yKNyrE0piTMgGhECQlDi6wAq0UzO2tiOWDbQd7WqsrYEnwiTChgrCiNYVPlIHYPs0ERkk14vESfYFqa1oGFpSA6GOqgEJ2TM0kM4rp3UO0sWvmsy3LWRKHaLZAsrQEVBs7gsQWiwMkvGGOTG6Ddn1eOJlhCZ25MloXpxN+kDdiab/UQcKpLgfu3gggaY0F05vrw8qpTXVZvYLaxaO0O2564XPti3az/SR7kcgvPvC3LXd5ZJdyufmv7AOhFzMvlNuAB2M8Gd9r0GiqqUfj1Qajh16h3otyCMdBVNKagvyWSJiUSiJFKXas7TxQRqETIgpzTVVFVOR2DSNtKOTUhiRapzJMIUQUv04Rfl1LbPpdDKudnYPd/YnZlZkfnnYI9K5nqdI0HYkIjWKjYIhW2r2AJfKAsFAI0wRt0o7hX4zxwEbWOxxA4JNw6Yu5L7JMlTWbKWktaks75b93Wqwr1gJREsiSqCIAaEhA8CmaYqhM1gGyAufA8CK9zP59LguLYqaoQIhEVuMUpL75JNXp9NJ08RyFu+/GAEgq1x/UHiXd23ZuljCX/S78xfYzVFJnHPo0Pu6DnVdN82CA8ZoIJ0iUAuXIaK1ilmkSR0DmJAUUbEWyA/LNd8b4m5j5ZRcKdG4WBIbU3RcODIXizVdPxF0C07c9zM//es/9Utv6/9f/62qBfrZ5duTmcFwsEb1pY5ZpkCSBLda4R7tWtfAUl2GkA3AukHo0IWGlkjIlBuikZLjLvMFszRVHrLEUENVVQMD1E5JThfXS/LE8wurusDa6Ja1WOf5wBJ4SMk6KKoFkKQzQJ0UprSBNiECI7S1FoM2Q57vN8bO8qauuZTGa8QkLZFGFIuiiYok09eJ92h7ImBApkEAFLVVUzITUjUVRUmKHC70TG4+/Mib/ttv/vqPfO83fPJTzwyzMwf1zv4+9Qau1AFkldUrAsGvbAQktAphDU1VghtsxhIAEMibRqbmYH+GDAwc0wOJNreBhACGDpaRRhyX0jzmBzcgv1KrkTSTvMjIeaTMsc0mE2YW0KWMDHvWjEc3b/aKtRMbm3FSjl3cKJbDx37vdcV73/a6wUMnsqJ38e3T9s5MJ02jsYoB2Z/YOL+xdFKrZvTQOGjc29566XQ8Ho8vX7lx9fqdWzd3bgS93bgJUa0RYg3ucd15fH/rl0YfGF7NH+mf+POnXvmmk6/5wtXTRT+rqr7b51cv6TvzrJyvlyxjT7XDHrIAx6RPbIhELgV7gJieiESwghb5UABASmJ7SamZzaxjRxsqKlpXwwQygoRic1f84/axQ1UjUE0tk9yhyXj0bwdiASKZIiAYGWrbX5DcXGoBfv7WtS8iYOJgp2iz/ezcyKgSUOpRBARUs1a5qXsaW9i57eKbTyKIpkaIpshoYmlAUWr7SSar7c/q4Ow2iKHudXeYSb0Hj09DsucVTxeNpJmhHonNwZHwHCbbgB3pLIW8R7sC+KxuGLsNEgmr3R8e2/H8taqida2NiLowLvCuc4DuiVp4zwTm4mC0+MmjPGAR0Dt+xKYJC02CR4JEqVWJwTR5caKU4KpCjDH5V1V1zoUQ2mxA1NQga/OPpmmYWUEQsanjdFLt7oyu39yelpWZ9Xs8LFzm2LNDAAkhWkx5QxOhCRDNGXtNMVy0aGgO0EwMJ5FvjXRDYZiBZ4qGyw4hxtlkXI0O9vd3RJD9oKbeBHr7mu2I31IYBwgArAaMgElkDsTsUJWQSsPeUk6cwUgLvle8W4NYX3sWpvtIGIAnooTiQKPNKMufvbY3Gn96OolVo7OqvnjhJAANBr4tlqBaUv60oxDWjm/Q5WrzjC2EEGOs67Ku6xCPDApSMhoopqhJnbuVd6Ekr4PtxBY1A1TgGMLpg+qk70/Ht+9kikEjOkYTRDKcONwMABlbdq5ffwb79539k/e/6+anbr32hSf+6NIu9fyoPJjMFCmjepKIGWZRRA0CkQMjJNFOEhwwIbGIGCHlyPMjNwAAhWhmhsLsgEkViRw6BmBVY2AkBCbCJMhrIiJgTGmgEpl2CLO1nnJ+PY9WLwghIbak4+OrV8wMhKTjiLbMFVREPGo0AkCMANSWAhMX42ixgKW5TQnkTixaVRE1E4ui80KSJXsGib3aNd8nkmNKagTNQGJimKGJWjQTYOG6RDetGiuK/P4L9672Bj/64z/V79Hb3/4d3/DNP+Dzh2LccrAam4boMFqf3NBo2eIWIQlUGiauWGugQIwIA7XaSMO4Uo5kDujIYraXLjWc256DHvMMcFDFmW/GGU1GoiTRzA2Gy1XV1HWTZzyZjbP+wPU2TWS8vRcaXV++1wZYo/qb+y9q3vkXXzF5wyMrWV3oYW90WMJS+xgUXAy9Na4KBmJSIbil/noFAW31/GA2Opidrk4/dP5FO4e6Pb558+ozz27v7E/2muZ2o1uRDoACRbEDLj8wvfWBS+/4F9f+1xs2X/VtL3rTXzh7X37j5GsuHjw6hMfm6yXPc8TgOEcO4FRJgACIE5uW0uwNsnlG1CK4z9NfTLrKikDQcaJVjbrB30Qd88YsTXJQajk8CCZKjKni3z69aTpLtzMCMGDowFAAwW6gaGuY8ajk1GXSAF0Pz3FoGsy6FLN7E1tlye4TqcwMlsY4GbYdU3NbtGCjjr4Z5zEKAIFKp1HT0owQiVrCMwPeVd+de77FTTuRzDnojWbYAfVHrletq2NZ93ftASZJ1+cnp89Podsos+s2bifVz5WUkLBDBhYSU0gCewifDT2n49kzdO3CqcTE3RGk52bhk52Yy/xY07fRUQqsKhIbIiLgtnVZAUznVTFm7uRcurhdJEZJ1tc5lyoqZgaiyEn3igFJpIlRp9NwsD+9eWP7+vW9OlTIbnVtsLyUF3lrZkOoFRXRgZEpNIJBWcEHRU8AgtoqEisgV0I7pT6H5r0SY6m47skpjEdxulM1BzUVq0KDsukfaL5r2V7gvYCNQBJxQkZjMjATiKhgWZQIhFMF9tpfHoqILhEArPvlybWn9m5fIW/ee4kCQJbUkcnf2Z29+0+fGE2mVXWfRD612egmFIXLckdI2KlwLwZAra3v6Dnz8RXYTrmQEOsmTMtyvEjCMkUwN29CW1wy3aMYIaGs6ohZUZvq9J3ZUm27k539ZT+Q4MF50MphrwqNSM3snQ0YVh0fLJ3evHP5BT/7r/7oG7/llX/wXX86vPACDdcn42b1ZBFD8DFYDB2W2mpQKsZ2lnnnZecGLK1YMkhkTmwXsSFGNUJhQFYmVJ/8pUVnCMZEjjtIAAWAU/5hJgKgMZ1sagNJF2HeHQ4AZhRV204ugNR0TgZowI7AMFoLzzBg27pkFRFZR1ZP68Lubr04tvpSSa9tjYgGoqgCZtYqYQKmU0rTD6XuNDXblKRFIBVMBTSCRjADMIOAJhQ9YQy2RKtZdfv+d/3eR/7B3/v+X3/Phy5uDL71b/3Y4eg85+DztbpKA908ajAT3zsfxttmAjCTepptnAfokU0MArAqoocAmRkokANERErDO8y6acfgRCxHVIgeV5aYx6OGMWfkaNaEimXmUKejicsL1RgtxlBOxnVewNKqNWEAd575+rXHvulV5T2reTPrT8l8PinsaBoSUjQiz300aJpqSLHnbYcHTg3Rsv5guao26zrce27vbH3Py1/2slH57LNXrl9/HJq90a5d39Urk4OtmG+JcnAA0ujv3vqT39v5xJec/Pof+uIveO0LB1+72dwA184/ZMk1bxyZJlIzcyoQpVuc5hKlZdQmpYm33IZQyfzOU09FYE28GAUgRtNO3JQQ02QRMkNDNGhrCmZgjJJknrSFHBQEta3BdxO7AeYueX6t5ovouF/ELhec547WfRgAqGPLtk3z85GLqcuIMLm+pPZlLcztUm0lQaqKiZKd7EjSvtQuWsB59p6cZXeZjlzs3I6llFcBfKJbL6wkAQNTA26l7syObKLZXf57MVGBtm7eGkztDOt8189frTB35+2NxqNK59GVPRZrtMFpG3Tb3LB1X9fmrtaO31GDLjyxhJzI0Q7SkJhj9+/4UQocmx9iUosEFjbUWEXqhnsl64aIWe6Y8vlXEREiqYYQAgEzMxIyHnXBMnMygiI2m1b7e9Ptrf3rN3e2t/brGIpetrmxsrTcz3JO0w+J4Eh6iFjBolo0MMQgmGkrymAxACqQb4CvllAwEoQqcNVzPSuqsjet+zE7ITRsdLkMw11Y3mn8rcbvBt/H2hEgGTs2j6oWI8QYfeW9R9E6KgJlDaHvrxMNakJSv3QGHNho71pTTp3vg7EzjhqQQdm29kbvef+nDg72Z9P4oofXzGx1bTiAPMtSXRxEhLpbb8c3ROxEtczMYox1UzZNUzezqi6rajK/O6pA6NTCHCkxw0T9jSJoZBQpzdNWn0hZdbm6O5MYK5YiUpkjm+XOmTaaYVQJvcxxblBK7/QJ9Vnxkpf82gc/cJitnbr44J3ZbO+m7u+MT587kfeDxIhtm68iiLWM5wCQpYXRRrTzZZqEC6xlWmA72RY8oiXqNDkVBmySfJ2oIhMYq5mmR4vJE7d9RIiOOGJq2UsdAKltOg0ICYBKhKlWkuS00UBNKCmFMAULREjWTg2RboKKaANGYKxqqG0PNhPNSSF3rWfn0CyBECmlVjABtaN5R2otyzndXFNNQmDprpmYGoCqGIKixsQ4AVQyUYiCqYnNYAKDCy/91/9Dn7nygfU1/Ilf+WUsXpitHoTQq2QZsympa/jASRal6g/OTcaPCTTAQZraZ0OAHLEWm3geBMz73tgVoLsKnfYxoGLiwyEzR7QcnCU506YaFGOfgY2BMDMzAFGppoejXu6lqR0XDWgvegD1/RM6HPSvfPTtj95604smdmDlTHI/HQBVoMBhfukwIwkBLBL7rMgBesHsJEokFcYyglseWCiiyhKvWFM1yxurp9ZfOHtwZ+vO4f7257Gb7pVPXXr80o3yD7cP9mwZgnPZTEbvuvFzn/ydrZ9/+K1ffP/yu6DpBhCbdwrADSQZbmBAB0CA2mlrdHln27yWMKq2qtuaW0jFQUVwlpBhsET3NUuf1NbJASdEDdGDAZiYJmqhWSfGkppwAY20oyrMfa0dw5lxoboLx51F+n3q4lXstJtax9HNP7W2wp0wYUsHnrqkUlJN7T6sxZ8lnUX6sZVlXMiAO6/q2NiEIrbMstS/hGpIMB/L2GHtKSg5yrARMXlfgERbg1aZ5Pm+U7sQpkte5ywt6A7aPptHw7su18JGgGDgiJxqBOxkdyw1DuPzv6s9brVFQeD5Dtr2JEoahO0uVRdnYiQXHtMViSKLA6HSxoBICwM7Q2MuGoNAnNYVAHliRCQC58lxFoMDJ8DEmdcYTYU8O3GxCcwcqtr1iJmT507pL6JFbUKj01HY29u7dP36k1du7tQQ0S8PstNr+VIv81mGDKDRNDNHGTQjAI1G5PajlHUVfM8D1ShgBA0A5GCQilUktFNa7kij1aVbc0MIZj0/qcJuExrrU39lS7Pthsclgokx9T3kOQHWomxAjSlJX1BVCCAHgBDB1NQB9TOn64rOCAcOo7OwfU1mTQ79iqbeqTbKkEOWzUL88MeuVKUFe7iK/qKqSG9pdeDzAhUJGLp6cJorZ2aAJiYEuXWTMkVDiJWqhropZzHIQaNHDji1ERuAgaFRyx5phc6YzFCdGQAGwqYGW7LhJ6YbgrEIELWsOVuLEaBS8+ggRuwBKTokaap69exZ7hekwd/3sj/+2FXnNPf59ZvNlSvbL7r/gVNnw9WyclSrFkoNCiMFtiUiiK5RyfuCMzYA6RmV5ggbQ2fWOMq8Qdk0zuccEbiKAGaM4EAjaDATw5w4R25EmCQD5w1VmZxliIhZCvJQwYAdkFBUBWNgVQWNZC19KwngiUZEFJBkjBDJTOumdugMrRsPZXOiludcRNIwwXa4CGMMscWfFoBuh0hEEslAQERB0NRU06QjlqCMAE5pRjHPHFWxWVKacZMVwyBNOJiR5LSyHLNrRTkQCAwkZqaRUIgsxpoRRCsCpxrVgtb7/dP3vfNqQ8+Oige/rBxPmtgjmrBDwzUnwcYgGZAArp6RO4E4uug0bFXmIBtKmAKyQR8c9AZTagJC5hUl6Si2tBkEIFXwxGSmRJkzlWJgsub0Bk2c1Mv9Nc0slnuhmQ1pbTbwOWme22gUfWFQ+tMH177rFZdetnE4meSrAy6YiUBFvXG2kHI4Y2OIMZo0iTvjvVcki0pgOSKBV29S17nPzeUuRo+0Wgw2hmvT2bk6VNkj7oHPe+Tg2Ssv/vDVn/jIszMRa0wJHN7Y+s3v+IPVd7z66z8fmne1Nrw4yCgzjuQMiAwE0ZANrKsmJtOWngexObKRinq2gPpCN1dAISlyGCi08FZScnSYEEdCBMU2vDNEZEIw0ESaNlBDR5LwyBSuCZiBJBQErB2GYC2Zi4wMFTsMKSXwaonaCQCMrfBW0jBWRINo1o5IAEMQU4RO4KJNUdNXqxAioTUABEks1SyVi0HNILbuL5E+k9cwhMQ9hMiYS6vtBoaKKADSlmugmzP1PL/GgEbOktastv3I82AXDSJ02ovA2A63j3R07GiUiE9txxSqJbFISq7aAGg+EQ4W7mCKFch1EdNCcr1Aq3n+9me/DwkkWXT22IGDmDqx28QE0tMzNyWtF0+P6QL7Okqg2FBskF1GbIoESEjE6F3GzOiORg4QYnKxQgiETVMnmXvnnPc+DV0gQjOSUI/Hk/3D0Y3be888e/XGzVtlzXnhTm4sr60O8hyZWiUxdqCmgsSAalaF2DTWCBLGmOT17ajgn05gSgJieXDOgxlOQ6SAqEXhek0MY8mbmO0EOqi1FEP2REgOvGdiiERNAyaikhZMe30MIHaXEPqFN8XmVBDJo6yCL/duTEZ73OvNKvSEiGWsxPtcHX3ymetBYlP5GOOFe9aBcDgEQBv0itiKXXdPQzsm5eh6hhCihBBCbJoQmqqalOVYNS7W8s1S+0Hbg5+65s3MEtLR0oOVMfegJsODMjdCChJNM7EQQlbk1qiZEfsqhCGoZKwRYWNNIaOsl/djXFsvD296X2vdf+LZx1792r94YkBXRzPIBCyCBoAIBqJTsIDRAEgAGGqkYRNLlwUKQ6OI4PKmmPFB3/dLJMeNRDSMRAxqqrFlEWNQUfBoQAKCFgwBxKkqEpsEIofkEkBogOAYFSGRodoYXNsJCADz2pB1mTQAsBlATDU8BDiaoiqiIu1KTmYqRejWMq2SPj90SKUmVEmjagQTVAMTlVTQcqaVBS6G/dBUVQnguZIS+6vVjcunl+r1kxci37l07dOZf7hyDZvGOGZGIBYgjQEgISWiVBM5DrG884ly+yPcP5ctP2BuyqTmkDQHIqIMCRUVFUM55uG9QIXGGGGgoSw0z3rLTXMVgIFyIBoOnOFUQDmFJADp4eMkFkFIxo7YIaEpquX9cMJV1zD3kBlHYmrujJc2CkHEasy9dRyVVkizk71UP/TdF5958dncbNB3FWIeYySCJLxsdiT1qxqdcz5zsW18txijdvNcvfdRBRT7/b6qkneImOd5jNF7PxwOR+MDIlimlYuvunjmodHh8J3/8o8+6o1QzVxB+PQf/sZP/B+v+xHotbvznDlEOxIaSlWKhC0bogJ2ofDczD6vWHlkwRPdd6Hok8w/gQMTM0MiTIMP0IgYIUoqCyaVZm3REYRWlbk1xXB33TL5IQMDU1RsyYxdxRcR/yxarpnN808144UCsKUuI2tPHrDVZAKFeZfNURNSoisYJU0tBEbsegESBSsxvtpvN1gsoT3PWy2+aWbzlH3xsI/Kanj05vEXSd6LOsl86FZk2/UD3ZljlxkvHMDRgQCAazVxjpeQF/P9+al2h3SsDUkX+noXn4/Fk+xOtQXsWwpop4DYIh7wWTaTaBoUxFFWZLmmZYrAnlyeta0jgGStwqVL819EWDSEliND1AkkIIoEaWA8nu7u7t+6c3D5yu3nrm7PSsnybNhz506vra5mWY6Zo/mwBw8YkE1NxMZlnM0oGHiRGqV7RIjm8RWiIZU17Kpa5DDIlxw5cWzQIx2B7Kmf1sV2Y7NGxZC9gU8xlHUkOiNruxk6/iAYpIjOkEDQFYNBThwQHeUZIDI02JSjg8yvmKmGJmMmkQBK1Lv07EHUT4J7SSMNiJlAb5DNsHTkO70zay8aM3b9WunfGGNsYlmW09l4Vh5OZyPVmDDe9s52wpMIi0u6rYsb+RQrq7FHCXF1N6wWS714Zc/QtKo580QAEtFhbLAOM2aOZe3J9zZPVuPonVKv1LBWTFH0kDcOPvrB577tr+crK2fgckk+Nw0K0YwwEVEoqjmkaY090Bq0AMA+oGANuVgZxig5F7WOOfRCjg7YUJLwIpoCiEoDRoSZmCAyBgZEYAKk6HJmb2bAHp0DZENuB38StYOkCM0AFYlBo6pGSnRN1IQRiXWAK5nSsRUHQGoGqQ0AUxtKsnxoqmixk6pL8zGpgx9qMzOJST8yCeeBQbTIPiJqM2vYlJiCqnNFfePJb/qaB//RP/r6fOn00tLgd3/jl/7at/4cFK+ReoLKgCYwAxEwBwSMKpb3fF5uPZfn49d8/rlXvvyFv/hLv7+/cwn655mX1BoFD5QBgjMyqdkPYzUlHnC2JOUdoBztgOAQ+xs8atT6ykMSGwwwWJPU8tEAE3kXCTuoEo0cIBkygqqSr+4f7n9k96yx8eoKi9UmLkxMo65u5LNJvXlPf3/rRYd/+j1vuPPAWtbI2omiipGYyTlOijpq4pCgy4HnsuGJB4NoqSU6c07AgDBzmZqZJHa6ZlkGAMycQ54MfgjBGyL3T53N/8pb3vj+S1fff3kvAwvCBASHf/C+D34zfFG7OwJVmgFmbVkEYbHlEru+nYXn4S4HrIu/staXtfrL0OpLYBrQZsaISbU5IbOIoNRF891AYQMkUkMi6Jrr5lLBrcJRehrTYMqOOIFJ2tFwXhI+8h2LzjvB3dh1ylpb/2zNhQF2nK22HzVRBqHzB2aonbyItWeoeMyvJ/dvxxQkASA1h8y9sCUi1ryjNXGgO8fUXfwFkqYl4kqKfDsZ5iPAuSsHdLPj7vKvKek9DkQvqFfNhymkemo3jGEhkoJWENySoHbXId9i33dVpdujUoskvPC8kB1TdZ6/CQAp7pnXGO6CzuWoaAymDVowEHTcFfcTyc1hxxRMPgMVDDVlwM45yQTA0uvuTgARxKizWXl4MNrZ3nvmmeuPP3l1Z7dUQWY5ubZy+sTy6lI27LssyzLOEFFVmSAIN6plLbuTcNjkqMAoziJAIgmIAXH3TFAkVR3XIJWFwLMi65FjESU7CHIYqTQY1yKWxp+gogWDRg1MonGMYIYEpJruLbV1nk6PVNSCw6bvM1lRBJDIRMs0KOSJ6exA1AiLCI3FqaPcQQWcPXf1WvzDmXz+yzPy2sQz508E5UE+97Xzy03caYO3nVdBQwh1OZ2ODmfVft1M7goXMcFHHXWRrKNAoCW94hZiIkKTMiyN4hLlWB2OgEnLgExqhsxA4KOXRkViOJz1BoOs6E1Hkwzzulj1GCjg/l4FRf6/3/VcE2NvmGGYIfTMIkQDSqwSZQJVIDbRAA5QJAOudmbGlY0yzk9ly6O6QWiMWTI14J5qYyYpkCRVUTETI7VGkEg76oAxQwiWZaYo1CB7IAakFnghApUuG2ihHE6psMT5s91yNBAhlWAoieFhcuEAYJ1GYGqraOPTVLZWAQCBdijb3CIgNKqahD2wm7KGRo5ZollzAI7JMMYZ+/Vy9/L/+W0P/P1//N2Xr+7X+3cO9re++i9+0/u+7ZP//P++lK9drOO+aEOUqQB6cQCkZOrLO5/4gtfd973f+yP337Oxs33lZ/7dvyeoZFqpOwkZKy6hOUavGgGDaQkVKCj7dSmvo6utsTjb8r0NI0DJhTKoZoN+HqUiArMA7fpNNpnbsTdEpsDIjsgAG9FHN3fp2VOaO9dz08m+x0pwVQx64Gc9LcbPvu7Oe7/5z++dWfEWB4OihCzvE0yq0nufZZmBgi4O94Oj51w1GQoiUgmqikxq6nyOiOVsxuxRlZFUwXmXQvlBMQxcN02TMRD7U6cf+r63vPnr/8UvQUYY1MOKc4fved//mjtgTkUaMETS1n+1JhRSzTX1vz0vh0lHuvg65VadkkqLQKFBasNPg40N0JILBEM0aznylAxx6+zv7idqYdhko7VLkChp41snmJXAS04535HOlLWtVAaEaG2a3qbVqTzccqI7/kFqPk6CeW0BG7vujPmSITVNQLRZkr1O6Hpyropo3fijVmMkZUK0GBZAWmdtsIWISnisD2nhRmjyv21r0dH7i81XKejGrn4MnQtLGfD8gqRzb+vfR3tp0f0IxsCupUAvHAEAiMWu7L6YfR/9e/dxI5iZLGTDZpZago843DAv4LcfgYUS8jySosVpSFJFqSEEy0JkZ3Mcm458sEnqNJdWrByRmb33GTtEdI7QpZI5xKjj8WR/Z//W7e1nLt385ONPX7mxFwIzUT+ne85snDixtLwyWF5ezvOc2ROCoQCB1TCLOpnF3ZkdaJJManxEgHYSXBJ5bPkFykQgqBPFairTBguObKFGFxWnQaKVENWxB0ITjUBBAIXQfDBrAgaxGMyQUuiWygNJlLVVhiOoEaDfc4aEpAhoboixuvUYVjOJGsHMG1qjjbmiAXaXL2/9sX0CQqOPnAOClfWh9jPvfSu7QUTokFuhbwMRjaFp6rqp62o2m8zKw9F0J0pFzwu/oAvorBtYmYpBRGZqGtubxgQHzdLMsqwuNTQuz0Asxoh530KtZpQ7DDiZjqgKmYUYSiV15HLuNeT4LBS6BdXpw+mNz1x97o2vf9XvvOsPFNfVqjTukowARFWYa5li5sjAa33Q5xtf9BdemQ/W7lw5+NjjTxxetuXTj9R5r46CTR1FWvlJMlUlUGYENdUAFg0IJGlYkBEDNibOkmQgMjAbEJEzJkAHAESu631qBwKaqFpscZKWpWktM8zmzFRTIujGXSTwUGVBiCCtCCSzpPnVtfFatFSu6waOGgBZO1ImljPO+uRBENA009zqeOr07b/6trddemYUZTTw67C0tnUwGi4PoJkAj9shlVZlPkeBUB+EuMNcvf3tf+lrv+lLkORjH/noz/4/PxMqhAwx3latEQeIDRI5WNY4JVS1MRipBF+cCaMnRQsCF8az1XvuLcUDGFMem/0iW0ZNPjFCCtva8aSIyIzOs4ESEyEqEoXGPXCm3ITDvcFGgU4FA+VYecxHyjnL+PWH7/rLXzi5MFx2jadh6JErMFRZvl4UVdMkWRKXkK2jPkpVBeiQsxijz5iQq7Jh9MgUJTj2zjkAy7xr6sjMJsrOcVaEUGdZgc5bXZHmMsU3vun1X/jOD7zrycczvxpCkEjV9Op8Z6ig6ADbPtq56QMATDN8rQUjWxZO65/+TBYPIhpp24DWKnXMFWNajFixdZxJ6HfRnnMLsqipYoJeNEnHSNtvk3yFiqoRWFJoO3IrSbrc9C5tRExjc+7yf8fjnjYMtQ6AT77X1IwMBI1SNL8ICZgdrZj5BUVEYCIlMiIjNUzqV3OcGeEIEJ7vunW0CNixodv32jqsdHm2Wpv+2nwDaMetzm8BHj+3o84ka2UfDRfmELc5G84/7JLGyvzbjzAQaK8LtO7d0mGhHQsdqAvC2qAGuwlIXd7d9YZ232ztwbSF7WPc+rs30ZpiRbGKTaG5MbAdP2EEUEjg4fxQWw0NBgTQxLoC0Bh1Nqu27uxube089cy1Tz925erVrbohMOw5vPfs5oVzq5vrS6ury/1+vy3UMSNRo3VoYFrJ/sx2ZzgRMtOglrcTnlN4mbJ2htQJTWqmSqTqDist2QihBkOxJkYzYwNml+yAKtYBVMHMgmBUiNqpCVtSJk9MwURtQCVwgVRdxUwZLxGBNTOKqjowtr3PzPa3CpdpxhbFZYOoEyKfD4ZPPXMLQQADcBDdlLXV5eXEaEugQusAiCgNG4gqTVPNZrPReH803pvO9gyaRQeMR4BRKgCzdRoRlqoFogCUdGfA0Tisss+yOCmbgITCnOo14LKgIRJCUdSTqUdtDnfy6WFRLIsxk9FgSHXuejmsri7Hj/imefQVr0J9R4QIVqdn2DQJYAUQBWYADzX3s+d+49d+7KEH7xGTJqJE9+u/8Ws//sN/UhePULGl0i/YGtXEmwAwbdU9opkmXcnWAEEDCmAuUZiFCMkROUBSIEJniMgO2Fn7+LdSPwQClIaz2hxeToirdTCbJaht3hvWNpAk39yaNiK2tlMxSe8roKKJqbSaf50eSsqizKzIiyZGQVNtjNXbIMzKV7xu8OADL//whx7r95YOpzsWEWH2jt/63Wz4orqegWrP95rZtGmugt156csf/PzPffOXf+VrTpzaKDz9o3/yE//9199lVebdySiHZCphH1GUIhCb99IcgjamFRNpHXxvHUFNDHGm5bb3nyu45ixmniNskz+P4BHVIHLCqIAQmdAxOofOgSUiBogSOYvZ6mrzss3dd8eHKPPTW7XrF14rdoMVOPyy6k++7tXjteEqZy7PiJpc+tTgxFthJpR6S0AR3WJbLaVZgB0TQi2GoOxzX+RtJCpaNWXKjM0szT8wExG0GIkSwuqInYJv9FDCybd9/Zvf9aOPq7BYBX5pONhbsGfp/h7Zr7Ss0zBMMIWWW2RHPnhhgR2pQbW3WgAIgDX5IWgVrQAxFSXnLbnJJifdxzaRTeQg62SZ1QgSk799AakLVs00mlqnA2kJtD4eC3wWx0ZJaSYFE5ICBTBLpv8onrCOnrzwbTpH0q29MghgAmaYuA1HGWDnU7UddgSIgGYERpr41p2e9hFAjtASx47flXQUyfvaPH7Ro+7WxeNLv5675P+XCMmgUzy565LNi8SL84AXv2IxeOm8S3ehcV6zP/orxVZm8vm7SVcspbcGqc/4KDyy1KoG84uCsABBizYoNYaaqRI1A2ZOK0OJgMiZmU9lI8TOjLbF4FazlMxAmibOZs3B/vjmjZ3nrl174olrz13enlYGBIS6sdp/6J71e+7ZPHliZXl52fuciJDEAEShCThr4nTUbI9wq3Rlg9GBaBq1CgDQYn6IIBGAAEVrUwMkBIxi1BiYcSRggRiVEskEEciQQQQakWhgZlEBiBUhEQ1Tf14LGbRSrymOJlMOBgRYsXeDFWNTy5l7PYaez2I9BkQruK4UdRkAYgyDldXLt/byTz7nPTMSse/1ekVRZJkjSnBVatAStRhjqOt6NpuNxgf7B9v7B1tNmBAek5I2ay0FWFv3xY45oWAm6tQQcwYWUc39QRhmjmG/DLOKM1RH0BVwTUmQ8nwQZg3Uk3o2rq7f6F0cELDGgjkShuGJ+3cP7jy8MjyzdvZW3HHO1a7AUCJngAGRO1bLEuZVhKC3r33n933eifOn3veep5eWB1Otl4e9v/7Nb7n4yKlv+Oqf6ud/sZYrNYqjLIpAB1yJ6rHaSWI/aARQwAABgBQQDViZENnAKRCRU2RlZ+gSmbeVcQZB4C73TaX1CKCsaNSZkw78aa+pEjC3MCAmagBBYkWnN1XamhCkOZAJwlPoAP/0TtVU7AGFjcFiY5nnPnzso/vPPfPsxXtObO+HjY2N+86uvv17vu+jHya3JM6iIy73rq2s1F/1Da/9si/5cxfOner3ctMlof1/+GM/8Wv/4wle+zJcLeTwKa6uAIyRo8ZIbgoytrBiNjWLIEGJ6uqgSIP/rBIKEG6WQal/1srrMVQEY597FUZE49SAgmkucms1DVDSZEcFQ4foTGPU1z948OEPTpqzvtFyxfFMmzONfzN/9Bse3VlbXaE+eeJAnmTmTAQcO9amRjSH0IiKiHN+8QEmQjNQNSJi8qIBzHyWSQip3SONHsyyTCQSkaoweTNpmqbX6xkImmPKVaMVVu+Wr3zZo2dWl+/sVz4fhiC9/mLXU+eZCIEA8ShnaBlU1gKGKYK7yw4nYOMuQ2+ESWoB06DLZCJSX2sn/IIqsOAkWreRzEuSAbfUa2sIapoKhADSuuF5fpWUorXNG7HNXo9qLkeH2oqEdGqRC76g5V5159j93dzlG2gC2CHhPWC4KPJqZqjHXFWnTJwcsBJaK3GBiNTCADr/F7s4de4479rSxZk3z5olcZCj8AIgjXyJf+afHw8o2iR+4aZhB4EAAqQ+4Hmo1ZmCP6v20O4DFuQisSNAiUASyVOYA9EpRms9NHQFakA0BU57afXvAaHVElqUooyxMaqZQ6RgaoCZkSERI4GooQCQdg2U0KaI7eG3KR3G2DTTabm3O9neOrh69dqnH3/q0rO7hyMA7wBgZbl48MHzD9539szZzY3N9X6/bwkCcxRNQiNNY9O6qSf1/pj2p66pLZIYUphLl2h7V9LlUlDmDC0pl6iCgOUiiNZYVFEydg5Y0AmCZwI1sGSbU7M1AmjUSOhBQUGgHRFqiaDsDKOpIqAoI5ZIeTYE8boEzOwKHq71JttPjfemDnuuV0rt1GrmJLffv3L9cLV/fbkoin4xGAycc3nuAVBBQFr54igxhFBV5WQyGY0OxuPD6XSsLMwgcvQ8qEZmxjR9GtKEE0grkwCBzZmGVG5SU/DT2oe6KXf2wYwUeakXqzpbXosxRkQCl4uU6HFcOYLJpSu4eabI18zXmSguua3tXj49/Plf+LvN8trwxvW8WIrZCjSNs0ygYmNFQjXWGKpAyznrnc994T23b0+WB87zwZmzJye79Xv/+FNf9Oo3/vAPvOv/+8N/mJ97ebCR1jENUksPkiNGBJEA0E3eJAQBQGBUBUOt0/gYSykuOkNWZQRvAYEyJA/sjAgIFVN7fwvPU9ufpECE0o3mXVhpSGbBwBwCGBiSS+MBAZxRSB9SUTTpbLc48pbUegGpm32iZuhAYsngzQTZBd2DbLB1+5Fvedv3fN/f/u57Hiw+/Cd73/WffvH33zUbnvyCyezykFcmkye+7hs+9/u+968VuQshOqammT326T/95z/x8596Ogw2XzuFZeo5cOdlS6B+FjGYqGkAqWJo1AKoEolZFpsxLJ0kHKgRQI4SZ3VVLJ2ZlVdlephnkvV7TQQTS5XzluGPiNyq6zv1xsriETEDNq1mpb3q/viCK594/Nbrl301gbUwmX7ZxSe/9gWTYmnDQ0ExBxtlBVZ9N5yxuUFtoxxJLQJQaoVYdGAxRuIWf55H7VUIIYR+0QNRidF7LwkfBi3rhskBIgGzwyiNmREERB+kGrjhZDy58IIXf8nrXv8L73iHo9Oq9fkLJz4MbedeVHNuptifm2Y4Sm9S446gzgnxegzqw3mw39nHDg9JlS8ygqQNfvR5JUQ1mWOTrbGd526qqkoJdk4otGpKizuPKNoBlZ/FC9ztKY4f6pGHu9s9py35iHRUkOBS6z6XUrbO5S7u1PB52SS1spRoREStFOXCPODnHzbAkaLI3HfMC/CLH5t7v6OPdW9AJ4Bhdx1Q9+Hk1UBNEWiBhJUag7qABJ2AtD1a81vfufz5teqybAEAJr+4S0mcbQWGlLmBgkUwagkqCGCqSoiInPQKEOfyLvMTaWMbRFyUDks9k6EZE2Djc0fBQUHgRImw6CbEGTABYFQAQibSBCMQmABGmI3rvZ3DO1v7V57bevyJa888d3g4FXDepDm13HvwnqWXPHLm/PnNzRMnl/rDjDP2DIYQCcVEsCrDdKLXSrg0lf0QIwFEIQlKBVCaI6YISsBgaY5JxrFBhNpYiUmDWVDzKKqibOZRfOYBzJBroGAOJKJomqOuGKAbLWdKAM5QASISCLECS6gxQ1ADQcXMiGupegRFtlZQPeyfzwKfG9gOXt7fO5Qm1mYePAQDEud5FuNTl3fWVtbz5cIXS5zliLi01DPFqGrG0aqosaqqg4PD0Wi0vXN7+/BGdIeOXQtgzB8LcmaS5oDi3PsmKwpg6iJFj6Ixh3zmQ39k68g1xQqWilDD+mBdqlmvl9WVeYwBYNLLhn51dDgxXIqjgzB91sN9g/xEs7ocpjr42O+89ze/ym2czHP4xXe/c3Ti5eunTh5SDgAeRGPt6iqKC3zgQk6HYf2UnrnvxQeHe1qXJ3rnP/bBTzzw8AsHq5sf+fQz3/bNP/Tud/zVP37qar68qsDRGmMB65nURCRoSsyGzF4FADXHVZdPZjbL8jzWmJOZNAjCjHVTk+uFUJpHH0GwryjgBkZC0YND0lyzQiwSVWgryjVoo1XfvIApQDBQrTFzZFKiY0cuNg2YY5ebVAheJUKmUDdEIFBDzNgjNghcBSgiNgAR0BkwkNemAY4AtRmS5gYNKAOX0HjgfV1d/dCnN976l37KFzuxmhoMT669bLu8RMVgsvPp7/973/DXv+0rnv3M5TOnTm3tXP7Pv/A//vAPP3B7a9ev/Lls49RkPHE2ieXG4PTLdRObG1OBLUTD6MBnqjuuQbVKMbI5rUZu8IiaQ65MhgaHPLpZnHrVbH8P688srw76RZyUUGC0COy9Q0QkBmbzDpwzBAInDkwZOVokIjZ/2Li3v2L6Xb/xidunNtYOrn/L6Z1vfvlBnp12gtCLyEaUxRiXKG8ycdw489EkiHgGRjKNdR3mLOi8V4S6SS1/zK6uG+89OqvKpmlqAGCHRBAadeBjiARoqqZaxyY1wQOAGhOo40GtVW9Y2Kx802tf+l/e8TtmKIjf9BfO/QY8166XUJk7abBPRm1uigCp5coQsE7WEjTpWHHrKKibv9A6hpZokdh2tOCQWrmohLNCymNTJVXQlAxTnN1Ni1NS42gGAgluVrW5A06eApnapGChjpmkQzsnQW1TiyHy3EMhdr0cltpdUplak8oUAMyH/STkMnmxtnLcTkoQTAFswoGBNJUkrAO1k+ozA2nSOlRAs5ZphZyGvxEjIEAiavlFHUZqc/cjX5vIktilhW1RnABEzSC0rdOLzrhNo8lMYD6+qK3nth+bU78XuX/YitOaWkseOapJPC8P7lqbUmbJAGpxIUU99ocGXVWj+59aVz4ws8UAYo4AILZztD4rJmBmZlEliNYSE83Am2EIIcTYxnGU9MXJEEDScFVIaGoIYTqaHuwdbu/sP3fl9uNPXH76meuz2kTEe1pZ7d933+lHX3DhwoUzJ05s9vrOeUMSAxVEUIiidQijSvYOwu2teHs/K5s+OAINBl6xBiQGFAHQVsffEARjMGAzMrU089KA0LiuDUGQInjAjNFniB45w6ljyxg8KiFwOzvEQGIwqiPWBiVCpa4RH9QYMUQ0xMyEoZJoYlTSkJYi4+lqOtFsveKH3OnVfvVYU95x0tRYG5iLEUEAYVzVTzx9fXXdr65v9Psu9yvVjJhZVWNsoupsUo5G4/F4vLN/c+/wZhNHhjOkDBbmDSw8ISlsQrOW2N6FcQLACj5ARJIoyw0sYYxN0xR5oRkDU5iUCETkxLQwVMyoV7q1pWrW61+ZfsWj977n49dvwdLs8ujU1uN/9N+/tDh9Gga897Gnf+KXmgsvfX0zPej7LMYI4xpiHWDPJrsYeuQOmoPxmYcGS8O1G1vPoDanz/W/9uvf/uVf/ZYf+Hvf+dEP7l29ufeP//X3f+VX/N26emONW56WQ0RkIciCBOKCURSVSbMecTmYjbbqw3EGWFtEDrWMu3qLIqtIw9mGGKuuKI7Rs0VlnzsUAUZvglOEwqkCgjQKIOgOTfuAASyCz72nKApuRYFRpt57hQPUgYqYmvOVlp7dTBRBc4aZhr5yAAa0xoIweXIcQgNS9osiNOBpqTFiF1SGajOLEbDKtN9Uu+iXB8uDvLfyVX/5kbd87Rvf/57f/Sf/9CpUs7d83X3f/u1f8Ud/+NEHH3z4J3/6p3/hF94Bcta5+6V3SnavFvmli2ceWF7WKOHpG3u9hz6nGo1gOjYf0PosqCDRGYdUIxONjZkBuQTWGFIzvnbqha/bu3zeh48P1k4DlRmOFdbZV21jFaJzjpBYkRC9zyAIAzIhGRAgq0pZnlgvXnnh1u9/+uZ3vX7lG19N9dJ5iW592WkUR5xm+h2zZgjpASMiU3VZNk9rYoxzZ5Ck46uqavXORBExRgEARqdRuonnqkrEnIo1zGwohlkOHNRrZuXo4Itf/brVlX+xNXFnTq+95tUr8ES7Oxo40HHqdwJsyRLQfq0hzVM+QwWDaMQJKz5uFFvrn3hbR/N61ZKCoyZnpmkmQ8KsEz26A58RF7tiYE4P7NxqJwy5mAi1Tjhdrq7S0V7eu7NbRGvlZY7o3LZYvD1u4ReKnWlVdTroqqhomoqYCYjGLnlP9xCtlWFoO44IUwG49f0IcNfQBYC7Hc3i02Ld0aR8FBLJbOEPFzY8+tifsR25dvwsv7Au7XTHMv3jJWVrfcFRqs5Aases8F3bXJa3nfXYUtmPnfNdqAK0FeJWK34xWDAzFFVsUnemgQp6cBRiu2COrhm0/VGWRreClU1ZTauDg9H29t6zz11/4onnLl3ZGU+bCOwJVwb5xfPrjz54/uEHL5w6vTlcHhS5ZwRQCUEckgjUjY7KaufAb+3btT3ZmkGpEWMNAOD6GCZEDlIHI5EBKoqYeaA0kpgI0LEpWgwQZlBUA4+DjPqZX87DauZXMhw47PtJBlCwZWSOISkWopogNdHqwFOBSbTDxg5LnAW8E5YOGjtUEudi5tSCaFAi0F4Y9KNjmphZEYfYLF3JRncmjYRQkeMQAQMSawXx8u078P6SXWZ61qQ+deJknufsTDTEEKuqGo/Hh4d7u3s3x9Pb7GtDM/ssgRe0CNgijNNWHBhNjNBYOWQkZb0ygz7UO6CGCJD7YBEnM+eZQQJ5UMvMKh5k/eHqfTL6zM2wc+uvfvHmL/7cb37d133ld3znWx0NoIA7n3ji//M33w1f+FaLsygFex9mUyqsGU80NGwMMJbYgNw+e+5C1dTl9M5gcOHOneeod+4//MzHv/JNH75w/ytvXH7u4kMX//GPfffbvv2fZZtfGfSmgyW0BjLSaFJHn+dADMT19cdPnx186TecXXI58xqaSAqiQKOORAOATmfNH7zzMw2cBhZxJYdVhBhmhxJLYA9Rgb0ZKUShs27AwKwIGUHR69Wlr3cbhV3QEaADiia58gx4CTCg9/lAqlKhGFmVGQLYPnEvyAHnBaPTyVCdAwihqrOsaMpyVlaAFOoRcBbjFmarQL2837cwa5qDfLhc7z79Hd/7Rd//wz9+9dJ2Psz3Di5EereF+A1f+41PffzW6c3TV6598L/+518lecBcuXTi0j2n73npCz7/K9/y51/w0Asm9XRjfeV3fueXfugnHu/f//LpJ28hHCj2PTE4hjhSawAYEUEjA3I20GqfQBUxTnYc27kXvfTG+35p/dRGr/DVYTTXeErkoVQ2d6kxmIFiIzkRmmFU5yiJwGfI40o/b+Xw9V+KX/2m+2kW+pnPhrK7c7C2tJQySNeKXCenQgia2gABwDkHhNAN9ErdnomQmxR7xCIKep+bklrUIIhojjscNbV2W57nBhBDjBqZ0TELIoHPNEyn4/MPveQrvuBVP//OO3/9G1+2XhyxoBvBDCSJjqgKEgBZ16Oi1LbiLOgtS4RUNX4e2Ltgw6Hz5K1qQPvbBWi0DRVTdmukFlu9ujTyaz64t9tLKq0lhcwukYO2ZGhzj9+ufZwf21H+254Fdjni0YF0RJZuj3OFL2yhdUuKmtbOIzDoziS53QROtzmxGYghGGE7KQoJHBBZ2ws4B+SPGqU+a46HCyXhttuzbamyo9lxzxsANS+Nz5nqANDOuZl/LSxC8d3lOf6jayOK9LuFX2gXNEFXJJ7rXdx1AtBiEe3rxVlIx2sSd21dENHdn6Rhhnc3aKlqFKkRQNQDZUaMSEHFd5gMMycZSEzifKZ1XTdNs729u3Vn9+aN7ccfv3T52vbBuFZwzLi0lF84t/LCh889cN+J06fXl5eHeb+XsUNMY35N0GKls1IPx+HOHlzaC1emMFI1qEmDGipVzswkEWjRtEEmRKNWlDAHBADRJqLIEMNmLves+M0BnRjKci/mOfUK62VWsOTIDsQ58wyIYmRmiGoBahNQIQUI6mbBJjVWtd2aTXYqvT6GG1PenvhK0RW9Ya8HhgI6zYtomcf9WdHM1h/MjenWc7w3wxAiejD2dSAnJeiTTx+wM6KoMRDgyspSf1AY2mRyOJlOR+OD3b07h+OtaBUhgLm7EJv5Q0ZdoHV0I1u5VAJQVSXPDmw39ipwMh6BWlXNiuVBVc/8eOIJmZkQoznOA0fDFVum+2bnr//PX3v/u9/77d//7V+QFYPLk7g6oMff9cdf9YPXeq99K2U3yjsj6rGNGlfVEksZb9NsrKEy3SIikNELXvDw7t5tryurq8tPPvnBWzd8PnzF3/v+n/rl3/w3WcbXPnP7DV/2hr/9ne/+V//Pp4ZnHyxnhyZ9MUG0nFE5QjVbye78yL/9K29646seuniqFB2Pp+VE1Oqyahz32DehygHg9AX4qjd/w3v+ZEI9QUOIB4S3H3hg875777v3wnnvfQhhNKkdusc/89QnHmugt860Gg9vjQ5mJ0/T5iPDs+v3nj5dLK+GEHA6nu3tVbfvTCfx2o0bodw2kBPZUr/xArEmWxILGfSb7Wu+P+v1ewqRWP3QM+TFyjBzGTvt99za+kaPTx0cHN68s3/9zmWJG/ngXMMNWrW0pNefG3/i449duPCCHE5AA4+++NSFiw88d+kmUsz45L/72Z+ZVqNesZIVxWbhabBea/nsk48Z8pVLt77uLX/5D/7XD//vg9Vi44Vw8FSFFDOGKgBWBE6SroMFIvL91VBd7Zo6Dg/vXF8+9wDA+iMPr05n11WHRFHFOUYmJnIISZkfmTgHRgCHyAqqljEjYTUrRyP53Fc/+qKTg3qy4/M1izpDyCVkjpjRjIjJ0sTSZHARVDUNw019d0e2z1HQGEWcc4gops65lNo650I0AWOiKA2Tl3ZgKKlqEAUABIoSkDMFFYo+71sVkLAuD7/w5a/8+d/+lb/xdSdG1z50ZO+MlAFREDu5J21zOwMh6/p7ku5xmwjd1eSTPFZC+GI6u9S/hJ0HbEnOx7g7lIh7d2+J3NAa4a6oCdBNLGkF9ztdRNRWEROhU93CxJBo65dH0Cu03B+bR+XQxkOYtCXMDJGP/I6BQarPi6omjUYASFpvChaTTHbXEpQoWmpkCJYgT0gYJHYl4bvc3rFGqbs2ay87ynH56/nhzcGAOSgwT1MXY5fuMi0Idzy/9H28Ro4AC8MYkmTPPOVd/DQAtKm0zbuM2jc7KP//5QzhOASNC+0r0laCj3oA7zpmS4PftCYkUNNYIXkyCiEgt6RcSTxU54hIBWKMo/FoPKq27uxeunzjM09fefbSzWmpYghkwyGfPbX8ggfPPPrwhTNnN1dXl4fDocuy5C1S04iIzKZxZyQ39+srW+XjO3xlVjTmPBIgBWxMDirsMypzEjEnVHVAGfhag2FwYD2oexj7mZwf2j1reM+mnBy6U33oe2NP4IydEoUCM0YlFCA1TlEeoiFrpqogUVUFpBFohILA+SrUNR6UfGMkl/arqzO/o1w2frbMPaO6boIjNJe5DfH1aJmWIoFKHN8EKQ1dNOEoYMrMz166Mej1BkXuyACj2BIij0ejg4Px7u7O3v52HafOt4H5IjSy+CS1pQYA6MQoKQEnyoTRLBI4NIqwZCb1/j5oNGmK4WB/f1/KGao4xx5RvAXjYdaDoUyiDHLdLx74lf/80bN/59Gd/fLRC72f+//99tv/m5z5vD/n9HC6Zxn0m2osoz2ajOvRLkxGzkZN2AGLiLnj2YMP3aeW12W1sbb6nj95wpqMzxRPXz7xT374n/6jf/lTj3/wk489/vR3fs8PfPiD3/r+D1zvnT5R1hWgQlxWPgij3ksevPFf/ssPrm28ZP9g+tFPXg5iJ9c3eqS11DlGDQ1Y7WxYzuLQnXrw3MPvxRuZO1FPy1Ondv7ZP/3+CxfOjqeVVBM3WF4fLlFW9PPi9o3Hv/JrfhD1z5e77/vKN3/OV331173uCz93dXlYzsaoVgcoS0GJWZHib3/71vYHPvzB3/rNP3n/ex6n3gtd5oPfsrKPsPW93/3qL/mSL8XcD5aWyMg55x05MtPaQJhZofbkC18o8ZNPPfUP//FPve+91/36ZiAog1KhgxUj12TQR4sYD32/mFRlv/B1aNY3T1xcOoeIBpJnMC53ueHh2sl6fJgxTMvs9OagfOz6uUdfc+M9Oy6rogSnFqFuJ9kBAIgqcG9t/rSQVftbz2h/2bvlMxdcPauY1gz30bxDdsRJC9ohOWACjKHxxMTOew8Ks0lpokv9pQfvvXeZg8ziSnY2hik5ZeX8zEW1KknPElFiLENyYIleCyCqLTB+ZFwk1apijOycSLQ2vzPTpI6mCqCmEjXRw5hZoZ1BTkQKaOBLqXLIjKopqhNws0NU/ze/6iXn+nv7N4+smaPQikdB4lsqgEKreKQtdxcUUtW2/RFsAcE0nLOECKFjPdtRbExJO63rLJ0b6TbDQzATTi0b2M5sQCJI6C5TwsXndwzaZlmEVkKS4Jh1JmgHG7YQ5pzJv3DAaAop8Z2nn51+SCIdtjzhDqOmLnNPGkTakcYg3Yk5cgvGit3FQQZqNUYQkRiJuKNz3S2U+VlcFWF6PFqwdsHLEpIGNT3Cn7vrL+nitGDBQrjTVmrb0OOz7JFswXO305Cs43y3Pjs1tspiMjpHkgUA7upFSSWB43D4fAd3fcP8BtniuA2DmHTw8Nj9S32QLfhpwQA01sg5EGr0wUQFiJMDBucolYfLWX14ML518+D6zVtPP3P10pXb42kjgEQwHGSnTgzuv7h5/31nTp1eX14e9gZ9n7GJKjZJozdKnJVhfyw3D+DyXnz6Tn595MfqHQHFGIGQHaEhBQBIWj0J7DBVMUAqh1itYDyR6+kBb/TDmVU5t8aby7zSc0uFJyIkZw6QjIkZI4Fx4kEkREdTE35tLc8RUrinqmK4HnFW6nQaz/TsoRW4U8FnptUzU70M/Ub7nkhjFaBvru71l0rbhGVig0gN7F/XMIvEHp1vwOWoUZ+9dG15OS+KB7OcprOZGTdVubd7sLe3U9ZjduY9hVgye9XnAzjtE5+IG4h4HCAhJhIVNUZ0kZatnMbptOd9JHJFDwQtd6GpzPUzcNGcyw3Majd0WzcBOH/Ryz7xwacvntKlg/rv/53f+5lPwIXXfU6ztT2dzpQ0TEK9uxNG21Yf6uEW6KjhCUAJqmyDoOWZ0+fLWfT94Ng+/omnsb/RlHvZiRf/6n//4y/44t/8gs97zeXr9dWbo5/+v3/yzV/xTbf3hrAeYYZIU8AcZp/4x//w7Zadeu7Jz6yeXBosrd53vv/RT3/8T//0vR96383JdGTqihx8xsSyvr7ysY/vWhwyDhme+/c//6Org5VnPvNsE0PPYc/Jc1uHS+vDwRLde/Hc5oa/fv3TP/2v/tqb3/z1+/v7t67fvlJVJzdOrKysLC354bJWoQ4hloeyt3fQSPgLX/7lb37L1/zRe377x77vZ7f3L+bDlTqMvvhLl77n7X/jM09tk69i0wz7fZ8ZYwyh6fX6ac5VNSuu3bq+fzDK+v2V5eGv/td/+5a3/uWPfMijrpbjPQ9UT/10sFPayC3NHn8C/8u//8W/8le/aTo9dAXPJnL12jP7hzef+PTND33o8YMDunnruX/xb37g/lMPTXbK0WycOYSrl+GFr4QzD+j2016FUWMICi41JgBJ00TIhtgG3AiAIvsHlz95z/ki61WhXvbUBDNHxEgE7IydIae2dLVe7k2AgCBAOa0YaHN9c3Nt/bRDcgMpZnW5n8OAekBRwQJRMod2NMEewFRVlNFi6kNomiQSkLamaVLgHkIgMyIKoVZmJmpCSO2/QRoiCiH08n6MmtS8RWQu4xpCYIdV0xhWpEUVZTTe3ezlf/dbHhndvOILB90ATwFzEQTa6WEt27SlNFHXD9Iax67Sp8jtKtMuA2tRw4UC5PwPtUNKO0ub5lxYK84+p/hg150CoKSg1u6A8S4HjJ0P6Y4sbZ3lnpcLETsydvs3qouej4yUOqLP8chg3is193BEBtFSaTxdNzSANpRqrxIqggkm1lN3TVIKP2//xcVLNL8srbeaS3DgkZuco7lzmETmnveuQm4b/6QWiVYhyRZmFy4i9fPJY/NjOAbDtE293Qzg1v+2CHanTNBdM0Rtq/zdhq34bCvr/VlOdYHCl65dx+qCObpiZji35gtbWroCxiZiEYzEAmqNSjE2qg6MohmaMXMIIjFOp+Xh4ejOnTtXr+5/5plLz16+cTBuHBeOrMjs1InB/feeevj+e86dPbW0NOgN+uQSDS0aQOrEn0bdO2xuH9izO/zMNj99mI+DdwRkTVBWdBjBESuGpJ2uaoiAEHPSguFMrz495DMD2ejBei+u9XRjydbXi+XMfAHOGaICNIyCIEgC6NGSxFtXqwBAgwqSzDCl1vGES5thzCa5c/2eXzU608g9jTszoosjffedw2dLnhJiJDUeY7m8vOQIGkVjYanyqPXhLbAIoI4whKbI8tls9uRTz66t95umGg68Z3LO7R/sTMo95MAOuo44TdJzzysQdMEvHSnZpnBMKXKyISaGWW3Dcn/ERJRlvaKnlDF6WBmGIJB5FPVMwBxmIV9aPvzoH/Zf+tBg9dRH/+TpH/3x//2/P37pfVv3nH3B+emVq2rTSaW4u6/T/TgaWzPRZo/iIeghNJVDjqAWDk6c2Ozn/cOD3eHyUoxbH//QOBs+HJudSoXXX/kj/+DfvfdPXru8TPXsEDfO/tx/+Odf9dbv9uWbGtpXCGFUvuENGy95zZ/72Icvra0PJzv7J8/Yt33HP/jF//AYDC4C3OOcBw2xmYHVgDOQO1xs5ifzZnbw2tcuPfzo2U98+Pbp0+eyfnG4c+v7v+eHb95Wn8HKcn7q9Oqtq/h93/+qN33RG37/9353aWlpeWn9BY/ce+Xyp3791957+eq272kINUr28MMPf8Wbvzhz5z72yQ8VRfGSR17xq//tp778a95WTl5qUp84eWJ3d3pn6+ry4HzRm42byXS6e7A/unL59vUbd5qmiVL1+v23fO1Xn7vv1O3bB3u7W5d19bu++2v/2jf9KvuTB9X1ycRCnKGsjieHzazOBg/+y3/5W//9135vaWW5aZrnrl4J1QrBCoB3bq2Oo895zT2bvZWtW9cPx6MXDx65eXiFpNi//uzmQ4/sTHaKCLNwC8ABA4hTAjQITSQ3QEBABjPzkInW+8++4mvOO5rMwtj12csqMxKwM3RIjI4QKQ2XMcqIm2koy3KlNzh78sSJlZV+5kFCf5VCneUrBakRghROADJEVSUAIkBCZkREEWl7asgYSTUuKukmO+gcJeSZiBSpU/NsiUAmCfyMSXcsRknyA2Za142ZEUXCXqPKED3Uhnx7b/ehM/nG0q0wq5YGR8wJIgIFpq5fMVGaxdISSxkqdBkSWGqFRktSpl30Oy+p6pGx7dDjzg23HT4a02kgKKYem1ZaQFGTPzNMPbvUykZqSw9O+USa2LDg3wABSCHM38DO7wK0YhOGBMBkANj1VnZZcWoOhi4Xn1v+YwZ/ThpKYkQGBqigCrigW59ADTOEVocPE2idlGBTh3N7XM9zKG0auehi5i+wE8OZb6Iidx9kksxcDFPaW0zWlZC7Hxf+6O7K3XzXrvPwdx8NA4ClkOrIlbfnunBS6etU02OLi0Izd53h4r6hjVQFkxwatNz3tmxztLWMOFUDE0JRjSZByUlslACBY4ye2czKWV2W5Wg03drZu3799qVLty5dvnY4qhRyBfAEJzeX77/39EP3Xbzv4oXNzdWiX2S9AshEaiYUAROYVjKu4vbe7OaOu3zHnt2RW42iiTOTqEY5oqmWIFQTOPAOHIt4awauOT3wp5eK+4Z6elnX+iHL4lLPLxe01Mt7vV5OpXOAzgCEARHA1JllJg0BRktt8G2ogwCcHkIAIEVk6HrbNPYzh1mGkU2EhrUWWVjJ1YO4S7c/OsljvswyIww15pgLLM0QT/BS1dNI0lTjXZBYE5CKWlTU8WT21JOXJFTLA9rYGOYF1eHAsMpyNKAYASGHY1jGsZsrbdN9qhulgzdEMI5ae0g6oERVk9UHZd9nUWx5fS2iQ/DayyQaLXmb1TbI6TCunB7sf+J9fm2DzzyozZRf9gU/8gvvXXnBC09fwK3bn3FNDgcH9XTbV42MdyROMI4hTJUU6kCmRgE8EciZe7TfX67rm6urG1u371y/HqAXcbjStzxs0O71R370B3/y3/zbn/zwh5/ZHd95+KWf/8Pf/9Yf+bF3+NOvMWjCwb6H1XIPEXZ3dmaPvvDBH/qht//yL+4vn3tD7ULAGoHQfM/WJESgdYkqoMAzC8WJ1c0MN1bWS5bwohe/7Id/8F8/8exF3rwI9eH+rcmlrRwH22960+c/9fT11SE1dZ2v19/2N77lj971pNh5pFU1ACsIRe2jP/Yj//E7vuvL/9bb/tZTTzx569ndk/eu/+uf+YG/8o0/xPiyD3/iaUc+z5om7J04f8/b/uZ3fuzDnyYagOVAhQoCMIH80i/9yjt++z8t95Zj0Fl5cO99n5ud+MXqjptNpT/IQTLnFKwBLhQmsnTm8o7CDoAM8v4rkWupALBGf/3Lv+Tz/o9v/WotrbSdz/uCz3/v7/3R//wfj2UrX1hde9YP11fO3nv49Bb1C5hFxFIQAYyIokHhep3khBp6nZSnVmf3PLIaJzu93JfR1hkVmQGJiIkJW01153g2qbSMy/nSfffce/7kqeVelmkkjU2Rg8bcFw49MXpGBRKdIbkF66FmxAQKqgAhBiYIGohI4pEQZcp9ETHLisl0etRZJOLIR2lEGkCNUQC0qmZZVpiZSAhJKD0EInKmdZU5AiScwszBoDlspL8VFIeFZ6mPjHCYkMtM2wNovRwl4Ym2ipP0+wAgVYUTioqtFosB6NE8yq6seWxhGnV0IUUABUHQOSKdwuEWssJW0zdlQZQ6hto0DC1dvi4nQMSuskTcheDpSDpvg20t8hh8ySAKCxN65p5sITHr5AMWfIQtFE/NElM8HRVYRzWZByKIqAkeAEQkM+pkgQAXI5eF/R65oeOE37ss2+LxzLfnvbnwzc/zX2Yt9v48njjO/b0zC4aQ5vphK4yX/jh9rq3nC7SA/F0F7QQupWkv2FVw54chkqYepSNOLeFmBqrKnH7Rhk5HQcExmS1BA48IChEEODCoqdPgIwhSDaiEWRMaRBSZHR5Mt7YPbt64c/XqzWev3JhMggIzqffNifXefRdPPfjAxfMXzyyvLg2Xl4qiSFoJCKTRQMO0rPcPq62RXd1xT9yBJ/fg9jSPzMwEotGQOaoIqZHTQdOPLA3NcqAzBTywovdvTk8sV6eXYDjggrXwMCywyJ3Pwfkyo5yYCSmqRq0BwARijB0Nw1JThIqgkaoSM6CmqXd5nhMRpjHdYs4zk+8RqwuBZ+Q8Icda7XTN17c/sb9R9wcOC61F3JBcZRnh0nKtJzFqDpea8TVUYVqzOMt8Fi3sHexceba6/96zvR5Gg8bqfMCiVZCZUQABNO7IfsdADjPjTtzANOXuCclgDCwZoyj6BmwwLhmnE1gqtKHs/PnyM1cwcxllDWiBTe4zX9nBRoiXbxRbM/iS19R3xLnlwXCir3w4m01GE8EpNndux+kdKPdiOTGboJQgM4IArZQAEBGYj7Zz75kHKp1U1kiNwYq3/qU3fPwj17YPxgcHu7x7snCn/usv/+mfe/1/+vKv+NobV+/cunz52/72//nhT1x/x28911+/R6FSRod72mSmEMvxhz+8Rdmj4+YzNiuAHRAzcDhK940NVcmK3qxCFypgdeZqmexeu05LDzI1DUcqACx/4DT0B/fKdK+2tfPninf93m//73c9i8Mv9dk4t8FEdpzrG+XkelRv/ORP/r6ifuu3/o1nnrh6cOvqy178OV/15pe+8zf2QkO1NgdTymBLmvWCc6aXZKtL0RoHPsQJ8Uov8+Mt/eVf/J9v+1vf/swzt3s5bOYrvlFE2d2bZVjbUBRXufGsdSQAbRyvxHoE8YZMx2dPnClOrD3yknve/JVvfOmLXykhulNhoz73c//h3/zMv/0tx2eD7HjdGD/91OmXv1Cu3qnr2xFriB6QIEPRgpubrn9CAAE9QwluEGaHr/yyzUF2MBlZP3NDjBGQgY0YFZGADdgwVmEm1Zl8cPHihXMbmwWRScw9G2gI0veE6GOMiMqexNQsIs+7Y5CRREUkCLAZek8iQVQRCQgXlWSYeVaVYlo1NRHFEDPHZQwAyt6FpmF2MdTsQERijFFFATih0HUFIAKohqSjbDCIaho40KyK4kEKqM0EOAdoxbCYClA1jp3bUAAg09RgaxqSbW49RGu/NaU9oJ236Ew+p2Zi6mg7cxUOwdQRiyrcVU1FpZOgUlAjSL3Fip2ScKISp2IfGSGAQKK1EsDc0yWbDkaYEC8AIGAEAGOio1mK6fhN9agcCoxg2NawTU0TFw2MIFGvOm8mlujNZoaKlDR6U1uxpH4tZFURlVbKEtkMERiQTVEBiRyQa0nEmDT+Ohy3VcCAeccud4jdouYXIqZpSAaQokMAEUMDEoOoMWm2QzcQiTGN72pvlZnNh/Cme/tZggBp9aNcwtBVFYwAEpsOoYuJOiC/RfTN7C5n3hri7qvn7yza6MVfQZcHLzC9jn3VYg0YW1aAmRkhp+E9zkS0tsjsPSGJhKqq6rpumri3P755Y/vy1VtXLt8Yj6OIMrJ3uLZcXDh/+r6L5y+cO3Vyc3kwzB2np0FjbAWJprXu79vWvrsxik/dik/edts1RwbSqKaapjFHZUDFLChHrp2FddN7luihE3bvenV6lVeHfiXXIgPvuHAuzxwzsWdmRJIojUVLTYepkzk2UlZNCEE1hhBUNcQ6PfUi4Bz5PHPOFUXhnHOOi6Jg77xnIAR0TIxZNIQYdG19dDFGwCLj7Y/uV4fZGmYN1mCQF30XoZa6zJaEderjOM72BEaOIqMnsqaRIBrVDDhanWXeMMQ6TRVFYgIjQzWwRRXSY1Ftko2z+aAuI0ciwsYSbFCsHIzUEALo0saJzHBycDhYGmiGoWn6Kur9mBm3JVw6WP2aLz68NM4UbTIqiwHzYDrZ668WTTWJ4x2tdjHsm8wAKrMGrUldk9BCNsjOmeHpjfubMVJ04/Hh2qb/uz/4HdNyOjvcu3T1xvWr283hZG9v/V3/65N//vO/gnPXK/DG9dFP/pu/f+lLv/Hy5RBpMJ5cP2jcpJY+Dz1SllGErYKpKoFwYFEFEcml2a8ACEgMuYJeeubKZDbO/RBFDWntxKbOxjRYJsodYhNEY29ldWl/f+S12Tx1ftRsg51kVzb1ftMcgj8htSiPkI3poMg//z/87G/+jW/51jzzEfv7e+Mv/fIvesdv/NtYnZxNtwdLVO5nTRVOn8/kA8+E5oEYygARKcbAqpURjEYjRCTMQu0yvwQ4Yae3tyeqSg14Lw2ZonnpQXUp6M377jv72td+4Ute9PKHH7l3sILOn2rK0dOXHnv/+977+7//h5cvb4kuAw3BiYWDhgXi+ODqicHnfeHk3U8Q3mHqowk1GWaVVcq0ytgXqQxXtYTNzeKlL3WzMXifB/WemRldhg4ph8IpxlEDYmfXNu89f+Hk8sABejM0YOfUIgAU3s912lOyDADzED9VbVMfX2JBRxGLLSELEUXioix+VVV5nldVlb4kqliwRKJOSzL9ZwFT829d18gsZhIaM3OZDzECWEa+rsugktxJOZ2uny0cGwEQPx+97GygWQtNpsxErVMYVjOjlFEB2lxisqMjt9+VMk4F7Ri/aNAOQeoSyLk7nJti7I4j4RQtFSstZ+gKqgAAmkqpALCYEQEAOI+QpjsYdGVXOM46Tt+dROBb19B6E0KV5/fO4lH9dZ5cJuKLJiJc6t2a2xZrdRM/i8ZyUjXG42+mP1z8kVKlrz1XS2XUVvhZVTtClnVvHMt2IXHXiLoxBPPLa6gd9wnxePn1+afcXs5OQbfznUeoAi3ckERdUEAMcKwfNHlTbYHihds5LxJ0xWA48sd41zHNE1+7C4/oysCIgJaEWsg0KJACGQIRq+FoMj7cH5VlfefO/qXLN27e2j04GCv2icg5Whq682fWH7zv7L0XTm9uLBe5zzwjttInZtCIVmWzM6729vnqtj6zHZ/YgltTHxiII5qKcWq8jrEhIiQf0DzqyRwfWMJHNv7/jP1rtC1ZdhYGfnOutSL267zvua+8mXkzsyqzMqtKJVWVkFRIQhIWQhJuzLMRGBh0WwYbTKtbQEuAQQjTo40xtIe7Mdg8ujW63aahocG8jIZkUCMeUqlKRUn1yqzMysybeV/nvR8Rsdaac/aPFbHPPjeTMTp+3HvO3vvEjlgRMZ/f/D567lq6vqu7UzcdhVG9cs4A9d47ByrD5Uqd5Bhj6lKMseu6ZtUtl13bpKZrYkxd17VtWwLt/gkEe+/qURiNRpPJZDqd1nWYTEa7h3vOOSP2zjllVSPJk0r3Yw4HsVLnLAfpPnN+fMbb2YEsNBKdG4XZDTF1uQ3dgnKb0pyQYDlwzUSj0ch5L8iO1AeOORWdPlYjJtO+8rF5H/W6AMM9RjZMKfTl6Mji2buQITZ5dAZXe57VB7duvHvvXceOp6Ok0WKuQCtrKvPdm69d+75vePOd+5ULLWIgyd2JD+N5E72PkhtGp9qYLImi5abXAjNGAT0W2EIKzHFrdy9bVjRZ3b234nnTPHXzmYOtW7sf3f/41+fZaIuDGuHR/aYeOWNLsVucbv/Vv/jnvuvX/SDtfcerX3r1nXdOxzM5P3orp72v+/rbv/RLp9LcdARLQg4gE0193YscjIU7F3bffPti0Vw4vxvREYcbt1+AfkWMYCGpIvjlopqfP6q3pjF3bUd3n/06458jJcI1hIZCpBCQJ85rl4TGIbX7X3z152898w2n9++3K/7Yxz62tz86Pj5eXDQjf9DQWyr46Edf+Lv/n19whEwGE0dQ60TM1M+X81FVOxdS1zDz83f3fv4X6eJ8K+ccMAkcpttbpro/W/2G3/27PvKxO3fufODmzZujcXzzza/98hff+Lmf+39/+tOfffvNR7GpgImj50G5qijlY0f7rAtJi9Xbn60Obx9+4tc+/vk/r2HqhEWskr0oQUdGfA1y341rjeNPfOP2Th2PTjPGE2O4yrG4EVVOKK86lvD89Tsv3b5zbTLlmAzmyLzzRGTUz/1zVYFUVQ1G5ItObZETkZ5JCTpYTFEFkFJak02qqomuS3iqar1UAHU5BedUVY3NsmQBLOdsA2SmS62ZOXOqyiB2lHMSFSJK6CyltolhNIa6GOOkYueVewWiYWMClGytxGrWA6EJpnSZy/bME0QESMFL9eoefUm1mEgBYCVfpcGwsvUDwaa98gf6eWiY8tAi7hWSHJlRLyio/UDS8DAzyFmfApW0+PI0yuKVw1D0kp1rKYj1TETPCM2KUh3tS99uk6IYwyfRe1+sF6AvDfb0XOjHl66Wstlow5+rUm+VivRhKYhs+qM1bvTST21cn/J6rzlUlIQ2usJDEGHDl/XaZYWJl6h01ftk8fLU9EnaDNsAWqPXAx5iHBo+MSyH9Zej96NGVLQ2ntwj1hHWsD3x7hNbeRg2Iqwnq+TD327szHp5GbW29EME6ITaLp+dXTx48OjsdPnuO4/fuX88bzr4mtSIbTKhWzd3X3j+qbvPPLV/sD0e11WYOA4wp1nMTM2t2nxyvnp8nt85yl89cq895kcLFgY70ZjgRoDAxAAiZSJDDtC7Tp7bs5dv6t1dO9hy27MwG1MdOkfkHAvIMRei35xMJDbdql118/l8Pl8uFov5YnV+vrg4X50vm+WiWS6brs0iJiIiYmbOOedoVPvtndlsNtnd3trf37554zBmibvt9s50e7bjQmVippkpT6tpUre7qy8YjSyOqfmX78jZaOLNJelUQX6Mepqr7Wp6y+clLyToiqGeyXv4QEJtk1b1bCradN0qS+QCeDdsEnxfuZN6gOslT936ucpiE2JB9g6LtjpteLQ1rXcnSWR5dr61NYsmVT02SLNaaOD05gM/Tl/+h/9kWY+37t5y450Edtn7gJHK4uGR59LcrEETsmCeejIBY6KiiyBQrapZEr938+Do/OH5efeBj774n/1n/4fPfu6L3/9rvuXOB575lk/+iuvXb6zgqzRmo2s3dr3idH4xmWB5dvHBD3z8z/+FH/q9v+fvnditL/7iP/zEN37/qb11dhK+8zs/8d//3/+mC7eTKBcReQBFMcAUalCCH7OvEpwiTyd7eXncLmW8ZZBTc3e8Tyl23o8fPuzeefu1g2c+4quqbeSFDzwNrRhj86cwbzmCI3isK4+R0vhczvgLn/3CB1/85lOeCS29C95fe3T05r237z/73EfnlVssFnefeYmMJQmQYUEyjBLbDC4/On7QNI2k7EJ0xLduHjiXHz9cNvlsa7cm+FHtge6bfuUH/syP/28+84ufO5k/+rt/7yc/95nP/vIvffXNr104BOXDqrpbjTXlpfGcYLFjaKW8Eg3BanMPLj7/z29/86+u9z7Znf4b9besii0lpqSU4djrzPTmzjZ97Bt3jy7e8pUjzVXlHVgRurlsUf3C7vWXbty5vbMnGjWvLKAy8s5777IJsWOuCUpQUzEpolKXmVkhu+1NEBszp5wJ8N5nUzCbCLGxcZIr+YOqwjET5ZzJO4kiOZbX1STlqKqmYGbNAqa2bVJKdVWFELJI0Y8os0+q2rUpw0yZJDoSQG2TwMExTKEFfGoGHSJINWAYB0JPAlGagMWD9mmJlFhhMMrFkBp6bdySENNApn9lMGZI8gYsFfW4JZQWo/ZemNB3HI0Ug8hub3152KFRSQ9K6EBFQcL60iipgamvSUEVvRjiZaZtZmAMmNLLLBNkl74bhf7KCndIEVczNdoY4dkYuHCXNBmqhKukGVfWYV1t7luzG6WCTWSxEfSS6w4lBLz0xKrrtHj9HeXPiS8RUpve2r2feysf8CZ9hWNQhxqqFuwwXPthX+uCxvvsbk10vuFxafPPi0bye46C6T0BwvseKw2LqCKgBDhJWK66s4vu/PTi4f3H9x+cPHp83rRJhZgVnGdb4+vXt5+7e+vZu3cOrx9Mp9NQFxFciESY5ZxXbT5b5bN58+bj0Vfu6+sn9LirOuEyByTqFcbIZJk4kA9meWzt1ggvX+fnbtgLh921qZ9Ox+PxqApGSFkV5sk5NbKcRaRr02q5vFiczS9WJ6fz09OLo5Ozx0dnx0dn5+fLi2VuVl3XxZJI5az9LKNpCC54eO/qyl/b375+4+D2rcMXX7hz+6nDFHdy6maTLaZQ+g7ZpdloSnpUGRw1olDSX3jr4gSzMPKqIec09iOb7GvXhOkNSnNOeeSyc+wrNlJQVkspI0sX08pMicmUCpGdbRC+XLkovRYFNrwvExETkDlKUwU5XU5arba3x9V0dvHo1LGDdyGQByVV6VqJ2s0vzn/x5+XsKxVZc/FtWy9+o1EtRLPdg+yr5nTuai8R5LZ4FFzMKQgPA3oAzJQsQbI4KCYvf+QDNw5HITPbxY1r0zjf/9t/5w2lf/p/dn/r2uzwlY9vf/ITz7703EfDeKuebX3TJz/64L7s7s2++Pq9/+Vv+l//ws9+7q/+1Xv/9J984du+/beB0ruPPvvKi99065n/64NH5GeValY1wIFDccIoIZdbAA1VePDw3vMvflBS01w0d597yocl80TkxCAOLmP29tv3Pvrx73htLim++/Ttp27ezudLAAnY9lhlc0DnPLQ8mLZ/etxNJjOiY1g3Hd1SXkG3Hzx48MqHP0bkk8Tbt14oHT0EEBPEM5tqy57fffBO17XMTuFBo2fu3JbuzURNyhYmuwDvbY8gN44vdv+LP/ej/+Dvf+6tdx+dn0XYlgv71egG2Cwmc5LyhVnX6/ggghpPdQopGVVuFrt3j774b66//Jsf/YuvdJbJ3TRvSA13nl1inrVp9dGP3RxVFxfnjVW7GpJy7RY8y/jwnRduHRzc2tn2Wbp0wbCqqoiIHalZ0qyqjguKlkiNXG9nhknf3ub06sjoCZwAiAgcO19opyznvFkVBCCmVai6nFLOPoQulmZQwUBpSkkkFfkyURg0xRxTKyKSY1VVYDJxpbyqCuaqy5ZA7EdVHYuT2UyGQCTgHjPRC8ANCSoGHsDBlvagVGDoVw4jBiKXpnDtILk0G7WHBL/HeK47nDagZLk/MFYzo5JFY+B2hJFj5f7QiMykD3dIqR/zNxrIKfsxUXJkRR3RChTM4IgVvV43GcA9sXSvmoONzK3P9+yyFi0l5zKYlgocDGuJpw0m5341er3PdVn5iUXYbI+uc8XNd0kHdZ3hY1eYsIY9DPfPxovD4ZeXPXEZXlpXofkJy1m6VusSNA2nREXEdY2Ue3IrnG3kcMlggiENeuJkyv/rj11WKTdWgeAIPYfwe77ryq60RCp905iKFAxJK5K71WI1706PT+/ff3h0tGiaDIAswzCdVXdu7d597qnnnrtz4/BgOp1W1YhcEO0MEDFJuenifCVHC3tw2n7lobz2CA+aUUMKZBZSY3iCZqYMFZgzVS/x2iy9cDB+/lZ7e9cOtvzuxNW1sWtEVUwIQayoFWrOuWva87PF8fHpo4cnDx+dvnP/6Ojo4ujk4vR03qyiChtpXdfj8bSqKuYikyMi0mYsl/N2EYP3jXNn54u333n81d17p4/PX/rQc217Y38x3tlebs12R6ORQcGi1szGwdRmaXX3cKulVers5x/YsqkzjchILIQw1npquuPHM8crJnXexlVgBkgM3appvVNDIhNT32MW3reMsfHzuvKMAZJH7BIUpMp8utpP8G5ck9pqsRzXIyGzjCo4M9IUx7U/PVtIczEdq6yOu8/97EmDvU9849hXfm/a5EZzo+AyseIn+2bGqBgKFQZUs6qYdNCkOnGzyY/84Z+4c61++cXD7/l132SeBM147xl0t5LYg+Xy0U+f/PRPPYJ9JvhpwqM//Z/+xh/6I3/oF37xzf296dtfm/+ZP/PHfuZ//qP/00+99QO/7xefeeYDX/3yL96+8aH/5A/+R3/0j/xlunjJTQ5H9cT5OsMEYmSGpKohmkNOcfq5z3ztwx/l0TiY5g9+4EPb23SSFLDga1MNW9f/H//DP/tNv/H3sAXTsLdz+3f8+9/3X/7Zv7d149e18VEQbxSUsnekUo8xXeDd608fCnEYdaNww1Ua6Rh092J5r65r770x7e/vTres6QhgQwfLRgx0JqOTE1xcLAFro1zMm9t3tsE1kSwuxqrLUOlsdge1+5c/t/zZn/oKnMHdrWbeEHNSgaBLRCHGFaDFiFvOhaFBLEFbWI6rjHDYPvri6eGt2Yd+Q/ryP6TYaH1Ds5oyudvaLALPv/Hj13Lz5qS+xiE3bUDmF/fuft3tZ/d2xpaSLi7AFOoaTBkOxsEK/JEVPQUVmbqigttz0Nq6QFq8bzFlPZixsDajCFuBiHLOzLw5B6yELqfyVpZUnrtc6k/MOUciUs05a9mnmcTYFcnEGKPCwN6BhdA2uj3eFlAyEGs91jJKZVcNY9GLKUfXV0nXKd8loNaZGXjQkL581obfDIAS08ACUVDLpYerTFdaRZflSu7jY+p7jn0c0+vD2pAQY/Bu5WfACv4GBiiRG2iY3boMukbRDhiRUp0s3UMm0tJrHhqPZn3ueNmU7H8dhAMK4GjoyPZ0HP03KcFY6TIiKTspw0DcKzqYEYiHFjFdFvGw2ebeuC42AJUur0LhZeyz8yv+zoYa8jqG6AsaNCQihlJy72lGYCZPBgQYvJvvT27jbPrASmWINC89v6oODez33DeXNUlbU2Ku6w4A6JIlB4M645XeMLEBRbZi42yfoIbu4QYiqpBs0mlqVouzi7PzGKUUUqoK0+no8NrWC3efunv3zs0bh9vb23VdO0cM1ZwF3MbcNOls3p4u9d0LvHMU3z6Ti64WJaNMBFCGwYEtA2RgZyIe+XDcffDQXrmZb83s2rTanozGlWdW0wwQYUTOcs4p5a7rlqvV6en8wf3je+8+uvfW8f0Hj999eLpcJREJnq/t7e/t7m7thr29ne2tWVUzM6oq5Jzbtr2Yr+bz+ePHp+/eP46dGaqY8fh49a8++6WHp82jo7Pnn79269butf20u7sdRjR2gYPGFKoa21ZL6p7acvn2KkX93MP5Be06chKzI1AdTCfV7Bq44ZSrmkdjF4KILXJeEnnVFBy0VPbYmRW+nitSble3y2IgG0q53sRngMkrVSfLfT/acnXdLM9cHbRLPBkJI2chCt45jV1uTuvd29HfSdvHdfOwe+dzq+lk+8VvOH/9C8uHr1v7uKtD5WZmtXpv9ThgbGZcoCkwkmQSoQJpNR68dn/x6hfi//zPP/8X//qnEYxnzzWdIM3hAfJwh+zGNHKEZsYf/vE/+VPf+l3fdevOR9qLuWO0sv3X/sa//62f+K//1I/+zF/7fz3/wgde/uKXPvdNH//UX/rvtv/L/+PfePW1LyeaQqfAGGHmR2PQWLOiydUMiNe+/IUj72uzqUh86tm7eweTkzNxHEyrlKKfXfv05+597rOfv/OB504e69sPz//gH/jRx++kn/gb/xj5wAhqLRwamYCb5fnuC3fb3/SbfsvjB4+DH9043Pm5X/gfL063nd95862vVD44HkNkVPsPfvDw85/Pjsei2gNOqWZXrRb06OHRZDIxk+VyXtWeqRHTpr33rZ/6vq+8+dnf/8N/HPRSvdPCPZdxkro2JkHKsC54E6vAxDQRZciKXDZkR14tAESZqILnc9g41pPFmz93/dt+G8vW0dv/ipSNucMJh1m7fPvjH33m5p47uuC0ChNavTR59mPPvXj74KbY0pbz8XgcRjMjiBkze8CpquNS1y1o01IEjpLZ9zlDmdwdjBI2kFayLpgxM+klDMXM4HgNYlGz2HUhBNHcNA0zm0lWUVXHQU3ZKMY2S0wpBVcppG1Xk/HYzKWUybH3DOWkieFyzlFlKWkUFOHcJMMPlJO9SS/zRsQgAvcA4HU7c6DytYIxUlLSwl1FROV3M1tz7hYRJxS8cKm/M63JK3qGyN5JDDOmxEXtoCeDvMpsta5xrh127+QG2i4iP3yCLjFN1rv0rAXOrQoQuGctICKQlbb3xsle8b0bftT6QaPNTnBf4u47DIX8yi5TgvWi9X/QDx7ZMP50Rd2gxBDgKxljWRtHpEPirD3Bp6mZaiEMNzOxotjab2Il8unX1jN6Qg4qnMYYeDf132Y2AcAPvYC+Pr52+H7wndQPn/Q+3fKVv980yuuz0n4Eu8cionjfIcToE266shN6P/OuqqCh0MSkQtz3xaWsOkFYM8GYUaBJ7HQ6Ht24vn/zxvWnbl+/fu1gZ2u7jPFALafWhJq2m6+6ZaenZ92DOd6d88Nz13TBVCtTaG0Epaypcxa8ITOrMrHO6vTsNXzwpt7cOb89q7emeVw3xpxUYImNmUPMPrZxtWoXy+b09PzevUevfvXeG2+88+DRyXIVo2IyGV3b27l5uP3s7cMbh/u7e7PpdDIeVVXFBDBzyqqK2M3PzufzRXr0ePnWW0df/Mqbpxer6XR2tuw+/8U3jo6Ozs5vvzi/tbi5vHn7+u7eRCd1sF1mdjTPjka77S7GuhK6Ludn+fVumcRDjTyZZ1+NXd7hdOapG08xmfrxhKvQhbpz7ERlQNAzketZV+WyEVA2B4JBr9KlXf5LAvZmJDZadbtbs11f5ebBGSxMRqMWBuedc3Be2thJQy7Hajy7fhurve7IufZx94WffXN5wl2sHr4tfpGpMu+YfZW91oHrkZkwMzlmciICzVDzabXywPiBvxYo7eWGyU61A+cjq3YsdsHFZOesHc1D9i6O3iV/94/+of/8H/zU/+1rZ1qNF4/Odj72oe/64T/8S3/uv/j8f/A7/+Zf+ivf923f/vHP/+Lbd268+Jd/4j+998bDr75279UvPTg7iaJe1bKIEvamL7774K3P/Dw9evhOGC05IEkmu+U9w0DekwYfkDmg/uAf++M/9o9+6u9E6e6fPHT3Z3/+P//R3/G7fvU/+Mlffvv1tyvXdUIPTy6W88X12Y0f+eN//P7JxXJFHPP+gfu7f/ufoX2aZ6u334hdq213oYLUprt3b33mF058vQ8TwGBiaqFGu2jZYXtnNn98UY2m1w9eVPlpX+29/uq9r3zxx/7kn/o7Tf4V4SA0i8xKiil8hIBHE7OUsiEAunQUCErOGzKgIgIjowi3a7mJRC6chmZkubr/pc8+993fd/Z3FrJ6xyHrchWw3VD7Dd9+953u3Xy28+Fr1z/+zK96andEmrS5GNWZtmbOeSgHJWLzgVTFXNLEwnAEFzygYppVCGAwszNb00EMgOdB2mjQ9co5Z++9977runJP5lyEUvvbtQwBt12Tcwa06zqFFRcuJDBWy13XZekAhfNN0+ScnXNdbHLSyXQn5yxRO+Sd2SSnlHJcZtnemY0mWedKdqUETQwuzq8Q+lIheLykPSpZqMEY1nMbF0rPPqkBNhrYjD6plB72SwwTGER7EQXmEpSAmQwZ7DZSVVAB8DL3dJb9Ma5RSUqGPp4moAQIxbcxmHQQJiIlNh3eAoy5r4EXj1Z8WulPDz6yHIO8f7dxY6ONpiessFGyWd+yLctF/Y8EM6Wh/WAb6en//1uf7w4oaKXNIOHJrffyGzVgMzMlxxsCUMO7mz3gSycIAPB9D28oW6NA18xEZR1gWkm6CSZ0BcIFDGxWhEI/1m8ldOICsKKNqtETR1x20t8o770CRFj3QswYZtZPDXki5VjXUo+6vV0/23aruJyMwng8Ojw8ODw8fObpp6/fvDHenoXJKIQANTPXtblJadW0i1U+Ope3jrtHS3e0QEQVRhgZOC1ZuMmsyTN7QcoSPKFCs+vjB/fopX27NcW1qZ9MELyDOjNKMXpfKVnbtjHqxaK5OG/PTs6/9vrXvvClN15/++T4IprSeFTd2Bvdffr6M3du3Lh57eDaznQ6nk5GVVWFENg5ZmZCkQWMcXZw7fp8Pj+8dnH79uSpp7f+1b/+wv135zwapxTfffC465qL8/alF1NMspxvHVy/vrU9H4+cByqnW1Jr3aZd2Vf/8TuGN46/ugh5Mk1wI7dbT5gQvcWxNKNxO55Uo1n2I4Fue06eK83ZDMwwyYBR5nXRZb0lFTPjwlFJvXypDrxrjl1LnXNkTWi1mtyo8ejUaGvspZNcVSMFLWO3ZU7Zlm1DySpLcXXOzYXnHaXOwn16+xcgIaKz1JJlWCXOlnOpbBaR6tGWEHsOzhk7MwoxawyTUGWLN7VLxGNXLTWOwEv1E7JElaoyo4axOjIl6vJoa/9f/uuf++/+wn/zH/3HP/KZV1/b25s+fFv+9J/4j3/pl//UP/rC3u/8LX/lN/+Wj/17v+FT0xqn3fTu3Wee++DdX/PrMR3Vk3q0P5157wEdbc9++u/99e//bT8tvLWdtuddx3Q6z7tjGtVNpbsk2YiMREc7t/7Na/l3/47/8L/6r/7CN7z0sTfufe1n/s0bNw+e+8Hf+aK3tnUhpbRcNsv5QjQ9fPSue+yvXzt86aMf/Ct//S//rb/5S5P9b8l6/wuvLapx+6EPvMjiPvSRZ565+wr83w90LQuxJ2Rn7FQ6op1//s8//Vt/y6+5sVMjPXztja8AaRSe/4M/8rcgXM++w89iu2rY7Wp1gQTkCuigGVaDBVC4SqziMDMiQ0S+gCzKB5iWqgwSmIpcWJjg9PjBm5+5/anvfPt/+h+kvW/TO4uvvf7KK7eecu7W2c1v+ORHnto/CKqy6upRhSmBKBAVnt9EwsSmzFb0RYkcy8DKDLPgKhFRmKmgtzDK7FQldYlYCusAwZmSZHMuxBgLaloKbquINg4lNslJe7ZK1TLlmTMHV2L8mFqTrBAjxJi7dF752qtTAcyryXy19D60XVf7nUWj0doLsfxYnn3FG7VgIzbSy3xFtFB8FX1GqHIhxyJg0CdQMgMRijYhl0SoVlUgi2Xm0oEFAQUOip49uVS0nScupEZqQ6uV+1auZzPFQCdNZr2InxYOfKBncBQFwCVZ3ih5Fxs/ODYQFEWeZ2CJ6C04F/asooWE0gUgNRUlM9Y+ebVSEU9XSBnNTBXqYEraUzBhgDqRgctcEta5LcwgRF7VtAeWKyBFFLlAmoiVuY9UqGThFPqsvQ8aqEDoMy7ZL0sWWvyVkjPLVsqARkKQHhjfDwFTUc4wA+AKqybI1MjglIh8oSjYPE0MDlFV/Xvbvf03F3qRvv4MG6Bc9J4PP/ED1vn0xrjROmpYb1e87Mafv+/xbOwWGIpODhRC2Jr6VROeunWta8356trh/mRWH17fObi2tbU1raux42AmomIS503TdO3pRffuUX54xu+cyHlLmWrnDcgOqNgRWVHkUCEgqbGm1c5Y7+zQMwfu1h7vbbvxxIfgmblvOKnGmFU1xnQxX80vlu/ce/zaV+99+bU337z3cNWIr+qtrcmzz9x8/vnbz945PDzY3dmezGaTUPFkNA6h8t4PIwZk6HtR7arb39s+Ph3XozDd2vNu/NnPfOm1N98JriLQ0fFZs5w37Xy1Wjz//B1VlbynO7NRFaAK4+mk7rp2ZyrXdppbe3occWKtC7Uj8lZ5G495PMV0PMp+LMyRkRz1DHabGL9+yK+fMLzSEeih9wUEQq5ESSWag8ZgE0MjFOL4GWmWTStjF7LkMB4pQUU9O83CLA4Us4pmdiQsyurqmmXHumhYwQQ5mqQcYZygMS8bgNWcG83EWAwFCO1DYFeTZHUul8Jlod0Dm05MGmin1JkkKraDDJAmPqh3v+uP/en//tf++u/+9m/6hEh79ujhvUeLj37g1j96LS9vff9//Zc++xM/8Wc/8ZHJr/6ej905uHV4++bB9RsqWC4lL1t11KX29sH4qee3Q3CPzi4WcnT32R1qJ4dV/cGPTn7xtTNn3ih7nhrFJr2zdXD3p/7Z177r1/zgH/rhX/3d3/GpVz72ynyVqA6r5A6ZmkZHXI9ImoZ3bx9WNeaLR3/yx/5Pf+Wv/Xw9+7ZVtyC7EePx3/r7f2O79g/vv/noL9u/+BcPiG7GDDhYcCYZzDE6H+78xf/2H/3lv/b/ZCfObbUrpvHtThb1eA9ultLSkji3Y0hsQcmACiQGJVgRCGDKYAVGTDODN78EPTI9ISTNidhb0QKmSLbKy0f0+u349XHr2Wfmv/xOPGkPHP3gv/Nt3/7RW89v3wwhtKulY8KkYmbV7Lx3Q0UshKpvYAEh+KIbv4mCMbAis1lJQ0uzJufs2cX+JlRTGix8b6gL9oqIupxIZaM9ihgjmJxzJesFUNc1gGyxfLv06VChQR93savqkC22sRNzIhpzJ5FciKuz5qI5RbjO47B3q5HmiNltfhcAM2XTdfVvMwMpvBXAwC1hNvwImPUcPOwKDM3MTA3GPfMz8Vo0qThI6pMeKuwk/XfppRVdm2IARK4XN1qXrAH82+3z8MNg37HuWhquegFbdy0vG6tXqs2bO7/8Q1sTN13uSofJLBiUoCjrqDaoNKNnLNGewwPmSl9by6QVgMJwellCMCYGlVH+Td/0xCVbp3zrraxxjwsbuqI9tUWBNK0rwe+VIx7Wfy1i5C976db/u2l511ygGOrjT6ghXb0qV341CMGv19eudIUvD33Y1pjG99uV2ZAlXxbBmX3loOPxbJpuXp/C5GLe1RXfuH5w7ebBzu5kNKoq7xlIqUs5dknP56vji/boQl+/H++fhfMVZ66qmlOKzuDI9+FSIIhvoxjMEya+e3rbXrzGz+25W9the8LeqZml1JlqKYTmnJer7uJ8cXJydnYy/+IX3/j8F15/fN622aq6unlt98UXbt997uk7Tx3u7k13tqbTST0Z1yG4igJ7t1ED0MJFI4FUkgPt7c68s8miC3y79jadVV/40qsi3rlq2abP//Ib88Vq2aTcnLdt23XX9vd3q+Ac1LGOnE69HUzt7rXqrA3d3MR7R+RNHQUf/Ij9uKKqjsFH51Jp+6AYs/U90F/NJyRWeimSnrT0croRRmWmovMikecuf4BmbvnOkrj1jo09vLeUzcwzWxYeMRGxr2O3rOrAbgsTs87npTdbkRGEYBkakSOYgGzSWGbJmdR0NLHKs3dkcI7L42gcqAach3POBWfbuYsijeWl5SWogyWybCZkGfVpp4ncB777e/7Ixz5693xJi2br7BG9azdmz3zA2Xz7I99wfnrws59++6f/2T+Gu7+9N7t5c/f24dbdp2++9OLdF158bu9ge5LPf+4XmjyevvHQ/c2//ZPP3306dunW7WvJ7YK1qnabdJo1KY254i6Ru3HzeLnzh3/4Zw4P/vHLH7pZjycKcz53ORVSVXbivEHz/KJ54/W3NN6tZi91WMDU/MLZy3/6j32a0SF0Ksxhh/xUC0wmGrmpOcEo5dz60UxlJyfP5mlEsDppx1o5qpSWUBJzCK1DTSjTJgUmI0QGU9JKSY0XgAfteN41kFpFesLOiWYQSzb1raVH7Hbn+Tx86Y29lz8p7977On/+Qz/8G//db75hEbqKFiNyh9oTEbFUzJVzRiwiRMaDIxRFAS8VYg3bGPlwHNTyhhA4A8beueDNjJwz6zmG2PVtQiUUGqviYlUF1fCk6eC3BuvEzFliGcdPImoqIqrGoGW3mtRV7BKRdonaLroqtG3LntJpOj6/0Nl41Jzf+PB475biITQUA3cplUPIPZsiWcFqDyK+TzZ3Lsu/l/8VmmMGmakSGCaAo17p6JJUf+1x35vJ0FCiJaJNlcPyCPdsHwx6v57lRk2V+sYqXTpUXLqAIhYAHoaySxL8xDmuhRmGeixZASEzzEyltI2tVL/VUK5q+QalMj2tYCdmhS7aILCkSLAMEpiBla/MIBUj1rcEaID3bqxRP9+8Ph01k1IgGTzYugtnYKUnGUUKV8h6//3PVyUOn1hMIvIb87jlm/uOdFalq8zOdmWhr+zuva/34Q+yp2AbH9v8YeOv+L17eN+vUFXrp7pLtYa8G09nKUl0flwfQxW7u7uz6XYIAYCqptTF1LRNt2zp+KR580iPL+T+iZ5FjfBMqkiiUaJz3ojApLWvuGYyzTlNXXtrh5+/xk/v5sOZbI15FBwziSSVVAbSRXi+aC/Ol8fH50ePT774hde/9Orbj09WCTwaV7ev77384nMvffDWjRvXdvdm09loNhmP6roqMxJZTa0H/g3YNDOD6WxSx5hG5nlrGhx5h8rfmozDpKJ/86WvNU1iF8D+a28+TEmkO3whWko5x3Swt1UFV26akXfb4/rGtnv6Wn2c8xnBsWOTkctjTSMWH1Lw0TthEMhM+1inQBKLOnZ/Sz05icTve+3KZ4Q8LAs6oq3cSdJuXI+kjcFXkrIqHJypgclVFWdf1+N2rmIMP/FjpnoEv2XVQrrK0op4zKlRyYVuQzVjdZIlmamlqRtvYTTK5BVwjk3JmDhU5E3AIEcgQ4foUQaHlE172ChjinYm/oRH49Pzaz/503A7T+tOPdrZrrfJ9Ai5bl1bHUx89TFZHdZNs1g8/sqXH37llx/C3gT+OcjBMdtIxx/xtz/S+OqHfuwraP+/mSZqj53dHB1ea7rMfM25VaF60KCZnN8ZTXa+/vgi/8zPLSALBzgdxfom105lCcsk0eKCXDse38pjjXqC7Ou6jjEJzur9p8gk5RHRCawjZc1GjomSaQNTaHA2Me3MVuSiZgJPQZm4Us2aF1QH9k5iDFxLBnEFqEFhAlJYBqAI0AX0DHQCd03cLnGA34dBZQ5dwhIxGSJcIswrablV/+idH/jmu3/gN25/4NZzj07fnY4IoMDBjwJ7B9I6VE6hOXPFzA5l2kYJ5FDQeWxsyszExVyzMQMmiaqqUtUk5rxzzEbmqpBzdiAzS9qzWxTaZ2IqxHMluE8pYdbfqM65NYmx9774XZWS+5aqDzN7swTDuC4fQJKcs6hqalPKurjoumyzcXvxePvUPfpd3/2h/Ogt+MRuXNLQy+fCsvUhbOlulqhioFB2Ay/W8CiVuk1PasjE5kAwUZATUgIYCrh1Vre2z2u/YoM/6H0nUz8tTQBt8Nb1Zen+AN7rud9nG7JUlHovQIMfKY1ZrDFUZmZg650xFZCwDTrIQ+w++D0urFM6yEUooApRqCIPFIoClFzTyldwUdzIQCJkIgUzQelSy3id8V+mue8ToPQQsL5bOhBg6RAikClJ4QW5Wq9d/7qOCst7MFlHPE+YR/T9dXiogXA5RUI95sr1FFRPulV9Ig0aSKjX7QJ+ohZB63PrudaeOG7bqIe877rYxg6HyLd8jwEg7yaTiSIZ5FbYZ79b1yGEQOxLkqqam3Z1fhFPz/jxUff2mT9ZxFa4ClRRjtblbD7UsZNC98ROHcNBp144yO1xunNt/Ow12t+xrZmvai4XxzTFGNmRmS1X3enJ4uysefjw6PVX3/ylL75+ciHMbhb4zo3tV15+5vnnnz48nB4czGaz8WhcjapAZKLJYkFQEG2U98vK5ZgA5JQJCM7NJpMQAiMzDqrArvKf+dyX2zayMbF7+96jnJYxu5w1ty3k2t7ejq9CVY9DZQjUJLmZ7GARlxfOcQg03+LlNCxG1FVOvFNimJFJT4d3ddn7js46qtu4mZzplctnZqakZsZOra4o3LNXTi7cxLNaICITybGIkpaQ3LKYr0fi2LFjY0nRnKcw5rHPEKZrxkvwCH6F1JrEwh9E1FkyXRjFBilT3kY1KhhHZyB2xlTaPNp5EaVgRKo8YpgCnL2Kg3ViGbSkzKLJQjcajVt+F90kOXEn++2UNUSm6ZbMzkcJ4SDJkY1nzouziWOTrGCn5lBNnA9p/iZNx5Mbtyi/6LiFzW3Bic/dFNIogavRTCQR1YxTxnjVdW5sqJn5mmUHDqMQVXOOnswckWWfO99m1pAh15hc1y182IK4rj2FdyQNcyeaghtJ0S8vpJzJXKWalgB7NxUR7yhLa05N4YIX7SyViC+bVMUmoffBCRqNPEGJzSRDGkI0a83m5nbhJ8wTbZpqPIvLE2ZWJVIKucntqX988Vt/xe4f/o0fdfl8fnK2PXIVap2xiECFDJ44sAP3WFPnnDHBVA3MgYFMjiiqqkkP+uVSqzaQYzB5H0SEnWdHKbU9ZpV7It5SN84SAchQQSwcc0+awqEeW7LqnLOYFuW70jk2hYhpFkEnGTnDiNpuLgQxTh04TFfN49de77amr/7vfvxbRuk+HJk7BC2e5K5RA2vvo3oKDgHQ8yPopa3rD0/F1tZcBkNMjmAFUmpUJA0vHz28ZzPbqHg/8RYp9Er2vOmt37uf3t5iEAVQAylpPxHUlxDKSQ2sFWxQtX6YqWT/tmnJrfe+RgDEYKamfVPbSouo8Nyo5V4cqWDEYUXHYu2rXSZkgxCZ40IMlAtBz+blJmIaopL1ygAb7q/8elXit+S+G6LA9sTnN7d+tS/x6MBQXS7bcFMUeWbrS8TYIAIpy+X64sCVDJoN+n6F/s1XBIV/jYgIhjIV0FeNhtVYo6OtJyfbiPuutuU3gwtmNiZTJaP17IFjU6LxaCsnZ1aFegZPKkvGNKWUkqy6dj6Px+fy8BiPjvOjqE1Mrq7qoHXgpGg6xCxMSEmJyAcya73ItKLtKb+wZ9f28v6EZiNX1wHGMUaG9egDwWrZnZ4tTs+W7947fvXVN77y2hvni6QIo9o9c3vnwx965oXnn7p2fXv/YGdne1ZVvkzZUx/B9ugBuuwlDEuq2nVd6TE753LOlfe729vMLJI+9OKd4Ogzn/vS2cXCuyqE+uHxSr/8NYIG9/RsNpltbdXTejSZkUVxYbyM+126PkrHp8KGiT8b04MRnYx8QySgrAIyNoIbtNgGQU8jIiaG6UZ3Y7gdrMxWbNwAa1a1TOZPnX/lc0evLN3qQKqzvKyddcvIBmIyI/IelpummWyN1IHh0DVOVqZZ2LIpTFztjUfmAPXwAamBJpAhGzRrnHNOJimniOkukUk0V404VKpmjrkKBJe75IJXOEZlZI7YKDIHpQp24hObzcyvVFdtZyEE0yrE82ZrRXTTt3W3rcnXwUZ5NZedqVUqK9LWxbhAapgyIUs3ClUY8W5s07K+qMKNxGeO98Gd2VSjjcaSUlcw/Kjmle2lbjmqx2oVpJKU2HPSiGVFHNmX/qUnvw2MFYK4qpxXWikm2Tqnu95p1s5ARFMgptyB4N3MVEU7qiCawR4qmcR0pabkS6wtpmOikVFnWcGVSjJ2XEDvFMAVXIaIFfkdDQzPujI7E+ngI3RH3QiBYyKqdgQZTCa5bc4+du3xn/3ffu+nPrV7cXLsdRRmgjwCa0VOSb2vnHMGUVVj4jpIyuYLsW5hxHPMvq6JxOeY1vx//Y3HVNejlJJz3qHYFuiwiUgBaRfXm4ZBysHU9kXmJ8xlj/mwLJph2k8Dx1KIjiWIF5EomZnP5hfEHGOkMEqZ7j84e+vdL0zC5Bu+5+YP/q6P+9XDNF9g2/yqMV8xX6Ueop5Kodc8GJiwChZaS/PS1ojZwgcia8IvG5gR+529Z2ykL+eWB7Igqjaymg1T2j/gPf3SoOKw+f6lc9o07/2/6JNTk8uSWA/LGpyHDo5ZjcUAQHTwypuuF6qqxV8rGUi15J1kStrne5ANrkqU6sGQ1LmiH+RAxErMcEZFuVDAjorQhZUlVjKQ6Vo1azPlK0n5muwKgxKwbvRbe3RVn7pfYUZw64Zd2dQKJdc6/eWrKz/ceATAk10ygFBvHvrKQH9VCNRPW74PVrlHKFwa5ifvb9Oy0ABowKZBtW9VYAOo1dfl388BE5H2apJ9X4fW9OsqDOe92972XZuA5F2glGLXZLHzZXNy3h6f69EZPTzH8UKa3IL9KCBLnIa6rtiTXazaqIbsDKxK3tLI5xuzcLjnru9hZ5amtY18pZKiJBMlVlUlcNN0Z+fLk+P5o8dnr7369ldeffNsmcysDnLr+vQDH3z6qWeu7x7MtnfGo7EnBzMxESHvnDNVVWHwZfe0tzUEJqjVdU1EbdsOEi7K3ldVmEyr2ze2STJMvvjFN45OV2ZGPDo6mb/55sPd3d3t/W7axNHMVLNTT8jeWW1xz6+2aU6at+0s0FHgU6IGVNinB3ybFXw9o0eLOOq1U0phnJ+4Oo7dFTM31DMcLPPyYfed7zbjsZ/nlMBe87JcNSKSPuxgSapZMyzlLp3d53QKHhuDKl/7aUJkcuLYUFPliIPmjsnUHDgjtaordGYijkBQqWohTwjiqdy3wjBPpgTnTZUcowrE3sSDXYit0UTdqeUIGzEjpY4lNHXNc4AvpNqTlb/wCw4Y1z7ZHodK6ho8E76An6ssHDrkmKVNktmdYbWXw+vB7UZe+UqhcPDtXMeTKahj9lCv3rhyAph4cwjsnUjujMcLM04JIF8iWCMGOIQqRpDbhVsi1xLOnATWsYY2Sybv2bx0khVMxmyqsbgzExgpqrpIhhMyXMGAiPNO8nr6sdBGMFEA1eRUIZBiW0egkdCSLAFLZCBH5/cyrdjtEJxibm0c6+oHvv87/uTv/s2zaXP26GI226soqF1Y8LVFK2JeDCUl59g7KQzj3hGzMpXzJfbMnoiQ4AECqSYRKeVc7xwzm6hJIcgQYhNJpJJyT2IlmlJOZRhpbdOIqFcb3OQVKFm3ieScYptzVtVoklJKXVdGmdQkxpg0tV0OgTNFzS4pv/PWvVW7eOGl577v13/q5V+xuz3l5tG9kctVqNAlqrZBzdqy9cawR+Rk9NXjtV+UkomXpmoZHi2TKABgcukDiEpEUqz8Zhe5t8ZlIIlo6Hle5XtS6/msBmTHkAUNRWyzJ13FOgdbY44AgpZvJ5N+WBH9tGtJSbmvrxtEYUJKJgNq2sxE1chUi96qqqkW3iuVQuq4DuZ1aDz3nmztY0qMwQKBIzCBHZND0SJkKyDxIfVHKUc7ssJSUvDp1LuVzcT2MglU1TzoMqiqDTjmQTCj/yxZ/wpvwKSocIEQOZBSrxOMq9v6u3xZU9ug1uxtK/dNCSthGw1sZXhy66vsZlQ4XC4Jr42IHHGGrh8DGoI47UcNnuwfv7cEPXyA1hNazGwEqJUQ2MGxY0KHmlSUzSoOsV1EocW8OT5uHpzog3M8XtIisQf5kU/ZvPPZ1JlNR95gRydLyxVRUDGitDX1t7b94Q5t74TZGFsTF7yl2KgMhNjETbM6Ojq5uGgfPzp/42v3X/vq2xcXi+QnNcvtG/svvfTsnWdu71/f3zs8GI+8D4HIrBTPNWfN5Chb9rmUFS4tRcn0q7oKIYwn9Q5td10i4hgjEdXj8WQyvXGYbl+/8fRTd+48dfdff/qXvvb2w+C8WHV0unjr/uOdw73Z3tZkMqpIK55k7WBLSxcjO972R6ar7bohj4ojcSoCz+wKQa1mIybm/go6k6wGkGwy//W3qRlIkwKAg615z80MCuPWyQuvN896CnWSld9ytJS28iFlBRGYWLL5AE9e2pxNHbHkJVZHoJGxs+QjiVTJhTHUqxBRDWZiTwTybNZBE0GAbLnTbmlmRvuZBCTkK2I2E3LwXBXePCKCZFhgDcidSlA3Fupg2VslbVZt4VRpibzytB1XTbR6rCrbI5aZA7JPPB4TQQMLKWmwLkhqUS1stfKe86pDeKDdSFW4Ps25ArbAK19XzVLgJNRTVZa4rKrasjlvEFazLOJnVVwRO4O2LqjGZCKeNeecXYPgTFcukdrSrBIE5zPFwA4SRchQe6BTVXJjH+tsySj3xVsRwJg27BmSJIIK+axwxT2UB42pMhbSZJSBjpjJgmJiZoTMtjRb5Shh5i3HHBcVnX7qwx/+sR/87b/qo9eO5tGWJ3sHt6HmfU60PRXqAoIQKeDYGAVvRcmYCKWsRVCY855DBbCJoHR5SWHmnCtwdiKKbRdCyDGlLjqQikiMIM2Sc87Epqo5J6AElT2Yq2RlYuo2wEciUpg3JMWcc0xtzjmzxa6LXQu1lLqYUxMbEcnsl7HrYnN62pycrV548alf/eu+9fbTFWI+e/Cuwqbb04DabOGtW6VqNC6TtpvdOlAhC+5bOQYFDaXn3rVQP1lg678dgm8tiVBP/2Br7MW6wqxDXbRnYN4wKZdW3a6gr3HV+65/WB8cBmdvZkM6r4XXssCsrCj+susL0WtdQTOImiqbqQqs13YwUVXoWlnHoFbOx4Zi9tD22qgMb2bzAIhxWU1m1pLzg8BMcCBP5HSou5cJDc80aBn0A1fUu7zL5LOUbPuvsw3KDaWN9NgA6AYfxtoHo08o36+DvrHghYtNREru2hNxFPEpMyt3OTvHsDLTWQbCTFTfD2wFlC560WsucYet01ozs4J66dViHa2r5Gvy9MvdKjNv4gGNyZRLcGCqZMzEBEEpa5TygndqFnNyHKqKU2pAHRF54cdnx6suNyt69EgeNqMVIJLJqpAE1EjwsQXBnPeJraoqSUhdHld28xrd3uuub9O1Ub1dp9pXRK6LOXXRefbeJ5HF8uLsbH56sjg6Wr791oNXv/rWyencu1BLfPqZ6x988fYzTx/cPNzZ35qNQ+UdEZBzZpCticmzmVlyglJEMUKvLVCRI19V7BxzENjIB1PUdW1mRMjTSYxxujUNs5EbB3LaxcW9+6u6rpuoD++fPX1rfrFzsVXX3rmpz6lrpFukfEr59ProIuoSHMdYoczRIwMoIw1mxOSgvfSZ9Q0CMWNWBqAb9suDTEFkpn4oTqkpyHl2lpAcfeR+86FcP/CY1u1q2XUyYt9Vnntwv2dnWYiRc2YeCe34g70MqTvLaSWug1yw1po68uLIkYE5aO2yCnAQnAjVFhemCdZqp1wECid7QsTOM4MdKZwWxElVeQmmipxMMsGzmyi13nntNHcGLwRPppoynIu0dJGMH3fY8u0eRpx87esKmbKaMbN6xJV5AnkoMHY5LUGZohilzI1LDrrNnAkjbUvmgSwrIue8V+m4pCUMEHFgMXMjp5qBIJrJB+c55xasphWQUdJSGgEAiYLNU+GnAHmokIW+Cuhy4XxQEaDMVfaykiDAGjATmXFNkpkhLrN5TcJhJL5GUnKGnODgbAyQcIJ2yBFk7MceD+MCo/r0B77nV/3g937rt33Dy5a6R+fzsWe/fYNMzATKY08IVGOkVV88ISI1IzEmX4TmmR2ozL8LUQQgCp+jzxGkCoZz2hMk5kDolhciopKiRDOLkqVoP/kgGaIZIOecV8s5m3MgKpQ+InEzvpcUk+QuRTi0sZXYmVmTu6ZpnMHMVm23ik20pDDMF0cXq5O2u/b04Xd/3zc9c/dA0vKrX320P07TOrgKpitheJiZnzgzJUUEMi6p/Ugt0SAuVjJQvXm9sgABAABJREFUA/PANNcrJDiYqok6U+ohwGZmfoCIDBgrLca5z01LfZCU4QaiqKGfBCuEk6WGqBtQys20D0N7cl2RLpO20DJaWOSVlK3nzzLr5acAmGQMfr2kv0W8l4igxgZYhsEUqmKGcsZ9/GBEptyTRnFG4d4qM7BWsgBV08DWg8eVGcRqTM5Y2blSuCEqgC3TBEtEE6ZSwAYPNFDF7WIdr/SekYggphkmhDy0e8uSKLtMpfuP3KfC7IYwqSS9vFnHLfnuugJhJQe/vOvWJd6+BF3YQq8UfkthhnqeLdtsCbyfAy6evNfk6DEGl1/ghp/XNe31u1dr17CBh+zyCZF+wlvNbCBp6Qnc1uWCnAF2xGaapCMwZ7ezM23P5xPQeSuqnJBiyo5HLkuLBq3j7JSYqpCRkbsGiVIg7aZeD2bu5k51sI3xOIVx8K4CtOsa06I4TW3btk13dr58/Oji4aOzd+4dffX1e4tlW1cjALduHdy9e/OZOzcPru1uzcZ17dmpmUnqCeHWsIf+FFSBy+eMmStfeXZkxj0FLso4SCkZldkJ74OZjcf1bGt84+b+ix94+vj4Syk33vv54uKtt97a3a3qsYqulpNJynG+WKziXLhxPrJ04A5kV+b/hvtyXZgqnGol1h56HMwbJWiBrTENZmX8ntcdfWP/UJ9a0nLMtVmXY6pNU4QaBm2UIrNdBl/MhVTv1LvP3724ccuOzmR5xOfnohFJIcnUKBAFJscwghpXYKKcPZwnR5YFahpXRIxmYRSMABtZxcSeGRY8FXZWUahDVs0x58wo8ytKBskEzaYRkosApuTEXafkIxxi5GpUjWdQgYODR6gURpaJOEcHV5NVJJ25VIqJkgy6UGrBNbma2FsZnIU3jgQH9gYuhElE3sHImSvD+5oZaia+GqkqpDWN5hJpT0yBQaLA+ues0MQKzKBk8AYh9Eqa/V0EdWwSlV0wq8wIwSkSLHGqzDfVaJbbeRBGNUpdU4e9Lt9PjtntVS6IGesor1aWTiYVfvOv+c4f+u0/8I0futsuTx4eve1pvF1NLTeUhIi8874KYFaYwMLA+t7fLQyCKzpFCumhfMwmKF1YJidMjJK6OBhpjlmTxC7GKIW6WRMAsb4qJiLFqXtPMSYbZheLtJGohBBkg0xqFRcEdO3KREVylyIzy6rtFhfkoKqr2LVdOl8sm7Zbatze2/uV3/qNz774TMqL46NH27WNq0KHMTy+fSdRydQKMe5Gc5CG0y9bjw+yAsGkPvMbipWlOuoun8bhT61XyuvzzGLpiwBRmVLqhQJtSIPLFLzxMJhFpZI9GOQ1BebaCg9eubSdCKWvZABc+fnyjIbciQe7b4MFJ6K+5tz78gJLuvxbGc5B18V0MiuYVC7FagBUyKSJiEhJe1EmIrArfW4uRGDEUJICADcmGJnj3q5Rn15u5rg24FnWp7B+lzZex7pxvV4eyMaLl8Qd63/XhnRzObGx2RM94OLaCFhzUvZr2revLw9o01lu7G5wq0yXY1BDsAtgA8Z1pfSxkfheHpYNpZX1i9RHSloaJQAG73vZN3VgBRQde0Cq2kbXJlvni5Tq1Fa5qXV/gosmR4li4j1DRDpqTKTywTM7SyYuy9jFg4nd2uNb27yzxbOxC7WaSc6WU2dmIYSU0mK+nC9XR4/mZ6er1776zr13jtomikio/I3r+889f/PZZ65fO9za3qrHE1cFQi8vSkQkxkSkm1Ug6sOXdfwYRDTnSGpWO9UCVbBLlpaylHDEdfCjmra2ws3bW0/d2n7r3n3CKHX27rv39vcromXK+9PtXbPctPNldyG2BC2Yl6BUBNwKc04R0bJyvwMDVQBr7/RtjW1/4hYojQBFURdHjzoxmOnEdn8531Gfxhrm+aRLsSbFQN+jVM7JsQOIYKTzVsdB6xmPd934gOYHGh7K/Ehjt46+VFVZmciRhzdlZ7lGzgYhnyDZTBHbQrcLKtztI9RE3pHzjtjMlAXGrjLLjmNSX1NswczsLHrLDbKHRSZRU8tJZQkFC4LnrfHWKnflTBWMmgxGOgZ5KLN5MFkiI4YKNCMLNMEYaMFeXWA3Mk6gyoiNvSEQgpFj8BoRRMTErjTXe+JVVSZvmtiSUYJmUjHLxEMHrq+llTiocAijNzdmRWKutAcleR+cpMhe4CF6QX7qeIdTji50WNZu7B2v9Ayes+mougbidjXPK1iaia2uzdz3f8f3/Ie/+dd96mNft3pw7/itV6vJ1NNYurbt2nprC0RUZA+KBK8ZM5Vwrc8V0FsdcsQ+SKbC/ezYQRRwDIJnFJ61wsebJcUupaYwM4uIQmhQby3pl4iaYyOoWerRi0EtL1cLImLmnGNBNZZtGVuniLFLKeWcL5q5cy538aJdmEmnedG0Z4umFbp2/dYrL79weH0neL1//M5s5KZVxdbWpMRiQBGNH4yyqCYiT2qb+Ndiu6nI8vKVsiT6oaNhpmiQNLDBglP/5Beu4DXrE5splHqB3dIo5VLrgJKRrDHDfYa1do8la7aSVF59qofUtriT9UEyUNLnXv4BZaq2sED291jvd4vpJ+sregYYyRoGR9TLJJfQoCfhJLACTEWYuFB1mvVTkX1K6tZkFGBGGUxzECM2SAHCq4mVxi4MZNyPYl1K3246sis+qCervkQ74zIaKZtuvkg95cZlNXd9md+7PeGDaUDdq6ovl856C4w1qNUGMSaiS4guAGb/3iSYiGBMl9frEo9jA875yoc3DmtwuuVMWDc+2evZmxFIaNDKIJSAcb0Wapotc0XZLLf52Zu3Q9QqhFmub83M5YU0wipvnjbnEpwpg9VEYtsIJxeCcwSpHQ62+NY+3dx1e1NMalcxW05Njs5R0SlKKa2W3dHx+fn5/Pho8fa9+/fvHy8WrQKjER8eTp+7e3jn9s61a5OtWT0euSqwIefcLyMpnggvUGo0AwcWo3ARpKbJY4yzmpCzy4k0IeqfPjMyE5h4tuB1MvG3b+0fHz9uusghpC7OL86Wc7+a+WzqvHVx0aWzlBvRpWnn/AAkLJdgHTr1KIxSFR0gV2RERY0B66JTfwra/2HhfFEDF4Y2gpOtue75qtJFiu0citbUVdTroohBCxaCiZyycdhN8SIDHhSm1djtn9U+HId4fsFdpJREUj8ZT56MmbwPlZoTY+Ro3DnOsKTJkDotNyo5ZU+O4eHJ2/oWL7cZMYiJMqyCmeWa/FqnxYs2zCBSU4O2FkmWkKpS1OQYzqsBjs15rsZKzhuruqKfBvPgBBFCJivUu9ksI0XVRC4xj9RqUIY3JSX2Sq6EDMTOIP1RElvp/iEpKhR1SGKCMySAjJSH0BnkQYVsj/q8RgE4MgNlFP0cwAKECMFJXsCmzm1Ll7V6DHcIMVDVuQVC5elAs8iqofmjjHev7S6++RMf+uQrn/rOX/nyKy8c7NdbdHr+4LUvjaeTHCbLeZ7Uo52d2ruUyDsQ1MQMImqZiBxcUmPygwEkZRQx+cp5dq43MQaDEhl7r6rOOTLLqYtdm3OMsZWUlHJxouSYvHNEudBMOuaBoLiNsfjUQjAXUxJNIYTVarFZ6lstmhhbkWyk2XSZOu2065qYYhI9nS+arNvXbz399DPXbt+OJhddN0aajL33TCzOkWhbDdO2a2tGpCCDirk1wK1sChIr0zvrPAzFrpoDGwnhMiEtwOAhsDIZWCeHZ7D3xxhc65D7FKaMIREr+aMRkPvBP2CoiKoNqCu92hDdtFP94fSBDhcbrH22MAyqDlwBlyXd4hAEYGJw36ti40u3YsZE0gsTCwyFGnbohfVNWCUzOFxy3A7HV8rTKCUxUYAgZugVDVVgVJx4kSbqr1I/gENXy8J2ic2GiuUy26SqT7hgu/yUXmUWw1U3bOuacalUvyd1tYF0etOb0uAvaYBRucEe9Xtcf9PmvohcX9zbOKa1j11jsp5w25s7XO+T1h5m2PMlj0wpKFzeI9yHKYyc1FchayeZJmHr9v6N83ceeuqmVfDkKGeXm9plNbE55isxrUqDQaTrRNjRpMaNLdrfCfs7bjqlqnKOIDnmJEWdBXApxfnFar5oT08vjo9O3773+N13HrUJzHBk16/vPvv09Rs3tnd2x9tbk9m0rkMgkxyj9ZOOw419qRBW/G+BuYKIgvPMEFMAi0UCoHrZHTATkPbroKS9zZLK03RS7+1PD6/vPrh/7Njqip0piawuzkGJvHW5ie2FSIJmQAtDGa3x74T1E2d2+SgPl6qHiZk9iebrLyL1Q22F+A0AoAty2c3IaJVOJWmlnFWko4GClZmNnOOiN6fObhzgS49C7ty06lLKFVzYJs8hTGU+p/mcU0eUC8+qSQJGzo9qriMFyS1Fr9Igg1lFBSkmWhg5R0yOiMmC9t7XOwKTqaoRMzmYAzHUectEzsPEnBGPUEI7EjaYxtzouSpN9tgHF0bKjr1zgYm9IxJzyOWGd7AMyUAkqGECi7AWmtBPT0ZTASVib5bhalhl7OCY0EdGpsPkABGgjlg4w8jMFUkbA2AOlIslL39DYGMpTScrYZVaKXH3ZIdUciqFAH4LgMiK/YRtS+rzym8z9kgOmrMTxNdvXtfpTvruf+eFf/f7v/dDdw/v3Hi6ktxdnMWT7tHyTBzBqtTJKPiD/V0QMSGnLuSiBKgCsHfwzpiEuS9mMoHInCfH7BhEKorK9yBS0XJlIMompjnn3HXtcjWPcZVTKlpAANi7YketNKqAlFREzEhhqjmlmFQEmrrGzJbLeQlhs6T13ZvbZtFckEOUvFzOYxOJ6Hy+7LI2RtvX7zx/93k3rqPJou28r71zZMmyCBmYyDFcIIrM3JNDXem+GVQ2M2AygclgTUsXtAS4pTlVJm8EZQQCRrx5D1xp3hXzzcWwa+8giQg0VAr75i31qG/HQ+ZydTQWYLg+th7y4/6Q6ZK2oTdcAIwKx3R/DjTAyXqLARD1On7UI6C4qPOh3LUGaF8MNzOjYeRWuIgmMWSAqWv5QJF/NlbTdYdrUKj0RkzkTB07p8YopC1cit4FyMI26PnxUMZdJ5NrHrQnbFqPwLqaAa+9MS6brcMyFqNcGDUuM+H34cACICI0yBQxs2frMTcAFOVJJQM5coCsE/b1v5shZLkwQ+h35dUnbpfNV4ZfqRzD5h12hYK4XIbhFV3P6qyjxz4WIRdYVU28Nfrhl19enV1U4IrYAlaaeOyDbQeKxO2kOn8LdtakJjmYESywzkY43As3t2W2bbNJNR45cJeFWTIz+WokIl2XFvPm9Gwxv1g9fHTyzjv37z84b9vIzoUQDq/tPfv09cPD2d7udGd7PB4HR5RzNsnlLhJJG0Kka6aUUocRAhfGHyXOOdsQCZXRRlUlto11y6VgUGDkWYQdRsHPZv769a1mtSDj3Vk9qgwUu5h8ly1qm1cpdYoEwMFBYIXKjobiVm/EoTACr/EyT9w9V6Qxi1CzY8YTvHQKygoKmOTlom3PKLkMpSAx+Qq9lFXfLSYQHDPbWMJ41H3lzdknX4F6I6qMebqdqKbi7ZZzTW3f83CAOZNC326ugCHVGXk4LeE6cqudBxM7eGYjNnZUoEdDduCYyy6IwAx1DHPqPAMKDwgyQ2MvysWAZe1WJCM1hvfExkxkrM4oMNiDAjGbZqMEccZiOoa10ACKREY9xbGAlzA2C5Da/BgcoJU60yTEzOwLnwQA5hK290aZlIwcERkSKBTDOuA+jHpKYZS5UYDJHMwKsgSqXORU2ROcavSBgrdmESlVsbvw7og0ffLD+/+r3/5t3/srv+7O9SknlvO0Ol3NX3/cdnM2ret6vFtX451x8Lldem+qKcZI7IvdY8d0SW9YlpatSA84Ji55cD9VAaYyOLIm7SMVU9XYpBhzTG27XLbzlDvLwiBm8lVVhJBFVURiToA552NOAHddw0yL5UUSISLN0czadtV1HXmW1K1v4Pny9GJxnjSZWexSs2wXi0U32to5vH7zxu3x/mHjnEiqg2czVmUHhvOOgnPEAoCDZ1JHzCzMBiSDQKXonoJyTzJVnhcR9JJ3m5nxwIBYSoZakBkM66lvhhrVQN84PJVswwgJChdjX6KGcaH7MDNWWIENrSmu6ApKd50ZGoBBSqh/6nsorQCwohlcKN/FehH3vnbcn0IJCtcpHAjEA31875UBoDjUcuhm/a6YuJCf9El03/4tPxQwDNh8jweCMRgllwUTsTCblr42K7FaSVNo0L0q7d7iyQp3WH/iGKoX2Oix6tWwQ3u0OWE4sP6NYSrEBuEJYpTj7S/31dzycs35EilNRB6AK5rFhP70DFT8xxXsFRWmtyfagGvgnFxpIevaYdNGELfhjMtIAPEGIqlsmwGa9vLDG3EIrY++6EgboDG1wdfS0PPXPzDFaL48mvlKSVhapui8usmocqNxzXtheVDle2f54TIVzEVd1zvbfH3Pdsc6GfPYq6OkYkysRMy+67q2jatlN1+0pyeLh49O3rn34MHjI1VvpFUI169t3bq1c+Nwdnh9Z3d7vD2beEbOmUyVuZ95NRXJg88tt18xlP3EWGDHPhiSaI7WPw4GKaTwNMxnE5hYVcWBy1vZVHMitlHQve0q3ZiZ6u72dDxh+ERViLJIKkmiWjYqmp1sfUsahdazX89+K8aQyqNQwupyoe3qzVSAEqbAIC2y3omZeKoludjNOTGc79CNmMFc8nsiB/ZcKJAAJuc0+aeeWX35tXA29zsHdbRMEWAZjZyZkapnWTrrElsvfS0iMS60XZIJQUmlBN1EjtQMgnShlMkFoyozsYP5Ev9q/2QbksKsv/+NHUjZVQYPzWbOV5WwN5E+a4QALVB6rbVCEByMYA6uAFArs6jDM2qaSfpmUUHDEqtKgkVQMjNIBhksg7xxBedhgZwj9gD1MzMG0cLMbIy1kF25LkJwOkyf9LI0JOh1JoC+G0SEIqXO3ltMzgDYovZ1XqVWvvjc3XA4uTabzT7x0Y/9+l/70W948akJdhenR/PXjlWXGie7WzNxurV9vRpNBMlVNbrzLJFGrkvRCZNSqLjLyTw755mItC+ykakjzmbkiNgrl7wElyOFKJQHSqJICTmxaBPbdtXGtmvaZRs7lcQGIq+AMQksxaSwkiKXGzjGCKBpVuzQNHPZ3DS3MeZV3ARhPbo47rpOxJZtd3Sxqkaz7ZvP3nzp5fFkmslHM2NjH5RMoWKx3PsqQOhRu5ThK1/ua+pFcdQgqgbNICFctpxJFJStx69oP7/SFwhNqSdhJqISOhEUqgPFoK3Ta4VhwJeZWZ8B9e1nY/ZAidaEiApOsri7wesAfc+IAAhy/1AzDcHc5qZENBgALpgtKIgGHk1yBY6pOhQnejRZHyuYihGKqg8bbahrKMFBqYDiWc3UoYfomVmpJJdemw04JZj1Uzml/EEEQBwg5Ia6UDFN5b3yV8O/V7f3ZhfrzagQcQxZ0GXuS2UguIe9lBy+b1uVpvO6lbeRqFydxi5xwzqZvlRDomEuqFybNdUUlR7wUFXg96skEznTRFd9Z4kp1iu+8S8D652ZrJHShs1bpOx8fZ+VVvw6zTLrR7OIqA7Vcrl6+vADd67daU/Otutx5XyL1nVuy7Y9r/w4bc38tJpsuzt7o4c7k7w7T/PWmGg08nUt09DUo3EVHKtoFGZwVRk4CZpmuVyszs6XF+fN40fnb7397vHZOYwVaWtrsr09un1n7/bNnd3tsL3lZzNPVGpi4ohF8/oUyhUjoj50JbVC9Molawgm6pwHUzYxQJIRlYRGQWpKAiIwGDlmIiqlWCWIGpmOKre/M654v23b8cT7oEptIkm5ZFJ9MYNAVOpI2Lworscp9De9EZVgvLzbL7hevWPJqAw8cL+zQmBKZKamneMz6YRlhG34JoJ8G0akqVc9Dq4KZZ67IPul9WlU6dO3VkfH090DdcZGS0XlnI0qRzPy5KqAZadtlJiIxJAtteiWZhklGQcLl1IVTEQtwQw8hgUNVNXOkR8OHmamIpLNspkIimwSMcDE5plFxEidr5VSaaiamVlnQmZgJjV2PDJzAIMqYkfkFI6QidWQQOKoU3XmKtNsSoU6gMgRjUwzNMEU2hoR0Jo5olqN1Rjk4TyxL0g3WIUeo0l9iQTUl3D7UxqqGEMNr39RzYiJlNQRaZQMR1AeVTvNxde++ZM3/sT//sc+8qEXblZV2N2yrqWj2L57/8KOoxJJNeab1SGRZyQKW1s5W4pSyTGB2ZNq8sRCyvVUYdW4RtP2pdEyM1hI6xkbojJ9ddAxA8gihTKQjCyrtNG6jkyy5LZtV6tV265EI0HJHDGJU8o55RxjLEFY27Y2DKCKyGq1MiSRFFOXUuqajj3nnGPOTbtUVWC7LNB8mZpVe3w2p9Fkeuu5w+ee3z28Oc9xIVIRKjMSUVI4suDBSQnsnXMEZJAGR4EDc+oHTLnvtZupQYeC86W/J1FAB933kofoGh9EPRlnQUWUml+Zk+1prS7t+GD3hxvSAFBf0ev5Fdb0HaX0TFgDkqjcIdzP8hIXX8NUkl21vkjD7NGXMEqPWUuIakMaQVCFAVJGE6mMN1E/OUVFhmiTYLFU1tcwzMtCLqPk08RmYNBG023tusggsEHheGC8AEAkBrheALCwY7khxy5PysC6MbRGLw3h2ouU+1L7X7QnCdE18wTQr+Xlmm9W8rk3k7RRqd3cnvDH5UuplKCNre+OC9EQccPgSqpeMqSNvx/a9ZfLagA090xyQ+XArI/DgveFXQwg63v4BlDlyrwK1v9STxR6xcyratFfNFLHI5XsWbQQ2fmQJFYun1+k21t3X7r2Snt6QRB4caAqCQKENagfuTrlPJmEnSpNq/2xX2yH+UkcNabCq1D7MBrXbEYJBlBNcLqiFUmzWjaLZtl252erB49O3n1wfHY+jyoh8LSqblzbOryxff1wtrU92t3bruuRGknOSkJkOjCQycadNKzekAWCgzqR3GoTPfnAAwjK3qtJor1FdWbFqeZSWco5s3WVgw8WJora2GUOAJGqGFK5bAYQuVLhMoNjNjWQUR/iEBkxu74EZENmLGZSYoheCu3ygBgwVMwmjdex6SgGobpxy8nUxZVtZdqq5QS8zEIVKPvKkILzyo6r2vuaiFTEsmTTUKvFhnd34juP89HR7PAwi59oVHNkOh6H7H1HLhbZbTZVNg7gDNdQ27ASPGeKrF41mwOxWSakqLgITNyU9ScLjhlEprCMzCRCakowcSRgNSVmT+aNk0JADuRNMqQjVbBXKFO21EA4Z+FQkQuUhciZcxoUOffECewEARxgAkugRGSgYMZmAufIatISKAhJMotGES4wM9SZBeKKOZgR0KDAEQoJIVMpxJGjQm0wVLJAYgYN0iV4F8ai5+xN1UBqArhMBq5GzfzLP/y7vvXP/viP8mrVnF0wzePZ45w6F8VVgfM4rebTAJ5UjMBKNqpzIKtROXaxLhz5xW+yM5NsphZ7jhWiHlwDJg9m4sJlxWA4V4K8kid6dgIFQXK2mHLXmcY2rmLMy2bedqskHdSY0VnKUFbKSUoiKyLL5ZKDjzFqElf5tls1eSUaY2xjjCkl06xJu5jbts0Ss2LtgB+8e5Tr+uDFj1x/+m412TJibVOF3Kci7EEBpkAmtUDGqjAi7vHc5mAsBZkBAOLA7FiJmdVZQcvZRglaS6a+hlNcqUKXsSAC+nGl4aNMPZ7uiURqKB1qEdQp3pBAjsyGshkRmUmxQhlFzKFcE2elGY9+PAiKwWFTrx9fItR+ULfQi5tZLtqfg+ckg/h10jT0Bvt8s1hzRyZmJmUnzB4G01zmlYvjYzARGZfGNjNRHvZjUCrV7NLC3nCBRMYssIrBakaWGUowKbL1VBirSYmJCAZic/C6YY0vEwwioZL+94ZXIQpRUkdW8F6qIqZgs4IZMSmI5dJILM4bauZ5bb3XXnbTbJZmeN+KNvXry72+uvaelu2Vt67OjZVoRXvHYOu/LV/MzIP3vdxV+VffC7ZiAq6AsKzwwZgBCMlTLdnlTshRRTBKKRCac3n+1gdffvrl5uisCmLJvBIos6lCmXqpTO+4dm7kGdZ6PxnXdNZ0x83qPMZsybHUYds8M0xQxHjlPHbz84vlIl+cLx49Pnv0+HS5aI1pXIe6Dk/dPDi8tnuwP93f39majus6OMcgTX2TqUc809DedsQFoWRMzpELlXPB++ABFk6pi6lt2tQ3/BiEzcvW66+Zmck6ZOvloEVTyl22zjmrRp5SwWoZUBpRZSe0vqaXlQlmA6tYGcxVmOY8XCDeLI1wuZ2v1m3K3jRXSmoODHhSbSfe8SnxOK/UTlMYq2PTTr3kmJzzHqO6Hvm6KtMbpZlDmsUIPOmWp/X++HSxqHa2qQ4AUSLnnELZ+TAZERQhxMVyRA4KycFCTZhwseJGahmmKtYrGMJDlqkjNarMmJ2hgicXgvcgIhKYkVEGOWMHMZBX4hCCZSbprKfEd8reKEENlrVEmsLFirLacNWISvNYi1VU5goATNU7qIdlMlFTo1juE2Owqfb+SgBApRdDQwZlZQcwu0BmBFUb2LrJMLD6qBWehALBJSJOfuxSQjxlN1ET5ohcgc5rrbPfSYuf/fE/8AM/+if+aPvlz7oooQqofED23hsotTl3KZAP9SSEQMzmyLNBOigJkDSzrXkP2bMvnTKY9JlDuVXYmakAzI7J4FhR6Pkx1GNcVnWepY2WskmKEptmGXNslqvlatkDnglmENGs4q0y0xgjOZezJiPrckrSptYltKulpAZkXbNqYkNE0rXLLi5T6sxUNbZxfQPvvfzy4Z071fZOZ3QRExOz5yBEcChg4/UZEmCO4NiKaJ5Sn3mUbJSJlB3WebCCDeqGTHcwlZkYloufuzSVGDTQ+hLwVWvcS0xexdmUeGq9Z2aUKkdJffo5ERRW5L7PyUPDFgAgZq5UTKxnCb5sDl8JsntvlwcQ1pBIlLxwfeRXzcI68TWzvphL69bn0OlnX8qYQzGgTEIXKcFhcS53uhl59PWA8kY//k5Kqkx9vMPUd16s750NYzx0aZBJL9u95brlJ3BMZf2pcHVdLk6fLvbd6r7oRAOMPL8nd3piPdcl4fK6L3NXJS/qL87QWL8acFH/1lVNunUTcUikhuR6GG8y6y9t4eHU9QoO6VQRcl/Xtjd3jjVpBcDMKSdfV0mLs85m2i3zS8989KWnX7x4eOI0ssbKOxYTafqZVseOyDOzqIModCv4AJ2g2nG2V+Ek8qNucbE864SdVcbcSW6WbbeK86ZdzlfHx6vjo9OL87ZLCWSV99uz0cG1nevXZvsH072d8da0qiui4rYz2G2uuHK/lkiiRI5dAJgceyLyjrwzs1C7oIEaiq2o5BSTSCIOV68cl9thY31KsSFnSTmnhJQ5qmblXARGDGLAWpILAKxM/BKxidGa3Lv3uD1PJnTwvrz5IIGuXBoU4AgJVqyjoC6Os29tG/WpO9/VhbpnnU3MtyM7zymt1LmAKXalcqPxmCpPOUuKKAprTCYg9lR5cqOwjM3J6fSpA5AnNudcVoVj78ZEhBCiWu46AtgFDWMiyikXNBWIippeIV4HoCqaWlgw7xACAaYu9wgXsj6PZDavpkIEYmInjoFAUAaRqLKJFWViA4wkmSYjhmY1gcsIlZkx+zW7PUrZLZfGipErnBvOJMMSuC7lBSoGnASaTR0so5ciLaF1gjmQU2iB+5TCIQEERwNYr6/G9RNjZmaILBUAoTB32Uu2qlbYMzlepNU//bM//Pv+8B/7/fNP/8x0ssc1I6XMhVGEupzbrrFEk2pSjyfsObcrqh1ql9o2ZHPeK9RUB5ypKwVQlZRzrjxrKYVROVooSEHsnJUkQ/oWZ2lvqRMyspRT07XdKqZ4tlqIyHJ+1jSNQZxzhblSVIho1S1UFWLefEopp9Q0q5wjkVu1K7WcJDbNqolNlqhmncbcJUmA0GK5uoiXKOibz78sjCbByCrviUiz9KJ9w6Aj9XXaYoGYIGzmiIlySYWMiFgHV1QeFy3EU8Z0BQlLZqbUw9xLeidrZE/BKfHaB69zHmBg87gcJ+lrvhu504bD7mHEZqYkw9DBcAjr9FEHpbz1mNLlkw42SKFEXNMt9A0pouLtgZ5uC/0I46WxGozFpeWydWPU6NKkMTaty9D6NeobjZvvAWB2pkM9+vJ81QxlYKvUmPufueDUqcwFEgDCmmyVLjegBBNXwb/rTBJl30ayQWdRMh83EKvYehUAMPEg01A8al+X3ogl1l/cO+AhK6Xixzdy3CsBkfZ8kENH83J3vBmSELHDkJZbEYC8mkuVj+ESMld6h2t14/e0xvvfuyBQ5gasGmqkLmkMH3npVzy7f+v83aPaTDSHwD4rkRa60lI4ZSbPBBXWhCzeeOxrX7OzIkgbRGuncjY/t5XPhjZr00mziucXq4uzxaOji65LksUR16Nqe2d0eLizv7+9s11tb1XjifdeQMjZem0weTKMKiUgZnbMzhM59s4zl2JiWSWDCrF579URZzCXIfw+RiRag/bUhtFqMxNNOceUY0pd1q5NbZJspqWPYlDv/TCBf+WqmZKjwog31FFEGX1bzlN/x9q6qIRL5N4TmwfVtSwlVisfXZ313es6md/4/f/k7ReT053Glnl8kU/2w4RQNSyjMCJfRm6cQ6WxyyYmcHAuUIwcxlsUF+3FWb09rcbbmZS8o6TGpeIViIjrUdYcjFhq2ETZk0uQwhlnigzLIDbzveZMEtKVkBmxM0M9VrNCFpEtbzwVbJaZyQcnasRE7IdmlpAEI2XNMICE+rFnKWAZMSOvRkWLsdjZAjDLBlMGEbMrhSszKgg7BsMURA7Exh5kpMkgsAzK6J8OIpBJZ0QQZ0xgRwggA7MWePP6pjM2CJScyyIrX1fakViLSdDs8/mb2Hr9L/3oj/ze3/9bF5/5l1vT7dRGQsrBk7QiZobVoo1trlxV1xVBNK187Q2all3lPTuzrvHa20qAlYu2lWXJOSV2oVg6VWVisGMmYo+BsqmMg2w8HawxQ5EkL5pF1HhydiIpd6uLlBIRee+d6z/PzF3uUkpsRERZkkjqUmOQHLXNbcypbdusOabcNg0zL7uUky5XsRGdXbv2wedfAC7K3pLzWmRhDGoFzAwINu3VhutyQ5YjROTIGIpCZdOTb0i5I4iIGVI4nHiDAoGIQGAuDK4EhREP9A6l/YYBFU3U+10dHMYAxxqc0MaE06W3uJpsEbmCu3zi9WHlodSjecmeQP9uHPLlWhAAFWEi2yytl3thw6ls/rAmw0Lf2xqeNZM+ObP17Vvs3BNZx4brYluTUFE/yVPoQQqgCFaYsUDEPDBuDr2QcvCDEszwvL/Puq3DgayQbEYspgMm7PJk11IfvRczGji6y3FfRZtvnNMTaYzfZMkws4KAL5ks9wSbltUGaiEupebNP6GhKEFEpIYrUoMlnnmypm0DNIkua/HrzzwRifSfT5ZrGhGsrniVVg6jV178+ls7t88fP6wsk6pH5QmiF1BF8Ix+CI4MMGLAcXCBSYwkwvG4rkVy0zTTqKwhUswppoS2iefz9mzenRzPz89W2SKMR6N6PKq2tscHe5Pd/fFsVm9tj8dj7wMKaAFaRLLXRad+BdjAzGUO2NgE4gDNSiZqIAnee40qmiSlIt2IwoKUs21EYuXWA0FRqMxFVFPuCh4lS2xTm1LsOT3Qj9eYcmE2eQLcRkTMNNQCh1hueKZpo+TD60BvA+W+8XgQzLVJxta29a2Y37iz88l38Hv+2v/4Fu6/+uEfeP615Ykj82FyasTMW8EXKTqnzMzl+SPAjCsPUFdXU/jAdRePYz5vqvEueTMzSJlZM2VlcBiNg2fOOamZjMHBhQwRS9HYWKNpRCZQBinlZGamySKMHHMRbxmRd1aUyMjWU49sIEuWEpsnImEVU1Pp23NwQDaIqfTUP+ZgIC78Owp3aRmNiMDKgj58MQUTG8wTtOgymTgwTAUFlEog1zeMybJhLahXgCowZCjBskGNCojUwYC+iVfQpww25Y7jOC/nfjq1dgunx7DXv+s7X/y//JmfeOlDz8fPf6au9sV8oMfZPEQ9cisWO8uNea7CZMQ1aV5R0EzG6qrskTV7Mcuhi3AVqB97KvMgjh25QOaoJ1OAqoI8kwOzrQkBnyitmalSlzHv2rNulWLz+Oihy9bFJRGFEIiKNEOvrx6XqYmd914kGWnS3OVOIW27XK1Wnr2kvFisuhSbNq66thUK0+nO3Reee/bp6d5eVFs7YDIjM9ICNS3wSTPqb/51okCAGYiJmYgzkxXdLVgmI4ZYH/AVa8WwAvQriKNL68ocSouhNAv7NuHAXeSIYOuhXl1XYIsdATCUV0u4RoZ1oYUvDf/m1q/yZq2RNs3rpg8SXHF8SiBmKqIqG+3S/t3iJnpKnfcx7+tPmvUCRERkprBBjwm4BO32+7ChzNvXikG0Xp3iBi6dhQ7DskxUAB3kCM7A5pwpM3Huzb4zciC3PqYeALJ2LdT7ctGi5KSXRYn1Q6U9N/XmOa65HvXy9C8LEtgcIbMr18eG1L386teDaGtT/95ruRkSPjEHzAaIauHsKUch2ldKryRd/9ZSOBGZyboyA3flT3q9KEIwL5JHlW9TZzb+ulc+deC2V48eO8uMWFdeE2LbeSaufE5SZiEYBFGVLCLsmNkHTQqQqScZB556F9W0afdqlzLBZNnGtFx07QqS6goj74loOh3t7Wxt74ynszCdhOnM1xWzM9WkKgxSNVfGH/vsv7/GRiX8Z7FcEG1Umq5CkiOTL/PBRYhBVaPkAuin9WXb1OUwEy4aUCYiKaUY2ygxS5QYUegtDKpaGlKkpbb/PpfUVJmKBTUq9TVm3YCvg/pG0sazN/Dd9TeDKy/BucYOfHzz9vb3/tP59/7kv4L74ruf+Pe+pRH2k5GdvOMXMpts5TETBxMxSQjeE5fsNlgdLWZSMx5NZ1kph8qNg5yfpr09NwmQHsjA5MvgUqhqDd5DlJFB6BI0M6dMjoJSZlLORLBglgggS0XEhXOXVwsuk6kUVKWcuPiAErVAtZ3n1Dp4OMD3CHZYwbWqkvbQ9PIoWSbVIp9dZhSIXRlsJTMtbMxm1IOAC+DFAOISM5cUdgBY9pUO8gAbBZgM8x5GbkO1xgAkQiaQmgfQ96KpVz8nIu3UOe9wPZ1+dWd8/3/xvd/y+/+DH/rEJz4sp8fxF1+tZ9fFdxxbVHu0OPIhtLFthWLHzteTySiMPQWU5pCLYkS5DhxqD8XSpF3ZuIJjduS8t6ISSEbmKZsVECo5IkpQMfLshjt6QIGsn3PNyi4CjUiX4vHR/ceP7o1caFP03ldVFVKAaJZUjE9UjTEyKOfkGQIrpFeNNmkV2/n5fL5cdTnXYbS/s/3s3Wdu3Jxt79b1tO265aIjf2lfXEFi0+BvDVCwd31tdkCEGhW14o2+m0nB84FApmzqyDyD2Re1QR1GHmyT+a6MyjCQ1Rj9VJD0fR4dAhMbaoTloHjtLdaW04bBIQzztPTk58vzScXXEwxgLoopfYW0/8egauXUiAbWjuJgeujQgBEq0CIYu2EspacAHnK9jcbnOiu7YnFoUCPayCZ7LgTbaKcCPYHVMHG3mXH20cA6iTUQXFFH6nPr3l6RI3cpgDbkH9Q7k+E52thkXQM3UyoT91Bw+d7NS1DGcdcp9XpHhWzEFAa9Wi+8AgUoTetCrktEXvq6BwG6Ga+tV3Co/fcnU4g8Nta1RGdDE3EwD/3F40LXPxirjabF+0ZMAPOVZbnsSUAIbG3KsfXf8vXfvs2zeH7OFgOp84GgnhKQyLuYUu09+uZNCUoVaqU4SATnvFiOSXJKFdN0MmJmRtd2qVPZ9bDdarrn4750Ykm6KoS6rr33o5FtbYXRKISKAVNJ/dPBHlLIGpAuA6Le86lmM0cWipSBgmyYyQA4a2F1uVKoX5c1ygOmJWNSMbPUpSxRVcVySimlTiSLCLEV768ipefWp2JqXO5OXj/bXKapi5flMtk2SGO64QfQkE73voTp6kPVVz58Ut0Z5eN6+ql/1f3Bn/zXv8Bf+dzzr7ywuv7UxcnDSRgveWdZHyc+HvO+WTaxGCN88HXFDkxeWZVULFIeG2NUu24+2j3YPvv0p93BPtf7QCHyVQWRc2CQqaOavVaBQCNdtdYtYcHVhpwsecse5kwzLBS8pFkHE8kdgY0rcx7M8E5EXPAuhJyU2DuYtYZuKZLgDOzJBeawfgKLHSlgqZ4SCAJWSlk1qmZ2dRnhUOspxwpenU3W170EncWS8SZlDq3fpWJZiIiKmoA16CMqghoKbSEZRHoOBO7JrwAQaFJPtTsJ6dO/9zd9x3/y+/7Mi1/3XPfuqb//iL3n6RiejYKMjM8XEq1rV40au5qZRuPReDoyJ6LZVZWJsGfyTNOQu3j8xjuybA9v3VBXucComBytn1pTpcDDPCuDqYyFFY9LfVuquB4lckaIOWXlzM5xWF7M7331qyenj0dV8FUtcEkSR2iWlJJqjjEqq6oyQUQka4x51XRtGy9yzklDqHeu3376+uHk2kG1M8sMzdaKxdXKOVfX9eYccCYzGHsGICLMTM6XWZZyFYrpYoD60LbnMCpYDOcCkXjyjozZCtsEeqYI683+ZuWpNO4BOMeqBIaaDCjlkm71lFGbLQUtyV6xurq2pYUv2tAP9vROtCS8BcRDvE7aNsyLo77UPICxXT+J3x8EocTuxmSm69qZEnp081CRE7M1vwZv7AG9Mh6Gs4JtSPLArBfJ3cibibgQVQHrUdon0wYbSvGAMtO6s9nzbxhpmbMyBliMHKhwaCgNNdchgSysR4Nr79V/MVQjCpe4WO+pN5OftXG+cmAbPxPYLF8dBX4fqu31C2bmh9MADSOSrkc1w8zkEs6+jlmuhjZqROScK7qxeKJsf7nEWMcKfeQyhF1mhaZn83uG87F1+5pHjs66xrmtb/3Ed2zJtD1+LLryleNk43qS2jmh9V6jOCKXY/Leq2aoQIWInCPnnBG6ZFlEkoqywQuEggXntzPXyaGqqtrV8FtBJeYEEpmpKvuqqqpQuSJNygzLyazAz4lcPylVBrWt58Hn4bolkPeqiXzRRFKLqipD538I55zrkeNMRMShBD8lNFPVJElVkSXmmFInksqcMYicK5PbRayYmEEMlUJST30QVWq92qtprqGGhUzV1kqU1D9568topf7DV6/7cO08Oc2nrj68t/Uj/+Cf/OvJg9cNfPO7PvnpV395Z2t3NNoONqYLP9qqLFYIXjW1XafsplUgx0TmvQMHNeiy8twhtZPJtm8e54dv6vwV2dtxzgdHORd7QaYEH+rRTGmVEGlMTgyWzTKMiSujYORBleYEzWT8/2PvX4Nty7KzMPAbY8y51tp7n3PuK+/Nm6/KynplVUlVJVUJECXJCIGiaYTAjWVZbQeBIzAOHO0f3biDpiFsbIKIBsyjhWlwN9D4IQfG0QjztkAtQEIqSVWS6v2urHzevHkf555z9mutNecYo3/Mufbe52bBn44O9w/vH5nnnrMfa6811xxjfOMb30c6Kis0w5R01NxrH425oZZCSyFCAjzDXELgJqQm+LDUrDACNy4NWFy4iBWU/a2QrQqPBlrA4QhVDWYSiaRIN6e8QQnA5b4u0gNEZLAp3y0pLshRhi4IYHLdUTd5J1voTNDS9M1VxQWhDqmYVTSNmZmHs6/+xo/e/Kt//idefMdT27sPNp9/venc26DthuM1ZLWQkZQBJT7txyDdcdMhUrNo0IJGtZStbbmZD0Ebcn/waPvgUWjbK0897aELAAUCq6E084RBofqqmWXNasxMwlOzSXa8/bpzlAosynY9jNlS0ntvvPnKS99oZgC3rLab39A8DsMwjv16vZZtyqbroR9NR6bu+Fo8OuGTo2eee/rKjSfa44VLGJLmlDyXYeksZWIlm5EfLuIIcTgpAc7T3EDd/suNUEZXoYUmV5Uap1KkkLJEWFgLrFmErohK+cQTkevxxxTFsaOwUtErKlpUl/upUzlb0uUitlTCRKX7kJXB9UqerYuB6fDlzKwHWsqFykfsXlhRXHV+6nWh/XcEJsUGoNIVvTgfgOukTam79NI0zWGDGgyoFmck3yl57cZwqWyVdezCmUitVt57/NartxR2WqTEzuX2cSFiZnEnQ7l7hEDsBIfWbKrsw871cw4i68FF2R1x/cjJmAHApExd3YXNPbkJDkLYIQhvxbWxXtu3L4DDr1YDcLmqNIXbYpTMRDCjAzsnM2O5tIpLVpRN9911kkrjcoPuf0vg4sKMMp3uIqX3X+RgCNNH7OcEDERomByUloo5XfvuD3z8CO1m+wAydE3LQAiat0ukEdw4GWkWJgRhH81N4RLFcjW/IrcmgJ1UxLKnNHCQ6n8bZ+H6bLwYjhbXtnR/jcFNZ5objjUo7tM4glv2bFUzv8jBuxkxM3Kdy9pfSyNPqiEfXukS8IBdBhOZDRRUlQXMXERrfbIhMrM0blIaVLXMt0xXsbK8qAgfTPk71ImkVLhmhbSFKf8tSUC5rybtwmkdmBefUWiZd2M4ylS9sswPCwh2tP3RZtZzXm1u/p6f+soy3D3b3Ln34g983LrZ+PV7eBZy6/3SnTaStkkW5k3ACi4K9IOHgHmrUnweiGwR5ik08/VaZ0+H7X/3te6Zb+uX63Y1NCdtYhgbwQNkzDabzSViWBpvOQ+9eWqOj7JnqCKPniKSiKrYaGOfOCFltsaI4KPZQKNzYBtpSziigIwQmBuYxOQLtM6Zs7cYl+C1+xY2EM2hQPIq01nTSSXPqO4rCleowTKHlkPnRmbK7oAQJbfsmmC5pjch1l4agDLC4gxIoV8U79WdpAMBTGYpuytLGVhU2AiPFHqXhvMIWpj2MTrnW8PFz/7hf/d3/PE/9ofw8M7mK1+NR7N8HExEiDgFxOzRwuCcxTP1/bgIs/Zozpa7+RyRsmqIMXTtFtq1XVxu1w8esvr86m2ZtaOae2Zvk+cQXRzqJBIAHSPJCCYqoACJMMfi7lT3Yq5LN4RAQBpGo1HHIY+9+/rzX/rFbX8GOj5/tDY7H1OfTTfL7bDN5oGlbWdHzdWb3fHi2rUrR9evLq6etF1XNqzRVFWHTTLvQRQ4ELnDybuClO4X7vTQovdG9e7ZtRsn9aG6+QpJKUYCS2BnRgwhsEbkhpSZShUdxBwjAUIBniEMNz/8WGZzSMmz4ICROAuXGX1TrepYTEShZr3mU+CBaUmdJx2lw5hhbsi1w85cBSamqq6kDlUAo+pOE0Hc2NUyFyI0T5ajqNWhGZFgJ0tApUddmYdA3cUJVA4TrjudgFJflcG0kivA3dSK/2itvVEq3zphXINJGei1ohtYwnT5WmKWGSBimVjAuXSRnWGxTHaQEywymGHJzRFAoYRdQiSIu7JFCkREOql1GErAN3czAsDMhYea3QkwI8soTm6023jDQWtvdyHcXXhSubpUB+8fJc+rGTgh8HR+d4U2EbnaTr9p6oZUIN79ckh3cp+Uti93kXdWCl7d6mwCPmlaNAUqudQ8kNDu39zcaHSRNKLzxcc/9j1plZbbJZsJg2wUF9gIs1LSVmdkVXI3mIhUxwkREYHvw4cTsrqTAAgShb1hGT3NZuwsUZo5wxSNZXVjZqYwwThcd5DJFaq2LhzuMHMyvpSguHsx/kFl2+5vbzgAYfIyv0pVZNwUZFaQk2xaWAFqyYoAgR70Ast5Lhm07xSOUfq+xZAG4F2bvyyuyuizQunaATu7I+YyWyGTskothZnhPTkDYbo443jknsd49YXPp4+/8dLPy/lrx83wjo999FOv3HP39Obp4kM6dovMgZcbfeJaEhIly5o8r6M0DZPEhlkkDAEzn2/Xy+ba0fjFr5z3ffMd70oPhrPTR7fmM+7apmlyzmYQiQCLEAfyRsSCNNQ2DeUsZpSPPGsBpLTve7pgDxKP4Y9YR7JRdWOa0G8IwhxGGlkiEEFEgcOM3bKNHeUtLJJ3bFHV3YoS36Sf4KX1NjVovUI67iPINcNdwQ0Rm2WU23vnIlcoSsUVoGTxVtpCEw0CKAGYSgwmg7liSTgiZ0sb0EgCESallAKawSiF1MyO5pshyfpn/tM/+O/9J3/o9y4/+/lj4nBynECzdmGpL3VDHkchh2u/2gxny0g8a1s1hNCCSUEcYjaD+ny2yMthOFsHj10bLdu4XBf9c12M5oYQBnOJ7bgdGglhMIbCIIRCQyjDOw5yZqiRuzjZ1FAZWPtez5YXx/PFP/nZX/75f/7F27dujsPD2eLKvF0sTm5fu3ryxEdunly/0Z1cmV+9Jk3bSd/ntB3TJm3XQz+mPqesWpQgiZnJY+UHVWAJu67fY+XIXs63zlRT0S2YsB8ioiIVLnUQX0vCzczEimKvyV6bmwI4ExdtyOoReZkLawUwqSJmXnS9q5ciV/+xKQrujr3Kttd7s2w5ePujeAEDfpmjUxDdutmUcLULtOTOxDzNel6GOblaBhKmwrJMXtTulcNRJ4mJJpsmRk0aamWx3wjLWdt1i/dhaTLtndrBKHJN7OwVu6vJxu7tpnNVWemwUsv4tNHxznahfHuhYsFeKsPdvjuNTu1ip1XOVV0PlW6teBvyh4lNXV94ufydltBuZT2+wfqEepZ/BtMyN11u+6IlWDKaPYBS8ikuYuuXr74XcU7svggffquKm+1DxcSQnKrtw7+Ww9K8/+dP/+ffPPysn8Ln3n4u/n/2CAf/PXz4FJb4bX/6//JhB5Xztzyetx/M/7wP3bKIrlP7r//aa6dH5/3qzbfe+9u+46yb64PlnNtHb9y5OTyctYvj+fHF+fJss7ndNgGs6sMwaBRrQ9eAwGAKkZEJQeZmL33iMze/+yOnOcWTdjVu++3maN5RSS0VbTNr2zaTNg05K3ELc2cQZwFSHogCg8yyz0hm8G3UfhQSzgONW9fsutS0IhbhmJhFI7JIDMQBboiNNy1ZBx0pE0irunLpZ+2SzKlyr6BbCbFkcIOP5g1EmWKVs98t8lpzuZtiqiqm3hVQd+0a1wvZB1bECWaOLXwLGgF4brMl+Bn4qB11QPR2XJ/dvXbd/vyf+MO/98d+8+nnP9eOKUugtctsPqYkTWPbrTVJoNT3/YPzYZUiRwgkBB9V2cDiTjlb27ZQ296/QLImNCHAUnb3VgJiAJHAjVmlaaG+3kqkQbdt6MaciFgaLvuwMLikJtUZAg4lYnMf89DncbXuzeyte28+dfu5P/Un/3Lbztt5ky1RwxxkzNlcx3Hc9NthTOvN+cpSSimbZs+ezbUQm2gSWyhBiIjBIGZRVVRV80swYz3bU4K8KyipEqF8as0BALhA+yAq9bFPSL8xPBC4zFaRg8mYysRMqeD2H1YDvPrUMi2BjKBlXZXc+VLNRAS20vSlqUB/7FvQRFPCRNwuC0omd4XS/YRThRSnLz69uuTs5juBh+m/JYcAhHaodYVKfZdb0ASZ17eDe7H4NUftLNaVXTQIyKcm5e7zp+Cwx4oLAaUcaanaHCE0gO3ZV7vwUbvMBjB7cGcDwwNDdEJWGVLGgv1g6OmxwFmvszOgB73/qQd0gGRMG8DlQHhQRpa8bTqF3yJ+764gEe11xGTivJZJtmQ2fc/HmVmXQmbVGRGZFDyAysAvp5Ip1DJwOsraS6h5yOGMcnnivyII/S+P/z96RJnlMTTN0y/jOx6s7+V7b8WQn/jo937h4Z0MVZitNutHd+fXvp2O5kyBH67o+MSEGWQpYzvEtjGFtpRD4MEejZtnnrv95t/5qZMPvEevPRHOtzFqe2FnZ2fN0cIlwCqyIxLS4MwRTQQV0VpQzkQUbCQihyYdKeem67iZjXFL3RH1W6zPkS9cDT56DpoajhFj7404B2JyYWuEuwU8YxxNjZBLDm37zQOTIAaq5x8cllEc10kdBHU4nLXWuGVLIuwIz1OSXmmm7qVDsUezqqYerN4RLKCRqAHmjg0ygdrQZO/PR511i0W/ffMHvvfp/+a//FPP3DrOX/vKgo5wVYhNmDRwEKeUrI3Sb3SzOr3z5qO7D5579t2z+UJZx5yiRG9KtyUEomFI46ZvjWLbgAhMyhBu1JWEjCkMHEPQXnvtO3Ks1+j77TLlnJumjUfH3HUmgMMFZsajkrAC6lYmvnK2tOmHNJ4vL1anp88+/UwnczVcLE9J3M9sdHVwr8mgTjToSFWahxgUiDM8wI0xHoxU7AoOdxQhLXiJP4+Psh9UJ2UP4tKjrBVn9TcnLmV8mZyDkUMAqcpYEIYEYi5ppBhnsFC50GUl7B5McJrM+Op0076cZfK6bU6N2zJms+sO+d4HcFpD+wYkgJ1tKE1JBDlblTycqv+Cyu+/sk9u9oUzpgB4EnjBrl1ax3gKzc+Ku+GeKFbitdVWZgF1eYK0iyAvmbtnqvUake/649NFsUnw2PfTR9jXdZCi7VRmo63+l4gIwkWl1xiQqQ4us7LVp6KuAPf9+jjkQVUIhPeS+Ifc9R1H1aeR7csNYwCY/JcBmOluHe4O9dJzLxfEoQ547N7U6kDkNHOyn756e/548DC9tLrrWIR7tZqcXsvu045Dta9ezR0nvrsQ/cAffPfP/Llv/Ms/6395/M//eOHfToGOFn5O8uvubY7C3W/o6VtPvO9pv34Vn73fkG3GvLh57frJ4mLsu5P58sqc7577U9mOWhJGUl9vLYgv5tY2RiYDumuzh7/6uRTwxHd95PzBOs5jXj/s5rPzi+VmuZqfHLu7SMtBzIzFzWCWSabhehZ3b3zurtkzEWWQO5qmayiOaWOerYcjAwmeoQONg8uGg2CMTC1xkCihbcml90wpwRXD6FZ10m3nV1P6CCiJvYOdCt5fx5PMYbARXqQY9rNMdRsoUJntMcO65ZFzVZoshUvZOJnYDUrSgVrYDDJHyHDLbjLrpOn609fe98z2v/8zf/JqeuvhZ74p69xe7cJxO+ow4wBNlJUMOgxy/2J5fvrSS994xwvvjldOHBw4WO41UCknWNVMq3+fNMHzaBrm8zCLZjAjiUEtZfNOlS2Rbe1ide8br1rTtteuncQjlggPMCk2dgIzMkKClwEtTclyzn3fD0Pa9mcP7r21CHN2yuMm5yTsmnLHXfCQA2ni0VXZlDx7ZicQGYprumY2JzhzcUbeoW+VNgRgquWms7pfw2VP48Irmmi3xSWo7MhlapsJzCFQLs6OQs5EASSESERF8ausByZidoHXRsPlkC/BDKEMsXrtLZSGKRX2V4FOS2/OvOiOFvKjuzNohx/vWl+7HKKGBue9QpZzdV2pbSaU+RhgKlpLcDWnutBQJkdLMNmPNjH5IYGrxJXpRO8j1Y5b57V0JirXX1HC6/SuE7JApdp67B2oEs4v1Zd0WGPvLyuz10SAzN2Du0xHz9MA2ONAMRNPkO1EEd/F/fKwg5MJxk7743Lc3f3y8PeHh+3uJZw/XisfwBjuXpwSap1bErMyzbBv1j7+vo+zGaZQP52p6QzXFGw3V7rzwa1DyjwdBwOFQVw6l0YUfssf/oCqNhY+/h3fzxtwziZDzqOwk42iuSXSoSfAoMM4qmoIoQ0hMKsmFOKfVh27cRzNM4OGYYCamfVpRIhOAImqutrGKKXkzfzVR/dfp4eBS8/B3LLVoQLy6lhczsO+pVfO9XSpppXq7K6VbXGZKeeTlJWBySpUsPNzLA0IYb6sKUoo+Wyd4qhXodj7uLvpXthk90Hl3iyOwofIiUjEZQm6ArDtFwfX6yWTLKWYJFq7tzEk2FwJ6mb51G981yunQ14bD3fe9Zt/76sXXY655WY75he/+ztyD+SLbjHDjSN/uDp/cHZ88gy1DTPrdkAYfNZIQBBkSt2A/uW7V3/rd/ZLs6YL7mF+ouOmU+8328XJMdy7NrZdawYh2W095b4p920yBaGokBCbsKkPOQ9YndvFhS3v2/YC40BEIGMaUy8SI8fWOFOQ2LKTQIjbBauSZ80Dcm+WyQ3lwtXuFztTDcBkCIBnKBy6qzbcc3EMLOfYzfbjHxBAYYpd/2baaqe7qjLYi4k9M7uRI0MSqBi3Kew6Meezb3z0ffibf/L/fpQfrk83szy0zz8tYdThfBY7zwnrgRhZ+3y+zI82r7/2usjs6effncecszIQug5RmBnEabvdbDahkabrxmHbb8bYdWLJXJ0kxgCmoDSiH8aB1mvejp/+9Ode+Mh3XHvXC5DgKVuyXO4DZnFALZiqmKaRIexk/dinYT30m9Tfv/emjenKlRNWKtptRJxTu8Kag4zmEA9mprmDj9k2mqlYHLoRII5k5qbC041g5W61KnVZ85tp8zmsSCGYhnaAqQtAIAjx/p4tcgKFmSOMwBDKpfytenZTpUhExuJQFvZSW9JBLSXMFM0TAKihsr6YnEqn1yeEmIqeh1ZzwHIuS7tjf4xmBxX8AUbqByHHp/3Z3Wjar1AJf4Qa750eh7VLIKhBogYkro3gA/3kAleSHw6mFu63lzSjhhYuUbHywSoyynUMxg7LPwC0Q6jLkPHjrYEdVF4CcGlZEgkg7nIgpi2VOoadMxImTN6nYF+hbCYq268VgIoJdTwTBb3fx7W3n6jdw6payMFW/3joffwlQG3rFj3TqVlCh9/8bVH9Uu+zRt99wnTwzAP5w93R7HIPc2JINZUtutEA4OokAqSEhPe/99skg5A45DGNOY1EdhRDYBs3PQmNeYjSiEQATCjzvsyc3cp4l6o2TWDmNOowJjMl4myq6uTZJVBDIXTjOAYjFqgIF9MQd1c3UeZpWHwf0oouxMGANk362tBspZFQexpcxYyqsSdNs8jleOskGhzQKtbidQ1il3UW71oC1WZAOaCgVWndi3b81EvZHWT516RM6tWdunAkjWqzf7++cXmFOTuBD65p9kxMzGKemJKgHfyC44eX8SN9OsqbV65dO7r61AfeuLcN0m7yhV9bvOs7v+1/+tv/pLl18+kPfuD6xZUH3dmw6hdjikEkBttsbRyStjmPPLrPw/Lz3+yevS3hZJUftbPg3CjIPHdHsrk4T5seodzeqpZTZneXGoO10LLcPRGJmSmsH2zsddiMF6t+teTVPdsssT1DuoArSVMzdU2W+tQ3kWceRY3gzCzcNUE75COMY04j8sYtkRsVYR0KxCATp6k9FsiNQVIK32KNUEreA0+6unE4UJ8AoiJDREQgkLhZ1ZKbrLG9usABHNlao3NgCTsKvOhmWR/c+cHfeu1/+PH/onnjjfuvffPK0+9q2sHSut8s5zmipT6noCq9pn697DcXZ/dfffTwo7/he7bbsQ0EZCW2JoiQq4/b7bbfqiXfDlH4aN5qRgzB0ugs0rDaYNsU4E3qt6vz7b2H//xnfu7F3/wDxx/64Ors4mi9TdkBCJhFmMiRJ+eilIfRnUyx3m76NK62y/tnp2+9evddz71bjDfbzWzeZnPV3IZZzNGcPI8GVzdPMCZ3JnMhUsDM2EHOwYwhqZIl93uOTSHqsHw53ECJdngvTxk2uVvhVaE2DJyZAoOFallVx5Vq3lebnoWFdIBrVrLzwWbJEl3UtTr0FL4VmcOKVEHebYsVNC2zt7SjIcG5zDrtXRAwVbP71sblLJx3hanuXmLOgLpx1bchLVQymnqIhW5cVXemMD9xtS4HlTKSVJWUDkpxlHGmOpBJPrUa9788fEz1bSmMAafy1bHf08r7GrS0ihlSbiEiAciIgcAUCESFRAomF2CvgVVIz+yPR8VdLVtCk5UCuogqkQCXdC9qkX5Q4dQjrMWS7aZ5cVk86/LXpV3sDyQlhSe6LLW1e9JjF3VKKHYPdpQRnB2Avo/ZMhlLlXctigF1gRWLCa9fqh6rQaSB9mT+7M0Xnr7+VB568DCkIZl3bRs8sxkGa1hGG5qm0YQmRBMSdnGDKgpb29yZxjGN2zGyFPUoZh5zzimhthLFwGUVqmUBZctkymTFcwxC0KJLsbsMFQMpCqtWQS0uxGN34goC1VuGICAlYvWCdQhIYdOUcGEluHs9K3aAmSgRM8SmZNYoA2APJbMpANXEMxCiybqSDCApLPl6CxOR1PkiLreZgclBJcTyDo/as/se7zdwYNVIwbNTdBc1DZvZ0Q//PG73y2/ilfObH/jAcrEYxwdt0zwc+aPf/xu/eHontsf57FSHzVHbrG/f2Hz55bTpadY4AzDzbCn12zXWQ0BcnT3iZ5+x++umaTL3TSOcomIQtqbZ9n0/Ozlyy9vtWtWNSVXJEUXMsrtn9ZQS5TGn0TZbXa/G9UVenetmhTFZXmNcs64JCUImAqJEmSE69KAYmsTWqCrYQ2wDwfro0kk4srA1G+BOSAVKQ4YLQ1i4ul1YSZAoOzFbdk9uCVCaBiydqJgNl1x0ynusiIySkbMQtLTsSqfTaCqvi2cqL01bKCR2Ld9Kfb/a/Is/8Pt/6Mf/6H/gD06H2fbm7LbLiHYWT0+xIr99bGRxMyCl0ez04uJi23/1a1+hxdUn3/3u5flFJx4CbExRAgW/ODsD0CxmlgP3W9I8bjZhMUuWNSnFxiyJkFsa+u2D19/8zOd+9etf//oHf/3HP/Trf+Nw5+wIOcUNxblQqJNSKatnIwshNCzZKOW06rfL9apP/cOHD15++eUXnnkxIqZ+aNow5DG2gRnb8QKhSTpCOFtyOCJpTs6eymwvczIyYmMzCAAmBaBedCHKrIFM0NR+Tzsc4qCJI1NmXYrkhVUvDUKRKBUKDGaAGWxFVC+L5jzmkLJpQ5MLnE8sojJxDzw2Ol8H7svVLK7V5k7m7MjOIk5G5K6GspvI3jSpdIQnyq8SaKfw/NiNWuUyYF7kEvcBYCroSApARAbbsT4nEvWkw3EYevf131Q8HGYzlywXQVTHoMgrGA2gHE0pi2nS27I6N0O7dyyb5iSjXMqWS9eOsBO3EpJJCLq4HDIsaJmRJWdwtjr9sSs0vIIBh+fK3X0S4rhcbfo0RXV4Bac6bBezLz9sKgbKh/Iu/3usE3wYZ4NZ5gJvTlyqMnyV3FTLfJgDsJLKU8HEDz5znwjssLVa/hJB3SMk18MmchCxMyvBkcvMowYSs2BkqtTG1vJqYPfFC+/8YOOK1C+3GwsykzhjDTaq9WNgNcBiMOKQAW9ik8cRHDPG4gXJjJxGtpRzHlAcYyzn7GPORMndLbQS2ZFKDmxZZEaIIlEThYY8O+eglpiLCas5gSec0M1KjlT+VG4/IoOVJLmA+FLuRzcLZFNvKaKIahcUXq3iPZOPAxGJSP1jSavLoELZaER2/gq8XxZqE5ZS0hqbZJFqcGWEQnNQD0SY8JnqYVWwGTL3bBaZA0/5L3ZguwaOmZCD6xivdcO946Pf8cn5D223Pi6X2L559OKve/QI3axdPfLnP/qOcdg+ukdPfceHv/jTv3Tla68cvfi++Sr3V2f93YftO2/LorGHrkOar0YfhmG7xV0dl2cynKfhHPPZLFwlNGjzOc/nnLvjq4/u37uyQOO0HHsxHnVw98CUDDmlvB0o92xZe0/rZV6e+eaRDUukLecBZuBtOVvGHaQBR6IGYJcAI/RDlrMQjOSI25m2RBKba4ssRlBN2azwSLdmGVlZAB0dcOZCyqFqn8GgaMzFRQkgJyZTeGYiwIwExOAIy0XcwN2AjKJbRAJpYGLegBWkpHNSQnNmnkmj+5o6Rr7Wb1977uqdP/vH/sTv/N0f55e/Tg6/Og/knBrNnq5di9e4j033+mt9v+EmP3zIb52uzu+9/Av/5BP/p7/4F4btuBi2ZTY9SrS8SUvfjunKjesGDWANzBJU8zBqJAyusQ1RWFf98tHpw/XpZ77wLy4u6Lu+54e/51/7vv7RaYBuV8MsdLnJ3gVqgqdxtbrwhty1TdybGXy12Sy3m+V6eefOnc1q88ytZ6LEnLMQW2Yh0V6diFiSJa9lLpm5FflV06g8eoIVjwFmZyvWxFZD727L46JWgaqqeEgm3e+/JtM9VGMKIxDVVLii/+TEJm7kwZVVWNUyOA999m1qcmAJAAeQjgQ3EfJQ8uxvIV9TsCcmuDo5WN2UGcVGrjiDwbWYYLqAtIC2Rr7T7ZDSpyIqccJqfxXAxAzcTXcWc8KJvQCa0GaiyRiteAy5ld1tN3u4LwcrzAbAQdVwnqadqoz3+FT9V1uhWlC6kZfRnyplzkRuhctcowhXPQSGFk2QalQBFDjAXYWciIqQSBlzBnZi9aFooTtqf8C5NW/NWicQqzvgYh4q5uylxKkmTxVtFIeXXKQwx9hJq4PDAfhcg10NnrsqtCpIF1C/lulWBz7pYJp895g63JWlFsKOJALePdsP6n+uVLod7n95/OYgmJdrgikzIiJ2ttqc2CUjdWbEWEzd3VzJ3NQgEtXpUdZ5bH/TR7/7JMrq7Gyz2XRNM2afz5g16ZhsZzlCEK5qq0JsB1/Y3cusodeurakqyFLOKY8IsXA08jgUASuFc9MmNyu3T2+wKi6zm/ei6jFWkjDnyefEfQfOGCAH2tyX7jtCHa6f4I4JFdjJ4qDm0PVbGO8uvVe5VrgV4+f9m9P+A6YK/SBjtekT9/P3+3WAXaPFa/AOLGG3hnwaByxq1Qiju1qez8KxX2z0+PZXr/5vv/ywP56533kEwfX3Pn9v607h5N1HJ/de+9rpxVM3nl/2Z1eeu3r31Vff9cH3+NV5++QTF6+8EjfH3okGHpbredfkiw02G8Zg5/dPv/AlyLx56ka8TdzOt0jXNULEZ83QrcVwtrxAE8SMx2TDMA59HnodBh8GH9Z53GBzYWmLNEAH0AhXK8ihy6T+GzxIbaM6uSaCOJDHjW9FJLBExMyx4dChy9on7lp4C3SWRiCBCg6W4clMiRtC9uJsSJMtK7FDYAXQMnIurbyicweD22iFq+kKsCMQAjyUQZYQCESZyH1AEz07LIpIljHmZlx/7Qd/3ZWf+Mv/z1tHsvzqr8znzzulzps8OsuSfEDmbV7x10/P86jh2ups+fJrXxnfePX/+jf//m/90X//yo3rp/deu3Z8oqMl1XkT0/ridJ2uXLsaY0MEbj2HQKwdCCn3lFrEDlmX52+dP1pv1r/6C7/wxc/+6tPPfuh7vve7V/1b3SywN3LcXgwXJzazZPBoo4ac1+dLb8JaM4OGtF2Oy3uPHtx5865bfOLGc228ojpS8TTgXKQUnAhMpupUVBm9aCtfmh9928DehCjst0unSmfbcdff/riEmdbfRHieOsEkwiIFkRY3yuySc3KNZkpuyqo5J2MXODGCUy6FGzmjCG/sHi6A7bR2C3MPDuYyQRzLjUqmMAY7dCKX+EQHoQLI1X3DS8Zfotvh3X35G3kti+tOstthyhNjmbB1IqcSC71KXxQYllDBm3oqp+CKelq9cpSoiIU5cDDGIiDX2ilDATl3e2BBDne0OC/vrLvx110wUieiab8tzT0qfDEiMKJAG/I5mRCErCGPKKV8GT2yasg0YZUT2+4yXcZtHzv2QdAPnnAwAFaozoe/oQlCwOVt9lutOcMBDBMOWghFQr6e9DCpFXqBjgsy7pDLrlVM4bF3Z+cdxb18sQLFHpT/7nABT2yH4hHnxGEch4YXv+17f9OVjIdv3h2hRg6na10XMQzjduwHMHEIIAa0QC3kxSuVLgczBXvxrM1Zx3FUz2aWTG0wIhaJWUeRWEMrQVUzUNxHS2Zd8s3dgkOxxwYINGnE0AG2w0Xg171qze+WPREmM0sHqbtSHQfYzS+WhnExMYaZVc+V8s67szstEqp96HpcgbhyuKxi+lQdTlwgugPipth8EMCrumztCIDcjSYqQH2yu7tyiJqbVrL6OJPhzrU/+oUHxws8RD9f33vt6ZvX0/zq6qIP88in97702c/f+NjH+149ts2Nxflnl8P9t+ZPvVNXV7p78/Ro2T11LbbdcP/B5tR0XKPfBh9pfWf4xssSn9ie394+Oj++9fTi6RvURqSQh+H200+++dKXnnji1vlyvfLMmz5v1rpe6mZp/dqH3tLa0xCsJ83kWjp2SgQKYAG3cAYJOJCITU07yiAyN8WgRk7CJsIM5WANU9vS4oidROCitlbK7p6IrIjIQgd3Nwqghmnnnc4OAgdihvXw6GAgTQhWAgzQMuxYSxRnpzrbQhRyzi5GQcJM8rCNsjBsMryjWb/84h/8Pd/3Z//4f7h946VH95bXrt72vKbjhdoKkk3Jztf84H6/XKcubHI6PT9bvf6pX/r0J/7hJ5546+rzv/3HfvT+6y/PqWd0YGGiPG6Wj067m08trl+Du6WUzGTesiDnUZqx2QqWGLbLt87vpKC//Mu/8k/+0T997d7Zf/A9P4xri7jqUz/odrlYLIzbB9ofSYvNlogeLB+Z2Wb9wD1v1ssx6at333rr9PzGzdtP3HrSRhqGIYgSC4PU6y1SYcqdz6IZzCqAWfgWZtUk/QBRpNpBvcQ83hW+j+22058v8RZLQCGwI8BtEvVEEUc3i+YwN3VX2Oh5IA2sRC5m7N5U0iyRWLnbnS6N7te9giZ2D5WJnlKZGUBwByuMCYCaU0EdcwlOVvoUVCWMKhnLHIUrvfecdUyLyrk2uLzOB6EWlnUPYQAutXomQ1EIYSMicqtDO17Hscq/ZNdkLyefHDW6qU3bU+UVP6bEuU+CSiDc2ba6VSZybaO+rUfAE0ZdrlT5UiBQcBdydm/IWpfgJk4tvOH6gTxlHlz3RjnAmbmAjjax0g8LJ3bPU631tmVz8HB3Kpak01eswjsHte9j8ZiIDk/NTlvDBFIFOctmbb5PegjsPGn08+Eb8uUPmPoO5WXVv5GIJk/m8g4EwLJVMx0rhEIaVT3Tb/zQh+WiP3t0nnNKDBOadbExRRosjaoKinWxwpxIwLUofFvp6RO+n3Mec8p5NDMjFNFcUjNw0zQUohGyuZkrTC0Fnrw/S6VcEXUvgqY8+afvvuZ+1TgJudJ06qfMw93rPCi0Lnmg+Nnth6dL9jn1P3aZhJkRJtWecs6LNR9zbTZ7yfdk+kctasstWloqWkgFKFPbIKrmZjUcVxy63JYggIknCZiKIjRDMmFCk+2t8er/5kvxQ8vTr77z2Xd9/euv4uFrtz/6bdt+PoaHz15tv/GPP3X7e39DYiibaZwdX4uLaxef+tyTP/TUetEtbl0/e+1Oe7w4arsVaLj/IIac0robZoNvfXjNh/vYvqH3vrm+9U4d3sNPvXMxu3H9yhPD2TdXZ29d6dq8TYP1shmG1bmvlxhXGNeeBnhislwAEStjIQEcwA1R8CgwcmcvBT0cyDAvFlBk5ll9ZN1ccAgsIIlEEVF4PmtCNDb1hGRuDhvIFRjgCjcgOwOBiCcinVvVaCVxNCADkgNkOunQWL2xiInZihg9GCSkZIERCJpcKedtZM5r9SOKo/arl378//wj//6/84MPfu3zzPm4vQK2vttQ1o6avl+F9cZOz8YU9cYT64u7n/rET37lyxe/+KXVz51+6CIv/6N/54deOOm+8vlXnr56shzuxabpuu7B2QUfX7967YZncyjHYMTqmnMOENuqrobV+cX9R2+lYfOpT3zyH/zTn//yg9XHvuNjP/L7f9/64uF8doWiYTYMy4suzBU0nq+7WXt/XC7jsD5/9MrXvzJuN6fnp6PG0Fy9/dT7Fkcnm/UmEDiaWdCyj+9sTKlwl73Qr4pk+m4I81L275d4glPmWRa21HuzpLk2FXOPywzwbpGjQKGVTRSIiFmI3I00w4Ry2ZgdiZzdRxgjwxNHIyTxgUjZFWIkcIokhSjZ1NvbMtF+WqSi3NWUsOyRJXyVe5TBVLEvKx7PXkhHMCtjU2QOcqhNbzPFMafa0DXGgaDx5JgB9zJrakSUtLaXp8CLqbFrtQ62Cd+mgoLv+V/TWTd3Z2OiCcSrDVXCBKvuw7a/nQW1uxSlpp/qyLorlW3MKltmUlcsdAqA3abZX28coQ46GYPYjdyrkkfZENknxUauZaErPXYQh+DKYUF8+Mvy+X6QMeyesyuLD6Pvt4jB0ytCoEmbcB/tCx9qb+PAEDzmwjw93j5oDN+1Dx8/AvdKyyvLXN24eKOYgxmjPnFy9QZke3FOgdbJKLRHXdN44jSUnpAHJiaFByooqlfOsmavIq5SCFNm7jaZJ05YihF0TEQSQxQic3OCei6zhOSkpuM4cpAC95IUBUmlwqVHbYFMS6Qk1/uzT0QEFndQjay7M72bkQcKGFWTFaHJ8xV7f2ygCq66OzEXdbeaOsHNrbAwbEqlCoGuluaopXP9ymYEhJ0dijnMnCHSWvWWn4YZ6mDYlGBNGDkTM0tyV8RBTZoPfrX5Paen6ysn1x55Wt57iLNzunnrfEjvff7GN//uP22eeULpKG8ecJg13rmPza1rm09/yk7f4vltvX6MN8P2fHl8fNQdz9K9N4wTbLvmC5c+IAAp49T6i/7lVTo9w/Ovjc+/t715+/4Xv9gN+dH5uZM0Q583S2w23m/JFCjaAGwFCGJ2h0uANJCWpWEOFgI575n5lt1G0ow8eumNwZFH34rKMjA7d8ygKNy03MToVwhWuEXWb9y2ZCYFO7DM6upqEpgjmIvzyHQLylRlsFMGlPaxpEorlSVaTngQGd2QM9zF2LlNto3HR2qsm6/+zT/z+3/0hz6++upXTk5CE06y+jBuGprJuEzrB2ZJe1ysZTyh7emrf/Un/uu/9bPbb+o76coz+coL7cN/+gMffr5/+NZifgWyiIGJ/K2H5zS/cuXWMzn1TdM4y6BJGglOno1T0mW+e++1i4u7X/z85z75y5/+yjffOlN55vln/sKP/1/yatlxMB/RiixOmjakzZnmbVzM1n3ul/03P/dr/+jv/m1THN944ulv/9ATT948vnKz36ZHF4+OZ12gymsq6e8uAGM3TE0oFrLuE0CIYthcdiNyQCCBPPvEQ617P9fbswBN9tgmu3vw239V74Wq2c9uyERinMkDNNX+F4rhgsHNg+mAkDgmmLEYM4SF4misLg7M61vn6uJcb+TaXapbCU1yS+Ub+E6bWbhoVgJenDyIzaFQc/ICtbjWISODs1Zqqzu55xJpdzf0LomZMkXfZSTMRZG8BKay2xRxt1ougITZK8X4YMcrHP3inFRneVDwwN1HuE+yb/uwxPWv2FHhanmxi0O15vUqCLnr4jPKkFD5ohq88F2scW+sJsXiVsJQIWqRM5NN0wQH8Wj6pzgVn4KdFdKBE8NUfO/KvEsLxvcnFgBzoP0GejDif7DADt+jekcDj6/R3c1QvnZ5C7l83I8dRzkAvwyOV3+rKcBg+lMgSg4Dc7F+UBXHE0dH9954xUPjMTbd/NpsNmfKy1NYVhESFm5scniOXFZILQPLWWPed7JREij24lwCCaTqnmFG4mbGIuaeUlZ14Sa5bnPapp47hqlAFCi6suzADpgtCMiEX7k7QcgvCaCUYtl2sdmdamI13fOlKeguRAfO2pWjX+wwioSJA4cTohUIcsD2F/bwhO8eXmnurPC6RKy8mTBL4FaJVdOUUBatVnI7APHIffLhcBbt+UrYfrX7ka+Nx8fU6+zo3vmrdnGKMKPj2/Nr4eFnvrK6c/7k7/zO07vr424xBMqbtWGYPfvEg19er195ef7r3mtn53Z0cvHoQX9yFJ+8Rg+OdXveNFeshwLcXEuhYRqgG9+udflF+sLLq3uvfb27wr2GxUJXWzeDJx/GSGyxswwFIAHeQA3CBGFuKEZqZtzMKATmoFCCkLsp3LLlhMyOEe6F0FNGvzyN2m8ScxNaaQOpESuCxMVM3FzhGJXggyIldpAbSOEJJvBknIjEJ34AHMWbhBAcgFuZ2MMEjTrJHjkECDaOI4IgkGRHVmsApszn/vCNv/zH/s0f/S0f6r/wpcXJ3M2TZZa+7XM+WyW1SKSbfDb0qctf/PS/+NN/7Zd/9i4Tf0yPtp2PefnLTz11/Tve8ezpo7vm40iRnX2jJu0TN59odXDNyu5RQmAxy6uVqG6Wy3tvfSMN+b//r/7WF774DRy34/FcBv6v/m9/7aRbrB+dzmYzPr6SXLfbVQN148Ay5O3nvvnFr7766mtvvvXkd338+tO359eOmm3jTmfLdRNk3sWck0hMaiEENXVQ4VWhFk5TDJYJTZrIHFQK39o98BKMI8fk5sjA23fIev/tRoEPHjvqRv0n1ejKzKHEenODkhM4jyDKzibkHiBwYfdYeCPsRX7dgiASIAZPRM6yz9d5VKeisV9v1wKmGcokmxMYrhWK9qmxCwLBWakMLlLt6ZKbsxYuExfIwHwH/xZoGlYDI2rduw/A+4nYqYgisklVFQCkODoV42wighAZGO4ZB1vNzjppV2DXyZZLdOP9Z+3qMa/uqJOneNkjJ7LRbmyybOY0nbDpsok7YOReiArsCKpRqVGIgw2RSKzIUtKksj4dBhVLY9p5evMevp8+1ErD+uAsHT7q1TsImrvCCQeh06dhDxycjJpI7rqHUwn7GPIOYj7AAw4P4rLY9y5Oo55J35OS/PHX0oQzmDtXgmJRtjCzFsxDOl8PV2/cvP3Us5wtph7rNXJSLueLawHtFvahvkzO1UBR1OsL8j0d+s5Z2ktMMtWkhXxINo7jmGHeI/WWV0gGLyOw5l7u88PTU9MZc/ZdV5tq8+RtF4mnzwVED66lYEcvcZR6rZ4v96qPQTJhReUym1WCideO0cEtSqSo7th+WfSDHcRMQG2hmQNEzAKpyncQOKoKyFTyls8pcFRhyMMRcxb0Fr//y/rr42xjbXN+d51WzXhxFhvfHnUn281Xf+nz3bd/YHnv3MB9XigsUPZMcTaTdzz7xic+8Z0f/rg383yy4Hv3h80Qbl1ZPP+O9eq8IdjK+rW7z+Ltp5VE84Dl/bi+IzkND99wvysn1zIPvloR0bYTLvQwOTKNSFt4ogJbEogCpOVmHuZHNJtJiGByy8Wy0VOyzFVosDilWHYl08yWydzHUXljzQZt48LctA6HMJogs5n5NbjDMiybK7m5KmDE6s7Q7GUIh4SqFNC0pxQ+QYG4WMG8x0V3e4uzBFZSMoJligKzo0Vc3fnyf/b7/lf/3u/8+N1f++KNqwuyhPZG0I3paMsctul0vVovrJst9OL8J//BP/7TP/mrb9i70bYtvYwxGl2LY/vbPvwCkMfVhslX60f3722Zmuff86Ktz7apZ4msTQwLTwnDQNt+HPvTR/ej+F/7b37iE5/9xhNP3kSId16580f+yB++ffvW6u69tpE8pqbX2LBrj+2Yz80s/fxnf+ELd74pR9ee+uCHCA3GMZ+uk2iU2EhrWcecm0ApjTFGL1ZioNrQxP6cGOBlZK9sLlNpAnhJgtm5tHaUTBBKtTQNaVSwsXgz/6tpMbu0uOS+hKjObuACUiIT4JYYxIApG7sxK7NGmGxhiWw0TVmtEY2So0EyR3E+DPq9ORlxKtzqsgJBIKbiaQkp1Q4B6gCs5IRKRAJx8mkGg9yyCbEHkDIRrNg6eM2ySytXp9GWKZJUn62KKExES4hXieTCdqoHq8VEkjEZpDoRCdWhilLElz1rwhf8UmiYtjuSx3qU9UPK0Nf++V57xO5Ozu5Woe8CnlthS5QnksHh4kZuUA9OnWGhFs2DYeZozaWa7E2z2DWUEtNU8U+RfZJzIBhYoV6xThxG34PsoeSKk67J5cRiett9nV09qfxfuv7C7n0n36tdoGV3c+BQIIkLVetSRrD7PrtdZPdhtDuntUSbqkMzZwETM4l6JuYgMpemMFrfcXQF21HXm5ZG4qxtGIm9IrXMArECzLiqZdMaLiYGFhEpwM4isfSAmZlExMTdM7GTEpGaakop9WnUVsJKdZPHTQTNWyIPxAbPWuj+VL71/iwz5CBbRw3MOv349tNNAcG9TKrA4TSxF8jZvMqu7ryu2CdXDatiOoWtxcTmulv6mDIvmdCeAhVx7aYUHp2Wvj0JV3ZVKSYwFJtCIpqWgXvxp6zjB8YFvHB297XSUXfrS7N/4421fPx5/rW72VNjro03Gzrr5u1Lv/rV5bafHy8uNsPJnEYsmEyCRxz361V781b68ic3X/lsfP/HaH00O1qMy63cuto98dTQtsPD89gO8LnPZ83zT8ja0iYri7LlfuW65GHtyx75agxHxK1jrrM5jIyEvGGNSD2n5KQqyUHMYiGYBGbOAiIP3YyIPGVikLA0kVK0kHzr7lxle4qwu5qNw/bsLDPEvWVibomYm7ZdcKJgSuYCYh/F8xpemMwZnmtGT6Hug9nL/lYuT10nTGUyrSJiO9sxYiJWFFYNcROTj2gW27uv/u7f8NE/8u/+8J1f+doMyIPKcaNpRWoYdD2cn94/b44XkfD5z/7in/4bP/0/fcnQfXsThjE1Q7gGUuecaPhNv+F9Ads55qswdtS4zmbXrrVNiGTaXfH1Mo+DDOIpyZDTcnm+Og+d/NW/+D9+7stffuf75ybjG68++j0/9m//rt/xO4fTuzN3JJdFk8dTylk8r8/O+9X46Te/8fkHD/z6MxExr5fupBwQ5nNPnnN2a1gYnjOCxKwg14L6lHJ2QpEKDlyEsB2ASRlpdzVz8kK4qrA0gSHOgAVzE57IGXsMr94O/q2GkabtayqTPBizaRmrV0AJmQBNSSgEdmMos0GNzQ1MwcRMokXSaFFSFGuDdkiIHA/GkHRQJ3PKVCSkmbwshrJJQmBgKbvHDjZn8kxT/6mAcE4VI3YCVUmdev/DHZGgVpS2iJhqG64C0bsYbJUf4zJlLVWnv56xXVlMkwh2hcEwDW7UOnK/wdFhN3T339od+9bXYuoWOE+H516sv6qiQR0dnmBANzDUwab1iyAbuTeGaGB3Mm+YOqAW/0aP79I07dt17dD0sZVqUB9l1ZURsMM/7S7n7vyUv05DR3qYzO2+7+P18QEoHXiScPOJdT0daNEArfgnFe0I27+yLlyT0oQXDmamB5ew1oi7ATRQJdoBINJkkWkrHqFRrfd4/eqT45uvXLnxbGtuy0dt2fxFHBZTVooiZRAIIsLilkezbORMoVDjbGLnmxmZi8iQebARIVpOmi0Qa2Bz7scBgKdkqm60SpqzbkPuidtAc/NMMJbgyFTNMaT0gMvS5ynxuXQDy2HugxrSSjlejcwO8iM2cocHZmaqw+Clh2mVhkIkEkKZRihrZcKS6kcwS81mpx2q3BJFIQ7kSogIsDopSExmbgCZlXybADLn4jjm5TqzSwiZnZYgktwp1pnnMzq9OPqxXxyfuX19ffci4eEsz5fjw6xDTzZul4+Wv/aJ2XMv9m+dLo7bFSTqaaInujDLdBEb+I0bqbt691f/0e2P/MY5y3B8Mtw9XfQDCXVt69fmjih3BjlamLczcrmSk/UJN2e4skn3jIjGkUYr1riclamRrlFCjAxt03aOQRWJsUQe2Hv0lnmy6mYaMQZhEKSdUSM2ZrI1N9BwhL4Xc0g2ZFInMx4s05muELmxMAMFg4MJbSCZB6HEpGBHBAIowjJZciRCBrJpAgkkkARHhnrp8tUNiwgcSQtBxAi1s4nCTxHCIGia5BkuvNk+fTv+pT/x+yXLkx/5TkrL/PIbzHP4amujnZ8/gMpR8+oXPvn/+qXP/MQnHzwcroX5SfYh6QxxCXNuruSNvfCMfffH3tWPDV2TRVpjQGybeddkp6zU8ICjk+7idNiMEd3q0aOzYYhd+nM//jf//M/jyWf+rcXy4mx967vfaX/g9/woTpc8YxJyG02d04ZSuuj7s9x/7dUv/upbD6ltyS3TCJIGIYLcBplMWXLO7BBm9Vw6LVymQm2/cYuI0n4LK+JvRfsbVa2E2V2BwFCQqSNyScQnzKhEciv5DVmhXl6aR3JXImGImVXhJG4AgbpqVnUvA6yVZRnhOXAOQuKujMwyqCS2lnOKo+qQRmuDtpITp55jF9HuZjwBbDMTJ2EJLKRaUmRhEkDYKblxHY9gZ3dyhpMRGxntScNMzuSRcxHBhSHVnRYMg1tGEZYtAz1VopXcU42ChmxGDjIXcBHEQF2h+/GkSRLIXaGai/2TuwuImOGmddq1ZkyepyqQQDvLOxIvopu7jRG1myAcTHXi1CimKSB2g5OZ58J1maKdFKMFrxIryViVwG3yDGbzDmgZ0d3NAIqg4BTcyAkkFcp0V6ZAzKki8wSzwuNgSO2XFgEWBzmEvC+dYKvjLu4OB4PqUAuM6xSYlSnH3TfdVVM1m9xHzEsZSdgt+l3Y2K3OXWg5+OW3bLAwpkH4ejEceyhoeky3U/1nBlxzg8jcXGzX149PZqDzMb3n2vUSsmLbkumoQyLisgr3c+2lH2QGdyMjK59cQq9ldXdhGfMAgJmHYTAzEcmaxnH0rGbmauqmjmyeRt9q7t3D8VH9RuQixVSsMueofotSRIIuV8CYQIKDcWorkIFzqHlrQZOkSucI9qlQkbMq6lhlsRiYy9fzCaFzL4DEhDOUdtB0Yu2w+8Ugo0KL9zJCVzM4ZhGqvC8G8cE1mhLS5J5B4tQxMWQjuJnpDuQdL8v3cFpuTrcPfX5ljvt9BGz0IfiV1TdfTps+NsF4O4yRraFGJAxZldizaQydXb999sanr73+0vGNG6f3T0M02yrdOpqbr5lmPvJi0K51cI5ITHRyHOZNiquwVuuFfIU+5WENMljwoY8xhrbjIO7KHCwapKesCrY8II2+PNeU82zRLRZmMC5tNCNyjuaIpMw5BOe65w3u1tfFvCW23vgCHJQhPOMQIAQ2cYTsyUkZKuQjIw+kXHpKhAy4l13HMnEo6j1VCg8oyglFLwVOzmWaE6AMElIE7sguRpodhbA6f/U/+UM/euuFd/SnPXMX5iFfXybfsjbdW+sH5scy/o3/4b/7U//89Tvjc6F5l7baqLs0VgAMBilZOv/XvuNDN2/cevjmOUWOfLwc0/GtJxaLaBfLpmkG49m4dY6yHjZ6/uDRaXdMf/6v/OR//omMW9925+EaRx+4vv3sn/39/6b0tLpibbjhOJUE7debtSqt2Lef/rWvfvrRK7OjG8QMInYmK9LupO6ByuxQtV1xd1fTwvmd6IF0UBlUnLbKC5HVsZuptDLslGZ2MshExBym8uUS5aIAZI9tcRX+KdUjKu9Kq10x1OAlDJS71d1hmSDkYj6SRTFhTaBWOAvlwG2gNlAbXJhb2aaMUQiL+nHjdhCOAgnRwBTYQTAxLz1tKeQLdoaLgsg9lP0dANSLDry7gpxMd+TqqtlERUtj4lu5o4wtVQsjEKTQnokgJA5nlpL1H+5gl7GDEpoP+8RVlY25mgsWpf/SsytlaikymSeUjrAHqUtAMsBR/NLqbyYZMQDJYKZmUEw8qPJ7LjgVCq6XHO4Mk4yGVLyAhkLsUo6ZC8pPpWu5a9fyFEinHY/JJj9hsPhEPa518PSt8bbH9MtL6PpjTzhIaB7/0+57hUvR9+Bpj8fdx/Q3Lr9XSd4PQr3z5U/cveGu3ckhKMYmYySmMHv/cy+89eWXbj5xO7pvLi5Ix5Pj6zHwMJKaZgMCq2U1mBmTR6rFdJlrYwjHEtjUCtTP7BnEzNPGp25jyqkfikW4mg3jkM0dwUCDq7HMZl3N7LxgHgVstkLCAiAomrTTZrHDFUtPygtiXBpYl/k1PiEtE5O5vFBNd6eIq6hKGT6sGwNNOHNxhyCWMpJBE3uw/JcmyejpIZWRWKuB6tlFTAQJk0QlaK/aNb2sdUtGEdTDF4mGhlNUv5j98EvpqiCfrV/qjm4mu07cNDhxhDxu3vrsL8I7RcKoKfNJ14iwWW9h0UpIjYcm5hs3cYeXn/6laz/8I83RPHeyWa26G0dN19EsUr9VDrKYZ1XlwBLCSWvD0AsxB/aYEwW7gI5I0DEAwULg2HiMJuTEzMpwpJoDIW3Q955GV8vENJ87MSIXbIeJEkWzCAcaotJiqCDoAKSQgLHPmzMWIiEKwSVwADFx09JRYWo41T6TOAkyufVweOnpmRUQjUjg4rsNqK6Zokm542M4PAEm3iWsqOmQbbV58/u/6/qP/cCH9fW3Zsddvs368mk7Dh6azcO7j9J6tfraf/nf/sxf+tWtLr6Nu6zD0DTNYBGaGeoKBwe4YPO7vve7fIQQWMJmuY5xJu7r80fX58eWNEB8sIzthQ1nZ+ux6f/sX/l7f/Gfp3jl/c3mFNdurN/82f/i//C7nn//M9u3aIbGmmEcQhyXvena7tHF9r/9+5/+Sh+e/65nvB8dXHSMKwmlrHPVUlVYkVFUA8itAtBADcA1DGPqytDkp1MZOkWcs+ijV/Cw8EpgRLUfXOb/p/kim6RRcDnA121tIiQ7HOylnVpM5R3mpEpmDtCoblbgXmJDIGYmJungvfhAaFgbsRi0bSwGb5rYCrfBdwH44TpG4TkNMYEZxEbCRMVHACBhImdncpMySqJGpc1dRJrcUcYHy51eBBrK5jRJNpSeoU+drmkOpdYMDnJmVK9YVb1cmx1u/rXU4b1kwP7U7SZfCsZQI1YhsVu18/Hsu/pvf7ZLuJuW/ATtlh/qNIMaF+jf3b1KP4NozxoycgfUYRCWYN4ydeVn0WAcQNFJSr7rYCJBHezgx9isqNkF3N2oDiBpLZbcJ4Ocb/mYgih5bY7up3MPv/JjSw67gdLpEXRStK+L/HJJRI8pT5Yw/bZ4vv/ZvNx6dFANH1zX/T80JYli6qb0nR/4UByypnS8uLW9OM3LVdaeZDzquhwkE7s5VD2r5uzuxOwilQ/gEKLql31Q+CuDg+ig7i4EcuScy5rTlHPWatwowQxjUg3czGcskr2qCB4c+F7SHFMMruNstV3KRIBa2RqIALp0lqd4CarjflMKBnjRyZu6DFwpDgUeqYQoYjgwcbWofNxuGZWoK1y1OHw3v13m/CsOTlwq7zI7+FgD5/A6ehAjEwYyK4xmjpXgxp3wvp62OVOQ6wIdPEVn6rahmavfS4/60L07rc8DX42zPOim8zaPrQSCQmJo2+bi5DguXlh95Rv9b10eHZ30XdOfX3Rn6+H6UYzCOY+wK/MZr7cIQUS4iUOypm1z6xQT4hwz5uUjTpa3WyDmlbgEEeauoUBOJEI2CLM4xJJiHDhtsHWzkXGTZp3z3ARTrUoUAprMWometMt5smdKwIiUqEdoW4xHHCOIEQVM7C0vIChTIuwcaVhNtI2BCn0IBQ7LRCUPsioi6E5uBbzbZ+MoaIVnyiDizRgXbX8xfuS975l9+3v05TNrHuWvvYEHr8fZs/39O/e2X7v4xt3/+K//1D+4d7NZXIuJMlS7dhj60I4Yg5E7hJk9jc89OfvwO59cX6xjE5b3t4ujbh6iLs+OT+bqzkFiWnk/BBrOHmy/ce+r/4+//lM/+VLXXXnfaHeG9kZ+89f+6A9917/1w7+lf+P+ML8atxvRIW740dZ8PPPx/C/9s/t/5QvP/4f/uqK/l40YHIio6iNOaFtRZzdXEBOTwUBCVLQgS4SYsGNHIYdPrJFCnaHa+yy1D8pAUIGkSngw2i9jqu95eU74sYdPlN+qwAWH55xrO8hszJpzLuRgs2BWJ+/ZlOACA7C1ECm34FakEY+RukhNlHljKdAYBU/UT1uurRFsIqJSJAuMSBaEAlOIVZSeycHERQRTiEv/uTYOd4P9TqxFQA11GNjLoFaVzfLKuNxVCLi8YxcAgSaYs973tQydnmFERDYZslV0mSqn2Ey9avXUfZ69ClAclGGAURXhq0xYBcidyHzLWsZEzWAKKwP2ZjCxIk8IqJtp7e4lqDDDXWEOcQ7ghr0hnUNaplY9WBCxACq4vxSrqnLs5RhLpfRYSVtiFYhMcVByA0y7YPnYPunuuzv3MS2m6Ze+g5Afy3F2NXGtgPngt8CErB4kL2SPc7gO33G6DPuynS4Tgg+P/vCFnA0Rvdk7nnr2usf7b74+O5phHIf1GedkGNfrc7KEptkaTL1tIrM0EphpnzE4MRePx4kaRkRSJJbrLH/xRFLVYoyoqmMaNSmYwGzuySmDVNAezTJ5YRwUbzBmMq/lLzkw6VtJRVamX5VvWkJpvTam+yTUinNW9T92Q/WXJncPXMfbuUyU1cSTDBPoQJNfQ732+9M4gdEleSrOCsXjYU9KR03zqilk7UCUBsjBO+9XBm3Fg2NkawkawMjQ+VNvUWMMsq1gtt2OcTa2JkOr3dXjlYPHuylfCedPD6GbxTDYRiLcojUpu3No24bsZBGuPD2evjHcudddvS3dHOen9HDlx0dNk8d+mB0tjBFjzCIcGnV1IiExAQWkEKQ7sn4MllQzj2sn1xBIIjNzEzyIiJgIQjAWtQQbKa29P/dxaeaUr5CTt62E6opGlLkJ0GK1wQRBaJQa1QCsgR45eb/1eGGxIxi1EdyBAhguLLOWxTO5sMANxMgOZTgTp6Jo6EWOshqG2S7zBnuddUXJD3cYyzIiaD7uU8LVZ3/ib/zaDz3zh1/8zd9/7T3fxuN6IVfOLt5Yn915/ctf/8N//TOfxIfmi54srUOHsW3G07HJWRuqC4k4NHl79l3f/sLNK7OzVZ/G7ZV4bBYenK5vnJw4RUfIadR+PSa7v9p885Vf+al/+M//wdee5JPn8vDA4nP2aP3bXrz5x/7E73v0tdOjd7x47R1Pp9c/j3sXG2CTLnx798/+rc/9hU88/zt/8NZV/+x9HaPMD8sqr7LMKAllWZzmRlYbaQVNKuh0IYLWkMp1W6yaFAwzd7gErlz+CeDcRe2iHUtUS93ifPPYXnuok3WgMlsmDbkaBJTh7uKRUdh2YHWYl8AMy+rGcJhC0lyMW0IroaGhkbGL1gSdd9pGbhrg+fpxD5foorvEGKgRjeQNe8MUBCEQSw5MzJA6HM4k5uzMxSa4lLtcQeUCXtVOBgBm1yl42mQGU3q5NbOfwvH0z2rd4lVXvkTfyXkQKDySQ9iz7D9T+KmBzAtdlAhKNvF+QHQJiwNQCkv3wugkdx/N1bXs0QZyK4rftD8wghaZ72JDoczsVmCIEIgjSUfcindiLYWWIaQy6WgSQYwCQVDp0GWliEJlX6FS0XjYL9iDaDrtt99ijJwmejNPrfFp/9wFu38pdr17h/LX8NgffILueR/VqaAAmBKpw5h6EBgulXo46Cg89uTyaGJcj8PJ8fVnr1w7f/V1Hfr51WMbhsgaomTj1XajOUvbaQjzbuHqIUgXG54I9E5Q90rRoPruVHjaZjpkS3U2dxzHcRwtaxrH0g/mIE6kbqMjgywEalxiVLMgAjUGZXciDuVM2I7Kug9XpfQ9+GWFDMrPPMlzMTERqV4+F8y1teyliJfDuTefUs56Rcyn613K3yk9sgJ9HMqevS2/qxw8rhPGMpHU6OD6Hj6fDSx1dJuMyT2sHsrtc71mOnRBHupZw845urQRt/haj+Yd2v89ZuiD29JeHWzFx03uhdtgCbGdO1p1b4+uDjeum2U9G9qnuzifB2k269XxxZYijZvtyfXrj8ZVyxHgHmrDltjTdsR20DyCQyOdz5Hi2pdLHZcEDaFRKcTtGcVQjDy5CSSBiJSgS8PqzHT05QO3zGZ0dIJu5kGIvGAVBiMEkIiwx0AcjENYmY5kyciy0SpRdJjkjoRJvF4VYWpaNlMDATxsLLGPkSh4HuHJkUBa9zGfQA8QWOrQAIXaRaBqTEseEjnTKlpIvHqIm3/yrz/8333mj79jTs985/c+8PX5ev25r57+pz/dv6Tvl2azwTE4tVhaG0e70qAfLTkFIAHiYGD54fc8o9AH9+8eH53MjmOS42ef/jZuaLi4s2AB49R0u0lf+vKnX/uVn/2lN2WcX5Vmm/2oa7f99ps/8oO/TTYPFu95VxuPcP76+aOLq3Kcz79x9vKX//zf+cZf+wzCs2ffcVvOIns4ommd0zTSQpfvfa+qihMWzdOUlpdR04kiC6pydGWDm+ZYi8cOO4RrM7E8tFR/xR4PfuBFUz613JP/inK4HBhVYzEQEEBcalOwcPKcLbupIXnKxnmgcYQP2ZMhpYa0Ie2CzRudRZkvYtdQF/faRW+tuib6HB6iN8IxWBCK4swmwaJYIATxKCRMkY0ZLIhcFLJLsVlnHgrVDKijidhpU8Lcsk8AwOHjcZav1ZBcfMSntKMU0oZJxFGnLP+Q/jttYDy5IjrgJFwJK+WvcFyOwWala1OYO+7GBlJ108JYJlVkM4OYmVbhUUpah4+gAgpOBI4hdBRmJIsgC+EZcysWhSI8soqwEIsWFyum0ughMnLZ04yBOuZjBHJngVYiEU9gaqniDr8C7bt+j5EJHseZyyrarSu69KdLp+XxAPzY8e0/AN/y3fa/3UXiXTV8+fP20bj8P5nC8MzNp/T0LFD2QFfb+emDVyMPUYIFToaQMYkXkYQYQiMiXlIkFO0W2i8sAICS55xVk6Wcc9Y0jqkfhqHv+zyOOefs5vAym1S6PkpIat1iUSJ54SGXpa3wmi5NXwI1xk4hcGrFl/SnAEgG9ypNbhN0Q0S6Oy00Af6FaX54VQ4zmHoCsRvNRRXWq12tcpCHvfkDUcz96/cv2P2CKfjkc+lTu216QUMQQgD1LsFSCvMbr+UXex5FREma9ijkcwYlNLNoF0fHcu29uNurfRYPY5ifuN80SpyDuudI1h4VEZKuWdCTN/o443YBytxJ0y76zTJfXDjHIE2YzSmPOSESTBPWvXvOm41kdYRuMZOu43lrm4hktL1w7S1tuA8u4pGNIE1jJZAKZcyYrhMju/vmAtrr5tR8DJ4d12neQYSITKTMVHh0TQJNEOEYwPDNmrZEmnzMul1zaAKHvBkpOtdXCVVfcYE0HgKG6LL2oQH3ZBlIpNsSPUonr/T0wQJMw+auVEs5Bdw1RiIXS9stzymepJ/ZXnnp8x/7dn/55Od+VY76t8arP/fWk8PVE5OMIYIMhMGug5bw0cbIPlpj0OJ/5wvxDz77zKPVahz7G1ffHW9e79obydsmuq/hOW/Wa8/+jW9+/qVf+ImvLZ/80sP3oqO8XmJ+y8b1TG+uvvLm2Sc+69/m/MI7+fOvXZmlIW6++fUv/Jl/dvw3+4/ixtdenPcnt8bz09wFeCgmPpcWZfBLjatyu+bS/Mrl/imhtgi/ljBY2BBMZmXyhpkUYPUi0EEOpl1iXDWCwNV61mgXyEEFTyq33mN3xtRiq2RHp2xuReOSRULr0jKCmkchT+6UM7JZTqnZJN72vFmN/WbMgyBzw2EW/aQJi4ZPZnnW+KzZf+D9+7FtLIi2DdpIUSgGawIkiARviYURokXhwNQwhWCBwJxD0eqdSDYkpY/FZfqQyMnNKx435RsT4cYrH9ZN2fesJvfJuMgyDp4JgAvBdVf9PlZu7XBGIhTZ6wl0nUi4h01MJ5sgVa86lqQoYjjs7qqF7+amUEU2Uod6VftW92xwE3UrYlFOEmLTdq3YQsJc/TiGmWjrHN0DeyBqlMRJmBjE1VliajGhEDKmFl4NVr6rmvYQOhEZXfonfStz34PadwKM9zttVc2ky+fwMWJXgDnxHjAof6gGFvW3l6ols8sRguwAhX08L6DJeuLwT+WHkW0WF52yLc8utmfXn3tmPNuYDpnM1CBsLtkQiIUDS2xiJ0Vu0LK7uzAJG/EutQPgsDGlcexTSmJsqsvlcrNdueZxHMe+L9VwCIGZ1G1QGwHl4CTz+bxoLJXjFREwzMytpk3l7JbTzaAatJgA2jPAvf61ospVlgtmLlKL4IMmfKmDD7Kcg1Yx9iT8av5UgPexuHkRAzoNr5eXf8sBx2oPMFUDlXnBVPTbps89OAB3cgxE7haNiUkjf8+D/oMmZzy/rSnO8mrpymbHlJRzd0Rn7Vz4GvzzPA6b165L83H4E2JLRE39bC1pvkBsKK4Djo+5uULXrmIcvPH54qoNZuPQn+brT10foG0z227XrROrynk/bFZBMpq2mbfHx8ebaOQxaKbZqKN56nW7MmootmlojThIZBYmZ4CZqZsLMasnh29OkbauoxI4RjSRhAmsDgaHSV/bnNE2nFs/mtNy5eetbZeeB09j2m6IY0bgFtwSArGUEk04RF60kKDMTuwQJYGN5JEA9wzN5EJEBgJJnfd0GCmMHKnyAsgAT3lLwmiD6zAQc9y+vGlfpo+xBqyjgfFcai+WnhfjbBvGjeeoGGACdhW4dqCRWSyrkt+6cfLRD3ww4fzJmzfymJZxdnIya8ec3nxNVw9lfpJMX/7qV//yf/0Pv7z5zq9ctNt4RfKqaZ7cbsHC23b2dz/z+nfdeOvmN35le/vbrrz36bnrp/7Rl/6zn5LPvO/7ruWHD15968UP3WcyCrEL3JMV3pVWm7KJZnx586pFLWBami+1/MUes9HdWL+VbAXEVcGdioSeTnSTepswo1j2AeXGkDIMwEzfSjSXalfQs1axJ3YBExfLLIkcZhzm2SRl82TZE1mEZecxEyfYmLEer2zGuN0GTZF026CfS5oFzGNYzPyo2+fHbzxo25i5QRupDdoEzBrpgsfoIdCMkwhCZAlUcOmGSVhDK8IeyQI7kwuKsqAHZADMRfLR3BUHclHudexiX5sUdvdOd8LJrOj11kZmKX+B4iO3L6IxRfUqN130CeBEdXToYP/ZCQR5DefmOp11MxShnMIzz5rdSeGai52klmawZi8VcLYim8vZshkKC5yFmo6NYkATvTG0ThxY1Lgh1uLb7GKGWGy19qL+dBhPy9pwkLHSYQm0W6WlASyXqMeHK3gHIj5Wc9YAWhfbt6hWd6u6/DNQgX1qOohCRSvtk+l5E01ip+1wsJQJkj0D1Qzg4K2pthSJVDXGMI4jhAOJZY/EptnnAUPfby+4m8/a64+234iNbVOeNTEhk4xb7Va9PXPczuKxei7azDAMOTHHKDENydR7HZ21oZjGvM69a7K0HXtajtsxDykP69OHEZzUMtPYr+LxFW5ksxkyJLOs8nj19kkKYEMwdyKIwMEKITEo6CCxmFKect7d6lUu3iHqAHK9yM7m5piScXWhwrspKEwZQ5tGxS9T3ssCPrho1YXEvLQfAbfqElKnmyBgm3Kn8hoAUOy8r2phIeLu5rmaDB7i53WCj50HU44iljbW3PjMzR+586W7chwbzRoyRLrc6LAd2zZTM2/n85vv3bz2LPBZJsrjT/rrV2fPfETpiNIGuLedgfypGcdmPh81XL3i4WixXW8w6/pnPS3teGh0u9mqdjJv2Il402/yxVKGPrHb8fFi1rUhDgRpAltOcUy0JrkC28JWvs0jGTdRZm32fuZt6ddzYGN3j7646tSQ9t6fRQx6lsaRsAVdOW6vziyQUARaNXVRkiPxAN7mBOmO8uyKPXyA5aOADEfuNzE2aga4oAW8kMVcgiNLmBGRcXBmMLtGVQUFWAKPRYZlX6JUgScCmKwhZJhZVuJx0udhEBNtXERoRFhxDMTRiL0nbTuHknWZgZjYDVnd1U1BBG2NcksypDf+19/3sc3pl1599RFheCLO21/+7MXTi9sfe09YnmvzxLim5Zuf+yN/7e/+41ffjSZKaISMsBjzyPDRoyD8zNlR/Kev/dh7Xr722ivtF29+6s35X/3C9bu3PnKSHsk82NH81lPPIp9C27FJbqwOJi5VMDlpQViYSm7KVrupoU6eYjcRUOhOQgxDzomZQ6HjTUARCIV7qWbqqCG5kFlQe8OCidXsroB4NY+rFcxleMmc3JlARgKwCQUK7o3LLMRFiB1RzEpMPsJFR6bsGDMksWSxFLMKU2w5aMqeHGvFeQ48UEPDbEWLuN8qX3ojHrVt6HwRvW3G2GjTeSu2COjIQtdKsLZB5BTE2sZC0CAe+y4Gi6yCJEIsxmTEKRS7CJiTl9BTSgH2vMO0SolZS4LigW5WwIgS7Ur9rG6+W50TWFNDyGXxYzPwTnmJHLsJI2eH7nqgNZxP0acIsCpIDe5k6jnDHdk8O5myGUw9O7K6j+ZObpLU1Sgbp+zMTW+ZRJpZ14SjNB63OGpp3nBwPnJuI7eZWlgTRQI4clP96NydywQg72ubstgYpnAmmAen4jwrIuSm7swciJM5BSFXy27T4IlP8Otj5W/durX4xLOZOTEdzEBP+209ZeUlAcVKYz829DhivNumayH1NgVzmSrgg/J3/2MBe/OYRYKIbLfbJkQjSxqfaTvaboa4eOE9794+uBtsM8jM8nrUsQmyTg2P2sW1d88mRcMenPKYzDTGaERpGK3wjt0F7TgMw7hJPvbbMShd9Kfbdd+vN3fffGM+a9jRNE2/3MSmNbNh28/ni+V2BMBB2vlM62l9vI58jAhXY+vbsIjyhZm82FNP0ZQLcmHwQ375IU7Ak//gt/zc/UsOJo4Of/BJ3Ee9cDov6bC4MF0+8t0bHs5tA0W+wwFEpOSS29CoHJm9cfLDL63bJmu/0VmHwBFQxJCG3nwkart4Ep++iS9+rNv89EDHCBtf/v3tvZvh6WckX7Hzfj7fgC/s6rXccpst3LhueVjZap7ReqCnrvIr5+P5hlZDWCxiE6lrcr/J5DxvFu2RLTobR4lt8rFpm+16cCA0rXJXpxmNvR9wsQSFgIV1kbkoTRKDvInNrCWCjrcVQcdz0x79fYhCbkFCaBfciTeqgUjaEIXA5q0ImZmQkKfEyTfnsJE06cCIHQfyIMwBdZLEnQIouBagDMxBc0LKpaOGSpkp6a0xyKDk5S9eZRMhoOhFOdYdUIcACiWT7KpgJpgzFS4RI5CoOcODWyTJ0Ehc6TNggQEuv/5DH27ak3e9cIM4f/FTn7lKeXjzivycPvOBDw5nD9ODV/7jP/eT//iVZ9uTEwdy2X/ZpQY2BmWe4R9fXPuFT16XJhJfW/FVvXk1kvU53Tq+fu3J68ezt1KitpF+2DRNVzG3abHJzinE97sVqErz+2N6BeZKVYgGgGqJnQzmSaDGmdkABBawFjISVdk+FFRq5/25awIBVX39MkQHEFAVQ8sxirTOrYROYsfSFKZJCT3OUroHJCAxksAhNt3cbcjJxmxu2VTUXNy3FNeGZbbdmPLn3oqLIFfjsIiYN9J10s5JWmsbbSJfWW4leNdyDCEG6xoKIYaAWUAUBEbgsAvALBxYhYi4zICAqGgzQjhY7S4ViLls21ZOnZl71d6vnBmYO9HUl93vbD7pDrl7BXInfAwHlZ36TkLxIOg6737WXEwOOLupsRuZIWeHsxplhxprNjMy5TF7yqg/J81G5jzmonk2p9hEP+roWO1YbeE0d58bC4sEj6DI1BACUXAnllC6uVJFit9GdnHfRVOacJrHgnR5FK2RKhdzAFXuAsHund0dPNk98a79iN0awCUE1Nw9eP34Sq8tb10mfN4eZgBMDpD/skdtUx++lojMvchfdF2X0pjVmvbaMydPPnzljRc//LF+WNqwJGSiGGNrPGqfxOdDTMcni5AFopEQA8DBnBTea0qqZq425qwjxrHfDnmbYMvletyOW7+Iyr/88/9iyOP7P/xBlEQjK3exibN+HHRMAIY8PPHcM9y0mgY+6KceCIHuSOfAjiFy2LKtP4HqSBIqpbOgvqUzVQifB2Kf03r2w0t4+M6XlstOl27/u5IoHIZtr4ha1VkvAwO0v6m8XLvHk4nHrp+RR49AUN4IP3Wv+YGHZ1kl6+imiSQShxGedEAeOEZmzG8fj+//WPrV72P/ZcX1QOd69tM5/gBuGW0Wdv8shXm047YJMn/Wwnh2ereNbFnD1cXtlL/+6OvSzmyTx3Ufrhx1R/PRcmqbLgiTGxM3TXLvFsfOFNsWRwsMgy+ueupsWGNMlEZdngIIjAyWJlKQ4jkpwtI1EBa53XOgCxF7aLrxTfKslhxXr5lFRkvNUaCOWRFG9sj9kAjUifAJSHskX58jZfKRwoxcHSo2BzpiqvFViBsBdyJioeEhEY3ERDaajpaTQ90yvPbYnAAyaNGHE3CEgRlmudBfStvfUZ2pS3niRmBGdXIORGIleEO8uMe5OQymZnjyytG7n75xsd5sl6cUbHHj2iu/9os8XNyXxec++feOWvrxX7j4268/394SHdgqNSoQQ2sNScyRh97CYt0uBOTNFZ/NW79Qk9jGdUonzXD9mo8mpH3TtUUhbLo1LinwTVIBJfhOOX1R8quCG5caVao6zeQKB4DIGUxVDRFT68R3t9XBa7l69xHtGmRUBeP3N4xTuWuYxIyZGCCWhsOMm445ErFmcs8AHAwSCBXvO2IjjiwxRE4NaFRuFJZdVY0Lh8nctqbAtnzcm6umYXol+pz9OPgi+FFDbbRF9K6hhx1iwLyjJngXrWs9BovB26MxEhqhRrgJzKSBEQTESig/OzMYym5k7gFE7G5U1EjIaKJwliDgVjTYatOj4AZaQWMHKsk6ux/sL1aEgFC7cKDJD6k8i8oMT/UPKrG/CDR4qXrVXZ1MHeCkUGXNUHM1VjVVM2XNSMopiSqS0jhADRmcsrsxxRCbpqVZ4i55m6hRCSpxkZtRGtZAIsGDI8ADIRCEKkG7hlEqPk47X1cvThJCpCW8PhZ3iWjHZZgiMcrMF09tx0Nm7hQmaiNgt8OXrfvwRqi3g5MX6d/D/Xe3JX/LkPB2DKcYhh28yWXsFHCCpizMcFbL4zi6Wwzh5Mrxap3f9+KH2cbtgztsRm1rmxUSErbGHdMmt23Pxwszp7w9X2nTNE0D4TEnZ4jIOG5VPY19n9bDMKy3w5jTOPar9XJI+e4rrz16dPrtH/n21WY5Pz5Jhm5xtZvPx3F091FzdpI2zk6OVmlATTzqKasWCJMo6HRC6tc0U+ZpGGpKGcuryikqAMUOaq4Y3MEppZ1k5mV61GPXCWDY/pS+LV4Kym02ddyLhheK5H/Rij3I1HwaOQAg4TFN77rIMsXGIlSzrO63v/2N1Ea7GGZBz5Y2bkPbMtM4jmpJPJPqllazDuN73/Pwzu8Kdx35deuO0Pf06JMI1/ha3J7d0WbRNkezJ56w47i9c49yzsMoV4+udIuvf/Pzz37oA6+9/Dqvsh5pmmUKMj+5YgQy1TxGZyH0wyp23XbsOURj9hjl5KrmEStRrCRtSdX687SOHCODiKUOqzGBQrFUDPmKu3Fg7x+6jtg+yqagkdMVcRcNlJizmmR1yut1NjcnnpSekRR5oJwspGQmWb0zz8o+pxgZI0GUiQI7OEDcjb1JyJ7ZnSgINEPELRcPzLqL0SQzTw62yb2mXK1iQ2nkpK5wQdnffKeEB+ZIBid1akDqpCgCZw3lYfPCU1ePY75Yb7uY+zxAhvZdNx5++eLuo5euPvPcz/ya/b3Xngw3rw/rU7Ci2CejTJYqwCRi5MZHQZD1kVEDCg1CHlvnnNMw5PTBJzzEPGzBQVR9jyDVwaLdplY1yvc3zGV2z3QP1QBQbhWFunsocTIIUAasxOqYMZHDYeBiGUIAUb0dZBI8mXo6VTruMAA7kZSeKhEZOEik0HAQggBsBlWfGLnltvJ6M7OISAhxFBcRDsIhsESSlo0AizV+8S4AK4XRPY00wFaUg6AVNKSLYPNIM2pD9EXnXetdo/PW2sZiwOJCmkhttCZ4E0k4B7EQLMbAMCaLgqLRG0C805P1wg8lKeKIxlwRZyrh0L3OvFbb9xJ5yxmr0lpGh+Q1ksnt6CDpL7ofdftjL5IaVlRYKj2WMu35zErupMY5a+9B3bOxZs/ZNVNWTokw2piRMg05JKeUMSYYmFrq2jhzGT1kiLFQFFZEDaRBLAQNLkISiWRiWhF5neIqewFzsaeoZXqdgzjY/WrcpcLgqjG4lNF+0PDGYSFbG0klKamPXWnzWImMg5BaPivs4gEO1uZh3H38JvlWj3/Vn6bCzcwkSE5j27b9dkPw59/xgi+3j+6+1uU+g0pfYHSn822epXXnV9qbt2ZX87gc0B+5aB4TuTtnzVk9u623a0A2m822X27HzcX5qu/7Ucf1ZnnvjeVXv/T5977vXefLs7BoQghE3dGVW2zjkBVE3DTbzfrm7ecH3Y+QF9Lg/oQcnIXdjz6hLvWfFex5vHh92wmkqkte5Xf21wAHCP/lFwh50fnZXaW3893J/fDjdulTSfRqBX+Qdu2O83KOticFBGM304au3A+//lR7CdSkxTo9GPtl0y4abvKQCsqkqiYhsnTHV4+/8yPbz1yXe5/S9CZkoPGbeOvvuP/2fO0aHry6hGCuNj5K640Og3J+72Lx8s996ujbXhRrjlfr9esXzZBpNGNumlYJSVPbdjqmvt90R8eDJjMrwIfMOmdGiKoKzfCRPHketV/6OpCDRJjaaqRJADOQpYn56MjYjJzGlQ9bpDN9RJxnYNN8TrIBkNMwbtT8XFU9KzskbaVfIq3gozFRTlCzbEjqlsU9dHMqaoJFn5eAwOyRiMw6o4EBLxl4CR1eNoZCdtRp0oaJQpmLIDiQq+SZF2/LXGV9ys0voUx2UBYXJzUnBTdkRZNXSDibvueZWzevnZzdu7cdL4Zhu+63LeLt9703XvkNF+v8U//jp/LJs5QS0DGIqLBk4ZYAgISZCTH7NieHM2YNwK7I3UbQQI1s+MBTlj2zGYUGmqpehH/rPaQ8bCKe7u6icl+AaJI1nnYuh7sZlJldmCcebyngyAsUT2DOtqcXgYloP4qDKv5Zlvk+fkxGSeReRrelfuXdLWls7m5iBb1Vc53sUkBBOAg3USxLE2IKSUSY2UlgrBVR3H9rp0ZhMXeGNEL7jBUTPAdJXXCFNYKjNY7Ej4ROIs2CdBGLJrYNda3HJnOjoUETKYTcBWGywDkIRIiYhC2wBU/FiYDLdNAUAMowNk0IWUFS3L1wd6YTte9rlgS2bD7l+IUCEVVdsv0uVMRJ6mk1E/MKRyvYjbKSO8yQlUxJXcw8J9Ecsno2zoqUPGUfE2dlyzqk3CcMxsl5O3qfXThKP1vM2yNrk0VISxKaIDk0OVBUBoRYILy7fMxcSPS7a3BpW3YuK4SoNAqdnQSUieQgFhcQOxDnYttXOMgTWL1boruhmIMQcBAvaL+74iAklyccSFHi8ed9y7D6L/v92z/gYKGzqppbzpjNFnlM7OE9z73A2q/O7rAOOg6mKYj2jnGzXm832zfeOB3CD/4b37vKZ2Nez1fbM9PQzSiG0HVg3g79Jm2z6jiO29V6HMfz5fl6c77drO68ce/e/dMHb55de+JkzMPV42tP3LrVbzN1pAQKrAwlfnB+9sRz72hOjlfDOoj4fnS6TIjWWCVTn2CnCHYYCOu9yvBJMmYXj3FZdezwhJCjaqC/Davnwh2Am2Wq7192b6CwOnnfZamvYjt8H5oAEABw2UsR7f+Kg3/WncknSM/ZfTQENXn/A3oW4NGOortIHIc1dKPZ0jB6JVSnGNqeh3beHN960V8MYxf97DU+/cVMdzx/jh9cifE3m0t//qa+fEYy41m3HdOL737X/U98prly3F25lk/XJ09c3T4ah/Umzpt2PkvqYIqxEaJ+O1AM0jVpPZK5ZacQiUgMITYBNBaEwFfIjs3GPKgSUYAzhSoiVgQ9vI1EMaMDjkBETpZHTg91GRSZj2fKuu23trzn2xXlByAT9eJhaDAUE0ptoQ10RB6hg+nW04Cxl+6YmgghiJSGv5MrmGdEiVzIsrBmzT1KTPHpnsM0MlmuhBCcYA6L8LHIYxEAyuTkHoqlCYpM2o5wBFRdJBAhOJKPAOgj73xh3FowROk4EBoKfrThlfQPvviZV878yozOhn7w2RXk7BP7q9zGqN47EZ65YXIguTl5iGVSNHA3w8W1+QXAQTypRwmeC/ZPO1m9Kkq+n6moSeJEB/X9pj9RHYhIVWvpAsBdVTmTixeB2MoVcmcvlj91b2X3DGevbfI83RT8dmUIoLY2iQlEIsJRQrPHsSfcqQR8d50GHhWoPn1CHALHEEQq3sIUIEYwowzg0I+QEECeOoURFQMUZ3NPZqomFtKoPdkjIAp3gWLwGHANuWtp3lobZNbwvONZpDaIsAZBI9wEl+DMFBhCxqEjN2IVKnLkdSNSXnFtzVYhW2cCwJp9arHt2+UOcmPmQx8FrmI+fJC0lw4X3F29TIux2k6jEe4+eOFYIWuRf6ZknBNo66MhKyXFmNAnHxQp6xbtduBtxmg0GFJGUo5htrDGpBNumhAsBVcxDW5CECKps6oVnKgPmRbQYZ1zOLMjIIMzSKeNkUGT/WJ9CLMyB2KlYojMXoeEdGp71/tzigiXM0iaKDYHO3BVZDLHpTlgn/g6B53Ct1dd3zKnPawOD3/pE1xORKGJVRBjxIvv/uDT3dWHL32F04o1mWsaNpkd5syOi+0n/9+f+t3/+/8jH0d/5ZHk7K0M55vMYLRZ4ODVdtWPw+hpu93kzbBarU7PTreb1aO7915+6fXl1q4+EZ969uZTz9yaL7rtep1GbZpuefYWWDL85Tt3nnvxvYsb19dDLyKueadoQUSHVePuBz7IdA6/YPmhGHaZKWpeTodPwAFr7pDVRX4AiRQB8T20uHOKpN1yObhJDqttrhKgUzqKisQxJqn63ZEcxunDhXKwPTF5DqRn9M573IqOvbsJN3HR9+vt5oyp86zOlPMYYtC0Um80BnSPupuLtH3al28Bn2W+MH3Gxl/mB0z+fc5nabOltsUsXHvmyfzqa2fLixu/7tv13ik1QY7ns9snq9feGpZrOZm7BAkBgOYcumbWLdK4CSJ9yuwAczaE2YwmPk4mNidsNz6OjA0oWuyIOTQBwgjMFEicJTBmQeFOVX9n7CWtc7qL1ZbxhMdGhzVyD6zIBrYE9I5URe5Z4IAN8AbWQ3uzree5pw3yieYcuhm1LWJTZJ4N7kxKblwt3EABaKfZh2pdXcvgqXAkZrdivOYMM0sgc6TijQNXMrWdDzsR7YzQqTKJikU9dFgE+tgH3n16ehY1IYQooMbW0XxNzdET/+yVl5xnxjBGOwxDmbgQBlAMggAyp6gp8klSUt8iAALjbdRgQYdt+PYncTI3VyBKo5I0UcH8Jm3IGnTdi0L6rnqAMHZmc0QgKpaaZSS63nS1y+juDi1zoU6RLskVlW1/HxOqZT2cQKXpWUMgw/3S0Pzh9iVMTBxFoju7kXENVHBymAKFTgwQkQC5Ko1JkX+nioFPObRXfVwqEyLTxzgRQYsLmbnXO96B7EbMqkjKDuKMVQKRseAee9ujE2sZs0CLgEXgWUAXKQbqojWiwh7EW5EgoDYzKbMJmbBVGS2gtaaS4PZkNQfQW97P50B2ykJcO6YTaO/MU+iyPUWXDDAjdzdICcam7E6TzKRZZlOoWlbKytkoK3KiXmXM6JWycp99UBkMybFMko2HjEG1zCzBJXKAyQzik06GCFhMgodphJCoJEHMJEzC5Lu+70Ft+tgCqK1fRoWdd4+iDcA69Q4v75Y1qkvpo8sug9lNRV965uNhcU9EcPfg7PzYYXkVGzuslg4K5b1Ax7d8HH4wEVkxBCPPOcWu3S6HG1eeeNc73/3oK69gHKH92K/cXZnSMNow6p23vvDJX/nhP/Afve+7Pnb22jdaC9vtut/0s3Y+5mwALPdpTCkNOiw366yq/ebs0b3lerM8XX7z62/2a3vu+aduvnN27coVuD58+LBkANs3X+3atqfubLl67sX33Xr22fOUEaLp0IYw5sfEwyp4swtgRISqUQqi0nyqbSRwKT0q9AFMbuCX0YbD61EbJESyy5Ftf5H270NUcCHepZzwgzNcySvYpXnutQB3rlMevr8Wh+9/MDesh78PJjlay761+cYZ+cI5EhvQbLcP2kYIY1m2cHXPRu1MYkpBuqt8fRbuPBzu/0Lmrej7maPT62n92Sa8QPyUzwftm3BOR9ePv/rJz17//u87u/+oTd7OT/Kgi1tX5WLTb4b1+fro5vUYQkp9EJ7PZmZpHEeMybMySN1j03lx4izjuyXJU0POSGPue469ixCcIgERMWQfHYEpEjsF15DINbtmu0n0kNKpLYkX12NzAjnSdB0z+/8w9ifNtmxJehj2ufuKiN2c7rbvvj7zveyzKquymkR1qEaFKoAACQIkjTDJKBnFsTjQQD9AZppqrJlME0kmUQORRsgMMlEiJYgEUC2qUFnZN6+77Wl3FxFrubsGa0Xs2OfcLCrM3n377B07dsRqvPnc/fMUrxEvkG5gLUFJHa4muUhaYck9eerhSQVi5JosdagqDwzJPolZqDjDJ2RuCWauATDigEKsL0RFpcLYKQFaavNJiNLghxlc4WqubgkkuX8wmMkJzLkSrqQnUfD+8p237n/4zsPvfe8nR2mdvNE2zWZea6jO5h/96Pn3fhjkNHbxmFFHsSyFcqTDRknCHmsFbYPP2UNCIqLaK3VlOHn9wYNZqNwioqMhGFcOLcHWYv7TAEdnIohcmQlmgpuN8nGQaeV8ggxs6+yZDbe4vaZKDPVAI/XzSODLg7twsNILRVSuUfDDdJj9xsys6QYQuxMUBnOnkWTA3J04N2/K2jeHqg0lm8bM1HKgAe5wn8PMJ/6WixiDezixUjI2cohLgItbhDsCsZGVwXFVV93xsoWukJisZgqgRjCrfEY2q2QmsWKrmZvgTUAQzEIVhISVOEpAHUpKckWl+zTlEBu7u6ungMWtoRhEXEHdCulHEYk+dtxzIBfylsd3uFPOpcoKWFVVvXNkko2oFCMl42hIEVujPnqvoVXqFJ17D06OaGogA8UEgwoJs8C5p2BUu9TEuTJtOCACqaWuQ1VVVQiZDu/gGJ4uk4dNPyXxkiYz5h8UUVlU80G/uOlx19Uc0jPGP39mCGa8JXcPYxGRU/atc2VioVKfapGsIWysdAcAqKqI3KI23BukgDuru7g3JG3XV7Pm61/+yvnHnx3ZzjdXMa6Z2TwhddLb5ulHf/ndF//uf/q/eOfrX3720cdsrti0tkaM2z429+Y7S76hrl/vNNWRuu1mvd3udrvdul8/Xz//0Wcz58997d3l/fn9o4WqdAnaUgBv4w4S1pcXl9XyV37j1+49ebKKLSGRO4eQM91HwGByGEqMBAByszN3NzVmhrlQAJAr0uFghIG+vLCyjdlYQ0x2XOVMwiCCDor/cN0Ud7ksCMbYUqvUqSQrpZaU/QMWHshoxBluVKpfWAZ33PfUXIBQSXF0z20PDexExH0ryzqq3ciDFFHH08Q30JobqRD667VUbYQQNbPZzGOErrtqjtDXQe6n2dVf/Xl98qTv/gPufmy0gp67NH330+oG8Ce621ZvvnXxb/6qOoZu2GZr8KLfXYXmcaMd3nxw/fFTXm9T08jx3MgsSDK4gqWK1KFhc2evAcCEoMaJawYvnCwmZQ+0W5Opba+NU8JMqKmqylMSqeCuHp0VDA+Vx4aZrIqeluQ70gvbgGhmZws6ns83y9hvdLfVfot45fGFxytEJTLXyOhBYtaCesQWq602HfRE0pk35IEpEAVlZspqJkhUlYxwNQvEmfdrgAgVSgP5BKDQr1AgISeHiUPgER5BNWDwDpazRxo4+8Ad7g7P+U/MAAdCb90/+r0/4HSze7Wtj2Zu3aKSTfJjne1O5S9+8Bfn6ETuoVeuLOX+Q8bEki9YuqMisInBE3qWWlDDQmQD1YyAanO0rDl2O2oYO1UYzxhW+rsw536XOQRmTOy5Z57lHMHs6arkdCE2dxl4cPb6mMhzgbtkhpOsoclsALpzmZeRERlBTYkDHOa50TCZTcl+b8lmAjNRGJ0KkrwXEoHJkZSAEIj61AeR6OhTJJIAc2Zl6syZQrJd1KiesoFFRC7ungjEEwVMzkjKLEYmqIiUyfIoq+eEdyZiSDB3c4MIkQczA0cIU9WZk4OUJXqFNghXXNckNawhC6SVVEvqRaipICwVq7DVwUPlbDkr0UsXTCIiBsLIgkej/ZaFT+4GIVn+eKayd/dUiDs494rP3JJmmS4Xmsyc1cmNorGapYSoiEqtcYfQGXdqvWqkeUrWJ1OD5e5G5gY3atQSEeWkBieuIERcc10RBC4zloorCvOqDiGAXQLDVVDnxRNYqkyoXRKQuAQsCsP2wHWR60VRGgYHg4lFGDsFpwCKDmYWYXERETbNxIW5SdIEIk1TZQwSdSPHwMJ0Vw2X3Nucoh0Ov5xJuvK6P+CFKB8DB3j2obYo15gYUwAqggl5cgS5vl7//q/96ry18+uro7hLdZ86Ct1KKSarr67Ov//JxT/+j//HD9595/LZ82PCar1NGlHVqGrtdHvTdalvLbFht15f7LYvtzfdxWq73a7OX20ur+cN7j++f/b4qD49QrU0t5n6rK6u1jd1tXj64lU6Xf7uP/i3Qj1b922mffakpCpGHmSKDKBYEnxr9A7c3KnZOGhpGanXJqnLzCVycOsgwAudxuttJafcwRKYID958/DIME5DG71bIMmYZDDWdk8mZrybYhwOyQuQBbpYV4/XHcWqM0niEth3VVPN5usXz3geZsszceo2uzCrmRrqL7k6CY/PXv7X/7R573Ny/1fwp3/S2wW4ZXsLelRR1M3HpjtaHHFbXX/6g9lbX09X57Oj0838MszOHrSr9UzC0ezeo/tXL67iZtf3/fz4SN05uIigakwjALhlQSAgTdHZYcKhJoBTSpkpqU/YbkWdkruSeedMVAUAZLn0QCwEDwEA+zxlKzhtPV5g1ZO8M5u9WZ0FpEXtS+p9d31quxOktXVb0ktPG9LWLQEp99ABBcNL894swU9RzdhrWJUJSTORmVdM6h6yqiFUM4KZJViC5hqcw1AR1yAFC1kANShh1ExnX9o4ZJyUSYQbgNQVajmCV6H+3b/1pVdXr770xa8/fvLG06c/3D774cnyVGkzi/Tf/GmL+n1VELfGBAsobJHmg+pDbqQKDJQgBBInEmYSUTKjcOPkNCMDpCKupUTTyAcQCGMRcF6RQ/yFCMTBmXKfozEjBgPutEeASJzgTMNappLVUrJ/MpXNNAHi9oadbtLpCQXZ5jFoba7mrERhnAkvjfW8qJlhq5OVXC9VTymlmPsmmapy2YMZlpw63A5g7L+bY88o29Mp913MuLflas6czYECBLgP3cHNCFufcTImE0/ixmRVIc9GYK/Za3AgaghVZYGokhiYhJjhMCe2zBZXQ2mCvo79KRhNtsjHIgt3IkdPITu4me/DvEDNHSw3TlBzdUnqyaFGOxd1V+NeqYcnUDIxCFt0d3VkPmAHJzJ3iJu5837aiBwiMgtVHZqmrpvQhBCqqqokVCzjsXeJ9/O+L0IaV0JuVD95c68pAQhImUWEXYelUkZGCg1y5oe+yxE9rqo9QH9r+b12Td5pxgAww+G39Gze/HkF3/W+9wv6Durt7LHtlsdHz15efOubf+uU5np9Ode4bV/CqN9dRY/uvlutnz6/+sP/6H/6+I23Li/Oj6t6c3Uxb6TfwonU3RpO17HzPsb1apuQ4vn5q+t1H58+P391XUnz8PiN45N6djaf3z89fvRQqlPrdt1utd1uGfL04mr21jvf+sPfT+Tr2CXTUIXMrxNCYAqtxjwyOfo1zV987QgeGC63J2MsJZm86QzstXLOCtlfeTBCcVdM5I/s1v3QAJIDxc8u4TZkEtIheFxoUCddJf2wirzcDIoQS6FjY0mdC6tGhCQM1xrShHpuRGh7SKtCzsHV4G2seBm4f/oZKnnyrd/87DvP9b0v4ic32MHrOYxjOGMjWr/07lW/26F7Kevd5tUPY/f52dlJ4HRDa68WDK4Wzfx4YclrqbttXxtbFXNvk1A12Wh0I1dVKDGFKkBNUx84ENilVgpY3WCzDn1nLJbt11ngnnJgCAA4IFRWRQUqHCmxGzuM9cr6C18Fpdnuyf1qfsxVgPlyftSvTtvNBWYr284Qr7S/otSSdW4DmG+AmqqRKjXH7gtU7gwXy8CJUFDyzJYIBtUzkLMmSz0hgghkiGPfBiVyWHAkF8+0ag51V/fcK9qcMoNioLJdA1PtbFDrY/fVz598/cQ23RsPn7xbWXznva98tNlU24g33/rTf/nffXstOBFoD3eLxlLlxLHhUnCACA4l1AQizhVueUExk3gghOqlLY0WhLWjdqoYW6ciUvL6cwdxycfJBn7mwnBmcmfmzByEkdifciymJI7kLrnEZLmHM5MxGRWL1eBOBKahhyvGfeflJ/chQD8sXkDhwCEATE4lKaoYB6WSlchcc2O+fHOVSO8QCtE6VU3JVLXv+xhjSgnD8zIHd83i/u623W9tQCjAdMzdHGju88nuhcMHUgLduRdSgFsmz0gWGZaxSYeRK0IgTeIIsMqpIgrkTEpc5yiuEJObUDZpqKKca+JEVDgr2AHMXInIaOypJ3lEE8EdaqqAuSeQmambonInJ2huLmeZlc01BqD0O0puOYGQiGLpNJhz6XIGC4HITTNpWZZg7CCWRpqawixUTagCSxCpuOSrcxBmzqHhXPOdx7kg6M6Twc8VnUR0IMBLRuMYLkY2RHjMxhoz8w9orgco/pZHOqq/qVqcKgvmAcN3EFEoiWCToyyBW75zLhOAvNaTwx2dNCpjhc+r+nqzvvfoyRcevvfqJ5+cHdfb61WXdtUGwv0uxu7aLi6vf+8f/ge2PLp4dT4LYbe6lNq76F4xOuyu1jd2U4VFv9oIdG3bzY+frlSffOHnfvidj05ms2oeZkf88O37R/fPaH4stCBTd42xc8XNTX/2/gff+L3f6bpOU2TmSmpko5aQ4Cn1FWXKg/GpCWMLv8MRzO+MdtOtj6bfmo7+uId9iKPcTcvMWSp39T0GRzlHEg/ev5VfPXTh8MFyHoTOLef44Fd8oNMCMuq9IzlrcU801YbE1IPZgPlsce9e9+wZ0KYlSX3slrwy9pO0vllfXbz9C9+86lt55MvlW7ubjT4Vll2aG/jEUtekP+3b71LbhPrDXfvSr2bdLjX4OkLqJTQkUs2a5aJTTQnmjOR92yaqq1pCLaBaQlVqstjMoxMxOblpD2LLdQczkhaAaq8RqfM299OYeZXRtLwJ3d3BQmKWhDg4AmgJBmNtu+uu+x7bh9WjN3B67LVXZzU3J94gxVmqFtjNIbX3V4gbIDqZW8eoPXWONQCHOVRNpYpuFQmVJA+oMdzc2Tm3AZJABOcgbqyi0rAm1ejO7lbAEVOQqQ/ZpaaOBGJyZg/G2dwjAxMFkmDKUEicueDRm2+q9/0sHaOWZq7eLbX6V3/92U5q8BrENS262DnvY5cAhn98dEh9YHfMoI0TmBqGPe+PlI4quu59BiJ2GWMceTF77p7H5GYGEs9kwoPxKEyZjj7j0vBBl2TVmkNzuRQaOVs5F8Zk6Gg0JQfISRxe2pAdlvwOW+9gT+Ud4prcQ856M1eQObMportDzHIWBU/2r7m7qlnyFK3vYtf2MUbTff9XI/DQjmm6yzCY3QXMKL6vlBEnJwEK21TpV5R7RuUYNpO5sxHcWbx3z6ECArNZcgtqqCDuSG7R0YFAJQXQmQBjmBBL7sWWizWk9ONi3rPvMXPluRwDRGwEguQk6pzrae7qblmzuis8N9XIIXbNggpuBNVEGQWG+9DinogCBXFXkFvKX8uJ5YqE0pakwI8MqkIILEIcCvsCFQa6/Hr/cm8qjUIvUyPcmotxRoQGOJ5YjBKVOjVyCO11MIYsHB8SGvAzVN6YbHtL3h6uw/23wnjqbYl8+H751G9/f/yZ0Tkej/yVaAlObvy1z3149dnzk9NF7yupnNbUcusG3XVXV/qrf/jv4aShDcTd21WgtOrWO+t7Tdv1JnZ90v7V6umC6k20ix99ekPhW/+Tf/Jn/9v/Sx83Dx49OH541BzNqpMjl9mMm8rCrr283qziLj5/ebN473Pf/J3fuby55kAVGKCoRq5BmIKYUMikz6q5vaXvS2//Jud+HNDpC3cf81PdfZriNBk6GlbHQHKVj9tu7mt+iyeVeVNHezJ9mQR/uCT2HvmhqqbDqSwFcMyButXm3t/75OJhTYlspubGHUfU1QLz5c4sxY5Ra+pYmk7pSCzCUqRWODiO7i01RP/al3ayTtd9CGShta0CSwcifbtKL7yrQd/i9GL7InnznszvEdeOvnWbHy9I6s31TTWr0y5qG3NvZA5MrAawUKgqAqXeQcaQAIIYhBnWSOWEztlvLtF31HWJWdVpYaGuECoMyC0A5qBkkCCoLXt15uRr0hVd/qT3rsJbdLaMJKFp5uFhTG1XrWyzsHWD3dLpAtqSt049ALeE1OYB1cxEoE2ojwxFXRIzkai7EyNlMn12qiBgItcanqzfUcrdDNVNycgps+NHz+oB0+mFmxIxCZWmOE4QQVWfp6vt8qFsV4vqyHDUpefqN7N61u2e/bPvPkP4kCM5olkX4IkMCc4GoHAtDnkDNngkLrnNEVEQJiHUwfW6rVd+9KBOGgUS2Wub5v2OS45yfRTAhOJr5/I6zq0FuCh5L6waBXwmB3SolMt51Jk2Mn9aKrQIhYyjoNjFiLaRPzHjuO63PA0iKtlm7nA1T+ZwDkiqZvBKATM2Qy6qMVNV8pRUs/Fuqtrudl3bxr7PdVODyZ1NlVsCmvaUUsMKJFBOsc8VNPkjzrmTFtxBrvDsb2mhXLYsUyovskUcZpDc6oCigVyHLV+6b7kFL3YJkQkxIIW9QLMdg0F5lRdOEdkxz+UhZFkBc+GYH3RbfmAqK3LsQp+lk5uDKs+hGqKxH6Q6ISbKKLxUZimDJNDMqTL4PEREFBgVuA6SAedcb5I7rGbtKMRyq3go/9jw1rAiwBO/CKMpwEQivSkzl8SroRo4q/w0XEhyA03P01ZQlgNAAyjUX0OywdQsGJbBgUgPppjCrT7g76O7PqhS8hyZP4C4f6Y+Hn91Uc1eXl791i//2gOaX7evjk/PXn78qaUN5fyLhBcv1r/0u/+wOrm3vXpVOVLa6nYVKMVu08Vuu+v6vt/qrrvYJt2+uHr50cXm8bsffusf/YOn//xPL7//1+++/6g5bc4enN17622TRZdSr3azftWuzt14tUtH77/3pW/96uXNNcM0qRGVCm13JpglKFUhYGLkMigVYCG/OS3nGx9TB0VbWCHdPSdtjYMwKGNMTuBx4jG1ewbDfzqw48vpCDMy0cxwDg1/3PlusciGBp6HhhhjEuMfdh5AcFzV9Qd/Vf3eZbM62lishK0XU5MgZk01D8fH7Wa97JIgapAGi611AiFAGGuyI5v31bJ5V6X66s1HN7516V8yXUXagQG5b3Et/T9PfuL0DvCq/eSoeqhmJqmZnZzMmkVTzxrhdrsjYmrFzNq2DSGEikUYgAsJ1S4AElNOQ1UXr5o5UWzu3RduOnXtzzkpuqguYCNXds9cdPv5rAQxMDGqaMHcZnBnShZf6mXq1Zr0pL7/UBfitVM1nxEZzxM3ynPjxtsVpZXbypAAzY1dqBc3yfTz5mCdIRhClUUZcyDyACCnymXHyCinzlHloAgi0pi3OcHcIhxgK7hUmS/xwXnKay9XNJAGCJ4+7f/8+dV/+Ae/+fQHP13Eq9RuZ0enp8fb/93/8c/++grhRLw3c43WNcLJABfyDLTQUKOckV3J8obdkGlEYM4kUlXgndLL9Oh+E6rezU09TKgfbdCoYHdiMocBQlLezvatscMMYIUJ/LBab7gUkFtcSZGP+ZGdC2g8Fv5hiM5lR9NwiFTdcjNs3BTm0OwgGlw9uYccoHQndkpQM2Q1DYBcLWnXddvtdrfb9X2fUnI135PZluTN127M24dTrgD1Ar9nDJJzr/jc+FfdSh0XJMuu0rjPyZFIjd2JnBkuChhnugwjInNXhk8yj5AmfgI85VkeYlWj6C4oXZFvxTqjOOq0CTIP8w7i7gw78OWcA6mZDammQsxGLIAOcDcRwKKWUOTVvjIzi+LAIgwGEYzJx1jFWNJGRAQp+W42yGouVcFANryyWbE32yZzs1fGQrnkl5lZjOIwa4F46LFDRGxq0xjtREseeMBjnv5dR3m883DLTaa8LvNLh1mpnaOCYR6UrLx2YU1wIZjZ+ur6g3c+92h2Fq9Xy5Nmt365efW0mTeonDr+7nd/9KVv/GbzxuOXzz57vDjb7J56t+3W10jdTdwacd/1UeP19mod293T9UvtPvyd337/57/52Y9/8oP/4v/2ufceLx7eQ6CLq6uNp/tPnjx49LjvLXncvkgvXl7zG4+/+au/3Pc9eUIVgrJR0YQZm2BmaPYwjIbVZmZDDc9oTOT8Z508Lx26lQNEPIDMeTCGngej6r1NizHaeq8FSYYfOpi5/fyhgOFEpUPVgUIdDhml0n6u9+b5HeuMX5z+4V/Gmn0bfZHcmBNpRQJTb2Yns7P7qY9p11UISSKqSPPFfNPf1PHm/GU9m21nvKS5czd/+50wf7m93HYvNx7PfPdO6HuPHymfw7oq/p/S9u+p/arrDyh+rttu77315Kh50MW+5yDCVVOpa7Xk1MN6zY0UiSgXh4DBXCEDfSAQRJg59CCSUIcarh2gqxtokr5VqorpGGS6SUhYtXJLEGevDEtnUu8hEbrF1cfJYgU2nGHOVDMtZ85NVc2oqXTd+Gbh25pIyDZmHSySRvgGZvAI79UVIVI1gzYIYsJM4u4UxMwwtIfLARECAGEBOcyRE3mdssDQHPkrM4USvRRiV3PXTBfFIDMnkCwe/s/+0//Nd/79/+Kf/L2vLh++s8JG9JN/+l/+yf/6v/y4Pv0gxg3LjD1QVSdzRCURh7GTIQGF2QBk4ESQvLTdEzQEM3PlYE4hqj7rHn24XDbeJyMlzW27nABI5tF0uLqH3DkUTIRsRUEHFj8uOhhZyWWjYwjHUM66kqJ4tXhopEAOjGjxIwHKLUmGr9MBYpdF53RfjLUbeQuaRZDDxRTIzM+eaUgDNLfgc3dyaIyx69r1er2+WfVtZ0ldlQjI2cDu5Mju6eGeNR+63tDIzJzH1RwDtOV7pyoDsGKeADfGSArEzKSZrid78EqAO7sH964A+GalHszdEHMzn32H00K/LYmUINkUzB0z84iE4kiMzll5ZeYFGB6FUL5VNpCWBPhi/TAyG/VAakJwsOXOFhSk4AQ+akQulRnuNCG0qiRnAxq781AElnswsiFHxYd2EONsTpFL58GRQg7W5Ap1ch/4MvOUkUOIdF/hd6jjiYBSKHa4qA6E7YF4v1WkfvccH9geiuD2HJwYCJ/Lwszl2MWKvKXPp8r/1vsZpTk9vfeNz31l/eLqwcOzi6uPdX1++fLlvbMTacLLzz7+yjd//Qvf+OUXr14eHZ1sdldxtfJ+q7tNsrjtd0rsyder69i3588+nb3zwa/8+q+FUK8url/90//q8cP63qMH9effn1Xze2dvMOOnH/3wu598l4B53RzVJy8eVb/wu7/rRtFTxYAmdakAdcsOm8EYcKG8lkMIIIyajIaWLOOQuXPhwSESCQMTynRYx1SSghUMw0I0QbPHCWAfwJn9chnJ0A8qu6Yn7LuQ53HOTSXJJsts/63pOyWP2g+ume1QH0qTZ/KVP6r/9uV2U11aP3fxZGDUNSWlpnGwcH28ON5cXqLtiHnnm2Oe73adMFh6SwFGcdYubNn11sgp31uCN8xv7qLz5YtoCdgS18nYu/8HuCP+pbj5tNJ7s/v3n330k3uf+3DVrkOoK+bZbNanSCIsotFUDSAOLCJI7pU72EyZQzakzNPsqOm7DTdVFR6qiD5nXLwKGrUrHMdeVahCBrJySQtVgSv2BIkSzGJNRkA/o/YipGu7juvkDd6bPX4IYpuLE1Nd88xRkYYAJt96FSlFNlUgIjk4gSJxa5HVNRCZGXkNYw81AHNRK33Us9zl3NdSgZw2T1KKwzjArfB+58YAPmQYuZfQGQJgbklN4UQetG6utu/9r/4Pn/yf//d/9g285DeOnnv4Vy8erpcfogfcVBjG8B2kCipGRrBh4wtIQQSYW3RyIi4UViXhCT31cxf37rw/SzZbcOdolFt4cELJhAAcQtAMMLsTwzNPcXajSiZx6UfoPjirAABBRqFpSBEnOFzdmNjgKBxYcHhJKB7g0OItZMB32m0Jt2SXOBkXhN1yQz1XTclBBAk2MIEWWhKzmFLsrR2Oruty8jOyx2oJKHaDQ7N+2e++zMY8qLT8SfYEzExGxsQsGUAOskk1PzJfh7m7C7F68kG7EVgH5imyTF6lJRjPGR+SjI3CbTBF8pBbbqeEjMYMHoi7xz3GDGQ4I89ZDia4G/E0vibGQzwAlDcX2N0TCcDF5C3sf3B4tuk8x1PJ4AKCu+ZRYipsUDk/m2E5f5IYgREGlFgGsTqlMBqMNkIBF6YKL8+1D4D7IIeZS3HSoOeGyxa3mIbycsrldQOP1ag6xzU2rJYD8XtLMxYd6uzwMC1XcjiLAMip1iwshV8b5gogd5MdW8liok4cpk6EIJxUe26armX2+re/9Xu6Wifqf/SdP95df1ovlo8fvb3tV9eXr5r5+1/+1m9efHLOrsqhW31kne7alLq41RskbaO1YCS5enrTPH735377N55t25NQX/6rfx132/e/9jVbb3DT3X/rcd+1W0kPP3z77fr9y5frV59c/8WP/+q3//7fqyrZdm1NEkyULbcUFpcyyM42grEcrNgeRCQpDzALD65/flLmCkAO/4xOcF4qcHafdNXIhXLEWrzc4uuIEADVzOKUIb59on/5rewAlHnxAY4jInJzDoLMVWSJmfN0FL+AAPDhfLs7CRFykj2KUKjMLagpB2fjILbZojrG5nsP//B7vYWtqNfWJ8zauZ3skrGko9n84mI9m5/u3NBu+tjXOwtsqY/by/NmGXoYVbMTpW1sXXvuJDw8OmbafPaxPj+39rmGtyAV7IWnTwXKaFP/r7xbNc2vzo+x/uyz5s131pcvm6MFWu8QgywCBzB6VzOrJKSULHYOJjTamzCES/8JI6gGQZqHGcgiSyVCTRVD3T27EN0BpG5k5ikZB5nVyc1diMAICOLsHpIoITZGitmjFHcUI28+6T9ae/vu8ZP3vD4mJlSsfGTVTJtZrISqqt/UsBU8OLaVJiUz671VNNewWdJEMqcYKYgG5aoGlNxzN9aSLkCe3JyM3QCIEIFdWY3hFcQJ4palnrAQQJ6bEwobwalmEqfe0SsSTHQGnr3zXXvrrz3hpiMQL0nInNWN3RUCotpdkyhQFYlMVrzo4jlkFZHbZpJ7NG0lSh3n2m8qWj6L4SY9fli/6HXegD24u5uOMsmK/wqAM1EwFMZCQRCcTA1UaDrIHPt+ikUyZo6sollL2xo4k4fSbxtDVCzz2mSisyzkZIQXS1n+WFuSpbHmCntTN3MiV1jSCGIKomqZ4jJpNGIzs5gsadf1m3672u12bYIFcGJmd7EUqURvdZTjmBxERK7GklIKIRx2NSgSBkNYS1U9V9xp5symnHecc4YM7ow8MmbGboHdjNTGfpfw0szRSgbUGImCZyTTc6GTpwknD5kbPLgjkGESnDQCcti6EKSMbkNR0SlTG2Tg052UCMYQL8ypBVTNUQAB1CJKoCGz7zNxWRxgNzN2kFTEFZPUHrJZN3Jx54CLCcBS3tAkIfC47jwTMxCEhnw+dzdKAPHQY2cw+Kz0BZ0eJeKrpf5MRDR358jXH/hJRtU7KsT9dBPl3wnhAHoZr0ADsrr3a4e7L8/ow7Ve+xvj63FQWASKUDfbNnrHf//3/zB0qn03o3hDer2O9fbyzbff5GuxTfver/z8py8vTxbHuLlYP/upWdytW9VdrzF1ogp1rLfrF+fnqKt3fuN3r1sXdfTr8+9/9613nizfeGN9r9OLix+/+N79995pt/rTP/7+5vr54r23uqr55m/9xr0nj69iF6rK1cwVKCklQzx+dN9fQ1A3mFHFPCZIthnzMSn7KYNAKKzL5nun2XPSYBktLpXglBVk9qSziNgDGsNcYFidGCdoCjbkP3NqwDgdw4uD2RlCZrcXh8LJA5E7B0sxUrOgdl1/8VX4WrdKRnFbbVMkbGaoWuN2Xp/e3Nw4C6T2MDs6ebherWIb0fX99kY1emuq3pwdd+1NDejW/I3Z42gf/3d/WS0X8W99a/mj99pXz2W1iv0LT08U/0bpHG6Eb8fuKdb/sGPU9hfV5QfxjSO596BugluQak7EDYlAMnVBctIEIFFJKc09gpyZqSIBuyV3DoFlKS5VZ7TjEM9fQSO66GZWBVRkUUEi1VCoYORuEICMiUD3oK25k6upotv0F89vks7p87OTI5o35GIRNR8HOHHlIZjMdCvoyGhnnuBqboitg+Ey4CWBwFkieA5VuAHkmkjg7mY5/cBKCY2wkBgRKTKX0WClObkyEVEgYhZ2T4DDA8FIBKQEAEakBPFc70BklghprPd0gBAALdKkJO/4QJ3s8OTkQGWMwrVsyTWmtOYkHGNUWaXTJHU2X3Pb3YmemwItRR0XYWLZPREqvi+YhFA4dqebMddaZ1Q5p7eUNMks64UNrrkn28QVHncy7gRlJtshQ6OgATZ110zNQaWnGQGuqmbF7E4pDc1088lTOaAocKsdCsbycwZ31RCCWmRm1VjXtfaRuXSlMzMrQSUquzxIJruYDol7AbJon507KkWCi2NI8RuCy/tqxn1wrVScDc6ejSMBp+Q8FS80kmlPJBWAwQkudzzRRsUtAwAf+o4MYzI6jhiwQfeBO5BAyIv5YMry1piwYOZ6PSK3wUfyqfdJQ2H90J634Ol7sT3Bh33/E7drfKa3erh6ePKww3vQEYYctCyNQzxcsLj++c9DIg4MFVGHS2f6M7fPn9h6VV3tdtumarpEXet/59d/c+m4evWS0PeXr+Z1+OIXv4gUe2/j1WVVndLpmaeOxepKJK4u46Z299RZCNr6pm2TxvbF1Y7pa7/32+oW2255vHz2yU8CV2dP3mYNj5dHrTSrm2dP//q7J2dvv/H1n2sv31g/v7y5v3j04ee3pkSkKYUQoqWKQsNBC13UdHxHwKNM7ai1iAWWV3aB5V9j7zgTME1YI8pW4tCZdzho6Do5LMSinIcXY2o7sn0wYB1jXoMfTuReE0+ZyO6unvFrNq5+djgZArtGdjayUJFeXy1+/adtzf0GMfSpmyW1REnbplmmdtfuNtLUzu6cpGJwBPXMM91ubLvq+2D1DP4qHB+tt70uz95S/cn/61+efPNr8f5xf0Pd1+7Tq1N89gI3Z3TzpuxOtf1r+Avwjdmmu/5nkH9gVu2uv2PXD+dvbeTBEzvqE0NEQjULzJ44SO1JoympulNSd7di2TBAiGpkXMpNJdAy1I+J54u2qbubG9+sYL2pgRXRRZjqAYIjBzFDCAFI3s9VNxCgF447ixGby9Tvts7+6HH16IHNG6qEgwQ6k7DkqtlSRc4wMV6jv4EnkEIjsEVOPIIZGnIXzwghOxPcQZnXkzJPgwEEM1MyhxvKgghwOOleaJQvgDNLQ+btpUyGZaDkWSWQAEbB3N1cwRVcCVqCje4OY7KyzkFuSsXzsYKL5eWZo3/GnqJT73GtcWm7tFvoeXxszREzGMGKaTsu1pFA2BgZUM2tKrJ7RcTi5G7GWSN4+blR8A0FeJn/C6UZCVNuFVp4UJhMLZ8wStgDFTgxPe+ItbKjS1WOVCyBpAKJZWZmxIw6KDzXvLp7yboVznlvUEdWdNCsCO6KyuwZhxBi6uq6NktE1O/aqqryLi8DVeyPfXtaJx6IgYkg7gpY9jWxL5Ic9AjTIbdsVhWJclEyHY5JdklhlJ3rsRdmJleHEwwjlUrO/d0fhd0TeZkJD487aCBg7+V7wav9wDibHuxmnvFmmBf0l4rdxrntBuGAAiOT/jp5Tuw5TAe2ksGN4g3n1bBXxqV9E3JXKFCJBZdI3DhKNDled9sH8+vuRMa5964quOiRO3rdMWRxDFXzWUzbEGofRmo6Xnc8rfLFYTAk9l3mJmlXu/ffef/t+49ufvpT1nazu7G2t37dzcQ0ppvN8+989/4v/p7GPl5/+tO1HTe8a+Nm15O2nXm3vdnudl2K7flqBfri3/6drl56vzbhikh/+OwLj9+7/+BJMtPUzWgWF2dhOT9/+WLz8rPq6Lh/ePYr3/y1Ndyi1iFAEDWGukox1STOPM2BHeeSSgekPTBEJPBJEyRIievkpx4pEw6PMHBOZt93qrDdHaCM7u9n05kok9WDSuakT5umHX49h16QN6NniUvkJT9+v2JuzZFN1xM7Ebtwhn7MjIMEssj3L49/edOhIm632q87btcxbVAl1A96DiEEV2hKzEG1ZWMJ0ra9bLb95aWfnLJU/avz/vrCjpoP3nrzs//sv1r+5je6kyO/bFGHaolGjunseHd93r96aa9OcfGh735M/gx4hv7HQf5zu/5tzJ9AP4mf3Kx2NH/jiCN8NpOFc6hFmCuqNMSeUmJVNfOkYBBCrigxM2dQTkdVUxbho+NmPg9NHa6u9fo6bjYpRRIBiVTBLaN5hWLJcuElAlUMhhOIa6cVbEspSlynV5+02plZeHifTxZWiVNVB9cKUglJ7VSnroJ50G3yFsilRC3IkNzdnCJZtFzRCB6FGIhARpZhD6PsDZsDSo7SP2IKvMAIZu6q0Z3cjKlQQLhzLsJBZs4jA5G7wvILc49UVLsDamZMKbdS9KLRsmRXIpCTZYTOcrWKQBkxeEzetn1qX/VHihlTCyuetU1IZryYoTxCMwMFDQPkRFADsZX+YKUgJWfjUNbkBJdB7w4yKP+Z79WZst18sLFe5yrc2laDKspRaQFRqCuRGbj2mAuEhMU5b1pm5sAcmZmDhBBExEzzT5Y8R8Cg+zKVO4eqmqLv+4w5B+akvauxVBP69/3d7m13DoCRqw/8ozkFkwqByl6e+NBg2t0BHsBtG4TVaBwwJiKdPIMXXlh8ijwRlKAV5WY0QzZuzpk2lOhJKcDKiraA14dFXxiWxC1Nln8lO/vD6haiZG7FKyfKgTbZp4jBLce28w7YHxk+MVPNbdnzPGSjwgGi5MNtlTrmwkaZA7Hkeyx6OhEl1WuiiX0SWiYih2I640PiQj5nmtI/eXzHnglr8MJuWSgTd81fa7yMul1VwQhc7Tbtm4/e/PkPv/rx93/4RiUtWtJUVWxbvXz2Kt68fPn9n5x38rUPvvL8xz9YX/3owb23+/pop5FSNq/jervS2G8vN0+jvfubvy7NPG76GQetws1qVVuaf+Fdama83jVU9aLky/amQ0Xzbf/iBx+9+Xu/rceSdm0jIfPshExeKJLUaN9laL8CBrUnRBBAy8LNGouBDFMb9kKEJjb+wUDdPe7uqLvnl3PKpBb0aeL7HmA7ww3/9x95zu7eQ37B4uTEYBWquvXu3m++9LMXz9bbl1dpcwnd3jy76VibxiNvo/DJyZn2gZU8sPfRVbWP3vacknQtdlUyky51lN5/8oWf/uf/1/C1L3VHM7ne9Swzd0pxOb8vS6oWJzfLpj9bh/O5Pxe6It1dQd6HXpr9Z8CvBfkQfBWvPqH+fn3W0fFJOoMs4UGFAhOzMIdKY0pJVXXQMgQQBTJzVSdC5t0jZnCoztybkE5P6WYTtlsyg/U+CeR47rqL5K5MjCBEDUtwbhwNcO3djaVe0nUuT3J3MOnxkoME5ihNqCuRugf7moRZupvUXRMijFCqKgmq8KCphwiYQQLhgtHliS4k3nDP0Uwl5GqSzt2AhFLWSgDDM4kxF/0NApPnNgI5uUbMTfZ2oigg5NFNhhoohSu0uLeec4ozSIZs5A0BWTd4ApGTuFLo5pirb1vtV+f9svNmjhu3MDRn2q9qH1xMZ7CVzkiFEiv3ic/cQKS5rUK2LLMKL9hggYfLRYCCHxpAws7kcJJRru7DNHujE3RXfI17gZgYQaliDkGaUDXqzExmoy+eqbGF2YUrERURkSQiqgeQ462NP2XCciOQxT4ulwsi2u7Ws1mjfTSl2WzR9f14z8OuHZ69gLG5JCnjEwKY296jGwwaG/Czg5BiftqMdkxusJQG5TkagyJenPmcszUUdJRoJgyvB9vKzcPcyC0RSZk935d35n+zWLtLlUxEufbJKEcbZMSZGVTJOM40qtvS2ckLeqyqWT6iBLizQqUyjPn+p/delgcw1LOMBxt4yLfiO59OJTDxfuLHT4ueppJpf0vdTCc6oLjmyOXPr1Ukf4O4nzjXTsyxTzNpfuWrP5/WK29XnQalXlLa2SZxrzddfXnz0+/84A//5/9LZ1i3WR6dGmy9ugjBF6F+tbqUrk99/Mmzl3x87wu/9ZtYLHzV1TV2pke+2L26eBCW85OTE8yvbf3p6tMjbaujR0fH9/jp5sevXt7/+i988MHPXa2vA4urVSxt7Jv5rMQGZA/cT7dNHs8xf4ontptiBI19sqZ5DPPcPXwgfJkezGxDz/D868Ofk0HOfxwu7wNDrKjng3nJ/1rG4rKGxn5f4haSQdP9YwYOISSK5Lxa/NIPn8eLH3+k0euwq7Zx88kr86ud1MxHfhzW1zs5OYJCA3Hb9tuVthtZdzftDptr6dfNvftuYdbw+fe+vY27k1D119u2ovvhWLWn2Sz6zO2mqmfN4m33T1K/SivYLllXVfQozd9Af8bx/5PSX7P9TrCTrttq7FPb9UnrZDyr61nDVHMtVXZgE6ckMUZVLYOncHNyYkE22Uu+ogQ+OpYZpXoum53Ezi2a95TYLEFNVZ2NlCSnxUleCeJcEdcIwUSsW3O3sm5jF88MrqTBH9ZHS5G6amplwzEHkFbsItEJHpCu3RWmBCVVY4dr8SNdQAIPlvmhyhyNZYzI/U/cPefolj8n6e65TS0HQmGcL/EVYhoyQ0lMb1uKJkSx5PMDbgmksOziKNwcBs/K2N0NRANFjBHMTUFKahZ76yO1N1d9vbXlonpuhEkL94JnZoQcJERw0hxn9uLHuQ8gYa49yd4GYd82oVjHTBgolobhASgvex/LjfZicepFFPj3Nu5Fub86EZE4GCQijYQaLOSB2ZlzZVF2fpwILFJVVZVcog4UxHI7iWQIed66Dfec9O1HR0ez2Wz90U1KBqeqanZtH8JBPsf43fyf+2h2CQij8IB76cDoKAVZ+bemt/MaMTVVwzn3s4RHc3puzlcvV/JcOl/qM0nYB2Ri5E64PbClCiurMhpuh6ZmAaEEqj175/uy6WxZjo5HVn5jnmn+OfaBE9Cnh9HI62xuzmRmY/Taiym2H5y8XLL3niML+R54nC874KHaa42xYybtyZAOFK0zlTZgf5On5O6TGPAEL71lPb3Gnro76ERmHqN/6xvfoPXWN2vv2taw3l35uo1pe339kvv2j//se1//g3/07i/84ve//d2Hbz5o+3j98iXi2jRWhnYbr6+vrp9dHH35i6c/93VJwbe9zVj73itIIF61D+8/OD2+v3m6VjRvvPW55z/9a/3Bj1cNSSX3P/jgrV/8xrrbgRFCcCiCBKpUtaqq3W5XNQ1U71qsRAUvyGOHYSHsDSdgUsiL0US9u+F9kng1jht7/m+vhocZLQnvmdZj2LcGGFDtcxBhgxd+e0u/Zu4nx9/Ai0bMrJ6IySxwpOrseXrn5WqL9qry2Wx+0m3W+vwnwNPK56jO7IJj3djJGXGTQh0Mpjvv1nF7DXfhHpvL1taWmnvvPFl9/KNw8qZ9/DTS+eMvfd7762o5C8x9v01NBWyC2EyW6/4otRW4wezYrfZGQA85kqePrPtnbr8PfTf1nyDes76zbsdHcz0+ktmsmh9VqIlR1SSBiDlFeK4PdoanEmE1N1NmFmKjioVNvFksNASkmjUh9tQn06ixJyWoMZtrysWoBi8VCHVF4QjCyrWDiHqknd68MHZXk4cP9XhZzxfGnuYV140Lq0jvIFSOBO2RdnCHJUCASCC3Krdt55KMFLINOAYWiqluWuyIHIbLkCs40/QNamwkkSSAwQUoJiIBgau9ZCFSM2J2AB6GYgshU7ccG3aYOmJu7AMCPBKRu+aoOrllok3THtr3SWdtt4u6sxNmVkGGkdx12vl8kGmZ3rkITc1AJZUwD2V4ubRCPIBq8i4sCTg53YeHklYeY+ITFPZQTN3aAtMja99MkelUsQRwBRZPbgRnH2KEA4k4iwhxZSIVSczETNnqLXipcy5C1kNfa/y5Svj5i6fMXNcBMGaYpaapNDccLlYkTdGr/deRSfoykzw5KXtwpPJYJc7Kw4CPOiy7jTTljhhNhEyUkqHQwV8vyoNyY0rkAHThM6CMuJQbtUnmyiBeuCzEEtDfyyUZH3DqA2RukGGCFENZFIBcZzRWRhV4elg1MCfL+XGmqgpiVqKQ/XAv3ifgE2sO5flurQoiypX4WXXnf2H7nKzRkz5YOVxk8oEWGBHuXNX1GrFc1EP+6HYzhukpebxGv3vwzw7MtDFTNwivd90bD9+sKeiurVx70s1ua0n7fn3z8tps9+LT7+L0rW/8O//Js8tPq6p5dvlxv04hdrHbmKV1u9tdrD796OWHv//bD568s253HbVBWJPXMldqN3HX2Zof3dumNZ2efPjmN2O3Xt776rPPftD+qz+69M07v/9LPUtv6YhYzZzRm7p7U1Wpj03TRPVKctlP3uQFoKfBxvcJyVResrd8ZWYeIIMDjsnhlU2jrWX0bBQoNprhWQQRca7syoWGk+HfG1yTJbvHXm7ZZXld24ga7ieu/L2PaoyKH84q3Ejf6ZL6WB1fdk2zWDjPV1c3tHzYefDdM/afGFS3xOiVZvHVMZqHcvKmakPC6FrHWhJrvCbbed/Xfn/3/DNdn3u16OPmzfe/xi+vz49xspxZ28fapVvGBA7d/HgRj5ftjKQ/MaxScI6V8zaFzwUce3oGO9f1R+APqd/azcbXN3yy8LMTPj0Beg8nzFxJkBAaCiFAk6s6okW15EY0ED2UbHaunAKcQlBBUpDWumMKkROTCFIkBWJUctOciwpxEEMdFCrmI1DwZO43oMi6tavL3oIylK02mdVzr9hqzOyMm9mOJbokXcO9qDRyWAKZE0HdWaBieRuVSRTk/LgcQ8oOpDmgblQoVdxKvSYRAMl2hhPcSQJJTrEGci/bXLqzd4yocO1TVfgE3UEEFs6y2BQhsQfzCFYAuf1lsR4IXkidzahz68ng0TpFb0sAzpTRI+JDfxTDVgIw5Ell92GAo90zaS+VSP6+rU1+zsytXJpRDAKJpqIc414YtxiQwxCvcYuHPYjM5O8uxMKhJhI4R0uZBRqAG+mhsJ4eIwFiFodD8hR5oZCc3hsTsQQQCYTNjMgVXnLoJsqJsm81RKDyj5foNgEgzf1PwZbhkPILSsSKnP9OUzFyaHjYoH3Hd0tFxqT+K09E9juL4MplsKZ2gF277QXdrRCvG4CcazZ4L/tZuOX/DNPhzJQTaMYsLACFDk4x5HztqUDd2czcyMhUmUjhgLiIKLy495PECSLK2WPZ3uGMdxKZTNbM+CyHKKOMk+NgwYh87J9lD52OAhy3rMPxU8CZOWRsicyHhThR+wMI7oPOMTNQJGvGK7kymDQ3YgvV547u8cX5fDY7P//Uql2/3azNcLGKu/P48vlH3z//jf/4n1C1DuerHtczUNLr2O2Saeqt3cV+u3vyW79x/+13LtZrg8/rBhnW51QlxhKc2jNbtt48+eCdoLrbdHGzWlRzPTk5fvLW/J1HcdXOHbEJosqesxMppZTheCGYEpEQ++BoZhKKAfobBspK8jOpm/C+d4Ka5kENTDqZHhoCeEN9GI85hzZsHCLJ9W0A3IxIgJHrY4pi8aTVRt4/PNztgAuVCWYzgzMRm/XCw+86cUaHcvkyKriADJTKI1sVjGzWxg41AqrqhmYb4bdPafaVL53/8NmuwvzNxdEX/m15b7N8+ytxM7/40XfbZ9+2F/8aq+9j9Z2IufMZLe6B1EFMagB2W5M+7ZRgfvH88Zc+4E33yfVuWZ1cP326ePSGttRzWtQOg4Uwf/vJpr1Km6vaH/bygk0tquMycS+0hP4F5OM6/X/T+gsIv+/okZbcSrXd4qbj004XC53NAksltVRiFUQdIlRBek1RLbPGwyoic4oCFmEm4VlFtVMKc/I0U+4jWgOBNFf6GEgsqkkiCKNCsNSru4RZOjnylrBh9BtK19iqftamTumh8dk9QxNYwtEyNqECeVjQLKRXLxFfwTaUWqGoBGeDVsTBpUJK4BpOzOJQV8LAdlD8ICe4lI5VEKJROROREBKciZm4dpJsRVJJAqXsLzvBUyaLyMKZmSrP2mKo/nAeMHyQecpsXeRwrYuQEXVCvjNiqITKothWY7OL/TbuyI7dOyvI9oHZSgxxz5WeRgUxBpF5LsClEfTLCz6EMPrBY9ZV/oqT5p58PpgX4wacSrqs0N0zI8VERR4epdLGGFyJSCBWVzcE5+SecmhZFZZYi0YwUvYhLSgE3e2KPshbNc8RjD1zNU8kL0M9qoNZ3Jws1/ezw1W9rmeq0TzltHMvnxawzd2LmeJgBIJxbtw0Xj6fo8RsTmFg5LJM1sEiWRK6731fgKZ5UgPNn2SAd1QSDoaTDiXU2X5zo8FbzXfIfsfKyR0s3ChDOF6uwOruTiGTqXj2ZBRgeCAK7kZuAeRGloP8oABiFoObOam5xmRVn2QRCZWrmqs6i7uaGxlLrs8idyEDQQuhBwZAxcxzFT6IUoYhS62X+xBONrgSxDk6GSO5KwxubCbuWUGMKMfYiGmssin7zzGmVQ/DAow8HpBwa9Smxy1/azizsonz55I0asPc79KTR+/MQnP58oc4Wli3u7m6rpK73qzWn8ZXL3/6nZ8svvTzD774xfOnL6mP1HcclaO3baep37X9+qcv2/cfv/vG4812Z2ZN06SUBCQi0bSS2rWLYjtO9+8/5mqxazeRFaQzGB4dP/ry59BGFjEz9Mmzq1oMqGIGjg/iGfxH0ZpFaO0/GsfES2dnKyUb5CXwFPVgWCZ+av76uMoL9cyIPGRisVJ/gj0f3jgLgze7j9OMOji/mORI5+9mTtuJ+ZlLOvZ2HE3KDxxwuCaCRQni4mQqNZ/z9fPN8efmj5rPP/ygTTST905+DSuO/a5a7/Tk579k2z/sLm+uX7zcvHjurz5NFz9N2+e827rvgA1h7bRKvIKtAa0e/Q+vr/vt5o+rsyerH17MTueXV9eLh/OGHrZHS664SiuXcPbBh6lZbv7q23jlmG246i0dk0bzV44O+lbPBL+G/wtaP8T2ba+1b2e60Lht6aQJJ6fz+pRqp5qFhKzpmsBOqNxT79a7RiRWF6SkTiBzZTNjRqiqULN2LSRAmojs9RHXzBysdwZUNUX1nB1E4uwVHztLEgOUrPW283Slbs7KSOH0ITWLPkVUdXOvBle9WJTggbE6996dyClBc9FQTmsyGIwVHlAgrMzjU1zFglvwPjAm+wRL1/JKymk0OGQ2LL8cuQhCGemFZJwmd1bYZ1w5GOLiBCMSS0xQkFEl5DAzuBKpu4NzpVYR3+zmapsUmHyavD/ZEVkweS6Rz5ZDdqxQQonI9bP7Et47WPEgifY40bDkMQrN2/ILt/b7wTv7KxsN0plzu0gdf86GEBIHzdBkyb/1bMWDBsjyFugNkDD5IU52+5kODmZ25zFlCcSWebUOS1HGxykFplk6uZe4rGSPj4cajTxAjIOJOfyz3JyVj4AJUOdZsecqrLv3PE7x3gO5G6Ms8JwO2ccZKLeB/SPLKB6EHvZxN7Kx6QgNMJ57wZyzVjNPqlBNZqwKZpARc/ZqErPspes0FaYM3ejt7/3v8cjvsAMwIWeQgDJ/NUoxqWACWu4fd5wpy8N/UPQ8HgPAYyUGrHDBz+T1mI6v9grZ203Ru7qqRKlN8dHxfUo+q+rd9XXcba9evdB206VV96NPf/jpc3/3w7/77/2H/XZn61Ubeve+2fXnXWxj77HfPTu/XFQffuMXnKSPfRCxHBQRzt0yY6/zKtDxfAv/6qM3Pn5xM2eObSdsN3F39OHbOq84ee9aS2Ar5tw4f5OHynkGdJCO5H4LWh+fPbOdFcodL9LDbtnaB18rYAuxl0T3nL5IAvdcbWi0H9hx2sZ3SnRsnw85Is/lB0qp3BD5ATBJrc95+NPcwlIqOdHoBgJLZb1xyF20ecmbxcVfPuvOGvJZCI6qjfg0bLXjI5kpe7JNBWlO5/dPP7j3pS9Tsra72XY3m1erdHNNN+d+9cLWz2313NtzaKcv/2RTi81+UTfXsJtudR/N9dXNo9mZStfMjpZezbyysFhU77yV6rn/6F769NvUpWp+Eu0+5J2KyLQy37hfim+pXxl9h/wTvXjDVm/b9gTre2m985MbXS5ldhKaZd3YDDVzcEZkUq2NKjenxK2rR801VyJCVcjRUK4rqSqqezCnduddD4AB9kZVASRNapYZE91gtTg1xKdKoL7y1EKTbm/Sc5AmU9DpfT46NkYSDveOMKtssUhhBm503bht4TtohKdc2ermQAIxXOFClOBwE5AMgTwhIsvBThhZcXyKPgMRCYfKSYaoExERV3nZcE4iApEzCt10bk1HWhq+ERxgqaHqZtmzYZFSGprzh9nIFdkN8KEo3gimhGR9ukk1s0s6KECaSpLxxVhsUyTPkC07chgNFBOjrMoKKQszjHbzrd13SFPPOBSOr1EMwIDrDdwgZT8xlb3F7maamRFyp8BCwT/Wxlg51F7Tod1HpCofmWeYCkmADSZ/MdBTSmbqQ45xKbOBhsy3OBHLjhwCHUjKkLWLj7GzAfsUwEprJWejOxbASPe9v++MO2S8bdS4VtJThogyFWKzbLkVA3CqjMdBmApJR/aYLReqD8Kt/AqVcc39Fi0n7A3oN9wNah5cVS2xxqSq7rkCgrLDyowcBzaU/IDSTKMYNBMLbB8M4fIUmQIlV8Id6uDpyinR7cygNrR9PVxRI88JypgU7esH55TlTD5NwvobUrb2zrt7kNp5v9ZZnetwve0fvf35WVU//+EP31hC1W82N+btdn15+aNPnr1qn/ydf/z4i1/jVixsO1rbzToEbPptYJcqXH3y8lOLX/m7v69etV1bVRUzd11X1zURJVURQR1S3x2/+eaPfvDZV7cbT7u2S5S61eb6aqaz0+Ok6MmZA5J6kNFd+FnOPeVUusEz9QnwDpQQ+GtH47VHnmkGUkmxcsBKiV5ZB/k8Hkr195bNeJ/TuT/oBjP5dPo049enhf+DoqWCOAEDKRIGRzxHL5gkwitYUvYZmif4M3v2pL3/Nm0pzVj7CK2OeNbbte90ZyF5T1ATdyNWELCYN6fvzUwfGn+l75O2fXd9nc6v0mbT/dX/neOfkX6fNBhxqh+Hdk4ptv2D+Sr0y3k6eVAdnVC89mUze//e8uSXbxbL3Y/+TUwXspy7PIp9h7QSva9aOW4sJrcV+wX6FbqPvXvHru7rxVt2dC+e1XLyIpycVYsHs5o5zFnmXItkBsEuWbImzfu+TSlpF5W9jsZ1YGFlYeYQKl7UUtVat9a2GlPKqs2Mg5D6UCdgFlt3Jwmol0TkZqS9xD75ur+gFM3N5gLCzCVI3RDPKXBkwWwer051c2XdBt3O9QYoJD6anV0X8gAoSBjmIHIZYYxSjuIAZbasIm7BDUlgCkZ7jnAvANwgImnwhLJGYNrb52V5MUswEiR1D8xF3ZNbkbum5Hm1dGSe04aNRJiYTJOukkAOvMyfZWJOt6QP+S8YkOvxlmQgLaJpVfFEi4w1OHe3kk/ev/1bfksUDrFJZ4DNfMgRK+JOs4DOddH5KWi/eS2pxnQLY9zf0h2dlyN9lHGsgUMq36BqmRuQ5xza7OJP+av3T5QhTioKzMWo3LkOlHySswwI7gwy3Vcs4bVOcJEUZWhLX4TMIlWi8DiQQnvRSjQFwn/mwSU5qjByFHHrJfd7sDzySJbboNwqy1MyjUZm4klTktEJjhZnLkM8GCxQFfKMFrmzh6n3tUcBiYqLn/tN5VbYOY7gIxBdsrFG4HNIUrahx9edo6QyjCNxa0GOkzj44sDIhEVEuQnUGOV2HymID4g8zExTHP9seN5HWUX5x7/893/wL//fHq82q9Tu+l17szs/P//s4uIqvv0H/9biF3/h5pNneqxYBO1a3V67hm3qdv2m/enzpzfb9//tvwMPMfWhqtxdVTOjxZiO4R7VUC/P5P7uv/mTf/7lL3/55vLq6maV2OzhMvWxYulZGDAupVm3tpxP/MLyJ4bc9Du5G7fGa/xi9iGyyXcw9kMmFDBIH/di+eX1VBoODkXx+2iujMsakz02bdWCQgLAqgfUdzRQjgM+ho1v7Q0zK2lg++RtBqBRIQlekbO7JuX3jp597sX3//r6BFIlZ9dISWZNXJtSB+F16lOfG6VKmHEg09h1LTUAVZXWLHxSz5en/qgxjZfpb+vl59vrT3n3qcTvIf1r7RpPX6bLh37ywbZ54Dfb2cNZc3TK9qDSOTd07xtfl/vH62//la6uqoVII0asdAMKRgGoERujmlLruLT2BXCC9WO9fscvH8flMZ3s+GgVj06reR2WM54dhfoIVFPFHNRUqmpGKVnU1GsbU0omBG4qEZYqSAgsNYc6VbX3HeAekwPMhMRIkVyZWKwq26ECGKY9UkqxFTW9iZ5Sa7122/nDN+qz+xlabZqZnHKsZ97McV7xqo5UU3IyhyZ2c6i5wxnmkMOF6u6ZHYc0h+MKO0du5sbsMmNim5iaxYgz25t0xZ4jIVIqbBpDEGTY48QURIZ+yTAdcGklIqi5sVtPqJ2ciU0YoXFhIkqp71PQfBuHhER3DcdbGy3Htg2HXxlUL5AJDoYT/DWJ/cO3JtmzdxyOn7W1AS1Y4tiPBDCDD3TxZpmEcgSZCviUOSlzI0JVnXbyHi8+5T0cH228DYJgNDKIprVMBXUgH3o7uk+6LBfvy0HgordcIESahlT4bL1kbGFaGUxjOjow9X0nN082CQyXPjzT7NHx6fZSMbt4A56AbPtPnAqM7oT7kHQNo5y8UhxiAO5K5IBkQph8TfOkxtFNVdWhyc3MFPvk53IwMzRxZq3Jbd1RgnP7veEDC9vICk45pXrYOFayu/bkHtO5G78yspGMH+aL++v8vbvXmYwh36Gi9NecN0oELimF+9/Y7LRqlv/RP/kfLV72sttq6ne77ma7266uN6+uzy83i9/81Qdf/Pzl5bM5XV1sNtW6OQqcAq+uVt3m+unzT7fr+Pnf/915faKbNixK+RlZwYTNvQrBTN2dQrXd9cdvvrG9OP/2ix8LJM5lPl+6QBQpJRKYg5oQUslBvCsLAL87RjjcG1NL8655q4fKcioutShdAtx0/1tEVJJJ4RhaZg7/5utNMwklj/p4S3c19KDaR0m0F763jYzDeRwcfjBUERwdMCOy3vTezL9+/NMfxg9w/MS37VFVhWPs1s+663hUV7seAc6ezFLXqRFTVaEOHMgUJCQizmxuRI2EKr71ePlGs9z+wvb6slu/sOuPqP0TdD8k/3Fcfarb97F6c3tz1p/19YPejm/k5MwXs9nn3qpPT9of/bT97CN0a17UvH1kUPbgsgV6whLeAHDdsm4Jf2n9n0Hv0+oDf/W+z87Wp/eq5TycLqujY5kvZL4Ms1nV1CYzrqmi2gyptdhF7fqu72tzCEuvoRapmGQW5oGbmTQz9J1td6lt+7ZTEKzPhTZqrm4kQjzH3DwGeKB4LbGHJo0bbTfa9s0uNfcfhsWsqirMKq0aJki/U0tg9XiMGL1vXaNDQSXzyo3B7KVoxDFWB+oAb5TFKWBBEBJxlAZm+0a57uScM7FGUZLb4zo852wRUKRqUV3MIrlQ3szcQ64jNo3I+ikJkTj37CAOzAF1yOeramW9OVlpDFe8jansGxcegBGZGzsQ5EZ708IdH+uJD/XY3U1X9u++62b5/t09fvdwdyct5QVQN3YgWibtlMEPzikzTLkPhHt+5L5PfR9jjANIvRcTt4VqvsOSyZH3uGasMttAg6EMHGREE/bSlov3NQwmc0lMcKfSfohLwRqyLzakjKCkBYmXUsuDpOjicd2RiHdHuDyXHxRDTt3f/3+OEXWR4pJSjoiNfTk5N4wpfqe6c3JTt6SsyWJQ02pYokO2VDnIzEjFci0bgKxmba99y/OOEHSh+y54p5mZ71Vv2TUTP3g/NYdW3aFTdJAMWM6hg/MngzFA0D74u47bsMl0xbt7RRy5Gj9tif/9f+cfn2j14uO/mNV1x8368mK9u15dnD99fj7/8tcefeMbNzc3ITi5z4Xb3fZqZ9Bt228uXp5fXWze/3f/sFneb2+6RVXtYgtPdaiJKLkVa8005GISeOUUVel4KfCqnmlvxgExWsUswZNTkBiTOeUCwelCGf83DoEP40U0FAvR5OSi5XTIZSiFdAykwyG+NUMAAHYn4gxwDdmM7Ln55RhFIvO0zx+5lQidIcSy5aZ2gLsPjAs8nehbUzleam8wOQ8OOoLAwWSkZDU4kqo27927enJx81H3/rypm2a23l6ub3ZNChFrNu6jJVMTEpAbSIWsjiBhElAFzpu+FyKS+UKUKl+qnDX19TwsPuhv3ozp3FbfR/8Z0p/BPkZ8N60e+vphe7zk+6uzew/C6TFO5s3Xvtrcf3z10Q/T+pk0TLEXP3IKht68g7SgDrwErT2J28b9kv1fePwL7R5699WuetS/epOPtnIcwpLD8l69vBcWMwrCVc0cZFY1dWMzib1022xUJ1WWFEIdKAhJqBYN1YnqeWx33Pex7bTfoe99tyEhTj1TMEOoK+eZpiaRCiVPHXYdeYzdNt5c6+7t2eM3wsk9rpt50xif9Y64nNnmSK8vfbcBxOMOyL1xSusUKklYk/1L5Kb7xBgJzhWHyjkM5Tmv2eFjp6+Rc5Cycswx7uz+khBJbs5IzAMplfNYYBMDkPlKG3iEJaiBKNDMhJ2YDGZpgQ5DK1jPFcN3gKW7Ni5Q+nuW3Ar3URPs02cGdsnpLjtwsEobiakaeb2FfVssDnUyZgbKEUNLMHfJ7ZF8aHVA5u5qZil5jCmZp2hd1/V9b0nNLAvdrERpTCfDIU7m5MNnPDBL7E1tzkZRVgADBkul4y8NRLlEBzKNKFPbEjD8tGfMWAkMFyIn8iH+6mXS96lh5Vbprree182EnSCfzXujqthaxWWa2v13JmBKfjC8lUemdHdFidPlIjx3mAy2iJlF0yisbillXQtVTYOyHJRxWTNGpM6jNbavwaPxz0O3GAQmWGHY0okOzqut1KAX/nQvDUUGsTw88bCmfMwAoMOPbg1Fpk/xn1EHTDT2Px9HrVCIkansFfDyyYPl8ekn/82firU33TY5CF27evnq5XMs7z/+1m/12zWp183y/PLqeKHzwKvN9WrXYnW1ardH3/r5+ujeattyE7Ye61BZUk/JiHMpYe6gAiYB7TSdSLVNPYeaeu80BRFVZ6JIXjmqwLsYj+pZawnDBj4wT173sNn84REQG8q089TyWLVdPNg8Jbm67Hblg1lmLBLKlZpuY+2ujFx6Q7ZIaevlSnQwC3sBagbQHrwBRMhs76AfbsWywcb3x9OG++cJzGVmRkxCi8g7TsaCXT87Pkkf3jy/Sr9UH2m7W6erVWMLZr3ZRUKuX5UAEWZBoCBeyRxBgkA4saWUYI4ueUrSWqdNcO22KV0lbtfG6l6j/qDid71/pXjh/kO0T/XFO7h6gy9uLs5ezR+9eXz6WJeNvH/y4OzL9tHjy6c/AFeOBtya7JBa+Bx6DL7wQCwV6BhqiDvHOfg7YftdozPbvKs3X0LzfpqdYnnDyx/z4lF9tJidnFTLY64WEmbchCrQfD5PvfZdijHFro8xcmAwo6I5S1XPm6oO2dLuttrt+u6s8pS6NbnFrmeHp1oroA26vgm0snTju8uQWtPYfrrr+1afdOH4bLE8q5sFHgQcL3SzCR4Sz0wDIPA+d0/KSzR395isXqNJJJA4kNQsDULtLG7R7pjkACyTAJckzLzhiYgcIff4A3JfciYwgYnZsm4WEhHmUJKfAxFJcADGMNWkKbk7PICTe6aQsaV35KVhbN5UNJSnFsVpoKHUctSguRZ2v0OZ4F4w0/zFyWacqs9bMA/Kzsq7+XDL/4zX4zZgJrNE7E7quXzFHXvC1+LiqWpK2vfaxZRSijH2fd93JQBMebda7uqOyf1MfqvoKvLcY324+dwar/CQEGhg9YL5yHpGyHS6Bf1CMegZJX3aqBBD8SBmcgx4lBK3b2a8Th6Yu3ri8Hh9o/F88/mTEa0eJ2W0eMa5m9yMw8Z64hzTziAOTM1lb8ABUENSc6HsCluBifdO8PTf/NuF2fvQQZ+M3d4cNDMQu/m+Hm+423LPh4+cDzbXfWHzbaBxcKzLfvXbQ7+/1F4BTx3nKfUlDj0qd+/cZpOEQz1/+dF3/qXONg8C5q92m9Xq+mZ7dbE636Yv/8EvmyiiJ4nC7Zv3zi4/+ijen7XtGlebeL0Bzx+/82FqVdyEkpoGZQM5536e2UjIo0bRrWZpzZiCJzMhAmtRkBTMQZbIQ8WdJQZDhpzPOwsCOFBOBLCXLisO+KSDt4jkDpn7kSRyA5yN4IckfwCIhImtpJIC+6uZlhp2FN0MZM+r4kYHPHm6TG1YoJOy7FI9NpmNsUgSZinHid1dVXPUmIjMEnPINZFUklkMoOQuLgm7YBwZbo5qxxY+XHz0l+2lJKxbShC2/oZV1E2IpCJm4aqua+YAqhgVNZUDTsIcTJP2rcYtWbQZ0lYpSAghNEcpmsUNSCAafQdp2YLHhqj3+G30fy67L6X125vrqGfnzRtHfu9B1TxYfvhQ3zze/fTj/pPnwY+kmVm99fYmpGD6wGnr3EF7ULSqJq9cT5x25s+RfizpT9C+je3nbPV5q97C7EUKJ2mx4JMjOT2V42W9OK6r4zCbkzDNuLLaeomtWt+5mkto2XshkRAqDg1JvUzzROiElPSBdVFVkVJsb2hey65qq2dpB+yUU68G361Edwpdpc3Jw3dS0niyrOeLEBZJKpDEly/JSFVJiYwdiQr3ITmZo+AlDAOMwQZiCsR1SeVxhY4kznsgt3TMdYRQl/647hk0JqIcQjES91L6zxzyonJiqmrmUNZ5BTMKWjt5ImVzUmeqnGLvfTJtODdhrbm/eXDvhtiDqXEowsW8GNBZjLDnlFzm3OPCs2DxDBFmtWe5RDgTL3nBagYBdcvHGoSVZJYsZmAoNbwj8kaj9lABM2VaEoWzJQOD4KhyU3h3yu3hVaFqKaHsa9MBf+7Veh9MdSKH5Lx0A5UcyFsAFRFzkJG7GA7i3NoZXLCuDBSDiEhyVseYBJNdQ/Uc4MyBAzJThVPGoQyWQX1CEDBTZRQJMWkrVDmLOpdwsiux+lBeCUKp5S13bAOpiOSps4HxaqJWD8AVHtQTBkFmh8y7yOFo91zoDMEIdwywurtbjgsTs5KaGye3gNbSxmJQHAVRVUtOzsjYczKrPBk8WeUkORMwOCKqipk9jirY2d0rHgiLsiQG5eJ/lULNgT1v0mh9IRNjuecOD2xmmoV5SanzKZiaI9I5e6lc58B2zG/kmivaQ9B5jHIS3q3lOw6lu1chpLTPCKiE/uiP/mW/2jxIa+5urn7w/ZefvHqO5t3f/7vy3jub9dUS84BZbcvT4/kKz2+u175eby6urq9Xs29+nYKkNlZ12Gk/CxVSyeOkEgBxDNWvmKBSU89vQGTzR47MpwNlCB1O//QKkz1ZxBZ+xr71ScmQj296Fi+3U+E8t7QZywYyCS7RaPXksw6S2ibW5/Q+8do8O+wNq+Eb5StyWKdH5GM50+EdDg2dwF7gL4yolKq+Wz3/8s2f/dfrry+oFZtF5pA6rWYVC0vFUlEQqRsScRGXGsrMTGA3Z6+JWc13OyOfnzy4n0y5ObHZrj554LtN6nu5vtndvEgRpgq7AV2wvRLedPYc7Rn699vrD7uLd8P9np6s04NFc/po8fWz+MZ7608/aq9egI+wmKXUQbeItduOOLoRrHffgraaLsFz4q36Ofz7SD9F/5OAL9hiaQjt1WO8fIL5OS1n9fFJc9T46b3Zcjaf34MsfI7QBE3zlDrrtp7cesDEyTUw1wgVIxy7dkCS5YzJNKVq2dRn96zd+kb0+iRd3fhqQ3FD3RW6Hezcd5vVbtvHbe1vOdXVfHE/zHqpm6bpl8vNU/LLy9Bu3GHWZ3oCHjvHkRvlBvTi8Ew2z0wpJxPA4bnpGQUKQpyIEsOJQ6io9MtzoxwhFCNAmtzqdpQXlNNzghATBRGQqYrnoiZjgYPqTOMMJygsiienyqydz7DBzX1afeV0ntLWZbCY96bksCAPkGdHIRMcWCamEspR8oB/9jFev6j5YkgfOGfTMydbZnKYe+bPgKlrTorTUhxBQ2gxZ2B5Jr1R1RhTu+u7rkspjQ7T6MIjt2wpbihPg38chnTLbPTzoUqjwoY2zsutx3EvKBYRAazF22MujfeKDoBIUdVEcCIXosQlLRhDgRaBKC+L/agPKmfq2I1ITHnHyPm2kJze4a22P3QnmfS15tH0KwARGYZSMKOSFpVMzSSqJtOoKaWkKqPjO4LPRdorWCR5chtoLIly3VBKwyAONFPIld/mg199kAvto3s9eMjJTUt+BkYqyoldcvB0txTQ9P3876QMqZQEZET+QCFNL6opTi8ngLKHo9mnn13ufvxMt0o//9XPf+WrzfJ+e7Odc9WKSkenmHuP6mTZra/XF+faJ39w//SD91QtkkryihnmFl3qXMU1tR5JiWQAhW49z16CTDZafoS94jzMY7q1CKYDd/f9bAS9biiM7iwmomLGDxUS+YSD+If7rQexYtDTYB3Z9NnH+qIxAsh3PsJ4/alqx97gGM+6Re6xvxoRGdg0zY/n93zRfu+j5en9zi4qbpy6+uheaE7gzFLXoQkUzBweNBE1AEo3zbqeC2NZz9v5se3a6CaBJKBDLfURZidod/H4jFYPw+Zz2K5185y6z2z3Y7NzhO9U6bng+yn+kXYfpKuv3px/YfXgjdMnG5wey5v3Fo++Lk8fp48/8e1GqxOSS6vmlrZILfVdyBSGHoSPo166B2gNPCT0hBvHH9H2C1UIXj2z+D1bH9PlcZqddtUCs2W/eNSdnvLxXI5O5WSOBROa5WzpCo0We9M+RlW0zj0IG2ZGRRB2qoiDhEoEXi3D/DQd9f3JRlcr31yl1dx2l9xfSR9V0aVgbdDEs8dazaqmWtShqkMjod7VT9vnn6FfQx1kcM39CkpVBglYKAQ3Q26ECyPTHI4jFqIAIQk1uCZAJLhwLmByJuEQhClrX4CEIczMxDwySSU3IZEsfi0hwpUcRB6Ic0xGHKyICiLn4MjgdC/b/vlnf/ub946P7HrTznmmdLDppusNUykMoMjZ4U/fL/usg/freJJRVZg0RxOcvdSFHB55606X+mtuyceiIjNXQJ2IOKdpZLFLGWDOgjkjzzHG3W7Xtq2qjVrf/DDpy9npdly17PfMXpJbUNDB5vUxb5QGylgv3Izj6A0SY4jo7k0oL/kiHFhh2TF1JzKmYGZONhSvBqdIma7AHUNRN1AciEEy2BChlyGscJsoYphHP3QwMD1BRi7Fw6gBHf45eacYKPl9M0tk0VJMnEKVYL2mFC2lpFqralJV1ajJczlRSbhhoAdXBOYhY7m4kcwYWMaysUugXFZgZmqaY8CWK8DdFUX1ArDcoWyyUMcBGf+dqqdbZ05X4/jnXgFPrTM/HOjpmIoTTbytbrtrFvPodjGY41sAAQAASURBVPbm544+/LJVQl3n3a7brTkEIAT0JGQcd9o2tZHGXYznXfvWt/7Wsj7axejCGrXmqs+ptUQ8dBOablpMDMNbtzQ8Qp7ystC52Cj72Z2Oy/iCh42eu2uO5RAHo3F3xMnc9kv/cDIOZii/M74+vOHJ/NHkdc5s8GnTiCnT2/55DxfxXh9P3jczYR6X9DhwlrnRBzxEx2dZ3f/tc/3l2er/+WLtR/dPKp8tl/elOaJqZg6RSkQILhURkZtXkkwVMHMz1z7C3amW5fHZ1fVqvpwTUXOylEwL6bqNGyS1tvddr+tdWq+6m/O0usL1R2qfqv3Q/Mewf47uj/HyK379jdWrL/vRw9mb6+aNxem7y3j/K+2Lq+78ZbzuiEDVCerOw3XUFqljQ6Qr0Cl7Ddo61oCb70AR6SeuXyCfGb2A/ch0RvEI3nB43NOsr055eZ9Pjvj4XnXyhsyP0zFJswjzGS2C+gxqHlPqo6UaFJB5KYgkgDiYJ/WKZrNqHvl4hnbpm5N4fdpvN+nVi7Rbeb+m80+0W7uugHfl7EE4nhEF4qN5PfMq9Ob26gVW1xLMiSAMUiupDM4gqEoGMLJMIwKLiHgKUjU6q7WqKFRMIlwxczLNlj6LcAjDWilGP0kAsxOYGexkxgk5zcghRK5s7O7sKSYazGFlNgcZxAm8Y4+78xcP7ObXv/rWNvXELs7GB9mC4x687QSQHXhaPkmgypjMsLOmFUqY8skMVyT2gmDvt23BnG6Jv7sCMdvu2SbWXLi/t9pRwkeata/FGFOyXIA0psiMYCOXlLdC6kQkRgdFg4X2cti22daeCpDc+fTgDnPIgDNINaWN9JEGhLk0ORjZDT073pa7fDBAzMGhhsSeI8kBmkqKmNvtmuAyNXclLfmBeNmTdbg7hAusMX4F2QLYa3efiKZpWHNyzYlwLneQm/taNO8stUnmIlGTplqT5aqkAYrO8x7K9DGTGZtlFex5kfmkgJeJdKIX9hVI5u7qZqX2ydT3OrjcG+VGjQde72hzTJbWa31iDE6uAwh22LDQ3W3QwZio9OlKmkLQdd2kpMn9YtbPU+ovdlVTcy3BQt/1Lso1KVmMa728uvnRj69ffnrR7x7/1m/MHz1Mmw7zUKmKiMXEuQFY1pfuuQ5h/OnpHp4+cKYrGh55sB+BMevkVlOSW8OhAxQrIlM0eBzvEYvYf4dsSMa64y4PTuzdo7QPG250nKHBvLh9Y5Njn+ZKRFMf93Di7FauxPBD+ZwDo2yixW2PPjmY6JP0DuYnj994+9Ob69nJvZOTR8vqeJMS13X+uqUuaUdsyWLbbr0l1cgOItJcPhYqlmqjrZNT10NNRIw4ARLqs1C5+y5sfKn+4FTTg2V8t12vfPUV323i5U1/fY7Nj6j/c+iP0f0ovXyIm69uV7+4+eRJ9fjB7PFx9fYJ3jmdX7y5e/4yvrgIVlEzU0rarqxvIRV4C125OxnDF25HjNbk3Pwn8CeB3tDqvtvOU6y4i/oKFhCX2h7peQAtu+qNZvFgfXLWHB9Xpyfh5CQcnYT5Mhw18FmEpV69V1JjiDsSPCEQIpzUA4vwco7mKJycVn0XTx9vr1/i4qnsbjyu08vPiMIuVYuqrpuFSYUwnz1+IlXTL49XT5/i6qUZgSKRE4kzO4ame5yZNEgzXySYpLbZQo6WYV5bU+eILrOQI/f7JSIwjcF/lDas2XcZWSsZ5Ga9mVqXkBRmrMmtN1PtWsrYp9QITK5I0TVStd3t1vTZ9a/93oPTe+huIHUTUxq5jcZNUZaclc6D03W4N0mhQ33LbahpAnoe+NDThe6v1fFl39loXN46YbwDz7YHO+/5t7MCzkXA7JZUfaw59SHRRkTULOtCGu4QACAQlsPa2dJcViZKi4gmeu61909Zo0Cxf8axL4MNRlVOFxUgM+EJsVuZeIFbqa+F5dQ4t5y1RSX2dJcxpCjXg/Lf16qZ4S6LgDK77dreIhQaRfpdOXZXAOb4i8GTW2/aWmqTtCIxphg1xpiS9Boq1WTMoBLd5iowAZTMSV30wMKIlgCwM3vZLfkG0lDM5CiFoWaW3FKudHJLg2d8q1sX7uiU4Z29kL/z0TC3UyKOgzPolrEzBTHFJ2OnqkYgYNGZapwvm+TW9z0R1XVtMXorDXFLkU6a9t3H8zfPfu7eI7v3yPpdD1O3o+ixokiochtSMyv79vUr8rUPPJxZgAJC6QfJt54r51u97qp3O/gWM+9n6MVbvuzU3hkly/AODXqOgNtmRFmRPkEdvKjx4eKvW/GvG4csZABkFr38XrmZ6WnszGx6e9JZIJDnK95iV3/+w897UJ6FLl5ut3PR7c0nfacpGaKm2Hkq5cvV0X0JYTmbV80shDo61BHV2rZvKkmb3bxuPHlSpVD1bYzoYdCUO8+4O+pGQI0tTpK1/vhG1o959dV087fj5Q9t+yP0f03dX0j/r/3y6/rqF3cfvZ3eeBgePJI3Hy+Wy+7xWX+10vM1dpuAjus+2dpSNAvgY5cZuUlakPeuC8cz4FNF5fwYMgNHSwJ5CWoYkfDKlQxO6aPUHes5b8MyzB7I8jEtH/LJ/fr+vXp5hPmMqkqaoAwzhQd2CUoBFdxNM0GRe8Voalkc1YuaHi3s8gFdXLarS2t36WIFPGuQ7N59HB/R7KiulovZvF0e+YP7/vSTfrOON9feboLG0gous0USG8NBVM2omoV6Wc8XcTmvF3MStqxOhSFwghgFGqvMixJzz7lQ5ObsltWGqSbt+7T1pNhFiolNPbYeO7dk3sNZpKFqJqFSKHkiJOp3ur05OZn/xi88QA9iRyIPhEO5UVRFjgVOFhuBR6VS1jyGFTtBg/IbRTeXDNbbWy+Tv06NUSpYbvnp1+uMsWi2XCZHxjnvG4UPfg9yqlsqocGUzHIqmRAFFmczUxm88aLQh6v+DVWyNHiMI6vDa+X44FTsH6TsaMe0bnpvZOSNzSF/3yxlhmh3HgolStGjk5IzKOSuEwdYdIkEH2rfYSJe/zgTKpLBqIJPmZTuGEl3dVhW2JOZpawOVTWxdWo7jvPEfWpispQsqqWUeq04KjHMGOQsOYzjBCjB9/5SASR4IqVHg0DNbOgKrGbZA3b3qQM2veGfJZB9r7wmQ/FaJZKzoHNKGsyNSgyYDzOnp79NRIo0BSeUEERSSp0hy182JlgIIaZehD3MvdupWhIs333fAnr1dredM6gOnEyJzJyZLRnIXMZIw8Gtj6jr1KQdh++gA7YzMoht+/GgfWp4jiJBURZ3tg9xmCwwXm2aGeHA3pgaKGMOltRAM3lnAPdnjZ+Oj1DWpfuI9U2+O/HKAWDPBOSu7nszZXBqadg2jMk6w53yjHL90tzG3Z2MQgivLp7+ZBd3WO9euFs7i3aDYO2uco/OxNV8cdrMl3w0ny2PFkfHEVBVgqiZO7sxswTS5mhOUW3XU93A3WJfzWrv4CyetKrJU3R3opB6oD8JHCAVmsbJeQl5cJ8fnunm6+H672y2P07rP+bur3j7L9L2Xrr6BZp/nT/7XP3GverNN+rHj9EqXVz3Lz/bnr9ArFD1gVtgq+g9uYYW1FbaOOpkn7n9CL1zeI+qGvPEaUncm5mpgXcA3KG2CbSy2Gu0tA6gU4Q3trN3aP5ITs7qs3vh7L7PF6i5rusQglTsFpiZjTJkmaIFsBurHM2Pj3x+3B/PqqslrtbWJd3F9fVFT9qwCxxhRtWsPjq5N1/29467m1V7cZkur7HdWuzNEuDcKVXMEtAEWi5ovuDlcXV0XAlzkCJfMr4p+S5ySEJNFZqQU/9UPSUzuBqpmUbte02dxi7FHWv0dmuxYyTTiKQAiGtn8WAV2MzAjqBewVtDlA9+6eEbZ0g7t2CcjCjgtpDaZxVN9QeAHJ875HDGmPOIPU4LkPOAdpof7tOfoRKyEgey6spbCfhZorDsdBGucqvFUfZa7oNXkl4z25ExIwgpUeC8f8iG8kIiz+IJbne3G4BbeG/e+Jgop/EOc81+ji4TpLQhGrRvFmi27+A7lL1ycE+jRcLM5OxOTMHViRyZ1jtb+UyVcIxwTyM/5XADe+E2WgCY4BMTG4sw+L5TM2j/9cM/MfGMf9Z0+P4Fubua96aSUMNaCVFT3/dtpBCl7qWqUs8QJQ/OLgY3z7EKcqes51Sz5+rD/JDkwEFp5wwDNDN+2ABBTx7Wh9JToDRjvrt+piNz+9+7rSyG88MwfIaSF0B2QNyxhz3zfUeNVQjTT2OMuS26eooeA1e1VdTCJUTq0XfwlNwrntFaEbTzOGuaBHhMS6mugi6MLcFkj17RYDrmh2eHD3mbt7RXVpFDe0GUBhpOLGSTVLYgAkBAxUEGhhzg/aK/9Wf+iWKoTxdHBlvcpvVk5VZxuOte8+3bpi7Z3pAdb8PdSfbKeHJNu+Oojxfa53y8RtGOAIYVQEZLIxUgb1+zbCY8rI///JOnm1ef4OW6X9t2flzXtR0/ah48Pl4czRYndTOvmtqEEtAz+qRmzrlGZrBKCNIYkXBi6fpd01SOSCpHdZ2UNu22V93utlLxbDbrPSqct2tQBUfSFkacmmr+qF7s4kNbtu/Z9lctvvDNx832GXafUv/ftj/47u57J/3s7ebJW83n3uIHx4tHX236r/XPnnXn53r1nNpLhnlwsy1kHbVDOoU9gn1G9In5OfQL4LcQtvCKkVu3HZt3hNadE81APXnL2gEXrq+8+7ZfI704S/SAmrfr5bty9GB7NMPpjI/nEmZV3SA0HGonmLhXFYDKZ2zaB9Rnb8xm97ezy+3NS2m3vjVzioq0i35yZPdqYuEqHB89WZ4+9MfvxN027rbdbhv7TlWdKVTMIBEJdeUUXEIzW0BbJUQYcy0g6xOZi8OzgFO4JTNzNU+qKbq6qXpSjz363uJW+532O2l79t76NdnGJCcGBpHa5chZOMxcAkhATnXgJXepFVt87YOlUbtBv1B47ejJ+Vahgd9ak+45yjVahAdgW9n1KArT90BUCXuN5cU0QemI2E1v7eVhS053wZ1dY0N9PzkFEuaRDMnM1FWVUtKUotrA4Uk0AP1D2u3QqWy4LxuNh9doo7teII2sFPkc5skmD8Uh2j+KULFG3B3Oh48IIR7a5paRgQkQqRSAsRkRCVEChBlVJaoljjcO6eQYOmfACmmu7WXjGNm49VzjRab6+JZQupUuOh4KJz9YM6WzgmqER6KYUhe172PfSZqNhJRiZG4QhzoIXnFVfsUoT2XuvhNTpNzJig9De4MCVjN3T9kGyxzROSMv64tBo4wtNMf7nI7e4Wq/i/APSsQs7AdChxoamqanHxgpqkrEmg6ooR3oc99ZI0FwdRVDDVVFImGPIVQgwLR2AII6xuJ2bi01Tpor5wwAGRVlz14cQJARF1r4PadorrLKQ+BwRSGDzczuACyXlYGIRCSHeZK7cJl7yQXAmWWOeeQ/uz1Gw74qPqaRwxQqEM/RldFHd2ewZmafvP8swd05J/3v22v7xIrPjZkwhS8IcHZL4wT7AAf5pF1XieA5AGZHsdCHLBUaVj9x8P3uyjo6eKZGh5ELEMkCVXO0sfV5S7PF6XvXPVWbz4S9fvLg+M33qTrtm+XMvF4cOereY8Ls2KqNtw04BaJYpbr3JM6Rfd7huurrmNSr2Guq29np6fJ8w68+2W70/LS+f5+6v/NV/cn52ce9BDGriZc1KDmM+aSqKpB0iInmC5i1PXiu/Had/mBWUa99118d91fdxUu6Nr6+XP35d2ymdrI8fe+t43felDefhOsn28vr9tULas9B1Wwb2mrHEs1F6D23xv0z9D8WdWveIZ571TspEkQrsyMgkvUISh5NOnjHiPCd25b9hdtzbL8d21l3cQJ5TM0bUp3p8lFYLMPiFHVARTKv4qxCqGqpOTTOtTtUvD6ewY+2SLJt02Yr0aqur3QbbcPLkzA7ImucKdU1V7Pl6f2FaUrJ4KyexZNp2fMF6OCKLYmZaQKMWQxqZikmcrcUPSZSdU2Wksao2sHIdr3u1t7fIK09beDRup1mJnszpsqoknrJ9TLWi8bEmhmIuGttXs3eelw76fbowfsff+tx667iIISqr7Z1ZM1o2giKFvRyFNBEmbJhNKAlV6YWUQjKlfQ4DBgb9tCu+0GzI3d3V34da+y4rWjqT08+IiYaSOuISFU1kZl5ckvqSU0phwaDUZ9yd+0Sq6ZAnkhhBvPccMoUQA4lDw7rJNI5toblUPwHS4ALOYAgVdb7cMdATmJmxHumPB8KVQZZMZZxZQoXJyBZJCKG5ApfmJorMw+BsCwnlSk4VFO/0+QOouCuh6rCinlAAnJ2givnLDwSGj7OjjcRsdDEXhp0UrnCgVcznnBrssqf5gWsLo9HgVjdkhM7NuqN2bHbTGMTQ0q27VMIgb0VEZMqKXEyEe9iFJFKZCAXK1X1ZJRZr8zcxU3h7LmaWd1SxvUJ5p48E4NblskxZ1wjL8VxKdEopQHkhLicTDfWX7HsT9iPQJbpPCwFHForU49wv23ybxwWCtPoKU4ghWnBrmeFczD6RvT6eIANOQnjLY1GdKbcG6ubi1MOnhoXe104xG6JCHCz4oZSrq+kjKXvo61GGLMh9j99OBRAfg5XmMOEb6MKUywsg8k8xkJ8z7NycJ+T+iif+N/uCW48OP1TBOJwZDIEl3u2ZODuYIkDyNXA03KjfCXz3A9WFUGhsOhyk+gLV7PH1Un/mN+Wk8erto81cX3WyFGTTE9nnDgxL3pgIWsBa9glPzoGNgCkqqzv5+TXZ7xsjxJzYhzPIgXsnv7gk6+/+d6v/Rb+B7/17tffXt574k1a/8F/8t92J99YCDa689r77Za2La63/bNXtNkgbtv2RqTWZDKbSTPjk0U8k+XpmzU9IO9PT969mF2HB6cffvHL7fZGd93mr69ebH9QPX7Svj+798HnTt5+Y/Py1ebyWeuf1b5wJuOt+g6Yoz/G9lP3f41uZ/XnICeAEYtWC0ARd25zKNwBUuLOaAuPcIVmF3kDb2HPoc+8rxJXuFrEcD9Wb6J6JNU9b2Y8m6EOcbGQuqIqkDARsTp1fa2AbtSCxbZLuxQ3oT2tTxxz2y2OpapFapLgMLAQh0CUYpvXlVQgdgHBlNxj7J3ckTwjy24auxhjSG5miL3FaDEiRWgi87jbkqr3G+9WpFvEncce5qg6qEPmXs09HGFxwvMTapo5hwiFq/SxC3zy+FG9PDazPmzfe+/JYr5u2/MgcwKnPvGwp6eqrnioxdO8Q0l4WO9+V4MerlvHtEFQLukZMbyDZT9s/58B8I4baiC3yQo4OjL9BTEsVymRKTlSSmauCUMazkia7Q7NXJU+XJOJzO3Wz3lm8GEayKoKSkF3TP/pn5q5uIscLsq3PKw5yIY+UgNaVmoofKx+zJyp2crJJlFOUAWIWHCLzOCgUdJ0xHL7OCdiIyv9pyf69bVT9t8L+985/0C4UcETQO5ZI0a33rxNsQ8cNfVRqyp1MRFLJSFbbwpSgznATuZEXCYK/z++/jPYluw6DwS/tdbemXnMdc+X90AVLAEaECRoJNHLkFKTHBqJnI5myMS0TEuaNqGYDkndUqtbQ7WmRTVHZhQty1ZQIkUZerJJEIYkDEGAAApVKO+ef++6YzL3Wmt+7J158t73CicqXt177jmZO7dZ9lvfcjOTzHPjyswCIUJf+0IlzU9wQk4JD77vKdvu9Djv0Jun9tsYiTZWfDyQIN51jk7L+jd5jQdxSscQZTsGikxUttHTo9n3sULini4xX27QYODN45VCWUeO/tz9EUYBn76oyQmUKTsIyJRfG3DKGEWFYqEQ0YDPLI9GJ4LAhcCCbMAgsBc8lwyxtSHo7f0w7lgw9H24qA/K9TndNz2Zw+/92PKXN0gK74N4G2sCRoVrlcxTRIR3nisCrfVoh/HdB+EeTtdqN47V7pZS6CCzJWirOutUTVlWlXfNlNK6wbqLvkvT45WJSBQXN6kODq91Vw+P5PqtubTuN/y1mweXj/7oB+JP/thXJHQJUpOTh5vH4db+gia32vXtdOVmurY4vnwDt4+JyKOgphCtCc0qWUCXjm/olcuhPWSEQ0xobxa2H72xiDQJcrv6wsEruHdCdR1jPXns4fX+bXz6yu32OTxw//Z9D8zOX1isHls8e9UOroZQSZyl5YGikcmM1i+qvk7dLbK3kdzndSIlowpVJFO3FtYBAVbBZoBC1HgfPmc/w5bYj92O3I/JloxbqX3N26chU+O5Y8vCGchWkj2KgWJFUlMIxBWcYcS+Jm8dwdertD62xcKPjq2Z2c52PZtxM+VYgUPeyMyBqybvE3KHJzdVbT2pmVtSTeqpg7unlLpkXafrVUrJUkea4B11yVJrbfL2yFPr7RG1B6StmZFXTtFti+dT2TpD0znCrGlmTqIMI2uQ0uJwpYvt++6T+dbafTbfDrurs2dWTPuR2Blt1woNLXfcyQZuPzqRDMsg7I1gGUsP6zs4ZRThJnPm3nfvPoFqGsvvUwb9+M2xXX7HiwlEJCAxWDI31ZQ8mZuRa0rqqTXtkiqpuhllnE4eu3oiL9r31BF1nHbHPbedRIZKFDu456N1Yi1T5OOBaonYOczS5oLuA0nzQIAwiJcsMRnmMBSNW9qfZzcHAJGcyr5jYA4/nVbvy41yOCNTT0CpL/gZ1sJwZ270xOuUb3Dqdco28pH7l9zIM6+IrrRbaliZtCm2bVtXvFyvSaZSBSM2QEFrs8CSMZXSr0UplISRKrFLTiKyArn7sme2Z+uxfupFBw/9HnrKws2Ax7oWJ+T5Zkt/iSd1900Ievzunb7p8O+puRu+Pjo8m4+9WZzB3SF9/4NeBY5d8PEdxqMiohyjZxbKyekR0Hn89aFOrhzdQfGXARUqT8tnwEvcA9ggt8o1M1cdkJ1wdRD3ciT7l7RBAOb14Fw34oVfFHe4++MPn1q/vA8K3MF9k6jmjT1x6gpjQ2awkzGc4py6GkeHHObGuUwFcHhwUV+v5NLl+h3x0Ldo0s1FfctdmdvOJ+wIaCU1yylB25BqcvfpBB23uMEpmC309mLxxTeW+/4Vb4vf8bZ6No3f/oFH/+E/eOOXXyD72q967Lvn4G65TjOJK15Ysno7naPVC59/SdMB9ruOZeuBBybv2JJJTbHqzNtlq52d72R/cSMepLDTrY9uyrz11e0f+ta9f/fzr/yZ73nv9/4XX101W5ffWDzz0v7v/PZv2Wr5hZc++ukbl1Y7e6mK8dpr177wND14cX7/W85+9YPLy2f1lVfb229odT5US+loHWo5vqnpJU+fQbxBeIR5m2LnLLAJ0RJCMCdEkDutQcZy1swMnYvC5+5bsI6QzA5dF/Aj6HX3azBBVxHXjnNElfMUNFVqwDUkMHOHCBLiABFasIWot5su1N28qSZbYb4jk2k1ncWq4VAPXcvc3aGWklpnXdLUskO7pKlFSmTuqbPUWuq6pSVtoYnJGIm6Lq0X1iXSJVnr7cptBXdIg7jN9byaX+T5ZFVR3UybZspVTCAmwkrD9euL2/vVxT1Mp0lBwrpeha3daXMNmsg4eSIirqXt1iwRRHC2EkA45QVmz4bv2lC1Fxri7tiU6OdvltZ7+UzdqXpPCcHNaTp56/Eriyymyljccmg/Q8OKxM6TnaWIWcql864DLaCap41epFJo6MhFokUCnBonZxkDApgAYoI5kNG+2VT2fEhz9pOcS+y61+hEBM9dFPMdi1lWiqHJ+ofXgoHfUO9Zz95zZ6w+uxKMu63L3TUCZc/EvUSwM5D6Szlyd/35xDXv5mUOS2lmCurMV2ZrtU7Tet1NmsDM6q5ZDqtCSMFwdlInSRnADuvBzwrXXLsdXFCC6DC4MxlKsNYI1iPhLUMp8hhOuotvphaHwd9FAwLoZTENVJTj57yreTKYq292s/H7J6zOce4HJ+aX3nzouMNKGsDP+Vq9J2yA2MkDmb/bFw70fuWwwM4yipbT3QJAp8bfv63jpp/5/dysdAibk5e8RX+vfrlK5zUbTT7cN3mCMvclfHda13pO/t/ZYSb3Xz2ZI8g38GEOaTCRN0eLQVkBuzOxUopC0voDb9CuNB13u4KVubiTkgWiOapDzFTWwVSiHSvb+uD2K28cXb+xrifh2eu0/2p7+Qvf8VXn/uef+G8efIi2k6OK/+mnP/OLN8899Kf+4POffmZ57VbCI6mlozpFnt5apPt368furT94Y7F3/hw9sL21s5uEWuB41fpaJQEUwXYrWrxwPlxo6i3ZrXZsJocvvfQjf/rSf/UX7nv8qZqiVSZPPElPXL/+n3/vDzSzySc/+cLP/MJzZ+Xm//rPP3fj0kPxrY+0T/9e+9Grh2fmW295qn7PV+qVa/TaK7p/pDSjcIuaXXgFexXpi7461vAweIv0gsdDQNi3DObcMRk8ujJxJE6O6JTgFXxSaPPCOegadsS+IDsGrwgr+LHTPiyQRkNNqJwiSQAHeAVipwiqnSIogBpn4WtbWk26WCFOuJrEakocnSJPQJA+M8q5OY+7m3euBldoYlPTTnO02QWm5GreqbZIHVIHOKXWneAEmaOaoZnJ7Eyc7VSTKc2mTNhupi5yHNyI0SYsrt+6fXX3wrnqnoutESul7rjemccw2a5umpmpcAUYOk2l84x7hmSfDsYMR4n6o3FSNp3aw6dffvqcDq/B+h9Ls+EbY1/kZFlqvpi5a2aE8p6lOXtLJfDofT2Flzyia6HjcE3mqVznlK7d4Ln7JypaeQjCG4HgPXHeUM6AE/PSpdQ/gvWBO3W4mxZftheFZYb70LcX9ayDH+K9r5Of+u5LMxruXRHmvd/M5ZFKs7+BPOIuScy7rRhwUswOLu/4/WHBxxdR9069VVulVK279ZpdqHJ0mThFExJERECu4lA3c03upVQsh5YZSYghDi4KOJFn8PHAAZVQtO9Y0Q4a8MRePWmdDPJ/+Nh4evtVLq9Ad6jo8QyOp+NLxA3uepHx0o7ntzyPnn6O/P7g0NqG3jkrnpzKDcx8es/dMeZyKQYzDy1RafB83QkF4j/Sfv2NUGoNTz3R5lQULzq/QSDrA+ylOVeG7eXURa6Wz5+/c5yj0ZrTRvWa2dASAwWjnjtsn7IMSoT+1MIMQyUiN3IfenINuXlnUMrhalf34E7WheXx1aNJoz5N5rRehc4sWkJLuiCq29Xtoys3jt94un3xs+0rH5qdffcj3/tfH9ys5f0PE96z/1tf/j/9f594+KG4WrYvh/U9iJ+//DL5/euXr9aLxeefvWoOTELX6mKhtnaAHnlsG1/ozj/6tuPjxdKBtVCHqVdOugorq7WezuaorFpGDTf81rTtpvu+Whz/5uev/Fc/9LhbCuQu66vPd1WjaUpXV/6D//lf+Ut/6U/9yA//0e/6z77iG37/P3rx+PHJ9oPNGfDNW8vf/CCdPzd7x5dNvurti6u3F69dodvS8nV09/F6i/Gy+mXvrkPvE24TtiQGZwanbOqQViBSrOECCGEKApeGV2qUmJWwa7owX8GX8CWsA27BEtABR2XzpAhI3+WKgUBgomhgkMAbl2gUADGuklTgBiLoCBKIAnoifichIqNCh09EMAUZ5ebZ6IYUHJsOZbhmAooUJzzdkfkuz7fDbDtM5tIExCaAjJsFWoPF9ap7/frRlZcnj93He2dXbfJQJ2+nTXOobZSdGWtycwRA3U0tTatqrT2iykf2Ihf0bCG4Hm3/NxPQbyaXTr2+1Geoz1K++d+JsndIuVGyqfV0wKqKrLmK0DV1dVV3VU+q3draNVJCQZD14VwmQol6Ek6gX91aB1x74qOMguxrtUWEQINdQu5ZRzI4x0qHQkjvvwKUnPpYPYw0az8kSiBzV5DBixYnojvFxuYdspGePhla6HE8BSDLoFHBElFfQnO37oajZTmtk05p37EJNbxpZk5swNrSQnmWuOJusSZqpolC6yFYRpc6gGTubO5C7gqDQzUBgClcGclFDJ5Bv57Z1oeWPAS4Fyc4s0TfjYTylA7eaJA74NB3UVJU1NKJHPBdNfZYj/rJnMpdP3N3B9qKJzpyz3on+OSwTl78BFsKgM3O87sM9Y5R5Qgreq8BnnVRD9NEbxdvbK7xg5+cTRuPc/zJk/Vzme4n5xx6lHberT7M3p2zbaAxGmJY597i6vXnnW01830z7qME5weON8rIcWAons7JmwzLYy9BFyg7O8/19dntz7x6+x4OE6tC0rA6XnWdrpZJjy93L/ze/rNXsT7E8kZd27tWn55U2/uTe+utVyTUx1flD/6h5u3vnN9eHJ+b1rfbWYS9/bHH9fjl9WLBdvjZ51ZXrnRbux68lcl0SkFBD7/l0uTXVwsPbpFBHuLSkyVtAraqCUWDsK5u0/7141htdVWi9mhvsrO676/84+sffeajf+7bH/vlX/3IP/3w6isfm/7kj//hJSgc6B/+9u/7lm/7itbqF1679eJ0d+9dD+tzV/ev7lcx4sJF3Hzj6Jd++faD79h66p69p+45OnrAXn9Wr7eWLjs17GdZX3R9XvVl+NciNogThAAKILjkcMIWuYE6eEfQ3DLOQZBoqIgbxG0AQAtfwddoF0ALW8OX8DWZlhavhRrNgM4B+Dr7KOJgF3fJNQmAABESrOBRBWCnAAiYHAwKyP19SYpKESYi7RQAPBAJEIgiSNyBekbVPEx3w3yH51s8mfJkInXjAQA70ZJb8SRHB+3lK+3NG5eeeMvyzHSZbBrrzlQiO3GQhrpuHpXF2w5pvZ6EhmJIqcsUfUwbiqfS3qeUL4w2LQacDvWl+Hl7W68MxgLOcRd+Ah/d4w6RBQCQvtqET0rG/mOlYSicc5korA835l4NlEkdkmqXlLRFt06p63TVpnZtqSVrgU1NIzkRKaGvwx6fU+vYUao9Sz2heZkodU0oR7SY8XmEIpKpmay0naDex6U+nrzhMykSBkOXtuHf7PGoZz7j/os+wr6c0L4nXifFLHnfgUAL9R6Zk9wRbEcOJ2AckLgbFO7Ur0XgjWRj/tng7G6G5NaqrVO3CBITSUcVScuRwQCLU2a+WsMCsWR0jkspBzVHUoIq1EszLsral5w8p5uY4FB3YzgXDHyGYr3ZmMe/3rnHxvbEZo163y/gbs+MO5t1nHQT73rjU8Oiwn1h6DF6/VDI3UXKwSiZ4NyRmnlMszW+3WYl+lASEaBmPcr7VPuUwXfMX5QhqdrHjTfTccdjbq7QP/Ip2wcAkH3rQj6vQwdTItvAI0H9rwQbHuGkFmeiUok7RjtjKFoAMoDWe8/YmfhOgrfRO8ycDR4nCHPu+ELFWwYoEyYwgODkFDp2Npnjtd3Fc899cZ/2r+J46Rapu51WR3pwyIfPME3PfcufrO99yC8nmT70P3zov3/u+Ol/oGlf4jle3Wwxub9mjcTp0EPkzjS+64nddPuX1zfeMwnbr125efXKy/dfenDZTZk87LCo3jOv64jK4xEvk6kvV9t102zVa18mW7VHi1uXb8Tm7Npmu9eP6C17EKMP79//1vU9j00+/DPP/O6HXv+2b3h02t5yNXbXZftj/+qDf/rPf/v9F/mly6/8hf/2/zrz5LeBrvD9W/MzU3vtMN26bPVOqBfppV87vnGhfeyd1b0Xzz/+5OLCYnVtt71+XY9eU0xgV5g/5+k/qD1M+iSqSxTEoQQmqowTnN0bZOo2UmfN9UElSMjkYLKaPLJPtd4iV9MWtoYtQGuiNUoXeisrUgrFDOTqOnSoF7g7qSk8o1vNLAEED85CTm45hMag4BRB7MRI7ESQAIpE4hbca1ADacCCnd16uh139ng687pGHSTWoZ6Yc3AjslV3RMfLwxdfaZfLs088luZblLw2qJmwOyyERrTiwDWnZGuSiiGqaqAIJtqg9/OZo7sozvwaYEG484j1+jXv6g0f3UjO8Fi0jQ+Xj8ouqDdMRQQnQTHZKhUJ7NRZMid3th7PbJbUVI1UPaUupaQd2k67zrRNXWpTu1ZVIA1aEwBlnhynkrEeo1JysaUbgAJdJiLLvSMLO+SQLRqkhGrqxSAGy9zMRjPjJwk0sqBQ773hMrHZ8e0xX0VJm9KGGvOkeKMM6KTT7wPFPMpRwDLnKs7al4oBXkKZp7Xy3cO2w+DHe2BMiVWgu2ZgcqMOukpYaRfYYgot2Ci0+eBlgjAlIjc1ceRUOhfryqEKKCHXzRo4N4AnBhnBDCRsOSXsyHusD+Kfnojx3hsGP+zAQWKfeljnzAtaAtEh5T6yIDNT9eHwDGzj1EcGqM8pntKyw54Y+tGaGTIDzlAxTJT5llLq8jV1CMUUqnGwA2rqllVJLg8QyWCrfmfDGMSecU/kChnQwr0C8mJRKwrUkJEbTgEkEHOmjZ+aJ2542FOTRVQqfNx7jMFmcguTHff3zgkZUwOIIU5K5uqp34yb8Pt4bZArkHuLNaeOgAJsGSoCszaX/rQMqAoiyqHp/AjZU0iqRRw4HMpEkAy8BCGi2DwWnaHSxSX53loOzGbdxa86Q7j1YsV8u2q71jnO9uq5dIu37j72yMV3feCoW6+3/fxquT+954feuLn1mZ/9u4997b5bmHc3X76dBMsDDqzrDgdLzM9f/PKH/XeuLM89vIvt5vbBtEWcILWyTN1WELnWdbSCK9q1NnWoLtRh7QerVzvzo5eOzi7th945XZ0xxPjfft+TP/MJe+5Tt//YX/WH3/3wux6/9PEP7m5drB95+FxdxZdevamwn/03n/2GL3v7F545OGhjWNGt9bmbn/l82N4O1RFNz1SPhN1z2zef/sR6vd699JW3b3zSPvUvlm98s977yOTcdvO2R5vVve3zl5ZvXMbydVqcCfwZxU1vf5n1LR4eQbjIjfJ6bdPKvYM6sRC7uUKBFOAtxM0ILiQ1RTYyMyNPBCdr3WrYzK2FrqFrhru18I5BxNFJ3NU5QSNzgYYkBdhYOlBCblxGWVUDcEcmZBB3B+eEBxNVxNEMQACCe0WhdhMOU292ZLZLO1vVbBqqWqZznzZdlMAhOlnk1aqjbtVdv3n46itcybknH7ed7W59wD5VSqgsqEKm0bZW1fGuy4Rviu8YcadKkiJmRrkceZCYRewybwjsBpnVJ4I2Vq+IjEWwu7unsWPQ61EuYaON1nE/aeXzSESessXHMtTdO01wOCQHJxOg7lDjDHtKaloYcru29bVS23XrTtslsHKsSFMvTpmIrCOQgZmR3OiEBsLKRoDNfFrN1dTcPWwKghiwXOGbWzMhU6ohS78STlA3L42iiwHHGcrLg3elPTmXEaFzY4BcyRWUctZZuDLrCjiL+pD1KPXrfX+hjRTKHpQBmTbJLEdTjRPcc23jhg9cGEUnsxdQai4c9r591B28YOUnN9ccHnDATFlz34ukBHV0oKN1xxRm3ChXa01QETAzm7mKR2czVy1aScngrt4RUQ+oTkzMYHKCkeXiMJCpGhOYFA7VnP0f0NGDfj3VTGI8/oz/9ZFPO951Uvoel+MQvPhnm6zAqZ06KIxiTr559ODUOAQ0BgCfqEkv1pH7CLWkMHYwl9LpzO9P5oAzGGpwp8wCNjzV4EYTDSTP5VjfwfhMAJw1M1j12dPMAJsf5FQpYZ+9IvPcI6XMJpcCecaIVjTPxXhCSp1CkS+6wV8Psa+8AQt9eW9DlcEOfVTGT3G66dmJVTi1Lv03M9xv9Eb5uFIKmGhcRp2CFkBIbknm9973yLm9x61tVfXg6AhM7r5err2R/eUtmjU7x9VN55/48j908benP/DBf/qOFz/8rx/7ln8/2f7Q54+vvbSszsEXq2U7OWpX5/fq73r/2z76E4dbF99SH64PbVGrrZ3dqhW1DVe/+blbq/NnpdLJhWbu8fjw9aNuFeIZX8oP/+D0//6Bh9/9QP29P/zP/sk//d6Lze5HPvP55bu6f/7r0w/+m1e/+/03Xrx8fPXawV545l3vve/yi5f/2Hde/OgXn/27P/RlH/zoZ9++99RnX7n9R75j9md+8Fv+3z/6sx//Xb55ePvVZw+QbPa2r1s//2tHV39xft+3HB+c8Tf+Zbr+SHffN8jFS5Pzk723PTq59/7l1St645H28ltgzxB9hvQL0C9g/eWenujqSpbHHmoLlXuuv64EDkmexDtyV6E1hURUZ1NWeersFGq4wpW0Ay9dOrc1PELXw/7PjX4dbABIwJzLkMwVpOIBPW7x5EKzM5EEL8jPiikKEbR2rhAaIHgVMJ9V589Vu9tWzyXUsZloXSl8glBLXHWtpESrg+OXX15dvTE9f3b22EMpMpYrtoYZ1hmjZuEwgUHdmz3al5CcVpYqphps0O4EAnFz8Ny9GOintGkvW4o7eKcDNLzGX0EJsfqQh0If2XXX3gLPRqqcGsy49qY4D+aZyqfU+Pfg15RS16kqPFm37jSz/3dd26679Sp1qy4tzZTRq5jM8cBwd/Kho9DgxKOzjoiCi7vnnJwDgOVw/aifagmAk4HgZAoEK4UyZlQSW0QIhUOrwPG8uAG5BNmopJnhDrWU5d1mDjM2ZOQl3w32VsYzZhFwx90/WVptcPmzF1Hpg6swLEzxku/OhFXulYX/uA9jMLfkzu6uYHNKjk6RwOpoDdR35SH24G4sMfNwQrPVIuRgcUtqZqYh12hl+B6TZZ1KnDM/OfWvZkRUqo8G2+BLRtHHO3Z451Qx0lgfBxq5zHSCruHOo14udyr+Ob7icFTYS9pzcJHpTVznsjzZsMpfyYCR3m4dWHUok0ZteoWeOJzMPOQhqM+xyIAZoPKNU7NmPUN3tto26nN4Is3UKOR5M7mDSES0RApPB67zDzzCTb459D/LiRJePKkjx4MsT0pE2EDXxhO+uTX1lx0+kZeCKfSTlo+TT6xqaQGqF6wNuyaL1T2H6wnXSapgABNXLm6W1qmK0WtwmJ5V6Sa6wOq3Lpz7a9/w7d//qfr7Xvyt/+XFH/veh9/7F6/Mf/GLD/3wfY+9vETVrC5MTJje/uTO+fvF6kDTe16+2bhg6VZLzb5aHq8++cmD+bknQmfSdTe7G8m9ibNK4uwS/fpPX/2b3/nWj3326V96df5jP/PShz76W5+9da6T3ehNNVn++K/Ybpx11YWk9Ms/e22vOf/Tf+1gPnng137kg+31a3/1z+787L/6tf/ihz/w8COz+56c/uN/9Ed/7B/+wic+1d536ezf/NFfAd8LurZ++We3HvzabvsH9fkfb1/4XLr87XbuPemixQvnqkcvhEfuW1++3r7+WHf9bXr8acaHGT/v3e8BX+vxIhuLdU7mUoOiYoVOmIPTVaRjTRNKjYcWIRJPqFT+B3ANMLEibJN11i3hLbCCtW4GT+CuQJXcAYZXJb+b3ZlcTdeTQPWaJrtu5gqSSKEyF6WAWDHXlghxwpPdrb09mk1pa+qTquZIdd3FQBQqVE5p7UuE9uilV49fuaxpNXvsvrh7RjuLzsdENYek6ypETZLQRvN1IFusHjp7PYSUrCMNEgPQmnUuFdPmVPbH3AAMEeDxnwbti7tJtFOHcdjzG6Hc18x6rxbG33KCQwcS6f5bJ+5BRd0lc3FVdbiSG1xdu2Sp04673HlnbbZuU7vsumXbrbq0giWCKiDe3yL7i7kipncGgKr/q8KRkEbHFwNdhulmfbnMicHAAnXl3mp3aFbAffdDENw5k5MYgEBkBfDsveAFiBkJpaim97U8R2LvFDl5uBkFvdG+J/9Kox8KKVZekQyJGP4uvAn+oVfh7naiQmtz1RKhzx+jvF6lvEoJ7ExOcJA6Jw+JQ6KQKHQOcnZ1IydHIJipiTPlxkcg8ijCMCd0bm5qQBArJZ9OyHCY3MIx4+fch8701sPUx+bjnVovO6hvasmcelJ3YFRMnQPh7kbFkbfhoj5CS9FJLdGj6k8wa+ctUtT+HXD2E0draIGy2QjFd5V+oKAcS3Vg0zfXT9rap7R7vuLweQDU+8fu6JHW1uOjHSdTDv1lN64/ekMma/rSBHRU90b9vU5UObiPW76cvPhJq8UHHXza+hnGMDKjiIiHW53aCpufy/+4D8gNt1YALVfOR6xVbabmFfiav+f5o3WgfSc2CmRxWk1MfYXE0ZJ1ZDOPclNvUQhzwxdm83/4nj/24fPv+uFnfuFbbr74k7dff+k3723/wKM7lW9N2dC4dUbgcJbjPeujz73tUkOe3NK6o0nkla1i1RDSoS3btK5kSnUnbaM+PdLVfPeBv/QPXvj1zx+df+e3/t2fvr01fUfVVNNoh93h5dDsXgiH3lVAsvU9zTlaH4Qzu401n799wNN7f/BvvyLdEzd/+Y3mX33krffvEaVnLl/7J3/nT/z0L330f/jvvvypRx//03/hhf0ri+XrP1Xd94dm7/2x61/8UT/+e+0rT3Q3vt2vPLj9wIXV7t7k4Wl9ds+PHmhvvHf9+rd0Nz8K+xWs/7V19xu/l6u3W11DWvIg3GC6tmWEnSWfuK/cllADogenVIMJqJwZDJOKyYlqCbNM9GHdCtaRto4WSFQ4rZggTMGyTGfOfTdAmfHPvLRxNThxrKAwdUcgrt0EHtjZpjOcO4czZ3TnTJAmsAjYfMpqsWIOohGqaK/fXL764vK1K9XO9vzBR3Sr8YDIpK1WUgGrGKr1el2zJ7L1MVOdttvXn9i5Gti7TgI7kaondidEoMUdr/GBHaTYEGk7tdUB9CUP+c0TGjRnwXu7c+yZFWVa7tgLLKIh2kQnYkzDEcvwGlfzDFQyU0rqal3pgqSm2qWuTWmVupWlBVlLSJJJzwsnFMiRfYCM93IpKua4v912CESkbCiE9QAZeyEkgPGQ/mMPxJm6MnkY0PIApfzI7D0xPkrwwHoBJRk7QjCzTjX7IQpRNSNLBM5lyG4GM2jfdnD0uksBUs/FsZm3sQ9gOJlcJyF4IReTITA5kkvuxHwSKtxLapYRYqWPLBIAFxAJR3AAcYI4i3FIhM49KkgtO7IBgJOAPUMWweRUeh6QMEhB6hDyLBypnLDcmQq5i08JsrorjxBDd0hyOumA9X7safNxbHCd2oFhyBL32VbLgDvaTBDRSX1wcm0Gp/vUwMbLowOpzaBLckU64YSyAcyJqSRoQT2xork7g/owQA+dvFvhd6l2gGOjOMfLqUWb+wDrz38dp4H7OdnAOgo9ChExm7umJL3NMTz8YBzQAJp3H6I+p3IGp+YL2UQo5rxlJN54tgeTlln6u2wsJ2ADbx5GdcpeG68NAPWu1mmL5ZS3FrjR8jt/a/HU4erIb1+ZzLeregdexTAFhRBja5l7u1s44ko75c650cMrTXvjrY984vwf/9brb3zfS7/x1v/jg/X2tP6Rb3apkyUSP+p0YeuwbC/t4KGLzYqqGCoBPPHOpLp/xz919Thsc9VMPWGGM85xiXVMk7DHP/30crb3zml3MLk3YGmHYdXd7h4Q+Y5bL83X3GBxgPnvTC+8FKa3fRU0nukO7hFO66N290JrN37l6Ul7/a2Pr45++//xn558/EGtuk/89usf+MBju9vn/v7/9p0//TOPXb/yy7/8y3+nu/Q92+/6H/WLv9Rd/f+06x+Pr7/7+OpX+bl3rS9O5ue2w5mz1bmGHpzGq++QK9/f3fjN1fGvAb9mq49S936avMXqWj1QV3tciG+RTMwPzK7DDskE7bGHHUjw2EFqhMolkDALJa7IBVZRrGFquoZ1rglIUIMn7xEzBHYQuIHzqBmHI1dJEJk6TDjWTLV2gb2KoV5fOjc7s9vs7qCq1u4ArQ1gj00ITUjBWFSOjo6fe2H/1efAqbl0oTp3NkHqJaJhgaVTnBhUHMRqtvYFMUS9u/Xqux+8fbHZzwTwzGZQuDBzQoe7CYo77ePRB07p4NMbFX2X+/yZk9E8HR0QZhZsAMBZrPMo85VpA04LU3fPnPEwN03m6LrUdq7qbppptU2TuIp3kTsXD5GAmM9XLLSOxqBcIYmc5+OC/byGLt/u3p0ZO4JkyV4IgoiQs6Ymntns3T27gQyY5dLqQR0aSgia+0qL/MkeemambrnPm5q1ap1pZ5pMW+OkujZrU0qmqpQMao7kQJ9lOyXb7+YEF8wsW7YzNlNNvUwmMIhy80MimEiWor2G5dJqN+W2F8xcCjCLkTFCjxfNLUQkiACEQ1ZVICiFRIwQnSW5keX8JTuJMysLETlDiJnRZU/dHLltOeW+fw44eINR8KEjUT+fTjyWn+O9ekqobgT7SY2LuynN4f0w/v2ukvqOqL+Ps7mjofQT7DkscvK8UbGhNkMZkY5y31bIRr6aQQmUlYr1NOEEMCgTaBfa7j4GdeLA94GAUYugMqqeC7PEXnqrXIBNImo88GxOYmRT5L2fMWUnpm7jvG7yTAJRKk7neHrHPsHmIkPZgGb1ecoOLR/vL+LI4YIBqJV18HhUwCkLZbhjtGRUBaJDtPMYfmf99c+sJzu1vnL5+eXx7Wa+zdWknu6AgsSJM9UuXV0fLY8TLURFW+EGk4WueXmwI/9q58LPPfD9f/TFF3/fX//w23/209s//L7q/U/WD12crPwrqkmjPLm0fvjRvc5tmjp3v508ziYX760OXzg+d+mBZduFenK0OqzZmJjW7tqcvxjscH1dZPvITJa8ar5W13/i+vO82j+TppfWx+f92S5d/UJ14RfOPvYT9zz6xa0Lu8v97dCt+XArbR9Hmz+49frh2eduHn/49YMPf+aDP/xHvvrK/pV/83O//o/+1z/x5V/1yD//Z/d99/f+4F/57/7L/Q9d33vfn1nM/yf74j/3+GFbf4xe/1q6/d72yqPrvdvhUkN758NTXf3YTC5/Y7z1baurz3Q3fg7p13D8W7J4F5p38OxcxzMKYDg42oqoA3U3XG+6LiGRrIY0SDOSqYfgEk2MiMECrsiMZOqWYAm2hiRogiezrpAqQaikMDIihksoKpNGGQI1sDq5IDbYOzs5fz6evySENnXeete61FQ1Td1MsM0cA1bLwy8+c/zis1gs4s52de4Bm0yWbaoF665bHnNsGo6aKkVXd7qIgdJyHZIer4/umxx+2aVl5al1EnZlZ3Oihrh1rAgVcBftm8/dKXDKEGkbTtudG7U/UDyYyzTKFp88rYYcE8hnyZ3h5oNKJpwemGdopZu7uVpSNVVL2lnKnXHUk7p3Aq2CeuzYdCKSe2czsxAHZOCqZwWc2R6EGOwMYqHfxa18u4fOzAFIptNhBzyUhir5rDuRO2+kKHl58PwGYO7KvTpMKfUPXUz87FeoJ9XS17Y170zbTtvUrR2dpmXXLRO6xJ3SMtla3YoWT5ZRbAWOMIBnrSfiVcplbKUyOMcbCvkoUfkk9a2imLn8KBUzl/7EQI5Uu6PyTdFH/nB5cNoEZbVH6RARU4CZEAMWQhDyEERCLVUNCQ42JyNyic7MEjUvD7kxgyGUXVsjY+NgngiW4JKbL7mHvK8wFrDIdsxGlmKTw3gzg3IMNhw+Y3do1eFPmxywDknsk6FtwqmzdKLj3inTYKBWHpT0aSUyfJGJXQCw90YcIKBc8pafgAAf9F+mYOVA/V16f/H0ROTRlLtsMNInHmr42T0bnpsew6euNIBHvPe8YZ5B48MVxvOmUN6AHYjIBZTAhcH6ZMztTh18aqoBuuMz3gtiP0lSnf+o2DR1BDnj5OUHKWYsHbfb62YV9o3e/Tv7D1nTyXw658nR7YPDW4ehaZbzW6iaOJkJxyMO1XUA7bo9rru6ruNhd0RoOp40SttddXlCP/HAWz744HvOvP7s1//os2+Lzz56nt76/LV/fbOtY/XyGY7/fo2vf5y3z3RY7nIt2p7dq6vUxkoW6ajTbtrE9XItIWmIK27p0NWrLbBFDY0tVse/U+9+eudt+xS6LorES3j9G/btm2/89l9+7dN//vJnf/yex3/i0sPPTLa223XjbWIP3aqaV0w2W5351MHxJ//uJ97+1t0fev/7bx2v/+lP/u7Xve8dX/m1j3z4o0tbffJf/sRfmb/vL2yf/3/tf+z/dPpF4g93xx/vFg/L9a/F9bf7GcW5yGfOxUuRLy7k8Sf94Kn0yve3r35Uj3/WFp/T1ZOYPeXxnMcp1cJ8Hqs5KLi+iPY2lNwCSQNMjSdEjUngqiEJTiGvF6EgPwy5612mPs+pMiJntxaUKxYFntkPBICbgGKigDCTM+d27r1XdnbWMLS+alfeJolVrKZhPovbE5lHOjzYf+6Zoxefxu1rMq/4vnNUnwthx1JXx7pLbdu11qJt23pSUceBjD3pek3dyrrD5Xr56CP37YXbWlA+1iE0gEF1FLocttn4HFHfzYz60iBVHX/kzqM8Oo8Dg8SJfMr4A16YAgt3xKnw2ED9Mz5ioxhWLvZMMBN3JRc3hzorxFk8pBSDO0UA4ggskUWYSRBYiFw4c3DQ0GWWCyylKOD7zs4BKFyEmJnYidD3RehbQBRNXMYPQD0NxkcueszHX7UbRPmJIhm1lJInNUMyS+ZdSimlttVV6hYdLVpat+0ieaBaiBOrqrbJk+kduNV+5vogRB5glvOlCKS8uG9ALMwiEpgCMzMH4VpERGRo3wUgp3W9z/0VZ5mImUOIw7pb34HXiao6WJfIAc3RU6+iTJoJqolzlQB3BiQRB4nOUWIgIbhn+rg8l8ZClsnLa8fa3bzvXWFMRMjN8coWpZIL6Z20kiOk/gNjJ2psFN6xde/yGrTAiAu6zMVGP7+ZerjrpQft23+lHzSlHgC8uVrWZ5u7eD5YBM+4YsBdcl/xDDJgJk2e8VnM6M1njEJS44sTbRRkb7JlPnFKqkz5Gv3quruB5e4EIwLqjcTeWAPcPd3tw3k8ll3wkd3NztYblV9CB99p2eSCxsGkGi3ziSbP7s6FVLbPQ2RAxx2rN+ySiBjIVr7eCum56j2vHB+fr2cpLcOls6xte/2mHdxKV52badXM4CGFdTSJxGuuDrujSQgS9hIdaZiumq2OwrljSYFetOVrb3vgd9OjZ5bdQzeud090Z2Bbi4N7Di9/4s9/6oHdD1987OLW739s+4FL7ZN7n758OL/06EHbSmoXHaqjy0ZpnRbR+Di1NYsRrXzp2tRer5pW+Zkgs1CdJ+rqsPWGTH5il/7t5Psfvf/6d11/+vddvfYHr3/o312479/uveW5WWx4LulmoqOILWW/NI146IHnb0/++3/y4r/+1Rf/2Fc9+I2/75H/41/92p/4wa/8pj/wfb/5Wz/y3Md+Jt7z8IX3/tD1Fx/srv2qxJe1+4Ktn11dfQjX3s+vPqgXH6Tze/WZnaraD2emeub++MT32OVvX7/0W92NX/T9n3R+q06epOlZCtGjeDqDREwvOBS2gC0ch0BwjhD25YSlcqkcBGLwJqBXNK8loCPAEdwVVJegiHGuS8m1e2Fyjufz+sL5eOYCNRN3WRwtjvcPORk1VbU9izvz3YtnYoXF0Y2bL72WvvBsun5FQqjPXfLprocG1rXr103mdJhgxEwewayWlJ01HKFtVTtbH/Py5vSeixOugouxwBVGzjXRwn3pjsBNLjA9eZR8OK0+eqEAL3rA0cmdP2AyTuny4c2x+APgSKBciWQADfwbQ2DT3R2WWwj0r6Kqy6Wy86DGoEju5E7OwuIQg1HlKnAKIAZVzLUEZpi4ZBYrosAgIiEWES+KeHOz3e0aAFHWRqV4l5mZAhEZSvk3cwkvUz7vqsMgc2g6x3qtD0Frr4Bz/DkTR2cwdEpJ1VNKrSasdKXd8ZqXIovATashdSGFw/WKiJIZw+8KFD0dgs4tXrmk3EaijIv9wCIcRaJIZOYgdQihkpB/JZJcNtl37ssSVfJUiEgMjJKYhWWiDxYiUndLiRzdaq2qKbV1FZp6GmLkGBlgEZLAoeGqijFAIEy5p1yu13InsJAEsEO1lHD2XlzqU5B912eMaZ+JNvW3+S3hE6HpUxsy/8woRbY4KdiHTWtmgQaF2pulRM7MpelmhnVtUph3D/vk2HCuqOkzrDlaCmImoFTSZbYNcgBiwqbkYEHOv2SLamOA5KvlWbCUYe0OUy/NsMzSMIjhRCPDRnOLhZ58UvvJI+IgNPqKj5JGsVzCs/lT7PEhdQHAHQX8PMx7Xzzgw6SXByg5WncrnYZt42TbycYV406OzIxcQTE2VkZLS2UOuTSMBjaHPKftTXPrbOpDIuPrh9wOzYzV111XMwJdeO7wsf3q6AEKC0w6mTXnLgmq1dWrODjQG9eOVq8FUCVpTXwUmOqaJR4rsVxPs2nYOYu00qrpqibSJLBWR5G1vV7htXvOtZTMzOgBD2/fTd35VTh/+/bkV1Pim6/7G1ebMwveX79+mW/e6trloaaU2swgxqA2l2t36l1arI3U1nmCqhdJpDq7Red2zu5cjNPrTxP/lelb7j//lq+4Rd95+PG//fzHPjHb+emz93x+ts10ZjstnJdqfIRwtlnbE2c/f9D9rX939def/Y0/9V3v+Mavu+dv/p2ffHX3W7bfPz/6zX//xv6/3/uyr1tvP7R44ReJHxf/lPkLZK/T4RPd8UO48nbdvh8Xzi7P7dXz5bzawiN764f+SLv/jccvv8iX/5Pu/5IeN5i8BXyG1cHB6DyRuS3Ba+iKxFwXMAD7ZkydCEum3c4i29GA2J2dM3lMz9CEpafgiMIBVeOTedi5NNm5YJe2580EwHLRtlcO1reOoFbPp9WDF7bPbvF0olIdHdxaXH5u9dxn6OCmh6beuxCnuxaCk6FbanJVET9Sc6kbjrGqAplbMrQd6Ijbdr3Y93gcZvPJ9gPzaV35tYUKMzuz6HFLxByJke3SjcqkjcAiTQAI3LexdjPLvfbKfnY3T+6O3FzWFbm7Tj6GPSVkFCq8JHAQ51AzuauriASQEw9da9ihWTGjBMHGsssz2gUZ2UZORm4SSJMzexVZwOYpiE4bpI6zsS7MgSUQB46RhQUiJLnXJBWNwsxgYpwoGNndnuY+E0Xr9BATys4AS44aDno7e+TBB7lfeq4X2UWi2uU/qWqfBKbOigFkZl1SVe/UK03etGG9ruu4jOt6vQq8ktaitSHE4+QeAzogZXJnHyENiCi6Z0ql7DlwJs8SsJGbJYBNVYIzVVVVM4UQKiKJoRYJMdbbs3mGrFZVReRVVdVNxRTRm2X54iGEIXKQdbAQM7NBFa7q7TpZZ9oEVVsv2xBC0zTNtKEQOTCBQpzEahrq2gMHEWFmctfOrIUnJwNHRyowJAVsbYZIzkLZg3fOmN8MaoMDImJm2sdBc8luTp0Ued6vbxa41OdZyoz18Z6Rxtz4SEQDOqyX1+i1NZWkuvfB5BMpz1MvdyeyTGtmcOLSDrPYGDnJztnZ12JpMhQuyGp5gFeR68mENgAyt1ykVdIMY3N47E0CRiT9N4sp48AJeq072vwNNgty2VI2GHqFmskB7oTjewmSbC510hoasQTQ5i7jO9IoNzYYU96HCsZzfXKN8idzLCTfhdydeKOw7zo/Y9OMiFZVoK5y8E1566tt0xzt35xPp6tF6GBc895Zrup0dLC+faO7fq1dLtrD22CCO4uEEBiu8OPbHG+djVvbPN+xen4Um1BtNfWcWRqeR2ujQSi4mJob/Cge3zrbrOxo1S7TwUF9s5XDY10eH7WH0jVGIOEgMgigbLsEEZpWXhYYydxM11duxCs3X9q5XO+enW2fuTiZdTX/3GP2S0df/+Ry/wO3X/mRq69d9sNf3zv76b3pcb1zZnW046t2dWyUzk3qLt7ziVf9v/zfX/zr/7+PfObp9OCltx3T4eQP/PH0yadv/+Z/DF/1/vPn//itpz+SDp8E/zbS50G/F+z1ePCp5eKh1Y0nefbo6uxDfv6GbO3E+WT3XLV1zzvXB08tXv+B1asf1+ufDMuXnHc9npXpo8TuqrBW0wLWAS3BiA/yWmiuJYHDzdSYbrkLUJHWDnFEUCBpvN4Nu7tx+zy2d3h3JvOJhMqMaH9x69qN9f4C7jKvw4N7s4vnZ3t707BqO+xfu9y+/szxC5/n4yU3s/rs/akWD3VLYu4wJTVVN3VUs1ChmlfGZC7WdpRWwbvF6ialVVU11JydX7jQ7MUqXGFTokA0BOSArCNLqeddwmZENGCpylZnJ99EdDZnhAhOvTfWX4qM0NuRo6j1QBMhLDL6g5oRCr4JOClP+hcDTsRkeUdlGLO4k5iSMMCRnBjuZF7HfEMPzDn+zMyBhZlZSESYkQPRWVIHJxEJYw94NoOTSfamhmh8H68anV+hnOMy96rI8V6t9tPFjmQ2YK+kLwV298ICkcxVOamr+johdSJCbcvMoEAkzCvKFT1EZKUIpuuU1FOBzgwI7WGJR06J0oYhN/8/mw7CkZlFQoyxDlWMNTNn7TudTusqNE1dVZWEooAHGVW0LxExl+bZIGbOhMzu1HWddbZerz1hPVkzSwghxlBVVYyRiKp6EuumapoYc4YenIutkrmauWSdwwRHYE8ZWpEb4lGPwOr32ImfaSROMRLXGE3QSIGePgJ3Cv/h4qEPAcnoDz5MivtQr5UxhHRS4W1e2dPKdir3Lf6IGb7JInO5fd4rRRMSLGvL8fnZ3J2Hk2nFonUZq7dBgfWPnYEYlHmB+i6YPrTpJcMwtUWx5bH1CfiSBXBnIuuH4e59U8KNDnN3vyMkcNp6GFZxVK07XoZhLXvp42PFfyKQt8kLwN2InEhAJTc2hB82oZLeBhr2DUYYgelqlWZ7unhJ0laFSdum9fL17XO79TKtTROYmi2iWMs0xB0sF8e3b3rXYnVEqxWWa9IFuhXQevvSgieYXJR7Hpnc82B9hquZhZqJHWm5Mm8d1C5pv03LdoHjuFx511KbeLlct13XqZNwmKOJEgUhIgiJSIxSmG0qqSuughI7UWB2tZTSKhkdHfr+fnvlyvU3roa6mW1v7cxmvhM+OZv8zvwtZ1P7roPr77v5ylOH8nRz8RPnZjFSxS3ZbD856a2mSusoz7Y7D7x95/joxvHqOE4lvP9JfZbp488f3Htj753vP3j183brrPoT4fj3yK8vPSE906WXsbyE/UeX1x7i3XNx7yKfuzSNt7Ez3X7HfeeeeHJ1+zsPb73S7l+tFu0aK3KGeQBx6uCt6xre5eyPWyJToGRA3JUlGkhCw9UEsUbVcDOtmzlNGyM2JtMuLZbtrRvasnUeavFJs/XWS1vndmVLqGFfr9ONN668fOXoygt6/WnGAWKQCw/F6QWKlTAIUS3Hu8icELiqawsVBWcJMGibdL3gdr/TI2lTN5nymUsUp83OuWrZ7pzbTxV5m1kKymYbFMDJNNa4AKFo3z7R2NvHPipF7aseeg/2pKghQ+HwxHBsHTqQXvmQ9+kZCGxzvov8ueNVzJ8Mo+JyWKS4EyqQkKPXkgn4HIERJRTVy5wdLRaE7LkNACSHEI818GzSuDtCCQH0LlA5+7naavPrcOS5FxF9gqmPU1ZmJUqnmpEz6u7qyfqXKpuhTSkmdAFREFuOFUvgEJjhwYzJmHxDlYzkiXLj4my70BCFKBNOuST2lIhDn8FkZnaOLJXEqqqqqhZiClTHqqljVcW6rkPguo6DF5h1N/p15CBDg4e8wdRNVdlj551qcHGOTcGphsCh4igx1PV0Vk8msapEKIQgDHbTRM6unSOZEphYyImCQeDiZJm8svRGKXHbfksUvC0N23hQN+OwIu4U43lv5Xfu2HM+8otCD7QbmhyUq2wUzyjPfOekjxZG+2jQJkmz2Uab7d5Xz5MRgUC9hjcFMo1bGBT2sBFLf2/1Um9uRKfq0k5lrK03z7g/yZo523y0tOOHGgCH46ksoLDRO/1vCogTMMqa5Melk451HsGpztenVm54k3hz981Ne36Sk+uXv5ABAkZEnlNFRYKUToXACRt2WBEACRzWR11ob0zk2II0tNqXo3ns4kR1TSBhh1MiclJtwmxWd+uUlh11BhWWMI1VrJo4397a3m22t2QySeLJ265bLtvj9a3XsThaL5atJnSreqUw12AtVCxIQkrJ2bkOaKYcm3prKzQTbhoXBrNkGAURe8NBnEjgDAoU4K5d2lJq9zq+v1uj6xYrO26XMCWS/SvTw9UZzG1+8YPnLn5sNn/nwdHbusP3vvzGL++deXG+lWoET9uLujVvj3W69luLG5jzVM7Ho/oQr07e8iDO3Nf93sduHX1o9tRbF7MLdGXP5o+l25+TxdPk1xMvhF729ILdOk/793WvPo5zD9n2BTqztdw7khjD9tb0nofm+rAdLXdUu3Vql62mhE7dknnrrtwKuYq5Q0vSh+BuyYOIhBBy7Kv1rnNqHfFgYWsNoeG6RrUtu83O7t5susMxtVWHCDteHb1+tbv+Rrr2wur6C1gfgYF6O0yeUGvAdZJoVd0ossOtgBhZRvLGGGLnFtKavVtjfUjdftceA2i2dsLuvdOdPQhWEX7reKdawEdAv1F4ZrBNT+/t/idnok3SyjxbyTacr/JZdpza8+Oj03+9fBI5LTow36BnXDoZmsqe8yn/I5d4EDkzsu8YWQAYcc4CEQmZwzwU/BsFcBVYJOOguRImImFmJmYOvQ4mCPGJEHQzrVFAvZsI5CDjZFPufBdZ4WP5rAYglUppcs+pQ3U382QeVT3raVU18yqlLqVVl4JQEIpRis3UJTZ1T7CUUkpiaqJuJMyWI5OnlzhPI8ps0vivWYkKpHBRUmBQ4AhzI2uqum5iCAWPFUJwKBFnVgVgCDT2OJs8OU5cuPSzAafubmTMOcQsRCQSY13Vdd0002Y6q+sJB2JmYRbyvNnUE3kyS3AHmbOwg7xyUkPiXGmQ0wdfkkljcGbo5CKdUhCnZuxLfBgokISMth0m1IG+M9OIubQYlZmjeLgctKDPlQSsnptI9xpx477b5nhY0StEpf2W0cYfHQ/RyZj6ircyaM4tBgYwpJHRSJlleyr/2w+kxGnpjq1Noz1kmnp9tul8kJfEPUMwcxFh8WU9V+6fPuTey5fR+3mEzON5v1O4FFbhXpYNsK88F4NcGyXjc+3awJQytsh6BMcoH3/KJGqbsOooYnfe3tyaVOfPzZ5/Ye039ue7Eye4tq4J7jE2YbuGM7yeEIUqcggcxFiy7e/sltY3Dm+3115MiwNfHqXlQXt87ARZGbVrcVXEJRlFJg/1mpVs5YIQ6nkzO7sr8x2vJ4QpV1GqWocVLKxAAQYuy9lXv5qkwGFNLQnLtJ7tYuJ75hbRdocq8UDRrA/OHmlb7X5u9/7fpeVj8+6+w9fee3XxzHznc019O+4qp0lcNvGGHbFeTSnspyZO6okt52l3Hd7z/u6ZZ/d/47f3nvxKevStt1773PTC13D66tXVz8Jf1vaF6CvG6/Bb2r6CNx7tbt3vl/dk+9J090zYOsD0uk0m3Ex9VofsezMzS24lq+qTapJ3kapmeIQbGZzUGM4AWUmPcRAWaOMtMVd15Ih2xdqldHi0vu77i/X+It280e2/joNXsTgwREiDrXukqkM1Yak9teBj6jxyZZGzi+RmIqEiNrB1Cqgrkimt9m15w2yFaibzs/HshbC7a5QmFR+0hxfrxVZ11CYe0jTjc8Sny4pOG5qeA8zuA2nGwExYrpC74/qmmHKQBsOpPfnhsr1LaKegc8uXR0hM3AWRmC+SyylyUJw4c2Qwk6tlvgsO5O7BKYhkBRyFCrA3SMUsIBEhdhmcYCIKkU/Gb5tJBSBaUTB9fU3JARcWQhp7EcAAMrWhjlHzIVa0piX9lJzcc4touIuZuZGZJVNVU9WYUqB1JxxZ1qmz5ERimkMXa7PUptS5teats0DGaog8g0uG6b9LNJWIRCRyZGbmELhox+EVQsgp3o2XTKX8dxC5G+3lyPVZTMzMMBOCKhGZkzEFDgKAYwhSCZHEOlRNrOtYNRICCYsIuTETuXlwsWjaMQUnd8qc+UJgNyYVEDHDC/d+n+TrFS3f4QS7u4yIqnw0FcMj4M3fPPUatyMc/LTNzYYfhhDTqW2cdYA7hDLdtvWEUGVGM9djPnIA4CCmgeMrM9MZW/+wDrICCe+HnklLuddM2TJCAak5Cli60G/lQfUPVaJTZSP1GIfRI4+mCeLFvtsceC+hBiPznkjL+3v0T9TDsDxH0nmjege7nvrK7uGhxrcgoqFF+fAMm+GBCh6fQEQlZ0hkSMPTjS0vLyRAG0dhfMFhQacprn0ZlGJ7c6Yvnbv3kbM7N2/sI1YUEdAklMhbcAU5L+NCVVPXpnY/HSyta6XrbN3q+qa1XVqt2QzrrlstyS0QtFsTYsUuIh3X6wCwBjSrbYthNm22qu092dqmZmJUu4VZUxtx58gtviUz3ZIZ4GqcG30yKbxz14rZrKvIPYoxJVftljAyMO02S1k2lna26oRJtyC/1Ur1ytnZC/MLZzp9+MbiO6/f7mbyme3pc/PtfZ7MZ741vXm8f6hHR4tVZL81FY7bDd75yKJubn3h57fue+fFJ77q2su/q76eP/jVq+59enyju/U5dJ8juhHoJvn1bvU5Xt+ri4cO9s9hvkdb5+P8DDe11A0H4RBIAgfpM4NyuL7B2OwTIgILgGAmImCHcIJ3uSlpSrgNUkOnR22X1gtfHuLouDvcp+NrYb2v7Q3jNTUTVNsUdniyTeAYoyKl1LlH72adEWFfUk0ckPGZwuDcvFZ5zalbaDrw9gipk8lWs3dfPHOx2d7VKOu0X3Gni/TA7lZU7YgEp7frsAlHXsKdosfMRtp3VK3Qnwt86ddmq9vmBIF6noHeny6HupSqEo/Ya8dXY+Ycv3V3ImGmrJaYSkFqYQcmEkgQCQQBVRKk5H25DkREgYWIhLMDh0AsFHJgY7jXXCoAHIsGGoRZMSAI2Ki0DUGCkQCGvimh95WHxlMzy+5vRoYa1Cy6JXW4UXJwggklhQiEWNqWkIhIm6KAk9vE0Fk377Rzbc1aIzNKxLkXPRG5OTvhpEYY1mIIUwbiIfsgEoWDSCSSEIRBIfLYfxjtkE0N0vD4OZ6Q7+D9pjGzlGPvkpFZLBxDCCIh7yIDQgihqotpSFAvdSBOQiTOnCHOChfK0OvS5XAsJ4cHLIFoZvS1SeUDJwOodxbP3amDT23g8TYOmwaxRRP0VFIZlEzwPtMzqJOTr1wnI1lXesm55laRyEED6lOzebvlOJS7DsW5bOxMmcdzGENeA82pTD7BmbWJjw8+XRnzWK2eYJ296+yMf2Yaeh2Nv2WqTj2Y88Rfc9sxaEF1EVDIOTYOcX/fE3J2rHoBOGyoBRxP6ZCx2gwyFzr2b2aR3SvUPiV2cjONV3pQvfnnld0OoVq1M+Fbb732kz//0jfK1tbWdHZ0tNLUdV3XtauUWtVO1y2Z+/rQU/LUWWpTtyRV6jpbrQgNkSOtk65NHRw4Nk4xNDMPbBxJYgyTUDVcxSDi0ylClFCHZkZciQSnSMzQBDMBAyRO6LucchQSdndYpnA1IgQFMztDOluxAWhIEgs7ltQGa2KX2tQtXCI3EoOwrbrDGU8WU/lY2H1+J719cf0DN6990+s3n96Nn5rP36jmu3u7cf364vjQPewb1esuNnzhy57aD3T8xX/RHj2//c5v9YPq+OWPxSY0sz2bf/n68B26ejalV7F8MVKX7Pe8/QLS43x8P6437WSbZuepnoVYh+nUOFAstMBQYwuq6tqZrqFqfUMUswSYQ/smMiAoKKWOPCVPK+5W0h5DD9QPCK1LTFxJUzGfQb0NaZwEBjCbBicymIGAROuEVlkgjaOqlAHzpGu11l19naxbeFpAAm2fac7fH3fP1Vs7qSZetBPntFTw9nzuuSLH7hZeO3kAN1Fi5tyjwNihI+3LQDrpQxuB3cdx6nI8vb9m7yLfqf5PmLBegsvF8SUeG9bjo5GbKhMFJxA498JgIsns/SjFRcFFJJOYcWQJUXIaOApt0FjkWfsSo8qFsKPbTasGAI08Q4ycCsdASk/j6AKs9156SqZsy6tLJi02MxPz3DWPzAXJzZ2CoRNVg6imlIi0Jzk2s+jujdWqSubaNW1MM40r0bUGI4DVRCiXF1OPbAUw4K5G2rcfdi5nl6wjiTZlWH0dcC7zDSJBJGZFlnX24C4DYJbcowh20u8kotLfFiEEIqqqqqoqkuzXgijfiFRLeNLg5JlhcIhF9OaLW/EXzQzmzEP6Y7w3SuqiVy1j3TnsWMLp3bjZkP3Pd1XJ+TqBBi5TIpD1e956UACVVorMGKmWO17mROZG5NZPWe671Bt2I2hS3kbsPGRlSDKBuKmzONlGUZkX6yNDqLgYgUVBk9O6RxXlowugp3EpQXUiGvhO81SMpyDPsLsDMWejC856Y6ePppt6mh0q2Rgv4eESWjuFFR8MFx+F1E7JLObCPzfEnE8t8LCK2Hjk+eIyhO8878DeqMQQ4d9sj9IPdfiZZIqui96tffnoVvdt6f/8lWfO/u7t7VqWZGStW5dp0c3aNRiRa123nJfGLHliEMzBa2YhijFueVO5BG4qDjLheapNqxnFiYQQqCKuLCSpdoKIAyzBEJyrHMxQ8UzwxA610i4bAW1nBbsnBPOQrRVHa4hOKSC6A26BgiEx76I5qo2sIqkYmrqwQFXbYorGQ6TO62DLefzV6SU7c+HLbq2+5vCNDyxvfaIKvzafLyYPcXU1LVazW+0RjiqNSNd23/GOo+0/dfipv9f9xsuzL/ue5iu/cfXM88vrL9bbdbU1XVVvQ7qf+NFu/TywC7/J9orZVaRt2CXpjlM404U6VVOTRpqGyOGq7TKk45Rab5fQFtbBE8HIARbLhI5EAKsakAju3hFWsCPz5BIgc6cpaKuK81ZiClOmug/eZnqdaYK6EKEJ5qTJjE1jCl1pgCpB3Hzdoj3StO7sgChWPOHpWTp3X3Pp3jBtJAC27nAtVljc9u3d87P4cpRFqyEHKt5so965z81S6VjUY02z0OVCa7f5+l3t1FOvN3vz1Ldym23ahBXv+JZ5f+i4OMy5MIZISNiNHSIixJGKyyvEVQiBJQoJcQ54ZgUsDIGLCAuRI5w0rLPaYBnuOPL5iIhkQJOhZ5oE0Dd8w5AEdXa4c+bKJnf3VMKTUHW1ih0p62t1YiNSd1Li0LN+miIF0+jWqKm21boJ0oY4UVuZtaaeOHG5lY5KkgaSk2GJR/UrNDgSRJRjCLkwctDE6IOp6haZvbTkcyI30772oYha9F0ee2CUOtSgqkmERGLmcnDCgJlI2to6C9LCqUiOjKE2Yi9FqlleK8jIh8hj3x9g9BrsM4zEePHg1QbHb9hSZZF6qpnxdU7t0uF9IgoQdWcYuROR5DJU73kizYomLglRh52OaG+yQURUuj0S8bCxyt2KXs4MlMwkJnmCclv7fEXONWacgdEGYaYSqZbcDxV9D6J+5oQIQ5ek0iuGAVZruS/xPomCymp6M+Z+d9lIBY4MaCDT1DjgFMDmanCQJ6Li4DsFKryYSqX8dzTpznDnYm2BJADmGWCQP2wbnwCAI1OSUJmfO9L+Y9tqQIQSRTMlApFmdLR73myWAQ6lIDgbUsyBvOOqpmQG5+6p83pu+9rf+1i89txnpFuxkrMoG2kQzELk5BHECDFRII4hzECBKaAKFKKECiFQbKSqSQJYTKJEkVwzGaJwBFOQCI5ExBJKlwgv1K9ClQOcCx2FxYmz79cHFQoKlEkBYiJTFw4UciAOMBeQWWKqDC45MMPOWru6h6RKpsxcGYFsjwDBi+fq39t+yyW7/Z3XL7/98OhjofvgdCJhu969UR2mW8c3u4PqYOfpSw/fP937G9c+8W/Xn/pxu/RN5972reuHLx599mk/uEVNxfOpVvdVqwvd8qq3L3m6EuxQcUgpJb1BdoYmE6Rd8FldzjkECgozbzvXBdIh9Ii0hSd3dQLQ8UAA5Oos1PPwOQmFCxQayNS5EamcJcUJA8IkEsylU4DIghiIuGIQOTubEbu4WVtpMO2869KqJW1dW++SEIO3pvOzXdV0e7tbF/bqWRVilUDHi1tRq8NuPd1u5ufmZwQLaLAZUQsA1G9BZAHtnEnu4bnnPGfspBZQpLMPDEr5BGY5iPzG0Dbei55297K6RHdWSYzlWoncSSm+7K12MGfaAOS2YDj1YkepKjB2ZpALBxA72J2LWqWsSlkkkkSRKCEQZ7nPAiFEYgYxQSQEJgZBWIh4A1ZDiAQgcvAeK56P9tAFWQJRH5NnlEaxhdoXuc9670MAnKtO3FU1V3CYmRG3rqz5lHtgUrc1w6ATRfJ6aYjR1Cw4R6c28bRuuq5bdim61ZqmFlbma181LGvzBAsSYEZZcnHUQfFkw5eKo6WqZkrUMgfVLobCSCq5NKYvqE0pxViRkxmYxSxn0whMSk5EgQnwHADJ5EWmOWii7upmqu5OdT2hTHgi2YGkfPE8lXA2eLFoSbknLbGkDHZLGUnSC1539wQnoPf0RzKWTvxa/io8LETebMMHmHr/72RGZrR1S79dh1HmgiZYXrGchS1luxtdPZTfwInc/CQCOad4tXdEafDn7nTmsrKhoqF7bxjwPsSR+bGopDwNaoUde8N8xqUx0hAZOG245Ac2IhrzJI82zWnGzeHXPupAQ4xrcCgBI0dmi8l/Cz2FOGhDQQV3B/fmB3zwwYl8SLGb9gjPPrVyh3L1kwM79cPgIoyN6BE4LnN75UBWqcI6JXrcPam6R7DAOXdKaZrt85ceWKyWeng77S/dDGIUa9AkBRA1JCJVTSwkVYgT4opJfFoRCUlkiVxXCJE4KDwiEmc2CQkhEAlInImJnbgHWJ14ZPcSPinzlJlUhtKUvncVysSVU4dCRVIKCuGU1a+ZoedFAIEhnamlFIhjiHnTEnwW/ZZe+tH7tr7yYPH1q5tPHR3+1M7u5flFqavJ7dBev9XeWF+/+cX6vkt7f+B7b/zuE/TFf3/55md2nvzu2fu+en3zOf30F/Vw2Vw8u2yWdXUO6+3U3pPSVXTXvDsiP2BOupxinbgB6gSdEsUg0abCXsNmSB3ahNSSL0Gtp1WJPRMKsSgHJUbcAgm4gkSSmjgaV9nrKvYZCzvFpmd8My72ow3xmkSgLqivF9Qqsfm648491lZP4nwXVcPb2/Hc2fnOuRSknYT2xs1JuzTILt8/OTudbDVNusYOQUFtjBFU2Scu3uawrJkUGRDPjeS8J1OE9cCO/gKbtjzuzubIEekv6WGPN/b4mNEQcXZGb8Tjjlfv++YcTqlD5b4mMcdGmUhYQghCLJQZHiRkCo5AnNtQEGcEVhQRyrDeQAQZBaEjC7HLSAGbpwxL8kIuhbyZqW/GIxJBCb3adQ6nXLEhKjlY8BVYGYJ8fC0ZnMUppFbZKWhwdzWrVTV6FTRF4ypUTay6UK+lYpoIJ5O2c2GYsxUisyx/Lbdd76ed2AuQikqwQbNv6jB3Jco6xUxVNVVVxcyZvKuqqkE/ufbtZ4QHf2P4652r1i9cDlmXqLKqpZSspzFWT9nGyU3DMlmYE9wUcDN16ywl8pQprdgod4UY3wK9ehmGcWq/nfoVPdgYI717p+wtMXWQwwMVvTsAhvM2dpQ2Xfk+GKOI6WTHkjcDefUjKOTdZeOUcwclz94vHE5atBBl2M1I6+SYJ7OaUi6NQQ6GW87u2EltNHrITU3RXc/qoMb6r2wo9MrUczblR2e+L5nK8EsbK0rPdgFDzeUEjrrXH0TZ+EEhCCLQsJu5NycGCTTshfGjUcFYlQjlSR3sRKBet90xGyd2jLpFkLMnABSETHWp7PVkt77vrXrrhlSHlpSCM0VFZRFMNYRDrF0qF5HQOAmzWIwAiBkhUqhA7EwMjlQ5QXNXFA7MDHAJQqI3LDPKoD9OCgeMcxd6M/ZcSN8vEPVkDf0LQLZhc1sVM3O33Mai7HI4cw4GuJWqPupc0TkPqSnBVjqcBXp+Z/Ls/P5va2/+5f3L/7FpPrR9ycO5WD23uErp+A15ZcXz9sy7nmh3/9zR7/79/U//TPXSOydve4/8/m/HK88ffeHzgVh3GptNEGdhfV7lpsdrjn1d3QCt4ZdtdR16HrNHjC+gqkKccRAieDJft5TWSCv3lXfLrH0J5ux59pxCSbdxAAewUF9xatnCYDInp0jCgJmlKNHdoebWwQ3WpdTBEtoVw2Gtpw4SNDao59P5uaWTVLPde+9HM4thJhUdHt2k1WHSo2oytS2p9x6cv/HZi3uXJW5rWuZ9yFQ68QAb1veiXwd8MgEAWzY3N7qZ75BNwzklygWDhQWgb+Z9Isg8tiw3+8Gd+xLjcirLHuOx1BrdUQBACJyrW5m8wIoIzCLEJKDQ1xkJi4hkmK2IRAlMLjkWVBYk5zCJpHRaGO7FzMTKfWaPCIwAWI5JZQXMcKJChlxON8mgdNGHcMsMmzFAIhmjxLnOwgzs5NkTo8Bs5iq5ZzGrmrsH1RBCUIsxsrcxhaqLTR3bVdem0JomlxIfdku9JQtiMwDGhI1n0YOw3N08kZFZKpApD2bJQKGPwLm7WVKFiHSa8gy5g3O9VhGPShnM3i+xuqlp7p5oCjNTdVUdV+K6e9d1AEpZNpu5m2cP2IBEprmbe/JE1rl1nFq3rnjMvbAdVoveZHMWdYNSMn7qr8NrMCNOXXa0F7JJVbohOWDE3BtUZb/TWFoWx7MMY3StTOaWGWPM+66W/Tf7A3PiWQy5d3WO2ubxZ8RZlpH9wIdaQMqRmFzFW8K7bIXhs3d9AEAHOvhB2Wy0LG2G7Sh4AfQCwnUTpi5f7Bsx9XM8ZL0cNHqw/BDOuY12Xh89UR+sZsYhQ8/K+IoZRKXH4jDUkWr38XhGNsTG6x2vcT7G7o5R0mVsT+RfcyDBc9ibKcEYVZAAW5AphejNDu1QkG2oGSX2QFRZdOHGmSRUYHFi4qAgJxKp8jC4RFMkh4aIAlgYDifmQEQO9twGpmyOHujoDnfrGdOH4L0BgYZNlM3wzWlvUwIgm0ezXPwBWM52A5n+E5mgQEQ4kLvA2ZOaJUCFQtfacc0s3ZR3mFc/J9Mv8mN/8fqLD3fP/tTZh2Trqfne9ZsvVovrr7a3P+/7u9uXLu594M/e/si/Tfs/ffTbr9HFx+t3vPP+e7/j1heePb7yMqflZHemk7mEynU3tYfV5Hq72je9DayoveYqklKks1bNSISr2slsxkiCrnadSw/KBTmROwuBnRg9T9hAPerI+SBSJkNRHMzs1rkTWeuq1rWmHam6Jrc1klJag0jI1dyi0NYux63UodrbnV26xM12Vc8SWbc4ooOb2i3q+gJtzy+cuffylVe/5+xK9vfTPDIqoCsmJo+OzN0dl1xlidIhtFctGRpzJzlG1tK+aRELjIIlmSGLTjaJO3VH7nu5513jo8amJ290IvLkDncNuTCkCKTMEEFMJ6DLOfvIcCIXuBBJ5k3M/zGTF9/3RNicMz2hEhE5MWVDOUfSsgFNRMXoyIPPAN3sBwyx33L2rbAB5MkcCsCyQ51gKDzbLO4ViQncUxlfKaOSHEUPkUPgKsS6CpOuWqu2lBKLu4XcrLB425kfN5coueHk2YRBGICqdmnNHLJS5ChuQVVTYpEEwMyqqjKQ5+Itd3dxd+KSk6PeVso2npmbIaWUulywbERt27b5kQe5PfD79tLPgaydlJHgCjOYeUqERMUlHropO+eK15N7yUf/ApvU6njbjItRR+7QCeF8p6ruz0HpwpSFdaGcPLlLN/LSCSAQfKOTcpla4STLgUTN0jR/k4u6Lp5j7wtm4ZFBWMWfgzughA2qe8jk5IEyNm6NY0gN3sn1sdHBoztm3uTsG+mpZ8zZIxqRvw/GdREomQYEBY5Opc4h7+98xCmnKPPFLROM5JReH6Ae7NYBN5Wnwk+eq7Kb/YT0GT9g33L0tI/rviEnGdvLYySm++B4kpNG4QTkUIeTRbZJJJFA9SxRk6xwoAo3sWbi6O4kEWBhJghn/54Low3nTDkhcIwhKjEyLC7XjEEIRi7O1HeqGMM+7/Kk48csq+/IHMI+dEJlppzzZwETM6fU5sKSIANmhETEuqRwEAURVICSQhNpPQ12XLUpBWlBNot4JUz/hl36Czcu4/oX/+WFB+f1ZO+t753c9+DhF16mWy+s2s/U9z567it+8NpvXov8s+n19x2/8fzxI2/bevzJ80/ed3T5yvELL8GPZFKhrnky6RZ7hltor4rfCOmGpmf08Pa6vZ8dodkDIlWBqwnHWiNzisSpbDDXPqBFcIqkRiAW54GYJffS47KiAENIk6tS6nR1bNppl2AJruy5LsN9En2thsDznRgnthIzq/dm84ce4NlOglCgVo+7xQ1KS6mizM9sz5r9rn1XffOv/o33/4d/ah/51E/ee/4e7npqCMMoEF1CaHeuYPZKh4SxDt3SfPiYu2+El43PaK9qB16BYZOMZdypE4FerX6J3TX+Vt/KLcciNxo3V6z2MCsJLGHojobSJ5E2cTKHG2farBKALS9GGc0Q2cwNkVDsEiYikKHUQW2s8RKO9j4Q3UvwAEo9SJqIWEjVGNR3Ws2onfKAOdPMrIOfLkISqErScqxC3UWtQ1zHVHtsTDV3z2UWZ3dXN2IxsHpysCITD5CNjKgc8QOo6zqmdQgVM0epkqm3Dmdhd2hSMk+QVIVY0NFIzMIihf2DCOA+vphJvix1pYA+180P1oOPXSwgm9pmihKodXJVUnGDOczNlN3cE5my5eY/Q6z0LlaajXbaeNeNq49O+TnDz0NN/J2WovfhnDDeIiij9qG6K7837FQ+3eMru1wgJi1hiqy6UhkliEoRzuZoeQl2OxeNeELtZWP5Tqe9v532y50/cVK7lGxitmuyYDotC/pIe0+L0V+oj3KN5ysboH1JwJh220FM4ieOt5fOo6XrGQmXJD+BiXXTyWQYiWe7r7zjJbV5Vw30Zq/RzkOmbnTbYKpxcnMMxnKeuIhglEyTuRicXRtaVjLz2l1cjchS8BioQXTHkLsSFN/AqW/h7CWQQEyBmLWUZlE29omIXJ2EONvOZXSDjAMKiEp7Ww1DAcmm/qsn4RNmpsAhAyFouI+7dom59qxsLGNrHIAjcBDkduVGRMHJ3EnNq2Tr+Wq7q9expTV1mGzp4c0m/u29839y0X3P60e/tEsJ1/eqC/rVj8xe37r6/OXlS/vNA1/cftsPLD5zeSafPPIH4gs3D19/eX3+/tljb519zaOL6zdWr7zoB7ccy3q2xTVZV+lypqhgt4Alujf09rE1F0L3AM92ZVJTEGFYIEQnyxE4ob5rmzuEIud2e8jZVC+GM7mZsWX5klK79m7lKXFamBlpadnh2dlit45pMpdm6hq6taFqJufv2XnswTXX0upkPmm7RXd4y5dHQWI12Z5th0vTez70qWe/+5sYXH3Nt37dZ579uKTrkJgjnyf3YVmI7PkpThzt8XHkO/jdRtfJghN5V6CPB2Y8KhGfhApsdvWbOBw8OiOnbzc2ASXHb4rv4nyiYIgAUMbRZmvSNzKqj6W7e5FqKLY40Tjq5jlQtoni0IZLBIBmTW99BVZZ+CFcODxsTsaOHirDeQoTp+dS6yEcVui2S4g7R9J7NgwRYaLIFCLHGEMIUUITktbBWyN19kwKlswDQM6kFg2uTgY3sHtuoklMUO2G4GjbCtGC3NgDAA/BE9AKJ3AQdRC5RY8ZeEYkYqzZOAh56UtgspdmKVlK1nVdl7psYZdoc4jcNyZyNVe13IWhGO5GMEAJibQly7HoFtrm1AyP9owbFzaUvAOAAuPurb+xtsIdr1Nq2Psv2kl1VsR+v/FClqfeO+P95jgBN8+bjzDkQ0+r+vGvGbU4XGq4LzZV+eWslvOZgbAEIEOayzUV41MkWX2RgSjTlhJltBEPnyn6++Q0Dd2L/RQMcjQ4o9GDGfoWZtDhar0lXewtFIQXjwmisxuo7sg17CBnQC1vXAJR9ljGJtV4Ye5weTfHvyzBHabPZp5ZcorV4TD0fUa9Fwz5k4zsJ8HdO3Nxc1YGkzB5bIgaWSptCUcOLOYMqVExVcqJXNyIg2xmzp2Ztdd/fZex4EwgNree4YcKqtEV3tvLlHM8pRdI7scBotDD5SWbeuYGG7MMMjMhI7kcVmRiXzjmhkImBxJoytpK4ZrUqbR2oFyBzyASJlt05MTLcNh0tVQTiSmt58EXl2db/6h6/C9/4UO35vf+h+lsubqNY6/35hfe/dTNmwfpyuel7nDftx+/9j8LUocl0mH72qt69RXZe7B+4OHz736XLxfLNy4fX3nO3YmaMHtEm/t9eQ2rN9gObLlwvdmpcNfaapurCYUATq55skIW+9SXXiawuVlRyQp3MiMHpZV5grZuitR517p28JTBC6WiFeSUqRPDXCZHRMlrUIh7871HHuUzuwerrg5czxqyllYHenRATtOds2G6U+/e98nnX/jmh/Ern1p89Jn9r3zrzlO//1s+9bN//8LuuZx4QjFDN/pgIKgq+Nj+T2Se87l5vdTdNqiXcVaLAARz7amkS4kB3SUz92YCcWxx4ku+iGiATRBRZjJgEGV++v5llojZzA2ScT5FOzIKB4gXsBtZ7r7GIDPfdGwzL8XIg/EtJE7UV+CcEK3uPjB0DpFAQm+2OBVcam/i++aFAbiav+PldJSRZL0rIr03nDkkhQNz5FhR42RGJuyBAFI14ywD2YFEZIAxHGJOyUvO2TN8p8g4SrqSDitYp6aYVFaLxDZ1RMIhVJUG5pTQiuWOCxz6tuu+zkZ7Ie0sm927ruu6LiVtu65t2+VymWHPVdPEWHSwKpsFyZwgXBDu7EZs6mtJa7fOdW26gq7FEzFktMQYSd0hRjzkehlSfIEcvTgpyd9sdzmX65zcmYa+f3J4s29iHOfpa3eJyN3GUc1ho4OLEs3ZKMkAzFyEd7fhGcA5KIYe80dk3uObNpDXbMvkvrhGcLbihpOBAR1dfGzP5oc0G7Nm9zGS0WuEzBhEgPtGmmwA4Z6722djiHIv5xyHGfoCEggycOswMbEBUDPTU5EGoA/Q302m2GDx9s81nNu+QHBAWhWKMOGQwX7uyhyYkfeeonCh9FkRkGfyUyETIScCnNVF4BNSlwpQUVYoOQcSYnEy67KBwdkotNzCWpjaTiRKNgCckXO9OfTN7Cha3/tm6YGQ/YAMTSZQcnPznMPEKElMjoykyG4QMw+9FJOqBCFhkMNSmUAnMutsnS05h8cqigiHCKDLpRrE0MTm2nWdtpramqu206NQOWKbjibrFVVbWsl9LV4H/sWj7/rO4ze+CH2ho7nYdZJ5sHM7Z7qdr7h99Wq199Diygc4fYRkrX7b6Zx1C7t+o9t/+mjrfHXvW2aPPnH+iXekq1dXr7ywvP2qk1K9F+Kc0r63N9XVuhuG1tpjVHOuIqKwVPAAF+Ri0lwlTkCb8hzCHK5Q89S5uanCE7yDdbAEUyLPJaCgzHXFIAFFSACHI4oxVJ1xfe7suSceXyndvHKwvXN+d2d+HNu0POoObnWOvXMXpd6Z3/vAzdeuPk5Xfvp/++a/+F//m//nX/v1D/3LP/IVb7/32V980P14bPIP8Y5ybMbb3AF3yZUx3m98BwOWlVJe75NnQQyC0px1IKHLvBOjm/rgT9xV17r7iODvhDc8nCyCDOedRtKqbOXsIVAhv/ZczdJ/zpnLWSAw5RZ1btm4K0M6feYHsKdsYulMzhlrNUQUqKCcpI+rjUUBZYSUl64MRCigEyLSXKJKA/evb6L3fcyp17pMghACpIV4hlHWMaQkFbPWII60po6TmWcH0AyBg8Et91HyHEoid0/kKkBmSENiqsxS23qm2G1SChI5VgShtl2164piJqcEkKt48/J1pszI1dVlxtQASqnrupSV8Hq9zttGVeeq3jQxRgBg7qCOwIzcotkNICNNpGvk/7x17WCJSAPnmgzvra/NDtpYMyMjr+iXIqBKRfEg2PutmKMkZdaL8DsBW3b05RtEFMQycwoAHyVP+/sNqGqgeIqnIzxF58kwdCDn6sqvtKkkxsa7V+m3NFF/YrNSG6KXTAQqJp45MUsuW+j3lFOmwRzwcuWBRwyUZcoYRMx9yCdv8QzrYnd2D/24sytuhDKMYmois6MhV5L1VpKByUpizbKQgxOSBWIn5A4lDGTwtg4VkydTBZYMnPE2vehhZiDlWoQ+iETOJYoIzwZ3v1+ytUZmKQ9MJFKpJsycPjKYIL24IZZgriv2GslRS2q7OFFqd3lZKXFlSyJJM9C+hQhW0lqi9dUZ7t4zyDkk1NkPdjcwLCUwVVXlDoIxxMzVQBnjp+5DkK+MSiW7tJCUkoj0NQNlw1TgY6mCrQKHFYRbm1aTZTiW5IENbGqETtkWCBVVFyYVIN6amuHqzX1aHdB6X7oFoZNuDXOtZ6u4FbfOV/M5T6IRk+7Xy47dp3WzDpE63VmnJeNi1XycL5zR5Z+7du1vnZ+8it2t9bLTeEzLKlTbD9zbbe12t76je+2TbK37IuCK80LsQJPozSO7/frNZ35b7nnr1j337Xz1e7e79y5ee2Px8gvd4TWgQQhIkUx8vSBxJPNu4sSGQ2mmmjnICVBEsKO1LrgrLIGU3GCFK5RtYRkhikRIAMgDEIWCiVKYGDVgF0Tq6tQdIjnvTuf3XazuuXhwfaUJO/ecmZ6p62rtx6v9119bdgc7Dz9Uz87XcXK4fGNy/Pw/+2++pga+65u+7B9+74/+/Ge/5tvefuaep97z4ud+8dzO+aXfjisiYSE1zNmO3AIKfiP3CgCXJAU7qTsbwXKsyzhs2g4OdnORNzogYkbaMQvrgRbX++CzuzOHk270CQGFTHC1MXrRCw2HJwACKQFhEydy5txRzSm3X6IiJfJzGTLEyZMbs5A7k5o5mYCdFGBzHvlI+ZvqRUARctgPyo6S71Qb5BWhjxnl0q4hHJ1jkDDz3BMZzIS+ayf6ghN2qHuON8AdZCAlEbcOMPUEIDC3VMJAVQipbTu2ELiLHLrQaPSUhCCBEkSdneDEYJCblooySqDOJQFOnMzUzby4BCiVB4AvPHWr0EpVSxdJAkiw5hUFIhaOIhFoN8I2z0iJqGXZZU7myl02mrVbpxZAMluv2nbdzebT2WwWmJhZkoSoHEJQIjJiJahnXiFtyRPpEVwFWniEyCEQjpwJF3N/+rI9+vrsGHpfvPhaRDS0EcVgVBIBnPczg3puZjJsaFNPbksGOFip4/KhSgTDOfCCIxzbBnInbDGvvQ3B3lPvI1flDn/NdBTj4Pt4VP0xHIDh2bcsnhqc/E4b9k2xPNQn4pH9bLdskw5MbzrEFJjDqThWb2X3pbQKgIZ8w/AxzmG1jVlQdLj3AWv4huj11OCzUZ/HXQgXS9qrWKyjkZRnpBGr/GBin/RFRuY8yek7ln6Omh3ibNsb3KFwraijwGAhSywuEiFBk5P5kG33jO/PNJhE7rkbGjlBsj3lcM0V9uQlwZBD4gIUCz/v5tFcQ3vO8JxZJHImGHwBjZ1GiZ1iVrcgXS5TNTc4d8tVoKapGt1mqu5Ji+XR9WdXV6/ODt+4d/nS/XT14Z31xW29d5e2JjRrvOF4vF7dSMtFG68fzL/wyvZrOPOFrXctL74j7txP6Q0/bmPdhlCtKMQU9q09x8tfnT386LH++Zuv/q0zk/2Gpb09W8/W0nVHh9OtHfrar7r9K3/Cb/x4IE40gV1XrGERfNjZGVilr7x88NrOQX1RLj6+/ehT97z1rX77cHX58sGzH9HVF9AtEu34tEJacNtyNBXm27eIOGkFJWqoE6B1pjbPGkELLbDmoKJlaxHkziXRAYKgc99y7QJz2mf1A1StTM80DzwSty+sQ700Cjv11t65yVYldnjl5ReOX7jebG+fffTxerpNTPOd2RuffeFrdroHnpr/3mvHv/9bHn7w4Sf+zT/++Df/7W9621d+1cuf/e1AK7TuFWAVmRgWIgQ7kUwZan+HEGi2Ux3WUwSeOL++6UHb+4IjQTH8XOz4E5r7Ltp3/OopkE68iIiYcqaDS4qqP0RE7tpXCBYVaG7Em3qoBGNLvUzIoTPv/03sPL7f4EihuEEFLgIoQFlqb9De5WCTF+xxf2r6Rx5fbXyLsdAgbOKf4+8OHxjhujmEEIJW0lkUmGjOcZipUO6PUmoIfXD6SQ2dI4GcOAEG6rIWNbKSmsixGnNVW6UkTByYA8AdixOYApH0eWp1JrdA5FwCKpKFBhEhdckzLDR12pon7Za6XqklteRqTVM1VRASTezWSRAggRSu5J1bx9bCO7Y2EIjBApLSeNih4KFqzMezTT1CZRNvQWaK6T/tPtabKHvRi7o6uYeHy7p7ztYO/YCBE/HYHAOkgQekH5qdCuMMgVVKwJtjiNxdBlcdm/+Pt0V/DjebNb9ksAr7iMBw5eFEjXVPvgKdBhJzyT714Nv+80b8JjZF/0UU0EMfVHC4O3P2oPPp2UwuEZX4+fCgmWYaJ3b/WE0O+fbyRJQp4DfPVRCSJ7+I3kYbPkY9wKqf2BKqGn8AQF5xpuAOy1UQKMiOmayYLVGmF0jMrEZmLuVs02YnWGGX4eKOe2b9kV40Fv8BOZqWN3cJZPVo0wLVyTaKwpi5bdfuHmM0c1UNIVQOnc3gi4litYIHQxQ75rTV1Wcf0NZuXH3VXng1vPH5x/25L7+0esdjB49e3Hv07GxrtldPKpcqqcPcK2oNwnWAsyW19XJ1tL///LOf/cRvvLD9q/qe1x59f9i9n7u2XScW+BR1N7E1nYndvz1775OL+Jbp9qcWC9f1ga+3FlJNg92+0Ux3Lr3v//bGr/yerH8jyQJu4GPWQLZW4eDH3tXGNz1d9eefv/HCh25sXZo+9O69h952/3v/rF4/WL78u7de/L/SwdOkh84TdJdCnHTm7BKUlCGH5OYiseU1XGHupBn40kc42j5MU+y5HClRCGgq3CBsNfNLvPcQ752j6Y6f2V4Gm9TNXr3j0MXiytVnX1y89hqk3brnvunD56yZMlehwisvP3t489onXrryxeev3XfpHBL9wHe97z/++meOIj3wxPbO2UeOl78zwV4nltmWhNS8Jh4Su5sjOYCIcmgWg+LlTZew0a4ufoWP0FulH4n3oO+RFjl1KEavXBlPvbexkTbDn/PfPKcyYI4+QFPAGhmZvanEzeLHyIecrZH3VILsDoWRCxyZ+e6U5B39kGnDyptChYzYrfQkLeNzL77ISalIvUEw+Em4+wxsbj0O3aO3VrinYs7qtwqdVWIqbsKmnVMCK5OqGnI8jiRnot0NbEyKHLbkZEjkyZFABaLlluCJ1A3qa/MuP6uRAJRyPamzbdhi8qapAOv50bhnBiZYISRRJIem1Hq3hq5YwKQBGjB1noAD3Jw9eSACI8GTe0eeO5skaEJgZsEQh+9lY94L2Gio0cJt7CICMsAnD9dwKrco7GYDuaq7O21yHHnWx2mRkIusN7HF/kUE4lxO44NdQHdpb4JhXXmkwfvdiVCsG3fepGqoZ1y7614ZTLZNSe9wDumEGsPILh7vbyKyovL6N3MlW68+8xEbEroA+5sQ5cA5J6xPJpOyZoFTaaBWpjZHw3J1Qik36NPG/RJ6IdAocieTb7qXKjAa9OiJ03tC3AB3kTiDaBvPDHqmmPGMUW/Q9DZmrpE0ANvhuCbvvA5QJ4cikQGQQJ77H+eXMAhq5mYxJ3NzD/K8dhx6ryYnovsTVIyYUKYuz9iQzIObWQi5ZDDlkYcQAKBtvaNWwjFWM5LJ9NxNtOnmzeXHf/HCtd/+wN7rX/9E+PKvmz7w8Ha9fX+92lFPx6vjdduujsrMMlO7sMoT+eJAWblxm4jXc9l651c9+GXvaf/465/4hd/5+L979qGrD36f3HvxaH3D99fN3p5V5x37oIOPh4cbOr64tX2VOBzfOMBqeli7V7q8JvPZ9rv+7NHHXoK+HP2CGRytA/DjZClQcl0Dh87CzH77hcXNzy5+d0d2nmieeGT7yXc+9O4P0PJg/+XfuvnMz+n1T5q+wTjntJfAwQ0ERVJzUs5JXQMBAZCMP1NEgEENoSGqQBEcnCT4JFmr8RKfeYjvO99OduP0TDOXMK3mWFK7uHnt+vHNV/S1Z7FYyt6FMw+/189u22R7Xm0R/PDWzetf+KzcOrqq9hsfeeNPfk99oNvf/f1P/d2f+sgXPt++961cXXji9rMvbk8WyQOUnYRZh32ZEybumQ4UIMOmvSz30MhSrzd4bqeMy7ErXGr/x+TnvTTsPw+Madux8WVPKPITR6ZEw7hkdEuVJXqGAN/4K4Tel8xaz8ycXTIOlCwXIplDNshHoC9c7M+jYsOMWwpG+nY9G8CXG0rUwM3R6+Pegve7vsbOTL47MuSiL10CxkjGInlzPVsuluLCrBljtKRkoTVlN3ZzV4P0dUcQDHGC7ObmfYjkVPxNQA3JoSB1WrsbTI0ToHDzzq1zcGXiTsmMiKyP+zoBaAFzpKJwPDgASNZT6uboGC5Q9w5m3h74MmnwxGqczMWFScwSE8NJGZZBEu7qlComYRYRcPaApS8LIScQ08nYay9IB6hpFuDUByohQ5BYnbwnd3MCnM3t1C4FcnA048OIMm075f1n492/ya0SGF6acuEO0T/mT846b2ymyegM3ElOeadWKJsnPxltvjv+DEK2DcvUDFGU0YeHEdr4EALwHpHkfmqomTq4dP8tW7rEJPpKghwiVqNeq6FXJD524s2dRgX4/Vh0o7YJowfnUmhfPllKqnNkOr+DExq0nzo5+Wt+TMq93rJmlZwtKFVu6IHHvQof4mDIcE8y0CQcz3x5RNNIdYccNyaW0rXEDJojxCUuwmDSLEIJ2aYattumKDnb770PNIgh6bd0WR2ytu3qekJEqlrXtYPbThEsdSITSaa7W/fsHx3f+syHz77y4W85+8Xf9576a9++e+bCE+tqvlhKe7Sm43YhV1JqpRKGSQzaqtRRDTNbIDkjTEEMTVh17C06OaqX7RHfs/efPbz7B1565t/92l/9j8+8ffm2PzK58Ei6fSXOjrdk62hyz/n17SutPEE3vrGyn4pneH+5jAdzqxc+09tp91KzuPADdvV/JxypA2gAZt83QF1YcpIvuNXCBj5O9LLeenb5sb3lb+/cihdmj3357Kmvvf8tf7jGYvXSZ689//PHb/w62W1NjWOCsEPOjgAEoHJvwBPIVOKUpVaaQIKEKWSKOEGsKTYIUscZT6s0kXq7lljtxujuEutWj/aXSzo+8huv6M2Xg9DsgSfo4gPd1mQSJ9HEdXFr//rty5cbqsJka39tP/nLT//p73/Hcnl49tJcjw+e/dRLX/bUk4tqdq29eM/0eUkgsc6JUi3SpdLLeWMNKww+JE56dAr1e6OotxNCYLwxCsE7lUwG3kSh9hz+m0K/vOF4lEA99RoEkbqXfEo5hua0iSpmMyJz7QoXUqd8rkhKlYqZkRB7Zkoq9828SSdu5wnMAPdw6M0YBvGYT9NJS+JkRO2kEPae/Gs410Xx9sq6n9iRvgZwCkjLRBJIJIRgMQDuZjkha2BVDdlrJ2EW7mWv5bgCkQE1ohMS3EBuZObJYKAWrE5J0Tk6mGaAvlEuBFVwySgTPHvNou7q6LikVPMIswtO7OquEhxu7Kg4Tf24Mo8dSWe+TmTBayZnImcegCcKKDOE+87EIZcqMVg4a38eNhkoF4ycUkB9eU8GxVFPcjyQXuTlUivBHSrEpjTCR+WrCwNGPQo6p11zHGZopYBendBYIfWhj1Mqvf/g8N0s6PtOeYWuYXCjHT131anrnLrml3y/RLlyHbiPTjtRce0yffiQLyVT5z68dPpqPLiY40xSuazr8EfqJysjHtGb7n04otfEvrn4RsffEegud88GXn8PK5PkOKli0c/z+EiPh3pCpw968ASsjkerQyhkluUZCOicI6/P8eKangHYxUk5MvXlnqN4hJkRiF2YN7g5IPfmLIG/7CgUW2mEGtPS4KyPzJf/8i26riPhupkSUde2REJtO5vs8VZ9cPnKrY/8xDv8Q9/17tUf+mP3nr3vPcbV8sDeuLoS3AqVE1MXoyMIU+3BkJIZhchKtmqrRo4mvE6ojWaVmKqt1lUnKrerpuElDvYPw94jP/yD7fuffeVnf+2v/8LuH/b3/OHU3rqyPppvz9p6Zyvqc6D33bj83VX1U2fm4YjS6oBoHbrqCDeqx9+it79G08vg27A1sE+ujGA0dWvJjUgMbbIFQCQiWBsdWMTKq9XTH73x9D/G/PHpxfdtv+19j/2h/5F1cvzay9de/J2Dlz+HZcvNjs6CSORQs9SQxiW6VM7UNJGEOQYKkWLFVZSGOVDXNAH1hKkSJgrwlfqCsSbwJGo6up6u36rrs37xgp+9VFc7aFKXukniy6+8rLXf/8ijt169QdM4j82nn33+o79z+d3vuJcZT94TnnnlhaU+0Wz505enT97z/2fvz6NuSa76QPS3947MPOcb7nfnmmeVpNKs0oSQ0AiYycyT22A84KYHN7YbT/SzwbA8to3bxn64/bBXG2xjYywbaIyRMTNCSGgqoVmqKlWppjvfbzznZEbs/f7YEZF5vntx9x/vudd7rVzfqjo3T57MyIgde96/fTftPoWGhDTFQGg5Zzu5EVmxfdSbHjkrKES7RsnHkAU1S6wqabjQf8U8n0R86gaeEjxV26BkQpQeM/Xn9XMqaclK4BvyqRPWwrlZzTfkpjHGJmYp+/Qo6wk0VQeAEji0VBBHyNFJyv4br8tXH9dUJk9fcxWMuoijSngV8LojlYFE69aR277ShGQIaskgqU0pSdOoqjWNZdueA7OlGsyqs+NryUpFyydoVndIFWqUTI1FjXu1Xm0wTY6OCh4iEkzF1OF4c1saSo4AXJPqi2ZB5rF2EEgEntwfAnW03ADPTWaRuiExNcISICLC5NlP7giU0CAEZnZc74ocSjm2LSU44stROzBS9mZYDZ3kBCXKLHrs5aUw5JOUHTvjh7oSHIDs7jAmrwophUBcfD2VXZaVN81POqZLjnK6Bi11apMZ4IAv61FMG6Xv+nZC3UqVsFzQSfEXFRolNlSs4GMUmXU6Ky50x7jQlCXohC7HrUae9lh1CJ5uCqUCzMIZn2b60ILsmS/IrzP5L2X4gOnMlSmCEbNpbsIYiJJv8Bu0HPxnDysZoeN8KnkrpPU75JBteVMA5n6TlKij/nyz/+k4EEiFKAGWvFrMqxWzvT7xD0JNRBzUzOH3koF49MygOgZzZcV0VgtAGCEma7vWzIQbIur7SCQiwbbvuXjhUfrNn/9y/tS3fGH/+rffK+G87unu9WVKq1b6zRM2DLMhWUNxg3VhFIi1T23XIq7AOugqbIc+zkO/mjXgxhbLIzKeN9uK2IdO+v2mo6bB4WE46O3222/7zm/dfOW73/nP/uP7n37Jd27fdd9y/6DdkpbD0RD+/c6Jb3z2+svPnvrNc2H+3EHiWdfbXkTXJd56SA+A9iz1e5Z2kx0JDsADECwFM22wImgEa5LIiTSin4EiwrJRSQfPHR2+6+ix08/J7e1dr95+6PUnX/MF59/0Fcvrl69/9hN71/skDTeNNE3oAnWNCRupNV0IgQIRB/Y2eUFESEkCGUP3FwfWGGmyg/7o8pX95UU8/QTiYuOOe+a33aPdRrO9kUTDsN2urj77/g/GmM68+pXduVvlWt+tLGyl3Qs7P/9rj7/opbfvzNKDz7v9sScONxK/8M7Tj13hp47O3NV9akhnG1iSPdOZlPr+sr8UAIOioUDfZWXOaCqkMwFnfllpeKrFehkDSXXOKSoRj/Zhcb3klm6Ww07uOF1LDCkSPTu76o71ul5HTtVcXegqJZSyHAVycaaaetqYMjLXsWRgze1sj6vdpb0TyOAVfb5Vy2uUlCsDPAGrwHAUVRn50Wt412uSdSp+Jzbv8cNfX0SkQTCKIIkWWlXVYMpGPlYMJT/b36e4VYkIUhtHmQsRJc4wbgZVTRZAKal1ikExGGlpx7MiGFFyV7k7Zj3D27wbgBgTm2eYKIP8ExMTMVMSMm8TGYCGtUPfQhpArBdrxAJbwwoRMSbmIN4vRohC402sChoJTNwHkBFUOEP3VAGQJfAoKACalr+OsVGGWXBM0ALQ6pS4HgKWmqDE0zrgvJyU7eBC9FP/KjDxvtYFPn6Het6XYpS+tRDAKzzlmExxMZa7KJfUpFSebsVlU6/3DmW1mddkJA4QrSBKhlz+41NBa/10ganKXMqTsvloOQWjZCHadCTqdG75fVwAO8ayz9JU8y1zJwVdZJoglu1F78DoLfqIk3lPAl3bO+Tejabe9qY7K4/KHSzjGHjyKzUl4xE/1veX5xqeDMtAg1EDEevVNBGLsbgbxQo4ABE5diupiZTukwaF5bwEoswivSJ7XSd3R7R5zjMMQNd1RI5hQH0fpW02N7YuXLgQf/kdv69733/zNeGhVz1oq5NH13aV9k2JG+uYxDZTNEa/SaQ6O0SaaUTX9p2uUt+1IRixNSkap4S2G2LfJp61m73oweooUNygbcy2VsuUkOanIq+Wy6PGaOcL3rrzypc+9aO/+Of+0+PfGt/4tTxcj8C8a66l+35j+5P3HF35zK13y6n26WsH8/T0sl9R7NqtjWXfUnML6y7LcrBdW+6GdN1AiQEMAwyq5Pj7aoQZUVK6hqjGbLQCocFujJ+Oj//Wtcf/5ZX2vnD25Sfue+3tD776np0TRweL3d3do/3DFaGZz7rNeWjbBjMOhoa8vIcMHoPT1eqwXw6rpaXYH+7q0UF/uJ+Wy+7wenv6Xj1/PpyczaUjzNJAB1eei4//jj36nuHwOT3//N3P3rJx8vZT9931zGc+c4pbnN963/ufjv1e126/+EV3ve8DT19e0QPnzqaN/iOfPXfv888f4kpITdJNliWpVFdQdcyQ077TsBqQUuboUpzK4xau+2Xq2aoOp8qJ7AZgXgATldqfKLnkCXTjfinID9kfh3HMOSrpfKBwB2Pv6ZklBQrIWkUrc7jcHGFRVfGe55ONybmpkFEGrxzzV8wc/bvo0FxSU2r4t9zkxl3vKuxNz/vb3ZAEVNxgTOZtG4RFG2mtTrUYTJOalSqpmp5CXo5vnqKchS7EoExGSAV6Sy1EU0ZKxqroDArSBBfPKSQFkmk0m6J6qREgpZ0GI6lzRObGZ5jICNKINRIEwuLJIhyChaDcMAcTMbCRcFZIuaHQkMOoNyIUSLyLmNcgsYcSsgBjpiKDzYy9OSxVrlUS1aXkslQl0qP/RpgwW6IMFVFnn8ThkjxfksMxWgdGd6xbJwXbOt/RzG7iTVUD1K9UIu9LQ0QsUhhv9rI4hyUSK6JutNhccmD0x1Tpy5NUSc59mxWqyTIop4qjyGW3FXvI1STDsvvmH/erF21lJ7mqGpKQ960MQE5jdtWBTVQjqZVKLxgD7FiMZEkNMBdjPq1MABLBmxPAkiVlkJOWVENw9IVlh5Ej35mjP1ku2M+Aru6xsMbMPGJhNPqCVBVqHNZj4bkVI6s6npdRYVierqyGlLxSk9hYEhpRAZ3npyGvWFjsdGUEEVY0YoaMUcveAYeUCMTGSRRQ5HYLIBAxw/cZB7AkmCDnqJhZZxhaZpANmoYBUJnNYP1G316bpRmaGI82duapb5741Z96/aX/9N3fvPXa17yBUtx/7hrzNadFFqbMySITARKTIsWgiMysyqqsSBaJmAPicimOCh8aM1uuViKyHeYIGHqLQxIhY6TBWNuNGfX9sr9+tNo8/9/9oXOv/41/98P//iP7X/o9PO/6/plGhk+e3nlOG1suUyO33bqxKyfS1athf7c/2dhzLdqjNDuRdNb0YeiC9kIComS6RDpikCGamaEzJJgSGPB2nq2pDVDhTVUmelbSM/GZ91597l9de/cDzV1v3br7Rade8Lpb7n/eanmw2N/XCOvbeCI20jRgg/bAyiwdLfnwug4xDsu0Ohr6xbA4sn4VjGYys/sfbHfOYdYOwQ5XK9l9ZnnhGVtqo/3+0e+AFXu3LZ/87PXNjdte+cr5LScPL+1un77lkWcuPPnk6raXnnjo+bf+8m995PC6nTm3+cLTzXs/tveGh85vxhVALCviDqQ0Oj8KV0XGMCcQWC0XTLnU46qFVn6SFXHKCYpq5t2zCaIZGjbVR5Ah90kz8/bJhZkwEcmIuHdcZ2UOjv7iksoZCAtbrgji7No2UoBZQWoxEXs9RyIvxNOsYmb2a2xJTahGYevjVKNZZBaYdz0ay6iy9AVNBl+SkMqtpwaGOgpWSe/M/MqBa9RB6UvTJBJDSuopXZwbsInAjISDhcEiOBArCzElSJDQgklVm0Y15zLDxCwn3DDI3cDkHc4yUoLninvXUYMZqSqsSZYNpGiqmpEhzSyFRlXNK4z9zJjhyygALZpbvQRQJEjIHj4VyojWzAiBRYQDqFEKoMASggijEQmBgjAxB1AQEpbcV8Mt2ZwFzUXq+QCU3DxjAMoJyF3XnAZdXyg2ofekoKpBGbm6WS7IPuCpxGRPi3FunC3gm4jhIvnq+XGHrBEx547RDjuXEjnPmxyawz/5nuUYCwPqKZSsrnpl3ZCTzVm+BxGTVo+Oodjao5tJcwUwiEovneQIFWOBLI0paTBDKgpn3gYFNZ5Lelz+XXkd/2hFdyYzZlbAvNbblUaQ+6YzumDRS53YiAi1IAfmHUzL66/pOiMHsZyfnxNKb6b/+mDdBe2PsKInmI21a74W5u4Bo63u6PTB4ggtJSEKKgkajY2Sd4z2sDobebUUhRCAsTaaikVDRFFTctw0nyvPFZFtDLsrIxp6EgztrE0645P7YWhM20ZpdvulT350893/6/d94f43/4WXNsO53avXYGlzNosxxhi7rrOUV9Ph6Hz5ufjoXLHITdBiAqHruhSJiFUdlcw7vZo3cSuEkX9OzCFworOz/tr+xeFFr3/479z60b/+89/7m6/5kw/c/7LhyjOhmS2oZaP99hpW4fzZc6tL/UofQz/ndgfLZ7RrJfDAJ7EiimJkoIHkyMCmC0MPSyCCBVBDSIoFYUAmD987rDbn1AAD6JLxnj7xW3tPbO+96wXt+TfuPPSWzQdfRnec1k6afVqk2OsgMrRQ9EOURB0doI9DbynSkBojCiGIBabU2+GV50DJDq7HZ55JR0O47f7tF710du7k/tOfkaNPmF7Sg2cOH5/vb+/cc8+LHk0f5UALmv/6e5565cvOvfSl921tzvrhYKvdeN6d2+/8xccfe2bn4dvbfi/O27bngTVUw45KyoitNQVZc30dDwoV4yzkugV3uTgJMYyUPY7LNb7q0S9nG/UsFZdyrRipg5k8WsaPHg4CvBrC1WhXjlLO6XaU9QIwhWwpJhsbM5llz7fL4mnTmrLRjsvS+lUNHh1nwkzTE1YOlO5h4zOYkPIGHNNQLOsrVvQB9X68/mMWZq1BbxLmxBABKTXBvTWmSaGsMGS0SAJL3jaBpKpB7F5VIwI420FeS+wWgWpSmFHUrPBYaTasWeVyOgEy4g+beRyAiMgQ6yxRxvMCEYmQt5kKTUNtUBZqmtC07M2ZQwPxcTLJKICJiHLEzAkjqxGFSkvAAuyGl/tZy5KM0tByimuq0ooKM6xZdfXicREnn8fdMrlpdsWMNVIFEh2OjTkxqKVUlNCYH0RTUkOGdynFrpQjLLSujU5pcbqBkdFcSpzVjCpev1/MBfuiTJuvqmvcPjK4iKIMLJnft8CTEIiZvdGj1ga0tFbDd+xzybAoKKyAOwCMwJSYERWqaiXyrTlsWu9QVsJsktTgGyY3WFeNdf3MXN76MEqIK9+DmSknwBtqIdhkwCMR0PhQZ3sE5Dg5ABglwma7vAPXnrXbldQVPqhRKOl8tesRZz0ncx6P3lAG7iQgxshNm5mviIPIcAgxXpfYxbhAO5MAoiXarT6tKGJr49SF3ct7//GHvkZ+9Xv/7Ctve/5rrj67AK7N266hcHS07LqmaZq+j13X1c1DJRJmUxQCQ4yRmSVQNvRH172E4PSpzKypJNNVxugvwofcbp3Q5fVLT2yeecnf/AMX/ua//cvvOvqvb3/ZF126+lzXtL2kt13be2TWPt1sn33hPZ9993MbvJeYOCr6pG3bhq1eFuAtsIGWjlwEEtKVWQ8MQEcWNDsOFkYRRmZdogQ6AiLAZA20I4VRm+QIeF+8+L6j534Mv/Zgc9sbzt772q37X7p19jzvnNC4smHZdrKydGiLjT4OpJEpSaeJbRji6miVFuHw4nD0pC6etdUemrY5+YJ2e1Nj3G5ONK/7+qd+6Z8G3bfD66vuwpOf+bCcP3f23C1XF3txfuIX33/lj30b7r1759SZ0xeeu/Kie7fuONlpv3jy41vfsC2f2oYeJYKCmbjWLo7bmSdV+3khbtz8mcH4znXJOWF8eXmVIJNMLrPSOqj80DKxu0boDWFocvnapqa6H/NXYjBzNZM8rcjtdCMiVvIOBKZQKiSTcsW99xTOQi538FuzHMYxT6NaTq/TosvpCG92B6/VWD8mnbMLJWf/uVkpSQKsVCPR6OXOwaWMIM0CCWyWRBBELKQmMCKSwSgIAezozSLifR3y9OfYqM++c2IBoMmznb0br6l5V0BFdj3m99IRXqLke1aAbjYQcTEkslTKRRQIoTEyZpYmIIiJmITQBjBzaFgE3psBQmPhr9TiTHOlqahbVYQhRxOSVSvL16WYv/VMRp6/4ViHZJg6mN0rnT/+nljQAoKWRPkSLPE+UMfkeZG145imjzT2tZGs29Zyt3LNVMxYiV9mQiLXMcZN4j8tDwYoy2rz3N+JjkLmjxbNYQRf3DUVuLRIAznysIPU+qjGij6etjRx7YwA1SxtsoSFFNeCkJGgZklwcSbdZJGIYBSJqCRoUcFszlCPmUSK3uD+V7PiL7Os6edCxlG4anVn1TUq0hFe4K2gam0ULZvVLBDu7C5+aHGLBSgt1BjKrE1FFnTr3LcycvmEBw4mK2QmIkm1aRtmTkPPzCKhXw2stpLD0DRtSktiUNMOB9KdlZ3Nxx759Vve8//621995o1f/DXL2Fy8sJhRzxz65Uq6pm1bgIxJhMxME/mQvFY4De7f86AWg+AdQ5k5xqiqwsEJTESIOMZo0LZtvd1K0kFEWg65T+hgHWwwjc1sm29fpH3Iyb/wTfiRn/67/+b6tTvf9DV6/eomd6eH5s8//vF/cMd9nz63feu9Z3c/cnFjvnOw+jTQQ7YGPYR1xkuwg9QI0AHqNRglrTE4DIOhAZZADxhra2iMk0EMzNgw68EDxU1Dy0DLy6QfGJ5+5Nln/ym9+75wy8vCna9tT9872zktm9uGYHEjHi37Rez399LBFT28YotLtLxkq920eopsL5AMvAO6b+hb2ddmfrRonz75shc+96Hnp91Pqx1ieZ32Np79xIcefNUXXNk9svnsdz937fHPXnnVC0+ePLfz6UevvvUL72435jJvH31qaLG88432OW6aZuaKY9WhKxRMprQbxO7kSkOptUCuq3EFcVSrAJCy33V6EvDmeIxR/BT2ylIvwgSEBwDGWiMe8zvzjmM1kJkw531sjr7BOczkWUpZxo0uaLd6xSUkjSnfZafkaJpSaVVSdIAqF9fNj9Ecmu5lQAwDJindVnTo0f9/01Cx86VaTk3eBlGNCZHBgVmVWVmYWVlIEgURC8QMjTK2VOLS/ZhclrOjlmfmMGEF7BjtsIyCTcky0l3VOQreMRWoXaCC91DOUubKxJhcG8rGt0gWSUTUBkhLTQNmk0DCnhBNRAQhYVcyfPTFbgA5GhZnhW3sKM9MRI7pZ+YhhZyGTZST7JBHNwJvT9cu09I0Mz8TW11HhGPSdCSXKpxs3CRri318dUfdrV7gU5YTqNfHcUz65kbx2SObDd86ykIto6ie5BVUq4UzshIAd8R791mUlgNqcNjInPRYbWQY1H2yROSQkG4yw8zY2Cay0zsyZAU/xymqVUpUosIEpjZnORX15diM+Wg9ySKHIUjynY1ZpjraOAUu2Ce7i4jIShvvsvB1WckznHO9f9WKCF7DWPmXMWBiMAWf3bow33/gSLYSLSltAFDNrngbe5uPEQ6mXKRvOSUhqVEQIRaHy+pCoykNq6UlG8RmvNHYsGisifNNCcud1eHQX/l3//ht8ivf/z++7PQD9x8cHs37pQROkhDRNA4Yq8uhZ+NALCJpiE5yXmWXdyCRC9cQuGmaVsIQV6raNI0Oztwzo/c+1vDdKI41zjBjDsOQWCipNmGm8drKWLAJubbUrf/2Dzy8+Kkf+bmfXz7va7/j6NnHfureh84ur3z/Jz72vfaCy/fd1+zt7z/2HPhcWCxM+sBppQN5pgcBCCCANKfRWws4nm4AbRLmsCPDPtGS0MAaaOPp+4oBWJoBWAWoAktNgDAh6CrK7w4XHxku/MSKdo7ojijnrAkIA1YRcYHhEOgBb4+iCQOxadowBKALKmlxLe4/Ydt89aBpVsvzX/iFT/37Z7GzlKO9EE7oUxcunHvy/C23fu7Kld1D/eDHL7/6oZ0XPu/Wz3x2VxG7U6dZ8MT81G998LNfde76cy+/O2p0jHcij5zWXW+lu8AkzpePlOVbMeuq3llU6yk/4WNWbOH4TNVl5bkW2Rqz2uebgBvsjWmupHdaSWMglkC5uzipB3wUI1eovK76XwBNbvtxMoMmMJOtqd1EZOZggmsmRf0233NS6DzlADdlI3kM6yVGpcjQD28sPcnkIsDgpjwRWXbmMhnDmJJj5wfmZCQiwtoQRfJ0NmYiCswZwUJybN5KPPW4FAi1njsXdKqSKhFkYqdxfdlcZJzvJHWJglOI0wYpOBvByKVEDBaWhprGREiCspgwsRwTwFbdzetzno0fY8vWXCan6pR2VWnM3PEB5xCtW02juWzZOAGQi4FvsmpmqDHgm9JB/iCUm9IAJJxRwCeXK0DM3nm1GFmVOi37cGA1b96JtN6j1PdMTOGcr1U1kRt1wNxKx+BSOwswBaSW1BKVVDPvsO2qtK+nx3Sme4OYpKpaVlyRLknLWMfapKlGsu74RG7vSCBhEHn2Qk3YHDcJ5wBR7nej2beTTXDycgurk52DUqUoOQtUB0cq/r1R0S/SCK7RsfcCt8rgQOS4PSiqJROBWI0jxa3Z7hlcO0w7JIEsqK00RZAQUoXqJY87k5UWmjpChnFuBSMiqsqmptT3yyFq180Z1HNKcbuNxlv7R7PTh49eP/q1v/+9r3r627/jK/YXi6Pn9sLMlo2FBdGGmdEwDFCdzWbCDQsMGIbBszDMLMbsq2cRJnKMP9WsE6WYV4oFDg6fUhLxGHDw5t6V1CnDrSdm3mjnCxq4OSkHu/OGjuxEDId7B/iT3/Q2/fH/9ad+dvnwl3xnd3D5Rx586Z842P+7H/7Ad/HL8NDD4cknroaVpsexupLmO2HQJDNGMh2MCQggAik4karZCoggBTWEYNSAxHQPIGAAEdCBGlCAXW1BPYbISjLn2KixGnooUgA1QkZplfCo6RPSK9tqoE1GJDKiuWIbYcdoDmOFCSXo9WRLw5K4T+lwtb9vvHMwu7bzghc0H3ohLj9ucrRaXpejzauffvLU2dvOnzrz7NNXfvPDF7/z61/w0D1b73/kqesLPnvyVHOqOTp78hc/ha948pntVz/v2nVF61RdRK+Zc4gqKYurKwMWgNZKiKz8l3PxQTFw82aDcYAvcFk2ylxH8m2mjh+Irgnt9UpAIgJr1smUDQQp93A1OBFyn101hRCrWSlBoey8zClUGQwraxZsk0aEhVG4jbsmX8dv4XkiNGW/N5W4Ew2m+pzHT4YSxi5Hub9zyFy/URQgq7ANHu4EiXEEQByIIrEaCSSRp57CiEioenNZWFwGR/h5nsba6gD8gwsbVWfLrsSPra7yLnas6fL6RLl0u5lgRioxmHIeLFgJjiJCoTUSY5HQRIaRmOQyFRAbEzhDqUwRL/KUFi3GxwhAE0CKDGhR/DSMUreRYWTgtS3khJfjs+SypjQAW3O7TCQ0XLE49l0+jtnNFZ5mXRYq6rwcjyWXhffyvlqZ4mYfcnP2Ir5sopWwv2iJdeeWTGUTjr5cD0lSqiLQQ/b+T4fvKmqv5jotgEoKtK5PylrJvO9JhhDZBOzTihLqfqM6uXWfGBIop9WpL4kYDAqEcpfkCVtllgQMeLlC8eJ6NLoEimjkQ0YUgLWTVGXtFOuVqAKhlGgxuaulvq8XGDi0er4Diafrtp3dO7vy1OI25VZsiEGhxB7GNi5mblZXS+toNovwrmq5G5v0cWjbFor9/V0ims83E2iBuNW0h3I4R5OaOz77G+989Sf/yZ//lnMPvfGtu8/txrZt2miaGtvqCIOujKjtZgxbDQMRMQW1qKohNLlwXnmihJkQNRwIcDRpIhJp4xCbEHKySWJ3BBJRjIWqi0YlavCs8FXTzXF4eMCzeR9XYgalTZsdXuXv/vY3PfcjP/Sedy7v+ZKv2+n1f3v4m+6/+s9+4Dff++e+8rbm4bfPf/FfLzpDitofgtvqrCANznZIzNzdjwQk2GAWwS2FTcMM/SzpACwJDbglaokWasshdkIbyTobgoHQgE01xYY3BuWkxqzKAmqSeiUlqQ0gA7XgHcgpkbkoaTwyOlIKCPNEQgZbLpaHFzbD/Pou29HJc6/+wgs/c9nmkAZYXqe9rSc/+sj9r311d3r73Y9c3jvAmbMbSPHgMNx3y9apO04cSfd0a/v7h61Jg85zvAmVryQvHIU7SEpCshWXiR53SmcfZKBgANaiP2sb1vc7UQ63jJj2RDw2Cff4IpVykbVAiWZLwIcnRmpmXMGHofBydnb1weU1FBkaHYo808idNP2VvYbB3dtrxnoWwOX8VFEoeTVTkIubmk31VkURnwDkVsNr6utyEViczwA0I+vlnorGTKrg0vSRyb8LJCABKVgssbebVVDIIy8B2mwMcQMwU65OmDCulA0NHpuviDtsXRBMzKqsfmRvombrL/vzshqd7VAypuwsJQITWDg0JqImJsIsJKRCBk6ZuWU0x3X34cSpMDLM6s/HCEqaG8Hl1rNM5EUhVoIhkzwsKxIs/2OqBqGYUvXEWhb09PCUUcvwDlJJh9ibzGPyQ18Mt9ZLud5EgxtfDJP5Zqoe83qFTYrxfXqLbWeuofkvlUAQruZyViod0lzKJo8C8dc1UiJL3gbXAJJJ+AfkFa06DruOhEERuT4PAOWRujXpIW0iojzXGfeJmL0/klveyMka9b1znlK5pzFK/j1Bcqi1tlUorMSQPC2FUHPm85QWk3jiv8vx40zK00WlEtkmUiImC+WtfV8JVAO3t8wPaLEg2yQsFSFw6yW6gLcFzWjj3tALKGKYsgGglGA0m82HYTg6OgjMTdMoQULoItnKzmxtXU79lXf81W+WX/kf/uIbN0/fevjcYrOdxSESmsSicaksHOfE0RMeV6tFN58l0xRjK6Hq1kX9UFXvfk0lTSF6mXHbtlUNFxEmNkLtDE3F0ZS3osBrPZfdYn7EW9IuNZF0gw6btr2aLVayt7fY/ivf8S1/6v/5Nz/0H5b3f8HXcvfpv/HmN//Qb/yHP/erP/uXvvYr2ue9evn+j3Ub28s+cruvCEDMNgcJEAwtCSytCE1uq2C9ccc8F24SGMMC2hMJqGVsQlukTaM+kbEaoSXZjAkK4qZTG4g7WCCLgZDgwUrVsIIJqSHNDZuETaWZsWKmiBb6NiYDem4SobOFDnLFTvDwzIlbH3z+5effqU98KkYTjnp0ZbiIixduPXXvHRffffGJJ3fvfN5dW/zBw73h9lvaU9tbz9DpTbRbi1lKadGm2agF+obiMs+jH6uW/wIgNIU412TtkPNOuf7Wf97mLAcppFc2wiR7Q4uV6Yq1b/BjfLAearVlOAMp9+zyPAorOB7V24SUNeCS9Jnxfr3Sowyy5v1OuepNZaqZdwrnY9+uGa8TyV0p1tauzEbc+FI49rLuCqzi2HIiQq6hICIzdy9rzNWkqt6n2IjAAk7G2cIr6P7TgQlz4hpcxZjAK2jyIB3DknIFSnQPQXHRW6lSyU57HkFaHDQjA1c422Ghkn5rZiEEYknMRiyhMWIipiBGSMRkXjKZ/3KVDZvbaD5LNSTsK1Lo1l0Srr/lqfaLSZz8XM+oPzQzExIzSx7VdGtzfc1r0bOfD5PygFrDnvEfCohSfioAMkrIpaj5NxwyWHF2mosWbdEFAHnrytLUK787QUk9eYyNdYxLwzhSAXg2s2TmNqWpVFlSwkr+/u7zqmjZnFv3UGdwcG240kUoQnvdD+AytRI/FYPRACOI0Cgg16EtmMnlu43O/pyETkZBwnTNypapsnY0jeoqKkUPalUM2RrZolI2xDlrjMw8TJ4NAJFgRpOSrvw+qt7zq4jeMk9c8Fl0crFXGvQxnt9ebhxevqyzQBuGJBQTkTkAZY5gOaFQBBpA+xVJA2lYOlhC1NDNVnp1deWw2djSrkmp6chi0C4FO7n9uc99Tn/2B//CWy5+yx/4elrsLPYvdG0YvPspGxs0uk+xh9FqGBohDjKseha0EoiIhVJKIsIgjSkQg5KZGRKSgUhIFBQ6GaCJrCUOTZP7DKuGhlUjQTUqM1durhZZYKYb2qSQKARamMFIAhQhtUFSH5eRZ/+Pb/vG//ZH/s6TYevBV71pf3vjh170+r/+az/x5R/6+C+++jWbH/31g/Q4ulZjRzw4QwYxmzB36j5ZaWkgQwIfABbiiUTBZgoOkG1YgkWzkIQZiqQEJROjE0o7QEAI4E7RQALMpU7j2YGwVdIIXZD1oN5EjN0Pw0SNaTIOMaygK5BYGhIdIcEGbg9OrnD14Nbrd7zuix5/ehfNgWEvpNAv94bPXD519s6nQ3rP4xf++At2ho20u1yePqFnm9Bc2d1Ky+bUJqfGeEFWBWo2L7wMl2tWFQHZa+d7IXe5qZaTHzLm2LvmXgoKNBKRUtbGJ4ROnBMpsvlVZFg04+Tw97Ym5OqmgKWsWIOVVEDZqWucoFB3U8GS28dsMGUiUzJQLWsxIEWAWIQcwuoGmQq1bBEQKZLXXyDzq2wWeUEvik+RSth4nA3AFJ76EKs4MSIDM1uKXK1PT3RI3g+V1TusHIuggxIjJiKSQNwzjFQA5SYIYlIQg0TBxKRpCCzIOrebqJxgXICh2FyOlmrswjHzkNTMyCyBSKgbp6Xq0eyZvx4KJqJgQJYjAJfpIsqJU/A2z0zKLExGYux4IEbmKBel56UEEExHFwjRpHrTzFkfgFoJBSClSEHqfNXVjCnlLnK+ptk4J4CH5MEjWEkU4HXCtmrWEhFRAEuFpCgajRS/JrlbZvJw5vUGTMTViZ0FgwdSR56eS+MzyDFBs4/HUraWyq4oC1DKRkFU4kPkmQKoqerjK42/9R9NttaNFximSvP6vHAxbSffjopP/XlOkqT6LUAZHMNlbWkYPh0JZW/Euj/ALI+oeJ5RPEvT1kb1Xfyeal7RVGLg7qQhQo5CcEme8+ljEXLfzlRNI6L6RtP5ABCDwpqTId7TXLu4uB8SmXpKHQDViFxJn9lBSimExkxJGmkCcVBLQtS0Tb94ZrVHYWtmAaSLtsMinTrdL/ZPbV54z3tvfeSv/sB/tfmaN37Lhb3DTX16k0ipsclRuK3mrFElyvkWrGRIY/Ngs4I3DohIjJHguJ5QGHKGI6WU+r43IyH2pu4onoY6M4GFGur73r9yc7ltw7IfNEJNJchsOad2uHy4v33u1Pd94xf9Dz/1dy5s4dSDr/vdc2f+5R0v+lPv/cBH77jj8S94C/3ax5jJkDQCpLABvFJKQKvEsAZ0WtsDWAvaRroW0wXWiHSSdUdtZWiNjSgYbzKikmdEB1BL3Bl3kMA8I24Tz7wsw6j1dWEdTAe1XUsLikuYwfMbMu+amykJWaFgQgSb9kM83A/d9u4zF+948HknX/jA9U98qO22liptml+/+tTG1XtOnz/3oQ9eTF9x/+2b7cWj/nnznY3G+sXigXhp2Dx51LZbK9bR+QygNDyauED9JMZARk7auuEoORIAwGPRoPCxXexHlWTHWMTYVKxgPtx4TMfApc3oaKogbzuHpXT4eeQeER6P9i4kY4KIOubEDUVESrmE0mrozbIiMkkXz4m267tz3HRAsRIqO7rZUazUzD80KVRruq4WFs8IBPVNEDn3xvN27TbSSE5JqwMwMwe/prHFDpMaBLV8A75MY00LihFBKM5nKg5Uf0MiIqFaAlpuMkGSryvL+YfCbEJErEIOjUgsycAiyp6DV5r5+iRO8CcsIzdkjmnZ4+IpuMUde4PEyWtTqj7HNhjOz0mIahleWdAJwY6WqPMc4nZSIeO3mBxAopSzmKsAmW6XtWL28SuuMoOKHpCLZ7M1xlaklBRxnrPFrBqmeQtlNpEF33Q6KKuH47pOpwkoUVJ/Z3Ms2aIxr6d2Y7yhn8+5V2TjRqob1XyNJtrJeB8rHXYpdx702ruJp2F6rL3OJPA+4gz4rNUpIIAcKDwH/gu+FRGh6i5sXv9IE4Vmfeq07HDKJnWmy2hq0I4WL5xd++DeYhBD7FeJiVk1AZmfjgJSVYQTqYmwSOr7zY35/u7u4e6STm9u0zzFVdOd1NBtNKvd7vwzP/Vjrz/4R//Tn/iic3c8dO3atZ3ZjmnCSlKTzNRgmPSpzJsk7wFWKJkxvLZPSrwjuc+ZDEwMJlOvAjcyryUwI5U20EAAQ40FKVm+vUbzSmXLiTR+HyNOqQLLcCPEJiISwz5Uzrabh/urV738ld/x6BP/7Nf/edOen9+Df3P3Q2997D3f+tvv+mtf+OX4nTMh7icVUHIbBNbAxEyIxJjNCHoCDYOZh33oZ1Wv0UpMGoKAZ2YC6ZhaaAskWAdqiGeQGcmGcWcyI2pArXEgBwHihohME6UE7YB9S3tmK1AplpdgCLAEBIaYRjWCJUEEzbhf9IfX59e3Lu5ePfvyFxw990w62kdY8bBokh5eeKy95fmPP3dNYjh97vT1xy5tvvzMkK7iufTqxbXlbfceIXGUmtZp6+DnVtIkAeQsiMzKp1twVDSJxzNTUVSZwDHBs7aXywDyvqj4+Df8xErMq0gCAzG8XqamlpBreZmPZhxBZOFWBbCHm3wPFwf1MQFcsBDW9Yeym7T0Oq4NlUc5AQBIRUKMb5dffE115aSpSF//LavnchMRuQqRf5vgnmcyx0X04BmzMaklMDmgoyPXWgKYTL2vWwmcJSVmCKpaVJmD/5c9+abAFjCzu5elwmGucz8KVIpK8nkpAnicsZzEkSnKmNQrkgneeGDUhLzXIlECJlAK4zhHfYjXHuqX2yTfJWse60LVOKcXWBn/lLRwA5WWb8da3ECQiWAlHnMHSLMMC1VWKdM02QrOxwudothV7j9ATpuz+l4lTOmz7b7dcp9Sb2C56hUZ8wzwGm6eTk29S8Zzn+gEo5iRrF2OstwzLorP51hdU7V+WarwtmxuorKAKcWUEuV63tV8NhTgPDPkzOG6PON6+EhL126X2eUy49EaNx9LCf1ScT/VY1I8nqV+jlV7iorXdxlRqWiEEVEyo4nLrr5FY10SXcZ4zwm99eKlZ+y82CxigLpnCare9qVErdSiJWqCwkyH+bzb3b2eVsvZ1lnV1Qr9bH5qmQ7mmB9KeO6f/6Vvm//Cd33vl1Nzd9p7rhNaxqudxTTb1sFdQB7P8vi6GcEMWrQ8z7r2caZUuIwaNyBAVcGAZJcOYDErZ0ZqCcnhezQlVXceenp/3oIVgaXEg8mYUkpkFphIQh9j3y+7bjOtIoU4HBztHs2+5fd/9S995B89+8HfPqWHy1te/Aunbv+Opz7yz6+98cnnvXH5yL/FxgmJC7MlbAUQa2e2bbwJtBSOLM6J5tx0HE6n0GD1mMVrxonoHMmmJQJMkaBaksz93RujGdCZdcodRIiDcgsO4MDSkCVLSikAjSW3nDwZwsF7xdT9STAs/d3VBjEMiz2TJrUHu89dOPvQC8Kttx19dhCepSYhxcMPfGh1D114xYklpTPnTl96+vqMMW83zz3+u/dvx+t37EQ9bNvGk7DWCB1AgZXFDUbbTTmUmdHIztZiw8VSKQ7Amm/F6/e30m9bKuS71eYHhdylSrXKLaMpWymG8aRlZMu3jm0sTqhnbPo5VZfYtMl4NbnyP3WaL5xHvj4tNvlcP6QyDf+5CZx+q0BOaDF3xzIIMKhHN2vSmTMhDiQDMVtK5LK5Fv8wkebGxVW6+OHS18xK0WwpPWAmU99MLmEcuGM6D/Xd64F1NlvMnjUBTCXlzYiJKVspRImyfyUhmbFZrduAjydZeVlv25V7RwDgKb4p1hQj81mycRHFxY7/xDLVATkimFeIC2WsS8xqA/pieHXUzf58YmxtdkbvZZ44ofzHoVrDo1VeXNnsaWhTbMsMaZX/6j/z/Sdvmy3j+sclXO8KjPeTYs8UELCQBLD7IkIZnGf0idv6Rjf5A5hI4A5zY/8jyNpl4PpHJFzu75WwJEzCxIE4GFhd2nMQaUIIILnJQ8vAzDN0SECUHYblEcyh5hwyS9m1RJ5rQIzi0jEaswrHIHIm4tzowlPN1hjBZHubGaEJ4IXx9gwPbFxYDJFIWoDIXDMhsoxcmVfTUNAw2iYsjw6XR4sQ2hBC13DXbC119+SpzcMBz/z4D37P3e/6c3/6jyU5hcMrAQ1T2BhOksxSSf0QyX06115NNaoBEBHmkExXQ9/HWN3IPvIES655cNbi8y7y5qMxoag7VpxL5N1gRFycCzODAgvUhmHQNHibCRFRjSCFmvSCkCKjO3Fm1e+3ofnOL3tZuvpzh5/9jFz49G/QHP1Tb33sk8sXvaKhU5JiTklNPcWlxkOKR5yWbAqbE62g0Qw2Z9u8B7OH0dwO2rKmg5ymsEHSETVqh6SBoBhbdAvgCKBgYzjMPDveHqwNmM+420a3jfYEhW3ijqgBmBCMCeLdZVqSNiNfqqVhJQENtF/s6dWrV5+5dNdrX92ePEVoh4P94dL+d33NA//iLz/47NPPPXVB7r5r8/pqpYJL2n/t4YdPP7j91OnTGytLPIFonnIJHDcvfi/OW096ezA1MnXnRP4bubDDipVDi8gypQqiBEATNDksXWbB4x2c906IJxWFrMikskcKhx4Lhy337hl/bho1Vb3QsssT08cd+2yTwxnnjVsSv/cx+eHoFZiezCaBkpp5xZ2DQZYrnM2yEoMk83wm48zQlGDkTDVzPIBNKSr8bvVx9fN0DGQKTXV4tXIpSwRG+WPvayQZZVvLBQXvg4zIAlPgvFsrlunkMqkimYhI2Psg+WUJ45w4kyzMHEowJs19BEYaiyPm6BjSBgBwyTM9thakhLSuM+lxYgcAV/rVQcEMwV1TXMqiJwiWNtqgx1WSm+yinO0/UQ3LZa5MOj37nR2hhlDq1fJ5zjnP1S0AAEwZxR3HBQaVHC6aDtJ4qp5acbGizAjl9mKGEl/2m4IL/kY5l1VsjG7nqS+3DMKrdT39289PVR63OTU7ABCm+OxVvyubx4nVgXLGfvV1OstPxqnwM25t6xjsAuWaAjb3RRutdTOlqSfFMUnyzAIYEEMMZjro4r4TvLG/m8LJuTXRQcmRzV/fGP5JmhBYGuLV4eH1q1dPbJ8kFpPFtpw/pNXpzZN719OFn/qe73nVY//VH/jKwz1ZymqDNrnRhQ2NXG1Tx7HVMGSKp1xO6KmYdY9VUPos+NVEJITgpbuqKRtDTKquzblKZwAJMYeMhNWEYGYwze5lGefZlFKKlchVVRHdVzMkFaauaVbxgC20oF2Zb0i/u7v/lS9/+c9+8GOPfPbdOtt46hAfsYv3fu7Xd57/fNzywt3n3sMzmMegEGFRQWAwoqVzoOSpPAkNZpuCE8Q7ar3KSnVOcoFNECVh1yP9rmH7ooEDMtwKmzI4sItWakzYJICMYarRwIgrghg1mr1uDGEojBqiZAhmJIxEoMUqhIGO9g+fubR92618Qp4vV+97Qbp8Ze8f/KNv/f6/8U8XB2euXLcz55tZmj+11LsefeTLcP3Sa1+3pGErddBFhTcaWZ4SsGbx0MRBN8lCWrP/xp8796gmJq1zofIjRs7nr+3UnDinguGmjGtaxkMMA5JHPL3u3UxNxciR1DVDVY5GsI4Zv+qsayJN+diz6rTkGXD0w7Vrjrtwbzotvk1wsyON97M8MbkTjLppqGYJlACrUTZ46i6B/dW901G2gsr8imUcEoamZBk8b5TBMXEQy5k9ipwdPkmbqm72CVujyr+qkepJLSDiqX9OS7mYq84wGEOMwGD1glOjYtw7tB8TGU3Z5przMvtlK2XqWvVU8esaxuR8IqqwhjkKWPysyP0wbD1sjCqDJ2s1WVAjQoDL3xu+rhm/4xkfkcl07XOVF01+7oMgsuIW8rxBzxMjRkGGKO5EhSsvZZEylizMqjZUKAmYlI55HuQU2b2U5Lv3n5EHQJgoI0qWozWWW/CW8w6F4wM2qi0vJjuhKETTJcyrmEM/gFk65jMxJZSU75rVbCWcQ6Ncl6xA0U1g5PKt1h0aLvMpEzoVU7jUOGWxmk/WNabyPpi40LXmp1BCkoZpFYc7TgwvvLT3Ecw1zJEMlBzHnXPJGTGZNIGITJNpvH750vbWFkDSzkOADPHM6fnnLh5c/df//Z/7kktf82Xf/Mz1o1m8vDWnha0shRnMbCO2PWgp1WeYvaNZeXL3hmuELo9FMhJWMgtFUoLYkNRBQMs0gYv7jClp0pTMLAJcoL/rlDqnnuByyHzeDcMwDAN7jSZlnUXaLmi3irsBw4kwu6rL3TD/toff+sEnfqa9cH6fTx/K0fkrTw57V/iW2/FcMFvAVsACtMxEYluKjoU0zJUhlJAETaK5sZxk5d6WSCtLAZHUDqFHjMZ8t4OTOaxVcBW+xLXITQhjgcy4aYnV2GUSGx2aqpd5wwIhF+8RPOWTs5IcU2DS4XB1tAqzc8889fQb3/YFv/iDf+h9H/3Yo5985ud/+bf/9j/5+NHGiz/+5FPf8tBdp89c27148PuefPrweeeefuEd2we7y6abc7eMaa3pvfok/17yYqTq38vaK/quAaD1S6Y/8V0wiu11MWbry33s/pmmHVg/t1gw15s8kKsl00QzojfMk7Rq2gWTwojUiJWgGn+PnI+1l53wYrWJIVH5+FR1mColazckwDD91ghW8q0Ka6Yc6wVcxchS2cyIQVo8m57omG1VzS8tgICSqyQeL4VzjOmB3NKLKAJcADSyQbn2alpThGqscm058mGZdVGuBHJkBEFOlHMOkVN5iuoOTyg2cDK1nOlSqIgN2Vvt4xhXhCfaBo1U4buCfUppIkWnsnaNeosFV82hG2m7fvafh4y4lE0xP5tQlKwCMegYXuYW03p4p6QLkZMjr0ksQqXSEk/xdos1n9m8HKuYN2bUiFERVKM2XQr2R1Hii5FsxHd1Zcr103yyjq5ON5lVa2It/YyqdmNk4IxVUaaM6+pMdNh6Z6qPKMA72SQtyrgU1xZX6JlxJUrAiwAiMzDcgbOWopXnJ6cXEaes7wNAyBfUBo7uaIYrO4U4LMPq+UvlUmXk7EqoR3EYlrg3aB/51NbqodnigwtddJEKZsVo/Jfmyszc98v9a1fns7ZtGgsNhzYG5vn8qauXD/7Nd33fW/SNv+8br+4uTkBi2/bDctsWS8x60MyWkbY67Bt1WY4wV48WlSSXCBNiYs64cjp+5dUXzAywqrrfiznbJcVcMYI4+IaqWzJg5pSSMHu3Bq9zFpEYlQgpDQ4gxiwpxhCCKRSq0ciOmhB4tdhrulO0fe3o+isffuhVv/MrH3r2N2P30NHi8tYtb11eOzhzcrYIXbIjIBC2hLaALsoJCue4PRVo1jdmbDqYDAksaFvtWDDQasNoibShqbd0BToQSL0O3ghgLTAEUKitTA3EooRoSkyNEVHTbBhLUItJoUY2AKpk4visBKgaJ5cbADMsGQOchh4z9H0/XLyyu7P8R78QvuI19z54710v//K/csTncW33Z372M9/wtrMart+q9z5Bw9aXPHwu2QG1DS+PzIQYEFBx9XMNr06AYkaqXjvWBGpurrBuH9MkrbJ8yGVONwinm1okxw6v9S2PTnk7ZmeUMaCeb2tIMO9s6DZGKsmW0bTN8OxuFueme6BsDk/HM+2Qc8No09RiNisCJpePjEfRSI69afk81vuWeSeyUhlsBoccyY6hCmFEAk7egtGESZg55155NTAnrrPtNOPbwafXncA2advsWFVlBaeTkIiClNYLBSAFpZQj13bYhLe6dmAZpVJrZCq/j9OFZS10Kunthh4JZibFRTlNsi+rX7K68tQ54WXpW+fzRmlqVnBXJhnWPn499oMbhLdHMcd7AchE37g+aNn48LkC6TFsGmGHZGNiTVDkjrEFUAKodiXUDKpqbCAEKqkuaxpBKo5pUO2BwKVTLmBWBWq2O71R87EZIfLyazJYchWsLDCMUVoVEEEtt0qkiSJp1ay0LKpHx1d5VISVIuOqZKL+FBMNwJsKaUq+GlSoKqeBsrlyBmQbPMPmipfKGE/8aTWEZWZSophqFjU3YeX8eNI8LEpmnBED/DXF3A1QE99IhQgGh6rpwU3oYaGLslil55+/dvujdD3dLxiidgP1TDNYC0QSETENoMWwOLpOQVreiLQjM2mp3+hOPL27uPQv/9BfeLu98Yu+jnb3WShZBzOy5ogCmYFoEKa4iKHLqRkeZlPvU5TcVVLn2MxiVA8dwevU3RXuoTsTA4sO0jSNSIy9qlrStm2SRnj6tIFhGjNrlECm5P0YqsmiGomEVMwscKOwJoQhakxxFkLsowEpEs93wnLodTmnFo384de+4U/8zDs4zRYA33mq2Wj6oxWn1lQNys0J8N0azqIVC2RNOwC2GrBamC4iX8Oi49WWyHaSQHodcYG4In0G8TnADMIIZoPaIiOicEnZMyYls8EoIDCYABVSZSVpQaCULCYMRy4xknIr3RAPjI1tFgh9WkI4isJk4MitydEMsnsCdqG/60//q8/9wr995zv+4XfG5dVm93xzhn/9XZ/6yEfvuf3U+UuHh79x273ffN+Zob/CZjRsULsqLKYUCIw4GCOwT92nzOzIhDWtxkoTNi8wqzpx1bdcl/edldnDyBDKUXar5pvnOxyLycWs+ZduDaSU2/t6fQOpJbcZEpKomFf/IpH391YLEsAwK+pr0XWJhEno2KiEXdmhSs2q40JyYwbvlVmUZg+1RCKCZUip6Q0njJhLrlBJ40+IBjMkVlUDeVWEN4f3xFkyImNWmGhukKAgNlJjSBBqkw4EQTCLSAxmAXlUK6pGYlISwAJI06AgESED5T4aVXmqTvEct1KNREasJF4bt9bMdEwbEsBdDg5KSqrERkjQPCcgEIPVM35AbAgKqLvKWDz9u3TyMygDlLKyVIlOalLYqLUUC1mEjda0KB+kElIaYcMxVjEV1x1n6pRJEKTOwvgspnCjeujvn9bPACiRThzP3hsnzp/EqhUXyV24OvaWykjkKP6NfD5XnpeapCxyiACuwi/v3ur2GU1hOjYYAFa/5fXzE69OpmM6/tu1g8lsLOCmiXZjJWXDA5Yoqs2xZ5HaMW/Luh25ps7rpHnzZBImal35AOTQWH5WrZVCUYlZ8k7Dmv9kfFmD296V+gEE8oKZ1tpEUUK394LNnV+/NmzOmRCdHskGqAJi3Kj1e8v9aLLRGjWtzeOmiHSbz1zbvfJj/+OfeX380jd+dTzYj7MtosWhxQ0EILdAyANwqiBWU4Mz2Yk6aOYz4jXBVPI4QLkUOJoVtcO9LYEIUTVl5zMDRDLm/cPYzBs5mKXRW+hMP6VUBYCI9HGoayoiKelsNosxIkWf+bZtV73u7++/5FUvefG73vXRC1cT+mf34/YDp5cfecboAOEQ6VzCNoUTMmu5IUsb1K/Q7yNe1fgc9DLpAiaKTm2GZsjKuLHpAtgHaYKwJcDtNQfPIiMCCenEqZYSJECJDWCGcOAZpZRSb1DTHrBmhv5oj5uGRDUtLcyaLgyIZmhspkNoWJfYF96Uq+nJT77nG7/xwe/+zi/ngDd84at+6qcPni/Nm/c/fvVDLz/1shc+fen6mVu2pLW4kCAhBOqVS7VC2VxAdiVSEZnr8jLjJBRX6mhmTTbRVEcvt3NlfG2vTTfvSNLrRvON7G562FgakB9YjTcllZEkzTylUVVQ8Bxo7T4+6unTqDjB1kfrftpMh9kSKFBIGSRhkjY4TkidHI95FuPPVNmxn9wemITP/UjZDWxmSB4nJGVlJWVmY2NmY1anLkrOtaf38K1G7uKFGJspG1vJcBxd05rQSLZbCqQEmRkLYEAyK0bWtPIqT3hytlbdhCAyY/GGGZYb2LC3hayRRwPgOGt59zspZhRFmxBMnrH1lOwpCRGT9zioXyllsxiAlz5WEXCMrqYi99hX1TCDuaf+2M+mV4+ujBIPN6pOg2NHVV7Gp44wirACWSqudGTFJ0+EFj2IyuG575ianuXwRPbxoUA2YCcuiHoLlCzr+ld/YhPt+tg0VWr2xLYEs7InPGvOeHyQ/1aTRTWzm2e+wXvOlZfQrDblfQNkRFwr/7xhav2acY30uP7LiVhr+iLMiHXiTplC0xmNL+veC/+vJ2YzGlOBDSlEU1bCy08edPFqMk66akIgQDmFwO7BpqOeDpeNtINsNa2cnp1MnV3b192f+v4/+ILf/bK3fNXB8qBvImLfDMnbMyRTm0DY+nhyHnLGTBuDKJOlH3U4Vy+8FfoU9gRQEiYqRb0kRFTc8vmA77rJJNTkTP9v0zTTf4qIcCPEgUNd8ex7FwohNK3E2IPtS1/0AvBSQL987WJo57h2JdKexrkZIewZX4y6q6vDdHAhHnzcDj+A5SMYPsnxadIrsEugp8GfkeFpGS7JcI3iHuuCzGABFgzubTcgwiIRsXQSOhMBMbxOMylFpRQ1Wu4n3bQy26D5hradUQPmOAioEdrURODWNJARWRusQdtzN/Sr2HRd/9zF7ul3/+QPv66JFzYOwp/+wX/6048M2D59f3zibd175NMf2Dlx8rm9o1tvnROiojFIr6sxYYWDl0XcKETHNFRP2ve1WKd6NjDWuP4oUEcM2d9Tmq49rvDHhGOksn49UiVFy0nRSXPtQ1YdjJBgpYd85Y2jvFl7urONSR1S2bh1eMo49u26J2/MMp409KXpBVovqyerASOobFMYYt7+qCTx5mXKgGNMREIUqFQiiFAQDrnRAtfuasa13CsPrASb1cFgUZLAIyzCktZ8aejaUGs5qJW8LGYmtmPWHZknIWdcUgJoPcvvpuLNXMo4uVCBzWLx8sm1P7gLCWvlP5K7PGHC8Eu5VmHRBVm6CgJnI5mYPdbs+SvCU6JNpslLxwEcy9M7tvz1feqVvpzTjVHHpDS+72SkMgoqGmGiUSxxAKlUAhixEStGZMpcFOSTtI6HokWh0uzyqIZvdiDcsKud+guI1WTZSqh3Uh7kpeqeRlsuLfNOVQbUSYdliNFcIc71EVTkLJOX4oHM+xqUwqnK6CeJK1QvgFEyi6pp5F8lr4gzVU3fVMf6KD8m1Fw43bGdzBONys0RVWUkTaSise9uO7H3wMbV1SopGEkpRbApSxM4Lg+uL66ha0Ha7Jycy7bGa3Fx5pl/+0Ov3/ilb/2Gb77WXGvB4E7DEqnFsG9mKQ25KKIwoKgppkELAEJZfGEZ6YeZRQIV703JHORKSJkgHdfGjI2FmEiosjAq+4QCM5N3DJ0kW3patZ9xHFYhbprGTzJzGzoPyoUQAnMIjiKEedfEAW99+KWblp4Izcex3KB2df3TSD1BRRasjGGFxUU9/Az692H1kZQ+Z3oRtqeIBjL2yqJOIQlNouBlHEzuwhgy/JklWGREGIEbhDmHGTUtM1tSaIQOlCLiSodoMQFsTYd2w0JHoWEOHEJoZYg9hQBt0tHQX7/Eh6ptZxpk8eyDJzU9t/vALcOv/Op3f9PXvfT+nfRPfuHDW3xH/5F0/8beN+hHX7H1qe1PfCD21i+HkxsUoCkNUGKRpu4szb7QuveOScTpcaPSuS6Nsj3tqrDv9yn8UD4414H4t/5Pvyzr0Dfw6wnRKCZQBFMILKLMebPyTXmb+M4ac1+LsJwW5xQOML4V5QEooGPmjAEoEPHjD9cc7zbxutf9Ps6bTp+YH2VGmMqqygqIrNY9MinIiI2IvbcNs7MQEibvKEpCwkwhe2uz6JpqHkQGtWgosjb5sKGKGKPr1oB3JDKCUsWRdlPIe3RWXKP1pOA8RVYAEvIFDCvKxBjJJqvidryDwBhc0tAmf04nVNwONLHNUCQL3ewo4SrKagRhKtHrNVVAFFBnAHDpDin1U5gcVbzZxBidXjNK03q3cicA1S6ckly+Q7lzssJllZL3daS1oa8V9ea7FCRF49J7Ykzp9dH63hvlfnkc0dg1ur6dH9NtWXNiPSi9NielXK2Y5GsH5UvG6XbZ6WS9NhV0c9ZDRIS1tbjpkteRT1cXpYamLopMrmf3ehEp4P+tV1L1Vxf+Ut9PecXcwJpgrYqRDSrx4fPLJvUNN2lQAUnoknDDEg+vaeptzvO2aVWX89WKu8d/5V+8ZPcd3/Gt35AEjep+6oPumbareBCshWOuFjkaTaOpr52V+kJ/Uy+zFm4cVKFO79o0Mk2nzit6SY0NwkwkAkLud5o9P2U2XbQzAGcQ/lyRxgqktpmJCNTMvd9EIhRYuqYJLEQUvEmJoRHeOzy6+867vvzlr3hnXB3BGh2G/ikQgwKslUTSH1L/LOIzpFfYjkBqYGCDsUVoSQfSI9alUQQrKMGimzRsAoh67a8ZbKlpSaqwYNxw07I0Km7TezHqYENP/aBDb15gHWah2SBpCZLAESQNkCLicPbk4k/9iTd/0cOdXju060/82A9/+yc++YP3PnD02Wcun7719OOPXfquP/H2z33gsa/5uodvOxH/CD/1tu0nTs02n376wu7lvQfuOLsVkFZ9F0jIhiGF3CpQR7GhRjZKl0zDE5fUSNX1jGZ8XZ3sGC1JiFMs+9rJbipc7ZgvemJ8ODvAzY7qxs97mZk4gN05BwNrro5h83LYgsyR+y6MI3H6VL1hs9dNOtVFsvIAqtOS6Xp9xur19YPfaiIHqO5rP7J2axUNArnkFwQmh38AcUWOHGWSf5ZAElAsQpecNnFXTCe/5l4hazBx8moKKn+T61Ncm7VsQJuZZRFxrLZ4OgO+wVEMren0FoYqxbsqBnYLH7kCnqbywJkg84g9mp9VpHI2w9SpEhm1giZii5l59PRU5nwj6z42SJ9tvvGLYwx68tuMUUZ6jCzWpPJoYxUh5YAHrnCVCQoT5WISji26npa/mlg2Pk6rZPXXpmpoGuc/InbQQuDmMi/3ka6yirmO5/jjpnu7NtQCuXnqoG9EWe0aBXN+Tc7yr1hgun5DRYbGmMpzH6RfwJNjja0Ur5RTa4Y7Oq79jBvD75aOGQHVJnbZ5EtAiZlVY4AO2hD3R0P3wKndu7qrabmglplMiILgYH9/WC52+HRH864V9DQ07bOPfGTrd7//j37tS87Mzy6P9sRmzbw9jAhpV5r54eFCVR1dRI2SQlOWf+6aSDBmFmlCaM1sGAYv8DClkdMZsTddLlMXnWx4AvPiU+c35XFXrNGA5hz1ybcciAXUShC4zS1mltLAWZPjQBxYGKBkDcu8aYKQMBqm3WV8y6tedgl8RGkbS6QrEpIRq2rE04qnzK7ClmYbSiSWCADPTc6ATxttAA17GpUJoQEC0Co6xSawQehgAVDognQB7dk94aGlpiPpIMFbrCOlFFc69NQPGAZOFkKQbkbNTElIGkJDJJYkyEz14I98x5f8+I//mde+9OgNr1t95de+/trewdZ2m440UHu4f/XWc+f/6Le/edVf/uKvuuXLu4+e2Lqa2u1+gcWQ7j2/s9ltGBtSNEsiYTn0dRM5hyq2FB87X71z9ahn6vVumWoJzVRmZZNFrI7BSvNUoksV5qwGm46xgomdKxV7BxPnULac4M6UYCxZAhXzy/fVKEd0HIblKp/jTmbNEb01P+o4ECIGjdJ30ncOKGmeatWC9G1b+UdlHQmphlqQ45clx7Ayuom5lt2kRaKAsv/ZSAzkRrDnHBQPxCTf10ZQDpejxWGunp07vrumcZAp+6unk3NM0E6/chgcskQ6YchmADmCyjFG769VloZ0rLQkV3W0OHmtIIsCJfRZsIDgndM8YnJshLT2oIodxDkjSKZ3ng5OszMeSS2mjC/o+LRU/TZrtmyhSz72ipOZctExXsDjihZ4keJUEXbPa7nGuegYEVyPbh7PkKqjym7b4lRcVxRyHp4ZlBxQM//57BBx5sk2uogxqTCmEn4eKYPWPD/GN3koJmRUo1zVZ5WKyjyyoWO/dY225nZOr2E3disMFmu21Uea0HXjPKuRXL9dk8HT2U71YkdtSyHaYEwRKzMzkhjRNatXnrrMi2vKSW0VYk/pYPfqNUKr8y40p5aSmrmkT146+tUf+MOvOnvPfffuLS8GOTks9ruDI5Ed0nmf9pp5m1JOJ/HiH6OMVRStYhXV9p8McII51/Nm8nXjqSoxuBhGfjJq4iCZxTBX27rK5okzLzcPD8xtCAwEClxyI7PDWULDEkIQESKTQD5eJIVaw8JkrYRZCA3L5kZ7uDx85Ste9uLTZ5f9Qo+OZiGktE9yyegy7NAMoAZCuYMLWoJAAppNbU6CTxm2IjZgTBagAggB7D1+hGCSYdVpgXRAujIbQImaGTeb0m0izCGNgU0VMVlMKfaWjWAJ7UzaztrW0r6ECEQKs2a+eeUq/d3/5R0Hi+Xf+jvf/Ye+41svXO1jat72qufL8tKJre0LV3d/9dfe+3Xf9PCv/s6lL3jeLQ/snODmxMlu2R/2+za0MEO7siTNnIIQkYTWAuc/EQ8q5aAa53+6c6t+OBZ+qxE4b4Q33fK+ZpUz1kiN37YqUiNHdLlePtCxuyEXbLhVUC+wSeQITASpynquFbZ8E+cLHhVWWLrBh2xFA54yh8k1I7DXDeIDQO6ik99lLNgvO3ri63YHeI7Flrod4uyWP6Z8VAWIKNf/5hcnUiZlR1UTsLBI5tLCxEGZLTBLQ8VeTLlQShXVYHW1x5SSTowL1VSkb/FSTMTJ2usXc9mQ1j4DY4DZElyErduCx8R2iXDl9CtT5Bxp3OTRawri+j9vPFAUqCrXmJkgBCmgBZjK0xul2LiyVeZX9FRAiSwQr123blavLWcml9GDyjcc7ujwoXhQE8DU1UAFFPDYs8rP16xAKvb7sffxu5VAxDHjl6kqrcWPcWy3HHujTNwSMFFHbPK76SqaGbh2op2cLBECJdT7yMQUcPBFd5LUiarDsJxsOQ0KjG7mmtTnCprrLgkpWvTxZB3oZuF5YPShTVO0mEg1MjZjAjdHRmhpdTTMXnz26OSclmlBZA1iWuwKhfnmSQtHjfXzdoMXwzO/9KOvvP2Tr33rmw+O0HBKtK9Nt0+bjR0m28cQFmVDppRSMl9zo1xiYezVCYgxmhEzt23r/dwhPPWsaIHjEnG9JE9FSomDkHjvuxwac5ZUGIET23H6zKXAqtUdXT3bbds2TZPnkDSwENBK6LrO2SIzB2EVEvSU+Ou/9E3Y3Tdu1QZI5FXkdI2SwlpYA2XSnm0zQZQaYIP4bOBzRDOmRUsXQZuGudEc3Jl0hta0gXIpeIyE3myV4pHpYJZYWgmdNPPQzEk6jK7aqKopDqrKTKHtwmwmbdfIlqBVYmMdaIFu87HPHR2l4b2//v4/9h3f+I6f/BfPPnPp9W+5+94XqDSqMf7ov/jVv/AD/+bxxy9807d/8aWXvrRZ9dft7p/YvTttzA739yEzbUAUFCbCRCH77iZmrnmpbvVeTsgSTNUgUKIEJBSlmaY2GZX4vdwoTdd41MRdRLRmYY+m9oR3+Q3XGZ0ws1NRyVFlWKao4n3Nqr/lHaq6HvqNpnZDB2Jb90iVr3Iuqq3J5szW3QFT/znl4Fg/jv08J7FY5YWZA9TRONMAMuJejuw686mTLGHUS4rJcSzCal7mSVqkrE+FmtusN9TBmlmylEuqsh2vWJOIWs9Mp3QCvJWmd1ubkBJFdkwKosxzjUbHxhq1TGaSawzxZjev11cynlKSmVlhMZ7DZCS5QXTdDpNjSr2BEQFO5knLXuBB8AJwrxgqrkkmLtHS8XYph3mJJkjWhdTYLBd1mFkOt2dwjmTamTELijBg1VojtfbyCZY0BSppt2zeyccMZJxL9spmcAzrjEAGwIvhCsHlqkCfNYfF9sGZihuIGZ1yXAzn12QwqCD7E1JpweR7Pa9WrlYyKr6Ausfg+WS5pQqi5Y4TZB6gXMuF84z5pClvBndiV5iAHNxlK5m+qoaxYQEMAi9eMogDIY+qwIhMTlQQEr0o3gqQqREzRSyJGhl85ZOlVTsPb7796X/9xBzzNnaUrm00mwO6Zks30qYJr55+z7t2dv/xH/ya36+kne6DT1JiEogdrSKHMGfhNmk0W61WIsKMlAYyYYiqMrUEMdakEAlGFBWqSiHnZ7CwWe6i0NSgC8EIQVqzxMW15WwiamRxZ0gGHmAWVZMQLHl/G9ffGQChSakKXScedTuI1BoWZQVRCMGUZm0bY1qlQUQgZCkltSaZhBPXD/e/6MUPveTO9x30qx6LAEQ+gjIwBzMhmGMYcmKvaUjgIBrOGs9s2OrjFWpOISnlgBmZKCxCE7iHJUsNWMG70Ge1P8Pzk8qEpjXtSBpaHpENlENjQ4qJmhB1AFoJgtBwmHETVnq1jdbzRnN0XbvNj336k1vtyUc/87nv+ev/5LMf+ugf/LZv+crb33Lpv9//2Xd+4Gd+5j3v/dXPvf37v/S/+aKdd/z8e+6/+0vu/Ox7fuNT5x/RO+7s+mcPeoTFRjqxxJIppxaNfImp8IFp7T5GFkkEzeXXlLMaGUBuIFEiU1YCCsjoPYU75/oIche1rQdoPH1PNfflLdnIxw1NMzOuctQdJ7meMmlyPMOcI5F72iUjKJSMmMTU9XxWEJs5nJV5k+CCFTN91pR1Kgwlt8BZpZmRBO+85J19VHMvoGRmXphDREktqXn9sf+vJFfD/X7Z4iVX3JVDr2pqRMJsUbOQcFt+IDVjmMCUKYGhakpgachWDAEkkRIHkqDDICYKMkI0DSAQwdskEdWHuxZYUEdKeoo4i4WwiCI5Kn++HiVK4AsKVSNH5cxQSZSZLwqXNgNICFHcKJIEBjFYErnnPKNiKQEMQ24xzFwKgUtRUlYR2MUG5X4BSM4NmcU7+LoXlTR7TZWSSxsz992ph4ahY9IcZ8DKNfk7Vae4Av0LpMYGsl6yHlZxIpAC5FSPKsmJpFQJ16fd1MHCgBJJwSBhIE0RRLIqM5bSJ5QS70pY+SkEUO7CXdxGgqJYVUZwTAVjDgXoRhyAK1V2UMCwDCCwr4CqAZa7xKN4p0AJfqYUJebYNDJci5c90pjsbePG8Cdo5ktFsyvTSIUZibOYMf+5fEhAVZWykCi4WlaqHitwcOVfzuCsRApS3jYYK41Jawqx5Zxt/7kRYTnE+2+ZPfjUxUf1vu2EPeopNAz0W2Ce73/mcv+hf/iND9+2fXpniLBuZ26aknsJSYiqM44om5ueGZgMDJNJtjPlHagiJEIxJgqNlFJg10WJiHjKmlFt4gwd45gnleCmFW7l9TJVx6G6XtwboaopqQQhIisJnP5VslyYqWwNOIJUrWFBg4bCLlZ0PZ689+TbX/6KH3/soxuzbnF4BdSCSg/z3P+NmDkZAy1IEkykk3Yb4ZQOi2QXvIDDqQZIBDEaIIzUu7cCysCAdIDhiK0PNLNuZk0g1sSJh5xkDjXEhKQaEzODhbhZ0TVwoCaiXw1brS6WOxvnLx187o9/9zd8wTf9jW7v5I/8/Z9++sr1Tz72udNnL3/Xt3/pw6949A2v3njfhx5rcPjsmfPp5W/49Cee3CUQ2yz1erDA6dYznZIrqVQiBcU7WFfWJq6m2s6vysQJ5VPhEmP9a2XNgFQZ7MLRN4euizqnBy39pCfbZ7ws31lzerz7pWrglpkJxa9LBDAj5b1tBozC1X8wihI438gSD5Oj0t6UAqfb37EuC+zpuOUZiMgN3uEGq6sdVbMxsymq15jEMzrMfPBgKpo2SuG1Kw0EFNx11UhmwtIE1Wg6+A85BAyqYGIpdc2uARz3TuVhM6s3OFz3wCdCBkGZ8MZjs5Q5J+l6HlmVL9ME77Ka4x1wY8cqAGSow7Pi4Z9cg0yYeXQAaJoLlgfgW5hCkoI1fwyZi0iQm9/kX00zAct4XF6EyWvUueBibiEb796uyNVy5imtT8xEqp2txmdP3w9Alt4MYJTlNprdACqax9raFMMZyLsFo8CqdURlSTLOS5ElKPI8kzhctiF3kiKYKYzdECxg6FYw8MDi2yKtLyez6PouQl5jzguF7FPNgyueE8r7p/CF3DYxcyArJOUBaodNzfNZp6jAxlKxAoEMllZuU6ZOvUcu0VQZZzHzfodUFJn8hZsLufY830RBwsyR0iYfvOl2fvKJi7x517BctTvdoHEjcrTrlz/wc3d2H3/4NV/S0DbzfqsJ3KoqmXHwPKZEpEyOBwlPOfS6DGJmDi6VAe/gS0bJGePIPUlBJCIgGjSJYeStToHMzGwlUy6npJFPkFoGzKtxliIS3F89yXYhIhE2B8ov9w+loZeRqYEMgcuaEzXghAU12jXDlcvXvuTVr/71Jz/34cODgG4AERpicWbufclzdzwyIJkdJj4I3SlrNjQ0WK2AHjZ4CbpZMlZQS1gSMWiZoQl1iXTZlidsdRLNtsxaNC06Ju70aEE4CJZiSogDYo+mJWql6WxubWJbCa+2iK5uxC0N25+5tveVX/33bLZtdq/ZtdvPnLq0u/vjP/znH3/0d2+9U972hq9e8dXfft+nf/9Xvv4v/8gvPjW8/P2z+UBI/fKcptlBopMkBCLu09B6w6z1JM26K23UdMepHmUPMvpGqXEQR2/K4gSF+2aCzfzRMroqCYV6q0ozBHI1movZcAz5AOtZJnnPZnQ8JxatKrIRKxmrBynMWxQGEAxaOzEkA8g0JWmYaeL0rUxyNIDqB1Jj9vZ4BgMxC8gzN4pnS0VdfSsmQGaMCiMt8JP1nuqbi6RmqRncPEe55/oaUd0truKGpJFEVJg8FYsG4kCSMDCREFJuimqkpA5OSTJxGpftrMwCc59BlWQkeWKOYXO64pHl+YiJ5sa0ZBhdIjb3HxkyesREySv3caxQyzKG8gLe4Lovr+7mVU7yhJOMe6HUManyvclyRYmV27rmNtXG4O6NciddR0GyKU0AgZlVoUXyFxLhNbBicuv6JvuqRqNLETtMfBflu01cLmPBJbLWUFzA7MQ+DrKoikzsURCHhEMRC+Oj3SWwPpvjCSKqtbBFXOU6gbFGVgDHdi3G9+TVjAVAsS8nk0vEmBQ+WZ3liaAmTEuf2e9uxffh3iOHMp7OTH7/ipAHgB3qdg0f29UqA2oJ8bFdDWQplEk8YUqCpVI/P2RMQCvXT+/GTIQ+LeS+W/qHD/c+vNwPijDE1KnZfPHZT9pT/+KNr7mzm23HxdHWJlyJzj+3Im3ZscK52qxmKQTJn8n7k1JC8hdTGJLmMJhvDuayRTUaGsm/dc29rGyZ8AnwtR/VSgZMNWnxksG5cCp90EoxCMFRfBRm4v0b1MBCpoC5RYlifjNvzQ26vdjbxbnbTn/VSz71oQ9fhWwjzR0ow52hgBiQDCCGb+2ULJqmxri1IGQnbVgiHcESaIA7XdmR/yNYCY5p2ttwxWg7HZ3nbmVQnnUSWjNl3rVlz70hLTQmGvokC24CS4PQ9HHzi5v9zp74D9fu+/o7Prl97dLf7196iDt0T7vFweYOf9Mffutzf/8n3/fxR2b9/AO/9WGdn7tjc+Or3/7yn/zX713JbT/53g8+196N7SdbCbK/H/aUjINRImJllgr3NFq9+XB85ErhrkETOWVTdW0ZW+UzDp83eo+yZwigyhzzfwtLHEWv19IgMyKtCv2UHmjikiqb1Pms88PsqEQxQdSNRlZLgImZmmPKQjxuafC2DQ6Lp6pGAetH3YOU8RCrJmEOu0pEZDoOjI2t8HvLd3DduqTm5smkUstUPXn+Qh4/rSyB3OvABId09kf6TMLzb4UoMXMkAosH6pgEFL35LkjMYXPVEsCWlVVNJAHwiFiNXptl2ZudAuwmbWZdlkOkbpM40aD818otsr/BXXildocmvWTcaNFijUwpsErlm7BHuAuzNrjiNQLJ7YSrVB/5JKF4G9ZpyRdxGnevGfK48ciqHglyODrn2TKHGpGe8mJPXLQyURhHhfFV2SWEoxwEkmBERgLOUAbIafZjbN+YmaXiHGWGz2JwIycwt0BNUwpeHuqleODj6TSZh/I4gFrYUMdMRARhCg7IUNINQu3vWz4QUU5i83CCXxyoCdTkDufIPYan9Y7jU7xHsnf8laAsWvGqpCSYlKL4abNhkORmqJPUax+bFuMalViMYeMPpzUVNkKYZdyWvJeJJ6X0Y9YDERk7mEfGknc/kJmxBeON1C5ed6+2w3VQbMEJ6TBd3/vd99waLjx01wO2XBIvbRGOYh9jrCp/bjFkmStNM1YcGCtfIExEKaU+RjNjxqhTI7fcUMe6l9w5uOyi3D4klps7yseocUOqMKBJdB/Z3pXSh5ik9PPIa92wo3CISKmagYg0fhIkgRoJQSjJKqQBNLRte2Xv6ltffPfp2VaihrkFBTOBWyTcEs2AGdOMIMBAOOK0oDQQJ5kRNVsIc/DMOIBn4BY8g3RAR9yAWrNW4e2BDyleSUcXh6M9XUVCCBuz9sSGnNih7VM0m6NpAaTY27DSYakaIcDGGUnph+//xFuOfvPKQfr9m1decPjk2XbguLdxS3Px6Wvv+Mlf/bK3v/ynfuyXnvf8229/6V23bNj3/uDf+4v/+P1/77ntex5511955ie+iZ+ko+35qbP7B9eO9hXNXAFTasO8oi1POU6l4col6jVmNu6g3/uov5pKdEyY7BoKvpnZWOKff1syuaYZsImg6/Adxa7KD1Lzzo+kZorc4Q1egoxJDvAEAqrcn0dlvc5DtaQnH8xGsHesy4Yb/1kTh4vWP35VJ7w4k1GVFc07vLShLcXDU5QJ5lz6lUdf+H/JVwziQBzIieeWI21juWjdd9PFzTs9jfs9WbLaqmlyVK+JZ5z6a+eaJsDTQMZGMuZSfTKlNAH7m3SDzsO4mfQ1ghqNqccTsOTptOdH1JKWAlmh/g8Szwenkvtba4ioglOh+mgnM4M8VyFnKQhzia0aoaYLcDUhSk4ESTiGhIXiEkbx+7mZkhW22psvo+3X9ycrxp+N1EUoMJs5jYuIOENbF7JTfwG/Ua2sz/wdmTLrVFYWnIu3ydYJlwHwSHuTSc8LU0xqW3NecXkKsiZe/miy7afHlPWgOn6nuSOo4oGoqFEFhMS/KvgQWQOyNYu23KisdnYwK0/8KnUsWf2tNRVUrjcnd9jINbM3bw7ql9Cdzf6eWX9hEdW2OAntXe+f+7UX3HH6xM6OKtCmPoF706BTOedT5v+sMWAiUo0AKJAma5oGTEicUiIz5sYjvSklr8oKIYNButqsqlE18Mh8yWHHDTZx+xgTl8rJkWWX6ImjYwJwQeuuPB8b5fBY9mNNfy4ilEw1QpmFRKjluRFZxDDr0+Hyzrse+H2veeVP/Oa7OOxoEjWv6xXjhtDAYKkBjkBHZmZpgX7BzSZDIidwDwoGABEUYAkmCDBlRAMlYDBt2BR2YMNTtthKh6fbrQ3pJGwIN1vatcAlNtjykFVdCTIkkabr0i8+eeLnd175E6/7zX/9oc+cu9v+9PbiEbr8E/0DuwcEzD/w0Y//0T/yth/6oXOf+txz/+Af/vrWid/91PbDTy/12r/868/Hx77qS1784v7az318cWTh1JmdVWoFxoxo3BCiZ/kRnICw5u1f2wqT8+tMs/p81nJNuOaXeJhl4qcav6q0OnX6OXcm0PSaSpCuj1ZFloi0OEKMPXpECkXuiUTe1oxL+qKRp0PBzfYIa4Bo2ljNQjrOeaf/RDHdptNCx9irmhVPWK37GDd+ybE8flslLa+cdwtGHjDex3+CajOX4KMxExlzCCH2QWmwYlEY9+Umyq77EgmZY6/7dFGO2hoRUTJ30ieBm8+WPUlT9gIApGM0d+q0zcKshpYpebsthx0S722co6SwSUxhGlywXI4Fy+DbNuXn0wmsD51KAVsnHg+3E1HlDJnISl/2Eupagyg5dmc/H1ySTGQDUHgTbIyYWHEgMR+TQwJaowkbFU82s9wthGjK03MmFBUMsJx1HMyNNCYQeX8rH8T6y9e04fWNBwPJMRyrcXtPcKqLlBznxWVpJeTpfzEJHxuNLY8witDiNrE8dVO5WGejzj6c2kuTDuAGvnDDyfHnBrjrOI91nPbpuq49a5Lx4Z7hEp8Y20NQcZ7AEzBRXEFrUaVElDQ1QfT2+dKuzg9We1vN2cNnD5A+8eBt51peDIO0JLZhQedKq+kMuz5M5aaFGXkSfVLN7XgLZhsnM/EcUcAsJS3+GC5347E2nmidrHM2I5HnlQEer6taUalpKWp+zqpgIkpQJpJAcdAy4xnz1Myb6ylg4ka1kmdfM6jhPradKDaEMcwv7y6+8S1v+7e/8e7BbQ5qQAEcQI1xSwgWjmAdTIAEG1RXNkTjhrx1tHt9IFCPMyogBDYRpAG0ADZgg9qShktYbOne1tAx8elmYzPM5l3bJZhR6JOm1cIGTatemKQVSd0XP3DwW48evuzM6uufd/3CAV66c/G+/umHdi7+8N7LH7399D9/xzMXVz+qQ3zfe69vv+zNp+49/8xv/MrlX/hbX3P68Ktf+nw9Gh44+dxXnj7z1NOXX3zfPZF+Z4jacCIKOgwWzJTh4f0JN6gkMCXLmxItAA9+la9qLshU0OZE5ekWGzF8JgE5hXsQx0evbavsZs5eWGe30+2jsCwVuIC45rSFnMFkRsKB1BISgRSUcl50CsWJUm+oySiHtJAZ9mRqJtNyXJpiFJaj6UzFU1/lxNjLjcr5cjdmju6xLq1Zcvc0y7KkZk5gTR0RKq0JVdgSWwZjFigRCRDdA51ypooPApN2DN5zHRU65NirWXm7dVLxsP5otk1G5cw3s3UP2OMm7BMA2KbxQD+VE1zyQG+Y//+Tx0Q2jy/lSgFbXl0zo+IROXZzopw0ByA4y5tCqxARiI8nMTJhqppN75U/lSqCYppmPslTGb5+Jv/c66sEZgwxSTmFddQjlIgUubAOo3Ubak2YZX/L1P1CNCGKfMZAPG7dqVzMWU7ZDM8kTGWZ3FB0KoOVzWqjcg3A9YaceozRYq4a3Ch9bbQu9QbWYCU2aZO6heIeoLxVilpMRfMqGvEYUSvKTR4De1oXaL1Td2WCXs7kOkzRtCh7tJg5pkOyjaBB0rBzEvoodHvJlPYvf3KG3bNnXtyvKIklzGf9MjZLRpvdR2UhMhwSE0tNyyIiUVWzvm1nAGKMlP3A2Y8TU89EbQ335jkhIgoiMca83ExElEwbyk5z5LbqljlVoagxOE3kT2yaxsx0iGbWNA2gKaWi3ORqYxGJmgjExKogohDEQJoiiEBJlJQ2Q2O06nfm3VP7Tz3vztvf/MqX/cdHLgNELMSdiRjY7WDQacImm6geGSmk8VTx4AhdjvqRPE6cyKMJpKAACUCEJjWCHkIXKhdwNF9d78Az43loQTPeas72JLTsl6tBk1FMFhMbViSvihd/4M3vefris/3uiQ3qQ1o1hLe2z9x6An929cInZ6/8uX93/ewrHrj/a99y5dlPPvJ3/2J/+cOv2cBfvP+OjTs2lruH4Yx94T165bmr2w/dnQYNLAFmZmIUCz3zWHx4XAe1GxjfMRlclaobrufC70arlbxR7BpnKIvLRKqc64OsXjN9EEohLAA1qCrLaL2Zp2cqWBixCHWz2uLYI6CmXlJWcn8MZrnb2/SJJfY5Tst01xfGNRZz1sOdbZpTivLdDZM8H+cMagYjeFv3NAoYR6H1Wpx1+e75mfVE4avZt2eEZM7WhDkk7t3v6rJZMXh3Q3M4D4wx6QS1lAfGZDnZJdsqZYkJOZ5r2RqoKplzN83gOYWfF19ptnWIPGnH1vlnUUFoPFlN7eJGPaby1eW+kTYmy3P8K+aiEfrJnGLCpYwir2Otgrnx8PMF3b6wcRR7VLOWWWShp4Aa3SCFx8xnv1KE4K3RDSQBLu0tlYA7l4cH93ATxAycsglC2vh9Nc9knnDNDeoz+83qm02iR5OBEbGX0wmYAM0lK8aAaSSIli5UwQMbSclqZWGeZaIsXSs7qJVtIDBPauSryWyWs3gxzbBAsswIPFvQuzfXVB9MtJ+6bJoST6gKgJEpO70CUhXDym+yH4ZFcra9VyISiDkhbxMlQFhVfVlAHl4varmZGBnnEFq27ZkiGdH20A3WJ2i8bYtuj4eXjk61W0fx+oWd0M26tIz73ewUVotI3IeuUQOidzEgGnP6kiUCJVXhYGaO3iwiZinGkiTFzEYxOog5S9MokRBMTVgsmTFSSgwSEUuJkW0mUiRmLhueixRXjQDHQZuGAdY+MocqKjIlhJBVH6jX+9ZdFEJQ1eDGS4IQiEy8YpqCwjQSN22K+02QBOljf2rjxFE//IE3vvadj/xv1LzRNJI0RjNnb4oTEDOyxCCcIMyMGoA5rYwbUAMSWCIeLCXCkHOOaMPIkHooWQhiBxYbJUK8goMWtjlgU5tAG9R2p3UjwrbZekHUa0eNEajXbrU1579++TWX37Pxx2//7ZPzpzZjv2ShGA4lPjh77J9x+ivXh/d+ydfMVp/60I/8zcX1j0HwZR1+8lUvm5/aomtoNtIwJ+jB/ueewObzduy6pGbZ8TxSP+t5FSrCUVGwfP4VlNPKaxah03ZCLuB28vPAqjHgHaOR8yrckkggBkpfinHPTBmotyJXGBmUoCnW0prjfJYEpMkK/DvnuxbZ42gOGfZJXe1iz4QnJIBJkiYFYGJqoAQiDyerkVs2U6vOIJoNJItGDmyuiGSN1ADkGoNmyhHcwqJLtq4D76iDYLhviYUpJRA0Jc82dBBcggWvXFawAkysZGqWDArOnlkh52+QwEbJEmCkJoREBSParWKmfAsjACmZECwlEAzRgbKdwZkZqSppEiZmwMSz2Ewh7PNLzB4RTNmOSTVYwJJ7gedugzk5DkQkUDNGipFhYZblhZoFIQnErDkvXfMM5GQ+mKcMwtQUhEnDqDXtcCrRKljYKGfMLCffU87jI2hGKLAEV1lyBYU78G7U/Jw+QbXPVB7gmkVPJFRgLrITBseVhanohTv3cgtGqtytvJKrDKMDKn+ueoYrP7mt0GS4nJNi6mtU/RSTOqj633yBMFnpslDt1FqmRahGkpfzHtNx6rDrZ08fl/WTdRLGmZ1YuihvLtVXPJXxVKoybnAuJFMPUI1i0m+mNs0yrbRClC1jP1/TGHI53A0OkBvVvVGFVEVFhNFS6EYk4SjGIISDxCe3Dl/3oP77z3CSU8AqGpLMlVNaLRfoFLIJDKpE0yo6NsqLlVKCESRN07/HeStjS2ZcShHMLHnvVcBTpmrbBiF3olV6gMt1JqJkSQdSJWISCpRTsVx79Q8irKoxRhQgjjwMHsF3puubJ0Yz1AwTgbhr0EdtJFjShoVbtlU6Olq87MUvefEdZz/2zIpmZ6FGFEwGwhaBDQJTAhMakJhvVE8vZHbTnSyguExgXpel1HSmQFJNEaxIkTQCB1g9ZYfBrtPQRERtt8613WZ7vl0gHsVIq5iiLo96mzVxa/XksPOeo3MP8dV7mqHvFzEsYwLj9HZ34UfuXPzW+z61tf9xZfrg6RMPNie/8XmzjdMnFnTwZHvu8JMX7z7VzJ9799NPveraik5KGph4ubFACjzEds7Dqq7jGt8pUd5j9odAiItZBBPkvCdLJW3aeYN5uAuJUm1YOb1PQfoFMBYFkxmXdFxnILXaDVMXok3PeGbsuOJ+FRxno3ity1dWwlI54m0g1ZRxsoinmbJmpqzmMMo8sqwyUTexk27icpwcRNUPPbKstTkn8u1PQtCkMICmyYkwq33TMV2y0ofYcw6j5KbsRETCpgwVhznQpJ5krYjkeT2FgYcCHJ2zuNUtuDyBruWUtyxm7jSykLS0lYNX/wA1JR3mVTG+681MFXlTp9wfHB5iE6D6CzLz8fcKVGsxRmZePxyTccemHYVuyLJ4QmXFqmuxZ7Njy5gfV+YzlPA0piRgxVVCxBmGpcbVeZoBgbEKqqwRamKcMyyH2oAX7cgoqnMZggfqRk9IzrcqIXTXzwzruiRl6Q4Ux0KW5SXxiygRYEZaPcNjj0NUv4EZmFRt0kDQzxfPc1HAKzi2TXFZJ8KMKoxwTZUsRUqwkbaOaVtWf17etRAoVGh8iJUUtXHDlaf77LivoIRCKzOikrcPW2OIjtSjVNLi2BMlciqWEazonUZQMgLFxDPuNNgwbMXl9S966Yn3febp/aN7SEKyfqU8E0qxb2azPiEcHKDriEjIq2580dkMUXP+XDlzPFg45SBTnsJeg+RZKaae7o/iKnePH9WqdI9XwJiDt1IgYxfb8Jqikiuh5SiSQc3qGDyxk0btpIxWNaoycVCYp/Q3LAk05MJQaxtZLFZd23zL2970gz/2eGq3dOjbZrPnqNYhDoTGWRwy1nPWb6MlyWwOpjABVEAKC0jJyDt2UiGBIGkXElX3bbUkKGymFKDbaA7QdNiY86nTsj+ka9dTPKD+KESxsNVuX3/LTnzA+gt7Bx2HiNDyqlE7MOsW6atOPKu33zWfn/qGcIQlLbfSMq2aZotvf2H6+u9Jr7nvjvd+62uuPH5998rtW/L48mjVURNaie0iXmfMUVj5VBMti8o0Jq+6LHRMN7+mbPQqEWmy8dU8DJUh4XwHVQfjDTrxyChdrBJAa5AIhFJZNN1qx7SuyluFoZYsQ8qaYx4RzH1nZgqCWSIjRWIQaXQUinIUYOQbfJ40eeFSB3WM6U8PKvJnuk3GScoJEPB0pwQkJHXsgDXMx/F6FNeimQkolnv6hqp+jMwkSbJIZVLz6HiWKChqtAuOcUcrISmxAEYO5ai5Q1kZv07cvXkJVHWSgpRBs+BYQmNrcKn60E3erVay5FQpzaEG8/rVCXwYUbRSMAxkiihcdE2n+T/6JxFxhkT0hUrAmn3lSpsVvNsw/eV69mi9OyuyNUBE05/4SLMYGLMW1/A0UYhpGtSp20MzGNOkUAFUaaK6741o2gSj3hO8pmVXrWqyoVwHzDrBsSL8MrD83zUZPN2nXgzmYqyUHB5rTVHUmCKwqcapjMt4qpJRnjix3TOnKk/nuhich5ClJCo6BFByTcu8EbFSPuNlV2bmUB7jg4pqVTSKdcWrSF+/i9KYniayqalfWprBBm2Z0te+8sS/+vTjbXcqmR0eHs5kIwT0i71mtpMCKEZmdl4pZWeqalLzvA5MHAZTT0nREAmu+lW4PiZGYXxqUsq4FRAwkIhIRNxTqKqWkhBLCEQ0tXuYufa6NtMUIzOHEEqDM693KvUB4HbwAAAciUlEQVQP64qwi3hmBoIZEZM5kpKhCWxqLcmQNCkako2N2e7Va298yUvPtE9cAcduNiRG3ID01MwQ3eInIlEHry0GovMJA4EDQVDqxQ0D3HEIhgRCY5ilAOAQtoQubHUhWocQjQnzIyGSsNOd3JEke2mwq4cScXR12D6b/nec/eizX/EqvO5N6ddeufzYwq6SzhuLm5vY3TzsNKTlYhPLo2gbp26Rjd4oDYdP3Hu17e/5Qz/+Mz/9Zfe0i/1PXbp8ZX5uhw5iO5uFVVKEreZkn/pCZnW3eREa121FRC5GbdJAXqu3hqiSHxd8gXKnhImWOXXa6rqGXpds0OxouXFBpytbN0hmAmNA0nyPZEkz6u75J9HMW0y4w7OwhYJcuZ5qqzcw2NpHcO3k1ELwD0xYZ/T5SnfymVlF5jLWkk45zoyBmJHRX7J4xoQPuzZc09wo15oUvZ5z+zhmniZ2F4bGZkkZXMyMfDAr4OnOpMbmicrmQE5GOZz+n1sLHefPFRMeF4DH6Gf5IbnHXiMoKAuKTMrT6xKDmQ2mUNMqiVyE2c1meLoKa2dodLmYc4EbfmK1bmq6vGUpnfuF4wKsusWnaHCjG3O9sGRCtc74UIi/klRRyHwCxj2Q5wuuVfkOBBGlpHkfrhmdkLWgT92xa+7B+q1LjmoNu8zBTXSkqndlnJaJKVrewopFWGJRfnKi2pa7+pmkOfqS75snfSp6bzqB9Z8F0jL7Bqxck8oWWZfi+VcCSmXXmSegAGrm3m8fdlG9AUAdfvb4GJSEsTbJTpiasPAmKWbXuDt5bV8fvKt7O3Z/+qNx17afvHTx7lsf1MNBhOPySOfckVuVub6WVZNLDuLqbUYpB5wC4vg/wWDLnvCoym61e4KVEAnpUCxTcjeHl5IzkQk1KQ3+Ch4qVoUw3DnEzKYDAGZOKVZSpHFdHKTF7y9lfrRsdqoaAzEH9e7jFlNiCYFYMTSQVUpN08TU33rm5Btfcf4d70t86zkb+hmawVJKKwCKwKjItAALXLvNyiWPrNlITE2CaVKNcF+0dBZ75BYGQiqsMa4+h724SpLE5nGDpOlObbRnd4bVubRa2f4SaegPYhPs02385PLsk/QS4OCV4EEOr+puS9s7K+kldXvUErbPnhpweHQ1/bPfvfDOq5fefnrvlk999+kX3d/Q8t/84jve8u3f8Yb7H/jopz9sd4ZFjMFOLPv9iWevLGjhVWtsaCpdqtboJK0GQEudQ92Vx7hHvmHV2IRNtbaJRWEI0yyYG20XmzhgzEzNpKiGXNTxBHMXhPvZvPCHM3ZPdqxm7Fk1M6oGiCnppJjKq4d5qtoTHZ+Uoqmg5Hn68DywfYxv3MhGzMyyWDMlgrGRkUnpDAFTVlprvgKu0GNAUWRJmMHqVmduecvGbESBODETs7qM8I2TGdcYYDAz1QRYEhIv2OL1ALyOvdrWj/WXKqLHY/DlvBpRcjZSjDQtQFAoxnde02KqVStoKjWwxv1u4oe7kXhs3VXOOQCRv/LmBGQ27dT0ez0OQJggXmXVIqsVdYHWgq83zFbJCObJxsgfvFJqVFrgoFPIpupYR7v234KYQcWbnZ/K7BafR4OA3IqujqRen3Ui9cYNoAJOlanZ1iKuvgePvdR0fnMb2mPvQCPmxvQGWXP0QG9VYt10u0lhxtrI/UUdHrNoDb7xcvwpz/ZU7apBIELKgEAGZO+TgSwD5kxc12WoyWJ+QQKhQiGwQ09zXiMuMXmLlhriGbdL20oxhTC7vNh/0/1bl15x5uc+c/6Djz3xuhffo4OSdCyJlRJSlR9EMSVKZsxBQq679dRiz1DwHoXHdKmptzCZSek44nPmeW3iVJFnxlL0sn1VRSMCtTREb/kBM1XNoNNEEoiEPfhRJ5/cNoCpRkdi8ahz9koz4AHskvHoKO1CklzQaGQJgUURWw5QtF3o09FXvPX+d773Qgw7y3SV7ICHJrWRejMkQ0NgsJAROLB0boJbbV5VV8aFLtSD30REmkCD8GZKm7Ce076ly8B1xCM+XMbLs2SbCd2KZevMmZO33sZxuPbks9AhIDZDq401wPtWL/6gnH547wN/RN71YLCmvyLUzrp47sTt2Ajv+vSF/+Wpi49p8zEKf/uBB/7rFz+wWlz5mf/ws9+98aoLb/9LH/zb/+71L3rB+VvTU0vMlA9of5s5ZrfuCLnHXtu2vsnGKEn5J7L7rshFm3CS0UWUg0110xUFDo7WfuMx0Ttvrvses0mrYLMsz8yFrhYbjgwGNotaMnsJTBadSyZYNGUjeJbdZEiez4Nqsq5xpPKyBdbqRi5RZfBU9LrABZD17yy+VMcbTiFK8htZboDmni6eTkpF52BmNUcvydK3gGKy/xG8DCnvDA8FM5GqlvRkVtXEWuELNEfLLFhu7+1FStmaKvM0XSmqnJdHT8gkimHRlDMetZmZTmpurK5mIZW8rDTOAzJ9JtwMswwA8ZhjP532m6kO2XwiIi3ZOkWYrkuciU80HPv95F9Zd0vuDKu25fpPRv2xGAgo5QK1zv3G+xcfixcK09TfQhMHNorlCmBIyT36KJmKjkCow5i4nz3vloWHWT4Dy4YjZYIklJhCHs0N3mmdjLPGs1GNwqk6TyPuJgALJV1+Ek9yAwpePzoqtjadP7jvvcTB0gTqKs/eRCOezGe1vydS1t15OUUh64ZUqQFjL8/6+FRkcHYN+U04py0S0NG8jyvSFfFmiAPaVWy71V7/5tee++X/cPap3Uff/+jl199/79HioJEOfVJRyXpEA6BI2KwV6AQun7LrOPuiqzZmZkqGSTItgKgO32hSdyllDJnSmgYx5hzvTOVqQkKWYBAQaa6sUk3V3Hc1iQhERayWchQriArHVB+AFClD2BioaWJSBbWBEAMkUNSkWCxXL7z73PNue/RD169iwxIQTTGQkRHEzBteiTKYQi7KIJKxh0fOPzAwLJG39TMyIrIkIVmKSOComjpbETAPWOnqEHufHkAksBZ9t7mxPT91x63LONgzlzRxbyHydop9p3v9bPYbi3ufjifevP+R+7CyW27ldLTzud/51GX8ZOovIbTSbKSj24fV9ta13/7tT//Ey7//m//WH/6uh0/9pR/9tb/2ff/gD/+x1z9lXVI72Q4HiiYX0oxow5MmJRjP5NSQHJQtkozMy2nN++H4pmZAS5A4McLE+cSZZslI1/wo/l9v81LZ5ZoFNt1Z5Zh4QSao/cVAr1qR2wTFFM62nGKERvTwnsGzyqa79T93ZC7g44fU5no3jvM/cwdUn3OpvFUlNeOCYWAZwyu/BW6YHCWHuMprNLUyy6xTtuYL/lSeefY5zMZG5tKqiZigDkJJJW/K87GUjKs15XtKE9deZ1P7ao1zTsKJxpbRAspbELlxXRUrMyvAkZlJqo5v7ZpidZ1PiaRqb8cE8I1rOv0wuYP/al3t80n2M2ajND12d392qoGZcvLmRMzeU6TWDBQ3GmCl2VF5hHMWF5Ml5OP3AADESZmmTJ5bALnzfWLh19OKw+Kug8GISTUrxTlZ3GpcFhgt4TLOScLidLptMq3j5iz1T1S6FY3s3vNs/bNlF1nKCgnVuah2vFJumqljJRibmQP+OsiDCwadas3jqPJDj0W4c4ISRGVtWTUHkbNlNVLlqBwVjUDN2zjmKpG0lHYWdaC014V2pT2M9nV25rx+wStf/Mvv/cCvfOjJB289eXoWjnoTsaRDLNRiFkzd5FXnTXCDMeXALXM3DdM6/nN5C3LLNcE8qZRLl3VzTPwCIk4AGZOwaWT2rsYUQnCQ50lJUhbPMcaKQGk6TixXBFYPFRfwAgEpZ58iuQsnqSF6xbOphtBE05SolXDY98TcNe3hoZ49feoNb9h85N9fA5+IccNkgTQHL7wNXMkU8XrI3EfPx5C8z7kqU1BhqDt4xJOJHORsaIWta4x06AZpWXuOV9Nqj9KF4ajTw4Dr/dKWp+32k2dOn7orXITa5WvBYtfrUiQ21uxpmt/52CE91rwGw8H26v7Nu/sLn/xNEyExUY4W+obvuPP8z/ynj/zzt/z997zp6/7yibA8Gv7MH3/rn3nv+z70GDZv377aP6Ur4XZD01CxXMwTrEZttmxG5H2KiS3rnIIMUhBQ8oZybZDg0MujtYOR+J1sb9BN1ywV/zAFIfi+u38O/wWPtz/wS/8lH/f//cNN4eb/9PVOBun/4Kr/fz+mBkaWFEQEYWOqf0qaKHtus+VhGk0TbNAhFu8lComTQYi9/PQY2O8U8cttICo+JaNxE0bVqKpr5ykZFAQT74Sp6s0syXI4MBecOfBvJJv2lnfFLTEGaLIRHbvI/9qYxYCMcqSOZWOWJiqhl/RM1WqftbqxQ+1ZXXY7w6viUzJNlvEtQGZkrjwaZyBT18wSkTKDqsPAo7dgI4fi0exJBhUO4jdRycllfqtUpjGaQpiCJNbaElvVVE2BSJZYR1TuLGThL84JZshpkzmOTlE1gmxYIRkorExhTVAGr3av77/tK16/oXdcX+799Ps/2W2casn6uEqWogbE1A+HPSIPxkA0pCFqTEQUh+QrzSQxRlAqVQQWY4wx1iTn7HTNJpH3oDCFagkKjuVDbICGEAIJQUQaj2gQVxSOCKgXqDGYDIEywJavNhMRCVsYhhInNm2appFWo9HAgYLDB0NThjoya1m4aQ3kqB2w1HqBufY7rRyull/1khfN+z3hGZHHv5eiAAySlCkRGwvaQJutNJskXSKsKCVVgjTcBGawcZhJM6c2UNeFdqcNp1re7MK8aU9wuyOzu8P8LgtbvWzZ/KxFQoq2e7W7dm22v9q9cvX6/t58a2fn1jvlllu1lSjUCjBsrja2EmvXxKCKLV4urzZymzVnm6SSmmC98l4b2//utz/wP9311R9867f9yfufPTE0u8uV9vrWr3vDh67OHrjKHbZWXdvFFVuXKKY0BGuYLCCxN3Y0/7Pc3dkQTBqEoOBBJZooOOXmgL7jEmNgU1IyBO+MS82gWWKTwSypRjOnHKKSqSvFKcI8ujF8k071vM8fnz/+LzgmJjUAzkXW03wwotopaHTT5uO4Ja7qYjFOL8vniyS+YQgKrBV9+rOnyG3OavMjOeesH7O/zZH965uUow7AX2p68sbBZKPHk5yZsmeE4LJcUepQJ2a/izotEitOel/URxhl6P46reMYCKgpA5aFXRWGBlVLBr0xoGXFC50ltyoUGTF6bRJkmniSHYBlEqq5YOtHJYzqml6fcDdo1ubfHXJp1Z+9dfWVX/s2aPeZJ/f+9/e9p2lbtlniGfd7h9qrbNKQDtMBgBRzimxKSS1Nodu9J0N9tSnluNkasxbliY75W8Nxna/mV5fB5+K/Qg8OQF1zYjlltF0YkxLrZBLyPBiGYXB5jGM1f6MDv8YUvPOdCpEEakKQEIdl/4IX3P7yB2O6tgokpHMJbTIhMqbI1oshWNdiq6VNtK1JIAtNkgZtww1JgyAbmAVp0HRoW+kotCudL/oTiWbBuqBzSfPGNnZodp7a2xDOcTgDFdJhdXD14PJnh8tPL69cGFZXz+ycPHn6dLu9zbMWQZQUgm4+W7WnQLOQwrA8XAhtnnswklmQFRpOUAkf685831/5Uz/6ut0f/NIX33Eb/513PvPX/tPVL37onk+c5ic/tfGGj19smuV1ixF9o1tkrHSkDleR23JYyehI5bOiAISWiPcxqlsjftTAhGY0+Eq3flst/QCm9HBspQD84JNfdXxrff74/PFf5PizH39T/pRNQKP/+a9+PyaOTeIR6qEm7hcPu1skwcz+4j3/6f+qd/j88fnj88fnj/+fO37p0d/XhYY4BZYQQghBCLVJXNHRRxsmGxIWa1TItYyE3Eunqs5qZGbRGwkp+hQHSCRKxhESQYNZbymBekgiG0zdlRhBLE1R4XMJsmlEUjNLaTCNMcbYD+h7PVoMi4M49DYsdbWgfpliT8OA2FOKZBl0Uoi58dchIhLKrcYCsaPjVIPErQUqfgu3EERRFTKft9pKMh9MHBojUhYSThKUGg0BISTiRGwcTIIFNiBRcAjGnBs1iblmQ2nsGDg+YTRIAJmA11b759iVk5/k5FNgzCyrhkH57QhCYub5aNkkUsphr9GAyA9wfImiaf5/hBw/f3z++Pzx+eP/Podb50GotgUDiXcqs1LcTJNEk7VfFgGMLBgsx6syil91CBiQkS4wCrDsCTCQQVN1mBkHlsGzosxKdimIxGrvKcA/qKdieXoUCbigJxFgZMQB3ghHFQZ1R1TGLCI1wlrRUXVImClz8Lplr/nOCIBZBpVaf/1/t3c1MZZUVfg7596q6tdNT88/M8AggkxEJ/yIicZgSIi6MzHBjT87t7ojca1ujCtXxo0LVxojxhWGBUqCCUZQiWg0gASZgDDM0PR09+v3XtU9x8U599Z9r3tWLp1KL169en3r/p5zf873fUIUPDtCxqVhGA+KJVSAFJokqRoTpGnjCpGzfYttN2YkbdkgqVmYaHRzo2e1fFd5XsZT5ZB+VbUgwrEdLXDBE/RYXk/c/KoHt5MoCVjVNBdJMr35uNsGIo7B+U0J3/v35/6nznjzunndvG5e/zfX0698gRAAZg0kWa47n2yFGtNY9thFRMRx/OVQpvIcxQ0UQ40CcMouIeX47VqAV0AW2lLrHwOri2+7ypJVmZRGhXKTMBewB5PWpLMyBg+Xo7TlpeOYfHkLDrEb1aWzQquOZxClrsoBkz8dg59JqrM2Iy2DQ1v8TxUkENH6XSs1UNql/qY6BRORVBi7q7ZLOmZs6d/rb6KQAlokQfwXTEgGnKm0QewUzVFD9N3Ln19J9HDWiQjJY68yGLw0SBxPJasw95oU6cimWrnqXlh/Hk+v7ZvD/7iayNiidT4LtqEubH1ruB14uDLljZz8yAq13M+wdBp9BE6xnm1hjCi3FEpQmw8tB+EYVDWLAmmFBKjSGQPwSjpFiWzpqcJQBVb2EaUnqxUpIl2g2Xw4de7UM0//7Ve//AniWi97X3r4Y5+657adnfciRZa0fvxEw62QrE+OgYmZ23bNJHhtv6nrOspByE3TxBiZI2clImaOgZqmYWYS388JxA2HwGx0sZafNkSFBGI1qmeQDimIHc3mik0CktyqGihHHxgACVTOX0IIoh4R1nVNSkmZPC7OIhaVYAY08JA0EWXVLk1KAPdCe2m2r+nMLed+8fvfPfGjn7bdHYv5TNHDI+AsMPQYmnPcnpHmOKUeww7S+5BtVQXWSTc4bGiIGteI1yTNMVxD/y7pPvi4hjO0fjfWT4d2I3IICkoy7fe430/zuXJP/TXqd9GckM1zzdn71s6cPXb29vb41t7uzvQ/78x2d5uDYUgzTv2w/ZbonPYPmgsXTpy/fu3ZH3SY7IPP3v3QD3/25Lefe+eLFza++cCpi/dOXvvX+8c2Ns+fbB/+2vffXfvMuY9evOV6+MaPv/PhJy79eSu0fVrQopGOmXudJ5aoFi67xP+nmg/xD8Uwr9yWPszMzuloO5zOE6MDFcp7LnQcBjEgIsmcRHWCZSeQMmk5acUgu7rBqGrh9IAMPaUhClgSpRSVSFJQaQgth6gUmFvlyByIQwhNDBp9l1U140WkCNMEzQo1VNN+LWXYgsFh0SEKJ3IScf16058AYFpyxgYhZEvAWBFjebiLSeDYilLIddxN4pcsPLV2yUwUGBTyCphAHrRLRqYEDJIYFNnlAAxuqEaoQlBo8MlD7WiW3lK+ryYBUpE0jIhgdVkbl6UizkVhcp4k1uQTF1KI5uAbIkgCaLR4WvCQhPrtyEghm8e4hc05sCBAzaRMRtcMwAmHqouLwV+aSWgBukZFITem4qdU1ahLDES05HtYCEFIV3A7WfxjyeKrGgW2EhwwXvlpUYejUUHLkRNNeHlXfHA9KmqPtTJr89G1oga//O8oYR1VEepWqWrqiESO9Md5VLOKBvKdfa+QCou1UiiuzxiqLYdk5LLInBo585LPGDwDuiRcrkpMY+QnYKpNJVB6jElZNi5VCrRU9f7UYrB8h6WuMQ3cyTANobv63s5jj1289t6jv33ueQBPvfDPSPTxe87vXb2y0cSD2f4QtV1rUkoqiDGm5ByBpsigyNSvpDbACiNVSqLKTDGlZCher7GsCVPRyqKXITL7FESJHLNEpKnQWjFzJjZgIFVbgjAVdlGlwCKClIjY1JCMhHXIohdMrOABwgpiSsmnfQWwyGraU2hDm/q4/cHOo/d/+rbNp97aXUPbQQaIaeEMAX3CNhY70r8ONEoB2hI2KJzRZhPNRENMtMUMUBCeEHckd+rBG3pwmYcrmnZ1uILp8YEmybq9CLiT1FOICBPVTjHQ0NPeQWrfOUCKFNHGtY31ePZUUmm4n8/6OBN0mzxbMJrFlWv9xbvD6U/Or70YqTt5sn1hf/J2vPVKml443fz82cubd9wqu80fXr1+59e/9dqf3pz+47WPPPjIX85fevDl7e6zF0T3EVSxUG2EJCZWSssDVqozNSO1P3qcLnVOVUHK9lBR4SlB7HRagGN0LSaOSVVYHXBcxoXP++tlw6HJZbl8gGfKDiIyoRrmKCqqxM4nAYHjtql2K7WbUQc8EBObBnc1wOvL6kPMx+YNZlUSTQQkV/EtlkoUJKKipkNnhRUFJ0oGctOsfcRQIRWQHSfXJCmqihpRCUcZKDMFNkLKUjJQ8MJSMDEgMZNnHlzYKEFoBBiUladTcOaC+uF3bYRtMgS4HnNmtIKaYLZ/poIJVqPiJh57FeC79hWfoyIVz0Xk6xZUKzTVpYWcVC6gsplSOKLczDpjzw3pTqu+J/U30Xy4OA8DwQl41VQtQrZT46wQI/FFweegkhnhSuIGbsyXfFWx7YDaa7PWBXCIkPNGPrj07sPe68jb4k6Eljd8qkf1W8otYzUEeuXH5S2+o6FlvHEm1VCiTHBxiJFHdSxOaaTKR2YQlC6968jLTZIN2fzLrKnnitkYGQZu1EtSZtGsyutlWtnwUIF2aTHtmo15ChSu7tFXvvr4pfsfeuaZ519+9aXfvPjK1mTttpPt3my+Po+Bhz4h0lB4qlXV3HCJUKjmpJZtxy0j/9hQRmMvMlR/sadAGpIBw1JKUotxgchRKBy4Gi0crVw+js1Mi/OWoEzFkkgQVTVtDwYxQlJBkmT2zyjfcvBINjZIugAmTTyYTfXC7VsPXLrvreePxzVg3muYJ5lqmiUkA0qJagitgEGt0gbiZmiOhTgBhQEB1BEr6RBoiNwN3V19OCUHb1K6CtmL83cVjYAkMgJhcQBNzF1KJ0FnEUC0INnF/m5C2NVmGnjrjnMbW5trBwdEs8g7/UK67sR8tq2TFsMwe31/8vDjO0+/pDy/+vYHC3C6/v6D956/5eTGHy9Pn/y7tFvom9Mf4v7Ln7jr129c2bm+ffnMrfjr5e6RNNWk1PSYNlgodRFhoQugtgmGf7ezPV+HHu7MnDlfx1vreIXw0vkSUahSDiM17NaYPWoHnHvaDY1MnYi6l8tLOENLirJBHaAYRMfdKU/H1OzLcNZqtZD7sE03R7W30TL4Z+Mar6bLbhdK3oTIwdEeve8cvGJCEe66bRyJkxCZmxWoBaJb04gQL9uFktvC+6rlew6KAU4dA45B86qcwREieQQZjr+Uuko8lH24lUcr1agASGpWk/IoiSg7XF6ZvF1sIxOsbLKPDjY1Xw5AJFGmbLLzVYVU3mCp56x88L5QdTPVXL2H+s/Y7gFaoWHdvKv+F/mcti9R9iTNAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 21,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "Image.fromarray(origin_RGB[1])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "id": "b4449198-3c2b-41d6-9a23-de7accf73d82",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa8AAAKACAIAAACkG2AoAAEAAElEQVR4nOz9abBtzXUYhq3Vwx7PdMc3fPOAGYRoEhwkUbIoSoqd2BmUUsWulCVlkgkCUOIkjgWw/CM/CFCuSqlMkABIJYpTZRmiVFJkU5RIkSBFEAIJEsQMfPgGfNOb7rvjGfbY08qPPmfffc85+9x7Hz654iquuvXePnt3r17dvXr16tWrVyMCACLnaIwDBgAIDgUPjK3gOsCvlbob7FuERwAAAF0DP1v7trte7lr0XLde12/P9fR3lXt9/Ner73UBr5l+tWc92C5EHRm+F75tF2XeqgpcEw/vwvP/Z2A7x1cXX83TIyAA0Hl7rU+/YVwjIgAQnbcUYwzIAAABEiHnHMBZa1EIYYzxKYQQSqkkSYqiAAg31G0NXJcbuuCt6t1rjgqAev3r9Z0IQNdsn+vW67rtiR30X8JsV4br1rcT3iqp2lEBumaF8br0XLfcLtAd7+X10LxV4+7aDHFNoA7+xA6+6uLnLj7san9stTMiAAARIIIjAAiCQIigKAoAxxggADDGEDkDNNYwBAsuDJnW67FjR+vzt0ips1ebrBtB30WPcMspN+OnDmkl3yLpbK7JbNyuqVoXkdDdDl3lvlX91QUNPRto/jcB1+1fsVGIXb0W1+1foLdGOm+m/+rQxT9vVfd1tU/X+Ooq97p8jgjOAREwBozNnxEBCBkTWms/DUjJtdYIAFJKoy0AQyACGyWyLDV2Ubn+9Vs2R3WVe12gDnq68a+fk7vr2zW3X6/ct6w9aT3911aRu+Ca9e2ELilwXeiQGtiJf316uq5O1CWtrlkvfIuU9rdsrrm2jnxN9B38SV181ZG+kw+7pCcEfpWNgBcecC4XOWN+meyVQiALadyr6/ozn/nM29/5tmk2Y5JJ10X9+lI7hXYHUIfwZ99b9zZoia2npxM/qrWvXac4Ca5FWFe5rrMbrykOO+jvKrerfbr65br1xRb9nTg70l+Jng64Lv909S8RdZG0Fq5t2ADT8b5j3HW0Qyd/dpX7FrXzdYFBx/iCDr7q4OcuPuwUS0wTkXNOSmmMcc6FYWiMKQp64onHPvOZz/zn//lHgQAREVH45XZRZgDwxFOPv+d973MAbrELsYaYjvfiLWrMTiv4dYCARIfY7sa/fm7sXLhfUxfoKvcta8+Ouf0t20X5XnS69ki7rpS/JlyXfzp3IeYLqo3QqpfpmF264K1qhf/B7KJ08Cfv5CsLcJFb5q29nnM372IREAI6cETEkSujOARCwFNPPSWDgDFWlxXnXAAxztE6yxhwyQjg//Sf/t9rg3HUX4sXOybfzqV1J4HrW0F2SDE/d63ObIjYntaaZ8uxnaZ55rZL91k/J3fag1iHlbcDhF2PqGuuVmhgnYbFcP08RW79+y670rX7q2uF0rVi7eiXaylc0K2zdOHZzD+r0NW/XfzWha2r3E647gqxA65tr+wAvO782N3va99zvV6nM3x9OzT8vLQjjHy9ztg1vsgFnHNjjJRSa42IQRAcHh7+lX///f/uv/uXtLNaqSAMAcAYIwCYtYZxIIJKK0XAZNJPBoav1+S7JszwusKwgzu7VnBr3/qWwhZCXDwIt374UdDB3x17fEHXLE7R+vcd4DoWBF3NFjgB11lvIluvBXatpLr6661aKTPG1krDt8w+1TGbUqdpYH1DBB1rAudc0/htyd6WGu0KumtKB4CkI/36fuzql+v1ygZ6utrzLVpBO7lengRdfHWuDSxsX/MBHq9NbjvHqQYOpA1JxMAhIglTsVwEIWPAmEDGtNaMMQAQgAZIEmlwLKAgRABgVug0iP16+5w8RABwzvic/lPz3GadC9R3za7nu3UExM6zg4N1UuBiryz33LLIu1h0m6Qu8lyX9MH1cyaCa5N0jnZtZYkaq/mVlaPzOs6F/nyStHCxNebv8VynaLcYttq2naCTx+e1bmnWc3KWe4GIiEgI4R+WquZVz7ZKuDzJt0TMBiOd/9Qk9g9L5K/viItpVkv3PxkT7fRNAh5w51xTelPuks7bystX8bfJXqVwLZ0A4rrq8xIeT6219iLb0KK+rEnf0IaIyNnaVr32rmaXxaBj7WIdwEpzAQDjArrbc5XlhKOGx+ACR8VEFEYCACxjCDwM4zjoE3ICEKDROSalURa6zYPn5TV422/aydoPq7zSOe4ucufSeFgq+lJYSomIDSt3EXyVn7CQPuvIf0Rr9OZJYm36i6N9fYO7i2g3VPnRYIn/mn99OzdpzqUMLI95P32usvVmIv1EuyoNm1HdBatd34V/7XtrbVPrdqsu6bxtKbm5oAauyCFL0CXlu3KtTb9WlPs01hho9WCTkl3TwkluPXndUhXXkrrUL+15aLUKiOhW/A2bLETktZTWw/pB3SkNnTNNwU3pl/b6WqHWkXRNXgBAvDD+m8m5u0y3SHn+6hFE1VrdAaBzZbeEiajJsp7hlii6dEgwdkF1amddi4EW/X2Z6nGOZa3OONdhL1ivN1N6XsqSugcXx2S7bS8VghdIWtEHN+RanRc3F3EVIdKWd+0B2SZsdVr1X7uE8lWHybpaLNGwAVt7DsP52s4tDah2iy1NdbBBur1Fu2HIaJXDENG59Zy8ZoSuwMXe8RU8z77ES23olIarBa/l4C5man5eiRdb/do1d21Askrq6sPS4LwiICJd0y/sUlKXkl1FcLfrsrRSXh38Sxiwe25vzzSXS2dA8L1J88yeszjnDTtfKOtisWsIu9pKeWnorg7+DfW6Cv4N0CChlfXydVEtkfcIWVa7aakpcGVVvlZAt9+0f3I813nb/djpAfZWA7XUUujo6K5+XJVCF9+4i6O103K9SRq2J7fmzeb0q9R0ZvEy+8IbWurRS4XpRmjqjPPyWvSsclVbM0VEgPm/XSuFLrIYLrPgRTIegf42wmVZf17u6opjns+tJvYzJiIioGf9xeT5KK29OgM1NLTZYElCQavlN/DV2k9r8bTLfQTi135aK1na46IrwbVouAphXQNqSbNrkjWmfG9S8O+b5ecS2UtSvv1wqUVimeyO5u+c7drTNs3fAMCF5wZoBc/58Foza8LcsoTzB5q7xHQR0ykNl0Th2rl96bmd8ioaxwaevhae1bywbjrtQrJZvb06rKokG7BdWgquW0423Lm5iKbvVntwtb/o4iS0oZVWl2YNztVcS9JwQ5VXJ91VPGsp74KuCW9D4qWyGqrWqlerWszlc39HiVf8utovTbK2NXZDm7e7uEt5XIJHU0S6cl3av0vJ2mzZhW11gHSJC4/JS0ZE7FIPN+iGzvM5zJuyadDOFeIVJddSrbrkadektwKsnauF5Hp9ucrQizddvLu2QfGKJ6su5cgNg/nSFVBXxrWlLA3mhYF5NePlloE2D6yd29ZW9ntceC7B5ra6tPSlftmsA64tehXDKlXXonADebAycJr3qzpdWw7CxeltbX89Wr9cUeq1YEld7ZxXLhUvXcLx6rBppdwuptXTF+TXqqa9qndsRu5xXvx5gRdXFa4OJMsEL7HOUq8vUdueY1fp//BHf/ITH/v05oq00V6d1EuhqYj/1+91bih0VWHZTNjqgAeAv/mRn/IPP/fxT/qHTXbDxUvEZrGDH/roT/qMv/CzvwSLsbfKDx9eJFuCn/uZT7Wr387YztIkW1uvrk+ryVY7hTHWLDYbGtrjba2475JNqykvVWeWiOyS8s0AaZIt6SVLGn3zsl0dRARH0E4JgIBE1Hne/5psfN3xy9h6jyUfcGttlrUKstcEfTWIaDPVAhFWHVMXOuCFzI162G76ZuG2tnXagmypV5qCiAjAtnp0lRIgojZrtvaR5+U6dwE5Y+jcem7rkhGcr/Gq9VR96CP/MawRiBfm3gWd53vBqx3Zqu/5e++x0d7pa6eBlSXb2jG22vhLNKwma3dik2VVNjVicV53bLUPAiBa79ngcSDAioD74N/6G9ASW22S/uZPfwA64G/+9Aea1m44Zw15P/2Bc9ouQpf4aH/qUpear/7nqjvtqihc27/t97DSHa037ryaxH0uB0REDhYKwcWsS5N6m/7FiGhIcO0E7Yf2ROvIAUJTDi3WhQyXLTMNhq4qr76EbvD+nkvtQ7SsnTQJvMBZLajRhZeKc84wFgCA8+6G4AgscLGQIQwAgBiABXBsrcjeXAFagc2JG5xru3AtLDEftHirjceL4+bfBnnbWelSCjeUvvp+iYDVT3BxwGxuSbjIwZtrehU8S0h8s3TR/MiwFhUulOi1Wf7mT39giYbN9KwKuC7MzafNHd1uh83cu9pWV2y6tohpc+PaIbBKFWNsrlvg+U4uA0Ta5AK9mVevlWttrbv4qt16q2272g5d0NUFl+ZyzjW+rnhRY4CNQxW6Q3sIAH+k+aqwluHoCiviLtjQnUs/l8ZSm8loxeba1d9XlIxtbm5etqfWtk//pcRvgLbO23Rt28W3Ycq2ZLy0plchaQmnV4E9eGHUFkBdtoI22iWB9YmPffoqGKBDuWtDG49P7Fug0S4//NGf3LBq3gy0Yiu4Op+0kWx+uTSxrVpm5h3NcKnrka4xRFcQOoBmsWIBABdnq5bouYp8vErRzSpn7Qi6OvEb0iwpklflf4JL3Tqufeb7ulJvg2641EybW22p3LZgWipiSW6ufr0U+ebqLNGJF2Htp0vRrhVV7Va6FNVqrR9ZR/7Exz7tUX3iY59uy6m2SGqKW0vSz/3Mp3zGJQztvA22KxpklxJ7JEt5N1SwrQwu9dd1WboLf5uwpa+rXbNK8II4B+CILIBjSAwJGbHLAoYvdS4RLZA0sJh0wa39axPfrsKlfLXUAhuG2Fro0tA31BSuI2Ev0HBZgkeJgNHwUJcUuAps0DHXyhS6CFfBv1Z5vi6d7b05xhhfwOZcS2VdKsWwNU+sVnC14m1mvU5t1uPHlmLYiMIG8wZp1U65YSXbYPjwR3/yLRE9m+l5hCzt9odWK62O3kfAv5RrVXJdkNSLL02e7yXi50JC0Vr6H61G7byrsrKxWT2amGvj70q21C/tN6uJES7YGXBdWQ1caU95iUpavy7uiuGxZkV5aR/gOs+btclWXzYMvSSP2qJklZhVQbNKtt8QWAI/1Nu52kvOBn7+47+4+nJtyk987NO0bkOjC09HcZ8CAMTlXalLYbXZN3fB6pHPT3zsk3MtZD0s88namjbLYVxoqVfe1r+ED2GFFRuBuJZzlvF0tGfzei2fL/HYhiLQU9IaaHZjaEkvDVZLmTvXA7QbBFsMsSTFfH+tiom1QgpXLAnUsjasVvMqMnc1zWqPIOLF3dT5J7p4Lv48FwAyREBsBfrcYIe9tm7Y1lTb/67Oot/LzAMtNu366mehrvlniYxHUCrbtdsAbRP+Bi5flVlrpZhHuEHPanJtbp8PfeQD7WRX74vVlFef3j18+KM/da30HUiWW2B1Ubw0Zzwyv62y8SMgWZsLLxq5loRjO1kDjIARLFmlLw1wvdpHC5HR1ouIugMpre3lDV2/WUpeXQjCZbaF1YLaidvlNmO2edlOeZXwE4+yUu4SiGuhXau1+tcj8F+be9wC2sjXSmTqsHesktd+eS3aPvzRn1yrP3roEn9L4B30NkCD50Mf+Y834PzQRz7Qdg2Bq0nGZhva/7z6YucTH/vk2oJwnWfMVeBauS5VG9uTXJu2VQZebZ+r88DqmFxqwC7k7X5BRA7IYT7C3RU74CIZSwVdpR9X1b1VguckObeavhmPq+rRVeTDFUld5cy1RVzK52thzUqZATJEhjQPktNSvxEZ0bIsm5e9iPe3JPIQHaJ/bjEHtW7z8ZibjAhLSDwetrTSIXLk43qz87La2vLFdmjwrO7ltUcIrHSPowtRYD/5t/8ukbXOcJAf/OhcEnFcnlQ++bOf9nwMc6vc+dbnL3xsean7yZ/99FxMr8Qi/OTHL0jGn/rIelH7cz/zKc4AABgBEvzkYqcVV46mnjcsOHZe33NO8uesiQiA4KLDqc+1VHTjLwkXbAUfmLttO/qbP/3BCxgWZHziY5/0WuTPXxSjAPDBRrEFh4BLlPsHxljTqj//8U8RXehWbOsp3vOUt3u8dZoNyPPnXO4Q0fyWDGhGZXugea9saOkj/tlZxxjj5zqdZ08KpHTO+Z9zm9rCjDAPOufHhXM4X+7M62iBEM83Qolsm4ebeZoha0ca9UODIfoYVBfADy+23n2VCSTriBxDZIxxQL8T47N593oLBDT3dqBFo7WFTkPVqjhzYJGacdoiasUyw5hvELPoxxb1dG74WxS9iK/KmU/jpdZFAhQAABKDuS8nMloogl7EOUAEYpfbDS+MlW6gizaCNu/iRVPjIgE0P5sWWU3cxr/03IyK9vvznma4mhE6vDTbGZfSB+F5bF5vs0OEIAhcS0iuqpztXkfET/7tX/yp/2yTYtg1fzbi7+d/5tP+3w/99E96MtpaYZcbM7ZWSquT59r37TdXnFqbdmsEHLTctrvSw0U5uLbTP/zTH/z5j31yLeWNKFwi2Ec5bXOR94eni428Vg9qkHgdZ7XQJWizdGO3aTcIts5OtA07zrnGiWoJM11cGjejrxka7aK7Bstagpvx0qylzlUZROtcI2icc43MviCnEMktJqeVMjcodOCtdeea04Vca+lfapzmwV9u18xJjThebZllqvByfr48hs3m/KtZ2vVpS7clutspGwG6VjtrsLWbpvm5djEIrd7qqsWGqrUp1PW52EPvoY9O17brfpI2MER3NePjgs7Orx/66fmy0YvCK/YLtlTyiy/PNbklVKv+jysIl2emNue1BeJaWEv5kp71Cx//1Ac/0nlMBQA+1Cri537mFxokDXm0wmDtWaEtrdokUXsRfbHKS3W/mOTCzwabF3+NVF0SxG0eOyfbq3XYWiqtCMRlkjr6aCm6x3k3+b2F1oQ9100ctasxH7MI1HbSAoAmfGe3pa8D1g/tDbk2S8m2QISWvokX87YiQV0+ZDrthozOkTYFtAXwEkO0aV2qT5tRNgzjJRm/+rVdbmPeaqt12AI/gbSfG1//hpJ2ddr2MmwdcbkgRxgFoZBy+R6fJeSw0BaJCBeTbVet1zbUJz/+S6sLag9XND4CwC/Mt5XXKw5LjdZ88tQ2M1kXtQ20kfgW8NvZbdjso7Mkbi6Ftij8xM/8AkP09oVmkHeZPrsEcZNsbR3X0rYB1SrLNcLONyxjTAjRJrLhRufcuVbYZuZ1Y22JjGUlg+hc8AE0rWSt9TR4RzHP4Y1CzRfUejLaZ06Wh4z3UiTr/3DhHQng1v61u2mpX5baHNYpjE3pq52ymW3OWwDQtwk46tpT3qTgeDuuQ/BTFsD6gMkNZUs819B6qSKzlGZJ3WhjW0PkxfPF59N+h6D3HdzG1u4Aurh8gIsrcWNMw0krgceX4RzhJQnPyWi3EyK2jYZti+FqU3ziY5/mbP2aF/G8gu16NQk6yV63w0AXNXTosMP+/Mc/5Sdan7fZD/m5n/kUW1gwPvSRD7TldfvftmK4xAltUfjzH/vkpdU5x7M4yd7WJLAjsjldjPjfnhua5yWGgXV82+beVdqWEF4yqrsXTEufcN0xtbVkLP+8iNwhsKVYOAjn3j64Xue9CrQbZ0nhWKV5CbMf781KfzV7m3Wh1SldLN2Gyy+XwHYocOqU/ZuRNJSdUwkW0Pm/9jMyQkYE1v8179sYugA2Kq0enDNEtvnzLvtElqwj67wv0twjyRHShZgxQnBjdF3Xzrn2OHJk/N95ca0FyxI9voJLF7EuSWdE/KmP/I12vT758V9qhOMH/9bfAHAXVTC3oGS+BXlxI8I1U/fS2YOmZT6xWG9+eLHp0fTUhy6ufJdkBFxUJz/80Z/68Ed/yrnzllwL3urniVwS021OXZJ3bUp+4eOf6uLppfddgqatfDVv2vVaq56007eHVvNvA3YBzbBv5o/m5SrfOloD6NbP32sr1aZ2tUE4514otK2HnHNs9WOTy1DnuMOLcP6+pY61/+aeQzSfluiiVGoeNk8J7WZcyrLUL0twxVI2ScPVOWdD4qVOXRXtqxy2oTtXpcPa4gBg6fC2h6VoBdhauSy1UcMWq/j9J96aMhm4SAZxEPLleXQZPvSRD7hW7TZbwVZb5gN/6/8AAM2etU/QtaEMAB/+6E81Nf3wR3+qkTXtcb7aL0ufzolfYFuivNn08I3zwY984IMf+YAfXQDgnGsshoiIjPw01naUocUU0rjjfPAjH6CWxwYRfWjF7Lj6vlEqaZ3gW60mtaTYhnZop/fjtvn3/O9ifJAGYXvUtYlpI28TsNrpDUK6iIRDZ68tPTc4qVvZbNelXbW1iZdGSjMomskPVoQRdkA7fXtUbi53NUuzFllyyfS18J5J7b8lDNAhTzxcshXgszHqvhhwQRBebJF2I8JFwdfuOeoOC4rL69Y1Z1qIaDUS1zxBN8Ft1jx/uWLlnVehVdzx8fHuzn4YhmVZtlm26ZhP/e1f/MB/1jgDrpGAn/zZa5zJhZZAbMPPf/xTvmV+4Wc//cG/NZc1H1jZs/7kz34aLy7lGmhPkms5Y634xtZCo1Ehf+pv/eSn/vYvNjunHtZupHifm9UpcFX8efiFj3+qKXEpzVryfPq2qFuMXiIiIc5Zfe00DC2+bQ/F9lcAwIsBNZrnpSZt5uPmJs8GoZ+VjTFLfEhE1lou5jeI+reMYOFzdj7lL+Va24O4Ts5C627FNgbnHJNiSavwBLdD9hEsqFnE2cR1Vtr1bUtA59dsLKs7q3NDl2S31jbmzrYmu6HuS2WtJmiAMUJEA4QEjtAAAMMaCYihBdLOejOpF8mcc3LOq77eJNlYRsmvOZ3z//qqwGIvDxcOpfPWJyLmPcnm0vZc9i+63WNo8DSrUb+CRkaMg5DMv2mvsr1W4heGS38IjqNgwBlwJOYfOAqOAhgROo/ZkbFOcyQka8JR01hf//sf+/o/+3+ps8N0sN/uBm0cOeSck7G/sLKH0IB3Flntv6ZvGAdvJejCME+GyL1nGlFXcZ/62b8LxJyFRndrF9dW6Ky1xhhrN1EOAH/3//FLZV0yzgmYdReWFFltDAEsVLYu4IACWcMwbfeaVfArd1zRTzfABz/yAWNMMwvONTtE4ozkfMr07d+MLl99aAwaAAxRcB5I6RAavmlvhoB1bR1EIGMEZGwbobX2/FAAgP+BjgQyn94X2l6UeKqEEJyAOULrwDqw5ypY0+mLIeQ8tc3wbpY+3ivggj7bIripe1viM8bIWNbaVUZH3IEE1tYEGYEfd4yD34TxIxYdgXX+gRaioL3kR0cADIkhcgDGiAExckhu7q3NAbkDNM6voy80+MVVv2S8Kc7XyNduVc30TRFwIZBxQO6TEQCAJceRGAESo3PfZzdvS5/593//C+//kT/5f/3pj2M0CCRfq6w2HhhtcU5E0L2OPp/lFntVBOCAkMBvzsylJEMAcB1zMlycA6llHIXWXNc1pTfg7PpPDiws2MtjEMh+5P/yj/zX75e/+VX9F1artuF9++faNBuyr0WyGc9Vkl0Rrk782q9XJ3tt4ivivEquP4Y/hrXwT/5vP/4f/Ht/9i/9+T/zmf/6v/6P/up/JGSojQGy88Czq6rjqkLRBlhRiVmHZbdrn6nRfVtrAYKVja3z+aH188KKeB2pG/TnpYqe43cXxCtj7Ef+z/+oSdY10q77/lrJrj6831pB8D0Sfy1i3pKG+mP4Y7gW/OX/4rfhc3929X2n3XCtQGlWGUtfN2lkjcGiJYbQn7RDgIVHHrTkXdeqfgOpuM6Cs7ZGK4foFqolodfOG9+ra9Hwx/DH8MfwP3S4IA2XlqJtGUetPfVVLBvMlhsAWxLQWyU2xOpYXQg3K3dYJwG7aFgrtZfs4uzifWP/q50v1/kMnAkEGAOEwIXUWvy1/93f+L4f+KEHRyc8jJAzVZVBKJkFWNFbEdHC8vyxRCdd2DK6cDIMW9Z91nG/bTvmcLuOS5PE5q4hIrm4nYcWrqZz/IQhR11M/v5/9Uv377wuGEopa22EM1xEjz339h/+0z/+tnd/33g2A2JRHIBdc4/z6qqiTe2qnWgDtW0LyVXSN7maRt6cxcI5pzX2bmg5JC/l1c6uDpAGBcNzlypEdAhgO8PJXKspll632vZRVIpmAPoD74i4dLt82zkcFpvvS2+6KrJaBeowfy1haNaCdHFXp418lYbmeWFqc9Cyfa2F9brh2nHV3R8IF70o27kaGTcXfIuX/lwkI19dQEAfmMGuW1uvbaYNJK2FSweMc44v7qBpv9e1EsyRAyRAAELmmORQ/co/+QePPfFEEvezqgrCmDEmubDWrGIgIoLOeIsNbV1i4io1XWtFpuZOu4t4NhgTVq0Qc66yNpDB4enR/bt3AMAhK5UD4FxCretXXvzmKy++8GM/8e/82R//CRmleVWJVjSNq4i2Je2+4cBLj/GsrU57WmUEdNGbGlYafHVYAjsfbP72OFzxtW5XalUOwkIarh/hl8nBdhGrPdi1dFt9eXWgi9b/hlW+F+TNcEY2PxvXdrTFJl4Gzn/TSnTba42CDUCLrdkN0OlviB0AHe3CFls2S3+Xgt91buq5tAvWeEW1CWuq11aIVum8Yo08rB0tHpzKjXEoeWXBeD94XcWMJmcP/8Hf/6/SWCZhhODiKJpOZ6tyBC7u+axN0IZ2vTbQ3yRucDbPS3mbCi6dPlw/SlsUXigCmDHm/p27geQIjqwGMgC2NM4BBRJjSV/8V7/+27/2K2nAG8VnLVzK01dh+g2ipJl9fTXa8+uSrFlqt/bPNtolxlibctXNHi522VL2rjouEQOL/eIl+lezf+9SYynXo4k/X1m/F7/UEWsSw3r//PbLNRPzlWeC67ZDpzRcchRoXAfW6g5Lo2izVJoX3D2qN1SjjXazNFxC2OR1HdDoVrhwlWgyxgyEDLVhwGNAEQZCOL/BD2++/uo//kf/MElizvlsNhv1B0v0Y7eNFVvep5c2V7sKaz9Ry43cY/YOEG0PCQ9L3uarLb92AHMRMC5ffvllrSoOEHJAcIEEYBw4s9o6bciqr3/5S5//3O8IfqW4mV2yoym0y6EM1unCbalBAIRACK5j7lkVeav0LMFSlua5C9VSiaucsKGUNpO063UVeGRRuGE8XgtPo5h7OdiFB1tZ1qJqzzqwkfk3VHlJLGwm3q+UJaAGYkQcwIGTAI7Dhas/mkGrF7HhcHHcwIt+B2sKIyJEWHOHCAI0h40aN+nWusC1ovK1o3Ggx+lRzFdwyx4/XgQwvnwPbJPA/1zyv3fGcgJGIJDBRW3UMW6sBXJgNQIoBciERXLWptx++Xd/bSDhf/pX/td1UecKUwclsyCFqcoBD6MgPiszF0tRe8HtD48TOR86cH6S6WLTzKldElL+2W/yrJUFTUZ3MfZtGw81sVUW3rMNZt/mAQ+MUQyQcXTGe7oKbQ131enxycHBAWOhdTUQR0ZKL8JVhUFdKwCwxeQLv/UrT+wlgyffPZ7mUdqTXIBVgeRaG2KS4/LYWFC+NHV5YoFdjMzWVNMtXKUW7wGArDWMcQbzFj5vT1zOviSnVumhxeLaOQeInHPnnDEGFvEQ4WJwoMa2uDR0sRUzZh5bjBwZwg4Bx1qnBhoWoHN78VITnadcfW6fvPLZ3crF0O0sRISLAIJ43uwX7NF8MSSNsYvGXUJ17ozaKLQXCZ/Dwg/cISBv2y4QCS9w5sWKnx+99y9pbs89dxdf8HxzX+Ccmdrd7IA5nB+OWhyR2jjn0Aq0T1AtJcZ14Suw65zqAv/qc5uZ2mpCe5ZoFXpBsbrKJLBKfDP9duXSC9/aBhqvXaWUFPzzv/uvfuWf/uP9UR/qmYsDdMRrM4j7ubMPsjMeSKnWt8O1pnGf2Dvit+uyVKO1TbHgGCY4RwDX2jfHiwFXnDOMMeSMHDDkUgTKaACQCC98+xuz6al1GgCss845IMaFAACjtMdPAKenp1/84hetVr1eypEppRDRmPOIftBm/W7d4dGgfVKz3SBrmXmzUbItQOdOwutChCzBKvu1x07T2teq1KV8spbnG/LaErALrojZV2Tp6NG/CVjtr2vxSXtKWBoFG+BKdsPlTy1y3WWGyUuhXcmlOq9y1VoKV39eS8q0y+pqL0SEiziRMyG5dYTgBNjP//Zv/Np/+8s3BtFMl5wLpmk2mZEUst/TxoZ0wbH+WlR11eWKDaWNAUQuxFxTMBasW3vOel7W4hABMCQE46wxJgiC44O73/ral8AaBMdbcaSdc0Dn0pYx5oC+9a1vHdy904tC8juVznHOkTFkF/r6uq3xaLC2iA3lLo29RqtqnlezY7e9td2DTZqubl16uVlOrc3eQJfsaMwmbTPR5l5ot8bqMHmEsfY9ZrwWXIvBOv0N2wIV22HsFuKvWUv6UyXwFtVtaSLq+gStqbvdQ5eL/8YgfTELttRyXDHxIJ6H1WTILAEQ09pEgmtjJWpH+l//9q+PEvHuP//vMQN1rcM4QSFrrTljSikMZMNSdIXrVhgBQIuMeRa06xgR8UKooTZqwsUgXIRC8beVN4mWasp8uGbOBQscgCrLMJCk66/8wRce3r8jGDgCf/CSc24tkb1ggvTElHX11S/9wRNPPQ3EAhHUZRaFoWlFA1od9t2m9uvBWmagFc+kDZpUk6CpDmPMW8yxFXVtrVxb5d7VWXDpfRcZ7c5dJa8BxpYtQpsrteq5tUr5KhJacbB7S2TZZp107ZtLBzitugdcoTgPm3TDpZ+b2guvmvJS6JpI2wBtS8eSXaw1jz2a3rF2ydygasYUkQEAQ44ALIFggGQ/++u/+uXf/JcSjYsw1yVqy2sjGa/4BZvA5va5hOcunpNtRUm68Od1WUQIpEAGxmprDWMYSMEFc61rP9stBgD+GnIErq3xk18S8DtvvPKNr38ZyAI6Py/Q3MRzIbih33bz9L/8nW8e3r8fSQnoEFlV103d18LVOucqcKERmqYgcs3fxbZaD7iwX9M13X02IFySjOumhOWU30txawUrW4Qxbj9sWLmvSvMFecsst7k91+J8C2FJCDwaks5WaAuU9tph6fh3q+eu3Tp40erXfrOacoOEWqVzQ6HtumwYmUtIXCumqf/EkAkhrCVCkGFA/hYrdJ//5//0Dz/32VBQIIWrdT8MjVY8FE3p7Tqukrq27qtNsTS0VvfWm/RWG44slIFk3FqrtCYiKeXSHnobm5QSEY0xyCgK2PTk4Tf+8AuzPENA71NAizZZNh8s3hNCXRR33ng1DAQRRVFU13U7fkSXIPjeYYkBmjHf7vf2JnsXnjYnUMvpt/m3iyeXMLtW8Ksm11Wkz1p6VuFShm/XoktebG6HdgyFqwyxzdA1xpeAOuARisMVgd4Fl+yirOJdywSrXH5pbVcbZYnopWp0CQ5qbaEucclmAlbhKu1OtLhggZwxRkjpiOW1ImAiDrShUSJ/55//dy/9wRd3kxglzHQFiNyuX/KvtnCbmNXSl4ZoQ+dSxgtfF7okEflwNcZaY+0ShiU83hzstFZl/vUv/8ErL3wdEX3UNte67XeevmWxZoz563gkwqsvvTgbT4QQKLiPYbXkCr5U+lsOS+J+dQpZq+t5qrzT1VKk5VXGaDP8qojv4uEN46VLyF6lvu0+XYsHLrb5VURMYyJo5oNL7YxXhLdwCnyr4JJor81UtuRcutTWl95+fWkpzTNdnEWbwb/0b8Piq0yG3XMvXoQlwdEYlZdzXZhgAea+C5BEsdYWGWNcVsZWtTYEWVHupNE//0e//Pnf+E0ehxkpHnBeq0djoA0M3TD9Yi/43CLe9g8NgsAYk2VZVVVCiCiKnHOTyaSduI3Q28icc0IIo+vp2em3vv7luqoIiAhlEAEwRwuvJq8yA0ouwO/nLpweLOk7d+7cf3BXMl7XdRiGeVW2iW/X5RFapgtWebWpV6MnXkXcuMWVnl1EXipuPHgfgDazrS1uFfkG2i4tFFY4p0mwukbe4E0BAMaYZmHUTvaWyLINSLADNiNc249tbWlzdkYAyC0RIDpEC8C4dAzmh1WXfHedc2vtL2zFbLcq1FZmTmjpdraF9sLctdpqS1ISERunk8YByFrbjn/bDvbbgAXyQfHnfvPOSSkYQyJvGrvQrDwIfbyHxSWsRABFXQI6IuOsRgDnAIEXjI1t9ljPfv2ff+bOV39/JKJiVudpTERkHWcIZKw1xJB4oJ1Ylc6+zf0brbXW2lfQ38pigYghCu4QtLOGnHf6F5IxyRxHg0SCMSk5cl3UpTXKORAChMjrepJlhmiwtWXzytW63+9pq6UUSCZCkFo77QKSzFFpypC5e1/92tnBQb24q1bVpVcc530E8+Bs2i5cLhz5+HZO8LKcvPadr5l6yhgrNSVhzG3tEIAz4MyT7dsfOBNMWG2dcZJLyaUzzj/z+fW6C8dMInKOnPMyxv9xxprYf85aIPJvfHqfd61GQ0SaqqyalKpwpJ2zACSlFIwDkLVGa+X5c34TMkKDtgn02dbV26rDnLMXutWqoaDh8DadzZGH5YG6yIOLK5/mNKwMDU+A1poWzndNFlzZdfFTJgBYYwIpGaI1xjems5Z7NwBnjNYSmQC0xjBgzlF7rDWRXx9hYjtvhIsVWZXv8xZuNVfTaNha0bebAhpTCQdk5PDcXM7AsUVkwya+4eX3omz4+W8CumaANgOtbcHNOJvn1bODq5HQ6eJGB+egqwra3pnrOt1n4UihxhlAcnv7t/7hL5vD+72dtDqbBkGAHLWuOedJHDqtdZnFwfJGZ6O8EJEQwhv4/Ijy8TXjIGQEVmkfntNHskRHaKCcFcxSKAOl1NnkDCQb3thRZa7qosqnO8PhIEl0VWXjcT6ZVKbOi2xyepZEsVKaiXBaVDxKeCAhRIeW6/K7L3z981/8HQKS8vLrUpfAGQvgptOpM1ZKKcTck5kDqrLKp7O6KDlgHISScacNIQRRyARXRmtruBRM8ErVzc6MEEIIwTkXQoRhuKpkLbVeM5F3qRU+sbMQhYnVOs9zZGSMmc2mBC6O40aaBEFQVRURNeW2Ea4VAWtHcvu5S/dZSye2IuDDQt/BlTXQfJq31hgThqEP971EcBPd1idubs4Lw7BpN0SUUgohlFJCCCa4EKxUtQUKw1CGsiGGL2Ct/FrbIHQRNifeAF2C4nuBS/wN4cpWz66ubdd8Q5d3wWqrbW70DeQ9cnoehEAOkBDR68NzS1mLCu88DwxDZOSw0FTUlbTZv/jlv1cdHeykg/H4jHOOnFlyZV2RM6NegrZetej7h7aC0OiMWmsfp9oP0TAMvSXOOQcOelEah/H45BQcxXE4np4dnz7cH/V1Pr3z3Zfz8ZEgFTKbBLiVhrvbA8HcG999ZXJ4HAnhnEuHo5lWRHTn4YMwYazOvvWV38uMqhno+tretlEQcmSnx8dFloN11lpltSUyRgvBoyhkDIsin0zGZVkgglI1kRPC617EGHLOhODWOcY5IJZVlReFr39Rlqts2Qz7JX6DxfTWPENLdHIuIxnt7uwzxg4ODpDR/t6OUtVsNvOGhePj42bMZ1nWzt6eldfKx6UhAK1J/dIGvJTtcaFvNtCYCNjiFI2fS5bKbZ4b64oxRimllAIAL/H9RQVBENRaV1WljK6qoq5rbYzW2iF5zI3e0FhmNtfo0lo3bdglTy7FsAEudXnfMOefbwojIgCtrh//TcAqf68+t19evYE2MyIiEjnWihfUfKpKH5aGrCVE4IzbZleEoHHccwAcQCIca7vDI3dWhPvxydn93/nM3/8L/+H/Nu6lR6cnWzvbBIAEcRBPJtMoCpr7XpbIk1J4W4SUwpsFvSXBmLleYMw5y4ZhUJc6imRd1zf29+s6H09Ob9248erLL7/61a+UZXnnzTe//kd/KITY3d0Ow7AuysH+1u7WLrdg8vGbp8fPvOMdk2yCQgSyL+JQCH70xhv3XnlVRFBpAGCbr0VcBa21I3d8eJjls3R7349RGQpJc4XFr2t8ff3QquuaMRYEAS6OVzfSBBH9NdZtpa/VceemlUZdWrXWreUHdFCWlRB8a7SDBN99+aUkSd7+9rcb44qicFY/9vit2TSLoqhZ6i5JvaagDdzVpGx+bqZqVfC1bqOb3+EDhOTAOXueuCUy2jccsJYRhgvRXKnMWtHJOOfGGK+AK6XKsgQAKaWMuLIaEZMkMcY4MtZQHCe6qpu8G6qzWrWu+l5L0rWF5uZyryU+r3RLVPvn5v6+OrTTXyyFOp7naZYMH0QXvEkvLXc1Cc1PXrP2zNlG5QAZIyRnAWi+pra4RKh3cgYYWwsAwjK0MC7Kndujgzvf/ewv/zd/4a//9d3RsFbaArPW2gD7W1uzyTSIBLQatj2utNYAIKU0xmitvS7gJ3C/gvZS0tsWa2cP7j3sJ8l0UpPWr7/yymf/6X+bJBHj0EvSf+v73n12dnZw8ODVF19wzvX7/Rdf/MqtG7dVqaylx598qijG73v/+8fZ7HhSbu8Oysns1Zdeto5qBYAgRaJNdmnbtsGRAwCtNRktBWMGjLVKAS5sN4jIBRJ5LdjKQFZVpbS1TodhCADGar8NrUrFOe/3+5zzsiwd2SCUzp7Lyov9e2HbrelHuzCxtWUZLW4jKcsyy7I0id/2trcdHR394Ze++OwzzwdBxBgrsjyKg7qqjTFRFNnFobS2ZoR47pz/PQKu+4kAbH7+p63cOWtdEIiLc8Mip/NGTCQiB86RIyBggIyMUs65IAiEkD4rIkounDfWOhSCJUnkZx0hBElptQ56oda1ZGGlamOUbC3DmY/Exfkq/a2arJlI2kBXi9n8aMoh0kZfvwVcIg3bAgKuL/K+R7ioJ154c+mc0InzSmVdOLqQpL0yHwsGxJhzYIxj8yvAYL6VAHNRaAGsgKHjhSkIISpgJqv4xuCNl7/yq/9Q/E/+Z385TQeTUgcyVEoJxuM08Uc+25qF/1cIyRgTQjDG6rq21oZhGIYhW8SjZYz5aIzGmKqqWCAALCN9cnT04I3XAsmfe/KxXi+trclmM2s0kHnm6Scfu7l7fHyc5zn2EqfL0ahXV/prX/2Db3376/fvvvYTf+kvTpHyo8MY4fRkrH2zM6mNvm47cyGQABjTSqEjzhgQB5iPUkQEOl9eERE4CoR0jGuts1p5u1UgJBFFQWitnZyNvYbIGDNK+30F1opH2V4kElETw9y3lXUXHMXbS1fn3Gg4AICiyDjH3d1dBvDm66/fvn17MBjkeb4dhj6LMaZ948Xq2q1r/bGkASEisvPrGJvT/Ih+V2DNvI4rhjkvrZRSjW9A84mI2nvZDi5s7/iXXnmkhaGwyHIhhHOuLEvfzohora3yDAGKMmcARmvOueSsLkuZpH67GS9uX3SNsCvqVU01N2g2V1fRLiSjC4dE1sKVrONX0WO7EjyyzriWz1bfXAv/5jm8S1197m3v+PZXv7j4wMBPs6vZgYCA8aDUChkwhk5TUImz/GS3Lx98+8u/9NK3/4P/zd948h3vPTibRVFUl3kYyCVyGhryPHfOebOgN+Erpcbj8dZoZK1VSvkt5iiK/OpGok2Aqulkenw46KfPP/f0iy++MM2nh4fH9+7dsdZWVREIUddlEATb29tG0917bzKGNx+7/czzz7z26hsvfevrR3ff/B//lf/QjbPjWXYyPa0AkEACqGsukwHAWAKyjGA6HddVwUUohERwUvK6rpXSfo0vhFSK6roGcIwB58wYMkZZq+M4jqIILARBoLWeVBNjbcCFFNwYA/yCF0HjLNKYrpZWr6tOV4supjCQXgSkaVqWpdX6iSee4AhHRw+zLHv+7W9/8ODhYLi1sFeca50Nkyz5cCwVvVYEr9+J6xhrRLS4P43awgIREOdOkQ09PoGXkvOXi/B5nlRvc/AGaM9gzVwLAFpra63W2uuPBI4xxgiMqhnyIssGo5G3X3sMfsJuyu1ybms3RZdiuK531iBa//4KsDGGDMCme1HALgLheExI5EM/Xy/8xvcOi3ZZbsdFy14Xz+Ww1FtPPf3sC1/9IvqxxwVYt9aK5nVEWRkVACLImjjGVaZ7As8ivRcH06r8+//PT/3Y/+jf/5E/9xdLbZCBQDCti1ravCJk6LnZOYcs5JzXdT2eTE6OD9M07fV6fuRXlXPO5XkeGTUbT+7ceYMhfec73/71X//ncRpt723vDrbf+973cs6zbDqenGaT6Ww2eeONNwIRW2DI+Zv37rMHB704ymdTW1X/33/ymb/4/h/7gy984XhyAgEwBWS0j1x8PWAIFrxiW1WVY1YpVVUF5/P9SgDwMiiKon6/j0R5nhtjpJRxGNZ1Xea51ZocEpGUst/vW2urqrLWJknikPlh3N47BgDvkCSEwIXxcR4DjfMl3cqn55xrrb1yU9d1wIWM0tk0397eRsS8rL74e7/3rvd8X57nURQRkViEsWlLH+ccbFRY2j270M5aHj8X1/rtLE0uIq/KuWZ7zWt/2WTqTSh+w73RrbzImxfH55sqPmMQBN784pN580ue5bPZDAAGg0GSJJPJpK7rIAgiGTjnAiEBwDlzePAwiiK2qDW1nIfWOgYtQbtNmlnq2grNupddKDbfL7IEArwOSXPbbCs2GQfwjmUNEyHAeeCzS2FpYlxTgXVTxNpnACB3HlZr/tCaT5ZYZ+3cu3a6hkU6ctZ3jO/dtjny7e9697/87/g8oB5ZLpnTbm3rE4BCxy0XgMRs5UrHAThENc8YGeueuTX4/V/5R7M3vvuX/9oH7tR4UuLtFHReonWKQSEh7fdsXm+FiSVrEMq6qp3hQlR1NRwOk0GfWzw+OdHaAtitXq+YnU2OjnRdHRVHr7766htvvFEUBec8iiJr1MHde/y26PUGvd6AMVZV1YPZA2spCALB4Im9G/fuP4iliONQK/XEY7fyPBf5+Pe/9K9OyhkCgEbLwDp6FKuYM0IwZ+zs9JirfDrLLLJSqZiIxZG2kBXFcGc7iOK6qMfjqSmKna3h+OH9fj8lwtOTcRilw+0d5lRRFv1+fzIbEyIRFUW1/ba3FcCqspRSxGGST2fWuVCyLJsBY+C0IBGK0DlHzjHGQiHLWjHBHWJd171eTynFCDgybWpkiIjkiAiNdYyxJOmVqhzu7OuDB0/evv3SN7/+5NPPWLCjrZ1JeRYFoSrr2pgkSRBRaRtEIVm0zjkEr6kZY5gjxhgwklJ48+6cAx0hYkBGyAC5yGsFTAghrK7JOW61sy6MArSEghd5iVwQggGLiBYIiZSqwFiVl1ujAVVAaEm6qizKsuj3+47YcLh1Ni57/bQoCmNUmsZI1q8kdFU5q8qyPDs7M8YkccoYU0oNt0Yy4AAggB4+PNrd3a7ycXZ01n/y+bquZ5OpkHx7e3s4SB+88fqNG3uT8TTt9/Z39+8dPHAOemm/mE6iKKrrPIwTbUnIwFrLGaqqQHJxkDLkyhpvi2QEQCQYV+i8dRj9YVAhuBDO0JK+sXbJ2NaF8aKffDNXWXIMvXkD2gG3kAARCMHvanp5cflK+eoq1WrGpdn4Kmi7VsSwIvjgMoH7VsGgP3zqmede++5LiAjg3VM3xbp3zhlAAHRA2kLtALmVwsmIHZ8c3ro5+vY3vzL+xf/yr/zvP0CajopilPZQQz8IQrJ1puqyLrg4m4wHg4EDFCgmx2OB7OB4bK0VwvV6vbIqH9y9N06iKpu9/tor+XRS1MV0Oq3KEhwZp3NtvP710ksvvvbqK14dCcOQrMaFuU1rHQZ+zndCiKqqENEYOx6Pp7O8XaMrmmaWABEJbF3Xr333lSjtGXJZVSc7++PJjHO+sz08fHgvTVPBoCiK05Pxl3/vjtGKMeCcv/1t7+qNetPjA2OUCIM8o7qugRghaK3v333DBfHNmzeVUsV0EoWhMaYqyjiM4jicTqdgtEMGAKEQRDSdjnu9Xl4VYRyFkpX5lHMex0kxy8Ik9EoNQ0BkyJkzVtc6CsVkMhkO+1VZPPn4Y8V0HESxM3Z04/E8z5N0oCutaxP3UuEUWQE2AyCntHJWchGHIRfcWlsrVVYlEQkhAimdcwTApVAKtHbMEQJHAqdqMiqKgswFgE4rQMCQc5EMrHNGG86Jc66LIgjksNc/PjpKkmg2m+3tbd2/f6zGVRTErrRH44daa3uzFBiA0Le3dyzQ6dkYGGdC3D882ur37t+7Z62NoqjIcxlFs/GYiI7OTna3d7a2tkCZ/mCYF7WQUVbk3nm8rNXeYC+KkyiM60rdPzga7g54QA+O3gSO2haVpiDhxtUALAxDm1d5liVJospq0O+DdUfjYwDoDQdSyrKsOTIZyLwuQx5IMTfGCo4IDh0COK2Nl2iNrfO67PcIcCW74aomdUXYPIquNcaWmuMRBucSnqU5ZINtNEiid733fa989yVcOMEKyazqEIeI5MgBMWQEYAAqAjDAOQnOjXN1ld3cHTx844V/+Pf+y7/0P/9fRP3bJ9NZL+mpqhpEidF1EoSn2RSZLCrltEnDIA2DmPMHx4ezyfTg+PU7d+7UdZ3PMlUVgmEah2TdVJn5kAsCb/pxzjHGemlirZ6fTAAXBEFVFQDAUWRZFgRBXdfGmEDKPM/DMJSCz2ZlrR0BMM7Im+HWq8Ib25mB1lYiO7x/Z6vfA6effu55Y62GoN9PYyle+PY39neGv/e53yCrAiFBRGkczsocESans8/ffe39P/yn9vZuzIrSZW4wGARBMMsmjAlk7NWXXnjH+77/6P6bdV0naU+AtV4RcyYbV0kUGWetUWEYehtrEEfIKAgEkhOCRVFS5kWWTQMp6rKce+0x5v8n8G4rbNBLJRemqrJsCkR1WTij68M3JRez6VEUJdba4nQyGA2LYjJIYqeUYBCHkVH67PgQrIuC0LZP+BIBEgIwC4DCe/o55wLJpWDGIRgX8MCQLouMrNal6PV6nCGBM2VV1LUMg2w8AUeSs9dffz3Lsi9/9d773vW+vdFWPdNJMox78TQ/q8rS6fH910+Twdazz7/j1s29UpmzSY7I7x082N/f7/V6URS99tpro62t597+tocPHx7cuTcdT4zSW9v7cT+oqkqiyIt6Npt5D0Tn3OHB0Ww2SdOUc+4MVaUabm1NZxkRIfK6qgAgjuOTo+N+vx8whtaOeqkq6wcH9yzpnZ0dW1dlNpNRKIMQrBGCVVXRXpMBIJELBHfEm7HZtsNuEItrdaNF3iupTde7T/kRdIRLKeiwGa8k68jVNMEjy8dLQRn37Dvfk3z2N4t84o+oab1BM/Q7V4yQAaCP/0dM1MrktenFYK3VVbYVi9mD1//J//tTP/bv/LV3/9APvnFyyoHNDh5ya4M0yPNpBFJb1+snVTE5O3z4tVdf/s43vzkdT3jg5kdHiZI4YERK1UjAufBWbWqFWSaiLJ8CgBBMIBqjhWDaUBhwpTRaE0WRF/FEZI1hjAkWeieetkHnav4JS8Dm4dCtefmFr3MpXvzON6Mo2t5/TOsanFFV+bU/+FwSh3EY1OX0Xe97W11W28Okl8RE+Htf/P1vfvVLP/4TP1EXEynC6elxGIb9ft8Yk2WTfiS+9Ue//453vEMQPXjzkHFpATnnvf4gidK6rtM0lVJWpeKBDJM4L4vJJPdntC25KIqcseTPlihriQxZpZS1mnPuTWm1trouEbG/tYWCk7FHDw95P6mzs9GtW+QqwXUchuPxeDJWzrm747NQcudcVZTkbBJGUrAyn9VGj0YjgWxyclqWOQB4R+7e3n6/3w9kmGWZqTVwrrVRYMDM4jiU0pVV/vDuwRFAEIb9fj+M+gHR7PTUxxJHxNu3bhmj7h243/yt394b7Dy2d6PMq/2be7u3bliLJMV73vOe1+8++Fe//dnHnnp679bjxrobOyPc3RqPx3EQ6rruRZGpqtnZWRIEzzx+s8xnhwdHJgzDYX/n1s3jowf9KJDkdJ7p2VgFXGvdj+M05DqrjI5tWe5t3VTTk8FwK7CSc5ZlmXZ5MT578Rtfe/vb356ORvdev3N2cjqbzd7zjncOZTKrCluqEKUqK2PM1tZWDVoIiYgIXEjmjFWqcs5xHq6y1KWi8HuETbphlxn4WtBF/gZES6Jt84TQNh1ehby1yTaL7Fqb/VuPve8H3v97n/stIQCRab3J5x6g8Y8lAAYITHCwrB8HRhWVdUHEQ8EF0Nlk+vlf/oc3tke7Tz1xUlYVmsdv7hw/vP/s7Vt6PH3jzdde/tadV1/97tHRw7LIECCNpNVOSgYw30m01jpExhk6dOSAwDoLAJxxv10YB6G1Fh0RWfKhF2AebQEAvMkGAL0iqZTSdV1bcABNMiGEvX7kd2/0BwB/HPn06MQ8eNDr91954RtpmopAlmW5u7sbBIEmVxj3r373d0MhoiB0ZLa3t3e29/Ky+Jef/Y0/92M/PpvNGGPZOBufPPDbMkKIuqhPH96NkjQNeBAGhEjISZcneZWm6dnJqQPa279pyB0eHhpnR4M+EXHOVV4dHJ+k/X6v1xuPx2mUCiEEZ35jwS4CVpZFGcdxL40P7t+VnDmtg1Ccnp7G0WAM4929vaqqEMXOcP/4+Hh7e7sOyzzPydnhoI+OZtPxbFpLxs9OD7PTY0REBr1eL5JBnuenx2fHh3eEEKOtva2dnX5/yxDTWgsZ1nU5Pjuri1wK1ktT59xsNptNp8cPj7a2toZbW4g43BpZa7e3B0R04+YTP/L+f/tbX/2D+3de6afxG3dffnB8/7nn32lQvvz63Vu3bo22tr/9nRcOD+6/4x3vGIVbp+PMlcUrX//qaDTiiHfefH04HFZVdXJ4bxDH9+6+ef/V+LGnnr312OOvvPSis/r4zqsAziqdU6W15oPe0Rvju3fvPvHUu27duoX5mctP37j/2uHh4XNPP8cYOzEVIv6Jdz5vdfX5z/4aAHvs5q13ft+7x3n94osva3Lbe/tAzDhnCcaTTCQCiCllnNPcSsYQhBRBYJSCiwu4+e7TupG3fmvF8+F1mHaTNHxLFK5Ou+FCPW6XtaobN1832PGvZVNYa47dXE0HzAB/7/u+//c+91vOOORIVzibsdhfcwyQrAPip1kWAGgAJFVVqlawe7Nnzspf/Dsf+6v/yX+a3rhJibj38M5Ays/+yj+dPDwYz8YnZ6eVrpyDJBbamNpqf+152ov7/f7JyUlVayllqRxHywE4n7tkM4acARHoWnnjLSIwxsg5wUFKaY2/rsQIIZwjbUzARVVrv0mGfkXnGOAjxjflQjijCKCs8t3trZNDhxzyLLu5NxBcFlVprb5/8EAEETKOiEDMAszyvJ/2jo/OTs5O+qMhIn75j/5gMBgQ0XQ67ff7DDHPZ7dv367L7Ntf+8r+jZtPPvVMpWptzWi47RAkIaiiFwdArJiciDDoR9KREGRBaSJKOedRBNaYbBZF4fjoADmPoijtD+I4IgTjHBEyQKXq2aQCR1ESnIxPJbqdQTI9OTo4vTc7uzedzabTqZSBd0/BMNze3t4ajgKyiLAzHCilqqra2xrmeT6ZThGcqfJIBkQ2EpjPJiwMH7x6/PU/POlv7T739ncn6WA2NY6HnMlksCUlF3WtlNqK+0LKtz/71GuvvfbwzhthEp8cPuBCvPidb73nve9DjtPZyc3HHpcxPjy4R4GodfXNb3wl7O89+cQTDx48KIv8T7zrnWenx1/4zV97YWtLxr1AyizLvnpyVOUFkc1ms7qu016gijwJZCCjN175TpSkqiqjUGpjpBBCiG9k08kkv31jFxGFZH9052UmBDC0QN7//8F3v5QkyeNPvjtJoz96+VtVVezu7kZR0ovo9Ze/daxsfzAa7mylwyjuRxGR0Q4Ry9kUgjDgEcoAOdPOam2VyqIggPWK0ZX2oJcEy2Ib+FFXyo14ugLnN4T+92Hp/O8fBPKyNns3bz/+xBMP7rzhiIBvujIYAQmsP80WSC6JnNEKdBqG2hmtrWOMByKUOityw2lnlPy9v/OzP/mffLSf9gnhu9/51uG9O0fH94wxxigOEEgGlgZxIpDlefH0k0+Nx2enDw8BIQxEVWsmpDEaFntqjeuJtY4xlFLO7TLIyrpGgKpUfoHsRae1lpyzYAmAB8IoAwTkEICAzj34rgXWGI4MyPX7fVVVo6201naSVUenEy6DKIpkGBWzXNsyCCMicko7I5Ionk6niBgF4fRs/K53vevw4GGWZYHkUsrJ+NRaG0p+fHhgre0l/eOD+yfHR7du3+71+g+zrK5rYvzGjVuuYmVVcc61IyHE/v7+yb0jIsqms0gGRDSeTSez6Wg0uv3E41qZijOd9aM4FUEUJXGaploiYnxw7y53qhrn1fjo+ODeyfEhugI4n2WZJTcrcq3tzmhLKaUdF0L0kv6oPwhlhJylab8/GvZ6yd7u9u1bN3RVnhwf3r/3hlZ1FEV1kSulAslTwfX48Gufv58Ohk89/XS8fdtopay2SoM/YMdFSVSY/O3PPvUaQhzHiNgfjE4n4/t3XhM8eu/3f//pNH/y6fft7T/79a/8we5ukk/OjM5O77+2t7tbq+yPvvC5/qB3++ZemeVZVTjnXnv1u845ydBYNej1uaOdna2jOk+TsNdL64fH2aTcGvYZWGVKJqJYygrcVj9MU1mXFQdBprIGRMCd0YyoF8js7JTZ8uVv/GE+y5IkCkJZTw6VNigDzvk4r37wB39QJO741fv+zFEko9FoNNq7ZapCU2VREDAR8DAUyKVzLU/1lkTjF0+yNkDrPEyuC5ukYVPMFXGtFYhXoWztDslSuWyFnivK+82Fdq2a2++dc8BZmqZ/4k/8iYM7bzDO3YYdZZwfUEFwjPMgCITWFlzIWF7XUoABUM71o8DUVllbhNBz1X4U//KnPvW//Kt//evf+urh/bsqnxJns5kCACHg1o3bxw8PYxZVeXH7xo2yyGfTcRxFtVZVbQCAcw7OWEfOzV0T5kcyYH7WQhvLGYZxwmothFBGCUTnKBDCsxrnnBxxBIaCyPigXf5sBNGlPvzrgTEG1s1mM47AAJ544im8c2+qygC5Y2I2ywaDQVVVQCbPFAOQXJydngWBkFJaY4Dg6PBgOBxNZ+PxeLy/vx8EIp+VIu4LIY4eHvI9FkehsfTw3t1xko5GI8ZYkc3ulTNvXOulfcaYMvrswRtlXnBEZ2wuhHNub29vt79bVNWD1152znERzJLUOihrJUSQ9NLBqB9F0fHhkTX69PDBd775NbS6F4VkIen1uZHa6mG0VUF1cjAOhJAxqEqfjE+KMNne3t4a7VgO48P87l3lHUocGck5Q2QMqqrgQRIid7ausik5xcHlh6evzQ5EPEQiRCzKjDFGDmUYGucKi9/42tfiKMqz4umnn37xxRd7/f4zzz93980X/sU/e/l9P/Dj2Qxv3376/T8Q/cY/+8z+dnx88NAYM9naKvJqks2mZykAyCDIqzLLppwTA9Pv9SfTSjBioE/HZ9s7O+Ojw3yWxXHa60mjVK3LOOnHccyQOTJBGCw2eQkM397enhW5KnUcJ7oy/WSQTfI0xCdv7s5mE9RGu1rIYDKZZnmdavjDf/Ev0l4URom1LgzDNO3fcc7t3kh7o1uPPXnj5hNBkoJAY02RFyhjXATra58EXzuQr7LHchXolIZLB+PXlt1+2d4Fv7C501EHak5KtaSPBWpuEOnaVF+aAdxFJ57zrx25zgnwW00X6zj3XcILhXPOlaoVC97zA3/681/44uT0YcDAMNYcS1o6/0CLDSwiKisFACiEJoMA6FgIjgzMpgWg4xz6ZQDgLNTalP/g//N39m8/VmfVyWRWOQMAHGArHti6Ykgn49Ot0dDUqtJqsLWTFVWuHCD006iu6za1RpsolnVdCwZe+0PGuZRZXTpwHHQsWQGOEZAyEEgmRVHqEGA3CcalZcAQHKH3KH6kHRQABKatC0IWhmFgdBIE2enB3q2BOGXWWlNlu6N+VZRUq6Sf9HfCByczGScaaVrUO2mMTsecb/V7RTFNAlmCm5ydPPbEE2dnZ5VShMgYTKfjIAhCKRlj1bQ6mp0xxpJeejweh2FYFMVDrbmUvX6qtTbaBkEwnU6DICiK4o03XxoOh8PhUDAcj8d1Xe/s7ARBIBDjOB6/Pnl9PFZKjaczLsV4Ntvd2eMyEUIkgbTWjobD7e3dZ59728HBw5PTcVWphyd3I+TjydQG8WsHR8eT2c721pOP3d4ZpXme16pEcKVykQyccXGUmqpGxCefef7evTvffeWlGzf2HdUGcHrwxu7eflFXxydno9EoK/JQBnVdRlGvF8eDWJhMvfHSN+Ok9+bDO9PTB7dv3hhw+srn/sn+rZsvfmkGzqns9IW7k14an5ydGmN4IMoyPzg8TpLQAUtjKTkmUf/w+DgvK8ZFbbSUoSlLkJJxybnQWo+2Bg8fTqMgSqMwkOL119/s9ZL93T0fJzjP6+He8PjsmHM+GKaBkM7J2WyWRDIepg/GJwAQx7FRupyNpZR720MRBohYFkVuCyIKpNBY9vpxNrs3ndzRp6+++YK89eSzhqe7t5/eunHTyrBStXHIgTsHIROcoC4rG3PnHEfGuHCEFtARsw4k5Vw0QtP5B2OMZBwYAqBzgBf8sN3Kv5fphm2he13nvivufqzYB6+I/nqwKvWan2uF6dJEJKVUSoVh+IM/9MNf+J3P6qrwfurUOh+65FW/NGdwQAdknBOAQnAZCmeNP2xaKxP3ZBIGZV2fTWa18Tu8TjLc2R4FXJydnFpjb93Y29refnhwUFYVKFXWmoFfhXB0xBi37nxJ608aBIGsao2IURxqZcG6OAoRXMD5rKgkA0aIZNFBKCH2JxmueMD9MhBcaFsZBWSN9J53uiy1ImN7SZLnanc0fH08efz23ng8TntJyGb55CxOwmQr1XXBAG7s7UnOJGd5ng16KRG9+fqr/X6/l0QnJydxHFtroyDI8xwAoiAcbm/PZrOqKKzWlbWIUNd1CFAXVZQkxezUn86dTSbGmCRJzk5OqqJgAEmSPPHY4ycnJ5Ozsdb69PT06aef9pxwc3+vqKs0TrIiFyxWqgYle73e0eFhXZZlWR4fn+7u7QFpJErjWJXV4cmRZIyi4PT01GlljBkMe84ZZ6zWeuwcB35KR1rbwWDwuc+9cuPm3s7ezptvvjkc9YfDW6SqyWTSH249/nj/9OxsONjSpk5Fnwjrup64CecMEWfZxFg6OTk5uH9ve3vbOPvKK69oZeuynJzNklDWWkVRVNdVyOM4TRwQlyEir6oMgE2zYjAYTMfjwaA3m2TDfnLr1q3ZbCa5EEKMtgZlWcZhlKapP3u3s7PlQ2YURRGGYZqms9lsa2tLSlnXdZkXPhSIlPLg8DBNEyllnud1aUajXq+XlGX58PAoDoV3umSMGaO0ruu6dMDiOC6yWRDFr3/nWyJKHr7+4mhr5/lnfuixxx9zko2LjEXSCpvXlQvtiAvg4JwxukICMT+QiZYFxhgCyzkHYM5ZRAzDkMw83tRVBNdVV8rn/3ZvyLaF5hWh0evOlcu3ylGma5Okm/4uUWiNlkHgrEbOnnvuua/84RfrqmDrFOGljBeW28gIyCHT5Jh1TFsfEwcBNUDKBRPcKl1lGXBpjJEMhoNeKESR5Qxh/9aNXq93dnpclGWlNGNoHUnJpJSS8eo8GiggImP+OgsQQmCtnSPJuLKVI2BIptYQc04QBAEp4xwBQ8F4FIROa2ruyKZuh4ArgLaGI0NyHEkyVHUZCC7C0Bpjlb65vVNNZ7d2tnVZhciYsc/c3i3LkkkRx/GDB7lzgFZPx0Wv1x+fno4GgyAIpuNZby9GAskFA0KGRG40GDx8+HBrOHTOFkUuJDPW7G7tVqXig8Hh8bH3pOn10jzP9/f37t27t7U1AoAwDKfTKQM8OzvTWvf7/SAIvBX1wYMHw62BtXoyKZMkUUqNej3OeRAEDx8+fPPNh88/+9hsNrVa7ezuHT648/jjj3O2Nxptv/dd7zSWXnrppVdefmU06gO6QRLrsjg7OwuECIIgm2VCBFJKA/bB4b1AiIODB3t7ezdu3Xzl5Ts3b9zu9Qenp6eEMOj3Z1nmr3CIQmkt5Xl+48aNQEb3798fbm1xRlprZ/R0NinycrS9ZUGHoXz++WcePnzonEvTNCtzqGshJee8qipELrm01g6Hw7rWQRQlSU8wDs6SdUjAGLtxc08wbrVx3AaBUAqUUo192S9dhRBScqWqbDqJ4zhN46qqANxsNtnb3T87O6vrOo7jUDrnjD9wOewnfrOFnEmSxGjjY5EAQCaColBbW/0gCLaFmx2fPXjw0t2v/74m2rr5+P4Tzyc7t/ZuP7O//5hxqNUUOXeAjpFgKDiC1eAMkRRCABIROSJE7oiMMsGVz87BZn/DVX1qacm8lH5pET3fh7kyKX7jc608va454Orp2xKwqeAqDUQEyJ0z/eHWzduPnZ0et3364ArWVU0OvUwkZ52j2nGEQAAhCA7GklIVIQckcmiJ0pClcaDrStXlqD9IwmA8Ph2Px8qSQxBSSGZDITmgtY5adxwjopTC7xcTEWNAFpRSvi+MMdYBOIoFBlwotIBA1gERCFcqbZDD3B6L3gD6qOA4EiNIJO8lYeG0CAMmuGNgmAFdpYHgnGuJFXODXuSc6Ue9LCuEM9u9GIBxBsSxLop+kkjOJec39rbTOM7zfHswYByqqrJGYSAQHDlDjvfSOIrFdJLpugKi/f19AMjz4ujh4Y0b++CoLqtbN24eHx8Ph0POOAMMA5HE22WRGV0Ph8Moim7s747H4zybJknCkIa99OHDTIaB01Xai3/0h374j/7oj8o8F+hCgWCqfHLyRp0//fRz3/jKl51zN27d1FUZh4ysjuPQlHUchTgazbJJXdf+0gpE3NoavPHGne3RHmPs5OTk1q1bjz+2++qrr77/33oPE8HZZHpycrZ/4xbieGd7u6qKXq93dnY2m82efnrnB37w+x8cHPJAHh4d7e/vn5ycbI+GR8dHe7v7nPPDw4M0TYwxXMqIIkS01kopq0ohgyTqT7NZP01PT+/1kkhrnSRJNp0Q2CSNOAOjdF5nRLaXREkUCabyPHdG+T23JAoAwBnFkfmgarAY+/48+Hg8ds4lSSKlqE3BGOOcOzLeNh0EQtV1URRVZfpJsLU1mk1mlkAE4uBoxhDOTk72t4fbg35hZVbkB/funhwdh3GMPNzZvfH0U89uv+sHBZfIOYI0CNoaciB54IyGxa0vfpXmiwZ7DeewS0IwrBoHrzsmqOuvZaF7hB2bc6pW/thcxaRGoGMLNtd0ralUCGGtIyLkcjDaev8P/0jU67cxX41SRsAMkANgAFz4FQ8DACGFdtY4K6V0zmlTM4AoCCdn42w6G/UHg8Fgks1OT8+QMxSccyaQScZ9CCattbGECFJwH7PT8wEiaq3RQRgKozQQBEJIxtMoYBwiGZC1PtYTWXIOtLbGgvVXr/hGWPTGo4lEchQhbKXp7f3dxx+7eWtvZxgnO8Phk7dvS6R+HII1gzjuR5EEEOCGaTpM45ixNAzSOCStTFVm2bTfTzmDqsxHvZQ5y8kJIKsVA9oeDZHcU089wRgwBtbqrcHw5v6u1XWSRFpVt2/diMKglyZpEo2GfcFxOOjt7mwBWSnY9tYQyaZx+Pjtm+DMg3t3jKp6STTsp297/tl+L0nicHJ2sr+7HXImOXtw7y46u7s10lUWh4HkrJhNb+xtCeam40kvCpJAlJNxLwqefebJ6bQqimK0PZjlU21VlIQi4MroaTbrD3u6LkeDxJFBRMFRqypOQiHZnTt3BsPe008+wRhjSF54Flk+ORtvDUd1WaiqnE3Gzz/3zMP796RgvTTe3dnKsmx7ODo+fDga9LOsNMZYrcs88wEytFIcWRTIJIrDUHKELMv6aQyOwFlVlXEYOWM5su3tkTGql0SCMc75ZHLmZ/04jsNWWDOtta5rBhDHcVEUk8nEjzUhBGcsTZI4CpyxldKVqvOyGE/maiDH+XUOAGCIlLWIaLRjMgQpIQiPcnjzJHvhzumkLIGJJAoi7vqcBkxN77z8pd/6ld/5p//NV37zV49e+jovznpoI84l4wg8jUKBgM4iEhBppfxO2lo7WOcQhQ4ZtPSyGfYbdnba/7Z/bobO7Zcr1+HqiTdg3iyRnXNCSGBorHvnu9/7Az/4w2xxL1V7ob1a+rkY5gDgrLMEIKUIggCQlHKMAUMioiiKGGNKW2cpCaTWuq5sr9cb7WzXRmdZQYDGUhRFHFBr5ZxFBOdsbbRdzIrOOWNd416jtWUM4yBERgSAbH7XChL4q+z8PU0IIHwwdza/AOtardrR1g4B0gCYM1pV5FQkeBJIiU4ApUl0enJEzhZ5FkXRZDI5Ozs7OzkNZSA4c9pIgCiQRDaKAqtrXZcMnCMznY0FR2d1EoTbgyFHrIrCKBUIEQXBcDg8PTnWteKcG1WNT4+n41MiG8dhXeZIFsmOT49v7O2U+czqOo3DMJRKVcao27dv9npJXZe9XsI5FkUhGd8ZbQEAWZfneZxEN2/deHBwh0A/8cRj/TTmSFEgIhmM+oMiz27s7wJZwYlMHQn+3FN7+WSyvTXc2h4OR30pJaC7ffvmcDhQxlht0jjZ2dp2VodS9JLYqPqxWzeB3PjkVEo5GvTHp2ehFNujwfve+27BgIG7ub9b5jkDuHfnzfe+513DfhqGYZIkuztbguP+7t7Dhw9/4AffV1QFY2iM4UCh4D4eVyilZNxUVSA4J5eGQS+JelHUS+M4CkajAeeYTadFlmXZNAwlWZNEcVnm1moAJwSTkvvzRdZq51xRFFZryXkUBD7GklIKwE0ms6OjE611FEUAzDkYDJJAhOCwqipyGAZxmsRa65OTcV7WPpRDGMlKmxpgWtPMsHo2AVuNhr0wCh4cPjw6PTNMlAamr33t5S/8s9/7x3/vd/7Bp7/0zz5z8LV/rQ7f0KcHk/Gpn+Gsrp1WYSgDyasyb69xL4XzlXI7Cy5WrBtkxOqnrmVm53hZEa+PMuo6gK1FdbGsNpVtYpbonwfRYwgOy1qnSfyu93zf1//o9/I8b9sENk8q/tgyABCAJescBwDOIIkjpTUAxHE8meWIEAaSIRal3tnq7+3tKWUePjwqtQ0DDpyDAeccEjHOEFFZo838koZmP6e5tphzjGRgjGEEHEAgc8bURP1e4rQxDngknLEAEASBspoeeQt5FRhD6wZpQlodHtzVWvfTAVioreGcV9porbXJer2eD6glw0QbG4aR1pk1RiEqa6rCbu2Fk9ksCoI0TauqUlUdh5FzrqoKIXpa6WG/p4yOoqAsc855Eqda6ygIlVKj0QAAhv3YOauU4pzXdTUYDGazyc7OVlVVjEE/7fV6vaOjI8H43s7u0dHR6fHJ7vbOK6++JoQoiiJJkjAMg1B63aes6jAMPbY0TZVSOzs74/FY2yqNw9Ggt7ezfXR0lI3PnnziiW9OXnCqDhHDfu+xmzfu3zsgZJKLWEoRDQGAI3vqyccP7t2viuzpJx+/d+/eY7dv3Lv3oKqqKIo4EpI9OTq0Sj//7HPf/va30yhOklgZbbQqiywKZJ7PoiB8/PZjr7zyShAHZV1MJpPBYBCiP3xNSRwjwPhs2h/0rCVVZ3EUhEFUVdVgMKjKPA3TLMvqsrTGKKWSJEKC0WD45ptv9vqpv23C17e5hgUAwBkuuJR8MOhprSfZDNCFUViW5e7uAACqyt/xZYEYQ6esFkL4K//qWiNywYNAslorUs7UZW/Qj2ViEU/H2awobRFsaT7NpozrdNhzzszqo3AQPT58MptNdFnos3sH02PSmdOlIsFHNwajURiGxlkpwygOOBdItnVRwiPtorTVug3bApfCVdS09i4KPNKectfO9XrbX4dvIyx2hLvkmhCiVioUIkmS6WzmrS11XftoCBukYQNe6HCOZEkbMlzFQsRRmKYxFMicY4yVZR2Hot/vTSaT/f2tXq93djY5Pj4xBIKjQwyEqIuaLAnJpZQM0BhyBDKUNMfPvdXGB/uUUgZCnk5mACAFC8NQVZVSZjQaTU7PEEFKWWvjvAA1ysw743sxF563LAAkUZwmwhgwgQwlr+oqiuMsy0Qg4ziulVFGV7XinDtwWuuyqoqiiONYBgFV5dYWr+rCkUGUVVVUVZXGCWNQluWw1y+znDEGUiBBls1XhQKZAyy18kH8g1DWdSWEiMNoOp3GcRwIOZvN+v0+EmTTWRSHs2za66dVVQHA1vYoLzIh+e72TlmWs9mMMViER9UEoLWKon4Uhf5QxPj0LIlSyYMwpCzLtoYDVZUcIUriqigGvX4xmTmtZ1WNxtV5tr27B/1BXdXJMBkOh2+++ebWsH/79u37d+9NJ2NVV5LxfhLP8gwckTVFpuMwOD05VkptDYbGx+PQJg6jMsuIYRz1xuMxEW1vbxORlHKwvVWUpdM2DMMsm/aStJ/2JmfTNE6UUluDHWWccy6Jh3EcZ5OTqkKO83Hh9397SeqcI3ALY1/gI7T7QOXz6/Sw9oOCFoEOwzD0mydRHFSlIqIkSchhWVZK6SSOELEsFRFyTkEQaG2tVTIMwtCFkqHKa+UYx91+lNfqYaaK4nQYswSlnpiYx1GwAwX/dnE2SoLd3Rv5+PT45Cwcj3cewyjp7dy8ked5kSkZRsqWWTaVYTQcDq2xV98NFI0O6Aezcz4Ii3Ek56a9hQSZhy7ny5cW4uIBGhnU0hZXozkuCnJeBfVK3LknkE/c8qz2ZLRj6q5VVBfi1S70O7b0vlnRXtBGF9lhURFcuEBeoNnZgDFyzhEiTx5/5l1/+t/+87/6q78KhngYmqqExXneLjGCIBkiQ1KgOcOyptt7yY1B+srhkYwSLqKiUuhgf2dQlbUQLJW8ymYnJ2NiSA6CJHXOVbV2wkUMA2fRCiVRASSBFNrWCArAaR0iRUSuKIa9fqZ1rmomEACCOCrLEp27fWOrzqcH+UwSipoy7TiARGIECs7lYLuVNgl6JoE0A6D53QjMdyY5fHI3HYYajQIQDsJSm/4wOptWSZIAACMdJiEKaYwpy5IzBmTHZ8dhGDLGq7IgYzhjAUG/16+qKoxjJiRp7ZQapmk2m3nzU1/2tdKqruPhMDsdz5AGg4FgyBirSyXjyDJulK6N3R4Ni6JwRpM1gmGhFVkrMC7LkoQlYznnjMBpU+UFEkikva0h59w78extbeV5zq1FrZ3WIgjLotgaDLNsiojMmiAMJWfAwzzPJWe9KJgyxzja2qi6zoAGvVQi9WIWSckZRpwP03hycrK/v18V+d7W8PEbN7JZqZXrRalWOg7D2WxmudjZ3SNjyJg0TYx1syLfSWNbOgBWZTlaB84V2TRKeqEM6rzY7vfy2TQMOUAShlLXdRIJzowUDhwFDPKycIj1dLzd73POlavBIrPEHeuJsBeEpHUcyLourYFZWXnXBbBWAFCta6V4GGitGaAz1jgL1lnrQikTJpkDjiQDruuKiPpJyCDIVWENMca0MWVlsayk5CLgQjCtbVYpInAGbE2cl2HARgCZhcPcpdpuC8mwKuupAreTjKpxOWMkkzSx7sGd14/uvvnUE09DfhoOttP9G8FwoFFAWXJrmbIqSpkxoOtEkLywv+wvgfdSZX7QtlM3PH/uXl12QVsv61piM8ao7d3iyCEQEYMLlse1GNrAFzGNF8nmOzOXReG9BqzVPd/9fd+vjf2Xv/5rqsiFYNY4f4lt2xG6DQzJElkDHJlwbn8UI2fjstoZbZ3lhVJVWZZpwgUypVQaxyII7x4c7+zuHhweR0kIZPO8FBwQUYSSrKmNhhIkMHAk40BpQmvAEUOIQrn9+GOloXv37gN6txvwd04lScI5L7Jccs6M8zEQ01gQURCEoNYTvwnmc49/Zoso2U6A40CCIXOWMxJCkrV1XUdRAADWWsGRiwARTW1MrYMk8u+NMX7XNY7jIAjKuorjuJekVVWVxiRJwpFxZEkSw/xuELu4TVAHgSzL3BkNzhE5cJasQXIMyBlb5gUCqKou82LGheCcAYIjyUWe5bu7u3mel1UhhLDacI7GGADR6yVFkSmlsmw6GAyILOfcWgvOSin9xpdzLq8KHoXZdBKGYRwGHOHs5HjQS+u6lJITiTCUZVky5vmZimzWi6LJ2Wmv1zs8ePDk448huDzPhqPdYGuktSZnBWeBFM4awQPGkawmJ7XScRiQ1lEYBEHAHE6cqcvKM54liuOYLO3v72dZNp1OwbkkSYbDYSBkmRc8CoQQaZoKZJPJpCgK7wAoGPSGw9l0zBnLsiwvizhNSNfGaiRntSK/UQuIiIwhOvJjFhGRAAkckLUWQzDG1HXtnEMGEgXn3BkbhqEVlqFA5ESEnPmmmExmABAEIoliIYTWWilF1o5GCZW1rW1dm6kDTKJeFKUh1tOKSSzLsiislPLGjb0yK19//dWD2YmQ8a3Hn3vm+XcNdm6hDJ3guVWD3GAoS+kKjsD4Zl6+IA3XbALAueOeV9+6lM6udfHaXdr5uvjigowRuMVKebM03GCabGfs2va57k7T2rwGw/f/6J85Ozn9wu/+FieHgmnj6rrzNiVHBlAAoWAscm4rkcTZSaGEnmWFeeKZZ1977bWsoO0RDYdDLqLj0zMhg7PJeDQaMMZOTsdpKMiZYW9kQSMPuHbltBzwQKGZVZW2jIFLJL7tiVtgzNl4fJKXFiAAEP7uC6Ul53EcI/CsKDXBVpKaWgkOxhgZhoWqrt4OLTCNeyIga6bZBCFiDsjf50uckwM02jmo/P1WFshZ7ZxDcEksQDJA5iwYYwBM09RWqxooSZI4CqQYpGk6nU5rZb0Ni3H0tnNyfOHIVvvrowCAM+ZVfs5YIHlZllJKzngcBQyJMyiLgnO01grByM9WRgnBjLGMBWEYGjN3lxuNRnVd53mO4Jy1ML/D2pJFa+bh9U9OTkajkdZ6e3v74cOH3mrBGIuCUFW1vwZr2B9orU9OTnppbE319rc9Vxflvft3XJreuHFjOj6t8yljrK4qsHa0Mxokob8hZ3dnNM0zyVmpqzSO6irXxtmqMsZprVkEwyQRYTCbzazWVVXV5YwxNuglSK7IZlJKI3gUBVVe+BugwiQJgsAs7mKs6lzVRRAEVht/latRWsiA7Pxwp3OOi7m4kGFglEYGApEx5MiRQeNzxsgxBEDgjAMQOGutdtY56wgJ0ZjFtVZa0+7uqCzLqqqnasY5E4wBAGOMhzTCgJGaKjvVps5zEL3tINE2C8PQOAdIrq6MVoGQg2Gvprw6O3v9+OHhC9/Yuf3009/3g1vPPFczyLQJJeOMo2Wuc+U2B7E0yL1k8BLlKvshSzJrSfZ1ZW9b2by+6dPzltM0tbz/NhDQXI22SDa/TMdv4q4rGwGW7GK+zp01XVsLEfetrd/57vcc3nvj1e++4l8GYajqsrNYJGCCbLU3CNNQTrQ9rWqZm/e8923feek1ZWh/q2+U3r15640375a1ckAAGMfx4eHDNAqMVqNRH7Q7nmZBDGkYEdEgjirmstksYEGasl6ITlUnR6dBMmBCkNFCLNwGHKBAIipVrQw4gFCKaVnKQOjKOOm0tcCuHfN/xaZAiCgRb/Qx4GC1cc7661aJLCCQsc454v5WE+ecQ87jOKwMcWTInJczdn7lecUYK/K8riq/525qxQjCYL5nIoTggEEgGTmlaoxC74PpiABAMu5VGCCytk6jMEkSxpipK12VLAyHvTQrKyLa3d0dj8dhGEIUeeUnjqIsy/y1AWmSMMS6qsLBQCvLGIuiEAAsAwASnDjnUgTWBM7qKAzqqkiTKMuyQCYATnCMQtnvJVmWaVUh4qCfSgSnagwDo8vnn35qNpv14+iJWzdmsywIxLA3UkqFAvK87MVSCKHqUiKEHCKJgUBdWkaGA5WqAmCqypExo1VV5CkgaJ0XRRiGURQZa8g55EKVlbU2CgNrrVI6kEIKzhC01llWSsnzshR84MMlpFFcawWOJIIQXDuwlrzIc85xQgSHRAiIBAwROfPaklE15zwUHEAactZaQBKSWwsIwBlHRDH3ggOt9WQ69rcNhUJ6pVspbQzE0oRMDkJpHI6tqRwdTjKT1zvbA0cmz7MwkgKxrmsZcyYYMxhEQcQEmfreq998cHzwzsmffN+P/qk83WKAVtuAcXKXxB+5UuxruM5O8UrGJtfSPsP5TdtwUW1c2pG4ym7MdQiaC/3Wpsql9Vqz6q5rLRnt37z92JPPvP7Gq9Y6wYXqWCYDAJdgtUVHg0Du724LDmdHD5Vy735q3zmXKzPsJ71er6qL6XR6Os17g5RzTgRaa22BkeolAUcSQkYSuGCCYSI4ABVFQQBRKE2ZIzIIhXGga1Uq1UtCUMYYiwiB5FIIv/MDCIKB1YZzXlW6lwqta8EY0PXtC+e9x/1Zcwku4bDbT9Eqa0kgI2dMbRhjwFnai+u61soQ+rvPGZGzWiMgAyJExhjnwAitIWOMMS6QXGsdBEFVVcUsC8NQCOGZxHux+Z9VVXHOwyBwVs/nSHDOanLGOcc5RqGsq4IxBmS9i18vjadTFYYhOgvWxEGPAxlj4igqy9w5E0WBtZqI1XVJZMNQ6grJWBExIuKCMUDnUEqpjL51Y288HldFliRJGof5bJJEgRCiriuyOg6l1bKqCkRMkuTm7s7h4WGZT/e2tsqyRKKqzPLpdDTcKssyDkMkslrXZemjUUyn46TfExySMNRaSyRkEAVSMO4jU2hlK1WhswjEEHppAgAMwVljrYVAamWMMVHYA0CtnTHK7xd7j5lBP/WRvoIgILBFmfX7/SKvJAMhGCe0DIEzrbUhAnQciCM4JCALgBwRGRCRtQYZIQFjwAAtZ1JIvysNfKHvW0cIDLlDtru15U+5eNVScjHo9aWU0+KQW5SBsFxqo/Ja1ZpOjQqLIo4jLoVzziFyzr3/WZr0lNXjKucc4jgqs5Ov/u5v3PvON9/5/j93+7ln0+3tzOlaX+KJvWlPeXn3Y/7fmpXvUvqrmPwEMocXNMr5fuZi16W9BbxKTHs5fL4tA4A4vzp2rd0QER9BpK8VuFEowSDK6Ed/7M8i4ud+57M+cmpX+CvrgBOE4J6+fcMBG+flOHP7O8n+/u7v/OG3H9vfBi4ePHhw89b+8dkpAsRRkOXl/v7+3bt3e1HAGWxtbem6Ojg+HgyiMGKhjIJ0lBXKVbA16uWns1TAaDgkIkNolCUHEUcjBJCTUkrJPVPmlWIAg15olbZaIwPOeSzCKqseYSu56TkCAiAOLuUwjCDmUBtHyFFINMoZRSS8+ZKImECA+cXHzjkHyGVAROgcITAmOIJhBg1VlYtjYZWa96/gDmGSzSIpfHWaO17Qh2vkaEyz7TYP6sM5BkGAiEVRSCm9mnl2dnZ2dsYZRKE8Oz3u9/ucgbOaIQSST6ZFr9cTQsxmMzMfqKzMZ700rqqKnNFaRzJgnIgsOARnndG9JJ4aLTlDcoNemk0no9HIaoXksukEAHpJbIyxWp0cHfXTdDzW1pg0ibSq6rLyN73UVVHwefiWMBAILpvN4jiUDFVZcQADLgplXYNVijEUDIMo1JICpXQgmXdhRe63gxlgURQ+RG4QBGVRBIH3OHRlUQCiD/dtauWnEN9BnKPTKg45OeIMGONOersh96FAeBIhorcV+mWc86FeJCcL1ikCfyYEGZB1No0jP0611uAsASEQIyjLwrvKAjljjHKuVhXnPA5DLgSyADTVWaU0OQDk8nBc7gIMkh6Q1nXpzywEgXCWD4aDPJpNZjNydRgGOsuOXn/p4M7LyWj05Nvf854f/lM7+09uZuZO3dDvIDdD+5E9LjYY+BhdCGSLizMqTYLNGK5FAGKD0C3wz78vEl7vZlQ1m8ZxbAAdBju3nnj86ece3nvTXw2xHqwMUT+9E+4N41fuPJwWigE8tbt17+BBHMCsyKta93pppZS2lPaSuq7TJHr48KGUspekWlV7e3vf+c53pISdfi8JeaVMXlcH47PKAh9nT92+mZ0eENm8diyIiqKUALf3tt68eyKljGRgrbbOOTffSQsE10VtAYQAXSuehuaRVsre3rtoQYo5DCLYiYUzhgiQSeCcNCEBgnMOZ1ntQ+0TkZ57o4NXUHCxa+ecaa4AHm3HzjnryHsUJ0kCjjhHC8QZ1kYjokMw1sgoBES1OKHlbz20xnDOueBKVVLy4bDvpWpdl4jknImixFvufVQCf5KnLEt/Y0yWZUmSOOeqqtJaCyHiUUzGhkKS1cgICcE5cM4Zo6wFgJv7+8fHx/1+PxDi9PhYck5Ew8GgKAoiwihii5uPTk5O4ijSWvsgZpEMyFir9CDt+WuyZ7MZI9BVHXDBGZRlWdd1HKcCGWPMSaeUQodFXjIUROAIOWdENpCcgFlrdG0FY2EkrbWcAZD11gMyFrw12Rhv3NS10takaVqqEpGlUVxWeT/tVYq0NQFKBDDaOGs5Y+RIRtzv6fubl8l7vCICE8SJIyGis2CcMpYcUaF8v/i1IEkeIHLHbG2tt+0yxoIg4IvzCk4bx5wITT8UTnHL9NSBFUHK3WxWOmPSKAiCwFpjnYviuMiy05NMBGJ7kDqjrTJBJMJBUDkDOn/tS58//s63nnnn9737/yg3sfLat2u1oevuNnS9X+z5OiJidK4D4sIdZ61A7JKJ57bbxXE0avkhr83R8dcJ1ILmZT8JVV0yEYTp4Jnn3/6jf/JP3bp1S27Ys+JhyOHmVs/pYpzluXK7o2QUhVmWIZ/7CXIpJrMpEUVJHAheVYWq60DI8Xh869atu3fuzwqzf/NGIHnCJBj94PissNAb9JBwfHqYpvHW1tbhUTYuSo4yjUNVzCqlfNTYoqjLSgMAXzjQFdomYagUcM6n0yles4s9IBMAzJ+HDARLAhyEoh9yYxUREePk0DpABM4RAPxpQqVUbTQC8xZ9pUxV1Vpra+fXljtjnTNe6dBaR7FMe6m/rigrCi8r/YY40Tz2sh+cSik/Pv2ZRaXU4rw28x6FjYtov98XQoSS57NJL4mqIstnEyRLVhfZdHI2RgKrDVmna9VPe/2054wtZllVVQTWWmuUrutKKUXOcURwjgFMzs7SOJ6Ox2QtR0zTJMtmeZ4Zo4XgdV1NJuO6rqqqKsvSN0VZllrr4+Njf2u7EGI6nWZZ5u/t8tvrvqZBEAghjDGTycSbUKMoAEcITgguBZOM66p22vh9XquNtdbUKs9zH40GkYoiy7IpWNPrJYNBr5fGYSSjKNnb2QeAKIqSJFG6igKpde1L9ICIkvFQyFBIqzVZO9/Ut9YZ64z1h/YYY1EUJVHMxdzqxRkTyBbrNpCcScG8R0AYBF6pn58R4NwrxaRoNiumsylDfXtr8NhWPxRcqVpGsXVz3wPngDHu86Z9gc4Kq2MHkngSxTwJj4ucu0TwOOonJOsXvv2vNzPzGt3QSxPDLq6x/VZv22t6IRmaxWxrA8Q1/oJLQqzJ5tC118LzJZejRkC3R2b7eWXJfK5QrhWY3jIC50rieolF3SaztTKiJmJRpI2TAQcmbj3x7J/7ifj3//XnXvjOtyQAIzAAFoFHoa3qAOSQsnc+/3icDl97402jYKcPP/r977n/2utZ6WoFjPRoZ5dxPikmb3/qptX1qeNE+MwTt21dPbbdr8Yn5XTy3O3dp2/vzcriK6/ePcsdJ7gRQpbltRg+1it2H3/yS996sQbY6skAIJS8VgQAOzs7R6enTkqldWAtOEgDVhckwmBc11uxiIiS7eH9syl033517g+61G7OMObSQAhjHhtFIQPGXI2MAVhr63KCURjGUamwUMo566N3AiI5p4zy05iUHIQsy4pzxjlHYMZYpYwQjAxFMrJW18XcqTOJEiBQ2mid+VkkDsLCWF2XaZqe5JSEEogZq8FRFEjOORitrE2SxGpttSZrOOemqoxSNWN+a8Wrfn4p7WNWWmvTNM2yzAsg7zVyfHY67PWPD48CIYMkkUE0qSe10UWWK6X29vb8HYSj0ejk5CRNUyIIgjDP80GvXxVlHMciibLpZHt7l5zTVVmWeRzsqSqTgk8nxxwYWtmLgkrXg35cFDNgqGaFNWiMtdZWlUJELyXruq6Vi5NeWZbIyAFUZSYDoVQtiJwzCK4qbZqmQSCcc2U2c9YSQBzHBFYwNkjSs5OTgPNBP+USBXJELKoSEIxS/eEWRzLGCAZ5njNES/PrCRkXtdYckeP8EiAeBjHnVVGRVsq5IIjIul4S+aW0YU5y78ROtdZQ2yAI0jS2RjkkhwRADK3fXCCiZCuOXVhVxXQyy4OKp9GuJTu2k6oOo7DSypkanEEk4IyF3JY6jAQAO5vlURTKIDC1vjXasY401HlRpdAHey7uXn/h6+wn/gw4QkTiRNYCwyvFN1wVCq096IX/zVvk4HeperJCxvXi1H+P6+42CMaBE0MRBJFEEHv7z7/tnePp2dnDh4IwFsJKmOWVILi1298TejAYHI3HD05mIcB7n3nbbJa/cnBUGUj6yfGkCOKyKKxkYJExGZ/ev3trb5jPpvvb26ouT4/G+7d20zQ9efjg5eNsUigkIMCDOugF9AQf33ji7d988WUHEEomGEdyPrJRLw1ns1mtLYDtxWFZ1omEXhKfnuWIEAAEDISzzFrhAx90dONqqyEAgnewYINB78Yg5XWRj8+kBGI8Qs4YOQTtyBpNDgiQgJoowufzonMAYPXcOckYh0iMMSEY59JaOw+hC44IvLmdCINA0OLCA2UNgVXKAuRxIL22AugQ0d8h6EspyxK89wYyrbV1lkvhl8be5muM8bcmAICPn2iM8eF/vAbq05xNJ2kUG2eV0UVVEkETGXA2m3nrm5ehXvULgsAYTUQeudYqSmKvQxFDxoRSyldEcuHPDmpnp9OpEIIJjgRlWZLj/lB8s/qZV1/XAExw7ukUjHsC5oZCGRDVWuu6rpngMuCkaLi9lWUZWWOJkbW3b91yWmlH5GwgedrvDamvtD05Oc2mYxEEWmsppV9/AVGttbdITqfTreFwOBxOpxOlFFg7nkxGg1FVVUSkVOWP9nuXTEFkLfl9m0BIb3A0xvg7Hrw+6JeMWmtjLQdELkQUOt8IMsQ+E5Ddn2nGRByHYHReWiEgCDGfZTu9gd+SRh/IDlEIZq0uqjqMSCAopaB12Zlb4Wiky/aUV6Ve+1P75+qZk/kouq7Hxsq9MGuLa+2uXAv9o8DaKYGsdcit9xdxFgCDqHf7iWd+SLA3X3nlje++kuczqGEYQMQwcPWTe7fGZf7iq/du3+o9s3075vI7r373rIZBL1XabA0iZ5RROkpCQ3Dv3v3tnrCqHPR745OHulajYfjs049PZrNvv3aSWyAHjIGFSIZpYI5/6Pmdr7xx76RwQrDd3d1QwPjwkIQPoS6MdRwAGXDEREIaSh9WIK8qBpCEnFsiq43Z2FfnGvziAA8gRyRnHUAgxI0bN8qTQ11kUcwsWeMcIXPkauXFHDMOiMARsHmgXO/IheADRpAjAiLU2iJCEISI3DlHfmeMISJD8BicsyCAI4C1ljEG4JIk8e7lMuB1XWtjGEPOpCECa4khA3DWIQHnhIi0iHlknEMia20QBLVSQghjrQOQMmxW2UQ0X8oxBgyVUr04Qc6rqvL3kdrKOVN71TIMQ295nEdCresgCOpaeWFXlqU/IFyXmZcCDmEymdR1LaUM+oGyTjtCZZQy2rgoihhDo52XI2Jxc4MnzFobcG7IhGHsF+xRHFZ1zTknxqx1pjKOXBIJIZi15PfWnarR6jRNw0hKzgSCE8zWmhwBWVWVzoElJznXiERojCOaXzbLGFqrEaGsK865UirPc0+VBeqlqeTcMOYYU0oBMFObIAr91j8D8POBD7EDAEIEdV359QFr3SLPOTe1EhwFQ+ScAMDqnoCgn5Q6y3NjnEvT1BhDTgM4slTXOo4FWccYs07bWnNk1rkoCBCVlDxksTOqYedFzGsC72ZC89gll8CSGKJ154JpJXo+dJwLvhS69o7XlvgIit4GhFfMO/+XMcm4Zd7pWACBEHJr78aTzzz73LPvPHl4/97rrxzef7OanUpw/Tg6nYw1hxvbcndrxCW7f/jwdFrsbMeVxlqrQRidnuk0wa2drapWBnCrnyZh4IwJ08QIIcJAKfWd73z30ISS6ohBSZIjDc3xj37fc68dPLh/WkShrJSZTqeurgRAEDARhONJEQSBn4FNVfXSIBAoGDok7SDi0EtiU5Rn07qy3sq9Ucdv+SP5E/yDKNLWnJ2cHiaxLWaOiIDVug6BIaIjZowlAsaIEB0Rd8zfOOgcIS52t4g1gSd8P/iFKgBwIXxf+71ja72eiN6fRlsXeZNrFHkNkAFxjkTcOaedBWAeowAKw5DQVkpLAq+eaFUHQURE1pJSxlry51SdA6/6ISKXgglORMDQATHGSPCirqIomhV5GsfGGCaEqipgzF9Jg5wbra1Syhjv/eOcc44M+mpZ55wMAu/Oba1OkiTpD6qqmIxnQoiyqgCAce6VViLinDeX1tLCrwgWajUjcFrNfZ6tE4BAYIik4ATcWuuMcc4yxDCU6NCaejTsh0IKwRhjRT5L05iTs0BScoakrTfJMSSqtVJG27o2zvpor2VZB4Ho9ZLeduq904XgQggC4pwzhnEcCyHKuva2BWcsZ8ySQ0TBEQCJuBfuUjDOokZQCGRcoD8Hnc0KROScMW+XQ2AcQxm8/Yn9uwdH45mray3CQBAyUta6ulJBEHAukyRxZKoi5wKsJYlgyd8TyYkFy8y88D/2cFV/wzYsCcT2wmdVplzfMH/JirtVxLVN/htg1TKw+vVCrZ0PN+19nrhjAARh1Ht4OgMRPvHs2xhCP5RnB6FES86A05Pjky0mz+4+MDvbFaMgCbjDySy7ubc1Pj0LJdy4cQOFuHPn7u72lgSdBLJQVX8woDghIf7oa982FkiExmgGbhDBEKr3v+OpB2fjbz4ohEDjYDQaqSJjAM888/jx2enZOHeAda0YQwTHOHAEKWUchW8cnRBAnIZCiMqY2ngHmQDc9U6kkHUMsKxdUdWjtE+CGZ0bDTIAhpwxQiQHjoCR84Fs0R8PcUDkiDFkSIDAuTSm9vLR345kNDGGyBwREbdNCDVnARGMntuJHZBRlnNtjLFWYxRIKZnAutZOa0deujnHAK0hImMckCWH1mlrHSfnnGOCG2tFIP2zc84p6yxIKRDQGkJEcmi0Y4wBQlGV2hrjqFKK6loIwYQwzhFiXpbzFbFSUkomRK21F1vGWC64P+JSVRVjjHHuiKpaE5HWVkqpnbWqJqK5wmWt31dhUhCRQwAg7azfFwL+/6PtT3ol27L0QGyttZvTWnvb5+6vj4bJZDLZZVJJFSWIAgENVAWhqlDzmgkQoJEmmujHaCBoJAEloChChFAqkEkms2FkZGZkxot4rXfXb2P96XazlgbbzPx6+yKCrA17/uweO3bs2LF91l7Nt75vby6TK0pEw9AlYresKEXEOYcAHL0Is4giGOX5qK4nk8lms+n7FpGUQmMM5uKcYxHvPcSD4w6IymiLGCMDRWGjrclAGxNj7Ia+Kkqj1GazZua0PKR6d4whM6bve2t1ukcKm3vvOURUZEiRzVLJJV0ZjURKMQQexA+OiEQRg3hhRZhkbBEQkCoFD06nMSxudn3uh+lkZBXFMLjWbzYbo3SWzaw2XikSDiGIUkVpUBnxgvp7cCPfbw1/LRfvre7hrzVeM7XvqZ/8J/E9X/ug+1Xsd72URgSRPVvQXrXd+wDIVV74AHebFSmFIh89enh79exufedjyIzNCXObdRy+e7a8OJ32rcsJFCAznJyMy7J6/N23p5P8Ylafj/Ivv/zy0YOHXT9s+76aTE2Z+95lbteDyQr7qBh+74ef3Tb851/fqbwcZ0SkhqEbBv/h+ZiZlc4CdhyFAMqyana7cZlprZRSy/UmAKRV1/WdJj6ZaA7qunHw/nHv4kURBdA6l9opBdVoPBvWceh3xiTfz4PQMW0ngsn52jOkCQAgiICQiLAEH4BIEBEEIWHSRBQQcxQR1AiQdE2RSCkVEckohUCR4zB4RGGGphsSnJBBWBKWRTEzc+gHDwBGayHVuSEl8treAYC1NjAoVIFZIfrAexAPQowhZRVFRFgMGRAUVE3X13Xl9iLoPtmgBNNJtsw5b4yJUYbBxxhSKaYoCtJq8PuQXEQQwFqrtO4H79teW7TKCkuMkZEptTA6R8Ye04Xp3xSNRRAB8RxzZZUi76PWmhmsomEYfN+R0caYXJNzjkBAorUaOc7GI5dnt7e3ZPR2u83NXr/YO+cCDz4AKlTU9t2hsh9ExAWfFhM/DJk2XvvMmMRs5pyr8gIAUmXcWosiSmvvvfcDAO+JmDkpYohKaCAiZCEipZFAB3EogiIxBI8Y4z6AJiLACDH4bmeL+mRaBW6iyNA3rLDIbH1SNk0Tgu+HtirycV1aa4VjvxtIRVRIYu4Tzojsuevu96B9jzU8GoU3A+TXnKm3WqXfIJj9Xnv6G6BA/pOM185Em0wgmj2TIGuCoCBGUbFvduuuXc3rvNMkfee6bZlnz56u6vNTF4bCahvig0lmsuzbF6sH83pxuyiLzEe8u1tKCP/wd38bY1zd3f7w88+ur2+3XXd6+fDrZy8aJ+ueDcCoVuC2f+/3/v6Tx4//+tnCFkU3tKseTma16/rzSX4ym3/97TdNhC6AAshyWxTFdrMDQtJmcHGx9lWWu6GH6CjGKlOire/prhneWZOSN59KFKjzovcuxvj86tqKkO9jFGMNRC8iiTpIATEgcwQAH/amkAi0VqgoMsfIKAmFo2KMIaQ2ZEDEyBJZkCDReUQBYQEUAQwhWmtjZBEMnrMsAxW8uN552BPx7vNRRLp3Mel+pHIM71ltyXtHtFdK6Psejz25+zNJ6bl9+eLonwIhKhQEBlCIANT3ffLOjikj5tRzzUQEYOIBhyECzNJ1vTGmKJJaSGjbjpmLohAIRNpHzyzAnGVaBKOI2vNZ7EsNxwkZhQkwywwjMEelkSWQopTOK4pCa3LORUajsK4r1w+r1Wqw2Ww6rcpypXVIRafIqTYCqLTlfrl1wUVBRcY5p7UCAa1UDAKAwpgOHkLAPU8Et32X5zkBSuRUFUnAoFSvH7ouyzKl7TEHkqQeSCRwiDEiIKTri6iJ1AGVyYnJWCGACiGYzALwpMqttatds165ViDGmFsFwFqrrmn7thlVFbAkwHkfthDAolb3AIXpWTKFgpCEf9+ni/K9W9716rsq0b/KeKt39hvv9p43/keOIBwjG4XAESWCShQBAENvxF+czL7565/Gbre7uco1Xd3djEx5vbibX8ybvvfL7UcffPgX3z4ez3MIAQTOzs4i4G6z+OjDR5rjbnXddcN2u10sm4cff/jlV9/uAkedodZlYc/z8NkPP3yyav/4y7uz6RibDTM8Oh917TCt84uzs8XdjXPgBYqyAtchYt/3Waa8907roeuzDJQ14vpCYZ1b7bqmDxR1oWD3DnP4JsJGAASkHfogAgS9j86FWVmB0DA0VmlO9o8oESAjIjMMLnV2gFJgzL5C6j0YtacE77qOWYgoveoDhyBEQBQBIPh9sQUAhoEB3EEWBpQKzJxXhXPO+0gIhBBj5BgR0TkuCoOIIUSAgIgC0A9Dwqn6EIho6EOeWxEh0gAQAhBFrRO//X6EEKJwcNFmdrdrssyCABAGhtzoKMwgDALCyiAq6po+z3PY92DwEQ6ZZVmMMTVK6kNuVERSnJ7q1xL3+yulvPdHkSa4h8B13iFiWeZucDFGbSh23lqtVAYAITilMiIiBdEH1w+p9JEb+/z586oc5XkZQfKi8F3f9F273nbe5WUVhcMhlzH4EIVDYGN4GFKNK+QWttttbjOjVHC+LMu8LJxzzocYY1bkIqK1cs6ndWVf/4k+Rjleyb7v86KAA15YE0RBDsHHmGeZQiUIyIwACoiZkQGV8j4QsRK2JKfzgkm3bd91XZZls+m4a9rtets0Td92SuHJ9KTIMgAIHZN6ia7b28H7VguBRATwUG8WAgBCUAAJE5aIv/GNcUgM74XM30RNf6/Rue91HmPe43HeY+OOB7+/5/1zOxycATgRk7z1+HxvyAGwff/bvf/8IcRcG00KEZVSmTXdbhfabhX0qJwsv/7Kv3i6Xb2ADBv2zvs7t/v0wWm72y2HbTnNn9/5u4E+mpqbpv/wb/1wWoG/fQyhH/rtZvUMsuJiOu6Zz37w+Zd3u5suZjqvNI4snxgazx/81eP1T3/+RVbpm/V6NJ6NrY1tMwYim/3y+qZpfVZlToEGubichm7II2cSR3UG2GUUZsZI11uT6WK27rwjQANKcwYAmJwwIAStDu2PimRv/l4fJpMSABjE6rvl2otAZnUftM5EZFIV7EJhsxQ6eQ5ZprMMjAEkcD4450AwKwwL+hC7oQcSVDC4MAzQ9xCjCBKD6gdpB+4FotZiLWo0OTKwyXRe6qIyDIJKRc/BSUyt2MoCah+hd5EAOHjgeOTJTL81CznPXtAxMFEz+C5yF7mLMRJte972wSMOIo2Pm85vXfSgvWDTOKU0sPgYRSIQtr3zUUxW+CjbZvBRBh9F6QAIWjGpQGqIjEarzPYSA0jb9zFG770yWhk9eBeGPrghI40BmMEHBqUjIAAjSozBe8cQBdkF17tBKWW1CS6KYG7y0pZ1WXGQEJxzvTEGgTWIRTWuamLp3TAajZi5bVuWkOf27vqFIiAi3w8kPK2r2PejsjAomkREtKa0PEiEcV0Vmcmsjn0cVWNExRHq8TgrihBiCDErCmVM1/VN08bIDBBjbJomMG+bhgES3j7VgrLMCLMi0mSEVQwIQqgUKnJBQJMy2mQWQJwbEFlrNKhTO835fHYxGT86n85zOC0hBF6vu6vn1wxydnFSjsrRpCJN1zcvXO/9EMqRNeXLRhQjCZmBgoBCCaz+m1RR4BACvyvB964t7zpUevIrOoP3d34zfn9t5zffdTSX9yP93yAe11oTgXPeuX46ru9uF/PpfLvdjrWLu8Xds6+rXLkGgw+xD0VWj0oEzHn34sefPmjY/vnjby4mxd0uzKrs93/w4N/9xS+eNvAHPz7/7NOP/+Q//OTTC/3kbnCRvvyrL4PAfFyPyupmcVNNqpP5iaBarTYqU/P5fAGLptlluZ2O61k5/esnTyJKnheNHzKjh7ajk3xcZ1rT2I5IoXO9H+Dhg7PdYhmbzneDIlCFUSzSBgZShMyY4lHhA4nGu1CIAEiKMIJACAGUicIYPCnyfqirar3ejcbF3d22qIumbbUGFGLWcqAa4ghOYuyjVcC8X7KZEz8hi0CE/SoFhMziGbwPzgWLCChEKJEpFZoFicgFjlEEwIck7ZUGag1ECgAPi/gB7SjxUJ0AERAB4Ugk3nFSeD2kO1EYUrl5txtQIDPAEUQREbX9IAKIEkKIMYYgKepPup0HyCQoBD5MrRADIipCIpXyLcwcmLWiKMASBSSdLSImL21/sZMR531bMDN7EQI89mvLYSFPx1TH7SJaqflkcndzm2kzGo+HYeCUPG3bMisfPnzIHBbrVVEU27bL87ztu6bpRMBasdaiQAgOSYwxWu2bQLz4/ulTpVTio2yaxhgznU5TRJLyreP0WcwiEoKLMVWfKdXKU8pVIBIpYwygCsEjpnbHkHIPSYMgsgfIjkezVo/qURqgyru7m5ubm6bZOiUSgrL27OyMY4xu6Pu+advvVfD8Da0hvGrFfuPw81Vv7tc71Lti87ee530vEl41duklOvgM93d7z2AO3kdrLelq8DEryuV65Qc3Vttf/vwnl6ej7fUL37Wkszwvnj+9+dEnl475s8tT7MJfPr4dz/PS+HWff346/vKLn1/frCej0Y8+//jbL38xKosY8NtFu+39ZFoYpQtj1+u7s7MzL9FHef7iiQswGxXee9f708nEWjuEPjXbgsKu64BwXJd97G6vFifjSoIwi++9EhgCEKm7pvutC302Lm6XbWSa5Wrb0RARYVAKGQynpknhlFd51/VlBqM0hwACIjIMfZQ4yuwwNFTtL2pZKBS2Gkijd4wQj5S+UUA8C4MkNGG6kSUl1xgAjbWyV8hFJiSJDBAZ+iBEoA0KA6AkznYVY4IJIUGMksh7UkCgtIEULLCkimn6rfml9kQSdwUAEBZOiESkEJGBASIzcKQsM30YjAWblyAMogCR2fvImUIiJSxAEYkYcPBBawUAKX96iDwQgH0AFEGNqFSUfZ8JADiWtBzRgfElpftZEBN71gHBLnJPD2dfyY0xehBBxKGPWsNe/ljpBMbMsmy73RpjGKBtW2vtfDRKuhEJ7n57u9mtNyrL+74XUoMPxpgY2LtQlqXRKkavDaTzSsFpVVXRD4iYTGFd17vdbrvdJtBlNRp1Xeecq6rqGCDzQVsttUgTEQPHwIKklALEEDzsW9rS8kFIoDQCau+HmmoAUEqdnZ2dn18S0ez05A/+Z//khz/84ZMnT77+5qtf/PKXf/InfyIi19fXTdMgYlnlShvnXqKv32oxfnNreH+85mql8eaW+0Pt0T6A6e3Hf39lu3rfrr31c9/jdb7Lk31/kH5/GFIphaS17prhZDZZxWC0Wn39i4fnl1/91U8Mwmg0+fbp02HoT84mg5Br1uO6uL4d+s5V09z14bKen56Yf/vXz9q2+2/+N//kybNnX391d3ZuftaUd31QiE3T5Rp/63f/3tdff319/SIvyw3QejtMJqW1OgYvEcaTUiI7j+3QB47rrfvB6cQU2c8eX09yW2moyrzbDZFjDMEYk2fOBQaC0qC0W6WsKQoIO8UhzQeJAiQACoABNZEIh7e3PQK4IWYmJ2QmjsJt32uQSVGgwxhjWebeh/l8fnO7yLLMh4ElAAAwsAhHYCEirRSJBEDivYazCIIQiIACCDHGKDFxau9/LGAhAQBGIEnWM2GzQQHplPWLMYrWBEAs7H18Na+SFj85HJIAQA60OgjIJIiUuEqRBRGYIXgWCoyAoCODj7HvXWIiIAQQAiFCLUlM42BZ4XjOIMxhD7FEjCwuMCFTcipFlCLnOR0to9TYDZFZBBgIAZjloJ8uRISEqUpDSiFilGQlgUC0hrIsrLWKAFlijAlt4yQiousHjWSM2e12RmsEuDg/ZebVamWtbfreWts5LyIxcIyxbUGkKfIMMJDS3g91Xr28xYisMUVRpIafEMLJyUlahIwxqdM5USWljcesVMqEwtH9T3B6tS+mERmiVPja87YZozhIjD4G5wbcbDZJv1Qp8/zxd//0n/7Tf/7P//knHz38vd/7h//Vf/m/W65XIYQ//tP/8Itf/OLnP//rm5u7TL+MlN/q7vynsYa/wXgt9/fSSXzH/kcj9aZz99bxWirz+N7XjvPWQ/0qBpGZy7Js+46IrNW7zdoSXD1/YVnf3l4V5UQjP3n2lDRNyjoGd9d1p9YHM/vrmxcXkwLYm3w0N+rnzxbLXfd3Pp7RcPvs229mZ+r0sx//j//mFwBKJJxU4/OT0c+/+JvBeSJMzMl1nRulJbJCqgrcrjdJZen65lYyQgLvvcq0IcAYPvnk4bYZnB8QUSNF57Msa/3AEU7q2bC+9oMbjJpk8sH56IrddojtIIGDQBAgUFqSvwNv54YLAsfWciKKIiFEz4hKA6J3HlGlQoFzTgD281uEg6S8WGo1UYndhA99LnsjJT5wCOwZEvoN9uvlvkUhxMgJtKhS37uQEDJJ8gEBGBAFmWHgBIRKJ3BwuiCxKgIAC9C+AiIAKEAQo8TI6esRoQABSvBRKxWEnQtKaRc8M+S5VUZ8ZB8d7PUJRCnSWvvBIQIREikQCRyJUCtNAsxBACMICLIgCDCki55QJxgRWTgyMougpOMAA/MeT64UsYhNCsW8D3HSJNeIe4oHP8ChJs7MeZF3XaeUslmWJv9sNoMD28V4NAohbNrO5rlm0JFjH7IsQ3Qp5lWKsiwLAZfL7XRaa2sSmLwbhsAsMVprExnlMAx4T2wveociEpn2VXhWSiGT7CUgRSmFICGEZKaBBQUAk/jlXoRAEVGuk1JVqncBwHg8RsS/+slPbl5cbVbLyWxKWlWjSVmWk9H4v/6v/8vlcvmzn/3sj/7oj7788uv33NEi8p/MN/wVN765wxvm6R14QD6s6q9uj2/s/1qoe88dwPvW8E138lc555efGyOySvTL3vcgYXl7tV1cjyQ2TXc5O/3pn/+pturi4my3XU5GdQdFweqLZ7ei7Nm0vLm7y08n42nxr//66W89qv/eb//gi5/91ApcfvSD//effgXsiyqXQYo8dy7s+h6JyrIss/yu65gZUcqyuru5McYkBhcnYT6tN8FnMjy4vFhs1qNKP5idt7tms23bzisFZUZGky2Lu9Xdg/GYWUKEDy7OUNF6+WI0Cr/7g/OnLza7tgkMLsJiF4boQoT3rJpIECWwsDCIIlTaBb9uutqozjkODCDMjoiQURvFXSBAUMTCXjEEiCzAgUwCr+x/LDlE5xGiECgEVESoGfZpMWYE4ASXUYjCmJArEDmyFxEOgAjEDAQMoomYGfcUs8dWX1BAKeUIkD5QhBCJlEqpU0RKjmFClyIQAmFwUcSX1pgsH4ZBELrB8z2qnhAhCjNEMoYEiAgVxhhDjCSIRF5i3Hu+IoSMwCIQBNCQQqX2jYrMGCK6KABChEqJAkythYElSgAGxAAJ98MCBBoRABLcR0RijMhirVVKaaWWzVZEnA/OhdlsQkSaVFVVL26u7+5uR6MxItZ1vW761rkoAAgphA8hEGoNuu/7vndlYYwxXdd1XWe1yrJMKWWsnYxGfd8vFosECE/6RF3XjaoyVSzT9U9eIZIkILcIISJECSGkNIbWRkSCj5glsqIEX+fcoo+xLMvUiynMg3PL5fJsMgGAf/2v/3VW5G3bjqeT/+1/8V/Udbm6vanq6rd/68dVkX3y4ScAX73npv6Pyhu+Zs5+rfHr+nrv3+e1PCC8N1EI35egfFfP9f1hre2dI6380HMMtdUbDh9dnDz75m/qkfmLv/xTgSAM6+VqXNlH5+fPnz3LJg+++4ufTqfZcrvNTfXxww9++sVP0bl//Hd/95sv/ub2bviHv/f3/h//w09aMWelXrm2tlqB3C7WtqjXu+2oshB8jF6in03OAcC5aK0uq7JtW4XGed+5IUYIIey2a63V82fPJhmAtsoAImqtM2N1bgYvD6cCIBGhb7emqMrpKYo3zfKT09HQQWaUKP3kdvl04TcBmhj4HdeD5eVPGUJwQXmWxvvKZE3bl4XpWm8tIyKQ0lr1ElJCEBGVImPABxHBY5SQZtbL47MwQ0JaRAh8cJP2LiGwACT6ARGUCIKwF+9DAIHAokUw4RWTyUs4iZSXQYicWt0PqR5C2uMKUzSqtCGRmJQ7EVUIEmNIoPtEA8Eg7eAM7t3epCyKGGOEEKLNMVEJpFqB94DIObtIIKk3m0V0MrocIyBERSowSAxRAFFHIR+ZEAQgIdMVkCDjXs6SYxSEIxQxMoJSajKZpOuptT4yuboYR6NR27apxD+bzSTEpmlm40lmzGQy0VoLQAG43LYhxChQFNb7SAoRKc/zPLdd36QfPMmKlmWZiIJS2SQ4l/h0R6OR937wHgDquj5mDKy1RCq14gBAAhKKpMxvuvISQshMdsDnUxKjYgYRZgnA0rZt27Za69PT88vLy/Pzc4jh5OTkH/yjf7gnIsosMPdtu1zeaa37vr+9XaxXi8s3rMRxpiG+m8Pm/eNoYl5ztd60Su8yOvddtl/rE++/HQAE3mLXjtH3m6f0/vzg8S3fe1ZpehGgD2E+nX73xV9ZCbvN9vrFN+D7LBOFWdv2w7b54KMfXn335KxU//LPfg4AhQo924tyvLm7+uJu+G//139wd7fsltu/9ekH/+LPvttydp55HlgiFKUZ+l4p4wIba+u6NgDRD0WR5bn96quvjAHv4zD4phkcw2lVVFW5XreJPUUC5NZUVR6UarzPjBXhptkpDqRhZH1gIqud6/vAanJKkU8qYwrThDiqzPRk+vBk/Mvb3S+fb767bd8jpocoWlMQdpFp8FFJFBEkFhAgY1Tb9mVVdZ0nnehIhSMwJHQ0Ki0xMBCl1KCIENLecAFqhBhSXwqwMHMKhikCowBoEpHkhqVflBAQFaJgMjQCgICIIYT0gyffLTmhRJia9/CgGsuHWkcYYgygFGsyIhAkEoJWWiiKQFFkANJ1jhCMUSHEvCxSKJqUrIkIUJjFR4lORMAYQQLSoImUtRwDYJAIQYQIjCEUI+J9zwpJFDgHzKCNCKgoShFDsvvIAHJIFWJmKFFXpOgyBBbCBGBMseqxXpEq0M1223V+NCpCCJvN5uHlB5N69OLFi+Vm9dlnn2122/Vme317h6izzLa963vnHGQZ4r5NkIWxqsrC6CPU3AWP3ldVlef5ZrWaTqdJTXC327V9n8rNXdMBgFIqyzJrBQ5Ml+3QYUraChBilmWASRgAUqqBSCVSIiJSSu92u+l0WuTVttn1fb9c3vV93w8DArT98MHDRz/+8Q8//vjjzW777Nmzx4+//eTjj4ahb5rdZrV4+vjbH8MkTVo+4O8PTVEIe2sohIAAEY59KsgEAEgH6EH6JwIwggEAYT40DwKhAECUVDt7E3J4zCIjHe2UAJN6eeB7I9XO6F5thCR5C/HtwW+y8fdcF0op6oOU6HHn9NEk6TZ7xbCKCKiX+d3XBt1rnT4eR4DTYUZV9d2XX5ZZXoL6kz//k9OyWqy4nM9ePH06zmh2WTO3qNFR+ZibR2qobb5x8fJs/P/94ssf1cVINd9efTn+rd/+7/7oZ+Ll0xHtBr6l4uPSPXj0wc9/+TWZfLfrPv3kYXBu2bUaoMyL9Xqrbb3Z7B4+On9+9Ww8rv7J3/n8j//tT1Hgdz7+EE3W9kI2VpezttvihhULqVCp8WC5ERcHuDg9Gbxrmy0D1Jlit1ZFGYpxt7stRrPr5UYVfj4ty2fffFgCZvCFA0BUYIkDQmSAgAAEKkIbgjHKO3BahRgn1kb27cCkMmGVQNTX100xIqAx0F0SgYpCIsAYkQQNeImJViblp9hzCjwBQFvNLpAi8Wyt7lwAZAUQRaJPoGVQgJpAWCIDUUTA5FRqggAskXVmgvMcQIXU4YvJlYwAAknACA8q8mEYglJaa2GObdsRwd5cYpRIANC3Ps1cQUikO8MwiCBHCZKAOJzmGfWMSIjooyATInoBPwTfBUWgNSqDLND1nhkAFEN0MUIEEcjyIsa4bZ21OPSS5agUAXBE8YEjQ5EpQCEF1milaOh6ZkliWIqgLDIRaZoGtWrb1ghba5EUsEcfR0VdFNV4PN1ttprMfH4SQkSBssjLIuuDNI2PAYhVrgEBlFJA4nwLCMHFbdvmeW6tJRYkY4wBUhFJ29xH2S6XVVUlKYXdbjt07XQ8IaJhGLqmdc4VRQEiClHB3porBOYYImutUxA9eIdICrUwWGvzPOu6RgCc94Ct1SaqsFuuDdCPP//8s48ftW27uHr6N0N3NZ+tthsA6NphvdzVdZ3n+XbdXp49BNilG7nIdEo5AJBgABLhd+cNRdI6fd8pw30DC+yLYkcTkRDa78ke7l89msjfCJAj7+CteW2LvFpNPkLEv/f4r1nPt+5wfGKMHQaPiOvlAgHGVfmLv/oPVmk/NH7ol8PAwT9fLP9X/9nvv3jxQtvs3/3Nd2PhgKod+s8/OF076dvwv/jn/+ib776gcvIXf/NLDTCd1daQ7zdafJZlu93OGLNuusmkds6xG3ab7agqAODBgweLn32RNH+ZoS4r1wy9h8uz8a5rI0gQyAm77c5qtFZXSGjUZrmU3Cxbfz4tlstlNapPzk67rmvblgCNMYvF4mI28p7zslivtyhhPp1FHE7m7YdbWPVhF4YIpIwGjhAFIjGwQhRSRFEphbxXLbxZtA/OyyjcNv1oVE1mst5GpF1hNTBH4BA4qdELgSKEg+uX7g3USsWXpcY8t93gstz0g7cKRZBxD6u5n7FJa6IwCKWaAyDuSRiDTyidhLiVuK9WgDHqAMCXFPolwaLAwShABK0xlTgTPV8K746zBVGQgAhc5IRH2k/GfVAOqcyLiIesZJpAQEAxZfqiREiFYoS9O0Koleu9b3tmiQHAkFJRREJkQFZH6wwwDFyWJoTQdYNCEIHUDQ0SASCxKBJRVVUph1iP6zorlMB8Pp/N50TQNNt+13zw4aM8zzabtc2z3a5hlVlrBTh0QSTue8mZjSattSZ1Op1sNptu1yil6sm4LEsfQ9v3ADAMXaIZ10TeO2NMVVVDPyQNvyzLUnN3CthTj8rxLj7kc4VIE5HI3llJXZIAYIyJMbphMMbUZW41edd/+81XJ9PRP/tn/+zp8+fffPPtzc3NeDxe77Y+DJvr7WJhV6sVIrZt+7dhlm7hRJyulIJ9bw/Ae/OGbzUf77Ip+/nxnnTb8Z3py9M7WUUZ99xzALB35Y7m8/7x31qEOW5EeiUilmPZ+l5of9+6HY/7vTEyHgjmtKa+b9tm9+D8bHH13YtnT2d1YShLGvPC4Yeff4KoVuvGi+x0FZrtxz/8yLpnpPN/9+df/Od/8IPlzdUQZBnpye0wqZWSIGaS5VGGVqHWqBSi1YAkzjkCGE/Ho6JYrNa3N4tN051Mx8EPwtBs14/75mJe3S42o0lNmREBZKmzatuuKEoxHm+a1js4O6u2w4pDT3rctr3SWtsceucG1/UuhtDvtj/60Y/6ttFoqqK6vb0TzznBZ7V6EkNgGCwxKekCAmlQHiCwpGS5RCYRAsm0kiIyYAixH8BYr2wWpe29y3MrhBBEUGIAxj2oJh3jgDcUIhRC9kwkKe4F3mOw9pblVShW+pkFwKo0FQURgYX3lVaMHEEwKViG1CQhCamzR6WkokWyMlrviUFFIEZJKJd7DgAnBnVMOutJcR0ksfOkHCiLpNPEvYd7jGb2Jyqo9t87IqKQEAAg4BCgDzGlOrRW1moA531UAgyilChNWqd+UGDm6ahIxK65zZg56XDe3t6WRVaWZfq83W6XnmitV8vNJ48+jEO/Xq937c5aq4FGo3qz2Tg3+BiePb+q6tHtausFBfSRTVkiR071JsSMnOurqhjXpXMuSQuUdTWejFzTJcpbiRGVSkjGGONsMk25RT4o5EmqgB+65VIsf7z7Dq3ifD+7lUrnwCgcUemizMo875pt12z+8A//8I/+6I8++uijajRaLlffPXn84YcfGmPQ2M3mxfX19WQyY2Y4WMNkW5kZmI/G6Xu4r2HfkXVfvym+ZjL28ez++eHth1fTtaR7e77f3Nx/VQEKvKVQ8+ZxXrFr7wZyiwi9w2Tj93FoH2P/dOQYg1IqBj+fjL3rfv6zvzo/O9ESb588ef70+dnpfFKVZZH9/BdfTE8v/vTPf9ZHcppMuHs00v/+pj05nf/uo+m/+uMv8mry5ZfPKFOhj+Pz0YtVo40qSc5Oz59dPReR4KEuq/G4fv7sSTkaX129OD0/DyFUufV+uFsN85GZTsbKxcVm7SKU49HN3V0AGFUjRTT0scoUh7BeuY9OzLSqbtebOlfBczf0IQSTZyKA2ihliLRifvzk2cX5CYjf7doyrwJ3WVHtbu8+u6yyDn/5YuckaK01mcTkKpiQ0hRCAtOpssjPTk6/+eqbolAmp6Z3SKEoSFB1vQcgFsVAQgwiMUpMlm5PdwjHVJdnUAJEMvReKQguWKudC0QQ5RitAACoZKoEFBFzwL0tSjYOEAUlmSwCSFKNEQVEMMTjagqHDAoigjHpV473G1eO5bV7tygCpxYVEknWj2VfDd+f2CGbiZDyOvgSWCZyTPIkdgKIAp5BsyCCIlCZsYDD0JMCrZEUHoOcRM7WdZ0InJ6MiqLYrTfW2lFVb7fbJG7Vti0zW2tTw8kwOFuWz549C303HY/zvNpt1m2ztWg++ezz9XodhfOqvFluiqqSIW6aPpkw0goRRCKKIO5FoIZhCIlwW2uFOAxDe9XmNhuNRrPJpO/7oshns6lR+vr6GkSM1lrrlHBPF5D3pfpEQsEi+1Qys+xZcBAheXAgiKiUBh8JCQkVEjNnRhVFphWGiLPZ7OnTpwm5uVmt//Tq9uziZDI7MZk9Ozu7vb3dbrcAj9LVCyHAgT8i/fryG3Tm3TclbzqDbxoj9YZJinvr+T6bKCLq0K/wHn/ze8/zaMKO+T5443y+9yPe3EFEtKIYA4Gczkb/8v/13xWGzk5mN0+fbLfb8/NTkDgZle2uGVwYIjgkQaiq0ayIm44Xt8v/5T/6W3/85z+PwX37YrXroy3tbGQTUn/b9B+fGEEAVEPXaAXnpyePHz/Osuzu7s4oZUz21XePURGhuTwZlYV1bXM2v/jqanF5MXHO9b0zCrz3ThGQGk/Km2WPAKfzcTe0YeCPPn/ot5vL84tu6DfNLq3SEUQh2qIk4uvbG9/tPv/w4ywrwnKdGcrHilhmWj4q9aIJbQieghgDfn+RlYIU+aXbo67r7QDaSl2Wfd93Q8jzjBB3jVcqIiqOqfGPAPeNaymmA0jRJQCQUqwQkIAAFCBqsFpxCIjAe/wdKBLZh6WIIDGGfV+KSr6bAIBSiiTGPcdsEjtFgBScpuPsqRAS7CbBEhNaOFWKmTnGBBCB1EwiQiK8d1QR/KvSsUKIQoiIEhFx310jksJ5AUCMKYGenMeDZ8pWG4hRKRW874cI0BGC1jq3oLUSiZFD9EAANlNVlqUz3+12vh9Go1GZF4nqJgH9EmHEbrfrui6EWJbF3aI9mWQ//PTTsjBKazmdDu0w9H3b7qqq+usvvkBjSdnlequyPMvM0HsglHhIUhGjCAr0fW+11nmemhEB0SitlIreewBdFEWRE1G7a8bj8cXl2XaxSnmJGD2haEPa2Bjjdtem347vSUTIPYT2MX8lIgCYZUWM/qUDyQmHKgCy2axSLds5dzqfx9TOhDL0beIHevDgwfEHMsaAUlrr+wbhndk0Sdot96sioBBekVgSkYS/ByFAfuvjNQftXj3iffvTPdxGAkTAq6bt9bN9C4qQD5QTR+4JSTC14yOCHJ/jG+P+8Y9e4f3R7pr5dPyTP/szwvjRwwe79frZ08famrOzs3a3ca7Pc1uO6j/7i581jpctf2z68WT250+7z0YwUe2zYWSUPL7dIgB6d3p2sdl1BHGSUV3X210rhIFhNql3u91mtWMfMmNHo9Fms/FhL9xhrV7d3RHI9d2CAAAoOA8CZWlIq35wWueCLCLz6ahrtxhDaYzvt4rIGpMZW+VFnueptb7rurbrBYEyNZpO1rtms96dnJ851zNR07Yw9B/P6x9djiYKFANED6nDglNTAQDAMIR+8C74uoQQeNsMgSkEaPshZdVYKETwkb2Lwe+DFUzqejHGGANHH2OyqlqTiFhLkSW3hoO3mghAK9QKrAJrKNeUa7JaGQUawRDofXD6EnW8/5/Ee3fdSzGf+9GGCPB+0eSjEQRIFGTH9s00GRJuEWKA1Pb/ckRJbbbHRNhhZtK+HnOMotJfAhEgHrjpBaJSkGWoCDlEDiH4EPwgHBSC1ZBrUCQIjIjGmFFZZVk2dP1mswmDSzqcXdftdru+7xMMWwTatpvP8sl49PDB+cXpiRua54+fcIyff/LpfD6/urq6vLx0Maw2W0HYbvvIXNVFnufJQ1RIVmmrlbFapZjXh9TDrg66zHmee+92u23KVGx367vFTWK6RhaInMh4jrqG6QeiVwe8inJLs0JEDnw/mDx2TILRyjgXCFCTmkxGTdP0fb/ZbIyi3JpcmQ9Oz+eTKUe/Xi1eu6Ph5V0N8KuJCL8isLnPyByOePwyb77ttbyeiMT7tlXgrQ8CJrhnHOF1q/qaQTw+uTfh3gmReZcxfS3wf4+reDSFXddVVXF3c913zbSuppPRl1/+Qiks6tHd8hZRyiKzudHGojEDKgD4z3/vt56u+yGa3/n4/MWLq2HwzzfOY04AZ+N80zSgM3D+4fncZhUjPb9dj0a5MWZ5d/Pg8mSz7C7Pz4u8Wm83ZWGyLNOaNKkYYFQVt6t1AGiaZlLVMQCHOD89XTedd9G53pjMKsvBWYNVXgzdtm92z58/vb656vuWvYMYSDhG37ZtN/TVqPYxOB91XhLpH/74R+yoyPM8195vDQ0fXRQXtc4YCAEF9o4RAgP4CL3zfd9PJpN+gMH5wXlSMAx7ZkBAJUAhYhAIzJH30lQ+Ru/lgKOGeAimcE91ByIiSdsEUSFoBUaBATDImtCgGEXakM2UsZQM10GejykFz8mPILyfdRRJqMZ9iooIFIFSCaQNkSEpiiCmkA32Ee4hE40Hvm5SoBWmEsf+uIdQXRL4B/dUBVoZIlB4P5m+f8QYQ2TvWSFURV4VxmjIM7QKSEAiKIHC6CI3FhGCJ4F2uxuGwShtrR2VVYqRE4lWWe4ZsLuuVwrzPJuM6pPJuFmtbl9cVVn+4YOH57OT7XKrkH777/zWcrO+fPCwqEofAQmci0ngtGlc0/iu833v27btdk3XtV3XhuCJEJjbtmm7JsYgwmdnZ1VVuX5AxI8++ujs7Mx7r5CC8ymzmXr4+r5v2xYP2r8HT5zSzZj4ww9ZqZgWpBhj7x0iKqUig/cBUWVZYWzOzFrr4Pzl+VldVtPxpG+7qiiLPNusln3bXpyeFTZ7zTrxPaZIeI81fM1FOlqB5Lfed9OOX+CttgPldfvyLlP1veO1N75pEO//edz5+OlvfqM3z/a4jL8JtXnNMUxMfGVZKpSPPvrw3/+7PzyZTR5cXL548QIAiGi93SwWixe3N53zkXFeZobDF9/dno/Ly8sPrlbtRxO9xtIJXs5Kxc4Hdp4vz0bru1uV5c+vrgxCWZbz+Ty32fPnd5NxVubF9fW1G6QoiiTCa6w+nddKqYBABHVZre4WlYHoeblcCkLX98ZqRFyvtvP5OMbYNd2jhw/G9WhUVlVRCnPT9IhYliVzYjTZPX36GBSR0tttwyKPnz19dPmxUVnvXMQIOijxZ1X+Ww8vC6uJ9tOIyChSpFAp07YtRxgY8qISIJNlhCAibpAQ9t4WAiiliUip1E28T54ZbZXa25QQ9mLTuTXBea1JhI1RBEICCKJQCGG/gjKj7KMBTOgMo7TWCWOICEolgHTaAYhIa0WU/EBIP37aM50kERqtUt0zBBgGn6zbcTq99GYOBSAi0Aq0Rq1QE2Gy3ISJMjpKUh6OSHJ/Xh2nG6JoDQQQI/gwhOCspfPT08uLk/GoUAgsgMCaUCtMUnBVVSUCRGttjLFt21FdJ7GqEMJu1zjnEqAjxpjndjKugx84eKOU64eUWlmtF3/5l3/Ztu2LFy/6vs8yCwBZZolAKTQG8lxVVVbXRVVVeW7T8Y0xk8lkPp8XRZFurYRSSsw9g+vatu26LjN2Pp+n7syjnnWWZdPplO+N462XSijHWy+tiGnLMAyoVYpmNpvNru0U6bKsx+Nx8h8Xi0VKTZZluVwuh64fVTUivnhxFe9lM1JNmfb0snubkJxSEIlpjUfa44pBIkhEARTal4xJkAREwz1cjoBncSzuTROTpkvgeHye1FdRhEMQhLc/Xq0aM4ggoNpH4gIxPQCZJUT2b8ba6dXkYGDCNCESAIoQgESPEglYEyiU5IoeSyj3p/jxNIgo9U+kljCjEcH3q5tRpp9++910PNncXbfN5uKDD3759Em3WBaZ+vSzj7z3681w9aLxutoI/JOP6z+7G5418umnxb/6H//cjqd32yL07lx1nrg8ufzB2aVfb75dbOeffFoFaYbw0UePXOD1atu2fV2qSV1O6ixgVBmIxMxYDdhstiixLPIukFVmXFbj8XjjAUyR6cwE+PEPHhCN++3u8lSBPdm0vrJ+s2wxVwFjlIAKisICwNVNM55Nilq5HnwHpa5YfD3ON9vVpJyScbOxmZSqsNqQ2W6D63cfXYz/mz/4nf/sByefnmDoHUeIbIzSwTdKiTJaKeiGGEOU3gND14ZWcBekDwyCCgk4gkQEBgiJqH3wwfsE6YC291WtBDwgB/HaACATofch11IYUPtbBYQFo5QZaaJM6cRsaZVGRJaojQpREEkjKWESUbBngzEHmCwRGKNJGRblYrIdyQGUI0WmCGhtlCKlUGsCYJ/kUQQYMUTw4fDwksRLrTaaFAESCAmTsEJWyMBgtGYBBI2gBSBX1oA2WhPAqNKTsc4thhCD59yS1WgU5BYKAwQYowwRmiEkE2O1mY0nmdJG66qqANHtGtd3gaOti0DgAZSii5PZuLC3d8+X28UQhr73Dx48snkGOoSIZVHXRSnOGZJCwSjX4J0xajyqCCHXJGGAOGQEpdaz8UgjxOC869ummY4nZ9N5ZXNjrAiMRuPxdGJ0FjwPw2CtXWy3rHVECoAhijaZ87HrXZ7nmnSiIeXAbdsOQ2eMUgQxOGCWGEXYh6HvWyLQBvzQON9rQ9P5tCyLTbPtXBclCEKCvidhQmApsjyJtY6qalLVco/DZhRZSCKCFlCoJSGx4H/icfQcX/PRft3jvBkIv98nfdeWN4Pl98TF79oBBYCMtbbZbTG6u5sXJycn3z5+4gOfXJxXVQni56fnDkwThH2vfPjBhw+fff31g5nxnR9CALLPFlfLNqACA8TO/82Xv6hGhQQ4n8+/efI403B9c6UAE+i9KIoQ3Ndff1mW5TDAZDK5vVuXZVnX9d2y895r0mRUN7RXL64tgESnDZ6cZArpl1/f1LUKwbVNoxFOTkZZlq1XCwQuimy38cG7osw+/eh0ebvebXfTSZZpKnMLLEVurTau7zJFBJhpY5VWSOPa5Hlxd3e3a7rJZPbwgweffXRSZAogAEhRVcPgBx+CgI/RMXSRGSEgMRKLRMGAkkgSeJ+nQyJSBATIHAWYCIyBY/RqFOk0DOl9/2v6QZOLh1ongU0BAL2PrCNyFJEYY4phkxXLNOVGWausJRBUipTaI/VSD7gmdQiH74VRtI9kY+QQJJHiEO0FUVOopxQday+IQIRHNMm9yDqxDgNiJAIkBowaASmCBKsVCoBEAkHgMqeqgKbdXl3dbrcdM9DhntVal2VORJPReDQapexNiPsmhbKuFGlm7nsnIlZBbm36guv1OoXSVVUlwYDxbDp433RtYjJnwd457wMgGKWYgyEQkaLIiyzXWhNR0zQAkFzRYeiapkmtctba5A8mPWhrbZZl17c3NsuO4tR7Fi9Otm8InFIRLAh7VVXmYRjuB7MJk++9H3rPcW9VnPO73c45h6CI9FGUOdXQ93c6sNE0dK333ofvkf359a0h7rtQfsUjvBaxHiY3vbnD+8dbw+1jqvW1KPith70/I+9vhF/BINLh36Mnz6RijLNReXv1zA9DXdcsuGuHvMwUyle/+MXdevN81YAtSOJvP6w1S7MKf/eHn/gO0ML1XXPdt8ZCPSnPxtNcmTY40fDh6UhF2To3GhVEMJ3VBKI0KYWk1eDj3d2uyoGZjQZj1O3tbVEopQ2zy/O86TqlgBDyTHEcPv7owydPnowqqKvCD7Fvdm5wZZ73ze5kOnVdZ5A+/eQcBAzhdn03GxfTuiitmdbF0LejOl/cXhuFmuDF1fNxXU4no77rm6aLMbZtd3t7t2l7QKUQ52VekigIgWPnQ9v2bT8Ehi7EgNhG6AEGAU5BB0gQ8SJeID2SGVIq5evTL5iqqPfrG6k0EdmnO0rv+4KBhJEjxCAKiUAQRdMhEy0AMQHFBIRxTy5BRpEm9D4AgFIEACFCCMkNPFZXXl+Gj89T7JkaJ+5PoXs7AwAcreHxCPuGNgJAIQIE1kqsBa1AExgUDaBJCISDGIWacLdpiUBrzDKT6BiYQ4w+st8fjQUAErbZe3+3WvaDQ23KeqyUcr1wgFFVn52cLxYLa6211mQ2ESskTeQoPDjvA6cMKDNEBqWo73uJMcsykCjBh+B9PyiCwppxVdd1XRRFXdeKqOu6pmnW69Uw9Imupu/7EMKR7BoAkjqojyE5cSKS9okx+pCKKgRAiYjkeD2PYbL3MRVhOAIIxRiHwcXIRCqxKLZ9Nwwe9nRKDIR9syuKAgFGVTmbjN9/m/8n4bD59Uzq95qed433ZSffMHxHH/A9H/eaw/j+oQ4s0MwgIdq84BB2q9vC0sn4cr3dbJv24YePzsf6+tlXDx8+fLpoHy/7PLfSwwe1fr5YskXf7Z4+X5w/Gr14riKACTCdjt26EaQhQib+B48+uX78eBCwIHVVuqFfrZdWUduG05MZEfFiOD8/f/78aj4dK6QQ4sPLy64bMoWIst52VanLksajqlkvb5XMJiMILrf67NMHm80OWY/qvNRl71xus2a7tdZWVjWr9vR0stvtUEFmCk36ZDKO3rWEzXZDk9GHlw+W65UCevTBxfVqt25dnpuu99uuDxw262VQOtNsEPLCspCPYQiQSDu1osARD8p5BMggBBBT2yUAAlAApUDr5BzuTRAzOxFEoATKT3klAeTUuranxUwtuMB7drxUc9uLlyKovYDpvqyRek1TOpuZYwRjkEjH6Jj3oH1mocMtzAkgeJgxiIAKiYQZEkctiwQG4XhESt5foQVeWvNXphxADAACSgEhKQQloi2wd9ZAppVRCRMUkcgosdbs23W1KEJtNBEpAD84VY/G43Hq8fDe68wWdbVYrPq23TQ772Nu6PL0ZFTVHNwwDJjp1WqVWatm+YPJ2K2W29UucuqFIUIdAAQhEaz6gRWyUpgMtzUZStBaJ4hoTtpFTilsEFZEIcbT+UnKtK5WK++9DwMi7nY7SRQSHPu+P96hREpEoqAgIKrDLRaVztIPDgApYhDmRPGdPMfEykOUepm11nuAGtxboqy1WZlFNxTWVOPR7e3t++/x91jDd5G//3q2j1MH+xvF39ci1vebLfjVDNavMl77lF/9sC/3jCwiwXlVkGsbJJ4/enR1u7DWXpyfQXujtb1ZNM9uN59+9ujxd08/uyh++OHDf//LbzZI3z256pzsvAxOAGFkMgVx22yr8YnzYLWKrtuuV2VtR0WhtV6tVlZRglCdnJ5fXV1NJ5mIIIK1utnuyrJgwKZpcoO7zVoEYoyjSS1+UEpttk1VVCazmdG7zdr1/WQ0vnn+7MMPLuaTqrCktb66umLiyWlFxKezUdduFMGoKoIbgOO4rnZda41ZLBaT2XTddIvruygqM6YZBma+vr0pjXF+iKhAhAUUGUAqCuP7AF0IgAAYAQBQGBE45Whlrym5B23FNDE4KjhCVpOKKCQcMqIoQAJSJKjQe9Y6igAJJP4CIQHCyAm5sLdKBChEIqzUntIQAeCgQ5BC3USfBwBKASoURuaYpEr39eNk10QAIETRChEJgYUhJKDIvq7yyjQ+RsVwnN73wiOtjXMeAJSivaVGya1h9nmOiFEhZbmNHJAhK7JjnQGBSSskFGFAuri4mEwmWZZ1Xbdardq2BUVZlpVV1Q/DbheMAZvZoiiWy+Vus0KS4P10VGilqqp68eLFrmudc0mZABTFGEO6bijMscyViETvrFaZMecnczd0mTZD5NvbW2PMeDweX1wg4mazWS6XJycnRW4H7zKbjSd113V9F4korVmB99iaPM9B0RC8UeRSgiIJJ3NEEU1m364uQaMi0gkHapUVFBBIylmIe8IhPJI5hsDMpFWypMzcu6EejbquW90tDL0CEHxz/Aa+4Uuu4F9l3Ld99zf+Btbt1TjlZYT75qHeXIr/Y8YxVtrDgBAVUeRhdbusqyK4/na5jag/+uijzd0L6Ddn54/+6m++XG99v31yeTL+4WePvn38/Lb1W45TKB9+OP75d1c9G0D4weVZoUOYjLvgLcB8VDnfmUzXNldKtW3rnT85mTIDMw+Df369GE9G2+02y0xwfnDO6sJ7v9k1pbXd4LRWRZF51xMHay3Z3PWttfry8nJ1d724a85P6NHZh3dXjwnPx+Px3d3No8uL3W43DAMhAPuz+dwNQ57ZbtckSGNZlkVRYFYElqwo5vP5k5vbto1WK62zRTM0MSKDQwFFArEdevbx8sMLB062PQjEGPfmDQn2MrYQ9xYLAEAhACILcGC/7wgBREBQLFEd0NIMokBIoSI6ECYDw96eppUAAGIERBECjgdDKcBAkHDXqYBLCVizL1inrgREIBJAQXoJRTzOKHxVuvMVNxASoPoYzqc3MQAkHTF4NRBBRCUKICiFJAQQCYUEFElZaWNM33dCojSFQZwXBm8Uaa0QBQFCiD6AMUhaO+eGtms22+1mMzhHRBygG3permOMGqHKbZ5b4Sjgq6pouzbLdJZleZbFGNu+X63XEWKq22oEL4IpH4oJhU4xRmBAEZDI0efGyj1o9HK57J9f6SybzWYffPBB27bX19cJOlNV1Wa3zbOSmU2WJYii94FZBh/2mWOUGMXHQInikKNB1MYc7vf9lURmEFRWOe6NNoggEL2X4H3iwokSE2U7AiXyNYkcY8y12mx2ZVlZqxMD23vGb1xFuTdXEvr6HePNdN5r/7720nvGm6bwaFWPS/39nd90A99ML/4G5jK1pY4y++L5E5F4+eDRYttVo2kIwffbOPTfPX7RRmuLkVVwNsn+7b/9WT27sKZmhrEZzyfWMxRW6lFR2jDNcrT0+HpVKLicTFWGjlhcMMqCyGQ0mozGRFQU1e1iqUgZY4ZhAJYQfWFNXdeRYdfCw/OT6XjMzIa0RsrzvPd+s+2azSAi6+UCAD58ONcECmE+nQCH9fKuzot2tz0/Pfn44YMH56e51oqormv24fLyUkTyqhyGYbVeB4Z6PBl8uL67NcZMJjVz7PthMrZaq4iawXjWNlPeh0RwAAACjLQnLsa9uvi9i3+IWxnQC4TDwyeUHycKCAiAgSky+AB9BBdk8AEBCDWhBsEomJrjYoTEeMUAIHhABSoASPALSXT8CbmYkogiyRTKYT4kT++tfI4iou9xHR2nEx2+06tTC+65g6/kDZVSLMEqKqxBjAols5hbyDRYa1MhSETc4L0TIhiGZEQC7AG/oBVlWVbXo7ooi6IoiiIlDVGrxKBVlXlV5tNJVuT2ZDb1fmia3bZtq6rIsmyxWK3Xaxf8o0ePptMpKmIOsOezBUptf4SZARTgwMaQMCPHpmnyzKCAVlgWRZ7nWus8z5BlGIYQwnRU10U+nY4TpTYijkajlM1MVZQYo49xt9ut1+thGFwI6foMPnofUllBRJKmduJ51binikgXxpjUCrgvMCJijFFrm35TABAGpZTJrCBstw0zL9arm8UyzYT33tr/E4+3Om6/gWP4Vq/w1/rQd730pt18z9H2JpjFDQ3E8ODy8vZuPT//YDSdub7z3e5kMmah22V7vdpWGU0KPZvC7aqLncsQJrbi0BQECKEoTBhW3Xq9a5q80pMynxTVYr3w0X1wdp7UZr33220DLFVV3d4uqlGd8E8PHn5QVVUIIcuyzWYzHpndZt1st0Znfd+XZdn3PQj5yCcnI6up7/vrq2vvh5PZfLm47fseOJZ5xhzGdX317Onjx9+5fjidn4hIcgabpmEWYRiNJ5vNtnfD3XKZ6obMvNvtYoSq0JEdS+xd6F1cN12IHCPkpmh3jXMOBbRSAJBcoGRjXmnK3N99EEEY9jAHAQgAQcRHcQKBhQEY6JBqQiLt48sWBdkXx4AISRlUiIr2EOuDa7YXu0pNYIfuI3WQSCUCa8jaVJYBopTLxHSQ9IjJp9Qq8fUnTsUonE5vD8A+wA+VQq2V1uoY4R4+aI80jjEoJTZTioQIitxkOWmzJ2tJfYHDEAWhqCptyWZICgTioTGGFBlCnQTklouF976qqrIsldFJNNl7b4whwslkBCTa6rxQTdMx88nJrCiKk5MTRESt+r4X5hg9x7h3dEQQRBNmWZZSBSIwGo0Km52cnFhrN5tNjHvkYFmWSmHbtk3TLBaLpmmUUpeXl4iY53kqQCPiMAxN04hIXddlWR5wbERaJSmbKPvrQwKJHDuVjFJyUCkFQFrTPkYmTCyKSiFzkitQqcslVVogoa+UystaUWLY/h7XRx+MBByqbqkhBOE+7eB99sCX2nLHqCGmKQpwDIP2ewDAEcTzRrwgx4941afD+5YLD9Krx8rda57m/VX3/vZ7B3zFet5f1e/vKTHQ4ePk3vQFAE0YAgf2pBUa6na7Os/6ts/GJxusTj4+aTfLod107W40v3y8Htbt13lh/I7G5/PVcrHbgStslYPfYHGpfvHd1rOaj0bKr3x2sq3L9ZNVbtXsg/JZe7u6iw8vHsT+xa5tipw+enSxXW9Ozy6++OXX2qD3w2R2tlptNpvNdrt+9NGDtm0DSNt5U2omUgIQYNPstFY8DCNTau3yvJTIo8nIufb65nmpdan1ttvGdC8Hc3o6d85tm50LXpl4d/ciy4oYpcjLLMvWm9XlxXnXhrvbTeM4knLOpWCzcbHrVc/SiPTRBwRkUQQ9d2Ux7ofICCIBATTSAAxakpDKy5kF4kBAoEIQ4SAQBRAQQRQgIItARBBmBWAQUyovchCAzsveeAXxKZhGsdEbTSyYusEiSAghCCjGcOjv5HsTI7E2KFQiEAIfEogEKGlKcxLQEyYAQhwGn/KYx7mUgnEQdj5qilppERYW5hgEDBAIYOqVIzo2ZFmDwBxdO62VUcjBEWGms7Z3AIBIMYpSKAgJy8KeUGGWZcF7Asm1qY356PJyEKesJk0aFIL4rgcR7wJz9N7neV6W5bePn+3WmxhZa6UIQFSzGT784IFmePrNd18//pasWXWDMTbLTRycRLZGA0mMEUOnCZ2LZaFzQx8+OGt2y961zeAAIKIb3ND3/Wg0CiF4N5g8DyE0m+0vNpu6rut60nRNlitFaojRKAUCEmPC/5Z51fQdM1dlLj6UVSYhDn4Yj+tCSRia+XyusOy6DhWQAlAwzU4Wi0WWFfVo3HWNVdr13WhU7XYba23qNiGFwBKc16QcDdvdWiNlWb7abgDm96zTYSoSAgB9P4fNG+PN8PNdL+0/6G2s+oj4kino1VfpIFvxWnBx743fH9ve3+fNlOXxyZvG9K22NcH9B+/avqvrgg1F9n/zxc9/+MMfz07OlsvlMAypL2V9d725uY44fb6+Pp/pKdKNU51BMzRVmdPc3t3ddZ0DgGa3+eHHs2ax3TYtgLRNMFp3291sWk5n9d1ip0lpoul4oknd3t76GOq63DWdH7oyz9rtbj4dB+dWd4vZ6dnQ3XCIxhjXeMKY6dHgWkjC3ruBhzAqilFdFrlGDt4PTsJkMvGud863Q4/ARVFVVdH3znkPQi+u74i0Uo0gzmYzUxR3d9eoCDWSoDbSDMFHsGW+arrAyJIo+BOLJYjAatvW8zNZNCCiSCUc3Ht0mQFAcN+PnrKEhx8CAF6GsQAAnFD6gHus/n5zikyHKKQjIsQIHEViBECRRAL8yjRI+xPQ/fRJ2s6cpET5uGQe97DqXpfqnsKeJbUPgqR+90Q9DQB0yCqmdZYk+Q2sEPNci0RFKCIuJOuAg48vW6f3Wc79bNRa984NQ6cI6tLmuSWi1WatCw0RRKQfBmNMXhSgyHvvm1iWlTHaOef6DgkUIku0BDHGUVGS0evdNhUZAkou6JyPQZg51a+FOUbgEPOq6PsBWabjycXp2XbbbNZtnucp7B0GDxGM6a21ZVmms63runND0zQhBNKKmYe+JaIsy7wP0Yc9tFDjqKyadgvMBFDYjHIqcuucq4q8mGaJN282my3Xq2Fwo+m4LMumabLMeO+nozEzs8S+721eEZFEZomRIc20PUCVdG6s1lpZA+8d72ZtuDfemnH7FYd839hPrGMK5m1o7bf2QcOvWRF+8/zfPI3jJ97f0xjT973VBoDdMNR1vbi9e/jww8ns5Pb2NimID0OXfqcffnq+am3j5NHcaOcf33SLXvLorp/fnp5N7+6WMcKozE/nkxjlBz/6fLlyIcLv/YNPlYfK5vN5TiYMgxRGP/zg0vfDYrFIKt1t2+ZVmSlUCHlmJqPx3c3th48e+d6JgAharX2ISapRRIiQJcxOZsoa5/xms/HeI+JkVM2n0+AHCbHIbVmWwfm23XnnvB9IW5Pnn37+w9FkZopyOj9Zrjc3d+usrBhwvd22fTceT2fzGSBud90QwLFEBobUs4TMEBgGUaD3NOlRWGnz/mUsIMRDZJGuPx8kQo/jaIdIXj6QUQSPOceQmCFExZRVSjnCe23J92XFEIHUocnq1XGQcX8lK32sohx7+NKfSdnI6D1/H+4ZMA8dLAAArBGUJqMx11gYUiTW7DkpmCEKBBDnYxSJIgddg5dXo+2cNTQe5dNxqZGYeTKZzGazoe12my3wXq/dWsvMLqRqtVJKwx7XAVlmrNXGGFR0cnZ6+cEH48msnoxH00l7KC8opVK6IIRIgFVpdKbattNaXV6eW23u7u72EO7Nph96JKmqoiwtADkXhsGHEFKxQkT6vh+GQZPiEEPCCTLHGGIM5qA4CsjGGIVU5vb5041VFH0YVfXJdFZVVWbteDwdjUZVUdZ1PbS9c0OWZdbalO9liXuqnsgS0vFjCCGlKWP0+5JdjOv1tm3bV2zCG6ypv5I1fNNqvHX/d2yPSdT7+Eh/vsrU8JLE4V3jbfwO+Nbn++OkFofDQyKnJwT45s4oLw3r0SDe//TE1muUTrLyTbObzk+ZuSxLDi76wWp9e3tLRI+/+XbZNbM6G2vdBgKAT84KnVdnp+Ob26vFmj/95JOh7xXEjx59/OVXXwGo+Yk5mdeZNpnSn336sGlXbR8mVf3w4nK32/VNW9ej1Gzw8YcPq9L2Xf+Dzz5NDZjW5H3bKQCljAgnx4FDLLJSK2UULZdLYczzfBiGzWa33W4AwGZ6Ppkqgq7roneJmiUlX8ZlpQA2q8VsNplPJ3d3d5vtdr1eP3n+3AVf1SNGeHb14smz5baViLoXGAQ8AEPKfeztyqoZ+n4ocm2NTu4PwCvZl9dGSNIC+52S0Umwm7QJU96QAfe+HmCiV01Ybthn7gAIBDUjJTmJhOYVkSCcHvdWWTgiBO9n9xDfuXamPrEYU1MzHN+SYPnHsObQIQqYnJWEhxQGYRRJ9EkcA0cHie+LUBADi2OJktzCRPu8/2gCLAqltY4+IKKxKssyY0zTNaOqTje/974b+qbvXPDKGqXMPgUJR7KJaDQlM9F7t1itr+5uVut1790QfEosiIhVWoK3CklBlmU+xrLKYvAxhPPT+Ww6JSIfo9aYhKS11im7Z63N87yua2stERU2O53NT6az0Wg0Go2m0/FkXJdFlhqcU5tsCB5YqqIMwZ+enJyd2ulonBsd3bBeb4V5MplopNXdarPZcIh5nvd9b60BgDLLE0I7Rp8Zq5QihVqR1cZqoxQeZfaYWWvLAKS+R0/5+1kbjnHr+63hu0ayPgrp+Ehb3rV/MltHA/fSou2pdPbEXPcfb265T+R1fCRbfOjYf/k4kvS869v1fV/XZWoqqstqsVhMxmPno/NxsVhsNpuyLDebTWKUe/T57+x2t2PpCjP+2fWdFflbs/FfPX6S5/li3Z6dV48fPzcaytx+8YsvXywGie7Rgw+GptEIBAgcgWNVF1ar29vbZrsrimoYhr7vc6s1qaFvZ9MiM8oozLLs+sVz5mis0qi8642Fui6cHxKxnbHaGDN03Wq19l7quhyPRzHG6+trIkrd/indvt1ul8tt13Vh6CdVmVnVbFf90E6n44vzcyJCY1rnm77reu8CZ7khAzebwIAMFJMvs7cmCgHT3WgUIMTUyV9VFb3blWfZs1rBHrAiJAkjDUEgmbwoGAAiYERMhGxBWJIYcSKI0SqVO3zgEIUF0ySK71llDwp6iW1UJIXplIi8+CWxDe3ZJQSSoUVAAQZkpTERjh3tIBFpTdaCtbrIVJZTkanMYqbBaNAKFAERMEOMLEAgFLzEI9t2su+y5/JJI8bIIQKwIZXbLM9zm5lEniqH6O3+HZrn1pCSEJ1z3g8cmGP03mui+XRWlrXn2LTtrmtD4PF4mt7bdakEwVVdaKQwDGWh292QaXpwfqaQRERQrdbb1J93cPdichiZOYQQQlgul5vNRkRCCNvVOjp/FM/KrEaS1Hhnten7jgjd4LuuuTw7b3ab2XRaFllZZETUbneLxSLLzLiqh2GoywoAXN/v1pvE7qVJ+cEtV3cvpSTSbDoMpVSIMdFA1HX9xq//yox8pzUkInxjvHNOvXOqvYK4fpc9vb/xOP9ee+P9T79/Mu86q/tx9/u/wjEaetcppTSQSASUrmuA42hUCaJz7vb21nt/d3Mzn06stc+fP/8X/78/eniCv//bn333Yrse4G//4Pz2yQvR2WKxyEtwETebIaEAhiGQhYuTvMosRwEM4+mII7a7ri7o408+jNEDclpsFdJkNObg2rY5m58k/s67uztrrSDHGF3vQ2BDQChhcHEIYQgkbLUpimxc19NpzcybzW7XtVlefvPNN86FLMsAKLAYY8qqGE0nWZb1fU+kUwWw7Ya7xYpBMxGSVtpoTYKgjLVZRQCRKLx0YvbYZkTM87Ldbk/GZXTivQegpunes5iKoCQddwQFL3k096zpABHQowQQL+z3JhIjYEhxsFDi3xSgyBA4HlTxiBJHzf0Csbx8HGbIKz89M6fNr00JSWLLh8cxLiFAhYDACkEhgARC0AoQokIwAJrQkNL7XmallNJWkyIWSsCgGFMmVO2dAcEgIgc+SAAoy5I5+p4ReD6fX5ydIuKubZ+/uEpgJgAwSmfaGKUlRENKGyXAfd/7QbRWiSOrNMXJ9KTM8tSfR8qs1+vdbscsSimdVOMSqBZROABAmVGeZeO6zgu72+2++e67iBSDEGqtbNKKEoneD02z9WEwVrGEtE5oQzE4a1Tft8PQdV0jIrnNlE5CXoGI2rYdjQpmDsGNx+Oua06msyzL2LuqKk7m08xaUphbU5ZFVRQxRh/cbrdLaKeqqtJ3Tz6WUphqR3VdTyYTay0ABeYY4zC8VH58qyl4v0rU6+M3yxu+9WivRaby2g11eOk3+MT7h33P9jfn+v0t999urW22u6IoogvtbpvnuR+6tg95nn/66afPvvu6aZqPH3zys7/4yWrVclVPeNc2m+8Wq5OMaqu/dHB+WUands2mG7wAac0nJ7NvnyyyMXz+8Qk7v+n7sjLj2QRB+z6M65ASQD6EdugJFYcgrHbrVZZlTdPM5/MXL3ZZAYJsrBpC6DtXFIowxujzPG+axnsAYGKQyJ6dNTkLAGHTDorh4uKDPLfeudQlqrQlo0OUsqqmp6Nvvvtu3fXdEAcX6vHsdrkCElRmiOKjAFA3uKYTRthD1AQOab3UjCbs3d/9Oz8cj8x8fveXv3jiRIt3VsHwPsEFQmB1b4k+MmsKYDwUFRiBDqooCoAgSdEzB0bEiJLqt4yH7BsyKThWZmRffD58BIdUkDkuiinVeJ9RCg6mMLIQ3p9CL1+yCghBaSUiMUZSQgTMIj4yAhBHAkYQAQ5AxGRJkAAk+OTR7J27IyY9ITOR9qCTEFyeZ/WsrMqcfbi9vd02DQAMwWc6a7pWIhtjAKmoq6Io2t06hOD9wIeWQUKtFV6eX0zHk77vgZAZrLX3v2OWG++iNRh9UInNXABQqsyixO1qPZ1O6133xeOb+axKlyi5hICcFzkAJHJZAMjz3GpTV7UfXAhhNp4kKA+iZJkRBO993/ez+Xy33Zb1ZFxXhc1+8PmnP/nJT9br9Ww2W3etG/qiKES4zAut6fb66vz8PIXnh3szcfbwbrdL/mmWG2NtcplZAhqbADrG2LZtX9aU3zr/3vUC3xtvTov7NuX9PhdSaqd6GSqnLa/t9v6Bb0Nrv3/Iq+O17a/tAK+mC1+zpH3fH5W9iqLgENu2HU+nJycnT5482Ww2v//7v/9v/s2/ub6+vnhwYkfVZW2evrgdFHw6G9/e3o4/mfvlzW7XMoAPbPJiNiuvr68jQ1FVIWy6ps2zuhvaelz9yR//9IOLRw8vTxbLZdM0RVFYa0UkBJcbGwaXZXk79LvdbjzNtNabzcb7MBplADAej/OckGQ0GnnnicBYFYInEO/cbrfbNT1pneWFttnV1dXd3ZKUmkznpEzvnQAppYKox8+ut+3AmKHNPejnd8uAZvB7vjURQUXD4Hd9UMq8mu9PvhIgyHg8/qf/8z948s1XJ/MpM0sIWZ6H95pCAky5PEJImrYJ9ocHtKAgBExYPwgCLHuyaEkZPZYQGQDkkL5jhsjhWPqIr+CmUp4Rj7K6e6TboYh3DJOPE4OI1F567OA9KTqSTCSaRE1oFGkFiXjZaqxLWxW2zLMsM1qr1DwTRfo+xsAsGKMw733YZNATKWzipCDC5EtyiCEEQtRIqUW367qu65hT5TwmtpjgvYSYaRNCSAwxRimtwbmQuoMTvWIi5U4shIhorVXWOOdCCH3PeZ4DiNLoXAQWq3Qq126369u7u5ubG8pwvU5c6V3SXByGEIKPMQzBpwOWZam1LooCADabTdvtIHJqMR6GIfqQSsx935NSm82mbdum3X7zzTd1Xa/Wy8H15xdnSZTZuT5Gn5xZZk6xWm6zYRiSa3l3d5dKKzbTRwKbEF0/DAgq0VL0fZ+U/O6blNfGK75hmnkkgCzHWOW1t73259FWvnn0+xHuYd2De1tegT2/mqOMhwmKabWWe3Xt+0dGxDebBtIxSdHLJPchvX1smoZXzV96wgcdr9dQQXmeC0LXtSwhN6oN4fTkvJidfvfNV67r55PpL//mr589eZJnWhg/8M2qmt80L3IHp2ejzV2XBZefn20i+Se3ee/ruT89//iv/vqZMTDPpWnMbDZer9eT8fjxd8+KCgfuN525ubu7ud1oW9Rj3TQ7Ee66TlHWbtvMZHU56pr++fP16Xl1e9uMCpUVYZarmyXXJ4p5CBGshnGeu8BAqHIVgpuOK3ZtiK4NfVaWWzf45cpaW01mqu9PT08Xi8Xi7m6x2bTBMWgis3bqahEiuBphHFHYxuCIpKhK9G2TcH5ASFo4gDCSoFIhwv/x//C//z/9X/7P/9f/+/9t1Pl5ae423nkWk4F/h049hr1vyYCYws/02yW+L4mcbB8wQASlAAWTCyUAzLDXrtMRIEY+6NsFAGFgBo1glMJDlSNpDIUgicvroFwKRKhUStjJwfVLDmPE1KmmFDMLSBQJXhDAaDBGZ8Z4PwyDR4JMg9YoHJWIySipGwgLACY8togYBQAJAEjDEAQiomZkQyayB0ZlAEGQAcQjxayw3rkoQWdmvVnd3d0xcowCKheJIXKGYK0uimI8njII90685EXJAMF1WlgT5JaeL55DRog4L09H08n13e2uH8ho10YRAJR6pFxwEpmICpN5gbYdPv9omhnUs/l61ytlKEhe2aZzxkCIPHjODGhb5MYqxlFeEpEEdhJ2u11Zlnmep5ZhAh6GLrMFABOQJowiZLRzrotxcbt6+uI6Bbz53dIoLSKZ1c5xPRppkzWqQdBEsa7rruuyzCzXqyzLTs8uCAJGz95HwW7XplpN0zRlPirrKoQgEuXeahxT5VBhACiDOIZAvzLe8F0B5tHMvf8gb779TWME72gLedeZvHW8/9X3eJdHU4uvZqMBwHufgGRZlmmiGOO2bXbOP336dD6bT+tiZ5SPcWqL2+vbi5PJ8u4WIzw6z6Mb6qo01j578eJqBeNMPfpo3rtms26GwZ/O7HrdWQzOudTg8ctf/vLs9NRau14s+y6pkZHWuu/7elSWWemdxOhza2L0u/V6OiIUthYUiikyETk5qcqq2DV9bsEoiMGLcBhCUZVEdrtt6lxPZ2PxzuRZ6nJHpDzPu64LIVxcXNTrdeyxaeLVKrIa2mi2rHrAjsKmixm5SQ6ZIuGYeyDIN9SzCADv7VL6CQSunj27+uVXu3VzOpmd/f4//u//1b8WhsjvFSaUvRrUgV4YRMDwntyBDxAcAQCI97H++zBXAA4LKSEoBUKYCsqEqOGQYk+RvESAxJqj5SXnOTC/BDASpS66+xFDZImkUJNONBAhBAngYyAORGSzfbMtR1FKqdwcu2VeDUj2ky5GTl0TshdpwcF7FEADiowiAA4Jz+Ocm04mVukUECilvItKo/fOE3Fk59wmhvV6fXNz4yMX1sR+8G0bRYxCm9lMUWb0J598EgKvVqsvv/rqdrnSWe49962rMqWUFYiJC6dIcgIowfn5vN5sNgg8nZ2Udb3ZfpX0toxGBNRE2dgQw9A1vmtHZdU0jTFmNpt1bri9vb24uNhsNjHGPM9TE2Hb9EowMhORDzF23lrbbLaArJUSF4wxRZ4RwdD3iBKGXk0mIuKcm0wK4dhsd3VZheAyY4eu16SadsPMVTWyNhMZElnZaDRxwScmx67rlHlp7rz3IBJf1fb6Hmt4P4r8jcfRlbuPrD5aw3clEO/bpnfZXLkPJHvveb720vHPo6969CLf3D9dsuSweO99DDGwgPv7f//vP3t65UHdrXeBBRFHBU6n4+VyXef4ycXlZvlit+tsadsByqIQctWodFs0ugK5nc3H/bY5Pz8JIUzG42HoJuOxMYZ9GI/H2+4uQRZQwDtWSD64rumHwU3Go+XdLQgYrco8a3edNVpc2KwWoyIjAQKZTwvvhmbTzCc1ADRdGwIbDUrbzbYh4RyJu6HrOj/Eza4FAGPaFy9ebO62PSkyZYR204AHb7TJs1x3HQ8hEAwKmJkUOquHqBQDJ/u3v257Svx/94d/+K/+P39HA9xePf+d3/ndh6ez726X750lR7IGAUFEQEFA0AdRdkEI91udcK/UmQLzxA/GAgQoIMygFSEkHCEqozjEGFkSUY0kZxKUStoaab7tH2mWJvsYY0xZxdRwohRqFtwjqBUSGTSiIyIaq7z37IUIjLWIGELoOp9ndH+y7QvvksJ5DJ5j3PPIMgsR5rllZgTmlDFQypBWSg1dlzrVFotlKt9aa0MIIbDSbAiMSunFEGME5n5gQYYDekyTyq2dT8c3N3cPHjzIsowFN223a9uTk2nvvWudQIw+ghUCrOt6u90yMwCHEKTIu96d5+VXT54uNp0o1Q8hzw0zRx80ppYdqaqKYzw/O1ut16vVSmttlU5qzol/MHAkohBdWdTe+947Q8oaQwQgVJejoe3qeZ3neV1lWuG4zplZAUJkk2VlXnRdh4hVVQ3DkOc24RZDCNPpfLvdhhBix1U5MjpDxLbvjFG9c4FZGXMsN0EKat9w0X69Ksp98/Gu/X8V5/E9Sbq3eoKv2aw3d3vX+Rzf9SvuD/dC5nvnJIms2Hvv+pZZlNKff/7J7d2q6YesnFf1FIQI2GjVdpuTeX02nfPQWsDZtAzalKCfXg0Xl/mX3z1BLJabu9MTGPrN3a3TcE1EZVEYYyaXl865zjez2ezbpy84eKNos12Px1YjKMIe2BAYwl3fVaVBROSoCbSIk0gCiiD4oW+bCDCpy2yim+VmNKmsVogSo3Rdr4lO59Pl4vbs/JwFu35L2qSYZTQaOXu+W++W6w0TzGv64HRa58pY2mx4GOyu4975ro26FqbQhVBiEmcQAHj5n+BitfTRCcCX33x9dnbmwzAZV33c95m9ORBAwR6yiIemDiQxApxWUARCgEPKBFQEPhAQAgABMkQB1CqEIJCYXzlICn5VjBGSfQHAfQYGmCHTL9H+zAkUyICglYochQEEiBJ8MMXFGKNwEGDWhESgtCKi4J1VCjUy8zC45IYqRYH3goxyqA/vHU9GJGKOzKC1RhDmmBZjZmaOzDESKISo0TBbCwqw67rNam2t1doAgPdOaUABJGRmgZiIuQi1j3vOq8T7jRJDcDHG+Xx+d3fHgi4GpdRoMlmu1zGyUSqGqBRqAkGJ3scYU/oys/nDR4826/XdanW3WJVVuWz7QgFR8pA5NybXOjN6NBo1TcccP/7ow+122w39bD4dhmG5XBqjiUiDFpFe+q5vhBNJbeAgKs8UkiYIBBrpfH5iVVjcvVBIxpjZ7IQFUWLXddqq3a5RSmlNWZat1+tkEJ3rq6oi0k3b7nY7pZRSRgQFkZm7oR+NRhhfGgGVJHJebev4lRi97puS+9nA46vfG5/e3+Hohb2ZN7y/w2v7f+/41R3YN4//pq187QumLHIEiDFqa41W/eCfXV09evRotVpdXp63LgbvHl6cvrhbtDt3Mhq1zeZiPt903WrbusTrxxIEQj9MClOaxMwBAJBZS0R1WW5369/60Y+Xy+UXX/y8zDNF5vz07OnTF//gH/6t5d1iVI19PxSlBonjUYUsRLReb6pMcfTWqMIYo6TILM0m293OaLIE5x9/cLtYAYeiKJqmFVQM8uJm8enHj55evWDmajQWIG1tnueL2+vbvr9drfs+fng+mY+Kj06n6+XT3XY7meTtAGhQ7TT6iD4WPSCAySn2HIFfq8hdrxa3m00+KSCExvVZUTx/fhfevSSpQ6MoHoq/SKKRmGKqi8AriRTRiMoq4n06mBGIWDF45ntE5cgiGIXJJ6+Q9oyxohRQ8hBfSty9ZBgjwhAjItiMjjYleV1WRCEAwl4DgCXw3uNQxEgvb6gEagmhBzwu6smcA+wT7pSykynOTwlK5xyAKAKjQClEEGSJEk7GozzPnz9/DoS9G6bjyWazEYE8sxKjJgBkYFBIQGiMwri3qiCSWMW6rlsIX148qOv6q6+/7UN0IS7Xm7y0Skn0wSgajUZFZruu2263PkZrM61xuVxdX9+enZ09ffHi6dWycVCOMwWDG4bM6CrP6qLIrdEKgx/ms8lyuew6u9ttRGRx25nMVlWx2bUpIwSAk8kkiT4zMzCGEPIya9uWAE+mM+FYZFmzWUcfGFEhOudsVjjnY4y+c0nAwHu/2+3qum7bdrPZ1FWBiCFwKqHked73LsaIITBzVVfee30vUn5re9v3+4bf61XBr2YQ37/Pa2nEN1+9//b7dvNIkPv+s5I3NADedQ5vnoaIAAsiZtpEazWhiOza7qOPPrl9cV1Y7bvttMDCGuaohE/nVVUVy9vnre+yPLcOv328qErrHK92cDbOKiOjPF9ttvNZXeaKmfu+79vm2fMrCXE8HhPiEMIHl5e3t9dlgZvV8vzsZHGz8H1XTQphR8BVVba7nVWgDRIJIBGIc67IzGRcSgxKYts0Og4SvdYKgZWiwYciy8fz8fXdgiO4EPthQwQGobAqt/qjaT0yhRcYT0bsXNvtusBeq8oXPrrCSHGiTRY2XQgdGFOVNvRhcAF5b7BSpwi2zj1+fmXz4vnTxZNnV5PZND6/U9bG4e3aFIeM4Z4bDkUUECIyABEQ7qPXxKsfBYiBJAJSCs4JEQgRJEQ2CpKKn+x154FZFIJCAoAYBRE0Hg4Z+Nh8ovYbERElegRIYuEgQiCJDC2lC9POgJwyNUefLqSWOERlEEBSg8dhalHybPeTiuWYgRGRg5UUoynx2iotitAQaq21wszYRJYfo2hN/eBFUCl0vRMBNMARCEBr5MiRSDiAoFaKJcboFRISMMIwDKEHk2d3L2585Hpc7nZtlpmUJCWQqizzLPM3dwzYuwGFTG5RkQtDXVezWUHbPgRPGojBEubWoEAMQZgQpe/7s7OzrusePnjQ9f1ut1utVlmWfXBxsWvbVIMeZRlDTJhto/TJyWy5XBKgCHd9e3Zyend3pyBeXHwAAN4P2+12qm3nBpNZRdw026Hvi6Ioi3EIQZitMU3TpLxwVuRDH5LAQFlXzgVN5AcHhHgPy5Ii5SPe4DgJ3z7wMO4bhV/F/3qrZ/dm8eSt5u+tH/F+K/aeiB7e8Grftf/RVr7nCybpCUKdON2YjNY6+OGThxc//dM/kiDTySiIKIGqKK9vXuRF0Qd3dXu72WwLQ9ZE72Bal03b1bUujJ1UEw7d1dU6QeqbpvlHf//v/uN//I8no/FisZmfTAGgKksA+PDRo+jcfD7NrI4xaEQ39AQSnBtVhSWyWoXoJPKoKoauu7u+6YfWGnV+Mq/LvK4KkNh1fV5USHq17q5v7ojIxxABUGlEqqrRdDqvqopCr3w3tpRDrLIcyeT1ha4vnStDrDpvm6B70kEppwEqpQAUwyHVd6iJATjPRFTX49wCAMQo4yqP7p0yPQSpPw0phcxHNM++uw5QQIkYBEVgCKIAR/Ehes/MgCIkQgJWQ2bQ6D0WRlFy7oDoQCuvwBxmPSm0VhmT/L+9PF4IwTl/7DwLIXgfQmBEtNYkailEZBBhRMSkhcSBFZK1WpGKUZzjGJnoaChfIU9CVEpR+nZKKZEIyFpT8jcVCmCMgaOLwoFQjCaNlAAlMYIy2TAMCe5XVUU9ykZ1mVtlrcqyjAglBmYBZqNIa5IozKyN0XYvW9m2LWkFAG3blmXOEYosG9eVVmpc1WVZHgvBSLppXMKmFEXh+46jWMIy19NJOa6rOi8no3FiVzw5PS9sBpETW8Ld7W1m7Ww2Y+bdbjeu6+l0WlUVgGitc5udnp6mPW1usyLTWjdNY4wiBYqyNCmcC1mRR5B+SOwonVJqPB4nOrvES2atffDgsizzlOodjauqLvLCImKSmW6aJvrUzLMfMeHd03T93rzha47VW83Hu9772p7wRuAJB41U+D5DiYcqyq/7ub/u2HP8JofiVS+aQJRSMXrnvHPO1IUCUVmx3a5OT+b/w7/6l998+fPp2NZ13e62lvSnH3/8Zz/9yWw+ARbB0LUDs44hNDu2ZXl6Vgp7HvRmuVGlnJyUTdNcXy2rSl1fXw/D8PWXX52dzU6ms7YPt7eL+XTW913Tbv0Q2tbNyzo1ge4220QeR0R7nR0Ik8lp1zRt35WmMEYLByQIfqiqgrwM3jvnlcHtNpzNVVaW5CJphQKrzdYNzY8++3ixdSpXJ6en0QeJsFhtdyw3m/VXC88IbQcAUAKMazPRcZLHZu0jAwFEkfv9lgiwuF1MJpMvexja3uiSgxid+XchbAAAQO17PARAgEVQtFIoQDFVZ4QQM01E5BIzWEwEqHuZJw+cEyhSIYKPHACMiCJiwNR0RyTGaAUYQmBhIgzhCBE7EhSKiADKoa6CMfEogAhEZgXHPA9zDBJjiDFmWR5CcENAxCwzqChGH0KwVsMBokiUFl0FAIpUjJwAPTECYpIkBYWstVEIBAIS93q7QezIIqu4ikVtvfd5lvVdJ4zOOYUSEbyPRJDiRGYusmwYhiSie7C5smtbInr63eO71RoUiWASYu77OBsXFxcXMYTpdPzixU1qZcuyLAbIcxNFiOjbJ98KgDWgjSLgzBgU0Fqfn8577xKNUxv8MPRnZ2dff/ft6ekcAIxRVV08fXZ1cnICAEVRiAiRWq1Wg3cE+OWXX/3gR58/f/5cInvvv/vuu88/+2xxs/Den57NY5STyeT6dgHIZV01m2WWFSIymUycc4jovc+yLHmgZZm3fdd1mMy30qHMRxhjmeeb3S7Lstfm2ysmSCRRXACgEolpHiqFDBFQwUtg7Uu/6Z6z+aqJvPfXfev5WvXjte1v2f+AocBjCumA28CEpUiE7gcvErV606NExCNH4fGD9t9c7n06vXyJQyTcq1gcWqIOp8ckga2163WX57lCTQrJO61yL+7/+d//i7/9cHJRlrFfde0WKX77zZeVHm/u1qMTs9w6phqznTLFP/h7D7798ssC1On89PrFLVohMJ1nRAUIzFQUldZ6djr59NOPi/L0hMPt1VNjzAfzUwzy5Zdf1rWdjCZXz55OJpN8YtebJSltjAouno3m7W7duA4RMqUhsNUBkbddGE9mz5/fsMAHF2dPfL9cyWefn29W11GQ2bBjItFGOZC/+fK7SV3VGYFbDaK/XHRfL9yqGZo2zAo4m09I27YLz6+X7c5/elGNrLoVAmJiEAEGDQgADBIDwnp5NR2NO4QuxlNeZzJsOUvAakE4UrqlkUooAZkQad9npxQBBBDgtECJpPKxIASjhBCFDHNEYlTMASFoMYGZrdHW5P3gQmAJIQpYawCYhFGC0mSMgsjes9b7uR2jSGRMDPgAGvfLjA+CCGW2x+JkxgzDMCSlPSKFyCAhCktgDgKA/3/a/qxXtixJD8TMbE178uFMd4y4ETlVZhWLTQokGpK6QAoQ1BQ0UW8EqAf9AwES9BukB/0G/QC9CnpsqVEU0aJEsos1NFmRlRmZEXGnc8/kw57WZKaH5efcE3eKrGJxwSPgx++e3Pfatmz47PtAYo4ci/mjYS7tx4BIClSZdzlH40xdmWJRlRISgJSUImOU98EYZY3WqL33i8WCiDzmm90mMPgxKKV8isZpyZlZEnNOmcimmGKajSZEDMl3y1aKoJJSCEIMC+v6qdfGkLFjCFrruq7G3fDotPnyyRMEILJzP0jmMPt+mlghAFhUtXG77QRgE4Bx2ihytT06OZmGPUt49eaFQgTSr14+P1sum0VHKGfHJ1ebLTM/ODk9P784Xh8RyOnxESK+fPmybtsHD86ur69z5vV6dXOzMVU1DINyztTtm5vts8+fMPM4ToAqeF4v1kLY931d1ylxVTXC2NQWkBeLdhj2HFlXWms9xP0c9jnno6Oj6+tLZzWiCT5qbe9z2CQwgApzQuCUBZQG5r8VzTyAj2Ql4dYHfD8ift9bPLyH71nPd2rK9z+E2zrgO0f+9PG/t9k95Dbe/6fvb05FXT4UhJpikRRjVzdT9JVzP/3JT1/95lc/+QdfSvLjHH767OnLFxdaVXXtQJQ1efTTcu22m/nP/uzXluDZ05Oj9emr19dKYUygjNpvh67RSsnDh2fHx0fb7eb6aldNmKN/9Wr7859/fn193e+28xzW6+Xm+rrw2ey228o5pbBU0PrNZrVu99vd8WoNgG3dzNM+hHm1OtoPfdu6fvD7/f7s7NS6fr/fG60gq8QQs0hOlkQ0olLrs8cvvvvtAu1X37381QXMCmKGH//487WlEAIjnpytkfTr1xf7/YAeVClmCAcQpEOllhQK4Waz+9GPfiICztVCZKyCgaHQ/N6aQrrtkisgHSweIcCdQFMWVgikkARzTmUucZZ2ofzMIaZSc8BbLmsiEJaUEjOwFLE3osSFUBpBClcCHphfC66l7Pt2qhzgh5CVRlKiFJVWsJyz93Nivm3bYwEqncfj6BHBGGWMAoCUOMaUM7tKM3MMzIkjsQYqF+l9VAhaK2MVItItuc48RyIIPisRUGg09bv9j370xW5/IyJKUUo8zzlAdgaMgpxBKTBGAUoKQgqs1drQ7P04jiCilFp0CxDmmIio7/t5no0xrTHjHNLsiWC9OgbGo5M1ZA4hEFG76BJhzImZrbYpJUCVUuq6hlNOKXvPL1++bKzJCn/2kx+JyG63Ozk6+fHTZ5vd1qf4xRdfTOFX6/VaKbWO2VYmhLDdbotDV6gPY4xam3mex3kqvLzIMiCJyH6/jzFapZumYeZhGLSzAGBt1TQ6xhwKwTXyarUg0nXXKmu2u13VNK9evXr06FHMOQnv9/uj9VnTNHMMWv+QStS9ls13bc0HP/x4Zu1TFZI7g3jnx73vP94fdxvjPSz0Bzf7WP7xHZfwYxf29lDwYR8WAEo0kflATZ5zFqApxL7fPTg7yTlPDL99ft46DUhTDLt9ODp23brZ7YKI1LVY5Tj4ZWvjHIbB//l/95VSJqe0XK7OL6+qSgmkH33xZYjTX/3ygll+/vM/iFn+9E/+7elp8/Of/fT169eI+PTp42+/fXW8bgoDvp8DcF4vu5PVWiFebYfd9Xa5ckZTVTfTOD96/DSzv768AYCjo5Oqnl9fXO8nr7QVASadGUNiHyIgsC50Q+pf/Ouvzh6u9gN9u4EeQGlnDD7/7sWNxnHKGUAASAECrJerGtPOT5VBERRmQEqSI4ghPcf0229f/p2/+99DgH4cG1Mvjk7exF0ODLemEOEtoentHQGAQ3OJoHCpgqjC+MI5AxkocBmlDGJA5BKscAYBVlojEQvkzCUvZCqllBKJkpgASBWdqhKQIxHEmAv28BCHCAAAMygtBWmotSorfeFrAXibHZUDbLtwRh242UvozcwlYxl8IiKtlTIl8ICcU07QdRYkM3OMggiGUGlUSnOOy+XCjxMAa6Wc0RxTv9sIHJhiAMBo0gqtIgSOMWuN2hQBqVT0pVOKMUpKYDRwzEH7nPN6uVwul/thmmMYpuCTMEJXN3PYv3r15uwXR370i0XbrZZvrm+GafQxbPpoCaqFCSGEEC4vbhKA1tBWlTPaj9NmnP/wFz/tmnbVLZ7HvGoX5+fnc/Bk9J/92Z8dnz149fp1VVVV1fR9X5JRfT8YY1Zdl1La7XbWOuccRIQYWaDQAVdVFVM6OjpScIh5nXOjny+vrkCyc+7s7KE2ufTLXl1dFT6xQrs3TdOTJ0+KGEDJeg3jHtBorcapf2emfX/87fmGP1hg+V0qMB/b632beN+8wq0tg1uTLB86QvnznRTk/au6s6HvXypLBgStNaISSUqpcZqOj47+f//qv3n58mVTmwBWZUDtvn15jqZVhpSi7canEE8fttttfvL49Orism21UsjMtqKKqs1mg4zOWIBpGLfXV+dnZw9/9rOfX15sQhy11n/0R390/urly5cvp2k6e/jo2bPHY7+fpkkr7Lpai6QQrVY588OTdd/vnVXTNB0tj26uN8bZOAYievDgETMvV6tmsfz25avMOE2zs3YKeZo5ZkANIiAZg8icYcbql796vc+QgJKPnz15PPUbTqldOBHZ9pMwKhBE3PeDAlDaMLNEEILMQgBEUBl7c7MBwNOj5Xazs5rWx6fs36CiAuK7GweWGqWwNJLcieqJALNxcBtdckqg9aF1ch5mQqxsURQSzoAIqBIIIYpSxMyIoAkJAYGNvgP/Z010i2sBIJJbBqj7d1xrVaDXxQLedi1DVR0wz4iCRAolJUmJ69qWkneMSQSKsEk5IwFIgboIGK201WJy5qCJjCkEsQlFChFikcesKguSCVByfPzowTiOKaeUMjMQktbaGqMRQHJVISIeeiqEEDFFDiEbp4hyXdk4BwAgotXR0dnZw9d/8echZlQKhFNIItg0XdfWnNLq9HQO4fz5y5vdFpVCreqaNYiIpBCBsK5VAYJqhdPkm6rqGjeO4zyMcRrXq4VS2HsPCNvtVjv766+/Pjo62mw2qxUWMLbW2jmXcy6w05OTk/OXr5tFV1SuYoxFmnnqh2VTFR7lGCMR9dMoIl988UWK3tqqCK2IyDiOi8WqMIH/9re/Zeaua7z3pfUlZUcoVVX1w3SXw71nFu6Fs4WW/B0b8enxqZIrfeR1W6u9G/je+J7d+X7k+4Pj/vG/1zR9S4z4Dvnr3bi/+30T+f53LJ3/RMQIRYKm5MK1pmHop+BZmzHB199tlWtDJtfUoOhms5/GedHatrJhnKZxc3xUW0faqtXR8sGD0+1+D5id0d5Pbdsyc9vVAHB1daW1PT4+dqawEKfFYlHXdb/bppQ45dqV4gk0beW0IcCuqjkmo/Dxg4eLpi7SBf/yX/67zz///Pj4uChJffPNN2/evCkNm0TgM/uQfOQkkIF8pt0s10OiSn/76qLPwMpUdQ3AF+cvJKXd6G/24+STsa6qKgZIKRgFCKAhGwJHYBC0AAIkYYUwzvHy6ur3f/EzRAigXd3YW1BUoUjAQ5YRAIlB8m1jEd422xV8HqE+0HAVNxAEACYPjICGMkiSA6dDzFz6DZRSxpDSB15rJLAaNDFBIhCRLCKSOaekUBSKJrCajMIDjAZBa7olZDjE7GVeFIgPQKGZUUoZpQgUTD6ElBjK+ZCBErOP8QB+LMXi24geEVO6m+qHVFKJPLqu2u/naZpyzkqjM7a4dSEkANClghRC3w+lmVKRE8Hg8zx571OKDKCJFDNzAo6JM5DCuq5F8PLqhrTNOQNg27aIuN3uQginp6er1arwWp89eljV9ThPIpJSniZerhZffPFstVg0lQOQpqq6piZha4y19s35ubX2+OjUz3G37YuPhooK0xIRlROVyvLl5eXNzU1x2cZxvLy8XCwWWutpGG+KBhmpUhvcbDYXl5chhDL567oGxN1uJ4J931dV5f00jn2h0bu6uhmGoYA9Ukp1XReueOccZ9hsNgTYtu08vM0b3npR34ud3032ibzd9G9lfNDO/o7GF+55dgeiunttA3cUI3emUN42nH7P4/vB8elLYhC8zRxFLmKT5JoaEf/sT//k7/7h33v82ZfPL7b1qn7+4o1QO4RxCvHqelx07YMH6zCPINzVdpymhw/Prq+vYozfPv/u6KhLIq6i46OVIXry6GlOuN3u+75/9OjBX/7lX07TFP0MAP1++/DB6TzPVFZ/EkRk5mGeGKXrugL7ODs7++qrX1dVdXJyslovf/Sjs5vNlda27/vPPvvs6dOnpVHU+0iEjJiRMkAWDIxjlO0oN/u8n9POcwTIOc/ToAByhv3kSZsMMMcYQvAxAIBCcc4YAgIxCFqhEr6dP5hDZICXL19+8fQREvSDB4YfPejKgnS4fXfaZEiROYuk2xoXIgoqRCzCTZwRAIwBIooxMjIhIBAzx1h0k41SRm6xLIioNBpCBaJADIE1YDQWptUiqFckqMp8QRSt6RZqAwBQrCpR0TYQYQRBYQo+ZQYBZIYQ0uRjzIVQDG7bRA/Fv4JlEREiMEZVzhy4VVLynst3YeYYcwicc5Gc17v9bAwcH58qZVLkbrm4ublZr5eH/kP5HmIuxjSOY/AJUYzVdyRkWuu7TD4ikIAxJjNs+6GqKtLKxzBNkwgjQUxhnnofc9N1c/C//vrrcfY5s5+jCBwd1YvFAgD2+72ItE2lCTbX14uu1Vr1290vfvGLFy9e/Nlf/PnZwwe2qt/cXA3zdHV1VQTgC5WOM3a/35eZ6Zwbx7GY+0JpwzEZY9q2LeYMMk/T1HVd+UGE8OL6SkRWq1WZG8vl0vspxui9zzmuVqsYI4OEFNtFp4zeD70gNF07TlOM2Wo3z6Ec861ZuC8xUXTD8JNKAO+8+fTgj4wPBqrvWKL3x/2I9c6j/OBF3jdn97289z3Q9/3Qu83eOeD7J7pDXpQFPAnPwV9fX56dnP7zf/7P58gJKIOqum63Z5/HoZ+mEVbrGjD4KSxbrKoKGM7PL7R2AjRP/PqiN8Zag01rldIXF1df//rq6ZPP/vAP//Bf/5v/z8XFxT/7Z/9smqbXr14opYZhePr06W63A2DJfNCCAJj8PM/zbtiVVfT0dB1CuLq6YOanTx8/f/6ttXbop9LWWhqfy8MJiIWTngFjktHLHGES2EcIgILa1M0hslAYhULKUNTmiJi54Eb8FEs7jQJUgMyMpTQh6CpDSr169UqRNE5Nk788f3PcuEqrW6jA3e9MXNrK4I6U4XAvEkOKkJlCSDGB1poRCjBFkLIAiwABC6SMmQUVFJBg5oi3ayWgGE1KizZgrba2rB2kFBgDt/YR6ZZJTBFoBTkfIqmcOcUip65FUA7SApgzpFjCZEkJtEalFADmItchhyW8ro21GlBijKWbAhGtVqXzhIiMMdZqBPRz6veTUhATvL642O6m1Wr17Nmzruu+++6FsCqVGREwxlSVMRapSM8Bk5Kq0nVjlBaAhJidc13XLhaL41XnnGvbxWKxWK+O9/2olCnUWEjQNKbrqqap5uBfnb/pp5G0UsZ4nxCRADUphcQpsaToZ0k552wszfN48ebq5OTI++nps89Xxyf/6t/8yfVuT1rtxoEBVkfr7XYbvK+r6vryUinV9733vpCwFs/mzptjZhRIIRbaMWPMdr8rgOriGxbKr4ePH1lTDcNwV9QqTcqlK3mxWGy322maNptNOV3XdYvFSpEpmNCPVXrvxn/ymrLwW1N1N8vhntN3Z+kOGyC8Y57wXtLw/o7lT/wQaRh8vKZz/zq/T/nw0a9WOgoS58Iih4jzPHft4vX1m3/0j/7oyWdPfUxIZtdPY84G3OlD53cxRUTi6+sNkVkf1dfXPTO0dRcTn59vgGC9WiDibr/zYfrs8ZNvf/vy2bPT7XY//vIvvZ/+3t/9w9evX5+dnf3VL+n09FRELq9ulstlnqaqbW6216Tx9OzMD4M25sc//vLf/em/v77eFJhYzvnm6vWb81zX5tWrVyKy3+99CNM0ZaSqqhLnXIqYDEkksqQMGUlhNcsYBYEwzjNAIgQgBaxAIiKyCCngeHCDjAERlRIDMAHetrVRQlCK8pyeP3/hp58+enB2883lsO+Vs3VdwzTFlBmAiPhQfil39m0x/9AkAKCBRDBGYYBaUEBYQGs9zRE1GkukhaOEELUGVylNmFLKWeDQQ8S6SIEKUGGjSQf9eEQCZEemLNsILCKEojQSUcpCRMzCmXMGpZCQCJEUlS4KZkBNVunio8EBhAiEmuXA+ADABKA0aUJlSpkFJUvOua6N3CYZEaE0zQJAlkwICGgs7If+P/yH/9DW9fX19ThzSkCKineZQZwBY7Gu62kaWTjzrIiULk8E7PejJpDKVNYUOGoIKWTWWgP4lBIqdMoAckwRKS/X6+V6Pfnx5etXiKgUaFKkaJqmy8tLiUkBtm2rjB6HPQq0bV1XeZqm1XrxV7/6+tmzZ0+ftRdvrlhmABjnKWZum4UiUoCbYXBtVb5gyRgWczbP83qx2m63HLltW611jLGQ9Xrvm6p+/fr1PM+r1arruu1uR1rFKe77rTGqqqwxioi6rqtcsxtuXr9+vVqtRPLDhw/7vheRzWbTmEXdLmLO3vs7jthbK/GuyaJCJyySStmuLK1QoA8sKKCQCEsjvSj6kL7Se6pM98ctc+edSPftJwUVrxAVFrW1IrwD33fQ3s/ovePN3emeZCka5CCIDHCXqoR3HNJ7F1rUow4vYEB5h4m2DFvY1fOBNaRAEEDC8YPHZ89+tp/4H//RPwaO2ioxkIx//ipc7fjss+P9xNqurzbRM0SOTadcTXOYuradJ5CUUWYE0Mo2i+7JFw8F8zgPL1++Pjt9HOa5qar/8B/+sqrbaZ4FoG6MD4OyZp5HrTWHtN/tKuuUUt999+L0ZLlaraqqe/Hqom4Xj58+WS6XbbvASqY0b7c3ztoXN9OLqV2d/WwRoSGjRZyCRUttZ1nBLNzLJGIUkGLRglpIC+iYnPiDiBwACZmDfEtWCg3kyim0ipVojRZRZdFAMYMBBoY//e+++fzZTy2nnOddtfjPn8ICKUMrirLkqvD/E6MQAmTAhBAEMiIQGSJEjDESgtUQcxIgcspLto68lzixJGlrfbx2SiQMmYVQaUItSIggGQqzKQswQww5+CTMlZHaikaAHJ3irtEEbC1pTUrrmLJWLBxBUlVh06Krs3be1oEogsTDGs9QKE4RQWmJKfgYBAEVFUoCo5Qi4sQAZK0lBQIJVNYO/JhANJICRG01I6eUrTa1Ig1gFeQgwGKr5tXV9RBTFsoAKXFOEUGsQk0mJxr7TGgJSTLmxJWrBRSSW69WtnIB6Hw7fnO+v97tQw5pnkCiM9ooBSkBx6ZyVlW7TZyGPUva78ftfp7mKKh8iqjRFMILrTJSCCH60DYLQZhjAkWi4c3VmxDHb7799dXFq8zTMEwx5uP1CRFd31wO47gbB9ZQotfEOUbvY0TEEilfXF8pa5Si6+ureZ6UooxJOapdxcxt18XEzgrkmAABAABJREFUApSyiGCOXNVWa71crkNE7bqqXeq6Ob+5GqfJWKu0rZvl5cVmHv2q7VpXiYrjtMt5DxJvrnd3D7UnBAENKAi5AGv4b08zjz4yPrb923Dp9oX3QH/vmMJPjw9epLznjf5HZjDfCfZ3u365XCKq8/Pz//5/8T801pYsOqAG0ixwcXW964f90BsDzGyM0VrfbHfbrR/nebmsRfK+D48fn33+9PHF69fDbr9er8/PzyWnzc3V2dnZPM8XFxcF3FC63JfLZWFaf/TgITPH2XvvnXN93xexJ1Tqs88+Q8Sbm5u6aUJIcY7PPv+xNZ3S1fUu/Pmvn+8zB2OYuevq1boz1vmUUwYGQNIJcybJxAklKRWM89p6a4DT7e1kENTq0N5QfpMS+KAc0PME7IzSCADwm9/8duh3f/j7X3KAq/PXku2Xn51VNEFmRTDnjCgE5pBABMkAuXCpMieWDFLYq5mhVF3lwEUgiIVb/5CFRAVaQ8qRDzKVTITWGa0NM+SEwTMAtU1jjJknCUHqyi5bF5PkmNrWAfN+z36O1txqn4ACIRTijJxBGIv3bQwpRUR0EEsSINKAIHwLhBEuhREiKk148zx7nwHAGDIGraaYfBFiDj4xAxH6GFAZpUgYu2XddV35hacJALMxVDe6qnTtyFgFkFPKIfocotFktWnquq4qY4z30+XVFhFFcu30olVEcPH6/Pr68ma72+y2IURjjFIYprnruh89+6IULoahB+DivjnnYowKyVpb8Okl7IjJt22bUiqFi7Ztl8tlaZVDxOPj4+VyWXhluq6LMe52OwBomialVDKJ1tq+7621Jycn5ZglgXAX5BljChpxs9kwp3EcC+pwHEel1PHxMSIeH6+VUr/97W+fP3/+5s2b/X5fhKpSSj/52U9PH5wxUM4iADkXyZcDEfcnxg8E0r/7+Fje8NN7vW9n3/nzY/m+333ct+B/s+O8k4ssb46Oji4vL0Ukxmit/T/87/+PWTBlmGKaY04CwyyJZZ6ScQYFhikopZgZFMw+I2VAWSz05vryu+++Y+blYgEiDx+cpeAfPTjNOX/zzTdK0Xq9bppmmqbyRc7OzkII5+fn6/X6Lu3y9OnTB48elk51ESCtBNXFxVVmBsbr6y2SudrsA4Nx+Kvvng+klFJ1XZummTPs5xwEABUza2BHWTGjJE0RkoccICcUUMIEIJkZBBEyi0/lZxEEVoiIeIg1mOu6EgKlIQv8+te/PlquHpy0kPLVxh836icntgHQ2AiQSMacD7KFJcYASAAMEEGCMMOB978UPXKSnPg2QUIiByQgEShDRIBFppMhCwJQZpi9sJCfYRpTSkJoEEkYckIAPll3KLLfeYXw8Mw6A5y4iDXLQTWUOQknSElyFgAoTb6MgoioCBFCzCKotVLWGGNIIWN5NtPdFEI8pBdL+ieHgv0mANBau6ZWSk1zmAMn5rqutbYppdpVTQVEoJUAcOYkworEOt12SiFwltpVy65xWg/DkFPQpNbLqrIGJDujmsqul13b1XVdt6ulcXURddCkUmQQGYYhRj8Mw83NTVlWNRIBa4K6dnXtjDFNW52eHXeLJqVUMICLxeLm5qZk0vf7/WKxKEZNa933fRFQa5qmbVvnnPe+CCgX0Z62bUMI8zw3Te2cdc6VUnKIc9+P2+32QLvQNPM8F66H4+PjUoRRShlrX758+Zvf/GYYhovz86ZprK1CSLt+vLrZvnz5+uZ6672PWeZ5HsbRh+C9/8HH/3dSEP1EFeI/3fiEH3p/fOw637lUun39jof94Fnuny4lbtsFANTd4q9+9fWXP/7x/+n//H/Rto5CgTEBgFZIlm+fBKUgcZ4DA4KrQSkESFYrrXVTV1opY8ybVy8hp9Wy2202N1dXu81mvVyl6J88fqyI9tseWIZpPH1wRkRluhT/sW6bafK7vjfObfe7v/zLr4ZpTIBXm+3V9fXLV69eX14dHx//we99Hrzsd1urrNbax3yz2V9txylBacgorZg5AQIsrG5QawElgBkJAIE1HvSSRSCllBMYRaoIagKTQq2VRiTAKUZSKgEJwsVm+OWvfitIwnh+4/v+6kePuxYgxwRKgYID9vk2OsgHU3ioq+T7SV0uWqKHm8Jc2LRJbrvL76rCgpAzTz7OIRWLWdi2xmny3pPWulBdMI9j75w+O26jlxhCW9uuMaSAFGtiTXcNy4UQDAorDCCLHPDYSmGOwsVQEhABqdKZc8AqlvQ3IYpgzpIzW2OcA63LIoKZOUafJCmllMKmaQo0ZLvdex+1tooIgFLilCBnSJFFpHFN49TRuj49XocQrq/3w24uMdk0zdubvQK0RqcYSkjBknb9MAfvPU9TdNodH68enT0gBCFsmqZcTNfWdWUJ4Gi1sk4L5NmPwzCU7LMAZOblclkM3ziO4zgW3A8RFe3Q4sERUfHajDFKqZubm1JK7rput9vt9/u7mObwVN6KryJiVdsiI7XZbKZpAICC1BnH/vX5+b/9t3/qvT9er5RSq9Xq0YMHdd0uFgtrXdt2wzSj0j4kIr1cLruuK56p/JBz9rdWRbnr+QW4FRj/5HjfsN5O4ntX/NexvXfJwfKnUJFelMNxvtfw8NfjZ/zg9iViKhP95OTk2+cvHz04/Tt/+Pf+7Z/8a1SKc05ZduPUWspJAgalQBgBtY+hdhCTtxqYuTIaALqu291sjHEnx8daaz/NXdddXV+0Xf369evXr1+XBfbm5qqqmlevXnVNW1sHkrVWmugv/uIv1sfHR0dHL169GiZvjHl9sckZNMLpAzMM7P3w29/8ql6f/OSsqrXN+z01dT9MlzdhyJABiDSKZOBcnYKfAPKUmXMAAGPrEHNlMrIICCjAfLCc2oCxOgFgTMCgQIxWCiAJzzHZZjFu9wAKIL+82nYEBoEJt/14srBfPjm6ebktdwfLDboFqIgAI5BAhtKXDoIH3XrBQyWFBQgoF7kSQgBCLI0ZkBKLABGySIpsFLm6SnFyTiulUgwpZaSsrFKIpJQh2u+jc/n4uBWR7XY0FRmNzAgKGURzYYcAUIp9KlUfrQGAIidOQAhCdKiccAYARaAJtFZGqxBCzhlRmIFFtBYiNc1eKSpRPREJc8hQOyACFGyaOoa53w9FdtlanVMh+FEFORRD5BgVKOdMmKcY49FqbZS+vN4NfVAKFotmGsZCYvbw4UNX1Qw0hxBz1s7VkmIIIQRDCAAppSH0IWYfAzPHIkCMCJyG/VQ1dVEf7fseiUoEPQyD1qQVxhhLm6P3ft/3RLrIWkzTnHNer9cA8Pr167qu27YtBT2TuOBpSoNKSblkjixYYA9aa2eNUmme57quc85NU03TMM/h1evvjo6OfvyTzx4+eOy9f3X+GhHbtt1sNnXbhRAEYb1ei/Dm+vJotWaA0v2dc+YcP21DPsVveN9G/M1cqk8MfK9rBL//we/oh75zYW9D7AOTfImmbovX8mELi/h9e/lDZ0FEEGTmw40PUWk7+Xz2+DP4b/9VSgIISXie4XjVZj/OuRAskSLjQ1AKnIXaORTY7aajo8V2szPGSs7fffvi+GS9WnRHx6tXr1947x8/flwCBxFZLtcssl6vp2GEzG1TzeNIRD//+c/7cby6ue6nUYAS59V6kXMEgF0/P372o3n0w+Ur3N8cVerZZ58Nr74dEBNLLN3BaHNKRb0z+0tn4dG60cJhhqZ2GfHVeQAxOUcqNw5BEyhCpxFZQCQfFHhYgEgYWazSMWVlTQ6plFvJaCXZMw8eXl9uHj/98beb/fmUACAJH9aku7sjCAeEcxFDOXQbCaMgAwIzoAKWg2eZQRCBGRgpl0ruISElhEJKm8L/L6C1ZkrMEmNmfUhHrteNUmq73SNCVamcs6iiIA+qQIYUAAARW0MpMSJoowEIfIi5SH0KAGQpmp+oQA6onVucrNaai4CfkDD6BE5hZmEGrYmFFYKzilkUgFY4x4AI1tphCiFmETBGI4hGpLcleNIatjdwcXHx6MHDbrmKmXf9SFrNcwDCYUjTlJ48fjr5+dX5xXY/RcJ5miALIZTAlpmNU3GI2+2eCKyt4n5vNa3Xa5A8p6iQtDPWWlIKUSml+mkmyV23yik0TQOZC3RmmCaldImjtTUhhP1+v1qtHjx4sNvtQjjw3PTj7L2fptg0FgCUUq4ySFLqXTnHGL3BtoTVSqnKNTHGwupaGlqWy+X1zWWKfLRa73a7Vy+ea21C8NoeqBmi94wQUvTjgOA6MCXR/Onxn6Yz776N+8glvG9eP1jreL+4/MFxP7Un93E2eNCFAHivH/t3HvIhtKPVeg7BVXa7361Wq3mUzPA//1/8r/74//l/D3NQCEophZmIxsi1007LMM1TUBnAVqattTFq7KemayYfa+eUMuPom7pxzn354x/9+3//F7/3e7/37bffliR06SfJORtru7aOPhhSGqlaLje73cXV1WKxODt70HSrX33922nmbrnYXO67pl4smm+/eXlycnp0fOoq00B1eX3hNGWGJAwEiLr0wymASkGD8OOn7eePTp1CAIxMl7vBSvr6IqEgEjALAjiji5J9zhGotGMACyAcOnmtJAYhjhmKr4S1UxhZOM8eRoXTfvPzz0/Cr8/7BIKQCzH07T0SEL5X3hcRRkiMCgXkTv5Qi8Atv4NoTYyF96tgDECQQOUEMvixNjqFKMJWa1IKJBfAszI2+mk3jMaobtUNwzDH3DTODwERDwy0AnCAO0ClVQQREMSMCNYUHxSEARGNQqUUKQQWTllijgByjyOuzM+UctM6EdSQS11IE2gFKHnVtloTQgLkkl3JDAnEKXBW5ZxjCKDRKCBCbVBrdXxah3n+9devrIXjs5PF0o7zNM3Tg9NjZ5RR+vj49PzqErVZndjdGEY/AYNzxiismnoKPiSeg5/9mBlEPKIgoiLwUzz0ikzeh8AgiBKzEGqQdHl5/fDBcd/3OcSqqs7Pz4Eo51yyhCmlqqoQFDPv97ti10qMvFqtpmk6bJYDIFuny+p1q96lmLmoTcUYH5y5m5sb7/12u33y9FFd19vt1lobY9xut19++SUi7sZp3m6brlVqsdtttTWAPMe5ci4nhYjOOfmhRuRP8RveZcruf/gxJ/F7m336nLfz+529PvbJp8f7F3nY9/4Gd8/YrffxQQP36at958LGcWy6rgDcY4yIOIe4APzy88++/vXXiEBECtnPMQQ4OWqGcRcjELlFrZhz30/otFU6hFDX9eXFdrXKi64Fyb/4+R/86Z/+yWrR3VxdD/u+67rNZtP34+np6XfffXf68EGMcbFYDNsdVi6E8OjRo6qqLq4uz8/f7Id4dLIOMW43eyIQBL8PIuarv3zx5IxE2OvKVe3NdqdN5ec8JQiF1xulNtBW5kdnJ4u2ef1qe311lRn2EYZIplmJ7LQirTCEiAjGaK0P9KVaayuYck6MwkojMEBFcnZ2+tVvvrNa1bXTKXKYLUClgb2q3fI3f3X9n/8Pfnb5Zjzv5+x432d+N6VR2NVy+aiQ5icBJJG79gF8q/JcsKSFhQEAiEoSCnMW7zMm1qiIKCaRkIigctrZ6vKy7zrdNs3V1TgOfdfZ5aLph31RJSiFFBAoBIeAqCwCUEo5JyFKhf01ZZEsDMwsWRgECbEIV6WURSDnlHMSAWtBaxIBH9M8ZaXAGgUAVWVWnUPIzMnouuTXBCHnXHdOKxOm3lUqZxgjCIgiAJAY5q5eMrM1VXVM/TS/eXM1jNB0oLS63tykSZYL03StoDLGTCEqQGuN1c4ZpSi3bZuTFIrA1WrVD1Px8goQOqfgPRnjsMhJKz1NU+JorVWoC5dtU9dhmr33WpsiX1VsmdaGiIZ+rKrq0aNH+/2+JAFLPzIizvPsnBNQOecYY0ppmmYiMEZXVcUpt21bmBeev3hljRKR1WqljRmGwVo7juMwDCC03W5TSrp2LOm7775T1iDiydHq/HxTu6roKYOIlO7OTw4tCISlkV4AVQZIkgwIHMR5kN9y9goi5MwFNyAHRbGDGN4dO9Y7+bvvoZ3vXQ19X7P47Y74vY/e7svfs5Vv9yUEABYGeOsGAoB6m358GzzDbXHl9vl5e0w6MBsKvGeF36nJlK9sGjeMfVvVwQciUISjn1lxZBsY6taApJwEkNsGpmmXtEMbcpxCBGOUVmoYU7U2Wrurq91PvnhkFIHkk6MH/+KP//inP/3patVO03R6enq92SpjfdwwiDI6zl7XLmPu1quqdgUC+ebNxSwqiBlj3Hy3OT7uqqquUA3j1FhrJS8XuJn1MAZSAXV2rnuxk34CDZCAQfjxujq2YWnii4ubr75+LQQzQ5CiucYujLU1ez9XzlS0blVc2UELGDQzM0ZPSJJUiBlMylk40kWM9QkQQeZckzp7dPryt98qi7Wrd/PYR6YGvnnx4u/84on+6tvtNkcyI0chUIogMgIwcKKDvLJGEMQMogSQAQQUQc5ZKQ0ALFkEgs9EKjHfsjyIpFwSyAQwBH18FM+O7YtvJqOMQMyYAgfbuO3gZUjrozrGvB2CrdzRyfrli6u60kQ0TzElcBadq0mon3vnyFVu9mGeRXESUjHkptFZMGcRAVKiFLICSGDIMrMIKpIY8zwJkThXCc/OkveY0EieLcnAsly0q8bs9/0wegZQZBRKnkOGAALjEJxWldUpJUCwhpRSJGSUSjwl5mVXzSGREuuqceqtVSePWqXUFNPr8xc5yzgHIrVctMM0gHZt233zzTdt3XAK2tqcs6TotNIIzWLhvX/8+PNpGgC4tBvvh1FrTcwhRIXcNW3OEkM2rgbSMeaQIqJwzNpZZvbzrAxlguvthkHImUpRDpkkG6XE2mmall3nGldsaAihsKsZUrtpv1wuALBpupxvHj48HcfROcWRK1sz8zjM1lTzPB8fH2/3u77vrdKrxTKlPI7jftPHmLfb7bOHp4ulixnn8SbHt+ryDBmQs6Tblnj5ENT43jN/56zdGbji88ttOzDeEwV9x2q8s9c7Wcj7FucdBMwHXbaPhc/3//wbB8Jl3PURftAgvv8tyv0r8BrvfQjh+Ph4s9n8/u//AQCMY4xJGGA/+DmBthWzOOdyhqahUlYry0QIoWn0fr8vX3O32x0fH//sZz/76quvSuG4qPYsFouu6+Y5FiwCIoYQcpLLy8uLi4t+HH7zm+8E0Vp1etb1Q7/d7iaf2qYKmWcf6qbqGltXehiYATf9EKeBSWXlaoIvF/BsRWTrX23VYtG2tSr6nAhQWQsAPvjez9ZQ8jGlvdW5qIwELrJq32cGYhAQaymEYIwRgevtfr/fP3pydiDTBWBObduOk7++uVmuF92qbS1pABDImfmQMcRbFmzIAFmkQOczACNkhpwlHYbkfItGFCn8TlrrchuJ0FqjdNzuYJ5tt1SMkTMIq3EMfo7Hx8u6hsvLKedsrd5s9n6OWkMIKcbonHYOQpBhGENOjVOQAQC6pl12ldbaaXW8arxPklkTaSqGHEFIkZl9yCkJR5aEJNaitYSYjQFjdN3YmOaqMkhiLOY4VVVljCYqCvd8NxubpiKCEEKMyShyzhLRPIerq6sQgnOu6G4PQxzHtNv1ldPWmDD7Zbd4cHpSOZdz/uLzz3NOl5ebGON229/c3BwfHy8Wi5PjsxhjSckxJxFxzmhN49gfHx/v9/t5Hq+vr5lTQQKWAHbyB+zLMAxFIDSEcHR0hIglUvbe7/djoVP03seQQahMYG0dKsWKgo8AoLXWSG3lausUig9TXVclL1+gOYXJpviw4zju9/uCeXzy5Mnz58/7vmfmQnijFBX+Ia31et30fb/b7UoK0prq00bgd1WJursrB3oM5mIK7+yIUh9gUnwnsv50FPyOU/nOxXziX98//u9S1H7/FJ/4p/evXFiUUgpwHMe6rpumefXm/OLi4r/4o3+029/8yz/+rzNjZUxKUQnMSVIqpQIYR65r9N4jwuRno3RKaZ6lrh+Nwz6x/NN/+k//q//q/9U0TVl1CkrLOdc0zWefPR77oapsia9Lx35Vu5yztma7HerWTtNQVUprPY4+RjFOm4okRWZfWXIVTD5sxlIayMta/ejRyVqnzb7fzGrPzSOC5arTPsl+nKMAZ42QBDKA012cdtbktrIpQEIE4op1yeqXZFMh0CfA2lUoTESlAnu9uVl9/hkQkYBTEKJvmjp6fnN51XRrUPLouLEzXQ5+jgKkWAQkSwY+NPyJyCELXGoIpqhxchGLB8TyHyEWHG9JhSKxkCoNtzDNcHXDTaNUlRUbABLJTz777Ntvv10f1Q8e0Pn50DRQ1+7yZkeMSiOiYhEB1FpEIKVw63smxpxSAgEEnVNwCgoeOwvkJJw5MYgAIWiNAJCzHGT2QGKOxEBKgJkZSLExZDQqAmutMYaI4KAhdXjKwjQDgjForSbgGIK1tFpWksRarRRJEC3QtuBqSVn8lJJKtdMKcbPZaFKVdfM8WmuZfdNWKcSUUl21CMAxlZZTRCyKKMaoEgIW2H9VVTH1AOC9Z2bkXNc1ERVdwKI1apxlkBcvXjnnitHUWleVFcLNZpMZfApFoou0AkXMnBn28wSKiDD6yTmjFRrtSv0952yMAYBifMuvcXFxUdf13eciYq3d7LYiMk0TkTbOlVMToFG6smY/buYpKAq1W37aCPxwFeVj5ukHd/zYXp+oqxym8V8TMn3fK/wd7eAH8oy/w7XdvzBjTFn0tLNk9Ga/G4bhs88+Q1T/5f/kf/ov/vi/9kk0MCRhAR/9ojVJuOQwiSiEaDWWZobdJj77vbN5Gvrd/p/8k3/y9ddfx+hRUllyNpvNl88+f/3m4quvvnr8+HFTucIeXJbiR48efffdd+M4am1IY85JCJQ1++3cNC7MMXCojVKQnFFpSs+enrzezkMYhgRHDs6qWGM83/jvLnKmTBiuN2htpZAsSQAo2sRWAShKc1ZAbcVWp2mUJOCWlGfJKERSHlshJBJCYkmFOh8Bjo6WHEI/zt36qL/Z1rWd5qDHqanryY/zZpMFWg5O0ILMLEKHVK/REFOxhUAH8XggAQRUxe9DopJBFGBBECQNDDnGDCX7oUFEYoyZwCm3GScf0mIBtlHjEBUpn1kQxnFu62axMDnnafJIELJoJAah4qYqKCqmB3CkQOYsAkYhkaSUF43OzMyJAEkDM3HIMUHVakRkBuYEcCC/EYEQwFU4z14r8D4va8XMdd2EOBdKZwBgyQQKEZGkcpo5AwsBG00AIMx9P1eGhiECQM4cMhQMDgA3TneLZtF2tat8DIvFwrp6u91Os68qLSJN3WkiayurjZ+mGmJxa27xMdM0DfM87nYbaytmNlaFmFPirusm7zMIp6QIStMIAKDShVUwxsgiWmsRDCEUPWlgAUBliIgyiPexCNJUBDEnxZhS7tqaQLQmQBzH+VDvvlWFL/5d3TSFrAEIme3zF99qrQHx5OR4mhpmLp0nxqoQIEY/hbQ6OrKm++a733rawSfHD/eivBPkljTiXYBc/oluxZHvx7/vR8f3/+l+UHw/Pn3n/fsX8M74oCn8GxjrD4b571/23Z8lDCwOed/3wzCcnZ31ff+bb76r29Y6R4iJJQAIg9IYQhLGaYbFoo4xE1FKYowJITx4UJf7vV6vXz1/sbm6/vlPf6a17ncbhVJCAOBsFO12OxF59uxZ0zTW2qpqnj9/6X1cr4+RtPexkFLtdnOzcNuNr5sOAFKW1Wq1WHQgYDU5jUfL6scn5veePegWq+cX++dXXtf67GTZEuwn2ffTbjegwLLWjUELAAKaUCRUoBRB8LGod6MyISc+FDSQiEgdkr2F7CSEIABT8CHn715fnl9cpcQxMSDMIYUMylTlqdCUHEEFogFAuHiAeEu7JKUVHSACJMCEEg/9KpIAs2AWSMwhJRFkhiwHai/OElkig2SoakRIc8LdHpLMSDlE85e/fG6ravZyeT0UcpucARAI1TTmcUhCCkh7L95zqYoCQErZGVNZAyzCuXKaMClkQlAkRoHS7CzWFSDqlCSEyBlZCq0hEFphSBGFCYEkQfAZGYx2+/2+cDgjghSbCxkAOKXKurpxRam0rmzbVlYdYOHKGlvVSqucIedstJ6nRIDMHKNfLpeIEpN3deWcsqaKITNz27Z1XWutF4tFmVqIGGNk5uVy+eDBg8KkUHr1Sseh1lSotN4+aIQAkOWQaDoICjLnfEisleGcc3XlnFPWlKeICJzTWhMwW02Lti29yQVJU7y/clK4rcsXN3me54LZHsfx0aNHhQC0ROsxxhBCjrGE6jlnW7nNZrMfhvWqXa3WnzYCP2AN38/u3U8R3hmIdwLJ91OBH0v8fWLH3+Wq7kfi6nfDar9/lvuffCxx+YF/ylwZq7WepgkRF4sFx7S9vlmsllc3N0dHJ7nQfyG4Sq2W3exlnkuTFmmtfYpCRYE3a62XbYeIq9Xi6uqiMHAsFov1ej1Nk0KZ51lrfXR0dHK0ruv6l7/85XfffTfPoR+H683N6mh9vbkBZCDabnyIbJ32c7Q1jGOvta6rap7DZrNdLuywvdld9k+PVj87Mf1u/8vX+9cjag0tJZ4nz+AzJICcQSE21rRa1xZqQ5azhti2ShL4EawmrSBM6S3jHhbSDAAGFFmtll1bd10jCOPoTV0JQO9zYujnRBoFaLMdUyRrrVLYdl1buaU1CwVGCREDQLwnXCO35WYGyIKFNicBZMSMmBGyQBZI8bA8o6KcIaWDaaWMIr5tVVd1UwIfoekqQfAA05ys1U1DfT/5OTZtEyNkYdKgDHGGnKVAduaQfPSCAgQxp5higY4XGRYisAa1RgFhFkRxzkjmHDkn4JLojJwiJ2EQmEavtQGAuiZCaJpGo/LesySig3xKmXElgRpCQJa6qqw2RTPkyZPHdVUZYzlDTABCmSEEiTEul64Eqs4576f9fr/f7y8uLhSZcRxjTJvNfpqmeZ5fv359c3Pz9OkXp6cPFotV03REOiUuib/1eh1jNEY556zVzrm+HwrZTOScSjmYc+kbCbddydZWBWzQdZ2z9TwFEWbOPoVxHKcpxQgKodKFySJrUouuMcZYa7VxpE3JFAHAMAy3RWpdckenp6eFFnuaJgCoqmq73fp59vOIiAdpmszGqNVqlXMsu6fE+Yd6UX6gioL3xu9ire5v/wlrcne0D9pNvNcDB++ZoU/5iXe7/PXj+E/YQfg+nrG8qaoqhMDMpJVxdp7neZ7//t//+3XXklbL9aLAQowmyVk4WKuUgsrpnLOxlQjUdS1AnKDrurJ4EtHnn3/OnMraWObB0dHRNE3MXJqfYox1XT948GgcR2vtw4cPf/ubV08ef4Yo45iXq4WfmTMllhDAVZSmKCKb7QSoqrrNKS0MPF43xrSb3TSF3NTVatkS4eijqasogMoqAk4SxzlMUQk4RRXh6UIZlTgTKQIMICFPuYgd861bj3zAMBUR4hjjofSRZbFsrdMpgwAkFp/FB5jGkJNogs0wRB8aQwunLDBwRkXf63Aqdx8OVEgZIQEmwMzAILc2EaVopDAKHyAGiFjU3iULYTYuVYpSdJkr0nNrTRLIIIqMtSpn6PtRG2IWa43Wxsc4+0hExihmmELQTjeNQ5TMoDRZa0VACYEoECWCwpBzaZTmnBORaIOkGFFIgRAwJ1TEAkhsHVW17rqqbVzKvuA04NbXLrlIRFwul8A8TUFEjDGQeRiG/W5X2EBizNPkM6PWWtEB8l3CzOV6hYhHJ8ePHj/uVh2AUko3TdN1TXEMT8+OF4u2co2wCiGJYIlwU+KcZZqmot2stS6txM7ptquttXVdO+dK94i1VmntnDtan4AcpJ8BYBimgqTxYco5K6Wcs3WjmposEadQWVNbUznT1Y0CbNvFcnXULlaFA6L8CAcWImYR8d6XKopz7sGDBxcXF8650nvXNM0tLTwBgKQcZ38gT0S01nr/A70oP8z2+k5Ie5c+u28r34l87+/4jtX7hK2EQ34GSQ7soeVV/vyEqYLvpwv/I4vL74/3vxcAFGrfUuoahmGe5/V6fXV19ebNm4cPHx4fHysCpUhrYgFJCRGNs9OcRGS77REOpu3kpNtsNk3TdF1HtwQEjx8/LnRsy+Vyt9sV/pjz8/OU0na7bdu27/tHjx5tNptp9A8fHl/dXDOKMbDfD9ZWOYOztTagrLKaFODR0eLv/md/f5omyfDkQRvH3a+vkjXqsxagH88vhxEdGEvJM4CrGmUdM2QuFPnKKTIidY0xJCDT1GsRIQBDpvwm8paNvPTSYWExuX2wYd/3kbPSeuZkKzt5CEHqqslMcY5a68BinD05Ojpbry2BMAijAAHctS+XqPBwL5JAZInMQTgWVjaRcnoWCCmX1L7WBlHlLNaAJTsN4OPULVyOzeZmSgx12/RDCiGnlIriEjOEwMpgjHGefeEe8TPnLIVhN+ckJKZyWkOMHGLWyoiolCAEzgmJtCISoBQhJkYSo1Ep0gadU64iUqANGgMiuWmcQFosG4A0jbucc0o5pTIR3taUby53Sqmmqvwc9/tRRFCw74fLy20ISYBC5BBSDCkLKKXm4AXhenOz3+/343B1dfVXX/9ms+mnaTLGAYBzLqXU97tHjx4VdmtrrSITQ04pWVs5VxdgYFn4x3Esuk5a6+12W2SYDpFpaR/xvjBdl2suffRVVZX257qurdOl5ooCVqnK2spaAtYKlUIkKbuEEEohuNzrtm1Lc0sJz4vSgHOu+J6FAyKEUCh2RKTkGUoSIOVQSHbHYQ4hHdRjPj7ooFZ8APoxAWgQ/bbCm5kTcyrqDfcLx/cegHLD8t2rUA7evn+7/fvjzr6UP+/f/vvbiIhKTFm0YBG6FQQGycIKhITvrlMkC7Ig871Xhnz3+pjVJmHkfPcieetUE2e6/fzuCxqjco5WUZomLXi8WjOz974+6gYf/vDv/H1gMEi1M4jApBVJoeEcR7/smhQYWdrKGZSzo9XQ73LOIafVajUOwzwNk4+k7eX1ZrPrlakB6NmzL4dhatt2s9vHnF6/ORegyc9jCKQNoVFGI0qMc04hh7GrdPb+84fLyhCR+X//N3/y+jptRhij2o7hat9fDTnqytS07My8mzUgZFUhDNuNwWwsWAdCwCBzSKAA2TSVcSakcF27SmslGAHj7CFGJYpQQwYDoJROm/2stK2s1QCVqoSJGZDYAPYxRAUCkFPa5TAjnLplI6atTN2ocd6uq8oBgGQgBjzIp5ROFRERUSLqDnmTAAJABExAGSgiBoKA4AWC5MiZIQOJaAItbWs4wTBMDNvIsR9h3G+7imKETZ+DQBIRAE06RQwRnLOIWFXW1QoAdrspI8QE+z5ut34KmEWFhFPMQSJDRq2UKQrNTCjOUluR06qy5DRzFM5ZowXRU0BmaLQ2MdmIFdZ+lv2UjdOudkTICQrvdI4Zc6rWLim8GWbj7MnZkdZKgJWCqPWL63nrUzYukGbjBEmAzlYrjLExdUqMYNZHZ4tuFQOwpovNHkUenh1/9vjB6cnR13/1y+K19X1/enasDQnyrr+5uHptnA4hkFbaOlIqxgyk55BYMOfEnIQO7nlmKBgdVOTqqvQazzFcb693+03mGEJQSJWpDCkFqAgUZpAZhZqmQ1TaVsujNSJ2bQspO2dyjsXaFvyQUiZn2e2v+36nFO42281moxRWlfVzz5zGsa8b11R19KFAfyrXNG1V1YYlTn4Y/VtdFEINgsUAihS0gny0pvw+OhoOviG9nysseY37m33w899xvJ/XQzxwOdxhs1EAAfmTzcV/WwPxbX+zAiiZ/VJHu6UwOSjcE9Gqbf00//jHP84AISfLChH85JnBVso5LCGMtcCJU0qidV1V0zS0ddVW9dD3OUeOaZ7nruv6vn/48OE4ziGEruu893Pwq9VKKRVivr7ZLlbrQrDOZDgDoiLCnGNI4Bw27fLV5S4mTowZRIBdg0MeeU7eg1IgIkiSctQaJCetgBi1VqiUpMSAzogxyMyWgCRZBY11SpLShBGZwRoFxAIQI8cEZEVEUgJK4fXrl9ZqJJjTDEApJQBcdE0/9BqBUPcpeIAHjUUFyNlPk6sMx7RYrK4G77MIghSqiO8NfiemKTUWBGHAxCz3/rmsfSgwT1kpLvIpOecYWQSUKvcWiIAQiA6yZoCqfJ5vIag5C6LUtRUJt1xIZZ4yFT3o4lcwl1xwzMAsKcWD5BWTyEGRiJklZdFgDQgEpc3xakkkKQdUEEIyWimltD70blsNxujdzne1BobddlZIy8WxdZRD5H7KNgFREdUDAa1AIwPAer1eH50MYd5utyFzSmm9bm+GYbGwAND3PQl3XVd37c1uW1ctIjKz0jrPGVFXVSUihUTa3EoXFkyiFkZIhduxFNdLPM85+5AKKKfEp3d006UYyIIl56OU1oSA5Iyd5/Hzp5+JSNNUMXrvp7atC2/NXa6QuXClkzEmShaRxWLhYyj0OcfHx+fnb5bLVd/38xS0LbXEzTRNdWVjijGS0WCM/fST/oFI+e4+3w+Q33fo3tnl/ff3s37vj3eO/+mrhNts0V1yqtDPaflU+Hw3Ph1l/077fw9dXB6PQ36noGQADvCo7PO4H1dHx+1yOcfEIG1bG0U5F9MpIWXvvbVWaWhr56y+uDivXbW9uapqe3n5BllK/aSqqmfPnu12u/V6TUS/+tWv+r4vwfJ+vx+GgQGttai0MtaHFGP2IQmgq1pSapxTP02biYcI4yy1o9rB+mQJGicABGgbZzQ4ozVB12pt0FjCLAiQGLIAgDiLyxpPGjzqjMWIOSpJkJKkCMCkIHEGIRFMCZLAQagYwVQKNZIhlgN3RsFJM7AIBIaoFbqWFBhjhnkwmtq6ivNcGep31yerpQLAg4dO9/m+ABjxAyFPmUPpVnnqcMcKzTlAzhijxJiBi9wSIoLRVFlT7qDWihkiS0o8z77IdRZ9RGudUqqIJyCQoCLUhY0BbldoASQqZGIIRNZqa0kpOBTZmRWWtjx9MJtJjFaZAVVcrOwch3GeOIMI5Jxzktv1tcAY8WhZW+3q2prKbnfj17+92G7n47OnxhhNBJkRWCtwGqwBrfI0TdoaMrqUGko2LYRgtILMAvn05AgAfvnLX75+/Xqex8vLy+VyKSIFXI2I4ziHFJumK6YwZxn9XMQ5U0okpEAZMkoZADLKKjJ+juXRKIb5LoWXUuq6rq7rW1Q8hBC898EnrUk43WyuOIVp2CuN47CvqoN4jVJYUpbWWmu1c6YkK733xflYLBYFmNF1bSmtIOIwDCKyXq+ttSkxCThjrbXvJqHfG5/KG97vzbj3eX7nVeLiu3wifN+6kfAHXx+zUHcHvP8SyVwkjfDgmh3CW/hAG0z5s5jL91/vH/z29dFxv03lzhzDrZEtd6t8a2OMYmyqVgQ/f/ZlEJhCKIvk0epQkiu5i5wzJwBhAjxaL+exPz095ZR/85uvf/8PfrHvdznnr776ChFvbm4uLy+NMVVVlaT1NE0CNE2TMWYOkZlzicJJiRzkjUTQB5nGeHK2OnuwOjk2q8Y6DZiTn2M/gAawJCiJU9QEViNKyjEqAH1YdYAFagNLh8sKT1fNotaNA1XahEkKeTIXHVpBwIMGvIiQwe0+PHv22U9/+pPf+70vf/qzHxcAYc6yPlp++dkDp2iMcYqBM0DKAGCtFZGj9Tp6liCQ/Lo26oDdESQ6aLPfNla+O22KiQEp0nKHUiyX6UEiYrQpDktKAYGtwcpqayiE6H1KKbEc2K0FVRZAJKWQWTIDEVnrym9bypKMJHRAAhIBKshZknDM7GNKiUVEgDIf6A5L6dloMgoRWBEYhVabuoK6tlrTNE2cEcEo0iFn73NIwsykgAg5RxRhjiIZUbQzysLry+2//pM/94HHwP3MMRWcnTFGAfDpgzNbNSGEFLlddMYYlBxThMwoUroGCkoMAIopNM6mnFNK11ebEONiuSTULFLafu7W/tJ8VOawiKCAZC7v3zZlKLoj72EQBtnv9957JLFOG6uUUs65QpLYdV0IoUwAPlCLm1JUTCnF6OHWJwWA0naCiEV8uVhn732Mse97ALCVA4Air8p4eDyNMVbrH/SKPiLt9CEf8IMFkB/07+Qj49OX9YHjILzjCH6wWvI3O/jvPu5+hLdak7fnhds6YIk4Hj9+LAiANM3B1W0IfhjmUmdYrJaVs+tlveravu+PlqvFYlHii3/4D//h8+fPiyyO936z2azX63LL53kehqHgwqqqygKTD7t+HCbfD1PKXKDgPsW+38eYnMVl18R5K2msNWCOFgCiNHaxcKZr0CiwhCBQOa0ItMKcoWuwroxT6DQ4BY3V1pAzgpCdoiI6jALCGDn7IIccLhIRgUBKnDM754yBGOP5+flXX/3217/+tYC0VSsZhmFYVt2T01NDmDlqgM40xjgf0n7onXOLVjkNmOPpsukUKGCQg39317f+1k2EW/t4u6AJ0W0r+u2tAUBUgMkYZQwCAguTEmNBKdEalQJEJYKJJSVOiWMEVMpai0ghSD9MpSZDpHLmlPhQ42AofjEAoCJCBQCJITGkAsBjACAU4APngyAwQdZKSISAl03dVXWYo58CCuUsMUNOcvtdheTAFQZ5Dj6EOYc5OkOPHp8+eLhuWrXt/ZzAZwgMPkNIgKSAdD/ORde4Wy2NMdfX130/dl2TgqyXyy+ffeG9f/PmdYw+cUZF2/0u57zf73POx6cnOcv5+UUIKcbMzBkEFDlbF7exLPwAwMxZOOYUUszCyujIOd3LuQMddKKL/Old2FsAiSmxcEaEs+NjrdVyuUBm5ywI3yGaU0ohzKXXoBRSijUshw0hFBb3nDMq0sZM09S2bQbZ9nullFY2CYcQco73VaI+OD7wzx+0g2//z/L9qfg9a3i3a3EUD1mZDw0Fb82WfIhR5r6zCW+DpruLPNCDyr1y9ifs4Fur/bEtfoeB955Gvne6u+IPMwtSv98fnyzbpjFEWtuxn4+O9Gq9oGEOQplBJA/j5Brys1qv1zfbfZz9j378RUixgspW9cXFhfe+wAy996vVarVavXjxAgCAc0w8bTYFvy2YfIC6pn6MhkVESIAInMXW6UpDFqgVVdYOuxEYwzQLGglxuXKCkDO0DoxWOYsibXU0ThklmbPSqEnqSmtN5UEFUgAcEscEkHLIWORKhDlmSZGBSABAYVVZq5t/86//0jXgHIAoH/I0js7Q6+u97+fVarVY1Ltdvza2qprN/pJTzinv++HRo0fy+no3zopjY2DKkAFEJGcpvBvw/l1GAIGDwWEmecvqJkBFmSx6bgwabSD4GEsEzUSgbFFbJ84CgpmlyMePY2wah0pR5nGMBbBGlPHQjHqIkZGQgESygDCIIBUPlREQFRa2CQQC1ghaq5CyVmCMCnNuLR51XeUoTKMCvOXELOSJBkk4JRHWREBYWbVaVW278D7u+37q9zH5nCAwKq1ASfGkvORl21ROO+eAcLPZTD5qa1arxXa7v7kZj9dtjinnzCkXd6xIlKxWq8vLy2EYtDUlp1Fa9LIgqhRCiCGX+V+MkchBbISIGCGEkJgF30ZpXKjf7j07OeeQMyJoTcZorTQzI9I4Tm3VpJSNMUdHx2+uLgEQCawzRd4o55xzBCBENMYoOrj5pWWwaRrm1C66GLMxJoTECNZarSml5INnZCRkBOT06Qf8o77h3Zu7kPn9gPFjHt9fLyH4XnD9iYGI99E2/J/SDbwbQgd/8PAdReSWvaI4g+VNIWgjo5QhjbSsF5KZM3iBFxfXOQatVUopA4QQEKF2lTO2aToR3I9DP87C+M23z683N89fvnj06JEIOOdCCEWru+iIrtdrY4yPCZW2lWNBIMgCicH7JJKdM5XTtSGnRfLMAWLMPnIEEUVV45adWSwAJecUOCdrzTz5eQ7JJ43aEmsVHaXOQmfRKBWTzFFiksTEQqQsaciMmclWdUhcBDVTBgFSypTpe321Wy3cj559sWi7EHJl3KJuU2Sxpg9xHPYsvhDQ7Pb9VT8n0WOA3TjNIZ6enuYoTqEjaBW4O2dQAIU+HO8gwMEOgUjhrcHySRKOnAkhJ86JEckQCENOkiL4UPgFQggRgEpcVdc2M4QQRNBacxDHYggxKYUFBHm7hFMGFMY5SAg5xsQZIkNBL8uh/KI0odakNRkF2kBTm9NjfXa2ODpqLSFyXi5q57Cpi9JAmeKqzG6l0GoKc+Ik0YfLy8vtZrbGdE2LAoTZWGWUclobAk1gCS2hcfbBgwfL9XFK6fnz55vNRmtaLs1uMyilmtqlFErMoTVVjXvz5nXf7+Y57HZ9qd5ut8N2P5QMXWkr4luulrquQ0hZMDGEEo9qW5TtSswkIlm4dIOU0bZd0zTOWTo0HaRpmrbbPSIiyzAMmpRkJqLKvBU+RgIiKm5ggVXP83xX4C1CAmXknKdpGsex8ICFEERkt/OjT0CorAGCkP6jua/fs1MfiJTfydm9v8EHB/4ObIl325Rw4f6xMpS68keF5/9jiyf3DpXhoBmEBY0kopWC2zRKCaNKLmOcB2vtOOwXbYcAmvRq2d3s+hCCa5c6SlNlpZRVRhsFnN68eUNEbbsozMMnJyevzi/GORwhfvHFs5cvX9Z1DRBvbm601oj45s0bAbLWDtOMyqSUnLPjGLQGRKjr2hkdpn0KgBabyo2TICgfOCRAYuMQIKICENCIEaV21W4XEYBZmro2dlbAwOAUCEhKYZhiTJITkAIGVdeWtBmmuJsy2awFlDbEUnLHiBgCZxk+f/ojZXGaRqu1IxWjV4AaILAwACqoG9suW7yZrna7aMhndhW+eXPz5MExC66XDQu3FQbRGBMnEYB8WLxJQAqt7Af7j+huCpW1PIGgLJ2JMcYYtSarLOJhdTcVISjmGDMQ58KRYzS2zcFFUs5oray1AIGIELMIMxREpIACgQyZtTlIsqACSIduRRDKKasDWQMgCaAoAG2wsbRsrMLcD72fxrprUo6IYK0JMRagnzAgCRGBJEJ9eTm0baxdU1nhJCHMmpCyYA6QQClwRhvFGiD7+ebmBoR8inVdLxaLvoDyCB88OF4u2hKBMnNILAI2peXqiIhIm+vr6wJgaLouhDDOU9d1ymgjUuiavI+IGFMirb33k/fGaGstI4A6pCmYOfNbNJsg3txsrNVkDuZC66K6mPe7wRnjXK21BYBff/310dFRvx8ZU7G/KeZSeylHOzk5mUZ/c3Pz+PHTxWIBwNM0pRRcXTVNc/Fmj9owc99PVaWOjpphmlFT+b4AH2CWuT/0/el0WHYJWZNFuptq923WOw7gvZDktsx3HwiNSKDfyeUdCiD0FqlzP9S9a3m+fxYAECpMi7flC0QUKO76/SPft+B3x79/8fShB6gc7GPWU92r1Ry+FB6UJOE2cIBbji9SVYoBtBnjxABTGJyChYNXN7JO42pRcfTzPNULl9B89+ZaIXz25PHTJ49efPvN4ycP37x+iYh/+Pt/cHn15vryjTGmaRqtAwBN00REZLr99goFald992aoF9bH2C7reT8RAubIkNra1kZpYmFcrqrLy01IUFVASkmSmNFPwDoRwDyD0eHspL26GYwCbcYGCBHRkNHKKpVzXlfm7NHD7Rj2+2G763OOMaPS1qqAzEmZkWFKCRQ4q7f9tD47+e7i6n/3P/4Hb/bz//X/9v9go5gkM1iLYwRIHIAuJ14q6mpFXaOSt8zjMFdaNcvmZjdz2D598ujV8xe1MqaSHkQD7A7EtMRcuGlKsPq9SYeoSHLBIYKwUYoANYsAjz5qIueUIQQUkQzIqCF6ZMwsQBqUIqd1zhJjnEOsnEspjaNvKhNj5JwVSU7IrHLOwKA1kgIRyAJaIyicpwRAIUJVOe9DCKmukUViFp9AsQLOSnjpcGEXTtF+d9NPPQvIFOuqmqbZYVQaUhZBImM4wX4XmME61hY05Efr1eTHwYcp5ylADOCc7adAFG1l6toJibA8ffSQSGuP212fY9JklDtk+rTWOcRpisp0OQRrMA+ztwEANrutscZoGzlv9ztjzHp9dHNzUxgTSGuLKIikdedcERJwxjAcMM8iIsYCQEw5JSECkQQAZDQ5xSI5psLQE2OKEJlFKyLn2rYmgjn41Wqx7TcZmJCstTlxipO9zWbM89y1FSAfn6ymeT8Mw/HJWdu2u13ebvero5PTR9XlzQ0z13WliEOYlULMKfnp6Lid+HvwZ7jlB7ob38dt/c7h6n3f7WAjQH3wdZdTu3+W4irfd6QPVfnbcS/Vmu8i9DtjdGdP3/ky9//1Lnh/J7q/O/I7H+L3x/1jvpMoKFcFHwEepRBziETFUh/wN4qgqcgYNY6jZNAatLJh9lYTAJTsddM03377rbV2sVhcXFyUXnrnHDP/5jcvrLXr9br4/9baYcrMvFw651xKcnU1HR/VzgJhTjkiyGq9YM7TPIUQF4um6xQilH52rckYAAYifPz4KKV0czM0FZ2dLFPKANy1tbP6eLXyYV6tF9rQdnuz2ey2uwOnk9I65qQ1ZgAiijEiQswwzwERxnFsKv2//uf/m69++y0jkFI5sQbww3QXicQUx3Hc7odhmmMG0NooAgAg8jmz1ld9Pwhcx2gqV9eubcyq1o1CZEbgLEluF0a5t/7KrSlMABkhCkfhTCCKkkBijjlFzsyMqLTWRhvGUvk5QLuZWSlsmkop3A0+hKy1mkPMORurU+Jbdhwl+DadjwiglIgwQ4wcI6SUlKKm0UqjNgchpBh9SkwKqqoqlOnzPCMCEZZO57q21lLtVF0pZ0RTIkyVVYtWWw3H68Xjh2dKKZA8z9Fp1TWuWzQ+hMqA0Vpr7ZxjhrOzMxHpuu749KRpmhJsImJRJmHmk5MTQNxu+5CT936xWpbZVbSc3lycF5LqYRgQsfS9FebqElzfNZyUfvC7p6Z0ZxWvE27jMyLSSCWGK5dRHmoRIcLPP/+8tCcfHR2dn58XHZW+H4p3DABa60LaVFrxbm42ADAMo9K6qttCcpESV01T2BwAwDlX8OTWWmZo2gUDXF/3/LeumXffDsKH/K93trzvAN5ZkLsN5L2WvvvG5XsBeC7ETVIegDs3kN/Z7Pb9nY/5Tiz/MQfwEytB8QHvf5371//OxqSAkxilSjsRcFakREBrsUb50VtLWllEnKex0bBYLJn5q69+tV66Z8+eaa03mw0R9UO21l5tbhhovW601q/fnKeUXr+5OTvp1uuaSWmmm+2+cmrZ0DRMT56cbTYbVxk/jRfnbx49PJ6GfcpZKVVqstYgIErOOUNd6wIEiTFXFXnPmXdNbZet9fPknJ39aK3a7Xba2mmafAARYCxVywQAyhrHECPECFoDAjCzM24M4fTh2X/2j/9H//43vwkChbHEksqcnXI7TuXuTiHHmLVC52xDpm0WPkzjFLc77xxcz945DYpm72NmJdhao5FkDhPDIUYAKtPkPkCK6SAnkKTMluIx3iaaWSJnBiCVUSsiKS39hXNBRGJMRGiM0coABDkgKCVmRkyZQWlV2p+JSEBCzAV9HUMuCkqEmLnkh0FrlXOR3gNtCJXiFPnQtmFn33MWo42ImkbvvVcKu8YkzjFwyoKIWqHSoBDrejkP482NPzteffnlM/vm6nI7XG/nwNg0trYm+Gm/nTBNTtE8RB/6lFgZXVrovI9lYU4h933/7/78z/o+oIb9np88qJVSTVv93u/93rfPv+vHYbVaDdO83e5Wq+U4jgXuV5gN77yHMr1FJMs9jmRC5APB1YHv8rBm3XZzFM9DCtU8E9F+v3/06FERkv/JT35yfn4eU3r48MFutyMigFIYCcV/qqrKWmOMQTrgDYdxTllIqWGYYublYr1er1fdYppGQhnH3rh6P07aWq3SPP1AFeVvbg3f+VPkw+bmkDF5Lw/4oSPI+x++v/3bn/52dXrHvN6el+62vzO7n/gi75/l7v0Hl5SPWdXK2CF4EdlsNikDIxhCIXAWjQJ0LqaDe2mschaMMQK561zbtn6am6Oj0oa82e/W6/U8z8J4dna26/evXm3OzjoG6MexruvNpgdj/QTLRhFKW5tQGAP7PTMoBdubGxFpm3qOAREVKWMMi4QQF60afEJS4zjOMywWWFkAAINijSa0krMxNmcqUhCkTWSvrEohW6smH7SzKWZElVJCAUBlNRARaZUm39UtgM5FOzCyNdbHoADmHOAuvkVMIilJghgFyRlUmrVxjdVG7XZT4pQSNEc1SGIfAVgJVQpQg88Q8v2wgIpBPBwbC6GRiICAFFiD1qjKQgqcBDCDAhaFeAAJ37vZWXwKxumuNt5HH2JVW05xClLXGpRKIYpI6aWIMROAdWr2mSghKiLSmnI+KCkjQUosCMqQsTaj5JDmeS6lJziUyw/adczSNNkgKUc5M7IAiELUJMN+50gZTdZqljzPYwhBKbJaIfM4DI8fnjqt9tsro5X3flnXwzBkYR9zFi5dHESUtKzXa+fOQvx6inm9poLXW7ZdBkEUTWqKARGMUXMMRQ/vjoO2PAtVVVGBnYtoIABgPDwyOTMqRUKY0j3P58DYKsKSmZQyxjAnRJym6cGDB8ao7775VlsTY/QpbPe7Uu8uo5y6kNYoo3f7Xmu9H8YUOYP0+7Guna1q8X6OgULcZiZCgbzfj+jsbpu6hozVDOGDz+zd+LA1vO/BfeLJ/9i+7ztr7x/tLjh9Z/f3931/m3cu74Mf3oeOf9B5fGe8E3R/bzPk969f5MNJBpHMOaaULi8vCUAhWKNQsHZGcrJKzdOUBSpNy1VHeWqqOsTZWvvkyZPN9TVzvrm6fvDoISNorZumyUkuri6NcUdHlYicni6H/U5EGCDE0LTAzH5Ox8fVOPSLbpmTdF1tFKGkgk7nGI014zjHmK3VMfJyuZji3vvMkFcrk1Iyio7Wixz9fr9dLpdk1DAMtmpizIhqmqZpFm2Kq6SFOCeeQ2bOnLB0sGqtGTB6nwRSSle/fZGmSIIsLJoyAGqKqVB/Hm5rqUfFxCn7MM+1MxVjW3cKpXFRCRqIl5vJGQQBhYAgSsARJhENIiB8y9eBqAqTzgFmT0h4UHVBESoc2igKEUERMiICASCFmNTtvVaarHU5Z+9TjAmtEUJOkmJGIlIZSfsQObEAiGSlUClCRGEC4BhFOIvkAre29vaZl5QzMDCqxDkjgtGOAFPwXOxgQgTQShmjcojGUGUdMycfcs6KQZEiSNrQ9maWfL5O68WyDUzb3RCJV10VOV1dXK67er1cnR6vc0zL1aqKeQ4+bHbMrLVRqtzTerffm6msAHm/j1DD4wfHRDROo1bKObMbhyxcVVU/jW3VFOIvuiW6PzzgeMDTlV9UH6w53z4g8hYcSkIoBXGhbu0pAJCANcZZ8+tf//roaIWINzc3cAu0LvmoYgTbtlVKGYPDMDSm8mmsmpYBs6SmqrVJMUZFBKRDCLV18zyVqrcgAMNiqSDjdjtVzn3w2b8bH8Yb/o1qsd+TZbrn8R2O+c7W77tmH7R69z3H9/OVZUW9b/I+ZsTx+wWWD1z9x3MK9ws7b897VzR6p4uRU3m/2WzoEKuxJQxzROa6ciiiqHTI4jD4pvGcclvV15dX8zw9e/bs9DTcXF27pirnrdsmxnh8fKyU2m63GRkAsnC7aIbrcbmsIfnGQQpza43RsFrU1trop9V6pRVe3VwLZCJT7oVWBiBtt/uqstbiMAVrLQCkEKOfjCJGLAxO2z0/6tz55VW7aOcoLDAF1lqNvTfGzD4hYE6SWEDJzGAyE0jMGQEi5z//k/92mDwCOGeD9wCgtI45A/B7N4JEIIIkH4cpTiGozLW21uiu7nZ5Ms6myXPKwaecoWtd1+iLTZ8FInD+fu673AZkKQ+sQgQWRskiQoiloRkAkAsZqgiAQmDJLJpFO60UckpRYJ6j1kqM7H12GqraDvMMuegas49sWOpKgdDsA2kjkAUlZTG38y6lIIKEqDUwSEqJkxgEY6zSWFrdnbMR2fuYMxiLWmvJHHg2pOrKwm1HoyZoqjq10Ti72+8zKhbdtmbKMgxzV6k45/1umofJD/vPPvts0XbGx7ptyLrIuZBZaaWIaLVavXzx3XY/MwBpqJrquxevj48eHB8fn8N5CKHt6n0/jn5umibHXCQBSq68MBvO80y3MCNQRHxQWGNmFsCcRVhAFBVeBCICyUyAVeUKdZOkzJyVUiVfud/vz05O5+BTSjc3G1e5EALdNiCVIxetAh9nBtntdlkwsQSem6a92u7Rz4TgjD07O+Nb0vi26RIKCLhmAaL9/LedN/zB8UGj9s6fd94Bfp82sVg3eN/ElAQ1InzIs3vHYt59+E7S8H4a8f19P8H2U4Bj7+xC+O5PV7ZJ6TB7+r7HQiTA7IwehtA2RimsG8qCSqGfAieY53nZLVDibrd98uTJ9fX1PM9nZ6dff/ft8fFxTEnn/OjRIxHshyHEmJETg9/NoqBA640iBXJ21MwxOIcphuB91zWbmwtrtdaklEHgrquYgZTqmu76pkcdjo/OSPs357u2Vm3rgJOPYXW0EpGb691q3Wx3Iyq1HyOgVYaTDyFySADIzKCU0opjlpSFAUJmQ4RKoWQfwr/9038nAIRwtF7eXF6kDBwiCr5HwQB3bZ0IwIhTYOHs07SZwBHopja1rVf10aKbx+n81eu5n32G2kAodNj3DCLiAdnAIsUxl0JUUuDQIrnIqJTmDhZEsUYVtAwAMHMIMx5QfiqlLCJKKRWZGWJIMYEiyAKa0BgggZgYOOcMLIxIRmvhoBSxpNJuIQyoQVksPbc5ZhbISXKOLEkpIAJtCMDEFENIbW1TTJAFkK3WpFWMgpjrdmmM67hrmmo/7C+uZjIUEnBiq6lr2kh9ZY1CiD58++23xth+mNDqwDKO434/Wa0QILK8fv1aW1NVIaMSke12Xi/UNPZbpcZxjDHOOcYYSSsfA/tkjLnrPCke4kHehIiIhN4iLpTRmAWJgA/PGt1mde9KK4gHGqoCyby8vHz06NHx8ZrgsAwfHx/v+v2hF4WlFBJzzsxgrS00AT7mECNpi4ghRgAwxmitDKmCPSx4RqV0SGGc0unaH58stjLDJ8df2xp+1Il7SzH4fdt3W629v/G9uPJdf+3OiXvXs/v+6e7e33PO3278zjZ3Z5F7Ot/vbP8W8Pmh4P3+XrdW78MZWc6xfIV5nqXksJRq24qzOlqvch6R2IdIiDnn1XLVdY21WrKcnJyMfd+27Wq1AoCbm/3x8XHbttfXm9Vqtd3ub10JV/jmrnehqt12Oz09a1uDAv7B6er88rLr2nEakPLRcTeOowgQ4TwH11TT5IdxPj5eNpU1Fr799qJpjVJgjNKaGteQpBhSMQFZwKecGUXRm/O5PapI63lKlTMpsdF29B4ASSnOyRo1x0wihJgY+r7///67f6MshABtW2e/2G72jixwDgf5ebwLQe5uFwugwsQCCBMCAHiByvtpmlKGB8eDQZo811obBawygGSGJHhvOQQ5NINA+fGLN1gEVe7u50HK6raH8i7TLwIx5uI+ppSNUSllAFosGh+DD6mudQrsfQKDbVcByzx4YKgquxuD0wpuwVhKoTGGKMYAzBKCKJM16QO6J0uMXkRYYBw9ALRta7LyfvY5OKssKRSIaSYmbU3TLnb7kRlSSv04RGZQ0HbLKewLLKTv+0Vju6aap+HpZ48XiwVn0FozovdzSsk5U7vKz/PJ2dnxevXy1XNm9olFYNkZ5hRjDGEexzHlDJq0IUEKKRKi3OIoDrwbLMaonDMRoFZwC9sgrRSRIkLE2+bCw8JTnvgQUgFFFIba0m9X1VUI4fXr1wT46NGj58+fMx4wJyLCWQ5CK8yFrmae53H0VVOnMTaVJmUvLjaC4LRq245E+r4HlphTjMn7QEY1Dna7fU5D1x5/8Jm9GyT3HLESwygkfdDnPqSX7yzLneNWfiC4FUgBAM4AQnfAGhAq/MP3/bI7kArcQx3edXfDrUt830TeZVKLY1jgFOXFInyrlnDf2fxYOrLgDO4btTIKpuedHe8bU0J9+F73rrnklct91YbuXqatFcrW702OQYHT8GI7vbjqpzTFNFSVyzEbXdoqwVS4v7qI07i5vrHWNd2Coci304+/+IyY4hjW7WLsp7ZZVFXDSJACCJPRVYUWw8Ml6jg+Pl7FDJvNvnNtrdRxu+ApzMO0bBccEoFihn6YdaXRwn4ar/vwciNDhN0UrcPZh+KgbfspwwSE8wznr0YWGGK6GZNXuOnjbswJIDCA1kGEhUKWUVICSDFDafzg3DUu+fGrX/6GGBXAz370+0p1DJSEAdL9n/f2Ppb8HkAxb8IIRbsbBXBOHBks4tV1v9nuF0cdGPE5YULN1AAsEFrJWnKJ2kAACfDQMAKJAQQBdenNKnby0KnCwikHFi4cDUSkNSqNzqDVACqEnBlS5HkOVpvKqn5IYIksJoBpSNOUE0Ai6HOqKsvM4zgdvKckfgooikGEwFpAAJSgHIoGNuB91qoZRyClSFNKnmRetoYCKDYkOmcJKdmqlgzRp9ZYTdh0Lah68JSZLq62IeTFQrW19oG9n68327pqx37w03x8dLpol0er40cnZ2fHZwowxQgAndXbzfUwjolBIVVWxxBdbZu2nWNquw4IOQOCZp9UAiHIwCFH1KSsKbQpSdhqrZA4phyiCCCpnHjo53n0++2w2wXIbLQjrZSxiXMmZAX7yU8xY1UFia5x2hxK+avV0fGDhy9enQsdGGiM0n7ypaukaRoAsLbQd+bFapkYjXM+pv1+33WurqjWVQyeCFjmYd4nCKhJOVtrlxIwIIPst9u7hzrhIRooVkNAAH9IT/mdAffyd3i7aNyZoXf2hY8XoN8/Bbzngn1w3x+0eneH/eA/3d/m/pE/aD0/se/93d8ZBRvV1N16dcwMIRRVIO0cIWJKKYTs57mqKmv0zc3m5OTk8ePHJdmhlPrmm28Kr1zO+fHjx7/4xS/quh6GoQQpxhjn6hiSH32BKTTOtl1dGDFLsO99tLaa54yIxhhrTQhBkQbALKI1ZGEiyAkFISUIXhAgzrHvZ2AMHqbJa0NkgBEEwftEZEvRMGcoBJwpJUEgUlBathEUEiImgRhjSpC9t04Dwhc/+yzgbGvziVzEJ35PRDCE+rbhPucsggoBUQyh0aQJkEABKIJC/0+ltiJQuLMRACQnlsSQBJKUZwMFIRNYRSU/m7PEeMDAFhyX1uissU4XMxdztgbmOZWUcRLOOSMcyAVyzoUqLOecShuGwixsjNGatFbWKDJGGCWDMBJRCPPJycJZqwk1gQJcLxZKqWFfKKAjkbq52nrv8ZayZbPZXFxcb7eemY0xzmlJeRjC0VHVNDURbfe7Mn+894tV1/c7pVRV2aapmqZxzgFAXdfjGAHAWi0p17W1pvRv9N57xkPc4+qqtMQhYmHkLneQ6PCc4oGj5C2UTSlURnddu161rml8ikMfvPeICm+5opm5yDkVhbWc82q18jFO09R1nYiU2RVjLPzVJc/Ydcuqavp+VEoZ4wrFidE2hLzf+67rUjrsVS6+eP3zHOZ5rhpb13VVNcfHP+QbfnwWfsqa3E/5vROTfswUfvCw72z/gye9v9l9r/OD5u8TtvL+t/jB876/JHxiEGlFpm27hw8faw2EoLQCIhEpk6CqDDMXPUljdIFTLZfLciP/wT/4B+Wm1nX96tWrq6ur/X5/cnKSbscwjCJSVdVi2dbWGqsa5+Zx9+D09MGDB2UmhRDOzo6Z4fJ6Q0SIylQuZQkhuaKxLRBSLqlPImyqqnCgGuNCwn5MjKItlDk8zZAYC0Q5c+EQl8LRkkUAqSgosRxC36ZpFov61xcvP/vR01UF/9v/5f/sodVp8lCpoD7SZfzeD37vPRTrQ4Q5yzT5EBIisAgpUQoJRTEoBA1ADBqQAAt5K8KtZgtIEki3qnteJIoElsxQZEBEhFluGdI551w7jSgiEVFQFW5NEIGcy+VRSvz/J+4/Yy3LsvRAbK3tjrv+PhvxwmRkZmRVZWa57O5ybarasQ3ZmCGJkSBqMAQhA40giAMMJOoPBYjE/NBAIAhJv6gRQED/NABJgENQQ3I4TbZjV1VXpatKH/ZFPHv9cduspR/7vpcvw2VmNUfauIi479xz9jF7n7WX+da3bGAiYhRMYF0gZhBACAQgtZJKCSGinCQCT+wdWBu8A+SYckvTyRKJEqmG3Y5W0jXtpZ3dS5c2JlPb7XaSJCmKtN/vM0GsrFAURZYZYyDCJNvWM3OWStu0MWFjPB6DwGhpTiYTY8ztOx9FWvgIvL9y5cpoNChyaZSI5qC1NgSfpmmU4wDQOh85shrreJ0rQd6Hj+02QgJGKYwxOk2ixIwhZWt93dqqqSPVJioEoTzBOZpaCNG2rXPBWh8CW2urpmnbtm3byNBVdDtSSqVNTBrP81xrHZlyhJJp3jk9ndaVlVKtVispod9LbdNS8ByIvI2zUDBIKYUAtTbhtBAifMq7+3S/4fmsfdzR9sg+n6qIPa3nx/t52g5P6ySOweMS9rN08rmu+RlX+8hPEqS1ddM0edGlIECIEGhZtiLhJCdmNsZYFwSgYM7yot/va61v3749GAzOSYOdc/P5vFP0ut1uCKGx9s6dB1JDfzRcTldJnlnvfGWZgiShCiMTVVWrbrcfS9G3bdsfDlStUGoiH9iDDwAYPLcQUEqQ0tdBJZBomRphlBTI5AmAiIwPNVuvEoFCBgphbQizBJAShBTMzLEsJ3yc60QIgVgimEQ5xwPQHVQs4Fu/8yujq6P3HhwrF1JIWvgUT3Zs55Mqhpt1CERMAORIAEgpIBAqRsCIsFZw5q9GwQgxbc/Fn89+AIAAHAAkgD/zWgoX1qzXiIjAQExAxKAB1hIwILJUMkZFtACI9JQMQOARZHQfCaAz9mwhPhEMJALrAzCwCCGAQkhN1rrleCNrq7pt2mE/H/T6u1tbH7z7nklSZt7ezpMkmZ5OLl26tFqWSZLkadKGULdWCBv9m4yACG3Dg4ESgMvlcnNzUylVVnVTlwTaM+nEBObJZFIUxWw26/VGDx88ODw+aJqAAiRwt8irsiLnHQXnfdu2ATi+8cystbTWnlWIBcRIlAsxjfWMWyiEEHyIywkHCkTBe8jyJksSpRMAcK4NntNURCC3cxY5OMtW2n6niEK2aRoXPDELhqZpsjSP9ItZliHiqlq5wGmaORfSrCCu5vOlMdFNJbz3SaKYWQg0SgNFsgyRJkYKuSpLAO2JZ+Xq2bPu8+mGeJZffA47elw0nH9/thr1uD7IZxlyzz4EHgNgP6M97gd8XBn8VI0PP9nOttLHHxbRZxqRvCEE2/qiKIgJEQOtK0wWRVcIWZYlEMcyN0B+f39/uVymaeq9V0odHx83TXN6elrXdZZlUT7WdT0YdIqiWCwWxhgppWsbgTDsF1maIGKsJ3t6fMLM8ZCDh0eR4Y6InA2LZUOgfMDjU2dbQpBKgZaQGCFFaG1JZIWG1lsXUGrtGYTSjaVl7RkgxFCHBCGkEApRRmM05sBJFCglIwSOEkHUZcndomW6Nhr9H/7j//kOpC/ubgSEBhx85nXoTOUHiEVJEQAgrEMe0jNEROka1CnQCJEAMBIROSAHFJi8AI9RK2QCCIAB0MNaT4zX7xkCY6zARwyxykfZWADQWoKAEJg4epZBCckBKIBAoYwAgZECVigRrzDag7UNVRWspaihCBQsEFAKFEZiomTTNE1TF0UuBEgU9+/es9amaTqZTLz3RVHkaba1tSWE2NzcjIjIyNECEJGMQkqplEg0AHHTNNMpTafTyXwmpdzeuXR6ehpCKMuy0+mAwPMCEnt7e1mWZSlKAVVlmUNRqCzLACBCWOKCjYjWOiFECDGTBNei8OyNoMhRUlVV1dbNOvdGSjRG5bkpCqmVsd6VZdM0jfesVFTWMMavlFLnPvzoB1itVnme93q9uq6llFVVxczcpq6rqkLEwFA1rVSm0+ls7uwoJRCRvZcCpIA0NRIBiI0xEbkdgiMipWRMkBVC6ORTKgF8OocNnoGl4YLwOheFj8jBxzd+loYXcDZPe1X4LKXk8dM93tvnOvvFa/gsu52f/Sk7cETYDAYDQASUAEEqI4SNukcIgMCubTX4rFOkJkmSJJYMHQ6HZVnu7e0VRfHR7VsPHjwYDoeRUKSsTtI8a72zwfvGC4mDbmfQL5pyEazLhwPXRqYjpZTynpKE2XnrQwheJUYEV9euJQAGFKqxdZZAosFE1KwHSEAqBcq1tUszieyIxXLVlA0ASBQgUcK5LhAJXABQSKQAUhCTIxYASaIHg0Fwti+Ld9/6qOiqf/CP/hER9PqjlIUP0H7OwWEBHCBQJMkBhRAIPAALCBQDIiiRUUgJ4JDbNcsbrzm9IusQQuT6isMX4KyyACISA6JjBl6XNomFR2M5FmIgYkQQiMzgAwiJxMAASkkhBPkQwCNxpHQVGCPcKAFQgJJARAKBxZq0PZrkzttet3vSNNbajeGQgkuy9ODwKMlTwzydLLa3Rw011tpBt7dYLKXQRBSpq4RM0jQFDI31RKE7yJFZpWZzXNRlRYHLpkYlO/0BIBadYj6fa61Xq1U6SJRS05NTb1vvudPJEFvgkCamqWuM1IFSemQpZOu9DSBDwLM6hcEzUYiSEQCs5wh4E1LICy+F1EIpFQIyc2gpClNEMEbBGXYSEVGilCiF9t6XZckIgWkymSgllFJpllVVK6Xw3gkhGNCDbNvWeu73hlVVJXmWJMbWDUgQwpC3HAx5G0JIlD4rAECtC2VZgoKqausGukn67Mn2KdXlH2mPiy1+LD3uE1P5qSLjApDwM/gNn22cfkYR/IyLObe7n3bgI2rp4/rv+bHOOeZA7NM0BeYQQu0ohCAlxtROpTC6ToQQWqo8zw8PDzudTqfTMcYURXH79m2l1KVLlxaLRXRj53keEQbMLCX64CRwU5fLxTzGUryn+XzeNA35AACz2bxtHTPHtV1KZZLMBQCGJMMQ2HuQCLlJpBBAqLVgFq0jpXMfgnWOAMraLVeMAB6IxRpk6AI7CsEzEccyNRhhejERDUAomSRJkiTvHx/WAEnSk0FTA9PJghLV4Kckij7h4RMEAI/sAQKDBwwAjokAHIMPHCMSAhmRFUImIZNxkaePK6ScjTwjMHIMZEdDj0B4QAL2wHYdYwFGIFSWwLrA55oRMQJQCDGdZk0vAgyM50ITzvQGo0SSiNSYuBMROR9CcCgYAZhsZOKz1rdtu1ituv2B9e7gcFbk2c7OmJk7nY73frFYdopep9OBM59VXdeLRVlVTYxCeGuXyzriW4fjUZqmW5vb/X6/6PTSNBdCKZMYk0a2/V6vF2HMgqFt6pgpjIidTieWn7fBI2IAllJmmTpn6LpoPjEzEUT4b+Q6i3RbUZWPbuu2br11QogkwdRoLSWflRJyjgAghCCEAoCiKISSUsqiKObz+Xw+RyGcc+cww6ioNk1Tt15pXdUrk5nFYlGWTZqZTp6Vy6rIDAcnpZQoiIicB4gEayyEEDIu5eA/yRj9eHuqNDxLvX60XVQSn6bQPVs7e+TXi5080Ud5vv9nPMszpCpfaBd3ftopzo8C+HSDOjYhIE6ONDNKa6XXWZxRexdCsGdEjPGyyWRyeHh4/fr15557Lrq9Y8ykqqpYM68oijRN7969OxwOY9p8rJJTFIWUaKTa3t7uFMXJycne3l7ECQHxeDzy3sdcqDRVZVlZ67SSWZaEwIvFKjGaA0gpIRAFEGia2k+mbdU4IbFtQwhQV94SGF0Q8Jr7npmYKazJBYkhMHmASOYnVXxXm9lscnJy2i16gOKkqtKt7QXAwvqqahR+CsHckx4oAgILZAA6M3gJkEGEAD4wAUeKeWZGwR2jMi1SgRpFLICHxPLjwf1EfIYZPBAxESOdlZeKQaHWewogtNEqIeK2IWbuGAMQLT7ReqqtXz9zAABQQkjA4Hxwnpljrsv57IpYDq1lmoo0NcCMiEWeFkV3e2vn3r0HUid5LzHGxIDDYjHrZHlU2RaLxWw2A4But9vpdJRahyOklG3rNzf7cazbtmWE4+PjxXz58OHD1Wq1WKzKVb23t1eWdb8/JCIlpBKi6GjnQCnV7/cjpY2nEFdrIUQEMANA0/gzBJxSShqjjNGR0DdJhNYqJqo3TaylTIgYHJH3zGsEKTLEFT2EwBy01kph9PaIM5rkKKmTJNnZ2ekPB9HXtFqtnHN8hu0NISglO71+YEZEY1Snk5SlNUbludRGKaW6Rd7pdBCgaWzT2HPbsW1DkpiiEBGx+6y5dsZqSMx0LoyEJAqBiZgIz80KAAQQsQyYYIYASPE7sRcSAInYE/v4U/yIWEVtDXRY4zjpjB71wtQ8Y8piRoDzo+KcRYDorkKU8ZoJRfQBnffwiL55fgEoPoYEPXJGfozg6/zLRcEX7zH2c/7rRezkRR+ic0EkGlqXDnsGoGInAFCSBgcchBDGKIUUmhUG2+l0vvrlV09OTqqq+spXvtI0DXm3mExcXfbyHNhb10gp965eYeamYSnMZDaNkykE7nQ6R0dHUilj1L1797ROZqtFADyezjrDfhtoVYW6pdZDC44FuiYIB6N+AtKZHrRUL2orU0PCLFsmI6etK0QYdXKpipWDCmARatDKA1TILYCPJbXWRTrPWEqkZlTB06VRd3tQKJk2bBar+WDUb9v2/v3755maBB+voBEzcxEB+uQWGBh84LAGJ6JDLJlqpBagBfAEHPMiEDlA3YbgUQBqABFrboMI57jaWBDszJb2AC1ig9giO4aA4BCcAIscBIBG9ASN0x40AiM0aKXkGJ0WAhigJWgDodDEovXcemwClg5WlpsArHViJDErZdI0CYTOcggkQWoJQE4pcFyrVPRHneCcRnU6mQfCqvbWiaI/7g02FuXKUQCjI0O5FKKXZ5IgVWHcNxujwdHBfLWqsqwAgKIouqOBKbKN3U00otMrlMSPPvgwS1IAmBxPklRaa10TjBRG6bpcDnr9trFKaK110/iqbCNwqml88NBaatpQx8VBiTa4yjqWHMnN4mJgTKKNZqnaQNHlEBNPQbDSgtgROy2lllIAGSW8bUIIjW1r76fz+nSyKCt7Opm54OfzZZKkVdUAhTzPUUgfAECMBr1eKjvSF1LmQkjXZhKGXV2XpdZJ3ThkCEyBfUDKOonU0La23+2CDxqBfHCBhPp4sq2LDxMjA58ZD5/wG/I6BEYhBKVlnDXM62pYAMCM5z0+oiiJT7K0Xuzt3A69KI/CefL2J/VB/mS+8IVD6GzLI7koT9bXxOfUQp6tz37q/uf6o5TS2RArVDKzdRQX8lj2IdopTEEgDIfDIsvff//93mDovd/f3y+KAiicHB1fuXLZE3MIRZZPpvNFVTW2ZYRer+OnbSQx9s63bbu9vV0u5mma1nVZliVgZNaTx0dzabAozHJlPQFhRBd6BJBS5imgT7ViTFsA37pAjOSkd6EUINFXXtgQdSVGIgaQZ8shrGsMcgDmtXD0wFJKTJIkNRoAQgiBQ+SYc25tHQshiNYaKyJGXJg4Yw5/Rp744y3Os1gSnIBdYF4XaIj+vpjESeJjCuJndQVwVmMnbon3yOCZW6SwJg8DIQQKEIIQBTFLQGBeeymRQ6AYSiYGiaC1YOaqqotEeQetaH2AQKAiMlxArz+YzWbLZVV0smBdv9Nd0CpWGglERCyEiMpRTOY9ODkoS69MfXoaBkO1s9M/mc4fPFjujNOdS8NID+M9PTw8FkJsbGwwhiRJDg4OUpP0er00TSNE0VNI03S2WBijy6reGA3TPBsNhoeTuU5MnqWeQmRZUlJkqWYUUSAws7OBAiAAEzJxJIfzPvgAiKA1KqPZ2WifIrJAcZ7O7P3aBXlRDkQTOCbtheBMoiJ5otYqVgWIGYF5p4i2kfd+2B9Ya+s2qWa1c4QIq6oSQkDbpJg2TWPSvG2dMaYsbbxlohYgMgN8SurdxYSz9b90oa0NkLNEjvMy6o/bjOc7Pzprz9Soc0rXc57Xi4rYeXvczuXzK7tw6vM8wCea859XtP0M7ZETnV9/qlMhhBCqU/S6/SEAJEZJKYnWIYg0TfMkZeaqqk5PT4koSZK6rt99991vfOMbi8Vie3vbOQfEGxsbd+7cAYDValXXtdawWC2zLNMCs9SMx4Ner5eZpKnrEEK32438C1XbKKOzTBtjmsai1h6gqjkmS2W5VgKR0C1tWzsAWLXhZOHLltoWvc/mFqaVXzS+ZQhnFeBoDbA4s5EBPXD03J1Vy/K9IhdCZFnWNI2IRZOtlVKez4jzqtNwYSmNxsvnEoWxhSiwABxDG0IbyAX2BEBAzMi0NpM/yX74qX3COjdmzZBYE62IKwAHQCgEK8ZzznYWEjCyidFaKgohlBRKCYgYxgA+elSjtxIAMebLeGt9kiRFYR7enzrnqqrRWgMxIqZp2u31tEraxoUQAtNsMc/zjtaAKK/sDTqd3nJZbozHmxt53TZt204mq6ZpIiBRSj2bLWIyWJYWy1VFBIPBaDZbXL16XSnliaxlRJQIRFSW5Wwxr6qqbZ33vvXeWm8d+DMJcK7QxLHTWiKiECClkkppI4wBrUFKqRBixXlEjhlBiLEkdCwB+3Ha2LlMSNO0qlopMbqApJRlWSdJsrm5GV2Q3vuqqu7du7darbIsm85nRyfH1toQSClMsgQAIpxQygh4QFg7DcE5x4iEQEQc+Kkl687ax8LyogBhZmubs+2PiJg1DP381/UXKR7ZeT1p1qLsMQgOP+oi5HWC5xN0z/PvFx0/60opTxV8ny+ufa7cPXu3T5WzUeUJgdM0HY02JifH5ENAVghGqswk3rq6XEkBzJwXxfHhwUuDwdHR0ZUrVz788MMoUrVWxqRZkymTLFfVYDBYLJe1bb133SxBAAHommY5X1SLeYTgWNsokyCiQFGWlVBaQCSa08KDZ2eERAxaIyCHwMYASqGTogpt7b31ENgCQBBATI45MFIcPSaMi2W0LQCj884DAAIjArEU0Ot2Aoe6tYvF0igd6z1qnZw/3ug/cs6tyZ2kjOoPAMQtn3GY1m8mgQAUAA5YAhBxTJxUzBKAAQlYnvk3AekzTgfCWAAHMApcAAAQ8dY9EULUlNfhVF5jEokIMZpOQivFHLz3QoJSIgQUCFIqKcGTV8xSInDIsuzkcDkcDF96cePOnTtlWY6HG6ON8cHJoQygJHom70OGiZTG+6W3bb83PDieehekNvH1WS6rbqG9d1kmkySrmkYIVRRZ0zSz2YKItre3e71B0zSHB8f93vDWR3cUtkRUdI1zrtPJt7a2OkWvruvWLRprW+dZgNJaSCKKzIzkfZAyZujGUvfCWicQiIMQCqSSMpLeBedCmkiOLgkCRgKQKFgCEsgz19cnFCrv7WjUzbJsvpiGIEejUV3XVbVqqpqZjTF120TKBiHE8empbSrnnFIqxl6Y2TkAYXOjvadYqkUo5VwQSjTWaqERAQQSMfCnzLFPqI7rxRRRCGGUPL/0i3OR+VFLdv3TWULMIxrTuUr8yK8Sz/s8M6XXSvXHugN+IlJ8hnX6pJx7mvx6qtTCp2gK6wOeFLZ+0hkeeb3wjDKHgov5Rgi6KLoCwAfWCvI8XetKgXq93sZ42Kzmx8fH29vby+UyErodHx/fuHHj+PBoPp8mSTYcjw6OjqXC6XIOIKoKNjZTKYRE6HTzpgQfbJYXiclns0mSpdEFLKQGttY6BGLEuq6ZdSKVlNIycLCChdFSiWB9qOq2bTWD8oIabwMCsvQUU4dlfL7x9uI8iPzjBBEuEu9cAvh+kaVGhYCHp5O6bUySCC9CILwQRGYOaWouerKjShjTKp4yWk9oZ5NKxIsRgNGYFQgoojwkBJCRyQZBADzFm/LkRhjtbBnLIDMAIHgGZCImLYAZBEKsXEAIwQPFsyMwhBhMiEk33pOUQkaIbjR9BCSpThLd6/YPDg4OT457vd7W1la5qtu2PTmeSCVr2wpt8m4HAgWCpq0b21prjU6TRLWN99R6R7dunY7HOqqleZ4HRueCMbJpGh8CAUolIyyh0+ms6lWOWdu2g76p2zoWFwsh3LlzJ+/08rxjffBEAQAYBQCiBAgELIVEDHwhw4KIQgCpkQEcBXLr+zJSaBVx24RRdxZCACEhI3jCM7DOmjMjdmeMaW1d1as0TaWUy+USAJIkca0NzIEJEZMkqdvWhdCWpVQodeJDYGZPHEIQChBl01ghfGAOgYUKcCFjUhitQVBoP3WWPcGQjgIrrurnYvycvuEiyP4RfepxI/ri90e0qkfchY9olE/a52OumjWMbH2OpxVBpYt/XDjTE3d/ltJ3Lpof2fjIljOZHoktnWeyzkWgmjFKotBJ2u/2JpPJZDLNs0RLubu7qwSWZbm7uzuZTLIsOzk5idqlpyC1BoCyLHu93v0H+9sbWd7JZQiz2SxPTb/b9bbJs2Q2mzGjkoIIUOoIXkVEpZPVqgqeXbCBkLwwGpQGbWTVuO5QNjUdnfiq9AGVZ3QCQAE5OKtbDOcRB2Q4l2rr2CufOxFJAox6BQSrVDJbVTFjOroCo8aHZ2XCI8qXmWNl1Isz52kP/+kjEsMyHH2a0ZUZVyRAAUQIHBNUmME93VJAlLyG3Kw3xO79er4BAghei9TodWVmKUhKKQA9MjAjgRAUScBsYKPA5ClQKEubaIWCQgzJAwgFRZrleQ4CpdKbm5uruorL4ZXLVx4+fCjTREq/zg5GYKYQgrMh4vONMYlJG+vG497Q+5OT6fWru6uqibzQ/f4w7xR11RbGuEB1XevECMCIT/DeoxQPHjzQWiVJEtOf964+B6AOj04a23omBmDipnVEIACllAhSnIW+hFh7j7WGQAGVkkIyeO8CBgAJSqngLTMLgVJqJaJ3yDMDSn0+dh+beoitrdM0jfjqaJILIaqq6vU6sSqLMZoAmgaca4vCOBuEYBeIiKPUNsZInbh6wYi2pSTTde2ywoC1ShlrnWLmM7Dns+fVE6Io66tsW3GhtAifVbOLluzj8/jcpfjEDuGTsvJcql6YlGvJchG6eC5xODqtAQJe0EYRAEA8nXji/y+NObRtDQBE/nRyHIgVggByrZdaO+eKLEu0yrIMgyVga11vMJzNZleuXLlz587GxsbBg4dCCJNnB0eHddvY4LmsRoPh0dG02+lsjAYcHPngpY9zmpk7eXH7/mG/b0AoAl5WITEySXVRFARLXwIEpuCyFBIjJQpvQyr7GzudRJ5mk2ZhqSmjJYHADBjJANfc+nEEKHpu4UyuXFiNxsOOAoIA83ppkkQaXZUrChfnH0sZM52DlDLP89dee+3111+PZVF/tud8rslz1OYAmCFEFByQQkaM/IbrOIh7ijw8u8J1LYHzlc/HTESAqGbi2ksAgWPxUVCSUaCgtfUlJRIRRo7usxiRSjCWBwmBAUCJtUrkrauk7XQ6xycnRVG0zgqh7j3Y7/V6nhwiBqLVsgwh5EWWdQqQYjk/nU7ropuOxuPTyfTBg+PdvY3RuHvn3sOISB0OcyHEYrFYrVbWust7V65cuby/vx9CSE3iXJum6WDQa5ppU9cMITFqONooiqK1RESe1xlKxMjew1lxylh3CSLkTmBc3owxq1UQ4IUEWleIIQpk21bKcyQIA0tmD4DMLM/UqUfe/TQ3kS08puovl8toIB8cLAYDkySJtV5IORik1tqmsVKrEEjrpK5rYJBGl3UjbejlKTN7T1rrSG0b1UMppffOOZby091cj0ZRzqeIUkZKLaV+BNpyHgA5x5dEnS5caBcjMOtlG+jcnyolqhjP19qcNaVUdCSdXwB/klUtfM727Nt+4lvxSHv2/k98ssxslCLyxqgYGwGANBVSCq21RCzLMt7RarFcLBZHR0edTqdt252dnbIst7a2vvrVr7700kve+8hixAI7nc5wOHSt7fdz7+3x8XG32xUCZ5MJIs5mM6XUycnJeJymadq27XA4VAqY+eRkulqtjBKJEUWaaoESwblA5CnAnffnKvDOqLi6k22PTCpBgoSQnrvY8JNqNJ9vuvgDAwBsjkZt06Dg4+N5t99jgREodVG1j1IvjmOSJF//+tcjjWN8Gp93sAAA4cxw//jhAwF4DsQc1qm1KAHFM5iantLWKiaCAFT8ccguhux9iPwOZ68ArsWodRwI0tQg4qJyde1ibiWtue9QSsmEddVOp3PnnMnS4cYGIYxHm1memyQpqzqSd2ith+NRr9dr2zZWqgOAohBFUXz44b0kScbjznQ6ZeZ4Cuec1rqsqxDCpUs7vV5RVdXt27fjLLLWGmMWi8XJycnW1hZIEeMVRVFMJpO2baXStvXWuxg7juEOZnbOWbvOwY0BEO+pbcl7n2Uywv6JSGqdpkYpyQxS6LWFF9ZwawCQcp3O+wiCDRGdc8aYNE3LcrlYzKJMEEKMRikirlarwJxlWbSj8zwFAOeCEMI7dhS0NtaSdxS7itTcKnoPhQhMJkkYIcIYnkG5EJs64/iK0nC9t1KKOZxHwWCNs1nPMPikLDgb7I85CuGCcLk4FR+xgh+ROI/4HC/2BrC+H7neLj420j9WJC9KQDqD3K6PfvxE56xE667o7H1/TMxd3HJ+PYRCspfMjBhAEQr2zgjE1kspJ5NJMz9t6jlps6htRu0Eodvt9ru94+PjPDXzumbvEiNWy3I0GvX7w8nkljEm7/SdD1nWaaratVYSaKWX82lepG3bKolMarkou1l6effS3bu3B4NBZV1N4J1UiCsf2sUk7yXV0qY6sbWfVEFmBQvuSbwxLoQxbx6Ft2sYYl19dNBTOOyY3OBzu5k9qmeuNgqcA2BE0AwRiMoMJCWGEAClEIJCACCthPd0fdxj73TemSwXDPDN1159/fU36+kSJBKRVoI8DfvdZVUjorVeoLm0cxkZjg4OL+3sTiaT6K0ncEqpmGSNFyjQz/0nFw0XiH7bM6nNDAzoAQRgECTjpAhrRUwAS+AEJQEHZlon6on1sU+LOLMkjB5SRgYFIBElQiIkEQUm60EyKykVBGBiBCWBA1hrhYBUgWCol1WRgJJoCb1jKRiQVq6RjQjHJ4N+P0ly5+lkMh8Ph0rJqChHPPPkZBKzeoQQR0dHUmIgMZ1OR+NuhBCMRhv37t3r9DvKSCnldD5TSkllDg5Pi6LwnkJgBDXojwEgSc3RyXGaJ/PJRAvFnoXQy0XDQj58+LBtXWpUbYP3zOwRUao1eQOd1Q1vW4sSiyKLcqdIR8tyheCtt6tVGA8VYpAGGXwsNs8+CAl5ns8m0zxLrG1MkrpArQtSqrZ1ErjbLSRaAailYmaJwnsbxVkIodPpNE2L3i8Wi/F4HHlupBCJVm3jQAqtTVmXBJD39aJqIyUEIrK1MgQiT0Std1pmkNXeshYfv8gBAc4NTVoLkydbyswfF3n5jO1x0cZP8aw9bf9nd/hJmO6jQhMAzkUkAADQ04q7nKu05/rjxRM9TeP7+KxnO0hARIkQiFkqiSisbVEJbToqs6cn8//n/+O/QhRG03hjI7dh93IfAOarlcwKS6GTZkWWl+WyNxz0hoPrzz0HiFma7u/f63SL4bD34Oh4DUJwJKWURhNRkqYnR6f9bgHIiHzp0qXZbJb3Ota7alJuXtl2XNWlt8LqLA1MIhVDG1pXEkFRKDZ6WreLRYUeKtNdnJYGwvYyJJpXtQsWUhCtIwCQAhEpokMEApyZSHGVk0oFb72nzMhImVdV1emsuXZ9+5/9s/8OALa2hmUTlsul96QQNjc3YTI9OZ2maVquqpdeeukHP/hBp9NBxNa2w8F4OpvCmZv4ohl1VmjtE3Jw/eeThvc8tBXtkWjtEzw2F/iR/5/cFQIjQ1hb3HEjxt44BtaJmb0ERAHGJEL44M5RdSAhrrjeh5hmDcwEBAJQC9k0zf3Vamtz8+joaO/SLgGUi0Wv18uKolqtkiSPrlWttTHFwcFBURTRVCzL0pikrmtmHAwGy2rJIJIkQWxWq1ViQmCqqgpZaKWkENZaY3QnL/YuXT6dHLOrjUlW1arb7SdJMluukiRprAMpjDFKUcwj9IEBWAiRpgoAnHMuABKzaKMh2C6PtIb+KCPKF/NYXlni2gaIRGcgQQIASoFSFd3ebDYPDMxoLff7eZFmk9PT4fYgCooILVRGE1Hk8S/LMsvSJMkOjqbeHyZJkmXZYlVqraNO2jZOGTkcZkAx1U9E2sSYCh1VztliHmnKpPj05F11put9vOd6Hf6ciL1z1fd8yyNa5KdeyrPbJ+XUJ87yyNtytsOTb+BRsPcF1+TTLvJi9tX5UQxCyXVwgMkKIYyWAlgZ8/0/+4N7d9+9NOq6ILqXO7PpRCXDWw8edosOAA36/VSboiiyrODZrGW+8YUviSQZbG72OkVdLhfL6cHRobWemWO5+KZpEgREbKp2c2ts66bTyZereZqmQsLB/oFKRLevTk6PmppTo+vWeahNLpqKhil0NRij8k531tKth1XVwvVxur9gD5JAHlTeCAgEKJQQin0DAAQxuggYo4Nn6j9RBPN5AFBKbG9vt21TZJ3ZYnX92q42hhnyzEihFotpHAalIibDQiSsL3rGmP39fQCYTqdKqsVioZUmCDEj7dwoc849K5XqkwNFZ3YN85r3/0y3hDOPZ8A1kUP0BRB8SpJ+5G1YQ22QAQULgDZQlHfnIXZULIUMzlNYpxSgYI2IAoUQlgCRo+aoFeaJKjKTpzmQa5rq+OTkypUrk8lkYzRUxkyn09Y5ADBpWvS6tFzOF4s0TdMsr6oqSbJON5nP5yGELMuqxroQotCMYMOdnUt1XZ+eTIuiMEqXZT2fz9q2VUo51w6GPWPM6WKmvUcpyrpWpiyrylMwaTpdLeNt+8DOxUxfkJLIg1AopUwUIqKn0DShcZAIWC6hampjRLdXFLkGsm1TuVaFEACcQHQCCaGxAYQFoMZCmmpmJvLIIUvVoJuXZZllWbTKvfcETERpmpZlZUzk2a2SRHgfANqiKDwAArrgGKC1QXPIi35VrRAlEbRtQ7RmiLDWM7fM6FyQCqNxffEVPv9+/nYrXgdJnjkx/hztaULwSSIMHhdMF0XqE7dfUCU+Abz5jNLw/Lzn0c8n/np+zefXgEIws/U++ryJKE/kB++9+6//5T87ODpIBL1ybXz1uZc/OjnaefGF7eJSVe0IoOOjh0LwbDl994P3L12+trG5czA//Zd/+Cdpmr5w4/n9o5O9yzuXb7z44d37MJmenp5mWabTZFVXVEU6Ty8B+91uTFiOOlC3m0kpT5sVM1y5tlnoxFl7dHS01d+EkZiXc9dUFPxk1e7P/P05KAGbWg71ahnASygdNAAeQSj0zmuZhuCI1kmPQqzDsuePgjnE6GqqlVbSmE5ZV42DVVWXpxOpcXfvysP7+4iolEIgIdAYEwnK2ra9dOnSfD4ty3Kd34nggwMS4/Ew1k4797I/4kR+2lzitcHLtE7+BDjHUcPjljBH389ZUOSZDdcHMINH4LPiKmIdKgHkSPcnGKBtw1n+KQgGRiYO5AMiaCMksGTWElNjMpMg8XS56Ha7wrrJdFoUxWyx7Hd7FTdHJ8c7Ozt37t0VQly9cpkFPjg8SJIkSfMIPx4OR865xtkoBMcbQwDQWldlc+/evTzP8yKtViXkuXOtlDpJEu/9dDptbe29dQ7yXDdNs7O9tbWzW9+6E4I7OZ5JIyFiapgBQcoIHhAgInLZy0jaBiw0ZBpSlWDVMonFnJq6OYXWSMWk0txHt1tgDgEYWusgUCsl9vrd6NdjrleLNrSHG6Oec9zr9aqqik72uq6riodDUGqd3VxVbVZkMXiwWq0A0FobAghEpdg5WINytAEAa11gAIHBk7XB+Zj1RCxZCxE+je5VwZnP+BPT4IJJ+Ojke7rgfKIh/KlxnM/S/ydM+LMvjxnjn1Aen5ax94g7Es60y2d4WC8Cws/fTKk0Bu9CyIoueArkEOHPfvAnk8MHf/Uv/lWDp7/xyzf+6T/9k1xmm8ON43sf5J0eQ/jlX/rG4f692Wz2vV/5zhtvvS+Q7h7PVrfuJ0ny5gd30sRsjYZfuHmjYtUSiiQPKFfL2nnSch2QnU9nSWI2RgPvXFWtmqZJ0pyZBend7WFqcLU83trYbl1vMit9kD7NANh7f7qigwU2qIaJhCCGXV02zjogAKUUWi/JMYMKMiJs1vWOOEbPWEq+GJtKEp2lyWKx2N3dXhyfMMDh8UxIDIFPT6aruuGY/9+6ja1xkiTek/M1In7ppS8cnR5tbGw8eHgfztxSWicSRbfo1GUVSZittUwXvMKfNAIeyeQ7F4i4pnQFCfBIaEZ8/C8DYIDPoACcL6m4TlCRwBw7YVaAkXmbECAwMygF2ijBa1cMEYTAqFBKKQWD9xwIBXvv51VpkrSqqp2dnYP9B73eABpnvTNpoow+PT2N9/vOu+/3e52tra0HDx5oIZXSbWu9D7EodZ7ns9myrusYwk6StD8cTCazyaQaDFLn29FoFHGszjmlRVWtAGA4zJqmHQ6HjW1PT0+FVuViNtocVlXtvScKzCilUkp4ohAYgAhAIEbKokjZGd+IPM8JBUHDRGUVOPVKCKXWzhPnXNNEGhtxnncWWQuLonBiFdbcTrKqqgj3EUKkacpcR9ehtbYoCkRpvY9ZK8tl7TkSowhmzpOUQmga1+mkzKyUMkazdd4F7wkEpHlhmxbAM62ZK5/d/v1XEH2kPS7dHo/DPGPnJx57UfBdOOQT8vfZUviiTKTHqu49flXnfZ6/kxSCQoyR8dbWANDrFlqJ/81/+pu3PnAtNZ6W443+UQ2zyXRzo28p6RWqqZZffvXFN9/48Wxyf9BLUOovfvk1Zj45Ofnoo4/yLLn/8PD+4XGv2xkVQ43aNhUo3esPT46PeVXefOE5g6Ojo6Nut7u/PyOCNM1jPOrLl57b2t2YLE/ni+UPP7i7qGG6BKV1VblEgRAwbdwKAEAS0WyxpKQH2ghPIrTS+rGBzW6SSHjrqJUAEiWhdORDYEQCXLtZo3sbmFOter0ecnhwcLhcVSBACuE9KaVOp5MzJCJJiZcvX97f30cEjGxL7B/u79e2nkxmeZFpLdvWBaoSrYqiCBSKooi5ie++++4jQ4afLDD7iTFa/7sOhdE69BcPBIimLgCsoTQxxflZkw3PMCYXxWY438C4DsMwArEnQgAhlJEKkaOzkXzwEJmgWWtABCFBCQSk2rbb40Fd1/PZcmNrp6qqvFMAsdGGYV3QRikBxM6G5aLs9XpaSGZeLBbDjXGv19vf3w+enn/+umurqm2bplmu5nVdD/rD4XC4WCyM0kpi2zQxZG90yoGYfNM2Sum2bQf9kbV2NpsRUV3XPgTrgrUciKUkENJ7spa1BiFASolShBAw1oFgz0oAWB98YqDbSRGskoRAHIzRChGVFMF7IURk5WmaMJ+vmEEI0EoO+n0lwLVNCGG5XCWJyfN8uVxmRR5ZPiMyxFqLKNI0bZoGEbvdjKra6EQI0TRNYrQQiXNzIcQZ8oRiXixKT4HaxgGzEJLZW3pqLOF8gj1ZGv5sPr5Hog2fGp14RicXldNHPJIY4eyPaYsAFz2A/FlgFefa5cWQ5RMv6fGIUAhBCDR6Xd5QSZAIO5ubeZr86Z/+8W/+ha/euv/w3VtHFQwl1suVCsYkgcum7A+u/6Xf+wtM8sdvfnDvwbEXsFxU/X7/F3/ll6vl6uDhftNUD4+OmqK7vbXZH23u373VWDcejxMhrLXa5Frrw8Nj54KWyjq7ubPpnBv089t37986mpw0dOcISEPjga0zDDMLAMAAKcK4nyWCyoVrlotur6+9b0oqBFwfqmEuNPJBBcsKGgpnGANiDvHWI6ibmbUSWZYZJaTUd+4fOAJtjHUWQPjglRIhkEDhnCvydDqdPnh4xABSijzP33777ZdffvnHP/6zK1cur8qyLGudmKIorl7ae/OtNwWK3d3d/f39L3zhC1rrt956yyQmPuGLQ/Ds+fno8nhmG5+remui+2dGUSDuzABncvNMAz0LYhPErIqPpz0xETE4AJDIaxomQm89IeYJZEZJrSSClPLk5LTf780Xi+Vyee3aNW8bZi6KApCapuFAJk3G43EI4fT4WAjhEPM8VyZdLsrItb4sFy7YTppqpZyUiGh0uljMQmCTJrGGH3MYDHqIWNdlnufLldvd2j49nfjWxmBFv9M9mU/hjF3lLK0caR17YpMmRGS9D3Vk2QAVI7PSGgOhBiHBWiuISaCRSkjytkFEJQ0iUPBCCClEkYu2dVILBFitGiWom6V12/S7vRg3jxFhOEtdB4BYO9S50On1YtWXJEm6BMzsvUu0FOCdY6UwBCeEbJrGe5AKUQpBqgm2btsiEcAqBCAKAJ/CfS0eN4qfLRqe1h4/Ci+0Z288P/xTRdLjX/ApjZ/S4ppz3slFpe9iu2g4n2ebX7zmyEZJRBHMpbWeTE/qpvzwwzsB7KJe3r5/6qHwgltqXUgaR2VrG+e//2ffb5p6tpgenRxubIxcXWkFtq1Pjg5Q8PXr1199+eWdnZ152fzxn/7wweHRzqXLkSCemQe9flVV3lOeFd1un4AjP91z1278+N5bb+3f/fB4devI1VDULg8sjTKEKJROsjxNtEJAvzLS9nt4bQSb2bKnyr1NuHHN7OwUQvuWm73dQb8beUqCRIigu/NRiTN1PB53u92qqk6ODh2B0tpaDyyUjgQ2xGcmcARdfumLNy9f3vXe7+3t7e3tPffccycnJw8f7k+mM2OUszZSOkohsyyLsRSl1Onp6XA4jCS4j0ywJy+uZ247ROR1CVJYZ1JfgAx+Ruxh3O2ssOn5NsFnSC6O7GRnwEZ95lHxntuWrQ3WOueCloYIiFhKqbQAIM/EILTWi8Vyc3OzLF1ZlkIoIirrano6ydNMSnl8fGqbpjhDLEop67pOkiRGbTc2NjY2hvHJIGKidJqmWZZtbm5GvvSqquq6jJyYIYSyLPMiDSFMp9M8zzudzt6lS0qpxWJxnjUUH7s6S8lFRCFjRSdHxEKAMTIzRqEAz6HRbLu+BgmZFonWWiIzOAHsWtu2LSApFGfJl0JrLSUKxMinUFV2WZaIGCNCZVnO5/Nut5tlWaybnGVZJD+WUp6czONbVtd1qo1tmnLplcAQwqps4mNfa0IAIXDTNNZaKTFJpLXkmQKDd58BfX02ydbGzXozq3M96xHpQ8AEHJjil0hGeCZUPxFteKJ0O9/+CFNOvJ8nOu+eJIzoIqgbkc+v/KznT+iS58IRES9ivJ/Yni2Xzy/DN6uik9XeapMCB6AgUB0dz9+7TbtXLk1m8NMPqPZWteXIDJb1pJvxV7/yKnHe2o0fvH66f6i6oxffeOc+JIXJe93heDTcCCEsFov5suz2hy+++Pyll77w0w8++Ddv7s9U/8WvvHDC4cdvvTttG9XNj2cTZBp0O6vlVEl+97033ztO7s/ksobMiAzKkak389BLbMa8XWjVVH0ZdrrYTVAL7Ha7rLRGsZPB8129m0hoGiAMJGQ12+ule30cGFDsgUMkR0NhQmCBMCj0eJCV87mW+WTWMAhxlnRFRFIpBhAxYYnCsFs8d3UXQrOcHt+8cW046I02R6+/9XqSZ5ub28gQvM/TZGs8ilbwxsbWeLy5tbUjpVyu5sNR95UvfDHRJvrImVGbFIWKVm/EZMTRFJFukNcjCMQfc9EQE1EsgRIEuDNKz5hq8rS2plOEizOB+CxdjwQGyQ7ZQdSiGRPJkpy1wQIgOhLOg9ZSCt/v6E5hYhJw8L5IsyxPVqsaALz13/jG141SiCilXsyWWZbN53Pn2sGgVxRFWZbDYb9tG2ubui4FUCB3f3//4cG+FKLI806/HwBUYohoNpsdHBwIAZvjUZ53nIslOl2vkxslTo+OXWMjmfVyubx1504UggIQAgUvKYiq9ZZApx2pjPNBCgIlQawZsIGCY0sisAatHOJyYyQE1NbWwJ5RECgXSCdGSrlclBHmTUR13baNy/M8hCCUyDIjhQykhOwg4unp6Wg0QqkOTk5ni2q6pLL1y0Vb1oFRp3knzxPrnafQOhsEpJ2uzLB21AYQEh3xsnJ1C540KEUCXQDPwAiAKDtZTWQrYIRSth+Pr8QAZwm+ZzGGz+03fFyne3zj5+3qEeXxkc6fdopHjPF/X+2J93LxGuL3rMiPj4/zXh8AnHNpkbZVczqdLEuq65o/Cog4HPZXq1Wijfd+1TTLZakRfv61r1+5fHm5XB58dMvZcHhwUBSFMXrUH+xeet427XI5Pz4+hpqu7Q5eufLqT96bf/CT96Y5fOHnfr5MHi4O7lXLxWa/CwCT6ZzRnCzsR/dOT2egFfR6afAkQQCSlAIFm5QV+q3NYjopRx3VyZNVXa1WCwUAEjq9XEvodIrZYm6M8cTCkXdeMCRaZYDBeo6k+USIbCT2Oh3f+uFwePf+Qw8MKNqmUVqHEIgcECitvXNSSqZweno6m5w451xgFrK1vt/v//7v/36WZQ8fHkaHFDNvbGy8+cbbWmtmzvM81g4eDAZf/OIXP3j3g93tzevP3/jDP/jjqqmdbSIA8pz/5iL1Q3QwPWNwI442nCW3/yyz9nye0LlfMi63SAxSIgpmlMwoJCgByASARGFj2BPksiyVUva7vViWejqdGqOVELPZ7MrlvXK5aNt2c3MTgCaTSXrGl761tRlzNuq6NkptbY2rqoqVIWazGTN3u10iSpIkpjM3TbO9vTufz7MsU0odHh7GoESeZ845FG5ja6esm3K5ElpVdVsUBSFUTU0EIQRnl0IIYzQgWRfWASgEECiFZAQUnCrFHFAKxU4KVEr51gYilUa+LyElxLQ0IUS3W9SrynuB0QFNrLQCBmutaxqt9bKs6rq2HhBtngtmXlY2YwrBxSKiJ5N2uVx1OoVzLgLLI6I0BBbAUkLVNt7HbLd1uVcKEEunBgJ95j7+ePieJDk+d5Lv40Yu/Ex+xieazBf7edr3Rzp5/NcnirMn7vmpRz1y9otqcl3ZwWgj0WlE0g0Gg7feemu5XAbQJuumnX5/vDVbtZ3BuHbUHW4Qmtv3HxyeTO/sH/zgR2/+2z/60x+//mZtW+fc7du367o+Ojr6yU9+cnJy0u12r1+9KkTz9S+/+MLljZSq3/jln79yZesf/fM/PKqSG8+/WBTd2WJJBEqnk1Xz4YPT4xJCAK0wSxWiKwqdZyrTCj13ciHRC/RFAlmiEDwQKw1ax1Q5F0IQSkqtA8Oqcoox5gZoqSQKAKYQkAGQhIBet4MMGuV0Om1sG+mGhBDBe6aY5YHkA/Ca8m9Vtq0LdctJmt29t//yyy/fvXv3jK5RxvBxURQfffRRCME6+/zzz0+nU0S8ffv2lStXmsY+2L/H5CXglcu73U5e5CkQA4dzFE7UEKOweIYo5LP3IQaqf+ZldD1LaO1VxTPbvA1kXSAUIBURAZASKDCYREoB5Mm31lrbVvVyPp9NTrMsTdMEEU5OTobDYZYlh4cPt7e35/Pp8fFhCCG6I9Z5fotFWZZCiK2tLaVUWZaRHs0Y0+12Nzc3rbXxUUgp+/1+v99HxMuXL8ejLl++HEJo29Z7h1KXdVs1bdO6tOjs7F7WabqsqhCCcyGGayMXZyTiVQKlFEoIIQSACAxE4AKvqrZsvG09otTapNqkadrJM0SMAQ0h1vl/MaiNCOSclBKIXURKU2hsCwBa67ZxRqdpapi5W3S01sNhjsiLRbtYlK2zcJbaiCgJQAhAlETkA4RAENndoqsEJaMgROu5bgEIlAClpED5iE0ozmTieXDlc+uG/37VsYvG9eOdP1F5fMb1PO3aPqMC+1mUTTwLvJgka1qrFANSt1v843/8j//Zf/NPtjbHp5NFVVVR62lbdzpdWOv3D6cgoMgS34M/e/3tTp5tb251B4P5YpHn+Ycf3t/a2uoOh7PZ7M07b1prh8P+te2XXn/r+7/xC8X3funGD78/3dv44q/+yo0fv/lvlg/la199tZ1P7h08SNO8P9qYPjwpG+im0MlSYA/EyFYKBUSaAYi6RTGdl91CBW9dQxJBJ0lbtp0iSTRKrU5OTsrWEwihhWuIJKCQ3oXauWhrSikDhSxNunmhEJj5+HSmssRaZ6SJ64HW0jniC3RHeZrVTV234dLuzrIqv/H1r43Gmz9540dIQQJDoNY1WslOlq/mC21k26Ixan9/dnBw8K1vfeO55567c/eWte3169ePjw6m09N+p/j613/un/zTf6q1si6kaVrXddSJoqpljDlnGXjCwEV3GAAARHDiGeDm87VY6GldjQ8QACIypSWQApQATyyRlRIaQElMEp0nKYc2SxKjVK9btFUtkzSWhAfy9+7d6RYdR4SIV65cuXv37sHBwXg8BvKRkSjP8+D89evX9/f3nXOpNpP5otPJm6aJMitOS4F1mqb37u2PRoMHDw7SNN3Z2SrLMjLvG6PbtvUOBqNRlhbCuJPT6b2HxwCx2nYLMb9WKqZACI6CJ0gkChSAwDH7m5iZPZNkEAJipSfbenIeiJJUA0dvFZ9X4AgheB9yo1rnlTTMHNoQYziCQenEB46FISXCcrmM8lTneQghSUAoaa1VSqRpNpkssqJARK2TwMQuMlojgpQSPRMIwUIAEbEIRIEo0eBIKlCO/UW4oXiSZfDvAWGD52vu52n8pIqg8JjMekRcft7+P9eBn0UUwplAXFZllmV1XRdF5r3/yte/dnj40Af7+o/fRBTeUyTba60HgE6nsypXq7Ity+PMSGdDZj4YjQej0UAI9dIXnnfe//S993Z2ti9dvjKbT4i5hLZelOPNVzdGw5OjH93+6M2jEr777e8cHZX/5L//8ZeuDp+7dvPBvVtyWUqmzYEAZqNjKT6oa060QwBjdHBO6yTRDTnynrQCQGRHRsUsESTyrfPeA0kmEJUH52kZeNb4OkJRhGAEATAeDrSWRZbfu3cPY2iFyAYrJcY8+SiM1jh2AB/s5cu7iOick8psbe3cvXt3uVxGfYGZk8Q45zY3N5umcRS2NneklGVZEtG3vvWtN99888MPPzTGFEV+fHycJonS+t13f/rr3/uV4+PTH735Vl3XSimlVNM08dRPE4UXx/ciOPFzM24DAJwxgQOucYgRcQUCmYgooCRiKVEIkAhl6YQgSNbpFhACd3KlVFkuh6N+WZaZ6TZNA0hFJzs+OtjZ2dra2rLWpplRmDZNs1qt+v3+fDr7/r/7042NjcFgsFqtNkfDqB4ul8t+vz+fzweDgVZJVVX9fje62pumWiwWTdMEo8pyJaXMskylHSnlqirzTq/X6zXOJWnetu2ytjrVznpbW3FW4k4Z6dsgBKEUTHj+hioQxqzVghA8hwiBBBUCMWmtpSTvKKrqsbwBYqA2xtaUFC6EgAhZlsTky4gSE4DxTyKOWm2Spd77trUhgE4JJDRNI6VEFN6GwKCUAhaeqXXOexYiSMk+cCQN0Vow+zj0jvgiPYh40tj/7LrhuWiA9cL7s4ShH/EYPrLlGdGMZ3f1eLsYSHlaD5/tqtctyzIhoNPJF4tFliXdTu9/+p/8dWY+fLD/z//5P3/77be9c9/5zi/+0i995+/9vb+3Wq02N8chhOViUdsgAGoXjibT+w9PpYCreztC6fHGlknyB/v3Qgjeu/HeUZZe+ft///e/+tWvDi+rl1658YdvNoe3WrPR++Vf+8Xv/9EfzFbVC1evTE4PiX03jUEGstYjghCgE8WBUASlcTZd6CSxVdUfZhK4rBujhE60d1YStCF0OrnjGmWyXDUkklXTLh1UHhgBlWLvGWBvPCwSw8yHpyeny6Y36JRVnOtr+iKtdVzDQ6DRaLg1GgNAv98/PT2dTRcvv/xyp9PJ8/xfHjwoOvlyuczzNIQwHH78Vu/t7S2Xy4ODg9/6rd/qdHr379+3re8N+odHx0WnsyrLNE2dC23rXnvttS+88urbb7/9xhtvROEbi65FrpdPHV9+kl7wGRuv/xEBOBJ/x781IAL4wD54Zoj8digw74AQYlWWw26HyRuj6rpG4jRNhRCpNlrL0XDbOdfWTYykSykBabVahXURTlOWKyGx3++fTk7SKpVKrVar4XCYJ0mczzGdI8/EcDhcLpd5nmdZJqXc399PM2NM/jHhHnHr2yzvCAlN01SVWy7nKIDFOthIBEICM3sCQUQEgCgIQyQ6wMh0i0qIECg4zxAkgk41AKMU4NfoXRGRNWfkLC4wATjnUcjIppEaWWQGAiilhATrGqVUr5M752pbo1Baa2u9tTZJzKK0MZ2pqa33PsIhCQBB2uCJKJZqYQQiivnqAlEIth6IiUk+8oILeIJV8DP6DZ9t4X72fh7ZcjHa+0ifzzjFp579s4d6nhYNv3ib8d8QXAQuJImOMNHjo8nBw+NXXn55a3PTO6e13r939y//B/+hElKimE5OF/M5BUhMorQJACBkb9iVWtx9cPCjN955/e2ffHjrNkiVZsV8Ue5/tGrqwAa+//Y7/+Lf/OThiRBCvXRzbOtZ3ay+/cu/zGnx+nu30u64N9io6jZLBJMFguBBKKmS1KTaBWKBjfWNrYWGLEuEJIFgNDatQ+Q0TaVE60PdcmDSWgXQVQu1jRqQihQFEmFr2JPMjbUPT6Z5L4387IKRQhCASkijNAK89vWvf+ub3yhXKwxue2vj8ODBR7duv/rqq1evXr1y+dKbb76utYxVLIiobd3Ozs7JyUm/38+y5NKlS7dv397a2nr++eePj4+FENeuXRuPNgBgY2Pj5OTk5ZdfFUK8+OKL9+7dI6K/8Tf+xl/+y38ZPrkwP7U99uPPsH6fHQieKTDHAo8R6Y1ASgiKZWQQAIRbVxaE1rlVzVVrmVloLaRmgaPRaDo9jTwrq9WqrkulhDFKSPDBSinTNAWAPM/6/T4zSyljZl70RWxubpZl+fDhUVVVcR7GtO6TkxMiWi6XTdOUZfncc88h4u3bR3med7tdH2xVrdq6UhKRWKIYdNMsw8SAD2ydAwCtMUIvlEIXmAWwQF7z0gMCKIFKglaQGKGNRMRoQAemxjuIFA8uyvHkPBnGU1BGOr+mV5DISqCAULVVIOecs9Z7b4m81iJRKobUmEOapkWvm6YieKjKJk1TgjV9JDA64rYJwbNCpUTkUkEhQSIAh+A9MwSCQAwoH58gj/gNfxZp+Ojk+Mwa3LO7je0cdvP4Pj/bWT67dvlst+Mjcl9KbNs6TU0MnIXARbfDIE5OTtq2/eVf/E5w9s7dO3/37/5dIK8EIIFg1kbG/RGEtd5aX3R7G+ONvb3dqmnf/eDuu+++//6HH13au4K1+OGf/FmnN+6Md3evfun9W0cPj6ZHRwd5AgLd6fT0+Ze+dONLr77x09uHk8WV688F3xBRmiZE4B3UVYOCCcF66g8z71kb0bQrZJ8acLbREhKtnWtjtFFr8J4Ck7Wh8RAAECQQgg8IsDHoKwIlxKpc6FRsX77UNJ4CKyEECgYOFIj9X/kr/+F4PG6aZm9v7+rVq1qI1WqlpLh+dS9JkpOTk5++/ZMsSYssbZvQ73Wfv3F9tVgapY3SEVU3n8+/8pWvjEajBw8ejEajJEne/eD9azeeO5nOesORNLppmrZ1GxtbnU7nww8/fPXVV3d3d5k52sufUo/0wsw9wxF+/hmFMnIrBoDAHLNTQJzbg4AASmqMmDAlA3OSmMEgbdq2tb5c1UmSaJPevXv70vbOecg1zvzVapWmaZpGZtOGiCaTycOHD6NDIGJLm6ahEBaLBTPfuHEtX/vXkuhAPAeEpmmaJElZLRFxYyM7OppHx0KRZZ1OJ4TQNJXzbawTwAxKCefWSkPkgMmyTEpghoilAwREkBKMlolWbeOZghIYOT2ihn7uMo6tbdsoppMkYRDaJATgPQEwUEAOzjYhBM/eBtIalZLO2Zi+EpOU44DO5/MQqNvtRDOCiIJnEHg+3MbEjRACCwYhYg1UIgIQEAA9PypSnhpTFkJxLHGFiEBaCoEfAwwvWpdExIFiEdL4ibEc8QT88rqdS5nHw8cXG50V1Xs80Ly+0CdBoOFMo7yoq64FlkBGYIyEQuL8O18AbMMnDf9H2vkpJGBccz6+C4EAwpjUuSBiuRqJtqmzVC0X1e/+zu/9L/6X/+uvf+M7oLJ/8S/+Fbe2E+gr2/K3Xtn9S1/a+L/9zf/x//b3vvVXvvPFHnKKjVFoq+r4/sMU5HDQLXrDxsEPf/T2hw8/HA8Hf/rG/t27R7Ol/eB+7Rs4WZaTideq0FrO5sdSi+/8xvdWMn3z4UneG3b625N5CwoQjMaMfDAoe71CCdIM3QSMFqiVztLWg/cgJSpUSBg8Ng4aL09XdLSsLUILQMgMIdNKAlza3q64zodFWTXB8fHBBAAAwUFApkRpBPnrv/Zb48Hwj//w31y9tLPZ67Xkv//Gm/3R1je/873potnc3rl3795iOfnSy1+/d/+YAX7u57+dFv2HxydfeOXVO/sPEGXwPN7cePGlm8tytf/w/nA4fHiwf3X3WmaKt99484UXXjg+Pp6X1ebupd5w0wfMsuydn74dbPm9X/5WbqTRkkLQSiCAMSqaGYiIUqydfPzJtRw/tYbaExryOqklCkQiQAJFwOAba0mIABDISQE+YFmTERoZ6lWTaVXkaa+TrZZzYDfsjZfLOsuKcrXy3qcmmc5O8yKdnpz4tr28vYnBJUanaTrcGHtmRrK+1RoHg473jZJIRPfu3ddCptqwD72iU2RJXqQmUfPFNDiXGhM8142dLuqNjV5qUgiCYoVx8HmmEbn1brZcVQ4EUWpUa6G26FjWjffeIwFIkZhMACJBYoQEaBrvglMahRQuWCkxz5QUyIHIRwZJCIws0DmXJCkAzudVU9FiVkkEgUSeouZrHRFBNJhcwMBqvnSto8CCgnWttU0wxjjnjZHL5coHaFyQUmapSiUbFTINSoPloA2aBJlBKAMopTIBQRiYL8E4FgzSkLrAiOTFOq8SLkjGz+Q35AuJuvAUk+Rphu0jNvXHs+pngih+6nk/Pt1ZivYTldnHt3zG6zn3xPMnVotPHL5cLu/du/e7v/1bP/h3f9QrirqFm89tX9vOF5PTTqeYnRyNB93v/cZv/ObvrrqjjeHW+F//t/+qre2te/f/9R/8ySJAUeQ7O1dOJtW7dx7euNafTO7fev/9y1eutd5lBeZ5vlgslRERfQYA3/3uL/7p9//d99872d5Ox9sby8kcsEYB3mlhHNlKScxToEDk2RhVNW1iINNCS0VsbfCOKARwHIIFEAKFgOABQEq0zl7aHAFSp9e/c/uutUDIi8UCAJjBKPmrv/rL83n5/oe3Xnzxxf/Pf/vfbG1tNU3bNq5sJ1rrvb09qZS1dmdn55/84//6+evP3b9/lzk8f+M5AEpSff25q5Ppycnp0fXr151z29vbbdvGNP4rV668/8G7tqz39+9Za7e3t+/du/fiiy/1uoPE2OntU4kbb/74RxsbG1qqopOXR9NO0VmVq16vs1is+Ax/07atUBJ5rb+cx3D+/AbNekoAAEAgIADJLBDiOy+RhMSm4V4/SXRq68Zo5xMtpS7L2jULpdTm5ng8Hk+n00GvHydhfzTyrb1394ESApHmy+WlvcvdvHP33m0iyhIDRFrK1jmtdZ7rEBhRCqEABIFoG0cBYgrQsiyruoxworIsIypQSum9T9P09HQqpXaujiz5AmRjPRG4EJQSaaqDs8xAgYK3IXjyIAVpjUYJqUVbOwA+rwvKZ9EkY4yUa1ZKZl6tqixLQmiFlFrL4K3WGjmE4BKtm8YmiY7stlmWDodDgHVB8FVZZ2katSNjpNZaoJnNa5SttV5LQAZAEfU5IgIhAKAo0mXZWAdCAAGkaZKmxN4JBELodPJnD+VTLeVzLoOLOtRFLeyR9ohi9Yge9zR/3OdtT/ToPbHbiyreEzW+iz3AY7rqxQ4/+zXHU3R63WVZXru697u/+b3VfPkrr90c5uLgwf2qXP7Ob/8mkL9543o1P/2Lv/rL/9Hv/fa3vnLjv/gv//b/5f/8t/9f/9X/9c0f/eF//jf/Z4Kb/dv3IAuD8eatO8uT4/rml64fz+/89PadP/7Rw8lsHgiY0SiNQMHbcrV86eaN7/3FX5m39mS6kjrpDyDPgdGhAIWsJY2H+Xg4cs43ZSMRmCA3WgC5EJpAjsAzUkAkcAxuvZAQBxIA/V5HIqzKpm4DxzpyAYDFz/3cz7329Z/f2t5s2/qrX/3qycnJgwcPvve97z148GC4MT4+Pr527VqSJMvV/MtfeeWnb79156Pb0+n01q1bL7300mg08t7P5/Oqqi5dutQ0zXPXn9/f3798+Uqv13vrrbe+8pWvKaWk0IA0m016vc729vbkdPalL30pz/M0TXud4p13f/LKK69sjIZHRwerxbKTJ6lRm5vjxWKVJFoI+Bih7cM53cMjS/vnb7FcDOKa/BEYISDEgixKopaQKMi0yAykGrJcNE3btq3QoigK7z0RK51u7+5Krff39+umiV5RrfXp6WnwLKXe27ta5N26riXi/p37k6MjITA4H21hRAwhKCmVUlrr0cZGmud128YCxPPlghHS1EiFWqtOJ+t0tNYKcF2KIDGZVGlZNcCi3x90O0WvNxBKg8AsS7QWWqs0NVpikaoskVqiUVKpiNmUhKKxfn37Z9NeCBF9BU1jI+UqABiTEK0JYCPNJRFIwCJLo2OUCIh9mqZKrWNxWZYQ0aospYQ0TSO/YbzrJEmSRFlrEUFKjVIRgwseEJVSaZrGmsllCQBgdCZY2pYlQgggJWotyD+dLhMAPpff8PHZ8+z59ETT+JE/nyGDHmlP+/UZYu7xa4Bn6rBPs5SfeLUXhf4jPTS1NWk+m0y3esW1se4Y0tRubW196eWXGdY8plub4zTR1WIe2vbkg/eO7twCV+/tbf7d/+Pf+q//4T/4zteur07mq+XJcJQFDd9/6zao7UuXrucFvvWT9+u6DZ6quomXcXB4f3d79I1XO1+8cvn567u9UZrmu62FLIGNoj8eJ1lqylVVVy0EDoGzRGcJaIHMITC5AA2BZ+ECAqBjcEzreuDAe9ubrm20EknWnS0aoYRSajAYvPrqq5d392INvJOTk06n88Ybb3zjG9/46bvvOe+bpknTPM86iLixsdEt8j/8o3/LAE1dXb9+PZLc3b9/P0Kv33nnncFggIij0eiFF154//33u93uxsbG0dFRRO0uV4uf+7mfixU8trd25/NFXddA/ujhg1W5rOt6NBrlebqzsy2Q5/P5xsaobZ1W6jzDFy7M1XOv9DOmzTPahdmDxMAMgYEYCZCiNioh0ZBoMBq1EcwUA0fMXDcWQYJQwfNqtdrd3a0tLBaL6XQaiZ17vd50Og0hHB4ftb7tdDq7uzt7l7eCb4osN0YBETNLKTtZLiUG7w+OjiaTSZqm/X5fa93pdbvdbtM008Xc2jbmqUrANDNZniglsqzQOvGO9vau6yQJnk9Py9V80TRxOrFUGMi1dUmegdk3oaqctQERmME631pXNxylGzNHrunzEijOc1W3rfWBGIVIM80AKDAEF4LTWohoSBExs1IQAiNiJAGbTqcRRi4E9HpdImrbtq4dEbRtcM7lea6UQiECEwOiFIwyrg3L5SrCCfMclMBAViowmqx1/b6x1hujPrUuymeShufa08WNnyov/vya4Odtj5+dHmtPO1YAPfL5+Lf1VP/EJzoT1x9EAYDMyCyQllUplfHe37v10dagUy9OUyOtByGToj8sHas07/bH/cFoMpk0HlAkm9u7yDC9e6c+fPjy1Z1/8F/+F/+j3/y2sryYlwG0zgZHJ5OPPry10cvHGxvvvf/R2z99z3sySbZYLBIlj44OLqmjF7fFpa2sPx49PC1RdUf9zvJkXtWutX69ikpEAW3dDvsdFIpAMGoCdB5aR2Xras8e8KwWLUmE4agfZe47734AAMDi2pXr3/3ud199+ZXVajUabbRtOx6P9/f3e73ezZs3j4+PO53Og4PD1177ea11WZavfe2rb//kzYP9+zeu7xljvvzlLydJorW+efNmv9+PBX8vXbp07969r33ttaOjozu3733ly19bLBbOhZ2dndPT0/l8vru7e/vW3e3t3ZiCJqWcTqcxbvCVr319NlucTlar1WprPJaAq9VKa2mtR4AYv14PsRAXS/ThnyOz83xuxwr0HtkyhTN0t0AQGL0ppLV2Llhr45XPl6vJZEYoPIXT6WQ87sQVhYhms/nu1raQwdq6aUpGLpvVbH5SlvMkVcwh0RoAtBTIkBepQuGc48D7945XqxUATCaTtm6SJCnLks+LPfkQn5gxRmolpcyKvLGt9f54cto6W+SirimmFTpvEVkCty0DgG9Dp5NmicwSned5liVnWeHn7xoQwbnTn4jS1ACAEBhCKMsqAlG11oGBOPQ6uRDg2to53zSN1kopUTcVIqap8d42TaO0GAz6iNi2rZRSa9RaKgVVVcWK5ERU1cEFAqGk1ERcllw1AKBWqzrLEpMAiqBMQOl7vaxt7Wg0WM7tpw73U6XhxZXzosH7bF3saT087c9na2QX22eXsHEfwXDxcy65HjnFZ7+RR67wItnExZ0F0GAwaH1Qyly/fm0xmcYCIIvFYrlcSmVuvHhTZllnPF41jel0vBdJWiwWpfeUmiRVsl0uj+7d+V/9x3/hH/79v/1b3/y2cI7bWSdznVQd3J+sqnpzd0co8/ob7zzYP+p0+1Vr67p+7Ytf/8Vv3fBhfnB4+sIXb9RBPTgUz33heWUGpzNKOx2VJlXNKIEZgnVtoMYGH8AHDISORR24YSBgqQV7DwyDQde1tiiK5WrlAjPg3t7er//6r3Kgo6OjQbenhbx9+yMpcbGYbW5vvPvee6uqtIF+4ZvfHG1s3b//4Gtf+9p8MX3//fdHo1HbtjeuX+12i3ff/ene3qU333z95OToF3/x21W1SlPT6XSm0+nrr7/+C7/wC3meM3Ov10vTdLlcXrt6/e7d+4PBYG9vDwA6naJtm/fee288Hv/caz//1k9+OhyPtMGvfvWrTdOkaeoaG1yQEvu9/u/+9u/4s3RmOqvvDE+hQP8ZGgN4gMgwj2ezRRAySR/ABq5rl6ZGKVWWddM04/E47xRHR5PGWefceHODBZo0EUp2u51bt25tjod1UzbOlk2tTdofDj0FBrBNQxQxddy2tbfOWhtse+PG1StXxkpAU61So4h9VS5Hw742hoht7SN0oa7aprYUYDKZnJycHJ4c37579/TEzWZVUWSJgSJVidFEoCUmqTYGtJaeIOrX1rumaaz11pJzcO4lFCKWwFTnbG8hMBEYk0opnYMQQl17ADBGxhJaEEiiyNcIWY6UNjFSjGcYO2ttZN+JwWUAiFGXpmnqugUAlABCuUB10wRgpSBJtBCiqgAAlBZGg1bABFLKIkvn05lS8KnV5Z8lDdfj/dk8aI+IjEf8hp9F3n329vhlXJSSzxCyTzz7572k2OG5KLx4s0II5iCEIAZA1el0lZFl1TTEdrXc3docDnovf/nlV7/y5c3trelqobTuZKqultPpSXfQq9tmVTUbO7vd4UY/2bo0yv7yb7z4v/tP/sKQgGsILYlMLqr6zv5B3uv1x8M7+w9v376LINOi83f+7//kqBU7z2199evP37v/4eWrLyxA/vF7H6adLZNlD45XJ7MFK0gzUxRJ07Qr6xelrWvnWmISKLQDbAUCrEWGAOjmRdu2Js0Ojo49MSPcuHFjuVw2TVVkSa/fSVJ9/eq1mB8W3UZR+7t27drrr795+fLlra2t27dvQ/DBuzw13W73Rz/6URRbx8fHN27ciAZjlmUbG1u3b9/e2b700ksvOecQZJqmd+/eH41GV65cIaLd3cv9fr+1tfPtweGD8Xi8u3dltlw9/8LN0+kseBZCVm0bX54izwDgypUr4/H49/7S72VJGm0xPiuG+e/NcMGPP7yul8JE4AI1HmsrjJG2ts6tMSvELCWaFEMInunBgwfdbtcYc17YaLks86xT1zRf1A8Olu9+eOhYrCqbJElEbpAPApCZszTt9Xp1VXY7hZLC2bbX6+ZJspq37L2UOpZU11p1i2IwGA4Gg+6g3+t1rLVpmo63Np97foMIqqrs9RKtRIw2xGK9iOgCMcKq9MTIhN6TECLPTbdIBr3OI2/6+StgrQshvqFCa4i+DuecNlIpqFYWkOI80Vp5JkTI81wbGROKpMK6rquqjmzYEWTjXGDmiCIiApRaSknAbeOqlqSURaFDcErBYCCZuW1CuYLghFYieN80DYIQiLZ+VqoSfKo0vChinj2BnmaiXuzwotz5c1rW53s+7aiLdGEXrwqeJJrP7+6JV/JEIX4uDcVZi1xhUkDbtlJqqdSD/QMAoU1at+763u4XX3rh9q0PfvxnP+h08sHGaDgcSIVG8qifc2hvf/T+YrUEY05mi+29q91BUs/nqnKddvmf/43fujaWxFQ1WV4UgHB//6Bt3XPPPXdwPJstlh9+eOuPP1r83b//r5a2HG36q3vPPTw+fu7V664z+OMfvrOxs7dqwHrYu7phvW2atii6lrnxYB17B0DIIBywJZYRY4bQ6aQR5hZCmC4sEb388svPP//8bDbbHA+lxO3t7ePj45/+9KfHx8ff+MY3rl69+tFHH21vb1/e23vjjTeEEN/+9rePjo6stXVd7+7uCiE+eO/9CAycz+cvv/zyF7/4xTt37hRFcXR09M477+zs7Ny8eXMymcTqkRHTbkxy69ad559/cTabZVnW6XScaxHZe9/r9Zar1XK5fHhw9OIXvvDTd97p9/tKKY4FEQNfv379+Ph4PB7/1b/6V7e2tqJ+EYcpToafeW3+xJRgARyDqkBEFMB6bh21lquGgmeldK/XA4DatpFPMM/z4XAYc3U//PBulmWx8LHWWgrdNG2nyJU0JpFFJ21aBtSDwUBrqaVCxE6n0y0629vbe3t7nSxPtdkcjXu9HoXQ7/V2tvsR/7y2ZD3Dup41VlUdmLq9XpZlk8npYrFIU2CGQF4KAOY8QQAIgRAxeE5MAhKyLEuSZA0qJI4MQ/H26ULF8/iuZVmuNca0caVkCByr7oUQsjxRCrIk9daVZQlnvgs8q0rU6XS891XFSaKdAyKKKUYAYK2NGmhRJABQlqEqrSOScp2cJ80atV6WloIUKL3T1QojCjXLMu85OiWe0SJaMpzxA4ozxkPnvWUO5+yB8fsFfwEzMxIj8eOm6MeyRmDsnDkwB+Rw7pV7osRBRMFC8Ce8eBJQgpTI55+4HTkgh+ioARCIMl5APHxNXyeBBaNgFCwkCPmJni9eT1T1Lwq4i4KPmdduQQABoACJPUOIn3OrWUpJkLMBReC1CPa0y35OXjRV2usfHZ6upotB3mnq8uTgAZDvpOmysqez8tqN55VSBuDBnY8QCTSsJrPjBwdt63qDjc3B+Hd+8Vs3h7iLy6ryHaM0w3TVvHtwmnV7R0eLO/cq4dTVy6PdS6/80fdv7R8fkqTjw9Prl3a7X7j6379xe2fYf+16TvMTT8PK5avZ0lUukUCAKwfTAMdNS6gRRAhBS6EINvs9pUGk5tbDAw+QpioSChhjDg+PNzc333vvJz/8wR+3Xv/ef/Af7e1dffP1twToL978cl1aZnzpi68gYp5IyeF4cvruR3c7492vf/uXXrj5yqW96w8Oj774ystvvfWWkco1rpt3X37lpbyTueBlkgRmqfDk6GCr37XOmSzdu/7cdLEcbmzd33+IiA8e3O+PN1rrbeMePniwMRhe2t4qV6utrc3j41NlVGnt5u72YLxV1S4rOlW9GveKfpHfuP5cfHOVWvvU46Cfc+FEx+KnoLgvrsExRxmIEAKA8wQCQIjWEjBorY5nFEA52456RaYguKauayn16clMCtPtbRSdznvv322t12lSuqbyQaQpQchyXXQS7y0jVNbdfzBramqqenM4ci7kne5kMqnKZbfbreu6bds8SSXwbDaREpVkDUTOKgWegqeQZEVgzNICVNI439g2NQqBlRIEsFqFVascqNpxhFgjstLCe59oqOoykCuKRKKw1gUi64JQ0gVyAaTUdUOMgDJWlwxCcpIqpTlEmJuQgYQi8K0VAprQ9kZdBs7SVBKyDRLQNe1o0GvaKs/z4TBlhiLPiqJAhKaxiUoS0y3LBgE8OxScJjo4EEFmRgfXat2mSV430DqLEqRhwOBcC0AQzKIlYl+obivdxRG8KHzilqfiDT/7ssmfGaz3GU/BzOexuzOblC+mDVw8ED+ZcnU2R8XjYHO+QPp/fv/nKt75F3jMEv/E6S5ITLyQSni+SAbne1ujxUldLkORpU2auhCkVLPZIoSwubmddQpgUVVN3ulPp1MlJEqez+dFmjRNIwGXq3lZlsfT2YOTk62NzRsv3syybDAeHhzcWSyX796b3VqClSY3aOtFqVSe5/1EHU/mwvT+1X/3J/O5BdCMBI5PTqbXL2+kK3ownU3v25t7G1stLKb+OIBKEyKczZo2gEqTti4ZQqJkQO2dy03EQ5D3bV2uBv0CUVbl8uqV69Pp9Be++c1bH77/+7//+6PR6Ld/+7ellCcnJ/P5/NVXX02SJDLu7V7afvjwwez04enpadM0r7z6tRdffDFPs+Pj47xINzc3syz7wQ9+8Nu//btKmo2tHe99kmR5nnvviyKvqhKA3njzxzpLv/vd7x4fH6dpqpQsimI2O2lbd/nyUGv9k5/85OuvffXWBx9G/SIWF+92uzSfek9AfO3a2pCfz+dE9Nf/+l93gf7hP/yHd+/ePQtxfOxVRFynfF2sh/UZW5wyhECMlogJJIIGMR4XdV1mJlNGbxZbzrmT0ymidMGfTKbbmxvGmCrSZFNr23ZVklEgpYAIDPLEgRCgqtrtjS0R1KpaMcNsPl8sZlJymnSSJMmyZD6fIyI5X/GqaXySJFmelmVDBDrJjo6OkixfzOaNg7qu67b2zFJKIZQSxJImk0pKUBoQo3+NpQSlJTNXFVkb0pTyNNM6C+RjPngIYIz03mWZZKAkyYKz1lpaexshBBACztjmRVHktqkjibfSqmmamHBira2qNdkHGB1fQB+8UgoEIDIBsPfWeUQQGhhQaWWMZwQhIrBetLZKU0iSpKlaBJYSWIAQOJ3ZXh+cc0iYdz8D3vDP78t7hoX7tM6fLgrDJ/+MPX+K//Mi/fUzGj9WOeA8xeWiNIRP3lG0qs5t7fhvlIPn2IJzS3k0Gh3u3xdCYPAHD+6jQolCJ+batWtV1fz0nffyol90e5f2rhhjyFGep0Wet1VptAZmrQQSe9uAUdtX9l771jdL75I8kWC3e+q5zeT3Xrv6jZcuQfDWWg0A3td1ff9kmhWje/vTO/sTkEXrIDEFsDS6s//+QX9E3d3Oh0fJH785MyNTsQ1uMCntZGlZSdDqeFEygFbS+3Vq1+bWtrXWmPT09FRrTd5dv7J39fJelPh/8Ad/9NZP3vniy1/57q/9eq/XWywWq9VKax05Gu7du3fp0qX79++99/5Pnn/+xsHBweXLV774xZf73cH25qZJ1EcffTAc9n/wgx9sbe3ceO4Fpcx4vLmq6s2Nbe99tyjati2y9NatW4789edfyLOOlHI8Htd1LYRQyiDiiy++eHBwMBgMrl+/XlVVWZaIGLN0kdh72Nra6na7nU4nBOdcO58tL1++PJ/Ph8Ph//5v/a3/yV/7awDCORetp3Nr4GeOrjCIAEiILYg2gA0QCIh4Oi8ZhTLpYlXV1imdZFlR1W3eKZwDRogSPIRAnrUyvY5WCgGoqdq29SjAKNHr5EmuTk9PXVhzYRH7wWhY1/V8MV0t55PT0+VySUS9fiem484XbVU1eTfPiiwrchDy/v7+weHpdLYoq8Za9h68I+/JOyJPgYERGAXGdJuz6Z9lWZ4rYyAELstqtVrFHOSmduvi0Qjn70LbhsjOYF1gQCCQKDkAMAgBEoUxJr5HSilnfXyPtNZpqiKvRLCOmWNQhRGEgABMRC54ivHrgEicaExSFfN4AyvrpUTQSgJzfOzx+o0x25tFCBACee8PDxfPHsRPj6L8/6A9rnxFX8yZR+ZZzsQzW/5nOd0jfsPHv8f2iI/yoi/yovSMu52cTjtp1rpWC9bMABwaSwidoueI56tyc2un0xtIKeuqSYypq8p7v7Ozs1gsQgjz+XxzvHHlypVre1c6nU63N1qVbdP6LMtuXL3Srhb9TvbaXufFPviATicSQJJjNAezaTEalQ0fnyyIcTKbSq2AGFRbU78t6Te/tXfz5sb/+988WKnNTM601nVDVRvaQCiENGnj2YNItMnz1Hufd3oPHz5ERG/d9evXt7e39/f379y6RQSj0ejS3pWXX/3yaLx5eHiY5/mdO3deeOEF732WZdvb22VZlqvZ9773vR/96Ef39g9vvvRFrZLNzc3VajWZHE8mE0QMgb/1ze/keaeq25PT6ebGNgB0Ot3VarkxHt66dSsEVxTFtavP6cTs7+/v7u567xNtqqraHG/UdT2bzW7evNm2rfc+Pr08z9eVSgC+8IUvFEVRllWizfHxMSNcurSXpvnhwfHDh4ff/e6v/p/+zt954YWbMZ/HmFhTiaOlHOuNfN5GwJbYhmApOlDAB3YBAuKyqolF68LDgyMUIs9zoYxJwXtPCEmSxIVZ6yRNEkSUUguFJlVZmkXYHQgECda1jbNpnkVldmNjI8/zwWAQYdgAUORdT6CUyLsm6+RSaGV03VjUpvWU5rk0OimSrJOkqUIJAKS0MEZnaaZ1iiADIAhUCqOMXq3KEEKEwoQA1jKscUuYJIKIlFJt6xDW8lGgBBbOAqI8E5SUJCo1SVWtIj5Gay2EBIGtszbyDZ9ViVJKZSbJTCLVWlkholhyHgUoE/1bJCVKxQxsQ3Ce6prIgXOhbZwUIss6Wuu2hbppEKHT0VJCIMqzT3GAPGslfIpAvAC7wwufz9OY+WOHHfIjKL9H4hvnxul5u+i7XB/IIBgCMCHEz7mPTzwCFLwQWrn45fErvPgcLiqS54jrOIRaa0QkIudc27YskFo3HPbr+XxydDTcGFBjNzc3O53O7u7uzZdeQq1RqflyhYhJkghUAHBwcEBEdV2/8sorWZYZk16/svelL3zx8PA4SQvGpD/Yqmo/HG2vLN3/8L1XL/e2U/bOsZYBRUwaPz6ZeCJGMV1MT0+P6rqcz+eYmaPjcnM0/t43b3ztpd5L13YOT+tSae+sQMgy1XpqiSwxCA0y9c5K4DzLAKCs283N7e3t7d3d3cPD4/l8/s1vf/vFF1988eYXmPDFF1+0Luzs7PzhH/5ht9vd2tra3Nx89913I5b4ypXLb7/x+o9+9ONup9jZudTt97TW77/7jve+0ymEEMPh8Or15w6PjzY2Nubz+c2bL1nv0zSJKXS3b9/O8xxQvPDCzdu37w76o/hiDIa9O3fujEYbzOyc01rHskda6263O51O8zQdDHoAsLO1633IklQIUZarLCv6w2FgSvMsy7J33nlHKfM3/7P/7Fd/9VcBoGmaGDKy1uZ5/myexCc3RADhGSxBAAgIAcB7UloGxrJxs1W9WFZlY9vWWWvrVZmYLGLodKocsQ/cNLaq27qmuvGt5daSdWw9WE+NdYBSaaOUmk7nk8lkuVwyc/QDZFmmtUYlG2eV0d3eQAjR7Q3KugoErQ+nk1mS5iQFCmLkwMEF74mJ0QM65sa21rkQ1m9EOHsvnAPvmZmNMZ1O2ukkiFjXdZqmaZLHQWEGRFRKJcbE5SQEAD6n86I0NUmStC0T+1Qb7z0zSyml1DHhxFrrnNNSKSHJh2pVIiJwAIDItYMYKSNjnAPO3lxg5hDYuaCUTJRhj3VFVdkCS4GAqJqmiUTcWmudfFrNvKcP7ifiv597cnxabx9HWh7ddS1bP/7pmdJ2vRsSQ3jEWH4kUPP4lTwiZ+GTnsSnnfGiVhi9HjEVac29kZh+0ZktZ7OTY8G0Wi1SpZ+78UKamaxIe4M+KskC805hlJYAkUdz5/IVJc3mxrZ3lOaFUqpqWqG0935jY+PBgwcnk6ljkeR9Du3Swsag/ys3xy8NhfPggjDBCoWA4B2VdaWU7HTz/QeHLvjAXSWa+w9u/as/+tFGN//GNX7p+vDPDg0KPRh2tUmZwRglmAQShkYCJFK2VdU0TZIkd+7e6/b6D/Yf9gajX//N32LGotN77733XnvttYcPH86m0z/7sz978cUXf+mXfilN0x/+8IfGmJs3b25vb7/11ltCiMFw+J1f+pXTk2m32z08fJjliW2a8XhDSr13+epsNqMAi9Xy+o3nrLdpmrjWDkf9H/7wh5cuXbpz597LL78aCILnja1NROx0Og8ePFBC9nq9aGRdunRpf39fKRVf1zt37mxtb0gpRSxq6ENUSDfH49VqJaXuFD0ittaNN7eklHfu3Pvud7/71/7aXwMApZT3XilVRdDa5224JjoMAIEBEIEFEVkfWuel0vPSTZeNSZLatt57rXWv22Xmtm2cc41tWx9q52tHnqENXDqY17SoGkKlTV50u4QglCw6XanVxtbO5sZ2VTXLRRmN32VVA8rZfOUJq7adL5r5fG6SzDNIZVrvGx9WZV1WTVU2TettgIDCEsxX7vDUVw2FEFAiCsEMIUBEDmaZNJG266yFEKyFKNOVEs5RmuoQAqIkAkIIwIhr5i4iL6INC5QaYB8Zy1sAIII8z6M+GCsExBUuSjrBgMQCMGqvQggpBBGBQEZ0LjgbEMBIJQClAPLBKG2MIQeLhQuBlZFCoFKqrjlK+cWifvYYPlkaPk38PVl+/Q/QosA5L+n3THHMT5CoT7/Ix/2GF2/qXNI93a35cYvpkxFbEP2Gse3fuTcY9jB48GCy1CgZmD766IOjo6PecLC9sxMLdVd1WdWrTqenTNLU7WA07PZ7JstdYOvJDDdvfPmrX/ryq+NR//LuWCIt5qfT2cnpdHr5ynaayC/sDb91Y/RCj1P2JlHB+TzLnePgYLGorfe7O5vHx7Pjo/tGDrPO9uXnr3QHibMUnNi9NLhz5GpSDoVUgp0XwX3p+u6ljv7OL3z1+evXbFvvbG4JIUPgvNsbb23/wje/tf/gSJv0+Pg4JjbcvX1ncnL8/PPPx0Tjf/tv/23btq+88spqtfrRj370vV/51fff/1DrZDze3NrZLsuytTUinRyfJkny8pde7fYHwGI6n2ktNzfHMSklSfXp6elqMQcAF/hrX3ttNptvb2/H0mvGKO/9ZDK5ennv/fffv3LlSrfbPTo6yrJsNpstFoter1cUxXw26/e6aZoLsVb3hBBF3t3c3FwsFkqpotslouPjk6IoHj58+I1vfOPXfu3XovSPUZRPhWI8YV7F4DJG3816owA0RlsH1lN/0M3y1Hqyrev1+lmSI2JiFDNXTRMCETCDqJsQUHpUKkmlMQ1B63lZt2VZW+cnk+Xp6Wm308+yoqoq58JwPM6KTt1ak6QEsna+qtvposxzQ4xJnlnvllUFKAOTVIYIARUIA6h90DZo67HxkCSgjJRSomDEWHgEANYxkLjqN42NC0ZR6Lpeo2oAAQUwo/feuXUatdYYpSEKEAICtd7aJEniKxNjRLF0WFmW1lqJH7+GaZL0ut1UG4lCAAGxQhHVQ2BWSoAQjfVtC0JIpYwSoCVYBz60aSJH4yzPAZG8Dz64atnmuYp09Hmunz2In2IpP1Eo/A8tEPkxGoVH/rwozj5jb+ftcQTiIx7Ax9vFYMv5l6gPIqIxJk3TqFlUVTWfLXe3t9M8u3v7dp5gnqeJ1t771WrVtvX161dVohhxuVwkiSYfWuucc8fHp0neYUbnyTmntalBOgY0yrl2tZzU5QR8kyoQad7RAO2ysXRllP/eVy7tJrCyWgioqgZBIOgk0WVpl8tya3PL19nto4/yHr/979788PYif/GmHJrNEC49d+Xu4bRxkHcKYPib/+lf//1//o8GOqwWs5Ojg9Fo9NFHH03nqy+8/KWd3cvD0QaDSPOs6HZns/mVK1fefusNRP7KV75SVdWDBw9+8IMfjMfjmzdvfvjhh9Pp9Hd+53fu3bv3zjvvvPDCzaZpADCGMu7c+nAwGFy79hwz53l+ePj/Je5PgiXLsutQbO99mtu5+/PXRh+RkZmVbXUAqoACQAomoRFppPRN1Df7JokSNZHGmmikscQ/kJlGGmggmWmmscxkotmXSJFE4QPFQvVVWZVdZEb/eu9uc7q9NTj+PF5FZEZWoQrgyWeR3ly/fv3ec/fZzVprH1qrv/a1r50vzquqyD0uDg+f7O3tvffee++882VTVOPxmEhlSlZVVYeHh7dv3+77fjQa7e3t/fCHP5xOp0VR5KYoWU0vK0HkfuRt29Zl+fDhw52dnb29A+dcURRnZ2dt244mEyLa39//7ne/e/fu3X/1r/6Vcy5f35xM/HUnbV5dN0EGABCRC6lpqsGHlDj38TaFPZ/P3TAs54uNYB8QMpAQMmFgmS/jvB1Wg3ceGCkmQdLe83hrsrOz570/OzsjY+u6XqxWMcb5clWPJiHF8Xhra7pz88ZNVLS1tbVctorMfL6YLdoUZb7qQZQIxSDzZTg9c+cLl6CoRpO6ttqolEJKTATWGmM00bNyChFpTbnWEUIoywziS4jQ9yG/XtgyhHVhRAAQhYiUxpRCbnAsIm3b5hZ9IaW+7zeJpnV9MqVhGJbLZVFYozUKADMKEMDaYmpCxBgleCDItEtGhIMrFWLyodcGkCCmoDRMp5Uxyg0xr9/O/cqqDVkBMP/2TLwFZkkJLwiP+aA/z1PL+DvAZ0hAlEScaN2bSvCXuSIvmVUAAMhICSnlXjPwy/qGG0OWcxabw1GICkUTaFpnCZNIeqHucdkThBdShPCCAb30Xc/iaGttpg3lfF9e4kRk2hTz8RU9n6UH39nZ3ZqfdqNpMSwWt25e379y8OTwaVXY0La1Nc65pFABc3LjSbFYnOqCgFLV1KopYbU6+eTjn333b7S40K8++PkvDo9PIlBpImkzOEnercJwEtyX3ro1lh45d+lgQQ4RBGDRdqez04OrTWPMez99+Pi8/H/91S/ev/+YyY8PKljNdnamT+ar49nyyrT43/1v/zf/7L/8n/z0PP7i08f3j85F29Y5Bvi93/2mMcWtW3eCH0ZNNZ+d9sPq448/Ho23rt+48/jJ8fHxISJ+6UtvXr16/YMPPnrllVf+0T/6o8OjR3/5H/7t1772tVdffz2kuDVpJqPyow/ed4m/+vXfV7osqvrk+Gzw7stf/uqDB48rOyJdMSgfwoMHD7Qha+3v/O43nE/GlqioKEqlVLfqh2F47Uuvtr6zRXV4eFzX9XQ8efL44Xx23jRlMyp2trZsUVBpEySRNBmNnOsfPrx/5cZNH0LTNH3bFkaPm1ohMHNTjYbOFaa8ffMOgVqfwpffNJ81KBf/Up4oIJhJtBoDR++R9Nmya2OisrZlba0Vo8hoQBVjKssaUaXEIURTKCTe2VZ1AZWFZqQ6H9qYYkwJ9OHZ6nTl0RTOh/PZfOWCC37w7sqV/fPzc6UMMzsXum5gXS19pKIZIpAuqrIABcaAHY0imSEBA4IGABF2CvrV0q+WftVy30NIenDSOQlMCFYra61F4LJSwJFDIIEU0tB5ZAOsFekYIwBHGerCFEb54I0BpYlAtGCjrSC2vQPSgsq5UNlCoVidXbY6cgLCbuiAIEkyhSGjXQzjrakt67btd3Z2RnWpgTFKCIkJmUBbiNGFBBGpm4shY6zE1AOAUmWMsFz5clwpC4MLiYfLil7Z1gnC5Yv9ub6hXHCYcE024pc7UL+tgZ8znnMV4QX918s2blMVuexCfqEv+Wv9uk0OZYMSqKqqaRqtTfB9u5zZi6GRZsvFbDZ7eP9BCvGTj+8t5wtgcc5pUkopEKqqpmmaGNk5l1Lwq5aZY2Ct9Wy2QFTee2PM6el5Elx1XTMeOecW5+fjQo/JbRMQktEG11zRpJRCohjTvftP9/b29nb3D09n0+n22299WUA/fXLSugG12tmZIkBZlv/0n/6zH/7wfQQYnN+aToioHcLW1vjua68qpXwIWUHk8ePHSqlXX301g34nk8ndu3dff/315XL5ox/96N1333311VcXi8Xjx4/7vv/GH/x+hoPs7+8/efLkyeHR7/7uN7a2pzs7O13XffTRR1//+tfv3bu3u7vbNE1KyWr95MmTra2ts9PZ7v6e954IM1Ur+4bL5fLo6OjKlWs5KAYApVTWesqdM4NPmeuS/cft7e0Yw2KxqKpmb28vJ/UR8bLEYc455t6bf+feAADPqLsAoGid7w+clFlPVEUUY+z7vu97F3xujRJjdEOYzZZaFTFJ18cYMAbwjmMATgiirTFVWRORj3Fv/woqveoG1GrVd6aoQJEyRe+CC3E2n4fIjNB7t+ra+WLZtq3z3rmw7JxzkUidns9Wq9aFyJilLNeUEkQ0RlurszROCJE5KaU659vWt63zHgBIa6UUIYK1dhgCIpaVDSHmvG3fJ+/DMDjEdadsa21d10kkA9HyXTMMQ07OElFwQwqxqqo8dYuyBMQQY64vtX3PDIKwWCyWbQ+kcqiOLIUBTkkRkQIEGIJ3MbFgDDnpmUSg71PwiQiNBhH0Pn7+BQT4Qg2b5yzR33muvDjkc8bLt3/uwDb267Ihe9EH/BVj6ue+7uUbbA4gW+QMNiQi7/20LmdHj4ZuRUanFFfL+aiZ7G3vEKDWejqZVFV1fn5eGAsAPqZ61BTNODH4EDgljolAEJUxZjzealc9In7rW3/Y1OP5bBVCHG9NEwhqw8yLo8MR+TevEQsDR02YS0mJk4iwgDHw8af3iehgf+feJ6f/73/z7x4+OCRlfUqvvHq3bdumKc/m8yeHp9ev726Nqihwcr746JNPBeDNt96ZLeY+hGzrF4tF3/dXrlzJOL7cigiV/ul7P3ty+PjLX/nKzds3lu3q6dHhz957b/fgyjAMXTe88847T58+/fl7729v7964dTu3VP/0kwfvvvsusOzv7ytFw9ADwHK5RIBMKXv33a+cnp7WoyYDMrLBOj4+3t/fn8/nWtvz8/PJZNK2bW4fWlXVfD4fjUY593fr1p3VqgOUw8MnJycnQ+8yNRAu8h45Pyjrrm9rJf387m9iE9d7IBTCKBwiZ4mXjSeRAapE5Jxr2977iEqz4HzVny+Ci+AjRqbIioEiq95xN6Rl607nLjC8//GTIDzamqI2ewfXnxwdJ1EJsPfBVDUZq4qyqke2qMqi6nt3Nls553Rhy9ICkg8pBAgRhAFRIWmg9fJZVlYpBcAAorW21mQdGiIwJVWVsQUys4spJSFSDGxLxZB8CLbUyujIyRQAAJyACAnQe4+SiCiExAw5XB2NRrlZSr6sZVEMw0CACgmRmNmnSEa3wwCKRFAQQOhs1jqXqmYUAkNiZqjr0hAiJ2QgAue561Nk5RkEAAittUmg6wZOAIpS5OE35CnDr6za8Pc9PjOevRzDwi/7lRt4TY7TN4+/cPxadhMv0fjWRZUkjZWn9z8I3qcohOJcP96a5tzi4ny2t7d3enwCLDFGheic01Xjuu7w+EQp04wmG/9lMtnyPmqtmeHo6Gg2mwHA+emMY1gsl2jtlRt3RBWFKb7+1S+PaisiMUWl1l20RQQRggdEeHJ8aItqd3f68NGK2WrT7B5cefDgARForYuyDiLOhbfefBMJlaZ+8IAw3d69cf3WdDplZKVUxgkWRZG1r7ND995776WU/uiP/miyNRqGYbGYffLJJ9PpzjvvvBN8QkWLxeLw8HB7d+f3fvebx8enhHq17L72ta9lt3F7azoMw2QyGbpVVZVPnz611t66c7uqqmY8ynn6oii0VojYdd3t27dns1nuMp4xMUSQ0pokO5lMlEal1KiZGGNSCjF5RDw4uJp9SaJndbkNWxkAMip4c/WfIzj9KuPyjSGMKWbgIScBf6GDoMggKlRamQK1ats2RI5JqnrcO2aBCKrrvPfsfcwt3jfM+q1pU5RFUdOqdU9OTs6X3co5VioAnC2XJ7PlanCrwT09Pj6dzc4WCx8TECpDqE1M7HzwUQQ1KYUKE2DiddX4WYtpYGbGZ33cEUQ22LPMVsyz3Rib44+UknOB0zpUyldKa4UiLIkAMlx/443kQEpEMsjGOVdVVWGtMSY3hCFjiqLI18LYMgmHEMhoIkBC4QzzToqgqcu6KkCSItCkREHnwAXlE0UAH1lQIYIP4hMIo6CJX2S9vsAabpa1C6TPP5A1/DyfceOLXd7muQ9e3sOLr/+2xotWOB+Yrcp+dnpy/6O6NIP3o6oeVyUgvvHGGzdv3rxz587x8XEOH3I92igalvPT87MQUtHUajzO1CVjzNOnT9u2fe+99/q+z7r/dV3tTUYKpW6q3g0rl7pkvv+Lw+/87P2dybhQqAByrh4hO/VAClmgsObTh49WK3/t+rX7j88OT06uXLtxdnYmHK215Whr2bmvff13v/u3P0hJYmJSRuvqypVrWU553DSffPLJZDKZTqdVVZVlOZ/Pnz59+tFHH1Vl861vfSuHWh9++P5HH31UFMVXvvKVwQVtTVEUGYz9+utvdIN79PhpWVdfevONLL2VBR2aqn7y6HFZFrnB1nS6s7OzBwC5DIIIMQZjTFZtiIFHo1Hbtvv7+33fZ8T1gwcPrNXGFLmIvLW1rZRpmiZrDx4eHr75xrv5JqQLgdLNqhlSLOuqqMqQolxKJ/3dxjpTwSkwB4YAwASRwUdhISAlgIkhChRlpYz1Ma263ke2RaGLggVtYbRRApCYQ0wxJdJoCr1ou8RAygSRxWqYLToXmFFHoSFwEHE+kLIsqItS22LZ9j4yM/gQnPMuSAjSDzEm9lFC5BCySivnuTIMASQVViuFMUbvBlmngFRKvFgF52JiRkQXUtv2qFU7eFBaF3rZxd4xadsNXgSVUiKgkEZ1ld3AsixHoyZXGp1zm5ZSSqm2XRWFRcSMrVFKlWU1mw0ZhxtjdC4Yo/LHZ7MZEAhBUdjovEgigqKwAKBt4RK0g/QBhghtH/u+z15qSpIEjCls9l0/f/xKfVE2ebd/GGv4mQbuM122PL8vP/07H+FzvucX7mfToPaXfApEpQy3J7E9L0hcisLRajXZ3smltN67w8PDL3/9d87PT6uq0lpbTSenZ6a027v7oC2EqG2R+kG8v337lm/n0+m0bZfEqSiK1WpVqtL4EFJYte7weN4FgVJ/8HBwapAIliAKhCwhoXNumwDS4B0hzJZdO7gbt25IDO/94v2UUl2WKaX5Yuki/Ptvf1sAAKGq6771r7xy5+7dV5mhqqpsPm7cuPHxxx/P53M3hK7r7t69u7OzE0IQxocPH7btMiu/AkCMrIze2ztAxO9992+vXr364P6jGOPvfeNb1tqzs7OMMsuaJfPFuQ/DdjFdLmYxxrfffOuT+5/u710JsUWtUHJLcvXo0aPtrSkRde1QVyPvAwCQAo1mPp+/885by2V748YN5ri7u6uURgTguFjOP73/4H/wz//H61wqIhEl5nz5lFLe+1yVzq73r5tRuTwufzR7VCgQEjKL5tw/ioDAJRYfSDg3XSiKYrFahQTOQ1EoIUJSGbucUvQBJKbIXJfGxTQdjzgFYwsienx4AgLWWiICoK4PVVXZokJQwScWFAEWjiKktDUqeBkGn4ASJxFMedqCMAsiWAVKZT8jN4lb58eUIWLFnJelhAIhABEoZq3XLqTWkRn63okAYNKaAMAoNEb5IYYQEFVRqHjR3V1rbYzKl1ViDCk654KPymhmLupKawghEcXSFil1CkWIVLZrSIm50Ho+78oCrNUCauh6VoVn8F1AVCwsAhihMAoIE8eQki4E1ReYu5dVUS77WRfX+7dWRcHPGZffenFLuMQa3rz14gE/99avcuTPmb9f8Zc+d2ApJQEI/cKA5xQR1DB0iNLUo1XfXbtxve/7azdu5CwYg4gISCLg6WSrmk4lJe88WGuLUil88ODBYjG7fefm7u7u3buv2EKPxrXSlTFFDK60pCFwCnt7e5MpRA8AUGiqrLnonSMIkJJkJSskFAAf0vHx8cn52WrZlraotAXh+apl0n2IDFDYom8HAPiz/96fjptR33btahV92N/fv3///gcffMDM169f/9a3vpU5JPtXDr73g+/HlHb2dm/evuVjeP1Lbz55+vT6tZukVMb3AdDBwcHrb3xJBNq2G48nAEBaWWsXy5mIvPbaa24Y7t+//0d/9EeHh4dbk+3IaaMhmrNs66iqKNq23d7eDiGA0P7+/tHx4XQ62d7eLopib29/uVzu7R1YUyqlmeOTJ4+uXb1y48ZNuFjk8j4RMefj27YdjUZE1HXdZ2aHfvVxUUi5OP0ACcAnCQKewYc0+DQE7nxsXTibr3rnmBCIIkMIECOIyHzmu9aHwERa64IIEEkE+96XRTWbLRKD1rYf/O7O/tbWtggqZZQyuUoQI5+ens/nqxCi1qZsmqIokoAbAgsUZcWAAMSwnrQbusKFRjhngc6cbxFh52ISJgIyJJLzcTSZjJxndRGDG2uRwHkAVCKQUlIEABBzTzygvu9Xq1Xfu0zZyvfvMAQRqZo6pcQiqDDzIznE/Z1poYuh7bSm0posf6UNNLUSQBchMCcA70FrOzjvAwzBs4BP4BlYINs9pTQRIUJI4P2FMMTnjy/oEnW5pgy/PcXgl4zn7ODl1+EFU3hBDPqlUHodtD7X4PTi8Uu++tdyLTPecJPjw4takzHFydOnBqGuS9IKWEZVPZvNvPerrr1157YLftW1DLKzs6OMRua6LkXEL5cpijYFoAJFfd+33ZKImqaaTEZFUbzyyitlaavR3nLVc4iWYH9na1Lo2cnTutK3ru3UGqLPaFWEZ3lSGtywOWwi3Q+egbe3d30/rNrFMAwxydb29OrVq4iQ5Un+D//7f3337muLxers7Cw353348OFyuXz33Xe/8pWvVFUVY/zxj388n8/ff/+DV1999a233kopPXjw6auvvvrkyZO6rvf29pxzn3766c2bN621TdOUZZVxfDnwF5HZbFbX9a1bt548evzzn//slVdeCc6XZe2cExFbld57RGTm5XI5Ho8zVPDg4CDGWNd1bqB+dnZ2crLIyoYpJe+H3d3dXBWZz+f37t177bXXvIs54fWcNcxGMMOkhuHZWfo7rPqXP4G57yCiZG4AIgAElhCS92lw3PURFChttNZns94Y2t6uDw5GMTJpQKVYMDGGyD5kcXIgotPTpTFmuWyHYaiq5vHj425w2haRJXcZXK1Wzrm2dcZore0QfNu2gwsppcgyDH616mNIPnKMfDF5MQvZOMcAoLUmRO+jc4FZjNHWKiLKwgfZ3IfAwzCIwHzuvY8A1LaeGarKxpgYsq4XAkBWbC3L8nIIFUJKKSdDoWmaVds679cLNqJReuj64OLW1lbXSbdaJQ5Gk7XaKrKalClCBE7QNIW1oK1xLikFMQkplUAlpshAhCFBDJy7+yJmWZ0vqCl/ruu4SRQi4jOuswi9sH7mB1lC69mLF5vRpW0+09Y8FwjzJQ3Oy95ifv05j08uRLrgUj+/DJ1/UaIu1wpfXP/xAs/48jzjcx+0VIJxEWToVVVogHNr1eDq7TD7//7gb3ZHWwbDDkCXmscL+uata23b9u1wcnwWAQXUzds3F+czpbAPaby9B9oIIgMAQ2i71flydn5SNCNbNyXR7s6V7377/zcdNceaOC6TczuT/cApMVeFmg7QjM0VM/t/zMpe2V1eJIGABXPUgMbEGHLnX0EClggAflALPRdrQOumHi37oz/+5jf/5q//igQYaH9/f3d35969T7ISJyK0bf/K7bvn5+d12ZyfzhLz+++/X1XVu1/58vnZSVEUT5888UPY371KoB7cv//Vr34VhX7645+9/vrrulirxjIna40ubIzRWhtCqEdNWZQff/QJIt65/VpRFKR0FC6qMou25hp90zSnp6dbW1u9G6Y729qaruuYU1np89OjxdnxK7cPptNpTNBMdnYijKbbWsGyb5/cf3zryp0rV66Z2nKQkKK2xseQr2ZVVc45AZWV45ftAiQRo1Iq8d9R0etiCvOl10UBIoICYhGfm9ILWCQuUClUhe4iDykgK8Qyx64I6NyAiFZTCokZoCpBxZXnUVOXpWXm0VblvG9DUEppm1VbUxKuR5XWerVcGqN8YEQxtgCNTMl1wTOKAIKQiC3IGM0SY4yFwZRguXR1rZUG56Kx1nkvDHWtVaVCSFqTLjTq5EJEQ0aLF/EhKqOIVIpCAEBS1bopCyWcAocQO7/URuUrTkTGEACTtmWtnx6d7e2MnXPeB2sLAIqcmtF0sVgEONs5KEBIBJ2Po5EZhgEpWYXTCjQPdVk6sMsuMCpF1C9CBBEEEW8AMMmoAtIJUIpSuyGsPF9e4japjPyXx8t8Q75Qr3qxmvGZZuKXJ8ez7V/+qReD4ss7ee7BS8ZLvuvy8bxY/fjMn/biYTy3/wyzBRaFDJxAyHkuivKTX/xIYrtqz+u6DMkLxsXy5Pjk6e///u/fuXPr4YNPh64/PTluF8uytO1yJajWglSFVYik6fDwycOH949PT7IE9Gx29uTpo+/89X/70x//SGsCjFvTqqxoOh213RwgNSNz69aNw2C+co22YdEClJUy4kalsgpiAAFQpAA2+HcQkNXKiQiHeHZ0dPfWte3p+PRsvrOzBQBvvvlm3/fDMMxmM+fc/v6+iJyenlprt3d22q5r23Zra+u1L71+fn6eS8MZLXFwcPDkyZMrV65Mp9Pvfe97t27dunHjxmq1yk3y8vrEzIYUAOSc3XK5rOv66tWrufJojLmg/SdIjIiZWpcFu4qiKMtyGIb8+mKxGo8mJ2ez3d19re1qtdrfv0JEu7u7Gcezt7fXti1htsXP6oE5aei977ouYxU3mBv8bSfHcw8pFgzC6SL8YIQEuOp827rEIgxdF1bdIMK9985HH1NMklgEkbRSWi8WQ4gppbRcduezRT94FhAR7+Mw+G7omVlbW1S1IAzDYLTRyhqjkXTvw2I5eBe11gxsrKqqsigMcIrBA7PWACAAojUgMqJoA4AREIgghJT1cZUywWeCMAKjQl0oW2hFmFB8aXgyNqNKZ2QlItqytmWhrLa23ARt+eTnEKRpqmFwWpvsi2TFNkBGEgDIMXU+jbn2khcprUFrijEqjdEHW+jVKuSzIZIEcvkXEgMnci5yAmOUBYrxC8RlviDy/bxM3K+eZXvJ3PpMO/icA/gSK/zczp+Llz/v48+Z6csG9wtvg8sbJwIGUihGAyCnhAyaiH7xo79UsqorA4RoqHP99s5kOirm56fLxezOnVtZdPnk5Mj1Q1MVk+l2PdlCkeMHD1eLRRr689Oz6dbWdGu7GY2v37gxOzs7OTy6sr/n3bA1GQEG57vBtVVJo6ZEkhjD8fERbF//R29sfe06BkTPyQCw+CgyqctCa8n0CAGl1iJLZT3q+4AgwPCNr3/l3kcfCEAUIKIvvf5mlsnK2D2ji77vy6ra2d398MMPm/FIELZ3d7I6SOaWPXr06Pr167PZrOu6N95444c//CER3b17dxiGuq6ZuaqqEILW2iqdi+bOuRzt3r59+8GDB7mRXiZ6b9x8EgCAXDvOhjL3YCuKIqcRDw+PtS7uvvalx0+evvalN5lZa52R4bnc3A79aDTiS82UN9NjY8fzfNuINfx2rWEEiAIBJGt8BYEEIAI+sAAmoN6lkFgZ1Jp8ij5wH7gPMkTwEVwEnzACkgatNZIOCVYdL9qhG3xIgkQCEJO0/TBbLOfLpY8M2oQUu8EtV3EYYu7uySyMUNeVIPfD4HxQGpvSNmVZGWMsKi1FuRZJMQYAmAgQlAgyQwjJ++hccg5CEAkp+cAhAjNlHStMRosiHNVNYUzbd3ndYsBl2/Z9n5NLmbCwieeKooqR23bI6B1E6fuWOWZUfJ4PeTXNMaqkQITG6hBijLEfQmH0hSaqbP6XBFIEH1OIEJjxQtv85eMLeuZdHpu3fovT5UXv7/PM38aJe8lhbM4yfL51e+63vHg8n/kp+eUBAKJIBFGAMIok51NTjFaLc+lO90aVElitOgb0YeCYDh8fhuB3d3ff//nPjVJf+cpXS1scHz7hDLRPUpZlXZaa4Pz0bDwZDUN/8/YdAPjoww/393eHvjVG7e3tzWazXLRtqvrRg4fXr1/f2Zq++eZbg0+zk0Md+2+8fuXObrl0UG8VIYGyxvVDjJEAtdJEkCJkk9F3AyFxDF9+41a3mP3kRz/80puvnc3m+3tXXnnllQ8++GA63eq69vr16865xXxly+Jsdn73tVe7rhOR0WgkItZapdSHH3549erVtm3n8/mrr756fn4eQnj77bez/2WMaZpGRKpqrcrHzJmlc35+fuPWzXuffgKEzXiUEbxraJ5a66aklIZhGI/HZVlecP5VURSrxbKp6o8//uTa9Zv7B9dE1N7egQu+LMvgU0hxe3s7M1i293Z7N2yuu1wkwTMYmAAhMQC0y9XlrM5vbRAIQgQIACGD+gQEso1TLBQTREBlCm0NkDBRIggCPkIfpPOp87HzEQiHEJ1PZIw2mgUYta1GQkoXZdmMyqpRWgeWwYfBh34Q5zkwJAClTVkURV0bYzrXi7AxYDRAkhg8CBfGKjIISpFJEYIXEM2JEFQSQTIs1PXSdokFkTAxkIbAMAT2kTk3xEgYE2TxQSAKAbohuhBjjFkRBy4wuVntKYsnZr2yJBBSEsQEkkBQ04YKG6OPMTrnRSQE1oq0oqIoSEGMSWuoCrO3q40BzBoPIBkjFQViQkUYfAohCaGyf1d9w42nlp8+Zwt+8/Hirn7Fnb/cT7y8+H/m2Lgen+lL/upDJHHKQt3MwCnKtKnPHn2YhtWV7e3G1qN67PqBmZeLdjZbffzxx4D4xltv7e7uHj19OpvNmqbRpEIIq8WSRmNMqawahfCzn/1s8O7Rk8MEeHp6ulqtqqpqJuPBu8n2dD5b7e7sex+1tvfvfbq9vTv0YTZrb2/pNlXTuv7KfkkAUu8rpUmXdaVLrTQA8rOcb4wRELXWTVP/zu/87rf/+juCcO/ePV0U//Jf/suU0vb2dpYt0Vr/+Mc/ruv62rVrN2/ezAWNHP/GGB8+fLiYr770+ptnpzM3hDu37yKo5aLd3dlXSjnntNbZiq1baClFRLnckY0yM5+enl67dg1eaOy14T6GELa2thAxIzTruk4prZbzYRhmi8Xrr7/RNOMkmPc5mmz5GKy1ZV25EKuqyo2MN87I5tLncDs/1Ui5bxEAIAD+FquFst7pWvQQIZf3RKnexdUQmRSg7gff+wBKk1a57MeIicFH8BEiCyOFCEPM8rEqghpCXA3OFnViXK76s0W76mNgZDJMigw2k/FoXCHpZevnK7dYdOezPgUAhtKquja2IBHoe79YtCFwCByjxAgpQYyS/1JcR/hZ2IZo3RmRrCILoIBRBzY+qiHQELTWerls27bX1hRVGZmJaDodVVWR3fD8cQAIIcQIp6dzIr29vZ31bwA2TanYGI0kIkIEWiutLZEqjE4hcUwAwBHq2njvRnVhrSYNAiAAqAgBWSCyCBkfwQfOvufLr9XnVlE+M5yEzzcc+AKlaf2plxqaX2XPz22/MdOfaU9ffoTwWQnBlx/V5w5MChSiALEIWltqccvD9yWJBryytz94N67K+aLb2prevPUaGbNcLr/xrT8cYloulzs7O/tXrqzOTi1RXZXzTz/Zunn97NNP/+qvv2PL6uj4hI9nxyeHt69fPfz04w9++H0DMQK0LqYkKaTd7Z2u63yIy/niZLZareDWtAr1HpN/46CawPnJk4cVAPmlWFAETCpwYAZjVEqJGbRCH/w3/+Af/5v/z78DpQWV8w4gtG03n8/LsgzROd//5Cc/+eY3v3n//oOzs7Ou67quy3qLmXd18/qNsix/9KMfXbt27e7duw8ePHDOHR4efu1rX8vl4JRSWRbOubIs18gY54GFALM1fPTo0Z07d3IWKUNq1iTixAigSQ0x5lsoM/ayQ7darQDjT3/64zfeeGNn78AU1ZPDp1+98tUQ3M7OnrXWGNutVgBQlrXWNgnF5OCFTLGIGGMAgWhtDV+OOviNBgJnPCciAUYWRkABH4SZFQBkJh/pJCgCF0fKiICkWUQpLQSDS0SCBD4m3yY5c8aAtUYZCwCRObgokDgA4DD4mNWqs0QghqgUEQIzk0KtFRN6n0IAn9X01ylm4ASIihMDYa47GUtEFGJujmx9TAwISiWm5IOwiBAoSYYHF0SgKDQqMcZoAuBERBsMBiJ675m5aewwrNO1AGCM4QQxRkRiDhlwozQi6WzLFJmy0MG5GL3WWmycjEaHx+dlaZVS4PlZdQQlZxJDFEYwAiKyATx+3niZNYTfIGp4+Qc3ueq/g1P2hft8bs/PfcXlet/npUE/b8+XX9HAmgwCJ4xRoKnq5fHTOLt/69aVEFytddu3+9P66fGZMbos67fffXtnb/fjTz69fvP2/pWrwNItFqPJ1mwxrwrDMUC7mp/PHj58WNQjU9WairZtf/bz9+JqOYT4tz/87mSrYWMqrdtuBRLr0oYUkUTA3311Mtre9UKL83Z7a/w///MvPVnJ2dnZ4uTsZ6dAAMpAZYo++hASAJBSKXpj8D9992+7biibyenJudZagB4/fvznf/5nn3z68fnT04ODg+yIjcfjsi5jjJrU1YMrT548GY/H+3t777///tn5+dtvv12W5ePHj0MI8/n8nXfeWQfjfV9VVT8Mo9FouVxmebusNjgajVZde3JycuXKFWYGteYI40V9P4OuASDGmANtEdl0NPXeh6E/On76L/5H/+XZ2Ww0GQMAERRFUde10ibrCXVdVzW1Uir4tPELLl9KZjaF8dGnlFarVf7qNWHttzUufMP8L4uAgICEJEYbkOQSpwSFVQTKh0Q6JRYQIFKy/hgh4jBErVPueYKUlNbKUKHF9RFQJYasWg0ASpPWthwpBOVCi8S5fpVSCgEMoDGqMAiQhiGkBNbSaFS37UprFUI0BkUghGiNQUYfnvF2IMdBDKSCeEAFCCicCIU0GM2KnA/EDKQxcgp9rEtDhEPXo6J8GN57RMmPlVKTSd33/WLhEFEpk1JYLbumaXJKOjdZJkRm7vsWhJra1nUZkijIyvNKEyBK7hiTb86UY2UBBuAEjAAIzBz5C6zZF4CzX/SnfvNxeZ+f5xteTv+9+O7lsfEWP/NbXhyXWVlwKQOwQeR8Xrbx+SPhSIgpQeQUIpranNx7ENvT5sZV6XqFvDtt+hSsBte3RWVDip/cf/jam2/NFnOZzbemE6M0r1aSwv1PHt65dWN+fHx2dqa1nq9av1ilIY7HTd+1/WyGKpO6CMgSsdG2KJUPPadQlMV4UhXN5N7T07v7Y1vZpUuv7eCN7cK98uZOIX95yD/68S8+fjhnTGVhOgg58LEafJDjs9nWdPv4ZJblMMvS/uEf/uG9e/dOz07eeOON3NLs/Px8sVjG03hl/6Asy8Visb+3R0Q//OEPReSb3/xm27Z93zPzbDZ77bXXyrJcLpdZpl9rPTKjtm2ttVn3YVQ3WuuHDx8+OXz6zjvvKKWG4I0x2XfgECBnM5BEJPcFnkwm2dPM1jA38/343kff/ObvtW3rgq/rOufai8IYY1hg2bbb43F2crXWbtmNxlXmxuZBFz2hFFLm0g7DgH8PiFpcTyrYOJ0CkoA04RADAZi1wEFCAKMwsuR7FjehD7MIGatSTIJilE4cfR+0xaZpoh9CiBlzp7UCgL6NPobSgDEQAxChCGbiRzPW4CDF6BJrBTn4ZeZ+GGxBSqFzIJKYJQQoCiDCEKAoEFFCYCIwRiEB5kZ2DMKgFdlSVQVoHVEYhKLjurBFafp2FVywpI0BF7hpGu/9auWUiuPx2Hvftp21LLLmMvd9nxs3I6IxpigK54ayLJXR3scYxBiazxe2tNGHyCKIMXEIQBRCAGYQAEIU4SQAWZkQNUtI69P4BRfrl6xhPv8XEehnFxOy8uGLg39ZhZ8+5+PwDJn1vLXaZHZedPEuG6NN0mez8XOG70Wv9vIGL1q9i6/Y/MDPOPC8weU9F1BEiYFUcuZKg3b18ckHf/3GlRvjapxU0a/OrSKFencyfv3L70x3p6iKq9cOdne3Hz6675zb3W2C7xLg0PZb42axmJ+cn1FhTs7nTnQ/hN2trXsffjSdFI+Ons4XiyXVIDa1yeNgEKbbB+WkODk6tLpY+FVRhvGkOFm1TT0GoGjH52enysZTLv/g6vT3rn3zL7//079578mxDwIWgC2C1iqkZItyNjuHta4l/Rf/w38x+GHVtXdeeZWUWbV9WZY+hmW7vH79uiAwiLamc8PZ2ZmtyjfeeGM+n9d1fT6fffrpp2+99VZRlT5EZYwfeLq/PV/OY0xV2TBz8APwgLr46JOPjdJffvfNEDyhKUgrIEmCgiGxUopjMoXe1LVFRJMOIaACkLQ4Pzk5PYqiv/b1b7z33nuvv/7qvXsfbW2Nm6aJMQkQME+aMtuc6d6+AJCSnJOCNXtS5aQkIrbBjUYj3w9xcADQR/9braFcug3k8v/Z81oaIjEIskYEgZCgKpSsizxEqJOwT9GlyIm00pw4MFutAWMI0nW9KQEDZl0ZpTURKZOKFGIUQFWWiiWm4EVAKdBEVLNGysylqjSIGGIkxTFyjGwtEpEgGJsGFxGx2rYcIiJJSAgQQrJFgaSD6iprQBKmVGhUIJBAW+UdkwKtJEVnDVmtXfBEVNblfLnKO0drT+ZzY0xE6GZuMjGI0DRV13eAsaxUiIMxJgQvAggqeS6t0dsSggeEotSRKfSJmbvOJ21WYE2KvbgIAJgsKkzsQDqSLfCTopr3/ciKvYRB1pdSeHyBRP4l05YdppdXXX/F8Xn+2m+488t7eLHC83lf/Vxw9NzGuGnN9cvjJTsBgBB7pQAh2gKCW/3g+9/RBqP4J0eHfXBIFIXbrlPWfPrpp4nD1nSaqQIppdGotkpLYmTpug5AANk5t1wuF+3qyZPDZdudLGbj6dbp8fFYm6ktGkMxhs73ZaWNUbPZaQwdYPLRq6I4nc/rqtra2nLOee9z4cXqIsa47NqP7n14ZX+vKamAHJLyzdu3p1vbIrk7kqqbNZv91Vdf7ft+Op1uTkvXdVlNejQajcfj7K9lDsndu3cfP35cVdVyubx3717mqLRtOwz9MPTjcbVaLZmjMaQ02ELF6JfL2cnRsSbMgJvsUYpIhmLghTgIEWWsGSKORqMsppuROsfHx8z85MmTr33td0RQBLtuODo62d+/0rb99es38342ofrBwUFWiLh8HeUCeJjLONk3jDHKb72g/JJxAfllzEVnyX9DTEOUIYrz0QU/BJ/19gE4puw4skhCRKKcC0sb+973rm1757wIFkUhAr3zfccpAWIu+4ohA0BKkdEoIiH4jJw1RmVt6pA4+JTS+lT0HQcPKLYqi6IqECGxY2kLrfzgo09loSpbICISGKOMRq1AgI1aQwuJSJPKHn1d19oqN4TVUryLal1QWSPHs7a2UjpT6FJKuU1NSqntlswcoxgiAFAKbYGkmBA4pq5tGddUSL7IsSCARkycAie+0FJ7+TX5NeKCX3eivMTqveSt5+zUi1/9Ypz7mft/zuw+ZzFfcmCfabJf/KApjU991y+N5qPjx/cffJwg+DSYqlz23axd+hhMWZFWt2+/UhTF6ew8cHj69OlkMulXLacYnQeRne2p0VQYa0hJTE0zFoTIsOq7B08fl0XTVKNJ3ezv7qExdjy1k+ndN9+cd6tu6Pev7MXkfYpF3XRdd3JyMgyD90M/dN77+XJBRKzIlAVH/yd//IcGwCAD8I1b1+/cuYMIWusQUte6g4MdAPjX//W/1lrv7u4iYrYR4/G4aZo333xzMplkoXwR2draquv65OQk92D65JNPXnnllWxZsgkjIluoVTsT9qR4GLq+WxyfPHn0+EHGHhaFSSmJJK21sRdq+JeoxDnxl1sSElFdV8wpZx6JiBPcvHmz67qMtrHWXr16tes6umjsm4+fmXd3dzNy+/KM2kQhGdQmIr8KifXvaTBIyo3rCBKCE/ACa2pz5JRANkg8AMS1toLSqLUCkKqstbYX4T9k2iGzdINLKWmtmsaOxnXTVMbYJBudhWyHGBGMAiJYLZPzQtqUZVlVpdbKJ1h17J30HQ9DECSllLJACpQG4YgAei3aNViFhaYweJ2lVTlqAoUSfSBAEUkikdmFsBaw0cAgMUZlMOuEA4AiAwBaa0RKKQGsrXy+6MaYsjRGlyhQGBw3ZlSb0cg2VZEieOC0Du8giSQQAtCQr7tkZfIvNHZZC/xlUOrfZLV8qRv4ebv9lfKDl4/q81KH8EIBRESy2O9mD5t/XyJZ9pkvOu9DhKYsrDb/6W++c/bksOLmzsG490MYeosYUStEBtq5sj8ab0WN29s7pS1KY2U8Pjk82tnePjs5fvToUdevbt68uVx1iLQ1GgufnJwdF8Sub5/2w6u3b9h68uj+k8dnA5+l4zP56NHsjVt3TKUH50fN5PR8ce3gWvDtctHu7+8Pg580FWjTuaht7ZS6dv3mo8dHqOmVG7vvPTidTidb29Npff0HP/6J89EYE1I4OT5DVHdfefXx48fZsdra2hKRyWTywQcf3LhxI6/tIlJVVd/3Mcatra3FYjE/n1lt7ty6fXp62nXdtWvXzmenhdUnJyfOdYiVttnxpLpsptOpVphSGPqkTbGRukNCTs8uYvYN8w3Q9/1GLiibvwefPrp582ZOPG0Q1Eqp7ADmm6cozdD1VVXl2ykDDzdu43PJlnXKkpkQBJEIWX57VZSXjrT+VwDWNwQCEObStrAAARCu05scRCnUmoCjCCpFKUHb9iFIjIAIxkBuwHSRHEUAcMH3vRcBrYAIgo8xRqMVCKckWoNSKqRkSxKR4KN3IQGKiFZkNLqkQkz9EEUYURfWkGKlEIWo4EKhIkZIVWGUwq4bFCZlMCUhkFwF0kj5GuUWBSmBtqooRCkVY2QAZjDGoFLMMUXRJRFRjCm34itKk4H6RGitiX1kTkBCCgij0UaL5gBOJGY+jQBvDB8LERCBUhkf/gWX4wuqKP9wgcOvMOQSKxl+NYP43DYv3/kXbvPL2ytEUMpGn37y45+X4EcGxs3I9/PGFmjIJanK8q133/SRtSma7Ym1liX2fa8AF6sVpHj//v3FchadX80Xs/lysr1vjAKU8XgcTg73964GpT4+O/rxD354fC5aYxvVzggMxAdPFq9d3X5lf2t/2uzv7J4+fby9vzceb3kfXfCBU2VHtpTz2bLc339yfDIejz3orlsBwDd+7/dSkvF4XJVNP8yJQClKgb/+9a/9L//V/+psdpK1FLOKwXw+t9bu7e2dnZ2VZZkj8exVOecWi4Wx6vbe7cViwSxbW1tdvwLgvl/O56vJpHYuAAxNPUbCne29ojB934UQtDZaC4Awx6yKnDElcMFJz1ESEQFh13VNVScOpOD+/ft9133pS18SkVwZ4Au51o2DufFSM9RxYyU36tZ4qbVORkGmlFhYK0q/mfD1rz428DO59BQQQCAJGJQIqAAYhJgF0SpUCrTOlgIQhVkAwGpT2tzEiGOMwrkxk03QGyKlFDAlTCCiNWmtk6zPQ2RBAK0taeWDs6bwKfoYQgBhIQ1aIymjeKACU5KUeBhiWWoiK0kKC8EHNKoqC2CfgkfRdVk456y1TFnVNVmrrbWZRWdYiQgAp+ATS55F0QeOWVNDmAFIhDGG3DHqWVELETaY+cgBEUUSCwOyJhSBIUMQAbIZviDoCagsfZAj6C+4KOv58cvX6TNA0V9oJj5vg1/Xnr74XRev5KwOb/5gjbUUWGtEPHsq8hndrJ5zDS6/uKGCfV6k/OJQurC24CgpiQ/sGcQ2x11UpogIvUvny07Z8urtu2+8/S7ZAgC6riMBrRBAdnZ2uqGf7my/cufVt959ZzqdEoBRVBpbFfbrX/3yH3/rD2ezxc/f/+Df/rsfIMGNK1VdNwLqdAVzZx8v4K9++vhH9w7PB2Gg6XSaWPb2D3yIV6/fKJtRSGDrsSg7DLAa/Nli9eZbb2lrdrcnt27eSYEPD48zGS6EkCJbq69eub5xALPo9Gg0evLkyWg0ymLXuRARY8wNNg8PD3d3d7XWdV2vVitmrut6uVx23arrV3Vht7a2AGAYBhEBQBFUoDh6TaAUeT8sF4tMVtnQ4+CCv5wtHVxoghqrtNaLxcI5d+vWnaKo2lUffNqabFtTKjLTrR03hKH3ImKtHYYh27hc2t7khTde4eXrm8NqWBviZ011/gFGZk6sK86bI0JI8mxCM0CSNWWbSANkXAtIRiCKsMRNjzYRDiEOQw8JYkwpekAurC4KowCj80mYEZJwTMACMcng0uD4bN73fUBQRWmqxlpbMEPfDyGCNlAUShnVO+770LZ91w5tO4gIcArBXSrWY4zADEQ6JcnpSCERksqautSl1YVBAEABjkkSA2GM0vbOR44xIqqU0jAkZsgX0Xtvbe7XnFvrRSLKKmfZXCqjihKCAMsaLhoBchoxn9Hc5RRyn+uXjpeF0p8XNn7m+LztX/zIFxzR54yXWKgX84O/+Vd8oTUMwSOitbosyyi8HGDu4iCKSA99dIGjUAQ1X3WT7f0gcnx4tFrOJ5NJGFxhbU6E13XNgDHwarWy2njvC60VikJ4spqdzmfzw6P/6s9+7//5f/k//6//xT+9vq0Odg0AD8EfL3uvzZM23jtZFNu7C++OTmaz5WqICUn3Lp3OF8tVJ6Bm5+3W9MAlfnh09Ad//I9u3L7tPU+aaRaazim2orTerxnHm/JFtokxxul0ukE+A0DTNIvFYhiGV199NWe4B9chUl3XZ2dndV2v228ixzQYDURMCozGmIaYnPdDCAElxRhy+ycRCTHiBXc4k1gAICf1svzXarUyRn300UdZYta7kL2Goihy+IyI605PF1FC5qXm9r5wiYVy+fpm9xAvoV//IWMhee6JEMhFG2MUQQC8QByCbNCXIaSs1paigFCIwbkYQkSUui4nW6OtrfFo1Ny4vrezPTKKOCaOHiURiiIYfPKRXZQowADLPpzPfO8ABDhBSClrNDCzEIJCEOBEkZFQAeUjASRICcrSZr9bayrLMqcvEdGFyICRU2RhEB8DEBpNWiGBGKMKo0qrCTh7hYKQYdHe505SkEE2uRdCbkuQ1zMA6IcucIpJfODgwbsYY8xXeH2mBBJAkHXXTI1EAogo9MXW8CUIm/Urv94F/iy8y28lEfliReWLSjGfvdlzKNzPs+NfGIYXhen7lkDpcRM5aQWPDpdA/ObuDde5ENJoMh5vbY+3tn/4s59cv3F7Mi7v3LkzbkZNYVfLxWg0Opudh6Hd2T14+ujharGsinK5WhZFMaqbVbucpaHeav6rb/wX/7N/8qdVXPzxG7f+41/RIrVLzTFBBDhZBaWB7j+cnT5+85Wr3IZV25dl/fTomGyhdBUTAIEInp6cbe1M33v/F5ODV958663peGspfVVVZ+dnAqS1coN/6623/uIv/uLp0+N6VK1DmBgPDw+ztHI2lDmZvVwulVK5Q5NzbjwqF4vF1mRnrZLQLbe2thbL86FrRXljDIp43yWi8/MT1y8VUYxe63HVjBGpLEsADiFpMnARz8YL/kn2QxeLxe7O9OTkaDxuJpNJaauu7TmtBTedc7nCk5sraGtEpKoqhZSrLtn1yyo7n3mVn1sCEREIJf39eoifmzVfR/HAIgSQvUYRCIEJJYkIQEFrj5IoYwAxN3jyfsgypAhqMR9iTDECZfczcQ6acpdkhVxYq5SS1oUYS1uyrMu4KXFKvI43I9RFkVJyMWJZWKvrUiG6stBhiCKYUrLGWA3BhxjZ2lKbIq9AiAqA85pKRNE5ycUf0DHGIIyISgELaq0YklImhCGlRAq1BmMKREkpZSmwrPKrtSaNxlpA4z0BdQzIEnl9TxMCZxq4AOhLvmHGUqQv8vopI90BAEQIFCKg0hHWwWO+Meiinw4ifmZwuonq8aKD5YaFQ6RyGMAs+UQDoNaGWbLAzwUxVNFadYov1uyU//L+N7HMZtJslvfnbDdi7szAm11djqyZ139yEaTkD20+e7nsuJmim83yY2bh4Ef1GACC6yeVubE3gQQxmcHB/pVrQHL11rXR3m6zu3PnlbtGUaVheX76+OGnx0dP/NAPfRvatiR9fvTk5OmTp48feN+VGq/u1F955WrtZqP56n/63/1H/4t//o+X5/d//MnHH5ws9q/dtYmyHBYAAtmjGQ84/eS8//Z7H1+7epO06rkvx4Uk4Siolcc4mu6K1kCKxWgzqspt54av/87bnzx8IgCkOXIC0X/6Z/80hCDgc0SZ8dKnp6cHBwcX4p2YEg/DgCjb21uSGBiqohLBsrSJhxA7Fi8iWtU70xtklEatkqn1pLATAR39kHwf3cx186Hru64fNVOt9fHJk5OjhyApZwa9Dwh2PJ4E30V/tlrOR3XjnDs9Pd0/2I5xSMykihDCMAwZ0JszhmVZMrNRGgCY2UcnyJmJrJCQBVlg83cxTzSRiNiyYIDACRFABP8u6/VvPhiAJT2T28uxHiKgQCIVgYjyBCACKDRqBF2DkDBGIgLQ3kHXsXO07DkyAoKtqKqVLsCWmjSWKDolSpQcdKsQvBAQp8QchINCUKRAiD2kBEiwGpwtVFMpBU5jbBplDa3msbZgwCmVBIJzLiUh0sw8uKGsrFLovcua1gA6JXSBvYvexZx3rgpbFVqhMEMMYmzRdj1ZRFMeLzs9qrs4DMxnS390Npwu/OHpUmtjjKFUCavADilZAgoSfNIG15kGJARUAOZC7dgjR0wI3CvWl0QbPtMnu9CSu9hCBGKMlvQmz8IXMqvwy6Zn85ELC5WtIRFtJKmzXoW+yAc9c8piDIggwuu8MQBzgku13eeGXGqRfHk9z+Hb5t3L4c/nkQo2KOtLr+DF/z8vUt6Qo599xJhyNp9nbPC1a9emTTGZjCKnWdu1fbx6/cbNG7d3rlw/PT75+u/+3nw+7we/t191fVsaO2vnWql6NHn0+LEGWSNXUuq90zG9eveVmzdvVtW4KXRw3eHh4dFsdrrsTFlVVdU00p4vBASEAWSxWG1XxdAP8+VC29Joa0xx1p9t72yfrtrrt289OZrZovBCnz49+fCw+9Yf/2lRFCfnZ++//z4i5LOutL5+/br3fi3hZczu7u5qtdre3s4VFWNMCDEnbuq6jjEq0uGCN5Iv9DB0zFEpDRCJ9GhcL2fL0pak4mi6DahGo9Hj86fetUrXMUamZI3ktipKKUnOhaFuxjGGxA6gaLvlw0f3mma7uF48ffr06tXrbTvXlTZWiSQK61Sgcy4DIbN1A4C1MxJjbi5a2Gex8IvzChGzPbXGxuQR4bM2/AcdsmGw5H8FEIAvojajSN2JiFMAAQAASURBVDD/B0m4hEKUKAJCTZCkFB0BFYcgihRh0kgAwgkEmRl6yN4jEoqLMTjWGgpTMoQkFBMm4SQiai3+RsgxRqXQWgMc2rbTCsZjRZhQKQESEQbEi/5aRWGcczGiMTqfW++hrkrnBnVBzktJUgo5CiaJttQMYgvjHazaAVi5HlLi5dLVtfIhWUvjceWGVoRHo8myX0VMJvfs1dTY+mg5k4vMIMKzBpmIiJwJy8wC+otqyvSsNQJiBuagsLU6O26IlN0ipbRSeuPE5bcu8NsoAqCIEaJwFGYEIWQEznUdSfkPgBE3liU7kSG/xZx1unnjf10kltdPNyIomYOVGf4ZHrH5MZ9ZD/nMn/1iteQlcfflID0PZp7PljGmECJp3TRN01TeDyG442XnRIsYFF1qg6g+ffBg2bb7V67duXO3qkfbu/u7u3tV3ZR189qX3rhz587W1tadW7eUUhKT64fF2SmmhMmzHx4/vD9fzs7Oz8+Xq1XbH53M88FoTdooQjqfrcaT7avXriw6B0SazOK8HY+2dVEMg3/w4FFdaiH83ns//97PH/zoFx9FgC9/9Svf/+H3mLkoSiTQxrzxxhuTyWS1anMRNq9/i8Uiq/lnvEvf9yJSFEVRVMzgvQeAsiyzq+WGbj47Oz05UsSK2BohotVq4dwAwCE653rvh77v63pUVZWIdF2HqBDVaDTZ2zuIcfXw/kenp08Gt9AGBWKSKMghDvP5qRvCzvZebqwBwEi5G7oZhmHjFW4mQ7aGIljXoxyjwEUUc/mC5kuZ79iiKKqqyukq+M8Mpbikm33xhAFYOIEkgCgsAIySWCInSoqSYg+hHzh6a3CyVWxPm7owTVWO60Zr7V3qOvGRUZmBYQiy6sNs6fqBmSAILIcuCCaBxBxyRYZz3k1Sgt6lGDmERKBSAASlrBVQiTEmiAljksgQmTNOXEiEMIEIIWkLBD4lVIoBI0vkzANHBkki45HZmjYIeQGDk2O/bNPpeTcaNZOJaZqmqkzuKcYJhiGgAmYujCmKApUSkaYpiAHpWdIvMw4FIYEkQOHMoP3iU0+XFfPzVPCuBw5yUXrbOInPX7RLLzIziUImiZA8R5ckAokyZIlyIYxSkhBSjBkZgEQ63wx5g/xAKXPZPNGlsQ6eU9pwRTaPX/RYcV1RF2BZK31fjpJe+vqztzZ7u7SZJOaYOCZtzc7enikKre2VK1eUUm3bGmMCmT6xLhsB5YZ09+5dQaTC3Lx+/eOPPzw+PPrud77TNA0I+8FxTIN3VVXNly2CmkwmkCIkDn2nIZ6fHZ0vzrd290Trw9PZJw+fAKqirhAhJY4hMEgSmC06F/F4ttjZuwqiiqKsR5Nl21+9fnO16hThk6dH73/4RAAA9ZUrV7zrv/3t/5i9J2GIIXzlK19tV32GaOTcyOPHj8uyRMRcLsyUlYx/ztvkVxBBYgLmMDjX9fPzs241Xy3OXb8CgFwprus61wHbtk0prUWMmQGgaZpc8BWR5fzk8eNPjg8fLhYnWkMIvfeuqqqytLP52dVrB+FidN0qJ6RyCTujr/miDV5ObhJqELKmJNR8IfUKAIIAhHKJZJndxrIsLy+r/1mt4XrkeC3zKxKAQlAACkEjECJJhiXCatkF3ysIVqNWoAC8G+aLGWZORlwrUBABgE6MCFqZAhUyAyqoKluWNiVwgwTPzEgXLkIMEIIQKa2VQgoDI2JV2aIovIs+sQvigjifQpSY0S4gMUaQdZtWYTSm0NpkWbBcJhLBXG5GVMbY4MX3fuh56F1ag6VUVjxSymRAQkqp71xd11pT7xwgZ7ukbUGGrCYlAJDxhJztR1rX4oHT2tVeL4kvHfoyniBblqOjx8F327tXLtzayMzMeqPkvpk32VmDHEIyKFJ4kbVZx7OAPnhjjNYmWy4QAskIyXXmLsOmZN1vLKf5ni+AyCXUdLbR8svdwTcVyc02L0b0z+3zuZHFxz/zhL1oanOEnllrbrWoyuaDTz6MkYfBr5ibckeX9dHx6fbBteWqXay6nbL46Y9/pJTa298pjProww8KY53rJ6PRqhuW/QDaLIehMLYoqqdPH7/26qtD35+dnQmp0+XydDXM+yEwVqOt2apNsomhhAEOj+aTUaliePDw8XZTEeLp+Wz3+m0X4uuvv+4H/+EHn/YD2KJSyr5+587//f/2f10uVgAmckAFwnDnzp2u66bT6TD0SqkQQtu2N2/e7Ps+C/FrrZumcW7d8yynkhExhGC09mEQka3p5Pz89Pj4uOtWu7u7uiiLojBG9X2LxpblWtIOgY2tL9ZaSTEwRyFatTPElNgtFmfNaOJ9OD4+7oflqG4KO2qq8tHD+4pguZgdD8P16ze1LrJwTg6TRSTXeTJQMV+pLP+VT5RcQFieyzLniXTRn+8zp8YXjL8PdzLfwQlAXcxIAkRCTaiQCBgQNCmlcHuLlEZETC75xIklRg4OQoo+RBQoS7LWosKYpOsdAJEhQwUZz8zeRwLURJEZEQhzuWDd/4OjsJIMW0kpmwIdQmrb0FQozHk1UQhAkKUIEZX3MYNY8wwJISgy7RCLQqw1iCbGGGMyRlljh9Z1vecEXqJWajwB0mStCkMWQIwikukzRFqR8ckJgut85NRMtkoyImIJhGM+SwoELyrLBMBZQg01cdxU6OGz7ICI6HwV87oKACmFo8Mn7eK8H4aN/nC2gHnGbEKSXPXL6z8zRy9Z0Dgj+/NZYGYfQ9M0o9FIK0tEImtRTwQiRNj0eMI1ACKXVJ6fYReIsPxYLt4iosyrhks5TcScd/4MEwYAgBvrmTfeJCKfdcV6/mThs8xpLgchYUohRTFKjcfb9wjnq5Wpas9idXF4dDy7dbU62H/vo49Bm539vY/vffon3/xqIabrXeDU1I1zgyCdzOaPDp8aUvP5oqlqU1RdaEejSVmWgwtHZ3NdFj/+xYcPj88/vP9k1vOyj+fzFgBMoTkRp6QA+yhJcGt/d7K1Hdr5dGdn6ec//PGPrl6/4fphZ//m6SJGAHHhG7/71ULRd/7TXyutQVRMAYC2tqaTyeT8bF6VlohCimdnZ9evX08pFUWR4TJFUWQ6B7MYY1erVWEsAGitNcLgGID39/e1puPj4753w+DFpaaqdnf3Hj56jKY0RjXNuCgqo6iuGmutZxpcNzgXk1OquIhVY+LIHIeu71ZtiK4VevXum/3Qns8O9/a3l8vl+fn5/t610bjIptlamxVuNhlkxHWlS2tDtOaxMCHiurUAfJbx2tvbOzs/2UyMX3G8JMHyG46NQcwjimDOHJKg5KQYE5piVKeUfD/0LqQISrHR1hrV904pBE5J2LsQgsCFKEHbOwQoC4NEvY8MYDMuHRRfgDHwQmMxJAYBg1AWAALeR62jtqDURl1lvc4IQ/4vm4cYE+Ja5VcgWQvM7JzXWiulmcm52Pe+KEecnCkybBsRyYXgOWxvbQ3DkFnqxqimafrlAgCCxFIViOQH54OwMAZ/Zc+qpccsNL5e8wAAEgJnlt6vdpk0IbAAIjIIomiFQ9cG1w3eP7swFxZTa60uqPWw7hJt4KJNXX66oRaum7wQNc2oXTVa2xzCMHNKYgqbXYxsXrNVzVmejcu5sW5EpC46Q+MFgnoDBLnsEr4kD7h+5Zk1/Nzx3LuXM4wbhyIFX1fjkFJW3xt6b0sTk4wKWxg6Wyy3drZXq7asmj4cBTccz1ZnZ2ePHz7Y29vb3ppoUovZWVVVgVPulHR+dLRYtchRgt/Zmc5b9/MPP9Z1+fR0drzonp4twDTTvYP56hEnH3wEIUQkbSD4J4dH283u2Xx2czq2Wk93dx7Mzn2MhbE/u/ewYxBtQPCV29e/95/+WhBjShoBIMP/1/rsbdtrjTk2mUwm8/m8aZoMcRCRYeisLZXSG8ecCBMHQECNQ/C9c2R02dSkrTI253gzzdl7H0IoiqqpR+1qmaeHLSxz9KFfrs7ns2SIBMm50FgEEa31qK7n8357ujeZTB49eph4IOKqKvb2DppmS2udeTJ59d0QUUhl0TYKIeQ0aMbqImq44MDRJXMnItkBef3113/x/s9/Lev292IKLxVQ5NJrAwCBkIARyTBEFcVL+Pj+TAEoAgLInR4gBpGorDVKJQ7CKYbkIyidIdzGJ5cEIgMqBcRxHcnhhQ4W0KaWjWQIjUZjsSmUsCei3Agb0iACwBeHKyQgwJISZtWvFBOkSFqhQgCwpnTOxSgcghYRQR84BADVRWaDlJO2WmvAwCzee+ccqTVr6FkjTEIAGFUjQLPoehdDbYq9re1KHzFLFhkDQMY1AVyhpBxuEvAXXa61iUkp5YVnXTdl0QTPtGqzSrukJEkuUKwZeJFZUCEEa56JUWfPMc+VkGJw7XKuRHJl2SBiihwEyrLMplNrXVVVzmSFkHKRZO0qIubKCcIzukJOPGUQ3KYHEF0IzcNFrfnZBLs0a1kuO3rrsTnyz4x3LtvBTb6yLsuyKc/P5oeHh00z8jFUpnE8lLZQALaszxbz80W7tQ0Sl01Zfvjpw5/85CdNXQ8Mq9733So674ObjKpl222NJ8v5wigE729fv94O7ns/+FE7OE163g8Pnx4DqbYfnpzcIzBIGpCF81UI+ztjo0VZs1qt5siIWIzG77777v37DzniX3//504ArIXeff/7f/s3f9274EHpmCIRMchyuUwp7e7ul4UJYXDOXblyZT6f5+bFe3t7uVJRVZVzQQRCCLmHAXM6OT7Z3Z4aY5xzT58+1VqXRb01KRaL5Wg0Wc7OF4tlVTWn84X31Wq57HuXeSxt21rBqqqUQqUwcjw5ncUYSWtm9t6P61Ho+48+/Pnd1945PDyczc+Wq5k+ka3Jzt7eXmFLQZnP53naAIAxJhd2jFVD742xMXJdl8711poseXD5cq8jAAGgdW701q1b6+DhhcDiP/eg7BQkSAwIhAoERGICSKKjViBaQaEB16FOApC2dwpFGOpajSZ1lcT5uFyGIbqc5xhCCAEEgAA9rCuXuD4Da4MIwoVSxmiAyMwpgi04RhaRUvHayAjBRRpLRAhN1zmlwBhSioZhSAkmk2YYOiKyFmJIXRdTgqKgybgOtDIEIpxlE1Go0FWGT+VrmunM5+fnpTYxclFXvnVQgrVFWK6cF/HDbjOqrAkhhGd6rpRrNYgSBJQI0xevXhpFI8QcRxJpEE0JrFV00WgUQQkCEYGgMIqsGxMTKOGUQkREqw0AZ2CgyosKr01MZesUU1pTESnFYW1klermLQAopVDRar4u8EEMsk7kKsHshwMD6AuYCxFl+g4ilmXZ1JNsp4wpqqauygYRfYraKqWUMYUmJSwpicTEzGVjQ/Brq0cqO7M5FwZrk8cbSE0emQCUS6vD4LTWWWnm9GzGMd25ffPwyaOzpd/fL1aL+ePjx1969eZiNe+DXXT9o9MzbU1R2B9/9JHr+r29nZNlu73dP3r0yKy7lfSjqo6PD5vCTquR+GHe9tqUT5f96bKXgR8crk7adHzux6O6Kbh1AsyURdc1WEKOYdkPi1OaXr/akWqUgX4AVKNqdDRbtAmU1qlrjTH3Hjxc//AUAYBIcxSB8H/6P/7XpaUvvfH67u72rSvXOvA37rwamCaTrdPzuTFFCKEiXRV6GHqrBLhv3cDM/TA7PXMHe7uj2gAyoUKNADgab5VWLUQOj0729vYMMqShrm2CtFwNpmq2p7u2LFBiDI6I9vavuH7Z9cqq0nUDpKgNvveLn+wfHJRa/eK9Hwn4sjRNPamrqda6dzNbTnwMu+N9FiqKYtkutiajtl2mgcqyRqTxeLwhO4tw8tFaS4q6rsv9qgAgcYKUMsD77muvGqu9j4WxPny+yiECXDDASGTjbrzcfP4aucXP2IQBAIRyRCqREwICKAREYImkQGlSihShAAkQA+nkEAAURJ+MphjCchm0RR8gRmEQwdxuD4Dl4v+AefYTioAGtDluSAAoq5RKDTEhZHZ5WouN970j5rq2eTWqbcQEymBkSYGVMtGF2awrrPXea00iWBTALEWhmQdK0PdQN6ZpbEpJaQzsqQAeJKYAAGVpYxQfmTV4H9sTaJrqtO8Q0ZQ6CJ/OJZ6uvnGgPz7yrYHjDgQ1kebkUEHKplqYBNJL4feYw4f1802BGIUIgCMKsyAi4xqvKiIgDBklkwNYQM5BulwIkYNc+IYAAOBCyFtmibGc1lFaS0oZac3MwMwgF/GognVpJYN+KdvVwOkiRtNEnFsciEjX9dnsIqKx9iLiFrW2hkZrTZsil0hGYyAiaqWVHY1GWR7DD/3aFdWY3ZPNKSusTil17ZKIdra3lFJ935/PZ03TaGvOzs4ePnwIAIN3QCrGcHq2qK/tE1qEAChPn5w0TVXbunPD0ekJoCwWi7Ozs7KolFLH5yfjugGAStumXBbI58v23oPHTlRIPF/NF6vWhwQAXdcBgzEmBBa+EHrSFFKMYa2Y77r5J598cv3mjccnx0kXRTkqbCEifKFwtYn6c3nEahNiQEmK1EcfvP/JPfwJqCQw2dm78+obk+n222+/Pd2q29Vq1fZNVVdVNV+cPn78MCZ/9+4rdV0T0OnpadcNzvV1XW/vjdrVoLTthsAo3g85oaFJdS5470ng/Py0KIoQXWKOyc+W875rM7yhbdutrelisTg9Pd3Z2dnb25stZnfu3Hn85FNOUte1QFq15zFGbZeAsWnK1arrh5g7BGittar6vrfWpOSZOfcb0lobAynFlLJAtMSY1z8hUgAyDMPu7varr776/vvviwghpb8HGRv8HNjjrz6yI5JDuGyIDQEiMXMUjmtYDCSB6aT2wxACRwalffbLBNEoYhYWTpzlq9eheXwWo1+k70USgCFQSERCF+VKxPUNHlzk5LU2AqldeWYoSz0Msa4LY8xqtfJerEEijFEQAyAiaU4BALKce4y5LwVwIkFZLgdjQADKkrQpjVEiwkmEqSgKra2ICt451zOwUooRjNKGAnDUyl7dsZ1opdzpMhQkkpgTMIESknVd5QtOvr6sWf3MUpJkbKAhAoWIqDZR8BoJuPYAN2CXzTchopZ1mQUJY/SISLKOr9dICABhRFAkIoJy4aQjresqucSMCAoT5cTBOlCFvFRmaA1AWJfORZjj4LsNHVUkEdE6WQmbxkCYGVpEBEhEVNd10zSozeL8LN82Ga7hnPvmxWl5eP/j3MdLkxm6Rd/3q9Xq4NrV+WyJIgcHBzs7U0R49PR4PBkhSmRICWaLlskIp+OjZXmrmbtFiC6kiCg+xH5wLkQi3Q3JhTaFqJAKo2prrFJ9u7x27Zq19mw2711AVKQZAVEih2AJrFFaa5SEiD5GpbEs6rZtS620KSLDZGv7vU8ezVZDlik0xmS62+YqZHMvIoawKm1VmK5zvvVAVNT1+fGT5XIxny9+8N3rb7/99h/8wR8cHBw8fvxYhLcm0wcPPh2NRpoUSEJSgFlbVJQyCMq54FeDLYSIBu+89673IAIsk2ZSlPpsNmMOfe+GYRBI7Xzm2gWDbE93Dw+PT09P62qUU8mz2ezKlSuJw2KxmEymTVX1nXv0+BPvu63pFUUmhh4kSYKqGvvoEY13nDUTnxw+WiwWd27fLew4xqTtmmhQFEXOyWwq43CRe/n93//Wz3/+vuDFuv5bGr+l9CJfLjRnsS8ASIIowkgROcerCkEpWMw7BDAGGMF7r61BRQiAERDXXhJf/CEgb9IDBGvUR0ZUJ0gpZTCz5JIlKVIqBWbBFMQYhaCGOBBBEmVU9JEH3yNpUwCLgNIgMYH0vRTsjTFA1HaDj94YIwJJUmAJfggXzeNTAh9YpawGFpBEs/Ku3STQsuQaIwKQVqAIUcK4MTXoUgEvu62RPmtjnyAKFAhRwK+7dL1sXOIp500zg4mI5UIghxUiZv6eiCCuq+9wIcHEkgQ4m/nsBkYCBRm4BBspkQ12OuetNdq18WXBi/R2jJGUhmeFrSS5nSKtQ+ZLJWBcAycuxLpFUJhTikpnQoxCRJDEKT3zWwF8ciJrX5WZ+66dz84ZJDgv616FWtbAnfUkfvzoASJWVZXD6vF4vLe7PTs9ERFCXC3mOY52kbFzBCEe9dNJvb01fXJ8tupdUeizszNjNREIRKXU4J0guRBFQl2PYoxuiAklSXIhNYUFY09ny6tXr7ooidEF5pRYwBKUCiaTUf7JWfKAWbQ1y7Yryhsg3pR0eHp+eLYoxnvtSccpIoAiCJdKUmvFTaLEcdJUALJaLcZNzYX9k3/0h/c+/vRnv/jFctldv74Pof/xD/7TvQ/f+70//It33nnn5PQoRn/jxo2z06PZ/IyEz85Orx4cZPHAGDnGNJ1OT07PT06f7GzvTSbj0WgkibvVApGaalSPtXO9QonRB9cCQGHQucGFdLB3BST17bCzsyMibdtWVbVYztp2MR6P67r++OOP23Z1eHR/uj06O6PpdHe5mpfFRFiYgRMaq4CUsaofzs/OD09OjnZ3d0ajaYrgfSjLchgWklnMSmVOQYyRCAtbnZ/Pv/rVrxpj+GIm/1o28XOb7aFcjn43Fc/fxNxuDCIAIEAWkLFERKJVlrrBXoJSqiptjCGzhkQkJYHEueyKBLnN5pqIKAIICLj2PxE0glWUEW8pCRAowZiEORFLGqK1OsaYO+oRQSYU60KHyM6lstRKqRiDUsAipG0ETyIIICmtejAxFYzjUeFjF1MaBm5GOqWkLfmQQgx+JcaA0VhZ42MYOhmPU64cEqjAyfuEkIyCwiAoBI4gaWTVbg27k4qQT1aeBa2oPjHQFwOwNfxSpoIAgJEZUnimBBwvV0USx03MpVTGThMRhcSQ7R8iUE4bcob6rK0biSDLhbefIAnIpqaBF4VpzHRupHV3HAIhQiKJGTmR+73kmSoAkpJcrPDZiWRhQlK5FSsIZB9yUxmOcUBEAKVQIQpgTJxijEaptXFPAQDUBfERAIahN8Ysl+uu2M4N5+dnq27ZVKOs8uKc94mVpt75rXFlLTw9PirLUpBPZydFVexMp+fzhQiEEOlCripXwgm9Ik0IOWoL3nWS6rocYoqAIUJmCICQIh5Pmht7U0SczecheBQmRXm9nK/6pyfnd29ePT15enDl2tHSx4TLbtD6ItmauQ3MF/oL2ijShra3t4WD6xOiAoB//x+/HWPc2dnu+z4Gb629ur/rnPvB3/63SsUvv/vVn7//XtevtILVfKYNIYm1GkC3bbtYrMZb062tLUA8mz3quk6TyXm61WKWiVmLxYI59n0rkJA4hViXZd+2q/lSaxqNaudcDIOx5cHBvtb64cP7ZWVH42a1mj948IAIUuy7NkYOB3sH0QfTFN4NbgjaKhAqCnM2e3Lv0590/Tzx8OTpp4WtJ+N9BEVEy+UyRn/9+nVrrfeBUANIjKm0xWq12t/f/4M/+MNv/+V/0ErHi8zMb2C1PndkcwS/Pkpx7bFcIG8yHEiAEMQzi+TkU8wTNeNGYwStodCGASN7XPuDyCgsBCSZqpelFDffo7L2A2oyjAozOSUJ5FqqCJOAJRGEGNP6XiGJzKuex+NSA/Q+xhiJoKqUT0Aso5HVWrernlmKApTSXRerWpPW3kddACqwRknixKCsQo5EgAp0oY1gSo40uT5wRCCVEvoAhQFjwGoFWg1DLyKaoCkBga02mjxH0SCKiJ5v3fQZQ+eTcTmbyMw+pco2sOGiQUKkHMOiIgBZ90IEAWRCTUSmsOsTeTH4Ag2T/RFBDNneYZYjT/kMykXGMCt2JI6IAmsAFLAgsqBwNnK52/QFw08AMhT8opDNIoAERELRB8jcg/W8QURBJG0UAND62/LpUYiYUtigdp8bSmFKITtiGc3rnCuqcjlfhBBKa+vRhABiZCDsve/bdHW3unnnNj96TE8Pm6aZz8+ZkYgQFF5UydcyxSkpg7RWe16fsb7vjakWq3YIPvgkCbSmqrSTcYXMjGCNFs40A6kKq7UO3v/8g/t3X7nJSE9PTo0tf37v/tncIcJkMvIpIubzuaalC0fPwEKHh4dIsL+7I4jWWO8HQyolRsToB6NwOZsHTlev7X773/03wXWT6fb56emrr70yO+s5MpE6OzvZ2trqum61WiFi37da673dg/PT2TwtJMK1K1cTiCQfOcxmMyJQGonQGDUMnWLy0YXoUnBGoTF4enpYj8ZXr771ySefVFU12aoPjx4v5wujBQDIqsVyNmoqbbDr2rpaISpbEGk8PHw8aqp+mJ2eHikTWcLJyXFZTKyt62o09Kuz08MY/XSraZpxu1pgI7YsnHPMopQ6O5396Z/+6bf/8j/EFOEis/6rGqzPUXrYoHk24fIGCvfr7f/S2HxABAQhA2RUvosTArAiiDBgTi8yMECKEiMT6qSFBZKkxBAlAQII5So6AhPQhguYMZtRIQsoEAJUqFXOvyEUNkM7gRQJMEfwPigFwOgdM6MwEIIi5ASEGCIjIkuKnDsWKGuLJHw+G0ajwoXYVLob4rgpXIy5vlxVGY3HLviyLG2VXIyRIbjEmABQEIqqVsJKKR84t04OgRNC2w0CympYejCYSEQjqM89o+uhX7weSWJIqcAGEQGQWBAFM8ZQhDQC0UU2T1gQUEQ4ozGzfxeF5aIRTyZyKcggTBFgAGQBl9FDAMAcRTI4RiMBpwv7i4AYhTlxSsmSQtS49j4zCzsJCOIaLQUASCLMLCQpUTay63JOvjogIGZNnsEU2acIad14TzZau7mQLbJRTMt2MEf6+XRZaxftqi7KydYousgcR03ZOp8EvENNOJv3P/npL1jAGDufz0urUxIALrQhhdnsYqYNKQJSprCCEGIkQKNN5KBFhmGwtiBKMTkBCC6mQa98b61tyows6bPYkVLqxp1XT48efed7P7x9/WDoO1VOpjvbj49bFqibyp/PlQIR5CRa68hJYvrmN7757pffvn/v4//4l3/54NExACDA1Su7VVUTp6ZpkFlEXAyj0Vj86tru9D/82//mD//xf+fK1f1h6JbLxdZkdHZ+5nt34/otramqihC8904ZM24mi9myKavRaFRU1hi9WC6Yo9UFc0wphZBsZYfgXQys8Mr+/tPHj5PEqjDz0B8ePq6qYrGcH+xfTSn2/TLE1Xg86boBUxrXY21htTgLcaGUqupxATyfLz/+5Cc7092taV1W1HaDCNhSez8k7l1Ijx49nC2eGKOOT++fz+352fLq1WvX6lczhkNrs1qtbt66/jtf/53v/+D7v66F+tXHc1nEX9EgPr/Zs1p2Dj7X3FxBTEIooAxWtsjgJ2YZgm+HpAkTqsQcBeLF5wEYIbMVgdeSqSTATnLPEzYKNYghwJAIUYEyxqBm7z2RQhYAYuEUoLSGNHW9QwKtyWhNRDF60ipG9j5pHeGC6yGSjFHzBdsChcEHFobeRRQCADcErXViZobYxcheKbPqotYY1xUuQQFBxcIhhBSDiPgIKcYQgMiDNkZBQEhICsSAxC+solzUHDYQfBaRJDw4T7TGERGRgTVMlyFd8qifKX3hBQjRp3VvKlJKLpp8bvq85NofMw/eaa0VUTaghpS1VillTH5FeC0uxDEmHzwpndVxcqCQUkwpiVBR6kz4Q0QigAgiKZdIUOWqtyRBkMjMwoJicpWTcc3qy5DOvIbLmpCTa9ZrV3HzE3IhO//Spml8PwhHSNw0zZWrB/fuP5KUQAoWCD6+9979slLbu7ttWua6GSRg4pgSAHBMirSIgCHnvDKmNOV8NosxFEXBiXOLr8lkwmC7dBZCqArbjOqmsCkla01MPmniKAol+uHHP/1ZZbDUEW7S3t7+o6Pzo6MjATAKqqo6PjrJRXhEyKXwb37td95++01QkNKtP/3zP9vf32+74a//+jtnZye27a7sbbPgarVqmmZ//8B7H/rV+ODK/s70L//jv/+zP//zra3tH37/8ey82DnYl5hY4tWr1xeLVabxpRRLY6wyZVnn6HixWq7adro1xqpaLuccUte1Ixq54GOMZV2Xumy7ZVkXq9UyBGesms9ndV0R0fn5qTaY2LGEsrRhQGuMi/3xyWPCqq7ryMHH5dHJ08Pj+84tga50fTufz5tmPBrViV2Moe3O7j/4wPl2a2t8dPzAubCYd0WJ+/u3tTZ+cERUFGXXDn/yJ3/yk5/+KKZfr5byeZWSjcv4vO/461dW1gZx88F8GxJDDqoAlFBkQSWRMfYCachaW0VhEVVGmPQcL74fIVcCAEDWRZkcZAEBJIjCOfBeg0YiMDMxaA2EykvyXqxFHxMyGEMxcCDh5LL4a9d1IfiyNLn3iUIqrSKiYQgJkrEEkvouaAUpgtblajlMp3XfdU1ZOddHyW4SFIVl5r6LZakTg1rzKzEKJM/D4JSEAFIiaKVbF0OEEKCwItFLBFGQoUQaxab48jO84SlLjhYBRGmoKkuCw9AjYtM0SuEwDDFGpRSRCaFPKWmFWlnEDEJEhQkAlDKFNiHQRc8zwylqTYgYOfjBgRBnBB8QR870S42QEocQiVT+lg2omxMbpLJuJLPx19zkBJCZy6JRxxSERa/Vy5iUslandcaQEVAhiihCQsIAIMzkHQo8wxgKFXpt8phZAZhLUXPkpLUG4Rgya1IREXsJIVXFuHXLxarbnu58cv8RCJD2HNMAcO3KdDlfdINzDo/PWqVJK9zf3jaYFKAPnjVkpejBh24+OM8xRkKI4LfGI4xu6P2y7bf39opy/8mTw6ZsimJr/2C3H9puucxEyW6IaKxP0iMalG/+we9992/+9uqNK9X0+tH5fdS2HvHZ+dO333m9bdvFYnHj5rWvfvWro9Ho0aOH3/vBtwnt46dHr732+vn5uTL6n/3z//7qfPlv/s2/uXf/8d1Xbo+2puPaDu3ZuK67hDEySmqM/qt//+9+9/e/ub23e3R8fE3VbNf5kGHohiE29SiE5AsqC+1dx8mH4PpucXZ63NQFUHKxi0NAlOD6uizOz4fkfA+oCtu7MHifCU7LxVlVHpye3Usp9X1flZO+80qp0WTUdV2pq6asQhLkfjlzem936GYaE9Hw8OGHXbsaN6P5fEFAu7u7Z+efdKtUWFtYfXZ6VFaUS+qz8xMCij7kypJSdHT89PU3vvT2O+/86Mc/JlJpnTxMF8pza2Q241oDUQkmAEbRvM4FXnQ6AQZghJSRibAWo4d1wRZUxipm/2a9bwJYc6VeHM9M8zOrypeerpEZuelSvv8HhwwiAE4SiyQAL2IAE1yYwI2lBjSMCZiBJDEJ5XqtgBQAFSiChASa1jXoiOhDZAGOSWuTQuw7Vgo02kLrrhsAu7LGYRAfA5FdLnxZaqUZJRa1jRHmC6+UIKEgOueQxJYQuasm5HzfCqAoq3Q/OFNCwmSsPZ91VVVUlhdtXHbMCQxBith5sSVpjSlxSbi7XZ2cdNs79nzum1LfsJGT0dhNdfO0jZfO3ZoRLM8yGPLsnr90uglRaaWzkl3f9zlILAqTl8s1Mw8zgkcRoVI6OMcMA3tEZW05Ho9DTM45FFi3b0EGIUGOMQWfSrPGN2x4fiK5BXgCoBxze+9jTPnbm6rCX5bqym6pcw6BkDC7z4iEigTB+YGIQCClxBcIqex4a1rLT6AIYS6erOk7gmsYwWXBT0QZhi43bcg8mXy81tqUAhF5P0y2xiEkIuAoRKSIZ7OF95x4lQAJKUbmBG3bWg2julJKxZT6vg/Rp8TRBQGllOKU+i4wLyqju0UXI9jxdGe6s+q8Agwh9O1i1S5SiMH7EMLu7naICYAJcLFwSpkvvXl3tuzf+8XPy1J1g2+arZOT+Z1Xbi0WixD2mqb5xS9+PpmMMtb/5ORob2eyXM1yxN21i+T4n/yTv/irv/qrjz6+/86bd1BpFlVUo6KC1WqhSY2b6ny+/NlPfvL2u+9uT7YA2Vg1m82qqtKG0ElZFccnD/p2tbe3d3CwvVwuHz58OBrXBwcHzjmOw+nJeTMqRRIoaNt2uVxaa51zOYDqeyfSZRwMImblm6Io8AJ7n7swA4Bzzse4apdEZQhOhAXSarXQek36LEsbgj86OlytVqNmaq1eLufO9YmBmbWqEbHrWmsLAMg9sMqiXq26v/iLf/LDH/048bqylAmg1mrvf8m5wEsOXgJRl/w/2ZDWUC5s1gUE7ZdqzLJplbfu9fZ3KNtcMMg2ROx8nxaFFQTvfQgpAQiAQXqxHWAubPrMOCBAgIxDwJxQl/V9pfIDAgDI6keIwJzvWTAGAGAYOl1oW5IIhyi2UMLoE+sCnPMlKiQIIXHCC2ZnQgKlSStBZBBIHjlpAvYhAXCM4FNEESZBBahoNSTHFBFAX0i7IgBSEPQ+QIIicllCVZS+iiGCQhgGnta6935n/AUncq19fSkmQADkJCKYJbYAMu5yLcWTUsoIlawxiMSJg/MtalJWGauIIEY/OJcLJoK0lpsWREUXoJy4qa7kCDp3LAKArPazIcDJBdUva1tGTlkfLT9OwkOMCSSBuJg6Nwwp+Bh6NyR2gDH3OA6hT8kx+5AGBCYFa/KfUrhOh4oLwcfoQsgPLkv7ILDRVBamLIw1CoGFY9/3KYUsasDM4/F4b2+LFJAyLBgi9I5JY++T8zGTK0Wg7ftu8ECqqiqrjSZV2qIpK1JojKrrESklBINPZ23oAniB49NZiNI0zWhcI/BqdWo0iCRrbYoSYkpC5/MhhLB/MDk+PR9ceOXV10aj0TCk0ahczOalJU10fna8XMxAQlNbrTBrzXnfj8aVJFcYtJZEQkzu+Ozkd77xu9dvHPzsF5+GKDv7Vw9PZ845rfVkMhrVzcHOtmb+4Kc/fe3WnVFdE8DWeDw7O1vO50O/PD56bBRVdaGUQpTxuJlsjaqqaJpaaw1AVVXt7u4xQwhJRJTCGH1KKVvGtm2999baqqpyuiDTs9YETcQLjQYEBdpQCM75drWYee+ZY4yx79thGHwYRuM6k/OePHnY9QttIMQhJj8Mg3Ou67rz8/O2W5ZlIcIXcilqMV/dvv3KH/3RNwFBawDgGNmYwvu4Wbk/yyJBgmetyzYvAgBdYAM3H87Gi9Z2EDc3Hnxh1fPFgc8i3ZxKwqw5QECKiQhE5bS6RjCX9E4z+uOSiOi65CiJMzNPIRAIKR2ZEwMTXUiGUwgREJTWRCoECAFAgbJKaQyQqDAuQdsDg02gfIjaalQEiqJI51LnYmAWUoJoTBbK4pQgRggeY0AQC5Tl14CZI0NgSQA+pvM2tY66AL2HiOgvqrVtF4cBfITBBa0BCQqrrGJboIa4PdK1CnsT+/Jz+Uv9lDNOJSWJEa2GEEK2aAgUw1o1EzQiCBFpQ1pr4BRCiDFlArJSBQgNPgy9ZxatdXYMkUST2uizKkXEuNHIyS/mI0m5LQ0Ig6BWWqscEl5WM9wcMyIygM8Kzikxc5KUBBEYKQILIgImEU7MuTSdCJKPigwoQqU4MUsClgsjzCBJgaJL9SerUWsDQCHlewYAwJTmcp+FYejefOtL3/72dy+6uYoAC2iBABm8QMTMPgJA8t5XVUH/f9b+81mWLcsPw5bZJjPLnHPNe69993RPzwwGkAYzBMGhghQZZEihf1efKFJShBAMSKLGACDA0Rhgul93zzPXnXOqKs3eexl92HXOvf3agqGMNtfUPVWVVblyrd/6GUZm6gi0iBs2wKj6fnohjoA2z+vD6Z6kvnh+u5sGglZK+eR3Pvniy7ft7V2i+Ob1W3cQMVX9d//2b/JAxWNTM4AYw8vjRxyolZXBkb2VRVXR5bg/fPbF54fDYds2VUkpaqvuPk5pW+eZ/I//2R8D/MV/+NGn3/z6Jy9fvpxP724Ox8vl8tGLF6XEL169csF//ed/9v0//MNXr79AxGVZ9vv9MKZ1WZ8/f+E+IeLp/O729vajj148PNw/PDwwc2vKHLe1NjUXDCFN09RUQhhqnR+3VbFDzK21MWU0b1tj7vJcJ4dI3EwH4pyzqLYitVbRa3e5LEun9HeiCTE0Ka9e/0Nr28PD/bZtMWLOowqGEE6nd8+f3zq4GYzj0N1tL+flv/lv/us/+7M/6zu6EGLPZvKf6xq+sg3po5cbAvkvMQh4Koj2viPsBdHt8Q+e2kb8AIb8beDLR+NlvJZCh26t11oTFwSOTADmZgSPOhZ/ZCNfe9i+RnEGGBhyYOzRHQDqToBu2BwiOSOaQWsQAoYY1EzFVYEZkNlcRK0JtAqITUHVgBMgBwNQA38vAXQgRGSpxQFyghCCGmhrVRsFdHdCcCQ1czE1KK2WCuK2qgYAc3RpBIDm8+YEEJmrODFu24YOEaGYB4KEesyg8TdtUd5/moiIDEDSDMBy8ib6FJb2VK1cPEbmGJgIwJAph2EE3GpxQHVF8GFIMcZtrdu2qSGS89VDGwEgRo4xYjNEVFUVaV2tjKiqSNdtTN9KX0N1ARTUwBzd4Ur/ZmYOjECq5todMOhKpSJQLdYqERF3Xo4AIgfcWttKVYecRk4ZzcGViMgQuyQRkcmZ3584Dm5eTUHM3TvLkptDc2VENyPCUtaXz24//vjw5ZdnZgZgc2pNkQITiAggUh9DDM7ziuhuCqbESUTMQMGtru8/C0bThoApcURAhmfH6Tvf/sZW1/vT5f7hclk2cXj36m1KqUolAFWPMSDFf/dXP1oqHI9jjPGnP3397e+8RHQOuG0bwG5d5xhjrVK39sm3v2EKjDzmsbXWbWk+/uTFu3d3X3xx97/7L/+L//v/8H/9ux/9dH+8zePu5tnt6y+3n/3sZ9/4xjc+fvly2h9Pp8tf/MVfHI47AEgpLMvl7q4gckwMCuM4Atj9u9bT6FtZL6VM04SBT/MyTftat9PlAmiqGlkAaByHzkMQMTNBdI4JRe9Pl5SGGKNqSzkaktaKaIhQm9VqCBwTTnmYt6Lqu91kZu/evcs5dyZWa+vp/E5NRao7ppRUbRzzWu7v7r+4vX3Ramlz6d/Dzz7/mePln/7xH/7Zn/3VMLIbi3iKQ23Lh1XusSD+kmusF0QEIIcnk7AP/SA+NJ6C7uz/WBDhl9F1ftV1/N5n4dFWAAAUIBEYYCfbMjg5qGmPSzIHNHDsy5LrqyFgcI3gA8LIlJmcXNHPVfpLMvBO1umTZDPA0jJCjIlIzLU0JQAOIFUcEYMvRRCBGWoVF+q3nBgDIbXWpBmSrVXAICZMeYgJi7T+muTR9rRpjwAFA1B91Fx0OmRAAE+d3aZAgc1pEwmRSlVGEDFlYObWyjCmB6m/7BS+P77KsHN3VQC0Hsz4yIPruU62baVK2+/3RASErenTwAvIRCStbevSfQ2mXQJX8b4pcSIAVxUl6CMPXSV9PTiqR/aE8MR57CSbp1U10c+RIjsnBhE5kJkZOqEDgJkKKBrCdXfGiROH8DRxU2Kx1ra2aYvS7SERXZ0wECECUWD6OdOTWlczMEBEBmIDM/OqYurdPi+EgCbrNv/xH/2Tv/r//ujVq9dbaUAI0I0zn5pZ5EBM0NQAKAQkcHVYtkqhR+t6v16IyE3Br5LwGOMnz168fPmciPY3z//+Z1+8fnv/6U+/UAdAXNY6Xklz8k/+6T/9yU9/RnPzJvO8Pr+9vTP4/d//4W4/Hg77eT69e/duHHfrup7f3AGAiKQ4bMtSEUIIOaV1W5ks51Rr/Q//4e/++X/+p//zv/rXf/6X//Z//6d/8ulPP9tP+dvf/e48z599/mVtnx2PRxhT2VJtWylrjHx7e7uu5eHhTkoNkYZhMNPT6fTs2XMOcH7zUKQcj0fEHTP/5Gef3t3dP3/+bMj5CRhhjh0p7pNAh72WpaqQD6RmzA5uHLmp2raqGngIITEzgKWIgTemyHzV1aoKIk67EYGnaSKy2kqp2zK30/muSlPbmqyvvnynCv/pP/vPzuf5iy8+e/32R9/57td//OnfvHur2lamobZKBL9RvvxEMLwOwtfy9rgKBWAAfWwDe0NGj00lOD4Ch1+tfr9mG4qA9Gjh537VuZQNYjRED/16cgOAiOgABK4Iwa+E22vem1kAz4wTe0YgbYgYGAu5PCa1d9Y3GiDCGIOqrEsLgTggOLmbIbqgqqUUU6BaSr/symbjGM2kqRqoqdXqCY0BRC0QAVFVq6uIKRLkCWqNqooA5iyCQOjAoup+HckwIAC0pimGUqRr0tbSmCAkdAB0qBtQhsBp2co+xO0/thr2HbEp1SopETOllLpDHKHFhGKsqttaiQ3sPcY3TCMz9967e0DlnHf7XFvv8rohrZsCOZCD9Dpo9qQVBYB+DfQi2Meijt+ZSb/RQd/hEJq5m3qrKA5AgG6mDooI7gqm8VE+46ZAyHSlOucc90MGIFEH88CMYKbC9BjF62Ym9AGCU9sCFJizg7WrszogMTMSXr2MWmtta8+e3fzw+98cMvzsH94sqwxDLqX0hr+zHXt8m0hh5hQJpM2bnOcKoQNO3q8P017okJiXTe4eLh9//PJS/Ys3PxXgh4f103/4QgA4pWWp+zGlFEst61pLbfO6bVU60fLLL7/86JMdJ/77H//4eLP7xre/9aMffYqczuf5cJwO+5txjAzQnS6YiEkOu51s63439iTlu4f7f/7P/9m/+Bf/4i//9b/5T/74nz7cv53XdT4/jLsDJccY/+LP//q7333xO7/zXa0FzKTW0/27FIdpl+/vH5gRyVtr45ZbUw7w5ZefE9GzZy/meT49XLatDsNutxvPp4dHr3Vlxh7w1Fqb180UiIOYV1EA34pOuxhCUiutNaJrCL2I1NoAIlFY1xIC5TRO03h3d9fVlqq1I9TDGFtr4Lisp3f3b7cy39+/u7+77KbbrcwObRhDTDgv9//JP/vf/l/+u38VQhDR7qP8/jp5vz1+X77wymb+uT/uFRD6gPy47uhUmaeCCNd28n+NZA8RuTeGbgDXuKYKgOLMECIQQGv9+gomrS9L7KpjAfW+5kYHIPcYOJC7gIIT+pjJ1Ku6OAQOAKAuBBBy0uJa1aqxIjMTMACKqDmISIjE3PWyZHpd4BqANu+1uT81BXLypl7m0g2dQ+IIkRCbmiOoWasK3AVvAAb1sSif1jYY5JtQRBGc+Zp/gpu2gOgkDSKBMp4R6tIq/wZaU0Bg/3nstheRIY9qzcxDYAdtrcXINzeHPHgpZZ5nQBuGNA0jANVal2Uxs2EYpv1Opc3zLNpuDkc36SQpYo4UnLBrV0TK43Ohune8XFUdr+TMKyiHCGgdCvnQggUfTVlKWXPOgdjMkDxGDkQijm7M7God/cwxdasCFkEIEaipEFgIhO6lNMvobqadG+VI78+JgkciRyvNWlUgjiHP8yWFZCQpZGZ0t5ubw8Ppbj/t/uAPfrg/3v7lv/rrjjPEQGbWu8SmYgYuUGsNGFtZgSZ1SMwOrmYpxFYrAyiTK4g6AH725dtxmt493F9Od59++jZEKA3S0BndsKx1mqYQ4A//0Q//6q/+6uHclEDVP/n6x68+//LlR8+ZeZyGdV1vbm5evnypAsx1nh8A7Nnz47quwxgJsMmm5oxhGCdRG3JsIvtpUGv/h//jf/vf/Z//h7/81//mD37vB26tqR/z8OU/fPb69U9ujuHF85fuHmMMkS6Xy/Pnz90wD0Q81Vpr3YYhmcs8Xz7++GvAtK5zSukyr0RBmm3bNo4jIu73+5TS3d1da9o3lSGE0hQA0zCV0sSAmYvIRKHWCtiXMKxC7l5brVtpLgC4bRsRMmNrbVmW58+fx0iblMvlwoz7w0hEwzA93F+GMYQAl/lhGMfjzfS3f/vXt7fPX7x47vjRl69+Rgw//OFHf/fXrwkzEqj9HB74FUY0PtkC/lz62i85yB+ldb9mBP5wlP7tjmtX6QAIAZKjASgzMJGqNQXrhFkHJkRA6+wNNwAKMXor4oBEw8Ai4iKGMGEUdtkq2eOF2VDRl2UBAAodWcVuemjuARkAanUVTQkQycTJ+HQqOQMRIHE3riXW2iRmfZRLEziqgSw0m+bRtqIdWWoAwSwlBkBnUlHFoGai3gBuIRsD2JZS4igGWKqJOSMw5tqKiECAVWq6GX79CQxPaAWCdz6ymAPCFNXVOSUwLWWLMTLHy+Vy3A0Exhy2Bs3ypSCgpEzLWzNrKYytVA5EyAj4+s3dcLy9zJdAvBu4mqB5DN2Mq9fBLiVhoa4GEQKXugFAD8paSmWHMQ9GKrWmlKwrVRhcNOfBMbspkif2GMi9bqWmlKSJmdS2oWHOu6VupZ4RLeLUjb5G8Cp13RpxpJzdFQkcLARya/begx2aVmaOGFEbmIU49jwQc6UYnX3ZLkBe2xZj3LbqW/3Od7+5P+7+n//yLwgghlyrRarVIMcgWvMYMHDO0TWs5y0EKlt/OuoLU3EHtWtv6+YAf//pT/o+k1JYqwxDUtXWJARy97vTORjkmL79ra/nd+/+4YvLMAaRygTf+cbB9QFkdZV3b17lPG6+FTl/59vf+/TTT9V+8oPvf38+XXLOMQwqvrud1nXbVnFkN+8rrIeH+//6//Rf/ff//f/tbz79h9/93R9e6unf/+XfvHx5+Cd/9Aff/taNO3722ec3x2cppd7mj1MiQEXJEcxk27Zaa4jpNN8nppzjKnMjpyE5h/NyDtFj8q2tnHb7m9iKb+XSiTXPjje1tndvTyEkomCm024yk8C6rhszGwOi1nZBRMqMxXIO66pmEFIuVfIwqUEV3hq4q1cxs3EahshgpSyE+7CcL1/7+te+9c3vq/kwTmY2P+DlfK766vf+4NtvXt3dvzNXSiFWbVeAAzwGFHEECJxEaxdafWXaIscArCB9fZFiXmphztmquBNCc4ghFJEupUoEzQAR+vqvl0VxYOjo+VOxvBY/dzP0goDoASACMiAjGqm7i4NUZDAACARqXgAiQeyjnl234A0MpQwInxwDWrvM7TCFSCjVi5cQ4i7HrTb3Zu6BnQhCirU2aw4IiNZfKSESKyKqQVPXgjEABQfSKWEpDgo5ARHW2ppY4ATupTRCZwZHEIPNVR3KBuBXviQCNCPbDIEKgBMEEwEoGHYuB354GPewgqkgeeS0lqoNOCBoRYhOdXVmA3rV3n8ucGW3vKfHP/kb9ltKh+c4RvNq6uQIaoCUQg5MjBRDkOYxDiGSgcxrlVbNq4NM0741uqxVLm2aphCGlKNRefPmjZntpx1zRFQz6bcRYsYQsMq6rKLKKYZA7hZTRqPWWpFmCEgoaptUJ+jkL1VFMGb2QEQQGChyDISmRADA1FCbkMVWt3UpzTRuagbuOowxJzIzsQbGKTBTdEIzG4bk7styKUUC44e9IZHXugJ0e8vAydUaY1A1k02bq2oIREBmKqLH25s3b75Iafov/sv/9P/9L/8C0BCVOZJUVZUG2qTtWlPuFEvVK8Ll/uTH835vDgCEFAJ1W4lShAhaa73uiFivjAbwV3/9N0OKa6m7XWqqrvV4M+wO+8vlwgHFcBjy6XJuTVNKW1n++E/+6C/+7M9/GuM3PvnaPM+M1OfTy7KoOlN296ZgW2/S/U/+5I9+9KNP/+zP/9VxF//0T//oxctbM1mWS192AUCp67quqrKuzESPVjHevc0BYC2Vges2G3ETf/PmzbZtpYTWcs5Dq2X2NaUUQuoxEiGEJhJjGKe8rdUK5Bz7rdQMQkhqV4C7+6ir+DTtzGyatLW2LiXGGEJC5If7s5mVun7y0csY6PRw4psbEYuJ3b3jPNu23Nw8Oxz3P/3pT1+9/lnKKcDNfCl/8Ae/+z/9v/7aPTTpov73LR0RgL1PJAcA77uSR/QnuhNrMFCHyCBSGCCA9uu8/6T+zxGRgK4mI9cVAgCAARABmsOjrdb1ea4rnGspgkdnw56b/ERjvPI0e31FJwUyIPAYCAOyA4i5eWZiMXRPzAEVkRE9Z0N1hZZyQKLLbAbAIZlZa9rV0UhI3vPTr2OlPSplr99hBCYy9R6obtbDlAEAzMUVmAnhUfnDgAqM3EP2up23AaB3TTbq9bxgT7ZkhBABNmHuLAIwE2JUMTcQc7eGeGU/0W9qtAMChhjBVdQ4JgdoUub1nIdbfEzAQEdttrTFzPL+RlWrtPPD6e27OcZ0PB5CzBRwTPtS2uVhXZbLMKZpSsTISCFw4gB9S+4WkJDIQcGRGHOO1EXJBBG5O+M081ar6jXgsbqPISAxInejcyagGBB8yKiqJlVq9Ss12hHJjbvBc2B2x3VrpmAO00SAQECOQOTUG303ony1ZjCJ00Af3CcCoxP2PEJESyHSLgZIrTVpTa0xQU6x+80jcdnm/TScLpfnz1/+6X/+J//j/+PPU8KydeicEBUctm27gI1DeKLsIKL/wuTU12d4TYbpQLl0exIi6vfkHpNUVdMwAcC6rBD8+Ucv5svbT17cXEXWzPP8MI62P0zLvKm2YUh3d29///d/+Dd/83eR8OXLl8uymMV5W0vdYhjEGgAlCr1d3U73z57fPr+9rf+4juOoKufL3W43hhDdfb/fM1MpjQjdgQOaWIz85K/BjCEkDLyey7quRqyG63LJwzUPp5T2mC0JIQQ3UXEVJ4JlWxFtGBNyRMRtrbvdDpCGcSCiUsq2bZfLksYh5zwNz96+fSvNUhwAMcbYWlvmFQC3rZxO9dmNITJRqgKOARHndclpn3N8++71uq7EtiynpmctJmKXy2vC4evf3H/2s0uKQ5UCV3CpX//QAXG4bjF+yQWWI+QYTdswDOfL5g6lCRAQAjGDaYcTqcM0nevHkYhARU3xSsm+Cu0/kK1cN634iDl3HjU6MADbVQRDDoBkDoRORNkc3dGA1CkyICqBme5iAKjoFogVg4gQeE48Za9F04A6pFq3UoGAqmATQejSaFdQcOIunEUFR4UO+bmq86OIha5p12Z2ZTu6uzTPOXh3SEXQHneAj3cEBEPwRzy1R7tL7+zQASBGyBF8FgqI4IxgYAxkiO5oCnAdw13tt/I3VG3XtVbPlyptU2ulSYyRHIkodtGbayS6rEtfLw0pTUNhjtOQAGUu52k6dneKzlBfFgkR9/uJiCJ1maQ/Xtis2FqtiLzbTWK6LIuZ5JylVeTAgIioj0waigGQwaGZgjsRmim6qpmjSq0q1ZqgJzOrrYUQA6aUUojuhKU4FJemy6rLvA3DMOboBq01dyGiwNSJu7Wsvf62DxzNENkN7GqS6ISeiBjB1IyFwJmZUR0AyTMRUGjaiP3h4e729vn3fuflT3/6JsYkIiY6DZO2FQBqrbupj5aPnYS7P94kv4JJmZmIAbiZm0lfz/erscsw1MGRTvcndcghEIi5fed7nzSR+4eHWmvO0RBijOv29vbZDROcTg83Nze/8/1v/+jf/2jaDYfDjbvPdXUAjqS1MsecY62bqg3DNJ/OKeUQwrIsta7mrTVG9e4S1i/JTlFCxBjJXbvFbGvt7du3wzDFPD5S7qE1uTnsD4cbAgGAZa7DmNx9ntfKxR8taTFYa6u5g/eEPto2q1WGQ+yBvCEkdTyfz+JLCOHly5eXy+n1mwUwhxhCZHMdOJeq7jgMYb4s28q7/XQ6r+AJCB8eHoYs+91x28rlcuLgb998GbOUzVrlGMe7u9cvP/7k9DBfzrWvp7R736kxARPoLzMsJAdEjOxDpBgsphgj4YhmDgpxAKLghBpBO+HUwAwAQzVBFQRGt95OuYN1VfvVsAYMgK8N2Hs3JodrbKb3v8X34OCVgYEQE7uomzdzUnEgdyeAiEAM3G1PrDNkkRGtKSqAKgcfMgCAaHOwyFdKbTcNJDBkJjC5GtBd16YCAAbMIA0QHB+tFIGg2wR27ZYBSBMgsM7X9WsHrABmYOj+2Co/cprI0cA0MMfgYIqBEN0MAuPWNIe01uYOSAwIhmZu8ltUQ3BwN+h6CQTcT7tntzuMqTOQDXATURMASCEGBlUNBDc3AwesRUKQWjeUTRbQRoch5pxDQNGN2ME1UDdF6CsLcvdmOk7ZbBVVB3VXAAM1cwkhdz+gISZDaCLujshgLqpgkiIRoLVmLq7i0lprgXEYhhhjKe1ymRHx9sBEToGa2GN6n6vL+bwBQI6RiBC6iS5yl+L5dWARsXmen86RNNxKIwoppUChVRWRmLhJs1aJERBaEzAkCpxz93cYhsHMX7/+8h/94Q/n5aG16XK51CqilYlSHBBqk75SV3+k4Pyqz+nKDAdg7h6FoTUhghCo1hZjyJnPDycXQwAmfzjdHY+9kKGIMMeQh76n6ho4AIuRl+UyTftPvvHJT37yk29/+9svX3w8181BuxI8BCK+phITUOTIFMtWReRwvHFoDw93AdDMQmBE5+BNpDdrt8ebzpgZhsHdz+d5WTZfS6dbU+BS7l6+fJnzuC0n89bv5NtWmpRpyCGElEPKYS3Lbj+awv39SVbb726IaJ7XIdG2thBqzpkodMf/82n+7POfxEQff/wi5UABt7U+PJwBaNsgcJrGPQdc50XkUmudpmlZNgQiCt1YhJlaq2rNve12x/uyuvEw5vuH19/7nW/+L//2Z9fdHjBeDQrhag73ePQk+KcPsss4W1NOVrY2DtkMCAsxE6G7Q0B3pkf7kgJhnqWYa7fphevm18yv7kq9ygF0I+SvUn7was7lho7UB0q5NkVX3alzl6ICqJtrD2KXUscEZiDNAIECpsjMaMIpuImC282exwRrsdFIkUW9as+vdwe/cuU6uRqdiYEATYmJmEBU3dEhBCJEM7X+tgkQuMsSEcjJQXtUunaedi+IV8HMB4dfkYP+azcFZgKDlHnbLOU4bxWBzUwRjFH7UPbrqyETmzmSE3FH7RPRlMN42Ndau1ypirYmiAiOMQX3um4LMeTgphrYIIIqISiRjkNidg5AAiHytilB6Cni10RmdQevDTgEDgSAzNw10apt2uVaq6sQITKj+bytrbVhOgCgXLUK1LwRkhiZOQASBkc2IDFvKm44b2eOHJxEbGuiakgILszB3UWEGR0NEc2segNwRJ+mqfNvAd+LUVoj9WCGqGAqTOCugObeVSwAAKYOQMwkIk1lmCYxl9L2x13V+r0ffO/f/OXfu2vODKpVXURy5PZoqvHYBiI8doUfgoZPD+iRFK1Zj7/ujtOqEII/Oxy3+f54nJ4db370s8+N4dmzZ+fzjAFTSsfjcVsrE6l4ioMbbnUZx2FdNwAInD75+tf/+m///R/+fjBGE62whhCYUFvNTIfD8TyvXTrJRBTjPM/btnCAlKKqtla63UAppX9neldoJhxDCOlwCITh/nyqte73U4iUUhpzrHVrrQF4CKHW1lobp/Gw3wEaEfRlfc4DcyCG0ly1drL6w8OZiGLOSykiknMKIZwu51evPn/50XMOvm0XjqE3orWKKnY19C7sOKRlWaZpH+IQomkzpnhzc3s4HFQF0HbjcJllyBwi3b85D2Mw8uPN7h/94+/89V/9pLMdAhH54+rYr1Jhvw7OvYIhAlQBd00R3FDNDymV0mKMLo1AzYAICHEcgju686zABupAHJtaU5PmrRtIPTEEHTqdURHgqivplbD3X8CA1vcrVw3gVbrnDltTRiQkQDAzvc7X4A4pRTJRdWJgJGYElyEOxLZWFYHMjrETgnTezJEidj4RApCZmgNT1/iTPlKOVK24d603wNWb2f397FWkiYgaICF4f7Hgj4FIBj9fB50A9bGBA1GrDfSa2qLEwAiBgJ84TN28G/m32c4HtQZwhXJVxJuCNC9W/WFZFkOKMYIamjlyldbWLSdUcTQnRkYzqVtZCJO7MwMHq3VjRxFpgkgBUFWllJY8ZcqI2KMFu7oeAAiuoasgoFKZIAe+CqiZhEjV3SSGq2OjqgIgckTVJkgearN1vTAzUqCQzMAIpYlYVKGymYqPE8c07MchpYjM1+EC4ZoCoz0JG/oH86HzaxEhjog9JEGJKXBAwJhItc3LzMw5DD3mdNnW/fE4rxshV9GQcinbtNsNI10umiMpoamsawFkBX7iWsL1C/1+i/Lh4d4d7BARiaAU5SvJXgDAzAihrp5v7Ac/+Obb0xfiHkO6Oeznbd7WZnoZhtRjmGqtwzDUh3PHHK/xUqV99NFHP/7pz54/P/ZgT3QFFUTKKTESYXXwIirNxnGMlEU3RA+BAGxZZwDrbnoxRqZ4uSw5RyJih3XdEPjm5hi30pFoVd2Ng6iVUlR7Hxr7MmS6Wlo0AK61iGj3Ddntdsnw3duTu4WQt3XBwByzqi7rzMy7wxC2cD6fkdxdmdkAmUKr8O7t5Xhz22n85/M5xpzzOE1TCOFwHN+9vTezlNLhcNi29fRwdzqdatGSyjimaRqGYRiep3k+7w/j7bP8cCraDJE/7Mvwytq7ol1P7gmbQBWYDrvWNjMQhVKbqrtBjAAGRKDeGWUGACNK2hGFxGGY13qZS3WNCp2y2vz6H3tv8Qfw6MPy1Esiul0tunox6VXT3R8NwBB6c4NPikAEjgHEmJSZHQzMHBzC6oA5sFXdFmOGSNAaYPNIXWiG0sXCHcdEQCcDNzUAIAR0AHMOyowA2H263K+YIxHWKldcSszAAdDMutHO+0p/vQye/tuRJVbRUs2UnVzEUmS1FiOotYAgrl2tc20mfpONWgAAoqsQggA5hOe3z3ZTmHI4xUgc8zhtIlutVXSZN/GQU6zQXftJaif9FeZU6+pgHAHYQhxra5fzPOTY53mzq2MgEnTnwdZardLz5ptK59yeTvf7aTfEbGaIHDLnmAx8ucwpJULUJuIKaESxqc+XEiOj67LMKaXdbsccHXTa7+bzUjYtm82XhuiH43R7O7JDSpF78LabG4YYQ0gmRR2WZbm7exD1m5tnT+eoaQPzGGPOA5MHUEABD8QspufzmTn4nhIE8JrG4XJZAOlhuQx5Op1O7nrcH37v93/4v/y7v6q1hcDDwKVoa+puRLErt562KL+IG/Y9Y2fY7Pc7d79cLtM0DcNwPp+7WOX87p4AcqQvP/90TAxpYOb7+wdMyDHc3d312MzD4WAG87zudrt12VprN89fdBH6zc0zETs/PDy/vU0preuqUoc0phRKXQFbbQUwhEilzkAeQs+r8ZiYCvQR+HJZhjzFmE8PdwCUUkpDPp/mWutud2QKw5gRYdvKMEzn89pxYTNFxGmaRFqt23zZEH23m5qUUioilrLVWtMwMvM0DSLGHOd17dZKMeSY0pDHkuuYh2W5lLqmlNp5ZSqtOWEUrRHz7e3t559/HqMeDodaGwB++cXr/f74ta99HYB+/OMfr8uM6JfLJcbR3Uu9dMjt3dtTa+Uyf/b8xddKe72Imgn4o0AY8UNvmPcLDUBAqm4c8sPD7AaB11oV+jRNERk4UK1FzPuWdp+BAEJw8yJllQJEkFM4ZGzm1XxVLQLNwQ30ce/83n/KgTpY2E2enr5WAL3SpP5le5w9CBABHVFMmzqBB6IQglpBAgLg4EQw5Gmofj7PKaXuXegihuSGVVQNrMtsEK42AdfWDZiYEVRVxGJERKz1mutCBP0mVNZqnYUODtA9oR+Bwm4tAR/2Bx8gA0Tq2hqYAzip6jjGddMUeJNGBC7X+mdmPVfpN1RDh546IlcTC2+/+8nN125jzqPKi3UtRIGYi7SmUqSoKiCfLun13X0DCwHm9ZyHnIB2ae+ukVhd6jJnZhjiZrbVAoY5Z+ZYSmFkImVLpdW5NXWJECJHICqNQkjA4VJrx+YjBybXWsc8ldI4R+a0rnMAsqZeVSSAe0xxf3NLILVt4B4JW11VFTlVWR1gGIda28M9vXy2m+eFCIlYq7oruprOkYM3jzGndNwuy/3D+nSOYkjgNqYQ0BGQObYGCCLNXYFjDJw4BGRYtWJLW7MqQiHN1pfieFrn22f7lx/dfP7ZQ2uKQDFyDkTsYDGxFVPrqY3Q97AE1F3dATl0BjsRDGMKVohxuEkAYnY5TCyita2qvtvn04pvT++A9Vsf31bdIAGLCdDheOsOOYRlLjfT8fOf/ux7P/g9IFq2u/kfXj2/PY7DsG3bfkrrBebz4pOACwcyr5d5C5zIaBp2a2sGvttN7raVxVVizK2V3e4gUpdlmaah1mpm4xgvl4dp/3FKCclDoFKWdT4BHsxk25bxk5FYQtRS2m53iGTn+9cc4263ixzO57MozbNKk5wzYdy2bbcb04Hv7x9UcKu43+/JYbus0zQchsHaZm0RNw744vDi1atXov7JJ8/evn1rrjkMHz0/EtGy38Uw3dx+tLWqLqbxZv/i5bOv397eRk7LZW5ab58dzfTu7m5eLz3Vqxk0DcP4wlGe3z5zOW1LnXKWWlAggCmwPU6xDiCPdMDBfWB+/fYBFFIkBeYIrUjIsNa2G4OYLhs0EeT8cCrC/PJbsZH++MfFfSCskS2AEZMWmTLvh+E8b4SEId6fyglAkbtLjntzAHEA5OjmANq7InfqTQhgA2RQeEyhNwBGR4A9AoEQUasyjYat59MGBkPH5TKX4pEhRwdbGWXap6bqVa0BEFQHcageGEV7KaTeSaj02gdYmgeAEAKqApEjici2VCMUcjNgh0DOCNoxQX8KTH3vcetuAKxgiMhaKMOKO7aZ8rC+bcwYMmCA850DZoOiAIVhUBgB59+IGwLA+xkeERAvZX17Xo5IRCQE7opqzpjyiMrzvKaUno3jeHv7H378o1prSsMwDsH7etQoIEonhQQRS+Bta621IcQhU+AwjjtE3JY1xTgJSTMyZHZDVW03tzciwoDrWqwJuNe6JQ5bE1QjFHfn5ilHJG9NaykWgEOaQogpuVtrzcQe7i+teQjIFIlkmUtZ3RQuAUMkIjazzuBpTa3UxoKUwKkbn3Sb637spklVQgiRuH8eqqqtARYHuDk+Q0QzUPVhGNatJOSQ2L2fjRS6btDse9/7nvtPP/vJu3Gk/bS7zKfl7IejhACAcA1A6EJDh24wSgAulQBywBgpIqiJA9A1lgBa022rrcLxZlwuK6LWpsebeHt7e3d6G3NKI6vjPK/Luo15EBGO4Xg8fvHFF8OYc86llNPpVGvtiYAAICLrqmqNmfsacdu2IbOauIq4r+vaXdGJwrquZsIBRaRrbxAx5TCkEYDm83I+z+AUMosDhjjP591u3B8mMwFy8zoMcX8YAqA8uhmJCBCWUgAgpQAA0zRxAHff7XZMwxdfvDFvRMOYMnjoj5FmZrCupe9tcs66llLWELk1jSE3sxzDixcvxuGY8s5OD0upN8d9KeVnP/vJ5XKKgcZpqNVKXVvbUgqiYd02RAkhcY6ttbu7h914++Ll7dsv362lHMakAt5Ef4X2RAAIgYhFdavmXsccU86tCbhtxRnRDZoiuiPCqqo4IcA4trJu+ykHVgfRZjljjLzWYgLDPsQY1rVkg2oq190KQc/K+UWopZcSvGJz/ghBdtVMl5cOw1TLstulWmtOoRZxb6bXkIGcMTADuKoRwYAQESLRLoNRLILnVc6ziF8nUvMrjaZz04TADBo6g2NgAFC3dr15+LUbfBxpH4HXD1/6tbHDRweBx7dIiBgDdMVhl+/io28W6BUSIEJC5A/Ayl9TDa+ENycE8HeX07bWL8/nyElVexRyyCmmtJVlW2sah7XU/eEQcuKWzETVIyPHpxUPuqMYqCMREkAAPAzTYZgY/PnNQVVLgHE35TigGJlTDIaweq2V7h/OlGlAZuYhx22Lz26O56VpkxRiCp0+bZdtudA8xAQoaN3dIDBSClFVOQ+nh6W2K3dBxJCJOa+lHvMeAMvWOrWNTNyRMIjYsmxbqyEkCu+3KAERkdAcAxK6GbgaAFxNQ0MgCq2VKgYU0HHIkQLXWlUhBiZ0VWtVmPnr33ihWt6+mh8uDznG3U5BjREwQEQCAIuOoABAFhDRXMwgEOSBicC85HHqAt6tipmLgCkgwumy7sZwnuX2WZz2u9Pp/nA4XOZTnm4S0eWygPljpIHtxv39q1ellGGMKYUUwm6369Truzcn94E5dB/AGLI7IqG6tCZm5m7bds2D7YQx0UpK3aOwf51EUDns9/vzea7bNh2OCPRwPpVShwGQvJTtPJ9yTjGGlCJgU8dxygAg0s7n81YLAOz3x5vbcVkWBB6GSATLsq3FkOPNs2k3TjmyiSKiqRPRbjqoEyK8e3svIq2V1trNzcH9/uG0iOlHL14+Ox6ZhmYeORzGwd2RtNT1zesiWlTbMAYiv3940yHO42EHAKW0KgXBh5FruwSejrf53Rs5rzUCGhCA04daEYCrtVf/nkCXxYNWB7ScUq0GiGpGYH6tB0YclOxv//788Qv4/e+/fPXlnQkSxyoSqEcmaSS0wREUkV88G5a7HkOs7hAIn/Ih4Wri/3447MwV6ahL39UCIGCATosybcLMtZYcUYowo4mngCKd2cfMZGYd0drmwghDAuRITJsgm3CDdw3w6tjcF+5XL4mGDgyuoKY907yJmj8tna4Vr3Os9fEF/5KC/ojNPr4pF1NHcNMYgFBVANwemV4AbgzXQPffzL6Gq3V4x+lZwR/W9aInHidQM4MchxACt80RzucHANrb/h8+//J4vH32/Lmo35/vsdnS5uy5r8bXWlpV5lirACFxHGIchsFd1RVU2rYZNJOWcj4cpilmVX19eVhO90XzvJwJA+LV46tHtR6IxxB2MROCmVXwL97pmzsbx6xGHPpuHwy7L47FmEKk0ioHGseEaKa6LEvYJxHbtnq5LIxhHEdIEEICDEWKGhAGdftwt9FbHjczRiDqBJp5XRBRpJrZsJuGPAWgzitFckJ/yhbsP6SUEiI/f36z2w0/yp+++eJUWpMGU8zgXdNlSJYYOAATrLMQASN0z9EQFNBNYJmLqjoxM7uhaVVxZkbSeZPjbfrkG19j1Lu7h/Pl4fbF7SNPG/OQ4LqNQQrhW9/6zmef/ex8no/HidFr3XpTxpGIr6lVZrKWrRv71lZFjAMHDFsVdzWFJhKpZ8gYAHTOQCmltbYfaLc7tKaXed3WAoQiRiHlxIHT28v9tm3HZzwMg6peLpfj/pgS9wbTwHe7Q1/IqGp3hyvFpynP21Y2e/b8ZW0lMAK4eJWia8HQe36KHJAo3N7uS9tiDMMwrOv6bi4hBBFDZBFRsSEwp32T2j0dmHmgqclaynI63+ccu7lnjAxmzjTsh5wzJvr8H161uh6Oh9tnu7/761eUCBtbX0c8NjX+uFJgwGraPakIQR3mIltVcmICEes0KVUzk5Dj3WYR4HKG11++IQDw0EpLI2hxdeuhZomxiiKu0zQdB3C/GjZ1TkjfHX/IJnnaHlj3OOwBewAG1GmJgTCx1bpFJmkwDdyaTGMAgEgIcG35+4YPEZG68wAEQkIxUzY7JBiOsJ1BBERBEXriqCMgQTOIhN0WjM37Opsf9TPXvg8AHiFNu9bHDwrYhzUQmTCAiZlva0WBMcEwIjPVAm5I5NeUBrhuRH4DZNirISLCtUITADhyaU3bdtzt1AncoGeVtiKmzQ0RFQkp3D885GE8zRdVV63koI4xMiJKsyoaOgvcnCI74HlbUIUAMfByvuxvjtvlUqvEl+lwGLS1eWuv7s5bm9eySbNpmkILtRQiEHVCSy+eA1LdVgAIw8AB1Kp7RLw6MIppKWVdSmvtcHsTAoUAZhACIEVXDoEohipWt1qLxEhNNAQOIc7LNl/WEAZO9HC6fKi16kY73TuzF+ht28rWUkq962xVUwQAr7U6cbNLCCEQI4G4IiAQDsOEZG/evUX03/3d73/rW+3TH3/+9s39eikYgJmZAxEQujdtZsM49C8fAJjrWjsVHZiCAZqAirUmotDdLjnDN7/1yX6/X9d1LivHkIbw7t27m+MLMwO1gLTOcxVJaRCDt69fA9A3v/n1589vL6f7zoV0w2mazEXVY4xm7O61bqocAwFa4BBiJKKmagZqJLKZSa+DKSUi6OvRplWkcqQQaCsrICEiE5GHGEeEhAzrYkwoVYhABgGgeZ6XtYzj+OLFR29ev7ssWxG92d/E6GVdVEXBAbnXX0cB5gisqmWr21YcOaWU8+C+3+1GedBS2jjupmkqaxzHoUMBMYRAiOTqLU6Tu5eyAnhMMcTkUHnBlGNKOzeo26YKXWVoZmA+jnmamMH3++mTbwz3bzYFQP8qTu8OCOiPjGIA6OIhAxD3fB1YgR0IQQHUgdFiyq1qiIGoSrWylTwOYlqq5hzdtTVz6isIWNf1MI3qVVdt/n7V4I/y3q8c7x10oFNZesios+s45YCwbuXmGF3aNLKZTUNqpSI6XXfD0PkA6yp5HAAAvZl3o3zIQxiAXhAt87YVMKJqvoirAxNfdSGdIq4K5gTARD0F+krSdLwqp3u889MK+YPjacnc/1cdiuhIEJkgYifcXDUS1w7VAMAQ/Beomb+kGnbzxv5myQEBDdCBWtMQghuqm6ss26qgIcfg3E1HTqfz63dvt23b7/fzPDOz1+buMQcKTHr1PQxjRnNTub/M6DYN6X5elm1rHEXkjtZzaZ+9fTD1h20uFjZRhSAgAmQGS5FACLglljd3oIf9fsjMeFkv83zOOW4FzLBLNarCurZtE1Wwh/N+v48xioi7EXse8jhOZWtFSxPp8mQRqQLU3A2XbQXSPIwpBff3k7KZhUiI3FrDKzNAuyozj7sMgIjbdt0vQcTWPIjknBhYVQ2RiOq8TNOw2x1q3R7OJ3D+9ne/8bu/94NXn/94vmz3d5fTSd2AASJSoHhet+7NSfR4V6bMHFtbWrOrozjAEGGa8jjmj795ZI5v373NeUxDfvv29UfpJWGqVfr41IO3VL2U1gRiyKptWbZhvOQc9/uvuePdu4dt27xpSinnaNbDhSCE+EQ5IvQUkYjFgAJfzmcMGHJCRHEBBQWjQKVtMisAUSSQhoDEaKbjeHSDZRNRLEU4qKkNMd69O8ecSml9X+zIGHg7bQZ8dzoPMTHz5XJxQuL09u7t8TAyJyLAQMyO5GoGhqJ1nnVZllq3u4f71nRbm4gQpf1uHHOMgRDYAIjBTa1JSolSViuXy1mtMOPhsGtlq+oqvtbWqgIUMRWRaYwA9Pz5TSlrbZdvfPOjLz7/KYESIrgjORna+8u40+GvpAGxq18/I6krdzE8gjl2YnRT1UYRcFlLjvitr3/t9Zfv7h+23U3k6NLjcSMjYmtdiUTYGml3eHqva/ZHaQr+XGPYyws5OKCb9zh5JQciyIHN25AhMHIIJhIZWitIzo85QurAjN3FHUPSVs2hZ++h90JvLw/xhLSQNQcSbOIdx0SAx4nL1a58F+Rg3h53x1eHtMc0hV8OfRJST0DqvqFdDxNyAjBEq6q1gRFhEDNVv3bo7m5uv6kYwtUGlTt31rp6koFJSh3DUK1KbT1SvU8TAcK21f6vuhq0O3S58VZrbe0Q9kSBSB3AwEi7Vyu3WhGhKZZ5QURR9xib+2cP9+3LV97QOXJIbqrqhKlUC4RIqWmLah7Hh6WazxCYnd9dLvOy5bzbZFYzEe0eiqLoEJHw7Zu3gQcKMUY2s21bXA0At9IANRCGEFStmbLYunoMIzPP6+IIh8PhwwSMIoUTE+K2bYg+DIOBL8ui4BONPc5Y1TikGHM1dW3XG52qiRm4cdjtdsuyDJ7GYb9tm7oh+2W5/97v/k6vUOuylbXWpcyn8zovhxB7nuy2lVpdDER02woAEME0weGwuznsxikyA6A9f3b48vXbYcjv7h9CCOPucF6WKeda624YVVvkMI6jY13WFaCUtewP4/F4HIa0zZd1XZkzdXsA807N64H3MUbi7sNmUpurhhTNTNQAMaWoaoiu11w2cHckDzmKSClNtCFZYO5ioWmXXr99mOcZMIQUaxFw27QgQkwhBnKr4HS5XHqzuW1rheaD50RDysZuzkX1/nTejQPCSGDmgughBCLetnnbzN1ViTm2aq9fn03hm5+MuzF3tgd7a2rsDAQmZsEQMeeMZOdl3batlPXmsL9c5vNpXYuKmpgjIgYOFIchmBkHWtt6e/P85gaXuXurI7nrBx6FVxAPHOnRjgGv+gkxMHryqiFH8G797q1b/76696V8cXsT98/juzfto4935/OsCrtdRMQmYgYcSNamBoj05Mt3paT8wh7iev/s2s9rpTRyCAwDQ5MNwYYhiNQ8plohT6mWGmIXYPdYXeuW8zHmdV4AjAmRwb1bFiIgDVQPGdhxLq6GOaE2r2aE2Pzqh9bJicQo2q4KsEe++hMV/JeWwqsJxePf9RW+KiCiGiFJbVAd0ZhA5GqbRg6u5oLw2yjzruy2Dy0qA5JXowlATcVpoBijVBERNGekpSzbtsU8AsC7d+84BgBdS4UieUgxRgM1gdaaFwGA/X4viN09ey3rfr9vrYWQIbJ5AEcO3BSW1rJTLTUPsaxVmHNM0goOcS2WY3h3Xt8+PMQUmNmApVkpRaR1i6EeT6/WVO14eDnkQ2mLuZu5qnLgXgNDjMOQ0KnWFkIYRgarl/M6jqMjI1MI14TJfmiv0O7zugIaUffdYkQUUYA6DAOH1JvJSBGQCJzB3bp/LANga20YBhG7zCUPCU1KXRD97dsCYMQQBz7cTGMa3XYmW5nbOI5EtG5V1QIPTXxdy7t76SKdYUiH3ZAyNNm2clnmUyAorcXEgLSs637aFZEppZzzsrTO7Wrqy9qAYJomM12WZZw4xtgRenc/3t4uyyJm2hQQYorqdrpcnh+SKdRaESEjNJW1VGTajWM3+u+yihiDA4YQVlkIKCaMcSIgEQsIKZBIXdeZGSnGcZy0NTcRk/1+r2qttdZka81K6UG6IaSXz19Yk3W9Px53cUp3p4uubT6tgXC/yyElRORukkJhGFFEiIIpNDWEUMt8eH786KOPduOwLIs1G4cjIoqqSWNkbdK0qpVlPV/Wy9VtvWmKwzhS1RWIcuruPvNGZRiGN2/eOWwhEDB8/wff+Vd/8Wn+5cIvgit63G2KgAh6rATC1c4CgMyoYyKqFgH2O2JmsnEr57k2VxiHVJqKgRpclq0/2BHXpWWCGGMkYrPmV8eqX+sZ233dr51XjDQl3AVcVzkeyE2HxNtaD7uYcmCCea4xQoyRiBRMREWUmbdF8wAxBubQWhMHYkopqa6BIAXYChDCkIKAlyqOZK4GQEjmPZ8A1Sy8n32pt4T2C9MxfDD1f8jGRUA1bwAqTmTA0AwMmJCB0NS715i4s4P4b9ooA4Qud6zKDuo4o4O1HLMebl7U2tZabg/HISYzgTBsW+nlwMk94LLNx8PBzKI5Ro6RmUPOGQCk9NA7UE7ny4MYDGOKMWzbNsVhPc3xBYMwKQdlMGwGIiq1hWEorq3M4zhak7vzXUpJwCNTFSulmUsGDNHVxEDyMGHdatm8WrMCjm6CjoD1dHkQdTN0d6nBxYcML48UQhx3u22rLViIYSuLu03DztEokqMNI4Xw3hiyu8w+PJxLkWmaXr09bbWocLnUm5tsaraWnA0Bpmk0BxFFIiBG4MyIiB22L2VFpjQMhrCJijEGJmhi4OpsyBhYzZtJac7T+axmrdvZKm6t6svnz4HP67qawlaK6Pri5bNpf1Rwt6CrSG0JmSiM+yMRhJBTdIey20fzxsTDbp+H8O7uBCAvXj43s88/e3087nMepa7O1kSmXVqWBRRCCLU6M6/r9rq+efnyuXr68s3rG/RpmmQ555CltDHnUtYqW0wRQcu2Lc32zw7d/CYmAICYAilKW04Xu3/oLtNaStmNY+Dh1atX4w4NwRAocg/yNrPT6XyYpt2YT202UI4hcRhTuNi2nzCxtbLVbd3tduNhuL97mC/Lzf5lz+8GaIE971JOnFJuvrx5WESUKTaHPu4RUUjYpI674cc//RyJDGIVQ8jv7k2t7Pbh+997MU75fD6/+vzh5ccjpfFyObm329vbgOF0t2xbQwZxB/Nu8NUXzOboYD3xok/LBETXAGW/3mUBmn/opQkNwC4+RshccswgLq3UWlEohAHISpPAmHN0t1IrRXS1pDK4K4ACdSb/k1P3kxIDroVZ3LveE9kNxZS4UdwdoazyfA+sjowUsjR1sz4cmCgiDzFhwsjBzDIv/Tw3FWYeE4GTihoMTYqCDyOwuyokc67wxpwoILnqNZzaTQn7UhsBrvHTdvXu+mqdevqDRwqOAHV3K3CAVxd7vg/tjE1aQHEQrdyljAYQDTaAjUA/GJW7BuwrSrDw+GQfLGzMRCTGSICq+ggYEVFIyetWSqtEPKRMYwjM4zgGoiLQqgtJ2YQZu8mAmTUvzAh4lUx2FXD3WRqGaTftq+jD/Vy31YCGYSAM07hX1XUpYDaOuxDCspUph2u0ngd3dOs7xNS58uDOHERKE1NxZipVEpBDN4iv0spuHMbMMVIV2e7u3FFEsJQQSUQD97gGcYAYfu40lbK6WikFEVTFXKVVUWDmbSUiICLzPAwDEGpt/Ryaa19K9qArYiTn1tp2OiEiUmBmuub4uDuq2lYMAwZECoM6hMDu1BVviFy2+YsvvgzT5IbMlPNoJsuyiNTWtLWyP0w3Nzdv394R0UcffdRaWdd1GoarORFiCNGUEDEE2rZVrMUYm/p5vlyW85UnGHNKV5/wWmsIIed8c3MDap2TeDjsSymAllJCdCdQUEPDgI5o7k21ioRVLpfF0A67XYoDgnZhtUIdhuwYmppqz3fAEMK6llJazjHl5F67TG2/OzL5+XyutXa6gohExo9fPg9pYEARmef5ctE4jD1Z6nw+d6cJRBcRiiGldDjs53k2c3BKQxr3u4DUpIiIqHIM7969I8LLclm3EmMsolbaOKTjcbdsurV5Px6+9Z1dq1rV3NUsEtFWq0tx48MBzvceAotoCqH0TplJTf3n4S97bHN+FYZFAMVctrYCpABjDjHmmPDuYVMtACDqIuCuRAj+yNxxInI206sl2Ad15OdfAD5qCPvUag5bU/AyTvzs+T4zzvNZFYy2iMZk05ByzsLi7mqupVasAMCBOzZJFLoW2FTNQEyukAACKCDYkMjMLs2amhpQYAMCbeZAVyoLPr3U/6gkhKd3puBbk2YqBles0M0f7dHoN1mRPx3hw8u+/1pVDdq2LT0GsUNI3XafOSLW1lrOIYSQUhLRbh+iRUXU3WqVEIJ31gd5CDSO2UxEWjc1aS4xxs45qrW6Y88sMalVtDQfhiEyKwAy913e5XLpFkMUWKqUVpt2b5XgDohMGAyoqbemIgKASEkN3BVJc4IUwjQyk5eu9qoyjDtRl1Ju0oHQVVsVmJfqRk2W9AHfsJZiqkNMPDAwhbAbhpTSUEpZ19UNOQQzAbC1LGQEPY4KidhVVVsF5mZXv4lamzuEhKIqRSKQE7qjmTXwFmkIGAMFRnc37ScTVTWmQWRZl1ZKCyEgKgCqYAMXQREDKDc3w+E4ImKIVmrJA/VS6IR8FTl7zny82T17vmfm7pQhIszMAXVtUlvn2eWcO/WkH0POamLoKYfatm1rFLgnu6KgmXCgmIKpX1+w0LrW0ppb2E/kJpFwGAZEGKe4rGLWEKGTHENITVykDNMYYl63uq5rCCGl4cVHz7ZldsIYMiI2KWXdYowhkKuGSMOY3DDGOE1IIV5Oc4DQOQbMjHR1VwS80gH7zZ4j9x+yFkWAy7p0qkBOiZlNNOzG1tq6NUC/nM6HQ93v97VWCphzdg/u3lpxwWGI3/jGRz9a3pWqDO+dXz+czDpM1wuTveca/5KjK3N7kpQJOGgM2G1ceoA9AhhAbZCiM1MRo75PIWJE6pZc1/bwq6Xwq7XEUcGrgVVbV5vycNm2qpDT4OhmggJAlkJA92Xb+laiWw5HZ3frdA4OaApmBgpIgAhd1Ocm5saE+108Lu2yeXEwQyACCAB29eTpvar7U3jWrzmenHY7CfsRZ/RT1X5ae41+WmTl673htymGH/qWIz6dQe/3WEAiknD141TVQFHMO/87pdBJeCq6rmVdcdsE0ObLhojbtoYQiCEE2u/37v0MUV84TNOUc2ytlVKYAhONQypbU9WcICfPmVPOtdbaLsFDiJbSyIytGSK6dxxGRejqAk1o0C0G2V1qrZRiRIqJhpyZDFQI0aHVBsvanjQPrV2XmEVaKbUWN8N13a4ERgAAeP78eSTOOdZa53kFwiHH3W6IAaStxJRzZOZhGhExALXWVIU5dvWKmYVAgUOMERF33fr7kQ8UHIEJ4BrzkgKmFGMg1lJrdYSY4nJZl2Xd747jtF9Pcx+9m0oIIcQsCpe5cMB5WUS9ey6cTg9bWcZx3EpJKQUMqlZrQ8QQwyENSNQXrwAQIqUUEXHbthDCWjZ6OphLq601Zoox1rbVWochbbUsy5JzRAdEZGYGkqattdZUxIjYPNXSZmzuyGgaMeQwjMER5HJRqTGnnHPZWhMlTACW4hhC6LJWdx0GOp0v8+WcMwPYsjiSSmvdUltEco673Vir9NBRcMo5d36lqrt7CKErWLuzTv/QL5dTzWEcxyFGr21ei7lvpSLiy+cvlmUB85cff/Rwf1LF1mReWm3zujV3B2zHm/04jiYtpSRkGHAI+ZOvvfzJT75MQ1y3xsRuTybWT6yX9wXx1x4EhA5ugOLm4ps0B9hFAidARDBQdQdRQKImRoCMT09kPXbqNzzRNcmq1xUCcCRU9VrFDLZaEPzFLk7RzUBqK7W4KgAYICFyRHFozdEhD47a68Mj/OcIGNCJ3ESVogaGiYFGPBefVfqqgojINFzXTKDg9HgD+VCk/ytef5eBPzXaXuy6PoannhERAOKvNcr7yhG6OQo8uqfAo/aFiFwNEdUaKZlZaw0I+7hERDnGPn0sy/rwcAaY3JEpEKYmZdsasxBhzhn2xByZu7UamVW4co4UHcEd0XIMQ4ohJHXxfvUYIfWyyyFkhoiIgIqUmMe+8u2MvH5tlNJ6jyCipZR1Xg+74WbY7XYRrPZPDgDUeV7bbrfrsDRQWLYaY2zNl7W2hkS8lkYfbFG6y3xkqrWutbhhSBn0zCnu9/sQgqi21rTVmNOQh97z9tgwd48xTtMETIjoxCFfXzk4wf7QpPRf98Y5MobuJ7o05sjMISSRc61VsnVmXwhBtTUVVV2WpbTuhh+Z6eF+ccdhSKYwDnvtRROiGmxbVZGUQkrk7q9evXX3YRjyMFx7Q2ZTOOxv1nXthg4xxpQSEQHQtm2drIeIHDmBuzuixxR7NSSiUmVdamsqorWs7gQet2JEFhMSoapzjiEYM6UUcooAVkoppagIom/b1hqV0jpWq+ptLcRhmg5utco25jTknFOuVbd5g54ktbW1iCqGOAKyOXQTRnff7SMiqkv/bYxs4FqrgzL3RsqWZVnX4u63x9un8ej0cEbkWttWWogDIDQBYryc6jjqbgrOHoIDyLrOiy83Lz6+PcfzqfW9J3dbtp9vdezD3/yqK5Swj3kGqgDd5ZiQFMncwLCPHmKmBiZaDSJ2+v6TRTQ85fD94mFXa2F8GksRERBVfZ5nNJ8GjDFOY362H8p8v9/vtm1rpcUcgWjZiruFmJoSti7Lcurewr0euVdxBEVGJyRHADCzkRERLLgZVBcEpO78he7oeBUH/roT049frJIGYPBYRq9+Pr1vREA00M7x9K/64fySIzy+gp9zT6HuFFK1fzlaa7XWbavmSBhSSqpNxGut6gQAHJI0BXDmIYQEADE0JEdEwFBbdwdq1A28TVU1AUOnHbghEgfMIcYYBJ9iIngap5BiJ3wykLsjcYzYA6Q67TNl7HezJtJUkK89TQLqQAcREzEitGql2mWVeWkhtpzz4XDggMuybGUphS/nQpzFVNUwxqdzdL4sOYUNsRYFD7WpI5rUDJTzMAyDiKy+bv0KbN57XncX4dq2nPM0TU5mCojS5XGd+9TrOAAAKKMBAmKXJVirLRAi0jzPVdpuvx+GtCxbrZUIYuSYh1rreZ5rUcQ4X7ZxGlorOSdmRodhP5VSoIiKV72awQwUEEG0YaDAnIaBiLSnIiAB62Vdaq1AiIHFzaX1go7NSikhhBBjLZUYb25uSilrKYgYHN19WYo0BwjmvNWNKVKIrWpt3XrKwibBQRoOw5A4UwjaBABiGrb1kofYFdDuHkLqfRxhcIDTw1k6bwkjqN7dzxSDtYbIOVOPSWnVAbS2htgDZgkJ3LG12hruD7vur66KqsqGqqa6OaC7Xi6Xjz766Pnz56+++JIYEel0usQYRWwccgjh3d2DiDx79iylRcTWtdS6qSoh9ni/Uk/PPz7c37/LiUsVBEwp1Crwi5dgv9x/5aj8SCVFBO86DQKkqgLWfRSvhoLuIOJ+DZNyv9JqwK+Q16+88q9/6/aIqTkjLtVihmc7OgyBiA77YcyxLtwV31WaaiNM45ivN3tN4m4GwUAUzMnAEFgM1BTRXNXdDdwbmhnHGLwdEuzHVBWWtRUxJnIHc+8wJj4CfL+uMezsxscHXJnkV8IQ/uI/a10UBL/FEP7hpOz+QTW8TkkaOKJ7BwVaa0iEgfu+z9WYWTZJabgJw+l0LkW2bekJ8e7Y3ay3spbSiABBd/vMjHlIMcdu5qyqAMqQmMFMS9FxPzYHoGvwkCP0eXYckYmcwIwogKOaKiAwY2u11lq0FOnZSZ5z4pDNNrfqShTIic3gMm8P56oCpajtYdxNKTIRnc9naViqxQwixcBi/GCn7AjI87LUKrXZZa6DhGEAW2sIGZHH8eqP7wqXZe03j977iGkTK7XmNBA5Ynda6vxtd1dkuroog3b9kLuAGyIbeJ+7AWAcx5jTBHB/WWOMKQcOAZhC0SYYONUm0ElzgVUbuNZamVncrImLS4OYqF8qMcaPP/7YzEy9NUXEKxauNM8nZj4cDn0eF5FSSlcfAuCybapiZkRAITniPBdEZBZpuiwbYYpxUAFmYuI+pbYu5TeryavVskqisZO6evBsSml/3E27wd2AfLff98lL1AhUVbayxMiH3R4sm1upLSGlsGOKKo4QmKi1eSsWIwI4UYiRWmuX81xbiZFffrwLldyREMwQgfttiRCmcYwcAEgFL3MJkYjSbowildGePTvEGOf5LIrDMIpOtaj7IiJmEgMh8jCk0k7Hw4vnz8PlfPX76GepazWfLrFrKfzVzRs+Dq/M5O4qZp05/N7byrhTG7vAGa82rv7BxY7+lFH6S6qJXW0RgQACQSBHMGLe7fI3P95N1ObLeTu9tTjc3Dx7d/92GAYiak3RPXEU09bATXvMvHa2oaM5u4EAGziim4sYmKMZluIjORsMAYaBzPGMdlqlmikRmD9aw3b88D0B6JceH3bcfg0HAgT0r+aeGHxwFn4rZd4HT3LFX/uWp9YK7pyYERWd6PrIWmtkJKJAPAzT6+0dEAbi58+f3d8/nE9rH6k6fUFESnUVG6cUA4UQzMTMtm0zaX3iJgBzMUfynsQq67pR4HFkd28iIYRp3DedI0VicFBzA6PHYapu21bKZmZ9l8tIeYjgBB6GyExQa20NtwqtqRmlPNbStm0ba0II0zSYyXK5RvO0tlLgD91eEYlDErlsa1MjaWA5DENy15RHACylSKnbssQY827fXRW6E1xHwVIanjDZTusjuiL9pVUHIDCwK4hM4AA+DjtzSSn0Vam7r+scKB6Px91u5AhNiiHsdjvzUjYZhnw47qYxiG7aaojUWulDrik4EBGYQq0SGFIOVTVwJPQu3X28PcN+v+/N4NM24HEQDjnnN+/eruv67NltKbKUd7vdbr/fmzoAqBQ3BmbwYKYpOoCpahOjbuYbQwzj1uZl3oSvBIPzPDcBB+aARLgsa99id+JhrRWkK4UxUG5q87tTCMGMTYliVPVat5xzSkMMYtVCoA5cIvo8r4gOqDkfL5dTE92N+xRzKY1DiCG7O5Ih0uFwmM9L2aTWdj6X4/EQcgIAB3VrHOLt7dGdGQkRt1aZOcaoSuY9wTEOqebM//if/P6//B//FwAgoib6VXEs/tJf/twREdTBHUTV7drXJCZVI+zCFTBwckdE68l5frVpeE/K+01dkLtzjxINIaCB+bLpvS7tAF//7sc3v/PNz169/fSzV6lNiDjPc62apxRCOJ9mESAEjhwCKVxz3MyhiaiCepdB9GG/t1YJSNYqmSEisG6Jg2duYnWxmLgBmBshILIjuF2JFr/+Lbx3o0Awh1/SFvZ3+ttihgAAAcncIgIAGTgjgrusMwU2RirrOk2TqoLaNB4eTpdS17bV481uGoNZ2++jNGHGN6eax8GBlmUziLXVYdqNw027nEXEyXeHvaP2nU8K0SjM80XdmHnMA8esBilGW8vEcau12RpC0O1iDNCSO54fLiGnlJJI45BiSKW0EIbjzShA6+dvKER1V9eBxsC4LNI8bpIf7osqkqe6sYuK2s3tgYjevr3b7fLNzQ0F5jjHZI6Wx1Gardv76NWt2jAYcVq3uZSahiENnp8Nr794VR/02eHZ3duHdZuPx2MRu7x5N+3G3X7PASnwtMsAEDI3td6vX9tuRHdzbdGBmRjZiVzFRRAsErnXHIO0WrWpw2m+9J4u5EBRW7NaZcg5HZO3DWUbDuN+dPAK4HGaiGgrZSnLbn+7rishDDcDA6o2MYMizfnucrdtW+cABU59bMoRbm5urh7RxCEGhEgUtm2bl80tqtR1MUNgDvNl6/vzzgYHgG0V8zLtBtF4Pp+blNZajMphXNctD6kUnfaHnPPbN++2S91NN+b1clmAnIjWtQ4DPTxcmFlEVQ09cAzSfcwwS1N3maaRWBq0WtXdElOpa9Xt5ccviGhd6v3dHHiolWrbvvmtl+p1vsj+kIeRcmRCTHES8d3+QHj/7n5Ztnm+iMOKTsMwSZUl+sP95WY33t+3L968A8Jntxmg5GkoZROTQAMD1KrbVi+Xd89v9hd5ffs9+uQ78A+fAmJyWJGBreej/Vy3g/Are7f2JCP5YBXQHBw6Xe76U7roBwDIUa+T45NM2n/dChUBzbtrQ3MyMXEPQNXtrcBffrZ8cffjP/2D73/7k+9yvv3//M1fRxqt6nHEDKql5iFIAaUE2xICBkIDWjdBjksBA6DABE7qCBYA1FC8cuTtAi+//uzh/i47WBEzud3H2108X5oGWgXWagZKEANCAQOip2n1w4M+kGMTUg+BB3D7RUDiqgPE/lAH6IK7X3OEp6dDhCdKoDu7+1Y2ZRyGAfrSg2jaDYAyjkNKnVMC45hxYsLw6u68bfX5s5e7/fjqy3cdmK+1ahPuYTAAKaXIA6Avy4JIrUmIMXA0cymVYuxDuohIqWhORETBVObLBSnUWmFdicgJcx6HQcHQHZlYaxOtkeN+v7cm5/PDYb8nImkqbSmltepuWkWqNEDfSuA4ILEjNRUgJKJhSFt1EWkiMb0nbV2NVczcHYFjzEMeL/ezK4jKq/n1w8NDHrrFt+92u3E3AgAHHIYBGPq8SRwejYL8A+YnExt1nMTU1RyUuj+NewgUwlBrRfcNIYQYY1SD+bJ2Ot48r0R0vL053t400/Uyu/tunIY8ciQOoZkSOgEycwzZzLSKqlmArYopMMUeWLGULYSIwPG4X5em2pgiEW1bdW2IyCFYU0Qchx04tdYaWghBpPTPehgGRAboBKbWxBBxmqaUhAh6R9xXcJ2isNtPwzCEkPt3Y16X/X7fH9bV5du2DcMwxN20SzGG3qLGxCJ1Xs45c6bETKreHWtSGgjZtW1lzgPt98Na7oFgtxua4HI+3Uz7w5QQfReCo9/fn+qypl3soRSOoqLjmNzEwSPD7WGQutGQcuR39/dDAEK9fX7btlJrXZaFCUII45gREbCM4/Dll69/8IPvleWz16/WYRhq29QUn+rUdePpv14W8eFGtQ9qvwZH+/Cvfnuy3hWrdkeEbpTwLIQTwU8X+XyG8//82R9+/PDxLfzz333+o09PMMUGJpzSmO5fP7y4mVR1cXYEB+y2AK02RGBi0d7aend1BEIXUNWQ4OHhYbfLpoUYiIDAFZTJMNAYIrPVKmJiAIlhsV9SCn/xPf7GHX03kXL7rUblD9jX/h7g6JiRmXlIHTRUcNAG4Pv9bn8Ycgoi1UxjjJGCGdzup3up0xhLwyFfzbjsGjDi1qTWhuiYAhGZk1ZhiuO4U9VtWyMxRqprYcRWq9SG15ndiUBrayo9Qqu3SFq2uRaiABSmaQrEh2nnhokDp1y2xcxizK3VbasqXorUUhGJ2N19XYuqp0wAQlSGMdzcHAy83M0hAnHg8P4sa22lBLBr+Lc1K6WJFlAygFK2fgFzDMywm6auxkFyDPyYd0GERp1zb+Au/FgQqXMF3K6l0AFcwaEVcbUQApimlDo7xKSZU9m2cdiNu6lL4pyQmXc8XR4u/Weu6+obMGOM0Zqga2vw8HApW2s9a9C9q4bHcRzH8Xw+L/MZIanqq7cnlcaMu/04phgjE8ar1MmamTGHy7qu6wrgKaWUBzUzh2jAzMjB5WpPN44TETGPnZrHIccYQwi11m1bcs4xxmVeSq1NWo5pnRdG4sDaJIbw7Oa2Q5/u3qHYEFr/9DnAixc3TWpHHtZ1DSGllKTp7e1tjBHQhnE0P5xOl1rW1loA/fj58fZ22pbVFFW1JN3vcyNOKR0O/HC6qGmIWLamKvawffzi+c3XP2qip6WAicp2OEyn09mspxfYMKRxzEieUnK9H6dM4bDMyw9++A2Rn92/2wAiQMeyyb3vUP23uYa/csHjV0fuX3jMb09axg9aR+wcRlD3jSVDGiwqpb96mN+07ffP8Cffevmf/dEf/tu//btZ4LK02ODFi4PMZxNgDqqOBO6QM1tR4tTUOtHGHAIDgDn2ZSbkHNom7p5SUmuJ2Ym8tWkMW5NqwkzjwKqwmdSvRkP9rz8zEwIyVfNmv/mkhw9/0zuOvtwgxBhzCDxvaw8X5kAMECPmFGLsMgmnx8fvdiGn53nkUteXHz17uL+8uzvtDkdr2KQ1go4DXUBzzsMwqGKVEvOADiqu6j0prsuYmEjVtu1CDMMwmEH3Gun89RzYzGoRZjGgSkQIz26O21ZLWcdxTCl0bt08r9tax3FPjGobM8RAISQVqEX7RtusiUSmgYhiCiHFbdu2dXk6LURUSkEnADKzUoqhBWdzzTnsxt04jnEgJ9/v9sM0EpFaM782RB+c20c6pwOAdlpcd03E3hVbt+MEV0NAFbnux0NAB3Vb1zWGCRS2bQOA0urWKtVCHCO3rUogKE06cMmJY4xjSu4oS304r6U0DhGRay1uTROaAkJc5jrPRYVEbCnABMMQahFyYEYAWLc5xFHVwYlS9GUZ8kREwzA0FVMUEdO1V21wFBUOwIFaayEEZjLjnFOtdds2ESllZeZhCMQ+Tikmmobn5/OZqIPL1rnf27aZaq2i1mqtrUmMebcbpkPe7ae3b1cRQeR1La3e7Xa77rG22+3Ol4f5cjre7AFgWWpOA4KGkI6H2yFP2nTZylA2InApkf1+eWhFnx3HTz6+fXiAdT4hwH7kH/7g23/773+8zA/jEAlhGuPl7gJu4N7lcRyw1oJkWlqOwSHc37/e7cof/OE3//x/+tQECahv7XtwChr+Sojrg+Mr3Gn3Xwl//UeJN/o/eP//7gbQ4erq8CzaXqV6u2N4s8G8wqtl+a/iu+cvvzF//kWK4XJZXZgR8hjcgnsrTRiBIiUnB66ikZHACRHREcHNAqG7M2Pc0bzUZ7cxOKrqEKOLAONawQSALCI6QPBfAyT8wrv5TSVujJFiiGaXrfxm1wbERyO2n3+CjvGrXTMhY4w50DRNWzmpNiKnJ5sXdA5k57KbpjiEbcGYhm1ZpUkA88gc0m437nejqtS2AfTUGHm4P6vqYbdnRDA3sxRiqwU6sGLWmni13howM6FLa+IS+OoMFCg5UitbK3XcHWjMrZVW11o2NawVlnkT8f0hDYxlEyJSrbvdiJm2rQKYNLlIrbXe3g4GZGYcw+G4vxIdAACAiKQWRAaAQJEouLh0i6DonHjIKSRGxm6m3z/JPuAgYggJn9zvHk8zQeiSPrx+0R8ZA8D2+LN7rQSA1tQf7TZrEaZYRda15HFw5HmexUrdmrs7cQ0SQlT0WhQB4i6uS1uLSnOzwB5CiDTGGNAd5nndtrquxQ3cEZFVG1FgzkRBzN3N1UxBwJhiz1V1dyYC4iqdM97XU8DsXYVYStntxhyDa2dReN+nzOdLCDFwME4EGBjHIXUa48N9FbF1Xd39cDiI2LrOREG1hBhubg673bitIqJNxSw+PDys64pAKSUVKNs6DFOMWYU4Uw8vREpMg6kSjpT4p1/eXbaCYDFkdygCS9uCt5vdsEzpkxdyuDmCbIcpfOvr3xWRtpW7u7evXn1xntvxONweB9caAsxzqVVCoJSCGpa6iEapbl5AWsA4nx8Y7Xd/99m//5s7NzAzBHpy1noSUfxHHf+xj/+tDrx6TQPAVIEm4mMcl/YJkWp8pfw3a+F/97P/zT/6gSFibYeMGMK7sw6Ud6QhhGXTEKDWBoZqAu5T5kdY3JsqIjBCCqzkDMgM29YOU962UtuGBGUVBBgSOKAUbQUMIeYBvfz8K8VfYnf4iDz8mreoqp0G82tJR9fjw83p9Y5ERO7EzE2kC35iRHPZqk/TkHNGBDMjADW7St9DyDlLq4COpIh1P8WPPxoRhShxiDkFREg5DONRRLoha/fC2rYtBRrHnGMq29paMQNpikwxRlUxBVVNKTyVkm66aeJKomYxZgJ0UWKaxkGkpkAYcmvKzIBMFFTMCcXNDJsaEYibmZg0InOKpTlR4BClSUppt989nZnaNnTLOauAGwKhiKQQiGNKQVVZfDpOHEMIrC69hPEHnmDu+AgAIYAjXpNv3RCBxATMXM3dCK7kqGXdYoyAqurzOqeYc867af/2bh2GITRygJRSzwgucwHy/TgxRxfdtrK1ShhwjKX5w3mZ50I0MHsnNo9TjpEBjCiJyDRNu4lETERiyB3fBEQi3kpxUea4tW7s5n1976AmXQQJIYT9fv/IW3YimqZpv9/1xXRHAGsRIgJAppxTJMLO2VJtrRVmbs0vl1NXD27bvG2PuvoAgD6Nk1p037xc7ygOcHN7q2qltNr53tKaSuJYqh2OzzjE02Ve5u18Wee57fbpNJ/vT4ERdrtDjNnRAHxbLrsDMtPusHf3z1+9GnP65je/ef9wPi/3D3//o6W2aRdj5G99++ttebhf55xgyNkda61WBNGnKbbNl7kyUB54mqa3b8/Pn734+Gvx3ZvWGrgbI3nf3fuvY0d/OP19pUP8/89x5bLgz7FYCAxBAGMYlJVTepbzy8gvztvPvgT4Dz/+ox98e7778nRayVoYRqXhdHk7jokDTNPOl82rMkIiGCIQARH2qHkFQwRgVIN11dubfP+2hGNkbvNqOSMRESgBADIECE3VQEr78CU/Aq+diPYBTvpbnJlFjbfNOchv0UWHX/yBTx+GmSOagscYyKDWbd3m/X4EADRQ1dZEVZnIRKdxf5lPtVZGSwGfPZsO++l0urw7iUhzF9HyqKPQUgoz7/f7PMSyLsw4XK+0oi5uWKVFjDFGR0CERCOyIUPKwZ1DCNrE3VtV0Ro55ciqDYEY3QCOx70YqS4pJfPQqqy1p54bYliWDdHNTKR1o/kU8+tX73a7XYy5Nb2/ezg/nAB+r58HbXWchiHltjmiInRhtVGgPKRSZgePMcYUGFlBO/Xnig/5I0505UX1M9wpVe7uBOjWiWiO0DkT5O4cA3EQNSRuVfK4NyQndsDapNbaJRy7/TikhO5GPqQxhLReloeH+63KOI61mHtpaoCBOboLYk+pvfoyxcitlZSGlIa3b96p+s2zZwCu1moViCyi21r73tmCdWr08fbIFIiCmd093F+vb8Q+ocfE45i7VXhrWkpd5o2ZwYkpns9zrZGD9yxwRBCpIQyffHIwuxwOh36DXNe1i6B340gRAGttUmshisxoCDnn4/F4uazrct+b6HUpMWz37d7Mnt2+ENFa7LKUh3OZJmWx3RjGMRPj8bivosuyAPq8zK/Py1bMNHDICvG8yU+/eHs+n9EhpWHch5CT1IWD58N4WDL4GOM4X7a7+1NrklI0xX4ay7qN09H0/8fenwZb92Z1geAanmHvfc655953+g85AgkCTpAMFuKEItVVlqggiBOK2nZ3dUTTdke39aGrOyqio6PKrmgjOkL7W5eibcmMoGKJIDihyJAgc5JIZpL5H97p3nPO3vuZ1lr94Tnv8E8y/ymSaURF+MT74b737nPO3s/Zez3rWes34O3L2yWXT/mUF5mur6+P8wnM1DFXUft4qI9/l3LYr2U8ATnjE3wxEKC/5Sg1dw1o+EpJR8hv99NnjoO+oMfH6cd/9pdevBrdOLTW3v7CCx/88IdyAXatv3waAmgidDlXh0JkvUmCpo0AAIgkG3oEhzSOkFJBDmpJFIfoWpFSAbk5HwaglloSQaQn9LunLcfz7PyqLrYAgIJpg6c8vo893tBF6bPTm6c9g8mtLsuy2Wy227E3Q1trRIR6bpWekcQihHUcx072nqZJFcA4OJrXQ85CROM4IlprKiLOk2NfW/aNNpvNEFwpWZsMQ8gVELgvLAqmqsw0DIPaYr0QbWZmzD70PiOaWrNGIsah9yKXaZpqzTlnVQOElNKak0hDJm3W2uo9h+ABXCkVoLVm3sfD4YRMzDiOm5rT0znqBDUkKzU3qeOw8eyWZTFAxI1zDlClVUBDINo4eiKy28Pisw6y2fM3+rlJjQTIhEDkGA3UtDaxFnw0s5wz+ZBqG1pbluV0OqUEzBxjjDH2TtcQotRWUZY0j9G6KL9zBOhubg7sUcR6R741ccze0xPtfuy72hAC8whoITiVFoJrVdc10W47TheAa8ltu52Y2aDVWochEDnvAhFN2/H+/YfHw9yXOnsS52sV1bMAxDiOMY7DMJrh8ZCIiNkh9WoM5GzM3GQZJ/bBnINbt+/c3Nwsy7LdXkYXBYSZj6el1uwDq2JKyST1vBgRx3HTmtZaW2ulrCL64MGDIhrDAACqcHXn6urChwgqaZlPF9tRRZb1SATqQgjD/vbV/Qc314+PzgUwPS5SFK4u9nfu3PnAh365Sst5ffXVD19tw2YM89r1OpKIjeMUYwTD7XZSE0ZOKQU/VeWLi808H1968Z6IrMvSJZ3O6Yx9nG3bR2SIn8j08I3v1D3tEHHLaiab0V/efuGXH91PqX4oz0cXX767fV3TMsPDU7t9uW358As/80sv3ObjNqi1lKHqvBmiiI2Tk9YcGxIQGRMSOffkkqvBZuPm43p1dfnq69e7/RSCE1VFIQ+MoAKiRZWYLSDBmZLzxlD4qx/IXvWJZOLHq9gSGCAAkQLCE4g1skMfXHBeUhsxBENueu/W1W4cGKimsixL964kcinXNRW16r2T2sY41FxayYRtHO2Fl/bDhKYlp9oqLmuZlxyHiS1dTNE5AsLSdM4ZyEqriq6psmcgaC0jVITS6iwi4zgysvcBAEpJIRKSgONSa0oLWG1pzscbrJVaQ+T95gKaltNJ0ikSQAVv4zhcqJCq7i42u4txnEKMIec15RaHTYfzoT1TIgEAVRjCHmA4nlaphUkH71glEKHJZozTNJaSSsqm0lImRCay86JCKN1KBp9GRjNsBj3X64U3JGLvDLmJGfEQNxT92gp5h4jBDw8e3hzmWtSf1oVcqGJiVESQGbwpV8Nyc3j44NH9JGXY7kStNa3F8pK7xPcqtaI2UmAdRrcZ424zRk/bjUdqSG27801ng6RWABuQdZUXZry8urh3dz9ELOm02frtZnSErTUAGka+dWt/5+6tEMaUqoi53vNpaOq8DzGMzoWc681hNvDjNHRrrXEcTRGAdrurlNpa5s3FyE4NikG598LVvZfuCNRcVkZclpTTEgJME4yjoeT5tH74wx9e19lApk14+eUX15KNkLwDCksSbf76+lRb+pR37S+vjHkNvssdhCpQRVMqRGGkAZrW5ZgO1wMjGzjwQ9wxmKqkmncXUwzkvavq1V+tBWuzVDJ7mqYJjM3Q+8i0rdkN2505Xds1cColSdHj/PqLL16+4513yUFVIY7eTwqIQNidHhAQgJEQPEJ8FrWeG//eseBXDkYygAb4VP7QeoMuuVXda4/rh+8/9tRevPJ3Lsf9xbaeHt4ZL7xiXWvR+cW33xEP778v5DAX5RAOMzw6Ng5DatXQ1gwp6zjtmpi0ZqqE6JCCZ8eIBmiCBuu8BMcMVoVqJhZXZ4CG0fPtXRxRd153aHe8eTABleAEVD+us8lzo0+dSgWTbosCH0lW+chxzg1VFei8sWutqZWjHEMIF9vJFEXruq6imQm2ux1AL/B3To522MRTWGIvhHdL4lqbVEFr22lA9tc3x2VZejnp7v4SiOeS8lqJKHrOCC2tPozn/qo2QKMO22BukktOtZZhGDy7mnOtpbXm/cAh9ODFzMF7APDe52VRo+1mgKnLrBO7VQWMC3Ezo1rEDMEYkDunpysYTpuBkTrDtI/Ly0sku370mBk3484HB2ibzeQ9dxoiIzIjAkqpotY1HM97ZETFLjfbPmLq+7cVicystaZK56KSmkpLZS25NTzD9PrWu9Y6jmMcPALP84rANzfHobha23E+mTI6X3JtDXqz1UBMmyQRJfShlJLWMriLcdjN8zFXGad46869ITgEZsDtOAmcLbdUNS1r9RURY4xghMDjZg8Ap2PKObvgN9tpWedlXda1lnLWc6xFhKXm1hGCzJ7IAZSccynFBMC4+/ARN2ZkhwaYCg4hhuCk6zKuK5HbbDbLzbLmDGDb7ZaZwxAROMaiYN39johKSSLrNIT5eKNAqoDIIZJ3Xk2CAxCtWruCGSLmnOd5FhGRevP4yMEPANvdiOAA/fX14fHj+9tNQOdKKWoWQkCbWms3h+ODB482mzHGmNaaUqpFc6F1nadhezqdUplDdJtxchzBHJhMExHi/mJ4x9vvvvr64/mUmkAIDtR3jNr5bkBFUEJuv4rn/d9zYJe8eiqDaAAIOZVIFAY7HNfbt+MyZwtItKqL65ovbl+0ul5fl9Ff3709zce0Ltk5aqoXF8Pjx4nRmGyzmdKydOMQ7xwFR0SguK5rSjYEmCZOab248NeHOgAguydigaoK3rP354i0jzztYymNmr02VysNDDxh+XgR7dcy3POtlp67dAzXEBhE2XkBYSR2CCqGdjwev+mHX/uTX/z2GGOX9up3ZMd8dCoYkcUY+2+GyDHQZhqJ/Tofm+cQgtS2399rpu0gtS61CpoQRAOutfQNFAAQoHPknEMy74bWWknZs+PQC3canFMTZla1//GHX+1X8bVf9A4RYVJJjVHGcQjjAIQAcHNYSivsgJBFQBq0CuwU0Epp7z2cdWs+9y2X3j9bpWP0KaX5dBiHYbOd/uHPfOhjzeYf/+LPYM9oisDdXeSvfe97PtbBf+JLP9vMzKMhqFiH6TESGsqTvXattbcg4jiRi02UCYkorXme53EcU1oAOi2kjeNgZvM8m6FoccZEtt9uXJjmJR+WLLXFIe4uLjsYIufsPE3TiGin02FZliFEAxPRMcbNMCqCNJvn+fHDB9K28zwHP6hCKVlBxNqy4prTuqZ1rbWYNECEAgJgnh2AIVqM7JyDrtah6jgiYrfnImuA6IiH0YUweO/oiZVQK4UchDD4GLvUKzP2nkyMPE5RwVprpRYGpyKtyu2ry+vr65K9aHVOo480cBN2DAjadYZ6aUJEujhmKWVzMXofEdnHoEJI/uHDmg7pzr23e+9VBYBEzJCXlJeUwVhaJ5sjMysjGIjI6XT0MXiPiFZKW47X22nnfLBWUz0N0/Yd77i7vxw/8P5XHz4utTQ7e66G7v8n50bzvxuu5NcwCD66WVLJcHlngDqzQs41xk3Kqxt1KTynfGvPZCYrHI7l5Xu3p3G4Pi6nJdWiHPTiwtdatcFr95c7+2imh+sbA+3OqM6xgjFCCKGUwuwJXQh1zcWAWhPn2AxFuqBsQ8RxxLXIbufW1uJ2+2B+3AwYnelHphSf2OGeEsnhyf7cOUccBh9KKWYq0hxj9EE0e+/+xr/4ZQD4G//8A3/yi9+u3ZedKIQAIIg4DEMHynZRYkSM43CxHTdTAArpYtN9+BRhnRcgVGkgWlLKZjZpCEFa7QU3MGFGJARUVY0+SK1oJrUa95Y5EtHf/Fcf/ohL+oYffH//4fd/1u3gvGNGk9oAeoXR0LEH4JJbbdkkhyH+xMPl+Xf4sQ9d9x/eU78UAMDMtG02436//673fOBNZvP/989//k996WchAJig4Td870+/ycF/8x/99B//PZ/VmpJjAOuJFTMBkJgROefMBAgdn02ayHvf5YKXJaXUHZDFORmGzTSNm81GtaHpNE27bbevcqNHH4cHD2FJi2MZQgSUxzfH02Gurfa+qiNoJROY9x5AS2mASuRMlECJqNa6Lnk+ZR18SiXXddq42vLNIY3DlgDpDF8zREbokBo2EJFmBsMAgGdN+cG72oQ9Qne+1l4F5nGIOaeWk2NGJDBqTUuuRA6gdYmsUgqU0rtOTYWIGIHZfAityGaK84mvbzTlJXjdbXkMpNYAnKOQREppzoV5nksp2+02xigiQxxUVcEc8zgMYH5/uWtVHz9+PI7jxcV2t9k+vn7Y6TTzPEcec1EgdsFjstJmItpOGybdbrelpnVdxbSZNpU8H0FgdzES6IOHH2aKv+4z3vno4em9v/DhBmoKrTVCD323etYu+A81ztZ+/ZujZuYcsUd2lpKG4BFL1RpoA0PLZRGBEPzjm7qsD65uTSDnDgyIuhhzrsM0VE2ttXEcc1ml9bo5OBfM6hgFVKQCRwA0H33Kkqs4B957VWBuYCJViHAIvpZS8tzd1wmhw7w/mXkhwDNFL0Q72zoDMzP61oqZMHszMm21ZtHK/Aw1gk/MVYm6TDTWet6GtNZERjNzzrWapyHGIZRcnQPvsNQ2xvE4n4hITGNgU59zNlB2hOfOKpgJIAF0/WiZSwWAvjPtP/R9+ptc23f9zMOv+dxPrU3XJZ1SXnMzZUJG4FKKsASHw45//P7ysd7hc/w/ek/90lqLqlxsx2kIX/n57/zWH/6lN/lQScXwLBb5J3/nr/sbP/Bzb3KwiRYtHkMHM/YuCyCYWS5VVZ0L221orZUqOWdR4MhIJKbkeM0JQCFZGMIwBGYTrXHA23e3CBS9Z/LS8pJWoHznzjatfl6XeXnMzNNmqBWd51qzEUzj2CseOWdm7Poay7KqmgE551597WEptWxgXVfnaLPZj5vdMPrlVL1vzlltDaCjzQkdpbUAQBc873wSZp6mYX8RSiFEI+9ao3XNKTVmK3kuJVkTH5iIcmqKQBhVtNTmPXapR2YWsdPpgEzjOE7jYGbTuKmp5nUm0DHGVgERYqBh9JhL9GEcx9Oynk7Lxc7nVFqDEIKIxOjTWpuKcw5B/OSXpQwhQuSiqbUi0kRrN/BjimClFkgp55y7KrtzIed8c3O4d+/CB1Yj5yiE0Lc1aKTql7mWUmL07CnlGbC9/NJ+aeXhw1VF1SqhZwpNKgEplDe5YT4Zw6Bb0ePj4+mlu0MrKxGeTst+H5a1jpzG4A5z14uKzeDxdT205YUL7+NY8uo9PX6wcoBSSgh8OMhu5wDjIkttECMZcJPqnDse6zhiaTWOrta62W7y45nIqUIpiQCcx17NMG2Xl76kyt7fpFnsbBKAbwJN+kQMB0/kHp/Wa1UVyXqzQlpDUHbEDlGdPe+zAuaYOxElpYWJehxEPDdhvY9EpFbMbF3nlErvWoqqSFWwDj8exzgMoWbPzEwKvmOypMsbgKqiApqKOOe852ZSpDjnEPBv/OArz1/M137RW1PK3/Rj95/+pqu2KFAVLdVq6/SoJpq3m+Hq1vYf/9zrz7/Db/u0/T97381HzBEZMBo7FC1g+hXvflv30wgudLWVb/uxc8L4tb/1XWctd0QkUmh/7Le9y86dYwUAIvqb/+QX+sF//Es+A8Ck9W2gmSkAiVQAUpFaBADI9XyNUp5FhNgzc621tdLJvDF6A72+fjQMQ85SW4qBEQ2kltK6bUPOZfDOD6PtttcH11q5vNwxDbVkIshl1VqATKytpxmJtAtoAgAToJW15Jw3ux0t2cyIIA4OCVJKy+kY/FbEOgK0l61LU2i6pOoJ1ayRPUFyYIzjfj/N85xSUgVpWAq0Zt7zqZbamokOgt5zFRZTmKtzLmdb1+QdD0MIfiw1laKbaeN5IKSSk7hKiDWX7bRRILOAXNihqnaD5tLEh/jo8cIu+TiMGxficHNzU2r1NAISANSaUz7Ny2xA3sUhjIfDIc8HLWtZF6bIAVoF6CZHACtkphBCIIJa6/Ewp7V0wrt3o3okojCOD07z3bu3ieV0OjhpQ5wAJZfjZjcBUE6WVm01ixAC2a+mS/DvNzq85smGnJ46tVSwebHTLNGHlApia41bhdOShwHIwPkgppvdyGNYUjqd6rThaTsxaghJ9dwHjxOkWmqtQK62thyUTqfNZgiOXKg+Bh9hXrMjQMRhcMvcQlQzCJEQjREMgQiQqQpMg6NqCg3AAD4OZfvXPhycQYz2BNgNIqKtXIwbU01pCcH54JmZEZ/vtM7zDIBq1klU9OSvzA4RlmWZ59nMNrtpSSsilqYAOEyTIZyOS251jN4zqfHgnScPADkn76Kqdf1XNFNrhBSCq4hAZGBSpAt8PD8vf/y3vICIrWop+cs/a/edP3Psv/+mn/jF3/uOW+iDalcp9IgNwBzauIHdPjx9h9/xLh7iZjOF3/6pu5zrD33ojLD5HP+P2L2tVGMEzyRwFuOSNCuogj0NhQAgUpnRzIgcdbVOlQ5P7CTlp6EQnnRRGE2lGggCA4giaKu9tIwIrYFZU9VeaWaHJdeuugpAZhKi9x4fPlqkAXokcqqW5qU1ZWRVPc3ZOcfsl0c32+329v7iMJ96gU6tgAFAMxDRqoal1mEzaNXTeqpVTNmHSA6tQKvQWis1TWPY7UZES6mWvEr0NVcRI2LvqRlIk1qrqil7UEVEIidSDRARa4aU2rIUZH6SESMiNnEdAYoAxI7Y55RKqZvRt0qlloqNiJ2TVsGTNyMVallVIC1rCMMQwmbabbZ0deHUWpy8avNuAICcig9TDL5kjTHGMDDFEIaHD2+GIJvNCCiIVtsSojFTjO7hg2vTbOrB4N7tO8dTmk+lVslz2+7iMHgAy7mIWJcNno/Lg4eLKoQAg98GvynreippmgYiKKWIiA+cy1zbuts70Xa1n/CSj4d5XRsYpLXV+vE9f3+NAxHQnmGvn3waAWOV9uhReenenl3xnnJeHToaWxYm9AgcQq267vwkqz08QK7pHW+/Z5qvPB0OyxRjjIOZllLWVF30yKwg8wzjNlYp4ziItHEcrw85BL/MJ+c8AKgqM3rPtVQj8YzMtKYsFdKyjsM2LKcsHQb4yV0tHJzBhgYIRPS0izLPs3dnKyhEKCnHGJ5/ZXC+64ADQGvNPbGqMLPeCelS8vO8llJ2u10IsCyr8xJCUFxqreMYXfBEwITsHRpJrWf5PwYi1xVRiSCEkNKp74uRqLdZc33e8riZ4BPLFvzDn3vnW37swflvLKnOx/mkGMfNjqgYtJRBLZd8fPoOL9y9qsWq2HYzDVF+72ff/Z6fPueYy7KcTgfe7+LgU0rdSrELDn/zD/3i03f46s97G9M5SJMhOKCuOQGETCjtG/7Z+54e/Ed/x6cBgJo5ZjNVAWAgdGCiqtpaStk517nvvSZQa21iIhWRLy8vl2VZlgNgffGlO5scToc8QkSgYuVwmFV1jJMploZNDTUfDjfexe12y/NMRrWueZl9YARTtCrCzOj4dDo555xjUTUzNoeIIYTjsXbvEWQ1aKdTVtXgp9ZEBYjIsfdARTRDzlmJmIiaQjfAEhExbU0f3L9JKYnpuI3DMDTR1pamtYojdEyghqWambZmpanJimgIzjmH4EsWbc27uC6V0EGAaRxrzdiVFKw1KcwmtS5LrbWWVg0hpTVU3O32p9NpmdO6rtvttNmOzt2sq1xeOefVe1LVwXsRAyx37l6B2jzPZU1hO+ScT6cUhjFGfzotKafLy3G73aZU1nVdlpOjHZMLnpclP7h/2G0nqaXWOuspTuwCTzyOQ0h5Bqwx+lKc9wwoYZDNLl7sbt1cz/fvH24On9gH/OMOAujSTNQESoPTKd262p7mEyogehhxua5YQa2+cOEfPLLg5k0k9mGZywc/+Prl3rHJNPjrxwkpcQDvWQDyXH3gi8uLUg+Hw7wbjQgY5XA4DgOXVpsAW7u42OSSWuviJuA77601z6FRmY+wHR0rdIVO0k9uG8UBOMJmRqYqsBqCg4HREFpt+Tv+zfXHnEUiZrJSu6bD3/6hV37lMV/1+XeZ1LuQ0sLMaApSRPQH3nf8lQcDwFe8exvdPpeVyPcN+DjFOA7zegIj57njjXsB/u/99Npf9dVfeDmOA6iJqA+u5hbjM8bhsIl5XkPw7NlH2+/8suTN6LtN1dPDjkuNPjhHxhaif95dPpUCTA0wS6PIqq2QBffchgPgq77grYZWmzgC733TCs2ICJli9CKWnqNd/qnf9alaVlDdbMYltZSKmY3j6AYvCiaiqsNZbRTIIZCnWuuSc1rFdBxCzpkdbLYDoaUl7zaXzp3m+TQMcfBjbepDLKClFQIbwmCmu73fXvCarol1TcfWMgWc13WYRkDKOd+5203czXvXWkNoiJTzvK41p9JsAnBDdGCcUxuiA/I5l1ytlMbMRlpLJXKBw2orMohUEaEQmWKWXEpelqX7TadS/LSrwsdDlmYxouakACF655z2rrRDlSZK4zCI1FIKogFhLaJgDjWl1JpLRTxxc+Yctyy5cpNVdN7ut0Dh4eNlXRo6F0e7OZ1UtZWqBgJH9Hrr9ubB6/M8H0NwNnpmnOfZe08EqVRmfnx8vC5wJ8Rhim5OpkkFLrZjlXI8rsMw7nabtMwlQ9iUu/cuX33lQQgkpkB4+/bt0+EGMJg0ATXTlDMRbTajmTFn7z0S1GoAubXr23e2xxPcHBme+NQjPGGx/5pzoqcUgPyGUrsCQAMAlZDEEVTF1w6lGN+9vMVxPh5WN/tNGNwuPHhwyCJX+wmhQS0iZX/JOcsrD1v06D0CUs3qDG6OcufORZN0/365uFhefstbf/mXf7k0MIU7t0Zil1IRQaQ2bEi7iQqAmU1TnOe8ndjAGO2UAAZ3KtoMGICoNQUC/6Tzrmep+E9cNv0GDZunPGVAZocibwYB7/Fbzbpz8Ec95pt/+P6f/u1v6wBGIkekqvodP/bwY73nt/3o6U980VuhmKqEEKZpQsRSiojVWpGMmAP1Vs+zcyPCWuvZvJgcObbnZB2d12ng1ggJXNCUSozRh7Pf7tPD8ppAzTnXWn/Mnv3p7r2reh5918mtNWT+zh95VnP85n/9ywDwBz/3bm4NmACAQJo0lC79A9/4L58lhn/9+38RAL7y3bdTKqqm2lrrZL6zFAbiuQQRQmgip2Xp2lY+qKyd14ghsnPE1Gmh4Ij3ux0AeO8ZtRMf53nmEb33p/lw+/atu3fvPnz4sDWZ59lM/RDHcXQ+EgkjOOdKbQCiCuxs5wYiqgLekUyhqT8dFzDbTMEHMlAi2u126XouLUOTEIZmUNcsT5SeVFWbnTlLis65cRyXtYhkEX348NE4jk9vud7hrU1yqSKNiNg7dsGURKqZhuBCcL3c7IJfj3OfTBGpteqqnsh7f3Msw0jkMadWG6iQAmlR4rMu+jhOIdI4ucAIKHfv7hAtl7VWJYrOU/+Kh4EePHiw3+8uL/n1166Djy+9dO/hw0dSWxxDmyuS65ZNV7ev0rqOw+Scnzah1orQwKpZYwc5F1EERLUKiN3UrMMw2FG/kztknRm3W3jtNaOOFdbOye3Y20/MDvFNIoejbidgDNByyQtuBn+5h1w0pSSlbbchpXI8ro4QEBjg7q3bH3r19VZgMxJac46ncahtBbNlPiDC3bt+PtXXXv3l7SacjkxufXxYxwFiBCgoheYj+iilgmcAIDUcBicGMTq1QKEutVVNeo5/weA5eyUDfdJjRuQ3l4z8dxwf3XaZGL7lxx58+088fpNXDlNERNH27T/+4Dt/8mMe+df+6QeXteTUOqTqW3/0Y4bC80eTAWit2UzOnsu5IXAcPPHZkiXn/HxaJ2BVq4AgWgd4lJa/7kte7H/99h99EKINUYiSycExxuCmIXp29BxxsbOmYozb7fS8QgQAsIM4OGLrhvF933ecD1/267cfcfLf8WP3W6sixUy0Q9za2qSota/5ord9xMHf+qMPa2lPsW/9eXiKtey749bauq5pXlWVwErK3cSOCIbgxyEgmkg1aOxo2oxdJaxv0Ld97CZieCq4y+xEBIFrrd1IvqRcUiYiEDudTgZVrQCoDzgOboq0Hd3lLkyD7Law3/vdPsQB1VrOdVlzq2aGtUrOtVWttZVSOxaPmYHOjjqtNTNUMRVoggj+eMjHw8wcEEiallYVjJmdj84PapRTS2vtesXs0Hv2gXtM7H3b/hFMHoFba3NKh2VBNOe949Cqzqd0nEspqgo1N21mZt777Tg5pHmej8fjdhfj4BC1SS01tdaalFJKyRnMwITAxsGNg4uBtpshDBSiq2rr0h68fvP6g2tEGqZooGs6DdF5h8Qimko9NUnsjBmcR++520b2f+wA0RBlHOMZrQ9tuxs6EwLP0Gj6pBKWnx+EgYAYwCGotXmZUyoIsUmlAAAagmsNajFRLhm22/Dqq69PU3zhxYlRARSwBW/OwcWF9x4QIUYeN4AM7Nvmkm7d3oPBukJeeV3NQAFbKlLkzNzussG1NiB3OM3sod/tMQY4y0Bw90IQPfusIXLXjvyETMIbcsNzT9kaPtfb+srPuQzRhRBMWkrpm370XNhARIX2/Hl8+W/Y93Wvx6xve8858H3bex7+nk8JiPx3ntt3/6F338k5MXNwTqR+x4+f39ZA2GFNtbNWemI4DEOXTXXOAYJYs+cw+6rNzESqMguYmNVWsTy7jba7IcROUcBcwEw7EPf5k/+BX6hf/vm3u/POP/yp0/PTMs83zrlhCKpaq5hpjLFZQ8T/7HP3PaT+vR87X9rf/6nTH/y826rNEQMYgVmrArCm9Q+9+05Hsfytf/7BfvA3/8jrf+BzrrqIoZmUUoiaKrRWgx+fzjMiROfVw5pmJgIxJvSBRVpJTUSVLIaBDAjMpIEqqErNjoCIDoclBJfScn19DQDH43GI0xCGGKOtZV1XIhpCQIRWahgZgLRJ0QxOAABNCAkhbSb2LhpZyaICKbd1SUWRiJEol4ZIyETWmaFnFBTSma9tpqfTUqQbeBAQqZIokPMiwo4VrDY1E0RWJAED9NLQR/aOmRGMDEREUslk54zJeSKHJNxEtLUY0KAggWPvMiOBZ9zttvNyAlCp0Iq2QdGEEGIIPd8fp9jvolqLqiK0UtpmM7XWcln3+40IzstNHMIOtkze8Zghn+bmko3Rx+hUSs751q1b0+gB1DM6RwDoeBynyIxmYt0opta+oDrn6EwjaB1Wud1OMaaSwRQIg1pDNNVPQNZjH08JQkQQzDuYIkUGNs2twgq5Qoy+mipYHMnkjDc4HctmG0/HfOvWbtrvX33leprMQDondYix1rrMaRjcduJ5zoIJ/ebq1q5mTWttTQIDeZjnBghVIQCJ1IZWK4SgMWKAkA85JwAHzqBZ885XgbMZ9LPr+YS1VnpPGTpNB5HNANH+zk8+q+X25RQR15LhmespVCndLu7ZhIKaQWBGImv6X/zG/d/9NzdP5trKc/HrK79gzxxDCJ289Xwi1rT66Jr4nHNptdZqhsjkmXpTdRg25HBd1+cvo7VWWrVSnSshDOxpSc8Kf4gYfTjThE1KKdoqIjHif/4bL/7+vzlf7Hf+8EfPW0tNoj3Ks0htTZ3TzWbMOZeS0cB7/+Wff/WdP/w0QVYRYQIiB9oLCVJK7iKmu83mj33Ry3/rB8+g8Z7fmFmtTax4F51zMXpGMAMiYNcVsyWEcGu/vzkuteWUdBqI2Jg7ydW8o1KKZ4eInoGZeyLJHs0EgGKMfVPWoX+37lwh0mLLGP1ms5mmkQku9tuUMwHXprXmQs17ZiJVc0wIiKBSu1s0SMFarKN2AQCRsJtEQ0NEESMCZjYVABjHUVVb05QqM+fWmJ0YLEvabjoBRppKrRWBY+z28AIgaC5pIRqC96qaSss519Y2o0dEYiZCAoTAMYzMLLaMo2dGZBwqbkYgIh/1xe2+SVnXVbXW0pzHGP3uYrOup65HB+BVtZRmZirWQ9U0TbXWnFMtZoAilSheXx9KVlTnkB1bN04InhB0iAw+dP0uJGMamLGnfoBAyE9BbMzQt+TwRN2DiGL0917Y/vIHT2BPjIHPC/ZH38P9qsabB8QK4gAAgdmGMXgmba2URhBztpzFxnZxsX386NBANls/z7XWOm7Dw+tjYLjYu1pah7EfDnkYdBzjuqTVGiI5xw/uS86Ht75lP0xWtHjipq7NVqVMg2u1MVKnWjJDE/Fk5GDjQRR4wCw2Jwi+XDePRI5YVUVbL3uyA/lEtFfc01l+ssmC53T54Gu/+C3DMBC6WnMTe95JLrcKUJ8X5e0K7MRnBbrnp773Fp/+F5nQrCPCRFSeA+F3XGuM0cxUu9iiOUdDHJoUJFLoLs/PXuJcMLPO3LInKo1/90fOdaXf/7nTOI5ogHQGRYfgzFBEEJ1z/Afefevv/OijN5mjcTOpamlVJDVRNW1FmlYCjD4AgKq2/Cz4Ej4rWzZVMWutOeekVvoVghxIhmQEbGZoRHw+SR8455xzFRHHRmSOjQgucXM8NQBVa9GHGHbdjLTvRsdxDCH4J2Yj0zQ5T+uy3Nw8vnvnLZvN5nA4vfziiyGEO7duPXj0CM0uLi52uy2YpJSmwXVVGFOsRcyhcw7JEUEAKE37PHumpKWJSRVyvubC7KIPItJB4/yELIRPFjpmT2Q1l94Hy6WePVUK7LYDB5/nkxloE/boPKFIzc3MiF0uKzvbTFEEujImORZpwzB4T4CitTi2cRzGccxFNttYSpnX2VS3W2ZmhRQG9sbeRTVBNEQjtJpLKeJc606WzpPjoKrSinO+wxvkTOlDZi8ipnI8LDkDEDjnpmH0zggUwJi55WLatMO5z3R7qTV37++zfbYhIQMoACH6lJIqiZhZZea3vOXi8YPTvJyFv54SIkQ+ARnQm+woiRDNmsCazLPw4AxZUKxvD4hOS3XRsQNmUATnQJHyWuIQ0lqKtBfuXD16+Dh4cB5KNefBeafWlrVuNpvbt8qaSimtVUkLELsmsJSCBEwesCFo9JxzQ8/MHB3Mc24Vbu3h5be/FQg/+OHXHz1KMVgptSn0BI6IzPRjtC1+1cO9+Z/7qrWkVRUQfXsODdVlWZ/vvfrARN5MRBRQn3/sz7TsZ4P6SqWqrbbn/1JyI6xdQfbJPkIRubZsADWlZW3M3JnhfTCQoXPD0Jkwhm84K2IDFETuNYhWEyIgEYETURMFtf/FZw//4KfTc6cHX/MlL/ztf/za+bq8N7Ocap+NXrGquYQYQgioPVd6tjadE17gbkbcr8IzGxEA5Jyfr/j26EAkiMyEZpbLqgLeIYCqKRJMm4GZzaQ122wHdltAHUII0XWDjlJKTachBAb0xNFzhzoPw6CqVxd7rW03bYY44Nb2252qEgGjERGhmrZSUlpOIXiApgqAjR0Sd5ZCc+TQ8CkRKETaQTRtrUhRUFXv6cwiMCFCM2EO/SvuyPJSiqq1UgGgSHPOgZEJgINSSozucr8vpfS1g1DJ4TTFrv3BzD6ASK61IkmIzgDOEHFUk2zaPAFDsaaOwaS1kk3qEOI0BWYust5c3/TeRQzR0bk1sS65CaW1lZIALUbf7zoz1KYAUKWIiCMmdqqABDzQ7Vs+FzNwtdYQdL/b1pabpjgMqooAJgLIggbAKpmIejQUkS6F3eGo61JCgLRWRGqt70DLdjf6ALz0mQdiUAH9Vflg/nsNBUIAU8kFbqSVbN4TMbZWyNM4xnVdb67X7eSIeZkzEjAAIK5riTGa6IdeebwdvWjdbMd1yb3vF9yQUsqpXuwhBJAiJXMuWK2xB0FwvR/rSFvhODgmESHvb04lBH755SmMQcpctN67M731pdu/+ODR8bDeHECaAgGSkzP++BMw3FOyi50H6HPP6t/8wVe+8nMu5zV572MY1ufcQph5GDw9n0kCOEetqVkXzX6+7UvPNDMA1nX17PodKSJPzZr7eMLSfwa1U23eOe+9qpZcQgjkw1d+4cW3/tABAP7Wv3jwhz53Ykb0DgDQ4Pn+UmtFpAJAaIHISbPOV41hFNH+WZvN5g+8+3KaJrVWpPjon7+sx49uzv2cUr73p+p//u6LYRg2YSildJs6Zo7PRWdUc+gM4Nt/9OHv/nTvfeiRovcTcl6f51uO43iGDYHhk4YyoNy/f3+aJue8KphJrU1VANVaCdGF4B2jnS2wraPtttttd4LvjYNxHEWk5jKE8S0vvTwOUbXtttvj8VhL7hKHIbqUElGv6ENrhUBE1UydI2RsWrWCkUVyIUTVtqYFEK9uXWw35Onw4ddXRxQcg4rWFth1uVZBUUVm8M4BaFdX7BeuqrvdrhYRrSFwrgnAD9EPQ0DcENH2YlNrpVWdQ+d5s9kQUc1rLmUYI5Ob17TZjDE45wjU/OCCJ0BtZY3TBs0Q8WK7d34oua1lrSXvdrtaa79dpQEw1qqnY45jQHBm2KqZ1Ritr3ZSBQCGYQSA0+mkAMMwiQiDvfDilRqL2P37D2tbiMe2rFlKDEFaC0zd40eqCiH7Z/sk1Y6sNyKN0dfaEFnExjGqtg7dNUuAwAwqYKDMqGL2Ceopv8kQNQD24AygStVFxglGH4zXlGXawOW4f/3VmyrYqrVCflAzEEMxeHyTBw/bzeZ4M19cQpUipsxYWnVgVaAueV5gf+mcNz9Aanj/kYh5Me9cKrUOA5UCOiqitQohqAtUVQMge0+spFZFl/X4trcOucSbQ3v4ID++qbU2AGIXpaWPf5EfbzgzJDJQ7GGHEBDxD37O+B3vORfmDqfZsUegnN/oVMAu12bPxbjTvLpMuaydx07PpeXeM+KzEFVzgUAx+lrTNG3tuUx3O1zkWpZ1jZFybdraOEwEOieJzXJq3k2M4IyW9AYjp3XNUSGEYV3Xv/vjz06V3HCOZdK7Q+SGqKoVipgA2Xf9xA0AfN3vegc6XFJNJZ/W9D0//mxyl7Veha2KfO9PzQDw93/08BVfcLs6Eq1IBrWo0Lf86PXT45uC8/YtP3QfAL7vvfX3/aY9k8/LkZl3m21r7VuewxhNBIdSTAEdiqpzLgbXGng/9c5DaxURVa0HkZyzNqAQSakHYpGm4BhDWqoqRM+MjujM866SFNhAuFgpReQwTdPxsLB4QszLXEsZvCsqqVQAqFVDCIhspmikqqLAhEnmxGtrjZAVrNbrcRzvvTSwA2mGiNeH5fbtDXufa22wmloXjkprjjESUbVKnrEBQZ2ihgtKK4yRYhxFZLN167rGiUspOc27cZh4cIQU2czKmmDytg3DNFzPRz+6LVfnungaMHsAKEWq2tY5RFOuUhfENjh0ALuwZRdq5dJUlJRxSevhlGKkm6VsUK1a8LzdTAayLlqLhtB6Ey+EEGNk8jUVEfNjQDOy6givtr4U81amgPuwcY5aa7UV5500MdPe4OllnyoCQKXOCjpNYyRHkNDaxTaamRgi+LpqMnvHO8cff89qwEC1NkDcGMyfHGOUZ4NBY0ArlQhIIQbQJtCkVBhHqk2X9RgjmhkQgIfDAtNg3gepaXBgCmh1u3V5bjiymQI4QliTmQUVMCnHA/DVBE0ReYyaS92MbnBOpKnqdhcBQcHCAOwQZ77cb+dyglV5cORY+7znNoQQrnA7wssvja3iw0fL/deTgwEABARBDdWekOtAAcGDdVuVj9xRf0Qr9dxFQYDz9vFcQHwW477nF+rv/w0bg0ZM3/VT89Pfz/MMANvNxdPffPdPnr7iC26H2ClW7Tt+9FkrJnoch2cJ4D/82fYVX3BbWtvtdq3qt7/nGUDH8Oxf3CVbADmt6/FmMY+JkBCj32zGIQT3/E78W3/k9FWftwvORx/jGzPNYOgUmpk3/PZ/fQKAP/27Xl5zBQCa/P/4z8/b4f/h+9//1b/1bmkNjL7nx59d5nvql4ZIxAbPzUnVyuZCCB5BvfvGf/Xs/L/q8+8SKAM//U1eUxhsmiYRKa1+2489q1H+0S98MaVFDMh55AAiKdUKxsyGoKbecwiB2ZlZSiml5L3Py2pBePC11pJzV8c4zbNzHpE69iiEgGilpOPpprcCTFRVTqdTb0CllLrUft/OC1ivTgC0jo1RPXtU9S3e4H2R1qrE6DbDCMQ9Vb9192Jd15xlLBC9Mssm+F3Yv/5oJcRxHKW2UhoTjtGVUrwfQhyJkBlv374K0dWUEfF0/Zi9207bQt1DxrzjEAI5FJG43Q5DbK1VaRvvN9stQDln3LU8bWHHGJsIIiI7JuyGv0iOmb0PiASk81J63N/vxs1uu6n5dHN0zL1QKKbLkmoF5zmXpiY9CfDOkDkEj0/MdYPzPYsk76gLwiP2IgmTI99l21m0mSIAqopqY/KEDoyagRgSglg3xQEDU0ARGYfp4qIcT111Ezpu8RPSJXiTYQCqGrxDsBgATYiwNt1uY8651uy9Q7acGwDE6DajOx5LdEIM4xQcYanVObe98KelXF6Gm0MxhTCCNFBBFV5yw5ubYQhPPxFQAXSM3hGKCAGaopm1qpuLXa65iozBG9qac1MJITiOrap1exJnzHD3henOXX78+CYXOR6gCqCBKKE5AwZazSrAWQXnzcdHImzMoOQKlP/Ib731jf/i/Nx+10/Ov/KV2gQASl6//HMuvvM958D3bf/6o7Rlv/LdVyFyHNxXvvvKOfeNP3T/Yx0JAOu6IuI4TEQECg7Je887OJVERNvNtJvG7TR5R6MPf+qL7vz1Hzwz8L75Rz4Kv+XP/Y6XrjY7ACilfMMPnT/xr33/h//Mb3uxqQ7j8LW//eVv+Kfn9u43/Yv7v/IdAMBx1+N7dj9+1498dP7UV33ePUIDpBCeTew/em/+6Ad//t2UkiF5H3sdDVWtmQvxYrO7WR6lnE2EkAUbETEgAQbibtBrqiVnqY2IlCTGTad5INEYfBwDEJbS6d1YawGw6EMua8rLxcWFPVEAOj/DBoZIAJ4RTOgMMkciQ6YzpZpcjOi9N0Otra9GFWZgjQN6HoMLIMpk5tEPlymlwYdaeF11s9mIwc3Nzc1p3l0MKS9Lqi/euz0Mg4gQKQs77wbHjAHJBh9Um0HzblSRmnMrhRjGaXI8MmF+undkcnQO68xshqVke9KjM7Xe4F7XjEiOAxpoq8559o4BHLIJbHeXBjKvRyIAhGEzhuBqrYxsJo64teY9d7zLWZ7UMRECECKQ56ew+ScVp3MRQ1ScE2CShlUMkdBREbW1iAgx1Hr+Ipg8ItZa/RAv9pubmwMgIPInm5zbBwLUZiEiqAFQaTIE7B32jhN7AoxFEUupTTHcvbU9nU7ecSklKXiPN8eyG+Hunf3j65vthnMTZnZMy1KHTYRlqaqakxkEB2AQiWrTIbCB5CzmgOgMq0a0eZ3BIxA2FWQC7FYfICJASgxmqlaB0Dl3+x4TDjnZvMjxptwcFaz7CsRWBYAJSe0ZSPmpksjzSZU7S4Lb2YzKrOOQpeT65Z8zfed7PqbaVWBnZmQwbsff9xs3f+/ffJSICQBf+9teGAdHKN6RCjDSRz3s6eiIPABcl1xLmeKw3136S/zQo/tEeHmxZzRtIirTMPrtm1WX/29f8bkvXN7ptXxpb1hbX9hfndYVnXvz8+n6hjFsFEyN/9PfvPmffvyjXyYA/Jnf/s7oPKD0KufX/c6X/4cf+EjtxafjD//mWzHGosDBbYaIwLUUBhhC3Azj5XY7eLiBG+cckxM5OwiO43haFwkxOG+iJuq97/qDw7BNeemw507gSTUhovcsUnNeWyv9Ue3Kz8GPvQ2NeG6P1JZrrSKtd8CRnZk5Fxw7EcmlDMPQK7wdMQcdfTV5UMstO+fCSJ6DI6i5IPjgxDluHpyLMZCq2i5ud5uc1yZlGmP0vBwPtZTbt2/Hi62CIWJQArSO+zLT0lPdIdaaaxPMS625tUZDqIQqwszsvXYRFVUAWtfcWuvb884fFWnrvJBzm8k5AkfsiKDp8fpmXosIlFRTWVNuw8TexxjGUrNUiUMg8sHxsixSs5Q6xEhoSGDaem8QyUJ0Zx8PRLBz8qjau8ZUsnAgANTeKDZQ1TQnQI0xIpEamGnH1DBSyToNjASmwI6b1k9Uz/RNhsLZuAcBSqmiUMVUQZOE4IG0VUHUYYiqqkvp98But1nXdU1weRlPax63fPNYjqebzSa88mq5uhrWVEunSuBKjqgTKxUcAxPktLoAAGomqk9zNxLDeZ5rhWHjRXWVsr3YYTM1bNKQEABr637oqK1lKbtpL2Ja0zi43Wa61zTXcjyup5O12gBU3qgq/lHb62eXVzQHoP/yh//pF37eb/3v3/ffPX/EV3/aX3z+v9/0vv/uqz/tL37TG4/5WEe+yew/f3B/z3+XV/27vNubvEk/7BN78h/3+F/Vwf9x/M9ofMOX/zcdRuO9b60Hc3yiXXL+mZHElIgUoeRWpXWGQl4TM0/T5AOLdBMFM7MxhiqKFH7p/a9fPwbHA+Ab9iWfpIGIhLZxbvA+zytAR6TB6IOZiIgBeIYQXWdq5VMjopu53t5HAROpwzAAKrVwPB5D8Pv97tHjR1dX+y7/XKUx45kCb+icq6nUCpstOUcISmihr7tVewO2qO3ubnn0N+m4u7joCJaeu/ZanIh1tzJ0nJdKRH2izEyxjePADk/H3OMvovmAf/nnfle/3n/7V3//13/913/DN3zDn/7Tf7oXiBERAQERQB2A/uC//if/9OqffbLn/VeOj4iM/+FP4D+O/zj+/cbf/or/tkojIj2DMZmIVM4oK+va8b0eCSYipTUiCmFwjjp0zEw6Bz9GT0SeOFebNv7ho+Mvvm81cOzaJ7toCAAA5Aijg4thTPPJDIoCI46MIQQALbUAwBB7cVlR/bKuzAhgRDgMYVlyjM6k7S83NzczKLzlLXdeffUBInhPzk+n06kjiL33jthadc41ySoaPQ7D4AhKKbmKKgyB5qrj1TDd2l2fjuwdAIiIauvzBkA5lVp1HKeLiwukMs/rzfVKyMy+q4Sp6jCAGSCiczwM4b/+15/fr/ZpNPy6r/s651zH5LknVN3zxuc/wKy/yfiPofA/jv95jeijNjUFz67WigYECNjNUamUAqLB+waqqiF655oKeGLvuBZptdVaa8veMwXvmVptZq5J2myDd602EwFAhk+EKsGbDYSm4gS6ematva8Dqan3FoI3EFUFo1a11FZLmyanKt15OC95O8VSyjj5V16Zr644xviBDzzY7/261tNJry5BG1QBMK0lMwEibJnNsBZwZKqaaxUwH7g2ccTeaSlptK1zTs2YGY0aE5ohMCMSEeeKKLWuaz2ZcpwC05hTWdcyjnGz2baapRkzG7GKf3q5T+uGz8+BOwtlAABAh/j18d1/6q+u63o6nYh4v99vt9t1XR89esTR3b11JSntxoGIAE3UyLtHc3799derqPd+u92OMUgt0xib+sPhcHl5UWo+Ho+baXs4HL7rpz56F+J7v+7/w1CJ3bS9rEVLKT64WjNoMWXv/ZIXZIqD34zTepqlNkfeEM4CNsEjop7NDDDnnFp1zg0hamstFY/kx8F7//jmmoiGYVrXVc289688Pjx8fL2kYsCpqAH99Vd/Zz+r//Wn/stS0q3b+9v7LUm+s51uXV1s8eK0zgrCgYkBREFRVZesDx8/VLY4hiKt5TI4f+fW3draZprQ4HRziCGMIeY17Xa74/GIiJvNGEK4WU43h9NSahaZPF5eXsYYD6ebpsLMuRUiSq11nGaVFkJQ1TWnzWYTJKaU4hiIqEhZ85JSGsfh0fGmy/GWXDuKyhQ3m83heL3b7cY4dYRzSVm15ZzXvI7jhEzSTMRKaU0thNB3EzWnbuWMdtb33+99zvV0Wj7/N7/7P/ncL/z83/ib3/HCy2wQ71ytx2N0HQfYiMM6z/fv3x9v7e/evQv7Kzid8rIAYWsFAAIFH2JdTq0VYgh+wGHMy/J9//yf/MD3/9Of+vmffXx9vb+6ury89C4eDwcDWMvKzE3l5nT03g3TmFJqdb116844bGqt/QauLXehh9Yas48uElFa1lrz1dXVg9N8//VHPm4AwHu+dbmtuamINPPeM1r0Tmr13pdUzQwcbrfbL/n//rl+b/TZI6LofMJkZkxeQRHQRFsuzDyGCJ6qive+qaRUEDGvqxk6ZsfsGzEjEz3RlqeUlnHc7Xe7m0Mqn2RrpOeHKuRcLzZDrcIASDR4SzWrtnGKIrKumQDGMfqgpdQxBgRwjvKS1jUHx/Oity43y5wO18sYw/FGiLwjWI4n53gYY61SSmliKgCS9peTtqV7iuRVycM0uf5IDh4XK6radVe990WqaWdtttya87TdRQMp5USwaaqmxs75oKUCR/WjGkPLrXVrHajPX+yvTP4cIpg6ADSsps86oTWV9ZTyUi62Gw+kJTktAco07U6nk0htKrvtFEPwarXWK8+22752/TAMIw/cyFpVAWs17bZjbaU3i0/r/LFC4f/2d71ztxkjX3S/uiyZPAkAsisGu4tNSktDa63kpS2lgpEBo4OuhFhziSFshtGzI1KxtpZaWyPX5lrPPT7RYG0MsVQBa0MYow/zuqD3Q3QxkBkDuXHg+fSsfbTduOnWfoqBWg7EYO7B68e2B9EqIihGRGDUa7rZLEn15GMc2zwvS9IB5rpSg1xKbnW1esrV0gnUHklKknPOcGTvY5WWU0m1tda2QzioMqOBEAGAiVZV3WwvDsej956ZH988ds7t93tVXaVy8LVK9LgZNgZUDSrS1eWdw+GQUwKA7TR479d1NZDbl5eI6BwdjzcxRvQoGddSwzCIyX6zXXKS1JAdCIKOKOsQPCIIQBxHR/Do4X1G+JxP/21f/MVf/EW/9bfcunVpooDaWl2WxQ6Pa1rJcwxuXdbDkt0w3XrLi9vLPajdfPhD28tL3m3AlBrXUrJprYk84TAB4pKTPpod4H/6X/zeL/uy392W9G/f+wt/7+//g+/5gX98qOnOyy/f2t06vnLc7LbXx8O4mTabTVpWE5viVrNwhOijV9BSYZpUFZ1Kl3xw4tlP243IUJpcxE27qJ0yvB2n7bTZ3B0fP3yUCFNK+83WEa/rWkpKWsi7EeN+f/vpvUFiWzcCwJyWaZpqlVrrECdVyDlvpr1HcOCqSSAegxdDT4KI7Deq2nPJ5j07d1zmaZrITtFLybvR3XrhzuHm8UIMqh+9W4ifQGV8AyAUQwA9pRKdI6kikusYfHWhlbSgceBxzjnP9aXbY3EgtZiBAsTBoZIZUs1zmZ1jYDgtxXsYAqtqUiQRojwGdoDO+cNc4mZqpXZcwbI2QpAG86kO3i2WMOtuciG4uRTNUqvQGEfD4/HYWtvv970FH8Lkxul0XPO6VkFpiojDMCHZmqpjBICWGxlE/yy+ETACPjUwQARDcHbWlQSDNzR8OfhhMwiIC94F74Lz3l8ShWGcjydHbvSBDMqcDHQYBgK62u/Bc24y+BC8xzCAiWfXVEDEe++9B6I/8p+89I3/8iOlYf/L3/OpzRRLoYEcoXPOI7QCZoACBIaIVWVNpWntOES0XtvF3r9j70KMHHwvhaqSdmc1Q+ecY6e1FZMijczRGKzJopWZaQhzzeTt4mKzZ0fOA9C6PIPFoNXWBAY/xEFqXXKKMZ6W+UkJo5PhCRGJHLIDgNLquq7dKKZIm9M6IOY5lVabakfqaWvNeM1VRPC8U2gi0tn7tVbV1qnfIlWk9RZwqdLL0h1t1yXmY4zRbdSatqbamkrKaVkWBetAqM5ZRJPuFTcMwzrPqla6sVcth5uT9z7GqKhmUKR5FyqBahmGTVrLFMdUqqPoiB+9+rDm5fd92Zf9L//cn/nMt3yqtlJKOR6PIpWIfHCb3RaIuvwiEIWJ9uPWDxsfxwoKzLTd0rhBRGCEJt4EEEAVRAEVTAy1lVpKu/6lD27GidTe8da3/YX//f/uq//o13zX//Td3/f9//h9733vbrdL6wIqRNxFyUQkSdvc3jjnHjx44L2ftpvD6VSlYW3MbNxRI7krhqSUgM6wwVJKqmW0UcyAMJfVQIuUlDQta2m1lAK18eCOx2dYLgVTMxD1PqqCNOtuf51jHmM00qpiis5TqdKkisgwxkiY1yRNXQhTCC74lNK6rhebIZcWos9p2e2m3Q4fHZ+ztfyICPYJLG3RmZAmAE2VCINzzuOaViYKwRVt0hSsMSozrMd5HAOOIeeiCmSi2nIGF2EzDCU3RNzvYynldCoxIqihg+NRtpN4RrB2eRHXdSEPjEZsZGfCKpGSJ2CPXJg8MBERMgAQEqV5ZeYeTDqGqUtbdQ3dVLTzfcGMmX3g4DwDF2rRO/+8yd1Z/vYpDQ8Ae93wyZQ+P7njFKZpHMchurDZbESbaovj5Aw98ThNYxwAtJaSUsUI7Dgi77f7R4cbNpJSHbE0BdbuN98z3m4t/8e++K0d2AEAjOacM9AGWtu6nkqs1RObmYCBUVPp92JrhRxH50IIzN6aKAgQmqoRMjN7ZwBFBQFyq8jkOSpIaRWloIGRrTUvcw7OEeDxOPdpzVY9oxsZkZCNEeMwPp2K3XYUkRDctB1PBy0ik/OgDZCRAbo9NyKR994XM2SSHqfA/BA7E6aiSpPcKjMbWtPWpDJoZ2IAYq/7EjE6BgD23DV7iHxrTQQ6RGNZViJSNQAMIeacS6kxDt0LVEBqq820tNqallqnaeIzAdqa2lODnhCiqipYCMEUmdeeHxVp3vub68M4bi4vL+fT648fP2YKJUcTFtNf/sArf/gPftn/+f/49W9/+eW8LofrB13oYbfbhXFrZgpGRE3FuahmrTUahsFHCiN4z84B8Q4dMGuthCSqjAGgABGAQefxq7fqAW2AKaVELvrgWi4v37v7X37dn/szf/RP/PVv+sZ//P3f/zO/8PMvvvTSsNncHI+llB7Qm+pxPiHTmlNdZLPbUs55zugCIojUvrdVgdLUBQtDNDPJmko+zKfWWm0t5+S9r7WWNdUmAGCEjK5D1t8YR1DEkHxpUkQBQJrMKYuIjwNBNzA2NSylpJYQLcDgHamj/iC2Vti7GGMEUmkqFAJraz6Gu3cur4+PFfmJH+Enc6h1y6hioCLIfggx1uoIxbiaiJlDdQzBgQrkXIbgNkPoPXHv3G4bXrm/TBPsLzeHw+lwTOPAFxdDzjnG4B0NXJkMTE1tDNhy5+s2AOjcXTMwgCbZyFEzqBUVkL3z2prWWsGsaxTYEz5xB0LWVlQbPHGdIAaDAECtZCJ2hAbSOUvnL+057u2TiUV31hx/wqN8esToXAjBgZmhiZZU1MQ5l1pRBGQuKoxI3kGlIlJV11wrAPvQVFNKHoGZW6nruvaispkRABK1J/IPSFZFaqlEpCAiwoxpna0JAcYYfRzENJUyH48uhHGKIXYrPlNDIAqhxxo0s6pSpGltAKBAxACIYqZa+8oHZqW1knLXYTaTZcmdw6DATUUk9xLkEJ4plU2b0HLrT3gDNbAkZfRO5Zxld4lDdIyOHZKPsWukOHTOe+ecoRZpBuC8JyIzQCQfonNuiJsO3VJVF86zlMvqQ0wpdT56E1ND50ek8MSFimIYOmZbVQldk0KAQGgGVUozBURFcM6JiJj5MJi2dV1rbUsqlxdbJk/EtQgzX1xclNJO64pESJZSQyxXl/HO1a379bEZ7nb74831i7fu/Nmv+WNf98e/Zjkefu7Hf+L21X7YbzYxkGN2TgkMCQAEgf1AwWmt5NgNG/QRyAE5ik5VgZzlkpeVxMqyekcQgBFNFAicBzNzgOy55bq/3JdclrxM2x0T57Q44P/Vn//zf/Srv+qbvv1bv/lbv/3D73//y+94R661Qyk3m00SSSltL3ZkVkppKt5HBjRC770plipmRo67rkRrDYnUbF6XWmt3wnPOqYiAcWAAGtizd6WUcZqe3hu5VQBSFVbo3oGI3BUJmRwzs6eOgxQwFVUB51lVQeUs8YNaq7JvMQRmPtxUIldaGyPnsl5d7cMHH6cmHys9/ISNJ9x5IjCDprDU2tCuIovasrZczZM3QgYJjo2wSVurDMwAvGYBaAPA7bvD9XVCTMNA44h95+Sca6XOJ3vhzqbkBQGGkRzZ1aVfqpmZNCHG6IOq5lzXZGQNMnhuLEJM3rNqVtVpGIhoXdcuENkzwS5X6oNzT2TBANQFx8yOcTNt81rW5fRcaghPVQQ/kpkHZ9ToGzosF9vJuaBVc64mjcCCD9M0vXrzIEkt8wEAnHOeXTMT1VRyylkAt7t9M2XvRFsYgqbat2a99t8TpV6A72qgzVqHnpPzYmpMptpMAYCkaa2tNREZpom9I6aqAiqo1hfqLh2KyICohk/1wVyg2lrV2k2mnCetrZbskdwwdH1TIlqWxUQdMaBHACBmgpbTuj5HIBFFtGZ6XOYmyszHdVEdWitm5l0XmCBt1ZDC4H0MhgCgYIZMhtC/LWb27LpWZQwDMxuSKvTlDACQkIgA1amj83BnRRzEGEczc5GWZUEidCxgRojEqZYu7EroADE3KbX2OuZpTYjoEIZhcG5Acq1mZj7Oq3N1HEcRcwbTNC35RkQcuXVO07jdTdu85Le95e23Lu7c3BxfvHv7U9/60p/92j/54p3bH/rgB652u3d9xqez9+IMmYjIENE7IALTWgqzA2ZER0g4jIAkashc16StDD600wo5gZor1Zk35zx7IGwmWlRy0bRCa6fjjSvrZn+5ids5LUOc4m7XlqXMx80Q/9yf/fN/+Cu+8v/xl/6f/+B7/uFLb33bvTt3lpQOh8P+6hIIl+Vc/J2mSczIhb6bbigMCABqVmvt6yswmRkRd/G5aZqIKKt2pVlp1uXoc3mD33G3pReRKs3AgFC0AYDv0tyeyZmZoVlrqmA+Bu/ZEEzOCzozgwiAImLOKzMLgUgF9trKNPoX7u7f/8pN5038h0B9IBKCiKmA5LYfeM1alQA9IWFTVZhCSFaBnCrURYiQQmw1Pzq0O7d4mnhZpBSdpqGUcjyt4+Cdc2uquQmxc4RIfXkwUxYRFQQjdayGBmKgpVoAIGQ1FGmGHH1AJhKDnierIvO55kcUGM08MnfUoaoCoWobhnEYo2MGFP+8tMpHk3o8R0N78tU+/UPPJJ07mz8IGBAVKeZICEot4zga01yzmYlilmbsGBEdWxE/RNQACORcdG4YRwLoz3zf53NnE6OZWaqJyDGhosspMfkQQqc3lVL6Gr4ZN01bJ0UxIJFDQDIsKUO32kLsvQV5Iq4nYNSkq7SaArPn6KbRMXOpVUQAaRq3YN2zOIioA3bOJUNtz5F4CJ0bHAcRoWDe+zXN1bSBohkBEgICKiEQlVahCzhil1BEYNIGPgxkgORBDZGcC0SUcnXcJ7vr/mufHO8iAMU4PhHRIn3i0U6OmCvA2YuO6CwFpICq4BwZQZOcWxU988P2+/2ZNwY2TRPAVEqxmtgFQHYeVSSnCkbjsNntLtZ19eTf8ba3S9U7+ytWesfLb33n29/6lpdeHoMPTHff+hI5x7duLcfjdHklpRQRZAIDFSNiN+1azWCmRC4EYN/ExIAUHboGgkVIalBpKXskR1DXBBGByXWzVewyMO3W3Vu11jSfhu3u4vbtdFpOp5vt7Tvl0XVrMs/3EeAv/ZW/+hXf+31f/3/4Cw/uP3z7p7x9HMdHjx4xcxwHbbLb7W5ubtAwOIdMVQQAO1OltSat9VW5//cpfHoagwEhNhccIRs0IKdNYowcnm24kMgQBAxRz8rfTc0sROec6wu0dY4DGap577z3ag2JXQjYPaJqAsJxHMnhENwpZWVMuU4hqJZ7L+4/9PpN+yTT856GWlXDjkEGMIObVaoBAzMygFSpoJAFyLtSWinNDKIj5xDZh1EfPMq3b0+374bj8TjPyTmMEXOpg4/bTUi5DsOwSk6ntpu4Vjm7VCkgSGnpiWheXEsOBC5EVVtLRuZpGDeb8fjo0AX9OjG8tRZCcM5JzX1r29/Bew9krRk6Lq0x0Xa7BXzWnbdfoeAA557ykxgoz608r11fE5GIsQtmtta11pprcjEMQ6jNjdMWAEoVH3zfMTKS8xFEQcyssXMo1uv9tdZurQsAtVbPjkMwM0J07IOqI2dntj445ug8AIiIWI/9WErp0RCgxwBAIoVzvklmzzIsxA4VIiLnAgDUKmQwxmHaDq32vBqbQSl18MH70Grz/jyVfTbpufZTHCYzZGRm11rtAQuZ0JyhGLEaAqjDgEyp5HbeBIEi9CfkrHIsygjc1QFqUyYT5SGIKRg6h1CyPakl1y4CCKR6lizu4qOGGMNYay259VhpCt7F1qS1aqCI2AzONQ9CYudD1N6EAQAABluWBR2PMaQ1TdPUxHI6xRhVdb/d39rfOlwfP/3TPmMzbExU8vs+69M/4zf+hs8m0800bS72m4vLbLYYTm99ZyuzReedQ2YArWVFRPSBEFTVO49uAENiYocAhBSZPdTM7Jrl43Kc4oAMKSfT5nyEEMgR+whhAFXJuaREzlGtMM8xeBf8zaOH+2FTUtoMoyG//0d+/As+5/P+1Q/+0H/1X/3F7/qHf/9d73qXu9gfTkfqrriA+93FcT4pGOozdiqTZ+9wg11uYTdtlmXpBfgQggqQQ/bOEM2MvPOAp5o9+ucTtGZqrQIA89n+/Cxn6dk51q7CJkpEHrl0cQZUMHA+skM1a6YV1KP6wTnB0gRYybiIRDCtyQ/jW946vf8DbxB7/4SP/gif+wkG3YkJxBICAngksEoo6KEUmGvbT06bCYIqpKJWikcYR95swsOHS4zLNE1oCc6GEOVwysFjqpZlbV2dzgEBOjgHX0Uw0dYA2dg6g56gN1dEpCuBnnc81qtb56LWMDCzELXWqvbvgkLwxL7WGgZXcgXyjiHnNyBsuuXOsyTRyNnZatoAgNwzvOEhLV2teohgCNmkQj2WNIFtNhuAKq2JCJhN45hSUsBS6uAHE/VAJZW4cYiUc+6FZzSLMSKiNlGkXizrNNueJ6KiNfPEZGdJCDUFQwEwBUam3loRqbUCY4jjEKMsjRHVLJXSta+7FkuMUUpNtTBzl/BkdpGHebm5vr72MY6bKaWURRQwLct+xyYCpmqoqM8XWZ0L65qqNe99SqnUFEIAg9YaqvRJIIMW1BCeSiEYgVbtEyumLS1k4KeJHdaqItXH6APDE8HXEEIIQ1cf6FQs9iQGrZ0JmWoNAJxSl0Tsyox9NrbbrYiVIqRK50KhnmEDiKWUWqtjetqGI6Jcivf++vp6mrZEpIi73e5wOIjIdtq1ob3t5bdtp81mHAfn97uLmvJbXnrZORf8QON2jAPEKYOGsFGTKgJNkAx9AICqSgiABOwAqVZhJiRvKgJeUVDRDIrocVmRSAkB1MyaCoqARyQ0JmBXTtdDGBGpzCsG8RO5cdhf7Zf719Nml1NSbW9/69sePni42V/+t//vv/Kpf+Uv/6X//v/1Wb/+M19++eUPfehDt2/fliaMyM6X2gCgu3C1IujbMAwhuNMyq+rl5SURXV9fM9Hl5eX1o8eO2DE0k66oRM6Vmtn552G5MUZV8N63lns3zHkPAOwcMYMio+uPADqkBq0VIgC0QCRquYkLvN1uNptNjPFwvE4lAzEYEXDK1SMYpbe+7d77P/D+T2j0++gDnyRH1FniAByABFWqmUaCYSABXXPFR3W7pXE/prWUJMzggwPQXOoQXZN2c7MMHpFMpG63U2ArtTmUXBQRL29dnOaDZ7eb0Mya9VSJcim1Qq3VOe67HwTw3ntmVV3n2fUi75Py0TkNBOjZVRXpj4kpKqqI5GolFyGtDPKcw8yTJe1pQCQAcAhs1EwdAJGszx8t0lQhhMbE0po1un1xR6ytqfRthSnuL66WeQnsV6gUmKNb0ywqHLlSVQEfXe8PrOt6upmnaQKE2gRKZmYjdeiU5OxsRtBMw+COh7kbhhxPB+9jCIGiy2sJwVUFI8xaCFBUCkpTExEM1FKbpqk3c095NrLD6WYcR8t2cXHhNv6Vm9dvjgfnXbGsS+uMnNpgd7kTtI4LRS0foWW9tlKszfM8juNS1p6iW1tLKX3B6LHMyObTDaI8Yapaj1Z9kxvCUFs9HQ+73a5ITilteIOItsrxeLx79+5mt3vw4IGIbKcpl4qMpWTn3Lwu5ImY5jVfXl5K1awNg2vJigkyliINLUsJUzzMh0jRBT+vp3EzhTBqs5RXREwlp7J2JTQhHYdtznW322VNxMzel6r7i3tF8v5qe/3g/md/xq+7e3V7ORw/8PPvu9pd3Nvu9vv9nXe+E7cXXXKaJEcz4xHNHBESGKhpMWgOxbwxMHSHA8fNjLQ4Q4ZCrbaaPOH16SS1PXz8iLx7653b6/Gw216ptbXUzeXegoXp0rMXq8f1hkB2SFBXYaPdfthvSslVS83Zexyi05rS66/++b/w9b/+03/df/Nf/18Ox0f7e7fSad7H7fW6AOgyn6ZpY4rjMDy+//ild74MACuUt7397sXFxfve9963v+NtS173+/2jw/VhfbyhXfADKoUQc07gHDPS5A/1GcJmGH1aS60JyNgTkTtTZbshnhkTYnAKcDweQPTyYg+qOeeEyzAMY3QKMA2jiYqpGoZh01esmvM4jTHGR48eyXz6dZ+9+7mfOiBEpKwGiM4UAesnSvfwaRXtKReDoEtQUBMdfddKRyl4Z7fJbj3MLa+uFTXAGB2giTRGIPJVhMh5siWJGowetLU7F+VmASUA51OqNzc3F6MnraxoyDVLHOO85hC9WfXeeaTcCpOnpUzbwQKtKY8UUsoxxlpLbTnGyMxErKq1lp7bOg45Z6aGRiKSb5b9xa0umezcc7VC0ucIeAR9I3eOkYjwxhots++1rZxzWgsC9/15t/tRBSbvnKu1imgzHYb4NA3p9b7TcTmdTrlVdFxVUi3AJGCndTku85LW0qohlJbnZVnWtbbmAhtiU61am6kiKEKRsuRUShGpZ0EaEQDNOd/c3KzrnPMqUlNKiDYMYRjC6XToWaRzrp/ksiyHw+Hhw4cd0IdPhve+d3hubm6WZXle1uXpVBwOh64JeDgcutpdzrnvyp+fsV6kO51OnQHePwWegAD6BlxVl2VZ17VrOKaUetp/Op1ef/31fgLzunbh+Ccnn+d57jACEQkhLMsiIt770+mUUupeKCmlZZ3PintEMcZaa8e+MLP3/GQ5ZUTu9oG9S55SWpbl3osvplQuLy83w4UWIvNve8tbd7vdBz/0gRdfunPvhVu7yx0x5DVZWVErqRAYEKCpgZqJPXku+za0l33hCf+pK5IBgJSKiKh2Oh77DLzyymu1yunhMW73uh/9rf2GfXrlNS1rpQpVEWC73cZps1ot1kBUHp/IlFRQ2jaO6/HUlXnqvMzvf+WLv/RLv/v7/tHV9uKn3/OzNMYHdQnj8GA9TrcvaQh+Gq7n5XN/y2+5fMsL2xfufvZnflZw8Rd+/r3vete7Sq7TNM3r8vjmGsnVWk+nUzfqcc4d5oMRqrXndedzXjfbsQPjETFGv9lsnHMAlnPuTJWUkqpO0+Sc684Qu92uazX1Z6rvkGKMu92ulRK9v9rvp2nqt8rFxcW6rtHznbsjQNauOaUKIEgfRxHq1z5UFAD6/qTfz48fHxFxO7JaIZYYO49axzEYAkKNAYdISIoEMUJ333Zh2G7DEHg3uMttHAI6xhACcnf7wlKKKtRamRARWyvRUU2rSTNT0F7c7+qrMAwDAIhIKSXnVGtVgNLaucUsrUrrHuv9Ce2l4edthz9qO6oX1z/KYOZhGLbbbfADM4/jOAwDsyulrWvOOaeSxVREewaEaIBNtCJa38nnnFMqS8pV9LSs85oMyZCqaFMzstxybnktuaqgw2atqa45rTnlWlJZS6ti2lQUZF5PqeQqjb0DMh+Dgq05qbXaMjEQgXMkUhEtpaXfSfCkHaTaxeibmXnvPZ/tylprNZfHDx/N8/GJ5pWotjfY+LVSa+6/7AcQndvEHYANZwCniNQOq+SzRa49Dbv6xBdNn0iT9gP6cyIij28e5Vr6FwxE5+6nytPDACDn9Xg8Pnr06Hg89i8FEXusnzZjj3eqWkrqn9ihBmbnBaBfMiKbIQd+7f6rtdarq9uqsJ2mF++9ENi9/d47Jj993ud8PrP/mZ/5mZ//+Z+9uNzdunPpBm8mmhdIBWvDWmtONS2mBVUADexcFqAnmC3rSnV6LsirNC3FalsOR8cur+W1V151LlxcXJxuDq9JVQU/S3t0rJHphVtuGNNrjw5S5pSZfNhf8G6rgwcGPa0dg7WJwSGUdUatASwdrse13bz2Gk7jd3zLt3/aSy/97Ht/gTbDYT4OfrAi73jpLbCWL/2tv/0/+z2/9x1veeudq8tI4fT45td/1m/40Ideef8vfzCOg0gdt+OyLE0k1/Lw8cMlLQ3tlNYsDRibPds3lFYN9SxLk/PNzc3xeNOXzHk+tVaNMOd8PB5FxAibSuke2aXM63palr48K1jOuZSCCKpSa0EE711KK4AhAjN/xme8iAQE3swzI6CCPevnfJIGAgQCZvSOaqsdfyMi48CEIK0hNBdAwcR0mIbogUBMCqPFCCEQMAkIsJ+miVSilYto3oyxhcjLWmpT7z0Qx9ghMlhyNYVhDGrAjhxBCGHwgYh7RN5sNv0O71BHVXXBG0IchzBE8i6Mg4th2EyIWGvJNaWS60dGQHriWK1P/w8AZ0G55zOd2louTRSqtFRyabW0lmupKuiYvOuB1gU3bSdDm9OsqOSJg/eDZ+9bt2QFzXld187caK0V58h7JscK1lSaViBj78S0tJrLmsva62I5r7Xm7moiIrV2DV7uyylg96KClFZVcZ6Q7OGj+ykvzlNrxUwAVKR2S/LzawmllmU5pbSktEgtzlEIrq/VndJrb5yKXu4spez3+w7f65kXnBGa2kGCvQMzDMPTfuUTwxMAgB6I+2PTY+XTbLFjhs/fSldsRjCE03I8Hm/QcYwRQFvJ67oimve8rvO6zs5RayXnNQS33U7M2K/angD0EVGklpJE6pOEt3vMMzPeu3cPEed53u1265JfeuGFy/3+5Rfu3Lt1+Xt+95c8vP/gtdde+8zP/OxP+9RPv9hdVa1mCq1CWmBdLCcpuZaE1hAa2dMlAc0A9LwMdDiRWV/Ha0urCyEgnw4HkDZN083j6w998MOtSH548/O/+L4jqdvv/LAN4YI3l7tf/5umt7wMw7gcUn10MDGKnqcpXF0aoViD4JvWcTOUklQKaJuvr6m04+NrNfye7/m+3/SOd80fvv/C7VtXHL7k3b/ls196x//pz/xv/uxXfPWF0QvD5t2f8dlve+nlr/7Df+Q3fNZnv/KhV1944aWHDx8Om6m1Qj6k2nKrudUk2VAVDMhUSydW9+EczfM8bUdgqipzWk/rUqRw4NxykbLZbDabTS/79HuMmZdlSWVd0vz45pFYM9ROkXz06IFnx0g9Yb+4uBjHsSf4Ka3bC95fdTEBZyZdAPGTPRyBGXh23vvSQESurjalKKONE4pCbW0cRxG4vm5IcTNNptAX9OC4U91F7Po0qwAoDF6vNn5gwO41maGpiZ03EDFGh4QKROAIHUEvD0bHqkoGTVuuBZk6vkRMFczQSilLTgImYJ1W0HMpUc211FpTKak8g82Z4vNOTf3ufX4n/QYMTvf6aY1Kad0d4omcelf4gR7s+m40pWWup2mayFFpJddSWm0quebL3WVKSUzDEJtKy8LMgFBrZmYiMCMRaVIMRK0BomgHqwKQ5x52awrOl2KtNQMhhial17bFWmlSWu1B7DgvLnhkIuAuNKCqvb5wOp36TdkrOyGErpnc87Xtdtv7Ej1mvRGOpMxYawbQ1koIoe/ZnyZcRCiidvarPXe3e7Dr+3oRcS70Fti5RybSt73osEhppuhYVdEhEs/rGphSLXT2DoTeT1bTzWbT08+niPx+Gp0FuOZ0eXnpnJvn2QWfcwY1bSK1ORcYSU3QIDjfWhuGobVWc7t3exPZvXjvhbyWd7zt3osvvPQp73z5fe/7ty/eu/cZn/6Zu4tNrbXUGrxaq3VdsFQaQoze2EkrxB4cw9lDrce/JxPX6U+IBoAqIE0Op5ZTnk+dpStS97vtfr97/cMfurhzZxwiEB1vTtPuVsWYDnV369YWXfnQh8rhEIh545WRPJO5prVINQ8xTqdlTksOIVTU8vDRzt2jrW8p/+X/6//9u7/7791fri8+++JP/ok/cbh//amf8qmP7z+8e7m7vPosFwcl/jc/+ZO/9Evv/7zP+7xXHrx6587dm9N1CMH78bXXXovR33vx7n6/Px5v2NMwDHM6bbfbZ8EiDMfTTYw+lWwILngzg7PpXl3zst/vY/SlZR9dKzWl1TEiGnofYzwuc19fQwin0wkRa8s+8OV297AV73m/311fX3fI7el0eOHudj7MKE4VhtGlT26fGeCMfYFSKhMEB+uqlxeOHLQKPozBryomYoRoYKfjMlwMjM5YEHyuteTenqVH1xp98Q72FxeXu20paa0iUscRXXDrWoiwVtvvN0QUAju2XBs5VNWaV56GdV2HMNSaRWRdp1IaM/f9HBEVaaWkUhwAVCkpLSml/uB3JAYHfoo/BQAz/pUXezaZ019RjFXU3HKMIzq0Zt0kA02qnBEzZlprPqzzU+BPf/5FJKW1iRABc0/OiqmGcejbVQpBn0ScUgoxOH9WURcRQlBpXdN4HIYh2uFwkNoaYJNWW+5LZSlZpIXQvexdL/N1hm+/vQAEUA1UzdhF79lAQozOcc7ZeecYnSPnqbUmWsdhm1LqV/HUvLSPHiV7bVFEpmma5xnJnKfWqEMda117YEpp6T88pVL2W5nZnib2aNAvv/NhUkq9w95xHwaayqrunDDWmluznj/2bX7XYosxllK69/T19bX3rNp69O+n1PNQxx6AzLDnvMxoBs65VNZW5Gp/y5q8+uFX6ry+8+W3fs5v+s2jw3t3br/vvT83xOnzvugLgdx6OJZ5vbm50WYEsEH0jhmwdwpqyRCIyKA7QZ+Znk2bABACn4HZzEBsxNKytpTm0+uvvfren/tZIrp3797jh4+OLbdXX/2lH/2Jd33uu4ftWAMMfhqyPj5eX2328VazJoSeMBaE1P7/tP1nsG5Zeh6GvSvv+MWTb763w3T3TE/A5BkAM0gEowmJSRRpmaLLLJKmVKQgsSiXbNn6IZarTFOm7ZIs0SYFgIaZAZAIJCAiTeqJPdPT6d6++Z78hZ1XXv6xzjl9B4CkwhS5//Tpuufec/b+1l7rfZ/3CSYFzydT29ZWB21UMR5Vy5XVRlI3nKy9sSjlWVlcubT77/zhP3Tn4b0P/+D3I4wns9IFh0d0lm0Ing5a3bv9cD6bnazWD4/257PN9b3qycMnOztbxlpK6WQyGU1K5+yg5FlyrNFp+q5qM4TgbDhZrMrxZBg6rQ0ARF4XZVgb6ZyTWtV1nSTJGW6IkEeAQ4ifnXZ2GIbY+qVp2teNHuR4PJ7P5+a8n6CCOumsAcbx7qXxw/trhMDo3yH26N/ExSjW1htpppNiuWrbti2KtF0PwoEQqday72WapGmK67o7XRvOBE8SpZQcPMbAE46ASD0o7TBiNlDtgYuUcquMsQ4TQrXSgIJz4JzTzgIAw1wOkhcUEWyDVWqwZ6a5PtbgHoFz1liDKAEXnV+jTRGJ2fNxGJWPyq4brFEi5e5pR6+Lg/qpecl5I3MOdV98dz+0fR9d17WLbhZqaNtayj76IzFBEfUIB+s0ZbjIRxfAMMYYYyQSKhKGcBAJwwQwgSTlXFCEA6EIY0wokqo/R2cD58z7sy4vUpBic0cpZZwoIyMgP0gZUHDBA0aEUYxpnufnaDSPtG1rHQD0vYr1mjGGEJLneZZlZ+JTqVarVdM0jLFMJKO8cN4EcAgHH6zzBj91cmACPliRMG2kSFhsyeEs6vMMMzLGXFjtX1Ci4gOh59mnF3zyiw3Xn1/GGBcsYBRxQ0QwpoQnIlJ24geGMc7yBAAiyTx24pTSiCgbYxBCnFOlhsjxPG+WCedJ/NSjkjfiqBhIlmVFmu9s7XziIx+9cfnqkwf3rRx+6Ad/byryo8MTSmnfNffvvP7NV7/08OGbTdUeHh7uHx42fedD8M6ZYbCthBDQhQY+klqDA2/D2fyEACIIMPgQvEXOOiXXpyf37r7z5NFD5021Wty/e4di6A+W3aBevX/7lS/+2r1XvsT2n0B95MOK9wgsgiJzZdH7EKznOMmy3DsAwJQlGJA1PuWizAsEHsATRg4PnhBlgbMwy3DGX7p63Q89QAjekIywBM1m46Lg3eokL1JKcd2sP/OZzxweHq+X1Qff/z2McE7pfDJNkkRLVTdrKftz9juBp/sGTOJkLM/T+IEihLiggHxUswBG0XgthMAEB4IBIYzxoCRgFF3ItNZ930d8NWZ7rRen3ltrVD+0PtgsS4InRgVr3e5uVo6BYuocQujfuNkXQUAJoSiWS74oiFIOY2w9SG1csJQjgoEQmwicCNQrMM5a76x3HgBToBRj4gUnvfTtYI+W9eODhdSOc54LDsEisElCBKdCgPHOOa+N1zZIAwGRtMhFmiijCaPxYcbZVOyNLmY7nNAizSKflLGznAwUgCeph6CM5pwS8u4HF6Ii+qxZPkMc3p2cngE955f33nljndZaK2mi4W0I0Mlha2vLeRNHNhgja721ZnNn01rLuEggaC1dsMGBCy5PU5znVVURhPI0xQBx/+6GgYsivudKyYjKEUIwIBJ9rJwzSiGEg/OcMW2MEJRz7ryN/Wy8+mHIsgwhRMhZZAdCKATI81zrOm4cwzDEwSulNFpIpFlqrY3lW71ad10niixy3ONY/GlOWZIkTdPEci/P8/gXI1IezqXjcRgdG9uLuUe8Ylfb9/J8xKGBhjPqotaMkXc/HgClVORdc86dc1L2AMAYdcYiHFIsTk+PZ7NZrIX7vpdSStlTipu2TUQazZFCCEmSDEoihIIPnHOtQ9xzKcXeg7WuSPPJeDKbTPUgwYf5bHrzyrX3v/w+OfiHDw5ffPHl97znmTfefO3br37t9de/cePa1ctXX1i3bdt3TAiWZty4EBDFhIn4zp8pRlEILhjkLDqng0HEDqx1xiBjFsdHb7z5+mpx2rX18uRYKdW27fHx4bozth/qxXGWi91LO5/+/k+nXDxz42Y6fkmHAU8o3900q5X3gfhAHcGEtSenacIZYySFrm45JkikVbvwBLz3T965f31j7Capq3nStoe3b883N5LpGPohAYSdXe4fjDH2Ke+fPHnhhRd++h//Y6n0Zz/7g1965XME8O7VS6vVclWvADyiCJ2z+hFCTzdcjAnAJMnSqqm7oQ8QBGc+hKqujTEuOCllURRlWUY0wxiTREqmUQA+TUVjtRAMoUAIMsakSTIajdbrddU2WZYBPoNWhsGentR5yZ3vr9/c+tbXjylJXbD/xpNFEfbe53miBlnX/cbmuNLVMAyMEwTOGJ2kNMuIlEZKk6dMBaOD81oCAsYAITBGe+cZ54PUAKCd6cDMxjRPeQgBfPDeMYq1cZSCsQZhRBAMMuZvoywtnMfNellkifGWUhpfq1hoR+AeITSdTAkhdV1jjI13fd+jc61HpI4wxvru6SC530mZFwAQBvDW+3MBw9ljoDaAVAZjUoySvu8ZJwgha8K6WlBKtVacc5ql2hqpFWfAKCE4aDkQQhIurDbgvYeglKScYUKl1llRtG1LKEVSrtfr7e3t09PTJEkwJs555zzlBAAHB0xwyhkAwoZIrSgBISihPmXCO8UoMCK6tplM5hdafcbYfD5XShVFBgAYwzAM4/E4SUTbNmma1nWFUCiKtO3qJMkms8lyvXTe8TwBCJRGvX1AKDJPzy5MMWGk67rpdIoIats2z/M0TbXWaZq0XZWmaZpxLiilWBsrktwY44PFhMeJhbVWJARCiH2WlD3gtBinXdd6SCLoG51fjTFCCGd0Z81kMkmSRErZD22SJHFsRzmr2wbgzF0ZMFJG80RwJYZhmM5ny/WKJ6KXXZ5mVVX1PRSp2ZxPsjxpOdXW6cFN8pnCIUmSBNMbV67funT1+qUrzz/33Pb1W9/89teuXrk2K1O1frRd4uP5ztGpat1961NQTjBuWnl8enr1+lXh4NLWtmIzQigKOHgF3mDkICAA7KQCwoMAHwhgEbzV9do3y5PTo66pEy4eL5vX37yHKKm6/vjVt6pm0F37x3/sx/b29gZj/9p/9jeub2/+53/tP9lJ9gfM+T4SO5tkuoO1GrhLAngmiglTTePlkGap1prkmWaIe1gNyoM9Pbo7P7k0zt/jkwEV7ZQRs1r3p4drMxAXJoQxEnTih4YH233pla9fu3J1vrVz9/79Z269SBEs6lOtXCZyzIi1mqKBEoRxwIHn6bupuYQgIYS1RMmeYJBSWYohUCGENSa44JXLJmlCmOparTXDJMuyJMnUiWybCiEEwaVZVuQjZ0zTNAQBxngyn2kt+74XaaKk2Zhuqe748ePh5Us72rcbO+neDdi/P0BIAQYAuFCUnRMYAH73SXv4bNHjgIMJAUMQCKT30zy3RlGKjArtuktE2nXDbJJr04UARllnCMYCY1+1BoeoMw1JkgxBOh+09kIQH3Sas7o1vYZ5KRqpKO0IWIKQ0i4rcu8tUGQ7qbXLEkYzQft2aCQRzPQOpElL4gghJCWERXsXJqhxjHKBEJJSTiYTrTWipOs6YwxghCkZuh4ccBaaqk2Tzac2QxMgxJEjQhTAIYSecm34zinK8eECA6RFMpvNHj58qIwLIWRZNpsRf24rBgCxDOn7mNZGu25AiDRN17bt9va29xDVTpRS7x2lhDGapom1djweVVWlteKcCcH7vtdaIQSUxsSWmJvurLXOWYDAOU/TlJ45gnghBAQspYyk6Fg2R0YSAMSxLyE4wnaUktiidl0Xsz0nk0lVNXH36fs+TdP4dy/oL0/XhrEKvmDMAMAwDIIJxhhjNLILI2VMa50kSSTflGUJAF1XMyqyLOuHNkuL9XptraaUxnxLY0yaZpRyhFLGmDby7Aad9RYiYQ0AApxZXXjvRcLiIJgybKwCBJgAoegcIrCb842sKBMuvPejYoyRON5/sj5enhh17cb1zfnW5nSW89SFcHlvbzoaPXv95s7G5t7eHsL0ja9/JRDMBeqHWvWrV1754u17j569eeULr3xhK5vMNzZeffMbzz77vODMzwY2nXmeYYoAxzcoGtZ7b53RKhiTzMfOOOVUmnCUJogIoHxn+9I7t+9+/etff/zoyd1HjxxwnpePDpt3jhsG8F/+N3//A+997kd/3+/7r/72T/3Dn/h//8n/9V/8z/+PP/7BT326auVmlqZp2ncKWKIJwsEAPhODq7aNrNKh7QAHSunJeo2ROz08KHauZvM5yFO9bjhKtNQUsXbdqqHhKZPSrhdate17n72Jk9GTo9Mre9tNUznnUEOGYcAE8qQAoB65uq4JwXlenJ4eP7U2FKXYGCcSMR6Pl8tlZAjGhSeEcBCAAEtYvagjpGu886ofjUZxDBhpDEappmm895Sw0Wg0yA4xppRZLZZCpH3bCcEmk4ELigOvqqosM5H0erBwIaf7nZyofhcXQv6CR3HOlMIIEEDddLlAFJNiTNeVLClijPSDTFKujdYaKEGDUt7DZEqVBKWsceD9QDllDGuttXZCnKetAoQQxqMRAiU4Dc7LWtdVjRgbtDEWsoRoaRz2Kcbe+9VqpYMqyzLLsuP1mmJSFMVqtVqv1zwR8V0ghCAmtLPaWacVIYSJM6YnxQwjQim138mv+W2TUoDvSJf/zj+7urd55cqVBw8enJycfOYzn3n9zTe6rmOMOa9jpxD5wN77NE37vldKXb58+a233gohcM773llr8zyPk7KYTmuMMoZxTr23jFHGiFIDxogxIgSLjGKEg5MGY8IYidS/CP9zzuL0Nn7eIQSMECFkGGSSJBcD3MhMjl9HvAYhFAUqsb/WWlJKi6JYr+sI4aVpesFjiEV4XKAXjyKOa6PCL+J91toiKwiJM2VEKXYufsoBIcQ5i+Li+Fii3fT5oe1DCOc8QR2hqDgMucAZo6OUHM7gRecNAJVSRhg+cjljIxC7gLhNCyEIYR4CQqRvB5SiLMuuXLk0m8ye+7Efe+7aM7Lr3779ZrVazUbls9duEETnk+mozC/fuAHOnp4cK+dEkbWL1b585+d+5p+++vXXtra2Do+feEBJNn7r7Tv4wb2A/ONH94QDEdjL33/DlmPOGYAP3lhrEDiCAoRAAGHOwTocEGfEgyWI5JPpk9PDR+/cBw+bm5sPHj5qpVIBHt277RGHZGyMmm2M33p48Mr/+W/+P//r/+aNr7/ysY9//Kf+u7/5nqvPZLO5O1z40RgzkhgOeRqUtlrFD7evK+ecN14IoYOSshciaarTh3ffufnSh8AHQ3BgqO26sszLbKMrusN3Hq06qajlPlyaj3Wgq8FmDLBFk92d27dvpyK5evX6cnn68OFDnjCEkDKqEEXTVk+zr5w3WZ7Es00IkaZp2w6RtBA/XA9mVS21UzaYJE28973sJpOZtkZbUxQFxYQAcsYOXU8pTbKCM2YdQwjNp2MCCAB7a7OU1xy07lmCpLJZlk1n9vCJBniXKYIxupDqh9+RXvw/fgUEcBbqEh1QAQMQhAn2GGMUwnRcrperPMPWGuvAGqAMBQ/RIwoAS6mVciHQc/e+EEkECAgCZxxIrZyDhKHgXdu2Tvvnbm4KgoWQByeVNwYskACUYMx9ax1nDNiZfgFjFOsho3R0O47vS9M0w6ApRZIywhlghBHhnMeKJNrYWOeSTJz/nnD+rH4rcT2EQCP7IcpTvH/3CW7NZgRh51xVt/fu3bt169av/upvpCkXCT2zzHPuQjAohJBSAkDcj2ezWZKguq7jzBQAotWwtbbrujQT1mlAnguqlAoBnDciYcZEbhHGGBOCGSfRmCBuEEIIay0gzDmPPFXBU865Md4YY4yZTCbRPTjKSy4MimNlFw/qLMti1GH8tggFTiYTANBSBThT1EWE8ekHFzeduBUihOK09wKboJRKqeOW5JzN81wpZYy+eOjW6TRN266Ovxvn3AertU5TIQRfr9exTwcI3rsQfFGMvAOMcQAXRzRwJhc6U9fHShadOaHzuPSFECJNMKYMs67rnpzsHz85xuAWL7yPfhx/36c+/elPfJoXqTk9VF1rdCiyhHG2fPKw7bt8NktYcnj6eHGw/1P/v79NWfIf/7X/4sGTw5/4e//t57709s6WHI0gEeTF557ZnG2OxuPv+fQnyls3TUAhyBCC9y54g8AHCHHChAGBkgFRynNlNKIU54VGdKjb08N9EuzHPv7hxycnX3vtwCAkrUOoLbJQiPJsAAEAAElEQVS0XS/GkxFnYwx+79b7Pv9rP/On/txf+PG/+p/+J3/9v6CtvXz5shknggCMCOJc1hUYzc6MLrH3niAcMEpEykpsVF2fnqhqlUxHilCRJcOpHlrXrNeT6eYL73vferV8dLKfZcQHsqj7UrBLm1vfeuvNEMKVy9cWbfV4f//GjRs7l7cXq9NuaP3p8XLZjMtsOp1erI34ZsZOLR6ZScL8mRtzvl6vpR6kHgAFFwITzGgrlfLgYiBPwoUe5GAs5wnDhCBsjKmqijHSVHVRFJPJZBgUY8xBAICqXs75OE1TI93W9vT46MjZdyn9UScK350ndkTAn6qI4qsoGA3WlHlmlKIsptDxutYIgVSWc0IwKKMY5zlLmkYSZAjBEeHx3hvjGcMIIaUDBIieLAzjYdA4gAfinJ3P580wdL0e5cx7r7Upi9R0RmuDMWCMCSJd0zRNgzFEuVds/mKJk+eJlDIgaLrWOZckCWOsauqz/sz6rhu8Z4Swp8ckv+U6e5HjzOFMlPKdJDtOI5+AHi+Otnd3nnvu2f3HTwBgPB53Xee9l1LGXSO+kEdHR0KItm1Xq1WaplLGdHMRN82yLEMI/dDGg8tqQ3B0ykDBeYQwQZggDBjFKgwALpjJ8V84+7XOOStxXmFtiLyTLMuqqopfOOe0NozRi0F57CLj3hrB7LhBx28+sxqzZ19ciOriFUcT8dON66woCquN1joeMAghjIEQwhjVWjnnIrcxTbPYPkdVVl3Xm5ubELCxCgMFgDjpjpVjvKmLewzgEMaxADfGxFTvMx2kPVNYx2FOvEGMMWOkruuu6fd2L33w5Q/mIrPWpgnZGM+Mlj/7sz+7u7V588bVZ69fojhkG6XVerk80kZduXK56obDk5PHjx//xi/+/Cc+9tEPfPT7/uxf+I/uPDkOGLJSPFoZ0fUTgn39xkdf+sCnf++Pip0ZOMUoH+rqvGZGMXjNauWtDSGIPLdaUtIKUTjvwLvxfOPWM9cPjx4tlj3YcOPKpSf7p4iVB8eVdy6lbvD26GiJACglohDf85n/xT/8yb8RJpP/zY//lT/zh/6t7cebtz70UnV6uJ0/O2Y5BtDa1PWaQhBCBASL1bLW9SjdPFisMaP9cvHwzTef+4HPgElpsISw9fHxeGezb2qlakLIc7eek20TPHJhadZdxsknP/6Juuvn2zunq+WtG9dXbf3am98ehoEgLFiSp3YyGdun3N4iYUsppZQmhGRZFoeeUbslpWy7DuG4hCDWj8Og6rrGjGALIQSjtDMm5Sml1Hg3SBmQD4hFGCfPy0TwPCsbWc+mmbYGY6y1ct5ubW9dvbK8dy+6tpBIcY2S29/1Vvg/skEghHCA3gShFaFnLvmYQJaD0XG0jr23UgZjBs5ZmiRaSWO894NzIJKz3UeZEBCkCXdae2eTMmPUC0ZXdTd0zaYJgAhCKBGCc35yssTIJSlz1noDauhJHnsm1RpplSuKwhhV12smeFEUSZLUdU25iLa+8SdiQD4EDIgwxrnDZ2q/dwlJF0Df07dML/4/BITgXbAszcSyWppgCCNZnr/66qt//s/9hb/39/7eyfJgPB7Dd/I8AIBS5pxPktRaD2DLctT3w2g0ds4Nw3BysphMJpxTo89iPRg5+9GxPQSASM2RWnnvnQ0QXBzIxvlqnOE6dwb/xdYyFqRR+AkASqnNzU3O+XK5pJTEFju6g8TBXPxxq1U1n08RIlEVd3x8jM4ddL1ziGBrrXtqihJ/T+e8lDKmx6VpWkkV2Y6xcIs7eCT0xe/puo5zniTCOc8511rFqjMOwjg/4w9GcPDsp3ufZVl4yvQh9u/WmiwbXUyotVaMMWM0YywKuRACDMFaW2Tppd3Lzbq+f+/e3ubuR77nwx/+yAdk1SAXNmYzxnDbVKtqtTEa1d2iyHIqgFGmTX+yPD1dNl/52jcuX730Az/0+z/82T+tAFhSIgKDtIyA6k25s/XH/+gfvf7M87wsSSqclWZdARhwBNyZ8xV4C9YhFwjjQWmKAsbeWxkCAKOiyNqEvfzhDw19/+abb376ox810h6ervY2RienfWsHG8hmkcvBaW0H7ZJS/NU/+1f+T//7v/q3/l9/6x/83b/7yY99dJTwnRdeRAdLmCPiIT63Xkuoa4yxNLperVHKrfc6OOf16nAfpCYiMX0znU4ffvvbo/nEuyCIIMivDveFEBjTG9cuP/eefFkN9/YPVmv55OFdZdwv/4tfWneVKPOu6TFFlHIcmPdhtVpfrA3GOOeiqh5HQkJs0OIn2zQNpZQLFmXpSULOxaDOuZCmTFkXrOOch8i9dbZp+nGZICS6rmWCueCbrp6xeV3Xgfqdna3legUA1boVQiQc33xm9+Gjh855FAJCOPYNhNDvPo0+Ek/OtJTBe68hMI6s9zjgvoeNjfSMHwYBApaDoQwmY973um9NWSSBaec8ADAGCAcM4JzHCDDFnODAMcWeIJDGUkqrbhh6aJ8shCDBBjQoxkiaIOesty5PqGdeSkkFijCRbCQOpCiKruucgzJJvPfxRVPGUEyyIr3o/Kw2sh/isYSxd9ZZ966IyJ97TV3cN0KIhhAQhhB+axftEAxWplm2WFW591rrb37zm5/+xKd/5hf+Udu2xpjIAmnbFmMspeJcxDoodvjoXGdDMHPOxck3pTxJvPees0RJiRCJhl6U8qiKa9s2eBQ8csGFgKz1WlshvBCi74333hsft99zao7CmAFAxC7jmDXWcRdfx4o6uiTQM/NU4Jyb87ileL84wJlyjhLn3NOip/ivMXbWsAshomsDxhAHO5Rh33vnDKVcCCEEm06nkekSfzo6V+B1XRepUnEoFkLoui5uo/EXi7tqRGZjB9T3Z+Ny51zf91mWRRv0uAvHFy8CuAF7pdRicUIRHRflern6+Z/7Z/def+vF556dlJmslx67a9euTKYjBHiSl/XJUcKFA/z66685llVdf+fB4w//4R/98f/0r1uAJBeDUl56Dhbh4dZm/h/9h3/uQx/6wJWbV8vp9PTREwxoNp4AQt5aq3U4F2UThAIA4Vx1jUgZeCuHgaUZAMUYrrzwgpXq8f0HHx3PX/36N3JGf8/3fWxjY+PzX3j18fE+LVIUcMayUTF+dPjo8HT/L//Yn760Of6Vf/gPj9enzlruycNHB5vSSW0YwdVqraWsqpWSknHOOcc+VKs6Kct1c8pT7pX2yxXbHVnOlfOEkGq15kW+arpRlqYJs1Z7o2vVcZFu7F2Zzp67dfPa57705cXx8ZXdbbokvdUEkDWeEDKfzB3op/uGruti7xI1QrHniCVCtHuYjCZaKmdsnmYEEWt8cAAeYYQoJuADxdhE0IlgF8CF0Pa98zYtcj1IY2zbdc6F8SQP4DlnctCcJ5SSplmPxtlkmi1O+wCBYHAuntzfVWjAb4miQhCFs5hQiiArssVJnSYQZTOyUYTgaMqBEGS5IBSc1VJKykAIFldCBAopRXmeyME4q1KOBefaKGVAe0kYtRgpG2xwnGIeUF23jGLOWW9UAEDhDMq3Z+RZSEQS0bmiSNM0rapKSpnnedN0eZ6XZZklaVs3nDLwQQ8yz1OMqdYtQvjp6MH4el6QwOKGSOEMkMI+yvvOL57y1aP1oDRPRNN3iOBXXnnlD/6+Pzibzeq6vnCDMMaUZRnrnaqq4rJQSkVvlfV6TTAzJlZ50dcExe4vthUhhFjfRXnv0dFRUZZan/WMzjkpFWM8SZI4kAnnCbYXOHHUZmCMoxAntr1xG4pnNee861qlVKy2hkHHaF0plZRytVrlee6c8wHZcG7jihDg73hweZ7HSi3+0NVqRTHx3sZeO/at3vskyYZBLRaLCA5GFxml1GxGIkc6TqKSJFmtlt7bKHaklHqvGOPGWKU0ALLWxVKREOIcxJG3c67v2/F4HHvqOEIZjUaxE/fetm2fitQ7lIoEIfTyyy9f2tm9uXPlyu7WfFJg4kTBCCE4G0HdQ3OUIay77t7DR0Ov+TR/5atfy8bjf/Wbn//at247wN5o50ICVAD8ns+8+Ee+9wfGs+ylj7333t17x/uP9qYbWZaCtoAheBe8jw6AGJCzznvvpeSMBuu0qmiSM4qDGdJUSOuSzfGm9sV4pqXmGDXV6e729K//1b/4k//4p7/57W+mSXJto6gXp//un/79J6vDG8+9+MEf/jRIc+29l2SnfO2eHOx/4dW3XlKb09n4yZMnVg9d1+R5bodhsV5lxHlN+6pq9SAIrBYnXhnnAisKy1bXb938+re/cfnmTef0qlb9cccxSoQQQixWi/0nj7auXqdp+Qd/9AcMyv+HX/+1f/7Lv9QdHVDKJkURR1utWT79mkTUJVJl67omhEyn06ZpwnnQRZ7no9HYWoMQllJyliAEfd9PplnKBQD0fT90fZaXeZ4b50TCh2EYj0dpkpwMA2EshLC5OQ/gVus1oVQNw9bOXt+3Vb1KMhiPi+WyDz42yxa+2yC96N/1dI9tAxCAAGC8q9smTVHwAQDatuWcKWkghITTEGy1atKUTsbZeqnsuYUqY8x7IAQ456PRSKlTcAFjAGeN8bNZ1gzK2NCoMCqS4CzlvBjli+OTIGA0yudJUR+fWh+SJCmn06GqfHBJkggm4Nw6IMJEkQIclcRt3TBCrbVlliMfVBiEEFr7vu+TJPX+3d73XB2Anp44RXgOCEIEowBPVZKOERCzyWixWFxsebef3H72mfd+6UufS5IkkuaLorDWQSBaWYIZZ8m6W08ms6pqRqORlFL5QQgxSN+2LaW0yPKuaTnnmEAILkmSYehCcFW1EkKkqQjeJwlfLpejyZRyZrVp26bIcm1dlhWxmCrySSRVJUmWsIwRygjFGCklEYIkSzEhfd/Hs6KtmzzNvfVKqaAdBsKpaOsu6pS7ph2XIy1VkhYBUUJIP7T+zDH/7CIIW20QwKgoYx0uGO+GNma8aGk29jb3nxwSQgAHhnCvJMZYpFwZGZ3uhr5JJhtZkjVVkyUpCpDwpOs6yjh4b7V2zmIsRqOyqiqjFMY41oBRa2iUCVmQvUxF3tTLhOd9P3DKnFddv4pFbpEVBESRTCaj2fbG9nw8z0S2sbF17Zmr41GOweCg65MT2awW+/t915BkRDB7+PjAI3755nODhK4alvtHDUtyDs88v5cQcfDgwc7m5N/79/7t+Tz9+juHP/ChD7z2yjezrEAgJAKrutBbpcO5+ggnCaBEUIIBwaANIRg7T7VBqgZrkUg0QDAa2pAnzFUnm5uzvt3ZurT54MGDY+v//H/wV+698frtb3/rypVLlTbPvPS+771xvVr1skNJNnMNBI1PqxPWm4TAb3z5y5/9zPcyRlen6+BUEERbmwpeLXpakm5ooVNZWmjsVvp0AwpUW5JPK1HPtq/df+veiy88d3T8ZJQXq+WJHijlfGdnh4h0NCrqVj56620I/Hvf9/IH3/Peb7zxxuHx0dt3752sm3vtvlZ2e2v3qZPSYsxGoxHGpO/7oijikRnbCO/9YrkMAJTxoe8BoOubvBBdpwSwTveiTAfXDCFAsAVJRpOx77siSbw2NM3GRUkIWa/XTbtOyzJJM6VUnqfOK0DeAzk57XeuJOs1Xy+1NhoQQGAIKKDhd8vKfkqbe/4lQhqh3AHCCKxnCQHvOGUhoL5T47Gw1obgIxXHOhyCoYnrBxCCRs9iBCA4ZYT2bacGV5aJA1w3/WQqEKIpxqrrAhA1yCwDRCyiCWVEa9d2WqLeWOBpgrDoZUcYQMCE5ELw1XqRJMm6ajnn89lUSqlUGAYVrYC6oceUrLsGIZSNS+MsZp6SNE0Ta94tcS72wYg+QbTKxxj74J1357nAZ1cvBxfOpRSMxbJrcXzy/LMvCiEYJ0JQKSXG1Jgh7rXL5fLatWvRQhnjM3OEruuyLBMclFJ935dlWZYlxng0LqSUw6CMcc71SZI4F4xxWSac94QwrbUQAmhwznVdRzmtqiqSaeJRUNd1VKHkWdn3/QWY2DQNQohxTimlmMRecj6fn56eZllGHavrOt5ObHu7rgshnDXaJFpnfwcXKf4L9CxmL0o7tPfAecKYoJg0qyZPC0IIQyxgR8GigBnhQqTgQwzckVJGD+SIJwBA9FUMwVNKA4LY+GutUQCMMTnXGnvvYwESGRvW2jxjBFuWsbZ3GNPgfQiQJEnwylrbdc07VX2UHW7ON5bV8s7rr49HGcMB+aGvV8hK7F2Rpev2QVU1s/nWcy+8fzyafvv2nbv37nzkIx+7Mp8VqHnvi7ce3L/z0e/52Kc/9ZkPfOADX/nKVz71qU9NJpPgUdM047I42j8A5FLBrY2u3VwIgcBpoxAhSZKkaeqtsd4hQTFjwFjACAPCaaa14klCENq+fDnLsqaqKKJS6pPjxeXrN+bzKSFkvLNjA7LSKKUQIYAlJuzu3TtV1RwfHeR5fvX6zd/8jc9vzUsGwDlvmsYDxGHUk3v383FOMVZGW+1wLPuHTg5dCGE8Hpth9tbt25ubG4eni73ZRl2vlycLpbTzkJfHt557cXTj2tAMt995e93JcV6Wt25Sxr7yrW9zyubTjbquL9bGeDz2PhBCY6kOANbavu+1DgDAOY/JRJH1FXUUCCHOcWTvRtOQJEmig8Z4PPaMPH78ZDabiixdVuugg4PQn3nNEoSQg7Ber40xeZ7H+eH27mS5PCYEnAWMkHXqX2fAHnIAgRBwziWCROhNJDgO9AAAArLehgAIsHeAAWLCMkKeMexs8E53nQEAKXXEEIdeaaSVDADAMWbEYxTkAAtTE8wMOIQpw14HoBS0ltTSLBXVus3n28GoGBROGGWCG2fji8xY7Nt8FKciFNI0if0coZAkidJDKiZP74a/5UZDCE9PUcLTHJyDw8N+GNC5Bo5gnKVpXVVFlm/M5ienR1mSpEmSiCzhycH+UTnKAfn9/f2yLC9Ic845a6GtG8HTyXQUi4iAkHO+qqrI44sjlFj3xm4XAHPOjbVCCADA51LQCzgykpwjJh33tb4/80qglAZ3ppw1SjNy5q/JGDNS9X1PKUm54IxbZOO+FptcwigmYK0dhuHMieT8ihyX+I/ETTNyBpuqHmUFJWxUln2kgPoQ2YVSSsAIfKCUZlmGAcVp0oVCK4J90c8u4gbOuQg4RC1U1BNE/wWttVIqgp7Ighz0wcFiNivSNB+NipWv+n5wzhKKBtlYaxlhrjHWm8eHj6e0nM9GG5PRxmzEeGkDrpqqamtAaDzdIDxbravZtvvSl770h37/7/v+H/jBX/8nP/2f/fhfsq5b1x949rmXJpuXXnv9zWw6yxLRNBUAxogeHTcJowE8xWho1k4ISHMSbDDaOEeThBDCKEcI0UQAgeDBaA0hcJYAT3ttGWfSqDTNyi0mpZlONjd3dqpqXfVy59KVfuiPjxdJMU4yvnX5cjDm9TffjuBy19bDMAzDQAgaT6d3br8taLhyeec9zz2jta7bNtlIV019fHw8KsokHwFCi/2j+c2bfb0qyvJ06Jum2T863prPAFFA9I233tnYmIksPzw8vnTp0v7jh3XdTKbzZ19633ueub5q5Vdf/ebjoyMTwPTy+uVLj5d2uXx4sTZipHVVVYRg56xzljFaFHlcMMZoLgRCyJ1bCBtjMKAsSb33IZwlprlzK18A0MYYCyJJpFJt18XTtxyNfDR4RygmGcTlVIxKjPF8MxEJWIUAqA8aADDC/l+H21cIwbrAGSIEB++EEFIOPgBj1DsXzuOvnHXOAcYeIYyQRwg4J8Y4hLBSllJwAIIRhEmwmgnig8MkYAw8F05rQjAErLRpGrsxT7SD3oWUkeksaXqZJiliRGorspRy4hzy50y4OBr1EAhGImEhBECeUOSDxQS4OCMCEkoAwBhTZN9RG/72+42pifGuvuMatDrz5mXMGNN1HSPUanP37t2tra04qHU2DMPAOU9S7r3f2NiI+uUsy4ZBStlPJqMiE9HhWQ7aOXd0dGSMQQRf7F8Y46IoYnGxsbEReXaR/6ykVkobYyKVZDweR5wOIRRtPzDGSZItFgut9XQ8sdqAD9FYGHzoum4YhrZtKcJtVcfxU1XVaZpZ6xDCQiQhAOfC+yBVH5nbSZIQgv1TEQrR2CYyGLTWUsooPdba9X0vh4ETSgCB8yScOV1LKbVUVhtvHUE4UnbifcXaNho4xvHOBUgaaUP4PLwNAMh5PFhEr7Ms6zvV9zLKKL0PXTdQSifj2Wq1MkZL2Vf1AlPQzpyuTozXIiFJwgGjqqruPXhw596jR0enp42slbm/fyKtH8/mr732egRev/CFL2ztbGLEb1x7/wfe+0NGT++8fXy6aAgnUsr1eo0x3tial6NRkmd93y/XVZol1ujVydH69Ng7NSqyPE0IQt1yqbre2RgsGDAAcwDeB6WQDy6ggImlBIoy25jv3rzZtH2SZsu2P607UYzS8ZSyZHmyvvv2W4eHh9vb28fHx/fu3hVCzCfj527dnExmu7u77//gh4rRZH//8O237mRpYZU9PT2dz+dFMTo+XTSDBADkLJwuGcXVatF1HeXi0uVr33rj7U7ZTtnty9ffvvfo8dGpJ/TzX3nltFq8fefNu/fe+vVf+5cnJ0+2d+ff96mP/sCnP7E5nfz+H/2hS3u7mcg++L4PXayN+/ceHuwfTabzGO7oveecR2FytOpw1kIIsQbEGMfYYiEEY0TKnjEiEmas8sEyTupmfbpaZWXCkuR4sUCUUiGUtTxNsyyjgiNKYp0xmoylVmf2dHjYvcS8DwQJACAUvjs1yu946QA+IG0dBBQAe4ekDDEKBiGIDOUzQlogEDAhZzIPQlAEWDGiCWU2eO8BI+ydAwBKCU9pIAAoutmD98gBaBs8wlXbW+swRlIBISiW28Gjtm2rpo4jhzgYiGjVYrUkhBRFcfHuxBpiGIZoIBBf7adH7ejcl/47dsP4n/DbYIYLUnuUqUU8OMuyBw/uee9jYR+HaMfHx3FwQSnd3d2NeQUbG3MpZVwEk8kkgv2PH+3Ht5dS6jxwkXKRBsDlaOIDUtoGwJH5jBCKhVuczTHGBBNWW6MMpzzhSXDBGccIi9Mb731ZjjDGIUCWpKOijLzzruviPxWhzyzL4sPSWrdtGyvTuNcAQDTij9zJC+ofAHjrogcn+IABDV0fkdrNzVnc+CJHJ7JhAIBznidpmeWxc0cIueCj1wOc+4PFLwAAIeyc9z4YY53zhFAApLWPPXJ8c6KFVBSiGOOUMmnCGRMxDMCYMz8Pa22aJgB+kF0/tNrI6XQ6n0/SjPdDfXJ6VLeNx4gmIhAs0tG167e4yL/+jdf++c//QlmWhyfHWmtcbKwM/sq33350eNr0+sHDxwFh68NsY3MymV2+cmU8no5Gky988ZV/9Wu/+Xj/6Ph0Yb1L05Qz5o2RQ9e19WpxKgAhY23XqaYOShHng5TmdAGdShHF1jMqEMFAcbYxz7c20zybbm3tXb6yf3xy//HB8emq76VIsq7rvvWtb33hC1/ouuadd955+43Xl8slo/jatSuMsfF4/H3f/wN/5I/+O22vf+InfkopE+v6iAhLKVfVuiwKuVw8fvRQDXJzc/vhw8ebO5fTcvzW7TvWo9Ou3bv1zBDgtG5uPPdCNQy9UY+PDtTQrpfH3/zKFw/2H1ark2dvXP32t7754M6dy5evJ8m7mHKaptPZuOuacJZDe9atx74nvpwAcAZO+ejPhGKdQQi5+GQvCFXaGsqZhyC1yssizbNB2dPlwiM4i1QjpG4bpVSe5/FsHoZm99Isy6kLCgAI+a38kO/uutgpvEdKgQ946K11yBiwNjocQ/Tgush6jkUuAEh5NufknMUiDmNsrcYEEIKUYxQcZTGNBDAKWhqEWMKp1howafuAEe+6oZwAF8R6n2W5lNKYs6cKPhiltVQxIQBj7JzlnBGCpRwIwYxRpWTfd1LqYRhi/6efysJ+ug++qBPPpijw26QqOIA2WinlrI3UQsDIQ/DeL5fLKO/FGKdpcnS0mkyyyDsVQlRVZayaTqdlWa5Wq+BAiBShMBqNqqobj/MQgtIaYxICOOe1NgDIGFvXTd8PWxsbUiutDaE0qlK01owKznkko0Su8nQ6jdtx13XRR897n+eFMcZpU2QFBKyUaus6z3OtbQiIEJYlaaTaAEDT9GWpsixbrVZxRWKMvXfRVezpR8HFmWYOkKcMO28wSQURnHPTS4ww5aLrem1dL5WHAIAwJpyLEMB4hzFxLsTi7uKM8WeOMjQq8yiEuPULIQjCnJ9F3kT+Wjx74gIlhFTVgADSzMw2ZyH4WP9G7Gy0vYMQQsFTBHleMIIQDkVRFIk4VnKxWFhrKedFMbpz9+FsPAkBZWn+8gc/oLS1zvbDYPi120/2r1+eLvpHbdvn45H2gJF4584DD4jw7J17d7/2ta95D7PJ9K07Dxcn/NaN61f3dgklzjkaghCCMubkABiDQw5CwCwuWRwgeI0AzGAY59b6GI4opZxf2QtSHh8fbW9uLRYL5/z+o32j3faVzZs3b/76b35+GIaILVy5vAcATbVKRbI4OU44m4zLP/Vn/v2f/5mf/cVf+oX3f/DlNE27pk1Ftl6v0yTpumaUZ826Ch62dnb7wRwen3zqk9/79//BT+dl8fidx+PxWGq5Xq/qftjYmFujVT8cHR298+DR9qWrmxvbVdMcLOpRUbz0wvNf/Pa3T04OXjxfG5ThxWI935jGiiE2yOcYkXXORRqgcy6a7gFE82qIMRVxO0vTNFZ5UW0W/S4vmGEIgTFmGIbINdnZ2719+/Z63e/tbcQfEcCNSraxnXRdiwBZA/+6CNgAwIjw4AM4jKmUmlLEOUTlHYQzbzOEgBAUzuysHOckxhhobUJwzgeEsBBk0I4gKBKeZrTve+Q9IZhQYIx1rWPIU4GcswQIOBiMTxnnKWaJSBxGFlFKbTjrorTWyAfkz7KPyrLs214pTQiVUsb9KgQdSxprfZEVHoanS5zfXhu+y7AJ4bc6eo3Ksu97SoiM7tAhDFI2bWuNSXKBCA4IokdbmtNiVGKMCMEAKMuy5XIZQpjPNpVSVrt6XSGCyzLHGLTWSltKaWSKxA9+vV7Hdz5iglKqOC4ghATv404Xf7c49GCMRcaytVY7H3E3rTUn1CodZ6xCCH+OPMYm12pjCEWUeAQBI8xQdG93EIDgruvSNInLMcnSpwNl8jyP/xsZ4LGWRBgbpQEAEcwYq9s2K3JtTdN3OABBODgPPgTrPIKoHbzwZYvVO5xTQJ1zJFBrrda2KJBIBCEk0r8jkijK6AFlzjtrYBSMURE+897TBBttlLLDMFBCGCVKO4bJ0AwP14+HTmacISDT0WxQsmq7rj/dnG8xxvb2LoUQBql5mlFkbt+7T5LRKKcPHj9KGfnIhz/+ype/+bVX31gsq8XBkYOwWq+lVnmeC5F6e+fWrVvj8WXtsdSeIJwzzBgF8NrItlrH05EQElywwYksJXlqggtWgTWYIqQtEwIo8Yj0baX6YXM+PXiyL0T65PDJdDY/PDn9whe+MJlMNzc3q6p6+aX3aiOD887ocVEMw3Dt2pW9nd2Tk5P12+98+OMf39nd+0c/9w+uXLo8zkY0kCcH+0II412gMGjVHh6m2UikyWvfev2DH3r/933vZ375V/7F+1568Stf++rLL79c1/XpokKI1OtqYzZxwXnvm2rdNM1kOn/pPc+/c3CyPm32tndOTo4u1sZsNnPBaaPyNLfWaW0QwlGoHo/5M+mUebdCZJh4YzW4SBLOssx7HxBENDl62cV2pK5ra13CaZakUQoVKaiU0oh4R7VSCKTv+9EEMQFec+d9jGz+Li702wTOhAajTZYwxohyChCUBXfBWRPthEMIyNgYS0soRcaEEALnJE4jtbYxYhK8QQgoDoLhYA0G8N4GjzAGIRghEhMHISQCS+UowYtFf22rsF71fR84b5oOBQcCqUFSgjKRFCKllLrglDVaKoxxVVUbGxtwDm3F/UwkiQ8qSRKesLY2T9/pb799DAAxWC9itO8+BYQpPksiZpzHNjkt8khFjpq8WNrMZrPlcpkkyWKxGGKClDJJkpyenka5SN/3kQGX5+mgDD5PAY605CzLLmYUcelE8CVu5EoaY1xsQmMPIoRgjFVVdcY6hnBBP75gVMYdM4QQJaVpmlJM4umtpGFUBI9G5UTwtO8ko4JghhCKw+4IC1L6bqUcU1AieBqNVK21q9UqTle89/ce3JdaEc4woxExyLJsMplMJpMsyy4mJHETvHB+jeVSxD7iKMnaMy+MGEwYd8ALRWCc8CRJIgRgjIwxbdvETjw6+kyn4/hXAED2g9OGYry5tcsob5uhWrVKuTwd3bh64wMvf2g8Hu/s7GitHz3e185jwgallDKr0ye333wLm+Ll57//7/x3v/C3/m//39/8za99+evfWK7rg8PjNC+yYoRpcrJY1c3w1a9985/9wr989bW3pXGjyTQryxCC1spam40KyilAYJgQFLSWVbPuqwWkLFDEBIMAbhhAWzCOIwAc8jylmFBAb7/+7a2NzYODg91LO23bdV23sbFRluXrr7/ujN3e3h6NRn3bTEYlChBR48tXrlXrrpxM/+0//sdWqxVCaFyWs8m0rut8VCZZigC/9vobn//il9qmr9rm85//PCHk05/+5GvfePXWtetf/PwXpuNpkRVvv3EHB3z45OTodAEATdMURWGNWq0XxpgHD+/du3dvNptdrA1jIvir45EcS/6u6yIOc2EsZMyZ8zmcq8vjQJlzvrOzcwYpAnRd52xgVFjjg0eUcEY5RtQ7ONOSEvzWW29JKa9du6a0jq+td6jrOkxVXsTIYPqvMUrPeG0CiIQQGm2PgXMC4Yz8fwYE+RATJAnBScKd88Y4KSUXlDKglFjrnQ9ZCoJTxoizJk1ZnBAiBIwxzgmhyHlIM+5sIAhLDdL4NM+rurbWMkxWi55zmmVZWZaC8SjRDd5HKI9z3nUuIglx6ggA0eY9vrBRQXdxPb3XXXyNAXmjCYAn1Lun2Iknq2MmmJTDqCjAOcEZwYhTMi7L5enpaFRaaxBC1rm2633ATdMCIKN0kWWzyWg6Ho/KbDxOe2mTLEeErtd1npeCka5pwQejHWfJRebDeDzGGAEEY9WozDjDOAQ59NrovOCYIWW7QXW97D0EqQwikVvUEYJEyrMi74Y+KXNp9GQyCs5Wq5UQwhrvbBh6lZeF1IO2qsgyZwwKzjq1WB5L1WutByUpp5Qz6x1g1HVd38uLR6GkLYtx3GqjB4SUMmO8SDPGRNUMq6oDwN54hskozSNSrqVs2xYhoJQwQoq0mI7G09G4q5syy4o0ddpYpeNQzIeAMOUCIYJcMIxjwojUynsXnQ2zIm/qTknDRKIMDDqMJmNrwtBbjAkAjGdl3/TguLPQqy5QPZ2Ot8abnODDw8Pj1elJu6pNv2zX9x49/OY3Xz05PXr77t2vvva6QejNt9/ou0ow0rbtyf6jD3/4wzeef/bH/w//u7//cz9Nhd2eFVdmk6uX92ajQtbVJBHYqVQwLEjvzLcfHv7UP/rFv/F//8kvff32/mn94GC/bTsW0KScZqJwzlPBDQaaZeXmdjbd8oE6YCAS4JzlqbbKD52XQ0pThEintAoumxS/+eXf3NiZr1anH/n4R+u6fnj33u5s4zOf/hTG6MnBo1Y1AFDXddu2bdtubMwePLh3ujxZV1W/1i88+974QHYvb6Qp6asFNlowe//hvZ//lV/73NdebyV85evf/MVf+ZeE8hfe//7D05Nbz9w8OXw0K8UH3vdcIlBR8oSPs6QMzj2+e7ddNU/uP25WS8HY3u52wt8V/0upsEdeBwBAQLTycojHOSOEaOW5yJerfmNzjhCySgvK1CAZ4VpKCL5ar0ZFWo6yNE0CCozzgPm6GZ4cnmKW8Cyre00E014HBITR6DccQ5a9cwTjNMMYY2N8COH6zRnClvPgPSBgsdZ5SnSPEfzPZOz9lsIwhKAdCgBNp7pWzqdzb2BxOmDIlUZKB20d4MAYxDyP8aRESKcJnk2Loij6TlmDnMUIU2MBUdEqu1gP0hBtsVKGUp9gVJ0uE+qw9ykFIwMlKGALAdIy4zwjg5WrmmSCpAgGKNNklBfGWQeeCkYZU/2AvQMAISDuelGP4JyjFCPsKKUBDKdTTJ6KfpUeAmAcoUIb90R83vkj7+HpvjoigONyFOl7RZb3/YAAF6NyMpuu1+vYfjprEcB0Oh66nmISt7aiKJqmqaqKEi5EPKnOvO85T2LpV1XVer2OPa9z7vT0NEaLxYGA0Q4AiqLgnEQ9vHNOKX02BsEhqtNitFNUnlzoE6Pyt21bOK+Zo1p+PB5LOSilCEF5nl/cqQ82Kj2ixCd+cWGVCADGmCRJYpea57mSxtkzpYGUUss+ZmZG2QlhNMJAbd+3bWttxJixECz6uTLG2rZr265t7Xg8jWWyMUZryTmPhMrVahVCiL7isZOK8FCEnDAGziHSNQCgbbs4sOac7+8feGO11t4GgjDnfBiGvMiiWGK9Xt97+Ojw8FBbW9Xt0ckpxvTb337j7jv3R+NpVTWY0D/+x/7dspj+B3/pL7/22ut7O5fKfJRl+Q9+5gevXr7y7K1nf+SHf/i5Z5/N84JiVq+bhImre7t1XX/rtdf+q//Hf/2rn/9yb8AH1HbDYlUNSgbAXd/nxQghgjwKIYgkwZSEEABCFPwggkmSgNUkeOzNKE8mZWHl8KUv/MbJwT7S9oc/+9mX3vN8J7uvfuPrN2/e3N7cKbIyDm2vXLly6dKlrutiRKcQwgfLBRuPx6vVilI6nU6t9W3T50U5KLeq2icHR4fHJyItf/U3vvjqG3cIpdev3xyGYXNjuxzNNra2bzz7nunmznR763i1fufho1opi1Fajt7z3vd98vu+TxtTVdXTZQUimAnuvVNKFUURce0I9UaQmhCIvIjINo2MiGi1Mp1O79+/H2vJxaKKrUz0dwCIYxNQykSP8xBC27axN4oWTdZajGmaCQAYekMpvnKt0EZi9G5xeGE1AjGn4Xd5OR98jH+B4HyIU3GpFMLYBW+0s9YjBJSC975vO85YnCgOw+BccC5Yp30kJCKEcNDGW+8QYEqpcxgQJhQBpQGDQ9gjGhByFkYjFH1ON7e3YkK6EEzKProsW2sJpaeLRd/3sfqLqq2IjMeXiBDCGGNUxAYuTrqeeizut2t26DlpKFw42cRrOp7FYfHWfAMhfMF0OTw86Tp5+fJemqZ1Xbd1QxmJWScMn1GLlVLd0Hvv9w8PGEMR37uY6XSdKooz1XCWFm3bFkUR+0GttXeY4LN1E/e+uu4opWmSGx0YO7MOjJtUURR11cV9OY5ZohYYA5JSRvWL917poUR5lmXG6K7rnUuyLK3aOm7QxlhEgFARBxrmPETl3QXh7CC7uEVmaZGm/TAMhDMHQUpprRMJo5RKrT1wcR7LEC2elFIxHkvwaHqG+14mInNWDT0Ej7IsBYm891JCkiBOuQWkdQPEU0pdsHmenZycSilRgKTgq3WLMYxGmXOGUhoTWgBASrledzubM6WGnc1Nb53qVd82q/Uyy5I4t8nzMk0KKXUg1ANwkS5WVdV0H/3wh7Z39371c1/6k//LP7O1e/1/9Wf+7Nt3H7//5fc3rUSIOGNee/0N7/2dO3eS5BM//Ht+9I9vbv/mF77487/4S4+e7Hvkd7Y2uqbfX6x/5hd/5cqNa0VWDK7HUt64dp2Xue978EgN0gPOyiJYQxEgwOAsChDAS6nBD2nCZFNvbc6Myhcnx88/++yTJ0++9tUvf/IjPKG0nE5v3boptb59+7a3dj6dMUa2traiNung4MA5t729HUJgPWvbFgWfpmlAnmDqrC+KsntgZtONx0ddQPjw+PTald3tvWu/9K9+/Y/9wR9ZnS5EWpyu16fruq5rwuh6ve6kRRQVZXa4rBfNHWBp/803Hp2cUi4G/W5UnTIqoJAk4pwzgJfLZTlKo81d19ZehgsbNyuEc44xplTPhKjWw2wejHGdHBDBnGIpJaWEUojvEWMMATLaORcIORPORrRda0DISin3ZruEkGrd9D0Uhd7a4w8fgncMgUcQa6EzqVz4rhiIHqI+D1vvjbOYseCctjY6tzmAqLdDCDnnnfFJwr0Haw0gzDmJ/DFEAFuwWlOCPAmUImW0s0RqRzgAwsRjHXAwQLxVGmkHTIfVus7HKMnzcTJePHxSFolV6vT0dDabRdKMMSaa5sapQ5bxptHDMMS3PnZyaYK8twB8aDtBv6M0DgDRbxAhEm/lXe/rEOBpDxvvPfjQtu2lnb1PfOITr37r24+/+c1eDlzQyWTknJP9kIrECG2k4oRqGa1ZuBCiGJWr1RIwUkolKYezgbWPHo3GgNaWc15V7d7edtO4qBCoqsoYA54kwqEz49XAuQDoqqqaTMYYs2GQcX4SzWBCgBDCMOj1es0FjZo5PUhv3XQ+j0FlQKCXclktGaOYIcZo33d5nsU66yw0SuvRaJQkycnJSWQDPF0mF2VW1+vI+6vrejabVesGY6KUGrRmBI9GI2VMdPGS4OLZyKnIsmJdV3ORGu0oOqsOIGBrfdfpJAGtbTYpPARjLAJA56zDaHDEOVeR7g9Ba52nmfdOaykEmkxGVVVleeK9j1zfpmmKgnFO+95hxKRUySSpVksHNrKu1ut130vnQ/AkIIwxdIPaP1g+88z16WT+3/7tv/OxT37fzu7V7/89v2+QeufytS989dUyzy5tbxBwi9WqaZr55sarb7zx2u13tnZ2v/K1r7/35Q/c3z9cLk4ykWxuX2q74a27j3/q7//cX/nz/36Q+sWXnx+UWq2q2WyGOc2yQmoFgHTbCy4gOCsVeIest3IYuh7KPM2KoW/7tplvbk5mcybEi+97f3Vw7K1OBe9kRyh/7rnnViengnGesOh6+/jx4xDCtWvXonzeOUc5D0ZnafH2ndsYAkKorWpO6PWrl6vWsKS4f/fearF8+eWX/85P/vSv/frnn3nmGasVF9l6vV41PcK4bfWqaqp2PZlOnXN5XuajuSF0Pt88WR/z5N2XKjLq55sbJ0fHeZGvV633Z6ZzeVYuF3WE8yP0HEljBBOM8aqqi1GyWCyLcTmZTJbrtdbeuYAABOcY477rGOXOBIICpzyAhoDLYrxer4dej0e5c45gIpVmlPS9QYAAfF6i6QyqE+ZBYgwI8LmqOlykBfzuLgQEg4dgLfRSB4CAkHLgrWcMBCMheGcDoEAQIAzGuBCCc4BJoJQGcICAC+oUBG8pQzgFSslqbb1zgKhSFjAQElxA1nqvNbiAEdqcJTZIA7Y5PR1vzuNQKM9zSlmWZQEj7Uxa5FRw7702oa0bDAgDdE2bJEmR50opZ6xSRnAewA2yK8un5LZnzq5PbY4hUAgRRAwA4MO77MT1eh0QJEn65MmT6XSOMT446jiHq1f3Tk9PB99fvnyZAFqdLrIsQwGUMoCJ93J7Nn3uuee+/OUvr+v1xsbGarEEiIMyZ60pioKQ6HFPxuOzCGPBU+/dYtFubJSCsXOnNoiVmvewWq2KoiiK4ujoKELOcZFFdgJjTUwijbeUZZnsh+gbaK2dz+dSSqn60TjHGCMfYqcTbW8AAJDXWj3dy0Qt4MWjSFNR1yCEGIZhtTy9cf1GlhXSdMYY56DMeJ7npq6HwYs0pJwaF5qmGxV4NBo9enwwKichoOl0kqbp/pO3p9OJlIoxUpaFlLJtAWMsGM9TTBDWUg1qsNaW+dmh13VdVHwLxquqYpxgzAK4GNcXXW1C8MH56WTCKR2Px3XdciqAUGtlUZRaKRx8nudS6n6QgLy1XmptbHj2Pc8+e/PGP/nZn332mec/+KGP/Id/+T8+WHbj6fjO4yfSgZfKn5zOxsWq7bI8OVhVPlTaurv/6guUwdffupfmYiNL0rxc16uqk1eu3vhnv/Av52Xyoz/0Kfvaa5vzjd3dXZblzWoVfSpl0yBCrdJOG+ctxSQ4i4zjmKzrbhhUUWTz3csjKQGTydbOyfECKYsIrqpVUuZay9df+2aeFs5YnrDJZBIPJ+fM6elp7C1c8EVRNKtlWY6LolgcHcYgKt0Pz926uTHfffDk8PTJ/VHOb1y7WubiweODcjJv6rUzent789r1m73Usw1/A6Eky5TRVVUNg5TWj8qy6gfnnPXvviYx+XMYhhBc5LUVRUIptdZZYwhhHhwAWGuNVhThLMvauol4DiFMO825YEL0fY8RIISGoWOMpWmyXtfOuRAAY5ymeVWfxcwaY6w9YziHEKwz1hnnYDIeYRy819euTV9btN77c4uWd6MCvosrBHAAxAcPMKizpDNjAQBoQB4wCgjAQgBMECHI2vhTwftgnbYWEAJKKXLeeaA0Wkg77wERRDDtjUUeUAiUMB+Mdl4glKapYAQCwZRg77XUN67uNX3LOJkU08PDQ0QJIjgS7EZ54YNdVS3GOEkudn+IQ1pr/WxWttW6G7qyfLfho/Q77LziF2dOqGd98lOzqAjZKqMJE7/xuc+9+fbtEGA0Lup1BdY9/8zzzz/z/KNHTzY3N6211juRJiHEDd4OXV/X9dBJb30kXp0X+QYA0pR57zGm4/G067rJZDIMw5PHB85BFNwAAEI4TTPvfTS8LfLRalkxKqKD5oU2I05g41g2Tmw555PJJM/zg4ODqOSbTCaEoqrqiqLAGGIWNSAfqdEiYUmSZLkYhqGqqov5VLSciVfTdFFlHAvGqqqUGoz11jvGznQFCCEXICDI8hIAeumlMto4a6HvJSEsTdODgwMhaDQ4SdPEOZMkXMoenZuJndl0axtH2xEPVUoJIRAKCAfrTGTtdl0Xiabeu2ihlqWFty5JBMa47ZVywYRggt8/OTLBY4ydC5yJvb29Gzdu7OzsXLly7dKlS7Px5Auf++LWfOMTn/jUv/gXv/zGG28jhk8X1aAsoqQ37njdr9pBA+qUrtp22TT3948CBWkBcdL26mRZHx4f7e8/nk1Gbd2Myunbdx80vd7e3n70eP/o6MRZhxk/Pj5umy6EoLuhWa7r1coMCjmr+6FvG28NADx58uStt27LbmCTKUuy2fbu8y+8MN7cJIJnWfbwnXsP7twJzgrBilFOKT04OIjEt9g0xVwRowPGzPrQdd2lS5eUUo8fPjzcPwCCGSbbW/Mf+L5PfvD97xWccIau37gKVLz+5ltZXtZt98Zbt7/69VcfPXqklNJSffMb34gpEU3dMUzU0I/KvEgz2b/bKZ9RICgDgMViTSm+YBFE1oHWZ1Gi8eiKv+1oNAqIHB43BLMzPjbhSZIYZZ07882OzvUiIZSRNOOEQMQN8zxPUxpxQ+dcknAEmHEM4K31BImNjdlk7gF8DNJ4emv77mbNyANCiGEIHnkH3oEDwADWBa2tcwHOsrujY3TAGJKEpRknhCAE3sMwyEFqjKMpKgOALIcs5YC09xACOAvufMumBBKKzSC7zmpreZIul8vd7T1OmNLaKD0MQy+HWMpIraSU7lyAEEGJaGJQ110IIeVpUWTRh/TpsENC0W9nZWIAiHKyeCcXf5DmubGu7bqsyN+5d79pe8ZBO8cQ/eiHP/bye9/3K7/yK0mSRAJB3/eIkG4YhmGo1s1isUAB8jRNuMiyPI5K8jxP04RSPB6POT8fQWgrhDg+XgDAlcubfSebponC5KhjAwDBRZ7n63XNmCjykffeORudFKzxdV3HQ2AYhrY1UbcX/RFGo9Hm5mZcnZQCYyROmpLkwnKVl2UpBIuYdziPvvotuShd12ltIzCUZUKqvmmaOMIXgkdlCwAwdkY48BAQAudc0zTjcdG2LSVstVob45599tlYIzdNN8h+PMkZYyJh1hqrjFVnmx0hZyTzaHoWtXwAMBqVCAHGMXrFx4MhEo8wABfs5OSoHfqqbh8/OchH5f7JwYMn+9q6pu3vP3jw5MmTxclp17QhhMePHxtj7ty5QxlOkuTy7t7x8bEPkPMszxII4G1I0wIA6qbvpe77vm1bqYy14APGhFgDEHDvkENYJHy9PDl49HBcjpRxr799+/DguOs6H5A2zjugIhm0ery/XzdVP3Rt37Vt3UtpnJZa9XJoq+V4VKQJP9h/ePTOnaFegdFAyM2Pfs/25csPHz7c2d6cloV3ZrE4Cchvbm5ubW1JKeu6jvmQRVFUVZVlxfbO3vVrN9qm55Rdv34tBL9YnraDvnTtejmdTafTF158fnd3mydCaZsXY4/pwdHx9Ru35vN5wjnFcPfO2+v18kMf+dDRyeG6rl586T1FkSEMTbWy1oanUBTwYJSRUgEAQmdkrMgz4zwuKkjTNJ7fUTvgvY+Cd0pBarVa1wSzLMsijWE0yhkj0fKec8o5xRgiswQAoow1yzLvz7LS6q6W0jLGB9lQyva2n2WMXb4ikpTEUUoIASFyPhL4XW+HCM7IyE/FqGFGUPQ3tDbYEE2kzwxT4/kUvyCEcE4oBWPABQgBtHMIqHeQcs54YMxjAIxICMEZG4KnAJyCs8O4LJIEASZVU3ddGNqh73spdVRe5HkeMzVDCOv1um3bOGmME9RYQ1CKkiSJryfjRDBq1G8xwfVP4YYAAN9hef/0SWKMMd7t7u7efuduLwdKqXYwm83e9+JLzz///M/+7M9abUaj0RkgkiaEUcKolMZaG3l2SqmyLKMTWUTBzu0PIARnjLl58yZC6O7dh6NRvru7GxtYpSzGuO/7vu+TJCnyEca4aRopfWQ4EkLi8C7Waxemp7E+39zcjIQjbc3j/Sfruto/PGj7rhgVUivCMICPIX9R2xD3QaWGEMJkMkEIxYP96bmh4GmapjHDPn7SzpteSe+AEGLtmU6AEAQY93JwznGOMMZS6tlsppSOT+CZZ56J5gsA4BykKW+aszc5WOcchAB5kkY5V7xZdB7UF298NCoiMXNzc1NrfS6QCuv1WkoJzkexmjR2Y2unkf2Tw5PpbE65kEYXRXHlyhUAuHv37t07t6fTadd13tut+UaZF2ma7u1cAgASvOqlYBwDkn2fcqG1c9qpQRnltTQAEJz3NkC0+cBMWxecxcHKoSvLUojkla989cuvvNI1vfdea7tYLXmkYYfQy8FD0NacrpdVUweCWZp4EpySzWrhteQYy7aWQ9etV66t2tPF1rPPfORjH91/9Hi9Wo6LcjQtHzx+9NZbb2mty7KMPNm4B21ubkptDg+Po2HSer2eTCYhuDQVDtjO5WtJmp2sly+9733vefElhOnupct11yciy8vxo0ePZrPZzs7WfDq7dePm/uHBz/3zf3ayXEw35piScjKezMbzrY3xaFQUxbtrQ4iECxTAez+ZjBhjdd3Ew3JjY8NolyRnypP4y8RPtmkawIgwFOfgjx8/7vs++o9MJpNzxhyE4EJwzhmEgtY6ihQigRcAooFIXbfW2qIoEIYiH21tXlssVgH3eZ4ydvZqXzBs/O9ewBzH08F55IOzwZ0Hb0Tj1AAAATsXjPHOeYwxY8Q5Pwy666SUGmOcJpkQpCxJQNC1Wko9DMEYQ5DPcooREoyRaNwNwAkwQqxxShnKWFGWIaDr1/e898a4WLIsl8uLHSAWBJFQEQ+M89Goi3YYfS/X6zUhJM2Sp/e633GmFHdDizFFgRJ4F2UsxGh5pL1Fu9s71aru2jahcOPKlSDCL//av9w/Xsy3d3qpj0+XNvgsy8CHPEtG49R5fXh8SBhxwb91+60QbAg+NrPDoJQyWtuyHEspT46XCR8/fghZOo7qpTTN86Jou4Fy1g29Uur6jatJkqzXdduAVq5uVmnCxsWU4JTRdF2vvPdJkvW9BoeuX915/OSB9mq+s5WknAtaNWvrTQgBfGhX1cZ43vbWBp/kXKoWAOqqaxt57crNaL1DCIqx3/HQODsYnB2k9gElaQ4Y80SINBEEO28AQ6CABbZBTqZpsINDshhnTHDjXQgugBlPEq3WiNP9k4N3Ht4VaWY9oZzm5VQ7mzOGAzjnsoyPRqO2l84Gb4Kg5biYb2/tUUwXJ8uUcU6wN9po2TSV1pIwnOYcADjnnDJCbTEtMU9CCCmH3e3ym69+bWN7Y5IVTimnzd7eHqBACJnNZjs7e8MwYATP3rjZtm03yKZvPvuZj+5M6KJTFrC2BlMUwA9aOYBlJ6sh6IC0cdE9HIHPEhG85V41jawUv3vcS4weHjx0zpXZNMZvpmnKEra1u7NYV21nNjYvKzU8fvggT5hAQXX10PeMiUQUnjGL0f39x4eLo3W9eHj3Tn1y4Psu9UYdHGSXLv/gj/3Rres3X3/79t0337o8GaUJPT05CGAoxUcnxy5qx9J0czxJEo6ThBb5sm4YYdTjaV5yj0wIm9ONcjwxVl2ZTvdPjhiiLz//PEWWgJ5NR2+/8RYCXpSTS9ev/uE/8sd++Id+lAXx7Vdf/9yXXnn1jW/fffjg4eMHXqp5MblYGwiIcZYxSqkYj8eYAOOYEo6AnZwstImihmCd9hA8AkIITwRh2PtooeQpZn3f+2CLcdKqVqqOcdK2PYL4XpCus13fUMqTJHMuKGON8yJNtYW67ZBhnLJEUEaFUurOvde0G1zIti+D9wEBRwgCWACMgBLyu7b6cgEs4CGg1ntLkAZAKIzzJME+YcAZYAJAgAksUsYSUtUaE0ooKfOUIOhbQ6lLaQCPUIDpOCXUZxmWOrQ96jqRsMCJKQTMC54zyBKijAUKNEtSRKTqcIqGZjXobnB6zLNsXLaD1VJRIBlPMMZVrxwhHJG9ze1MJLLrhRCjUeEhAEaIDH2n+wHySRHEuzrlc3+ss2I5ls/4HKcL8J3cy7pej8f49PQ4z1PO8WJhX3jhmb5vv/jFL3nvp9MyhFBVVQRWnHMIB+99bEVDCEqp2Wx6kRAST8tIYYmqle3t7YODA2PV3iXU9W2sBCPxqhzlSZIIwSklbdtOp9Mk4eWIHR0fxgFLnKB775XyImHGGOcMYTSeFXLQGOOdnZ08z2OIajxyWZICwHw+b9s2elo0TSOEKMvy0aNHEb7suiHOlJ9+FEmS7O7uPnq0fPToycbGRvwrlFLO2Vk4FCdxCB7vXWudpPzMnMK5upPGu+VyuVqtQgBjNUIh/v4hhIDOBC1RiRijAhhjjOC+7bx1hJCyLHslI/YcyY91XRvjOOeU4qap4jRpuVymabpYLW89cwsA1muZpmmR5QTTvb09hJCzHpEzZ729vb1bt26t1+thGG7cuoUI/crXvgGYEoJiREHszWPDgxG2cTpIiEcwmYwYI0oOFGGEMQAMcohra72sDh4/EUJMp9O9vb31eh2LuNjfDcOQZAVg8s7d+8V4AoSenJwcHe43TbM5m86n052N+cnhQde2G5uz4+Pjt95+4/jwUA7dg2+8Wp2cfPBTn/4Df+APXNq7/NbtdyLRrGvaPM+fvfXMeDxmmEgpAYe6bd56+w1GKEVYKXPp2rXp9vZ4PMaUpElOGKWUNl3bNM2T/UMA/9ILL9br9WQ0+uxnPvPat149Pjn6tf/hV958/fUX3/OeP/JH/63v/8z3PvPMM6PRKCLLkcV1sTbiGHB/f59SGtXiwSPGWFmWzpnxWIzHZdd1ctAA4L1HlBRFEfHuSH2VUoaAvANrHCG4aRprbZZlzoMxZj6fFwWLdLSu6yM2BWeK9TOS2QUzLMZyxBZ1GIZihAFpQmjwQAjCJDj33Q1TfIAQYmwvAMLBOccYikYCELD34KJ7lbbR7NpY1/dDmgqRgJTqnCeL4iKJtxCNnBA6C+eLPymEgDFQCsMwhBBiilx0Ztne3opgCGPvqowJIRhD5BjGxuhpJ5v4AnofLgLTL67fca709Gvvn/4OY2VRps5rkVCEw3gCCLtBNnmey0G3bRvbQ2OM0S4STQkhbdsSQpXSsXadTCZS9Zub83jPsRU9PT1VyjhnVuu277vrN640TZ1mIi/Sssythf39fYRQ0/Rd12mtlB7SNE1S7JzK89Q513b1YnESYz4xRqNRETtQxph3YK2Tgx66vm1bxlBd1wihpmsj0EY5I4ymecYEr9s2Sq3rpjs4OLh06VL0BYlb1cWjGAb54osvvfTSDe+h61prDSE4OsUCACZACKEMU0opxaMsN0oShI1R2mnrfVmmO3u7EeiM0HKapknCCUGMnyms21YihNI8j3IlQpGRymkTvfyqqtJaa2cHrSjhWZpqrRPOwAeMMUbIB2+Mi6nbk8mkHOVv3769d2ku9cAYm0+nzjilNKVc8PSFF16YzmeU0idP9qXRV67dsD6cLtf9oFe1jCYd0WMNn1vpueAJpcZ6bVx0oLi8uyc4y7Ikz8siLxhlnDKrHHh46aWX8iR94T0vrZZVJBjfuXNntayUMVJKkeSXrlydzjfuP3hECLl+/TohpKnX1WrJKd3Y2PjUp75XKvVPf+bnHh3sv/Pg/rdeffVw/4BTUq+Xj994qyzHH/3sD374Ix+tV+vjg8M7d+7sP3lCCAnOl2U5LsqT9Wmep9PxpF6uBEuqui3nczoqkiSheR6ZA9Gk+v69h0II7+x8NvnExz7SVOudzc0/8Ht/7+OHD25cv/6tV7/6E3/3//OTP/F3Xv361588enh4eOicm07n1rtV/S6KEt3ttra2Ihs/DlXiECyCQkmStG1nrfUelstl27YiSxmjXFCEoCzLYRii77JzyFmEEIqNMKVnByfGOHh0elr3PQiRJiLTymNEKeEQznCSpqkYI865YRiGXslBIxTy0hMG1noA6pwh1H0XuCGAj8yVEIAgxBg6mwo7MJFcba2zwVnwDjsXREKl6jmHPE8QDpwTQrC15sK2Li4qQpAx0eTiOwbf/jy8ybkwDBIh5IxljHFKN+bzhIthGMqy8N5Ha2RCSJryeEhEBr4/D1yLicHR/UCI5Ok9FwCeTkt+6k6f2imfpqoj7CjFRZEpNWSZuHRp4/j4yFqTJqWUOk1z5xwhKLrVx50RY9x16kK+5pwriowQQiiilGZ5cnKypJROJpNLl3ZDCFlGr1y9pLUcT7LF4jT6/XGOjfbGmI2NaVEUy+Uyz3PGSVmIoswwpl0vldGMkTRN1QBSD7P5JG5hAcE54sa7rsWAxuMxhJCm6WpVHR0d3X/0MBpoE8KcDUqF1bJarVaUwWg0euONN4qi2N29FM+li0dxeHh8584dzvlkUsbhiZR9miZx/cWTACGECQgh5tNZmiSjUZkXaQCnrKScdl1XFEUI3lprjFJqcM7FRe+cQ0BCAJHm0UQa4RAHI4Qio1SapsYYLoQPKCAoiiIRGWMi5rg658qyTFMRnKeUJomYTCYPHz401iIc0jzPRNZ3MsuK+XTj8uXLV69cWa/XTx497Pt+e3vrve9973JdzTe3MaH7JycOQZJwwSkEd37wnq0Qaz3gs/U0DMPBwQFj7Mf+8B/6C//bvxhlIc4awfG1KzuT8eilF19s23a2MT84PlJK5cUo1i+U86oZuMhf/tBHbj3zvDbBurC3t3ft2rXtrT3vEGEJYPYDf/DH/txf/Et7129cvnlLCHG0f7BerZyxGNBisTh99OTajVs/8iM/cunSpevXr3POf/VXfxUh5Jx78803CcNVvdrZ2n7umWe1lPPN7dOq3rx6HaEASnnvt69e7bpuGNRZrde0KWeyHz7+0Q/vP3m0Wp6+98X37D96+P6X33vzxhWGEcb45s2bzzzznPdw78EDF0LVvOt9fXJyEuvrtm0RQqcnyxACxrSqqtGoyLLEGGMMxBJGaiWlAggOAkKIUCjL/LyK4Ua7rnMRyJaypxSUGrquI4RElm6aQozwNuYsQcx7b63GGIQQ5ShPUm6sivAZ44QwmG0gACCYA4IQ/O9oVfA/fSEAQGfCDBzdlBEYY7QNzgVng4uUFIwDQgCYEORcNP0msfvBOJp+BwAwxngHCCEuKMIQs+ydO3uNIiMSY0BAACNnIU0z5xxGCANaLpdVtQaAKKyC898nXh78cr1smrrr2q5rvXec0lSI0WgUdcpxsvrUbui/82zwcJ6nHLz3+DsNX0MIPKFR7RBd2AhBITgP6ODotCgSMCHaYW1sbGCMnVXO+dls5B0Mw1BV9eXLu1LKaIqRJDzWW7GeIoQcH6+tdYQQa+VsNl6vQ57niSiePNk3BrK0IBQpJbtOnWOlCCGUZyNrnnjup9PxarViDDjnddPEFzUaHWJKMpGvqxPOWTSFzbIsz9OmHhBajSeTuH1b6wk+M2dNkmQ6nR0cnA7Do2eeuTmZzI6PDy8eRZqKu3fvegfT2dh7KmXvnNveLqNG0HtrjMIYvA+UoUwknFDKMGO0amxAw2w2WywWGxubkXzLmOg6hTAKIeR53neSc54WAgC01hFf9xAAnQUAFKOCUoLpmWN2mYs0TbuuY0yEAAiAMZYnaXA+NtF933ZdlxVpO7S7l3eTPPHeIwAPbrFYRJ7Q1SuXRFbmWfnaG2984AMf4Fws11XdDMVotFjUUuo4ufbh3LATYx8QRI4YY9YYTKDr+p/6ez+NMdXOFmlSFqmg6Plnb8muXZwclwlQzj7wPR96+/Y7bdvOZjNK6RtvvLG1tQOY3r/3aGdnqxiPwLuha53VIil2rt2UQw8YA07oKPnQj/x+QAjaenH/nlJmkNoYRQhSg1ytiDPDi+977/HxMcY0L4rbt29fu3G9KIr9/f3ZaHzv3r2re3vTyRwhVHc9pEnft0Yp74yp69ls9tXX3gwhoADjMi/y/LlbH/6Zf/JPP/7xT165cuWLX/z8zvb2k0cPMOWj0WQw/s2335ps7rz35fctqqrrWiT4U2sjRTg5PjzOyyx6FBHCjDFSQpZlAVzdDNHenNKccaKU1NYMSkbv0SggIyymqmtrIQSI7QIhEFWn43Fprb18eR5CODpabm2T6TRzzhljQ4DYVicpj0GyXdeVZWmMG2SDCezsTfWg+jY4C8bAd0W/hkhH9ufbgrdBOy84DR4BCihERjYCAGcDYpAkRGutlU4S5r1XCqajjFKHMbbWARiMMWVMCItJrCd8LMYIwQABYxIL5CKhjLE0SVLGAiHKmITzQQ+EFJQSIThjcbowAMCsHPtzp6vorOrO0hdY5NYkiaDs3Q/uvPn7DkzsOywPnz46zixqPMrS4vT0NEkSAOw9DL3sujN3qRCCMTaEENFDQvBsujGZTI6PFt4HxljdrDGGyDNq23Zjo4yWXIeHh4wJ52C5XCYpj+rCo6Ojg4MjSjhCwHmyXKzrutnYmMpBeweC06buGEulcl0vGaOrVbM5n21v7z58eEwIKUZlXJ1Kqbqtiiyh5zEUaZZRSmfzkRBiNBo554x2nIuoiiHnWSVFkTBGHz9+TCnd3Nx++lEU+cg517Vn0Z0xPkXpIbbn8edSijnnfd9HW+tIuxWCFUXGGGnbBiHEORUJc85qbazTIQTtbK+k92dUoUEPSZLE8DMAkEbGYJksyQXnRmuEsBACY6yUKoqcEKLUQClOkmTo+pOTk67r8lHeD8NsY1411b0H94GAia6OzlOEL+1u72xtZIlYrxbvefbZxcmxUgowXVUVE2JSZgAQAkQOBwAARoARIQQRiIc4wcR68IDiVkgISlNx5fLuJz72YQTuhfc8d2l3+70vvw9j/C9+6ZfjQhqGYb2ut7Z25vO5lDorRkk2QphbHygXXS9PFqcP7t0/WSy18YCIHnR/dLp68NCuq8l0nmZF7HqapllV6+PTE+3swcEBYFTVNabEOPvk8GBrd+fy3pW6aq9fv865QJTs7u4iH0DprY3Z22++LgTD4FXfCUY4I8G6oVcxfOKv/bW/9uqrr37rW9/6E3/iT3z2s58dT+dJktkAWZGPJrP9o8PX3nxDGyPyrJfv8g3bvptNpknCI1Ugz0uEUNd1Qpx1hc65mOAQuVMRUqf0LAO+7eo0FUKwEBzCIQ6rnXPWmaIoOKfR3zTqWLz3zkGEF2KGRJoK77020jkb+e2np4sowUJAMIIk4RtbqbY9Z/S78/h6+i+5ELRx0gYdIA6X45+ftboeWe+dc1o7HROronceQF33UdqAEBhz9lc4p2kmRMIoRYSgeGbEZtkYJ3WggldVxTBJkwQjKIqCcRITkGJqiHMuapYvdsDYHUNUx4YQF17fvasTf3c3dO9Chxcj06dqRfQdg1QIGCNqjGvbfhh8muZK6aZpHzw42N0pt7a2zvGXfLVa7e/vxylK9Kn2HrIsjb9flmXxt7fWrNeNc25vb885N5vOIUBRFNGskRAyKifO+r7Xs+nk4ODo4KAaeoURdS60bb+xsaGUWS6qpvEhoOiBpI1klBsDxtgoLkYoaK3qZn3lypWyLKfjcQzTaZp2Mpn4EKqmjiQPTEjbw7qulNEI42EYIrRXFEXbtqenpxdPYrXqhmFAiEReDhc0SXj8ACKd2xhFKQ4hEIKapvEIkoSnmZhOi9FopKTECGmtOadlWQrBiyJNUx4dIpIkwZhIaTDG2pqiyNM0QQhZ79M8j9t0/LZMJDFz0htHKfXWkWhvZ521NqrZo/u5954w5L0bhsGBr9qKcVJVq/GkfOE9z2WcY29TjuezEUahLMsQ/MnJiVJ6VE4++clPXr20A+dlxJmVpA3O6uB8ZDJZ71zwIs2icNC5wDh930svBO9uXLtydLhfFPlXv/r1t966HYu1K1euYEyNs0qpUV6kaVoUxWpVFZMZoVxbt7m9wyk5PHg8dG27Xu3fu9u3tSBYDv2jg+Pb9++frJerar1YLbe2tm7dutX3/YNHD5XRTw72jbPt0F+9cf309PQbr77qlUu4MMbl41FW5Frr9WpxcP/BqCz6rmrWC4IBgb9yaU/LHoFXSiFMd/b23njr7f/y//J/bZruv//vf/LmrVt/8k/+qQ99z0fSJG/7IXoIAUb7J0dN12L6tIeNRAiB803TREZ0CGgY7GhUckEZoxQTb4O2TqSJD8F6p4zElGCM85z3/YAxds5gDFmWZDlHZ9HbNMuTLE/iiNIYU1UrKfs0BcZJkvLoGRN9iOPHlKYiTQVCsFwuOU/yPDcajDEbWyki4BwCYN8d+9oH5AECgPVgffAAGIFxzjjrvQ/BA0Syd4i5Ud5DjBqPnXKaCqUgDlo5Z3HXs9Y6Z6KRdaS1xS01nsHe+ywT3ntnzgz2o+o/whERFmyaJjrsUUqLoujkYLzzCKjgnNAizZAPOEDcKLK0SNM0hhWf74Bnm/LTdxrp4/GPv8PDRkqNEFFK3b//aHd3M86zVqtuOi3H4/FyuY768/F4vFjopjkDwuq6Xq2q3d0tSmmkUA3DMJ1OA0TpMRhjollhVTXWQjRriKOxLCvyvGSUleV4Y76JMSRJtrGxtV6v0zR1NiRJ5h1mFCJynCSsbfuTk8VkIoYeuq4LCKqqJQTF2ATkQ9M0cYRtbACAYVDL5RIAzlxdEyCEYERGo1H8Tkpp07Rx8HLxKNKUEEKiNLDvTd8r5xxl2BgTAb6uk3EbigISjHE074xIorV2czav63oYBm1k9AwnBMV6OU3T8XiMMUQKYYzlY4w1nTFe93KI/o9GqrpqI+E+GuHEGqTvu7hjaq2vXr0aG4QoYonRgHVbeQAgaDQajYpycXJMMZqOR1LK61euHu4fOKMIIU1Vjcfj6XR6/8G9ruvKMo0yJmNNrBCj4WNkrTMmAHCMxElzXpZJXa9feeWLBIWiyDhn/dBOp9Mr167leb6zsxOXipTy9PT09u3bOMD+/v7x6cnp6QJRVpTj5brKOLm0t6X7vmubIkke3bv3tVe+2C5OTAj3Hzx65869xwf7zrnF4uTBg3svvPB8mqZv37mdJAlm9PHjx5/7/OeLstRaP7h3f+gkZaztO54k1tqb165/9UtfTNJEKfXVr351vV7W1RoAPvj+D+zubitr7t+/r7X13t/+9rd//Md//Nazz/yNv/E3f/M3Pj+fb37PRz5y48atjY0tJlKpNUIoEn0v1obWtmmaNE2NCRF0imYqEexTSjEmpIS+l5GyGne3aLBUlqVzYKzq+gYTSBIego/mIKPRKP5TOzs7ZVlGUJ6x6HQvV6tVnBtEgDvLsjzPIz2+LMvokpllxdCDc2Fzu9zeIc4FBOy78sTGIaAA4AEBRh4QRpgJDucl4UXWpg3OOUCIzGZjQpBSBiHiXADA00mmlAshcM5jcIoxRikYBiWl1PqMjBH3ovhuEkKGQc5msyRJcICUizRN5/N5nudJksQC8Hxl0ghTUoYBeUwA4cAF1UYOshuNRnnORqMRY2y9fhfwDSESHL/zVhGwqMoLgLh4ty5GwI+PVlubuxEyTpKk61pKIfihaZdJQo1xUjnKiqqCstzEhBHGCKMiTdq2HY1GVdVI2U8n5cZ80rcNxQQTGIauruu8LBD2WQ5Jiuu6mkxmUprVaoGwR8wMujk4OsAEgsdKmUuXLgH4xWplXc+EzjK4deN61/XW2iTjkUJFKSRJYlQc2JOoUF63axfscnXUdavt7ZF3gyAevCPYK2Xqujca+t5szOeCpFLKxWIRjb+8D9a+ezAkSWKdDmCUHooiYVR4xx7cfxRz5b0HSokxYTbdQsDG5SgX3HTdJM8TQo6ePM6yjPKEM0IJAUeMsT7YvEi11cb6tlsGbGiCpRswA8IIpXjoG4pB0AQDCsGXZXmyXvI865TpbS19j3BgjGVpOfSgfbAoLKr6dF3l49xj57wGcJRSa62xvQtWWs+LouobRv2lrYlt1h958VndLrXsAdNBGpEXjLH9g8co+PlsSjHa297iGAgC5B2G4DyOSDoAWKtj38M5TQFvjMrv/8SnPv7hjy9O1+ta7l2+cffhEU+S0Wj0zDPPHDw5LMtxkZcI8Gy+cf/x4/tPHpVlub25ZbXyDkRa8nR8sB6O13JwXuTZ/cePstEoGc0eHi7ffPvNtCweHjx55+791998+9HB8WS2eefug5vPvgSB3n77nX/6Mz/HstG6U69++43VqrLeaa/vP7jbtGsUHCNolBd9NXz5tW9tZfzw8O5yUVvMD1b77722szWfPPvsc6+88sp4PJ7NZs77O++8896XX/6Tf/pPrU5XP/cLP/9rX/jcadMNQ+AomY0mnOHB2WWzuFgbs8k0yzLEUPCgtcqyRKQckTN9wagoY79FEDDCnfEU05jbY4xr2zYvEsyoNkFpbaz21nIiTg4NwWmalMZaD05q02ufYsEYS0fZql1X7co7hXHoe9+2cmO+paQ9OV4PvV2cNgCgdZ9QdHVvY3M+UbKdTAuMfQDzO8xR/+eui/0uINDORUTbWstzbkJQzoeAgvfOeUAADIyxWkvOqQcXgiMUpBoCcVQAIHKy7nuDq961vbcBDRK6jhiLBwnGIam99aCMBUyMVOm4ICFM87x2Qy37JOBUZNS5lPHVqgvAAmZD74zRzqqUi0k5mpSjUZobZU+OFgTRcTlxWo9KtrezVTennL0rt/WORq4PxjgOtBE6Txr8nYZN2Ht/eHjMGFDCl8sl5wIAyvGIc15VTaxNmqbCGNq2Xa3Wq2VLKffet23f9/1sNjHGaW0RwkmSaWs4R5TStq0BvBBib++SMWYymRhjTk+r09Muy7KNjVnf90opSkk5Kt555/bBwZP5fB5ho5OTk6LIm6a5fPmyc+HCLttaiORHIZgxJs5hi6JA58Z//3/O/jPWti09z8S+EWeea66w1857n3hzqsSqIovFIkWylbopiZKsVrfUki3Yltsw4AbaNmD/NQw0YBsGDPt/G2i0DcNyW6KVSKpIiaHqsurme88955570o4rzzzniP4x9glVYil4/Tg4YWOfveaa8xtjfN/7Pq/WGiHied5wGD1F1BjGr7hsxhiljBAKnuqhflJh0zpkDgC47szBwYEzQQuhpJRKabeAE0JOT097oYy17gcDgKasCCCMr+aAbmiIEBplo+Egc7UbIeSmPYvFous6jEkc+7PZjBCSZZnbPm82G2NM32kEJIqisiw9j/s+7nupJLg2RZqmaZrGcew2jxhjjU0vWtm1oCTS6nB/Pwq8733vu8aYxWJx48aN11577eTs1O04GGO7u7sA8PbbbydJMpmMd3Z2OOfjyRAjC2AQsmEY7u1uayU5I5wRRInneT9+/70/+uM/eOml25eX56v1wg94VVWPHj364IOPbt++fefOnTiJ9g/23nr7zb/wF//8G2+8sb2/hwjeuXG96dqL2eWmyN025+Do0FoQSs1ms8VisVyvpFSffXYnipOPP/3s4zt33v3Rjz745BNhzMPHj197461HJ6eH167/8N0fDSdbVdXkeW7AEkKiJCaYKaWKolBa7+/vn12cz+fzzbr47PM7TkcVRVEQeNuTSZrG3//+7w4GiTP5TUajIAheefn2ZDQmhOV5UTZ1XlSr5aapu7ZtXtxh5fnaKQQZhSAICWFKmjCkCCHf9zebjVuthQA3GSiKgnO/7/umEZx7aZpaixxws2t7ANDWDMfs0aPTpmlGw2FVVavVigDqRO/u5J3xFtLGGsS5l44C5wElT7O2kySgFKy1TVPv7e06gpw2XTbyADT+989Zti+8ruqIAaWMki4P76p0YIwoxYQ4i97VBMKAVRKkdKpMEEIoZaU0UgqMgRDEGKEMATLaOi2kQQhpDe5Ia4xZr9eMUNdaqapKKoWuUjOhrhuEUBjy0A+uMnuNBWMdQDpJrp59xpjDF7jNwU++r59+p1cn5Wdqxhc+5twtX1kWNk2zWm6sQe701DQNY0QImcTxbDY7vpaMRllTiygKpdTz+ZJzv67arpOchWVZVWVDGFVK7e7u7u/vu5ytKLrKk1sul13XcY44hzxfu3pUN4oybIzyfd71kjLkGsnuIS/LcjAYeB5zZmwhdJKwK5oTpW3blmX54MEDl47ittaOBxNFiStngyQeDgdbW/FknGKMmrZyrUD7lF7hZt/PL9PT8LPy6UtKuV6VlFIAHEXxYrFwWm7iu0OEw9ZihFBRFHVdSy060QK2cRw5hEmWpAH33TAqCq6CxhmhSTJwMarOY+SEVFXV1XVnjCHYx5ghhHxOtezTNF0uCqMJ556bGrlg1aeYDB2k8arIw8BHWh/v7noIXn7p1tn5SRQFR0dHv/zLv1xVjWPkJEkyHGbnl7OL2WVRFHfu3CnLMvT4/v5+URQYWYwAgdVKeJSEHlO9SMLgtTdeny+Xb7zxGruaEuiPPvrAKHl2dnFwcKSUcsrkjz76oCzzTz756MGDB3fu3Hlw//7p+cn7P/zB5Xx2cnZ65+7n66KM0kFdtReXc63sx5/e+Rff//333v9wvtgIaYej6e7B8Q9/9P6Hn939v/+//rtP7315PluVbTscTT748KN4kH308adN21uEi6JIkqSqKteaAEzPzi6y0cgP49OLSz8M/+gHfyIUNJ1QSiELVbn+pe/+4tnJ45PHTzgjVVk+efLk5rXjo8Pdti5Xq1UvtdKWhf5wPPGD2IGBf2LXgBHn1PdCo3FRVEVRUOLEA0wpxTiZbHHOgVLseV7fWWOsMWAsAEJG2b7tmsqKTmKEAi8YjidtJ91zOJvNOGODJKWYWAqYEtGKfLk2neWI9Z2OkgFjrmFNXNPGhbUJIdbl0mKUDcYICKVqMGQYG2P+Lezrf/31bJ+EMabURbcBXCkHEaUOpfP0STFOkgMIkaetwKtxCiVMKYuvrNPAOaWMOKk/Y4QSoBTcxNWVo7LU1iKtzeXlZbEpKaWIYNdqoJRiDEIAgCEUeZ7HMOnb7ileVydJ4nx7FhDjRGvp1gytny9jz0TsP/FRPlvo7E9WSyEsxpgxLwiC5XJtDLRti4BcXq7CMHz55Zc5J1EUGG3TNG7ayhgIg6TIy7rq4yiR0q6WtdZmvticnl8oadq2Rwg5Tq9Rum3bs7MzSvhm0y4Wy63J9tbWBCG02RQY4zAEzqk2/XR7nKZ+1zUO0hdGPsZYyM6NzxFCfd8LAWmaYozXT8lRSqk0jYPAi5PQDftce25vb088xWDMZrPlstJaS9EVRRGHkccoBqTEVf73s0tBMemaliCcRHHg+XEYNVUdBJG1UJWNkibwIyWN86IGYZxXdVFXvdIuAyjwfIwspqSXHUKIOWVA0RBCMKAgCsuydDBXF6vWdb3zCN24ccMl4XVdhxBEke95Hsa8KVtnCG2ayvd9ZKFtrnKZneBZStl1wu2MZsuF1KptW5+StswP9/cWs/l4PHZdmA8+/qioyl5q7vt5vjHGZFk2mUwuLi6aVly7du3y8vLh/fvIaAKWYUhC/8bxkVZyd2fb42SzXpVl2fbi9OL86Ojo3T/5ge/7+/v7y9WCMf7w4SNtbFGVT548OTw8rJp6tpj7QaCNuXvvHlicl/XJ2cW9+w+G47GxaLnarPKi7vovHz1GmB5duy6U+fjTu6tN9aP3PqJ+FKbDx2eX66b7/R+8+6MPPj45vUxHk16oh4+eMD+YLRedkFGauGHi3bt3y6bO8xwwMhgmW9vnF7PpzsEnn959fHLCuV/X9XA02N4aHx/uH+zv3v/i7nIxYwQHHv/wgw/2drZ+/tvfZF4wmy8b2TdtezlfGqBB6L04bAxCLwzDMAwRIk4l07YAAJxzSgkmIESbZYMo9lypchpsrU0YcmOgLEutrdbQti0lnBBS1jWlRGvIy0IIoZSsyyLwvVYKZQzFpG/Uay+9+s1vfKttVVnX3KOAjAWNsMUELOgg9ITstIX1eskY29nZwdiEoYoS/P8PtQG5iaWT+aOnfwRjrFuwnYROa6uVi0pGSmultaufhGHy1DpiDHDOPI8Sgt3Caaw2VhIKfkAcCMqNIj3P831oqnp7suWYFxcXFycnpwZslo3qumaMcM8FpfXaSJeOYK1tmoZzPhgMeiGrGjzPwxgow06X/uJM2RXxFyseQg5zgcAaBD95Xs6yKEkShGxd133v0hXIfF5wn3pB2DTNZDLRWsdx0NbN1ngker1abfpehmFQFIW11vPoallIBWXVUe4ZgOVyUZYlocA96vZEjLHRMM030DRNWZZJkiAgTdOMRkPf577vtW0bhj4hBMA6zzbjRCnd953jaSdJEscEXdGw4dkKubu7+9S91zvjTt/3m82GEPqUoYSjEKVpAk9Bim5+Cv9amKrbDiilMcaurevmJ9vb075Xvh9WVeNiDMqybNseYWwtcl5xQggi2AksMLpi9wvRKwVNUxOKwWIljdNxtXUDBlarVVlId2copRwgJwy9Z0Tf5XLlU//qBjUwnU6rSnVdV9dNHMdOZMA5N8Y6UnzbtkHgxXG4v79bVrmUPRi7WS2Wy2UQBFJbrfV8vtjanjp5c1EUg8HgtdduZ8OB2zDGcTyZTHzf79puNMxchOz140NkdVEU3/jG1+bzeVVV27v7VVXVdX1yevbJp3fu3v9yuV4pbWbzxT/4h/9IKPPlw8f/5//r/6Xpu7Kpf/+P/mCTF8vV+vGTkx998FFVt9pAWTVSmdfefKusmwePnvhh5AehsbDYbJSxGqG8rs9ns+Vmow364Y8/SNKs6cWTs/Ozs7PRaOR5Xtv0J+cXWuudnZ31et1LUbftZ59/3itNvCCMs7LtP/zoM8r4ycnp3t4eJbjYrF+6dfPWjeOurk6fPAoDLwq9d3/4hxjj4XCcDkcWgHrUDwOHMn2Rb+SaKpTSpqn005w1IYTLYHCmAIRsFIVKCwDwPKSkeZZ4AQDGmKOj8cHevlFaCZnnJQASAlxEfZ7nhCIpe2OVA4JhjCaTyXe+8x3GoCpKd5/0fe9OhS4SBCEURYEGcXF5OhqM4yAELJMBo9T++wqwn1lIn7akrtij5qlvBGOM0NWGzn1vIVTfS6ncbAQBIP30i5/q+Y0F7b6xfqp0sWDsU0z3U9kgpGmKDHLSFMo5IjRM4rppgiAIQ6a0hKfJ744g40b8xkJZltYCpdwpjp/JXZ69L7fBRD+ZEYivaiTYn1o3nsqgbF13jIHjhSAEUuizs7NP7zwsy7JpKs9jSssg9J3qAhFsQC/XPcLYDyJlAAFW0lJKo8gXSiolPY8ZYwAjL/C1BWVsnOKiqtu+b7rW8/y+M1JquJoZGbcE9X0PYIfDYdu21kJRFE6h4m6szWYDAFtbmbW2KPokSZyS+ZlTihLetn1RVDuTPa1tUZRl2bu0Q7A4CSMXG+D8jC4F5cULlySJ+73neZvNpiyrqqpdffQ8n3PPGOCcYwJd0+7vHgyHQyGExUga3UmhrRGddIIYDMhaG6VsuZp3ou26Lk2SwWDguKGe5yGDjYEoih4+fOhs3W734bJ3Q58ZC+v1em/vIAxSdwV8D6y1dd2MRqO6asFi/BQBqYTi1OuE3Dncn+xuE0qHw+F6vVZKlWVZV21ZV2XdDIYZIWS1XhgAPwzn87mUcrlc5sUmisODw30AqOpuMEiEEMPhcDKZrFarnZ2d1WL5R3/ww5/72s8FQcS59/DR6V/7j/9TwLTq+s/v3fvhn/y4E6rq+tl89c9/+1+UVev7wR/84R8RylbL/Hw23z047I1ZbfJHJycn5+ePn5w+enzy/d//VzduvcQ9n/uBIeSLR49Ozy8++uTT8WSKMO1acTFbPHx8UpTV5/fu//wv/CIAxHG82WyMkpSz5XJZlc3l5Ywzf5VvEMFSm/tfPhxko7rrojj76JM7UuqLi4tBHEdBuDWZbFbLLB28/dYb41G6Xs4O97fjJJjN51JpPwoX+bJq88Eg8hhBQF58UlyanbWWUKSUEKILIyAUtW3rhNBOYOsE1XVT+gFPB7ETDwIYxljXqevHRzdv3kTYMkx85i0Wam8vTeOkrusg8A6Pj3op0ii2WjZdq6z94ssvrbVJHNKnsSfOo+ZqlkNaURYQAuvNbLlcHh/dRkZnGTcg4F9TFv+7vNx3NgYcjhAhZMEpUhXClhCgFBFCKCUIYWOcp9lqcyXr01ojDJwja42bV7iVg2CCEVgDSmqtLDgmO7LaqMEg3dpKKKVlUXRN78wLj0+eYEQ494LA55xhjNM0CLjX1hW2wDBxC1XTNEoZSmFTFKvVJvAjpZQQ6sXC5/aJL3YIXd/QAAAC9FMbIiG6pqkwhiCglALnlBB07dpe39swDHd2htoaxliWpTs705OTxwDgSIJdJxzpr+s6j/O2N0KDFMrteKVWALZtOyFEnlduFBMEged5SRK7hcVaaNu2aTq3p3OfRN9LJz6w1vo+b5omCAJCUZ7nTdOWpXJ0FmMM5zAYDACMUzw5eYerdMPhMM/Lpuk85iWJnySBz30hRFN37gK5baOjCr5wKQRjzPP4M799FIWU0sVi2XemKhsnm8AYS3mlpAeAMIzdPiKOY4NR3wqCaJokQoh0EI/GWdM3TV+59ooQYnuytTvd7roOITIcJg4b5TaA7tK5PwLSo1F8enqahAOKKSFE6W6QeUoapzVbr9fOk8M5Z9TbHk23trYQIV88etwZVXbN6fkFtuD2j23fMcYIY0qpzWaTpmme557nBVFkjJnP55PJZHtrenl+QQjZ3dlarktH2z4/P08Gw8l05+XbN62BxWKRpulytSGc/2//d//Vy6+8MZqMR5Ot6d5+XjdffPkwSobEC6tO7uzuD4djqdE7X/36yen5P/qtf2wsOTm9rJsuL6rTi4u66zAmP/jhuzdfevn8/PLLBw8ODg/brvN838GsGGN9056enyGEZrNZVVXT6ZQinCUpADgrZ13XnufFcTxIh3lZY0qfnJ6u8zIvmiAaPHp80gvlKtR4PLlxfG17a6pERxF66db1JPYX84vJZATICKnzqhxtZRjby4tTJfqnC/Pzl5TKWhTFfpKGjKMkCYPAE7JzAliMsda2ruvlcunkcpQSYzQmCCGECfg+9jyv65s0igFsXVZZig73j87PzxEC5vF1vmYepYAHSYop9WNvU+ef3fkkDYM4IG5LiBByTxyl1J1yAHkahB/gs9MLTuKDg6M4Yenw36sGArxwXkQIPevrWWsJws80eT+BxnmqH3xWncFiBMRRGpVSWiuEkNHwFDWNAPAzwiCgK2B314m6bleLNef8+vXrGGMD1o0E0jS1CAxYgiAMAidBdxltzjXnPn3CcJ6XTd0Rwtq2MwaMed7ieLFv+Lw3+sJb/YlqaKwqygKQGQwG7oTYtu3+/n4YUrBXHYSqqpybXUultRVCWKspxcPhVSvXbY/DwGe+FwQBgOn7FmPstPt9D5PJZHt7e72utdZd1/m+39SdUhCFSdv2zoL2VEDHiqJ+/PjxeDyO48i5PlxUHqUkCMD5osqy8n3P8WmMUXleutQYIURRFPP5fD5bit76/hXTwlqrlO575XTFbpzNGHvxajiUvOtVO06Mc0py5nFO2rZ98vjUueg4x5PhqMqLIn8afQXW830HPuHMH2Zj93GGoc88iilyd7DqhWPWaqEYYw4X6rjiq9XKMU1dY3e5usyGaduK8/NLxzeMopBSYozNsuzycuFQtYPBYHd3N47jLB0uLhfvffDByfkZ5Wyd59PptG17a+0V27ET7tOPoqiqKgeI9DzPFRoAuHv3TprGYRjO53Pfo9rYR48edV232WzyPB8Oh5Nxcnl+cf/+g1u3bmXDcd/J9z/8RGr96MmTTz67YwAdHl/79LM7gDAgnOfl2cXsd3/3d3/rH/+Tk5OzLx8++vL+g14qTLkQgnteURT3v/wyz/Pf/u3ftoC7rhNC7O/vf/HFF6vV6tnFkVJeXl5eXFxgjAeDRGsZBJ7P2WK9snAl/a3rOs/zXoq276IoWixWlPuUs/W6cPGKJycnaRSv1+u9vT2Mcdc3vu/vbU8JQdxnvZTM91abdd/33KOYgNJCa6PU82a8UsbFNzZNk2Wp4y06mQHG+PLyklKeJIlSuq47xhilxFrrxMmEYozx3v6OVP2X976IorCu266xN65dd0GJW9vT5XIzm62BYFAuZRcLpTAln3z2se/zcTqglLoUPUJI21qn6wQAzwsRsmHEtDSPH52/8frbno+Orj1H4f/7bg+fVomrDiCl9Nk3sNYaY6VUrpNgrlZxYu2Vi9lVFIyxUsZxdBz7QwgtpbUWYUwRwkoZpSwAuPruTksOsVEUBaVUaLXON07F3PeOGtNjjAkhmEDXdQwT58NjTzPK3b/+1AIGT8/Xz6rhVUsULAUAY4VS4sUjgAYuBWMeqpsyTsIs81+59dVHXzxBCPddJ3vBKA587nG6XFxwTv0AgICQtKoNAAp8+vKN43EyqCqglBqp6ro83D/Q0iihrEL7W1vXj7LL8y/ThA8zLmVvjIoHoeuncA+naSh6XVei76XWmjEeRYFSaja7LMvS8xhCyBpUNxWhJgiwVkIIYS1QgqSovTCoqoZiQoC3eWeFUZ0Ci1kQaQuAjZTC87y66fwwCFJvOh5zQjxK3SackOeXwqUCICBOgUEpAaTr0l/M+8nWgDKg2Ks2cnbej7KBRh0PMSAxn59HURQF4Xx2McxSyvy2by4XZ3VbzWYbpfgo2y8L2bdS9Foou86rs/mMeN5ynftBkOd501ZRFLn0vkEyKHMJGvlBAohMdkezzYWXMIuhKEqMiRbQdzKMgywbYg0xC/pGPHh0Enr85vVrOzvbaZrlhSA4UELu7W5tjaeRHwQ+7fuSEw1KYKUSzq2CsqxOTk4UaETRZrMyBl66+XLRtJbQ26++1mvTKui0rYW6XG1+/OFHh9dvGEq/ePhwsVqGcbS1PTm/POuMPZ3P5+vVP/on//iTz++w0Hv/4/eE6Yuu+fSL+yerzcPLxWcPn7Ta9kp+7StvcUrv3v1Ca70q8sdnTy4X8zt3PvU4Pdw/+sEf/dAIszfdWy+LXloWJLW0ZVm30lSdWszXSRjt7kyXy2XeNr4XLBarVshNXhZVVVU1BowBL2erqpcYw5CbAYOqajSCup5DWwQhjoaDKN1i1Lv7xXvct1vJTtf0oRdShDHYqs4b2QDHmtiuL0fZ85xySkwUhb7vewFXSk0mYwQGjGWMEkKVtm3f9UJWtcAEG4uCMBJKCiUT7HlBwAhplmtrzbWDQ6h6ROhgwlmI7335GSJAide1EPjeIE6QT5bLZeAxLfU6X22qMkzi+XxltOi7umnqQZYpDU3b+kFgjKGgAjrAJuhM9Xhx/97jL0ejye4o5JxasAR7yA4AAnKVuvxcQfFTL/zUm2etI9ZYaUADKCWcXscixDxOGMYEfA8rrQjFCIHWCmPszrNaa59HxhiCgRGMEO064MyjDCjFxhiheqkN8yjjVAqjlTFGIWQvlpdeEjWqO59dStXpvmubsiwLhLDoIRtOpILLyznnfhIPJ5MpoqxtuqYBA5Bl6Wx2IbS24EvbIAJKvpAojx312p2Ur7qHV8/8T20MAYAx0rYSY3x0eC0Kk6Zpjq/tz2YXYcCVUhhDHMfGGMZYEg8wxltbk9ALm7KjGKSUs9lsvLV1dHR0fJiJromTyFEOCUF1a6IkdkGIcRw7cq9SwBjL89wPuLWAkB0Oh27rO5ls5XmZ5zUApGnq+4HnedaiIIiMASU1AuzOyG3bBUEQhr7j/e3u7ta1jqIoyQZlWU6n08Fg0It2Oh0Goef7vCxLxgnGyM3mnYV5OBw+k909W0aqqg3DsOs6hyA0xighGXNhPdB17fUb13Z2o/V6XVXV48dPiqL1/RBjLISilPe9zPPC90MlTVFoqfrFYrZYzvb39xFCjpZ4eXnJOZ9MJkkSV2XpBpTPhD5d1yUJraqOWmR6qVqZRrFoBEWkLurAj3Z3Mqn6JImLImces8gSiuKYS6n9MNrf398/PFjnm06JWsrh1kQb6KSAK/0QosQa1SVRiEATBEmSKKGH2dgAlkq/9+EHm81GCHXnzp2TkxMAUEq1bTufLyzC9x88HA6HmNJHT05Pzy/v3f/y2o2bf/InP97fP3r48Mndu/fX6835+UW+qb649+DzO1/MZovNpqiqllJPKdO2/f0vHuZlLZQ6u5zVbffyK6/vHRx6fvwHf/hDyvyL2fze/S+1ha3tqe/7TVMjDITRpukAI8KZ1YaA3ZqOi02eJIkbQbqYMMJo23ez+dILwocPHzZVEXNyvD+ZX154XtD2fV7WnDGtRJqmQRD43FtczOq6toCLusqLdZIkvu/3bXfljZWqbZ/7lOMktKCvXbs2mUycpmdvb68XwvHQlFKil+4mcbIntyXBGLvQUaccuLi48H1//+CoqhQAOBT2cDisqmo4jKIoklIuFoX7/kHArLWYQFEUhMD29rbbmWKMd3fTPO8YpX3fSdUzxmazmev33bv7hVKKM2+0RQGBBWmgBZDWOELNz/So/OTUFQDAhTu6YYXrJCJEMCauq0MpYYxRj7sDlrVWW2MtuGBeACCMIoS4j4y5OrkaY6wFa0Epo5TSGtyU0gndRqNRURSUUc55lg1c/2GUDbcmw2wwUEJ2rUzTtOk7R1qjnBEObVdLrYIoRMY+zQaAF8OOfkbpf/Y7/BOpAMjKXoBShlKe52XXdd//vd/hEXAPAwLPZ0L0TkUYhmGSDMq8KvMCE0iSCCFU1lA1bSc7K+Wtm9f7tjs6ODw/X3uexzwI46CTnVS9812XZakUWIu6uqMUxwmqqsopq5uma5seAFFGjEW9EE3bNm233uSEMoRJkgwJ8dpGSqGbptna2qKUbjarTvRa6zimTpnpaA5N02itlBKe5zFOsmywWCwYI3ESug5mFEWXl5fn5+c/kZnHvTgIrNaT4cSZH2XX13WZJGHb9oPBgHqQ58vJZNx1sF7nUsLt27fiOGXMczdTGMRRGDs16HAYrNedVL3rvwDA5eWlayp3TTubzRxekDGmlXWq7yvCmMWUQhJEuhdNXWMglLI4TvONngyngceP9vebpkIEiEeE7Nq2oYzMLxdxGEdB9Nlnnz158iQvq/l6Q8O46jrq+YhgjKGtS6tFNoiN6bSqfA8hq5UyeV4JaRopTy8XTdO5bo6UrkOqATBCeDZfV3XbdH0vVV5W2oIy+MOPP62r9vGjk2E23p7ufvbZ50dH13w/nM+XdddrZfNN6eRQvhdiRE8vLh89eRym6XKTF2X7+d0vP/j48yAZ3nvw6Ac/+jHlwcOTsy/uP6yrZjyeGKU9yk7PL6S1y9XG9TGXy+UoG0ZhsFgtlTW9EAih9aaghMdRahEAZYyxarPaysJf+cVvLS5PhRCEecv1ihMKSo+yASWIGnt5ftb2HY8GmPF1ngMyyFgplcc495gL7Xp2b4Shv9ms+r4O/Mg5Wd2z7Vz8hBAlJcHYKABjCQaCMcUEAyGEeIEfhiFj7OLi8u7du54X+CFpa+ExjsH2bUcxSeOkbSpKkO/jOI597pWlbKoeIRQE/mAwcBM2R0ru+96pWDjnq9XSggYwcRIOBvF63bZtbwxMdznCjlPQAyijASyDn506b38S9vB0doysRdaCMiCldu5No62SViujpFZSCyH7XvS9ktIqA1JpQpjW4PLWXVeRUkIptQAYEcAgtdEaLLpC+2hr0jQ9Pj52Tf8kSbzAv3Xrluu9uia+236uVpvlarXJi7ppNFhCwA8DIbvVaq21uTg7S9PUY/Cvn5f/9Gr4U+4LADBW7+wE21s7Dx482myq0WS8v7+9tTX0PDoc+taauq6llF0vm6bzfV92uqqk74EFzRgdjfy7d+9+9Mln+brG2vRt53vewcGk67rBIHYhZ1pbwEhr3dRSS6CEA2ApZZalTvLStn1d910nojDJBokxarMppNRKmaKomqarqsYaFPjRZpMz5pWlcOMqB7KeLebc88qyzPM8TOJeyaIoHIarqoqtrTHGIITsus5xGCml6SAGZFxi07NL4YY5brU3xmxtbWlllTZ+4BljMIEsG1wuckdhAkuzQYYRla30iNc2fdv0dV1v72wt5qu66jGicYwnk/FkMnn8+InrV17N3RCimERBGHg+GBOHYV2UPvMIYC2kUcrnPEmSOB0Ms5HR1vMCKXTbg0U4X+dZmgGQNB1S4g3ioUd5GiaH072IercOj67tHnz1zbcpomXVCI1qKRFhfd8nUahkW5X5ZDwwVmIkfU7A6tDzlDSEMEKpRfBMWYKeIuCuhEqUYky/uP9AKjg5u/zkszsaoU4Zi6Csq7bvFqu5VOqL+/cpY1VTLpdLZTTjRHTdarEoq7zpWsbYYrN+fHJ6ej770Xsf/vBHH56eLX7wg/coDT/8+B7z47PzTV53H358x203As+nfjBbzMMwXq43buhflcXxwf5wOCzLcrPZtEImSVK3zSLPlYXFar23t7dezaaj7Df+wn8QR37TNJ4f9lqpToiqItiClR7Buhdl13zx+KzuRd6USgmMMcOEINS3zU9N2Nb5JoqC+XxeljVCmBBa17UrGa5v03Wi7/tegDbayRWcHcAphC9ml6enp2k2aJu+qipKeRQxY5SbK3Zdt94sjTFd1ylhgiDY398PfZQkQbHJA+6FkW+kctDDbDBIkmSQ0tls5vtca2mMGg6HrrHIOVRlA4CDkCIE1iLkIK5ALQCgf1f/8ovzaKfPs9YKraTQvbRSaoSIMSCE6q/GxEAJ4Yw5oxeloBToZw07cuWKAwCMiRtYO9eWcyhgSpwPzRjjyt9wOMQI+YwjazerleolZ0wIUdSNNFB3XZzGw/FgMBgQSpsOCMFBEPi+33V/ygn4p6vhi7X/xb0h53x3eycIgqIopQRKqUtTHaRxmiRSSgBU5NpatCnKvKzaVjIGvs+U6vu+58xvW5Gm0be/+U7Xtn3TPnzwOA4TxjxrIAxDsNhYGKRDjHEcB8ZAHAWU0rqunIJaCFHXPec0CCIATAjxOCcYoijwPI8Q0jTdbNGEYTidTqW8YqM7zAwAPA17qilnziW+s7PDfI8Q5Hws8NT1jbB1XfnhcLjZbAaDhFL84jLCue8CCS4uLtxoqK5rSgBZcOroOA6n03i+XFrAhNEgCC7Pzl0TQLSdlKZum/V6XRRGa1sU1Xg8dpBE3wsppcPh0I2zHRvcWQyl0ABQ17VLCKtrwTk3Gh4+PvG8IBuNtYW+k+ez+c5OOJst/tyv/nmGve3JXuSnTd62RUcUub1/861bL/36d7772rXr3377nb/wa792fHC4mK0wZspgqXVTd5ySJI606pu2Hg4Hwyyxqtd92zU9BtM2tTPhYIydWBJemMc5wFfTNE5gBIgIaU/PLvK8rKoiCLzlclGUmygO7n/5xenZk8ViUVT5YjFbr5ddX0nVUopns4vT85PFavU7v/v9z+9+WTZiU9R52eRVW1QdIHRxuSCMnJzNy1Z8fvfL4+Nr6/V6a2u7a4UBaNu2Ez2l1BpwsUQIEyB0k+fKQt31l7OFkHq9Xvd9r6T0Pba7v3/j+BrG0HUdDbyq2Mi26fvGWhMwGoXxfJPffXiyrptedlIKzpjH/Kvph+dT/FzEyxhTxm6KfLlcOZ5KEATGXFEbCCEe9yjhcQyMEYSc1FRprZumLYpiuVR93/u+HyZx3/dV1XLOnasqyzJjVV1La23X9Z5Hu6Z1bJHp9gTAaiO7rnH3cFM1fd9FYTAej7WWbdO4aRi46/PU6JYkSdcJSsBaip4Xh3+Le/lfV+S4AkYIYZQQTJ2L1xowzo3ndInamBdMbkKAMRAnMWPI+b4MWCmltkZrUG74bMENqFxehZNMe77v7jGXp1aUtdTCgbycLkIqzT0fEyo1dEJwzsfjcd3WGOMoQi6xrtzklIIS/w57w2fOvBdfgRecnJx9+umd3d3pO++8PBgMHj8+UxpRSjebDadcCs05SKmDIJjNZk0LURQgarlHMcZlWXkeHw9HUkoltbUwTDOl9LWjaxihvhUGXKpcRylXSnkeWGt9zvoerEVa67qu49gnmC4WCyklJTBIkjSOwVrZCzfCpxiMVZRha6Gqqjj2Hc3UVTcHHOacU86cQdgY4/shY4wxzwVrAEDgR64kOZF901QO0//sUkwmk7KU61U+Go0491ertdaWc8AY6rL2vTAIvSAImlpqSd04OwzD3Z2drm1v3b6BMBijhGijCBlt4zitqqpuyuVyNRiMnWLDxQNwQrWU2IKRKonjfL0ZJJkS0igdh77VJk2SpunG4600TkI/CHy+P5l89Y03iFJHu4f72/tY47ZoJ4PJdjbdzba+9trbX3/rrZePDz1kX7l5zYh+NBoNR9PT84UBMIAppXVZRn6QZdn5+Tn3gixJx8NsNEz2dpIs4VHArAb0VJ/lLjs8TSZ78VF5Rh5DiDRt3zRqvV4zRpN4IIUej0cXFxd93xdVU7WNe0KWy+X5+fmXjx4/enL62ecPlIV1XpZllSSDvKgsAGCktZVSS2UsgNKwXOfrTeWHYVFssmFaVZUQQghVFJUfBnXbXc5n7iEp6mq1XmPC6rZruj7wvNVqNchGXS8/+uCj4XgrSRIppVC9aOrE40p1QnayF54XXObFuurWZYUpsaAJIGSsloJT3Lbti5l5uzuHTd2dn63apg/8yG3TnmFatra23FZ6MhkFgQ9XUjhNCN0U1ZMnp/v7CfeDoiiaponSBJ6a4hFCLn5kMnFzakjiged5jqBT1/VgMLBWy14AQOQHxsBms3EBQePRqGnaNM2sRW3butM0AISRn6Zx34tB5gFoa4g1FEAB/FSu5p9SDZ8Wwee/19ZoqwDAgLHWmisBNhhjDLixMiKEWIyE1kIojEAbIIRpsFprZfRTAaNxe1VrrvTbCAFjrBVX0o4wDHspECXKmiRJZsvF2eVFr/s4CYMgAIKFVkKZLBtxhjBGy+XSIYEJxozQNE6klHmeZ1nwU5bKP70a/qlA3LaRRsN4koxGmRDdH//xj4xGZ6fLxWJV5JISrqUJghAs8rhvNISRRzkDMAjpKIqMsgyz+cXlkydPmqbJ0kHfy8Xloq7aG8c3PcZFr0VvLi/nGOO+l1HE+761oBGCtum1tm3bR1EklVgsOsYIw8hjJPR533ZgjVGaIByG9Pz8bL2ecw8wAWutG3RMpzt122itXaijm1PP53PHU3PAAoxp2/ZJEjHG9vb2pFSXl5eEkMvLlduoP7sUTdf5IX3w+HK6swcYW4y80JtuD40xbduPhkNK+GaTIyCiB6lV3TYYYwen2NraIhQ60W9Nx1EU1LXwPK9p2slkYoyZXS6zLHNFxGEKsyw7PDxczheMsTTNgiAoigIAtre3+15ub28f7xzuT3Z9zInQ4zD59le+yo19+5WX/9yv/9rs7LTO853p1iTL0iD4D773vZ9/5yu3bhzFSUAJjMcZwrBa5ywKvzw9dwYGAOi6ziidxKnSprlSOw6vHx+8/sr1WzePbl07pAAUU6WMgzs5RpOTSiBEnKEIANyvDmqJMdYa2kY1tTo7Wwth5rMcgWc0Bcuqsr+8WF6cL4q8yTd138FiXgeB13fW8/y+17P50oX+aK0xgqqqrEWYsCCM205/9vkXx9dvO2fEU3hlSbnfdSKMkzAM2747v7jQ2lLPr9pmvlycXVxaI4Mg6IVabIp33/tge3c3SZLI423faNUHHuv6thNt2/ad0qfLxSKvz2Zz6lGMQUoJBgkhqqr8KbnGarU+ODiua9Dacu63Td+2LWPYgTYQkKbqNqt16AecMk4ZQdjnXhLFnPtlDZPx1G0VtZaEoGwUcsq0VB6nXdPWZRsF4SjLfI6LogiC4GBvfzgcrhYrxknXdYQirfVivuKcuENxnufWaoyBUiaFthaNhhPf9wlBDpTAPXR4bUC5sQDWAe8RICDws1/POgPPEp2eqa+11sYYazXGmFAnZ0GEIM6J5zHOKaWYUkQ4QoS4IYEx0HU/UZUQRcilkGOCEGgLjrCAMA7D0HXVruALgX85n5VVxT2PcV5U+WpTd702gJz6IgxDpQRYm8YJspClA60tI3Q8HoM2blX4t1RDeHpmfLF1OJlMh8MhADx4eL8oN3t7W7PLxuPhxfkmCEjfS98Pu7Z3+W1REpVl33RdkiXKOjOcHg4GaZo6v9Tx9Ru+F+abJl/lDDOrbNu2VQVSKmOsy2ADZPq+YwxXVeV+7rquMcZZhjnnSvZ92zDGfMaybIABSdkbpZM00EY9DRvQCNmq6q7ERADW2iRJhsNh1dRO6Ke17lrh1lKEEMZkMBikaVZVlR9wY8xgEDrixbNLsVgsjo6OrIXZbHZ5OUcIlWV/7dpR29ZJEjk3AgAgRKpa9L0dDodtVxdFQQj5+OMPg9AbDgdd17ieQFEUlBKMsccDp9x2pcSZahaLRVs3Lu/p9ddfd6UwyzLHXvR9/9bxjf3tnWk6TP3w9tHRn/0zvxIg9D/+O3/n888+6prq61/7Sl0W3/uFX/jrf+Uv/+I3v+ljiAYhxubgcK9pq8/v3fvg048H48mPPvwIAVksFpv1OvBCN+uM41gIYbXdrNZ1tfni3mfGdFK0jILR6gr7aq68BM+eE+TCdgGUlOhpTaSUetxTGqzFBJOq6rtOW4PrWqw3VdtK0VspQSnbd2Y8GidpSgiJY7+qOgBAFlxX2v0/GGNAyBhom4ZyJjUgIOPhsGnqpq3CMFxu1nmeU+Y58XnTNM630/f9Ji+stXmez84vBoPB3fv3l3nVCH3z9ssOoA8EWaP6timKjePfCKGenM8A06btCCFt2zpl1SjLwjCMk7Drm2f3xqOH88BPgpAYA04T57bMbthycnLitoSONUCeVoSmafJN6VwGfd83rdBaP3nyaGtrzBhzQ+THj0+Gw7Su67Ozs2vXrgWe54J0nOTZ2UOd1b1tryCYl5eXrsHNGI6j1FkGpZTr9Voq27atsTpJ6e5+6AXgtnpPC96/K83hBWmek2GDvdL0XUmu3TKptdbWuFrpxNhKaSmVUsrzCELgeRzAjaQtvOD/0xqUumpSu73LkydP3M3g7GFCySAKXTKPtZZzaHvQ1rR117cdsuAMDhjjsiz39vaapjk5OTk+PnZeyX+XasiAgQ9A8PMJNOqLo52k2+hhnCELRpMgAsLIcJxE6UAjrZFmPun6dpClcRR6MfIY8ZHPaGxY0iF2tlqNRyMbxKeXq77tGMVBQvev754vT8PMn+xE+0eBtUYIcXzt0POvoLhB7CttNqtCKyQtwpzt7oxDIoGyWoggSpVBShptDWbgR5j5SdUKxAAwDAZJEATZcPjk5JJqqqVJBpmUcnZxOUoGTde2svd9/+JiRjEjiNZV4XFCDF5drLEPq3xFOMvzBmNO6PMIBUJhmPE04l8+OEEcMNHYAEN4EKUIvJ29vbOzs64THg+6GpqWDrIx4UQqpIEJqwmC3WwXpLWq9VgHqhvGgy43HHlYW85CRj3GmJOtuaBLPwwPd/a6qrx98zpFHCTtC/VLX/uFa1u7P/fGWzevH66q5d7B7ne+/u0EyOu3Dt9+5/pqfvZzb7z23bff+crRjV//+e9+6823B9zbSTOm2fz8C4Kby0X/u+8+vKj1utwg1ffa3Ln3ZTzIpFIAEHCPAWWGaASIsd5g5CV3vzw7X2ykgiBMrBFadU8pxxqwAWwAWwtYGQtPvQRWSobACNHIXgMoMMpqDaABiqbXCAMG5z4AADDQVCVHzc6ITiJqZIcwWES0dTgUsACYYGMMJYgSC2AIwgDw4w8+CuJwOBxeeSEw1Vr3vexa8fjkbLZYGUw7oZfrglBelPVsPgeC27bd5Plqs55sbXlhtLt3pAxOmWkszqVlqg+6AiH04aOTB3lpTUeQ8ainlJKmTyexxeBTprQtyud6g3RA62p9MB2nGfED5PmMYKYVZjSoq7Zt5dZ4cPvmNYZx01aez7SRCEFRFZVcvHpj9+xy00iEJNy4eayYUZ2KEk653d6eZllijO6loJxray3Vm3JVtWXfSYRBG4R54MUDAWAILpvOAgoCTysBUk/iMUgru17KvhWFJcb3SbGqMASTNMtn+c4kQEgB9MgysBjgORT6p172+d4QW0BSW6mvvMrWggHwPKqMppRz7hPmIYQc7LbrFGAitWk7Q2gIBHolLEZgCfdo0wiEEOcYI2bMU3OLBmQRx1BXpVHCYltKqRgFypIwMn2/uDg92NkbxEnX1hhZo6XHySBGxbq4XKxWuRJSE8qVUkqLJAyTKJit60Y2Ulqr2Gj4XHzu6MUYU2ut1tIBGzCAoRQDAgsQhM8bIgQstnZ3a4SNHkSRz/l0K1jM82pdcoNev/nSJB7sDidGmbKqvCgcUDINk2615r2KwLJWHg9HA4xV01CA/e0dUPL6wVHf9mCs7gSnjBHuef7scvHwweMoTMqqDaNYKZHGXhz6AWeiaT2EpqOxVZpa1OQV1fba7n5I2DhJxvEgCSPV1R6GLPalENaobJDEUYABVssNIxyMZYQG3BNCJH5YrDZd1+3sTAmlDh2YZdnjs8dlU4NxtETghCCEJqOtZ5eCMe4WPqV0miTzRZtlA6Vba+VyuXILDqVotc6Pr4+7Rp08fqI7FYdREiY74+0sGshOEkSTJBkNJ8NhlqYZ5zxJkjDmDx48mEwmsusd0Xp7e5sQMh6Pbxwd721tT0eTYZq8+eqrJ48e7u/uTMeT4/2dQRBsZpdvv/bK0f7uej77le/8wuXDh1vx6GC69/W33vnK2+9MJiNvmGCPkpCtV/PBYDhflv/yB+++9/4H49GkrevNavHkyanbOBhjmqZpmiaOQ0KQ0pJx6ianlFKt9XCYEWSNcuZyIBgwAkdDBpcdZTWyhmHCCXZeBYQAI0zQFU8Po2ftRUQpAceDQtjjZG93PBoPnSLMWrh6yJ52bzAhT9FkSinlTqmU4KYuQZuvvP3OerF00Vdt25Z1nZdFFEXutN4r2UmxXq+d55oQstqsqce9IDo8vvbuu+/6UZgmWW9oXddtucYYekPmVf/DH31opNoUBfc8dyrEGDvIyHi65Qe8758foV5/7c2u6621ZaHjOGXUW602Xaeaplmt+sEgQghtb28bY9I0dRtGdx0wplXVlGUjhHLnECFEUW6SJOk7iRB6Fj3KOV8ul0EQOZO+Umqzgc1m0/e9tShJEtesfJbEXbcND8KmrZyBGiHi8SAK477X63VuLSKEjMdDSgHjqyHqv9mW8gxt8HT4iwm56vExhl1mjjtePCUJIhcG4FynAOD8YM5hoq1jQIB2nUNjMAZKMSbuf7EYY845Zx7nvjHm9PTU5x4ArFYrIWWWZYQQzwustYPBcDweG2M9D1Hq9qvGXZnAj65fv0EpLcq2ae3Z6QUgZvQL7/PpGP3qoGOf+pSVlKBBA6zyzbMvfuel2yPfm8ax7drd4YBpuTcevXp9+xe/9rXHd5Z+r/7st3/+9Ws3Uo9bowDbHikU85OVqEHwhAUZKfpCcdsV69Rn1WY9HGTb29v3796r8nK9XIeWTYJ0wKKY+OWyBGFGYSKKVhjbyD6IQiHEVjZAWh1Mp9DJIEs0AcvJst6wxGdxUMmuV3IyiEJOYt+jGJy9r67r8WRoEPI8nxF6pV0yMoqDQRIhZN3xxLhIb5fMgK21lnNebnJrUBZnXfe8N9T3/XKxPr5xrW5hZ+fAKWnbLkfUEgpnT86jKAVAxsLh4Vgp8HkgpeSEx2GyWqytsozww8PjwAsppns7++PR1vn5pTL24OhItJ1Ryh3M18tVGifWqICxxAu+9dWvR5S9cv36zaOjt155dToevfn6y1kSxgzf3N25fXgwHYQcqZtHeyf3vxgPRq/dfjmN4m98/etFuQHOWtX0pvMYrRv5yd2Hf/jue72GppV11W4Ws+Vy7fGAEu7AFmVVALKArBCdsZYQkmWjNE0Z4S4nFgEwAIYxRZgiRCxQAIbAAyAAFCwjmDOCkXVKWgwIg8EWsAUCQBB25VBrCxa7rDJrbTZMwzAMAs/3Qkro1e2JnvsfjPkJxB4AYGQ5pVVRbo2H0+mkqoq82HiBX7dNUVcXs0tMiR8GddsQQgyCpu944Ad+pJTZ3d1Ps8E6Lz/7/N6TkzOh9LK2SpmuXknVbpT+/ffuPDhfaKkoZ05O7HleXlbL1eopPk+8MFIGY8xkMum6PoqYlKooqsWi2ZpMpNS+DwhdOS9dOZBS+l6YZcPBYNA2oq46KaFrhbNCOmupC9h0t+WzCuKki5QyIYQf8DiB9Xrt4oaVUgQzLRWj1OVVAGCtNRBwuVSik1VeCmF6CYRQjKgxJh1E3PuJzti/oRS++Ed3nnUfjbIu18kihISSzk9h9NVfuhkIRpRzCi4pFyFrwKGOCQGEMGFemsaMMSlNL7UFgzBGBIxRzubQ9/3FxYXSIgi9MI6MMZRh5wp1WRRxHA+HgyRJlO52tkPGKCGo6zq3vr7//odB4Hke/vH7Hwmhu1a98L7gqeb8Bc01owBggCADBPHnzbLXDw/euXH9L//ar339pVt7cTT1vUCJg0H6F7/3vf/wl14bgP3mKy+HWt7YmaY+l6Lb2tt+fHGmKGiKG9Ezn1kKvbHUIy+99rJGlsfhg5PHtVDZePTSKy+tNhuD0aYuLaejnQn2OYuCwdY4s3SEQ7WpkiAs+77l5EG5qVKva9osjqyWquvqPG+L0khhlWYIu/DMIPA9PwTAy0XuEU9Z6KWwFpqmMdgoa6qqGCQx59xpIOq6nk6nZVETQlw6eBzEQogkjl966eXZ+ezZpaiqHgDN55dawmg4IRiv1mutdZqmt29cPzmZJ/G4q81kxIwRWkOcJjdv3l6u86IowyCKosT3Qy0kw7Rv+izJoiA2xrRdczm7uH37NmMs8PxJNmqqans86utqnA1euXErC8Pd0WhvPMKy/3O/+st70/Grt2/HnA4C/vXXX0kZDhjZHg911zFjdvf2D69d45wPsgGxtpudxZzkyzn36BcPTv/Z7/0gb4UyejFbGmVHoyzfFA4J7nYWXdeVZUkppZz1fd91YjAYUsoJIVVVaaND5vvM54hRi6hFDBDFmGJCATwAjhEGA9o8m8hho8GCOxMThCm+8nhZgxDGnuchbBmnztPCCHf2VfT8BQBgjYGrLQl2yZyMYgx2d3trMsoe3P/y+OgIY9y27dbOthBCG8P9cFNUCEg2GOVF9eWDR84s0fbdyfnZt7797aZu15v8szv3yroLkuTkouhaUeerIA6+OF/83vufkWBAMV4sFlVTuyoWBB7GWGnd9b3v8yh63mX76KOPpls729vb21vTMIgXizIbhnXb+V7gebzMK2epcjMrJY1rfrVN39TGWuRxJqXue00pdcESXdePRuOu6zebfDAYJEmCEJpMJkJIAHCxOcNh5EZVfS/W681oNOo6EwSBxzmlNMsyIVXf9xY0pRwjagzWykoJ1hDOg67rMDEuzhijK4rVz3rZ50ZjAAALVjuNNIC1YDF6yqQxTivTit4ANgCIEKGU0ApRhiiRwlpA2pqr5Q1ji66GzgDGBU1ZcBJIo7WWxgRRGEURApdCLj3P8zzPKk0AdZ1IksRx5NI0bZqaYEjTCKyUomua1glR6rqmDCjDFp6n613dn9hVw58g/+OrL1DWAnqRhvhnv/OdX/vWt46Gg//V3//P/yd/6z/5je9+57/4O3/717/+1S2f/s/+zt/6i9/9hcSq//CXvnOQRbd3t3nf3UzHWzS+sZWFAh8OhgNEYuTtZNNO9xKUZeRsOTu9OD882qOUiL5951tfxQHbNA0feMtyHWSBprazItgZm4ApinZ2dpCxIeLrk1lxth6HUcqD1ZPzG7t7Iq+50jFiEdDAj0aTLcICygKE6DCbJH7AEEEW0iBCylilEcaG4qKtldF+wIMgiIIw9APP88qy5IRW+SbgAaWUEc4oZ4Rv1s8DZTgjxabcmU4AwRdf3D/Y23cq6yQebE22RQ9NodoGBvGgKjaeD+t8s1ythsPhcDwSSt6+/VKaDnZ2dhhjBGOC8NHe/tZwtJWNOKHnZycR999+883FbJ6GMUP4K6+9uTMeb48mr9y69fL160c7O7/6S794uD092t0mWqZJkIXB7njsEcwojpIBpfxg/zjdniTDDFEMHkNa9GVOjbVd9+FHH/2z3/lXy1z4cTze2qrrhhDWSbHZbLa2tjabjRCiruu2bd2TH0WRUkobaOq+LXultJYmCUNOGcWEIOxMWJQQCohYwwgOOGOUWK2l1GAAI0AABBABoAgYRoQ+K2/W7feE6IyB0A+asjo9Pb24uKiqWmuLELJXum5ACIF9MdMRAYDWJgr86Wjw0u2bT04eLZdzN31K09Qg6JUEwOPxljFQlnVdt30vwyAOg3hTlLduv/zhx59Eg2yx3vTaWEy0wReL9Wy5VhaERn/47ge9ZcgPpdZl22BGN2VxdnYOAFLKTVkEceRgus9+qDw3s/nFzs4OpUxrTQlobTfr6mmGWrK1tbVcLtu2Fb3b7rGyqJfLpechQogbOikFzqXnWhODwaDv+7Ls3Ftz8q++k0EQhGHoToJxHLswbtErSrnVIHvBGGmahvshplxq6Z5/a4FihhCmFIRWBHt932Nsoxiulp9/40D5hcv/THQNGAN+UYOIkdPTYHr1CWtt3EFNSCuEaJsO8BWQCQC0vbIbCCHW642UyvNQ4GGM0ZWkn7Om7ijhi8VCCDFME4RsWZa9ki7MMg1jsNga1DSNtkooHUdc9K3TaQeB39XNxcXFYDCQsm9a9eabb/i+9+Km3v3+WUv06fsgwKmHGcEASj2H+mnRv/rSSy8fHRLRDin5hbdfPxhEv/7Nr75+bW8v837ha6++dm37tWvbf/ev/sa2TyLZTEL/+v7uG6+8+vPf+tYoTba2xtPpZFmWk8mkqqqTk5PHDx/LzqwuLnVZ0bYPF8X/4Nf/3P/mv/93b7D424fX3xhMf/X2a/75UjZ5QM00DiNked/3y5wKfTjdOVnPj1693WJVgzAe8kbp9Vdf0j51eQjOjYC1Sbj3xq3bt3cPjre337hxe+gFEeVN1RpjOPOtBp97GCGPsmGa9U03TAejbJivN0kUIwthGILR77//Y6Of3/HHB8dJMkCgjw/9B/fPrNIvvXTQtbpp2tVqlSTe48ePMQJCGCOUMyTbnhJihGSAp6MxNpD44ePHDwdJ8ubrb0ReSCx8/Z2vbo9HXZWPB9nF+fl4MHzjlVcHflgtN9/7hZ8/efDlW2+8STH52lfenmTJ8uzkzZdv7Y5G08HAndauHx5EflA3XTBIWTTIJrvM48oorTWorso3SGvVNMM4XdftyWW+yjvC2PmTh+N0VBYd9aMg9I+OjtyS60qhs0wppQBjj4fLRd42Qgrr+2EQBA6FiRDCiBLiBBvWXXnXHrIGLAACoA4BiDHBDu555Viw1lowlFIAg5FNQu/69evT6U7ohX2njAaMybP1+EradpW5gQFAKwUAyMLB3k4UBk3T+D5//PixtVdK0oB7dVGLtjNSOUvSZrUeZUOXOBpFyXy+YF7w4MGj2Xx5cHR8cjZ78OREyGZdVulk73f+1bsffHJnd3fXWr3I104L4biWbdu3omcep5x1XfdCMQTuwXK5rOtqOt2qy0pqmM/aLEu1NaJrd3a3rDXOve4O3XEcu4yNdBBrLaXqfZ8zdnU6Zow1ddfUHVgcBNQRlQghbtHSyrrOI2MsCAKCXSVVq9UqDKmzn9Z1XVUVYdQprn3uUYSvdkkUaS0BsDaae3g6HTp5oP037Ax/QmxoAQABIoRwzlzenFJKW+s2qu6TIoxoa7R1gkRgHBlr5dX42IDbjxnjRslKKUIwIsRaq5U1xoJFCBGEkEW4LMumadIoJISAse4S5XkOFkdRdHJywhjrhdhsNlHMCEHueB56oUe8mzdvXV5etm073YoDDwghcZyI/sWTsn0mO3/2HqkxIK1ExhDALy56YRRdzM45ZdvTUVUsR4m/Mx6oVuRN3rT1pm6zJGWUvry/9b/+n/6P/tv/5z9YtuboeO/uydnndz4zWhBqOxFJxLbT4PjgGDT4BgMAVvLNmzdePj5+Y+/wjW9/C5T+z379z7/77rtJFN+6eQP9Z39vka9PHj+inMRb0//hf/m/eLA24XYyL5aBRXc//eSVWzeV0OnL4WQy+fTTT7/62ptffnFnPd8gxreH07WSCcHfeOstaoy19qXDa93W3mWx/v6Pf0CpZ4z2GN8sV54XnJ/NPb46ODgYpOlyNldaIIT6Xo4GGRmRBw8eRtHzJICL8/Nf+cVfev+jH1Jsk4iC1cgKpdB8PuOcJ6l/8iQfZ5HHeDKI90u6PaK2aV96441hNvk4n/sIb013759+9sknn/yN3/wbf/QHf/zqrZfu37s73hrdvHaspdoeTb747N4vf+e7l2fnq/mizvO/97f+ttRqZ7xdF7Ojg/35+WwyzPJ8jayijBhj9g6Oq7JSmLJwoLUFJSmgTkiOUb9aeh6bLebZIGmVePD4dFN2STrWsg9DqoVsWtlI/dLBtCg3hCKH9trkRV01BFMW+5TwvpdN3RuDCXHCGn21dqKrRwKwdfM4IFgqI6UyLlIPYWsBObcCMmARABjrjrwIIfdAgrWQZVkQBJbTKBrk+VprxzanmBCjnY3f/CSBGCNkk9g7PjwYZsnZxSmmxD2iruHbdZ2U0mNcCffwU8/zmqr64u5dxtjdL+599Z2vlGU1X65eeuXVvCy/fPgwiCLRV9KMl5X6V3/8QZoMPYqk6nslldFVUbz80kuU4uV64UfBVS8S4TR9fm/EMQ4Cf5Ovbt643e7sfPTp5XDMDTI+Y+ulIcg6x71rCzLGm7pbLHI/5ISCNkIp4KEHWhBCXAPXxUIxxoJgsljOACP35Ive5HmOsJ1MJpTS9Xrte0jKqwNgFIScEJ9xSmnV1L6XbDabwOdpmlLmA5i+04OEtn3j0ggsyNF4wPhadPZqF/4zSiL6STq0hecHZ2NBSsM5UtowdgVmx4gaqxijlDKlOt8L+74nYIwBpRRjnrXgTqyEMKmVz32phZQg9ZXWQBnAQnsY+35489ZBq8vz89O+VaPJEBgKcJCk2Ww2axqTJFYKaQHC0CNAPMb7pjcatJUu3BhjmqT+ZJh9/umdNN7t5U8RKH66bUoBIWQRWMCAohfCQDSGnb3dtm6aruKc1tVm3bQMUQ0SGxl6uKoWfaeDZLBzcPz3/sZfv3vnER9MWuL9d//kt/Z2x5tikzfdjz+6QyW8cf12W3XtIh+kyd/8y3/lcDTY29kDImYXj7LJFkn4d/78n5k/PqlkNYzTo+Nru8fDep1nu0f/9f/xf////q1/Sjx+Ob/YyiaDNB0OsuPj465uJpPp9we//+Tx6fVf+sWPPv5kXRXESCy6oc++/fabi/Oz1aY5HE9uf/32oikfXZ61yJyenESpTwKYXa4wBp/zKAiiKFxoVZTt+fll27ajGzevXbt2fn5uXugdBzz44IOP3vnKm+++9z4ltGmq0dD3/WCVz9NBaLEOI4gTP4x4msa7Ix753TAavnbrJQDM33hzOhozFIaRr7SUqr9+dMwo/tbXv3Fy9ugbX/mKsVhL9clHH12e7x/s7h1t73qMbW9Np1tTwkkcxwHfB22qYjPc3pZlMd0/MHVplQqihAzHnTQeD6RGum59Shbzy8l4uOz75WZd1MVisfjhe+8ZFDDut31lpagqMRpnPIyCwPvxj39sjCmKYrQ1uZzN67r1/dDDmDF6fnbpctE85iGMlDKAETIAgNwmz+Xeume4l0JZwAAEE7hq9mFtXd/QAliDQCOwyCJMrNYIgefRdJA0TYPBEEKsRXXdCmkUKEwIxu6xA6d5MNYAcgA3dePGjfF4vDVKSlFeXl4GUeCq4Xq9Xs4XPvcwpleycGW7unMRDoNB6orvD9794V/7zd9cL5dlWR0eHv7WP/6naYy0OXz3/U8t9t564+XLWV6XmyRLmr5zXfyiKLqusxi0NVIrn3ue91yIdnR0ZEFvNuvHTx5Od/YHA0jTtCgKMHJ7O7TWLhYL3/fjONZgCSGbzaLvYXd/3HUL58lFyAoJ1lopZdv01iI3mfU8T0pjjAmCACEkhBVCOKNXHMcPHz7kEz/Pa2shSXylFOeBS4u0QACjZ4bUphVdIzCG8XgchNwJ47uu5TxFV/Ef/6a+4bNJy7MvU9qANRgThLSb+ViwGGO3ZLpa6fs+QuiKgK01xghj69CHAOAsIQas1raoGkYxowxho6XRxkqpMIDoYDAFa+2jR4/aBgIfnB6beSwKw6qqRqMIwDJMGScGNAVKCAt8T2Dhef77739w48Z1hNBiPnv11Zc/+uCE7PScP69vzyyDL46JKDHIAMZWd9ho9Vx2NByM5bo0XU+JpZ4NBgkEKSJh2iyU6KVoQh6udCG7UrRF04o33nhtsymSbPD2//w/13UltdJazWazCAIT0mg6iry/CYUAQxQni76jUA+HQ6bBgNFCRVtbVhiCaS1ZNLnu8bzp1I3X3/ovXn41ny82+Wo8mABAnCTAmW4rrfu/+5/+R71oHz989JfeeasR7Sd373x/eebbxkCbTgZvv3Jw7XifM/PKG298/N7LP/7wo9ff/Jq04Gfe9+d/YD2WRBGzECCahNEwy1gv9QA+f/9jz7BRND48PHy2ke5kc3jj4Msn51/56jc+++RTbNh4cNi15zcOry3XBaPedjZ4+cZxGkT729NXdlBfV1kcDqgcRCGp8DRkvezSMN7b3/vt3/+dX/ulXx6k3t54C9ri8vL8e9/6Tl2333rpla5pv/vt7/ze7/2L7e2J6aswixvR+Mhjg3C6b0BK4JYGTEploxQok42IFPINtkjbhJmq1bLV7Xx9sSrW61aZzy/Kf/nux5vKpllU9UJJRj0vZN2t21s/+sHdpgepQUvj+WyzWW3vTD+/98CLw8zuLRbzvhJG4ixJu64DjahFiBKMcV3XlBCMifOtY4pL0SIAhpGLJQNwT7gJSVqKKgrjXgoJSmtlDIDRgAAsTAfZJAyU6GezhcGk79RGSkDgUWq1diCWVkgLigIoi4FxK1sP4Dtv3z463Pvo40+t1q59LoRYLBYIWakV9z0hhLaQDNKzkzNlDSHgM9KL8sa1Vy/PzqeTrbffeOu/+W/+21aq26/uRsl0tnxiNf7Bvfe+87WfQ8nwj08fj4bjtlhVsqCBN9ssDAMvDqy1GOOqqCArOcuePSZK9l0rDDL3Hz2MBtm3v/n2Bx98mMV+lbdvf+Pb8/l8lec7QWAQYIQXi0VdN1nGMaAw3T05eRwFHmd4PAoGY+/Bo84qywiSfU8QqrRIs9jzvPOLi16oQUaU7rGwVhtkwWoYZok18vR8FcUeWBVGXCvU12qyPdoUOWhVdXJrfFAs1+fn8PWvTzGxJ+cn77y+NZ0O8k23sz2aTOHiiQSbGiT+bWZlh70BJ4FRCDEwxgDCoDUgA1JoThmltq173/eQxVobSljbttpaANAWdQKoUQgzKaXHqVKKUmy0sdYaK9FTObexIC0OQlZ3/fnFqed5093xcrExGhOJyvUi4F4YRkVb+75nQFPiASCtO2UVgOEh5R7iIZZWUMw9z5vNn7xy+52Ty/eHk+cKwmKjADznTOPctxYpJSiAsQAYgUEImedtxnb2yI995IPFidWcK+X7PbQLSeO66oq89j1CCOmkKMu1F4RtmyepT3zPdr0y1PcjYOS6P6iIDDpDWgSqkwmlA59rOlnrEqcWEaW0VgYR7VNqrLB9G1kCqve17PtayAYhm8Z8MNrXrRBC5OuZGz5aq7WRxphX9t+0yGqwX7n9jb/8K3/14cPHrCSv337pND4Zj7c2eQkavvb2V/Z3965du7Zcr2Jr/spXv/n47JxzL+I+Qoh57KM7n44PdinjT9544/T84u2b73DuA5y4S/HGwdHQD2utg15+9613is3q+PCoXS52dnfnnt82/eFLtyPuR57/xq2bl+cXfBBvjVKrxDgOSo8Oo5BwtpcmejwyxqwvLuKbL20Ph8Fbb9X1za3JNmOey7TCGP/mb/7mvS8+H4/HXZmHw9Su1n3TJ9Ot7vxSK0OAAADFBBNKfAwGaavBYOZzIXRZVAZY04rZfF21GoTs89XLu/HtV279+OPPLtqO8+D4+Pbe/uH/49Hp8e2v+b7faQ0AbdsSxgeDNN+USZS3TQ+YcJ8DRs9Oo1pZDToJo65pRSt4StM4mS/mV4csBGAAAWAMhFJrrUBdmsVF1WhrhDaccWMEowxTovsuz/NLSoXs2qa3hBmLEMaMUCUEAnjjtdc2RX56cW6s1doyzg2yBsxv/MVf+co7b5+en1iK+6YXou+aFmM8SNOLizNOrhzfxpiuWzt4CQaTZWkURaNR9ic/+OHf/I//e1VVXS4uDWarzSobjRaLx10vTp8s+Tf5sijml7OD4bTuamRBCbm3s5sN0z/6oz8cDAaMMTCgZeXR54/JYr5ijGvTDYej1Wq1v7u3vT29d+/y5rVpGIafffbFYBQihFycTl3Xvu/1vSSEJFmm1OM4jsty+fprr0qh56t6OtnVsi3LMooiwolQcjZb7u5tTyYjBHqxyI8Odlz69miUuSyqMPKjKGqbEgAzxijlq+XGj7zlokOAXZDGzZvBZDI5O39irPC9ACHUde1gMBgMgrNHrQWN8L/rSfnZH421xgJ2m0ELWmuNMDLI0UL1U2+bRVf9ZgzWWuOmZAjAmCtYgwZAxhIKGBNrrNUWwCKEyqaPRoHTXcZxPLtcrsrm8GgqGplXJSHE5x4hhBJS5iWlbDRMu66bzTbHx7tNI7JstFysEcIhCzb5Igl2htm4rJfP3ggmAKCs1U+NMAoAqAEAZJQFqwFeOB/i8ctK58XsixgvCJCmlV7k110p+1no+wi8oiiMRoxGVnJLgx5tmDexViEee5Gv6r5fFRxj7neK+UJj1TfQ1nxjEDBtWJJGuu1BSY9iJ7rFWoHSsskdcyFJIup7Xd/0rQGMQj+wRkSRjxEtywohGvGwbVtr2qZrAdmy6JMkevXGznK5lPVimo1kL7NoYKV+5dbt127dsKrfTz3oex74+9NMKcUxQwgJI9PwdeoHxthX9nZnyxVlHiHk/Gk1/Evf+flkkJ6fn1NKbt64ce/O53vb25Nf+DYhrDnqjLaB58le7Ey2Box6w8hnFLTA2Gwlvne81/RdgOn14RA37eHRNQC0FcWp58WTyakUURCMRqNykw8nYykl8f1X3nln/uQJQsqfrbsJx6cLYIwebpl7F3Awph0gIEYYBEhrbQG0UkwzPwgf3P8yGyS90BbxMr/89KOPd5Lgz337tb2D450Y/unv/n6yNfnOt7/6L3/443UBWZZt8hVCSErZ99JDlFGvkG1VtH3bIyCc+0pqhIk1GmEap3GZb2SvQt/f3tparBebslBgiQUMgF0vEYASijCWWvWgN5vCIgALnueJvvcZZ4y9885bi/nl7PSsahtjDPb9su1LKQDA47QDOUgHFxcXneiVMpggQrnRmmDJAd589aXVapGXZd33xugoCAnCDvdy//69dLrthieMsTwvCSFd1ynReR7jlD15+Gj/YPfNN9987733yroaTnaenJ1KLYy1Ty7OIg55np+vSitU2VbaKp9xjKHrGyG8IAhc+y9N0041ZVk+e0yMse5aMUovL848xm/cuLFarS/ms/jBg8lk4IVeksSnp6dFUSRJihFNU7pYzMq+5RzOzpavv35w596XWRYzipqu9QhQSoVSPsMIoaYBo3UURXWV+z7bbDbO2L63vW2ttVoyRrquZYzVbT9IJ4vVw+vXr1uQfQfjcUQIOT09Gw5TRwu1YJum0cqKXmVZtrM7vfvpI6UAY9A/W3r4U5LDp395tfghhAyyBEBbgwBRxhyoBSNA5OooTgihyLULjXGsB0d4ffqtMMYIYQBtwCIL1trQowDg8aC3dZ7nWmvn/naSrHQwMjXUbenAX0EQgsVt02MMRVFFUUQJbxuxXhfKg06ZQdLHUSbN82rIObFgADlmxFUQIHUGAbAKAMA+n6I083/JaEpZ6g0GANLP11TiRKUnRas7kYTBzpA1fVU1eVWtCM1EF2LEiULY05T2fdtgrVgUSxUQ3oEng4BBNzKN1rby/arvuNbW4wEwZo3UWmqLheiSiLAwASFU1xVlTjnzfa9u28WmyLKMWGNNP4jDvutEW4acG6akbNM0Nk07X58kSRIkqLcbz3h913OflmWhRId1X60vJ1myQe3F+YUXBn3fU0u01vPNav/o0Fad7Hvihzf2ti/OL70XnHnfeO1WXdd7yXWEUF0Xb946buvm2jBlvrdabrjv+dxTQoQ+9UBGiUcpbpsOYWtllSU+Ar09GXztlVuHW5Pjm7eZF9Wbsq+rwTC7fu2w60xdFukgVaLDCPVV5Q2HcZRirQzHdrHxsrgt8wCldjKUjUSIg9K9kARThBDzPasVKCX7ZjTOnKPWGNVW65cOJ9ePrx3vDqxtb+2mZzd3f+4Xf2V6/eX/6v/wfxoM/J2dnc/vfkbgyhOKEOm6dphNlNROoAcI9VJcJRARVJYlpZwgi8B2QnR9L6zmjBBtEHLxuFYZAxhpa6TUHWBCORCshTAWUUK1FNf294dJzKyxQpZlWbWNMF0rFQCmYEM/SKLYo+zJxWmSxEHgIYwN9tpyQzX81d/41ddevvHbv/vPTxeLTVlTjH3f9zyv7zqMMULEDXyWy7kxRnQtxphTHPoxxUQplS8Xf+fv/u3ZYv7JZ5/2Uk93ti8Wq/lqRRlWYF+59XKel2XdpHGMfEo4AmnGw2GVF3VR1EWFECRhFAdhvrjU+vlsp+u172FnnwjD8Oz8JIqiGzduvP/+neVmGSWJkO1qtXKJu2mafvjh/e3pcDgcPrm8VBqOjsdpNnj0+MT3/Z3dg7OzWav6nb29oigQtj73hsNWSsk5D8PY98Omal599dUf/OEfvfLKy5ThzefLJA6s1ZR5BJHFqjg9UV//+vjR4/vWunbqsmkgSdRqtSKEYELmi1nf911n8jx3+3oMWP9sis0LyIafCBl2Z8ynXwPO5YGN9QIunSLR4QKtJQQjhAmxWluErDFgAYwBQjDG1OEjn/93ANoC1gYzWpattRljnu9Hvl9TbI1RiF5Ju4UQfdcBQBj6QRAsV3Nr7XQ6urxcIWR93w9CvlwCoTZivG1Xuzt78eD42X8UhB662q4+f4/UWkCYIGQMBvQC9HHxqD06Poyn+6pcnJ7d7etZQFDsRaMRXswuuxLiMI6jLNsaCwlCmSgOOfeV1V210YR4DFvom8UslFgTXxCOPOtHFg2wtkFno6Q4N11Xd31V1wZQNhiGgwQhe3658hmPw4TFccqYFAJpSw2E6VgJRUAhZJumxBg8jptmQdmAGNIWLaN8K9txmg7EebGpR6NRXpZxmAiLimLlMyu7nPV2Pxt0oo8ZY4DrWrIk8ZRsjeKcNm1VVrk2IMXzG6SrVz5jVV9bANAtaEWwAKV03YZEhoyBbTnDw5hXVR0F1IIYbg/LpkpijzKeJBHh7Pr+rs/panYxHE/TKKKUStnxwA+DRAgRZKlpGqU191m/Wfq+j0zXUuCNBY93ZRn0FmURXdZSSQ9jahFCyBIMjFFrtFAIGSm7PF8bo8HIX/7uN9ez07PHD1cR2t6aIoR+5Xvf2Tk8+Af/9Lfy5fIrX/05AOCcK9F6nmcRqWphDRoNp+vZ2lpECHYDE0qw1QYhksZR3/eMYELIfDWXVhIMndQpo8+qobPqSWMkAEVcK2O1AUuUUmDU7tbopds3zk9Pu65r+25VFkpbYa6iaxmhw+GwruvZcjHKsqqpOykZo70UwzRAXTsZxh999IFFRCllramrRkmJMXaAfhfZ6hB+Ruk4jpu2quuaU9LjLsuyazdvDMdbP/jBD9ZlxYNwa3v3/qOTvu9B6+nO1FZ51fXC2L7tx9vD9nFtwMuL/Nata1/96lf+xfd/Rwjh0qDAwNZ48uzeKHLt+5Jj6YgMzjsxnU4nk9jprjebjeM2OxSe50Hb1nEcg7ZBAFHszy8vopAqgSrVVFXPCPi+33UdgAnD0HHzlVJNU2dZ1jT1fD631uxsbymljFHK2iiKmqafjHc++PGnvg9CCIqQ76O+709PT4+PR5zz5WoehgH3KOc0DMP1ppvNZnWTGwsY658dBPATZdEdk69qB8EALlD0WVXUGoAarcFaBBY/sxI5CT3CmGKMOcd9b65wHIhirIwxbn96BYMAwBhlWVaKmZSSMjwajU5OTi220+1svVII467rmrLBhHqc+0HUdb2U/XQ6ieO47cqyqqIo0FqkAxoGLPB2Hj++v38wHoZ7z97Oi5AqJx2z1kVEGYusAUtfLNK7N28rU5H1x1jb471j8N/UbV01OaqrnekAG1VXm8vZKaY4CENlTcBvGttw3084xhgAa41Up/t67IfBIEBJX5blYu6B8knqQwhe1DNCvHR79zomHhhQgDS2u6OJrGvTSyta0Ym+78MgCrgPFrEk1k1VtyXnWCvZOiZ7vfQ4UZ30fR/5nqiruhN12/Ik0y3XXVGrBowkILu2WuU5xXwynei2AaUJZdQqQlldFgYxwAiDBgIYW8aeX4o4xF1Xe9S2bYtAMkqbtokI5ZyTmPVCRFFUVTWCPvDB2p4xxjhOsd/3bTocAaCmFlqqJEmoF4VRjBBp2zYJEwsSg07TqF3NjbVBFPVN7UVx3/eYINRpOkz7po2jFAjWRUe4Z/oGCGE+A7AKrOwa1bVWKinquq7Hk+zy9CQO6PHe1sNPfyS6Ik5Hg2yUF+v963uff3nyT/6//ygOKQZ1evYkjqPlvPJ9X5m+rnLPS4xBzrnsUYrAepx5mCotKbJWSIJBWi3BGmyMtsqAhxFB+OrxwNgaK40WxmoA33YB5q1RGmB/Z7fYrAjAvS8+71qZl0Ur+l4azAgjWGlrjWEetwjmy4VUMmWJe8K01mkaeFh/93s/d3Cw8+HHn3z+8OFqs8QYkMWO4OQomUmSVHlBCEmiwePHD9uuBm0YQ3EUuzjAOE3u3P389OKyF+rm7Zcnk+nlxQwhlDFCOcnLSsdR2fdSyqrpdGv9EQ8jfzqdPnz48OysuHFj6ubvlPAXMXkYw3pVTncC0KrKCw32cnaeJEkQBM4Ayhg7ODhYrRdd36yW+Y0bx23TP3r05NrxgTFGy54gS4AQwjabzdZWqkTftq3v+71oCSFYojiKV6sVQmg+n/u+H/m+45j9zb/x1z/9+P3F2QXnvpLm8mJRlLC/F88vLr2ATSaTtm3ruj04OJjP523bJUmMEU3TuGmjpBTaSEJtFENTakIcqO1PeT2bvcIL+8QX/hWe2nzBWAQAXd876zEA6CsNi9VagwaELEIoCAKta4J51wlwTTsLFty/YoIJxpYxGoZhoyjGFCOc57kQYrIzxhiVTTtKI2sRQohiQjBjjK9XBaXUuZWc+BRhq5QKQ19bTQjRGs4vTm5d23/2k0txFWXhlK0uygo73Y0FbA1C+Hm97OYr2YOkY7z1EmT7VgjVnJH6i7Jfrqv5LJ8FcXJ4/LIfbgkVaZt6aRwOIuZjrEWdL5eXs6qRyWA3wjf0k9P28z+A4gkf7ZCjV2Vmy/5HfbWxWhJsMEhQtS1mcnWG62V9ec6sZtgU69VmswICNPQMQ1W5rOZnbb1RoqnLXLQdASI7iWxVF7OuXTXtenHx+Hx+BgxND3fGW1uyKQKQ+cUjkc9ijn1C4jjmIWtkTXwsoWtVo7Es+9wQQ0Ah1TOsx2kQccTQc5+yKIvU4yG2PoZxGhvRTbNBGvqqrwKGs8QD1QeMRKHnceITFvke1joOo3y9rvJcNCL0fM6Yx1gSxxiQlZphhLRSXVOVa9lVQRr6HsEUEQpgted5yGI0SEBayxgbxLoWghErFeFMawFaKiUs6KaturY2XYMwG48nTdXKphmmiWzbg739l26+tD4/uTx7Evp+Xde/9y9//3y+SodZ37er1cotfi6imlLGmVeVnbOOub/klCEw1BgPIVJUkyDwMVrML9pegoGIkHGYEELs07aSsVZqo60BBP/Lv/+fFP359Z1kEKBf/9XvXb92VFX1aplfLOdF3SpAGkAqLaW0xhCEq6a5e/8LbS0gfDFfUI97lIK22HaTUfK1r761WC2XedH1YjrZSgJftJ0WErRhmMiuxxaAYExZnueU0u3t7el04nmekF2WZaPhcLZa33vwUGqbl+3+/lFZVmVe9a0YJdEmX8VJ2BnVKOV7oVR6OhwghOI4vLy8uP/lvSyjDsNVNyUALsvnPiWPe1UFCCHnPGGYaG02mw2A3RT5YrXZ3t52YfNxHHPOuq5zUpUo8EVfj7KkzDeuWCilkihMksRa6zy/DhXRPX2NRiNH6gyD4Ec/+pEQYjQaYURFJzj3H3w5Gw4DSnlVF2WZB0HQd9L3uQtfsxYc58pYwRgLAo8QhIne2Y2NlT+rFP6s+vj01OyQrgzjKz6HtUhIY+1VmXTF01qQRrsOjJSaMUYI5h41AOrpEf1Z3IorTISQy8vzslRCiCAIyrIKgmA8HhdF0XUaM4YRD/wEAFPK+k4qZaSwi/nm4mKxWVdROOha5XJECPYsKoeDoWhsWz//4MqyAUBgXTW8GhU6Y7ICwIApeiFIMDqeBIMtU3TNYl5XMyOaNMqEPogGJB0Pu+XaaGkx86J4EAY8ihTlCGy1XnZVmSZZNN0B4hvEpTip0zQ6vs05dF9+evEndxBCPMqazNs+OAKftpeXtm4CQilFfS9w117MZwBoZ+9gsLPV182m2iiwARYIg8urG2Yj7oeqN8aA0tj3B9qCATocJZMw1RZJZexmVq0W2Coiat9PmnwVhKnWVjUbRHyMwScIW2Mt0hQBBgLWC8K27+r18ujooCzzZ5cipBSEiDjDxi7X6zhJkjjq6mp3e1pWBSFkOEiUNuvF5d7egZGq7Toe+UmSJsmw71RfdYWsetVPprvCoF4aThkYVOf53rVD0StjVLtZ8cAXbc39uOsaRKg33qLLwu6mftFBLWE6oE9WepAQqrqiAakxZZxHAIZh5DF+UdRpGOzv7F48/GJ+drE9SI4Ob8wXl+vZx0+q1WoxP1vl/+oP/zBMwsl0p+kNY6xtG8doQQgNBoNeUNEbDRohQint245Tio2xYDhmf+03/qM//vC9s8UFMhAwYo1JvIBIgylGBllrLUYarLLGIgCM/8wvvSHPPx+lxOLoycP7Ukqj8botDQIFYKUmjGqlfN/vuw5Zq8ECwG/85b/07rvvPn70qO97bCHLBklkbt+8dnL6+M7n9xpDGPebpkGyd8HtUkrfZ075GJroWS5dlRdh6E+3tjDGgR/cu3dvsr/b9VJqUzdt18v7XzwIggA0gJLr9XKytVOtlo0QVqCEp14Uf3lxOt2d3rt3b3tnEsRR3/dAsNWIUpoOR8/uDcZYFPZe4GutnwIoj85OL5bL9XhrPJ1Ooyh68uSxtbZpGlfL6rqmFB7c/+LwcH+zXmptBoOs67rRIFuu5lvTndAPLi4u6rpNUxUEwWKx6LpuMBzEcfzgcrbZbOI43qxmf/zHfxh4vnNAE02qBo6ORhjpNPGqalHX9WzWX7s2dNNwqUSeF8PhkFISx2FZSoSsMWpnZ+/h/cfaGPszDss/tR907jqnojcGXuBrONahMQD0aUDgMzem1hZbBMpofXXQZoyhp98QWUMpEEK0eobCtpTSgPV5nkdZ0Pe9y0OXqucex4i6yg4WR2Gy2uRKGauxBNO0PefAaGCM0aoWQo6HkbIzrdIoix8/uQfwNfcDV2VjjEu1d6dADGDcTBlzZKRpQb8QFLf9Sn/n3bZ93KJod/uarFabSoRJHHHZLi9xbzuKaBj2mzo92IJGQFOu1peMkHi8S4fbUC3b8/skHKPIHw63u9X56Y/+CWAWHL4VTvf57g3sYXH/U94XUJY4mug0qVazoMvzXg4HIy9NhUDFRc4ZGVCL+mrZ52BxFh01ndama+q1VIgy28NgNBwDMoABtGg259hoYwzl2dbBddCybWstW8pE21faCC9LtJBGWtAoiKJOdNQibRUAN0ZFgc8pWS2WL9LeecC7rqtayRhLssRaSwhKwqht263JTlmWbat93yekk1KOB2PPq/u23FycUe5RL6bcI0Fo69q1VxAyGksDhvt+XRTBaKtva4It0QqBBdP5vtf2AnphAqbXJYt8LTSRUqZc9VWkeTTZ35w/RG1RS5V4FCG96nqK+r7NtdSvv/YLSZZEUduVp+vNhaLgx9nJsv7+Dz45W5ut/UPKPR8EMgZZvVgvsizDhPic5quN0RQ0eMOEeAHtVNkUEahv727/7V/61W99643/G/X+P1/cm7KoVQ23NCShUgWlXklYKsS863pIPJDINv/l3//rr107/P4/+2dbw9HD84cf3/1SKMhFTznT0tmvrJEKAUjREQBCkAZkNfzDf/hbzh5KkPF9kqb05Wvbk8no3sMnq6IkBIG1PmOtYgg0xqCUAgJKiTDMuqblCAsLRimtdZ7PKCXIYkqp74eib8FaKw0y/ez8y7tffN6J1hpGaVgvqmJKWmF9P2iwFJtiOszQ/JQQzBiVwkgwq9XGrRmbdWlfEKL1siIMRGv4hAOAUgpb6OoGNFgh/ZTmeYER7URFCAkjv6rzdJByj3Rd54UBQmiTV9IqafSjB+V0OxkGvLPaEhImMYAt81UYeU3XRgR5BBuATorQp2ESfnr/QYNp1epxZNdz8IkXpIvVBfUj0gm6frzxCGTZaLVeUIYtEI9Shsz9+w+ZR6NBUhe16fB4LA0oBKmF5/umn/VCANZcbf0sEMAgtCYgtQHGiJLGgbGlNkJrBMhBGK7S3zGSfZ8EvC0rbKxR2vdY3UukDSEYLDbGGKsxAoyQ1YbFSbmup3wIErdlSbEFzPMSfBYia6VsfAZhEMu+Dzx+2rVb40wIoRVEaThKMkLI5ck5wYAtMDIp+iekHQN6XtmDIHpasq0x6kphAxbAgnWmAfKcYVPe/YCMWKa/kTXnj87uDOOjrQEC4l+cPMmCRKXRKEwhCD0p7SrvkClXn/HoWnzwTdQW5tPfLQlBu68HcSDY5PL9f15/8cfm9b9w6+f/DJy9b6TRX364tl6a8abSYZRITmxdD5nXoDDd4oxlfW8J1pMMlavZ6WUXhdvJ2ICasMgLWa5FFIS2aOaM7FirQHVSdnVTtnVjtYyCEGPoUYEUemaGRwaQxZwZbRUOvL5tmO8rrQnjqu895klhHU/YtR5eNClewfUQ+D7nhrsAEAs4HmR108TJgFLaNM0oG/Ztt2R6kG2BF3LfrxsRT6atRJ4XET8HANn2nejdcYBRzDBCVgVhAFJIIQwCBJgw7Hk+eEx1GmPa1TUBJDrBMSOA887QzWfZ/q0ir8nqkWUjFUzQ5sskGT1+9IBimw6ae48eNlXVFXldrDQin/7gw0/vPrpcVUdHR71UO6Ps3ud3dt762sXFBcZ4sVwncbYqW0AEE6YJGgRRv1z1TXljZ+s33v7qK1tjuRXmy7Pf+ZPf5aCCzK9qqxmf2dbGOOwD2l6ccAAT+DbnHup6eOPW3vsfvwc8yeuqrFRfzgwiGGMtJMLYWoMxMcYgCwiwBg0W+YHX1k3ft4xi3ye+R+LQGw/T0WhUlmVVVc7g7IbmURS1TeOcXmkUl2VplHZGYIMMplTK3vWDkjQWnYzjMEniJBx89NFHaZqti9IaBIB7pTqhiOf30rSthJD5vo9Mr5SYTLLHjx9HUWyMcVBCQkie54yx/IWTctvC9nboWoQAsF73y+Uyjv9/lP1nrGVbfh+IrbzzPvvkc3PlqpdTd78mu5tJYhApjiRYkkGPJI9gDwwbhgFjDBuGYXgMz4yN8Yw9BiSP4JFsywAljSWNBFESRYkUu5sdX3e/fqnqVa6bz7kn7hxW9IddiUGUZ32pW/fUvXX2Pmv/1z/8gm+MSZKUUkZtxjmPoogQQgjhnC/mK98PAHhaulJKLUrPzlLfB57vpEXuhtFmk/i+XVWVlrzv+xijLMuGW9sQwjzP+92t4yx79OjReHvHcSwAkORCmwbqkDJTF/Wg1y+T2fbuVidyz6enruvkuQYA2rafpBuI7Z3BQFSKhlEURZSeNNW/xT7pD6+Wdd7y1QlBUuqWtAd1y9wE8Jm2mzHKGFA3Crei6NSSUuZFXgkQeA6vm7axCDU0L9A2sCiKtrrvdreTYl1URZqmLfmP87o1cbVtWwNY5hkAoCiKIAiEV2OMd3Z2VquV67pccoyQMYpQYDNLSP3y+38R5Z/zlFufGGUggFiCF8CiwMMAj6bT70fYO9h6IyuzQvrV8TcyM5lsDZTPADc6y23PLeebQjajrV8EPVTPfrOZntHe14LedSCPkvlteZZRyxr+1b8egE3z/V+vgyvU8VxLeYFLcyE0EY4FjSxNTXt956hSCMOQMJ+IdFFeXGCMtm7exDtX9eM7jazrQtluJy/OZUE8a4QJQlCJcl1UpRDCZsz3I2rZsiiTagO0kVJThC3LMsoYA2zbLfIEMUotGxMihYBaYQgpRNCCbd/a8x0hhH4Jf/W8o4EhAkAhYICSGjnMcdOiJMyyKCnL0vMdqTjiMeaAYsDLzEKkyVNEbKgptn2llIMtx/eB0VI0RgrBa5mlbugBqLWRiDgGYq60zSAgFBFJENBKYAWMARggDFDUdct0UK5XoWsvrfBstrx6zQe9yXq+2N66PD1/uNicPD55/OlHZ+k6N2qzKRvbDd3O2K4x5/zVW7cwMF3f9Rw7ikII8Gaztp2uBghRkm0KH7Fa1IyoX7r1yvuvv3ptNKzLeDjqxZvNJ/OTr16/KokOfUcJKzmLtQu1Ti3tUy1x0NQQcwV/7fqlr+7u/bMf/w62e2WRQQMggIzQfrezXs8tL2iHv03TmPbuIoIplU0NAbApshi1bOza1HOZxdBiseCctz8CobEsqyV7PdN30AghozRjhGLfc9zl4ZIyjKHrOFa76fv97u7ufiPqu3fvOra3vT1ZJ2tq2XkZU+ZIBG3brWotBfSJL6HoD8N4de44TlnUGOOqbAhmTW2YJS3Lcjw3z1/gDX0f+r6/Ws6VUpxLywK2bStZMca0Nnmee8gHUGutKaXdqJ9nZVGofs9pI2ZVPVXis21AGFkvFypAQX+wvbt9MT13LUoxCTyfwTUAuh1BtNprbTCtqophGwFZllW3hxkNtJympUYw19Aw2xCqiyJx3bCqeBQEYSc6O39ijOl0gg8/+Gg4iDiX4wk7OzF/DMjmD8dBCCFERivQyrkyRqWsKYVag2fKbAA8M+TUBhipMIQYAaGkazPP8wyEMistSttE/hndEyH0NEhRSosSIIRaq1WATBAESmklTcUbi7JWMFErXZZ1S4I2QLX9bs/zptOp57ugBBjjmhcEAoYJ0H+EWs9LbVBI4NNvYWDgyxT5dHO4uXgw3H+L2fzk8x/vXr8y25yozLr+/lsN1BY3wGNNnlmljJEa9XqJnbP7T2RO2e7PiMAsqx/1tddR2+DtERgcgLOvp8ePwjf/DMxzplYGE/tskXYcOuzrsrB821vH8mQuJyM1iPByjS8upGhUOAj6Q8Ch/P4HMbU7Ecmzpqw5AA2hDqZ+kc+VqAmzOp0OpJZRBrYGGkJ3o74xpipzLSTQSggupUQIAgWUlMx2hFaO65ZFYVEGtdHIcM6p4zBqGaX1SwdDe4C3yM9WO9ZxHIEcBbHj+UJpY0Trc9btdst4UyQry3E0QHYYNo1CCCCCDHV1VSsjkDaCC60kxYASIo0AghuIACKQYEptaZBSRucZ0IZryRiVTUEx5FWhtUabyt26rFazcrNw/GEYRsnFlPa29q7tH312t9cNZ4t14Pf9Tub7YZU7AaDTi7nluD//C79wcbEo8ur6javT6fTs9LjbG/i+HzU6TYuyFAhamEDXwJHjvfeFd94djLYAwrq0fOuABX/jt37zYaZv7AYLvb53vBAKOAA0DTDQ1TBHGjgpmMDuX//f/Y9/8nL3k+O1C+DR4fHr12/effIhBcj3/Bs3rv3ety7A05kjIoS0WndaqaZpKNAuQ4wRgpTNWODblKIiT5KGY4yfZeva8zwphBCCYQIwopRK0Xi+E3iOUdpiLPAcoHmjpOf7rutWRb21Nea8vvv55xjTX/ilP3F4eDibnRuAuQRS81JQB5KaGwKY5LKS5Zs/+8WLqfPpgye+7y8WS4s563XcQvOapqEWe9ld3rEYryspQdMICOFg0LVtezada22CIMCYlnXR7hxCSJqmcZxEHc8YmOe5MWZnslUUxXq9PtibnJzNwk6IsawbMRqNZufngeuN+z0AQL/XA5pXVdXeuizLLMvSECZJwrmUStSVuPXq2CGR7VxMRrsNzy3HPjqZGWQIYZRYlCIv9BDFvJG9Xvfx48dNwzeb5N333j45LY8Pj/7/jYXPAqJn201TQaMxwggAiiEECGDUGGEMgBBgACGGz1HWyhigQFlyoBVCyHEcIURepJRSAJ4qnLchse38EogQAlrr47NTTIjv+4wxxlgDOaVUaqWkxBgLpQkhtsWCgLXpuda6rIq8yDDGQRAAoIssdW0r7Phx/CIFfu74CF7KE8nLR8KL6SAATe4Df+365fx8M379fbne6LNF5+YuCLvlam4hC0ACIUbY+L4PMC5OblPbI73rONy2qyVsMmCp3BbKIeDut+1chVd+SaYXDMeG+qtEDw4G4VnKYaM8tpzNB5d2iqz2GgwO5xqpBCDaGQW9oSmLJJuTAR7YPaBYt59s4lm3dwtgkM1PAm8L2EpUlTBIN5JLTQi1bTcY+kDVQCuLaS5zbThEilgAYE4tCxFMCFbSIIQYwRBCqHQpKtdzlNRVVXie9wembBhjjCmEEABNKbVtF5MAQuP6SDS1hoYwqhWwbAK8iNiuRMzt9gGiLLCKRgLiUM+zEZJNrXkjgIHQWBajnsP0U1A/pERIhQgklqWFApUwT9sZBmkNEdJICSUR8vSTTxvqAbuD0hnbOWD+K8uju2WdHVzpbS7m2/0rDx78wGUoTpZKq0G32w387//ow6asfurnfl4ovZgvRzuXj8+nnh8y5oQBWaxSJTVCUkvhb/X+u298cffSaK3WgutqHTvdLkjyf3L7Y+nBv/jn/+y/+z//q//H/+X/6srO9fzuk69/519MG/V4Xv5H/5P/xS//O39SwlVw8+ZZvtn76F//03/ysdfb3kyXk9A7S0uE0Ne/9W2IQKs09RJ2VwMACCGhTSjFxigEAaOGUQShqZrKcTwhRNt7EkJKIVrlK6ANw8SxbKhNv9cDRhmtHOYNBj3Bawg0QVgJGYa+5OLw8FDw+ie+8gUjeJ0nvW7nZLYyGkCG46LCrPYksW3HQAQhnF1Mi7rkQlDL8vzQ84L798+iiFo2LstacOW4L5D57elIKciKKggCiEySZ0VTY4QtDbzAT4sEAOQ6Pm/k4eFJU4MrV3qLxQoAOR6PN5vNYDDYbDZ1XY7HA855J4qyLJvNly2ce29/5/HDJ6N+T8gmzovNpuwEQXs8b7KSKA0BXq8KPwBh5CzOV4iA3d3dOF6enp2sN6DXFYy6TcMhhEJwqXhrN3bvwX3Lsptanp/NEDaOD6oM/LdajDFjVMM5pag1aeCNhLCVb9DIAIggIQRCqKWSUrb0X0KAMSZO01bUp2mElKKlqwAAjdFKqVbHUgjh+zaE8PT0dDjuBt2Ac44M4Jx7jlvXFSUEYiS1biHGrZoZQtCirO2PlWW5tb2dZaWUstfruba1/n3QqGdm0i/J2ZKnCk3QAANe1rLo7HhDtKtFNbr2BWA2cfO5N9gLhq81ecZqLXsEFY0pGxB5LidpstzujJrJ60YWLLsPalFljZQA7t3onD1qglDdfDV9fCd0OqDeg+YoHFvZvQs46vhBZ3Ny1hlvZ+dJYHkbVHZ7xqjAB7vUYlqmVbkMDMJ0DCACRBRZ4XvdMouXy/X+wV5TV0w7tULUYrbt2IQBAAwXBkBRCS0b1XDOudINxohQCiFkjo0IbJoGA1NXBUFYck4QIgQZYwA0ABghxMueecYYABAimGAmtTEQNgIgChmzmqZitoOA4aIxAGZ5CTECWtkOVXVlkDRYWYTJJgdGQm2MlsYYDBHXuqpqpRR1PAmM5doMs7KRygBkoDGQUKrLBgOjshRRwpuSEKyViefnvajDkJG8Sst6+vHHN954e3D5yuzTH330o+8Oo0FdyVevv/LQFnF8bhFWrFc/+bWv7u1OfvzJ7Qf37xxcuT7e3koePMrzXAnd7w3Pzu6LWjCEteCqLv7U+794ZThM000Q0E7He5JtOr47P7s4bmIgzX/yN/+vk1fCX/2rf/b1939q8e1v73zB/ep7v3CxfCQViP7Ea5999xvf+b/8x96gc+/RcV7Ao9lhWulLVy7z04vT5RwAYEy7CzWlWEmjlMEYQAgchhnDNqOEQtthCJmmqTDGlFptXfayT3kbGQFo3fuMUoISVBWlZ9mDfr+oC2i0xagUPImLg9299XKexkng2VrUtz/50d7eHnbtOC8MAISQknOnbjpBFIXBOk8hUt/45u/1B77WppUR3GwS2waO4zS8oBRZjs3lixSDMdLtdbI0BgBSSjGBZVlSimzLlVKen58bIHu9nlJ6Op1BCAaDgHOe5+Vo1COE3Ll7wgjthMFisdg/GD18+JARqCBeL2Lbwq1/JgC6qqpOFFys1koBrXVd11EnILa3TlJKaRqD198aYIxni9loRIoqNxAASCwbYGxxnmOMO51OUeXreOU4XhiG4/H44izmXH722Z2wO/F8XGX/Rq/hP5BAtas1Lteq1XZVlDAAZHvCQQM0ANBoYxRGGGAANfBcRwuBMbZtJnkjFXct27FwXisIDQQaQtQmkm2VrZUSimPidfxoFW+6w65N7CxOlZIIwVatpwUVJGmelXVH2JZlYQgdZrWNlKZpEAacc8ezCcPn5+et6eBLD/Uz2c1nl9biDQE0CgApzUtK2dYurzcoGqf1A3FxGgXvRq9cllXrAkOklIhZFmVNVYKqtikDg7fYZmriabJZZJsneLBFd96xNnHdG1pKu48+C8c3GsdUzjIP9vGHn4CDHR87/OSkO+wLjoIbr4O9SZfZJgFaYRq4gBpRJBYmqD+oXAogKfJTb3e3KMx8dbZ/8xYgIWKcS2Xbju35BkLRVE2RFWUGjGC+3bq7EUKAhlpDo1EjQAOENForYaQyQholNVASKEqplJwQxBhrlfJe7AZjIISUWJgyTG1IHI2ofOoaChFhEBMAEUAYYmZ4mW8uTFNU6QrKWlYptYGDBDYSIw2k0IITQhzHI4whxhqltcFSQ4CZ6wWYEsm5kQroRkquRF1XBc+SJk15ksosDalZpDUxSiTTUuGwG/HV8eZi3R/vTMZXnxydfvDhNyAuf/qrP/3lL3yt3x3YDvvhjz545603f+5nv4aBuPvpjzUvh71OVTVpmnf8bhJnRhmL0CbLrx7s/dS168f1wjB4iUXJKt65fPXaK6/85o+/tzAAcHBnlvwH/7P/zZ/7M3/5r/9H/7f/0//hP/v5L3wNB8WVn/vVv/5f/Z3/9Jd/9dd+9i/9r//eP/n1b/3g7/3G78XSblhwtokfnh7PNwsAAcYYGNDWer7nRVEYhY5nMYYABopgYDvU8x3Pc54W0QAhRIqiAE9J/qrVgrZtGxmAAMQIYISM1rxuKIaOYzGMfNclCGohLYK3R8MWJzQZDUKPLufTKHBvXD949cbVXuRTBoRohAJV2YQdf2d7ZICoqtIg6HY6Siml1Pn5xfFxvr21bVlW06i61q301vO94TgO1LqVMm0fDa2167pBEChl1utKK0Qwu5gt6lpvbU0cx2maBkJQc3F2Ng0CtFwupZT9fr8o8k4nXK8TDBHGkHPFKF0ulxCjTZq0/iq+j9p6kFLa6/UghFVT8wZ0+8wA7AcOs8M03VRVs38wDiOCiaqLIvS869evu66/mK9aCYlurwMA0BqMRhPLxvLfZrv+h1ddcyk1QlAKBQxUymBMIMRtOEOtuajWbU8QQqC1Ahi1wPU2PwXAWIwS0krXGKVUa6X4HMRTVbppmiAItNZJkjDG2glna7hoWRYhpN0hrQEeAIYxRimdTqd1XYehn6apMsZyHa11ksYtwqldT02GjWlHmu03ydOw2JbILzUZVXGBtl7Ji3UocYFKwahT7RMPi3JFOi6upIFNKRrfmBJKKpTip6pOHINY9IoMekDEaH2bRkNwnoGtMfBQs7lD3V4xL1hxjF//hYDBMjumSIk4dreulWkFqlTVG7jzpm8auTnlTWF1Osga1DVHtVAqQyA4v/OJ47qXbv4EsGl6dldr3fGIQRAIKZWglAJCjWiUqAlDZZVqXluMtG4/lHhAmZoXGimKsahKi1IhG4yxAoo33HV9AICUyrKZ/v0sdowxYRbEBBqMmcUsJ0027QHVNI1UilILQuiFgQK9NCs4DfxBTymAEVKacmBAlROEm6oxxvi+jzCoOdDAuH5oIKykklLZgYe4Ek2NAVRGIYZl07gWK7OMaMOrWmvdWE4A0sUyjwZb4Xq2mOV5Z7Tdp0mpAI6++tN/8hvf+se//fV/9Mu//Fe+8O5Pb413zs5O67r+zne+85Wf+pox5uNPPvMtfHY073a7p6dnllPUZXPt2qXAsZdn5zeuXN4szxVR+4Mh5aCxyCvh6PAHd/7aN77FIe2AMLHE42VRYPo//Q//Cx80s3Qzq9Kv7l6er+UPnsx5A0xp/+43phcKVnQjoJlXvMg4thCWQEllIdYAYYypqkrxRitgM+DbVhB4zMKMMc5LKRvKsO14GOMsy5lttadv+ykYYzCAkBDeVIz5LfFASt6LIobJarEERod+IB2r0+n0o+5v//Zvv/nm28NbwysHWx/96Md1XSshXr114+//49+gGLid0DTlfF5UVdEfRMO4tyxXw8Ho8OhMCu55AWN0MkadTuf45EkYupw3VVUF4Qv0leM4ZVkGgZUk2Y0b19eb5XS6GI16lNKqqsLQwpgkSbbZqCtXBpTS05OTyWSEEKiqajTop/GaUtqOywnBy7KkGGmtq9K4LmhdZlp98tVq5Xo+Y4xzfuXSbllk67Ro1fYhRI0sJKdeYCul1+ma17A77Cot/YBuVrqscqUUIbThPIp6H330ESSkKhvfDc7Pz90wfOXVy9+dP/lvFQ0xRK2Nct00GBshOCHMaEHIU0MR3RqDPgs3Zcm73QBqgymxLaYkpggR162VEkIJ/lQ081koBJZlDe2ntMvt7e0k3eRO7tpOoZvWuOK5w3LTmKjvO46T5xnxCITwyZMnts0ODg6eHB06QUdrjigZDIe28/uioX4uQfxskIIAAAhTbQAAiMAX5SFxxih9hC3CC0BzxN0+DIQ4uVclU0x7yhmsZse+o5TToZ3LOoiwYusiB44LWCVth9IV0wWIa0qHgIHaKEsRdO+eSCv26k9I2hSHdynywOU3ybtfAb0BKhpdlMFo5DerJk0u4go4Ie5EdaN4xU25gRAT6G7f+Fn72rvAqzaffS/cuoGvfRFCWEPW5DF1ojocZHVjpCpP7z/44UdNXgoDaoBY1IUWFaLxLMYQNtJwYZjTKblupOGcQ2MQAEo0kpdCVJzX8iUnAKQl1HC5PLQsS0NbwRpgzxoPmjxvMLHtmidzoRTPp1VeAEhDv1NnG748xyJhPMlmh7pYY2RnWQExMEAo3XDZEGzbTsRXhzBZutrYCgJMBEaIQFA3Io6JElSDsiwhBoUskIM0FjY2NVcY40bJ3sHNvSvX8+VxfHFok6aul4+eHN688ZWf+dqfXS6XyFY7V67cev31m6+9cbB3sJxNQ49Ntob3Hjykjk+AIkgpkb2yP37/+qVb/c7PvXrjzUG/Fni34ydZEXPx/qtXZ7P5//A/+2sPbYAZTGDMVN0A0KXmF7/46pffenXN2dnc/CAGuReRvfE/+8EPvvy1nyMOeuvSlaNktWrqSgJjAEEMQUgRVJoD4EFIVdXsdK0vvbn/2o39m9cOdkaD0biLsFJKYUwMwBBRyhyICAK4HTm2gyxKqTQSIWCMYowkSSKlxJiKhnejzsXsrBMObly+1nEcxKvl2eHB9shh8Orl/bqodvd2+uPe6ez8dL5I68Zg4AUOQqRChNa8V8edsFcYO42TKHC3tnem06mFwaTf2R33I98TQli2w8vaxi9EQ2ueMAtpLYsM5FlTJGWv4zOM8iIBWFWi6XaDzSYZjWzXdfMk9127yiuLEMeGjocok45Pq7qGyIKASCGHk47juVoDCKht28aIzWbTCXtps2iaIrL7gWdsZgFgBx0Tz9H8hLq+Dtw+wqZuSmlqbWBZ6qqoKUFNDRzfu1gmUejlm5gaMJzslBXynL4wGlkYM2+9Xg/6jFmQ0haK/DQegd+v0QCfa+e3whxAGigBMswiAEJmYUw0hMZogxFCEFJCKKUUIYYx1JoQ0JSVAcooqZoaa2C0VlwEjmszi1EMWpk+qKXRtucbVEGDLeB2fc92ECZMGYQocG032SSW614sl0KrrEgJBqKuRS09OyiKUhoddCNAaFrWzAp8y5Y1dGzme9bi4iVMpSHtRWmtjXk61EYQAK1U61X1cmsAh0jCobO84LbSl65F2NWnU97rhZNboD5LFg86w+vA306Wj7GOFYqazWzi9SpUo73Xq4f/KDlzYjUuVAz6Yp7L5vHnoEjy7k7vC1+ETZ5+/IEXdWHgQebpddIc37NQ7A26KQ8Aco2odq6M3OFekiKHVJ1A4HBXOx4YRo2eOcszs4HWpZsgj72LWe36Li7lm++vWGM/+dBJcgoA7b52/Z23t/b2t/Yv+Y5b5inB2LJZI2rX9d3Aj3o9KbnrO7Zth2GolDIaGw2BIQQSQhijL+aGCiJIZehfLpu004OBe2M2f+iNrjiDHp+d6fCGiDohT1z7IC9XZTyT9cYiqsjjeLUABgadngIYAM0YQxCWZZ5liVEaQqN5Q7x+qVBaVoDgeDalglMtjCwIBKJutJZaSSEEArDMMy6arMillKvVSimVZ2VVNZevXJvNV1XOB/2JZTlKmfF46/XX3siygmIWRh3P8zw/VBqWtex2e+PxsKoK5Hsd139t/8oXX3t9P4oud/pvvvHaucwOdrZxLsIwfPXyjW/9q+/8pb/xn/7Y4/0aKCFaba5OFABIbt97+Nn9h7cfPCIOna0uPn94tzOI/su/+Tc+u3d7la7P5ue1hNNFZvvOYDwk1HIdHyDS63WBroHkNy4Pf+qrP3H9+rXBoAehYTblnNd10wo0tRqFGOPWQrNF6iGEyEsuZv1+b7PZ+L4LtIFG7WxNdre3jBIU6sB33n3rzWS1/O//5X+3G/lNVZ4cH1aSd/v9o8dPrh5cNjVHXHkENVnW6fm8kWerREB2ZdyfBO5ykTJMirwucm17ruc5Z2cn0sgsFU0jgiA4Pz9/EQ1rHscxhPDS5TFCACHo+75lWVrrujaDQQQAcF3WEuwcz0MIaSN7/cj3A8aY1qC1D63r0hhjWcz3PIKwUsAYlee56/qvvfZaXdehP1BKIWxcJyhLzhj1vHB+scFYjEe2aLgSsswa1/Z6UZdRGMexZVlaK8uyOh2LUqy06PY6jx8/Xi4T13X397fSNO33++PxWClFKRbyab0MX5Dqnio1tAXv87AInjJM9HNwjNKmpZFgjJ7HUPNM0QFj7Lqu4ziMMYypMpBrw4WspSyqpmmEUG3uj6AB0ADKMISw5k2bZgoh4jiZzWb9fj+OY8/ztNZlWTdNk2XZZDJs/wvGmOd5TdMghLQ2bU6dZTkAAEC82WzarssfuZ7mhu07xxgDgORLg1TOGyAqgEI/wLwzAkWeKmy7TrmJm8b0bEgdnKamNx6a+AS6XTLoSVZZwI5/5x916Bdwfa4DG916T2abETgHvZ7oTvxrr9eHT+bf/Q26cwPYHWMUytZgtZZ5rrGA/TDcucHzme0PAOjXy6OwedioaJF1afZAQq2bJa6IiiZQreGjB9JyGy1YSM3uDfKDb4lvf7+aXNPbI9INrYM+IAQgOD083CyWuhHLi1maxpUohRBZll1Mp67vtcDs1jkTQ4wAAQBpDYBqKUZPl+2OHT+oZa6lk6a50vHWaCf94PfMra/al2/idDXsXJ7bvU216gKWxDOClDvodEddPwoXaTyPY8PYM4Cu7nY6ncCHRoo6F7xWJHR3L9uj8brIOrYDeKWqzCABjFotL4xWvuc0dY6hxhA0RV6VdVmWtm3Pp3OEUFnzLK/eefdL6/VmuVzZlltX3CiTrBOgYZJkVc1txxttH+xdujEcbUFMhWgI0URC23N7YbCFLJNmLLLyOnl//xJfx4PB6How/mt//+/+d/6bf/AokYNCr9hTGH+el+s4q7VOuRCQVgAfnp8/OjlJquqHn3zyX/6tv/Xp/cfQsjZFgZhtuXaaVUlSJElWFIXtsM1mMwqt7a5z69qlq1cuCdFwJS3X2qSbNM+rpjYQKKO1VARjBKHrPM3CCERtcMQYW4QyxpqG93q9Isv73Y5Fqe86jmtNJiObolG/88u/+HO/8st/Mt0sQ9e6efXSZx992J8Mf+873xyPxz/5pfdPHx9uj4bvvvkmb6rx1tD3wFmcJxyibP0L778DMbIs2tQgSQEwqGqq+WrmODa1gGU5jDHxkr3G84f8lVevCVmv1gsITRyn8Sbd3u57jrtJ4ra8zbLMcZxWOmV3d5eXUnPdPthJkighe/2uZdE8KyGEFgOE4iSOkyRR0pycnKzmHEIsVdUJh8DAOFl//ON7RWa2drxLl3eWyzWlbDjsI4Q28cp2qFGa1w1jrCiyS5f2pZGDQQ8hJKXUGpyenvpeKKVcLBaUWEIIz7fAU1/NPxqZ/DzAPX9VGvC82AQAAIgwhsyyMCHth0UIgQS3hMU2MgquyqrJyibNqk1WrtMir+taSCWfyiACALTR2BgIMcFMCl03QmvQnjFZkmqp2gHO9niUpikjtO3VQggxgUVR1HWDMXFdlzeSEOKH0XS6rKoKUzIcDl++kD9wja2CDnjulmJeNuXh0nKjAsyl3nIv5merR9HNr2BZSp1RhYDTV01smov5eY4nrzk0FxfT2hqIUjuDiOJ58Cd+Adld5+Ss1gngplOZmuytH3/48If/X73zdtDfr3SpkaXSBOdTbzTg49cW66b65HcY7UldJUc/oALB/jtAXgz1Y+3fsouEsl3Z65gHj0DJxNUJMSndvYI21fr3fifWxfBX/rzTHYlG1+E2Ovnx8mI+X6073d5oOJ7sXZpMJusk5pw3XDDL7o+GVVUVRbZaLwEAUkpCMMYIgdamUkr5olLmphHC6Y+CWnAMOmfTTzBy6M4N5+6/gsxKYIAM7Q6G0Va3kH5kRYd3H1989oQvS1RoX+Ix8+1SUkJa8AGlBCMAjIIQWIxgxDjnLPC8MNBCyrTAtg0sWhSpY7O6ynidO5QCo3iZdXyvLPLWAm1/f5cQur9/oAyeLzfbuzuO5zRNs7Ozwxj1A3cyGTkubaSQ2mxt7+1cuu56nfF4vLe7XaQJYfSABGyep7qgkyCfX9z0ete7w53h2OX4L//f/+P/7Tf/pWOAY1lLAgOBB1Hg2Mx1bQNB2fC0ruOGL4tSApRVQhg4X6cSIIBhXvNa6jTNq7JGEEhRuQx7NoG8wQD8ys9/7U//4s9CIy4uplLKdbyZzS8Wq0We51JKzjkhpGkay6JS8hZBDbVpUxJCCIGIUtrGFKNV4LlGCwuDJF72O8H21iQMbN+1CNRlGl9MT//cr/6qFvX7X3j7ycMHp8cnX/7S+1EUPXj8qKwrRfV4f7JaT/cPBhdplUn4tS+8FWAQdboQwrLglgXCqIMY8js+tZjWoCzqvEht58Vj4theGEaDwWC1mFJsbty4RqkV9Xvb29tKKYhMktRe4Atl8rzCGBOL5FXlunZZ1lHUhRBmWTbod/Miu3v37mg08myv2+mEHSvwXM/1A79b1FV/OJhNU8bsyWRQVwJjjDFcL4ExaLztlFWyWZdhGHqep6ShlG7vDD0vgBA2vHIcSwgRx3Et+On0vCxLzyOr1frJkyft2b/ZbFbLjeOSp9iSNiF4pqTQxrtnc/wX0RAhCADQEBmEn0dMiLAQommahvO2r9c0ohacK6m1FlpxJbmSXKlayVrqSuiaA2mAbgGJAGAEjAJc1JbjQAg3mxhCrJTJ89x1Xc9zfN8vCtHxA8ZYnqRhGC6XS8uyANQAgJYnFgSB4KrdM2maCwU2m2Q4HLd9xj8c5Z/Pl59+rkoLhPHL/0IXoNaLSlpk5zJa3hu++2eb1Q/qtQw7XWRqyUGSc48vOqMdEOzlh5/Yge3bVzgEID+vrl+r7h1GfAk0IlLWGw7678KjD2Yf/vO9n/q1wd5VACFwXbY5h6t57Q6Uv4XS1M+WTugWpsKbdSe6jLr+8tE3i2UF+m8idWbInoFz+eQhGe8Ci4adK8XeDXz2eVo+9q5e7d36Gl7M1aOZp2379KPYvdwd9EfjLYipQmi9WGzS7ODyJcdzvaCDMeacc15DCBljbV1WVmlVZzWvOK+FaIR4gaKoxNJ2QoK6fggR1KP+1c3mGKHz1aNzJrEdNRIsoI7o8Ebn2sh/5a2DL33N2r+yJpT7vvTsTNcNFpw3FiMYw1YFr4UfKykh0kbxKo0tm9ZFXhTFarluDGCMQWiEaAAweZFm8YZRarTsRn7gOxYGdz+/naeJMbDXGzSNkkZRimtebZJ1I+osSxfLGUIginqNUA8fP15cXPhhFIYRRXgyGPYKGG1vwaF/EPbM8fzGlatf/qmvRiz87P79X/7P/8PfnZ28dXUiJOCNDgFClHRCT9QcAeU71vMNBQBouDQApFkBERJSY8IMQBARx0L9jrcz6G33OtvD7o3LO3/lL/2F/8G/9xc+/vEHly5t7+/vxmmmESnK+uRs0Y4Ln/ZuEGrziNaXkmHytLNuwPMHUmttUUYI6XU7dZbZFnUoXS0url4+6HaCybj/6MH9n/jyl44OHxd5euXqZV43H3zrW5NBfzKZTGcXpZQcgbPVzOrYlk00Vn7f/5df/3rUH9y9e3+xWCGEVqus07GUFlw2Gpg8T4UACCHXdV+Wxquq6uzsDADQ73eXy/mdew+Xm3VVNovF0rWd9XK1vz/OsiwI3IPLe/PFzLKsg4Pdk/OzquKtlx5veFvi5XlT13VT8SyJHYt4ntM0TV3z8/PZ/v7+aDh+8vgYQF3XNaEYI8t3IwC142k/cCmFaZrYDgUASKH39rfAs0FBGIadKFgu13XNlQRCqKaRrfNUEATb29urVRpFkTYCANAae74cJp6PRLTWf+ClZ+bYWmutVPunbmcmCCH8tMuBMMatm5iUUinVWkcZgLSBusXiAAQQVgZobQgh7YgpSRIAEJcgzwoCiG25ZZ4LIfI85xzs7+9rrTudjmVZaSp407QRzXVdzw0c27u4mLe0pbIsOx2vLfZfvoLn+eDLAfFpNHw6/9EvEDb2ZCTSVTR5q/rxb4j9t1CcsiamYZcvLoQdiGbBkuWKR9Yoyk5+aPvbwroElj9UcoO/+N+z73zo8FxwUPAVqol95X1w+i1VTa994Vc64Rhb/io5gUUOhSSTPWv3SlGVYP7EEUVFbK+q1Win4snqs488b6d3abtY3KlyVNiZLF3aDQAqwWgXSGV/8GGJXYb3bYbQYgo0UP2qsZtGjyPCMGVN0yDKSqGR7Yb9YdVIx/aMgUXVLFcr23MZo65r13Wtn+r1tappGFGG6Ivx097WG1l5BiEsMq1MajO/E/moqsowTD76LRGX1eQmaU7Bo/t1sAWcjrICd7jV37tsd7rBZNIZdRvNq6qo65K3gk4ACKmVAYDQWnDLYkwbGSeeywijZVmmq6RuylbGrq5rz/M456vVoixL0ZTpZi541Q28qkyLNIEQjicTABEgdPdgv2xqrmTZ1OvNpvVHJoRgii6W0wcPP4da7e/s9/xoa3s7wlSW9XSz/Nkvf62X47/21/+rX/jf/wd/8f/1N1MBrg2Dok76vs+0UFJ0Dyb9yLtxeRL5VlM3vkvDwNGSEwJsgjEAnsV82xp2IwLM67duuozujHtA16/curK/t+VZmGLw8P5n89np1vb4hz/6sQJ4kxa/8c+//fhw5YdOkhQGYg0QgqTlBdd1DQ0wSrfBsd24bWTEGCMIgyAo0oxh9M7bbzoUS142de57luu6xpjBYPDDH/4QIXR6dnbj+k3Hc4dhuDUYvfnmm5/evRN0o1defyWJ11m8kk3JXO/StZ27D5a/8Xvf27/5JoIgSRLPBYN+lGUZBLi9h8OBNxr2Xdd5GWHj+0ESKyEUIWS9zq9duzLoj0/OZjXnjDFjdFVVdV23amBSKwgh581ms0YICCECz3ddK47XQRDsTIaL2WLYH17a379145poqtPTU98PfC+IsySM2HoFzs9mrudwXta1mE8rywGXL01EJQKnE/ouIxoD6DtekWZASS1Bi8u5dHClrrkUBkFGGKWMCiW3d3cawYuqtF0yGA25KD3/mTQ/wAg9RZt0u92nmfizT6H9osVctDQbrp5WzUrppmm5/pJzLqRsT7WmaaRUQkjOhRDiWVh8GnvNM+M6qRXClDGipEkyjimzbfv8fK6UHvT68/laS/nccrvf77dW4J4DAQBCCalVVfPheLRJUqkBIpRL5XkeIURDsNls3OAFGOCPXOR5nNRa4pcK5So/C6K3FunnQ9tT/evFZ38nDL4sxWOr1z9dbjYPfzQJu+Mv/3SyfNJBlXEn8Pgo8QTdfT25+5uD4TtcTSGKvHQurt0Chz+IDx+jrTG7/Or6/LyXnQLt2zrbBAcKUevet7GUbOcN4NjO4vPCGaOj+07Ys2+9YXgK4o3Dush3QVNoD0A0SDZpZ/FIlBXe2fbSpuAN8HaR+AT4E8ZHwOTlnpvHUzFNmWOnZeX4XhRFWbzRBnNphCo9zxuOB/FiKjkvi8xhFm8a5riW5SBEICDw5RsBQF1qRlFRLbv+ZJke1vVh1B3Bhu69eimfeesn587sxN07yJ198PkPFR54nag9XgCEvK6qOut6Xm4bpURVV5bFuNJKG8/2cdSHBidx3nEsIKQ2AiI57oari7nx7flyYTNq25bgteM4GIEkSYTRGNPZ6WywA9+68erR6azf7VphwGyrrmvLZgeXri6Xy/Gkv95suDAWMlEUEUaLAghO5hfTOhPj7pgsNlrrKPQng51/+tu//Xf+xT87UqZCoLvdaZZJmmdhx0lFBRjZ3uvlm2RTyFdefy3PSkqOEcQGIhsB1/cxhBcX805gSymvXzs4OTlBhjOsw26n0+lkWXbpYN9sbR2eHMZZKqHZ2dr+9re//YOPPmkU6g1DoVVZ1O3+bsG0zHJaSI0hBkDTWte3HQxCiDGt/y9sYX0IQEbw3rUrpydHeZq4tmV7HYJ0nMXf/f73fu3Xfs11/G9961tV2WyNhzdfe4VL8fVvfoNY3ijo7IRdx3GYj89KI5vkxi3yn/+//+Gf/Qt//s/9O7/yw4+/bVmgrjKtVej7ZV5BqD3HKfK4rquX9wZGdDBwh8NhvE5u3rxeNfJ8OpMCjMc9xljTSOZgIZTvu5ZlSSkBMC2AznWE77l1HU8mo7qSq/nK9zo3rr/y3tvv3r5/5/j4iFISbW1laVE1NXWtOJldvTqxLKm1zPJEcJrnarADOOdl2dQ1xxg6rrtZF8ZAAJAxxnFwFhdXruxnWYERzXJeV81gqHq93uziAkK8XFZKzXZ2dqbTKSFgNOocFYlWwACDXggZkNaJ9I/AYEP4XEYfIQgwBlICDABGCOhnGSJqnRgwfppLtrEPI4AgNMZoDbQxBEICkVJaA4MpAQqGDm5hVW0tbyCtKrC9va0Atenm/PycIKy1rorCdV3bdbQWrTi574ePHh0hBJ4a40iOMazrmg6tdFODP3ah1iWKIgQAeJmAyQsDggafzvn+e+bRbwWjn7jI71sKJZVR9z945dobg3e/BvInOs0zuAOa6TTgHerSj//1IHobuMRk0CxvN3s3+fReVsySXpe+8h7IY+vs5GLF+5GSgy93bd5Tj3w/8CY3dLXJzx80xodZrIPepsj1Zo40LJWpmuLiwaMkLfWDqX7wMVGLzO/oYFCfntR04zlNUz3O+m9W1lYVGOU67tmJOlkSiCxqb12+0hkOCsGJZftBhxC73YuriwspZcsVlVL6vi+EEdIoDbXBwFCtX4CN5qsf2WjgsMDg1WhwUFV1kqxKt2emqeMNdy8Nh8ODpjQdcdTZfsUZh8CHJZU8oKbnkd1BEdqPq0Qp0YJymWMTyizHBZioorS3dly/ky02hvOqzDebi7PDh11GDEBFUUit2hlrGIaO4zmOA43K07XvOVWRfvTRjwaDQV3Xy9lstcmrRgHEiBVGnVFZiagzopbXaiURAmyHAKjyLJ3PLk6OzpnnDDUbcfL//K9//T//rX96BxkT2p7tgvOEYVtaAHZo4UEc2qrO6jT1fNso7lj48t42JdAi6NLeVugwhs3PfO3LVy/tMmzm05M3X7tpZP3Vn/jiOo7f+cJ7jeD37j+IiyyMOn4nksp8+vnnAGGF0GLTJFmVpRWljBCstSaEVFVlWVarFaiNav1GyNOeLmpRsm26QSkNPF/IZr1c5FnyxmuvlmUJIdzb26uqZrla94fjG9dvLdabH/zow6AT3rhx4+d//ue/853vAIMc276yvfvX/pP/86/9qT9NAWKOXxbrXj+wB4O/+Xf/wTe/8bu9Xi/waN2UQdBOfo2U8vLly7vb46KQo9Ho+d64d+8hAKDT6fT7/fUqfvTwSVU1AICqqqbT88moq7UWCnieByEUQixWSyGENjLLuJTSsuh4PG6apq6bmzdvvv/++9/85jePj49aqPBwOEzyjHNZVZUywnMD23azfIOJmZ4vMLRHE7LZbIq8ghBBaBbL6SZeMcZavooQKgxdAFBVNcaA7a0drUD73hACvu9PJgEwEGOcppnrOYNh/9nQ/mkoxBgmSfKcTPk8FLYfB8YYE9bCcdqZCcZIyvYDMvIlOQYppTZAaa2UUQooZYxsnzSAMTAAYGgwxgYApTREpPU/4JwrZWybGQNt2+716Gw2K8tyd3dXNPyzz0739vYIIWlatM9IVZXb29tt93mzAYwxKWXY8ds2dLfb9Tzv+Qf3vFf4+6IhNAhoyJUGUL/kBQI6vdHy/uNwf4csn0jdM+XGUnqTz+d3P3Ruvkp2XoVJsT6/6O4OAjcrL3jP4KPlmr3yk4AKPTskKmO97fjxPXyRw+j6/lvv2YXkJ1Psw8HOzvlZTshFvJlz0ZMyUPWqzDee5WsVxxdP6vWjiDqY4Hx1ItJ1ka2CTs+hckkrtDX23H5z+lAk5zVkNuxUwT4O9j0gHSNx3pRxqqMhnewG45HBGFRcJlW1KrAhgLnQDWRZ1kki6wpITm0CCBIEJoITYFEk6vJiuTylmKiXpiiAi9nFR3lRUbKlK95zO0W1gOlhXS3K+Qy5OyuBSs0BDUyTIqAARq5FZJk3RQGE7gfjUbTdsjpdx0+zUmlkMafOCmwAOHxEeeZ33MYIKWXX7/hh8Gh6qvMLzJPV6aN4cV4ksWgkRhYwFpCgqU3FVXcwhMicT49d3y+F4eXcgcX85F66OLW7YXc8MQhiaGS5mT64m00XFNvRePfqK2+52p0ov0PRebb+L/7RP/je0ZQwp2s7TVpXvKwBdFxkSsBjsd3DXR8mm5parBZgHWeW5ViWFXXDqqndIKi1PtgdNUX69puvX79x+cbNS8yBk+2x0Hpva+vk6PD9L39BGq4MdzxbGylkw7VZpkXFtedB14IOA1VVIepYwNKV7nidcpNTQIA2wMCmaRihBGGggGd7luUgAD3PoRQrLW1GPObGSf69j28Lal+5ckPEtakKCtRqdv769evbW+P1en3t2jVI8LvvfNkLxp/dO2LMvbK1fevy7ve+/43Pj+7uXn81nz22CS0UhSAbd4DlMAKJ5watRLOBIMtLhNl8Ps+rtCjBJn0JqKHBpd09i6hHTx5qCDrdXparzRp84a33IJc938WAVhk4PV3E8cZhoeSyblItMcAY4AYavb5YhR6Lomid1H/nv/l7t88PaTeijruK47zMAdIIat92eGnb3jqKQq1ctzNOUqJMub/VbXjEfAJQrgSoM8tokudJJbJcYmGQaHjHs+PV8uLiIl0vPQbmF0UURQCALN/0+/2iaKqq6najsq48n452AMUuAEZpDSHoOjamHEDQOnuA1ngTAqWU0dpoqZWA0NgUI6MVb6TSnmcRQohFMMYAGmMMxKjT6RCMYOtWDACEQAOoDFQGUYQZeqpAQyAQDZeisRn1mI2wqnmDkc2IdbA/wgwdnq2h0hZijuNgRNJM1FItF8D1LYbtrdHO3s7u/bv3GMGdAJydnAJt8qSqmgoBTws5nrw4xgwQT8V4IDTm982UQXsmvNw33JzcbaqSACvbJFplZX4OVH12OOsNtwM2FPWDpEh7/Sv1Jlmclpom61Lsbm8B2OTLWVarGtoXp2c9j+rtic80XJBaZGBk27u3ks1RNNwqNucWCo0sqF1m61JxUZbnJ0/m/ta4f+lnaioB9aG1j317sHXL3drNy2wSbgFsnx/fxoL53W2iFkWmHWIkL1VTiCJGUgQWRUZaBHCpEKZpmioNBpcvCyGQAUo0DS+dwLYsChDqdYf97sT3+vsHNzWJq8qy2eVur//p599xvRd9w/HBT2K/Fy9+JNMTHPje9mhojSttI3ccjHrrsx9GZkMTcHEWL5r57PRkdvhodno6n50n6wUvS1kXBChJXQlgnsWRS02TyqZzywABAABJREFUZfEm3N5JG1PXdZYVm82mLGtgEELIsuxer3d6em4M5FzGcTybnS+WF2HoSymkVgCjx09Obt9+cPXqKzeuv2o57t7B3vb+VQEIoY7UZnV+vjg7jlfTIl4s0zjlHDr2bDq3JEoOZ7DkPT9cZ8k//uf/9HC6oC4rFc+qmjqMMNLOlGzbiuMqCDq+72ttlFJ1zaUyQitIcBRFe3s7jJKqSNM0qaoqz1MCQScKT09PMIFNXbUVyqeffrqzs4MQubi4OD05n18si6LCGLVAwjbva2EfmJIWX02YXfGm7U95nteqGdZ1TSltqtr17KooCUYdzw59z3Nt27EwRA/v3SeU9oYDBWAYhlrrgyuXP/zwwyLNdnZ2XMtmDllu5vuXd4mFvNArqvzKjSvvvf+l23c/L4t6Mt4mFivLJux2GLOXy2W32zUaCinLsmp7T1LKphEIgNGg/3xv/NIvfmVnf+97H3wAQKv22WQZ2D/wF+vFZGeilIIIWBZRCnS7HSFEFEUIoaqqpNAYUdv1/DBgtoUpvXPnDmPMKIMAdCxbKYVQS7bFxycnhKB+fyiEqur0yeOTTVxSphn1FovFapHVNciK3PddjHEQekIIz/NC3+Ncpmkax+so6viB+/Y7r1sWOD4+HY+Hm3WyXq93drbiOM6y3PddY1SnA4SqAACMMWAAc4llWYS8NIF9isB+up72+4x+Vv9CLSRQGpmnHUYtVVPVZVk+RY8SSAh8jklshzDwOQkdtjBG1TRNXlXGmCBw0iSXQp+fXXSjAQDI931ppG3bTSMfPHhgWdR1kdYyjuPLly+3xKTBYGAMaEWDKKW2jduEsa7Ll9/5HwAPgedTlGds5RcvnJ48qLLU1EY3gsA6jqdHjx/Y1HWCLjSFqWjQc4FtRAZsxLOGb914FWMYP7lveGkwMZY/GI2RqHR2tmhgYhFeWzjNzz/5l5L67mjXIYRCCGT96POPXBshqKTU16/dCjuXy/wRob2mBmUz9b0RQuTxnU97zmDD83oxHQxf9bq0mN4j3k0vkKCpTV0xZKhRBCpgVB7HebwuKwEpC0djO+pszk4dx1FaQGMIw+v1Mk7WdV3zRiLEgKFNocPwEjd5wdeus/3uOz97dPb581uRzG+Pw954693z5Gg9vQ1y4EzGHcQvLu5ltert/1QsfeYnfTcjsVSSA6UJAkDrqsiyzbKpckagpg7CVDTFZnZaZ2vOayVNuLNvOw7FBCgNtMEISaGVUpZlR53BYrHK89y2bdu2Wz+/waCnNKDMef2Nd7/wpa8tVlmalQghyEjRaECssNcjjColLEYsSlyHbe3t3nrnzfHBwauvvGHW5fkn91HGbUJXcX6xWhsEhNGAYEBwI4UUmlqsLGvOZb8fFEWFERUKYAwNgKtNfD69SLIUY+y4FqFgazLo9aKtnUlRZLZjPXr0oBuFnNe9XrTZrJIkGQwGEMLVanV+PpvNNgixVrcVPrO/aMsrpZTRgDCKKWvHyo7jWISKujFGUYqD0KME+Z5jIWJhPIx6gzBwGLYoshmdjAY//vGPDw+PTy+mECGpwVtvvxtF0de//vWt3a3NZnXjxg2hmjhbn5wdU4u9/5UvX7553TDyj/7Zb6zXa2oxSHCS5UICA+B8uQSIYEalVGXZLBYLx3HCjq+UjpdpXYFet/N8b9y5+/m3vv2dqNdbxRuEkB+4wxHo9aKz8xNjDGFUa4kxDEOCCZSS53lOGUYIMdvJq5oyO4x6jRAGAgVM0AlHgwECMEsLCKE0uoU41HU9ngzqShZ5Sag+P0uAAa+/NVGSZlnW6/nUhlLKoip6vY7r2pvlqsozCOFXvvK+7/ur1crx7Juv3nQ81orgEmxZlrWYp01TSamrstkaT6Zn5xahrgMIxUoLAECv12lbe60LOwBPTeghxOZFQEEvuoGtKyghFmMWYxZllFKGCQawVcMDL41x2x/nT/UQn38TtNqXVdlwLquqQYhoDZtGMObmWSOUCsPw8PDQtklVl03TOI7TtlY8zzs9PQUA2LaNMYiiqD1HpWj1JXGSvLD3+CPXM4SNAsC0/vNPF0bWZDIpqrgo0/v3H5ZF0+8PDy5f0lQgKVAdpFmT5lOXqSKbb196s1ktzk9PMWFVU4eBR4DMkpRrKMn2cHfHQ0cwPs/XaPuVr4y2r0/vf2txkeflNMuKg72bEuYGgk50VUINQA5rhZtC8aNhMMmmy/nJt3e7w1zpLnXJ6EpVnBNj0fF1F54bFApeYwRaRwYppZHKcZxOfxjt7OZlBbQRVeM4jgEKAQC0bJqmEZzaluM4UvGyTBteCllYXsfxB2VTn8zuKmC2Bm89vxWjwXaTNszpXbr2tWy1fHjnd4o4tW68vTW+ltz5OHn4e/3rW2j8asW2CNKUuWHU7/SHO7sH/eGWhkgIkSSJTUzDC2o7TieKhtuj7W1gVJMnAGHLooyxFo3YNE1ZlkKIbn8wGk7CMEIIaS19343j9WY9VxBRx+0OJ3Wjou6oESbJ8jTeVFlKIRBNi7fqUMdVBkgAl7OLh/ceUkyXx9Pv/ubXJ253d7LVKPno0ZMw6o3HA4SwkYpAhAxixOK8cRzLDwMhtVbg4uLCcQimhNpOI2RR1etNUjU157Vt08uX96nFIAJKqYo3LY6Bc77ZbHZ2dsoyZ4wdHh4+eXJU5LUUABgopcSICiGA0hhAZACGEMOngxHGmAbGdV0MoGNbNsEUQ4qha1tGy9B1LAIj39udDG9c2mFIdUJ3d3vS74SR73340Y/uPnwEMep0o2s3b9z+/M6rr78WBJ2mETdu3OBaz1frTz+/qyCaLlY/+PHHv/EvfvvJ6azXH7agXCGEZUGEkNQmDMOW26CkaWqNCXQsCwPY7Q4GPVjl+fO9sUkTLww2SYYQaVHBgedwXnc6ndYlSohGG+H5ThsLkoRLoQkhSVpCRBbr1cPHj2reZGVRNbXl2ONhn2K42TQIkqrmBLM8zx3fH20NTk6nSZIFXR8CCyDQHWCtcOC5GNG6Mrbler4DoDZG+b7ve06WpNuTCcZIAikVZxbebNauZ7mu++DBKSGsrXkZY2XJKaUEwfF4PBj5UjZKSgDAJpm10fClBQEAELQwadPiZQBABkGDntI54LNZsxZSi6fj45dH0i9367QBGoL2ZyGEiCCAoNbA8XwhTcO1ZTlaAd7oLC03aymUTJLkYi4vXd73bKsqC2OUUirs+Pfv3z88PHQch/OaMUoI6XQ6VdXUtWl10V+Ohn84MWyj4bOQ//tfZdbA39l+eHi7btK9vaudzg7XSACRpEvFvbQ4RYDwSm/SI8caySY9uvOR6/rzjDudfjw/NcUaA1NoandH5clddSFJADtbHbCxHn/0LQXweGvXdoKg25cAN8owN6hqTrv9zfnKsnGj10gPhEwNSgad97CV+JGbW4N6eegMtlFvpJKz0h3XVSykpszWygCINSAlV5A6gDr5xTyMoizLNpuVlLwocqBlVeZ52QR+FwKcZSmAChFVVps4neVZ2esNtnd3wqgznV74L3nmHs3Si9KsTh/wxfGVd748uHRjc/5o8cHv0f5g9KWf8S5dn/7gA2u5DKJxdfB2NNx1O4NKIM08Lxr4YbfT6xNq5cuTXugTyyf+hI33hcZFsjL5slgt67LQSgrRcF63ir5t8XjpyuXhcNgyt7TWg37XsqnQpih5mhcIk9u3b9d1zRgDSocOyeP14eMHRZYDRBQgYX8y3N6PXD9kzvrJ+Tf/yb+8NNyhCkmtkzrbbJLA9rYHo1cOLmOhdc0Dx8YQ1lK98fYbQRCkaaG1ruuGWZRQWNc1xpRadlnzquZFWdd1k6ZpUVdpXswWcy7kYDScLxcAgPPz86IokiT59NNPbduVwkipLQuXZY0RBW2zHEIAACYIQ4QhwAi26taMYoqgVpIh2OuE40F31I8chgaB51m0F4aDKNgeD/YmIwQUQmBr1K/y7K3XXxMNv3P39nq93traOjk5QZA4tvf1b3zjtdffvHv/ocLWD3786XS+OTyZ/e43v//dDz7+4Ud3nHBQ1YUQos1SOTfGGM9zlsul1tp2PGOgMaAsi6LMOOf7e5dsm6VZ/HxvjMfj7e1tiIzr+g3nAJiGV5t4RSnREKzjDMCntkftcJzSdohBMAaUYYhMURRCiDAMAQBVVSkhlVKUAgNR0wgDQVnWgeudT0/CYNAfRJt1Ops2o7FXNunR8elo3Gs9XPOq9Dt+nsdN02gFyjIfDiOt5cXFnGAmuLrz+eeLzQJCxTkvS5BlBWOAWRgAQDB99OChZVmO5fqhaRMji1mdyEGQYAwgxM84eaZNBgEAWgOl9DMAIZRSNlK2ge8ZCPHpFEVr3ZY4lNIWIfOCAQ0BhAhC2NqEQQiBQRoAYFAlJEKgqAv1TFvLtgGl1u3P77z22ng8HAjZGAOk5IRiy7JOTo+C0GuFPILA47xu2z6eRyjDLTD7j4+GBAGgQCuq8/uYeZcOrn387W+Hvj0Y9B/ef+LYYW/UjbO4yLAb5cQ2WsSmAbLxw4F1584Pd7v9siwtz8/LAjclIo4xjNp+fvYxoL3BYL8sFiI5Kzarbtixoyub9Kzb3Ynj8zg5j6I9A4jlyfuf3N27vM2VLZAMh5aouq5rpKkoOwCWhfJ7bPt1oniTHeHhATNoDSsPU0iYlg3GmDLcynTJuvQHUbla5Vm6tbMDpOAlSDcLDMGgPzFAxOsmKwshm14vchxrsVikqYhqr9/bHnRGGV4eHn4PvPP0VlAqlFRBv3+xeQTS1d6V96JonMzz6Wff7k7Giu5ufelX83gKq3VQK+W4jYJ5rSpVUyYVVw6CEKPQtRYX8+5kTwE6PzoPPCt0WFMXZdVQTJRSSnJjTDtc00BrIWazWdPUFxcXlOIsTXzfRwgDaDHbRggtlrMoGoqm0NJRSiGGCCHD4bg/HElIOJcQwrPzWdeyRJ5/41/88xvDA1OU0kgJzCrdSCkjP5AAEcbGQRjXldRmU5a7W93ReBDnM9e1GiEwQ5aFlVK8qbUmdU0JoQaSvMyNieu6VFpQYs3nS89zWj5Alp2vVymcXwAAGOXXBiPLtbKscS1cC96OJtuSyhhjUaalgBAZJWzHAUYRipVsht0IaaWauut1oUEBJZ3Qdy0Wb9aO5TNktoaDa5cvpUXe7UVX9nf7/cHWX/xzf+tv/3/m89mrr1w/OTmK+r0Hjx8xy33jrXf+2W/9K6/bvXPv8XC0u729G/jdTZxv7xzM4lgJSRjyfde2WRBaCEOtlJAqL7MgCObztRBAqtqyunVei0Z6njebrZ4/JrbNTk9PpJQQ6iwrxuNxUZQAgOPTk363Ry2LMIaQ6Ha7TZMLoY0GjuMpYWMC1uul51qua6/W863tHc6nq9Vq1OnlSczsVvwKXUzn0IBe1D2dHzeN1FaJgGd07XbMcpEZDsPOAQBmsYiLohCigzDI85IgajF6+eCSZVnz6awT9eKsTNPMsSwAFSF0PLaLIvM8JkRjWQ5vBFD66pVLzFKeCyACWoNGCs9365NSyaeiW63MTGs43F7+U+cTaFrzE2NAoyUhiBKCMTYIQggxgC9nhS8rx7TRECFkNDQaKqjRs0lvIwQEoFEgxFhpsTUcJ1mFECiqSilw69aNR/cXFiW85G1/uQWBDgaDk5MTizntLycESSl7/Q6EqCzLl63fnjcuX05UX+obQgDgi1J5ev7QZRRKdP/254Ou2+9bhw/vpZvCxa6xOKTh0cP7qsztcHTv+HbIglIABIyLZREvRzv7T84XQpsyWdXGYpY7PfmmWJxPFzWfjFhnQi7uMwsXSTyfzYa9YRT1kNH3P//k+pUdCv2svBf64yTO7z/5UV0awqx1ctEkJ+7oHcLXQibM2mW84qbquX3LYkAKweuqzKEBruNaFvOCoJhN4/Vya2e7ytL54mK+mLVAdoAMIaTf7+9s70th8lT0ulu97k4nArJmVQaT/AzRcti7/PxWWMa3aU67eLD1hdAK54ffT1PRuba1deunYRnO7n3r8Lt/u7p4rDl2t3YxppTZWzu7g9GwE0adTgcojSEiXhdbjmzqKl33PTvo95RSQhoETcMrLkqtpdJcSlHX1WazggTWde16NgB6uVxyzs/Pp4ePHmdp4bl+UaaUQs+ltkPrsgj9QEAH26HlBUmWX8ynihdY1VhV6zLZzGZjOwBZRQHRwGCI6jTdxLHj2LqumyQ5GE8Cz61kbfvs1ms315uF77sQQttmEAHmMG0ksyiBqCxLx/UNQAASoYBQKMmqNK8dL8yKpqgaiGlZ86oBruNZzAYAnJ9PKaUYP0XGtIoArX8FrxtKKcWEIAy0QkATCBiBjCBGse85w27HY8RCuuNa++PRlYPdUa8zHESKV1qKS5f3wzBsyuLalUsEgJ/62leHo55t0fVqadv2ZrPa2d3/pV/5040ynh9lVb1Os7yqtybbw9HEdd1Lly5hjH3fM1piaHhdYQh4XRVphYGByLieDQDAGISh73o2IQRChCiJ+sHzvbFaXNiMjAZdrU1dc4QwY6zb7dq2I7UGzzQORqORFLrIS8tiYRg1NbcYsi0CjULQ9LodDKASoBd1EUKreGOMaR/G1QoEnuM5jhCirqSQ+WYlEQL9keVYIaGGV7mQTVUBDYxSgtoWIeTa1ZvXr1w2QB8fHhWFGI0mWhmjYRCEncgjFAVBIIRwPRsibdt2nte2bbeISKFSCAEmwLZcQmFZcACQMU9B18/GrhrAp6bsz0kdGCOMoTZASi2Vkkopo40x0mhptHi22vTx6W9prSCeZZFPnfOecQH9IAAABIEDoaYUZdkGYZBkaRD5FxcX88VsMOwjBAjFjD1VG8jznHO+2cRVVSGE6rqmhIGn2EH9sr7hH10pv/Q9hF/SCEnWZy6jQOB+1F3Ojz756PdC39oZ7lOaa9B58OjhJDqwCDpZ/BAgDxvGgiHQan3yeHfU++4PfjS+dNMAlM3POuEQmwTi8LC58IceXeHjuz9cI1BnZVYcb40nnjNanN6bnR5d2b0FcdbEj0IYJcuP88Xxa7fexGbO00yVK8vp883jotRYMt1spEZ8zbWSusp5mSKjjRRGCWBUHidVkoimHA+H+XqljbIIbgnzjJAHD+7NZtMkzmzb7Q22pcBlbhyr55LtbhcV5eN4k2QxVvLFrQh3u5x007PCMaaz85rdvVJlnywfzHS1gD1w+b2vjkavFvNpevbJ+t4HzHaU5BCCuqyE5MxmWkmCTVqj4WQPG+1jTWVRT08RphpbnNdZlhRZzkUjpWyaKs/T1Wp1eHiYpnGWZbdu3dra2rp27foXv/jFt99+OwyjNE2Xy3mSroUspGgcx1FcIbcDLM8gpjQIXI9CPT16sD4/wg4FABChh0GUpWlZ5gRD1HDq2l7gjwbDrh+Oel2phARm58q+5zutIZHWUggxGAzyIiMES97YjiWlNAbGaYkxhYjxRhuAmG3nRcVs2wBUlNz1wm4/yvMCY1LXDYQwDMN27znPVBgowkKIqqpb9jEmkFJaFhkmyLUdx7Hi9TLy/Z94/0u7k3EU+nWebk1G4+Hgnbff3N/d8QNPKdXr9a5cuSSlJAj3og6B4E/9qV/shMHp6THFcHt7O0mSPM8//OjHeVkdnRwLJeMkufP57W9883eLLK2K3LbZ1njYWphTDOu6cW3W6bgAAMYI57ysKssGjJHlclE35Xg8DoJOHL9QzW/lqYUQVdm4jtfKE1RVtb+/rxXQBraMw5YGV5ZiZ2cHIzqbzYPQzbIkyxKtVVVVx8fHUeQQQipRCaUBwm0fmTHQ7/frssrzQind8Gp6nkwmPQNKKXCvFy6WMwhht4vn86zmDSFka7w9HI4Pjx4DpTebjW0TCGEQdJrGaAMJQXVd9ftdSmmeZ0qJssw9z7l69erFxXRxceH5tuMwJYHgUsq6xXKTpzYYfzB4oKd+3AAiRCm1bRtTSG2KKGmDnVBSKNkmbk9zQwPMU+KKklprrYXUz/qPoK2XgQFpkVdVBQCQStgOS7M4CL0rV3cRQlmW37lzXwtp23YUWW05zDnHGBdFcfPmzSB0LcuilCZJ0ul0mqZplZBaodw/ZiENIIBAGQCggeBFv9QLIstzuamms7nWzq2b74/GB4v1RcblyeM7vcDGvjmanQWky4SitrVZPG5k1d/eu//o0GE438zuP77bu7QnRfXN73w3K9Mr4+uy4LcffTDe3QaKYMrqigST7eniZFXUo5196llNTbKKF0I1ojPavRav1wLQuExHW1eAKuo0TRenUhTL9cao2vcUXx/lmWAUYWS7wbZUleK1b/nY5NQbYyfy+9tCqrOzs81m8eTJA6H5pf2rq029XK7OHt3XWnYuXW5QbcFpnp1fLDZu2Nvb6lIxT5YvVJtEI3a2b4CwnxINnCIcRF7vHcp0U0lGe0ra7ujS/ts/tfP218L9W6vZuRAijWOlpRAiSxNM6CbOqSnKYoU9BsJAOK6xWN2UNjah3wmCTqfba7jIinwVbzabjRRNkmyOjo6yJH/y5MiynLIScVxZfh8CWaZp5Af9qJusk9VqlSRJrRooVqrIHeR6Vii5WK6XwujJ7r7rhvlsWcAqzdYWAICxdLXRFhmFfppszuJlScFRvJgnxc6oE0A1X18QQjzmUmhBYzzPGfYGkmtiO+s4wYQAABDQEMKKN8iiTcO11q5jGaUptggiZZrYxLiu0zS149hKySSJEQIAKAg1gJIRSCjWgBQKVhIBBH3X0thQx26kaARHEA76kdG1Rcz2ePTFd9+6dm2XV8nOeNT1Q8+yOjZD2kw6w4C5SOpe1PV8ZzE9n0TRw5PjH96+/zs/uP1b373z//j7v/mdzx5Ok/Tx9PDjeyeQuKPu4GD/iu1FyI+WSWEkOJtNi7K2HM8NO15oWa4VBCGv9I++f2QxJ4oYs/FinkXhlu/7jw5/vDvp2y+RFJSEQRBsYp5X+f6lg7OzZdQZaK0Fr3hTasFHw20hzeMHR0bStgJ9/OQcYIChrmvScJIkuSz1K9euAFMBgwOiLEAdxymaZL486fnOZDiZr459m0y294OB44e9IFBdO2AUENtbrBtslVwpUdE0qff39wyg3/7W92upGqBTwYNu7+JsrkrhUzI/n8tK7Y63GAU726MqNy71HWxFnvWzP/fFBw8PIQwnw+3A40R7vR4SEgOgAZBSVcYoAIB+2nnTAAAEIEKAEuTbVsd1HARNXXmWxRCibaMRIAIZRRaCbbNYKfW0DFVGa2AgQUIbDYFGQGMogJYKSAMQwhLARkoEoqgDEdTrVdIfjKbLNa8VgbDT9aHFg2CYZdC2OW8qypDjMi4qy7HCqFNL/uTkpGyklLLjB/2oWxYFr17movw+vlnbEkUGGEQpAABi3Abjdu3t7eVJWlXV1s721vY2c+ysyDUwx8fHSZJ5njefzy3LKorC9/2mqbIs4xWv63o+X9qUrVarXq/HGPvdf/1PLu3enAwOTs/vHZ3cefv1L89nGXPE4mK+f7D7+PYnaRrvbG03vCqL7OT4UEqpdMMsgiFRSvC67EX9Ik9Xs/ntz+9AaHhd9aIOISwvGmS74TgqKiih3sSnWalxJyrERhrGKAa+f/L44Xq5opTWZYkQ+uyz2w/vfvfWzfGtN1/H3e2mEdnRg5AGZPie7w58myw38xiF/itf8w+uvTj/+weax72AOQ2SMWu4Q8LI6XgSqrKuhOBKyiovqlVap7kTRMzxbT8kzMHEopbnhOFgMjEGa4WUhFBDSi2LOUDBsqjzPG+HzlJKKVQQdKKoF4S9g4PL7733HoCw0+kQwoQQ0+m0KDLfcTuhbxHctt67Ub+sm9lsfj5bEos1oi7rsmpqCNH2zsFiGd/59DM0juKLNSBYMqwKXnC+2WxOFqt5mllBsM7zj+8+Gk06jLE2rzEGSqlbhJ1SyrIs13WllFIKQshms7Esq9Vkb/VCsixr+Twt66DF07XncJtQUEpd12m5AUABKaXreAAAJUyappblEIQJRK5le7bT1KWWwndc17Ilr6ER56dHt25c6fejhlc333z10uV9vxNKDSDFveGA2ZbtOlKpIOpwKX/44UcnZ+effvrZjz78sHULmk6nFxcLwqhl2YPxhDGmgCnLUkqNEOJCU2ppDVaLJcUEQoAQzEvOGGjnHo5lt7WbUmo2nRNCWjfkdmVZ0hoK8xogaGbTZVVV/X5fKpPnHGMMoXFdcHGxYIxBCBACnU7AOTAQCCGEkpiQTjeyHQdCUPPG88NON+SNVApIAaTiWmtCGKWW79t5phbLNQC6KrnrUUqtyXhnepY4llPVQnB9fn56fHKvqhPX9Y+Ojsuy7vUGGOPpdC6E9DxPK+B3wouLiyiKIAKu6wrRWBb91rc+vHJtqGGDsEMZBqA4uNLtdF5gif7gMq18/1N9jRZA89Qi6qnuhsIYE4ogMhA9m9JCgNBTPN8zot6z5uOz/l37KsOo1TZ0PbsfdXu9XlmWdVnWFe/1BsPBeGdnR0ruB56GT8cv8/kcE3Z+fj6bzousyrOSUio5b6E/5o/SrfkDf0UIIi0EIcBIaVkvRH1lw7M8bTnwjRSbJC6b+ocffRzH6dbWVlU1TcPrujbGZFWepLHv+ACAhw8fdrtdYwyGaNQffOPrX7957a0rV7a/972vP7x3enn/lfPZk6DDZrN0f3/37OTYKDno9ZqqcG3ryaOHrm35foiwiKJoNltwnhrNmR3U+ebB46NO1JtMtnzP1VKs12thYMnhxezEcqK8zJiDeq+9W26SSmWYedDI449/LOqqF0WMUim074fXrl0z1Pnog+/d/uSjK2+9u3P5la3hwGbEsMC5eXN448uT4U29nprVSURf7PjkYtHUCECLukibxLKwrgHrhK7vEIIIhhgjh1mMUhtbUhtEKOsN3KhrMBFSNcIwz+/0R47jMWZjx0OWCzSUUkODWraQbdvdbp8xu65E1Bvu7hw4tqcA3N7e9rxASum67quvvjqbzbJ0I+pKG3X0+NF3vvOdx48fE0K6/YGSwLbtos6KKu2P+t3+ME5KiO333nr3yk+8p5RitsVtzAAaj7Zs240NaAj9+MH9H91/5Pm0RQVDCMuykkopYFp8CeeyNW9rmXNZGmMM26qEVzXD6PkEXGvdtiOklO3+a0uY1mSmZW4ppTwvAAAxQltXwrquMcaci36vVxY5I3jU7QOtKIJbo74SvNvpdELXKEkZdl0HAOP5/nhnm7gudezhaGS5juUwiJEX+Ot44/qd0XiLWg6ibLS1NV8uP/7s85KL2eyirusoioQySgNtIKEWQKTXnezuXOZcVlWNMaIMYwIJBYyhIk8nk8nW1tZgMDg6OqaW0+0PBoPByzJ5YRjmRez5VhiANI57kftM2R/0BqEfdDjnGKOdnXFVFQCA5XLZNM14HGRZWZRVkVdCqxaeUnGQJAnCpGxKaYxlESmAH7qD8ahRcrUspC6a0gpCMBxFeSa4yFsRhPkM1LXs9XEc54zZzFYAqjwrNutcCo0xHg6HnAOlwPXr123bXi6XeZ7neba7OyAEJln6Z/7Mrx4dz7hueqPu+dmFlApikJcX8/n83xgNnwnbaK2l1JxzoTXAGCHcXr5SCiGIEHwGstbmmUoYhBgAoABo62NjgDagraCfR0lKMFQAAB76gW3bRZ6dHk8917IsFvUGaZo1DX9y+CjPY9umnufFcc4sK4oiIWSrm7c1mXDOiyIXQiilhFB/ZKX8cohE2mjwbL7z8gQ6SePRaGSMCcPw0ZPHmNLbdz8/X1xcunTJsqw8z6MoCsJOUZZlWeZVXtc8jtO65pZlAQMJIQ/u3b+8fxA6nXt3PiVQf+X9r03PF0o1XFaB303SuG4qSinndbfb+fz2p5vVynGc6cXD/uD640d362baDXZt5n34/X9aF2Dv4NKr734h2WyMEo8fP3b9ABBLQjqebAPQEAwtapWP7iwWF1Azxmi8WaTJajjoZUkynU6FEFVVKa27w9dvXH07YtbDD3/QQJQxf1klqDm2c6JBE1zb8669TTtRmT18cW6IlTMex2meNGklFvH0ExM/Obn7eZOXjBBkdJVnZV1IpRCjtm3naZJfTNPlSguOEKryLF2ttRLYYlrrfLkoFnMpuVbNan1xfn6eJMn0/OLTz+7ESfbw0dH0fCEUxJQu5qvDw+PNZlNV1dHR0b/+3d8+ODi4evmg1+1sVuv5fL6zs3P9+nUvCG3b3prsPT58EsfL3jBKyyIp6sFo++Yb70CNscWga80vpsx1gqjjAgwYm+XZjx/cX5aZBoC6rDvsOp7HOZdCV1XNmI0pk8bUTcOlRAh5vtPipY3Wtm1XVcV5TSltzZuMMa14XNuMJ4S0PBPwkhhUGzfbsYkxphUWVUJKoRAkSsndrW1eVr5tRb5HgL525fLe9qgsy6tXr4ZhaFHmOI6WyvIC1+uMdrYs38WOFUZBI0XFxSbJpotlllff++BHp7MLYllpXk7na8KsvKgnkwkmTCoTpxm1bGa7tu1CSJtaN7VybLcV7AIAzGYzx6GOY83nF2WRScUtytbrihAqfx/yDgAAMIGUkixLO763Wa6qqjw7OeWcc84Hg8FitVxvlr7vt+3Rg4PxapW14HMuQctaa51p20ePK5lkVc3rVvCqrgG18SaOj07XUeTnxeb8JHc8IGSVpVVZlZRYgW8BDaQUP/GVd3vdYZ4qQgjCVAjluk6e5xezxWKxcBzw3ntvnZ2duEHQnluYIkxgWqY7O5OyKuJkwbnw3DDsBdRG0gBgSAuH+mPWM6iN5kI/FVkQEmoAlAbKEIgsigkCjCD5TD0bAKQh0M/SQ/ASt6V1XjYaKGCw0QAAAqRSUgiZpiKPzfZkTCmVUi8WKwghpbjhKggCAxBlKMtKx3EZtW3bpdRK01Qr5bo2oahVh3tZw+Y5/vHly3mmdfvcue/ZCjw/T7Pd3d1PPvnk4ODg4cOHjx49unLlim0zhJAGIMuKDz/8kBCijYEYFUWx2WzCMNQAQoKNMa7rBp6/XB/NZ8UX3/uZ6cVD21Xj4RVeU4jLi4sLhFCWp1EUfe9739tsNl/60heyZPPKzbfvf/7dsmgu7b+hTHJ28uTawTuuY3zfL9drpdRqtQqCwBjj+/5gZyeZJen6VJY1Ac78/OGkH1HgbdZTIcT+/n5d13XdXL1y/erV65cvX+52+1uD0FjheO/6tddfqeOFP9iyo1GVruPND00DZRVgQDCybe9FpZyV2ez4407PslkUuNuC8yR+0nVCVTUXx0fz87OqLgw0mzI5WpyVWaxEzQi0GEJAaV4D2VBoyqY0ShCP+VFACeA8x1CPhxFjjBLL930p5dnZNMsyodTR0fHJ2VQDsFzHCFPP8zzP+5mf+RmEwHK5PDk5CcPwJ3/yJ1979VVCSF0Wx8fHs/PzIssPrhzEaXJ2Nt3e2jXG6KaJs7RcbILdwXw5b6qshKKcr7f29znSxoK1Aq+/faXbj4RoMCWW4xmEkyQjmEKAW1xFXXOjYZshtjFO8JpS3Noc27bdNE37tBdFIaVsFQrafKAFS7bY8hbP3DRNO9pzbRtjICQoi8KyLKA0wsC2aJps9ne2f+5nfopANRx0KbE362xrtDXs9ZuqQYgwyxlNJsOtUZwkp2fHjuet1+tNHF8sV5eu3ai4dsNubzhWBpZcbNKsErpo5GqTGAOjXr/T70PMFsvNahMTTKtGdHpdaAwjwHOsIs0cL/CCyADFLNI0TZHlp6enGAElzWK1Mk/d3Z4u23Idx2nlAi9d3g88tygANGA+n8/nc6O0bblpmt67N1uv15xLx8HGmCzLXIfVNWfMRgh1wm5Zlq1n7XKVOh7jXAIAjMZh5Dw+etzt2teuXavrerUwno8bXkbd0HEIIaQ3cC9fmviBdXj0IM/Ke5/PgPYGg3EQBAAAy7LKsqyqqtvr+IEbhF4rwY0IbJO1TqeTpul3v/td5uqmAYuLfDSOun03cNh6yRmz//ho2C4NgQEtnQoWjah4owBAFBOLIUIgxgCh1pSpnZ9orZ/XqS/T/AwAuuX+aQi0Ygi4Ho7jmDc6DKnv2a7rIoROT0+FMoyxrd1tZgGEkOBaCE0IXq/iNM2bRmBEGLX0M6eqPM+LunpZleYPVMpPoyElrXgZAMZY1oujII7XnU5w9OTxeDz+7JNPp9PpztbuzmRnPOk/OXwQx/Hn9+5dvX6zLKuzszMpNJeqNxi6YegFvtRqtVlTSuM4Jrb39hfenK9nWdkQYh8dPxK8VBJyIeIk2T+49Nlnn0kp33vvvaIooqh3//5jA/jBweU8a86nx1dvXLWdTpKnvuNWVUUIa7jevXpd1A1U8uze54wghpSF0fzkFOkmS2JeNlWZ2a5T1Xy9SWzHc12vKKqiqLQSy6MPOpNoxuXsyeNBNyBV0xlf626/EQVv8GKazn9kh57w+nr4olLeu/nljrdVzmNUZkjK4c6t7WtfLvLKKO1a9qDf7/gexpAQ3O/3HEYRhE1ZKSkIIYxiTFDTVI3gcRaXcWx4QzECSpZVmqQbIVS82SRJMhiMdnZ23v3Ce5PJBGIEIcbUeu+99wghg8FgPB6XZVmVJULEcRzOeRLHR0dPfvfrv/Pxxz8mCGqpJpNRVeS//uu/vndwqWl401TT88eL5TJfbb74c1+9f/YIALMqExK48yx2PVI35gvv3ej2fCFr23OkBhATBEmWFnVdI4QgxAhhIYSBQAvpOVbbElosFr7nNU3ThrZWVrM9fjnnVVW1Lci2o/S8nsIYe55HMbEsSypBCKAYIAiqqqyKzCDYNM3lywdAq81ycevm1StXDjab1WR7h3Pe9iUdxzZKNHVtjJnPzp8cPrp75/bp6ekmTrf39o9Ozr/3wUdJVnIh/TBCzErzYr5aQ0S1QbbtMsc+m84+v3v/9GzKlTYGN1zbtt3v91erlePQuq4d28uzajHfQAh83+31ImRAnhspgQYQAvzca61dZVnnWeV5frfbBQYBhBgDrutcu3o5Xued0A/DsK5BFGFj4GazodQCADmOFwZBWRpoQCvIyjl3HAK1aWoFgZRcdTs9XoGO71BKX3/jrTSN5xdrYEB/EFFKOx3fc6M02zx+/Gh7t7+1NTk/jy0bY0Kn0wKhZ7w3zhEGhOA8T+/fv7vZrGezVfvuHz06Msb4Xsi5yIu6E7lS6uOj8+n0tNuxPc/JEr1Zv0BW/huXQS1eWgPUdj/a1iGlDAAohBZCcS7bUKgAUMBobYCBbSj8w6Nq/Xz6rIHtYKFk1UiIMJdQSm57bD4vHMdrhHI923YJl6JplONZCCHP86bTLIn5ZDLJsgwByHltM+p5HsYY4j9gkv6HoqGQCkCoFIAENc2LKUorkjMcDg8fP+l1ovFg7Lnu9mTrzp3bnufaDptMJgCAvKwrzhGlu7u7RyfHSZ4pYOarZafX5VJoraNoMp0/eXL8+WCwm6a8rFcGlmfHi+Vms3twcP/RQ2KxW6++biDOiipOU8fmHesmZeBk+sNB9/Wi0Kv89tb2K8eHjzBEZVWHneji5NS2bc1rh2ghy7PzuetaSTrD2NJaYks6bmAgVQBu7RxEvREXyvM827YZY8yPTh7d3xkNXL93/87dZH52cfsjoIAej+zupS7xwdltcfwxqV7crDotHGfkOF2uq+n8IVAcaGt882a4s4MYLYo8Xa+qJFFVxYwR2hBqSW2qullv4sUmBoi6Xug6vud1BFcXF4u6bvxODxp07/O7n3/+edtla4ko0+n09ue3g8Df3duLoujJ0VGSJMaYvb2d6fTs4cP7n9+7d3xyliTJcrm8/elnx08OPde2GZW8Blr+w3/4D3/hF36p1x2WZd3wYpPMNDAcyO6w97U/90v/8lu/LRR/zNd/++/+/TrlP/HepUt7o81i6rnEGGO7TlZVCGEuxWoTE/LUo66V0iKE1HUdhcFms2qFCDFCdVVorYMgQAi1kbF19X6m74QhhC1hXgjRshQcx8EYYggwQZhAywaEoCRJXNfFGB89fvLWW2+89+473/3utzGB/UEUZ3GnG2ZVWtUpIzovNufTo+9+75vf/tY379657fv+ZDRYLBb/+ne//uv/9T94fHiyipM4r45PzqYX8yCMpDbLOFGANE1j2W5ZV0XdlE2tDRRSC6E8z8nztNMJo6iDMZ5Mto6PeZ5Jz3c451WRGWM6PvZ91jRN1fDWe+j53litNozZwKDjs/MHjx81TeP7NE1Tm5IoZFuj0Xy+DEPbGEiphRDhnOdZsV7lECCLAqU0MqjIssD1On6AEAIANVwhSIxSVa7yIrEoFY3cxKvNWhgN6rrknKf5nGA3y5LQ7UbdoCq5Y+NO13Yc5/ws9zpsuUwJIYtlMxj0XM+Oos67772VFzljsDUqyXMQx/FyuXr73S9dzFYEuoN+tyg3yTrphH7UhX/iT14f9Nx/azBs1WwggMYYqTVCoCXiKQ3yokqzoqx43ag2bEL4bGbytEoGrX4MgG14bL98alOlASAUQIjiTd40TZbWdc193/UCyBhr1Wds2yaYLubrXq/X6Uaz2dyxwWAQHh2dlHkNzNOmtpSSS5G/RKl8Drt+ORw/VXsFBhgpX+YpD4fDLMtms9ne3h4m9OTs4p0331ovVwBozvnh4dF4tPXo0RMI4Su3Xsvy5Bu/980br9waDoeziwulNca4LCvPcZ+c3NWK2s4wyWabzWYyOljOF2W9ufXGW9PZLAiC1XJjjGl77Y7jiNrrb1XnZ1ngXMvrJ3nBd7ZuHJ3fCZmfxOtuf1Rx0Uhl+f7hvTuyLqQFb736xZOjO42Ih94rlSgxLKuaAWgoZY0QxhiGsDSgKUujuTt8d4uUyeG9YPf6jfe+cufH3530gycPvt/vbONOh3S3RN34PZKdP3pxL8xKWT4e9JzMVojd/fjbSGds+91RfwApY8QoIbUBvChzrbQ7sByGGQsCn0BUV5nRoqyKMIoQRIw5nuXlyWpx8biuq63J3haxsyzzPK/mTZInnu30++O8zOq61krUdQ0IWm82x8eH0+m0qqpLV1+VysR5tVqvAWaT8XDY61dF1jT6Yrba29t7+6tfnT+5wBinaQyN7Ax6xkKff/YJHHg333glXq/Pgfor/96v5czE8Xo6Ows8Ky0bADS1LAAxghpCHMfxeGuktAEYtc65jmO1TeiWJthq9zPmvOAXa900jed5DJPnXLd2ytx2lNqYiH2PYOi4bsm51qYV2qvT9fHx4VtvvPH47p2mqv/9/9G//+H3f++zzz6bjAe1QEDXEIgiCglhi1WySuKiyleL9f7+/uVLB/c/v/fRRx8Jg6XQk+EoOV4I3QBMCIbKAGWAQywAUF1Xq9VqtYzDbs/12rgDoiiK0xNEvM0mTeLY9/0PPvgo6oD/H2H/FWtJnuYHYn8bPuJ4d71JU5WVWV3V1d3VZnpmOJwe2iG5dBKll4UASqAeFoIESJAgLfZFL3pZYYEFKImUWUlc7VI7IIdczpI7wx3Xtrp8+pvX3+PPiRPe/Z0eIiszezik4qny1r2Z58Y58f2/7/s503IJIQjJKIp63ZG/jvu9fpRmVSX8zfrNhyrP2HK57g17CqB2t31xOh8MGrZhhmG4tTVMonB7ezfLsodfXCIUUKJ94xvf+MM//iNNg4G/0TSaJSnU6enJi3fffQ8hxCuWpbnRBASi+Xxl23ZZZBq1V6tVq9XQximlWAjmOu0gWOiaU7EKAoMx5q/CigkFqhoCCONZq2XqOt3ddR3H2Ww2FStOTk4ODraqEkZRpGnYckCj0VISpWnOmDjYe3u2OPVcnTMhhPjBb7w/3HI++bn86OM3HoR/51V/EiABJZdMMgCY+ErbhhFGQEr4ugapr37kKwd++cbfU/9VgEAMMczLMoj4cMclVBRVOex0h8P+arFGmGuGKsuy0+luNqv+sKLE8INcw6DRaMyns263ZZqmZyKhqrTIlVLoF12c/8SlFECqngAUAJBC8PrQG08nZVluj3ZGg2G0CXqdhlRVEC8Ns/ni9ErT3NOzK4jIcGtUsuLJ06fdbn9rsLXxw/H1pN8dZGlRVbxkPI0y26QUq+urSbPRWfvzpT978O77QihDM7M4u318GIcbyUvXs26mV7qF54uIUkwoWy/C7cGIVxtNEagBiCWETFZFy7UnFxcQEbvZe+vt+8vp+fhqdvfuBwCgRmNgGFu20wAIKiV4kfA8TKNlkYXNdkO3zCo4XYa+s31QFFkert+6e18z2/32yOgMi3yjotBBRBSR2x29uhVFrEQC56cTpNlaZ3Tru39+/zv/niWgfzMtk1hykWZ5yYXltfJKrf2Vv17kaZCF6yzZiCoVZWZSHMzGRbDg0bJMlhTLreFga2vb9VqOYwAAXrw4A4JoyD48vre7f6s73Oq0PYyh4zh5yV68uHjy5FwA/cF73/GTaLacLZdzqVSYsTsPPugOt/OqdByy3ix/6Zd/c3F5hoBJSRGHvNHaoVCiNJouz54++ewv/A/+5l/7n/3dv/N3/4d/8d//S4OunZVRRbCflU6jr2G9jGOLQikF1Y04Y2nCNEhVUZmaCSUGEhqaHgUbyRmGsirSYb9TFHkcRqysaqCgLMs0TWvXL13X63681Wq1223TNB3HsW2blVUtRKGUmqbGOUAYmJaexGwxXf3GD35wc335H/2H/+HBwdHu/vF8FefJ0qBAlSwJotnNzXx6maeb2XS85Vi//P77eRD969//Q7PRiLK06TkyiqWujRfrKE5Xi1WRFt1Gp0jScBPkWUkxNS09T2IpGACg4iyKE0OzMXQwdQrOe8PtOAHbO73jO+ZkvMbI1AyvYJwpnqSBqdGG7fh+Zhqvtyjbo9Em4EkB9w9GhqErDlzb1igsymS5nCOd9geD8eSyYbqRX33/O382CJIsMaGhIOEH+1tSoO5gT2mOn+VpUUguLNcWyhBalZdYaelymXuuZlEHudlqQZotLAWnmiorcHZ2tru9tYlXm2DSHzRZAdI07A1pu+ssZqrMi72tY4KY7684lwqJ0/PV9dhvdRqrhd9yml3XjVa+rZHry+eYgpMXT9Is1m1ydVmdn2aPn5/MV3GUMQzQoN8FL7VqAABCyC8qOhBUAGCKNJ1AoATHCFIhlBQAYVwbgHEpKqm4UEL+giWYUgoCAKGCAAKlAAQKAAkB0ShEmOpYd8us5JhYXlvaXoaUARmqihJjZZj29fUSAINzTk2AEJpNJ80GphpK4kDTses5mKCqlJTqjg0MHUv1mm/4ai1eq+Phq3R5+BX/pz4w66vf7x8cHzuutVwuvabnOE4Q+LpGnj17pmna9fV1s9lst9uWZX388aetVqv2E59MJqPtrSRLLy8ve71eGIa1/CDPc8/zGGNFUdy5c6f2sBVCKKQ2m00URWGSnJ9feG6jNuep29KdnZ0aC240GnV2j66ZGOMwDAnBrus6jjW+uL66unrw4IHv+6ZphmG4WMwZY5RSxgSEtWcUBQBEUYQxrb3qbm5uKKUIkSCKhUR+GJX5stM/Ctaz05OPWKrAG7eieWu/LJY9mmye/rQanxXTVTqPveFg5+vvNUbDikKj08oQmIa+1nJ3RludTsfQzdrsF1Od6oaA2Go0sKYDUiMVMIzjrMiJrgVRzLg8PDwihOzu7l6enV5cnG38te/7nudBCPv9/s7Ozq/92T/z/e9/P47D+XypFPT9YL3eSCl3d3c3m41t29dX462tbYTQarVqNN00Tdvtlq7raZw8ffp0Oln8pb/612er9XgyzbLk6uI8TrM0z8uy7HT79apZ04z6TaGU1rEXdSZGHWZkmqZt281ms9FwMcZ5nnPOTdPM87weHjudTp1MvdlsVqtVHMd5nud5XofhvQrG1Qz9FQUHAIAB4GXVarUQAv5m/fjpo//J3/sfZ3n0n/6n/0mWRaNBq9FoVCXXTePmZhJEccXleLpcLNdvvfuun2R/+KMfjScLoRAX0HC8Vn+YxFmtz69rbhzHlOqmrtdJzXEcZ1lWFEVRFIJxiECN/2RZ1mg0qqpiDNTguGmSvEhbrUaex45jSMUwUc2mk+fpm9Frpmk2Gmbgr/KcQQi7A5uxcuWvPc/r94dA4aurcVmCMInvv7s3GLZ+9tHP8zynGjQMWJsLRFFECDk9PfXcJkLIsowyK0QlWCUIArePj7iohGC80JXiVOdZBqRElkUxhr1eDyGUJtx1GgoAVmHBARdFFOZZptIiHwx7VVXVXgn1unmxWHS6rlQcE3j37m234RCK9vb6QggloZSyP2jGWRgEvm0745upTusAA4ARRBgDIOu37w3Hw5fS4rrrU0DUbmAKvIab3hS5/YmL4K8MwVAdw/fSjIpqWKIKAmRblGqQMeY69nR6DZEKN8Hx8bFOtek0cyw7DEPHRAgq2zarSnS7bSlr9zA5nY41jWgaUUoRQlqt5r/tZbzkG8KX8YAQAPAmH6c17KdJ+Oz58+Gob5omwhBC6Pt+URSXl5f7B7utVsuyjadPnx4cHIxG22VZBlFUVKXjeJPJ7Nad25fX1/VjACGM47hGryilaZp2u10h2Gw+6fV615Nxf7iFINGo4TjeZrPxfR8A0O12kyTZbDaMsc1m02y2basRx3GaplLKRsOFUE1n4zwvO+2erpumYSmlCEFUw/P5pCrKbrcrpTRNu6gqQjSNGhDg5XKplHJd1w8iTLVWp4s0rdkbrBfLcDazLWPQ7y2mE5W/NoaM12v34C3pbTf33nF7e0673XJMEWSnP/r56aePNtfL1eWUFqqrN6Kbdf0oIoIppZhShDWucJyWAuAgSZd+GKYp4zIr8ul8fnFxcTOetzvdTrf/ne/9kpS83++2Gl4UrPxg4/t+kiRJkrRajTzPJ5PxeHxT20ZxzrMs293dnU6nGz+YTRfNdstttBgrN8twOr7iXGKMlYJFkiiufvDnftNyOpbX1m1LCPH+g3chxlXJXa9ZlkwKoBmWBEA3DQWEqWsIIcZKx7U0TUMAKqUqVgAAXNcdDoedTqvOyhBC1NK05XKZ57lt2+12u9Fo1Ezs2samrj5RFMVxjDEGCAolK87azQYG0LI0CCFBuNF0l8sky7Lf+Z3f+et//a/3B+0//uEfnLx4ulqtptPplw8fa6a18DdXk3kUZ9/48JfOJrN/9q/+5cPHz5Mkda2GZtit3jCs2GazcRyn4hwiUpaMc57nuZSy225rGoUK1EazdW4GpbTf6ZuauZgutoejPMk1DA529/yl32q7L12FJNN12um0lJJew6mqKoyjV5+N2WzmNZwsq8pCKAV297b39rcvLwONWgpqz56Onz97gQlodhyn4XzyxUdYgwIIIVTNyByO+rqBlVJSAMMwqooDWTq2YRk2kNCx9GaziYEiBOWxw6Ucbjm/8RvfX/uhpiNMwLNnJ2GYprG8uLjqdBzH6kZR0u01krhwXRIEvoIwSZLpYu77RVEUuq4naVRVhR/6lmUkWbzZrDGGiCIFUJIUOzs77Y4LIOecZ2lBqVayvKoqBBEASPKaovynQxAvKyZ83UbU6+ZX/KE/9eJfqVuAfGkdhhCoP+HtLjRNe7FiVAMAYimRaWlhsB70Wq2GG4cbDIFGqKlbUKE8Kz3PUwpApKhOpKw2m7WmES4qQkhtf6vEv8GQ+sULQQhEWUmhwFe5E/X18LNPHz58aLtWWVVhHOiWuV6vri8u0jR95513hBBUw+PxGGOs6+ZsNkOElGXZ7fb9zWYwHE4mM845lzLJs7TIbc+9Gt90+j3dMvujYVrkDx8+9BqNhw8f9rqDJEnOzy97g+FisaqqqtFouK67WCwsy6rl3GEYCg4hxIyJ2v4zL9Ikjaqqwpge3L47m82qqgoCvyxLhMDu3nYQBJObcaPdms5mum6UTJRcMKn2D45M07Qsx/M8CVSU5W6r6w62dvbfMhzFOEgi2Rs5q/Xs1a1Inn8eP/sSFnEWryL/5urpT5L1c6PT6u3vNXa2rF7L7DSVqRcUaE336uoq2IQAAKlgHKVxkhmWNTg8tFyvt7UzOjjsDEetTrc3GG5tbfUG/a+//0Gn01MIPz99kZVFr9erqqLf7dx75wGXwvE8TdPGsymE6vLq3HbMRqORpnmn09E0bW/vACHi+77rusPhVpHzLEs2m1AploQ5JnC9XhdpdufWW93u1ny5KYUsiuL28a3ri8v5fNHqdoqiJJphe15WlBKoMAwJRAAA27GKosAQeY6LCaxYqes6REpIViOGhCCEakNMBWFt0ikYq5SSpmm02y3TNNvtdq/Xq/k0mqZRSiGEiGiE6qZupGlKCAFKSi4kV47jOA5+cTItSvHk6Ys7d9955537URSdnV9FaZZX7PTyOkxKxmGUsR//5ON/8s/+2c14PBqN3nn7nmmaaZru7R+eXV7GaWJYlkaNKEqUUhDiqqoYKznngjEpZe0ACAEQQrCyKopiNpu7ToNzeXp64zh6muaEUKUgxpgxgZFeiyCSJKVEr22c33zgFecQAITwycklwuqnP/+iPzJbncH11RgCkBaqKkG32zy/uPLDha6ZUgHLsgedgaERBbhh6JPJ3HUbcZwTQmxLazWavOSSKcd05vOpQhhh/YtPr3p9ajlq44cY0TQvKaWCA90Aecal5Arw5XKt67oCheu6eckHoy1NM9Kisi339u3dOCpYyXd39iFGQRDathkEPue80W5xLhkTUqEkTSHiw62mH1ZJXjUaDdsmUvJXSQCvhsrXBRHCVw43CKHaxwjj12Xx31Y63/y/+I1AFoQQV4pLqdmqYmI0bHNZ1skrQlZSctuxwmATRVG/q/OqanoNIFWtBzdNAoDSDWq5ZpIWtmNuooAxRghVEtYBL/9/quGr3+rNaphlmdtsYIxPz896vd5ms+GM6bp+9+7dqqqGw+Fms5ZS9nq99XrdbLYvLy83YeB6nmU519djqVRRlUVRdLvdeo/79a9/HQBg23YYhr/3e7/XbnfzvDQtB2I0Wyx39nbPzy51zewPByWrHj99gilJ84xoNIwjwzLrTqRGOQlF8/k8SRLHcSzLOn9+outGPRmlaRrH8XK5tC0DQPnFF18wKYqqhBhjRBEkvh/kRVV3wZTSxvb25dUVLyvieJrleq0uNZyb8eTNU8Tdf2cd5/PpGCMATad96z1fH65WC9PSbdvEGBuGUVVV/XqanbamaVIC27YHe7udrREmOk+/StKQUnBWbwMMyzZNM0mSyeRms1nHSWJZ1pePH202myhKECJff/8beZ6fXZy32+3FenV0dOQ4ThAErVZD1/VmszkeX19fXwrJPc+bzpeaZs4Xk+Fg29AJIRrGsKz47sF+p9vPcsaFrKri1u3jp0+ffv75l7qu1UOibdtAIUJIkkYYQwghY6zRaNS0mHq4yLJM119mugvBAJAYwxpZtk2TIFTmeRJFZZ5DpYCUVVHUypOakFj/YM1JBgAQhIuisAyz1WxkCf/BD36Q57lOdNtyTNv47X/+o2cvrs8uZwCZiDpZUZ1fjaO0CJI8zsp1EJ+cXD59fmEYRrvdvnPnVrPVCAL/7ttvnZydPnryQkEUxqlhWIyJ2nTPNE1d1zebTZZlL40CGFdK1XjgfL6ocZ4wiBECBGthGFmWZdmuZTfKSgqJMDGzjANIwzjRDfrmyn84GiyXm73d7s31tN9vTOeTt+4dvP/+Bw8fPjo8PO60LI2AZtMueRrHqde0OZcAAp1S23aklP5yhokqCsCZ2gRhnLI7d+7Ytp2npaHpukEJIY7bCuNqsy53d/pllX/y8ZeEEMMAFeejrR3OgZR8e3u7rIqqqnq9DoDctHCcgNUysB13f/9gMlktl2sAQKvVyorSMp1ut4MQ4VwuFgFjYmu00+t1lMTrdYCoGgx6Dc9MorLT7x0cjhSoB08IEfoTdMtXl5SKMa6+ygIlhECkas9X8O+clCF+2Wyql+gykAIABYkORlutNC0sy8oyXhQcIYkwaLVa4/E4jmPT0DGGnPOqyLrtpmCSV8K2bc/zyrLwPNdySJqnZVUJBUzDLbMckz/Ft+YXq6EEAACMIeCifun11Ww2q6o6u7zaOzzoj7ayLLt1fPv28e2aTBuGm0ajsbU1zLLMdV2CtfPLi3v37guhXpxdaIYlhIqipNVpt5qdTz7+bDTcnk7m89lSSXh2evH2W+84lpvnpeN4l1c3AL6M5nJsOwiChw8f1vFyi8WiFlTmed5stqSUcRyWVV5VVVmWhmG4TsM0zTRNapVivaKq8xCKIgvDTafTKorMD4IoitbrNQDAMM16lbn2l3meTU9O9o+PF4vF9dVJEmOFlNeknjO6uXndGzq2PDjaajXd6dlZMr7KTp+aqxuV5uvrceUHlHEexZSxBqY8ii3TrmWzQRBsZvP1ZBoGawQAZ2UcbgJ/VWR5VVVxHPurtb8OqjIrynww6Gk6ieK02x+02912Z7DyN+PprChFo9FczFcY4ziOEUKtVsO27Xa76XlOlmWz2eytt9569vwJE1wqCKE6Orj97PmjhuMBINvtrqKaZrnrtc+qsukaZ6fPTk5OdncO9/f3Z+NJv9/nJVeCSc6KLDUtHWMshNAIrWMh6h1uGif1spkQROhLwg3GECGQpqmu6+12u1YorVarNE1BHazxRvyuZVmO4+i6rmm6lNLSDQyVqRtMgB/+8Id/42/+LV3DuqFVjHcHzX/+3/zuR589Hi8iajYPju8eHN8VSJOQ5ExIhU27cXUZakR///0PMNV0x5n6flqJjz7+DCJcHzBxmnd6fT8IEcS1t4pSoqZ/E4Rf9iMIKSUAIpbjBXFsOq7bcJM80007KyoAoK4b8/kaI01wZVkOpXSzCWv5zRtVQLaa1qjf294ZFkUWhqmumY+fPB9PwtV6RnU5GtqWqesaMXQ3SaOqVJYOiqJI05wQVLE8z9NGg8Rp5jheFAHf933fZwxUVblYzAzLXvvZT3/y5M7dYZpFWcykwFIxBcDFWeb7kWPrQlZKwSQCO7sjyzaUxJgAQ4fnF9ezqT/ob21vDYUQeQ6KohAchGEiOFys/VaroxlamhQbP1JABJt046dVyTdBJDiazRacs5IFeSEBADWH5k1P6Jdv7su9YZ2YC/v9LsaAc14DynUd/HdMykoBKYGUEgJAMIEASiUhRgAComkHR3euxjdRCIpcGBZwbKdkFaaoqHLdMKqqxBhGUbC1NUySyrJsjVAhRBhmZVnquq7rumYaumaWJaNUz7JfyEX5U6rhm11sfYbX1/n55c3NZDQa7R3dGo/H/d6g3kSmaRrHoeu6EMIsy6SUtuX+4R/+8a//+q8zzrOyKMsyDMOsLDRd73Q6P/vZz4bDoW3bvu87jnN1dVUfL3Gcuk4jzYqahLVar0dbg6LIvvzyy8FgMBwOOedxHLuuWzMfiyJPkiTLMoRQGIYY44bXghA/ffp4OBwmScwYq5+3KEpcpwGVgFDNZhPN1AxTb3XbmJKbm5uL65v5aj2dTinCs+kYKn55dtLwLJ0SzsrJzfVsctXwnAf37r66FdNlCOw+Grx1+Et/uXXwjtboNlodZVPUMGNQTcLFtT99Oj779MXDp5OzJEuFeHl+up7d8BwCIWdllaVYKdc0bMtEAORp+lKiW6bbW/21v1qu1+1eV9dM0/aiMIWQcqb6/eHWaKffHygJ8yTtdrsHh/sXF2cY46LMEAZHR4fz+fTx44ftbi/YJJ1uK8/L1XqeJBkm0HVdbNh+FOu6rlNYJMGL549uHR3dfftdwUrHtcq80A1q27a/Whga3azXlGIMQZqmUnFCcFEUURBijDWN1mzePM/LKq/dHBqNRr0Ywhg3Go1+v99oNBhji8VytVrVYpUwDGsdVe3xsVmtDU2vM3YNQzvY615er/7pP/vtvf3hYNAxTBqnSSXg7//xR//o//tf/eSTz37004/PbqY5k8tNtN6Ef/zjz7vdnqaBXndLAXo1XZ7NlsKwxpvwdLzQnbZQAEDs+76um5TqtVUEY4xigjHUahdSpYSotasMEZwXleM2AILrTVwxkeaZgmgyuQZACQEMU/M3cZ6nSgkIRZZlteKwvhhj+/u7q9Uiz7OyYse3DubLVVlJAMDV9XJru9Pve2kSGCbJM2FoZuiXCAFTxzo1NE1TgBdlCiEMg5hgreGBq6sbCLBpEUKR5RqV4BcXsywF3/jwDtWgTpusAINhC2Ng6FAKOBocEYKWiygKgOc5aVIu5xlCAFN7uSjG49kmSK6uZmXB2m0jDKM8Y2lSmpaLIFWQWKabxEVWsPVm3e12s1RKCQnRlovUdZpJGtSZeZTimiMIIYD/Bk3lZaoSBLquu64LIRAv007AV/fq305tUcCwdEJefkM9nkIIqQ4uL+aO3dzZGQoGqhIMRk4cJ2EYem6zKnk9Guu6ppS0LNOx7arkmqZHQYgxqI/kZrNlWZYfhllamqYdx38yF+VPKvPqP4lfzGoBALTb7ffee2+0teMvl2EUZ1n2/PmLyWRWluXx8bGmaXEcapqW5/lsNrt7965QXNO0x48fZ1lm23ZZloPBYLleMMF7g/71+KaoSqEkQLAOkLYtl3O5WCzKssSYtlqtbrf70Ucf9fv9GhhdrVaj0ShN0/F43O/3y7LM85TxsvakrIfThw8fbm9vh+HG933LstI0rzHoKIrSNHl+8mw2n37++efPTp5/8cUXcRy3Wi3H9gghu7vbVVXUbDjL0JMk4SVkbN5vd9KATcePgzf2hk1snX/8czY9WZ18bDrYGvV5f2ABaDABshwVpYtJz7QHjjf0GlXFa2NnIYTkgrOqSJMsiTCCSAheMVUxBEC9u6SUagSu10vfX+3v7yOEkrzIC265nmlZCsFGo2lZznQ67fV6um4aVMMYHx0fclEdHh6madxqN/71v/7dVqtVFAUkeLPZCC6brlcWrCgKCDC17ZyxIA6lYPPZzWjYd113Pl9qhN65dbsoCp1qSRS3Wi3OuWUb9ccxDEMppa7rnDEhRLPZVEpxzmpVMqUUYVDTqmuuaJZlnHNd1z3Pa7fbvV4XIbRa+Yyx0WjUaLjr9Xq9Xtd58HmaAiiBVIZhpHnWbFtLf/3wy08smx7fPgJIOU0P6zhI0p/8/LPLyeTx02fX48l6E0wmM86A67r3375jW62KoWdn188uLitE/+Uf/BDpVi5gTQasKllTZetK/RLAAaAWStftba2bVhJ6nheGYbAJMQaWZVKiK6UwgZiodtuEEFgWUoC7ng2grHeUr58fhNbrdRgEgledTmM+n3MmqpJTCo6O2lRT48m03++FmyDYpBo1XNfkDDi2behWkeVCgHoFHMfi4uLSsDSpoGnaVcUxhrdv357PllfXodMcQJwRQtKECwGur681TWu3ejfj6dMn591u9+J82W41u93uZDKzrXYYxhAQJcHNOJcSdDqtTqcDACAELxbrNAFhGMdRGkcpIdrNdZylZZrGCFND1xfzlW15hCKlYJ6n773/TqMBaoNC8NKZ+k9WtxqGpZQYhhHHEecAY0ApVuolMPvm+fFvXoPBYDQaYQyVEAghBQDnstNt2pbzR3/047fevtXwnCKvACoRJEQzZku/ErwSvJKg9sgRkt25c+f6elzbi7RajZd6gbJECJ++mBCi1Xubf8fLAK96Q4wwgFCI1yHC3cFenLEoTc4uz6azm9/6J7+loJRAbQ0HDc/e+PP9vd1Hj55gRKXiR8c7RS7Pr64X87Wm6RAi17ItU5+Nx+/cez+OyqfPThzPlUCkaeq6rm0689WVhKUAAmCEqa5b9qPHT7kUzc4oy1lZiHa7O53OpUDd3ihKWVEGmEDLdKQACCFNI4vFotVqV3lW5KmuU4RVKct1sEZEKSAubiarVdRo9EaDPZ06hGpRnp7enD95+iiKorQou4PhqD+Y3VxHq4U/uVYirgrh+6v+Vt+w+obzOiUSYLZ/tCeEaHqtzE+LMMeVrIBMqkqzPd1pIrM1Onq7tXXcHB4POwMlpNdwsIaDMC4rxkVFMBAVS5IEASkEr5PwFABcqul8JYQa9UeAi81q7ZhGUSZEw1KIbqspRfH85EsEy8X8aj4fF0Wx0xtigCzD9kwzWsw303Gn0f76+98OywyZyHYHXBW7e2+nWQikEaVRmZdFGiCZsjzFxGw0BlmWpNH0N3/zr24Nt5uOmyRJqQTQTCGJhhwkdAixQhUiEhKZV3lR5YZJBOeci2azncYZkFBKaVoaxdIwIcaqKApW8SROJ5MJpRhjRTXcaLhxHK/Xvut6g8FAAVGxTCpWCl5ISUxKKGh7phLM9ZqMm+Mb//13H+xvdSFPTIp1zTKd1nhSrDbZxc11yYr9g+Nhz3Oodvd4a+v4ICiKz5+9sNz++fmMQk2jVBaJQZ0iK3Udt9uNNI3iPNItHWtUQQQxxZQiguvGVggGgaQExZGv63qacSEAJvmgZ0bLSJb87Ml0Z3sb45Jgu9PpApgDpa2CzZtzXy5YwopSCbepv/3222XOpZR5HuwdtIIgiEPearaIxpotW9PNQuCU57oFsshPi2i59h3HqhJD8nK4jTY+6PXbLU8rUh8xTDGx24kQRpXotjP/73730Te//gHPwLfeu/fNd74Vr4TurFrNPqvUsyeTO28P929bz08eDUetVo9KqVUqGGw3wgWYTK5u3d25vopGu42ciTyp/vxv/BnPUp4DKNAIzu0WSBIGOMBAmHappCZU5nhUIXZxHr7XH/6FX9sCiAIsEMBEYg3oAEoAqIKKEA0oEyIJkeKcd7fVYhkgjBXAXKhXRBzOKwAIhBjUWO1XVQljTAAwiBH4oVCKQ8U41KkFoXQbgFLdtYyL5ye/8Ru3eA400CaYA850gkQldUINDRQ80Qzr6npd8KDZNRQUFS81TdM0rdPpJHFka21TB9/6zjcB1OPo9SYQE8WYQFB7WdlrK2+IAYBQSAF+EfrJsgQBefr85Obq6uHDh/fv39/a2lES7u3tJUlydHQ0mUzqydyyrHqAevj5F61Wc2trqyyLg4ODKIo8r5Gm6dOnj2tiVJJkRKOe11ytVp7XrAfhbrdbW5589tlnH3744XwxBQC0u62qqiCERZVXVRXFQT3gmKadpmmj4aZpmqSRZZlxHJes0gw9iBIhZK1/ytIiTfK7d+8WReX7QZqmi8XKthxK9f5g8PjJs5/+7Oe/97v/3RcPHxuWc3ZxFcbpk+enL86voqzIKmY47sLfvLoVz5+dffLFp7kosiqWqjCAQmnV622bhmPb3mi4LQQbj69Xq8XF5UnIaYFMRuz2znH/3nuNw7f6h/ec7rbh2I1umxgm0qnl2FGSbII159VwaxthOtreWSzXdeAcxWQ5n83n0/Pz848++sgwLKJZJ89Pm8327v5hEAT1rjaKojSNZ7PZnbfeWq/XSgCKcL02bTQanU57E6wVELXijVKaFjkhWsWlZlh33753dXUBgCQEIwRM00yzuD7kFRCv8MFa1UQIqRXHVVVuNmvHcXzfz7Myy3KMqRASY1yWxWKxWCyWdWAeQogiTBBybTsJk+nNuMyKYW9oamatz4vjuKqqNE1rYrZhGEWR27Y5n89/+Zd/uc5gq6XNlFLTsCnCGJJep7O/v5tXZbvTGe3sffz5F7phn19e30wmBavCMGRMKKVqScwrk7GaWSKUQgjVg3O98CGEGIZVY8e9Xk9y0W67nufGcXx4dJyXAFNalXx8s2KsBABkWVGvkup09voyTbN2pmg2Wg+/fGzbThiGhkGVUkJKiJTjWEVRtNttQsjV1Q3ngBDYbLYoxVVVRFEGoVJYNRoNQuDGD52GW1VFEInd/R1CyKMv5lgrDw/2dw5sBZzbd3c+/vTLO2/d1wyRxBKS8O5bt9dLpWkGY0XgF67TLMo4S5lpaoQiAECa5lVVEYIYY65lJTGQkmMKESKj0UgqPhzqq2VsWrqm04OD/bJgQCHBgeNY9fsiOQCKgZqrDARAFEBQ21QLIQBgggOEYLtjI2i8kqWrr66vblXtbv0yQwq80q5AsFqt4jQBNXcHqIpVlALOGUKg1+ueX86ZqI6OdpbLpe1oiGAAQLfbpZQO+h0lIcb49PQmTzPXdYMg0HU9SaI4TubzuWBcStnrdX7yk5/c3Nw0GvarN45S/AutogIAAFSfc7X+6s1qeHVxcX19HcfxZDzbGu3cu/fg4vzq137t1wkhw+EwCKLxeHLnzp2yLEejkaZp5+fnUsr3338/juNms1l7Mrc7ncnkxms4W1tbAJFNGLeavcl4Npku251eECWU6ldXV7qu/+hHP/r2974bRglCCEKVZdliMZOSO47zFb+JSAHqIZQxtlgslFKU4oozx/aUgmma+eugLJkUKMvKVqtTFFVtJ9dqddIk//GPf+qvN1nB7t1/0BsM9w8PMaUV54PRiGja7t5Rtz9QmCzX/my12jvYf3Ur7n3r20eHbxWbYnZyHS+Ws/nl1D97+vRxlqfr9XIymTAmXLe1v390dHhXZD5P14vrF7OzZ7MnX0wff15sFoBn2HWp7UKNcikqwStWahqRqrq8uvH9YLXyMcZBEPi+Xyt/XdeVUt5/8LUHX3vv+NadX/rlX8sKdnZ2zqtqe7RVQ+etVitN40bTPTl9jhDq94dRlNRuMVlZmLZNCCmyjHOOCZUKEKpjqnV6/Tgv8iJtt1v1kV5LAKiGFRBSKQgVAIBSCgHOsgIhlBdVTbvNsqxOdyuKIo7SNCnqjaHnuZpOCcGGYdRTc92/Qwi73bYQIM/LjR9IAVutFkKoxujqdQchqKZVrVaroipPTs++9vX3BZcQYl6xwaA3ny80ov/qL/9Kr9Pxff973/ven/+Lf+WTx0+fn1/FebEJko0f+n6BAX5lD/EK66h5kfVRSgiRUmGMNWoI8TLQrcirknEhlGU5zWaz1+spBV3X3dreupkkQZh0ez3LMGeTaRxmGsFSgjx/TcsVQkCATcONo3K9jm6uN47jNZtNKTmltYMZzrI8y7I8T8MggxBgDCGgAshms+m5jmESCKFhGJoOs6xEWKY5UxIMt1pxKDTc2DmgJ88vASx+/vOfTKZTz3OePn9iOR4hWDfQF58/abXJi5OLMCgwAXmeK6m5rpOEVZbFAII845TSwbAjBaMahgA+efqw0bQhoFLxZqfBKhmFdZ4cz7Py8OAgCOKqBF9xTo3ZdIMxgEgqBTEGrNbb1e2hEgBwpXBVqf6g5a/TP60OAgAAfOlQ89pKqwZhDJvWFItawowRBkBSDCzbKIo8CFdbW67vr0ZbA8ZKXdeklITgNI0BlIu1X5YMAKjrwDRNJaQUouF5BONet2WblmVZACPLdb788oXvhzs7O69ej6aTmmT9xit8xQkCQn3lQ1dfR0dHrtsghA4Gwz/zZ3/j6mby/je+aTle7U6RZdk3v/FhHKW7u/uU0i+++CIKwh/84AdBECRJTAipqsprtHw/YLyst1qccwDQehPOl6vDo+Ob6cxxvOl0enh06/zyot8bFkWhEPR9v+Qsz3MFgVASABAmMYSQYI1zmSSpadrL5ZpzXg9imGiGZa98n2qGhIhgDQBYlZxzEUXxrVu3O51OUZX37j+4+9Y9Qs2Ki6ub8XoT5CUjmmE5DkCo3e0qIBqNhms7nU7HNo3x5PLVrWCLK2qgvfe+tvvhdxtH95zBse1st9q2YZCvNsceRhQo0moOjo929kaDfqvRcoy2azYsgxfpZjaJlstkswFcKQkYYxomlqZdnp05Xus73/ulp8+f1WQoIYRt23EcT6fjTRRCTIREGGlSoV5vEIZxt9vdbDabzebOnTsHBweYkuVyKSVvOI0wDF3XLTmDCJmmyXhpUBIEgWVZaZpKCfrDLaLpQRRfX18Pe13XNos0qfl3GiZ1HArCtVErIromgIrjGACUpmldYjRNU0o0m02MKaU6YyLP8zRNsywrSyaVqH0ZKNVN09Q0rfbH7vc7vp8EQawUTJJECFGWJUKorIpOt00pLcucUCQUXy6XXrOhUf3Bg68ppaIo+eyL56PR8O/9vf/p1+4/ePTlF7t7Ox9+73uT1fp3fvf3C4nWQVZWgkmlJCCYYkQAqP2cGYRQ015ui+pFs2maSZZCCJkUhJCKsYoxRAhQCGPcajVqFiTE+OzsLIoLiEGaF6wChmVWJZcCYgwxpnH8OhcFIawUsm1vvQ50TY9jUJ9qNRd9Pp9btu7YXlmWECnH9pQEUsokyeaLaV4xw3KzKmWMCyGabZNVChHISoAgwjQ/P4mJxhFCrbY9vkpNR82Xwbe/9/U48TGymBDTm3K9Et/67iGEMI2g0+AnL07zWE+LjaiA52pUg0UuV6uVYVIIwXDQwUi3bO3y8lLXzaxIoygSHENAXa+ZZpGUKs/zPCl0zcvyBGLU7LZsszMcgmHPxYgICCjRAQAAAoyM+j/q2df1zPk0gv+WC4BfQCbeJBvUlaE2uUEAIiA1HcRxCKAEGHT6nRfni6KqMIFpmpqG7bpuHOeQ4CxTQBGg0M7OVlXxw8PjMkuB4DujrTItMca+n2ga0TSt3TZt26j4600gIRgAqYAAAMCv0vFe7kWlBAj9wrLz6fMXL84uSiZand7p6flwOKxHJNezp9Pp8fGtoigI0ba2toJNFMfx17/+9SzLkigYDoe6QQFGURSZpl1VBURIt8zNJpQK3kwmw61tSPBiub66HiNMfd9fLpfdfk8BdHl1I6WsTd/qE0MpBUDN58B14lrNDuv3+7WhI6Z6GMcV55ZlDQdbzXa7LJhQsn4Y5vM5QFDTNN/3AUCNdmdre/fo8Na3P/yuaVtCSUr1JEmCIAjXy9nN1Wa94EWxXExM+rpTtt760Gr2FpfP4vFTnixMHVPbc4y9ItN0rWGablGkeekv/dNHT//o549enM0DqXvAaEutAZ0utLt6ewtyCYXkFWMl1zC1TYsgrCr+3oP3fvKTn7FKOI5DdM227dV6c3Mz6XQ6lmVxJhartVB4swnv37+/s7Pz2Wef1ZRDf7PmnOtUOz09yfNcsCpL0vo3JYTopoEgwZhuj0ZpFHMuO91uyXiWZWmaKCUYL1erRVmWOiW1RyFjonauV1DWadx1MygkKEtWVbzWHadpWpc527Ydx7NMp2ZcNhqu4zh1WnmtttQ0jfPKa7gAgH7fAwBEUVIUL2VtNZ2r3W4PRwNMUJZlrVZntd6s1huISbvdbjabkom//rf+wn/8H/8fwyD+B//nf4gw+PVf/7VV4P/wpz+PsrISoOI8TNKq5K2WXfeAr5oO9UZOqZTStm1KNQAAZ5Jz/pXxnapbRNM0oQIIwzSNdV2PszRNSssCSkIhYFEmWQYINnzfj6Ok1Xq9Uw7DUHBlmU6n0wnDst0GtQQ7ywQAsNXsSMnLQr10AheYc4AJUBIZprlabyAwpKyUAmVZDUbexlfr9ZpQT7fI5fXTyTjv9Engl7dubS2mahNECoD5aokoSbJwe7sXrsndt7phPL99Z9+0NCGYboBev2MYwHPtTtfBGIahms+XmKg8z6Mg1HU6Gg2jCAAIyzJLkjxJhGEb11erg8M9gjUMBaU02KSIoEajdb1cRXH24bfe29pqCikgAhUvv+qLFQAIIiAEOzgcpGn6pxJpXvaJL3FnCACqV3VKqZdbmjzjnGMMEARSCQBAr9dqNptSSozpdD7rD+00TfOsVEoxxiGEmgWLvBr0O1LAvCySLNY0LYoihFASpdPxRClgW55lmrquR1EEIYSYvGm3UQ9ArxrVugp+tc6sv+ON3tZrtQ+Obz1474Pdg+Oj49uD4RahVEEZBIHrutPpdLXy79y5U0eMf/DB+1LKXqfb7/cVEEKIKIr29w8n0zlCpNVqIUTGk9lmE1BKu/3eZDbt9IabMKqqqiiK+/fvr9frJM8UgppuUkoFgEmcWaYDMGk0GphoSRYjgjvdbhhHlm2bthVGCaYaIiTJsk67VzCugIjjaO0vIVSccwCUlAIAWRSZhMB07CIvnz9/8dlnn/32b//25599eXNz88knn4Rh6Pt+bXDvr9ZPnz4FAkyn81e3ooyWuLXdv/Or/a/9OUjs9fUTEj26nv/Yjx4t1s+urk82m0hxVxRtlvUoEmm0urk4uT59Gi7nVDFTAzqBruvZtsuYEEI5btswHQDwrVu3N5sNgejbH35YM1GIbqRF+YO/8Jc9z9vf39/ZP8jS/Ho83trdqXg5n09007Qcu9vtNptNIdlsNu22m8vF7Kc/+VFZ5ppGyrIsWKVpmud5aZrXU5hlWUVRpWnMOdusl4NO8+HDh0EQGIZRC6jqdpWXlRBCSAYwMgyDc86EhBBCgNarAEJUGxcyxuo9VM25qapK1/VerzMY9Lrd7mAwolQXjAf+xtB0qGTDszVKuu1mFGR13Iqu61Qjmqat10vTNLvd7noTMqEQ0a6vx0EYfvnllztbw//Hf/YP/oP/+X/w9//B/+Uf/+P/yrKs7373u3bT+enHnzx6cQqJvvI3RfVS2aWU0kydUAwAyPO8PtfrwsQ51zSt4rzizPM8gJGmaYxzCGGdcUkpzdOkYgUr8u2dUcWKTqeDMUYYKKU63Z5h6CUDUpE0Lzh/nfxXV0OM6fn5ta5rrZZpWQaEcHd3F0KwWsat5gBjHAYJAEhKvloFhCBKoRCi2xumiZJSsx0TACCEaDVNXgG30ctybtnU8eydnWG74yCIe/3mN7/14PnjrNGmp+cXp2eXSZ5Pr3lZVHfu9UNftrv24a3WaiFdpxkml2WOKdZsG1OKWQWqSiAEdarFcaTb6vzybHdvSCkN47mhNedTxnhc5uD5yQnnUtPherkuUoYQEApusirM048++ixKlgAozoFhAiABxggARrCmJAAI7OyOri7m8GUhAeqN6+VX5KtqWH+DBBDYjlHxsvYxU3VvWLeZjtlt9yDA80UcBsVotL1YbizLaTe74+kyK8ua3KokLCpWsYLxzHac7Z2d+kTXqMkqtfbjMCwJIWEYrjdZrcd9XeCg/GqV+apqA4IxlArVY/JLHB0AAMBo/zDcbFZBuDUcAQQrzrio0jTNs6gsyyiKDg6Otrd3fvKTn2xvb0PEBEMY46IoNEOP43hra2s+n8dxfPvWkRDq2dOToigBIqPt7TTPNY2OJ7OyZNvbO5yz+XyOMU6iJEpiz7JZJbioNM0wDCstcoI1pUAcRZ1OTwiRpmmz6cVRGkVJw2tmaUGwJiHYbDayXs9zRimFENTrmzhNkjxTSs3m81arrUNg23Y9SOpU0wjGGFesvJnGWZq7boMg+vTFWZEnPfDS3C09/TzTPjcarua03f7Q3XubVeQtXIEkWk6uJBBpla3C67KqvFazbW1jBMoyF1UZrdJsPdF1LBVrtLoYYwCg5XrAtiUXcVGaXksJ6TnuZHLT7/cR1fKibDRb88Uacj6dz4S4uHPrdhxszi5OeZF1e01saAf7h0+fnwBYKKUwQlCBOAg//fSTsiz/4l/+S612O0myndFwPpvGQYw0XUqgURJGUZQUrU572G35q3kcx91uH4BTCKGoGIQYQqyUEIoLITCGuk7DsFYyIUxxkVdpmjuOo2mqDqtljCklDMOqFSZ1kCZCKEmSoigarqeU8Dcr13XTLKeUQAibLS2KIts2N5vNzvYwigJlmFJKXaf7+wePH59985v3kyR69OjJr/7K9/7e3/27WZL+L/5X/8vVZGZIcPv2nf3Dvely9vzsYjJfJ0ma5yUrmGvb/GWlc4syY9XLj3hduIuirGf8LMuUUq1mB2MlJSCkhjiBaZqmpUfRBkpR8rxvt85WS83Q18vo+E4rTfh66XcGXm8QFznzmm6RysV8+eoxsUxHKXhxvjEtcHzr8Oz0grGyLJlGtXBTnZycvffNW61mX3CFECpy6ToOgHEURWq6LCswn20QQQAA12lgIiwLTach51Wr2w43SZS/CIP29l5jsVg4TdpqumWm7Ab2mjaMtM+/9PvbIAgXhm6Pxze9fkMwIDhcLlPFdEwl1UCz5aWJL4HKsmw4HBVpFiXTJMFNr42wRFhGcQUBoCaII3B0u0Ug6g4av/T9D/7z/+cnUvLZdPWjjx8xIAGAO7u9i9MlE7woU4wpUBDAEgATKNDtIyHKKBQAoDfryy+y+dRX1ByB0EvI1mtYvu8DgCGA9ZZOSokgELKMooRSDaGcCXB1PV0u472dA9syXpytNI0YFsEYx2kCACIYeA0rK/Ivv/zScp1eZ5CmBaLO6dnN2peVqBBBvZ6rJHnz9SAEAFBvdogAACSEUkpCADDGVHstoPny0ePJYu4H4eX19XK9OT8/v7i4uLq6WC6Xp6enBGtHR0cnJyfHx8eO47iu63lekiRxHDebXh1julivMMatZieO0zwvPLdpWdbOzk6WZdeT8Ww2Ozg4yMtyOp0KITTTKIrCsqyjoyPdNOezJYRY0wzbchEhhBAFBCHk6vqyZjBFUQIAiON06a+xRsfjcZSESRoJyRpNl/GSEDKdTk9PT6ez8c3NVRRFSqn1el3v1+M4LvMiTeOiKHRDG41Gw+3dTn/EOOAAA6Rx9XpSvtpEJekAMsgTVS2vwy/+1frn/+/Pf/+/fPjp715cPYriTRRmBLk7W/cI7AYlSCTNlNYcHezffX9w9M7g+B2rvyOBKqqSmDq1bVYUhRSKUmyaJ8+fJ0nSaDQ0TQMQ5nnues0kzdcbP4qSKIpenJ0ihCzLchxrNpvs7+8Tjd5MxnVkbbfbXc4XhwcHjmU8fPjlH/zBHzSbzTiOVyvf8xqE0PXKN00zCII4iiBSQImG56wX892d/b2d3c1mUweB1S2Vbbng5QiDaii5HjwxpqZp51l9jIM6CMm2TcMwalq1aZr199ejdFlW9aoRAJCmsW2bmEAAeQ3k1TyE+u2uf3YymbhO4+hw5yc/edhsNt9+++379+//+Mc//t/+7/43SZ4igi3b+Vt/+28TQlYb/3o6CbMESkgRriEjQkir0SjKrAaUXzFSIYRRFOm6Dr+K/UnTlDFWfxEhpBl67UJmGAYXlaaR1XpBNcx51Wqblq0BINM0DcONEKJgXCFV5FUYvibxSimjKDo87LmePR7fVKzwPK8sSwBQu+VyBq6vrx3HC4JACFk792EMIISL+arZ8NaraL5YaBrq9/tZHmuatvEziAAhkFd0sAP8tWq0VVFUZ5cvjo63z08KTHi7Y50+LwZDo9WFecZMi/jr8Ox07Lh2nlW8AnWOexCs0jSRQjUbLiEIIzqZTAkFvV7PXyebzdr1zDzlrAJvvb1DiUEp9bxmp9P69LOPazRPCBXE2a23b2eFKnnGWAGAhimQAgguIQJSSgDQ4dHOJvAxovXqub5eMTq/otS8tr2BENaDs22bjAEhhAKq3tRJJQEAlmWNhltpmusaZRXAiJimGYZRo9EyDSfP8/qE03WzptbneYooyYq0RixYJTabcLUWpo0ZY1mW1Y/Am0TR+sX8SfY1AAAhDCEQQrwpzt3e3rZt13E8y3EUBEEaRnk4W89uxlPTbL5z/+uMwV6vRwg+PNpfLpcYClYVrUbTXwYH+0eLxSIJg6PD/cVqOZnc9LsdjNTx/l4UBOOrsee23rp7bNumEMK0nW5/MJ3MsizbHm3leaIkY2Xe73eDwE+iiFeVv1o13KFm2KeXl4zAkLFJEJ3P1i/GM4RQnue+79d3HwJcZpWumRADr+m2us1Wq3Xn1i3PdlheyJKd3NzMN8Ey8LMiJxodbo1crzVf+ZPraZ5mCAF/vdwZDW8fH7+6FV989vnv/at/MR6Pc4a0rbetW9+37/+lw6MHB8f3d/bvrYNcN1zTtBmrJK94vJF57pmNOCqSooKahaxue+teo9vTTAMAlSVxnqWsKl3Xu7q6Nh2zPxys12vGmK4RBAFUnJUJQpCxwjK1KPTX/sJfB3kpb919LwiC50+fvXXrloFA17NFmWgEHh/tIylYnv2Lf/5f52UBMElZmVQFMLXV/ApjFcUpF6rhNFyz8ezZ1dbe29tbw5PTF16rTTRaFGGZ+A1PFzJP0ggA4VgahgpKaBvuaDQyTJoUWV4Wq/UaQIwp+YqdIDlWlWICCMZKnWr1RxNgYFi6EMJzm3nGipzrxNCwXhvUKyHbzVaRl4orxgRUqNvu6UTtbff3d1ovnr24d+/+o8fP/0//1/87Q5j7mT+Z/Y/+/b8znt9EKTu/XM+WSV4pCGlZ1mYwsLaexQBjgKGSFGPLMGoGj2U6ju3VBieapgVxlGWFaZpKSkJBVaYQ8TjxAZJeq5FkRVbx0WgfQIMARZVWJgWGaLUITN3CUkomCfFa3ddEDdtuhJvs/W/sf+f+B1270fLaCML5dOaaRsUKQFWRq5xtTNfEyFAS2E4EpM0RMSxYVlFZYsFdoWSWJ4wJ06rmN4BQfn09P9p/S+aD7iDPw16vP7p6ATJxsX/srWfafDHJN87XPvA0SiHDrVbPcqAosUXp9jZttxtpJTUDe94WQCUAYHKZtxrtpufcf/s9SEC84ZYWEihN0kWoQBC0XJImRS6sogx//19+fDYVSVUebDU1iKqs3Nlyu55hQGKbGgSVYEBBpmlESfD2gy6G1tae9eJpyBVDSH/Zaill6NSzdIvChoE0JYDCpqkwVgBgiARCAGGomYqzGmTnUiIhgQIcSoByurfTUBLaLdboAgwNDMF6E2+SwnP0vAAYaYZhlmWplNA0ghAxqGYaXlGAOC8ZrIgO2m1aZaqqCn8FTp8vgFQNp/vqjStyCQBUSgAgX7nSIgCA/IqLUGtL62symXDOKaXL5TqKYsf2gCJKovv33717966u61G8UVA1Wt6jx48Ny97dP8yKXDN0z/MMwxAVGwwGjmMtFoujoyMApKZpo9FwsVhApJqeU3scSCktyzo7O8uybDQaKaUAJicvznb3D5lQYZxKALmUJWOGbY0ns0oqCcnJ6eV4OmeMGbrmuu5sNmOM1Y9ELTZgjMVxXJZlEAS2bdf6WcuyajmtlOKdd9558ODB7u5ulhU3NzcQwvXGhxjpun7/wQOFoGa8zsf5m7/5t//ir/0gWVyfffnHL37yL/yzPy4mPyvLYjoe52nY7bY5rzabdRD4aZHlokiKMEpXrNoEy/OL5z87efiH49OfLq9PqSjycJmtZ5rIDFUU65kF2fb2LtYoE5zoWhAE/X6/qirf930/NE1Ho+Y79+57botSfTDcgYCuV359xzRNazabrusyXp6enqRp7DWcJIl/+MMfpmm6Wq1qmVRWFpppaKbhNhslY0yKrd0dw7bSNC3LEihUT7iGZUIIX+7UGKvbutoNcLlc1i6HRVEEQVDvqutDCABAUN27awiRsiyzLIMQe24DQui6bs1z9jyvXl/UmaKIvGS91ISYmlhqu07JKtd1v/GNb/zBH/zB6enpu+++6/v+arP67/+dv52z8suHj8+urq5vJlc34yTLwRuGUXXuc+0RYFkW+Up+94oyWQe21GZrtVdFjbdgjF+5NNZ4S6vZIUR7/GhuWI6EMM2FrusP3nmHUmzZBiVwPFm/uVDKssx2zOvr65vJuBLMsMzpdGrZhmVZzWYjTcu6kSmKQkoOIahxBsPQOFOe53HO4zgzDVtKIYSwHZ1oRVUByUGWR5t1cnx77/zi+caPb90ZLCbyna8NVuvN5z/NsLU4fb6hFEqhA1g5Vq/RdAyTsJJ0ey4EKM3ivIiHozbC2HG8Z8+e/fCHP//aew/ef/fdFycrgk3XNSuRbzby4GCbUoox2GzCKIoJQVmWIQyUwpphJon0nMHOwch0hEIVpRQogIBeVcW9d/Zm42qwIyWzaj6TkC9v7xtGqhBjTCkkGGCk37l9GwDBOYAQvHPv9mq1AQpghAhBEMKvLL0AxNRrOJblEmxKAYQoIWKU4h/96FNdN5uOvpivKNEpJhSTPC9qtsN4PLUsK0mS+XxJKW00PAXkzc2k03aPjkYIgTc9bDh/jfi8YokjTSOghpqFeFPVjBCKoqgsmRCiyKsgiJO0fOedrwFIt3d3/GAZRGsAq8ePH25tbd06fusPf/ijxXJjGFan02l6DgByNBwGQbC9PSIExXG4u7ft+77j2P1+bzwe1+aDjDHf92vOWv2R3QShUMB03TBKMdEh1YIosb12URTPXpyabnMT5z/5+NO8YJ7nNBt2nddhmmZtQlk/XXEc11aMnU5nuVwihIbDYavVEpJrmJRluVgsFECTySyO4yRLT09Ph9tbiGqYai/OTmfz5dXN9atbcRn5wPPuf+v7X//2r9+6/Y3B9tcMskMx7LabpmmahqbpFGJQsMJyTMNxLdfDGCvJ8yQsk2By+vjLj/5oPF1eXU9fnF6sN0FeVFXJAQA7W9ue5ymltre368zJ2jx1MBjsH97WNdt2mkGQXF5eY6IDAJfrdaPZdZzmBx98U9O0MAwpRo5lurbu2Oag21GC/fQnPzo/P03T9Oz0otNqO4735MmzZrNZe3lGUVQr6vI8Z0IpCLIsY1zqui6EqoGRGngpiirLcsMwoijyfR9C6DjO/v5+r9er61ez2TQMg2BNCVC7LkJMKNVd122324ahVbzEBPb6naLMFBCaSQ2z5ouRmmEjpWSsrIOGa2Ng09IXy9nnn1+enJzUis9f+uVfMhz7/Pom4+KLx88ubiaO2+RM1vzBeuCtH8W6nNUnugSg/oc0TRNKaoaeFUUdC/ESaP5qW1TXaNu2q5LVy5lnT180m2g42j07v3IbNmOCUmqZ+t7ulusYjQaKotdur5pGCIVKweVqZZgm4yWldHs4KrIUQ9XtuPUHO4oyAAAhgFIAgErTtMilrutSVXkqCdE5rwzDcD3j+E6303EhAGG0CjZ5s6Xv7PVenFzu7HUmV1WcTe+9fbvMzLvvaPWrnc2iXr99cbYAkK/9lZLk8uqGZRJj4Dpmq+URQq4ufYy0b3/7vR/++A+vr68RBMPBHhMJAApD0G13gMIEwWAVJ3GhaUQIQQ0QBSWEMM5gFDM/nElYjrabVckohUqRZsvsDbz1uvzerx59/LPTl+xOhGuifo2SF0VZVayqKikVgDxN+MnJyc5uT6OEc+A2tM0qB+BVip4CAAEEpQKbKHEcc2t0YOm9dqMXJyGhyvYsQyfz2arZbGtYAwLUyxkEkGPZZclqjwKllKbhKPYtW8MYcKbyvAyCqKrAm/XtK17BL9iUkariACCCkVLoTeOdJM6yLCOIlmWpHIdoRhUn8/mm3+u9OLtgPLcdfTKfdPrdKEp+53f+2zQvHjx4cOvWsWNZ8/lUSdluN9dr4brus2cno9Go5TX8MIjDqKjKd999IBSIoshxnKIoPM+bTudUN0zbCdfr0faOv4nLijVMqyhFXomR5y2m0yjNbM188uWTJC23t7dd2243nfF4bBgGxrhuNsuivvuyBv4o0VklMFJpEWVZ1u12b2ZzJSWl+mdffuGYFkIIQXL71t28KlutZlmWWNM1jHb37lyDT+pb0dKdZOkXcCl4iTFUSpmmXgqLS7HyN0whw3J13azyIi8q0+pahqcT6jiObWnIc0CZAVau48LQ6W3LAIbG/VXgb5yeZTrO1fnFcHtrE0SapuVFFUZBu9nudfvj8bjeh1KK9w4PePkyN86yTMMwZrPJ5dWN67pEo6ZjP3n6dDjoL9br0WgkpawjRhez+eHBnm3bz56eEKy1Wq0wDGtmzGq1KkomhKgqxoWilEoJFKyqilOTUkoJ0ZI4qykOdXtFKe33+5SS2sG3yIt6m8kVq9sxAkl9FOV1lh7Bta9qlmXBZnN0dJRlWVGVdTGqeIkR1DTCSialxBAFUdTT9Yurq9Fg8Hf+zl9wHGt7Z+A4zvX1xbMXJxghw7RPLm6CpNQd03G8ukGrP7E147pGqwFCXEoMYV3pEMF1bEstQakvACHnvHbiK4tCCGWYVpwmu/sHV1dXQqh2o/PTn3062nb3dg6ePnl+enYy6PY4EzqF7a6zWLx2eyUEQcSUxAnLSyGjOKnbYaWUaRhFxReL1d7+kWVpvmCUItNERV5Ytl6VFUSKEFhkMNhkCLN+v8uqOEk3CHkQUAiVkjhO1s2W+eTREtGn/YG3mKXLSdHs8hdP+OFtA2MapzEhztHtg/nsuu25GENDp4gq04IASF0jVVm22pptu1fjcfulURsYT1fNHtGho9E8ToKbydXWqHM+Xe+0G82Wd309M0yopJElCcGO6WBKcVVQy1EAAIINDtJvfftbn37ypWlQQtV8GgGgMMJClBBCBJVUAKmX/g5MKIwJLzkEuKqqLN20292i2mAiy6J2xlRQAQgkQAQAIBSfzBesKqY3852948nqEQBgtNXXDCPwwWrqd7uYUt0wDMMwqrxQQG0NtvwkkxL4/mYw6N66fej7m/PzqeNS23I5S6WQvV6r2fRevXFSAADQq67w5btZd4pcCPmL4uo6v5VSmsQxQsi27V5vwBhTGIVBgJAK4wAqcH01ff78xe7OwYff+16/28MY1R1pp9t13QalehD429vbjPM0TW3bXi6XH3zzG5xzhDBBiDHWbDZ9P4iSeO9gP0kSzbAQpqv1wvOaYZRKCJrtTpzki01YSHD68NFkOv/udz7s9/tFFNbz2nA4rNVgta1F7etVO0o8fPiwjtcaDoeEEN/377399nK5fPz48f7+PiQUE4QBvL6+Nl0vCC+KPH/33XcxxtP5a4YNBKrZbOoaqbHL1Xod+pmhoShOIaKUkKKoOMCe24IYAV4mwSaUIIoiJiWlRDeNTqfVOTwCUahYlcwWLM8I1almLJZrCYGmaVmWMSlqTKDZbs0m04pXjJdey9MIglDZDUunhDHGuBB5ZlnO/v7+bD4RXG1vjR4/fnh8sD+dzVzHYlKdPH8KFbh37956vXa95spfb+/u5GURJWmr042SeDKbakjlZRnGMcYYYpplGSWagiWlhDFU02gwommaOo7juna3218sZotF3O12y6pMktQ0zcvLy3pQlhBIKYFCmqY5jkMpBbKCENbz+Pb2Nud8sVgYhkF1BqCEEAohKDXrKq8wjsKNruvf+c53+v0+r4rZbJLlke/7AAhq6IZuP3x+dnY9c71WlhaGZWVZwoQACEkARI2tYwwxfkXrBQBIoKCU9e8CAKgnekJpXUAhUggh13WFLAAAtm2naYoQ2mxWcQR0A7mu22q1hBBK4fl83u9tV3mVptEbSxQAkbQsPcsKzsreYGs6W3bazTAMoyj683/xL/32P/8XlmVEUdhouKHLxtOIUh1BXFUZghqlUNPh0ucbgxt2wXlX01W6EFCwXr+p64bj5oyxMAzu39+9uL4GIF1NNUyqvSPvy482VW4ynmEif/THn/7qr3/rt/7xZaYJwylaja0LdVnlaLPZeI6JMCjLSiiQp2mn2YyiZDjs+H4gcVlVSEpweNAV3FXKPL9ZC0EwpXHE2g3qms2qAkKJslpvj7aKHOraQtfMIs+/9rWtskqW8/Jb3926OI0AQJquqhIhLDCE9RoOIUApFZxxrjAGFAEpkeXYmyAlaPa1r781mUwAABgTwDl4mUlSh8uDLGP1uPD4937/G985joKQcQVKudkETABq6JjTOEtt2x4MBmWVYIw3fqBrZqaKvb0D26bX1zcAAErJZDLXqGGZtA7MeGM6pjXS8CYN6CsjHVgfdK+roe8HcZwyxlqdpoJyPB4vl8s0TYMoBAQT3diE6dqPKib+vb/2N/7KX/nNRqORpimEsJ71Dg6OqGYgTR8MRnmeKyk7nc58Mr937x5UgJWsjmtIoiiKkiAIdnf2kzgr8opSGscxhLgsqpIzJiSm+nK9OZ8sLq4ny+Xy3Xfeevfe3TJNlVJRkhmGwRgLw9BxnJpFUW8P2+0253xnZ++ddx7s7x8OBoOt7eHh0f5iMcuyzLLt8WSi6XpZstXGNwwjjqIsTTkTH/3s548ePXr27OTVrfjJlx+fL2YBU9Jokebe0YM/c+f9P9fr9+/evXtwdFg//BhjDJFGKIAJJinVSogL3VKmp3kd22nZxc0pKEOoclzFGqiqxM/DJZHFwcHR85NT3TJdrzmfz4fDUVmWs8W83W7XftFpnp9dnAdB8PjZ0yAIJvPZbDZL80wptbu7CwDwPO9r9x8Em+Vbd29DKVoNV9f18/PzNEm+/PIR0Yzbd9++uLpxvCbEeLFaMSHiNC1YVRRFVXGIKYSQCQkwQpjWGU9MiIJxapi6aVmOw5U8Pz9P0zQIghqGbrfbtm13Op1W0+t2251Oq9frdXttr+EgDLI8qQSvU1Zs2262WuPJpM6nxxhzITDGdZYuJFgIIYQwLavZbvi+//f//n/5W//0t3VdF0IoJaWUhGjTpb/0w6zipt0AAJR5Xm8A6+VUvdasZcj1iSilhPgl7/rlshIhTdOIRuuBGgAAEUIYp3FSrx2Z4JvQ9zxH08iD+/umaVxdT7IskYpTSmtpTW8wgAi8oWgAlGLGU8duLFfJfL6UEhCsGYZxfHz8O7/zOwrCu3dv11wLQhEmoG5Ru902Y0yqElMBlI4RoRSHQYqwNHRKCNnaaSRx6TZhmkjbcm1Hdx17tRRJoN2517263PRH+mKM2u3mnbcPT17M0yLx3G4U5giD5XJlO4RVyNStm5trXQeOY/m+b1vueDbLMmFaqKhKhGkSySTJhtvWt7/5YaujER0kSR4EoeAAIVmkotcBRZJPrm+GgxZFdHs4rEpm2fjOW7s/++ljjPHddzqTSyaE4Fy+4lS/VB/CGjtG9RaOUqhUlcapoQMuQaNhLKbB66YMv0QwpBAmhQYGnMvBsJsXwPfXXqM7vvbni00lpNvAQknbtRaLpRAiShOv1crKKk3TOpwRAnR2enF5ubl9+7ZSyjD0siwZY2n6iy7c6nUk1OtqCCEASkkF6gPz1TdvNkENPsznc855p9cebg12dnc7vTaE0N9Eo+Hee1//8Fvf+k5RladnJzdX10Jw2zRr+oJhW4bjGqazmK/2dg92tvc4l6vV6vDwiHPhum79Eay3nnVCue/7tuvVUaKEkJpDixCK4/hmMj4fz8M4uXPr+MP3v6aqjBWpUqp2sZ5Op7VApfaaN02zngqVUsPhsJ7Ha0X3yckzIGSr1XBd1/MaV1fXZVU1Gi0AgK7r9bSl63qaZI7jvG6TRwfJbHH2+U+L9QtHzWT0Bc4fIQ1iDa39+Wozr1guRX59eXby/Ml8Pt9sNnmeJnEoq4qXWbJZXp89Dzfr6eTm8uT5ZrPBhFi2jTA2LWcymdTeWWdnZ4eHh0mSvHjxYjAYWLYHASlKfufOW57XzPJib+8AUc1xnEpwxsqa5nJ1dcXKSjBZVsX+7jbCIM9znWpJkkyn0ziOa0PJ6XS6Wq0450qp8XjsOA5CqGKCaBRCWDIuhFAK6rperw4BQIJLjLHneVLKGvKGEO7s7GCM6yzT2jxNKZHlyWazjuMwK9IsS8oyr/IijkMJZavdUEDMF1NMYKfXLsucMVbzEzHGVVVRissyrz8JRVF88tkX/QH6m3/zrzebzSAIKCa27UZh+uLsPIyzZqtXMpbnOVSqBv3qSUfX9Vq2VO8QIYQAwforQgiiaxICRDCmryEXgGBdFuv2kFIax1Gz6Z2fnw2G3W6vFWyy4cA1LQNIkGVZpzf47NPHs+nKa2hvgCgAIpXlUtOMD7/xQRwmcQQwJGXBPK/pB5Gm60mSeJ6XppXvB92uwwVL0mhvb6/ZaOdFjDEAQEfQME2zKgWEwF8yIYQAm/k08logjYBhWI+evKhKZRpQN2hRhq2mt38wYjz79OcTTIDlgkcPXwCIAEDrZbbepBjjOORA0cPDfSlBWWX1MoQzoOtAN6VlUVNvLWbpYNiiWvaP/4vfivI51QnCpm27SmLBRJnk2yMPKyAz9937h26jyNIYQfD9X33w9PFVnoJWFwohLi/Wum5KCSxTly8xIsMxjRrCegnMQiSEwlgaulHkYGfXLMvMMl1Su14DgAGgCGhYEQAsDRMM5pNZr9N46+0W4+XF2fStOx9MbiJNI27DqXipoDQdWvHyeryUUpYFAwBNJrEU4OHDx2maOzayLIcx3u93AQCMsU7HMN7o6qWU4LU12UuOKqrLIkYQAFCjhPXVarVqO/jz8/Mf//iH/+Sf/NY//If/8B/95/+vf/pP/8nPP/k4S4s0q9Kk/OzTL6bT6dr3az3Uxx9/9OMf/ogQgiBpNlum7d5/5x1CyM7O3sXFxe1bdzRNUwqu15um10iSpIaAh8Ot5XLpeA2llKhYXbNr6hDnPEmSs7OzrKwGo613330XKLaajBuunSYR0fS6GWy323Uqcf2UQgjjOK6/SAgxTdP3/SAIarlbTUnzw6BglabpAACsUc92RMUMqtm2rZSazV77G87T0BsOjt/52nydPH129cknz7/84vLk5Mknn//0anxJKFz788n0erEcx+E6CmWw4YrrttFqOi0TkIZmb7X6nZ3D7vZha2u/t3fb7G47owOuezeb5OzszHXd5XK5t7dXJ8wdHx+bpn19PbWd5u7u/nLhFzl3nZZGzWAT66ZeVVVNIG81O9/4xjfW60232yUQXV9f9zrdPM/rRWot0V2v17Wzxk9/+tNbt24tl8u67gCF6n0CAKiqKowxxOgVbRAAQClllahxeQBAXUAhhEmS1JTP2shSSokApJQSDUvJ0zyrqgpjWFsiJlmmahNJy1osFhjjomC1KyImsMZS8qrknCNKXrx4cevW/q/8yq84jrNcLmvpXpHlV1dXtuXZjseETNO01Wrxqqy3CnX3V9N96lpfLyvr/WBdDeu9J/5qiK6rYT0f1aqYOnesni36g05Z5peX5/sH7TiOgyBIU3B4eMgYb3aa6yDUddrvvVbmQaiaTRzH6WKx2N3dPzoazGaz3d29OMmiRFLDrF+eYWClQJZlhmE4jvPRR58cHx9zriACGBpxnEAINc1CCFQFcV03zddxVFg2bHh9KWCzCTZ+JjhKM78oWFGkL57PR3tgMQGPH58f3nam46DdblWV4JXe7QIIMWMoz9jW1pYCgBCIMQ6iuN3upilodSzdoAgagS85Z1Eyb7U6ae7nCW+3u2/fu68KwSpg27ZpYILA/KYaDb2DI+vp05ter7e1ZT17PMXAO77Tmk8jABBnCgCQ5ZFp2kIoDBTGmHNZlqWUUtUArsIAAAQJAoBQmeXJYh7v7o3qPEsAgEaIpeumhjWKsQK25UZRUPFU04i/VlkqtreHuq5vonBrdxshYDvO+eWi13NMyxlPJ3meb215nU4nTfJut79ayfVqs15zCKHtWBBCSmn9Sf6qGqpanQneuBAAAGDCpAJQ4tfW1+DkyaOHX34+m800at25ff/bH/7Kh9/43oN773/z6995+60HiOCsSJ+fP7UaLkDUsBpHt45120iKvD0c9kd7acawbukUL6N479btVbCpOD88OlgvF1Gw7nWaJatM0yyLl+oFw7Asw8zTDEBpGEYch1ijaV5YXuPRyUmUF9st4+7hyNTwJoiIZWdVabtWnkVpnpm2JYHSNK12xG02m1EQ9/odIZm/WbiemeVRkkYYYwDQPFwpCOpSizCer1eO68pSVCUDAGiWnuUxJKo/GLy6Fdujo25vuI7j3s6O6TUObr812t3b3jneGh122v0oTJlQFZOImN3B3v7B7mhr0Om1vaaLCOwOB5WUUZbispJZIYtKlFUeBuubyypYpatJs9sRQDmmZRA6vrnpdvsQaUs/Egq1OoOy4rptapaZVsVv/fY/He3uEKJTzcyZWofpJk5NyzVMa3t7h2D9reO7u8P+sGFRWRztb+VlZjr2z370Y9/f9EbDZ+cX080GaPrCXzueR5DkoqoYy1jJlCKGUR+hRVlSzahKobhCQApWGVTXNatkTCi48qN2r99s99OiLFgVpQmkmsJE102KNVO3Wo2mYRjU0Kui0AhRQrBKSAEQJAQby1WgFLAtqyiqsuC6adROPBxUtfHlcDCYT8Y3F6dxtDEN6jWsTClFaRRFURg6loUpTatCmrSqmFIAQtRoNJRSpq5DpQRjtUYbAFDPKE7Dy7IMQqhRUuZFjX3XFRwAhDGWgEvJKcUIKsGrbrdTsdxr2RbVdQMESSIUWK/XjiXef/eupVlhkirymqixCX3HbmX5+smLmyBeCBn2e7vj8diyjXgJRJIUFdN1QwEBCcBEIoQIgpKDvJxqpKkbUKCFEPrGl15DV7BQEMRhlUf03a81qgTsbQ0BXiipY2gZtmi0ZexbeQps18gycfsdcz0Dma9vbXMphG6YSR4xDjytZXnwxUn2/PQJ1YHgXs7jhrdlNDKDWuvVdcNh7Wa+swswxkxYHOdFnHpN/Ojxycc//b2mB5Bt//Dxp6RApSSL5MXpWbRclYYJfvBXd3/3dx5BoQmVv33vzicfnwBACLYAABCCokgpBFlW5nmu61QIVRQVJVApACSWEjBVKgyGW4MozBAA0Tra6bkYAAAB1pDgheBCN6wgB1wZvS13fl3lGWt2wdXi0Wxc6BSsboC/OL11eFjlm4YDdbzjh7O8Qq7TdhzYbOsQaM9Png9Hlp9cmJY+mweW3k8z+W841gCEgVKv2Qjg5cJQSAgBUOiVlwMA4N6D+x9++OG777771r23R9tbjWZztL013BoZhkWIpmkGJLjV7Dhuw2u0LMuazWYXF1cIoW984+tJknieE6zmZ2enpmnouvbo0aMHDx7YrptkWX84bHd7ZVkmSUI1XCcQASCbTS+KIrfRup6MC8YxxqZpPnnyRFRls9HY3d5peY00TYUQhmFEUSKESpKEUlqTVGzLXa1WdSyGrutZlt3c3Ozu7mZZVjdTlmVBCOtJbblYvPPOO77vK6Umk0lW5DXiXJ/ky/nizUnZMIwoTDgTT548mU6njx49evbs+eNHT1dLf7Xyg00kJdA0o9Xq2LaNCSnKcr1ZTeeTm8n4/PKiqArHc4XgnLNmt00IKqtc0zQmxXoTWJaT56XlOidnp6ZhbTYbznkYhkdHh4SgTRReXl4WRfH555/fv//u7u5+lmVfZXIG7XY7iiLP87589OXe3p7ruh988MHu7q6u67u7u+v1ulYUeJ63XC4JIT/+8Y9v375d5BUAgL2khmlAwdqmu+7T4UsfD/UG7wHUooIkSXw/nM/nVVVpmkapXlN2kiTJ87wsy5rTV5Zlve6o7zyAknMeBEEch1Ly2p+NUiylAABIAKuqKgsGEC4Yf3F6qpnG9fhGKAkgLko2X6zCMCZUty03yzJWllKoPC3qRaGu62VZKqWKoqhHs1dfsW27BtbqvqAugm+KZ5WqzRCrWsFSUw5reqxpGnESQgjLsrRtGsdxnqfj8fXbb79NKQzD15IGXTfzvGy1Wv2hmybZYlHsHwxPz84QJHfv7hMDcCYvLi6VAk3XyROglJASaBoaj8dQAc9tAAWqqgrDtCgKQ7c3Pi9FqBAzHXtyo04uPjP1jr8qFcxdT9/Z63IZt9ruS0S1VG4TTMaxY49enJ8IkAtuCA4W/tjxqGHxJM6aLZokCZQAITIdJ5ioLAG2h6FyG24PorLV2MrzPEmrLBWE6kJCCEmRZnmWDIdDDPhmrS2yqydPbw639/faO9NxWCDWH2pZKtIEEAxKliMEIAJKvUzKqz88EAKEXu7mMFAUA86kYUJN0ybjQCNGGKXr9XrQbzIO6rcJY1CWJcXg008/9zzP9gAEhqaZlmXkZVDmZP+4+fOf+Hmed7u7eQq29nGegapIDcMwTYfzSoGq2TQto1MWwnJgVeXjybWSYLmM7t59He9RU4L+ZG9IIABA1n4NX6VWAQCA5zmGaRZFkaZpWuRJkiRpOp3NZvNFHCUCqDwv06L0/SDPc6VgwYVhW1u7O1xJiNRiORtfX7uO4TrWk8cPR6PR3bt3gyDElPYGAwXBernc2hoRgluthlLCso0kjRpNWymYpnmr1aqqKgxDQ6OObXeajdFg4LpuGsUaoYJxBCBBuH5QsywjWKsrYz0iUUo3ftjt9OMoRZAoCeMobTU7/joYdAfz6exwb19UjFKaFfk62ACCNdNQCNYzcrvdLt8gaqZp+vGnn/zhH/7h2dnF5eX1+fl5EAQIkSBOpIKdXl8qwCXY2trqdrsFKwQQiJBWt31859buwd5ga4Q1SixKNVikUcUKQkiUxF88fGQ5ru04hJA4Tvf29irOhJTXk3Gz2UyS6GZ85fsrwzAkAIZuD4bbn33+8Ho87fQGhmGsN8H5+bnb8qazyXDYPzq6VYvSv/Wtb7333nvXl1fboy3f97d2toMgYGXled7nn37xB3/wB2+//XacZFxAJiBX8lUYYT1X1uOkkJyLqv4iRAAhlKapUqrRcARXcRzHcayUajRajmOZpo4xFIJVVSEEQwhoGpFSSCnqqlpWeV6kjDNMoGkhiJVSsizLejIACGuaIaUsWdXqdmbzJcS04LyS8no6j/NKACwAVArwSnAmJec60RQE9UBQg2Yle83ufhWIWL99mqYhhKT4RROBry7DMGqSMEIoSWIApJRcSt5utxAicRwJyTqdThAESomDg0NT1xvu6xmqzCspQZJkhqmEgLoOuIxvvbX9Rz/8aLneHB3v8krcv3cPSJClScPVEFRZklNMNEIhhLZtew1NClUWAGPor1MFQZazre2upttxqNsNnMRIMASggkgMt5q2ixfL4OZmWpYlhqZhwTRGN1dhp6u1O1YWIwx1IYFh0P7IWMzTdsfDGI+vwMXFhYbbjOdHR3sQFxdn4WJWOR6ZTnwhVJbDRsPFGANCCaZlqka9rtvwtoYkCOQmCotc/Pf+2t/4o3/5OQAAYPD2g+7NpV/lABMOAAcv7yuua5+UNfX6DZsGwBCkSoqd7W5Z5BRBjVICQVlKjLFpoKIoKaVC1FsysF4FQeC3uySNZV1SdRPEUbEOgmbb/a//+Sfj6+LgeEcIfvpiZpqm7wdXlxMAQKNBCSFXZyteArcBhRKO61Kqf+Mb729W6zeroVK/YLYIAEA1foIgABAj+BpTfvHixWR6kxV5JSqMcbPb2tnfe/Dgwd27b492th3bxYhAgBhjfhBOpvPV0o/ipKjKLMsWi3kYBmWVG4YWbfw8SV3XhRhbtpvE2fbWbhQmlFLPcRljCCjHcSxDz/NUSl4vcQimURIbhtbrdBzLLLMUQpinWV3yJpOJaZpFUUGATcOOoxQh5Pu+53lVVTHGoiio6RF1syCl7PV6i8VC1/U0ThzTKrI8TWKEUBiGXMhKCIhRzcqu0cM34fX/5r/9V3XL0O12lVJ7e3u3797JyiIKEz8IF6s1AOjg4KjVbC8WC8EqgiAri8n1zenzk9PnJ8vZfDae+POpv1qul4tw4z969OVkNstLptsOITSMovV6bdkOACCOU8GV22gmabRcLkejEULo448/dtwGJeZqGczny6urm00YR1F0Mxn3+/2Sl3GWMilKzoQQpmm2Wg0hmaZRVhXz+Xw8Huua2ev1er3eT3/2848++XSwNSqFLEpW5FVZlhi+pJoWrEIIScXr2yglfyVrr1u/urkWXAmuiryKo7QmvWuaVltY1/vKoiiUUghhKWVRFPVeUtdpDVJhjCvOmOBRFHEmkzirmNgE0Wi4nWS5QlAinBU8TIub2bJikmpWmhVJliKMEYRZkpu6UQ84EKNXwlihVMV53bfWBO8aWAMA1N1izS97qeB8KaZV9a9Wr1BrGnaNTkZpYDuepqO8AIZuGYbR6np/9MMfs0rUgoX6skzH0K04jk2LAKkbOk0zvyzLPAPzefTw8aNoE/7Vv/pX3rn3NaUAYyJNq63R9rDfr8GuNM4YrwCEVQm4qHhFEQJFASzHnM39LMsQ1K4up7ZLbMuKQx6FcafTSFPQ77ddz4zjREEMEB5P1+1eX7fsvGJCYdMBaVqYFgIK27ZVFhXBwHbI2el1ngOJSsumGz8JNkVZllG8zvPc9doEKQUqAQRjTJNg1G9kVZIwDgHPFtp3P3xvsYx++tklgwBIdXDcPHk2A4oKWQLAAABSAgRrLAu85vAppaREECAMSsYwAv1BKw6ibmugOHMsZJpks9nU2VKv2NH1vcqLmBASBZXlVrrm8AoIWb7//rvYqIpcnTxfNlrebBb7C9Bs2QTSLFWWqY+2u7eOD4NNbhpWq6OZDtoEm8FgJBl/9PgZ+HdeCLyksCKglBS/oFZhZSUVj+N4sVhMp9NHjx9++fjRF48efvHFw8+++Pzs4nwymzIhLdNutJqI4LIsr65unjx5Nl+ugiCo56OaZdZoNUsmPvrk4x/8+T8HAKiLDiGk6TWazWZR5gpIQ9MxxmEYttttIcTe3h7GOM/zcLPZGg4xxrXVDcY4y0vdsNIsgxAqiIQCUZJKABUEAEEmuFDSsqxalle3AJqmrddrXdeXy7VtOmEY8rLyXEfXtbr+pmkahCGldNjrs6J807VJM/TRaOT7/ma1/uCDD+7ff7BYLBBCnV630WpjqjVaHanU+eV5VZTRJuBlZVCt6Xqe7VCE8yRdL5YPHz5erJZ14tKdO3f6/X6n28dEIxqFECkA8zzHRMMa3Ts4rA0mCEGU0iePn7lOw3UbXzx8lGS5ApBq2tbWDtGMbrf/848/abe7luXM5/MgCBjnleB5njebzavrC8PQO52OrmutViuN0nq6PHnx4tPPvoiyIikKJqQEqkYYaiyiPgZq1gv4KsOMv0EqqQGumuqcpmkYxlGUJEmWpnlRVFXFGROMCSlVraivy2X9IzXmW8MXmqZLqTAmnAsIEcYkjKMgCJiQQRRqhnlxORaQpDnL85JzgSBBCHEhahWBYRiaptU6v7qlfVWvTdOs/1hXvJpgURdBjGg9UEOk6l9ZKVmbwgIAXNeN47g2ox0Mu+12FyFkuWA6WTTbHcvWp9M5pXrde9ZXt9utqgoAaWhaVSrLsm3b9tfx8fFes22wSiJE/j//xT/67LPPmy0dI41xYJquY3tVDgghlOqOi4GEUCFK8WwSiwqoouH7/mK+Jmb+9MmUaqjTJ1FYxiFYLiIAiEbAwcFBq+2kKaPEgrjqD5znT2+W88Q0tYplkmPLbHAuVguRZbluYs/zbJcoCGwb9YeNskJYowIIf8OW60m73Tw8PM7TxDQF1IBUYntAGq6RVmlvZ4cC8OQnz+8cHP0f/pP/G3B1oMBWz5RSLhcBALoQAGFgWS8Nn5gEEIJXR04dEAoAQAgCAJptAyIRRyXCQMhCcoUhEEyWeebaVlEBTGFRMS5BECS2bQNppEnx4XfvxlGeJ3hr19GNhKX2t7+/e3S78+jzebBJ2s1BFAVllUMEbm7Gvu93Oh1CCNUwxdDxbKrTGok9PHgNBmCMf6F1fYkp1zbwtf3YG7HZGMA8z7MkLdKMsbIsy+VyeX1ztVqtuGRbW1v37t3b39/3Gm4l2Xq9TuOM8zo9o7JtW0pVVnw6X1xcXJ1fXgshLy8vv/PdX6KURlH0zr236vVW7YndcNytra26+8MSNF1vtDWM4ziKEiZEUfHjo9s1fVczjawoG42GUBIgjAit14g1javeezqO43leWuRxlkoIKsERJS/Ozxrt1iYKTdNECOkaYWUx6g88160hTgFUnucHBwd1jAZ4w8GCS8AVGPSG3//+94uiODk5MXSr0WxGSewHGyaEBMrfrMbjcZoltcf9arXyfT9NU4yIZdpbo+17737t3fe/ubWzmySJYPL8xXkYhoTQYBNhSirOFEBJkkkB8jyfLZZhGO7s7H3xxRcAI2qYn335heU4huW0Wq0kSZ+fvEjTHGKaxEXFpKZbr8DfOta9KLL6JOj2+5ZlCSHOz88N3Wq3u7plZ2W1CZIoTitR56wDxphUCiNaTyVvThCvWHuO49i2XePIZVlJqRDCCBEpQVFUaZrnecm5hBAjRCDArBKCK10zLdOpBcWEEIAoUDjPKlaJvKjiJKsqLiVQErKSVSUXQpimHSeZaXubIMYA5Xmh67pp6bXQ2Gs0EMZ11a6bPib4q1JeD8tVVdX0jnqBZRgGhPgXukIIXxZEDDCGVMMYw7o3ieMYYwohvLmeZnneajlCIct0fH8VRxVG2ptBu1XFleSWSderaLFIpRRFxfJcrfxlJYrtnQOh4Hq97nVHCvAsrSgFYRD/+p/7jVu39tIono5nQgiqaWkig8C3zS4CoGIFY0IpMBjZRQpu3Rp6HgEAIEjLQizma1aBy8ubLA8aTQ0DbBqy1dQ2S5BFzLaQRkGRiDhKdc22bRiGMaWUEIiQHG1ZGJKmNypyJQEHSAAAqhIMR12owN5O0/GoQFwBOGi3D3Z35pv1ehUgAP73/9H/GqtOkMGSpkA53/3W8fmLDQCIIKwUABDYjgkUkIorBRT6avB8yeYDGICSKapBpHEI8dqvAJCYAsYhY1zXcVHU0Yw2Y6o+iJUElJjrVXb77m6nPVgs5wjRO3eOKS6ABEXO3/2gl2Ts5iLtjdR0nCOsWg0NAFDmYDqZU507jgGkOV/FmqZdXi6EYLu7o9dtIPrT+Iaydm2ACCKkkddvM4JKJxRIJRiPg3B6Mw7WfhJGuqmlaeqHwXy1jLOkrKq6TRBC5HmehAln4pNPPju/HJ9fXo2nc800jm4dh3Haanfb7fbPfvaz0bA/Hd8Mun0IUbvdwZh0u70ojGtT5YbnIKAowh9//LHlOEKofr+/DsLL62smOKV0sV7ZrhOlmWYaAkKCabvVqXdDCKGq4rWhE+dS0wxdN8uSKQUxpo7jSQmoplnOy3BnhIGh6Q3Pi8KEce61mlJKXjGN0DeV+XXqUFmW8/litVrbts2kePbsWRQFlFIJ1GK55ELsH+x2u81KcMO2tvf29g4PG+226dolF1wB9f9j7M9iLE3P9EDs/bZ/X85+4sSSEZF7JquKLBbJ4trNVkutbg1mATyGDBuCfOMb2zBsw5dzYcC+0M0YBsbAeO48M4INWKPRaEbqGbW6m2STYpFN1sbKrMotMvaIs5/z79u3+OKLiExJc+EfRCEYkRGR+Z//vN/7vs8GpCxrjGgcp0+fPp3P547liEZKKRk1PTfAGLuBDxhlRQEAt/fvHr4+ZswcjbaWy+XmaDsIAsZYWTVfPXuRpunDR4/Xq+TO/QeOHbhO6Pk+JsRxnIuLMykFY6zle3VVFEUxHA6LohiNRtvb27Zt//SnPw1brbyu06Ksq0YrB8RVz6VFpgpjIARrFR0hSCNahBAtc9Y54togCxQmmJmGbVuuadgY0aps4ijVtx1jCoCFEFKA4KqphZKkqESalqtVlKbFZLIsyqYqG8G5UsrzPMuylERBEM7mSwSMEoNSqrd7QjaIIsd3qEm1l0fTNJoPJEHprQjGuCzLG+N0/YE29bpZD721QFR1XZZVBiC1t4Jt24ZhKQV5kVJiMcbiOK1Kblm2HqXXy4TiN2+TPM0QQmHLV5L4Pia0MZhZFI2EwvVhFSf7d+6Op9n5xdgPHWZarQ45PD75L/7hf7m5Mfrxj3/8t//23y4r4Fz6vl83VZ4JpGCwAa0gJAyQtDtdP2xZZcpv7XUtiyKsikJYhnt2OuWcM2piwg0TcdGMNk3fd8uytG1DKSBUjsfTILQ3NjYoYVEcpWlpGDRa1//in33W7vTyvHQcx7RRr73d8PzV8xdff+eR67CsqKpSNqVwbe/4LIrO06897Pz43/m9//v/4//LbAU1ENxYjnjxZQQgFTSgwPNwVeUAFEBcd4jiehuLtJkXl9hyqeVBVfM8BWYhZgLBrn4dMIY8r3SDqfeGlNIih9m0fvcb+z/7i2euR2y3SSLx9/5nf2/QxwdPk6LIbu0RrqDis3bYNU3i+ka71REVPT09kxI4z+O1aLfcxTzb2AiHg06Svol+e/u66RAxQqDTsJRSQr4pAWWWZ2k6n0wbXoVhOBoNHz16dP/+fc55URR1XZ2fnz1//vzjjz9+9uzLZy+fvX51UBWlZm+99/X3t7Zvjba2v/eDH967+yDPi3a3U9f1+fn59mhzuVw4lrl/74He77zz+GsY48DzAMCyLCTFzvb20dHr27dvu64bx7Fp2lmWLRaL7qDv+T7n3LAdKWUQhowxHX6WJhlCSOtbdHOUpmm/34/juCzLqqp0DjrGmFK2Wq2CICCEUExGo5HruqJpNDgbRZGWA8/n85tbYVim9keJ47jdbsdx/OTJE0DSb4WYUcuydKJTWeZ5nidFHuf5KokX0brkot0ftAe9oNvub26nef7p775ommZ/f//xo0faNF+AIoTkea7h8m63K6WybTuKkjt37uhfxxhL0zSKotFoJITo9/uPHn1tNNpyHI8SEwAFQdjv97e3t1+9erVcLjudTpZlk8lEd4Xr9fri4uK9996bz+eMse9+73t/9md/RgiTAmre6L5Pkww0iV2pqylSa9c0z1kfNtp7RuNUhmFQaiCElYKm4VVV6/+VZVWWTZrmUoKUkKZpFCVlWTdNk2X5fB4vFqus4EKoIAgtyxwOB4PBoCobg5pNXVPMHMeJo3SxSFqttt4DKqWyLKMmYwa94W+/Zb9IdBHX7aFmHRJC9EJQ8w31067+9QsAEFI3BohBECyX606ne3ExPjmdM2ZUVWVZFBRer+LFYlYWV1TFm2dDCDGdxkrJxSJ1XEaZang9HGxIBa4PegPzwQf3lIKyqbhUSgmMyGy2+MUvfv3LX/7q93/vx3/yJ99WUq6WiW3by0UEAB9+f6fdblMK08uckoYRlUWiFksJRavlB4FhmrbgYFlWHCeWBVXBLcMMfNuxjfWyYdgwGPJ8s9frSCiePz/OsqLVtutKZVlhGOTV8wghtFgB59J26PHriBlouYgGve6g25MSpEIg8GoZcwkeeP/R//l/+5/+5/+vg/PEcgTUsH3LJrYxHdeAQMoGgHa6rfW6QEBvhkspQeMhGGOMdCPGhGz6g2C+WAMwKRvKQEnMGGkagTEiBKIoCgJHCGGaRlnw6TgaDI3x9PCLT6aOhzoD+OhfPakL/vf+3v+kTHmycARevvN+azGmD782qquiLNOiKOazuNPujTYpIYoR7+79+5hBXdc7t7ZPjt6EHd28iOgto0NKJEiKFJegBMJvHL2++cHXy5rHSc5sRyE8nU7Xy8V6vWbE9E0bStnxO6vVyguCTtBGCHW7XUIxIWS0vYuRsmxalHme500tDdPMotX5+Xm/38eYrOL6wz/5d7LLC0rJd7//Pb0X43wRtoKiyPb375imiRRGCuL1mnM+7PWPjo5M13Rc9+T8/M7tu2dnZ5ubm/ot4bScOI8QlgYljGBiGppT5nle0zS639QeX8vl0rZtx3GSRKZVOQhb8/kyDMOW72dZWhV1mqaiKl3PFrJ5+4lnhOZFSZTotTt5mi2Xy4ePH9RcMNNeLKOac8OkVVVlSc4YC1tdhhgGoho+uzxfjM8IgjJPEUIbg2Gv5e7u31mvkl/++pPNnVtJWTlScs4pNeqau44vuVpOp61OGzGrrgWSaHuw4VDj0TvvHhyemJZ7586D1WoFiKzWa4Uklw3CqBKSGnaV5NSyyzSVUg56nflsmS3nlRl0B/12ux3Ha0QgSwtCSBTFv/34Uy8M4jRRWHGQmJEkWnmem+SkrhvGmACFCWEWK4oKY2xQ3DSNaTHGmN7EFVVJCNWuN0opfQ7leV5VNaXY8g0pVdU0ZSmaRiHV6HPXc7BGVACAN4VtMcHr2SwHJINWmI+LXm8TAP/24ye9TosQokBYlpPnud6ECCGYSbRu70rTgrFquGmaemEiiRKglAKTsiSKDMPgmNd1yRhTgE3TogYrisI3HYKxktzxUF2jLMmDMLw4PzFMXBRpELhlqqp6bjNa5KKojBoXy7jwAk+KyvXeSBoIaySAkp5rx1VdVVWQZWJ8WXYGpmVC13F/89vXw5HXCtpFEYsCmyYoVEPT7+00Sq7+s//nP1iuIkKQlLZoTCFykCbG9PDVCUPO1p7BWFXxuiwxJ5Vrtdo99Po546rhCpKiVoQyk5cZXc+R31ufvAKQ+OwsdcMASfXwzrvTyc/KFDecJ2t6a99drzLHpa2OXYlUNlAWpN2yTl40BY6ma/XRb58MRrh5rQwMD9/ZrUQyOcF/6zvkW+8//j/9yT+wLafXy+MxvnO/fTZOAQSjjIum03bzFECBYaqqAgRIcUUxFiB1Y95gIZWgVARdoNSbnM0tglEjlQBlFJIjhEAI5ThWlpVux+ecN02d5zA5XZXr+vTF7M7doChL3/Pavfn/9R/8l3/nP3gHDGEGi2rVWy9dSRYHh+duYF4cq/4IOKKz1aIBnmdhUZzPPp6YDJYzuVhn9bUQGQAQviI8AIBSV6shKgCUEJQAIobmIuqr0+lUjWiEiJJUSMAYe0GoFOJcMGVUNSeEfOMb3wiCoCiybqud5/k6WkVRRAiSonn16sWtW7e2tjdt224FYRxXQegQgvI87Q2GVbQ6Ojra37999Pqw3+9LKS/H59ujzVUcua69XK+ZaVhKXU6mg8FgtpxhjA1qKKXa7XacJnqs0yWvrqs0SxgzEaF1zQ3DYIxm2cT2XO1+fCPGwhhrNmKe56Hnx3EcuN56vW53OoQQqWC9XncC3wu8JM7expR5XVdV2WuFUkrLNHZ3d5MiL4u6rOV0OrWcoOGgrQlbrZbrO0VRnJ2dFUWmhDANsrkx3Nu7PdraqsuSYvLF55+v1vHdu3crLs7PLzaHA920FnVlmvbr10eDwWAdR48evrNeLTY2NjqtECF0fjl+9OiRZbsbw17+xedRFLmuTaiXZZlp2o7jLGbTmtej0aiqqvF4HARBUwsh1OV0ZdiWaTl10+ge+fjkJAzDy/F4gKCu63a/1TRcC0vqsoIrgyNtDnhzbCK47sJ05whwleYKb1nI6NtlWaZlWYaN4ygty4ZgREwihLBts+UHCGtDQ8UYU4xxzgVXhmHkRZ0kyTvvvNPt9H/5y19JKQmj2rbyiuiD0A3ao9tYAGCM2aah+9mrrlYqJJVhUgxga6EhJSZlgLECXFWVkFeiQNOilKCyylarqNPprNdzpZTjuXVdE0Ixa1ph/zQZB6EzvSgBQoSQaUBWNDpe+eofazpZtkSI9Pv909NzuCaySSl1RkKn0xqPl7duDRqOFYgsA4xhPp95bQc4mB22sbHx4qupUhxjHAQMeOW54fgy39zugKJKCd/3bdsWVM4u4nb7DianQiqEYLnIETKPX1dhXwYtM1mFgw0hRL2Y1grFndCZL099zxtswHopLUdNp7HrWFJQzGLe9Iqcbm6R05NVXdsYmaZprVYrTPDX3/vGIZ0wZqdJWVXyf/e//49++avfHR/Xdx93EVEIijsPWv/sv3qFAAnRAIDjOPP5Cq5jvxQoAYCUQm8nySNgFnEcUzSCN5WSWChJCBBCKMJcCte1kySnlOR5zhir67rf6yyXS4zh93/8/dfnR5/+7rVBRBAY4/PZ6cmFaZoEW1Lm09lZt+OtFiuq3KCFmSHD0Hvy+fo7391L07iu0GKSBS20TOuG5wZ9k4uC3sDebz6DKaGgMKWkqeu3G6KPf/vX//0//+/+6qc//fLLJ5999slnn312cnISJTEiiDI22t764Nvf2r61I5RkjB0cv/7qq690WjwhpNfr/fEf//HW1pZju6bJCEFlUwLAfDEdTy5Wq8Vnn/4WYxJFEQButVpBEFims7Ex6oRt3/eLIgMp0ixBSNm2KYSwPRukcl1XT+I3bk6UUk2XU0q1Wi0hhOO5q9WKK6kztPSooh3ANUE3TVP97tK2S7ptNAglhBVFqQBjagghmPnm/G+aKggCIRsFoixLHQjnum4URRJwzZvLyRgwbne71DCWy2WUJHme2rb77rvv/vAHv3fv3gMvaM2XqyjJjk9P1uv148ePbcfKs4RSDIA5lxKB6/hawaZ9B4QQi+Vya2ur3e4qhRhj9JpnvrWzI0CFYZilRZaXu3t7XIjFaqGHyiAIqqbZvbXf6fTCsI0xppQulrOmac7PzymlSZJ2Oh09niulEEBZllJKx7IJIfoRB7jhzUqEFCD5tuyUXMcTa2wErpPClVK6+1ZKVUVtW1boeyajtkkHvXY79KRqdEKAlhgzxhzH0eiw63mcc98LT09PASNESBAEurnQkLHu8TUsrmFf13X1UWfbtlIqTVPLMDUmhq48cpgeq6+AIIyllFIISpCUAqTo9tqWQW2bAXDToq5nKqUcx8OINqJsGqyEYZik4RkIPOgNABcas755NsqydB0o8lpK2TQguNSyAj2A13Xd7fkYQ5JEnHNClMHQxsYAE4hWNWC8WEbt7sbGdoiwev7lwrbN2w/h8GC+ubFBaB3FCwQkimI/cAlhgqOt0a29/a0iyxkDRghCKF3DxibUfF3EBqMOYXXYatU5eL59Obnw3C41GiWxgrrb2Vwt8zyPPd+YTWuCrM4GeK7th+jgeYJBDgedXnf47Mnrg5eXtuV8+eVXna65efve//H/8J/sPTCAVq++yu49dpeLZDGrCSFSguMYGOOyvLIWBdCQ7NXzQwihV6tDRAxlW04aF6IWQjVKIgAEQtZ1LYTCGOtIgOtVDNR1GQb2/QfDjY3WfHaxuWn1BwHBDSASJ1UUp47VnU6XBoNOx/7RDz+4PGu8AHgDhNUGpdtbe0mSLGZlv+dZhglKcZGv129n5r3ZI7+phlxIAFzXgjL2djVMkiTw/NFoNBr279y+ff/+/eFw2Op0hRAVb9bx6mc/+9nnX3yRZcnF+DKO41Y7HAwGtm33+/264kmSmaYthHAc7+Tk7Ojo7Pj0fDKe1RVHUu1sbjVNU1XVcDhcr1bj8XgwGAR+q93qKhDaCCBZrzZHG3WZdzotjDFSOPRbSZwJoQATZlqGZWdZcd2PWEop23UQQrPlotPpOK5X1U3dcCEVwkQqsB03zXIplOCyrhrHdpuae66/WCwBkGEYpmEXRZkkWS2uJN03bXJZlovFQl2lUPFutztdLDGhhmFcnI9933/w4MFqtTo/P59Op2maAmDO+dnF+MmXX37x5Ksvv3oexenp+VkYhj/6gx+vo+Wnn35sWZZr2UCwQqSphd6ibm9vM8aG/cE6We/v7/th27BMRLDjBYZh1KLGmHAuq7KpuHj5+iCO47KskyRbRZHtOlwKLuVwOByNtkajrc3RtuPaerVaFEUYhufn53oLqT1+GGNa2W2blsZhOa81/VhbpurKcrNJ1L4YV2yV622j7ob0l/RbAiEUer5tmJ5jDYf9jUHfMomSHAFnjOkQAUyuqklVVZQarusLCb/85S+1xKXdbjdNfUV0kJIxpomKN7/Rtu26LCnGmjSqhAz9gHPOm4ZiggEhBRgQQZjXDW8a3blQSjEGKSUmUJRZqxV2Oi3LoHVThi1fKZFlWVlWRVFtbW9MJvMkLvr9tu0YUZRIAbb5ZtTSV5YVhMDBwWkURY4DGnAvisa2bcs2EFKHR8cPH+612p5lWVxUBvXDMEQYHNdXqNrc3Dw+uhyMDIV4vMRclO+9vzsfq08/Hrc7ra2trSiKDcNaR5MqrzCmv/nrz1bRuGmAMlLkApTwW2ZThFWVmnaznkshoNXBoOjZ6QKk79odiqy6yeJIbG1tIQJOQKsCVosKs3q40clz2dqoDl8UCJpoNZ6Ox02jwtB4eP++4Op//b/5X/3ZT34xW5Vhx06zuKngweNwMU8bfpVEHARBFCXobVEHAgBQGJFrNhNBihFEmDKZlSxTggEBUNNAQCQXDZdKQVmWloXrBrQbOWNsPssxxvt7t/I8zrJyf3fHNJhtoqzkz18cWTa5PI/v3t1zPZqXKyEr22btjr+YNrv7g9FmNwidNG14g3ZutbTbHJeCmv/jCVbX2iSFFWBmaJPY6u1quLd7+96D+912WzQcIdVU5XK51Cpgz3eFEKPRyDCMg4MDKcVwOJzNZp999tlsNivLUiOAjuPEcXrw4tBg9q2d/VbY39m9/cMf/v5otJ2m+c7m1tbWVhStiiKjBA2HQyllGLbrugIpJW/arcB3XIKwa5tRtNLErizLJIDuQKWUdVlpxfFoNNLmyXGWOo7T7nSEQkKhmkvAFBGWZIXjBdP5UnMYTccuikJhVJZlkiTEYK7rY0rSvEyzPC/KongzDdmee3R64nhBVlRxkoXtTpwXmNCLi/FyHXV63VanO18uL8Zj23Vt1z05OTs6OUaYOp5LmNnudvbv3AmC4O7du4ZlPf3i81evXm1vb2dZVhRFnGTMNBDBSZZ2u33btre2tjTjstPpLNcrhUjVCMuxP/vss8ViMZ3NDg5f264zHo8Nw9q9fefk/GwynxV5ZVm2lGq9XjNqatDc9/3t7e2yLHQPhTHWPv66WCN5VelM0wQA/fe5BhyuxpybuViXP3IdWHwzA+kthIZ9lVJ5nkspW62WhpKrqiryNMuTPE/LMq+qimAwDQMB5GlWVpVh2qZtaUR4PJ5mRbl/57b+++jmXSmlqzBcsyC1epLXtR6isyxD6opXpL+qURG9f/A8Tz8qBIiUUuuXmqZmBEfRWvK63+8XRVFmueNYRVUxxsaTWVEKhDSLGC2X66YWpmmbptlIwZj5dkqUbdutVuDYVpFXpmnqk4YQUErptnR7p4MRW62WABghdXkRT2eT4YZpeGUUw/3Hd7hM5vMFYMCIxhH33NZqjijGZVERQj745oeHBxcSah2uvZilnbbvOsSkzDDMhjedHjs5zBzbGgyMuqjagbderwHDfA7zsfr4t5+dnUSjTU8JmM0vNLLR6gZ5Qjjnq/WkyBvDRE1J/MBhJjdNGsdJf9g+uzy1XOvP/+Kf/1/+wf/t3tf9yaSKIh52eKc9tB2sAIRoDBMzxqIoJwS/Scv716uMVBwACEG2byJEsqh2mIkQMNOg1EAgdMSO5slhBAghPamAAt2SPHv2zLJYXUmQMByOXI9UlRoM2198fug4XlFWvu/Udb13180zXqRmw0vHr5+/+J1jmwhwWS8IUQA0TZq9/a1/oxr+GzURYwxN00gOtm1bhnnztZKLV6+PpvO5ELwqMtOgO1ubmxtDhHTymjw6er2cT13XHV9eHhwchGH47rvv3r9/v655HMdSwPhy6jr+3bv3R5vbzLAGw9FwuMUbWeYFI7Qo88nlRRKty7JwXcdxbduyTNM0GKEYt8Nwb2snjdadVthUteT1ztbWfDrVc1/Qamkve9M067I2mBn4oet4vBEIcLfXr4XQBiRhGOqHUluHKaUQobq1zMqq5iIrSi7BcX3GWJYVNRc1l2XN6+uiAADnF2OESafbPz47R8xIs+L49CxN86oRvJFSqslk0jTNxsbG0dHRkydfttvdd772nmVZ0TqxHNvxvMVivl6vP/vss08++eTFixcbGxuE0XWUVFwsFquqasKwjRAxbct1Xc106ff7cZaCQlXdGKY1vpycnJ/Ztj2ZzDAihmHFSba7t+d5Xl3xPCtH2zuu3/bDthRXB2wYhrZj3rmzfxN1sl6vDWYWReX7fhonlNIreTKh2psS1NWCDiGio05unhgNLsP1UIyvUqJAt2mEEC3hCIIgDEPdxLmu67q2DobyPC8MQ8tydJmQkmv5im3blBqc88vLif5X53keRVEQBBIBF43+vRrOvvEu1M1pon2IbUdbwGm+PSCEKdE8fMDItC1mGghjQsjNUoVQZNkGgIyiFVambfmTSWwYlmGYlBhKkqoUWAFvckzk8dHKtoKLy8uiqoUwq7J5W8CqtyjXmmhRFMV6zW3b0nvMqqooxZcXC8dxsrQ0LdYKewAyySpmldESZtMFkHo+5YxRCbXvBetlNRnPMFHT6fyrrw6bRjy8/8Hv/fgbJ6cRAOINXSxmntsOgoBRc3MrkFI0tSDKdCzHdmrLsuIVxSZ3XTg7WTFmb452/vBv/kA0cH5+TgwUr0S7h7JEKmmt1nmr7YHwmCMwoTv7m7UsbdeM01laRIRa59OL4XZwcr7M85IB+fo3dg+eH61XBWWNbgz1DkqPuroSXmWyC6mU4koKISQCRIkX2HnW1BkQhBVAfeUqpCil+q3GOWcM6ZeYc0GoiQktiuLi4qLf21gs1lwg27b3dzfagYtwbVA/TVPKwDCM5SI23UIKslql03G0jldZHhdFRRmpqoYypABms6yq30Q4/I9eWEoJSjAGWnh/84Xvfv/7P/jRj3784x+/8847g15vc2NgGvTw4NXL589evXhZpNmd/dutIBz0+t///vfv3d4PgmBjY+Py8hJjrBknAGAYxmw2uRyfv379+vnz51999fTg9cuzs9P5dFxVBaX4zp19QlFZ5Um0rus6S2OsoNMK7uzutkLfNljL90RT97odiol2ANNcmThN9cmsx+2sLDqdjgClm4KyLDUKqRnIGONut1sUhW3bNefMNKumKeuqapqyrjElEpTmSyqlkiy/muKur8Vy3RsMTy8ukrwI253Ty0nZyPOzSyHEcrlcrte26zVCnl2czxbzne39dqvLmImZwZU8Pj7+/IvfvXx98NO//Em0Wvqu7bqORPLifEwMs6plzfkqiqqq8n1fKQUYrdfrm2BiRMl8tSQG++ivf/3w4cOqqmzP9Vvh2cUFpVQI9bsvnmp7fUqsaJ1wLmdLjWWR1WqRJImW92vlT7fbveFaM8b0nUFSaR0eQboFw9csZYIQ0tkRUlxVQ11NtBWCuo4t1ms7vf/udDp69UkNo+KNUips+X4YcKGqqmHUdF23qgoA6PV6tm0vFov5fN7UPE7zMGh1O70///M/NyyrqEptAKHPP6WU1pnc9IB6x3qzQNRKaoPSmz2j5t8IIXRLCwD4WoRqm5ZSKvCcJIlWq7jfHWUpCK4IZmXFpUR5Vjdl0+k4w2G7KiFal3FcmZZ1eVlEkSDkDcKWZdlsNrkcLwzD0HkDjIG+1aZpSsWFEIv52rIsKUGIZr3MMMZ37rZBBUriT37z6uVXPAzNpuYEmQ8eDMtCCIh39vw4VvcfjAim//C/+ItOp/Xe1zcoIWUms0zMJsuiKA1i1E2SJpXtGIBklnIFNUICpAUIvvO9dzEV61U+X5wyZkoFvGYYUdO0zs9ncVIaBgqDTlVndQWmLaeTqGkax/Xn82owGlRN4/md/mDzw+/fs01oGkhWotsO18vmG1//tnZ3MU0jSRJ4i7+pFCClZ+Ur4w8uJULATEpNFi0SpAAphTFkWYYZJldhUgAAN+tdjLVCkMdpnBZRp9dpddpNLSaTWdM0+/sbBMs4juN1sVysLYfGaXbweuw6vuCwf58dviocyxX8yjOiSGxEgBqqyOTk8o3dxjWarN7uEDHGAOhKkve222ualwBweXl5fHyslMqSZHJ57rn240eP3nnnne3t7Rsh8NHBa5309OLFC73MXq0izrk2EcBECdG02l7Yci3HtG2j4YVU9Xq9Ho8vfvrTv1wv5kqJ8Xh8dnZimmaapp1We3fnFkX49v6+bZhIQa/d0e9wIYQ2dNCNoSbcDgYDbZdi23aSpQIUxjjNi9HW9mK1RoQy08qKElOWZHnV1BJU0zTrOKaUZkVODRYlSVMLUFgBXi7WGOPmLS2K7/uW47x89WpjtCkBPXv54vD4ZBVHVdV0+33DMMbj8atXr9br9XvvvReGYV3zZ89efPHFF3EcU0qrqlwu5/fu3u50Onmeb2xsYIz9MKibxrAsy7Kqqjo8Ptbz4HQ61WbaNxOr5wWvXx/1+31tYRtFUdOIqqpMx14sFhhjx3GSLJ3NF4vFqq74YrHQyP7Z2Vldl0qpXq+XJIkePwkhlmWZpul5XlVVlmVpWbFBmc6TUUohRK58jOWVGYlG5DHGb5s76L+exkx0h+i6btM0ZVlqkMTzPDfw4Tq8CRNWVPVisXAcJwzDKIq0F7z+rn6/t7u7W9c1AmyalrZA93z/5mFV196FWmqiKZBKXBntSCmRZvmYBlcSMBZKAcZV0yBKdPb0DexDKc2y1DTNLE+qUvhe2OuZOkSNMTOJa8xYXTYYmrpJHz+6E8WF5RK/FTqubxhQ5G+ahn6/3zTNxkZLz3pCCMchWZZpn7E8l1GUEGIqBRjplJi6qgqM5dGrzPHU2WmGuOe3Ratr2sa26SYXFxe7+2FaxP0BwVgul2tGyMXFmFDggs9nRbfrG8xZreI0TUPfripellUQOPFqnafKcZmCSgpYx+e7+2FVATUhT5qwDetlVZaNQHWeQsPB8cX4jCOEJGRlKRuBlqsIY4opvP/BN2aL5fhy/snHh4TC1lY7mcOt3U3PN589yQ5PPmlq0EKNulYYa0csdDM64Dc+CBJhhSkwxhDBaZozZBKETQt0nBYmQAgxzStlSN3AzcwhQUikyqaoRHVw8MoN/KJoJILx5BQT8ANEqbVcrre2toSCVqcV+MOmad79xkgJEi1lnnE9zp8eZwghZgpKLMt4Y0x5Y2h08xmEEJZSIkR1GXS9N2DZ57/5CHjtuFarHVxOxllRjLZ2t7Z24tXy/PjIMggv8yyJ0zgybefh43d77YHFHCnU7du3e4Ou6RgCeFpEiOCyLHXkcRzH6yStG4GImdfN65Pznd0727duC45brfaw11/OppZlbd++TXz/3W9/2OkOHcvd6PQ6nschUZAPugGqOW5UP+jYplNWTX9zN69F0XDLdyezadDqzBdRXsobYxL91i3LUpdsjKnr+llR5mWVZHnTCIOaTVEXVV5JXvGmaJq8bsrqDRGdMfP85NK2fcSsn/z8F5PxzDXth/fuDwYDQshksojWWau9cWv34cnp/PXZWSGaVq+7t3t7e7RNFbIw2x3t+L4rJezeumeaznq9FrwkWC6WM8rwYrW8nEwUIVGWdfsD23ExxmVZb25uX1yMAeDZs2em5QAidSOOT48kCEyp4wZF1RiWU3OpEDE9x/K8oqhbXkcpYpr2y5fPEVWWYfc6HZOQNFq7phF4ruRN0zSObZuOXUmeFLmuL4RRAYoBAZCKckmEQiCEEhKYYwGmRdUgIPptjxCyTQsD5HmeJEmWZcw0qMG4FIhgLkXDq7Is0zTP4iLPdOpAWde54zi+H6ZZlaSlabqW5bh+0O51NzaGs+X8cjoxXLusKwDEkGFiU+d/VVXleR5ImUQRQYhiTAguihwwaOisqirTtjHGDEwGRDUcA0jeMIIpwpQa2GACEUAMEwqIWzYlBonTPC2WjtuxbEjjRatNm4q2+47fMk/H0fb2O65XX54c7myjas0mF8eeiwQFZrwhalxclqONDZMme9ubnXZ/scrb7bBI1XKyoGAgCF13MF8UlucjA0dZ47YsoSRldqetorXJQtjYhdW517bc3/vDwYuDZZTYt+46zASGWheny1/88ku3LZDFFa8UyNvvmsPNtu3xOsOUsstx3ihwTICqeXz3frqCPFPUraBkcbRczjgIA/F+Qw4QICnAYaZlOUKB4rC1TxaLmCDqMEeWsLfTqcogTifvPQhujfpJIX/98fHf+NG9xeQCakkkvv9u9ctfvlKk/uRXcyyt/tCdz+eM2FJQAAmICyEIYQKkBGwZNlHKpGZRYGJaVr9Cc78qBHJFDjlTzEYWxmlSmRiVlEBdCkoNkxGCgWLkO3ZVAShvMU+x4iaioWsxE9aRHGyMal7u3d4HnOUZcFEsLgVSnLBcCDEZx7d2R9NJkSdmXQKzlRvib33nA9OA1bLk4o0WRYhGKUHpFShHCFMKYc0kIxgA8Nve144XpHnZ7/d939cq6GS9ev7lV4Zh/OhHP9Bega7rbm1t7e/vO47TiNqwWBiGx8fHx8fHmohbFNVysWq1Wrbtbmxs3rq112l3w7CtlOp0un/8x39y+/ZtQDLL48vxSd1kfmhsjvb9zkbgd9xWhzHWbodhy90Y9Wxstd2wG7RAcdNhSZmuskQSpMNwe71emuZCoTRNdcerV+x6wU8p1bwcSikXSgGezZeO6+dFxQwry8uGy7wq9XglQfHmTe8DADrqKAzD8Xg8Ho+/+c1vPnr0SDviRau1YRij0cig+Lcf/7Xkdbvd1vEJQohXr16dXY6rqsKEZll269atui6Pjo7ms2Wr1ZnNFq2wEyeZZVmaOJJlWZ7nQvKqKizL0rlaT5488Tzv4cOHmteyOdqWUq7X69lstrW13Wq1tXchQQhjlOcZxvjRo0dXUAPnlmVZhul5HsaoFYSea2tKimXbGGMur0qbNsLC14bScG2BqZTSTCbdOZZlqf+A3os1TcN5gzFyXYcx2jR1UeTr9Wq9Xk0mEy3jk+hK9qd/lDaJ0V1zu91mjEVRpA9LzfjRg+3NoS2l1Gi7Hlw0jAMA14kFV/y+q6U4IU2jM+evvlc/A9f4itTfzjmnFEvJOa/n86lhUCkVRgYlBq8bizGCJWNwcHDo2O1ut6Mkc1xWFpUCYRo0id8MXJNxVFci8HsHr84vLi78gI0vksA3vVAWZQJY+SGRAor6EmODUZZk2clr0ekMEBBRiXt3B7YrXLcxjJpQKBPTMDEopgQoqG/t9SQHk/R0kC9CaDlrAnczCG3LVnUlkbK6PYyUJZUKuhQjGkcFoQAUE2whLIIWns1mH/38+cbGBjNBSuh0MDTmYJMhcFpt5rUUxjYArFYrP3CKTK5X6uR4+fzVc6E4ZvwbX//WyxcRYcq1e+OLhKgOM2Bju2xq2TSy4Y1t2VKCaV6FF+rermkawCBkY1kmgAz81nK5pBRM00YIuBScS0wpxhgjAoB076yHD/2CtlrufJYGfsu2Xc9z8yxttTzDMCgxpEBaMxUGXlnmeV5vbm4cH42rUown6zg9tx2YjhPB0eOvDU2LfP75U8/zhhsWwBswwPd9DSdqeFBKDgAYKZBC6N4Q4TcLkW9861thu13VfHtn91vf+la/37tze+9v/uEf/OhHP5rP5y9evNAmSEmSHB0dnZ2dffrZJ8+ef1VWBWNkNBqNL6eO40wmE22D6rj+fLH66KOPfvnLX11ejpVEjLGXL1/+1S9+/otf/OL8/Ljd8TlUi/W8qPhqtgRAZZIMN4dbO5v7d3apbQRm+P7j9/vtjoKmbgqueFGWbthSkutYjHUc27Z9eno6HA5ns4kmWmvANI5jPSpej66VRhV0IdDAQdMIwzAQJhjjsq64fNNCu66rM/mOXh+EYTga9iWvAUmE1Gg0ardDzuvZbPbD731/Y2Pj5Oi4HbZ6ne7JyUnZ1GGrtX1rxwv8rZ1NSvFHH32UJMnOzk5RlgowQljPdHUj0qzAGNum0VTlbDLRXa2ejk3TXK/Xx8fH+m09my5AYYxoEAQIobpuhJC2Y4qm4lLUgjNquq7veUG8ivUyIQiCwPOEbIa9bqcV+q7DGDOYBQoTcrVo45zXXOBrmxmMQV6rTZVS+qZp7aPe5cH1QKTv5I2RFwBYlnXr1q3hcBgEgd766TnXcRyEcVGWjuMEQQAA/Ca/iVK94tQ/WTvf4GsTf/2BLmn6JuhXEAB43ejarUdgzrlCV8xw7dglryojgMIYY8aoUpIxAkgJyZeraZavt7dvSUFkIxezpUGNTuDcu/POYrHy3cH23hCBBVjM5oXBrI3Bdpq+WcYrAZQYlukSsOqy2hyFWaIIcQ23ma+WAHK1HBsGWIymaUoIc03KKHv6u5frRQ0Ai+ly0POLMvu9H3/76OBwNVeT8QJhXhQgJRgmUAqnx+uDFzPBCSFECfcv/+Uns/kKsJKCxevacVnVkMvL1d7dgd/yl8us27IAOALDtCimJSCIFqwsZLcPCKH5fG2bFibq4OWs3TVNizUiMQycLPw4ytzQuv1g86OP/2zv7tCw4de/PP6P/+N/yjnuj5TnjrKUc1n/nb/zoz/6k3dXy0IKQIB0ZHtVCsaIUkJ/shENxkhKYVqYMsQwu9l0cX51pBkmrZoSIYyAcAlKgUKIN4pzJSRI3lgmGo8nIDUpuJJKrOP0+ZcHSBnT8aTTsZuqUUK2WhgjVeQiicvtHTtogx9i0ZCqgOFGx7JYlpZ5Vgeh9fbsa9u2pj3c8PkB5NWUTggGROAt7+vpbFVLxaX67IvfPXv2rNPp1HVdVcXR0VFZlt/5zreGw+F6vZzNZkkaHx4eBu3g0TuPBAhK6cXFhRDi5YuD7a1bjuP88qNf//mf//mvf/0b3sh79x5sbe5gSl++fPH06ZMsyzZGoyDoFHmzXCSgmOPYy+WirispudVqSwlCYUB0//Z9zw8wo2kcUSxdkxFQ0Agt453PlwC4KCpmWrZtR+s1Y6zVahmGUdc1pdR2PMrMhkuhYL5c1VwUVc2lqhqeFaVQ0HBOKBOgANOay+qtveHFeNJut5fLZdVwHcR1fHwspRwMBkHge57HOd/Z2bq4uDg4eGkYxunp6eXlZavV6vf7d+7csRwPETKbzf70T/807LS/9vhd13Xn86XnBXGccgl5WeswOZCKEBKtVkpwHQ9dFAUhJAgC3/c1ZpplhWU5vV4vjuO65llWaOudyeTSNM3j40NtopNl2cOHD+M4xRgL0dimQSkGKTvt8L3HDwwCGl5gjDWCa4ILxlhbwkgp1dVCjuuERe2DUFWVJhXegLxwbRujsQvNvvY8r9VqRXG8XC7n83mSJI0UGmwxTVNKQIh0u13DMBarlRDC81xKyY1Hv4bU9aqRMSYUgmvFix5qOOdwDZeBvIJ09EKQEMLllREZvgoXvd6UA6HUEELYjqlLIaUYY+BKRvE8S4s8rQe9fpFBVdS9buvg4DBo2VLg8eQkS+sgCLIEyhzNZ0v15tGAugaEVV3XlIm65kWZ5RnP89zzgiI3alE6dsu0AYMPiFOmlnPe7Rvji6LbbW/vtGYX/NWX09EIOmHrq6fjNEvnU6Hw6t5DL4k4b7DrA6UwOZdKuJzXWVpE6/rhw51+3xUc5blsmoYZ6s69W61Oq5brvFTxmvs+bGwM4igrK+gPCa+N05NpVUHYMr734WPHJVkEoKDm6fHrVOHMsdtSRIhmW5u3nn953u3sKyDEAmoavPDKWn7/D+68fD6m1FAo8UP6658fCg4AYBiGAkWpAQD4qpfCChTGCFOKKACqgsCJ1nlRcoyxFKDbwJpzTIgCpR1VpIKaN4IrrkAK4FwShPZ29pAk5+eL+Xze7/fruv7dp+OqlHkq2u02gCzzJkvyd772ECPZajtKMssIuVDtrtHuhLxRXz49KKs8DLoIYcoQY28JzPgVivL29hBr60ohJCjFxZtDr6hKhClhxtbmtkRweHhYFPlyufQDt9frLZfL6XRKry/LNi8uLqbTqeu6EsHW1hZC6N69e57n/fKjX4/H4yBobW9vb2xurdbrs7Oz6XRqGPTRoweu6yJEDdOhxN0a3e13by3X5wSXNU+KPF6cnAihbKs17N/y+p3t23uL5XLv9r5FDV5Ud7a2KOe8qheLRZZljLHzy4u7d++en5+3223f98uy1O+TOMkMw/B9P45joSArykZIhbCGVvR/lVKNFFXNFcKNkG/3hkmWJ1m+WK5brVan1//4089HWzu3b99ut9vrOF4ul4ZhlA1fJ7HCpCxLQuide/eyIncdX/tNnJ6efvzxx67v7ezsZGVxeTnJ89xxHMdxMMbr9ToIgrIsdYKVBjd0+ZvP58Ph0Pd97VywWq16vV6r1SrL8tatWwBwcHCwvb1dluXF6dlsNjMMY7S1WfFGbw8MyqbTqWEYW1tbgeczgi7Pz0cbg53NEQBwKfRMahgWQoSwK2dDLdDU/9X9l8ZzOeeu6+pBRsuENSqtL60w0WIVbZegACzb7na7GxsbrW6HWaZuJzVwtIzWcA3CFEVxs+clb4XhaewbYyrfwlKQUto7mhF6A+kQQgAjhUApqdQVrqILtObb6yehbkrGmGVTzmtCEKV0c2u4jqa+789n8R/90R+VBZSFOjs7v7jIyqrIixhjvFqVVSnbYe/oeM45H47evKn6fbPTcgPP8dsoaPnrqKolUKaSNUzOmyjiZaGQQozZgeswouoGAt/a3W8ZzN7ec0zWWkzw//Lv//2XL86EYqYN2ztd27aZgYqyWK1WvYG5udW9PC+/enrGDFQLfvv2DkZmtzNKk8Rx0Woh+yMrq/KPP3vmtAlCgFTAuXj61asPP/yeZZL+htntBZ7b5jVM5zECQwgkFTGYhYB5TogU8LLe2mm3QpIkGTONNM8Ys8PQWc1KYqXMANsK/9XPn3FeD0dsuVhPziXGFGNc1RmAplvhqqoYI9q7AWPgXAIGgXiv310tU7jKkyAEg5QySUqlFKaYS2kYBgJoan3OAcaIc14UFQAimLmO1TTN6elptzOwXTAMZ71qtrZGhonyXDJmINwIIRTkQRCul02agOUooWIAcnJYu04QRVFVlcvl6u3MPK1J013hDWMM1zUHwIxRhIG9RR14+vTp8fFxkiRFVX74ne9+6zsfmrYdtMLFYtHwajQaDTf66/VaSr5cLs/Ozvb277739W9GUXJ5OVknqbYjfPr06eOvPfz2t7/t+65pmrZtJkmSlUWWZefjy4vJVE9Vvtdutfu+HzJmKVGYBlaijteraL3M04wQwqjdGfUmi+nu/p7vBllW3L99p9/qUCkNw9AhU0VZU2JIAXEcd9sdTVLJskxPoArhyWwOmHAJZc0Ny+ESMDWqRgCmQiHMWN2IqmqEhKrmWf52ElCSFDUH3O4NP/3sd9u3dn3fr7mM4nS+XFq2ezGZfvnsqywv54uV43nvvPfuq1ever2+bdtPnnx5cHDw7Okz23a/970fKIWEELbraHOaLM9FUyElsiyr67pq6rIsCWOuH+hk1DzP2+32jRHk1tbWxsZguZzv7e1xzg8OXt6+vYcxfvLkSRC05vP5d7/7fdd1x+OxXg42vBqPL4IgoBi2RkNGcbxeFkky6LapYQohhJJXflmgdDb8lfgEJCBFCLohYKtrpfDNWKp1cggrQLJuSim5UqJpKiGaosh83/c8z7ZtTEhVVUmSRFEUpUlVVYSQZbTO87zT6ViWlZcFYKQ7R11zb1BsvenTJAy9qVTXcLYe2G9eIwnqZk2MMRYg+bUqBmMM196jACAlp5RKyTUdHThcjs9c160b/lf/6mf9oR3HXAEN24g3UDVFq9WjJiwXcbvdVg0mhKm31k8KxGo96/d7eVU2spjNOAJwPfPg5SWv4M7+MI6XDLcRSZtalQXvDSHPVNiyDg4uJvPTOE77ve1vvv+DX/3qmWHYFYd2l/nOTpHJ3oCaJjOYV9VZp2sqBU2t3vv65quD09OTyyxLAHHBIU+By8TyzI8/eWbaBqKQxMX+/vDOnf7h4SvT8DzfTLKxgtJgzsaI/ewnn00vc2bWRd1Umb293U9XqCyTd999lzG2WkUVXzpuVVUFNCL0/B/94fCDb93/yb84CELD98PFvPnJTz/VXAPbNlttD0DWda1JCM31wp0LVXPBOTADDIOmSUMJCKGppqAwFgp08IYWpCMABRJjjBFcBWFzePnqtW2660W5tXnr/DxHwDY3ts7OLzHBSRbbjlHVEAbtuimappKqyYuEUsM0IImrsq4xAcnRelWUVe4HdllAEr95U9c1vzns9bONEMII46uOQEop3gCpGOPJ9HI6n5Vl+U//u//2L//yL4NWRyh07969IAi+/PLL3/zmN4wxz/M0PvDN97/z05/+1dMvn9uW0zSNEGo6ne7v7k2n07LKESWWa2VZ5nr25ubGcDh8/xvf6nX7e7fv7O/vd3vhOpo+ffbp8dkLpOhiurg4OVWS97stpBoMwvGNbHYZOg6v6uPj0x///t9sd/tRnnDElVKOaTHG1uuo3x9MJpMgCHSLcW1Ab+p3IAAQZuihT7+1rpUDJEkShaAoikZwAaps+CpObm7FcHNnHSdhu5tkeVk37U4vTrMXLw+evXghFDx/dYAwNUzbcuz+cBC0wucvX/SHgzRNP/vss/l8HsfxcDj8g7/xN4u8siyLELZYLCreVLxyPZvXtW2age9eXpwFQfDV8xcPHj32w1CnfAyHQ+1coO1sNYVYgZjOxnmRhmGYZdmXXz69fXu/1+nv7u6HYVgUBaYozmLbMsoy9zxPKbVYLFzX3R5t7u3uYCQWswkhhFJDjy266ADoFDl2UwExxk1T6b+AnoL1LdVVxnVdPTLfjMlSSn0IaTctHYiql7a6T7csKy/rsuZSgG25zCBlXehWQqdf6SB2LRbUP/lml80516Y1lFKtcNBdKiFEwpUXmd5lI0oAQF7HoV2lBWAlFbcso6oKjEGvjxFCjFmGgT/41vt37tyZLWeW4y7m+XSRRivlmP26KU9Oxrt7vmGZkuTYUMkqfVvvX+Z8Ol3furVb5FYt67oBjK0kLuJV2e2aSOHN0cAwSZqspaqbhoOE9SqO13G746aJdFz0wXf2fvfZ8+k0CTsMMHz55fjFV+NudyiEiNcySZKsSNutwfd+8EiPERsjqyiK23f7QKAuWa/b8zwvL1bMNAyzbTsIULFe5HnGqZnlebpapraLucoZNZsKe15Q1IXCKGiR85P45OiYAf3g/U2vlSXpejmVZYZ4ww5fnPuB/Ft/+zYmAuG8zIzewCkrzhukACquEEKU4Tt39phx5ethGBYgUEoiBAKAmQwz6Pb9KIrKXNm2xTlvasE5gMKUAiGES6VAAkgBgDHCBtYvnATlBwQA0qS0LePw4OgPfvztF89PxpcrLhU1rPFsgqliFAAT33c9L+i0hw1PuUyQMrIEGEVKqaZSTUWV0vxFKPK3jjGlAP41naVSCr/NQmTszd7w4vJsOp2eHB2uVqvFYpGX1eHx0XS2+OKLL373u99pyxYp5dnZ2b17d1qt1l/+7K+ePvkKI5qmeRi0GGP7+/saby3LEiElpTw7P9GT0enpyZ/9i58OBpuMmV988bvffvzRp5/9ajI9nsyOsrTy/XaWFUWaXJ6fUQJRPDs5eb6eTlRdZOv4b/07/4HrehIhbDLisCzLtL2r5ogYhuHajiYD6zahrmsNDuRlpbfsnueVZdlqtTReqfuRsizTPNNLKCFl/ha8vlxHzLAUwi9evQ7DsKybg9dHp+dnluPMZ0s/DMbTCSKUMMP1Ay6lYVnj8fj0/Ozk5KTdbu/f2v/2t75VFFVZVnlWLJfLMAwXi4VWjBmM3L1799WrV61WK4qijY2Nfm9g264uJZZlYYyDILi8vASA4XD424//2vd9XRlN0xCCE0K63S4hdDjYyLPi8vJyf38/DMOjo6NBr+95XpqmYRgSgra3N0PPHQ6H69VCL+Y0mlyWpd676RPiuueSAFepJvqTrutq5wuNJqNrt33t5aV1aXDtbaNXKFpfbNm2Tq3TL0pVVZRSfY7meW4YRp7nN6XtBlPWsIwuZzefuZqjpULXdkz42tLmpqOEtzR8GlzWZ7+U0nHsuqkAwDRNPRVJAbZtP3nyZL1e+767WscAxnBjxzTs87OllNKxw8FGKISgRoOwylIReM7Ns9HvdxAAKLyYQc2BYIrBzbLm3fduf/f7j5ezRZZlFZ8hZQehGYSGY7Z6A3dymWNmpCk4Afze33j4D//f/xWjTsUXIIAgmEwmYehKbj35LHnn3Xt+Gw5ejNs9ZjBnMs77g67nW1k52btjKe6s11GS1JZLOr3WyeHc9TxE4PI8qUt0++4GIJEmDWNksAlFmSGwo6hpdaEuSSNqAEgiOdoK/qf/4b//8W+fUuwZhh20sWnlCmB3Z/T0yefnB7XjocVyRs1MSml7pKyhKExCUBRlaRb3eh1dPeq61ucEYwghCMPQcazBsL9arTjXuVGKUqoQ6CwHhBSl2glRqOuXXmi8C5SUkgAqy/q9975hmvb5+eVwsJFnte06aV4slunenb2Gg++HJ2engJBlhvcf7gqVKqUY8asCGGOEgpKsKCEIHc910uRNb4ivBO831AUBVwmiSGp6KpJvqmGeqoYbSYGBhj/68Z9877u/97X7j7eHAy7lxubme9/4uu+1pUC39u71ultZwl+8fhb2WmVTb27tDDZGSZb3hhvdjY0qK0TVbPWHxy9f3tu/wwidzRbMdP7nf+/vuq75s5/82ZMvPn714rnJLEac0fC25ZgHRwdpkhuWt7W7Ry2rzAufWY1ClUTv//BHoOTJ+IIZtIzXPsEYCdNiZxen1Da4lEJJhKllWbblGczO8spxXINSRggGFa2WgEnVcExZnGbXyjylEOYNVFljMxsrXAseXwfWAEBRFF4YvHh50EjV29r99ee/e356Tj3/8PSMK6kEdy3TNg2Mcc1FkuWT2fzZi1fj6fTu/Xu3b9/e2Nqs6rpIk9Vycjk+sW0WRZHFzEF34Np2Nwymk0uMMSbsr3/z8f7tu3leIoQDv6UXap1OZ7VamAZthf748pxgtr93x6AmI7RpuMXM+3fvTsdj23cVhulitn3rlmFYBEi3Nbh3+4Gqs04riJLCC3obg1Gn03Nc3w7as9UaATaJaRBqGnZRlppjUqtSKgqcYYyBAMKWaVoMNzXnSZZZjqMHZgkQp6lQymCWFNBw2UhV8cYwDN40SkrBeVkUVVlmacqbpq45pYZp2kXTZEVuGAZIzjCxmcGbpi4bbc3QNDUjRAlZ5kVV5pZpEiVl1RiECo5Mw26EWC6XQqE0zynGlmH4riuquipKLY1vpLgp5YRijCkCkxJbCuJ5tunUUTJeJ2vTdgRUYRc1jXzy2dKySW9kVbn1/ndat/ZJlc537tqIivXEkmLaFESpDKvA74BrI87fPBtSoaALq0Xi+4lPOr7tUbpgFH78oz+y6VaW1cP2vSKmZYE6A1WXtKhjSmykWr0+91n33m3z8jT91W+OO9sqWhKkIOwDUqNVfNrqekpCWcVFjDFCVWp8/X2vjiCLTITcZ0/U/Tv7rr9usoaXyCBensS8qgzUEAoKQZUUy8kyaEFVeGmCMabMrvtDqyoxM4BXnGFwPLDM8O/88d//4vmnaV164TCvJ7JxMOqOtoO8blYx8obu+UmFBBhIMNUSwBn4CFIpmO/bh69PHt67RalEiANgJTFAA+B2h0C9eaezo+jxYlJbyFBcyAaSslAKqF3xmkhhmiZgRIo6UQg4EIIrrAAps2qAGcqyrDiqMc3vPOwcvJo+f7pGhFtMikolE3T08nTrFgAqvvi4IsyYry7SWNSZ4Tio5pY0lWKNUCxLU6g9BVSRajx5O/qVEYL0chwhpHEUyhipBdQ1R4jwt8S5u3f3Hjx6NNrappQaBlVNraSwfc8MAqXUdDonpvng8dcoM589ezadzlthR0lJCBlujg5fH7ZancAPD49e+75/7969J0+e9Hq9W7duvXjx4t69e91u9+nTp8+/+vLW9ujr771DKc7zcrWOj4+PGYLRaHTv3j1EmIZl+v3e6enZaHNbYpInke0GGNN2K0yiNUYqDHkURYvF4tbuPsY4z/NWEE5nq4rzVqulexZMKZfStm2dHKJRJL3718Rs27arqn6rhYa3pKhg23ZZVFGafPCN9y8vL4+PTnv9jpSSS3Vnd2e5XCMsi6JUCM8Wy/F4zBgbDTc8z9EmY0mSNGWRxgvTNPXkq/vTPE+Z6a5Xq+3tW64XzOYT3eNYlpHECBNot9tKKa2+cBzn9PSUcz4ajYqiyLKs1+sYhjHc3FJKraOV77qnx8dbOzu2aV5enm9sbGxujJ59+dWwZZuWDZIzgiilnXYYF/VyuWy3268PDolhIoTCMMzLTLdsV8MpErqd51wqBUoJzwu1cLOu6/V6fSWzx1g73ygEqmk0O0dPzZpSo/WO+idrVJor7DnOFboVx3r61mF7eZ7rfjmK4mvaU6X9qjnnhkEppVnOTdPc399/9eqVvpP6kNekDXFtfAkgCWGgkJRSG+cghYo89nzHdx1eN9EqJog0FQcp/t1/7w9X6yUm4DjWdF5vb3eOj8/TRb61uXN6djradSmwNEaWZXV79rpq+v03RI0kSbpDME0zbAWVKBazpjd0liUP2taf//kvRjshkIia3DDVxsaGZc+rWi5m43t3R2UeLWaLH//hg5PTCaOkljUiCClUFaqMZ4sZ3tvba3eWUpTrWIaBeXoyffTOg999MZ7ODxkzV+vSsW8TDECgFhwbhJooL6CqGKAGMEFAfa+9/Grl2SgvS7OAfm/j7Gzc7ba6o26yqGfj5NYu++73tn/283/2Vz958fXvdosyQQQw4pPxtBFp2HLvP9y5tbf/0V/8bGuzj6EsRbzdc6oipwRjKtO4Mkx49fr4nXfuf/b5C8JASUIxqup07/aI12yxerln3qmrA6xqDfsDBgCEsbwmtQBjDFOB8dWChWCulJIK8hwYxhjDfBZRmzUVp9TCJqGU+CHYzFFQuJ51cb6wbftXv3zS7jizi8WtfWN8WedFhAk0iXQcmicqSVI7NizbfPz4TUrUDY58LZsBhBBuGgFK6U3K25TjD3/wXWzQf/4v/vQ/+c/+03/0T//p//DTn/7md18UCNmtdgXI8IKt3b1aqvFsOp7NK95QSperqNPuJWkuQO3u7+V5jjHuDfrPX77Iivz73/9+WZZ37tyhlP785z+fzWZ/9Ed/9L3v/aAo64ODw9eHx5zLoNXeu3N7787tVRwtZhPXNvM0Xcxm/W7H852yKEzTRBg2NkfUNPZv3zNsT6MoBmVVVTW8ppRxKeIkAYWlAIUIl9A0oqoaZloKXWVI6tuhhynt/g+IGJaJKZE6eE++Mb7lUnEpTMNqpHhx8JoraZlOnpeWZWVFuY4SRAg1jPF4ulwuHzx4oCF1zwuEEKvVKk3j84tTz/P6/b4u3HoniADqMn/8+HFd17ZpFVkOSsRxHEXRcrWSUm5ubuocuCwrNLra6/X6vd5ysfA8Twhx586d7qCPMW6F7aaqCcKtIFitFsP+YGNzcx1H/dHQd1wA6PU6ZZ4RDEqpuq6X67UWAkopkzQHjFqtjlLqxhZBKXFt+IqVUoJLzfsriiJJEk3NAQDXdQGQpsUURaFpgHpi1RRCrVz2fV/LKB3H0TtKLcHEGGu2GiHkaihGKE3Tuq455/oXSc4ZxVI0CEBJLrko60qCiOK4bErXtdvt9mAw0FYReqjXK1FN0LlhRBIq2p3g5asXGxuD4XCoyeQAeDKf5M0qWuecN01TuE5bqXWv40RrODtfhB2YL7KsiONISsWbplJEV9urq9NpIQDKmFR0Mi0UMCklF8BFmZfKtPDZ5MDzaFOryUWhFCpLuLVr3747qgva7bF33333k4+/aIREBDBTUrEsxoD5YtpQWm/f6gOS738QllVycnzZbvfbHavb96q6NC1I4qLdCjC1irriqrY9H2GU5UpwAkLOF0mrM7p3PzQM4ri41+uulplUWEFKsCzzqt93vv3dr89X41/99oVQbDqJyjJ1XCCsrkrV6w5ms1l/6Hz55EAKIFSsl5zSqq5wELoIKz+knmfWFcRRub0z8gLAiEshmkZ88OGtMsNbt7z+oL1apEjYlnP1aCGEpQApQT9gjCHFlY4NkAJAIUoRACAMjgOWZQDCL56f7u0+qGtZVXmRijTNen2TMWNzu+X51mqZGiaJlnDyKt/da929s0UQsh3TNhA1CCE1pRgkFFmtBJ5Npv92NXz70rFWoNkMb7/Mi8Uijtez2Ww2m33xxRcf/fqv/+zP//L/84/+63/8T/75R7/+9OR8/Ozl61//9uPPPv+irKrBcGM2W25sjNZx/Pz5C8t2i6qJ43RjOJICXMe/e+c+M6yiKj3Pm0wmDx8+/Lt/9+/OZrP/6p/81/P5sih5UVSNkIPBxs7OzmQyWS6XFW+iNHEcazjsl2V+cnLiujZCqMjzPM+9IAw7bdcPXMtdzOZbW1uSC17VXhBwLvKyNB07r0oAqHlTNXUj+LU9xlW+mrYq0L0h5xwzwzBNjWMCgHiLVCaUyrLCsMzjk9M4STudHhCqAFc1Pzk9T/O85nI8niZZeuvWrdl0UVd8NBr1ej3tbxbH8dbW1tbW1nQ6FQpu373HhdIhJ1ujzdUyarfbVVXVdbW1tcWb6nx8yRgbDAZZlrVarefPnwshyrJ2XXc0GjFGOK993+33+0KIOI63bu0wy2SY7uzsrBbLrdFmGIYA0O52+8MhY4wgPBpuSMXLMkcYL9fxOs6VUswydVe1XC4t1wnDtpQgxNUhAdfCXoKZXikul8ubPs513TAMq6qSUgIgHZ1MKdWbuKZptKRaB3LeQBw359DNYhcAdEepa6Ku/pQShKCuqyxLpeKUEsaoYVBCSBD4tm1GUbRza2tjY6Pd6xrGFUCsu1HN1EGAlYQb2b0QjUGR75q3tjeyJOq2QosZ/U5fNtLx7LRYJmmplcWyVoRyIet2106jfGtns6oAsbrTDZXikuOdXR+RNylRhCIEZlmWWVoRBqYFq1VpWOpnf/VbpcRoa6PX3UTYTiL1q1+Ml/Oi1/KkIOOLSZ7wB49ueV7w4uUU1JUGgxAma+Pd925nCWAMjKHpRHtwGK1OMJ5OLZsRzAijjx8/XK/XlqlEDaZpYgWirmSteFkFLrNs4fm9X/7i4yQppKqlklXZjC8S1wkpsCrnEurRjik4evp5nKfIckQSo6pqRqMNQmA+zW7t3FvM+fb24OxoghTcu7+Xp4gaXHKmlLBtAyCv6sq2/Dgunn715Ic/+nbDgZl4d78bJVPbtrPi0jKdk6MVAiTfzJzApeRcs0eFZRlCaz9BP3gKMBKgKMOAEabYth0M9kf/6lMA2NkdtftWu91ttVppmgMupKpsy3U85bpWmRM/cOqmME3r/p3btmVhBcOhx3n94YcfFgXkWTEev5mU/43eUDeCWCkAjIVQeuN986c/+vkvPvr5R6eHJ6ETyEoUcV7l1fRyuoriZy9ePnvx8ulXz1arddhu79+5c3J2msRZp91L81JiUta1lPLo5JhzDpg4nttutyml3U5/MpuGYeg4zj/+x//4Jz/7q3arUzXcD1tfe/e9x++8iyn58quv8qIwTJMLQQipBT8fXzZShO025/zl82fT8eWg38GmsVwukySRUuZ5Puj2XM/WZipF1ZQ114HllJkGs7TFYV7WzLQ1GVszjW8yj65HLcI557y+oZLoyzTN+XKZlzWXYFmOVDjNyhcHryouhqNN0/WEhChOh8NhnudBEGxvb0dRcnp6ul6vGSM7OztKKa2f6/V6k+m0aZq7d+9iJVeLGWPMMsz1ct5ph57jVFVlGEar2yuKLE3j4+NjuLZa2NjYJIQVRbG1tWXbthBiPp9re9FWq3Xv4QPDMPb3d7VH93Q6rZo6K8ogCG3bZgaxLCtJkiBonZ5druJMYaS51u12u655EmeO4zDD0NwxpRQgia7TRIVQep+gT03tGRPH8dusQ0YN27avXBUqXuSVadi+F4LCRV6Bwq7j62WopnObpqnRal0KQ9+XnFdFYRkGQcigNPT99XKdxVGWREo0lBKMke/7nU5HKu4HrgSRZdl4Np0u5lG80koYzjlGBGOsS6HBLC1Vqpuci1JKvrk5klI+ffrMcRxGTUrpYrG6JnVDp9NjzFQSUVoQZr1+PgZpFkXihyRez5uK+IFRV2/aisVqaVA/SZIwDG3TJaxSwm54MxtX+3eGBnPKsszSIokL27Rdn7ZaLcOgjksd1+71/fF4JQWYjj2fKlAgeC6FSJI5AJ5N46JMFXcI0KZGjcrny8X7H3zz+GS5uOTPn7/Ksux7P3gXFHeZaRs2CMkQ1EXTbRl394ZRnF6OyySqHce6tT3k/MqsRQpTN1+EkE8/e7lcYJBWI+R60ShlzqeZZTlpDF99+bIdeHGUTscNABgGWazyoGUXRXN0lLm22Wq729sbrVZLAT58vcAYD4aG4Hz/9sarZ2VvpJaLzLLw9EwZVo4EMQymZwWCNI0FhBCUYT2VYniT7iAVpxQjIMvlch2nZSFmk5UQIHhJAJ2eLI4OJ62w4wd2nheNyBsRI8yVwrNpXORcShEniyQu6koEgYMQVGW2uREul+LDDx//2/3gv9YbAgBBmDLCm0aPLfpar2NGSC9sb22MtoabFBNeN5sbI9s0b21vK66iZbS9dSvPymdfvTh4dbi9fev47FwIFQSBBABEmqZJkoyahu+H0/ni/PJCi4U5559//vlsNtvZ2RFCKYWSJOMCnZyec6GCTk9iWnC+TtKz8WQynQMi2zs7SZLMZrNOt9XtBFkcffrLn3/55POj1wevXr16dP9BEAQUkzAMkyTL8tLz23lVlw0nhomZoSGsmgvXDzTP4yZpFyGkI4cc2zUoA63sJ9R862DIy0oCIswwDKuseZRk6zh1vaA/GC7j7ORsfDGZWq4XBm3Ngzk9PdXz4O7urmVZcbz2PHc+n/eHgyRJxuNpEARJkrx+/ToM/X6/X5Zl6Ae+4za8IgRrG675fH5+fq6dAYUQevp2HKcpq9FgqK1ihsMhQiTLCsOwTk/OgyA8Pz+3DTNerdud8CpUBLCQQDDjnGdFfjaenE/mXNEoihzHIYwWRREEQVEUaVY4jgfXXkzyiq+n9P/VLB8dxhRFkTb015jyG9mcUPqkYYx1u129MxVCdDod3XlpJF1D2BpDvAGs9Sf1bE4pFqLBGILAASWqOuO8xiAbXmV5ImTTNE3ZlKsoSrK4aSrLshzH0T+HUc0BtwhhGtk2DIMZpNUK2+1WGAaL5ez5i6+CwDUM49HjB5fn62hRxNFKSWyablEXaayUpP2u6Vp4MZG+G1SlbHctwzA8zwOQ56fxm/cPhnVcIAyuZ68mletjyzCLArC0Bxv261dHgFUU829+53GvH7Z6nJrFcrXe2Ay3dgYSN0+/PESYIgLAYWdn6HmAMDKY5Tr04MXyzu1NrJhhUiWr8bg4fH2mlChzMCw/iflkvCRUtXxsMQocJct0e6v9wQc7YeA8ezbOi9LzraqC09NlXmRF3hCCFRZZUWxstRGG8+NCcrsROaCCog4Ai6PSdQdxlFFidTstKVCeVwRDtxukWWyamDFWlc32Vmu1WmOFAeRsMUYIWSb55OMvPvzw23fv9549f20aIGS6t7d3eZYBSKxA9+w3EwBjgBBIJSglcM1vlUpyBYQgBYoYJEk4oSjw7KKowzAEBJPJKs+L+w+24zUUZWzbdp5Bq+2YJnU9A2iTJUaW4cGwlaQrIcBx3aKobAuev3zy9W+8+4PvPz6/OLl54W62gm/LUTABENcjzNuBDzWXiLCw010uVhjj0caGaRiz6Vg1YtjtjzYGrTAsiuLw8LBpRG+40W5386zkQq3WcVU1p+dn+3t3CCEnx6dl3Wxtbfl+qO2qdE0Mw7Db7faHAynhwcPH/X6/3x9+/Nnnnz15enh8cn5xOZ5MLy7Hs+Xi7PLiL3/2V1988UVZ5ryusiT+5De/ilfL6eTy8uIEA/nmN79pmQxjXJdVkiS14I7vabs63kguVFk1gisEhBkWuvZwhusZTVdDy3IAEEiJEWKM2W/losRJgjBmjGVFnhV5WVecy42N0XIdf/XVV5QZnh9gjLU/1XK57na7msNIrsM2j4+PtYDn4nJCKZWAGGM7t7YwUsvlcrVaPXx0P/Dd8fmFEML3/cl0qvdo3W4XIdVut1erle/7RVF4vrtYLGTDd3Z2HMeZzWb9wWC+WBBGtf63KAopuWNavBZFURRl3QiJCK6bpijrv/7tJ9PlklmuVjQSQuI0aYQwDLMsq5tF9/UcIW+GiLqutRm1Jm/qD3SI6A3f8EZTrP1ltc1fEARSyul0WpZlEAT6b6hBDx2/Z9u2hr+0pFopLZqGNE1d17ZtyzYtQgjnta6eeqWDCRGyuZnoda+hj7e3nBpE0zRc1Eqp1XqxXq8ByTiOt7ZGSZLF8fr4+Hh3eyNdN91egDGtK2FZ5scfJ3mpbIZDD7sOaUSax9RgFsYUcGZYdvFm3gLHceazTIAosjRLJQbCrNKibLVaXZwfxlEarwUlMJvN5vN5t2+m2arVItOL6fZeN6+STz55JqUUskIEuq32xsjFRF6cL0xbdoMd25VpGm1utx5+bcM0yXKZn14eKwl1mbsurSsUR9W739hZrRe2FfYHIy9wT89PX7w+p8wMOl4al3UDo1FgW47kCmNclPH2Xi8IAkrM6TjDGPwQMIWyzAAUAFotyvVaCiEQrqWUolKWBdu3uk3T1EIWRSUxX84z2yKW6c7mU8PESiku8PgiH08uNzdbl+cFptAfdASnXz1ZdjpE1I7gFeeirq/Y1whpqSVnjABIpLTwSyIElGIEgImizHAcCxAHAuPx9Ps/eLy3389TCNtke3uwtdNpt7qBF3qejcBQStgBnBwlH/92ilhVy0pI4JxPptE3vrm9u9OP49XJ6ev+oP1vV8N/rTfUT33TNJiQt5dltutcjqedbg8h9PLly9l83u31Or1ur9PudTrL+eLw4HWR573eYGdnp9frnZycKKUePHiwXC7ny4VSkJWFpuPGcazX53qxraMC9HuAYPbgwYOqatK8+NN/8T+cnp4KJREh0/ny5Oz8+PTkydMvv3r2/MXzl6so1mlwT58+NSjhdUEx+v53P/zOd77j+z7nvB2Ei8WiKArGzLJqiqoEjPKyuPI4IRhT0lxfN8cUAGinAMVFXVZVVSkhCSD6VmYeQqgoqryo8qxk1GxqQRlrmubi4sJ2PNt1hBBJmiqM6rput9t6rrwR3kVR1G63Xdc9Pj62LGtja1Pv+7T/jW2au7u7l5eX4/G41Wqdn5/rATbPc72t0+apw+GwqipQuN1uHx69vn37NiHk/Px8Z2fn8vLSNE3MqO/7WZadnp7q5axSitecUsN13aJqbNsu6ur88jJKUmpapmkuFgstttMiS9M0hbh6jci14/9Nq6iJ37r0aERYZzAJIfT5YpqmYRiMGTccbE1InM1mOq5Lkz31iZvnuWVZusLqX6R5kVfS6aZBCDgXq5Wef2VTl2maEoIYI1eaf8NwHGcwGOidbL/f73Q63W4XY6wU0nZ7lBgaqbQsy7AsAaq/Max4tVivHN9QGJ1enPa6A96Q5XxclnVTK9d3PA+UYvGiuH//FsUiS4umNAXHaVKWdXlxPhbyzRvJdV0EsF4vMYASEEeVZdVVZb7ztYePHz7ACq/mwqDuqxfjJOIIESUpQd5yXt2+v0MNcnFeUmYiBKqGVy9f1lUaeG4cibv3dg4PxgrlQkrCSsySPEVFLrvdTmdoAIiw5StpfPX06PbdoRMQLwxfH519+eIsrwERS6ogTtLOoM0ouK7PGEuTCmPcH7S/9u7+F09eIDDsAI5PL20aSIFMuwIsi6KoSrm3N1Ag1vFEiEYpFYah55tpnpsW5GUluWDEfP/994u8sW3bcUxMEa/B99z1KrIdSrG9v3dr707wz//xl60ugGKUGowhSsnbjZiQcI2nMcOklADFRIfKKwRS8iStkzzHGCzLoBSaKk+SyLbwydkxpVSh8uOPP7Wt0LZtz+0uFlXYZpS0tkYDhcRqxYPAq6vKMp1333u4XM2m47N+v7tczt9+U7/dG+oPMMIEkO6KGoTeLES6nWA06kzGp9TEO3tbpmlyLu7fe/Tetz7obAy6w35/Y8iFmMxn49m0qQUA3Llzp8jKsqzns+VksQz6A2nZCuGybuZJHJWF6fscSC1kw2UY9n2/2+p0V3GyitY//aufNzW//+Dh+eHl+HyarfPd7b07e/fffeeDMOj74aDd31jFxenZGABjaobd/re/832u8KtXryaTmWW76yyRGBumXRaNbbo6Gd1ynGUc5zWP0wxjQikzLdf1gqrmUiFApChLrWutq9x2HWwwwzAsAvZbIkWurggBNecKIWpZHGC2TIVABmNEoTSJbUYDz3FdN8uSusmF4sNhP06T44sz03Zane5vP/3cD9qG5ZZFw5hte53+5m5Wq0YIhNBXz14NN7arkvu+5g+1PGYQpRgmrVbH9QJmWKcn5xjjouLvfv2b6ySdTCae552fn4ISBiN5vH7+9Olytrx/7zElDkgUODbw2vM7oq6KZJ6k0XgRT9Z50xCoGoswxUW0TqhhS4C8LCTndZ4apg8KK8RAmlJK5nDHZU3DhOB1XWmwQl37IEgBddPUTSMBM2bqCYMQypiBCG4Ej5JYHzY6zE8phZQCTArFwbIkJo7jyIYDklJUFCPLYFVRm8zotL2mBoNhjJmUiFIj8H0KyGIGI5RSKhqglEZpRBgtq6bhqi6r9Wph27ZUjVAVpojLBmNcFqkUuVAxSPPs6PKdR4/zSCiFbIc2tRVFyXvfHEpBOa+VEmXGww7Ytn96Dmkefe29tsghiVIMBAjYlr9YS4K8m2fD8xBXqFakIaQzMKI5LC4M209zMZUitGzD8LnCFfDg8fvQ8oaNqIuGzjNlCm5jBtLeu2cy1oBsMwMs23FdtrfvA9DVEl+eyN375sVJM7msOee2LTuBb1OJlYkUbN+mh8fL7ZE5aLOTF8vRZlcKiBZOAyXzllRiEKWoCSI5b3CWAGb11x48WGfR+NxAVmK5AKVnGEbgd6gBrqdcz5pcplm5AGDrtADsrvLVTmDt7dqHZ1NsO5LbHnX/+G988Nc/+/jVwXJr8xYXseQK4eb7f9jitZNk+Z174v1vOf/4Pz8HBHXmNYJXao1Iz3KtRgEiSCCBwKAGKjPLcpuiQBhsLEHIRimv4LVlA3ATUSwkyqsGE0kIuryYRlHt+PSdx98o6/lknAI4x2cnl2dK4UUeQblu+luz7bvi/JAM2u1iXezumz/84e1/8k9+YgfWixfl/oPw/PCNpEJPM2/E7xpF0bOGlICuXUn0lSSJUurOnTvD/qDdbv/hH/7h9773vcFgoPko9+/ff/Dgwf379zULBGP8zW9+kxByObmoqgozY72Kz88vGy4Gg8FyuTw/P3ccJ8/zLMuUQq7rOq6NMJydnb148eLV4WvTMjDGf/EXf0FM2m63v/3tDzqdDkJoNpskWdrtdZaL1dnlxWhrs9vvAUZfPn32T/7pf/ObTz6tlWj1uu3+YB2li2VMDJNScnFxpv9deio3DANjalhWXdd1XQsh3uJeMG00wKWgBqNvXTe3oq45ZhRjogdAXREAgFDa6/U0vGB7/mK+Wi6Xvu+vV7FlWVlWVFW1ubnp+/6vfvUr3SrahqndCSlBq9VKbzA///xzrdnY2dnp9/sa5tapstrLS9tbOY5TlNnOzs58Pr8CvoWI49iyrJcvX+Z5nuTZ5s52LTjnHDCK04QaLIoiLoRSKoqi6XQax6kOTtK/BTDSVtXXrtfo5hnQN4cQQhnWu0sNNehfreUoGsbVu1f9XdoiU0fxIYQ6nY6G6S3L0oZgouF6soZrs0J1HYXseR4A6NZSKRUEREp105zqsbeu67IsddIeIQQhmEwmp6en+t/ieZ5mHWoCjf4YIWQ75sbG9utXzy4vL5O46PVDjGGxTNZxcX5++uDBg7purh0YmZSgCZLn5+e93qDd9nd3wzxPGWN5kVUlEPbG3KTbHdSNwgQ1Oc0zzijGGCEMl5Px7t0uh4IQqCre7gqK/YovogXU9cK2yHQ65Q2mVAR+G2OgVJmGZ1qGUHG7Y50drxGpDg5Wgd81DGYwCgCO4376m5PRZl+qpparo6Ps1q29168nd+/tVTx/9tVrpcDzrcAlssGcQ8OLdsdbr3IhlFDw7/3738tT+LP/4Ys0zQlihgGmi/M8x7QCBJLbojEUSsrUBaTe/2Cbc3l5MXv04cPJvEiXctRyZVH8/g+//Zc/+1VJTIzl+eTV7p0WAPvaNzzP2j18Pf7Nr09+8MPvrNdxWU9AeQLSLOWWyXidFVVtGswwDNeFIq8wJvoBzngFSBIGCJDkwjAMRlBVlF/Ev2IAAQAASURBVEop0zSbBpqSYwCE4O6djbKoT06ODJN6vq0UYpSsViveYIRho7/9wz+4s57h1TLOq9XOfuv+o9t/+S+P2h2v296892BvMZF/84++/m/3hm9fWIEC8qaJvfmCFpZOJhPbNjc3N7MsOzo6+slPfvLJJ5/89re//eijjwzDmEwmRVH8/u//fqfTGc/Gs/lkvV5T02i1WhUX61XsOqGSCDD2vVAplecFISQMw+Fos6oqruQqjjCjOtGJMPI3//Bv6LfEfLn4xS9+8fTp0/PLCyHE6+OjJEna7fbL14cnp5effvYkq+u9u/eXq3WUxdPlarpcr5NqMluvozQvC2YRSgzDMtM0LYpKy8JM09RMYM7FTQYbQsgwLIxxURQ3hhZSStm8IQXUDSf4Cne+mQ11fOByteZS1FWDEMKM+mGoo/sEV03TCCGbRrx48aLd7ehQwKouptOp69oA4DoWwYAIbnXaOztbvV5vsZxjBY5jlWWZpJHWC2KMLy8vm6aRimtJX1VVOlGgaZqvf/3rR0dHjuMIJQcbQy5FHMerOOoNBqsoyooiTlMAbJgWYWZelkJJYrC8rBEmjVSWZelhXN+NRgpdeW9ES7oIGgYNw/Amf05dp0nob9RQoC5wV7CglDo3EQPSNCbHcSTnSCkA5bg2rxuEkGWYlBp6jWtbLgCkaWqazLKsphaMmddqenRjk6PbTC3mC4IgjmMvCHRcURAElLEoSizTdhxXk3X04B9F0d72vc2tflPxLCsBF1w1FxfrTj+oa66UaLdbWZZJKbMsGwxchFSW8dUKLs5ntm2bpsMMHcIHSNB2781JOb5ctgKrrhLHtcqSO45nOsiy8WrZmJ4xX9YEKaTgnff70aK2bYWV2+uzx4/2z87OMLKlqo+PLikGLtazcSQl39wOwrbz+uUSKJyflkVGmSkAlRhDGLYvTjPDZJaNhiP849//4Ksvj46PsuH28MXr153uAAEq8pXgAku33+/6AUFYGMxeLuc//L19ZsAvf/F5kQMzjaZhSoHt8nWSmy5WCDy7U6QNZYBF+9at7nDQkVwRZGaQvj6cgASbqL/1B/f++tc/n66qRgo3hDt3di8v15Zbffjdb/3zf/oRRrTO4F/+2S/uPewbqEug8myDEoWE0fC8yBuMKSgUBCFXUFW8rkt9iIorxA7qukTqSjMHQomGEwDLMNrtdlOXjIDngeDVzvYQo8YyrLoUkqtkXVGCzi/OLMOmDJkW7veDvbutf/mnX63jjFD56uD0/OLo41+fmu4bYfLb1fDmYwwAICWlAErpGqGv+3fudDqdb7z/XqvVWs4XTdM4jq0rYNM03W53Pp8jhL73ve9Np9OiKL788klZVbXgUsBgOPK98ODw9MmTL7uDYa83KOtGSMDUcFwvK0op1GK9StPUD8LVOgpb7Va7/a1vf/Pw8ECTZn7xi19ESWxYpmmateBBGBqWOZnOVuvk8PS8EAqI9dmTr9r9jRpgmSbn4+V0EcdZWVaNUFIhnR9vpXlZFAUgUlUVYyaXoKnCGBOl3lAODcPinBOCAWOFAGPM6JsbxwEpBI0Q2jXgio5DQCG4wqM9dzqbAWClEMaUMVMIsVyvLieTOI5rLjGmRVEQxlZRom2FgiBgjB0eHnqek6Zpnufa3aBpGtlwJIWOb9acId93iyLTXo3n5+fa8fD09HQwGBweHhZFYRgGM00vCNbr9XQ+6w8HaZ5JKdM0xZRYjp0kmWU5B4fHYatTliVhtKgbBdg0bXWdN6KUgmvduhBSHxW6cUNvhSnrEQOu7WH0lvPGu0HfMaUUI5TXjfbKNgxDNI22VGCEWMwoy1Jdi8QJYZbp6HZSu5ldxcY3sqmFtjgrikIrpm9y75qm0rcxild5VY62tgCTvCoJIdcV3NBCF73E/OQ3n929eytJKsv0lvEcIRStCkIwZfD57z5VOpzesvStmM+XndDc3rGPjpaNqNO8tGwCkmOkylRsbrZuno3lPAkCLy+S/oa5vYfWUWxYglF3NVeD/lYeE5M5lIHrGctFlUS8zCTFaG9nE1PCTK/dJYt5OehvOi5ISU1GRludaFXGMUcYAOjkkre7pudBt9cuiiJKFudn40df2/ac4ce/eYIR/uTj4zhf/vD3321qpJSiTNm2UeQc02p7e3s8TqVqdnYHjx49+vnPPyqLetAPERJSAqG01aWyBs7rugLXB2Zgw4AoXt59GCymAiF1dprLqml44fjQ7g8vxnFcCKXgzqOdre3e5XmMwfgP/xePP//4QjRKqco03P3b7cnl+NXLses3UlBKLAlFIwBjaGqRZXkjRBB4SoF+rQkCIbmUVyYJnHPOBUXEtIiUkjEoipogbFDMm+y73/mG65mYyKJMlEQYQxiGvCGmSbt9imSY5/GtOwwp51/+iwPP39y8zRCRUsoortaroszfdHtvGyC9+eTVw6v+zXrZNE0aRePzi/l8bppmtF7OplPDYO++++7t27eFENoLYDabHRwc5Hm+ub2llBoMBq1O++zsHDDudrvPXx4soyjs9KazZRTnl9NFUtSe316lKSVssVyVNa8aYbv+/fsPPv/sizzP7965J0D1+8Pd3d3Hjx+3e/1Hjx8H7bZQJKv4Yp1eztem18obZbjhbz9/OplHX3z16tnLg7PxzLCcxTrSY5RWd9V13XCJMeZCSQmMMaEUl1KLbQUoAaoWHFFS1EUjhVBK8KsouLduEhGAtFRD+5VKUKZp1nUtQRFGZ7NZq9XO8hwTRgyW5FkjVZrkQdBqarG1taW9W54/f3l5een7Icb09PRUj9Wc8+Pjw62trbOzE8/zqrrUXLxOp6MtXYui0F6wWr8RhqGOeaqqarVaadxmMBgghKIoSrKs0+mYpnl0dKSdsuIsXa7Xhmlejqd5XiJEhISyLJM0v3aZbq48fjDS1EtdBJVCjBo6DB4T0BaEVy4MlmVeM9U1Y0nDYjfgCb4ObtZNokGpTmi4qrkAguvESAbXSc3aW0j74iildDuPEPk3xuSbS3+L9gFzXde23TRNy7K+6fp1DysVN01mmgbC8Omnn/7RH/346OjYMh3X8V3XTZJkOOwBKM5rzuVqFemXfjjsjzYHjNGmhrIs86zCRGFMCSFVqfb3924eDSGU5CJwrcnlBUFEClDQROu0qeV4fFHXghEHYXjyuyPXsw5fZVletFsbnhVIKefzuWEqkFBV3HaQtsaSAo4PUwAsFaW2PHy1oFhQqgDE6ek86ACvSdghkzO8mFdKKQXO5fisqrM0y/vDnmFikxkKGtsBxsxux2t3rY2N3r/6+We2Ge7s9hDmmAhKoSmh03WJgauSd8MeMdZcpLxi3QHav9f61c+PMRGuTatl0Wkz4sLr88XTl3Et4PsfPnJJPrmMjw7nYdBphb3PP3khBADIusn+8G99+PRT8Sf/7ruCQ5rmBnPuPdrb6G8Qgm3HRBQvl6lt25SCBNUIjhFgjA3ziuovhJASGikYI4wRyzCbCpIoNZmV51lZJGEYrtcr2yFVKR3H46IuMqlQ88GHd9bRosycwdB9/uXYoKy/kxummWUFMRUgAlR++fTy7X4QXec+vukNMdKeH4CvQUN9LRaL0Wi0Xq9Pj485r1erVRzHruPMZrPDw8N2u63VsoPB4L333mOMMWp2B8NWu+u6Xrvb6ff7tut2+70Xr47irCobdXIxni+jJ0+f3bp9t+IoSuL7Dx+vojgvKy8Izy7GlNIHDx6s1/F0Mtve2tnZ2Q3aHSHV6cXFX/7kZ6+PT2bLaBbFl4v44GTyL//ql//ov/nTZwcnX704en18EWc5IniwMSzL0vP84WBrHUdXthQIMWYiRJI0xZjq4Uv3dxgR07BudLXa9JFLIbnAb+l2GoHUdX6CbtY450AwVxIA1uu1aTmI4I2NkRAijpKT49Msy1qtTp7neVl4XhBHaaMwtdz9ew/rRgAiYavT6w873b7CiCup+77Nzc0gCGzbTpJkOBwqJU5OjxkjugUryxJAajbiy5cvXdfVDJXd3V0d5JimKUjp+/7BwYEm+pV5EcdxXlZuEE5mC8rMmnOJIM1zwMT1A8BYStlUlRAcABDBmgl4IxrRDw3njd7xaehZf6wnmlarpVFg/YffdnvVu8KmqrRcT6cFgBQYKcaQ3t6Sa5d/zqVSyvd9Hc/AuayqxrFdDVWbpvn2B6Zpup5dlgUADAaDXq+3itZpnmFCOJcYU03qvrHFjqLona/fO7+INkfbo9Ho5PWk3x+5PgOALE90c23bNud8Pp8TQi4vZxiJ5SqhBHthkKS165kGs1zL7XTMnY27b3rD5cowLM910xidn/Dt7WBzY0SQwRg/PHy6u+8jgg0LTo9r0wqiJSIGfPDN715ezKlpWRYFopiB0zQxLQOD7HW6q/l6taiwwaRkXMo0rfKEDgcszeLRqPWdDx8mMV8sL+K1BAWmReqm3tkZ1XVVVVWWx0kqLce2bMBEhaF/a3ckZHV+Nv3yyYXgCJEyyzJKCELNcs59l7VDp8y4adF2j+Q5rBbN1q2wKuuzk9S0YWdnf6u/c3fv1vYuliB4Aw8e7p2fna3XkyiqvRC+9Z1H/+0/+ur+o5AQME3yx3/nUVpET3+XlGJ1+8EmZT4Y85PDWKC6ErLVDYbDgZCQZQk1KEIEAAxCHcu0TabNz4WShCFMiGUZgGTNhetZDZcaf3v58iDwW0II22FKap1olCR1q23YAfri87PlYj09V77vjXboOl4nEcbEKmtJLdMO4fWrxf8fveH1Jd9KEPU87+XLlxjjzc2Nuq5brRbGWOsQdFakjnAsimI8HhdFYbletE6Oj08Oj4+Ojo6m85l2MBVAD4/PS66SrLL94OmzVycXE0BkNNoqimoxX9mOf/D6qN8f2rZTpFma5tvbt6I029jcmk5mVdUcvD7a3d1vdwfzdXIxWc2j5NOnX9ZA/e5g+/b9p18eEGpxoTivV6sFIchgFla0yCtdrZRC+tiJoui6DjKthAUA13WVBO0EhTDWQekIIeMtc7OqbpRCUoL+KlxrnFut/x97/xlz2brfh2FPXb3s/vYyvZ3eb+NtrFdsEkXFMfJBjuBERoDAQhzkQwwkCGI4hhEDQhxASRQlkgXINi2SZiSWy0te8pL3nn7mlOkzby+777X26ms9LR+eOXMOaepLgNhf+HwYvDPvnpn97r3Xf/3//19rlXXthyEhBAKc5tl4OmWMXb161bYczrnnBWtr63EcZ2WRpLnrBQ0TQsHZIm64PB9N0jQ/Pj4WQgggdnd3AZBlWbKmdmwbY6gNICzL6na7WZbp72p/bNM0W62WbduDwWAymUyn07osdUd3dna2mM2BVK7tTCYTx3U9zxuPppzzZZpR0yrryvFciIlh2Z+jwJjVjd4bfy5Twlpgp5TSrZMmSOtdAedc1zvw1Bqr0fVOC1H03UIbfCkhiqLQPEQMEauf6nxc1+Z1ox26MCKMcaWUbjkNw8AYc87rCkgJPieBQ02+eUbb1gbaQRCMRqOz83NdQPWWUF9XruvqDlqHax+cPLx8afef/fN//p3vfHt0rpqSm4bitfB9H2GgbcZ1t9huhxACLupu20SIdjqtuuaWRSg1GGMvvHB1Msq+uGYgUEpxJn3f5w3iIscQNaU8PZoP2v2djVUhK8s1FUSLqGqYCkLous5Pfvyhbbm2jzlXmKCqKjnnpgXa7W4cJYxxBQEyJDUBNdByEmxtbD7/wuWVwdoPfv9BUysFxOq6hzHkgrsWZbyxbadpGoS5bcOsyB1fSoFnixNqNoLjd39ySrBRVUVZJZKBKhVKMFkDKRrD4EqCLB9ZpqkYhoDUZf3un+13u0bgG6OzScbK46MoncmOB9cHpNuyZ4samy0AwfVb63k1PjvOlaSDNRND+cob2x/fPsYEvPfO6RtfvSkU5wDM4zxaLlwXAqAUYO02rZpa+6QQbBAMiV7CKElNo+FAQkAtExuYcZEVXAjFmeICeEHY6bUlh5ILwRtWSyUkgtIgeHu7VxTkYK9MMtlUFsaVZcIqB7ZtS4EgAIYtFQIAfHFRP+sHvzwQI6kkAIBSKIX4shwty7Lt7e2tra1Wq3V2csI5v3796srKCgCg3+8rpTY2NnQMkCZP1BWj1Nje3r565Xq71QUA6Mnm+PQ0yTLH8xCmy6Soufjszj0vbFmmkyRZq9MZno/39w9c30MIlWUdBm3LcizLotR8vLcfLZfXrt0QEjx+sj+P4rQsx5PFeBZPZ1HdiNOzoVQEAnJ+fu64lpDM8zwAUKvV05dooyFgBA3D0DlQ+rbQNFxfM5rvppQqqrIsS6Gk7lO+fJNoBH/mRPCsXbIsqyxLSmmSZE3TFEUxm80IIYyxKIqUUjrqfrFYlGXp+35WFIZlJVn26MmT2WJ+enrqum7QaqVpihBaWVnRo5/G6M/OTn3f17ccAMBsNtNyDgih7/va2qeqKh0+F8fxbDYbDoeO4wyHQ8lF0zSe5+mJkhCyTNOsyLOiWF1d1TTGp7RkznWIsO6k4OcRdM8sL/UgrGuQdqBRSmlwXN9gDMMoy1KLl3XPqNe+Ovddw4L6rik+z5DCEFGELWroLaF+OzQJNAgCy7IYrzU1FSEwny/B5wtKfcCXpDIIobLM9fCukxWY4PptelYHdaYC57xhGUCUMXD37t2f/9nv3r79eHW1AwGYzWZBEPR6vSQpKaXz+TyO48uXd+J40R/08qxOkgQCWNaVZTl5Vr740s23f/LRs89Gp+vMxjPDsMI2AkCGHVQUmeQQAXBx+3nHbKXlgnNRNzLLACBifXNtOjsbDWeWZRflEkEYhj6AQAixsdmCEAqhIAaKK2Q01DSZkHduz6MoPTjcv3v3PgGtquSCq9e/cunCxZ1u18VYASCXcXr9xhUppWE7ZVG7ASbYNSxm2oI3GAEiuKpZc+nSpfX1QEkLQ0CQvYhmQlVbG721Nef8dL6M1OrKIPD6Tx4ug5byfMO2bezR+w/OW4691TV/5qeu7T26f+nS8wfHUaeHX3zp+v2H94QqDp/Ul66160Z5AX30cCpgXebgzp39r35rPZ6Ddg/WNVhdW4mXs9PTebsd2rYVhmFVAaWUZJzVDYbA89xWqyUlaBqlIIiWS66AYaAkq4uCpUkeRUutDhBCEkKyLO/1epwLQgiA7OMPZ4gYCAIF04vX7OWkBxUYDkdlzShxuKw4B5Ztgr/qfDEpKwAQNVmjgEIG+eLRu7sXVle2Ar934/rz3/rWt0yTtlotx3YvX9hxLWN/75FjG6trfcNATVNhotb6vfXVfjRfnB6flGXZbvW7vTVKrMFgAAC48+lnmNLz0VAA+N5nn0Z1Q03Hsh2DUD9wlVJZWnCJkOVIg+QNy6r6T3/8E2LZ159/+fHx6NHx8HRenM/z01GUVcwwjLoWtmViiE0L5UW8stKvy6rX6RKC4uUsLeZBp9swEYbhdDFNksTxvaKuOICGaadZ4foeIpQYZlnWlmUpCUzb41zUZcWlYgARO3z2UlRVAxRzXbvhXAKEoSJSIAGTeUwh6rc7ZVkyXnc6Hdd1Qi+ECJRVIkRdcSYhncbZp3cf6JyW0WRi+95gY80JvOF4NBqNDoan61vbnh34btjtDFzXVYK5Jmk4XF/f1EQWKVGvt1o3stfrTcYznfriOE5VVU1Tz+bjTjeECh7uHw56g7KqbccNW93JIl7Z2GJNIxumhHwm2HgGnWtEwrAsCQAxDL1LIdhkUlADMdEIiUzLW6aF7bkEQ9symrqYjseCMd/1IJBSCAkRwETjD1VVOY5NCCZIGVg1ZSpFTbDCSApeGSYiFDSqFDVjBUtZ0wBpAKDqpm641/YhRkJJAKkQqmmaVssDACwWVZqyqhZ1w8u6KJtSyAYjxYUQUimAPT/MixQhhTEGgijIJRCMMQAkRLwol8TAhFrTIbIc2erDDz95d/fKys1bG4vFIvQ8gBAHeVZWlIL58mRj41q8wOPZ8DxW2LEx8aL5BAoLVp5pFb1+J1oWhydHzz4bnAnLF/NZ4lCMAPa83nC+VMhZ2/JNg5mkkY1hezwMekIlQIEbNy9ZZDvoKAFqpdSLz38tSaNO1xGNt31hq1LztMQSAM/ukAYU83p7w792a+3weN4oqBrguw2wwNFQWYpc2fQmw3wwqKgctMKV7orgRVs1uUEha4DfnnX8K6YNpvMFgBgShoFdFdXGRp+xoqoAF3g+42GHTsfoyvUVCG0AZcXOa5EoEBwcM0q7vZ75+7/744tXgiQtV3e3/+TdO9NFaxp9iLn5re/euHtnulyCdh/UdXrwmf3Wd1vz6uz8mBIDOLZz+92Tnd2g3TbjqDAt27AwEw0CxKDMItjxSsHB6fHc9UiSZK7rGx4aJaNGASmBbCosKRYWY9KwAZNIAKiQajiHZsRlA4FPTQhJs5yHL7y2WjXNYhjJBklGMK7rJv/eL73YFAAqsBjV2VSiEnSsluF+QRRJkkQppVdnACA9tiMAgGRMm8d92cNmdXV1dXU1DEMIcV6Wtm1PJhMIYZYVT/YOgcIbmzu+1xoOp6ZpX7xwlQl+ej4qqhIRrJSaz6d5nkIIH9x/RAjhUkgpXddb3ViHEN6/f58rUDc8q+rB6vp0Hp2cne1euIQxNQg5Pj4ej8f7hwftTu9Hf/7j0WR6ejZcLpdZliEETJOapuk4lBBiUmLbtv5WGIZaDtlwniQJhLAsS70Q1G2IRi2BjtkVQLcwdV0DgBhjQEgAgF516VH6S7cOUFaNJrvYtqnNCwAAnudpGod25E/T9Pj4+OGTh4ZBTNsq6yqO4/v37x8c7G1vbyql5lGk+8oiL4WQhmGura3r3WuSJKZpLhaL4+PjWTRbXRs0Tb1cRkKw5XLpOBaEUAg2HJ4rIAAATdOcnJzoRq/d6uZZyTnfvXDh4qVLjDHf9xljvuP22p26roWSYRi6rlvWVVMz23LzPNdu4epzx3/dBnLOEdYu+Q3nnIuGsRoiVWY5RMiybS4UpiQrCkQwgNgPAkrp2tqaNis0DMOyLIgUAMBxHD0s64ZOLwe1H7b+rWAszxKEQFOXpkUsajwVhkqh2V2mQVcGIQCgrquiKOq6bGpe13VTM86E/gRXVaN7T/3kAZQQPm0elYKmaRmG0TSVkM3BwSlrZK+z4YfkX/yL/+pb3/wZrpYEO5xhVtnTyazd6hR5Y5jy/Pws8M2uN3j84CQIm6vXVgkSUvIsZVeuXDo82suzL0YHBSQEFoQQIUkpRVjECylkZrmV5wyieBpFkmAzjWaAA8sAnXbrw4/e7q8beVZjrB4/fmQYJFkWEPGT0wMoAUG41QZ5EdWNunFj27btz+7c39y4GIa253hJWoQ9xzRQHM9aHZ9S3O37TdMU1WxyLhsZUeJ2ukFVVRd3Xjk/S5SwPM+RQgQBdT1rf/+kLHNCkWkhAGrbtl3HbLW17BK2O/i1Ny8f7o8wqaAESTacTeOghWeT+rnnry6X+fQcXb4Koxl48xvr2RK98+PPbt68blBgmECojFL4/jt7rKkxBjUr6oZ99N7Jz//SCxCBsG0lSYKRCYDMMwaRqEq+vuGtbwwYkEqJrfWNLEotQgwCEIKGbUnFOG8w1o0bsh2PEJDneZ5KnQfBmKAGMuzixq1d1ogkZgDkG1uuY/vxXJ6djlpt23Hx5rajEKsqMF3EdfOFTa9pUk0kA0/JhTo3AkAAJFBPkyWePVqPRbbrpUVuWY7ruhjT8/PzsNV9+aXXX3zpteeee+H4+LyumGMHJydnTw6Pj05OHNdf39psdTvLLD06Pnhy8DhaxgqgXndw+/btW88//+TxnmXayzi5++RJUrMoLWoBrl678WT/0HIcxpVlWe12W//64MHD4XgaL9M4KzjnjAHLtvWYZpmm3tmHoc8Yy/NcK9j0lRYtE81eRgjp5b1m1SmlAEYVazQJwzTNotIV8+mQCDHKywKRv2B8KwRgXHKtBrNMx7KUAowxAJSCoKhyLppLly7VvHF8b3N7M06iJInrupzOJ7bnXr9+3Q18TCkhpNcbmLYjBMyKZv/g5OGTgzhObNtFEN++fTuOY9s2EUJxHLfbbd3DJ8myqqr5fKp98wGQabosikwXF84FpQZC+NaLL/i+r7eQYRien58HQaBfgbqu/bAVL9Om4UwKPQs/q4D6FdNbPwCAEFxj8QghSrFpENeyOOeEGIQYvV5fSuV7YZYWUoK6ZprwDADwPEez03Xh0z5p8HM3SY0U61m42+222+08l5ZlQSDzPG2FvuRKCcDqRkoJlTQpkZJjDIPQNkwiBNOrXiGU1pFLCbS6WUMxSinOGw0iKyW1sRgAAEJV1Tmh3PXgYsb6K63lcpml4uDwwfb2mlKKNSqNqZSgrGQUJV5AKCVllcaz/GSvXt80qCkkbLAJJKdh2D4bHyH85XQqUWRwvogRVZgIIBUvQWeA3ZA1NQ4Cb5k0vt1RnFzc9t54fTddHkXxpNUJw6CHCZCiZo1kDdjZHaystoAyoiilmCpVv/LKDSH4o0eTS5e2j45mBhFCNRBhmxrtwD0bHw/WeowJBYTjWvPF+Scfnl+5jupKNqy2bFrlxocfPEDQDoLAcmieM0ohQmA8HTEB/LYDDBbNSwWEaWUGIVWdrqx5r755aTpmEDaXLq4i2HTag/XNtml46xv9Dz/4uBHNeBatrAYb2/bBk8XWjvnkyb7jGs89v8VlvLLSXgxhr9daWQk6XUoouH93XovhjVurrq+EEJbpSyXns6LTdeMo7fa8ZbIAFPZXepPx0DcNLIRpkKpSUsGNzRbCklJKsCUlSNMUEkAImc8KSlGeVUIoqRrTYYSKySiTEgRt0OrC4XDebW9PJ0sAuePYXsswDNRft4IWcu0vVoSOa2qDdF0TNbiMFFDYMBh7Gqnz7NGtVktCUNc1oUZ/sNrp9a9cvdrqtAHEaxvreZ7/+J234yRpmkZKDjFY21h3XD/Js4PD47PzEUKov7LywgsvXLp6RQA1nk0VxMfHpy+99FKe55Zl/dlP3g3aHYXIZB45Qbso2eHx+frG1sHBAYSw3elRQztxkVkcO15ATYtgYNuO9g7AGGMAPc8zKLUtC6OnjqFaH6YXUroIavsp3QfpbZfeJD5LRxJKWo4NPtdX1DWTAHx5cSgFqIVSABGKCYa2ZRmGUbPGDwONHjAhECFra2thGFKTOJ5tuzYxiGVZYRhCjM7Ozg6ODvcPj+bRYhmnR8enp2dDoZAE2LAs7fiAMO71euvr645jpelyODybzsamSV3XJQTled6wynEt0zQMw4iiqNVqjUYjfQ/Y3Nxcpsn+0eHZaBi0W1mWdTqd4fk5JSTPcwDAydnZMksVQBKovCw0efDzWv9UZKJVJUqJqmqAQoZhWabhuCY1MFTav0syxjRN2nE8bbJgmqZGTkzTpMbT6CVCiGlZmBD8eaSUdtVN07Qs6ul06nmeUoBieGF7+603XmV1ThAWjDdVzerGsg3TogBKIVkY+r5vO46lERLTtCkxIcBSSgixEIoxoYlBn28Vn+ZEK6U4l1JKqRo/cC5fvnh6vNja6UQz5brm3tE71y5+3fUBgHw+LYTiUkAlqZAlIZbj+N0AbAwsTASrUbfrzxfjTns1XTYSNIR+YW4CEOLc4Jybhu2FosgUUGBtw3BtEkWL7e3dsA2TZdYUvNd2N9YcSsTuxQuLKGONFIK5nlVk0nVxr+cQLGbj2CC4adit5y4+fPjw+Pj8wsWVk/Pj89Nlv+uXrKEGdA3j+CDOimRrd4NiYBgGRI2UsC7hq6/fqOrSsf3OIPjzH78LIYAIFWVsWkgpwJqq0+6ati8aiAkkFOQZCNx20AIEWnkCLl9d//iTT9pt7/kbN6DKv/HVb9x78HgynrU6eDgcvvnmG9/67iXRgOdfGURz/uDBqRfQphAEex99eGKYbHNzdXRWzOazsuCm4QSB3Qo7n35yevnaSn/FK8tysUgABEUOEBb9/gqmnFDQW+0nedJUxfraigExL7nvGzVrXnz5mmHCqmJlWbbboWGQ9fW1hovZZOl5nhSk3xvMZ/nKmjUZLxZTYDlyY2Pt5DgmBGEMHceZTZhpmkVVcSU9z0MIaVuzZ70hAEoBoelkT99MCIGoG/C5ecGXxkOYZUWS5Vvbu1s7O612tyzLfr+/tbv14PGD47NjQpBholYnTPMkDP379x7GcVwUlYZBEcGj0ejw+DheplGc9PorYbu1t7f34MGj5557oSxrBdGj/UNA6Nlw3O52B+sbB4fHNVOvvPaaYVlcCoRwWVfT2cIwLGpYAADNi35mKIAx7nXbQgjTpJ9fyQohxLnUjgBCCJ2zjBDSkywAQEeMG4Zhe25VPkUbNCdeKciEghgLIdSXogCUAiXjTAFCiEGw69q2besZllpGmpd1XT96/HARR5PZeJktsUFN12wEj5PlbDFP01wqSKm5trY2n0Wnp6f9fr/fHyCDcgDTNK/rJsmzMAw3trf2jw593z88PpxMJnr81/i19noJw1DnwOpIZd0dY4yzLDs4OEAEaydwzUAGEOZ5vlwupVAPHz6yHY8rqT0cCX3qw/4sXElL2ZRSCIOqKggxMERKCYqV5E/ZM9q2S/doWl6i223XtTnncRwTQkyTIoQ8z/E8jxAiPk9ughAKxvM0M0ySJUm0mJsGUEpUdbG1uf7zP/uzYegjBCCEVV0ghDCGtm26rg2h0nxs27Y1sRFCWNeNFBAoRAhJ01RXQ0J0ki/6EgFIPI05hThapAoVRd7w2kSkXlnt/vjPPnvl1ReRARQErutaNm1qASH2HBcKe2OHv/Lq80pYyxhXrGl4feXKpQd394PQK+ovBi4hAIKkHXZsq9XqyckwMW3gBxIjR8EMAlrmCsJmsGpcvNLznPDJw8Xv/Nb7g0Ffx2MtFgsAwdb2SsPypipdJ7RNKhg4Hx4MeqvtTnt/fxx2nKKESCnHQwBz3hTXLvWTrKxls7HepqYJUMVrhxJ048rNr33tkhQky5YQNxCD+WJ89drOcpkDBRzHEo0scgEx9tzA8yirwfHRuNX2CPKBBP0VL02hbdHPPn34ja+80PJXDcPgDFqutCzndHinv0q7nc7m5voPfv9RuwM6nRaCdjSvoQIvvnx5NlskS4YgwMCM5s1iXlZsfnYAhpOTja311bU+pXh1NXRd4/w88n1/f3+GEMybKi9ry3GEEEBJ00Jl1WAM0zQGQNm2wThgoikZX9/cINSUildVPp3MTcsoc7C+tnO0H3Fmbu5aeSqTCKytrTG5ZLzGGEgp65rzSiVxWVfiS9uvv/ogigCAEmOgIchn33BdXynl+WGcZkwormTN2O7uxUUc/eEf/WD34gWIkeXYjmttbK7lRRoG3qDXDz3fsW3OeZYWDRem7UCCT4fnSZLkWal7E90rKYjufHbPttzNrZ3f/f3vb+/uYtP65N6dyWyxsbUTJ3lZM6EgpbRqmizLmJC63lFq6P0gANL3fcPQ0lCoccaaNVVTd3p9/HnKGqVUaxK0EFVKKYRCiHiel5WFbblNzTnnmuhLCLEcm0vFxBeTspSgYUoB7DiO79qeYwGp2r2uAGowGFy4sNMb9P0w0IQPL/AxxWfn50VVvfjyq8/degERwzDMsN3Niqq/uvLaa28IoEaTiRf4eZkJIYNWy/fDjY2t2WxqWYYEIo7jfn+l31vpdvtRFCVJhjHutHuu4y+XiTaASdO01WppqcbDhw/bYcs2Lc3cRpQ82nvihcF8sej3u/M4sl0nr2ohAXgaHacXpkD/yOjznDkAAFecMYEQkVLWTQ6AwAQahBi2xSSnplnUBaKkbEpqmUwKhEAcx01TPVPOEaJdnhqIlGESpYQQjNWV77th6J+fj7a3NzudFqVgGUdZsvzow/cfPLyHCQRQmhYlhCgouRSIYMMytcpFo9KfS4mxfnMBgAa1irzSuBBCEEIIFOFcNE0FkQBAWZaFkTkZRSfHkwtX8WKiDMMYrNE0hscnj6WgN25uNyzvdHpBaDEmeCMuXlrfezL5d/7e36nqZG8vGo3KrKjbrZVlOjo/m7TbracGVAAAAKIFL/IlqxqMHMlBnjdXrnRagQO4RQ2Z53mTA8PE/+7f//Wwa2Daee/toW06QmWOSwFAecYcF2xudpZR1G73yzxXioeetzLoRossWZYQAcuGCuA6qw0TAAzavv3ai29MZ2IRR5ubIcISYCCYw3m59+T0+s3t+XzOpTIt1O6D2WwWhP7WdkcIkGYL27ZZKakh02xZ14xSMpsJzwv298+//e03Wu3O7Q+HCAETgpefv/W7v/OHP/Xtt8qKcyZ9L+ytmH/8gzuvvbXzwz/8DCiwuuYtF2VdsXbYAQoQozzcn9UVsG1sO4ZJbdOwuQBQts9Poyhacl5VdVmV3DAQwaiqszDEGMMsy4iBBAJ5WUgkEcVBYFZlA5TiHNR1Y5qAUBG2sO04AGDDIADKogAQ1e1W5/Q4+vijYafdwhgeH40pMZUSYcuO40UQuJwLrChQdBlXGBmO80WLU9cMAAgB1iSRp9VQUwwhBM8MPp++zVG0iCLP86qaRct4GScIofl8vpgnL734Wqc9yNIKAtpu9fUXz1+/ubO92WmF2vPOMKzVlfXAb2FMg6B17+Ej07GDIHAdP1lmxKBlXnU7ndls9vjx4yTJIKYra6t7+4fjeWxazu6FS2Groz/3nVZLkzMoNbVKwTAMzhsppW3bjmk9a2x1TdSKEa2T1X+o5bSu6yqluBAKPBVCVFUFCcYYNzXXLBM9ZKHP8wCe9YYcgIozKSUl2LFsAABjzPfdyWwatAPHtQ3DsD2bmAaT4vR8yBWglN679+DegwdKQaDIPFpovvSjvSd7e3tMsDRP/+THP9rc3EzT3DCM0WhUFEUcx4wxjKFlWUEQEEIMw+ScDwarmr7jun673Z3NFpzzLMuqqiyKvChyzvnJyQkAYHV19eTkBEKY53nY6+hUANO2ptMpwARgIqXUBBRNtdH8Z11QCCFZlkIItcuhaBoluWdbEMKmqYRgZVU4rl0UmWUZSgkApE4IoJS63lNWzdPOFCHTNLWnGec8y5T2oHZd4+TkKM2W7dDjnA/6/Xa7jQAUgkGobNfq9NqmaRKDMi7LqtGVWvetzwoipRQhAgAihOpG9SkEhCAAWEqgv5aKY4wxsobnWbfntTue4wStjg0AXMzKl1+5+Qe/92evvPJKVYGmgiurncAn81nkhkwI8Jv/8k/f/eAhIkAizjiQ0kyyIWMlQcRxv+gm6gwYVORZVpVccnDxir+50eYMAoCKovJ8q9syi7T57d/+oyhrzqZjDgCUxEAmIixNCssy19Y9LvJkWSiGzs7GF3Y3Pc+Pl7PFPMvTRgkACZNSOmZLKElM8OZrL779p++yBggJVtdCL3SKXBjUBgC8/97tk9MjSHivu1LV3HVNoMxokZimhQBotxzGizSuBgOzE/q2YSGsIAQ1E1lZnZ3s/7e//QdCgeUyvXSlPZ8sPc9q+NJxQFOhpmmyRLEafPenf4oQ8/KVtSBwzo4TqZqyiikFN57bOtsvFUcQGFxGCpa8llUBBquWRdarsnY9E1MQx7lpA9MI8jzptFaqqmq3uotYIoI5AsQy44Q9/8JN1wFNzR3HbLeDK1e3FWjCtrdcLhWkCMMgCDY2Wq2OQYjx6OEEY7BzMRidNgACPyBKKddpc84bViileKMAILwSdc3Ul9jVRV4DoG3eIYT46QJdKkAo5RxowOHZo4MgQAgzodbW1hbzWGuTGWOG5W5s7Q7HM4LN3Z1LTcPjOBFCvf7aq1vrG5ZpioZpDCRodybzRZKmOqFNCKXFVWma9nsrLT8YjUb7e3tf/epXw1bro48+Wl/fEEq+/c579x4+YlJsb2/v7FwIgmA2mwWhp6dgfbE93RNB+FTeIKTneZptq3URmsSnL3i9EdNEOR3NodFzjKneG+paqUOZhZJKQfx5u6QPpkAbdOsmyLIM13UBAGmeMcYODw+TJOFSxnGc53mSpUmW1nUtAcKUQAizND8/P0+W2XS2ODsbVlUxGPQUEKPROaW431vRNq7z+bwoirquO52253mUGqZp53npum6a5qZpRtEyTTPX8T3P0yNzu92O4zgIvbLKq7wgEBFC7t27l2VZw1mn17VtW2uKDg4OpAJP20CMmqbRKNmzUCcNvmOMiyJ7tovQuQiEEFY3+lWyLKOqKqlEkiRKCR0aFQRBEARFUWh6I4RQvxFcSs36xBgTAgzDaMoKIpXlnBDCeJ2mVZIkTVk5jmdYhmEZtm11Oh3LsV3HV0rVnDEmPteSG5rdzRjjnCH4VEQIAAAKQQg1gIOg1tJAQoEQTOugixxs7XTSWC2iM4xVnoBuPzg7G56fZVUlNzbaVakQVgpwTGDNoq3tYDHBg5WQS4At3uqD+bToDXzbAVlWfMkIGFAKtjZXPMetqioMum++eb2ssrOTOYRiGWf9lc5gYJQ5eHgvM42VvJoLBCAS/fCiVDWEGALS7nrjyanrehhZP/X1N2fzyfHxkHNAiYWwQQ2SF40f+stl7re99Q3abnnHJzPD8sbTebttGwZCwE7TJQDgjddfBQqXFSvyxrYCSuzZJI8WaZUzKUHDCtNCAADPh9R46om7vtmNk6QsS0Ll5sal6zcGeca/9723XDPY2d44Od/DBIyGiyAIDx+Xzz2/8xv/5R/m1ahukiwrskRCpJhIr15bEzI72s9N2kLQgqQxLCYBwMDaumg8vD98+Pjw0uWLfgAAAH5gjYax65lxnBmGkeclAGAaxUmRSwwxAafHJ2+8+tpsFgmulFKu71Q1X1sfjCejx48mjuMUeaWUYiKJojlG4M03XzwdPU5jAwBw/da6lNK1+vN5hJBqmqbIKoopgFAyCb+kMKtrpusgeKrS018AoAAyqGqYuv3hRz8Iv68ffeuP55cuXjEdlzUijuPQ9QSrHz14KJCcjGeW4169fmMeLcJ267d+6zfXtzb/9vf+5t0H9x88eFBWVbffe7x/UNVMQZTlKWei3W6fnJx0Op2G1e12WBSFaTlRFOmYoW98/asfvPPur//q33ry6PE7t9958cUXTcugiKysrf3RH/2wbvjR6RmARJstb29uNE0TxYtWq/XW62+cnuzFcXLlyjXLdCazaRTN0zRd31qfzWYYU6VgXTUXLlw4PDzUig696W+327Ztj85OdaEEAAAoOZOIEkppnCyBQn/3DzbBX5+/Pn/VeXT8M/qLq9t/+D/sM/nr8//befJ/+cV/8A/+/f/iv/hnf/fv/l09dUEIEMYQAMCY0nyFZ49+9ODhe++/89H7H2g5veW5JeOD9TXXC8J2q9Xp6Or26MFDx3Gfv3lL+wsEQeD6XiPkaDxtGpbneZpkvu+/++67luUEQYARIcRACJ2enkkp5/P58fHxD3/4p2VVvf/xRysba4jQ/f39Vtg+Gw6n0/nLr7yWJJlju0II3dyBz1mBAICaM86llmeNJmM9IGsyjXY21JHEQLuqUPoMadHtIUKEMeY4jh60Oed6ONWw9f9Ab9Nfn78+f33+/37gX+lvqGlZWpL3ZUcvz7Hm49H777/7xz/8wen52TLPqOs0CB2cnOZ1Q00TQHx2Oux1B7ZpNVVjuz5G1HaclZUV7Wvv+n4ULQ3DGA7Hvh9euHDh0qUrlmVlWZYkWRzHWZYDhPorg063O1lE+8cns3h57eqNJC0//vjTzc3tTz+9c/fu/VvPv5BlhV6TGYaRFfna2pqOKCrLkjGhHRmm06lm0oDPFRdae6fjjZ75g5ZFtbW1pX1n2z2t/wW2bWukxbVspRRBmDH2z37h/L+X9+Wvz1+fvz7/vZ5f9/8I6Ln4L56nlBoIgRR/AUW5tLvLuCD7B+fj8XS22Ds6unTlaprnputKCY7OzkdnoxdeeGFzc3symbTCTtM0Wzvb77//PsSobhrbc6WUQSu8ceNGVVVrqxt7e3uPHu+NJtO6LjVZOkmSqqk3NjYgxnlZzKLFZw/vX710eTBYrZtmPJldunx1//Bob2/vza+8dfv27el0FgRBXdfUNLa2tvb29qqq8vxwPp8TYuhAS8aYZVmL6YJSCgDS9Is8zzViIKU0LDNJM9typrOJbdtBu3NycnbjxrXAd8/PRnp9pil4CKH//GsP/NB7eDg5HEYKg9Wud2VnNbTszdWts/PjIi+rps6bkpoEUVQ1heWYokYQQtdwHNMe9Pqu60opGlZ12r2mrpNlWhQFE9zxHCZZlmUv3noty0a8VJZh7R188uZbX//aN77zH/0n/9v/6H/1v/c8/87du9vb23fu33vppVeiOC6Kor8y+OD9d/vdHiFENKy/Ovin//Sf/uIv/iKGUEo5Ho+3NreXWVo1dZZlg5W15XIZRZHlen/+7oeH40XFoOu68WLm+i2hJIQwihaEEMf3siwbDoer/YHnhlkVaRevwQDfuHHxg7dPBMfaTIExps0dPM8ry7KsS86FUsp0rFZgKaXGwwmBBoTC930ApUEIpRRAKQXIsyzLi363t7u7G6XLt9999J3vvlQlSb6IsTaOFaKumzRNbdudL6IgCLW/LCRYSmlaTp4X7W6/aTgmBCECACAUpNnCcSygCIQIQJEmueeFpuG+++5HvYFBrGZtI8zmoDug65uhbXVuv380my5//d/6mbff/9fjY//y9VVsVmVZpklDsdFtmWsb3m/9zp5lsF/42RtnB9PA7xKbULf32aOflLPW9kXze//500n539u9ez4affunr9sElHVme+6P//zhxYu9OEovXbrwrZ/6xv/pP/vHV670IeBVbrCKzuZnv/Ir35xPjtxe9/33PnrlxTfOTg4/uj387s/cZEzcv3d++fL6J588jGegv+pOp/nW9sYsPmsHHctSQGS2bc5mcjgsAASXr4HXXttw7c7jo8eP7wRBYIxHZ+2uhQmhLjYJPTme5pHFGHv+lU6763z60VGv548XRVPBoEUNKuocVmX9yivtl17e/r/+o09++pXVn/nmm3/w44ewQ370R3eodK69XPZ616N4/JMfJP/Tf+/lgyf756eLqlHLhYucPI9gXbjf/p7Y2lj7b/75iWGzPIOSq0tX1pJl3l2RdWEe7s93r7p7DwqT+DVPfvoXLtz9ZBTNsOuD+Tx7/a31NGHtrvX2n51cv9l3PNe1+2Vz9ujBue24a/3LJd9/fC9962thN3zu3sOfQNbvbBfTSba1fp2rxeFecnbEAeIEulyUP/Vzg9OD0rac3ip8+0+HXICtnW5ZxL1+++SgkKCkhmxq2O54+pMD/jsdIlJAGaapURSpvqCVbG1tbW1tvfbyKy+/8Dwh5Pj4+I//5Ecf3v74D//0z/aOjqO0yOtGQbyytr6xtc05BwjHcUJNgysphHrxhZeuXLt+7eqNKE6yvHz3/Q8+vP3xp3fu5kVVVo0X+K1213a8ne0LeZ5nWRa02n7YkgB+9OHtoNWmlAqhPvvss62tLWpan92547hur9/TyWqj0ejipUsazRysrjEpBFA1Z01T+b6vOXd5WZi2pQDgUjScmbbleG7NGtM0x+NxWVe25ej4SoXgMss7nU7g+03TGJhACAnGQgjbti1qWCZFGAgBqkZIhQHCRZUbptnwxrCeOkFpaCWOEwQJkhhBjDH+7LPPFouFbdvbW7saPtKOp47jrKysaLcVBGC3211fXw9bHQng4dnJMksbqRopP713N06T47PTpuGmad6+fXttbe0ZbUhjHYeHhxDClZUVyzAnozGlFBI8m8183x8MBkWWx3G8vr7e6XR834cQ+76vDU11H61NGbRlQ57n2vG/qiqLWhBgpBAE0jCwYz/1GdQYsVLSssz5fK7tIVqtllIqSWLGWLvdchzHMAwpwWSyoJTmeT6djQEA2jhLSTU+n3744YcYIs8D9+89OD0bAoS4EPFyKYQEAJimjQlxHPepbIYSSimhVIsGEELG09xnAD4PuHgKoSDUMAYxAgCMx2PTRJzzVui1Wx4TSdOws5P4+HD88ivPR8v6/Q/evnH9hbPz5GD/6Lmbt5SQkquqqhbLRV4V65udaAosyxGC5Xme5bFj2QhDz7Oy7IuFUllXnS5hdSUEK8uyaerLV1oQQgDk6dnJchnduHbx9GxSs6ooqqpIfFe1WtYsXhZFZhl2VZenp8NXXu3M5pO3337Y63WmkygIcRC4jEmMAVCQN2A0XFy9vnX1xuXhKOt0fQCBYdAiA0oYSZYi4CpYHu3HXqCWs8awFEUGwtIwsOd5pknPzqfj8eh7v/ALlhmWuTQMMpuXUqC6RH4I3vjKrXt39pocJemISEvK6v7Du24QDNYMJLHlOAePFlub3Siae2Hgtq0shRA1nTCQQmFc9wfB2fkcQctxUbvjAQBGw7lhqsGgNxrNwzCoywojsLqZfeOnXnxw/+DV129WTVYWNcX2fMqVEr7v/vKvfAcgWJblnTufLhYLhEDTNA+ffHbh4qZhgQtXto+ODjBErkfqmpm0hc3lyWE6PmsMmxOEpACmTWyHFHlp2bQsuBBKCgWhsmwMAFBAGAZ2XR8AQCmsSv5XT8oAIE000w50z77RH6wsl0vTNDvt9uuvvfL1r37VMsjp8cne0fHjo6OyaTgA9x8/HqyvTRbzSRSZphkny8uXr66vbba6nVanfXR48umdz6hpf/LZ3Q9v3+YSEMPA1GRScQlm0cJ1XcdxkmXGGsGbRhNlXT+YzWazRRS0W2GnffuTj2/dujEej4ui8H2/bhqdjAEhXFldPTg8VAqahqX3ibNooa9tzakuikIDZ3oPqFeHOs1uPB4blhkGLcZYp9Mpy5IQ0ul0GGPaskUvVk3TtAzi2tSkUAhQ16ysGgDAMl1iSgzLrFgDkOp2u0Ko+TymmDaNUAratosxvnLlSl2V+/v7Z2dn+jl7nqc3m1VVRVEEACirnGC0sbFx4eIOIeTo6OhHP/rzqqmzqphG862d7W5vwDnX1HfO+XQ61UkvOoX1008/vXjxIqUUKdButy9evKiNVzudTisIOWMrKyuXL1/mnOu0Fimlzqjhnx9dVbXjSxAEUvKnKckK6YbaICjwXE1k0ToipZTruq1WuFzGuhgFQcD5U/toxphlGe1223XN+XyOMPB9XwtXzk6jThisrHZswzw8PJQSAARN07QcN01TDVtnWUYNI8uyJMlt24bkKefpqYhIKSEURAQhAiGCEHHOKTF1ZccYA4BN08qLYjKZ1LX8yle+AhSczyKIlGnYScIePzmmFrxyw0IIlrn6lV/57vFxHUd5r7fCWFkUKSFEcNTvmkKAg73J+uYWIth1XYikha3+qh0vv6iGrgvyjJ8cHW5ubzHWuJ5tWeZiMatqtrG6spiPHz3YgwRIiA4PY4LB66/dXCbTNG/qprxx48ZsNgpCW6IGYyQZWaYJkE0Y+lxVRV55PjZN6Fq2aEDNZhKUK6u4YYlhYFYb2dKI52gwWM9zEcUphMR0wPr6RlNnlJidTqduRN0kCvDNzX5Ti//gP/hfA4UYU4yp55/fWllZqWsmFUjTOEkQJvKb33lNYvN8fI6RkS4S08p9r/v48ZMkAoyPoYSO57Ta/ThW7bY56LdZA1Y3se2Yo/OMUCGk9APDsmFVMj8knAODOoapoqkIA+J7YVnMpkOQpNHrX+/VDXv1jUth6CIsp5PFPJrcvzc5OhxjAhgHhkV5I7d2nHTJX3ljazzMIUnzBAtVsMr1Qn52spiOWNi2mgZ4XkuC2rSlaXiWbfq+Pxs3hAKgkBDCca1lnAGguGAQ4KJQXNT/3a7wWTUEgkstQvnypCwkaJgoy5JVZeB6F3d3n7t5q9/pYkKHo/GDJ3t7R8eDtfVGyrPxpLe+OlhZRRBP5/OGM9ZwxoSCwLIcbYDoeYFSKk2fZjYpBQ3DslxvPJ5SQvIss00njVOlVJZlnV63qsuPPvqo3W5vbm785J23n3/hljbXQwjlZUEpPT09XVtbWy6Xw9GECQkUtG0zSZKsLAghluV0u91nDvJakJskiW3bWoNIKU3T1HLsZ47NVVW1220t4LYNk1IKAbAsyzKoY5mWRTEGDedZVmBKmqbKyoJa1PUdxthwOMyywqRWVTAloW25vu9bhv3qq6++9dZbVy5ftm1bS4N1s6PxnKqqOp1Ot90SDSvytKnqr33lrTzNgBJ1Wf3kw/ctz2VKIoId1x2ORlLK4XA8n88ty9IlrNvtnp6evv7660opnfS0uro6n8/7K4PFbD4cDj3P6/f7h4eHZVlq7zIAoL4lPBMU61dD+1w4jkMoeka31Dkwpmn6gauf/zOyS57na2trhmHE8aKqSsdxWi1fV/mmqYUQdc1c17106ZKOhNbewL2eSykNPP/WrVs7OzuWg4QQeVnM53PDMNI0S5JEKljXNSHGYNDVjBkIYcMYAIhJgTGVnwNcGulijdCadE24wYgiSOI4LkrW6dp5nl+/fnMZF2HoCwXSNK0acDY8xYgWZXN8NKxZ8pWvXP5vf/NHFnXXVvvUAFVTc0E4myMA7t8drW9d8FoBNQwhclHB2eKA1V+wr8IOWB2YP/WNN49OTtzA3z84UBBQA17cXZWini8mnCEIQJbX7ZZxdrx86cXnmqbh3CAILhaLwHNu3bolRBMEQZ7J5XK5ubvSbodhGwuhhBR5MVsuykGf7O0ND/ZGthX4gYOwMAzCOTcIotgpioIQwFXi+9bVazsAgDRbjsfjVht7Aa5qHobh1ubFf+fv/rsnJycrAyePxMM7J2W1hJjfunk5L8T9+8nLL19gnLz38YcVFwQ6UAHfx3FWjMdL32uvrbmLaAYQu3tvZNuEUGlbFENw66VWXjRxpEyXcQYRFv1Bq91uuz46P40sanGWNhVodch8BB4/Odvd3f30k31qgL/393/5G998peZzJstFlEtVYgxaYSgBK3NQN0ww2et5e3tHUtXLZY0NjFAwm8auEy6X2WwEDBNIVTqmFy8XhID+iiu4IWVDKZ6NueeZAKCizAyD5HmJMRYSpGnm+0Sq5svWhbpP+qIaAgCEABCCL3tfNw3vdrtJkriuOxkPsyQNbLcbtohp9VZWkySZL+K7D+7/17/5L5MsTdL88PBwc3PzJz95+969+0EQTCaTd955p2ma0WSc5tVoMpYKtDrtsN1ptbvrGxuDlZXpdGoYRhwlBqFhGEZRdH5yri9R27a73e4nn3xiWVar1Xqyv+/7/jPfvaqqdD6BbdtJkiRJIoHSja2e3aqqWllZcV2Xc57neRzH2lALIcQ4f5YUyBhLk0x7fOq/qCmNOofINE3XcUxKLYMaJiEEKAXKpjYMAxKYlxkTXDs8O47DKuZa7msvvX7hwqUkSfb2DqSUn378yWw2m81mpycnAADdC+vHAwB0/V0sFo5rnZyc8Kbe2NgAku/u7jqm8dEnH99//OjTO3c1dgQhVApqXfD29jbn3PM8PTXrbOWiKC5evDibzZqmiaKIc762tlYXpRBqNpsBhZIk0UVQqafa5GfmrDp0STfFhkGogfXsjBFVXJjUeGZz2+l0dDzTeDJcRLPLVy7qf6quqyAIKNX8cEdKqe1gz85O4zjWc73WDldVMZlMHjx4gBBiTFqWdfXqVQlBWVZN0xRF+bkDjQIACKCUUlIA3fpBgGzb1jOElOoZJftZehcAAGO6t7c3naYAgm9+8xtFURjUcSwfQevx49Hmzur6VjiazGbz1LZd06Q/+tH7b7755oXdzXt3H7bagefTqqoJtkws1gbhZMTu3HtYNvVwODSIdA3Xa1FEvtApU5PdunHdILjhrNvvlVXFeQMAqOvSss3LF3cxdMoCCI6kQLdubZV59tmn9/NcMF7r/vrBg3u9fmuxWABA81zWLImSRadnUxMJAVwXhm771//2r2SxPR3K09Nlmua7F9fqZhkGENEkWpbLpBEc2K66cuVanJxDQCBUQggAhe0QywZvvfkVx26NR7O6UUVR2Ea3SAFEnFpgc/vCg4fH21s9BLOsVGaLrG/vTs6jm9dbQghk0HkEMMaXr1wwDFKUy2WkbMewbMpYjaBx8UpnGWd1CdwAEmJAJIRqEEJ1k5yeLFnDqQHW17a2d/tC1m99dfdXf/21jbUr01F5995H/+l//M/OTpL19VXb8k7O9n2PlGVjmDjPGtc1JVMYma22Q3GoQJOnYDSaKYlsr56dubaDheJAulwUlmlxwVfXwyIT01ldFEWSCNczAQBCcEKIlABCRSkQQly9ehVj+GWzrr/QGyogAQASAKKwMr4cm1lpAdw8XkZxMp3OatZ0B/2eHfrE/M7Xv/6dr7/lAPD2D//k8PDo8fHR3uT8t//oDx4dHQFC79x9uLN58etvfPVXv/eLbd977aXnb924funyxZ2dnXYYXLt08fH9B08ODlu9flZUvdU1RI2iYUXdJEVZ1QITK2z3pvMYEvLo0eONtc2dje0onjuuJRWv65oYtGbM9X3DsiQWSbZkglu2BxEty5paNoRQVLIVhJZtVE2RN7nhWlwKxqXrOGVZ+n6oxy4mmFSqYWw6i4WUYatV1zUXje+arcBSojQo6HvWTtBRFVAYFYJnVW0A0lTMtR3O+WIZA4ws03ZMbzKaW5TsXtje3d1udzpf+8bXb9187pe+9zdefeGlixcvbqyu+YZlYmIYNI5jAxvtIIzirK7Nbm8gWHWrf2G/jDe7HkJkrds7ePz4g48/HMbTcRKVnLdanSotTU4kBpPTfZfQH917uHHlxc3+elbM/E5rmSbT8aQTeDalUoo79+6ubm8+vPcZIPQsiiqIBFeAc4qRUFALe5SSNa/LplScBa7DigqTFsLCoFQKU0IALDqNYsuGGCqCABeN69lllW9sbIzG47DV6nb7RZUKIZECGLYxZQoigK2w3UbUaLjwfL/hzDBIf9Dd2t7c3Nx0Oj4Fso6WdmAVdWkqtLa67tpO6Ae2bVmm6XmeaZq6FJqmleaZ43iGbSEMmXgqP2eNwBghzBRghFDBUV0VlgUe3jkuEkUh8BzA+EzI2f7h/YuXrmbJ9IWb61h4Du42edVudw4PotGIP/fC+ve///2f+va3AIFJnpmmTQmoyzEQHUGXYR/5YccgwDLckmUN5rzyN3e+WK/PJ+LX/62/+endR46HHcf1A0DVGgVexZdEbTheq67rvufWcf3V1zZ/+ntv/MZ/86+vXn2pyRNC3CSbeiH0nFAUlBoQwBpiIAUCACjQbF/EFJLk3Pg7f/vyyzc246hA0N655JdLHLri29+6kqRiNCGNor4X1BV48eXtLKFnw8zwhFC4TspBe+P4OH3+xctJwt//4COJq7BNEUKWX3YHwISdXgf1+vDwSU5dZTTRzuaL48Uy9MzdLbe7iiRsxVGJauB3+fF5PY2L04PKkHClh21DjSdLs61aZnE+ZGZfTk6ltOvNcEAB2LgQWeCCrHwJk7DlvvBKPwy9/8n/7BfC4MIf//AH6fK0SoRJ/Fe+YpcFkIIRQ9S501uHCpXLJXMdk2JkBCDLSZbHlsMX08wxvCvX+mUhp4fp+jpeWQsoBQQICxquaUAA2i13Op61Q4sxAVGpmgBBDiWoWWPaGGLQHgQCKb/jp5UECGj9qFYZfO73ARCEQEejKKC+PCkzqQAmxLQQppiaw/GoqBuCDaXUzs6O4zjbWzs3b95847U3jg4OP/7wo9/47d98+4P3emsrsyS+cPXy3Yd35+myFOzTO/f6KyteEI7H4/Pz8z/+kx/92Y/ffu7FF1ZXVznn2gZmHkfao1ibEs5mM8/ztHjONO3Dw8P5fN7t9C3TCfyW6/hpkrNGPHzw+MLupSiKCCFaXKEtl9M0hQR3u13OZb/f73Q6i8ViMpmsrq7OF9MwDBljhCCty6bUyPO80+lEyRIblH0e7VaWpWVZemPleV4QeiYBUsrP1dzSts3JZBKGoWEYlJjtdns+n7uuWxRFFEVHR0fHx8e3b9/+5JNP7t27J6WEAORppoDsdjsYoaf5J8uMUloUhed5nXbbsEyDkuPRyLKcF27eeuvNNyEAv/u7v/vpp59WTWlYWBFgOraUchbFt2499+H7H7z22mufffYZZxICVFWVF/iIUKXUaDReX9vknNuO1+12x+OxVok8I1HpZk13rFVVAQAMw9KRm4IrwZXW+ZRFoxTI86cLwaIo9PpViyb39/e3t7dNE2iVkaYr6SzW5XJJCPF9X0ejaciIMba2ttbv97vdfq/X0xYMWZbpZa5+hnrvqYcAbfevdSbaMEKLLzGGQjIpZdNwrdjxPE9BuYgXVVVgBBUA29trZ2dnFy5cenhv1Ov0lQKO3T49Oy6K2Pd9pRQAIo7TF1/Zuffp/Afff+fWC9u+18Gwtba26tq92Wz21lvP9/v9ZRTbtjsYrE7GMwBAURSEfrFyshy4d/Ax50rIqimFZ3fH033LUVkMhqO545K6YRLBzRV7WZaP7zz8zs9/ZzEf71za5KIiyP/skyeebwLMmwoCCP2QJLHc2h4URQkAoMRFVvFzv/hz/+Vv/E6rg8s6dxyv22ufn09Go8mNW9tFUZRZrhTqdGi7NXj/vU9n0xgC6lq2hOC73/npfh+FYfiP/tG/AABApHZ3tzGyoigxDCNejvorrel03us7Ydje2LpQs/rR48NaZC+9+PponEOSzsay1cJKslaXAkVGw6VhCkII43Jynly+ZAvpT09rxzBs32QJyMqlVGBrc+fO3UdXbji/9CvfuXXzxdniuCndH/zgT/7g9//k9Cguy2Y+r46Pxttblz3fFLIi0HFcLJgBEQhcx7QlVIjCFkCzldXOYgykYtjiWcocz2E1evHlS8PhyMBOqw2LqvK9ruMBpdT5+Xh39/LhwYnjAEKRUsBxKCEG5yJalBaxTJM+uHvfwECnOX/5PFXmKQWUUgAhCOCXPWwUQHXDpYLD8VRBOJ0tEKbUtuumUQCdnp5bhtFud77xjW+8/uobtukcHB8tlvHB6WGUJh/d+XieJd/7m7/0f/xP/+MkS//gD3/w3ocfHBwdl3Xzsz//8z/1rW+fD8dRtBTiqfIUQcIaYVqWdsfKq1K7BgCFIEJ5nmNEhRBxHOttelVV/X6fUso592yv2+nrzHvTNIuy0szqqmHtVidLi1arFYZhnqd7h/umaWiHFe2uqldplmW7rpvneV0zYhp6r0cQRgB6jqslfZ5jUwKAAFKChjOIUVVV1DT00kFbxQgl67r2fX9jfWtra2t1dVW/xLPZbLlcnp+ctoJg0OvzptGTrxCCECIFwxj6nmNgIhHqtXrv3f4YELq1tnl55+Kv/fKvKimf7D16/6P3D4bH0ILdXi/PipXVTQHRR++9f2lnm9pWUVRZWZi2Qyl1Xffg6JiaxvbuzulwdPX6tU/u3D05PWf8qU0sY8xybAiVhpU17KuRbkLIfD7tdrt6OPA8jzMwny0Zr7WTq+u6QKG6YkChTqdXFMV8vtjc3ABAcdEQgmzb8n0/yzJKaRzHei9ZlmWa5q7rbmxsnJ+fl2VtGEaaZXXTEIMCiIqqnE6nECNKaZKmy+VSQqBTdxhr9IgthBBcEmJApAzDoNoAEVHBoZIYAHRyMrZtCrFEVG1sDQCU8/mcMbax6g1Ph7u7L59NHg7666fHkddimxuDyZB1e958Pu31evfuPonmVbezalnW3TujNMU/+92fXkxnR0fjLMs4k4JLQsjwfFLV5ZevIteXj/c/IdjIlgWmjet0uKhu3ryxmIEknTOGTArjPPvV7/3yxw/Pbl66SlyT11lazFutwHVaWSJrVkhVJcsaKuS7NI0V41m33w1a7nS2XNl2Prl758OPDyzLNGwgJIzTiBh0Hi2H44ntelLKLGmURNG8mE0aCBEhVl6kju2/+ZWvbm9vnw9PHQdYtrGztXlyejQbF60O5Uwx0Wxu9c9ORytrrcPDYwmt2WIsAfEC+/h0nCXMctFiIk1DSlFW9Zgiu8hAe2AEra4EVDL4b//6q0enTZ2DOmtqWF/cuHw2m61trkaR+uVfe+vVr1yaLkZROpnOs9/7vffTJCtz4Fh9CIzNzfZ8luYZX10Pq3qZp7zT9YuUKwHSZUNpTTFWQrBK9brBycnh5trNx49HGxf8ZcKSvLh//yGGMPRc1zMtA5yeHbz08g6E0DSJFHAx51UJkiReWfW++a1vnJ9NEDQAAFEUSyZH5wnBRPKnXeFfEll8vg+WUj0LEgUAAJCXte36N2493+p0HNcvG1Y1jBCj0+vGcbyxufnBRx9dv3J1MV3Udd0JO60wDINgMY8fPXoEALj1/HP/z//XP/HDYG1zg5hGp9vTPu9xsvz+D/7o0d5+WZbn5+dB0ArbHQWBggBjihAhhBjUSounbA8hhOsFpm21uh2AkSbTcCVH0wlXMk6TqqqyLIMAG5apDR0UgHXDmuYpZuo4zmp/QCkdj4dFXQnFuRSYEgVBURSDwSDPc9f1IITad8+yLAxRp9NidR36HkLEMgzXNigBSgApQNNwCZRhUde14zhGClBEOJeO7S2TZDabTSYTvdRrtVphK3jppZdef+PVb3/rpzzHNikxKWkH/mwyBRJAiIDkrucAAAxCj0fn1y9f/eTRg7ysNtc211fXLMN44cYtx7F/9Oc/erT3eLpc7J8dlmV9/fkXv/8nfzJod1cGg9FsDiA1LaduuB+27t5/0Oq0v/mt7wwn0zTLHu8fnJ6dtXtdXfUQQho4whgDoBhjmpeuG3PTtDqdVhQtgyCASCRJRomTZdVg0JGSC8E0oKzREgCAbbtFUZimrS0/bNuuqorzxg9cAMDnZuPINOyyLEfDyXw+d11/Npudn5+PRiMpVVXWZVkKIQCCAAAtBNIQE2PMMM3PHbOJ1pjroQZC6LiGVFwrzZUCp2fDogS26xATNEy224Hruysr/Wg27/V6H7z3ycpgs6p4kqRBEEDAW23PdX0pJVHtzqD2PHz/08WjR49cn//sz30j9Nfv3P304GB4/dpOu9XxPG88HgdBKwx9iHj1BaQM/BaP49jz7eFpuVjur60PIKDRonBsdOO59XghMVECgrPD05KDwPTOZhMluBfYJ8fTyWx46cqNIm9M0+WcB6G5tbE5HsWW5VDsF1VsezAp43/5O98PB6YACluyrLhCDRNSQUAIWiZZksZlXhomPtg7NCmsmxIq6LoWQPDv/b3/OTUN27YxAVLyvEgdxwEK2Q5utVqdLu0P2kXOGS+qsmm1u3snj4kJMHEe799f3eidHhcSqMCzB4NBvJyzmggJ8qLMi2Y+yy5f3oBy/vGd48CzPLOTxByJ+vrzu24IA3/j6PzeaBT/8E/vZdXoZF+srnuGYVFqUeKxRly9tgsBefRwr9t3bMesqooz6HqWFJAzDiQIQ9d2MJD2fB61OvZwON5YDxfxtKhYVbOm9jDGmJRtd4U14Mq1jo74Ngzjs8/uQgARBACy1994aT6fQ2yUNScE1mXjew5CQEqAifFvxJQhhJqX/eVquH94eHJyOo8iIUSWZablLJdLTAnGWCG4t7eHEJnMFx99/Gma5qvrm57pvvLSq2mSAwl5I25/+NF4OLJNaxFHYTuYzaae5zUN/+STT1zf8/wgjpaddlcXtX5/ZT6PhBCWYRJiMMaSJAk77Wf+rHmen56edrvdXq+nvbmeISpBEOhhdj6LZou5xhN6vR7nHGK0tbV1cny8uroaej4hJI7jeRRp8wIIYbSM9RQGAMCELqIIABSGIUIo8DwEgEkNgg3bMcPACVwLKFDXLM1zBrjjWgCAlZWVVqujR8j5fO55XqvV0RYVFy9enE6nGOM8T3XkUxj6rXbQboeaNogIhhDbrls2dRiGk9GIenbL8Tghdc3quh6NJkf7x5cvXnz1pVfa7faP33n7z999exwvGibMsP0b/59/dfnSJQDA+Wzih+Gde/f9sDWazo5Oz95866sf3P44zQpI6Nl4ZPt+WdZ6OtbokL5tQAgxhpqg7nnBsykYAFgUpee5rVbAGeJMWDY2LcR4BYBEGHiehzHJ88I0TQTJYrFYWVmBUNV1SQgqiqKqKu34DyG2LGu5XAZB0O/3957sP3nyxHXd7Z2dwWCgX4RG8KzI9epA+1zogC2IkFJKSKbFlKzh2ptSSlk3pXbKKavcdd28KOpadbvGbLYIW+6Va+tSNXm+fLI3RAj4gRsExiI5da1LR0czx80oWFec9NbY6fHyyd6jl1+9CZGIoijP6suXL5+dnf7RH/3w4oXttVV/fX0tSZcGpZqKVFUVwqAuv8jaNm2lhOl4sK7Acpl02v0LF3fn87lpeGma6PRX0yT3799tt4HrutPpVGerLeNqHp0AIIsSIOwSChkvzk6nhOC6AmdH0cbGYPtC58qVqwiGFa8hhIYJRsP59s4GRibnYG1jta5riLiUqqyKNMuD0PEDCgAwLTifx91+y/XsOI0dn9Z1AyF0XRcgxUVdlMvVtYEUYDyaMcY3NtZNz5ovx8+/dPWHP7x9+fo6xMX0HNgeZ0y4TlswOB7F7VZXcKAURNDo9UBdqdPTkhjNdBh/49vXNrZafuhFyfzo7OF8Xn7y0cn2li+4gVQYtkmyrPK8XC6XQgjTQgirZNnkebq6smV58OR4trW9YtJgZc2VnPb6bSHE+WgMpfv6a181nVQIGE3xW1+7BLFxdjpp+Z08yX3Xu3ZlwDkfTcYIPrWSkwJJCTCRFy9t/emffEKoWaQSE4QwqIqcUmAQKrh4Vg2/XPSehpAhQiD4C32jVviOx2Pbtuu6brVas9msruuyrPf29mzPF0p6fjiPFobtnJ4Pe+2V8clkd3OnHbR9x3/48HFZ1kIoTFG/39/c3IwX0WI21dlGlmNDCEejEWcCKFixxnRsSk3TtHXCRp7nhBhMCs8LNGew1epkWSEl2NjYsizHMKz5PGJMpGmqV4FlWVqmI5TMyyLJUkRgnuetVotzniyXtm33+ysAwZPTYwkAE0JHtmsnCMa0P75aLpc6sFwJGQQBQRhChCEKPLfTDikCTaOqhikI3cCTiidJwhvWbfdu3rx54cKFoN1SSkkJPM/Lssy27fF4PBwOf/SjH33yye0gCFZW+oZN8yov6wpTEyIigQrbnclkAhXAprU1WJtny26rnZbVx5985vs+UKjf7V29fFUIeffuvTuPHiR5MYmXd/aefPOb3/zww/cFxj9+54Nlmh+eHP+r3/v9N7/6tbffex9AjA26t3/QX107G47yssiyQq8INQ6ulHzKWMpzHXzIueCcZ3lqmU6e53mxNE1KCC3LMsnGCPOw5fqBo1e0mv8spdKovWEYnucyXhsmWVtbTZKkKArH9gAAcRxrjblpmmtra0EQcM5PTk4hRJBg0zSFkrbr61lYc9Q1H8g0zSzL9DijP7vPrBh1HA3G0DRJXiYK8OvXL3IJJ9PUNLBtkbopnrt17cqVPrHQ3/gbP/+/+z/8h/cfPLp+/brngTgSCADXdSejarDSoibffzhvd+xf+ltvvPH6N77/B+8rwPzQch0jT9O6zAPX+5yFigyTAgCA+kLAWqQGVDahQgK5mIOH94+vXd+dzoZnp0meCC4iCSRBYOvKrmqA1w3qrNy+cGV/72xjfbPTcx89eYwQSdNcSun5oMjKNM8dO0yWpeBkc7vbClZGwxnGsGka1zOANBGSdc3abZ+zGiKVLlOMieuACxdXCVWmqaqqMiiVAOzubk9msziOV1b6hOCm5qZhWza0LKtqmpXB2icf33Ndf6W/m+f5eHLqeq0sl5wBISugaBqBtXWnqOssLSX3Z7NibbXr2AYlQKrGC+p3PzzZWGu/8tUXAQZt242z5M6dO5wpx69VM4jj9MKl9cUIls2s1fIWs5oaoGkKhAyEAaVQSjAaRlWDqCWWSSWB6vQDCRrGDUyUBKXnmp1O5+GjT5WCs2kMQP3mG68oZSsCWKNs2uU8/sobr4/Oik7XXy7Tbq/d73eFEFIC0wL3H9yVAgghqA22Nzeeu3VZSBkG5vr6KgB/2YXg6d4QY6iAkpwroL4MPA/PztM0kVz4vk8pReBp8ziZzfRWfplkxDSOz4dht5cU+b0HDxVE7XZ3bXOLWjYXChJa1A2EqigyzmrHtS3LUkIWRc5YAwBqt7tCSaEkJpRgqr2UtXSkrljTNEpBARTGOAzbAIDy8xNFUbvd7na7hJCqavR8rQsiZ0/jd6No4XluniW+6yVJYlnOMk52dy4ABEfTEca4ZuzzqEkGAKhZo5tQzrlnO0KIVhDaJqWYCMEoAaHvmpRABeq6rpqKMdZqtXjDBJdJkozOx0VR7O3tzedzjHFZlovFQk95GGPG6jzPb3/60d37d09OTj757NPT4fnW1pYEiAtVCVYWtWASm0aTFQoDAOVoPq2a2rZd23RCL1xfWX/r9bfOjpe373waxct/9YMfnE2yTtj6yU9+MlzMHh8cFVX52Z17169fPz09HY5GYaf99jvv+kFr/+hwFi2uXb/OhdBMe4RQmi41oxt8zknSkIVSsNVqzeeR53lCNKPxuWmaAOrdQ+64lBAgRJ0kCWOMErMsatO0tTrIsiyEYBzHmuQIIYzj+FmyaFnUmm2eZZnOiNepoUVdIUT03D2PFlmWWa5j2zbjXO9VMcYASKWAYVhahaLjCpqqNk0DE5VmC9czDdtaLuq6AhvrA0pQuowVkK++9lKWL99+/8f/2T/8P5+c5YM1cuXyc4rZDY/rOi9ScOX6yvQ8Xyxmf/PXvjebzf7x//2/5g11HX+ZpHVd+IEhBBOCpenSMGlZ5UHgAQUw+QJTPnoMCEUIA4QcpczRZOg4bl2Dne3ev/0/+h/Hi3PGgYFgIcq1rvun77293l2P06ZIpIKV63jRIvdbJhdFmcsXbt28ce0C56Asi/4gOHqcCcb/4A/+TEhGsFtVnCDV764uk8V4yHZ3dyFUSVwa1AGKMg4Mg2xurne7oZJ0PouCwBZAVnURhI52gB+NFkVRYSo3NzcvXAwn47ip8M7Ozvnp0vUcrsplVL3z48e9fovXcnImDAN1Wy3TNoWSywhQC0iQ50lDSeM68pVXbz06yr/5tW9P5gmi8t4HnyQFWBm0IMRl2Zwdj69c63U74fnZfHvbUxxWBSIEcFGXBQcKuZ7d1KBIyfHJzLANSMDBwWx108gyxho0mU8azhE2w66V5dHhfv6d737V9/lv/IvfEaoJAlDVyWI+Oz0+GI7Oy4prMwTXtZM0IgS5HtjcGty+/alpwLopGQNSNSurPcsA7Y7PRaVd1v9SYwgAQFIqAAAiBAH0ZVO/siyKoqiqcrFYCCGqujAMI01TpVQYhosoeu211z797LPRZPzkYP9kOORSQUziJEWY/OjHf45MmuRZWuRpukzTpZS8EwaOZXLB9PPod7oY43a7yxg7OztjjDU10wupZ9IRnc+rjRfzPG+327qhgxCOx2O9I2+1WhDC73znO7u7u/rCnkcRQKiqKgAlQmh9fX02m2lsxLbdVquFMZ7Np/ojEseJZVnap0f/+F9i3hmO4ziOBwCQkmsPWwhBUVXL5TLPUw1BdLtd13X1sNw0zfn5eVmWSZJoCFXrpq9du/aVr731xhtvXLlyRUKlR0LbdUajESHGyek5QNBxnOl8NptMuv3edDwRUnb6vYazxWJxcHDUbnXXVzdu3rwwns0++vj2T95599U3Xzw6OkIInQ2HAMHFIjJNM0nzKE5s2/3ow9uU0iiK9g8O19bWKDU55wahtm0blsWkwBgLwQAAUioNTNm2rbciOsPv0uULN25cn00XlGKIhGFCzivG6263GwSBnl41gu84jmUZ2ipRZ7boZlBvOaqq6vUGvu8nSYIxtm1bz+OMMdd187yxLMvzvEUcaRxMc7z1hzDPcwifJhZoLEVXQwCAEIpSmiSxYSJKyaef3gMQFGWzXC4pJZ1uyzCIadGqyt7/8N31rRXXBX/25+9+97vfXSzKwO8eHZ34AVBKvfHyL3/zu899/we/9aM/ftIKA8arqlS9XvvylYu2beod6DNbI6UUUBjTLyziz44EpRBjPDzPKIVVsxieJS+98MrzL14wLfnw/n4YerxiURY/f/Xq4fmJY5hHpyPbailQMaYEIwDVtoOylAFFj04eUWIuk2nQMpMItVu9fs+BEKRLbmCslJhNI0rQ6qqBIcqLrNWygMIY2ZYFlouo1+mUVQ4Bwcja2N5aLBatViiE0Cg/AKAoqnbHevjgcafreW7IGnT79ieD3haEKksSioN4LBCs46iYjVQQUIKMvKwbzkbDZG3drppICPDCi9d+6Zd+ZjGf18p9+8dvf3B7zw5hGYsohU1dAMDnY7i64a2u20dHR4EPVlb6J0fnJm2VFUAIcA6rilmWVZWgKmi0SNvdjsJgPmvCvrIdhws1mcylMK/camX54slj9rM/94Zti067DxT3QiAYwUR2+vCrX/n2O+/cHqxCy/Q5545r17VwXBMT1Gr7QWBSanMpPR/UdTU6O5UKvPjcc5RgKf8NyrzPvf04APLLj+BcjEZjy7IpMafjCSWmQUiWpJLQxwfH8+kiCIKz4XlWlZyJZLHc2N7587ffuXL91jvvfggUFbUUDScQYxgITpiQWZ0aLg5bdr/X6rVbSZmOJsNWKzg5ObFdp+LNNFmQ0M2qkklFDNP1WkAR1wuQYVacYWIICahhYIy73a6U0vddyZrD05PT0fD3/vAH03hR8qZgtesH4+kEQpIsc6lg3XDDtM+GI0RoXpUtNzCJKaSKlvE0WgzWV4iBx+OhE/gnw/Mw9Is8ZbxaXetzUSmkPM9uOKaGF5gwtGQDQCpUlKYFSAQSnu3laQoNSD2CIFwLVsKwPZ1O/SBAGAAoHANjyQLLjKfRfDxVde1aZtUUTuCORiPHskzbXXdCA8HEFu/85O3L155/uX/r49Mkq5osL5OseLD32O208qpWjXruws3ACw7no739J13H2B+eFmVdR3kFgAQAYmI5ruW4UZqeDE+BiY9Hx2v9QVmW4/GQmITJqq5LVpeibrKqohZtZEUNUBe1YZiMMQkEL+s8ix3X/+yzgzBsGXaT1WmUm0Io0wYGUWlamobHeKVg5bquSViZIs6oYYXYahCxqIGzLFWgcVwiZCOAiqJoEceMKwFwp9fnWdEfdPx+WxRMCpBxXuapBARTOy9Z03AIseQKAYwhAcQUAAql8jIjBq6qQghBqakAiJeLIPRtyx8PlwRQCMDWRpA3c4Ezw7QPD5ZRVH/7p7+W50o2Vjd0z4/mjpu98bXu+fn50ZPp2spOU2ej+PY/+b/9yKSrl24ASRLOVM3zGzdvfXDv7mwpHA8ukxEm5tHJYtC7ZhoEQXMyWj67TDBih/vTJC63L8jxKceQMF7ceuH5yze3/zf/4X8Czb5kjd/qeNJ44+XBwclMmUSVNcK5YxusxIZVE+TOZ6IoleGL0bkLcZ0sDNtW//4/+Jt7j457A+XZbdPCkAjFQ9NmdV2/8sZGzeLQ61qWdTqaT+ZJUYGgT6fxFEBa8hhjn1jF2VEDJeh3XF6Kuq7rGiwi5Zt0Z9Ptd3fv3Ds6Hs6hiQ9Gd/NcAWtl72Tf7xKuuGV1kzwLOoiavG5AmqayoaGNv/rSW/+Lv/8rF3Z2P7v3/gd3H3QdczwbugjUub8AYPeCEvXmckLbnbLTx5zZ52fp9uW214kdp2P4C0rttFDAbOI4Noyi1bL8Tj1biMVi8fVvDpoyHx5Uz73YAdIuStDuGH5/5e0fj17c2vj5b7Ye7+8NNjfrTNjQcIhFqMqr9v3js/b6wPYUYOVg1YzmVZl6UpXXn3cf3Jv1NoyioUgZEAHD4fO47q7i9z/cG45jSA2dhKHnSE34hxB+3gxCiAD6ct9YNbVhGAcHBwDK6zdvTGfjIAgYqzV/hXMehuGDx4+0K2Kv1/v4448vXLjw3nvv1XW9srKipaxawqUt4LMsq+saYUypOZvN6rIaDAaLxWJ1dTVeRE3TOI578GR/Z2fnS4b4uGkajLHtuZZlLRaLIAg+91ImOt1J4yE6NUn/d9oyQCcrQYi0DE7jy9ru33Oc1cGKdlecz+dBq5WXxaDXT5fL8Xi6s7OjWUeUmovFohV4rmfrn4Ia2DRRWXIF0TLNu93uMy8GKWUYhlJK3cUcHR1duXbt1s3ng1boBf75aKh1bLPFfHd39/z8fDabZWUxGAyEZJPp9NM79yCkJydnpml6vmWZ4L0P3s+KEgDguUFZ1o+f7BVV43nehQsXsiwjBCyW8SyeZ2VR13WRpO12l3OpFJQAUkoBwqPhmGvYVUq9ri2rSsvv6rpGGJqmqV+uIAiqqppOp5ZlKaWDEhFEgBBiWw5rYBaXXCqhYJQsWfO079ODgtYgl2V+fn7e6/Xms4Xe7mkGopJAA8RaCKRTrVutFgAAPs3/JIhg3UHr9lyz4rXQUEuP9SEIKyG/HGvlOA6COE3zqqowho5DwzBEciVZlo4vyubsnXd/tLV52aRgGefdfuCG8rd+64/feutrk2E5GrHz6dHwfLazexUAdHo8d+ygHTpSoId3T7Y212bTyDAxwRal1LatLK3qui7KOk0L1/tCzi8VkBAcH0Y3blwAUilpEAJG45N/9k//5c7OhRdeulRWzcrKimVZqyubdV0TQiaT88GgoxSYxxPLBbbtMsYdFwxW2mmacgakqlZWe7/3Bz+YRyPXurS6GZQF8zwQRZFpmoHfUgoyxhBREPFkmSulIECGYfm+DwAyDOA4jm21R2ezZZwHYdv2DM+3ag6SPOr2va3ta++981lRZAgA3+40JbMcYZtwOQP5khsw3N8f+gFYW916cO/UcXG8KCxL/vwvfKfTaT28N/6H//D/3e+vcEFm07njOKZJMRStFuCN+PTT/VbLW8Zga2vrwb2DyagI/NbwLF4uo5vXLly5fNmxzX7frus6S3IAEFC0LthiMTPw4PL18Pjo3MQbnbWkzMDVq5sHDyaLSfHdX9yqq1ZVFVvbK9df2B4Ol2maQQCKItvf3ycYhqHdNNXOzs7x4dggyjDAxQvXD/YngT8I26gsG8EBgDKJ0257dTI9W0aV+lI+8F/oDQEAACigFPiLSmbTNL3Ac303SZYKiG63jTGq6tI2rfHZqNVqMSm04atQ4rO7n5qm6fvhcDgMw7AoCsdx9KcZQtgb9AVXVSWWy7Qoqtli7jjO6lp/c2N9NDw/Pz9zXZc3DAHsWO5wOFxdW2sERwitrK2enp52Op3pdAoAwBinaa7FYZRSKUGWFdqmIU1Tx/b0f6fLIoQwjhPOuRCSMY4pSYscYYwhEkKsrKz0er2yLI9Oji3H5kBNp9PNzc1Hjx65rm8YxtbmDgDAtm1elVVVWZallLBNSzBJMD4f12XRNDXv97va8aHb7SkAhBKWZZVlOZlMbt/+pK5rSsyaCcOy9g4PTk5ORqNJlhXLLNO8bgjVcHw+jyMuAICkrlgczQ0KQg/df/xk58JukmVcyjuf3SXECMP2+sYWkGpjbU1KcDo+H0WzrKlOTk480y3qJmx1JtP5cDg8PRsyJvKqLst6bW2trusoWep7oBaxGYYBAND+j54bVFWFETUMQ0rhuu7nfuAySZZh2OaVKnOACGVcQkQUhGfDcwBhr9NVUp6Nxr7v6qAVKYDr+joUqmmapuGMMaAg56JpGkxgWeZCScdzs6LgnGNKGOP6/XrG4NG3QG0dRgghECkulBBASgAAxYRiAhVQStUVs203iiIuGGPNykofY8waRLChQNXpuXHEHt4//rmf/d7DR3uvv/V8mZM4HT9+PD06ata2/L/1a18HQALlAABm4xoqhxgsiVMTd2xDzaaJYQIliRBCYbGYp0mSSAGFAGHri2AUxwFFkS1jsrMxMDG6dum5/cf7GCvBQbfbHU4OBitulicYI9dpQQiztLh4ecML6GKRd3tBp+st4yzP6ouX1yazIwSwEkCKKkmnruvfeu7SJx+eOy7N8yYIgqaRSkGCTSFUnqcQySC0q1Lp7WqWlgcHB2mSUUI73TBPOJBASsAY44p57UABwGqADPXo8dHZedLpttY3uk2tfDcIApRmcVODdujVhQo8snOxfXoydKwAEzkby8vXBmtrg//qX/7mD//47to6bZpmGQsh0drammUbtmPcvH79049Pv/m1l+aL0frq+mKxWMyZQS3O+aC343rmnU8OHj16IIWoq7LVCtfWtxZRwQQCEERTkqfx5lZXcRdCZbvcdlyEwEdvH333uy/GxeFkETl2aJg4aNPdi/1uL5BSGgZgTTOZjpVSxMCUmtG8bkS+stKdzzKgwPlJsrpJpQQIGBSTuuKe21ZAlsVfSgj+y9UQAAjVX8RZhBJBEGgeA6W03+/P59N+v28bZl2Vr7zyymIeh63OPI6m06kWjXz66aeU0jTNMcZFURnU0oFEo9FIQWBaZlnWjAnDMBRAUnKlRJouWdNooszBwYHmxBVFYZrmcrmEEPq+fzo839nZybLMNE0tSul2u7r70Ns9zZirqsq2XF3Qq6oilDaMVTVTEHApwzAUggnJtNoEKtUKwn6/P13MD46PbM/N85wQQijd2z/EiOZ5oZuyuiowREVVX9jdDX3XsWiZC8smguMoitfX1yklouG+FzLGEAKUYs75hQsXRqPJO++9dzYajyezZZq3Om3bdWzXs1znypUrW1tbQrA0TRWC3X4PGybEJqbU9/2qSIPAiNPYcNx5tHRsj5oWNaxlkvVX1mazWZqmUoI4zR8f7E+XEbVsgnDDQV5WeweHs3k0i2Iu1DJOV9c2DMtsGFssFnrlijFOkkSziPRO1nEc/YLr7owQYlmWENwwjOl02u/0hQC8hjVjFWuyLLdtW/MNdDhUt9udzWZS8n6ne3Q0TdOcmqbC8nOXCqWzujQhkYsmTpadfi/NM4gR59yyzDiOESEYQ0IIxlCzdrRlDgDgyy0hhtCkVPeelNIsy6uSu65X143nO51uqyxLN6jLKu111zF0fM++ffuz6zcu/y//wd/5wfffkby1iIvf/d23DRq2OnRzayXP6sf7h8iEbtApC7my4kspL+1cTZZTxpVpEmyY2DAJBRLA2Sw2DMt1TcaqZ5dJt+eXtSgKcnIwXl33WkF4/96Ec/nGW69k5eLsbPjc81cfPz574YXn0qSqm1oICSAryghCUpapaerMNtxu2dFiqIBaW12LlzU1lGnh+/dOoihC0O4PHAEUpbAsa4AwQqjhDCLR7vhVDiBSQRCEYTuKUtt2W60eY3U0m4VtG0I1mS0azlnDJUDQhGlWLJdRtxucn84OD+YIyrDllEXu2P6tG7sKZbypO63uoN8STPqezWuFoFU10f/jn/zjXs8pMvX8KxdMC0XzZmVlLcuy8TgHsBmen73x6tWz0yOhqk67n6YJhIA1qqqqyXgZtqx225CCYYy7Pbeslv1+3/NxtMgD32oqcbB/alDqut6TvQfXblzd2Fi798lB4IHXX1+DoIetBiijLJLp8nw8nlqOMZ1Ix6W2bXd7tmlblmXOpklZgE4PVHVxuD/2ff9gbxq0lWmCupJNzREis2kyGBh1Jf8Ko1ddDSECEEAA5V9S5jmOO5lNu/2eF/hRFPV6PSGElNwihGJ49erVx48fD4fDxSJ2fV/nHEEIdXk1TVujCpohUZWNYZiMiX5vRZP+ptMpQHAezXYu7A5WVqqq1CKToij8MJjP59vb2zpmXneCjLFvfetb8/lcKxwMalFK9S6/abjnBZosEkVRu9WVUhZFEacJxnQ6nQJElIIVa4hBp7OZtjiMokh7ZNm2/fDhQy4FAIBLabvu+Wg8i1PLdrkUvu/3+/12p5fmRVVVFAHboICDmoG6UVICwyQr/cHZ2bDISstyTNNcLGZhGOZ5CSCWgECEl1nOuPzo448bJsq6Go0np2dDoaTv++fnp17guq5rO87DR0+KvCrLUocTSAje//C9/sqAKxAtlnGc9Ab9R/tPOt1BtMg2NgZAgaTIp/GCUMqYEEKeDcfUNJM8syyr2+1G0bLT6Z2dnQEEMSXy87udNsXQ2kSMMSEGIZQQUtc1pVjnNSOEHdNiVWPbrkFo0zSubSMF8jzTQjrdPxZFQQ3LtE2p+HIZuRZazlOEEISAc65zvqUEeruie9I0z/XmN89zgKBQ0vO8OI7bnZZpUv0va5MI0zSFZBpH1q20fvLaUYJQhDE9PT0b9FeVAjs7G0JwCLDrwzStjo/Ghkm6fTtejh89evTbv/WvH99LGGNFgv/GL3+9M6BSEGrlJmm///5nmAhC0HSy2N5Za7XB9tZGVeQQUiYkpZgSW0pBKXzyeFgUBTGsosyeXSa2i0zTWC6z+3fOXnxldx5NTNOezZNOz4W4eOHWayenhxCCre21NCkti3AGqiozDGM2XSBEut3uyclJOwzCltcfdHu9IM9mjgnquoqS8fCsuXits/94urbR0quGsqosywAQah+zsmqABFIyKaXr+hgDwdWgvxEvZxA2tgvSbFlVzLbJdDoHDTGIBRTduTAgBsPIyROwut7mIl8ZbBe5wIb47s++RAyBAZ1No8tXLqbFYj4BUuB+v726tpNXBaLKD0hVZ5zhPE+TJLEtwJp6Y2NjfW2zqpONrVaWp5zzMLTrpi6K6uwsclxzda1ju0AIJkCdpJHrh3kpgq6/XNRXbnqO2T87HV6/tTo6z7M8yvJkMqu++fUXuJhx6X7/B+/vbPdsGwpITMMUgvX7FIGmHbQQVpRSauD5LJMKrG96RVEu5qlSQilAKdnYHLCaswa4rj2fzAcrbYrJl9Div1gNlQQKCGoYGOAvG91IgFw/WCwijIkQYjqdXr16tSzLZTy7evVyulx++OGHUZI6rpcmebRMJ/MZNmhWVKZtzxaLje0tYhrtbr/d69Z1XRb12tr6Io4aJhAktm0LCU5OzxnnXDII4Ww2NU2apstnefCQYMZYzVmr1Xr05HFRVK+99gYhRM/OEODPqcKgqirH8dI01SnDju2Zhr1YxACj6SICAGFiRNHSsqzpbEJNUwKQlyVjLE+zQbenWYECiKqpw3Z7kcTnozG1HWqapuU8evjkzv0H1LRXVtdXuh1WFm5gKAmrklVlQzG5eGk3icuqajDGhkVffPFF33c9z9va2ur3Vgg1O91uI7jluOPZ9PTkvK4ZIeTsbOg4ztloiCFpmsa27Y8/+xgSHMWJYdhKEjtwnxwdlFW1t79vOe4yTUeTyXQ+N712zcBKb31nc6tpVFGWUZaYrlMUhV7mWtRYW1upqqosyyIrNUUJY6ybX7250w5mGkfW7T9CKAxDLaQTQgCFhABCqCxZWjZFsA5d23eMlueWeX56fCI4b3XaddMsFguMMQKAEoIQYYyvrq4Goc040PwBIQQEWAoAAfZ9n0uxiCJIsIRAl0jbtpsGWI4JMeRSQIQkUFVTA6QwIWVdYUo0TUcoVTP2DHoGCs2mZVU1vV5gO0bTVJZlcYYNYg8GvZpN2z3c7XZ/57d+ePAktx2CkXnhws7Dhw8gLC5cWp2cZ62QIgUuX1oti0Vd82RZ2i5aW+88uHfoOE5TK0IFa0BRlNQAZydJWqQNq7QFkT7U4Aa1LQecnjFqqeFkXNRyNBk3vASQj4dxFEXXr+9YNi7LutX2To6HhJAsqxrOHLc9HkWU4lbbTZOCUrqYxb/wC9/8tV/71aqqW62g0/OImS0WCz9wXMfnSjJeKyCyLEtTLhU5OhxBAgwT1E1e5CWEYDhMOYNCcEKVZck0ZRBQ3/N4Iwk2RF1mSep6Bhel77sAAkQUoaiu4TvvPjwfnzx6fK+qyjTJe921aDlfJqwuQRBQYph1iUyHUKd2Q+fBw/NBb2UyWQSBZxgmIQgC9K/+1R+3u34QBPP5NFpknZ5rWiBZlmFIlQIKNFeubhSlxJhuXdj98KM7CgIuBcYgy5IXX7k8Ok+kYlsX2qdHxclwErbN2WRMocshnwzdrQ1nOZshaDOpxuOl64RlxeaziPNKSej43nxaAMAYrzzXz3MmVd3re7yx1tdWCAWsQbaFGK8NEwWh/W+shpgAAACrGgHYl/mGSkFCjDwrR6ORZTqMsclksrO502n7nXZ4fHxIDIoRiaJl0/Cm4a7rska0WkFRFGVZ6sCpsizjODEde7FYQIAxJkoBy7Gff/75KFkyKcazqe25XuC3Om2hBMSQMZYV+cHhYbfbPTk/sywrjuPBYPDuu+9GUXT9+s1+vz+bzXZ2doq88rxAs2GyLLMsR7eiWmdmmmZVVQiSqmwcx4EIEUq5lIogLgUTnBCi7WzX19dZ3RRVVTZ1VtfdldVP7n62d3hk2u75aPi1b3zdMO39gyPOeTv0fdsSVVPXTEi0XKZJkmysra+vDxaLWO8W79759OTkZLFY7O8fjqezx/sH+4eHZ+ejoihcL7h+84YXBE3DsywL263d3W1W1Z7jJmmcpPH65kZ/Zb2qYZEp27PH03Fe5WVZKiX8MGh4fXR8sH8yjJcgj4vdzR1WgbyqBUQCAR2LzJvqwoWd1f7g8OBANOzC9o7rulxJ7X2gJ1ZNVUmSWCllUEt7CDZN02q1GGOmaQCI87wUHDa1XC6Xrk08nwDROCZxbNrrBFsba2WZTyYTx/GkVBDCLE8ghARRKcFkMrl242qrRThvNFonhEKIQIiBQowxBcH5aOi6bloA3/fjOPY8QylR1zVCCCGiQRLdJ2ZlwZUUSgmlCCEAQQkUIk/r+/+XrT+LtSzL0/uwNe957zOfc+cbc2TknFlZc1dVVzV7ZLNJNalWUw2BhAzYtETLD37wAMEPMmAYMGjAFmRBJixIpEmUWqbczZ6H6q7q6qrKqpwjMubhjuee+Zw9771GP+zIzCKl8xbxcOPGvXut/R++7/cBANbrdX/QzfO0IX31Ont1LRHWo61+XcL5RJyd1Af7O9/4uUtcrDo9ezZdHxxuhQFbTdQXvnjVogBAIaSGgI7P4mvXD72QxjGybdso5vpYSWQA8AJkpKe1IoQY/Vmf5fqYCzPa9yEEkFChcCXqSsa2FUZh//79+wCAOI6TdLVYLFptDyFMqRX6Xd93s0TYVgSRLMokSYrZeP6/+k/+gVb5bHomBQj8LiQZQmT30J1Nl2HYav7FJFkjDKQERS5nEwkAsF1sO6Su6yjyej3/8aMjLipeiW63CwwwgliW5dqYIhEF4Otf+/xsMgcaDLac/Uvs2dNThPw4TXb2+m998cV4rYUArW7r9p3755NxmiCEwN6h8/HHR48fTyzb2b8UTicrDJ0siUdDaz6b99oDpcwmiVsd33ZhmcskSUVNjBEGAFGzohDLeU4oOj49hwAbQ6ez+P6jMXFBKXinbxWxsf00jsFsuu700flZ/epr+/1RpKXa2brxg7/+OGwFSmhi2pyXacIvXxlFUWt7ux3H5f7BHgBQSrmYZX6AtZEIEUoBs40XkJOnWVnmgy2UxZyLFEIlhOj0HCn+pzPg0PMLEIF/i9pgO44xcLA1wog+fPhQSi2EOjk56XTbo9FgPD6bzWaMsaIsGWMNga6RQGOMG8JgE1Eax7Ex0PG9sizbra5SqtPpJEmSZoWQmjJ7vY654gBo17UblU8jMGwIoACAZqbeOPAePXrUmBmEEJcvX16v14yx57HxUja3YUOacT1vOp0ihGaLeTO+bFDYSZYSizUCQ0opr2pkQKvVmi3mXIqqqpI82z+8/N3vfc92HYzxcrk+vHylPxzev3+/3++5jo0wAAZiTKXST548cRznxo0bTx4/7ff7dV032uNG2Jwkieu6gR9dTCdhFFFKOZdKmZLX3W53Npu1Wq3zs4vGJ7daLXZ3t+M4jje5kGh3f+fkPF4ul5bDfN9frRZZllm2PZ4tDi6NsiSrS3716q4QYJPEaZ4BAGzbjqIoiqKal5ZFoyB86623NkkspVTGBEHQ2Msaz29Zlr7vCyGMMf1+P0mSNE0tmzbwwyTJGHW0NtpIy8ZhyDyHSl5bjAb+821Vo9MkjMVx3Om0mveQ7/ur1Wo8Hm/vjDBu/E3P5QtSyjhONQSO47iuOx6P221mjBGffFdllTeqhmZ2KYRQ+rnwUCmljCaMftp0U0rrWmAMCGGNvbIBXK5Wq2639f77D2aT7OMP52dHtcVQu4ddPx/t8/OT1dUrBx/fe3BxnLdbjueiXq+VxsnWyBWVjtd8MBj84R/97vgsybIsS2uApZIQY0oZMNouStNuR+PxZ52yZeOyqBGpmMOCoLtY5UGLzVf5apl6Tq/XaWsNIMCPHj0EAERRUJZ1UVSE2EJWCFrT2dLzHWah8fn06tWbT589+OGPfrjezKWAgqPdA6fMDbXTxTxRRgMAMAFllQ8GPc/FVamkAIQQY6QQfLlaUIZffeW1J4/nQoiqFO1WFyNiNHaYRbDmvL58GO3tDzbLEmOSl/PeKMDUJTS4f/9s92A3L3NeOXUJ/MBFGDAGZOlcvTrQaOV5iNcmjtPt3fZynl2claIuleYv3bo5Hk86nc7FxdRxHMe3zk6nvu+UhYbIWBbQ0hIc5Jk0EDIGpYBe0LmYrIQEAAEjTa/XphYoC/n6m7tZlj28P6tFvTU6tH1aVqnF/CcP5O4VlKzU7fdOAcodh7ZbXaUMr8ud0dZyOceYep6XJvrylR0IIcaEczDa6m7izdGT+Xq93j8YCm604ZQhQshgGP1PV4YAIEqafG6gAf7p0eLR42eL+ep8PKsBon746NmR7blnF2NK7Har/6Mfv7e1s1/UXAOCqaW1oQDxqqAMG6AMUBAaAkHguADImmeSl1HLtxjuttvddve9d94LgwA9jx8RjfbHcZxmF6yliuMYYVzV9Wq1sSyHV4Irfj45B1gfnR/v7G2nadptt8OgVRQFY2x3d7csS9vz86rOq1oBiG0GKVlnCSFEKSO56nf6BCBRy6KugAVXecyYDTUWtQw9f3/v0snpeSW40EoAWQpx7/5TZrU2tVzNx7duXCuVufv0+HB/ZGqAkYPqmra8ktJ0vTkctlo9+vHRw/2rt5QGWVKO2kOkzN7+sD9qU4fsbO28/c5Pai1FzWsKA+z88he/+YM7d0bB8Gw+BozNljGiNkE4W8z7oVMWiRF15IPTycSPWowRbPTF+KzdbsfTzdd+5uu/8o2ff/vH7/z8W1/f3dmq0s2mmiqjBr0WMnJ6cRK13LSIB1vdNN5oxT2LMYQxRBhjy2GIok2+rstc8qoVtIq0LIrC850sSy3m5EVBqYUxLOslJcYoJjXojTyFq0qmjBHP96nvE8c3GrqMEmSklDXXBmDKnKqU3Wj7wUdzh8KwjdLMKrgSqKwqpoAliRQlKMVmGW8U1FmMWm2n4KVEwGhp01DWpihWRb72nMCiHjTaAFDXtVGSIVwkaegEjmULIRAkRiMlQb/b8XzGZQqRqiouZeLZnU7H/viDzezCfOuXDwZ7II7V1vC11cJ86ZtXDKUSAuDUQluW3el1u4uZGO5hZqHjh+nXv/QWL6xf/Xe/8PTJxCjd8XaAWdYZ5zU21mJ5wfJY/nS6/HK16XS645P6lVfb60l99jgZbPPNBZNSWrbxIispgUXgYOvFe8+eEaWzYl4YlPMNKj3fqVaL1A+C5aL+xV/8+TLPPv74h//u3/9FgCCsd6v64QtXrmlRVptAVgqome+FAoD1MpwtHxqtWj2lDGvKVcasPBeOZ2Mn3d5liwusoIS03N05LPlSSxgvAFajay9Y73zwo6jV41Jeu7azmZiDvZ2P77534+oLyXT27PFRr98B2kKmimgwfQa29/mwL5Fqdfs2AX7oA5vqKlPrJdLS7Ax3IUs2G5GnDBHZ63dEVfshXc7M4aV22BLQwLxIiQUAEdnaSGH6gzCr5hV3gATIYNdSnqMYBcXGufFSb71S8Qb85m9+4+nDe4ej7mwu/g//6T/55V+8st3pd/ojx8fVVA+64Tpd3Lk7m24qReV0UnkRW8wEAECoDS8MsyB1wDpPq5owi46fVF6bW13LoK4xahj5qoL0M1zvZ3YUCCESTdGIIQT6p/WGYRiOx+OGF+963iaOF4tFu91GBHMpZgvdmORsRgghacoBgkEQNIN5reV6nSKEas4ZIVcOL41GozxPNVBe4H/88cdhK8IYh6EvRP0p3qoJ0gMAeJ7XFBrGmLKqHMdpiA+dTufs7ExKOZnP/NA7v7jY2d3yHJdi8uTJkyiKsjgJPZ8Q0uASmnSUPM+bRWrTLRoA8jyvuLQsu6o4Y6xxK3e73VYYzefzJEkIo0VVPnz8yA0DxtjBwcH56fHBwYGUMkkSykBVFwaCMi+FkFyIVqvTarXm8ykX5dbW1qg/YIy9+eabt154Kcny5XrV7nZOTs7Sus7znGgwW8zbnWg9nRoL9Tr9pyenaV23wuji/DzotmtoIDQYoV6vc3Z+3mq3G3wZIUwIleey2sSf/9qX6pUugXrp8pWwEyXLNaIkK4s0zyzH7vQGi9V6d//wozsfCyHKqjJGNYkIzYvHGIMxcl23cX3ked74lxvUOSGkgZ5RagmhEKRn42maZrx+jhQEAARB0NDIG1MKQggAY4w2RkGkHBfcvnfa8vu+k/DcCG5VJrFcJ0+KuhJKaQ2MMRAYhBAmmCJEtDFJmrq+hwkJW9FytVJaQ/w8loBYTCkVRVFelUopgplSiouq3++6ri+48tzw+PhUCNFp7aTZYr2s4nUVtcFmnfDSplaV5pMgtP/wdz+abx702v26klzNfvL2neOjU4PBkwfp66+/9pWv3ExjGXXMH/zud6PI5qI2xnQ6HcuyiqxohRhAlaYb+ZkVBbiujVkppb556+r5eW5QuVkBhFWaLxw7iOPYsQCApuRVXCTMdfu9YDaZV1n5d//er106vCYEsC2iTV1V/Pxs+s1vvoUI3KyT8fiMIK8qOedGKeF6uFHSMAY2m8QoVwoouMZE2w6R0hiNCQVB6Maboq5UXiS+0xmPZ5t4ZhS6d+f4hRf3AZr0B7tZYeJicevWlfE4mS5XSZ70B92sWi9WFy++sF+UcZbXo1FPmJIx0O6Fi+nKsiol7DRfMOpeurz95OlysBW++vpli7ZOT8ftPpgvsm53aIdZWREpRc2rvb0tx3EgMrZNGKNSSozQzZuXHcfJ0jyOY+xQnivft5eLjesESTb/sz/8IEuLfh8cP0r9ECw364PrvfkCTOei0+3PNzPkppa1147c/f2I1yUwCKCMwhazxV//1YcAgaqqHM8pyxIhgABEULciKy/KLCbdLo7X/NatqweHVz0fDQdR0xU146NmX6K1Rs83jQZooH96bnh4+XK721nFm/VmY4y5dOlSnCRSKS7UoyfPWi2AKXm+lET65RcPGqEGY6zRXe/vb/u+PxwODw8Pp9NpM7PvdDpZlqRV7ka+1MIPg0YaTQippRBCAIAIIY5nYwJrXiIMyipHBDLGGLUYs2/eevHBo7PNZsMYq+oiLdJr164FQfDiC7fWy1WTSiqq2rXsJEm6/Z6UEhKclQWEsKyqRlDSzKcAAEJKY6BlOVVVOcTe2d6GBmRJmmclomSymD89OWqFURzHjLEsSQ7397QUto0dx+ICAICyOFluYs/393b28yxZrmdpmuZ5PhqNEML3Hz0ECEptqOX4XvDg+GiT5Xff/ag/GvZGAw/jlUy/+uYX3//446Px+e5wJ0+zWbq52My77UgLRQhRRmqkizLDGPf6/Q8/vmsg8G1aA/mFly//9U9++Ld/4ZfDMCw2SVHlGiiIIddiEa+X63I02s6zqlFBQwi1+YyYX1UVhMiynOYuK6u8MdVprbWRAGjbtjudjtKgLERZKAScIudag8aVrJTSRjKLUNuCEDeU1kZCY4DSWto26o9656eL61daDAItQhbQokq7QV8BAzEimBkItAZKGgAQ57J5Ehqsf/MmQwg1t/PJycpzfUzpfLmWUmJMm9Rsx7EHw16WZVpDx44YdQm2nj07uhgvl3Mw2m6HLXJ+tijyCkDx+NHxaMd2PKCLQbvLnj0+e//921euXR4M292O3e+N3n33gyvXdh8+fOhYIAgYBMp3XMdx1uu14zitVoAxkJUqS97rDj89Jr7vK7MJPLZ/defd954pA+oCuR5O0qXSot8bUgIYQ0EnvFjMlps1IYzn4sXLN37n93773Xc+AgAw21y5uvfbv/3n8aa6mB5976/+siiq7Z1BmYOT80m7437zWz8TtVzBAdQGACCEmF7kUjJgiOMYyoAUYJMU7U5ojMoSIWsEAVguuOC60/PyTOcZyev1jZddycnDRxeIAWaHJycrg0GermRl6mr1d/72L6VZUpa5GwAFhOvR/cuj4bAHDQgjU+dIG+A64TpZJAmwfA0ts8nmzLILAbyAPDue1iJLs7LdiTpd1ulGjQ6MMgAh0FqfnMxaQWu5XOc5EMIQQmwXttut9YYT4ufVenwM/sYvvZSswGa9GA56lSy6/f3LN93333v6//wvf/fqi1taB9PFdGc3sJlFsCxTbUwJDKkqrjWzfFQLjjFdLFKEkGvZSGslMojB8dPs6o1BXYE/+ePHWVn0Bm4al40doxF+fZaL8ny9osxP/QEAAB48eoQQ3qzjo6Pj0/NzTCmX0nFcgNHp+Vmr2y7L2hhTFNn4YnYxPguCwHIdhJAGiktRFMVys57OLo6Pj7XWYeiPRqPxdJzkWdgKpFJN1Wm7TmPeUMpgZiV5hjEEABBKDdSEoMa5rIx0HOfk+NSyrJ/92S9skvW9R/e2d7dms1ljo1ZKvfrqq4zQqqqafUKToWyMaTTG7XabMZYkCWN2I4VLswwhVNb183MoZctvdVpdjPFkMtHAWL77zgfvS60Gg1GeZrwqoyDwAw9oJURdCYAMZZTefXAfW3a33Q5972x24vs+JPjRk8ePnj558OBRkVdh2BJSj0bbt+/d//d+67dee+HlJEl6g/4LV67+5dvfO9zePT8bx1kauSHWSCM4Xy8OtrbLNO90Ov3R8ON7d5htO46jlDk+v4g8UJb5o/v3/hf/+B8dPT5+9OTx5994Exr07PhhWm6cgGrInx49dDyQZLFSQgptjFFGYwwhMhDCitd5UUGIjTGWZWmthBDGaErpT+MLG84goTYXoKwMYZZSxuhGeQCroqyFIIQghAmhzXAQIYQxFLLCxKzTOE/ltcOrn//clU2y5pwwC/OqbihtlFIIkJSScw6U4VXd4Asb5ljzlm184lVVRS0yn8+llHVdbzYbbUxT8m9vbxujMcZKwqoUguuHDx+ena9FbbXblhtUVak3K+H4mjEnSxQm8OASPHtarGZxVesyo6PtSKhNslIXkwmvTa/Xdl2gJHrxxcuWRYWoO61otVpNp9N25O3vbe3seNMLkMT5p8dkMVsigF966WpZF3lWWw6Ml5rZgpGwrDYY2b7vQGROz87ave723m6apgc727/+N3+tP4iOToorl7aybFNX+cFBEIU95lDXdYMgUrpab2SaFJ1O+3f/9R/VPKfIhlhoA6KOd3wsGHVs2251mM2QqJRS2g3svCrns8SxA2aBJMmMsoSod3a7CJGz08QJ1WKeEgQG3fZ8MqvzatABnofbkf3Nb3zl7PwpBIgQJgRwnQAgeHwy4Vx9+ctf4SKVAgQB6Q/D46OLa9cOuUyePJlaYcxIJ/SY28rqGpydKi+0yrIcbrW4qHitwwgSphrBFlBgf39fKUMpAAbUSQkhHJ9PuIBWUN59P//5v3l1cY5euLEdr5dZVjAccjn1fPvFV3a6bf+f/dM/owwYyI+e3Y8XcjByEMJpDK690M5i1B8GV68dpKlcLhLLAp1WlKVpXYFLBx0v8icnOSWg0/alBLPFxbsfvO95XhOw05SETRUIIUQ/rbn+t6KkECF+GFiOLZQ6OjmBECKCHzy4p5SIoohznucSAPDKKzfffOtNx3EoxQcHe1EUWZbVaoXGqFar1et1O53OcrN+/OxxWVeu7/i+W5RZY63TWhNGAUCNnra5sMuypAxbFgVAQ2jqum7QcmErGo/HeVlACJM0PTk/e/W114qiklLXtVgsVtdvvvC8uUNEatVcOk2HGKeJ67oAQs45c+zmaDVdmNaaWLZWQEvj2U476lRVNZvNCKNpVTx8+mxndx8iopTZbDaX9g+UBkYBA0CZFof7B2cX47yubWp7jp2Um4v5hW0zpdR8PlNGYkpOTs/v33/4cz/7c3mc/OCdd9774P3rV65evnzY9rzZclZnxUs3XyCQ2MzmlRj2+5orpA0yiHNpMHpyfAQRMMakRbmJq27kKwKy2Zx2wv/g13/9v/rn/+xgtDfa3imr5OT0yWI9yarN2cWzXj/cxItNvKSUOo7DeWUgKHkFkcnzvNkgSaGbZYXWjY/1+c8ZImM7LM3isiyrimuFspRjRKRSNa94XWIMmwqx5hxiDDGW2ihgqE2ZY3MpDYLUpgCBk5Psy195edAlKiMYacdzn0ckI9RAEBrMDwCIMVYUvEFdOI7TZBJEUeT7vtZGGQ0QVkZLZVarVSOMpRQrJZRSnhseH421BmVhGAO9fvDW598oqk0YuoEfaQOUUpsklZxOJ8mt18nyAjEMXdo+Pn14/eqlmgtGAa/kG2++9OMff/zBh49d3/YcaoDinFuW0+/2HMcWIpcyp5Q2EZSfdMphlREN8jyrbdfUlaEEXDrcno/r8cXDqpJh6J+cLP76r/96//Dy+GKapvyLX3hrfHbSGXQ8D5RV4nueEGLY71Dmrtfrk5MlBOR8OnnyeKwVoAzaLoAYYQxdD2MMopatJKAMYQQ6bQtjzDnodjvGGF7rs9NVp9PFCGzvufPZJi8F84zSleYMQnx6evqFz1+bjdf7Ozvf+OrngQBGVPu7kar4R+/fk4KkSTUYtg204k1m2+DJozMpJQBIyDJN5e5+e70Qvm9funSYxDnE5ux8jYBXVWUUOpOzqpairqQfWOPxWCtMKNJGRFEQBi3bAWHoA/Bc+Ew85jp2FJCbL1y9ON0gCN783LWH9x6/9tpr2pSzSdpqMSORqPnOlvv3//6vnp/Em2V86cAPw46SoC5xGDmzCbCDqqwksgQwglLQDHkM0HUluy1y7cpBlmeWy44fz4bbDkZOUqafe/NLF+O153mf3nif8myQMQAABDBEjdDskw+1rDTPpvMZtaxma2m7bl6Wxqi8SIUQlm0fHu5cvXF9Hccf3rl9++7dLMvuPbjfKEJWm3W/3y/ruuT1ZD6zXcdy7F6vU5Z5msaU4iDwOK+afF6pVNOm2ZZTS8FF1ayYuaypRRACjfMkjjeu52VZZrvecLiV5eXjZ0+HW6Oo3bIcO8nSp0+f9oYDx/fyqmzQ2Q2/vq7rxsznui6XotXqcClt20WIYIxrzpvRYRN5GoZhGIabOFuuVgDCD+7eq40+uHJVSJ0kSavV7rYChIBCqEiz0PP7W1t3Pn7QDrtVWVoOa3ejXGTMY9QiTX4xr8urV68aLS8Ntv/gO38KbbsTtn/7X/0PWkukzPls/Lk333j28MQQpDHM1knkeEJpBulqtSrrqqiKyWxKKa1qnlWg121nWaZr8eP33hl1h7mUTx897fSGrVbr9Ozs2cmTrEhqXriuRTGuq8IPg4aba4yqqkJqXRQZAMBmjpLSaA0NYIRqqcq8MFo3NbtSEiGQFnlelXlVUcsp6tKyqWVRziutBEIAY9zM/5qWAiFkWQ5jTCmDIMFGExv95IOnj4+fvfnaPlO1rsVkvQTIGAQQBghDYIySsnGaI0qojWspKsFrKahtaQiEVp7j2badJIkfBK7nrddrjHGeFoyxssobeXZRVGlSlGU5GHmuY73yZp+LJAq7B5e7WR4jgJTi7dYAAHD+DAQB+blf3ltM8T/8B//L/f1dXlRvvL7FsPXG566V9ebB7eJr37p+98HdG9evEQSzLGu328vlPM+SK5d2bAZ4Dor8s2jJS4dXZ9PqxvXD2x/e7fXcdsiCADnMi9fCsb26LoVQvYEXBJHnOIv51Pfx93/wvX/53//LzTorCuD6GAJaVWK1nhwdHXt+FESs4vrlV3cRpLbDlusZpVgKpETtOBYhQOq83QcapFVVAACKrLYd4PkUQGu1zKUErusQDF9+5XqcKSWRlHV3QOO18tyW0NK1cejZ3/3Ojx8/fnrr1g2bWZRYtz+62+95nttZrZVS+uxshijt9KLNukqTEhhaFvXhZXc+v1jMS9ezJheLgyuDMvUJNJbFLWp5nuf6dLUo+/09y2HT2UJr1kj2CLOKUnzujRfrqjBKIgSNAQCYNCt2d0ZpPjk/AldvgccfL/YvW5t1XtRqOk21XkXuztZgeOfOo/Vm/D//R7+wmBSO4+3uXl2ns+UCBi1/a8euK9nq0Olkc/TkzCJWq9UxgGd5bNt24LWW8wVAQAM9G+eEcAPVasVPz6aXDvwGItfceM0T+Bm1oeEm/fQWRQPj+77UGmLUVBNlXS3XK4pBFPiXLx9SShfr1f0Hjx49udAGtNthk5vRfJFGfpHn+SZLhZFaS8bIfD7/JEWTMcdWoBGjKYQQJkQr04gHIcZNtFDD8SeMLpfL3qDn+c7F5DwMQwhhkqXdbn+2WD5+/NjxPQ0Bc2xp9Gq9JpQqrT3PI4xuNhtMSZMOTtjzHGHrE748wMgYiBAxxjSjgkbq0W63g8BdLpdZWTw9P58uV1G73R0Ms7RI46Td7vAKCKWNMavl4uatF9778CPfDZAB1CKnkzMNVF7llahsm2EEOp3OYj6djC9+7Rt/44N7Hy+rzIYYQnjrpZcdTO+dPF6vl0UB7hw9JmGQp0XohRwZSgjGuNVplbxueI7HJ2fMBRiiwHLWeXr/w7sfPLz/1S98+b/73d/f3TvodAZGmSytOJee6/t+CCHEABdFASE04PlvHUDT+HYs5mBEkzijDDuuZYCq6qIqeVOzr1YraZRlUcdxBFdCKQBlEHi+y3hdFEVeFEUzgnj+68MYQYwQMRpyLhAiqpLUp/OiOj1Nf+VbXx9GXNdGk2ZmDZvqEgCtlMIQYmCaYNJOp9OgN5patRmTBUGgNIjj2HG80fbWxcU0iqLG3WyMgtA8fvwYIpAkBUSq0+nUck4YF6IqiqLf79RC21ZQZKYoE88DydJ96yv9Vgf87/63/3vfPrxy6fLB/haC9RuvvTiZTLKM1VwOt7unp8dB6FuW1WA3LYu6Drv1whWATflTSQCP7j/iNTg8PEzjZLOeu564cWMv2+g0ybIMOT7e2t4T3CCAVrNluk57/U7J81uv3ZAChCGgzNjE0zXp9QPOJSVekvAwbOXlQnDVG/T8wBNCUew2MAutcCUq17W0EQCgLBVZqrp9gqkUHMxmtesCAwSldprLVoutloltRa2epw1M0tXObv/Z8dgNaRAGZ2cZNyLqD3//jz9Y5znGCGocBNZqE//oRx8QRglBZQGUhlGrW5T6hVc6yUZ5Dlktlk8eZq02mJ4qiGtmV7KCWmWOC7JM8BrUdQ0MJtj3PMe2QRzHWZZ/8QtvPX36RBuJEMAUSik6ETNGPHuUvvG5nX57sEkeHexdYm6WxsCy7WdHuSIby+3aPjw6e6ZBoGhFcFeAahnnXGXPnk2IhV03DMMWBBBoUOY1Rdh2iONiCHGRi4uLKQCAWYQiB2M82mUP768368TzSONWaBYpz1ltAKDngXkKAAA+DVQDAEwmkzTPmnDenZ2d5pqr69qyKcLwyZMnH9950ByG0SjKq7LRlFFKpZFFXTXZclprgCBjTAETZ2kY+RAZ3/PqTxLfbZs15pNPoHXKtm3GWF7lhGIAjWVRCOF4PC7KbDAYQAin83mr06lKro25fOlqkmd3796Noqjb6zmuO5vNyrKMomg+nyOEmqsTIdSk+gIAGpNG42tuSk7btpu0kKqqirpqUDedTkcIIaWIs/yP//w7ncFQaS2lBgAZpV0XSQ0g0Kv5Igj81WbNuex2+7UUWZFqoBtxn+d5nPNnj59gANtR8PlXXmn3u3/19g8P9w/2tncYY20vmGar+w8ffOHLN/7qnQ85Mt1ut8qro/G4HXXOzua94cD1ndPTYynlbDYzBly/eYNoMMvTFnOEQ1678VIFAULkYPfKaLjPuT4/m3CuXdfjpfC98Pz8PI5jzrnWslmgawga3xulNMuyZorX2BnTNE2TXCkVhn6appTiqioQgWVZBoFn25ZSIs/zqi6KMkvTNC3yT+NKmkWKlJrXEgCIIRFaBQPwwx89lUX1m3/vC3XJIX0uTtEQINR0TbpJ72tCVBrJar/fr6qqeUybXwfnsqHm9Pv9MAwJIRBijGGv1/3oo3tVVRkNbty45DhWks4ptaSOMa08e8gYe/m16N7H58dHE9duSw2yNLn7Qf6P/zdfkBr8X/6zbwPDe62ty9f9a9euvfvO7VLk02kdtu26Lpt0hyb8z/Od9XJOMSBM658K403i7O/8+osXZxeh75aZbrXQsN86eTpHGMwn5Wpz4XiBZTl5ks8uJjYjEAKpxSpdFSW3baZNncQlQrQ/6Fy+vJcmRb/f3mw2nmdnWQMX0KsVMAZjjKUESiJCiFICE+C6fpVLYEAU+Y7DNutMcaAgMEACib7zp3dGWwPPC549HXNRXLt+wGUFkV6vy2s3D07O0vXGTJYTgK00A0G367jPQw1t26pqgBBAWG9vd+7cffjo6bnN2nuH3vQia3f8Ii13Rq7t4Pls4zqkKlXgu1JVW4OtMKQnxxd5XlLqZGkJAIAI8FpcunTl8uVLq/XC9/2mP0UA3Lh57cnT6bDbClq5UXZRxaMde7Uo8hz0+6Oy8tebPBqkXtB6+HApAM9z0BlGm/x8tdTINgh2IVKIou9/925VmTBgruVEQWiAhNBYzKHM1gqxgOZx1W63j4/GvW1WJuz6javL5fO8uSb98bPZoIIaAIA1aRQ7n730zo5PZ5NSi0W8zspiMp+dnZ1tVuvJYg4IEUoiDIyGvh8WeeVabgNpL4oMasMwwYxUqiIu4ryAGHGhAACtbiREdXx6FPhRFicUYc8LBFdcyaws7MDGDhRKKmVcp7Va5whadS1sRtsdb7Va1HXZbrcdy+IlhxAmebZK171eDwAwnU7TJOl2Oluj0Ww6RRAGfrRerw3UXNZ+6CgjG4KLG9lFlfleeD5Zha1+rQzGuON5q8WSIAylxgCKWhLABr0tUaiFjN/5+L2jZyevvfLG+dlktlpqDLjUjgIGUQ6IKuSbL7/45z/88+7WENfEa0dxVWyyDaZkd/vg4e2HO93eF155Ebbcyzv7//6XvqUwVC69/d0fzudTO3QXi+nFcvrLX/8bdQZW06UjoSZ60I2iTjvoOcVkcqU3rBw8LlawEq/e3D8c9NbpBimjLBJoQIn55hc/9/t/+HvDbmv/YNtySCWKvNiUVTJPZhfpBDno5OxUCkCppZDOqryutc0ciBSA2nGtuhJGQ9d1OVeOSzG0Nptlq+0RiBU3lCGjFTYOwjCKLAI5Q6YqjFKWUBoBmSSZUsYYY9msqgrGiOtZSkkJqaqkzkDQtf+z/9e/dK6/svdKBPiCIBsRrJGsSoqQwsZCiLqRF8cxIagu8ijwtBCj0aCuy7IuATQGGqGBAkpJfnZ8cvX6lVW+yYt1GDmTi7VWiBDT7dmUkCyNuUKMtkXtYKINyrKUu/b+1kH38NKwKCrPx9sH1u/93k8QHP38L305ScU//+0fHy3ujLZv9vecd2/f6WypTRIjCLv9XpLUnPNLh5dFbSGaSEMW6UmvR2322XidomEQbqX1OhdT1wPQuIh051kMGKgq0mm1q3xz6WCX82q9Wr71+qtv3LpZ5kZLaxPPO31bCdLfceJ8MV/Nnz3NJquL3nCQF2VRmO4AQ+usTEKCASI5JqFSokiFa7lCaYxdYGqskRsCy4ZA68Wk7PZBJwzW63lrqB0GknSJiQnaAChZFetre7cIx1/60us/+v6zmy90Rtv+07vF0/unqgaOiSj0nx0/xQwqhKgF1+tSKTHcobkqj07x4X4pNvyijFNjRl38ta9de/BxsXctoo5bC2AwQpCenR5fO7jCTTmbiDDYOT6OZWUFThsBtbfj5yopaypBynCopXzltdHx8bNkAfI818pXENbS8aLtRbwGAAS+ZWS8XJ6rot/vdSnlj+6d9PoAGE5UEJ/JUdAlaBm1/LJS6yV45eWO1jQpyt3LI9c5kIZVYIEQ2Tvo8bm0aZDrk/VagLLdHdQnJ0cXi+cb46Y3NZ8QvJ5vUZoLUv4U9qvBGWRZlqbpoyePB4PBc06ME2gNpNBCg+bLNbs/jHFeFg2JOs8zxojSQkqplImiqFlZ5HnJGPN9H2OMMdRaCyEaV8be3k4TiCGlRAT3+33OOedVU161Wq2yzJuNuO/77U7UmF4opTs7O80dv7W1dXp6uru7OxgMmhWk0bAsy2bd6TiObbMmQwoA0FBwHj58GLaiOI4xpcYYhAC1mNageW84jhMEAZRaVOJ3fu9ft3vd/SuXpvOZ77g2BY5rcSnW8YZLMdreEqIGCK02qe+7WbxptULGSFakB5f2v/jlL422dwLmPj09fv2N10Rp/vJH31NQt71gf3tPAI0xtgl97ZVLf/32jySBiFGoTbNPr+u63++ncXJxPt7aau9sj+q61kYSQlqtluu6T58+baJKT47Hve4oDDqC69l0rSQc9Le0Qg2xBkJYlrWRSghh27gRHn468ttsNpxzz7On0yUAWmsthAyCqJHmQAiNgUVVam0sy2HMBgBwzpU0TZjJfD43BgouAUBNqVjXdZqlGNPAD23bTlP53/43394a7Vk2FLIAUDbmaEJAU7Q6jsWFEkJJA8qippQKoRzHQxA/lzRiYJSKgnA63dRltb+/L2RxcZ4KUXf7TNTw6tXri9XR1mivLHnNKwBUsiaL5SnCejKOucjdQGuQKuHw0r52o/Xtf/HHv/FbX4WgEEJ878+P+/3ufLaejYEfOBDiqlQKGIwsP0T37lz0+oHDhrP5xd7+S51Om9mfDZSeHY2jlj+dTgUHng+2trYwFpoDCIFWBkCJKeFSIEoQxpzz6XwZBHacJoN+23UCbWpRM9s1dYVqnkVBa3w6S+KC16DV6nTao9lsFYWe1kgDZYwRAlRVRTBwHItSwhhpd1zbsepKa1N6LtGGI0S63U63h6FCrQ5aTzGh0SaJZ/Plq6+99u4P58tVfuXaltbm69966f7t/K0vdxFbJEUJIa5rxTk3wNjMwhivl6uvffUbMlc7+856jizszRZxntpRB04n8dXL++tlbDtUidqyaVUr24G7uy0h66dPHvYHqKqKzWbT6bgnJ0ez2aSuuW15m0189XqoFTo/KUY7jjbCsizHJWUpsmI5nc7aHZxlmecFUoC8eI5Zuv/gXr/fwhgjLK680E+zVa/vuDaaXcx7XZIndZLk3a73Z3/23SdPnhCCMEb3Hp6PtnaYbaTkDg3eeOvw6NnFzl5r92CAQMOs+x8lAQD4/FIz8N9Q2EipGbMxoryWju3lednpD4KoVdZyE+cV50oBiJFSCkAtJc+KMgiC+XyGsNm7tFOUmWXRVis0BuR5iTElhCmpx+N5FLYbWHwzOSIUFcUnhxMSAAAhJE3jZsBHCEEYKKUQwcymRVEcHR1prW3P3mxWaRpfXFx0Op1er5emqVLq448/9jxvNBq5rtuU5c2q+lOVdZ5mCMAkXu/tbm/SJM0ySFl/e5sQlOZZIyCXUjfCSdd1XeYQQo7PT/+HP/iDX//N38CMEgxdjPOy1hBIrZqYAQ1MliftdsjryrLxYjmN2qHU4vW3Prd/ePDj994dPzlBnn316uXD3egvfvzXX/3W13bbw2FrWCsdBIEsiltXrkyW+uPTpxebZcuPuJItP7i4uBhsjShGSnDbZi/fuFGWZafT2dnZaYa5aZoOur1v/ew3/+oHbyNs+0HHsSOtEDA02aQWtTEkDXyw+Xk2rfEnBEPQcFWbu8l1XUqhlKKhdUVRxHnVXI5aa60Mr2WzEW6GfwghKTTGOMuaQFHUYLiaN6vtgMBv1bUUour33aOniZLo8NIOZsoArpRUyigJgiDgvKYEFkVlAGo6l0ZXACG0LAcZraUKPTYeXwSBN+g5J8fPkvWK1/rZ0+P+oLtcVpcu70KomYWMUaIAWb6q5fTJPdnpDBTYvPHmq4PODqEi3sjQ98dn6Xy6efGFN95++0+jrmSWlcX0xZdfuXvvcZGBqsqyLGPEUhJiKi3H5ly//97Hw9F+nlVQR+OLyXAr/PSY7Bw4abZYzhcMOr7PvvylN8/OnyGEjQFFGdd1VZYlxMj1PURJq9M2EKw2lUEwCN2iKCAyShDLBgh4fmB5bvv0dE0IWa1izmWe6s0636wLQojSsmm/lOAQAoxxLSoFlOsxxliWiCBCjh0hrIqigshQBiAQq0XcjrZPnta9kTed5X/9o/c/eP/ZV792vazWxsiaJ54bPH289EPKpVnGgjDkO7aRwGLEtR0p9exi0+523JaO04on3rAHDi7vPH505DjAqKoVWUY213R9eKlNLN2KAmCkMaIVeVEUXL10CIC+mKyoRdIkByoY7dDRsPvxR+Ov/eyrWVFSBhBCZb0i2NEgjTf6ytX9qqqkVmUpZ7NJGIbDwWCzqgO/LaXcZHMnqGyHOg7M0g0x9OqlUZUKjIHSBmPQIDEhNEEA3nnv/UtX2lLVQLWkWRkDAJSr9dwotxnN/Vt5AM9rw0+GiJ/dhkVe7ezu5nketiIuxfl4XFUVl7ooVJHXGiCEAWMMY9icJYMMwND27K3dIWPo9DTvdDoAAEpJu92+GMcQ4J2dvU6nZYzp9XpNGDkhJEk2N27sHR0d+X6IEJFScl4po13XFVqlaVzVNUKo1WqdnJwYozzPWcWrpuIbjUYY4/V6PZvNlstlk9lycnJijJFCIIQEV40t17YZpdS2rAbtl+f53t5ekiSc85OzU0SZF7jL5dJxHA2BEAJj2lzQw1YnjTPC2F//5O3v/vCvvvyVryghkVQAg2YEm1el0Gpra+vhg8cAAAh04HtC1G7gKaBWm+Xv//EfpXn2yvUXWoPefDm7erDPAfjXf/z7FiYtJ8jzsizLMs2G7XavB/7qJz+Iy/xwd19rPer2s6yURreDcLWYG2Qizy6rPAxDpdRyueRcura9WKzKvLAddzKZUEoVMJbr5HnOOe90W74XGgWMApxzhIiojU1ZE1fS1OaNQrMRaQdBIBVHCM3nGcbYdhgXhZRca2AMbpLpP13DUUIwQowx20ZJkjUz2eYqZBZSGkipgUGN8dlm1gfv3dvdG3k+JQQIWUspGcOi5n7gSlVx8fyNjBkueQ0hzPNSSu37vlYCIdRpRXma3Lp1y7bZ2flJmojhtpdnJSVg7zASKtushOvD/avsgx+vLh2+dunqziq5KHLy7X/x+3l5ce3qK67dBji2bECxfXhpt8rZL/3qWxU3EJn/4j//r4+fXezt9xBCFKPRqMc5twOVbMSbX7h+9+7pejMNW4P33r2tBPhpZ972TjdqeZRayabsdFqtFllM1n4IXbvlesqyLEQIhHCxWLiuezGbno7PvYhmeS5EbdloeqEdz9YGn5+fdzqdhw+eEQQsRiixyjKfTFeYoroyhCClBLOo6z6fsDfSy6ouLRtJoVbLvN21gUGUgeadRKAfdnS6AZ2B4aXdG7Kd7Rc++Oj0c18eVHxZVoUU5WqeQCvO18H4PLGcqMl8XW/yMKBQmzSOd7a254ux74DRdv98cX7xrGQgaG3JdG0Pe4xhEq/qwGsJbhoOAIA6z3OCTBBYlAHfddrtNqW017NrVcRri6vF9m7r3bePb7149WJ2DwKyd9CB0GT52nMjhIVlgTCyl8s1xthosFzN6qqwLNrrYym1ZVNtcKvrlAXP4sIo8erLL+fZosp5syOtShAFYVWVhCJMaJJyY0yrDU5OTgkiX/rKyx9/lGkFNeSfBnM3n09uQ/C8U4YQNM7w5rNex8fHp5skboh7UiulAaasqCohtdZAKcAVV8AYo6SUrutsNqt2JyirzHasg0NbKRXHaRN+SAgAAFmW1bSuTY9m2RQAXdfl62+8WpaiyfB0AzdNU8YYRKZJqqyqShvjeV673bZtm1isrmuIzHI1T7O40+k0cPmbN29GUdS0kEopXkvTDAUgrKVACBmtbdtiFjFAWRZbr5fbo8HZxcR2vbPxxAmcSlRFXTFmN5nOjDEhhM2cQa/nuj6X4i++/73J7OK1116xbEoILEqpAUAI5EnqOn5DaoDaIISUFv1Bt6zLO3fuUErDsPXaa6+djM8vZvOnj59gCr73kx+3ev1Br9cOw8l8VlRFK3B3R720qohtcS7yvBx1BoSS04vJoDtYLqvLN66WedYwKZ49e8IYU1wopebT2dnZ+OBw98mTR0LUWmvGyGQ+tj02npyCT4CGdVklSdLMQAhEn4Rw4oaVCxoyglINdVVwEG/Sra1hXVfGGCm0UMpARAixLKqN5Lz6FOPqunZRyIYoo7U2RhGCEAR5nnu+Y9tstaoRZItFfXY6OTg4mM5nnU6rKApCEEKoLqswDDGmWV5VvJZSWha1bdakLKzX8ae5sqPR6PT0xHGcKIpsy63r+nx8+trrtzabRV3nEBql1O5+S3I6n2263U5ZAIQMsTQA5M/+8DbDztVrV978wvDZ06rX7m0Nbrz73k+2BkMnlJOzzQfvfeBH3LU928FJuszKtePioq61qb7+jS+fns+fPZslaXr5Sq/V+qw2pBbYrJNu1HUtu9tqQ8STjeh0aJmVV673VY0ab0+v1y3rarlc2o4DAEiyHAHARcorgKnkFXEDulisRAX6Hb/mieNamKk04QDoXi+q6thAYIwhECGDCETGmLLKIYRh5C3meRLXlKFGxRmGfhj6q6VwXQYB9DzZH1mTi8UqnjOy5XuhVmC92viB1+21uABC1P3+KKtkXgJjjM1A6HtS1Bjj1TrWKh32UJylVQ1Uofa2Dtdx8e67k6997ZsI0qIAVSmCoCUFODg4nM+WUKPBYCBlZYwaTyd//pfvpWlKKRXSbDblC6+0pucbKJ3tHbRacttmvX6r6Ys5l2maXLt+oJTIsppzbjTs96JkvWkF/t5OfzZdpGmCSbhZZ73eQCtoJNZSUAZ932OMSKUhBAAapYHr2tSyEGGzcTYYeVEHuNYQsY3iwHNGAFef9kafLpQBAAh+Mk005t+oG10vYMz2/TDOUj8K07xcrjZFWSdZJrTQQEECAABKibwq67pebTaImtHOgFJo24QxtlgsRsPtTrclRJ3lgDH2ox/9iFLaJC4Sgm3bAlA3mQGuy+bzBSWW67rEYkmSSKUgNIgS27azPG021JXgGMPFYmbbbHd/5/ziLI5jz/PKsry4uNjf318ul00UAYIQAtzsOpv/rRA89AOplJDSGJNsVpcvXy7Lst8fNgNN13UXi0WDFy3L2nVdKWWZVwjgZgk7nS6fHD17cvzM9r2qNgYA12aEkPV6LTjfGW1vlkmySUfDratXrgshlsslISSNk2985Wemq8mdDz7YrJPdncu/+vN/a77hf/n+j/vdriorg02mCkpA23d3hm0AtdZqs45vXbtZ1/Lo/NzzAtsFCsPHjx8LITzPsW17vV5zzq9evuZ5nmc7abxhFlmv157nSCmFNKt4dXJ+zLmoK6E1QIhkSaoUaKL+IITrddworhuCVnNvNkt8z8OLxaLViiiDAOrGQKK15EpaTtMQIM6rui6FqCE0lILGl4kwgEghbBBklkUp00LUjk2UUu2W+/HtZ1GrV9ciyzLKICYwjPw8zz3bEcrUNUAIasOD0JFKfPJNboqy0tqErdajJ0/TNFuv14SQ0XZ7tRD9QRi0jG0FluVcutrPU81Qm1pisbx48mjKYL/VU5evgfm5ml/kFV8DFbZ7sNcHJ0fLp88exCvwpS++vLMD4o0MAx+AMozc/YNtIWtCzXqt7t+/1+oMNFkUieMFwHXdKAzK8jP19f7+/tHj81dfffXGjRuOTTBwMEKOR7wAtdp2kSmKMIJQCLG3u339+vXNZqM1cBxHCh2EThKDqq5tJ4AQCFF3u65js9Gwnaap49KyBsaApjLAGFdlXde1UhpjygjFiHqBTymcnOcQwLoSjoc5V35IAQBpXlxcFNQySVyPdorVHDx5doSg9exJDnQAAPFdX5uVy6y3vtrnsvjow+Mo8jCAQIHRoOc4NiKkrKut7d7hoZOk1dEz4LlFv2v/yR/d/Yf/4d8sK71cp9/81heYbcXxutfrRWFbCD1brJltAQyE4lGrTSiw/fDg6uXlFEfDdLPU66VwguInbz/sdJyiKDDGNS/73X0pq8nF8vqNS0mSGQOKIoMQX7t+oFTtubbr4yTJx5NzCEi/tz2ZziYXZtDf5ap0vGiT5Y5L6xqEoe04DkKAWtR2wzjmCFrxJu+03XZrZDuQWdbp6brTB83Mp5lKf7ZFaSpGpT/Ro33yieO44fI3twmlNK9KCKFUAmJokHEcYlmUUKS1dhy7Pwj9wEnTteVSADVjBABUVVyImvMqioAQ9UsvvXT16hUAjJS8gfgDYFrt8PT02HXdsuSNJ8zzvLoubdtu6K0QAQghc2zbcynFzUBwk2w2m3UQ+EmSNJVmkiRxHO/t7U0mk9Fo1Li+FDDKaIQxtS1CyGg0slyHK26Acl13s9lcu3zl7t37RgMvcFudSChZlCVEGGGspbEowwAShCmi26OtdjsYT8ZJkWpsPBv4HjBGUYQpJtjgwGuVOXjx1iuiEqvVhhBSFWWn3QpdT4r6d//490PX29re29o6+NKrX0xL8P6T+2WV84R3h73z9TQv00vDQcf1oFaWYxPCdoc7iLB1ks+mc9v13r3z4Wy52NvbOTs7S9PUd73r169rreNV7HmeTe3Lh1fSOJNS50VlO3QynUbtdl2UTfRrU+paFsjz/BOJNWguRIRQUaimCzZAa60tyy7LKsuy4bDfhNg1aqSiyAjFmACLEa2NUdIArbT0PKa1FqL2PFdriRDIEk0ZYpYRQiKEi7IAAIiaHD07Hw52ZsuV57meZyfJJgiCqpJcCkiAUJzZlBBUFJllUcYYxDgrctf3sywDABDGiopzKc/Pz3zfjqJgOhtro8oyv7iYFUVBmNjd986PYCEWaT3XigAd3HxxNNolluWcHU8++uDJP/iHv/DDH303z5fdju876RfeeOuXf/GlTmRlG1EWK993pdAQI8nRaikePb7n+ey9dx9fu/pC2PbX6yXD/mdFg+OnsfyDP/jDwHd399rf/4s7B5d6dQne+PxeHMdlIaEBRVH0uz0I4dHRkee6vu8XWW5blNc6ipxnTycA1kWuABKhH3Eu9/f3eW0IQbwGzLGkgrZNAEJCPH+rQYMaSr3v++vNMku0bdubdQlgTZBLmVmtVqM9f70GQchOjtatjhOGThiC/shCyFQ5WS1kExz0+hu3Wm3n7p0LYIDmBkOkFUjT+OBwb//wAGDS7bSCAGyWttDgxvWOaztvffHzStX/9P/9J1eu35CG37h1lYtSqmqz2RgJqlKtVhvGaFlLiEmr3ZovEkxYzUXYAlkCpAKXrnZFZW025d7+SElo23a8rvf2d+JNZdlgfD5DCBCCfS/ESHqufXExJtSEoY+wZi5I8uzmrUG3Q2/fOTJIPnwwERLVqqIUbOIKQoMQKMtycjFz3IhacrMAk4ui0wlb0ZDa9WKehFH00z3yZ14UJSUAgGAC4b/hRYEQnRyfNcxUpTXG2Lbd1SZuPNh1XQkpa1FJKY0Bvh9ILXq9ziZenZ2dQAiacCLGLNd1IYStVtCkws9mszzPXddpWIpSyiAImhvQcdhyuW6sqc3so91uR1G0SZKmBWjiyaWUtm03y2sppe/7cRwbY3Z3d8fjceNHrqrKYnajg2v+U02EHqGoqMrmjdBk+Blj8iSN47TVagVB0JSZzXPWZF0VRWVZDgLQKEUQ1lpv0sQNg6jl2jbLs7SqqroWWVYwxn75F342z8v33/+woTESQq5cujwaDMenZzdfufUzX/nq1772jfPJ/IO3P3jh1v6HTx9+/PHtr33hjdHO1gd3P1ou5y+/cLPluBCZj+58GATRZhXv7uxjSqbTueXYXOsbN240mvZmjV5V1dnZ2f7+fl3XB3uHmmsh1GadQog0QHFWAESKouq0Wg3PkXPRaUVa6wZ7sb+/hTHMsowxZlkNKc9wXjWaAwjRxeR8a2urqgBCiHOulDBGE4KaTAiIgOM4TX+KMcYEpKl0XZuLGgBts6goMoBqy2J1LVwPV1Xl2K0nj0/SNL916+Y62RAKOK+KoiCYAQAYg5tNjglSWiolANCi5kEQLWZFlhUAEWVAWdY7uztCqLIAtiv29vYuHdxaro8uJsu6QMyCZ6eT3pDEK20x23ZA1PIFB5YDXvlcC6iQULWa0rJeX73Re/DgcRB4eTH+mc//vOepa9cPh709ISsAEK+N70VFpbvRzYvZgzTWCINHD6fbOwPbZmlSfnpMLMvO0roqSqXUrRcv/dkfvdfr2oHb91tVkhQnJ1OIDMUky7Jhrx/5QZYW5+fPefJIU8ehq0Xph3izEq+/ej0IovUiaQ5IUfOyAFohxuw8l81mnzGrcW3VleBcEkwXixwBjxCyXoEsXwd+x7JIWdZeZHqdIRfYsmCyNq0O26yA36qHe/X4fAk0oxR59siJpnc/WmRr5ji4rmsAkNYg8N1XX3vNGLOJi7Ozsyhwjh/p0bb1xS++prmzyj/63nd/uLUN7z64mxbpR7ff2z3YgtA0BvPhaLRax4TSTqcVb9Kq5BDCKGpJcHHyEGi0CgMQOIOr1/rjIzDc9qbTuRDivXcfX758AIEtVVXkutPx61rYtr1czvf391aLWRh47XYbY7iJLwiFfgg9z+t2Wj/44fuOF0HEypK7Ljw4GOR57jg4SWrGrItxDHHdaW3btP3RnR9/+198d7QLIITTSYwxbjZ+Tfv4052yVEoYDYD5jPaKCbAcWxsqJdYaOK5VVRk0WkNqkBG1tbu7RZBleZpQprEEol2VKaMAGbZeJYN+sLvTfnDnhDC6XsfxKmWQMQMJMJ7FqkpYjlvWEmJbGch5ZbvWcLS9WudppruDaHt07dnTs3bkGoGVzHrd/ny2LPKqqjgAgFJal5VtUQi0AmqVLPI6tTxMLXAxPev02ps4dj0rzwsLuwRZRmuEjdQ1JsRiEGgd2AGGqCqTre0eIHi6SDU8FzmuYnNpf7BeLY0BBqu04MhmmCLBKyD13mAPCCQqkaQbjQvmEG4wtByN1TqevPzC9enp+en5ye7Bru3Z0+l5dxAk5Sqr8u5wW+W5rBNjOd//ix9/+Yu3/tFv/D1/Gf3ff/d3L+28fLXIkEPfPZ/1nIgibIxuDRkyujClZ2NLcm1qpSvPwmfzs9n5fKs/QFBtbferuhBCOC7tD9rlcpMks7OiKo1HuKhknWFarhfMsWuhKGEYEa1Bu93tdbrxJhVlzou0G4UYmrxIKaXKSIgBAr5jE8oAo95ylbke9kJQlgZrf7OphZLUXViEAgWksCpUEsIwNlprLWm7a2mU1aISwqnUEhOrrqjluMpowTUBEJrE970Hby+QQUEXyAxq7pIQODZTQioJIYAYO1JpIVSzVt6k036vJQqFYEmdSpjK91vpJncC8Nqb14syf3T/SZ7pw/2+VphgR0vKqOOFgotScZfZteeG7/7kief1syyZb46jDpJVtL+/73mdnYN2Lay0zhfZ7Hj+0eWXvd6on6w1o0LIOTYkyaaXrx4Wef3ya21g4mdPbkdtG+nPGDZptphd6OEgPDwY+c6eHejp8rTbNUXK5xPMlWUkQNgU2YoRWqamTAxFEEJI7bbCSpnCj/TTB+vtnY7B5qOPHkZD7+xso3QNpXaxu9XvZdVJGPZDLzSgkrpuhUNMwXKTUdI7mxynK8jCBLBiZ9cDhoYdWeQmz5CpKcTTwA5lBQhdjbbcwPVvvzdhhO3ubm+WnMs0z/P5LCn5piyNhQ0yimIgONg/PCjUeF2cCUU7rZpjdD6eyqr1w8f3fv8vfwKKncWqvnyd3H570Q48nvp5nDiszXmmOKjK+XDgpyuSJ9jgjEvsBARb6nf+9YfAApZjy9qZTI7CyOxtDwFneWbuvLd66cbVdodyjvLUFgJc3t/Z6owUz7OMMK+tabCJqR9YWCMtiNKg4qwQmzCkNnB5kdmuMiX0PSdqt7ThooQMkKhNjaQOaF+74SNSP7qfff7LVwjsUmvOkyb4UCultG7WJ8gYg4zWAIAmMO+nO+VmQtGsGjnnmBAhhBCiqoVlWcYorVW3N+h2enXNAUBeZ2xk5FojobgfOMdPso/eXW/tawDV1tYw2YDGt5emqW27vuMGnksx7LVbSZJgjI2WnmtRAmazJWOoKOMoDDbJVIO81zlcLC8qXkOM0iyraqGMbnXaAAAhRJrFDZVgMpkMRkP9SXxwo1JsimGtZeN2aMRfQimAUSOLq6rq8qVLF+fzdutQmMLy4dMnJ67rlkXebQ/KsqD0uUa/Ga41uIosy6AGZVk+B2hz/oXPf/Hk5KQs6qLIXNellCqjITJ5nkEC1+vl3vBS6DMa9b0AvvXWz734xrVFsqoM+rW/8/NffuVaUtrVJu31I9NqMV1drHRc8cnF4sbla5zzoBUM2n2X2A+fnbz4ystZlu3v7lqEPn746I03XqOYGMGvXT5gro8NsDCKM1BVgAGQlqKplBFCVV1iDLSWnPMo8l966SWMMRfi02gUwRWEWAgOAIAAYwyLwhRFMRi08yIWQhACGhWUVsIYgxCUAjQABUwQgE3GAEQIaWUa7DUhJMsShIDruoyRuuY2c3/jN7/1/rt3kXH9CPRGNia+aUaTFHFuGnkNIhBCKIQCABoDmnxEx3HCMFyvl7zW3W6YZ8V4PFZatCJmDKSUrjYxtcDJyaTVDpXQFBEhakLhcBien59CaDqdSHBz++MHruvblrder6Oofffeh/sHu7YVLWa5bdtVXfaHO+enEhhrvhhrhSeTyWKWS6l8Pwi80en4w0+PCed6Plt3ul63273/8AFm4LXXXlNaaK07nSiO67ysCGYIkSTNw1a0XDZziYLzosp5GDkQEACR59tpWldCO87ztolz3e22leZB4AhRz+YTz20dHAyXqxkELAxJWaX9Xg9gJCUoC7Uz2pnP6zAM0zTNszIMQy3BJp5u7bi7O4cQmtGOu1xV03MYdWinhymxizINg76WrLejhNDMobWQrgseP358fHw87PdtWw9G3aOjSRT03vqZ8MOfzLd2fcHNYiUGvQMv4o8fZNduhUePs8HIHZ9utBbdzvDsJC/qJM+TPAV1XRpl//jHP8mSotv1Ja8A5HkK1uv1G29dvhiv57PNV776Sn/oIRBsNkldl6Mtx7bCVqvVbrdt22rmdY8fPx50e9pI17O1qhECjos5Lx2XaaOUFpZFKaVScsuiGCOl5WS6oQ7dbGLbMbNJ0Ruy06MVYbXv+cwCcRx/Sq/59IN+Okzv39YiImQMNFo3Oe5cVNLI7e0OQkQIEcfrs7PzuhYAgLqSvu874SbeVHUBz0423//enW/+/Au81nWVXb925ZVXdtudVhRFV69exRgbA+ezs9ViIYXI4oRiPJuMy3x9cKm3nKfrdVyrtN3uclUiUjMSpdmK2lbJa8v1lps1ACDLMs8PAQBcccexhBBpmrqujzFFkDDGGnC841qO4zScV0QJc5iU0rKcuhaYsl6vlyYbh1HPge/+5Pjw2paGRbs3xBhWVZUmhefaDd3eQIAxXqyWnU4nCAJCCITAcZw4i/Oy/NVf+1tvv/OT09Pzfn/YxBhQSi2LxXH88OF9CM1yNdsa7jqOJ+JpKxq2Qvv1V1/Z3nOFxC++fPArf+vXqnW6O9xbJWnQ9hCD67j8yx/+eNDfjpzAGIMYbTv+YW9XEktpcHh42Ot0ZxfjN994bXx+6tjMd73OIHp2NmcGBZTmEmgJmNZJoYqylFo5nrPeZBoAiFEtaqF4XdeO51ZV1Uj8CGbGQCl005EBABzXAhAsFqvd3W0AtRDSsl2EMGMOIVBrTSnWuplGm2YW0YwmjYFlKaQ0nEvGLIwxY7iuK62157nL+erKNf/mjStV5gxGnoLL8ekGM6qNRAZoA5hFmlGOUoZz7jrPgx8cx9FaSynH40m7yzqtaLlcY4i63Y7WoKo451xwM9rqvPLK9WfPFloDwQ0hROkKE7BarihDFnOFwO/85OSvf/iT1TJbLtYvvfzyJp4XRXZxuskSTQhRqv7Lv3yXl3C95FGbaUXjJJtN+PXrVxzby/M0Tj6TXrz9g9u7B3h359LWzvb5+XkUWXVda6jyPO8Po+EWUxIopantzGaz119/XUiglNrf2w48GyPHD6w4TuNYKVNNZ7EGwHWdxWLBqK0NsB0KgGQW5pwbIyjxq6pstZ2q1I7juR6tK621JgQwDLMsoxQEgZcXZVUrSi3XCbb3gq1dbz5bAYAQKX7m69fidXX/3qMbN29BiPvD/nQ6gUhdubrLFaiFgJhhTAAwBCJele0IuSG5OJVlWd58MWz5/cVsuVjOPJdmqbIc+dH7Ty5f2alqkKZ5lhXtdnux3KQb+Lkv7nkh6PRanMs4KS9fudZuB5xzz2erleIVDkKPOvm9u5OyBEpzTAtZMyH0xcXUciUAsJHQMcZOT460EknChajDMKzrSilhgKprZYyp67LdDTgHSvP+oGNZNMtTIfnWVvfS5Y6oi+3t7ZqX2oAXbl03xmw2GQSIMSaFBgA0MM2fug2bKSGA/9ZtqI1pHr6GQ8csAjHwQ4cyXJYVY4Q5OMsqCKHrsZrrPAVG08s37CK1nz2KX3yddLphp9MjGCCgkiRuNCuUWvEm0VL93De//oW3Xp/Pp1opBODlw0Nm4cP9bc+HF6dJfxh2+2FVqk26jLN1u9f3g4gyhjC2LGu+XDazKst2HYcpoIQWzW6XWZaBQGuNCcnzvNXpNCZcjKEQtW3bUqtacMqYbdtxHGOM+71OpxX+8Z+8s9hMMVNn52POOSEoi8tuu6O1lkpJKbMib14mvU6XYaIUaFLnNVB/9f3vQ4x29g6o7fi+Z9tMiNoYU1UFwOCtL7557eYVP3QcL3r7wz+5tP9yENYwh1/70p5YiD/7zp9HL3355sidTBf3T1Yv7A6msYlQdTqODSQtL9BaZ6J6+cYL13cvHZ/MTy8mt27dKpLk5RdekHW1PRxsjwbYGEj0B7efXN8/9CjWECNEQKm4oZs0EUohSqQEnmc3AhqlxPsffhRFEca45GXDsGCMAYAIRVJqpQylJAzx+HwWBFHUxrUUEFgYY0bdqOXUtcRIw+diVaCUkBIwRjjnSoKykMYASizOeVWJJkSFUloUBdBqtZ5iBNerfDQabO22/TZeLmKGCQCaMcAYQxhKqTUwEOGqEmmSKwUgBFmWEcIgArt7o6JM59Pkxo1rvMrShBtjMAGcC1HzMOh5DgAGpAnXEp6eLi7OklYrKsrk+s0Xkrjs9MDtjx5VpXEc5/79B9pUvu/VJVrNC2BMWeUv3rpWZhBjsr3bmlzM2m1PK1DzgnNe1/W1awefnR/tvPjisB111pv06Pi83W+djydClkKoooxdH4/HE6WRkibOsidHz15+ddcYwBgpqxQDok1VFoBRCIgpMhm1WUOZK4qi2/WMUavN0vfdPK/CMFzMkzhOhqO24LquhGXh87NVv98DBhJsb9ZJt+0gCJUyELC6ELdeutzu+JiS5XqjJInCUbxZXroRPn6QpwmfzM963a3tvb7fRufHhRdQiEGelZiwqs4saier9aXDFpfy+KjuDuByVgM6t/CW1kID8/DBs25ngCj48P1nX/n6pe/8ySOIq6jdw8QGyBCm/FDHqw1GNkRSQwQBM4BTSi0GLMu6cePK2dlRt2u99PLBs6dHg2FXKdNq20VmfN+DiENoCEEA6larlef55YPBdDLZGo6QAWmaU2IpCQhhCJG6EoQBy6JVVVR1YQzAGHBRb28PAAZ1XQlu2j2wXhaXr3WnYzDa6paFoNRqEFYAaGNUkzePwCfb5WbB/OmvuWkMG95Js9NgjtXutes61wa7vmc7FAIspFaGcy59Z/vkaHH0UIadcu8y8p39vFh4Ps3ixHGstz7/5tVr16aLeZJszsfTg0v7jx8/7na7X/3Sl7e2hoRgznldVj95+6Nbtw4vzuo4jiHj00mVF7U0K8FBnue27YZBgJ5/cPPqIIQIwSGEQqvNZkMIkZI3oHmtdafVypO422o3Ab6EYZvZaZxtNgkiTEgNIYzjzbWrl5fr/Padj5UBX//6zz58/MjzvHYnOj0/M8ZkWda432zbbjx/ru1Qio0GfhjkVRm2WwaAB48eHh0dKSmDIAAAOY5je64B6vz89ON7d37y/g9wYP3Zd/707PxBvZktnj75B7/+S1SC/8d//f8F/vDLX3q5zJbPjhfHj8b9wOtZAACwzGKACYTQ9r3xeLzd7rVb1tlskuVlt925dfOmFDWh6KOPPtzq9ybrlOfgWz/zM8BIaRRBUAhgEJbKcCmyLKc28MOW1trzvDAMswJUXPZHw7oWQohPAqQoAForoLWuqiLwo80aCKG6vVApJbgGAABDe/2oqoDSEgAIAWqeFmOAZVmf7KwAMLCZRTCGDVBllRugPM/xAwiMo5Rqtd2PPnjiuv7OXgtjAqFBCPm+rQSXkisFCGYY0zwrATRBSKXiRSFd17UslCTreLPp99qeY9U85yW4cf0Fz3O0QkXOL8YbCLDr0vWy9r12t+u2ohAClmUCGNTp9S9fPfwbf+Mby0XSjnp5no/HE892O1FHCn10dMRsi0uhjVa6wkQZoMLIv3R5O05nEJkiV8Nt66faKQiB1enY6zg/PpsEkQ+QnedpFPYBkK5HjYZZVtiua7vOo0ePtrZH+wfD9WJ5dnbBpU7TnBDQ7vbruk6KXAHDLIIQcRzPcZyySh0HL5fLMAyMgXUlRqNhXddhGGCMlYJGg96gX9emKCrHcjHGWmsptBDatu0Hjz5k1L3/8bgolM2ijz8cT6erMLK+8OVrUcvudFpPn5xg6GpFJxerqhR5AaJOG2PY6wcXZ+cWtQHI1onIcxF2yU++f3RwyUviutUZAmyuXL5hO0GnB06PVv2R1Wm1w1aYJEmSJMQym2VmWWpntwsBi9ro+3/1znqV+BEQHFjEa3Ws5WzJkLu3P/IClMTV1mj37PxJUVbLRaYkSouL45NnW9tDpdTTp08hxFlWrFcpBjiKWr4fxnHOGLGYX5SyLIXRwLKoMcqymG3jRkWb5YnjYimlMSqMYJKuuKgvX+6Px2PGSDPhaeK5f8qn/EmP/D9ukyGEUMPnKWVaMptSGzPbqkpBCGGMVJUqiiIInWbheH4M5svTwbCjDEc0k7W/js+3tvoQwjhNP7xz+4MPb0fdDnNgmsYnJ+ff/va3//pHP3j27OlisXj69IRQdzAYDoddQsDFOLEdWnHIaNTfcvOsvDi9cJk17PWNNJ7tlXWdFjnAz1fGlmXleQ4xhsgAqB2Xaq0Dz8cQpUlysL/XbUc1rwhGeZqFYYgxnkxmZVm2Ox1jjGXRWy8d+O7WYlYmWfz666/fe3Df8axut9t4dR3XDVtRVuS2ba8WC6OU4saynIvxNI5jTAmxmOu6SmvP9T0vSNPcsmzX9Wsub9+9DaA5Oz/+oz/87f/mv/2j9iC7+/6j2x989/Vbb16/vPcXb9+enh//O7/57/cjtru7++3f/e6N4eDXfvXXsQC/84e/+/TspOVFNZcGwV/7lV/63K2bf/a9d4nFOq3WH/7+7/X7veliZlv0K1/64nd++N6oRV66fpPL2nOAZ2MDgRA1l9oYmOWlVCDLsqLilmUBgHq94OnToyhqNy4dbaSUEgCjlCCEUsqqqsKYQgBWizRqeQABoYzQUivU60fNCBICohQ0BkppEAKUkYaShBAoCwMAcl2XUtL8jW3b/X4fM6y4U/GaOXI2TeOl2N7qpemGc6GVjEK/idljDGqty6LW2jBGw9BHCEAI8rzQWud53grp3s7OdHaOkOl0XKm4ARxjvFxsxicLrUEUuhalZVnPp8XZaRKvK8eDi8WCK1mUmzjdVKX+4he//Prn3kxz7nmRNvV0Enfa/bIQAMjLV0euDxpCOEas22eEIN8LyyrJs8/s/EdP54NBOBiMHj09Pb8Q62Q9uVhKrfKMGyAti2ZZASE8Oz/vdLvHpyeCS4pwlmVcAsvGaWwAAJjAJC4ZAZ5jFUXW6/WSJNdaQ2ga9JnnhmlSYmIQQkrBNFvbth34HSHAfD4HAAhuNpvE9WwhuJQ6zYSS5dZ25/x0nWfU852yrOvKXDk8vH937EXl3Qcf7uzszeebIqXrOfBaGhrUDnGSJAbw+XI8GAziTX6wNzp6FveG4dHRJgpHZaaUydZLfu2FvUuXbzx99rjTG8RFxWt4/dYONJ7jIQOU7wMCXSUgMHmZ5ZLrwPeNFr0+mY7zPM9dG5aFJsRybXR6dtTuBEHQzoolMKAqOQTEdk2WPQ/jns/nW/2tv/8bv9Vt9R4/Oum22w6zkAGTC5llheDGQCIl0EZ6vsMYq2sFAGq3OrPpSmsQhT0DK6CtsK0f3DsbjPy60lIJrUGjsIYNTqlR2Pz0Ddjcl89rQ2DM84KRaKmEEISgipdlWa5XjemVMovatj0YdjHGd24/u37LffPNz1ksWC/BcLAb5894RaSU08X8e997d75ctAedVby6fvPa46NH12++9NKrr7388stvvPna7v7OV37mS1HY873edDzt9p3lHMxmSc35+XgtZAmg7AS+57hK6G63m6YpxjjPCmOM1ApjQqmFIGmsEY5jUYopJq7r1mUV+kG/26uKkiJsjAlcL4sTAFAYhtLo2XLmBS6X/PrN0TtvH2vp3r172w+CF1966f2P3olarQbe9/Tp08b13OxnIIQYWXlWu66vjE6LrNNpZ0UqFQ+CQEpdFnUYthoh99HR0WI1Xy+n9+89XM5rNzRPj47Tsvrx+7cLIyEy/6f/8//1az/7TVEW3a2hH7nzRfHv/d3/+NWrvXm+3LmyTzFdrTbIpZOL41evHHAALuYzCOHVK5e2d0ae5/T6/Q8//PD7P77zxosvlFmay3JnSHwfQZtqKXgNhFRKA4Tgep1xzpXSZVliYm1iuYnjIAoRgYRSrYRRGmEIAMKIAqg5l7bln59PHcchBEGI67pWygShF3jMSIMBlcIAA40BjIFmHKG1xriR9Bvbttfr2rLo5cuXHceazWYXE1nVYD5bEKrDIHx478K2AtcVtkWlBABoxgiEhhCSpnnFlZQAQoCwAVB3OlFZ1BhRy6Yv3LpW13VZpFKVvV7vvffes6znAa0nJ7Nut7XaxI5LiyILAri9tZWl0vf9uw/u2jbrjaKaVwYgrcwf/MHvu3b7j/7wT3f3+ju7eG/3IE0Krqpu375+cw8a//x8gqFf8mVRCK0wQHldfFYb7uy0r9/cQ4bcvvPA96k2UCq0tbWTpTUjFCOgFKCMhWG42STtTmc+n+/s7HmOS6gFsak5gARqraAi2zvhaLAFoUmShBBc5FVd171eT2tUFmo2La9eO5hMpo8fHbseZYx99MGjwaB1PpljBAihRVYN+4Msy6QAWsM4nXWig5Nn66o0m1UJkbS9qqrL0XD7/Pz84NIwy7KXX33ho49uI4QwAVIYzhXFhllw/6Db6/XqSgIo5/Myr8qtUag4On6SUSo454yR2x99jBDQhjsuODqehG3z8N7FYBgRbByLEmD5dHezrLa3o/EZKNJiZy9aziUE4IUXdx89Out19vr9TlVVSWyiNs3zPM9TZHwNUwMkpbjVsl3Xruu6rkWeFx99dPeLX/iq77QI1UKUQeg4Lliv12EYFkWNGUYIFEUxHo+VAhZz4jjfbCrBdZLkxhgh+XwxAQCcnh2/9dZbVQ0gwBA2NR/41Jv3b2xRftqLUhRFE2SshWzqSUxJyWshFKUoSZL5csaYrbQoyxQhdPPF3mZTXL9x6dmT8fZWf7lcTi+SMHIQZVJKP0QQwiDwjo+Pu922AaAq+fnZRZYn9x/eK8rsnZ+8973vfnh0PAmC9pVrAyHA0dPpaKtLiWs09gPrS1/4spFKC4khIoQYpVzXbdxgAMGGsFDXNVfctm0pueM4QJuyLPe2dxghs8nUsRlQuipK13Ysyhqy4Xq91rBRvU33dvc++uhJuxN99NFHZVn6kbvcxA3/taqq7e3tfr9/dHQURdErL71cVdwYI5TMsuz09HQwGiIEKKX9/tAYU5ZlWdSL5Xo0GjHGTk9Pd0aDv/qLd9udnuUFf/X2X4yn1bPZ+NnpxesvDP/z//Lb4OLk8PD67/zpn/zaL3/paK3Hp9k//K3fmC31nfv3tNDtbud8Pt3Ey2999cvdgfNHf/LHN25c831/sZiFreiNN1+7/+BuXZvPv/rK+Py0knw0cG0GsG1BADQERVEZY6KojTDUGnDOCWZ5VkaRdXExJZhxzplFMMYIfyotVISQuuII0ulkiZuiG4C6FpwLhIDjuEoBJTUACGOKMbRs2igWjQGEEMvG83kspXRd0Ov1yrI8O5tVVdVqMyFlWXOMcVnlNo1uv/9wayscDAYAgEbs2ThB85IzRiwLRVFgWVQp1W51KbWUUvN5ffXaJUII59Xe7vZmsyEEtdo+hLDTCj2Pji+WnS5Wmtdc7O6Nzk8ujEZa6263e3x64nr09PRZp9XrdDoXFxeUOkrCazf2bAd///vv2JZPKUyzFUSCV5gSkiacULU1GgkO1ytZ1otPj8nVawcW6a/W59PJcmdnT0rpe62yqJM4wxhzzlstbzKZNDQ5x3FPTs4xxu12lwtTiVxpyBjlvKpKqXW1Xq8tm9Z1jT6RuyOEAj88PZnsbA/TbDkYDAi2DaghMlmqt7ZGjkO5BBDi3d1tz/OSJNEaMGrvHwx/9IM7ShLLops1IFQFbTMc9qkrJmdGCzdJNrPpstNnxM6McnzHlwIYYzrdsDOIpot5v7+VJEmcgkF/j9nm+Nm0E3XSJM/LZbzJq7og2LYcHQZOWaWWzba39+49/Fgq8MKN18Kw9fGHZ7deuLy/3wusUCktdTzqDW/euJnk436vfX62ePL0HqXO9mgUtUlVZet1XJeUWYBQUJVyOOwbY6qq4ly3Wp3x+eR3/n+/1+n01vHs8PLOs2fHv/qr3wgCL01j12WfrobrmhOMIEQX47wVBVohx7GrwhCmqwJ1+wSZYLk+39/rNLMdrRuTsTIGIIQQ1AYhoqEBECD42b7Z8xwAALGYRhhAulquu1F3cbHS2uY12NkNjbQMStu9cH5R7/RH0CQHw+unT+797V95pWPpi+PTqDuYV5Xl0aLK06W3tWuFXZ3E3mw59zwqZP7ya3tGsW5ry/fCg8vt7e3o6g1qYJzFVSsIppOKEOIFOsmmjtW9fGV/azSYzybHp0d24NVG2Y5FNbAsWssK25hYUNXVTn9IEHZdfzmZt0Jnf7+zu9++du1SrzewLc8YYxhOeblOk3WaWL6NCJSqyKoNgfZ//J98EwOwXmXY8pIyx8Z1KGcWQhggDJ48etjthcNR5x/8h//gBz95j1FoWxBoVZRiHm8KVezsDmxiXJtKoYWEftjtRL3JZKYwfXw+EVjfWyQHh4UtkEe6jx68+/3v3b++F+Z5DizwX/x3f/SbX//8O/ffOS9Em83H+elv/M/+gxvY++EHf7Ep50bZWm5U2As1/Fuv3/jhR+dth2/KuszKV67c6AbB/XnMDBhevfyX93+01baMQtJCHiwBAkoAA7EBgtlYCJPlnNkupNp2WLtrxZt6NBoJYXhFLRcKqTlHBgoAhdRAKYWpMBqs58YJdS2h5SCtiOZia+jmJdDUUNsICarKtLt+Vsw9L7CYX1U8jKwoDIwxEDjL9UWa5gYCbTzGeFwrVWOiEGIWwsLSZLl0tw9Mp+umaSlUAk2YrWwMoJbasrEXmqKMJyc6z7LeAIoK9tq259Pv/cWJVHC6OePS89r48YOC2CpoDSwXuC5MNuratUtVDqidjvYsgizKis26aLetLBXJRhxe19qok4cuIiW2QFrNO/3ea6++jNn84imxSFAV5c5OsLdzsNw8gcaFyBK68IPu8fn802NyuNfJini+zBbzLAptJ8jny1leFnlCh4NOXacAYW24kZZScaflAOEm6dILqe3Zk0lZF5bnWFWRRX7QCQKkY4siiGxhkEZFEFGL2kUuhQa9vp0mCUG4LLKt4f7RkyVzEPVzpQSSeKff39vz8qKqeJnn5OpN5Hnat3uCa6VUlYPlvN7b6vTbnZOTZbwCSbHmApydLKKwQzCDBhQwBQBgjcpyEdlXV+t4sNM/O1HGAKESWTLqZJBBgMy3vvmWLjLbHcVVxUC7TMqAjeKVuvyCNbmw9rYvOaH68MOng+1hJci9Zw9rnCCbui5wHbaJ50qwdj+crxcG7I/j49lksrd7+WwyLwuiwTpyu5HT4XWapWvLYgQzAwDzCPYADdH7D967dzsdjjrtlvP2D+9WJq3q0HU9ooHjEogh0I6GmjDpeej/+J/+r3/llz9fVmlRk0yASgkkaOjCJ08myCcAcmNk45tizG5YxU1HAxqu10+PDhvaMACAUERtyxgopXQcVgsFACjySmvdbjd5T2gyv8gzmeTrRw+fvvTSrTfffE1LDWRtY9v3Q1FzIUoIsTHAcq2z8WmTE9DtRWdn47JK5vN5M5vPsxpIT4P46o22ESjPS8uVRWJv7XY2yfrwcL8ostdefdUYo4RcTOe9bt9obREqpWxHre2dEaVUCJFlWbvTOjg4mM1mcRwjhJbLJUKoIXh7nocQ8n3ftewG6C2lFELduHEDYTCZ5AAKXhuE68nFUmjFOb98+fKz4yNCyD/6j/6jf/JP/sl6UxgIlDJScAyU5vz0+IRYDDPi+F6apoyRf/Wv/nvGmJIGGDhfrb/z3XfarREEbHyxYMwe7mwfnZ3sH2z50AYG/LNvf1tR5LnAYVBw8PjZndbWiz/zileINrdASxTTVGII+p3u5195FTngX/7udy4NRy+89koYOD/8zl/+8MOPdve7eZndufNwa2uYprHR0ia4EzgUAy15EPh5mu3sbOVpppRimCAEEbQ6neD8/GLQHyTJymhECGo0B5/qbKRQWoHlck0xQxhQ4kLEgUG9ftA8MBAaADQmYLPZKGWarIWdna26KnzfBcDUdWUMqCtBCGxcgE+fPjVAF0WhlEqSgjF2enpyuP/CtRfaEKAoCsp6JaXGzDiO02p1gMGcy+Gwt1nHZVErrX7lb/78k0djiDi18XIBuMiHva04TYCCQm02s9bWvllOrUqdhl5/scjanbCsE6Ppcywm8V3X3z/Y/tEP3750U3tulKaKWfDZk/mP3759/fr1Ox9dZJtsOBxeXFxcvXLdQIAphRDO53PLhr/4Sz/76THZ3htEUXRyOt4/CMt641ojTKDrBBCpR48eXbt6TWtZV5oypJSBEAIieQUF10WWtCOn3bLX67TXbSVx4Xtd3+1THCqTcV5BY/f6rboWD++vd/fDoioJpVmWeZ6zmC/X67rT7pZVRQjByHr69PS9dx7t7PWePa57fU9J8oPvnuzu94VU7b7UwpvMJlFrm7n1YpYDBBbTDdBsuIPvfDCxXM4rqGqLMqCNqiu42QBIzWqzevY06/Wisiw7nVYUeZvN8vU3Xq3r2hiYpfnudjgejwHEURRNZxeWRYuihJhfnK/G47Q/9KUqRQ0o9vNMAOXNZslstvRcv93qtVqtJI6JjqQEYRgiRKqq4hw0KBDCaBiGjFlVVTV2qeVyro3c2d0CRN698/Rv/92vzqZrKYCQK4KERajv+4wRYwyEICvK0XD3n/9//uXtO/ddDwpRM0xcy9JIZPmmLvjRg1kQBM0QrOmWnkO8PumREcL4p+eGjuMkSaKM9DwPY5znpeW4jmPFaYEwpRYTXBljXNd2PcZFTah3MV3+wt/8Gufy0uHu1pZbFzpw7HiVEcIwkp7nlWWtjRgOh2meTCaTsGV5briJl65nb9bleHKSZ9Jo4thWp8d3drZOjzaEYMdrPT15fHx2/Bff/c7f/Xv/zma5qLOCYra7s7+zd4kCspgtQ89fLOatVmtnNNzZ3nZd9+d+4Zu2b69Xm729g9ly4fqOF/ibNGmWQlVVZVnmOE7zEymKwrJ9APRwGyxmpRu4RSUlqmy3rZRAhNy+fdtxnK98+av/9J/+UwPA4eFQQWAMRBp0A8+h6OToFBPmdbzpZFbVhdKCIHhydEQp22ySXq83niVZWrU7A+qERycnAoCM10KU22Fvp9893SzGafzSrRubyXg4sr7zvT/WUvy93/r7Yl0pjBwkl2ulQYqp/7Nf+UrLAn/yzsMblw42RRKvZxjAiyVnHv3u97+7vddXwDDGtBIH+zsESYhAu+UBIwjFWirGWLLZUMq04VLAqG2fnV3s7OxiCqTAAOpP8K7GaAAAEkIBAGbTpagZgIJglzAhhOr2XQCAEEoIBaDGGLqeU5ZlFLWblFGtQVGmECmEQBMpBRCUUoZhazKZeJ5DKUYAf/KkbeoSd3r2l7/y5qOHJ7aDBiO723Ug1Iyx5SIrcp3nOQCEUse2sR/SP/mzH0sgMDOEgF4/yNL6jbciLfDx0aSsktmZNdrlDz6qmFPIyvNDSi2dptKxaF3XDLSPj5Ltnf7R0YnWgNcQiGh8Uh9eaY12bMfx/m//+T8ej2OK6MXF9Pj4NAgCAxAmDCC8yha3P3zv02Py6Pju3Tv3ikL5ITaoPDsulDRKYs+385KXORBCUBxs4lldC631q6/dPB8np6cXUWgJkUNc9XphXtRcytk8Xa0Kz+kwS/mB4/stz/PKQnouCVuIK97EAVmObbuOMcAYY9t2Xci64saAq1evptmqLsCVK8Px2VrWFqKZH8DJTDO/+uo3Pr9cyfPZOF1rx3WBgXGyDELnpZevMUYhMgAgQrAQYDjYuvPxA9dt3bt3VNRASp2muTaiKBMvoJ1uNJ3OpTBKKaOJwcZ13eV6VVYJJvDG9Z08j09PpmHAarF2XAokyZdFO3KOj3IEHdumjhti5CTxanIxffZo1R/YCKHz83FdC+//T9Z/Bcm2Zvl92Prs9jt9ljfHn3vO9ab7dve0nR6gZwaOIIxIkUKIpBB6UYTepVDoQZQeFAxRIYmiASQwAGFEwg5hZgY9Pe1v93V93fGuTrmsqvTb7/1ZPeTF7RlqP2RVRkZVRuTO9X3rW+u/fv8AC1k1oghCf/Xxpmm2Ut33+/0oCgDUcKN9/8FprRb9QYSs9/VvvcSYzBPJMDFaW6v9yBONeXpw8tndJ2fjBfcNpRgjDwF3PWwwBEHEOKwwJV90k1dvh/807vBPK7OjqLV/ed/znMViRimTCtI0jVshADgOm02yTrvtuu75+TSIvG7PrRpBMC3E+ejsAhP97/zVb2TzQjcFQSxbJq6HrDaMepTZle2GkI2UzYMHT7a2e8aY5aLs9rwsrQkWcbjuB07UypsalnOKmakb6QT+a6+9du/ePYfz3Z0dAmg8nu7vXw4836UsT7NWq9XptA2Cw8MDZIE7+NmzZ+1e9+hk9Omnn2KMOGdGW4RQVVWc86asHMfxPY8wmhVlvzMs69mlS1sKmtFo3h92hFZJVlHOlFJ+GP8nf/t/+Yff/zfXblyP43g6nxuwCCGXokEvbPv+clakRRl0Q2V03I6ePn321/7aX93d2QdL41ZnmWSlbhCqgJhGq7Kukqycl8KC+drLLxFb1iDvHR78xttfHj0/2tndu3v/TnJ675v/wf/2clyBbm9cvwyFODp+LBQeDHq/+6Ubv7hzoDDoqtlc63367DFw7IXsycFDL3CTJDFKuIwGHvMc7HkQRtz3mJZCCMEwWVWBm6Zsag1IigYo4dvbAyWx1nJF9VjRvYwBY8DhTtPoPLUYlJAGUFMUJfcgDgEB5pR0WjHBllMSemG2LM5HDbLQ67WSZWlBuh7XGghjQhjHYYBokqVBEKxmeChhdVNGgffeux/XBZ0sHofeFlja6ot0AUFEzy5Gi0XtuAxRVZR1XtSEw/Ho6WQCX/2NK9zBjATJcpzMy+EabyrVH6wRarMEup1O1IbTw8b1LaHON775FaudJEniIHz2dNTv816vdzEZf+lL15p6CtqAwl/96q2rly79/n/30cfvP/7P/s//h5/99M7GcOPo6MgaBAAWo/ky73ajMku+CBM3pk0jD09HYeQYK9utvd3d/fksw9TMpkBxZEGnSeM4tMgrC3ixHF+cL19+5S2rWLvVj2M+maQOD7a316TU0mitLSHc2JpSqEs7Opltba9VdWqM0WABMKNOnpdBgFakLIejTiewFizKszTv9NtltUwWdrls/ABFsasq+t3fuZwXi4ePTk5HtZXQlA1Y3O7Qk8Ost1GeHRuDKs5kmZrA87kn8/Li2bPzRjEvJkZDpxNZKwmFN998dTod13XtON74/IIzv9WKGPU8z4tj/9GjR7t7G1Jqznmr49ZN+ejhoe/FgLCVFFm/KhVm1vOdJMmFzF9/9QrWeGtrQ1szOh1LYcPQt1ZLI9vteLGcN02jlKaUaW25QwGpqs6DmCGMDp4lG7uwmFShz3a3Nzotp67FyrTHWst4kMxNEMaAACHUbvvYyKapjLV5ClVpum1aluXqq75C564WRPzF4dgYs6qUr65lklJKGcca7PnZePUHnDPXg6YuN9baF6O5FMLlyPW4AZ0s1Pal1md3nly5dtnxEefutevrVVHGURsT8EPLuTMZz8GI0I9kI9rt9myaFIUE0EXeTCdlt9tuxYOT80MhalV50iRxG57eLwjmFpkPP/noxz/7yeHBQZEkw24nCsMiK5MkW+sOACDLk0ZU4/H5o0cPb7/0Yn84eP/Dd3f2to+PT+O4dfPWDaGarCwAEyHlioe4vr6upVp1qKUESl0LdRx3X3px/+h5omyJIeCcNk1TVPnf+lt/6/d///d/8Ys7nU53sL6W5lJZYw0iBAceIRTqCg6Pzw2xQihrbafr3bt/Z7lM5/Nkd/dSUdSSNJvrfi0SYQTCthR6njVay82NVici0sLByelsMq6KGtFoOq1+9ssfcr/nulBk6srl65Q2dx4eRu0Iu/xv/fbvgBR/9MF7V9c20rz8w1992AniNJuvr6+toP9SWNdzPI85Lg58xigiFHu+I6Uk3Fn5zUtjlDVFVfkRPzo9GayvaWsx5StL6xXOZrU7uq7rOEwLgrApy1pZU9SlsaI34AjAGFNWWbsTWNAIISFUHMPBwYnvBlHELKiVVKGpddNAGAdFUUkp43aktNTKWIuqvNjcXJ9c5J989AQBsQaiqFUUZVE0GNGi0Bg5FvTlK5tpostCaK3n8+n6cC0tx1LKVtwxVgsh6jKLAmeZTB2nI3WDbfz227vzqXJcODo8f/LsseP42ztDjOnR8+PhoH98etHr9ajDDp5l1AXi1e9/+PHR6PnOpf7f//t/+Cc//PG//+//pbysiqrmroMoybIMU3Bd/8al7S/CpGiqt7/0NeI7ZV0VuXpw/9G9uw8B8Esvv7C12bp77+H6+tAYI4ROEiGE6A8HxtrxdCJrx3PbVZURjPK8cDxDqOn1Qwu1EmyxsAirdKmTRADJV5ngykMNAJ8cZ8ZYQshiPu13wytXtgBg91KYJrLbd05Px1tb8be/80ZViUZVt2/vWu0fPDvBxJydNBizdsdTQu/t7WplyyrZ3b5iAYxVhFpMtAWhdL3I8m63s8IAr0YJ250AkHnw4IGUcjZdGKvBUkqxQUhbAkgrCefno4cPq43N3qWrG9YyAt3ZdI6xujjKmqpcLlJCcBC6VdnM5mWSjRkFL+TWIil1I5SU0g2Y57lB4AWBl+eZlLCSo2uthWhWfBqEyOO76uU3ugjB3TuPmkZubHUnk9lqOlMLLWrphVQI0Wr7dQOYKEqF5xKlUVWCaqDb0YyxlW551Uv5Myfl1ZM/PaQync6Pjo4oxVeuXG6kRYCNMYBtJ3ZCjxbJcm3QMmp1e8CAHZ/pl17fbarwwaMDJ2CU9BbZKAw6ZV2tb613+57ruotZAVaKqgFjjFGzScU59Pv98cVib3+QZcXW1vaNm7fCNkmW1mh45dVhv7f+ya+ON9aH42l27caN73znO+vDtZYffvfb37HWfvDBB7/5m795ef/SfD4HbMfTi/3Le4TSi4szyqCu68l0zhx+fn6OCSyXyy/oZGVZtlstrXW73Z7P58wBK2uCkaz1tRubQeA8uP/cdVqEobKp9vf3f/zTnzx7fvjiS5cfP326s7PjukDAfs65MqIWlbIwOp8laeqHcZInaVrlebq1tTW+mCdZ5QVBo2Ur4rIp/DCu61IjrDEXVblIpntbXZ+DbOTDu3eCVjtvjNXwD//gj/Xko7tHAKzJxgseqdG8cbg5Hp2+ceuVOMB/9x//M6z1f/dP/8VZrXWRMoKbugRrESIGAeWc+wxzWHVjlVK+FxJCOOeNkogSQghlVikbRcHR0UlVKu5gx/GsBa3tSrOqtUYIIQye56x6ssYoigMAJRoTtqCqpFR2MOgNhh3HIVXV1JVCCEWRe3426fV6q2GVwHeLokIYCMFZUQFAp/u5VY4QijHW7kSiQZQEs7GMWjTLFskchmvRZLKgFBBQY02nT70ACKGcs8lkdj6aMIq0ts8OTnwvunR5r24I4RZRkmazdguuXdtY6728exWKzA0CZ7nItZaY2GePZ2Ul1ze6z56MwtA/fFpKqTHi45FaW1vDtEqSZGef/ss/+L4G++qrryql2u32CrCqJbT9gcqLL8Lkk7v3J+N53iySZYlMK2qjsjZCi3d+8f7oJBFCdLqxkPliVq+v9RtRIUSEqk5PT7X2PnjvydUbl5vGImBFucyyZNjvOJ7N0gYsEMJOT89abUqosoas0DVgsZbm9gs7dQlREIiqvnZt59njJwgAERHHwyQdM+Ken6VPnp5GwXBr2/3qN4fv/PEscNqUVHXeGC3X1rlSsJjng3W4ODWYlbIBq6kXgMUNZ0GyhFdf2arrKTaO4zIpBcZ4a3P7yeNnCKFWq9U00vOci4txuxNZQ9KkYIz1upuTi+nbX9l9991nl6/sT8bpwZOJFGA0rA173R7IRnlOgJA9PTunBCyIl1+9HIbBdDrN8kpKI7UKAh+QMggog4vx6Ur+4rpuGIYYYwsaI7cs1J2PR0HodHs+o+5suizL1BpcZRWsnD8aVZeKYAhdSqhTVSUBcFxmkMGYx0F7c937H52RPz8pAwACDAYhIH/6NQSk1WoFcVDX5eXLewiRk9OR47CWxxkyv/u931pOE4+7lDA/jNNUgcU/+pMPHSf4r/+rH0zGTdxpFznUorEI0jwNWjTLMt/3+r32oweHL956aX19/enj8yDExtgiF8tkMp9l77zz3o9/9mFRCe7g81OIo97f/l/8zdlYLGa1MJBkhZTSZZxRcvXylW63neU5JzwIQsd1ayE02OdHhx99+vEbX3rr6cFTz3Nbrc7o9HxtY61sSmUk5S6Qz92XiqLY2drKsqxpmna77Tq47fcZRRdnZ8M1N1uAFHqxnARBMF3MT09PNzY2hBCfffZZLapev2UNWGsJo6XIs6pBmNU1nJ2NpVZNU3e6Xl1Xjx49juP2/XsPB2vD0dmSY1dUWirku4E20GjTaYXnyzRyQ51DwGOMcdyJS1UPeuTxwbN3P/zBIodBh7/72acd3x8l42Wa5ousvbn7F75y++GzkSV4XilhmUPN9cuXQ8//5MO7WmilwPHc2XxOHIIpaaTgjrtMk6jVlkphSoy1GFFMJAaPMgQInh+cBiHXCiilq/7ainYBYOq6xAQZretaEoKs9YWuRKPbXRIG+Gtf+1KWJ+fnoyiKsqwghCpllVLJUlZ5s9LwM+aIRvo+aURVVQohRCk2RkupVWOiKMqzxHHR+Wmd56WyS21kHLvzRcIYAgBjIG4RbdPhWiAa5XDfaLSy3i5yMRjyw6OkrJLFVDPHuK6jtfrGt1/78P0777778xdfuFmLRV6IWmipyjj2r17dXFunly5vHz2fjS7OxrOjzct6fSe888n8zmennc5OU0XMZa+98dLf/X//i/c+fG9ra0OIGmPAYBgHpNzf+vrXf50bFvDeLz7gIVaCnZ2KG7fWqgIQ1psbA20QJno+nayttYxxR+fTJE0Rcm7c3lBW3Ll78sLtS1k+iaMQDGrFfjtqW2OM0UorhznJQme5aHccRn0pJScUWyiyvB23Lu9fAQO6kZ12GyMBJtre8X23M5vNytI2tQk9//Bw/v4Hn3717a/9i9//5XKZglWXL217HlrbCLkne93IKN2Ku2VZPnl8EkbeyqE09EmRZbvbbc5oXRpKCIAyxmhts6yaTpJ2q8cY8wOep8u6Fq7LtYUo7EStzuHzEcF8Z28Qt+AX73wYhNxxfJcFyEIYkjffuFKXxmqXMWc+LRgJCEGj8ZNut316eppn1uHeyigpz1OtpeuyyeSC8dWChVbIGM/z0kWthe/7+k/+6KElAhMUttpJVsVRDyGshJSNCDwfaei1wqpKWx2XAFKSFmnDOGgkhBCc4FXnZHVS/gJ0+Gv19f9omVyp8BFCn3zy/IssHSHkcLy5MbxyaX84aBVZLmpZ141QANieHoAbqnar/9GHh8LMFjP32gtXW93O8+dnQlZCiNm0iuP49VdeZIQHQbCcN5ev7GuFOu3BlSt7CNjLL9/a2nMo6i+S4+0t//6n5798/99cvzE8fpa22/7h4WEcRK0ovn7l6vvv/bLX612Mz955550Hjx6maXbp0qXZYj6eTZVSQsm1tcHh8VGSJK1Wq9Vqrdz4VrmhlHLQ6zVNc+vWrdPTUwCIosjhQFCwNowJON0+x+Aul8tXX3nJ8zytdb/fj6KIc767u3t+fh61Yi1AKQ0EKlWXEiwihDiTyaIoiqIopFwR7Z0vvfX2YLDW1BKhQNbG4SFGjjVoNpvVUlhoTs+nezt7w1aELVrMZ4XIK1V7HtL59P/ye/+q4wGqxGfT8z6JjmdPNTjD7uDjp8/+9t/8C+USTqZnhTHFvIxbTrpM/sZf++v9fltK2YpDwEghndeFUsr3w7qutbZ5nvth0AgBGAFgbSpCHADT6fjji8wPWFnWq9VwdesBwFpd19IYZa1tGsDE1pXN80QrsrHVvXHj2scffzyf1+vrQ0xQ0xijYSW9juPg4mJBCFPKFHmlFbiuW4sKI+CeizEKAl8pSwhqt9tJkgiVK9XCVBVF0u+t7+z3jIJWh3d7nrVGKq1t0R+0KeUA4Puxks18Ou92+r1+DBaSbJmlELd9a6gTwONHz6Rq2p2gKqBRVks+mzX9Qdfz3SdPRlevbjOOykJfvnzZgB0Ort27f7hc1skskkrxaM78qqqKN97YzvL8C1oSYyTyvZ//+IPdja0vwsQALOZLg8TJcXkxyv1QdzrtshRpmoKlmJjFYnH9xiUliOe6UkpGPcqk47B2j1lsMUPtdvvsLFnNnyTL3BjT6gAj4Wxcr28Cd5CSxA+4lJISUuRme3v74f37BCDLsm67s0xmdY5uvLCDbDyenGGgSpkkKZva3r59+6MPH85HaG2jtLYo88J1aNzmeZZhbA1U2cK5+WKv5V8pq0qqhhGvzJFF5Y0Xdh/cPaRAOZPaqCAIpNTPnh6FYcyY0zRNqxWFoYcQms7GGJGiquu6GZ8pY6CqF/3ullLUD7gQTSMIRkBJg1BFAF2MZo8fPXEcf5nUy6weDNuMk6IsPQ8HQaCUUlo0osIYf+ObvwHIVNXnPhZgsdY6juPlokpm0vHV+TFxXXY+Ged5jjFfLJKtrZ3NzU0hFAB0Wl5TFxQAM0UpM4KXhRqut4KICiE87q2+5wgha+GL4TwMiFgkAMBoTf+0Zx7UVQOO4+zsDufzaW+dEuwUuWGs1RpUaVnOkmRjd9uLUFOlL1wfOI4F452NJjdejf74Fz//v/+XvwyGddRu+jGEPkUoqKVKFiD1Mi3U+3d+WGUpZ/rNt3YQLdJkEUQAgLvrVmTA+HKxwBJbGtV37j+5/sIwz6u1wHs+Sj4+GeWUPnp8by32enHEePxsdu6ETuQ5s4vx2nDLAlnO56/deqHT3Xl2cL/XD1+8/cLF6DRwWkoQREpAjuuzw8NHf+43v3rvzl3Xbc1TqR1/mmTPR+ejyULoEhvb6cmjw5QFnZPT81o0J2dHZZkGQdBtdY8PT4hFBBDmUtFKqEgLtyxra2W+xIssLfM58Ynjxd9746uv7q/tbQXLs9Otdv+j0UFOWcDMsOOV83zNo7NJneZlB2C766uAP1kWthY9ZKkXMOK887Ofyg65tvvSDeveb5bc8x88vZueP3309M5rr3z1yy/x//Tv/52Hjw/jNsuF+NJgvcfx1166rREEcQcqqJV2KV3taq7rtttx0zRVUbZbLVE3TmRE42qbUAjA+IBhdFI7gbNcpitLPCsNRRQhQjmUZaVQZQGMDPPyiZLCGk7w2oNnD20tNobRfJEZiykgK5UVxnMoIg11gOFOux1Z0O0+MOJUGaaIRoFTlJloLKVEIxuEbtOQpsCcL0TtK40MqlvtzvWXURg4ouKtQVWmdHTgxH0jbJGXMmyT4Raky9bTx9nRYdIIGJ+JVoSHPazr5Y0b8f07ddDj95+eZOKMIOCsLBPqhugXP3n41bd3O22hanDDTBvSVCJPSlCRE6i9azZZ2OmIyWIobSaKph/w9bBvKqNt2TTSoiovo0+OP/giTJjjTO1MjWhZAmD95LEZbovFOXi07fiyMaxs8CKZdroCamYrnuVPO61uv3N52HdPj06lSOezNIq9ok463a2dS1eXeR5FISO1H+VaBQoMoYYggygZz3K/5c7zUxLkXoyLXHe6fl3Ehk2zJVdQpAvAhCNmEYU/95d2Op1O3LONtL6z+dU3v7U97HY8J89VHA/KskTGYpQ0ac+SpxgwILAGey2FEUP8vKkJcGUJGN3G3lwJhtXQj5aL2XS47iXLilE/DGU6Ud2YD4fzx/ePX33l5TQrjCnbvXoyEnHUp46mToqgFXaCJAsUtos5zpcmai/9QCdL2NrdwhinCxW1MMKKcTDKswY9+HT8/vvvEhRoDZzsSFNU9Xnkrtm6rpLGaj2fgDIe5TyKOoTVqhHIE9VJ8++8/a2WA5Ms29rvG+VYhimE0talyje2nbbXKcb+7g1zkbIVmmQ1b/f5MXnFlIbPXaLQn9Yb+p7q9f2D5w929zZcj1HKk2UhGt1qh6cniySd9rodi4qToxJjGA6HhCAA3DQSwBBmj44eDIdDDK0ir5TS3DEE2t0+GV8kfoiqwlRNiZD97O590WjG3fHFUiiVpmkY+dbaPE+1FKEfbG6sX5ydvfbKCweHs3abzeYXns/2Ll0BxN58803Pwe+9997Xf+ObOzs7z58/l1Kura3duH7z937v96bTKWOEc3p+fn52cQ4AlHKECLKmrutWJ7j1yu2z6bkfuATDYjI+PT07OHi6tt6rK6EV9PodC/DB+5/G7dZsNovjeKWRLKscwMxmE8dxAMBoqCvRNA3GK86FSZJMSi2Ewhi2trbAqNPT0/3dXWGqxaKZz+eu521ub+/t3Vgm4vr16524levaUEjn02E3EKrZ3N2jlikjuUOzVL/28kvf+tpXJyfe9IYlAAEAAElEQVRVHEZ/+Mfft5yvr63Fw+H1q9dOTpNMlEUu99aH3/n2t/M044whi6qiLtLCKisqyTlV6nOLhTD0McZB4Ekl8qT5/ABiZLvdiiI0ny+MBkC8rButNeWAsCIElQVQGllrpQTu0CCIoii0IIUQcQu5vq+sSdOiLMu6tqBN6LtNVa9U/pPJhetxAGMtEEYQMphAli2Xy7nnOWWp9/aGhJA0TaU03CEWhOOye3enVjuDwYA7iLt2a6sf+JHRdDxaUgqu6+R57rq+tsn4YuHweP+Ka4w1MtaoKDIM1tnacUWjvv61b84nxijgrgZQdS3arVhJvL1zdTab3bp18/DoaV7UR8dnSiljYDDslWXW6XkHz8d5Vs9m82vXrrQ7LQ3aWms0cOZ0+qrSvxaiDcMBDUlWVI7jIMYe3j/ttIecQVaMjQFrtayNEGYya4RWBkFVK88LPvjwM2v13t6O6/qNqLSW8/lyPB7/6le/KjK6tt5J0qLfuZwlNgipNjWBzopAtbUxaLdDhJDnc88nruvmeW4BB/1TZCM/YHVVtqP4a9+42o7Xfv+f/NgPwfXg+dHRf/1f/EEcDV548UoQBFVZU0qVNAjIbLZoJHDOGQNjDBhY32ylSx2EXrcd52lBqBUVVFUVxjbg3a3dzoPPLghVFoSsHYR02NLnoyxfwmDY7Q2d6bja2NjCtNISUwJagTLlxfnk4OBxf4AtWG1IFLVcx715Y3OxmCfLbOVeu6JSSSmbRsxnyyuXtpUuKQWplw6jaZoOhqFUxHGcVtv/xje+3O4ET58k/UG3rpTv+1aQEvTl23vfevsbpICsWeR6CZXXapPllF29vsG5NzrOy6rq9Nyq/LUL7opW8+uTMkL/Y+8oAHB8u74WbW4P7t/7pN0OKeKTsUDgSFttbu0fHh6EQbeopmUGnLv37t3bXF9jhGDLT0/Ot7bDIEJRFN/97MBowjnHxN755PjSpUtZ3liUMxobZIBAUVV+0E6LMivUxvawkaK/1p/MZ4BASl2W9fbm0OXO1nobY+S67pOn9w+OnjHutdvD5XJ+/fr2qjdkrT05KYu6cjzv8PAwSwvHc2pZu74jlJBKKWPruvns0/tgTBAEBqP/7P/6n1++fu1kNHr7y2+6GCdZceX65S+//erZeHI2Wty4tr+z23n2+KLd6isJUdQyCFbvxR1W1RUi2FrQGqTU1liMAQBLAYtl0esNtLbtdtvz3OVyEYfh9va2tkooWCy0QU3c2eiuDZSCt9589ebtF7/7l3/32fmFS6Dt+4hRaVHodpjvMEbBQJ1n/7O/8TeHIYDUuZa7t2/FXpSMzowUrgelrgMHvvPma512t9PuceYWaaa1VlJXRbPyQKSUIvw5hkPIeiWq58yjxF1tPFWdUYqtBSU0IGotIZw0ShtkMCXGgBTGcRwEYK0tylooqbUgBPkBK6uy1YoZw2Ds1mbv6pUrg17XajDGeA5Os6RpKsdxuIOms4kfMM7JYNixoLQRlMPW1kaSJ0AAUzC2CSPmuhwsPHt6yhiLOoxzfXY+BYDxRXJxVnU6vapOhFA7lzrzKbQ7vsUJxVxUUKsMAQPjjs+TzrAu8uZPfvDTMmMObwHWgCFdNr3e4N33n09mGXX40clxI5QBLhTJigox8Dxve2cdcHXzZlxXmmC2vjFsRIawraoqTQuM6f7l1icPT35ddy8VjzzfA9k0BCuR4ZODmccj17PGAOecUpQm+f7esKgqbaCu9Hgy7/VchEHIuq7k9s46JhYswxjv7u4ybp89mXg8tiClKsvCIuthYgEAW0BYK914nuMHLGpR3/dPTxdbl2mvHx48f3T9+lXfayXZ4rVXb//hv3qv3fWCmLVbvSjyWn1yMT37R//9e1oqMERK6fuRAZZl2YpNhzXUZQUG+kP/6CB3GBsO+wCUYk2xp6UJYisa5Hns5KBoxX6aZoDM/tX18WQyn+L+oP/8+JONjcH5aZks806fzKbl5cuXjaYYa0Kc7Z3119+66Xvu6HQ6nSbW4tOTqR/ws7MLIVUYxkIIzjkAYEzKRhrd+B53uNPpYqvBSKtQcTGvEEKXr2z//Gfvjs5OA48WRcqoL0TdNHoh5//l3/97EWv/9d/97fNJHrZDaoWxDRiPu/roWTo6nWKky0JI9bnV7WrR+8Ir6vPVcKW7RuTXJ+WdnTUAkmdl3PKruhCNoQTyPF8s5oQihPn5ZKQVGAOUuI7D9vZ6AKXV/Py4GQzW4xYvitz3Qsp9TOR8XhqDT09mUeQ7DreaM4cLJQ1gi5w01UWhMbFSat/3B/21my/sag0UEYwsaFNVC8b9s7Nsfa1zdPT8D77/x6cX0zRNl4uzfn+IEL59+yWMYT5bJEnGXKc/HGRlVtaVFwZ5XbW6raqqEJBOp7uYzTHGBmxjbSWbo+MpaGVE43rB6OzkT378A8dxtrcutdsxQE0JXi4yzt0sLy8uJsoavLJzMSClNBakAIYdx+HIAiHMACzmRSNNLcAg7TiMOjyMo0/v3GEs9AKYXujZcvF8dLaxu5bnsLvT29+//oOf/8Ig4IiIvKyV/fTuk2995c/Nlwur9KCHDp4+fvn1N77x2uvL6ex4ct4aDLjBh88Ovvubvxl5TlWLXuT8xksv5mXRHfbLuqoUaGOlsVUtEGZfbLmUYiFqrSWlmFIMllZV43gud1hZ5gAm8N0szbmHLTJSWdEAZ1Ge1dqC59OqqJQE7jm93gAjushmABAGPIy9xWJhrZVSz+dzY0y33bEaOGHGGMdhUjUWtOd5dQ1xxzVWhKHvurQoy3bbmy9nSZpSwikF7iHHQwihYb/77Ol5lpftThDGiGCoylI0FltPVjIOvcW8cDw9HMaAFHeVlFJKcFxiDXY91tTWDSTGpN0Jj47mUqg4dsBAutSEoY1t4gWuNGVV68XMlKWpawwA3R7yvdgYQ6jev7SdZ3W7193YGJRNkaap64Ttbj9JisGw+8sPLr4Ik5DitKgZ7u5faTu+xtRZzps0Kfd2Nnvt1nxaE4Rns5Q5btwOi6rM0tooe/nSbpaVVVVYQwiBotRKop2dHQAg1Fyc1y/cfPnk5CgvYDTKptO5EGW2zC5fvtwfdOazi6qUlMLWdn88npa1CVuCkAEm+v1379y+vfX1r9/+8L0POedrG2FdeIRLo9nV28gAMtahDH/rm9/1ff/Bw7N+bw0AMCJaw+7Olu+xTpf7HppdaIQwZ5gAwkhTxBjlgKTn89Fx3u1FRuvlDLoDTKg5H5GNjZuIpr2Bx0m4mKrnz482tsLpZNFutxFwSnHgxxvbgyh2EAIpgFC6mJdlITzPmUxnGFPHceq6wRgQQoy72gBnjDE2mzba5rLWa/1NIatf/nLc6bbGk+Omgdsv7TY1uB4n2HE9ihzaqOLD90bv/PLj/WvBjZ2d0UO5cy3SWvsBMbY5OdSuh7b2Y4xaBudf0Au/SAE/Xw2/yAj/dCOlrvSTRyfJrOx2u/PpMgzbRoGQpVS20/ekwIQpWbvDDYQxaRrx8ad3jVGtqEtgcHqYAFCpqvXtbp5Vjk+K1DFIZ4kpq9J1gqoSBigiLMuKuhKdPhS5WCwvtLbGmMPnJ7PlmGDk+jGAGQ7XK5HF3djzYTmbb25unk3HYac1no4nk4uyrKfTuRBqe6s9Huec89/4xtdPz0ZZllGHTueTn/78J0EUGrAG4a3NneGwDytCj7U//fkvopgCYGOM0OL+/aedXleIentr97M7n/gB1cqcn4/9IMyyoiqbqqqMMdx1rAVpJKVENMC563melAAAhLCqBNGY9c3e4ydPJKiLyXi6TJVGJ6PJ2npAOTx5WGpWvPPhx67P6qb4b//hP/rn/8MfXL5y5ca1W/32eq81/PiTE4P5m2+85XCe5xZRPLp7f6fTI4BSWf/knV/sDtaSMj06PkYNNJW6vrO/1e3RwHt88Gy8mDkBLUSdVaUwVmlYUf5XIpvV1J3nu4SgFQPOGrAAUkulbbsddbp+XuTKaEa9wG81FRhjO21ANHvllRc5dyaTC0CUMrdpSmsRd7DneY2sMUONEBjj0Wh0PDoaDEOMcV2DH3DPc7JCSm03Nj3HJYSwJElc141aHuPk+Pik3W4bsJhCHIdlWQJgISRYqGtRNyJueb4P1iotlRCaceT5rM4hzeXeVV9pYaXLeL25FRQZMA+vbwYWpMMjzt2tnc6rb6wVZWE0I5SWOTSi6K+1L12+PJ2PmwqJiotKVbkUNVy5cvnRw4Mnj5+3WvHZ6GLFngCCEEKddi8M4zwv4zhUOrtx69IXYUIJuJwLIXzf3LrVNzrH1rVG7+9do8Tz3QghBBZfnE+aptLaRH53ejat0jkANE2DkZNm036fTScl5/To6Bkj4c6eM5k9PzvVW5utt7+2tbvfdngMVjdVPZ2cAWBGw7quN7d6o9HZCy9u+u7A8xyK+vOZjDrN4dP05OT09beuzqfN6VG2e8VDPB2ubf7i3QM/BGPM3/tv//HW9sbu7ubjJ889j6VzffPqnst8o2Xc5oskVZJIBVmRr9YEKaUBS6jXGYSP7yc3bg2WiyJuweWrGx98cLiY2jAmzLMnxxPOXYCVjZLLOJ5Mz13HFUKlSUkIevjoCaKGMtCKSAUbW+sAUDbCCyKMsQWw2iillDJ1Dek8D4Kw0xkwipeTZb5MskQBwN7+ZlUXgMB1qVLq/r3TMAwZI9jlzEK/673z2dH3f/rT3/7Gd7gyEmurayEL7iDPw5Q4/TU+GHarSn2hJlypDj//5U+7oSj161mUXqd7fjYL/DjLFnHLbcVtY2AxS/ygO0vOha6tQeNx9Y1vvbFYnnc67b/217769td2pKpms/LRg0mvu06w8/jJPQtaSlmkBCykSba5sfnoyZHjuot5zrm7Uv8Nh6EStt8LjTRS6CRtyrIuKzsazYnj7l25pqwIfbKz2UeWjsdTx+N/+3/1n4wmZ5ev3pBCP3zw2PeCTq9LGJyejRaLxZUrVyazedRqd4b9oq4upheji/PPfeOU1Fr7jvv86aTKK0bd/nDdcf2iTp8fXQz661eu7xRVjoD4vtvphJXQnudZa1utVlU1WtswiBDAakEBszLkZoSClA0grATUjSKYnU+Wr772xixLz6eLWVbNxgUYeu26f3yswq77iw/u9jadp49P/uQXH79w45ZVZm1zJy1r340Igl989IHnhFpYY+D6rVvPnx186eVXPYzzuqqqymM8w/Kf/9G/xhIVOXz969/uDoaLZPneh++VTUkI1mBWpiKUcsYYAMRxbKxinNZ1yRghFHm+QymuRVM1DSGUEEBWXrm0pQ24Di7KIsuSLM8QQBSxjY3Ok6ePq6xhjAR+ByGmjTQCer3O+fncdd2V0+HW9nbdNCenWdxt1ZVox3jVjLYWkqRyfE9ZxahnDCaExVGbcbeoIGq1LWA35FLKsgDOXG0E41gK8+xgMhj0tAGpNaFWS9nttfI8kzUXQhgjBmteUdRKEC/AmBYIXAOVsfD8abK23j05PczLcbvjigZ1+1wItUiTO/dmH/7qwTItjo8KhN3A45zQ/oAN+/HBwaHRxBgzmS43tjdns0maLfO8LGspNYzHU2UFkCxPZl+EydHZOQfrhsb1mLYZ86GuNMbQa290O50iLRCyYLHFqGi0w5iR9vreVQ/JVstNkhojjzLUH8Rg4ej4+cbmmjb19tbe6cnE80HIbD6fc86zfO642HG553kUB9OLOopaL758I8/KwMez2cwqe+eTo29+dx/BIIw87sTPnhxfnC/DlpRaX76+dXRYaAuDjehiPFEahmtrhLq93iCMXErA2ubo8KysoN1xZ7PGgJ5O82SZOw4zBggnSZFH0eD0dFY32ItV3Gq99ub+44dH6QIcnzw6+Cjwe+cnkvKm3fEQQnmqB8MQUK1MBsCSJE2SRNSEUgjb6PysIZiFMTOWCGnDMK7rmnO8avIqbZSGZVq02t0kSZU0t67ffPGF/bPDwvH5+cXx5lbvt3/31cUiCUI+6Mez+UWn267KErTTGTheH37+y4vHDz795jf2VR1WdcYwF43e2OHHR3kQgYb551yG/z+uK0aArIUV10v/qTnlqEV7vejV11565eWbCOmf//TDKGxzTlrRIIp9oeZZBlHsjscXQs9arR6nUVnMhVpwhoOAJMtiMc8J5ggrJdh8mlNG/Ba9f2+0v79fVdViVq4aOto07Y6HMe50YyktAFUSlAJtoG7MH/2bX/7jf/IveeAuklHge5d2r/hedHR29D//239rNL5w3Naf//Pfe/Dg0ebmZrfboxQuzieuH6Z5bgEVZV1V1dbOtrYmCHzX5WmaKqsYI2DQrZt7o+NiPM4fPnkWdvuL5VQIurF1aTCMj08OJpNFnqYW1Z5HAKAoCkyZVlZKrZQBAIStMYYQsEr7gdvpOKv0ECykaW4xURqSMn9+cmop19hptdj0IomjgLDm5+8cX3phW5L840+e9nY8VVd1mjthWEmBlYpDeP/uBz/78TuMOV5Ejs5HaZ69cuvFyAuSIp/MZ8Shf/zRO+eVBcwJRf/6j/6kAlymaVPkoioZQT5z2mFELeKYIoQAjOc5q81wZamNMUhVaqsopQgYpXwwaBfl0vOQUWAN/upXXn/ppb29veib33j1a1/7ytNHM9/14riDEJpOFlUpHcc5OTmbTaauC1lWa60bafOqLBvrt2CWLrWyrVZstFpJQ5SEuhLW2qpUDveVtMtlihDSGkSjMMaUoaxowAJB1HWIscYATRaKYtZue2EEG1utdifUprLWZonNsoy5nusqSsHqQJty93IwmVRSoNsvbWRLcD1UFvAX/8Jf2d3dy9OmPWgQMsmyRAa+/0cfjS+SqI3LKnUdHQX0hRvbSqWhH4RhmGUZY67vu2VVIYQW8+WdTy+SZdHrdapa5FlZZukXYdIQY4oawIyOZ/1e62vfGGgJW9vej3/0y/HkOIzYSslRluXmekAJOnh0+Je+9zs3r1zS2jIG1hAAM1/MfC9Qqg4jj7t2MasXs8b1AVOjJOIsQlhipAnCvhOA5s8ezxfTbDy9MIBmk/lw6FvD9y71t7b7//Kf/LJq6r0rG2vDIaVwcnyxvb3ne620SB0fZvOEOkxJuJie37v/7OrV6wh0N3YcYqpKxi0YbERlQZhrl2lTCwXUGIsQxojAMi0/+2xOHJUm2e7eRlGm86nZ21+zLGEOT+bQ7/c5p+0uq2uZLVHcgbX1LqYSgSuEmUxmLu/lRba+GbkO0lp3+06aFqKRjuOsLG2ttYRSAEAElssUKAjdaA37O+vbW8HFac1cvLHZE6I5OnkQBBFzlOe25ouq221f31hfZqImdm9/2Ik7H92570RkGPWR9SnTWEeDtbCuoN3xqlowGq4WwT/tLm+MwRasMbDiwK7yiNV1dvFMm2J9o/vo8Z12J8IYOPObWj969DgIwqqZFina3Brs7e0FEZRZfX6yWCbF2jDESFy+vOt5HkH++tpeUS6bGjNOtWKDNU827nR23uv1XDdklAuhyizd3emHnl/mS4ey5SIpS+j1QoSw64SOB9pCI0W3Ex4fHsvaEsI2t9eeHDy4fvOGaEyWZTs7Ox9++GEYhtZCkqWz2WwymTSNTNP05PTMC3whhFCyLMsw8uM4XtVNKWab6/HVq7u/fP/BZ/cfDNb6FAf37z1aJtOiyMOg5TjO9uZwBcouSyGE8DwPE9LUknOmLUipVnxZ1+W9XhcsAIAfB88PCs/zwpZzfHrW6w/dsHUxS6WQfkCU4DdeDH7yk/NSHW3tRgcHpxs7a3HkN0VxPhlXqnY5IRgs16dHFTa0bvSzo+N2r7ucLxzGMMYPnzw0xP7i3ifWh+k8/dLbv/H+R48+enR/f2un12qn83k7il1KQsfzuQNKA4BSqizLlWYgioIVkwEhrY1BCNW1WMyTXq9HKDAOsd8rcnU6el6L6b/zV79Ti8Uvf/7LYTdSSjS1XNFeu51BvzdczDNj4OrVK62WDxj7PusPB4QB5ayoCsehq7q44zhaG993MCar4ROwFCGyXBRaGwTAOXcct6wbxhywVEotZOW6wLkTBINnzw7ytLr94hXGwYLwPSqloThKE2BuhrChKMCkefnVa7KheZ4dH87qJvO9aJleBF587+7T9bVNpZQbaO4AAKa4XeVekhjKydpGFLh2a72TZxNjyvPzXDaiqm2v1xtPzgdr3bqui1L0++752STLsjfffLHb3m95/IswufriZrUUjHc58x3HE2oRR+3XXr/54P7zwMfGNL1+Z3d3N8/BGBNFkZZw/87dSzubRdFwzieTOaGIUqhrcfXalbLMrfakzrv9QNZI1iSMyPnFoef0jTFhGCJEFvMMWXz79ksAIBrFGOq2ukLMr90c/Ot/8QFwePywVDDqrVkwwehZx+JZks7TTCQT6gaOAUs5llq//vrLjx49qopse3NLqwYsoQ40Il3MauIAxZ7nBdpqSmlZlt2u//DR0zoPox5UtXF88uzJnHO0dzXe2e2fnYiyUoDL0emUOcZaMMohTHGHdHueBdI0sL9/+eDpmecxqXI/aHHO/YAVeaOUwoimaYYsSNUYY7W2GCNl9CJZbO+tS6EvxidPnnxMMCdUXYxH/X4/jGldSc8nT58eb+/44/G5ShYKA/H6ceh7Tn00ru8/mnzp5X2Ge7PlMg42HRZ2ez7jyGXDNM1+fTr+M37KoAhwSimARn8KhT3obXPa+of/4J9vbfbqlCsJYS83xkOlsrKoSjermm9+9+XxmaC4nRZ1hcTVF3YCry9M8+Tg/GJxLLWqikIrHLUAkLKqboW8Ewd33s8Jn0QewxY7DNJEeqHL/PrsXAF1fK9NKQippLAWL4gNEalU1QCQdjfmcfH8+VgUweZaHzR3vOjf/PCPg653no2eHBwzh1nVSsv07tMnSkiHdIusburc92KtpbLlYtGk84oQoq0aT2aNyH/3t9/++uvrKIEnT9InRw/e/eBjY4ZRu4XcurbNsszdjrvMUlmDkTip6mm2xBgThRwESsCVK9eYR8MYb26FUQC6kkYJBZDNCpS7mZxube7L+cmwTRlniOlsNr12s2WwLKes6w5mqF6LULDm33lQvnv3/YjxmcwJAdciyqFhChm4POyzVkv6rZ2tq1CZ5+fH4yJJLspe2cpdf2848i383g8+xW4cddcRF5NlylutAk0abY3GlOIsq2aTnJFQCuW6LuOkqkuhOSK0LEQcY0qpFyplyNlkvLGXGommF/rGzdf/0T/68c9/djieirpxnjyukqKoG8jrxSyZEhJ7EWt1e06cnR3K8SGuS/npJ/c8r68FOEDd0KsV8ACVTW0s4i5ZzPXpKBuuRUKIi4vJ9m4nSWecg9aAsPLd1nJRM5djSrQmRlMCiGCFWLcoCHNELRJrEQJX1Ghtv5keI9EAZjruuG9+6cUiWzSF0Tl95ZWd4+cFOE3QYnUBER9owaQ21kCn225qE7eX6+tSFTDsxb2empX62fi0M9w9OarW1h1lawugDK5F2ajs4LkgLl3m9WAtdph5eu+prtav3Rp8ESb91tpsxoSZ+201Ors4fOR+43u7f/DHH9EYlF5r95Hf8hfZ02Grx1ycmrQh7uHkCZhACaCIyUYUy2Bz1zVWcuYYVSudIUTCjtSaYQLWGASGERW4a+2wA+Qo8tsGmf3rflI+F0oTl0pjuOv87Cf3lylEXU/Y6eOPffC5Qf6lG/TRvefHx7OmcBhTHFciU70OASWVnpX1rKoNC2xSFJI2rWhY5sWDj1Sngx3PFdJYbQBAlsoB1ArAStbpeHHLffTo0f6VIaYWa+QTxhCATpH1p5OCM1dKqOXEyCGCdqUqAAkI3vnhgReVGBkQQ85rwFrUkYSpNWy2HCkDdSNF41mbKynavvv8jNz/dD7sIGZag73tJRRpgnd7ts4cL4C6ZkGsEQ4sEIsMEBjbBimfqNxx7CKtNrv9R58ld5882Rh2lmdQ1ePphdm9EVqCF8uj2EOdngugMKbGfF4r/NziZ5U+YAxK/drwwWj6ymvXNjdbybIuyoXjkNAfzGbV5taAMa/V9ru9+J/+03/14UfviUaFEReiVkotlwtrwQ/42toaxvjs7KxuzNrg6l/9d79z+7V2Xk6u39qYJXkr3m+EPr8Y7e/eaJpGN4CJNrpRKo0jhgC0ajrdSAjVNGUr9oSynueNxyljLI7Du/ee+GF0Mjr+yU9+1NTi7p2Hg8GgaRrX5XmxxJg6Dm+3Y62lEGI2myGECCGO4wCYVWJICCmqnHHiuCxuha+9dklWdVPZBw+OHz9+SqjTbvVUY9phHHOHMSoNVLXwmedaRgkCbAkhWkMURZ1OZwUdohQIgaaWjIEQ6nycFEURhqFWyOGcYqYkFLmI47g/dOpanJ3OGyGCIHr0+GkY+qPRSAtd1zWlyFqLfVSWZbfDPrx/5yJbEkJeeenlZanyJH3v2ROm9awo2gxt+P3e0P3BD74/TpcGo0YARdRIhRABMMzhUkrP9Y2BlZPq6lAwHA4RVoCUkFZbJYSqG4uAYuRw5luwvu++//778/lyMIgJhqIofN+3FhFEtZCc4OV8URT582dHYRgirDwfhzEZrAVZMZVKSqPSNFsx3wCAENKISmmBEEwmM88L8qx0XX+1JXNOtZGUUsZWKDBlQWutjDEYI0J1lunD5+c7W/vGGIyoUjA6KQiHIlHWwsZml2D/4YOL7Z3BZKzORrOvfPW18Zk4epaHEdnajapSMgpGBtzLKeFlBm+9fXPnMpuOy0f3q6b02q0oapFaLLe21gkhrVYAqFHCGAOj09PJZBJFnmhUXZu1tfUPP3pnORe/DhMZCy21Yty1onZffe2FLF9Yg4ocmJf1e1tFWVnDszQZtAftoE0pPHpybIizsRnmWTEYdps6x5ZFQZAts1Y8kFIba/NclKXodDoIoZUiCpB8/ORe6G2FMfg+DAaDOx+PrZUu6flRdTp6dnSQR61Q6sp3+Xg8noyab373epGK8Qj2LpM0baJgnbu60w3yQmqtq6ra2NgwgA4On1eNAmSVTZI5HW6pg4fSDZS1tt8fAE+R6RgoVNkjzmJzIz47KR3Co7DbNOC67mw229hgGxvrWn8uz4pbsJgXVqvRaIQAAEQYBP2+hy1s7fT90MzmdRiGz4/uY/AY9eOwoyRQysqiZswpCgjjVpZlUjaEkLox48no7ETHLRrH7aqum1quSn5NIzDGWtlFsswm2PGLyfQiCHqYwdaVYX+H/PS9J9df6N+4tnP/owV2jzaGgywBANzrdoWoLRitP/9Xn+eGAGBWKLs/Y5ECZSWAlkHo1zUOI4d7tMiFH0N32AZwhakQlmUB3Z6LgNdNskymvh/GrXAwCFyPWENWvi1VnX7y0b1HTx6+/ubtN956pdUlr395MF9Ue/s7hICSVKlmOq5eefnmsNNzmUGo2dxgorFKlmDAWGMsAeRYbXwf5vMloebatbVHD591Oi2hm9deewsjB2OYz+cIG6VsnpWc+XErQhgYI3Vdc84xxlrr+WKm9eceL8YqP/TKMj89H1VN+a3feH1nowMa6kYeHZ+OTqcB961qfICmKjSGrGqYYde2L1VFpoiuKt3puOfno+vXrxKyMj6PVnupMbBM8sEaSdLF9vZmkuRBEFSV6HRih0fWoMs3eoEf1SWmGBDm1pIsK1eqQIQQ59wYK5Ft8pIifJ7l/8MP/03UirNlZjBQjP7Ve+9QY5eleuPSxm+9/q1222EEPn74OBd11YDVRhQVSKTBYM61RoQwAKy1ZcwRQmhlAz/c3FoHBFKC7/vaAqPuYG1YlRIQX9voTWYX01mNCJR1FcZRVddaatkYiqgUghNstQhdD1koisr1qIEiCPHepeFgGAQhxHGgNWilwCKtrOOylf8UY1DXdjKeC6FFozY21iyAUnI47J+fz0QFSgljDOeUMmStkapBWDAOWWqLXDHKrUXWYFXhIGRgfLBQVPOf/+y9tY3OxfgYEVCCZfmcYFosSFku+0NnPpla4Bhx1yOu6/uB++MfffrCi1u+F1LEsqXdXFsXMuEOWNCu63KKl8vl1uaOw7jrcmShSCvH8RjDWuuoQ46O5l+EyfOD2be/e+vB/SwKYpf5QqTv/OTB3u6GbIAxxSnJ87Iure+i42enMpda19N5ff/5aRzHcYtk6bTd9o2kLqeEIjCIMYdSJiVEUbBcpNYgz3GttePJ3FixPrihdPHCrX1K+fmxDSOXsrIVXkryrNUHWVIMgLmQCj998vzg8cHxcbKxtrGx3gaJG3WhJe112p4Dge9xztutTlGqRljKGKHGcbGonJ0rYDRnjDmOXc6WnhsTVzDWUmbxwu1u3GYnT7Nbt3afPj4JfKK1XtlDStUIIaaTJWjY210/H8mqqlzOBt0OYJXnZRDBm2++/uYbt5krOp14Ol0oK6Tio5Pk+cEJJW6e1Zy7eVZFIUHA8ly7Hg+CYDZNRxfPZxPYv9L13Hh9fd1izB1qLLKAlZZA+Ao6vLnZ7bT7Z9OD26/uZ5XYv7k1njc//tEvv/3dV84vMkahqou6qGN/2G63ASyA+bdZ4WoIFTBCYAEIZkr9GYZNq9s5PDzmLlssFrNFGcdxVS9FA5RSJdytrW3PpxSTPK+r0vT6baUrRp2mKbRWQYSzrMzznHPaboebu/3R6ex/+P2f33twkObJ+kb/ra+85AT41otXTo5HxqrnT8/bcXT71mvIaIxNFHrYrPrtEASebPDx4cQY43uOy7247Vy9tt/UBhP05bdff/ToUZ4JKWW/3w+CgHK4e+ehlJpzyhjhnGNEVwUCIevFYiG1lUZrsIQQzmlWpX7obe5uVNUkDr2//jd+1/UoILOcF01d6yanSlCMgpZ7MZm9eOuWR5ioGx58LkWeLeZlXUWteLlMu52IUvA8X9dAsDNca5dV1WrH1hBCrKgVtkw0uiibwbozns7GF8naeuwEkdQWYYQxjqJINWJ9uCGEagwMWh0kddDynpwcffrxJ8wiTgFzdufx01RIiuA/+N5vYeu+dvNKVumf/uqDaTYnFMBq1QjVSEwMYGQNbmpNCZvP591utyprKWWel+PRZK0fA4K8KjnHRVlX9TJseU0FccvVBhy+kqfqIq9WFh/YgtEWKWuUcChxKN/d3D85Pu/22wgrTIyUIoxZJUA0Kgq40RZZLKX0XBZGHCHreS5YODpMhv3te/cuHjy42NzsWJBJkkQR9yPsuq6UjdYaY0QoslZj2qxv+AS75+MLz+fGKCW178SylufnUwR8uch8nxtjPbd1/cbGk6fJ+fn00v56I9R8am/cuFHWcwTU8YXrtKWsiqoWFdQFT/MJdxDYujeI8kyenEAYrDuO4zgO0vz502OrbZYsBoNBHMWcO1Vp8jyP2/jqletfhMnFxUWn23I5D7wBpvVndx42JURtc+NmXwqgzKZpKqW+9eJlDGjQaW9serUy//hf//B8tPD9UEqzsTEoU6lV1e+FStUWsJTaGlBKSakAoK6FatQ3v/HNN954azQ6uzhPNrdb8/l0Pm8Gg0HgkyzLGB0yxoZbliJYTODyjajX6T56MPqt79xu6mWyWDos8EO7s3Xz4uz05gtXjTGMOcenI63BIJBGuw6Rsinrue91e5v28Mk88HAUhHkOaVpQXrV74c2XOp/8sgAEG4N2KxxYbVyHnY2qMGxlWcI5N5psbOzsX9r2HZpmyxdeeIESj2DrMPfB3TEg+cGH748vlo7DlYGm4lrROKZ+4GojAQHnFLBFCGVZ5rkQRQHlbJFUQou68ta2A8rdVreVJqXUjZQaAGcFNLUijBWVwcjxfW8xXUQhDwP76a+evfby1g//6Gznkvsb37h28hjPxllTpxh5q5QQAVrZKP/buiHG5vOfn7vifnGbpRajs2T30nZvrd2UDACYW1NCq8p88OH9qoJOP7LarUrAyNFaWyspceq6TpImCGlZCNEYhOwH7x27riGEJBOYz9N2u3v/3mmapsZWtcquXb9869ZNqcyPfvjurz78bG1jf9Ws0ALKzPo86LTiurIOj87Px+1O5Dq+ECllqKng/r1HrsuXyWQyqaq6UAowxq02nkxSQsjKs2kljkjTgjEHAJqmEsJQ4mJMMcOT2fyTTz/NyqwRgjDx6PFoc2vt7a++9pW3X2u1vCtXruxf2trb2a3KklJsDKRpurWzXdd1klSc07JsjFHj8VhJk2WZ0nV/wKWomEfTpInb/uPHT7d3d/NMOw4KPEowt9ZmaX16drRcWKU0JY62dr5cuC43SlKKGWNBEIDFpgErlVGaMTaeT3/53ruddttWMM8z3ahJCa9fv7oR+JNl9t0vvbW9wT+9+2CeLuO4RTEiyBgNjouVUkZTJS1jTprmjuNpretaZFk2Ps+sRVqCUgYIWGtbHU6ZPhvNHRf7AQAQrQEhpLWpKhXGoeu6opauw0VTgVHnZ0vfjcvKcocGged60WQy1VZxDkUuKMXGGgAMxlKKXZcjAIfx9fWh0XB+Pvn2t16/dDlqROX5znQ6R4g4jrMCxBFCVogaKSUnJIrdFUKKcGNBtzpQlEuw7PKVjbowVrsG5Z7nnZ1nv/lbbwcBffQgX9v0NrfoWnftJz98bzo7xRikLpIkYRxHEdy49uKPvv8oTeH2q62rtxig6uKsKJbw+OGZMcZxvPPTfGNtPfKDxWx26+Y1JeX4bOww1O/3GLdp/mtflG6fnx5Pw6CdLOo8z7e3W67HRmfnt1+8trW99uDBEcGOkOZiOmoq0VRpv+chakoF87mYjJNWHFst6hKtb/S8APJiiRDJsxJRyNLmxo0bQRCt6i3I+u/98pO6WaYLtH957emzx2ubsLV5qanyKG6dnF5o0FqVnuPcuLFbiuL+nfHVq+2XXrzeDltK1VoV7bb39OlT6rDLl/eVUhjj8XjcHbQwRqsVgRJjjE2XyvElRk5Tg5SJ6xCM2DIRw7XW3TtPJ5PF/h7vtgdGYz9w0zTtdjzfi4uyZoxUjTw+Ov3d3/mLjVS+Fx6fHGoto5bLHPB8nJez5aIIvC6hmgB7/iTTCr/62u3hWrsuNWXgelQbo4wq66rd4YyxqiqUBkJ90TiI1Jy7abZcLLOqLijjxiLOoW7sisRaNVXcVT7vJefVzrr8z//T//XDD08RrP3x99//K3/99enEaOEriaWUlIG11lizmjpZPeIvpIZSK4T/jIPow4dPW62BH0aiMWHUr0WltBz01959/1ej06zI7GAYF7mwGhijYKyQglHf9bgxwDiUheScc87rFByHSVkM1oJXX77R1ObwaRp6a9yhUirElAb00ivXXn/jDaGaR4+fMeaUZb21uXf5UjdLi/nsoqnL+TylCKIoyPOi14+yfDGdSIvg+PTkO9/9iu8DgDk5PtPK9vqx73NCECDjum6RS61tsswIoSuf7+WiklJrreOo7QaOUI0X+AZB2ImyAk6PTxhW7733Yb/bvhhPHxw8ycvqu9/+Ti+OKIGTi2OvFSyWouUHolGuSwADc3jViLIsGSWtlmOsBQAp8HK5BMtc19USPB9vba5xwo2VeSaeH5Tr68HmdjQZp4+fPnFC1yCjdLO9uY4QUkoD4HYAGjRhJAyCoiiWTb2zu99zWdVoWzZ5BS/tb+3s7ymk33r9je+8/fZyKZfJ1OHeauSRYuY5SDR1XUnOXYwpWJwkied5ZVkaDZ4T1nUNhnHH0dZYjLZ2B3mRZKmum8z3eVNrzplSmjFHKQhD3/EdKWWr1WIYI4TSJWRps7U1LIqEOZQzr2mAUr652a+FFbJe1aMpJQhZBJoQbIz1PAcAlovq0aPHVVUxRsqy9H1/NqsWi0oIBYAJIasGtFLaGrdsSiAYMYMxEo16+yu3EIaqEC/demV9bUcIZYxBQDDiP/jxH7Q7wcaGm2az7Z3Idfg/+cd/aAwo3Ticccd0ev58Au0e5qSHAW69PLz5woaBanyRKsUfPjolFBVFVqTad4PR6aTVDvb2d/K80sr6vt8fdK0hafZrz7y4TZ48Pt7e7fX7w/lMaNMM1vGlvRsHzx8ImaQLaHJJHcjLJuyw4VorDNwwxp7vCQmAsO/7FuRsXA2H/bLK6rrmrrdIc/x5SR9TSgmQteEGgBmdzowVdV2vb/TPzs6+/Z2v/OKdXzGKRYMRNWlu5udqf2ewyI6mE/H2Vy7VuWJUvPrqfpXAcD00tj4bVW9+6Y1PPvu0Fk2SZk0js2WCMWhtrLUIg8NDQFVVwmDdOTsqWzFt6nmeyY3hulKG0+F3fmfg8sFinnFGCAEh6jytfvXh3cGgPU+n7Xb38Pj44aPnb33plbysFst0c7fbNA33UVmak9MRJsz3omS5UMIawWRlPRdNx6euB9dv7CjdSAm+7wkhACnGnEYKbWE6rRh3GynKOlskS0Y9iwwhrMjrVoeKRgNGfstOZ3W6bOqy6PWiTz48+uqbv/G/+9/8ew1c/PRHp4+ePvnOb71257PjONw/GR1rgznnGGGM6Rd1Q2PUvy0Wfm6e/OtZlPm83tnfSJbF++8vhGgwhqoBY4Uxdm3TPz2dIVIqa6xhyhQIW8ZwVcmqqjAGhLUUQDBrGnn96lUl5NXrfaPrjz84/NH3P8YEBoPBz3/6oed0paowONTXyyK7fHP3hZdvc9dhDi2KymHw1hsvfuUrt/d3N9pt2u12Tw4Pi7waDLqPHz82CmHED56d1GK2vj50XR6FHc8LjVHWIKkqpZTv+9YCWFIUjRTWWlRVFaOMUbdupFCS/NsLY5xWynEhWeaXdrZDF65dfeH+w/H1W7fvP3lWFeVapxM48PTkyf/nn//33WGrSptV3sQd2jSNaFSSZN1u22HIdwETSOdF2dSLpIjjFucQ+Mhx8XK5VFqWlUEWuOdSp17Mmov5BWOo128rJQaDXp4mGFHRKKRAE7RsVJ7nrW7n/bufktCLnaAqJaZYL+Fv/qXv4ajVa8VnZbbpeKELRb6UUiNkCYUgCDyXIaWqqqHEtQYRQqbTaRR9riFP0rQ/aDHHyfIaCD45HU+nU4f7lLrj2bLVaQmpMSGE4aoWXoDSImWMrXY4hC0hJIrh9HSyuTUwtjFW5HndNErKBpMV+wuigBdFyTmnDBtjfN+vSjkej30fGwNHRxlCyA9cQkhdiU7HoxQwItaiqmryvLTWOg4vM5qlteM4dV06jr9YZGFM3nijxzn9u//NHz59ehhGjuP61qIwZr1eb/9y7/qN/SLRk8lifZv+v/7O/42REGNwHLeum5dfucZpeHJ2T6jsxq3h8eFSNtwYGbRBK7G9M6QOzoukP2hFfrS+3rl6eV/JynHwqpvR63Wagrai8IswmVxMA9/b2HTH43RnbzBb1GEHtTvdollMpst2u1sk1g+QspwHngZ9dDiKQpZNqkbpTj92A8cSfX6mlLGTSRJFa0VRZSkYYxnnB88OldCEEKP1IjtA4AwHOy++OqhKeWn/yqMHx6PTbHP9SlaM8twgQ6+9MHj67GRxAd01p8gXZVmenj4ZjR595UvfGK6zZGlfeeV6p9t//GQcRrExxvf8ugaX8dBnBOksAWuwF0pRIaHSptRf/40vM+z7HrS7zge/OPUC1O8NAQyhyILwfVJWeVlAHHUsInEclWXu+vz73/+p1NXWzh5znbDNlYUgIoCREEQoiYioSuCMYyRHx+PZbKK0bLXI1atX5vOi1eJ1LZS0xhiHe1pLzODJk0m31xYSLZNZUeSUcsZIVlRF3Vhry0JKKdttPLuoJ2eYeUraxfrW1n/4H//HV17avPGyn9fq0w8n69uo24ejoxOM2GefHRJCv0gHf62wWTWsCKVGW/ynOil1ibJi6jhuO4Yw4k1TKwm9ftzptF0Pn40WcZtFkVfkUpuCUuy6blNLa20cO8aoshAYY8ZYWZ1QbOsqS5aa6C0laLsLlNUYeVmiiiL74z/5+Hx84AU+Yg0iZjKf9fvdbrc7nc0/+ODOB+/ftaZ55aUblJKNzeH29vb5xej111933MBoQAjOzp9furyXpEvXDaTQRZErpVzXWR15CAFrUFlUdV0z5nDOrUWO463SJYQwAG6axiIA4m5uDQ6fHe/v7r5w/crR0XEQ0kdPn2/u7v2Lf/6jjh+0W15jbGWFtoAN8jzeNEoIUZblo0ePoiiSsglDL4q5tRYR5/RUTicLQtjOzpaxzenomHN3Z7eXJgUmLiBjsMxSaHfiNE/anbg/6D58+GCFU9TaMoYLI7GPpJRRFJ1ni/sHT3a3t5u8Oj0//eabX//621967949U1WfPj+4urHRjSOjpBACESAMR63YdymjWDQKAGltrIWyqD3PE0I0TUMZMG6t1Y0Ca22e1VJYo4kUKopwIyrHcRFCWWra7a6UdjkvCcNe4EvZlGWplOp0Oicnc6kqN6AYoyKv6korpYSo2x3u+ySKoqqC1RqKCQRB0DSN63FKaRA429tR08hWq8UYS9NVhwQwxpxzhFBdwefebAk0DShpOHddP17M808++ewb33pLSLU26HHmVPUiDDrGQF5ORqOzs4tn9x88OD1Odjf3trfdvJzkqeWcW2uQje/ef89arZSSSgw27OO7hWrC2WzeH/LrL/aLcmGMVspWdfL48eMsS5qmjuOwHbcWC3np0qWiyLJEMRp8ESZ51vT77YvJs1/87IFBy1bslEVdNXOhYDG1w7WuqDFCqK6h3emleZIsYW9303U77Z5byVyZ+vj4DAHEUa8sFCPxfLZECFzXlbXgnLuu6zhOmqbUyTc3N3/w/V9G3RIBf/78+ONfnXAGly61Tg9VksKlq63x+bhM4Y03bkZRcHK03L3Erl+/vpyaZXoStfXyAvXX+DvvvBNFyPM8Y4yUstVii2UDANoAhTaiOs0h8LuDQafbi5bLlKrtN7/qPX8y7fbZ3U8uFvNSG9IbcEKt49CqqhglYOl0Oqubcn1j6Abuk2fHSbEoy+riYlI2i3anl+RZ2PaqGl+5ulfUs82NLSEFIODUXS6XDuec8zt37lICjLpVqTkLXQ8B4KqqgsCdT4UXcdHopqmklMaiMAyUMr7vK6W1AWOMqlCvD+enUyFxITQPfekm/+yPvv83/6e/01mDRw/S0fj4xu0dCWkQDC5GtmkkAFpNUqwuhOBz5SGygBGsDNJW1+agdfTk9PGDZ298ZWeapohTkcO3v/YS5kjLNmMwHyfXrnWKDNLE16wqCusGgjkB9RtQw0boMPC0kOczfXjYlHWjRDhLJ3/l33upHw8j6lWi7A8i32VlCodH1dHodJakUlE/GGiO+ABuvvXSl7+1sbkWXhxMP/zZ3bxwPZRTjH/xs4tBgK7seRdjtNZCT+7VmNdCRifzZ+P5IvD3/cD0On6WVoTYnZ0u52oymRDqFU3tht6g7wuViCbFSGNEhVBB5AOSMi/pqsxozdOni+fPHt/Y2fre176c1OdBz/nw7rPL165jAzJVm+tblZVAbFlDHEaB54tavPTiyxjzRppu1xVCez6uMnx2vhwvRijIpwuIY8cP6GI62167POi1a7GQNQs6cDGeJdN2WY/TatnbulQotMina71bFoxnma+8elkzjMLI+clPftTurSmXywoH/dk/+9mP06Q6no3VeHywLPf227Li02mitcXY+IHG2uG4SUSdVBX3g7yopASljNKGMocxyJeq37Mb7RZRlhiYL7OtSxtbe/TkmdnZ3XBCLWzFGEJ4SZGDFJyNxo3N0krUEsoqaUSKCBwdNBvbHugYYyJK1Ov0m7LBGoyJhSl0w12Heg5GpkN5AxDEkSFA6tLOk2zvyjoiTlHqqANKSEoJYVMlKMEOpUCob7XLQ8FoW5qCO4GxxWAwQJb/4he/eOVVb3NXbuwiiltZdSYENAK2tvv7V18zOfdCmC4TrjaTJFkIl/qA5brrpbIcGlJZjNZ3+eOHk7WtGBNRVU3o7gWR6a2543OjDSlK4BHXYnA2mnZa8fq6W5fQX/d/9dFnX3p1c3b+68m8omK9/vrpWfE3/r2vRe6uEIIyODsbqQqHIVZm1N9U6dxs9tafHxyEPW4p3P1sGgaLTlRD5XTC4fP7sHMFwhgtl9PeAI4n47YXZ9Pa6wBrz1VptoevPjl7Hnj9b//WLZezQefW85PPzse1w9H2rnM2ny8Ws72NbpGJ8zPYvtZprUFTVYsp37qy/5MPPg7bl3VT3979Kka2kfXzxynGVJsyiiJKXMyw40MtJfWgtkttcOSFVZrahmxcUn/nv/5Vf+ekLr3TY7u+yzCF9fXhg0cX/8f/078+H2Ub29HsLNjYR1G/fvnFLyVTXRXzIq1aQXd9MCzKo2Rau2Qjaikw1ALSIKt6yaB/9dpgfYNYzVo9fnwo2+1uf9ArsrzdZo0oawESTFURL0KU4bqpYz9uxbCc5VYRMCBlymkbIVtWpTTQ6TNCWKGUMbSSsEyEQVio5vrVr/zRH376zg+OXv3K4CKXDx+nnQD9R//uXy9nVX+djU4nQihCEMZgDKywr1hKuzo5G/NnespXLu++8fqVw4NnT58cI9CEkG7Xf/bsWV4ssyzZ291ZLGoAs7HZOT9PjMRgycXFmHO+ve1kWbJSL1pri1waA74bADRgqzuffew6tNdpJzPgvCnShmDotqNOp5Ol86ePHxdphi32vchxYy/ubF258tZvfnX9yvD+nePTcblcLpOZffT4/K23X7eyseBqCffvfeZyvLe9nqelEsXaens1bVo3peO5ruv2er3FYoEt8v3QaKiqihDqOI42EsB4npdlGbLQarXSfJnkGSLQ6jrCNi+89KIQajBsLxaLg6cH2xuDNMnPz088l1hr+33HGJPnue+v7DTlqg/Q61EhhGzMdJb/4Ac/LIrCcZjj47oyeQnDjdbFxXnghI7jv/XWzdEhKD0RQljtfXbnV0KoPC+5n1MKjagIQYSgRZo4njueTW+/chthW5YqSWfT2XjFWIyjtpHK85xOpwUAVakJcaSAqrat1poxxlp9cXFWVbbTCauqqgpV103ccimlX/rSlzjnogGtodvqPnv6/Nvf+s5LL10/eHqKiZECXJdiTOu6YQwGg1AphQjh3K2EEFq3u+H5aIqAa1u6rm+slQ3udFvGCiEbIWrOsBC1tboROWUQRo4UthHCgup0HcaIUsJYxRjPslIK3Wp1mkYqpfyA1CJxPGVBGN3ErXA6niFEl/OK4ihZCOY6xbJ971e6qXC3066qyoHtukTvv/9Rq6fzDMbj5WuvXVvO8qpYcELz6phQmM0vZMPLjPZ7G3kGtUgIUx5fu/PZ08k4CUIOuCDYwRQ6nTjJEw0WU8qYQwg4zMVA/8L3fsvnzhdh0usQQhYix6PRueu61lpCUF5kQRCEYbss6zDwL1/qZXkym0FVNjs7W5zTIOQYccLUh+89tRSu3Vg7O6m8CLK8zGaSu0U7jAdDjwBLk8oLAADleb5YLAi1V6/tvPOzO1KA67pRGC6Xjee7VZ3MZ9n+1Y31jcFyuZyMK0r5p58+/OhXx8+fHxBusyL/ym/sp1mxGr2QUnPuTiZZ0zSUAiVMlswLQZtKSeQGajaf1pV+/e11RuN7d+ZKqbquXrp99eTkRGm5s7dj7fziuLR4efPW/tb6blEU3QGsAChRFC2Xy5s3by6XdV3mURQppcIwDDyHEMYc8+Mff3zl6qUgsmWVcAfP50uwjFBswOaZKnIgBEVBWFVFGIYYA+c8TXMhBCEkiqI4jpumEUKEocMYWS4lAGYIAq+PANcVCCGY28yTR9/8zuUf/+i9dE5vv2bOD/WzR+LJwT3g42xpe73eCiBmPp9VxQghDACUUG00IFi9vLqqYukxtr0+2N/dFHWBkQUwSZLsX95Ikuz5wdliVvX6rbe/+kpdQ+D3EWLTybLb7RqryyoNAtrvd5MkMwaUtKLRlMlej125vLvWa/vcQRZZWCbLkgKUVXJ6PJpN6mSRucypc/EH/+r9i7OlJk4BqjTV+v7gL//Fr2Jnvcjgd773cirrh/ePXr62k9XV66/tJReQJotW7A4HUVbMGB6ELdNIAQCM0aqqtNZNVa+Oxr7vY/Q5t8Zag5B1HEcrsBYJIRhHJ6cXmBEncGfp9B/8f/87ZJjrwv5++2yURkF8+fJgPk+twkWhiqJZ2WDO5/mPf/xjQkjTNBSTlaOQ4zpNDbPpcmNjo6rz/npvPE2MBceDMAKHuaISZXGhSlCCYSLryhRJtbu3wSjf2OErSrnjsqqyaZ55QSCt+if/4p/6vsc4ADaz5SSIA9d1z8/ORNMsF1POaDuOKSVVqWazajIpkkT7rjMZz6SU7Q53HGd0ehFFAca0qmrXdT/88KOzs8nGRr8sYDjYXM6Sf/AP/vVLL9/2vY4FLWrwfCoabSysb7cxs1UDVVVRzsEiTIBymS6bpqKOp6xBQUTPz9OwFVIXrG6UAsqgKEqEEHeAMWptVeSCMhzFbqcb5cVymUwATBy1W+3AWqgrAZZijI3VjmsIq6s6CwKPYiQEcMLns+zw+Wy5aLrtq4ZM5ovGICmEcLwySU7ydLmx0btyvdducUbp4fE9Ap5pTJnlWWIxBL0h465ARC6TCwohNr0wYnc+OStz6/AwzxaEaNkQBMA9nhV1mpWd7trzo+PrVwdWqkHcinwWhd4XYfLy7avzi6VD1aefPM3z1PdDxw+oQ7KsoNijlNe1UMoURREGkCzLqs4Wi8VwrVdWYjG1rXbY75OoHZ2cHfY7O41MZUJff22rrop2y5+NdVM2vY7f73TTdPnpZx/fuHk5ycYXJ7bM7WJZ7e/vz2dVWZZJrjtdnzmmqqrR6Qw0tLsOIOqHzpPni539vbw57/Q7WmspxfrapjFgDXJdZO0qRqRVUV2B6xFjRFXZVivU0GzvBffvHlcZKKWGw5bjOJzzVgc6nc5/8f/433/2q9nVK1G3E2iF7n52d7DOjEYEs9FoNDo5bcetduwwxoLA0xryIpECN7Vq5HIw9N7/4MGLr+wVBTCq5rO6zESeF4yRwOuIAqRsrNUAsFgsOnFYVrlRmhFKCDMapNQYU6t1ljWggGCQStcl8nwehLRIQNWo328n2cwadelK/9nDsdVqc6s3mUze/fn8P/yPvltVajVpsuobf8G6xhitWioG419rsgHg9u2rR88P14bdfJ4HPqWUdnvR8+Mj38OtNo7C7vGhTrPs+OSJQ0AJ4nvRctlUVWWtBbBlqVZ4O60AALtOqDU4rggcRpEKHc9K3Ou6O5uXsOVSKE6ca9d67dgv6hIAIQ1PHh+OTqez2SJwWZ3NyjyNBx7l5cnB6bu/nHz24H4rEss5zC/q4Tpki5lDWgwFVWmkHTU1V0qt5nCV0UIIzlzRKKssxhghopVV0jBGXNdFQERjHe57nlc3VZpUpxeTRjfAdFE3cdyuRbJ/eeAyGB2PtrbWwhAwpp12uPo0gyAqClhb21ihblxOwRrGCaWf4ydaUUuKuixVI8v1jbYQgjFaFBlnQDBs7bHFOXUo91xw3aBu0sUiK4rMcZmxVhvheqCkUcZgjs/np6JughC5Hn52+KSsq9PROSBy+/ZtYxQAcM5FpY8P08lFWpTmbJyUedPpRMgaxuh8PkcIirxCFgdhIJRUWksBlNJ22x2Nzq5evU4J/N7v/TOMPM+joFFVVwA4CFCr6y2SAhFU1jVjjHLebvvMEZx7y7mIYp7nZW8QnY0S0ai4i4TQFCjnTApQyoSeZ4xtmko0lhBg3Pi+QwgJAg9hPZtMgpBaDX7gMsZcx9/YGAZB4Lh05f6sRD3oBlmyfO31l1944fJ0YX764wf71+P+wCW8oMRLlqUfwhtvXm+1/SzLLl3aOz1Sl6/sZVlGwCEGBsOYEsYYI6ilGnc6rQkhzMsXi0TUOPBYHIeuEy4XBhm2e8khhOcZPD/Mnh+dlbVm3J4ePX7rjdt5la+vD78IE9HY6bnvRObG9St+6CVJnixzAFMW5mK8QIA558tlSinG4KaJ6vVjz2fL5dQPoS7o1tZGv98tyqwos8VCV6JqKvP1r76+sd5KF2mTusoUd+/e39vbaaS6ceOaH7Dp9LwuOQVnYz1Ik/zg2WmaylbsbO50Eanm00KUzPVwf5Mu52TvSq/f7/zwh7/kQfHuLx8M1tcswHw+d7gvmhXoCKRUnudpU3JMjUZSN4wCZWR3b3D/7uHFGMAExposWxqjKKXXbq49eHCPMQ0KlMpkRSgm25sbs6mMgtBixJgjJUzHk69/42v379/zPIdx4A4CxEQDYeT4fihqKMv89q1LYBW2sJgX/X4HAM7PFq7vYWQ9z3MdprVQWmAM48l5GMaLRUI5QwgxQq21DIMxhrGVU6Qt6tP1rZB7cPx8gXR06/rrdcq5BwRhVXLXa/7cb/+5Z8fZbJG/9fbVPM+FECvwNfxbcSEGAG0+Lxc2TfXFbd7ZXQ/D0HO5EMb1MLYmyxd1bdfWB14A4/HYGmgamaQLIaDMKsboYBBKqX0vqKpaKWiaptPpuAFfLvNkWX7vt9+69eIlSulLL902WhurGXParZ6QwvexVoggXtVlLQVbwVMNTWfp8nz20z989/bm1t5lqhUl2P/S16799l9+hTP28P5F1OIGct935ud+b4AbPaIQGqu4a0Wj8rxkjAdB4HoOoWiVJOZFWpYlIWy1IbTakbXk6PD8s0/vh1GLu/D8+VkUMdd1qYva3YHSpmlq2ZQvvnQpy6vTo1Pf92vRpGluLURRazabRRFsbGwkSRLH7W67Q4h1OLIgCIWT0zPO3ChsPX8+Zi60OkwrUmQKcENIQ7Hzm3/+ZQPF0VNtjGl19XJeEczqEllrKQWtpePQplGuHxd1tbO3hS2S0rb7rcfPH7374QfYcV57683v//CPEQGplFaGcz+KPNcNGgHzZXHj6qWmrDzPC8MQEUwIabVaShohxGo8q9VyZ7NZmtaU0izLCAHOIUkSY4zjeUHArZVR7C/SBSWEYB5GgeMSikncClsdF2ObpQ0gY4xCCDGHXFxkrVZLSljxnAmwKtfW2qrUnucBJo6LvAABgGgMZZhhbDQEEb7x4jqlUFVF0zST8cJ1wzRprCGgwRjT7USYaEpVGJMrV10/tB+8c6EkiaLAcyOKo8DZ2tzuWGjOT6vJdOS77Y313WUy08ZBCJ0cz5aLcjYt+v2+lM1w6M7myXAtOj2eA5j1zbiRaZErWYK19sbNzaNnIwDQGv6f/9XfIwyMlb2et7URL9L607uPvgiTw+OzRVppC9PpVBvRSKAkqCoLGJ4fTFzX7Xa7daU9nyeLusjBD7jrumUlfa+zsRv+8IefuAH2I3p2WhNHLeaaUPPB+590evRiLAEFO5eGedasDfv93tonn3ymTdOKh4yxqqpu3Lz88N5DTEhdgee2LKr7Q+9stAQdb24NTk4vNrfWr12/OlsuvKCTZdVLL720mKQvv3xjMkkZc7Q2VWU8H0kJRgPYutUKysyAoQhDb9A+H2UXFyqOqOuEl/Y3ep1+U2fz+bLTib3A+bv/zT/c2e0icKwOP/nkk25n8MK1W2WVua6HMb5yeacsy698+e31tTVtZBC4mJimqcK4VzVlHLWQ5eOLpdJkb2+vLKHIyzBqGQPWQlNWnBDGsVINwpZQq5SsqgZjcBlHiHDmVlWVp2UcBwC4qqCslesipfXoZB4HXlXAk0fnH3344Gc/fRIE3vZ2N0uLLMn/wT/4A8df/uxHx60ODYJg1a9bmTV/7hJlDCBAlGKE/oz6end/hzI3L4qnT/IXbl7pdDpSqf39taqo9y+tEYYoZU+ene/u7LdiihBgouI4RAgJYbQilAKhqBEFIOF6KFlWt1+88ee/951HD592Oq28qOI2qnJWVZWx4HlBlpazWdZuh0VdrK0Nb9/YOR8tjVKiaoiE//Cv/k++/OVvPX3wmHpymRMCwW9978svvLk1PReji2Jn95qw81+9ewyy0x7mnfZACkiypqoaSqm1VgkphEBgqqrinCKEPM8jhFR14XleU6vxhS1K4NwNQudXH97DBKxFDkN5UiqjGHekkZ2uHwTo4HBRlI0B4zgMIciyTEr54ou3yrJ0uKu1Xh8MrdHMUY4LYQQXFxeEOGdnC4odRoFxm+c5wY7v+4RhIbXDvNuv0iJ1FlPpxxWjsTG2LKRQynEYQWA1VAUUaeE4zvnFSbosut1YanExq9rD4W/9zu9Ok8XpxShudwhjSZbXVbOCI1GKr1zZp5gmC1VVVVUVUmpMEeOkrmvf99M0NcZa0MaYwMee62gpHAeDxUKUZWGaqrQWGqE3N4d5Uve662nS+D73fOp5rhaSEqNtrZRKlpUfu4skW1vvTMeVNsTzQGtbl7kxSDQGE5CV8X3PWk0diFuBtbgspBTWWhv6wenpYjKZXIwvDg4mdd0IISfjuesEDnUp4ZwysDoKvXffvfvo6eObt6++9qXYSj/q1A5rN43YuiSX6eliUVRFWmdYGpGm1d7+taLKAeRgsDYewWQiOp3gfPL00tU+AHg+RGE/z5q4A52uL0Qta+U6Dsa159IyzzDguoKLSYK5Qxje39/pt1tCEddrfxEmg7V1AWcHB0AYcT066PeLzGCEGHOtAYNUUWQIQRR5ZQF1CUWRK2miiPf7/bOz8WCNV5WsKuuFbDLJFgtx9cbmwfHZIk81oEJmQjWO40llELhJpnb2tu98clI2+WAYn5w+AcBGM8aAMqwVWi6XZWa0QnWRB9zN84uPPnjq+rC+tjk7p2sb5PD5aRA6ly6va2WFEJSC43DPw2X5/2Pvv2JtW7P8Pmx8aeY5V15r53ByuDnfil19u0Kziw2ymWyBtNCELMO06BcLEuAAyJYJWzIMSKIECDRhCSKbVpvNzt3sUFVd6datuvmee08+Z599dl55zTXjl/2wqwP15DdBQI+n9biANdc3vzH+//H7VwgB83METPGg1QXXo/fuFpubG4SRrJpk+SQMkzQbtZu9yWTWaAbzueyuRmXuWuNYCz/+8a3ZqNzcWAuCYDQaNxqNRhS/+86PX3vtlbqufN9dLDl19MnR2GEeptICEdIcHe8hwwa9KM/F8dEkClurax1rwXUoRnqZLcLASZJQcO15pKqq9fXV07ORlNJaKwQUWcEYa3WSIq8JiozCraYrJd9YXzl8erS92f8r39xd22j2emR2DJcuJxs7fi1g71EW+NT3/b/YKZ9LJj+125xLKj/dDwcAgEf7TxDz0iy/eKFHGdra2nJcQAiBJcw1jmuVttbAPC3LUlkjmGsm02GelWApWKIkIIS0ERiB65J0Yf/gD/6g1WkKCUGcAEZXb6xitOL7/sq6U5VSWShyA0TlxbLIlwjU1SurhyeF0HD9xpbD/H/yT/7pF154eT5Gn9y9Hfpyvsibq1t/8299obMK3/7WZ+2unxfp6dmsEQfLGQFcSgmUuGX109Ge1pIQki/TOAnjOLTWKqUopRjj8WhOEAR+uJgvw9BvJC2ttTGmrjVFDvOJBYaRM5ocXrq8jQA4x0HCOJeUorIst7a2RqPR4eGhtZYQgix2KLgeMFdRD83n8wf3HzPM1jd6UkIQJEU5t6BFjXyvubHZ/93f/qFUqtFUi4lJZ6jRIkpJ5hBCGJeSEOL7Pih4unfoMcdlThw0qqKep4tGlz3af/LdH739w3d/ErabaV5P56ngyvd9lzlWawTKc/BkNPc8IIhEUVSVcPnKxX6/X5UABGOMPZ9prRGyXBjOC9ejzCFSmFoU2RJ2LvfKQqxvhscnR1EY8tpkKUheIat6nY7glVE8agDCui4hjBwpNaY15854mMcxZowA0pwLraXrMoQQBkUpIdQgarNlBdZtRInWejLJeQVgXEbdCxf6m5sb1oLrukoa13Wrujh/RKuqRgjCIDw8OGt3yKuvXUqamlE6n6XMCb78jd0fv/tJEvuO47abK8QlQNDx8diJqtPxZPuif/WGN5+VkqPhSc1wb3U9WOanmMLrn7s6Hk9arc729iZY3us7snaShEahwxwchElWcEo9SnxGglsffxoEfz43PD44feW1Z25cvT4czU7PDuK4WRQWYWd8VmNMLIi8WDaaoR8wsFhwYIz4fngOIycYX39mFSF/Oi6FqosSPT3gAi3jVvv4tBYCOQE/OJx7EXJY+OGHd5I4cV33w/f2fvl/+QXmGoD6yuVrew+WvbWg3fF5xcZD3u4SjPjB08KIaNBfe7J37PkYAZ2MSuLkfqA//OhWFAUIocViyRjKc84YazQalISUaGUKTOzm5tqntx5vbfWpI7OcJy1odQJegUMtwU5V6/5Kc+/pCfE1537UcASHwCPLbE4ApWnaSJrGGILxt7/znaODpxjjIPQ812EMlYXmXHI9A6Rcj169Mfj0o0cXLu5gAumiZNTXpmy2wXFoEHjWytXVvjUiCEEKjcESQopCAEaEkGbTrWtwXa/b7RsDxoq6MgihS1fWJ7OTfr8bJW53BR0c3R2shQ7EBi3Wt2InQMPJMJ1zKX/Ka/g3UqIQQsYaKaUx/8ZpeDYedXuDsqiTuPXw4cPlcnn9+qW9vbPDg1PfZ8yBMErqCvKs5hVYUJyXlOEwDJO4NZvxfr/Tbrd93/3il168cfPKX/2rX3v+hRd+/dd/fW1ja7CykhXVwenJr//L7/zoJz+KE7coa17LqhSEom6zAVKOz053Lm5dvt6zDgiC/x//xX85PNNfeeOLy7R68GDx4U8+sKhURGbp4sUXv/Lzf+3Zp08qwLrboy5ZZ+HQyMh1GKbOYrFcX1+PosChTCkhhAAwjuOUZSmE6HRaCMjp6XAw6CulJ5NpnITD4dxqo6XBCBaL5WQyGg3zinNj6y99+Qtx0sLIrWvpukwIG8fxYp7O5/N2u30Ohjg6OooTnzlIG+t5tKqqu3fP/hd/75dbzbBYglbY9bCxSnI6HKZZOX/5hZcY6q5dqOsKnj5AXpRJpefzSS2EMcAYo4gyhnrt3unJictIVXHBJSHED4MPP/3kN3/39y5evYIIKGun00VZG2ttVRXnT1tepFXJoyDQWp+dDb/8lReUUsPhaRRBVdWO751DIghFjEGzlQhRNxqx6/oYg+/hdDlBiESx+/rrrzaSzunRCCEoq7qqs2YSE0ICzxmsBBgDwT4h4HvReJ5jCIcjjrAJI7fV9o0BqThGBmOwoONG1GxFjNGjw8nR4VJwQymlFLSEdFE3kg6l9Oj4aVUCQgBIC1FjjOuyCoIIGxpH7nLBD/Yno5M0jhsbK89LPcfE/aPfKIljo7A5nc7b7caTvRMg3PHI/sEo7kCz3eIVNFsBZTaIbVFlZ2ejG9efm43N6nq7FtPFrF7tbXCRWwS9QVAV+Mb1bYRlu9Oap2m71bt3//SzT+93O+vj0RlY+een4dPJ7//WZ+0W/dKXX4zjcDZd1JXWCgGA63iEIMehWuuqLjvtgRRwNjwtioJR9/Bg1Fslx0cThDUXFSBKHQEaOiut0exMGQqA/djWNe2vxO/+5OObN55fGaxWJc9TmKV7ZbV883OvzWYzBLTZIVwuxmdVr7NhkeZieWFnezIqbn90+OILN1545oX5rCyrXFT1+kYQReT4+BhjvFwug9BzXChLTin1vVBLp+KwsR2cHi95De0eHc+GrgdbOz0uyvF4jokBi4u8rkTu+J5FKi9UbxDUFRBCmg2WJMnRYeY4zubm5nK5fOWlFwBAaxnGcbYUjWYEljLGECkxkY4LV66vaA17e4/W19tG4+Wy6A+a51xqIesg9KXijku1hjCkrsss6ChyPc9bLBaB58cxk1KORiNlYLAWXr2+ffOZK7WYNppOtqwOnhwRagYrvcVs/tY3Lpw8NU+fptdfjAU3P/iTh3+2jXd+MToXVTAgByGNCSALDP5cUz45GHW6rWUuJ7MDXtj9x4/icLB9sTccFh7bmI3A8/LAg/GZWNnys6rSNd3d3Vws+MZ2M3L8rdXWszfXxsNSlHo6rT68/73f/dYPfvPXnhw/KVbWCEEKp/CP/qP/zc+/9fWD++LS5sVmRHitjEVFscS+AwH74fff00vWCaNkQFMXR74Yl7M84y88t7J3aEbDdH4wy7KsKJ9EQfRLf/vVZovUpdV4kWdVXTirK41uV50dTZqNeHWtq01dS4VRM8sXdekgYphLBTcAuM48wfPBgOYLNR8GTgwrW20D2iqn0TRYxwbAGuSHg7uPP8LOnDngEMKVjnwaIMwEhAQ3QtuIGF/o0I/CiFqgBjulkSyg3RgapCiyGbIYEK/qOm6HpVoOT2Qcdpu9UysVKGfrIoxO2OFDAhY5tGkQOH5Y1BIR7jm2KkqAoLYO8xk4djKZ7mzceOba8wrSH3/8A+s1HE8DMNAgJI+iJpcCKFpmhDqyN/Bd2tACL2bph+89Xl1fExq0VgBWa62EsFKfr1sopRbL2c51UxcUA7RakDS8e3dme4/HYTiSUgsO1jR4BbPZAmF8dEy8wLq+LpdhLce9VcwsUWqJNSymUFel64SUwWQkjcWdNZOVCnnS85zFGc5n0O051HWYg0SJ+rHvM0Z9Xc3QV1958Wuvthb740bYtgRXogKMVtfaywz8UGujpHT3HhWFeJwVp0Y2CcaI1d/63cXZsMQUBMG2Ii2m//tf/WfdDmuiBi+nzK3qqiKGRMwZ9KBKpRens8WSUJ2lhlB7+9O9bIGi2DU2KWW+sb7yV//ai198s9nErF7U2QxOhouTcvpwP1jZjv/sb3LjxZ6W8L1vPXn3R3uWb8zHZbcth080sZA0DS8tRX67Kw8eLdc2AQNUqdtqBrxgUqh2u12XaDaZBr7TanqTU3X1JlPl0Ig2zynSyjfOl3/21VmZvf/jQ8+D1R3y5OkSXL6Y+OubhHny9mfl5lXWaER5xjEW2XJezVmrHRk8wk6FLP3j373T7MKiOHQCmA75VvcmBnLx0qAohwgDcyojwMMdgtTmOi1zsbISZFW9f5BfurJbZ9QquL67sX9n1utja4JWrz+dVpcudz54+7TVNzLt1cXUpVprSHoyjDcKvnjhua3xSTYYiLoi67ubo/KxBUKRXusmxZJwWNS1gwFR7TkmlCV1e3Rvvx4e5IOOd7g3Z26cdH1FK8DAGBE1s1A2mpClylpcZCaKWLvtYdQ8OanLwsWIMmf54nM7QtN333t6+9PbVpfP3bzCuZTgHQ9Rp7GeVvNwRdSS8JLrIrtwoak0ZtQ/N5YAAMY/BTVgMMZaizEgjPlfyEV58aXnteY1r24+c7XRiMqq+viTD9bXV7d3+5wXX/q5jWdfWvnGN19yo7njOFHMpOJcIMDl+z+59+rr1378zqOjk8ehH/3Jd259+P4TxnTg4Bde6H/pC19eLsuy9For+HRx75N77wcd3hk0ky5QBsoKrajRuNUOdy4MDo9OOK8ePzz65KPH1CaOA9oujg7OYj8QlXNycqCBe27yycefCqH6vVXX93zfJ4QpJcbjyXKhKWHGyjByPbdBEGT5TCsrRI2BnI8IhFDzeT1YXZmMihdfvrax3VIVaE790Fgkknhgoc4WwByCiLjz2bEUEMSaV5ZSKqWKoiBpROccurqu19fXncCppXAoCQPPd6jVUgNwqy9cuAzIaEWVMqJUBAedTvLxR3fDuLMs0rrwun0/TuSd28N2q99daRkDWVrs7u72ej1jQAihlFJa1HXlO9QamE+mw+Gw1+3e+vghIHGeUmAREEoBYWUgy7KsyNc3+trI1fVBVZvj06PeIDRYIgpaGykVYwRhaxF0Oi1jlBe41jj5UiFEHMepKut6GGGYzI4NX/23/52veR46O0155czTk5OnFUDFHN/z/LweT4b2wvYWGLyz2/E8FxA4DpaSxzFrNPxz0UZriRBizJ1Op/1+cM4LIISUpb1w4cKXv/LKfD4mTLz//md//9/9X6+src+zEaVUKU0pFaJO04UxynGBEExcc+/O0OowSaJ0uewOwMDS84JiSRaLCWbC8dGgf+X+w5OrN7YrbhDguq42t9Yos0bjuEEn41ldaUaa6aK2huztzfIixcQkSfjkyZNvffuz9z765INPDsIuDEc5YJhM2X/5X/3q+pabLuo/+5u8/trnLUB7xcTN6ifvfEqw/bmf/YXrN1fiBjiBIrgRxmBNw4+B+TZpJGUlSjmeTJdR2Dw5HnPOG40YAVZCdtuhtcgYnS6nrutGEaytbty79yBdZJhAusj73c2aF57nHewPfT9UChApNzfb03GtFapFMR0XF645Zea2OkzW6MqNtZde7/3Ov/qo07iqLew/SXsbQCl9/OCAAE3CKJu7sgbqZI5bGcLXN1eTFjy6lykNDnHKevTM1RtPnhwTB7Z3tybjxdPHZWdgjw4nvg8AwJVqt526ro2BwWBQVcWnnz5Y24yVqXw/mE3zRmN1eJppozC2YcPLi2V/0MyygjHf2Hq2WC6WUy1Vq0mlFZ3Wxu6l7qMHZ7s764xSTFRRVGcnqcdWGOnUFbS6bcTE6LR6+wf3Hj487Q6cl9/s7VwOL+zuvv+j4fBkur6GkqQZRZFU+draeroo9p8cd/qVTzv50u5caMRh4NBW3OLwbxJq4E9XlbEFizHWCowx+C+4r4+PThHoMEKY2MtXdm8+s7u9s75cZL5vCSFhjLa2tupKNVtBuigQEa12+/79J4hgjPFkOn7uuYuNOHEcx4mRG4GonM2V9Y/fPSFIh0Fzsji4d8/85//Zt3/09jBuNb77nc/ms9qYRAk/z3gYhq5La5FeutwNw3B1ZWt/jxNEHUrCEGQFi0VprVWgpHKMYr4fV4USwvT7XaWU5wVP9p80muF8IgG85XIRBF7NtTWAiNJaC8GtRQiAMTabzgGDMWZ9q/sn3/nJt/7o3ctXW0oXdQUYmIZqkc5v3tx0nXAxLx7eXwR+mKZVGPlSCuZA0gijKAwCzw+DxWJBGeZg8pITiohVYJS1IAw8PT0uC0kZSIGSpJnnPHAarXY8Gct0zr2QKhk0m82NC56oQRkyX5x5DDHmLGaLtbW11dXO+XSPENLuJGmqCGLZsnrtldfTRba+EWXZqKpNxY2yYMBWvFZGl7UBMFk56w26G5srmAFCKM0LyjTCYAxIKR3HwRgIhUYzEUoEoa8kSudaCI4xWllpp8ssTsjW1vonHz15950Hf/VvvswFCCGWM+rHqsgQwX4Q+0FsqhSyrKgqeeV6/8rFS5SBRSBkHUYBJrauheN4SukoivI8Xy6F67pKKYQQIYgyuPXpba7GlOH2IDg8lr/7h999/tU3Z6khhAWBX9c1Y6yuS4Thlddedj2SNLwwWAWMpCmOD2ujGfGMG9qzoSbMuXS9zzyYzy2jTOrUKCY5cVyYzc+uXt+5fOlGq4scx5/PymxhJqMyDBNroKqrre31/ad7/X7n4d40S0ncTaap2NjxAcPjvdEH7z3dvtg4fPrnfMPZNL1yPYibZeCxy1eSdpf98//u9559eWV7d0sJVsp5WalXX7/m+vDo3ry7ZgkjSXPTUFuU+vrVF8pCBqFbFJUQCpClyGEOwcRSSgf95PHjvdk0RYhcvrz16a0Hp8f5w0d3yqJ++iQPgmg8WqxvhQjLPFNlYSWHS9cgnSFph91u31p0/8HjZ194lgX2h9+/t73+QmeVfHb/06tXrxLsPd0/W1/dCH2POgBI+H6U10vMxJNHpREwaPcsGa/0Bwf709nM7l5pM9rP8+LoaRYG7jLl167utlqd05NhmHhCK8cHRMlyuWAMpvOj7d2WRQDY/X/903+hjZ8ucgOo129qiyizZSW77fVnX7oEyJnOJ2srK57LWk04PNori3oxyaTUjTjw2M54JMq6unRlTdmFF5L33rt3986Z53UuXGl/+WcudzuNTz54Mj4RdcnDpOKF9jxbZMvQi4VKhSrrGqdLMR4/7feS2Sjrr8QW1VXJmq3Ib5yTGf+MbPjntFfzp9vJmPyFXJQyE0qpbrf1+PHj0+MzxTm2xBrH9/10viiX7r/85z/8rV+79eRuqRX1PC8vq0abSE57a96dT49aHQcsE6LWyBIHRkeq13dagb+5FdUlWhZHr30pfvMrvZ2rem1LvPHFTWOg2WAE2Tjx5vNpnueTcXl2OqlrMZnMnntu59nnLu09ehS4cP3qq80WuL5ud9wffO/gN379g3Sx1Brt75+cDU+SJAFL+yvd61dfePR4RCg8uP/k6OgsaXiEOkrCuYrKa2OMcRznbDRb34ieHhy4Hk7ixqDXabcb2tRWoU5nwBzEa8C04LW5fSt/8eU1xpiRrKgK0OAQVJSpNlwpAxYvlqmyqlQCMCRhQMFSgCB0mA+Pj54eHp/GDbAGhBBVBUVeKZMRgLPTutlsGsTv3T31A3ACGJ7OirIwyjqEPn58OplMu93uOaQWW/BcigCsIZPJ5JlnboR+SAjp9MK60loDIKilWCxzqa22QF3abjcJdn//X/9Jq0VnC7GxsaqhlhqsQVbp8/RE5oABqXSNKHJdRjDFFPyAhEHTWtDK3rr1MIzQp7f2790evfTqxnQqkybrtJtG2vmi1rZ0KLaGvPfOYwBwqC7K1PGgqngtjLYqy+uiVJSEGJMkbp6ezj0Pqro4z6tSWgYB1gp6/SRwg8n8FLHwX/7Gj/7oW9/rDgCMXUwr3/frus4ySBoJY7SoK4Cg2w/LesRFVguYjGyvsxE11MZmcnyUL5cqTLy4EWW5FKa2hmZLCQjanfj2nYd/8p3Pdi918qy0ho3HkygKjVEXLiWui1zXnc+Wgd9AGMqsZi6dzuAXv/65S1srUZO6zJlOMs7/HG5SVhkmvNn0pS5jf+f5F9e3LsP/95+9NzzN3ZivrmzkRbmcOxvbfW0VJpHjh8pm1sJ8lj09OHM8DEidnYowSISoKaVxGF27ulPkCwzEWuj1Vm9/dipVtb25887bH1+7dqnRaBICg/56uiiJW1elttYePZSDgRvHSZw4hGAh6qSHDMDv/NZ3OgPwIvTZrVPXb25sXJmOxl/9ytddJ86rk2/+0guNBMva4RX0BoOzYbaYgOsG08kyCulikS3mUy9k6zut7/7xfeKg3sD75IOTL3/l6sqgxRzvyZN5EPiUOLsXusbYWTppNhOjsedRIMgPnSovW42NLDeLiZRanTMB6kI34lVA1TLl8wUvlzKKqO8FQajylL700vN3PtnvtNrCFMqq2UTev3s4PNV1pZ95bucLX3n+yvV+v98enYp33zn0PFyLaRgxzwfPcY2GwcBXEh0dz9c2E166zAlP90h3lYOtA7/BlXm6P1ymznlwpv0LqJqf3g0xxkqdY6hAiD9HnKcLkSSN6XS2urJhLZrP5+Px/Mc/ur//eOR6tBltDAZdycGlq4rXomYYkfORZFnmjoPv379b1hXnnBF3dTURUrhe8fIbGwdH9xB4UlEke5ODRNfMwz1epg7GWs3LPKeOrPmy2x1gwLMpKGnzIi3KSX9lILVmDN/59Ja1MBqNV9e2trfWLu52TofF7/3+La2R41BMUc3V2trKfFYyBy5f3cgyfevW07hBACmMHC41w4gX0kiFARTXQeyXpdncvB5EdplP736679EWl5WBjHPS7/W0tkeHJy+8sDObzYQQUso4poxhC3Y2Hc5mk4rz+XxBCEmSKM9LRCAIfdchBAPGAASdjkcAhnlgQZydnQUBCFn4Popi5/BwVtW62dXpHAaDweoaTdMaI8wwIQiHITo4Oqx4TamjlFFKAUa9XtcYZEEeHD5RRltr4zjgtUGALQahrFASY0wIaCMoI+/+5G6SBIwxjNDpyZnjsCRxjAGEiDGaUPA8Jy+W53y7Xr+Zpsr14MrV3fms8D3HGqoVDFaazRb59OPh06epnyhCLYMVQmA+qx1qtCStlo+N+8JLa812bzodOT7jApREZVljDFWp00XZiBNjTFWB5wYAQCjCBKSUjBHCotH4TEkIo8hg6gXefJkFfoNzDgCu6wohXBeEEI8fP64qHUcN6ubMQcgGa+sBgBqeFE/3U8/PCYbJGdJaJ01a5HB2NHr+mRcZdawBLvLtnWRnNxQyO8fkUGZdDwehi4lhjBmNELiPHx35Prz1M1fGp3W7C+/88Y9ffaF/7crFlR78we9+Rumfw02ms1PXdYsUpmP7+MmduoIwRFHUCCIrq1jp6qtfe+tf/Mp3OeeOFxwfn3qeMx4tzk0cDx+cUIYxxZsb3fksDSNmrEQWIyKk0tbazY01glmz4TFGh8Mzh7pVxbN8gRAw5pQVpwyXhdy7nzdafr7UShCuZmv9y2W5wFT/wjd/9ud/4Qtg3JvPdg0Z/sm/PiS4/Xj/6Ccffnd9s7m+Fb/3wfeWKRFV1F0hxsDefSE5jE7r3sCWmVeWGXPR9m7//t3D+aKua7u5Gz/dm8dRd5YdWIvAQqMZjkbjZisyGpSydS00d7KsoAhPF4d+w60KYwR5dG/ikKDdSEBjIaAZ905Oj6tSp6lSUkthW80Bc4KTk/Fsthj010+Op2m21FobC1zUr7527Wtf/3IYO48e3/3RDz8DgIsXLyIEQUgC3zEKdVptbbjn+AYyz40pAW3m+dKKyn7w41LbPOmgxbz80peudwe9vb2RsT89/v6Hd0OM4c84Xn8xC+Bgf2wt2lxf6zQ7w7MJQkhJrQScHKWDldZo8viVN9fbfciLqTagahRHPi+tsnMMDS82eQ5uiKVFjYh7xMcY3n3ndOty6/Kl10/P9iXP5vne06eP19YaeTFDyLq4mWem0+xzzo0xcdSYTEyj4VCKe/3GeJp3ulvzdMZ87DdUOoezYzUbq8n85NLl67/0N35uc5NS4g7WeqPRaJmWw+Hws7t3vva1L/X6yfbW7qDfyYtZnhvm+koZQEZKwzkvy9LxorxYhE1nmU1m86yuIIpd18ONRoCwk+fp+sZgMTVZXjfbhFfYGNNo43ypjDKOgwnB8/mcc6EktFodZbSouIMJsuA4DiHAubDKSq601mBRUc+NRtZA3KDWWj9w6krVleZyaTTMF5NuP44CrIXpddt+4AZBEMfxbLYghCAgvFYIWaHMMquIC5989v7J6TBdlsenR0UujTEEAcbgusxxnCjEBKnlcuG6qNvuUIoZchhzEQirjdaaEKKUog6jDivr2mFezeXB4ZFRsLLmHh3vP7g/9DyPEi+KPGXnUgTUwafHGRdAcSMvT5uxPx8VBFEttVK5Ned8WVIpQQhCiBlLhNCdTksIOR5Nm60kTbM4hrquMcZaG4SQ67Ig9IQCsJQgmqYZZnW6rOPEY9Y3SrXboZamqniSBHlejybzbq81Hj8t6znD7ZPDcn09evHVwXQ2z2ak3w/7fb/MbVWqokz7vWaj0bYgHZdUBVBmlmne7nqu6zPmOq5lrmGOBaRmszyOGwhYWXAlzeWrnenoRGquBH3xma2v/cybx2f3X3v1apwwN/zzu2FRCjDBbFqtb2HDe0ZHvX4zzyBuaoTyD949/f4PPvylv/P5IGwtJkUz8aSYAw+vXFphPm40KcLacajDwtNT025FGElem7rKPBcwBsrMbDa7cf0FADQc1V/68hv9zgYg2LnQEFIWRQHGf/poaRU4nkqilclsTkwjL08Y9a5d3y7r8ZPHj7CFyWTSWwW3IX/7Nz56/oUriAgW5EW1LLPG2ZEmjsHe5MG9I6SJFLC6Fl29en00Omt3Vkouq3r26E5++fKgrgBTu77d/IPfu+XHOs8qyiBJkukklbJeLnPXxVXNQbu9TjNOwrX1TpVV2KKLF7ZlJaaTfHOzpwVyKYzOzlwGruuWOVmkC4Li4fhMisSL4dHe05PTo3QmJXd2ti996YvPPffcTq/nluXizmcPCAqSOAbMv/f972gJ5ZKcHnEpJaYzQmE+r+I4Hp0N+91+lqV1vbCSliXcvVM9/9KLVV3fu704Ox1jIi3/H04MfwqvAYA/fdfR999974+Tfw1/WX9Zf1n//9U/+zv/z9ODfPMCW2bCwf2LVxv3bp/M5+naFptPgnbfHhzNRAUvvrpd53rvwWKwUfLaEBRUimep7fe8bt+/9cHUdeDC5SROqCxpd8C+/YfHK2v+1u7GyemwzPHp6eKrP3vZC+KXX/zSf/vP/+tr13eLkj892B8OTT6hUVvxnO1cAZdFnuufnp1sbMW7l57Z39t7/HC4sdFM50KoGnvm6R1ACH7ua89l4n4YNm5/IEajxRe/tj6dnSyGbLCaLMb6med3Hj04Jf4Yoc50sphNRL/TwQTKerqx2Qki9O4PJr/0b9386P2n9z8pf/GXnq25OZudHB9loUuXi/LCdq/Vct/43LMPHo3+4A/vNNuNl17c/e1fe4e68KWfvfTpR0NCstClAPDosXICl1LebQ18Dz14eNYYQLfbW1lpPfzscOtqBAod7I26zc4LLzx3+/4taYq46d27vRiskslhezzOV1ZNd+Ctr0VPnhyfjeHCJbffHdz/9ODqtc3heNTr7X704X4YE6GLtfXehx+NQYITwPpW9PSR+s/+0//0H/7Df/grv/Irf/fv/t3zHGBjDEYEK2W0Nlqpqsj+x366/rL+sv6nVOnM1CWhbj4e1Zgihc+e7E2TJlvOQdam0TTb29txE/YeP13Ml0EAKythO1l79rktTPS1a1cs6MVi4bloZTBI02WrHVmLx5NREDiNZhInvrV2Ml60msHO7tqntz/8Z//df29BBBHSWr/22is72zt+4CoB21fMfGIYQ5TZbrdroEKkPjuZN+PGbCheee1mnhtbB6//bOL55DvfutNsrBoNZ2eLFz4XePH0s59Y3/d937rxfD6u8nIYhR2pF9bGW+vrV59p50sdN8h0UlpUxYlXVxYBMQams3GWFVmWKaWjRqIU5Pl4d6c/m83m80W70Z3PpoSUFy+ydjMxUDiUrQx838WdToMQUBJ2dvvzxXA2Ea+8tvP6G69cf7bjuYFSYnhSMBpFkRNFOMuGVsu6MD4b6KpXFjrNx25QScO313fOTooiA9dnmInlHJodNp1OQUebu4GowG+V6dz98MfjyAu8IMEE6spgx/wPeuSfuq9BY4aBYs+CAYf++xf/w/8xH66/rL+s/+nUr/3yP56MZjtXsCzWHew5Pn/vnaUl0Gw2q7JKGpYLi3S+vd3Als4WxdqOJ3hYlnm/08/nEPioKsWVyzdXtxlys8USxmPD/AVGPcePWmvNh4efzkaIIu9zX2g9Ppo9uAs7mzur/c3FQs3m/Php/cU3X/13/1d/48bNgVWMUG0MDpLq+CDrdTbyUTY8EZUGE5RPD450Dd0u5BPxd355hTnwB7+eKYDVrajf6f7kj+qXX2rv3SnqwkR+89HevTjxKLEgcZlNr94MjeaMkTBiRtEgCNod6pCIYZ8wODzMK3sGCjuALOeggFi31W2NJ/j2pwvsF+DKjIfx2mrc83U5iPzZ//7/8OYP3/8PL+8OjIAr11xg5c2XLnztF1/o9lbPjvff/f7jP/qt/VriycKwgPeaW35A/dB3PI8SF9tSyPTkEOLIsxJtbLSPZ59uXe5GXSQ46nd26uWk4Xafe2brbDT99V97pKN6sbBJl3fXmMx9nS+/8ubWjWtOHIlzTdkYcy6kaK0RQhQjrCwgowGAEKK1Hf4X7xeLyb/47e/+/b//tf2D+0nQyJb8/qOHrWaf0uTR08cW9Fe/8dLb37u3mJfNVvDqSz93Mv6IYpqVx3mG4wY9fGyDWL3w4vbZcV1Msys3Lv7ar70fxPDM8xtvvPz6lz73/K/9f/7Vr3/7k7/yc89SjaaL8R9/Z9jfNT/3+s8/3XtnXOWddri1dvFsdvLDH55tbrNeu2d0SliymM3jxLFGjQ4b3bU8jPGTB3Y+LCWoN76wu3/0ZH295zB/dDpbLPIo8YpcvfrG5cODs7IsmQMnh/z5Fy4fHZ1OxrnrOEopsMYP0GAwaDab736wt7XROD4dX7rkU9p+8OC0zs1/8L/7t/+bf/YrNVerq82VtcFsNhuP57xWSgGjjGDpYGg3Yod6w+lkbWu75qbba+ztPdre2Wi1Gp/duS2EkkJhTOPIz5dq58LKu28fXbkZO7Tx3k/2NjbDSqkwACsiC/Xlm/rg7vqVZ1p//K8/euXN3qd3zzq+Z0x9kkOn6ez0Gp/cGT/7QlsZWS7Nar+Rz+oLF3eCFvpXv3rXoLrXdRoxrrISLAqSFvFwyZcUh0qLbEqZgznnUtn1XT+Oks8+OUpTaHWCWiwHg7bv4v6gef+z0enJMggol2pjt610QSlOkla+KPf2Ft2+F/puEjXKbJQ0tEdJEvYPTjOM1cF+9rf/zucm47QqY8cv797/bJYaapxWU1KXlsKxjAcec1lr/3SWOI4sl/nCBZ+//oWXPaf64Md3Jmfu+ra3uoUf351fvrZ9dpYv82mzNVhko3IK21tes93fP3h6cow7Hacq6vUd3G7sKLOQAp4+mRHs8Vq+9fNX3v/hw1aj3WxXMX32Z39+9//8f/qVL7z1TBBHTw8e1pVZ3VLDE7m23jk8nBcFeKFX5FJKzhzkOKzfGdSVevLkaRTT11979ePP3kln4UpvxWHDyzuXhcRBAp/df4wxrnJ9dpIiCq7vDwaDd3/8sNNtKUEnZ3xjuwUAjdhttoJ8ucCATV0OBt2T03w6WTgMms3+4ydHN55dOXw6CYOW4ykAEFWArdrbO3rry8/P07y6s1imk9nQLubF9RfAd3fG6TAI8CJbfvOvf+l3f/93hsf13enZ975/69nru63W+vXXb/z43e8ePp20Ov3LVzoHT497rea16zuf3tlP2jCBWbPlJE1GULAYo1/6n1/89X8x/8Efjf7m373+zvfuUeq3O/EbP2Pf+ZPl7uWoswKhHyjhgzb9FTCafviTU63ZwLa5PlF1b2snuffgw8lMbe/2eoOkFlm+nMexv3uph0h976Pqm+BRd7lYTgPwHcwAiVqedlYHw8ntta0L//d/9P4f/O789oODn/3G9agDRcHAOh++f/fk+PTy1TVtZBRjILIo5Gzo++6TVvO5o5Mppc1my1kWC8CiEeAyE9pY3/fPTpe64s1oc+4fLBazStXPXnzt23/yXSHBgrKKqKrRGyTpLP38V83W+oXZsFzdXPv278k/gxv+RWUZa2sswLnTEGOMwT56/KDRiC9daiPsaoVPxycbOyu+l7hevEjH86HutmE5Retrg/Wt+OSo/PjW20HgWUO0Qgio0VZrLSU/J8hqZkfT5c++9brV4CDydH/PDciTw/Gl7fWjp4enw9PRdOG6DBugYDthgwuDKSsqnuV5p+dqC8fHJ3HcQODkSzmbLF1f9XthkUslzfoWkVJ99a2XtZJGASVMSh1EwfrmIAjiVqtVlmWr1Wo2m77v3rx5RWmhtZYSzrcUtQUATKlDCLt8I+50ei8993xdGdfnr7565eKFzmQ8ppRubPQYY1rr0Wj8p1uNQKhVCvICrNWYotnMTqcFIpZg4/mM86rZSihBjOAg9AFMUZRRFEmppBTdTr/dbiaxTym1SnPOraEY15TE08X+rU/uUEc342A+hk63GSUeINrudYUuSw6zSdVqtZQplK6n0/RnvvTzDu7P56XvYmRNsSwRAsdxlFLLNEdAPN9hDNe8DAJPShkEgVIqipJmI0LWcl4RAjWXFiOpyTIrHAcwxcaAtTbL+Pk7EyESei4vawDz8MFBVddaSoJhPplWakEYTpru3v7RPE27/ebp2VlemXbLS8IWIOswn9dSCHV8XGGi44AqJQAjbZFS4DoUYe26pKp5lmW+7wehu1gsNtfXfJ9oLcEyyiwAVtISChZMtqwbTafdbjYajaoSBwez556/trO7ni70J++P3vjStdufjbSpCPMuXtqOG0CIdEmUZcuyzDnnjDEAXFV1WdQIiONaCzJd8O2tS4tZee/u06ThYKKFmoOO54vi/v3Hogoc3wUkFAghBCWEECYlAEAQBJgSraHXT9K5xBTi0C2yZZw42FHLhdVauq4/m09Ay93d3SiK8rIocum4dj5Lu73mdDaeTUQUNvNCVDmcjkbZErcH9cmBGB2jwaZO5zoM44ePjghxDw735ulRt9vOUuU7/qWLUKuz73/3w/feebK+cvNzr39tf39UyymYYGNzRQiphGsU5rVxPciLlKsiX5r5fP75ry0xgd/41bvPPHNze7c3X/DtnY2rz7qjU3zyFOKGA6hSdrE2uEEpnk2kkijNqskMRM2UxEkSZUvY3O4CErwU1lo/Mps7A89zN3acSi0JU0UBrUZ3NpWqRu14K3AayujJMj8Zye//5KFl4Wd3H7zz9t3337/9wx+8//D+KXNBcL2yErquWBk4VsGnHz1iDp7Oh9gm+3vDje1Bv9+nBJ5/9oXAdTY2XLDF6Yk6ORwts3mnC5QmlaJ/8J0fTmYYMT9qou2tvlal0fz0YL5cLi9cY9NpWldjh9nzVby/WNZaDAiY+1NntpQSYcx57Xrs5GyWJHF/pXd4MCHY9QK3qvI0y/+T/9t/tNIfGGnBCEo0Y9hxvLyaU0oRJsZgx/O1lt1eu9lsjs9GGov333vc6aA3Xt9tN7vD8aPTYRY2moePj7M0Hax106wKI7q+FlfFopk0DJAwaDieby3KMu77vlKwTHOlq3a7H4dtyQVzpeJieJqV1TKIYGWtmWXzRsMVQiljxrPxPJsWRXFyPM7zXCk1Gg2FrO/cfVCW5cpKv9FwMMaMuQggL/T+08OPPv7syeMpZWY6faKkHJ1UsiJR4N765AeDlT5jDBMoyjyOoziOGWNGQ81VFDaMBoOV0JIwPBov4nYC2GBiTs+OhagbjQbClmJEMNLGaKNGw4mxoBQA0pNJhYGsrPTXVlZPToaeFyilOt2kqsvBShMjBAieffZZ32lwrjC2tbDrG+HhfgWW9lcTZXUYur/3e7/z0Sf3vIA61FCCjIEg8D3Pq6oqTWuEKEIAyDiew2XtBW5ZV7wWUZRsrvaRBTASEKpr6fpekas000HoGqOYD61Wyw8YIUwrGzUShMh8DhjQV7/6+rM3L7sOxEGolXrmuQtCqaLmD/cOjkdnbkhG05nvkTiOy5IrBWEYcyEajVhUtOaZ51JtJGW+ttZxwGohBHd9DxNothuU4lrwuq7zPK8qTTEYDdQBh3mcc2uh3Y7LHPwQW8MAl9kCMwbD8ZNLly60OrD/eHFyNP/iVy7e/Uw1G+2yBG3YYM3FbJkV8rwtCsOYC+l6AXHcLCsaLacsrOf6Nc/PhqeUUK3IxcsrVTWejIrnX9ja3VlL56LXbxhcKsWV0L4XEkKshXYrUErt7e01256xajheep4zX4yUlhY4Jno0qgBxK935TPVWvCBkUuDjozQvs2XKHc+ursdFplzaT/Ojb/6156sSHu+dTqeV1Ob0ae677htvXk4nTJk0nUsgqjMI3nvvvXRR1bWqymptsNpuJyvrwf0H+x+9//izW0/eePkXxsNlWaW15HfvHluD06lRNRZCYAJhGOfZVJSkruqvfL0Bkr79rXyw2hysdX7y4zuLvHzrFzbTifeDb58yr2Ykbjbp8fHptWc7eV4ImSEDRTXDOJCc5guQXMwXZ0IWjq9qXtSVPniaPvvy7spgw3VbjTYIma+uuvt7ex+/9+Szj26PT0y6LHZuBOuXWJqJ0wO9ubLe7TRWVzvGwGAlrAuphFxdbXgu9Zj7la/efHRHUkeWlUzz1PW8yTSrcjg7OcmKWhtuof7a1y9vbEeI5Lpq7T+ejkZiUapkEG1fGLieNXZWlLXLoNV1P/ihngwnFy9t1KVc35bn2T7n9Bpr7U/9hoCs1mDBnvP+wFrmOo7ngGXClIB4EMRKU4SFn9A46o0nR8MTnhfTPM+ktICM4AhhI7UihOVZobVGGLrtNsZ4mda1kHmh7z18QCmmlIRh+Pbbb9dSBQG88vqLRb2cp6BMUWZZf9A0YIpcllW9WCyllI6DrAEpIIoipWYnJ6ee02skbWOLOA5bjXVROZ/7/LU48ZQWURSd9//GWimV4Or555/xfV8p4XqMUooxxHEcx5Hj0LrWUkqMMaVgDZHC8hpqnnFRMtw6PS6e7D+Uqrh+7aXlcjmbTQgheZ5TRqzVQgiMkbXgOE6z6YLFyyyjlI6mcjgc+75fV4IQIoRijJ2/YxyHYkx7gzZChFAQQrgeQRa0kQ/un4gaRREgG7guyZYFJlDzXArUbZPQDzEkCEDpUhTE2MJh7jKtlBJlWbYH4b3Ht548eYJdRcC0kzAKPGutMcZxqO/gqpQIYa11FEWzxbzVaVdVBYB9L9rYXFPCeD7l3AKmlOLzPFiMzaXLF7a31/eePNFa+2GwXC4fPHjS7LSDAHq93nQ6v3v3YbvdZg6OfIcwIaUWEjw/7q8MDKrThXJdt+ZqkaZAzgMScOg2NMd1VYLida2Z6xiL4sQTdZXnhbHEdZ35PHUcb2N9M4qis7Ozbi8Uojbm3PiAzy0ycRyDBW1qh3iSi7qsLl3YyDNe89HPfOUFY/SPf3DS6WOrWtTX9+4/sRYVufD8KgwxYdRa5HvhcplT6lBK06yUvGhFHVFaMJUXwTJTVY2pSxCCIjcuw5tbXYQ1QkbpynG8uuZRFKVpihCcBy0tFiKO4/FkJqUUQlhjtjdXMcaeG/ECjJVK+EZC0kBhQB0W1hwM6Ml4EQSeVFWaZtZqwPXaRhJEIBQykJ88gcEaajTV6Ci49mybc1KneudiF9NqbeXi0eF0fTO8fLXLa3hwdyJNee2ZgDryycHDX/2VbxE76LRX6ponDQAjPNdTkoVB4ntuMxksUm7x3KX9h3fSwMd5uf8nf3zLdaL5XAcB3j/Yf/XLYV3Cj/5Yr6wH1Evvfjr1A7ZxIc5SLQUA5a0uEkKfSyhRECPDPMdJ4oRzYoGdHclf/ZXv/NZvfIdSUpaFMjwtppev9d783Pb6oOlij1EdBJhnElnwfc75TKus2fCLrGg0GlVhG81AK0qp+uIXX85TVBRupYZvfumZ2bSYTTOkqOvhKAZQzmKmsqKiDjs5slrEy7wkDK5du5q01GI5PDsut9Y3HAKj03LnYsMC/vHb061LVlSBsfo8KfMvpoQCAAZrjQIEyHVdhJDUwiDz4MnDqpaj8VlRl/3+6t7jg+PhXGvJhXQCY3UHO3ptq1+WZmd3cHoyUkJKVVGKldGcc8ehUexlaRqGYb6Qn//yZa2i0WzOVRZFK/cefOy67he+8Oxssdw/OA4D8D3a6/X/5O3vf/zwnuc5h4fH5xm7VlutZKsRFsvc89nubn86nUoO7U7S67ce3DlWkt24cSNNU2tNXVday7osXYpdioUU88XUddnJ6ZkQMkkSY4DXstPptNttQsBaq6wRCrhSBqHVtWYYNIKgd/v29NqNC1dvbtSqqirP85wgCCglZVnO5ynnvKqs4ziUQLqc+gHT2hLE2p2k2YSjw5EfRlHSKCtlAY/GUwTknDZYVcJYWVacMnCYK3geRQzAXL7UPj48C0Ln8YOh5wVJI3IdjzDsOl5V6aoqKfgUA8OWgL+9MUhTnmd1s9m1xqnq5fpmRBkjFKIAU4LBWlFLIQTGOAgCxY2sFaN+VXNjoOR1s9k8zwlzXVdrZKwCAF5rADOf5pQAV9LzWBD4QtgwjBfzNEoav/BXvvEL3/wa8+DBo8c//smDpBlHUUSo9RNa88xo4jpkNMwocQxUGMP6+npeSI2sQ52iKpuN4PhwVhVic6OPjVUCMKPUpVEUWGu1Qnlh/ShUylDCZrPFyy++0m63L1+8VFUVY8waqGvu+WQ6hqKoVtc7jJEkdnlhej0yGxXtJE7TJ9evXrpwEWsdv//hQ6lz6tVVvXR8kc0dKYznBXUtirLGlNZ1Xde1UopzGA+5tbjRSKo6Zw6yAJOzgtc4ifueC8fHx4fHjzY2O1VVJ0lzNqtd5nIup5M6joOiqLXWzaaDCVnMOKEmabJuL253Yt+Pjw4mgMB1nWVaRBFhDPm+73lOnIDrx8xBrVanLpE2quTTlcHq2en4+Zc2MGVnw5yXzsuvd8PA+cF3Hl6+nhzupyyCVtPBYLNUDfprUhfUM4u0znPd6zsEe82W++oXWG/VHBycvvf2+MnjRRh6iGpMzHiU/8LX/3qr2f/gw08brabjOePR7OAhVVr8z355K4rwD7798PNffK7K4vlsGQbdy9c7LChV3U7TebbAh/vLzZ04naGNbdRq9iwZu563cyE5OV3OpzWvaFWYvUfLP/j9Hygkbn24Nx4Pmy3Y2IjBeIwmcUKCKESaUCoRKkAZK+xg0HBc8NzGSy9dlLVoNl3QwKgucwa0ZiS4cqX38N7ZV77xwns/Prrx/NaymJycpoQ6nuednZ10u435XJfL8PRQ3b89X4yh4rPnXuzuXuicHj+UvLTaVimMz8SFi910Uc+XyxdeGXz0DgjBu/0QIxJFEcb4HPV6fhSe56IgTAAAqrJUSlHGgiQ8Hp5kOSDkMRqky0lezK5dvSAVLLP5Zw8+frw/1ta4oU3nvCp1UYo8k57HLLLdbhchSxk0GrGUst3oOsSnzN66dXBylrLAcTxPCjQ5O5LWzuZ5UYGSBBlkLBstysJgq/TNG9dcRmfTmTEQuB5Y3Wo2eIXjBkVoWZRZluZBEPT6YRxSx/PefuedZrvR6TWZQ5vNxCirhEEIRqMzP3AphXMZnRIAQDUvjTGcg7KGEEYIRog4rn90sJjN5pUYbl2A5XL58OEcIf/2g+83m0kY+XVdU4pdl/m+f77IaBUyxnguRga7ThjF7oXdtUbSnKWl60fKwHS+LGvp+gF1mDK61U2m03Fdi43NuN/vZ/m8KGQc+o7jcGEo+GvrwdNH46TBRmd1nATW1MUSHIqNFqKA5Xx5/cr2S88+H4Qwnc4JCrKFZowAFVJAVUEj9mVdKS6stcboqqowpgiRPK8JoUoZLwwm41mr0zPGFEVVVZUFLDRYBELIvFhmi8x1cLMZCCP29/cRAqXUeShPnuff+s4fxo2wqODmjd12q//08ABjG8Wu5+DppLCWKAkbG1uE2DBkSojJPHc8yHNTVQVzcDqrEcCg0wz9yBqwCKiLjRaUIEr8+byeTeau4+ZllcTNX/mVPxRCLRYpBoQxWAMEMwOlEjCdzimDVqtTFFlZzVdW20aTR/cza9jB4d5Xv/65Tldh6+S17PdWhuMzwmBlZTAbSsYcrazWABafEwYZI1EEZ0cQhh51+GScEuy2uyRpk/u3Jz7pA4KN9YvGcj/SUhAwbO/hyHXdp0/2wxBjjKUEY4wfBlmWZblxPNNoer7vSlkxGhwfFsgBBI3xZLqx3aIouHfncLE8SZowGZUYMaHSLMtEjasKlsulNd5isSwqMR0qz4UkiZpJYqHEyH/wcH9zK1gul66TSKm1qS9d3ny8N/MCd3UTjMauExdl4Xj257/55RvPNy2gzz6albludwIwgmK4cePZnd2Ly6UM23B0IJ4+NJip1z43yCfx6rqxuv7hD++88vmd5czlhR+3q+vPNbxAnx4a16fG2OOTkzBxty+sZ6k9PiiePJrn9bLVAqVMWSy1Va1mA4yHMfyNv/XKv/fv/Vtvfv76hYvr80Wppbdckju3p8JEzHXCmObZMvA9DZwLuPXZaGez34iiPFuEfos5Jl8qTKvRZFqV6ehsmBVnV6+vnp3Os0JoqDY217ArKwFGoygKaiHu3z8D5PTXEy+Ss9lkMpxurXZix2lGEQDs7x8iVnoxTCey2Q0o8z5+FzYvQVnLv+iw+XMVBay1GjzqnKsoACCUnKeLl1/ZzDPpsFhBfTY5aTVWCA5W19sPHz/I8+r4ZERdU9eArHfzmbXFvCbU5sWy2WwYo6uKM4cYY5RSzUb88O7hF3/22clEG0yFWcTBJufz23fvzRfl1vbqYqY77d50mmIHWzc4X+xfLBYYA0FQ85JS+rf/xt/0nHaWT1fXY8qstejh/Ue7FzYuXhn8yffeXlvbSJKkqouqKuqyIoRQTD2PdTqdNE2thTB0pZSUOpxLQgihSGtQ0gKAMcCFllJfutohKBRl0GpFcce6AcLEmS2rRqNBCFkul9Zaz/O01ue8AwC8thI3mr41ZDKZ7+8fL9Kx6wZHRyezebZ74dLT/eNOp+eHYV3XlFIpJedVFHuUnWckNK2Fuq7SxbLfdZYL3u76T/eqopoEfkQIErIAc46jFUnUKHO4cGHtk48+DULwfXc2WwqO61oQQpSmYRAwCoAMYwwjorUWwhBCECJ1xZU0jUYDATkfnHmed47sBiC+j4QA3/cnk9RaRDGpeVmWpTL61VdfrAQHwFLKvb29tFhwxakDe08OP/joMQIijfQDWtc1YwQjioAqpY6OD7e2tiaTUcWh0YqXuaprW5RLj8UEwcN7DyI/AAAuJYApihwhxIiXp9LxXK7OlT4cBtBtd84HOnVdW4OiKNJaeG6gahiPp1EUVxXvr1EEwc///DcA4OSwyoqzsixf+2JHSNFs0rIiZSlchoFOeIUYdSllGOOqqhDGXErqsCQJQbuT2XGUIIwch4Vxg9Rc14X37o/vhBGcHI89z4liJ8/408PRk8cLhMhkwq9fu1ZVleOA63mU4vm8MJr1+rE2NSPU95wwaPQ6q0GI5lPu+oBxvff4eD6p+ish8WA+FVo5XlhrU4oy8By6vbP29OnTg/3l9ASaPa/TbVYZYCJb7UAJF2O8vhGOh/OAtZbLxXw5HE/nzz23my6nGIHSdcGfej48uq3+23/yrZUN/MrnA7Cd2VTOF6XjovX1tX/8j//xRx9/sLXdLvJ6NsVv/cLVZsNdGTQ++vA2GHjra9d5SW99ePbaF3cOzz7GpmuUt7m1yuUiaWk/ktaAH1fvv3t066O9D99Zjk8tArSysgZWXrnevXg5qOtyubTIsiR2y8w8eTjZf3KaNF2FFkGIZ+N8vBhpRJANHBqKGoHxmRcMZ9nJ0bFLo7XVZjova54hcNN8EjUiKQCzPIlW13f1/bsTihvM5ePx+MWXrikJo8kCOZXGVbND2gOnt1nWnBPb6Ddjn+H5UBhR3XzBe+HlrWajFyXIGJjM0i9+rfXtP5wlbdVuO2VZWmsxxn8WEQV/Sm1A3BQWKAEXAZ6ObJrBS89ef/HZ7dOTPV072LbuP3gSxyFlTkBpf83Mp55D46qEOCbj6cwQkDqkjjNNz7DbMj4YVy4WejY5DoJydMrLhdzYdIh1lXA3L8bN3uoLL27PhySbTy5c2Lp4c2Uyz3XtNkIrFSxTIw24LiWAEbLA+B/+4G0DFa9dDb7vtpGd+a4KfPrZramGKoyDIiuxoUpIi3WtVSaV3zSIomWaN5our7nHQooJQOE6yCE+QWA0ttZiYlwCDDCW3uNHj3hdO7Q9HlaSS9d1VAnf/fbHodd3Xc9qE0UR55IxwAQQ1hgxLWyQuLnSkxyOh/Do8enDJ8Oz6WQ4XhAc8WqRzudgAs+njBgloNfq8FIpnoPxdy6DtBX1edRsupG+/emUUEZZpLS22KZLTEEh4tUgwzglzP9vfu23aOisbTSmIw4WSaPvP1K1aGvFPSq0DanjGSIVSGkJdYO0zDsD32J3WUyDpCDWkSUZDZ8kDf/o9LNP7z0kAZ9PgTGwui7nvlKSuNJxHGOMqvz5/Nh3NMWthw8fcVV2E59hbQ3VRGEKhmhiSLXIReUJqTFFiClkCLUt7PCTWdWMQFQojKHOoZqif/APXvv6N3aqZWu8GCUxlqlz4bLbXgnrGjvWdSWAkkkUABiBlvMFuBEWMqUoYkxLYS22AHEtSka9RoAw58QLauF/+smj5aT6e3/vjZPHfJaeIMSgBuwjBsxBk/3DvNPrBCQYL5cIMdeXzUZfmIWSCBksyqIZxQaZLDfUI3mpi3zms8jzgNLUBtV4DINe1Gk0q1JW9qy/7j7z4uDx02rjAh0NJ0lL84qGLZQtoC5Ys6vazaRKdbvTHI7UcP6o2V9evcpIsOyvuhj7BiBp0yL38gXFbsmwsnW8TKtJmjuhfzbOH+7N8wJRB5pNXAsOzJa8NhotFoe9rjub2NnU9docEVrl1mfeaHgyn0usvOEhREEvTeHSjc7atsdIH2GytgXr6wMroFq2h9NRoZaD7nNhc/bwXi1MGSe9V74Q/8HvPUjioBlsHz4Z/dzX2/v3x4uhvrj+BanmQYR/8uO7p0cq6up5pk4PgnyGPAIOJjef7V5/nnba/Vouj54GJ2fLxYy3k0bi8J4T1LIAIqxuI0qabbQYK6y8QZeMTkUU9DQZaRBaO14kJC+tgKNTiQOrbeiGweEBNl52dhR3ek2jhRbxcjn7+L3pM89056dj0F5ecu0tN3fWpQbPwd1G8vzzm44zW+88E/mh0SST2VJXzUGvv97vdduf/OTk5PTw6HEdRXjv8WRn8w1Gxcdvj59/XgtuECAEjtaIEAToXFMG0NoaAwBGawVghKiF5OPJ/PDo9OGDk5X1FcaQ0jzPl0kU13ngepY6HGPc7oOlJ56PV3vXZ5MRUmEjjh2Mx0cQup4VWpZQ1LzdDu/evccYs6CLoiCEpWl6PBwxDxXcjiZnn3z68TPPXG9249PT1PdhmS1c142S0CKDMVZKffrpJ77vG7DGGCEUYU6r2UYIP3w0MkZhAlJxAOBc+L5PCBACyOLRaAwADnWjyHccr6y4sUApI+SnwwFjfoqr0FqfnJxEUUAIoZQWRVlVpZLSdRml+Idvf8gY09oKITzP4xwwxtqAtUYpwXmFEPgOQwhRSrOJ3t7YuX97Mp0OjRV5kRGqjJEA4HkeY+zkpOp0WlJKhCCKG0dPdBCb5164mjTZcmFOjlNCodnoEooQQF6kSRKcR9Y4PgqDGGHbaLjT6TxOwihid+8cI2QRQlpIIRTnVkrQyiKEEOCyqFcG68eH0O01HV9KJctKaAV1iZSuzwGXUoK1iHOOMAQh6XZbJ8fDRsupqspapGRRV+B5zjLNjbEIIa0giiKtgDFfSajrerEArTXBgBCKomQ8nlAK5/vvvs9W15rMAccnFy5uKF27fuhHbJFyx4WysLxOy0JcvNgUwmhVIwS+44Yhk1Jai+rzbxW4o/HQWtNsM6nrdidyPWZR+fDuvNEMvv29b/3H//E/anVb0zPMVSW0aDYTqYW1Jk3n2nAhS8dFdZ03m8264lbjquKEEM/zZrNpENIo9sqiBkuUtJzzJIFur312mm9skxs3L/a6a5xX1tDPbh1ny7qqaskdjLHvOcZazw1OhwulZLsT1zyjFISsHMeRwg7PinQuscVZxpfLfGWlH4bhZDLhXDkOErLGTpnOjVHQ7tIyR4szoo29cKlBUTcvU8WjwOt1B+TGtVeYn46HtUZcK2eZFt12AxmmNGcQNbuq3+vdvz2+dKVz4eJqf6WZZ5pQc3xQb+7EjQ5UcmoUG48Wi+Lu8RM3dp3rl9b3926lywlzobPWbm54OTpc5uaZ182HHzzKeOrH0Y9+cHrv3llZBqrutVqQJHjQ625suzeeG8RJEHrJwf701vv59iU0G8vAT+7fnfz8L7x08/nBuTpxdHQS+AmlDkJICH7p8q7k+PRkQgkN4zBMfKkEALhe83Rfb2z6d28fc5EWxVxXYKSYjM86fYdQ987d/fWtjuMCF1gK3Gx5J8fjIFZra+3hmej0vPF4OBnawUp7MbVhq1hdj+s0yFLhePrxo5PlAk1P6NYFHDl9bOHWJ0+/8LXeH/1OHsS4t+IZ4AgLgHOGAAAARoicB87/aZieQdhgbLq9jT/+zvcabX8ymyat6Jlnrx6fHEZRQnCgrSFMTif5zRsXCGow5s6Wd8syHx4JZJHLGDFw7/YDl7r/wb//vz1nQZQV+B612vi+v1gs/MBdZFVr4BMSU0/5vnvns0fT8agZ+77vHh0dFEXuuq7v+whZ5lCErDFmOs3Ksg6DmNfi4uUrR8dDAAhChkAbo84DWI0xxgCyoIXGlqz0V61F6aJyXA9RiiijmDiOQwjGYLSyRsP5WdPr9VZXV4XgaToPQ3dtbUWIWmvp+ey557eVkoQg1/GGZ/NGw5VCex4EoeO6TIiaIDDGWA1gMXPcJ49PGgmsrfS++nNvbax3tK6Mlq7rGjC1qDodKHkNAIxRABwn3oM7k+OTJ6trncvPkOGha4zyPZgv5wZASr66Nmh3GlIKKe18nl64sEsoyrJaGz5Y6SUJOweiYEzP9XclQRmDMcYYFwXf29uXFQyHJ52eHwSs22MA4LAYE0soEEKsAQCslAkj3O6EWmtRQRhDmmbWkJqngecOhyPG3CSJMcaAoMg5JTTLK2Nx4PntFlRV7QUIAC/TbJnWCCHPdctq6fksajiI2Xv3b+flZHWtXfHaIBFFSZZl07OSUJjNFm+99dbF7VWMlJIVY6TdSSjDNZfMZaIC16O+745Go5rLVttJ2j6Aycr87Bgwg4OjdP/g6Ju/+NbomJyeHWstNzc3jTGNZtxqx0KW7U4sZEEotNoNSj2wVAjl+z6lmFIqVZUkobUghRUCjDFJw9OGF0vY2GopWEZJezJfHB/P5hMznedehB8/Lo9Pz4zFeaWlssXCdPqYYiDEcmkoM4Ds+tr2YgZWRQgwAiiKijFHSJ1lteNAIwm9GI3GuVQ0Sbwy5/uPhqrCrQRcj3K5AAtK4iRJMMbzxWhza2V0mO9cxPlCK6GNIJrDlSuOqm1ZqpvPr4WR32h0lgtb8DOE68moYo6999lwMYYbz7ZbPRUlJC8WWcH7A9FuElEBr6HVaUzS6d7T2cmp884Pxg8/S5wQ3n3nbhA2rt3cjLp26zI+fLiI/UZd55UYX76044dqNt+fT0Vdac9li0VWV3Z6xq4/Extchw2wIDnnJ8cZ54ISz2io6qrVDl3XnpyMz4ZqOtJ3Pj16ejCnLtG6mM9KnvlvfqETu9s7l8J2qzsZcTCitzK4c/+WsXA6Gi1S0Wy3xpOJFwRB6GMG2ztrG9utk+FIKXPx4tb3vvf9bFnHDWKtPjmen52lQeDFcYtRr9mIGokH7DSOvIeP7gwGu81W4/5neH0zNpABkoQgY/5UU7bWnt8NrdXGKgALYBCGu/fv9Qdrr7/xOYzRcHT0/gfvxJGvpdq5FPquNzrGntPTaDQeT8D4KysrxMFnpwUXJk3nYRQfPB0ahOdZaSwSUsYx+IFLCHGZl2VZu93OU5Wmp+mUA5gvff7Ny7tXQh9efu6VJA6lVOczR4yxlFIplcQxQpAkXl3XRV0TwtZWN6TRzIFmI+S8QMgasEHgF3mpJCCEESJGWYe6FLMo8KuKz+dCG2CYeC6jxBoD54mFANgY7TjOdDqN46isCgBYpLNGI97d3UVYR1FQVYXWFmPsefScURqELIo9z2cAgBAopc/FKdd15hMRhnSRjqqyTuJGlgmHhVJKQshsPmm1G1IKjLGxqKq4F0Kr1Tk8LLoDZ3PXaybdIpfGCsIoxoCJNUYazTkHKaAouRC11hoM5byq68JhoVTG8ykhBIAaC0IBl9ZaZAxUpegNIgwB5yoMwyhs1bXURghRM4YQAowpxlgrozU0W3GUsGxZVwX4HvZZFPit+SLPUm4UBEEQhE4cOWBBSUkIqapKgzZGua6rNZz/WOl8riW0ktba2kYU+57nzeajICBnZ2fKZL/4iz+njSSE5MW0LokfsLKQmIi333mn02pTDPo8uwZJz6NFwQlFnovzvKSUOsx3XbAgjJWuH05GQgpdVPXmduP/+o/+E8c3eSURQoBIuszzzB4cHhdFtVwq33el4koWWkuMaF1zZAFjXFVlv99nLlAGCBivDQJkrUXIFsXS6uD+3Um709CaB17n5HgKBHNhGEOKw9bu6mBlU1s4G83B0o2tTl2p6ThjDOq60Jp7gd/tBsusTFOFMa45nJ5Nzs5GWgOhyII02BrdkKqypJ6NSJXp9W27NtjJskzpamWlm+cLi/LdC9t3bj+xOsAubG9sposMYXP37uzNN1596bkXGakdGp4OH7U7MUZ0NoLBoDGfp5SywYUyzTJk2HxkXntz9/r1rYe3nFde2UHQ5gKPpwswLJsHDz6pbn88npyJwA0cd+kzv7euPvzxwe72hY01d6W/7npycqpXV4KLl6PlHB7cG11/ZqfVWmt2fUxQlfkXL3WLgjs+b7RYzXEUBcvlotFg81nWanUsaMeBssqaHfvMs5d4iT/5MDs7IXUJSukglstFni5qawlXp51kzY/Sdive3Lh0//4objmrm73lHE6OxJOnT0dj/uTRrNX0s1Q92r/THlCHxjVXzzy3a7XrhTid2bPT8uazW3EMDx/sraz0hcrW1jyLy9UNKIq6u+Z+9N7k+otrP/o+Z4xR5GgNxuA/Dcv7NyBeP11dJoQwRg8O95bLVCllrW0k0euvvWSM+uEPP/j93/zsyuXnLl9vVnzYarXSKT14MhuezeJ2UyozXwjEaKXEIjfzvPzH//U/LUoehmGcMEKAEbxYLHzfV0rFQdTvNXVtey32+7/9nTrPXnv+pioqx6EYgeM4RV3lVU0Iw4DOOfhgLOecAFpdXf3t3/nNs7Npp5sgbLmoDFhrrUUYABMEhBBeS0JIo9E8PZy4rnt0cAgA5wmqQeBRio0BZAAUBosB4PDkZDpdaGu+/vWvMoeUZUUI2d3ZefPN109Pj621QeCdO26k1IQQggEDZFnq+Y614HkMYWutLcqs3XYpw4Rih0WPHx1SAmB85rmOQ6MonM3Sjz7++OnTp5cuXWkkTYeFYXNJwB+suWdH+vk3bBCAqBkmjLnU8xylayF4s+loDVLYk5MT3wsXc+X7ntL1YlZ63nlKV1VVldGgDVgLFhleSymgqCaej4slfuftvdFoFviJBU6YpAwpBVprjGhdC2sgDH1r9WRUIQytVoNgty4twcBLaDabRZFpLYKQUQa9XksIETcaXFW8KqucJw1Pa12WZVVVVQVJ2BiNzpKWK7VOc2CuB5hl+eRseNhoBkpqIFWxdIMQlSXur8W3PjvZ3z+IYkYpxUCULoPQd5grJVcS+65vDdYKW0Ncj/T6nWxZz8eIBSrPjUWwd3D0ye3317agrLjW6OHD/WY7tgZj5Gysd5UyjLGy4mCs0VpK2Wo1KAFrDGPOxnpitbQKjATm+soariRmzHXd5Rw++vBOJdPZrDQWIyap40muO51OnHj7ByeEAFjqhE66nPleoiQ0m2Gr1QJkCLVra32ltdVAEGUMlUWtDHgBVspaq5QELZk0QAjMJ7wzgC9/9VKRldZaihsXriSrawPH02HCDx6pRrR66RLN5qbmOaG63yenw0exv7F90Z/NiiTuNBoxIvVHH955dKeStX/t5tpKrxmHsQU6Hi6ybPjkYO/qjbX5Ynh4mr79o6PxiffooRyNTtc3YWMVvfTsbrNVXLrY/Hu//OriFL7+jRsPPj3tBi9m0+rGc73xOBccgiBKF/z4KYzP5NHR4WC1mSSBMuXFC9cuX+vc+kh4ESAUUkq11tbqfr97dHTQ7XaLAqqqaHeidru9u3MNFFjr+l4ACKSEN76wMTpLEVBjzCx7iEzr5c9H73z/wCgXY/pkfwyIHB8udnb6P/PllzEEeV5FUcQYYgxv724JoZd5VlZFUaijp1Xgu2U1dF2ECXr05H7cJMeHp54Hgd/GFCiOant8crJotuPjoxmAC9axFmNEAQATOO+oznNSKMEMAJ1/2NnpOY4WNceAl8slxoCQfe75C5ev9b7znXdHw+x3/tXe4X568fJKu0dl2bfWBk04Ppx3u11C5TKD2TIDB7QliEC7k2hVc861tpQ4dV3VZekQaozxfTzoxzdvXDg8PMYERaFflqCU0srWlabUYczBgMLAM0omUewwurm53ut1fBeKcmmkOs9CtYDLsmSMgQXQhjiUC6m1Xl3tHu4vep3+9ka3LEuKWTOJPZeeTwqMsVpbhMBadI6zoMx96623OIckaiRJ4vv+uX3P931rbZ7njBFjlbWacz4ZF3HgEwqB71KKlRBRjLjSs6ngtTw9WRwdye2djZ8O5hCSkjfa3vPP3zCg7969ayyJG46QZn1jpa6UVOX6eodSQjGaLXJtkBf4hGDHoVtbW0pBlhUIEQBcZhDFQRyHGLmMEYS0VLwsamuJAUQooZQKIRijFy+tIVoUGbp2bbXbC+fTyvddbfj5NqbWGpA5d1wRwqSw2VyvrSVpmnHO66L0HT9qAQKymOcUES6KTpOBtULYRqOBEEJgwgifO/drUS2Xy2YTMYoR1oOVdlnUFmA0LsoMBaH36PE9LnJGSasFs2HuelQq7caktxpN51kUBZxzSh3PZ8YoghytpOe4UoqqKMajjHOdNDyErOBQ1xAmUFVksUyznKdZ6YawmOeIImnAWltV/OT4jFLn3HGNMYSRr7Vk1La7IcKKMXJ2PGaMICAIEcG11tpxHKNBcCjrueNE+0+mSoluv1fWRihIl1WZw7Wrm1HsTieF60KR8aSBQj8osjwMXSNNXQuE0Gw2Oh0dOS6srMQAgBHFjPl+wBgjAEkUqTrMyknoI8kpEDFYjU+O5rN0xEiTy8WH7+8dn+wPVkPB4fhkPhlVW1ut0WmKqcSILlJNXfWbv/m9RsdLoqTZCpMWPLx/LGrcSPp+4CBwrdV5kV261Pp7/86lxTTNho2PP9x794fVZKwBq7hdv/n5wdZW/NzNG/1OYvTwpReeufXeQtfO5auJKFnSHn/8/oNrN5sEwauvdzc3dp48mk/mx47jvvuj09PRwmpv61Jba1Bw2uv1JGdv//A+C6TjeMPhMIpDQEbIOs9zSkFwg5F/+7MHrU4De8DVVANn1KlSYIE4PJp9+snJ2jbBMLj8TPjprVPBbZbljCS8hFrobi9ZX9v65KPHBwfDk8M8iFCz2R4Os8nicPfillF+GAN1qFaglWCMKYnjxH351Y1msy2k9Ui7yPnaVvjk0WKwARVfXLs5OD6cAbgEOz9dSD7vlI1R5z3jubFeKVOVoqrk669e31jpFunCpa5HPWutscrznOvPbL7+xuWylhjDrQ+Wj+5ljZZXiWE+X17cifkSsvms2SSMxGVZe57n+0GapkkSEYqqIgtcr6qqJEksQqPJXBphiLl8/cY0Gw4nKXEpJef71EhqYxFgRMuiJpjJssyXZntjfXtjfTQ82VjvUwbNhocxBosJYdYiLq1Q5nzHVlvNGOWcn51OvvH1N1YHvfl0BsYyxpIkcj12/oxaQ7Q2CINWyHGcuhK3b9+uqgpbQAglcfOP/uiPFotaa31+nPm+X9caIWutzbIMAPzAazcTKXkjjrQGTJnkWCpw/eSddz566eXd1fVeXi0cx8EMa6s4ry0yN2/eVMocHBzN0lk7ubK2xY4Pyk43EGW8XGo/xFJZZSyj7ng8ppT6vu95ILXVCtJFjjEBAKUU56rmOk5C13WsBcDUWkQoog5RGoIgOD6atrpECeL56PqzvapUGNMyB6VUEODzeSvGgAlIYZSyBHvNpnN4MAkiShnUlWi1zsPLKQBFmjQa7dFwYQ2qKokJ0/p8klCdU6yllINeh3OujVik46rWvketdpZLfZ5nX5eq1fKUAGMVYQHXZVkXQgsAbDECRDiXGGxdVotZigGKomi1wyBk6RIQgrWtAaL6bDRyfSuVkYqESXB0wsej+uQYms12zfN227NYMY9pZIAAQrYosyhylFJClggrqXJtKqXUaLTIsoIx12iwBvKcU0qtxUUuL1yOWu1E1kFZ6LIeg0XLOfQGURKgZhtNxqfYQhD4IGwQ8HSWWVT6Ie4POpPJpNcdTCazslStbhJHQV2Lupa8lmVRVxVnDBljqkwGPmhFy0xt7rgIe9/91jBO3HQuOz2nWoYHT0eNZoBsvLYFXJTY4kYzpBifnmZFjuNWtCzLs+H8zc+93ukFh8ePD59wY/Xe/pHQo3u3j05POQKstVxbW8kyQAh5Hn7ji5eeucm++Y3XjIDnn7tBnTLjp04QHhzy0eJR0mK/89vvdFdCFqZ79x0Oszu3pyv9i26kTod7SgNzMPNwWZuoycbj8dnZKI4CbaaLxYwxdXqInUA6jsM5t1Y7LrJWAhjPY1rh82Dbs7MTowFRa0FLoanjj8fjnd21pAvGJHlWiRpF3sAYMR1LhNDlSzu7u0G2TB89umW1cigsZlW6qBBhbuDHcdztdvf2HiEAxogxcHZijYF226sK/ODutKzznUuhhQgRyFLgvDw7rru95Pj41PM8YxTCBiFlgQOAVoDPjYcYA0YUIWwt0toqqSejw4213mQ4cplT1zUGSJJ4NDpLs6M8pZcvrX7jmzev3PTn8/TRg8lsLH3stho4dOLhyZRgqTkihOR5TSnNc6O0DMNAKaW10Vp3u93uSl9Z/PzLz2NGpbW5zAppz+ajo6MjzyPEYUUuGKNBHAkBhBAhRL/r7u5sMYfcuf0oioMLu6uEWoJZVXEEREntOKwsS4SAMZZXttlpW2uMgcPDwzAMOTfNJKGUhkHgOBShn6apam0BQCiV56LXGyyXy/0nB44DdS3u3btPKb14cVMpcBxHSqmNPLdza22LooxjRAjpdrt5LpvNhFCwQHmptQXBdbooms2kFimhEmOcZRkhBCGo6/rs7GwygcuXLy/G7LM7d+89ehD6XZ73s2IUBCCF1RZpCZ7nz+fzKIq01q7rCCEBqJTaKMQ510YJrlwXHIdF0U8j6JQy2hoAKyU4jjM6464HeV47ni7q4263u0zLKEwEl57nGwNaW0IAIahroRVSWgcR6XYixnCWF37gegEgpBE46aJst/oIWFWCNWSR5lpb18PWKD9wEIKyKgjB0+n08PBoddCv65JSpygVwZ7gQIlDKV1baVVF3m61HBcO9idxgxa1rI0wQCil29u7WhltpOvQquJJ5GsDzVYsZX35cvLc85eN5VJWVVX5EYBlUtjZooxCnKXGxYmUijBLXUwpSpczpSCMfADDGGq1OkVRYIwoA15nrkcJIVEYWoMwomVZY4JqDpxzKTTBzjPP71iUHx8snjw5HazGi7lN4o3xWd5stsMYOC+CwF8uK7D46vXNnc0d6hilqzD0fd+fz1MlgTFECDVGKwUIgTFQ17W1EMeNsiwRkVLAfCq7vZgyWxW43ewAYpTi5UILLqoceU7LQrm11a/koeRUq6Xn+b3uBkAktaIMXbny0tnk04P9sUODF1989sqN9rPP7MZxoyjTRjO4ejNwguz//V996NHIbywYjuYToxfxvQ+e9OL4s48+WVlZa3e6q5sDv0WZFyJHpUtSVkrhMq3GUjrCZI8enTrMDyITJ1RbbEnVHpB0qhRk0yHwugycHeSeOq5F4GltzvMdOa+qqkD43GzA0kXRaBHHRYeHJ27g5ZlSEoLQUbKyptkY5NgkzJXzuXz/vb29/SFQayU5Ot1Tdt5p9wW3K+vBzsWuKMAPnL2HE8pwEFmlvNlsDiSvKzDAV1fWFQcluBfWyxndu6eEqrgowDvIFuTwUeH4Npt52bR58LRY3+hZEBa4BW1Bn5uvMQBYizEBYw0gyRjjpb+6EZ8OF47v5WIptZICc4EpxRbny6Ik3mldlEUxfe2NC2ubYBUEEew9roZTvnbFLheBrl3Nhe9z13fqomy3XC5nVWWZ0yzriUNoscxcVHmunkwfgoodjGejebvLHu0/XZQVcjXndeQ5oJVRJWUEiFqk6ebGs51eNxMjYZ15tnCpu9aBSluutNSq5gUy2nMcSomUxlHQatUGVRbDfMmbnebPvvXM5HTuOLSVxK0gohi40pUx1iMCgYMIxpDmszBweJm6DLJ80t9or6w0ZotjzEBjQ13PGmwVgELGgNIIiF/yvN2STHmtNkkSty5KII4SIHXkONBKUMvdUtyARM3EUmqqEqzV6UIgC2HEwPKbVy+vdLt37t5eZmNtYGV1CzFWTpDrYw5qUVZhsLHM9gkWPgu15n6kEVNaS8EtIYwS5/hwfrYopLFG8NgBn0CWz9c2w3m6yOtgkav1zeTxvVle2P5GSAjLsiUFBzRgxBDyFQKNQMl6elInA7kxWF2JXVLncQhZXbreapkv/Yb0nYggtsiO/DApa1bKMWOEMdJqkU7igYWinGtgQqKLV7ra1A4NjCkjP1K2plH9279RnS54rSvfZ1jbXg9VFWhNJFeI+xak6xhTEgRThwVCsSDyEbXYwdP0yHFpEixDmjsyICjJtJYp6rcpYbLOwfc7aZkZuny6V/aafSpko0sq4dYjiJnHDa0KyIspY9FkVllMlLWE+HUtOn03T6kbT6oCGHOjADwHYeMGgRwe7/NimcTJcJKfjC0wDHjkILh+aWANyaU7WlaCQ9BQ2YKfjId1DYNeP0tT1wkODudAgmVq1/tNyaqyDoVpYhdqYa12AS9khQse5CX4EbQ74GAU+LzRLfOsRKAd7AGWvESyZEdHd40mWuGS18zHhHq9FffNt+rbH4/itnq8f//W3dGD+9n41Myy26Wonh6mh09Vr++k40zksBhKzMqo0d+91F3fiMZHe343mtcZDVpnB/07nx6+//2TyclorRcjWxvOjOarK/1qIhxhvNL+g7/5JU3KyTiIku3lsgwCsTXY9jB0uzYdO9rK7gYIxSnqMhr1V6jruo4npkPqMs+YxUprO4604YHnm9li6nnBWrf12kvxSgtchKypwLp/92/9zHprEAbtyVRpWi0zYLjBMAPQ2TQQ3KysRN2Oc/K4rpcCg68KPwq8s6dSK1qJcZpna5t9P3atIaU+7nS7B4e50Ha+mDXaKgiABcBw9/RkETahqgGImmanmxf96bgmOLCGIEBGY2sBIYv/lGZzrqJYAGOtZow0G528rFzXD8NQa3PeUAAAwZ6QOIx8KayRqt9HX3vrcxd3+1Lx8biez3Nrle97CFmlbBQFjLE850EQIISEqF3Xtdb6vo+RI7gqimplZeWjjz6ixLOG1JXGGCFAlNJzzkKel57nj0az1X5790KHYnLn9iPHtYfHJ1XFvChM05QQ4jjOnzX7UmrXdQnGzWZbSul4jFL6rW9969LlC0LUSbNVCdnvr2gNUirXZWAsaJBGIwRlWXme12q1eA2u6wV+9MorrxoNxoDv+3meA4DnM0qx4EAIyvOyrgUi1JL6YH/qeoARwcQAgixbGgMEecPhGUZUKKkNcl03CFyljBB1FJJsmValXNtmYP1Woy+1ePjo0WADeBkGTSOUmE3nRjPJcac9YBSi2NR17ThOHFMlochrrSUg43o0y7IgdFwXBqttN3B933ddF2ENSlsNngcAQK13fLjvB8ihjhA4abjKSlVWRrggUZnrTje6emHn/qe3+TK/vru72kocA8UsbTXayGrXdYsicxwg5NyX51trHcdLkiQMQylAaUsZHgwGhDAhhMM8SiiixTIVvts6tysj61GGAKDddcsMuKjB+nleYQzdQffw8NjzvHPLl+NQpUWn7SX+BUx5r3VjkZ4GIclSOx8CpTRNy5vXtgiB8XA8GARBENW1zAqBMe72YuYJhEFp6TjUYRoh7LouIyzPSillXdetVsMYI0W5Olgpi8Lz6NVrq3XNgWAD4DvNX/rrf22ZLY2yT/ZOKGFVJsIAJ0m0zHKjkTUILDQSVwgFAH6Aaq5dXxUFNyjNlvXWdkKoc3pYSFEs5wstgRJMCElTKEvQWtY1rKwknPOy5EqJJEmMNX6Iy0JfuNC/cGnw3vufMTcsqplWhAvEOTk+nDy4/3g0EmDZ6TEfDZdXr13I6/lLL75w9Ng83auYVzx389nRgX/t5sb6RjeO45U1t1ZHs7Hhotzaas4XZzsXm2enU66O//rfvvn8y2uffpA9fjAPWe/azbWdC8Hubv/eJxoB/B//L38dm+vb283jg0PB55zbh3f06q5YzEmr7bf6ti74ySEY4wVhOM/yre2BqEBq5ceYyzoIvEU+d9wkqyZlgQJ3zQLnMh+stF99c/3GjR0jGBhTy+Tize7jRwedZm97/f9H138H25pd92Hg2vHL38nh5vvufTn169cR3Y0MIhBMYpAoygoWxy7PSGNJLtlTpRqPp2bGmiqrpjRWGnlISaSsoUlTgSAJAiABAmg0uhudXr+cb44nhy/vNH+c9xoASz516tapc8853/7WXnvttVf4/WogIE8yt1RQG9KJMIV9//7doMSUgY2tg0oTtIkZ16NxN5lGruMTzO7d3VxZXgOsKA5zMWAWbD3WYVAJQs9irmc5O5u9WrmeJ/DM5bWiyFxuJZM8jmMp5QzX6yPsBvwRFjYAIGwMKGOUZVMhYTiYjIbTdrtdqlTSNGWMx5FkLExicXDUBUMGvf7zz56/9t6bIMblire21mo0vSQtCDXcwmkClk0RAoQgz1Pb4Vrr4XCIMUEI9XuTeq1Va9T393fX1lcRQvE0850qIUxrUxSiKCRGMGu29b2gHIS1CtvYeJSnII1Mc/3wcY977mg0+qjvmhCitS4K0FoagzCivd4AY5zn+dFRlKTTk6dOdDvDc2cv9IfDPAfXtYqsYJiAAWNAAWCMNBhCiAaYxQr7g5HW4HtWFmeB68VxURRCKMU5sh1GqJVnslyqzy2ywVEWp3mWaq1zhLjI07n5kudWUxEz5imllEKFkAiZLMuMUc1mOY0n5y55qgjef3vv3DPt5jwSOfrgnZ2D4zutdri04qZpmqf49e++n8Z5WLKkmZZLAWPMsjgCWytqQFKGlpdaM0xDQsncfINbJIoShFCWGkZRMgXGgVMy6KWUAgI1ndCkmBRKGwXcdUPf5tQkcSJyfvfmVikof+GzP/HX/5NfefXZZ+u+nU2Sve2ObduFSFyHawVSpaVyFSFEKDIaZuXfWQZFroUQ5WqlyKXt8KIo1k6c8UOCEAz6seUWezvTfi9mjGCiCCtAghQKQ4AwUIZc1zUAiJKgFCZ5YlmMUjqdJJ3erstODKedVuvsy6+e/963H1GMEEKu43a7XdtyCOaU0mgUGwOdTiKVIZaO0+OgBJRSihFhhdZaKTMeZdVqjTGLEW6MKbK8XguPDzvGQJZH4/E4LFeDwEsyMxnn0TRvtVGagsNqWqk8hkbDC8oO5263E5nCGAOcO6WwnGap7/sYE9vHUZzZgTk6TuaWWsdHA6xs1wVOicjBGAQYTSJIUpSnRaVKXNeWUhKGhJIIoTB0s2KKCG3Olakl00RqDcw2hFqDXmzR2osvPX/h4lmk7MXFxQsXTsdjx3NrngOrSytGWiWP12ul46Ptvb2+RsObt7bmFp1Tp9coLyqVxniY1ZpBkdppmrcW8Nyi8/iOWTtd/eW/dmnxBLl3d/PoYDtN5NtvPLRs8sIrc5//6Y//g//3r9+7+3DttL35cHhidblcptFE1Fqq3ysuPtN0fUwYfP+tW7lCp85zy9EO8aNYnzhdXV1fPNyPpB7F04I7kKSoKHSl6qZpMh6MfI8EHityQZn4yh9/7Z33d7KEiLynMoMMvnSl2WozmQOlTpYaSul4EnFmuwFzywKoVFp4Pu/3k8lwWgkrUuDRMHnmmXP93qRco75PQt/u9oZ7e5FfcuJIc+p4dsVz0aWLawRBlhbRRM/Kq2cwNh/1LP+ob6gRQsZoA4oxctwdCYUwo53e4NVXX93a2tZa27alFHcCvL+lgqCSprmR7H//X/xKPMg5J1qhufm67UB/MAFQQclVIJIkqdfDIAiEEFIJxpjneULIPBcz/y+XKWXIsglCYKRKkmLW1DEDVZVSdjvjtbWTX/yJzzPsXnv/fWOg3T59737cHyZxxme9wzOmPYRmeGWgtTJoFr/ILcvJinxltXxwsDe/0LQcdzyO3nzz8fqJilGCUhC5wBrAgFIQBuXpNB4OR5xDmuRbWzulUkVrQzEL/eBwv9Ooh1ICZcA5F1ow6nS6hdC6NedjCDwPQABCwIiNABbm2nu7HWPUYJgkScKZQwi2XDqZREWelgLuWCyaiv2DjfVz5PvfvS3Sqh2YajVs1prDQdSabx0c7luWBQbyTCDNGrUSAORZIWSaZKqQiFCDkLFs2mo1lDKVaqlUtm2HKgWh7/k+FHlmU/uoO8EWSpO8XAonsR5N5DQBhCzHCopEFHlkWYAwdI87z109ZznO3fv3NjcelX3r1OqCzaFer0wmiWUxbQpGuVCy2+0TZilQGAiARshQAoRwDYpbpCiE0ajZbE6mw/FIuh7zPGt3e7q21u73BGjHL+kk1swmeYYH/bHRYJDp9bqUMiFmDVF5VuRaaymgUrMJQUcHw7VT1a/+3ofteQ6GpVnh++FkmiZRiozRMqfElhL29ybTSKd5MhgflasWRizLcscm5XI1y/LhEJQyIpcIIZEXBJkTy63QC7IELAuoRafTeHO7GwRsPEr+8CtfA2Iogumk0Ln0fGdurnTUPep2BtEELMcjCCdRWhQSY1ASBZ4vhPY8G2HOOSDg+3sdi1jtOahV/SIjSqtCFXkBmQRMIPCd/qDrOM7MkddaOo6TptKgTOpkPBnWW2XGGKM2wnp3J+2PDrd2H92+ufHoQaZg/MF7D7IE7ny4PelhAHP+fDuNimE3Eab7yZ9oT6Ns2INqSzy8f0gxFbobRVqbfDhItHAt2vjgnc6d249/61++/8e/1+PMO7X64lz97PnzixbD3EJ+uforv/J3P/2ziyWvYjvESDbu4VIVD7tkbllJZSGTt+canDlZob/2R7cqlQojilM6meg7928RVlh8TkjI8oxTy2gynu6FJU8pAG2r3F5eWGcUFpdtp+x870/3Le4zLFymf/7Pvbi5uVsOF9bXK8ZMjw579doCo0gYMRqJ+fl2pVyqV+ctZscTmI7S4XC4duLU/fvbSWReePGS1kWR0WY7QASQtrwwH45Fp5Pee/iYMHzc2Vs7XbdcN8/Bsqwn9TQ/zi7/Z+sNZ//WCu/tHvq+P51Op9Hk8BC0Atu2Hz/cqDUswuHW7TvVSmN/d7y80rZ5tSim01GGkLFs8ANQSI1HCeN4VkftOFZRZAghzulwOHQcr1otC5kn6ZRS2D/c4RZq1EvGpAgAACulAHS1VkLI5AVMJqPnnnvh7bdujybp4mp7NEBCgDTy/v2DSqVkjJFSz4jbEUKOi2bNtqPJWBuEMS6KgltWnEadznGr3von/+Sf/PW//mXGSJJoRqhSoBQAIK3AYJSm6XgywRiAmJ2drTff+gGjVr1W+9QnPn3uzMlBbwIABgBjpJRJMjWNIU1yTBDC5vLlNUoxQUBAhT5ptuqbm1ueX55MRatesrkznaRKFZzZlUqZWVoUOYiSG4gzF6q+V3lwb1DkIHVUr9d3t9IPr23u7Gw1m7WV1VIaJ9HETEZi2BsqIRk3Ra5FoVwfUUzGg6HIU1kYgk2cDAoRawlJlC7NuS+9vNRonCqXVgDjWr3kWLUb1yKJdBrhOCoMngISFmVxBGGJvPrps4lIb97bubOxeW9z0wmdl16+GoZ2vRpWy4EBmaYxAl5vWJblKKVnMBCMIkASI5ACGKNCpmlWJEkuhBBqgoHUG2G1wYddsBwgBDpHCbPTLIFai8iCTKMRGHA9HMWTLMs4s5VSjmshhLTC2HDXBS9Al585/93vvrmzdexYbr1BqjV7d/dodbUMGtJE5EUeBCXuQjzVo4EUBUYYLJuJwkiBLcshlE4nsefBaDA2xoAxjCBCUJYOVxbXggAWlhtSysk0dV3QWg/68Rd/6lOf+NQ5rQEbAA7lkpXlU8dzDo4GIEEbSagmBB0fH7s+H3YnCEGRWoTrzmHWmAt3t3sGQKjx+QtL2uSgEWaQ50IUYIxu1LyZ/1Gu1gmzSmGFUi6EoIQZlBkjbcsvlYnnWVkEBpJKJQScHx9OavXGJz7T2tvb6ewjvyRPnlrRinU621efP1FkYHG0shZOJpP3f1CUSg2l1P72qBS0d/cGzVYZU6fRqOditHrKmo7hY5+c+8QXwvlVef3d4Qc3f/DBe/ce3u6PhsfcLn76Zz6/f5R/eP3Q98PhYXjqXO3e7YP5xhmJjrMoWFhwdjZ7lZIndUqJQoLubh03m00pM2bRB7e1Nmk0GfiWKxUYA1IgznAy1mfPrEyTo0pp3iDUaMHZM+ff/s42IiwrhnFULK749VYqUvTg4ZZt2y+9ehoR6B2njLrGyFIJj0dFvz/e3+lxZi0vNFZXTidpJIS6eGl589HGw3sPhxPQCIbTbq1Frzx/oVwPltcufuIzn/7UZz7z/EvPeSW/UqseHB0C5zMLqGZKrPXM+v0o3iE2xiCEweA8F9x2jrsRZUyIfHPz8blzQRRPKKUEAYLi0sVT45FhToAZvXP3PsJWvVHpHI8I1mHJERKUUmCs8XhojLEsJpUA0IQ8qaNWSrmuq5TKhZwmGWMMIdNqVx0XA2AweEbiXqmUhMiXlsLxZHj34cbC4jq3cZLE7797r1wOCME2t2aH/xkWhTFPiA6EzBkjUTSJk1gZPQNAHY/HiOD/8B++Eo0nP/nFL2qtEQIpNSGIENCAMIbhcKwVzDgMHMfORLp70H9SL2bg1Pp6noHnUWlAm2JW7FIqI9t14qmJ4gFIy/O5zMGYeGG+XfIDrYVWVpxAKXBt7gQBZxxFSTqeTgwRC0vzfgiTUT7seKcuBo026ex42JQoH+qM+T4ul8PO8X6l5jqupXKwqGMUYIy5BZRSrYFQw7ktc42RDgMLIYOxtDk2BRzudM+fWW83+P27d7c2DruduFEvIQkUCGZGK9Q5HFrUcR3Ii+zs+eCFFy93eoN797YQB2W5o0Jogi5fPPPax66OB4fVSj2JYoRBCdpslUthdTyeEkIYY47LEBijII7jsOQmWTQrdI+iyPdtY8hxpz8Y9H23kuf52np7PCwQ1kZx21UIa2MUQtxxGSJACGPMcl03iTPPLSFsxUlBKZlMB7ZrjQZw8my5c1iEtbzZKisFQWg1WyEYcGwQQlAKQejEU4in2uI25wRRJJQWUqVpGkWRZYHjOIwxy2IImVazVqsG3/3OW5VKtdWuHB4kBCyCCDLYAFz78J25uTVMQSNgDIbjke+VB/1xlhhQILLc4mDZFAAIQYHrOYyeXD0zGgylIJyS6WjUqHsrq+7FS2eSJGMcGCN5BlKCZSOKwXfcWrWR50VRqEkcdzqdPM8pZgvzJa3ydrPVrJfiyRRjallQX1BH+3w6LiqtWEq6uRFRZprtYGPvw3qbHXcO5tqLmEJQEePxeG9TYcMQie/dHAYhyzJpcW5ohHHYmvM7u+Wj/QIAup0BGJbkR/PL1iuvXL70EuNOoiGv1+v/9X/1/+HM7vajzY3dvb3ecNgv18y7P7h/8eJy7wCVKrooAGHZauB2nbgkmG/PxUlkuRZQkU6Y1mZ+kY26ZnW53DnOtcaH+2NZ0I9/4uVc5BrlXhAsnTjxJ9/6AMAm4P3yX3kxqPDdnfi9a9drzbDVdh88OizU9Ce+cOX2rUPLstI4F4UZDadpAnGcJnE0nST97kAU6cbG1p37O9yWo0HeqFUtG5Sk7fY84fG4T46Op9c+vPHOB2/cvHXtvXfev/b+g1JYASg+soBPO5LBGPNj6K9GIwQEAGepUFKXy7bv+7sHu3NzrU9/+pOj0cSyrMAlnlVFdJxkYAwf5zvVxrxbJXmeSgFFUURRyjlYFstSjQikKZTLZc650nLGStFoNOI4RghlqYwjgYBluZFSh76NQE3GmlJq2zaAQdhMpsb1rEaj+mv/8n/+3Jc+1V6Y7/amyydKyXSKDQITTSYThBBGRGsghBJCpISikI7LARmEwLIsRrllOZRShNC7b937a3/lr/7Gv/wX1UoZY0AEa0MAc6MxIBJNVVrkCCFMQcrCcexq1Z5E2ery4urKyt7OfuijJJOUsELovABEqO+HWsujg6xUhVvXN0uBDQb8El5YmNvb21MmuXnjMSGwujhXxCkYNdv/ASNCMCJMymJ+rq0V2trod44TbTLPd+IJBkQsm1o2i+N0a+NQSlmtVhBJCOYEyKyTUkoFBizKixyMLhhGyIgij7QUSoAWUPKcnQePbSJ1nuHcMml6tLfpEItg7frYdvh4kDo2vPBSuzlvX7/54bUPDxmF+YV2lItprg673d2djYun108uN3d29jjnCJkiN0rJvd2jItdSKd91LZsqlTNmGY1q9XKaTcvl8sHBiDGmFS1XLARAiS3NMJ7KMPSCoMSZSygG0NxJ8lwbjQApANCAhdSIstFkMh5H00m+ulYxytZI/+F/uPbap851ulNEE2NMnIyWlqtKxtVyyeLQbIVpGhsA2wJCYDIs8lxYHuUWGk3GhTazsDg8ZQ/HGAg2lUqJOySOodlsbmw+TBII/DLSqIgFJhbl5Kt/+HqWglJKSrA8yFP03vub/UEMhNsuVGocI4GQsW17ca7aqrfW15eiqa7X/CROG2231QyvvLg2GkdgADMlBSiBCQZMjBJFEATj8bjb6SdpfnTYT2KpNXiOVQkbw8FweamWxCJJklJIbcYNiMCrUxtNJqNhl/zE568IDUvzJ447+aVnTiuJjUFnLli242xvpkurrcXlleEo+dIXf/nv/N2/vrlxZLEKQX6/N+JOBu7+1u5jhipJhEo1dbAXW47cOdoKy1VZeM8+8/Jf/au/ML/oI4IBOZTZhsTdTtZeQklWvP/20ac+9XIaJ5V69fBo5+OvPvfs5RWRjcsh0SYjzN7a3EdEPLwzPXW6/cKLZzYfj06sBkXedVh49vzam2++iQjUW43N7Z3b97aZC1hmMk9XV1cuX3n29u3h0omVk+ftaCLKVf/ahwf7u4M/9/OfxDSlFOrlVq3qnr1YXlisByV85tQaBt3tyma1+cILZ86cWw5K1qP7g+Wlk1LK99/fefe9+++/u7+/dZTEU2yywGU6B5NDHmWMPKUMfRo6fOIPPiGZR7MDMgLAADjPhVB61mRjWXwwGCwvLwPAZDK5cO700V7kBkW5ZE2imLj5jTsPF09UQZs8B8ZYGDqexzjngPAsivf48fZ0OkUIaS2FEOPx1PdCzl3fK2HExmPhuWGa5kopy2acAyEsz/OiANe1bRv6/S6haHNr/+33v1upVRDGhGWIgGP5SiuttW3bxpgkkcYYxhjGQCnkea4UOI7NGBNKRlE0N7fw/vsPvvzlV69cubK2tnbr1oZloaKQlmUnUTHjh0UI4jiWSti2FUXRLJBv2+jo6KjkB4tz89HUWJxrrTEFjFij3jKA+8P+eCg+9tqFPAEDglCYa5Ubtfrdu3elFPt7kwuXLlYrpTSOMQZKwPdDQkgusn6/TwixuJsW3Ud3J0kClq9Gg7HDW0AEt2A0Gi0urPg+lXk+mfaMSZUylmVxC2ZLulSmgV+aThMtCkZoKfSTdGqUbtXDC+dOUkyev7S+usQCF6b9/PnLV/7+f/e3dZFBYXTBRF6snKAfe+UsRvRgbzyNjBNAq+Fprbu9bBzHxqAsjT2OLp9ezzJRFIXruv3+WGlRqVSzHJIkQwjleTqNphhjrQ1jZDqNXd+p1ew8zwm2CU9cxysy1pyjnePp/fuPMcZG2ZgIi3uVOgEDGDNuYUpxlmWzWugwDPcPx+NRUSmV/ZLc37SC0KHE3T+cVGs2NjwrsjiODchGs95olrQpplHWagdRkgauW2QmjhTjRpr0qHvoOE4UTzDGlUqpKIrAd7EBADjY20nTeGV5LooShMzqqt/t9s+cOu26blYowKjXyRjnUkkjwXEhCFrnzy+JQs8WTL1RqtUqk0ni+34hpo5lR9NDlWNE0iQSlQqjTDVa3ne/8zZCVCkjUo2RRynJc1mv1znnO1sZYZwxizF+6tS6ZVmtZnXQSwdDWFyuffDuzXKpRGkmBWw8UM3lgUHm4U3sOBZivZJvT6NRHtnDYa61HcX91ZNevyuSibNwMt7ZfgQGHMe5cettgsH3/aM9JXRaqyzJaSgm88Iko2HcnCPz8/Wdx4pz/p2vx9t7x1/48tV/9o9/+9Hj3qlztUpDa5RduLzwiU+f+/wXPvOpzywe7aJub/fE6inbI4tL7TyNP/7Ks6FDahWiVWaAF5F1+iLhuPLBB/fOXgpXV5zOQbx+ppxmoyQ97B5PFpoXB/3pv/93by0snig3cLvpheX8n/6Pvyuydi4BM+l4LE1Flgqj4P6DvfevvXXx8vrK4koS5VKOHU/1h91q3Xn46PZ4PDx/odbrDafTaZ6J9gIz0r7+wWajGWAEMuMWbaSTtHtYNGuli2fOhE7pZ7/4c0YqTmDmGyqlZoflJydlpRQm2iiOQBsowABheDCSxkxc1x0Nxo166f6DrX4vQshGGF97eCNJIOTLgY0Hwzv10ukb1x+fOHEuzRKLuEUh8yzFplqqoizJMabz86Te8G78QBvtG4IkzoRmhZLYwbmaNhslqlkmjpI0H0+zwKsqA5hwDXIag0aGUG65/P7G45Vzq7/1b76yVD+10ljvHeWchwUZACZgmCEiKaaOG6Yp63bGCJAqiDSKYIRkmQImWFTK7eHkUWcXz59aNCY+vVj94icvR5GhvhcXqWMB4By00RJkhihhQuRe4CvEjIxdx9496m0cdZRlaQsUKACsBV2qVs+vO46H37vW0UaWAn+qsn4vshksztfyPN8/NAKDhby58hBTAizCUMLISYvjwHONllkS1eoL2rAP35m6VbA8P8uh1qgOejtgq8VWeXQgT6+ENqlP8yLLM6PcwBFhWNXGSrPYFMDB1pSnHOWCuCWDaaYSWrYqX/rsyx9/9crhYXT7zn67IS+uWf/pf/KJoGH+L//gHwlTqTZsV8sTi/zcucpwuru9d9Af4NEQVGEZm6YiqlchGo0A2/uDOFHI8t1GDQclHEV8MoFoZDlBViqBFM5g3M+LhJFmp5u2FnAW8/6+jen4cF8UGhlqPN/PM6lkWqvwhTnYuhfMrSHsDC3LyiYQd2zfqmkUUWSyhHDbAUO0lA61TU7KNVpusv0tq9M7vPpa8OD+ILQtJcTKYpWIhmWxg6PM4BTRcb26kmUwSSJEAWOsVZHFkMpBfzRmyKZAxgOEqAhK/niSIeTEU4ywKIVNO6zdfXhIrZHRxLZtozkjVrOsPSwJopk0hkhsJAXLcbgg/eu3B8ymYPJ6zRcFTKORzWC+Uetto7PnTu7sD5ySnk4E0iXHDXlgf+UrDx9vQqIls/04MxqmNudGAkJoNOw3yohLd3AweeH5VWanhFkFRMedYcmrSKP7/XRuoe0G7WnWQQa0dOvVelLox9u73/6TkR3yUbFR9tH9+3fPXV35zvdvJEm2fz968Uq4GLRBAOfw3gev33u4hy3QOB30hjZzERjJJ/vDA0JroOVbf2g35zG3g4N76YkT01/4+SuPHz9eWplfX1vZPzzu9RJE7Nu3DzG33373T8vVCkD+ve/cbTeaWiBd8MAv37yz+drnzpVLi6XSHCVid3NQ9hcaC+mt90AYVW44UuLpNNIaxymZX68Os8lv/KsfOMx7eP3xydrJWssJyxai8Mab33vlk+tvfGd/2EstG5oNUg4g9IKdh/zNN7ZOX2h1jofjgWrWVylqpXmys6M//aWrjfp6XKSTYWJZlufPnbqcRUMh0mrgAJbFx18pMZc12nDpavX112/cuzdKsv5CrQJj4Nw2Zlay8uM5Za1BG/1RFsUYo5SaBeOUUs1m03UhTdOXX365253MNRdHk86gN642mBYeYUmn07t9957rWkmaaA2+725tHTNq+b4bTXKCvGefP+346f37h4y6xihMRBynoVeKJ8nRQWdxcUkpFYZhp9s3xoABKXLXsVwXarWa79paSoogSSJKwfOtT37q44xDFEWygDAMKKVgsFJGCKGUQujJ+AkBJelocsQs6rsVxI4e3EQrp9l0MimKwrIcBNjmAEIxwBajxsy+OEN71FLCjD0DIUQIyfP8vffe29zcpBSeIGgRg4nkzM2zKIuU6wEGVA6ZMbC4UJufn7915y6iqFKrRUn8/Auv2LYdhuFHu1CSJIAQsxzP569/50PLgvWTYRIrVYDU0yI3IKDQcnW+vrS0nCTxUmtOIiAavNDe3tvOi9yzHZuDa3s7G7t5pBDJlVLjkSyFdSBFuW5fv3nna1+/yd0FvxJoYu4/vPdb//M3l9eCQvZloddOBysnmtNIdo6y/kBLYZSCJMlngV3btgFgOBkbY457Xdu2T6yujAcxITkiOErjVrtMSV1CjjFEURQn43KZzSK2cZzFUe6XPJHHIk1Ujh3HYMSyQgFDtVb61nd70TCoNnU0EYNhlKu+ZYfUMnkuMNaIFIQQA7LZDpqteu94eHzct22wLb/f21VKp4ni3ClX7fE4CgN7OOpyzg8P98sVN0uRazlxEjkOXV5aTiLIiwKoycUMYUiPhinnOInVcHRcrdbTNMkFXlmr9Pt5qYrHI5MW8WiQttvzjmv5XpDHUiQawHCK00QkSV7kuchlpeZ4nlcURVbkjXYlyYpEDDmnu7ubRQaTcSbUME1Tzrx+b5JnYFlkhiBp2yxNUz/A3DZpIrhN/JL89Oee//C9vXfePGgveFlWdDtJu10+PjjMc2PZ2POCQpjlNSeO42otfObK2ribJbGwuD3uu34Jjvb0eNyvt7MP3kyfe7m9tFK7e2PSXgykAqmS7gEuV9zjgwxzzbkKSmChUrWKC9l9+bWzlje59WGntYD9Kjz34qV2++yND6avv/n6xSvNPCXNtlOpw7inH90ai4L6IVo5UTqxuv6Nr70FSMTFwbsfvJfGoJG8e3/r4d0RIM+y8Q/e2qlWG7YD3/zGO2B4e748GUsLtSejHsfBvQ8Pz1woijS+etX/mZ9+9eG9XhLhs6cv3rzRefxo69Kl1SyfNFv81U+erVaXR6NxqR3tPRI3btz62b9wNYnQ/Xu3DTqOp3hpsf3B+7fefv1BOYSdrdF0kqXpbqt+dv2if+/mtm2FjkewlTfm0OVLZ+7c2h4NVLPt/tvf/d5P/OQLDudSFggBpdgYM0OlmvGi/Nmc8qwyS2tNKWaMRVEUx/DBBx/cuXPXcfCgN/R9JGTkOn4SmUargZm+fuMetxyDQArteHaSQBZnnu8qBVlq+sPd515aQwg+vPbQc8uEgpQymSac25SS0WgihMnyYsZAEATYSCnzIhrDeNgHbYwylbA2mUxW1lZ+/df/lytXn6k3AqPBcfhkMiGEAYBSs2ErSikmoDUIARhTbSDN4nqzMuhP06k9v0hHg2EUJced7uPNrTwHMJpgGI/lrFEPAMAAxnQmBwAwCAijSqkbN270ej3P4TNcH6UVp0oVYKDIY+O5wDlvNAKlYGGxIYQYT6I4VUdHA68U3rr36NKFCxYjRgrGGOfc8dzpNCWMPty42z2GSjVkBBmBKeOcaUY934XBZPyxy1eTVCQidRDlPrYIK4QwBjzPiePEd+n6ymo8mHIDIsFFkRErTkVPafv6zaObd3eef+WZX/pLf+n965NOX+8NOo5bAm3KZXLpwmKpBcoUu7vjflcXKQiljQZMQSlF4EkYZTKZZLmYTCNm8blGPfBsKSMKvN9NOr3DQR/7JXvGc+B6bDIVvh9G0STLwXVKfkjjaVbyOVM0sHWeSMIos531cxWR4zs3Jn5IylXnpY+dxBjyWLuuJQVCWANKjYI0nbbmPcexpuN4OsrW1ueO9rqXLp9yLHdpqfT40W6cHTDKlCSAVJ4XBIPRSRojKTUg8H1PFJZSeBpPkmJSKEMpwcgkE+17zs7GUXuupqRhHGHqHB6OMZNC2IBjToFbqFqeVyqPogQwEAsbZbhFMGJ37uwSQCAg9AOkzayGoVqv7R0cBBVEORMyMzJg1DXY7B0c7e8O+j2JEYAhIhcUI0IRJuA4fGv7EFGZCzm/VH/nB+/3+8lLr1wZjQbRKJE5rJ2c29jYaDQsy8ba4PHY1Kr2wU4y6o8cC1erpSLNpZj6VkOa1Hf9xxsfbD0ccmra88H+wfH339y1Q4oIjKepNpyyUppmZ84sIpL1B/H8srWyuFquQprAhSvzX/zpC/tbUW8U9wbCr3h//M03AcN7H767urrmurSza85frjpBUnZP9A7Jpz/3Qq3Juh11eDiqNEJE9e0Ht89dXqy2Kvfv9X/zX/1+nqcnVua3tw4Jhf0dgYz7s3/u83EEmJlqLbh1bXOh3bpw9kQlDH/xF3/p9373rfaCFZbx7t6jShU8t7S/OxwPUMk7MZlMKq1YK5KmwF3a7SY724ef+szHslyvrnlF7PSGR1v308Fo5FjV5cXa9s6Ba7eUnCwvL1bbbPvx5OVXXmq0GgtzdcwOtu9rizadMLEd72tff/czP/Xc8fHxZDKZ4ewxxmZkAD+MIM7A3T6yAqVy0O/3KcMYY8eB6SQ+PDx2Xd9xrXq5Ua7I3mFaKjvjoarPeWmilUKUgpBGazk3j/v9WMsscC3PD5QEpePlpVDkMOwZxw6FKsIgKAflyVAhTSvlCgBuNBq9QeRYFGPMCC8FaDqe+L6PDaGYzwKLuYQ33vre/OJCkmjLZoyYWactPIEp1JRSQgjGABKMUZSDEIVf0ht38eIJZts8yeKrLzz/sU9+Olea2wCgDQIvQE8ZEmabAsEYKKUzmg7GmNa62x1qrQghWgJBBmGwbBxHaeDbSmLHBgy6WnE8FzzfHo/H41HslwGwpZF4790b/+LXfz30A631eDyZgTbaLhNCjEbJ4pJTDoPjozGjRimEMR2Ph/USn6bqyvlzjzf3DJIiKahDLUyzAicpJKlIU1heWLQIkjlUfGq7mnMaxRCUmplM//Kv/sW/99/+3/7km9f/u7//9/f2QVHMXMDc7O5OLl1apLQYjuPNne5kbAphIcIxxoDBaIIxppRKKTEleVFM4wgzWkg935hr1BwtpFTZxStNUeDj4/E0iWcWwUBhOyClnk4nqyeCfi+qVdl0CJXAcy1KCUmmyvYgyeHxw25zEVPiD/uF66d5MSoEuCUupTSKAyBMDBiSJTllZnd3fzrJw7DkOohR7/HGfYRIfzCuVxfmFytFISi1jBFFAVEUNdseA1cK7bhACOl2JklkAEDIQhQGQDebteEgiaPY4kG1FnS7fS8o3bx1TwNh3EzGuZBZnsPB4e78winH5/3eFBEABUYBoFwrOp0AVsZxiGvxJI2MUWG5xDgfjSYLyw3AdDBOB30VTdT8ItaKbG4OigxcxxWZoBgshpARvs+0kcMRCJk9+/x69zhWEp27ODea7ImcT8Z5tRp6Lhzuj5aX5ynFaZoWOezvDRwbRyPZOeqePtNqzgGQVJmRkrB2xnJ4rbuvPv3FpZ2d7Te/1wtLXpGrxdVSkkC1QQe9dHG5KjIkRB6UVTRJsCqdOk8KmW9s9yaRACCH+yCFN007c6tAmW0xB5HEKDuK0+koiqbTt9+6HUejrc3tew/uX7h8emH+ZJG6c+1Trbn2452Ha2fDv/irL/3l//y1JCkYhxMrZ3/qp76wury+tbn/wfsfvvTShVKTbu8eFcJUmum92ztf/rmr88uNd67dW189HU1iMJpROH16Mc3G5Yph1iTL8PKaDWCMIH45ZcwZ9dXDjVtf+tLzqihheuzgeqmKLMJtW4+n/aWl+sY9HZYsy7JOnm4Ch298/c0/+tr7So0nQzoewhd/5sxkCHaQ3314fO3G3c997jNh6CslZnHDWcpkVlUDGOGZdTQGMMaMEQAIwzDP8+FwuL5+QmvNGNFaKyUw4lpLbWS/F1FiIWSKQuaFAgwY0zSLa7UyY1DkkcXoYNhXws0zM5lMrlxdvne7//6790bjntGo1+u98sqz29tHSukZMrttI60EwYAQabVacTx1bQsAslTGERCClk9YH15/b3t7s1SyxuOYcZzEWZ6L2TlXCHgK4g2UUiGUElCu887xuMh4Yw44da7dvPnGu++O8+Le1oTYmNssy4UE81HZkZRmloGZOc9aa0qYUipJQCklRIExEAphSDXSxphSqWSMKZfDLE3C0G+3A993R+MozgwmoBUOfKt7pBYXVghh1WrdsjhjrCgKrXWaxo16GdM0y5NRDyy3MIWweSnLx9xClgVB4I/HGbcIpbQQhVJqMhFaI4wsJcGxeZFPz50ulUPGGDPGuC6njGtA/+D/9T/+jf/yvwJKDvZkEPrr50rTMQyGE61gHG9P+qJ7KLtHplppYYqEKBAFxrFMFTaoKArbcgkhUsppHBsEUZY2anXXNUYyY+DKsxeSKddGZDlQypOkQEhZFsRR1m63ETKH+6NZ4100Tat1l2CuDUZYRrGyeK1c01kRiZwSKhlz0gwyMZhGuQGmFaaUUWJTylVh9rYlpbTbHRuji0I8/9zLucjKVevuvS0ACEKr2xkaUNWS5dlOrxtjAhghkUMSx5NxNB4bAJxnRZIknue5rosMWBTNt5vd3vHZs+f3do+3N0e1hnN0oH0PxSNcb0OamihJXddJE2kK0NrYDpTK9nCQcIvmuaxWy4wTKQvbtmq1SpqmhGJE2OvfeyuOAAzTCv3iL/xyIXBRMEaZMcgYwzhQhihFjLE0kdzCUlmDgcwyNLdY0zDRJhuP4lxAs1k7ONhBGmwLEUQRCEatXJj1003KdL1eL9X08mpFK0jEyHZopU7efr136VmPE3c8LkqlGuZsMkk82/F8K4r71bJHqNndPQicepxOGWP7B/dcXrp7b7NcC7/+e5tpUtRq7t17H/76r/3BxUtnjDHdXgoom06Sq88tSlUkE/PJV59fXm2Ok0dzC+EPfnDr2vWH77619+1v3f/Tb2z/23+99w//+zf/H//tV37jn9+tVxctR3Y7o3feea/dbj7//Iu97vTCxbOOX8uL8Etf/mytVqNcfOyza9/9wZ984eefszwUlHm14YUVirmst1guxTTpU6Z3N6RbNpZlxbGejmhrgd29OX73B7fm5lqNeiMrBnPzzUIUUk/DMlisvLcz2HyQ23bSbjbXzgIoa9zHgPjhNllbb37+y1fyAsIaDQL/0cbo0aNHUkqtNcZ4hpr1pPp6Zko+Oi9jjGeuY5JEswz06uqqEMKxvcEg4tzGjBJaPXGmsvEw5xZLJiIIudRYSmDU0VpJlS3OL9gu0kZNpvmgl5ZLDYIwmOzChbMHB1PbcSgnQbl08/YtZcBxnDRNh8Nhq1lHBKQySZxalqOUirOpVFJKyS2SF5JxNJr0FWiDTRhaeabiOMlSoTUYjYpidgcaEMhCEsy1RpSZu7eGJ88GGDla61LZ/xe/8Zt/+r03CQeETJKmiIB+WnOOEJnRLmsNCKEsS5JMG4wYY5yDNhJhwy0wxjCLp2lOLMMthzBZr7WFKizLcUM/TrPBcKoVlMpcFSYZj1557swzV55XGpVLteGgKHLpeZ4slOM4lJHxBEDneQKUyJkrWm+UCVU+t4fJZDic+IGdKoE15ErnBXL98iRKCIF6vXpwuOf59pd+8rP1xooC47h4PB51j5MfvLkFAPNLPmYgCtScq9cbDe5BkgBGqD84Lgo7TcH3HYsjpUHmghDEPFwURZ6LIAiUMrmUhRST6TTJUqXTxcXFJE3WTjm9TmdvZ+p5DtLYsmyL01krJwKujZSyyBICyFgW3z8YhVWfModSLApcDkPC7G5PX7m6Qgjy3PDRg2G1BVoAZx6lRGnQiiqdl0plkVPXhXq93p63vDDsDvrbO/1Gu760coJwPOxnhcxnlLilslcKG6UyxPHUtikl4DpBmsYn12sUW1qiUhBmeYIMrVVCKU2S9IyEZqv94YeDE2slo0QphGikLZsEvjeaxP+/3/q31KJFAYDBoq4xMLdQYZRnqQSAsORPpyOMVODbFqfDQV9JDdTKRFEUsLBYT+PsX//Gv+92MmMQISRJYscmtoUpMbbFsqwQAnKljfZvfrh9PNiTeswsP4kMs7HSQG15eHg8167F0cgioeXILNKlil9tcSfUlGnXtW27DBBYtlNv4RsfdC6cWz6xbm3e70dj+Iv/6ac73RgjpQSiLA2celDWj+8dMA6eWx727dZCASobHJs//+d/6fqN7fHYVMvsxReW/7P/4me7u/DuG8NJlC8uziPg+wejzUfDj33scqkkX3rppQ9+cA8B+cJPfrK9WNcJ4bi+tDz/3Mvtlz7R+sTn5z/2yUYuu9c/fDQYdQ4Pj/cO+m+99dYf//H3Hj3avX379p/+yQe7G51/85tf+cpvPXjx+RfiYeVrX30goURoceXqOW6Rq1efB8MCrx1PweFzUuibN45X1yvRNHF9zJkrdA4Gjg9QpjbrlZde+3zjvR8cnjhVdn0HAG7efVTI7PaNgyxVmOQXL5y3SnkRObduDo+Pp89cXcXgNeehyBWATxkeDscYU88LACBNU2MUgH7amQfGGPM0uwIAIESepmme567rrqyshGEopbQsHJa9w8NpnsJo3HVd+MYfvTnsRY5F8kwAAQVAKIgisSzWbITISN+3jo66hciODjQgze3i7Pkwz8w0iWu12srKCiGQZRlnBCPjWBYhRGujAflBuH7yRJ6nGsAgQMCSJAlKoR/6GGPHsVybNpqWlHpWGYMQ0hpm1UMYozwDjJFlse3HkdFobskBydM0W55b6Bx1fu3X/hdOAStjIQhsXsSA8cwaIoyQMYYQwJgmSQIARVFwxy6X7dlpelYgnmSF0gThAhBlttFAGEPHndH27iG3rChKHduJJgVH9Euff2Wh0fj9P/ijS5dfqNRaAJAkwig9O+drk/geVGuh44IUAAYZlHDbxzbYmO71joe9iW2zbhKVXGQoNlhPoqFlMcdnH3x4nVHryjPPxVE+iXbzTKu8nCXUgHn5tYW5hQAMn29ZUqTRSMwvVpkFrlM72DdAwbbACwCz1LIJNiBzRDEql6mUynFsIUSaZwZBUcgozZIszcWoHC4GIb7y7LlHD3bD0AbDikIjYJVKTRsZhkQK2N87XD2xPBmpLDJzy35voAdRxkKiSJGO3cBFO5v7vUMYDzMAnGTDg52cUiCOG4ZlwClCyBiWF5Hnud3OpNXyHY/PL1WzXEWJ+t7r9+cXW482tuuNRhazU2eaCBmRScpQrdLghF2+3JxMkyIHraHIoVZzoIB0LHzbmowEJRa3zHQEaT6q1+auX7+ODFAsZCYvnlvtH4u5VtVzq805wpjl+36RG0qJEEpIEDLxvMAoCELmutZ4MvYDz/XsJJkqITGAH5S7gyOMYWHZu/jsyuFB5jigkdBGUAaMI8ciFkNCiCJXGBHOYTQd2j4EgROWG52jNJoqrTAiPNcjgu3AKytRMBT6rioy1R8kw2E+N1/fP9wUBY0j6YUWokRKTRBaWmU3Pxx4XvBTP/P577z+J4Bls2ZXAiew/cvnX9h4eBhNDcaAcME4oqjKUfkTnz6/vf/w5gcF4+rM+fqLL519+413EED3ONGS7u8f3L65Xaux44P4cDv+O3/r73zlD37Ndmhnz/3mNz74xOeWK2FdFKOtx3uYirAqP/2ZV3xnLo8wY7CytG6M+qmfPYuABwH7hV/69PbWAZGoVuInF5oU4HOv/ez/9A//YH8z/sbvv/3Vr9z74z+6t72Rv//u1tbmIMt1rV4Jy8HWRq/Vrpw6tVZtVAqho/RYizJmIAUFcK/dfKPI0Zd+9hzStcXF+dEI2T7BjHIfvvHV+2AY1s7Lry1gK0sTkudKA/7KH/z24S4cHwqDh0oS13UBIEkSrZ8cTAkheAYc/aNZlFmShVKaZZBlueM4r7/++p072+Vy2ff9nb2tNCIK0ulYXbl6YjqEZqssRTGJYsdBWVoYA5jAcDQoV3xCoch1q+1Po8GF86c4p8zOOv2JZbmYomkcNdutU6dWxuNxs9m0Od/b32O2pbUWhdZat9rtOEmMAdu2O53MsmwAbYyZxjmllFvUstis13DWn4wQPAW/wRiRokgIhQd30/UzlTSRgIVW1OXW3/6b/0dkYHlxkRNqBKis8J1Zbl0/TbejGctqmgrXZXkuEEKWZSmllBJSgmWzJJGuV5ImQ8C4DeNxTCnd2Nj2wyBK004vpZS7DkxH097x/sr8YhIX3/veG6+//sapkycwhqIo8kwRMIxrRgLGodW0kcYAOCjhIleAjU3Z0aCHMUOgBTIOo5gQQBCEttBFngtjzNraaaXJo8c7IueOY6f5YBoNGbWGnczidDDojnr5iy+vxvFwMo4t2pqmfa1B5sTxxfIJ5gWIEKwVMOpSRsAUAFAul4fDYZqmhJBMFACQpTmQYtSX5y+uSpU/ejCpVvzRIG5Uy0VREEIcx0pTJaVeWVk5ODhACMA4cwt+HOuNrUPLw4AgnvBo0im3ic2rNz48Pj6MllYD0AEYUEphjLN8jAkwZmmTYgw722NGIS/Sat3beLxtWbB2Yu0733v38Cg1CDgrCZlUa2UpdbNZ3d05JITNLZQQAko5RnTtpJ0l41ajHXjlcilYWWmMx1Nuwfr6HLeBMSvLsvZ8C4HGSKiCOzbcunZ8cLTbqC8ANnmeF7ma1eeurtY63V5/OALAXug5roUx1OtVzlk0nfqBW2+UhRAIKdfjiMYIZwQ5GIPShdIqDF1tJOOYUjKdaowpJZaSXIGot1C5XFVF0DmeKKW0tClnQseuX47jmDKCke351OHu+EjdvNYJStUgZFmCNnd2c9mjTCDVPH2RS1kstBZWV86cueR98Pa40gLL0lneOX/q+SJPRl0WhFhJ4ofEdZ1rPxhefLb8xvdff/PbB0ZDY864rh+P8/u3umcuOidPl6Ix1Yr6XjnPwPdpGIa/89u/t7Z6pRLWV9dqh0d77737cH45f/alWqPp3b0+PdhN7t/df/07N7ySAgRxJD3fjtKDybh47bXXfvDut7vHk3LAT67WjrY7f/fvfPa73/y240zOPwuvfGrF8dw4LYaj4vHj7rV3d9/+3v7d26M//P1bBweTLCs+vHGdO7nr0EoTJuPED2A4nE7GUK6Sbr937YO7e4cb21v5aGCEUtxFrXlerfJvf323XJPN6tzaGbuIK2FLfu/b9yqludOnl9fW56Ix1yCUMghh23YppQCQZZlSCiulKCIYlAFFsGuQRCxTytZaphnY9sL2ZvKtr+6sLddBRWAoly2pO2mS2I6HGTCb37s3WT/1DIFSmhjX1UVsuXZV6dQpGUx9Q9RwEg06ML/iASKN+kKpRHqDQTKZho6zs/m4VMpDrzEeD1bX1wFbIo+NQRjZk3h7a/vxsEdtl6apUQIKHdsOETnLY1BqSnlhFJKWsqRrM57p2EKAKB6lxmXGdeyFth91inbdVMpBoSVzZfdQ7e5s3rt3+8zpRqPGPEv6DmCLxcgyCjizRaEVmFwWCtQ0TjBiGJTMpc04JsIYQbBrABSIkgWxGDO3XC1VPYImo5zyFjFmPEgfPz7QGpyylnmVuUDL6bv3dg1zNC0e3YvH46nDwyxVFEoSD/OYWXbqBcAdNpxo6ueIVASKGSjXCQrB3XKEsHKZe7ivj3v9XgoVy/UjmAvhpefOWNLbfnD/4HijQAUCXnbbOkOgc+oIAE0RnHmm3lwsRTHpjPa0tjFmykBWkLzIVYEqYcumBADcQBoQ2nDH5jPU2CwtZpyCg+G0UHraF0GgCOB33rxtW3gSK2FErpnKpjZxbItKAZZNbl3rFRk6se5tPR4CzRgLJv2MKVTywHKm+7tkrg2l6gAbq8iBMcyZiQewtKg9l9gsJIjm2aTVXL3/4LHtwt5ewhHJMmwomm+vRf2dS6uVSyfLm/e784uie5BYPH3lpVcYNA0uFpfOX7u5oxENayrNR0b6pXKQiiFhkKtRO2x69vjqsydq5frJ5YuBK166dOUXvnzy6oXm+bWLjbr70qu1q1f9k61yNtyZr4EADhQYFYAShLTMXJ0qXGCC88OD3cB1fMsRaSJl0Wg2s0KVuLE0qpfwQn0+GedIp0ZzbcCzQGQJRTgsNQajAmNQUmBcQIIaIauHS6oQvaNBMsC+HYo0dklsmwrBRYHGiLuTdJuZxk//uYvYYBmZ6aDwwtpRf//ZZy+IDEzsKzrJhH70eNg5blSa7Afff1AtNeZaHnNO7O1F1UrgBywtkLK0RoWNyrbJX/xYffcwmUT23s6o6tcsCgsLtes7W/0hO7t2BaVVSrIkk8PeKO3Za+fccZzfunPwaPOOU4ZHD/fmmytrK82F5eDB7d658/Onz9dDb/74aCAVXLh85tyl82m+u9AmW7fyT3764u52Z3cb6nPQ64pSu7K+yH/1r/yNr71zY7OT7z90lhYXrz5bbTed5SWr0lAr606z4VJkXA7ToXN0EG/fU0fbSRGBw8G10drJ2rmLy8PJAZiy57a1gbCMo766cmnRTLlNUixoe7HQMHj96wMvoBcurZXLSTYF7unvv3X9YG8/nY6ffXYOEBAqEZJFkSilECI/jBs+4dwEAACp9AwgK8+w48PO9uTG9f2XX136wpdeHY2A20yBOX0hlLmtdBZF0WQkVtf4B+++T+0x42DbNuDcC3SWoCSCGe9PGLLNzeP79x5iTN95591ms72/PwSDbdtFCEVRNGPY2Nnd9jzHti0hhBB5nhcIqFJyZrmDgE8mUZZlaZo6DpNSOo6jpHEsQgkB0HmiXYfEk6mWauYenjl1FjTU6k4cT7lFRWGmUexwa2d7m3OOKfFDF2PIU2GkmBHGU0qkNDMQnbxIGIcZICN6Co+TJIlSwBjiDkvzIhfKdd25udbh0XESTc+cWnMttrXR4ZxxCoQqKcDzS8yBsIK1EQAwnU61loQiQghGdprFjWpVStHvT+da1VLgGSUwoEgCcZwoy8NyucjydBrLWF29ePGLL1/a6w6Ij1+6cGm+0v7w8T3pEpPCsJe7rj9rF2GMRNHUdu3Lz5yq1oL9ndHRYZ9gCMricE9oRREplIA0KXq9DiHIsYEiZowhVHuexzl3HAeTWWJKCiGyXMyiyVprDKCkTqdjhiGZTpjF4iwtiqLdrnQ6kTbCdqzxOO50enmee6HJssKyabnkU6YoV+kEP/PsGds1gx4IIRUaOrZPEZZSC5nH8bRem799655js1KJFEJjyilFnDAQyHXpT//0Tzda817J6w1H5ap372a6vb2zuBICmJ2D60i5hJBORyFkOt2e4zhxHPf7/ePuYLezf+dR9N233uuOJ9u7g1v3NqMi2++Mckm4a1dqjROrpz7z2deuvnD1tU9+6lM/8cmrZxb+4s9d+YmPn/ncq6tnV8onmvz8mrdQ0w41pogX23VOzGTQb1Yr/cPDIp4yv7l1OJ5bOnvjzvbmzoi7oVDYcRy/7GiA+cXFrZ09qUAI0IjlgmEr98vMYKlQPpz2AGtguaFZGIRpMqEUB341T2GaxKVK9c03rhljMMY3b9wdj6cY0+Pjbp5AkkRGGccOnYDcuv1hnqOg1KzUgyRLC9kXGtI0sdxCo8LGgU0rQvY9t5Im+tHj4/FQUauYX2aMuKWy9eE79whNW43Kg4e3fc9aXLKqTdCmiJPs1t07hEWdbjQZyZc/9vzDh9vx0A39hUvPtr//+sPHd0eT6aEfOOfOLk/7cOp06eF9Xa0srJ1ujqdHN+/fBgzTbuvEKf9b//bmf/03/ss3Nz4YxN3XnvPn1kr/7jf+5L23jjBNF5cboe8Eob2yunBibe7zP7V85QVTr/D11ZWVZZ8TXCSQi32LyaUTVlFwu9LJ5LTScOqL2qmNTj1TWj7lekFVk2TYZc++AhuPx7dvPqqUa69+8oxSIFQ0Hel6Gx8dJIDSM2fKMy6NH0X0AgCKENLGIAP4ae0hQoRiNpoW8QR3D6Z+BS5cnqs0vDwXemwoIZYVEKoWl5o3PnxQrYT1ptTSHmdZrcnjZIgwYKIAKSWNUmqu2dre2V1ZaTmO2dra9j2fc76yVEOIzMBZO53I4J16oxonWRxPuTVblqZUqgRepVodgYn7/RFlVrtZ45x2j8bcouZJU40ggJQSBCEtYH15bph14zwHIGk8TRPRnvMNVYCkZVlZrIwhSCiZF1GSJCLzK0Em5SQuSo6VKQmgMSF5AUoCGFwU4PtopoVPAGWVUAoYgxmdVlHIopBS6OWVpfv3j6J4Wq2Vfb8Xx6mWBBOjdGIwbO8cBI5eXIN+DzfaHjZACRR5rhhDyEEmq1RLSk1DnyYxnSaRlJJRbAhM09yaJMPheGVl6fG9nfXVhb/2F375H/1//1XowMdefGYubH94/U6/6DdXGrkkohB5LiyCmW2JeOKHYa1eMgp63fF4oD3fWV5c7482wRAlIcsAKcAEptMxt3zGWBIXiJhyxQFshMxn0ZKsEFpKinCWyoPO8fzSvGNblbJDELK5U2vYaXIMiKV5wjgajYehjygKe90uJ9ColRfaS9PxRhqjw86uVj6zRGue7W2Jra2Nat2ajnEUi1oLihRcnxgEjKEiz/q9iSjM/EK925ks2gEiPE4GC625t/708f/uV79w78Hd967dARZ0juNT62dfegEP+seU2Ru7/aXlaq83aNbLGOWWxRwHYcoLqRElWaosFxAGRTB2+N6DMeGq3O9sbuz1Rqpe3UXXoVQiC4vNTieVhs8vl1xFHddCmHleSAlZXGxIAUKorDBZGjebNSULRpZcz7tz597y/JzjOBSzLMmPD/ahABFNMAaLIJmZRi3MkkQWYFsWI1goZAC156qVij2dFAAsSWZpPM0YwgrVq0GeTTmtKkmLosCUJAmAQdyy63X/8f3O+slgPBm6LoBGYVCeDNLVtcbe1lgb//tvvDGcCLfEMtFttcI/+OrvfeInLqwu84f3pvOVlVrDunVzOBz259vN3d3u/DL0h0fnz6w5dqBienKtZnSBkH7ttavdyeY4Oor6+HA3m5+f2946XF4OGIco7v5n//kv3rv78Pd/9we//FefGw/SODb37wzvXP9wZc2rVdtRtnn+fC2s2Dvb8sN3d9ur/tFOxJvTbif7qVebP/nnfmXly6+0WqW9vd2f/OnPZlc+8cb1t298uEPJyHLsOJKHycOrz4VbmxB46FOfOomp6HdL5889c3jQ3dh8ICatu8cPLLScRvv7e8q2bUxc5kR/+s3bL7z0Yhwd3/wg0lBYvPnMC+TdNw8r9eNW07/wTOXG+8MzF+hooGstePRw1/VneWP8NI38BCAVz7xEA6CNNsYQQizKtILDw9HRjiYuvPbJttZaZMoPCSEEEzHoag2pxSpH+9rxC611vREQA56rXYfKnEqBXF/lYpQmqlopWxyOjo5d169VG3Gc1ipVLdX+/n6pVLZtexb145z3en1jjNEQhr7tgpJoe+sAYYMQ8TzbaFmtVl3b8TxPiJxSImUBQEEbIYQBMAIW5stLzTbRgDCmFJJJvr6+ZnSBsLYoGw3yKEpPrqxVy5U4jhHGhGFMjE0B6XwWMDUaIYA8gyw1FkWc4CjKtNZFIRFCQghKyIykJS8KghkYMhqNKpVgadkzKk+mkcizSqmUZYUQOSLC84NJlBV6WipXe101ncTHR7GUEmOtlJRS1xuVaDImYM6ePX183IknRRh4eZ4TTR8/2Lp/90FRGMZYe75p2/xPv/Pt23cfX11vtkP/7s7utcfb60tLh9s7R3HmO1YWp5ZlEYJc163XG0WRdXuHjx8MqB01GrVbHx4c7WfaKEK1xREYZgykWSyEwICSJOOclAILDM4zkRepMWbWipMVsigUYJoXUikVeNbzz57/+Z/78qdeexUD6fTTcqWSZGng+Zig6aR/9crJM6dOIY20RgYlGFlK6jiSGENQorZNiK7OzdfH02w8LFbXwngahSVXCFHIwvHc3d3DpaUVxrHScmGxlmai3ggPdnZPn2y12tXbD+4yK4jSqecFDx8+niaPPvnpl7c2upTC4f601YQ4GVOKtZFz87UkSfNcrK+fAnCkEYThVqtxfHx4sDeam28B1ZjYgCEVqjuQAK4fhncf9K7fOhjH0dffuP07X33v+9fuf+/9e9986/br7z/807c/PBhPh8O+5XDKsAZVrbWajcWXXn7txOq6Jccfu3xquep/7mNXfvmnnv3ElaWXztSePVGfr5Yqrj0+7vkEkmGOdYqKhJu4XqlqYca9jINf8ULXdh3qBnaIMdg2aJOV/NLR3nGWJQhr2wpdl+dZYpReXnZa9abv+JZN263G7ta+xcMsHy6s2t/61luWXcrE1HGcchju7UxqrTJleG3ltMNYkh6Oh9HBwYHjYk6qhTRLq/7iwtI43rxx7aDiWK+9/Nz+XndhGR7cvzboTkqhJ3SGKXtwp8eZ7wY0So4p4t/8xp/86q/+uc995uO//x/ee/FjJy9cLoEEo62FhYVuf+ed7x+dv7Q2meg333q0fqESRRm3nCKTJtX/zd/8y7/9zr/qPCy2b4o9CclG7yd/5uyNazuf+YkLiEaPHw4PD6YLc5XAXao13N1Hlhtmnf7Dt75z9Nv/5ptK0k989gW/MWHAppOD/ceqmMLBRrb3ACFZ7mzS737nnVzAsy+cbrdqx0f99oLt1+D733lQqPTshdOLK/ZkwCpVn1C48txaNAEp9Ay1a4Z69aRPWc/41TEAgNYSA1LKjMfTNGKEs5XVMneKJI5du8YYsxxNKYvjNInzO7e2PddXWrZatdFo4jluNJEUl0C6BGNK8XicEmoohSBwtIYszTm3i0JtbGwwRqrVspQiTVPLglKplCTJrKglz/NSqTS/UCkKubt9nKQTAKhUSwBq2B9ober1ulK6KIRt2wjIR75uEoOR03LgKwWEM8umUmPHsSglWkvb5p3DwYmlVq3R2t8/jNMiKJcM0gDaD5CWEhBoQMYAZ06WmHQqLO4qZSgFSumMSXmGCvGkY0cZxiyMaZqmgPTiUhsRIjVooxyXUoS1QowhKYsgKHOOHz8ebj5IAMCy6AxUSpvCGKW1YpwMBoPxeOy6DueQJAkhJKDWFz/92UpYWltbyUVxYn39/qPNb73+7bOnV9bX1+/du3/r3n3gOC3E9m7n1MlToGcQuaCU8oPSeDQ9OjqSUsQRtOeqnePp7m532DWWC0qZWr3EGFMSkhgmkwljFCPwPQuBIYRKKaUGRIgQglIuhMozMRyPpdTNZktLef3D977/5nff/+DDvf1caTjsHroeYYyIXJ8+u7Kzu3F0dESoica57/u9blatLxBGs1QxRkoVMx3RbrdfqkNRsDRNDYCSBYAuClUKa812o9VqDAYDygBTIbVGBrK4+MVf/MVb9245oTsYT+fm5tNMVqs6GhXlEusOjovCXlhpDztAEcozbdnU8/l0OtUKVWuN48OJloXv2vPNpspTxqDZqB4dHvZ6Maa27QSWTY978XhqkgQIwUJBocI0A+pUo5zsH2d3Hwz3jorCkPevb4/j6Prd2/c3tieJun7n0e17jzOpM5Ez2woq1YWlpfOXznzqcx//4hc/9zM//aW/+Au/+JlXXvlLv/AzP/2FT3/y5fVXr5597tLcpbMNgvLxoNc7jrqHe1k8EVkCIqKmyLNY6dTmhDKstPQDByHDLXxitckt2N7pLczP3blzO40j33XOnF1vtVrvvr1ViKxS9e/d33y0sdVqVgC0zEgaw1/763+13Tp184MtzuSZi2XQ1cWVaqO2NokO10749Wqr1Wqdv3Dmj7/xgcuLpfbizRv3nvvYepplyZhsPogRBcsuyjU2nUZ5niqNLbs6Hsqv/sHrn/7CqTSGhw+2X3jp8vMvL7p+/ujB0ZVnL62dWOt0Ol/7g43Tp1e/+OVPrK2tMpYWU/x//pu/7J248g9//Z+vt5BW1mAIeS5Ora69+vFnHmzcjuN8aWVBSNh8NLz+4db9O0eFThHFTuClBZba+4Ovvv2Nr1/f3ZZ/+Zd/5W//H0pTWAAAISBJREFUrV+Za9Q//uqpS2eXwzAp4nx1vRL14da7o/5gr904C0gd7Heff6lhtH3z+jbC+vLVM4f7QyW47fDN7Q3brhrzw+zxD4sLwRhAgBAyTzBgcZ6L6VBqaVeaknEZjSRBOo2nLqsk2QQjG7GRzRuPHx2UK7Zjha4PogAwQhX0vbceM8YIFQR7SmDAsVaFY3MAODg4ODo6chyepXGv259faANoz/MYoxjT6SRuNuqu6ytpRJFWq3aRFZzalIAsRJEnoMEYZYQZ9kelwAUEGONcCKUUtzlmFGmcxT2slRKgwWgsHzzcmsF8WcxO4lgk6pd+8Wc/vHX3zoN9qWE8HmOMwzBktqURIEBaa2UUJkZKKHJAiAihgqCEEY3jmDFLa5jBKSKEGAZsAGnDGEvSKYBBBNtuoCQsLFWFlqJAAChJ88FgAEDfeXtj0FVzS5VTp1crlQpjjhBSqAIA+oMBoiTLsiRJNYJypTYajTCYdr126uSa7/s7O7v3Hz7wS+7JM6evnDm/0Rte2+yIVFAN1x49nltfWm838zTDAEk6iZJpr9c/POox5mRZNr/ogHa6R8naKT9NBSXAObccReisSBNEYTAVlIPjMjAky4rxNFFKz3p7jDFFUcRZqo2ZTCMw2HGcJIPD4+O9btdwiKaAtMJYF0WmNVBmTqwtttrzi4tVhIyWbBpBlqBWu9zvSmRoreF0Op1plF681PDsNrccPwSEELUoBqdzPGzPVQgrslRwwqVIHNc6Phr+0p//udG09503by4sL1XKfHTUt3wlBT514nQlbD3eeuiX0e52J5lAWPKlBM6x47NplLTnF/rDwWgEoDjBaNDvRlPVbthSpHmiwpCFLqfIUkqNJ8V77z5ghJTDgAIRk9jGgGSMRM6kgRQWGiGD4tS5ZQkoVSKoVbcODj+4+fD2/Z1UFodR/vvfeed//drrv/O1N373m9//ozfev7Zx8Pad7XsPH1DOFZhSqXT50oVz508+++y5l1585oWXLr36yrOf++ylK1dPXby0cPZcdW7O8z2wXIoRdxx/PO6HJdt3PK0UQrkXmFqVXb26CKgockUZ9lxrPOq3Gu2/8Be+AIYGfqXRKDFiymE4GYyNJK5vCW3ee3en2WytnKieWGvfutspVfjmw+T0hXA4iIyyHU+NeuB6sL5WH4+nuSqAFFqBwz0CoR9Y2FDLUtyBrc1se3MSJd3TZ+cBoDXfWj9VTbLB5vbjZ19aAQTHh2L34PrZ88uvf2v7wuXW7n7nn/4PXwUp1lfqV69W/sov/dy/+f7b994WZ89XX/g0Rzk8nuq5+tncbLhW/dT6+ULEgV+xLNJqV4/3IcuLf/dbW3uPy2FNCTyqtJhftTe3ev/yX/4OMe1mPbx88Uy7Wfk//M0vWBzirGu5MO1ne48iZQ5qpTMKFb1OYXnF/dvTOI4ZdT/1xcsbj44Gg4JAuXM8AIM/iht+ZA0pAJ6VrcDTCuRZzQqzJGEmiSKHLRFgeTpot8vH9wGYmZu3Q756+9auhpg5VqfXA2yKXJRL4ePHE8dOtVGOUxLSGJMZJWybnj9/6ri7QwhKk2xxcdXCk/fee+f5518slYLtbZll2XSaiGFSLlXD0M2yJMnkcFho5XILpFClkmXZ03qtBlocHR3XW20xTKSUCIjU2rO4RtKyA4JzpI3tUoPA8vDRdjJNYscOsIX2d/cuX7y0OFe993DT8ggQXKS5sbHtcEyzAgEjzJiCWhohabvguFQpRTEyxgghskzOUCHyXDIORWFYAJwRrbXDrWk6zYrUDUrjUZSkyi9TgyCOdFByXCdOI5NGIk4ADGP2lFmBFsrmwRRPiqJglBBC/NCbRlpqIAQTwpQGhfVh72gwGu/sb1VrJZWq9aWVU4vL9zd23r9+fxhBq0K1ka5dPrV25t67b1GKAEmtTSGKbh/8khsGlTxNlldajx/t+qFtNFES4inMnyOUcr+sMiGwtgghSqdBAJ5rceLGaRxFolK1AQxhTKhCa10URVHgySRChjqeixlM80wVcpzBXBVprTkB33WTJBciXV1b/tY3brzy8sL27vFRdzI/7x0eDU6eqiCAOMpc21lcRUkCO9tdWbBnX2wrPZG5IRWIYjPOx4snGAHH4oGWUpsiicYW87Z2t27cvFOueRowoyrqKR6CJZxmK0gTEUcAbgomxDTPskQI0EYipIRQpbDyaGMzKPmDXtaco0WuXI7q7WYUTaZTY0A8c3np/fc2iI3m5so7m5OigBoWKk0RUo4LhYiUBCmBUihXgjgecl7VIIQWnX4vmiiDwbKhVAr3O4O9w7SYAnYzTIwsoOQ9SmO1ukpOnTz71lu3A5dxzjGGsORRBmGpYTvGCephSEuVmhEU0emgGy25zng0rdaCIotLgZI5sqlbDh3LZds7wgvww4c75QpXSkTxZDJO/ZIz13QuX3rh5vWNbnd86oy/tbE9P1dO03hxJfjGN779nW89dvz4+efO/Pvfu7Ew3ySOvntv/MnlIBlD5/DID+zxGAU1uHjhwvffeafWDBqt+SLbF/kRtUsastArdzsjm+FTZ05ev/lga+fx2bNr9x68z1w6nA6eP7dkO0hKqTWuNbxnrlz8zV/7Tr0+//HPz9Hvp9ff6zy8v01S+J/+6X8jPPSP/9FvWdrqTvD8enJmFT542PuN3/mtve3ixMlgGo3iKEmzQiRQrcjP/+zCaLwfDyvX3tnHDDw/XF5uP3rwqFRjB0fZ3/t7/6w1H126eqo/GmbZ4uJqTUrWO5bbWTcI4Y1vb15+rtaoz3e706wQqoAP3z1+7mXkenz5DN66p+sVziyYAcQ8zSbrJ74hoXTWjjLraUMI2dwOQ3f1ZFDyg9D3bG6J1KrWPW5NGFTTeLC2cmL9dI0SsB1qe4ltt5kDnDEvVFefbx7sJ0Zx10cIS5vXZmGsg4O9RqNRq9UYo0VRVGtlhGYw3NJ1mZSy3W75vosQCoKAcUIoeJ5LCHFdh1BYXJxv1uuEEKUUY5RzbgwQQmZHTspZLgUlnFuYYlKtVrltG6Ibzdrm1nYQlLDGeZL/4s///P37NzWGaq3BmDU3N6eFQUDqzYYfcMIJ49h2MGUqCK1yxcfoCR69ZVmuY89KNF3XCsOQUsQpdl0XAyIUGaMwxpZl7ewdOLabF1G97khhHNu3batWcw72j5UCJwhqTRaUqDaCUtvijmVZBFNE2aws3iBwfQ8wRpjMn1iMRbZ7eIAIiLw4e/LkSnv+aGfv9t5jjuyKaxmfKYes1hetgoyLOAg817VthzOGgwBXyrU8F/Pz80ri0Uj55WzYV5blLCy5wBKLVRrNwLKoFIYQyi1Ua1Db5ggxjCgABH6Jcz6rUEUEtJZpLji3Hdcvl8vcQhoAmG35rhSmXq/Pz88jhDCBWr2ys7sRhOHScj3NxnFkVlYXR8O429+bm5vPc+HaNb8cI2SyzD48EITqZtMBwK5rDwdxvdZmXGOifKfsOmXOmTGiVZs/OjrojQu/XCtVyktLrWrgT4e25+MTy+u9wabtkkEHSlV09kyNUBQEtFqtSFW4rjsYDLqdSeCX84zaruV6ASKW5VENhrHAcr1Ta22j4cyp1VwlylCk0fr6Qh7HklFtEexQbZEUgHieUyrbpVKpFIyGAyVyyhBlmAC0Ww1CzeD4gCqoVG2HWwyjVt1RuSp51trlC8fTiWQQKbzTjXsTmUi+uTd+592Hf/qdO3/09Tf/6Gvf++M/fuMH793+4NrD+w+P79y7Nxxkjx7sPn78WCm18Xj3xrU7YeCMxodr6/VCRPMLQRB49VqVEKSU0Fp/8MEHjx5u37qx0Z4jJ9eX5+rNeDpltChUb3FpzSj/hY8tB4FbZJAVxeFe2mwHldI8AmdhqaokTdN47WT15Pr5s+fPcM/0+7EoyMnTVSVjZkNYGXkBdl23VKXnL9Qf3ZNpFJSrzTfe+uOlpVqjekoZMxxNLEd/7ktnv/6HD9tz1q/86vnf+50bWjprp6tZBL/8K5/69Cc+8Rt/9AfJXj8VWHKr7Z785KeeDVu9/+c/+uf/+J/999m0tL8dayhKZVafp0E1o5TWg0svvrxy5lzJ86DZ5EIc+065WrWJB8QhyIJrd77fXKz++3//1jMvzD+4N0knGtHs2eeWr156rnc8ODrebbXmzp5fLVVL+3v9XierzcVXnr0Uhl7nQFYboJT+CCr/I1+QKplhjGfHIoSQAZHnCQK5sX3sMj4dFUptrCz2DweVOCXHx4Mi5+OoODx+T0o42BFOUOzHW3sPQQKMR+LECdf34a1vT1fXLKFNHx9n8VhqnebF4429UsmZTOWDhwdzrUrg4mvX3pYAowim+dDz/OEgSdPEYtx2TX8kAfQokdkeH09hfikOHNU56Ewn2cG+5HbcPQYto0IWUQJTN5/2ZZZ0b2y4rre/vzUOAzcu7LTopxkMkmOL6ulIdYYb9x88lMp++OAIIRDFjlLKczzH8YaHhdEYY4iMBADC8igAjKEQUTqB5qJFWL6zd3iwm+UpGJNzjpKJNvrQgFpaGRlI4jjtd9Odh1MpYHFxNY8O0onaeNBLc8VtWkgwMdRXRv0jUyS9+3cnC/MyTdBonNcbRqpiMo0RuEUKCZoebB9Jkf3h7z46c7qBdN47iht12jk6vD+81+lFRz2YNUoXfeAWdP3h+H60sw8NL4qLDBNrNNHTFEajXdtlQOBoS4BBt94BYxJC9WQEmEDfbG09khiBkuT4aAIIXE/3wn3LRrubGhDs67GQmevmx8fF0lK4P5iUvOlkOppbaOUp6XVMHANAgpDe4GA3jhfB7Q2S7UcQT+4vrYZRPP7T7+lbt8Cy4fBgK5niaz/QYekgjdGg+6jZqu5tDcpV4BxuvjsirNjYSgc9MxlAP3hQPp4nRAz6k6PexByj+UXvwcbdPIPpCKLBbnfP2ds5zpnKunCEwG5Uv/m1b3b2lCnY1v0xtkElgBgcHXdGE5Yl6OaHu0kEtXpHGnjzjfHyaiSUur9xEEdFkujWHI30gcJghHv8wCAjETI726PhMDeJiCSOu1TmOWBwm2mn8xiRTGVWt5MzihkVnaMIEFSqyaPHm29/twMAKRKzA1baSykFbOTk6OjRzc6kC2AEYHCQ7B/1B/28SAAhMEZO+wAAppUlSZLnCiFAaD/w/H5PA3RsRgvRBQCNACB9WvXxw14JYsdFUuzvPUQACVe97vTEqfmjQ9HpikEv+rV//nunTrWmw/Crr1+7dHnl5o1tzqEQ8d0HrLWuu131wTvbn3ptcX1lYWv3YHv/jVrZ+l//9S0DcOveQCs82fPtszpKEmOiWzfu2Da5+Ezlnffev3R5eTxEg0F/YWWH5ubxxvbSavDtb73bOcgRgT/5w63jw0kRRZ6N5pvwiU88+96dt/+v/6ffJoQVSfret3e2bh8tLTfruHpkBn/3b/3f93fH7Xk3zaB/IBot+/hg2DvMT6yTP/yDm7IAgiEPi8cPJ7YFsqBKU2PGnSPIU6nNrclY/pP/4R3X8bqTsePxf/fbG7/4518tj0+9+96Drce3VlZbthWNFXz/W4/H/fbqSb1yWtz+MB6PqB8wbQRjiDEmhADAlLIfQldRSo0xCMj58xdrnQoNXGpIkUzrdafddkreytpaRcp2lqpGpVa44qUX56rVqleeGNDtMiuEsS1otUor85NBP/aCCuGKcMEwQZgmca4BeZ43GQ0tmwa+Gzg8SXMFaBInYAiznelwKqX23NCgTJucYJYmxuLeaNxdW14ou/Z0mh4cdav1fH3t1Mm1ERAYDAaYEpuFukDRpF+uWLaFfH/iezVtiDIyzuJGs0qxzrPYsmrLy+eTolXInBDwAjdNU06tICiX/JbWNsagQWktKSOWxQw2QgiR4kqNI5I6jrPUzGVBEUKUIUozo5nWutbwDUryrKC45FljjOTyykoY1CbT2HIdrTWmxGhkMghKyPElY8Rlk3KpaUAlycT1HIw1JmAUL7ljy3JOrMyXy+VSmKwszDNk1LkkCHwA6PR7lUZ8ylS01owTY6TSolwOLYtXyk0HScfxDMJJKjIhCaWEUYTM2rwAQEYTYxCA5BZyfWTZuF3LKbGNwTNmOsoM44CJXJxjGGvH5QgrjPF0Om3UW9Np7HLl+TgsOcpwZOZlYWGMhU4dywlqw0rNppfZ6gJiXFZqznwrsV3bZWNum3LZj5aQkKntIFnYmE3L5TLV0/MXl5SJ+72J5+O5unBdf2GhMzdfbbZLCJl2XbTrU61oq+2IAieRmmt1q3WnXitbVxYwcu7f2j15br5aXjqxct4ikePUHJfmamIK1+DR3KIHoGXBlueFECoMfUKs3mC7Wnco4UbZ41EiVT6/UGvV+Oc/u3D3ZveZyy9wC6Kkf/Xqldu372LCOHMw5kVRAOiwZLk+ETLJUrWyKDl3jGaTlantkNZcaLvmYx9rzSo0EJq5bJJxbDu0MU+pWcpTRrBlIHV9whibjBNQfHYaU1pgjKrVap6nSinHzwEg8MLhcIgxtSxbC6k1HB3nf6Zn7Ek2jxhQmjGGwGR5ZHOmhNeqn2k2Hc/zut3uxQuXb9689crHng2CYGFuLYoSynSpEnCLlsMSg+AXfv7PX7l8/g9//09azcsa8Y9/Ii2EMWhqMS5zv9Yk1mWr1++EYTiZTK5evXL9+vVarcZZrT1Xa82FeR6Hz6wfH0QWnr728tkHj64vLS1dvnipXi7duvnhl3/ys+cvvPqNr//hs89esm1OCClEVhQpxVAJm8sLZ9NEB2509fkzmJh3374blpyF5VIcFYzr5551LF4ihNgOWV0ZM+plCZJaAZLcQpxjY0yWFVohQiwwtNkqHx1tEeQvLdQa9RNJLnr94TPnnkti1TnuEpY3qotnT724vtS7c/OgXC4DQJYVQgjbtrMsE0IgAGCMCKEA8Pvvv3/16uVCZJyxwgBDDAEASIAUwABYGrjRKcEcACdJ4rqu1tqAIhiUtgBygjUABkWE1MxCEhKsGcYMACkDGGGlCkIwghl0mMKYKa0QJggQmFkZJDaQSZVRwo3mGNM0mzo2noU4ldZgMCFMCEEZMaAQaACGDNZGI5QjpKXClDizWEAuMsKY0RK0YpQAgFGWQXpGkSG1BA2MWkpowuiTyOmTIMKTUIIsKOMSQABgAEtJIBQAhDbSaApACTEAOYAGsIocYyJnXX1KKYOAYKJntZwaABmECgBQCmPMENIAQmkgGAC0ASpyghBmXALkBjwE2miBlASGwSApNWUMgGn9pAZAKaGNZPTJyGft3DM3H2NsAAwYMHLG/GUMmnWiYwwAWilFCPmo/H72pjZKa44JGKMwAm201poSDoC1AExyhAUAkopQYhujhEw4DaSKKAUACzQVQjGOABQgozVDWCJQAI4xCpBAYAOkQgkjQ8YVQoU2GFCBYdY8HzuOBaCkkpRwgBkvRQ5gKQEIGUylMRIhDoaBAQMFwkZIxaitDZZSUUqMAakSzowBDWABMK01wQYBFTJhVGvQGBwpEcKKYA2QA3hSMEpBaUOIBNAAWGmFMZnxQ8BT6EutpQaDMSBABpAUwBgByAEEGMcYM0PGnE0NJoAADORKM4Ktp0qlAJDSCAOa8VDPwJNmbC2z45oxgBAYBT+GPoo0/MceBtRMUAgwACghtSkY5wBGaYUQxghLJQkhCJ5kUZUuNBiCKQJmpMEEgRGAkFECMAHMASBJJ57jAAAAm408z3PLsmaeLyD9VG9loVJOLAAex9J1HITzGeclJRwMgJZKFMRigMhTzaQAoJRCyMzwpMEwQoUBhYwNCKSeUuwYyIzhGDggUDonGAMwrQD9R1LBYMAoaSjFeZbYNgPQaZEx7iBACCgCpI3URswYcaQylNgINAD+zd/8zV/91V/lnKdpihCigGAGCyil3t7exhi63eNKpSKUVAWmmGstASllJCZMSkNpAdrBmEoV27Zd5AghAzgFcBEoKVJK+Cx7zW0SJWOKLYwpAjI7oQMYQpFSAgGTUs7aGwyomVwsxpUGQBKQxIgaQ7QCTABQkWeKc1srmHm2xhhuUWOUNkWRa0psAwpAUoalAEwsUAXG2CAwCACAEJKnmcU4YGKMkbKYAZRpDZzbQgit5Wy/xRhrmAUTDMaYIlsbAaCVMozaUkrKjDY5QthoBoYZYwAJjLUxCCMOSM70Zka8hzFWQjLGlEbGaISNFJoxWymFiTKQg7YxmVE0GEochJCQCSZSSkYJAq2eomkggzDC1GiJ8ZM6qdlyejJUxH+UBswYY0DBk9qpjxYSNgaBIcYgbXJCCMCMsg5hTAGwVgBIY4yFyC2L5XmOEGHMkkKDsTAR2mSzwgNCmDEKkEQGg3YAMKAUE1CCIkQwEUJJSjmA1loCUISMMcoYolTuOJ4osFIFoWrGnhhHknGslLJtW0pZ5JJxMovpKFFw7ioJlGJAQkrJmJWlinHNmDWZxrbDGTdSSgMUDCMIKZ1TioVQCBilTKocIWU0x0RpkxsDGHEwFBOQMlNKgeGW5SqlDBQY6yRJgqBijJg1ZQGAMQhjioBKqRkjBqTWciY0rWBWKYWwMXqGjEmNMVrLGUGoUgohRglH2EiZGVAIGAJG6A/zlk+CVGY2m0hrzRiTUiIDs1g5IUQZ+WdMwMw3VKYghMlCGU0cx8EYi6IwRmFKhMht287zHABs254hUcpCUU4oJ1lWSIEc29NKUYykSikNc1FQLjAGKQijSMoRwRUhxFNOSpNlGWOMMaaUnumz1lqI3LIczuw4jjEtwGDO7STJPDdIk6RcDvM8T/OIUjrDZn6yBytQSnGLAkCexwDAqA8ABgoAINSIwmiFKaV5EROCECJgGCAxi+wpaRBChCIArZQgjFLMpNRKqRliHmGYEKQFBaSUyjGmnHlKqUKkABIh0m63Dw4OlFJZls3AkOCj/PJHhXue5wHADP8YAcbAEDBKOSYM4MnWRyn9qJKbkNlPUIQIIxQBIMDoCR3VbFfFAHi23mZPhBChNgDFmKIft/YI8GynIwjPfocRjgAAP3F8Ptp+CQYEwCjGT5wITAiZXQ4BQwDoI4ZoRACRmRZ+9PWnluLJy49OHxg/GSpChBCGgSAADAQBJWDNhocQPMWHpgBs1tIDAD+SrH8iwo+eT9V35uQyNNty0ROc7adp/qd3h+DpHTFCGMYUAXt6rR9bD/Qjx/CpbOHHx/C0bOBHxvHDD8OPv48/mt8ff8w+zAjlmJKPxjZDNAAEBIUIgtkkYMQBGMLw9Pd/5EJPXyBgAJhS/sTjmo0QPbl/hMhMMWYffurA0qfKRma6hwA4ty0eYkxnt8AYAWA/RC9GBAHHiM8uiYDO5o5RzMjsNUYAlmURwn50nARbCDgG9mSuf+xJAayPPvmRbj/FCX7y5kdL6Qm+PKYYY/T0J9DTSf+PCRljAoAAE0AYAP3I3//NxxMl+eHKejIWPNMcxthTMQJCCAGdiZ1ZnFsOACWMzuaO0hDAmQ0SgwdgzQDhZ9+dadqsP/XJjSKOgHHmfnQ7jCMAzLk9GwxjFv7hGsOEsNlgngpqtl6efvfJvyijDvzQqmBCCGNkFlX4cfV+cr8fCRY/MSQUgHLmPp0mhjGmTy5rAThPhPz0oh/d4A8fnPOZGs3umXMOCBhHjCPL+jM3QADNTotP1h5lT3Rg9nWCnmSnZ7LD9ImZ4IygpwYIkR8uQoyAYMD4SXJghs31Y82DPzxEAGOEEPTRzSMMaGYWZ3pGnio0IYzPBoCeyhEo5QAYMBCCEAKMgD1RDMBPVsqPC3pGM4ln8rGfzi5g8uTSmMx+Cs2Acz6ajxmpyGzkGAEliGAABNzCH4mec4owEPpDQsvZMkAYnl6RI/Rnh8S4PRMUQkAImmnJkwtRMpsQTIHQJ7/DGcGIY0wxBoSfjpkCoU+0fPaa0JmgMMZ0JpzZqDinCMHs4P/E2NEfKslsw8AEMLJmFnBGiDwTMmPWrI6VEns2GEYdTMCyLAD2kTraDgFgjmNx64c6+pGyUTazcYDJk53mo/u1ndkY6JO5fqKTP7T4lHKEZrvjk3mZSf4j1f9R8XILW/bsv092HYysJ0uRo9l0z6QEM5gkNrNrTyzdj6ro/+bjqSlETw8rHxlNxp5sDwgRDDYC++kAnvwFxP+MhX26bWOCLQBKCHsyKeiJIv2IGQLLshB6MpucOpTSmZF98iSAZ7YUKCYWEEAYKPEAHMemM7WZSfj/39i1LDcOwzCADylOO539/6/tASQtt7sz60vbxJEpEQRAuUm0RNe1lYhZSb0DquTCX25bywJg74QBRMY1xCccVgzI11XfPXG9RZc3PCJMjgzNj8I2btVRKjEzWvvq+sVKr2Ik3LnyDSRgHohYavx16N8nYFb2dYyGPgn2NikEgCwewkhxLTdBA+kZ4wUQUfggbFgmnBxqM0JVfVoTVtAtudDkf2OXRGYpIKUP3gwLC/NQbvpknbn3rqrGfelBKt3KzdY0aCAnjNLex+2853E6oEdt1JAdxlzxfLa284SniNOjKS/nxnm/0M5zHiNzfv5HlZ5B3caKPy7RxeyAyX3IvA9XKlMiETqAaBeZPdktHO/1BUNESFn3+mrXX9ZGdfsITPUz4bX3PAMsc3EXT9HoTCczu0FBZrUR7qlKVrGZRX8S8rxt/2euJdt9TlcBXbdQAJyc1YOUtTELdx8j3APaXIj9Zz14d1T/Spk3MjlKqcspNWPHpv8AitcAfH5+VfyBYuQiqQYhSwkyfUh/eHAGl4Obq8hCTuOy1pK7V34na2YmN6oZD06szGipTp8bD0AeCdHIdhDKWiusomxFV5x09241rL+6vZ5CdyX3x2H38QaCfie+mgvybr4qlFAWw/x8ykBictltb27AtBfKNnmElS7dnWAhQGg2C8LCUnKNpifz0vA2hgbEivRjhILCsMQARbqoFXtQI1Tqcpzq1MLPJTNiEa+jyTUg3TbpxgWEcZUVVWAlHnH2gICp7ZK83+vGBVyCw22QzTvGUOE1CLwhYufKq7WnmKi2LaIhXi8kvRvwOLj+cZqinQbW7QWENi280FsaEwkg1YlI89dLmnp5aJU+qrfA1WsgxvygAdiVyuGFDi9iyNE0fQBAZhbPhl/AJl1sK6ul2miXUQwDhG5oFPdxlVmoRtKBchmHUe3EKbPWYkP23kvRR+flL0dPPIF0z2b/GO4AsFbVUemKYcBzgvP3ceJEaRo1VeKElvCX0prpBNKDCGITS3sXXaRwg7HimXRURma0e4sG/WAYF4jpJiNittqAx7s+evMnw/6AcPfwS78Qb+HntkRl2JX6ODBf+yHApmZN7y01JM2bYesuVvmtQmlx0cHp3+10pmwkxhtJAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 22,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "Image.fromarray(origin_RGB[2])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "id": "4faf6e6e-afb5-4c97-82c3-aeffdc9aba9e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAIYCAIAAABymspaAAEAAElEQVR4nOz9WdMkS3YYiJ1z3D22XL616qu6t+7Wt2830I3GQoAEh4tshpvNSCRnJNO8UE/6BVrM9Kx/oDGTnvVK08OYRkOCNHEEgDMkQIBAA93oxu2+S9+t1q/qW3LPWNz9HD1EZmRkRGR+WbdBGWUGt7KvIiPcjx93P342dz+OL/7s9xARABABABARkAEg/c7fBAAAiH/y+wCAoMqfAjb9zt8un3s/+T0RWX539XNPSj78tyKS/tL/rPw5+Mm/EREAKP8CsIgsv/d3O8sG3/8tAPDCwOJ/879cvf23/9R7zyzIzN5n09vhf/1/Kr989H//P8fH7+l4+Ob//H9Vvnnx//5/rZoGgIgX/+AfV+8RsXxfZajSGkOPiBf/4L8qX1799j8rH4hIRJgZAO7//RVW17/9z0og63ZtwMr6+ezv/MM9HXXzO/+8zHZay3b7u7/VwOrs7/6jev7qZyMzADiQ+3/nH1WfUFhEUARNICKeocQUEQgFAJi5QhgREZWIiIhRzloLAFprRHLOiQgRWa9CE3jv2XutSRC8t6QVAZb9IyIoZSeQiAhyZ8M3oyBQUmBJcB7NVjfWOrZdHBHLETkk1UGVzxWQPRXVc7bhtFNJJ2UqSxERAHgnhALAgiQAvsj9YmqXE5uOvM1RWKF47ysIBChAAMQIAEACAIzADH6FAEs3bijlWJTDoYSBkAGkhANIACjgCKDsfAAAUOsnBJaqT5gVAHubpossG8/my2WWZ0WxSJfW5iBeRJACEQFeNVYQURmlAyJjdKhNrJRGZYwJUREigugGzo3+R1qxiPKn4xVZIiKtSIUBGNHAZs7WZt+acTXHEXy93rJ/AADIVCwBEat6y7Foj7smIiJEFBFXUjsiEVVkWCcqAPDeVvmr8UJE8BUjWg9iOVOENkgjV01jdoiqbCAilmBACMium+MBCBERFCI58XW0q6RgH/er6oUW5TfyVx0FQGucEQBwe0Sq3vDC7c6s5sim5lp1GyCy+VShKbVyQoiOO7Fl3oxjHSZQozkbFKCLn2PXrK8PKwAgUtW6eo0VN0BEavXjLjQYuljnIcV7P/m9Q3ImP/6dzvfFb+yTWG2mcyBWUJH+Dp6L67S/6tdKInKzLSChJtSreus/b1v596R25kDpLcjllCTy+dLbQhEEgQrDIDAKEcU7Y5TWRATCzhaFLTIEDozKrAdlUAfWSWE9UoAUWAeI4sUhCdGaFSoAYO+996VsIAASQWaupKO0Eq+TF2ZBAWJQQhvuU6fsds+3OW+jov39Vh/oQ4Z1Dya7cjbg16mrQl5ElFId3LkLz3btjVaU/bnNEWrqpmzEbfXm8ESkiTQRlTwEUZU/6xXtSW20281ExLX0hZUs6ZqPdSpq174L/72IdVBR9bX90KaxPVRRH/FGk3cV6QRbSvHGiJdaRWfBBtp39k8n5gcUpB3vt+BAF8fePRzdaVcnV6UawwTb3d6JRpXtQL5xeGpP1fJBN2hORHC7E7dQREbYIpo63FLQNhOpds42hPIh+fHviAigAEv6K/+gylb8xj9Uf/zP2sWrhhHdPfCdtUNtSpQ4NAZGBBDx1f/nvy/N3Ht/7x+X8nK/4K+3q8Kzquj6d/55vUgd+Sr/7e/+1mmXrdxZ467MAOCsrZ6ZeWUoiQRaMWKpEQp4ZhZ2zOxzLklWax0EKyvf2lyZmIjEWeediAB4IiIix1a4KK0A66wAAEphnVHRWlF1AisTjJmBqS5dNg1RG95dGmaMiIAguKXbytqVAE3NepdUbvR/o+vawwR7GWgT7b3m8q5PIoJIG1unxVhZREAq2hARJALAJpA1Drs0j/KBa22XDoYDgt3SFxERtoBvKLw0vLbBEZFnAGDAcoiobEL1t81VkaTyEFU4lqoiIG83GQF4F99s89aq1C7OA62hFBFoEltH2zsR6EztbHVuAzUHyTpfjRqF6vnruJUTdFWAq4JbVh0ibllva5u+qRF28bHmZDmgsev89d6WBsV25d+awmXqnIO75lGjirb07YSwS+7uwva10i5hBzUqrVQivZlQh+Gx/MW/1ais87lM81/8mwDQ/+nvt9nfNroAAKULOv7Rb5fvox/+KxHJf+0/34VJOZcFoJQEdfwb1TVGpfF+v1q0a6JWvXTv7/3jxqddvQEA53/3HwFAXQADQN0p3S5++nf+YcOubcjaekXtzOc19FZucxABsMwsKMiCClERoaJAARCRtbawFpwlwLJfCZGtc8ykINaaWfJs4ZwlRBPH1tqSi3jvgyAwUUhA4EtJ74UF1mIfAIAFoOTPiIDVELAVAJCSTZOAKEQlBBp4xZABuG53InXK1/aYSq1US7vqkMpt+qmnTlUPd7u+66DqlLMlImp1lTZrA5PVM8g2V8RKOpS6Sr2xG9c3dLAzAuBS+dtu+KY5KIgoAEo2XxuCDdarDGUiLBWtbldtXfSuoHX21wb8Vn9WildnXpFNz+ySebCXBWOt/HbplQKksKNUB9Z3CelGP9dIdKc91xi7JljkUlTLShRXYni7GZWrtqKZ8ueOhuziY405BZvx3SjQ9Y/dOLdq2fMGujqhM3V2/m4N+CA6OTztpKiuSquh73BB16cKACx/8W90Pvc++v1GwVLctn823nfWsvilv1PHu9KGdjbpb/+T8v9Ss47/q/99vZ0HWiT1nFhL1ac6H6/SeW3BdU86+7v/6Gw7Z1WwDqEufW+2BXOV6hK3/jz61/+iPXxVBhGpZ77+7X/mva/4OyitdKBMbExojCHSzOx8US7uaoVGkSIgZmJW4rWbQnbrJ1f5+KWbXVM+jSTvKR8hxAABciBW+xxsxoulnS+gSCVf+nTp8rlLZ5wvwC7ALuxiUv5zy6lPZ245LebjfDZyyxGnM8gWYnNwBXgn7MA7YAFecXmoDQqwR+H2v7KxDXa/R/nrzLOHz3aS5Z18GWqEXY1OJ+TSb9+gwyp/XSRDF8dpN7yRp7ZSt/F08Y78exoiUolkEfEi66VoZCSpHC0r+MzY1dUNbt5obONlA4F215WsYD/m+9vYeN9gAp3jXh+LelIoBNz1DwhAIVZ/6wNxIC01cOtcHNyXf/3mkBrbBeFOPaOGj2D3v9WaZutfu7oDO6SJQhcbr9Nbg9I6J87Xq/oQ3DZ1XX34B9WHupqZfvev7wFRSt/KbdUpYqvU/+nvN7INfvJvtmvk+Xf/s/1Iqz/+Zygg4P1f+1/uyfbR//V/y/Gj+Pi9sH/yxn+xynn5r/57qA1ktQnr5f+wcWu3LZsKt6pg3dhtp5vf+ee41tTqorcUqyWs/cL7Zts1DS1jt55KS7fO0Pdkfvmv/rsyMxFULkGWtUEmnp0XXzCzMBdFhixhoDWhK7LFYp5nWYQ5MxdFUTgOgqA36IdhCIKAYZYt82xpbY6Ivd5R0htobebpgpnF+ZVJREKwQVVEKna5tp8YSSkTkIkpiECHpIwQIa+4WzmnK7uJoMkCVl1BzU03DS5f77GdI3HXClObQezK36nDiQgIITCiCBKLsC3cfOLSabG8bW/CAijNf0JUjICrtdHVJqwVUG7K6TV+svI6rHrbAQDVUCo7Vm3/rBZflXRvwsqzbL6cLbPlMl/Ol7OiKAgQEb0wEa3lL5IKUBlAFUU9Qq1NrLVBZRAVKlJKldKna4y4Y0FRiLHcXKOgtOqQRTwAKxXCNlft5J53stRKdFQmellEYbcEwppxVheDeIAI2SJFaXtWSqpeZwAQ8AeqRyU6qyZIuXix0w/fTpWet8632dC0i9q7QQnJDsndXq5e09gddiQAoNQRqDjCJicj6DVzk5rfCxG9d1vsoqIWtdX/Dfjt+d7ehNXFWBC7bPe6KqDre+0QEXZ77avUtn17P/m9xXf+1o7Mf9D5vkKlxK//4b/eI4PDP/kXbv2s//C/dX/9f92Z7dP/5n9DJoK9inBbja3Q6Pwk0u2vaKRy//N+nr4fyO3v/lY7w67F3crPXMdtV+ab3/0tbQxWfI1FmOfT8WpSiyB7cTmwY+/Au8VstljMhJ0BRPHsLbOjfmyMGUShCeIw7ukgzJ1dplkAi35IR6EWBgDK8tnt5VWe215/WKnnIh5YmJ2I9HoDKW1ZRCxVARFg9tkCibwOVZiQ66kwBh0pZdijlFOLEHG1HiwAIhuXV12jFN7HLA6RvvsFavvTneTRZtblRMMWWxQRrbV4y86zcAVZRLBFP1L6LRHqwKu/pdGJZSXYxTEFALqXhLdR714DLl8Srf6VLu0VRQEggkhtaLat+W1o5ZuqlNRecilo1w2mBnNCRKk6s2vtENdLA3V6uEOEbIDUK3ttAXZ3v27boAKNPc9NXnQIF6rDhBq9HY55Z4b6806ByliX0+vPDNt6zJ04HMK6sYVJSQn1VC0JNVYnK17RWdF+Bt5A5rXM9PZYrEbq1Ye/B1DfrI9v/vD/AACf/pN/1wnog3/6Nzrft4t05vz0n/y7wyHsqe6QuvZUtx+N/enwqnd9PRDC18v/usD/Mv1l+v+L9H/7/tsAYNkiYimYFWBlAWsdNbZ8l5y3IYDrkqnDrEF01RoNVBoeISJtW2wNCbf6WxOrtJ2zSpXvp+EaXQmMlgDeKr0+hlQCafSPrA4aVWjL6llIBNoCoqGI1CVE012EGy/gLqlTWa6l76T6xL4rs0gJs6NzULcVqXpxRKycPaWetGpIDRIjgPW4vSqxtoa3HWbrirhr6zsAlGvb7VbTnq7Y9N6mbLUnA9aUucLn+sM/AAApkQZ46wf/x7Jwxcf/koP/ZfrL9JfpP4b0f/mjhw3BUzFxXTtvXX0CgHI1up65yxbptvYOT23+uyUwtj/tellvzg5vweZ54+HYdtsKNQuuiuxw7ZaCoY3GHtO5G/7efuvUderINXpGRGS99lSKMQLk9THrei95qZvdtYYoqu07k8pArlSfOjHs8S60lZIyKaU6cF6dbugu3in4V+pGh4L0l+kv01+mv0z/MSVN5HfIiYb03ZM6nc+H+x7bqcG7vx60tgzArQWL7rp24bMHga+nYeyCcGBLO9tycC0CsLWUsCVBoZ5tU7COFhFVArgO5xD8d2FeL9hpsnc2p918DWu1YZcMfvpX/psSc9V0WTRnwkbp21o3pdI3spb0a9e8bPAuQVXzZ/VQwmdZb9zl8hllc2iVmb13yOKzxeTmq5ubJypIIH4rOfkGxb26i6PW/l0nhrmeE2qD3ejEzp7tTFufdq2drEe3oadvddpWE1bkxyB1zbcXGMfg2AuQMQrBTSe3o5urQLwCzLL0+uWz50+f3FxfZcs5Oztf5AjOBChQ5Oncc24UIaKmgVLGGBMYJLDDXnDUH/jCH58n5+cn6dL5jJfTF5GeGcFips0gcMIzl7MBALCLhS4ceRm++0HSe9TvPzQKPv7kDx6/+CRM4vd/8VdiiRCMokipMDCh1oGIZ2YVGbaLYjktfKHDvjKRVkFkIo4SQi2oBYlBAyCSJiImJCLSRlFQ7tgCHYAiqp95XTugEJGUWXfVJjzNgaPc/lqfcnsmM+5eKBIABAYAARJBX6RuMfKLqc2nbJ13BQnXJn+5QlTb5dPe+MpSp5mNy0s2ORUgS7GjpVRVUVEaAAgpYqcAPZThrRC9tcvZIlss0sUyW8zT+WIxKzdvM/Pq3P/aDYykUQVIOghiRaaKhEWky0hYZUyreh+2+/N/91efNxtbS1tMo5Wq8epkoJ12amd6Lbm1C+whsrkSLQ2c26D2I7DHgK6/6STa/Rh2Zt5jMb8u2JZ/QqrNASWQan23TjnbtTLgztBWsN32nUC6MncWb6D6Wml1mruMr7EHD7Xdj7tcCnsorJMmZGvPxRZA2dZomAVqImrjTloXrx91KA+h1ovvT4jI652iu9wR+18erlJ1ZtuF7S5hoJRShCt/kyAALPLUmDCMImZO57PF9Mal05jd1YvLr7766vL5M+uyPF1MxyNm1+vHKigE/CLP00WBCL2kp1VQFE5rUYa8uNyyd0vnKNCGQGVfffXk+Z+DgtPT9x+cv/nq9mWQBGFExWISDY97vYvj+99Cdfzq8tn09ov57KvPPv5x1HvZSx4kSV9B8q13f4PCAef9Z5efAeDx8em9e/e0tllxlRdTgWIY/jqpUIcBeEZyKAVb71yR5TOlDKFBbZACJEXKCComANTgDagcvRMdIjMojUrBijxIZLW5lLEeepChtrUH1/28S0M/3Jg4ZBoflFbhFUu/Ia20zx2KY2Na7fKY7Xm5G9vVUeBVwe21NKVU6Q3GVeTFFYbCCnGzdwwARDzBShtgZsTyn8AOoSjrrWSdCNMGva2C6xXQrUZUfzsrquqqt7oLTpm6Q1o2UL2TDbaR2ZW5wWkPsSARsc427zQe9mD1/+O04Z9cCqKNZbu2d6HmYa76hGHN/1f9Q1IrtYFQ36NV6TdVqcoPf2BqzLg9XbfrUwVBy4588Uf/Pv2F3+z99N+vPwnU2EAl9vboaPX3G+qpKaS7lK+2UbineUopZik3ymqtUSlQSmpBglpYcQNC1bo9tdyJRuf7rQmwH8RhFa0TiYiwgGw8b2g0kF/Mx/ligS6n5ezlZ59+8eknn37xpVbKe5tlKSBHURQEmpmHwwfM7CLneo49MIsm00si57MgiBBx0IsC4zVyP4xt7qiH0eCUAjp68O2T8/eKo8uk3xsMzrOXbOVqMv1yfPthQDEUeWxy7Mf5uLeYXs2mrxSZ89O3w+BREpwWgA4ulwubFbees+HgxBhDcGRtHiQ9u8yzInc208YAsreQetaRYVSoSKtQmRDIWFIghEYJKPZKyJB25B2wAwpcEJVkRqSEEAEFCQSwNCjLszLAsjkBv4lzCytP0MpzUw3Ka03On2NYN5kREcADoIAvh/t12WNdpavZiFDfNb0f27piXf9awi1DZtaU4E0GXAfWKt9XuruICPhS6S+FNLbO9lTsrL5RpcpQSvq2NN2lxDd6oN3kQ9hXVUvn+78ouXUgnE6ZehCJHnBWeBufXRjcQTad738eVaCiClnH3q8kqIhsxZ9BruZvRZQNTW6X0ny43fjzpzpAjbhanm9jlnz8R/WXvP11l0xB3AqtV8sPsJ4liKsgPnc2r8pARADCzNW5iLXkAQ8CAN6vDsmRgPeeuka6rfC2n3eN0K4WHThzdo10m0DreHYQLunVIUteueXLAUStF9MJFUtj88c/+9mPv//9l5eXRukoNEVRoMLj0xMkybIsK6xSarkIwsggWZYFKK8DRvSeFoTGixOWZc6ACBpylyulht/7T99+68LNZ8V09vRnP5jffPpyujQ8hNMCOF/OxkUqIIFFgcCxlrPe+4V/nDmb5fbV1WfPX3x18eY79x+9oeHNi7OeMWY8Gn/+2Y/iRN+/fxpGxhYz61Lx5XEzQlRxrOMoSuczBoeMDILExIUvhSkHiIgWkYzSBZtCuUTpqFSgAZUQgdJAQoiCihAQUESBiBAg8vog0y7y29B7gyI6B7cxw2s/ZUcV1CZ+RKyfO2996iChNoS6Hdn1ch/F7ifmlaxdMbgap0MF4EuLuQxbVhq8DESE1RHHSliXoeuQSsujKb9XD6XnfPs8DwqXcrne/Kr0IXrwnpx3mZjddNLJ2feAOuTlIcbuIekQ4bHfgOvMXwH/Gpi02eAd/HZ1tAlQ1jFZazpfKQ7qOetwOmftLn57eFt2pdbEv9vPgYgam5i24JYotmpqdOUe6q9/abCq9fDvdsLs9eRIdd9O9QweRWC9RRBrzbtT0u/5+vXy759sewz9PRZPqWcQiiKE8uCDIABfPXvaC2h29eKjP/vjzz/9pMhdlCReADCPosA5N0+nRVGUNXKRL7JPhjBEVHlhwyBWFOeZTdPcwyv2wszscq25H6nj3tHZyXn26rNn88caxAhOb5/dvHo+egWKx4Mlnp4e3z975BmRkjA507pHQbS4eXzvwa9MluOXl8+KItOBf/XqsycvPgtCINKEOs8LRWF/8EgEXzy/evL0X/ZCc9zv9Y+GSKawKZMKlGRZBsiolFIKkEEHRgei0drl2mjVrHJlLBiLOhdxgCikhJRSBpQCpRURU4iIQIyoRBAQy+h8bcLuHKYDR7kt8+4sW+XqrBERAZtRGiopWGWWmqCqTatmXXuk7/p9cy6LlEs/laxdVc3MzK6KeLXWkvXqPKgAbB3FUYibAypITf2y/bM8z73fSfY1zMHDh/V1Uydnf93idQivC2oXt9kDp7MDvx6fvJMfHsxgcculvC07qj3wlVW2sei24G9C3zZqx5auDAc0uZMOKwZ+4NDj9uG3spTmHd3SGZ9d1p4ebPl87kwrLFsNgK43WFvMWFUt3WvAK4177RDj9XVglZawiwTv0Ly+btpPoG2K3z94bc1x3Wpxzrk8z9JFvlxYayPET3/66eOPfzS9vjTgKQ4Wzs0LP5k8K4pCRMIwDsMQEbUyYRAc978JwIvlhP18sbQ3t9fW5saYKE4AII4C4CIM8LgfJ3F8dv7g9unT5/aydxSgDIZHb37zne/0Bv08hSzLjo/PB/3jxWTk81vjx+Orz9KXY+md3L/33Yfqe++/nWfpyzQfP37xajK3Hnx5JwQCCSsQncRDRdHliw+96EIzJjEGLNYubc52iRKAAmC24hx7UlZrS0ZTuf7tWcCJ9+IBvIj2yCwIRAoUiTJKB6gNEIlWstr0A0QkRMgA1KkOdg/o1+aMr5VEpGQfW5bfapIfqrxXZF8XVIhIhLsuzOlMDd1C6n9rcnfliiorbbo6CYCopkBsUBIQEaX2eaTak1S24exEdXuw2iO7i/m+Lh+QDT9sVv1a6UA29TWA71LxXxdOG+zPCWEXWGkqxuVLvyLgpiMaAUrdrhpQD+VGrZZqW6VKfkNtduzG51AnAdb06QOT3gWdoLyKBgSAgBGQyrtcqeICd6uZAFBNmfWQrzanOXEAAFhuh8ZyFqOAbFxb5Ym2Cj0lJMJOhAQ9opLVjk2PSN6h0dFSPBJ5zrUmZlZKQYM71Kal7HZHdzanru8gYhkmELbn3i4I9VQfb9wO4l+hRESAasWLVyu9sFo2Y43gAJAFZ6ldTtNEwUW/98mf/N4Pvv99FemLd955fvXyy6fPZvN57nwSHCkzCILIGKNIK6OCUGutr5ZfTkaTPLNhGBtSntkEUa8f90/eYFccDYaDZOAy9/Di7I2H51c3T4upX+Ywu7yMzJP5+Itnn8HJ8YNHb37jGIvs8Rdzu8x5rnsnpv/uw1//rynpmYLYz2xe0BJ6cbi8fHYxyC/M8bNiobD//PJlwcXxyb3JVI5O+/0T/Uv331ksCMJl7/z4/un7L5/9+Ref/+szGprkbfGgRGtRoTHacOFnPi1AnTE7Ee+cS3pH3rsCHXDK+TgMQ9QBF+LJcJigjxhIhYyISKSUYqWBAgASQAMkmkAbwHLNmFGYRBh1e9RKsm9rTp10tc6wc/MUIjE7EUAEAe+9BXSImohBWxIERhEUZEDn/capIyJVkL/SJCjV0zaFA5Q3aax+cl2CbZM3s6sRMFfynoQZkImEEMvrDYnAxODycrc8ZgtjFDtAoJIrlMSKWrEIgBcAD2AoIiKFRERqbY1XdSFuLffuko6rabDO2RiItZqyNSibCbUNsMqM2wBlO3pi5+yus4LyCoROC6mdv5GnzoLqO3vbmeud0wALAIhcWTe7qK1+bnibGfLa4uy4BK89KJ3vEVfBMTq6Ysdm5NpFk1v5mRt8dd1FQiJr66/cECcgAoTrQK0I5e5FRPQgeh2sdq2mQxX/BLYnL9T2FjQIr63J1funPnY1fu7LT0QbULKZm4K4tb+huo6wmTp1RgGhzct98qbRwl0ZKijlnN3jcN4FRHgzGRA3m7zuLNj5fGCR9oy6E0h9kBpwOkGttbz6VwEAQSiynF3eSxLFxcXJ8KQf/9vf/e0f/+BPTKSPTo4vr159/uWXs8XSBNHJYOhtOcQsIkhgrR1PbufzOQBrHQQmVhSgMnGojVFa69n8+njY10Fh/Sgrll89ffr4WX51/XR8Oe0lcDIIA4xU1Du5f+/iwVvDk7MsQINo8+Is6ikuIlmOP/kfr59+yXTrM+cLDhPwCt5857+8eOcX5+rpvcfX16OvMEXrjmw+z/nFVz/9iDnqnZwkvTeP751xPrx6fv3kq+ejm5EBiXERmuDq6mmRu+PhManY6OT49JHjGQB4L/24P53NwqjHbqFMqEgXi8wrpU0ASudFSjo0YeTZERFpzdqA14COSCNpBwSiQBAVo2ghEVgFHO6kgYqydtHY4XqYrIBgLenyaJ0wg5TrXluej06S6+QRtZyyJWO6MKlDxppzS9YRl4iI1yy+znxlHXG3NDgaERhLKU5EpFRDhDQqhRrHqMvFTqHV4P4NsNCanvtZXHsOtvleZ/EG2gfm3wV5l8Tdv0H38LqqLesV/Ophf0c1kdzLWe9kvIekr8mcsWSXqrSV63ge3ktlao9mg1T2INxW9WBtaFUEX7fgNexOZa014/5uM3H1XCt+N9LrZeCypOwY4dZUaQKvC+A9SNYnzCEj3al4thjW3amuNTdAtZ8REVeqH9IKYV92UeF8HEXay+T6eUw4vXr1u7/1hy+ePJ4up0VRfPz4s+Uyi5L45PQ8y4o8s7awYRgC0GI5zbKMmbXWSqs4OoqiSCmTZ3aZWiEXx3GEgBixN5cvbhazCXinySuVO7/44P1HoQ6TKI6CMI7j03tHJolu01tzO7uafOY8Hr/3N6CwXz7998vxq5PozfDe+4tFFCX6/OE95+6FcbzMP5rPbhJzHp1evH//YV7AF48/9wXOFgsA5a/nT7/8Qcr+rXeO3n/vVwYDZfA74IJ+/I0gAD41gLkmfnV9y35m2ZrQGR1qHeS57cf9wjlEBu9RSJzzVoHXSIaBQAXOG4+JUkYHhpUBUqQC0BEpzaCRNIhHMChCooUQQcv2Zijc1p3bdNVJKrtyrjPXriaSrXlbsl/sKtiAxpWLdQdK2NJrd/GXXQhvRP+W/bSyLOvLPSLbDazlZ+YqSJCsl5OwZZBXoPCgcwObFrXxr+rdVaTz+eulPb33WlRxJ26vK0t2FcRt2w63DuYpACijU91ZXVuiN9//HHjWdcG9SdbG8b4xXdPtHfJol1F0Z2/g2teyUUm3JU4dgUq70m0QW294M4v21A275/Ae2qq3bU+r6oK8nJjSUFe3pzFup05luS1698+TxvB0ugd2NbBdY+fLhmAuBxLXnFpkdaeNNobt8ubl08X46sXTZx9/9Omrq8vlfDF3EyRCpCCOANV0Op8tsiAI4qSf26JYLAFAKRMmsTFGa+09z5cZcwZAgEjlbl0EZ/Obm/nN9Ys8TQdJfDRIBv1hFB/PRoOX2VWc3Ny/H0owiHJf8NFi7q6f/f750beOoujxl/86CPv66Nc++N4HwVGh88Hc/VSkX9iTsHd5dfnvZWxOw3sT+tLoYRQYY5bvvHHi/ZsvL29eXT2eL2ZhgASQzvmnP/lYRE7Pjgc98o5Gi4X3Ks2yxXJijIoinMyvrr96eXx0Epq+d/L+u99QiN47IvaWtVLCUuQ5kTZBBN4Vc49UiCIuNClDKvA6JB0RKVQxaE0QAkSoWBQwaAFF6o7FoQOHeM/Q02oFuqIcBBGlFAvJxqe4lfZR1wFeH1x7jOoAO0VX9WnDLyo+sJ5WIuuGKCAiECQSXN/TvLbvVwYrdhnxsHsKwI6JiTV2VGcCq1q2t8Y0qmtJnY6GMze7sW2sH5gOLILbVhG0WEEntE6G0zZn6+1tFFzHyt7GRmhtAr2G6NyjJRwixRvptfKXLmtciYASDdylvO7UEtaU085Ql5edqB7C8HeJGBHZaQHTenZVf8uR2hVHqqrgEDWhU8WrZmknrrBWsbdArYIANKdZ563p0KUEfY15tSq4A8Iusm2fa9xV9aobZbXDexWcaH3kN9Rye/NqfHX58umXH/75T19dX4vIeDrhEIG9iMxm1lno9VRgIgT0XorCEVHSHyZJ4j1nabFc5I4tMyil4rgXBIH3drGcjMaZ82NNoBVcPOwFKmC7nEynN6O8fwRJcvTuW7/0zsMPNOBi8fJ2/HQ0eVpQMIdZqJKT+K/EcTxb3szGP4p9TO445A8Snd+++mRZWLZo1WgKIUWnQXTqRYjMB9/5wNDpL36Xx9OX11fPptPxV4+fj+bTrHjJAJm3Alf5T38cRf1752/YAiLTf/ut95bp7POf/fk8u3Ee2I7juP/RZ58+euMNTbA6/oIKQASIRby3IuKcMwrEIVtEZUgb0iFTQKggSEgHyDGIA5NA6URZS5H92uFBdLJLKtc9S5ucW7Hjd5FmHbe6sOzMVkcDEdd7C5rolf+v4WxN5E7g1c0Hlb5fNxJKKpc1WNghffek+q7u+svGvDt8gL7+TD+g4IEspc3c9ugfUGvdfjXlTpYCtUFsEM9WkdZeOdgmAwCAchNfx+hgI3+76kMSQbeX+wA3QvMY0v5BOXBY26Jq//g21vKrVL+Moer2LQG8H0VeY4Ab2XaHadsA0ugOqT9XDatbq9shXVp01u1hqAjia8+3XfjDNlHuZKw/nzOqBYoBkAAFBMrok4txNr6Z3Fx/9NNPrm9vF3nx7NlNFMF0DFEEJ6f94VGQZ0UQRIjKWpvmNgjjJEmCIMjzYrHMRDAM4sU8PTk+OxoORXye595bkELYxnHibYoAzJjmToE6PT4NI50XohTNFuOfPf4jX6TEXqEG109sgso8m30VJ09ALOVAX6pB0HNDTvPbIIiQuCiKN87/mvHfnOVfJL2/EgyjMFTOwdLz5YuPnS+A4xDuxwmdnxeg/TTL0gymi6LIOdDW+bTIrxTFZ2dnVzej8ejFeHYNSl2+uo7C/rJwV6NbQHzv3XdBaZTCCyMoHWgAsIUV8EQEnHsQ8IBei9fgciDtgcSmSgfiEy0OpTw+TqBUY7Bqcu7OIdsilV0ZPPu2cMKa/6oU0GuSljYXW8+aDuDVVxEBaTpzdzD6rRi5lXhrk3qJIaFWSpGvxzNRpd9yxYNqoHbNl0rJqAuD/dOkocJ2Wi3t1rXh1FHaL972ILMnNWA2uV+NlZd/O22GXUTYifMOvaoeR6FpEG8RlWxluHMF4C+qoxrpECuuWW+5B61GPwgAwIh1aBWdbK2F74RZQ2YXYjtJeo1JHQ7WnDT18dppAdeHkKFJ5fuL7MGv42vtKHBd7u4ste2CrusUlQDuHMXO6X2Idraro3fl7nx9oDpWUzVKLySuNvMhe8fe++nzr5787KMPf/Tjp5cvn1/fZs4N7x8DuzdP4yxfgpgw0HHUZ4Yid1FogjgGAGaeL5bei9FxGMZBEB6dnw+SntZ6Oh4tZjeL5UwhG6NsFsVhPwxUEkU60hqp34uDUL378CFIYf20yEaFtSCWJGfm48Fxct7TchGZb7BY7z7Ply8WoB6cvJVeH3ESD48fDeR4MMTl7U+Cwg3s1fLZeObz8Xi+XEwKNyLCo975MhhGsTk7fuiycLmck8+R86NjOOp/4L1P82Iw6Be8fPzsppcEZ2dnV6PxMrVWls75OIofP38ZJcdHR8dHkSBA6VIvY4YLWAIlAIAg4oEdi2JfKGUQSaRgNg5yAc/MCoiQNACgqY9Oe7gPnJCdo1xLXHEEBIWlR2e3freHNcBe0bURWntRkpYPc/OMm7N/q6VfUNUacJWE1wW3eVAJnJlXh4C7lAloTdJdsrOzjQ3Wtp+V1/v4Tvu1kwAOQWlXhv0coPPTndrJ/gzYbcasU+127ZJGBBi6yPt1BWQnGndmq+XZWGo7IDY3tyIiAiHU1rDXMES2AqDWkenQSFqYd7YC95rajU8bFWGN824BDDtlyX78GrxjF6KNxqwQAtizlIVdp6wqgih5gW/5DRro3Yn/rvdN8/c1zdn6LuhOUq7PEFxbJFU255211hf2+eeffvKTn1xdv3r+8tU4lfOH90ykFEkxyw2FBGStJxJmds73ej32QETe+TTNiXSY6CAIAVUUDG7Hk3S+YF+IqDgIo1AnSeQhTGKVpdNlOkIWtsXt2Iq4Jx7CMIh6veHR0XB4roPIGBOGsWMFEsDy2fX4v1ViRzfs2Yhyjz96kqZFL+5Z+/3ekcq9nS0hSc6Pev9SODg/ObV+Op/O7p+/B0DGoBcdaewPe5Hho7OLq9vl06dFsSyejD9NBj1EcQAvXlwriL/9/n86nxUm+sSDf/7yOWqFRo1m8z/84x9+8I1vfff9oQkiAC7ygpkVehR2RU5RH6FcoGT2jOgQWCmDXkBYED0uGI2oUFPoUZHS9XGpRqqTjNsvsabwdtJDGSNqw+/Wlq9SSpRiT8grh6usvLlb1AjbYqa0dNsI4Fr3r9CjGj1v095W2Xpj18VXIlYpxUS8SrC+K2Ujd1e9UauoSsxMtcyy2eXQTLtkcKd+AC1Odwg/7ZRYhwxuG589LPiQ4tDV3vKhcXvPrsydmOwpUjW/CiC4C7c2ye3J3KEXtmAfKIMPTytoJcjSjkdB6sBHtuPV7AJYtUVq9y4fqHns6i6pbcJaaaKIRKQbrokq+ZpLHVHUBpCvvW+O0CpPXbVqYFcR3NpXzmWon9UxLqkWOwHLI9bdo1W9VMoAkoWCFVrvSCkA0LTF/vbom51p/3SCmusMWpS3y3CRTQi9kjttJlq90k3VFrEf5Cn00TsZBfFJMZ+8/Oh/fPrqiyeXt59/dcNazu5RHAIhpuncujSOe/OFRa37veFg2Ivj2HqXL5beeyIKTeR8WQXnWfr06Q+dkyAghai1NjpgBmNCLb7Iiijsndx/EIahiCiloijyi3SxnCj01rvbyVhrjSxJkvilH2kGJSb5Vv/k/M1fezPpnQoE8b3esJe4dH7z7PFi9HJ5e3X17Mno+tWThbm9nqFfavTvvhWi/6wfmPPwLec/c/PhOFsuCmC59+Cif3rqR6ORmy5GkysyJnuVvv/G9y7efBti9jw+D9+bzm7fe3Q6n/Plqxej+QsVwGcvf3Z6/ktv3B8YBCWFYifAoEi0wfIcrVrNTwbw3npvlTLIQsVSuVwxAyATIQlwpkxMqjSoGRFAkFgDceXOqpMzdEVzw3UAgfUQ15biGAWAUAmiZwYAUmDBM7MrLDpQqBjQIyIqFBBSgOJBEJGgjDZVokFr8pH1mdqNlr2Ru1SSnfe1dT7akk+r25DWspZW586pXBAWERZhQgIRADHGFB7tImPnwbMJY+/FOUbmdXhtRFQggAIEjAIEqAgIUURIPKEWEna+MqOrSbVrekrNgwc1XtRQIGqj0zRx6gKvPV6lrtNgGiLNfdTVResiUjqosI62AAA49vXb4GupcW64EocrmI2rftr8py4e1nC46oHGfbSwozNbktLXIG9sx3XZDc5EGytpfVMHrduxWuncWgetBV/bRGWVZgycqmkCW4bHJqkaT66PNa/b6zdwSACYEWClwsJKFhA1jxvU2kXVlKmUnuoMWENdExEkEaFaL9W6peXFwZpGWG8yM+87htSZdukvu5SahopXEc3XdGG0keHNMlKjinrt+9XDRoY71ZxGKdir1u2ZAI1S9fmmQnROMS8ydIEaZrPpfPT5zfX0B3/y9Omrr1QMF+cPtD6ezG/S/JU4r3XQ7w/DWIbDo/Oz+9fXt8+fPxeEdLFkBkQkZeI4DuMEENM86/dORaRcAA5Mcnx0KgKelaKIuVguWdhGURlTjPXUZ9l4Oh1rRXFikjBwjgjAQHD0Zm4L6if3Hr35/qB/kuVzn8/DkPKXN688ZMvcpksFqt8f0lsXR2dh6K367knhgmAQ3Xt0xqSi8JHNeid0lS4tiLoXRZqE3YLt9P6xfrwI589lfDN2cmOnN8+u/vj+6bd/89f/F5e3f34y/ObzVy9+9viPpnkaR0ciYovlD3/4p9Fv/PrRIHFp1osNobbeK6NX85pXqtNKaiECcLn64a0VyokWikIQojgWZ51HQRISpZQiA4rqgQJel07kgPWOO9OKutfW5gbsRhB87VQ/OMErlaLiKbgV/9KzJaIoipzPrHfO5dWxi1K/3OM/24gWrP1YLz/t6aL2J9k4jahT4r5uavCrHVXX7M5Wnx/CQ3Djn9jiPA2u3clV6qrVupavP+6NHjuEPjf0t4YA291VF6i+pb40sjUgt5q2/nQnWl837WHdbTRqDB/+QoTYHceQ1i/30OIdqU5ndRnZgFFRpFQ/m9cRsuyQVe03IttxK7eRORD/XV2/B4dOG2hPFQ1SrhdxykvGvdjkXqwN7fTJzbOP/v0f/vDzpz87Pk3ifj/P1GJ5RTpLwigXMgYmswWzeAfTyXI8nWRZhoikFCgCRCAkbbTWhCoMIkXh7e1tr98/P3tTRBhIBJ1lDzd5ngJAIeZ2YpfLpdLU7/dNcBQOT4f9hEAUkdZUZPZ6Zm/nkSIQf/XRx59rKnqxGOXZZxcnb80XUxE/GAyiZKhVz5g3zfDd4UX/5HRIBN6ReErnN7n9+Hr0MzPRHmwQaw5DkBClZ8yJxnsn8Wn0xtmsPxrdvJyMb7TPl+MvPvzz/8fpyS9//0f/5snL5zkDaUjdxOdgFqEeZs9fXhr9sB+FubMAEIahs84QCiIAbi6rJixXikC8gKBDlgUAGVQIYpGVFhUoUqWoQBHxXspIbdXCZ23Qu0M81omkznahS0BVvICIys0O5UxZy7OdGt4a7F1MH2Brs+hGE8YGQ2kriCUOiMiyFf8Z1lcNijBiGViygsOVf73OlOtYVWaiiHRoFa0mQI1N15jJoZN6f9ojwg+E31b923ZeXcDsYrm7GEtb2rXL7kes/qbBmeuEemcDN9lk++dhfdVuiNQ9ye2cu4kf9rauie1uIJ3ZOuGX49Oocz2sr6dn6/362h7MDkmIWF2WUGdYbaHeKFW1YT+prSAD4noNmIik6UG6g9zvbEK3WD1gShxeXUNLAIC84AQLZEEVg3OTy68+/tEPnzx9evHWIDAXNqe8eOl4pqFndNLvwyJLgT0ps8zy5XLknZgwEBEVRLKeXoXzk9lcRPI814AXFw9PTk6UUnmee+9LB6l1EIYn1to8z8Pk+MHDoda6KIplls4Xy/liqZWyWW6tHfYHFxcXy/lEwBbZzKazXkTD/vnFg/vDXj9C59yFMT3v4eX1q+niSX+oTk57A/hG9vJ5ENB4fDmbXnqXZsslgqKT+3F0lPQGjHoyXcwW04JvnXNvmPji+ChQmUnUMDieLbLRKF/OB654dnFvODiNb6cync8nk1dawaP7b0b95e3tbWj0e++8rVTobYGgkD0QIAsicOUTYxEQJkYWAhEQBqGcBInBO2ETskJEiIEUCTGICCslCIRrxenAcd8jVBppM1lga4pjawNEnfDWDLtrKXoVsmYf1bWY78YNuD6svFl2KbELgsD6wjm3uh1EAWC5rtSxm7eannUmsKbKZtv390+Vc8/7XVJtD8AGu2iLme0aaybjjkhVu3HYpVhsiecOyVTV2CEh6mve+xrYaae2aWYPhK2IfjXR2+ZgsJ97y9ZC3s5sm7r22cB3ks1fiH62DWpLQnXKiEP64e5d0J0/78z/umXrKt4edGsAt2ZaSQF1bbqc6zU9fSsWaB2xXT3Y0BAbpb7GJN/RlmpVZFMvABCGpGZZjirsZbPHn330w09/8vjswbmE/flsOV3cCGZxco58lOWzwr8idRzHsbU2y1IKwoKz5XzR6/XyPFNKGVLGBESUpqlzTkSOzk6Hx0fLLGXm09NT7/1sNtNGW2+QKOklgyG6wl5dj6fTaZYvtYYkSQJjgDFJ+kQwm82+//3vD/rF/XuPHtx/rx8NjFaostv5+PntF8rJbD5GsoN+nIS9k7PT0+HDKBx+PJ5evvokCO390zcv3vv7R4M3vF9EiSO5d3P95fjms+no8+vL56PrQgpU1L/ExeAE7r9xcnrvjVdXcnykw/6r0ezjI30P3P1vfeN74TCaL/N+dFqk8y8//4ETWiwWL16+UqTfevRmGMXOsZSBxNbKGkAZgXxlAK6kHYhiZpdxDgIWlQIQywImRxOoMNImVoQCpXxCYOL1rbcIqrzkYD9V4Jb105SvdSW1DeEvxAWHWyb4LmujtusHBUEhAJQ3mnMlJkgppdRmFzRsohmXK4Jl3CsCwPZSaL2ZUvbEaqEZQGS1aijcoaKzB1LQmpLQZWg23u/vlk5QdVQPgQPbQ9zJajo5hNQ8YdtEslW2XdfhDKc59DvQft1Uif8ytvMKSEVfpVejo9KdwrfRaZW347Uxq4VxrRtLuyzp/Spd9bCrG+9Esv6xvk5/twsaWsrOa9F0/XxbvTHtqhqUJ91+b6wf1F7J15qUrV42NLIdWucdqS2D26V29cadGkwDYEMPCBXl3iXxCefpn/3wf/ri888cxmTUeJyn+Y3zmcKhLQjUjUfreRD1+7ezcZ7nzjlmtl6YQTnnvRsOh71+35Bi7wGgF8VHR0ekcDQaichgMJjMZ845Ilhki0BDns/TzDvnptPpYj5LkuTiwdnJ0Ume2cViURTFfDotimIw6L397jtvnL2htc7y5fMXP5tMrzxnzud5AQ/unZycnLxz8eje2Qm7xWx8efnq99LlxBh17+Td8+gbj44f3d4++aM/+Vd5nhsdg74V55VTirEP/fNHSRQnqIy/GP7a9/5BP3j07Mljp/84zb9y01zGcDMeEVkHcHLyYHB0mvnx1fXzNC+Y7XKR3dyMbm5Gt7e333r//Yenp1nqQZW3FpRdjgwiIMhChLjaE4fMDsR7L5AXihQ7CywoFilCRvTlWSYqDToGEZZSHgB2SN87GfeazrterovV+P8+/3OdhL5eEhFc2/WIXVehbVeapgtrLaIqrzxhZhFWSoEvpe9mLQkAEEvxvFGIS3VZ6G6Md81cXFuNnUV2CcIqw50Mty7IW7KwKSz3INxgILukYH1D2VpNbLD+TV7YZuLbadeaq9rxfoPnISyxak6Vu0SvHvJzS8HaLfDu1DAOSYeL533SbQc33lV8l/wCgPLGk8Nx2xeIo/a+5dfqshcbDdijirZhbt7foUI2a6y+Vgm2Z9Gdfi1sHZFuw4eueVU3r+sv25mhqx8669ooLj5ln5jEvPjZD774sx+OJ1NI4lc3c8+8XBaGBkHUW2Y3y2IZRPFw+M54eT2azOM40pGZz+dam8gYzxBEYa/XC8OQrUPEJAqTKO4l8fXtTRwlg+MjZnjx4pky+uz8eJEuFQ81Jlk2n87GSh298+hdrXWaps9fXBkdOsdx3Lu4eHMw6BHBZDq6nlzdjl7OlzdIQggaBkeDt0+OHhydFYv5+Ecf/dBms0ipOEz6YT+O7983QQ+iF08/e/zsw5vZ5Hq+zLwSii8g6yX6aKhNoqJ+//Tizf7JQ8ZAe/2zT/7k5upf5PmiFw+PkvfvD//qUTC/mv35zeirq5cfvXr+VOmwfxqGcT/u3V/MLrOCrYd56mezp+D98Je/G4eB0xq5vDEaSm6GCEKrywRq1MjAmQfNyzEEVpe7I51wAVYEnQMVlFcqSXl8gMvdlboyD2vjuJJBFQVuS8puS7fy01SmREP9Ld/KGk6druq0t2vy43oraknrdamwqnKHg6cSDGVFzOy9995XEwdREAVJaqcgGMoN2yvXZdNbWwnRql3bnzr6p8uc2thhjfd3zv1dLYUd07PKsG1LNMYdAFaxCrq4YgdWu8z3+std7KhOvXsa29Dv23AazLOuMQBs2SGtnilPne3z/7dTp3Q4ZLw6QX1t1XN/dTsHd234HVLF/kbtvI6wM90p27dM2B3PqzfbQUgP7ERs+RDWbAFXzIuo/NlJ0wdW0WjO/tQmuzvlfR3yrirYzoPkvdvx80/+/N/xMi2cv81uGfqTyU2/d5QkarF8uUiLJL4fhMH15JPnl5wkCITzxYIFgDC3Lgzi09OTOIqdc+z9oN/vRWGR5ddXL4/vPdRav7y80Vq/+ejdLF+OR2MQEspGo1FRFINhHAVhnk+nsxwRo6R3fnYvjmMimkwmn3z2uXdFnqdeONBKmRMUGxiKAr3Mnr/89FP7IRACARwN1MnF2XAQx1HQT6LBt7/74PTdN6159uQjeflnx+c3T59cscuO7g+gsBrj8/69o15f5jIfP86dz8efBrGiYhpQGCVvX72cqOAkiofG6kHvYglXqCZKqcvnaOJ7v/4b34oenTyczp4/fzaZTBbT2y+/fJFo/Cu/8stKGUYW8Lg+aEOAiOA5FxEAJqIy6AkiCLK4pRN0QmAtujiIJQCttHIsWmtEJAAhAmARYnY7gp/unH6I3ctaG/LYIQirbHXKqbODr8fF6hpz3bgqeQ0RQU07FZHhcCizSZalwqiU0loxo2erYX3BWkNK0aa8VImlHIbVpy7Xa7PVtebX5cGB06oNsP1mF8Ban280b7yrwxuCbZf07RRIULsNqS3OD28m7O6ZTpF/iNHSiX+9lpWU2nEdoVrtoaiArGgY9Z5gxwelNvK7hMv+UasXqesfUKPD2tdq4F4PW924pqobOVntbBIAFAsrqqoHT9lJFp1qaVls1RgAxvVqQcn+VuOCQJs9m1Xs2arS9TzvCaSknEbtLYOaUTAIMBDytaiZ1HDitdW9Bnq4TtC1ORDX10vB9pwRERCqXaTD1d+6eVGvwgppQM3snAODQugca1Kmfz+bP7/58A/t1dXNPH06V5kLQvuyF/TDQC+W+XSJOh56A9fjyWJBg36MCOnSBUEMwEQ6CpMsy4KgX1iriPq9ngJczJbWWgAc314ZY06Ohs7x86fP5vM5i+v1etNsQkTHZ6dZXsycOz69NwxCpdT9o3vMNs1mtzcvR6ObPM+1DgbD01D3BDyhQ/JFtpgtZgrw7Py8fxwP4qNePEiiXraYnx4lg4GKYl28fPLxl5/MZ6NlOjk/P8XgPAoXpq+O750OkpMH9944HiT9mJ4+/iwS5WcZnP6yFwkiVkafnNxjmo1Hi+V8HPSOuY+5n09maRjoo5MBQby4Xd4SRtHRb/61784nN4FyX33xk2dPP/mDP/29h48u7p2/MewdM4OzQEyAOdCSBcIwLgqx1kZR4r21zsZJ5MSDpOhYiSW0yMLOgQ511AOnRSdiAiFkEkSFKlhd10dSmT5rktrSzCoiZA+EWJ61JUJBRFDCxDYTESQNKMBMzCDKs6DeuLYYgYRWnlABEEFkIV6fnFcA4MWu5kfpbK8MxPIG0tW84vU8RqlNNKz2gQEIrO8FQQIQZi5DeWRZAYCCDEayNANRIEZR7NnB2ryuSF0hAYAuj5B6R1qjALPTpBFB1su9ZaXVOdQupknAUs5KQqzYOJQ76rr0bCcd14CyiFpL0sa8XokBxPpCJiOoLQ17xaJEhFUJvPq4FpzrTQZ1S4kIgXE9ZBUH24pbUmFSDUf1c5tN1Vc97jDj6nk29dbgrI60siBiGfShOo+LiACq6tiSuta0BACbm33rnLCshYh8LcQprsMzAKJbX89XcXUkrA5Dt/uBYGtkK3za/dOpP+2SwY2KGvKlCuDcUJ4QkT2WjoGqFWWGdlyNXfiUP1/7HHA9Xnw9Ha6Ldaa2xvFaABuZW6CadbWL7EFsV3WdemItyH7tsrna9xJA+SwCqwOXCKiIYYOqd9nti8ezyehnT19+/vyVjs8Msgd1/+EbN6Pr8WTiCYDNdDxO00JrE4RSFIVSZPOs1xsgBctl/v43voVowyjM00WapkkYFc4C4P379wH9aDR6/OxxnudhGPeGkbU2K5ZRGKd5Np5MgyAyYRjHvePTE+ccgEwmk+ubyzSbh1oPh8dhGBORc85aZs8gQjro9U7jKEri3rDfM0YhOOdTL8vr0fKzz0aT8VhkkSTRN9//zluPvjefz54++1Fe2Pe+8c1vvf+bcRSGBpNYv3z2WOtTFDs8Skyvn7v81auX16Orr17+ZJlnIjIYDN6I/rPFGAZBTP3T0eQy7omo0Yef/Hae995+692TWANANBh88J3vvfXe20+ffvmDH3zcH352/+zevdMPTk/u94YgTEU2UKqYz5dRFOlIZ/kijpI4jm9ubuI4BvDEBQsiIDEp70lHxAVhSMaRj0mjKA1KC5KgFkQUAlyfl0NFNV25TeFrnRaqQAfdFFVTFutfO+dIJ7liZW1Lx+RtMOjO4p0MpUIMETtXwetVbOnzspJKNTXltdOdVlqZFCCs7hqvv+4oWhfDrfcb/23V5JWYqQnynaB/vrQL4IEV7eelDRG+0T+qn6/DjbHlk9gW9jVohBtFplJEYP/egwbOzeeqljaH78S/QUKN/HXloF2wXnVDrL5WOkgA74F7J3F08ojOcT1ESRGh2oHL8pkBYB3fhLB2Q2oDZp047mzCgdO7q12NTRCV9OVOgLRaOyRBFAS/vogwn07n108//eQnnzy9KlQSIPs8HZ6cXV1f57ZgpVikcF5EtFZKKRbr2RUWhoP+bLZQZH/1V37j7Oxent9cXl7aPNWK0iI/Oz1PkmQ0mT598vlkMkl6gzfffBTH8WQyWS4XUS+Zp1brMM+ys3snb775prXWW5fE8Zeffe58AYTD4XEYhoiY5dZmNrVzAA6UDiMTBYlCMibUJljMXV6M0vRWOFvMJr6Q48HZW299+5d++R1vg9H49o/+9HfSbP6L3/61d9/7W6engXPXl6+WF+f3tI6ivgr0ic3g2VeX44/+7Wy2uLm1w6OwPzzqqehmdJsu5z98+t+dHF8cH12Y4NToZJ5Ox7fXLIpkefn8Z4v57enJvdHJsVLqjTcuhvf8e25+9XL5s8+vP398Negnbz78zqM33uwfeckDrcQ5F4YmDE2aLfNcHR+f5jYDYAEvPicALwJcsE7JB4ChNplyMZsAtCETkhdvYiBCRdXdB2WoHFjv8GoRG8KObRAboV2Tc9zwxNTIu8yPO+mVqo3NO/TU0hHVLX4608YuISr/7oloWOUkIiAqDQuEVeSMhi6732SpeGKHDt1VeVuUdvJKaXm5qiHY9HDrmsJd/Kru3+pUXPZYC3c24c73uzLXPXBtOA0UdgmeO9FoSN89peribc8wHZ52idL2z87UztOmil3VdSLTaNquRn2NSFjlbrrmXrvOrmyjW5OLq/d4mAaxEZ+IIArAIeImDhlsafcCzQXmCvCeib0fczhgIEtWCQBrzX6N3lbEOqgsYAAA8Fjyd1pFjSECtm706tn48snnn306tRgMT8Auk9g4Vk9fvkh6sTIROycAYZwY5iJ3hWWjgyQ2o9E8CMx3v/udwTC+uX4+ur1M0xTYDwaDQX+YFfmzF5cvr26UlkfvfuP8/DzLsrTIB8dHqNVoNDK6lyT9i/tvDIdD70DrwHv71VdfFd4RUahDAMjywjn2BTOzCmNDKorCKAwViM2LZbZYLGaJBgDOsixNZ6cnJ+++9e69exf93tHHn3z18vqnRT7pxaff/OC7F28EhX91+fwoCRZGhZcvnj55+uFw6G5uRuMR9AIYmu/ef+Pe/Ue4zBbzdA6G4/NIyAfuarm4nMxsEBxbX2hj+wPz6mYuAmKzWfp8PJ31rge9fj/p9ZhxePRe7h6Lycej5SefLb988v333nt2cf/Rt999iKQBoXAW2BtjCE2e52VICRRGFPCMwAAWWLEnwNC7DHyEJkITgEvYOBZQWhMaJF0GZ2NElC0pu0VmyOttK+vDPSRIK2sAsVmwMsJ28fEOUtwQ7UptbUqdrlKwzTW6KLyay+UVhPW12C0tExHbgnGlUMD6XuFaRT+nF63dkPbPOmfstJDqDayV/TobZf6jSruwutP/0cjcGt87aqmP7Bb5IUoZmA7rN0yL2gut/fLO3m4Q1WuNzi6CrKuADTl9iIyoA79bAO/AuFw57m7b/kE6pMa1Xl9bCtrwMiojl65b7kFWywkr8Vzeg7EFbQuZejf9hSiYjSQihxD0ZuRWK8okIgqFBPP57OrFs08//XS8yFiFo9niLKG41//4q5dxEmeFB8dBFBKitdZaCyxhNDRKTafTwaD/K7/yKwTyox/9ESL4whHRoNdXSl1eXr66vikcR3Hv/r37RkdaRf1eNBqNnj196ZwbDI6OT87CMPLWjUaTwWCQ5+lofNvvJ8Ph0No8yzJrrYho1EEUIqIOYiIghc7bzOYuXzqfCfs8m8VR7+T07FHv3Xv37oG4n3z64dOnjwc9OB28df7wvThy2oTzURzGcHov7/G98exxll17zh5/Ufg84WJZCMjJ549HHy/mbjQC66FwYGITRAnZVCnwfmoCZz0GYTI4Ole6/+Tq0nnHLJAXYeQVkS2K+6dnzvF0MZLpxARx/7iw1n/+1YuffPTi5uUbf+03f73f692OXiWRCcI4W2bMoFYbCEpdzgN7Zg2kkQEkg6JgG6AxKog5tOgds6cgAkxIoyABEO0lIUQEKSPKljSwdYrjdQXRStStqVrKNUUBwEo6qvVqX83qXZHf6sXh0xbXswwAZD0Zoea4axdZXd0AjMCrheTdjdyrZHBDO1mnjS5+CI+Wel/dlXlbm9lAkFqw/s7UtoSgq10i9ZuO7077DYafU49Zobohk9rlv3s9xI2uWzV8BaEGE2BlphzMfhvd+FrqWqND7lJEdiLTWemeaXKI9gCvawEj4jr0cunUqr507HSALmro1EAP6VBEBKFytgMgSM2xtspAZWj7kjs0yq6I6nXk7pq/7Pvaxl9ko/UjyjougYjUj6lsXIzAAopEBEr7BwQLO7159ery6edPLpeeWJx4yV3wajRLrQ1EW8+GDIguijzLcgQmImG8Go2SOPyVX/418e4HP/5T8UUUBf3hmS8sg1zdXF9fj5K49957b5kg1IrCMMyybDwez2aTyERnxycnJyce5PnzZ4RK62C+XERRECdJEIXee0FSJkClxbMIOmb27CQgFBHPLvUuQymALIADsPPlQiAUcrMvnr26esaQ9o+GUgxzwXmRob6nbHhz++J2dE2+N73+/qvLfD7PIgPf/i68/ag/6H2zFzzK8sfxQP3ie/eSOC6sffLseeYsapNnby7S2TKdT+YLz3Tv/HgwuF+k8/sPwtFolM5nufO5dfNF+uzpC6PDNJsac37vXjwOny6Lq+VCa60HJ9kXz56P//X81371l99751E6ny2XaRxGeZEBEAoDQrnFhJGBLYgXLyLEYNEZsppdrpylIAd27HMlXkImHVUnRff7VFe6Gq40SCLyXd4/ka0wjbBjslRmRK0kljIYZE2KsDlvClvT4VAnW2Uj1sxxABAkKK/ekrvAVroydlnAB8j+u7tik791HXLd/bRjRDa5qudSP+6w8LYBVBm4290FW3FOXj81mr+LDNqf6kpdl+lfcx2vVLGmzOsYnd0dv39QRIRqVzOU6K4o6S/OC1KlA3u7W4HoIrM9UnyXOiY7OMAdgTh2o06lgVpp7u2JsSt1yuD2z+6y6wUtAEBUAqstl9W0hu3a17S4ExNoLXhsS9Pm7sT97QKAcnMfANS3QHdyIlh9Ro0KiAEAWAi9S+ejyxePv/jyemHnhWjkfqDHS3s1WQ77g5urWRQHgYm85zTNCSE0gYBPszkp+cVf/IXZbPaTD38cGjUcHovIbD7v93rj8Xi5XD58+OD46NR68NbNZ3NEIQU2y6IwHAyiPF98/tkr0RRHA0R0zg2Pj46Pjx3bLEuZhRlY0FkuY2kRkVZKaY8CzIKISimCgAWEwZhzAGCgy6tXRVFYa+N4MF+Kc1xgPCuyx5c/GI9m8xF4C8IQa/3wzcHf/+t/9Td//Te+8c4vDJOe0fnt6MtJbuIwUMLj29vZeDm498vOm8WySJfLi4uzy6un09l1GNGzy6dPX3yUJBEU8Un/KCR9c3NzO545ryZz++x6lpA5PqWj0/5F+Iu9+J3R7Pl0drucJxIVXz6fztM/SjP3/juPUKm8WGpNngFRKZAy1HGlwAk48ASAKCxima2wY2+1d2Ai8U55plDQhABGts/e1MddREC2hENJwLtIsaH8tQ2ynUlWdgvW90AcrLm3saq/r9aA128AdsxrtV4DXiUkwQ27b/RSnZncaXOseml3BulcM97b6naqm/h3ZishHgj550mH8Mz9pdbobfof1wpfg6U3+rnKX4e5R4Y1hrj+ab/i1SbI121vJ8K7atkzB/cUPMTz3JnnNSzg2lDtVLteN9XV8OrNFnF0O7WoWnyqyq8FcEfAF6z5rGpqe5NWOpvQrfbuofvNMSRaO/pKVa+hUq8gCSOCAvErXZrF59l8NHr27OnCY8bqLPJ5vkwL1Tu5x/my349ZxFrn2LNjHRillHgOQvjeL39vPp0+e/qi3x8GSjvrTaBDA6PJiD3fu3dvMBhYa9NlUXg2oZvPZqFRSRIh+fHoihl6vR6StrboDU6+8d4HgnB1fS3gLXvwkud5nufMrEkZo7XWpMDbDKAcJQzCONQKidlbYX1z88r5GYvt9XoDfRxGwyy1UTxfLG6Kqc0XbjKBOIL3PngUx/Hf/Jvf+c63f+32ajRz6f/w+/9U4Wwyvj07ujeMzm9vXmTz615I89k4TQvrIIr7Uwn//HNxhfrGe98+PX9YOCxyXCwWGnkxn9siT5JemhU3s0XSGw56vV7Mvfgs1IkJqNeP4l4kTGn6lUU8u+i7zP7pD3+czRe/8MF7SRTZbIFggDZDJlLuwhEihYQkgsDMzotjQGImAfaWQQloRK2QEAFbx/y6yIlL4gWoLvJrrs6WhnInd6sIEuAg66EugKuzSV/DBVp/qCPWyb8aaMtK++hYrFkr0oeupR3oEmzbfA3M23pSp96zH4H/oLJ2F/xdfbW/D3dZQbBuEdFOsPVse9IdGXgrJGop8omoKwDpTuT3oHcnVp2jWf2VLrlTn7yyHbgJq+2BXbHBcfeikl4xGan8VN0tqczEcsmDVhkYABkBQAFrQK6YyDp1W+SlqJS1j7ciBUREVIjA7EREeLVDZXWejAXK+0XZgQgAM3gAYQZDUXnAMS9SCI+01p4RhYBRRFABAIl4JEFQdRWsaulmxa5EpsSHSMQjwvpAWBWkHnArXFyt32jzpqxB1i6dqidrz6A0+2wmKD5I7KI4wfCTy1f/04d/+Mmrl1qbs+FpVnAqKC5DXi6XyzCMFZK1ubU26ccnx8eIuFwuH5zeu345enl5ybYYxJGTIohCL3728sYxvPPeu2lu09zOJiNbpEkYFBgkYQTiXWpJk9GhNkarKHP+wZtvnZ6f34xGr25urc3ZOgFPQYjCpFSgtfc+yzKtlDFGmAwp770OzPBoIOCn05G1LssWYgJljCZxKN75Ih0ppSY3l94RiBkcnX3wzfsPLk56EbLYD//kh//q//kvUSiJdK+HH3zzvffe/mWtwtnNV8+/+szZ2fHwKI6OHjw8zZx9/PzLqyktszR39tPHz7znQW9wfnIWaIMU9QbB8vaqKPIoinyWZ4vZ8aCXquN8Pj3CItR+PhlfX916D4/ufzBajpazuVLmdjL/vT/+MQP9yjffjCmYONaiCAkBhAskJvJAAj4ABEaWMqQRCPmlgtzTkqQPxIJAiCyMEoqmgCJA9ESAqjanWAAVIWFpapcKGjkvTApJg2MgQiWOmcBrVAVv3NQAZbApFBFayWy/Id2VNwWqBWBYBcMGRMRVThCRMsBzeZqxMT2rBxEUYUBhZk0aEdkXgBYIlUIuCkOq4EJrU7hCyHoJAYGQCACFEBWBQgBEL0KEGgid90SglAIWIFpPuK151MlhRaQWTgvX9+CKiKjVPbVbS+llPzDWftLKXSZ+a79YVR3R6n6aVZRMAUQkAe8trvdvb4rIVndtQcOtnzV+vVHI1rdblD5YqvNPRAVAICRgK6mAm7PF5aK+VF1RCYP60vq29GidT12tasiGj2HZ7s020o6m+fWGmzWAMkKD1hpqcqjCqaHH1B0J22wfq/eNEVlju7asVueqEQEQV5dDVMU31WEzbsSqLlAAUkqtFTK8Ys6demRDWFS4NXXQdcXl5ettJVJQAKGMvLdqBgFUFvCdisPXUu72bU9odE31plFNSXWb571K2Zowqp8CyFAtWiMDNCHsadd+5fdwFayhKTfKEpFS4Fm8K3pxOHpx9YM/++FXX3yFCMaYtMgJg3SZA4C1NooiIrVYLESk3+8j4u3tbRAEJycnRZ5fvXqV58X9+2fW2yRJluncOTc4Hk4nsxcvXgRREkWRiCciRlACpEgrYwgRFTMzgjHm7OHD2XTx8qc/nS1SY8xgMMBAM3NubV4UIhKHYWgCLMshlrcynJ2dDQaD6+tXLC6KzHwx9YAnpyfZYjmdTkyg8jxdzKdhGEZxfPHwwf17byhlxje3P/3px75YaE3a+/sP7w/7oSLqhf3l0v/Bv/8jpXlwon7pr/5ttEZJ9M7b33x5ffXjD//s9OKvnDygy5cvb8YjHdnlIp3MZnnmjgaDKPRCEsexCii3lgicK66uX96MJ0lsvO33I50kg3feO3p1efXi5fN5yuPbDARMqL11f/rDTzm1v/adb0a9pSuywrKiwJiQMLEszjJRthpH2eiOIuJyRyplrxRrJUAgCjxxwEYRaSr1MqwYgVorZwLb68S1hy0Cqzb7NA24tQxo6+y7xOquKjqTiBAhElY3C8J6ohFReR/D9vsyrkfJpVhWcTmUqmzfcpdELdVwQ6h9aiOzv0WdqQGp6qUGA4UWq210Zhnyepd42FN7G9W70N7aTSZSE1cbmtkHaj+TbGZu0cAe5lavoiFcO03GRn6oEeodWLU9FvsR2pH2t6U2a3Z6FxoIt9FuoFefp/XJsgsHLaXm2PrQ0FzaFTczI3e8PCDV5VNlHbY7DtfuaOYt+sPapF1lw7XELf+ufG6lb2NzXdqBovcQXtAQsZ15diVmVoQESJ5jQx8++fyHP/rhdLJQUchA6SIFsK4MjeQtKkqXaRAEWmtmzvNcRMIwFJHZ7Wg5y+49OBLkuBel6QKZlchkMh30B0BKkV7MJiI+MBoAxIsHJ8xASoiFwSjPIM+ePZtNF15EB4Exqiiy+XzuisKEIQEYY5QiZm+tBRGtdRyY09NT59z19bVSip2bTKaEOjBmPJp6tsYY77z3kvQGURR98P63FovFl18+vr29TeczQun34kHSi5Iho5uko6vL0e0rYAvHx/DmI/PGxffSie9FMl8++5M//cO0SNnT5Aq/urrJbZFaAAIKUCHkLh0t02MVKIVaG/Quz5fMTFots4U2PBzcUyZeLPM8S3v9SIdB0o8ZZ8NhL0/zRe7yHCwsp8Xo2ej5mdxLooQSsPkyzaZkAiJi9uUxvPrIri7cBBKxLEsREbEaHMERcOxZQBkxAakAQMtqflYEs/qzRW8ka2Noo0pWgeca/PcQdnkgKe4uLIiEsDkLi4hS+pYEEIEEuNwgoBR7Rtn4k9bHf9We2fFz4XYXhHL6HjI3u3nOusOValqQe6rG9bntutTp5Ki1Ml2XKKy41rre7coPl74VDu0iB/HoVhX1vqqaeacMht3sdA/m+1PnOFYPXU3u1E460Kirhp12/H7h2EEqArAWP1z+JNSbiHl7p8HdKgDiOh5c9RJXe7V2INR+j7jxoKyq6PSndxFihcbmunDxiBqAkRAARTziyrHU7qxtTbwb+J1dsd0bzVKdyjV755UBwhAgm43//Kc/urx6Newfp95a7x3TbLaIk573XmsN7AWglLjz6QwRj4+PlVLX19fLm+Xxccgg7It8nhFCsUiHvV50HCGpLMsylwFAr5cQIXsrIqVXhxGICBCsl9liMZtn1lrSKs2Wi+UcAIhokPTKawzEe2+dEwHxSZIMBgNk6ff75W5q50AQVWC01oUVkSIKE0CeTqdGhxcXF6enpz/9ySfO51mRChe9fjjo9aMwREYTBc8vnxvtzs7uffuDN++d3lMqt34q/jZPAy33uDiy2dLmdnazeHE5L1QsEGaLxSLnIKIoCpRGUsoLadAIGtFp1KBIALQS8e76+hoYHz169O0P3n94cZ4Vs9lsMr6aAAsRXb68Pn/wcHRz1Yv0Tz/92TCc3L84u7g/DEJEjQAOUYWR5qIWZFJA1sxdE4Ew8BJc4XOLwMQegp4EjpVRHEsgpARESmmEauUtRFl5owhREfkNQW600rqZ0px62wS71khXIn5FbF+HzVap1AMYgNaRAgGAQaS8jGErFqCAeAbEchsEokJEoTLkRre43WYLG16xS7Dt5/K7UrtIu4p1hq1dpaV+BADVbUK7WEFryq/8bbixFFfld+BI678rDzDWrm24k/98Pem1C0idD3emphtmfU/wndZ59ak9HHvwed2EiKv9yE0Ia5Sq3cp70dhfxVb+dWO5al017l3m+6p46YLe1VPtOXOXgiNbW5T3um2rBjQ0jl0EWnKWFoQmoawEr/c1rDb5cXsxvDY3duplHWjs/rSLcdTLNiQ0EQkSiPRIffnsq48+/tA614v7S2dBtIjnVWw4BSDC3O/3l8uly4s4CHu9HiHN5vP5Mu3FqtfrLfJMkEWEQcIwAIAwim5ubrXWodFxHHvxaZoGofbWBUGgAy0iTthaV+SOGQAIEI0KSLwtsfVcFEUZSYSRCMUEBsAgYlEUmiDP82WeOQFELKzLshQRT0/P33jjjdls9vTpY01mMOzdjMc/++KLyATO5wBOKbBSTKa3UyEF9PImU6AGvb5zAaNllQYmiJIH01yezNyTP/vR7c3l8TGZQBYzJ9jL86kH8AhxH0yoPRe28FpDoPphGBoTBDqIwt58Ppsu5gDauZQZCutG49mf/flPf/wheE6TyNwfniRRgAL/+d/7Ox9/9tkyNJ98+tNsPl0E19Pscl7cf/vRm0eDY3HiCiFWpNMy2BWvNvEKlH48zwAM7EG58odlj3lKcQEmJLECLNqDDgEUgkLaxDFGxPJluVxSk7ssILhRmrd08BVt77yWrkGZqweE12NtRKsQ0FXcWxZhEUKNJdsFJkKN5BFFWCmNVN0yJSws4IVEY9SYZSvF4mtZvwfO1nXOmr3SZevUf+5SxDeDsp2tYQw1uFybv9X31+GGe6MIl8HTVqMEJSdkVDWPdB3OtiFxp1JS4d/qoNpjy7Zpp3pFe+yWzvyHpE5FbT+EPdL6TkH+WujtVxrqLzsM1HKBHaAa4NII1gQto3P7eYexW3uzkf2NtpU6491W4Hal2/S6c8d1831dlMrKSilvdsP1Boem8/mQca37r9p01qmNdubpbDgiElDBrAHJu2dffHZ980LHIVuITDRb5LPZMggiRSaMzGwydkUBJnLOGWOGwyEK3IxuM+ujyPR6/TQrwsAwM7ObTtOLi5M8z1+9ugKA++f3PDtrbVEUWZ6aoG/CQBnNiHmRZ3lR5Dl70DoYJAPL3tk8z3PrC6NDrRSIBkBjTBwFxhhEZHbWOmvzOO6l+WSZ5swSRGF/cPTOu994+OhNtu7jn350efkqSfpKqdF4ZvMsChNCa7NcxMdJGBoj3htUSZKEEToLkYmX2ezzL76YTkcK1Xi0tPni5PTo6DjqH/Wy9FYAHrx5OkguXP5tD5g5yS1b9kW2mM1v8mzhjWNrmXQchKE2rrCz5aK88bdw9urmejSZGmPCMAyN7g964+sXcRC8+eD8xx/+0ZdPn33+5RcILg7UrKBCIHs2Hk/yNx5cvHFx3gsjb/ON5gTI6+v5UMCzxXIuiYD3DJmIAGUaGXyAYgFYQlYACAZJmBEJFIBfz8zqNoSGmriyPld7/mv6dY3mOwm5w6x5/bRWfMvnTUhnrTWhLqdbuesEoMSRcbOTlQER1/sSd82Oas5Cay/MgRh+DYN4tyUKsGONE3YI6TYTaCjiBzMQ3r7ld9fNvpuCBzZ8f+Y9XKud2j1T5d/FV3dpM408bfPskJHdhWentSMiK2KsnddFKpUk1S6+K72Wob9HRiCiro5a4LbbYX/DduO0HasMVHkJ9542NOi7AR1ryrvUPFRUOaO2l4SJaK2ql5tOyzvxCAREnHQFo283atfk2RrIA9jEIXlKWIrU7OrV5598VBRZPDjlpRZ28/mySKHXi4wJ2LF4DwLe+16vF2rjrVsulzb3YUBxHGfOM0sxXQ56vZvbWRiryXxOSpkoDLVZpovlcmmtPToa9HoJA8RRkrs8zbLSi+gsK8RA6fl0JghkSLxDAXFWQIAlCkNjDLIU2RIAgiAIjEHE69ubq1c35/fvf/DNbx+dnhwfH1tffPLpz3720cfM/vT0VJO6ubkBgCjpTadTjZkxRqkEAbPUK8AwCYIgNDrIs5nFZWGz+WQpnqLQTGfjQSA+tSkf9ZOzNx58bzAYKC1K4avJ9XiyGE0n48ncex+EaIxHYJblIs2IhwYHiBgaOjkazJazYoYiYtnZwjtmQWMLW9h0ODgplnb5+WixeAqoeslbgQat5P23PnDO3t68fP7qMl0+DRQHD4aKPEivc5SFyrMBZYx5BHbsAblgYXCRF2YEhSAIGqPyuDihYhFBQdlcukJEjLKKUlCKtZXk61iDbGrMezX9xs+GobaX4TLi5qLuOrTVdk9gAFCATARe6uJWEJGQ1sjXbbhV0S7uvIvzvq6ghZaXvlNqtvlp3XKtp0bxPUxSXid6ZQ0UrmQDrnYAbPGfLRN8C/lDLIG99b5eapSqm8J7hq/K3Amn6vk28K+BXlt5aucqwa/yc0c3dr6pGnhn1zWGZrX7o1QAcGUNH7oL+rDUOAOwtUWzjVxdaYJKsMHOIo2E6y2C1c9ysku576OUwaBkdSIIhVFwI+AP8Z98jXQIudRbhywQkFb68vrmyRefW28jIiS9mCwXU45jFegAAK6vr0MFw15EgwF4LtIsmy2890kSmjAQANIKAUgFVy/Hp8e9sBdOsqVjP0h6GmkyHsVByGABQCkliPP5fDQZpylECcRh4JwrHIhbpKkFgLgXBHEQGqOU0qiTKC6KohQPpMAYw8zX19ej0U1ydP6f/M2/8e677+kgynL7/MXLTz775NWrV/eOhqWtvEiXIuK9d3OnVRBoTpI+iErT3Gg86veMxjzLF7OMtJ1lk+XcaghHNznR/OJhdHr0Lcuz/knc7/cXXCCxQX316rKYT69vZkzB2299Q0Smk6v5/NYVHqKlXUqsDUDAHpM4ChPjOc3ygAvxwgzo2Gd5jmK88zneSJ4qzsXz0fFpxovlsrh3fnK7ePbs6YuXT2+4gPw87EdxQvH9+0e+dtCFBFZ7GEs5Wl7qhyDAIgzgBUA8k3gmpciACoQCQkUAQgGzp5pYrRS7tVhCwNViYFtaNF7+h0vllCQiBhSuuD9672W9Pioi5dkVjVQG8xUR4NVZaQAviKI7VAdcX51Sb9p/6IQbB+/mzX5+eojW3pmqLeJVaouc9bOUGlzNt4wAzFKTImuURaRR+X5uhuuNvocx1dcbhTJ/tfu33ZnVcwW5ytDZ7RWNbec/FJ9OIXpno3Zh0kYeW5popfvW21X/SUTlVokmVgB6fUhuH2YAm0sfy8Xtcom1vL+8Fq6gvsOz5CHcuDd3o5tUMUCQa9QjLKWiV/rcNmtgvNFQEFGDuJKeDRhP1rFnhc4xEIi1Ti2JB+XBXyitDkJEVe+INadjWN8GUxvvDq9R2xTuHLBdsWG3DY7qQidwlKJNTJHNp09e5enFyaMkMh9PXi3S7Pgs1CaIYrVcLgeD3v2z+4hobX49vs7yTAgGJ4ktvGUPTFS4PM8EOB5qq53NXRTFSZKMn7xwKOEgMsM+cJx5Bg82d5DnymHfkBZj5y7LgAEYJTrWxpgoiI0xBEoBEih2EgQM4IIgUNrMZovb8fTo6OTXfv0/efvbv6AQl1nx9OOfPf7qq9lsJuKHvYQ9ZK6wLs/znIjiOFGKvPeD8IhBnHcmDI0xrNQ0yxezpS9GhIwEb1xcACul1KAXIrLlRVEUN1fF86+eC1t2RRga7wrmyHtrjJ7KrfVFnlnHXgi5UEYFg/5prz/IlrliHWo6MUPu60Ua5Jlz7IWd9zMTRSpUkMWBGYqIhHYpsMiyNMMXy3T86ip3C1YAOnx1LROZfOOb72nleia5zkEpMvltGJoZJIgY+6kFA+VuqtIPCwDegwgSeUmt98ZlyJkRD2S8SgJrRROTZkTEAsUBMpByOTOXPJtXm4yBhLG8HKK2eaQ0ktYGZxkykzaTHzcOrXJyVccoq1CUAjXbsOb7rKIgSXmiVzZXuq4OwjqfawPakeFemuVKGYSMiLyXcoqV1xwjEKFCMqQVADGQKifP+qoSwfKcfSlsmmEsO82X6txnXQPB9f3c7dtYhVRd5wZeL8J1bChZ5cGNU30jO3fJiUpnquckIhIAWZ2aXV88gQAgvraWj/WqccUZ1pmZV9Y7bphVvR88ljdJS2UWIyLCOoBGXVETAOGNJlftm0NEaJ33lW23QV0vrPhn2+yu87T1YvYGQhcXrTI0RGMHvy03ImzaDlK10Si91gWhHDURzywVLQlv+zxqJlg5g8r3StVwVuuqAZwv1m2vu0aEavcib3qj5SCp0/Ba8KzEpIgowMMvY+hYxqiTZNeQbG3Ev7Oidr0b5/NhZmXN/4zVaegKmYqS2tCk9arRd9jq2fa0/Hr6u/cShGYxuh6Pb09PT7zTk9FtkfsgCCz74XBovQDQ2dmxc24ymSznMx2YINBa6+UiM8Z475WixWJpAiRNiEJEWus0y25uxke9ONIYJjEycGZd4dnyYpE7AK0AwOe5D8Pw7GKgtXbsFSIpUKhwFaPaeS4cc7Eser2edf7lqxsv8qu/+qvfeP+DNE2//Pzz0c1tOl+kaWqLQgCCKBwOhyC0WCyiKHr48KHWej6d5XmWJMlych3GURSbwkOWLadpWhSFd44te4ajob6+nR71h9774GQgbGfTVwAQxHEYmSJjpaN0mb984TzOkwTipKAMBYGIAhUopSIzHCQxsp/cXAfamLCvFB4Nh8FR//Zmem1vC2sFRWlNQtZ6oxZ5AdZ6ACZDaeFn89z7nEyEUHjHRZ4jwxW4n/zsy5PBe7EshGITGGRdsPfotNK+PKWDTTpHRGYnSChe2IErvMvZpgihDxR5I+vV28q7WNJwZQHX5Oihac1ovgYxvkYqw4uW6xcVG1qzpyqV9i01QuTWFzrbPVa3e9r11hXctgRt2FiIuH0VY5X/jt1GbRz2z+66tINt4dHI2SnIt5hqS+3YU3VDX8GaWKt6sq09YMuGqwNsCpUakrswkZaFWrWis2os1bsdqc63u9uLW3y4Ie3qvLoTgfqPCmb96pStS4Ba/b/qZ25Ba8NveSaa2mQZPWpHP2z2XgLAeh/TztQJ5xDS2c8q7pS+pbJWSVz4WvK+zuYasnYrT+v91xO69UYFJgm1YeTbmxeLxSyOz71Xk9tMAAb9nnMuy20cx87x9ctXzjlXMJEnIqM0a1ZEeWGLwgICGYrjWCm03qVpar0YQ8Gwx84XubN5ns4ztgAAzECJMmEYaK2JkiRJksR6N5vNAtBRGIahEfB5nubFsozdIaCWacFp8fDNN7/5rW8rpf7sxz988eLFcpkrpZIoJsQkiYIo1EEUJ4nLi4uLC21Kewj6/b7WarlcRknEzPN0UXLwosjYOe99FA/I5UiqPxgOB8PTk+NiObu5vXHFJEthGc36/UGWFiLKO530bNjrJUlMCmy+9GyZmRQNot4wPk2iMApRofOuyPOFoImjnhc37IXAx9EyzG1ugRFQnJ8srsMwBiBrXbZw88x7HxgTZ8yogkhpQicisyz/4598cf7w6O//6i9NcpdlS1vkpNFESmuVFxKotSGzosA1CxMWdkAIbJ1NJZ1r6iEYphgASsfMilMIl+ZgnY0eSEtU89nQ68vf/QxxTylcWXtU2nyd02HN07eO95SiUQSq2LEHMpC6lVz/Wrd969KlDqCTI+9Kjao7OanUPF4N1fxO+G1b5c5su3CrS6C68NgWn9Qu0m5OA6U6nLa602milN8bGglsD0r54vD2ImKnCxcRYbM9v9tekhZj33xq1dseuAb+m4o6se9KdZRwjVBVka7n62o8bclgAKRuC7gTe2g1uzF5XldSNiA3ZmC9T+v6eH08GgO5q99hN8F9bWyhyRoEALyDzKf55Hp0+8p6pxxkmbMFaANJv8fMSZIgquuX18wcBREHXGR5EJAtfBwms9nMC3svcY+CwCiFXriM2BxGSa/X8yCz2SKbFChgFChFonSo9Okb91xhga3RZDQ5m4JILwn6KhARcNaLQwFNxjq01pqgd3x8fH5+rgPz6aeffvnVV1mW9Y+GR4MhAIQmEIQ4jpN+r3Cc26LXS4IgIOA8z7Ms896LsNGaIJjNZpP5rDTctQ4ANSsWVA7ARGF/0Lu6evXiyVfeF288PBWOTOhy6yKmsHdsTIAsRoda6yxfpotFkgyP+r0sXSzmU7YuTiJO8/5gMBz0xuOREh8GsbNeM/eDIDwKkjBY5lla5HkuhYc4DpmhKGzh2CMFocmdKTz7QKNXAJSlmfdOa/jyJXz0dPRLD65MFCpgMMZ7z3kKEGFLilS3hoEwgkcGccLAhAEHM6MNO0JEJF0GUUT2Ah5B+ADeXU+ra0ErLiOtaXkYZe76uStprZVTihURldFo63YLAiPCalFzY7g0L26ptOcGAnWTutPIaAi5TqNnDWfPp+7e6OTCXZx9y9qGVrSyXfB3fWp/rQuw3dKuu2ALh/oGnRWSdYFb/V1/3YVtnX9WolQacQ93sf1aQ7pz1sm3UWqjJWxL3HovtdNWwVaXtjWPRtq4sms0WX5pIH+Q1tVyPGwE8O4hpIb2uhP6bmHWiWJXjbVPh3GihmgUERbuuJChhcZ6JNYzfK/DAV6/r3dh29AElVLgeXz90tlsOBy+uBz/7IsrMjAY9EQkDOPCuRcvXrjcDwfD2XQa92JltFKGrVva+XLpwwjixCgFpFVuizTNiWgwOALSs9liMV0qxEABMAgQahP2k2jQ81kh3moFoSICawtLRFEQIOYCwgzs2LMQml7SV8rE/dgY8+zF88lkgkRKmaPT3oMHD4zgfD4XYIW6dJJ7LA1xheUavkipG7F3wjy+nVtmRSGuomszKR0FShQFoSRJ+OTJFwGpJDKE4bNnt3EcnZ1dOOeUMsfHw16vN7q9TbM0cObs6HT46O04CFyRvXr5jIJoOBzEgXIFLqfjbGYB3BsP3zw5Ph+P55nL89xPFxk4rSmIjF6SzXJnhg+zrFhiznnh2ZWBO3JrRUgDxiYyumCEZBjO5ovPno9fXo0uzo61AkSDAGBzASIydcZUZ82ESAIsTOLQi7gUXYacsg+UUsIaCMtD+7Q6u79J1RrhnntYtyhKVpUerinu51z7C5YZmHkVkWM9q9ZnpLFkOIiIWEep4z6+A5WANoepC9RKClYd+Fp6c4MvN/j1mud322f7AR6SZMd61pay0vq5p7pdSkZdbtX1GGl6wndZHU2wqwytyxtW71k60eiCvJWaOpaiSkkodbpSdZPtIh3PrdrbEwTXhpm0pMCugXjd1F7zKL32d1xHuE60/1BaJ1rr8dvxqRrdg5d462PfJq/G5FxdelaxtFI2c3Pyv9YkKVOn6g0HD0xdzwAAbZRWyigKtRlPx9e3CwToDczFwwfGGFTms8++yDJ/cX4qXgDAgYRx5DMrzMvUJYnSodJB4Iq0KAoACoPYGCOs5ovFbJbFCFEUMnOaWzQq7MUqMIUv3GzRi4MkCEINwkwKmJ3LOfNLrQOj4zCJEwoIA0BCVHmx/OKLL6Io6veGaZreu3d2enp2fXs7WcxE0BhjxaJVcS85GgxPzk4RkZ3Pc1ftjnG2yLKMGYi0Mcp579kiKCKFQGk6F7+c6yKKA58VWeYHSfTgwdF3f+E34yR6+fLlqxfPJ9fjxWTKzg2HvYvje8fDYRAESpiNCu4/mI1Hhc3z5ejkaNDv9aKIBoNeHPey3BHIIApDZC0UEC5zKMgmSvmesqQSlSTG6sVktJh574kUKvDeAanyvHUBRb8fkYab22w0Lx6cK/GFQ0WoNDpkyxiIEigNgc3EX3HM0gpDYBAULsBl4AqkQlgje/AKEFnKjdPc4DuHU2OdFdUtv9dKrzsdGrYFrGJmVYmRqAz3v57p5YJxufOxyd875WsDpW2G2A1hu0g9omfFfLcs486mHaITdOIme5dL96d2wf30UJfKq9prUUfq7xuQcbddWP6k2mau6msluvabUm0MO1va+bORXVqef6zZZm0xub/Selc09K1dpeo9vF3wDidEJ5xNQ+60gMtBqd0usgoquaVl7KisUxdrYNAY7/30irVDwB11rb0lFeT2nvhm+9v7xXcgX89cz9/e7Xw486rjk2XLENhmqXi+ublFnbz93hFopbVmhpcvn19dzZNEeceT8VgjBVHoHadZRohRqAaDgQdX+MIJE2IYBMbERW6n05nLrUEYnhwv03SaFsrg2clxGJlsuSwW+elwYAKF6NJs4b1VymitCRBUX0QYKdJBHA0cy2QymU5muZ1HUaK1XsznShutTbrM2bIgeGdLzeb46OTi3v0o7iEpVDSaTPM8jcOQ0Y9vR1meBkrrUDNz4ZxnK+JJKRGfucIXxdFR3xcpIhepfOOdtx7cO9daa86w4Efnxw9P+sBSZMswDE+OjpfzaWyUAsmLQqzrh/HgvhF2OlBhoEMTxGFARDazCHB2ejwdj2KjQxP0knC2oHm6FFZKhwX7RZrNnGejoRcXoic5LxcLbZBELZZz770ykOZZEvWzRfZHP/7o0cXJ2XHiUTmbo/MAApHBzUpN7Zggi5QXeQkQIKKgeM8WbUrBANgBOwENiOWufqy21K5pviLvOyhKoFJkV3bwgbRYEeRrrgGXeG6u912Jw/XJwG0HJmIVBLYOYQvN9vRZdcW22NiKfLlDk97DTGqc9I7Wdb7fY1NCbXdxO8PXVKp2+MM7kakEcLdsk+abToZcE0VbwrvKWRlUDcldgS+NnUPUl0MSrlOn7ISawwNaBNOQlF3awybnrghxnXR1J/20ITRUQlgjo+sKztfupr1136UBfV1tEWqMo8K/4gtVROh6dQ2pWdIKrAQwwjYtln+9941u2W9570O1K48ypBivr19li6zXG/hUF/mMkIwxl5evvnp8E4UQx/Ht7VgRRFGCRi9mEyeiRZLjY2stK7HOEWIURVqFWZovlxkzGBMgytPrcRSq4fnR8OhE2I1urjXwWxcP5ja1NgOxgE5QmK13giSBGQwGg16vVxTFy6vLm5ubPC9wHfJpnNs47r398I0giEbjqXNcFAURnRwPj45OwiAqiuJ2NAEACxxFkdG6KIoy7CWLL9KscJlSiogBHLMHYPbOWqsY0aMm47L04cMHj954+8H9iydPnuR8nc3l9PhsEEa9eBDoe1EU5cv04s2HeW69df0o1gSBVkYrET+avfDWB4ExOkjTNAxDEwXT6TSJQmeFQWkChESB5IVDBOJURRgHcWDQjS17iSkcBnBrJ0Yr7yGITBjr5XIRqpA8WqVNrycKU+sVQhwoJ+CEFW4NdCl9obZbHhEViBcvznpXEPvyE4tDUQgC4qtNWFAd3DxoHjQVTZHy/NLdpRp/6+8PKb7hvyIswmUc6LppAqu7jwDgTi9avS2Vjtspz6DGW8q62rfQrBY+Wpt3fs7UkEkNnKufnRna0NrStK1zNPKXqdGu2ri3RONdtk2jlnXxTU+2xfB+E7NdxSEstJ2hYtqIm+hqJaxGd+2yU3HtJpGWy72sZyM46mvPtY1sSikRKbf6VxNZRKprMRtVN5Sw6oEAG1cdlwV1vXwdOWZfK881QJvC0lVTo1tb+shW9WUnbC4uLc9RlihtQ6M1QwMGQWYAXp0SBiKyNmfkcvKj1l6UYimDcTCIICOWC5K+OX+kBN5xcK09sRGxvE+0bE8NQEMBbLYXEUFWoJi5JCoR8d4H0cBdPlHB7OkCJ5OccazoVBtxtshmiwjAWMrHOQHq2KSYHaXap05pOD459t4uFwuFEBmje5EvZFEsi8J5V4aDBhEJlD4aDnq9uFiO82IxSEwYxvN8qpXKi5QUI0CWFYTm+OiklxwNe7pw9vGTz25GI60DFAYLyFAYyW1+enb29tvvxHE8mYzFL40C0zu6f/9+GIZ5nr94eemcHQwG3nsSsQtfiCS9AQDN53ODkgQGtPLO+cIZ1M7mKlREjgIfq0QrSZe5MeHw9ISBX3zxsyNFbz/6ttYK2ClkEOsKKwqS2IBzidZoDMDK6PPCzDKILySw3tvcZYE2BMi5S8LY5wURozAjxEGolMrzvCgKK5FiYPYnUci9yE4XReij85ieT5Uhz1a8cZYUJcykg+g2nVyPp6cPj8PCMZCniEgMeMYAgAm8F4dggYUIFVFWiNEBAIiTgoTJG1+EYtllQCiKAAGUiHfMDCsSXsWEJindbexI4YpuuT6takp9yWh4TW4ryV1y5HIKAwAgC1UTVqN0rFs36BYRyiOPKELEAJ6ZBY34BQALFEoDZ6KV8d5rA0VRICIqBKQy+o0iUkLsQSlCREIEIBCppEmTIWxPwG3Z4NfaBTY4hKzPs+L6NGbJbDtFgojg+hxnI0PdIOlMu74iYsms252JDR5RK1Jve6PUmuOrzRFbQkBe2bmwCTFWZRYAhbWT4mtGuuqyVm93dn75kkFQbTbcytq5Ta0eK4sIl9fq4ir72qSpaGhTEXd1UTXcanOJQvmG1zcA13Gr9u6J89XxP5G1J5OwdouUB4CVXoKw2kpcogZqJTKwnDuyfo9lDe2R2ryh1flr3N591jgmt9FEEXF9OYeqtVdXo7Jf89r0F5HUnAC7KHUPBd+ZcD2B6rXXDOat88EVi6l0QxFhdmrbsbwG0j1z6gj/PJg3irf1ykZOIiqKIs/S0Xh+dX3j2Pdi4y0TmcV8eXOzAAAgzJ2NkyCMIuuL65txEFLcS6y1y+VSKUqSntbaep6MJyVbWTgfAPSSKMuyOAmVwjxbiPjBYGCIyouVijxfLjNjlPf+4cOHvd5RHPVvr24/fvqcQVKXm8AMh0e+cMwz8IBav/HGG+f37pcxsPI800oZo6Koz959/tmToiguLi76vcRaa4siiuMoitI0G49uvPdaU6h1nqZKoQo0YgTsiiJjZmaPBCYKmQsdGGeLy8vLvgreOD4ehipfLpPTI6Mi9hZAJWGUxLGzrMoj7Czee4GVtURE4lnKW80ZShUHcXVCd6Wfrg+tlVeIJ6itF8TCex8ZnRidOvHLBRh0nHthgx7Es8+dOK1gMkmfPX3xMFGgdKmbO2cZXWAnQIjKoNKiElbaAgqTxkmDHkqFer3aKwirq4VJwMPOtIdXwl6jZFeqNPo2KNghZuqfyhrL7VflV2YWZgRaB7aBUhiuMu9ozv7G7sIBWi7Q/aA64exhCNVI1TPvgd826fbk32Um7sa8u0hbhiE2Q/PuYuOdNR6SGt3eGKldrW50daVgdeLQ2e0NWq2otzz+tilba13noJQxPRpg20pYZ4vacwTWYmoXId05K3V7kBqVwZYo7HCJNPDeA2f7Q7dMwkpl6wIlQgB+3TBCFJZVIC0kItJVr1VKZVvJ7ZSRd5LjgfS6SwB37olBRK3U9Wz69PJ6MlsEQRyGWDjQKnj85LoQGCTGOa8U9PpJ7tI8zY2BwaBHWs1mC1B0fHamtR7f3E7nWRTFWZYBwOlwkOfp7TKLDbDPeslQgNLU9qIoCIKbm5ubm5EwFAVc3O/df3D/+Pj48vLy6ejpzc2810dUZIwOo4RBlnnGIHGvd//+g7jfy5bpeDrx3g0HA2OUzfJsOb1+WUaZPvKFXUxnYRAN+wMHfrlc5nlhjOklsQIsIxmSWBFhJ7ISgYKISiEqrZUYjQVIFOg4CaM4SIIgy7IiSyHQRhMJFUVhtCYirTQAlKZ2OboEWKq7q2m5jt9ERKhIBEqXgJfVpjBjDBFpg95LrrT3lgRYkJc2XRaswIOgAhYHjoW9kBTCgVaT2dxaGwVh4TwrRwRhHKrhqTjvXCHsyLNGV+LlVmwRqr1Ipdwib8kb9AxKRISkvKp651n7iulUP+sMQhA6w75ia3G3wVYaTLAhfVuzY3PmsjSLV3chr3ddeO+1CkWkuo2blAJgEQ9gGph/vVRf89tu0c4iu6rrlBm7ItnVU1ucQEscHo5G42vDNt1CdavGDsZbDvcu+bGnuq+HbZ3Z1jefN4qLbO7mqxXfKaobFdXfVD1fk8Er47qTybe1zJWJ26qx3SGNehuQO3/ukvqdLS2Tbsy0ztSucreAfD01HLat2xa0XWXKuxhKl3W5bKZgdfsCAAjgJv5lpYTXV4vb7dqvSXwN8bxfU5G1pyvU6nb06vHjSyYVxJH3mQnQCcxmWWTKS2Lx+GiA5JfzPAignySFtTZLidQg6QHSeDK/mWZJFOeFY0FEWaRzAOlFaAJ1MkiAnSI8GvSsy6+urrLMxnEYhcG98wf9aLhYLH/w/R8v0txoOD2JPDqtNWiDiEVuWSQZDk6PT8IwnEwmy+VSaX18fByFZjqd3l5dA7owjIdHfRGZz6dRlARBsFgsKFDWWkJM4oiI8uWCmY0h7VVmnc0LQVDKGKOYvQmUMSYgyhYFij89PorDYDIaqSQ5PzsqzzfHQSgizjlE1FqXofW01oLE4ktTuLTG1gJ4JZqJCIlAKa65JUuqUEpJXiAggQBSaPAoDKyHJaFGEABSxB7IiyECRMv+4el9YfLes7cCEIYGSFQUqujI2Vzl5IslOk/sEZgEuLYfsBI9zA7ZinfAHnnt+NpLY518eSvRah/Yfs7bmarZUXGrOqfrrJRqCbeSEnH1OS0izI7U3W2sM5DOnIcwqwNTo6J2vQ1dp20kHSjhdqW6IOnk/uue31jApdyqqLpde6dmUKZ6AJN2zq7UoQpK5Vhuwa+H+N1Thezd7ronrW8a28TIXPP6riuxW2kjg7cvaa5iuwpwfUR2obE/zy6xuAfI5j7g9lg2Cu/Kdqfs2dOSprbe1iWx/mlt6sBmfZqIZL3vo1Zwq50VtM4Z3on/nfrsnWmX0tTAJ5/cXr98dvnqFpUCYC4gGpjL23mgyAMvl0VvaExkpuNbAjgaDPLc5nmutR4eHQGp29vxfJmGobI2Z2YRICKlSGsKIx2GJgy0c06rAIWm40m6sEkS9Xr9XhzNxrPPXn6ZZrYAGBjUGhhEKSWEJdc02gRBYEyIikajkdZ0dDQgotn09vlsRgBRHFkrg8HAWjufzXu9ntbaWhtFkYmDOI4VyHQ6XSwmRGQCo5Ri9oYUEQGhUkprIjTDXr837KWzWymW4JGLPE8XlBUu0FpTv5+U7INQ9XqDIAjyPEVFCsvQK0iA4mu7JASYxXuozvaRKA24FszlmzWFg2hUohSjoDIYoRfK+8mR85PF0oEyJiRBBWKZURnPlKbp7e1tUuRBGELS957T+XyQLhBBAyCAU+jEMBAAac4q+3StCHoRQe+A3dpwI0QQICDc5YauS8Q2ga1SuVFim4YRt47Ud/KOOl9r2E/16iohvc6jlFIbSYBStx5rbE46UG2leuv25O82sAC6XUw7igDAOgb1HtO5YjjYAN6ova0W7BJvlbht872G6K09b2qUWv61gGybCpsYxVtpa1l03awOAE2EO6G1mVu51tMYRNm21KFFjQ2AdfG8KbItMutBvwGakWs2CMjWmw1W3FE7bi+R1Adol7y4WyHuSu38d8eC3lWyrSy3s+HrbNeGHcNT01ZK/lWezVACbv0Vobz0dx0XCNfuvhLgmvHtU08aHX1nz76WhBaR6rqrSg8oyejq2ePJ7Yui8GCU9y5UWhsaT5fimQjiBINQL9MZER4PwnS6zJwfDodBENnCptncF1YhIID1POwFIqKUOTk5QgJr836/HwLMi+lsOl8sUufg4uLsaHgyHo+ffvU8TZkB4kCdDwbO50pJr58UPlPKEGnPIp4RtbDLM58kvTRbzEdzQCaiINTIwuziuDefLZVSg8HAmNB7H4Xx/fv3RQEJFzZzNldIg+EQEZ1zQDpM1ADLMNMFgcTG3D89D+Pgyc3LYZQUCOPRbc8E9wYDpZS1RZ7nQRCEYaxVgIpEEWijQAARWBhEmEFEIxGBZQ81dlYmZub1NC433JWndZk5DiImReSZlUEgIlHaOX7T+sVokoGlODFgXFGI+CAIoyg6PY3jOEYpIwJAEEQmGrg8RUQRz8jCHoQNIKHyGwpZmd/rAAKuYvGIyAKM0MF+dpDrpmkAUI9CRCsvJOyRta+fGgwXEf2K/684QLX5s9wxVM77tdIs1b2Fsk67mtN4fyCDk7rFfXBz6rKzofq3q74Tk22pibt4YzX3d8FsKQoNlO5AVaq9BRUDbMGvQ9jVqnrBPYTUUCka/E1EVrvit86blcV3VNyCX4GtV1HPVuklnZg3X1bh2HaE7tolEXYhWff07MksdaOuerlHAHc2Y1eGnzP9f9n706jbtqwgEJxzrmY355yvv/19XfQRgCgoFiRGIFpVlg02NejCMstMTStptIYtEpqjRo1KQJDUkZUgmmaaOaQyABmmikpRpUMJsEtQsgSifRGvf+92X3e63a215qwfa5999um++72H+os1vnHvPnuvvfZq5prdms0aw4irS7Sy9pEGxxuyFIURW01z90q7zzeAdesQNlmef4ejW/tih4YizpqfP6rm55lNAoHWZNkUxaxxwTBoS4Nh3ogPwQ3zAXpxZdCDJBsMfeMuTi8aBq1AAYY63L05qOs6SwdJkjV1Mxjmo3wwmUwuJrO6KbMsu3vrNirjnHvrrYfnF7PMYJ4Z513DgcntHYwQMQQfmoCoiIAAWZA4UlK5OD/VVqVWOWbnahRRZDRpz9QEvzcYWmuVUvv7+0mSNOwUqrPTJ01dAvBgMLBaVY1jAGMSba0AiYh3pEBGeX7r+Kgsa/KcpISKirqKaXPKco64z8xIOsuHWtvGOyBIshybCgBAuDexK6u24guOIL1ATQCAgAsvF5HAnpkgZvIQoyhLzL1h9shCCMDigjAhg7B3dQghy0Yi7EMwrKuqsqJ0oim/AcGLr0EKBYwSNAiCC9u2GBIAcGd0JdjaLF3hMbMLoUcI5x4Njn4/sI3T77e2AfArILr20e5n/wh2hZpi19pCO4UggiCEpDrjjLXWEJHfTtyurqzt6Ktb2EWE+lSwu9NlW3pqI7uePhVzXl02X5GlCLGssIuK7+o5byPY74wbg1UgiTDQP4mA1Rne2p8rcHKfRetzM12FLsISM1PvYTdFW7949YDWam5ut66ssz4bovbb6oCGHXOx+k5PpLg2aL4zGhbnc61LGz1sj34BkGXdChqQ+7YssqrS2dXPtyXRvoPSb1ZE4mmlUkp8FeoiMbZCttZiTRcXMyBtDTKz917ADbKMGGbT4uToIDk+dM5VVW2MRu9dAKXl6MahQDkc5lobRTgY5sz86NGjy8tpirS3t58NsqqqZ9PLaVGJgDWoUCWpMYzHN48FhYjOLi+SJCWtnHMhiDVJaiwR1U1dluXBwUHV1EU5c+yISIHyoXFNY/MkHwzTLDfGZFnGIvOiuH379mw6FRGllCFNqk0fmyQJelDKiNQAYq1NtRoNBgd7e3niJ0fH4ufcVCeHR8eHBxS8a1wQTrI0TdMgIMErpVCpuq5zpQCgTVPPkd4wABgyKBQCSICITyPsrsFVhyCIKMZJRAIDBhFRKAtyWFXHA1M3rnAzFjOymfNhXhbG3LHWhlBleXLr1q00UXXDjQt5eRFAEFmhZqNZVBnEM1so+usuINTDGYJtGhZB4ivhroPSNQL2dFFid4O4Glpu/ek2HNRSgo2bC5y4OEtD6EJvxHPifuPXxPtXo+9rbth1fmW1D2vIfXN6n9rVNdzSn7fufr8Pu1DQU/uz+NZ6zY5ixfuaVL8/y26sxktYihnvCH7WRh13+tV1ljflKUvWf2uJ1QOTAAASUnS+CszIQkr17Xm38h/9FdlG/tdVFBsVYOv9fv2tr+zqUr/oXTCxmseX1rhz7P1uMwr32uj7Cm/NUiIiCAqxU1thd+bfpYUSAmQUWiixuPWkYl7oWSCIiCgtoVZEXoSMDk40asVKIABy1H2BRAvZ9U21RZ7oBKbFWGRVodT9pB3KG95xqIKIQCiMITCCGE0SGm5KlrpgxVpnaMrmklTeVDnNC9zDPM88O0smRe283zvcM6OB1PXl+VlR1YKABkYHaZaYopi4gAfJHoIi0Fro7Px8Mpsf7OVmlDPzuC7mlxPxMjBGfAiOfRaYcLg/ChKCa5qm0SDcVAyiSBvUGjUiOnaePRgYz85EcDopjdE6SZpG9kb7+yf7EBOtixcG15AxxhpzcX7uylnjqiQxqBRoDWRc7dFzWc5F5zY/SBFwfpF69/53PWPSgcwfpUiQZfPppbXaNc0wHZVeJ4EpIFNKJicUYq9AQGlBYWZEIKORFQfvo0WuCAARaUEF7DF48EFYAgsRERJzkMV1QNGaXagtMQC4+Cy4TPPhoXpvefuVL7xh2aQGaiyTgIXJDxLjq/rG8/cPj4/Pzh+JR61SDnWFBQAgKBAX4UQDaQRACMBAREAkgkBC2iEmKkVlkEg0Ko0iAg5FlFWmakpERlIS2iyuwF5oaa7RFRFRPXgmWEIpRLTcGqks86n0fJ2WQtEu4gQACITIkeYK6MDxhN1rI8ajUTYxWdN4EWERUlbYIygEhcyAXiAAxoiUuotfT0RRAdj2cJvt8VY8uEnkOgS9qCkb1daxZEer1rixeN358q5FulgLzdhrs9PBQP8ooDuqXJtbAl4SDFkicaG4YO2iLO73T/oChMXQSLosUutzEvUfslT7tv+3kAQAIP1gEbvozeqNNlDUDjqEiMzboahd2C5nEaCAMPNm4BTs6Vc2112AgBgAvDDGGBWESOiZVyIhLq55mcR6FYfHxCE9rXh0l+in+0VQC0FT+jEwVvZF+5x68ECIGIJfq7OVJ+gurlJBrxKndSZiWVOuOrvaxfFdcfh/NdeJGwfmsMrHba7f1sZ3MmhXliVHtnhp7Vv9bFGrHwZg6bgtERFGZjBGRQkh+OC8U4pFJE2hqQV1o60ypKLnrra2LMt6Mvfei0CaJTZLZ7NJOa8OD4e5ViwVqUzYn11cFnU1GBpAPzk9FxEiCiIsUAYHCCYzt24fAoBIqKrKu1pElDJKKa1Ak9GgnPOTyaRsSmWUSU1dVlmWDod5luVZNuAA1qbaqMA1gkJEdr5qXI0Y2/FNnWUDHxprlUZqnDPGXF5e7o8G86pm1OkwL4J77r0v7O8dzms/Hp8jCQvu7R0wMweYF7Pg/Hyus70j8j6EYBKDwCLAAUhTN63Q0olodIwiIkwivt1N2GK6bj8QkbQHseKbJkrnRKSUAmpV0wmY1Jo0UeW8CWgjBkiU8q66d+/deZrMi6lSKmYRNqLEbwEGiI46SBBjUUIMfa1QWySNZIjUgisEjcRE7Lnz7bkaFK9TNtnrXrPtVYeW+3X6u2OhOeiwSYsKQggxJXD3oYh9RCQSAhHpR7eWbSY21MvbvZXcXjG0a9bcVWETA2yd83izT49lxZCq3/LOOezur2W7wgUGu8Zg+4qHtye2Ii7csreVTQT41Pm8flmbtzUmZrNs0uC28koqrb6J/spA1vrfEazeiHaRw6uoxtYiG0ecsk2i6xPNNUiTzgp6Cwf0NOq9cvOdUtNr1sdt7oxLVnFNddDi3cXTdlJW5mjX9tj66bXrrTOwnNkdknG7aSEAxoj03C5e4KapWAKzKDIE6L1HBGuRiDQZpTQHb6xFovHFhSsCEWRZAojj8VgpPDraTxIDSlxdl8V0PiuKAoZDSvNkNpsBo9HaJJaocRyMTZMkyfOc0Dnn6rpyvkYBrS0RKdLMrqgK13hkDLDkHNMky7MBACqlmJmFm6ZqmkogaK2NMYgYp1ZrShKLSTaejvf3RyzeuUCIj04fp2nq6oZYwM2LaZHn+vkXns3S0dn4YVFOjFGI1pBqqto5xygcXFEoANBaL9JNkgQmraElrRyNsaQTrdpjPEFRRCDCICDI0PmLx0UkbIFKKSLq5BWRFmUkQsM8PRplD+qpShSDB2CLPjMooRpPSpNlWZ7WswsgYq2oFxygg8/lFyORjc7qygBp0JaMpUiJIVoUilrY0DwVLP9DFlm1xY0j4k6Bv+oysNinMRxKV9bz9HXIi1aR6CYN3tyA27p3XWblalq7VqHf8prs0evndgK8tZObFKLfWkd1Vqd0XYaGDSFk6xDW5m1NMNg6z5vEYyvZ2FquXoK1p2+rnTWsKyIxYOKi2yvuWFtp4cqEYF9jsSz9CVmZHKElzW7vR2VADLDFsjw62q7L2dJm7+fObEibExHf+RVGVl02ew30srIzd1RYQ1MRNEVkbWN3qOH6e/WK/iCun50sH+0aVwSjVjW0iBGhjNYxIqAXMcZa9iSBBWGY5UAY4wUnSaK1qb2rXEgNMLbhsUKAw8OD/f3RdDpuihJB+cYD0N6eBsLJZFY7ODjI4/cZOU3t3sF+pDeXlxeyMGHTSimlhMFxaFw5n3vXQJbRYDBQhkQYkIFUCCwi3jOiJyKto9ESsxffnesoFZxygDYZDvKhc0Epalw1nY7Zu3LuZpW3VqeJVgbf9+VfNhqNtEqHWe5DnSYDre1s6q1N2RVppjx7IEzyLM0yVBaJWLwgGmPERyu2SNmielcLIizCKRORCAp5EM3chlkWWQSxW+AbRK0Ux9OQhTJKEzGxz1Jz62B4MS2MMVyziDfs9gaqmF0cpMMktcaYGoSIPAnKUkW5OHYBEVFKt4Ht2kIMSKjJZqRTpVMgLR2OoBVzGxFZMPk7Ob+rwbVFrICbGGoNJzy17SVjsZA/lDLWWudrEfG+EQhEahEBMfZ7qfLpSktmcEvja93aKhVsJYRX0OBdfExHWtaklk1xcOu7ve9urbL+9a6pvj9uJ+ptJX67+tDO7A48c53+Q281d8UuXqv8DtjBRVPYja4/2F0NrqUF7N5de6WjRX3W8BqdeQq7tujn8udT4QdJ5GrzjWWf15mDVgLeOoA1TrDHcezU0ix/rrSzs1rX+NUM3dVF1uTdVeXPZifXti70p3LbW+1Zb5S2e19da7bfztZ+LoJx86ItBKU0YJ4Ph8M8Teall8Bc1w5JkhRAgjEJeiYia61zrm6qNCUtxAxN06R5dvv2gYhcXFwwc5IMy7IMHrVKfQjFtFaWTm4cieamaQggzbNhmqUK55PJfD5nzSoGwlCKAJnBNS4EQRGtwWhMEosKQggAopQiZbwP/bgL8SBHKyUxtBORMSaGl2LmoigGg4wlTKbnxWwas8aWZZnZhH3IBuq5+/fe+8ILTdOwAmTvQsgNQau/AET0vmH2h4fH0f5ZkIiItcLAqAyEgChIBLISBTjqk2FBYUU0QyMIANQ6CbcooA0565zrtGSyUEQTETc+MeEwURpDUzmuGFTYM0ZCsZcPbp4czGo3D8Fai9QjThsGJh0ZkugihIrAABokC2SEiFABEKJHREGMXw9htYV3lFsQehjkHeDQZ771B+LFm3/12zs01zItiNiLhAXARISM0Sq1E1C+6UffjC38+H/8oX6XtpJbAPia7/mR7vqf/tlvuqJvH/nuj/d/dpVxVWzdVa6mN/1qve5xr+PSu+i3sDKuvjoENkjjJv6BVRx19XrtwpiygyCt8RndxTUB46nVNvHq1a9fwffsuG5zCPU+pzqdAWwM+YqV3dQQbK3zVNhY1iRZBvTYeLFPXzYn5+l+wFezVGpx56keFOs/d7gIr5DDRYW1fi/J9sYCRFp+DR5HrrMMsAPy1t59aiNtNVmxYiAiRF3XjbWptdpUIhKapjGG8pSr2uU6iykCvffT6bThJstTVzhUNBoOhsM9ACiKQhiVUsjaVeIdeF9VgQcDe3RyTJrm9Vgb2s+HWimu3Xw8nk3mCsEMEiJSCgGEg4SYykBYEWVKASlUFNErESJAkpiy9J3FZWTkQwhKKQFABG1Nmg6SJImPOOBsPrVWTy7HRTEbDPOqLgfDHFGO94b3bh69+/nnXO0EyXP55OHLaZoNBqO6qNPMFtOJUTyfTvdG+dHJLWMSF4Q0ojIGOFAI7FSLDgUAojlea/0ehwGCbWJeiX7BS1yDyxXsTluXiHvh469sblS9pyhhmE5K5UHtw36WHAzzk+MDhVgURb63l9qsLEsaZnFZqafo62G3xV4FJFSkjVIWkABIGIFaRx1WClkDNJugtUaDr4OgV7rRk4B7ElhLSzugjv89/0d/aK2Fe/95S4kf/rd/orsZjZW898xBa50khiE455CMgHzjj7zWb+Hr/+an4sVP/F9+U39yus31m//Cj659NN7ZJMObNbubn/jYR7cOH7YhkM2a/WpbadXWxncRYNiGOUUkdAkwsCe+IXaJ66+JTK4oay203djd+PW5lutUW+tG/PjWk+DNZkWEaCnsSatmWGkTlxEPlxL81q5e3b0rGILr7awofy8UztjSYIEAuLZVBQAQaBO6AGC7wrpfcLU8NVbAWtmIVLdTq9N/2q92fbh8W7DbfW5zujfbWYDCEjLWenjN9UZEUgvpi1FEQi1ax6SQopSSwDYhUpAYJAKtCQBm80lZ1UqhsSrJ0jxP9/f3AeD09LSqKmNMXdcPHjwui9p7LyJ7g+T4xglpeHL+JBXat1lmrCvLy/OzoihIYzpIFBkA8J6dc943IoEUKk3CAIIswXvHHIgQBb0LMXdQCCEEh4h5ng/yUZrkRGR0kia5NSkRhRCaxjeNZwneN2+9+ToAJ6mdTqd7g+Ewy5PEHB7u3To6yk02uZgAS1NOmvJyODhQZABYuHGuCr4h1M/ee25vdKBVgqgUaYDIwQDDUmZdlBDzOhABIIOESFxXsphtgJ+IKNWGc+oAlZmdc0AaNe1Zc5AlqgHtiARzQ3dvnwzTpC7LNE3TNNXaamtiXodNICeizloe44kpEaFCreNHO4SCpAFVQFrIlCvI/WomeFe5Yru9s3L7j/yl7rrTFnQswuLnOvXtl6/7az+72aWv/d4f21V/jdz2ReTNsiYW7yprHXjHs3T1i4ido/mWan0BoI/0usncCqvXZLnW3oINsay3a7Y7E/dJBa6Tk53jvc79p071LlDvi8JrdbbO1e4vcP9PJMS/ndUjW7/5135o+SKSxCOktZ6srfXafD5FAu4tT8fFi2CrAPl3u727L/an7x3AXHxrV882yfkmQd3sBvR0CLt2wtWMAokEkWhRgYjdZ0ej/UE2iHQLLQGyMQYQksRycMDsPZdljQiDYQZWJ9lQCIt5OZ7OYitnZ2fzCgyAMVA7thr29kfOV7PJNM3M3aMbiDgrZo/fPHUBbt0aJknSBF83nhlYAgDTYqOJUGBHWpNG533tnQ6BgEREGUWEaZqKiDHJcLDnvZ/NZmS0tjZNU2ttTFYWxz8+P5vOxoogsFcKjw/2m8aHEO4/f+9kfzgaDiEwM1xcXJw/eU2kIhrN53Pv3GQyZvFNwzcODt773vcZk5BWVltlrQTnnFPRUDl4AIA27FQsLCJatU4z0h5ACiKKokXopvX1gh56igEyY0xpZELEobXHw+Fb5AxbJxWyIEhd1xDqfG+vKKpAPs/zeRNiqoG1VAEYVxugs0FFVEKIoLTWqBRGHA0kEBhEGEIIzAzxIBmjoijC5zpEbYLo2tPlRV+TtGQlV96O1dfE3zd+6I8i0L1v+a8323fOwcI4zntf17UPDRF9/Q+/0a/2Y998/xt/5I21d/ucytd+39/qP4oi71Yxt18+8bGPdvO8q3KHu6Sn/eturgXcwOU8r8gAmzO8ts1XKyyvtxrjiLRR7Ddf75Z3KwLZhNXrl3aiVlF/1+DWmNJr5WpIu7patyO62e5YzK1jWWthF/lvByVEan2Zrk8yVmd1/dHV87zrKzsAY31yup/UPwDb9QHmiBMQgAgUgUJURBoAGCCyEH28EzMrtn8S//oliARBDyRdnrhOh7729eWyQa8ytQkmEbH1+0RNZAgNggGhTk2BAgqJsA0MpFbz/vYRQWwzBrVEARQgwI7P6I4GY+mcBeO7m95+m6vlKYBiAOCAwkQYAxU0tM+ZUTrMmKa14CDfzzOlc6W1EYeJHk7GhRe4/9ydND8wkiH5qpi6utSkGsfnF8W0AmVUUABJAgaTwwOVJWU5zyzdOz5oXHjjwVtvPng4GJnbt0cBpKgbBB3qRthrrU2aiDENi/MioOYcpk3TNKAxTSkXr7xnZpgUBZokgPVii5ofnj05n55VPDOJTfMsSTIFSgui9+Xl+aPXXppPzgwKCVgy6KGaF0eD7P3P3z9CZQI5oYvZJLHii8u6qG1yCJCSdsXsiTSlBXf35v2v/drfme8Nam0r79hXUs3BO4sGGbBhCkQBFRMJAQcQJmBS4AIiGKWMQo1CBApBgRADMRCiUqCQYyqENk80siCLIaWRKIhiSEhDptS8TNT+QU5B8xNEjZDndDPVj89m5uge2ZRAEpvVdZlQRZggGgnc/okIYUBsGIgoUUgoggpNQjoHUoBZQBVQ2AArBCBi0MhoNCoCEQ4uSPDiAZhW8csaF9jBsCAstimuVesANWoEFYiOluAgSIC03GixvP4D3/bGD347sCDIWz/0x7r7N//w9wMR6ZQIlIrRiISISBtmcG4pEPytjz73Yx99XsD82De/58d///u6+/+HH/hHDE5QUNYPMj/xsY9GevBPvuMbl3c34oP99Hd+c39QP/2d39x/iohRFgEMgItYYz1U21Vba3YFG6yoQJdTDbA+UaulL1RJ/6MttiUCljjfLXphiX8dDllbWQYUJCBEpUkb0goVxcQza91Y4yf6130FzxrKisYZvUiiAvF8IUIRAsMyHf0VtC2OGlGUwvgXhxc3V/dHAiSA3Boq9qlPS6RX6y9fBAb2wD4q4UQCESiN3jfxZzdqQk2oGVrt13LMLBAYWcU/CICM8Y8EkAMEL95B8AReYUBxwA0yQmDktntx3ogIUQEQAO2aE1wrEgi4lZLbKWAhfgrl6NraNuPr+x+3cVj/3kuP+HVz1A9DuFb9OuPtl7VdtHUDd+hgVyO4Tc/TPpI0z/bzdCAM4JxBSEiDB+fc/tH+xeWZ1vTcs7dFJLqfz2d1Ma9nRVOWddNEhyWdJMlwmCKEfJBqgvHFpSZ1tH+s0D549JbzTZaZqDIdZkMSmF6OgYMCDM5X84obZ5VRqJt5PRoNkiTxoZlMJpPJtHFVEBZkIl2WZVHOWJxAU9dz5xtr06YpgINSwtJMZxfjiyfzYsLBJ4lpmirNkjRLOLjn7t/7NV/0IQ2iVIagJ5PJYJCwNOfnp9YoQrRmyhUV87OyfjJIbvz6L/sKmzTcZBAPPSRAYPGBg2MfQvCBGxbP7Fk8M/dxRMdur5X+SuGGC03ERCEE733TNL5pnKsB2SoyCJbCIKFRnp+NT2/dvXF0crJ/fHJ0fEsneyY9DJDCxpaLoAEAAp1WWQEq1BqVEVxixr601IHK5p664v7a67BBJ97ZfuxaeOuv/V/XHvVIOxCRQorK/M0W4jD/9v/5S9feXUPofUMqRPzpj30DAPz0x75h6xbeNtXd445gL/V2/WnpN7LWn6sn4YrSb+2K1ek+t9Y4bohHW/vwVCq4VvM6ne/TlX79Ndbt6ka6QYkIL0p7hxAUgSIhDCA+xknHJWB0w5dFdN5uIGtrFC/UIoisiHQZNfp9XvScUXiRCjPG7lhROy9e4p78uKUsI0TJyjCht3bXmefNEl/Ra7+vrn3NRyu9bO9Rz06rDY7Svns97Uf7lQ0pnhQEEOAOghlJNg288HpalEWXVoYm29QRHdDAtu29o9nlUolAqzJNDvLBcZ4PDF0ys0FQqA0ZM8gnk0nTNPfu3dFWnZ6eGpvPpuXMBe/ZNd6zCGPEe0RUlAUh5MaUxRQFbty8YdGcPzpFYmuMUgoFqqJkBuc8MAoyChilFChhQAFf+7ryc++jr5RCMIkxxggJM7vaa03ela6ZK4V5nudZHuM/V/V8Pr2siiqwT7TRhCrTjWv290ez2RgB3vPC8zcOD4r5dJAkoDEfJIcHR8R8+ugRgsymp2U13xsdPHjrpcTY59/9xV/yoS89OTqsKp+mCsSjCARmcAAggQVYJAQOIgGYRUJMxgAcXW+XWWL6i762XkopBhGRL/mr/3Drev3MH/iIUdroZG+U7+fAzKNUffs/eWuz5sMf+M/qqtRYiQCQQg7Pfezvv/zdv/Pd3/kT/Wovf9/vRVTPfOtf2QUhT37if1iCCuIL3/aXN+u88kPfsQJRAMz8rm/7i1sbfPkH/8T1wR4Anvv2tm+v/Tff2kd8Wze41roJ3A+jAUAi2y1icKGJX7u/dqc7xI0y7k9/7Btgm/l3rNaZXK0c/XbUV1ocjTusXNYI1dYKfeDZ3so2HenVE745n2sUbo2iIK1pR9t88rs6hD1detcUM/cncg0q+sJ3V3+Txmx9tyudUnBtINE/oj/bcfe13gqbimXo80/rZ9iIiDH/WTc/m8r8GGCRlxWwFxd90eBSVRO9MbvOiKzh83WeUjbOKZ46OV0hgc5lCQUQVr28d11v9mCNP9rsR/96UVTv+lr8wlaytxUddFpuaP/dfqi+yVX1l7b/73V6uG3tr9iorcVNv6aI2NGN/PBGPtozqdUGEQEQjbZKqfFkcnR0kGXZfD4noqqqptN5UfrGMYsS0IIEQI5DUVdNA85BXVXShKO9QZ6a8eWT2XSWZYm11lqrtXYujMez2bQKIQih5yCCDFg27vR8Ppk1jJCmqUIlDIGhrvxkVs5mVVHVGrXVWiOyd75pXD2vitn4/GJ6OZ6PJ2VRaMKD0d7B3n6apiCUZnaQp3fv3Hr+uXujYRp8jcFZrbyfNE1BQq7k00eXjx48fPDWK6G5PH/wSKO/f+e5D77/y+7dv12UU/Eymz5BAYiElgMHDxwgeAgs4DBystyqMoUwen938LnCjEcNFHN3+IeIX/Jf//iu9frwD3+CmZl9ZmmQgBZvxG2tefvb/7qimIlXAODZ7/wJAHjhY/9grdoLf+bvgLZXg9NTzzKe/5bv7f8UkV3UFwBe+La/tHZnK/a/4nNXVSBNRIDdSSq32tRtLWzSmFh+8/f/7e5m/yj3a77nR37z9/w4XOn9/JHv/nj829Lb5XnWdg1hX0JY69WW1raVrahpVztXNNJVXsNFu1A8QHvGsPnR1TrrssGur6/pYLCNaBb6fVjDb7vaxNXStrY4Fol/3Ulfp45u1bGL66gP75dWQ87L4wDsoXeNpJEUIAnHv6iyBmACJmCUIBAEAkj7J+y7C2EPHIBDTM7d/xeFgQNI6IvRkXKLLDvc/SlYOF5slBV2Z7XOuu7r6pm9gmFce7SD0O40ur7O17c+7UK7ISzMSoWXKVk2Gu9Aof8H2+JHXr2LrtiBT63f23LBDPdHxyfZwREYBYTaKtLogGfzyY2j/dFocDE+J62Go/3xtAiiGieBiYUiWHkW79g5nydDYVSkjw73hnlSVxPvysOjRGsbQiiKajYrm8YRUpKYLMvsICObOJGidNMy1Axkdba/j6BFEEAptABavIBgluS+qYtZUVdVYjFNkEOoywpEjEoGyfBguD8cjKy2SulBNjo5unm4N0qsPtgfHo5G4mslPMryUFdDe3BycHj66JU33/rMxeVrs/GTUb4/SI5GI3P76EO3bt67/+xJMVdBfAMPjc5axYkEaXMIxjAkbT7BBWQQkUKkDp+0a70o/QmH5X54Cpb8rf/zL4YQrFXHe/QjpXzfF3byts/9iY/LqnHmZnn1L330+T/2N66ocPK7/mDcYi/8ke/apJ1def5bvrfPAT+1vF1AhR077uFf/+Px4tZ/+v3QauyFmQUZF9k/lTJd/a57/SV4W+VrvvvH1t5aO+5dKz/z59d9ljap/lr3dpGWK+jfFWUrk7FZrmjhCnF8o1rMvhrtXdTyp8DaXzxv3gUwEeSi7revz1gTW7dKt/0SyaT0SqSdUT/XbyHmmFEalUZS0NkVCwQW35I9DhJ8JITtT4l0cbGjJZBsIfnxCwBMC314Z5axKF7EMXtmLxJYXHzcVpblgfeCd28JdhSU42nxVqvpXTO8yQn1afDOZAxrU4zbTymejgK4p3COX4/agc7+Yq3lK9AK9vTV2IWiJEHGGMI34l6OyRQ6XnK1zx1UbW3/6qnYVeGK0vu+9PjxKDcIALCCNM/TJAMPwmisceyapkptlqWDWTljgCxLT0+nk4KVsp5dEACA1qoXOQ6rrEur6cbxUZZhORsTymh/DwBm06qqm7IMIpBldrC/Z4wBgJmbIULjoWw8CAyGqbU2MAffeOEYLp5D8AK64aBrq4EUaU2GVJIkaZomSaa19jVlWZKkBhGDcyFwdIWySlJjyumsFt4fDoJv5vNwfHh0tH+/Li4fv/X5R49ey3L9nne/e2BveafOL15Khvbuvfdqe1S7qVIWm2w0yua1B4Ae6xbzgihYyKP91UFEUhBCwIXwJAtdHEvM0tMx9Sv09xe+5XfE0994ivkVf/3/E+9/7d/+X/7pH/g1Nw5HXc1H3/27y8D54R4AVPPZs9/x9xYNOgDgVY3ny9/7OxGViCAZZYfd/bOf+rhVKWpkUgK4/5HfFe/z6r77wg/8cUZUgMgMyrzwrd8X77/wrd/38l/5M2uQ9soPfUeHF1741u9vL77tL738g3+iPxWrmVnx6i28xGurlAMRldIuNP2XRaTf2jf+yGs/9tHn4/Xv+5uf7jfLzIws22JJfOLPfsNH/sLSLvoj3/Wjfe/eq92QIkkFAEBeCME7wxNsbuTFSKMyoz9YEJE1K9HulT6fcU1q/TarxQAU68lrY5qOtVdkVZ+3xl6sVehTRFg1h+68y/rEAxcbadHUyqc7irT2afahu4/xuwCA6L3rvt5nkXHRz7WhLczEBEVJ9OYjJsAYjqM/A9BGtQvAAv3lWbJcS96rR0rb6HUtZem09/EZEbISChEMUEBoRcbrlR3WxAIIKIs8HJ0u+lpnwJvEePHv+iLtLr0z4BaY1pmI65O3dZrdQyN9qH3HjW+meNy86EZ9xcZbvU/Q80ntTsskeFfXrqwUq5QMCREHo2GQpNPZtHE8Ojiczoo3H13UHsADowiHRYMtJSHCAGH/YGATCE3pvVfKeK8vp7NyUouA0pQMsjzPSavCVXVdV1WpgJxjdkAEwFJVVV03CCACigExGIJRhsPhIBukWmGSJAjKuaC1zvNcKXTOpaPEN258MfOhUUqlaWqM0WgUe2AepgkAV1U1SNK94ShJsssnL33uxU8Hno3S/ObJzb3BYfA8HOQPHzXPvHB85+4z5+PGZmRhRPpkWp4qZUAoRn1mAAQRIJCAokEEJZ4koUiQqBrqTX4bdGIBEoiIFIWGNl5ptzayMEWJN//5H/za/+h//CeLdmSQL1XHtz7297au9bPf8fdf+77f0b/z8vd+3QLsEQBIL6XD49/WEpXxz/wECE1+5qf2PvzbLv/fH18LKtBHfALw8l/5Mx0NvqKIyEs/+Cff9W3/1dr9FsctrnHj0a7SZ1y6QlqRjwKTILUSAwr86Dc++00/1voBf+PHX3lqb7vysx/7prgKP/Od34iIv+m7W430R7774/Dxr1qr3KfKnRa6pdYYOa0F4r1GmMAVmrGtesfub5Y+9rsOhtkkkB2PuCaUd+1j1PD3eFAA3MSfm/3ZbHyzJ1Fui7JLlE0R0VrrgsdFgSXRbd2oto5rjUWLF1Gb3TObavsTmBGxOyHqWUSuW1zHpjh0BraAiyy60gaEb/sWU28tRORl6Yh6pL6yMK1q77THxdvtdjEGO2MgAhB1NTCJrMdYXZ+lHv8b5eCrJOCnCKOrH+7r/aAHRru29vUpYr/+1rfiPHaqg6tSQ1yj/c3uPR09vc0PQRfBDpnEzSfjcjKzoK3JpPKemyw3ZVE612T5fhP86fml88AIXlARMMd88gq5NeBDwbu384P9wWx6oYQHg+FkXJ6eXToPw0Q7F6xN8nwgAOfjy9pVWuuETNN49GAJETFUDYMQwv6xztNskOQaQSElVgOwD40xRiudJntpOgCAui6rqnS+mVxOWTwAK4XGJEaJRgDwg2xIBD7UdV3uD0fPP/+8FnzttTeevPFvFJr7t997cnyvafzZ49PhSD+4ePVLv/w9v+7XftW8afaPEq0Oy/IihLlWNwQuu2lb0NpF+iMRFl7sqBbk2i0NK9YZcc9TG7V1+3pF2XczExFpNczT663tGuqMeFNEICrHn/zwn7vxB76rX2f/w18XL+af+MkIw2pt/29DavA0jP+2dtbVpfvorT/casUf/w9/Grp57ozaiDQpAOVD+NFveuabfvT1q9tcw9fd/W6xfubPf/OH/8vt8u5axKtPfOyjSxr83R//xMc+usg9CnClgL+JxGA3vrriRXg74u/W16+oKRsj2CoObV1x6cm7zLz1u4utQTGKjnMuir8x0Gy7TguvtmWvtqHitaBU8XOGVGwwhBBdiOLnkiQBgC6hlixUvmrBzPU/h4hhYfEHkYwtP419cWtJvPsXi0cAgBKwmy4JIMu0hF0TK3NIUa8iIkICggFBdXPbX/duL1y9+9Yq6F2gszndiz0ToxnL2mfWfvYo2XaVBYBuVQG4iFYkBCJAvjMUYySUALj4XIzXhhCzywkqRFCsSKUMM5XUqBMBTRpBLIunaHrDAMSI2LqDbEi3bfdCL//xDi64G6YsA+6vK8937S6USBVgyYqhJlJ15cDq0fFg9FA9vpjZ/FgxUTP3QsrogHo6d5OxFw+J1sHXOgDE3ILBI2CildWgFZzsD6qqTlWmyE7Gxfl5BQQH+4OKJR/liNi4EIILVQMejBLnRARCm3BU8kwfH44O9vfYza1OEp1URcmCoIBscvvW7eBAKeWcf3x2enlxNr48B4Y0BUQYjBRpE8JAQ4ZCEOosHYXGBfHsi/e/5/lbt248euOVi4dvhGKyv39y//Z7bh/fZV/P4OLw2ZFOh19+76tsPhzPSpWkgTEET4BCGdiApRJhRCAiQGTxrZVGaBCxzdIqzBwgMrZECMRBhEOEW6VBJISmCYLRXCP44EOBYWlUxexDWJ4R9BexrsBisnVN++Wlv/C7iEx0jl8ULxC0ykQElQGbi9178hP//Y2v+0Obrw8+8tvrn/yfFGDfvpVIsbAXppiTpc8WrJ6rLWAMAABXOVBhwCiIIwOwWmyuxfZeNNuzn4oiU4RoXsQ66IpSWgRZwBpDiJpM6WfUWpUHUigCf+ujz33Dx1/tv/V3//CX/57/7t+0LaDG1czZUeqNpcXFTxE2ur4yAHziz33TR76rlZgFgTmefQJAmx4UN+xXOo+pbke3mLGVhJZy6mK6+unwlo9IqzWRA7r3t/Z3B0cFPdTcB8LObLNXn0VE9VzX+ri6b2NIFHENh8DimtFo1PhQuyZJEgYsm1opRWiNBgvw+kuvfurzL7326EE2sP+b/+g3vPtd75+djsVxmidseFrO9tJMaufJKqXiHiQi5NZgBIILIcQTGGbWymhlGYTZv/Hg0XhSnI3nF5eT2WzG7I+OjtDYQZ7fuXnr+GDfYFDSENeumSXpYcM1KalqJkwkgDUc3AxViqBBhAVAhFgh6Uial5MmEmkqAnAM1AOAndlHS5Fdf9Gho9kYWjPhFnAisSf0jIhMIkyMgYhi9AClNcST9eXSECMoXjNQX2y3HQDx9FjQa6UPZ1cA0zsr2IvkvEnRt7JdayxPv5PtkiwYbgAgxLDNU6Lf/zWOZI3BWbu5skWvLXb097DWdqG5VQSFhMpqzWhAGW6aKnBdueDBASgWrW0IjdGqaZwADKxlXyPQvbt3x+PTJMk48HQy4QA3Tg6FsKoqZj+bj33lmIGIvGciQLLgmcUnRu3tZ3sHmVGhqWfnFxe53bu4uDg5umGtRWX2jg7n9fz1tx4oBu95PJlOp3MRSBPMcp0lBrAupjQYpDdvp0YJ+jTRJP5sOLr9rmfvPffM7cePH37mk58KdZHZlAj2br77+PBkXpXj87MPfPA9xzdvJPmoduCcgxDYOQWIoBYWFsRKAzCvn9y06WaljfQclR9BRAhbz0KGlnGFVhjdYLlwZUXiFpJVZ0QAMEDY0x6/8Rd/99qKR/AjUriBT7EN/EKICkERaSS6+Mc/bnTCoEjB8DcttdZHv/33P/zxFSelPmK9ApD+XZVX/5/f8twf+yEAuP9tP/DmX/m2xTdENjJMrBEtIi3SIKrW7RkAAP7WNz8PC1ZVKUPJEDbKT3/H13/N964Yom/dWTvLRowOAEAS4MXxGABvhMGC3WLKUz/673bCY7macd/1dBe2WZUTWkUrIupsOC2bIKyU8iwMaE2qtVaU1uX8ydnlz/3iF37pMy+XLD4Uv/S5f/Q1X1P+tt/8lc34cdnMFOaD9Lgqp3lCIUAkvVprEqh97ZoGALJ8SOAhhl81GIKcPhk/evLklTdfG0/mVcPOizIZEk3G89cenjIgERmlh2ly79aN977n+du3DnWWjGdzbQQ5uKbKrA7C3otWJogweGCN4pgUoRAxoopRYBdlJawHxPO6lj6E1o56oXxe+xdEAFsaHn9GlCAkCEishTjGrSICAcXM/eP5pWi+6ufy1HKtUJRv99FatStgZfMR9o5gt9ZEXGXwIUSFPwiCkIhAey74Nvq59tGrt0S/2bf7IdhAMeyc0cnd+/fOTx+VjQuCw9HI++zh6bhxYVpU89KRJtWIZ/EcEmPmjUuN0URlXY8Sdfvk2Fdlnu0758qiKYsGEUXIsStL5wEyAwjgGYDZKEgSq5QKUp4cD4+ODpB4Ojm/LKosgb1hgtoM1d7xyQmiOr+cvPnowZPzs8tZdXOUAaHzjgiS1A6yVBEEcJoOjo7h8GhPAmjR3l1cXFx88P3v++CXfFGq4NXPfebxw0eH2eDk/jNW8aOHb9y7/77Z5Kxqpl/8677o6PD22XhKVXl4fIxYAioBBRxFuDhLJMYgInHg4IRDNHMnYaVUjGwfOSwiQCHmKC8CIqIoRt/RYCBCwSglIiKi6sIkAcAidBpHRu4r/8Y/7h5FY8l+zQ5Iolb82e/4uwDw2vf/3s2FRtQiCAJEWimttD38nf8JABQ/8w+ZARHn/+wfCuDwq3/78pV+CEMWwSUovl0Ob+3OU1/eCsARfd/+z/5y/44IABAHINQiSKgje8ciXSaGH//oC9LTnP2e/+4XNtvurj78PT/2sx9b2jAj4kf+HzvtrZb93M2XxPnqD6H/Lm6oZK+e4U36vfZo6yubDBksiOL1i+xiIHiJD3d1GBb5vEUEjQ0+aGOttU3TRE1LOZ+/+OIvPHjwKIB5VFSPG5l5ICDrzN/5qX99687dL3nfkT+fayYICKKdbwBBIzGza2oAUErZ4ZBIB9EAbjKbvvHGG6+/+aCoag7YeHdZVVXVNIzOizKYpmmNaUPg6jpJrIh6Mq4fX7zyudcePP/s3eeeu3//ZMjs0DfcNKBKccyKPBKyFxVDLWuFhAqjJVZnnLUUwziICLAXEYHFQQlLm8G3l+lhBXuzLBBChBAAREBhaKViZGSMucOBCJhbhVnL6i9TRKwoop9KFK5KxnAd6tttsKs/c3W5+kPXYYq7aos63O9YnOt4xrDZ1OqLO/vW5wBwt0cW7ihbWQ1EVEoZmw9Gh1mWZAmMcnWwv2dMNpvOnQuVc3XlQYiQBARRGu8MEXvnmno/M8f7I0VMwk3NF+fT8WUpgsJqNi+K0mlFR1nmHdQeRoPk5o39wTDRVoyV939g//CIGndRzi80qeP9w8PRncze2ts/3D88OhtP3nr85NHp6YtfePNsXO0fDOdlycxJng0PRmmaMrNzzjseZUcnJ8ehLrj207NzFaa/6Td+6fufe24+efyFz30SXH2yd/Ds7fuHw6NHD0+NzhIwEJp8qPJBMi/Lg/1bhwcns9lMax3PirCLZaYIENGmKkkpSZB0Z+mOtLQ5wNVAoQBt8B0iItTR7xAVEWmlTLThaD/RC4T+5X/1J4EQSAHhV/z1f9Td/6e//ysZJPSW7t6f+p9jdNXo/vHMn/m78f6zf+rvAMBW/wREBFSkzOHv/aNPh7qeR9wL3/5fISItDDvWnICvW1Yo73X9AO996w9u715bOIL0B//8T/yG7/lE1IcjEAB1muev//jL3eu/929+tnvzp/7ob+0Ic58GR6uruE2++ruW1PcTf25HXsJlZnXsnxaLSJsdqze0PjbY3NFrk7A26qsx6abbTxdi8x1w51e0H0NX9tuHDTy2Nsb+06IoYtic2eSymk0JpJpOX/zUp1566Zdn8yeeqhKKEsAjoDVe+THL3/1HP/vgvMoPDnwoOMyzPEGVKlAtLg0BEa1NvcCTs4t/+8lP/eOf/tm/9w9/6mf+5c+99vDxuGgeX8w+/9rDJ+fzSRm8aDK5FxzPirLxZLLR/jGDnpWe0epsbzz3P/+LL/6Df/TPfvnFVx+dz0UsMJSzmYSGUOqidL4JrglN7UPjfROc5xC45zQcSW8I3nsfs8uIBGYfnX1ZPHOAEGI8Swlu7S94v/hz7EPnAdW+zg2zRwkQGJmZgzBH9yRmL63qO+BKdgcG2EJu1spOCfipBKl/vZXA9KvJNu3x4tGVHXg6099m2EWInqAIuGK0KTF5RKdtuJKKr/Vw62DfcekmoY8ClDUmyYfDk6PDG7MbYxHjKTw5PWVAY1Ndi3O188AACtBaE9h7FzTC4SjZyzOjCVkU0YNHpxwAEYRRgBUqpUApVZRNbvI0Tzw0s9kESQ4O7GhkvW9QSJMSowwm1uaJzY0x58VFURRvvHJmM0qShDSMRgMizQi1d8StP64CGWTJwd4R8tzKrdFeFtzp/q2D9zzzwf0snU5fV8nAAlhUhzeOi7KZz8o7t+66ujBcTc8e3bp3hMCH+wdl6UGZQWJDCAKCqFCAYhohECEh0q3zmSIUAmkDqDGzSDyBYhVT+2GML9xidlHRdlqrqClSGgCAEYQRkVBHa7GufNkProfO+MR/8mE0mjAB8T/3LV/9FT/0z+L9+3/6b8NGefUv/j4AXIVXEgEFKNEKlJaHefmHf8dmC3Fcgfn1v/F/f+Y//b/FO+/51nVjZgB49a/+2a1c3ZXbkBBAdpjOduW1/+Zbn/2jrRo80uC1cvY3/2x3/fyf+uF48VXf/6/+/h96XwTs/unv13/85c0WRAShdR0GgJ/5zm/88Pe02ZD6dDeWn/7z37S56z78Xf/Trv7/zJ//pnZztZYl/UBdvQ7sOG+CHdT37RZcujl0hLCjmVscNAB2HhLuIqi7OrxaealuJXb1vCaiUZYqpcYXl6+9+vL56cPh4EBbe1b4R08uSw+kwXPjg5DVn3vtwU/+k5//P/7vv1JzmRkKLIA5qODqSik1Go1Y5GIy/vwXXv7cF77w1qPTEEBbleVDUKrywSHmw73LSQHEnhtSzCDOORGpqqopm+Ew01o7DqER0dqSIkX/5J/94gffc+crfu0HRzqtqnECwaRJXddDnQIwkiJhYA8AMecKRp8Gae2kmH1LNWNwnigNBwYRRGaJfkA9i91FEV6ZOmEl0BqmEWkCgdZCQEAIg+KO4wEACRITpyBF3TUs9NIRIYGsWDz0l0zvWsXrrPHVd57S4JUEG3acAW+vjBh3WhsjGxGoNWaPZ8Bdm3Ef7CKrfRl37c5m/WtqGLa+22/Bs7fZcO/o3u377ypm43lRnM+b0nmb5rWg9ywCCskANhJCUw9z7QGODgf7g7wpK3beM5yfz5oAmlBrLYyBHQtIAJagQdWurMYFashH+uhwaDWUs4nVRwRACrRCpclBNZ1cVk19OW2YwQmkKqkbNjrJbPbgwenevhZAZrBKaYUGYZDYUZYO7HCQ0eXFw/e8+97No+OHr77s9ka3To6m8/lhPrx14/Zs1mirbt07ceWsJDh98PIL9+8c37njay6o0CYrZuMkVaRtq1RqXQ0QAJFilEwREVRa2PsAyCCoIJ5MEiFFV4SYQQhpGR6WqZ1nBABBVoi8sHkkot3h/AAA/tUf+S0xXCWghkYN9kZv/eWP3v3j2xPevf59v69vd7266AKIgiCEl//gvz34nX9k1xcvf+pHENtcTC//wJ984du3kF4AeOWHvuPt8oLL+kK73FeuUx7/j39SKYXbqBoiCjAibbdgXJSf/PbfhGD6dxDxn/25b94kvQDwif/iqrAbm+Vf/BcfRVx4gEeVkURbrPXc4bAIE331TO5EOFfWvIJYPrWdXdWuj2/7QhH03EQzo0MIdV1flGVd1+PxeFaUymQX0zA/K998cjkdgwYInhgk1bqSmgH+xc9/6s7x4f/2q99LMveNF/FGoxdItCaNjx88+eTnPveFV14/u5iQVcygkwSNqSo/nhRl7YVRvJg08T7UzgEiaaVJN02jDRVl5ZwwgyZQChBRa+0C/PKLD4zOvuQDz+ynw3lxESBopX2oSDQKxHjqiEgChMDLUEyCElACSwAWxiDRTbGjtVE0ifAvIj1Da1ic+XbHwQBehJijs0UQ0UJaUEhERAsJxRxyRBz9SwUAkUUg+v2jxBiWiFuYvJX1mrz8/+sv2/E//8/jxflX/7Wti73rLOntgnIn+YqEFY2NCjGwc0vhOEjfZysau3Po9MnCjbCRUKKvpudPJtOXQaPIMzK6nSY5as2CqFonM5R1RnMJr/KUUfyKd9QK59tpxQnZ18HPirO3Pv2FT/6L84snDy/dyw+mVQWXs+LxxayqHIFCFi8eFezn+uTGMbummE+tSZvGn55VXsAadE4QwKhWO6usThJjQJ6cF2Tg9t0ja7SrSq1wkNjKodZkNAXxzrl5U82LqmygqcBobYwJIRTzJrO0v783n09ZSWq10So1OtNoEDJrR2mOjR7uN/efPQ6VrufV8aE9GI4SOkqMT5JkPJmqZHh8806aps304pUXP6nJfeCLv4xpMHeCWp3cPpnNZolKAggqTaiJlNAiiR8ikGLvQJg4hKb2dQUcFHWO+QjAJF1A1xBCWHoSQhsBR7roeizsAzP/7q94HQBe/Oi/2LpU791wPO3K2itba7740X9x/Rau+Nx1vnXF567uxtXl+p/e9fSaLbyD+ltX7R2P9FfLr5b/YOWHP/NBWKOn01f+bb/GJgFeoyudjcgV2trN8o4JMAkLLNUFkWh1BFhEhGuQREKJvpmePZnMvhAJMO7fjQQ4MKBqU19Rm1tnS7f7BLgvbXf8yzX1P7vKGuPSqUEQQll4bHziJ29+4V+/9voXfv5TL/7Si4+y5OCyKC+ndVU5VzQMMBrak1tH+4kui9lsNvENM4AAISVAWkTquqmLRgCy1IxGQ5tZUqBgLkjKJCzKNU2ibKK1r+qJexIT64qowNgwFjVXtbM6R0QENZ/NNEKamLqoEkuN4izLUkMaQm7NKLGHg9HeMDfsrbU2kYvxm8NkePfmewY2v3vnwM/Ki/FlOhzdeu7dQchVpQ7l5cM3H5+99IEPfuXBzfc1gqx9UU8Sm7oalBKlDCmjlI6nv0opICRA7z0IaxBxTVXMgYNRuvEuamERYJHPJACAQmFm9iES4BiLLh7aRDem4PzX/YY2UkSHyn8Vff9q+dXyq+U/QPnhz3xwRQXdUcaVg4rdpae4axV9b+vzSzVv74Ba+u4Lnha3WSQwgnQqxmW4XYpnSCICYgBrESGw2hChDgJIFXpmwyIMSDHsHQKAQuibRErvaGbV1Gup3r/yEGiNPF9xCLdi/YgiIEgAAtYpznyTWpL7e3cKe3nx6OwyTY4v4GJ6PpUpGbQNwMENc2PPvOt2/vlXzmf15cnAfuWHnv/iu/fyVJOhPE0fl9PPvPXqpx8/fOmteVW6qhoTZUihVjbXNpQOlKC1Y19LeUaNc55Am8YHhegrLkuXDLIky7hqirIkiZG1wdcNAAhTqtUoUT4ULCDB7I8OR5kaZGxEEJvL8/H+3o07N++m2u6NckUZZmiK+Y2TI23svFEqNxmo8zemw/TYu9q506DS0IgFC41PiQQVgQCwgCfWQhgCICOLMAIa7VmCa1CbwDLzpZUYDdGFEKzVish7DwAeTQgusVq8m11Mg6vTNE2NakSFEFgE6CrDw18tv1p+tfxq+fdXCJBFOrp5rTPg65RrWiv0jqOeUkF6zcqO8zq8hnPF9q/vLh1NvXpETz0KuvIb2J0NsDCgqqtaAaV5XlR1XbnAfnJWBwcm4bKpDo/h/r3ju/vHF2+cHsjl7/nAh77qi37t8N5NlxjDWlHijbkb8L333/yN49c/++aDn/3FVz/52uNJOT85TliIMGhtnIAPoEUHnxIrDVjVYT73JB4YMAC1EZRBKaVicEcBRmQEQcnzpChmpODG0eEzt+8fJKmRCnyljQ4hPHPvvjVplqb7wxE48a4W8XtHx0GlgSEzmBtVjwsWdXL7jskGZe0CgbZWawSPEry2CWIb2DqAELQmz5qMkxAgiAjGrolyQizAgooSBB+8BAyIGpUiRAlBRIQRlYKgvTB7QKNVL8/aWvlb/+oWLgLmxQzkgQHFuXJO4CeTy2yUvuuDzwuG0HoaMzND8NHAeuHFBEJtAAsEiFFzG6mNSZQeUn7DHDyjhidiBsYYRqL2bBIFCIL3xWUzH4dm1lRTqObAIYYEBWBFGFg6k6KoomhBqXemSwv3iuhj0zGs0RpteQi6sANSIIArB1SdHggRo94Iu/h/AtGYXJAYBOaXRTmrm+lkcuF8fXF5WdeuqiqtrTC05tYYAFiRVcqgzqMjllIJKoukkTRRzKKxjdlVy0A3f+hDrVXXf/+p53hx1o4Le8oY0o+pDSjYM85Ytnn9M9Rd9dv7K8npYqyGdmIRUWjFtWkpbHAv1xAsU8evGJ0IrfxctECk1+53n1sbS7yvAAMIAHkORKAJi3L26ksvPXz46MlZrQbkxbsmdRwenD+uvEmJQhAB1QScTAsXEFB7ARA3yHPPMMzTUE1+y1d/+Ye/4outNCVDYrCYXPyrf/lzX3j9kUrTNsAAmqb2tRdt0qOTm1/xG7/SpslnPvOpz336M5eTcVU2RIqZnWNUoBRioGi7HA9NRSTmMgtxk6Owa/ZH6d27J6mhspg8Pr3k9vQWRGA40M8/d/+F55754As3lAs6iA+VE4+aMHiuq4BtmvDo/ruMB7Xi5c+d5owW8x8W4C+wzJFMFOURBYREGhEJTYcxEDECPCJ6MostQ0ppJB1jAPzHX/TZ/nqJtLGZdX+9rwbTXzmR3lXWYHENRT6dEC428FV1nkYa+yhg06TiqaXX/11n5GolZNoCj4jWWiurgtU0n4bPvfjyo8dTlSDXTfBACp57z+GNO0dHe4Pzlx5WZ6d/8Ld+5O5zz+wd32ga72bC+0OXpPPK33DaDm4+O8pu33luNDy6ffLKL7z80qPL+tYwrbwj8vOiqliArJs7SyZI44W9A0OoBBjEl07Iq1QrpTRCCIIEWpNiVIYadgHhaH+4NxgYlLoYm0QZhQq1NmZvuE9ECtBqowwKByTIDk48GiFMoKamml+c6TTPDo6VSTwoBgghRB2HIZQo6Xbzs4jpWjV1NGEE79k59EE4SOAA2jcOAADj+a6kxpKQZ/YcLddAJzZaU8c2GUGizda21UHEaEUvwoioFHIA58UaVTa1m7qm9qiADEYGiohAWuRIBMELRZIaV1fa0EmkdHRQJg4QvARGxcwcCUxf6YQ7wZj6uUXaatJB7FYgXD006dWJ+2XLkdDCSrHfk83tv8ryLoP4d5hIemaPfR76qWWNBm/uxK5axI6RvAIs4uatJ0t458hqbeyrJJl7H2KRjanuvdLvMHRWLHhdlLK1V7tuLuCQBEACKwUGidknxpw9Hp8+futiMnNs0mRwfnZ6fjo31pYVkNZ14xhBWJROAUETePapNoLWhZDmWRPcYDh49c0HF5P3Hu+Pskwr8UV5WjRB2UTZQVM3GrF2wbMkaUpkzs7OPvPpT5rEvvjii5PJJYqkmdXKaq299wJBG1PMqqZpOAD7IAQgRCDAkKbkvGfEaQAuWE9hVk7KsjSczcsqgCjUIvLWzL/6+JWf/+SDr/n1z96/cXL3aJgQ+1CBZ9UGqGqNQBYJ0BYK29bXN9pQLyRR5BgzPLRBHiMwdyEaFbdsk2BQDB6xzeQbcQUsQnO314gAxNEuWAiJ+nlHEDs0pwD4um5Iu4BmDQJ2VbjOJsQdzrUdSV692EKqF7C+w3bxSpvG6wqvq29dv4gIYi9DSyQDKJ5ZHBulCflzn/vsv/m3nxzP4MA2uYWDG6Mbx88M9keNm7z5+ZdxPP2Gr/vaDz37ZRMb3qpqOy01Q8M15FmuVKnJJyNvjnNsvvSDcu/Gvk7UT/2vn51Py7JsbJYUtasDGANl4z0gg0erkswqpaRywN4HB0hScwieNQVmhaAVkQYgQHIHg2xvb08RlLPzkTWDZM+QtioZDoe+bhBRWajr+vhwvyxLUoqMRZUCOC7GF2dvlfNqdHQLdcqkO3vn4LwIA6naOyJSConaUKssHISVMloppVSoqSpr9n6Bx0JT10opYzSRIhQQqco5ay0MiIKklE2QdEwO3SUA7wfn/+yf/j+9/y/+vz71J76ZWh8hBGhTVCqFoWFrU+8KrdW8mBTz+fHJSQNNXEoiIaQQAkTBOobNYIyZpHBhm9nKTOw51BJqYQfskRUv3HvjphVqBWjEKN3SIh5AS142oe76e6r/c+Vig9O92oa5IzYIIMit+y/GYAiRDOsFqHdfXzbelSjF4MISYhnjty8+7hggQRszpz80WTc0/ZWKCn2quY5nsE+Dn4Lf1jiYTRn3qd1Yq9zN4ZIV67EIiBhCiG7xzB5FkEM5vdTA+TCnJPeAs3lzeu7TQcAEBEhZE5NJaq0HWVKWtQ/ArnEACECZQuA7N+9W5ezzL7+ZffAD84uz8dmTN9945fHFvHASfD0vC4WEpJl5Nr+MsbB++d/+IiIqa5RGENU0jWeJ+QfruvG+0UYDaXSh8RwCiEgARAQW8T6gJkMoSgVUygybaQN1kQACqqiYiYF1QuM+8XMvfujdY37fc8/cGCQKnfMBRWsjnnFhPwQQPYUihJtuJls3LQgg0OUpAoCYQGXxiwADCsbIOUQA3OIXiLxsrNOxtuABkYEoBkBWtNgNW8tywzx94+24/xSQWoOe7uI6ANjfAys4qOdQK6uV+2/14RI2xrgmbmzV6lwxlt33d6JF6XByFzKNAQ2GBhKl6tnZpz/zS97B7VsDbc0okdFoL8nprQevHO+lUFe/4Uu/5Es/+EWnk5Jem2Z1DSPtDdCTaaZUOhzMRoGsMvpG43C4f+uuyX79+2U89j/3S5+f1pArpCQbKLbWAtYIiSLDxKCVBIaEyCgA0FpzE6LWkgC0RmOVCBJRnmlFqpmXWZ7lmb136zhT1BTzwTDfH+1NJhPnXGKM1toLgyI0pgleKWmKmUwuptNpko+y4V5QmplFOEmSxCZBqaZp/CJgHIPgglkVBER0zmFMyu0cM8dAVAJUFDPvvTEGkaPZFTM3VZHsHxJRwBjLkhgFovkVYQyR1pfgguBn/tTvR0RcJEyNpBQRXVME55m5qMqa/aycvfb660fHN0jRQo/disIiwuyJYmxzQY7Oby3gMQAJBPbianG1uIqUBa1RzAKWF+NtQ3AsVK8iS1F1Fe42t88VW3gX67kVOFeoNTwl01dHURZelVftjjXeOr5ORG+LWK7t8T5H3q91/QbfYUFe1UWvd++qIgSdE9QKTiBY1YbIBnu05GB2F2bWWjvnUIIiqOpiPpsSMCM5DuOLsmjYM9RVyFM9KypFgRDyPFcIx/t7Y5garJhBexiM0r1hNhyl4kqD+Mu/+Evgw7QsTh+9XswndQiVFw9BUAeWYlZlmQ6BRXg0GlVlU1XVnjFexFqldR4DSHkfYhQXZUhpbQzoxtWVcyggSKSKqgGA3NphkpRlXU7HeZ6DKxMERmEJwQdYiJyRhL7+8NJqUnDr2Rv7iqhp6jhf3WK1QSjb45go/7SzLh0juIK3eRWKIl8O0Q+TiACIxffYo4XX7+KWoIoabEaFaktsx64/WvrE7EoZ8er7V1Rb+8TantmEs82WF7R2Xd5tKy8Gfp1yneH0Gc8utlGf2wCALqjQ9T+9+u7iHE4pIEgUvPrwldMnD49PboYQHp8/oDrZ3zdVPVY0vjh9dDIY/MYv+ypLN/fklTppgmaT6NQarxMnEtD481JP3sj2Zi7dg9vPiD65fwe+6l2PXn3jSf3woiycFmMSYfY21YImQanYi0YhMCbRIM45QLTaeI9GoYgohYnWIqINJUqMMolJTvYP93LMU4POxUCsIYT9/f26LPf390f7+9P5zBiLynJTa+Zqes5NbQf7e8c3RWnvyjh1wZMnDMyCqE2qYhoDRM8MEBQqRCCiJMu893XtqqJq5iW7pnTVeD7ZzywKuKaeVWXwDRFZTah0UdbWWkQkFCICBmGwShEuzOZ7y9UFdI2lj96YvSg9mxelh/PpdFbX45deO7z57DPP7imlOjmkPTbm6PkXCScvACXiWRIJKMKhDqEQX2BItRiWZGmP2AO8PoYVQWGIh8lIK2C2lKVoGWRmDRDXhLPljrsejG6lvu12A5CFQwQiCi8IhvTyAIr0P4U7CgBSL/d79y9eaSu3wCEAS11S+53lRztF4hXK+Y2yCy8tcXZbp5WDd+HMt4VL+29dUecK6ttNYAwn530jEDJlnXOCEETm8/npxfzJpHACSMTCSilCd3Q4IgCjEw4hsTrUJlHADEdHRwA8GGSkcDYZ2ySpXPPLn/7lIFRXc8IQhIvKB2BNyjdOAfomaKUZpGka52tjDCIii3cx0T2AX6TPImBmpVqfXkUkIowEIMoY5tA4pzUJVySY2TyzUDvwAQKAtUopJV6iw6FBPZ02L7/+eJio/SzdS0ACi2paflo4xp7t4jVBZwy7jIhCC+luyQDBglRHDbUIITIIxcjHABwToyJi3PFdIQAhJGYGjUQkQUT1N0K3hJFyLyVg2SYqb5KltwtYm/UXlXe0g8vrVnmwm+PDpxlh/coJ8+bTxfWu+rsQRyv4Lqaxbcq5Rgk1ZfnZT/7SeHLGIZyfX9QlPHfvdpYlk+JskNjJuPqiL/nArZt3uVLzNx9VxzkeD01IJKAbqJAYhXSkbrrxw2b82Df1dLBnRofDvdF77z/zaz9wGUJ4+cnE1Sje+wpQGw+CIB5YZYlCUoo0kGsCixA5JFbKEKkYxpGUyq3NU9kb7B8O9g8G6UB772oDMBzuRb5wOMpHg4FJEtJK21RpzWiwmUs10b5mk6WjQ5UPQwgkZYwBKa6q2AsosolKUgksCMxRFobArJQwc1k7QWJmH4LnGEpOGOl0Vlhrmdm72iqdpkrbVGvtiwJaJRUk2ggwMngC9o33npl1LyIVEQFHh6VuX7TXQiaAmbh5w2oScO5xVlS//Pm3jk90muZa6xACtJpAEcEASJEhX1hzCCG3qhcW8cBN8LX4SnMDnC5xaU/3FYV+IpL2YCkCi0IEgV62rhXwW9nba6Jhew0iC6XlLla7L022pHHJ0OPmbo2MKSJGjL88A17E2l3bMpuaqq0/l3d2YJto2tZq7FeYjjUtQc/uSZZdkl7i1CvKJsHuwGNxkARdHtk1yb7/en8eukfviGVf6VKXPXettcg0h+BjnBkRQdI3bt2u69rWXFWTEMBYa7QSqBXK3l6uwCdJYol0lg7z0c2jIyJltZkV87pyHLiqmiTJgeDw5PjJkycBKc0zlsY1NRABAzCjQJbkk/kcySsF1lprrVY2hGBM0jSNCy34KUWKDAP7ENgLsHAQhYCafJAmeJtkzgXnw3ReWEs2z0Cbg5Mb5+fnmdaI2NS+rBoRSJVJMitliUaXtX90Njs7LrKTXClFFJzrQkC3WLcNy7M8rI3s8iKruhLp2DhkWiwpAYMQQ4ipkBGUSABYbpaFigrjHzCgYJs+mBVjtNNcXccWqBSsScDvACxgA+a2Pt3yU5Z3+khha2uyejoVGeerVTFbunElIV+D410j6m+nfoVNOWPbu0s7rO5aaSQhV5dvvPaSr6uq5Lqs7t/Lb94eTIrSmry4rG8e3Pjg+77Eh/p8/Mglg8MmN2NT6FAmamB0rq3HMB/kaG5WMwwofvzagXIkkB3cff/zjx6fX54XzqMFbpqmFIHGOcWeNWmT+Bi5VGkJaKxVSkQoS1OtNQJoJGPM/mjP6io1CTLNJ/P8SDN7VMY5N9rfGw4HxphBmlWNn8/LwWhUOy9gFAc/v8zT3NkMs2EtkBidUpRoGwAyJgGbiNJOgJgFIWKNwEEAvA+MkCa5jalDq2Y6LyeTy2k5nVbzWVGPRiNDqJTa37OGkmnjQ1nvJToGkGNmR4Regg/M4Osy+imJtd2KkFbcOGnzCkPEa8yBmc9nRdOo82k9d7OZh/OyFjGffe3Rr/3gPgDk+RAEmQMixsi4gDaaSsW4OILxFBMEvEA8F/bAjQTP7HGVavZpR7SfFCIQlNbCNyK6TV3rlvK2NkX3SkdmVvRua0znasOLxMmwiM8dpdgVTdUmT9/KcFE64TjnWwgwIm49OIvvvmN8tZVBuf4rK93oervtrb4Y3fX57fZ2rRtdyy2E9LUFiNgGZxURCCForZm59o1SdOv23dlslhcNyDRLDdmsmPq65vG4yYeUDcz+3kihTtMcQWkyVVUFJBY5OTl544230nTQ+Ho8Hk/LwkkQUYqkLIras9ZaHHOQ1OjxeD4cpsaqoi60JhEp6qppvFHgHWiNyhrvfQiiDTEwMAUOwXkA0spoRdJ4COCrUltljSlrh8owmXFRD4f76vSxBuDAEHiYYJ7mXIdJOc+BNOq68Q9Pxw+PLo4HKjEu1KVJVnJ4MzP11JnQ6vz769VnWFcmPp4jAbDEQHKyFCD7yqoFYxcEFAQWFOaApGFDbyEikfoioo70btGDdSjp4g0tAYjWKCgBIMWD7O0IoruzUPchA0DgJVgTLkVDZmhzkzICaGrP7YjjyKUbOYosuA+lYvQxIFRKiXgOddvnmE8mqsPiTliInmsz0if/m0zA5nbdldWk40zX3kLVxkzroQAAgGkR7u3vPXr4S4nys3GDBGkOJ3v351MYkT11Tw4Os3eNbh1lB0anPJ3vpViGpmQSx4MElPITD/n+DQBRg5E1WI8vzbz24YndPyoP8vfceOH81kUGzVuz6cNJeV4Ckgdj2QUU4FmZJUnTNDVWw+Ggqko1iKIMSRDvmuH+3sH+yNUFmIH33Mh8OEhcI6iIrWJ2A5Pkg72GceaIyBAHEYVAyp03vsF0r4mE3NcqHXgRNgPHJSvQBIBePCIAISElwXtmDoEDiDaJMtozz8uqurh8/Pjx48ePRcJoNNJppp1XFs7Hl0U5I5LsLI2ON4N8NEyGWusQHIikxioAYrFKB6wPM5siZ/3kvmiUrrmuNQfvxA6OKqZJVT06vZgHeuv04aSenk3OXVNkSVL7WuD04ZvDF559rixLAFCKtNZVVWltRDhCOot0+5wAmAyjIAoScWi0KzEE74M2jIJEwkgCGMmZFt0E8J4hCEgQEAECZAAUVhG8AKMejyOiWDuMXJKWzlB4YWwSi4r3ERecOAKAsAC14lRrSStADETR5wpEhJD63KfWBAzgQ1NV2hquyxAch6AoJRBAJkIBLcACzOKIDKJBNC2NBkaSNovVom+8EH0RgeMcrqETisZtsgw4uRx5289FJ9sh82rWoG5rb5LwzV3fp6O9iqvIFMIy5XC/wYAAgLCOT3aJK/08vl2FKK8zc4z438m+sC0hdCQAFoAFRIS0Ca7J0kyCa8oGQSeW65JdWaJqjg/13ZObx4fHhZtkyQAAUpV47yUEVzVVKD36h4+mpH3ZlJWvgtS+YWttU9U1E9nMkHfOEQlpzYjDG7ppKjSD/dGtEDgxKh2Sc07pmCgBtLLxbKis5kVRmEQRQV1VTdOgFgCnyR8O9bwIEBgFcqMVg9SltbocPxwN1Sg3z925qUG0TUYn96e1vHk2efLii1U9zTR4gM88eKJH+btupimCL12SJ06apqmstUTIzhtlg3gA6nnxiUAQCYo0My+0ThhaVwhNjMyMLbSwBAR2SARkYVU1IiEAYlCCwAgIHpQAACFp6lntiQiCEhAAZsSlG9JWHm2N77sOA775ytWiZL8ybCNsC5C8+ssrsmnHJwKRIKFstwW9ukuLnXDVU9jYS5sfamsKt1Yti3oIICKDLG2aajKbx0itReOswcRm7ARY8nxYzcZqTx8fHF5MJppIRCmlYmYkkSCMOk1BacXsfI0C+6NRI1BVJabFcDBUxwcffP97MVXD6WQ0mdn04vFlEUONoYCQOHZevLCUZdl4p9imado0DQrsj4YhhLOzszS1xenZ4cGezQZaW6UksTZLUw6unW3ULeogAWCRgEhktALU2pC2yiRKKQFQRHmSuqaaTydN1aRZgopq563RzME5F0LQ2nBwjx8/fO2N15+cXRhjYvKlJLNKYVVVZ2dnubVQF6osArvp+KIsK1c3SilIjTEGAJqm8Y1TArlJBnl2/85dHCZDQ2r11IJswr4OwTsJyH5e88X04uHlk8cPTmsJDy8uQggkUM7CcG/AxA8fPizL0hjjnGuaRikVj4R3QhS2Bh1twjLVItAAogG5b76BbarEvgqaJYBACAyr9C/C0C6YhFVKc4Xup1d5tc4y7c5COO5x4YgYmCN56IBcaw0Q02O0NswCrbvdFeKmYF/p3RP1tr2xOM+7iljuHuDii1vstpb3N5u9vqwMWw6q1vuwq88rQk5PL9ivuQvn9IvnEGUkrclqU5ZlZvX73//B1/+XfyksmmA4zNNUcwgArEmODg6qskHEqiryfFjXtbK6mJbT4lxaPgUcuxCCMhoA8oH13jvnRDwiEyGCECnnQpKkcS8kSaKUEoQ0s4xBBAlVdJ9l5oEZjfb3o+FAWZbFbB5CaFzlGbjxaZp57+vG+QCJ5aHKjTHMfn+UPXf39rO3byqU2slkPhtPqtO3ntR1A4DR6rsq+fTJ+EDzrX2jMHr8UsyBhguWBREjjwdLaoXLY4UdZWPrdf73a5ZJ0XuSiIjBIysSkcC8LVwVIhKgfipNvWbpwGUHQeqL9RRtVPsVNkVGAABcuIZesYFX8Qvi0kVyrVx/i67efMr8YO+QaWubi5bX9WaxvkJxjfeOUSWuaYqJZCfonVMq4aYYjvJXv/Da/+6Lb4kT9CwusE0gMIRGIQgrQUjzUSBjTZCyCY1nZF83s/FENU4P5jnS0dHB7elRmtqTk5OToxv/62dfvJxXDqip2XNoXIgpfpVSe3lic+WcU0h5nmpNikCTsonObXZyeHQ0GiQKtIQ0IWNs5TwgLYJRoGqzEzXBOxRQZAEASJskRWUCAJEOPtTiEcgmAxe8R1AMpHXjihCEED3711974403H5yfn5dNHeWCNE2TxM7H4zdffbWua611aZiIJISymjdNpbVOrarrOjRVMXchhrcgtFmmM2DlZvNzV4LsDY8PD7slMJq8x8AghDpNWMmknL7x5OGbj9668LPahVqJtWk5LZsKnJo3IpeXcHl5eXR0pLXulIHMrNS6WWwrqbTUl5CM0onSKSiFiJ3eGREFGQBIYmT5SB5ikBZBQGYWkKiqRRJYnj+p/rfWwC9KTgsUuo7fF688BaRhSXp7g0IERFREgVr+w7tFXFVAEmFeJDXfolRbK9LzqFEAYeH/TQtN1YqQJ8BvE191m65PvbbuxOUAV1/vN7JZ3u79brxb63f/boouazzQ1oEAQNM0SZbGIBRpmlbsp/OCvXvumTuXF9PHp/MQmtTSMBvmaSYSgLUwK2NEZDwbT6dTESnrylrNzC54af3EVAhc+cbY4L0XEWO1ocR7rivXNJWxWZYP4tGL1jomPjLGBJYQPCFrjTFZoFIqy5KmCmlmR6O9wWAYnC+KYjabeu+tTQMzUlUUdQjsnEOEsix17ZLnbFmWGLzS6Yuf/cyrb01LD5lWiVWJsg6Va/yjxxe5CnvZic1UCAEIlFK4mEBhQYoonaPPn0AMP4S8I7YJSLTeWtgJAsdT/63sGkAM9MHAiggYfAhe0PXNI0UkRvuIOvCdfsDXkXev/UrXRWoV7LLkuDuSuUbCcWHcsJQal/XXafwaV4vRHy4EJAJaEtE1wF9DNLCxFbENWbKscEXZXL/Nm1u4E/ZpOjy+def+M8/eOHqZ3enR4T4R1fX8eG/wyoOXjYI8zSSE4Dwwe0YMwVczygxAJkqbbOg9MNcEXDsXmsoFTtOUtGqKWYE2ScwoHbLz+2map8PTJ0/q6RujveFkXriGywCkUCn0vtHGOsfee5ukUW+DGJQmEhnlmTUmWhKjRq1tYlK2IZ6AkjKKCMEjcPC1BEcqUVqLCJMGlQARCxKhMlaCD8CoFCKwoOOADNV8GkKYXFy+9uobp6enWts0sYRyWRQAcFFMm6pWSuV5bvOsqovLooj5FQK7xjVWJE0V5onUc6PUXpYRkXMutdlotJ/nORQzFLJJkg0Gy/kPXotCD46ZFM4n48enjy8uz0JwjIwKjJLpeTlM4N79Qe2LQPDhD//Gk5OTzqs4pldL09Q511vx3upjzK+o0KRkBsqkpAySBsSo1e3DsIgArqQRRQCiuG3CJju4DsArSKEP87gE791Q3MfviAjAW0E6FqWUtNFLYh+YULjX/hLUBfHKvON9dNbTEe3kifv87hpx3Vr/6ptXaS96tPA6yPCpOHNjhvu4a6WdtT5s8jG7mAabJkTUVBU6zPM8z3OFVMznBGqYDYscBEya5/v7hxq1c0FpZa1lEdTq9NFbjXeoSGtNiiSQAkRFhgiA6rouyhohEClltIiUpQ9BsnRvMNprah81TyIgCK5xzjlmJq05CIPvzly99/M5A5DUQaPE8xqbZEdJhsCX42mepsPhsCzLqqpExDkHgdGiDzwYHpyfnb3+0hfeeHOKCFYDKTFWa6OIsQ48mTVPzsfP3DneyyEEUSgKUYRJABYaJhEGWFAXhDaezCoUSMxrushDgMiwEnsOkReUq7cciMgxQAeG6Dcs7IGVhN4+Ao4HQRFargpFuZV5hGsA4loz2+9uKIJwRevSZ6K3hA/s7fzlna3Xu8pTd+bVTV3BNV+/DwDgvQeLw4Pje/efv3//C2UxHuapMaqsGwI7GU/yVA/zvGka5xwyhRCkqXxd2HSgtVHpgIwhDuJFkVGkPWgxbJOUiPxs7p1oklE6LKczhebmIPt173lPivikKgy4yuIgFZNmyuhiNiUS19QHBwcEyK6xw5w9N2WZHxwM0sQASPCiKA5daz3KByI+BKeNjYIccwjBCwdKBqS1CCJpVAoUUbRTCKy1rhtXVGUkqCxYFMXrL7386NGj8eUloUqMsakdDIdpmj+fmMvLy9lsxuwj1Bpj8vzuHHxVVcPh8OTwqGmayeQyekA28/lsNot6MGNMVF+X8/Igy24dH92+caLM0girqueWNQZWwgH4/PzirTcePHzyhBF14xPEUZrfet/+3RuHxewck8GHf8uHj04GiDidTgFp4RMMQkrI92BjSUMAFSpFOic7omSkzIB0iqSlh4tFpE3izX0KusQQGL0dthgirNzp74j+/uqCZ64R4E2mc3Fzmct22UNYGkJGpNR4zyG+ywpJa+1dHXrUFLbJbetDWGS+6t6KHtyyDW8gdgFOlv1f4dqv+NBuXHE1GmnvrEfa6ipt1y5ubbPr5Fo/Fyh+seQrI9opI20WEUFtyroEAGut916CQ6VJGWaLYDM7StKhTRMi7QOYJA9ST8tiOp0C4ayYK6MVKUaoZrWyJkkGxiTRRTBLOR84kKZpGu89ohoOjVapTfIkyULqyrJERNKqruu4GeNYtI4B41gpo7VmhhBCXTkOIFa1TwPXdVnXddSpZFmWpmlRFD40iGCtdk1ROHr10fnnPv3ZoqjRQN0AEg72BoaCiGMWJAgC89pN6urEpwhCTEIxgakgomA0pIqELAI1wOKUpKMp/U3UU4Esybb0Qs1Aj1ACQIyPRqIQg4hi9si6b6sQtzZA62f/dBX0NQnJNWtG3NTb5O2LHWiKhFURl/sS8ObOxFUPh27u4kICUfQUjt9+uyPaIrDuLlsRQbdgitZF+VhNKVXUgYFGhyd3n7n/1psv1XVBqrAGppPTJAGtKMuyEIILrAnFO19XIgLamOGBGeyxCAIzIWmV5gNOs7ppHAcQhpTDZOY9mjSx1nrvjMIX7t4ZJckvfOHTKfhJ6ZtAoDVpZUY5SHCiNSEJBO/K+WyQJcPDw1GejbLMWm0UaoUYXFRDJdaKD5E0AgIw+6YO7LS2RikCxUSdQ2f0mBX2dQjOORvjW1V1WZbz+Ty35vn79/ztO03TIFKSDQRhMp3v5YO7t+9YRZPJpKnrLMuyLEGBeeVCCCgEAGz4Vn6olUKUyWwqIlYrpZT33nsvwAJgVH18eDAajkgtMZomaOYFgENhZgkhpHl248Ztm+VHw707N46ORllKzfjRa3uZfeEDzx8c4GQyiY432LNHraoq3usWFjoeERBVouyA0j2V7oHNSWegEyKNuDgqXYBOF5kZEYVZABYs+FbojH64S3G5v21W4HBnE0u4BUBZPamKplKwLeIEAJBSAK1BaBdhm5mFosoOu4FcTYCj6ZAgdiJIrN8ZT13d7eugr20cxpam1l5ZLsT1zoBj2SoEbxJjWdUwb9Ljzfu9m9t7HqlF0zQiGH1wq7rQqEX84ydnnpUyA6WrSGgEYF43zbScFmcXl5fM7L1X1gTPiUFXOyRlbZ7nA62M9957VkoNdGKUTOazIhSk1WB4mKZ5YKwrp40KIQgCCTdNIyLapiEE70MMLR84BAGtdUx6lqS5c8573zRF1EsTKa2tkHjvi6JAxGiYRoQIkIwOX3z59UGW1qJKB3sHewPSzvnRaOiqaVNV3jMoDQh1gMuiakbaWg2t/XNLdbEVfxFWnWiYw5p6tFsm6k58BAB4acOLDIiLxeitL2P7FBQKgwSQ0AUDb+u0XxXAVRX09SnTZuneXYOJrRD8VDBdlIV19JXoY+1Zx55s7eHVEu0mxG+VEjabXavTH/jav/2JEpE0TZuG0OT7x8cf+tCHJqevPzh7g8GDlN6VCHBy47D2dZJl7uKCFErpxDulFVmr8yGZtKwrzeI5IGqlU6U1DsGQUBCaTXk+QyWkYXQ0nE6nVTlVTXGU6fffv/kwMW89GV9WblrOSw7GqMAuH+2V89IobRSGuklHg+ODfQRmX4lKAiChMkTGqCQxVmmmOspXJBRCaJqGxSdJwswMDemUSIUQiBARJfgksfP5nCAYo4Pzlxdn0/HEe58n+XQ6BYajvf1kMDBJRsrcvgMxQT2HcHR4SIChcc7XgZmDy9MBe5nPCwBQStVFOZvNBsMERMj7hPBgkAoyM6Mimx1lNhGA/tGpQvbEiFKU80nVlK45uXX3Vjqy+dBa66rxeT0eUuVsc/vOrbvvfeaymGVZHtfOORdPoyM97mC1j7sRUUgpbVWSq2SIJieTibKkNSBGG1lZHMFE76MFMeNIu9u4PSJxZ8dWRQTbdN8rEiH0CMYaR98D5qeSE4588JqfRp+OLvgPrZQi1DHqPcYwJ1vwAO12ju/ZjhCSLLdJFzG0313udX/rvtvafr9+X76BHTihP4FPpb4r2/x6aur+W/1Z3UWPu273ifda37pVRkVKEXtXN6X3XqXGN2E6nb765MI1QNqwhCY0AnQxPT+7nJb1RASTJAFUytgQgrBCIGXEhWZeiiblPXvvEdEYY7JhHqNzzIuzsyc2zQb5ns2Sy4sJC3NoTfOUSRAViEYIANwdPoYQEJTWOkrJxhi02i+Ob5yrCchxiOrrEII2pBB9aAJDkpiqcWmaeu/rukzT9L3vef7ict5UhfccAhASEPnA5+N5eWjS1BIpcRUpRASOISQX9szR8CpmMr1qfWOUDumgWuJ5MO+gFwAoEJAVYBBEECUSBFatoHvL+zb0G9cpm7xkb6jb+dA1kR82Bdw4ZU/bD2uf7p8By+p589bS7bdd3OjazV3u/P19svloc1zOOYZEa5MPRs89//zF4/fWn56fXnrfVE09MwYAIM/zeVnkw2H15AJ8E4JL0kzpVCe5KF3PZ0QICgHJOfbiQ2KV1cH5cVG5amZEK9F7B0NU4s/qcjI52Nu/fXAALN6DLR3AeF43+SCrawSWLLGImKfp3nAwGuQIoEmN8qHSyByIILFmMBikaQqBlVGAgtHazwf2HoCJCISDAAETtTKaInRBymoK7ENwVTEX54nDME3Y63lRpTZJkszYREAxM2PwwgZIk0KA4DyzeO9d451zE2neOHv8+NFpUVSpscaYNLP7+yNbTtMk0YQG4hbgLDF7B6O5p8Egaxrf+KWcV9d1EyqdqABhXhfjqqKQjC+LonxjSHh8kA1sVVZn73325nvvP1dNG42akZ1z1tpWdFvi0z4270vABKSVNmSs6ESURRXj/7TVowYMFgQ4BBdCoKXlVISWRRym7hOywN09pWW/rGF2WTixwNIV8hoFO9+YZbOR8Q9BOs+Z+EgppbUOqwR4Scx2fKEfC7q7gwLSYaY+jmuZlmXZ5GvXSkeuNmdjZaCLn9Hxcq3CFf3f/NbWR2vt92/GvsXJ3HwFV/l46M3HVnzVOY5mWVbX9ZMnTx4/Pn399TfnjIgmM6b2/uzJ6fn0clYFm1ghNCapnVNkyrpOkswxa61F6qIoRCRJkiTJjCEi0hoFWHzwvmGOR8RSlNPxdFwWzWhvEF3wR6NRkg1cI96H2pWNq0IIWhMihMC1r73vBssAGJgJUWsyxjRNE71XuG4keo0iMLPRejgYXJ6fiaGmarJMGwUX5w8FDjgQglYAiBZJ+VBOpoVzgwjwofXvF1kNJrG+QNHqHyK57c5augh0vT0QVyya+3OkTUsIEYyxt1iEQNqcMosUELAYctcK6k1GbA1iRGJUyxYOaIMeSQwNssh9sjG0ltHoNbhOn/qgJoJR6wYoiAriYRi2PjxxiAgYwwYjUIBGhAE4QMtHIysGUDFIHwoAC9JCdSDBc+uhtLo5mX2H7JYDXxWYlv6dhJtUdnEnyKoZNmIk2Ap627vDpzZAiXNPmUlvZrl86Ye+zErzc//6Z98UP0xtOasU8fmT0+zOAaWkDcjMoQK9tzd84QOlUUl1OQDHwarqdHpeuBL3Tm4VfDktxlb85I03KNTJyVHDAT2gHt24MWz2xo+fvOlBHQz282f3LybTk4F1wVdNmDDCSDd1bU2itcoVHA4Gk3mxd3SUZsOymATfpLmt5zPaGyBpz5444cYZVWqdNOBFkSYTmgBSkTEKg7BHVOJ9YNaAwlC7wI0nFEwTSJPGO3bheE8BIhrrvICI1QmIDBU1XHPt6mmhxJyejx+MJy8/fvjm4ycXRT0vJoEBAXINexncPEifuXtT37qDFEQbUtaQVSZDbZqgSWPtgiAbtVwyR3bE8PJ49k9ffP3zLz06exRIv0QAuYfD+9mdSXIyoK/8il/37Afec9FUifbGF4zaGLPGNSKioAc01AbKiatrBBQlOWT7kJ2AOTQ6Q2VBKUAEIGAWCADEAkHAi/gQlEkgOA4qBC9hRScsIgChdeFvnXV36mxAoBfei7qIjL1NvnS+B4DoJhdD+Ug0accYDMQhkghKq4giAGQWhRpRCJmlIdJap/Ny5gIb0x6sMbRJF0A8oFpQVC9AIKRIK9QCoAGiR390n4wR/oBj4K91pCSB10JU9pieldKtTt86vT8/a/O2VfpcxY0sIovwlvEOAYAsVOUUtSACwsIQ1vyzOyJKqx1AYJDIVeyivu0FKRAJ0uaiQEGMMiIA5GlWRx88EGqKJBvUzpczP6vca2+ev/7GY8BMayMAZ/PybDIpylJIm0yziNFZUzcKKXbM1SUBOofaGmvzeGzkXB1Ip2luktQHAkVEoJQPzk0nhfMIqAbpQAIziE1zVIlrRNpYKySstDLBO0RUStdNJcxKJyLgXIhJR0MIdVGJCIvyzoMEgaANinAIqMgC8LwolE08yOh4n32Yl01dezRFVRVGY5okRTGzVokCB+yKqpjP7OHQZqlzAUNAQgGvVIpLtVCXGpKEVYw+AdClWGBAAFEtn9wu4kI1jTqS1hjOtl0vAhSMltNIABStwgP3MsBEn2CE1phrJR3h1oIbOt5/T+Wp2p5YcFUj3U4fyiof3U/AufKJLorbCoexu6xxpptIYUv3dk/p2qcRIKhEi0NfMgMNjof39NH5WwcHB3OqcTLbH/nUqtqXpFgREep5XeR5YtIsCACLQazrajody/RxhVodneDN/fDkbH52Kd6pummUUBIzBoH3TJqsGR7SnWI2ZyGow9HB4fHJ4bwsz87HRmc11KiTqmpS0oejg9FgmNpsOBhycDGaDKJo0yamVUphgBBCcI6VAglEZIxBpSj+kUYiAZSonwKYz2Zaa2tTiCkImVOVZCkSJs7VIqK0U0gibjKeFEVhGhrXxeO6eH18+enXX33t8cWkAAA48pAS3LiR3Dw48FUVynk5ry4vL2/sHQ5iTErvG8/7A2vTBACMSomAvfiwtJYyhJdN/f/9+V/455+5HA5gcHsQgtch5MrOyuKUy1/z7vc/e/8WsNNKlKKmCZuKj8WKqxVYijwrkjK5NhnpJBo/Rx9fxpjOFhFJgAgVCaA3ZG1Vz68GradC17JOJypRD+pWgX1Zf9dXF611Ze3z3X0iiCGQ2jZ7jKx0Av2V/d8c7NrevE4Uye71NQ3t2sW/3yK0dULXZuBpuCSWLuEd9o2AQuOzLBMt0+m0lDaIW13X04vJ5NU35mVVOn85KU7PJoExG+zP5/MmcNnUjXOMACIcEFAa13RSAQB4xwigtTYJKqW0JgBmZkQKIVRVdTA68oFcRfFgSKFCo0glzjkBDMJBIveGigwixNRM0SkOEYm0sWk88XXO+ZYqq7hedV1bmyJAYA7BB+E2mAORIoqGqESkM2uMUUjAXNZVXUtA0QM22hBRgBAdkWNkBaN0jC+HJAuLii26WMSly36c9sX1InHOGuQsTnMWqxMrLdimRZystvR2HTMvFEsAwEsjrK36ky1PNwB4UWcLZMfOrbWMV2qStzZyRXUi6nHLi+TemyRz0UQ/ilu3ydf26joieztlK5bc1mC7NA6VkQCu9KzI7ieDIzs8GKX5QWOLsr51cCJIF5MndSgsDbxK0jRJhnmS7wFpaHw5O5+ePryYNEOLe8/d1TdvewZf1QdJnlj/ZDa2o5GxSVHPRQIwsU5Jm2S4JwxNw2UxI5RBnlurifTNE/349BEiTnRxeHh4eHQCAJZMqs2smntXa2ASo5VWSCBCiEma+sZJYPahVX8pEgQi1S1HHHp8aq0FQhFCQUIk1ZrwFMwAoDGwK8umbJrmclrUlXvrrJg6V6B8/vUHb751ISXcJtrPhwXOhom+f/fOszdvzS/G1XyitT+5sS+Bm6bRWqc2s9YyCIOkaco60UgeSHHdrYsVefHhWy+fXgJArg+dcj7Ut4fDbO9wPjOz8/Frr37hlwZ8//lnbty5Uzc1ku6vKVyF0EmIiBJlhqQzUAkpA0pH5loQFRIKQ9wgEcktBJolqesFfO6h7HeylfpguabSXNzvtbn6Yq8/K60tFlc6SZGIQliSupb0IkKMZ92+smx+GVVvIVssHy0iPa0pmd4uBd1Khp9avz/YlbeQI1QDwMI7gxbXq6LtLiZpHUXsxKvrLy5RcRBGo9T44oKI0iRJ0/Tx6enp6el4PJ5Oy4vxJSqjjb0cz6smJOmwdP6yKIq6alxgbDGqiEfEEIJSKq4ioY6QGF34IlMlIsxCxCLee1+r0iYmz/PgmwLKqmEOHLjxHjj692jtfcOCVrf2z5EG94Ek8goRfpxzVVUhYoz2VZcVkpCIJmIWZg7CEECAOm/7qmy0wuiIb0zGYeYqKYtaa6NIEZLWNslyUoqZWQnGrAzAiCSrERuXgI1rENiB5q4FiYHeu8ed+LemWAoixMKdTMjiKQATRu5k5Qx4K2vwVIDoenD9d59aum26a8t1m3/x3ZWIQrAhtXc0uEMZ/X0iIquqZugWYHUr9k9i4kT3d+y6OrpfelzIgvxHoxUVEJFMZkPg+nI2fTI/fQDeWVDOJMfHhxdnZ2+dvvH89F0393NBIkMNi0YwKoGqnD953Mznw3yU3rvdKOvGdULpQI+aPAh5q26lyjjnJ2enWZ4P9o9EYxAQNFk2MBq0Sr1vvHhuPAVhCTcOD2dlobU+PjkxOpnOZ1Fhj8GLq8kgAqc2s9YAMKIyOiEqJXDwjbAnIlIGACIXLFEJGc9ESQAgyxIXfNN4Dhwt1QmDDz4Bca5s6sn56cOzs7PLop5ULpAd3Xj3nSQbZEN3HjyVJdVNaC6nEzogMWp/fz9Pc8qCeIeGG1HWpkSaSOvUKpsIUBBEZVBZaaOFLBc6eD++eFh7yFUSLutJUxzmcJwM5kFlg/xm7m8cZ8KF+JJD470f5plzq97qS/Z5ySZGcY9UgtqCTlHlSAmTIQBGWJwLxZkRFu4T4K0bp0+1rqO8WWyNBfUSWAInLtUw19vvfVMsBUALLIbdo6jJiPG3+1hsrUHV+0UouIrytgoAv5Ky2domD7FZtmGGtbAkMbpXd5PXIOHqgezCDGrNc2nxDKU1uBUhAGYRZgFhFBoNhkD4+uuvv/ng0fn5uSAQkVAWIGEvs6opGlYmFaXLsp42VeN8CAGQoolGpMEQeZ0QRIQUKaUYQGtdNXNEYVYd3xzVG+Px+MbJ8Wg41ArVRAnPvXcQGEDFTEFIQBSTLTgIzMxK6WiryMwx471nFhGtNRHGFCkdYfaVA2mNlhCRsRUrXRPdhZUA1FUVfDvbWtvhYG8mM+8CBRBB7zl4sdYqBTGahDBzYKXBGOodwV9BpDaPfjYXMi56273l3hfp+EpkERRkRuptFnai4tkLiQT9DpjKp5atA+vDJV4p1F7Rpc1HMYBnj1nGdRQQSfK1rbe2Prq6Sys/43+bZ8OwNDEjAWFmCCKCrqzBaiTVFM3jz5+98svj11+xpEZZisSZzR41zfnZeDwd3zkEVJQkWa1QbCoifjorxhcmSYY3b4XRUZg1WAINdHLjBPbzZn6pnPNlMS8nk7PxMMsHg4Ej09RMgM4w+8Zay+yL8URE8iyZFy7J9HhSJ/mAmWfFFEBsokEch4aArbGaKE/T1FqNFMkrEXGoufbAwSSpMYYRgTQQMUSFg8SgZihc1S1FF4kew4LCyIHnp9PzJ5fnj5+cn82qes5qUkEjyh+UNw/2BreOD565PZpPwuVlPeVQu8CsDOXDASAm+WAAMjwc2oxGxg6HQ2MMM3jA/z9zf9YsSZKliWFn0cXM3e8SW2Zl7V1V0z3T3QBlRjhYhDuEFOELhIJFSCF/AB/xY/gHKHjkGwkBQAjJIUgCMoOZnmF3z3RX155ZlRkZkbHezd3NVPWcwwc1Mzdf7s3I6nmgPUT4dbdF1fTo2c93YmxijCqkbQQiHeoQhiNLsiDmADArSGC4vDy7fPSMMJi8+5Mf/tE//KNnT86pgAFo0zQ5y0zTspkPqgKNTiTHRgzsKDRIS3ARXARmGFsGIaCKUk2vRAJAZgbnwPuU5qS+o6tJEuzr3V9zPChlD8j+Pg8WzAXt+O8U4hlA0KqGoFqIwiSQpg9Y46MAtZBjksQ7+2M2zYNhHxijH6J8HJ/wtxfte8KbbEqLBVQAm6qEp4d+iAutMoRxsni8WOP9h/vUhjz1wqYJn3766YuvXv3uiy+zKLlAjjUJeCvId9suZ0HyBLTedn3fZzVgIsDqOqaKIWm1x8DYGIPBE0u26vadRj7121BVMK1Zck1oYWVEzrltKbrNWVFNjEwJDK1oEVAy9OyACRBJjVkV2GUVRTazlHIppZrIIrnv+0VsRXIpSTQDGDB5F5hZU8o5911mh/V8AEq55L5r2xhjFGcg0Pe9AazaJbJXzIP3fPD91xg6TlR3sL/Gj3PpO1vorzmmCuOp97wCIpnSwP7nZypAIXCI5B4mlFF4zM75htL6eKoHjzvpELvvVidPG7+cm+AERzMaBfFpT/vxneeGzvybun7HWYtwxCD2lOi5PxHEQE3UTAJL3t7ebTq4+WL7xV/ePv9FVPrB93741dUGO5+z5A5ue3l/d+UQ2XvfNOZ8u1ip5G59ZTnFp8/o8okVOm/POLYSQ/KGG9WrIm9uNtJJt2Fz7fLCtcssSFqCkSFsN9lM1QoBLs/PYnvm3t1cr78qpYu4SGkLgDFGB3D7/q30G4TShJUj8EwEaKoILIYhRumK9FsEYKj055gZkA1RDZEUAEDFUEGlWkmEZqCa+m5z021uu3dvr67e323WKnq2urhcXDwSFvRFJL1/+7vUX23fJU7AqaESHCwvF08uz4OnrttqX5j58vz84vHqMrTOOVFVVSan6AyYvSfnEBHEFfS7BTVamy7OIITo1+AaCk28yustpKVsPn70/bYJ7MDF2AuqAM8Z73GYY496CMmxa9B55FBL0ivXA0Cr1Y2mc1fNAQUee2U/5JiLvV0MePqnUt/s5PnzDu6zf2MCw13Xgbm+P9bcs0Mth7kXI7sbWbnBBPiMNiBF70957/OxeH5YJz62ce/znz0svw+eMtO6pgtlzmQMhqXEe8qmj+d4wADvE9O7oRohjg15wP7qp3/1s5/9vM+SjRRwc7cxpLZZ3ty8ExERC7Ft2uVms7m6vao3YXaAhkZmVoPphsDomdmhQ8QQPAAok3PkzTMzkRuQFICqqeopbLdrAG2iX63OQ9N6t950Wy9eTDddAssqPYJi7UQvhoaShIgqShS7gIJZwcxqPmONvAAAMxdVseoPUgBDs6JJiTxzRfYAHdSFqrPknImAGWOMXZf6bVku6OOPPw4RzdAwGyqSZ+es5JSyC36+yvtksC96hwU4TSe207YHlb6mdFVnxXxxzYRmUtwgAxiZMyM02EPCelhZu+/XA0L/2yibNlYcfaOrZtvjoMPUcM+JbeKcLc02+Xwljmf6e8/IZiB21egDAFRTq+AQQ+4Dp1t4/zy/+ay/eSWq6BcxLDzehUXz7qtrMJ8Avnr7puTeN01/Y72WJRiUDKkPISwfP+3PHof1bV8yAjugdHX7/ovfdl+9jpoU1TcxtE/byycltCkVF9AZAjsjwiK2jKtlZOe6BDnnfr2OjkklMoXQdJu7XmV7c2Um3ruzZYugjoBAa3J8NohNA7nrcnbEoCZF0SNizTamUe8RAzG1wAtDEBE1ZSiIZqXk7QZjXFw+Wj5+Bi6EuHShLYKE7rHE99v+1d2aQnP+ybP00aOb9c16c6dls8Cyfv+asvV3nXPOdN2tzx//8T/IIoYY2jawk6ypQAwOshKzAfGsKN4EvnX5vb/vLntg7EBM/SLcXF1TukXbMCiAFWDvgpRiJS/atpN8mrMbzQsMKvwksUPniRmZKqAAIg7eeSI0GNsf24TbfJ+KWWv5PpwUccwEOb7V/MNJUp9tqJkEHTnOYKxh9aHZvpk706dxeEo9cArf4C6rBUHh/hLhk4ryB07/5KwPZN4DDz1pPY8erJ3tO/m2ZnL69FB3Ev3UwGAUwBMjmt2t9sKqa0I4QrU8/+r5tvS+WdzcrK/v+j4boON1WSwbE6paf5RVBgABAABJREFUzt12c3t3nVIfYyBiE0UbwrGqaqiISOgInQ/ITDXRmjyZSY3UVTPDzHLOZqJa2Llt34kI06pt28hUlsKeUu7MjKAmaguhMROZZUAyyyUZESAPUjMlNUJE7z3RINqdo6Zp1ustAAATsycwM5MsWRLE4JwjxFIKGomImrkYhm5RYMgOQGu5VN/3ObPzyMyDe3RU9WqEezSf5qt8j757334cqnugVi9VgjezOXCNWW3YZwC7MiRVqZwCEQHcYVLJwXGfqviwMH74GEn860/7WrN4EKi4Ox4YyVyrRcSqRh2XIcKRon3IWU5PZ8ewHmBtBzo+Gbx+f9Ws3/LNi3T7OqV0W/jq/TW8uAsLX9pFzuI4KsC7d1fb7TaeL7xrN9KbmSMgtKylM7sruPICCy8qN89/m7966zabBlQXvKDoEZmRl2c9O4zsEX0uWYpzLvWppAQAItL3CRFJZRFCn/qwuljG8O75jXewYL7LpQlhtVhK7mtaIwKx9zddF10ws1ISh8CAAOCQZPQQ1PeHdburaQb2nn3E3EsRRndxdnbe+A5Dzpl9S+ycC2zQbbagtlm1Z3rm3refJF2v14Xg9frtl69evruRQLq5fnW2vAwBHl9eONLLRXN9exeaxjlX1JgxNC0U3Ww6Fo2xIUSd1fZIVx7B4x8G17cYzl13vb7ebrvU/fDJo9X5x1AyAPjQbHth52Ns+80aw+nSeTwuFiA2YtqnTBtKAxGGKqFBnNXCDnQujULrAeo9oNWT46lMZzjBYOI1B1L5AcV6etxsHRmBANnGOvjKo6v2MMBxINvoLT+2aG2sg0IV4IdACP42evz8mG/Gr53s147nSDoecrNjO+TwwwfF3Y+ngAcPdd5v+i4ikwvIul0nZHt8cX5999a7GGNriH23BYAYAzEQcCkZDaL3ALDte1Ehoqxihp4DDMDmGUxEhF2YSopHbqmIiI5NpZTS59SlnpljjIvF4t3br4i4jy5lQTQ1rYi1nrAGjwHRTIsYpL7rtrnU6K845ypul4iKSNM0IlkKmgkjoIGQllJyLqpqqojYNI2CdCWXUlSEmcyglETONWHRbe9+/ZtffZs/rog+ZpZLVrToOMbY5wS7dPodbewvxE4YH++vYxoYv69SdsjRqzEZAzDDefWfagFABEVUgOJsTGE/6VMd1qDCydqOeuzQyj6RmTI9by4dq0kOAJMbC/chhAZVAoZnSS2KRkSdNOjaJW34l8EXSYj1tsQUi3RACpYRGwBXy7qIQNTMGGZ8YRqVqk41YVONL+xSyXcvZF4IcXI3GiHoLk6GQzGksToM1suWkby2phmhvL971a613Hxetr+6WdtPf1N++dW/evotwv5y1fxdhMCmd+vrW4HPr6++ev/2RxeX/UKeXIfb0i+pb9O6iOUX7xx/RcugXb+5vrp9/bINXl1k/zg057p+LQTiGH0MJTsrgFyCp5uu6zrvAxHf3d0SQdPQOtyW0knWs8tvffuTH/zqVz8HV1x0OaXVavn42eM+bcnUOQohZIEs5fHqsrt779kFF29urskvLs4fCVMNhJCpSS5JKjoHEUFEg2IGxAAYTJxgo6QxLhpEMyiliKqg8dIBgO8zoy0WUbjzMeacoTh3vvrBo0d3dzeOwEwthhigiedN+8SnO02b7CO3S/aRkdCRiZiW1G/ISNMuCxq950WC9RpyT2fLsMIfPn76vccXq0UjmgLAcrlUVVJ0CEBF/WA+j3RuIw0AigNgQ0GqGb8GauyC+QY5IjhD1mozIWK1PwhIa18/qh1ytRgzW21HWP2OCGhQnY/VcgYAMZsqUhztKXb7tE02QhlYBduC4QMA1F8BrZbRY0VVGLbkbHcYmwFarW80AQUABbTNZuHj1daC89FtSi5ZkjCz1R7AAKC2c9+iISkAMxF7IBYkAiPkqgHTTH1BRKChmdzhQbu62/nxAP85Zq8n9ePpmKTO8VU49c7Yi/jWmMtoUY32vcJYaWaEiAQIRgSYLc/vPOV+7tvc9XN11KMCZC0ExiC57xDd4uzcKS2bxeubDbgmhPbxeZOLbm6uycw584RJtE/FyIXYmplu17Xap0DthMKoaIbsjVnVtlqUmb1v0Khkg5BSSmrCxAhkhMEvFotFd2dNs2Qr11e36/XtxfkqxLgtxXkGw8vlshTNORM5M+u7zI4DolrZbHp0HsmXJK1btA3nnFPpBUxAVFRUQMGsABggq6mpVoBXx0Toaoqi817NRIyB0VCLKaBoESztApJZAXh7I3/9xeu/4z9Kuj2PtvCtY3+7Tu3i3Ds0UVBlNPRkJkWLmEWKMwm1c15WhXKuTSISIiJxLVe30bWD4ADI1YzyAaCOEAiQ5gIYRcEEgAmNaHRBP6Bx///5cXrk9w8eTxnWiAgjth/MmBQAzL0HR5ec+DygiACMDslxrzopJaFpbNrcpbvNe2/bxhLgpy9/+z7k1W8//+e/+/J5XML6vfvOoz89e7S8W6+7ogmJDLZd+d3rl9//3veoaeSmhKu+PDvrL5/0mw7WV3z9Re7P+r5nxPO2KarL83N39vguAYePyvUbyttAmPxZt+0g9Yuy7TZbNEipR0RXE5YdbjZ3iPzRs484LK6u3krpFk0sqS99+fjjZ8vYEqojCmFRQfSD8zfdxnsf2MfUGeJisXLkTdBIEWrGhtYWXUPgD3eionozh5Z2o0XFSMw1xFxUdRGDqSKhuSb3BCqX5xeXl+d9L3dto1pS7nMRA1TVkvroW3Leee9cqGutolqS9tlxRaieLxy33q2atmy3IMVRYEaOjplCbBGLiATPPDYzmNuysG/MjN9jjQ4ebNqHD0ScNO4h22Wg4V1B4TFJj7R6AOA8rzI64UeFUVzt+2zuH9uQwYKIQEQwutGBIeeEiKUUAKhwvlLKOGmbfKoIdPj0/QFP0u7kG9v7RgfTZC5u4V83s7rnbodO5mGeIHOCGn8Zkn3276Z6/1CPLLDhEFMAijGaprztAaDv+1dvfpeEBIJar4KOOUaPJJr6bbcl9rrZrLs+F42LFkxS3w/osCKllIrLhIiOoBQrfVcctG0EgG6zBaAQGs3BgXfe1R5HpSioy1sizio9gDABmJQ+OSRichzIgIiEpTCZQM65aG5Cc3HRnFu4vrkrikC83ub15g4pANdcKqug0EQUG59Sqsph7ZwgRaCUUop3AwBOrV+KMRJhrZWqC6EKqS/OU3TeCN9f5y+/2tLHTb/Zfuvxar1dE/s+3RBiG7yoJimOvSoUwxgbKIf76HiB5mru/Pdp7yNSRXAflbyBvOdmm6oiKEFWRCjgxtvhBxIxnohSHB4f6OqZxr2v/f0+pX471xYO7OKb3eKUZ+/gmwf+nH+eQ9khwKgRm6ASASmllLZ5Ay5Tv85vnj//9T9/3H7y6Ze/fn/z+vLReULXdxYbMhNZ913SayHNCAafvXn5b0viuEjtXXPb45Mn6ZPvuk2/ff0lvfhN+/h7KuK9Z8ebLhXuY+x9aNk/6a/flPVtWm/48qJpl2rv8s1XOW1ibEsuxBzYAaqIpm1Hrrk4f1TU3l+/iwHOV2fbW75cXKzikgFBwDmPRikJGDnHoSGHWlKfiiB776JZRfUvw5qYgSoCExIZ6U6jhJGtI8Cuz+sI8mkCqFpMTEVM1ErOKUnuCdGRy2XrzdQAkJGBOPg2LhcNuehCDLGNMTJ7k6KlQBHUYqYpE87a2sTQYtHLi7Mu36iV4IJjcN47Bu+DaCqlRHSOXckC1e86hUIPY34GCHNpeGxFDd8ftPCe5SvBKf/zXJQeuFsA9i3C2UYeclh2+/obwLieOmrmnI6hfSDnSlJi1rEoJ/omp/UUO653nb+QaWpzGTzaGYfJaIYn0l9Ih6TS6dqTkzqwcY937ofoRiffyXiVzJoj7cUOxxMQgeurUAQCUJBxmfdi3vexyulL7/02l+r+DSE04ezq+u7t2y+v1/2m115AcgqOHWFK+e7ubrGI6DgVNbMm+uBZRchMSqmlYiICogBEzAYQXXRtS1Q1WHHOIbJqcRDNxESzJlUQBURTVefK5m5Tct8Ef7ZsiUhVCMwzs+PGB8+OEIkA1bquKyiGCQCWzy66nN+8u0FNl2eNQSgqYloU0BEqi0gv/a67FAMjG4IoGkIpRUSIOcYIACICAgQoTKZWq8YrwqWLEQHf3qXb37xDfPqHP/zOu/XWM7cet+l24ZfgmRUElJkRueQKf33K4zKjpVPql+0WynAq8JtWENGQDGDXYBSqS9gqjyzM+92QPkw7+31O+KaXVJvgQFX/2luNu3ivo+o8hXvidAci//hL+DC95JSixBV3E2csFRESlJaCN1z3XcqbljL1N9s3L895+ed/+f+4vnnzre/9/Zfvzq6uPw+Lu9++/uu2/8Ru0nXKX92u050tVu63b1//7uWXf+97f297LvDVLV6/X118gp/84NqzdddFkYg2m7t2sWpjXHfb25vfPHr0BPzSuq7f9F/+9rN4vb54+lHbhnXXUtqAFkZDE0MlsD73hPj0ycc+hrLdouXgmABM4dGTZ94RogFzrX+vEWyCskTMqb+7er++vVsul8CWJamxSaq+miEPC2qdH+/eycyCYcAama3I51gR3kQgi/Q9EYmk3Cczi96XUta3t4EYvC/FCMgRU2gWi+WyadU1zscYovMR1EwNTEDFA5qYmMoeGC8TaOsdg0nXG3EG5KZJAkROSafcqIlIDrr0TAQwcvQd4RE5ItJRC54LGDS8r7phaD6hY8QFd1fBrmRlRrT7l3+g8jpX4XGwv/fE1UT5ww1xvPlgiyuO0W3nXNcrITMIGsFsy9Qxz6XdXFc+eIEHB+KQjDnHvj2Y7cOTPRDDBze/79oH5O7eTzg0ZoehGm1apzEPfAfQMXgvbHQJHNz2YEGHq8ejOhgQ0TmvZjc3N59++vnf/PyXW8TbbdfXkoK0yUZ9Ljlbs1yJCEBqmibGmHPuuy0R3N1lROQZ0lOtyQFumDxg6VMHKiEEIlM1o42gqWqpKcrsvPfADOgErAZEanvByhACO2Z0jExKKgGZHYWWxSyEUAxubtfQpfPGNT4UsaQCuUgRh+y98+yqiK0eXQVgcMCmOuQeVpwfHJsb1ryt2mdJybz3ZDWGjSWbSFk9epK7u7/82Zt3V5tPnl5859nFNm9iEzddbwiBgdEkF2Zuvau0cJ8yN1+a2TkjG5lnOJsg0tyBWilEdYe+p5IBlYAYweZIWL+HEP3XdUz6xVzdmP8KFTvz9FUw7oF66MEO/6bD2H/u1xwnN/nEO+opDGAGbKQqAD4iiZayfnP34ne3r1/+9d/8v9Z34T/+3/0nb27yv/wv/9Gb6+f5Kj17/KO86awr2yS9qPfsQvPq9ubPf/WLv/f4D923lvn2vb7+rI2wWj6mP/g7bLbuO+s28v61XzTLuAjr7u71yy+ff9r6BuPCLZaS8vrlb7xctd//ia7Ow/a667bex5yziQJjba8b28V225eiMYQKNtI0Tdsu1bbI1TjVUhIRqeg6d67PUlJJ29a75bJFhzn35AIUQ6xdOLHKXTRCg5r6WmshqpIFBgqAZESEgGqqpagWkGyq0ndGpGAVQZiZTYTUDApTrYDxgEQhNm3LzI6DIyZEUDMtJopFzURUiZh9cDMgDjVk8jG0y6bVLrOpSSEDRUspuWZAEh5UMSI76mQwI5g9RXZAbEae0wbiIRlXUsEHncCza098s3d/2FPA50mde2Jw/ObBe86lwp6RV4+a21FKYcYanMs5V1il3Us4msWBAJ4G9cBeO2khzKfygXv2ax80nXbEausPZAaw1/13cj4fSt+D1O6aR3OMon9gMN03HsKapAJ9v33+5YvPvni+7nPvIFtGp4wOspipD3ARiafkbDORnFKXUq5rYmNoEmsnTSQi6rrNZlsAlAkBLKUSgmtD3ORtzQ1iZh3cVKpqLjaPHj1ySAzGgAQcnI8xgnQM7EBIwSSLAnl2CM5gFQI5ZjE2SALbrLdd5xnJgUcqgKWi4DlCz2IqIrm2VTKrbidyDtk551S167pKZhVskqeUZkISAsNSSt8nt/QCtrxsf/fl5vPPN4/OX/zR3/n2auEerRiSxbPGMZR+g6bBx5J748OOQdPqHLid7lPdRgI7cFYLUgVRmZ9mpkXJQOHrgThO7tLjkZ0czd/yuG9s93x/6EM4zV9mLkTY29JydO3pRx9/OR8MAZmRDZFjI6tVv+aNTK2TjWzfx/K+3L1+/sUvf/ebX7y+2v5v/6P/pO/5X/3iv8DwIpf08Xf/kPgy9Zvr/u5227cuLB5F9ny9vvvrL55/+aOXH3/3R/bk0e3nz7vnv5XzDXzr22Vx3lw0PdoFPfXOKfhHi3PW9PxXd7q52qbkkBwm3b65ltvm8eO0+KhxJCK125JVKw348ePH266AUQy+jQ1g8UR47kLb5NzTECu2VHoCVJGUUpsEmdrYcPShaUVBzJxjGCFha2WkARlCxa+e3jzOQpsESICAhCpgBlJMlFWLSi7ZECqSTkpJi4QQNps75xyxj7FhF8D52CyJGEFQwLJJEQBALTXJA9ijD8QeZuj8MTYKZllXq/MkyYxqxXLNHmPmWiYhaoSEiCLK5GGSZ6P8MDPnyBCmRMbdDhx7DGCFUKq6ZL1wZsVOdDWADBCZ1jyeIZZh99HzvkzaI+yx4vYkW5lT7zFRTxYwYq3/xUFDYgBEU4CxlrSeSURFAYhV8wjLV3+uiKM7tOGDoyZh2WgsnzhhPjY6CF0feuaPpezxZI8fcXDMb7I7f/BH0LyMarpiFL17tUPzGyIOEzkoE8aj5TsYTHA+lZwlee+990Bo7FYXl9LfOXEqxUxMDcFCCBQiGrbBO4Su63LWMcFYFiGoau2QTWaIwJ6dc2K9B4cEZkIE0fkQHTO3/hNEJOS6OkNuGkF02MQYyYGJAwvBx+CYkdh75jYGxwjqGaEJntA8xVJKTjmqRCmmGBt/3l6sc9+nss2WFdWo1CJFsywKBGZQwEQN6o4gV7G6zMw5hyN1InNVcmcJ2wBqhLBZ3zWNv77bAsGj84ub25s/+4svv/3J8tljf7YM4OKT8wa4KIia2Awq8mBd7iWSIbYAExYpQHXajtYg1iYbe027AaB22jRDEzOCrylDOj4+RPr+3sdp3fP4nLnaeHTy7zcqg13ZzPDF8MM38xDsMTs1Balf+tQXoi5dd1fPl/3r/tWnX/3u5y/efPHk6dm/+tm/LJTevvtM+7z0T67fd/Fs/e7t+t1mI30OAtiSiASOv72+/mfPf/rvf/db4eIZf2T67vX6zXOf+s2jy6ZpoLtrPBQhaFtenX/r4uzi0fnVqy+ev3rXp3UvvRXBAlbMlaxIHLxUGDxmIIpt4733IXvXioCZIolIJqJkuVme2QTDJEqIhoWM2Bk6H5qoQAXIFMnYGRlNeBdTASshjpmhAzub+/QYAEHUVEGNDMxAVD07IVUwBBJQMCRiIlo9uvAuWtEQGnJBAdm5XDSaCogKIjlmxhF/3YWWvAfn5+vofExF8tac86iYJaPD3BdyzMz7TtpDGhgdM6dp4+DMgxPoWFs8dSHMTGTY/34nh+ZPuadV3+wEmPuxJ9F7UgbvDWbAqdcpVxENGJEJehHHfgupQiFKSWCEyESgtS2SFkRkxp0/+kgoTl9NXKVqJQdnFrADWXuSVzwshh/eyAd6zO6baXhAgDoTzIcxXQBAmjtGeDrtWO+fhjSfzvxHKQXUGh8c0+3N5vru9m69efn+drVaMQuqac6g4EPwrhGAwESOHTMAJCne+9g2fd/3BQHRAdQtjMxGCKgx8GKxIKKce2Y+WyyJoe97T6SqhOArbDkUIgjONwv0xJ644bBoQgzMBKqpcQsy8J6ZwMQRqCM2kOub95fnF08uL7ttOltEQbzr+hev37RtRDEwCMBK3oCKiqqutx1BbfZEiFIMCInZ9VJyzmhQY8Cp71XVOVdEyA0OaofV8yXOIYNP62QGT588Xd9tCrH05XZjn7+6ujiDV+9vf/jty+8+O194Sio+eh3k+71uoROLNcrggRWgARy6ssxswmwZvqmVPSZqamIOvk7gnRzKwSUfIji/6XGsqh94bCaSHV7ckCRSof0OAeVPerAPvrF73f2nh3f6h6EJ3Di2aYCpT6gFeodd/+7Lz3/+F1+9+DwueZNv/+pn/x/nlo+fffKrF7/64s3bpz/su2u7ue2Tx7aJ3KeEigDnq4tX12/+5etf/M+/+PvcfqRPPvFQ6MXnZ9ubskAC49KXLBrp7NnFrdFd7pePn0ZHz5q4cuzANkl6pRiW67vrSr45iRkyoIiE0NQX6JzLqSCyd0FVyXlEVLOcCw49ZQnNPAXnOHkkIouNFgMgT4wmmoA8j3zVJulLRLX6Rff7tw8CRsYkkYo7oGZmORdybGq9JERsYjTVlBJFRiaRAV0WALG2AjQBUzUkB8CIhAxYAAqAZxdCQ25nhGxTv2zPNtvr0Cy89wLIHJiZmBGx5qwMhX1jZcIBK5/vCJtJMqwQB8T6ILuf7jPdVcfDVMcU5Pr8D91l9bQJonVfQgPsUiuGYX+tQJrTM0yWqmjtltj3PTPXUKUBDE3cao9BsArpgPT1L2Ga2oGIms9XTPFUNtnJWZwU1XiUTfPASO7/yWZ/TTRQbaBq68N8CohoCDV/DU3giNWcfPpwghoTeXbv3r/96U9/+rvnrzpBH6KqkTkGUVQfeLU6I9ds+s5MUpfIcQhBM4gpKhty121qgr2PAQeuJKkAalqvJYQQY4zOG4gIMHPgDoDaGM4WTXBerTBCCEFL8uwWIS5jDI4dKTtgitZjKYUBnCGQc4xMYMarb39kRQJBc9YQlNttt4j07Y8fX63Xbhmj+r7A7SZ1KRsAMy9ik6Q4dV3JZlZAQQ3QiKhpGsml73sz885VBA8DIGJDhQHsSAyUGK1A5GjO3rx/t1ysGmbx+e3Vhi/OOyifvtyUklZnLZG3klfe0SzPcZ60fHKBEFFtjnOAdccDgMHoysbJ24xzfXs0Y2panu7aEe4TFgAMqPHDI0dlfCKO6fHHisM+3e8Mhfk4ZKYj0v74xtsOTUwBwIzQtKrYalIzzgiwIg4CVdBuBxQASMWIFEkRDdDGHTv8g6ccy8NsAaq3bcL6rS9r/0UPI6RZLuX0vZk5MjASIFEVMK9q0lvuC1oXri/1W+v3//jVp1+8+uJzVMhhoa824fK7P/zJj57/6p/Ftvzkv/fD5FdfvfilC61b9+uCPiyiRnKw2d5eqr54lf7pF7/8X3z/k4vg19TCd/7wvUgDEPvtOid3tgpNLO9fLBYLcD4Zxctn/vKjmgrUdB2tb1K3jpYFLJccHImoiCH7ooDoyWGXO/RARAUyB0Y0Iky5MIEDM+lBTQGKDxx825zVhClERQQjYyIzE8jVqQwABoioiKwANS+WoS4hEZEoqCrVLEcBAmdWTNQBO44YSayg5cBkZIqEjqMPyaioOs9EBLUkP/UxBFIUQ6i9EHxjRBaBzGJwgKQwwd4BALjV0uXiXMjJc7sgvPHByCBA09sdc2jalSGIFKLqSWUbu2kBwNyhqNYTBCJPpgAFrKh1WROIIhlqLUGvNioBEiOhkpmpFeQMNUmenKOKXGcV3RCgFsDbGFRGG8p5B5KjgfZkt30GTGqbaas27cG5CjvsbBsXZLapYZS4RASggBXJi2FIsyLX+n7dITnn43p9S0S5bFOfvW/NxKqmD0qERMzEWXtmD+QrxxCxGh5jdlVlpp2dCUOjisnvO71u5Gpwmg3lbDRUYZ6uephY01xVqp8np+W0i+uftLe+uwP33ueOIchRmeKgAEHN8q84B4i1PTuyTuebzRswMMVSEjE4RyI1iZ0AoEAA7Vqnn37285/9+pfXW8vsuG3vNmvP4axdakDv41Cok6gvN84FVcuS0Mj7UErSkrAUETMiDN55D44AvAE4dCEEQkMTBHToQdRMuV227ANiQ66NzjvfRkaVVTirYQGi3rMLroYbLLRMFCZ4ltl7loJQSgkhnJ+tYvClFES8PlteXd3crbeF+NF5TNZe3W3eX99kWphnJVgszxi3rdPNpjNVp7rdbpMU58g5J1YQMTS+pHx3s724WIpCKSXERbFOVb0kAO6zuOg32/UiNqUUQvQ5b9fbszP46kr+27/87f/43/mTT1YB1m8LLwEAwY3Er9UMtxE470D9xbG4SKXsFl2BaFpfHBpn4R5AKZnS0N4ezcwd6JtzMqrxJ9vpzofE/bAieaBsVjXhA63kudL68CVEtdJ5t83qqzldvfvgaI+fdQCSNd+rcGruiChVIzZDqEh7YEBKTtLVWfrk6t063/xGX//Z+5JuFu35ze1Nho8/Msb+YvHjH33n2+9d/he//KvATop2qdRemVnS9m6dU48InZZ/9uLXP/7Vt//kB3+Q2mZLJW4Ac+6lCKIzElE0caJI5gbkAKzqAhIBu0IOVESSVEdzGdZ5CATDAK9PVF1WAKhEZCVTbaLHCABEjskhV3BfNVBApcFpuCNZRBwkx9Qpcv/l2YBvgGCAwNWAQCIzQnQIgMhiRYRVVbVUOFkEbtlKEShqZqKqashihBSDNyRkJHLsXQzkmIik9IOkn6G/uRC2mw2x9y4SsBZTBvQoo59WRNjtqcO675mcEw/ioQOKbKiHxcklozuMRjCZ36R+1vmbOaawDz4OjD8cBQjeWwf/DdxXcwk07ThmZlYbJzXXSqsgJyLc7R6sEeV61sGAEU8L1Okg2EW4cfQ5PDDak7t7pm3scbPpw8nzp+MBzgkAZMMQD/wQ991tRBOznMVG0BUpZiYq6f3729Xy/Ic/+PFnz998+e5qe3MbPcSzxjnHrsIogeSEaDG2pahVwEWB7XYtIoYQYxSRIlKTjdFxDSovgg/RkQGoOUZP3LRt0zTOuYjoFRbRR++ch2VwbLxcNACAaAyIZARopgTg2c83uO22iVbgvCquag6zmbXR22rpOBSBpBiQiFZN4Pd33bp0nZTN+oaB0Mg5yioM3DQNliwipWjtOKSqwXuitF5vfQiIWEqJ3gNhymtV0QJKxczUKzMDc9r2nrGJS6O03qS//ptf8g8++uRsYbKTIGYKg1/tb+vTHbbeHhSlApQJgGXo13j/tjxBN5NeOffq3DeCg5sckPvJC3dc4wMcbmZmu3/22Nmc7nHcbXDPpprmNVffvnaQB7eyQfwYmaEpiKiZARV0S/w+xPfN+mdf/M0/utnCo48WrSV8/2O4+N3SLfrbqybevXr78qsbW/L5pls7v2AuYlospSxdTuzcKq7e9eufvv7in3/xqx88ebZsLozARULirlNmdM4bsAqICKPUulVmQsNihoDMHjikks3QBMSkRuoQmMEBIJAzk4FdDiurCIMTFABqV3kiJnKGCKZUBfCQzkxoAkBVD8Gxy9gsVDYQeeU4CIxc8cUQVXSAPOZBpxpy2gMRieRSAM1qRpQDBTVTBRWyirRkVnJnHbrIMbjQuNhwiIZYKkQiipjBrAxJFdQ5DxEse3DOmImcc4BQWxeVlDnGUUjsQrcHqz9n3za4mGSkJcUx/xVrVWwFz4HBHJ4Lvyoi68NGyMr5Fhs8m9Np07UP7d9vGBg6tWGP+cC8lGuSvuzcDsAKERFdLckDAEfDV9MdEB0j2UxA7j+9zuvguWOnewQzq5rd7uzT09nJ+Mmsn/GDnZFwII8PXsVJ6XvSCDm+atAvB+Z+z0BBiaiSilX3ppFZWS5Cu1j8xZ//2fPnLxbN5aNze/12g8HU8iJER+ydk6KMlqUnBECuDsEKMC4iagUAzaiIiIw+CQAQEbO7zTbGGJyPngkdgkDJUHgVQ+s4AK2aEAIFT6vWO7A89PclT4wENAb+7CgWPileFYGrCuApKQxKwRga51PRTSpJNDItY5vTerFwT8Lq6nZdMtzddUyumKWcAYiBi6mqkiGiqamgW61WOWcpRax479um7brOLRooopqxmClkSshE3snGmDFtM3gEps+fb799tn6yfGbSMflqqc6Wac/8hdlGu2/HVWAcRDzoIbZ7MyBqCiME8l4SluqeK9j2Hwz7G/Gkzng8oP3BzT/P4hwzy/hhWb67at8dZGYPMJo9PqUnhn289/bew1HYbz6AgwepEVYPhhTTYkAChsh8ub7+9Ze/+xf/hwU/uvg3/vj29vq7q//hP/30/xKvY0S+7W5fvfzFn/7Jv/mD8uy/+1efvuV416Fz3qxkzWLG3iHwthcndHtT/vGLX19+/Ox/Aj++OD+7a1DNMEZWY/AIXBhAQDX7GEWggneiqBoSkTmHORBlAFIRAqWhVNeIag3DZPfX9zZUtvHE9JkNuCiYqaMqd8FMawoEHLMqo5EDjsKmwsErVsc1IjKRMRIoqhmUIYsUWW0EocVacQAOkYg0FzNAIHaMSGoGQIaMIfpFG9ozt1hyWID3oiAlw3aDNRVolu6OTNxG7dA65zl69gSMaIIagM00pRQhThJCke4jMwSuIMk2+psIAExgbLIwFaTj6DY9OA4orZ6rUJOZ6tVzUfH15vGkg87EwAnecZ+ePf9cURhx8IdVUNpDVXV0nAwibbwDIQ5BNYYa0DGsOeW1oyoZoCLRwQD4qMEfAHD16U6aymzg9zUhQpzfZyeuB7N5JpknBer0jQ4i09P9T52JY7Kh4uGa3ssqyUyVaKxbMwIEIiql+9nPvnj1+q0U+M1nz3uhNrQvX19/9Mly0bS1R4KBEKqWhMy5tyrkcupFiw9sRinnEAI7V7VeESmSSJCZP7p8FJwLjs+Wi9ViyQRk6p1zZIvgFs6dL2KIzKStJ1KJHIemXmqqqpbNjAxcaCahW9e+6pk4U+Vx7L6Qc3aMMTgEFrNtl7a5JCkpCzxabkpZS1ZPEOLSt7fbvr/pHaOKGVhgZ2SKQ9gl59y2bdu22+1aM4Ba7pOJ+mWrffaiKApmmkXRvDGyzznd5N41FJaeoH95tf34qV36oUcFMdRw08jW7iGsr1nQE6l546GqhsgGhkj34qHvCOdBP/MDw7J9GQlHO/9rL/yQg4jUdixgMt1O3vlgMAcfYF8Zh2/ig9pXKWa8CQzNFPX1zRv/4r9+stDw+D/c5nT56Mu+obx9U8Qxve9u3//JH/57/9a/9T/6x//iv1nEu5vsPz579vb9m7d3V12fjdBxJHKagBUaTJ++ePtfxb9YAP/33Y88xkIGSCZqWZjZcxj0RIWCioJqVvcLIhs7Co0rGXFjQ5y7QmGPburZBKcp115giITkazjQho7Ge16HiSlWZGHUymeHSsgazR/PpkkrQqwRER08GUAjJsdgSAEocC3KsdqDti9WXdcVypKQqus7PL5wIWBolJ05ZOcRAR1ChziWw0wD9t4nTYbI3i1X57lstv0aXXaxNnyS1PdkS533f73nmItGq+LFtOKPgxrWBug41loBqg3pXTaCPtd29zM6HDCnhrZu9yh8B6bfdMOTpFtZ+wPjn32eiJnmlwyhWsTBgTE7KvNlwqoYTeosIRMOzoPqOSGicaJK4HBKFpgdNpXN2t7TRxD9fS0Z4SAb+WDANkvzHvfmLv0Fjnbx8ZuZjJM5GznJqeYnMFSQ7w9RmLSmJ9RuRWbFsfOOX7z44q9/+tO+5EV7cX3z+t3VuihEB6vF0jmXux6GVAqCwabl0fG356UQVWbm4EtJRRIBrtrmbLV6tGwBgMAIkE09UnCuiTE2tAqhZVq13jlUK0SKYN4N0BEKSqCqVLMHapXgJICr7auqNntXk5YGAKwgIghoiBy9d5gKbKA0Fxd3KX11fQOIfUqNXwTiVdNs03az7buuF6WimqWooTGows3NzWLReO+dc6WU9bo7O1vkUqqVCWrMoDagZdV0LQVIvWUsbUsvX6+/+1H/9OOoqgZiRpVtgZGaTM6S+cs8ue5mhkhzT8B4ph5vutFDNrOAT7pT5r8CVM3xhNw6aQ0fD/RDzNzpQhz9Nses5IDpnx7t/QT/wDSPpe8kkueDtzH5ZX7V8K8VrE5bYgIjUyjZJOPL34bw3Scf/a8+f/nf/uLFix/83f/o09/+X8/ct57+4Gnpb//eH/3xo2ff+md/9t+8+urLJiyfPL0sPZpK6QsQEjWAzpQQ9e3VtgkNXXWf/er5fxbDXe7/4UffPXt2ac4QjVRIARwWI+szDt0pFYHGTYngoiOX+x6QzbKCkda2WWLmcOdlxfmGMUNAQmRkN84U1GyqhsPq4cDKfGsgmYcLoRZvAOLUumpE0yICZBhiYGhWk4wUiepLHpEwjIxhQO8AMGLnUKmuiuEA8Q/Exgw+gPNGBITIIAaq6plLqbjrO4JJKakWcuwXyyZALne33TWbCwQEvoCklBBx53qG2o31pH453nZq5qFmMmsySIpDhj4O2Tmgo9gY8g2xxpiRqzKpVn0p9exRzt1DxnjklTkpS8wOP8x/PRLDg/kLMEQlJ2f68YXTUQlt8q5N3xMDoxFV1QxpQGkZzOLDoU42xOxBNJ14MHeA+/q24ujSn2ZUg1U4lB3u1V8hHor2SRcZp7xfr4UnXzIA1ET+EZ6wXl+1uPs5X43LICKAMtcGHPrbL593IF3Om3wHISRd5ww//OFj772qAiogEnlDAHJaxDkqJY26kaWcVQCZan2BkRHRYtE44kWInqkGTT07JjAtZC6wb2NctrxwLoAx174DQOwBylwRQfbO4dDjoZSJJOam8PErGrgKkJUiWvcXNo6ZgMBK0mV71sZmm8rr1+/73IHasm22IZD2li2DWs2ORkUCz67rcilJFWKMbYj9JmsuighqTFjAGLFyuaKZHJORZctmVIC4udtu3t5s6ZMlQKkbzmww2U3vNT9xZnHNfVdHwkWPv5z+VC33AnEg4s5PBIMeevCYgSN8QJj2+M8DqXYwsYN/H755baqKs2/ADHdNjXbf44kXdG8yxfHA5pfcN+taCgOAggymJFn7tfR3z1J5s+6+/PX/mRmlgU9/+48W5Z0/+3fiZfOdiz9+//bLv/r5P3n+1atHq+9/+6Mf/uXLt7/7zS83fQJwbXMB5FIut7c365v+roOkwAp4B7/61ad4fYs/3vyofOfs8UWLzgBKQmwce2+kpgo8TpyJDEWEiDlE3dwBO5PBSDGQ2jDMVIiqcbBnNCCxEQOwIRoQmqgWNDUjAayuWQIAIEAG5NqQYMeRd2+LzAbxXoV0DXZajbASEiAZ2QCIMeitoGagiAxgFcyZat8pm5bCExFyHVvN0DAH6ABRpeRsoiZ6IIBLysFX05DItX7ReM9M6qwAB1TLedc6aU4Gp8iSAEDHZLOxGk2QDHFIZgRTqxmDE7yG7d0ZB4sTjBAUx/T++a8THT6kRM5Zw32nPXD5A1/iKC0nq2uSrzUGjLsNZWBD7VmNGk7eKSICQmYmGly1xy8WT8k2otEVDACHsuweCxhtMn8nATFxrw+f+4SJdvA25mG7+fl1bLXLE0+4PPcn1tlY/aJaEAFJu357ff3+q7dv3rx7Z+iZed136OCTj5eAmWipWsg5NUPVnIQpFEx10YtkBdMB9IbBXIxcJIkBO/TOewQtucvJLxcUgw/cMC9iiMHH6D1jAPAGZEKKZITsmZ0ZOfZ78hWg9naYs1+R3S5DHrLK6+pP1zKzOkcVOR+RiAKFEELZ5q7ks0hni8VF429v16+u3t9uX7eLFbRMGjZJMakZJTMBNZCz8yAi3Z0wJI6tc5R6oehqHmlOCQhNAQ00qTsPRFhKVgN2PhWNCLd3m1JKDY5UH1a1fekoMjJb4r0gzkkhMiVA7B+7inAzc9Ong1OJyHC3K2ASbKcs4FPju5fO4BT/mjOLndw9ZQHvzhk/EA5oZNMOnw8SZzCWc8v1WC87OYsDO3j39JPt0gDAMoHLhgZkhlKSdOuyvur5Zvvp//Es0PbJv1t+9U/f/+rLH/3Rs439bBH+3ecvfv721Zsv3sLZ+Y/fXz3/xYu/+dVtCCmFEImaLmuxQkSB/a32Z26ZJW+CPG7d+UZur67/ev3KXtp3tX/SnLtGLRWOPoQwgDaPFhszg2oxQyL0jtkjETDVFCskAkOi6lQWoqmFlqqiqvrgCRiZAKhiLFON5NasKSMwUwBErqZSZUxENEUuYbod1izxaR1NVYlcjSwSIGpVBsDMmLxaUR0wlUGtwtlrKma1dgLMGCyjIZizIgl67VI29LFrl2cAoDmVlLB23pyte9M0ZF2Wsum3nkWp6vRYUh/aJQCA6OBBtHvJdfbnJBxHz7Ce2KU7iwrIUOd3xgnmAkfkDeKKOzXJuYPN8NAG2dWoDpvO9k84vurDDh09HLtNMeZhHeRCIg4pWr7KaxxN56qm1CK0+WAOdtnxs6tneqSGuQw+PZ1h/gcR3H1Wc/JxD/85fXPv9weOsSOIhoOjlFIxnmpFtarc3L7//IvPjF02eP3mbrFM5KMgnF+szs6bboOqxswpJTHtco5NZKMia2JExdT3YOjDApFTlpQSO/TOIVnOmZiWi9X5okWCGCIzEpFzLsboCVVLxMaBuRpwIlawCh9b8arMjIirVlXHL6VHAFUDU0CdmnQhkI15vvVtV091X7KJEKIpVoFN6Bk4NKZdDuwA+dGqWQRbnfM2l8/frpuzZQx6vSnUZ+zZUi85qUoIIeccAiDier1GoOB9Get0iwEhuFrdDyIgPjjImnsxxffvt08vYNP3KaXqB8BapAtDmeSxgvXwgaO6dcAfps+TpjUIYBjFIeIeQHzNah3eNQw0hLyLUR2L0mP6nhM3ItasyGEQ4w9QA4M2mgO0u9Zm3gzHk/Y0eH4UzBBIzHnsVcCcIamh86wmZMOdag0kDskYY6DxaM/f975OHjayW6o4i2oGUt2r3s42csdNaK9ywnc3m19+ksP64mz7F/9Za8Df+9/L2dvf/OfltsdV/1Vc/PixX74KH3959/am33S37v1NuNrwwhLGKC4aegMr/bZsyqbvjcFhr0U5wXUu9LT9eLHortY3y7Pb7g5cydpHiu21hiwxRsEtNi1xAMCSBREXjhGS9ptXV68ACxGJOTQ1QwKTkszBKDon00SIzIAHOAWVGtohdsDOKw3420MhZ/1zDPEVQ1QYJMeQiUNIyIjAhgN9EzozMEDHDg1SSWjI7FWLEVpGRPIYRUuSjKjsXdbUICPQTbcp3jUxuNLzdktinUmnxXJJSTYG4NiiY47OOWSmWd6DFVFPIhJCENO4/Cie9zdvPrtcsrmkfW7CWd9nXrqsaRlWlqQc+ZRGqsyIOMZrCwERZXYgO6oFYDYAMTJDqowJHVbEKEQkUhBDNiAyEBMGMigH6ZRTaHSUxx5Q0cRMoLrkFcx2LtnaVqheK3WZB1JH2mVsAgKZGiCMSekwFToCIAApKlJNZ3UGmESJXK1MM9BSMiM2jDmn0Vld5WMdpaA5tsreChhSbWSs4nhwtxzuMTxhfCAOjm0aeQPufjrhS4OK3UGIA8saWpPVqAUNrxEABnDy+mlc3AMFfffvtPLTv/usz8zMe28IBqS1FmngojrFxsZVGPsHazVljVzI/dYTaBGH1IZWi12ueLtJSdLTR+FssYzYNEtdbzbbPiE7UPWe+v49IiLEvuvNwLum7/ubmzsiYB9Ic04Vbt178ueLy8smSNqmnJuVNqtF69Fj8gjLpgmeG0/M7ByRZxqgGpRYEbgaPQA1D2usOmNnZoRsSIbEaKMvZyRUs8n/REhkY0k9iSMyE5ViZkAUPBcVBNMibeuZrWVcfuvbm83dzfb2aQNXnb66k7cbI3b9lkxS9CYEaaOS0JEZFmVARE15QaRFswFFooWnlLeYqbko+Ub77QowbcKbLH1aXz76uOs6AGN2qetDYFW9L7Qxbp09t41qOdJB52sNAEBgJqV+C1UAPyxvEA8TPT78mAu5ucw2O9Hf9OH74Gyetpe8ozspXY+qO9xz+5PS9+SYD/48UCZOmh0AEP02RWC4EsIWzbXfd8tn7rP/ontzvfrJv/3sk0/+q//6P70r8N2/8+juXS6w/Ozlqy9fv3h9c4MYs2JSaNoVQiFs1km3qeQMOUsq2QB88NAZoHpG8hScd84hQN+lTdfH6IuIlG6reb3dtm3rvWtQLW3QeQ4R0dY3N29fvbh69+rxR9+ZL0ddEURD4nkD1+GFVle/Ko9scYfTOIA7i2n1T9ZObQIwKFVWU04RgXa2MJOv2G2ICEaAxsySi9TOg1KIqs/K5ZxrEwQdENudgZSSPIVu0zFYICZk6VJJENl3z1/xIjbegxp0AqIFUgEpbZTgQwjo444YyEqXTWqyBhC7s3aRY2ulg6J1eDHGAhYDqyruU86x0qaqAMqD4CJ9sBq9MutvtBHuu89MDuGYanXaLJ47JKaMuW9kDc83L86O+hOzh8GxUc+pmhzjZDEj4pGb6ngMhicsD6QBVwc/IDhVD55Bf8+vshFvZ1rH8ftvdhyzi2l4O1/5sC67n47vE0Iwg1KKAyVCE5G+K33X9yAp98UA4OKiefroadM0/baTkjebbRYF5+veBGTHzoBkxG51MTSkqiqqVswYmqY5P7t05qHkrts0kR5fPmpCOFu2ixgig6vozyOTO7RSgEfXw27G+/MYQ0sjixbcOZ/VZD718T7zfwc2uwtVmNXEaRJmjOzMpw6cLxSAc5tly9Al6U2Y2YNXKyA6WEiiNUms+uGgAo8DEIAjCt6zJAdOUcGKjXjXMPoLpzF/7brPxfBO2/6AbYXzMqQPOR4g+pOEdby1pvHtdauHvfSE+2Tb3lY56PJmozqLo4f9cBiHvPJgVPfNa4pbwOwVVxpEgNqVDFDZoDrGct9piAE2vFysxK3XvBaW5/9vJ6vu8f/g9u6f+Pf5J//mT14+h9Cvb9zbT3/34t3N+17LxfljlzkL+rjMpWP0Rbttn7MMRfrsA/vYd3eqgGTE00g4p1QAhcgcIbBmTFog9xny9t3GueC8B4Dtdnt99ebu+l2/3Zw//nioAxmcAgJIs/emAGxmBDrAiQgiUc1NnZf0mtXUQat1B4hcg3+gamZkgkPxSIXoQDQHhoYGQFgxYoY9bcRIxkhWzAAV1dQKohGSGRTNhOgciljOvSNnqiIFmRmtiOasoM6fn3HwwCR9VxgcsffsPaOKgZEocp4W18cwhAilQBEiaV1YhiZtO8sJzJjZuZDy1sdYSmHcq3bZZ+hVRxlC5IgOKACPyWhVzxiJcJ70a1VH+X2V3Ikyf7/Lv7HorUrDzJ9dnc9DSJjmxnrdZTRUrUyCurbh4R2Ph1Nb8qQCjaN+caz6zJ679+XEHI9ONkSYIJoRK2Tgacb6wDs55nu48/rvnXNiJLMLK4+pfmArmrqu7zaaOyvcRE8kKUnVeqXkCkoDaGZiyqIgiqqoRF23LaUAsZmVUpECsZS8WiwRbcDBgIyWffBPH19crpYI6hkCmWdmsIAYfRiE8OhBrAdRbd5tAHCQdj4A1FBNM+Rq+ELNrx70LTAGGh1IaGPb1poUMS7rnjJkRgCemRHJlCMxe2IjImB2HG63fUf0dr3NHSgie3J+5+qvdxvqoGqfcdEKam4lIxozmIJIplpNs+vosEs+RThBXTaWe0zUMl9fO/IKnyShShXu4Kvj8z78mMv/abs9fIkeyGAAOLW1HtgDRGTARErmYKZl3z9CmIYH9+/k6Tg+YTxtZDFkCFPIVIvFpS1ZV+hUABx27377ZzfPf7Z48snlRz/a/tVf/IN/4399c/ev3r287Tj/6vMrl1VADWHdJ0/MHJ0jyLbt+5xEFcyAiJ0DI665zGYwgKBpBjPHTOi6lLdd2jRuGRvXNo68mm1zh6LMCcnl1N3c3HR314Ho8eWl5MTMFWy4SschGjlwWCCoGQRVU1K0ATwNRrDT2dvY50FqAGZqZNUQK7XajUZQUjMzASNFZMAJCUsJkB2hmiBqEUEzFahtwtAAVQFYwTSBidUKWdPS91YchQUaiSqwt+o64wU5l1ImUASIWKPye20QEjHHloi0E2BCUCLnfcwdQ84uYLNoDQmMrJgZoCOTw103Z6lESGgICOTQefZLA0YmRNKxwzw+6FI6IMJqJX/gvjypBH/T42AAJ3fxAYsZ06wYWUcz4sg9gFjz0ap9BQCIhiMQx/Fz7x3bqfntqeb7h04NqmaDr9cAjAr0YNafkqOnpnzf0/cutEMz4ORobawrKaUws/dMgH0p67tby2nVNncv35jmtmlWC+9j470XESRgh145qZZSskBNvi8FACA0kcjlJH3uDYmJEDFlWa4iEeZ+za5ZNn7RenaG1pMBAmsBA2XH3rnIjnBCObVp1PvTmDoi70+ccfI/IqINHTmgAuoB0RAQUR3KC4EMxQxVC429BYdah7mSR5kBGdmMicg5c9g7K9lHxKWhbbL0JsBKVLc6TD42rGXsTAyMiiZFrVgRdYMreRHBew+D5T0tjdVXfbBw8ymfpIqJnuci+T4CcPNrTh7T/vvAvX2a3O/5FeoKfB3jqNriPeecFPOnA0gnB3DfwIbhjRv4FGOach0B0VjNQJNLZ8a3d6T47obgIr+HT//zLa6+9wf/y/7qb87d6q9ufvPi5eZ3v/2stKv3XflkufSBtttt12dwQUW0CKptUimAxL4mzZJzWS0lYXZEyREDVXNMicA7l7NsU7/oOXoXPJBjMxMUFxalFCmlqDkf28U5WDZ0tWygdlWHgVCkplYYCFktQq3JCLXaCKuNh2iGs41HWEFtYVcMUmO91e1gZIAqwA7MUG1QoU1AyMgAmXlgxxW+uOTcpy1I8YGZKYOKmGoBRNOSpagWh1DSbS69askqZsUhAwcf0ANZX1i9j0EanyihWnB+k7dEjmKI7WJaRLc8w5Jla6AlOlbpc0EKLYW2bG6a1UVz1lrFoBdxjmuJ4JwGdpqvEjEBEIEBmBoxevQR2M1gOCtvUUD3ALlXVjcpiw8fw22hKjcfKn3nCvtJyj+m9gOT1DlnJU+/TnaDTQjqw09TrHrumpvGAEMo98iljKdiwHCKncGRJnTw0/GM9p5VcfUPBPP+3OcOsJOjOj7GbYWToXsgqw40hpqBZWZd2kpKuesZ3fny/HK17rab0m2b83bZLmIMKSUiyGJAqKrbXgBdCI0pppR8bBDYDIuZ1uSC2ozbAA2s5FIKsVvEZhGcAymdLGLTBvbM0XEMwSGoZOc87vtWag3dlF019+gA1KjCLL8XoPIBR1TRuFCRiIhBVcFgzN6qSOPDu1UtQ5qR7qJjlZK8U0MgBYAQAjSKBEiSuwKOV+zp9d0Wtgk9iYhkmDQbM1NVBXOOkcgIQMGkEBoRFIDg8HLJ3vtxfXcEOVm6x8exS2O37h9IHnXd77vA9uBsvvHxwLXH465pHvdtoWO942CcBzHgWgBz8N7m7Ow+neXh6RyMvMIWY9XmTdHUQEAF8brbvuvzomm5T3r36vOwffWTv/8fPHryP3v/1X/5fvsvr6y7uUrbdPl2excewbvbHgOVUprgPfmcJUNRpm0uBaMOe7imRSGojMl94Bl9YATVnEAKYlORqlQ1lx6AyPkQGqQGMSMAA9Tk1Vz6LpdGVa1whQsnAKsvXypJVLAj0AE4DU2qP8mYwNi0VDeqERA6ADFytc1LTXoEIyIDNYBBczItRM5UCaTCJigoABPVlC1nQ5MGJQJmVjQiRCKo/Y4ICdTATARUDCB3t9uc1QWOLSpkUQTxgXxcigh5x6ula4JHckitC3x3jQBIjlyYlvXy8Uda0ub96z5tQaGUklNhciEu7m5ftxctRVfAovcpF3RUtBDt8XGYiJYQEV3FAAY0Q0EGDqMviyYkS0RE0woABjOatA/evb/HMd35JJb1wTkHX07fzz8wcxnlLoxsDmZCBXeXHLSCmQ9AJ9i1o6eflKYKD+7i+yY1/XtaiKIeOFSP9Y8HZPBJLxqeMn8fUBRgMAvVFGKMHAJ2TqG0TbACKQFeWC27q3kGRERKhG5KchSwUkruNedNyZakGIL3rKqplFW7AlQCiE1YRheZGsfRuaXzbWyCZwYkBIfANIKdANQIwW454cDzjLsXWwNJtCurGRRx8kS5FAQAGjqPm5lVvJHxPmRYizW8WDnwr4z7iysTcwRIQIqrQBZdytvWuYvYlAyo1qFugIrmoaDXQEQGtVcVsOJiAdfO3YwA5FEul9E5V22tauvR0Yrvadv3E8OHqLPzL/egKE8mbnzg8U0FdnUyzEOOBxovjv6Z+Z1tLO4+jAGPGR9T05j7njv99CEG/cF95pcQESBM/KDabmAWyRXs/ZkPi4a/evXmi083Bj8K4We//D9d6mOLP4Du07Zd37bb7p19+VdwflEoQtM4F9pNRjPE0G5z16mq5WIBiLCgiJTqt1VQgQLigUIIRJhLryaoopIlc+rBxNSTV3DOGRUiIu+TqUpSRgIHRIwVBNCGBmmTCVsbpA8qfO3OW9QMUGAsYbPRThiEMBiijr2lzRRBsaJkwQSXZKAgCKiGNS0XqAqqim4lBoIGRoSOXWATM7SsmQyRURWlthoEE8mp67XvkLxfnHE8w4zaJdGSUtrCJoTgm4jLBZwt2QdQ7IstIlsRyZOPFADAJLOPRM6KlJw1ZRD15DNwswzPPn4sbGqFRytOtNA+eutsE456S3VkkSeOQB6BjJiOGDpM2KgjCf3e0tdOJmHtxyBPfoYZc7lfMOxuizjsOhiZ7PySSRWeP2Incuat1RDNZL5VjxnusZp+OJ75c2ffH4rDmTNzGhsR6bB3x6ebItKH8ISD41j6jpb00WiPaWB2rcgIwO5c2zaLzbb0SSUhCBOsFvD44hLYAZKZiAizNytE5H0oYtsudV3X9zn1kpIUBSJ0gYkcOfZkYEJm52fLJ2eLpY+Nc9EhmZ6vzmugqKZ/mxmAUYXEHJcbcRfUm3smBuO6zhoAiKfQqcJY/ouEGAjd0ERZBdQBFVK0oXVjXe4B+0JlqCq2WrykZgBmJrV1GGD1/KlpYFi17jZZFmyBzp230AB0fTFzxGOicZ2EEhiAiqALhAkFqBKvaGj58WrBzIOoNjMzoqHse0r6O01dR+s+P+fkVQfqxdcnYdUX/CGkOR/owSh/D8q+bzAHrwCJavk00cgnj2yLuTZ9cjwPaCjzmi04fOmjj8ZMrYAqilBZyCIy89u7bvXmq5sXn/7N3fVv/m//6Xd/uFhe/Ie+/ePvXLz8f/7Z+i7e3ryLZNxbISGGcLUt3d1m1S4Wbvn29s4Qi4CiMTCA9n2/zQWIAkWALFJ9Mc57R6jMyFVsmhCgZ+fZMTpTVCyEhGCExoxErKSlDFDgNpD3rFRgqAs6gPPU+gMiAgjMWKchgM6SiqzCFltWQa0tYWdwWoRSMpFDIgAErA3e1cycczlnSZ2JigiBMqGqotaaB805gxQySynd3F4tioSLi3D5RGFBDsmX7d31dtOd27I1ZJRU7ixje+kbH9lgA1ty5IlqF9t63F1fAcWy6SWXCOScJx9M9LYrl4/Pn3zr6TsVQBQRzwgETHjUfW6fMs2QmJnAefKeXbAjQJgd/eBhRPM+GXzabht/Gk/Yv8+Hua+P5d8Dw9hdgliRleZ5K1UbnnbK9PyxRn/+3fDL0Gt59uiHn14Z4vEgH1Yd5rrCVJA6ipSdWm/3R20fuPn8DRwMdZTvu5Nnzzp8DjskZADMIgbI3jWLlSP4hx899e6v3l2vGeluux2zqKQUTilnUURUtfV6vdl0pYAWLKXO05mZiJAiM7dNbD0t28hIWiTG9vJs4djASCUjQow+eCaw0RAcFnS+LohIOLmOx3UHRsQCAxIDAg9pkwAAWEQcovcesHaG0KplUDEbaIMrJVQVv04QdGJKI6wHOQRwyASiFfojeM/0iHF9qyVpR9q4ss6oWsQ0st8tDRMP6LAW26ipQyCR2vMMG+8vV0siGgXwbk9VqjkmSJz8Aveptvtf3nMHgNoNqX7SnTkHAJOPHlR1lzxyoKtW7XI4bw++arrPCLgwnDOdPh+RjXWjiGi2A/5D5F2jU0JVs9Fort3+wEBRVB0gCiakwhQ72yIngmKQcZCRtfssihmd2qu2Xxy9P9mZ5xAGfQoANgBL3rq0LMI5XmdAhOjwHdH1dv3js8X62dt/8uLTv/7s9ubzl81P/6r78Zd3/5t//62+ufjFy1V2z9/8AtzjPvbnSHdQ4O7d1jfkAt6Um+5GHV2oZSDtJCfLSGzsuBfL1pe1oScfjHLf3ZJ7tFxdqoKZAjlVl8QcKKOAFQLnDNDEwAgM1KwkMAvIZlkEa/NBN4lbRAEFAEVQU0QmdAZkKqZSwRQMazPfurvVOQIEkNq/tN5EVYX7DgAMiJiqcawKaOaBTE1Eas4Vs5EYoGRDy4aSnYGrnRqM2LWQ+tz1YLlB6fP67vp93228AX37x6FdEXgtAuw4NMFBvoVNur7dvgtdbBdRruXqF2vJBVRdCKvzi8X5BcYAF8O6p+tXoLll74Pr+zU1sM19g9KwPv7TP3nfFSbybABWUExqL9xKkKQIZDuaIY8qAAhEMXMD4RLdKgsG31QSIkBDBlA1VRBQQqOq8qAjM80qCuYZE2gBqwZi9VAQVlZlA0jeYHnUlOxqMVQuNtS5qgkzT50BwWCwP+pGH7e44s79q1o9ylAZEI+JoDPZT8NWAgBAxzFhx86vtzeCAIRtaDZpa1gDwxU1lGrgr7JqIkZkUEYEGAuyUWGuowyOsR0POeBcp2UYIk7MC+cxAgBQNAOc6uaqY3XXJKHCde2aESPc54vedVyeXtp0wMwPUZOeVGp+KE4Kruqu0GWgGQAYk4SremtmjJRLWpxfcGzW6/W7V1/88PvffXy3ef3mfeCSc5aiyLTevDNrpcA2db31woUbR9Bg0a7rsiiF0jQhxtA2TePDwgsxeHaLtnWguV93N+Xx+Rlh5z17R7VzRM2lA9BUpCbWDTMFBBOAERypJtCZmhHs2oywIRrXk8lAUJUcGFJRAnPIxi4W6XPu2TuoRRamZtm0qBRQRfJmqlAMDCuODTtERO0REURtyPm2Su+PmjZab7I2tu69njdnffIo/c3NOobokIkJUEULe1Arvmw36rKlluxuDedPz7/740eroa2FSU7ECGYp92wU2CnvqLCuGg7KgQHQgM3MNCawzoLHI2HUGpZTFAU2ZUEjDt1/4fc97hP1R+f86zSIT47h+Mv75n/w5SR9p+PAsJh9iU5cD9hDJuw49b40ZiiuL6XxeEPb2/X1zdXtq7c3tzd3CAh/8ef6rUd//Uff/4NObzZ95whTb5J6RPXeAVjJoGjee2YvCiImALWmWcVEJGvtRACEDLzrIImIRDAhT03mJhExDaHq8TRCZhuMVJ1PZzd3Opxw5Z0wkocN6gxAtV90NHfUDAfsPQCYugKbmZmYQtW/Uu1tyI4AGcSKZskiwk1AHVrAgJmZiObSG7EW7XPaWu76tM2ivFi1bQshMvPQ2R64Qhu6ENzVm0jElsrm+vbuenu3LrkXka265eo8LJcUInxvnNrVbVk0SQsiGML25i4w3q3XH//o+zFGAMAdLAwC7DxmZka7CpbqghNERHLoA4YGQuviwoUWRujsarjAqMOZTSrd2HIbcU6rZjYXP+ODKjP8+n16uMWsYgvbqFPueWUftiAPiQHRBtx/Q0TnXC4ZAIqpiDCTDfkEhIgOqTo6vumWn17a4ZfjsA/GRhNjOQhy799nvmumu87/1NPgZXsjefilnVQdptXce59mMEvzHBt0gqqWUkopRPT48dM+J7jbmlkpRcSylLQtaGd9usuyDXEZ+COmstE7wd7TUqBYSmZaSmYHZp4Iuq5rF9FE1uu7lffni2bZNLU4xzEToUNCgqFmDGAqLZsoHKrxQkPKzjCXCvmLbCZEjLUUzQgJDAzBBpw9ro1GFNE8eWakUidbUzor2hzUIiEiAqOaUmBmNTtkBAbavfbKJrIaAHnvfS4x+D5ZEzgVQoRSsgKCKqIRoRYDo1SKAjrnGIr3BmCOwBEPChZVbkcVFwXGJhw0k25jFshwAu57TY7F7cNwWvcmYe0T09dI1pMnDIQ+h9M82ga7a0/5hKet8rW7d3r6jlwOf93bSPPzT07ha/UJti5rIy46veJuzZ0qhmzmwplLKFefvf7yb16+u3tzW+62HRNfd/Lnf/388ePvZ1gAtRcX/OWbq+2mDw6YvRqWnEgNKTi1nGoXBQAgVTHV+QsQQzIrKqIqWggUkYOj4Mg5NyAPqAlkRCTc1TETUa3uBbWazTXq5rM2t7gDjatco+6fqcfOFLOsqc+Dn8cGC8AAqPJAnpwrtcdRGR6BbIqgyUo2BkQzLaSmKRFxAZLawgGKllQkA2tOfe62WoqqQoi8WOJyQRSqjK+6KJoZgo9Bvv29VIqCeO/Pv/PdpyFISdu7tbtb96msu75bb3aLCFpS6R20iwC9Xi7jZrNdXLTxWxeItY/vzoFZmzKMdqdV38xEJ8UQiJECcINuSX5BbsGuASIY+rNOBw0vchK6I8kRHSRCjPJ2kLw4sfUP0ZXHBRnONyPEoeHyXPrWNZomch/lz3cWIuqo4yNi7TkxUtHYxmo2zqrGjO8RBJB3FSyToMSJ4KqOON1kd+geHzhWl099tpNn0rCM88LlXfLR8LQ9vrljINPGgQcPMwOaQY2eghbZ6XNEQzckJBHJOdeocLtY9lcZkZk9YSZvHrFPpQmtOe3v0maz8U3bNK1Ivl6vu/4KAFzkGGNwxAhoORcII2wfA0bHbfRN8GzKQytnpEGZHWiwqvGD5LXd6o+rXrXPiq9SASkZCGvVrQHVOBQhmAkh4Zg+jQiExM4ZyJAQaLWBOBEQoJqJqg4hsKFrOM4tozl9mhkYoVFw3rO1jeskLyKWQjFizgrAOQkHDOxUwQMXFUMOwZOocyYliYhIQYfD8EadQ6Wi+u8dM+my80I/IJyOjboDKeNO/vDAcUx5o350eOY9gvBYMRx++luaxQcTe/hmx8864H3HczxUgWnN8IylKSLbsjYCR57L8nr91aP8ZPPmZ198/v/97fOn79eG0Z48+QE/e7m909+91HXnUoqrc/M30PWQMrisUit0wEq27FArsj+oKGjtdUAKhGoAMrTMVbWqrROBY2Su2OMIozg0E5EM4AGgWm/EAEBmArXstv6ge8x3/l4GhgiDPNYhdXdYRdOBrU5ngxoSgRoaIDpDGchPrcLDogF6pyBmAioiRmgMlftAMTbzBYWRGAwJWKTr1yn1kgoBeRcxthBb5YaQa0FP5W9FlQhdiF5ZQpUHknqRUgiYMLqnDYp4QxEB+Hkd8taSSxYWjcnWUWfdVrqb80+e5oV4kaniaCauaGTZQjC4PQ0rqAQhBXIrCmcQlxjP0AUlV1XqwUie3JuKNaFkpDSb9MIpcGWj2TRXH/cJ+ENkQL18gpzkvTrogTDwAYkySdn5nzDW/lYKrNZwvQOqjatuhE5HtwGTVVZafek62VOzvTjnVaYnNvAYMjxxTO9tPnCYZX3P3hsAgAqO068HHbyZI5n9DTCBJ3t3+mJ0cOvUuXh8p3shajMTlSl3EQA2m83t7brvewXLUgypFups0jukBeKjnG96eReaSNScNR/d5NcAgGhoGYCJyXkOnjwQgHoM54vmbBEDMVthAk/oEFwFGR3FD8zYAhEPu34AAJ8MmBpZGDFYAADZiABrWSGgoeFQtmcgM0RVrEigCmpKAGKIYKBANtQH4ERoIw4SlrKDqapfjsvGANk5511ZNGGbJIPG3s5W7c1tZ4i5AIkRsEhmCkYVUgisqCPsc95ut9str87bulNstHeHztZUZ7MjicknsvPm7puL026a1vSkaKuv96EkrA+RiBPF61638MMT7rvVXLBNZx6J0r+VYD4czD0b8lhHPp7IXNEwipyLlTdabhSXEpZcEnd3sr52JtTf3q3T+07MnT15fHYZfvLud7/dCnz68nOk4BdtKEmBcxEA2HTFAHxgBUgFWIzZV6NXFUSMyGrPQBFlqhFYAAIiYK5daAjRVLVI4hIwIDvEob56sDMmi2TP4Jgp4IPeh7s3YCNEU7V0DYDMyA2FejaIfx5eiqiNxhBqfXuDKWMgqDVVzUrqALS6k0wll5yHlJEIhuCQ0RMaqmgRK9Jtt1iUABHZ0BMHcgt2sUa0bRJgVDcOclpbSYiIZFmy9hkB2ezN1kITY2hqY+N6dF3X6tqtLt7cvGxNvvjNz7/3w+80LUs03O4Ez/EWqr0VycBqNiUScGS/4niBzSXFJcYluhbQAcwQLKmK3t1rhzFD+JhQj4l+EroTcX7t1jiWqbtHVzY9zvE+6Tv/PJ1ZpSsMcxp6A9dqy9qaTFXByFgnehI1AkBUQK3/ApChupEgh4FNJuYpr52ZzQXhfHj3vYoP+36ed3KodY1/7j13x2dnV83viJOsRR17X1X+c+BW3K1j9VWqSEVmrRo0GKWUUj/0HDIkMEiiUgSJnWsvLy+v1+/fvFkTbC4vPg7RAQAzOkfeUSAiVSiZfIjsGsfR+cZxcMQMfuZknmsuMKrd07BnglYn6Tt4bJFhrACGI7ol4lE3mhI/wQwUwQjRUK12ZJirLAQ29BKflmuMRu/8l2yqqs6GhqaBqQWMAXoBRyVGiD1ixsxQa5BElEGreiAiKIZEUqTr0rbLctbwuKbVuTwqSMPyn6KfPWfqA8fxOdM39/YDvk9oz7//kGd/yOAeFM9ff/k84Xk6wA7ZRz1rbukeGLUnR3VyimYmumpwC/iydYj0rdJf3735G7j+CvH8zfovv/zss89fuDebdwXO8PryBj998YUExqv029XyadNc3t0Y2FL41qkVzQZIEEh0UzqrLQ4YzEykZkOYFRORMjQ8J0NFBGZ2BIRmJs4TO0QDVR3iEFYAEZnHfS5gUBNzJq5xkBUySeWxt/YofUeZoaooikSmpqpkADz0Aa32OBIhQEXMMjNQGW4z3ZNATdRq9qaKGTOjixSXA5oSmuS+36779VZyv+1z0zRxsSBygmwcEIjMq5U580LEOqTSuL6v6ZRsjiTRpk8pdZfNhSQp3d3c0Cm3Vx2Wu8+/ytrdpjta4JPvf4TLuNXatvaQVEwRwJAMwVDHtBx0gAy8Qn+O8YLiGcYWXQRyCLOejgPo2MBscY+/7D1lT/CPqEITNZ4U2KdoFBGnq6rVVZcRAYZOB/PtPt89J9xZs7HVPyvlDBnOAARYHaeMpAA1EAEiNrJ3FJkCtYhqIFLNIGSbjaQ+GHFIhjpSi/fGtrd/Z988zKMOJjL5zA++39OTAFQLzN7RhNl08kH11ddA//jTCf2+3unABYVjOk4dADGISNd1ORczQ+BioIaMq6Jdsrdqjt2iCdx1m5u7l4jkvW9CiI2PjASGUsj0rG3O2mYVogODoi6E4MlMCccWfIiTgxkAHPs5O50FgwcQ0cGiRa560wjEMbRsMautPWBiJlPhbyVCh2xgikYVDK+yJzCi2rCneoBGLrSfp7K/vsZoYhY8F9TWuz6VxtE69Y1HM4jRi2mWomrFSvUCDnnUyAiQimVBVQUiIiCDXR44oA6dkXbysb6rGi8Yp7NDrDzyxJy2SKcP7ogcv/6wU96qiYaOT/7aG+LMML1v/3/d5ff+dPDLfL4HCscHvoRhRkXFqzn0JbrN+u7L/+7mxT9dlmV7/oOXX/z5519e3aQLcR0U6Lb4avtFYFy2T13oinlNOcnWtXHJVm5ui4KImYmY5QKYeicGTESUh2IPUK3Nck1N1YwQqKYdOUeEBBac82N3MBGRXOqWmUB3wayUUnuETvx90jN2Qpdqz+DazXcohlOzMTFhFM9SHeEgIDTCy1V/Ig+ZS2pgitUJRVA97GZKaqmIKjKRd44aCjGEhnyrJYlsoaR+fXN3c5tSQUQfz13b8qJF55GY0BM5BGRjq+rqgACOYiCpbG7XzrmmaayX3IsVazA2zpXtTV8yAMxDDTfvX7arNuftckHJ8k/+9O/6p4/Ee9lsHZmZ1GzeYcWNEKszbXQnGiIwkSP2EM44nKE/B14YBSAmNLNC4A21euN2KjMiEtVcchg4L8kJ2TDR217/A5hR733bCwfldS6uZgMY/FV16R9iGUcicNAobMyDB1EZyFfK2GrMaOgyCQpjl1AFEEA1VKohliHfXqeWwNNw79uJojscsoNz7nM1z/ndnH2P39Mst66accOfB+xeZBDAk8d1rsrPn7L/Jm0EKYPxnZ/gnIPcNUNEZha1UkoVAzc31123SblLSXMS4SyGprTtt4J9l3OX+xjx4uKsaXmzvfXkHTsysCIGFLxbLNro+GyxjMzekUfjMdV7dC/DSBhUp4iIRG4mf62GKsxs8DDDBC8DQ994JKOhzYYioCgRmSoDAqCaoRqYDFbQ9LoMgAzEDJVA1QpzHNPF94TCTHjbtLhmBiBEQGZN8L30MfjY50UM19t18JwyRk/bLKUo85B7SgxW1HtKZgq47UqXLefsvSfeqX04FtrA/i6YXspuKUcB9HsIU7ebyakO2B943PfI+6TanPV/6P1/z6GdePTBwHDw+BOcmsh9Y3S0FgydXISNuTe/ufvs/y43vz5/8j999fIXLz9/cbMxbJ8xLFRSiBbgIt9uvFtcrH5AtEr23uW3BtbJhkY/hyE4Jo/mvSfkdbf13pshwJCSx8xEbNIhYJW+3vsQgvfeub21rzSKSBXfrnKNfZ/ejojnlwDUNzHhkg+6kZmNwRgzG6r0YDAKdQecWLdqlS9YC1FUYQRzNgSz0vdFEhHF2IbFElxQ8khOmfsu582ddjf95rbf9ORD0yzOn3xXCDKKILngfWgYAxYtKRGRAhQVRGQkEMmqi1YAJKe7kjNI8c6ZSLfZqAMXXDFdb9fTW1jLLVn4+KOnktfto+Xy2dPrImhMGAE6AKgyGAAQhgSVXARACayyDiMk9uC8a1cczii05hoZQr8IFW9k7nWswgbnXaoHV+QDWvPxlxOjf0AAAwAYzQOK0/c4pNDtrIqHmYZV6W02meBEJAAiUvN1p+TPJIWIUNHMSs0qqs+lQXUjGsLA1SkyCWDcT8K6bxjTLA7Okf0Y7U6ij/blnGvPX8jBfRB3jH7+oRaJHqwLTuH9fRiiSb8fh6tjp2cAeGh2owAutSomhNB1HREtFgtk2YhKESDfNItt94rdosUluVIz/lWAqZWUA7sQQgwuEAQmB+SQHFHuOyq0Wi4roHQu0LYREQ5GPvxptVL/0H4BgF0qA+LkJaoFijUny0Cw6uuIjj1iVq2J8JUAiIhUFOeOBzU1USue2gobpza2MbUdoRoNvGgsLqdSqrVqznvuusDkGZvomSB6XlPBIZkZYusJyKRjCgqZiKU3KbbtUpdERGpwasJsPxC68z9H+tnTGucvcH7mybWeznE4FrbudxyfWdw4xBwBhqK543Puk/wHFAljleFksU8X2qx8CoDRbGqYRIMRVvMvZKayow0IiqPSCgTEDllUHABWpsDDZgeqCN2nLfVjzOedHjRjoLX9L5leI174uPrqL7tf/fnbzc/Pmp+U/PizV59+9uIV8o8ef/KtYOn2Z7/ewHlvi6XnNbwIyxYbUO0s6+1Vd3OVsAkYKDp3e7ul4A3R+6ioCnL5+NHV1VVJuRSI0YOhj6GUohkKbFxgLRCRH59FpnK3kfPVWc6ZmZtm4ZxTq0U9rmZm1ZfjXQTikrLk3iQRe3QOEKvXWqWYSYgLBBty/rV2DwFkzGBIWEt40YBhbHMjWt9zZZ1AVF05Az8krB0M1UxNVJRYF751vg3Ls4yY1KL3bKD5Jl9fWdKmOb+VW7cMZ81l6862DIpesIntom18Kv1Wcnt+VtKi79eBgQuVouJcCMFrD0D9VgkWCtlcUtmmm6uGCEhK50Gikxbgtq6miG8wFIA1w0/+6A/Us0OgQZt1sHM9ac3OEBVg1cwFnPcsnHsRIrdonxivzAXzrI4R2YBre52aLE31rlYxhwQQkEhFCZmZswqoUG0K7EJJnaqSKSCCKQCBKdJYkTkVes0apQnY6BOscH8kWurORcCK5r23u4crjEbfs55gI3U7sCEaAY4Z4AgMRp7Dbdc1iyZ5xXWQJMxscqviSy4AgDyk3JsBESgBOnOkTpWwmrKOiJMWMsIRsNNsSIBGO8G8Ku4EjCzggMkAzCX0qFgfOZPH/X6Y81zfa6XlCmI4vVszYxpA3KoPUlUIjAgAaQQGqyy5ZvaDmaICETEQAJTRwzSFxmqgqO4hIiJgsZ655jJ40G10hNYtCHoXbzu47QtxJO1uNnfIbrX6/vXt1Xp7Awy1kMhURdOi8cwIopYLeeejCyGwp7ztW+9XTWhiBTU3HpoGjkGRAfxq0NeJJoCRHUHULb175yY2WsA2esvMSgVpMA7IIARCYKoACqKAUENFSAYKNUImkFUYiLxrFKCWuRMQkIwyVwhcLhmVEC2VrKYOSQhrQolD13d9QBa0y7ZZOc2r5att15yx9og9oEBJJaxa6mJ3Ky6CYBO8nOO2rOHlTf7hR81ZCFZ656iG90yzBxAYIbFG6TC0VKzum0GlqtsOKqofTOrd2JNzTqKTj7qafN+sHeF0r2FAR3e/7/x6fIjJ+4D++9AjZkUR3+javZsAwD3W+Wg3gFXMC9UzPs/XX12/+KnrXksh4BWF9Yv3v/v05ebb3/3EeXr11bpLti1dDE6BLy6fnp1fbro7xy0AgBFVVCYEIgrBMbOqGlZb3HLu6yLVIIRzDgA3Xc9gsW3YW869qjriNnofW0Tc1SABeO/nnVCHqSEAIREJkxVTVVTF0fRnZrNdRuuUDzn8qwNvtNrAxIZ8VhwivFMvK0Mdzqtf1Ne3e43OgwtGpAjKyM45Ryry/sVXnticfvX25u06FcDLCzhb0mW5Du25uQWABPBNXAk78q1rQr9twTIDdqlkKX1JQt56U4HGe0Tr+h7JN6tLVni1vlo2y8ePn+a0mQSwM12eLUTLk2fPmBmn8Bvc66EhcuCAAJAUEJiDCy25hbmI7IncmBSNcx/a8TE6E2Z+iIkvD5y6XnxaXzw4cPQnH1Dsv54Dj4FiAcakoVKKmYlISqkUHZtm2VgbbohoBOAICoKZqjjzyMCAplgJCwcPsMJoCUzgageWx/GX9Tiuvxw41an7wL4I3//epowHJNMRy1xUKo3XWGaNp8z8yZNRqDZDS54v8cPHzjRUrc4tsHJ9fb1Z32alvt/2aatmA15EKam7JaLlclmsiCkHXi6jc85SUREz8963beMcptzlXs/OH8XgYvTBETM60MmRPsZ3T5jCBx8Axq4LtR2b7d6tDc3TRow8mxYQiWoABRFJBYwqeMdOfURgIMEx2Do+C8EYUBDBxpr7GjEmIhsjtd7HUoqaMqABBkBVUE2r5fIqFegKo2vaQFZqUVTTNGIikLucGNBHyB1sNl3RpY7pklVrNSMDuS/f4h5r7YSn9mAnHlz4oQL45F0OPhzvikFhn6mfJwXbfX/CKFxPjmfgT4hjcGXvoccgfw+D7t6nKMx06hkIgNnCyu3t+/z+dVBFAoTiPL292b6+Vbp5Tx1++vnVVqhAMukMGgUvxm/fvm3imUHedJ1mMFVwzjm3WCCzTyXXRvRmKrmYFFX1CIROAXJKYqYAj8/PfDBMcHl2vmxaMqmBXh5jwFUYz5P1ZxPE2rxRkKs3Y9R/yQDISIY47w6RbthsEyBaLesc+ZSzXdMUrKWyo5I8/rO/LiGQi0hsXPVmVUup20JKfunf3Lz7+We/xeUzXjy9W1t5/+X3V7Y4751fgkBkir6hEJ1v4mIpm3XJPXpHzgdESV2STpsnWDaCzkdPzQIdbu+276+un3z8B7kvN31HWqYhnTWLsHCblJ99/BSZRgqxeeYAHpRmaXUIFTFTIPaNcyt2S/ALdAE5ErENEbKvwTWs3PmAdOFwc50W5GangzsfeHzzawfIwFq4WDc1EUnR2lbLzFJKpRQkUzXRCZaLqvmvomRkCmRgWsiTqTIzkCEQKkzSF40BQEGP+cmo8p3gM8dYB/U0nX3e//lEkhfAtMUHK0dp9K6VMbytyM4muH4zA6Nqpg1jm+krkwC2cZwT1yIi3OczNKLrMHHTNJK7zWZTJHu/LCalJIPB4yoC5JjRspgky0UIVUV6o+g8EzWxCc6XkiXJMrrl6qwN1AYOnoiAwWrtL4BWpLqqfeIY4SYiYj+92z0BPEGkAdEYtazV5WqGYEZIwEZDtzZDRWVAJWSAguBUBQ1MawDHKqAAoTOWmlFfyYDQGQoqKhW0Xa38AFQwOmkIHYJVpDl2xKZ1gp54GZpF7vNGUCGEYGZ9l0pDITgjFAEzROI+ydv3m5zPVQcPDIz2hpoOmez7b8BmyInTW6ofZPiz/jf7PKPV+Z/3CuAP3KLHjGDSBeYrd1L6ftNjX+gOnHFUdD/UAj5WHXbKyyn9YK50zxVF0XfB0sovG3IbeY92Vbot4ZPC2+ev3/T5dt0tOcYu32nqg3tG2BTRlJJhr1rUWIoE5+rWbBYtAEH15SCWkitPsQIheGbedF0q6pz/1rc/fvTo8ubqlUrx7ByjQ259M8Vo4Wjt5moQDBFa4uARcYo72Ihv5fZeo1WLAIZQzxSSULAK1GxKVBMWAYAMFHSQwVUVgKFczgjNEJmJmZ0nRNAaiSiSZf3+XYwxl/U6XfmFixePzV9s8iZRab73pz60JrK9en9z9Za1XzRtbBc3v71ZGJoWdaTGC/IMhRu+Sc5bcQRApMSChAqPlyxZVk3o+5uUb6c38/Sjj3tIzVlcrJabvFFAHELXUJXh6aXZLNqCVYaYAQb2K4xn5hryDbE33FV5wn3K8/BmR117fP/1YGaraT5ECntVACc32vFxLKKO2cSBuWxmh3xiPH8c43wcCsCq6hjFpJRUb1vEFNA0qc4gLJBQccy0MWAARUNyqghqKLU2aXi3YxoUIk6IVPOBFgWa7cfZjObG6BCrPvmWZq9ijyPNX9G4j0zAYIRjwuqWNkJQFJ4C1jNTb+48kwNcgWmodvTN7LNVeG1m8N4Hh8zcWQmODKSoGFgWAec1F9MiNqS/jRWEBiAxLAmQ0YggutA6XATXBN84iBEbh0zATN5xDXmO8nZ0QRNXPR5HBLcDpRCMAGn33omQiIl0HrIEqH0arCLjMcJsNQe2o5WBI5KNULXVHTJyqMGtJiZstYnhWIRcC9DHSU/iBtBqViSwQ8+u8WHpIfm83fZ9SghMAF23CXEVGi855CwCVtdw8D4OPSFG+TUEFO6zAE8Qz6llPUEG0/E1FvDxHfesw3EcByIWZ8eBEWZTddA3lMVzoXvfZA4e9I3ufNI0n6YwzQ5r0SpYsoLYEZbb7abH4sv23VevwXyRfrNJQG61vLi6W3fdRhH9Qt1qmbMgmWopoOhD1i0JGFgpZbE60xETgWp4CM37KNIDQE1yUdDWt9/6zrdBJKXUMp+1jWfnTKpcqyOvwDZTksJUBmJDEyK0inbj3aDAj7ODQcnYtWGYvxO12va4agigqIhmhKMjykCt9v2q9jOan2hjfJNkCFzzVgqYlWEv52J9nxDvNrfM/Hf/zh++W8fnr9+sN1dnK9gmbc7aZdPG6NPKN9G1y4WxO8/b7YtX12/f8urSYdB1unl7LUG8IUL66uat5OJ802fxzI8fnSVaYeu6bnNzcwVwXicVL86uylcfPftIQGTolYZjP5Y93XFHacSIAoRojGHB4cyFFfmFkkd0lSMPxfun6GqPRB8kyN1pD1LyfIvNnzjfknh0229y6Kjl6uglJgClWSzTTHQQHlCkn5SJ2h6HkEQBrGfzQNUfXWoJG4GYOUQePVayYx5gejRz1V2o+kjX3CPaycN8wMH2uddJCxirc2dCQTIzBXOHibj1xxOe+dlzcXriXPXZjXxaIEQkUpCpIY+aBsfV3Z2lFDFVzaXkXBAolTyIG8eNd6UUzSV43zSBDZrGNyEGokC2jL42H2wbbr2PwTGCI/TeO+cMgQej11Vg1/qBiHC0gAfNbBx/XXedmTFEhORQCwAZIVYXc3VmwNiFw8C0KFRPNJlNRGVgCCBEDqCYIVUHcM2eNx0gpxUQTWlMx943n0ZGpyrIiMwUzC8W8WbTeYQ2Bh/kZl1IS9sEUVGtbSGKmQKhb8L5WVs1kaF198Dk2Rnlexb3WPoOgyHcyTY7oYXzPqF+4xjwycP21Z/59wdDPGIudt+f9x0feNo9F54YxvFpJ0+YzaUqcCtL67dXv377elMippRffPn69famQFCIprEv/e36hjgs2qX3XFS6zXVKG3JQ2AmyApS+qAPDjMBYy3fUmNg5kIKLZWOGfZdVCxNHRkegqrfX193t+qMny8vVWfRMogbiXAsAtTCJmWGMV+18AzDmACEaoSmpKViNwFXYVoCp7u1IiVMcM5LGYkEjQDWojm4Ziv6gQrIYmKohMg3XjqnRA35FkVzEwIFHx8wxhGIlxLaNqycff6e91TbEt69Lv3l3+9kv4vZGlue3m3XR/PTb3/YXH/XKz1p7+2rdRfnB3/sHF4+f8dvtu6++lDNaUizp9vXLzyTlGM62d+t0+35NWddvPv31Fwpy8eTpJIDv8qY9b86fnosJEQNOE1dEd5LMbBBoTByRz9CdGUd1hMRSwQl2TX4q/N69tFq1doC9U+YxYJh0F/gg/Ofj+3/4TnlQPJ+IAduOrmxI4lOQYkUGj3TtJT0CsQGgAhZUEjY2U1ACqbWXMGYKDA9DADjdNKX+ajY//cjlM2ghY2zlFHKkDSFnOOaPqjo6HmrzTAAkNAMT2Ef/Hu9AJ5Z4H/Fq75eZtxxP6f3OORPIOTNySinExaYoETsf+9KLqZacs3hnKfXFwDnHgGhgWqSQAwzURIdakpTy/6Ptz2JuWbL0MGwNEZm5p386453q1txV1dVDdTdJk80WbRo2IYE0RdHTgwFDsuQHP8oWTdmWIVgCJFuQIFhPgmEbFvxgWTQtDrAlyCRFdVWTTXazh5q6BtatunXPfP55752ZEbHW8kNk5s699///91S1FMD5z965c4iMWLGmWOtb6GxWlAfTqXdaOPKdsdsBaCAh5epdlAWxA3Iwkr43MEPm7A8zMzVEpFxYlKgAAMtIztQteAAlcjlHTDo1o6vSYZzj7LKqRNkOVtUOU6urX8IK0hc9VFTNvrShb4hoIIDW57ibmVHeJE42KcqiTrGtReJkRtraeh1cxRITsHSy1iDG2DSoWppZzp0TNUQGhS5kbtuQ2BG9d6yyu1Xe/OsfSgCPp2fQvnfspz3ZfJdZML7zGyj+t/665VC6pcO33Xan//sqhZmaikbQNlyen766aJaUXi9Xl5fnT9o2mClVou76+qxJ9aRYcDELUDdLsQAqgVwVVVbrpvAlSkyqMYoRg4EKiCg7duR14r1zdd2qtmbmCJOaI6qXq/PTs2Yd3X0CNRSdTqfOObC8m9wVxKYRsPAWwyLELBi7XEBTTQgAhgaQCw6Pzb4x8QkYdZVDe1UW0ZhAFIC6EEfoxbApZk8RAGBXNsQIAUFAFczYEEkZWZGY69VrVAexvL6sp7OD46OjhweLFx89XddXl0+fNunD5aoGz2xQFtNyevjy2etwHaaTw9mDx2t0CVo9un/wyfuhKRzFB2+/j0baQnl23px9dPHygw++9TuXV+uHjw/vP357qGwTdPXw4UNwKFF7Vd2wAwa4mdIQyMyImHjO/hBpauTJsTJ0Nk+O4gI167wOH9sQc2ISjolth3T/S2l3i+SB+G9aIIP5u2l5rIZQA3IMEUEI0RlYLnkOxnlnjYkRHRibIRiBMYLHYRep97soAnZBTGmvD5tO3qTT71i6HfNR6Z0ZnSfdoDe79u4AAGDIYNIfYegrWJigWR90aAbGnSGMMGgn3ej1EOJ3sN+ue9tMvEdh39TFCSGQ8nK5NkXvSw6J2ScRRY0prNsUAjiXZpWflJVjdIgH0ymahqaeeHd8ePDwYHpQlQWh9x4x+5+ZiADZEBw5NxRdIIfIhjmGv+cAfXeHIcKBM5CjXglTIE9eEQgRCAG63EMAEDNGAjJUBjQEBshYQGzUFQ1HBDACUlDoBbZhlr5GQIqGhKRZeOfH9FAZzBhFBq0Vux1cVJVclVVSEJBiMhXQpmkkCDmfrQQDNZMYYbVqs9cREEw7JZhEFRX6elDjv4MPZF8qbyfD3UoAA8H8lFHQ3bzcpN/1U7aRvjvqJ4zcL2/+0NtO79fALVe9+TNukr676zyLXxFUic2Vj6BNJWKvVs/x9Ss0uIxu1dZlceCL6WV7hQWsW1FuxZbNKk2oNFG1tGral6fJKXcWpCIC5Q2eFKIDdMRVVWaqYmbLhVdVPfPrl6+uLi8LhKPFwaQoM456SonJZ+ezmakqux6sBwDMxjWOEJGQkMlINYEDs+zkge2Vtj1l2seSUP8/IebyR0hklqtHbJCKupBC6rK4wLpIDcmXOGYAIDTAYBJMZlOPNmU+CIpmVter+ezw8HP3X5w9O7u49E17WEykreXZk9fLJfpyner09LRaHF6+eBYnswUzzwopsFJr1tciq0kxlWTzyjRdP/ve716HtHh0WBwcXq6awSxbHJQHx0cxtYYOO0hFzQwpaY8TuW3gMJOZERe+mDg/U1eBd+So0/0Bxgm+WRO6kdh2KBN7AbzZA8a8q/VGpPvmDXuP4k+ntm9OM0DNPaUcuu+cS+wlEWFGNzIAIHQGaKZMBSEROQQHwIhM5AhZzVSNNlWnsn9yKB8IOuoObvZHdgWwJBvEeT7c/QPZ5z+wbSqM70OUo7ilc3UY5TtYF2V9y+DYIIM3wzoovlnI9AO+q9APpsuQUmxmzOy9Q8Srq+Xr1xc1eiHfgZqYMTNTsXA+9UFwRDQtS+fYIRSFny+mx4vFQVXMHM4YC8riD4igC8/sZqwgNCIidICsQFljRCCzmxWgjNJD7Ed7W4yIwI4R84ZU3mzKwkhUd6JB+5FBMNIe9mSb7TBAhuru1xLlJPwOzGA8cd47BRUWNHPkEEkNVWNVVcvrc5O4WCxqFy/XwRQOpuX1us1AIJJEVb3DqrBq0oV2ExIjDeP8JugTe6T1k/mcHPQwzrvSVDtODbABRkdEo5F9ebuIH1SDgby6y/vgQ9zzHY3N1mxfDYrG6Ey0vOOf54xJzYEm1Ghmhg6pAiocaMIa7BjMIwpiQqvMCDDmzOHbxMwNPbFC4No0zXDWXj639klYXUks52X84Ae/fRHXbXjxsDg6nYXlKr1f2Ivy05fL9en6tBUJbQNat+FUFA7nD9pURyzbZagbmqJrJRogqapqu1qB59A0F+fnMps+vHeyQimZHFGbkvMemT3oenkNSRRAPRTErAk81xamPPUu41EJAROAaTQ1IgZCtITKlDd8CQEYyKlENQBgyW4cBlIrgEwFei6woYWsHXZJrBmMrtta1BwriJa5bn4KqLHL8dHZFQuIREYZFAvUul1qsRwz68tCmtIQEqwcl9qugH3CtRbFvbfecn5Sn19xFPTaNOt0EZDl8vwJM1++enbxN/7G9ODw7Ho5PTz8yh/5lXLx1hShWWtbvyKR0x//8Ad/8Dvry/p+9dCACnc4zs568N5bkhDA5Veh3ppRzX3O4WWCgERkIKpKHKOyUAVuYdWEyxKoEnWA2CMHbGDpaC84aPM3Q3WrERFYp6+klAwkQ2cLoClAjiun7HwYvLVbPuFhaeAISyfv2feheQjaGf1EueZMv5p6c3/s80BEYAACQ1MipuxRt1w8jQjVFEkBNUYBJFc4CAhEISYin1+120rnzsRN0jr0ZI7UiAiNQEFBsHSIqAaqYghERkymyOQyykdRFJs3Fe79tzmUARAzangg12V/iUp+V0QkckCYIaqhq7xLZqimjjBHPFG3f9gFOUvqPiMicY6EEwMRBI9kqjEkmk0bibNiKgnY9+6lHAndkTz0mc2dd71bUDZA3GA/HfkUFUuWoPRFTBJFptPq6uq1tOuy9NV8+vriynmYFn4VUiDXmEK9NgMwqqppaGsABRRPWB1O7s3mC4QZhgmCJ6ayROYCMxodOXad2x9BNPhykXMrzJQIcvGkqC2UBQBQj3fGzMwuJY0qx8fHItImnc/ny+W6LAokioVaEsJcdwgR0blyuV4X7BwyAIm1SdSQFZyiqyjGGElyNhSKJiB0hU+KOcjGJGpSRQMmUFOJRNSq+KrCNnivzWrtjIIKGhNoSa6NSdrokFM0IKmqqS1bMAFNliJisWqCAjZpPUlzg1CUIbVTiVFTUAETZU9q4h1BxsqNhm5LKnXra2/LdTCLh8VPfVzjjgq+o4s4uEUI3XH8p2v71vrd7Y7TrCdn2BaWgAJdWfJbS5fshI/vCPgdvdjMVFpg5xCa+nK1vIAkjhdcVPX6jIuZgZ8Us4R+Np3G2LSNeO+jSNOEpIJASIrgkXC5XCqIoYao67WuW0CAwpcIsYl6eX1VzWeIOJ/PESzFqKDJMIUGAJhRUUNKJlogGlrGwGL2RFQ4dsj7c7VxQnTrH/qv3ftivyVj1oXdD7+O5+vu2UEczoTB9MCs1fXhsziS6GaQcRURUdHGYgQ6pknIbP00KeDRvZOD+UFYrqUNEzmMbdM0zSf5E03TRBclSv30lNp1uLj6nRcveV44TwrC6EpfWAyTqZ994h2rXa2tQ5oUfnBBV1W1X3Hs7mYGRB65JOeJPRADcr88d9sdK6h3vfWnDfbELWRvZrBNnDuEOpa+d/TELDs+bf+qO3rbC+CtpkCIbGaaNAURMVVIXQo1KKCZiXZ44OTFhBQSG0ULzoAkgSEmYWZDzFt9iphAVTVq04UgxU0cTNu22ac2pOcimoKpKscIAKbDAGb5F3DLYdhDq6o6LrIAzsM+wKwSdT4k6JRHNYtZAXWMEAUIwTkgSCkVuYjQJtKxG6zRpGzvKdjORGwG3zknKQ54WxlfDBHLckJUp6QhriFajMmK0nsvyUwxw7NMipKJ0AANKu8qxx6gcL6qiqLw06oiwBjbqpoQUYwxxkjOeeeRSLIBTJQMmigpRRNFZNIYJTHzbDZz06kpChAWMPHuctXOZjOzFI3KyTylVHmfROazeVs3TR0mkwkihiTT6Tw2bUwJVEwigiKYA1ayICqiJorWlz/a4IZDBlrHXPjJxNCMCkMAgSQWRB0SOl+4ol5fqQEgKqPDIgEgsMUApm1bl2XppHaEk0m5XsWicBpUVFKIruzVZFV2g61o3ex3oCu7Amv4atvO3buk1c2rqWsOR37anSft0NB/ufL47ja8pPUYeNAvubGQAADoqyLDjsG919nxm34Mpxt/peiwcIjr8BIgMC/K+YEwokk5v98mRqocuMK5oiyNGQLGKDEkLpz3RYptTJbESClpDGZBAQi9BzFWAonKBbuymEwm19fXZNDWdesccSVJVCITFkURJOUQ0GxVFVVZVFNmJkDvS6dkeLOfrduNROvwATJ1w9YOMeoGCGmfBjZju7lvf+FOCO6g1gxIZ1kYIxB0IYFZcdoYah1jVyKnCMjEzMicM1JAUlEREUHhqfRh1aa69eyKamLNLFTBIaJKG1amEiVcXV1Rq9IEQaKiKKF0boHzA4OgvMRAqjKdlABdSWB0iD0ewD497B7JO9jmmSfsZ66Yo6uMCqOt7dudq/YprRtP2G0jFr5z8kb42S2qN3RzvTN3dstLbY7vSN+71/i4hyP8SExRJYgElajB+uIcZorZigczY0pq4IwTAhOKdtY54YQ5hwVZdmZmDhjTuqqmAICyeYUmpqGTqir9swDAOl/SULzdOjyQrXdP1lejaiFlPP0tpgFg2AlyRMyg5qpgYAJSqEtN68sSQlsUXmNSVvWMve6JvXt/a7T7n6zfMR0UgvFpzBxVBYTYIaKIZLvz6vy6rYNDMvJmEkRCSHWIJTkDzactJpUnmlflfDYpGUrGCfG0crOydAU7QjBzzgGqZQAgYnZFDnrwbhJSXK7b1bpZNU0bkmp+Ea2qarqYni3Pr5fLopydnNwjV4CuEXF2OGPSJkbnnK8qLt2UCmaqZlV0bdLExI59MvVVqSlIFCICM82gb4iJGBwAJUZCy15YACPmjnMgMBKYoQmZaUaPZ+cBjZIaKCALqCuqlJIRxpCQSEGZKEIi4rZZI/qUAjuaOLq6bFnBIQtIjLGsSrOMuSjO8Y46m7dXMzrC3Ytih2GSbv1ktHv1zvc32gN+E9G7o+6Nr9rR9cZCdF9JfJP+7DzUjMAIbiovs7mtdR8GyMk3fByxgjqCZNpWlfPuvpsfr9J1dXDPTw/Mzxwk731QqyaFRgdtm1+OkAFQEqaYAD0xgzFYIkTnvSKigpkVk0IURFVMZ7NZQGqvlxcXlwcFQxRQK7zLqAWAiA6SgACw9z3WlXliVELaYFeNx8cAegs4lxbYsNouVVdNutBEMOgS9u4eorHeZ5tqIQDWlSjGfBYCYi54kiOtFWCUp9SFUoIBoGMEh5B9hoSc16SaEUiTDA2dMkKJIECGbM48Q3ChWYNaVR2YpArt3uO30sWqjW0CQ1+ymyBwkrZuFBGnhQ8g3m3eqMN8H73pTWpZtsW7kTCakJtxuUA3ASqRXC5Cvj84MJJqvQW2pa+MY5t73X93BdnwYUfvvGV2+iN7CcSjbWnYoH/spjDd0XZOoIz6qwCKoKiCUSwmaFPdvwgRUVd4EkCCoONkSmjAXZULgKwOQpaFikDocidFLISQbzI8NAYZyp6qqiLkaBwzY7SRALYBZ2OwcTPbyfSZBV7ek9kA7QKYWZsCAPQFBjptwHL9asbQpik7CUqeRQSYOiluNxi422TQOQa2RnI0SYM6u4mRRiyKwhWxKsr5BMQ4elFyErQ0hg4xR1W19EXhaVIVR5OqwHbq3aLwi+m0qgpDBRONyU9KiWpmjgsi7nZWmc8uzi+urk4vL6/XbVATpRiTiHh2R0dH5z/48HJ5fXLvQVGFD56czhcH86pAxItl87nPfPbw5GR5daFIdYiANJ/PAZKRTmbzJFI3q+l8DjGoUU4csRhVWrXkiNgVSorgXeaWIsmSADgiy0WaLGcQmxGaGCISIBCpCTOLqJGBWOWLCNgCgUXRTmtxhIbGDtjAM5IYmHRhFQLc2SSoBhmPhGjIPuhGPk8lMwveoMXeIWg6LrEn9W5rf1ggjo+9fGyw33jmWKn/2O7uP8WGElpb99+Fih3zslvucxOSTmd2S8q1iMgjsxrGpAUYV7OD+2+lS1tMS3MJY3H54rpf8CxiMYUkyfuyrOZtHYqiQkgaNa01JUNyvmARUQTnXEppWk0C1M4xgtarZa4oUk4qJEraBSGjgSCQ85k+cloujvactvrfeXyHt9YMzwvQj9owbtaXF9zzbXZDNEpfw/74zhOzGpuVxmwE573K7nNXg6AvqwKqYAiKZMQMVJhZZrjdCxkCWlufT+YL9NgE9QUuykVc1dfnF8wo2hhEcpRUQ+bgrIrRnCIqwDq0ue5CchwjGAMeTidNu4TxuyCN33RfWI7ekYjQ3IT9FN0UXGXkN8O4rWLepQtuBrQPvNitEbvb7lgXo/M7RzYAIJLIDcUJuo59nMqLNzmcd9qwlWNmhqRASawVAcuVfwFzCRztJ9QYDJypgaqKSqf/WXY/I2dhSEQ9IjTGEEWkKKrhoXUKImr9c4kImXJa54AdvTOSgwCGTHADO+LuQwe91Eszoy3iz2xZVZHIOxfqWh2VyD5JRKnMDeas9SFad8z+cNtRD0eOUGY0EFUDpByx5jp1hBXa1LZJmih1HdtWnSMzc84RQVUVBSmbWIqLRXk4KRdlNZuU5EkE0CwzB+dcdgCIApBJSprkgw++f72uV02r5NF7A5dMkgoAPXn2vI3RkJ48e1W3Twi5ms5Q01tvvSUfxu9994N33n787ruP33p0n4iwLJ69eP7g3v3Jwfzi4sJ5P1kcrENbKAs6c2hoBiwCgA4dm3OkCiqZXJT6Egjd/1mxyruMaIDeOQUBMU2SyQ9dIdrmcgYMkPcUPLIDKn3RSHu0mF83Oq2qqxSv63Y2L0DcZb3Omm9W1tDlLectqwwRb/BQjVbH2AKB0SIaLhzUKbhz8UIuR3i3lW3bnpMOjKE/CCNWNe7iHY8cv8adv/b3sXGMWH7imIh5l1nsAMvv3Xnn7bp3vCWlHtUhGRqym0u7Mm0ACUVDjNX84N67n3olayQ9OppzoA+fnZ5dXLQhIAMwYCLHXcEiVQgSJFiKYrmYARiprJpQTibT6TR7X1NKYlowqSqYVtPJbD5fxqhgzF5jGqDfoyRCRhTELcSN3bfraaM/pj1E/ohNZDaU4W7dDRB9t7NpgKwBbJxIBkyAmE1Lxhz0jOPsPTMFYEMwNcQBM4vVLGNVd3oVAAAUhTeNqVUEdFwQiiuhnHsXJEksS+/Ir5frGRfk+PLysigmgNE0AKhjVkuaxDRiwZqkqqrr5gpg0b8Ej19nvJyGJTT6SkRkbgLFFH1p6JUog0gg3LTncadymVe57XmDe4E+1l8NccuK3b//cMOt2blpfW0L4BtcVm+yeAGg2+HtWwQNZrWIJ6d5D61HtABSRKScuqWEgBnmK++LJLQO+aHH0DYzVXC+TCnFGIskQ8TZsq7NTMBUc5obAWGO1SLKskp2hn0bonIT1xm1HSQ07E36oFr0kROoCC4FCS01bDxxTXCAHnhRFjtT1t+nhy++exRHVxExaAad7ix17/1kMpk0sU3aagIyVzAnKERFopiaWVlQig2WXJBVHg5n0/l0MnGOqUuOdcyMLiZ17I3MDIidIZyenT9//vzl6/OkYuDQEyoDyMQ7rsp6nVKI3iE5b1IXs4pctV6vAeDpjz+azWaL2fz5k6cfffgDJvvyl7/08O136vXqirFZF4jIhJpkVk1SHYgdokewpAhOSSWjBQlIt/UOiOSIHRGlEAFAMZlZxrZUNENoYgAAYEpA7FhSULUmGrMm1ahaVFVoWue8GTByRhc4vbgEVcfoiIiL64s6TygjpiSEIJhyqGUODs+WW+Y/XQdu4YcCG11246bKaZ57+wt3fB2XI7x14d2xJvfI7jafWN/FzTm77petk0caxHDVuOsb5TGHZHTezLuo/cbFcLceAABEHlEFrKiOm6hqK4vBQQUKXM6P7n+iXS3jxbPSMdTBUjg7e90aAntEJEfIZAjrtjGlGKUJScQYHTtS1RTifDoh9m3busJ774tJdX110QS5f/9+aNrZZFpOZ5fnF6LgnZeQEJHBUohN3QqYmglg5mA7Pd/mzkMeJJhJrtgxfm3uVU64RXHDvSOjiYDN+OPmIPZ5SjnBIn/tuFqG3UTEXHSTDIFpk6qPZjmnj7hwIcSk4n2pqmtNhFAdzClBgSgh1nXbhHXlPFNRoISmJdaUIhEVlVOlJgWjgiuwxkJcz+Ybi8oUyfWd33MRj1TPTi4SUSoqdB64NJeLvBGhEqjcArywM1BjcWs3nbCt126mErYXyI4OvtNuFvbbDs/8P47m680bIopE6yK1LYmEFGuJTYoNZN2RgMEM82ciNGudM0IDEkLJ5WYBQEyZ84YM4GgPmDmYQUqpiXFQmK5XddbLkmXLFBExg3CR830k82Dy5q80RDgj5hQjMzPpy43kn7L+agYSUtYtRvoQI0KwFk3RDNrWT6t1iJUvYo9dpdhF8+7M5t6kbLSxsYY0vDX2tZFTiqpaluXBsbte1Xa5XF1dXotRVQGQ914taDRVqUoKsfGz2WJSHi+m06qa+NIhIIJ0AZIEYGCckmQajjGeXV8+ffbs+auXhBPHVTmpymIGzISuKKpZNVml9NnPfjaE8OMnH4aQltery+ure49Ootj19UpDm5gbobIgSPHi9auS4frqyt1/VFUVIs/LR0VRxTZiCmwETIjomYGdgZkoOoeIhE5JAZEcAhEgQuomVcCSJUsxa3hXqzY7SOq2IXQhBFBrmziZWgihXddHh4uoBkwxBAVzSM5hhrxlQGZWhaYRzxxypJsaOkgxApr3nBEUNuslM8zbRcOO7TscEcjwHYBq0CVt3mXcuttE78dKpjc5eaxX7n79WGF5uwUM28Em/Wk5ol/gTiY4TqnKH3osnl2QgfyBzSdYierEz9nXpKsYVqBgAmY8Wdx7+NYnX65Xlpqri8t2XccogiiGpkJgnp2Zhij1OgABIhJAENGUsozx3vuiakVDCE3TgCgRHR7MDo6OVtfXvpgQc4xRRAuXETbIDGKMbdvmEAxRBb55K2HwWIzet/e82aYOUg48JkAgkBFG7lgs2fYe5JbcBYBOY1Tcjm3eIlDcuhwz3usQrpWTk5EQcWO0oK1D8r4q0amCATrvzayREJDL+yfctkUbZkfT5up8vbosp+za62LqRUIbg1GbVKhKs/lknZIv/bI++9xnPgtw2T9gpPPuCq3NgbEuSOzReXAOep8DGYAJ0G7tqRvbsATM+h0C2KzQMQvYjNtm1/YG581+6+/9Ru7Qn7oNUg0AosZWUkgpmq7rZGZAjhkQ2YwMEA1UojNkQkBjRjIjcorKymK5Qp2aBSJnhGYGTeu9V9WY0iCA67bJVWTNrINnBcgjr1Gy0ELMMMZoZiKSa99mPQB7k1dVRbsUgAynPLxUVc3NRDWppc59DYyIra3Y1BED46EuEjEiI7mUEgBQlzlKG3Z0y9SMfx10rDxlKoLZPDWIUc2sKAoxKctyOp1MmjKEFBnbtglrK6aOVYlhOp16TNOyKCtfejcpS++9A0MyJIxJc50LYsopvKLw8uXLH/z4R+u6ns6mjg6n0+nh0cnRycm0mhG6wvvCV1YRER0eLj73mfdfvXolIqu6/eCDHyWzk6OD1y9PHXN9da0FHR0vrs5O3zo5PKgmHMNyuSwns+aiOqtfiuliXgEysMv1HnKCj+gQAUe5DEROGzc1dgVkXkFJoiZJIqIq66QhShPD+fk5GKnatKzMLGBsmmZ9feUmZUyhYCdIzJxiqKrJ/fv348Xy7LwVEQNXlkTJdwIYgRliFEQsSjfQRnaBZxFMRLsbk6OpHCZx62C/FYL9r/vUMF65bgPRsE0cIgn71rmS9oTWPkntHLzD+jakAbwwh/50j+j4+e75Y7AxBADssmsAo2iLDCYKyMQ+n5DVWdSMksiAXcLdLZppbyCamSlALhaa4ZQNBUk4WltOZxKB5SJKHcB8sfA0rVsww3a9vLy+qiVVE7TGjhcHq0YkV3SF1rR2vjBgpgLIIkRy1g1hOV01zbQoQwgEGiRh6R9+6n2rA6MDgOVyqaFlgNA2XDhJriqokdUVNGuxA5igWEuJoewGEjuJkv0wyRQQiTiX98g8hTqIVkVEY2BwgqgkZqagaEBAqopq0m8WS1JEZCLIIPUGSIaIKp1lzdAVKoEcXkbEzDn1F8CYqIubYY9MZqaaMnYsDGU1EYE68jfu5qtCAosqAQwBGMyDGSWbmVibRMQAhBzMj8vqQESKk8LMUNRrBItsSTRKilMIF3FpJR88fmsQwN5leP8bJBmjGTkzNBTT1gDAH2p1DH5hOFcrwTyAZsAnAw83kdYODW+p2Bl/zwCZVMUIQQYC7+OJRkVgUDsxjF19lswZVDeFdyBZf7w7H7B3jAx59znhDHpvbd8XtBEEKQGgARlgv+oQhxWdNSdHNiG+TCDJiiBFSFERl7GIskY0kBBS1gOI0BGxqU8JECOREG0Co7znLMsVAYERQx4BdmVTN2MxDwDn60vvfQySMigVUEop57Ojw96ZzBasz+WluFxtxnykNTYigwCGDNqaN2JXK1VFIGAHRiKiIIiIbctlpShHE53E+phiHblymLAsiBwBgQKyEZoJ58AuREOy7P0xQGCjrRirDLnVKUzKTIR5gzwF0FYAozrV2KzO5s6XMvMQ2rieTqi+TMtlLAim5SzV6f6j+/ODOcQwda4A0BSk8IikomwAQEC2aurFbCYSz05fnp29YsDjw/vzxcGDx29Ny2pelaUviABIDAFIzUpGXF6fAerBzCHywdTuz99/8fRFMamKL77zwQ8/VJ2+enkq7Wp28HDZLGeTeZtaM4OwXp4+AxVLoXWPvfcMqgI99zYySG2DiIDcxTsjKoGYkVkb6mZdhxBevT6jYvrhk+fLJoZ4fXl5WTcrZjaTul4DwGQyEQiPHnwCxV/88Ec//zNfWJ/XELSYaNBpCOuS4oHXScIJTMTR0qvUMKl83Yq0WhXO1CUI4GBROdHoHaOpJWFmMEhm1HmJ8pLZLOc+gRutz0vvVXmHiIADBSIhjwMJd/iA2z96GxPZEfVjat6xh3DL1bzbxtZGv6pHHTCDbaCBMZ7f2Iy744bD5ywPfjobIF8mIkRsSGqWeqNcUjPxC5N2vXytuj46fvDkavXqunl5fUFox0eLyXzGLtUxXa+uDFJZFqlBNFDc6C5EjhlFpSgKdIwt5KqW6LzEtLq+DiGoat00WU1DRFUtSteapgivzy9fXSxPqrIEcogKiqBAqFmXMDI0NeC+mGD/UBq4/PhNu2q4ZpICDFaUGQ014DYYorcaXoBgvdBQlczMERFgw8F3RjjbkLlrPQGQog360BC1nucyWywiCRVy9I0mAU2YhQRLDMv8vh3YukW1KBYzuP/sYOEKP3Tg1mzxbTsyi0tCR+SAmRwjZcaafTn96/9UbefCDlsqg2H1YO7ZYXQjHY813UztN64FGHky+q8Me7EnN369TbFQ1ZRSElHVpFCntK5bse62/dxxBl2T1GYbNOOMDegflDYuYiPEzTZtY2YKZiMorPNV41CSqlnOIbAk3RutUsiFBMxidgwROe/9oNAM797rOBvHr43DXCSogmlG4MpbpkZE1AoVOe4aD6uqEmxJIlvr2pKccRctBZb3Ae928HUDOLwYIhqoGahpjip1XBCRqq7TeVWdNKvkywuoa4kFUjVbXBAXhK4qJoAKmjQly3kQuygInZdrMZvF2F5fX6/XjePi6GAyOzw5PnngnCsL570HgJQSELuiIF8WfpZSEkvOlUyYUsIoHui99947PT2tfPGFz/9MXdfHh0eqOplMQqpBxUBSlATOCld4j6XTFA1BewbSjTOyxoCKZiJghEwFozEi+IIvL1Znr0/PLy8uLlfLJr26uLpaNnW7BLSmaXJ+VIypbds2iBmu139wMJ9VdPDNb/3oy196Lyzjek3okIjRmS+EHVjTChZMYCghxEzZISUFBLAU25zSCQCY62cCQMeyxksGN7LmprT7G7nBPrMdX3IXEMdw/ceQ0ugZAzsYOnoH1xiu3fp6E3/vMeFsQ1tbMLuUgYozwEKHsj1wEEREzRzMRkglt70KbvbeCECjqEMCMFEQMMfMTB4BAheT2MqVw+C4fHnevLpa1yDOcDGpEKmqKipsVS/bkIwYkQGQGQ3IzEJI2T+WNEyrSc6OV1Uk80WxXq5Wq1V2nTVNo6q5eqCo9iB5dLVKp6t2reRiKggdCiIyECAZEhAaghC4DSvsBmN/TsfcNkjMzIMMrJ/EXgpirgIGsEF4GqZP+22PbvZpOAXNwEyImGjQzLo0pCyAhywb67wXA6GjSobEy5cYKqmIJhWRzHdEoqmYGZgAQNvW2G02CwAYJNUkGglRCI7vnfBIAI+pcYdcpVt4XQAUIgE7ZAfsCJnYK0GnlPQA0HfSVU9eG7/27k8bGTDaJ4bNgtr1OeUZGQQm9B6wzvm8Udut/33DIMYvns/ZgEl0lLArxcfiGQAw18AFUUtiGiWtQ7xqmqbFnkJyaTkhUmav1g43wa5YBZhZxrvrFMS+mGN/JKOVb6yHy+W6rfMoQZCkkl+TFKAVIYpZu02xg7jy3qcQc3pJr+V3f7ELiu6Um+75CKXDjCgiBgCCCMzIjNoAuCQARRHrgxjYpQgpdpXKYItoAckN5Zjubht6yONgambEzjlD82ZWtzyZT+rVOZJk9wYRVVUVAgwQCGaWUuCp85zxYZVMc2VMRIQceSGpXq3Xq2siun9ywm5azRYHB4cdxYkqALF3vuSiIl8kMSNmdMagBsCGvkQ1hvZwcdA0DZHOq3Ly6N5qtaqq6ux8ySiEiB59weSyPAVJAUHZzIgBkYk0K/qxBaBsFgs7RkIlBVidXb188eLs7Ozs9KIVefH6UtCF0J6c3G+adeHLEELbNkSuKHC5bObzaYzpo48uH91z3rlvfue7bz24r+o4Chgj22RSLibF62UdkjhXCGlKUDgyEzFwDhlxVlJREqiZSQ/EpQCAN5VUz38FZCQpNr+aWe/Eto5N3pTINDSHb8Y4biSdnWvHa3Xnw0/RFIG2I0cQ0Yyge3Pr3WqD/aSjr4OPbovLGMrItL7hnfpLGDt/AnvPaAoaqcMoJyDyRKuUPBAIpKa+vrx+dfpR3a6TYGxVYlJtgMqcu8u+EM1wP875gpVdk9o2igCiJksppbCuYxuyRHLe6uUqQ+EYgCoAExGpGREnaQ2JfVknfHXdPL9aRqV7PKvQiI3RABUNLIc4gA3QoTsjedvUFM5Jl+qRRZCo5pI+bGYZCDpLuF4Yd8CG2MvggQ11pgZIFuiI2MNAdokfI1hQIupWo1Let6bs8kHMCZ7SyzhRBUBFDaoKlkyjpJBSSBIzK8zW/MBrDdUQWklAuDg+IuZBi1PY2q7eGiLo+BcBAqIhIzFSAeSQx1t9WeOl/Sj6N9FcxzMydi30YhjHSsD+/W5iAVsK1mBmbVbrVsY83ukFuLmfGzbEXfC9qiaxJuo6QIrQj322vUgNRFVGUipnZPadHPIvu7fp3j3Lv+0KEKFVEUaEpBqCigIRd8VclYOI5ToKRmaUzEIdMsBHvpzygxHBgABNBHufUIbqZGZTQsj14g2MkAyAzLJzGPsQk422MqQfDLbmjsWzr+zuH4TOydFfiEjE2bl5fPzulF+trp/zuYcoInWMdbNmgA60vCoZDUCF0SEZdZjtgl1+fteadi0aHRfVpFzMD8hVgE6iIkREJOaiKB0XRqzJRNrouSorYAqhTZKIiJymlLhuJ2WZQtM066IonOPCk3c4r8qydGBkznIJcwAQA4KEhmCSU0mytAdRi4Eop+QjWLSIKZhaujh7FZqVxEa01WSEeni8WCwWqnry4MFqdb1er2cP7qmm5XL54PCwSRcmxzNvV9enIte6eOCofXAfwzIRGxMUhTs+mLy8WjVNNraNAdBITQkBkarCv/Pg0DvSGMFyFuVQl2V373U8j72dOUxrlw/Sf8XeUh52WgG6e28I4yfLA8ac3HeT83nnw09sEPSfx5at4pDhPo6CpgFKcPw4G1lyOa0QTLHr5EYxuf19Oy/f2OEAAN57qa8ptQUX4icpqKXEBn5RALKFIjWpXr5APPcU01Kr0hE6ZB/VLi+vQtLJbCYaVRyQ98WkTeacc94Tkc+x0LFt1jVjlxAOitk+DlFyMSEiEu0RWcnljcf1qv3w+WtH+t79BVezAqEk9sygaqYYBU2BVQwGgI68l4+jQkn7s0BEoAZklreTDRkxmWX9sNvvyCZEytUFe56CAAbWFc2GIb0SULWfPjPrA7+yCgU53YKIECgDQ+c1Oab6fj6s04osb7xkMymZJpGYwzpEIlNhCOgoawlgCkCKZhZdVc4W8zG4P3W4mVu0NIzKlsGHBMRGDEiKNIgvyCuNcGzx7IznHZJ4xyUzImAkIlPoBftmZ+emru62HWVi76kEgL0YzuiMsunPnlZ947N6yIvuqm7xQrdokbqOd3qFGWWFBhABCQihq0+ASmQogx6TQRIAzKQz+sfvoey5A09lQCYCJlOIaowEaGqKgMQbOMkCeWsorEO2R9d1fohENDNmFNFhECznrCcRkIIckCkIMTIDkQEmA2EqoA/sYnDdGAwlxUYjtz8jWwofGVrO1sMuhcnMzEpXTBbzk/n0tKgLQg8QiQDUsaGZaTAoVJMBEqNJAvCU64FCLsvbNUI3qWbsIiKTL7wrzcBUvGMzQzUJIWJEKpwvXVEVJJbWGhRSy9bhYDhVdu76+rL0xbSs6nodQ5hNyhDCfDpBxChqqgCWocsx794xIxF2hXBNJaWUwNQ0IhIYSspGeEwphabOFYvn00lIdnBwcPzgMQBW7MxsOquqqsrDq6rL5fLFxdN6hZfXddKDjz76KIiu6vWxOSIy1CjmHM8n1aIqLptaRdi5oogSQADFQFMsKvf46BBRkcwErIsH60DXx8S/ta4hTxHAADuECB0ADI5C8eE2r2umkJ+mHOFYKdhREN5Q7n7M/Tu9CKCvhbInOrPTcp/F7JohBoIjOwC3XXB3NATOZ7bNMl6/wnBdTBaM9wTAzCm4NjWWoL5eri9OX7780fXq9XKlIvDlL//sug7nyzolCTEye0QWU3YFU4HkRELMbivUpAwKMbSqyl3MvIUUk6lGiUlUFZgI2VCzABYwREJJktLp5ZWkZtkcBy7p8eIQZo4dE6BKp+er5CpHGVa3F4GbXeE8XzTSmUyViFBNWExQNJkpdRiYpr0kGEZyBITbQUt09+yf0iuFXWDROBcslyKwHPWBAAZdLsfIzIoSM35C5rCWVFJS1Vz1QVVFwZCIMzRzqQpMHhEVJHvWTJEMIthsOi3LckyiRKS3WYDZmQfYSSlEBA/oFIg2ZvPgZt9ytNy2aMen3eiChrEw6+zA7Mga5wuNn/gx1IzY7UbesEKNbBP+xkM0+LjnO9J3xFMsSa4PhBk7LWu9iKhRkQBIsnJm3a2AOQs6IELsfCeaw1rAjLqtX4UuMB0ZCAEBUMYKioGZiEhKXcFhUE1qImAWEMETAqCmaGqEwMxjKOnhvSzvsBggjjTFTqezHqOt9xtlNw4lhcxHNDveh31lM5RkREpm2JUH/gmcH8OrIUCuWwCgoAYqZAJRS5i9dfj22fzsdC2rOCdiPrjSyGZIIJraFAyES190G5k2njIDREPwULJ3hUgUzVCdAEgOmTlJUDNC530JYJIaSWGC2tR1SIm9K4qCiBiJma+1dc6pqkoiIjbLJXXJF/lpXUlyJIGeKWQNT8BA0URS0hgQEyiJSRLp4MlUTIRAS88H8/nxwbGAzeaLoqhSSmw6m82yN252MG/bdrVazY/mD09+to5X3/v+B6bvVjT/8ZM/0OTOz9z9+Qy9b4KiWOn8QVkyrc0Una+wWkcFg2TKBrPKL5ygEW3icHNGmdyEPrehojzAO0eyJrc1s7dowx9jAe+cerdk3eiMt3+4sfXnjD8PvrLNaYrAuVYNDjkDGzsYkc0EkTHHK+YCzmO0I8p8vyvxdttL3Ni9GJtUX8DyJTZXHshXx1pMVKTAttC11S9jfbq8WjYtRoNPf/5n3nr73R9+9HT56nxZB0RG9pfXNSJOKkLmPD0iopY0aYyAxiDKAAAqAoJgMbaSSDv2L6oZFyebdDFp6Z3E6AgB4PV13RpeNmrh4Vv3j969f3QycSWiB0PoEjoGa2AYZFUd9hRxe0yyCDQDBE1q/a+qkqwPq+myLaAT2DYyqZEw19FC4l7GE3WB2dwDEG4x+szWrZfZiDR4WRBzgcVkIhkITFWz5zABKqISg0Myl0OyAcBSt0OhMcNEJLCIoKo6m812SJEGyXYnNSCiIgMSkoOh3vjoVwAeQKV31ttdluheG0vx3f7YTs6u5SO3uXX2z4c9g3v83H1L9+4lz+wRs4suYwaSI0AD8g6gL2mfF1wH0NLJYu3q03WIGf0PkjN0te+scec6HqPqGGpOD0cGJhRDETMEctC2gAiMGd8lVz8CQB2nuyNuqN3Msk6Qnz8EJ248OmZoXUCFKuT6sdAn6WV4COxx5TYpxZ1NxLf59gfysB3urtgV3TJDQ4YuUX7Kcw7x3sH8aDY9KNsXFzFJNDZiYegy5pMEACsKV/ounZaMjDJKYK8QECMQOSocETlVNRXnitX6mojKsiyKQlWuLpdXV9dt2569umTvjDDDfWTRbmYP3nt4eHCQ6rbwvvLelaWYFr5KKTnnmBmZkExVwIDYGxJYDtKIjIamlqJKIEgAJGJJUjcSKqa6mM1FZFrNMjhgUfgQahSpplNJbR6fq8szZp5OCjOrV9ee4mfeefub3/7o5GAh6f7zly/PXr+cuZNZcZ+pQIOSbVIWpXec2qipIPAemTixzibw3tuHpatBHSISEyio5pAIHjxD+63nYz219Bpb5q/QuXCwT3S8hclkC/g2HjG2cW+8eF/Tx1H883DhjTL4Nothc/y2Xr9pG0XP9jaZ0dh7vXt+71PsxH/+UFaePUWpU514euynJ76cJNFwfd1cvnzx9Juvnvzg9PTy8spWLfzM248ulsur5fXV9XIdJAFrai+vVvfuHYmYL9g5570vyxJQRWKMSaMQQOGdqSYxJEqmScwDOMfoOLXRGBx32RrAxMyiLRAaYjS7btI6XpbQrEPrHDmYLko2Jq+MZs75XnB2OSn5q3Mjy3U0w4yds1BAVZNq5qAkG5Vfx+XTQXUIVeiZS6dUmfWxDD2nMzMzQXTjSR8EMCLmrNouKAs5x5u0bRtEVU3VcilDIooxIaJzfjDKuz44MZOUEqS8cyyAls3vHBM73o8BvbWY9NCw390hIsMOswlxK944M9Tu8570vVGw3RhsCKMo6Fwjt0do21qFw9PN9m+z9fQbV+jmdkaAu6tvIIrhvxv76V3huMgz5whyNR4wy7WhFARAsUvByXqVDcXctY/PMABHDAACmVyI+hcwQCRUsHFBYGVL0SS7dslZsmjJDInIFSpiSYEZyDs0TCkFMefdOJdpkxQh0iujZmZEaAaiQI54MIV7pDQiYGAgA1QiR+gQmck75xGViPLeEIxI+ic1gTHXj7SuhwSaZbDVxXr1pOBQwHRWWFU+TyqKlWJTOA8Z6gQUybL8Y3MDfXbDDgBg7FxUE1FkMtMkCQ0KAu+9c85MXrx49uzZs/Pzy9IXB4ujh5//wuO33vJV+fL1q7OzMwDQJNfX1z/+8Y+fIB5MZl/64hfr5QpU2TkiZs/EKKoiSVUR2PuiKIqYVSSzzGAJAQkQIUYxlB6UQTPxoIkBhRCqaioxqYhC6wDms2lQm0wmqhpCyEEeOa35aAYhLIDky198/+X56dXl4vggLddny6Uv58fAnhU9YVWWVeFcjE0bBNBXE/a+1nh0WL33zv1Z8VrMiBxah0mMuAlAGi2QESnqDULNtphAJ4/NdkSojs40pyOs1C2sBOppCHHwK5qZA9ysCIMbbfS7rd67bYKM2g0ABAzYeRrNwLqEUkBEIwDZ1DclAjNSlex0youYrKRcbxYcGCGKmmgiGrCjR51BzBlpHRgNZH00m1z2mE4Yp17qcyzSkV7o5fXrH3+YXn/v1YuP6rOnH714dpkoOvzsZz/ppF03dXP6RNvaHy2aJaxfrA6n1TrVzhUH06lzzq6vtW3SOiQ1MMbK+aKwJCm2itgmUYGiKGNoAYANctpMl0SfhAya2HQ7VwozLtAARb/x6mpJPpGL8eQTJwdHE1ZOjhjblhwDMxCDlQ4JKYBGVR7S37sRQUZkyUEZhESlJ0ROGFpVBYeQkiVBQ1NRVHLmmDuvf9ZeEIAgoSBiBuUg3mwxqqKZIQOqOOJuyRKJmah45w1AMYfJMACYYlIDLLHgAosUWhTJ/oMoyVyXqUwKBqIdMjBnoFAGACUDSEERyPtiXV8UkwKrsh1ptaKIbldZzH8JEuZ8BCLA0rgydsCCCcAJsCA6AzI1RCNIOxYz9MJMZNcy7uEjUFWZHQAIABqklOH30BT7nMksp5EyiwXoUY16kNzd3XwYwDVRBw228xh1csdyGNFA9mioiEjKuX5zN5nYLW4HGTaVKKP6QJdML7JC9YQT0XPjlMREXUyg0hIRE/QxzNChpSJCz9IGxCsAExh8M5y5FQKYdvuvO6iylqxgLyBBRFM0QIcY0WIUZAICMEtiINKRI4KkNMwFGYBBdp0zEmhP+L3ZQA4tqfZhVWag2ctgRmw57LubGFC1EFNzgFMzS5YAlJUZGckpGCJnfsWYHemGlJOddbOnMDKShcnMEDWqkGMEp3WakNP1M2u0AWjq5aKStw6qs1VoEwpNktSiUNHs0eLwncP5QeFKnAELECr20Q09ZaskBnCEIjG1CdkRUd2sZnR4fXb5+vzs6bNn4Mr3PvcLXE1fnZ2vL8+/9cMPnrx8vYqyDnGxOETDw8NDcMcHBdaxXX/965997715Udbr8+li1gYDZEI2YwR0zjnOuWfgmFNSQATQEBMhRgNkJykRKJGFEKIqsyNPYlqVHiEZGqBxOXW+WrexoK7ghxpOq0lo6oJRVVZSKgi6lqI9ODhZfHb25Ln/4Y+u6uVpe304mT5mpGRNMfXV3NvFslJIyaRRW0s5hU+/W8wnxO4tiTWqAUKeN1VBREYnlkaLuvdeKPTQp2YgvTShfkcjH+B++AetMrduLyb/fdM94Ltl6v5p+9r32OK5WwZ/7AnjNtqJ6YL4R1bOVhZ/1uf3DY/99xokNAIAJobprPqU4Duk6bq9uLr83pPz3756+Zv1ql4FuHfPvXP4PpQnbYur1fo6xpQSA6xW7WqJZtQkICyqappUYh1DCDGlpELkimpSzicppSjqvQcg4NiGGEIY/IxjXQH7Lb1xt/M7zs2dvTj/+mrdtq0QvW2LI+fmDtkjqOYQKuCA7DqMCbHhntaLYCIQyH5NBLLOHHMMCdCEsjRSy4SYEzCGwGbMZ/e6Te9pHNwyW6MtIhmnkMEhM/ZZdYNiaGbQC2xijwZOTSDkEA8kzEE+2dVoigBqaJzRLdijAeZ6n2qqSVUdMRFRBgzpW44tH77aeGyNsuaumnpvPYE5HMFHj2dhY4LvGZ033Hy0Ijuy7E1OeOP2E528d9XYOwXW4WDc0Mx2kfIyqSQR1U62ZTJhct5j0wFp7HbP9ug2fx7KE22dZpgD3brB6RsRiYhZP1RZJSFEh0CsqpI2lkf203Qpat2ddzmSme0kdDLTGGVo8C1LV+8YevS5jtXkyAYbNRiRwdgUvqEDe+PTXWW9qU4E7I7uP2jWV94VDkJVFPeK6XWdooQELiX1wKXDwpNjMIh4a5ZHB8IDhqYCospkZq+b5y9fvG7F7r37XkL+5gc/+uCjp9H0rHVf+NLP8oPFf/NXf+2d994PIb54+uy3f+u3vvFbvzkv8Y///Beenb1EffH5z7w/W9xbrS+Js4aSDAysC4JDRHQlOedIcw8wr19EJs5DJyJJuwItIaRk4JkAkJmKsjDgKDafH0w8rVYrU5lU1fXlBZoIkkMi8ipRY4wxmDIiTCaTw+MjTafsADCoOiIjYsdVVZa1tkQQLCHo4QEsJgWBhrrNyRfUlxhBG3bExmy2p+E+SG6HmHfEzc607jfsYDverP0UMni/cwNdvtl93rRj3fkjVKOeDWzyX61jrB8j+3FHAFMwI4RDLkhjHSXKZFqcHL598D90wFKDaClQhJRevvjwVJ5+dHrBjmbTycW11tctJMcIU3VtjOkyxbZZr9fJFB1Pp/OjkxNgXK/XDCgS2zZmZDsAGLCdP8Zh0L/7RH0L+vJ8VevTNcDPvffepw8PyVDUvNeiRA8JERXREAXJZ6FlMIrEMSLqktA1GwQeANgMgBiSGSIoKKqq5QQ+kV54MxEYwBB0ZTYgE3Uu3E2HNcvanNAMbIbGigqIOX8RQRFIQRkox7eSY8yVXCHm4CgyZ4qKOiT4c18WEBHIASmRganGkGEZqHQeusjnfrod44ACsU2upE5RDRSgU3IRmdBnsIgcSNz5l3q2urMCxwTfm01jvry9VrPE2LNn7yBU2Ncld08A2NvH+Um2pHttqU/WGu6pQ6IkGlHeASUiYvZmwcxUuxjjHQ41Ho0dVrDt7kOzG6qLIqJIAkAzNMubhlmOIaihEWHn1NxI6BEv2lawbnLR7zGuTW9H3GPQOTahD4jZEU1E4x2Z/SG9YzkTIEEXLKxmRMjMVs0F5HrVVtU0qpOzS3C0mBRtFAVuydhsWvC0coUjNM3eIzKwLnUtg82BYupSDgA6mjcGs4vV68nRpF6G3/ve915erMVPDt9678uf//xnv/zH33rvE/OjYywK58vFbP7//Rt/8/e/88NW3Q9/+NGLZ8//yV/71Weny2py+ujefD4rEwSxLrOoK/yHiMTIxL7IXv0U2m5SCVVEJKaURLMe7xDZLJbF1HJhKEQVFNM21i9fnhVkZjKdTkPTMoJ3HjQ19QqpAFAG8QBKQOTn0+nBwcHq+gJJcj6/qoAqKhAVZQmIoYZUMLz3eH7/cFYwigZ2JY2gQnBPg9xvO0Jtm5zG6uYuWxhT/k8WBb2vDr/RJZuufHzLVN7bAuPXu/lkBOgxfbivKkXdEO72nOGNuzFcZayaVDCAc0rGdm/hv1JNP5XobQ8KcdmsL8/PXyxf/5AXcMRl+VLv3z+aBHcRr9HaGpJX8MHEWtAUQohtUFVi5wrPhRtyhPL2RpQBiaLrwHh2M+Pe41yZdWnhqoRyuWq/+6MX2kp89613H9y7V5QTwgNDNOWYQIBypZQxpElflkc1IfduFkRChLyFDMDGeevNhj0MBQCIsc2ct6soZ12Xsosm28FjUaHSI87nB+ZXE0FkIrYBccKMcchhZwAwdmBKmNm/guTQZALMzmbgnPeMBLmEBjEjgolpQNXWzHvPSGnkgrZtRXWbtNghJjTIxQSQmQrCSnOs77a9aJgxum9QPUc3xPGHsQze8PfRyXcIyp+Ihm+59mbv1NDIgEadUARAoEGIIiJZp7GN6hICDHK3e9agKDAgAuZR6k82RNxA4Y48poio0h8YOWpVYIgy7f9mDI0hyrB76KAd9h6arXEbawDjX230K2yPM3U++M6dPojb4dq8kKkv4X6r9L1l6ogI+5ofG6OZ8PDk/uriTA0nkwliOSvPrpvIJRtCAgAkTzzxflqUhfM0MqqpK1DWU51pH0CeNBkAmWjTNC8uXj59cfH01bXQwad/9pc++3NfWdy/N5kvjo6Ok9RN9NPykDD+Z//JX/9P/uZfa65OnauOjx9enr/8m//5V//Mr/7x73/4kerJzx5/sg0tmLFEZgZQQEV0RJQsl0vDvKmumJctZhS1GKOi9a5+YldgVxONm6a5XjaXy5UBxRhFopnF8ERie3gwe3B85MwmVZXawM7YgUeMZohQFG4xm4f1FITJIaCgtaJt09RtvZ5MJikFRJhO6e1HR4cTV0APmG+7ixRGUtasm/3+V7JbLOAslHZI62ZieBMkrJ+0/eHvhiNLYuutRtnAm3M6musT9jPk+u5Q9iOIu9GJOyMI/cjlRUgGlusLMCImFUziyB5Scc+q1MYrwOWqPnXzuEiLRydH16cnk+KH5f0DuUwHs2JWwXIFRGm9boIETywaQcE5LsuSmbMvq67rdl3nqLnCkRoEUYdbrs67XRkA0LKpNIg4d0W8br599YOL64vPtu9/5ujRvYMisT8oqDTwAqzGjMkpdr7P7BsAM0W1Tgr2A0JEyo4NDUQtdOPSVQS2bOb2HHUToISj5EtVHew6M+sy183EuoWISgBA6ISF2ZFZl9CCjAY5mloBEIjZGxEJSIoDdgMQkFiH4idAxWQAWlIA51zBHNlc4X1VIpPFdBsBbCmqmAsYsyEaOuaSuNSsLSH3ZEKICtBFVO0T543aZ68w4VhaW7+7eNv8/lfXum7s2cq3tW5/cdfDnD2x0sukvdImezJp9/VhM2jZ/B2vx+E+zKyqkiu057UuPXT2SPpuejuK/8eRjB93bNwlHCm7WzzENnbz0LIHVftGRKoK2e7cq88Nd+pV2JvXOTfdTC1jWLErJ7ODg8Ory1Ox9PDkWM8u6hAcGJkxUMHlrJiUvvJUoniDDeFRTuRHREQBMEKN2ratRGX2bdteXVx++NGzy+vo/HRxeH+2OFwsDpjL168vnKdqvpgyRG1//md/7mu//nfV0tHRwfOnrw4Op2aH5xeXf/93f+fXfvlnn7989qn3jq0oTKJZjtVRADEUy7Hlo2FDRETdaEigRC6PJBESOwttWU1fn569PLu8//idiv3ldW2Fmx++FWML6+XU0asXz15fPiGVdx4/WlSTwsCD5eQ09EXheT6frS6PEQpERlUgBUsxLJOIiZiac/DgZHb/cFJgRI3sWEyGrUvE3pECQLcWWdGbXFCGeMP5d/BtNz5jvPxv1IvvaLedPFIZ3vg+N5gjG8SfnQW2rQ4PvCwziZEUH9ksN3Zm57abmwsaeDQHTKpBLRo26kRWSBq1bcNyXTm/KI5mVr0+vbAkNGVy6XDuT478RYwJoambCACYY/K7W4cQ0rWGENq2NdXOrkACA7+7b991ZuBZY16fDwZUAmMDp0bETYCPXp2dh3h2dPXoweGn3773zsnhSVXM0TEgiSgpdjG9GzR/MyXtTBIGyvkLjIyMiBMxAqu1S6DMaSRCDKqSJMVkhBlipCTa+J8zRx72g5l7aMwOyYFAiYhMFQE0xw71UFiICBAAOEv0jociE4li6uNZ1EBEopliwrIoFRGRVRU0V2tMBnF+cuSrUreSJDMS1g2BvgagqJ07EJmoAlcYOyAmctCxURqBhtxq9e7I4GHucM8C3qfMXjfaWhH/FajLA7Pp7rxBBzPQIXyr80d1e0MIDH2lP8xI9Cg9wugN/irb4KFuZNswCIiYp3ewaxE5B06PRVY2f1Vz5EdnZyBi3giGzqnSPYWIAFRkV3MdVEgYjzD0XtM9C3i03LZ8TuNn3Ti2N1lIW1ra+LI8FNh3I6sjCrZaraBtcgi5tu2sKo/mc9+2dbMWRfY4K8tJVXl2OXSuC+znrucEXQ1QIkZ0AFQAijdmJvYhyi986ReevHgdwTXmv/eNf/Sdb3/zc1/4+Z/7hV8i80eLeyJ4fnr9//h//sf/3D//P/viZ3/uL/75f/qTD+9dvj49ODk4mEx+9Y/9slw9WxxMl6uLo8PPxNBoDL07T3uQne67WUI0yj4QDTG0SXK8J1n2rRABILL/8MmzanY4uz/99o+e/cEPfugnU+fLVfNB09T3T44enBzef/SJ+vKCwL7+wZNPPb43n/ijRdUFU0oCJEdwMD8KCQlQQRiNCMyMAaQJhHAw58ePThYlccoGFg3yb6x5DZTQE4P2thzcKGjvmP3xRI+/3uWC/olk8A6J7x/fOeEnuvMd3G0s4Af4wMw6dldajuy4RZAPB7dXBSAACBmQCZgpsjApoWkTPGMknk7nZMokmOqAp/PJEZ/cO3gwXZ6vwPGZfvTiNTjwhQfPrJpExJKt0kp0BQACVlWVc04k9kOHRVGk2I77OTIObH8AEZGilWVpKkGS8342P2hivHzVfOfi6cvLi9Or6+cPT945Onl0MLtX+QnDxJWQgVvMdbSFiuiwh6aCgd/kHS90qIAGRiFH9qolAMqmTc49kK6gDxLpEMIw5lyb11HFvoozZu03RiRCUyIGTATMrA6daCT2aL6bSRMUzUj6gEDYpY+CKZiYgXbbj52FYmYAyqgP3nnLTcqogo6HVDTErfKUWyQKOf26MGDiGbupOaeEOai1A7zpKG0rF2gjX7edFjcuihHVbcGP3HHmPsXCTe02W7rv1e4dcgWPcZrwEApke09RMMcOgLaRX3Uwv/pNjB0r+eah7o/s+Jazj3rv0R1uJeVYAlUQVTNkJBtVgkPIalKHsZWP622DMpjON1j2venWJQjt9n9HpRgObmgAt49sm/6wTSGjsIlO8XDEy/VS16uTg4WvaSnxcDGbTCYvXi+TKFExm7hp5YnNIFpfchHUbDQziGhcqmpZFWU1V1UxkKm42XRWLd5+/E5QuW7DZ1pdruTpR9/967//W29//ssP33nnk1/80pe+8kvPf/DBVz7/hcVkeliUVy9fTheL189endy790u/8kf/07/yH/gQHx+5spqZgWiHhQmbZBMFE1MxEwQjUJUYQtu2bfYTZJ8BcyGiq7peLpvF0aMPX59/58NnX/zlP/JP/6l/8uD+/cXB0Q9+8IPQ1t/4/d/79b/3taknqVc/98UvHjx498np0wfH82rmZ2UJlsDAJJnodFpqHQ2NJNcaZ4suBSicFBVMp9N7h3ONKzR1zjeQPNqAVH+rSrVNGLBZTTd5Vu4Uc8Pxj9kD/knt4J2733jkRmn6sTccK487P2XrKuM39Z6fLUTW4XIEvrFgMOIWlOBodQGiEipjUkysUU3NihSUpk0KukzoygcpJaXQykVbuLff+tT07bfuPX774vmrAPrB9fLF64uCJjEuo6rlKpgOLafbe5eLDeTtEOe8cy4mGXJX7hi9HeWjsAqTJbBEAGgqwFbO3CRJ/er0+uzy4ocfPXnvwb2fefftzzw6vndYVVbk+Kf+EYxISAaSiDpAvPEjTJnZ5+QU5gRdnJYmSYgDjgGklEQMIFZVNfRtTNIpCfS79GhgagJqKYkBM1PiLg415wqzqUYAICZVUBFUQxCwnJ7cexcJhmp9AEqc9yvBHIMheU7GR/fvUeFjW+fCLzvjeZNIAGBGKgxKdiW5EtibG5zPu228UnZk8I3zNfyQpW8WwHcHYf0UK/G2tq/A3RHRtdXtXqIw+1Fvsx9ebOOh3X3KGJJzuJWZ6TYCVxdUnBO1CLZ1m+5a5ux7MEn5iQgAfX3ZPJrYa602IGyM+AHA1hrfGgfHm9gFRBw82CpChrrngh4+aF+2K2s3HaTGG1vA4w5mDqaICuALBrWmXh1MC4F0fd0SQtu2xIaWiMkX5LwhihkYCWhvmdnOqzEAIHvviygpNREJy6mXNs2rMmEqSnxrOicsP/feOyr07Pn58+996+t//6u/+bfeny6OPv/o5MmPPnxQ4DpQAQRqbz9++9vf+u7FxdUB2v17D9H57BQxS+N3tM1mlQEAmiaRFAIAeO8xo1cCAOqqqU9Pz2dHj7/zw4+knPzKr/3pP/an/9vl4Yk6t2zan3/wNhP87d/4++dtPF+2TuLf+Y3f+dxn33t3BrVIK1qImAgiEqNHEozUiCIZKgCpuNBi29BiJs6h98yMbV07h0XpRJIjGwLyiTotwsyGYRzESib126PNdyUx7tVNGi8oR13Ope1cucX0R5Si20xgcBDt6Psjmrsh2GFz0+767LaS/HN3DgL0/hPLEc7ZnkFDHLTLPsnbVME6OLuc30KkRGaaQ32xw/eUYfHvKq0bXX4TwWYMZqhswQSACQsCSBDNRy+HbTonU/NalAtSUoXD6XFK5fHsXkVFndLyql4keudk8upqZREToSKpKgEUrgC1GGJBIG1j7KgolBC0K00qUZ1zQGQ9DHyO++xl18ANuwBa5bxRyg4YBQ0EUYWgKgtTFJHlMn1nffrsYvX9i4ePHt//bzyaHc9wVoomIV8wTxG8M1a7ztE2GQcXEA1URBwSMBM4VQQkXzG7IkmoG0whqjaIHTCTSFDVNkRCR84rUUpESR0hM4u0zKyIYAlzlqSqqiAYUxHr2pcTLnyIjUGRhAuBpm6Alt57dg4JTFRVhQomEFyTiSenEk1jNeFzrmbO6fLSa5xW8OL8pTn90le+jJNJjLEkZyPlBo2IxHICLDIgCxggo2NJwK4ANwE/EzdXN2OsPBTSJ4kiDrBHmJ3VewbcZgmMVmOfcgqsaJZz3rtYNEsGzjgwmWeTrrSkdaXz9gXGrpYJN7UhNSD/zSm6/W86WF9gkpGI88wTsiASgxsWePZFIxIgGkaNCUwMkZ1G8JxDCiFYB1oCADkPsKtH1ucsAeAgq7Le0Y9SH9CMiNzBOapucS5A8b5YN0EVrFsJ4IlUJHEO2LMcBpUlI/b56Mw82OZkQJBjDU2xg1fFHMBpGESREBiTCqjlosioFh24aEBorojEKFgiY4URdMZccOGQkB0yESCjSxoRsedsmUUhwFB2OXtQFAb5ZEBEhoRoqopgRFSn8LAoyBoszA4PuZ3eE3vx+hUlPS4/cdr8wbSYztx8Psm10koDoU6XQkiUOUOOT4eUmJwJRIhIbjpjUU0pqZIYEBQTV0AkRDmYMCI+OPrEl+39p69fr2N7fG/2s49/+fry04Xnq+tTED0/fW3WzOvvfeVzDw6ODhef+EIQioiGDhFJRRIQKpZ5tpOhATuQkH1uKAGtnZRvn15ekwv3To6e/ujsatkgtN/66u98+b/1Ty2+/BX/8MGqoHb9gsE7KguVf+/f+T9+53d/78HxyfLqum3ral797vd+HD51v6gOZs/be+8drLGOGmduCitlZj+pmiY4AFfS69fXCXUuEA0ez49PDtiF83J+wCUGXTkUBj+KB+w854SdEmYmakOpPWZyKQXcRPV2yRcjsXKHJq1mNOyIuluF7o7CPqxh3JwwvmQsaO/46WMb7um8d7d95QJ7BXj0dfxSu296dyPI5fLArEc/NkCkCftVODVZTov3xap189oR3H/rc7V8SzB+85tf/83f+u3nL16pgi/c4sAtL1rpAZU6rVwVESVXQe25OlDX893ozaFoH26S1aAHW4Y+bQn7KI9h7lZN7dEzM7lCLV1dLX/wQfv0+bPwqfCZR/e+8PDk8XxegLekYuvozZUVZFR7FUnCSMyOvetihx2zAAMDqnCkSM5PUurSq5p2HWLMpnGzrsmx04kTyOxGCD07dD4nP0UFNCBCAjYkSCmkCABRrNCSmWPbOudCYEVABDHTmNAEcy4vrSzFlFpGQq4SF4mIfDGXUEQRtDbWdQg8LR++/fjBO++9Xq5gm4A78iAHZogOqABkhLwzTkAO2VExQ666QoTkgPDNKWf8lB2DODPkO+iwk6xZ2+6PjHXH4Q4f225UBbqgRaMboSxHC4ZuMfg3huD21621v8UQ9pze48/jy/tft5jJcPJg6cIQUWXdpslgre5csvM4BEBA7aNKhh/JsuPekCjr/ZBR3yyjpphzLmGMOdGfmYhCm6AoBiMYVYlyuZobcqh23hcA9IaShbuwhav1ejY/UA3kyuP5cQ12uaqPZ5PF/KiOH+bOmBkRExDYljthTDOmhpCAXQ5OZmJCI0TNahxqF9NgyIgKBCpFVb3z9kNRMMIQmwkfeXYzFEa8Pz9k5unBgr2j0hN7Wa8doDGidA4AAIsxevJ9hJqBGaiJSAhBEhk2xQSYFyq8DpdNbImrP/Xf//M/8yf+9GV59Kmf+9kHR7Pf+we/KY2U5fzr/+Br3/v2H3iEqS8jrxTpcDZrlsvv/uD1o8nkrclJXa+4AmNKIYpkHLkeV04xxigiTHgwrwqmSVFURSkiqlSWPqSbFdntg1k7HdYg70/xT8EctlzQd9xxj31sdXFH9N74effmuyt/L2wS4A3KWvc339thMt1ahAD4Rve6qWX5BwKKSgYIahaXZ9ft+tRMcs3QogQkV+P85enTJ9/43W98+/t1HR89fvcA/frJi8v1tWoXrQmIoCpmGaeWkGBU3Sx338wyRBSoWi+drV+ag541MMEt3ro9zmVZ5rpxiExCorCuQ920vyEf/OjVqycP73/p7Xc/+ejeYeVLTgVYHcUzM5Jj9n2ZcVVDTFlBGOL8CB2hAEBZgJTTopqsl8V6vW5DnVJiJjWLbRMhZKWhKApC0eAQBwsgQzgjIHhGVC3LMoQmtDUzN00znc3EzbMFIwgmEc0cgifWNnjvPVuMbYzXCuqYAdQ3V4IWUttIOz2cvfvpT8yPD5+evi7KyY0za4CKuc5giVQQErADJoKC2ZOvgAvjClxB7IHcG6qH29LuZlfQlo57k3sWtpP+BvXR3oCUdzowuvmN1266NgYJ/9hHDOmwWSCNPei3P+vWts/v9p+YutRzGvyBw0/7PGo4Yv1/+Vzo1Z988hjtMyc15Rnpd7IJAMqSYxMiwJyZ2ackMcaqLEYrsZu2fUST8VCMuwR7XsMdejCzREam1fywXByFpgV288WxBHLOAQAzZ0euiDjOuUxbrLhXkkxNCD0CABCR64N7iQozE7McT4dZLyAQYpVUe1cUJUdJAJbMwuoK1m0Toyho4VrvThaPytl01bQYhUxATFI0UWQCYBHx4DMAGWofLKFmio7Lpr1C8ocHb5mk84uXZ5fLw4NP1WZ/7zd/8/1f/CPf+p3fm06Lk4Ojj65evFqff//b36mvlrFtPnj9/aN7R0VRiMi9e/eevnjx8vLyvtMKlo/fugemUWk6XYRwBQA5U07NYoySxDueFlgUUJW+LD1ABEMiB5oGk3Vgp2NVCREH0KqsJo63VHIS7I0kfVPb4Htg1oa2p2qLFHbk642rGnpf6H6nbdssvn1J3wBcPgicu9nN/iIcxNXuDfGnkcH9qOTe5wzUpCm0YZWdlk29LBxOK395ef7jJ89+8KMf/vCHT834U5/+VDWZP3l1FoO0bVTlJGoARCBmpkY5i4WRmZicbZvmRgQiXVAGbRxZParzWGbvGhzDUFjei1IQMejzBh17ImzX8cPVqxevT//x6/MvvP/u5x/d/8zJ9J1FRUYgSFkwEQFhEklJMnQ0mFjOl8qkbZBrfDok51xVTqfz9Xp53TTN8voSAAAkq1Eq0tSxXgtSwczMvkMt6CP+2xQAIIQmg2YgYozRUvSVIaIhqhmosak5Z4RWTes2agoEwXE0bSCoBqjZ1TFMj+fvv/upyeHClYUSz+YH2bze0U6AUICACuQKuFKukHy3A00TYibngQvNm8F5m/x2obIvdGG0jvbEg+2cZtu3ekP6vOPM/dWKnXMsLzfaX3f93T7+6Z0nuk8FRsQ+++u28enE3F33HAknHMTkTa1TT8Z3N4CsryKAWRccaCCj7VXse2AAgoaI3Wl5588AeguUENmwq/aEgIjMKAZ5QeUEQhFzbgvIqFuPo37tM6J9CumO5wLo28aMKSYSNCtdiVSt2qXG5IpJxZO2vVZV54q+D9nKVUfOhhfu2QUiYA6GMseWnaDYhbiRqIJZLrWSS2IgGgK0sYlJ+8yhlJqmada1MzSA2cFiupj7auLZWTJoxInEFFNbm0REIyiAgYhM1LqUDgNNpinr0yotY5EMr64u7p0c/9zP/9Lr07OXp803vvobi8fvvnzy8r0vfvETn/30q2a5ODkokH3BSDadTpf18uzsfDKrju8dz2az86vXq3pdR9+2oBJALQrFwhCYUYNpjsw3EVAoC/OsE4+OFEGLoiBCSWoKhiNteDRTvVI5nuVdcgWAXA3oFmq9uSEQWO+CvlFZ3lcnbxPA8CZL9tZ2k+07egjZx8hgGKT7HulnNdN6S4KI+iIVb9o6HBkwswz1ADHWzeqSOKLOUmxj8yrgub6qv/f9b3/zm9/8/vc/bCNMpvPQStNctU1yrqiKsq3T+KmZCzCzERE7QtJe5e6fShlFb0MQOQqzhwneWfkb66OXyvljijmcpMuZMUA1VNEZkACHVj549vrVdf3hs5cv3n/0xU+8/Ym5p4KMGSylFIQAyXHpqYt8JjWFPm/AEJl9n4QJ3nMWw7k0Smjb9Xod2tqGGohgFWbMbo+ur8gKAAC+KBCxrmtmzrmezNy2sdHTPMFowAjM7BITkVufhpCIqKxo3V6n1Cymi6Oje9WD48N7R9V81moSVSNsQitRXXHz8kAuiQt0U3NT5glygUSIrFgBkZEDJiQ2ZNgrNDYe/7GqunPa2LDb0WiH47CnvFKHhdZv9P6E3q2N+nuDb20keo0AB3k8pqibN7G2xMO4ac4u+5guAYxsQTIAUNkk3ebL+xHoPVvjW+QoS1VVExUzI2JTVOvioG6wIm44AoOhOpSvpgy6bdADeyEhGm589CHEyjORqmqM0VXToijuft/91x+6l9+Xxlt7MLI5RjTTxPVBVYoQqk2m07q9smAPH719+uIHVVWJYNu2IqWrCkaOITjajavt6WfTDUSGbrude6xA7srUaKf6NPXae48gKURCTikR4PHxcWvinKuq6WQycc6FNrZX1yLiCg71OrZrRnDOiQiKMDsJkbw3VQBNsbUUwZSILi+ePpx/fjY/Wq7Pr65feTf/xCcfPHx7ff68uW41hqtv/J3/9Dv/YPr4U5/kxfzR2+8cHMy8p5cvX5pBNaGq5Fevn52d48msOizg4HCaoDk/P58vDqpqaqgeCUHQRFXJeQJkhKqE+cQdLSZMFmPwiwNCizEw8x1VeuBmtSlzg82EjsofvQkldHkPTkdEdLc2Pbr4RtfWx6vtNxnBuvMZbYvN0ZttCe+r3vu65/6RN2nMpJABGzMKsGoIYb0M67NqelA4v67PpG3PXp//wTd+99vf/UY5eVhOy6YN16ur4+N7ZfLtullet12GwEg5RSYgQnJEDgkwSVeGjxABkJCIlLQLBOjhWob0nvF63n/HkQXssq3ZPblzKlCDsSI3UU5Bl6+X376uX9fL715d/MrR/cf377336OHJvCJQ0JSR5buyPCRoYtZJYFRIKkTkuQQA1WSq3jvv4U/8+//Bt//y/+ji4my1vEopqZmq/vn/6B/mfv7NP/flRJQB55iRiC7Wy+l02rY1Iq4aCiFMJhM1c2EDtItMwISIYrrgGqkKEV6sVjSB9z/1ifc//eWDg4eNnRritcTyn/m3MyvS/9f/fD6ftjHAHg4DAGD2P7uSeIJuAq7MBSTwj/45G5EU/d5/MQzsDoUgovzcr46P0O9/dfh8kw0KZga/+Cc7kv29X++npTehNmfeYC2NRCDst9Hj9uXuVh8BtC/t0EmZQUAOdnAXeLB3Me61nZ/6noytiu3b4A012hDHHuP+/NFeknX5rLYzMmMX3u5O18hs6OpeQwd1kfHOuztnSBUE4g2ARoeoZ6BgRAjSOZ+G1ZQ/dHucmyrRu3ve47avOvdHtonTOl+FkUXVkktfTmJaAygzGsh6vfbeO8cDGIiRDWW/N93oxwWBzNABETnsyplxzyJUTJBBQCzXvzAkorIsnXTcQ5JH5NlsEUtm5rZeL+tl6TypUQoeMMUkIWiKReGI8lavYErMbKpgpiIak0pXnvnkaL6+XrfCXKj3PgVs6iTYPvzkW+nJ80cHi89+8tH5xfL0yY9enZ09VXhSXz88cBx9kFSWfj6vEPH45OjEM8T66KCqjDs0WufIO1ZlUgAFNQJk5sLDrMSjaXU4m4W0sq4clmmuk7aJosfxZPUfx2J1bLJ2UDyjyb153sczPkCdA8CtWNBjtX2HenZU9f3TbhTS4zsAwJ776wY7+FaL4w3aWNO8bVDu6Of4Ptkh2y95BVQETZenQC35wimI2uXFRy/OnwVwcRkU2hjDZOrdEs9Or66vr5FAY64H0iVLeqZcCCxJ5hmYA7a7EqoAgFu8TDM2EBMBjXUm27ac8luNX5AMQFSS5IRIIspxXlEJ0bwhIjtHMenzFxcXV8uXk+fvPnz4paurzzx68OBgPvfe5Y3PLv6IjJAh11cGI9Ck/VpGgsJMRPXT/9t/DwC++G/+33/4r/5PJcUY27ptvvLv/tWhY3/2b3zjr/3ZL4uImRAaEdUxDUHJZkbsgygRTWKBiAIgqiFaAG1VmxS/2Vyu1q/PL66Srn/mi299+ld+sbp/sqqt/Iv/e4CtggnuL/7bCYAB9P/9L92gAhojOACn6JC8Y6d/9M/uk4H+wj+RP9DXvzamGf35P3nDyf1B+v2vDk/Mf/fPt1/4ta5D//BvbR3v9ghvkN/7n/+wzWi0kLnfIb1BrA5tsBSHt+tB0PrObzvr8nsMkvjGzt/Ic/bPwVxi+ib/3CDybzQSsBfA3eardiHawxiQgRJmwwbVCDu/pKlyQZZExLKHxvqc3R3bqF+xt3V/y0cyRq3CTh/aOZnJabtqXVmp6vX1ZWqvQ4unTz5aLpcAwMw5nz6lhBjLgk2Ge26mrPtqNKB6mxmSIhEmMjBETgQApH1y32QyzUNdFIUBOs+GHA0wikZBUQ+EksCAQFQ0qRGDB78BsZekRAQoJKCCJqACAGSqqmmdyDcTfxDNS0TvDB1c1fDq/Oze/cOz01evnjfHRw/eu3/4aOothqPoP/twtlrdR4DLy/PZbHZ8fHh9ff1gMVedO4ZF5QtHCLwOAhJKIk+OiAwCADqkwsGkcoxmksgACWOMTEpEAx7+zhyNBAQOaTs9vQ2TxTtVfz6mbTI/EQC29oDHp+3sNW6skJsk7rjrO4L5hg78VLnFP2kbL+a87rJavfPoj5XBqGZDeTIwRHSEnt1M7fzFd4LxxH/CRD96/sGzs9eTo/c/+eDdl69fXK3PNTUvXn54uYSixAKwbrsqZ6qKBK7wVVkxc6ib3Sd2S96GUmx55BUy3Pxu//M0iegtU9PtwDAgMGQHnqRU+jmiRhBBIHYkyjG6q/DdGF/UzfOz1x89ePDFd9763ON3Hh4dlUXZSE2E2S6Hjl8AgOZoiBACWLa1PW05GgiJfVkV1eR7/8o/+7l/7f+aj/69f/7P3HvwMLZNbJuUgoEsFouQohlHUV9UyPjsxav1en1JDsgpWJPSdYqrGJehWYd21cyWV0sn8Pg+nNTh6YunDw6P535xN1XsTLeZETkiB84j+xx5lu64/qabfGx7Q4IfCznbVMbcrKafYtUMdxzW+B9+5Q3sqSPLrbZxosJINA6X7t1MR0BsW9cyot40dKqKSMykpgAyXDVWBcYm4A0Fk81Mlbb70r0UAuTiE71PgjOUh1lKMvUeUUIIKaViPnFcNE0zL6fDGswte3Ft3yGXfd2jvGQdBS3jxo7vepkvbNt24X1dN8twmlIIoXn9+jLgvWlVpYbbNoC0iAsiUlGzO2wWQkMzA8lOxp49alfeLKvroAoEZshobdsWhSfHq3VNDstq2sQ0V2yaxjn0hQ8hpBgcAzHHlNh7YlJNKgLEmBX9GMHUTCiXYzJTUxE5mB2frc+gdp7vo/etXhEUjmczJVu3R5PZmt06rkgcs3oHb5XOHVWvXzUHBwf29vHpq9dzr2+/dZLacHz/0apZhbaNYpNJWZG6qsTrhpnZYeqpiBl8QaFp6vXSe3bepZTQATsSEdcbPDv0NqiSvWY1COAN2Yy8F7qt/H9MQ2TXBXXtSc2xejuGFdyZ4G0la/f4bSfvnzB8UNhYm4OhZwDZMtI8AmDdYlFDQ0aIXZ1uVkUm0pTQDFGMzEBEgHIlaOAcizQ8dKSz7mJE5yYijOgMk5kBJGDlkvzEP3xXPmq5vWguvylq2HJl8/cePJ4f3r9ctqunp++88/7BQUovn0MIZYoA1NTaJiiZymnpS5fTc2dllVJKEomJvc/4skSEvvDkBCWFCGaMZKiassGM0CEP5IBGAkDiLcegUYewaCQGXZw1QN5qZO9ZJOToGTKwGAEAfSHMJwDtuvnh+ur0qvng7PpTLy8+9847b9+///5sOl9UIdVGhmYpQUmFhsTeQIxVjc3QEtoQhwkASRDAI5oRjXcATo4e1akB1qQao4o4XF/jBC+urg+jm/Hi7/7gH/9nH/w4zGawgtC0WR1U1RAiKDBjaUsxwIquEl2ui+9858k7B4f3/tJfGx4R/+N/yTHjn/s3NyT9F/4t+at/abxCmDFSg+QdGToycumX/8zm/K//ejdourFc5ed+lb7xtc6Z8eWN53nsdh5O1p//k/h7vz4Qm/3Cr23R2O/9OiJubOJf+dP61f8PFs5aNEMiYkBREjAgIyDbyOORDrGB3VbaLLHOPuwZbecRNTDaaO6Z72fbVwHRcthdF4dkAEYARhlJQNAM0eVyzUZI5NQSgaApGjpkg8jORAyxq4dDlCvDG6AZd9VCCdABInDeifVEqmojYzRDPEvK/VcZsRADNhMDyxUoHXHS7C+hqAKQC74jAIJZ3vXw3nUoGdCtaiNQwAI7TB4wwxFxcupiRCQnPKCCGTIQ+hQkoTpHzmHS1Eg7qabOsZopoxKaqGYRi6kPydnYtUiGtnFfIeJoLkCtW6KICGoKZt2esKyRwBnLsrm8OHv+GkEW1eukJxXPyK+FQLUIGqcOIFTGwswEmMEgCR0BdoCyRIAoGlkQHZOBJTFyZmBGeROUu8ADUIeErAaWtPQFE5KspiZtgKL0EqKaQpLCT4Im9r50mkIrFgEVzHJlbwZARpSEAGaJwNQkhoYJ6qDT6h5zaViHtObCkyLLVVktUpS6ri2EEtEzAEJKyZUzCeFgcQIqHvnxw4chSQzJO2pWy8r7apJlmRKZNmtgYwEvVQvgyVnTzBkcSTU5AeTJvARQM3RcxlgXJWtXVAvZBk2uo8AdATFUs8bN9gH1fg9GIAM1E+sKbzMib6F2oAAQGeY6JD9ZNaSdtm9Nwk1S9rb2sWbEbaYG4kbBROwghAw1F3TsJBDc3I19G6j/4Yb3yjazjRQUZGJm9r7xi8O3Pmnh7NXT77148WzZLmfzclK5Dz783tXF5WxePnh4bx3i+ao2DlPHwPHyYl03qSwn5KmNQVJ0roTsG8q6M6H1EWfDQ8evCSMQg6Hz3ZHROyrCUFpr+/U31kaveYwVL1PV1Ab2jhw2Kf3w2dPXp6fPXr18++GjX/zkJ961RyezcsqeVAM0yggTHyzlsiugmpFnaYTVwoxdAVdRFfn2X/7nvHPr9doXxaScXl2fo0HFxeV13bpYXNs7vDhD/NqTH/3WRx9dnqf46hIdiAAiFExEVLFDh47ZYuMMNBkBtW2QNL24Wg3Pbf/KX3aOAUD+6v8CEekv/Ftdf/6Z/4P81b80piUTVU4qQixAGyWMv/FVAMKu6ifw1782bPTum2X89a9tWf2//9VBrI7PtNEJBCx7J8MI0ckGdyui7RSm/2nbNuWME4t3u/qxzTrx5lXVOZf/MsOw/sYmKfTrDjOlbq2vvRfrlYZOHo0041yLELrV0cFSWu/c3vHSYUYXHr342NVntsGWzOZoZh3ZEhyvIEQcF4foz7fxZvDGwXDniO1EhN122vgmKan35gg4JbJoKlGlXTVFlUIIIQbiMkkwy7Cg2gWld5BbNIyvjXI1zYx7dwNqjnTro6UHvmoK6HLBCxXI+YKKwGyoaqbMHgBy4hE6QmIiEugC5AAEgQcwA1UFlYx2mjsgJqiAquR45NXDGBpELApnkpqmqVfL/MMEFdQQlMAAgQBL7wp2xOacY2bQDpgMwByQQM56MAAVjYhaFFBNXFG4qqrKsjCTDBDdT/Hd03LntI7njgbwrPHCvyHdINtIW8UY/jBtX/re3azDUh961kVm7gjIm74Oj9szrzfboIjIsNnzMOhyKrcesfHD3OS8zb8SEeJmkROisiNy5cFJ67i5ptl997l7nz98+Kr97X/0rW/+XgsutqmqqqfPn1+v1k0jZiwNFFVZTRVQ0Pm8Z6BqIoJ9/MsgYsdPx1yPSDWrAWP1Of8/Vg5GA7WFInnbe8GeLDGzSTExMmOKCi3Ium6Wz19+dLl8cn72+Xff+/zjR5++f3w8rQxdRIumvigoIWT2Orp/d0MQJAMjQkRmQgyQuCwUVFMqHIe2Xa2DqXkgTfGFhN948fJvf/Pb63M94EpBHQnySH9SM9MYkydi5iTJFGOQKPDH/vX/Xz4n/kf/K+cdAKgkRfMM8Nf/Rfjv/Dv9PcaLwdAUNJm0oAnGwAi389JuSMeW2f5O/PbJ+8fHCpb9zt/Fr/wp+a2/BaOtnw4bAAER9U7O/pO2XZbxxmt2X7fOu6GZRPt8pK0HjawE6PTikQd7/CEv7e5z94zs6NrtXh6XQfBltCykrfgj7Nt4arbGPDtlRh6+/CK2B/aX41WHC7UPt4YRvuaOujwe2J4X38zg91nQ8DX/5H1BBtLW0DZO4/HhARSTqLRaNTHGtm0n01nbrmezOQApKmeWTgja3zNzLTAzoyxxO8EDiCiSEbuAICOhdaacZ8+ohI7IiYh2iUSUUuCiAGY1SyaI6DwX3oU2mgqoahLVhMjGYujJsmRMGe4NTFWHoe7KsRgCAZIBEQsoM1dlMfG0dlDXJiKMFNs1IjICgpEAkXPs0Dukvnhw3ruWjEkLZkaWo7JQVTybVVCUeUYMEVUlJTNNZsIOftIkorun0gyGinA38gRFIERC9zFAHMPa2H/e/mq88SYfp/HRaAd7Y6fjTbYvYlcN10ZHtC+Npz1sj+VdHEQbnD+dtFYYwXHskP6ODN7wBUaAjJjRHVcgQUr1KYqRVZ4eMODjB/d+5RdnhwcPf+N3/2EbG+fo/Op03cSinMUU2hCXCQUImGKMZsbk0ZskVEib9+1lMUC3KWOMqARg2SmlYExd+mzuLAy8pk8/UAQC6pAKEHGz7T0O8ejDPxEyeh/AALuLKUkSQYdlMVXVNqXman16uXz2+uKDex994d23v/CJdx6dHFToiciSgrFDMhBFULBP/6//3eExn/5X/30A+Mf/yr8AGaOO6Ev/u//Ld/7l/3Hbtik2amHdrFfL+E/9h18bLvkL/Yc/VsyRSU0dO0TMxTXIUYYcyhNORKpgxKKbt1vXF4f+WCC7Q9kQRfRGV4+ZMRmoqgRIa6INTHS2d/n3vwoAsh05tR9Mn01Y/vrXcC8iGgZHxXCT3/0vFAB+8U8CgAFkH7X9o7+zmZse0kJViTtb8/ayaD9Ze0PpuxGZt0hnzPWCe3BjpEEydWrY6FbdrtGm3i122d+WE/xyeOC26mlgsHcr5ynFbbdQx+MGU7WzM7MPHBF1VLBI+wJciAi9a3tnQAQ6Xz8AGG4qQXVCt3NL2s5VN49R78m48UzrF/zu+dt8idCl2LSra1gvKTSTyWRycL9WjvKsqRkACCSm2nRuuKERM0NkJeXOKci9WQaQmWCPupHxKoHQCAk4QzAaAhEjIZMHYiPJtp0mLtj7ooDUtm3LReU9i0gSaZvaJGqKqmmQ7gCQJMDg6sg436omwB5EwUwAM9QJETCiKaglERVmnk4qJpQQAcDaNQI6zIyRmMARs3NGfeUYFQBQRNWYw8LBiBlLz3VqkJQRkMQX7AvOrgIAQFB2Oe9xa5o+1p68TcyZGWyHdJnptmjjDodybAF/7APGj7lD3L65Nj265w22bD8Eb+QXQGQgRCXsUhoxR3VmJ96mmJrZANg77m3f55tVDTPru6EAZApmCEjh/CNTtRhJ7HodRP1kMnv84NM///PxW9/61nq9rtfXqybq+lqQnXPrFhEKVZcjVZjIOUZAUekZh5nuBpkDoBFmbLsMeI+j18l8p+PXves3bwQaAm7iTLZE7zCqNvJD9no6BBUlICQCAgUUJCiACtV0dtlcLD96enH+0eXZF99971MPHjw6OSbL++u5sIJ+ZiR9h/aZf+3/9J1/+X8CAD/zb/yfAeBn/o3/2z/8F/6sYjy9Po8G6osbp/U3w/K/RrRmzNOpaH18KggYqyoIF14kEbqQNlv7z189EZD57MC5wgxNTe1WigU1sATYGtVGBf3GX9E/8d8dfpS9oGX+xleH+jb8ja/Kl0fe4z3RS7//VdhfEb/4T4y/dVHQv/OfD93bZdl/aO/UuO2z+DvOHH/eOTnDlcQYsxFcFIXZlfVYkuNedxf2hXK7g5ufbvAN5A+dYbrbJRs6YARoOVSrB4a+6T47b9QtGTPLCXUjPUNVB2+87TmHEHGQ64MD6Y4BvLsh7mK67E8HIiI75wooJhrbGJt8RBUXi1mKhxITkqgkMwQgQ0HyOWMBGAiyOZ/zGLNW3qVB52JSQOhckV/JCIEY+tp8Rk5VgRiIJPcNjYhL50VERX3lq9KLxObq6vr6GpoGUEFDxrxGRAVTVRUhgpxunHflTdTMUkqqRi7rEMMOGhVMUaNIB8TNYBm2ezYpu4Q0zRPhMtczyy9qSqSaTYBcsXKj37RtDaDOA6E6x4iWUkDqii5gB1TuBsb7k0qxbb1KeuJhxOHrTq5vFnoEONoD3l9jY3F7Y+c+VvreQaDbP22QAfAm2xf2GEdnCveab64easPEUA75k1HH8q4wDQnXIx0/28277oJea4YM79ZJdARy7MtqWi2ePfmD58++eXX1dLVuAe9h8Ymrpfvu97/38uVrci6BoWdRjEnXdQu4SMlMldiZaUoJkZg9Emc9XbXLNerGJwnlrfr8aEIaEGU2zrRR6mGvaHTSd5g1G7OSTYnAEevZmtBcZw4zdBxQX1UMkX2w2Fr86Pz6sm5evr56+ujtz7/73qffeTAri6ljBEwav/2v/4tf/N8Mzt6ufet/+c8CgI6qIKzquklxleC/91f+wW0UAgB/X/WXZ5Ps2VTVZGpJUE1Vc0kc6qDSIYbNzV++Po1R3n2X7h3dC0lNnadxBaSxOoIGAoqgEUMN6AwRv/Yf2q/+D27sD//+390gyZkBwo4MHrchLOuN1vNX/uv42387f9Qe2YSIoMvU/Pjs/rvbTct2TP95mmHz55Zrd45bv4XmnKMcNtYRXndCdkpjN00bb7BAL4S313oHWwhgSNZBxm1+Nd3tGBFpFy49MKu7bNOemnFYSjtSttsJHlWJAADJx23rvcYZ+Ts3ARiBhuLW02/s1Y2D3K1TZC6rwnFyICLovS/LikFoEmdHqWljWgKoCoGRYUM4R8TeXUdigqOV3nW1fz5aRtnL6fWsnB1peUY9iBgiITpkACUwMdUkklLhvXOEJmenr6+vrkDEYsiVBwEMmQgUOhVKKRfdtoEuCABSUwMyFAWZEnv2Pm9koOOSnGoyUVBh9o4ZEUWimWmS7EAxJMyv7VxnOxlQp45JVq3EYkoppdDWDfQwQYgGaEmCQ0JkUzWDlGS/SNptkmh/KrdnP/8/OF95B/pJEdDIgBQBc9G3257xk7Z9ar7z7EzLwzk3AOPtN7xzD3i8XYSdDMkhLf9/5v486JYtywvD1lp77xzO8A13vvfN9Wqu6hq6qumiB4FaICAQAkPgEAoBBgUWkgFhhByIwASBsGxHyOHADlsKE5INCgMWWEZCgBsh0V3VDVXdNb2qrqr36o13Hr75TJm5915r+Y+dmSfP+b5763V1K8I7qu47X548mTt3rr3m9VvU2bEbddPP5oytANaEsIcJUhER0WYOAK++es2YfGzuviOPHn778fHhrH57XlHVGERk1dkyRiSlXCmvo6fWxOxeKooqMIe+icKG1w4MYuc6awsTgaH1tm8tcpujbtZz3uIIW0/U01bPc5M8TkxeNAoLiFKbZUIRhFWsoCKUrliJLJfhnerg8Gh55/D00/ULN/b2buzt75SZRQSUX/mL/+4n//JfTXf89p/7YyCKRCgc2PczmUeaNwL5uD/yx370s996782TqtovJraOv1i1GVUaohIJIqqahMtpDFpMCxglZI6YeehBmi0l+FNrrcboXJZlBdkBELRuuuKVEQTZK5CEFQHBb/nDTyMJ/tRvMt/4ee36hoICf+qnn3ayfOqnehl8Mc997UvDvGj63M/gL/6jHtuhZ5VbTPyHGD9QA3hfKsLm0LaPc9t0rwMQ3fAnQet73LjLto67sSPXpyEipizswetq8w1TGnQXuUJEoj4BZ6BSb+Y6bDuNVQHXms0GJ6VkpLTn88BKVoX+RtBtpX7CFy5pN8vtr57N4vsdGiVGAKtWXQF5YWxmHVGMAdCa0tlyVZ2Mi7ybSTex9BBJ9QEwPbtNU9Wu7AgR0QgSIqGxxloga8gCoc0L7z2wkIpqIBWJQXwd6gYMgaVls4q+On3yRCVm1kVphTOgOM0TwgAAZB2efHoXCEZEAAgkKmoMoWkaq0SpDhBFRQHJGCMaBMCRSZ2tJLXPIF0LgF5hTPSgUSQqR1BWidI1i1bVEAICJC3cOnLOKUiWWWutRCaDMFQ6VX+g9B2+oK3TujS+zbcPG0JH1vqQ+eGTsJ79k19Huf7sOci6RWdrxabm7OYp7uvz036GzwERjTGEggrcuRGIyGS53b81cePL+y/cuvzJD7787uOT+99+57uvv/vme29HZmEGY62x03mNqCXCKIRTZ0tF8t4DcJZnAOCbyLzmEe1NwUAXCOxZb8qhUBHT9cBCRNVBNln/FF1qyXCfp4n3D7XleYOBQxtYDJIxCAAMGpEZSZFijBLVIo0gA5tF4UezxRnLYf3og7ee/8SLL7945fKkyHMkMygc8ZFRhUSZQ1NV/fElOnb4B//2P+6P/LWvf+PCV0CA1OZVQIKDBlEyBnIkhSYEYxxzHHbtid4uQv3gwQNfL/b393d3LkfrR08hANsHyzVKbOB3/Pv9V/ILfxdN4kdGfux3pIP82d9EX/+51LivR+cAaGuK0oif/In2Cp/6qYTFsf1QXRZ0ktDDlOnWAuvUo+QXAfq1yuD1PDc19x9i4/dDVVvQQUTvvW5CUWobum5bqxpYy9mNBUnm5jlnbOdUFsVh/Cw5gdr9LrJ2gfWlksOHSgK79xhtaABdElbvTiLaWJz0b5K+KcdbVVggxRf7sXXHZwxsVfCBsH9Kj/PhcFnmfYiERTkhkcKAqi4XZ6wiYkBNjJGI2qaDlpLHABERjOJ6eufvYhLZW2cQMfX7ss7YjKwDQwikKAwBRSGwBB/8qqmWCKKoZ9XyyZNHjtCglNZxsxRTSGTmKMCENk9QLWicxRhj0lqICBASwaCCisTGB17aIGrtyGaK4LICFUSiQXTgDGDwddM0CAbbGjhWVUVCg9SFUBVYUv6XtvdSZemWAjqmFwOnDozQFZ6wRkQS2U6ifIZQGL7Qc9K3tbIAILken9bOILkWkKjv8LAtzFN31/VlOy9Pn4s0JNOeBC/Y2E+xifueK4NvL4BrX69IMhFFEUFFExBOwtAGAIPA2LqrDDkACknnSlEDVEVBpb7FyVBEDW+0dVxVFb1AUhEJFVUgiFaiZH2xfwn4mrjrO3sfupL5lz//6Dcc3K5PzaLhv/cP/vuvfvMNwswYiXGl4p0diYhqNAaBXGQVEVYBSQjyBtAQgApGAgDIrA0xBmUltNZiJPYYWTEnYUBImoGJKgkeHiOgSWW92OVToRIa6ov9tffUqSoZ6qtFMVVkKCoDgVGF2BOTtKoMo0EHASS9OINmpxyDwMmxvjZ/8OR49ZFXn//wi89dH49zXXuDZ74xBChaNWHpB/Uk6u2GW/jpwxnp346kfA0QhNjouCzB+1CFVdD5IAmrYSmyvAry8HA5X/HOWTMqilfXV9xw53J0AFEpoFH7r/7l/rj87P+NiICsGgvW2i//vfiF39N+9aO/Gb/6j+Xz/3J/cvbaz4dUGqekqsPKIvnUT5lf+QUYQM3Sa19UVaW2ve5wU2Q/8dvDP/lbRNbZnGPsaXKYrdPz8TQGnMLIeuWJul6zsEnb/UVUqSVwTGXHBgERNGGvIxJgKr7Gdc7fYChEi6OgM8AIkCuiK5SMEWFjDOK6PiexkaBt5yskMGkyogDCCp1F2+ZvtP/jYIiUkOOgfzOCb8vfSVUVlaMIg3bQqJiIvzNSTbedt3z4qppCnwApwxmgy99EldZcQYIOD8QYYzRKbtmDUcrJgbWMUBonwCoROSKhGtO9VJMygYecUFVVIwywMrpQEQKAdjIAO76bqoSVxRmLoAxgJ7sivPShmOyMpJi9cuXwF2eXQvBeAfMdE0/DXk4x9ZVgDKCEZAAgqFprAY0gETo1BMaBMWQgspIlQkxNP8EYsQYNRQ2UG6fqV2f12UOONYIDMSuQDGI1Ox47DFGaKFlmgoIDakRU1dnMOhJUQDa5KOYx+DzLVAgRiKjyVdSokkWqQYPxxpl4ePeNFz7w8ay8wXHpXGasY2YVVgFnkcAwc/JLS2tJkyiJooWYKp6NAqJtkQYR0OSNP0Zb1EujSGpYlDO9UhaIEK0hZVENzhAqGMqjb9rY5WbLUUna/8CGSZ9jjAOp15Oo9vXfCmuleSPFus0lcAhO9Rxy9692vE8N+n8kgxgRL7xu2uhtKl6vMYggyHC+F+kv5ywkMBqFVWzqP0BIBjIyZCbL+RkpT3cLCVSv/Di//JGXP1eH937xy798dHIWhDGm5mlyvl4wXZzIiHT9Tdv7thh7zAIABkmhhdVRTVGONqSvnVe9ZXM9cEo3//bzD7vwW4tzPgjZwgaxNr5uwqPFannw5Oil69deuHL9N67PcVVdRR8EFGEtcSkfn9TVuUtuj8/kbvhScMOXiKIRABSJGet67d9umoaADIkYWGoVo8xo0Qvgw6NH0JnDaKHMyiANcxh6sfFn//ciuSqiWhUidSABvvS34Kf/QHuGrG9nvv4/CCpSyiDt3uy3vyQ/0rqXdcMBeZHd+c0v9plZOhjJNZZqSC5cnx9oPz1tXKCSt0cUuoLRDe373GBmVWVmYwxzg4hN03i/Ee4ayh5KFIRKHdABUIrIbFXWdc91LicD+rff+Z81WbGAAKnf1+CctZfo4vVpV3jT7sF1hKv/s6M2WgfHRYS7geg2RawqgIpesGE2l6VnBc9moek0AcEESd1mnxFd/dT/5M/+0S9e/utv/+0naPAsLg5XuuNMVMAu1bS/bn8LVABq+z5pGx1g1LY5aAruIBEAOsVQreKqUd+oMnNM3DQnDKvaN5Uj45wzubVFGVgqrNUIKqOqEVdSNrJTZ8qokE0Kh+SbFXAk1d18MnH5cd0wICAKS10to/fL2ZnNLqu2vZqAEJSAkhlvnLPMpAgi1IXjQJXBUtLYVEQhocKgInIMzhZqbBNmIS7GIzOd7qOOjEVjDBFulsxt5S1fbKRtfTvYyD3LvSA17/wV2l8aIvrVC+DzBP1+COiHGPprg81rxc+5sNNT7zVQfIY7xIFhgIQ1gSBRgqgiKXIocqtsG6+ZmVy5Pqnr+smTJ+/cfu/LX//W/UdPRJFa/R8RbZR+e7b7e+N2a2YhSVZLYtyECdFN2yTMp+Zepncqw9SRwbMMT7twz1/47Btfbd5UEJIuZ1wpZOpQPzieny3rR0fz+zdW/9PuNK8mgm04RhHmdaJyLMfzEIYX/NEyH85wQw4hQoLS7F6WqgIqswEgUOODzFZrRM8YYzQWM1QgVuOjDHN3njx5Ai+3n09Pjw1Gl6HLKRskY1fLhc2CEoIYQVBxYhyg6/VY9Yv+ZI0BEMEqKmqn6m7W7W6qiYndDRd5My/6/Si171PxfZ/jh7iatdZmCktwzhGFLMvaZPxz9AYAqprs616ICUIbGDvnfN660ZAUVdVaK21DsFYNTd9v2bg9f+SnFeCyYu8q6m+9bZsCdsZLx3bbz8NIcLoREbVKMCBsXnlrYue1CthU0YajKzVGUE0yyRggBzsf+4lvvHf3pU9/4Xv/n//n6fLdl1/+UCbBOQkBe8cGQgtG1j/LQGwIAIAgUQRFEE6taQkJVKMwVlUzm8XV0nDN0XOMCqzAwHF+cuRXy2w6NVmuLs/KCSNNTFzOZyH60tnxZJKPdiQbN5Rrlo3LnJvKkMsNCHuheVyxMQYYiIjyAjlaa09PjozdnV7eN86icSCCKMgxZc6QSRnaSkKqzKAkiSml9z6EqWrbpTpbBvRRToCaLJuWxQ4ipiRds+Gb6ByBm7T3bKkx+P0GMj9sdxXbluKtYDKESNt1wD/E6G/wtOme1yze//ghhHe/LiKSovOtPy1Zr0ADd8HGXS5cKVUNEtvmIKlJDhsCRcKUPkdkMIcg8/uH927feevd997+R//wn7/73u1lFdA6ACBKVE4ovWa6zh1FRCZsO6MNxnoC3QciEpNEMXY2VdceoYsWyznMApTt2OEWOxuu2A98leeHqiqyNcbYUkRmVTNfHT48mvcn3D48Ho9Km5XJYOmPPzpbvfbGW1+4Nv7yk+XwamkOKR/yG7X/0TJPYTbTMm7UVFeGyMoAQmhVqAlae/mzP/nif/yLdwDgj/zNb/znf+BThTi2qR4Bfuv/+Uv9XWaLVf/5/v2Ho1GT5VQUWZ6XPZB06VzDvu3EhSTcGHGKawte/FnP7yVWSAY1A0QgSarcpraiMEC80rYT3AWL7P/Zz9IAAla7VUt0/OsrdN//GLCqjcHMMcamaWKMMUbU/mRUbWN+iJ08gD6zGKQLBytu7/Etmtwa2np6kmq99jf0yvpF1snFqZ1DS3djUPsU/bOnD8KM5yRu6pvZ43jAuZ174cA+f+f8021yy3ZLErR4JG0gjQT1sz/5hde+/49XDxYwzp1FPJnno91jmBcw7iPfhIM87e5mg56HaVMJCotGjBZNQEQFYmGcz2U1l3oJECQyALCySMyACKTI3Gg0wnLElNuyKJ21y0ZJYFKOJhM3HgVb4GQ62rsyuXG9sPbg/t3FyVHEqIEACzEybsZh1QiZzOZojbHl2WwZqqXAXuJxRBZBAQxoIEVATY3LFDwiGVVEga4BZZ8Nk14hIhgbvZegDVlflGBNDmqNjS06aksfmMBAVHmr/2Z/ta00vXPnbDTk6Ij/ae6lbTIAenod8Psf50XXBfbTuc/ne4d2TGe7qecPPdKW6D1pCEhILBFgQ+FMcvF8A9Q0BzWsiiIaQ9JuLCKiUiEjdL6R4+PT+/cf3nnzzXd/4Rd+6Ze+8lrk3BjjsiLquvrLGBc5dugKA9eTEoIBBcW2JFEhJdiDQcttFl+rXBtjGEBDm9/fJoDQkNukUNgmW9GNx3na2OJ358loeGSosmiok0JHAMY45rBq1sboL37rW5NRYanFS/rXu+Pf+O733n33zhBz6OtV85ncqaox5qvLqj/4uTyD1gBQ6LqYpheIbRcKjmyi0LxZm9R/9G9962/8wc8jay3h9/ynX+6P/9N/72fswFT65J/7bwHgG3/ld5ajbFSO6//8j1/9o/8pAOjv+ov4X/15aOF5mUGF1f3uP59+Ff7R/w7B6s/+n8xv+1MAAD/xe+RLf4uwFEoKtgU08GO/JZ1Mr30xgRv0RrF86icAgL79i92fF1cxbS3+eUCoH3o8w4PSyrZO6D5t8wKAADAzWsPM1piUWTMUdk+ToABr6/D8PLTPUYCLnT3MLJyKitEYk+6pqilkA2s20vKQC5suAECb5HLeXu8EeYKf7HVlEUAR2XxAbAsIO2ysNn2dQNdV+Lrl9HrKLtTzWTgtOI8mRJKUhmkUhVWEv/R3/5Ozk9ePvvsA6xNeLXCkrhgrsMZWxU/rvN6zICgMxrbaQ+uMSKBYLJEIg8R2zSVG0zRWokCQWIuIsc4QNtFn6LIsAw2ISGSVDAso0PjKc67eFW6yzKGzYpAQMFRVVeWTiXO5tVZ85BgzsmUxxrGvtPGsYCwIZqYwVJfO+qZWVQtkjANCAlJwFm3kGpSIrJKiJlAUAWTttB9Eoxr7xRQG5hi1AYhFkRf5KMsyMqn4dv0u8IIi3cHib9LGlhNw4/0CQJ+HMHinemGIYQ3R+GvDgu5v86vSzX84u1Y3/IhPWaDB51YQrR2qayjU7V9dNP814RKCkigIqE31jqgSQwxPHt578ODJvbfee/fLX/nlr37ttcNjbw3s7ORZkaX8T+NM8BwBWAVSS18AxNblkTZ4d+u1VE65fm05ymCeZA0QamRVUU08SFIWqKqiuaAqcUtkbmzvQUJmb+P0kvVpPPq8AU2oIgxCgOiInHFq1j6Gv/Erb6cPXyg3SPONN9+uKt4tsi+MRl9etSbpN5sNpzQAfCZ3yfPc5rgmeL21pY5IqiJRxYvMln742z/0X3z1/CPEIJi103jzX/9n6cNn/8I/+PJf+M11UZVFfbU70/3e/6j/1RYGVdI5ENezxZ/+A2ld9Fxfb1QGBkQUIPOtL/VlS/E8asfXfx4GjhDoyJhSHbrAeSr9Icb5XXPhaYgIXQ34004wxmRZZq3NsuS+XIOb9qSiHSiSpmZiKa6ineolPNSFz1PpBbMarEwvK5nXuR2Im2UF5+zM9B8amA1Du7mrqVhzT+zKK9LxXtymSDCRM93QIXE+Pfli/Zjv430qrt1CqgoCgqBAx6996f7Je7t2N6cwW7I+X6wsu9oBhPUtQHWdi64KCsqqlJQbUlBt0VHSaRA5GcQUo8RapGapAwcFNJRT7qyl2IiQiazLupmOoMwLIBSEo7i0GWLMau/JN6XNsjjHZXV0dBanOySx9J6EhSE0NfuGo1hXYOGMliheYkUE1iCooAgqI2ZJH0JDikpogAiEkyYCwJS0IaIU/0/WkiK3zhY0LlMfI6LL3Gg0GlljRaO0zaQ3XpMCExrcJInzlD9kgOe+3WjNucUnN0/uTGoAwV+9AL6QOz9DBl+4nfTXFdv2wjGUx+ubbhi+7R/nUQ6GjIAbtRYdEYBaIwSr5dnxyfHB/Xvf+s533/mlr37v26/fOZs3WVFeu7aryoYyS9ZzkztHZCKKczZ4TlBsa+VUWgda4kR9uia2DKudYctKunkiopAms081pR1Qz6+3ljodN7gNV3shYV24gMNftRh10DlUu1tFbrkVairUFRH+3CT/2qIZXu3LlX7WbrDaSZktKr+zv/v5yeirA7dwPz6d2Q0+rqC4pn7CrK09JQbQygfx+od+5Pm/8e175y+Vxt/747/BWUN8AfDWYjGbz+fWzI7//G/5jf/RP3naFQCg+Xv/694gCv/1X3K/+y8942T88t9nk3VKkQFC842f58/+pvNn0mtfOn9wyKO33tEPocU+dZIbQmh9/Wfv0BijQAIzxxijqqY2EkMdrhfG2NY+JosDMBXmowBikDXr2HjGi54PO8HbCcg2HCsCzm00auuVAH2aktHtMdUWX0MBAKGDcepcYgNAJYD2vv0S9Q/bOttbHozn6qoGj3WRDZCmszXP7s9OOW5LexEBweD1G5N8ks2PZ0e+ysfXTs5m+S7mUODAUNPhEAHElAzaAn61pSEtuBeIKgcRhdhwCNE3db0IcQVkiAo0OZA1CMI62tkDkATRnFkTQrAKY7PI8jKbjGIsVrNVamc0zrNLu5egmiPHpl4JewMafBVjDCGYLAPrDJZOs2Y5N8ZoZAwBkMA6MFHJphK1lIgomN4mtYHFdp0D4gBeCQxiYguGZQkYMjstsh1EZakQDRF3+EIGVHoGs7nm6w9bPHNwfOjBXRs/IutMl6ExvPVmEZHI4g8XAx7u2B84fh05xfsc6+nhBh9pd4dun7k1tiZs1FpwiNrEulnOTw8fvP39b7/15ve++do3Tk5PlyFevmLyMcyrqgmVsXmGpcssEmSZrWovImU5aupFF2xob7HeJGusKQRYY1X3oPwAsE4kMWRN1iKdbk44piOqfVf0VgCbbSCClqTOLdrAZFlbMP2HtjRj+JN0PedSaRKK/tu/9N/13/71N1/7wx/69PDPP/29b6aDf/3N1/7db319ePetk9ORP/Odr51/Oz9w/PU3XwOA81cDAPj3/lr68y9s3vQX/1c/lVkbRRS4rlf/9M/+5L/4H/8inBvh7/5ZRERbUkr/EQ9A/r/+i9nv/ssXnPxz/w8gR2RbAGQwYATFECF9/efkR3/z8GT9xs9DZ7S1tRCD/Z8sF9rkCP8jDe0kzDPsgDSMMQk8yFor4rMsc9aWZT47abS3ejdjoq3FSoiaevNte1w3p3LBcUQUZhGQhAjb+YpSTKZzC6WQXreh6EKptv1Ze3SaFAAyBJAkunYYXqkSAaDLukivKcYYTUzFuIApnZYu2GBbi3xuDr3xtDXbvs+3KqCCoZZ5v3V2Op67aiXV7rg5Cq8WOxMbF+JLaHEChmr3ltKga285tn0v07cSWViD59Awc4ieNeZZZl1BlAsqgkGHZZkTyuzktK5rH3i5WBCRf/i9o3kNo52bH/jI1ZvP2cKGZrXQClanwDIq84i+blaCEqK31hrI1YFnZWXnDBjjXA4A9XJlAmeKVpEyJCJDhIg+CLZNsjsQa1BEjLEetseAjs+zUFXPI/gin5bFXh1OWfx4dEkwddvsLWBIgGvP1nTPb4SEGt7/hU/xpF74ThHbFGgksj0tbG1sGabdtnBwPcLZBfb1UFPYOLJ5/fNTHEqLfn7Q84I+JpS8Q9AGqAQ0gSQDKSogGAFVFCEBACtZTLlwoKiKYJIfUVVbo1/XryFh+uQ49tIoerQsEgHIklPFYjxplmfL+ePT4/t33/3+m2989/bt27PZAsHevPFyFengeF7VdWG8hwii2bggpDKzImLJlrmp6xVaAF6zGwJQlAQYp0CkoNJ7dDtlitbofRZJFSWIcGRQtEgCzEEkoaVjFAaCpMqyKgL0YlhCJKKU7dIKV9PWFyKiodbxsiXRu7dALetRpQ7oAFILYdC+d4RRD1z8W1/9/2692VbsvY+Dzzj+w433ebV02it2oqokrKEG8SD6c3/6c+LG1toyz/M8z6zJ83w0Go3LEmK9u79XVZU1GVniGO0/+g8XiwXmOREBkioqOmNzsgWh0YSGb6wqAZqAAQ3h1/4xaIrGkRJaJBVh9hak7l46dR02AZDR9BsN10iiAgCWKKVNgKbaCgsAUcCSZwFBEoOqDBIJOesrmiRdRJCSHFOxmTKZaKy16IxiBIhOIlOGmIiUgAxAQgEkhKyqjxFRBAArAEEsfDgwxgFEFiVK1GUAWCSu21W3W9609ZoYup7EiUQxJdYgXpA+hRARDKVkRNGEwUMGyBBHhQ42a4OHMKRuOdymTUACUYG2/A9Sy7y0+4wxqe84g6rGRO1ACArIysplgdaAsaAQWUITwi6MjM2ETBTJkAwogIABZcBB4pkB5NagNcn7CAAABhSwqwpqn3FTLTDGtsgShAQgqVAbNB4/+OV3v4lmlZmMdNK4JsQ9xyvpUK8SOi8hgIoyWFuktVcR0UBKLbB15hgjgqAKCnMIHJoYGl6dEhgwU3BTygsgBI4IBjNsRDGfjveyarmIoRrv7+7s7S6ee3nn5Ojozjt3X/va4/feeO4DH9zZva7RmYYBoJqtmrqKwY8KYyAePnzAnFlrJ5PJaATSiHjKskkjDbkMNIiv0FiXWSIXVWKUzDqNDATIDNDi0YKypVwgohJrAAABTlg9AnNjR35V2xIbXTJgXu4welSjqoCSELaYA6AaYxNydtcEdE1yKc9OlVUhoRMmedECbncvKrm1+13ZXyKdvyH10ABlBg2BsUgbWNDvh2dtyekf+KstFe9p1/nBd3l/iv8Pmo9YstwqtZrCrWTAWAxybF2u4JoGVOx4PDYkq+Xy8Oj1J4/u333vzXt33z58/GC1rEs3uvrSjYPjo6BUeW+NyZ1N7tAsc8aSo3ZLq2rocHNAVWVoE9DWTtt6/B7Zp/sWEdEYwxwtElqrrfNNMMV4RJOXGLVrBzNUeH81AYKB7bLh2T5vPahqDLJbTmdnR89c9v9/HwYJCdhmwqocOGXcxNgAMHNjsK7ruq6XeV5k2aJeXLp0KUgdl2IyFxbBWuurJTib9CFEQQZUZkDBgMaSOtRcyAI6EKeGDAGCUQUU6nYrKZkt168mnrtpT3UvwiCiNZnnqMBkwBjD4mOMzGzJKERQNYyoBEJGcyILjIwR0JNFynMkGwVZIOdTUrLWISlrUAUkVJMh4oXuYEQ0SExr2SkdMNUw/pOMSLiI0i7U49dvxBiVDc/N4Nk7FNULiHPDzaOp7V032iAOgqpaa4bgWV21T4s0KX38u5PlBCogzCoiMQqiMcZkuR2aDWm0PHwzGT5ZnRdQ3rmhF2VjtdNuMyGAiFQwz8ZRoghwCFW9ZJ72ge1e2+7/jTEiasrcxnV2NHjvnXMAEqJHVQLxTbWYneXGUOby8ZSyQpCEozHGWbtsGk21FdZQ7qjRUDeLk7PJ5Rfg+XJy/dLekwezBw+Obt+vL1c7N6/zvBGRGON4NJpOx48eP3z88K4xeOXqC9baKHI6mwNqWs0UI1SWiBF8BUSUKZJFJAVSkqQSIRvBKJhgmdbJUN1oIQL77HSEFl4QRcHo0NdARABESFtAKD39rFnopizbot6tl/gMMdR9lfgz2qed2u+r9ymYnzaeLWgvfKQt4nv2FZ4+EsY6Qm0AAQAASURBVLDO9m9T7KrVfFFZY5vAieyb2uBoXOwiQrM6fXJy/+To0e23vnn37u3HD+9rDOPR9Mrefl2F06NZOSp55UE1t2ZUZDEKq5R5SQREKoqCmvqBcIr9ylYLBOpf7PD5+odtUyfWB9f7PPlkkvRNgh+IQCTp8iwCoqlwR9uO5U9dws0pnXdyrlnnALO6ZXzps3N2saomu0V/zR/5+b95M3/pweG3cDUzfmUoF7fjg/qzJ3F+eBLC0ek8qL1+4yaQfe/+/YcHs3kd33g4D4qN19B4iBGUQQmIYgy9uw/X1X7obM7gYY35rkWBo7G7sWcmO9Ozs7MRuReuXH35xtW9/Qk5Yh98qJp6QQb/4r+8AwB/4cf+k/YhhYksGUtETBSBVD0KxxiiD8lZZIwxVW2tHY+yqqqa2BRFYU22k1tmJqBJkQMAawyBRUCoRusIDZs5igEuwRaIOVCBJgOxYFmRlIyoTcUI0jKPNsoOSjpA4DjPAtK/TWBVQCIRCXGlKi4zo3Fx5pHAOSSLQAIIQaQBrkMpBo0BFz37k5nEYA07QzTKCCJKNMYCGUELYIIYm5DUWh1AIDlsEBQSLP4g2prsy3USQ9q5G4kXPV87r5d3pIhbfHBIu0QEIm1SMKy9rN2V1obvFn+UYbBWVQYTGE5GRIw1KkL9PGVd0o2IIopAadP1sm3r1agqdE3YcDPmpaoJC2g9O+y1lu2449N0izRcPh6NpidnZ4I4yvMssy4z4luvlXbO835ZqKuO7StnknObjPFNRWhzZ2Lk1XzWVEuDYIsRWodkkaw1pIqqwhqtGlYRQHDGaKGqGnyzio09jUayjEZXro/y0erkmEnYz0Nka+10p2SOd+8/WizmV67duHz5sssnzOy9b3wFANa5trd01wBaQvRQW4TMYeaMCIASkKAQkIAYABFVgwIgqbhUk+okoNIWTQmCSX7cdaPGFvio03STBrmtZWLXPuS8CrhFt8OXC12cZfOEcy7oLu6uz86C7qn5abccnvkDxeQWmZ6/4JCaz0/jvBreajsXTab7yQUlgMZCam5ERKopnYMAQEM5KQqLMJ8dzmdPZqcP3nvv229+/ztHT46dseOysHYSPc+WCxWbFUXkBlUd4Sh3RDYErn1EREMKqKBJQIK0wQYDwL1a2gOmiCSo2wt8A1uL06+M6eJeRKSE2hvBkBRCVBYRMYBI1KJqDS574eL3X/V2wPmvzi9yy7mSIa7rTOEXrtw8uv0QZmhgUo72ssnEW+erudgdnMJLkl+/Gb2oqJ6czUZ5tru7P29OM8OxUUSbZVkUDU1ElE5h31AO0q0JhEVTjmg3GTCgVYiXy/HIs18uZtV8HqZ7ZmIJyZUiEqhW9dsPwyIpdkcGkVK5IUrtRZgZRcSQiARWw2pzq8Y+fPSkLMtxOVotFqPRqK5rC9ZmzjmTOYtgOLF9VlQPaIQYuAHM0JRoc0OOo0UyQJmSFesQjLAwR5SAysPgCyCqMmxTetuOVykpmmjQWWtFfYxh3lR7o1yAJJAoBQQ2GjMVE6bVXhOOPd93RbN3fXxl79p0dDk3k8dnsVktmtWpZ0/GGWtAUeNaWwcUVAJSACFtk01QFLitpFRVR53QXROPQotXtaaoNfG0hLRNaR0ruIDqABRQoK3g1LV+qeuNP/ylbF6lD7X0H3RgKgEAEqYy9PX6K0BCprOkCkRWWAEgZRJhvkbz3Z7uubElj3t4bB10TR1earhK2DNkkcisiEU5xVkBGqy1AiwSOQrZFKnr7X4hsohobIvqg5RwQiChhRALsJAJwuKr5Wq1INDJaKzFWBEVbbfsyCwc2GEmaARYFdCQcRZUiLWiJlfKggElX5S8vweLWTxeup2x9yEsg4hkRf7ytavOudPTU1167z0AOOestTGICjrnKJlMBAoCEtUHMNaI5ZZKKNEOACgQoiis31TPJFVVJDJwX1VvDAHEjbXdVHToHL+FAZcbkmj6fF4adoyI+287atw6zbTuTzSItO6GdF4cPuPP4cHNm+n5by8UvU9TK55NxtsUfP7nFxwdmMKKQKyswhijEFnCnIjIwCQrjo4enJ09PDu9f/e9N9595/unJ0ciMhldjux94BCjKipR5BijKAsRlEXuGNDIyOeKBttiDAwiwhqSs1tQN9jnMD/i4vJOVcXOddaxldapslbNCPvwlURGY3o+Qrp9tUQeG5r1OXv3vMjfVHqSOT48J7nsGpvbyHl/9PD+UsJhQ5ztXdFyWjWLcPIEV6fUVFWIR83K5Bk5C8qj3L760gsv4OjSo9N5/dWHh7PaN9aNIMuU28Lo9Izdcq2nGhoPpOiQnDWAhLF0mhOUbmecTc1YH89nq3pZxxVD4BgM7TqXi+SRt9UyZWGIiIhgyKCis2QMg2IACANGzCI4O1uNx+O6Xq1W9SpfGtTxeLw73XEmM95mWZZlmXGW0IKxxhgQC0qKLCCKAakBlymRYEHGksnRFKi5IkEUDQFipdEje5AAogjURpfWKMnpXSTLyYh453JEwyGqIBmXG6ekqyAgjDJHaVAbEyICq7I170x2dqfXX9p/7oOjqy9DeRN4VAd6bnV3dfT4+MG7s9MHIXgH5KwxlqCj3VSN03l92QAitS1o+teTRBeR9s1/N4JfT4lGbY30rUhftrc+OdF/2uhpW+DAW3heuU+bpRfMMoyvr3FCuiI3RESMg8bS/UFEjHGI20Vpbv0PE20ONmzrCegthF6FHNq+Fz7+eRYKnQc7CQkWiSGIyHSyE/l6U89JIMbAzNZaadV9GKyJIFqWoECAhqBPyydE9L7OskwkLmZndV1bZ/I8F0JGsMYZZ9OaMIdUudGvYdqNaIxxuXEY49JiToyelTOXj/bzYmqa5snZ48lkAgAa2VpX1/XZ6dxaq8LWGGNMnufWWgAgImut9z6p3IqQchc0BEZSSP2EY3rbAJCYfZeAteHwUNUogZm7dIHOGMEBPoxuEmSSXwCigqnaMWUI4UZQID00QOpK0NGbducPwgxPI3IlpDYFGhGfDsTRUdWzagHfz7hQ0A4XbEtyn5fNrfz+Nbmju1VDbZpAZA0RgnHGIEKMta+bNx/88uHBg3t337h79+3T4xOjmaEJRApBBRySZeDIPoSQtqJVQ9ZYRFEBEGPRsgW0RBoZmCWwMKswaMrabB0d/ZMSALV1wOdc0P2a9OSyphVNXTfbcI72kWDEEEJ7Gq3DBzrA3Hn2exyysPPrvHlkTY5lljcxIK1rezRolOWV/cuT/WkEOj055dNHhXqDJgqaccmisa6jr0NdmZLzQndN89y1S7PFalHVAGCcRc1FxEfu6VC7tNe0IIQgKCLMwbvM7Y3LS1M7yjEvdpygdcUxwKqpzubz09l46txoVBKBs/kFfhFqdzJiBEmdZZBMnpEhsizCEkQEmFW1DkoKRCQxiAYVPnhyWlUnO5OJMSbL8qIoXDZyLs9caVxuxAIigLKqaFRgCEEIAbxapxzQeDQ5opPIFGMIC+WVxKVwVKZ2a6feQEAb+poSggCKile1zIKiAAlSULlZAVVKC+NCmReXJtf2Js+X2W59BYrxCzB9FdxNUKx0geWcJh54bzRl2a80Nov5oUQG8GhV1KzdsMjJDE6taagjXINb0qgPUqxjKMnp04uhZ9DhmsjOkWsLc9G5r0QFsXXbBNW1mttnPidGvkHGiU0qS8IMbkM50DcuTE71zuLZlKmEKDG0aq41mbUbIbxNJga9AtKuyTAtfMPT1O7OC1dgrXcO6pSYWZGRqCjHIgG4yXIiQhTTlcp33FtT+WJSplNNI7cWpAoiOme8r5u68t6jQZNlajNBJGMUJUafpkGAqsjMrE2aKyqgogKpIQG8bMwKtHGYZfmECo2hUa2c2796XSN7X7NoaBoVcc4ZY8iQc05VQwg+BudyAPR1g9YgGWNToABUUw8GA4gqCtwZNKnrEbCwDod0MN2ePWsEIgYFFVRk5pSv13LUQa+k7aW+IEpygcP5PMM8zz/PS08Eg2QRDZEhshbeH1/eEpNDEnnGby/8Sf9LOPf85z//aiXuej6t0NnmtoQuz3JDJCEEP6+rs4Mn9w4OH915+9tPHj06PT5SEcIMjEEyVFgfVqosCKrMrCJgwBCgdhAyopCCEKqIBkWVBXzkGESSFacKW33FO+MSu5UdPnv6IJvL3ma6tj7JllkIaMqtRFEmERZEdMYaY1JvE9NjvnTX6YXxhVrO0C+X/vu0t7P+E4Aoq5s1/OSyfphBfmX3amjqan4G1cxOdkfTXTfdu2yy0Sibn50dPjngauU0GkOzlff1rLQ6zbKzXIICswIS2tTsZrAygymTswAcmYXVGby0M37+ymhaUMQsN7qzu18v9x+dHhyczMb5KL9yPS+8tdYYp6rnqQLXIqRbdrLGkrEZc/BBow+qjAqTIhPx3te5wxgq71fW6Hw5r+fvZq4oJ+PJeLcsp2yLaEbGOpddQkPGmLZMRUlZUBAgglrFCOTYNAhWo2qMGmYSaok1MCsbRQeIIKKdLw0RE4ZLcseWRVFXHqQp8jxzFELVNHPv65uuGu9d3Xnu0+PrL9HeLSiuAeyA2MIutM3SewKKZRSYBWhic3ZgQpUBjW0hWVFHLyIxhhaBVRRMS0LUBVhUNZm/xiSw1aQvGoBuGTvWnUgYnxrpvMBf17/uLQ6TSK83g9b0QOuC+A2uZ0hEKPXCA6B1dlhL7V3u2Ia+C9jF5FVT3QpS2pIUYwQgkQs6DQ92azsLGBBtJ0e3aO9i/tavlciglUungBpjkDS1gAwhoEQiiDFybDGT13y1u6AxLsWtQBPEKkJbWqyr1bJpmjzPs6KIgAExy0uipN4yiBpjiIxG5hCY1CBRysUWZUAhFMKzJuooy0bjLCuwiSF6QXBFATXWcWVMbtFUy0WRZUWWL5eVkAopAGiqT87IWAMMjCZ18lJMqIHKbAmiGgIRZYHUjlC5o8DEX1sHIUuMHGKMCpxyuxLxScdvofMAYws+KB1z2yjfesZo1/Ypnsv+uK7tn+2ftzsDUXGQhPUDRenF8+g+P23e58OK6Xx55nNuXVC19f2/z4l1c7swBjxCpKauz06fnB7de/LkvXfe+e6d996sl75woyzbA8EoDFY9Liu/HFMJKR7BLCzIBhUNkVoTJKT1TXV0AmoAkqXErEFaDRQQDWDYeBwEaLd6cur1jzl8Hf1+7tOoAZIxj0QEhBTX1xSRyBEBe61cVYWQNrjb+ka6yQr7Be8/DLWEc19Bf7W6CmoyV65ncu/Rtz7+yk/Nsuns+AiWs70r14tLt4KdEmZ5ZpdyVt68dmvvxTA/CfPTulo2q6NFhFjXhmBclLMGVlVFqNYmYbPtkUvmfgxCDowh52AyKvenk91xOTYRcmcBX7h1JcjqZLVYLqr5macrpWijmkIEFmAjDMygBND7MxEEkaIAETlDRADKylEUHCHHOsZwePjw0uXpcnUW/PJzn/80ItQn73m/WJ6dzE8eIOZlsTOd7o9HO26s1lqXF85maKwAIRoVBPSoLMCKGVIktMIKkYVr4UbZM0ubmYmIqMyKYIgUkoMRCVARTF15ArBZBhpPTk84Lq9f23nhxQ+6F348G12j8qaavaCiMkM5Uj4184KlDjwDrUlDFgkDYCCIoL7W5VIbb4QskRCmyC5AtzKSmpwyqGEOkoC2U/VO21w37XfUgX6pm4xpTYFPDUJ1LuVzTM4Y4wOrqii0FaHaSdAW53W7rc0QFYuIoLt+3zeiVbe601JKJhFhR2+DVEhFaqtKkt0cY1TNtjYsdPwK2+pn7JWM4UZ7xhhMbMCcO0wrRLTWlmVODseYBb+sFpVoVFVnbWSmiwyYZE6CqjGIZBCR0CLifHbCEsgAEAoA2Uysi0AcgrPWWoqefVUn1YqIGFhEEgwzACAZtQYIeedSoeRUY90EZByjY7Qs3ubjifPNChT29/ej93Vdl2XuMURhALJlDgCeuWkipkKPpGJxZGZSA+pRyZJTUZUoIiisqgJJBpuBqyJZwCHGgAYV0RgjA15HRNKhkrfaFYICp0r79XscLJ0OXseGEokbTHXNITeX/bxUHb5cJNpAJ9qgXZAeVVihS9XrHOJDptzPbONfaG3cLUHbSZHNgA2sgyWde4QBWjMTUvVVAmBKTaQFVCFFIdhYkUhkEUQjG0BMvIyMJBg/0iisDLkpSzfi5tHxk4NHj+89vH/n9nvv3L9/P9TBuVFpHSFx9EldwoiqmklRRSRCgISEqUoRMUv7gBSIjGok1txZHzhE9gCV98vGc1QBFBRVBYOWbF8wvi58bBuVb6xk+yI7Y5RBFTtnNbRVjKoKrKhA1rCKj9GkQmdQX1dKPs/zzBlmz2REJaVApor79v0bUlWRiCDQuteMqioCIRowoq1rTpHQEHS8WDulLkEWKEIuXA9gIHO4tXPrloleRmOcjAIwh3mZW1ZeRZdhbgUQVPJRw2BtfpVkdny3ms3zS5OTs2VzfOQEKqA6y3IStCQiGltVpk35BqhsfQkmLMWZNLW1zplJll29fsNwlRdF7ui561cfPXzwcLGq/Pw0zsawpwIiAdRvqa+RQTgiGke5tQQQmZsCCgAwowOb7cWYTa7A0QmP94uT26/z2P/hP/cnrsQX7x79afrQv3b15v92dPo2zz3L4Xz+vUcPv/rk3q8sjx/OF3cXx1AUV3YufwTGmcNr02KnHPmTszi5XKofaSqKEa/qFUmZhTVWxxKihEZjVEEBi+QQnRIjWZFMMSeTAaIKM0RjC0s+LJYAs6u33PXnf9Pulc+Z3QhmH4yBMI+LQwmNiStcnUp1BsuAwpl41Yaih9BEX4kPxeIuSxPoGk2uah59CNbD1FZLckk3oU5FESGQ6FBIvcRG2Nf1KoSGHAWWKE1iLZp4SNv+1EEC8JU2cRqgYybKfXQpsVDqTIREbMN2RlHUYmKpqbksQDK3RUg0sdiesSTTiIAsYmrCm3wfbcjQoSoSkgIDQIeqpgqQfFvaBa6SM0mkZYN5niePV5TgsqkaFY2qrEgqiKm3rqRmZoxg1vGv5DQbwPerKvWuy44kabOAsOcJpmXHqIBKBFlpFZvV/PLezTO1AKW1TqoqVZxrAj9QVWQFRsDCOd/U1hUEpCbzzKMC5ydPzmZPynI3H+1n5Z6PTEYt+sxxzaZuGiIKGtBgam3jyIWsdMs6L91xWBGZHSizYjo3tGNWvqqdm0IgFS3GRQXVEuoJ5NHXOWSGbGpb6XIj4B04TVUNAoiGKHmbBRElCgclRQQLIIpRsfasFkEoxhgAQEWAgcjWcW5tVjeVCnjvq6ZGYyKFRePzshCyBgQIDIrNcwEhVZAWQbpNUwBCFFIDXT5X56VIEse1OAgasW1mTcK6PnnTWEpIAJAQvCBBpBLIuo8LGkPWKaEA0Q8BRfm08f7N0/d52pZOkY5IiwCha2ORaxQFNSoUWQBUMcSMUSIqhBoh2vHONC9guTi4c/+7J48PHj9+8M5br9+7fyc09agoytIl33K6o/SakSq3SrEAiCijKqhJeZKQLNvUkIcCRwmsUTmweI6t7Gp3FfYb6tmrN1R4e88BSoK96DRZWUtr7NKhsd3z6ziRago9C5DZuksavmkAAFENpSgRAVygOCcKHahH24+gqiEwDJIJnn/+OaNhtVqGEJxzgBbUpqJrYxOIJrqsQLIswCQWxi+88MLxyYF/dLaczQBQQD0oiXiJo3KMqdKAuypABACwgsEIIJoosfY1BzaYOXKucFnmfX1pf386HR8eH4TQnC3OdouszJwhTW9t+AghehAGIDEeqTCODNkzS6APR/wC+VVhAiyv3BzPlmerMve/69/8X+5+/M80cO+V+m3IAZBDNcFdyMy1y9c+fvmF3/HxTx0184ez03uL2cHt7/yDN9772rUrLxuz4p3nK1/mo4xXVwSPjTo1BKAgJBpZhIVBOMWLUSRVz6giooRGptM8CjfNmTWOnAXCIstymp0dmL1r9NwHPrl7+fM0sYwPjf/Ikg6JyISG5sf57AiWc2liDGD4BJsalmdYnWlYCgUxolbmO5Nm4UP8FVntKX8ic9e9Wx6GcYkRUFNgMUUTDSqC6eOmfY4CtRGtztzseh91NKNr0/YcE7hwa3R7Zv0VEaX4cquODn7VKouEvYWQjvdJVW1DLUIiox2PTJWkAK2Nj4K0AZ3VObsTEglgFB0+eH+vDdNlY6uvPZDtOdsRwcFXT1+KjZ8gImJWlGCtM4jAPkxJREQsEW+eCYCqBKA+MhkDQCmgb62N3jdVLaYsdy/Xjfp6lZdjQJ3PF6NxFhueTCZ1tTKRiyyPCclSxFbNXpYvzmZEkmXETf3k0cn+i89VdXnjlY9UGqeT0eP7dx7fu3uzyPey4p5RU2YqxMErODIoYlQkFRMncKsYG+0w4JLTu4sMMCogAhMSixqjg4YADKrMMUYRiDGqQBfO51adQtza6UnDW1uxvXhRSmf2dtH6pQxiIgim+xU87S0ZY1RReE23nddtgwz6Ljq/Ps0YtjaV6jr9sT/+q5LQrcG96fnELsk7+QwVEAisOEIlQwGECVhA2EV0llDFZpkzuQ1+fvfRvSeP3z09ffydb7x+dHSwXJxmuRsVufeNSJ27grt2gd1O7r1kqsqqrCBdCL8VeMnDRISqGEQjS1CqfYwxikhKVd1Yk6cv4PDDgD46tjKEPWMBAKFW9FoAJk7ZWMpJX5YIYltBvSF9+1e09qUkkpQEsKOqitak/EPtkAIVmGAzaWTASVOaNw8erqrnRwd3U/muczmhITWxiclfaF0hwsZaBHBFbsA3De7v71+/dJ3CSVUHQkCCIGqEWaBICLCASJTyLwAEDOVsAgGC2hjDYnVWLWuZEIhzDgEkclnm169fvffgbuWbg6PDy+UEEUeFO58pr8pAERVUkTl6QEIu9bhwLzVeaRxZxqrgLCO46y/++N713z+TWaSxK/biopb8jnuOm9Pg4whkZHTPFs8Xo1ft5cNJczKdXmm+8jdn9892JvZxfNfke8VIR+TLCTrnMiyISJA0JVnHqMIiQTkIe5FUbhsFjQRg37BEjcHYQhljw8Cu9tl4Un30pR/Nph9nyqkYySqLq5NCH5pqLotjWa6WVcBq6VZH5eqkiQYoivU6yuDac/baB/NrH8LJLa8wWpzA0Xf90f3lTGs5NnkNhRHOBCRV7kG/0VFYgmrKTk3l7p2/pKdlWDMvUlDSwS4euPI238azFXTsHNqdP7UzLi/aSrJmpEhtzEu1qxEg6rgKUPKxwYBxDY2bxAdSF0TokCmT133I9/ornH+ETQ6WNnIvKFMsdlsF35oDbDIQRCTryFhniEM9nkzCfM7BWyVAGv6qWx/1UcZlrgJkHBpnDdbLZdM0o72bEZ3J0Dnnm9oYkxVTg05plRs7my8tUDU7PT2dTSaTpmmcy448r2ovmakQc7XVYqmh1lV58P071z78ArxwjQy88vGPnD54+KiqzN5O7rJYV8umMgqAlhUVWLXpFRU0hADKEkJAo20dPAiIAGgK5hnNVFWk9QxqErqqoqjMCRuflRUlahRgY0wfZWgVwJYb94XXrTS9gMzA6PoFdT5cpU24yqcS3lr5Uk0sVlT6li4IKR0kDfPrZgFvzeP82KLLZ8tjHDi0oVM5+la+iEaASQEUAUrWJnLNGpUjqqIY5ILDMivQ8+njh++enB0/efTwjTfefOuNdzKHzpmyLFGVWYiMQeKompigQpTkGkIAFFGkNcRPn0EHAFGjAYwCosQCPjArsIAPMaY0w7ZoY/2w543g/gHPW8CMDCy6tn0FgAQT5IagtBKZCCwhGvIxrIsnVaOKaWF3L9jbiJgZJyLMkjD0jaa8LdSUXdqdCG3XlI3YVc9lVBVY0LhYrVsDfeeN1z/8gZuXr71UFuOynCAYTl4fE1I8M4WpQoxkrMnL5alqlP3p5eu7O2N7dBYBDaUnR4DGR4NE2JfDJAxRIbF1jNZaFPVVPJkvjlaT2XJhJyNEzHIb6uq5m9ffeHOyODybz+d10xRFJmLawtnBsCZXQFSA1IFKVAmykzNzWWxZz+dXi90qyl3HnwK58/rdX/joG3/uxY/9b2T3A4v5amfaADy3WlZO75Jhsg0AIxAgWXfN5FeyF3Y/sPjuV9792cU8w2m+qMTM6NJolVe7eZ6PRuOiKLKsIDAGVRKkgEgKgGlkSeiSiAZtU83IQGEQuBZGBGMiLnl5a3c/KyYQQzg7iWGFAA4FT0Ubkpmn4/fGsztiEC69GG79aD7dgXwKk+swuayjvehshSrAgJfL8amxV7Lm+4vVl8PyBHnPTdBDJG07i6kqKiZbqG9Tj20eKmPnk2v7hyBA37QDYY2PrB0AbF+oNDAydLBfYBCQ6wmPWURUBLvsm/a0Hr1ovd0AAMAMgbVFEhPBDgeno3LqEXv6CuDu7mv7IbUiHm7hPuR8fl8P/9zkzmmDYiqJ2eKCGzvr6QMRBQhB0DplX44nXFXMjCbdV/r2AKAGkFNI2pCLIjZzZJ0xWKkiYjnZr1dzJM2RKr8MjKCZx7hanr3zxttWwKjEqi6L4uBsbq11YDTyZHdvtWxEVQzvF2V1tphQM0Wz/ObXj7+Fo+tXx6++DOWOuXIj3nnXlGVcVbha2SwzlgyaLC9DdDH6EJoQgiTsbjJkjcS0/qLaGkGsIbAvIAewkErzEVWiSEyrlKDfWEQ0ikaGqBBtm3OWklUlYX+lxcEWqFc7PIZWR9l8X3RhnZj2PP0pg5lTpS+RUU0ahA5776IhQgtEQOaHtICfraUO5vprRdEaXgrW0rfV7BJQHeQiXjBaFJehGBKxATF62zw+ODg4Ont8ePDu7ffefed2vfKjcs85AwAagw9RVY1xCYcoSuy1XWjx/6DPkEJEIkNo2kCpCiIKQIzCiJGhjhoUvQiztv4tSh4s7fWg9eTPibTzz5vwoVOmczIWkhlCHYgHcOs+awGzYoAWRB5SLgwAMKgZNOUe3qIPSAOAgWRPG0Rk5kHenraQ9Kxg15Q3UCsBAKIwmfXFH5+cvFpfRmFLoD6IBhbw4o0zSBwk1S6TiDiX27wgZ30lmXOv3rp66737Z499RDSWMEQAjAoAgoQGCRBJRVogAQQUQraEPurponlyMn9cZBnieFLm1tZNNZ5Ob9269fDgTEQqH0aBPUersnYntI9jVK2Akprk0jBW9fr+SWXjbOfmzeureVwuD1bl//3Vj156vvzxO+/+bUtv3vrcf1nuvhDDqa3mI2sC7BhCtAogrAKQKRZgXBjPd69/6rmPf/nd79yfxs+IOOJiNjtleJJleVmW49F0MpmM8hERAYhBTK31UFRUURlUlNAAKyvZDNTUi6U1RVkUwFjIwbXLHwPYYY7OETVLDAtdvgv3HunyGCXQ5Zvwkd+Htz4Wx3sR0Y0LZfCRRNSgZFw7rAFCXD4gaUAysz+e2Fvh1K5q9BosKyICKSIRWgVBQBAwFskAahtLSz35CNueqInkzMaG3f58IfEPxU97nU2iRfwBHLC/Dl4EgYnd6KoKOsejtgxXN7F9eobADITrGuJ+DM+Bjulh56nUzUttTFEJtntXPutxtgziruESMVLhirwcwaoiItgk724iqGRVVRDIZibLEBTJ5HkZ2eeFm50cLk99qMNqGY9PVoB5VS8sUqhWozIvrLEiRBRCUOuml/ZGk10fjiRyUKlEnHOP/aFpZAxZVvPy4Gjx1p29l54/rlZ0euScbYIPIZg8E0JBzopivLtvM5tlmc0phNCEoDEgYqpTEOG0QgoqMcYYLRWG8n61+waRopJqQ5lZgBk4KqMBa21KCIeOZ3Yv+uIVbk1eHXAGJVUl00III+IAZWwrkjAg7JT6j4QE2hrNhANPJJEFQ4QWiRB+vS3g8+PZuuGzf3X+X4AW91qTYQZah0OKJtNJRoWIxOZodnr35ODtB7NHD+6dvvXmk4ePTlklz4u9vYLFMxdN0wBAnpcAUNe1KmdZtt5LKVKznknbWYXIUgvyjKqCBlU1xihIQbTxwav1qfFv1ziv36WIyOsiyI6/9H7mBBCP2GYFgCKkgjfBJMyxDWAJKAwLCrmtTkmVCalBTRK9xjhEDCHABlPbXk9ENJCKE9o8flAWBey6Y7b1UJ2pscUFAEAZVn6V2zUQRyO0qsLybIYsMbSV71ElK3KScbSxKAqD1hjDKqDissKTsZaeu77zwpXxm489s1AqUQBiESBAMWgQRRlRhQEgEhgVo6iWEDGs4Oho+aDMdjLn8oyoMc74url5/UaZveFZ54tlWeZZTmJgSwCHKIaMs9YgKUjkOkpzEnS/2L+0G6ontx9W//2/8Ps+88kf+4dQ/DjYUt/92sNHf+jk9b8z+cQfRXsLRmdsa2OyhPodk/ZjjXFKGMvpc1T/K5/48fsn8//m4TvLS1cviS7qOiBl0nCIVVNzXfvRqM6yDBGNqAoCWETGZCQBg4ASK4AEADHI7KxIWJyezl66ITv7t3T0nJdYwkKPHvH8/uLs9dHlK/qRL8i1T9XjayRseJmFY2dNc7ZnpM5hAVoBCETrvfOeJngaomU9IQ4SrpH3GO5AzWozQEQ0CkCphTWYhJQNzCIxyS1ERNJezUNEgwiwdjX3x4cMAVuav4ADPI1RGGMA2pCHinaO8XV7EOzQMVswyPSuB8IyUVbfYKZlJADQ5YehrreMrr3c0m+Z9BRbGdcXjvOm8MYRNdit3oaCfpHE3bosogInn7kBRJeXXDcs7XqICGCbMp0cqqTCzMlzIQgiavMiy0tWcZZGRX54cnrv3n0Otok2cL1arT70kQ8Xo7zylQUox+Xy9GR3PHruY58LEME3V0bF6eGRGRU+cGgYw9iOs6Vnl+Ol8ejg/oPm7ju2XpGbYFAbGVUROICocFPz4rg2jrKRG03yYlwU1oUoTQw9/pAqo6KCRAXPUlULRCEyKaivqiysKsycfNEKrMBAgKLGtV7eLlmgX0HBNbZXH1YbyhfekMEbWtQ6OQ5R4SLfdf+y2qoVZTBkzAAJsw0JG0ADSkK/fklY73M8zeZ71vkpC21jS7QDEae0g8BGvcTFfHl2dHj37u3vPbz39je/9/p8IaHJrBtZ0rqua4y5y5q6KooCAKqqEpE8z4koRq+awA5aupfOUu20eNN91em/wqoYOCo5FgisUaUJqWvlBjoaDDQv3HTkDp90SzwP+AViAnduvRmb7iyB1KIsyyxAK4Yxccz0IDJMOthefFIATOQCyqKqiY0qsJJtT2gxHzdA0/rnquuaMYaw9rE8OD47PNgp8zEIB98Yg3meR2GjI4+ABQOhkCFbBomgnOf5ypq8dNMKrk7cTgkHlaKCBahbbzqSCoIxrZZiVDWSWhYUaQwp5Rh0OQsHS39rVeWrKsa4uzsNIexOp1cvX7v78NHZfDaZjKfj3Jxr/+zDyrnciAMDCp5xibC0M0Kwt49WxQvf+SN/6s+XN/4K56sTIIKzS6/81HX/V+fh/02rJ1ReDTSbQ16iJwJEcugQUZGFQwQu7QvZ7nQHfs+HP7t6/Oi/q5Z1no/QEGIBBKxQ1b7xcbFa5i6z1o6sVVXkiIotgmnS9EURKTQRUbPMiizqZuny8MoHfkLj9TpymVdwUJ3e/54W8+lLP9P8yOcmzoKqLlerKnCIBMHCUmCmgbkOFCJJUPBI0QKvGKIWkZfYVDAzeQUO9hTcDA5bJiQoyKhEIEomxpjyQpNsHThUtn0tAB2KVkeHG5KsI+atb9dEvpmE1UFOJkpoI8GqQ40ZoNtskApdE/iztHHjBGrYd+AG7RIYO22YUh+FdptLp+Aia5sCSbS2qM6LWN1wI2+UgSa+DwAD23cj/Wdj0S6KRvcfUCStjDHGc3Qui2hii5QXsW2i27MURGQVzIpSERI+R1FOw2qFmQmi4+meRnz86FTATKe7jWcWc/vBk9/xe3/XvYOHTbX6+Kc/+ctf/LnnP/Sh/U/8yGl9XB8eiATL08mNa17An1SXnsjoytUFmWsvv9TUq6C4uzc9eOfdJqbaTIqBSaKx1ir6KmY2Xy6XpwdPwMFkf7pzaX80no7yURNDkm0ioNrKWiKq6jPrIMuKVt1SFWlLgdMJrK3LWIANYVeAPmSqqXrebC5zhx64NmF1SwZDh0SDXWB0GIkYcFeANmKc1EGBLolv+HLbTK5O0/tVC+AfqPT1D3yegN7nLXrZg4M/kZJlMPg2XXA19c2T5eqtg9N37j+8c/vuwZ23Hz249xjNnnWuHGOQhiVaBypl01BWaBPqlCZnrYnSSAKZA0LBfhP2UDibU1vnIomIKnIUdEkqoyIJcI+8k7bvts57bn2Gi9PvMVUFVJU2YWS4kl169WBttWUKCRErXdCYloOw9BZ81897PX9VYYXUtxEoKRkSdVAi2Vu+PUZHT4VpAkG8K1yo1zHg+4+Oz65c3TtbEKrEKsuNsyKBa4YYZcdR9MgKxTQ3xiBAZsaZK6RcWIwjh9PSnFRMCtaAcspJFQYyqkhkyCCBqlbqrQALBCtkDARuGp7HyMzL1SozEwBwZITc9es37j94vFqtQghyEQ1GbmKMbKNzJstiVmiem+meX9I70+fdv/G/eAf4FcijVOMrBSiUFXt3/RotP8OuMADOl3t0hrqHKqAMMTIzoXFuAi4LzZnbwRJ/7MMff3x68Mtf/oePnrv+hUBViNE6MgjMKuqtB595Y4xkBSpYAoNgU9BRFIBj5Nw5aV9KmC0elwV/7OOv5Jd+ps4X4p1/MM9Ovrhrl/j8v4gf/xeiLQSV6hVWB+PlKYQGoo+RS1+BSsOyiiH6WkNNHKxExoxJgs/Yz425bYi97i6EC3IdxTIKArCSQVEAISLryBlLBL3SmajCDCAIkvQdGgwDs3jD/N3aEa0I3BTAMbSlfFtbs/UMp2hVZ+OqArS5FK1qYJD6aHFvy6afICoisACR9DYuaGtSW2s5ROa1k7mf54Vm7vmN39lGG+p12l3DZ99imxeOtG6ECbONfBOMdUgWhLvHVoGIgr2uAKIE6Jxr80rQZJlFY1vXktD+pesf/UTx5GB+cLbIRqNxNHcOHt15fHDp+VvL5Sy7tP/Kxz7WhLDIs6svfGQxKe4+fnjzledHN26qLcc0vv3aP7G7ex959RONG+Oi/vDkenX33gufuLnypxK5ni/nJyexbpwzKBqXywwzKjCzMA/Ls+OzVdXsXGqmu3to05xJJDCLJqZMJkoEECJAa0XW5dohBBFJYJaqHDSEENBI5sq2igBSvKpnX8mS4XZR0hm4TpLaHOtEWuyc+QPsjovei7TobKkwvcPPGcbvkk8ixXLA6mbEZX2tzuLu/OfphHWAAbvRUdG63hwAuixrHDL9nuQ2JM2WXZb7ULNVZ9BhJEABE0V8lIIogjSgkmGORnx1fHp6r64fHZ/N7t558PZbt9979/7xyYIwK8vLUSRI1Lao20RVkaCq4A1AG2lg1gQJCa0ilBz4SCraxUcZOkQIAAZOCjczK+VVtbJlFqKenc5DHSMSCnJoyx4SeMb6TVILGgCQQBTWy9jnVfZ7T1VBJCVOKACnmkLVNPVtpVgUQB05AeE27EC+bjjhJTG0Mjg3RCrQFVH06nynhKVa/sTIJEZkToEKYwwYwxqVENuG4KgsGlmYEQAaGPpYVkt+fRau7VdIjIhRTAjsMipcmK8OMoLJpctqtWkam48ATM2Z23lhXrl9e3LrUu4cW8gaQLaccwxKDBiVA7MTU6A6Nag6zsqowSLkGpWXWpjG0PEB391dfbQcofdVqMWYKZn9PC933cmxPz4+vnH5EtH2TquXNJ6ayp8cnfCN50Yf+8TzCIVVe2n3q1evfQ4evCfNF8EeHIVfBnr1hv2XyvIlwQLKLwjuslmyeowTAK8cCBAJGBGI0KlCyKhqJKfJlMLnP/2J3/3ge//Z/cOvmcu3psohjAIZxAojEe4gchMPmS41q1i4cn+yU/uVJRmVo9h4Yy3gHAJnDprZdbP/xR/76T852f2T1ZP/Fz+cT3y1PLit0/38M78lXvtYLKal1lCdyvxQV3Nerni1kOUpNovAEphDCNHXzXJJ1lViqJg6Wc2WpyZDkiC1ya0Zjf2VAu+G5ppDB46q3DvkXaWoDGPCwxByRus1hiZDcQArQasQEVsHUpeBRZ2Q6vTRFG2FJPa28wQ74afa9uUdGsQMgJrScxBRQVlJkAAZoWt5BKogAikOoIo4jNquWdnAQUXrZl+26yqWtqqxbS9hCABKNhOG2EZDOUcW8QgmNeoNiI6AEjwUILSZVgCp76QiQ29oJRCDNqK0EVDcfN6NaFGvlAAAoKR6XxEhsiIxy221mmWY+lIroCIJYfssDOCD2lVT7OTogEWqRie711b1E6SyAhRnpi9cnot3i0WO5cqdXN0b69kKduN0sn9ce3PlSlwuIldukRXjvcvXX4EbV/YmVx+Gug5aTi7Thz9py1tjNPP9ecAn44U/KfDqSz9jm+Xsve/be1iYrK5j5go8PFTl/as3q8eHb/3KN3d29vSsfhQfzg4eZpOXd3bLazd2D45XWZZVVcXKWWZzHOfZjld0mePGG5O6HXlCkxxsghBVFSEvM7TI2vQ2lSHb5TxDj3DWGh3J06kEZLulFiTsZLOwpPdIkhLkCVWBJVhyQ1Ow/9eZTEQUBIGAciSDaMWY1AoCABStABq0aC0OHOIXjG1b8+nnbNENngMEef9DFiNnhAwLN1HFGkskLJxni6bKcroOGS7P3j0++/7p6TtHhw+/++0HDx8+fPTwIAQti8n+3tXgpWlCSnbdmhV24OxrDbQjbtnQW9cOVWstDRIp14MTEJqIYKrD5+Qt7U+gdhWesXqwyXo2ucRT1meYUNfrOL3vSzVGHxVSXj5iC3mqhMgMCUR3s8vb8P0OLwgAKtpfRyFh8ilaQkxMByxR5jJAk6rj06jqcHg8O7s6jioIcU+1mDpf1yGKzQ1LEIlGhQhAJQoTYFEUsSxxsjOZTPfHo/ewASVk1F4FVYTUZ4yBU+/stA6GjBoAo6QsXNf12RKX4zAtXMbtc41Go53J9PTkqGrqs+XCmCnAOmINAHk2RTo7Xd27fPn6Bz52fb6aOWevj7P9639w95VXw7QU/6Mk78nZzz88+GuH2X92pfqfT7OfsiOXxwO0lw0QIERuoWpUBUSIxKSgJN6UeNdmB2bnBlz7wo2PfOXBo9fyw2nDxyYzxSgPvKybitwU7U7dIPhFlhUhhPuPHly/elkADk9muc2pXOYh0GXTLHZc9qWPf+rP2pv/xtmjrxZ8CfyD2eO3yV0xNz/W5JnovKzmsZlRs9D5mT85CqeLOJv7s0O/PAleBG2Kq8emdi5f+EguFIBkRBSawCoQVZaL1bXp3j6Euao9OnG3LjfkYG7yq/t6fJo7RyawZ2Z2zuSFw4UqyNqT15sMrYCRIZn1H4YGpXb191v7YrhZiExrwrUR5CRx1/TcWxtJ3xXp9IB2ShuBHljPcMO7dv5fVUip09g2bLBJae53DbSRAlFUER26qc+DvT8lgHjBWG/Gc2wBB+coIZJFY4dJWCJdLkXCHOnBwkSUrHHGKGBjAKBwGRAhwtWrVzG4o0eLvUtX7pzdPjo+OKkWV1+8ubNXXt2/VJFZLOaVtWfNwoyL0eW9g9P57kvP+5rPqpv03I1KxtVilU12uNxdxidXrz2f7+YN7V2/esm4+r2333v+R35KWUc6E5eZ3dGI9m6sXjGaH95+cv/e2X5W5Iujs4WdrU5tDstqlWVZWeY+NC7PTV6QJWstiEIEBINgOIp0tWEAYIyxmSVHEpvhqxks4NO4q2x+S93nviJk7cXBgQXca41Pe32p+8LwCCIKQsJgsfgUa/oZYuDZIvnXODIKKg6MA6NIM0GUWIR67EKem7hYvv746Lsnp+/duX33u6/dvfPubLU8ybIsz6fO2RhldrZMoVDuwgOwuTo6iPdsPeP6T6QuYNBC/7dljKoAqAqgJMoEEFkqD5ExskZQUbBrVrLmMnJB+BX603oq6cmoZ1rPGP2Lbz8AGKLIHGMMkRUUAQXRACa1O2HYQovH1ioKgusqI+ygP/pCZ+3kfXLXQ9rnCpoKP1UU1DqnZOwgaLLy/ODx8bv7+bXL07HjMsNJdMF78bE0I2aOwaPzTiJqAEE0ZI0ZTXca3d/bv3xr//C1OyuIaJkCAigZUgVgBRTwpKpikbCNBRqQDistqhc/m+FsGidFdLXP89iIH08n1y9fuf/4aFGHo9Mzm7ktAYymPjg6292/fvOlF7GA2eq+yoPyysefu3llsvd7gacwBsCP3Rr9rps3vcy/bVhjdb9ZPK6qWOwoFVlkVJNjgvkXwUQl0QOCojdxamgHkOPO3suf/sQ73/yuOxC4dCUGc/pkbnPZvTSt68XpcraztxtrVy8rYwwRHp/OEkbKeDodQVOdZsW+OfS3f+yFn7jx/L9zfPjFSzRurCuvfBjn83hphB96BS59ulSGw29DzLVaxtPDeHgQTuZ+dlqfntSzUzuaeCChjIyJrAYVWQyF2cnMTUp1hrI8yyei1cHsyeTm9Obn/hAvZ2dnr89Pvlc4dOPLeFgTNT6GLt9AAZCZmYNzJpmmCEOKlz4w3P27Qca66RLrDBQC2HD2QoplDrePQC95e6d02rI9ULCIdnoAYlIkB3ZFv/n6CQy31ZZQJyLUdSclIrIpYI/Yg3EmBTcFgPB8yfm5LYwA3d2fuscv/q0CiLZtJwhRLVhHWa51IxBRDaICWJHYRz0RQFVjjBijyS0aVEFrXWSwlgQxep/nbn9/9/T4zKn78Ade/cpXf/n77z36E//+v3Vj7/Kb33+9mi8++BtuHjx5lE/HYujk7BTVQmjOVtXY7ksF5V4ZRCpttJyY518av/KhqlouGYWs7O5d+8iHy5vX96Y7i6O3ziD74Gc/OXvvznNZPnK7B4+/4jQDk6HN5qvlyfLhjZuXRMKNm5Pp3u7p6Ule7rrxGA2hgtgQggcAJZMASxEl1Qcliwi3+2hJHz3EzUKy9yHIumS+zYNb1LL91rDtegRKiAbBAIT1t5qAj0BUWwv42VbXwMreOHLhyb9W2Wy99yv2CIZUcwc2M2U2dVA/un3n248Ovn/79jtf+fK37rx7mGfToih3d6/HGEPgtn1s5mKUyjfWtihvAH2mxlBNbp8Cum3Qaaz9CSahPybsvAEoLmpyMImwQmCofKgjh1Q9iwCphKlbA/lBkrRnBJ09ve6MduH5522C/njSx2NLL5hySRjUdOB2McZe0qfnTZFjM2BQsLFKOLT+sSuOE5FUdxdVnDVEZlCFBEHxdF597/4Tj/LSlUkTw2IxQ0QhrJb1OPOhqRlRjc2S8AUbhItyzHhpf+/qS5eeTEaPmxmTElpHgu2SQmRVZEZESNmDqZ+asKo6NImRzld8WvnpyBZVk+c1E0+n0yu7l4t8dFStjlaLspoA7A7XsA5+skcvfnjXlEf3jw7VRFW87//hy/ipfZmCYyFueAmm8PB4d/dHdPE2z3ycLwAfZpkl9yrG66wPExwKCxtjkKOEqMp2fJmceDq2ul9mP3Z5/Cia/+be8Tfm1dnV3Vu7O7eE89kZoMsB9OH94/2dsQrW7Efj8nSx2Nm5FHz4/ju3r5ZXr131y3swEr6y+1z9K//H6Q7C/m/Jdl+E5ja8/IHJBz8FH/gNVQR7emAah8uTcHbiDw/C8XF9dladzfxiJT4QrRRtQFGiEDwH3zQNOsfMFkpypc0ndVOxqqibTvaKD/z0Wz/39xiaCSAullpUORQyvawnd0iRFIBFASQGlWgSjSTp21ZMCkBKkIZ+f+mgE1xysKSttbZQWksVccuJpcBtuxtlRZGu8l2pg1nY2FDnNezeAqZzuXg9zW/qCrjx8647AnRR57WrqR9ERJjK6ze3rW4dGXqhhmty7ofbzkhEBKFUbEGIokaJyTmTlVLVnXsAASS15Gv1aVIRlhDQWnQZIqmwQRs0qjAYiDGyMBJcujx9cue0nIw+9dGPNdXi7/wXf/21b3ytCvHhg0f/9ksvfeKjH/vuG6+zD1f3LwUF08Rrk+ny7nHuJQsMKtWqETU02V2JAZiM4gLCAqfXXnz5yuzopDltRns3PvfT/8p33/oWutH+jRtx4cXGcicrMb96+flldbiqNS9GxsLu3iWXm7wsRrv7rhwxs/imXfYU6kCjytKtZ/oGAltLw1epKp0suED64trrqZ3/YMsC7kV4X7emWxfZfnFAXeU4kVmHvRBTM4v26r/qJKxni+rBbX5IMRx4DNm8yICohHqkq6Ze3Vstb79155u379z7pS9/6923D3N3+dLuBxVXrDPvx0RtKmCoG1UxxmSZiXEdkAYAVWAWEWnT05+yfC2dt8cJYO2yVk0ohqiqKiAKIlA1cVlxHUQUBQGwbd6Tri+4ca9nr9W2vb6ZiaddfP0Z6luSwaaFM++BDtbZW4gtv9BBM1REFABHXeZnh9uOiNCi/4ACeO+pM3laNkpowCgiENnBTMjkUfX2wRyJdif5TpnxfGUJizLzHJfZ0hW5I9OsThHRlWMlGwLnRQlclpPJzb3x1R2aV6IBLBFp6r0IVohVVVAYGCBGMSZ5hVK+BhAQETQ1HK+a/Um2H0SCVBQLhWkx2Z1OD05W86qeV83W+me5fuQzH4726Mns3cArAS3Lgu85/NQ7QHWkYg7zwtgS8lKuB3OGNEZ8UeWs8u81R1XOasujnPZRVEUIwIBCbKKvkCNM9sAuFSxWBSwePTz8+8Wrb1+9an//T/+lG9NLb37rrV/6hW+GEK0oi7+8u7NcVibHJngK1uajs9nCGrUFnuQPl+8dQrj9I5//SJFPq5Ov7Nz6A8ud2rBr3G7+oRfgpY9EKDDO1DfgSRen9eFh9fgonJ2uZqezs7NYszOZNxVTxkYEKDRLDlT5xmZ5sXtV8owyh9ZRlHGWBX/65MHR6Bv/1Xj0jj18cFI1O6PLBvhwN3IDu8aocgiBmR1lzjlIoJ4XJbOc19d7aj/vkO10/Y1N0X/VZ1u3hR7dvhhKXBn0AMZBQuVwMw7LeaHd3Ru+yuGlAEBSJwCj3gumcnnVEEJuUvKjMCu1NUUgqYvGRTK1PXJBNQRunfMMvqGqSAi8th+QLBpBm3erGlENpC7XyESuy0dSEEaOyoHT40U1SCIREXKbhxDU8N7lMR3x2Xy2X5Sf/djHv3/n3YN7D3E8zqfTv/93/u7bH//4r3zjW0Hhs5/8zHh//+rl6zuX9s8gvLxTHi2fNLN5Wea2YQKT+Vg19WiUoRs9vH/HN3F3Z+foyeOdq5cPTo/RwJMnT65e3nk8P1qdnU1vPTeCAhGn0+m1G+PRBEejshwXVbXM8pGbTNAZFRaJBK0SFlVBNaqwROagEBHVGJOydpIaNljSdp3fpwhrf9ihVG6iWlJffTd8KWmBFdsMKkQUJIMIQ3hTNJJq5BAhCeD3P6Ge3M8d/HXzS4thkN24JNTawoPKP7pz93tvvvG9L/2zr927c8DR7u9dEQpRnxCUoR4bG4FbvdU5K6AhhKqprclhMzyTlA7d3GzQLeIwtppcrB3gc28op+Y8CAoiXHtpoi6bOK9CTFZZimD1D9IFloYMZWsMucZ5XjNc3vXcLoo9YGdAKwAZQyQxRum87TDA62ldygoCaoj6kkdBGMImdKu0/hPJIhIAqQKLiChSm+0Hm4SIxiBAo/jweHnjtJoUpfV1TjhVyHMzn52Ox6UxBmqoaQ5oaJwTkRfmAEQ0GePz0/zuUbUK0UUwZEyCuqfUl0hAGRkDR1VrrVKXlabKBLb28XReLfby9E4jmUXtnckuTfctPa4bma2qrbdw7bnS5TRfRjImBhbR2i9nPH773n+5t/Pby90/smt3mE6r1SJHpfJqpG81cttLULikcQ987koC5s6HjyAamzpUZ7nF2dGs3NsjyhFmMDl44ZUff+Vj/5otfhuANvd/iehxVriz1cwCOMTFohIa16tVVmbLKkyKoq4X+ztOePHo++99/gOrz/7e3//cJ/+Kf+ud4ko+y26N8KbAbSqvF1c/yMjN/P7IO1z41ewxHD/xx0fV0WE9m83mZ7PlMmqW5SO/rBVZYCUxhGpRjgqyLh9NTVmasowEzA2AknOZmzy8+/j09G+extPPfu43Xrrx8flsxuFJGbnId0ODoGiMszZL1JLc5h1UGULbEinh0XSh/JZ6L7Y+t4g/4aFufkPt9dvsLUU0oIiEKnG4oTYqhYYyVTc2zpB3bW3DoYBshVznBeyvr50veuuHwxjwM57xQsa7aZZd/BUkVpaQ0Sk1bkFFhzZuTrznYwIdi7CpHCuyipKSqma5Dey95zyb2NyteCEad6aj+fzUIe2Pdz/+0kduHzzKd3Z2blx7/Rvf+qXZ4uWrN0+q1Vtf+9ZJXRnPAvS53/1bi9KNd8aTvMAQ69DYIj9tjsfibz/BwsHUhcv7l55EM7cFLR6dPoieq5uXRpkx3/naa5fGl/NsL2e3rE73LxVXru4q+NG48FGi0N7enmmz8QWUEUGFRYVZrDUQJLBvuAaI1hpjjLW2A0bdksHbetjgFW94QAGk+5xgNGTwk2S6XOyJVABQVIPUep4NGkOb1UaIba06pFSCp1DIDzPW8mBzWu9/ZAZQDSD46vi9B7/07e/80pe/8u1f+dZ9Q7K7cy13OyxBmBVC1CWSizGVvkkUVlVCS2TzzKXq7OGshvtqS+HdtokVh5DsiJgYgQoAaIwSo9RNrGJc1bFqAqsjsqABUAV6iPaBMOvz7QZLBZt7Zcv5jBfoyOtnOf9BAbirWSRnQUX7POqUxkeU0lJIW8xFAADq8/OBQUXFnLMn0jXVEgGiaIyRQwjCqc0tOgebrCF5wpWKVVjeP5hb1h0HlwqLIqBOmKvVyhjjSrSca6ouMBkjYxBjzLi0L+6Pv3GvmhMUokqsipBIGhHUgCgoaxt3VEQkY0A5KREkdlZVq7qMkX0TI1m/XF1100u7e7mzJ01crjZ6EQLA3t5OE48wP8nNbFGrxMKzyoR++asw3vkTn6SVG//PKL8kuaghI3XgB42fo14bjWKg09Wqlnh5fOnDKWwJABJDvZpzsxyPijILTmZclxFGdvJqcf2DAFA3j/mxSjhomneXy/ugY8CdxgenJvAqoo6y7OxwRpLv7exWi7vHJ+/8zt/6wR//wn8IH/5Xw5gX9O7e7m8bFQd4+yi7ksvqoRyQWV0r6opn341HT2CmZw/eq09Wy6OT+cnxrFk2xtrRDo53rJkCCIc6rmYiogImG+ejXQ1AgA0HAeHA9fHCGjveu3b/8M2rOy/svvTjZ/cPDMyz3V1zdOYuY8OgillWZFkm0jAzoTXkkAL05QQtPaeUAh7ugDXB9JEd7ZVkAABJlbKoG9JaeqyPbUEu3PX3TLs0tY9IxXwDS7QXxlvJjP0uw4Hg3Nx3YJ0LockyF0Jwbqqq5zM0iUhROj/6dgy431Dr+/5qHIobmoFBUFRccwxQBDXYu1vb8uYoQsliFhFgAaPEyiESESABCiQXtCgzG2PJQODgIeb7pYrBKlyd7ItnLIqd0Xhx/aZXPT040XH2/M1bO+KzKp5Vy+/+t//D9//pL+xcu3z56lVgKPamr3z6w8Wl8b7FK/l0dXr61tdfCy9/oJ5cn4yyu6+/9fJnnrPIX/niV0b5iJc+57yaz0ej6aSk3WmeZcAqQYL3XJSTnd1LVZMw0kVi0Oi9ryMaBrDIDIGlYQ5oUtqKiTEOtCLoE3p6SvthbMUEtaptMefwvQ0v2Hs40FDXs9AMmzEAIGgqvUFFWVvAvy7263D8cKIdw6RavDU/e/3dt773pS+99tWvv7n0Or1ydceM6+as8g8BKHpnzNgYYKljTLjb1qJRTehUGjhk1gD01av9Jl+HZ7FFCSMFSoHedeIVpmZnaT+n6C8m9Tl13ggheM+eUwGpCJAlElbsUhBlsDEucBo8fbnSr3TAlbZO6zXr8+JZVZWQjLHQaiQJIautmQNUBQkxQSJ0TZ82HH2qKp123y6XarpIJFRVVkmPLyIEVonSCudu3W+LTJqSFbCHJ4u4XLywPymv7KCuEO3u7m5dV2RpmjmTRHgazhbg0Lpy5K7ujEflGTTsIgZVBSFAixYRlaTDKkORyMxpo6UVtmjBaOPr2ocQQl3XmtngVbPdnXKcW6d1TOhgwyFmeePmcwczuX94vyyzk2WYTOju66udfbp8/QNu8luVxhU+zGjXqIPlnBfO1w5kQRQ5lE4v7+6M6xiRTCo8Yw51VZnQ4Djn5S1oXicDWL64MIHBOC6wjuMyvP69r77z5ldCtSLYrX0DMicTmCeIuKzqPC+FYbWYnRw9+H2/97d95mf+Dwf2zPE7e/fosmYgj47ufWcXNDzaLfJLYXV/RXetg0yCnp3NHr179uRemIXF8ezk+HgF3l66ku9MyvHuCsgaNGHVoPjFrGnCkhceRpd37ak/nktz68UXrzx/7fDxo8XyrK792M5P/dnJG9+p8Ahhlvm95trzZzXsmmzByxCDKhDa3OZEFLzvSHhI8tipm+m9bWiZIhvBuZ7yh27k4R7BzWBq7zbqD23tGpG29KeTUr2ROtR3+x20VpSHOigRqbC1luvGWlvXNRElLp/OSQX4F2rMW6N7wPVs+1s/7XzcnNLw234Z17m6LQMZrk/7HCwcFcg6YlHwYpy1CAkNEMWYnJlFgrWWTGkvyfzA1/NmVI5ztS9cunFQnx68e/v61RvHy9mLz1977Ff33r6f3dhdzM/sqLg+3Ts4eHz/0eFZeX8MeR2aN37+F/du7OJOodVqryzv377/5mvvnMxnhyePLl/efXCyu2rOvvnzX5MYXrn14gu3rp2SJzu/cvXmdK8gbLI8D4pkcDyeKjoARlGQGJpam8Z7Dy5Ha+t66WMTYwAQMqlflnAEdEMLpzeukim0DfYCAJ0ypwOHczq+HVLBgfl73jRqKarDIEv9A4ZknHgvdHVQtjPXtml9QAJdFAWgs763KWDLadM+SGLxGUaOBEJkVZBZAMBaC7ASJqIJqGOpnQtExDXO5v/g4YPDX/xnX/3iz3/l8GC2v3fl5t6orusqnCIiaBlZgUAgclQRNFioQIhJoLRk6NBECQAAwxKF1FBB1iDdCcyt3ZOIKfGKqMWCap0YAoBqjBBAEA4MkanyuGDrA9beelHG4DUoiCUjAKqQkvKwc14ZQI2pvAxVEiwlAJCAEJJIXOvjKKn/MDC0AONbdRq29bgmrIOU60FEhkjaKggAUmMQAEk1qkICSgAlNDa3wMIsogGUO+SsNo6loOwMJM8eJIXEICAAoUZVVWVBQVRCNcykqqhEJIPyK2FghowqJZ7Vnhtiw4uifvGS5lyvqlExWk13dkHGDkfOQgyNy/azUB/mzCK7df7CdOejryyefPsI/AichlCPykJVWaTMyxA49SxDMMGzsWisJWvRQQ2AjKXZOTrht4v5R14qRs0Shc6amVhz7crV49M74VwM+EMv//YXXvzR7zz8q0+Ox8t6PtqDwyf8wgfgT/4H/6bR/8tylZXjutRrHBt1lT/5+cXJEgK4vAgRBBUKWYi45iDoxBXT6BtdnWRSBYQVG86PVbLCl341G8WI+e7qbGnNqnn09aNHDw9PJyseuUxRTkWs2udRTirvIF+yYOHcw8cHP/4bXv7Mj/4ZeXD3cjEmegL1fQinh7cPs/ncHz7RsZ7EItt5DvOxLeh09nhx8KiZz2dn1bKOMHGoeTxa5D44ylcRJFc0xEHVZDSaLpZnKMuT0/cWq6uL6t6rn/9tH/2d/86b974vkuXVWyYeePfiCMz3v/7lbJy//JGXvaLODi8Vu5VQPgo8G0nkADMPZJw1bTZeywcY1Kh0eVh9qCK1EWsDchazpOMmLqNtSQmQtYnoRdZcJap0APpKZAMHa22MkRn6KvqUjNzzokyp50aIKCbty9RVQkCVEHoMgz67CrsoL3TagDV21dR5Tr6J05v73vu9yaSqmknhmFnVWpO32iRZgAzAKzAIpbCUqhAgoEbSBEzSssm14229btsM+CKhC6KQCpR7lygBZSaSrf3MGkU1IMaaXEJkEKXMGMMIPnpFcHmGCN57gNRk3YKCoSigwihQqDvbGRuqkReVB2czc3m6uyvFw4Oj/cko/8JHPv/iy1/5v/6t5y7fguezxTffOprUt1796OO7D8bBEEcMUDrSx2fVsh4V+YPHD65fv/b622/U4j/8yY+bUXG0evDw7Xs715+faLE7mdRRSiNXr112l6xYseR83bDAeLLj8jyIEghL0OgR8eRsmeUTUQ1NgzY0TR0B8nJKDiPXKDzKUVrfWFqbxDOT7r6dWt+qLCmgnqSv6tp/gU3rLk7RJVSFANDiLWkP8g+QSq4Z1RgyxgJlAAbNtsRUAkLQ5NP+tbcj3PDcbo50JAY0bcY1E2XGWCQBiD7mJhsxB8R5bkdcmcOTN07m33rru+998Rf++evfe7ssdp+79eKqamZni9FoFHwFgJIg2IAQU2ttSZgmujkAYGj0b+g72P4POq0zvRaiVGjdojEzQFtBi0QAqqhtBTewCqvUta+jeu9j5K43THJ2Ue/4hU7R7vAikSHRQKtGmc109m6yCqnAdeAt77U2HViuQ0uiI5E2hwq66Fdmbb8mmBQLAEAw1IJrbmJVQt8oK0XYEFWRBEEVmUVYAcgYp6Qpxhd9cM4Nk/lEhAg18qxajUta1THKGea8a9w0Y+LQlAxiiCjEipsluonNx+xGagw7iiW5ki5ltJdDtVoB5M46ACAFQwYA2toXjgmIgDltHbLWEiGIxiB1FWofYoxsnPch6mJnZ29nZ8+5uyzbbC4v/Z0HX2Wm8Xi8bOYExdXr5o/98f/A1H8K8jwfN1XtxkVtqTx58lXrRdUAUeq1ji00JoqKxhB9E0OjMYqARo4+UMkiGoQFoKoa9B4iNuHJyZP37t69fXI8Z84BA2KBYGeLBaq3dsKCIOqbuszK567dgsUZ60Lhamiaoj6a3/+2Pzo+fTzDxSoabqDM9mtvMspIuZaq8Yvg2ZCzLJqNL12yIwa3Wq2wzI3NI0duIghmWZbHPDLXwdt8Zd3ug/vvPn7rn5tod/d2nzxi66dRa2CJ3qOrq9WynE6UqIkhxhhjVGh1OIDInNL4YQjdg2sq7Yl5bdWpKiivVeQ132iTTba+IqKkwSO2El1EmCG2OaoXRGoIULs7Jpb3DPN0vQMHW6anagEFSI2YWrWYNv3VolGEukhEy5dVW4d8ZzbpDyhO+tUMHHjLIGVypD6JyAiSmKCgqGJyg6URY8BUGtGB70rK0VIASt00cDyd+DqSbdQp+xBr7/JsMt79CBXV4Ux/9rXTDzz5/G/9yaZpXvjwqw9/8qMf/v6jq6+8sKqaJ3fu28zN0df1av74YHR6qKpK42jxcz/xk6YYP/eBV9+9c/f+u98dcTSI09xc3h1RpkFCMbEJlyuKiCqR6XwMEYW5qX1d13XNKhojWoPGJETh3shMD8jMhtxQzvaU2C/XkLtqGwOWtbMS+889Z6ZEGj0hpSMd82wNZUq5MprUTUIwA1x96C/YboofTgAPvSLnSWHroEUlygAKkcjaCIqyigDCXoyL3BkNtJjdq+t33vz+a1/+4le/9OXXimK0t3MDwKyqoIrGuKqqAAWUun6QDNRhyHU9TAA6PPa039aQkABdXLZ3dnWrj7CuXgBo62LXz6HABosoEZVVNUaOCg1LHWpR0xZE+CAYAdrmheBsy5J0XR4OiKkAQnsUDNVUggEM2DlV0/9btGc6J18BAPrulE99Nek/PXcYXiG9o9RTKbWD0c7D1vnb1RCl1hCAgEipoA4QNYpyKrJDylwyC5jZsKCoxHXRRSpDybLMeFBFsm6xCtWd0327c3V/ZMiDNsJLkKapxThjTUTEKlJGYyh2w2R3XDWv7od3dxbfPq2AY+acRAZSQhejJ7KIiNak3NO0yISpWbNhjSzsI1dNWNTBIHkfIdRZVo/ywjlXL7ZjwF/65//kk5/7wIOH954cnYx24L0369/0L31gNP4zjacqHozcZWcIwhiqN218VNcijIhOwCoyGZN6eqqKcCMeOXiQkNJiow+leAAXQdkE7zlDdVLPz95+4+1vvHf77qqKZVEGz0gT51yIpwbFIYYQkWzjG4q4M9qdHz40ZcOuYEWen6we3a+PTxZHAdnWzUkxNTsFLSSezisRyUwu2RTC3JisqYNal+c78/l8cXJQeD+iSwIUYrCI1uWZKyIvvffGn0B28+z44bvf+Ee3XvjRbG9XjFpb5pRLCL5uIHA9m02nU3SuYpiMx6vVmUeBlOwWo4gQ2h7x5zxlDplGv8davF9I0TXsyj/WfXm3xCoiEqFSBwkNgAgGQZ7Cfzp19HymFfRqQbdNBECgz6PEpF0BtFsycUwYzqrtdjCo1lNgTPjTT9mhv47S99ylkYhCCi6JACACA4kKRo0KoNriyaedC0RERlU5pTSBIiApAxEq1JGLstQ9WcWFj57AGSWuuc4Qb+3KvKm+89aTt96+9emPvvvW906q5eXJlUNi2CnKl29NxuWN8aiZzSYfs6enD1TVOMtRrbVvvPH2bD63QHh4cplcMcnLvJhOcg81q7ppThZDE1iiMc5mLtVJqoKV0NSrqlrWyxUiRRWLJqLOV0vnXJaVxrRdQBWiSEzYlD3DTzWlnay9MK5xQfNBuMiwVFUEA4Pjw3MIbesyBANojHFIdtiXvRe9mCq1z83jfY3zJ69V2q0jtALYASkRPGBjMAKUgCPrBHTy/2Puz35uybL7QGwNe8dwhm+4Q957c86srJGDKbJYokS1SDYtq9XobsCwugEbhvxiNPxitP3gv8BP9pMfbBiwAbltyy3IblNUS92U1JQ4icUqslgkay5mZeV88w7fd7/pnBMRe++1lh92RJw45/tuFWXJgAPIm+eLEydix95rr3n9Vrd+en715x9++Gdf/f2vfe3L33366Orozh1XeBHouo6Zq6qKEtZXbVWUWfqKKRiCAKDJtDBueGreW3t1eJORj2ZuHm2vZyOhmVKPA5tvpZAtd4WcfRtFo1oTUxOTEKuBiElMhghqOStUk6hjZcYef4MQEZkEACGDC8BYjIhqkjTjSODEUrBBeE+t3nFWJ8xr+yH1fRDBJpLbzCwkyRgCjhFx0PQM0n7ULd+ZlBCxr6vrW8qYIVgSGJK8nHPIpKooxMoikrqJVFMR1SaFuqg2TVuVFRE1sVs1cFHEw/IjvJxVtSEXXg5nxQKAA1F9UJbF4ZW7vKSCePb6wYNP3Y3fP3k7bIRdEdvIyNiDEJEiuB7g0KAXAENiqioSGfo26eW6YzACRoLVagOAy9ny7PJ0jyS+9vXvh+KjTp/EhF0DB8t63T66PP+Tg8O/CpQA2sIrNJur8x9YwNCZmWcssyMVuXCuAGQEI1PTzjRCX7EmoIqpU/QJkrJAct5Qm2efvPeN73znexfnwdESnYsxoSiRkesAyi7FrhVfcpQArco6aXlSVy9sNlpVZdO62eFbak3lJK46unjfqCb0jBFSVCEAbypETgRiMIUeSE/DRijGiqhYgvNExbYlAHIIbTGTuef1B98vj+6s5Ba42lUJgMDFFFrSq+5yJbdbXFRAqDG3iQsAfSawd2VdC9EKcJJbMIozGvfpHkr8ENTfMo2tuQxD14TxICJVMNOMBcOMzhEAtGl72z2esMOUsj4MMPX3ImJuejbhEjubYnd4/fYcj+EFbbCWJsAjgKPMvdHyHkM3NyIRXz+mLzWKE4M+Izpzv2RqKozIwEpmoGgECKKRxMAcAKgKGuXHi/VY2QSqpAQJkYOIc1TMC+kcmEAAM9UuLpWBEG7fXp6t5peh+9bDD+XyxcVxum011345O7+6iqDg8GJzeXa5Obj30np9eXH2FCwc19XMy+bJe5ePntRcLmfzg3oJgAYJSOqqZk8Ilp2azjnvSiICTWIKbSNtm0JsY/KuQIOocdOuUgq+dOzJyBDQOTJwlvZ6VY1FWDaGP7Avb+l5/U6u334n4G2C9FAsspM4tYU6QRw+EwASOUDObV537mcEOVcO0d2olv6I4y9yzc7YsVSJAAmN0GqzChERk15dnl9+fHr+gz/9xu//5n/7+x+9v1os7tx5eUnGbduqAnsnEs8unhHDYjnrWlEDkb6l9pAXbtnBDZMmff3U2I5O0GsdgNQ3+d2qPH3Nf99IxLIPpp9E7HMrVCEphASdaJesEVk3XYwpSgJAGpy7iKgiGlQwASGhM1JEhATsHRLt6E1qQ0vuHeE6iFu7PtVmhrvlDVMZ3CvjWXXv1QrQJJmhYY6SbWeDKUPrAYGR6cCaMl0iTuP9ZhZjnGr6+SbZ+WiqcZJT2uefJ6sX9aZpQxQwKrz76OPLRYdHM+YyrbtwJFYCFoRq0aOGiw+6q4tnTz84PfnIrtYVVK+9cPip9u73vvsUzXCo98gsEZHMMuJyL3TNINek1r4Q02jWRl01sfauKhyqxZCQ3fLwGB/vC+C2OfjBOx+++lko6Wizujw4XF6cPcHuq2BfKGKHbBA32j5ydHVyFs0YiYF8BvUm5zOgCJihimoCTQak6MCiiUq3Bj/vLCCYx9LS6uTx97/3zT97771TR7cKP0+xM0PRpKEFCiIOJZhS6MRIGavNZVveasmcTy01oayX5a1XMNV6enH20TuVq56dPW4+eBwgmCJzEULbtgEshSSgBuRFxJXFEkprV7FZz2YH5fzQEXbnrWgkorquLy4upXy6mC3Tqj1//P2Nvw/+jrpo4pDAVTPoQrvabM5XhaupWsQYVTNEmssiMMbYNPslXtNj0At3DJGpYQqDbTpoxsCAE+mc0zKwV03BVIEGnEntu2PvOI3zHa6PZNwsw/U7jQX3+AYAIJokVcpce5t4lU3/MVcjd1rSvn0AIO6AUOJNNvq/1nHdQBrviYhGQEaQq18wDZ0JzXIzKDBNEkSZxUEJCRWBVZG89uASmot8MvBBXdftai0q9XLOSOvTjXRhVs7bRemDJs/u86999M6HB428Obu/aTbFw2fPzq+gdm3bvvLWm7DeVOv16QeP+LS5uDyLFu7duw3t1ckP3mnPzxdlfefefUdc+LJtm65dV8vy4OgQFA0TAJDzrvDo2Ew1dSoSLi9TCFmyAqGZtt3mcn1Gjskx9ij3CECeUJgnetjWDs6Lf6PpOPl7Kn3VjLb8eaCm69K3v0mW78QIlD3PRGy4Yy73PzfIoQo3nvqLm797x3UrbXoe0hLoAmBFWCPcBvESH7fp8fnDD7/57a/+i9/67be/e0LF/Nbtu8l005KFqxxATSE65+rFPIRwenY2Kw8kadSpcFIg5IlXeToSRzxoPVtNBxFH1HVERBquACABQyDOZmS2/wyANEMQAyaFNkEQ7KK1ETZNm6/MOdhmkpKKSIZDUlUQTJBy7zwbCvLyJHMvsMXMkIduM30MOWeF9TAc1xXwvR28/ZaJRpQf6zVrVSXuES5RycQADHPDhiFNP/+bQ0QAIIw58SqzD8O+05ykwMyGTNn+yJY9gAGwc9U0GAbCjitfdjEuZiWGHKhLQeHzn//8X/+rX3IukMq8Ogxx/eTJe20n8d5mvX58+fDh5eknra60aTC4Ttyhu2AESQGgB1FnZsstgvKb9sl0oKqaTCxVXCZTBdk0su7igVROUUXMGRjMZgvH+8aGWJ26Q9ELAprVh6cnT1498KvH7y75naCL8qCDBjaXa5FNkg3zXQTOLn4jRvboPJtTM7COchkSQg6cgyaViE4AFIQ9YLP64J0f/vE7bz8MbVEuChWIGTkLYggtOYiSSuTS1VfdmkphVzSbkLqz1enH87svJIPZrcMNHVpxF9D59gkLh8vLzeZS0obZE4JjE9MkUVW9K8A5MSw8K4arzRlb9FVZHd1C0LA+NVTvyNez9eUJpo2Eiqqj07Oz4mDBdhQdowkgcDEzDSmG9fkV1It6tkSuHBeReg+EajKQLJVujAHvRuOmkmPbXGSQu3m34rQVWP/bbC/3mzc3XEeRnHuxE6kZb6iDEKTdnTORwc/Fpp2emY6fhvbbYwOV7fv2XKVnI2BTtQAR0QbP3I2NuX7Ecf3VcIz75sZ7hADkfcneqymoqZKC5Zg8DQo/IpomEwJSAQDkrTMgmzSgKgBdyB5BQvRVWcyl09CEVfWkvSzoBS7l6eYn/9Z/tzu90O9+tBGcLxhJQ9Pe4/LxH3/DKp+aeOwqe/zdQ9Co8snb72BZ1skdLV8hdPXBQdc0q3bTtRsFOawPZ7NZjMJOIZcykjMzkygxpJQ2q5VYSimBoYiEFJr2SrSdz2siSJZy8agBDMGFTCMwZu3d6GTeKmG2L3r3Zxt6QdvPPAKM/YoQ+9SusXiVCYmAUBH2gTgmCEtm/8ZJWNMh3ngySee8I6pBFPSsa64++vi773/wrX/5O//ku396cXWBd28fcaldowaMvOai7Bl+ki51HBQRy2IZRUVNpG+YrLlkyLbRxx1B1du4+fw2kTJTLIzBpGzj9ryAAc0Uc8pEJl0AABMRSwohWhe0jdpEC7FftmzjEpGYGoKCOHI0JC+ZmUq21Ek7MVQkA0RFZDfYAW5EmYbsfsufbDvmG5PmYfotYg9ND2OBI/amgyOOOeqTEirlyUHXK2XYQwsNLZKIDGkoG8lvr5KSauqTu9QUsiYxZmtxNoPGITEzM2nSoJ1nR0ieqY3wubeOfuWXf/Gl136iWT29ePaY3Yw1XF1trq6uXrz72vLufQxaMys0F2dP1utmnviFC6hq1zbJMQJA1m9kyGPMthINRpCqGFhKSVGBuBNdN13bzUpnJtqZkSMD9H4HCBoAwHUff6SH9/nefTZpzeDsiT45/69vz/9TtzgAfgR42IYPV2cNW0EEmufKOSBg9oSZWSiaYI+bRkqghqoCGgGCI0ItncHFs7ffffdPz85S4ZdiUbVTYSan0IqZxrmxJBEiT+SCNZiga+Xi4jEdLKmqWi5jNUsNhNVVidoyCiGXXgwlgKhF6dBH9qzoCqfkHbEzoESgWnG9dI648FTXaIKFc44IkEv/6quvApsrluXBYeHscD6DEoJfEjZBhbgEm3NK3aot1s3iVopiIppSCiGIRu+5rsv5XAEun8cfpiJkqysrZVNtIOZc/pF9+Lb3KyICAxkQoDLFZvq9DnyxJZJrR65+zVQzXtlLKM2ETX1JwSBGmcnAbLh+9MdMS4HzeZyotuNIbpyT7Wzg1CP+44/xhhmbPffSywzAMMM+iKFan16SU723b5rtAVRlx+NjzSwr/4oKAGHdlmUJBYc2ILvF0ZJ5dXl6cYAHXUnt+Tmpe++9937lf/y3n3zu/XTy1P3W1yC1la8cYFHPXv2pzz0+Oe0uVtVlgJTmiwNf1UZ+3QVfzMq6Xm0uQ9u07YZYF8tZUXshjdKBOiBWoCQKpiadhDY2m66NQCai5LiNoWlXITaz2td1nUzNhJxDwt7czwbOBAJ6dHKM5Wf7dLLvdt5+O4jYqf//BoThcW4JjQiZGbNNRLbXgQ2H5AL8N8+CHo+pVT6eMTP2a+fvQHd0efnhavWthw+/+eXf+/KXf/+Pn10dLpf+wauFdNiuAEDZRQNM0OMMGzpQ7bqEwM45tSQiKpAN3z6hHGBa1jno2v1E4y7O1KDkwkjsNuRk9uMfSocMDbTfuqopqkmCkCCG1CXtgsRkyDSC4VnmyN4BkCYlImIGRUkZnS53NIuICGqGRsw4QDfbbsLGOH6TkSVtXQujnr5HQPlfBchdxwfLAYkog7abqEDff4OZHWA0ndBTL9KYWQbtMdeFqCaQpDuF7YOHP88mQTLFiaMPGZMKKiyXy81qHWMsC48Ab7z5iqa2XBRXjbQp3j4oqvK42ZycbVYWnfp75UFRylLa06YU8FKbW1/obLaO4YrZi6Jm7CuVnJGXxz5OGhGZWAiBSu+9R7QupKZrF1XpiHNzRlUlv0/zAmdMtzYXHG6Frr0igq5xTx4e37r/v71r/yuK2nYPSeam74PcxUHZISJyjMQZbJ2wQEpACRGNeAxBiQhKJC5AGSSeX3zw+Ol7Id0pyyKmMzVhOIwJogQVJKgVL5umE1SsvQFs2i5KvWku33rrHh49WGu1DnFBqOcrx3S6EnbBcdqktgsNu7mSN0JhQPC9JwkQfWUIhFqzSWyBXN+ljR0zEwKi3b13G6N3h/WG60V9y6dnznfrdDh3GBICE6TS+Xq1uaqaVkNHyI4Lx9IjkKfUNOur1RUR3xwDviaDxq0zNGfdEvP0AtyVZNY7fhUtiYwdU0yvOeHGW215aD6puze85rcbN10/gMk2UcvtnrcHDZ1LVNUMzbJkHxOkbzasd574b2YK793KDLIvT03MQLIDFClbAmSMaAIipkCIyjlkOby1QF9zSnVZGKIkRWBi8I7AamJ79+TqIFYOS/a8+tr3v/rx/6V+9cHyJ95o3nrx/JOPP/fmm59858+V3bvvfViVs8P50UlRgAl472IbQ7ucledXFxfPTtkUUb2malEdHx+4mpN25gAQVQERRMRUIKUU2tCuzDyYJVX2ReraruvE4mJx4ItSQ6MKGVRAJZr2PVVhB25lp6x84v/YrvtkIrfCOHtMxy53A0kaTUrdwKb8b9TDBrto90E4aAf5W7fHzW9e7wmqYkopO14yzeGYbZuEHBuRoDNQk8jGzs8gXmzOvnW5+eDDh9//8pe/8pU/+P75Cc/Kz95aXgBAuzHDBCWZcTRKotbXm5pKjy2HKqlTZRQFtR5gDABUVKMWXMCwkTRtAcNckdVStbELb+7WgDDad6qa25sgmQHljAlVQKOcZa2qAEbomhibNiVgU4sxgqWu6+uLkFEtgZJDDwCWXc4KZgaUU7LFALx3OTMWAAUB83cAhJrrwvr2PtIv87ixc6nyuGzMvi9Q7j3ovULXC35iIDATUyNEBmohomeEHrEcCDtJEY3I9YFzpExkqhBCKtgZZfc7GAAZmRED53S9UcUZmR1bYt5BG/fmVUXVx1VzCP6S6/O0+tWfOP5rL9SFa85TuH304Oqjt0Ng8w9w/gr7D88/+ldl+1aMGpMahWJRwWqV1u3n7j744vrJ74TLy7Nwtzho5+5Sm6VhqXyJSoDoGLLagai5PTmwdiF0bX04h9kySNGlqLZKvOyaDXt3fLDcp/D0ltmTD9/tXn6tvHv46UdP3gsdAl+efXz6sm+RlpAen60eRT098m+0XDB7dB7Qg5HjGTuvqqbiXCkJCZw3AGvQYVQt6Dw0d5yD0oXN5UfnJ49OHpEvySCC1aAqEMESYQkEKpsYEBw1YVWsZgIHcCDvXm6+9FOf7R68gfiCTy21P3h68kEKt5pTK1bBsLy4TEELqGZB2rKQFG3GM2BKIQoDO3MgYGaOsThIl6Lts9purWnmb9+VJ+86MHK1ubtSIriiLsuEsZkdM3NNMXSx9GXOdxJf+NlBbGN78uzW8RsrWZN0XuZcBbGnFZTo173m0aOUjuWOlBO+RhFpNhq9aWQ//a7Jh2iGZptyw5QSOycizCig3lNSNTAloGg5NdMmbA4nyZgCNjb+AgAmzMkDMNFoEXN/9PwLyhwjM4poisioyTMrGDgvpiISCUoAB30sTBEJmAAzFNfAP80GoA6jHZE88mazrYQYjRkcgL2mPHw8Y2aogFOeToTLOV6czYvyUhQcQ5AkCcuKk1NNCjFhdOQc1wAgnfZ9zHIaBZNzY6Y09dWMnB2ZkRzNFouXBNurZhNXpcXjWaVXj6++8/ji+39Wlctqs4n1M1Ssl4diKbZrXc6rs4aIdN12oem6JqVoqgwCQMmSX5Y0d1pZp12JVYmkEQufe5JHlSghdpvYNoaMTbd2Hi83Z20Mfu4Z5x2hxJYY2TlSQ0gOCVgB1CxbPmN6VG4PpXRTDo2ZIbCBwNiyOv8EWHVEZAOzXCYOAKiytaQNM5IvITpgAnK5AMkUAQiQEScPxQw9g2aE+vxmDCMRjGZi/uyc2xLWxIdZzp1GlMQiCUnKikG6i7OH3ebhxx998rWvff0P/uCrH3/0ST2fH9+uYnwqwpDTcYFyKYJkhdlyH7Fe+8yUaaaaMHdTkEldrAIIyDgYQCCk8dv8uiM6R49RBb1iYgA5yglgaKiwDSBnrTpfrKKiMSRNSYNol5KIhKG131SDHqdobwttZz5bvYg4CR0Nav4w7ZS91DjR3SYW3oC8sX3l3ZXK3yJux+Ccw74RRdYMxuCUZWtg9H6Nz0ViRjKEXHcEAEiU457Tl+oFMDHQ/msCIjph8Am4k/WnXrvzC1/8ubsv3bp1/0HlZ9RsNpcXi0VxcOjWq7Zrrj46OYenz+rZ7aOjB3U1D2KRA/tAnl65P/v0xfw7zfrKQtmGGmMgL4aOeWujqMHgQteoSKYGUaXruqajNpKaxNg6R+SYiy1oVz+BnDTCpm3OT/nwDVssFmcnm/MLd3z3k1X7J0v+q11DCC6l44COqWRyzB6QkPJeIEQrS68hBO2SdGJokBSUEFerpMWHB/B6WRydrL/84Uc/3Kzj/BBsADAfk4ARmMicQZSI5GISY2o2G7NqPl90AsjJQNrzy/bkdHO5Rpl73Tw9eaztJUICNERvWJGHhB5SQIZcZxI1AjGBiimgtpt1s9loWRW+rOdLaDeGgBoQkIAYnKHLbftUrZgtMsQAOhclJYC2bZ+ddMvlg4PF8apZm6SUgne1SlOUGQ9mJL8e8We6TaZUtGdi7hxMpFvyHg8dU7CGnfGj7csffezTLeiYs5qrX0Yag17GjVfruCVvHMDOBgcAGHnmv/Zob5yf6ckpC8pJSdNixcwWGFzOXQJDVVWJvUffZMumBm4PAESoYGCA1nNaRgLC2d0jKn1z3minUaMjm5WlL8skZhLOT09WFxdVVRloSJ22bTxfYfZXohICMYQY2nbjZrNyURWLspj7pJrRmx15on7AZpJiDG0boyDw1arxhVfQmNLJycnhrcOXXr1/uT4HFOhVHxicJVsC25ulHx0KQMQhfrw/5z2P3d7nGseD6z8kHCzgPfDz6ZXuxtXdHTTaRLTAxNUzFo+a2bPz5vjg2HOi0DBXcRVPzn541b3zu7/55S///h//4M8/Wc7v3L3zlqRN11ySCwoHw21UhqRHM4PcbsiyMxUBsnEISUENJcvJPt0IAVBGSBK1fhlyj26QYYf0OmMGbMqyCbHP8cg6JmJumotmJrkeTnsPhgjEmKJANAgxRVEFFgmIOZw+EDrqpGfwdpbHD5oL4XO4KGthaj2Uq8H0V6MMhhzj0X61cl/TbMzcuPxD2bFuob7MHDEZWA9RC5BTwPpchaz+DDr/wHe8ZRgsExEVgZzgRfvVHYP2t8XX7cmDkMEn6CDWLUMi/Xe/+BP/zs//5aLyxbKqgderzeNHnyCHxeHLSDo7WCbTwumsdLUvGMuE0aBQnxD1tXuz9uzoZJXeu+qqQAumC4ZWtRrqAbKiPm4JcgDqQgirVRtSJNaDufelh4QAZIaz2WyPyBU6ckVaw7Nn9OZbtlwcPvzo7P0Pr+68fHqy+j0Pn1pfPjF+hFxS7ZALJEJyBIwZ5AFBDR1j1BjiOmpEYs1F3kD1/Kij04IX3Wqz7t4/O7uo6sMYI5kfAZOzn1XBkJASmrHmdpfetU1jhoVfEJCiEmh7udFH588ebTouE6xPHn4AxN6X6CtfFFTUSpwAKHZEECSICHtf1o4dq5ovIIVN7DZCS++JXb1JF8CpW1+g87mxGCCSL5gLZQOgIEJEnol8wb60rmvWm7PzR7df/FTh5wAJLXq3SLEj7rvPDvTwY9yrz5PBI+fak6/Yp1z1Ysy22iP0D9193o+QzRND54ZgHvTCaKLd3jT4PYX7/xfHnp69d358+jhOcg7Zawp9T4ys5KkKCKACZrtfRQQggpomIcc9cqKN0WtTzf4IRMrMNCNPU8KklXMLnyCmNkgISTpuuZwtHcTYXpGlAlQkMqCGljUCgap10gWNhmCkxbzEmauWFVfOlUVInXPOFEUNKaP9gJmFENZNJzEy0vLwdttdPXryYUhNl7pNuwYgS0YF9PwcaexBBD0zy+u2bSN44/SOUweIADxceQMk+EgzWU5ljQ0gexJHb0fumIeWMX1vkr42+eymy/l8Wtyen1pgoy5ARPPli608qh0wVWF19uTZt7/6td//F//ij779rR8sFgcvvvKyQ2rbC1VlLDV6Q8vm7PbtsiRVVM29xvqch/6DgVovjEG3qWSWs/4Hz4ypISID9pJYE45BVlUkc333HoARUgcREdkNr2mmPcqHqaootlFDQlHsoiUBMxRjt11s7APJvSi/xkrGZUbMlA4Gmn9iWVfYmeE8Lb2rZNx1g+dqx5txwzJtaxABFYf2vojY26m9Lo82qCyWb5tVIAQ1zRnRZmZJ+lA6ASAP6uUOSYgJGk/5U8bJIjBKrtP4wr3yb/7ln3lw6+56VqXUOUihXaUUzs/PROTo1t3F4md9pIJTjBaDpgisrqqqrokxtYdV9en7x4+acCknSRhpXqGuuAVRQsxOjykTZMeklhImtdRK00kyRuchhhhjUiG3bwELRCQvBk8f2cVVs6gXIvDOhx+98qnDw+Ibc/z6ptVYf0TVazSLaA4RQfNmBwIGI7AMwJmrDy2HPkCBgNtuRaWryzunZ1998uTdd3/4zPED6D0vlP0+qrmiHRDJkimiABlCBiXaNPHp2eYQP9F5cprsctOctSdPTh7G9lyumounR8vDRX14UMydrwyRHAoCGYqmaIIMZcGuYEQyS+hQQqehidSS+qDWhOh9BpqXHGIFBRMTNgPy7ETV0DGpEruiJCu0a589+6RavOigQgBQQ/VgHNNgL14jztH1tye09pjadBdcvxcRJRmAPmz4lY1Z/zvHlrEOf051R9x28RrTMPNz0wgXvGvrbMFid9Tl51jA49MRcUgyu0FFmMxSFn7bz/nPSRLvjpp+/WT/juzIOYktAOVZV0IBRUgI1pd1qYnELJti7Dx49t7ygxRzCD/DmhEgMaNzmV2qGVjigv1yZkVKTZQ2xNS1STbr1sQYPBIEbULbenYiYhgNIJp02kZLXPhqXhdVqYUjj4JKlpxzhE7ARAw0IKIaxhi7NqaUkkhC2Dx7OptzSM3l5kJAutCuVpfz+Tykq7H6QxE4gwgBTDSzbW8MAHyuJKaeT9o0S3nqXgWA/cWbNNDr10ImV2QLeOiht7/c/ZnnuqB3DZ0tKY8pf2P2bM/94bSk47huV5ff/8G7v//P/vlvfuUPvnt1xXfvfirEVdu2RKqmaJzUqxSCjY1Hb00CAKiaqiaFPqlhqDjJHlkZyT3nGGQqg5xujoiYgXRki7aKg/NAAcAEEmWBCX0jButzfjFtwwODHFYVaYTaIDGBJBIxETWEseZ+KjjNLCNHTfekDSpPnzc5zl4fzB7bRey4dve0fps0VhqgYUxVwab9StNo+MIwB4gIoj1rzwi3QztCmQzbBo9e/tT3GDcY6xZUddoeaodOjABhb8BASFZwyWH97C//zE9+9vVXQhcMKjJcb56u1qfFvAyqQfn46L7psaeaTa8uT7vLp4CryhHzDDSFkFLE2y8cfsls1cavxXDZ4NyorhjSDT4iMxOJ5LiqipQHT6SAKgbIZlFF7JoGk6I6QlH65NHmgw/Syy/WXPpnJ/HRJ3zvzruX1ZcZv5jirbI6VmOG7LoQyNYBGveqEhEyoUewrEGCGjGuwsWR/yzEENMPH3746PKZPzgCV7hkWZCQmSUTFTA0QgZRqjhGYaIkwTn3+OzqT7737s+86Ph4ZaLxbP34dP3xuvnzq9NnuuYU1z7dcVoiFISqETSyJ2UA4rLgoiq99wImKbdPhRDaZnUJdKC8dL5E9oi4bhvnS67UAec6G3LOgErHhoWxA1BDZ0iGZIabzfrRo0e3iqK97JoudJ0VRSGrHWtsqo2OuunWmTfoxdeJymzw/u6d3+4U6r83soxTdY1TbbfPKIltj63tXJB16NEVN7V7ALa8d1TNrw9+nxtsraLBoP63dFwXvdunoyPmKJBTgnMrqiQJMet0RNmmgaGaOUUjysBBhmRDmexQYZ9MFMk8sSApIKsyoHlURGbimWPxIrK+2jBT0oRInbbrtC7MpRQkBctFOhXNZgfFrGTvBMxVHGMkYlOs6jqlhMg9RAOipNQ2TeiSISCTiJJPHz96eHr5zNduWR2GEJ48efLgxbuQo4rA+YfZ7mJAvYG6eGuM7c7bPr/d42aTOR/P5C5b/Vcgw2xPL1Yz68Gln49/9mOyoK/T6/h5/Dd/8EbN6vTpyZ//wVd/7Z/8V7/xzvdWy4PbLz6ou7QxkJR6/wARAUK0BnKsFywbEFn3MjNVUgURExsDlmRm2mcngUy2h4IVyMZgSJChMBRyXTnTkE+B220LoJYRa4ZJBIBsKovadgbVDEBERTQpiKoKRRnUhT7LDnASM5gu0lQ/HWds0iMaAcBBrmowFZ22TkJEItJtHydQsBzYHolj+/qDkTDGovJ91FL2BIwvzkOSFA4AAsiux8jNojcX/WZuodanHox+NsJpvUL+X39/x7ZbZJlDR5Z8pK728td++qdU4bK5Moge4eL84eXVMySHTF0QwCKiJC0cYEIvpEBCaBkHp/DShfX84Oitl144W9sP1x9+dHXu1fnSa07UyLrIWBua3fmQkdG5RypKMeu3hAwMcA0LOkXnCprXd87On374fmR3qcSK8cnjdP7G1eH8W7eqL5b22oxf0uTNRQBDZTNEKNiyyYtM4Mkn4hBBNUGKaAlUyrq6ffut9uqdhw+/9r3vfLg8uM8eUupT92WAVBIDUEyYPAKRAyM0gyTE7uRq84ff/QFepPL42Azj+ertRyfvt+tHMRo6c0sSXpJPxH1PclEsC1/PAIAdMnNSTUmJuCrLsInAV11zxdUa6poLz76IMWkMlWGdEmggJVbGBArWtWKOgWoDIvbChaID9B718uKEfX369OI8rGOsitLxrm6D2Jt+edtM6X/LQGB/+2QytlF5neyjQd1EIgLdauM7T/yLHflR2Mcns4g1AECyvh506PXX76ycE9I75MQGFHqcHHDT3v8LHniThL5RxP4I6YuIQMRF2WHGze75g4hw7gRjhugGXxmCqqXQGwaMQAhbfcUhmonGLgKAK2auKAiJzVmuFWMGRFU0AzQ6KI80WQgR1RBxXgKqUcIQkLxzhUeH7Bx4NlRQyxhqRVkSOkSMMQ7dN1jVQght24oIu8IQ2tStm7OTi6fzg0VZza6u1hK1LqEuqy5u5SJBnwAEiJDyek3pQaeAY9MJx5wBDr0mjTD6OTTnKQ8z/FzqMjMDMUOwXCaZnd6ZQHeGYdYDkvfsc28Jr993j6RsAtrQs3tVVeXWPz35V7/+T/7v/+jX/mx1Xr70yitVaZdn6mchhYhQUG53ZQkgGQgR5dA89DXpWYRAth5EcxACwXoVYigz6N3RwyuhoJmRKjCOjRmyWN1WSeeaVTMD6LtkjM5sAMjrpX3iIshgO6tBMhBTAFJVS4CIoCYqzBQkTbnJ3qSNUzoeTG6UndMfEtF2NfpTuXVgzrLeNk4RMDF1tp35EekGhi68cIPbJAe/dUzNz9/q4KfRwQee4UFAbYcpIiIRMBGMnHTHMtCMoTUVwKoK5HV+Fj/8/Cv1Zx+8dHKxvmpXbnNSGDTr8xRi4crZwcIZWuy4AJGk3RWkS9YASU3RlMm7YkZdWjddUS7vf/at6ueby3Z9dXUV6rYEb6O2zmNaPwA6BwNmtWqSBJoSaJGSAiQUSLJvcsWGPUtVHiKdPnmCfnZ+eCt558/Or56dwbx+hPhV5k8VSh5fThpNTQAZ2MxUSpMSAEVbgAAmmkQ1mXaSNgBR+Fjj6pPHv/uD733zycer+fy2oSKJijMTG2QTAGa3DSIGSY4YJXgAQWyVPzi9enb23WJeluS0sdOmPXcRHC3NNcAxKLNHs9A17BkYHXrk3iGiZorkSlf4sigqIGdh07ZB4rrtaogBDC2pZ2JIEjbhSmGN4DyVXs2IHM8PEMnQe8fgy9QV6EtMpqlZNc3FWbvSSPMaLGY6lIHxq9pUM9uzIaYktneNmelQJnft26zK9zsJJmJ+fzveJKhGZjo8KD+l911hL3D7y4ghY8P3DT2J1GRvx1+XvnsvpapAPaPDwUb/ix9TnX6883Olb07DHno69bGk3H5GQMCIUAGI0HJGJ5glE0zCDsFR34AFzEzMSleYSCObFAQUiQjZgAtDYCYiEomhazEIIjGQSCJH2cte+lo0OiUPlfeeiJJIlCBJmNmzCxaLovBcAEAMQVVTCuQYEoQQmk2XY50icdU1V6vVxdUJucIXi7aF2ezug3v3QFZPn1wc35ltZyObWwhD2U4Wxjk0eQOjns6kmQEI7EBmbLsM9B92CRgRB08ijTSgmoj73CCDXPtJe+W+NrGVf3wdsJltzR2AaeJflr4xxhDC0yf/5T/6f/7Rb/7LTwq/fO3TZezg/JwIoGuDqpm1mjoA4KJEKEPXOdIxn16RzMZNSznbOWU/K4wFDL0qKkOHg+xTjVGIBBGFgBFxAN0eY0iYH8A4aBI7sHMwXJ8ox2p6vQUR1UAsAytSSikl0L4JfCT0e9xkkK06urDybUe3syFmewd2vc08ZPNmj/qYUUw81DMNq5Cjs454cmcYm6Y5x0NQYIgfT152/HfcnD1cJQEY5JYLkP34NsbUbTvPzKyDY3Ai9QEgpYQGNAmcqICiFrwIHXz2zfvHRXXe6SY2s/ayazertrWIDvnWwbFHaJqLwlFIrbv6WMOGYwuCBDWhRt+SmS+7Zt0WB/7uy8d/efXJx+cffeMh2LlTClmvmYJhmfUVeczsvTchBjVJEoNzZYzRemjvnUMCt+2aXRmibBqcHaX6GJzHJtjVeXU6Wzfyj2ezl5A3R/5XoJqBqAGKIRpYiibRgEJYowQTURUwQYua1m1aH9z+7LsffON73//NkydnD+6/hs5dXoYRGWY6k5nIBSVGqVwFYlS4DsVVVdvBOTI2zcwwNZrqco26MIDLBtxcTQpDiyGkUGJl6ES5CZ333qFzzs+KovAlAMUYna+xmrVtm2KzWp9jsyYA54qwfpqILHapcOi4rKvSysI59gfOYUJIoMAESGKm4EyMHYRVoxFVuSo5tesYYMzVNzMYWNaeiLKJaLwe2hgUOxvjNeNBfePLfouMDuchl3HnwGsB2nEwk5P5DttBZnY3XsnEfW7jmNC6+4jxw41aRX83tcHJRaICzz9s4rgeZ2n6lOcpMeOhqpb9uAPnJCIc0O/z3sz9u8Qg2z45J4tQUXOGDBmqKbrSMc7SZqMQwQTNQK1zWeUlZEdmZEBITLRpQ66KNjNVZTQzYU8qGFNS1Wx0Vc4DoqlVRVGWpaopQtd1ubpMLFnktm1DCADEDrsU1+urq9VlVVVJCbG8/+DlF27fu7o8+/CDd51LR7fng0/CYCjlgJxdjJSbGpn1zvU9xWVvnjMlXF+C8dsblynfZrybmvV17dmGtgz1PyXCvtFI/rxTUzR9zG6kbLvYghq7OCuWKQVXaVy3D9/7zpPTP/i1f/itr3/9Tx0Xx8fHXRMApKisbTdtm5VHBiMBTG1ETIgsxgAKqKK59hcBCIy6LpqZ2hC7tdxqlrZB0wFbbiBlBDVEcOQEcr8PyAUik6YHmOvjEdEgDdjjO12ARLHHEzMERBMI0dqgBi4KJPXRVJIpOnMYQJ1z281gYLkPL3LSrWNqDMqqqmokYufJzDRtW0XIcDFnOzINMV2ElBIiusJDL+esLkpNuWwAUEX7zB0AgNB1zjnHrGr5GiIiJDEBRGYC4Bhj1B5pw8JQZj2QDhkQYvJkZpwh/EcOKJrMMPfXBDXL/nlRVQtAbtoxGlg7VL2ix6DwxS/8hKUyhUd48QGn+xu32mzaOSuCaXUbDmrC6GQJ6AlLk9a7qolN0rUrCgKe0RLlTVj9sJCW4MW3XvvsZz/86KOz1cmmqc07B2ZRGAVYFRwiSQIhEXGMUVqV4D0DQMF1kwzQq8QpaFc+Qros8aDk8rB68ePHDx8+hOKgnC9idwGbFVjnP3oUBD7u3vxTuHfvheYzhqvl/D7gjFlK1XgRuGwiPKrXdzZXD9flarae2bNNu/DeFyff/2fPLn5wWM0Ojl45u9TTxwRCDi87c0S5CDNpbi2SNGoKCGjQSYMVqoJGICVyVKVoZgnQCmKJS2Mwd1F7DutHAJ9pzmf1y5sKO9wAHBxKo1VdVnVVL11ZoYKJmCZPDBijn7vaKKXSLlK3Xq8vUuzS5vLOCw+KwwXVh9XhLT87AOehrIALY7KUHJrEJlhHhUcJVjtYOaGr8/ikcMeWsElXc1c9jW1W0whyPT31mjMI7Xg4ERFE1JPrUSy0tw6JCIB8xkAV2U1bQolJxESBANA5NQySRMxy4qSONx80zonQNdiKNMsyimh0LEOGwDTOWrJjRMAUu1yoHwXIyKNn0MKVKYmqAkMIAYpyyjxtgtKQAYGt98aBqmTozcyoB/dAHmJ2xeFwj14eTJMuJ1O3rQ/O3Hm0zxxidKgg2HT1bN7EkMS8ooCgEZIacbJEKSvi7J0l67QTJwmg8ujRHCH6Qk2SkvOHt6VsRUQQysIZmncluQqRBLyrMXarplt7z8yoIgaSyZqdR4Dk0SOAiYqYRQQh9oCYYKbAwCGGDVLGLWCJ1HarzSYSgUFcb3TdXqyaZ+T9WTd75cUHLz64l0Lz4Qffjt16uahB0+nJ1dHRoqrrrl2nFIqiZKYYo9FW35rILwWTvj9g3yhawMxMaOxfu3Xo0Y1KTj//QxZNBohGREBTi+RKAgVNmpDJZYN86ggiAwUzIDMFej4QxzQ5aPqhUPX1rVU4PTi63T56/P0//53f/cpX/sGv/zrGuYjevr2MAdouAQATlMUiyTrGlFIAckQu03/f895Qe5+zqWawJhDd+qXNzCCDMmZYtWwS2g6tUxbVJiLZ8MuVZCk7ZkddA4D6O2QjLnuuEAyzkWmoOZtGTE1NsueOqIlJUk5w7ZVIGnKYt/rKRD0ad/6eUqy6jQTQ0MUMEdNuVjlMGESPNKumYDQJeQ7v3s9A/rPvkjsc46PHHwIgEWXHqdnWSp4O28yICQ0QbOxmAZM3ytfopB/qRJ/boZymaW4fwZ07L4jEFDvHBYq1mwYRs6ZcliUzm4qZQV/zYAbGzLaNDlAydVyvnp0cv/QprW7/1Fs//e7JN55dnAIWuY0zGSkCY26svvWeE5Hjoix9dopmt6iY4jVnVAhtSrN1FITyzq3jNZw9fpTqI/QG33inbbk4ODy4Wq1Wf/52G2/R3XcP+efSWhBO0bmOOdEJ6dq6N8X9cPHp2+XZ6vz8G+c8r84vH1399tJ+tlqW3/rgOx8+Pm2e3ZaLVM5nEe4zt5NpdLnHIRHZCNhrOV7fZzsOxK8jseUMCSTXte355UV3cM/PS8SkgOv1uq7qXNWb54Jzzrslk0hEhS8FY9O0VxeXsW3Lwr/w5s8c3bo9mx+iL7ms0Hlg8t6lMX0QJbfIzM9PEQYxhmXphdk5l1IzeMh6lWw0KJlxVHZhwlW0bynvYIBk6smVCXuv73alzMw5B6CiogoKYkCIyEzTuvnnHbsG69YhBABDR7I+VD3d3dvKxmzbDer7dEeMB5gBPDfVGSYb9saB/Vs5kB1R3+loYDNsKpARKHPPGOwR6aNE6B2vBBQR0XtGxCjJzIqCq6qq61pEVEVVK18C5jlQInJl6R1I6bXTgUJVNTNQQ8Q6+7M1EaCaAFImqKJwzmESkmQpKRGmlJpN13XJ8IrxuOtw1XzUdIJ4XM67L3z6LxHg2enTq8uzwjH5olmvmDFuUlt4z46QAWjTtaXzzhWq4cZZ/YufHL+6vmRmO0s85fZmYoaqml2oAGxmOMF6M8sdszWHnB3submnz4DtHhvPS2O4vEI+uDj55Orpn/zaP/iH/7df+936pcO6A+by5GSFAIvFYl5VoWuSiPdFSBZSQhTHjCi5LIzJZVwaMxTNSBFgZmlAkDHIJbymqgK5LxFM8y76VrWGGcHZTMxIQF12h2qOf+Aog4fgbs616Jv/mA0JRJSFvKqqJFVAATDIHYjzzhJABAMkY9juvb3pmpZbTL9yzo0C2MwAdjb53mKbGVJ/KxGxoe1PDm1eJ5cpI9j1cm9x9XLXOEfYS6OJfy+PI98jJ1vlx6Ft8+cnbu0tA82Fbmo7LWBzvDlpvH/n6M6t2+EqpKYhtZC60HaIJBJdUdZ1zeRNOlXN3dQUTKxHK1MgRAaDqpql2a3zi5NNe1IsXv70a5//4icnH12ePTmLouDIISLlHqYIyts2x2jkvCvLgtlHkWR9AoZcY4CbtrntqC5nDMuPn4Qnj89eqBY1oEF7ctIeLdW5ywMP6fzs6ff+6Rfv/GdzuwdtY/yRSq12ybN5FV8AfxkefKks3yhfN7z7T+J3fotWh0cfHn4dfvfhVz5w6wO5qp+t3yuOXtuEgm3jnBuQCy3HTTKJ64A+MS7yQBJjGkReTVQEBIwGWLj5cjZfzpNHEXauqMlQjYY+XQhIjgAsBWVi5zzXBFZ59iKCi6Plcu6P3qDZDKqKmIFBJKEmZYQ+t0AzPQyqEZmgJ74KiV1Z1VXDRJgD7TdgMo/jnp4fST0HQibUiFvfMm5B0fPFTNwXek344HQzTndH3rejTjwd0vbpO+1xhmht/84GlCv3gJDQcg/sbYLk9Im94vsXkKb5odvJ+bd6WJZv3qnFXGFFRAQGiXJnnyEdRIEITSXzSRCAhEgREZGdc4AkJl0MogP4EhKQgfYAfzn6g5abvUQsS8qFE6oQk1LMJoI3SwkUDJkRRBSAGF0BlHKtUYyakgJo1zXr9ZocVP7es7OPFZPqUROeHd3BW7c+69EePvywa1sC65p1Se7o6Khr2mSaupSK5Kuy8JBSMmRyXsN+2+/9JbDR8TBd85uPqRi2rQflBj48sB8xZUQlFNW01/bXev8rgoF73u32qHb84OqyaZtlde+jy9/+3/0f/ze/8V89Wty6EwFcNTPRTRfJlLiLMTrE2byKymVJZhi61Glg9ll6DS7lHNwlHZCwdCBOAQHYhnJVaCucsp8430f7dHCm3JIMk4KCMSIqEKEAZtSN/POsF+ZQgSkCYnYC95ldZiIqBmJ9IlhOkLG+WHA7P8xDcAgAJrN3444yM++dWW/N4IST7rUXHA+yiRNiAggw7nDcjQ/ZaJvmGDD1BbI4sonJz7OTe+KBHoQWoiqS9cCpcJP2NyWM/pohDj1eQESO3P3bB2VZp/OGVFIXu3DlySmaqLrClXVlRKkxTcaekD04pykxEymI5K7XcFDMzxfI3bOrJx/emr1azQ9/4q2Xv/P0g7OrdQwA5AkKs4DZsYNsGgEwK6FmiMBA2Cc7MVq6wf5QwZRSp1eabFaVt+azZw8vNg3UJTQr9/Spv/V+euNlOuLy3mceHF69XBZJ2MrqVWNK0ngK3dWZwffxJWnnr65l5Q//ozd+4b/35Lf+51ezWfXJB65z33/3sqxtxq9AxICPO5jPe1wW0gw3Nla1TsWJUZbNljNHBwUrAxUMxj4rxKIufMHofVVB02DXtc6XqIZoZGqEQEzOkZqlZENvrnqx5KJE5Nls1rlSTLsYPDILChghkCUVAVCViGgmSbUv9SUsiLBputlswaVr0aL0RNirc9sDiPrs+6n6OEgsNhhdOzvu1uuCE/pml4A9mA2LZrLfCazuydrpPWGfmcrA/YbxWF8frDAgnFPu80ej72R8Cx1anE1toH5Zd/rR9jr3OIbre+rG8/mnzzl/86FA7JiYDVHGoiyj7AdSQ+vLRBTAJYKMJ4N9Nk8YZ8w5T0SMpCYpATlmx468RSNm5wpwBSKLdKglO7XcKRKS2ZBGDmCmKkFSNDNyjOgAFckxc9SQknZtTIJJTERCiobmi8VV86gT9cWyS1dHt45ffun1dXf5wftvEyCBMKIvyti1aRXqusYkXdOJyHxel7OSGc2s6dqCdtnUsAqZBV63fK6fhGu0t10SyxjDAz6VbZcJAUHFiMlEMwoFs8HWRLEcdQQ0E0R2MBHpO8/uc7LHR/ajWeHlwn/+4tHv/NP/5v/6G7/5QZrfmy+69YlclY2ZeWLyRdOGjYb5YuaSA8CinAP6JKvYdQYCA3+RPipOACiK2dbUiR/VdGxakj1yg5uyx0YGGJKZEdEAcxcF6E06A8TM2HppP5h6uQVStvam+kfP4wAV0ABzx3Ex7Ht/Z2UZRs9URgbpeWHPcohGNJkswTJPgj4tZZCpBohjQfC+12H7ZxIAyHDHksO6jsccolGTmtIKEY3A0bm8Jct3xG1rUkQkQtUJTUyfKzoaXwPaRC/a9xhNP+2YmfwEOJMJmQD0xbu3HbrWgkdU4IihII5kCsDeOy6igYjE2PliAUXlfC0xDMADRkSm6oJKVfC8tNW56xqYHbzw4oMv3Lv9g0/C6XlHRIgOUkITAzQiQyYURFS13LA5KQCzWQToVS7YPRaLoxACOj2czx89fNKebo4O4D/5mU+9/gVvZfro5Ozjp83pQz0/aX7xM6+5R+dxdhJmR4nvi/dVdWRiT59+82n4nZ969Ytucc6uaAx09cli9tnlF//7P/nBf/BnL/69NfzxO+9fhaa+s3x5XswTPOraqvAVImfPHvTNJGSQvjgGAgEyONC4KSB/HuS3IeOtW8dVVazUKl+t1w2Apa6VFED79rUAgOydp+wHaKWJmjy7opoZcKLCQ5NiMiG0wrwHx8oumhLkPtxRTTR2GpOIiKlD1rRummYxPwhODFASej/RIXbjMiMrzMdWFqrZTbJnIiN3zme96vojfuwx7pdh6mC0fbOSMKTL7u7BAVhfZYu4j7uNsf//6lAwx945l3D0pCGi5Mwb66c7z4OYoREaQO48leGx8vJE0aIooATnCnZEzIhsloGNnTEjOwNCK1wB3vvYXmoSy0HWjGSZkqqm0ERJBlj4MncIQlRwCtFSCimJmahC27ZJhditmk1K6fbdF56enh8eHz148ZVHn5wghYKIiBIYqDlCLApNYmZFUXSdxS42xM45VzqFJMmwvEF7Q8TrCs14ck8IbvXg4c/rdDqxcPotCQwDwA6CsZmMCWL9fSxnGGZfkfxrdEPKd+Fima6efvPbv/7/+M+/3KWX3N3V6XlcunrTbcwsEpUiaskzqcHp+cW8npclO/bOFzElM8sN2xW89SC+fWJCyrXNZmCU5Z3CCJQLNMzO0MS+P/q0XjYzUjRUhCwOCNlwcDUD9F4GNNCs2RKgTKLjiGiK/fMhx6Q1Js09OYYE4xwqQQAYu3DjAJSRj6yKjx7d/GCD7FvE62uM11Z6b+1d730HMyPANDKRCecaOcJkd5kNod+R/eVvsY+ZpZvUQMBBv8mzlHExx8FMpe/0h9OIcv6cNLx49xjUgrRegnNFK612AkXOUC6MUIVEo0QrUbCoXdFotwbrs8OYISUzZO95TQ5j2z370B3/ZOlvf+6VN/70/fP1xWYTAxCjWfbnIHvKSKKYF1FCSCFF8S4zbgFz19xNqtrF5D2jxgOWv/QLb/6H/8G/93Ovv7SoX2L/KmCr/junT776x7/939x+9sct1sgVly9quwI88PbfCW04X70/P/qJJ+8+Wn3lP/vUl/6TZXEUP/pydfzLG47w+S99dvHS//KlL//Rd/9f//VvfXxy7i/Nz2cuaYNohMVQf571t9ywilQlU50BqoqI5DCdAioOXBRIFDQIz2AxK6rSXV5tYkRHXDu/SklCjCkwESIpmENGz5DUV2hmMbSASM6jK11Randh0qmikhqpczN2BTLl56klSElTSBJURMVYoe2uAFK9OBBYYVBEVxQecUexs77WEIl3DNCJOMw040YSFcnQW2P3rX1iy5tU1XQECqCdGPBg6Dz3sEkMaGsejVBXvYrQ95EYRjUqoL3qQ0O7FJscOGir0z01eejzY4r/lg4BRCb2DrP5kbMiCA0YBhCxEdgHQCWXZSJjP2aJMZqZY+orbFWJZsRoAJLMlRX50tVL9IWqxdBBUFQpnE+AGEXRkHJvUDBN2cdAxH3Gl5mZWIopSQghxJhEuq5rQwsARVEkbY9uvXa5enrn/vxw8crp08cG56kr68JvVuvcgzmGUFVVsSjW63XOqYyJASCEhIjsoGA3QHBcJ4MfnyvwvGNnNccP/eKNFnAWMqMRjIjBdlzQAghmnNP/HUy46pQOtprs7giK4FbytX/8T//gG9+Ve6/DkydPD4uXm/AsKRdFYQJNl0SEMSEVgMhtEDFX+KIozKzrui4FVc0F19lJaJRBE9HMyEiGbutoZqqG2w0jOhqjMIo9AFMBxOzzURIkQkNLYGDAQwVeT05gCOCJrPcs9036pO9nIgImCslMxHJx8HS295IS+xnb3VQ3bqfMYPtfDRkK+4u664GksQPgcHK3AvuGB+FuPGO8uar2MEDDl9yjEfXPnaoCe9gIMvEMjrreZJz77C+zGAR88YXbvcokCcErCBuoKrNn9nmcqhqknaEaOHYlEIMooiKqcz6lEEpaoHW06Gxzef5+1b5m9fFLL7/+hVcePnp8vrqKop4tOWLo2xv0aK6ILJJCCG3TVY6RsK9k4/09efLk6RufedmxnXzy+GfeePVXf+6nZ5eXb5/eXS4e3b29ntcvuPSzd29/4Zd/6ScvT75zevZtf3G3aksur6i+c0rfPGmfXNqTV47+Z907v58WD1bfeW9RFLp4i7oSXBlsVb31Aj/9W78y/ytf+sx/+6/++B/+4feab79/6/ZBTNKYRqSCqBizWsb0+HFxM69PojZU7GRWr6ZE5Nmtu9XHH71/79W6cBWaeM/Nak1+nlJIXUBXEMNQ5s3BrIdJIwTUqNGpB3I8PyBuKec4ACGyIw/A0QKaSogoUWJQ1T58I7HtruaLuizLABvrhKkcaWmHnm8KsOXI0UDLO23tM2XRTX0OEHFaNt9/j9tv92Rq3iT7lLkN2fbD3JlwJiQygOyLI4DB87Z9kA15iIMOsaObmv2oJCwYAzfb3/4YdeFf7zBi8ugYBp2YiHNYSpmmRlwG0ssOyOxzIQMzTSmpqq8qD0RiihJCIHa+KF2JUFZc1L6ecVmqKiJECaoJySMRMpBF04QEgIZUkEseCYnYl0hkZiEkiXHddiHGtt2EFJIKESN75PLB3Zd+8N4333jt8+xmj0/e9q6wOJtVbbeRxWLZdV2MsZ7NROTi6mpWVUk6A2BmA2nbNsWuqlxZedtd950ZuumrGxUjnDTF+RFrNOXkw03MLIHSQJLbEImqYh8RNdyrA54+Y3rT6ShZm9/58q//o994Z3nnThvODvnFED8xrRm8Cq1WK+dcXVUphXUT2CErdDFUWs3n86rCLsXUZju46wPAyMxMRH2Fpika4RDAAABQVDUDsUkRME4OsxxsQKTMeS0L7nxZAhtlMAwMIreqmm7OrO3mxB/VND4ox3onK9erAlMGYdtvp66znX2lqmO0CIZQLOXeMcOxt/CjUYu6zYLOGp8NRRQ2WE9pQBqy4Q6IRIYwoOGMVjpMAgrPU73zcBSMYP/6aWnyILVxj3JEZLlY3jo6BADvPRPFIEZaFVWniYgybAhijrknVFVywA6REdPQTwLMpCE+FrlVHX28Og3porl8Vro75WL5hTde/fY7jx83642Zjj6JpA7MVBHBEQpASqmLIXRFVReICDm3a/dAtC5GFX3l3otfeOMzdWK36uInX6M7n3nWPN7cflwdviGIy9d/cnH/33nh4k8vHz7tzr4D3YdFOF/De1guf/Kzf3tz8vAxvH179vNddXBY1U3kZ4sf3mrKWNfrp2m+KLtiXh/97b91/5f+ys//9sfv/Mb/+V+41VWTohZlQUQpJjUh5wa9rqdepj65PSaZrlWOXKgqGRNis1kxAhF0XTdb3hIpopCpxhhZE5NZn/gK1Wweug1GImQy7KIk7cD74vAOQYOqEkNqW9EI2CkQegOTlCJqUBHN+MBEZiKpnc/nRFQ4b9QNEBzDhrCRDhEB8z7CwVmylZRGNkl3GCkt322HsCYElimfBv3YbgqiXf/VuFl6tjGMoU85zHdgQiLMnWDGXalGNI5cpwfs8iLc1YCfN4y9k/bjTPa/+GEIRoOHvO8SkDsVEBElGvSnwZuYqydwklZiJiZ62V3MF4tqVgIYSDYBvC+qJBpD1xGzGgGkFDNwvxoZIXlSZExRLJACYEKokBwSKyECqiaJ2rahaTq1GCXG2AFhXdW+XCK4JyePPvOpnz27fKr2rPQHm/XFoiYV9p6apiGiup5l3jifz62H5gU2ACRNKft7HXGyOK747oT3mtQw4T/G9zDuxB992ZYHqhgx5DARiBmS0ejHhV4QGA2LvvX87D8DJXtbETKkGTrn2FXts3/29//xOx+ctG+95C42kRAoVOaddCIpFd4jWowdoqVkogZQVN5HscvVxnuu6mVUurxcAaKaIjkmrwYpKhE751RFTVVy0hPmKmBmZ6LWZz/2+6YnKZO++FmMDB2xopkpSS+NiMgYRsDu3LCRjEaUABuYvSJA34WJTA2N2DSJqIGq9SK7L3XXGDvuwdgUDBwXiKhiwLkuGRERBkuXiQx53PdAqCpgoIoOSwMDGosb1EzV1FU+++qZPWZXUf48GL6KgBO52CPQMIIRoKoqAzKgEQxp8YZk1COOacS+aD0TY76JqDpXZLbCgGP9/i5t9God9KaAmUXiCR0bdV372ktwdPw6hLZIITAab+rkWmkds8naufsgS8YY2lMP4KAURHNVMT/sVs9MxJGJmPe1l9RycWmXQA7VYPWQloft8sGdu5effvEPf3jaXlzO7lZlqxuYLRebTawqMxLpIFc0KbQB2rmvoigZEek1YHRrMDU6L9tfePNzt7i4MtmkVb1Znjz6ZD4jblblqi3mt6WTcobt3Z/3D0K6+HR78h29+sivwxz85Scfr1efHPKdavOooO6yXZr5WXBaAnSL0pfSJfIVcJnqt2bLN9947e/8r9/6P/zeb/7Rr/3J1eWmu+u9uTrSypxQJrgs6aCPFCAilSRiKtxjmGsAjMTY2UGIH//Sz/6l5fKnKn3cRAiXa+EDoBRjV2vHMtdkzrMZIlkwQlcXNUq7SWHDqMadxqSXVBQeHXWACATWxnXjEKguQtuYCJhD9Y6daBO1K+IVGhTz28Cl2ZpQGQVUC0+qYAq5L2hfAIsqKbuiUXSapGOT7IG+S0qvJw2deqcuQwLsRAFAAGVoum2DK2XwRm0lIsDWs7yn4wpkqYRooEPtPhEBmEkCM0ZE53JZhBqUBaeUoqovoBMl9iLG6gyhSzGKzxXn+SUniu2+o0tyycCu8b3Dd3f9B6Oiv6egD2Ke+z7iSGaGBhyueH5A86P1k9MK1XM0dg0b24jdo6MioggpZUUfEFFG24YQfXq2elK25fHhcVUudN10QWixxMJ557S5QuaYknMuSDJDZ+idUzGJQSUSiGjXtmuZqac5QoEGRKIprDftxbPGymddF9ebUNQHd+7cB+ev1iuRcHR0vFqfESCBU22LkoPmCKO5woGaSHJEiH3DOkMuPEtUteR9IZJSSJ2L5axMEs3Eub6WBBGZ2cz3ld9biMVMJjs9NnDiTRn/VEtZWiAiDgVEBgZqgL3/zVBRs1hQQSGQBMpTCExLKKZoZA5Un9uOMBsKI4DzIKHlnXfe+f733p7P67YJhC6EtuKilUTsYMDfslxgCwAKIQQGQDIPzvrweTGbzVardbb/uq5DJO89IoYUaYA0giE+lN9ftjkpvQ8nv3+S5JBGz7Cq5r5B2RAmIkC1Sb/dUaKMW9Qm9bWmICqDGm5imkSgl0P9XsqJTjtNM8xSSn0cdKjBh5s04fErom1S907ziOHIKByj+pbdvIOF0Y+fJs29t3frzXQYP10XombWW/ai02+fTwzP9bEPhLE9kwOZD164V9WlW4eQS3Iz0quBZb8/KJIQAjuPZqrJckEROmavEhH6wmUTZuaqqlJdp1W4uri05UVd3zm4c+v+3ZeOl+3DK+k0mCmEIKQAfX4sYS4t3uY9o2NnlK7VIalqiHL84p26mpdlGSkxeBGJ0ZqNgDUCRZl8qd4IWT/E8MbR0Rfp8FPtye+dPPozCBEt8WZTVUeV3MHOJVxTiYKLJlS+cmqIIsbiWJklq1l68D/993/1c8d3/u7f/conzz4+rJbVk/nd106aqzqLjJzjgziuqRlBpnNSU0ZSQxXp2s2tu8vXX3+d+YWnZ+ebiEVRzor5pl2HrsmZCrxd1t7WI0QjInSGGVlTunZVWE3eMQIwk4KBRDVoYxKlPohjJim3aYXU+bJyjhOapSymZEIeWykyPnxLYxPTZEJyg1nWJ1v0uIjTnTG11YhIc5+RnYgJTHYBwBhquXaMF+yZo31ix2gZ9yw4b3BXOueKfjsQUVEUUzZyTUZuP4/vO278caDXr98d3pZlTb8dHpoMcl7AyFhcFwMRVVWFoQkhKBqQ64HDtg0HMes2dJPrLuc/ZobWtq0qOC6QKbTr2Jj3HgAcF1FFfW8nJGInDodCDwVDJl9UKEuiLuk5gFLw5+erq9V5uaCPHl1Us/nte/fq2YEYpNSVhVOwtm3MDMmYgKiA1Lfd6d8et2SAwx+Zm3HfgsHALAYR2JRl6YtcqyLZcah9PHHPIM43noQtJse4uMPnfcfhlHOa9aLDdsMQ0+vVEigCiRkC8PP7Afe9eHv6A7DcTOadd955//0nB4sH2l0o5KRqN+kTD9g3ju1r+1QliEAH4kRMCysYsSzLrutEVGIQJeZsoqGowE6Oxo7lviVW3orbjL/BTIOSojm/WCwRUR8Tz/74cW6GMoypAM4JpWIqIgpkhvnzSJ2IoKNDA4HZTYckGkX6zIwtKWMP/Z9/MjqsxpXL0tcGt93Yojj3rnHOZS4DA3aH7sFs2c7mGRj1SGFbvjCwra0iliEwe7jPoaJ3JKYpN5mq5Ii4l8VgJkSoO7mjlMRee/XlwrFYShIGlIncATxazgmHpIjelxZClxrvloDE3rFzJo5MzYzQ5fiDZ66LeoWX680Vnp+42VF1uHjlxVdfPr74/slJAKjNMZCWTpJwn/RmeTGLlEKMidEhqqHIfoEgoQtBDo5uuYKNUEQCqEcghZAQOoVNJ7g2YiS9Xd9a8cm6CkV17I7/ysvzLzTrHzw6+ZanhyDnsVuTP3az0tUHrjoEqMkVCihgKFHQUCmllELncLWuv/TTb7Z/p/nP/z5fPTy/80q3jnOVkInK9daUARgagEpv242xFTBIUSW180V1cLTUVJftbKaLpMieZoQxtCmpxFQAjh37MiwqoCP2XBgEUBVNCtZGELYSHQ+SHwxBUjKwDB1gpiYRpLPUBQnVfF7UlaUICcxMLTCxDU5hGEnwpmMifUfqgpFc++W76ccDaxi5xFTFBMS9KyGDh8CE7+bLbNyYBjhWUphR9nKNGiwCGhBhUsuREdjl0aMAnuyRna8y98SbcmjHh46fx5tMX3ZPOc7fJkgAfcNKwOw3RwBIAqZQlrUrihSbqqqScTSGFKYP3eox29aHW0mfqxmZnQJs2iaEVFWVqsauJUTwHpGpEFRFFYsJALRggcR93q+B9G5rkCsDQOXVOrXNilyMcPbD995+8PLPelceHN5Cx5cXq2QxZ1dlw4Oxb+RH5KzXmHdaX9DI3IlVRvaIjM4AVSxsNoTIVObE2UwKqjJNF33eWlyXiTaYwlMBfOO6DDSWBQ+YGWraqa+Tvu+eAhD9iHaERtobUoqYcbbUklxcXCEgMTpXbJroiyp1Rp5SHItWESk/AgHQkQejIIJRY4wppeytPVwsLy4uWxFmIsIYo6GNMIETsdf7l7YTwTv9EKcayjiJZgOKWP9tn2pKiGgw5Fr3GzwLYEAyBFMTw4yAl60HROonfdz8ZoDb3gY09AcEyLUiPF2enOQlIjwAyMMkYxkMDGTCaLBvxWGTgQ1dJQYiuGHP26AZDBPVk4IBjEnRYDTmfCMiMpGSTbLEh0MHHtpfmD8MNDSRvtjrE0Qkk/pakQgAr774wIElSSKiIoACagCKkHUsBUiIriiXCTZiyWclgD05j8lpSpi3HBNYr8P6opQ2pM2qO3/sKnrh+N4b9z9ZPjy5XEuBpaldoVG/vJghLgAgiIQQpC7VUGQHMyQfbQxptYkxiYihFr7AlMTU0CN6AK/iYheALkC7i9bB0kEHIUUHi8P5YT379K2iTEqXm/No565YuuolcMfGJRaMUiAIqUrqLG6iSupCSqG09cXJ21L95M/99P/C7B/8F19/9+kpLsqFKiOyDithZtZLC+zbgm2z30kzaJtCCB1o8r70Za2NAHHhCYxSSjHGGahaol6oMwApEjmHBlAAhCgWAcREUyeYiNjDoJ4SuWw3qKqkABrZxJs0IEfLpa84tW2f+IbiXIHYXfesjpt0kLsTlXFbL4sTXjbxd02O65JpdL7cyFh7J/SPi7luDaxhqNv2pgObcI5ErOtChujqk29jLKjeWj+7DxpVYZsoxDvpilNZeBPTv/5G4+G4sCFmBX0HFAAAZhdCoL6LnyjnQEbvwxhnaWsG2P7gewE/xsBFIkTVFH1HgJUrQQpEJI2qACmmGM0MxQM5zcwq++pEzEz5PG7KTYOGFuT8nR9+K0p4663PHb7wen5QF5qoQTWJxK5riqKa8vyRAWZQkawaDk5gBADvyqAB+5I8YfaIRUqBzHVtNLOqKplQRMyEHedmM5NZ3q77HlWM8nhXQ9pP9Nu7fvqVmaFKtrFGGayWMuMlE1Cd9lraX36EwZWM+R9QTSmlWb2MsXMKTJ5YkzKAOufHhTQFGXp1+bICQAA1QjFMUU0jM9d1XRRFCEkBRPpCC8sNOmzcgFuVox/WxOmaTNWUmUEnEFGI2Fe1jUrsDkPIdW8Gpqaj28EQQAQG/EvJjhQwQMb8cOobO+YRAhhM4BhxqEZAxFy8a9xryoh9KXPWrLMs67tA4VDIOCzBmOaKiGPyF0/uz8ww6R9uNmElz9muPXdQzHAHiL1+mX/Y91DK+uGE7ndpLicO7BLJEDtxzhEr6Zb9JQl1zfdfeME0oQkRAIOqIhkhMiOoJyLnUYBm9VEgQjfMABOyB2QgUaHsjWUkIFb27GunhBrj1bPVvL47X7x29/aLh+581USZObQQ4xwqJOzzd5CNPIC1MQDNBCyZOr5B6RSFZ5cX63B44F1RzGKIVLACCBICkplGEUuSupBk4e9Wviir5Ir1pm0UZvWtnysWn59dPonWzheHXB0ZMpAad2klZqCWLMUY29g1KXaWJHaFdyr63fPZp7/02b9xcfb3/+5m1V4BFGYE1oOz2lAKoIicy/MGNwqBESJ33SZGAgDyDgMpIHJRz2YxXqkqiEjsTBJIAp+xmLnPP6aCPDtCMiAikDapmqY+Rm6Uk5OxJwxRFTNBy60mkjko6yW4Pj6HiIgydrkf/cbDptyBtp3ytUl9+ZbesFfRctPrHTdYj3EBGdwDiAaMHdlB+YBh06e95it7+2IIoIyjGh0MezpuTk+Z6LjjvoHpnzb4HseNmc/ssfLpGMbf7o0Te4scxyv68wCI2IUI0MNJZsHQ99nkfCubzevuEjQlAy7QKQ2VF5NX652cw7EzGLPMw9UU1EQajsERR+x88GBUFIWIeO9jFDQAz9iHkPrgaEpRRIKgcRvT6vHpO08vTg4Ojj/z4pfq+qVO17OqijGEGIFMk6qmsiyZs72BuVTEJqJrmJYeo3RI6yEil+uLLRtziKpacR1jTCElSkVVMOeGpKSYdvwkuzUjP0KyXj85pYGRbscfk0GODJglNAQo+utFlEPudkEwsTj3HkzQlz1sbWrsoZVNfdKOE1X1vI2XhAfJrO9qMphdufsxAMSkxOAcM2fbFZmYiVRkVldmeLnapBTZuayy7RDu1AXfS7CeUGS7wwnRVMAAiK0PwZoB9IVt/QbLMQ8da3u2+ml+RG4vCEZiqmp9k2c2iWlaepTx/wBRFAEZeWjn5zgr0hoUsv+dekIZXmQb9NquVu9VNshydfK+E8N6NIUhY95OdNUJw9IBRHu4NfRmf9axxg02hgYUENAx90VKZnm7684I98hjYJNbXGsE3IYfAAAgxPbuC4d3jpYao2pC0LGxF6IxIJB3yBmDoSiWZiacENGQARmIkJ1qyra3iHB/FOAqC5JSwM1leubD8qVbB+Urx8WfP1wFtT7KrJKbf6khE4OZaOpiCDH2jaeu2WfkGBCfPXt2tTo6IICCTMRhYQAJTU0wgQKJighGDkV3SnAJ7a366FPqD1prOjlBZj68y1AIStIWHaL5sC4ctSACKpJibDbtZhVDZ6IpnZp741Z7CrPvPLr74Cc//+/9D09/++91F4WVbALgJFfFj1nyyKKSRFUAEYlzvbNT1RCSqhalI+/YeXWQEfDElEFTbJJ0FB0zGwKAM8K+/EGp7xVAkiQgApgSIZiCokFSJAIFUERDUzQFUEsxxehnhSuroBvjiIpkgJCGpt27rHyXsdjEAh7P5P9PaAwBdooUdq/MOyI7oiEbJTcqoIh9mvTzRB3ikCo8Rr6SIfZ9Y6e/ykSe0dmzX0G92zO7r7/pVLTfYOpMxN542TiY8fPelOY/K1/0F4wuLgY0WK3Ws3ldOBRGNGNm73zTaeaTvcNrcLDlBjKqGX98K4nNzKGLg65nCBoTinq2RtTFBGY+eklWFEXWhzBl+TBWN1hKIca4DtrZ2enZe8j4+hs/fXT0MmDNJZKRqrTtpu02o6AtiiorZDaUscDgv8wIMkRIBDnLm3qPQn7HnNXgAABEPTEikKMk1jSdqtbzmohijM/zQE+l71Q5u2HVnuNuGchpS6I4GH84bRZngaQQ6BE7djAqr1EPGppkSzG3NwGu6zpFowJYveWMGmRAU9HpHQatFlOSnEAFRASOiZjZO2cmZVkaYOjSRvv4xF6UdByJTnDdrLdB+4nIVNSvmYCYECEhWC5PEusbP2S/LqJN4j3TKgKzDLwlvTPHSNF0t3Xd0K8l6/hjny8ZxOqu4BwgpfL9xVJWP3sP6UTcji8KQx5K3lLTSicasKB3FZR91WwQkMPO3Q8vbRNAsmBDRBwGbIQ0WAPTRbx2860J3q+OAE1asYvCgxdvHyyXKbYphuz1xSGPABCImIiATIIhlsSV8GYLuAJM6JA9mBmZ9UtsxJ6LGrqooUmygUs6t2Xh4VN3ln9YrlbRlMkxS5SR9gblXiXhum3KsgSkcM0LHVOSiCfP1ifP5oceXVUeVJUxGaGCWK5qNDMjUwznpzXc5lkVXRP03dnhraKqrKMGn3i38LxQVbXowRM6RHIIESTFkEIbuy42Xew6M1PycfXdFX1usZar+Gh+9MJPvvn6G89+//1nOe1xWDxEAEsmyTCElFICIGbG3B0EDBFjlBBCUSoAceG1gKSSU2OQQSRpDALE6gENXQmIRA7RTAlAURnNgB1KRORejzYBI2QkFQXJ7hPVjMqhKYXF4S1f1WGzwT4SYcSDf3wrVkYguD0S3Wdt18XMRFW9gRtkeJwMA6+539yueB7vSX1/2P7h/TW2zaFE7HOABxUUEHs4mnwzRUBCEe0bjPVVjlvleI/vTT9v9eMfVyg13dd7+25621FAqrZ9tLU/0SMEzGcHjt1qdebRitJpF42SBbXixk3d93zEoa37cHPNyIQGkAMiCgwGksxMc28TZ2bJyjGzLCVybIoxxmRKBGophLAOz2IMy+OX799/a7G4D4QKqw6eVsXRZrPaNKsYYy5sY/YInjnBtVZAZpbDHDmPe0cAJy28z5q2cxkBxJwjFWEkRYcSQwhE5IqMPfDcJfgRCzSSx+itnMqO6SLClvx0SOzfXUxNSkQCimhi2zKkvUeqCuDQ5MuMhlDowcEBkfPealefbxrykIFGk0xGOYgHyIBTIopiyOAMwSE7ZmYgIyqcn81mUaULCUzZje1otx4qGKTF3ntm0hGR3NcE+qiwIRJY9otlQ60PueYLto0N+shwfytClB6FBwBBEVRURNzgVQPcUclzwhUAiKgNvUvNzDk3gmRt41v9BsbpFPUpWyAApD2/3frLTTVbbJIU+wR6S0mYJ+s5cR857lknbr1MO14vHNJABhlvZoZEsI1g7RDcSF77jHLHODZEUkXvt5ocEdy9e2tRV5t207s0QJGADHMpBKNn9tR3JnbMXohgAtZthGRkxEpaFEUMraoSF2W9SCm1qYNoFNp1sz4o7N7RYln583VO59WBMFjEzMQo5Y7PXQzomBHaGPdIvSr9GmDdwJPTJ8eFS6rl7Re8q81MQQlJ0QwxiaLCjOvzJ+twSIvbdUpX1qwO9J63pZ+9Ku1GXYvkGGo1Vm6RNilWsQtt20rXSAxmBkZoNj+nj2a3hT9pVuDOA91arF96/a99/NUfnkQ21tzKG8fSTBOxGGOMceibNjTn0p5li2mPYeQLMU0SzAQR1JJoNOHsVHCISA45p0omQwYABSR0RtZXPSkAAHFuPolmpiAiyTTRAClQz2bsvKGxQ4TsoshYciOb6v8bBfCNQuV6Jv/0ICLb0YFvuAn2ZZ0jke+IwzyI607o6+J/2L8Mu37jLL2ZKdfSM5P3PidITh+H158xGUPefdi71rfXjxx8qlvvjXPK5cf9DtYRkfOuKF1VVfOqLkvvva/LOz98/4enT9avv3R3Bumjd97tItX1wTp11ofMcHsMsLXT+08/mKGYSE6fUYiqioqKmiSqiYgO/cXbbu0KD0Zt2yZT5wjIkgWB9PqnfuL28asKTqFTDGBIdLRZX11dXYhI4ThGIXKzeoFImqFTLdgW/taIct92hz0LwVEAI7P3hVoUScT5jcAVnAKIRCbCokqWuq4zhLquVcKNIhjpZv/zdGVttJ0GnIa9b/PCTJQG2Jve/jJNgISiwIMFPBUM/cFkgKDESGamYsjgvTOZIYnEIsK6KDlKiRxM3XbnGWQVxcxEstwhTBjUYkgbZ+ug3ITCubquvXezYx9QN6enDN5xGSD2GOIA0DfohYxNAwCZfGkCCcTGAKA9bpwCkWWdXI1zW65eQ+fMzNQCmKFRrjXIS6zCmquJtb8MzVABkcT6kvYxLwQREUjRpK8XcXnxVFQVJdvQqqrK5pGy7wc8z8yEcseJDNqVO0FNFn26OXObIaY+RdySEFHli6z2Tmkli2cBAxyI0kYlBWmAZMutF8HIEAzMC6KCghoYMCECqaEM+TYAiJzDbJIZdMawBIB+h2STFSklXLi1bqVaF+HFO3cgsoYIKZaeRXxUQTJwRmARYVHNIUBFEGDFFbhYOkZDNkJ2lTYbSxERjTnExOXMQkyxKxi14EC0TrDALjabEMIRy2v3y4+unqnVpdTigohlSFBEY2ADNNNnjbzUAINRWe1tsFSlV2p88/atw7pOrSR6+lRObz24r3JQl7fZzTF4IQFO5NMmoHNutbrous3h0RKb5qJ+WC9q1zwu6iOxOgk4j5AaaVYFa9u0ZlKARNRkKppiajWpVDZvV168YmxlzWs5Bm5f+usPPvzth2exLGvEmXSphBe0fJfkrsFaoQxoplcukbcDQzZqVmSvIlRYttQVRWGdP4uPSz5cX125skom3vvQxqJ00LRcVFqgy53KRU0ToSnnvkeGCIY97jQCZmnsySyBkXNEQGJdG3VDrIuDl6OtvFdN0MpFG0O3wcVMxQAQkIdGTIhAAKYZ1mWwt3InqC2vHz6PwthwDBtPYsBEhKYRzDlOqCLGzJaS9klq+/aoquawFwCIKCLkcjhVxcFdnrPYRl4Zh4bceZMSMQCoSEJEJDBIKWlMuTGUSKTEVBMyCRgjEzDYtsNKFr6ACkZmCoCdaOULxwgpSQbrRzSzCudd6gyVPQNqtgu992peU2RIDpJKh9YtZ8XyYL5c3j6eUeEeeCwKWdhydiZILT/6k7/3za/9k5/9K3/ns5/6xbe//f+eQcPu3lNo58jGGCE3mgFCZ4QEDlCZCVUxR0lFLIQUJKUOkREYkdhyrYQSo3VmGIgECDxZSJ0mA9Xk4eK8q+fzxa1bSG7TNiJyeOfu3eOfQzRlQRRIoaCibdvlcv69989euHfn8vLi4uLszp07ZVE0m3Y2myGgxKTJcmQ3c2WkweIk8t4T9RgGxGhkSQWRnK/BDFgRkwIoCDliK0UjCgkkibqWpl743HypLAoAiDECqHNOdp2dOCSsTW3x0eowEO/9da2RcpuprT8j16bveHFUExEgRFBDmHSV3zsGlS1XIGzDfs4RM9kokcwGVWWbrDtNLdtVPlFVQzCiJDGqqvdcFIVzbjabpahd16Eb4J/GqAzA6GQed+z4ASdtL2H4iarCxGudEbLGeTHt/dGwH5KhMfNU+w4M20St8WIbLMjhVztDGldub7QqEYbAAPbVJQBDavb1yc9xU1WFnYLjsXnLzZoyDDbBljiep5hnVkjTquX+zYd3yjKMaQAo2Bthvq/3XnAnz6Wewd07dwxiBiLPHJeIzJh7llSgY+wdf7CF6EJEpB4XZdAut7yMKZczMTlmDqELcBWMGIpbjkrGNuEcegNteKkhPAHg2Z1dXtw9WBRuPwnrl37qUz/x5iv3D5ZzZm+hbc836/OLp2ezWcQDmc1b8zNDp0qgZZJUAJmmmALQyrfrouB2UznnFkfR17e4mDmBlNayOe8sAM8hq6KpF23IzpFpaMWQVQ3IkKKksnDHt+781N36gzb6BITRENE9auRODY0pppS6LoqFAhlI2GdPMtu2MYsYGCOZJucckpk54i1IiiKAJlOwDJgufRo1TKrIEPs0h3xq8EyCqWoKBBJjV1QFOQ8iSl4127+e2Yew3t5k3B83h3JH9XH/GuxfJ8d3nmuUII7eATODsfxv7/o9LjmGGIfnXr93f/+9b3J1u6qiDE8ZzICxGhAm2/D6SDJHraoKNIUgZMDk8osYQqtXvvaKmFIiobo6AMXQRsQzMvDE81l1tLxzcLBYHiyqqirW7pkuy2qTUvXxwWmVgB5+6xtf++d/9o0f/rW/8cv3X7nXhat7L7z6iP48SVdWDJM8DYQ+9oRAar2DDYYct6IomDmFaIaiOfZgIlFVFYSxADNViCmmlKDvL0iz+Xw+P57NDkKSmHQ+O/BVuVjMzHocBRFh9m3bHh0dv/3223Vdd10HALPZLE9UWZZE1Kc4bFNn+ml0ztkWnXd0JIwoZjDENXpJkYuVTcTMCYgpqqmhuC67u9kUDTI7hVzkvbdY0w/XRc/ID3eEwnPIdWcLmGq2gNHMzG3zh5/jI4JBjmLvMiIi0pwecs2YHwXw9V2Xn5LlWkom0KeqzmZVUVTz+bxr49XViidxyu3QEQkYcIvG17+wIkwj51tvqtH054M3w0Y3r2EGOTYzMBp6KPWtQvb06HFjj3Otqv320y2gLRmMwIHDzzVr+ogZXhONEE0BsW9JiEBbxWr3QVuFQ/rqzV3+sqeRTL/dpQkAmCQSomI2goeZ2V+7oXkOIAKwUZ+Hmc/pgJ81GUPGDNkudF3QC7eONUXVNMIyExCgQxQjQ6qc8zm8BNA3oh9Z3vj6MAhgVQEmAsp2CBeeGk5iEs8bm9fqH3g3L+hS6NaIIL9He8Bkutls9HBhu63rAOCXP//Gi/fukIpG9X5RL6t6ueCmabvL87MPN21xcHxntrzvcCniuWADVLAoqVm33UZ8QRI6LkAVijpxMWNmCRttL0GDVYcIDMYpaUoggmZoYAkIyJQYDYh9myIzzw8Of/bV175y+r1PTtyxJ8duwxeyOlDWbJzEIGKGJMSKBMqQcd4V0MBliUqAElsRQSYmQmQjNiQBgxSctiasyqoKmqu2DFAFhja8Pf0YgJrl4LeqGaloigjSxfbohTsIzoCISEQ8sXOOnUsKRGC6w7N2VNyBSvcY1pSYt6vWC8lrq4mARDlbcGTTcI197RL21tetPSJmb81cf+j0Prsj3I/U2O6rXX+F6wdlJL0xg0RNVABNHa/ajgnmVa3J1pfnpDYr6+WSjw+Ob926s6gPiqJC8GIWQ9wsq+OuC+kgLdO9eP/hN/5Pf/on3/mnX3nyN//659968xfWuG43F8eL+7O5W29UgwA6yCmq00LCAU9wO7zhcyQSM0kj8CYmFVXO/uicfu5c6V25nM/ragZZvQPS2LnCHx4eosvVFqkoypRiWZaxC8vDwydPT+vZImpYrVbMNJvN8kNz8A4GG2aYz22lybAWE8lno+QC2MvaM+ob/yExeUAWEDNrm1hWntmrqoFmF8W0neXzFL69xZ3KzSkBIO/4peGaAppfylAyyKOb7JNrRlXuXDAUnOQKKJHYQ29j3gg0OFFG4QET4TERCYZIQJihSfpygpQSojGz9wUZpxDjmCOTq3ZtSHbovdtofcOw/AgckwhgWAfrU5wm2oPh2LUwA5dCDwKT3VA7czT+lanThuqj6RSZmUM2s6kW3NtqqGBGg592FPPseBgjj+v1I5Z5KkSRphA2P5Jb7Z5BzOghQ8J+RmPIjd+HjtyAaGhIpmADU4OsSCopIUwxvwBgbCGVn5hMLQkXW/2xKv1BVYoGk2AqBoJISIyIaIwM6Ct2xVCykgur2MxGB4aNUUQzpJxJR2YkQADE7IEJCE1XTcJSDu4WfFzbx61iboc18QkBAIACmEQVJjGRsC+A7y8WXnJvKAQgdkV9cFDV85nMu7Bq4+bq4rJtbDZPdXXgyDQJivRhDzQvqBEMpFk1bSSkBhFROwsbSI34ll3p3RyhUAGFDKCoQOTYQ9/F2KcQmy4Q0b37X/jF47f/3nnbCB55/6Etl7KWskKJmOMZ0NcjhZQQoyQlBwqEub+XIplr2vOYOk8V+YLYETlkZwhiyhoVBJFxyHzfN38BMwQHAEBOMDQDELAIFoEkSVweHpArRNpM2zS0v53ojpNdcw2NI0/1KIP3CHhK2zjcapeqt2ISB4eTyA18LI9NRBC3aYzDNTeYy7t32BmPmZFhTlAZ+gLvS+vtc59/5xQTInpiAFLpa+4RyGK5LBdEqVmfp251MKvu37t75/jocHngfYnISaDtBIiKoipn81g+urL7EC8Ozrp3/vDv/vNv/uBf/kn8m7/4+V/6G78K4Zj9uVAbQ81OJW6q6lBjGkWXDdBDhjLmsowvnv/lXEasucV4/xMR6Tph74uqpsITMaEjIiJnmtbrdZLInmazmStdjF1KOiuKELr5fBFjLOv69Nn5arV68OClDz5+V0SKwlfVLO8CQBWNhA57mrEMQZFHaNan0xIgoOYmi6NU7kX1DtkMlEvI5FGVlFS1jUECRFB2QMSIOWJpds143eOxEw2g//v6Zc9TAfdui6BmYoiqzwfiyFxwrzGOgYW4UUsOCyJCzS8wEXu5XclOVuGujxf7jZqTLAGSiMQYGV1RupnMLq4up1otZDMX0Xqs02kZe9/l48Ypm2zd7HZGA8C+cW1esIxOD3YtzWOrFxvhTTV8e2o7ai88xg1JbCqjBFUAQCXLUFC7UBvXZWr+MJYE9/+jTI29fLE8zC0u0pbNqWpftJ7Xha7xv3F+BrcBEUHOI1PbJi33SdEwLu44NkUYoXoZGBHdpMPB8eHBYV1LCmrJhmpyBCIkJEfeuXJGvlCcRKcnTr8+v3SYzNwOK1d05XHnhEkjB6LZM3ZQlS8u/bsXsQvQNybsoRwBAc0IQEG5g9SZ1m5/PthVBua8o5IUwSwhYGTvq1m9vCMiXbvp2qa5PNlcPJ0VnJIS+7KcgSuYvYKLQoCW0DwjFR4BQVOKEBslt/FerXDEWdnJXJu0Nx8hhBYRgF2SsG7a+fzVX3nzc1++/KP3HhZzkEKXvm7XBq5PwWU0UsQkhijOmwnVdeG9D1wyI7AhuNg22c9G7Jyv+88OiQhNMAtdo0Gn1V5qEoL0rmwAQlM168t/NZEpmmgSQ6xmM1/WbWqMKOfSp5TElBwjXoP63N1Ve5xu3DUjgY0JxjcqmoNd1GM007aoQZ/3k/+vj6lRYSKIzhMDKQDI8LixEneqf/wIRpxVARNIKaKB98yEAFqjdc1VF1bz2r3y1qdevH+3Ln2KHbmjIIJA7IuyYhXoJEmX6nRf3Kp6Sl//o//9b7z79m/8Hv3Hv7r4n/ytX710VWq59Ny1jfeL41t3nj55JrIYB2SKmZWYJDNC9ONrDk1xzMy8dxmeQVVt4kMua4/skNkVBTKZooiE1HXtJkksy7KoSudAtDWQsirQkImbrquq2arZPLs4X87mT0+fANhiMc9uZyJnoqIxg7cPE9XPY5bBqprlJW0DJJoroKwPKOyse4/0pwrbAA2AgnOViEAQQgJiswTQd3SYyPLt6o+DGf/dLuT+yiJAj5Y4PbN3KwAFYFADMGB1U+rfPXKkVCFnIeVCHpOYgqoi9XwzVyYM1sMQKYGdoY8CTCQDYCIYjQkIAJRSSpSYuSgK732MccwJVCBFRYSJJjyOdt/8z+J5DMFOJOKQMm5ouv2tTbTgvTB2xnycCvjdG26DSWTbr/J1/Shp24QKESUFIDSXnbGThjxGNojTCd8BoFELGXzavYTacdHvUcaUeobxjCH8/OP+GgFDA5nk8iGAUd+Ntw99525svchHhD6zxiyDiec7IiJPIPXh/gt3l7MC2isTxdz8Mk8aEyCyK1xRsyts8KvbYKLn7ZZdGgPbg35BM2AYISojsHdlMlIjAIkQ3Kx67Wj+zpOzJ2vjsppOSG6ODUCO/To0TQzHi4N9QvcFsKgamjrn2HsAUkdiSFCWVXWwREnNanWy3pxtrs4kma/nviqJDMhEVUMgKBERlB14MCCuqQQUhNSlCKYboJAzBKFPCzIzSylFSQ7AOQcgorpRe+P1L/3yo2/9F0/kWdvMtQjHM726cDwbCU/NTJNjB0yo6fCwqqpK2GuB1CBhESQxc3YJGrESARIh5Ex5yz4NVBw1KRp6VRLkKM3QRZxUFUwsewjUYoq+LH1d93AdZo4QQDPOqC8Ksw5uUvny4k6XZuAMY015b3Rvcz8QEVF39WPrsxRyoQFMMC6us8TtRrBrpYwTS2arWQLs7uUpkajRUBycr5He137T2xJO/QrTgwFNVLP+RQBoMbUaQ0iXB/PFg1dfvP/Cg7qoUoQQXFXdUq5JkqoIcm6BjIhFgWxEH3/8lT/5L//x1y9/+49n//G/3/yn/4P/0WVYROHKgbTJFA3iwcFxOducbZqqKqYWcK/FmJgN5Ri49SZmfo5IyNYH142InIA5roDQcmKQmmkyFbOgFovS1TMPoGrKwMTIgDGm5eHBatO2oUtR77/44PTpyeZqtTyYzedzxOyf6FecmafN6/sZyhrrcICK9ck6mFNMhgXNvxt+jQpgSCbWh/kYSQkq52KMolEEgRQRkNAAYVJ+eQMX3T16hfVGN6QJDBBnE51g4pQzUMgtgQXVdmrJ9zn74GkcNw8ApJQGwTLUj+aXvybFx7WcyuBhW+GE54KqhtA65xipLiszCyGoKqEDsAGRB6ddFYdH8NR+nQ7AhiMnEFmfgk+je3l0blMPnmK5o7CN9AkAOEXq2fEP53efQr3nORr3OSIi6QCgBiqSZaG6bP/2y/68YyKMbfyMuYz42rE3tmle2IAiwgYynOyXIV+wzafPP2evPS4HGGUXcO8Pxiw8pvBhAGKKhDDJIbxz67ggCr2Vzzkn3QgzpBdx6XxJ7AGHQG/Gr8N+8DQkYY00kzvTiQgRARkylWWZvGddoHQBGl8tXru1fHN58fgKR11w6Caipn1DDnD+fL2+dzC/Nn0xIwsieGJGBrNIKkTEjIbaGriyOpi/fOxeefbw/ZCiK2Z1NROxlBJYApVSS9Uc2wFVYHKFn/mKdXWlKlGjQItMhA6dz03+ehLqq9aBnTOVTq+uDu988aW/9O1P/vTrj7sY/P+Hsz99liXJ7sPAs7hHRGbe5e2vXu3VXb2v2NEUSCyECIqiSBDiNpQgG0pjxpGN2YzZ6OvY/CE006w0G6NpRAqUKGpIEARJoAF0N9B7o7q2rqr3annrXTMzItzPOfPheERG5r2vOZyw6tv5MmPxcD9+9vM7fceIySHWNzJYhRwXx2x/b9bE6rykTAaHlgMUhzUPxBQDqlqpKgQ2MjAy9nI706LbQIGzH3RPADQxVFNTVdKMBiK22NsP1WwlAmQe5hdNIRKADsDmk01xgSfs/BNxs9CT77d2wc6mGK+lAjsP0xTWi2x0KmJxMKem+2u6u1UNB8ycDdkXC97UDLeQcIZHjCXng8/vIuN2LmqlVJJDCGaS+nXAPJtXz119/s6tO1cOr2VFEeTZnLjpxCz3GJhD9GboBMpEjLS8+4fff+eb/69vff+rvw1/9y/c+Ht/47/6MD3TzDmoWT5nqJuKV+sjkYoDVtSYJZgknJh5Fg/lnCe9QQs/BAAPl0BxYBESKlIENoMYqhijonVd17XnfbtKqd8/vIGIBJh94yCJWBZhDl2bqnr2wf2P7ty503Xrvm/39ueeReyDESk5s2YyNocucncjgDaW1WQ+eQscd3Koig3+Uh3s+4CUQUMIKCaSzYQjEyAQMuFldLgr1MZ1N7tkiS8V2BdoWADZs4fMcNOM4TJ5PnHlIbrrMedeB7TCUVskIp1wh7EWioh0TBr0p4xMFhHBnNWrqhhoFgpYVVVKqYfkImDky6M2ANu+hvGdacAmK9tp0vTeJlHeUUBO4ozmArVciK7ZlmEPKRsbHIxRpcDtnUalLjltTdrwgQy8u6MWJ4BHldy/sOuymN4fLrCSnZWeLjlu/K4DMTGOVu/0r2OzOdSoEdDQ3NANNPdVOBrrxbGNakHRW5GmLXYP9uZo4FlnNl6L6FzeiDAwM+eJLEdkUYWN6VsKqTz+FIm8SXhARiyJmqmqMEuQrtXW4uG1vfmdvRCaqJ3CdF0GXaTPUu8vztZHq1W7Q+farzqBUM1CYDECoxCbmLqsKWlKxpEb4Fqp7i0898nPr1Yrn4Hl6Qnk3sDQxAQoUMUVctVbLuTDmbgx7VWTgYCKklKmjAjkpYQQqkpzMktlzLR8nOfPXPu5rzz3nTc6OzqhveUJHNSQwT3JrOyiW71fgeQmBg6ofYlNKqCYgoqrXFVVharJ0hMIEao4sAl7XoTTgEMcjOBDZV2HLeCOIzNDZFOoZvMYahSMMWYGM0upM9OUu9VqBSN7uoQyn2YZT3Xeqbzcsk0n5Od9sgAAEBw+r8jscd/ZRO8fSyIBYIQTUJWnWMxbgxkPcjesqoOyDCfbGEuavp3ZVvBu6z5EWTxpUVPqU+oOr+49e+fmx268ZGaSEYlCHTJRwgyBoxiiZNWccyAKHLRL5+v1m9/9vX/8R+/98bfgL/06/OX/9K/m7lO3ePlEsvXI6SwYJOkXs1l943b7vR9itW8X23AOW8znxAbnv9d0Q1FhxScklwUFF5xt267Wy+XyTLRtar6yXwNF0WSGkQMiWyYzq2ITQmj7dHz04Nq1a8enJ48fPqiZ9vYWIqnv+6qq3eWJiBxCzj0RK+iQIDJ0XADcNK1xzYkGnWmzUr5qBkMV68B9C9IfmCGgSxlmTikpGcdAxGI66iU7xsxUe7v02DlhRyhcSkuoYl6zDAMW9GUPYAgz1RW3Ehd4rtbADZa3W4XA8wACiTB2qLOsOScj9KwUKNJ3TBqyDMDln96bRA1RkgghEgUAzVmRoc9rpCqGWV3XWeVstWpmjfXCgAScIbuTuxC3w9+BaC6CUxEQaEgeAd4OW/qKimiowsDZzcAQS91wmWvadOF2N+wYS9iZ4vK9q8ZkiCjF0T0khRkBbPzGUiGoQFZWImQKDEhKMDpvR2O6aAfApn5/InRhiYZEY+sxv5CKF7EUVqLyRs0fdI4C4knFX+etQz0YDohmaDp6cHLuichTnxSMICCiGFaI6PYkqqMLMRESZlNWFl2NdHN9P8ZwLfEyVHWW1rQvSdfqQNCdpE6iUGgMCSQDGbgZDRnFDAjjLOcssmRUMMp9RsMmVmrZTZ2sqYeqrnWdeE4Ix49bWNx65mMf//B731nNb4SAoEvrkOtGyCCnGYZ2fXIiV+Yzle4CpYvpLOIeGaXU1nNCTa0yUQhIYKZtCynRrKvrerWcoUUCM1DiCMTQp4YqrSpkTqljwhgrMOo1GVb1AeU1Si+kAcxAQEGAVJRDrDmgiKgKGGdQUJtJVfXre89Vv2I/8+13vvtbq/uHzZWutT4d7e/fODrLyxXMZw3IWrJCupJgvV/trRKBLaMdCB3XQoxY6tcBupwg1HV9wMxZetMzQVDIZEDICEQaFYBIxEwBAWgwAbOZpZwRMwFCRrDe6OTK9WeVF2Amp6uo2JlVi2v46EFUFrA6Vn2fAaFo3gSqSoFUxbMuRiARTxFgjOM6yOgdc4+Rx6EmKYBIoMKRUdTYQFWylCpe3+6DYqo4uKYFQLx6rYoAkIfYVuCJOeVy2vd1NcQOoThjVDVnULO6cktDqib2ucsagSyBEjIDRwqAKJaJIoKkhFVVAYDmoacIACIkxD7DoomYz7B78OkXn/vsx76kfdOxIDJRIAwAQAakAiIAdFYd1PikafsUZqGuVx+89e3v/IN/+Fr7jd978Ge/cPB/+Dv/BdY3H+XV1St74fg4xLXZvnSPGdY5V61BOGjS8TJUC0PPlVMgAxF/a0aSlDULMxMFzWYiSoYBVZzHEGMIoKpZdD2j5uT85Hx1klUwVs3ioG72M7BiVaWTGnRptdYHdWRIqao5Y/X+3fd/9c//8muv/eD00YPr+wsPWABUMRIiiKsjaFnUgLJmjBTM+45oBnMQeiYGUA8KOiQXeot0YCIYPDeKBGAeI1NE9Ao8LiBAAAgV113qzaCJc0VNXScp1XWdDAGUABFHNEMEQHiKhxUZSsnvoBS6+B8KasATjBARpwFHAM8MJQNUQUfN3bm1H2ZDozoMnifm55W7u8zzboCjxrt9uf8lIkQCQx1KhwFMRMfzTd1gM1VNORNriFRrve773CdEJGTVjIQAu3bh+HlAkoIxgVMH/d1gy1T14rOyncfw5yTx3cbaXByF95ZCfel62LZBPKpmI0NhZMRgHlkfOAUOPgMf+XiHqfVwUQUbvilvjUBI5sF/dOyMck+c2qC4Y1VfeAQMkhsGwDYcDoaNgl9W+7IiKD9ms5mq9n3vGRxDx7SBtxZTZVPx5dfjUM+H0wNKjp9Z8UqUGj7jyF7PzQAEZIy8aPDO1cXrS1AQQqJQMRCiIjCaEvCNxX67Pv/g4TFsH8sWY0wBz5gYIio1KnWIamZqQoAcqhCIMKhCYCQ0RlbEEOs4E2ZhIBgqJUoNumNLoRgwlwLHDjRLSuo9kU1FE2oYKCEwChJHzh01NxKsrv/Uz376wbfOnpyct03Ya6p5u+5EJERCxBgDUFivOyIC8ITVrFn6PkMPIqq+5cxMx7wHQGCkYCago/gxQEMgG7sc4ia+NdK/ghBizhkAQqzVkJmNOfXmmTtePBoCTlXVnT3iCzpsqE14ZaSfnZMH6Xi5KYmlerVwHrks9wuxJD34PoOSFo+49aitoXpt5JT4/YIqIjP3fZ8z5JRU4w7TMHc+F1g+rKro+5pCQUhWsSQiBFcO5quzk2DtJz726edu3+r6XFeekYubt8bizuh4tX+aLNw8W7x/hXJ3994ffedf/fM/Of76v37ycz8N/7v/7V8mu0lw83C/PXny/pXZ1fX6zNszhxBSSrPZ7GD/Sne29J1WJo1QCT3FfWzLaEYOM+C2St/37g1WBZEW0UKkpqrvP36QcgdI9ayJVRPrWYgsYtXqg765foq8T23kdglX4sGVx/fvdhCff/7Zr33tayl1e3t7ADaf743oFlOW6zUpxTeqE3qw8UwAALTSd8BzBsUSeIMqIjNURe/s09QzM8veMNGKR87vEzmYmYKCeA8Z9DpgJ5IxRjmIm0soeXvkI5EU7+w47IsM9uLxVAEMAGaChMgDPAWod+kUEYEQsIRSsOwlmAwdANVx6YipeIAHqjdTRYeh1lFwK1jO3nUuVVVTIzSpPj9f1tUMCDRnpDgd5+grIyLd2U9qtikVsGF+YJyNi5MIBfRuwwi2s7cvXwPYlov+mcc9CVL8yz4CY0MDJid7USUAGpzV47DG8207yDB6qrclvY0/b/plTkZFRFO+tM3gdvHE/dcC/aOKOMBVljTpS97ad46ZIW1+PjzcF02SepFU8rEpKGBZGPNmZcKcoVg/pCjuoHQQyjEZxHP/BpouwtllcGRKGQFIDUQVKc9jeP7qYu9h2523xjXGRgUkGwY0gZSkoRCxSnEXivLsdLk4qGJmYuaqNg6iRiCAAMCKRoDZAJNAEsJIISATAsbZDEPI665r++CVUSCmalkggINaJyNkJmRSzt1KMHsCpEIiARmSeAmRPFpAkgyqNZ0dvvClz3/m5+/+8Lfekir1XEVVaJq5EUq3RLMYQs7MzKbcdV1vLWfRLJbFDAFJFbJBdIMAcHCNRFVWSA6pjqiIDGDZiqrkhdejBlk6eKoysogAY2xqMwRSYki5R0SPI9qg+anaiFU30tWE9gbVcCKD4enH1q/OfMRjvl4+4nYybMeScYzjjhHfTdZk6bR4+UNHDoBT5RjcISQAQABee+MvDlUFOH2F8uYIKo6tTe5l9KRViMzL5eMmykt3nnvxzotVnCtYDsoYAGiS/gbmVTdqEWVlR1X9XHf/u6//8F/+wQ/v/utvPvnEbfrf/Ge/cfvqCwYzqNrzlexVNyw/AE2gYJKBYdX21XzmkriZz4BQgQyRVEUw9ybSI/AYUhz2nQx5M7mYdwFF86rtc87rvGKOTTNvZnvMDBRAxSQ3TX1+9nj/1vMrCTNNoX9ycnx85YVPX5OT4+PjnPsQwt7e4uzsLIS4Wq0862IaHHQ6HGIENq6mWyPkqpQHps1Us2dCIJlKoXlGirH2zOq+OwdQb94wGKYKANJRgfhNouKy3EQyRsaxeAcEERFIVbbDa5cGRC5RMWHwPw2UdrlKCl4HfGGHAADEIaw7hr6ZEExUQdRz2QulMpMKj6VH42Os1Fdhicb6riOE0tho9BFZAAYwMZAsISWOgZkXzWy5XHrMVCet5IdxDs9i2sLcKL/BFHvCBjMQAJiim1/jJaoK2x0IbBKXwm1T7+JEXTqzoxoLUBjTmCdSYsyDZ4NctMAoX0YTYSLaCWnMhbbCv3RoKu53gc1ij4PZNZ2nnzlc/uuUbtCgJPXhRn/xLbFZ6ECQt/Igrh4emiigIqg70BVKX8vi7BA1yWACyCXREdA9if4Ciq4fEACpt89A9HqpMYTfVNwnDhRFNYOSpors9kF9dd5/cNZ3mRpDEMmmDESKcW+R16qqbd5N5bt77/s3rj+r/e35gutZgjmFSJoxhBADAYCJei05IqoJQYwcqKpmVQ0A6/P1+fEJmgKqmYokQERFYkZCzd4CzOMZFQWHszBHZzTxqAeYoZCxYbZQwepcrlJ3FG997Bc/9vwfH91/dP+oTtcCNXWkrlv3YoymUgIoXaurs1WKa2+IItarsaG6/8zMvC0hF5XLGRqjQcmPM9kUveGmihoRqTjTBCQjQ859qEPTzHQwZD2DzzGoZYqqOtxh800JQk02VEH52BWEOzS583uMEdHLpUgBRMwG7NTxWisR2a2aiPEOpRR4O7lh1ANwAvswSibwgI+5EQkw4BGZItD2a7q3xkoY0k3kpEqlXgu0X4OsXnrhuU++8kpuue+w2q+TLtnihE0XNyaA1bnW/VnqV7MHH/7w27//T77xx//qj09vLeB///f+o0+88JOrZRUXncB5FW9AR2JimtEcN16ZY0pJREQzMiASIgOhGQOYkpARDMUso45S3q6AJHopiqXUte2q7/vZ1T3mWMU9jrWIaUoGWSStQ7x60HSrY62vrQw5r/b39qq6kfPH9+6999JLLwFASinGCEQUAm2wrggmTsoyk8Mku4FnZgCEqEOPnKQqzrcDIDEBsOPAq6ScOlWdN8EKGIOXGTuUt051PkREZFMxg9znqooUWSQN1CKAOnST26VMItolTSen0khrQ1oXjpFbojmMzuU3mlysqgGJEUBznwSGFvFIyDD0ErlwVVEhp97LYsYhAJoagJcFkxGSO8FQ+5ywoxjrGGMTKzFTleFtL8t+GhwUO3+n5UPTD6OrbZpWCmCeZOv29GgKwwX/6o+fLvS61a1cuFKo5fUDiGjIHkYdS63GY+cVyvW4MY49m2CoEQKAobXwBqTNbPjsRfTjYl2YjcvfyNVDBO8Y6Q1QMxE5IU4HCYOioKYTgwfm85lIAjAs8F9b6O/DqhmIEnmiO44UUu4KrFgcEQBi5Aa2V8wM7xhDJA4cwXKSLCrB8n5TPXtQPzqCdS+oBtnMBDkw2NHq/Pb8JqP16/OdtVufP3735OT88PGd5168cfO2kmkVkQKAtzoQAGAgAESFbt06oHdF1MwXVTMz4L6XtDp1vYRBDQTMUw0MOTJaKYSLGkAF0SSTZFU1NC/PUhx0DeVQabZUy1Gr1z/5qa/84pPf/kdHD7vuHCL1vXRdF2OsI7edqHVGdL7sj89Oae9KUDIkJMhqTKCGjvshlkWC4FZi1KitjxRubvVucxmHYQATEFDLTdOEWPcYzKQkhZU+cUREMVaIqazyNvMZWd5FG2J6wuZXQ1MD29ZEJy7BnW3plLhNSDT5FcdHj3+n+24zDwOFT7cnAITAKqACmqHve5N5oBgcwdHMQAACAAHYgB2rIQRAUkeNIkTLkLP17SdfeemF525qygiRY0gpCRuJFiY62UtmoBKfGO/j7P3X/h9/+N1v/+H3ovXwX/8XP/W5T31x3eXD29dO1kxwReHcaGnrfcsfuV8z57y3d325PlfLs7oSESNgIgRkZsQaEUMOjobkwYVxEsysz4mZEa3v+y713rxusVhIJJcxOav0yUyIjQxAchf2gGihZyetXvv4T6Pkh69//dzkzrPPqGpVVW3bNk1jZkSBaNp/YmN4bJsQAMOKJhGGYi9lMVNDBCI2MRFza4FYESGyGVnqbdME0JAoEBMiCp3lLJ56xsyq4gZNbpMMpfZixu6uH/tbXxABTzNsYLK/4MceftWPA+JQUx66ITETEELqz89XDqqumhEVEC1nA1MPNePGGDJCAAQtU6ybWl6zUSqbm3bgLkgzxJzd9KmY6rpp131S4Rg0G07biA5vp1CgfKaT4inHl77wiPED6l6rLf+Ae57N7+Z8ZNOW8qnm75ZCMNxp8LOZgagpU0RExQGcSUv3h427FdFPKAqEAQyx7fITmMLQd7m8J2KRrx6w3nqXcWxTwbllf2xIZ2LlK8IA6gWioooIpRvlZZNQapYmgwqBJAma2GRm0HO2AjMjkJmJmZIV8SZDCsxk/hxDsbBUvZDDqUYKGIiGSgPLYkx0Z696u6EnvUrKQVRQVDNa2Jvvn3XL1emTF2/BjgT+xCuf+fDDt09P3svp8fL0uWvXXrh2487iSkCV7N2BED33VVPmoL2CJOmzKLEa5axSyhCR3GWuZmSqioSBfXrBgAwZQ0TLJWCppgBkCt6oGE2RSLNCjHSWCOLyhG9/8c++8sM/ufvkjXeWAAZaAxAhm5pox6E2juvOutTPI+Q1QSSswCAopFHSqGrOPUFkAvD+vhO6NTNT9KHj4B2gITnPXxvAKcFmi8YIAVmlA9iqrHV5TCQ4ZQJlVw6nFXRAHChtywu9xdc2hvjWTk4p5VzcSQrgDjnYErFblGKafQd5+xxVj4UNcHrbAnj6YapljncOxJmkAOqqt5+KBiJWHF0EyERYvOKYRdSwqiow6buVSX7p2ZvPP/NcpKrrddZEAlj3fSAGzVqq7L0XIjpaADWH1C/Pnvzh7337G//8T1Z9L3/vb3/5l/+DXztfzuv57LT7sJnflO7Kcnm0N+9bh1cE8GopIlqtzjX1gS0DIBqQEZGb+SEEQaShpeFObYupZs1qlqU30xCq2Myqet4PPWhAspkAKgEZ8MrCAsxSeyZ4cOvlEMLrr33reoULnF07vNJLNoXFYuEdvabLulkC81KMbBMtcDRpiNAA3fB1iC5EY88YI2IOHENVhViFwnSxI+9Jb5Zzzl3X933OuWmasfMpAJiJKSIGE5HeDBPHoTCQYBM/3T4QcUTNnH7pFsYOOU1l4s5hZgGfIqhNM2CFiAKIQ4ph166ePD5KKsUaYzAzEUEaUpYGMx82qsA4uNGpa0CeeOvfosEmcSOJIYom6yVVoe4wITIiI8q4KbclDY5l7zggYyAiDoITh0sK09nUPeuw4Q0AMATfduM9d+ZlZ6JG5jWdzR0ZPCTTI07gxRUMCAnIDe1JIfmW6uR0ASNXIq8EsbHpG5boQEkX3ICKPF072xHGl6/74D9gZhy6u156ZlELzGh7cqhIK/H+7URRYRILLxmA5jEHhODZVYOZO9FmEDchddiMxF+8BTBDUjARQFOATqQCujUP+00I5wKiYGIoSYUV64ynfXvjKv+HP/XJv7/9Iq9+8qeef/6Fe+/98N77796799bJyUmfljf12WY+q5qGiXTw/yNiYA5EaABJ8rpraWUGkTlv9SZTKiV0BGpIXqLrL0WGDMRkBfl2e/LFSGAVNILhQuVspfLc81/6c68ePzx9+8nJGik01SylTlKnmiOHBLHrRVQ5Un9uWHGoA4RothKUbOItMVRBbZSMo8dixGAZipJKpXdxwLqamEUIQXI2gsVioS7OhlL4IbZaWMEFwhsJg3ZKNhHRNvjTG4t2mMPxwi2jtnTdHMQGIvAkn3nQ0SdG7Uae7lreU8tm3Bd64bRyc1FEpqJhlLqdnLPiyEamgwe31UUECAktpZY0Xzmcf/z550hDzjFEFhLLPSNwJgVFR/YyUEAEAkVERmzzB9/+o2//j//i26v7R/arv7D3a7/4C+1qb7ZoOtEuB6Jlbs8OZs3y5CSEtSRUVTEF5LOzZbteq2SThMGwAKIxmFdXEjMYoGqBIZrOBgfvFKcVVxwq5mhIXZfrZi6WwATQqDSaIzOtF4f9yYNmvn/t2VcfHh0/vvfVZ6/sneZqf9Y8eXJ09erVTntihuwdwTftRwsl6GbJtneEKwMb6GLN2QxLXpvhwdUFAgOErLjOdrRK6/W6bVujdYhUxzBr4rwJ9aLaP6iJ4OxoHaoKVHNSESkwP2Yx1DmnDBYBuCZFdbDGi/xzh4QujNmncQT0ulz6jkT5VAt4eMBELc2pbdcnJyc5ZxwQIXx6OPCECreMJJd8Rhuk7FIPOrU7Hb3dlxPMFFU1Z2maOVGgks1UtsbOU0oiYuk6CAzF97XxP/i7DB90s+oAxVNtAMAhuG5lZt4tBCbb8uIGm/7TJsJyI+8nUY0xW1KtGNb+beFxWNC0scTIL5Hum8lEMlQY2zggjarrKOKGtUAcVf0LY37al9ORD+kqvl6XH+hlUrTr7hs/jP/UoWuWqoJlVMWJ5Yw7MhwRkBFNjWBAo50KYKDgEWQvCARyeGY+bHAxiyEYCQYkodJpA9c9g33yYy///Bc+9/fh/ekrzObXrh5eu7J/67k7rz588v679976wet/8OzR528+c/vWM7erpnGq8I4/XdcjQwgBlHNK0PVETGDINPSeteK88EkAh9BDAVNiyMTMaEFVHZy5vDeagpKhVcxnXcv7+8B93AvLD/DaF7/y8lvfeHx+8v0HadUT1UMyL/Sp7ZE9OwYdGNqUERFZTcfZLcqLiQ270N3KtnFOAFgCHADIBhksIqzuYVLVjIhVVfkyeEPcEqUrVizmtJFG079QmNeWA9xDD0NXbrPB/Xvh5KdYCGaqJgIlZeZC8GvYAv66F1zcw2fdoENvUe94eFpZRcHUYcjAq9KJyAPSBcmn3LNUdNioIhMCqOY0q+j5Z29HwlDNktbJMmsPmMEIc4VRzADVBLz0CgEMEc4+fO2tb//W7/3+yfc+6H72c7P/6u/8r40Oq1Cp5ZRXVw9fXJ0fB/wA1JpQd32XTSGbKlCg07OlSA6MaJZEIo24h+T/AwAp0GqViw1VFhEzFU0xMnL03QWABkTIoGQCBuKmqhdNIbIdvT979tOHz7z0/ht/OtO1zOdLgUUdzezatWsi0jSNu6D7lLL0NEQ/EYeKzeGfpWx3i3Qt5c5d5aYYmb2tpCnc/ej9s9PVR/effHT/9PRE+wTiUPYwE00AuWI43KMb1/du3Njf25t/4ZO3q1ibmUKnqs68TDQSL3tNOXEkBociUVDx+rGLpOUIrNNB+szuKHAXefgOKW4CezuHMEc16VbM14RzWi/rvcP3z1/7wbsH1xen1iWtg6Y5gvIsrtcrqIPnFQ0+VTZxcg1OxRsqN9RsuEkJgdISB71ZeNX3fdJ2bzZXkNBQbvssPXNUMUXggAzoRIIK4GWFo6OYCu6EpyxaUfUJBt+z5lxivQZeQeiRrNxmACAkAVNTHbyykQMWgyCXuoJyed6ImYm/28byf/PEGyAMagX5OCA5L84mgECRIUny6o4QKAZ0V7MpT9oUmpllQcTIQbKrriU5yKVLoJLEZFa6mMIg73kyNtcynVxGRAIojsHxM4CnsAMSUghhChs0jTQbACJQJpmvQrdpsrtPV1Z5WTEmJTFSESJjYrYAhqbsidYGyYS15JQGACmggwReimcO1DSEGFwwGKhAJ5YqJoloDYMSroHFAHWdVhjinfnsg5gfpFUKdURiBaJ8isoz/MVXnn212d8hdaotEzVXb965cu3wxvP7i2cf3P/wwf3v9O37qJ++fuvF+f71LvVK1mpuiJKpKDFGohlCI0oZQyDLlq1kfSOSgXQAlAJwjhQiIBFU6k320JQyILLRZFZFNOMSuzlWuMo91RyQFmn14MpLf+7Xf/TGD24RH7cpXuvCmjTBGdOVyoQNiUIdU79qct1rxXNdnHdPlDmqYOoNTAlRREWlCjUZmCdcDHEgD7ogk1HMWdAAtPfO2EoJclAR08woaBVDDSCVpmXujVC6fn8+u/foCOtoPYhlIBAx9mpyEyJGpQwZEakAw6EZEAKiyVDTaGZUupMBFJePp7pMFDOCtk2IyEiG6o2XHJYjl4jHxnM1KWjxvaCIw5dD/49L+COT81Dvg164JFOyHGMww6wgYlWcWwIgckf0jDmABTBDU81VCCtqA1RVjhlFYkq4/sTtF1/av93GJhkAdsEMMgASMGRYC8xpmWx/pbSo+7xMj6v959qT916/9z/91p8cff319tO3wn/zn//6Tbx21u6vriTOWMVZd/4RSjKdJ8miyZT2dH/Jj9pVntNNy3exP52FqydBWDpFxDhnCuI7GMkyYtTADNlERBVBnXtgHDR7KMW0QGhEqnCukAERMUjOgIBgarL/zKclyeN3XovWZzAmDAGZwAA9vSb1mZBzEjMA40IEaqpiPEFNAfXgFQGbmeROtHO8vsB1DPMk/fny5NEHjz/88P7Dx6sP72MAqwlmNd7caw4OZ9UsIMN+PWv7dHrWHR2vTpf9W++cvvb2UsB++5tv3LlBn/nEjU+/+MKV/av5LC9XJ2rdMhJXe1FluT7mvD5cHFSzRvLSgAE2DNDMHM93y6cyEajbkWtA2G3468ne45k/zgIuXA/UDIgCWD56crJatUPMwGdNAJCIdDvvSVVG3PmL5uM43Ru7bZP7UE4u0IPDVaOiisgIzqCBAfOA3b896sHqmkyHbZvm089jscEAgQUExRj1ukAaDpiYYqPuP32vTd0CCNjY7GHAU9SCy+j4Z4gb63iMkSMAXagR2hmwbS351himv46q2c5PuONLod0Tpq+5MSK27ePyF2HHOvY1d6sRRj647WDfOWwoNth64tASZThp20ZBZA5+MLMZmiCzBab9xXwxT6HtFRWAFATAKovVfE57C6126uKH9g9oHHDvytWqCtdv3772/uytt9/4wQ++eef44cuvfGK+d5VyI8CASRGRZCRL81RuJlLPtNy4QAHUBAzUxMF93CSKxmbSTZtNjzafSwohIDMFYwRkQITP/vQv/eqTf/oP7p3m9oks21lfdVeNNUmC1bo/Wa2udl2gigzAsI7VWhXQo2UqIiTATIhDrw4DRCNDpICoNtHSyDZrPRVRZua96zbEU8ovSVXRgJHqqiLqzRxbc2z5V2zqzcpOchF2SHFCewBDx7Md6iq04dhqhGrFCzy91cWtjYMfZ7jnZdJ3tGa0YCOVcyYmtaNeIyISYCicAacnA5hZTU27apu4qGI8OX3wwp3b167d6GETPvPshxFJV6zlxXlMB8f9ql3ozG4ulv3bb339j/74yWvfe7jXwG/+nb905eBF5Vmc9V3PTOLeA1Bv+lN6nXXdOlOPE/eVu9lCZGBGplI8TYyG4tFqEd6ZCi2aPAyuKR1AAFW1qpqu60RlPl8ktSxwcHCQurWqiiQACCEwT51iYGYEkMuieqTXQcgLmtU4YBEnQVK1nHMWMSMm0szH5w8eP77/4P7JR++vT8+truDwavXlL9DVwys3r17Zn9UxEJEhAzDltgshcKjEaN32J+fLJ0fHZ2fLd/50+eiI/tkbD/5V/eDzX4o//cWP37r1XDpt2nSe5L5hu1ftI1V9t+7TkjnGOLBTcJBnj6RsiHmzO54SzL1IYNPPYZefbp+KyICCaoEryOfvv//++fkSgQHILDv1qCqNoB+Ivt6maO6Z1C0JsbPxBh6N4/djKrxLPhvyZr0NBiMN4CTku9pKOfkonrcY/fivzQQN6vaod5ctZzb1k4MDRxJ6TaSZTQc5lRMXlmGcZXTLsrStw2DbCkcBXCYEIBhluRoRMVF+Osb1xc/ju8CEu02559abTk6e3vwiAW3d34Zk5anfGMDGmO5wuH6tImZGiJ6njQ6DtJ2pZ2ZgCiXTyqsRtOjBbJB0qMcwKw913zQhskh5FyI3oPuinBkcLpqr8/bDo65XE/dAI4YelHiNMDX9/WBDA8immilGbg6u1PuHi8Xi1p0X3nrjO/fee+vs+MPPf+Hnrt98+ew8h1rQi7rdgAOX/IGUEKNqBoCh3bKAEYLnvHNB9AECDgiI3BIOMGg4khMakIKBAhGAKZkiKCHOb37q11/83r88/u6Hb3VXE3dNXcvybKnYhLXA0Vl/Y9XCojLlXoGBc86oxDEXDVJAxBjJJLmb2h11VsBQeaR5G8ND29FNX4KxYY6aUmkSR55WY2YhbCmOg7CxEVN2h7TMDKcSffKTqiJc8hNSsZINsZS5y+RuF8K6WnJNBk+VwU4V4vQoO1q3fi3YzqVnshEjsENJCTFMBXChVTAAiBrW2lmlqnkv0Es3nzncO+xT6W9apO8Gnl2BOuXcnaT5lXDKyit+8u43vvOd7/3eH508eQL/+W9+8Ss/+UVOVzshwFwDm9ecaVbNaAJWzNqUuhw6s1qGKL4qeuKVuwi8vmDwU4JqRKS8jY4AuOnqM7JUn5AQYtv2HGpiWK7T/v7BfLF/fn6u1vkuZeYQ4hiYn3IVLy4WVTPLvRARIrnEcH3dzAJXOYtaF5lDpCx2cnJ6fnr25mvvHB917Rr29uG55+dfvnFweHB91lyheByI2MM5be+opIjIxNLnBAkRmooPbuy/dGtfwb7yWX3/wfGP7i3vfqh/8LXzP/jaa1/+xLs/85Vnr9X7UfepO8zrzqiNM6iqiiOp6PZKCcKmB+Au5Tw9VLdzjNT14yxgBWMMBr2q1rHJ6dGH73+0XqUYG4AxibzEYGCiMtugt5pbBBe2x1RIAMAY7zEzUyhQLFkVlIjACLxCw89RVANQQ8P81LFvqa7D1Ozai1ONAWDXkvNvQgg+Tp10YDazobRzsA2Hg3gQcpvYlppZdoHk7MbnQc3MMDDiAGyrpYKQJqPdDGYi7y+Kz6GqsthSAAV/8uKc7Ajg3Vee3H+0WhDRE3enUwdFscW8+xQR6cCm4/eM5YBEyGTIhAhGCjC4YxSMoeQ6FfsGCHfgjdCDvYiEnLQHIIQhCuwVIKB96mbVYq/mCnKXwWJlCAExW587fHx6bOs7u++smTgCoRhaliRoZhLqa3dems/r2zduPrj/Ue771eq8rvdBJasY5coMvK+nApF4zyjkYFN/DGpBtZZUfO+EBmRgpVsROjXjJmuDg0E2g6wKIglNRaOxwMELX/jpXz//4X/7Xr9M83RwPhOs4mwl0md8fN7dPDpvYmMWIUGBxEKjUFdNTww5m28lJk98MkNQRBMjC0iDbmOGZKxFRSKw4tkaIGWG+lczRbNiX1p2JThj8UYNUqgk2igCeHmkTahiKil3V3kiIHfo1H8tMpcQFRRNdIQD2pWsAwVOBIyi2ZBxckHpZEAdFfThDkRkIqoG5B2tTEHMxDAjNlNVfuAQQBlmTZOslXb52edfOJwtUFGYyHu/u9At/EEAQLmV9dVsbUU4z9fOHr3+vXf/4Kt/evb2+ye/8udu/sZf/Au43s8sPUgNDdkqS0YD1QyaTQ1NRbKKeFWRQEgpORodANchdpAK+/JSYDTGoGDISgjujvdMMM+JnSzW1q5X1Rhjygk4HBwcEsfz1RKIre+AkJFC2ZFkZgpQlQ5qZX5ExFRtSN+DIiNK9g+YgeQ6ECC1q7MHD+5/8P79hw9Pl+dwcAif+tyV5559Zm9xwBBMQCRlOWNZWDJRJMCKmQN7HxcCcK0DyRDBkngUmffqj338+qc/deX0vHvr7fC9Hz587Y31t9546yufeeWzn9t//rl6fcpnTwgUAdbancxm1z1C6pwc0WsGeUe3+P/72BLAU8IdNgcBdgABIUo6P358ImJNww70qqpERVTQkMsuMNhYg9a8c1zK+ieSG6arNZ6vqgRUUOGtlAeiFfcpDskgsC3ptRRBuXzbPH3YKrsW//h5/OUisxh32uTkzTk7onF8kFr2glgZU77LDG0SIsCKMogAwLte6OmYdwThpbNafrLNsC/5tXz4cXrb8FCbvtqEk3rHhs1oGUuuDw93NjMkRCLk4Fwc3GylANuVdjaAGBgyGE1do5PBsMfwEDMRMQWmQCQEhsA5Cdcwj1CTnA/KH6FJDV2/fnD/0eNbT+BTW/eUlAmZQmSO7hNTzRDorEvMhy+8/BOHV49z9shW5/SnqqJJVYEEgFR1kgXgCYMjwXjYgcz7qHnoEQGR3ROgCLQ7/aQo7tvxvsHZMq1Ol8+8+rde+rkffPwb//DB+nCJq2iNxZN2fdrqw9P+5uzoyqyZz6664dil3hSRq3o294JO06AusNAcoxzVkFA1A4Ti8wa3Vw1AYQIMN/Wylv2Fvt/dg0UMnjiZccwxnJIYjF0FL9k1l8nLIZNyEpMa5rNcYbbZpWa7VQvjBhkhBDYPGYF1/308h2732HClahbLo2N260x3/JoxQ9sur8zqOzdvMVAvKi46NrxCxsslE60a2GtPT/NNWb517/e++u67X383vfAS/e2/+Rf3Z/uy3hPKFJcESc9FIRGAA/CjiaqoiEgCdYwXzKpJVMAALERKQsjMIXLdmPdGMSKQkqUfARHFvMWu+IYdt+T0HQ1BNAHzYrGINa+Wqy6l2WxWQnSBiRitaDBhzG9QAzUTlZRzzmaGVJnDDFhmB8hEU9O0PD86P33w8MNHjx6lHg72m5/4/KvXr90OMzIQSeu+WwPWkSsw05SyUmDGCAiWZN2l7Awm1lVpY5wEwKoQ6ibOqDrqHlnaS7kKAF/49J1Pf+aZN989fe2H97/6pz/64Y/gC1+4+eUvXb32/OLkAfbn86s3ZsmyI5QByFZFnCvOrqtNyeRi/eul5DRQXXgqIaJ6RY9BTxBBIcl51yUwRCCRfhCT4InXiKWsh2CI0ID5Ql58tpkpmBsNgKAe33PfiJSbOoYPaqksyjlpYJ8CQyAsGnUZ9jYapY3VEeWJl7//yF+coYwWsG1eDMQGiEfcDgAjjCjThVsQAYDkPEissv+He4KRQyVtCvyJyHTgH4hK6O8rqiVZ/4KSjhcs+OlbX3xH3PEkb8vvHWq4eIyX7LDL8Z8KJp5TMRyBMBDkovYCOPodBSAGc6cTEQWkgMRIwVcJh3YtZp7JxMCMpfh+MxwwN9a4gDxjCX4QBRABEOQQCGaBZpE5gQAwGFjmGrSTdz949L3rH13cJKqKot7n1L2bGMislhzOO1Xai42QrdruvA77wK7bZdHMykACigJWqlM8Pai4hZxDl8KJQVmFIYyEgIS2cfpasQYKUDYqArs6j319np/Mrrz0i3/n9OG//uC149cWsV2ehRUL9AnPO1ued/VyRfGAQ8MhglGXe+xWTTcLgRCjSojeyQeH2jfCjU5g4gIPRWHSfaSQMhEReU8eVUUujJWI3EvkKwqDdBkt4EspavrPi4rj+FCYlKePJ7uFjQrFT2pAVmDyLqVtAMcPAECFYWMi2gC8tjWkUeTAYHtbCZYDegQZwYZ+516Xv8n52OwLMzMh1dQ1YC8/+ywalZab0pd01PIUQxhs/LSAsGpz2qtuHf3oGz9473u/+80jwsVv/s0/87HnPr48b6sojPtIbd9+FOG6W9IGgmaqAmaq2URVUQEpBMLyXzZDM8aAHEKoKNT+VHAJEtA0M0QgFJYRlgC2kQ3HD9kQiPf394nCyckJYVgs5uv1ehYbr0ookymIpc2rZ1mbiEjKqe9LpQkZEyEaAZikrl+16/V6vTx98oQI5s3sc5/99MHBQR2bnLRtu37VSG5M50S92FHXPQFBtEY5d11vpsRQRwyRY+QQqes6jjEwR6tMFYzETESu4asJznO9VgpdimTw6TvV5589+NL6/Otf/fDffP3hm28c/ZmvPP/yi1d0Dfc/yAfPDGF+gBI7G7raTOfn3+uY0mcY6ebivRDZBStSMEOVNQEaqGgWzeTB/NK9LhN5ojqZlV6zOMAXb1PnJfJgDM4O55pZCRqNicfokcYiuhjIU3V1itU+NaR2DMSdl58ObMNohmobc83BNqUal5x84f5l3I5M7Y2H0YaQBCpuFmw0KUZLiQwMgYiEzYb2LtOJGh9R9GvddaAVNeIpq2ljUcQwzq0ciR9rAZcHMW5GhBu8fh740fRhkNJwIQMAEnvWvoAFYsSKsCKKiBFc+XG/LEBpMEKIFpgiMKi1A9/cegpzFHQpz0SBSIkMgELVqEFFNq9DaCWbGBZ+HTXePV79zjvvAHxsa8AD2oxKQkV3REibJFus68gVsHTLFgFnYU8QHIoaAKTvwDBEJkYopWuO5DKwaABkMjMQNVMw77NLpqIOzOmcDgCG6iUzKTWSiApqGcwwK8XDOH9w+vDq1c++8tnfePX133q4Xj3gPkClkLKtOuuzrNdrrFO9hxi4aZpepE+pbVtmBrVAjjGAYkaEhOwSBRGBGAagYwMYQPlHBd+JCyVL3/cpJQwIVgLAqspIYOJLfJEjDXdydfD/V6/d5LmbL1V1wIIEdOArczUXJz7jbW7jGf6FwwwXD1vnUv0Vh/MLdZSIMxCxQsEmMeSxGvjSwUsQ7Pvnrly9dXBdlHojBGCQ0aDfkW2VQqpbaonaJ3/8o29+9fXTk/vwN3/147/607+YV0ShSdChVtxj6gUwGQiqmaqomKqZeNUJASOyby5zyTFMDQIbMmEQIgAlEGFETwiHLT8DIorKlgY2JpFwdf369a7rjp6cNFVdVVXqUh1rpAqsdNYp15iZWdZU0Luz5JxTSo7TkHKPTMSoOYkm6bu+XfXt+vozN5p6Pq9nRCRi6y6riKGprY2fAGW1qGmm/R5gzzHvN7VnOdRNVdcREVWSiAQKBIxGrkeNwijLYw5sUJkpA3oGeN/x84vnnvvL1WtvPPr9323/6T+7/1M/+ehLX7h19dZzbf+E2UJkGvDwcdRQNl7GDb39O4+d055qAaP7kBXAhBBN0SAzxaLLiHAIw2DYwxjO0xVLPkDBzpUNnur4LDOPA44yY5Ka5F2vB/xCx+sgQuZkhKWV3qZHzmTPbN+/CJup6QYAY0rFxJ6bylQcMD3IBtf6IKg8oRSGMiTiOL7X1BM1NJQ2ALASTzFEhMGl43wqIIlIFuEhOYsMnSOXyjOPEF9QWWB7646rRgXzfZxnG/7uJnONQ918+RQzekoSzmp3KcSK/2XqhdGUJOfpaVi6P5OaKlBJnsUAOOATgyLKlJUhIlIw2oKqGJ4GABBC0BCyKHMOIYgYKzArInsTrSoQQfZLzDJkWjT7Z6BfvXt/RwCbITE5NB2aqWUCa7BJnA101Z2pZiJoqJEu9yEzM8cAnifICgAMKAWSdVRAhykiJDUr4VLPWlVVYRrtsRE41ghwwIfxWktDc3Ep9thopnUCfvmnfvMLdz/48Ov/w+ls1rYIsF536zalFPq+h67dmxkFbhbzVdf1KXkskJFijBICMdDgKHONYWjTPgg7BCQyz9wZ4M9w0IYdW7igDSni0DBbVREtYGH4YEjg6LUIQARDNTZsEfCUxkbVeYfGpmzJzIp8dCw9s9E0HdurTS9ARCs4WTC84agHD6+Llw+p3Ecm24cMzUbrh4h025UycBMzgwSyYLpz/SYJQmxaVdZcESSb8sPNo0nOWq5uzK6+8bX/4Vt33/vm2/Kp2/Cbv/RlOjusZquOqJ4frM4egIVFdWfdfkQavamJx33RnEHlSDO0iMDu3fYJJAYSz9gOQEzIgMpAQJohgYLAmLE1ZGXLhqVP9aBnn/vYw0f3+3VbVwswSL3FEAnJsx9MBQAJCLHUQWTNLnc1i3jXBMQQAkhOitZJzj1BbupqMb+KeK1nCBjNQpdMRBACMgKhtMdEMfXcp/MQlwc3Zk09N2sqclCvQBhEVEQCE1e1h/BUs0hWy2bZk7SlAdJQa5wDAmivfctZ92C2OgG5+cVP3br1/Pt/8Idv/eGf2KMP4y/98pwxAxCxm0wM4OC+W9bX9MO/r0kcpqx3yog1AQBQLQaznJc1JcYbOayzGQausO7aVV1VgNznFOug7lp1GQOMBbmpFNSiGpqXkg1YO1tZ0K47m6oRYih7rPhBzExUgKIrtAglEAEOXCyKg8OkvAcNVw97AkAQi5fUEaC9SMhMDYGY0WPrqjpA+RiWnUai6CgKWp7oNs0Ov9g8XdXMApZKIodJJqTSLdidi4jqeS2BPcypZlrMJuePoGKlVxaCKyvg4tSEEMfmwaCmCN7d3ceDJb2/MNURg9qfPtjnNELOlmduOOD4QqVNsoEb5EKElhXMmNnAHBCtR5t1nGfVhnKEVVqmrIqOm0hFz4ZIrJbQAIwBmckM/UJW8/qXzA5QaVkJJFCwmVCylEV7GOqcEVm0BzJwbGUKxqIZgKFXq1u7JuHwYL99cl8NDZs1BaySyUkNMYTDnYbAVYh9qJbnbd0QzQiSNRZa6gQoZ2RqWHvDtrceZ7ywSg2sV64rjjUxA+ZsCFDpuP+YkKKVeDYaGgRFMwVFFQSICAwkamKK5ICibEnURMEAldCG/lMICkAc02y9vxRL2NWvPv+Zv/2Z+//igw+7j3ihuDw7127Znt+obvXV3qOkL8Q45/pK2z2KaNavoAo9WegkUMthDygGioTBEBSVTTFnjMEDJCCmIirJTIEMmHK22gucUptWx4FTht4QQhPas8RIWS00i3yqpoMtAAEAAElEQVTaGisbdGsl8hpZY0ZVUfKcQFDY8sRc8N9uxCFDyZaY6mVVqNu+A0BkYmMBBBGxrAqAgaZFR66CGxB7NyRnjugqHCKFsOmSBJ7JDwAAAja2ACdEx0IKgVUzQlAFJI2RiUGFSCtEm83qbp14HmM963NHMVLAcPL+i69+KhwcdhgCSYScJSVAFTbNIRCAuenmSklrcIX2P3j7T//ozYffeONBvYa/+Z9+qbn1calbBQpI1p1XXPfdSvolQaOyHgSeEZSmq0RhKb3xCppP5LN7BwFWFoLxCjqzDnGmnIgEQBjBCHxnoZcGsKoEIhVvmuxFHyoAhBzPWllce+Ynf/bnv/G7v40GkQlNB88sqKrJSgUQOcbawHJqc7+S3EGOZgaeMGEGZgqacm+aEZmIqqYmWgCyYEDEmKWo55yyprZbSt8BgCLFOiwO5yFcRUQiT7cOOAD3KwAF5uh6ABK7R9ZrFONYBOKGhEhKIgQYMMyEcyfSJMIun9oz1c2//qvP/eG17/3bP3j8j/5n/at//Rq1BzOJdXXlcX4jzpnzQSWxs25wjzp3dURCG7snTUTDFrehbSfQ05OwzLxAVdTACCiGara3dwXgrog4wnMBodxopoMlPiRkuaXLRSgCIngGovPcCdPf/B300x3zjrLlUTKMZ8JoT1+IaNpTVBEb7QsAxM10TINeF2cDJ8fOdO3IYCrNDAYjeJLIANuW+vS4eFudVMGa6ljtcAnaX7lWhwuNhmbEO48oSNeXmRqXjgSGVZgQroAVOFkY/Arj2w134NHI2J2fbWt7YodtLrbtDmUubgGyX24DouF4DlExXplZVdEEA89m9QHQwaI5WYLmbEbMCkCk4Clu0+PR/YcvHR6uIqxCE7Rhy60lUAM19mY3BV7V0+XIbUR0V4UD6w7NcvCiHVZUTSzm79ChVtQtDAAwAxMpoNOjC8PbBo/T1S1Sc2rKncWz1dVPf/pzp7/54J/+X5ZZTvcWtn7//P3rN2/vnx/MjygfnOUFz/cWi8VCuiUQZlOmgjhzCVWXN7QdkkBEA+bQE3Hq1hiwruu+k9xb4hyITYg5IJNqVs0iZup1SnkKCeDWP+Lunh0Z4s7+3dnROz8xsypksUKL7l0i0AnZeByolC3svNFA/Dv7ffCYGofgpO77bXRu+XUAIyf3awkRu65jZDPL0rvPN3XdlcPDWd0EYhUzNCyasTGxIauKSAYAZBpionM7f/j4+KPX79/98F39s188+MnP/VkJPUGpFFVVzRnUQGUo7i1jw2FywJHYkTHGjChiRIQMaETiuHF+t7I+YlhF6tuu71sVUdWc+5RSzhmYQohd7tqcOIabN2/V870//sOv0iSMMG5/RIQ+BWRmtH617ttuvTLpmFCHOSTCGCMApJT6nKoBRIwpDDqZg9jklLq+71UymCBaM6tijIYxxhhjCWYhDtjjg546MufSqc/jtWWGyEx5XGIe6ojU3LUXAgoZGFax7tKqt/YXf+Fnnn/+6L/77//oH/63J3/tr9+O9PHV6p0rV5/r8hpUz7onVVVt87dLZMeOaCj7eqiz9e/JzJ2+Ch6h2hC7jooqAgFQCNXB4TVETCmrKiCLQs55hygBAFChdDorhTej/HBbEwDQwHnc+B9uP398Ab9qswkmH3ZOfppQGd/W39zN2c320wu78YI3HzeVc/8Oj1mp0xj0kkFsbET4zvnTsU3P2dCTWcEUm2RBjz0bdHekW0Qw4RRbj754znhcHOR0YkfOtbMcl3unL1uRnbrJ6SU7I5we7v9B2L2w7GFmHlA5IhEyUIRZgEVElF7NExSUDMCMLgjg3/3eD+49fB9zHzqT1lRJKrAsoIagaCWOiJ6atTkA3RVRkoeTo1sXygfwfsBInmFniKUBl7texHSocTeRlKVXzd4CdlzfYUkAAHo4hw4CHVbd+RGFqy9/4e/+xMe++CocyTn3cny6OsLzbl3jeSVyktM6xqqZzRTRFLvUS9aUUp/k0sRdcAUUPAFyK72AUTlYkh6ZAjfdqstd3xAxRBWgUAGhaiZTVTUIo0i/dKW2+AA5KMSuiJ2ODbd9vFtkVuqInBGPve22vMqTfb3LHLeyzDZ7DUqRjLcYAcfsBCmuWfMIg6oXjwEiMmJKiYaEo8CIllHyreu3F4v9gIQmIB6E8MrcDCAiWcE82GSIhjyvmyd3f/T17371tQ+OGoO/+ks/f/3q81aBd/A1M0lJJbFlNFHJJbA6EcP+ahhQBUIIajmLxRiJjZlDqJBD2UeICOyAu4TBvDuKiHdK8NoWRsxZMgSB6vqtZ5p6/v6PfqSr08Lb0ZMvHWY8q+agAKlL7VlqTyCvGYWAQUnBKHA9a6qqFK8SUVPVTDFwFUKIjIEAtbW8yt3Z2fLBcv0k53OkVNe8WMzme3vz+fzgYG+xmDVNU1VVjDHG2hF4kANyoOD/VRQqDIyBq9jEUIcqhirGGKuq5liFqvKTvdsex0CBQwgxxvl8j4w05b16Zql/8vDu83fmf+s3vtRE+B//30dH+kDq+dnJKXV76/bh3pVrU/Nmp9bnomjY+TzSnk2xoG3bBT3SK1EgCyKGEA8PrntaJiASkSeUk7fwG2K9OLiYkIxwA9GAiFOrDrwcwsarxp22VX1vFwpPp0LLhzd9w+mbXnwXAE/wGSO7Qy2alncfn7K50BAGiCp0FyPi9OY7Txk3w6bDOSIiSkmFsME37Xu+tCm8+OhtG8LALSb3YLhznSbj9NrZgSaMdsEEfPI3k4BbM/W0Y8rUNtxquxGmv92UM4o5ILIBTOMAE2YHjFvceRSrMior4wMMGVGBGElBEZB0qMCeiufRAibMgmYkNdk+w33VpMCI6ple2XS7JQAA/NMfvHVfl7/UtZ+48ly1b3kGKsqixKqKoIWBEkfmCCiOaIWDMkdmZt6TwrFySrDDdl4REAQABRGNyLKUPpsgWti9hxgdO9jA0IZeaUAQu9xWVRX3rqwfnMM7J4vnX33pV/7G5976wVu5fwLVEtrjo4d4bV9vXLXUrNiqONvb79Zn3kYGaCgymbJsTzP0z6i41deKjBAVQaMhUgwmakA5pdXZk4NbNyU3vaFBEEMzC4xEZMQCJuM+JQT28BCD6cAYtsjyoiownIA7kTb/frR0EZEKWqTTpw5bePgDxTQYSeVSIi+PGOS0U3KJN7ky7SMkwMHcKnqRDde6GYWKaGgZpL+yaK4dXmtiA+DVIBk9fUXUTJBJQVxNzzmDITNJ++Cddz/4zlv3Hnxof/lnn/n8p778pDvdr2fJsZdMVZJJIhMAU9mqgNrA8psBqPt4VAWAYwyJOjBEdg0oEBEAlSIzwzZ1Vtz1pqnXAvzH69QDRkC+8+xzOeX7H96d16EO3OswA0OkoLi1FFQha0Y0DNyECiGCUuaCEiEiXnUViJg5eYzZwCyLZMm99J2IJMqRQ93UTTOrqipQ9DWqmnpnybA81wccJktMZoaBwIyNzcxYxvVycCAzJUQ28YJWySp9X1UhdUrA+83B4+OHa3n86ot3/vbfrP6v/+AH//i33vy1X3v+4zdfBn2w1zzT9olxy9Vsm3LTfzdfHS9ExKcCcRCRQw0joxmpWFVXBwcHBQeE2ZPrhhgOEW0KqwfMCoCp0soOg+s735A3fHy6N3Aos9nVhSflNxePp+3kyatuvfYgVGSqMYwnTEdVRrJ1u0tM5J3LbTBPwwDpbNPyg+0Bj++7dZ8SJ5985S7MMOBa26AGjIwAAaB4EYrPv6TNl/Suwqx+zOgvs+n9g4i4lWmedGPm+5aQyHbNFOSgudgPI4sfHu4n01P88QRFkpXKS0BUZCI1ZGNDyGRclgB3j5IGyBbruK94c7F4v1q3a7MsGTkqmyHqLnzLm4/6D77z7vFR9xdfbT/3sZeauNf3Q2mQZyAgMDNxRbEhSIqAyBS8ksq98WgmQ3WTAUrpyz19L2/PYOzGmKP/qSqCDWKJVJWJvELGRU0ets+Cm1NmS0/aLDNZtWm93vvUX3jlS1//0vf/ye+2J2fx+P0HD7jZP2j21whYCVmMkSmah0mzBibve+MHggJg6Vk+FNZvFh0RAY046DxLamb70p5raDHL/Q/epdr2r3wKAMRIFIkCD23GpvTvtONLM/RcoNEtOGBRT7XPDRHSJlyyVXxZUjxcCfY86IFR2DTdwdPZL7CE3V02bvbNft+MeXSPI6KaEIFAYXnlQWqqysww9FBJqZsR3rp2WFWz0uPcScIlMZQSZFUFJs2567omVoz8wd0ffO/e3fcfzQ/j8q/8yhcVK51hkJhRzcA0g2bSBGAmWVXd5+57S3FjVxEYGHvGX+CGA7Xo0nqIhFABCvV5c9QBVEmpyzm7WE19r0qhqW5cv3V0fHx2drZoGpDE3j/TDGAoXh9ccX1GDDFUofjrMNZxHmOddNl1677tfKIis5nk3BOyaU45q4ppRhUDIbYr+1dCCDHWzOxmunsXptGTcb8DFEC04lYBr7mwYUF9bEqKZZyoAVxhdiR/RkQTMUtIpArzedO2LQDeuvZc27YPP3h4/fq1v/a3bv8//+GPfudffHTzN/ZvX9k/X+bWukVVjUz7x4iei8fIUf1DmP4wvQ0DJlUFRTIAYWZgzKaqGmrvRKGISIgCNkYVVN2hbYPVCOA9WMijWyUL0rfYpeNzMD8crEy/FSI6hvWUS5gBIo4GzU7BMdoFkeZCEYxh1JXKtgm4Bf14UWu+KPuL/jsNAxRNGQG8XZqhNwAexA8M4qhM1NAoArG8y/h8KMWLxRCYWsOqvoVgUNxt+OeYPgaj6QkEKkNCFhSIRBzxey8TxFtqweTF/XtmtpIBW6aLJygNZQWLq8Cmt7fJJEz2D23nfw0aD6CXRgx1wwbARGpApoxYQuJmYJNuyr4Pm9iYiaQcTQ4CV8P+NTVDYiYMu7tlDov1/fN/s7y7zO0K85dfenn/4AAADEtqLRFwqENsMNTITIpASDEQESB5qhlp4dwTgim+6LHq1rH4Sm4xobeqBffHUKWqRI5FCmqslMtGMVPVFusIocajrjms8YZ2J0dh8fKzv/Q3Prv+g+/+4EeP0qOTfG15tD49Wi5MqlgbBAwhhL7tDVBS5qYOIQxUNAjgEUHNYfituGuNEIUAlTBKThSDADPPLMu999798MHdT3yerly7ldUMa8bS00UHULwJzWyxm832cUDJyQlwmRqNo145HIErEVETG3oOlf+K+8GvstFHMlLdlLanIxw3pn9JZoSYwUaRVvgbAjra8sTBXhSJQUcXyWT5YG/v+v4CgbPK5rmoQGayZVqoakBoYui69kfv3f2TH7197679Z3/x+U+88IkjXdfVLWmVgpko5GSS0VRt43Yek5ZtKoAJKTQCBmQxzFTXomuFYGpUVhkBzUMihlqF0Hfrrm1T24lmAMwGvcDewcHh4ZUHjx50bdqbVZYzEbV9olAXtkkIk6ISrbgApgHHSESBkEW1W57nnE0SmAGaIppmUzU0UwflUELjGBpuOGA12+cBSLpU0rBvdg8D8VThhqKrkTfyGVbWs4tkGB6BNwVRAyBkNBNBBfP8DRQAMqtCtVwuMQgypGSY0ZRnsTp6+OhTL9/8q/9R/p/+2Yf/8l+99ht/5Vd6uDur9z3fG5FKa8wNXY30drlU3tkIYQvdY3KJ7w13kZkZMeVufe/eOymluq4BLHsvJzNTGODGfFKGB6Ca96vCjak2+AgchdZcjfIURB/32IPh4nBH2t15s+meh8k2m0qOKet3wTJexUO9//RZG2kx7OQxIj6eMNVlNuPyDTnxUisWH1GZHdx53K6fbRxk8TIhjFcVd4IhEbl8GzeATd59usLTaRnhLS8VvRcnbWc+d6bRmVbOPWyVFIOIXCzP+DEe7y3+OLoHLhkYA3h1NgGAEalunBmjAK5DWGsLkoLInMMsxhCAMATNBTeNd999xlSH6njZf+2th90yn6+6n/vsqwfzBQRUBEMNzBwCxoAUOLBHE4gZuLAcwLHNNA19p9XKwNiggJ75SwICjm2gJ/5w9w06lgWQoDKgIJQSvWR9Q1WEvUymwiGEpT3o95/9iZc//Wuff/2/+0Z+0NuVJ+tnmqPH824R+XBxbRZwVs0kJWdDVVXVsVFIk9neWlMAxz/amfcMQbKKmJJFhCqv7MFHH2b82ue+/BWOe4SRqcopMQqQc8ktvc1d3Z6L6WoZEQ1QF5vdPK7jsI9KNcB0LEQkUkK/6NLSI+q6yV8zM9jmfTt8YMq7L5Kid3ofPhdEFCLSjRIJ6OlCBqrKGP1bIkopHczC7ZtX64oN2VSQDAhMpITaEFRKhztUJNOqqtn00Qd3v/vu0evvpedu4q/94s8KHlSBtMstaqWmuZPUo2Uz0+xrMSkb0g2CjZn1liMvsgiSUYx9OhVJiJEYoNTSmJOZzyGb5q7t1yvJSUTEiKp6f2925eqNd370ViA6WNSp65lIARSw5oFt4pbaHYgEDAyJYoyRwbp21a3W3fosBApERiiStOQekmkq6gJFZqyqqooxhOB7epMowK7T6rDHiwsNcbB3uWjfZfcNhEcWRjoBMzMy8ibSCIaMOiKxMDAAdCk3i3lKnXFu6goMNatqnlWxfVJ/6sXrD3/i6OvfzL//zW/90ld+5vzJWxxmg1CgHSrFiRN3SoE71Oi/0s6V42dPkQ8huGVrqOfL03fffTfn7Nd7Ou74mEuTGmCsmh3yZqdDvKicjmrdjq66IzBscoxJXtMX+zHmned9aOEF6BB6Y+ueHd1q9J/jxNGxM2MXxfbFjQ0eSt/+D5FHhW7nhojIO/1EnHeodw3TPEyR7ohYf/1Re5i+zoX5uHSoU61ies9R/5hqD2aWcx4rpP3I2/+8+LgtKT7y6KfMmxXDclOPWJJHJmsxviYRiYgCUuAqxv1m3jSNx4YDAql0uWvTrgtauMNa9mneHcc/ePPx77z2w9fvvpmy+8dK7hsRIZL65kUG4gKWiWAIajgsqB+GaJ6r4qtsSIO5Pxj9ilrcgKgOCwfkHUbGd/GInf+zpiQxt3aD1gn0hGfXs/VP9MmN5z/+H3/5hU9egeMO3n1wdv/06Gj1RI7PT46O1+tWRHKfLFu3bnPXt217kWLHb2h7Mosvh7qqpkFsB6b5/uIqQ/3mW++cnR/1kpEqokqyIeIAwb9LXTgUGe4EoXdgJqdEOAxyl0F5ITK4W2LsDLGFbrFJEtyhqOk/d4gQJvJ1h6JK5KWkqMnWVWYFKx6BAmeVqqquXb1C4J39yq3UTCxPWBOPlzNauzp/5+23vvfe49NT+E9+7aUXnvnYCphhEXOXIzjsgluQWKBqbbzVznyaWd/3ACWzGoz6vvdUgxDZmTkimskQHdeUUt91WRJ4bphI3cxvPfPM+x992DQNgab1OaMUjkpxnJPpEYkBUxVwXld1iNbn9vx8fXa8On9cByYDEDURHrz6KXWqGdFi5KZpZrNFVTUcKkCuq+C9fgEVSZiBGYhlXAjPvRrZ/viNZ0dPxcG4g/zXwnXdp82RhnohIGTmKu4FrgxSbFCha9N5PeMQjTl2J7pPz/7Mz3x2fnX9r//t4+Pjtq5IZJOOeikBwwVRePEws6C2ZUZsfgyhsrZNh+tIV+EYwqE+/uY331xXxBWxiIBlJgYA0hyY+pymz1MExEiIlgQMRnhud2JnRSQr2RlYYPz8VSgGKHLFX4BF1dRo0qmeHMgSEcwcgMKsYLnw4P9XYEBAN0jKRAm4mwiRCB0Zcnh9zqYDApX/t2Gl7lhUVb9DQfdgGjzKNoQdcAwPo1cQqnnW39DRQbKZQcECxMlSXTw0JwQIk37GzGxEvu9A1YHWAEpDbRp2uw1pBmW3A294jf8xALVNOdp2SFumspNwwNMfGFbwcgtRMN8GAVBoj+Rsc4eqDV1QZBMlNCIkVkJDNCQTE0JCE8tZjSiAAYlJACnOEwYPOxiSoaLXkJKhkZfJOqyUGHthBxFYNAYUQTOsODcQux7qiBzP63qlmlAXFCpFBYIdtQYAshDTXLhtoonAD+6t+9nJ9fmTa4fN/n5NWJHN0YKy9rxGqxGZgAECDiUigGqABZa8OBtkwEH1Ph8GNCAte1APM3hp9aaBgZkBm5gJKqKRh2lQQUEz1tRlCE+0boBIV8eHOCeVd+ezX/7kz33tS0fvPT7+oIe3Prp/eO3jZvefJzi3FgNrU6/adhZDzrnvUtNUAMGAzQDEEFAJMmlQYObgBT0AaMBoitivOEEbqwo5qbVIpFhBWHTHXXfeXr/SLPNyJSd9EORZd/4RUeSh7lAL1jGogoFDZZGZoAECAxiRDODfYAU61vUqBBhg9WSjMIll5mieRA7gmD1cyio2VnVZhi0lEjxf2jfIWMs38isBc0edEiSvliezgg6GJl1N7LFWIDBFETMEZMvrjmcNGsm5XJ/hS7dYpTN+keBsrG0idEtd0WDF+WpeROETO8XYBDj48OFHP/jgjTfePv3MHfjln/4PiABNWjirZ4uqjUmeIACyaRbHsgBVMNPceu9xAPNUfTcqgopUC9a92J2fLw4XS+5sBhy4qk6X7eF+iFy1qSUOQCooTe5kve5aNayAqqtXDheL2XtvvkV5aUSBA1FlRkiEQJEwxlgMKhs9eYyIaDEwqWq3PG/XZ6YZAOZNo0BDKoqnFhojMVdVPeeAISAHZGbCgBhMEbmHiQBzDz9TpaBAqGA4cOzy1xQB0KsCXb1wxWksMcfBtYau52YzBCOg4Kqi97U160Q08j6aKWusUs4ZkVfc4OL906Pu6s35r/3yM//4H+V/8v/51//l3/2p7tGjGm+vl8d7+7O2q9XWdS3SzY1SGfylbB1gCKIboDr68K6f1g81AauYgFHAajB5//5HDz86RXRPgpqiiLjma6W4auuhntc+TMHGRJ7GzEfF7aLhOx5PUyLGC81KLxSAjdbpTHCiIcr0KYNA3jx6fNClj8PtAzb68kRtvqD4XKLW/Ls8wDs33PnSr6UhOTPnXLB5L7g7Lo5k+tzp/adfXnz6xbcepzTn3Pf9aKKNl7jvZDP4sgp5vBAGU2h4lrsrNnHu0S0/Qj1PX+fSeRtnBpi8riBWVV3XdWiqEHGSJHmRxoa55cAVEZ+f5x+9/d4//tY3H56sY+JVWq6pzdbm1ZoJEIEIiAERp5UwQDj9DwvYdYCnkIrP2zQ1HYdqSAD3WW85Ui/dGooQRNYHL/7aJ1+6/nGYG6xO4Y/f/LBN/YePHx+fnackDMyAqevbtgWAJLk4LcCG5wAN4ylLXKjC1T5Uk75NKshxlo2PV6uHJyc5w2w269e9qi4Wi/l8LiLzeT2+4shSLtLzBdIate2t9S17dOuSTQnT9GTEqQdu42sbHz32Eh3O2fWZjV9Okgq2KH9S87MV5BKCnIGRUNf7i7iYHXCYGW5pVUOetpnZLMy7/jxBqqoq9LO2O3393h+//k6v6/znfuFLh4eHfdJQzQNXfbtCSCY6Pnp6jMkTm2cU250NVCUhRZOkqqKJEdvV6vDwMMa4bvtYNTFy1y6tbx8fPz5fLZkxa54v6sjw4fvvAWQgJipwm0QUOTR1NZ/NCBDUNIvpoDGbmOaI0K7XJ8dH58tTEWGOIQSmoCBi6v955RXHEN3ODTyuAiLCBDhhZ4nNzMGahpysQfr6CYQjooBvHnChg1tuvynz9IRw/8b34EV6AAAgVGmJ9qoZnJ3kjz3/4qsfP7737uz3v3a3mV9dduez+V7XZg4QQmjXyrx5nYsktEP2/iLbZUhbR1ZbICliMq1R+nfuvffgo/OqmrkkYGYVICoN+zyvZ5RkMLipY2SYkCwgeFdfHZIJofjBRpmxNdCL+3Z6+CMYt/zbWoIDE7gGs2KWbMknRERDG9pabJ4Lk3/bVh3UVuryhFy23mU61+OH8ekucsZwBeLuPafPHX8dhzGdGRlaHNJQLLGz0mW+J//cWeXpa178dTr40RkLw/YYv8HtNPKchYgEyNBBCAzcFlcFRVZzGUyoahmNAEMBDPQ0FRun00Pd7OVJMASGfQxE5I1Oh9RXz5NEUUJCCmKBKPAsVhVn4Vg04yEef3ESXG/gUOV+vVrm3/7OvduHt/aaan+BGs5PqYsQr/ZVH8eyMQNAM0GH3oMtfjHefOwQDOMqIxgAIymReguKwe0JfhsFm0CbKdpWmoI/eBh56Gy5f+WLn/7sr95948F7q0ensfpo9eb1Ry9ce0ZiMl7Pq2pWzXLXtm2/qtZYMUJiZkRA3zju5CEEAPHCdSCEsg5IuYkhZ+izJuNl6h+t1o/X8sWPP3fz5u31ChFZsqhq3+U+j9GPLUq2IakQNvbo7i675MNlFLsj0cc9Mvlmi9StuN8QihPLVahLpG+51dh1dKtfobdqQUJUlCkrl0h9NjZtsL1xeHWvuUq4yJBRStzfwWg9kQvAonJP1tMq2h7D/MOPfvDDu9//7hv9S7fgF3/+p5tm0a0DYQAAkzXZykqhjI5gADvzMApjAAcyBZROqReqpW877RUE0Raz5mx5tr93c7a33y7Pk7SU2/XZKYaIRKuufebOcyLy6NFHdRXW63VVlQZHLvMiExOzB3qHmXe24xCYfZv6tst9j4gxRiZS1eSFdpOlGT3GLoCIN1D/CKRgzHFjoQ0bCouCNoZ4vIKZEdE7t5T1hY3IQMQRsQcRHOgCcdM3z9NZbQjWMgZn714Y43YiAETsIu+t5Cyns0W+9gs/f+vdt5Zf+9r551+tOGYRy4JV1TOFViqLCbaZ8GWH4qTv/CaQtiX5AYjBIAKoSic2B23fuf/Bekkxeo77BhyYNvnPBts0TbQNm2kFM58mgZayAGhEwDydvs1x6SuV0U6apo1f6rDHhoW0ccOMKcGbLUc44h5Mn3iRmY5fjo+7OM6d+0x+07ERvS/D8BYCoJf9d/m7T+kSLuNcF0eL28d48s6dy5eeHGhAnlpnMAKkFEUbcYz9XCr4k2TwjbUxat11PzRiU0M11QyioIYmk5kZsh8BSj92554lHZoRWN3fxAE5ItNYAYLIxAECR2IiElQimHGccWWTcV6kpUIXHFXAjOtq0VTz9RL+l9fe+J23f9SetHHZtbLqWehkmdNacu9d0HfcKr6ojlReHO6TRJXp8gxMhBEJKAChv0hx5AzMx3Fbd27r7aRGWy9YFDs9uf7qb77yysdehjM4uMr0g/dOHpy1J21edZZ6dfwQd5z2OfWSPU5vQwKnmW3MBXPcEAYgA1IQVSXgWM8F4sOT5dFqjQ3evvmMpgxqkTD1PYjO9xaD1XcJ3V48yjtO9suWgwpkx/z1Sy5GPS/eeUqTU2t4XPxtMXbJ2HbubCV3zEkFAKj4/yQZB4Qo6+WVPbx6MGOcAzZi/Tg8B2Yqzd8QLPVVvRASTSFg//qPvvvOe+vTNv/qn/nErav7qYfYLHKG3EoTYs7ndJmWAIQKJIZSksAnT1OQvGbMLVQgXdaEkcxUs9R13bbter2sm5jTenX8JFh/er4+X7dXDq9plpOjY0JEtf3FwgOuMcZZHesYmRnJ1EqJSnFCm4ikPq3abtWvVyqpijyf1TEEdWi0AaguhBBjiDGOAtilME0ORGMmYt75j0MgZqJqk0CDTMhjiLe4pGiwp5EB2eFNcOiZMeF/gxQncmFfxAQTBaYhwAxEhmzINauIGUQKy+WD/uWbr/7Uz8IHj/Kf/vDDxf7V5WpNGNUSANTVvkj68TQ/JXIVsCkQxy4JKpqJmbCpxRq6o/cePDGtiDBnsQGeQtWITERgUgVkQ15iCMEmQBwwwcwaq4amIg23XanmvvLtY7zP9GTY3VQ24ksPHk6/WEUGi6l0Uiktj4Y/O0/fSJ3xs39PuJse8mM4zrh/ChZhecolRdvTm+x8LmQzMaZHt7+qDhW+7mvbOHIv3uppo/VXJoZhzrf+MoWdW6m3LkYTE5jMhmSjWZw8XQkIXAcC9howM0ELZqqWyRgNkDxW7eaCt1obbW4CUk8+LehRpSXwlu5Y0sIpBMQQRCqpctgPscYua+biGN8y1sv4BJChrusOIHVrRuol74XFW++f/Q6/9izyz73y3N6sApFlt0qdwSaPhgzICEkJyFF+xiKnQl04paUha32YSUYSAjPkMfnYkBHEkJADWkJAQAYDMCrp3wjuRHLeESJY6h/Pb372pZ/4jz917xv3TtantDzTN+/dN66aqvKmb2jATMgx55w5i6ZsiDrmAA5bCQEIDcwp1QyBsG37SBFCfdQ+eef+B2fL9e3bt0H09MlxXd8AkDrwyNhgYoMWYbFJeLjkuCgAp6S7+6shwOUbf0IMgJNyuw3DGXT9QVBtXNZTKtLBAjYzGjIGzEAN0BSwQKWKiGgSEQUOpNCvbl57Zt4sxMjN5Q33gI0agWhgyWAWQsWpfnL67lt3f/TGD+2Vj9Ev/NwXSTEphoY055wSR8qWDIIDBVoBs9ydq50pUlVLy2omndWcj3vAUFd5ba2kZsYJtG/PKQeUBCbt+XJ53j9z+9mmqu7fv5/6vo4hp0RcVczMxOzAHZuQiJogoAeWHLdSJJlZDOxOTdVsZqLmuS8Oz8m8MX9g2Ndu+MIg0Ycu9+xUCKVGvPA0c8iK0ROGbCWxlwcbC0qNOBRD2MxKOztH4hkmC4ERwbVnxqiq4DAiTh7MCIZDGi9TvWyXzaJOyz0kWD4OX/rJ+R9+6+SPvv7epz/xfD3bZzA1EbEQQsqldHMkyEv0uxKe8Kr5Lf/AFlNWYcGMYAErjLQ+ff/9+8cGWKJfk1DuqPDiYHFOBZVnAxryCE1gZh51GtWTkfQvhoGntxrfahwqItIUd3r4XkuWfh6VaAMp9VSj9wk3w/b1M4SNojr5rzT+3P7p4mB25/kproWCK/z0LbRz+TjVcMERPVmCp5p3kzm/5M6XTu/ODI9n7pgdI4MbQw9+ZDVmBmSdyOBNXREq6oDvaIaqpl7WKUX6ltiB31ChmGQb1zdigcj3uQEjA9IhJURHOzFiU8W9GCJIn1Z6WWJ2GZxq3/eG6rSNiCJmkRuhu3fXv/P23dfP2tAyr+QsWmrb1LXad5ZSMd/VTByoSN0y9gkbEFGKEV8WcaC3AVCCXZu3TZkZmTdYREYOZeNQ8dOIDaBjQ7BZqDPd2zdZ3n71P3nlsz/3Sv4o5znwo5P2w0fHHzw5fbI8X+aMISKFvs+ToxdNYlksq5lH6crqqq8BGWFWbmZ7GOPd++9/54ffv//k4cF89vKtOwHMUiaVfr0MYCh5uVyGsJUIMm6ui0rPSHtTvjF+vvR8v4QHXr5NxrueoR0CNtvaO2457Ar3yVbY2REXNmiBhmBmywbazWd29fBqCHuGZJC9P6NptpL6kG3wl3AM6/U6QE3av/7ud9+9vzp6DH/+Z1++ef0WUkM863PLnCJC7jIRuee59BGaHDssFNVQDcRTc9amvcb9qAohUoiEVVPP27YFTfOIZ8cPTx4/Msnnq/Wd2zebwPc/uqepbSKB5YODfVBrKq6YmQxBwERBDBXIGAFNNafUtX23ltwjgGche5KUY6yGSBzQQJCRAnEMjgoZKnYAyGG1eOxbTJPk6tEs9s/TjOvhF3CXkBuvSOUOwIQhAnuntYAYiJjQWzQG9nJhQiAsJQb+HzpWFg6pt6W6AQiR6lkTcndc87NUy+n6ZL+++R/85N4HT+C737935co1gwwWzSzLyktspuQ0fp5uiuJyR8QpEtYO70aMhp1ZQAgW7OTo3sPjNZNXQHrKIoZQjWBSMJH8XFoFOwwWIvAYBUY3aDbpx67mjD9v+vtu9JXtY7xkI3jUdEhxdFEKalqwTjZi0k8uMmMwGLFA5hA/3cu9I9hwMDphW2KNH8owLvVDYwEKH+3gnWm3bVV91MdxwDQfbr4FDGIT1AscIgw763JhDnefWE6+OFoARJQsOy/r+yCpmG45KswMQyzRjbG+aPBOmqixgRmqGYkZO6aHgnu3nNuVlEUA2ABjYUGppKHn9Mi4B4eYGQAIkhqYGmqIeFjH/ZpDAMgwDOQCNwVO2numHhFUMaReE/Qzrru+//b7x4c//BHl/NKtq9SQ9YkMemAw4mjIERkQ0JSBBMxAEckroQeAUERjItvMj78XAhgp2FD7678CIYAhIAOZOUwGKiGhGYoIYkAuyqyZCShUe/O0fhzrl1/94m8+fOPtu4+OHiIZPz46JzTAw7oJdRMbpK7rOHDmnFIiMAId/Krg6CZqJaWRC35lSKJdbh8f33/tR6/fP3p848b1jz/z/LMHVyyfW+prZqjicdtVkdGkqiqAfkoJ41YFG/fRhvhGGXyRPs10aGiydVyqsDr9jtfihLCHLbOZ+elmmdLz8HfYNbBR6AGACHDTM6l4VmPFnNng9Jnnbs5nV4wWRqTQsYLoUHfkq+QvhSA6UzgmuXFy8t6fvvn22x+kl16Jv/jFzxpEDouUzPSUUJnqvu8poJmaaEGThmE/gQEhXoAg9pcV6fp2We09h0eGsZbcVmGuJPN61uYur6WmdLo+Q+Qbt58PqG+++XoVaF43s1ncPzxIIteu76EoGAmYiKWsWcXUgVezqmbJohkARomYcvbNCd4MbOjdUjf1KEoRDYegDNoYD/SNXByWNPRmmP6K6C2rt46Nw3kMgyLRhl3z6E4zspKdNdibiF7GXRisQWnnimiKqABEXCbTYF7tt+dnONMeMSxSf1x/5bOf+cNv/fF3vv3eT37+ZYqS+hBjEF0hBrNd7goXmPzwDQKUp+KUBP1gaoyWJmyCimm9erxuc1UF9zCo+lSSlk4GiriRKEQEWJzdIxMfdojHUDBvKuoKKhOSIZJsu1nGe07lhNnmm1IIpEPOCBOWh4IN1atIW06tqWAr5TtmPDgDdrb3VOpMJ3fM9d2Z3A3FwIB/NrzKjt7wtGP6yjv3nC7n+CLDN5ev9MXbTi+fsKTyvccOdqQyAITAO3fbGcz4k8DgZtgmRHJPmkNY2yCDwYFozGyUKYY4NrQfb1uyHA3cIlYkMiAQosCkyozgHlMhHCz1KtCijntNM19odzLkNF2mjnh0SnLv6pFqRs1djhaa4+Puq999fS/mxbX5s13oTdAIoXdfWQA2F6YEZkZGQArABOoyeCMDYHdbTj7TCDVgAK67oAGRgz1p6U1YsJ9sFGxmhtjEhvMqNYr55Vf+ypOf/Orbv/v3H+eDDGfn6xBt/6A6Xp03AevZogm1SAeaNZOwZUPS0uNe0QdhpoqlaMfbVtZvvv2nb997/Swtb79w+5OvvHqnOWg64UUQba8eHlA4fPzmDxkBQVdn51sv+FRiHFYaTLWYMgVUe2trA26DHJiVLrM2kaKIuHngRMCPFD6h7ZKEdZFox1uN9vdWH08EouIEG+E8AYCIgjFIe/PG1UAzgwY5SerQ4rBOstllqGDQJapqoxwePnznwwcnHzyAv/aXbn3imefPNabMXWrrRjWvI7AA5axTvW2jEJiBlXAMDrr++LKq0vXrerYPaoGrvrOGqw56FZlVNYAeHT+pq/jssy8rhXtvf+cTH3vOzGZVPdtbJMlAFOsGOleLoc+6bvu2T11KJtr3nUtWGJ2gwKZmhMxMBin3WTWUX6EU9ZbZLi9DVAreiRxYfZPAmFU9smaDt9kvjhM0wGGxALHUhBauAON6oSKgUXF0ongrXxzwEouwh2CWyufAJgpQGmGZGQCbWZdbaOuD6rnTfBfCHQir/ri/uf/iCy+8/MYbb9+9e/fjH9tbL6FpGEgk7YI3XMbtS8Kp/yNMrebp0ctJhQdA55KrOXbr1J8/qoHXiDWi51tDzr2qIpIq2ABLpGoylO4FL55zxufMiDyHBllLDSsiMsfJHkswwEwibkJmU4HhDyqVwWFwgaq5OQ7kgAyGWHwKrjeWhmsMYEaAbptQwcZU1U0Pahz8gRNpOjLKcWaHjWBANN3MxVMLBXlmrBbQiSTF0SCsuBqkoGxqqBDGUkWzjTVPtNUQxnlAoTkBzWYizJsxT56+cYbsMKaRRPxv4EpVUYuHwMAbJ/v4L3FNz3Ldc570SISzDtu+Q4qWzxAyw15WRBLGzgSFKwRBFGIyzJqNQmQipxky11INPVVLzWEBAbMPxoAUsgPZIQCFqKrIZrk3M1Ml4B7XM8Yq751I11Jb09raFTYzUyXRHbvBFxOU+jYTVnXNasJVXAlFBjaLFI5X8s+/9Xab5Zd/6lOfr6+1dTjTfj+FisMZpVhXtRrADBAUBMQIETkwIhgauRYmqmQmBAoIiKrEZghCaGTqsAmiZkxgiqpGAEjGFYOohxpNM5lYzkCVEgJF4JDqY0tc5ascrV8+ufL8x/5XXzn/Nx9+9bXXZ3d0/XDZzjrFDzMvZrVw6Jeh3qsWcwbTFhADhUgSiBElGlHqegBYzObM4ejo6L333vvh3T/s1/1itvdTr37xmes3AxLkDLO6ao9OKn5MzecObv3c4TP/6uxbsFfhR3s1nZxYRRSqtKrruIQECE2/B/Ehen1tMeMAvZuCK9wDZ8aisxoRA6jKrjZc1ZyTiogjkJmIKoABOQqmwdiIzP+OQd+Bejf8ZEPG4w+IjAalJ1VQs5QSiaEBRWwzitXY9KnPAWqVD3N//RzPP/FCfbi/yPUCQh97CTY/lkex6BMjwg+DIgLXevp+Wn2yP3/3o3f/7dtnn7kGf/lzn+viDCSKnc6iYg6gM5EOQEkpa0IomVjuXvSs6IiQPfpqAgCKXmaQFWwhz5+cPbqSq4c3P4ln37wZPtvam5GudlRTwIjdyy+8XDUvSDo/efjdl+/cKM4qJDSJTGaofWcBVCLhrK4rDq2dHad2mbp1zp7TNM0uFECIQB6oDuQQVK7KxEmwQF2qEru+ZcgwBIdDyS4ECFw8FoQbCxgGZ4hXHKhzNg7g3j5kGArUPOVNVCl4JNLpixHEBapnmZkaIAzNxZEYzFDAgDBEVhM0BOCU0izMMuQOUtCrpCtZN1zZ/f6jX/vi/utvwO/+4NErn74R9Il2c40LhRZKmx2GojqMJD0cBaILgRRAwtNiYwNfdpVK27bt+356IxsC6eRJp0Nfo5GsbQCCmPLr8Vq38cew4lTUTRn9znh2vgQXD5PvzArk+YY+RiPPqWD7fSf6VPFtjioMbh/Tkyfzs+twILrI3/38HQ1uF9ty6+Sn9HtwvjU+nRFlmD26YMHvhIenYhgG2Tw93z+U7qQTATwiSF9cFPAyG95S+nLOVVVlZO99O55oAy16GRKqen7OMDB04TSdD2epO+Msw8ACNYQDNI+qACKAuH8fEIkoxtg0TdPkbq3Fq3rZ+gxjMIICZl4DsBmoOPzK0Sl89637miF+7uM36Xozn0GQTtvQElG1jmEmqohkWpKYQAF4SBpDMAZWLNjFMhDydq47MoAYoKEVByh4lYV7ZwwBFDCUGROzgACL1dVc9331INYLgCvn+/uvvNT/H3/iT//PR8ujh/BM5rtvPtr//F778NHjK1WzmO1X4dHJ6f5+dfXgIBOCKATrU664ZsR6bx5Iz06e3L33zvv33nvy5Amy3rn97AvPvXjj8FodIxuiKaitwuGMTufrj/rDO/rMz768fnz//Ptvh3ULIUKqomakrE0FCRk6bp8W4tnW/7ZK8uyCA3qqPmrp91UIZrCkwbbjwU/jb1NLxcYlGKNmrrr7gxDQIKvFGCEbADRNYwhiESlU+vj64c2m3kcK2XoBIQACRlVw3JitFE5d6vLW4pV7977xw/ce9kv9/BdvPf/iKykrIKB5NzCxAerZ06+0YGwMdi748oMRjhQ0/EqAUWBdNbJa3Tvcv/rg4TzAmVWhhfpK1fW9pOYTV67u9UffPT56v7nyEqyPh4UoE1Ocd4RMAYxUU993KXc5e6ukXa7oxxgg25ERw819EjY/8WgobCKvfniLgeKIHqTv4LMlHMB3x/zBSyxO/6XsoWG5y0JY8VzaELOyYUqdA8A2Q7YLh6oK2MHh/PaNcO+ds8eP21t7s77Xvu8XszrnDEYj6eKEtLZuC6We66lZ0C53PUIkIm3bppSYp/6ELXE7tAbbkkmqOn10YejbscmLQn1c2ulpl7yDrzd67wK/P4y40+V82zp/+ojpoy+VpjuSdfphh/guUt7FybThTDPznog4kEmZq0EX3xnSzhhoTK/dPoGZR0DNnb87s72h+wvrtblwW9e5OPnjIbCrFZ2enzNzgWyErKAwtgZyhoKKWRSJAwMaqKn3phzuQJvG0ANRDX9hmPzxZBwLzEhEtpive8CqGJoqHK8SmG/E3VcwHKfLMij5U4wQBE0CcOC6zd2P7rcnZx/SAv6cwmdu39QofV3PwyIapRY1CBtAAPPe34rAMCR2FsxYYzT1rn+jtjoiudPgbyNEgDIxhp6vgFycfKOH1QxNESToDCBl7tlqgXjSzK49/+J/+ZO//Cf3/9H/7et0sqwOoLv34M0bVz9xLaaHe/PVydliFhuIp70ExCZQrJq6YdLq9OTo8eP7Tx5+8NFH7yzPnhwsmudfvPHMrVeuX7k+n88hiYoQEyPnnLSuGBs5/uhkdj9e+diLd75wfvbum8erNx6SpowxCwXLOMvErKdxzbpLRcOLP5UVwPaO2FAvmSduACDRICgn5qzf59IsjSnNT/jvZkerQSEAv2rwbLdiMwaCbBmaKqaUssZe8u3q7NnrX6jqww44aULoQSvWYNbpADEKjC7JVaVnuCVXf3j/T7//5pM9gq/8zGcWhzcer5cVD20QzeMAWrSMIhcMi1vVvc+lmhyZ0Fg1oSKAMmKGAHEdGNv13duHX5zvvyjpGOPVQ67P23DtxotVaD768PuKR1du3upPl4Y83fVQkLpdXIFq367Xq+VZt+6ymGrAC/tnFF3T5S25TQMb34E3IXY3ZemubQPUKyKWqu0SA56k2k2kNQHBdhHNsOd5InS3ePKG56uOXHiL8GwU9oiDM5uIxtAGTsAPRAUIPvfZW3f/zQff/96Hz/7CS20vxCoZfdv7E3CjDVwivPzDlgC+dIe4quiNmmOMU/Y3TL2YlebSO3f4MfLMUbkH3rS5286G2bnbRZnkLc0K+7r46KfLeACYxmh3Puxs1J3d+2NebWvYk9xLGw4wmuoFHhrUSTff6WzAZQeWNlAuj/0500dvXkRVHV64XFeaQgASEtIosMfXtMEBQIOhOE6VKgzm92TsUNJxp3bG8fFxFkFkA1LATWi3HAICCgqqZJ61740HNhNoYNtvNtDGcAIRqZTGdjDFVkPjQJQBCL36gxAIjU3Rc6XgAlX5/QfjCYomREqAACTZACqsIc6z5aNWf/tP37uie8+ExSHHxDlHOpC66aOhqCmAI9yhx7oBlXDSx9TII1OIhDk7EqpjJwCYAtDQZNSJxJFbzfv2gnsKA5ANyruS4XJ2MqNFLXWjM4LuYVx2s2r/uS/81//hW1o/+L//brvAVj+E+3s/2j//jNLptapJag+Pz5qmeeG5F5cn/Zvv3kXSk6PT1dm55HZW041bz33mM5+5sjffW9QzPkRgAuIKGQFQJfVG2OAq6f5pvwxPXj+sMFz52O3nfvZnjv7n7yzs/Uew7gCjMKzBgpmCZbhA3nCBJ4zM7uKZW2Q30KQhYkni2yhWE9YEZkD0VA447PTSxGF6512xjWDieH8iCqpZLBHOuv78+dtw8+oNs5lvbLFkoiRBC85eMVuL7weQq/3zB+/dffj47kf65U8dfObjHz9fJa6jZXE2gW7y+ggHo9EIXSFxAiYiMRks9WFagAGAmWPTrNdq6Xx5cnx4ePvx6UPrr1aab9357Lo9P3nwB02dEt5cLelKlc/6FhGdjQ6ChxExmwJYyl3Xr/q0NjPmAMai6505HPj2YIkNeZGen6UgBXiqpC4PMrjgnLNfUMQtl7QJz8kiInXvPQCCGg7dJAazdlwgl76b9RrSg8Z/bpHTpU7HsvYI5imdCKAeopbSI7mEh/3zer38+EvXby/Of/D9R7/0C59QWDNgL1rxNm2jwq5oAq9M89O2BPB0oLh92fSmO/RcVkA3OQujKCUib8l12aZ6qoF1cbdcMonjyVQAZB3D1saElgvHVJQOLzixqC5s/lHeX6oTXMoXLl4LAzUUEWXT8glHmy0yETbfAgztIqZ33hlG6Vfrny9oDONBA/L7uDrTD5fNEwyUONzzwluPF5pZYJRBEPpxfr5KaoCl0ZaZmXf1GYQoGoALXRNUAg4XJrPsQx/NDlnusPLNmCd7DxGNkICYMSBQiSkCGuglbcKUiBwTbXRMCTGziSUTwdwFYoOMAE/u2R+Ej+az+qfizethr5UzI7ker6iwgvdtRSQxRSI2wFIGapNMC89/tt2afUR0k9dnFqY6BwxrzUgANJmDzB3lPbO9HGhO60OUluPyyrXPL379v9H//oPz7/3T3589D+tHJxmb+585e2m90CdHj05Pj69evao4Pzs7Oz66f3A4q5nibHbryp2DxeLK3uzq3qwmaGLEoihTDBHQJPVAGKta03GAvcz7bXpQH3/Xbv7c4tqXP7332k+88NHySXq8nDXa1iH1wACzmM9HJ8jT1Eq4sIPgwkoRkUg2AwN1keGTlE1BnDJLDHgjpJ/yuHI2ACJMUmdBjRAKOthUBebIqrkOoAZdTsBa8Sza6ct3bs3qK2sBoBTIslkvXRSv8zAwBUIqVIcA0ITFgwd/9NqPTnOGP/PlZ/f3bjxZQXXQaFqWHtvbOjGqx9QMoASDtjhhGTkrIbn+ByoKCNdmnNrl2cGNa/P9WdU9L6E9e/DDrEe5CqLNgSABHbUSaJhtL3jzeUAMQOqlTaAhECJaTyrFXtrRaRARQACG8C3hWCY0JlsNWnLZnszRhXbxM48m8xD6dSgMN64AwIwREcjHeYFmjGBoee4q+o4QmOhbgztt0LT8hb3UHgkBi1OvCPWhvgYmJXNkkPLq4HD+7M39H7xz+tHD9sqCcsqhaszyOLApW56MeMqBdIv37cwpDhBXBJ5EjiLiMhsHZcfMPI1ZJ6z5afec/rQTsxzfbcdxNDlnWj47tVZDeVXfLwaKJYUS3DC2HV+ECyQcHE/la+fCODEEiw4BmxYLfr3/v9jWAo+PcBEzLvrwLug9fADHW9HuwpRvdyfq4jGqEeRlW844YMKtsfQ/Ryj5GztrYd7EGwtxFx0NPVttkGQDgp6VNr1bY5iIcNXtGoEu9WYGFMCNYMe4B2FvC2GGVMDzVNW7suFIlEY2xRUdOgRD2RBOXf6WDN7wAqUYro7JrGm0Zpi4iVVTx3kdcE2ennFxPr1jhxkZOsiGdysCJYRIJoKmIMqoiHAL9n7w/uMzbo31V+rF3EIX+rOmbawGQSIkFVdJABSZMLMWpQNK9f1oY6GSDAiZLlJAfIRm4i07nbsAeCUwEDEioJsMhIi4kD000JjOqgDQ1DazZCexI7j5sVd+6v/05z548P6Tr78H1x7EvfAAnn8mCSeV/StX53tXTs/XCHTrmdtNTU3Fjx8/fvjoUbvu9xeHe/u3g+YAEJsWAESkTT2aMiNhMBOh2SKve6yPM+WjB9fivfn+y8889/M/0f/Oe9fWZy1CAgygrIAUnb89Ja4xIcstAsOiZO5QnXmGtg0KrQFY9pSFrWW1bY70NEa0w2o8aWXKmvwgQBUBQtWQ1JCUcr5xKC/ceVFxngHY1lEhCaplFQDzVpKeTq2KABYQIUi+f/Lua++1L96KX/rU822iuo5dlyv3Vw0VkjAxbMzQt6qZmRbc+ylPA0ICdydBRF736zpcq1glrR88ereK3SKvV6uHWR8GsgXcQauTnJueEmSAUOTmpKrHzMDEK1wCkjB7D7aclXh0EI5MwLkfTo9xSo3RS+H9P0BCIgOdGr6w7aBGREOm4fvCFFGniO7eiAwGJWwid4redin/fBpTxUkm+eg09XwumIinMfsdEfus+1A//2z49jvwre99+Jf+/MdXx53omJmOE6zDS0w1M/HJe2od8PiNqjJyXddVVa1WW/Q6kjgRTcJaMD2BMGxR80TvuDi48Z9TqXnpC2zOcdAUAyzF9aXCFya42OPdC6/zs3Djj5wqAdOdOdVfduYHty2zcag/fp9flL7TS6bhFXoaRorYBIZic9udYY/30QHSZXrmRTVoc+2Q23KJmrl9DIIfACDGTR57ztnDljv5EU7NpGZoHidBNUVlUQglEAVmqGCehjpUQo2LhRN1ylmGgwLa6ItmICUCAi4ZjhywjlwFh9cRR1rePYiwBFvVigKDFQoTqpFwQA1oZpAQLNRBOnjnw+XvxXcOefGll56tFqGd9ZEjIpokd4aiqpiysTgTKY5QUCjthgjNDG1IxBu4LBskLGzXZ80b0QqymrFXvhAzMSIxElU86/6/lP1Zs2VJlh6GfWu5732GO8QckZmRQ+VQlTVXdVfX1AO60OiWRACCSIkEQOhFfKBEiXqQmUyPfJEe9Ackk8n0AJlJpCjRZCBolAgJRoCYqxtd85iZlVk5RWbMcadzzh58raUHH7afc29ktbZF3rz3nD34dl++5vUtN3BrrbPeuAl+gbH3oi02N7/4TXfjP8L/8X/99/bu/epu+AgfXX7ruRuvHe7PZ4u92WzO5BczNwwn9z7+8OT40Xy+vHnzGXIYx05tNAsBGkLPzAx2jW+caxwNQ9d3o8e+uU7HlcCt9FL78GGDlm4889nj59+8df/h2frOY88WnBmsV8/YbhlS0WpNYFv78ULCcy6SiqmZIqq0IPaMArmT7pDvjAvvqboVs5z2r3fIxM+WMjNARKJQE7GgDdgRj2Fz9qlbB4eXnt0Erw1cv4a0JjBIkNEyK1aCmSqYHAhuOHrv7Y8ePVjbv/WdZ25fee5MZN64ENBOwy4SzsysxLerTQSKiHhIPC36b+I1c94b6NRopePCZHz44EOnmz48cQfL9tp1x7P2bICGEx7Vwj4NnaWoIjNT7jJuRqZBgo1jiO2XREY1IYb3jeUQddWQOzXurf9FoCpyFIE0ivOWiIhccTIzF0ELSh6MShuInwNEnqaEap58hlXdWu0bq2XnRBYVAUQHdaXhJbyBih6SAKaIM58TVDU2YDYna//CC27R4BdvPvqTv/Ri4xfrMDa+pNbWDPkCUNX4i9+VUtUIOG8P55IAJsopZEk5i+pASh6u0N3SOaoJXWiHy6NKkShiL+oXpSxqR7xVJui2IDRDXIDi5DQABpfgGqqrduVlMW0LuaPaA+n3yC63xSGQC8q2Z+wv+IlV1rNV3udaKam1gZ1XnvhCtKx4ZwWnS4q43Vnl+hG1SCYiTWPbslTOs876IKK6Sjg2b2Ek6MRpHnJ7DJfvpKpEZmwwSy9FVcZWPS1ZW6pZdqVs5k+YvacgTqnC/8u6bSz6Jt6VwERTL/dCaUsmJfQAc0toTNRASnoPR5dmPAN+/eHRf81vtE3z+rPXD1u1A4utH1UDszONqQ0kNjJ7RxJBbzii5W+vSNznYgaxJKpi9oCpkVkYVdUzs4HUopvQsSdHBAre1qBrPFvY7NiCkTbGS7/olOZ2eHJL/9pv/wcH4//tf/Ofz359R8ZuPD15MpvP1+vTftTWtcQiw6mhu3nrxrVr1w4PLt+7d++Dj9aXD/21w8Xce3Ic4yZMrGpdN8ZNOu/DZnZZ9d6eOXU3jk5PRN9pbz93+/KnXr/1s7ePwodnsw6zvbAi6lee5tu65nmGQ8kvVTm3aPe0whYjaJ4YmFNFn2QXNKLbsk5yvtDVxBPxTKyDCERGSHj1TJlNA9GXbApqmlnDzrTvnr/xrG/21yO1c1PrpOdgUKcSNkzz6EG0BL1oMGOmk0e/fuu9Y/Oz3/rSM/vt1ZVyCEPT7GPo0jY0s4wYrKqxNa5NOzqDm9Z5JEQEFihg40bdoQzhaOYWe+38ypXL4dRmcs9d+nqzacloQ/2I4zYEWHMcmlkT75CSiq1Yt2wiImMIQWOphXPcNM65JtrCIhKZWRa3W1hmRbiai79PiRrpTGS0Dcc1VaRqEUqI6HHXK8EV1/S2Wo+n8CWrimPKQlvx7wFRdFT0wBqr5MgBoXAXK8U+28bVbLZYHQ9Xn+crV9tHD+zug7s39q5z4ynb35W8OF+8M3lz/QXeHwCAE9PZYGHWWoORuL2EmcFMxgA1FZXcrUVEyLFKwulW1bwZUsBggip0PNXeUCCiyt+T1yyzwrrtRpzA8krlJhr9M5EiCXCM6pxa3phZEgejTNKr2vCc6wUpFhJPsPLx2aVkOSG2SLVpazGgcWHVzMyBNEcmaklfy0imiNiiRNFFk+qyvE29zbVaVBErdJzsz9RtMxUxwxhTImjJjs6BHDMzKWJsor+s7jUu+TJiOw5TIJgZwU8XWOWfaJuDfjjlZvr25P5jNM6xdivveAEb2RFhNmzG5UyF4oorWWB4s2ACNjHfRFXECLGGJ8JHS8hZmmwENg0wByLiISaZGhowiMl0IzIOwcy8MMiLG/sBjdtf3HSP3mKMAeznF3ihBZHXZ+sKAIJzMgaYd07hBnNqIhDzzONI0HZE+NGvH5L7qTWf/gJd0fmqaS/P7FIYnRflRpSaAWgkwJSVlUaAjRzIsWPiGHCmmL7I5gjBSEZxbdt0uu66ftawYygrk3qHpmmapnG+ib3eyDsiUqI9mw9qI/VMbmwQ4KC4pnhI40BXFs8e/OF3/rtXL/3X/5d//PZ/+UM7GR4sQr/nGm1Bl68ubfbMs88tr1976eDS4cG1zfr47Qf/6mg4e+XG4Y35pxs3CzLGmqo41+w9q2PDSo4QTtnNujBqf5+g634mdx7dv/7y71z/7If3f3TnZHX3wZwXl6DHqqaxtUYMDRTUKkCgmSyn3AUiVpWUL7HLJSFiscq/IR8MphLpRaO+nREhzMw0wmlM3WImfhr9mhV/iOaDI40UUTZ4REBUHuaby0/mR9dWvWzOVuHwymX74o3PH+PGshl1tQqDU+paIIwYlEZWI90THiD7NO88PXD62Y3/1d13fvSxfe5T9tVPffFxN9Olb5Wa4VQQEuijahSDZEqmIfezySMnM4vdkFErcGSOyAzsN3Iy378yP109/Bf/zQ+fuXbz2euH/vDTBA28VhlsHJ01Qg6EReNGTw271KBcjRliDNhmQ2MIoNHRMPZrCjpvl4vlnoiEEF03GU+buVZ3kuhidr6NYsuxw5QmmTOcrdjK06EAnEsxr4jTwAmM2hlbFgGKyXhLYoKQgq+WpstVaaGZugAwJMQvDEbG2c2khsDMphAdHZyCVAMBSioqohIkGITYyIzNNtw3xHrGt5+Z3X1w+vY7/Ny3r/XjhyLLCOHgvXeUOgTW84Noc+Q4wieVIcWdAMAgsYuFhIBZ+roYhZMimX9GYZQUnNpM2dFnlUCTZNp5Olfic2ds9Se1/LNslKOSjrsXpk5rE03XN6Ts7VFCaVlfv51NVvL01dMmEAYHykXJkzzfua1VhjgVmB7d8mmXq5ybNM2diakHk3/f8snk1+SIXLY1k/n/zKzFxKyGqtvW+fR5zgwsDxpl7IaNS5FViIgpmsbFFPrCZNlAkToS7kEsFM7FOBe9CG1VHzkilcovwszgpmmMRUSMPBo0ajrzTet9wyqcjenzK5UJvv485ZvEBvUJ6059gCPn4bz32uCDB8c/+NWHLc0+71o5OBsu0czPFsKkLCCZex+gGpR8WlkCYgfSnOGalj/pbHDORX3LMwiQMIiMRNzM5k0za3zLHNtAOQIlVTontiRvHhiA6Hgwn52ZO161V+bf/PzXX/xbe//o2Wf+yX/6j/oeaFtcnjdXLy9me8/dvnzjheUd3b+1nM8av//ss7f6zaJpGiUxltgoLq5LpIBIBs55U7KQ6MGIVMM48n63Gq5/+gvPf/yLxx8/OEK3OaaFWzrRMYuQktSdyfL8clC0hquNVk4WifWmKagc45RJfc++xniVqkYBXBTWwh9UlaoylaQKb/u0yrdJIXbc+9N58BuMB+r7fvWlL704O7zaASKjyqgiKmoqGkaV0XEbxARE3AhYVWfkN+vjX7x/ov36d77wZUKrDAsShD2rCsxi0D8hgqU/t5u+1MMr5k2ZHCKSPdec7B137t78uW//nb/+vb//v3950dPebbOuoILk2WTl0pjOIVWvm5gF0xDGxvtx6E5OTgBcOrzCTdv1Q7RAGseeOUwx0eRG5qmIyOdpd5YTqyJ9ps/jKldCOa+in8RKhZSgmWpsOzyWWWtNTgYQkj4n2GJ9KSuonsmyyvUn9YfTCHM4T1XFrGUxNNevHkJPP/7oMRCxtzLfqKhr5+b1058qgDG50c0sat+zEM7M0oYst7aKUyOL5jLuCgN2Cs8AEU26HtAkbomS4Zg+oenrMjXn2WU9lbUkq4/EAcufmRekl9i+X5TBwTSqAjG7MuF65ZzG89OaXpVAOon/TBYXjBbYMo7rZPL/vw7aXYUooSdJWVNhcePUArjSMOJVMVUqJ4XQdB9UMjjoyER1lu8ow2ZYHS4ve++dODVWMRgRs6oZCcBUFQcn2In0RJe90FqXGaBShnYdI3l7sHlzRpK2HGUmFd2KzGw2mqa2JztTh22zHoCJpl0nIdM4AWD186aFqBE5v3h0fPK9N+8qX7pki0tGl+YKtAMWaA4ITMOg8EQkEGbjmNwNjtYeKOJFc4xpkrGaiBEkqCozmUnMglks581s2TSN9y3BgWMLbCoaJpWDOXK1jfMzcvuQ3snQXl3sffZrX5JP35y9fPBf/Sf/38V7fX94fa3dyeHitavX9wZ8aq/xjjHf33/1ldclnF2/csN7TwwintafYgqnERG7RoyMldTBeegopjp0w9HD/tr1F5597bc/eHK/k7cfsWE+G1apZq3aN0UVy39OaxEF8DbnnK6KnDkCpVXUuMXjsrkLNUNGN0SyodUiKAy2nph4a0XeZddEgd07PQzLo3mYjc2CNt945QUsLkcHXwjBVCAi42AyEpRNTU19C9+MQmZh39nDo4++/+uzy0v8wVe+OOpMGjYEExMKRfpGFWLndTKvnF6TyWkEg+MtgTH6mcqTD+8evP53/sNXX33x/s//4Xx+1LFrg1rUXdJNOTK0JDINIBdhalQlSHCM1Wq1WZ0w82w2I58gl8ngiNkzETWWw6JAUCHyFBsBTLFeomwxcISDzg5nnmCbU8IzV9s57/TJdUE5ToxSBl0JgthtLdFKNF3IGQkkajOa2csuLV0wydUnRdhTdSSyUTI3hNHfvHq55Tsf3Tnp+95Zo4nYjCd63u37UW6iqk9vR2gQEU9sZgSKPR1jXSmVpmA0GWrZyq5kABxsi8rtnLpRvXZyDGgFP4ktkrtg7mjbCqTKwIJtMeqdx03DyGu5W6sVx0SwDNhd70nKzrTzSkBd5Jue8pTBx587DTSQIeApF9Dmr8o/q0/GeQPOtiLfqoFyIkc92orTAdWypdy/aURZo8QFLwtALRAgFWTgEHQ99o4bZo/AzjVmQWAMjCreNcjS18wsVbkYK2tW0rge0EVTB4DI1ftJ0851ZsOkh6mqGhM1nr0Dk4mJ0cW3Liub58GiRzpQKrwmZjUjT751YQwmI9Pc+fmjdfjRr+8S0bf5+o3l5ZmMK4fBzfeU58M4zomUlczEAcjtJNXMw6woGWYMKBtLzPWAMJFKMJNmsTg8uIR27rxnbiIhxo0dR0pEW1oLGUD9Qmlwe+B2vt7ovSdne0vcPnz+r/6b/60vXL71d//v/6D/+Qez+c3HWPz5k4++1j7/8iXaWBD2zbXL1727vj+/BGXDSEh1fiBARQFiUjVCw5Eo2CBqENXRTI/OHu0tG8xe//IzH38sb70zNnbUu9x+7WnSt3xItVy84JQim5HrW6K7COXEJMjTyVt3njbvOcfSeRqrmYaZDcHYw3lQi1Wgz17nl597tTMPkzB2Mm5IRx1D6Ae1wTm2IERs3Bp8r+PMu5noW3ff/eAxfvczhy9eu3K0dja3xsgRjxYcfBlhPT+UelLEwPSu/4mITFPYMX7Ibn7c33vj56u9X5796F//n656sF0PetpIMChllUUJBAYTgxjOwARWgppFPYLGYXN2Oobx8PBwPp93QxAJbdtmqRThmpEjgyRjKkMgInZTjlUskIi/xx6+SWTGvqc0VR7TDspTRCev3rRQe2TXRgoQtHgXo8I1cVEYxzYMBIrVdNPNKzO6UNSFh1VHeREAjcHsrN/4g/3myj6enODho5Nb19pBN86RA2vC7jUmuqDvbPGsPO3B5WDGlGVaNYWtR1aGhWJJKIGmHXWhrKrPPz8XMdmMsu8RTzF8i6oFbAknO7eR8gVkul3doBegA5f71H+ef3qZh63X1EkDICJOxb6TV6C+T5GjeY3zlD5lSBeyjJ13L29XzKPyVZmoGumaiJB3Ziz5zxdbwsR4it8mv4uKTklP60338PHJq5fJzMYwNqyIuMcZ3iPH1w0QUleAqMhAJHDeIKSOqMB45MHnXyz1e1YikuyNNKWULsTknCNDECULDdOybdomcJ8QNs9P3Y70BRJKLWLaLZvnlKUysPQ0xswfCjp3zWD++HjzT956l7C+1Iyv3LxKczH0Mic4g6ROiY6gZhyg3iUXABhQYk9ALosz5xzUERzJKKpEbrHYm+3tCzUplTStVFyOGAt0E+WkZbUFeuJZb42ZgTGbNaq2Rt9df/Uvffs/urb3f/h//r/e/PGv5x/zUeP+9LqdhJefb93CBEwtzCR4IoIKM+UkBFDJFGWSAGLHgJkEduAkCTZ2trc54cWLt5/7/Of6t757NH5w5Pab9kwSnvnOptqhZztniDztMLPsdd51S1rmx2WxC8Gnxa3ciTuC9kImZWZCOMSVjTvCgDAfvvPas8uDl9bmbNyEcSPjQDLIGEIYACXCGHrX7lkK2Zr3ja1O3777oSh/8yufRhDhBiYOnhzIHAqkn1HM8DZFSdEkJcuBBs1MscCzA4BxzAKR9en+4Y2vfObZX//D/+s6fP/l16+xX2LzEDyDWUnHJXLglAgFJsTmoFaa69jZyZF31M72mHkUiXtBRKLBQJT02FKu2VKbpCw54tjW3jOzUTqBHEfQYkR64tK71yH1uHUEMkgSH3ml4hqm5lS562iO45iWBGNjSg42AxDR6aN3YCISM1QqTtbSqDguP4HYahlMREwkhGA6N3f9int0Ir9+7+GLz7829mtSi/avmcS28fXNCSWNrkTdakZczst5cVHCDWM/DIP3SQCXqtM4JoHFvr/pH1hjRkF6Ta7/WWq06PInqB46DcO2d6uCjNiIwa78AnY7XXtTbWsVzqlnrTzFaIcPwF3El42mZK5adNVb9QLZb6l1diyOKjcvb8fVsT3nkyZRL3l9bd0Uc+fR5fety9U41gKAOCpkxmQ7CPV0/tHV3WTnH6DlXywzq/PsT9b9r975YJDg2zmzN50Ul8j44mEacj5UVOClTF01+N30/e2lZKtgV+KeLf6u3H9anadZ4xtmh10pe37e6qdYpabEdrzG5Bo3mphnP5uriI6hITjGejV+752P/sHPf/2zj4+td/uBMHSnCCEMIhL7Y2oYRUeR0SSYSmwsZrFrtZpBzNSCmARSM1EYzxd7y/3Ls/lB0859M3PcMMfSbjGTDGwbe61pvRDL06s8uhXLaetCs/StY98pnzixlVt/6fP/wf/03/3db77erR4v3n9ydvfBj+9+9PbZ6SOTsXUtUzOE1N8k5TnmsLXRBDnICcnIMzXsZszeiMHj6Vr09L6/+tKnX/jcH97E/tyP3bDDg3aout4755ndzkqd3x3n+6bkBZ0Q0et7xq+isMkVNVqKOHZujiTs4WW2CTZ0ePFK+Marn1rzZRhT6CC9jd04dDL2IhLlfvRamwmpCpSZj+8fvXPv/rOX/OdefnHVA62HKEYR6tlcZBYWwVqhlhhenvQykozOmEXUxELj6895s9x76fZNd/STv/u52bDH7qz/eN8tYk9iqs4kdnHJjJyxiy791Hh4HDSMTeNmsxmAcRzNzBUcKsoMLqmMRN61bdM0WUfc4Wmusn2JrHJQg13asYicnAgOWSoxM1FqBlwLhUjqmZGElOSr05KZRUTuqOQmxkn0NBy830Bd9edTKp+ESFwOdPnSvgG/eu8Iru5/k9CHdh6xI4k+wQVtMVsHgJmuVqvVarUjGiM7kx3T0KYQtJltG5sXDKgeGSg1bzDKeblIGZh4SnB0W1RMe+xpM1iGGuuW6s3PmMp7ACTc/iyq01tTQq76jUdpqJAeUb13vcbOOWTBQJQU3k+Ypd/w0G2fvFnsbz+J6p11mWas0iS2Zmlbz9h5FgAizyxEUxfYTSe/ePO9x195fO1w7r0PY++ImJwYwRTOzIxVlIigIHVEcKkkCebMxMwRazLsKk9RniKinBJU5jp+pTEfU6CqxV/niF3MAIfETN5PmECr+H5hyjV5OwGTI/ZREKmO8bFXsDw+OvvXv3okmA3iX7t1Ze9w4dxMyXmvcI7jXjNl8sRelY1AuX4PZhARkTD2JoFMVeFcs7c8nC32A1xCjbYEZouo6J6jwzJLISyCO3E0tDSHSD+csYbWH7TSbZhOm49v3f6bf/uvX5v/s7//r34yv79Q+/CNcSDv/ZXrl5qmURgQDCNhAQPIYAxSouTXYk6NOgB2rgEhqKgqucWq71p739urt2598/eOwnuPfv2DETFgoKWxRx5rxTTPMYqStrb9eczg0apY+kKlCgDRVOlQS1/klKvzrBaIrqtdZ6+ZiXZMsDn++PPLF599/nGA04CwQRjC2I39JowGsGsaNk8EUhnCZsmLAQal+3cefHgUvv7KM4d7+2eyUGezXsj8yKMPjVGY9ICqnpMMmmaDallrKX4h1TgJgChMpO/ff+1le/W5a6OFrj9ezK5m17zFFIGU70gkFqG/nJEFCRLCOAwyjItZC5BJSHLazMwa9sKaG99ZRKqi2C0kYRtQ9GRNlhUTVxLXigSKEWhiIhcdXXRBuhkhZ5lZ8d5FrM48RUn3qrN5NCawJa00cVSmVPIjAdvyohDAJGLzxjeLj7oAVIvMDDOl3mG+v7dQd3zn/vp0vZo3jcbO4pNk2bIiCpvFbxTAlrAJgohuNpvNZmO2V0sSIhLkHMlJANcuZWf6G3xKk5RK23vrQ7MLgPixLRio2snlWfWy7YjnndekuJst2ayxjjBK353lKaPijNh1wetsaxxF7aLKy2FmsVhWVb1vrRLVdA4LrF4OqzxpNvkhz83nBFlnhIj0dA4To9Ki4vDKQ2uvfizeJdqyRWvFQgG3nT+qwh9/9OjOhx8tX362MRMxl/VfFXiXJiSuaXqdmC0Zs1tTYbDhXJuHMp9E2wk4RGAiZSJl5ygvDRE555hHT/COUikhf5IAzhMLZlekb9JqCQRyXfDzxQh04zDjpm3dKH3QYam+tcVmFX709t1Nd3LUPffll158zl3vWmMiY1YEAFCHxDsExsaqsUtBYiqBDWqAGqlx43w7AzXrbmycxhQYE4Fp9GMUdavoJrEkhIiPD+7NOOzLgjcLAOL7kf3Yz5/Q/NLsJKxnZ6574fU//h/MfYv/7M9/hvUhjo/uts0et+Hg4IB4ya0nyvy9dvDGoLjj5MCwmNjqJG403p/Zau1ptn5wcOmLty595vduvfUrvrJ5/zSurJRNty2Ad1ZZNWVv7qS8mkXUQlZLzQqJiJlUpQR+I+1mTnFx9KRpmrINk2yq39GQNY10uVMEXi8ZenXxnc/daC/d6NbdXEYbhzBuxn6z2WzCaI5nDTlyoW1bmGgAz1p2EJGjhyfHHb78ynU2tmZvsG5p8NysMWpozVWG+DYH2EKIABBrHbfnJL6xmRmW3Jxx27/+1S9thrOxay8fXB/6VU4RqJUfB6KI6MecglDRApYxtM4ZscbWfuy992YWwoDGIe/6KEPBUR0rQX42cLQ4mZxmhx9RqgehnKZbaABluYzNxrKvawHp3IScOHFCi/3ThJCLFWEwMTOO+c+aPQWVVZ1Fw0QPhQ3WClA8CvjGDon6hruBx9AxLrdtSw3OOjs6Pb59eNkiRMmUo25cEXFN80R0HoY3HS2aDQsFtnYx6964d//oyWpv33WjODMzKJAbPCG+eFUKlioFyEypmT5nIMtTs+2uYXGOVK2JME+W29BGpNYI1UsEWPS+lCApM0uyCaLjR80sLnncXciMuIhYF/ElI7nDDAYGcTmBokM0kjqBE8olJUgUMQuqfrv0raxfMtyZiGMNfqxtc5QrZtJ+di5GUyyMmGhRKZbNAQoOIaQasshJAKrdzkQlkTiaKNN4LNXQASBqLbbvAMAu6TIEJmfpDyNSK44jAih23o2C2cUHOJcFkkoUgpFMyfUKMLcTac5mR6vhH/7izz//wl/1LOsZZiIUzBbEPgg10cFBAFPKSaLUvZmMgpEzG81c3KRsDkldUJAamZApScavc4SGIq2ROtLR4JxrXBAJ6g3MTWiXy/0DfPiRIOhiThe4tVF0keimyw6XSDalcQgRqWex4IjmnsyGoMbsWHk9rpq9hRk9WclP31mdHH1wfDp87fPh2Wbhr1/ttHPez/1MuoFkDvgYUQGRQmDKKhYGC2MiOwXDtzwL3dDzE984wHQ0juncSAWurmlggmh3RD+HAkbksNS5ifUANWeRR5vB3HrfxjBgtrimwzhK9/zLX/s3/ogOZ/+ff/zdTevv6fi4sd9fvniJfVA3zltnqgohI0exSt0BMDDRQLlxvSmNwZRb17I/1W4+LuwBVrOz+cmVl175vHzxr57+9O8u+frD9uxS14+4rPudnbXYW7tV7AteW5tIZk00sbe9UkrzedP34xg47nZTCEwEvsklKxlCNd61tNCL65sWUbXvRu89jE2NmWOG6TiO7CJUN+fnGpHBrHNYUPOoH756u//2575wcvTicl+k7zR0q7M+BDeMzabvwnByo702dOOSaeX9cnHldLXWg/niyfG/PP75Mwd48aXPnQxNuzhzQgNzwFk7OuXTZFNhS/SaWYjxBY42axIDbLGOPDPTpExHkFJBsGV7RcYANzqM46YzIoZTsEBjMgPMIMFzQ65xxIAFCUO3GTdrQpi1PEQDktgREdRkBODYArU5TZY0plyAMTk1orJP0dY1Vl84g0VzN5eDo6mq8CwrWmJMta2S6kIp9XSPC4LM0tXYBc3zppl7OWaSMGRqQuIP0biNoHeRdHLESjV6CgEoRFVGMyM1NvXcRMgRFTGNtdmkgg6r1q7P+eq62xxebg4YCvvosbxyC93jzYyXGsAtuKFhM87bqSNLbV99Uha0mpZonAz93YePx3FEjC9XFuEkPZHWJP8evYRU5z4UNldJbtRflfHlJvAWia8+AcnKzCZvBthIWm/2WxVtK164Uy2HfElKCKJ6XpJ+GdUsbN8nU/sWkhfO6TVl7PFxtQI1SdDqT8pxHStIiTl7MGuIW7NUH3TOxf20Y2eEf5Ezz4OFGU1QVXEvmVmlkSPWG/z67bv/+q23v/qZ202MMHkiOAG5c/NZHjm9S7n/BUOjJHejB4uUOWYVkFlKQSrLp6oiFkKILYobF3KS5G8+CqdG5RyLa2EZthewUg3fNN5CMELTzMT0zoMzSDjeyDc+de1ZlcO95ezyvrINbCTiV/3Qsks1RWSmJpJq/lRLzC/Wt4wjq4lrIogWV3k02bk2KbIacdKgViK1ReqkKhIbIEpsSjoEaRp/+/nP/MEf8Lj8z//8v7nKlx4/Wf7T8Vdf/dSrn2U5WB2Ps32NLqGgApXI+NiZhayiZZ8EM5uxzWQJMru81tB2d2jxzN7Vz7xy++7XVg9/2bvQN4etdsOZEcZGZsJhe87LmhcmsxtSmegkJ34Sqq6O8avJwiaaqH2Huqxyb0TwBEoqfrpP/ewZgAazxv33v3Btufdc52YkPa9PVv3YdcOm79arzTiOIYT1ulsul262cBa6Dm6mM13effzGk6PTF2/t7e/vKzsR0WQhRYQsr9vpDjWvS3nouSUDx5aeVkWsd2YseYe2UlW2aJs9cvKzKEAQGbrNOnTr+PphwpjcZnF5dVJAtwZxdqWqkI1TUwfKNasxG4td8iQBsatIve4X/V6NfWKhGTc+suKdF6y4a138U3FvRTFvgen3KI+1sn0jpRVXZSGh+DoMj5QjEZrGtTPYmh4/XhvdjAUsnIGSSgB7Z5zxhk8XwKSenRp5h1V3/N4HDzUEN3MpVWYrWEqIwEVmljdJFITx6wvFLS6SJfnR2PZ5ATTVo+bPErVNfkJEhwgVGVlIRyufpML4XLv7qQP6lndncvNGM7QMmM9hLJf7Vy50O/+atezPn/M2rewKpCKAywbbuQ8qwXB+MqkqvdgZw875hVPXDyqvc+HJhVi1ogcm7xgP7x/98zff/tTLt2/PF6OOo0NjLEQOIfq+KEmywOyJYkonlwm/8EUi2k9eVpuYvnE0cyRFuyvum09rG/aO+CLrd5sYpsnJrzyBnJtFvKEkgDl3klFTBwpmHsTsVJvjXs4+7u5v7t9fffzt9We+evv2wribb6xt57OWguioROQdVGBmYhrhUVSEwAQWGFR4HMnBm0veDprUTQJgsTnKJLdUQ35zrhY0+vkjfTolBZNv3TCGVSd7zeFzz3/ur7R+hv/ip9/H2QOh69+7d6d5xj49W8x1DK5pmB1Y4YiZYRqkZ3iKBTJMZI7Jg03hbTY2nev5cGPr/fVHYf/S8vClV154/Q+fPPzV0K/eX87n3YrEEQ807I1t4N2uUDtHzWkiqW39aUD0Kz5ll10YyEC1cUpiIKptmy9EkQJz4FTG28/J3/zSbZq9EMjzuEH3eOi5H2S9GTZdMMMY5Gy1ns8W6trG7Ex51uhCmjfuvXu6wp/89muzxbIbwpjtclWFIZfyXuAqZ4OqUYIOBxArP1kr7H2rLlHVqNBBdNLV4ByRaSw9Z4CMGgHD2JxTgoRN6E51HL335PwYNLYOrCeqzFtOdU5FDSkknwoWmJgYLsM7Z0ho9hxtX0LMAN3hYDvrssWCts+xrUMYO+dscd16SjOnmiRuNK9LFl75ubMKNXkUD7ajVk2MxiDDfNkuF7An9NHHJ0EY5ATSOFYzyv2jLjyodkHvTITF7sZsBDs9e/z2+w+gQuRiHgWy/CtALdN9gOIx2NGhLjzKaUkluWi0qTl5VGSiV6FQnlpyUUYGpZZNkwg5XErphZmjWyuaGGVAWbpozcjyVy4COliBYJ1kMCF5RvNrJn9H/Wa/2diybD4SVS5fUj137W+Yw6fYtbXiplkTLOtSzp8EjJvaatZvM9llgMDcNmzvjpLBzA0v3vzo/tt37r70qRdG6hXC5MHeNDU8sKnEW4kc1ChhlwjIk4rtkg0DkuUrA1JuEKOQ0V0s45D8JsyAM6Omodls5lH6svyGGHA9IXXxfu7imQscs8MwnhngHRsxNAibm7XLUeXxmX33vTMJd/zYfvaW7B/MmkMJcAFwtCAhGUtCfkR3VQvC0ZWTLWA3EhOEwSBlYMKWU7PkHSIDcpNRi/BYwgAKPhGzT2F+NxeDkXLjeaahG057hdKtS5/5k+/8MePvv/ETWT/CndWfmQ7PPveZeXtoDGOCOee8c6QyiAhRkytD2GITP3VEBgojmMh5cptx1W4e7zV71y5/+svPvfeF7sMfPJRBqPUQdSZjzF6tKadagFSvsg2croXWMmdMzjCbKqonuyfF1yu2vsORY4gnhqsmqWBsldgmOJAy8WmgP3wFLz37ykNcB22kOxu17/o2CI3BCXkmMg3rdRcOwyYMl3jOjXYj+3H17kcPnMenn3upH0Vs0vKJSNWCSREptbkGwAwMUq2NQQOsyvMAqrdjg1m08gSZSRJgpX8wSMwRKFZFEHsJvYw9ycgQkDOC5Ro/zUnENkliR5Qa/KYbJo03xiYAcqCU8EyUkTcos+6convBiudPLMcKp3dO4Hwaub1p1i0sNUtAxamK4mIT6khkrTHcmB+UqSgeZLH/W/wDpqYwym3xasGcT2GQKYmqzBzvL1tA7z/YrDdCzus4AiohpqldnDAU3/SpFnCA8SjqGTLce/ThB/dWTBR0Byu/zr2qbpy/qgddz/WOqKh/16prSnrV7ZPJJlHA2woa51qWWvDXNzGbkmcn9p0MhahVxEe5ojRE3TMtai5pUFW3jfZei7S82z9JZE7vS3lC8g8AgCs+AFUFctfMc9NV5OvOxJZPtMoeZ5rCB8V3Wv+sf0mK24SIydHgiQwzQrC6Yoltr6CZta59+Pj4xz978xs3rreXnLPgIQJv2ypXHmf2b5jG4j0AMKmEdHlhJsAQmL1qMKCgwURBozknZYfeGhez6y6sid89Mj1gMjUhlmq3hNkxERSqzhI6CpmfKQJrIA0q6tk7JjEZxvlP33/SbexR333huRu3TKXvmlljCzYJFEKqdU4514HTtKSZDCHEAjLnYnAyAhRYyhUvvJgVBlKBWVJOSSxh5pAZqYZouDD2GCTSKwL71i8dNEjopT/dn3/1r3yHPf1XP/r+KnT66OEvPcsN/zrvHTD2DCzBnIDZN35uRlAGogsz2lViYI/2jMMc/dKaNQ7d5vGybVz70s1nvvyXzz68/6R792Pst9iAWvEyGynsOJzy74kcLlAoLaW87jqx4tdU7kPFrbXLcGrOgG3LBpbLSKBECXGCyK8HWhz6v/1bl8P+5zcyW8pH69XDjnjdjd0gvVhQIqIAkm4YwhhCGGnfFmvdLIbNvbfvHV27jJuXbvZBYnsgU4tGNjOHoGaVZ7TejArjZJU/jVy3uKVFLiYgrfx5HCwQ+9RmwiylkxD3QzduVtKtYeYYomoQUKOoUIRp4odIEYckfcGUIOyBUgNIRFZVsVbvkgK89VrvMMlcK5WAT1OTpwQhmXy+kFDJ1ItNjrLotm3gZR0rO2uRHMlbHKloeIiKRyKPQjBmBo0pkGLKZLaYO4aerPRkNVw9aCX0WTsnItRK5M7xdBc0UyNwziGMd+998PCoa5oGmAaa9bP82oXLx9EX62a7fKgm+osfzNv9dwFEfMKd2ECZL8cwi3pauZCJNMvC3adnijBLKQxsIMC2Hpj0jDj3kTWmOyN2TU/dkHY0jPrVsm5a1vV8k5/pZ/msljfnFZGdz8tRKxbJFz0phNUwqjvXN6kHH40GIpp8GRY5RZ5DJmS2qBSbSVg97MRG2PyIt39951dfevLZy7cWrBCIji41HJ3eNFakx4mI3X5gYnCsRhBLBmvcbzkh1CKIj1eNApsBVgvIyABlJCIpiDNvuXHRlVKHHf9CR6lRLp8wR4cximrM7MZ+wySN8xCVcXDeWqbluL9C9/NHp3eHd94/Of36i8+8cmX/2p51tmqahn3D7JP1YGIaw2eTaiIiMlqAtc6rz1pRlA+qZGpxvxixlc4kBkDdQOKIGY5hqXgTEBmDcwxzKkZMYCYxwIXQwtaX9n7/299o2f29X/xksz5ZP8SviPyV689cvflcMz8IxipCxMxzkxGspo4plSsqMaCOZ9YAYUNGSstheDSuHzftC/7yy799/cWfHd2581A0MCQ0xp23mHJYNk6lz3MB8i3TvsMWKKXfkplJ2FLxd64q++gcu09GcKT5KWGlhB9ze64zG/7gpfnvfv4rx81t0o0bTmU47dH047ofwhg0KEFFYYg5B0y9Qq2f0+UnTz7++KT/xqvPLRcHPQbnPBHlFMvk0qmDj4W9ElHsUlkPmM69ILYsZoMamZga5Y6FFvtdEohjvpOjhAOhw+pJGDqV4JhAbWSh3rnYsqVIXzhvyfVUeCoZmEr6FSZeFk8rzDcPL0u2XUNlqxa0cKWkTFT7LrFBldjG5MK1rogjXmlRD0MaYsyx3bKDs1Ml3ty0YrlW4umR9qp1kSCcXHbeAi9mjih0AY+frG5cvaT9KZKzjWCMixI/4618/fcWdTKRgRuvfXf33vvHG5s3nrQEbCpREX36OU18qlojqhvclvuflx9lVeL/UBUBE6W3dAn7ZDo7iQ1KcRvasia3XpJ3Mpan1YkTmkyc+C55EjQRQ94hljK5tl5hR7EoIt+qpZqeu83EM3VOUBLb1KbF4C4v8gnzliVlNZNbT0G59Y70re4wObImxSXLb51yeSaMs8K5tmv4GEDwdgkHR6fdd9957+YzV2/utyOJGrtkxuXFTS4lhUfBpyyvk7bQlppSHpTvQESUcsyn0pVqbNHHOG9840d2ROeCHBfO6vQhbWm+iThSrUKeW5jJoKrsHZwXNZCxM8M4SNfOmlH8h3dPu1VYd+PDG1deu3XtytAtFnt7iz3v2+SXY4vzHOs4UpK8WQgBqmPTNNEF7yy56lWCWYynA9H0hZG5WFgXRmZR8qwsUFJSjmV+wTvHFCOPXlU0QBTaUKvPPDn7+NrVL3zza7zZ/Gfvv9evT1eP8BbkzHm7dO15N9szYos8igiWAgGcyk5U2Rlo6VWl3ejY8kA6Oxlwafiwnd06vPpbv32ze+fB/bfusQuB2KBbtFqz2pTREQMNhVAZXEH7xfw7rZyx9XZLdFugVLZlsGVVXEQiwFO+ljBhjcQ7K0DNDP+jby2bq18dg5vTAwpgtW4DNRIQOQ9ICIMjGnQcxt4FG1rVURsZ3nr/zobx2edfE5CRE5RUsq2sn3zUdg2ISCmZJVFrVVjFb+JEVJp6AXiZyk/ZLLbZjaKI2YHIQhjHsZfuDAkYkuGYwUaOGZY5ITFbTIUmBkralbNptjnzGCWkymAiY6RHAslxFc1aStS+tVJl9Z9WhDmVlSbRFPfl1NquNniQDf/zWztynhTW1aLtGJtZkKJPWyaq4vy3CfojlrQrNRbUvFuYjPNZy9yp4PGTE+IXY1Yvswe5nTTknfd6qgUsEKixo3HsHz95tOnC/MDHjfEJYsCi2Z7hc8FE20DK9fnnZcC0DJS1pjxHzNiSwTZxZUUseErrQ9uVxzsykrctv4IOnzewRkjxxPvTf6mHRhTAieNneLYi3afF+4t4Oct7JA2g+CgidaEsfBRSqLT189MelRC6SLOpkFnSd1EghRDOKwQ7n1hxLeQ/0ypTFYjcnuRydITLbvmoG3703ke/+4XP3ljOzRGR5wzUuTUDpDwVy0UjTgg+M+ILbJe0E7JawMxV5mt5a29GpjabzdghQ+o8dSGsMi+cy2UtldZIBNKc06cWix3TpIW+8eC2GZV701nbwmG97viA3Lrfw3zfXwuiP3z33od3P37YvfINObh0ODJ43pgZkcXh0eiUnGOfSydV1TSoyijMDJd6S2icezWwWsYDo4hJQAAgFgDPCGLOWKEMUyLnXTB1omzqvWuIG3h4+M5minGPrw2b4+tXX/rOt/+H/4z+y1+9c1/6kydPTNmNxofXnp3N91CzTiIyZyykqd1QBxwSn/G81+EKNkEPzgItuw+Xi0vDwWc/ffmdzz179tYTtBbAYGmLZlgLlLLuuwdRKigtyr+ZAbLdYnKHLO2csUW5ixdimqsZb52TNhSA6Gkw4MWXF//2Ny6fNK823WrGJ0E9zHfHZxb1EWYCBEZmIYSu64b1Rufz0PM4nrz/wSNt8Ny15zddpwunoxFbExW0cRSRQkVFAJdxUlR1ikhIAELb6ULVpldViBZxlSUR2Du1mMkhDKeqY9+tN2fNuOGmMW7UWJRTu1UZ2bcAkAGkKIeBmbkA+wBIWyCjTkwoOSnjiovSX280AAWjkbYZcuwfmZ5XXRJnycGK77POzyi3rRd9h5ul03TipXUYOKOixeorJF6QM5km6ZbP4Tzb7BozbRwTmypO15t8ZnDcIhUN7VrAZWC72M7ljEZ8aDYutBJO7j2AQ+M0WHL6pTUng8vlWToOSeISVGAQI+Kq5139iPqtykFbzh9LgCoFiMo3BsT+MGYR9dvMzMQxc0JXIGemSlFya/3QQpFeLaJZEREcI6NFNjZXVYUYGTyTczCBgeFCCELqnIv9HUXEgZx3NJECamKyZB36MqNEXG+Y8u6q6lwT8yPMTDPaEQDvXC4KhEsdyozhcFFWZ3zFegDTsqa1ZwBk0axXEY1OfUriDVFNRgUwy7mQPAZIUtmAIeW3U9oVDupgJpNfl8UYtK9uDcGivffg/p/94iefvvF782b2xKsfGZRCvt47VRUV37SsabdObT9ZjIhtBABjwFIH8NyLmYiIPVSMNPZgMKgpTMlxE2SwVAMmgLbm53ZmXY/llfOzF+OjqdEqlCj9lkLgUEqp25xTsSIjiMwZ5DiIMZwFcxTmrJCgSrPZjAdnzjYWgMCBmfeOOv5HP3384Pj0C8+On7+lV/bnmM/Zta20e2iAQEtnkCA6I8cmI6m0btN3Cl0we3IGFdEosa0bY4p+JCgDAsUCxzbYyMZkyubhwPAGlcBKYAazmK3VDAQFL2i+2ZzBKc0W66G/8sztb3/rr+3NvvvnP/rFvp0OeucszCBhee36ornkaR5mEXIIzsjDkadxNDX1JGciRtq6xVod+35OtOr2D48/6K9du/TcV//b/Z3j9ePvvj2ntdf9M17BMYtx3MhgUhtElDmGRaXWN3UgOCZOaVdKGsxMQYRc9T7phWUXTIUS+Zy0ZBo7+VhcyJjHN2rwBuLGdLwa8CHjkpvfpe5/9/WgN/4dhpIfu973Q9hg5uZPbEMgVWEyJrigQye9OMH+5bPHR4fNwak8+tHj069fpWU7nsx43nhSIaROikyE1ACUEUM5BmTpo5qaJ1vihaQETSFwBmKQMnYC0mj7emCQEUEo3ZkEZgxSAXzDS0dt6EO3OdXxrMUQmqVLmilbinoavIttfuHYLBfjMTM7wBKKsxJSKT+bmrKfipIi7pnBTGIdcBEBRASKqZRVnk3Gi4YRWYCZqsSYSZGOPhacZ+4KJNT6IoCyrVSEeWwETbHADFmKc85xY0oNC8nUgRTiPIFIxoCgPiZWmIYEEqsGIzZ2uT2Pn3Xd6axpVNdhkP1Ll137kMfm7fvBe1lCe2mslQajbQhuN/6YWGVprvC0o9LL7NyHxQxCBVoZXb4JTlJVqZI32Pb+l7uVz7GlzIFsaxeVc/INo8138cjrJ8bdFa8NIVgeN8euZnltAE0AHSKkIacUGDtkKiQA3hcT+amW7id8tfOtSFWGcVELxe1j8oHXs4FcyHjhswpMTH2UB5lN01hOq98uWszQLQKof174sgJCsNY1Z+LevfPg3XuPXn/p9tw46OjZOZfwxhJL3L55YaA0RSKmb2uCiQOn6kC2XfLeTo285vN54zxRsHPaaH4XyyZ1nqLICpN6glLUb5VhkYdU5lPj7xeqZVF9jl/96P0nJ+vu5Gz9+jPXn7/aLBY6+u64HXwwbwwYEzsCm0EVI8ZYzcGs6oiNyKIPxmWve6k7jERLbGRQKBsZCSspB2hWVZEw7ov3MozBon1FTsHMfOPGja/81m/P/OlPf3H20cnRJf5B179245QXL7XD0nGAGZzzrnEqY9/1Htjb2+vXozlnkGilm0aoWj3pumZ83CwvXbn+pc89/PM3F6v3Bm4GN6o0DsxmJAYVEVXznuVCohIBInwV8kbY8j3W5FHmv/6z0G0BRKMc7YgcZj73sg5Bnel4BtyYLz7uZ5+/0f321/7SfHm4CQCpaogFbX0/RLQXIlI1Zib2zH6zGvpB2c+D4Ph0te66S1eutu1cmwYxPmFKGnvvxoBmxRLPWSWSEYiBhP1JlMOjpeqmAChKiK6haKUmWjUSJe/YTMbQhRAMogQop+qgqE6mTHJHzLBk11IFXFVmeCckVG29atznViH/nuGDtpc46VSV8pTwgNTIcnlL9FEV/pOHsiOe8u3SsqKWL5P0SkAXaUtS9VX8mfvg7YwzjtA551yDiA2kBhNPYNijx2frzegi4oeqQWMXqJ3Ly/EXFcDVfEckbKPYoiMxUSOdjD8qgTG7oOqjfqULftl6/DTinL1a47J9Un1VTdP1oopIbj2ZXYspDKPFt6aqRBbT+UqFvomW3gwXCuBzIm0SYOdXsf5zIlZyO36V8695fsZ2nr5zmNJWQftTL5nEeXy16PM5f+da+iICKp67rUXDQqlxMyezX3/w+Mdvf/D8M7cOuF07Q8TXUZMQYhA/DCO3rhpmahMCNTiFxXyc5PUBAFLEfiw6PTSty/Y4iwBezhdt2zKNQXZnOL9RghaKhgjbBW+NSQrXF0ZiS8GNajXVDEFCGRuqDXW2ad94sLl/+uEHj09/64Xx9edu7h84c8aYKTSWhgczVjMxC0otyRgG9DDvXBIfSlSADkqwk9mgpCpEFDHHNABsRA6ssT8xoMxsFIM9BGA2mzGbYbRxVKN1N7TOXb1+61vf+Bt+/x//4IfHwwlE338s/UbHqy89e7i4pDCJyaBE1HhOyGgRq9Abm5mLbgtRWptdXd/tZreXlz//9ecevvXkZ+8HHR6xm8Eci8YEOliAGZhZJM7kzsaJOtLEY8+TZVn3C7k/KgY9fUvT5WEIDgA1RF3n4Td+pNXf+T1+7fVvqnkJA2mQcSAIkZF6NYJjBgUR57wjMLWrdf/4aLVYLte9fPDRg9NVuHb9Ge/aSMNmwppwWM0MscjLLmBWAKQCvAJgud9pkRXp5AhgKaoaIl0AUKNI0UbE1BA509CPQxh6ImL2Yuay5ZpMcHYxaULTUIlKtCk5jeu55NgFB8nZNh3V/NfBNSJEL3LKKcmvadNCR42QLKWJqJHJtG3O2YHYPqYPzVABaxTnR86qEhLTtASiqsRJ6EaZDESLO07DlsyKfyoBjqObzFTJ0Hg0oJMV+oA99o4aQVAN9IktBz+5GcOWSyc/O0ahJpKti5x2Ti4f7ty2FlG7k1i2TZULzbEOOArI2ONxultdClUtT05+o1xgFFEns79uEpZpQ/MkbJisIEmO0nvvHXFJw95xJu+82vnXrM8ss1pOq/sBg2CWkz/TVa5cHq8Suzjykff2zqCgCFSeDoAsY0xOWeLp2du3tcwgogXs+WIvCpB68VZPNJgpqSdqiJbN3vFm/ZP33v/iay/99ku3B+/HcQSzi1CDsX+1RccygXxU20nVin88G8EXKDHT0k8gnfXOJCJmapqmcdR6do6Hcx2W6guzw2b6kCgak0Xpri+MEYE4S9NYcvJhyhugnBHGuXebmc10pqp3V2cPVw8eDnok9qXnrj57MBMenXMEFcLgnFNO5duiRjBmGQyOzCFGXjTWRhvHgpmITEJMaiPIsbGqkWNVpuj6c6Spss6DKaOCoh9HNYUKQM1spiMPYcPEw2z5ra/9ya3Z4Z/92fcfnAwmH+w9XmP4fPvii+3+PrezPgxENG9nLDJ0mxh5Iadkouqip5vMem51fTzqvNl/4YUbn/7t59795enq7WM4bmNGgigahnMwg0p0Y0T7YyIt733IZk8SLdPWn5jJxRJ3h2jrBkoVAWswYob1ntkt3OMT+8wz47/9R9+i5lq/UYYFHVWDWVALi9n+6dCxmoFYDOTIzPnZGMbj0y5QY52899H99Yi9g0MiMtHYr9nMkJKkNHsQd0cbmVsIIZMxx4rSEoaM5Kowshwqql4/F7OyEcG49XOxMI7rcehUg3MNO+d5DqbIZBRgciBHoJgfPzEx5goMLlsgXNSjSfiWCc3sq/bSEWFqurAjJSYHKkWfZWwpZTBhMc2CdGe32sQcKl4RP49TpLlvXxTngCKWwZe+RhLPiSHhxPdy7HpbCa9ekEhyhVx8tCeeN/DAOmA9hMO2hbLEIKOKSgDm54kQv9ECrh8ZGfhW8D8TSpmalPySXPVb8rgs58Vyt35iZfi6jG7BlZeSKjjMHcnxtFcojC8p/pUiTPmc9KFDKY1QC7GlYO6/kig7VSJtG4i1qoUdV+o5vaT6MwrUqIDFUaVCPWwzlEjlTLxzq63B/4WPMiH1W9BFlnpSsHhSBWzbxD8/HoWxKRxE+qZx3hbvPXj4i3ff+eyzN9xsr+/HoIHbFo4RY28NWyJ3gaUHscYaG0rwZSWrkyYVZHsHMmHKOKsnxznnHdqG28ZtziEv5fEXjTPdI9F9VTlcx0S2tdIL9M541EB0Vh3rfr3v5vs0X0v/1r2jfpBh3X/luWeuHzTMbWNETs2LsCc4BzeOo8EBEAGROU/ee+89IZWLxIoQLkdq1cBGDpUSkGbJvCKQuYjmCSYRcZ4FjmDet+CmNwkiygS6+ZnXf2825+/+8McffLwa6bSjn9/9oL/2zDP7N55pvRc1EZAZO2cIIAf2YCUnqg4QBYmwsM3kidEV3bv9+uVPffPqz47O+OhRIPa5DNeDiZwFi1GzXQQD51x0tSaHZTX5EuOo29X555Z4OrZ7pkznL3l+TF2DgXWhYeww/nu/51751Nf6sSEnLSSsgyMeNAyhZ9c6JwRjhnOAIQRrZwcDdb3ANmPoho8fPTHHTbukmN9kwSxQtK5UgNhh8AIbL/ODScOOTpoogLMcj5auxe4dRYNM+dIJbsODWC0M/WYYO5jEpoEgdr7RlFnqiGMHe7KYvVzGkNTR5Nbi6PIBTZ5kIsQEpCkGXIH3RaspnUwosrmafitKVipiLj5ngaiaIENFlgWPbioimOzaxCnkn2dzRwBxlNHpCqVs6iAHmMsDaqm3wxWJSCXmghAZkRo3aBsGQg88OVrdutUEFWKQgX2jF/g1031+swCuzwaRxQdPYbbYGgGk6QRgIm1Kno3JVLWkiExTtnV/ANuGbzmXyJFR7JIKIOf82nm+l2QJ18oXarlYD49iKaEZgGABhBibp4R/or7xRJOzKPbjdM5pmAD66xept3r58Pz6ldMiBmx0sRrtfltdkt+lihjV2sz57OhMfyXZYQrSl1HRpKLu2ug7IrYk01MFrjvN9jn1gomEtRs2M5ot2/nJavPTX3/wlVdf+/TBYesS/hozm7oYoY+KPABQ8mqrKhnBOauUpGrMkSFMRtD5kVBUpSMUpce85VnjMFxsAdcCON6yjkxzKahI8+Ysg6YQEYxjskNUDrRsewLr1kqVJ8qSxrBZCs+a2Vrkw0dnJh8fj/rNF2/ddO1V9r6BwYQDoAJxSDWYqjHlJit8KUhP4FLDqqakyRoGclZdDFU6ZQIbK5EHDPBwRkbOe98QKcIgQQggdq2yXbJLp8PHrp09/7m//J39y//6u99/54MH9+zRpd6N4/GVcXX5xu3ZYi+oKNR5Z0FTpYhzUAdyBhgZs+uMF/2ZDU+G+fPP3vj0104ev3t2/88eqcnQuMY3XkQlRdA1JuaYbSV5qIUM/R65pHFq6kGxBfrT9sV52qiTFrcWyHEQXFpiWNNqHV67bf/uH3xF3EtBeUaDDutx3ZHjYBH0hKPrxYHgzNAaeLZ0ArcZh5WOw2n/5HRt7MxxXCzV0UzJpGSLxpz2pwlgcqyqaqlrCwBTIriYO1LSlEyETAtEsBGJxdxsJkBFN5vVMPaq2rata7yWspHc1AQgS5kZUIt1T9FQTVZHpKE0qsgEiABiiq2xcjJCZRGbWezCGdcKFx1mqRGCmWWonyRIY5f5iOqV6ndtquulipsVl8C09BC1CcjdrHj+kM+UmnXsJNLH5t8GKm2Ga44Xl43jZszmYtM4w8igx0+O2+ef7/pT5liix/J0K/GpArjw+ipzJIorX7caTgpPVhniGBN817buUItDZJ/D1uO2xMaW2gLEGk8YiEwzWPSWLWi1Q2p7K9YirVB42nv5IiUtKT9p+QFPqRQklbi5vPkRe/WkG2bFj+pH1+O3bZOxHmT1mU5Vdnkq8+UZRi42utq2qHaeuPNnNbZaUdAM/lAev2UK79yKmSUIJQ/HlgjPZVO7lzidDT5oYxJk1sxOrXn7o0d//sY7zz9zq5m1RDbqyAQ4Vg0mUgLwAIjUpoJsQ0r/dAAilldRUG2SmrsHE2vub0lEs9Y1jWM21U8C4qCs81LGBjm3XrabRWJpToiTlom04sjEszUz8ed8vrTNupfgjWa+laB3T1frj+4GGz7d3XwtXL6652ZzRuNSHaj3MSzKDGaoWghBRBrnmc05MzPnI4eM2Vixj5MWfpEmSgYTx96ZWXQGGRjkBrVghuS5I0fOzeYNmvXJk/netbU8frLSy1e/8a1vL/3eP/7ZLx4LPTx5fNIPawnhyvXbzWypjoTMUSQIZySWyrSgQKu2MlFrF93g2qPFpauvPvP6tx6fvnt9c3IsIqN3c4GaifOsJIbctrFiXqrJC5VeB8XjaNvkvTXVFzCTpx9nsm4NTv2IwQF/+/cPX/rUN1d6WbEZw5r6tYkaOIj41vdrY6PWNcZRQ2XXzshoXHVPHt2n1m9ONoNCHTWzFoCImI0ASCWbI2RG2wj002FmloDMcpPgSGwpabRqza5KphEUjogkchMACcslDOGUwd55ByZ1xIg4aQSKShLH0l5wqjNO8zZxNoIjAuWehhQNX7MI0xsz2BPrysopEcXICPIy1ktQJCUmXqcwjq2eY1dBmFn8ZQsZsL7DtO61AC4SqpbNlGPAqgHTyVswk1uTX8T59gEggmsUoeMctTNPNDrXHB2dtG1rZkQcQbbULojfxWn5RAGcPZC1AHaOVcksAMldgMrETCcl7VW1AunfkU9PY0zl5fmck8gsVyFX5++oJzvnn/+8XL71CaKTOWerWnBGzMzehTAGVWZufEPMGstADd7VbvBJBpyXiOdXt/42IhinoU7SMparbrUBKNeeF/Z0TlQ87SCi6MvdUQjqt6jJrhi+VSa5UaWwU+rfuKv6pE0+JzoL3prGLR4en/zs3Y+/85Wjq1evNjMvIuao8c6S90ym7oo2AQrSRTpBNRsAESYdyFXzM00REXwDx9OG/OSjEE58dHT3UaZzq1rMml5Qzh6JKEbL2E2hhC2OcLRxy2Y4cOsQGh08OwWO1qt/8dbjVb/xNuLawRXMWjSOPGDBVMUU8E3EUbBYyQ1W55w55xsHA5wzCsxMnpFbR0QukzwNQYnUIOwaMSMYmzdn3s+C9ACca4wAURHrw8BXLGzO9u2azMaVniye+8zX/aXry3/xpz9+g6kbzo4e3/1QAg6vPTM72I8tcaIiCXKgoBSFPI2bM2t901xhccPqI9q7uX/59teuvfXPu/lb64f9GZgDERGDnEajbWqzUk0vVVUAqjmNxlDidWWZoss9zVJF5MiK4w5RxZ8d6yGazUYG0pc+deXv/MHt0L7ONGPubBgYMmuajYyjimsaI2Ei8p6IesTMpgZAP44PHj+Y7S/71egaMPx8Pk+Tz8oTaTHApaz+QiYWQarrked28Qn80cxyab0BUUJTCdOoSQhhHIIj9b5halQ4BOXGw8FIWSNmPmJn96iREbkKdz0h4SN5thhgxLy/CtDIsduJmOYpnSK+W/OfhW7F5hUl3SeZwRp5gSFBM+1MRdybQNRJqjRppN1f2Ffhb5YpxqZS6dh5MOE47XC/etj1EV3ZoyonAex80/hmI4MeHx8TkYg4IzX1yQt28eGLrwDYUsJMOvGLPcfa9Y9p3lof7GBmuh77CbkNBhCDmFmzn1YVqW+lWVm6/A5a5obdpJUkUHczs1jzY8mnl3aaIyInIqYwaxpHRMHUJIDJERUY1do0CbHfSKpZy6FrtaZpQghaYd+kHCKL0xrpwanZCIFKbvrBYsoxA5eYOPlkABBKTYAB8JSlVMbUiGoKuVgWHNs7h6xCqqmP1XX5kpQnidTBl7KunzgMJ+VmiyZUY/eSwuh3ayLjagAxpyVm0Mb817LmycWjJW0BiKV/qjqOo298VMXyLcmBiSlg0sTTYEhBUGdeoYEG70TWc6J2fvDmrx//8zd/+Te/88cYBri2Z0Y3Lrzv0TEYlaeXSInZGDIGImJ2xEABQ4ZTEcAZg2CqUJgQlEnUG5taEA0xIUjNiDHw4Q335EYT7la9OTOpx4k1A0X7mIjhUuIGM5cKRGZO6dhF0JKaRv2DCY4QCxkRC/xMYjZJIo/k7HOOiDpZq1gD15I3J6pCpi7Qepz92ceP7o/dXx5e/C16DkLSdu2S227pFizjaCPN53tK2GhHrY0SjIy8KVSDjaM513jvnQ0ay0xcg+wVJ88SkyjNTIU9zMycGYhVHDk4n0pSSInRNI3rSUgH2sBJS95C8IcHr331j93+pZ/89EdHj0/ZnR2HR+Pm3vVnX10eXA3OOfJE3swRyDkVCiodNQsHAKcnXbjcHPIw8Gxx8Np3/tr9//j/cW3vx7Jy62CzeefHpsOeXV/zQ3YEc1Ihl0kEEjVSM7FE5w5mMHVpX6gqEUyVmZxRrAMhOIWh1O4wI1U6EFdZnGR2GCDtKEv49d7f+IPNZ17+5kqvhXY9786GHn1AoC7I6HW56YJAfMuPHo3z5YJaR54bLO4+uPvhvTfns+u3b778Mb0/3rl8+SpdMXok3ELMGtOBoGBn3ARRVoMFk0hVhMhIBUSO4aCDRdR/sMEUqlCCDezYnBOQKrSDhWhGaEOmgDiAVdSk07BW3bA7EGNzjNgeILmYW8vuXzaKGISRAzJ5hUUG5MgjJe4leazghG3puHSLjVpqLBCLjmkDEE21SedIEltNiBzABE8xiG0KEjamlBKllDKnCEQiNVZn3rlmijGPf/KHANAghNzMPEtTsWCWPN6ZN6oZG6V+GCXSHG/SsBskEMXO3dEkTPECoeC1FRcG7m3wrWDhrBv5EocPN1dGYu8H4sM5nwVs2irTtjgMoyH0SVnQEUU3hK7vxvjmpTSlPi3JzpK3W31/Xq0rIsGqV804KmmF6Fx1r8VktZgdHr1qJXZetRqslZ2CAIVcwsQRfSDIlEN4zpK+0GQvYyjLX56Vzqni1kXnKpfE04rnkygSRkJ+L3pWvLD8fFrOcdHOygDyEtTK2q5Ntn1mHNWW+X7+nufvYGaiGssUiCg2BTjvOqvGkOcqTxmAN9/+4J1XP/70C8/RuG6ZZr5RHYJZy7uryTxZscjALyk5slIprTqKnr49EiDWvLPz3run+vq2PBkxBTf/McW0YiR26+Loaj63QHksE51Q3laWs99jYWssTWYGMx8cLLk/e/jBo3+0OjsN/ddu37522I6DkY39ppvNm7addTKaKDmzQUYTkaDmVBvPFBOXQqjR78YypSIWQ8WOvAEmiPFuAguUnEGz6kBgIjYPA1kqkYcjgrE12uIzn/vqYnnw85/99N69e+N4stqMZ2fd9VvPHl55Xf1IHMx6tcETMbVAo9oR6Tgok22GkbnxMztYLl577Ytf1DcerBd315vrDnbmbRHG8Lhe3DLTjlmZTUGAqe1wibwa9ZpOtldWktMKUql6sGlrEKCEoEahvXFj9e987Xdl9rlZ6Igt1gPFBOTiCWdmEb1568p63cnoHJwgfPDhu6J8uj49WZ24hlXHYQhj6Bo2qCocc0sIRJRbICnn5CPE7KwEj5LQ/C1bjNnCUVIDCRCxiQJsNIwwZvISyDnnPIcQ+qHTcQBp4xdGTM5TjIsUxCriWD4aJ02Jc/cO0yqxOf/iKCb5JMd1tT9iHVE6MeX6AWC4ChFzWlBLjl/AiJPYFINANIHtQHNXCcuSYuLS5zeaZczImuXWxFOYW3yTi8azdcR5tuqe5bTyezRIJHWApFgcKAIJGkJIebVKcBfb0NFB/Uku6JimEHTTbdRx45zTcaiXpJ4IrXpspeelMF6ZuK2OE4Xo62k1s9zwtHxCqILnETQuL0duUzhx+N3SppKwsTPai9/XDBmZOdoqALLqV7KcGDsDpskthqxYlPeqXjbkcUbZ6nbuU+62JRSftjx5zNXILz7qu33Cted1kfq0cmY0L3I+7W4BUv1EZEBdqlzEzPzGu/d+8Mu3n7/9jGOwmfM0jgB7I9SOhOjujuWSxtPnhU+l6TIzxBgaivILAKlDQ5zBtCLOueaC3th5R2EaZNxI9bSU/UwxX5vJtBDzdl8pTQDv+dotYqh2r0QAImYyc2rBzETMd6NT6ke8d9SHDz4aA7767I3nbxzY3Pqh40Zm1GgIUGqcswBjCyHLoqbxDNWoXE9J0VTy/81iMRKRgtnMccxEh1Mmlqm0mqKoBeB8rP8zUyAQgzwc0bAaX33ty97Pv/+9P338+JGF9bh+sD5Srwd7l/bmh0uhdgwWgrARu+jl4mDaEnWbvmHveJzPm+df+MrXT39952Rz79jJ4OZBB6BndeCUlrfNwSMoRIqATpGI7axAqtBUnr73zytqRCQggp4Mzd/61vC1z3zzGM/M9YiGQapjjCWkkS64efjoY09ub3GZG//jN3647k4fHa3OVpvHx6v9A9eH9bxpfUtwooNos0cIDs4gFtRUDMmFYjCV7E02qEoEYzKwxE8S14eqEEtkEKqjyWgQ52KiSsuAQUSHEDpRaV3ruFGX8JyJXN7qsZlZzmCI0jVFlVPIKeuflRJJiJ2UpsyXss8t1cwmvmsMQm141NKTzID4WmxmMDEVkMpEfvEQzYizsAzHGW9YiVub9KvM+S8qcy1DrT8s0nSHluI9iwe3PnCOo5pZG/UbYBiGcRSKIZJ8eU3CpTaa6OlIWMwMMSLq+uPVWcpc14tYuWUrM7JmM6sT3vKyWcYwsQhQ4Hgrk+X8T6BMe+K8iDXIOVyxtfzVrdIk1nV+QIlk0zYiXbkqURuMjGNKd65Dzf/UiJLfnCoTHJWYLFpFLcnynymxyJLvBTFSBoQsq+JtEvxkrc1cIDS2D8qKTvmgvGAR6mkYmYaYp2/LTZ42mfHzMm9UKU/VALYm4cL7MPNqwz/51Xuf++yrn37hGkkYgxiT5wYipmbIm63sLjOKAGUUGx/FYj4DogO/bIocKiNFDqbb9HQlU05c5iLIMFKKN07bg+vBF9kMQKFEnDikZtM5v32RwSUIF7PxE+1V8xAR86cZNmemBpH1RhaN3zs8IDw5Gv9Z9+449vv+las3nBOyfhx4DW6jY9liPjaCqoXRCKoMx0ZEkY7TOamqkVk5OgaFDcYEMXNmjpmtmSnECUkE1TYXibJ1M1BQwDTASChGiajdu3J0enTruZf+6PLlH37vT99951c2rI7vr/rVSbe5tT887xfXiReOzbkeOoCcQiHgZiYyDkG533jv3fzW52++/t6T7985u/rrj8bD2cAj20xJqAiFckhQfooKPe01AJOXr4IOPqcsphtVpWUGNG52SpuDZf/v/cGLoBe8bDbi5nIWwhBCkGASch9iMyN0g16/dWVY9aFTE337nV/5/eXNZ198YTG/88HddX82my1mM980s3EQr3B+BoVoKDlmZmaQmGml04dRLCsiTHFCgiLN+IkkaswmJCImYmxMjaOm4SaErpe1aM8OzrVMMyMfS76JXCw6SnrKtHNJJxuWwVHviSBZscKdsQWCS0Rk5JDaATOlitGMmaVs9SpUl+UXzJDGGrFmNAE+6tQJOPo9rbDcc1bKNIE2OZ/PP/RpH9byuxK6aZzMDNPaCNoS8M45xw6eIWBmqPexrAB9P/bj6FwzJlPR2W4Z0iQffwMQh4icrR6dHA1EFJuy0Xa5Sz0yutgU2372FobG7kFbfoMtW7PwfcHWukaRn6+a7pmiibS1SGbRtVaGjSKVpqcAgFMT3fY/MHuiiRpKRvTOPBSpvyvbkHw7AHIJxO6F9TxUmYF5eE8ReL/xsEqk4ZzNfX7wFz4lqFKuao0hG8RUl6fb1pUbI1UxMDPx8u2P73/vF7945YU/XDCtdHAuEaExkboMFRtjYcrsY0IviSpbyukAFJJ6h+XtByATW6YfM0DiVvfMzkcMtHNJWEn6phtHVliUFVVNGWUo996ZNBBRbsOb60CUwFYTZ5EQ8cKYfDeOY6RbInLOOW6wQIBwsDm3g9qD7uynfH/Js9+xW5cPZ16crEe38Mq2GcUnaAYYAUFVg3MJ+cvELLdCgYLY2CBkUc/UIGBhY4YKxJhBnojIgUThGGTGniLiD9hSx18DNSAyZ6p0eOVmvzmaLw+/8c3f3T9Y/vRHP+47tO3RyXHXDf3ysNs7vOHnSzNvItFXoUpiFOv4RUeVfmhx9cZXv71+fGdz972T7qzDcmTGknSDlNM5zXY07tUmt021uyvCu9CRU+16VT0fiYjE35itFH/nj5Zf/8yfHA/+YH+t49IwxpxzTQeCqYJEtW3nm82xiO4d3Pj1u+8fr1bXLx18/Zvf2lte+mH74/c++Nk4HJ0cb/p+bPbbK4dXT4PTsVcRk5DMOTNVlGYA8U3ihreYDmxQqJbSViUAKgxjqInEgHIDczAvMgYZZBiFhJmda4gbQgOWqGAm7d8YCW4iWRqJbqeUN44zWSY5wjtP7D8peKxQTv2UUDYSSKMXmZG35mTFwswyjkVmy9OrxinZlam2/Xv55EJOSDnbud5xRblBZUaXu23LkUwPzHIOt6cc0f/HxGBHZO3ME5TBQx+GISznzix6gT+JV3+SC5qZzORs/Wi9mjr/lOGYbcX/0mPOOZBjX8l0DlsBWKljpai4dnYF1OKNAUjMyqOpMCuOwW3jXBfJ51xc05RMmRH7KAy7nvAidSJ1FxQRTQhHvDOemBRW/DZZuOaF3J7u6VlwVgRDOlmq555XRy5etgu1HMvKR6Gw8xfu8KNSv7Z1Dsp22eZ8BTkIcICZSUQ61ClUesErX6RhzPzsZHP2k7ff/cNHv/XKrRteVFhZBbnNcKXARNszhrsI5khhnAJCWRfSoiObCdsEjLc9seYczXzTNM4/FcB0SzWMg0h5Z2wlCxoOBnNwqhZ1BWOiCQeLy7ISmHMzMs7JgDubPA81TiCZYWz9YiQXdOVHI1qG+dHR8E/xYUv62Refe/7K0kOhNkiAKDXOJGWFqVHMh4sFchIMDiEmxZJ5sOXCWs5xRYvQCsrqmGxkZog65wzsOAotLzJa0W8sZje3ZiohrIe+beehl2D+K1/55jO3bv/Zd//VyfERxk71I+c6x6c6XGn9ldYfkF9pAJwfgzlgHEdnbuw6mR9h8cyrN//wt07/45+e4e23Z4LBBk1FnEC9ESYEZLPaRXShTVyvZtG1C++esKC3Fc116JZL/Id/9WW0X+OwFnVzWZ2oqoUUJgCJQjNAsyMZRjrYv/rWO+88ePL4C1/++tlm/c//6T+7fu3ZzdnmcG8/XG/ml8OsXfRCp2cd5jOToKE3CTkEm2GhgQjgp2YAS+ribAJTgRbaIZiQmoPCxEQkxjCITKFDf5r0ObjoPPJw7BvJLwsg9TiKU8c5KzM5llKBYlQCKKNDa746ZtbmItBkMSt02z6O0mFXZNbfTnIuCdoJZieRaS1BjaP597SbnF90w7niW1LAYNsBo3wUMNfJlx3dbxe5shEhjYU0G1Nm1jhPBGY/jsMY1DlvY3Q7XDjENOf+QoYeX9uxU9X15qjbSByfZ5bt0ZTLiajADlPy+sbRZVHH0yX1U4DUei/firdP2wWWOnftLhBmvI9DTJW0mp8yJyhpywU2RXhQinGm8kOjqLwws6sDn6UMUaaY7pYALpRdT45ZBNPKtAHkzLBJdO1cSFVypu24kfOHO798wjGt1/bs1Xc7f8NajNH26NOfNEH67SyNqk170qZHNEZ+vvjwwcPv/+QXz1y+xu2s788WsSt8nRdWBJqheKQwqQe14asxTOhAtfTdORxx07jFrPF+Fworr1HUzCJYqZaaqPo0VQVn/4Rq8ZVtr51D9BVluTtNZrVSBSFkW/8zDIGdMzZldcoN+yGMJ6v+zz6+33kG3bx1OPNuNMR+drHoIOb/c0ToUIWIJC892GBERmrmIryrapLYMJMcVDM2BcfTxZkzh8iYhSIeb/ItxiY2ymgX6Nb9oOabmWenkMOrt7/+7T/63nf/ydnquF8NJHdDv2qb4+V+zwfmmIzYcSMyMmEcx4asH3TWUb88nB3e/Nzzn/2j1U/lWN97ZOjX8FmNqxwWcRPHJKxCVBTHdW4TxAnPc3tOAS369/YOegz8+1/HV17+4lFYLmZdtx4a6XoNTVo1VVURjc1klZhMZu3B/Udndx5+9IWv/Nbe/tVfvvlmN/z66PEjz957IxsvX74M0qZpQF5DDx1gI0xMWc2pGpfyC5jCVCFRw8gO55j4FUE9I91LrFeQUcLAGJ1XUbIQTAY4dhzLuZioQeoMmMQnCl5hYbaU2UvOtCGiqQCDCOxcnkOiCINF25QPM9lyQhQYD0Qv7q64tERRRQznZKzInyG1guUiYNGO0Innc51gvJUKUB5ZlhuZgexIX1VFBdw0MW3Ly5JHMsnmXJGhJmSmphHFhOCCIoQAaktDkV0WXYVon2oBqypcIxI2m7OYBa2i7iJdYOf9K8EZLcgLHJJAclnszAWyh6RayOxAQKzR2TJeLRekU843KTfcifjauUq7Wq6g9DgqI5kENrbHufXnjjJRJOX5B8FFRJjIThK8oVpo3Oy8DKPsgr5wtrfnOZ3DW3WNk3B92uU7HohCWPwUy9s5F9N3BXBVHD2C/vO5wIRqpsiJy1nkW7PZ4vh09cOf/ux3v/KVS9cPxnHcnzeK6MVVmJFl8Uea+AJFBdZdWK534YB3DjNjZu/9RSEU5GJ/jS5uZo5x+R11R1UBY3NRH1dVNSJ2eg41tuh2xbWluTNYFLoiU4V9+ZCZrwz+xI9r6pcjGjQ9UXB+ru6t0yO6I5dbnvvrC+jMM3snw2hMDlSSctV0HEUE7Br20WlhAJgVYIo+QrVcYs4R75MjL9as0Vh0/sLM4AphMceIIABgHDezxbxbb7pgy3Y+dBvR5tZzL/+V/077y5/+5M1fvtGdBhlW49wGGfrw6PDSq8w8a1qDwAHKzGwmftjI/Pik9Z+68XvfuHv84Qsf/HpN7WBGPk7yzlZybjcJi55iQsSvUGrW63UBJiCgiiOrmS3n/7M/um542dxGmgUen4SlsE5uPBWYmeQkbDIxXfz8zbcfr59878ffXy6eWZ+tZBxnbatBmLTxeO6Z686RsA59TyykIwMgU4kON07xC0oS0dQ0NlWn7LBNmEgwS01vBEJmJqPoABrjJSrsc+4ac+N9C3JGUA2xDLIkL+P8xkkKYpkhQu50FD+rO5TDmJjALqYr70g+JPt5V85tPS2yQAPIqJJyiS0bLKOTcC4fu3CJp+dWj0NladQXEuU07iwgLOdnxPQ3ZI/IeQa+8xZcegpEz1JS3AFAAdWK/Z579+pgH981nVFxZFVVavc37779mB+u+ZrrEfwZD61t50VY2p8sSkwgEsRMPSEiNAQtCgtlqakhBN9OhdV11/eSYZv4ddypzFCOI90yF7BFT3VLPslxFMpuLAliCTRfAfM+tbqMrLmX4EBgS2XMjolMNTiXwAxUbcImJPKzmaqKiIaUoRZHMmpsHF35MuIApteNVB7PbyIUZS2AE00QGYqZ7hLXULO88wtuZZ60qncCEloI5UZ/W2I1ddPYnbH09OpEqsC5QgglBWuaViDWTkuFyBrL82NRDRGJiBgSIA7byrnZyfFlO3zj47N/9sZ3//ql37vS3DixUy8jA+QdlIOZM2ImZoYETFBrMDNUjMBAzF7ETE0MUDiwqECUtGhpEFFnZN6zjTM53d0FRMyNQWKaaaJqogjTDh9ZRPIJxUQVEZEgauQcU9WsLU8gR30zmDKKvWaJKICIJFkTPGV3zonrKNA+tQbrAJA1YDI8s9r7WXcyto9m871XbGy0s8XhppkviRWBeDSMQeBdy4Qx9A1sNFZ13jlPiKnkIA5D74iUjAwi0GiZMrNulMiYmH0sdPcWIX4Dou+HVQDJ4DCNvxasdy3I9aMafOP3tMNqsXj+S1+7eeXGp37+8+89vHsX/VmLMKxPnpx0V27cGueXuN1bj8PM88mwOdhrOpldWn+s8xdOZzc/89pX/mh4dP/h+p+ultf79Wa2b64LNCGXNS2rulF6Io6F8k3Tdv1IxNGEJMRq37QWkv4j5IglDGbKZs65TmTZmgxXFY8XHmeM0+Hq/+QLj6999q+Yn1+S5Wp1Ol5ahXU3X9860Y8Mfh0QlEeNVbDNsF4fLOzJyYOHxw+Oh/XpcOqbD7tVuHnzU1guXadKe/38o0Yw23uW1pvN3M/FKVoxFUFqn6CiRgqBQUEqiA0nIopCxMlQtQATy6a3GRRsahJIAgHkmBpnJELM5M2xOY6+4tg1QSotP3UrdJ6JLJdjmFnq8kjxHzE7Ikq2YWamSSqSJlDolDftOUFmxkbwSIqsQTHGPUvZv0VmZkKGMGrbzsIoBnjvhtCxJxYXy50RoZ5T0o+AHaCqgYpRagywhxA5U4quCTOLODVa4fpuyU8dMwdD9uhZJA8DW+npF7tUk1gIFyoQ0R9MUEdk0hCFaFapbgDcD7PnzRbaGc8akmFH/ubaa7PwSTFgx6o6Pjk6NTPnnBo5ohw8zzI7Lwzl8G2KtlLmOttmyg77zjIZhQjqV7UtW/a8rVwk+gVGXn2HHQWtuk/6hDMoXzmHsz8zhFAJm8mCiV0quYKySCDVTASqbxVFbQ0lvjMnW/NZ/VmdZp9wWqawKYUSGTWGiCg2ltCt16/fqJ6und+fdg62F/TC+a+V1rLziYgg4Nk4jiH0b/zqztdfefLKs4fNyMSeDaDoj5teiaNIS7cymx49LTFVs73z0HLEcrVZ07RtuzPaFMUg5eqiev6tKhWtiTBpt6rRsVfNQ5X1RhMRlgHbuZLl6fNqruqNsFnylVVz/4P7f9rYgX9x3iyPx2GPXBACCRwpEeBJQZ6ZmhBCDBupiBKY2UVF1qf3iy8bxw8EjaRs3kxgZAKhUY2YPGCU8PkjujQ0u9OZU5InG6t5Uh3CCJOXXnrp6pW9n/z4B2+/9dZR3x0sF+ZO7368uXb99vIArOTY7+1d6Ted7a1mYb/pA806PXju1Zuf+9bRL+90q3cf7F8azgKjbybglLhSMTh5fop2SLHM5HmCj9/O/awfesXJYbM/0NmA/Sv+8d/4zhduXn5h0FmQR2Sb2dhg1JGOGbTqOjInoqKjGY3j0DQNtzyiny/39m9de/+DtzabYb0KV67Is5cvh9P+yfHRtUuHwzA8Pjletk3rGx1DsZ4zCcGSEUQZZy8KAwVIVQUkqTqYzMhiWpBFrmjOOU9wzhGzT9zJwTFFbMjk5E0uqiSA88zUs1FOyvPm8kbenWpcwCUyGplZCcdFTKtYKorCiicOT2ASE4WZKRRBhMwYFTJgtTV21hp5/4sIEZg85aacqrFs/SnojzTFNOPMx0KstCLIbv7kfZmKzetdaVUWhYhClR2cc22LfoQBfd8TzVTVcSTai5kqkgt6whqbDgM1bH2/+eCjJzBh5kGFLGaLXSBQp1mL3XaZLNfs1rNZmFFxgcbVLp+X3bLD76hyPJ7n7PnDrSTkiTrOoQ/m2043MZs8HumGMNvuboRsnhJRyh2MmQhMCoulJy57j4tbstx/Z9J23utpK7Qz7Ol9863y1FXKTfVeSdOrfTgXidvzk5ZHNRlqZQbqE2q3fz1R9e9lmVSVaWS31DAG2M/euPPTl9+7/cwNBzJycQZj4q0RyMSyGlzefXuacgwYAOl57NJaAAdTBs0aP2t2d2Zi6zyhyVt1UGlOVs0Ys4NDtB0talx/4RVMt8XWzO+MGdtrDeAUw1VqV13/xp2jS36meuPZa3sHbatqoKgbtwSnICGLkAlmEBFTFaKGAQ8DLJAyPBeNgRiqgMiYfCeIiRKkgxJREwM9ZpRDFkaxKfjAEKQUHmfGJCZQdgDcZtzMl3tf+51vXrt2881f/PL0+MSFzf7e3tnDOw8/unP7+VfN9ntq2vnhwA8GaWcW1Fa69+wrz/+WDKcfyJv3euAhdCRfTb4yWJHrIXf1+0+UELsfjiE0yxmHXimYzTqc9SP+2ufxl7761YaunFkT6OGCBN3MBunoEawdup7dXDWICLE3M9e2D87OfvTGm7P9S3uX9uW9d5xffvHLr8Laxw/uH7Z7jhGCPLz3MMBxOzs5OZ37OZAaOYMJMbsKqfpGBcE0ul2TZ9QoRoXVnET3txEQuz0KA863ziUQNsccQ12xsSCS3j95aHIBZLwLFz9z/Cw7myMFMlAwqgnIvrBJyWTL6JVEhByjpSzQYjorG9WrQ2ULTBstwhAFswicvJuNXC5P+yb7qDBxzpwTmvjhrtFS00YRVcUFjSSPMgRI4tUx412KsKNd5btwNqRVIWocjwSGbrrBtQfAijmXKT3lyF+Q7bRtV5BnPVk9/uDOk9glNKSOIxdbsWlwubq0+AmxzVPqaa3fZ+e08mdx0NXXXjitNSPbkQFluuvpK0cqLMglBvXamBlSAcbWv+i7BlIpe3yQVPeMS6IppULDRbA9n3D/OhNthzufn65azBQdtnjyy8/yCc6xqvpWePrxFzkH2WNRC+atZYWAPM9m7Xzx+Mi+9/O3Pnxwp3Vt7LUgoIJyZVVUe9rDlnIwY7S4TCMlLVuMKXYyUUL8F38XCKAN4Xz52A511dSSmL8lmExK+nLiZXlKJ7T3ndteOFfnNvDWOl54KwDUjauZO9i/Sn373Q/v/+DjB5vT8Wy1CtKpBhOFmuPkOTdInv+UrxtMg8GMYvKOKoKWoppoJyeQCZMxhEHGQaVX6WUMMgYNwURMRgtioiYKDaphCqQRWwLp4H4cFCzwoObV1z77zW//wYuvfFoVq7MV2WrPh5MH7z25/37fHW3WRxw8RJV6xdowuoPnX7j9+ree91+7eWYHex3vLzCUSZCc0Qk1oojH+9SsBVRM8/zMKzCEbu64abEOJ0YHcGd/6y8d7l+63Z+pQ0NEg8p6FFGiYCEIKmRmM/PtLIz6wzfeufPw6GQYf/LLXz18svnUpz77la9+YzOEYbV5fHwUwuBBmz4crTa96P5yD2DNremJqOQSKyBGWfqyGeKiWIoGsEVPT0RNVyUVmBCR9955T+yNCc4bIVabGCE6moko5ujlchKDUURZFtPzpJjokBlcISnVsplT4DOJgyw6ougtplgtUtJuqjiPERtBLNYIAAC7C2qBMHGPnAVtCWMnMtpI5ykaqAqgJAPtLPrOHt/5sGzWwmpUt/KubVvWwMwT+1gOHBNwNPc+IaxWK+ecwIicVVYctnkvdpKwtng9HNn4+Ojh3QfrxrGZBegsJ4lXL1PdzqXnpAUgAmHHgpweRFo+qynAKujXmoWpPtU7Vw2ecO4Nd958Z3ULB4nIh1adHDOCSpLXzlGDvO+OhyI+diJFgSG3MLpQBNafbC1BnJDortk+iFJUsrph1bmhvmckfS4ka5Ys1wvs4J1RlSnFOS/C+YXYeZEd12tFM9ZroJZaPwtz/uX7H/3infdeuv6Kc6ZKRmMM4THIIgPZaiSSEpUB5KxOIUPGs93aMFR5U4iInSOyhtA8XX+ghH8JM3Nwamq5pihiQ1MsTIq6vkVlOSrbE5wqtnUj2FNnaUf6ImviOzMc/2zhB4fejNRvNsPPHx7fmLWvh8PrN/ZmrR9tUFVmZu+AYEyaWjWqmbFGICoxM4ZTUknuBGVjS2W5Jtm7wxz5miP2EkZjJmVjjpmOQII/BwmpGtiMCWTcEtEwrJeHl8Z+02/Wc9+OQRb7h9/45u9evcx33nv/yf2TxaxnPgP1R4838729efOC+aNuPndqzebeSfsSrn3+y/2d1cn3H3Xy44FFppAB9x685U9WVSKuW1dtM4SLzWIzm3O7kUHNsZA24zhe/uprp3/4lS/J8tkwjkvSYWzOJPTUzRxRt+zHtW9mZ+vRCKIK0sY3Dx/fvfN4dRrogzd/tV5tCPbkpP/T7//48dnm88+/tDjcOzk5Onn8YLPZ/OK9Dw8O9694zkXMsX8lDBF6xgzOSEGuDFiMRBOik5lBTS2QBlY1iGMQeUdwrU+wcURgYjBii0a4ZA7lfGalZOUaDJzy6SIZZp0y/kwVwEg0nrSEZGVHKVUCugpiU4NL+fQGABoDetEMTXPO9a600qRICGRQUYmK1IWdUqhKATv/lVVIwPktqK5M2Ra9FzzhvIsUFQPZuQnl2hiKEi5+E41ggyoMWK87M5NgYyO+gtmqiTAeHgnTNysz5TzvoGd37n3w6HhoG2dm5JktKqEAimMw7sZUgl1zW0QuSempVLznlb5fqyGUDLgoEQv3v0j2PKX+up7xHQlRC8jC+zQjGKpqVB4isksMjynM5dSx+v7lckRMruztiBBKVtNvvuj81O9O1JYojZ/ULPiT4tz1J+l9bctjXM5M+zCJ6mRJxm/yc4kuIlBskQbqgIWcq/yJTFyrLY2tPeBGW7dgjFgul49Pz3741odfe/3o6pVDjgyIQSYwUIwGlVfL4yxDncZTmmnb1lGPnxvnmb3j1u/mPdSKQpnGnDzIEVvDzIg4KVexymg6GYlqqlteOIeoFtq2GwWWr7Qq/J8WFFBq5kInctYQX6Hl/Qcn/3To9uy15eGeaxrPYZSBAzvyIII4qlY5GjyiZojd7aKKI2m+Uv8PpVyXZ6SW+hWqc6biyLuELGsemr0pZGrZMc1ExkSNb/Y3641jP18cDP2mcX6xN+u67vXPf+3mzRd/8oMfPL7/MYm6cNYfP3F0KfDeuGdhfnXRG6Nf8xXev37z1td/d5T3+x/dPese3F2WCdnXdkVjXI7YD4704r5GqLY88i7Y+kTVNQgGF4jmhvHRf+/r+7dufe5U98w9gawxksEbbUZV2SAYXNMEGYwgIDWIyAcf3Xu8knuPTwYVdq2O4U+//9P5vH3updvHq+H6iy8dn52JeuPZrz78+LVXX1pYIL9UUKp1lCoXl2DkjNWMTaHZ8yk6mpJaMFVYIAhzINPG+QRl6uKSZTp3HojF8kzgPDsU6SxGBiO2aJyr3BY5iup6I8f9mwtZpyS27b0DifUCKZFbp2tjvyCFUUyIijdWKyDPDAui5mBBx2FonSdyqVq34pl5exqiGyDpKBGxREWs+KLyvte8W7cGm/5MgIxIwDKZM0WLJgYi8xM5lvfXlLO1W60ALHJMFHXEAiJCCGHqw+guztKP30ZmpBOLK1+zD5vVh3feOz0bmVtVCCspRcCciXFU/bFroq8FzM5XtUTMfHVi1sULceFw65vUQit/tbVstQyuFnIS/8VInT5MRRrTUZy6ZmZTlhO48TEpArEAk0hhlAv8LbbwTWt7sTfyaTrEzgsWcbIjR3cmk3M7xfJ29bf6lFXYGc/5Dy8knb/IWxR3UHmF+KdhDnfqsLBO3TLwsvnZ23d//MYbv/87XwFAMUHEnJFEtFlcOCSN6ruSQZPvP3r9t0I7ZYTMLKREmPnmfAw4v8KuvpLfJMWA89y6PJ3FhAXxBEeNyLYKnZyb1XhNaQB+/tv6tLJqQm4BczaIc8StrvDx2P3r2aPFcnb72eZgyaQD82AEipmhMaLN5Yap9gyc2hZP+ZRBEEE+q5RsG804ImUZmNi8MTOz0MjMxp7YI5W7TCD8AG26sFwemoz9Zt20C9Nx3XdE2ARaXrr5re/8yf2PPnjzFz8eVk/mM78+Pl7rO+Cbs2axgIXZzA8PXVgM+7dvPfu7f6V7crR+/x+t1h+VpWjEpIBax8lJEAoXctsddlRvgYDggeBoL9C6xzM39d/80mfQvNh13YxtFU4t6FyVQhiCbkzEOIwhQkIqO3b+bNXde3R058GTXnDl2s179x70Z/3efOEWe3cfHYWj8e7q7PTo4fXl3tVrt+49+vBX7773yle/1EmiKcvJ2pqC2XGEqeBWU78H1jDGeKRBnaljdTHy5dl755yLNWNMJW+/AAeV4HlNzxFRMs4RwxDLQeNkarJgySw3EipnUiz/M1cbA6SxcBNZrU/PsLQElhMkC3Ou9HRLgJfKJqMMo82Y2YG2lqn8pOT6KqYtJrRXIqpU83OpICinYXu71YzCLDoiSGVrlorFvOMep6whlb4wFJkPiNkrGEwRJMp7P27XmpSREFGxBi5AHuj7zYNH99fdeNj6SA8mVnsELXs4UURUJQAKK7wwBC25ISDRVmONCB6U8mKyBKovPC+NqnnZtcZqGbzzCUWNsJavefxWOVGLpYKchZBuzQmzppB59JrmUHP0z5hmJ0C5cEc27NTjlnPoXF5PrUDUnyQ6yF7uknRXGC7yePJTt4axM0XnqP+Cz7cGcFE/BqTsRNpZC2ZWah2bA4XRRPvZYu+jj49+9tZbX//yZ1xM5YzUYpwLNMPuKyeglIst9RTYhKWqlFT7mt7CMTxfIICJKEdXCubX7jwDoAgKmOiTOOZr8Ja/a3eWtudmZ662+Uuaoh0tKh4Lv+xxNoMp5MyFS4t92XT/8s7Ht4m993xj1jpxThwTwDCXk6piTnmUvgQImGJjtZhBk5xjAZhwZqJPLydDQEicsWrMomY286oRrjLW+sXy/FRgNV/shSBMbrZY6rBRo6ZpzEwUmz40zl+/9eLlwytv/+IHTx582AB9f+TGq7P1oI7GZnk4nLb9g3vNp3xz/TO3f+uvrR89Olv9IE/Cse99iGUzyPwRJey1s8Umne+chwPR9Re092FGM7H9r/3O0Vdvv9jJ4dypmzerYTBZN51yJ/CgOazjTTcoSGHEzrez9aP1uuuJm2buHh8di2jTLp95/sWHR/fXYTNvmvXde6Q9NuHSlavN/uFbb7/7tdvPHly/pYGL3WKcEqU0V2Mm+OeiOsfsJCibEol3aAiOSDRXbEaqZQKRBbNSipLQqorfy1IQNjIWizJmOmpSpVw1kKbLphm2ujtOxVVqjl1WoTC3yJyrBkeJcwBgxEwncSBPLNhVoDPDRz2Y8pVLk1Ch/TOYuepeuM02t1l9ed/kPlPKEpdBE+e/kEWXDUvOkZGq6AhNDYOqHneear/3juTy0BhNxI773beL9ckv3/6IdFTMBHuz/bWsKSxsZqknR/IMEEUsXYeLBsouOSYyqXAWtCAYRZet96pqSiKqFIrcLa5zIkKun4isobzOdsxsi2lGBSQGayP0bgjBCKlHer5NShpyDkRgb2yQoJFBKcFFx6OVaH/8XSVELk2c2vJpnlTNKgJ7LvBXJZb8tOWsF4YmKM1k18XPaILqhEnOqGcG4BWmJil+SmZkROS44Dum5chugq1GRoa4bwnIN02WXBlP3gbRhZXGbDDHboeap4qHmEBbBdHNzHTwuj+Y2NJIuN2EW1cP/+ytR5/9+bv/xld/x4X+oXT+YInTrpHRL/w4EmCsRX2OGzfViSlMjUCOSCPsM1uApjiGRtcYQEBjNs721I2LZqorrSffkWeOmPcgImWADARmstifAzAghM4SYq4DNIbZNBhtKSKTkmeatxcpWRwuzNS5ZMbFrotZW0WyP1AhupASk8qGjOEPQxhm6lbjiqFXevp7D1Z/cvn49zG7Pke41IymDa/n2Iw8z0OJfNZiBFcHNTJmgEnj5oWQKWlMXIh2s3niVNY/OGYDc3RJKJH3wswRHwFEIHNkxInpBAlMlOo4vcuNd82rZxqHcRPQz/ab17/6W4/u3fr4zkdN/4F17wT+2Gav+W6xQRjXdNWsO/zSweJzX1wd/fUn3/s/52md+3lY9K5f0ChyoOu1HlrTSrPygxumTVS0agBqkl4srzXMHPAE+y/pqWtnH2q/vDz8b//gC3L1d05sdkinugqN+ODaTTN0pl0v4xgI8N73/egcdLOiWfPGe+88MrPNR09W7qPHwXt6/uZhv3ngqXNi/by70l559ODoTM/k3fG5m5eOV90/fvvX/9ahrfvF/PDWMGy8nWl3JKpBl87W7FrTRowBz84Ug0hwRKZKGBy0IXLk4GZq5FoTC1kt8swsRuQaigFgQ0pjjuXtIMcpCctgWfzHlKkomimjTpISDOxstEgizMQOjiMeglNJJjtyGCsiiRTiFy3ZPVxVf1BehAR3bZBgjmcg8s3M+T1RDWYNUYRAQEzJjFFrMOUMjyz5HJMHEDQHOh3DCQFmFswIFXZKFYI1UjXVHH0pZmcY1jBiNEzeLFpSatDYiR4gsBGzioDJCGytw6wfBpPAjlkNzO18MQ/9SqUL4gONDnvMg4yMqvSx7lT0Sc0YZDw5O330+ISZyTAOQiLe8bZQLLZrZutZD5oYUAWxa9lijr9nL2VVG1YdhWXnB5Ss2otddki+kMmxUN9xMsddrm9LqJQJkTxeqcmHqTG9mbwDc8EpNbPoWs4ZBEZ1snF+QdpOOUbiCBd7dy8UyRbLy4CCg/GUM9M+u9gYPDc/W4/ervh6+g3Ki1cW87ma7E++sB6582SWowxmqhLCICJv/Pqd33nlM89dPuS+xyhN0zDFtppAdgPbrj05jad2olRKNsoVEZvGs3PnK+5UqbBsl5SO2vVNVfHFpCdVPRywS4fVtfVUAKimseyC82tUFr28R0qwtITDQORi6lkzDj97+51D/+zvvPz8Xh9aXc8O2uOhm7dtFN6cUkbzGESjfApEzohISwjVgBi+J1hgeGWiXcS6MhIEKRenJY5jjmE/IoIpMZERN2amYWA/84wwspi089mN2y9fvvbM+u6105OPRj3q9Z4PDa2vmYn3J+jelubS/PoXv/zyukxLOO7bA+eawUMQ5mPbaRjDKKAFsLmQ1GOtTBm9mTGRERa2OWndctPfbw///a+vX3j96x21eyRhHCUM4ziGcRxyA4agGkIsDGm6zfrw4OrRqn/4+OTDO3c3vS2XB3/zj/74+s0bP/7ev1yf3HN+2bZifv90bddvvjJu1vN29uqnvvDx+7/66J3jX1x+//Ovf+v45GE7c0MP8Lz15sbZoH5Ui1VjAEBKpOyEFcSAMRNSwzaiTPWxWxERIBOAzlMrXpJ2AmeclehCt3n9kLVFYo+qaQwbYNVDKhpG9oQBoHOpUjUZb7e32XKaFuqSbQmSbx7tha2EnrwvjIg4tncyUtWIXl62OeX6YGw7qDMHCrHwV6IaEvWK9DNySKaKVZbD2DQIoMRmGYYoPL1zw3QhtpI8nt6OUMOT49OPHzzyrvWOOlEC+YYtlPWa5jfeNwbdzYwwSSDLsbHCczNjjJbJbj5zLZZQ8dV8plZzoeeY/2Q3E1Gxvaz0gyMi5wr1ERNENY5TEpBGckVkAUqV9C2/TJqBTbwyezFisGwr9vnJR7kDKoab52HXd32hyORCstUNU6Zieot0psCqusoLRO9v/KQs/Se8Wk2vO/OWVEuzFBFGQgL/yRvvvPn6h9cvf65lN/ajb2fKLBqqNkSVVyqnXD5tDLY99UQEJu/b2WzW+ubCSy5k3590Wr672YWKQXpxKbG4WEKTlcjszp3kceYUKe1vR6ITkmgrrxfz/9phPGL97p1HYzP/xjPXr1nYnHbtlaXoyMykEUPNRfZkCdFQATZTJN88EyvBKauLqDEGGIJTZ1SKrKgyLgFE7D02FrMYboj1GDAfhW90PUT7xGDKSo6cW5q6cejCOHg4bg4u33hptnfj5PT9Lnyg/Qf7sznJcjhbMX1oC6+Xnr39yu8AP4wPHciGjV3lwXsMqjObG3frRpugVnGMadJSTWqqtS3rRoCnoJ5OB756uPkf//Gn/KXXg7TYdCJj/BeLrMRUojeCeegGwLduPg54650P7j86uXrz1ssHl68+88r//H/xv7py/cZ/+p/83X/w//57Dx7eO9i/1Ot6E9QP0jbu8rXDdu7BxN4djXsfP/zwmcNLfdfvH+wdrSGjhf5swCFZYNa2dYZxHDrVkVU9mEjBcEhouxYFsHM8MdJCnM6AuMUJiFHWnEZVvAJEVf4pMlRwlHBZpyQjBiHnORhMkNvTFPGYyTI/fRujqfCiiqdVBXtUrUj8FgaCSsGHmFyqZmYRqzn5iqerHBlgFMMrZlCNjRt3UvPKc9U0VVOnlB5ThapWUaRa82Ygo8mi9rEbMaKkZ2YJFgV9GHX7iWJZNakOqU7IFnAGOZi0J5b+5HT94MlZ2yycDUBDzpMFFJldcWE9Z3HuSIvzoqhG4CvybOe0ei856HbCbYQNTBU+lZxGydGovb5RbXfOxbuL5bZNZhbTx0XMmXPOgcw5ALGENwqA8tBdPcgMMQd/e7S2PSGWqabW7Mrk1JOw8+7b94RlC/68QXb+z/qGRrtZA7S9RvWq7Tw3D3J6Zvwmwgl8gsA+P1eqWup8EKkOzjtm0ruPjn/45luvPn/7xuV9WZ8JBfYcQ9gpj4Op1q9ToLd2elTEE5+lGRIvTgERNc55txsDdqAMhloiZE+tLi2PUJrm0Kqaq/MTEic80VtskplPoW2xUSkuW/ST9jwlAN0SXjKQs9Evrn70ZB36D2+0i+Zy4/vNlb1FoJAahRnDqXNNVE+Jfdy4qqpkDqQamNk5g5IQiJWT3GUjODXlUPZXnmZhtKkvVUwrzb4xJrXYgYliB4coEUDUxfbk3DQzojCwhtHUaOFnzbOXmsPVulW9q/6e2cyGy64j2J1Na+PBS+h+GOfhmU/h3Q8RemiLgaU5w+h9mIXF2I8XBncsMUDOuU5lkhVYKu642f/ya93nXv3aUXf5StOvpTMbRUYTGTNYtxoUpoDAZOguX7r+s1+9/da7d077/tUvfXav2V8eXLp29dIwrGbzRmGt84f7y0fHJ6Z27/7Hl/YPjlfLP/vRj06fPJ63/ufvnRw9ee/3P/uVg+X1+48/3rvy0vrRcLg/nnbk2DmGjKvV2fHQda2fLRd7oeuzcyECgjoCJyEYZ/7/R9mfxtySZIlh2DknIvNu3/7Weq9e7Vt3VXdXL9PdM8OZnhUcjiguIq3FMCHDhGRJBmRIFgQYtADDkAHZhmzD9h8bBGVuljkjyEOaHnJmuoczPb1vVdW116tXVW9/79u/766ZGXGOf5yIyMh7v9eUEtWv73dvZmTEiRNnXyAWf9RY6GheDotFwpXDrlgmUb2DyIAzt1SoGBWPD4t4aFtDoFBQmMUzBWGw7V3fsfpIS0MSVqd7VimeD4UwVXQ449zBEhVlEPCp6x0A56UI06sl6mCayB0NoonjJOAEAKjwpj9iNBJAFEA1hD0U0EMUAUYRNHUnOSJTPDpI2TnyFgQl1CYznUW6+cl4cjKrEdbAsyAJiHc1kU3PJ64J3Q3OV06x1hoEx1iyJFOCk4RibB4QaKWEWOTx2pm01X0FQSNglq6cEGtypP5JRNbamr028GJEYBTmUA85aif5upjZJsYuubPZC2R5PiwQ5UKKzrBcJlgiyqs0evVL7EiOkrb1UYgoUXNKo8kqDz4rnakd4dHaZFpXzuUitM8YTURi00a15rZLIYuYWhSEyqsggoDw5ocfv/LCM5d2XunZovKuKIqY7gIpND1JErl83S65jZZsmbN+dqFcLNsVxooZ4NqJxmcDBCJxYQ5+X4wKhBIvOcv41hFuMK9H2gbNtV8BMIv6hqUbAEFE7AQRhZli4J7G2jHhYrzo2VFVuR/euO2vbT1/cXNyMBtujMSiMDI1IgjgiYyIGBO8dwgEwl6r4IW+ywiAakGWWPLEs0dGJM5KuwgzivfILETGGDSELCDMntEggBfd/WjNBISetU3TqGMFtbE0CAF76jfcUH+41X+laTaqxb2F2x/11rjuOZoU8/3Gnk8w+u2X4Q8auXcHPPd61lbl1DP0HMmKZNyCHYKDgig2ugMQkR7BdNFfvzT/9379WYefJx5KPUXy0mgpEue9dyy1Y+eEQRZ1jQS9XjHzzdsffnRrd29WNwcHe2abHuy++8df/yc1y1tv/mQ2PQVx89NDU40Wi7mRtcXM3Lh1JOINYFWPi/XNvum9e+P6q5/uWVqfnEyMcfP5YlhyXVfHB/uT8Ulpi+2NbQO96nRuSlIfJxExhoAjCp59ta5jrFolKKZlbR3NIWiNzCDAURvuGKu5Cz9F8lTHClR8Ew8Sg+BSM4uMh7WPZxQ4oXFu71xiH2mqxhRdogeIGpGK+YNnvitdgSnGqkqQTm4yAXmv8VZ6RBFil5HYBg1D9TDb+o87XL8tNa2xIoCg1bOsmnYpkQ6vsbltjLOaiCDEoFkAOLNnIbrFyWReMfUQjQY0CQi3Bt4EcF1DznK6hDrAKLKjCPdVjVkVhZjGk7hL2A+19QswMsTCy0SU2gPnhBjyhIpIlwODhBBBQIBA5EiTicRaozc7CWFWKKAWuVTTSURCFw8BUkkicpdQlq3LcTskeEU0139zO2SCJ0BrrmmBjATRR5IgQ3AG4VkCRft9ysvORshfCqubcpYiK5CvdOX1GXqsMra6dtFEr8ViA0b17Nr9/ZM3r3/48pPXzq+NFk3jQUhrpIMGMwujOrwlkNT2DDME++1ykGTLiAnFCQH07UopSgQBUbmSWu00TbsDljbfXZI4CBgN/jkEEvq1oxFqi4j2OHQ14EQsoLv1oCcZSAXKtu4EGSysr9x6z6KxHz7YF/GDwejxkTFVo7FlAOC9FtYIPi0ACFF6EjCCkRyLQQgBhiBB3KUYrCIIwDFNnwBAXC2EJCRgDBiMAj8zIxrEEKilMIAgChtEEkF2DTOHJANYh+JQbC1uw8LTIj2W8VyOrEhpys3GjdxhAuC/+ey2TI7+wRTme+WIYbYGNIG1So6KnvHLXSYDzAOHUukdBWJ3RYRjMP+Lr5pnn321Lp8oZOEYkCuJpfFEUBg9o2fxAMAoyMWw/8nD/Y929+8dTQabm/fuPbh/5/79uweffHz93KXLXriejU3TXNh+7KFrfDO3/cHx+Lgc9IvSNE1jjHn/1sfDJ155/CJ88OD6s49/7eJGeXD8Zuk2d++/d+/2HRF85qlnNze2To8mlWu2N3fmbq5CnqjCIphyMUICNxKIsGCosBFLSEYTcF6OCgFEQo5Nhz3n1YrVrBysTQiIqGGlLEIR43MKEzRsfVvXLbRk6Xkkrcg/IEIIv9cpsUiHkKbTEfmCDyIWqUxMGh8ct5GXGDACsAeVxvNjKInpIC9NTw+sl2QbR0TU7kcMgYuLiBMnpD2cl4XvM9er1yN9wODrk8nUQ0lEVhDRePQ2i/fpEPdg+kCImkICturxkPHU+Gyig5Gjr9CszlxZ0jFnZgFBFDCU51/mTGuVAoo6q0CDWzUBScsLAqjzIyAXYGherPHWHrKGIdFAEdJvQgJ2iO8VAACTJym26JJDfYnC5p/zJSunW9qWJUtsO4gEjpe+VzapFU7bMjTxQC7BOc32TE6cX4gdcW2Jx7RfnjlJAO9ESEQLK2XyViHlwk/e+vDD955+/OdefhkMOeEetAFfHSAgSBYA0EGe/KWt8i1IgCiFpX5vuRlDuj9SgMQL221K/FXfQkQgxFkiRy4g57sm2GXp2Zz1yvM38t3HJMgyR2lSAMAAKi1g0DwCMxhYloV3xtParb3FT8r7/vnHDNTD4RAArbWQ+W69T0HRqpEwCiIJoBFkg8E2RCH1WQ9CaFTeBRSSEAJ68OoDDiqyhnEhMiGRNoRARJwtGlv2iqJAITQF9QrgCsQ3Cyh768zTyi0Iy2J0zbmjxWKvRxN2m+hmW+VeiiF9+bGv/fbiz+7WB9+205N73J8DACxAhApkB2cirel0iqeYNzdz8vyTk3/nV77o6FPSE64n3jdcNZ6998IemIEZmcGplwksA8wb/uDmgzHbnavPPHnt2p1PPvr4ow+HfTo5ONh7ePD0c0/tbGy+8szTX3jp0//VH/1hdVo79rNm7nBONZVlaaGYzemT/f133vvgf/+/+vdfevrZH3z7j95993vj07qH1ZXHHr98+XFrepNxbYp+b2AbcFoSMpRlVeEPEBGdRC24g8AmZqMkG2wMbcnyjnLwcIavSh/C9+IILQBH1TikMIWsihhJjSEnEERkSQjtdIHobg0ipsjW/In4oqhoRu4LmX4t+X+i8oRymcBp1DOFLBpAl4it/olCbcJSqx2F3nHYOcUAGTXopBqLiIA1hedGWBBJc1DIAPg2JBQwcqKcIEAKKgJYZsAZmxDvptNpw6GhhffeebF4lhN0yfqQQ7QlTenmSBC7K0RELc+S+jIuvSVJXiFLHYEIyZikAQNAzuYk6sF5KJb33gCK88HbgcjMThggFHk3RMYYPbPee/EMJoZ9AgDykt0mX15Q5oRTEFa+zdJNB8o/5wJKYt4R81oLf0gmIxTSRE4J5D3Z91euKDR0flz9c5Xur96vb49waAdfffOS5JFmot+XZZkOgKEM6RsiW97bnV7/+KOXn33GrPVExCD6mJBzxtLSGx+xulxYDsdSM3BWZhypVVvtPKVSYOTlerWWlZzbr0C1M9WMB6fODjGqORgANCdeYu5cGjOyYNa6RxZdhAaqXosNSl8qXBANe2Z9PuYP7h/giM/vbLEHRCzLUqRI07MhBo1E+3ml/kJkEFFi1FYIrg+EnCH5sEOeNFgbxtQqTboEa22rOjGwtIWWqBwA2YbRexY1OjCy98Y6kQGCNb0T8HPnhwLrts/UHDeLk2PxTQ8TA6adr32+ufVXme/S0Z/uwrPzNUd4qz8e1dPos3wE9qpyEHRfJIFTKP8nX6xefOZLUF47bfaKkpv52DD4xunlmRrvvRPnWBC4ocHacPf0+KM7d01/7St/7teuXbo0Pjw+t3Pul3/xK1cvXfyn//yfsfc9sp/91GeM9zUMphWNRsO19fL06Hg0GLz87GdufXKrAntz94Ot3uif/P9e+075T/Zu3HUNvPKF8y8++QUEC2BZyBZGe1tUXBfUA8KYzS8qDCGBeLVBUwqw0n8NaatEiAknYQdbrSCTEaOU3lKA+AHFC5DX2oCBhUfLT6JUcUoBtTtgD/8DdVlKdoVDsUKX4iiYBIszc/Ghe9ZCbS8GZpFQhYEQwfsqf6PSHO+9xE7SGKXIKHYbxEyejhinnkeVI/PJiyCRAaYQjKu24S4Lb5nw0hIz0mS9MBFqsZXk3wUAqU5vTfeLKQ4GvQNqjGnIzRveNNblFA/BaDRMaUtprTeB2RCRb2rEUBMkCChG+40mhhTNID7b5kikIAitmsUtGrGsZlvvxfvGGCMg4pNhNuSZ6MF37IFQc1WD5wwRyZogNHgybIW994YK3SYR7ewGACAmwJaQyBAC+UAurVqiWZi43bxgvms3njHEFKBgRxJMe5kwNbJSQqTUEgQghPMxMyITkQlmUSFDACQ+dj4wMewiGQDaFwSsjaxd2/zpD8xqdAeDaDRbOiJowraOtJjs2PEbWRLAQl41JrsUSOZJYu8hLNKSFttAD8LzEWy6TTc9/sP3P37583tf7T1+NCxdVSLNgF1EJyAxAp6ZtZhukMyYNRWAyDitjWIMAqD3msiEiFCJL7xIr0eDpQMR2zOwmjv0EBW2aBr23quxJFW5bBq21hJhkkgQQNjZsmiaRqP2FIzhavPDI1ZIuy1L0fKYobdCjtr0TfQMYKzzYm3h6gYBPLNrFkC9ojcS5z2fFD1wsPbODWeava+Y0VrPTGVhTb3pyoLJFKWIARCthAVR5BYB8A1GLZZIZUf0IGUI4gH2IUNaZZLaOxIutBCiqlbeM7OH2Mg5NmQmsmg0eFdrs3gGQDJCBFSQ1hRgAtgAFDEeoCA55wHJ4prIbHwK63Grtkj6/8OvDf45+29uzurv/GTiK7jWpyPH4OwcKyygxB5VVgAZG1dWArBWIQAfrA0vNbO5t+LcFM5tXjn4D371abBPHvYuDKpbw3Hvoa+LvqunNbN4kNo1tfcMCITC0hS8JuVbn+zdPG0KsUVRHNaLZs4Xr135S7/0m7fef0+qem7n09r9/p/+IZTF+OT25Z21xcST0GAwMH3aOLfefDRnM7hw7sWS5t9663vPX4TPPn3us9deurL++D4cA4DmvkYjMVooyCiDUU0zKPAgQMaBiAiJ2JDMgswADRNSCP8OTlARQUNRQ0ACouCGZBAjCIAMgAgMQoGOekAjKAI+9t1jBK0WgMIM2nkpht8ikQGbm5+xtbg0UWr3gByrJAhJkTJUW7umSFB7A2VBihUlCTucBSJMrLNOPEBDxN43tfMgxpgCsWiaGoB845gdsKvqGSJKbFwIZDXtXcNSyDPhUr8npduaf4wGLYtTFm6EG/EiBQl770kMoQFh77Hwvsb1K+ubYxkPkGAuZrjNuAewkcgjAGgeszb7bK9cypjXi+m8EZGk9iEac1Zst35omkoXZkzKdvDe+xhnBWdeq3LQmZJREihk5csYHNR+neq2POqN6YMSyEjDOSNAbTnMPKk/oE7XS53PpyM8dXXcVEw8TVs/t07+/25Xmtjqv2deSzrBEq1X5SccsARkhQt2lrA0h/RhRWaMj0RVsvu6dgQWTpW2BQCcryoPhurx4o13rj+ztbM1PFdxZUhIza4gwiwsS04a6Zr3Mbsgg3CawGpdtpZqZNcS0JI1eynDO10Jf5RkpJcya1hmSEYkLaofyx6llyZIJnwI4le8lqdNaI0FACh61io9bQcUkTsPneVdMXRts5DT2Xw0NOvbVQMlekQNU142YOoqBNFmkHBJV4CQwqHfGyBBccI2JOizKFHWIovaXl5EaysSCFMN2rMhyHYpetKSsBhBRCAWjwyOWAD6KMTswLTO3Xt33riy8/NH5//qL36ht9b/Q3L49bft7vFss7d16qc9oZ4DkaoxFVhAtlJRnywV9URoZ1bPpbCGqYS95uA//63RtSt/GYorAofgdxsopBkizUXmzI5ZdQlovHhmx1CUdjw/2d27V83HC7d4/92fznxzfLzfDNzv/NN/vPvJzQZ4OFxjrK+/+34lMKJBPURzfo3BmYN5PZs/fHAw3H5sf3L3eP9w2y2+9OTmb/785y6d26gaf2Rrcllwqwrr0sGH9tdgmKFWdRFRI6qgaH16yE46AMQ2ssIiyBzVE0TCn0GZoZuZkh+TM/EfMoKwfHwyKTwcE2jrAbSyaSjItmzVExGV6pZuBoCGTg31XV1UU0HsDXrkeTadHRnsiYi11kFT1QtfV843RWEE0VABmNAv5MUkyr+UdxfXFU8dhjJ56cwSkTgJlQ+ZLQEi9AfWaPS9xlR2Ups6hk+L0UKWaK5edTObnDYiPkV/oAjSIyl9ijfOybGoiT4zJaTkjRy4jxiyM+OcuIQ/MbxX2vRKAAiszqMQkvblCK11BBCAwaeaHsEoIQLQRkLlr0szTCiY730+w5biU2tXhKyeUZp2si3HJ9QGmEpqC8lyPvsqNrfzjDD/GcA888Cs3vnfhYuLdNrORFa9zFxFJMvrx8zeBYAYxHnhrEgTFAQCQKMhVv7Hb3/w2eee/aWdC7Xx3nshMgopEQahZNVXqIpA1gcJu1e2tGhpMtH8ka7QNEZTJkMgA2auje5iO9Er6YMyYE1aU2+TATQmaBRpqBZ7pfM4rJzMpSs4NURU8mdmBiFAY0zQDlC0Daw+vnuKJ3yCfRrA9qWSKttwUfekr35ZACTTmigQTUjs0mlw0GIRUTxQMLyAFigkinSHSQA1OTQCW6JtPgR9h90XQqmENaCRiIiiRwalAOPBc2jCAaDReQA99oBIxjAE7RCOTz5umhPqP3F5+K//0nNPmeHfhvXZ7//ZaFYdb6BlwBp8JUACQ0ulYN2wZwMlNAveAG6gP0K66eCzL/r/2Vef62/8/KGZ9+DYCjd0BH6nWnC0VXLD7Dw6lsYLA44K+/6Nj4/HJ5tbo6PD6Yc33judT8711+4fHn/v+I1rF85tr11wwg8fHlULIWsf//QLu6cnk2rWnB5vFWUzGtx+eH/CgPsnn35p6zc+9/kvXrtcCiwWrkau/WSDhgkHQlabYmXAE4MYzRUhjxBBiJFiI3ItaQgoDQKyBBaexsRg8Qh8goiANLZ4+fAmfATIsg9EluXWRyOtrGTHhKMaQzWIKJSWDk8RgF9i22kovZjPOIwAgLQ2WyzA12XfiIfppJIGSrvt+HixWLjGV1XlvRdCERaS0g4QkawxpsiF2lgXOeMFme1qedmiuQhaSIoaZiQ99QBI4qv1QQ8BvGdj0IHPQ8wxpfkIAIBtY+S6wtDCz8ZjNQo7EBJhYBByRG3mSUvXANTslmsbgQJmbuPUs00J0KM2T7IsTAVzB4falbRb2CFwYQi1V+j3SmsYggCu7reOOhjSwEEZQ7LbZg7gJc3PkBqXgZBDoGUwJyc4hKrGOp1UwKAdCUUghj0wxCq9IdA65uRJd7Ed2EZ+D4++UsiVvjxyLGkriYZMfErhD/H8eOgKtmcM3j1m+aWsLDzFKYk++q4hgCkyYCFmQfCmtFLevD/+3nsfvHruMdgJopIHRFFLjKZdh0YY6ttNJxJiPl++ZWFu2rQBZKXkeRsIlh7hLP87SrsZ78x2pAWLBG9C2O54MpLzxXuvRlkNEXB10+JeF3qPEpjSnT75ehDBew07EGpvQESgctos3rq9O2jcl65d3phD05zYDXGuMEZQK01GV0KgjkEHZkYssvaLBoxRJ0s4gh0tPyS1gI+Wc8FYmQjBpDBFhhrR6CYykIhmqZEnQcaQI4cIgoIgBhFKFgGPlLkMihIXi/3e4u6dxQnxpVc2fu3f/eK3B3L6g3fhkweuBzAgWLNQeZjP2RMggcN56WwB7rQwI1x4t+Zo+J/8hXrrwldmKJXc3/SmbrZqmBiezF3FzN5L49h5rhm8GCAiNET2/sE+FUUPcDrfl0XluDn2DXm48uwTX/78F67f+OD6jQ/L4ejJp15cTOe71emo6A1rQTcxA5z7CY7H14Ybf/3P/9wrn3lyNKhms/GkxtIOCw/bo+F8EUhjtuEiIoRZ3RjtSx18UiCEqa5hDFmISdggHBI+CCXk8mGi/qTBmNh54dKhwNTvThL3zY7DsjYcT3p0PUPSsagNswUDGCIKWz4fzlEI8G0rskIIs2JmZHHBfxHUm4TnzP3CQsOnk8kReDamB1TW9cL5qpovGue9F7S2V5YAUJSlMT3NR1WOC61MHJKp47RCYDhR6P6+dEhJKySGUjaCkVQ2XjzUa0MjzrMHLMmDN2edaFWzLED0sndrD8yq8ekpoyGBJpwQLBw0BMul6XSHjGmbKOT0GsEor01tCQAg575LVyDo3c8S03VWWU3iQ/G9BCsN9UQEWVBD9WMH7KWogXwtCcRpksli3JLdro6VrzqfZoagsPSTfk5ODgA20NZJXB1tCddzZvwoLrj0YL66zh7pAYXlyecjrC5Kv1xNo6JYNPtRMwnvNRRs3+wBuIeI1jrhoRmwm7/23ofXn3j22XNPIhktKIMBWMTMPnrURRAkljnqRmEuiU3IxOwleFU7EZhpwonJicTSeohLKkIO/EQREgvXI5AYbQ46klaWWmpUnu/Io1BIk1gkCt1sjFbXbLwzYMCEquOh0hliWTQF4unE//D+KdnR589vnV+Tpj5B2BSJZdUp+h3AALKEfrEiIo7ZoAmteSSJ2kEUEhEvKdeRIw9WJNcx1e7OasgUEkIBcQCGKXh9EFFQNOA6FAIQ1ciMgENDCF7A+qz9izWjvkwnzVP15H0pvz9tnn7R/MK//fybhb37wBSw15gae4geecLgkYa9ix4eyKLsgZ8UIgyfcPWbnyr/xpd/Hda+UJXj9TmYCme191yUOJuWwBXUjmvPNYsHEgSiwhh77+7BUeVsb/1k7yGAWR+t9fu9WT1b83Bue+dofDSZTE5PT1/49MvXrj15/Z0Pmo8//swv/BqY/nd++oM7e/c2LPylV5/6C5/7wvmN0WmzN59OysGwItvvj6i2i6NDGGwrFkA4pwHyoSuRZsxjgm3IxUREiOXmETExSgl4qxHCqeSRqPVCEFL3zJwXruB5pH6t/Wj5OECXDrCw6mfSGZaIMJp2UThUthThJALqugDAOxePM4ZXaw1apd4IIAI+HXmcLx6SEDuwMhLyzs0n0/uns+M+XUTE0XATjAXRsB/oD3rOOYyuRkX+cE5juCAAAMaScwAABkJpVRNdJ1rMVCRT/xCNc1oFHQzA2rCQpkEswBB4tpmrd+mAW4OSUrPz6+hk7+SoUmqlp4/QAlQpJ0dvaz+ABwyHUjc7l+Dank1h7v8SE3TOUbQvR4gazW/InhNu2VVSshFDAAHGzhgY5Efkjj9fWUiIjsv1En1vCkzNOW6iv/kS0lO6qRSjfEUkBdouLzUCQnXfZB7P8TxnltDZdU1+W4bh0v2rV5qhis5xhK4Kld28+oql8R/F+1cvDQPGqFMyM3gPwFwYY9E3DZr+mll7uDf+8c1PHnvu8nA0QjAinoEMBirNzASUtgyyXcuV4M5+peiwFQasdjaN4yOTnLMdsWNVckqDL21Nzn01vsgEWkLhXRxTQ86CXi4k5TsSa5KEmgwpzB4TM6W2owMiCixKb6FYO6j8D2/tbpJdH20tprM1HnKZYhkJQ4VhbtMFkbSXsGrYRMSgQFXLELMnErHiGZEgIDajEIBB1BpGzKKHD4GEmNGYUnR5REYbPqPGZ6HjUL+2ldgQDItoNCtCTryGk2YoOC6oZ+D5Cvx0sHjs4pO/fdw3j9/4YQ3v7SHa7e2yudCczmo3nu/3+lhDBYZGtT/yAGvNf/prJQx+/sAUyNWaOwf+wNOxd6bxTsDUjM6jE2FRR5B2rsf5wt07OL718Gg296987tW1sjzc3T2aHfUb+9Y7bwo0PcFRvxxPjk6n2+yr9dKAn+3t3+/Pjn/rxcd/48ufeuXapeb08GBy2hvYvvSkgj7QdHzMzFvbO7Mq1H6P+w5B9QjFakIQFmYZYgnx4mlHQQklgRAhmDpJmXTQeUh3KBmWZMUeFNE4IrW2SJdEJaQlCF35m0UYxYd4WMJQrwZjyzswalQTEfHavQkTwU44TxmRj/0+WjYpbUErH0i6h6peoDgCWVSTg9PDRVVRYbygANUMJhxGEvGu8VpPDENxDA3aYCJiH11LkfsmMisioUuSRB8wIntGNJ59CmSpa4eICDTou/UhATNhn2UlPUsIgn7vQU3QchatPjzaPxnX1hKSiEMGBjIaX5dPLjdhBIjEK1ioouYXHuzylTMJN8adSa9ob3uE2TnVWQQIelVu6JAoUgoAIrH2v1qZPKzwFcTEu6VDB5dZznIQTcbewjiptebKaj0ioE/UPORoJJETzuKIaUqpmNzSQv6l68q5S8xya/n68hxXvsmxc+ml+Rvjr51hQ2eF6INXBjx3zqJA7eYlIADX8O3rH7x09dLLr34KIKQ86i5GvopLO4CAID6hX+JSiUZo96TVICzSojkuOCA1kErrxcIKsi3JKEvQNtCG0OsKg58t3dy1rzwKsPmfeo+2XXOgHcRAELywZ+4RMQKEop0BvCjCSAugwpYD5vFs9vrDAyjN5fXS4oK5BACRwpgQt0FkqRP8aVJKPaIRASWdWrFTMyaQDCIwMsVkRxEREgMGkZDUe8UAnoRQo2pFBNgYIbKI6n7w7F0O2zbIhAnIo9aETRMzFtegv1ivqO8Bh9Bb9Eeyvvi554qXrwz/v+cf/M47+z+9e3AwhXWAvgFrHTuYkh8w9MUcgv9LXyx/5Rc+53Abq5mx7LkGP+kBTUCmTcOMzkPN7BhYC1ywExRyuLd/eFovxNLGxojZ3b39YHywh31xrp5XFVnA2m8O1+7fvmlEeLZ4WM+/9Z1vfurc+n/0r/zKi09fOji5e3/3Vm+0hmum9jAst1DAcVX0LRbl4XTet7opXksECSNAq8cEB5f6AKTVTQWVYxEiCBCKIEWGRx2K0aomkuHJEgFcpq7S6VyicmqL2p10GgYvnpGjbqoavDaKO8sIl/xGABJKu2TsI1Fc6V4pmyj9Sw0VALP58fHJnmM/3Lywff4ZsH3yVVVVIMTAZAgtsgcnvjBG4/TV5kwoIRSatHYbJ4GgdZpHNpUxAo23IvEioA1L/GKxYGYG0x9QzxIvPKH14qRT5qS9EBGALSQjffc6mZxUC7HWEnpduaBwppktUYrEfhIQldL5rBZoLjpJZ6eXptW5pOPSb78M/JaCQJEGCO2VcqqHsVVRvLOFpJBKlyxM3dZDSfJKuSL5Sn2WF5uWnC9Tr+RCpiwNKV9yvtpVNrkKCnVdcMwi/dnc92dc+TGL087giR07wSp/zT8vMZIcVnG9Z0+AmSH07WQWIOYBkpAYhxuDtQ8Pxrdu3nvh5eeIyJqWNCCStQTOr2Juzn0lkwUBYo0ePAOqBMisvU1AyIA6cjEtfDmM7lEwV0yBtMUior130uPcndJZUtHS3NI3ms7uvA+h1tkaPccGSTGZGAAY+w0xV82GLep+//2Dw3lTf+2Zl84PHAAYi8ZQFG2jl44i+UvgElFjp4hH1LZ+6hxsi60KIsaoWhHyLIiMSr9ikSAEdk06JsG7TEQE4HwtIhTKOqj4oufFMirxareY0ZlaxgPo41Bmp9XosA8b1dhMzm+u4af/+oVbX376vd9/6+N//A5/eFj2PKxXdc/AiTVF5ZE2Sjj6D77ymFz9ZVdVO26tlpMp3ZTKgTzm+GjKi1E1cOw1WzgIOiLALNIIiUNx3Bgs9g/2cLHoGTqox5vD7edefamqZ4fvf3h6fLi+Plocn8weHpQ79s+/8tnfevGZ7YHbPXrf9+36aNsuynlxKDisuGhcZQtgrgpv+nYoUEOIE9bOzRKUV/CpLYG6YVaPUkQSBKAgJYWWoMEbJyuPcShMi/AIY0wiCO2f3V+Tj0m32LMPXRASUcoIbjoB6Ryx5F7VRNYJKTqDWHLlR5lvqq3hvdfP1ezOZDJral7fuHLh4mP9jS2HWHkmWTCzpcJ7cU0lIt5TWZZ1XRNpiAIBcgJLtDC1uK2zy1hPOw+dQIFFBBQCQNM0zODBW0uATpxHixxKyJ4BYQWSZWupETANQR/nbeevm2MsXCOWKuqB4b6tpW5Gsl5BE8vEBl4WjAO1I0QyNtjtQ1KyIcpJJAkLCIAQkweMPvdouEMMgbEAUTqLy/OU3hhmjwCI6JqaiLRFATOHBRMSGd84yZi3dmtxDrWzBghJbogG0kCGaLIAEfGNs9YyC4kYbf7FapEXQTCGtIB2ChkFgCSOKu3WetciIhTNL638qrq+EZHUfl6/QEQEDK2lQuq8a1mJBh+BaAUWxFBVJNvaVt4kayQm30E8D4CBpAJiaCiCEJP6cpxs07FSIWOM50WSH2GJwbJHAA7bl8fNK9vw7BwAEvu6mgmINdazEJpRudZUtWUcz06Ha8PzxeAbt/ZeuX7nsVeenkqzKWQcLQyK8YV2q9L0wcAs1UYUAsmScKaxgd57V7jSG9c0E7dcs9ATY0nGFkq/GBG8IBpEg+yFHYgYKDV8wPmQKswMAU9BfWCgFSJRrVisonEmNQcvSSBKnEV1tfgWakaGTdRwXL2BvSCiJQsA7Dx7T4CAxAiav0hAEoyUyAB9Q1R7IF8RisjQDE9q/MYnt0qzcfnSVo/ZTKdm0Kt6hXHNBhTcL9gxkAAhmUARyZB3qaOJCKMAsCASeBQEMAIqZBAZZBTWRAmWEJ4FYIBAEJmERJM8Xa0n0XuuazEWNSY6HlKryOv9FBkBy9wZ47lEgz3Pgh7LPnJRMWPf2QZmfFOk/+TjX/33L7/ytad+8ifv3v6ze/CjBzBqNi+WJwJ0C6Z//qvrv/Klr/o7hq5s1PWJa2pptl2xcPWRqZu+31r4pq4XhkrfNMb0hMW7piiL2lX3T/cHtZ+DwbK3s33hhE4mIs9tXzn3+HNffvmV7379D0oecc/v7U4vnZt/+Rc+929+/goiMs4OPZtyuwASJxXNrWwAAcCitCBYGCi9QwDWuOVIBNR/4VmjzgkQ0YfoXNGTRFSICAgwEAYdlwGEwYaKvdhh1zHhW0LSbyIGaDBWJUytqwEAQ9loARSU1MqFRUiECcUa/caLkAhY1ratUU9jJLIIBoO7Fzj2NodQza01fsd4DkEAWczssF97bfsK2vKv4YZ6gvW8cFLXawtfoFmgO53v3TmYzLYvXrnwzDU72vZAc2Hj6z43ngpjQA9m2dOY5MI5N+wNdSGg2BnJmlZ3jl1PgztAREQcwLJD0HsPQFO3EJFCYOrHYNZPZraP9aEMvzp054f9vTEX1jE3hTtXD4/a58MbNUUAreYvwIoAvr93OJ/Py9HAECdDBHfngV2dL3A76NyzZP+OBD2qF1GmoNZK2Unz0N7SGI0xsHKlVwdGnh6MrF0hGn5CJKSOA7i7liXtBCm1/g3eCKKQru2F88isqAG0un56hV5KixEx+f/CzFcyjoLSQG2eX7y9a1OKjK+z6pUrj99b3bJHXfkjEmzvuPprDsP8QkxR7piDIv3qnWfntHYSEXnmqqoWi5k1xhg7Wl8T4cWivnfvwYcP7l544YmyAMeeip74BgVc0/SoTNkLwQUQN3ppJmFrunnYq4sNuxRj4mTJXqJCMULOIPN/Q0dRVQ5i114A0OgPReCExiyCZFb3JQE8n2TagqUJhzuzNUJm9WkrkMTLOTevq+/cPvgK4/r5QTNAasp16vWs+LJhTwIetYWvgDrjENtm2BEMjAoIQCL0qEXZUNOPEmlD1WUxFG7PMjhB1d/wib0AGCow5jJpVUuA0C6x05ZZzTOhqDVpqQr0anEX6jeT2XxSLTb79uWXP3P1mRdf+HDv2g/ee+u92c0FzEp+xtf/ya880xtchAGdLBYjqcHVrqmapm5c1XDjxDtsvGhJIPa+AjLGApKMx+ODk7KRtbk73twyTXPipgdPbm7gYmZO7v7gW/f2J4ezvhyczr/8ysV/7StfeG57fVaPc5KihDFRibh89f9RJxsoBsNiZuLyQf9ULYVgJTqhJYD2DONKfufSNzl9lgyxH/VgRLDM/gwCgNpfrh2hPRfRlwGtQzfqJ533RuQAVzW156IoiqJw3mnh1cl4WphtNFDTw5J4NuYHuw9s3z/1/Kf6a5vFcIOJ2AMiGDSiOajZsGlJFGocYcuDswN4Zuho3K7WCAcA1lph5733QdikqlI3vt/e2QgNfgBQCLEt4L8ERgCwzExilr4FgOOTmVeLkx7MkJ4gocaZ/hf9zwk5lqcePUsakEHxQVTZKjuU0GLnGbOEs7AnR9CcxIcxPSOLLh0x9M9izO+B/JGlaF6M2o2qUFrETilQUHPojPcyc0uyly2WsjrhpRE6K03SbvY9Zgcvf0pEEsYvQSlHqUcerQwUOQxXYZ5D/lHDhiXrukigTSBkANBScM453zRlYYqi0BIVa+vDuq4NWkEoy773jSDMF7PXb954+ejlJy5sz6RqSpIFlEgOTAIuAIAQsIsMaVn0ySigCGooo+tMmEUIKVhVAKN1LAmTCglBj2K6VcA6kEwMeOn7wFFMYkIiIqGMRvuspP2SIPG03v1VuqDI5jkEnXYwIXsvYorMEhGoa3fjqHd+MN8c8nYxLBswruGysliXMdKQNagZOU0mbjcms7PKKsG9EnJ+AwOORYsBBFDTkoFYMKXkMSO0KSVaG9xFsQbVpC0ihlAt2JAXf9VuQIIggGBBTOhL5p1U0u/1XYGzmpsKtsu133xl9OlLo+9cvf1Ht+5/6xP3W6/Ab3zxZTbXmtOBsx+6ZuCbBppKXCPOe+9r11S+Aew33pOlyjVEjGjImuOT8Zxlsqih8X1hPx77+XzR609OJouHt3o7I0/+2Z3tf+crv/TLn35uPtufun2hPiNo/m48JAQpXgrQh7TzaCpDFG4zf3S1RCRI3b3XYAdQ2xu3JpVQpBlXDvIq5pyJMKC7jsvSuXSNz6tIm8IyGIDAhNBI6ITgpEWmB6XNTQLJGuogFERk2PnGLWZVU82JwKFs02Pj+vBkerxmypP9W4f7ty488fy5q3+uHDoNLwDnKGT92TyWS6I4qX8ahFgAJOfQAu3R47QLcY2U9DkAkOApQADyIlraj5knM88CAosrV55sGi8IQgIeLILvBn3mVyq/0ulFCADjaUNYGoOePQC1wXi+pTQK/VbYQYDo2M8CieLmqrwVjU0hJFUAohSv3lbvlzWY0Aa4K4C0KBJBnaMUsrCwqNEDQFRrNYREIdWXObkIw+Sh3bCcUwJobfp2vUEaErPkBdFtMFmLTcgYcIJZ1NKiqLG6ooiyXQacTuaZCfGpwtmK5hSl6c7goMpFQvpWNz1z8FaKOOso/uxL7WEZ+oolYwAdiJqIAdEYMxj0vffeMUdsNYYKKt+9t3/jxidPbm5Rz1TQGIACKDTVAy1NY0Rahro0vcgsSGuQAoCsrBG1wESiDppNR8Esp18yMIHlGFQCXWoC7Z52pEnItjA7z+17829yHpy/YmnA/HvprrfzOZbVc96r1VhZo1/Im/tHrux9Ge21NdeUE7B+HahpKiKrTuxEozGWzUmzaPUwTpIWIKoqjADgGbXuDZLWnCGAUMZDBFK1Xsra1DInVG9Jv2owLIDYoV4x71sPFwGBMAhyOV93JSCxYFHXeLRoRmt07vzaX/+ll1/dq776xumf+/KrsvFLe84VfnFuMByf7HkvrnHs0TM0jSxqWDTAbOq6BoteWBiJjC36LDRvdvtFc+mxSwd7x+P5YufyxSNxR0bMGj43Kv/q5z/zuWcuncwPHpx+DA1tFBsz9O2WYZs5QmgZnG+rLpDy5Tx3Mu8kmBnIMJgDAUCIqcUDjPkxcpYWFMZkyOgxRlzFJH2H2QjE6OUYuwC5ktx+3wqFGDdMLIIXSNMIMhdkEQP6uIcOzmN2jrwTYywisvfMTWGsKahZzKf8YHy6KAp6uP+xm50+/uKXRheeshv9+XxBwOg9Chtj1C/TENgYOtBSuUAKNJNYZxJVI0BADauOGY8AGmyotpggMWCqpIle1V8vwkzGNp7nC+1MxZcubtZ1g4gCHgXJcOZrhrizUZMOWBKjEtNN+/unzrMXz+IQSwICIkEH0lE9M6SJOgegh5zKaCKbaPM5EFEPWbCqLGFJpokiYlCgpf0+Iw0tPxaElDsSuC8zcux7AgDBdEyYIlaUN2UUrSWjcXWKe855Ior5w4GywErY2hJMMEsDhaivhDV21ytZoY/8A0cGvAznFYYdpcg2LCtjCR1xGDJ0lMwKJDFoHM+yQGA0Ccab078h2G2VJS9/gyzcfmmMKYpCRKy1IejYmrrWmuFUFMVstgDxzIgC+xN4493rn3/+hbXR+sI1BsA5hqjYgeQ5RbHCeDb/dIWJZY1FlyYoBCKsua0E6GPZltSQRaj1Iyxj4KMhkLHEQGXy+aSbl7Y1R/WwkJVNyREgfdnhnRj0IQzJJygiA/L7s+qth34Tp+tMOxtGynJSlyU7Y8RaG0tVKT5EQaetIB8oMHshQkBgES3OE5QnVlKgtbrVjICC1OaNIAqLGB9fAZDFKuoNFCplQaz+Hi7PgKF4NGm1D4jZaDha5/rU1+N+OeiPilmNU+8W3m26ybM7V57/St+df6ku/Ab0cL2aPDip/amrm6pydY0NFzWXzBa8cSxVzQUVIEbYClhDvcKORn2Zz7yUfRisndvcufL4uU9uvrsm43/t85/91c995lzhjk/vV33sDdfdKUBtzVC3loDamF4AcMJRhQoImZmICFr0JAiVSXLEoIBIkBuWgkwZgJkVc5NMKEy40eL8EhlPg5wlYEsuocbFLFE80DxyNkHXgqhniFD0op45h4woCZGp69pzYyBkkda1m84WMzru9e3923eL3uCxl3+xt3XVl3R4urtVrKOgtYjChgiJBJDIojRn0sOlt6ePELwo6WafFro0Qwm6VlTVDJnCzk+a2oGgXSvq7c2C61otzyQG0FOmNS2d/cCApQtNADg5nQMZa23jGkMIQh5AwBMVZy6GM0NEG9QmkgJ2AiZhyBKLTVNa6OghtGQ4o+mIGCwChMIaaS+xaIQ+zogh0U1EYlStSC4SRGteMsetAmJpReFPgcQFM/yLM8sIHySmu9KYPR8ZsZPIjoic+dWXtqDLOxMHzYftHoAVRqtkeGmxESk7pulskkkXgfybR+m9siqKhW9Yu0rEd8Tcdhb18xXGAoQKpojIXkPuLZFtGu8aFs/WGnDwwd3dDx48fPXSxgAMIDvPEsxc0YyghJ05LTQtHOJGBZxgXOW/uYE3MACjncj1IQ8ogpozmyKF8QxQp7mASBqzq0+E77pFW1epEmQop3iV2o1kLDbw11Z4ytojCjsAYAztCNX+LsxFzw+qYjalNw8mPWy+aDa2y/4R8nmDQITRJRY5IptgHKZULVwnLtKGoXFkugDBbmwJOTWCYWZUgUYXoAHVRCKIXFobl99R5RlIK1NKtjsexIioRSve6QEYgE/Kue0JLHzjT9AToi1taXHoSp7Orm7BYP/uj5vv3bi8c628+EpZNPPK+6aq5+PZtK6ccTBku0FmCOALQ0RkqWQhBNM0vqqqesob6+d8zy5sfXx0d7vc+62XLnztC7/6WIOLYnGvWRQb59eZYOKwwPHQ971l5mhcQknnLQgigQxCIIwUVAlEba3H0BI5ABAgEcCQhiSMlFwPaiDOMSe/ck6ZGNIS0Qifo0HlTJyEluAsI2r8g6LRsxXrWUJWaLiFhWOpuHx6kPE2W9immnnvibCuqmrRmH4Jtmemg8O96xeGm+cvfq43eHpez2YHD69u7cyljolwhgWQGZHMI6VSPYYYRQTfzqFjSUrcV4ST58hLjNyWoKySMUa8M1ScjA8ZgIUeO2eHPeC5YEECDFQw10iPbIFqc0DkKZKzBVtT2gIbB+KZhYMpvOV83R3KqE8LUAQTVR8WUTmaukwLzmL/oNmiiHnvHcxKkyewMkKQuFi898qAk2VGqUKoBe21UFdI4eCVkuWrc4BuvmbYEQ3YjtW80/eJCC7hViK+q3gvspyWmt/2CN6WRwm1W0Ar2AbRNpWGyn+CaNLvcI6z3hg/wOqFmS1lFW4AALHGCyJqUCER+bpRHYvZiXNgyHivZ8EbaaoZETnngD2BGdrh3mT2ow/ef/apq+dHw4o9GwQOdTMipM7MpDtbTVy14SOEakFBfxMgQwgM3nlmlhCHDCT5ODlpA4BU1ieDDEAGnRX4t7elAXOOm5t8oKsTtxx6eY9alEuvA0QEk1paLZw3DODxwbh+HfywP/zUGvXIOtEEJ4+p4jwiIBOWcUxKDaByhE+vC9NBj4BOyEjQucNksuKDKTCHiJKbGWJSRIAGGhEgYOj6F0SDr9QKzl6YRRyAaxpnixJxU4zDAtA3wMwLV/GWlNPq3PlzbBf7/v70u3T4cHPrWjXzvq6b+dTNT+aLauF7DayzGdFoA22BnsGUBGitnUyO93bvWLDN7OT0/seX14rPfenpX/viK1dGJc6nuwO2db1NfZLidLHwVtaG/aKuJGT+BxExqh2tSx4otN3TgxwXHrwkqLwOkciwZPIckATzPYUh075rGEMOqwx/ltASVwh4wOeVbxBzz7RE1pUNiIiIDoTUqx0Er3jKWCgkUIGk6J8gOcVpiDCH/KLFYua8E/DeoxNGW9QMh6enP/rODy5uP1k89eRWz9Snn4DrX9rYak7uw2AoiJ4MAwUQIxOg0PKhCK9r29V1Ki+14FL/ZaaqhWWEP6MNOpoxhMGDHJ0cC4ADeOrqhdI4L8SIjFwQOVkQ9ld2ITxu47jd2GOAalF7KESkaSriQsARltZal/loV0++RE1UpT9hJk9J+JPYRDUnNGnXEZERNLV5CWN4BZQt+YtvlFDVIdEORd+WXTGzc87aMvAG6eS5LhGvhKBqOkOUxOGMISJysZq8PquaHGTEtFuRI5t81/KzRGehcxKWjoMKSR35dIkoQ3a0FLyOPXTPW5xh+zmHZ96Ptn1x9BMvseef8U0rAUjnp8La2nkAMMawcy30ALwXInHOba6tL+ZTEfbeF2bt1M3euXVrf+/gfFE6bmhQpkCEJdB1ONmSqYeME9ADuDRhdU+sxh8ENI5RLqh15s6yaCEiawHvcLXhNo5jbZAVWOUMLH9pzoCXtPNVUCcAIiJDQDkRIYPihJlTcxxENMZYGc5NQ4RY4+3D+rvFpCjLzw0H8zXrvRfpkSVj0FpLBgCWIhPbVyeEz+cmEmrhJVqFyaKZLBMAAEZiijB7EOAUcdZuKIloacMzElUlW7gT9sBuB9atW1+w8VacmVd8WhKXvbJPRJP5UTmdgOlt92bjpwZHN28sZut8jmQBTeX9uKnG4ylPqqKSXu/c1eHaljGjordGpuz3sa5mR8f7TX064Pqrr1z79S9+dntYOvaHh8fFcL0CLIZWxE3q095WzzupJrM1O6zQA+QnvUNgNTytFSCD4SCkooK0PxERR+s9kRUKojaFkk4rDOZszRWI7BKtwJDuzks2odURloCf3gWZkiMiqyWdIhMEgjBVvQ0ylUCkjcZlZtdULFJ7J84TGCC8fefeN7//5vsPYXv+8CLhlfnxp69tPr5d7Hn0ZngOvAdCsEwYYuc9A3oGk7L7zoKJj2TWB+7hWwCma0nayIGjicgAocfwdDIXBBa8fGHHaF37sHLjXbeB7xJd6jFWYhknA19OTZsHfHgg/WEzHbPFIRnxHoVrYZseTwvDUK9OT17QE1LHXy8hr0DAp2cQEaxRE0BaUnCyWhCWYNGiEKpmAIHb5qmBK8d8bXXrAoeSk4hYGMvaggW1xrYhARGP7EN/VkPE7fYjsO1ootpbDgHRiGXmhj0iGvUEi6CBQoXUaA1ideIjFFG0yaNY9Y2gyBskr2XbctqecDFLSKkLuQcYZsYZdc6k1Jwxh1BUZBATphxEogx0HRM0Rn9cnq6TBBEREeeRKM9DU2hIrFORrVSruyAzazRkoMWARNR4R71CEGsRMj0AYAZuQhysrxsDeHJ07BoOxmCZlX175+HkB2+9+/ILz/lZ7bgpMTZMDoESWkMDA+UmAS+C4T+FegPEIgi8rP8CABoRcE5tSOJBlGuGmHkxGGqsMiAzFMn9AcAYHcRlcPWFbmXJ86c75YSJCK2WYWTv2BZG2LMIqpWOWX2v6uP0jfNxF0SEwff7fQBwLtSN8t43TQMAhaUQPIXIYABYO5ixN0iWEIFFm0aD1jHoWV8tjOd+sS5N7+DO9HUQ/9Ll56SQprZcF7ak3vpCCJCLUgZsW7wC0oApESmKAjpilqqwyF4AQAjQBpz1AIhCGrQVPeEaNlQQsTgGirtFoLGEws5XhTGIJt8xRGQxIgLiMeSVIkgBWCwMIc6wBGAwjodSsNQNMnADw62hFvMST4PG+8sD78DfB6nrejKbjE+OxkenMHMgaI9PT7a2ttbWt+tirRxu87w329u7tk5/7oVrjz/++PmLF1zDR/M5IpYbGyKyLoLOMUDfjqRGFJFCFuI8AphYw1mCausZOHShAK15qEFYCMAGuPXfoQhqCQFtNgVAYBCpUPE/mLUysEBUVTkyRGWNEkYTD0JG9UNpxQIWCTHIHZlVRGxsIpJHbyAag8isoewQqoGLF/FWki4XunpIWLnVABDE6Jli9tz0yC6YHRExmJoNgwBXvrLe1M2CwTPhieM3Prj99R9dXxRbfO701syd3Ktee/uj13c2v/rys0+cH7709PmqOSFrCGE8Ph0MBoUxgODFEBrnPCJaW4pI0zTsPBGpCwDJIHLDjfeegYliHQaRmPJConn9UIsX8CQehUk8sKuZm1pofQ1mR+T9+oLnRzV4sB4Wn7uC9cTWpUfhIQycmxoqvJsCrCXYAoDK6ABgwQAwgFhhw76lr865wlhClEiSBYFZliucxSttkvaNktawvhydFMh6FMSy3Q3knoiSAIEsyrdTPet8KAhxC8Ce1fmuOOSFk40416eNMRxEdS1KGAv2ZsKECj7IQOqh0bdo7SE4Q4/JoZFaiCSYLM0WVmy5q2lCiX/nIk76KVkdoySDS+MkeIZxsujxfD5LaVfp15+xuqVvgoi4cqcO257q/P70itweKwIAtXep671nn371TFbAs7tx9877t29djA+XjAABAABJREFUPLcudV2zlKlodpzeEmDTktPSRBiRHHdykPJBVhcbiUhmlsjAgNI+nsO/kzWUuQYwW7XEKwNha65XO0TadBHRIvLp8eQZYeZkzUv+5jSrZPdNO+sqb8AgiuPGATPx/fEYb/mr56+ax9a5bOqm2eJmgHbh2CCCaWGYNjRHnqVTnJDW+8yiHtAQRJtnAGggUsPeCsS2sCjCwAiokjWFZMosqKJpGiIDIBQjoaMqGTrAIwBoFQoibVwpXk1oQmgRDBgCIQKPZssa6Q2asn+JescNHk72T49PK1u6B6cPjH2wvn1+55Lb2T7/9JMXPv3MJUKPhibjmYgYY0xZAJBzjlGitQPbBM3wv6D7YnD1iizbGtteopH9JRWWQ4oqAKIhEmmLKmfHvovAqCGvKhTG7wJTDGJ7sgDHfynev3JFDGU4a38TqRCVHqW12VIM2RMRFpei7Tg10gSoPdfsxFhg8FxbQSbfuFoq33jXW9s+nM1/7w/+eG+ONZULjyXTzvrOonbUK+4dHv43f3j7xce3Hhy/+NKzFzYHgxHQdn+NnTPIaBEIietezzLzYnHaNI0WcRMnJD1hL04Q0QKSQxEC0FLQMcUf2kyeQJG8ZwaOpmkAMMbMZ40xpS1gMq1Ox+DEPXZubW195NmJSCqcwNwxK+Z0QEQsgwf2yAhoOKt77r0vbUGoIq26KnMW1fLLCGtIs087IZGBSQp2R8SsSnM+SD4/g5RMFipdZ7VDu+jiGVlMVtZUMQ2icyLMhxNX8zHTMVA6D8K+DdLLiW/k8YhtE+loWhRGJTFRWIjl+M7G5paDrhCsdKjSzRybK+dgifBcNjrlo63ej3lCOrZPnclnJZqalwaR1sPduTju7+qrl3Lt01QV7hTl4fzyIAJa+U+AUJOUas9DXyDU1+/vv379xm+d+2IP7Zyngr0zx8+/y+cfEgG1csOZE9ZJpx+RBTwgAwiIDU2GBLTQgQQLa+dlaS84dn1oyWUqcRdlOGn5dM7JWMX2ZOxJ08uLj+YIo6jCzEQ2RtS3GxXOS3wNAiBjURQC4rxnA96Yw6qa3Du66nuvrI821u3UTQuo17wpXGOo75dPhAqjbUxWDuf4l5rETetLzmgCgLYoDIQYTKhcyeIRgIVJGACFxImgSO7dd84ZI2mXY3BpCJftnCAEBAPgJVjSSdT+gZaKQoQXLI0XI1j0hxdHl85fpRc9155PDz4an56C0LlLj+9cukpk3XwOzaIcbtR1LeIULZlBJHVgVP6q9b8Cr1WyGXNAKB2j0HA+bQmA7wi+nUBcRNTWVWAIhXLlJ11LxyjVrcy+C7IjtUpeFM2XgjEzdJTsiluPioYBCWP7y8imY8GN8L/wlOpjxqje7EL/dYyo7xpGtAaFfVXPxTWNd+Vw86fXb/7pD986beDYIQzX+uWAj6pr154WKt794P3xpPq5n/v8e2+99smffP/p93ufeeGF5y8+9tzFC1J7cQ2UUokrsISq8d6L89basiyZuaoqKcV7AC+otJFYWPMk1ZAWLWuMwsgxDc4Dq9eLUdu4kSWaT6VfeCj8w6PpfAEC8MyTw9FocHJyAiBERkQQDTNr5PLSpSCyXnPQ0HqCWJIMAEA8I6Iho6UniGIiilA0IrXcTZjbloe49JqAJdjtZN7d144aEeiLQK6YAntI+l+mZLuqNsZolQPVZUm7eKcYaFZTnx5ZRCckMcILIGRMaeuzLuKiAIaCQADQ9uSSJNPqHLxaBVKJyU6sTfq8yk3DWx7BrR9VkwU7mvFKPFGmcCtsZSUqe3UOj/o+P2D6LpLlm0mJXXcVIrKkGufsJNXKUI0PEZmwoEKLvQgRMJvYU0iAiC2ZweF89tOPP/nqp1564tz6ojpl7HCv7ovOXJdHTV7NKmD8DAio/MbBv5CV9EsKSgIssnYAzOegFxGd0fhIAIOpVkP6O+HQudCQbTRmNLoN5kfE2N9bOYG2shcAISBY2SwBACqQRNgJOEQqbMGN1HP8s6P94d3Rq+e2acNOwaGbDpzBxjcmSrRd3MiRfBVuUUQwiX3mWMSY/ARqokdArcQuGlwNyAzagXilAonzoLn5gJDtTCedAABEfZuWKCVxgojOxwJAaWtxwI4aYEAUEkO+sO7FF1/2jWuapnHQLOoampKw7PdniwUAWGutLZ2wGiSsKZKCGHVcjBpUhFXMF0I0AAKU4iJVuFMYdoLzU8l9ARHQBEqCDBYIoIneEA5UJKQCsHIYAyngWH9CBFhSwMpSo3sl6SDKRfNApJCOF/ATUmhBwtLAeRU9AUA8a28DEfE+OGgkMhEC0m/Zu0Vdedc03nnfSLn2o9ff+/YbN2G4+elXP//N731fmsY1Dr1sbW6/+Mqnvvej71578upf+R/8tRufffmf//7vf7R3OK0/ed/e+bmXX3jxycd7AAWALWwDpTgPYEwBzvNiUiGiKXpVs2jj/gRAy2UQkNOUXy8i7LWqMYggs/4J7Q7r5ZmwbLhe+Obh4YRhYGD+9LUBonjfFEWhNFyFYzjrUmBaAbAEjZAHz1nKuwiStBIXogHw3HWzJ2KxOnTazlA5lwgwl5jO6CWgP3Q85xJKe2MIol4mTBAVjqDeEFlEMMQZFUj3QJb+kTSMfPJJsaCAxt25gaQJS2y03l4rPXby1XVe06WLeZgYQE68OrHTZ/LpR72uM8IjopTTjB41choknLqVYdII1FX6NcoOpMNXIMajaYp262JIPgKK2yKK/Ro3SqUx4BjAMOJHd3bf/ejWla2XxYOYQMdgWeQDTEwgu4QFkRovfqUDWy4epb0wAiLqv0TKmkh3WK9a23T52KJZ+9JocgxDi0is0JlzJsiOTMrBzTeog0irompXQ4UIzbQWaVtAChtxwuIERAwCOWFvCcxeNf3Jg72B0IvldtGDuhRTIDbex/4f2LawfOSlhBgiG9aZBHEBGAQNMoJBIkZtYOiD5TlUKIsxsYDOizXIGJKR4laRsE+qmgeMvjsSXArXEkBCASHfHn/gKK8AMxsyVBjU9nDoLaJF83BvPujbnh2Q0QIZKCK196pCMXPtHQJZUwCAY08hBgJTQGc0MhMEVUGinJlME8SRy0GUv3IirajfbqQmg8TUo6XrTEK6KhjlH9I9SokBIJVEDvW+AThP0clxtVMeLgAfQxISpwYKIF6LIRkq2HmJyfqJrHnnF7OJEez3+4SFYw+ewNuvf/+t67cPjr35V//CX33yqaeu37x1eHzgXDMGfnj4cPbajJ1r5pN33/zptceuDmzv6nOfefqZp259/NHv/eCnL+0dfObpa889dsHMXb+om6oW562hgowN5KiB2llEIPQgDF6drrEwJUfWy7FwtbigFqgwJAzi2TOLR2+orHlesTuesAezXsILT24vqhkg24LUd57idfL9yvmjZdD9BUZnqKVNRnPXfOu7CjldK2k2CaHzXffRmkcpXydvT7Ska+afDaVOLIHKcOwfG+zbWkM1bL8prIY3E1HR71kb/rRlEQi7QAjK0aBBCtRZFAQsIkKAHiBljwXKER8PkkBWSzIepBbX236I9C89CdJde5u3rl/oLJg5SiCJZAPEFI4zuaacdT4fdS3NbXUvltinanK5BiyEImf0E9XHOC5zaVbqvVP6xOmN2EakAyKaltKXhpxzyFRi//Rk/tb1jz73wtPrxbDxbnX+GQdq16ILMQgM4FimVfWoVXctyqqfgACI1mFRVSaTZykjTNEW1JW6RKA7H2zn2TEFQWi+xIaWe3frpc1IBaMkqq6PEHmH0b6OkNLxk0kwUnAAIEE0WnceDRSkflYnBfW3G/c+z+T0aNjvP+cLulhWfXSzuqQSs67YuTQAK5uLoYCMEuUcJgDiEUjQWJ0bRk2dkQEQRG0fwsiAxCxoVUzL84BFTARgtMDreiVK6DHSJ+TzAEa9U0SEKRTwEkEr6wAojI0AeEdU2AILQ5s7w7qazuoaDRZlX5DEO+Taey+EgiTMSIBqcmtANVpVVTMpNZZrXlFG85hjwezKsuOCVSCoLkbVWlg2I519rfYdDxDTHgwAILFBnah/XVNCCEJgcHhSzfsILW8Oc872XUTrgXSYNOgr0gWeg9evpf8i0nhXGDssBkdHRw8PDrcvXJpMqj/+o++8cQzcg5rKG598vH1+2/umns/7/f761vC7P/zJL371C5/7zKc//vDGG6+9/kf/9J95dutb544mi2PHN0/ne+98+JM3P/zc01c/88LzL10qBr1e2StABNgBgPO+WiyGuEakzcQ9s4CwihrOlBKK4IUrShio+bdLaM/CIORBphVMFljD7Mkneo/vbJzuHYamZNjJtTtjp1QDdoxDolo8GGdNm66k+fshDTIUsxKMjfDSPNoTzsw5TU//n6J/g20GAVKl/uXZhDFjaVDUUu8gS/uX/kVEJgQyJNRF5jAlfS0Rtfng8cBAHMEICkDqSkqAEJpidESNnPToHJcmn0PjTHCnj/n3rSB51jdpsXmeRgC4yOrEliac/7rEcdP3Z7LJpbdnH6JIDgDddIKllS4hSTJsKLuF+IhSSjU16hCBoxOCkjFwnthQr+eEffPhvYc37j/8whNXdcfydXdmu8IYjDGLyoGYk9OT1VTgFibpj4iE+a+dxSIvNXjATEdMQCPq7hQAiDCztTZlIqZHmBmh1aHTS0NSXxzkTJwBISAtCicQytC2G5TYFaEnQICCCAXEUwOGGiMDsScsH53MvwMPnWw8NdxYQ2y8N4wCXsALWGMMIbFwChRIgyfIpemxR6SsEQiztrR1wMQAIEiMKD4kKJOgoGAsEY/GlIAawJ3tiQf0ocKOAKSUJwCOldokcAIFHiFCCSAIwSENBhANCkrNYIh6pkcWEYGFmRsWLwsALgqDCJWbV40zwD1rqsYbY7SPEwD46LESblWDHK/yigX5lxIyfeMTegR0ZokMZhIVZlaH/CzDyomOO3I2a9aQsJx9Bp2htVXEuH2AkLWwQvSimJOhXIaBAS27TQS1KUhafmJsC99sD0b3b99HWzz1wqe+/5PXb9188Ou//duX9yd/8CffFHHvvvOGcPXgwX1hKzCo6/nG+uixy9euXL6CUFx//93BsLC94vrH7z882ls4X9o+GaigeX/vaGo+uf7R9PKlS49dOF+icU2FKIPRsDfYHM99YZAECC0SGRQSYHaL+SJCWScYhAYGI7F+sIh48B7Eg7BgVVVQ0O7BYjzzBuWzr1wzTSOMZa+n8YNE4L0W5DrbCg0AltASIoj30FjopR+UjUdDYqQdhlIN7aSiASjdaUOoc46Q0YvIU1UllxYV8st7n2o7a2jVKrmBjOQ54aIoQtc5ZvGOiFR60PEpzR9DBEykdGGWhOiXk5ujJa3LfdOqurU29SLwnPA7x9qcEYoanbLl5EbLbAKgqjxkNC6e/I7ml/+ac8ql6QXOkQFwyZyYtindk5hNzkHPvFZ3Z+nXfGCdq1IJVfYVh4wxHPva5iTHgBcDZC1VXtDsHo0/un3vUxcuLoU1ZAsPDHgJbTQlmtFMJrOUErB6LckNZ2BehFWu74iwhplC5KPLIn/SdjqKcqeKdXopdPGttQ2szJCZtUEhYhuxiSCIYsmgziSL2hMRAk9imdGBiBGHAAUAiXf+nO+NJ/XrcoAjt3NCWwzN0GrX1UQ3EwdaxYeE5+2OtCtVICAiCKNnBvAajhwWAmIy7BUBawqBhtnlHIUZwCsm+9D1M7yRU61DhljnF1EEBUsBjxQMLoioMrbpsRdXyQIYrbVUWGAEL76ujDgGz8yAtt8jEBFfjUabTdOo61fDCFbOWuiUHJefoIEpXk9EoI3aRMTAffWvIHCCRDN5ONhxWzu8XHiZ+0bMOeM8IqL3HvKowKhgYDD+B5FVRAQy/6DqzYFwKTnK+hPngZbtcWnFShJouKFU5SY29AUAKs3h6Ynpl0jFd3/043/2pzeeurb28qtfwru7P3zjDaoXJ6fHb7/1em8wODmtyVsSIuH9vROE8u69h1wUM+cRnC3x5PQQPW32hnWzELT7i4Ubn+4b+867d8zbdwZlWVoLwB48GtpZL3qF6RfFyNr1Xm+tZ0si8bzeLxDRGBMyaUhLknnf+BS8LSKsjTu892SbpikKevjwZOplYx2ef/by9OiQqLDWzueNsWjI1HVtDHU3qnMeLTI2Zka+b5uRH26lm6ymIGlvXwmGIGlcIJTMEtwqhrWPqQntHEizRYMPDxsfojoFAIGTYOhiuSrT+kYENOkybqEDEfCAAAbISyjxAdFvAcAIPbIkiF45LaldBRH1ZU3TkGgnYGRmF5ubIoKHBsEAghNXs9O3WnW3ACkDFi28EPRy1kwACCUjktMyEErRAjWhgWsgoJy5I5lZw8HCIxHjI353uLVKjgwCGPT1xjMAFKbQuYhAbMbHapZIwQVENv1JGb8niG4yAWijo2MDOAqyb44iOVVF0rTkoPoGiwa125GfRB/33aSEwkBHEH3Q58Jjhowx7DxKCCzBqCKz57oc9mVBi1PsWWdHp0fVjVv3dj/73NXeGgN7bnpF6WfOGiPkG6wNgwhJDPkTBLAAzLVzdQN1Y06ny2lIkbIojwgFEebSABASCZIXBA6AiiZ3hFhdWc+n2MiREdBQUnw9N6CaEZN4p1oYGXLcgFpiSCNVEJGKside6xyT2mnUcUrWNuwNEcZECEREQ2QMWfXkAcSQY02RDiHllBK8I4FuCs+sIWzosIcFM4s03toF+FGvXCzwvY9PR7T+ta3tx6rmsDfdkZ1hNeSFuJFvDBsu+zzAXhXlekRjFEuZuaBSeTUz64wEtD+wGpsdkYYkgwgBGNZCMcAcujIgC3kR10ysVrzi1svhwSPVAgRCKKRhwkCCCCxGoFHZmLAApHBS/VjbsCCjElEkICLPhUBjsUBAcgYAWGqW2mDpGQEsEiIQexCxhHZRaxSPbQNlgy/ARgmJwVCS7wEKA6i5vBIM7SAE6LSBr6ZWGEKDEZdSjSZEhNhivPGeRPGOBBDYAyq+FVounuJZFhAU0jgoEU+Bf4sq9wQGBEXARxIkAsxipMEQnaO1AVCwBDAoNSGilreSNi0QoRDxIo0IIhQA2sZAm/IBCjCHNDJFsZ4bSokVVCANuFqcEzK+MPyw6RmcVu4bb7/x3mThnl7/4KT+3a//2d7+/R8/mF7rFxsLOP/ZV//jv/W//pN/9Pf/zj/8h+cuXxGsf/z6j4vC7Jzbrt342tVrd2/fqrAYlGXfFrPJdNZURUmu4r6AiPmN3/pXPvjw/R/84EdbW2tENB6fIuJ7t+Ty1SsnJ/tFUTSLam00kqYmwB5Pn7x69eL2xs7aiJv5qCytMdaWAhYRG1dZg4vFzFJZNwsAmsyONgbXDk4+nM8YAb706ksbm09MJ3u9slfXtbVW7T1l2VcqkHA4D3JCRCvMnpiI2LPJRCdltDlVVXqaa2wB1SIP0mOvFqoWh0xIsAoYGy17xrSBpQChzSGIkBiIVXNEJHp7ZclyC5FMdyTuLhvQ1QaaBZjisNKviRcaJO50uASvzFk18iCJEsTyDyiCZtlyG96Y0bvYLAwgVtRKb0z3rIqxiR8vLRaX2GGy4jJDtFikYdOBeUQMVgdiS9PIv1+6oQV3Fud55oTPmL8+GnEx3zjpNttY/ZcKWzeMhmxBu3tHD/aPrw7WMba7Z6NVdR9lfYs7RVSzr5vl3mAtcYkRYcxZeC2iVpRYHTxvJ3L2lmU5e5o+ABBi+I1pg+9aspvlbYdn41tN/D5I4lEE0+iHpXh4IpIsojKfG8bWvdkvAiBaCcE5IaIG7Y0HD7ZLb564tDEtG+MOYUxEPSlKbwlEsGnlgG68WOY8azcXoHWGdrhXkB10wiAxeTCf8JLxznH8TkA3BkVd2tCBW+xOor5VTQoKcmvMkoJQBjfOGWKoTYJY9G+KiGCQhQMJ42WMQDQazh22O0VZ6a5JqAAoCJC2OgJNINZwXAkOUGEeYm4qBjMecVQxITtKIBwkzxSizKxlWAQ5tMhFDVmVIB0sb4rSXg4PRZ04TAbQUCEg2gYzPuNFPEmwZrST10dMXYuMp/PBsFdQzze1tbCYnFQI9+f2Wz/9+J27k/WLj73wzLM3Prr5X/3hn4zW5C/94ufv3rz5xp35F5+6MgJugKCkul40TTMc9r33g7J4/otfeuXTL9748IOvf+fHVJSHR6f9fm+t3180s89/5dXN0ej6e+/v7h2sjbb6vb61ZVVVa2ubjPzcs0/evHmTjDVU2kFxcjwujEWWB6b8+MN757bG6Ou1wcCgzKez4XB4ud/z3vcKu76+TiACHlmIoMLB2DWONh9OD/t28ODB/uT0YH3QbzqBzB21aulL/WANgkcqERihxCbdR50yrZC4V8PeZB4gUT+LIQ5FPyHF2XccC1qJJiKcVsuSFZIpqKaVDk4ETS42MG+xJDPxJVYXUDx2tSQizRBftfQGlhut4szLNZIk54UaXSIt88iJTg7i3DTXoSPd+Ni0wCUGnN4bhs3Ku5kusVuaRv6USPsnZPfns1plGPl6W7aR3y9h59L7I9AZO15VBuh4Q1vmjcj+Ee78rmCY7tHCYcYWvpoTQq/fv7s/vX7rwRcuXy16pmHxwkDoUYCXs6Ta7RZkFjR2XtXTxXIQVveNmKxkiAhoEs1D3cbQgl4y2iyJ3CS4pYtDlzHTJsjH2kZL2yfRQZ5/CRmg0m0pSgRi8GMqUMrM1E1EWcUxzBwWacLCTIDeeSkKIHvvePI6PizWR7883OYB1GUNyMYNeoxI4qhBtJHxk0bOJgmmM/9WFO7sePZB357KcYSLGBhl6XCEHmFB8NHlxxIFSABafEPtsKH2OICWYw4ZwyAsLALemCJspDgtuK/m1lgoQgQJ0wDEyd/JHqLU0jmAHIxmBAEZRE+FJpAKEiBq/hUgxsxFjdYBbHuYAiShTgMwKXHJTti8qHUyI2hRePRR19EvE35CKNOW6KRILu1lg/uOpN09Kd57AW1LoLRF70RxrRkp4rgAQC0z782gX86nC+fBAs0mk7LAO/sf/dkHh6/fQ7A7bn++vXZ4Mp2Ne/a//A//5l+8fO2A4Zf/47/lDg/e+uYf/7f/7PfPXbkKi8Z7f3p6urm+dvOTj0rDn/5rf+lw70FV1aPecGNjY76on3jqqd6g3xv0p5Wb1e6b3/meiHjGRSWD4UZRFMbg+Z3zt27druZVXflnnnlm0F8/OTnxjbPUZ+t2d6eXLpzfvnDlvffeIbJ39g/unFtzdeNczY5FwCCMRv2NjY21cvjw1lujQa9/buvw/vzOrf2D/Vvntke1OOjStzPBmD7YwpgFWDU8Fl1fcTgJj0gBhKQcBAmOBAQpuSq91g0xDCDCsVgPqV8BAbUvjRo8U6YGoSZipbdzJxctoU4kIoisEl+SCRAx+BZjFd/o6BUJEQcSeTMB+UiAKBsfYyEUADHJHMqsGKxusFSgIKFvYDlxph3fWyc5sqPKrNZezoEcTk5GUnPgxy3oDLu8fWdobme/LkFmiWR3uL4QCGRsOL4UlxSVKImv8I9IprNlBs7GS7fp4yaE5BEVpYiYsjedzm7c2Z29vNgebBAYEWEKOeyEyCF6uROyDgAiKEgns2oyny+tfYldqacqBYFq2SVATBRQI/wxkGFJZWLOhioYSP62HEDcIjlku9mCZWVrYsv1FqSMbX1WyHCGmbGLJ/mvaU/zt3vmorDMyLUzvZ6jYn/qfvLJg8cvDc5dLIY9IfaOmwVaWzCRRx9wPhDcxAZaKXAZUdOX6REJrDF8qaEreu4xBD10uodJMMaKJKtGrPSkiaYxBwoQKaiDHNTlcBCQBDxrUVHxGBgJx2dZhV4ADMHZGF6cpfNKzLpWVisQfRjhOASnlUOhENqpB4YMRkIjhCKhegAuccEIygwHMgqsCIdskFL8lFqCIqlUCUhbTiFG7WKJimZ/tgU0CIIZErU5X7oHs/lwaD+FotGTqJvRtHsX6pTpSxsB8bVv3HrZOx4fM5pibeu7b/x0e7N85bOvvrX3OpGbH57cuTGzw8JXzff/7LV/+3/6yn/z9/+R8fD9b/zpW9/8Vq+/Pt4/8N6PRqP1cq2uFiJy/+69f/D3/u7d2zcHpZWmqZqmKIpnnnr6aHzy/e9/f3205j0KWEAoBmVV1deevDwajR4+vH/nzp2iKOq6JoOTyaRyzbxqBoPBFvLR0UnhnSwmJTclynw2GVga+J7tjQ6nh1zVo+GQECd7U3fM1WV70jQNDnc2B17GBs1oWNa1F+gEzEJGolePNiISsK8BPDtEJNcqBw17J+xBhJARGEGjv9TFy+qu0SQnemTVCAAgFfhahhoTq6RtHZgC55BbCpJHsiyVvlu9IqJivvJEYjAvLcShL0usLtlhaaGGVku1RRe+RDska6C7Cl8FVzhKFDNAVroqQZcq5XNYWgVKZ5L5Ecr3OMEt3XbmvkDGCPP556PloF566RIO5Z/z61Fnfmn++eTzzU1r0U7lzrmyLJmdiC8GdPvB4f3Do0aAiGLaoggui4/5uhCMBzpZLCZ1AytXel02jVYjX4WMdB3feYhyB3kil034nCC/NDKsHNQlYEIs4RvKYlAIL6DYsyHf9zOvn/ETALBBB4xq3ardyKwZGT58MPnT2/c+OpjwXHo1QONr4AaD5p3LTGm7V98SWSlAtundz1oLWiRS7fwzwxLxosSQ4m3ArFWXU1gQpWEZCIQASLS4HoQMHxWzmkabqiMACQMzsBdhEjCsioJYAPAiTuuiITESIzCQF/Si/k9lvSFXUxi1CibHWE4A0HrdZAo0BZqC0KIhyH0HQiAEaDD+B8YKmSyymlt7vFCOLR2IsRN2icpBl6TkkFw6npAacHpm14CCVf/zrAUHwXOiY3qvc845V9e1jxd49tl1OgNX8QBlun+PgJve4OuvXf+nP96bmheK/hWoYHx8Qn1rNzbq2j2+U/zDH/7or/wX/1n5mRf+/t/9O8+/8gyg/4UXXnjl/PlBWRgQZO+9Z/bT+ey9997b3T/52i9+9bd+82uFNH4xvf3J9RsfvFfP526x8CzOc6/sey9g7OHB8XxW7e0e3b1/dzIZO1cZCw937+0fPiSLFbuFVNJDX4D0zJFbzNEtiGFYTGcn/V4xHPR2zm1dOL+zsbFWkDl//vzGqNzZWt/YXD89Pb7y2MVq4cuypGLws0/Z0rlARGsEmAgRyqKE6jT9nM6zZKyCuy1Q1AbF3SZl4UGB0AaAM8uzAa0MJyLCnmN7cwFI1ZFQlvIgA0XjlP6EkGKccgvMUgJuwrEkTgaEU3YIbUS0SuCMiAKoNp8upiJiiPCC4FFm5rLod18X4Qai1Sgx+Hs66bBLvA0ROZQmTgaoaNXxglmveQglZUTjvSPt6ziMMz6xvHFnbH9riQpADffTozRgSsJy6P6qeR0ZlcmnEW2D3Zc+wieNiNDV8tNVkHEgDUtJiOJ943q9wfF4+s7dWxefuLxuCcSjEW2fkSKBM64Wap0DQNW48WzWnFWKsoUhBCbnk40x7BoDoIDPUy8Yo14VXXRwlrCSGFXI4MoqS+S4kYOi/akVIMKuEYaIHj0cYfI5+886jHWnpriVDoKypHBYDJna1QWRMeDrBpGoKJxr3jzeH+6Zc+bclfXCDoxHLyzkCVETLdSt2JEXl3Y2Sgk+25R8oxERiEAk1L5L2Ks/5iGkIprECm1ehwhqHKdaKUJWcFRdVVsljJVERbRARPRZqTPYECAaEWDxCBYRdZe5lQVFu1IiGtAe8xAWkyOTVkoIzoXwSgg6qiEkG3T6dubZ09R2R0IN3sw2MFm4ESXko0cXFQCElj7AIKzN4ThzJ4sIxz6+CW6ZuNY96Z6ZnYAvuvnoEg4+sPMiaoVGEBYvLF6iAIYckFsDdZm5Xw6gkt29w50L5+7Pqn/yjW+9d9/NEX/ve3fKvl/buTA/OaqKwfNf/uobr73uxidufnJrTn/5X/8f7Wxe/H+dO7fxkv2P/ub/+Huv/fB/97u/ezo+3t4698UvfvHO3Vu7D+73huvj6cH6aPjEtcfPnd958ODBu2+/2RsNz22vsxMgquv6+PSk3ysBYDKZzGYzAPACVx6/Op9PHz58OBwOAcn27Gy2mDZ+bX1r0YyFhqen9XwhZbnW1E6GdlK4ecnGYFHKpF40Q+xdXPfHe7PxpLfTtwQF8loPSEDQL1FOyEyqS9/rZVFEjMWqQkPNbJzfR52qh1Hq0eNhouahJhRK7LN1dZGeiDiCGIEYkS0ADB67R1HdBszc+o0Vu7pKKhImATAVQUw2Xom1SyxF0Y/bsfLXkcSiAcEU0Got7W0IZIKJG+O7l2T/JYAmWOVgF5U3sn6F+fakfyUP0UIQEQNq6gNE1OjuSJcS3Ycl+LTw/Jmli2TF2pwGTwMuiQ4iFMT98G4tfAjLPBhZeJkPhUWlqeaK9Vnm7vx+IsvgXV2VBJ61agq+eevjz37u5dH6sCAEDvMIyJPlkaflNM7Pq3qyqJZDsLprbyNLtJgwIkUfh4gXFiSCbnVPRYzWSN/1YQsjAKkoFRn5ci8/yHAmmiQTAw6HwlJIC0wrkhVwdVHrjM1NdyRMg3haDRMjevDGGLHgxBm2UpoGm08Ox33G+aWNq8WwbypwpjY9YwSE1L6jbQJ0Iun4tNSnK2QsHZZ4EbQtVwERg4WBOmEiafVJHMSQmICipUnUPwVqdQtRUwShTp0XDGJAegQIhDRFWQQArAAiWhBkjPUhBVkagIx3tuKy8lGVeCjI9gCIaLAHMfgUQCPG2u7mLXzajW5rOHOMjori0Sq1IQFOBYuC7p3lL6CwhAUqqohF9FpcMXh/AdRlk1IuEcEjAKN49g3EWuuIERAiINKwA2DRssnshUFAWFhlgJbWiqgGLDJdVFW5femHN+99/SfvHNfQX9uc7J/MN6tXPvPF2Wxy87vfnI3Hzzz75KULF/7B3/sHT64Pxp+cfu+ffwPq059854df+fKXb937+MOb1w3CYDBY3xiZsnj8iae2trbu3LptyuLt99+/e/fe8fi0HA7WhsOd8xc+vP6RNabienNzs2nqxXxeGrpw+dqNDz/o9/tMvWef/VRTz+7ff4honGsavzCmGJh1buTC1sWT/RNE2exvNPP5YDBcLKazu/u+bpwAXSjtuKKJ++j193sjsHbT9sRDuX//4b/6ay/sbOxMHnxkBuv5qUx4292+9rNlZgbrnEPnqtOj/DcdKDbExZz6YwzHSd+oOJZ4no8Nlnu9gpmdMEa/vIiweENWklzP0tqhQ5WcNGlJUb4RG4JanB/vXH9qz3TsCR8qgGeLSod5ldwHshUby4R83Dh3fXde3AS7VytaUt7I+gwDbOccdnlhvn8dEVuEvc8IXEc5yCHQMuCzLcSdR3IyveSLTR9iEA11Fbg01c6wAJhnH2X34+pLpfsuvVKWl69maKyhoqlno6HF2jH4oihu7o3H1ZzXBxgcf8kOLDEcpZ2PiDjH86qaVw3LMkRSlIP3nmPCH1qjP0kIKw3YgirtJXZL7UFYAqxeLrYuzjd3FSyQkFA63yQUUmO7PhMCsIJOI8YYwgBtDcI6Y9gM+DnuJYwFL6W1DTROvOkVIFRx48SPTPHweFLNFqbk9XUqEFAK7g0AGoVPLJ2Z5FfB2M0pw4cO/ueImltHE2QQNQPpUdH1CG0VKQrUII+MU60PRMCzsDEhxoWZNZgKEcWDWtJEtG9mCIRCNCAoZCCAWNVMisQkcF1ERDCIyFLH+ad/SRBNNPURi29NR9DNcs82e9nS3n4OYQ1B29W1g7SyogCEGGuATPrMxxHKS0jCCrnIoxeD77ZpEt6mdG0RsZoGqS/3zJ6ZGxaHECxzad6qqNTVqe1vfP/d699+7+Y+k2DfzuoRwOT47tHB+eNT9rXbLODBR289eHDYM6a6wPOP+D/8z/7zZ56FzYvD73z7B8cH99+6fvsU4fy5nb29vbWNrYsXLz7xxGeffPrZP/qDf7Z94bIFqb2vquqJ5559+vkXdvcPXeUKQ7PZ1BrjffPFL//C5ccu3rt7GwDqyt+593A06FvTa2o2VHgPpignzXRjY8Mb8dajyNzNbeF3Dw4JYTDoX750cf9gdz6vKue3tzcPj07QwsbWFY9703mDCK986ilf1aWNVZHbLQ6n9Cw0BhGxFeIIuARbmd50+mb+ZOJ8khxyiMDBwBq7FXkIiq8VEGbxvgnbjCAAdTUHQjCUpkKsaXEMAJrhrKkpmjPqpNEXmVCKS1luqOqu8jYYrRsLIqh9NZQxEhEhoUHJ1BQP4gGVLhBq1JVmcAIwoJA6FUT8Uv1nJS1N5QDAqO5NEe2Yba/UM+nYe2FDBglZm2aLOMeaNopJDbWICCChpjmkZpoYkD4Hu8T2i7k0oNGUNosWjsqkvqUjHmHuMtBdyw6bCIj+JCLiPUYmhGCIVF4hIsSU242CrPH3QCaxHPYQyvjkhiyyqc7kktIPAJyZ2sL90hKFRBf0MzOLtSAOAGxpqoYBC2DokdmrzAdvP3z+S2u8aWaN70HRM+YUZkNXMKEjz8zoWTx4kEbAFWtHJ4d17V29rANz1AwMEXij++PV68BIoc6hEBMKgncQOITmt3gNx6PCgufAGnVRIIBGj48IICgqo9qQeUVg8t5FFAhOO43HJqJ+2RMRx94gNU1TVxUAWMKyKBoHABBS51XnC4puFlaYikIg1K4mCAnigOCBmcQxF4aFBRkQCJARxYIYxrIB7vcPBX94b75wi688cf6JTTLuuC76hAac71EB3jM2NCxqcAX11b2qxyfxAJVLiQwiMXPjPCIWReF9E3GMiIzKGBKMBoKM6FrU9WhEGk3Tx9geBVEAvZUSiAAKAA4yohCiIRAt8QuB9xCQRSJA8B6ExSJpdqESMfaeLADHXs1EQBaNAanD6RGIfNwDEGIBgIygYdwQ7AGUhB8JYWNeRMALGJ9EIjV0IyCRrWLmLgDFrtUcvCcI6t6O+8naf5wR1K4WsKVpPDcmhLca1IKLQYhhpzXL41kjNMAiLGIMsogqFQjCFpDIAIFP6QAaiatH0ruamZGMgK+bWWh0TeTnlSkHHtEhCy/AO6warl3Vo+++9tGfvHZ7/fxwsJhPZ/PG9hcllEKvvfG2MH3t53/hpB7/3d/7F+cHtOPL6UNXD+yzlx77d//ibxHL/+Hv/c7r79z+W3/z3/rw7R//n96+dWG4ucYNj+sFzd56cL0YnH/hiavT6XQ4HM5m84vnL2EjF7bO3759m/qDnrGEwnXTH61dvfY0C5ZGejy/9/H7i7oiws987pWbN29PxxOQhcwr6S2OTo9Ka1HIQHEwmX7uS1/69Odf+fF3vzM/OiALvfXR+vnzdbOojk+2ig3h3YcHk6IZ/cJLi0tFNZ0frtOFGpoligew7B7Nf7VCgs4x9sWN9w52c6q0JIgtka3EAeK/MRu9VTQ9gBgyodBgkrtzg1impeUCe5ITw5dqU6GY1gepYCSG/N0451Yy6PbHbZE+m7y6VSHMJ/6EkOxEEvNTU8oJRJm9aZpQLCwrtQFpKumwtKoMnHmlghU5SBNMtIueZKMluJ2pHCxtfLoNV25bejwMmxXgzH8CAO/ckvqSpiEieWmwwDtdG/u2NBSchU7LKJvuOdNgCQjs7t6/N55fpX6JBkHAsS+MDQUBwnaoxkqCvq7dvK6aFe679MYUJ9WtH+IhCmGQxTosbUfUY5ZOjSSbQdhfZQPdtWFnnztgUciEiVEIwlI3iHMOsVjCbege8iinBXgaY4KtktvgbEshWjgdhHQuZtL0zNCymU/nN+7fXysra3Yuj6ydNb5HY+MdY5+InNgGTWHyQDOdQDJKS3al1Z2t4WKoOAlnBRJqXwcAADRaOwIEfcjakdjprjX/ZnuR73JE1KwAQJAbvWRtaADF+yxjJyd6iAxgQutDfYIwJIYEChKDr9EC+EwVUj+uvoAYRFs/tDMMWMfUNeCnzwJavCXOM3YPM9rpXVn7ynHOohYiCFmbVYiEhkVehA0iOw/RqKke4EQSmbV7n0dECwQC3jnqD9l5dIseuvH0tByunzLNXfGNH//kvZu168H1vdkT1y4+8/KTr73xRn99fXYwtus9i/Y3fuWXnK/u3L4hHmbHi6vPP/bqy18YHI/Xe5bXhzdOxv/ev/EX/8Iv/Xz1C5/9h//L/6Nz5uOjg6P79zbQjMcnw2bztTd+ulgsTsbjC5cu//SnPyWys9lsNOidzqYbw97hwcHO5uabr792584dIgLww9FgvljUTTNcW1ss6tlsNh6PjTFeYFYtjLa30mBhgS+8+tm/8tf+2o+++c3J6XjQ6zdN4xwbg5vrvY3N7YcP7mLPLhaLF59/oSzt8bTRXqUdXD0rLDG/LBpE30h5Dt3Ht+7fhYtn37d6wvOzhIiq+KaDh1HPicah1u6hhqKUI2QAJQuUl2hca3FOCAlB6z2DJviBxjh0mnilia1YPvM5a2GQuIDsWALk4SpptoH8xTRFIhIEJFJ9xRgly8uHJAZw6HD8KDYCXXdgAiaidu+JI4OIBotFL+ASL4TuTqdx0kJBOowzv5lxGUsyeYKhS3dCjpkGmMQ7fUvkASD0kczHWYVP5/5HIGhae5wz5UFpA1ve3n14MJ0MN7d7hUXn66Y2fdOSisjVGISBplU9nS2qpj6zqSqkuGsRCHSqhVUXqq1xKGckLC2tw4D0agV0URYIcipkxyTfJn3XUuDFWZuSYAjMbOwy912CMHaFLQzcwoMJxxMEGNrItOXRytI7scyGir1q+pPbdwEbuvb4JWIspRYGrq3tGwFsmATZImSG5cDkmEkARBijo1dCY80z9iJcJCtnUliDFgk1Floket+FUVSGkO4qDLbwDDvFAjF6kTmUHVB8ZgQmo6mMEoK0NLhP1EebqFPL+IBQtFILIFIKRmERNQy1Gx3aHqR9PHv5KHqefFCaH3E6hNsqlsBBjCAi0spc6UiKyBKmYWyIoj+CsA+d8BARRYy0lfbaTexGvIels5AW+HNeDDeLCboapAbXTKvmg3uHP3jzw5t7/MtfeXHnsQu//8fff/VzX3nuU68cHp9+dP362mDQ39g8Otz98N03929/subcSeO5Z5957FoxGrz21pvO1Xfu39tcL/74B9+7vFFwCZZsn/vDHu0fHs0BR6NRM21++tbb6+vrjefJZNLv97lhXzens/lLLz77xS98/rUf/fDDjz/xrrz50Y2yLJumrup6sXBPPXPt8Pjk7bffttayoDi+cuXxg+OjRV1tbWwuJlMDWCJMJyf/n3/0u3c/vrnWLybH44mDtWHva1/7pT/9F984PDw8f/78paef/NaffH/QK+u67vV6ssKPAJap69JPVpBt46Q/kun+jbsPcwacU/klJpEz4EA4orqCGpil0VhqrckOkW4lSmgrbLQrim5tFi0VRoa2uhNakxRkEMDo1FHUpxWqmhN9zLI+QgWiFdRnINNOFNNSUnC+09kyK4lMRXHjooKYrwWyMqoXZO1HseCzmDeARrdhcORohh8RGewEjp1Jppd4m4jHoNDnpt/wOa/VFZ9hAMG2M3S0qWbqLDMrNCDo6MtqN0lwOuSry/didZ65Ef5MEAEAgpEYzVSSPRxPb+4eXLl6ziCxNCIewHTVJWIQAfHi5otmMp83nlfHDxDJPFiIqEbUkGgnIapTREwMDkj8OICJQ/ojIsZI6ZaBICKEiktnUNQl+EDC/3iJSFEU3nuMAYoAQNT2sjwTXGnwfIPU4mLAIKJWVNDLtMjcGc2gaZpGsLS9Hjp3MF+8++DIU/mVx7bOiS3qGlxVAxBZYOg5o6nJkopoCEnwWAsAgM981JGsn0mh0pnNv1TjtiIcEQFTFH9J61il+wnRBU9tOD4BGzEElqdKESKCaNqS8cYCAIvXlhYAEOpAmcSAw1wibNN8MTBEIRBg9CEVXn00yAAGgIUNJL0/iJgAIsisGcbhl/ieFFOSUC7+CxiaurKL6juqBVgkvxOS2tO9AuTZgffBXphE3hB+nuWGQQijSb5IEe+bYBUTz9V4rzA9BrOQXl0Mfnr95o3d8cMpbw4vPP30s7/9F3/1wqXnfnj9QdUsWJrHti9g33y8/6Bn+Tvf/Bd/+Ve+Zi3tef/T65+899593B0fL+Tog7uDYlDT+nv3D//L3/m9YlQi7IxP9hdM53cuzE+q8XQ2GNKot22Koge2LOzzz78AwB+8+95iMbPAzzxxlefj999/v1+UU1icnp7ubK8fT2dXrlz8td/8je99/wfXr9944fmXbty4cXR08uKLL35866bzF194/tk/+fo3mqZ69pkn3n7j9Q/e/3ij3yPPjYP1srC2d//OffFydDreWB/O5tORLR+/esm7sXONEwfFMpy7aLN8EXtwwgBudvzwwzt7P/sYKOIii/b40//0Twz17XQjWcDnKb8YywIn+qLPthHFscjAmRd0GQB0hYNVigPdilT5s4nM5YMHXMdOlwVorVWRc2TVfFLpx5xiLoEO2sCys/Nx0zhLkdXp/CjFYdcGkT1qnKUrDbX6SJgStloPRiUgsZCszwyoL8oiWaTcp6sjpM3NX5Es6pxdOVOBlb1b3Y74vUmRpQCQ+pCD8wuG9+7cWzRghEKPcYYwMWgh2bBvPE/mzWzhGi9tOed4qcbRQt9QLlot7eyZ+LOkEJ915XXQOpUj017n71rCc9EAsSy1mmKt4ATkR709wTk/BSmtX09iqm23tAWICHNH1jQFzX0DjD0qjhbyvZt3f7J/8HBSmzmVM3azel5XjkFLBACzRm/qB4pF3MJiPefoLd0rnzesGk44ZuNJ4n1pp7S1MAKQ4oz+6xhiwi4yUPrPCzOI0jBARLKARtoMY/QQ6h8IGkKLYEKqbpidoiW1u0mIYFRyZRCtx05oI5Yo6YsRa2fRnwABbusiAHRA1EHI1IlLBJglxpnm+Gk0RE1v0FWxYBpP+wT6tnKW5mFq7ei0X0vnt2lCFVLfuLquq6pyzolIAc2iqqpy4141+H//0Q/euLX/4mc/f+7c2sezo/fu3/nmaz/83T/4J+/dfP+//se/sz85qgtxXq5cuVrX8Nu//du//Mu//JnPfObevXsbGxsfPXjw8JPb9f19dub+eDopZH17u4cj5J1mOqdtW/X8J3fuVmyHuIaLCZI5ODxaLBZrm1vT2Ww+r06nkyeeeOLxxx//1re+9Sd/9k0ievzala985SuDfjk5Pd1YX9s72J/NZqPRaLFYbO9svvTSS17gow9vXLlyZWt7AwDOnTsnIkf7B5PJ6c7Wdr/fn8+r4aDsDYZPPvnk7Xt3ReDypSubm5u3Pvl4a3NtbdD3XGGMW/rvdVkDBIUlmJ0c7H94bwJwTn/QRpsh6S6qLCJiVjoJtmcVQMADYvKviHAUADOyq0lyuaktN5AGYdIkyq6IC+LilAARBYEEUchpnnF+VrPZ5ei4OuEOyaIQ2MWaCYgxwFePZ+Y4ibESS0O1Ucfx19Z++zM2gKL5PZ+nZHb4/GyEU9SlzvnnnBOk9+paEkAwfQiviwaMpT4qyJqbj5nojdHDmjgxx8jwHOYmq4wlmSaXz1y6eg92qW07eUh0NoaXCwJAAeR7xe2D4+PJ4lK/BwBgrHeaxuxD/TARBvQitefT+XxW1czSrZrcTlIvItKcleQDZg5BPUYDVdSk3C6knS2G5Jn2Z2EEdAAx2RpRURcQtQ1SBgFRXUhNLDk0FFZ1XQOA6mfqB2GlztARNFcxc+l7TYyWVrJEBDFaxu6swAJLxhE6EvRsBIyY2vuF4Lc/vA9Nrzh/7tJ6jwi89zU2CzSAbcLCKo+BiEUqyzKz0pWlTU9bAp3T3NrTkAI/a58SDUGDwBQhiL/agSCWVcG4F+qzT6IYqR9XRMQ3esg0CBEQ9d/AD8P4GGz3kGIkjcZRa8wBhAhHigAHEQ9CiJzMv3GLA/8jAhDSEo8iXrTDh3Z+VPtZPLcYzhRRiPxW/y2hdhKJnoXW6Bfti5CZN5gZglGnUxoWo0inSSuZbJf4PRAiAToEH+JvkIUR7RyLb/347RsPTz562Fy+PLy7e3p0OPmFL/xcr1f+P//e707mUuNs3rjN7S0Brpvm4P7EInzjT7/zpc+++sO33947PNnaKZ/Y2tw72l0fFegmvcrtmLpeTB31jyeLgV9MZ/VI+NdfeOonN/ZksOltMR2PL168OOwPdnd3p6djEV83fufCxbXtCx/86Pu7hydFr4+mmE6n1loLPB5PTGG//kffODg6tD178/bt2WRy8cLm7oM7x6dHbPD0+ISInnjiif39/d3dvY3185/61KfffuunB0fjy1vnj05OFouFINiyWFtb8/e9ATk5PhqI7w9KX/8sUn/mZYmt67N1p4e7RzcftFX6En1st7A9FGexNGwFW71Xz34IwspQAbvUdikMAxEJbXpFG4srEEufhaD6pQLES4MgdEhYGlA9Txh4VaaEBUNxZ1Utu8LA/1ALulJoNhzirs/g7pm9F3nV4p0uzlpE5BPWgh4ZmwQAyLtqrJLLfKcyCHeoWM6M06VkpsOEdLTUqzTCR2IeTjtbBIZQwiwuVxgEKe+p1hLiM40Bq3T/LBGn4wMuwNbl4Gg22907emFrnQA8YypKrQjjGZi58b5hP5vXdeM6VuPsSqp8G2cQgu9avJWzLC4duUE6fccQTPAkirR56ll8Xz5Cgo/3qX1bR4rKYaWIqvSRzBnSWNrE/JvwIhYhQmQ0pMpoSjFYXo4+WBhxrvBckCFDjXcMNLS94+PJT+1exdUr5bnHi14BDOAnVJc1FEWRdjytBZVTRI8+RRGtBe9SWDh4iQJ3vlFEVnN/NUs7zBaZRJtcaPoSAWKMCsXIjwEEmCVahoMFi5EE0aCVENCllcyBjDGmUIABIrYgClpsCnvOtk8XyzougECojx9iyyXm7qpnJx46z8wIgZ9GmuuTUWZ1U8I+Amjt6thZAwFDyBsyMETro8YlMkkmfINoSRIWCQ571uKGwZjdUXwBIKb4CgCEGlfsBUEInXeLqhpL8aOfvvvR3sRuX3rhs1du3Lhx+OO3Tmfw565sXn386Tv3Dw/efndtINujnZPjBfZpOp4MBj0jvfdv3//f/J//r7uzE2fIz5tBf3t9s384X9j5fq/GtQHZ/mBsCsvVejl8+GDxf/tP/+dffXrn73z3h7/7L96ewtaONV949fPM/MkffrK2tlZXrj9a2zs6xo9vjyvpDzePjo7u3L0/mUym45N+zwrQhfOXRhvr4+nElMVkerq3vzfs9QnFu4X3dOvWrWeeePLZp54+Hp8aVx+fnjbCleedc+fWt7feeeedT734HPjF7sHpu8e7gk1RjtZGPVsVs6aCCssBrW7W6hFOB9z6ht0I/Pz09Hi8d9wy4EQR0r//0kEzdOyQFekWrzCABFnXFMkGZxHT6sfQyo9iYn0fdZUoR0zN/iCbZGjAljHTXLKz1gDE7oq53un/JfGxS93Xl85e4l64Ys2TztPLl2o8qjQsGRIllBHAfCGPDueKN8DSwiGfVfqVYzL+CkvOhS1p0ylyWhlvYM2DFVlKrmXmnAHDI/guZGDMfV355eUMry0iusov0BG4h3sH7qnHbWEQgcgkZ1VArijFV03DDOrWXR1tVXAJhCzvW8DadhNXz0La62xhFEeGdDASqsStOcPw61yLk9HZJgBQFEX6M8iOqu49ImjrUaBm7xENWWtRmJidB88sjAaXbtY5nPpqHWyfxTd1XSD2CgtC82ZneOH2ZH/v3rTuzaw/f7UY0FpZF+hck5xNlLV8EOisWlecwNjelSYQD0wuSRhAIAsAatqVYHkWEbV7E0CwCCTJBwL/jXwNQPm6idk7AME+LIjIXJAREUFji4LIqr1cAExsUYBIxhjC0JcwVrIDxLZ4AERfe5b4G+qlowCkTHpiRTVh9hLLmWW7ELP5lqUTSLYuYIg+vpia6xGRWUJZMQHQaGlJdasjOofiVSHcPJCvSA0ku/RPZbsGsPbOe+/RexAQrOv6ZDL+w9fvHs/mX/zFr9nRGpWDd99/nxtrzNrrH71xdyHv70+a9aICPjk96e9cGONsUNlF45lxY7Rx6+BwcGnrt7/6iz/++rc+qv0Ay+2R2dufX3zqmZ1zo+Px5ODB6UXYXUxmnsybb77551/+Oe/uDqAZ4s6h39/b353PFsPhsFrUTeNY4M7de3ceHoGr+pZsf3B6Ojl3bruanVoCAFhb23j5lZd39/dOJiePPfbYdDrhxs2mzTPPXuqtb7z33gd7+4ej0ahpfL/fv3r56qUrj33729+9enWr7Pd6g/79+/evXbkwWl+fHIyvPn119vDUOYfeocH+YOBhudfLz74sFhXO1s3i3k9236mqYYvr2vdXM3QVk7ygAAqFqkAhGxJ1ayD4zlpNLpEV5bgQGwa3ZyzEnbJIyPpgYGJtiIxIJIROWHviYuzA3tXKo8SYNbnTKuraF5SsSbgrAgyikXsQ2r9rBrCIiFE5UQTB6BFV6V1xXcBTlAC8OGY0SMzsPSNqllwQLhvvKMAhLTYIzHH2akULReGMGBEJjb4RY9roGXUclZrACs3KyXoSBaA1FLctUFoQIRaBQIUsaoy13VnYBfpgAaMdA1Fqj1q4AFkTPLyGU3rA0DEtoY5V5pvkiaQGiQgJE1FK8wibAkDQMSRo0CyAiDhJLCo3yZTVDg4nC//B0elDU18RR85OiqLPImBBPHJTGDtdOObhdGbvn9Tzmg2LgRVJyzPE2Drt7lcU2nTZc+iIndV6BGrr+klWaBWoja0BAAx1+DnY/gJANMMzSZ+K9hrwJSJN0xAIO48CzIwAqbtJVTtDJOiBEAhZ0FBBWOSnIUebvPmYYBtAhCWJMDsO/McYEWAv4iHE3yGSEQluXD8SEpQ5ghgCBqgZEMWWY5pvELkT+vEH9ezJ3a9evPQkDQo88Haj8d40zqLx4huAol8Ugz4vamZBY4DIg2dhC+Tz8nCa8prYc6wcYLLSoYgGwIAy1JDT6gU8sKDped+IeBPMzASMBCaPS03SFbCwKdEYQIxlTWIdAu8QrTEFUQFCwN6AR0TBkqiNCXUhhhkLIjUjeCAJXSzRABVG8+l9xArS8AUWBxCq2cRUSdFZgBa3iqilR1r5o5IiTjQTpAjmPyNaO5YFxDM3aqjRpSqMmEGECZzWxIYQeeMFvHhHpic+hHG1VAXANQ8NDcn3F3Mpyp5zMyiaxk+8s076i9qQqWu/j/2N7314+vZH8/dqvyFr7757/9zl8+9c/zYyIznb631y8+D19/+k7+1nvvill1+59oe/999OqsMd3FmMFr2JGLbTabUA9+tf/LkLj13bevK5j1//4Quf//ynPvXiBx98cPf2nSvDy+fLwd7u/kK2i5rtlvm/fO/713dP33t45958MrBznhzd+uj62vpmUdrFYtHv96mpe/3BxNW2NOK5ms7/xr/xbz12+eLf/tv/D+fcrD714G/eunOwf3Tu3Lnjg2PD6L0UOxvThvl4MjRmMj765FZtCzw9mFx9djhYW/cElZs/vPexlWY2XTzYN/W+O/f00A3XHxsVOxvN7m6xRjinuoiUNmd2OWXDZK9AAC01PugV1dF8d/ekni/SjcpT88BX771zrt/rASQ0iZF+Z9W+gYguq9//rEtfpxWVGcBoWYeOSTxfWGI2+VuYua1gxSx6upDQ2HR/ktA59ksJ48QTgF0/ZXovxiL4qwqHZE0aMmTu7IFKnemi3AzeVaxzMD4Kemc+uASNs2XnJYXtrMjkzq/6LEi2MGX/tPTGM+eTbiBcNtEswRmjxTvc/4j2jkDGe+9Bjo6OJ7MFrPUsmjgzBwENnHh2zk0mE+ccx+zPpamqiqwbR0hLkJcMHyBpNtmVoeUZBsMz/8wMPO2lX1L0xSZzYdM03vui7BOiilOirkJtfe47EJYYi5DjXg7ncLHk3DrKN3EV0oqPS/BXLZyZPXkGw14W0/nePuwWg3VxRbNYH5nCWvSlmFJrO7iGBOtSGS0RUNt7e3WSkL0s7M7KKqB7vjSVRieLmEbmFK8XJdHWykKGEt7qT0lGNNaKoKAWB2JBQLTGYNP4TKTOUiuxhVWK79NyowHSKWnnLBNFDoS2vJpILr+3YE/CVkZXWTxyMkGpD0YkWS6DzB+LOedRb5nXP81BUnCAuTCeTMhMy6Fp/Kxmtr5kvz4bVPX+0SYNwZQ39vjHd9+9fQxT1y9sXdbN+zfec8fDo93ZE1CWw9E746MdgkujwaSq0c1Gvc1nP/PlN378WjWqFieVhYLJ11BfubLzg2/92dGzuz0REi7QX7l4/r23fjo+Obx7+5P5fE7gJ5PFDJrfevKJP33r8NsfvnveuXVXmbWh7w9r13x86/bW5jYQeu8XdQMARVkAS9NUvcHw8Pioqqqqcd77czvrH3988/yF2fr6+sHBwWht4OpqMBgMtrdnp5PFYqyAraoKWEwB77359vH+3qBnT46OLJn+cMCz2cb61mI6d9X05OHuE6Nzde20lzaU/32DsNAykDWwOz6+v3vCzG1YgjKnzOlIRNZaLfDUKk+ShLjMDNul3QnzcmKU/5sTX1sUkKkI6FnPm9Aj2QN07cB5sOjqPUnXhAz7ZYVLQZcn5TPH2AMukTnW/t4A3vslQSQt05xlAIB4zM4k06uDrC586Z5V7hsWAi18AlcxZ2nYUbZaeotSuU50W6vvnWGAzeG2xFkRgm8Kloi7GlTjOxhDambiVQk4+oFRiLAs+kfHp/sHJ88ML/UtWf1JQ3uAvRNBaLw7OjlumiaaQFYKO0ToEZ3dvDHfl0TEV9a7AsmAV3Dm/Xk8ud6pGpiE/ukCy4FgahCIOQWhFVmoIdi67aMIuPTSTMrRCWW6ZmufaL3s7QhdV04ELxYGrKxDr6ammU7t2HPTa4qSGjdnb4k9FWCtJbLimRuHRSHdAMAl2J4B9JX8GQUCaV8MQAQgMAKiLV7S6lhzZHXV0IllUfhQ1hQBM0e1iAgVgABI0cxhgPQZScpGhB+KCAMDAgO1CUlRYgsKQHYciAhN3pciI2jxqTPBklCUz7ohI3fStqnITh9qeKCISEZaASSUuW4xNvkKpzPq9wYIi6qZ14uKqJhNPYtBVwPyfT/94O7x27vjj/e8KYZ1NestuDaABprTxfPPvlDN5rcf3P7SZ6/eevdePZ43fdh7cPOt1/qvffTxyPbnsFgvRw0CW/qVX/1yj/jH3/3ue2++IWB2NnpvvfF6NTv95NYtYW7cfDgqR2u994/H//f/7d/85a1z/8V//Qe/8+6HFbhNMouGT6vF3/gbfwNt8Xf/3t9/+eXP3L9/f/H/p+5Pg23JsrNAcK21tw9nuudO7775xYt5yoicMyWlMqUEhCTQgBDzUFiVNQXVFHQX1rSwFlU0mDVFF9ZgUCBEC4QKCiEkgZCESFBqTEVOkZGRGRlzxJun++58Jh/33mv1j+3ux8+594Vk1W1t3W5hL849x337Hte8vlUaDIIsLZRCHUbpbPbiSy/PZrNZmq2trU2n4yAINjc3p9Op1j7YSBVFMb2/HSAVs1wELj9+eZokezt7g17XJNnh/ftxEKSlRYVEtL65BUoLubI002Qara+zdcysAm1bi4iL+kzrahwLAAAakNCVB6O9gyMbR0FTqg0rlJl5c0oppYBdY+P2a1Yts8cvbI5WQxGOE9ClzrV3CSKiVp4StHbV8oY7kQktXWwsIpLUQFWAwvNYoYaULLV5/ADUysEyvWhvWQCoXMuthOAq+KI9tGbUbU7GDwTQWJqu35Zmvfe0vPd8Nn/WVV+OK3nzxYU6aVRqwLHjr27z3eMjaprC2nflFRupebBIjcZ/bCv7B42TTqBCrdJ8cnt77/mzpwMCQudvVgDWMQsDkHFuNEuMs0BIcnL15eNDPj6WZmMvLOVCC/PPjabRHASoNTNcvDzJg0Yc8QD5iyYBdUJtRGz3p92TehMuD629i7DlrcTKxAUe4hcWYJbBWWkvVut+a4yHPYY0V0eFS5QZRF20yGxLywAcSRQGMSkClrIsGUGhN91KVebiJOJQjWJeE2VRoGRkqEfnQ4ZQ+wKDiFjl2taAyQCIIuIYqkmVusEqob+ZltbEetlaV+I1ozA4rsq/zCehSYtw6AuHw9KRkRqRpk7dJwFgFvRD5nkjUom9zST4bi2tacXC6zVtYF/mFVHEB42cILv7Ca2HiB74Sip2Pb/H/+wZcByDLXKxLlQRWAYi6wrSijI5NPRrb7/7+r10ZXWTXVQWRW9lwJ2ugjw/Ovju7/jOM888tZPsPDFU//vf/+lv/zM/PNrdjQMorf3iV7586vyWWBcBnz1/0aAczUY2L7bWNwKMcymi1RWYjNnCzas3WTiOotWVtYsPXXrjjTdKgPd1zz906dK3vu/+v/nKKzdieEQHRWHOnj1bFObpx58IwxCAn3vuuSRJvvHqq3EcZ1lWmDLudMZJ0ul2yRQH4wlYG8c6yzJrOYqiLM0QWClkAdQURYG19tSpU8ZVOLv9OLLW2rwIFCBLlhZh3M/yPC/T/jCOHMZhrtSQoQyCXmby4y6Pk645D9YARFyORvu7R4VCahiwMQYRqbYtM3vcbT4RR6j9yjbBbRiwtGwmJ3HfOT0yxgBUiYntnDnmquBze1RLW6canH9jrbsvne3avcdtWUFE3LyoIrTbp9p01qKVIiLcGlpDBBcJygn5QtXMtLRMPinI6HjPm3seFM3UOI/bczt/Y7tSSnWAl140N2Aen2GZa3KA7UJpiIgLCzp/ywMoCLdiO9v7pLm9KXXQkMsFOlK/14tSzMBCd3YOClYdAedKpQNE2wRtOpDCcVKUpbPs45KPodVgU2S39U17Gk/kQO0BYqV7La9X3U5b/qjms60Bty+ttYhgXf9DalWYiBCgFnOBPQo1YaBb/t1aMmBmpU7eVI3DpRljrV034p3vZNW142P3T2lRxlkSp0AZS/dn6WESnOr1UaNYLlxZFmVpy45wBKhVS7DTgCBSwy+3E+/9NCFWcYPQ2iTN5bcKeh5Wqf+ASOCZLEAFGVfl3XrIdWFGqTxHvoJCzYsqYWKO1CFVam/Nles6oFj3tZq0uj/UdNC/TqChIFUBYvDvcwKAgm7RxtAaf9U+ATT+IV/UsH01DzJ7vGiftVtHGixCA8qSObApcjNntF4gmhtsmuBnm0yAMQxDa8x0moTdblK4dJq/du/26zfGh7m+cOZRxyVE5Yizu3uHWXd0sTPsrq7cz5MzocYrh5dWLpiDydlLZw/zIpzxnYPRJz/+zF/7K//dX/9b/9O7r1w56IyZ7ejg4N3M3MQgK0CCzv5sNiztIA5zY5GCPHNlwYHuDFfWTkXb/9cf+Zcfev59X37ht8514Jlv++arL71zVKRmf/+rL7340ksvuqJIZtPnnnvuK1/5ig/jAIAMstX1tdFo9NTDT5srdjqe6BDzPH/77Xd7vV6WFUqpKIyYbaD0bJKEinQU37h1BwCiKGBjyyJ3DpQCIiis1RFOJpPNU6eywPY6a7OkWOkjgQoCZa2lBfnnvS/y4XAaUIHko8loZy8HN3+6kty5qobEzBXNmx+MBRQez3uOExSsawcdJ2Qtct8yB/mtfaw6bHPym0aajXWc5aD3l3jXtTBITcKaasQthI0l4v6gay4jNKyiNis1xHRpEppI2uW3HJOSTugDL5yleZv1q4+33FCN5vOJwsqxk784xnl41PxYNuNvkpH8TyQApI4zSACoXRX+M7daAxHBE+S4BrATa6hfv0wLCVpN/7XW4oCdpSA8HGe5ZeqG4jKGEFAxgBN2AoXjrLS5cWVpxMOPHOvqgiiwqBK1J7bpRnti27sUWnJV02ZdYmFhFRYlD8SWFdSBVMkrVNXfUEhKK8OM88ehwQFur3h7dy6uyPLBbN/mP9XxEADo5s3KCX6KattjKGQQJaa4VDAtzSiLkRUFARNK6djYwlb2XhGnfNKtIqA6hPMkf3xrqk+mZKR8SisLWwAf9MxQ8a0quQkrXz4BgEaywoBMoLycBYhzw93iQhCRVAvh5lyZfFzXAymrAuQ61dAnwQGwIFd5UcLiUwq986OhsdQym3iBvt6BINDUFG/Kc4nU4BtYIRZAvVHb1b+khaHRcNRmK9cVW2ru6xwE2LqRfawPM4sJo0gnySh35eDMqYOEX7p610DIpy5s2DP2XhJ3V3KazZLtPOPf9djjn/70+3/hC1/46pV7h1/5si7di1/6/Osvn7o5za5du8YqOrOxcZiO1jZWQ7BxL1zp9ibZ+BPf9M13r97a2zkc57ljscn4iXNbt+9mriwHK0OkYDyb3rp19+bt2wCyWsIv3Lz+wrvXuwAffv6hP/38p74Ynf13X/r8ZGf/3p0biLi51t+9d/uXfv7n0qLs9ftxGDhnNjfXkyRRShVFESjNzKAgjrrj6TSKovX19f39XWMMESXTdDAYsLGk9f7+/hNPPDEbjV1e9obDSKvpdGqMIQIRFwcaAUiDKTkZz05tbNiiDEOdT/OwFzm3IGC9B3PxXj2NWpks2T/an05NqDvzXaWUD1FuavlpbHxLjfDeLo03F8ChRWiaD21bXPvCVoQ8AHhrW2MYaXCGvWZQd/3kgKylZqFFB5tv2ohC7QvmKFdLmk3FB1qjaHTlSjtpSHZ7mM08YC2xzhtc7GH7da1xLQv+S11qP7vELU64s/0iWf5VWgroiS+d348AxxKqZDHUrp6ZZT24PSG+ieopBB+tAyAKarWsYfUnqcsAEOhQSlZIhME4yfZGydm1LipwLICK2VoWASpKM02zJLfG2iZN83j/G0bYvMUToyV+dtz8IPNgPVpU1pf3aiMSNcekPbr5S60AANcYEM3lnKXWaVKklFKoVCPkHdsYJyzTfEXqH/1jRL7urmry15vFah+69pZwJTCmjklLR1SZ5HY0wSy10TBUWoUUWQVixbAhkzvnAglRESgSrIUzJVLHgS/N58LWWnRq1t83UMkKRNUqaB1wTKRIAVQmqyoTAKqjhwCIitTc+N++kIUq7ZxBhKoSaH6eWke1+cy2zgmrffdVZlQVnOy5rxOHLAAMNViSn8j5oWiHm7UMA036FszZaF3QbHFpqu60itAsEjhAAMeuTtxCZBQRtsCLl6eQpTUlaKvjmQT3j4rffPnNd7cnH/ymT144d/be7qv7+X6ecGKzLLWX1lb+qz/+x77/fedm1rx87efXdeeVL31euvBumfyP/8+fXO1hv78+SXe21ocvv/Tq37f/8uo7tw04TaFJy8cff3J38jJ2onxn+6/9mT/26Wce/+Gf+aU33nz7wsWL4+lskibdbteCCcPQ7O7/hT/0Xa9/4Sv39sYH+8W//dl/fyM9yA4PA4WTaRkCpNOiP4iSyWgwHNoi35lM+v3B5cuX37nyLgpcu3JVIXbDyHFprQ0CrZRaX1+/d+9OUbrhIN7YOn1689T4aFSYnAmjKLBFjiK94eqg21ndWH/nnSuhIkIKNE0OD0BBkmSagq2NvjEOQg2w7AyCRdm9XlFqwRSBVipI09lkOnIShGHY/FCZoFtwd96qp5B88idWHheog/4WJC+oDci+naYrS0Rn3qvmwDtXaSEVqPQ8IWHpaugmnEToPWwWKiJv0CLiRZLU0EFuYbi3f1180dxLV02LLJBjz9SbjN6mG0241nF/c/UBlxnA8oItMUKa03FYIEnLDLj5vn2zyDyjZomk+i/dIiZz06u5ANEOvwKAxRLCrc6cIBC0yev8kWrUy6b4NvU/PhvOOTQu6MSFmMm02N3btw9tIqJlJiKu0E+ktG6WF4W1UpU0XoiA8FcztEaWakJRoLUxpCVvQYvA+V8rjPF58lXbA9I27C+scpvPOeeMMUEQVrMkULfGzKyUwpZNxX8LDkhXGbcACxtp6ZQ1/awG28JjIlwQGedbhREJ3APy4xF1EAJaJEcCxjhIEsmSvNcPibQKtEZmMeycMaVFC4DIVfoZg/MnCBYD8dpXUwWIl/enQ2BhJo/93GLfItKyzyEAiiCL9cIMNBYV0lQDmPuY9oUFdQ51nVeHWENoOQHVFt3mn5zzEU4AgN6c7xhZwCdc+ER8YOQqY7i9xdur394SJK36vPWImif9b3NNq01Uyed8LCgA/nFfgkJqyx9JVevC1/1d4sEiAnF59fadUgbv3Dq4uj8dq8BtbLx4651X37lzlN6NeqWWdDCVqOjdyif/4vO/dHT06C9/9rdW9XoJPNzsrUA+nqQOggDA7O/TVmyOilKiX/7CNzrGdrYGZppff+daPOjtJmPqxaWVR1eip7j4ru/9rpe+/rWD0UGvvxJGepZPEeVgNPm2b/vI3/zkt9/5+PP/zd/58bv3JrDZ0Wtqdazvjsq/+X/5Pz788MM//dM//Z8/+/lTZ4dpVjJDGIbWmivXrkwm404UR1Fo0hyrYtUE1kynsytXrly4cMmU+f7+7vNPPHnv1u00TYHQWnvnzh1jeL3fycpCAL7tU996/fr1QNNwZS1NUxRREUEpW5unVoddSJPClr2w02Z2J+7q45cuHXV5dOUwD4vC9OZR1MIIiKKqxScAQb/k4sSKbZNXj83mvGGooc7OOWDxhemhduZy7bkRD3clVX1hpXWVS6rm4A+ASvwRFLYeErKJCxVBRUqRlBZ9OvJimHTDZoh8xd9aUVAV1lGdAQwAGlsgjvNsThIALw8AAEkV/YEic3ZLREAKAT3bnfMGRKUCAADHCBWNa5jZ/Pi1qF7zfZMy0aKJc8aAXNEmjytfqeawnFbUvIL8bS33lTTljzyVr0p9++GDnuNOMFDlz2IWrcOatWA7pprrotHtl2ItnC2p34gLJK/eaVVZ0qaf1Q2KoDU5SxzCiVWxxtzFQbin4f5oBjNRK73CGmQhJnLKIqGOZmlZOg4xYMcsJR0L//bbwq8sOiAkRejRLEWkcV76dXHeRycACB5X17tmlJDXShBAWsjPVJUOZKwTyz0NVBg6YWsdIPuaWiJCSikGa50AoNaViRIBCBWRtWW7TDojV3n4VSL+Qj6YUkEt8y2YWJRSzjkGIUWeDVthBCRFCAiimBE8uIRPcC+rdP+Gx/vh6LC0pq80lZR2sCsZ7R+Orz0ansMiDgLBICBllTJFztYUWYndiKBwZc6mG+g+6MCqkiG1phNGASkGYEQSVgCkg1AxAToBc9xnL4yEgaCuAiwVADKCYmZ2QkQVIDM7ABYMBAC9mRYRQRCcACMjAUojqRAhkQCgAiRiEY+IorXfoQIyz6cXEWADFeMUqOqLCziuDIuIbAoQEfFEzMNyIQBAaZuQEb+lG7ongFw7Gpp1REasVHnxwpLUQXbCtraT11UPeVkubP7EQEDIFiUJAYuzpVLKWgu5Vp1gko8hUkYyyMuhjjktrhZkhpef+eZvfe0Xf7kbJ5i5cVlMDlMNecBBmanw1JmDZNt18k4Kk+u3XphODLuo39k8dyEQOdi5Gw/NJz797f/pP/+iYVjbt8pC2CUlJhr2pweTwpppXsD+3mZvYHenFOAP/eTP/vynP/HZF15c2doobJ7vpyC2yMvNzc1Jtp/ubX/N6d17RTI+CDvy4QsPX3z4kf9EL9x69/BPfeixtXO4/cTWzp1HP/LRD7z0G1/+6rTcCGAymWycOQuOJ5NJt9ORMJhOpyjQ7/cZJMsyB/J9P/AH9vf3P/OZz+xt350d7bksY+bLly8Xju/L/uq5S3t3rpdx586Nm86igNaoEaAz6IvIXjn7fY/O1jjfZw2qW8pRGJI1nlhVtHyJtgMAi23nu2sSSJPpZDITWDAHKaUadEnvdIGTBNL2qZDacFqTHgQFRZYDCUmV9++xHACA/Z0nCQsidUihVykQpJWS0Zbsmg/MjFJVAq47N99/2LL++SAvgHkSkXPVoBb491x4rOg1ESHNX9qOhpXFnlSU2lVYJY6dc07q8gYLk7YIuNE+Oc0MY8v21Zzb9r/+A+kmE2PemQc9BcesqccFN5wrusdcDA2oDi5PWvv+B11tPtq6f0FjnhOgB5jitVYV3iUhWJwms8yWVArpAGv3s7U2y/Isy/Kyyj3jpeaqprQ/KrVNsrJ2tGWjdq9aIGseQ3mhY80oao6L83lr3eYziBB9SSJpr0sVFVgn4tc8z4qId8Q452qA3gdO/pK80lyNR+n4na1ZJoEqnlzXJlNumUaUUgJWaoGJAQTZMCSFyY0JQ6eIUIEClEAhgXMqN4cau5Hqs0IDI2IkiQA7UiFaO0QvFDKAghoAxWcVNf1iZlKqyiWvpVeuqoDT0t5uzv7SoWBmAiLyaYG186j1iqWbEeuQaZ6f9LaJvzqAUgO0HLtIfNw2Lp3EhYVwjNDYJsWD4wBWwDvoPcTsvPgMzLWh21/cMmjPQ7sbIR4RTeaIBBwJonVSlEZrJ4TSNc7kkTFQ2E7c2Xdwg+XmweHmxff/mT/7X1946umf+Pe/snswRiRnTT8OpTCK9KmtjeFwqMTdujq+fHnr+/7gD2z0OsHLr3/mC1/hopjmycH+/nd9z/c+/6EPoZJf/8wv2zwXQGOL1Dooi62tU3/lT/zhsTH/4J/9eG4SS6hUJ5/JT/2bX7545kI6TU9tbR6VR0We9oMoOxhd6g3ffufuf/+3/6dsOkmN6G731eu3bo9mb791rUzLH/v8558/vfaf/90Ljzz8ftAD/fhD8sLXEw1hGBpjtNZaa2PMcGWlKIrpdPqRZz56/fr1PM8R4PDw8Pr164iYOzPNcmJe6Q+U1lkyWVntr62tHtzTzHzn7t0wDPM0TbN4Mp1RqHq9IU5GF86fdVVFakekrHVe8agXemGHtA9d871WBKPJeP9g4hZIbmXN8Fc7O3LJ59Q0VCFn1bu5zRgQsTJTQ1PEQ4A8/Fsr9bPtyagw16sug4BHnpKq5tgcMk15z7QvSticKG93bplGCbGBohXxlQ3mh64+U1UvqqFVxchOiCyDRfTmNvUiAV9y2FZmTwIAy67lQZ8fwhOFjzbdr9WOBy7he38pJ4c7Lff5JK50UlOIAEB1VQh4AAXHYyb3976qnrd4efUizwIfgOEpjCTiSysEoEeTJLO2K8TWiWVy7ARL56ZZnhSFT7nwHo2T6wG3e7Io7iz/yvOEk+YQPEgKwdo+30xUs6zW2pq3V1ieFZ9m62VNn7DefDbGEoFCEgAHFdhnYzNvyhIgVsUQWRbK4zRdahbOxyO1eBV6Lya2zmG750vjEgCssgeQlVgQsXA4LrP1sNthTZZAkVaIIYgAynQys0yWuBMFgQJyPkoqAOWsZYWC6IuqgYhhAdJBxYNbF7MlVcPKUX0wmASAyPoAd2+h8seZAASWfczgzUs+S1CqgO+Gnixtwjnz5gqRDer5atrzojU37dSF3epz4bx4ibU1rm6gppDVGW8vxPI+AgBvsYPKCGEXsOcYmwpKS+p1cwwDCo0xZZ4HQaA0osbcmSzJg8ChhZg6hjG10c3x9FZZfv367p/99PN/+8f+17evX7t5425ASgk7V5bjSRwNyrL0u3qW5YB0d2f/yvU71wD+46/8qkS9WzeuEjtT2G984xvf+X3ff/vW9cKUprBPPP3E+ubazt7u3s791ZX+ZrfnkikJGyXdtX6eFlK6YaeHOa2EA5twvzME0bnJk2yW5lPtoIw765tbwWi8s3/w6q278b09NnS+P/y7//O/3gA160XxtdeemY7euHstAKdUmKbp3t6eVDVFyRiTZZkKg97K4MyZM3t7exog0sH2nbun1jdK41QUB8yzLE1u38pM2Yt729t3x7N0Y2tzOp3mRbqxscZskSAr8k481La8dO50VtwHQSWB1qE7qdy4LCpdS+KgDpCKfDaeFADILWGzWT8Un+2HAIAsbslRVF/tfES/TXwjdYUmDwnZcMQ5CWNYKBBdAURIhfzgd1/7RcfH4w/kQmVOAVebyxr9w1+KiKvQQOddN/6G6mD4LJhF7tgcWlxM6p/PVdvOIOBBdLBObhFpw2PNO9mmj0u/Lq1fw4DxWN3c5sF2XpHUMhAe4/TYOGLbVYEqvzCIwIIQ1iK+zJZqoApZSCX67cHH21ebri1MCNSpkFLlbkPNE5q5aj/ipTFLIAJaaDRJj4qyCzGics6wcwJYsmRFmebWOA8U7Cu2Ls+zc4LooVSkGlETiL3Y7aWLBE4cdvvmdmxEyxDdHhFgA8uEyDUaf3tLYLOJa1h18MA4pMQLqI1BiH0lAmxCX9tTJyIeMQYRmzBcqGN+RBC5CSXydb3Eec8lzrvgaxYQaSFXjxEYTMlwOLJT41ZRSKFCBq1YEbBooCDczPJRXo6sdLuyHqk+oxAmGkNEJcykANHzKgEApTQ4RhJpUTQRYWOJiFtIJt4sJU2lZ5HK2uw73Fo3v7X9/Fox82mpw6LFQzdLZXWvWhPxO74G/6i+JqkglBuJpUnXZmYB60lYc8xExJfuXVqXSoOXRvOeq+9+l80j5J2rQ72qahxSh0CLYOWraxCymqAqYQCwRRGHQRAEwDZN8tIa0mEcRW6WlUpPtXr34PD1W2++c2cSrvRzF00YvvbGm9dv3l5fXc3ThMuiE4dZnpRlSQBXr123ppzNJoVlY+HnP/OfhqubutN3zjlb+G15f2fnx37sx66++QYwhp04K40RGK6v5cns5tXr/+KXPmsJPvbNn7xxb/venVshgIOyH8VvF7f6HAWFwtyuxN0PPfX09evX9w72105tnHro8pkzZ175wotGQA96ySxf09392eFG9xQqfWS3z6Bce+0wirqmG0c6mE6n3W63dNaXUEySpNfrHU0nr776ap7nAHBqYzMOo7Isy7L8+Aeef+3lryfjSRRo64QA8iwxWaqCcPPU6e3dHR0EZ8+e3t/b6/Q6g/WhTctzq+H6Sjc/dEga2ZIKAZSDE9JKF5jFIv/SaG1h8iS3SLoBFvfrB5WYyACELCDC4LB1tZliYav83eonmPPgdlcaxbGdTsM1sKvUHpH2sanubAF9LL29ur9uoanQ0L78iKoq6w31pwruwUEVRiFSGX6wxt5o4nIr3rDILKuf6pPs2UaFjK2U1PySiBqmdfxaYsztlmujwpzXHhdBoLZAnNi4LDKw5hXvwTCX+lm91LGIx5Wue4gAWFkmlh5/D368xHpbA1nYo8c/H5slAikcimVUrA9myd3JaGttI+4NGI0gC5KxkGRllhVlwR0iv82Oa/stOUMqCGWcF6hfenXTKzXfswK8pGhV9zT+iKaRJrZLqaDt+JAmjg/F206wtqL7xxVSkxtDUHlbmNmbWyrmCqo1lveaf4B5NTA/BOVVx0qZrnJl/GlrgtRqHgCIiEqTanCUBYkBIcloatgCamRCAVIkBOgQsNPtOsjSJM0LB2yctlGglEIwXrHzZmGgGlGKHfiCvKpdv1m88d0n/jUBK/Mjc/JWPyk9solFaH71q0kkNUeUptnqG8/v61fWprx5JIdDpjpAhH3ImZeNvVLO7JZLxvn2lw/jAmVjQQVAvmZDoz07W5mmPVS5iAgyeJR+ZrY1tWEQa61zzliLFLMtnbHgmFCBqLIsZ6Z/5e7OG3v376b5Qe5KBZ1C0MKP/sj/fPr06TPrw9HoyIFoRff2js5tbR7t7ve63cceupQk03Onz4zjzsH+vgW1P8ucM7EmNm7s3OlTp3J2X/zi5wcq6ERxVuTT8eT0ubODbjgNIhtFL159M1L6j/7BPzzo9bdv3hClpBPeOMr+wsef/cR3/N6f+NmffePOXRO63oWN84Pg4OuZ1vrNN1+/d+9OlkziOJ6x01oXabEyGOyymHT/p/7KX3zqwuk/+Tf/9l5iNEVJkvi58jUkrLXguCiK9fV1pXU6nWlSk8nk13/917XWq6urRZpxaSIVBCooi6Qbd8oi00S94SooGo+P1gYrs+k0TWdCuLIyTIqDDzxyLiRjSIdaG+s82/5tryWCph3b0mRJ7jDUAg0OhzfOcEUtPfKsj8asiyIsb3R0UKdPACKAsDALE8aVU00AhJilci1rggZQHSr4hfmRaGm0flRusVrO/L1UDYXRW6SgieFqYx00nFusYQQiRQAMwsjGzUuvNOyhIvFzkRcQEemEs710bEJUXDsRQZEPeEHy8WwnXgsS09LyNCex+XMJwKFNJh7QPs2N6q2riTrGxd8aSbyhOEuvmK/XSXLDe8wPnEQK5+RvkW2fRKeWpEgtAIwMoDoqyqTYnYwANhlEkBjIMpTG5YUxxvqlrPy1J9u0W3o8LtgY5rPRGG+9ygXiM0yWYIywDsFoRKhmxzbmECJqXHjYmJew5notOa9l8KjQE2tGLuK4lDLqxNUNLe7bnKMHrU6zr5ZCEOq5UA1og9baxzBWfKUJw3ZQYThIgCBKCRLYnA6z0lQliHyEkqBAoBC6BdAKSjfL8tQklguGYSQDh4UGQUQNYJkCaDR49gx4MUzaF++pIpN9Dyq9lhaGMB+mT5X081/V+0MAAKJ5qo+I+OJg0rIkL85J+wZYNDhVk8wCLcestwsQacQKEstH30Brb7fPSKvBefRlzVgZnOfrrRTt5q2CzNw4DryaIT6aC6qi0c45JMnLxBSWSAdRtzC4ezi9c3/n6ohHabI7S0utA90JAuWMgxDX13rIJj06DAA+9OEP375/TwjH0+nWxsa3fMs3nTq18aUvfak76JOCezu7nUFXdKzKDKSMut1I1Ora5uH0qBuG6JxzjoB29g4uXcrPnrpwz13PsyJYwycfvrx/52Y6zbudlRQAwjif7v61P/UnTz3+xObW2n/xQ/9DGOLh/fvlwVQfTCbrQlrt3d3uhhEonB0erQ/XICIyWLj08fc99Hs+8bEu8ge//eO7v/zSgMI9OxsOh96P0+l0giDohNHNmzd7amUyHqdpFodhFEW7u7slACiavPqNdJqsdPtpnpXW6RCsE7YWivzg4CBU2hb53myW5ubM2VPT0bSjzdMPrZXJkYMQATRYJ0yqkuOWTtzCn0ItcwtqEUlNluaWggDFtJ7iRt/yXBMWce/ax7tihF5arMQ1bnm/lMeV8PGiwijAjaY7hyCnBZLt4cOboOoKzrguSSRSpxyoiiuiv6dmKOQF61acMAkgErMlQAbnA1+BiMTBHA+oGWCtqbd83o1Rqq3ZHJ9ohXNgWKWUzzM6kV0honPVLC3RjvY3bX9zmzo0tx2nsLDIM078tc2AjzO8pX5iG99/Dv/z2xifj4+rudqkrbmtGUu78+13zVsTZGYhQuZAhYlVO+MxODaWHQKSYpDclEVhrGEFgXiN5+ROqtarkZRCBI/Rt9RbacVDzHdgzSnbU9rcvxQz0dBc9uVXq7mvZE8issa24w19aIVzzps3lyBam9XHCjvOXyQCDdDje+yNpldSKb7c8LP2nc0YK4kBkYhKxlAheLC8+uiZEg6TIjOWuyogECJ0gMgKiJWJOx3gjmURsYxiuGCLCin0ieDMAtYRKqWElBYn6FDc0kFTFTurhJXmS1CLgDB+x7YESgDwKTqVOku4AMIllQEE6jG2Nx4iijM8v3n+qN88VAth3mfnaZHUBuE25Ai2Ux9bq1NLWk3ym6u3marhz9z8cbEILZxw23D92groHWYiTtj5mD22RMSiMiuj8fjm/nR7lBxMk0zHrEIIXZkUQQcsl0VRMEKPhgfbe5vDte3t7SAInn322fiD0Rc/98JGp/v8c8/eunUDwR3u7xwcTdbW1ox1pphFoRKWJMk3t873huuZzaOUbOlmaTro9QYI4/H46187vHv7TjegXth97rnnb1+98+Wvf82qAIOOpEXXwj/5F//qL/3wD//4P/2XkeBK3P/KV19mK1GgtVYbcX+amNI4I3zxzPkgiO4We+sYb0hy/80rf+mf/ONPfcsnvvi5lzc7A2MLD8uvlCqKPM9zRNSra0EQlGU5nUxW+n1blkVRdPu9YRydPnf2/u0bDqBwRsfx6dOXDkdHYI0AJ0mystI/c3br3o3b3UB3NK30hwfT8el1uLgRunzmqM9siMiSADrhZXr7oD/9SmkisLYsSosUtf1/c4LIIr64X6uq3jL3BVg0sXroRhIRy45q1kkNylI7FbnVLUSs/MGVJbnSVxgW3KiNHQ88M64H6Nk/+l7VG3Gpq03wswhXoVtERFSWJc7Dx+ddYjf32zU7vvHDLbAxREQ0pfFoO9ZaBKUCjQLW2qY+brv99rFpT8LSbQ35a4azRCCWWlh6dum9/k6lF/KVYZ4OCydeGsnCwtvbB37ppSc3cawPbR4MLXLYnoc2S1vkPZWRRoSQxVjeOxpN06TfW1UqAHQMVJYmz3NjnLWkwCHRiXhGHsWztqb+ji6ptZZmhn0dw6UOwyJOS7OCIhIFXS9NsohzTqAqh+cJByJ643MVxGetCnRNWdkxCxIppYJgadLmgsIx3I+lO71Hf87eBNpJ0ghKwKGAc9YbS3QVZu/ZBlS1hhAJFID12qEt3Sy3hXfBALIP9WZUQFaIlKG4CEpmHihQLElh7nfVaeuxskREhAi0cgCgtBJhXzpvcdq91FMhR9XHAGFR4z9529ergAJOcVVl1Zs0GvODTzus+fd8YluL3t4m1JJjqoiZpaveVsdPTXuHNyxWZIE61qzaNQEEPmzeI6yJ3zxW6rRgwtrC47zuK2ydY+bVbn80ne3uH41yc29WXN2bHhYyc3CqW65tnto4e+bKjZssUCR5FAT9bmd18/zB7nQyzUnr69ev//m/+N/8y3/+E4GGu3du/fRP/esLF89fv3YVSZUMosJOv6+ZbZEpxLjb290f7ewdXbiw0e1EU+JYKwDMimJ7e6cweb/fQ2ALw6s3Dq3To6wYrEdQJnqSXgL6h3de/9kf+kvp3mxjdQtnuKn7RzbZunAuU3Dv2p0eBUFv5XB08IFnP3A0TUc3bxaB02W2JfCLv/rFn/nMF59YPX9EOYZ88eLF6XQKda3PMAzzPI+iCAA0kohEUTRL0zCONjY3Dw8PkyLfOre1OlgdTaarm+vjPNlcOcPG7t3fXl1dzdKZcyCKoyAcjUZxp7u5pld7ajIWrUI2TisBACfWe0bqrdiy1D7gnGoFhbVaKe2KKdEciMNniSEiBoCOoKIFVRSIiBCR1hrR2xgcRFqYwRewri1+CKC9ZMkivn5NtVu1q4iXVFRUhBRoUiV7xcKn90gTHLsEpNXsXVsaz0E9Oai5CjhAUkpjJT8SkRU21mpF4Et2YXV+eE4WUYBRmnxNAQD0WLsojHUGc13hwZ9GhAra3svbqBX5erfeAmkdEGqtoS5r2pRSltpJ01DJ5vSS+DQtBBCpI8yQUCntFwVw7qauSsu1fHVN4z7aFo/BkCEiW9cwdX9DHcfe2io+SA0QAGwtgDejrkWxE4AamNlrZK1arlVcu9LkTWSIFSYvVGB+DRnyEpQCACJkLqHWFVrCkxRhgkYNuJO7JOmYCDvFgZmpaM3oXJeODVhnrZ5IZIIgKkSU+NIcx8OzrViqfP/koQMFADUKc7sop3i8QFQKGhhwbPyyUvEPfyc1rMLa0s9tpeTN0VqcY791kWubgmMTRCEINK5WcYwAoQ6sK8DDHiN6P48IWmu1DgUAkCvbKUkVeMRt4biuWcasCTyqOwAIkdSh/kIgKKAUSxV5LlKZoj28cWkY62Rx5zjSbHIXBNpSqpCMUWEYxhFnBU5npR0qIWEXEEUsyoplcVoFURS4vmUwJrMA3SgYpmakRUU6ioKQEVkYURkUcZlCiFCLme8h60DH4dyAXp0dAUKfL6zQkTAIMBBjCETKMdT5QZV4DyIgZNkLOuxYACrTGlcxf+CRYXw5BhERURRU1sWWp0xEGGy9MxErdClBxMqAyKUVQWDhhosjAFQ548wMNdOtBBoGn5dVe4gM5Ap1gCQC1prC1zPXSlvLAiBojGMGjQrEaYQpCbvClpkrs0F3YHMHEmqMXriy8/q1W/uJtRRfuHhpuLVx7423+10QWtt66ulkf6LgXhJKvLqC07xQ6tJj59Lde/s373ZB9nf3/94//JHw7iQvillH/Xff+UcvXTj9P+zvv33zRggwOLUi1ppSKQpztuNytoJqxfLuzSS6sKazKC0z0S4KtLYmDKLCuO5wkExHv/bl3+oEtB537JEcGRP3+owQjErn3Hd8x3fc3b514/V3OUlJqe5D58Pt/almUSabTocrG29evT7avfuDH3j+T3//t//w//ITN+5MzmVqAHY829GFe+rTn9pcHX75y18+HI8UEYAyeYGdeJomURQYduSNKIT9ft/m2cH97f5wnYJokmdJlu7cvjvbPxxevHhUpqvD3mPPPPNbv/GVQS/eOM3jgix3OgwfOBNPXKdAE2OBIRRWNIhItCT4tdltRQarOCrwSDQPrF/YltGWWmy+9MfYq4PIogR48U5YNHa1n23/VSEesBgAqUFuqYLHm/dn6YO/vBCALSWjebySjRtso1Zxp/owNCe55bqrnXCLV1OVR0AImqdgzsMaeAoAT7OkPTyqo3ROlCT8N1gHxTiA5XlvzWojPbXnsz3h7Ulbumfpp6UOLHWvPee/A7V2uX3fp6Xvl2wS/k6ee5SbCs1ciXE0b7A9EAVIWoPXX4kQVJZND0dHFwdnxAkyOoYkK5IkMcZoWVb329dCOFXdQ0WqbedoOux3wPyqk0OI1NLKtie/mc/mFdAKkG7fwMyey84ht3wRFK9e8/xOxJOHc3wVFg8d4GJ4BCweagBopF4/1qU2lzYY+HhsDYhoRbJMstwUttsLKhspoRCCAuWFuziMuKOR2VnUSBQOizSbJpnRthOHSiGAOGdLxEiRClEHc9NRoDUfQ+bybmFgH8tcW3eplphaB7zpc7V09So0iyWVJWb5zvYFsKDFCld6PgAAI0qFkMOVSVuAhYEbVG2u8zDr5mpq09i30PssqrDNKOiYws7KApiVUqS0AIgRkzEROWBkIUILrjSlABR5HqugAx1H3dyEd0326u07t0dH432bOSgQ8nw2cK7f6xQxql5na33j+rWbB3fvo0A5y3rdAekgyfJ8e2SjKIxjAwaK5OCdiQ2h01UKnBvKrh1lZE0c2ImFcWlCilDiTnxmc+P63dvTw0kA0A2Cg72j9d7qs88+e+vWLUsElpMkwShYXV8bl7Qi03yS2qi7ZybPvP/9t67ejONsMBiE/WFiaXVwaQbb7txA9vfXtveuzmZIWmlNKkzLsjPsKIDv/8E/+B2bpy/9+E9853f/wbMffOrGaKe4uRcOw9t3rsf6sbIslVKmdCqgoiimadLt9L7lk5+4e/vOzZu3dBiubqzt7Gy7QxvFoRepJ5MJl/Yg2VdEB3t7SZEPYm1s0e93syIYHU1VP9agCMrhcAW4RAJmbhJ3ZBHX4T1OJaJPmmN98glsXV47aTatQrXEgH1zxCIiPovCG6i8SK5aCfIL4kBNcAnq2mmC7EBaVfwaMISGyR0fiWoldTSHjYicOHBSazYVdkygaa5bzE/UXBpYop6+h/6L+rM/oq7tBm5GNGdpi58BqrKDFdpA9ZQHs52rlW3j1hJtXZrDpcvT1fYji+PCRgxauud4a8fv9LPU3PigfXLiJW02X3vFpDbltW+r5a1291zjiW+61LTmrNEYWmuRAAWUUmlh98ZTuEjggFA7VLMsT5MMWUijRXjQyWDrmto7HhSqpWMtj7pZ6ur7OV7HQv5le1ywJALXB3W+Nq3oKgBo50phZYaoLlfxlNoQW/ueofb6wLEtVC3l/ICffNYXNth7rnB7IUREofYmKAAU4CSBSWLTwg0ihc4xGiXWg2pZxwhOB0FHFNvSAACKMHV6Kxxak2WzJIujII4DJAFRlp211ixSNF9mFNFnlM15pDelgTBIla4lwqhAwNXZ/0sjXSgzBMc2dn2oGz5bRZLOsQRaj9eB0/PV91+LMLAAio9EoUXRViqS6QAA6vBpRCTlpTRxzrmiZARExYpKZjElOGZmVCEhllnmbKnDwAmWxjFgTyInwZ5xt6fJtb17B7m5vbPvkEBF1AmyaQIKbt6+i4gY9aeZm5XFnXs7XVEksBb3pkejtV4/S2Yvf+WV/vkNl2fdTrwN2XoMf/oHv19b+/d/5pf+0U//q631tSs3bzgd9oG+7Znnv373ypXd3UfOnL988VLp7LYTk+ZxHIe57fcHW1un3377HZuXK/1+KDIr8yiMKU7cfR6urGxn6XOPn37hx/7rf/dz/+bv/qtXWOmj/YOd/g44PSutisOw3795ezsJKc/N2uoqk+p1equrq0f3bv7Kr//axh//nnuffesJjH749/6B6KFT//d//k+++uU3Cjh4bVY+9NDDb73zznDYPxwdhWHUCfppmq6vr9+/v6PDYDgcRlEoIlGg41B3O7F1zpalInLWhGGUTKcWJXHlO2+9PR6Ne0GU5NNO0IXMnVrvrG8Mjc0BLDtRFBwvJL5EwI//iogAVFUk9n8cv49auxYFhFlaaQ/VPf7ks3BTwKemDr7xNlEAgIqGzBPhsXUzMrRZ1AIRlEWlTWplov1nm7qISBWV7dUaqnD4lk5axZ+s9Y7FpRmsglvqwFIEbzya111pGvFkqGq/pfdLRdQWhOt58LP/Z5EbQUt1bLNJWdRo2wNpArmXZulEcrvEWpZ4xhKzr9f6REz8EzZZTVyaecYWY5BKiOGKpTcqVpNqBcukcE7R2r8qJoVkXIkkbC1iZB0cJVnhHDshTaXQtLRlaREAAkUsFd7KSX1GASAUQkKsDBHseWQlz9VdkiZNs+5MIyIsc19/USt4DVuq59JGbYbWvKtxKCIiaSU8Rz6qplTRieK21LaZZmUX9omcfL7a37dnf2EtpNU+etBHaI0ItCYnMMt4kvFKRwJgxhLEGXCi/dEDgBJRBwGxY2eNYKiDSMddo3U2m5XGKAU6iJRCAjTs0MwjQ21uvW0XFRGQoDQmKGBEYQSqgpWEgB0gUhPWtDhwbiFGNdQMqwriLXYN6AEeq6DUZkIaxo8tbViEXSOw4rx2mDAJ+a0ji9aOZufUyLiVbuR/dY7RAipwBE6sc44YAq0iiveycSQ6L2fgGAgNK+sCC3rkyndv3Xr3/sHdUZ446IZdTtWw09tjI6Xr6W5pUklSUoFzrrPSv72zrZTKnelHnbzIlaKcbRTHa4N+miSDjc0wyXIDK+fXf+/GY7jR+8xD197evvnu9ftbZzf2Dg++60Mf+7Pf812fv/ryD/3kv82L4tqVq8l0evb8+el0Otk/6FA4m82uXLnS6XSo052OJ3Ecky23t7fPrl6Mt+LRbqqP0kc/+DR89Lu+88In//V//p7ruy7fm97MX525UhnbnfZd3N3fCOD+/VBrEjKldTyzcTjodn7jtz738y9+bjOF8NLw1+6+cWGnP9rdXxl2U8erYZhl2ebm5v7+fhTFeZ6vdLu9Xu+Fz71wcHBARLPJdIaCLEqr6VEKFJbWIIlY040jY0w3Dh2CsB0dHrDhcNCZ5ZCmWba/99TW2V4nODwYRToQYJRqb9AxAKL3YMP+J12TAoVoF45eBSleb8Oad5zID4iI2SEitGn3YlRz+60iFW4kV9i/BMC+6EJbLm0/2OY67Q60U3vbryAihorrVa05YTpW/GRBa1kgi9X3NTpxu/MilTsbYIFLVaeNGepxUBWKKQrb6nLVjTZ1nl8+VK3+bonbLc2DNFKILNywxMnaPPX4nsDFXE84diEiwMk/nXhJ7Tw4vi5QY5nNw4PVCZPQ6vnJr9ColAosWSQnjn203P54mhRlgABIE2OmeWktk4CTqpSQND1rXdUqNGQUq/XC1tWsrHMO2pWeoZHDTrCpQC1uLo0LF0PqnDB6fMcWoE37NMGiDCu15Ia11nVcxkKfAtSMerGdE++fL1NLu6PFLdSMjq3zNAERnbNaa9IY6VBYjIVp4XLDRD7ZR6yIWEYEZsvWIgRKKx2AYxuobl6khLoTd1aCIJ2N8zJncGEQxEGIWhue25zL0oYKhFAhCnp0Ru/FBiW4NBDw+sMD6lXD4oGaTxJ6+0LbZ0EgVTBKxbDbmjeCtMofVcvKqJVqZhFlXtOp2WZN6IDvQ1NcQUSY51DwGtk6a6z147PMeZ5by6EWjxBNQZzpeGeU39jdu3d//51ZkkwgJHAOAqCiLCy4o3SsB2vv/8BzV99+c5KnK73ueDoL40gpioIoILW3t5+VeUS6vzYcrA4BYLq9J51ANga7R4fng3B26/DVvb13r71xdG9Hh1qUtgZKAwdJ8uaNd7d376+EIQJvb28XRRn1umEnBq06qHcPjy5evNjpdO7evkNEHsw8DMPTW73do9kES4niGy++mXz1Z37kH/6jdD8o3SwIKZsmuku9XqcczdLJ9NHnn723v8MORoejtfX1w9EROZNnWQDwiF3JNnC0N/5Xv/6fzG46NDSKaKUzODo6mk6nqNRsNguisNvtRlE0mUxcUZBl0ni4v68QNQE67oaUTKadfi/uRpOjkREurYu1SrNybdDrREGstAZggekkAevOrBJ4eSiMRKBa4WOVRX4nBFO3Fd/2A5VnFxEJgeeMFhb5EDRePV972kME1IfAS4HHu4KISFpE5oF/RG3mXTfe5ihSv7dROyqTE4BUsAlNhSIRduDPp++Ap2vUNqfX57R1Et4jf4sXpBNk8v1va94wz0WRk2hcPQm82PICgZjn1z5g7ZZM8VJHZVPb67zQ+YVzDgBYkZI5QERj+2oz9aVuI54wove42oJC1YjPx1pMw/VSV70RGJYJIrfbaXeAmUsxqACIlENCpZQeT9JpWa52IiCaFGZqrDCiiAWhBwsQ7E03Hp/U73ZYWO2GYlaT39r/DQN+UJBgk2bW2tXLxokmdw4RDbuAVJUrXIXyt4EgWosiwnV2XuvVjeC2PMxme9ScY2EXqVYaT5s3NNashuX4R6y39DCCAmYGEqUwCAISsAxZ6UqW2OcmI7EDYVYKAcWxQWBUkdJEDmyZ+UIsxtpA6/7qWpZO0umkyHPu9XrYQQqaQYnzaMj+LAMTo6AIQi1tAGKVn1ONy9UiPVSstRbpsJ6EamhVZcwqXV/AYgtaBVuKMtYnqulSa2YIKmsWi1Cl8TLXiR0CAIwstaLc1pbYzjOL6pKpCAA5soirIp+ZLUtpwTrG3OluL3Ny7zB5e+fazf1JroOcpRd0XZxZRsPsFFrrAo2JlYtnNzYvno2HnZe+9KXdo7GKKJcygmCyP1tVKtIU9DtbK2sGEAKVHIzuZZNuBjDLbag4L7th+Fd/9d/EuRmwRBCEw3iUJbQy+IVXX3/55rXJNNMaEmbDyNbcvXIdepEzpiiTbhiuDle2798fj8drq0OTF5qoyLPp/uT25ObenWIL4m/c2Bl+4q9ubZx/vhs8/sSlr770jU44UBIeTmcFyg988uN//ju/52/9x3//5Re/KhKICAGXWbq6ulrk5l6R2Zk5bdDeTGcEhPHpHPXFtWT3cDDoHU3GcSdMs+Ly5cuo1e07t1eHw6M0jVTn7Nmz6WxW5rmwGMOOoNvthmGYzZI8LdZXBgYYbUmkk2QmJVIUrQyGu6PZ1go8+/jpsjQaSWElB9XnyLX3zIkEs9qLNWT0YpHd1n1z6iALZpMlk9q8RUXePSo14m5bpl6iO623VCnCAFBDRrRvbhNfgDls25yUPHCc4COZKklTV+nCc4ybNrOpuVrbZFd76aSVboQVd4da2nVtcEFumSvb7KfuuT/grSn2vKhl0ifEZlZbCwHHKHt7Vh+0xg3JaN/5YLGgmeeT7Ra/c+a78K4lc4IIUUu3WNwknqi2WloG3VzoD6jCGhWAEkESEgx0NJllR9lstdd1qCdFMS0KqNJ70Nm6ZPoxsy1DC7vQn445BZdmMpvNRu01bDlQTlwjbuUBtzlf1VSV2oe+Y57yWkTNrVdXok/1GQihlWvYfpf/P9YWbG9KWdpOFcK5zDOopHEDHF8+AB+Ou0AlqgYZsYIUYKn8L6QwJC3onDDXiQwIgQMEqErTE4hP8EWSIESTF3EnBFR5ZsBC1Ov01RAATDopikIYuzE0saLMYsBSHdBEwEhEDH4Kq6moTcTVWBhbckvNCev93F5cWDIFLfLgmm62MMsqT0WFT+LbbJaD2Xs8fFh0xU1RwNW1N6pfRCrV2YHU+bxcrT6LiFPEVsA6a60DcaQliCAMbmTpnSvbb1y/c5hDIqA74drqhkkSSd1wZTNaHfQ21vcPD29dvSmAgcLbN67HcayjcP3MOeswS9PBSu/+wdEf/fQnn33k8V/56pfvTkf7d3epE032d850Vv7A7/n0G2+8Nbq1jQDhsDeZJE+evrT/1q08JpWV42nZHQ7AEfXiQ+Df/a0f7zN/8d2395KkF8WS29K4ja0tYtcP41e++hJoNVzpmTxDxF433ts9PNo93BgMPvXhx2/f2nF7+WNdevLRwdSunV5f2ehvPPfEB9Kk+NKb38iLYmVjTcStrHaiTuggSoqydNYwf+Tj37S7d/jGu6+d6w+PInNwJz0Vdfey9Pd99JMrH7l8/60b165de/rpJ7/61a/1eh1ry9k0PXVqvZjNiCCIwuc+8Pzh0ejundsuLw/29gIPj7W2qpQKNZ27cH5ndLiytWFH+dF0lwuIhtjfGshovLXR39rQZZYGOhJGIm1tqTUxuJZyuHyajl9+q+hmByzd3c7in9MCZqB5tYcFZkAoUsX4yYPDOJoH2XEd+bJERNqG1hPUxDYtaPrWpmv+X1KkANk6ax1UUdBirQ3iTnU86rSWZat9RY4rtYYqaHVphiXAUvP12lOIVNUdroPFWssg9bE/PmkAoKTK1cFab64JnDRftod/otWa6uqq85ceC6RalHuwbVJuT+Dxxuv7f3tzyu/k0lgXha1DBkTEOYfgUaJUxQNRRBZ0SljUwzpxXKYFIjg2ygUMgKiSbDZOMyMAziV5npfGOdakENGxAwCFJ/hNUSts6eW+fVL6OOtdmh+sxasTRcDmHqovaImMCyndLfO1H6MR5zP6qhQ7QmtNu81qgzbyXd1zbFlK/Yot7brlVy/Kc+3vK0ZuHJw0QFWl3kKThi/AIk6RADKDMABzVW2RgcjHJ2MlwTtnmAKtg9VhlGSptWUQ9gIdlsYporX1zVzDZDJJkkQhNgzYOUfAMK+GS8tDICSqg85YTuw51IpEO39svi4Lm79pgQDmtRCamWrLVSIC4ETmsXjQyOn+R/Z3NEpSdZuHGPQmx7qEmi+nyMySGgvWEbtABYA0zYrbd27vjiZfOkwLI6VTg7X1kCESCHOwu5P01KCcHfWK9BOXH94IB25qZ6W1gNF47+qrb1AYnj578ezm+aPD3fHRSDu4vLn1Te97/u3bN75+5S1tucwEEM5vnv7Bxz7W7Q9+dvc/9HLenSZ//X/3p//bD3/6n33hF/9P/+rnHo5WI7J5Jh1gI+XaMPoj3/RNutO7Pjm8f20CwLFSSZlduHju/c+978qrb71942YQqSAIPBlM0/Tppx453Bl/6/PPPXT+3Obq7c/+2sHdo97OSzt67d7rL/GqCuKHnfRVAFnHwq998cU9a1/4rReEolmaXb58dmC6e/vbmTOH09nTly79oz/1F5KQ/8ZnfuadL7weh71fHV/9XV/Pv/HuW4oCrTWisNg0TfMiT5IkELt+evPO/f37e7ugVOmcCvX62dMd0vd2d/pDYAbSoROcTJMzq6uj2b5zEAdobel33dbWMNIuKWwcd5mZKIAKcMk78ud7bOnfE4mDBgUOHCnFgpGa5wF7YAFEdI4rCi8CApXptWW98RsFGQGQsOWO9aeAlJdGkR36KFNEQXDclEWss5eQQURRXZC82oKAiEopW/piAErEeXOTP8nap4u4Ku3RVyrzMc+WXZXtClAl+xKKdYSISgmCrayKgIFGU1OlyqbHIsDMVEVx+zTBKoWXSClEZnY+ktkxIlWFa4S5JqjgTawV9J3UjL1FxAAY5gzVlyCryjbqZV7ol8OKFZGGYRDUvkpqIwFVWbUNIj9QRbIFoMLK5gpPqNJcXMsy74m4f64u5WxrTYh5nlg8J3wLbFIAPOBasxkJK4xScNKkmQrUMaUKSbwvX9hvoRZdPI4WBACQmkxpAVAEHVEgKkPmMtVpYiaiev1+Os4xzUEx60CsOGOVUqLretSty+d1VwNB31lCFESoy5iza0z0rkGw8v96EA/xMOjSPn8iUpt228lXbVbnN2Cb84Wt9CdFVfawYybw1cAYCQFEAEkAhVydh1o7a6up06qu31xNZuVmBmKfbIq+GJKX6hTV5llpHAFeAwt15Nj4bS+oBNmhKEWhQmZhkLIslSKbFxqCKI60IGC0P3WnVsxQ624QppYhCNGmgOSFW0BQWhQYAGM5DDVoBHEpO6t1SBiww2j14kY3G+1tHx7uA/T81M1MFkEo1lBQhhREvlYyKwJy2ioKQUgsEClv/lVKtaVrzzQBqpiVapjgADwgKPjqHr4QhUhVKNtvfJ6XiXEAQMjMjh0rCp2r+CYAEPlUJHa2ErOYLQEgVqDERCgCtlV6wSMVF5nqdrtOCmuttTmDUBjM0mlHYYEkcf/u/vjG9tG1u7ujEgoEWok3ghgOEjs+TCNnM5ja6JB6n3jkscuXLn358y98/cUvD1Y29u7dOXX+LCuXzDSXpcnzvZ07p0+fnk3GYMxGGP7IZ3/5Czeu79y5ZqyjYdR3AY1mr91+8+98dQCTWTfqhuXsLMPl9aFR6dFsbz3o5AEYJE2qZNPD7nRa/tTLr5TG5Ia2ehtplu3bbG1rfbZ3uP3OjW+8+8Z5gNS4aURsOAG+dPr0n/vYd74jh9944fNRWF6/dmWIzEHBaNy9fBpB6ai7Mughxhi6Pt2dHu58/nOM8Qp1upid2tra2dnhXF9948rY5ufPb6aqeN+zz+IvpuOB20o03Rj91PV7l7v9w9nhiy++qAK9tbW1ffdeP+5Ibh997rkwoCKZ3r/y1niU9oer0zx/5n1Ph2u924f3hsPe3va99eHqaH8vMLx//TY5O9DoShwleTcPVvXqpTMCNiaVOC60Vk4sKi6MQ1QKFcu8ngLM/X3tb7AmkiJCujr/XJVBad/Xlp1rdrvAzNuEY3GXtz7jQmUeqW2PSikRn1VRvY5QIy2oAo10K3WxgXbjtdmHjndJRIRFnHe4VCJ6o/swMwsAoUIEqnAzm1Evjagp64uIUAfUSG2Kb+5siCYFej5vVDEqb486URhvWmiPov3TUn+qOvW1ob72bGEzdGhb3Jo6yq1vKsYAaqk/C6pSzSMdgA8mwdpc3E6+8rBNx7stLavmsdGdYG4BANTKy0mO64IfhAAIi+rafDYQGkjMpkERmaXZNMsnaTaZJaV13tBHQB6XjtTyqKHanNXYmyQT5nmb6M3OArDogml6RUSGHck8cQ7mJ+i3sUEtffava2a1ejuRuHmdWq6ipFCYwWNEC839NbXpu3WI5vN2YlDhPJcJvRg9V5etsVLXAodKoUdENKUj0nW+HYGIta7ITdgNHbOxXBibl9DVxMzAtu5DzQ/n/N6RUojEFkQsMzERMoopAqU2Tm31+p1mluI4dJkfODFqUUoAHVrHQopq6iJ1PJQf1AnwZAt7TwignRmxnAfvVWlvzm+WAOqMhtY8VwjVHueExIdpSxPf7BmwQEmohdBaZ0onIkoFAUWlsoXJTVoWeR7oSIMuMzsIVu5Ny+0keWvnzTfuTFFDEIQMOOivlOFkfDAOXJCH4c4kOwsQgHFcXMrwfcPN8cULv/XyK7uzlBXtb+9inR59anMziMK9vT0A6Pd741lCpX3h6y+fiuiP/p7vmEb6Vz/7awhADq99/esDHdEgPhzPQoD/27/+yZ+//NDr197RhLY0/UG/KIpABcAuZ/erv/YbKta9MI6jyJRlqHSZ5Vf3rt25eese2PPrg95hAhPDp4YrgX54bfja3rvX9/auX79zb3QwLsqCIWQRdgpgNegEik2cZanJUhNgEJewim4cajaZsLl963qSJGKLbDrNXfa1d8b/4cuf/9v/7Edf2rlz5qHL7ubR0Wy6tRYXWRHH0SwvPvzRj6DA0e7+bDZb6cUbGxs3b1wVgaNRGkfRwWgkAFmZ0QR6QXSws0sCca/b6/Vu7+2fPXfG5eVkfBiHeqWvBuur4/17w9VTgozL9NNTrwdawub3tW2TIhq5UqeWCOJCNGbLJtyYaNpkiIjcSfxjftTmGKcAwMKgGjAq3+4x12b7zPADsJdFxPHcRNY8KyKuNNQOfpi7JGtXXJMczwswhMcJ9JyKITYgcccJXMXYwmAOBE1ERJaZm2ziY7NEDwh6Oj4z/qcTs2iasTeru7hqVfnjamIrnfjk10mt+zbfOxCqeHxFoE/sQHP9ty/+xnvf8P+d67t+x3eKNKhsUglaIrUTViogVakYFTxI4GgDZrX2RsOAjy891NsbW3ug9eDCWRAgAObKZEAi6ECo5TiAxa3S+DLbr2NmXOx++xQ3XZpbLkTYOVLz2F0kJEBgsQy+aoL4KBQEdJLnRRwpZCycS3JTdMmxh0b3NmlZ7CcBCJJDICCHiM6AgHEOAVhDCKRV2OkFEcDI9ydNpqH0BREsugJKdk47rVApRI5qcEy/gq3hnHSoF29ozTYqqRRlbodbEen5PdxIwFgbMABq525duJdxDn4nzMwO2IEFITGIRKgira3lMjeZKTmYZllBGATdbtCN945mt7bvDoZrv/qVWzOU/dK5SK+ubY73R+j4U5/+Xa+8+bm95MgacSp48rlL/fHs6ObdjT79xt5bX/nVG0Wex724GOUKSCnKbREoAsAnn3r84Uce+cqLL7791rviuBNEMUves2dPnT3TWy2xNIh9HWWm7ETsTJ4ZCeOoV8K724c3k2JgUAnneZajZMZ6EKSV4WpRFAZMVhY2L6S0pNUsT9fWVsIw/Iu//w/uHN3/3K/9cj7J+7Pp93znd57ZWP3V3/yVt67sPXHuzK2jfUtht6OjXnd7f+f7PvHR//Mf+eP/63/4+Z//pV82QTA1pgN5N4yZwjAQm+aEcHiwF5CKlXJFqgnCjZV//pnP9Hvx1tlz929vr6lut9tFUKk1Cmil199Y27x27RoAGQuhlnt37t67dw/YXbp0No76127dNq7c2dmh3EhWTpISAZxzk+lUCD7xbZ/46ktfZ3Bpmq4O1/eP9oYD2FztF66gykQJjW8RQATsb0seoU0KRHQbEGAhumTRVVnRdBFZ1ORkDimw2HTza82y6t3IAAAsThwiYSVYevMpirBSC0owtGjEktnTf8P2BLwhAJC6GOc8D4SIkJqwUfEmUG8DdL6ExFx3mQ/Ew0yCR2EVBvZYdA2BI6J2ziWDeDO471JLLmmqEi1aC3D+uT13IidozCLSJGVUErfnHAAgC766prE2IT6uB891o2beFp1g8wfnzGD+fbtsAPz/+TXfPIiIyITgqm+qAl8+AnYRAxxq44cKg+NueFi0RvirZrqq/qvRqPxPbomb1tOLXPMJ8HZyAFh0kx/fM+0TUX8159YnaoTVuZhznqo0ri+SSLW9pyYYyBVaJxhAQUiK0gBpBdPc5QatQKhqqEsWrOMzGxwMJEZwIEjKAmhxBGAdWyXsILKL9ZpGo8NeWCodhmHEjMawY2CtAiEBB2AbXzvVhaeYH4D4BqopeICgRFwVQ7qMZFKnijmsVseHtZNU88A1voxrLTqgtbnHVxARx74aIYtgGPastc5YYwpjjGFBIFSay9UoDnNH1+4f3Ny7fuvgaG9a6k7CzrLAsBdr1NnObswMEe0c3FrvbVx3O5b5U488vnJpa2/73p2b8Mnnn58G+NUvf211EAWg1geDcZYlrtA9wFLESjIZ79y/75yLOyE4yMsCAT794W8+21/59c9//srRPjJaQldKWZa93mAt6uaJGE5WIaaUeqiSchaHQZHnQRiGUeSY88IAEIXR6qCbjyaC4iyf2tx89rn3bW9vX33tG29ceXOw0v3g80+/+qWvvfvmW7Mzm3fv7/2ZP/596/HqZ1968StvvKO0nuzvXDy3duH81vT+608+9FD5WR1Gve//7qd3793+wit3Yr221uU0NSYrSStSIeTGOOj2e914hc6vPvzIQ6PDo+lBakDYYkcoCAIWyfP8hRdeSNM0CAKl8IknnywZNjc3p6OjU1tn8tyGYbi1fur2vduBgVIgJAzj6PDw0Fjbj8J33njLIfVX1kqTJ2kx2h19+7Mbpwad/HAU6K7XJP05BAABJyxIc3j297hkrgEvXs0dc6tsWxIX8PVHm2vpwC/t8vavWDtWoVZG56S86owD8GmzIFJBSbNX0KXSy7xLzEce1jr6CegcAKCUIgFgwTo5Gtu0w4/R+bBMQCLjaipWn8E2+xdEzZXyzCLYMtMtjV0cI5LPbW1ljyzkdLanqJE2lr6EByhDbTtYW1CgYyIILCpYnlEv1CdvkeDjzP74VTe7gBrRFKz9Bx/51F966XO/bSP/v3b9o498mojmma91bXaN1LjFm2nDOiauvV6VvksVpDkgkPLgDSLCiNqz2NbyvddUKxX46jVKEZFXsBigKpQgHoq4ZZUBmO8iXDR+NBse5sisNe5SfR07oVBThuUduCR2Q3WAUbwBWkBYnMM0zS0HmmicYlJy4UQpQrZcu5axeVCqxCGvOyIGSokQsxN2YJzThEpU26wX9wdJckg2jF2nEw/CMCLQzrEIaLGI5M0TdbwbyiK22vLlIburwovev8Y1dWOpHq6cKSwWEWtrmaAgAaNI7cFjx67hwYjKlBbAw7YrqTKLwAor0XlhyjwjhTrUAUBubGnTWap2du/c2TuaGt5N7KEFVnSUlt77/cyjj8ZB+PJLXyMErdVLL36xJyvjkr/7Y4//7osXbxzce2f/dhjAtdeuPPb4U0+fe+jGvVuXH3n0Wz76Tb/0737uoVNnv+WjH/6Vd955/Y03r9+4+vbbbyeF0wrW1zbzPJ8ks84o3xnP3jzaLhIZRJ2ETayDgg2HYbfg3XQaEPW4CLJiGqBzoAMMw7BkzrKMlIqiCBGjlc4g7JhpkrP1nOPtt9++dW/bKlhfi//OH/uLZwZr/yOo3/ziS6tvXzcduHn9uts4nafJxsb6we7+f//Df/Wv/M2/8tkf/6f/5qf+yTfeHSfgPvzk07/7m7715rW33nl7Z+PieQlnVJCxR+tnz7Oxo6RgcIOVVcmsDajfXbt/c7ucpSrWVngQ9j74wQ+/9c7bzjlUKs9KEAqizsF4Ulo7Gc+Mszdu3wGhOO48+eSTSTo+Opx+9EMfunXr1s7OXuABeax5+5XXO2dOxQXEWs2meT/Uj5zt9QgT48Kg4aHSHMM2ZTjxiB2/qoiqBh6h+aHxZtEiaEDT6HFx+8S3Uh3lKx46qkpIANSBzC8fSIIeRhUWuClCjaoxPzgtNtN2ScIxNsxQHREAQGZUtZpb836SqgyiZeNJLVQ/e6JDjaju6oq+xwVqPpYNVQGAsDAKIpIvqXzSdLWZ5UKmcdPNWkOtZ6Ze6UW+TKiadWm3H5CCVlEEBKjBTxY7XCvx8/VqiwLoC8L7l7UsIovq7z/82LfP02GxtWEWKlW/F1Zq01qLwZyMLEMNVLhj5xyiCLiiKNbObH3TRz9248aNu3fuTCaTSEUAhB6FhaoA7OmPPuMb2fjzb7XDDuazgYi+7r1UEKFSs01fsqJx+ftOVo7hluX5eID98e26tFehticteTfat4kI+EhGAAQFNDefNh2v/11I4qqiqRFl8SC376k/ILS4ONRAHzVBYBRQSK6KChatCRHZOucYka0R1JIZnKYuK9FYgBC40hXQEwARgSpLEOr8bF/6l0GIAZ2wokBcyaAI5pGha+unZyHleZ7maWGLbtSNo34QhEQEQooEkatw0ZZoK4vHs/qmFp4AoCl+LILtIBqpKyWIVHjlzSMoPsxbnKnd2+wDqnyOr0VCryogMiM454yz7Hw+UQnIGlXhbFKU49ksKfMMoXO695Fnn1tfP3t35+D6re3Swf7hKM2jm/s7L799ZbC2lnU6UhQ6d5GOZkWpQvjg+5761GNP8EvZz38psQ72JrMup8998uOj38x2d3eP9vd7QfD+Z556/slHr5T566+/UWQFafKF0OI4jrsdtRqdGa5PFT/xgedH79xHhqiryr0jFEpNMRnNVteG5599tLx+7+bd+/2HNvpT2ds76AxWAlLMXBRGIyTJLF6JR6NRXpaCeO78+VOnt65cuXJ6bS0rJ3qc39i5c2vv/r0794bDQcg6IklM2Rms7O7uTo07vb7+gz/4A2DtQw8//Jsv3VRRNOzI3r0bX/z8YO9oVGo1hV0ZM1inSHu5IY3G1lrjeDWM9maT2zduj48mnSgIouAwHQ82Nh598om433vppZdKU0adODdl6czRbGKNZLbshPHRaJLnxbkzZ+/cuDk+mGAUPPbMU0fTiWOeTiZa0Npyo9/LxRbTQjBd2TgTlLPzm718NO50VwFLAK++UV3r5H/LpYHnFUCPi8PoQd8AfIYiShv8dsHDAepkwiqVtFxT1fm2pqXj4QV0NsuP15m11UngOvUWAJhZ4TwqG2oO5E+YZfZZ8J4mtdMivcXKv7KhjFy52BYYQB1b4aNA59lZwicwVEQkH57KleBMXqQ45pRtd7V5k+ACBzreePOvyAI0D7cIOiI2ZgasuboC4LkPGKB1/9JsYy0zNb+2w4YbOnacri1x9HZc2/IrFu+sesVVtypds/6PF/u4xLSq2mwiiKBQa7JiZX9vbzwaGWNCpQGZHWsKGsmv3SAiurpcNGJbJwOxDkQUYJMrBfVPS4voL8eOjts5WybQ9iNN/9tSTvNN+8uGGVfW5uoOAkBGQWYfZX385Dbz3OZGzOyD6ZakjXYfRKqtW41LhIWV1LdxpfwCgXfH+PhrBvbKMKJiJmNwmtqkcIUFVJoIGHzSc9WNZn6wxldHEMDKzqs0EpLJDUCm2yqs6qysXQ7TSaqOynyW5DNjijjqB3HHRx0LKADx0RoiuDQbC1uuduqL+BDoOrNfzMKc+Gh+gQrpz29srpN8K+8V+KJYPv1Z2O9ccszOWSEUz4Ctdc5ZYRUiIs6y6eEkSUob9odrZ8498+T7N9c3u91+Ok3XNs3HPtpzgnfv3U/KUsLg2v3ta3fvJsPhnRs30zwHMCnw6bXB1776tZVZ/tK1650AukE42Fgrk/ErX/48lrkr8s996Qv708nNFz77pdntbCcFgCBQZelWet31U1vG8p3te5tn1tceunB6rX//61+7l2fxymBtY3Vn74CEoyjQQfiBD33w1JnTtybmbjl93yNPX1jdfOHzX9zZPxCGIAgUSjKelM6O9w8VoA4DBrEoaZGLSJYksdMRwN/6mX+tV+OtIlzXvWuz3W9+6vlP/t7fs/3OlczZwXC4v3P4d//e3/+BP/q9P/mPf2R15cJseggZ7Ozs/PydnQx47ezqrRu3OhYiUUbgYG8HAAAYQI5Gh9TvFkXxxhtvRJGKibPDpBfGV65djYIgSZLJbBZEkWUJo7jT708mk3530FU9YQbjNCkSuHXzeqAAg/jN198qiuL9H/rgF37rBXGWQjqaJb0VJSCFgeHa+nRnutJXZWmlF6LNARCqSCIPgEqI72FvWbjq3Yi6/dUSAZVWrG/N1BbuabbpiWxj/isAQJUO0Wh5pnSIiFSh1SNCFRG9eGx8v5RSPrZQRADEh7RKS8M4LhOQUh55lVga8Z/Rl1Hw6U3zt3CDYLWkBuG8gKw0nTv2RqwRFRBRIVUR5n5lEAHA/Xbr0uKVVePHuWP9U+3rrZXiSlNrvaHpFSL6esZQm0iaATYKXP2h1ti8D7Qqj+YNjDXlrYjmguK7RL5b/ax+bRP0Bw1fRMQ6rFNmmx4KiKgTnsUqmdXPAgE4Ik0oSqk8zXZ2dsbjsVgbBLrSUbTgSeERbdENWhZmAPCY3scFhbbi275BRBDnQVjtUsHtx1vvbmICAFqT6aPuod6WvprkvDJSzYKhVsvb89+8ERGbxptu+yuMg3afmweZG8CNBQbcOE/8U642aGut63PEKD5wCXSgnGV2aIxkbPPCGSsMpBF9QUYAYLYiIsA+/Y0NYMufI8BISEBFWYCIRo0tkTwzTlM/jII47GTZQTI5yPOCEbqKjAURcUzMAUDgGbBSSmvdWqBlWbCaAY8hXQkp/nzVhooGLtQtMGBZRKBjbwHwc4OaSBlnjDGGnbezWeesKw270s3KtGQHQdQ9c+5sZ/X0YP1sb2XDdgd5bmxWWkJc7WWByoty/cnzZ4u02xs88ci5ydGTRVpcv3fnME2u37+7tzeNVHm4N/m5oxc7p8+URn3kfU+HF9e3X3ltVub3tqdPvu/hg8Npt+xGlm9+4a0yooceOgdAV67eMcYQ0WQyKks72T74if/wb4fD4dG9PWcxzWl2vxj0uwcHR5CnlsuvvviVC+Hw7sE9Xl8xb+++urIPisIwdJadMYNe/yjLttbWdL+7v7eng/DUmdOzLL352t21bteW5YHuaAG20CspSfMS8n6389rdd8f/0U7v3HegA1Tr6xv/9F/+5I//9E+e73dQ93TQGW71t3e3BeGpxx86v77x1uE39tGScwRw7/bNqBN3gLqdaGazg6zUGH/kIx+6ef/2bPfeerdDQWysvXr9uoh0Op2yLMM4ysuiYBt24rwoPHp8XpqHL14+3Ns1hV0ZdnZH08O9/SLPACDudfN0ls7sxsZKViQhq94KOKQgDFUIHd3dKcyKZhBCrDPW6iNyjBD+NpcW1hBRRGmi+lFrr6N3oxJ54c7zPyccQERaYZXixoBISpFSDuaCbbNTRYQqlMja0QvCDK5R10B525R/VEQIfKFpr24oooo6OGeISCkCIAbx54ECja4+VNTgLiGhAuM1EgLlaZln8KIUOhBBqEZhnfgoG2ALtd7atMho2Vbn1jEgeshMZ52IawAWpMpvhopCik/HJ0GuTNBQWREcV0+1SX9b4wGfW0PUEERpGQCdc6Tn3LQiK1IpcP4bZgZABYiAwuKgKhjl22oidasYT5iD/SKi1tqYohKzpFq1Fun3dIcAyK88VuFmXn5ybYsrectEhQ6GDWcSEURV++8rmEBmoUAJgBBJbXGpYAwfwOCRGUSc+AbF2tK/Fmy2fes2IiFpJwQAGIAFoVCzD3ZvtVSI88U2RBMQAjtkQWaPverZnjHGB+HXVmVAnCM2e0u7iHicAednp7bDs3NEBCBESKQ8wlFt9qzkHBG/fpV1wVkXBApqm5PWKCLOldYBEQVKO+dAmEgxsDM+r1QaERBazJjnqKUMUJV8XhJVm3XR1OAgVp1jBuccCet67wGA0mG96xgFlNbGmCBAAFBal8aISM9oU8Kop7dzfqwEygsJcwr6TXxZwxQREMin9dfunUohtt0wYhJrbV1GCAAgkEwBsxOlo9W1i0Ew3N+7VxQJwTiMhmmWl2XY6fRIQh0AQmmdQxm0pZNGUDbONNGUIkBAVeFtp5HEGut9DSoISpM75zR0nLUiDpA9u3WCRKSzYFZkuttJylQpFC4CyTSymQ2AROkyk2xaFs4LKqUNMVxdPbN64ZGVc5eD/tAyAFsUyC3GgwERcZEBQCcMh92uMS5ANZum1trVjW73wsblx0+XWW6N2b2/bWy5vb2NiPe27yerwcF0B97cDTTJ1K0oOLq1IwLaWBWGjz71PuoEZ7ZOEUA2zbcPju7du4cowxhM4ew0v7s3W1npGpM9sv7QU08/89JLLwOOOlbNGFyRvjVNVgbR6ZXO1Wy72MkfefyxPM8n6WxamrW1nsnGuNrb2NrKZykiZixJVq6FcZlm7/vQB7/pgxdf/tzLL924Yw7zQS8cpXknLzmKbrx7ZT3sbkpsxmmu+fTptUB1RwfJ8BT/7g9/fHVr8z/+5M8dFeVz3/zJ9SB6+fY1uj8yGg3j2TMXLLjx5KgfqXAiSPFTzzz5sY8+t3F95Vd/ddcON6OwN8hLZ1MSSGazKI6ZgR1EYeiM7evICI/K7JGnn3ji0cfefYtuv3PVpBAp3Dy9ee3OrWs3b630Vka7h71+T8W9jgNcC8Cag+T+VmnPxPGtxK53RQpV0d+W/ZkFCFp4DHXq5iL58lzSoz2IbjblEo2TuaVobi8Cv01bEjrUDzaOw7b6JYuBQu2uLPGe5vs6sLb5cm5hb27jBh5S0NUwXh6UqkLcYG6n/Ug9TVIHTbSv6gaQCuWvCjIiaTl3l/rZ0LLmVDc0twYo8o46FBbxqfzzLJeFBhsieFw8h2PX0j3NswDAxzK16uFVSVxL1gI4CcKp6eHST83A24T7xE4uaVfHx0W+bl31YFVwsDFOtnsoDxBQ6oYQwHs0AaCVoe58aQPA2gnKVYHVk+eTHRORsEcVZqxgoedlBJv14qp2DQC0TSbV6fB82sc4zTd/7UCth7Cw1eGY2UlEiKjB5feCKSJorR07Zob2FCEsJWEvtrz8TdWHGsJleaVgeZKrbdAqzLDQVF3kgFqQef4nK8xIYiXLiqw0jB2tg+MtL35mH21Sua6FABkVaqB20BgzK3SAVJalMUaHwdnz57N0mkzGaTZRFChFAsa6UkAppRQGRZF7Pdjb2GxtaBHn8TUYrBMRpwiqVTYE5ESgkZ8ckFBhtqE6bgpAI2pichbGao+1i8n0yYmoWVEm1qFWOe5qlPRoUjgX9tajuB93B2dObYWnH9GdTme4prsDVIqZUUQT9dMsCAIiYOl73cY5p5XiIFzvD0gr42yapkVmREiH8bnHHgfH5x95NFDh4eHhE3fvAylhuHfvBt7dPspuZkXqBJyDLC9v3rqWGPMmwpkzZ9Ii13En7HbKIhNwnULS3MahyotCAtXZXLmye2c7PYqQyjT75Mc/NhwOv/zSV2azSeggy8pIBzfeudLt9SAxlzc2852jqGBz/+hwWpRsURHf3+soCla7xVH5xIXzD5995uBZ99krd4KVXu4wJtaRHqFJCsBQB0GI4HKbDjCYjUdijU57a93Vnf2DmRQQw2c/+4uPD1dXOb/nAEBOb6x/6pu/eftw/zd+49fCSAdEWelWVlb2Do7efPPNOI773Z7WoSnK1JRasNPpZHnuDJw9d+7O7dv9bq+05SxN2Lnx/qE5n7u8jOO4NFaTQhalVBCqo4NpQIjAQahiXLl/Z/viubO3x5ONdRWFPRkfmjLT7xnL8ju/NNbWoeOkoT6cADCny9xKGpZjVr2GwSydtCXq2dzTfmn1ZZOGxCTQwhCReTvtR3yRhIrMebACx8BM2o+oed6fcIQFqMv55cMyELGp7FjZY/UCJELzbBMsw4uFgbF2XqoKtwR8gbLmnqaRpbE/6MOJE3j88kUpqLZJcq2bwTFCXP+5zGgb2WKpA0uyAqIf37L9dqnPS9upfU8lL83Bsefr0qb1DxLR/IdF32erq16lp4qsiwgBKqJG7jq+9G6xVEMzD22LTvNsu6tQ24T9/QqwXc0aK3mgbcpuuVcWJ60ZoCJyniMoVc/SXGhbEkqUUtKa7YbTnyjS+asRHZrb/OMsC0U+Fk6xH2DlQpqvLyIysy/x6fXFanZEvNF1Ms1GWTfnTl/8WT5BtptjtopAk+KIDthrBppbkhMzFy6L4i5pKi0rwbjTDYKAVFAkE2NMWs48VFwn7CMEgAFTgiBO2CcwVxZ2T2BEPN5nZVUmBGDjrALFzolIURhr2BgDAKE6z+ysy0ubs5SIOQCwWEt9gWI8S7LkKAjJISdcFLllCFxWiNXrpy5efOT9vc3zGMVhHMvK6SAIiNjZspxNiiwxWWZdubm2PjnKiiLzaJ1a626nN+j1XNR33tKD0B+u9Pv9LMvSJBtnBTMP4lhH3Y2teH39DAVhGMTGvX9v//Du3btpmh0dHe3u7k5GozAMC2vDIBiNRuLKybS009mTTz4yHh/t23Go9ZPPPX/96jWT5Ve+8SpbCUpTgFy+fPFwOt4fH6GCtGARCcNwb39y+vSpPM9PbWxePH/hytvvxEA2y3JxUTeyAkqBKwtbSmn4S5//jbtvX712ePv9F9f3kzyz2I17R8nR6bXwqQ889etf+IbS1OkOtA6zJA+17qyo3Wn6s7/2K2XscBAlB5OzHfyhP/kntC1+6J/+5N0792MV7G3v5GV+emMznYzLnLEff+2VV3u9a7u7u/3+SjIdR2FnZ/uu6gQqiq1zFOjVtdW7O3d7vQ4h7E1GQaCBebJ/8MqLL5V5VpaliJDDvZ19Lk0yniaTMYhoBOHyYJwPht2tc6feublz+fk1ARUFMUECrdjA/3cuLS2zZPtgzMNZAUSoisuvD79XKBp7TnNMlxgktKKp2xS8IRZtfuOvOp+OsPLRYt3O3F2t6kRbwqpiDEkFcIgs4B2xVcsN2WxodD20ypNa/SgsLWmi6fP8u7ZsgS1AXWiMAfXnit06ARBA0EhcB0ydOEWL3WtmpuHN3ngONbMPWu1UY2z+5ZYDj7Ea4wIxbc0DLJJCqDSwE6j28TuPf3OixNC8usVBqbI4zMfLLZ14IXoLaxf1EndERNekd1cWc4RKa/G2cUTAdh/a5vGFPms1N8LzXDoTEe+O9eaNeTDUYh7RfD5dC066VS5n0TIxZ6VQy2qNkAsLM6Z8WjxUPWlsGN4xUfFCrJGtji+EtETGJqTt+M3NI+0qVcfpQPv7qjqL922KL8ng6s+oSDtgIgUOktSOMptY6Dipa3Asb4n5uxBAsAnedmgRFTGQmh988QYdV+ogjgJlmWdprrXuDIbduJ8kk3Q2KU0+YXbO9eLVIECtA3ZgWZQC1KoKTnaAjF42Zq6tYgwAYi2wE2tZERjjBMUYCwCF2wcAII+CrawVx4aZbbltoDTgytBGcU9TfyDRqaBvuEg75drWuVOXn1IrW9HqZtTrpOmMsqScZdnsaHq4Y5IpWyOC4ji5082L1JiSiJRGBBWGYRzHvdPnoygKurFHGxaRjkCnoyHoG1MgAHAJlknpMNQ6xJA7uL62Nuhrrcsim0wmyG5lZcVZm6cZEO7sj/an6UGS7ezt3i5mK8O1qBePt7djkKNp7mnKqc3Bk88+c/v27Tevvo0IeQ5bp1cee+bJV199tSD4ju/77tdee+3dd6+aGPvnNrK9vSjqzvIMRjNmJwEB8WmHf+KP/MAr77x+8/U3/9Af+u6PPfLwP/4Pv/DVG/ccm34XfvN/+ZFy//qPrRT7Vr+7PX3trdtxb1VFurTl2unT9/a2IeCNlb4IrHUGnW4fMhAApfBodHD/879lUFArjUChmqbZxYsXh8Ph3t6eK824TIBHzObRR58MkN56481v/dZvmeXp9v27nZXVXhTPiqkSNOwiovFoFIdBEASoyKXlwd5ePOwdHu4DMwBEceDK8mA0+dCzl9MyC4Xf9+TGZJYHSIEiZ+sNuXgtKA+LNsXjl4hoTyAaWbj1oy+S2pCtyhlMpLHJbfVHl+bPtnnMe1w4j/1Z4GoAtbl2kU+c2ELzFLUoHvrAY8LGcN2YftsTtPS5Fik8a5xryYiqIRNztx8A1IS1LYJUhN4J+bqEAoKMWJVka160qEstc1+Yr9nydC2x8OMTUnUMpCnkDi1TZPvxFvN+YDtLL2oLZO1un8jYAObh4u1xQWuDilT2Rm8naK/RidOy9L1frNrN2WbP9VPgfMABLKr1D3pLG4a/UbofMD/YWqn5XM3XtP6mvXOaDd+eT1iU3qAu81fdj0BaiYh1TlGAtJjHDYC+Jv1i92oe3+rwSQx1aSmZF/KDm6sR7rCx2dS2qBPnh4icMAATkHU4NjIp3TCSuIU40O7Awp9VgD4CACoG9km63BRjELBhqJwzzKyDWCE6AeOsoA4g7vWDKOpmyShL0mk6AYAu9gUjrEIolDgfBUYiwggiJMwIikFYhB1bYXROxBpjQh2wE6er1VGBZGVmyswpY11alDNAE2qKwstah3EchP1+ZjjPZLhy9sL5R6aT0hKsnT/X2zqTArJINjkY3b9LSeLKLJsd5bOJmFKpAFAxI6czEolRCBANMrNJpRTZu3Mj6sTdQT8I49IaY0wUdXq9XthbV0pZdmEcIaGg7oShE+emqeSpFtFOhURxJ7bWmiwNQJLx3spg8MjGyvuffNyp4P7uLsEn8lLyotje3dk/OALC/f19v/cGve6s26FTm0VRqFXV7Xavvfnm45cu/c2/8Tdee+21tUE/Sye3bl2bJjMjLkkyFrXaicW5P/zH/8gbr7z8gcuP/f7f/Xs21ld+5sotQnnnzTeS8WhzdXj/5tH5sxqsuby68dSpU3sOH7n89K3r9yEIDqfj3kofDsYdB+e2TkWdON8b39g9+sv/5EeFy3E6pUgXhXni6afDfv/lr30Ng5DFakJCtbKyMugODg8PQx0g0upw5dy5c3dv3lIKiSidJUEQjEdHemV1fXVtNpmubWy60gSYzYqi1++CIgdlWZYr4drRURGIV3vEsut3usD23etXz691Hzm7Ot0rWVj+P2N+BvAmaK31kiMHagxkAGjhY5EXfBurF3jXbwtE+jh1O67w+Ytb8LOLpFm1ifsS2ar6IU2CrJAmbqm/AiDz5MKmn9JUKWFmmcckVV66SvkABSC1DE6IhIA817QWlNTGlIe4KH/4soyVROBtdj6NpLqhPaIHcV9oRdtSK+8LT/RkHp/tVkbxku4INcX3seci7bmVFvt44FuYGWDZou4fX7xTIS6t+5K9ev6jn6w2tz6R+0Jr3jzuhY8jq0Dzq2CioGHtAADICOQxk5cYQN0nQKnN9Y0Y1/JuQovZSLW/TpDhql6BX6N6ver843q/zef/RBAxRHROtK7tTEBEin1YIjgiEvGxjd7xcgIWOrS20PHBQuu4Hb+WZ0ZERNjnfwOQPyVcm44q9IwFN7B4DRUFhFGIIRiXbpwX57p66V3z3d5AWC92jIgEhR2rBXu1c76ipbCzhVJaq0CQ2LqSTRCoKO4SgdahLQvnylly1IkGURRpihHFWWu5qpvCAF75RXYiwmKts+wDz5wrisIGhXNGWSzLElDS9JoTAt0JghUVbqz0LsVxv9fpJWI1oBhDrApTDLfW1x96WG1u9tPVsKMtuJkrI6WL0cHs1g27v3tY5sxW2AI7BJ07MGVZGLsCjAgCzqc5KKV8YFooXBxOssMdFQZI2lo7ExgpBUEvCALLrtPrcUAOabC6ZkS6TiNJpIPUWgo0KQVAs8nYlQW48mhnCkBQZhjEm4EKQz3tqrWNs089fikM4/HRpBt3RvsHcaAnxroPfziO4zCIRqPRwcHB0Xj09NNPn+t2ilNb3dIcXrtWious7fS6Oghmk/TqztEPfu93fOr9z++/+cY33nzlIx96dnLrTjErf/0LLz/6+KNv3Z0N+yubnc7RYfaX/x//4FK08crXvvzt3/5t5x86q7Q+mI3X1laLPBGthhsbn/7Ut5XOJqN0tHf0jSu3Lz984aGHHrr67pVeHD3y0KWNs2fv3ru3v79PpFdX4tfeeGN/d0cp7HQ6QRCUeSmCBwcHk8lk0OvduXVrPJuAc4iUp7PUGTY2dVJkZW7N1uZmEEWHoyMLrMNOGEdRpwtlGcZalA5iva5UOpumuXni6Q0oCopC7Zyx2I6+OJH9HT+PJ36vvb9BKTWHOV66j9HnyS29TETmEbSLr3nQCV96d0NwF3iYqor2iPd8VHW24TjOX/WIA689UQvuWBCaaI66V3Py502U0Jo1AWgiLfEYnJC0Jf/6niatov2l/58gkACoClTJm4KhtjS0F2NpbdqMllvF1Jp7TmTAWKcCYxVaV3WjzRCXuHv77e2XwoPX7niQV/vL9lN1g/O+Sa0Itnoy17cEHCCALJdJaB5carwtsdWGgXkepyjFbLG6gVGqkD2fp740/+jLzwlAzcv9dAshG9s2PrfefuL0+OyUyuriO1L544+Z9JfkjKbnUO0rn3g6T3oR8dV7uN15IkJaHtGJM4YtDfg495X6Oj75/u0q0D490MuDtahaj5HIOdeE+IkIMzrNKKBEgahp7kZZYZw6vq+qNy7go84/ugqibgH8PAjIGFaKkACY2VpEJIWkyGBZOnKMhEG3t4ZdU+RZmaXWpCDW2QJJsY+uCzSgQnGuLGxpPIartaUxxpc7NOyKIldOjCsRxThDClA/tjpcGaytB50O6QBYnDPiGNXIlmKt6nVPD4fDU5efHl54aGa52zeBmPHe4XhvxyRZenhgp0ddrYoiN9Zaayt3hxARaUIGpRRqHQIAs4cwYBEJiUAHwGyduDI1xojfCZT5xJB0rAUIgyA/PNBBUCABQBRFZVkKqqg72Dh9+tSpU6VAcrDXDXD77r3DvZ3h6vru0X6ZZxvd4e7NW71Tp7IgUv1uxklnq6e1Pmc1IlprVwarmxurZ05vClKWZW+//mqo9bnN1T/7X/yJsrCH07EKAmvt4e7e9vhoY9C9/sYrj18+d/vz7/zoj/49mOWdvv7e7/qeP/2X/w+dH/7rP/cz//7P/Zk/cf/+vV/4zd8IqY+p+S8vXvjg80//wPd+xz/+qZ/nwsnM7Es+WA3uHOyOpxOF1AftFHzq2Q+Vdnr97XcJ+LWvf1298+744JCt9AadoijWej1T5qm1GxunAHBntkeK33rrrVgHk6NDACiKPA7CIpnlxhSliaJolub+FD321FPTJNkfjYgw6oQ6jkirYX8TREQRKyrGR90ORmHvsYcHLmEOJVTaZhHAQtWj+alphW02h/r4nc2lfUAv0VIt9IW6s9iGZVh03Na5fXN7cktXWDjMS105Xt2ofU9DWxtW3U5HwYaOO/YM1lM6EfF1vlhEe26xAJa7EIdcFcCp39ogDCDAcbSmNgP2t4Th3AnfWKcR0XngBUIUQCTn06gQFvj9SVppmw42VHVpSkUEHrCc7WerfysSuSDoHKezSwzpPRjwcVmhYcBY2zyP0/d249jynVc/Yd3sSeaQE/0j/jMJgGNwDCJI4JdTmpIJ7CpDshMAYWatg/nKL/Ww9vQ3PUEi48sj1lPXjpNYqLldy3xhGEKNSggANUIFWnYtyaN6uw/Xx2brtly5qLUxhhmUQqgL35KqFE2oY8XfY4dU80PzOYeWTLn0OMwtB6q5oeHi0kg3AEgIXGXzA6GPLcRaA7a2ytvxX/qcCCeQlmWSk3Pxskww/7BMeeouecBXaP8ahIoosKUBdlqHpBCYBa2gQm3AKXbIrFCpSHd1N4ijTjbaLbJsxg5BBVEcRhHYgC0g2CLNTJGJYyRgYwtbOOd8ZpxxuaAyNqMAWDnStHH60srqMOx1clsULidioNK4rMv9cZ6FK6ce/+DHJeyLjh2WtkhdcbRzf7vY24U0y7IsLcq0zHZsDmnKQKCVDkOFSGhDxEgrR0MgAYVaa5Gq+qXWGgW6iB5GEFDEcVmWpsiCOEins04Ul0Vh8kJZyA8PO50uhDrPcxgMdBRa4OlsHA76q1Ec9PuroaIyuxSFs0kymY4219emY7CBNdYWY9w8e1YBj4/GvV6PAY9II2K3270/PUCtJAJC0kHnoTOXgyAghnSaBlo/3nk0SRIkwvKyyjnJ0rvjg7MX1rPRbhzrtQtnZrPZeoC//DM/ezbQ/9UPfEdvSBfS3rMXz+0V+QXsv/6lX375i5/ZDYcokCRZV7pDLu7f3v/84W9Nre0BdkQsw9071zbX1+IoMGk52t0v1QEzbq1vHh2NSBMqEBFnbZ7nWgf94cpslvYG3WQyjXSQJelTzzw1Ho93y0Ks6wTRcLh6+vy50Wy2f3hw695dtmItK4DCGuPs0Xi6uXYqnUydyHg2deNkJeikaXl6K+yEvcNyCqSJghMZ8IOu9+DB2mLUC7v9bsilSU+l7d+4xuJAUPOIKDaNFIwswA48vwp1lR0nopG8ZUyYKdBSJ63XpIGohc/clhf8l8YY54w33zccU4xrs2F/zlUY+BjjaoAsyF7ZUs75Y+yEqoROf6p1J2pbtrmyQwmigC8h3MS1Clrw7aFWWrf0ZmSx1qpAV0QHKlJhrNWCoEgIWaTyAYMQAyGwOCDywSbCogC10sabXhF8PV8AEAAn3GRGcg19AMgirJjAW/7bybWOSVFlUEYErpA/2lS40VEQcSkftE2LpS4G3NygK3wJnNNzdlAtJeK8GpVHOarltgCg8RyjXxzfqNd3qw2GiAqJiBgYuKqq2jAZQixZVFN+2Jcu95Xqu6FjduCQUIjYF+lDCKUUZ4zhUJO1HIWaPCMuM6UUqqAtIDgGRQTMda1WUETC7MoyDEOpk1+pTk0WEdR1yi57B7MvDk3sPNJHreh7sP5WWpHfxXVSn1gRRcpn8c7dGQLOlgiiqJLYlJeDnQgBM6MTAvSpZSAWlaBHT675bn2+wIEDAS1ESAhIgOzYa7TQ5t/1UVZ17EDVEQQEREXArBB9RJvHR/ZpAqjI9w0IPbCDf7ULUBUOQmWwkIwyig9TLMRaZ+IwBsdCwATG2ZCQAJ04RESgysMFjASERJUEthA45myiMKBQwJFwKc4BhSDoHACjQiCNAAxcFK5ARK1odfOhosjybFaUiSlTazIFiIjWGqVUEGjRUpZlwaUgBEFQOGaTRYiBQ4S4MLqzeWbjzLloMAQCC05pjCh0zqCEOo6AM+z0zj72DA5Op7PCHB4U4/v5eC8/HKVJMZvlxhhBO04ns7zorgxjh6SDIOxSqJlBEDEMJAjAUBh1Or1up9uPOv2420OlAIg16TAQRU5AnBW2Ns/KLEdEZ6zSpJBsUbJzzpmiKIrDd4IgYM4mowmRjqNusXNnlo3jyx+DsGPDMuy59V4Buzs46Jw6dzYdZ6dXVpxzDFDmxaDXN8aoMOzFvbIsbWFjpTk3NivAcQDIvQg6HdY6CmIKo7QwpSMFyoSBADDQhy9ffuVrv/XI4+eefOKZ/cMZnENUVBaTp597uNfp5mmSdjtPPXXJTWdFlpfWlNasJ7M/9/tWpkWWmuJopuI4nk5mR5NxVpQH+xNxcGN7++zZs48+8eTnvvz1Tggrq5t79/fHO/sYxC6ZaqIwDONe37BjB9PxeGWwOmNes2rMxfCx8089+fjdG3du7ux2B2uczk5dOl9YW5SpSWd7o4kKtAZAjWqS7l+5GiuZ3L7hFPXPbM12poNT/f7qhUv9t8524sk0iYerKh0zLgBGtE2DIt6o1hx5OOa0wrmiB6BFXLfbX13pISXSgulTGgWAWXwwS+0GndPupYvreqVtQRtq5XhJt8NFkbxNO0REKYUoVeFrIhFwzumWzD5/KbPgPA6IWj62pkGsDdqNUtW8rvmADSRCfXlGA7VjT6TSgKt8VULAZY2zUo+8OoO1OYIq1dxzYnEMhCIAdSVkgfnj7QmEBacjAIDU1SCgUu4WhtAIJQBArXk+7ms/fi18j8sTXQsry0nG864eU3wR0bU15qUpQi/JLBiTGzWxrcaJiFba8w8AqKBAEYmlLcC1581aIyKdTqhJRRGwc8zMxqLSgCLAbZOnEvAp41jBbkizvds5SNiorVChinh/RzO+psPtSW7EzeWV9a+uLUDYDnATaPJrl9ZIo2IPJyNVsrlXRlm43dXm1aSo7T1tz+rxc4S1BahZLKiJRCUP8fKZcjWaCFVII5WFQCtCrUSDMKDTgFgYl1u23nUtAvNcLGKu6kxjXSTTv6u1cxZs1IgolWwgSArAl+iugtUR6iiu+mZGcAQqDnvRSg/66AEjjXVOVqKgLMuyLIU5iImCwJWltZbAdvt9AZcXRsfx+tbpweYZjEKmipRiJWMpAQDHiBgHWIz3Z0Enz8vR7s5493YxO5wcHhY5m5KttUgQRcFGr6uB9GAFdBB2B52V1c5gNerE3U6v1+0mJtc60FojadQBEomgYdcBBEIr7CxToEIK4ziGgeVeDzwUq7XWlgoQAZxzpnzc2dLmaTLaM9NJkYwm48Nkerg+2lu58FC0ec6qbgGB0x2EAKztr2+pICjStCgKALSEoEKnwnx24Jyz7Cr7KAkhMFI5TkwZg1akAxWFAKRAQlLMRqtAdbv7+/u5xaee/XBmuLe5ipAyUNSFMIgRcdgddAfrwjY+q9k5T7EZQUUhaCqMiUWHYZgk2XQ6LYwbjUbj6SQIosPJ0eWzT5/bWAnDsNsf3L2/t72ze/X6zcGFRwaDwTdefSXoxQB4tH+wdebsbJaCdhM3YwRT5i+++GI5S3uK8vFRrIKr77zrQNiUw04PO7B7eBSFYVby5srAKRFn88LkhXnuoUd2bty/cPb80f707GY3jCOXZDbNSWFA5NzyCa0Pl3fUNCfR/7tg42kfQG3Yxd3B+koH0LZxmNsWYFgk6MffCnV+sL/qCrLzk3/8xW1iIbWPkIhcZe5T1mNUKRJBYwypAI5ROhEB1UaVmnP0yipJlZjvKZ2rbXpLr0ZEa93x8CP0mU7Vm2r25knqSUYFT8gQsa6y7MsX+l4BNyoEEAIwVkFQAAALDnj/+STeJsuxcnOu1opurWagNg4vdbK9IkvfA0DV/1pGmxNu1QJaegAdl7YVf67HLgfEQcVl6vgyXthm0OByAwAAeRR8rjQ1B4IIqCsGv5S/joiEgZNCBLIsDwJtShOGSoXKGq9luoXKEJYdOb/1pJX6RUTWLUcFNwOpAvNEqnQ1D75BC4t1/MPShldaVVhXSmGNQInHdtV8Nb3YWn3djoBjX6y4EUUQhdTC6vglW+pSNZa6Ra9qYksyrl/TMM5mNV1j6sc6ObhZBVcasmCBETgUTApzOLEHE9roa8fiVV0ARO/brY+RiPyOEO1JQEBQUKGvdQYgvvoBIVHNxlGaUrxQuLJWR0ChFhLQipSULKLCKNYI7JwzZS4iWqlAg2UxooNhf7B+qr+xEcSxA9Gka0EHCT3kNTIxMnbDoJwdTrl0pdu7c+3+rZvT8QEoPZuVgEEYxiISmWBtEBBgQur82UtnH3p4sL6luwPLXBbWodKSIqIDcCDM4K2Jzrm0yJFISAkAIWoEECfOWKAw1CTA1gEQoSALkkohCuJBb7DRXzuFRVomo/HhnjNlcvOVJE9ob78zPN3pDbFMGJSwEonF2djnOoKzacbMFqAfgCBkZWGdoygUkcJaRJScgTNSAWnFpY8w12wLsRmqeG196/WbV06fOd8bbphprnRXO3QgjkEHUZJlnU5Hq7AsS9MNxbEYa4oSWUJHIFTkwpQ6chTBMFoJw/Di5TNlWTrnOnGkQEaHjxAwEWVJLgjGGEEVBMGtb32m0+85llmS9YerxvI//YVf2jmadvqdnXs7h6X0gzA3Zb/XOZrOtNLdfpeiyDmXZxkCbG6uW6BCbDeMir3deGNtNejcu35HdzsBhPf37n7b+x9DCkUV2joXkTI8J4aLx/wB1zxka0lp0QwSBIPVXsTkyLVV6TkBbb5Zemv781K1H8+D5zRrkRwwcyva+f/F2Z/9WrNk94HYGiIiM/dwpm++U80ssiRSIilRkqFuuBs20A/9YrgBA/aDgQYMvxn2H2U0DAOGYRs2PMCC5bYMSLJEUmRRVcViVd1bd/jmc84eMjMi1lp+iMzcufc+3xW7E1Xf3WfvzMgY17x+y2YhRAySzdRMB8lYDQGLg+pE0j8hbYhHlZQGWmZDXbjh/A4U/Ji1zBqcc9Y5SzhQ+UmDo6PxFhRLtOP6u1Z8NwYAhgiiA3T3BHeMJch84FtmxUQ5mStPfagwY1FTdE9RQWDemZmBd4SjhgKjhIOCBaNr72gRzcyAANAOaoqVvtuMcE9vOmEqAHAye2Obh3us+AvwoF/BLKFo3BJwMLSYFLY+uQaMEGAIUisGXpu5t1XVcXDs/dIH5zrqipsZVV3wzrm5ADmUchhbLrrkYYbPDpiZ8QzNCq1EB9p8TuY3Awwg/ufCyvTN1G0r8b3HEpIdruFmRSpyHJdOyvB9uaZDeoplPWyEw8EZ7rSj/hyqZo1VScxyWbIDnmiWEsU9ne65UO6gCCOIiM4RqLbRthFSVgHzJYN/CDBkFRmzk+dnGRHQzhzDwxpBGRdj0Z5VDRBUUQhVgR0AWEnmKfyeQA1AZQwZp5IXlqVnADMRSSklTckTURUkmWRrlqurZx81l5fJNCKE4FUBEGgCtzFGBEYU9d65FPfaptxHzHt22scu8+Lq+SeX10/Dctl1Xd92VbW+WFxdXF19/IMfXj56nAR6g6zYxiTSeY3jJsxmVqoOg6qwOAjMjETFhibRUszQvjXm4jshQE1RcnbO9ft9CBWslqGq6nrRLJawfGwI8OKzt69e3r17ubn9+bqu+743QGOH/DdN0yyWdd/3AJBS3zSNc+7Vpq/rOucsprxYIKLGSESCZLEDQiCHTKaQS3FYx3Wo0vZ++/71k5v1b3/x83p12entRe2QEMUAxGl2GAChaaqdpLJA7B0akHNAyN4pQm+KiCJ5u+0GkCiw/du3qWvBpPFO+v7+9j0BVD5Qbtu+/8HVZbY+gt5c+T7fP3n2/LuPH33zsy+6vnWAvq4zIHJ4tWn/8O/8Qdvvv/jqtw5ht++cw6uri15yt231qtb7Ow9kiGDy9edfrl88u313rwl+/NGLdt8D2pJcSyBph/5Q93d+3if7CwCMEEMAZ3lL05F25Mi4uVw4cuaxnu44CXktflNE5Fmwqs2CQlEMcSjtNxzLo/zDoxebWTHBnTC5EnQjImZaVAoRQQRmlkEOP0j6NtpyYbITDvQdiaiI9iMCtJX7EQeAQjwzFX7oKjSHYCyGg4NntUwETt7rE/P1MPLDDcVGx3Yw8RUgBprNwIT6CQATjsR86k4UlPlVUPuHQOvZ2p1U45km/MGlma/F4ZuHZmlO8c8bKXccWjsOIIdjg3m5BAzHKO7DHABAHkvCjax8qBZhDzfF7JlRRCrvFcB7H1PnvTcGX9UhhLkJBB2XLJRxrhRG5I1pwudDO5+E2efDbcfTQgAIgPMNAiNw+hTDOOdhD67vIKCQA81qampkiMBqec5QZ1LOqdx8HsQ+f+NgkpkNFmZpBecXDXVcDOBQchuGw0HAQABsyIpR4K63XlSNgehokw8S3gMejcngNH+9kqoAG1qxWyJiyUErGJYGoIrAZSyACMgkyoiIXKwuJYxAVT2rSAJJbAooibVPoimCg9XjR+vHz7FZ9YiG7NiAsEBXltQGVQVTAEJGlSorILkyFVc3V81ygS683y/+wT/9T5998lkE6jXmPnqqa1eZC81quY/9drtlBDSVviVTBjfY0ss2UzMQBlAFBTGJU1Uu02yGlLtuH9vdvkRu77e72PchhCpt7tQAvbJfXFyvrq6dr6tmyZcfPbt4dnP/+tXnv8LcNlVFwH3fi2m72+TYCVjTNMxexNp212bKCqaoGaAVNIsxEVFMO7OidnrnK3KsxSwqLmb55c/+6unTp2++/LUC2v4uaW6RQghd7IOvQ11pWyvYxcXFZb0SzYaGnkQVLKkCoTjxmpSIUAGyEWFVBWTSdYjVwjSjCKO/flJ3u+12cw/AUThuIxH1Ke7jtl6t98maKJdrd7vNL24uF4+ffP7NV3d37f/sf/5f/uHv/v6//Nf/8u6f3aW+2++6x48fgfPfvHm1FE3brF0OQKndL5qlB9C8b2P+9Dl8fLO+3X5ZMQGqKZAn/RDdGw44jArGA9x3/pQTEMLqaunZgR2ZoIvkO5FqHX2pDzc3UHYd/MgzIkJTn6YTO5mz4IhdgaqWKisTeR25PqtmGMicjSMEGJEWHqDFpc6r2gQINe/ng2wDB3pwYMyICMVHeIzCMfQNgEZNyMZUKGEyQkBEhbnfdDKWImCpZQaIOvpry+jn/ZFTgIvCEoZ0JrChntrQTztwxKLWzIgyT5N8zDWPmMckS+EY7jTjN6M2f8wYjuW+g/Vyzg/m0zW/4TypDPCU8ZR2aCrhrKNUN1uFCVawiB1m5j2bWdd1gMrMzrEBsQtZc8lwm0snQoCzxKL5hjyPXSj3FEGn/CETeIXZh8px0mznTFOKszxyON6NJzLWxFOzWBmgFhkSTxX0OdfHEQwOcahxeX7Whm8OHT0IPkfLVLBo1IbiU4iEjt0RMsy882BZlEQBUTWLinQR3t2nfSd5CRUTgBooKqAraFolrqFYigwAoeB80XQqD+0rqIEJDjVCxDJyGSYNhEABUAGIDIAQTEQyQcnyIBuk/KJiRjQAyAYmljOYec+OFzdP6tUam0VvYkbOExCmKIelLBujqPJg5CrTBMhZUjYLi1Wz8sr1Ij+7ePrdvda95sXFhVtkUBQMpnnb9aq5aSpS3d2/l3bDzC27aXuUkZb5DMjFFjauqgGxgSSKwFB7ZocEGNbLtm0ZULYk+7brura929y+vX1ZAUBVVYur68ePnz158rFfXIlZu7vrN+9xu109fua9rxfLtut2u302vb65WS7Xe2gr51PXx7YjNUk5xoiINVvqoqqaYlIBYgBIKXpX3d+/23e7qgl377dXV1ftftP1+8XiKpnmvu93m/V6vbu/FVPt9xIhSXbO+SogM3sXQgjeKZChGgIFF4IDJmBWs7ZNzI59AABUYUCslj36oNH3TnMMDA44d30Qf/v1r19cXv/3/3v/yf/p//B//8e/+yP39MkvfvULIvhf/C//V//H/83/9vbu3aNH19LHbrvzvtp2LbJfNnzftjkpkD5aPpLU14uK1Da77X/0w+vA0Rl6z7nLsAes6SQI+vhYHRmSYaic7eHsQkSXVRpXP75ek4e0PRD9KXSzqKqTQzHnfPLK6WAPpNBg7i888LYZFYZjE9/0LIwcl0ZJmYgQ6eS0z9skOtCCudez8F0jpFlJV51pCfMhDBTnDKivPFJUopPxlsMsMNQBgAIPMqjICAMEtOLIhOdvLNWIbQruHSgHzD8b6CyJ+YFr4nNFWSE+JBnbeMEQM3Q08w9e04MndBwAJsP+oTN2RPqnm3ES+mCwdQ+PjPN/+Ga27sNPdLS4h/aRbQrpHqU/NpRZsfSyS8mxiBQGGSrXNM3FxUXOuSwRZtUSXz+faFUmwtFGgjMN8nyucJIIYZT+ytvHph68/4T7nsslhyj3YfM/HLRVeHaJ+YfRaW0iCDzkMU8xgzgV2T28d2gBxvpTx+1PSzOfh6H/5MxsUtnNgJAAsAjENgM5H/cAmSF550ApKzMb6r7TfZti1iaQAwZQKKorGoAzy1MfxqU/5CbNF6L0BIoqbNkBZwBHhCg4wMeSgdHgg0EAYF/qlkp5C6ChM0KkzCIpJ425Twa4WK6vbtYXV251mSQnFcfE3iGi5oMx38wAS6S8mpkCegZRNEQxBFcZcEx6ef342Xf+ZLG8ev36bc7ZM6bUExFhUumRyXs/lZQAZCPKoxFkeFEpUoLU5wRATJ6ZgRCQzESxAHFAcN45R6DrK9OUY4yMLqc+tvv9/X3stt12c3/7dnN3b69+++Uvf/H8+XdXj59dvHiGtce+WVx5DtX7u/vdy7dc1VWzuHn0JCwWnSpK3/dZshk6YQD2vmnKFjWfPXEpsEGhcsGrqk/4uej3f3J5/fR5c611vUqpbbutZkOTQH63ve+T9n1Pjt+9vcUcDQ+hiM65qqoQMbJzVXDOIRO7UC0ahCBo69oBUkxCPqhxTKm+vvnk5uabn/+ZaG+p79roQLjf7Ldvvnn18tnzP/zP/qf/ozdf/PKJ07/8939KET66av4n/4P/4f7+/e393XK5ZAUW299t0Pvr1eU337x81FRvtV9fX7Lg1y/f/+gnP9q8f9fFzd/53vdivquQCS07q6PvtPN0qC9yRCvMTamV305vyz1OzKpqcXmx9J4tHx44QreZkYmT83bYMXqkgA60DIegnumEz6nPg5SuALsjUlEvCiLMRN3O+fqMciHNcKMMSo1vKMxTAVRE9ACsc3zgx8aPvKEHDjEnT+XPCfySj6nkYCUyExVQGaJ2Z8Ffh0lDJMelGMsJny0MHlABJk/5SJfLn4hTBmr5ea5R4UzlPWyMscMnwscJFdZZgfrhhuG2o85PCqLAtLKD1aV0k+eh+cfMwEaVfZqxk1WY9zDjwHSHRQUoaSQnwlJJZwcAlZxyVtWu666vHglYFRpE1K4XTQIwg/8HNCCmsQRsEaXGOq9neeql58zMU2qymR3KKk/pWEeMc9q6J6fjMNKyi0p96yw2C3SYn/CBAauYGbErLYgIjv7jqc2DoICIo+/czEolZz22Vw8R/rOQvZPtYYPmB4hYosamg3k41LNVkBxF0GCsWghohn2Urk856yAlHETdka/PlrMkH8JDl43YP2pGAEPhqqFo9WBaK/rikApmllUQEaYCkZrB1EA4e1EFwmZ9cbFcY7OwUEcXdl10npjZQCRHRBx8VzNIGWRixBIk5SATqDEquCaEvk8x9k+vblJw1aq+jJft3V37/jbHdrlcZtmDNwdVBks5a1ZfLzXLdr9dsdMSFA5oZlkBEdEQfYGTAQWEEovn2BFd1I+KKz31UVJqquAWrsW2k67yYX316PFzZSTNeXN3L5K+evn57tXLd998/vK3P3v0+vnq0XOkCrh++/lfOx9uLq9unjzJRi5A1953XQx9m1JiwAFOyzMiJdDonDE7H4x9ioJIGVmA6qoS55tVLaGJir2GsFw2l48x9pL6yrG/fReCM5F6sdput93mrWdGxL7t+rZTiLLrJCakFNZrIdx1vSEvVktfNciUQkU+tCk3qwtXLQ1AVJPqsx/9AUj+5vNfy36DEkHg4qr+4tXtRx8/+/r157/zg4+fadjkze2n6/vb9PJXf9P2+ebxuvZud7eBbHd399/7/g+ri9Xu9l3X9s8ePQoX65e/+uL5xx+Hq8tX//6vfe1/9OlHIq81Y9p1rq5Xod5De8IRjj6UBIkJ4QAUzlS7AwOupdth4xCQ+37RzO8ozYnMJGgB4gPhLoHPI4w7jS48NBjTRs0wcKEyWsKyRtvmgFRAaEYFPYOIiYhMh8AYZUNQ0RIuNJGVOXkys5KHyohqIogjwj0gMo5RYDpWGx6cRiWjVnQekCUTP5vmqtjuAABAJJkZkXMcCL0pcAlUslLydmBSqsBMqoqirlA+NSNQxJKxQMXaaxmREa04OEFHk6yKDVnFxMg4AhqYodmYP1OCVsby4CN3HGK5xj9Zh0smr6dDghkQ5iGmaeKshV5LQhwBhgerLxIRDIwEi+BvYz0MXzKVDZgZbASOICpBQCcsnxAHQWS+dxGACczKBoCxFC5iEfiKKDKQ1TE4x7z3BYOp+CxKtEhKCbrexkye27t3vq6UtOt7KHGyRLNUO+BSWHoyvRjSkPaMJdiHpv1TpogJRHPOUOaErAT7IQLBVB/UBneJAQCIgXNu2q5Tuo7kDKNVc5IakQnUVBQR2XERGgHAMQsaEqFYElPJRiVrwEk+MP6JBIiIQULEgtw+HB8jU5MhJNiY3SBIoZZqUSWhHEY5u1RKTl1Ex3qM50WAaDTwQlEZikKCqRF7JuPUK+DeG6lwpFfv4ZuWPgbO3T5UkMww1KJCmkfwtsHQDWCFcpmd2syHvYIF7VzEEgCDEWLIwA2yAamCwpB5CKgGEsCZGkAuUPZlGQQwc6a6olC50FjVoHfoHDAG9OVpQgYYClvOhddx3yKSY2SvTdZORDxTTNwm8Zc3sF5erR53+x4p9bbLnIQtWlIDTM5UiAZalGNWFeerbY7OOV8S7DSX2hUKWPWQCSITOt+slgE9iTlg7e5T1+7evU37jQO9z9LnDoGVHACRC81iGeqGXGiaZVVV68eX/Xd+sHn/fnt3+9e//PnHvPy9P/js9bu3q48+XtaNmd3e3xNAfp9zTMyMLIwMrnLLpbogwCEENvUxVcu614gxVpb6TWxRm+vr29d/s3v/8smjH7ebrSMH0MIWkDgZKFhWCNfP2HskM9PlYrW6fiIpi0jIsU49AqhKbDsG2/etppwEQWN7F3t814TqXbYQ6ov1Zd/12d0ZO16tkB245s6a55983PH65ddfBZP64pHr/uvq5un+12/j++27qvr02bOPnn/8+v3tX/zFX/z0nrf3u+5ub6JMWC3rt5vX6f5lF9OjJ+vlqtrev7l5cfnR88c/+7O/MLO/+4SNKt0xILF/zF6+uX955Zf9wF8HfsREYKg65sKOgaUDyT7LbpjosENEYq6qKoTQzVKJ5hrJQbgGNjg68NNtk0oEAJMHd9qy0/uleHjMqFRSMysFVaZGpto0g3VidA3OS6vOjsGgq+nstpG1HO6ZRmGjyjK0cEJVZv7psW0o7J+onMZiE1aAEUhk9vzwug9YHSZODyO3s2ne1KYuw6jWz7mX2SFCWCTDMcGdtzzXhE7AMue5YUcPHpuCH+z8NPNTTvD5I/Nnz+b2tHsn3Tj5Ho+M8yX35NQ+jAWMYmY9Hp4ikhJEoFa4SBRJMbIigIHq3FlLRGhDovY0/+VSnKUOzK4xCW24StzWYQkGqagYbxEA8CxfcBrjyeRM81aEyFJfctjMdii8Pd1pQzbBQXPF2cVcADfm6KcHVncSA394dgZ/rTOJoYyrRD6jjuVGjrnjcfeK78MBDSAh27bvokKNiKAilrMndM6lmd0VxgM1zeS5YR8ACIZi2yVMTEDMLJcwqyJWjBnSg8CBaiaKZmQApABgRHVwLnCoydcYvDEbExDCkJFxOqhphk/OSJd7QCXvqmZ1vbwBboTAeX/39hWA5tj3+zanHkCVyblQ8jsIwcxUcvFHA8BlWGaJuVUpBZG8Q3akmCpXNXXFSASXi0UgfP/y5Vdffb27fScpSruVGBmKVGFAqP22rmtC97rvssJisVos18650DxSRxePbx59+p1H3/3BKtT7N/f3v75/VNPbdt/G3tWVXzYYXN00y/Xi9r6t6oULNfraO66ZHVHbtt12u9u/V7N2v312/ShLVKL723ew3RaqmEXqpjIBF8jUHLIhADnnHNKwdESkRi64Gkk155QA1BGbmQJqTg5JY0z9LnXtfreLqhcL17bt3ZtXYFQvFgKm+62vqy6yWz1h662HF9dX3n2626fK6vV6ff96e3FxEYhut9t9lFWz+JN/8EfPv77/7atvvnj1foewulxeXd202/b96zefvHhBBG9evru+umiaKngiVFH43T/4iWt82kZPjOjMNDQXXWLDftJER3J9UNjme+bB4z9dpRyhq6pqUdX3EE9+Lofy8PdkORrNvCcvG87k8YunOKMxgGawUQ6KKQKPKUNWQp1ngyimJUQ8T1Ic2fCB+w49Ke7TsUGYnepi7pzTu3NGcsIhSqzlEF1c1NZvNe7PGTOOruLyTekujbomzF49xCqPNxgNtY1PXnOgUx9gY1PfJqf1fLA2CjEw1y0mAO2B4B6eotlUH4LIxssOUMwHWjlnRedsdernvBvzXw8CyrRAx+GG00uZnVlJXS0lNAixiKERx4VIfTRRkQyiWPLIjydNRJj91Ksh8mUKYjRQO+DWTM+WydJpV5mBqo0V3QkGg2e56NiaOk31HKDjZOFmE4InEzhunEMo2oNbYj634zEZj52bUsmnqWYYUVqnULiyJ+1go563fLTuNNZ6Gm863I1jXJcZbru0afu0rItF10zMGI4DxMqts2fN5u+eXSWqWQHMwNQUrLMeEckYIbmiT5sCWMGEkyLuMhoCojMgV1XmvHkHjo3JSp6eGvOcLBwW6HhdZgvqEdGJakxSWWiaK0AnqleLxgdOqV8GfPv2beza3d0tAChYCKGqGu89GZWMbUTctx2isWNwjXPB+cChQiKpmkAQUDHF+y+/ePXlb3b37x0hdJklOwDzlFISEzXMMTNY13WDDcPkfvPu/e1rVXUpI/Ll1U0UdXXz6Q++36b8+LNHL9/d1k8erUJAgLqur66uiGi73V49/ayqgqnG2O23G9QIIne37/bb9uL6anG53vfx9u3btm2bq8uqXmyjrFYrx16QQ6hzzj6EGLvg/JizNExqGW9GRUAjAqOMRIiZyMw6IXLkqjoszKfL1LcYtqqK3W0VIMdkKTuV3HW77ZaIWPsef9MvaPX8B9gsYLVc3VTx8aOrq6uf/7t/u9/v1TkEcIySI4D+3kcXP/j48uV2/7Mvfvvrr9+9/HJPGDxQ7CIieg6x658+uXn39vXz59eL6rZZVCn1vgq6T4zax4TsErDHUq47l01CdKibd75dv+VypqiqVQh1VaH2ZxsdYVZ8Dc40m+l9RHwwb87ckzSKzwAwMFEmBFAQIAIr/FJpDK6WWdLKsGI2suazC0stWTi+Hwa0vOGdMzKnZ8UDZrTviB/M7yncvCQuj9+PVGNG5nBG7E4WYWofRl5R8rVAjbCkqZYqijTloeacqUAjji4xNZsnd55zXDsubFeugnZX7lE8zMyBOp9aO069lTa7zpcAZkiN827YzMt7wg/OW5hz9DmDL1vu6EHCYoUfwDrwaBHNjIxKfUxJust7cszMjjzgaFA52ht40g0YTQIwIKUcd3KWBFy6g2dzqAgHmRJgHt19MgOHMcLRXD14hudPEZHC0QJNN5xt4JkRaNZO2ZCIh0eGII/Z9hgYopYcu6OOmRmSAWox5IwFqex4So8E5V7cZpfipdcAzFyElZgi8MOFzU/ks9N5KH0GJAAhAJWi8QIAGpENkR8AIAUcHgEIkRwwETMCCyNMmGZqdpCHhhKZD07+eSeRHICK5D62qu/7iOwDMgG2Yb1eV9WTyxcvHj1yjkt0y+t33+SkXde1bd/3MYkUwkJ1DaAZCJigIqoDkgfiUAWSuH337v6bL7v7d6ndgaWUjcVSSgWQOwv4xWrVNADUXFynlBCxrmvnXClajIjRS7tpMeb8fuOXK3/5+G633ar8zp/8I83imEE07ts2Jkkp9ZDTmx6x2293u22735Im77htWzCWptppRpEI2qyWjGApi+n15eMQApW4XSZyjqEi4iGWdMgsVzNQ1RBCzrkc4WLsFNWYeqQmZ20hFRM9+IpW6Ii6O1lchNh2d2/fkKCxZ0ZiNHbLqnnz5tU3u5+nDJD773/vOx/fvJCUt9vNarWylCBn733f9zF22HCM+Wm9/PQP/v6r72x/9psvfvP6dVLd379Lar3Bs+vVfr9XzatFc/PdK7m9+/lPv/md7zyrFzd97rPFVbCMkdAZCCKrZpHhhJzDRH4L0SuXK8zScfDea56hRI1K6ST7DydtTqxnHEjPiHihFDD1YLxjvF8RlQhBi/gsiEjEOsOEmptM839Il4cZDZoYxiQTPMhFJppCD0GLzcnNnJrAMcWEgz2wWAUG6jynHPO3GqHiAGlZWmAY4fWGkSrK2NWhwyVVY9BKH6TR9lCvhp8QABEGNyoCjIh943TYUYjcA/Uf4SxYd5o9oyn5e2BaMDrw4MNk9GSGD7N0zJzmQztM11gJbM6ei8/YzAp6clHIxETzECMtqkZIeKSRFv/xSTeG/PVpxmYTawBD2D1OMNfG408PXidYXUetPXRWx2BjG2d93MAHUaPoEWXVjoSP6YOdmcIQsUTLTXWWyhMH2fgD3gEkNAQ9ESNGPfh8gZxzZkMMs6qaDrtll/B2H1NeiBkBSRGIgei48zj29kHjs02y74h1VYpNGpoWIblYnQ0MTAEZUYrJuYRSkQICoCIROSr4LIRgaIBK6M5LV81GV6jd2f7MZiCo6BFQU27vc2L2ztRvc9wyNU1jZsvlkpnJ0Wcff4RUyr9i36XNbrvZbPf7/abdqaqieBcWNTeNM+ScFbq79v7+/Ze/3bx5bbkDxD5DUm1cZaFqmmW1XIS6WazWBTcD/KquayKS1Ktmzw7JRERB7ncbrsJ3qqq/vwfJFzFR1u2f/nnf94qQTfd9l8FKNgH0GxGJMZZ1JOfW68uqqpC8meQIyBTqxfryQkTatlXiark04spXveYQAiD6EKYoCgAhJMBBQK9s2JDsWEnJQERIq4q5NwFJCqaE7JyrPQev9CyEivuuB3aEqW+zZADIYKpw/fy7deV3++icwxx9VfXdVlK/bpq2BJSwc448153mUDWxj7fvPqdQ/fFPfvCD/fO/+e1vM7p3d/eihsy73aZvd5Avbz67DvvNF19+9emL76+efW93/4ZVAmeybbL1AF87mHOMyNEI/H5+jk4+T2ffISIC1SHU/gijYEaY7PjhA8uZt1tifgaiPH5ZRPWCEjUds8nBOXQFBxEVEZiH7AMzowPLLu8+Sa4aJAFyiMfErzwro6EMjpWwua8a5zXyPsSAZ6h7MJgkpTjSYBZTamZDoBCOfZv/d7qKn4lQYTYnEyPEgVUrmCsxvUM9AAOAIeVxUsuPJYl5gT/EeRbKgVNOsccKhypvJ2zg5PrQrycTCMc4DwPDmEK9Zo3QqXXg4RcdOPEoK0yqZBlOjFlESijf9IjZSD4Amd2EH55zBueJ6GBVnz1S2hQ4CE1mBjjGBNgBMQoBbHQ727FqPunNAyD5OP+ED6fMfmgSDGZhCAgDS0CcYhcKgx4tJdM+O6xmuSZjydRJHPrMCAg4Zr0Ajvl+DDDAvwwzOar045E/7HPEIzoyH9rYk4MvuThu7lvZ7GOyQchQ0yGAbraf57P0IQY8GqqNhlLPZZLH5Sh4G8WnUwgIHQxyCkYmokSQWUUJUAkwAxAjAikhFUvbePZP8c/Px8vsUs6ahT17RkA1USRBohz7rFYKJ7Rty8zM2ARfpDfngq/CsllcXFwgYmXUtu3b929ev3797s3nZFRVVRVqcxh3W4Z0ebUUqbs+VXV99ejx/WbrfVUtV81i4araE6aUkrQUt7vuLuecY5/6KKlPfcw5+7sNO9fm2OVoDr7/w+8B609/8e+x7Qo1jjES0XK5VIT9fr9eXYopATTLlSELoluuyIWqqipXrVerTdsuLtaGsKxrzApXHJZLBGYfoFNAVs2IiERghdooohFxETCl78CMnSMhSTmKEBEjWb+3nIgIzZAJLKsJKiMvutgj2NXjJ00VNptNH1siko143W52qd1sH714ZvXyT//F/+Mf/ON/ktqdxL7TrJadcwUtBE1rCykrVlVVhe12u/vmtw3z33/+9CuJ16sQFqu/+Muf9X2OHYjf337z8i113/3h71brj3apcfXjAHm7+cpbk7IgAREQkSmYqczRmL/tkBfQ2uGEu0LQQgiVD3Mz70F3mSjg7Pvpm/n3s2vGv896ZWZASDY4SHFUy2Am5s/gdkeSzaf0i4YCLANiwIHBlzM5EM/hc+FcCJhnBGt6ZE7951QAcUhMMkUb8viLWmAlmGze1Allh5l6UaZxUB0m99LYW7HB2TjhfCEN1ZkRj2gcItoIwDuXLSY163w408rAscH8ZOFmazpT0fR00eePDGR6iuCdmRkQj1CN5+/6EMk+x2may3/zBs1MwEyxhKbRkKharA6oloue6phprOZrBXlt5t6er/VhbofeA54M+PgqBF2LcUi12DBLEHjpJ869Nnx40fSWk0N0tCiz5YDjYDSYK/qHxTpK4T1Zxwc0tmE3HhJtEblE+ZXb7eDIwIPkgVgk7MKY55M27/88DmAUJwARnfNd7jf72CfJibiar+/Jch+m5fzCo4UhMkDQoerzMFgEKMy3JCkQjqZPKCLFELtlpnkUEQVtKB1iphMa6BEROD4y8x4aEygpoykkMUZCIkNX3CCOWAGAOMYIiIC6uc1EDpgKuiQzu+CZ2QlXVVUtllePxMzubt/dv9moaiaoK285xb7zVXj84lm9WvvQrG6eG2HK2ueUutiaSN9J3/Wb29u7d9u7e1AjNE0ZTD2xpMqRXqzXn330PHuy9YWt6+9/58dV//7+/W233TEgZu22O8z65KOFcG0gzLxcr4E4CVSLJbKvG4KowYeFq5fXlyLJpSw5P3r2jJidC0k0hDAAEaoye0Qt0VdoAFBmmBxlVUUqqo+UImmIkAgMi+1KLAmodl2HiGGx3Nzdq2rtA6zXKLJuqlBX3aNgt3kJDe1vX37xBS+fpNe3i+i/vn9dB3aI3lVZY5syIhMzCVtOOaUM5pzzDWGSzf3u4rK+ub7pUv7+82ebzebTTz6KfZf7DpdP/ug//u/u+9xuU+WY/XVcOAwX7u5n5UTMz5eq8iy2429zudKE9945N8/Gm8zZZkcHfgrSOTnzPOYmElEpTD4nx+VS1cEcOqN3iIgEiKwAYoNBD3E8b6PSJsfCweGi4eQXjk3jGMpBOokMmtPBkltSblBVxAMSzbzPhQXbwQqtJXS8kEqYEbUxQ1EnZmzHNj4sBnlEgQL2crgGUjWg+iAQwphXOvmAbUSBOFngMUBssO3MwmHKzzz1cOINc+aNdJgcMyM6Um6mqSjMbDREH6kp89Z0RFg8h58c+IR8yLT4gKX6MM8Ak7tXoBTMGRJ45jZeMxMxopKsSyIiYkTEjs2sFOw6JuE0e/UpY57XRjgIHExkkyB2FG94wrZHr+hRmycdmHPi+XkZ2zxMy6GC5Jko/OCf0644YMjYkZQ23QZwakWYt1nChMZ0OIPiSx3TyaZDcv6gjUGhQ4o2+T4PBYdC7ZUICqwYTZnupwcKzi4iGhPAD1NU2DCRA4DR+aAASMhErlSYmaK+CyBWQbQiNAJjpAJ/bkPBTDwp/DW/ptWZutdp5z0GrlXYyCt6RE/gACIAkGMTc84lAefYUNE8EQlqKR9oCCEF732ihaWtWjTI7nL5ZF3Hrs9tX4elmaTc9n233+9fvv6G3r+7uLiB+mqxWGBBh2KWuM99r12XEdfXN6v1Ze56zeLATDTnvPz08smTZ65ubt9vus3+Atfwdpfb5J5/fPHsO/YcEBGZC5ltmqbdb1EFCaqqMrMkWtULINxsXpNTTVAtQ0zCDvd9l/oYls1+25KjGNvFYpFz9hySxGzqShEzSwZFXAQickh9n1KSQhWLuUpVs8MkyGaAwApkVlS1ePca93sS3WVt372MIuBYVQ2r5wvd08XjFfnaf/SjH3J+9xZkt713hH3XApAahqoRSSl2vVMCpIwuSlIA56Wpk/fLKBq7y9WaH92ki6WmfYNZXP7JP/2nFx999OZnf3W1utzfv1fvX/zgjzpZS/6q79uYejOdwI5mm/9vy4NdUB/dRvD5k7BVd334oQSFqwpqKWGCpbwXZjIAtMkpWFIX0rDRueQvEBEiF+uTjuBW7N3MxTWIPGAIagaZkGHQdwfTZYlnKfYuGmGhzI5syxSRqGRtGIAYExiVhL9pLkTScDMNtnKDwmnYzMTUzJhk7nRGJCpJR0PB3xIrMPAYGdNwR3HaELFU1UEdkZXUoFRsQARCYRQABiQgV2xlBmaWYo+IyFjwe8wUC9ggD9HXUNSsiU+Mosm0UnnIhCYABGIaOe5QZWgWDm2lkM1sMDAj/WOzmPOAtEBuYOpiBU7sKLLaRnSIg7WDEIGgaIfHro45p8GZHjzHUZnTtemSwd45PT5kbanlIvIZaulYsQ24Asc/lfL1DkYASzrTbPWA5zHXDgufAwdkZFbS0A3MLOdMI4a5qdnEIHmcyWGk0440LYxqrMw8bWBPPktBezUcLcyEWHYjTk7/wXSCSYQQR5sVZSu5t8KOhzVUHEBRCJHIMiEROQQFAQFQIgJHkE1tmG0wGoDecMC2RZwJJQZm0KdUnO45Ry3xMkRZNYQwSHsAMh5qM3OjPKSqAKXoh2ZN1R5e1/m3cf+d+AltNV3vMqZrWbaWilJa+j5tlXOmPuwHPdLsbVDkJ18yjL4DUBBVwUMIkKlmHeiJeg02lELRYkNDpaF0AxZxfIYhikCHHMVDDDkAGC7NXnuogFfJ9clcDZXHNtECiYUQiDKRo0otazKfJYkIARA754EQwZkSm6hlVjMAIsfc0HKtNRh4JvKkVe4ucm+pv33z+uVv/sYZ3zmfTC9uHqH31WIZ1ovlk5sGw3K5JMAYsylqzmZWhcbMGOzdm1cYrh9/9uLdq9++/+Uvt19+01eBvHv69Onl5fXj68fgAtSLN7u3NYlzrt/39297R0yMETCEIJtbRSYiR5z6fp+Sc44Zbz//TQhhd/+O0N3dv12v1wboidp265umqhe3bd+sL9QwiS6XS+l7ruvc7lGlpBQ6R2rZia5Wq939hoNLvSKzgd9st+vLRygosa2cbO/viKHf9IgI5t69rDv5lXz6uw221PXLnV48efHmF3/pySdIisiEfY4pK6BnFUMEH9DXnHNKySQtmFuxxWL5/n6HiDlb6qWq+X63rQDalq+f/x4RrS8e7zfv+l5U3jaf/Bf33/zf+u2fLsFzvsxq2ecIeQl1ObqTWGkHkxIUImlj6qOauayKyE2zXC6XRPfTjTnn8qSOxlIzE7DKF8I90kXE0TI05rjDBCEkJfF9ovKHvCDEqernnDTD6FXFIfMHpsN8LmKUt4/FjgqzGeJnqMRXP2CXGxGp5hL96JOe85WTp0ZGfgiQOSgW887PJnr8pvAbIOfm3wOAjWX4Bh3izDoKxyrmg9f00yEiZgSdLxfzkUlk6vNJtZw51XtQgnvQoT7v/3xpzl83/3DCxeF4j568+kQ5O3+j2VFgIAAAjdmveChLN3/dfPbOvykfJuUMBowOMDNmziJl6QfgralqJ829nqd79WRWEVFH6whymUwqcuE4ioNtf3r8Q30+zNWsfMK0qYY+oDMynC0EEcEIpnHYbDNTxInrmojmp6YUoZreNe/tdP9wMBUNLatqB7ud7Fd97UCFACuzwQBTyMg0wGnSHjyMD17zc3o0/0XqwsGGNHw5eqxUFVRxiKcukVtDt09iFabxjqRp6KHCe8dPyWKyO8ePKvdEc2rT3jkCKvHqQ0EmUDVNbcpEhOxd8ECTG4WMALMJiImKaMYMRgLoNSoCFSkLwTfL55+tn3382a9++dcxxrjfffPqpYCB4dXVVdM0IdQ9s4gg02q1cs7lnPs9QBKqw9PnF+t60d1uiJYXv/OT+OPfje9uv/zqq7/62b/f3d1drZbPnz+/efoMvSOrLy4u0CR2nSAxs6Z8lyPUXPQWGitwcFU7gn6/QxURYedizHexL/GizXItfd9mqZ1L2+1ivUJR0NSlLrBzngCITHMJyENbLtZ93wtyqCoFzjmL44tHS1XAsFg0i3a7WV5VSLByLqWsi/C9x59eXDafv78FjV+8+TzcXNzn7d3dnfNVVVX7vs85G6B3RMw5Y6mqrTbqdsYAFoJLqWOnxJBTp9bX9SUh/tmf/9s/+e/8R33Sr7766rKplounm82GHGd8//HHv3/3Krx/+fOaxIWQxQI9fDzP9vBgT0UcSppQ0yxXq0UB2ZiemZ3kIdVP7WDynhuvpvWYdv/4yjk6xynWspmVmirju9SsqDHjUfwPeIMQpphVGKJ1UIpOfYjzOqELEwWHybqOSEQjaPApC5wGW8jidALnDGNOeQuxhjH7mZmG2J/jsN6JBBTIxilOBEYOOlf75iznPGp3aHAsADVQmjLAYxfyfPbmssK0ZCcfpl8nBnnOUOef55tv6ud5b7/lOl9uHusxqxxCgkuCls2u6f6sUqabjpVOOvKkjJfohPQCx5tEVW2EXC5rWkypU51gOxYFHpQqTtr80Fyd79K5mFIuYsaT1oYTdog+mDgNFLsSiI0q8fQUjfbV4VyPg6VZmbNh6kpg6shZaTC9D6Mo9vw5t5v2J5xtIRUwgJTgbmvbm+3FqvJQqxGiPLg9Hlip4wX6luu0QTxCLUU1GKhk8fsqqCJmErJSgecMfqWM+fwwlnVp6px2ATXRMiH4riMf/OX184RUiJta1iygyUAANJk5RM9k7BDRyBDQCJlRlcAI3OhSIXaOXezEAJAMoY/apeR95Vz94kc/lJRNpNu3qY9vX76SfffqzTtt9865nGMXWwM1EyLw3ldVte369cW1J28RPvnud68+/bjXfmWr3//o+5/++O0vfv5Xv/zLP//mz/982VTLZbNsHl9cXDSLyhE3TdNUNTE6Ak3ZOUgpCQ5kpDchotz3SiA5swXMOca2qioA6E1TVudcVS+6FDH1Rgx9awzsiYnNTMQQSnqYv9vumqa5uHmUUkLgi8vlfr9v2zb4cPNsfbFavnv/JnU9ETWrJTMrguT+y6/vfvHrv/rB7/we3729+dGPN+/eLlZLRMytFotFTjElYefI8QjUCEZE3g+I/Zrv72+ztCIppx6R291+u+n+4Nmzr7/6raKv6wodAnAGXNarrLeKzy9u/oRocff+rySJB5YYzR0FC5/TwHEPW/F0OEQ0JU/Vogmgp0Ac5Rr9SWiGU7zGxP+gEIEDMZTijznpxOnZsFMeCTNRevDk4GG7n9w2NcOMhXGWMqkDQIIBugeBjEaJYZgIxFH1xLm78eioH2jBxImJTtXKE06AIzA1jAz4aB5sEvdBYSLcaGZj0dbT6JsTQn/y6uFXnMUMAwBh4V4P0jgeyrngOEQAM0BAGkaHH9Blp6uM94ijHPOVk1/HewrGYNH1RrgoHJSE860y2QAOrGhWcmPq3PQum7/LDlVlbcbPTibwZDJhRmQPMz8KXgGc2QCaaMNMHlVYmrdw1JOHz+HDTOV8d51M+/xPHIUuKA7OwSliANN+KDYnBICh+tAkPcyV+LMNNg69/DoQXByqkx0eOe3P8CVOkj4AEGsS3uzTXW6fMgdgMjSL83edzMCDG/5D14dmGLEkf4+7AgxEi/RWJkJVGclIEAkGmLBzInAmUoxyRuqj4+SCz+IyxPVF5Sq/6e/WT14MLaQs0Fk2UCOmaoGIqFQitQsxYUBKWUXUjBySgSUTQmSgTCymBEyOKwqqIGBdigVRxPlw+WjdePfo0ZPcx+3mrt/cd123uXsvGkUUzHLX73b3v9q856hf9paNP/vJ713TR+1XXzijx5/+RBxdX1z+k+98/7Mf/PhXf/XTrz7/Tat09+7l1+9feu+bplnUtXNU1/VyuQzmmqYpOc0cKOecY4eIVVWZJElR0DTn1GcHYGYuS86Jq2rXteTd7ctd1dTMvMkpLpdcOAUhu8CLhhEX6ybGiBgcAnpfWr66utrvOyJqRarVJdf58vIypaRgGBVp7/z6R9/7/mp9nbpfKoftF18wc9d1JYDLB973nUiq69ClBEBgZFPlVitQFMjMOUuMW0QMPmw2+6fPPvmjP/qjzeaOq8WiWW02m+vry6fPXtzvW/TV3bZfL64fffr3lOXdV78A6WrPCU6F6Q9vVAUAB2wq5ImaBRMdcll0usBMR2dkMSLjUSTC8CY8+IHMBGYlmQ7kbKRKczXuhK3Ow2f/NkcPjzNwzAzsYLueN26jID+5LQcECRu9mMfUZPxgE3mi4+yLh3pizrlBAx5Dr1V14PSlA8dQGEea9AAsfES7p5bn9OicNU5CAKpBkV34yEg+vaXcSTOC8iBPmlO0QoZP2pnfjw+JR+ck9XzGzqcRZsQOJ+zomXA2zduBJs7a8WOhbPtAh0857kNdsrFe9XmU43TDfH5OGO1R+x824Zy0c2JWmd12Ko2djwsRCQ+gYWRjZgEAzsW92aWqcLDQDy6JA/b1Idr58CIbuzTfcicdngY19nwcBQIqbPb5fde3UrmcHLpkeSIUD+7wkx3yLfN5MifTivCsqIYV658ZiAJByfIjczYaEWavNoAjyXXab5O8MgQA6jLDN46vLa9227eA1VX9ndAEKYIZk+OA7HL0miKqeGZVzaal2BkjDTo6O8QBtMJUSURREcn8UrMIAGZB0EBIRALZqGHEruuQbN/2yMR1WPBVfYWEZtgAAMhISURBVHl5hfgsp93d3fu3L/ebe0tJVS9unljMbd9dPH36B//kH7Vt+y//2X/dv9suH//V7/zB37356Fln6pz73o9+vGiWb16/Tp2LMZpZzDlvd4hQdXHfxWBDZnMIoWlqM0PHzJi3LXNUVRWYg+CKSBMqMMgpOs993EeNzWKhu72BCbAhmGFybH2vCFF7EVmuLswQiXPq+5Ql7lfrtYiklAABSVJu2651zgkFo4Trm+cX33t3dwuNk1Wzb+9z1qzqHAFAEjXJqiKSc+rBCIjBXEHQL+xAojA6x6HyFTPnTNtt/x//R/+07Jy6rvt2p5L3+/3yMrhQeV4S7dt0R7q8fvp3U7fbvP7r2oUCPTvfgSeiW9lNMDNBqxkw82oZqgqmisA44S8OaBzjBjUCLUVUUaAcYVRTzwSu5N2VHV8kxAKhfGBtiEUufiAUFkrmjR3sh0O+h6qq8ll1mvLnZPomGFgvICI5ARliOyatCMHMGA4awODL0cHJN+dzExAJHvtQTzj6OVm3g6W93HBkYCwwmYM8oobziRj7Pi3YKQv8Vh5mg6XRYIjiQUS0M8Z5MnvzxssHtSO6czLS8+7B3E0L9i2s4qTDUweGxs9EpWk5yr+zsHyDAg5ANNmZD3M1xRDpfwOWD3BO91Vlgj23wYBtNEibM5ljUoYe5PEfejXyEL4/b/DAk0cSPz2rJ+f5oWWlUZ4wKwauA6wYjIxuahzxVFQ/EQJGiUemNZoYvJ3J0NNGwlnqVwngnywWjLbr09t92CRaVMk7zYg42+T/wZX62wg0J/8eINBPDDNqNhTaGsZbgKKPYq+mRwBgthVtdkZCtXi3ebfd08LfNJ5Itvv7O63N3I6Z2VcuVI7YE2f2qoJWYq6HUhwlnlxTzBLJSEFLp4gADVWz44YZUHLs9t1+F0FKpVbAuq7r3O+Nue06V3vvvXeM9SLGCExXT59dPnqSuv7u/e37t28/XS/voV88fySgf/Gn/3b78q2XDI2X2y9/+W/f//s/Z/SVQypvf/bkBuN12TlZoqpWVcXMfd8bO2KOXdsKxK5nwGBGQkkNMdc+5L6v6xoQu5xVte+6q6urtm2dc7Lfm1nbtt47zFH2g0ElK4hpH7ya1ZUjok3Xvb+7dRyW64sQQi+wv30LAPWiadse0d5/3YXgLi8uIAXo3smivuvclz/91+TcatfabkvLi4qZmWOMllNV+ZzjuzevXKiBCIHJKbJndkbDnog57XatdxT8om1bIP/kxSfv725jtqpegVpgun9/i+SWlzcEC+Becdcmv3AXj178GKx79c3n1014cDfOriPe5wSGYOa68c6fmpKoBP6PgjISWqn0Uvh2ec0I7zeShsPjOAA5HzIsZwSa5r0pnj6YEeU5V3jw7A2EWzKoIpbyXSiFBxDhUTzU4f7BUjfS7rmoAjAnoNP5n8VJzXjb/Nk5sTjw8iFuBRERCUENZ3XYZulSBVBp6CWO4JpzwkRnFs6T+cExqKdQQBhdAyd3Hk2mHr6fj8JmdOrkkflIJzp+tBxnOakfIpfz62Rl51wZEUtx5YHJlYwpPQ3Kmz8+mazJDj+hgTIiHlyk5Sq4pycDP3TjoR6e33YykHPyDbPZm941N63DbFnpbDYAjkS9w7uKFb/c8YCpYwiyI4ARxAMQWXHGlWdNzgXcYdcNkR9HQQ9ljCklPN5aRzz4uDNDqA54tNj1drtxm617UmX0rFQx9ONsP8xc/zZb6MFrmOoBLWs20uJ1OtSFsamWKs0c6ifX/AxOofsppS9ff/mP//F/crl+9utf/tX92x1nr7E1drZ/L0DJN1A3Q01lNTSQgkAyAHBqUcdFrCJBMlA0zUREjhVURDavv9AsbIqSc7tru44YiEgFOue6rutzyjk755bLJTL1Ss655fqSm4WiW6ya5eXjRy8+vf38l61AyIpo2svlxc2jp09e372voq6vr7Bq+i55H0ANAzfLxXpxjWNwjEgqWu/9/f3y8ko0xbYbiiiIeO9VJIPFGJum2d7dCwMi9n00M0WKahmQgfoYy4Tfbzds2ptoluBr59gj+eCAsG3blBIhr6omhLC7v89VQETISURkVyWV9aKR3Od2s2t3m9f77v2vX8pfVdWL7hf/6nf+s/887PuaXAuQUjKzUn25rkNdB9Vc8lUBxISJZKwwDs5bu+9T6gkdsa9q/NHHz6PEPkX2Tc4ZRZWtqUNdVX3b1U1t2QW/FIM+devm+eXT+Oa+l/wGDzFDH+LBZYOqAbhJTCaCuUGu6zrnHDMjkx0qER129slGTylNf5qijfL7dLBVh4CXec/ogP12RIbKNfmAzznQdBviIA2csJlzsj4ctjI7s+TXIb53TNk94TQpp8KtVVUt21Qf5rgzc+pTGPAR3KOBZ3d08wEquXx1yoemiDacyd0T4T6ZfCshJUQESAVe27QQ5/O00WEJjs3ph5mHB6gqHBcJmHpS1NBBAlA1HBTTE74CM7o8553Tl4iHdOT56Ca6fDIzxSJyIg1M7Z+0DHpA0YLj3TtN7Pz7E8Y5DGf8DMfJ1mVv4KzO47z/OmKPwxlnmhjwZNssn0f8rqNO6lQPcRrCrOc0nsq50KCqjmiQGWXI1CKyAkE1mk+PNOmT3TUdmTHod7i5DN/hFBdyWOhpzs+PHmZQ1Kyw2fG2pRhjU7Nq7Xh0A9vhfpht7P8WDHg+UQ8AA05zpXYScmVms0jvU5Iy3/CF+6aU/v4f/+QP/+g/323e/ebX/+ZqfXPRfHyXuhYydVsxa7tdbCtyNSADECMJE2LJO1ZVU0mSkqTcbr9BYM0WY0ZE50hBYur09n2726NB5b2k3MUeEck50d4XqIOc6xB0v4v9drfbVc1lRrbNrl+szYf64nqxvnBNs/zBx1dd/OJnP3fO/cHf/+NMEGP+6Hs/6pK7uLlhF7b3m1XdiIiyGWMSibEvgYcMwMER0XK98sasuVqsHaGkjCbB+T621XLVdd1yuXzz8htEDCGk2Dvnuu2GiFZriLGj7Pe7TajC/f19IJCU+r737MghAISmZudShKqqDCWlVMKVHdJ2u60RKhdS12lKX3z99W57/+qbrxzhXbK///0nP/z9H3708T/56fbfwdNHn3/z5Y7VE6mq994z7HbJDJbLJRHd3t6qQhKQ4l+FpKpJctdvkkV2mFW6rnNV/Xs/+d0+77s+Ln1zf3vXVL5eLlLqb9++C4ulr0IVrrpun/Lb4Ks+L8E/+f7v/fE3f/p/LixvHsx0socREUbEZadIldxHurzCa1cdbmqaWsGkoKg6REAQhXyoxGcAMGSVghG6Gai6jdvazKQkHZZQCAMThYF8lP6VDhkOmHtWkPSnI3ig2kzFaqeSVLWoljz5ZowlK7MF57Jp121DWIhk1cxQqiigmhloKQAFUuhpqZhKwLDv9oQATDpiXRUmQ54AQGGoJIqIBAg6jGswrxmYDlCUg9DAJCWLuKCMnGHbykjfZgFuNtgDEGGQh6Yq4gemMgk0Rywf0RuAgQ75pEBjzu685vF0s5mBYzADHTRFRTQEBSA4MKQjpqtHkgfM0rcmFjLktBSojVGambNem9kPyrxplvL3tE2nGwbCnQTNuPgjyjzYEBp9QE4deQPRUM+8sO5igCih4BOS0zGPVJgCBsdi1YPzHgfh6FDAGCCqsAHYIZ+nzAiOWubJYGEmGZSP0xgZStKPjQ4zIgAmG/L7St3lIbihJApnJEYmUzIR0uJHYsEigxqCzAHLmWZ53oOcQABAxkXvUjWcrRE7LObwiVioiJlR5RXARKUAY2LBhSnoFaV0mZYpKK3JFE4x30VqwhmFQqCv727fdD6BB1XmNEuHKxLroD0MYz+2WRSc52lc0/fn52uaCJrkMMQRSd0QVECRxEzMCJUVMyIie1Ur0AZlDQfBBQnQiSbnAiGq5kDmHKyD/86LP3z79Z9tbt89WT2zBQDzlV7RthWnoJnM2FTzPpeC1WDoGIF8VS+aFRLnjMbehQVCt727bbf3qd3F7RZS59EYkMIiEINajgnRmiqoqlpCYxMAQmPXpmwAYEqr5ZvdPjgvb3fy+uuqanzVrFarq6ub6yePbb365Pf+nnOhj9lzqNauC1wbxRzZJGn/brdvqrrbdjnnxiGJpNRTVZlZdq4EXmVHjJglI1YRs6/DRgyXCwCCqtkmaR49RsSUewiOQgj1gpkNyKma2SWBab7IkTdtnzrNopbjro37Xbrrdt09YdczOQ5AvBPgUKW6YebP3/763bt3aPjym9d9Z4DON+vHT59977vPnv3+j03C61f/5tf38A9/9Pd++rP//RacI6g8d2mvvRZqvu8joH/05JOY+67rur5PSVLOJRNt6eW3r18XXP53b3c/+Tt/9Ozp89d3G2+oXSeAWvvbtl0sFoi237035BB6Zg68zCkrtS40jj+7/vT3v/rlT59cUtaYFIwD5ORn6UWl/Nq0ewuokzKz934KYIFRymZALYK8gYiYqHMPQLUpHn1zIAOzD+WQ0SGF7vCi+XNznWne2qRMDCzw7GY8bkg1F4xsg0JuCvkF8AADtyt1zAZC78gx8xC/pbNDOzY5741NsbhTZgaAjaHOwzX2Fh8KgTkZ3fjNQBFhpmgCAOLBoDHx3ZOpPidAg3rEh2cnZcXMGAdGBZNZA5GPnz2Z3vn385GevLFczKyqJXsSPxA9Pr9OfrLxmlwY05wMBsCj5JJTE/EoZxzMvNPGO3rpWGkYR7zCaTwT1sp8jDxaLOZNnazI6aTNjsnJ0HESWaw46we45klqxhFhxyYTiOoEUFz28IPVyeaLUrbixIBVD0LevDsl7x/gEAaIzGTQ5cTzksNjAebS57OB28kMD3+WFUBGYDBNCZOQChogj8dkQrr70A4ZX3qKz3x+lM5vmM7obKaOCdTMAnSYN4Cp+93ubn1xgcj7tnfOtTGp0kcvniEEyWBYhxWbWRJwHB5fLHPOMXa573Lqc84AUiTtqKIiUbLmxK5GZGIiVPJhsVxXVWXpsru/bzd3sdv3faQuloWiwdxScDSHVQUAlQyiJZJURNaQKLu+7zXFuKVO9RbgdVV9/P1/wOuVLRtfE7jgQ532ne73/fZORAhtv98DAARfLLfbpi5RF223b9u2zGEIwUHZSJSL78z7UvioNQqVA4CUMzN75zw5yFoxsfNGKKUoAhoxewz0fOlyRkRilJgkR8yqWXK73++3u91OU2bEFOPrl1/d39+ztm3b5qwx5mrRfO8Hv/Pk+SfPP/oYwW22W4Im5s2jJ49397u7zf3l5WXbtuUcqapYNkVFAoPdbgNgiNDUVQiWs/ZJRAzS6ubqI0OVHK2Gbt/+5U///Pknn0Ww3HUcqr7vvfcI0HUdM0vqBY3AgxloVoWsWYmqxfXlzbN29yr4IhUmwiPYwxMq5wCGQFPv/TyApsh9E70DUZyd2ImyjFTmCPRxfukcu3iG2DzjaIfSdSf9e4Do2+BHLW2WogI0IzqK0ynT8X+FrczDfo9eV9bJld1NCAcIZCAiHXf/1K0CAsx21LehwbHYLxHNfMUPj+5oukbnk5kVd/bUNyya+jETmjcy/CkPFEg3M6Qh17PICjgYGkYT6Mi2i0xTlJWJCh34/exFJwzmhLuf9/B0iuZ9PmNIU1M2abQDwTncMzgyZs9OH6cpmrPbqZMjV354CcpdZmZ4ZAaYd96O5c5h6caI+nnPp9fpQ+xk2Loz5llCB2C+T1AnZlN6VZJpRoGi4MeV2LvDAM/HW/oy7xI8dE5h9DLgLGFaEU0UHA0gcIg4hg7YAdfzgXiu+XKYGaghB1ZUhRTtbtfvOk6NK0elLCEeV3b6MBzkQ+3/LW4rH8+ftVH6GdgwHu1wGLME18s6pz4mAeIQFiKqlsk13a6rmmW9vFk1lQF0XQcAzJxi1Nzk2Enf9+2+67pSfS8YRcgpa26zcmTvgZwQeiB2VQhV8M6uHqe+ExHN8e7NK1XNMcUYJcekqgWpIybnHCIWGZeZTVHFomREGYBCyVRy33Xt7v7tF/8Xf7X65Pd+/Nn3vkvA7cu7d69eV959dfe2OBQMJDheLRbM5NnFN7hYLNi74GuxXLDSOMfi7WNmFSAiSZ2vAiinNnFdExGoonNGnE3NzHmvTohIVESEwAQATfc5i5lzzoEzclh5t2BQC1ePL33Bvm41du1+e9M+c8zUdX3f7/f7++1m38XLRzdd7l69+frJ44/u72+fffRo81X/2Xe+54j7Pja1K/weRHPOWQWMzFARUp9UNVs2MzUs54mAstbXl+so+/3mbrVa5Jz/4t/9ma+rm+tnfYqMlPtYToCI1HWdYodQMAsHW1FRcht/cfXk06/uXnsHDGYi5Os8U45OtqsDAFVABud4KvQGkw2NcAhmKXrn3CZ5dp7nNGt62ZxGz/8dbxu4b6E4BsZjoaGDl3SiBYUxiOLo+pXjISkCjYRbLQ/ECmQs5UuImOGAYTu+hcDMpDjkERGRdFKC6Sgy63DhgE85q9RGR+wWR4o+jXfq53xaJm8iwFAYan7/nKfOp/H8mswDR52cUcYTxiCmEw8bOmxQbPtTH07eiw+pfeWon4hN0/eHQOWZJnrYA6PCiWOC6byrOMb+GMAkENis1MHJNfG/c06PiFEyjYLMfNJUD8wVpo0EBuxGeQcAQEfND/BhS8P87MB8gx0vxGH2RruD4sh9begSIs7fopqLC2bqZOG+ALP8hGPuO7+mOTmfnPnC8cxSAnIopjT5HYr2NVULtcPcHu2uB19hqsSKZKba5/T+fr9tXVr7KhjAEK19tKY4KHknU30stBxed/7SD13zt9jswmkDTHLwcXsKGHMMoUbE/W4Dauu6xhwZ87JmDAthJwgVe0IFzegYtTYJ0vXes/MUu15VRaxWH3OKKWcQUFRNkk3Ilzq+0XsAQPLkKgzN9UdV8TfnmExkANsx6FNXimmmGFU1sDOzGGNWYmZy7JxzzplJjF1OKd9+45xbEHz+b/603e2ryr/d3yeyq/paREyzSupEW3sLJkTUrC/TriHHTbNE5nq5VgKVlJ0zU0eUJDlyOWdxCgIkmnYJCL33atpLNkMfQtf35B0RS0HwBSMiAnXGbOacA3KFLBSswM45A5KcgfzyatWsL2OMwbv+duNjtzR7bNa2rZhuNhsR+9Xnv845Pv2Utvebj77/HBTQcc4ZAMxERIrcY2CqhdhqzinG2KU42OeIELnbQ1U70d5UQ3DbTRs4XFxcJYkAkFLqYl+lVDlvZpbFRBRHB5+qjW64vVDTXIflI823zGZqBJjglCLBeGAdkTOMRBRCqKqDH3d0sB00Sjg+ZnNteH62zWxuEpwzhkM5PNWCe3XY4GOBvvNzMu9ucZ3PxfuDDolDXHWhGqIjQi2ADZm+Q2Ga4cGBBxRaUt6oRFSqF4iJmQ0O45M+lNclKUo1I+kYQmXn1GEcy7n19Zxk4AxKcOIcJ2xvbmmY82Y6xgKc6G+2h31jBfMTcXK+jzrxcf3ak/eedHu6c3rp0djHC2bEbv7UeTsnn09jgma0fh6XN3XATq8H6gDO/yREmb8XR7nq2Fp+6Lya8ekw5x/m4x1eN/487bSB++KEMlNQIWEolQECOO/zwbVcxjKPKkI4nfAHp3Ten5NrmjfJ5ib30Czyv9ghRWQKJC7zUCSTMslHPXqofQBQzYBCYEaw7fpNTL3mBmQUvI406W+5zP5Wtx069AHjExzvSRgZ8OQUUFUoBAYRALokxBUzx9ShpoWvPKa4eXf3/htkDc2Vay6c90zM6AQQmUByBhVKRM75itCZWdrv0JPzxMxZxRBFUViMycb4dAETUSvAtwqIDJ6Jq1LrnpEQsXbkvSeDlJKVLE21vu/FPLMj74i55CVq7lIfq+/+MKXkyOvizTXg5c3lC83q8dJARFLqJed+v9/tN7HrRcSjmtm+i30S55yN8ShhtRBTUVPLA3Z2iqoaXKWaJalIIu/UkJkd+xwjZEH2VAI1TAiM0KBLhWcIWM4ZEdk7U/QXy9xZ30XyYRE8gleTmNnWFxZrT6ySrq8ekconH7vgXSupb/fVo+tlVUNwd2/fxhyXIRBYyRs2SYBc4jtEVDUDKDMGpd4kpZzjEFq72XXksHb1brd58/7+x3/3j148++w3v/2bEIJI1iwJ4na7vbi4yFmJCytXAIARlIaZu4y+CZePPrl9uSPLBApjpZAHj4ZT1WLDYocFPKxcTGP6XNnuJT5lrnzMtSs63uUz1eokY2T6/ug8nGkVJ2fGzGC0jprq4E+bk5sRbc/MFAwQEJioxF1N/ZS5vW6g0KMCyohE5NxQlHv8/mA/nyhg6SvNiB8DgkEpFHdy4O3Yfnt+MSAcQqVKHUKDE6CJGXm1M5EfR9v7oJSMT5SnjysZHF00YmQCFIiVQnfyyVrBkBX1MNsrGuL0hunfk3kGOBUmps7PWz7heUdvpKPQ36nNk/lEx4A46i8ERRwEIOISDfcgIT68FMuigI2Sp4xOVwIccMrmO/fQyClU59TPeScPkhMiIE77FhxhSVOZW0TsUNPXRnUZdaxpjYPCdj6lcGwYhzFLEGb5aTDuFhtbyeWR8tMoohJRkXphlKGL9PAgI5zv2JOxZ9MAwo49hgh5nzSmPPatcF8azHh4WNlvX6yTIX/owkNvT3t40o6diWvTVYUm57zvWu9osb64ffNmd7958ewF3G+j+apJ6wvxdSMizjnnKKkhKKQMOlQ+FmQR8SEQUbHkp8xqoA5Uqe8SpmgIJiIqpeaEGmbTEqZnZmBEksvRyJ4qVc/OEI2IDQwgEWHuJLOBT4lEEqNZ7vvYtZu+R7z56MXVdz9F0e39VmNe+dV9AO89IjbON6DLlBBRRNLLrwEgxoiIKSXnfc4ZzKxTMkNSD4hm3ogFzLCXPoRAjnLOkoyZc8r3uXcAqKXiAA5FZTIYGlVO1UplG4WMgCCSNMubDTCLWDR8vd0As/PV8mJdLZd10wDA7fv3lhVFTHG73VaXS0e063o0ygAQk6scoiGiZskSAYAIdCjZQVEUEIwY2FDyQJMgAwk7Ye+StHGX2YXvfPf7d9sWqISDcHBeFfo2wspEhN0QBzoxR4ekaoQ+Jq3XN/h+lbqeMReLwrSR9Hh/OVXlcYOGcNCAmUu854T+PDjeJlY55wRz9gAAk3kNZozEzOa69GGj48H2iIg22frGOwc2yUM6FNqBpRkYjGDuw+tg4KmMpTyiDYuhGUto8WC9LsymQAQDwFBGsGTgAWgRygCAhvBpmHPfInOcEPShY8elqYafZhFV86GV260gFY+m7CLlzOfkhJPBMcUZOb3B3CAwKvY0lk8f7YVoIwjeuUTAcJSXgohDlM8HTL7nBHf6d+7OnLo9d5Q+KF7MRzctPU5+38HxDzDjfJOUAYPmegTYMm39Mdb8iOCqKsHBgDH9W6DLrCAelO6dBd8+SKlPD8KxoDBnz4Uk6YwlmJnOQsqLd2b6M8ORiV5s5rs568N5x87XBWacCQDmwU04BrcDgDOymU9dRzljNq6HOdbRwIkGTB4jYN8l2ffQJwMjG1xCNFGaaW8cbadZx+Zz++2s99t7NbTw4CyN83SY85xUclU1vq6+fvXmX/3//ny/i//wH159sqqFCdvd3X1XHOX1sq6qyrqOGGmo9WYAYAqas69qMyMRB0SsqiaqRrZchzZgzqKq2EvKSRVAlRgJPNkAoEvExASAoEqFI6rmnPuxVsTCs2gyAyAGVCYEz5IgdnfrywuI9y9f3cW2I7X1ctXeR3EN1UZEVpFzgdGHuhKR7ikDaCUS2MXUg1rftwCQ73dIaCZElLI4wiRKUADCiqgOqGqqQ9SVZ2UlzYYEQCBZrLhRDERB1CRLyoVK55xDVcdun1JSw9QhIopzun9r9XK1unChWlYBEQmqnGPqRbs+CIS6WS9W6NgTk0NJHflFYY3kGBBVpeRxEJWKfFJqlapmQCXE3a5lR2IK5gjs5tmT6ydPb/ddCOH23W1VNSDY90l36j03y4XzdSELs7BiMzMPkqNmdvXlk33ekGZENcgAftrD823mEAv6LyGiD3yyEW3iPaMBeVL8jkjMmVA5I4iz3JXZIweh4Ig22bnmVwKYC+HBcQw4WsDK58Ms6HAZFFovDDjZ8YgBZIJtgknYBoBe0yxPZgDYwvGC8dhPxICIijJAdkygz878CYvCs7kaL5iscGY2YfbCaK0sg5unBp0sxPm74CwVdZo9HBlwAewvql2hOSf9n2gWnslb8OGiCzpLEZ6G+WCuyDQtc8Y83T9nG6UpmuK3j0cEA4HW6Smc2XILotm5eAd4MGDM9y1MhoGzTp4s5fmCPjjG6cJRMIXiN5kOyCxNqzC2WXyAzQolTZvxgV7B7FDMJn/esaPeTg0elobIzZZADnBgYGM9DB5rMs434Zw1ng+Z0JkkBRRgMe16yYIHrXc+e5NS/tB8nnBQmO3MD034gz99iHMfLcFs6zJoTJmaetvGf/+rL3/6m1d91O7Pfv7d1+F73/nk2c3FspIqoKtw28Y3t/3FUKxCANQ5VzULZGZiLdEmhs5xKYElIirgMII6cwwAgagF7fs+5dxudlgK5ZoSOed9CMG5EEWFuTgIBlHJOe+9OadqxgGQDRWYSMU4+xcfUaiIw82qqq6qDObWiw5SMK2qKifNhAlMVTNYNFlePsox9u2Og2Nmx8xNTURxuSSimBKStbu9IVmKSLzKOZfqfqZIZJo9c7NadtIjABIBsZmBkYoYGBe0TVFMhkkH+1eSbW7VcnC+ciQ55r5LXU5bMF7p8h5DdfnosTArUcwRPJph27Y1kiNOOVveiaTFoo4ypF0U6lfYrSNCIiYCZGcoqiJsmlSlCoskKfWyXAYVl7L2KV4/edzf68uXr+rQqFlKSUT2+65ZLqYYFxzNqlTqtZh1OfaJFxdX3X2A2AKY5jQx4JPN5jj36ppdtstL/0zqwwYlUrWJJwHQKMsNB6AEo0/7mAhEJJsdrJpmaAClTq0aGKlmM2UwImNDHIoJgogIDtVmjEaOOxytwQCjXRoYkfOAKDh0koe6xTYYXW0qDJoAgMwMlYh8uS3ngckBlNrbagWNwDw4QgTNpsiMVSBWSkkcOytIDuNeR0TnXMkoLcYDEyUYyhgklcGlN1AKIgA0yCWFxUoU4eAmFxE0V0JMS2k0QlJT0ey5wmMahGMS8AnVK8SiCKEw42TDBHoHcDAND8TogGoNDGAjzoPOpH6YUVUzI3IntH6gUjpIP1kVkUokmqoyQLHWztFX4BgoY95P1Ty+qJSxmIKlDoAbBWcTR+4LACJ5mJmhdQGPVHhZFjUDJmZm71If5wLB2B6UYGIico7NsIjFhEgZqOS74YSYJAVr88Gx5LEn0w3l7AiCQ4Shnl1GcoaoYJWrYk5Td8yEEEzFhTAIH2YFBWywZJS0rpzByJXcWlWZWbmHbTB1z0gFTA0dl6LIQ5sqE1UqgwIAIkR1w0pny5SnBs0O0BOGwN6VdoY0M83jEUWRZKZFrYNiQht5AwGS7vdkdaiaPqdk97F629FnXaQamEkkqyrzAe47DbaHQkCGS8BKHYXx9M2VjyNp4LDHIM8i1QwHoFyjrEaILAholhAYEbmU/QOwsVgSACAyI/aibhFqtN++ff/Pf/Hr+y5cIP+LX/z0p3/zzfd/+4PLy6vHV1c//sH3L5b14+tV7vV+1/rARM40dxZjm0Nw7BCbJaEryZyqWjYwOxKxehlMElgG7W6uGrQmpbR7nbs+3m72d7tuG6WNCkRVvTDIjEzo6rBsmgYI99YSQW90ub5w3hKiWzbs3f715v7rtwK7Z89e1Jd1X9Gu78j5vOvMgLCTGJvVytjtY2JiNKg4pL4FAM9OsgVXNYv6/vau7aLVi1VTc44xxkdProBJxJDIk3ZdF0RzivvN1szYuxaAsco5g6EnDyYxR0DyofJobY4G4GqvjDFGLSnY3ucuQ067tifAvo/eVznpstm/++pVNnj39bJarC8eP11dXYdQ7fedSoe7tq0vb9xNWCxq1Qh0v32rxSSfMwKHUJuiqjLVqkpsDrxRBbyAnHLWWlNnCTxqG68Xl19/8XK32y0/+djHS/bNrt17dkhCiJt2v5Ib7pKhNk2NjH2MaBhcJQIGawq/TYkru1munu5u7wIGsm7OdEcqpIglDxgBiLxr3LGr+HDwRtGWRsfwuNcPtKzkEQ71CkZlgpBSSY+Zp5sCYElbGll1yW4rO3Lus5zOEgxWrDPhHQ+1XKZoL0ZCghNf5iT+D4dzaK38a2aWJaKACKEOSOJE5BxCMTKo5JTErEgJh7zC6ajPekVj+aPp1aZmNDcGjMk/NICvmln58kPZXBOvmijU+Q3zmfkWheBD12xnzGb4+MP5Vai5THU6dCB3J4/8N1VQpvECnCTyFEkLCpTp+UhLTAMzD1gqsz324LtssvSoTm2OLcskf5QAPSIyOTwyp/jnUtHQ1Im8MqW65aLdHg4LAhDRFFV+Urxz4GREpPN8J5yWDGfXNK6yW0TSZIOfcspPJoHwMHZAnbdzMmnTfGLBuRw9YWW62LmjuMvyLyAROx7nCqBP0TAIGIwAL0REVJB1ir/uSNacJgGPRcDZIj7sEfiAgfz0cVUFEFNkTzaz048TisTeLGXB33715u5ut99mNIpsr7r3bfq5pFyH8Od/+fxq1Xz84qlDvVkul4vFxWq5qkNwVDmusjnCRpJYH0Iobg4gTJKdc4ReFJg9AYcakLlyfrHk9Uc3iChJU9tt77dvv3nz5tXrtt2861NK0vWJyFWhZmZm9nWwto0+VN5DqKr1sg+ekz1a0dd4pavlRuPt7et+d+9Aa+9Wi3pff4RAqRNfO+8rREQVzdLF1jmHhIzY5172ktGWVxdqGGMsYV85Z1NEZMmZmQidq91yuVwsVyVMTzRDhKwCAOTJzDgmAPCOu/3Wr0LRPXJMzRJKVhUgq2WTHEJo91tmn3NGxT63BHWlVtcLVX33+tXm7jaE8OLjT9ivE8jVIljuYm9du8upZwrgGNGcqgAi8FB3LibvK0NIUUrMdhv77Xaru30W48qVGvbv7++ur681ZQ7+j//Bn/y//9n/c1lXZtZ1va9gt7l3qxoRJaj3wMyggGhIqNAjOCJWzQANuSbn7iRFYk4uHBCqqvdUV+tQH3ar6lEaok7RocdtTdeYt0A4Cx890IIB8mH0VhaWZEc0tBx1PivIOZESgLFEwmj0xjF2F2a0dTgzJb0EEWAMBjfAmdcNEc1wyKccpN6JrgEzgydmS30mIrQh+toR8RRZZjZkZw1SxQATMb63dKsM30AHBR4mS7xBcSEU4jVIKbPBnszAg9e3sMZJOPjQDd9ynbDhiQifcBoogcRwmDcoii/i5Gg/6f/UwhmLObz32yWM4aciiEyW2DGAeerHsCLjs3SWpzvvT1mjIWoaSvjRwAjHDXbgeXBseB847gFU9cgy4cbS1KXrcBDXhv15aAEHBKZx+EcynJoxERLhVPnzbKVgtugGQuinISCOaFgzUJf5g/NgyfkN01jg2NSfc0nrYoM83sPMdL5TR0kBeNzVzLxr26jLXnNjR6VL4XxPnLU27+R0/S33+WH7gcw049FFYkojLThpj4gA/L7XX335creN0sNGRBu3XK/BOTVKSK/ubl++f/vl65exb30Iq+Xy0eXlo4uL69XyatU8uri6WK+uk0+5d1WPiC5wqIOZGHFOplkcoWP0oVJVQ4fsZcvkHJHVzfXiih9/Zt+LXTblN7eb3f7d+7vb+83t5v7+/W3sevSh1b5VyCklNXGOnVvUy4vVqrn6zHXsnLtePKuuPwOAlBKzd01FjGZmWZAVpJiRJQRf0jzNKMau6xERr66vc9Z2v0W0RVVny2rIjnEIWSRVyMzgqHh/SL2vGzYF0JLC4BoDVIcU1ldFaNAsKaUSp2ZmKSVVVctVVWGzIiJNamaXi+VV30JOkLPGNvb73ebu/TevtndvLjzUT793uWrU8O3tLYNdXl5uNj0xOQQBI0VDGvmKdt2+z4nQAWHXbtuuL6gpHGi/3V0t11/++ssnT581y/Wmzx44A/7hP/yTf/kv/j+LurlYrV+/fXN9eRF7R0Q5qVWFrUjJfSISkMBsWSPSRage9fIF0wP253I5BRDLBlSFi2ZxArl8qlRN9Gjc7gfyOuXalnzYYu4SGSnpMQku+A9z9+T84B6L3sMrqBTDKX7NWQTySbpIKcY3d6eZGRgNPPsYRUsRC7K/lvzXcrPIWJCJDK1kHjJzBcHMCGfVDAtowbGncyCwxzSuDGXGjeZERFXHlNlD+qybk/ip/ePVOfpzXmj9nNOcs/D5/My1ivK1zaCqCzE6iZGZPucH+egILDXv0smrT585696Dfx5eXf7FwyYtofhErkhUQ/7w4KMhQDl/9dHOEcVSq32GSo1DHo6YDS4DQjQYkjJg9GVMtUimB6eWD/uz2KURYNJlwYBoPB8Fl83YDeZiG8MJyzWolTpT9XAU7x6aPSIqifUj3HxZvhk+5X/IJnHCdKcLh1A4K9OvNkVGlxOUR2vWtFDlVIExMBgikHNt3+9j2kVeNgGAzFQkj6tDRKcp/vNXT52cfiOi89F8+zZTVYCMiIBKA/CoER2E+5OmBLo6NF+9uX11t829gVEGQHBETsRMUZB2fTbJMaX9bmNU+bv9V2/uGh8qx6tF/fjy8vLy8tlq1TTV1eX6ydOby6qSlEB133ce65yjYzKTRVOlvt3CzgxVY3AODRBhESrnyAFWiO998E8Wz168uDF5+/btb371+dtvXvWiKvVqsaxDwy6Epq5Xq3q5Ck0dX/4mbr647aIhVvWCXBADAAit99Xg9UgEOaacs/feUBGZvKvrhUfIlvs23b9761yQ2BNiQhJVM8wASI59kIKTls0QjIiJ0aEYELIYmZmhIBODKzMcRUBzidhB0y73Mcblctmnjtlvu975qu8jIaUY93fvTDTud/3mXvoONN3fvX/9+mUnieJu9dH7Tz96/vTFx+gYKPRR0AEKIiqYAqLZiP1sqWs3+651HBShbfuYknPOB+bgC+bX7Tb+o7/3AzNM+zZcLDfb3dNHT/74H/3jf/HP/1+pqRdNdfvmNT95wZ5izFVS4kIJMyECRtMlcBaJjleuedx1X02BR8dHzBDRIWJBfgpuvVofpNFSg6HseiIGGxjP8ZE4fB5cPjbA5CKiqooqOX7wqCMwGIxoEDgnK+fEd65tyIy2nxBTsoNFuogCR+S5VK4bNSHFQSwY+BCAgaiOBWiLom80RGOZlVT3pGIlEbmAGc1imIdpNTObQUyMszQnfMWvBgffZ7H4ERJPlHEaMsyIIH4A8/aB6T3WU7/9ziM+9FCGyfk3s7Ec9Xa6Z0qDmfdkfvO393mmFx5anqtociDwNo/nZuIxI2i4FebrcsxOdIZvWtYFoOTEzWn3zAaOp+Xqzqn8yczTkCU4SAMTe0Zyo6D2bQs0DZwH7HQ9pBicWcLnTx28vCCIPLiTLDtlG7X8aX4AAEeM8WmWypVFjQYWa0OarAGeVE9iACkCioHO+zNMuBqaJVUwQCMFbBPs+9TLIqtCQV4GOiA/F2ycMymBxqJMwyk6W9C/zTUN8GD1AkEcs7bObjZTAjSMaNVvvvr6bdullFkJmNCMBI1IIauICgRmySaZKDhTFzP3KabU62v14WVd1y6nm5ur6/XqJ7/zw+989OxiUT97+phNUzQOjfMMmkK1UEPNJiK97rMWMwbcpWSGw6btvLIBEzomcS8unz9dPK5D0xGEEBDRDB0HCg6cp+B19+TNy69399vcd/vNu9y2hGqSyC+qqvK+8lUI9UIBs2qoK1dSV5F9FZwLoV6YSt5zor7yrKo59s45JRSRwFwSlopQVnxSosrMkuIgC5aiscyApmpITiQRomNWJFUlteAININmJTMTVDTNopL61nKbY+ratt+3sW9zzhzqT7/3o4++++mScl48jfvNPsr102dvlmsldqZRk2jKKmYmqjHGlHLqo4igaco9oWuaqhR68qHuYlvXdZ/y5fXyy6++ef36dTQGpvVicbfZ3Dx++nt/5/d//de/iLG9XC27bl9hLSnHGEMIRUchIsCMyKSSwJyr2C4BlznvPhyENaquwa8vriqYwUbPT+P8RMGByhy+H8/G6ZkZdvjMX0UGgFAs8jqWjZva/BD3LfFBOsXqjtfEkLAkEpmBGgKU2k42JvgjDrE0pf6SjFSPiAyhOHnNTFVMUBEZEZiByDmMMZqMVFgUzYBpQsKiOYzwLLdnPhAcTfcnUzr9OZJLmb6fM5vpmzmnhGNar7NSif8tqNLJhM87cM6Jj/5kAj10poyIRj3NBgvCA0x33sVzKWEivnZALoOJVxnAPH9EwSbDhoigTawCbKjeY4zjSx/qydgHBBiwGMkXxXeMxB4INEs68o/CqG6eCCjTDao6hAhSQX4eJLYh0hCBeVKfEQ4AOADjVjoshxqoFc273K8z3+35NW2SUpQCJj17vgRn1ubxtA7XJELZjN+bGQyFJQwG8ywVJWNqc5R/BmHVMWcUFQVwqiYIt/vUqyvmxxJaQVQg5+VBqWI+sSf9efDOk+tkSzPTaOsZEINL+CfgYfg2GqLNzNe+28UvXr+767NkwywYHBHGmLz3qANegoDtt7u+7bmCuq4RSAGSohmJUGxzqHj37vbnn//2r3/71aP1eln7T5498849ub66uLhYLYJnXi6XpuqQqqq6cFeglA1KQnEGVI++ChSiqibNiIgeU1Mloohade1udxfVGIkAUkpKXK2XC/E1+tWjjxaLJsbY7ja73e7u7i7Ifc65azeSK82CTEqcTBQdEWWVdgOKsFpfIiLlKEoXFxcAkkSoWZDzgOSQsiQkUhVFIPalLCwzg/SjzGoIiioGgAZ9tzcz8h6QNabi0SAi7RKZakqLpun7vmJsu0iWVXPtia2qnCd/43zlQx2aen15Ie3797vI7HPqr5885VD1XWIUlZRil3IGgKTS932MEYxVlZmDD4SuFDBh5qxoAibarJaXN9d/+pd/8/v/6M2jJ8/393dXqyV5//rt29//wz9arpp/9f/9F0lrL1JoTs5KpIiFfBccMkAjRBRMgLXzN2m3/dC2dINnVNVhtVwFgLb8oFqiBMZQVTsQ/dmOP1VuTg4GMY2ZQzB65RBhQBUYjsR8u0+2rLNTN2rjp8L1UGRpVHFGh+54qdmIpVygKgAPGgniYMM0MyVzOOaJFrnADECQnXMu69A+I+mERn1GzYdwpNmZhxEqgQcno9LEts1UBEs4eCm6BwBgJTkB4Ij1fmj95nT/hDWeMOm/5YVHAta3kbmB187yZYdJsCGqrjxy4lx8sFeIOF+06b0wp/jHPxk6AJge00kPtgHLeyh8dL5hjtnkJAMBHJDaAEAkHU3FuNZz9/wxQecBfvYhpjXtFhtrLhVLj81U8HnhxZNVKLsWBlvrQXU7QeWcnsIh8Z2JyOZy7THQcSGL4zUHADk6knhm/MADIhvNcr2YiNQijlxr/ggRQh6io6OKAtxvul1nujzFnDl50fzPedg5IoIMnixEnFUS+eA1MdTS2IgSP1APEYECvTtKIfO3O65evXz99rbd9sYQAASQiUjEQKTv+6GqFTkAXK4vdn0nZpBScWo65zwRGjZ+udls1Nz7+77thBH++vOXiBCAmqZih8umXjWL4i+/uri8WmhAXgR/sVxcNcsAGIh9Fe5DzYg59jl2iKjE4DjUTbfrsAlhWYcQKCluN0my9e37d79AdgI+2uX66aML/3jTdquuD12/22z7bq8p5pRUBcBEJIuEuvLeO+eSiErc7/ddu2WqY7dlZkDs2zYsluR8irEOlZqqZEAk56hIXWDJTEVKXCoAFUcDAZooEZV6aDnnIgXlLJYSEBqSiOSYDIFAneMOF6GufbZsuliuqkWT1WJKb+/3QRKF9bphpO3t+7ckUgfXblWiaRpcZwTgiSGEulp2XQdAPtQCmPe9qiIhsKvrBg1CCAZ7Q8g5WhZJ/f3tXczpydOnX7/85ulHH//BH/3xv/3X/+oFeVs1AFBEB2ZGQDOQTIESGBK5ZHuDpq6em/vqQ3uy+BoZRE3Z+yPigmOU/4D3MaMs8z0Nc3JPaLOITSa2IVD5UHHBRr6Ex5rWnI0/cBpLrSE4oqfnB2yoLlBsHbOrHNgT+22hOhPdLG/XEWaoPMbIzAzOckpYbKpgRWyfqMbAiuiAwTFRtSkf6fDNaPYrKYDsStC1SbZivZluPhCaYxvvCTUcpmeMjsYxcH1ahfObz0nqya8f+un8hoEWjwvDgMRERPNKRAcOd0xn51zqQx2bM4z5ZkMeZLqT+5m5qJfTbBARE2pODw4km04IpjBjwKUO9EBVUc0GCzDhIRttmu1JyDifVQI0IoOSComjf1qBDtR/5FiDMj11bt6giIxbjuaeoLFuxqGpcZZKVo8frFImxSp09MbZJOOc6394/Q+ylJuilFXH9Hsz4xHV2kZkGxtGXGyn7FxIKQLydie7fY+PKxhS9svNw5LpQ/nl82kvvZk22JDL9x9yuExjLyovgZsfWFWlmQZ82LQAWe31q9u2k7aVFVUGSRSdsaEpqDFQYALqU9q2+yY0gjaQPhEQ9eQqQ1PrN/v7N+99VRmpDy7UzZt3b733Sx82m25zf7tYLOrgNEu37y8uLsLCS44oeVWH9cJ7ssrxerXA3f7Jo0c3q1Xt2Hvvl83i+tqHZt186i6XPcNmd59zS65xFVMgWf3g0aPrrus2uw3uqa7Mq7u4XKebddW3zgRTu71717V3aGom99u9mElKAoKI5JyvXNPUkCh1LXhP3nX7rABhuUx91+623nsiCnUVmFS1jb2KFOgiRSBDM8lZQXTkx5BzHmpUOG9mXdd5RMlWLZq27cGw67pVE9iwubwBAEm5AmDmbdtFyVVdAwFztV6sLd5frJf77aau3Js3b1EZFYm8AwYyosoqM7M+aV0vsliMUQCdc1m17+NivRSxi4vLL7/5+q5t6wX0ff+b3/yq8f7du3fovZp576vK/+CHP3z37s27L79qVksfajJ1LnhPiMjMbcpNZQCMQAIt2mJVX+e6AniA/gCAM/BR7n3Id6vqxtYAu2GnEo50DMCKM5VUDfiIIBaL1ljTdKAXE8x/VsGD0jM9yAg84JLhAZqr2EzyaIIbGcng0JJS0mmMNUWDUnm+IFZowYguXLCki4y4wUaIBDrRMlFAwAF6nkyEAMlQFJAYiYdaoFISqxExZ1UDM88AAGpg4NmpJxgAlYEAEdkMVAHQqRYcVylaDRCis5KNiIigptkMFZFCqNHUsokqwhAvqygExj5Mud4wY8kT8Z3I0JBqYqUOK6hpAQg7wYSarolVqKqNQBBIlFXNLOADGt7UztQZHJPc0cAdXqRGJiBZMsAYFAZQUFRKazyIQDpW+SDVgsTpRl3KSk5wub+qqnJEaUyoH34SNQQba1ITjAWnY0YsZT1BVQsQIBERFZQ3hZmJApjCUOjZiAgdFvFfRIKrijcYAVQGdu7YpTyWsJ6Ue0R2TlRhyhHAAeCFmA9hVFGJiBGNCgb1GIEoA6dREENTQaNiGUIzQzM0QEXwPNS9KTk9YgBgBBNLGjaJaAEBFqASOFYKdBmAmYJORbMGJjRoe4DEJa4KbNRLQBQN1B3xwoMMVDigHvYGD2GMXLwAODhWDAgBSRBAjZn2sXWe2KDr4cveftinp6FCk56JmV0URI4kqJPkenCKOcKsR9ggSFjMa0nlIBxMvQVAdIOMgkol/aKYzTFMsj7iaPoCQMhgbOYIudhOVbWqKor7X9y/fxPzuqHY3TkMFbnEncsVEZvE1CdG1/exqhddjKGpNRsCpJRcXfUV8SKQWbfbU/BZpambLPDu3Z1mEM1bdGTswzL2ys75RbNaLER03ytitdvm9/e9Uc4iHNhsW0f27qu68RersFxUtcOr9eLxzfWzR4+vry8vL9er2kfdZ4mL4EGgavyS0vXjy/56fbe5f3v7Hh13GrHaM5GhY1ctm0/W9pkkSSmt46s+p+12y4Ap9qRYKcMutewuLq+7bm9Z6josF67v7j2B14Coy9XFrm9ToAyYIDsHPgMzg4HkZJodIgcmhu0mp5QCsiOWnGLMzjmHpKCAliVdrC6S5B1Yj+y8o35bYLBVtY9CpA0jaGvIEFbWbds2AaTnTx+9W6xber3WWzX21IBfA7JYl9Jdytu2rmObG7f0bgV9DHW9beXxo8/2m8/f3r7dtN3F9XXc3F9dLP7yz//VJ5982nz8Qw94dXX59qsvnz5/tt0YEF999OlXv/yb3eZ2uaoRQtd1la8RJOWucpREkTVnc7mqQx8lRv99gJ8NhBRILRKaQzIBN/JFcuzregZFCaiTTjoXCY9L/04Cqc0vPDoGJ9R/MnvB8VXyfIrwO5H40paO1WB0sogagAEBppwKJ54aKdakKfiruLSmzqgojIVfCqmd3ImH7s8NsIgFg2JUC4Yat6WS/DSsiTCx94AHflmYCpJlscl1OaVUqQjT0TQCAM6AFaeJmqZrSqeZvvzbhGXNV2HOtucoGZMOPb1rvqTTNyeq3pTihjiQwrERmIaAs8uGPFdFGBwQiMQGpcD89K7zGZi+KezUlCa+Pt9LitMEFu1MBSxL5tGPMb/ZRkCJSYstFzMjDXHU08zMn53GddgnZ/M88PWZ0jmdlKmFo0eMAIrQNlM0h/M24JmMi2FmphPLOLYlzPbeA5psEWUmgYbGQDmRVFKFdbS+4izj/KSrOGrJeOYjmGZ+/JMmbOeTyQGAPktMpGLEBwoyD0N5qPNHYuUhBATn+/BwnSw3wGDdMkMc0iOKyjtYnlV1jNOUCQ0GEd/ftXe3+902gjKhz4KQgOpARKNgRNMsEVFd16gGomaWcy5Vb7NIQZzAsYzgaFxEESkZGVhw3c1KRTbnXEpiZuQ8zNp/xXsDgxa4B3qjknNAbBb1Cn3dhOA4OAKURV09e/Koqqq63zy+efTi2bOLxYpUXLfDGMV0ffk7yAwhaOBcV1AFaVxu/Dr+rsuxuRIiYAddv223m3a/rbvsMFysl76qXKj6lNCvV5cXr/r7VbPYO5f3HKNrqvoiuO12q5UzQQBCYwCvJqlPOWeANqdOTECtlIHy3pkZK5tZ3APGyMzOzBGm/Y4XlzaUIlZiX7acql7WtNvco4Enylm7fcuAFZBffCr9PjgCsn23EdHQXHm9XsXom5Citn2b232fu7u7+69++zfv9vGrb7a/+5PP/ov/8X/5v/6v/quvvvrm82/efPqD37u5udne3Xf7tq7r29vbJi8fPX324sWLnzFvNpvLm2sDZpIY41hNHrMKD+CSBABG7KsDwhUzo3k0RUAxdeXkI7L3eLFczffuSFIfsOqM2/qD5sQTxnxOCSayemjQzMzYDYg8gw8faApXAYAJ+RkGq5cNkS2lken40eCjUoQpPGfAFcoDrKaU8BpRKGRohqqDk34AgEZANkbQgAKgKgxoPFAi2BSBbIBxGFx8B1JYcEiKZmpkMCVilgSoESFh/BJPZ/KEgpwTsvkNcM4D9JRFTex2EIYm7bbQXH1gueEDpmz4ABRloSnT604AHW2kdzDeVMY047U8YZWcz8OBExtMoewAgxB2xCSOeKeYnVLn+QSeTOP0TeHIiKWFB4Lj4MyoizN5FI5t7w+x6lnU2xA6cypSTXwRAAyh0Oapv0ddGipqDALr+eWcm3oIJQqy1HUfeRuoQkm+IoMscDzMw1hGofVkdwEUSeKkRNLsREChupAF2n3cJewFFohGapoVlAZTUmGoRzOhYufb8JiQnP96YOdjvbTZg8XMoGJICG4AZoWBuhCBamb2APDV67u7Tcw9GBAAO/ZAAcEIoI+xeOgLjJpjB4Sb/S4QB2Rm9lWFwSFiTKm4Ek7NOeXZLCBSJNqi5QdCAOr7vZg6RJlwCQkbRiA/7LBSuV0g9u5X+/vKByJyBJISmNS/eisi2Pd15daL5qIJl1W4bKqLxi+CF//TEMKiqtf16nKxul5frJuF975/9kxVXVUbYLVcU7VeXl7lpOsFJckxq4Hjuo77FpBgffnRXU3e7ff7pr7IWTtgv1yR8yL3agqqQEUVRkmaclxE0sygxGgBGAFJSDVHzmaQYkqp997XywU7zpKs3QtABrHR2ac6qE+Oedfue9Gnz56bpG7TXlSLSCFpCyqV4yq4hgNwte+ySvt+d/fy7W1YLLQOt/3+F29f//I3uSJQhd+83v/v/q///N/99ZciIhF74JTE11Xuuqap9vt9znm73a4uLx4/fvrVy68kq7C5is0MkUMgIMw5q6FzDkFFhYDIzyAmQdEAsZgC1Q1xSAJMbrVezHbnqDgaARahTM2QRuwLxKNzNbSOo2A8bvEHKdSDR+jkGvn38OcYJjfAn5qpDRqMwwKZqQPbRiYi6nOCGW2alHKcarxP9u0T3xuA4mB6UlWzjIroePR/KxEojFHQOHAao0ECH4c8eekmhR/5OIIbEYEHhodjCOV5zPCDHO4wrpmOcs5ITpjfdBuOWCKIiAY6JVsTPeAA+1bX2nEEzcR3DGeSxAQwMhBuxGI7HAn5oPfPpZ+SvwMApghGYKZSXlf6BsOvUFK1Z7PKpKpqOkCY0UCdisXiZBPimHgNx6Z+HYGspxlQ1TF555SD6iHzbZzzuUY+88RPAywbCY9DouaixvQ8jjFuqmow4KwOGxkBoKhYB7Fspno+LKXNubWNFpRBWJlS4QfTLig9fGin5uavK7cOSuZoVBr+P0bLmSkoiYkBKMJ21296nzIUnJwhOnKwsSk8JDCN0ALjeBHgbIfPRzcbOB99sHGrF7kYBUBGg0WZ2MTG5VCIyOev3nXZCjuEnJuwIM9R+oCuKHAAkFUm612ZkYFgMYNBSmm/3zvmwYQzWxSRIZwMBJiL+ksICui6ruu6zgwySZSMhGaYUwpbIY+GKCrAzhRBFSXfrJ4wkWYxEzQWEY1eMpK72eZ8d5flXWewA8hMRkSXITlHlfPeudqHZdXUdR2c+2zd1fXi+urRcnm5Xl0xVavFhff+9fV1CMGHpYpVvIC6MgNtJa2D914oex8oZ0TsrA+r4N6H0bzEHgnRewNHxk12LAUwRE1EkmVV1YxUVRXXARFzlu12u9/vd7vdo6oy0ZSSSIIpGkmto5BU6tXShXrb7RbeX15evr57nUK3XPjGrdCILfXatfH9Pu6XzMuL6ql/tu/1t2/evrprt7f1utFqdeH//+39S69tS5YmCH3fMJtr7b3POfdef4S7R0ZEZmREJiQJVSkhVKJoQgcadPMXwH+gfkRJNGjQANGnRUmIDi2EhIoSqqxSoQIlFRGZEekR7h5+X+fsx1pzmo1BY9hjzLnW8cxKEVIq8Sn3c9dea06bZsOGjffjlH/x7bd/+n/8P3/48KRassg337/+yT/7sz/+w797fnj0OLtTyr/6xS8r7Gc/+1v/4q/+cl2LcFsW1WpYXJPLkiiS3SkJWjGzUF2qS12JpElqGrBWgnx6ekBIgjATzLjB+zwyjju+OcjLh/s72ilGYzfnjtIqW7FfA0VFRG7a0filqp0BK4BqmoweBD9fGgTfJnuqQk0gTK3b2qCGSklzzdMqqzBYZTcBpfY6t5glOLVqtMHl0mGlJEY3iG6kVQ/Tl9aNHECNXGp/RS4buYgF/eMAnHGPB6eM+yOVH0NJ58HqBUnu7Vew9d2fnrlee0+citRQGt0U4fB0AupBzfvuv0086gHprqY7OffkIuJgWrlTh+mgtzWZqd+fcGwPtp9wS41wUcxbxHMHwPnIjTbsztdtu+acW/Jbrc7aU0o7IAVjgFU150X+iBc3J1yeGCG6vpjaAT5eOsUCCEEXhHz4Nj2dLQ47ugYd3b05ZiZmhKJlCR7YOTo5GPJigEaEZ8BnbzVGeoF4GBV4eSsfr+u1Gi0JTKlKFQ/ZuKfAk82+FMWIu5j/eZFxhiZ4efvxjZhSjE4rqWY0VEBSSi8vL7/87vu3rZiZ1tW0GIsxGYq3DG+Glm5tEpF0OrGqN4RnKZITgJySai8j1LK5fFOUOds4oa15tADy+vp6WbdlOa+1lGrnh6ywdS0p53w6KWpRU1Yv00DyoWarsFJpsFoS+XBa6pL09aPkJA8J+VFhWylrLbXW1+d3IvIdbau14KppNX6E8MsMkW8Ff/54EmH54sPTlx8ev/ji/Y+36w++/PKHP/yhQL/48O7p/PDh3ZOICH/0g5/99CnZ2/On8+P59P7pu9ePeXm6fvmBSH4WqgigKFXK9WQipWzrWmsFzGqL4Ln+xZ/nmqlMWVRLrZuALKdP5cXMqm66tYgQTyzMD+m6XZ/yF8u7p03tqmU5n5CXx7zmJNfXl23Vh6d3p+XhtVwp8s8v9uu//tUvfvndL/76e8ryk9//w4evnniFSmFeiurp/LAVXa8rgH/yn/9nf/wHv//4+Ph3fvd3ry8voNatPL9dHp4el/N5XddPnz7VYiInYTKUUvH07kNjrmZWlQIylVAXueU3i5E0am5FEJUwPj4+YiYsiUeFWqtZAQCtPIqI9aL5t8I1PTUhfB8PsNnsUX97bEjqPqlUtfGJJS/Ot5oEYSC8v2NrFe6BV3CqZCqDHsnkf4Bn8PbCxa1mIrlT631CCSSpIs203xiMwYgkYG0JnRVmVpqfGDC7X4PaU2M5IEOYeHOFBuFhQR1VEm6Z7q3CNOA8bK3Yk8vby2/LlMlMPFi3GS9uSO3NFh+2LHwfCXEzMLgEsnvOQEJpyV+h7v5vBZvIjMBUDuLFYBylFI8vatMenEmrYHAzRa/NktLiDoQ9h5g9A8YaZZ/Ua0pTagVaYtWEM3pmXeuydA/h434duMLum1YSfP6gOoVIM3NXLeBhioZe3TUOJd4FZDwSTCP7Oc97xr8xiBJopdptRk4GlGvGW2Cw4ca8fadScOImP1skDeapNUloSrcwXFf9/u1t3SoekqBFtLWEh55ktUe5xLDkHbR7XdujphCO0n5fPJ3QW8x4AQ7xCgDWElf97SaCb7/99rvr5W3bqJYT1bDZmsHTKetmTMIk1cNRKV7dupqiVgMhklJyfs7AdOO6JKXa7FXwlXsP203rtm1mBqEaJUtOp6qbqlZItUqyEl6SW8SS8IptkZQyE0U3VdULr9e6nZdaSaliHuBofDShLev7FZQFOFdLRgGTAbDv6pOo2baKLbq+XV+uf/7PvgFwOT8k/tWSUhI8ndLj+fTFh3fn81nWTz/+0Y++fHr/yPx7v/Pjn3z1Q671pz/5yfNST6fT6fSQJUEEVGiVWvHFT84pnZaznJkptZS6lZRS/Uf/nW3btu2aROq2btfXWur69rbYV95vpmqx4tYwU9VF6unpsaqe1LKky8vLp+++S+dU1zOZtlQvi77Wy9dfP//5X/7q0/PbP/nm+fXlmuSstpySLPXy7fqJXJ40g+l0WopprRsoT4/nb79//jP8i1rr0/nhy4fz68vLs31Eyi/ff3o0rbU+Pz8L87JclmWhyLVsy+mJ1CWJs07nnBbESXpwYpNsNaNV7xMAjw/nwYCJ5K4Q6zme1ru7Rzq4O/wDxfdIf5/uWBD7u8ajZmQaxBeBvh+OlXUj19CM/f86IpzVOvdtk1H2B8lMUSqa8jdB45c3GVaKNVIAo9HgqTXS+rvDDFqZ3BMJ9aDTW+Z3qz2MS2HoiYeAW8fR3KPUIwSCwTCaNA/vimDXnsz92VlVrb1QCRtJPaoOcTvifHBzHSYz7j/2FYBRFVRvSd8MgaEXpFngu51s3S42NlFGU5SbzzsIcL0bq9VbLniLmYc/VXVUurBWmNRu8fMOYPe2UNvTXOewY5n+FfZcsx1gtprF/g16hI7RJT/InqHeyk/Y40nqHVd8deNuyclh5Z51Z7ERbyK3jgLK/HL+SVj03Uo72QCaxkkPVN/W8v1F37ZVNXfoJVqC0ezqFpDDjjBUE4sAv8di24qBbgenBSsLO5DFbd5j2KqaefKCpI5L33zzzfevqweYp5KMm4gIc0qyXTcIISxbMUOmlFIkM59OalsCU2JK6Xp5q1tZr+uyJLiQJ+JBoCKScmPAg4qKSFEt62YU8ah4kZwzk5S1iMiSslAUlrmIWa3UUgSsT6lWW7dCNdMCIU+ZIq81k5YkiatRaqakcq1Xku6IA5HZ+sw/nEspWlgvW05pqXLC04OZfcll3a66KZf0ctVP319+/vNPCpUvWP78FwJkysPpDNOc84endz/O2+P5fFoePLBRQEAN+nCSp6enx8fz4/t3X77/kCUlkafz+Zx/ejqd3j09fPmDrx7O7yW/o9j6cHlurTya9gUAtdRaF6nXtwuB9++/+vbjx3PK9enp0+W705c/+PV33/3y++3n33z7J3/xV3/5y2/U+PDw+Ih3tqVSVMC358tffPPnFfji8eH5dNLnj6/XS6n1Bz/4wV+/fKPc0nL+9vm5/MU//9GHD//df/gPBby+rQ+P6eX7jzjnnPO6Xsp6eXt7eXw8Lw8n1bptV6jhdHo4na3l8cxIVexkRDWxbFYzF5FEcFmWeF/HSF+vMtTIjUfiwIBt8MZ4NsKZGQwYgbVY5/V5yWPMeLRKKc5QO3ltEYbDm9JqEyZhC6Wug4ig0y+SqlXSrIg7CgPJyOt1MqdqTeDy/oFC6RksPQ6cXUzGkMoJuSEEg9VBW/VKkhR6ri70GA3b4JnmLkSa4if2QHfGZk0ZYpZwOvKJ8Yj2MIa59ttaB/2KJujb0Wy/v/G2ttmdB4jLNKqgNsnQQ1FtQnWgmEc/dahot45g2jb7fo1XZLRekI2j90DfemN08c9eQv0AfHTN2MxCayAO1D5sGcle/5KHoQZU2aL6zXoa8a7I5dC/SXUxF/PyOR0Yz2E3b1d3++fYxzEUZ89UMzOPbHCXhLoT/ea9Y1sDKcFg8W0bKloSV9sjNdeoVa0ljgvBUnBd4Wlm9CUyERTl3UhoM4OlgU2+Kc65DrnLAUVjKewBDe3mrASzZuAymgI07yszxjGzT58+ffvxovZeuGxbKRXLQ0ppKWXbtLqYXmulh8tUT3R1bx8ATb1fb05yvV5H2XZV3bYtpeQKU4PVkIfNSikepe8zkSX7i1JKm621wswWLjk/mKoWMWPeAAU3JE+jgohK2cq5CMUIMJlnqFWrCn3C2XW02lQYVgW1Lm+ZZX1YHmqtKS+XepElK6xur1lEEyTL62XNp0UeTkKeN9ZavZj2uqpZPX/x4S/++df/LKWU1iQXx/smA1FZS1oWN2eeTqdEnFN+//RukU8PDw9P59OH90+P59MPvvzwox/9MKf0g3xyKi8ipyWdTiePRuL5/JMf/vjrv/7rX/3lr2VZzMrP//xPrDz//NN/9Z//v/7i6+eMdz/97vX9a2Je6mt94ctfn86P1ez8cNLKlJJWvmwo66fz+bycTuV6/fj8fDqdq1nd9OFBDPInf/anf/t3f/Y7X37lFMBK3VJNidu2XS4XM67vn87ays6WbUuCdD5VULcC2XUwUlVxq4VQyAw+FLw8kHZKV/uDietSqhajCVMii7GWqoplWVqjAquoBdrqGKx1beEGgM7oPlpVM0tgTsnMSq1IsizL9bVQKZ0qtViVLKpAys4QWoFlAGRWeqQV4IVFtbEEcWUflFZVkwjJxd7K1yOcvfp4XqpZqdUskcaUVIstWjdd8gJATCGipqKac9q2SlB6ihTJ1NIYCoAKeNF8MkmWnJKWI+lwTpDdCN0ZRkULyQ7VOybzE5EKbaYq75ADgJScWef4s8iRWQqEeLCQlBL0Dr32CRgFiQluDpyMZxC7A82NVxALWuHlSNPReGd7SloJFDMzvW4558TFUF0+KqK11mwpSADSSw1XZFFVqCLBG9pRm5tNCRDFM32XbNlQqw5hSMiu7ahqHgw18KRkqSZL7pjfJ1hrdWtqC25IKYlgGKpHiNasfkWLwB/7WDw7GR4F39VHYbYEODNSmOfu0owV1bm8GAgvziXInsnuOm5KyVOcrR0GAw0UaeqvNMmw85tdvlltSGVZBPDXb4Jkmo1uCIN4W2dVLQWShyQxNsjMWvi+tI6EBhQY1FJaRM1YPbEbXgS/KiBqQk8KXgCAVc+y/Orb7evfW36yvv306Vy3WiWv0JPUql7Di1GEUAK2koktI8Vl6KJVU1oilg55RWtvAwVMB7CJtv5ZTExGg1Wzraoh53cP6fryvLz7gZi9y9u3by//9LutbO9Tkq1+nwE1LDlRCiGnlNVYa82y1FqvWtL5wXIqb1cASJLzqVT17PgEUhZJuYjQVMjzcqqmr9f1wxfvymV93S6n8xnCa9lMlQYrltJSVfOClLhdrlDLwvUKL3xRVct6FZH8mMwMOel1U8JozDCorHoy1lMFhxUPZoAkUjTnVnLVNjPzSJa0pFfbkAlUE0O9ANBtI3lFdl9+reW0JMJYr6p6deOL+68Jkt+/fcpPp6V1at8kjXIrKeez1zJKKalVq6WAZbPn128kLWZvtX40s5TSckre96y5imDn8+nh8WRV63al4R3th1999fzx0+P54R/+g3/wH/8n/8k//sf/+Be/+uU/f+PPX3/5Bjxx3epzsvKYzpc1L1+8W9cVCzbX+JxcJ8uS1RG+qBX13oi1om6PL/X1fLb/5//nv/gf/fv/Q1uxbvqmRfRkxpMxmV6v16L2+lJOOW3pjaRZ3rSWUqrpeTm7lN+IoVZbKPn99fX6eGYeFAqWz+dzpLBNVEczjDiZ1tmSUxmI+5IyAGe3GJoHxdJMcRvvaupsfxHCpZxnLqgH1gJBrUno46kYtNXyroLmEZeDzh4OOlCDS6ipK2l60Xu6ZCtnOh4R8aANVborV2iotQ4NadAsJ8SREZp04eIztlzA42e6aX0/3TFs7vT0VtHZDXXvFXMT2wcORevw1Fjv4UWdnezeMsj0dDIckkRzUgKmLUErScbU+DrXn4zwc0vziPGxrWZG8xKhcxz2l0YIxHD3dV2RXAhsDbDQd01D7vgBDsNaPhYIQKZtZgelQ6lzdH3N4tW81ElEbF9LdYhB91L5xsjo7LUZBxgU6AMA+59zR3z51XQUmWbP3I2h4DdL2OFVa6SQXEQIgmAHUUrZhQbS/Jw6wmnFdV2LpmozLP834/NhXSTtM4+Y2aQJE1y0Ge4Ns0oMAzh1YLuy6GbL8vzp9fVtVVXxtPJhqQZUNYkYp3FomAQjPsRLwBY9U6uWKoYlZyRZ1xXByFRr2a5XXQt7d5uxF9aV4I54M/+YU+acl+stTPkWRHfPVyQC8dfxdvOUvlhU3IyUw1AMYhBCssA4Ox313fgBV6pSbotCt9J5tSyRTFo1vVzeXl4yoaiaRD4t/Kuf/yVUrX77X/7lXy7L8r/7j/4PHz58eP7mu28/flJmRSLphgT3v4zDPs5yrbXVK276Dkb0gwHGdF23l9fLp0+fPjx++PbTt5qw0repmlmp5fn5GQA0u8FMVf2NtVZxW98ArxtJ1SsRWbbuVjHVx8d3t+AGqyqGBB0JQTyWE7jdKkQDai+gsS9uPLi4ho6E/tPoVuQwGgWtepSNYz8Gwg1/c6QOdsNo45d9nB0RlE6FkUR2wS/kPVNbNB2TbHpGVewJVphVU2IdMMOTHhNed1QCgI1SFYGHdR6DG3Z49zjdmsQD5ZpjdYDotO7egC6+a3weSSzxp+NMAhXyAinuGpGeXd26Ak1hIgQQhbXEaWjPJDZnvegKIneQ7Bxlmn8PS1NrJVYaIbPDO3dGBVVNaWf/H1usWnjPNz+YWvur/cNRe1macUdJ5pyh224LTAzVzGwfFtwP407bbt90EaQDbby4bYU1e7Z1zVAjbNn0zho3NP66O0SdqJLMFJLFN2c8a8Soyw/XvyYJVq1bxeulXCuLGSX3MO9df+Xb7bj98nZzfQID/6uZhI1rwJ/3tm4vzlxEllqrVjUuv/76199/WuHZrMFB42OVbaullKKtooCIiFvldtKhX2qmsGRtU3UrfgpyTtUsp5RTWpbldDpZoW4lLaxrtT7tWDRXRue04G/q9agF7hNsGU2GzyT39+kdubYFHhxh3lbdJewJuy5/mlkMDPTzFRmE43kpBeKN4Jq6RnhvEdt0G1spJCC0ClWj5bwQVutWSiXMo3+++Xh5eDi9e3qfROq6vdXyza++Ln/19ROQJVHSdi2nhzNaIiu9NPchN0RVmTgMSIA32mSFLqSk8/Pryy/1mz/95//sH/7xf4Owd4+P1+s153z1YGTD6+vr+XzOwnVjllRESynWnQg72EoSaq1bIiosD/jWog+nWQkrEhdD9Vq4TsricAOhXamNB6CZ5pqRbFKEhMmCBqx3exyZhMErzWbZLWNcw1cX7bciUq3Mol1dKADg5ySi2niXiCAdy3EAaVAoeARB19XaUy1rQNEaorS2OX0hjUSlNn9VjhJdaqG5UwxqhZk7hcYkdx/UWjq3g6ifFQsK2Vxdh+qBr8QCBeOKFe3jaJGaHB7pCs/YtZH0ouPBOIdWwj+RHnrdNy8KLkDAgdsJ7KfQ/WlGQ8Iu4OuzAOzXsiyb7vKDJ61U3P0e0J7k3ZiRv6iGoozhZlByA4g0IgPAegcUtNycubpbFtIgvN8OdaMyrNgAWD87x2SwuQWYlp55wK0Fis896nP33NSZXjigShJTnzGqkT2us0sPrW4JQKauTujEOhpMzawWvF631U4FTCZuw/i8tt+BHG0q+59uN33c6RW974yozsYqkWgGNSZTLTAh8l9/8+nj82qVKlAPHkwiKUEERrVqRg9nYwBrNJO0NDYzM4x9bBpYrVbq5gI8WWtd13Vd1+u2btuWIdL7u7gu6BqLOxgaxYsuPPGici2L6m5E3m4TI64ynpEjAx5Q9VhmuBMtZKx46PrO9uJDyQzUaKKnh2Fac8OTkijwFIWsA1zjpUQS2lY0ZwqhrbeSKszUfvD4flmW14+vqvr09PT2/PazH//k+fm5XK6n8ztj0m7Yq6aC7DqriLg0M6ickgkwgkm8izgSCPt0ef5CHlPKYP76m++++8l35/NyfXurZjnn11pJpiTbtpVSNmFacloyk9QyIlqsBr8heCJX0+qNxrvtBbM6XYedDkXEkRQ29cLx37GvGqwiIaJ1dE2Zm80dqb0RrpOYqgeitLkZhlWq/xv434Fhj6FCDsMN79kpjv5nhSHJKExYa6VaEtmaFA8nu2yUUP01bYSio4LVsBTFwTmyuQBa9QzEyW1uuCPd02xdCR6AAma7eJtmiVEDJMJzENLb8e9ekdeOmeMejYt/xvXeY/NHjbO68UNE3LSiBiCBtd8p0ooY+yWS4uDWGbBJ24nGxZvltTHgfnT3JAad7YXpeepOxK7DSuPq2Muz3IVepFPjQVOD0Ct2kVTnwWoUMW1HjK0Tba06Tdyfg3+EBrv0ZfEaObr39qtv2UQSVbWqaEWVZ9NMhBN0y9UiBR9SCElT3Vk8+jt3Al9rh0YR2Wp9uZbNpKp4uh/MLIVCX/vLmhx8/7qFv9fcngcNTXeTlvBcxRxnJgKoFbGkqjmfitrX3z+/bKSMNlbOZpu4kXNu8Kpt1zxW8JYIBOC3K/VWlGqWREbA//V6vW6rlmLGhGStes2sA2/DMhcW61etLfsY1gdUBSyqLxFXh2F4UHsnceO4xbcMtPA/q3dK7hrJzTb51XL/+mjNxiQyg8ta3hnRAxwIDW1Lmvji0Rg6Som5bm9l3S5Xku8eHtXsy4d3z99/BJCXx7VoSkxLVq2AppSMWJZlcDrrdlbAC/q0AEhnwE4cPjw+pZS3tXx8vfz8l7/46v3Tv/vv/Lff3t6KqTdAq7UyJVW9Xq9aNkhalnOt9bJel5SdoazrOiEjJ2AVUzFWIk+a6OEeRwhOhw1o5CRqfasGQngH3tbkBz0IyEMKRwqQNVutiWQztrCp4H9tuNuF5oG+Bzwel8JAMPnp9dKuKLWm3ATDSFvNLPU1kgQ6TncFwu2QtSp7gGp4Kbs6R0DQ+jmxeqkTNZDOwjHomh91EREppczKPuLyViejvvB+Nbo2mVknecL4iFkraTDoYARL4IVTuTls7m0Ht1gDcn/nkeSN18UbPrdH8RK1dvChtVaopZRyzmVbMdn5FONuSYBjYEMQbWU6zKwKUg9Eup2G252iiAlvHpx3fZrHWtzCh25CxuDf+4Ejdt3+iU70zQzCIcpFQDUEEHMTZ0qg3DFPBG63sxUhnI6GcjLv7AQzTmgsaCeGpmbSrG5TGGg2vHHxJLLrOdLLwAFDg9JBogeL8Efb5Dnh7NHpz5f1rdZrrUvKVNpui37TdVc0ub3MvG1yP2IAzISeNQiz6sfIDhdqzvLp5eX7j5821QdJCi/cAQ971opq1UppupTXvvWUCUnCXQN2dpM1UitCqV6FnrRWZI8wLMuynM8USSktklitXIsSiyxOQ8yMLUdj17h9QGMoP17tQOlZAAd/GcK/Y0+BQDcOVOWw9YOFe8o0m8LWaXj3GAKtS+gAfCAUg86IGtWqmhoUVlpkbtfg/dnTaRGBFZNm6AKEIsKEUkol1sVUNT/l7VLO53N5Kdu2QU6L5F5iMJnVnLMz/qj+OlSorTg40MIyTLldX8tyEkhaHpjy98+ftlqeX97OT+ecs4vL+ZSyYNs2q+RlPZ2uJHPO6dE7IiuC2ZWymDoTEqNkxwZnvpE8BSnpvixMCoclbb9h8dCyGezC9lc1VQuBHuONIqLD/4fpYYqoLCIxCGuPTHMOu6N0o5z5zQcqPZac6WU2AvXfK5cDKc06H26w2hlPLMRhucQcinJp539DY3AhtFlr/M7D2slmfJwbcXNg4hkbjx9IVb/BRlkJM0MPfb195HAOxxZjHwQX2c/niGPSVvzKe0j50g9hTQj1lXz81Adjf8aDfIe9y7OZjU0h7pHJLdric1O6s03hmyi9DW5k+8qgE8FuYNW2nVJh3NeH4FC+XVazMu7vKBtrQXkU6C0CA4DHr8OCM94gvSIHeUTyMckRbeTEYliUB2aOyUREGn/6h9H9uvUgF2EzLmJA02+uvQ1TiJJz5JXLtbxt27plZhB05Yf39suJI3D8dfCPwwmNUI1lw+fGmSuKBijUkIbtQQGThG+//+7jy7N68r/ViUhNqZZ1LVZV2/AGqkgaBBCB0PtLhc0Ga2Zq6rHu8JzArfqWu6l5yYvW4tTOny2lQNXzKUZ7Skf1YX1sfahScn3Ey255962JM7vYOrM9cXPaSN4hd6oqYi3BoR2HdmSqztpH7IYo65QfgSwEsEAkt/uUFebNjrp8J/3Q5WVJRVczekFaA2oLGjzVS6FI0WrYcs5vb9fzcr5etkTJp5QyDVUStBnVOPjOAa+8lsk4ywZ44ddTJihV8fK2nlG/O8l3H58f379X3VxzMLOcc0rZVc1a69tlJfTxsXULhpadzSxlq0wNyXNuW9h78szbuus4GsQiVRqkZlDJQaTGqjwqWFWdrfaenag3PfXms7aT7NptamypSRSRhEAaBhVTHUSH7B7+vfEHGPrkjjaRtFCyoxXCdVdEymGnpoI4YCoJLbGYaiZrKS4ZxSg7V78AmPbcqkZK7vC2cQ3IxC9bFEa3Y5m6FG+OCrh3jW29Zckuzqo2cj+2MoZc+iMjOXLsgn9Y1zVyr9tDe5wMGuMkhYlqtdaKesgyby8VkaJVpGdw7VbUklbZm0KamQIpTNumta9t6M4Z4yHNe7WAQYg8mIIRsDQu029Id/pPN4gIWqc/p2qEGZQ8NV9az9lrVfi1HIDWUf2+QCYUVY2sJZDR43zChpr22rEpiYC1bKHtdz/FJlWPsR3+1AgT9dPuSluilLLuXupv1FYPK0nUpB32+bqV61rWWhzsRtUbPrrfguM3Y2tu799tU6Q54yl0EWavqLnI9Onl49vlYnza/dQasIvLOmYQ5t5cpUvAnTb6mTLfIzMIU0qWRUlT1eoZQ/b4+LDZlV6OcbtWU+RFVZdlsVoAlFK2bUsgc5KUSmkMGB39HH9GxotzQfOSavd6jMbjfItXjLXPgtRVq5KbMHeSOyX4cfoQOQWPZIc9tpkUNctsRpTkcVBdItfSzWPMIlLXKiKpt+iu2waAYmdNiemcFlC2y/bV+w/r2yUhbywP5wdVLWXNOXsX7ZRSrS1Yclw+H1cnMTUu8QSG9e1yfpKzPG6XWrS+vL398pe//MO/88fDl2ytk2kesV2lFNPy8PBgZnXbSll3mMlkZsKsqpqRtV4ely+u5SVhec4/GLep6rpuqppzRiI3mhoo0mUQr2HhuZhIwqLNJemsd7iB/WT6mL39VhWkJWWv/KSN3pnZuq4ppYrWqtZFEfeZjT5CDH44kqMwBQBQR2VBBEo69j6lpNdrT4BRkWSbqRIbROopi+srG2rR4mnvxuJBFqoqksUr1JRyRhr7Z82VQqcxipby3t5vbuAiAOkhdgNrU1o6ds4QR5LMYmamMzWkYXnycTqD7LX4bW/K9iWLCIuSXo21f+liClI7JKqgB1ZYrcVNNHc892ki6wztVVuWxfo1KJ2FNn/snab8T2+rTNKsogfisjdFOFAHAEua8lzbcaumlpD8sBYoRZIDVlUpLjKrKmgQURci7zVjEJHcJ0YSPVqUbITsYLJW1a2uzQXlOyXIaSoiDlmghWh7spWGiqfiPaxJSCvTYOKpa6YoHUM64dNWSsfMaikjXKvtTk4ksVVBMlqxCrMkSYxe6KefR0MTt/04wg3cLg4DWNdibSPywJ+2cYk0dq+RecgYDKq25OymV6bk2nlZtwLdCkRaahedQtAkmacYmzdNzl3ANTtbvZh8vcrfo7K84PS+aF1OdiOH+L6YNTdTGRFGJAEJVU3SwB+3Oobn+yhAqRtFZMS0k6DSUrKNeHpWLFo+XPFX313/UiVfrT5hfdmsVEAotizL6/VCUuvWELs1cFtEhMZKnHMmoKVWcNOt0uSUVWhCqbZe11pKzvmUFwBvn94Udj6fTZIwnwirMMr1cuF5MaGpLhSo1VqZJJ2pVqCEiUhW0GgppQcu1+u1okJhRBaBcN027xjv2jlJmLQSQ6imXsY+m5okOgn1oFrPnm8b7ZYS1SWdAFyvV1U9L43ri0FIcTj2A0VSMqb3QWgQdN+dG7a0GKhdNzItjfJkTxqHVWym5om5ADZTKxVEkgS1epIK7/lt+cTXyydJklKSgm27Oq8FEwEPvBqJYuN0u0u41kqmlE6qupbNHaqlriv4kO1y+V512VLalstf/fJP//DHf3tdALXl/ZNCzu+eLuu2LEtKlrLUupG8XF6h9eHxJDmt62XSkMti+pTOl/XymsqSI8mL5El7QxifrSsEtVbufKhg5yWjlF1fcyNJ0tM/fNH+VIuk8+jovlUmRA8tSCmpm6AJkCC2Ho0pImCPRRIuXYkf/TV9+0+n06DaCNkyS87OtdBjDUSEMIoHpArQSvF5Zls1IdtWDW4BwDYddGrYhDNZ5UbGbNLogZQ0ljkIt9m0BCAI4+MaHCiOEPer78hRD+h1llvCSR264zR43jHpH66xcAx7QxMg9kH2fdpj94GdWdvuqchx1f717cIP09MxWpfXm7ySdkaFMX60CsaRa7Azo0W5++Gcvvw4Q2EWirSsRzdYuV31fmSWTZUL0XMSGXbfOEGgDv24sPMNU1XsPQ4IKoVgt0DH8Nsp7XYqwDNCLJ4aeIWPz+zUQSYAZFlmKW70Sq/sNsnxlkltqm6bvr5crxepp+wYqcWCUX835w6TCeHfvMbPVcii5B6JNiFmPQQ3LykxvV4vH59fSylpeSeiKSXL2YyWZn8OdKI00L4bh4btfRdtW2rNOQMUEQtNCVNKptU5n1ubckpZUpVKETr9ydkLTUO41WoVXkXeLcOwZGYejtu2iXN6AFRNtXgEJCW3SfZo/7iPFlReC74Sv7wxXUtb78abUtaIO5yu30ZmO/SH8TK1t3Y/UjtfN4l8Y3rtz/1uRiusp5xo73fSKqyRre87kHPWOo21B8QYEBi4nZBSsm3btNqyLOD2tuHlev10eT2dT6Up+p0xkaSu6+q7WWvdts2HiIU4ajGgl7GRPDPQD7jry2g8Ro3SJB3txurWAsHMBfadCbGlcM1Da73XXsQGYw8s9PobAISjZODIXyZJIVLooBes1uPYRFAeqO2Yhmt2bisy7eZA30ilKW1KC3SSpzYZ23jR2C2v0juiq+LcJup0YnfY+DH5WzzgPlh3Ajbw3QOtxJ7NTDrO7nF0ncqtUjCG/N3PUbE44bHk0bZhvNQmw5jXqBUwgOanIhon4ocoqEVI3i4f4eDdzjxiRVOJP0+j6RWvZD47eD+DfHNYYKRTFvzHh6mOK3n4YnNqNBvvNHYhBr7Rg1MGWQmgaCVu2rQ7JTus7oAPEWK38LTwK8JW+hUF6PYU6ginDTYSJ1mdH4t3kJw7CYhHixxIans86Vbx8rq+rieFUIRdm7wLz7iKuzs7EOCWwh7+9GoiGFmGTrtzKrqZppxPn162755fddPMlj/q+QtJMskki/aYDwm5QP1djR9He1K3Csz5mJl2tuEZO66AwqzWWrcyCKmHhfZusJ745DX9m01eDF7wfHoPd+VWqOrNuAgeeqfuPlt3mU0LlkwL1tgX5zFla4aiIWrHg2DNtN/3moweQJLee4pInuzerL97OoA99jJghXU1qV8z9XFQwpSS2uQdEUMO+CAi3lS2Rc43A5LWapAEsasWqXi71l9886u/89Uf+AjruroIZd1kNcYMprV5XUtNBEyEWXoPnxtbj0dVqA25ld1QfLiN3NV5BhCT7ca2VezoOEnU0l22rkZXiCjBuiMHVCMpSZDYal9I89oYYDCUFtKGLhuLtzeo2pRKwCOWARAsZZsmbo+tCMDq723bo6poNX86Px4AlYlnu02VVvzdgr9woHm7J26/Sc9oAJnRuxNawNTb3RkvPbArC9FDjSYymVWqaVPgUPdCJUn3lUaqF3nzGNN39+bXij2VHLK/BeY9GFW42eKXO4za5y9Gwj2/n5oh0AiTUQ1yx3ggIrqVW7rs2+q1V7S1serp2mMQcndc7xEs67W7x2L3r0ACK6w3JfBuHoHBWBNJG/j8ax1ANkDciWVdWrVZUHr6huO/rTTV/mIQ7G7BHjEZDQp6QCeKmjXrlXNf7EzBrXKnp+nVDk0vjNcsAGz1yhrKkTC8XfVy1YIWcEHtXAXY6zx3zBj/etdAPG3/JACGmuXhohXbmvLjx3X9dNlqQWWtKFarqUJEcqqwnLO3xmOQ+IehKBKxCB+vHxmrffn3RWvufcDaxEpV1VY/oKqqomqtqkSt1mrz+WmhJSaR5n+eSuSwA4t4lg2TkDLqqg6T7NhuF5pvzki7ImJbUBZVdTl5LAJGeLPBo8x2JS8QVk0GT/momrVnvd2cELSOEMBvZj3FrI06vnelsyU+GEdyisiM6dmfmkoahSmlZI2nlFK06pIXkVR02+p2WtLF+Iuvf/H7f/BTWBWYbmVd17ScPGQ4Cqy3AASwbnVxPy6EapMBm9kO00W2rZiZl7KqpZI8pbzWwnsHu0VwMIjEQhGpdV9uoqtiu20AzJ8SSkqj6BVDOCWCjYhBw0uhBNqB8nIvdMfvpfUu7Ay4thwVEVGFiB5EjXioHDhVK0mxHeUyM0FiZ0HjqYPxMG480NLO0KrIuQdrwPI3qae3Exucb9zm7ElVAY/acBdVS+BrsL3R9ubj4/ue5jg5BwHsQsnjVL248fieXQUMY+5ij2MF/AMDPgxys0LbgXS343fMEvEaThMAMAFqv3NX7mrH2OTOTxMc7ba4Zd12bRjWHSXuV4TwB1pgxUED6L/KPGLo4s5YciReYz7xz6jTRGVikLkduXSh3syTXtrWU1Udf6YkJy17u4+GvuONxJJQ68XLVJt53MykFjJdr3i94lo0lWJmCa1h6i1wPnccdgAcSvD+y/3jYqbeaNWJljkvU1PUDArSNy+v37+uUKoYhWBSb6UpLJuyRyAOqA4Yqiq6d3kSAT8+jfFM0dMPxbIskpKqbtvGZs/kOS/VN5xNpybZ4ghcvu/LbK8GhgUbwUKTUvJILiKZ0DwxHQpMe95oVh0xYcgT46R4zI1107q7Zs08feOOWhnhPw6GQwAWvZNtMjJ0473iOw697YcdkLe94Ohzc+euN0hD6GQz5ud0FoBWBapwl/ro69JqkgUs1VB12Yo+X55fX19PqRHDUsrT+w91KwIrHlZaK2lMUE3jqPpVC9IiRAJXM4shvrtrzKC1Rhml8iY2D/USADxoSrpVp0LZcpsZ6QLVvHFmQ9DhHoB5wQ1JMoozjJSkCrNqUIPbum1U/Cago4Di/phNY2xEAvasOPWt9ANg1hmGBHugAKJVSZh6yyAbTMuRVRuK7PJDSXp1z4FK7L7AOBPsGQZs8GB0g82OFCKMME77+PNg2p03D03apro/8n37NBDRbsAtvtdNUuNYjio7oyBzfJBkSnmMMKlS8PFEBnx4HPsrnsYAt8nmzMzbrIzCg+PmMQGRMZ94eqcqqapmTQUzM+4lsPleThOxr79NeFfq4Dj5sdF063G02bQpC3sTwMh6+9ur75GndTYGQ4hXLejP7/BkD8UoYE2wD+q3n+24bf5qrQ7F3Cadck8/OO6lVtJD4nzhfli1U9DeB3Vo27CU8lbt5VIvpZ5NsySEsmJ30SN+eVhg/GWg2e1ttSFQNzh1fC7rZg84J6Hh1x+fv3+5JJ5SSqV2ltaC500M21aj62RMT1UlHY2FfjUBqMsuqup18nOS1B8XEQLqfZ9DOtBUSJLU6ypIBjNl788H2ow0dBwY6Oehk2qKxGqamRiKn9+CNGr28Ry5ohI3wplcawKws7tY1612O9IWXmGNBNFMzUiJtBfjvX5F49yRFNzstXPfERZuENfsg9h6ZPBICb0sBMmcM2mGalbKpptty2POlrYVF2z1yb7/9usffvletFJwXd8eHn73ahdBS4CutZZSaKg1HXTirVKSAEImGPItbxgbEE0ZDWtr9ehP9qiKJqwHX5GTGOnSTRxZer0iM2MSq7MPu3chHVWNTFX2ZrrDwRucwD3tCPEgaBr5ZzMZwpi9kosZkEa0Z7dGa+RqZjOk3ufvXDKOyc6YHSkj3G9V6gOnYQjUsr0PLK49+N7uXL9hyY5sbDHbmna4eyTQhz8R9ldEmGSo+C4GHdZy++fhtLCJJTPQI36OHCjC7fB4nOHhRPUPu4DMW5j4m/uO6xjWuvIUptQpppVbVMQduj/Bbi1UoOWAkq3B7yCO7NVJAWBW794LzhjxZk2zbGRogJdHVIzohPkujveiLw17TSJuimfaNOKFGtA7RmW7BY8+a9BUupDCIaAb2Azj7OKCmZEQ5q2sz2/17VrfPeKUJWkquHN+99T2/jVw6bBBETKHAa1N01qnLZqZ1XX75vn1UnSRrEattTXqIiWfvChdKQUBGcZLU0rOj4Zja9zzuRNaSnHrNHp1rbJuWjUWiml02JMeu5HGmsTvDVO7C9lZY/dDe8UbIzByGWBirUgDu6csBpliInZAGMCzHga2aE/t84finYFedWrW65uNM9XrEAjpLrIp2B1QUW4E4v59DsCfQG59+fqh9svjoeIWjM85Z9VmDpH2uLIrVmYtw9vKUuqVWr//9rsfvn+iMFG267osy/V6FdArfJlZrdumW97kEKa6liqsVVMymmnuROeIHKbqBY17TF3TtdOhK05/REQGb0ip2SjMzBMExrCDqasQ1uqNNawFE+Xir/PyVhQjlDBVVO3KTbeHiAAz4mBEAfTN2xnfImYEDCCbGLjj3/HK+TTq7FM4EkmbrWZfEsR6BZWRVtj9IrMofEfEgdwy2QZyLHCzn2q7xnmOwukwHMXb2oMiTdz2IwkzswrL92p6j028vazUqqMQwRRKliQHCPifA1Bx/vEUjR1xIuW9qPux2nW42vGD/qwXjbOeZTJ6xsRc8KjZCyS+d37mkMFdnkjez6QG+XsMSHI0qh0UZ4gvd7nCoCMTRIFURRB1SjSW6Tpxh3mvg3YYcJL4QSnu0foDMcWeATNIrrcTbpmXtW49vNaPGtkqAXmRjXEAAYUltgn0SOOG4RCR1jrTYwu2YsZ1LW9v23V9KlrNO8Qg3YammI4SkP+qV0SbPSju3AkgSzKWsl5XrJeyginJsrpRt6NASmmrBWbbtrkcHrUcT8ldtVrwkvrFbkS0UgeQne11h11tFTaABCIlS+KNejxD3GE4sREpi4FIFNIIrts6ijWO7TYzU5WcJKWUM5KgqmrVHoCNrsseKMkBbXxFrvO48TmMwIA8ocaybqN/SaxS3lnjDjhOoO4S7QEu59Ds6qz7rAeQ5zHtkc++Hdajo3v8WWMme9I1LeRmVmu5Xq9WsMiCJLVeUSVLRpVtq+t2kcQkknNea12WxYkJQ8xarZpW5pxTmti2rqugqGaqCixLKmt9PPNy3SwtgVMuWVVLLUacHs4Od5pU1ZRSCgHSbfqqqSfFNpmo/a0VbhMn00IRVVUDt0o/yk2KFzUrpdowfZDFat9NE6XkZkZAkiRixFqr57lypz/BzCRns2EUYTOBoTvtJbmwq6qoxVQ3sYpKSea9ktlq8glIZsdgUxACq6aa4CJSO2MGiGQyIW1mtbhCYI1DMLV4/VGFw3oZgl6dv+kJHRdqxTwPQ6oYuxtx9IB/8XsAxb1VhJFKI5jAhJ2K4JFu6DYu7Gl3O3gISnkNhgE5Si39ABxVXg6J2LeAbmBDApMkdRrd/AsKmKISzEw3hxYkixtfhDRRVavN+JZyYwO1VtSW4UqamnYf/y5M8XRKjpBO5Ypu3rU2zQh93zOP3LPUYwCb7cZgXsFOqtsD+3rbtKsovXCmmarXuCXJU0hY7+K/mRXVFsfBFhAr7eyY1ForW7isSFagKFJOHrsf/dlmVmGokx5JV+1rV2FP6eSH2hPBjbNUp5m5HOAhEaWuLhZ6GVca6qbDXEQmkZmSd85nVa0wEZCo1bQUM5MlU6sB1Wrt3BeAPcgj8fFqvyz515p/VjVbXXOiTaY+8ZAtaArUruFLq1E/3TcjLoxuc5103MaBgrGSFGQAptYrq+HCC+wpZ7s+X/Ty+LbZ4/J60rzVUjatWrnktVxN0vXldUmZ0kIU1UtAi6iZx/BtpWjrT9oUBrOKUiWlVaCiiTDVoipZTstZ6yZMp2VR1VqqUZwMkgle6dKL1cPK5Zpyct+gESKpmMK8g3KrCWPEqI+2LIsJSim1bFSmk1BZjFWxnASqpZg3bt4qNCPnXLdV3VJBtm7VpJmt6yoi7l6lgT1YOqWMIA76QSulpHQi6SAhO08wq83AM4uLmQooVbem2li1WT3NqOJV0np3bZCJhDegI+nderxcsgsjLTaZPRfDCY7fjmaiHwSqNt6hIgLFWlYzezg9XraXYpq50N4nqWrPy4M8l3zdvvvlX377ez/5Wyd52/StrFuSU0rXa9HlfCIJrUx2eXl9enqK5DRLfv5+e/1Cv3iqiZJbxC9ntmubUKNozbXTjnew9EZZu3GUnhTb7XcAYHvPX6c408IwmMr4k0HwGeRbhilGiN5fgjes4nPcaHwZiZR1qx7IZVlSSr30d08Gz0cf+WDzVTfHSYZQZ9WN+3Z1EZ7ijc77dTulsIrEIC2O0W4hc/vn4WqaZWeZ1pTzo8Z/O4fD/OPn+MaOJ3NufZePAatzLZz4Yd08e7uKKHzEefq/wVZ2dPKxe6oguwXeBVRDuSgiBOyNkOkLdNyYq0spmVFRYTJqY3JYQbshlx584AXuhpDalzAw30Ig5dggn6CIOA8ZFW/GDXeXNsBi96yyB9lIvA5X3cW0m5lbIPxEJO7OaR9kh6LWkv3sOPLYaIWnKfT7CTLnXIq+vF7XLxczk0wUzxDarcvDj7obvi+n21NvDp1/GEJtNLnPD2GlMA8xUWPm2+Xy6fl1W+sCiCYXm8apqbWaVSE9GHNs07gnSXKNyuouUDylpELdFDVWAzwSQBd9rLcdRMR/Yoho46XsriX0xGL0MDvfEUHCSPYrrcXhsizq2SjTi9dmsiyLM2CHkUu0tVanJ3Bp2Oah1tknfprT+unYobdfB9fSgYa07RZpZhVrlUDslhiiyfENo8BRJqhp9oCZpZRcSvKwo671/SbK6buckyhQrSTz+PBksKKmhqLbtl2rFS329vaW07krnTOXrKcjz2Hf3t7W6/W779af/finn777PhMLxQPSalQOSik5LwNk6gmxsrN8YlKl9qeLXb4sagvE6rcN4bpBL25MF9CPhR3GK5iSG8M9/t5KMy+MSMfDlHbP3tKdSJv2vG1cDNoqYs9tJMCUxSM5RDxoIjnhSeHVMUCpoV1oESb9tj6rfSWNPo24EAvSw+eQ5u738ad2Erwo4A7OGMws/nIXqmEmGm87TPgwiB+8for2qvMIMOkOEa+qU2+alfZxGA/8GD8OeQiQuR2HvQH7/LOnTd9C0uGmtfihDpslgEHl8IZOICLSSTsfqtFOGDV7BJSIyDMs3nNwX9dnBLKD7hh/gs+4g8XazNwSUPrjyfU22eX344Aeh5ljhGeH2UYZo5mzVEdPlFJ045aZnl/Kr77+/uOXy4cTUlpS7xTym6lkWJtMxbc9CATccEV54Mk4ZAOZ27+6lZXMD9+/vn7z/GJIZEJebL06W21I1Srsz2pFrgHbEFZOi3KHuoEdeqhOi7p3+iOSRxyyb5F7H9x2Yl0lMDP0uCcAQomM1qxVjPJqWQP/AWhRijBNoZZkoow+iu7FFwGoCstOosNhZ7dRh7M2j3wPU92dgVs3WTTmHXBpnOX+RgyTlZkty8lz39FD62/p0pgSSRpaFHQr+AACo5D7buY3NGTH1ASqVatW2CkJiWKoq64Fl+2y1jcXqp8/fvqdn7zfyvZwWlQ1S7rmbLUuy1LXrQaeplpVS5a0bZsZsxlhW/fH7xBmwsW8ReJ9kgQqTEUmL/SIKrMYqnrfAze2AZjW8wDKEFnuUHR/qnXxirJNBtDm7GPG4uO77dnJmB5DtpMhxk+dBhYAQ6rabxUNrRuoCFzWd5XeBUkERWFOpldvRpj3iEme5Cz4LwdS4t41Rr7FyN3CB8zBwXhu0ZFTIGi/ai+McJeHZUoNwSbNQp7E9kFwDDx7N3MCv1H5HsJ+XL6IuMGlr24qGWPCZrb3It4XXKJPvfZqVWaW9umt4d84jjSCEODc79xJMMVMrFfwtunHQse3SIZuLwCNdfk9t9sQ3nX7TYSe9EAADRUhxqaPos22bwQ5vQ8dMfJI/xu6JwCgNhcSR9xpw42WZZCA2mQ9A2ApLYKcT7Kt109vWAsV6SRwo3dE3b6NPu1xXrTX7JkItiemIBmJwb/sHCmrwuTj29uny3VZzomiSGZOAkRykhH7qcp9utEYf6iMUGOwi1zXVZYsIkxJjNU235UxK1d1tM7CtG2QPnhDHlevpeer+fiGbWs1vdl8Jt3oiDQKKfvctFRtqYlkPzUK6+ZJNpsnYB6zm1LOeW/x6lij6v7BAQENkY+3YSUiUrS0M9sPcUeJAcweB+siXRbnvrU7mOE1J9J8b7xCbISptbanvQflHQQYCGM9GG282kwNIEQphKgWU3vdcK3Xrbw+PZzPyJfX55Rl3Zruu+T88PBwvV6hKKWc02yN9fby6fn7v/7J73y1bfV0esisgFTl/fzrTlNmEKw2n0o3HQ/SERSARljD2qybmgH0uJLJfa3z2pEuHZ/127RZLTx5vN8ZSoXEmwcDwz19YkxSRHp2YiNSGpygbmYc2LOfrS9YhYuHTWl1VTjXoBFy/7rI22xmGU1/av/GS3/svh+vjlg+PkcKe7inkc6Yp+S5y90YPh4fN0RY3VKWA56YaiILAngbNTly3Ln8LuGO79HFoLiV8dfb+ahqP7dO2ZtIFJcQcWOfsB/f0hZVW+c0xPVHwLIb1sZZRTBgDgiwTbK/V1GdjKIXB/ewhJCmIj2iIoh9R3PCwMzOCSb9Q/jwX/ca4C2Ot0IgGxTO2XqaipMVRvpoO+AcZov9rrWn5uukhV8amJJtCssGvFzx6Wqb2lJrwpEU3L0G6bj5sqNrC+YK9wTFdOD/+FNyWoqg4tN1e1MTnlDXi64GJlCB3M6NqSpLLTr7oDtJafG3qIZq5j7g1nS1O/EyoM7grMLYvMiNCilHENPQBIbaMNBjOGUPu+AxRyQZI2EBDQWO2HSMxqHT8It3c2BKCcVNvg2xdOd06NC7waIB/zbJe2YY3KDr4bM1L8yubMC2bYNyoiNhvgmIGR/MMPolwKtVi+Sci04ny2AWB/JyWIg0U1VqOcoiCmxma92u5e09HxLTul5Iy9m9v4aE08O51roVj386BaBtWldqfXg4ffz+LZNJ0oV1sX31w4C+hsktpJe+FPTaeH26kVEhd1iUg/y6V+QiMT0s/nD54t2qo338YpWhItWBN8Tvb78cezAWq6qlNMFTvWYbEPNBrcmJ9LKjnhHXolFgZnQl0Dxdn4yF4KlGYrRv89okfo73MG/WQUky7FERUSyI+Qg4F0bYfTkO8AC4nzEN34wP8WCMl0qvWDu+jE+pQoQJqTWFbbFFLQfcPsODb3/aL8EO30S21Iby6GtDE9DRsn005C+K3eFnh/mg4VWQcpybKw43D8rlK4iT7EX/HZeOpabEgIZFFO8EBTIw8giGuNcD1AGvxyP9qwCWu0Ttc6Aeg1SYAVo1vGYGo1ok/TUsbQLzKCH5h4EwzfYI6U6W5DGRaOpd2TYlTSEvV/3m09vbD08plffnk+1FWKDvcSM1TUZyRaij9p1rT3FmiNDdmzetsPP1un13ua4mgiS1uUgR8N/MYNWTnj8H2LFvcf9k8SbtrLparVUrUoJkrU1PZUdFYU4pKSYjbJtipqqZaainBCpMFFTz2iAi4qF5u15b9FrQfqgpi2ixUUZ0TFuYjVLLasJmx8Y8hAxWMXZRUERGrYi42Ih7cReifrw71PuCPAGSAvbUx7AR7LaF49aTklOttVVUI8dxZvO8Ofb25HsYe6zWgEa7qjF7QKHCjBSnFUXPq9br+lzrF9Bctmstl5xPsOb2XpZlOy1qJaWEsMbt8l2S8uVX73xrslmlFCoNNTZrK6XkdBqNyQLwh5gAVe1pflMQG+S1PYWmN3TI79ieHtnP8d9IxcxtPp1qAKEr340kyD3pHNjgBNQzanxjB7CnuWNkUwCSaWbDgWS9MxK89ki3S8FGjYH5RtxQfC9J2Ja2s5v2VQ5AhyT6iPoHLrIjLgH444ZugJoMWxoAfSe6y97RtPO+W5PjAcUHpo5SKgyZbK4o3J3hcbbjFV2j4jh4AAGXWOOeNlt3vqMhWdcVDpN3ef92JuSMpm2INJLRe79V7hpmmM9ux29M0Gu9HVlgj8LtU9olQo7bamds0RZ9gF4HMmqt6P77Wxa1g+0NQ3KKJdFcT/RYWc+bHBWvZm/U+PiY0sxWCL1BnSwwRLjs6az0EDb01E+aN6U0Oz0+qr48v6mhpZnfXdTNkelzk4a7BwVtbBbZSs/v6f4RSlvRk+SXt8vz5boZllLFLCWWAu3t9rQnv6aUKCme0xGLxJB50oBAcjSdrNVaNUIxp0tIZtNmI6EspUO1lt5HwTtem4ItQ8njYnwGnqc7Xjqoopr3a+4lM91GSALVWtS2iUiSBWApqrV1KxojxGPVjn+3iJgZZaLBzvc8OrGamfecMCulHIydg3DdD8iFxXgOi/ahe3Te0UA8/suRIAnI0iPm7IZfaHAP7w4dE9TcCi3SyrOp2VrSVtbrdrFSDaqol+vL09O5lJJzvqxX99G4QeLt7W286Pry/RdfnJ4eTy+vn57e/yCXUnTZmu7GGfQ7enR0Mwg7cLMT524e1yaIS8v1GYBo9jRZpIdueY/egRYHKA8o7OA7IKtWass/g28GITkxIEE8SAd2NT5IL7rmm42+wY43Oe8Ijg0RYYpFA5OyWS2bUSylJMwuaVgXrw7EcSyTEYMBtkq/OzSyEPwS7mRc5oHNyE6jCizfg9qCnNu8v3keEoTjOoKhhjl0HInI/8Z7l0OPPBMRScBIr7qd8GGxXTy8b/wYGBLfHjHEzMiGn9pKJDpiKrXVppdQFyW+XURqb2ZyQMU4lXhoa61jY0myR90F3jlGqDDUUgeZbsijzVAeDnwLsTlEuOx8eJxUzDveuwn+vo0vgG5sXFy4TybemZLU7nfsnNVUNcsUCseE3f058kfjFs+D1mW4JrB6NO+Q1zvKrXWVqgoCaS14fnkrmxfjnIh9d3Hhg6/rjkbLbtHt0DjCZ4wzZ55kycvr69tWtGjFthkqzjtHb8wxLXUWLJqniCy1ODzTSPQnx7FqgVopiUiBqerSg7AiGzAzTzDt4qMHmHh259QFETnHMDsrRwRyA5O7EoRUr3Xk3e3MrKI2GkhSzbZtO3u6sHvxg1w7MIRsinkLksqnSKkG1tUuyGrPfzsQKAvOL/bEk6ZhNzuiN8XZ9Xdn0/IR2qvv2Lm1qs6tr6iXr9i27XSaxRwjqGud8XQIAdieOWo9XUq6znVZdS21FM8OYLF6ubyezx+2reSc13Wtldu2uVjy8vICnP29f/RHv/9Hf/h7PL2uWy2lZD5s0B9QU1q2V3w/4cLFjCP0/Hq5kNzWNS+Lp3j2M5bGBrs6bG23Er3tZwtKAgCR7Jql9X6x/W3tjKWUqqmrYqZG85ARiEETRbIExkaDlhlK6mERIbJ0V9Fi0CCtSqYsrLWyqNFIEVnquq0kmUaNoVpVDF5+fpyICjMaEjbdxJBETrJQoVAlRECIVlMUEaHA8cfMmJKG/HQOxZscwoyDSHqkYiR5cSHxy3FQW65hywRvvwAGawUBRAVOq5g86bFFtIXqr2at/rZ2C8Ho9uiuakWoKKIws7oANjPNXFr0CNoZy+AGkn6WaO4TS2YGaSp46jEjAExGnoCqIucWelpr9TTZlDz6yS2lDhZHsCbK0CACBZvapUrvSGRmOluD2Tjl/ai3fEAzOZ0M8A5xnk0uNMBUwV5QDKR1n4iQVppiJCI0U/WWUAsAVIUYhEiClAwQrW51jNGhfog4RJye+2eqG6bvynoaHoAaxLxumZ2aAVvl4BZZnkhA1LyciJm5t5eLJK0FtdLVIBq0kEwi1WyhUM22CkBSIriZnno6illFP/eqKovbqpxgdaGEQNlMxNkxgZzb0bZN9d1ZtJ7Kiyn+8oI/+f7jV+8z7MlUJWGWPgGA4hXrxokOl/WcYAE8xsIMStlg9Dwl60HHWtX7YYPN+dVTJ6mrnU/XX75evn5++KLoy7J9n+X9hWKpKnheIBnrlio1LaMDn0hTRl1yACGFYKuT3JiQ0YSSE6ouEKNspaoql/yQzpe3t5RSHtnhNBGKpLJuHMXkwdosCAmptiOF6v5SUzV1057R86DUaikkl2UppWEnh0mZyDlX01qrQ7TCBFVETkmUSsKVZnahwcy6NdycVTuZSimV9ZpzTjmbmTvy3B1+Op1cAhMRiBXdAORTWl/X4VcFCTMBk6RSVm9UbTZ7eGgFzKsh9XPqycBkLebRzqqK7vGttWZmlGpkEveW+sEE1Px/JKX3Z1IzmkKdHhldD7FKMy9ioUBaUkpUA1QJbCjVPmj+9Ncff/H7P/1Hz5eP333//P7931a9iABaf/7zn3/1/ml9+e71u2+oG/BHjqZ//Pd/Rtm2DaZL1W1X21l2AU0VUHJWAMZQp26uLnsNZuDnYaih1WYOQCMug9oOK9agL1NgbxxqBsigc6ChK7iAM06jhQC8yLcOIlKXU+eDg3bv7umSI7pYp12azhxl9byQLJu53lfauDjIFtAZgXOgHXE5LXx6ry+Ob8hZimv82uc2Az2jHuPeD2F2VU0Mbi0eMxnrPQI//DqFnsCqG3uw44St2z/QNelWxMMMNk1J8xEvbRYj3vu+w618N6A4wDNsKLvJvSGJY+JtJN24nAAg6Itz+SOhjqS2hpvjCOxmcrMdHPAnR5ydC3ItJ7Y7MgaEG1AjokYEDpL+rRnW3ystHLyZ4EjSRlYgELTFOP8DZCKyjYVwBk1RcsrSSgYeVj3m1pXC6VRLrWr/vMW/z5JgydSAbFbWFR9fyqdXfXc29P4Fc/4y6U883dhZIuMlfd3xCmGSHaps36gXir9uZa2FTDlnJB2PVBhVvdKvL0wOIrJvxD1DuacAeQYaqzazqnAYEm4XZXtlETtTTQIICIymQ+hWJmqtXkOa0kKxitZh7RvvUlWtKnmWrkRPNBIRDQpiwy5XXi02Apl1gRgqLQO70g4Y6DQMIDcONZKxDcMBCIc/4zdev3N4D/290ZXzOXJqZrFrRadsuxd5T9VG7Lz4v6k02mK1VskgqFpoOOXl8SGbPn73zfcvn757yvr83V+9fvo1ytsPvvpyDKt2retmZilJSks2db2gwvbm137FBTeH/D3QHMA0vhQzgqjdE9lhUQORjfezyzijlfntsGOGYwQGkxe6OQh7KuML4Y7EgHskGwvx25JI6ebB9lJMG8Ug2Q1SjrjV6wzcQaMIognbpsANpNkdkjn4b4QDAJttLXb8xptkoJeI0JBdtmMh4UQ5Hh9MzWhaBVveoDb34YFtz6G6bEtK0p7+TLKflvZX7/pswXuEMJ+DzBfMfWGzwl6HTel5wCH18HZTKDsMmaO1pTX5iV1J8ul0ZmqDfcLJ4Qia61Ys7X0T2/2N6bJbPXaUSHVXeKIRs/0uHK7YnrnRuEF69tREGlfud+7tKOPLcS46HKw1vhPRUIfVuo0k7gtJ923274/IRibO+YqZiSYtWVUNFIrW+nKxT2v+iSqbqysELSP1rpG3GnCzvY2WVg3srVr9UJrVMEVVhzqZDB6uLACuW3m+XN8umyqzsLLXJ5FmTcYe2eb0SEqv+99rysYjLCI60MBakBOD7zMurWEXdzAMpLhVETagFTprJSktciPv2mtmklLr6xDOqYcpjcOIPsnbksOTPgQh9bAFQ1UTyTIaJJsN4zZ7ciW83jVaq4nGlb09Ysw7v1GZEA7d+D6ypwHq2wfH5+4PVc86ZC+8OMjveNGoS0MyeXcHNW+eAeHrZasFq65vl5eqNRFaL1bV6ob1WV9//fzNv/jZT3/we7//hz/84VcTSra2SjIwVWYlRKFUIuUgKqZMQ2WPBUALDN4lLMYzLNZ2t3GCEC0RYDGBYsPeGHwz7OEb4rXm9oBGoBfjOuQAjO+pzdvaoG/9f2HAIf/e2el7YpeZDX1iIgRbhf3OfCbfcnupW0ql96mNSGDWekON70eQGsnDxCLMby9BQq+6N4Ima1VNllwX8rTk/YARqm1WIxiKNyehRVs4LUNKyVoTt+NGY28NhnBUu9R4JHTKH2NrSIbktjaZSSPuzf9wxiJYBkZxj05znt02MwKhD28hE3eBYL6Jrlk2rgrCTLh/e5ubq50tUVXVanNwhrQikndmFkY7Ljkscdad63olvOXzvuRLJEwHEA2KNoAZz4mZeVkGT/R01b2qiR1B7ZeGynfAETf6CQiIrVT3SZoJuKk8X+1TsVprbrFgE/jeFPAeqNCoZ0veG/QUg60epumY12dSez8MS2BRe1v1bSuq2QXX2srhTvo+JEWPmVA242eKRQXUzFsr9o0zgKYJpmJW1VOQAI+o2qWoDtySvQo0dmqi9H5Px/TiN/E0jelZVyTGU9alxrsBJf6IBCPEwKgYu3N7tZRlMxfY/VS4am5BmTbx6lqTwscleB/fNsi0lnHbNp9w6Cerh8fj2ncubDNTQKbo78Jet2PPVaPvgpAgRISL6KrGUqzUuj2ez6zl+eMvrlf7iz/7f+vbN3/8Bz/4b/3hP/jx73zJhNftOnzAgFe5gVaUWrIZvT6e8IF1Cpvncy7XrZeHHW7Ceg+bowq/i/jY74paL6Dh9e4DSk3ONIqVDDhB2pcHVhTRK4rJN+/dfXOLJQ5ZVRU/Yq5IdBbMEC/mpHastDFRH99XqBrCKGqUpyKzv53/YUrxpYd5DkX/uMAQhetv7IV1FpBBj5oH+PBGv5pAwDbjsaFuanNzCUmPufMwjcNkDie2qZK1l/JhsxGh1UTapS5Y14MRyEQwbe1Ek/FUBBcnwbLD0m4RIH7pp2AMODBKDKN7I3uc8NzyPQx3Cw/CwfDPeAIb+imK1u/Dto5vKmxEWbcv46uDvjtUy4SWfDwgO4AQo8EjeOMWICCJE6bihmAhPQZYK3Me+rQPNuZ1IHxjOfNFmM6uxFJYCFNbraZN67fP29dveNu2d8ujUA55euk+kUdF9MLU5j+8kYcCkH2xdL4zfso5b5VrZYGQFLCikmmtV7YUqEANBnL2clToIoiWutvKXmqDvXFFNbOi1jtDc9/XPE71lg5guGlETHcRwl5y+cCAG0MNqp4F7huvMIch9wzMdE/wUGXabpupmUa2jT0h8j+pNtJEaCi1jNX5s+O9h/XGJdieK48R0CX+SAcGSu/g1uFP9rcYTTFKGI6nfMCcc/HwIm9BIWlJOaV0tRUbSk0nlFq3x7x8/O7bl0+/+vbjX3/1/vxHf//v/O6P3j+e5e3tk0lqXU59GpqsrSiJILdgOir1RN3Gfe/eP379+vWip2Fr7ZO+s1u4oWvx89hLkoP1Rh5wGGfcAHhlAByAjhB0yl5th/vLfcN3pze3LUyg1poCWd9puvdXV50Zu3/bSMI7KzDqM5OukdrK3mPwQ/QCEQFX2hwO3Qz39xy1dv/5lnYDSEjef9YLMKHtvUcS7CBzGDwyJ/GwItf8zDB7OIKtpmA8MyTp2bDtjKppALXTNetdrcQgvcNBH2RHzj6HZoeVxvPZN61xhUmP9o+LSN3KmKiEDlpm3ndHm4Zh9MDuibS7OcztaNOIv3YrO0bGl3nIEAHY7EXbQO1P9f1pBDouLZbi20GjY+34RbBj1tHgH4EWxx+f/fucs29BGY9wqk1xU/yRnPMtcrJl6nVUb9YiAqioSqGYblhEBLys5eO1vq7b+fHpBI7+FoCXk8Ddq7902J+j5+I2W7fFalA6I2nRWwRwLfa61mICwrSqVjGklJBnswovTWWBEIlI6pxEPQjNup3AhVfbRb87JONqeCN2HwImDnRVWvk9kRbHZ+y1qZ0GRdHKVIU7uRaBzvg9w++rqpHWDxaAvUfglt32s7P7ZiKY2ihA1CBZtTaZtBEE2Td3GeNEEO3oW+hPHJnx7emIoCNJZjK0gmjPHl2urf6xNAsQDKWUWmvNG3Qpm8lDqrpmefj48dvz+foP/94Pf/I7P/rhF+/fPn13WaFgTksshtGxAJ7TlAGIYWPNlqMh7Kuvvvr1L3+tqiktpbiJpXrDD9wzTRxI4VT4EmxUieuyry810Mqd5DLHCQh6G0ez49P9p9s9QxjhMH68ItwPGHDYyziIH7Pq2TigCEst4/CPFQUr+2ffOxiwBYvrYbbcS0A7vNQj1jabTNsJ8RwwMSR37wgPS4tO3wMtxohedTWLgEEJ1NZ4/DBPM0uYElJNLSqlJUwHyzPVrKXwTyCo6u0EjmR9r3kfyAo7E7Kp69zBivG4q48+gDt4UFv5/clq76X8BIpwp789gkI5Zk0CJsOEGydm0RfYZ+oqF0NhkIgGXvZ1vis4T1IwKpiHz1A5smL2S4iUKM6/YYWb3rThc6Yo57MRD/fbMcVis4NhcABWwGSoZsg8nZJs5dPzqz5ftncfbNm3tb/dgLmDJHofJHIEkNCstN3pncdnqi2JGeHR7PRmdrlcX65bUZxEzDZFMUt5yd76rnYPq48vwVgSSRNJ6YVNMTyv0ropDlAMf+RwgEQuIr3mM7tSOx70EGgmD14ywMDZsDkeB39dGo7PvebjQUY+uHe6a1OqW7yN00hb4yH1mw+adGS6smPG0wcMuj43C8caoGZZZthvPPKHAz6+iVFXwQkth2DViUI720AaEQPd3YtBfv1dtbtUGvxri19JjwLkCl2WZFbPeXl6ePy7f/STv/u3372+vj6/fLecF5D1cq3lmlIClv7SthxVBTTPhVEYiPj790/j8KiqmxpVK2+sFvdOwh3JBQCowJGF9OPRAJq8o5SPiYAB90T+8av/NPYSvXF0vMHX7MXKDyMwKDHtpZ1wq+71no4NKVA9dpkugeimlWaJUqBlozdGNY6uP15rQYgtsj33jQfyMOEIYXaVPR7RfoA7EleYVm2h0buRdwfm0ACuf6+1etkT3PAAv+ISAEANZtjr99Jju+aZ7DFZ0oMgBwTuhqXMZ3EfMo14cRdaz04lDw0TXNLXMEh7RCO+2T6o9XYv5peBPrYlV1Viyl8deJMLWm9u7YfwlsRot+4e9nouNvDg+dseJsNAzXslOSM6HUDqNRM80sLEjpbVMNVByMZxc72z4eG6tfZwgMgyICZpQcqqaroBYiZvF3z7qaylFkVzGM553lf940J8ZM62J9O82FfnNblcAhg45vxBAGxV162quQibVitkcgGiaFXv4VhrSgl0u1aroiw90rhl3djOeONnR2KDr47wtdac7gR4S4iFJHv5+vaKAnjN+eYXr7XUWsx2dWPG7qSca0iDHDdoYFTac4hrrQj8DNjZPAbpGHTmQKbcV96XecRPx+dStuwxTWOQ1vl4Rx7HsKZ0UXbyC1Xn36305l4sGJp9xFUAarsM1WGt7JOfC/F/c0q11lq16CrCRFlyTild9a2ivL6U7UFftpdt2x5O+e/+4e+vz//CqknKTOfn548Pj6cEK9sKPA4wA5DUpPZsb1IfCuu6LS+axk34d35q/1ezd/mD2KsSqZQt2ZIea0iIHssm6U2eTbU5cYkKM1juBTlTSrULGjNCp11NOmtRoNWU8K6wYkbDqHkW19BQoGwEck9Gb4SKZC/v4tuQkETE2Lo+mee9NMee0UyJ5qEYFSRAS5LoiWBqZqNBJkktWxu5n6KitXTWyymUFQ91rFtJKY0ChMMcVBsJYCk6uCYAs622PNHc2ZKRKcmiqh4L2sGosRtBxEUXOFBVTV0dMWEVVFKCmDl20094dOdMPiFeCMJ7crqGkawrKD6IGNiZnPuIvVj3LMFjWIvn880YS48EbXKlEQqBKOGVfkYGyEHm8Ioz9LwsE7d8btt2klTN1q2kRSiidUs5+8Ea5XMHkpuYVmUS7x3SdlNNS+VyasK7wqS1aihaz5LdKuVZJdXVU4oVpbRpqGodRDBNupymtmS51zqmB+koCa+xEEgbp2V+ztwsNVG9pTfOoyGu6ZrZUVlsdgsCHqE1Y97MOVbOJ7NaawVVjDRNkihWNqOflj4NhVXTFKq2kS1LGoB6ZUu0Q+3UvJQC0AQp5UxxoZNCVd1oZ7BY0Zxeealaz4tc3959/VJ/XN5YrlLnUqhLdSPzrlK6db4bLO4KQwFgmkDvMGEWAsespxcPXdnjW78A//oi37wuSa+2XFbLrJnptVo65cUEWmtO1EJUTWkprJITSCSxJG4WqrXa9QIhkaw7zmHCxHTO2+WSchaR19dXOZ/P53PdyqizQrHUJqlaN9Meh6XqJmLXZanZM8YNGPU1T3lZy+ywxCATb7WlaxJAq8avipqZzL1IZE4JKYNMKePy6mbKlJJkb0isqkpJLTWe3YficiNaMSw04aArIeksCc6NheLVaUg65xeRtGTzWNSiJMu2MQSHq5MuMyzqdq3ed6qp1FWV0vo0qGfxuVMatVXfNKWlJKkRjZQRpPyht2grxAH2FE3T3naJrRcFYKparQplubwry/MnS6jvzvkFNMunX/36F1+9E0El6/b2/OHxAcDr6+XhYTLWRnK1yf1O3FUVoqqhRsHDcqJ4HROXYSm2aUvZvjWcwisxdobKnga0Cx7ZM1FHsVGarjPUfipcA21lm270nLie9tWNGTzeYOOSniRKTo2/w91GhSygmUdC/K3j9eG9h2vIgwiGown3ucQ2yZhXGn9yXtCBlsyUngW077t+gIbdCH2q3uqeJmyanAGfMcXHCRz+jMNGtr3/d86hBmsEg5EjVuc57J2bo5uRqi9QZ4O2OQ1y5qz74ONEeepe7cAUUFXrurlF5BCsZ2bJ2yNqC0cXEelNvJRNj/cQZvGcH4/0GckSqgRSkhLwd/w7RI0Z0jXiS0MwlIiM7R7E67AX0R04v4RoiKI//Hr3CtEuu9F01GMXERDQWitUW43cALGR6RsXC29+FSI2Itoftm98Jqk6y2/597Xquq6Xy1JK9hi43Yrhms1uUWNWdoPYnytdMB6M9ME/lKpde2u00u1hFq54nEWEnUqKiJtZ1XvYo5UO9sY1FPHYFH+Xz81DfG6PHrtPPRr2xoTpBcy9VnPr66BqmpppblBQdKNVBHtwkR5RphkMGq3mnS3rn4fRiujxHO2nzug70s7HBxgndUL8NWzoHkXj53inhH4M8cPQcDx7bBAcVZ1lrUSGmDheMe70q5Qaq3+M0pA5ZRRcr/VatncnKap1Ky8v+tW7s5mxCdtTE7tFOf83S5qWTw3xDl99+eHhvNTtmhclJSWpLPGcH8BBtaYYebiBR2oIGSo6Ha6IzRN83V4RQT9yY8ajk3YP4HZnQ9cKWy2egFicm+j1UaCccUmNBYwN8Lw07LYE7GmXt7veMWKUmUI7mW52HgbtfSRzaiX6jlcoDk4Xb/xrDfDs6HLrgJ8brF7DRCijH7PbBoZRaMfLj+ftcOzndk+Dz+7OuGVzB5vo6kQnuygdX6GtruHO6uXIdMCc8euAoTCPGOM4kyyJZDUVg3Udwm4I9LDpzX/dqteizgAY1Tx9lWqWwNTMuC3DEqTtGFvEjV6LYneqo6NuQizaG/ZHDOGwHEjSPAjmDuB/CQ+OmBM33c+uiLiJo8lS2mzlFmfYITPLh01z1E0KQ9iRA7XtVs1EkpZcYSUJk1rrp5fT20q1JYf90jv29Qmf8a64ob/hugUyyc1sLeW6DQ+oAKKW3IWkqqgqSMZaYWiB8xQR7Pt1ellf576uCjtAPGDYzLRW6WWbotS+m17H7MHeJrURQJytC9lCNOyGsY37e9fBu5fGiHFPdRm32pSKHd8G6Pz/HtwTLTS7Oj8jbCgiKskoWIxzcbjt8OeAT/R2+eWG1R316HwhVkoRyehyApu5cUeT78YJjdeNJpullFOWZUEtMEtgrbVuW9lWCt+ZViSQrLWK5H3NR0Q7Dcnce/m07KBx14+/+uLd+VReiyZ3ZCYRr6Kn7vU+kOyBO42HJUmUJElDZHXEsAOKzEsbHUk9YrOBw+YIAz6O3A1NCapNcDcWo600lZq7EcZ2T2xAKzHBboNF171IttqDDjmD9nsPTpG5LqcCgPXPLpfIRAIZNt74ujHUjkRqSzLG3sJ2wGbcsMB5m5lH0Jh4R6YWj9M2/J5C/7nPcXrj1T0KGtgXHxlVFKK8cofEOGBFhieWrqz3FK9hQojnjWTvhiSD4pgREDMtpVTY+byQLNfKlE6nU9n1MZ0TaAKNiAcWjaCS2sFqA7YGqGHpVfLVCPTG8hLzvCPozPOvnQahd8kMbuUOhCHo3AH7Yfn4V7giZt5HjP3llolg2hV6bquLoPFBP6baaue6LXrUVz9onOwc8Zauxfd2HtPLyYEf3+rrWq2dngGE0oK/BsgGNdBmtSJpwVNYdaZgxK0ZkIwgIlnNLmvZqrL5CNjOnUgL01PSTQWg9eAmM6NH7anVWrdt62ZkNz4niDpxozCldL1evUGeP7ssC/bTQN9x3VuSDjB0VQfsSouTQzNnyWigmsR1TKn5+8wcgUkDlcwd1qM0x1EVDhsaJJieBj1KbuhsHzC8HO2DuxS9mYrus1esm74i/vi/uv+m44MhyNARzxOleOpjcnsOSEriqDTsj7gM7a66GHxjTSPVnNNY8ngLyVJWeVh0LWA2KWvZQHrQw5hzrUaa10KJixrzNLPssBHJscovgK/ev3s8n77XVyCrUQ0mNiJWog+vIUfgwSatZxbprbAJUAeyuOzUoem/TrIus499rPKDoIpFaq7cV/w5Hk560K2NTj/m2dR7DRut6qmFCvJ3uUXz5o104YATHRvggfEtNENd9mwNULnz8prZzM+JuEVSK2DOtf3szeYhN8fQyNk96TCUiAz4aEulaT7ACfMAip139p74eZeKIW6hv9c3qO8mW14NR1RnJCsiYqUFTcR6Q9jj/UAAM6MJAujM6DX3r9drOi2JvRAPAO8GmrqpJzy1LAtkFoRxs0mThU0Ha3UFN0JJddpOEIJL7zBItSTCru+6lYmdMQR8bpa0Ulo7ubg147bDK0iqTaH58Oq7+HCH5I1n2XG+4ZJMgnqjW88BMfOGD3iJPWodeHAHCHvOjmuHiaSqfrrW1+t6VVlCM/PKjVjwG6/xloYq44Wt/Y8Ls7sMoDE3kmvl5bqVrUKEaOk3fmhJthZGBiOHz81rGkEkdUOd1przYubSVxPNtIUWTiiNs9aqEt8DmhOaWK6yT1hbPonq2Li4rYcwjtutOVyHG9oDLpIGTsyQkjukSIOauvQzTEGj89UUJhg42SCGt6+2z5DE240GWtAJu9yKnXGlHxabuQy1VsosGd2b008Sd4CVl9G2Hm49rMrbVqncCi7Xqg+2lus5v7teqrvprZnEmm59G5I91phbUA1T17Ta9cWHx8fz6Xt7SSlRmz3WVBQ7k90YaGgSSCJmgJiZbiWOGaEfl2oWnWR705ABQvUaazeCvKruEtiFk7XsVMOZn1BhzWOPwL/3dPNIScMO+WHw7MEDQWmIokaaeA1xNcKEM/g2oqPepPCPVZt5XpyMp9jaCgyGFBnkZzVgM0tGnQkyZj3WLJpA43rH2bgdKm5inGpYVLiz+VLbVTGN8JFMzHe55aPHuN2+N4CCPHCOFvIFVbUkT+/eASh1rarptAh4uVzycvZ2tnHADx++rHUrpdR1a664okjgkj3/gCGqD0IhXFDwzXPaRI963bdXuzvzW0Pi4SjdUoH9Mu+PPL/sYPsNxHZQkPhqAFW3AVv2O83slPLAt07OYGZMiV0W8bjFTBGRTe+kf+xO9P7L3iDAw4OLSBLhVspblU/r5brh3Sk8QoXaLWTuoQQGH/osLBqs5oMkLxteVy1q0hpY9aEoNBGrvVj30Dhc8wPQHPmJJqytlM00ybsMzVpbR96cc855aGCSelDbZ+wWY6BuMm1LRVX2XJ+mbZA7Ly8IHA/14FKI8ZtiXrXP36JmEA8b5Gin5gF0/d3jPEqpMwPK03vinOO++Pf1noZjNjw2Tc2bdCtFI/lOGTj8eQCdaSszjYAYfZ7tcMu+WxqDfHCgRdYDipmtmJWKl7eVXyVVTUt+fn4u5QuR3HI+pzKzCz2JU81KzUhiLKYMuPrjr756/+5R7GsvZKgwUjxHKFLPsdSg1TX7j/RC8IeNv0WvSHemQK2tOiBulK3xiKqOUv3Wzol/gCUvgCZmpoRaRSszDWCGt0XiotqiPV1JZSCXEz8c8ZwO3bvYx7Ku67Q/Qw6AdXE4paR7EEUcIpWE6cij8IozyWync1gvAnoX3bUq3KPZKIIpIUAvSjw30XHu1ns0135D+Nx0E19n4RrjDKf+gRDvF0vndfAoeAPZgybD+INHjPZhqhj5pmb21Y9+eDqdrterqSdcmVDEK+L2Ijg7KGWhCZKIivYUGrFmVvHQWBNp/gzCSh3v6tNuEQQWIiTiDQdo+IdDMJTZfXo0vjzY2cysqXEdtkc8/AwTjtsUse6W1uw+3BtMu/LRi3cfD/thPvEcDQj4lyll06IKp26F26Xy9W19W6l5cmDrvsnb9WLPSifAP1O548B3h1y4bnZdy1btnP2cVjKBUYY1VUKtifoe3TuLCQN+ruvBHd5bN87I03m/qlrHvXGQHbXieYzzT27M8jZcfkZC0kfEukNYaISPUw/AhgGmBU4rS2tSTbI3uXN6ogNobfZm5uW1+0vZvpunIMK8PaIHA9JYY7j5QH8OZtc7Zzn8NC5T2HTx+rDz8QNY4utIppS2bYuneOCwJK/cedqKKmStZVmWy2Xdtu18PqtCpHkYb4ypuznntlSTUTrRry+++OLpPFFf3AHdmw+6Pdc8RpQkmVMuWmutaqA7gFvr6W3sxADKAaUGwpFU1HFzAtwEg8AmAbd1hHS6MEjv2gM4CfVuUzDntYZj/ig5FGCrtSonyo69bLvVze+dLn6GAQf+OhbrIaYH/HBac93WuPwDMrUPrLDmMhmJLof7d0AIz5o3A4QwdZuwmhKxFjeCRHwIST1MJn4TgxfaokJkb9R0vbpNRMSohznkF8rYLNXOgCl3Z8Lug0Q4LX68f/jDHz6/vly31dn5uq2W8uPj47oWY2uddumjffr0CQtRFR2TAU81qCKJblfzHAmlEgqDUlIS0m3XJokikqDbOvZ9IonZspz9EDok2Pnl6OI1qe2NMrcLKhkEZWDXztky4HNH/b3FEx194/sERpS4ttSWdgrqVkTEYj43SbIOH3BKakBVXxRjd539HG6/QZBUaq2laEq10Q3ldduua6qP8SHpvS2Ol+y571jdcHkc/r17kawFpcCMHHliVMrc0Hb4Va3RdhNJ7CZNAK6j115c/NAZaVqeetKt+ziGBtY54R1hYickmaZmoIF0QRFq3nmazexng9KMWBN0H3CHWxuuPdXh0HRE95dJ46l9WAcLRqClwXLKdnN1Q3Skb5NuD5y3ICgM9B2uOj/pGnBm0KhbQ86kVK1CZ5swASJVrZje8XafPyX79jNjhttW3A1cawVspD4qYEmWdKr1bS2F9SIipaKU8vDwYGaqXBYZafF38c3M8oIMYEOVlCQUbLsy//d+kv/J0+Nlef/0+qua3omlT7ycNDBwr48DGHDZVulRZaxmqRbv+5sX+L5SZG6DKYq7waRnrJvXe+tOUe2yLqp5ZxHSREBVKgHLICRpP9iDMLm7BvCKKgogUdRUawGQcla10ctl9LUGJKVlESmm1VS1qCgTk+6KhIYdavhEEgZK9yHJlSZU0qRZhsQkiZZJQwca1VqTVw+H0W8P4WBRRWgVK0WqbjZ09B7sQErZvI/m9H36rhcX0M1YzLTFsYuI1ioDm53VtW5rJiI9e651UEk5JW20snQgN0K5Xicf7QcjJdm2DSlRWG1r3CclKNW80WwCYLUMgXpme6oK3FoBLyRdawXa63qwFUSy+9dzTj3TFI+PD5f1bb28iVang4nLVmqBgvBGyyHAE9vrxfNfDdUtKJISIJtBytaIUXKaoAnMpJ56elg11aqrotWpcHGRqgWDYpLe8izK2u1st8aQI5mnSSceJW5mQNfX3cNn0xwXzrOLhU4EAU//ddXMqgmRk1pBwZIAnt42O38mK6duhV7WQQbjIUkT0+alaqjlbtWckxPo7bqe81LUsiT3lsF7Egxdx9PnjGAyoMAkLwAqKCASvLxzknN+OMHs+raWUiXV76/nq30QG/ISeF3tRDPApGfgJ9NkhtoqXgF7cjwKXJi1Yly+nR67rq3QAMAE0IwF27dYHqrkc31TPp6W18uL1Cc+FbUCQ6KoqPckEYMmUysJCanlUVRTMz0vJz/gXqDDt6mU0tOnW3L8tm2quqR8WpYhiIxiCZKTlkZrcs7snQZIVsKLF3i0P6zC23XvRdK2ubVKbgUonMe64Wq7rnLKpVYIlVa1ZMmLpHVdi9cDQLP8WOs4XEMwhDANwVGst3jvFULI5lNoRMyhQdK7wi/L4t8g6Oi1VuiMEYkuG9Sq/adW4k1rqeX08DgEXMARgymlWp20qzNqkMZCeuUCUa+m0gmpy0CtjLYbNUA1K9u2LNkpRpJsSi8h0fC2cisv35pu+YdfLGXbvl15+vo7e3q/LfkCPa8bmVMplyU/DRw220Ul5w7No1T4/sOXJNf18nh6l5flslVB6T6v4xU5/J5L9WbUQaDzgMlYnJXB77hrJxJuKEPyGi8FGFSi+G983fjsv44a0V16MtNqXb2ungnjJ9T2HZK7ruFimgUmBz+7k7c2W4oOJSXkv46ljXOSAo0YpukINAtx9ofuoVGtjOWjx+Bx2AGHtoQkIpIcRB5lo5pzSikVU1/RWKG6bMoeTEWKTd/nARNU1WOpxhZ0xjNvG8CyYLm9e4kIeju58bnHCjRehWYEs5eXF62VZNXq3m6OkN0ww4AbjQTYhCrZg04GJMeEo5gsMtjAXk0Px+n2vDRoALCWxdsx5+hnaaNps9rcTj6qv4fXNJt5MUmpWjWDmWZpzrnbuUVzwu0WmNl4V1yv9tzriKvxszNgAJzdbOY92uisf0nUSkBEzudzwfW62evb+nqeEz6dTle7CSglzPYRpOE6mO4HiXAdkFQvGckmT+NyLdtWjBABjbVUhVEA0pShVcAgOAcTxTQdW6jsPYDMhMF4xpSiKZX7U8OQiXdLZgejGnTjLn0GUIuZTaKHXo6bkJRcMW0W5q2WGuznvvWRao23RyuXF9AYcxvqQa3TZTMwh72A/2GS5PTmRGyZ/HUPhxtYtcrh/cE6H5em2pSyjTmM0axHgx8n0+r8dIQf/bAMJFLK5yQsr9u2XepW1krjupYRMEtSbbu7cePKg0wf7nt699WHD++WbFULmRQVrRrBvA5ndUdVb24bVMw/5JRvVX4zW2Qyqt/wrjbOPQY8gB7pJgOJH4d2vBtoWrr2ZjFmJgD3RexuCVZcXfsT3VzTKTi0JRMd5tOQeCsk0bMMTbWVWArNosfSIqseVzt7va56NMuQ5BKDg5qRx0gFRZo66K1QDXBLtwnFZNIIMyRUU+mp9+4iNTd5pTtR0x5UMr/vHMnMhrPJRz7gBm4QtH8fpSiaGcXjPz21QUH/XN9etpyzNIFaY7dK3PCwEIvhNgzAt31X5SNsbg8ujbM1s1KKBwDeTHt+GJ/748lr/Nyibnx1+zIk6B8Oc2wWFGdbgJMIjUtaLtsFzFqrJB48JwMPD0g1vu8aT4wHTCLiGqdj6ab1lLLH7DCO2B7x/7QSYGzHrv1oXsTRzQFeuZNMSdYrXl62jy+lfDkdYWqz0Pr4zoe9VSEGNA570SZoFV4j1AytAFm1as9v9boWM3PByqu9M6FVQr/ZoHZAwuVvHDEKA8j+56HJ8bhh0Ksx4dsX7RFpckG/5DfXQE4LYF7ApqdWUiSXUphEqyp7j17XFhjpj91Ow2kPOtc/oGVc1yHcoQPtuEeHxyM1s57epntsj2dHQm+6MTcfWUTsWEniziBjMkNdMbtf4IUkVEETyWaoCo9NPqXl+eXV9CsYzShJqlly6f4zl0fQNLtFJCFpefzpz378/l2uK9ay5dMZtsJSrJYVr0Ef2XVA65YTdCwZAHVjxcSwYJqL348xbXayOu4Zb6KII4ocYA3As7KqtfnQPMvPzca76hBm5nLyYXx+Jk643yF0Bk/tzeaAXuv/MJ+5iqoeACwio+p9vHPytmKAVygEQEHiyOSDqTqEW9i9+2+ss7pW8tPMWp1qPfjRAVyrLi42RKW5J+LXZhVG+zJQbX98sDQbq2td3EzNVLHkow00UpzBm8eAQ+kf/gX0AiDjwYEz7YMqwDRaSjcLcL2zYWxVPAnYDK2Tcep82Bj9MRApTl5VvfqwCVvpDb+z39PnfNRxOa9dEZIb5MVoWBtV2LtTanADnp4ekgogGwuRgI2m/cgfrzs2kvYhlIsHhnXRtEG+Vc9fWKvKnFIgao5O6KJYuMbIJrJIhnLbtqIVRVXxdsXHN1ttIoya3fDZf8lle2Y2wSqtsrCZwKq5xgt7veJtaxXcE7NZ5awHGveuNT5TVfY0cKCFVqgqBS4UNhiw/TkAGNm2eXfgG11FZKb+Wz+2/mtOjd8cEOUu0YPHhYUKB8P0Wsqak5iZTqlrergAxGCXKAHEY2shStnMjLNpowylMRpFVL131JjPQLwolCMYz+JWHs9Gp6X+MQKw/6xmMowEGIpWP90kPcvGujlhHEtJLQAzbr8BAtu2TZNiQ60qOQMiSK8vr2sxF0mEZLWUhUGAPphk7p9GACk/fvnlh4xSoabI57y+vUJ/UxLeWDbZyhdE0BxoxDAF++LHZtQyGood9Y/PvHH35+ED9sLLmNIoMcNIKdo9BpuhLsHmvXvLzazan6mLO37surx/p8mBi3jnZdHelc96sJKqeqK6Rb7iw9pE9AOEA0zmnzEKYGj5tdaz5A6BeZ4A1E4zNMTpxHdhHAwvWAE1NLLYluvTa4Gixo6+UHSJ5A6NiKv43DHrP/mAI7jGnN079TstZy/dnXpZFW3hGLvXjUu8JNqYWNcthDKO4oFScBczTP+z9Hzc2D3PMKuTdBs+0MoD9ZBetmITHlq73OsLG/FzGAPMPHP3/rqWhb/zwy8fRL7/7uXlZdpn7jKwwVAPg9hR0NxlV7d1BQJt0jRyjYZoaRhweKlDxuHcppFEqlStRes5L8X041t5vYbXi9QbpPgcfbhLdub3/bPpCCMRgNeSihK01vaHKUka/vcx4Ge2po8ZXE4DW6xngWNPFYccfHcJhyMTz35kM2P8uOR5ZmPodVt0E8Gd15qFJOlQ/7WPv6MAY7aRucpnTMdpH11/uOLkGyQ7wYw3iEgpZTL4wJtHs86+rcc6MB6d0+dTUjphf7V3cdf6ooPFRvtOM5tHDzAokDxS/PlyfZ/y5XLJ51RWrGt595igEzF+AwvLzSx5Q+/y8u7d44kspirLqaDWumU8MjQIi4/cPbokt1pcDyObkKghiDeO0BjPXgYfe3nowqS9sAb38k58cHx/y5AwbMjay9RL3PJGEQ0sVoQSPYLtRV1IClvtfyfAQDUxDyaCesuUEsZvhh0vSDeMLWLivflUdTmw1RFWHTT+cYNqc4IihM6SrLWWHrkQNyjCyn9wxzwA7Zg3NsjMUJW5J3E1ABGtJP7RfLqjUN3l5OgbT29fyh1yNjZ9RKLN/fIHRUZFGzRCEOijGqra4JoTB3ZAmKjUDn5E5kRU3kzP9sh5+GmAs4biMIcRxpetw31j/ztjT/wwYv0A6bpv+2D7yowHZnnKy4+++vDjd6c/L6/Pb/y0FpO92rW/ooA4zg522n+TDJr2wF5px4xJFAbxhrIec09M+wj6tANA2AM4us1g05paQ6Hk4TBbxdtqazCpuqXhdskH4nWL6gPC4xH1UA8VhSUkMhGk4lpQkSQlVWWP91JUMzGD5w9EPBev3dX7bSAcq8iNJmA7bztg0TiS2B+H0cM7vjSubjzYyJ3JrMljTdkAULSQzDlPVadWrTUlmb3HkISC1phrJxPcBWk8IPv1TvIyotabWtJKGO26GXLY58kRjThsXYf13q797kWSUxXisDB5ATKGuMiOzzsr2lh7rXUWfg9boKpyOoEJwMu1lKe0bXV5f17X9e11++LduVWS93iYmnYTC9P+rAb80//iP8DvAf/Lfx/A8+du+rfiuu8z6VcjJH9jb7985vv1b+yNfl0//9Ptqz83yX8Dr7f/Ojd/+t/8o7+pefzrXvcdPP9q18BSAhvw/2h//Tf9P7IvB/D/W5Te/uW3/Otc/xT4p+FPVSCNRYxSkc7KD3FD7YrcIsoovQaASwuJRjVDxetbrYYlJcOmqlrMxKoWyrlJJUHLFIFXeYhzPvBdBj8oQ+/LKLGNAe+JC7sYi0i+I/+b7DlMJjISo3dgdHtVZ7losccpZ+nRnZKSx2a3B/3p/cR6JMSuChuDzjCkkziTOPOhgh8kj+HG7lms1cxiw8Gxjy6dq05fO4BZ7Scovv5TDDM8gN0Zc5QDfJBSyrAYicgojd40CnLTuuS81SLLqWoLF/308vKznzyQu+DEz115ymu4te789vrt9dvrt9e/Kdf/4n/6d/7G3/E/+RGA17/x1/z2+rfkugLPwL+YX3y1//3otI02M7NedYxAYoby5//oP/wbnOxvr99ev71+e/32+u31/8eXF4aCkEn49X/5H48fdh6b5aH8/D/9D/7X/6v//X/0p18+4qqylJcNrQ6IBa97M1ZYbrFzSWYwESxmzsRJWG8QjRaQOO02w54Q3ZnD16tmZPLyb0yCrVm/SI9P2tlkxquHy6GHPLT6qcN7ujycPQW+mgI7Y0W0q8y5lUNsV7PGJEQDUfBRxTaCmLFdci9IwdcyrD3sAVPoFX+G+0SnA8dsb/9pC0crtTNh6+3k6gz5Hlt5WKn2ND4vybaLjbxJ7TAz1BnCEIG/2/edn3ia/0cQU598T+Eos/+uX96eJ0Ymx0C5zObPFhGkmTJkpY7tAPD8b57x+bfXb6/fXv92X//b/9sLQtwiyaMPePAbhZ0e3v/uT36QxKoiwTYDKNHXEgNqPKTGzLR6QSSISNo3Wdxxx1341dTKI2EdlH18r4ewTD1azQ9892DrHzeIiNeRYIsommF49MZNe0MBAstpgIIcvrk3kzA9tpqaZlZ6zL94kb+byAuEacf8toNHITKzWHIv3pA8mjrE1iP4om7dJNu2jZeOQQ6Ra9aveBv76qKrZkBveDpGfvNhCXuG6vmZBoAe2mNdJiBGjtatwAFg9GAZpRkCvs0lv/uf/acjLpTk6D3XJ59o6oF2feCB6qlJcF3gcykn1oEyVNRW9lJrCzvvYlN2IaaU9XbywLFvB+LrQwTyiLVWzMO431D+D/778j//9/7H79P7f/LP/rP/+59++3/5r35ZX3CSRTk6yCR0Dyp6B7ohY/Ug8BRD4cZ+qfbKU7KTUNs0QgxaCjPs89dR5r2jZfIiqQBS68v2pvnD9eXTv/v7p3/v7//gd3/n6ZxE6lbkfm1kQbqV6sxanvrtOc3gpmTeyIXbE9Pr6en0Z3+2/Z/+5Ltff/3JsBjzul49xzPLwiSllJi74bCSlKSX6lRVK9VUveq4sRWMOxw3dk2gluJ1ilJKijrgM3p51VqznIfgG0VkySRnGV2Yaam11rTkSOvGeZR9LbaokEhrKtyrZ9S6rittkouiVVVTWnLOo4QqANXij8fvSWKU+zJLnNW7pGdFjll50wKEgGrVSV4a6LxiIOHwbN/0Y35aHiZZ64fUzKQXfokEk6TH/PiEnYK595eyeIdmEXHlhGqlFE1RM5yxVAIaxJYNFSfNf/cn+PHj5W99+Ufv3un29vr3/vjHv/8H59fnl1P+SkG1F3EKs0dCC5Wwbi85nb74vR9/saRaCk8nWWknhSYONjCYloho7YAjtEOKcodL+fb3Zh7u4/9N3md/XZ2qHpW9OKlZ3veJu+VPcZCx92TLvXc2ObBTRFQ5Wnmw1b72ZU34Weh9e3u2I8sZr6bnv9L7k3GUduLI1j/EZej8bDbDCuNy7r79zvFTj2Ft+dYePssw2lCj47THCHE59rmsynuvvrsjn8O3sQUWWDhJ9BZGDDwVbsaZ+xE22gcRMmzELVaM2mcA4H0vG0FrRPxQxD/MzWFoZubNc9FLcEyiDNls03btBEFtpbhb+bMx7JxMh3OUDz4HtM9CE6jA9a0I394//vB33n/503cfv3wnv35TQEdAsomH6oOA91ED4VFNjvFG5JA36fPxMm0e1U/uMnsP6BFBJ/CeNK2rbgLYG7FxmFLaiky9UiOMxMuqbyaqamIaIuFvVtx2fkSbmXm0Ue5P7Gxj1VNr/DcxI4rpWkqtnnpC0sR6S+/OUeIa2/lqeDsH9y0XkdjCDzcWPttfLQwbrhB4wHp1RNNQQWEunL2TjLXGTOPtETgM1y2+RYLDIXuZ5ZzrNgVEacUbmBJVZcwHIX18/5ap58yQbL9NWwaoV7I7TDXu7OEn1erMu7+mKxIhZzcC1cePh8g/lFJ505eMpKE2K6YatJoZDKZlJFMcqJ91GgKwFts2rQ8sRUWkGj89X4h3Zl6xiD2b7M51JwqavXxBOn/46Y/evXtaPn2vSYi8yDYbGs/sPZKkh3enlJhEO96o1tPphL14PjeqXyITOT53jWdNSOxgcTha7X5tSk/LX7KZ4onOhwZaqKoX6ndaRHoXQR5eESjFTOg4oJESrtGCNBkUqmXOGECRRQSQetNTYYfE0o4WSXRiQQDNjmpjvSTNZpGshk/9UtXIHtokVWMKUKQso3TU4MrzLH0manHu3T3pJx4/Oy75vrSE/ZkZgJWbn25xpuJYvEYMql4BOGDIIP12sJbvdtPCLkdMiGWvvIrTgKGElEqoNyw6WjjY2zIcCGJc/qCP7dU3S759aqyaJCWVqya8JSk/+eqHP/vwlz/5cPr+24sVM1QYjVkApYvCMijEYfzu2hjmHDp5vTnEiJuFHdwQj+aYrqoqMWryWN+TVsuCdoKmlJ43vqzYanlICZIkRAXHqw68YufBXgsBdy4HaBOC+0hasVVdt1qrJWkVfhLFV84gYOGmbgkijyF577URaO4lGTtYa/UgZIms3dAafQwaFQA+JCcOkApNcSAp8/5Y9C1oUMuysGcXjleP++Nn9OO/Mx0FRB10Q0N2opMw6W0Gm+a9P91xYqNLEoMYKuJlTcycmaExYNn3qGU/+APgEQKREB2+J1lLK5Rt8JLUO1gdnh3n0YyJWU23oma2ls34YJC319VLcMZ+w3OEUF50V4oyzmkzJR9++JS//OLx268/oVolqDQezmeD4ChjZqrWGarBXNMfN89VBf69I3O9OsEOTKSkZJ4jtt9+rXeKsJP0dgsRZG0aY262A4op2CthjQbOY+Zx8n55on1870Ca8WUsnd2O/LiNwp5GeRg8Ltxa5yy5vTPCP15HilwVXu7WZ+X6l8FEGw7BeotggzQDngXhEXup/3alczI4XvGIRmAe7sFNwl94kaGVYuybRYWYt2Xs0+B+vHnapZfrOgAq/Mn9n6Mox/3qwj6f2bXaiQxp8OLYttUNVBoEXqAgWa8g7DJESklyKm9vNzNpf94F8s1Gz+9bQem9vKiq5YpaPoLbDz58+N0v5Xfe8S8WrGU870ovq1mvRnqHsQ00GJJWN03fIRoRM+dEfe17nq3cLWmHWL59SitFRF43+3gt20YuqJZSP0S3UzXzsmu+oZ5Us/81TtUSe49ttBnqVmopXTfyHXQ6j5mfejOgkIkNG400mEkrPweYWKvAIp2PN8ystSIkJR/ABd1R7cjnxv46NM0dNH2P7oPlM9cYB7eng0m1mlXPVkIv4COjgA/pKdC7aWO2SxnTJukNu+NMog7aISAREeKYIiJp9OyZ2sJuQztyRWN7hIDtPZIDhe7/S1CYmOo9lI4jk6ww1arAtl2rZZF8uep102Yo4qnv/h2inW8X41fRaun8/uH0ox98+NM//VTLakuCmsmOFg9o5nzyGCZVYx5+I4u1SXckO9TiYIA1brzF8dz2D58TvQOLCqQ/DoVGRHa9F/0QjmdF5oNHN2e/0r4Be8eAA2vcF4Jv62tiYCKZEqt209PeadprKTsjuN2gOCvb1yeK6NVzEAMaNbZmt5MPm7DbXzMbRdUPRHYP5COUEHA67uZhH8ldiQiSY8JDo8UonhAknjGNOdsYHaYHxTHi0m7ttwfMdJd3P2470Mou14BobmpV71SWzKb0OdibjeaGN31eOQwnZtjnQR5i32xKHiApELv1xyus4nL9XlEezk9/60dPP/lw+sH77Zdvu/krGq2Xu5O5sXmML6fAHV7qPkXHrgA6jCX00ELCWuHoUWginmkRMRPUQqZL4cvF/XS5GsV2gtpccl99O+bW58wdGs/P7gsKxKcYNq3WQlQjHEgk91ZGMrKjUWF/YXYgPmMokgiQGUAzm3SSHXwd2eooHDEGIVlE3QNM263raKkOW2Z7fEZk5CEUdBxYH298qeqomIcyfTf3ukEszCHCIRAQ15THn+wlcRhlvoNcPve3fx5Hw2E7fopNIMZTEYyHMUcpSrK5oyCivcXTIMzx3DUVjjBYAUhUW1UfmZZa366X7d1jKpumtMOBSeFJ/IZCHGaW0vL0kL/84l0DhCwDfOPDkItLKQ6snDPzdJ57A8WxDTaFvoFLMSA5dBwK0VvwJu2kwPF18qrUBznQ4vHSA7it+VR4sMoH/G6V56KrI+DWxKf9ATsGOwx8O+C9NbJtJLNI64F109pBOiKaGbvWLt19G5d2OAMMF0LJzyZT91UeZN7xuEiKAw6MMbPRo+lwmMfNtvf3xA8DiR0f+hLm22+oxn1Xot3TtOJGtDqinSwO3Ni2bURBsxuQzSwlr/d7X6MKZ3sSrNuX+ntzzqkZEsVLjquqD44uZKiqFqu15n1lt3jdWhHHZ06DWNuawfMOMAGwCC7lDWI5y4++evzBh9OPvuSvfv1pCOPG2lwd9zAnvtr2JtDbKPdI9+Mc2HCN7tJxoGkv00e2tlPuHHQNR1y7ytnKFUir6lrMVIS9n2C4AmT8J/c3sVv5etWwm831ebVd7gs5mmFQ6bFdhgiZyAtjC4Xm81fjvgYFgGH98sKocSv9z7J1gczjgHrkY6OQN4UePYzUVLWr5mqqZmlPnyNS3YHAuHqcnZfH8lUczvhA42H8GwL3AG+Hz6QhDhNfSOqroBqy10sepB4MVpaIVG11ta30IIjs8XCnEx5kEdcJhz54QPK0SCkFMENrD2C0qjUxH4hD2AiqmtG8XS4FBlVVkWQbS1EIDTW+rlHUoA3/fwGHWLdBY1+mcwAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 23,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "Image.fromarray(origin_RGB[3])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "id": "27485468-2e69-4aaf-8089-ba0134a1b26f",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa8AAAKACAIAAACkG2AoAAEAAElEQVR4nOz9abCtyXEYiGXW8q1nu+tbul8v6MYOQhwSpCiJ0pDiSJ6xNV7kUMRoHCPJy0gkAcozEZ4YAbR+OGQS1C95SIAgNbZsR4wGohTSaExRIkVSFEkI3EBibaA3dPfrt9/1LN9aW/pHnfPd7yzfefc+tCY8DmbceO+cOrVkZWVlZWVlZSECACLnaIwDBgAIDgUPjK3gKsCvlLsb7DtUjwAAALpC/Wxjane/3JXwuWq/rk7Pzfh3tXv1+q/W36sCXjH/+sh6sF0VdRT4Vvi23ZR5pzpwxXp4Vz3/Pwa2c3518dU8PwICAF3Qa3P+LfMaEQGA6IJSjDEgAwAESISccwBnrUUhhDHG5xBCKKWSJCmKAiDc0rcNcFVu6IJ3anSvOCsA6s3JmwcRgK5In6v266r0xA78H8Nsl4ar9rcT3imp2tEBumKH8ar4XLXdLtAd6fJq1bxT8+7KDHFFoA7+xA6+6uLnLj7soj+26IwIAEAEiOAIAIIgECIoigLAMQYIAIwxRM4AjTUMwYILQ6b15tqxg/r8HVLq7OUW60bQd+Ej3GrO7fVTh7SS75B0NldkNm43dK0LSeimQ1e779R4dUGDzxac/23AVcdXbBVil+/FVccX6J2Rztvxvzx08c87NXxd9OmaX13tXpXPEcE5IALGgLH5Z0QAQsaE1tovA1JyrTUCgJTSaAvAEIjARoksS41dWG5OfsfWqK52rwrUgU93/ZvX5O7+dq3tV2v3HaMnbcb/yipyF1yxv53QJQWuCh1SAzvr35yfrqoTdUmrK/YL3yGl/R1ba66sI1+x+g7+pC6+6sjfyYdd0hMCv8tGwKUPOJeLnDG/TfZKIZCFNO7Vdf3Zz372Pe979zSbMcmk68J+c6udQrsDqEP4s29teJtqiW3Gp7N+VBuTXac4Ca6EWFe7rnMYrygOO/DvareLPl3jctX+Ygv/zjo78l8Knw64Kv90jS8RdaG0Ea5s2ADTkd4x7zro0MmfXe2+Q3S+KjDomF/QwVcd/NzFh51iiWkics5JKY0xzrkwDI0xRUG3bj312c9+9m/+zU8AASIiovDb7aLMAODWs09/8MMfdgBucQqxAZmOdPEOEbPTCn4VICDRIba769+8NnZu3K+oC3S1+47Rs2Ntf8dOUb4Vna49064q5a8IV+WfzlOI+YZqK7T6ZTpWly54p6jwP5pTlA7+5J18ZQGWuWVO7c2cu/0Ui4AQ0IEjIo5cGcUhEAKeffZZGQSMsbqsOOcCiHGO1lnGgEtGAP/Zf/F/qQ3GUX9jvdix+HZurTsR3EwF2SHF/Nq1vrIhYntZaz5bju08zWduu3SfzWtypz2IdVh5O0DYzRV1rdUKDWzSsBhuXqfIbU7vsitdeby6dihdO9aOcbmSwgXdOktXPdv5Zx26xreL37pq62q3E666Q+yAK9srOwCvuj52j/vGdK4363SGb6ZDw88rJ8LIN+uMXfOLXMA5N8ZIKbXWiBgEwdHR0V/4Dz/yH/wHf1Y7q5UKwhAAjDECgFlrGAciqLRSBEwm/WRg+GZNvmvBDK8qDDu4s2sHtzHVUwpbFeLig3Cbpx8FHfzdccYXdK3iFG1O7wDXsSHoIlvgBFxlv4lssxbYtZPqGq93aqfMGNsoDd8x+1THakqdpoHNhAg69gTOuYb4bcnelhrtDrorSgeApCP/5nHsGperjcoWfLro+Q7toJ3cLE+CLr660AYWtq/5BI83Zred81QDB9KGJGLgEJGEqVgugpAxYEwgY1prxhgACEADJIk0OBZQECIAMCt0GsR+v32BHiIAOGd8Sf9T87nNOkvYd62uF6d1BMQuioODTVJgeVRWR25V5C033UapCz3XJX1w85qJ4NooXVS7sbNEjdX80srRRR/nQn++SFpYpsY8HS90ijbFsEXbdoZOHp/3uqVZz9FZHQUiIiIhhP+w0jWverZVwtVFviVithjp/E9NZv9hBf3NA7GcZ711/5Ux0c7fZOABd841rTftrui8rbJ8vf422usYbsQTQFxVfV6px2NrrV1mG1r0lzX5G9wQETnbSNUrn2p2WQw69i7WAayRCwAYF9BNz3WWE44aHoMljoqJKIwEAFjGEHgYxnHQJ+QEIECjc0xKoyx0mwcv2mvqbae0s7U/rPNK57xb5s6V+bDS9GNhJSciNqzchfBlvsJC+mxC/wmt0dsXiY35l2f7ZoK75Wq3dPnJYIX/mn89nZs8F1IGVue8Xz7X2Xo7kn6hXZeGzazugvWh76p/Y7q1tul1m6orOm9bSm5vqIFLcsgKdEn5rlIb828U5T6PNQZaI9jkZFe0cJLbjF63VMWNqK6MS3sdWu8CIro1f8OmCBF5LaX1YfOk7pSGzpmm4ab1x476RqHWkXVDWQBAXJr/zeLc3aZb5LxIegJRtVF3AOjc2a3URNQU2cxwKxg9dkowtqQ6tYturIEW4/041eOilo0641yHXbJeb8f0opUVdQ+W52Sbto8VgksoremDW0qtr4vbm7iMEGnLu/aEbCO2vqz6X7uE8mWnyaZerOCwpbb2GobzvZ1bmVBtiq0sdbBFur1Dp2HIaJ3DENG5zZy8YYauwfLo+A5eFF/hpTZ0SsP1hjdycBczNV8vxYutce1au7ZUso7q+oeVyXlJQES6ol/YY1FdyXYZwd3uy8pOeX3yr9SA3Wt7e6V5vHQGBD+aNC/sOYtz3rDzUlvLzW5A7HI75ZWpuz75t/TrMvVvgaYSWtsvX7WqFfSeoMj6MK2QAtd25RsFdDul/ZXjhc7bHsdOD7B3GqillkLHQHeN47oUWk5xy7O103K9TRq2F7cmZXv+dWw6i3iZvZRCKyP6WGG6FZo+47y9Fj7rXNXWTBERYP5v106hCy2Gqyy4jMYT4N+ucFXWX7S7vuOYl3Prmf2KiYgI6Fl/sXg+CbXXV6AGhzYbrEgoaFF+C19t/GljPe12nwD5jT9tlCztedGV4Uo4XAaxrgm1otk12RpTvjcp+PRm+7mC9oqUb394rEViFe0O8neudu1lm+YpALD0uQFaq+diem1YNWFuWcL5B5q7xHQh0ykNV0ThxrV95XM752U0ji08faV61svCpuW0q5Lt6u3lYV0l2VLbY1vBTdvJhju3N9GM3foIro8XLS9CW6i0vjVr6lwvtSINt3R5fdFdr2cj5l3QteBtybzSVoPVRvVqXYt5/Nrf0eIlf10flyZb2xq7hebtIe5SHlfgyRSRrlKPHd+VbG227KptfYJ0iQtfk5eMiNilHm7RDZ3nc5iTsiFo5w7xkpJrpVdd8rRr0VsD1i7VquRqY7nO0IuUpWp/5BM/+FM//jMA0EFQvOTNqsdy5JbJ/NgdUFfBja2sTOaFgXle8K9//If9h0Wvt+HZ5oGm6b/+oz/U1LCxsz7xRz7xg11Ibmy6qXYlz3Zabccf1sZluw64AhtzPlaIX3W+rJRamThN+rpO15aDsLy8rbPQ1hl3KQxXoLu2FXW1c115rHjpEo6Xh2075XYzrZFekl/rmva63rG9cl/n8tclXlxXuDoqWUV4hXVWRn0F2/Ya24W/n7EtgbgBnkCNfWz+9jTzZ51bGl1XWLYjtj7hoSUEG2ik1ad+7Gd8sQu74cKYiNhsdhAQP/bxv7Zew2VE23rTP/XjP9Ogt1FuNolN/ZeczF3SijHWbDYbDmzPt3XxsVJPF9OuzOrL6BDrzbWLNxyyorqui+MGJVrABQ6OoJ0TAAGJqPO+/xXZ+Krzl7HNHks+4NbGIhsVZK8J+m4Q0XasGeIGQ/tCB2SI3P8BMCIEYLS8H2SMeZ+D9qi0O9mWPl1DSGQBHCKtK3S+lHPOe3IsavC3B50vCOCcM84ZIutTGFsd7+bzxnQ/qznnjC15523sVEO69h8REqFzsNLflS6vp/sWG5ZdydPg7Jyz1jZOZCuALWiN4FI9K+y4ImSbVhB544K3EQjBATnw7ICWnP+88rciChv4kU/84Dpltqwu6whfEnAZVif/4oNn4I2Ub6+UjSORz7nOJ74eWB7fdjqsDWsrxXpmJrLgCGnu10JEDXm7ercyxI1l0DUjtMYV0BKRTd+b7H74HMyb7iJ7uyq3gK5E6haFjAnGRHsSLaaSazvZNL1jy9Dg1nxemQvOGUQJIBwgY4joCCxwsdBJGQAsPM+dINpg3t/Odlv6tiVzu056nM6IazvoldnbHk5a3u6tUH/7YGxvvZ1y+Qy4yWzXBSsTr6nqsS2u1wPL5LpMqRXw+dvKl1fK2qLNa2rr1bYRXlHffurHf6ad8td/9Id+8sc+s9LBdYG4ru6t1PyTP/aZpukmvUtzX2G/rp/Wv25M2QgrQ7DeVnfNrRF3QHgR3JQBwqYZ+ljcLjm/thRZWULaeRCxvUdpc93G+b4FNvLnJWfNCqqwxv/+43rxrvtKDKAdV/bxsBH7q4qbNnQtPivpbXkPa9IHLsHTXYlbsFpZe5tfG6etLby45dc2tI/5mlbaRp/2MnD5nm5BqY3bOj3b3WzEyqd/4u92iaT1nq7U4As2Hy4JG0VhG7wobJpuJOMTQHsCb6TwlSpZSVxnnjZftTPPW2cXLOdTGFzBBr42ZdqmIdv2Ol7p7Lc4X5rMK0r0VWtYZ9EulNYJ+5jKL5Hxyne+r8oo66zWJK70ZHvHVtrdqAlupOP6r4+t/EqwZfwuzxDreZp+XZK31ntNyxcrL8k6/8f/8+qxSVOwLZi6BAcRbTECNjU81lD4WDyvOtPagmllvL6V0W/XvwWx9aFZKXWBIV6YgBgSQ0JG7HEBw1cGl4gWlTSwsIGC2/jXRr7dhcfy1QoFtkyxjXBVobZRdFwSHjvMlzpFWa10sQf8Vtioay3FNaPyesqT1d9Q/0r1bPS32jiZP/XJn223BQAf/Rt/dT3birLjsdpoZfM5uwxw/tf2EGyppIH2pF3BdgUuQ6tGmmys9krKYAMr+/Tt2XyGy0jPLljpAi1fffnWBeXGdW7ta4vbF0pMU4xdae+21pbn+o2i4FvpXXv6t4V723j6BKi26+8SEbDJ7rGxL0SEAEgXURFwGeEVeELdcFPbbuNfm2Qb58yWVh6bs4sEG7chXSzeSNuNQ9jWKbbj3BZGW/KvTN0uUehzdv20Xk/X1cvLS4ouUm9f9pqTq9bfJZte5ZP1Vn7kEz+4boJ8XIaf7uLDdX2kzQ/rc3sjIG3+axFkA5+va1id9QMwRNZaue1WYYhIrT5S87XVxGrglfXPbXG2wu0rnOw7snKIBB2r7OXn+8Y86yOysu62B44BNn/zEXGEizCu7TsUK+PVhitLw7am2v63SxO+av0XSG8t3gxJl9xZQePyCvkKQ1xeGkJrffvYx//a5QVZF3z6J/7u9gxNPR/7+F/7kU+s+sS0s30rY+H7fvniP/XjP70Fk43pbamx5ThlUX+nwvhk2ug6Gz9BJRtLYUvlhOVurmRrgBEwgvYxNFwiwPU6cy4kRSsdiVo74sfW0JW48adGMG1cYLbDRpp3LU4rmdvtri9v7ZyXCT/xJDvlZoBxaX+xOfNGhsC1vdVlZE27zqarjZ/gyloBawT1xOq6abTCr01i14huPNBch7ajHLT0xx/5xA+2d9YeGvG3LoB++m//1/6D72+XqP3UJz/T7s6KiHyCed6Qbl0d2Agredrd7MJ5vdrt+98t1P6RT/xglyxeUXDa6bi8KVtnSLy0gWVdc9koB9eaa401ESIyQAIw5AA2x9d4LBpsHlmrbaB8TBdWWK6NeVtVhGUJ0O4ILiKJrUiiLfPoknJ5Pf/K6kXOrSAzz7alrjXYIA0ZIENkSPMgOUuDymj5quCFGF4o5ytiDtEh+s8XG1Kg1ms+vuamIAJs4iqGF1KMiIDIkY/rzS7aaon/FRetdenZro1aZtCV4XGkERgAaxuOf/LHP8VxQ4xijgydXV7J3YI8CACf/vGf/egn5kLBL9usFT6RbGPqXuovAPzwf/mf+g8//bf/ayL61Cd/9mMf/2uf+uTP0rJDzMc+vvl0gtYMsgiOXfR3wTMtzBEcQGuRW96JN3Z37+HkvKflgsL/t7/1U//Z3/yRBUqdOnLD1wDgI783k4iIfurHPv0jP/pRn+VHPvGDn/rxnwaAj7Xkuxd8OFfGf2iR84d/6sd/Gtt6io/Cwtsj3rrNBuT5k4jcQr3waDT7gfb09F7ZsGZ7cdYxxviFTufZkwIpnXP+63xFmY/w/Ph1/l6wczjf7sy7b4GwZfAjsm0ebgaUIWtHGvVTgyH6GFRL4KcXW9pONVRiAsk6IscQGWMc0J/E+GLedGmBgObBHWhBtLbgW2ezBhxYpGaetpBa00K8HCdnfM4lsUYXhr9F04v4qpz5PF5qLSOgAACQGPC5nGa02BZ7EecAEegSV7IvuSo1dFnxilwRkdCh6zYfLsTr2vKyDrBw//aZqeWl3Dh/tj833psNng00TbhlCIJgTu7WpiMIgo1rnbXW4epqsdKRS0KbZdvww//lf/rRv/FXvSgEWJXdl6+wPUDtjreLYAu219yuxxf8yU927pe3VLLS9E/92KfbiW1R+Omf+Jl2oz/Zyuk14jZDrq9zbWxhE39uxGeFDm36tO02jcsxIvqXiWihXPtfm8T1mn3BxlZ4sRi1iAytaUId55m4Bj69jUaDZCPifRPr3ubtPrY9n9dJCh1wIQrXsNrIXevs6qER/bisejcD2qDaRvIybAzb7YaPLbyxSLvhtihcWQRWyIGbROEKl6wg1lBnZR6uUGGFIk0lK1K1De1EXWtybsXyqmu9ceC7KLaFS7rq8Th86sd+Zn4Tbg226FwrsLIl30LejeKyXWoj/k1VS0MAfN2K19WXhlvWJ8DmHrW2w02pn1pOXK9/JX9bFK7MJd8wQutMY/FhXUassFnTUPsWynq7K0KtoQCij1beWlDXOrWRn1c6uzILLlrxx6z+ksqij0DkX1tvYwIAhBf3cNr4dzHtdoBNE6RriLt+avPYUsrynx8sttz6Y6HTbsgI7MUOdG68IJpr7l2109ZrFVuEQpONOkwMK1U1c6/tvbzUNFtaOtoYwjJjNWWbn9qD56yVUmLrguQWYIw5WsqGjb3yEq/wrJPOw09/8uI45Yc/vsFrp4FPf/Izq9Te9JIBIja7xa5GaS3a8MacK+RqvvrG28EUiOhHfrTxqf7pJv2jH/+hT3/yM7DGVET0se6jIVyIiQu2We7gGh06bw2vrwTryKzjtnFiN+ntSbgibdta5HoGWEzyJWov2SyW0VhGqelOY4Bq10ZE3q7X3r15eeevrbFGvUXgAIyx9p0TWlQLMDeVrAhoWMRgXwe2hv/6cKww1cbM7ZFtc93GRpcoADhH3tGTnCnzxQN5RBePa3QJWmxtE9oPSlwmPlpXz2FtR7MBSc6bZbBpvdkd0xqsa/srO6mGj5tf/damzRacdz8suma4RdhmbejqWoPGhZ0RERE//RN/tzls8erhiuq3sox/9G/81RUGWhF5K2t+szn96Md/aEVMfHTZKNnMvZUu+JSPffyvNQbNjYJj3ruP/5CvuT0E63V++pOrV00aAd2WO1sAHaEjf2LLAZu/jZkbPmlLtHbvmpQVXm2KNHOhiwLtzrZPAjvx3/Rrmwjr1a7PnZUaVr8uV+7N36wD1sm+fZ6uoN1AV5e7RtZPvcaqsy5e2szcRqlr1Nrw+MclsB0KnKjLr3B7JQ1CF8iBBXT+r/0ZGSEjAuv/mvR2DV3QJuI6jRYMOg/u0DjKzT9bR9YteZA5QgJrrVLKWiPEhQR0zl0g1noqwJFZOXv18xwRfb8a0QYA855uWiGb6eQ1Qf/voo9u2al7ifgf/fgPeXsPAXz04z/kdauP/o2/is3FhuW7B021fuVwywdzbfG3ZLP75Gfao/mxT/ywF50NqzVnGu1FeONZcCPmPvaJH16RO+uKYbNB/tjCMtj+tcn/k8vWxi4psz7fVmQxri3StHZosP5vA3YBtDBw+4J+tW7nbyOzYQEnQrdhy7VxSm+ea62cnHNs6Q2+R5xzXMjldilDnfMOl+EifW3TOt+60vzPyxNalkrNh8euaisWw6bIyriswCVbeXzs666vK7CRgdo/rWegrduNVdSXW25+XfewmVeyXHHzU/usDVuqDS4vDA3OHDAMQsawvQXm3e9g+jo/9cnPNBLhh//GBinw0z9xNc+4jRvkT//Ez6w3t+54+NM/8TNbmGzlp5XF9qObDqnbbNA69v3hn/yxT6+Ino/96Ia+f+qTn9nISBvbAoBPb8rflRk2ib82p21RRqiVny1is9NKBBnOGpHRFmTrvgrtSdvMWGrtjhs50sYTvFWqVQlrf++uvC2kVla1NjACosV+tx2nZ9PsplYSteQ3LCxRGzu1sV1q2SWbLOsUaNOhnaf52oQIWLEbLgIxrLauqXHsR4DHXKK71MNjbD0A9ybsG5F0+TPldUI0v678u/GQCADakbg8Q3TtkS8EXwvJLQALDguCwDl3cnLS7u/G+eyD/XnY4oR8VVG4HTy2n/nbq96LHtb3mLC8SHqqejIKIbZU5eFTP/7TTR/Xz6B9bZ/e2sHWtCJq7c0vg/+nuqk6z/DJz7QPNBp+WBnZjdAe9BW1AtbYBpZl3wqDeWJKKT1hsSW8GGOezuvMdmHUW3A7X8yqFXyaghv5sJ1hpXijDzazCQC8r0XTHWxN4RWDUgON5wYsc1EnbRc2txX02mRcpyesyZZmg8zWgsBv7PtKtespSwUZzNUoIvrt3/78R/7oH/s//egnMRqEgaCW5tyQwxjTxoMxtsI1K+3RYmn1wtst9DxCwIX3EKOLR+Vpkz0bEanD+cMYs8LiHp2N9koiar8O3i7lwHpUveWYiCTj1lodDFN7zor59P7f/62X/h9/84PrNW9Jb3/dmGdL8Y2VbK/nMtkuCZdHfuOvl0d7Y+bHtnj5yv8Q/hDacDv7j/+jP/en/uyf/pOf/W/+m//kL/0nQobaGCA7F12wJg0DeaHmwLJsbi90F5+3LLkAsCYNHRDS/KTJG7O9QHRratdcZq05yq+gga2FfUPxBTi7+ScHFhaxMX0NApkxZnd3t3jwf30sff8Q/hD+EP5HBH/s+35mXRrOH7RfVx1XUjYq9u0MrMOy22VobNS5xixCyz4BK2hQ6yst777XUe3SnwFWhfZF/W5JvDLGvKUjtLOiowt/CH8Ifwj//wSdpygbBQptMv3Cdo2sOe5oiSH0N88QYGGohpa869rVb0G1jVKXJWUubddO5OeNEnoDSXPR0loDAFFwQaK/9cmXQ8FJa3LwfX/uP/7Tf+bPPjw56w1GxlltTRTIvMhCGcKapF7RWzcuPyv5feZ1C8BGIwtsejXc59l4E3G9hiZRYOtaTmuVskySVoOYv/7SF3/hn/yjbHrOwfvByW/7jo/8+b/4lxUG57Mi7fW0qsitmi+aFpsjxXZPocVauDjx3NjNBp/GRbkhy7zCjtfQm7IrI7Kex/9kFhe8EJHRxYh0masa9l6lqm9uOd6ywyU8N256Vhb+7ZOibZjaku2xQOziOuP8NYLlZle6SURNv9ZJurFfS811v1PUrqQhQpv+K/yzecPqMfRGM3KATOQ/uaX7S9Jwfe61RUxbMVzHeMvXLsCWBPRk3RKrY30j7JHx02adCbpw2Ci123W2KS6lPJ5kTeYAna4dIXAp/+U/++9uXDv4tu/4rgfHpzyMhBBFUYRhyKxv5aKP/l8LF+OE6yfmywOMy68IbMy/hVDrC0Pb4tFFinkKrqX4aq2JJC+mk1/71V8ZTyeCcSZlrY1w+qUvf3Gc5d/9J77/3R/4tvHsHIhFcQB2w2D67nXtRTYO8cYOAsyv0KJ3GJ4fWV4h0A50T7+mlRXBBK2hWUfPuYt7xNtbaTq6sY8rLcKmYVrOP8/VZG9+2VJqHVZUCkT0jxd/C8EVHy/E24DdJ0JbijQFu2TilWCzbthepVfa7sLJH6f4lHapRsbNBd8i0To3XzARkQABfaCCjdHcusj6DnI/ADjn/K37hqZxHL/16qtP7S6aI68NMcckh+rn/8k/eOrWrSTuZ1UVhDFjTHLhNcqVVoiIlufqCm2bdawrw2N7uuLnCAuxMn/TbrmeLs5rr8NNypwa1gYyODo7vn/3DgA4ZKVyAJxLqHX9+itfe/2Vb3zvD/z7f+r7f0BGaV5VApcoub0LtKbdNxy4McxyF9oNtCWx95Vp8yesEZzW1HBoXY/DhWfGFl1mRRReqDNd+s52Wb/cxPoIbhy+b1UxXLb+r8jlJ6v84sI1m4d+aOvI2MTLmGsNSGuPllxpFmwBIuq2282h08MGOwA66OJd/Bsfy+bvseCP3pt+NgX9VQHvrrlMwYvhWfGcWMHzkj3ysD5biCgMw+r0fpNYWTA+goiuYkaT80f/4O//v9JYJmGE4OIomk5n63IEls98NmZoQ7tfW/Bv49neSlBr29gu2PZP6modu++WEDBjzP07dwPJERxZDWQAbGmcAwokxpJ+51//0q/94s+nAQd7KW/8J87QlccnXvgtAMDy+roia1bo1v7arnadMdZzrt9ThuUhWyne1ccVZHwlbO263nrxb11qrJR6MvHnO0sMieHKQGzIDJsDr65Ez23X3IVY1+p+JeQ7peFKJJgmNsxG3WFlFm2XSvOGu2f1lm60q90uDVcqbMq6Dli5n+ddizjnR7dfvWiex4AiDIRwDh1xgLffeuMf/6N/mCQx53w2m436gxX8sdvGisuXAreTq92FjT9RKwiNr9m7ua17X67Eqlmn/MYJzEXAuHzttde0qjhAyAHBBRKAceDMauu0Iau+8gdf+Nxv/Lrgl4oi3CU7mkbbVyNWYF0XbksNgvlDpq5j7VkXeev4rMBKkeZzV1UrLa5zwpZW2kyCl7veeslebCm1ZT5eqZ5GMfdysKsebBXZWFV71YGtzL+lyytiYTvyfqcsATUQI+IADpwEcHw5ykAzaXXrtj8jfyeDAMDHt1vvD+KmcAUI0Fw2Yg3xLvYFbSN6226Nvk5fxXwHt+rx40UA46vW7iaD/7riUu6M5QSMQCADR4wgCIKqqk7OZwCLUIa2RAClAJmwSM7alNs/+M1fHEj4n/+F/01d1LnC1EHJLEhhqnLAwyiIz8vMxVLUXnAz8IHznL+GP7/JtEyaObYrQsp/Xr913x4gWIjFlYIXU3chR5xt4gkuxb8IeGCMYoCMozOWc86Y0NZwV52dnD58+JCx0LoaiCMjpef3c1gY1LUCAFtMPv+vfv7WQTJ45gPjaR6lPckFWBVIrrUhJjmuzo0F5itLl0cWGLvoV7ubbuEqtUgHALLWMMYZzCl8QU/csLFdJ137Ky021845QOSc++vqsIiHCHDBddB4iS1LMQDA5rIaIpvHFnRkCDsEXNNfuOCB1lEArJDoIuf65wtf4EXx9h2VlbXB/9u4AOMF2S8UDiLiiylpjF0Qd6Uq13SsUWiXEZ+DmxPKISBv2y4QffDE5fXj4gNeBM27kJUL2l5ETiNyABeBZmh5ojlgDoG8/JrfLNu65tAaNEcWmxZD2vQYxba1pWulhU1qQnuVaDW6pFhdZhFYR75ZfjeWyrJsPdFrygCglJKCf+43//XP/9N/fDjqQz1zcYCOeG0GcT939kF2zgMp1WY6XGkZ95n9xZt2X1Z6tJEUC45hgnMEcPbC5I/LoR6dM4wx5IwcMORSBMpoAJAI3/j6V2fTM+s0AFhnnXNAjAsBAEZpXz8BnJ2d/c7v/I7VqtdLOTKlFCIa49Yty82/6+z0xNDowisE2cjM242SbQHa7BXav25Ee5392nOnofaVOvVYPtnI8w16bQnYBZesmRbxGa+E/xPA+nhdiU/aS8LKLNgCl7Ibrv7UQtd9C0dO0Kqn/Xl9FJtfN2K4/vVKUqbd1sosYoyVZbk5P2dCcusIwQmwn/u1X/7F//7nrg2imS45F0zTbDIjKWS/p40NafWq4uWx6urLJQmljQFELsRcUzAWrNsYu2Xe1iICNDAkBOOsMSYIgpOHd1/68hfAGgTHW3GknXNAF9KWMeaAXnrppYd37/SikIgQ0TnHOUfG2lEqNi5v/zZgYxNb2l2Ze41W1XxeL47d9tb2CDZ5uoZ1JXG7nNpYvIEu2dGYTdpmou2j0KbGxmlyeQxXsH2ygleCKzFYp79hW6BiO8jlQvw1Jxv+Vgm8Q31bWYi6foLW0t0eoceL/8YgvVwEW2o5Lk4PNyqMDJklAGJam0hwbaxE7Uj/m1/7pVEiPvCn/xwzUNc6jBMUstaaM6aUwkA2LEWX8DxgBAs9f95bRARAu4kREZdCDbWrJlxMwkUoFKSlbcMKxZiP5Mi5YIEDUGUZBpJ0/cXf/fyj+3cEA0fgHAEA59xaIrtkgvTIlHX1pS/87q1nnwNigQjqMovC0Nilp83bjSJit6n9arCRGWjtpuY6/TcKOFgsit5ijou4jbDGfuvVtsXHCjIbEVjJ1h7cdfQa2HJdd2On2urwCs9vrAGWxfoKVt8ibNdJN6Y8doLTunvAJZrzsE03XPm6jV542ZyPha6FtA3QtnSs2MVa69iT6R3tq+xeqVn+FRYNGQAw5AjAEggGSPZXf+kX/uBX/qVE4yLMdYna8tpIxiu+ZBPYTp/H8Jx17Qh9rShJS3+I4P8CKZCBsdpawxgGUnDBXOuRkzbFAGD+2CZwbY1f/JKA37n9+le/8gdAFtAhAtHiOjkuuXb7YzeP/2svf+3o/v1ISkCHyKq6bvq+Ea4yRNthiQgNKYhc87dMq82ArXD5DZKXcffZUuGKZNy0JKzm/Faa2yhYmxAM7Q9bdu7r0nyB3irLbafnxjrfQVgRAk9WSScV2gKlvXdo5uEaK1+ZOrhs9WunrOdcT2z3eQXPLY22+7JlZlIr9skKwr5+hkwIYS0RggwD8q86ofvcP/+nv/cbvxoKCqRwte6HodGKh6Jpvd3HdVQ39n2dFCtTa/1svclvteHIQhn4IBRKayKSUq6cobdra2J9I6MoYNPTR1/9vc/P8gwBvU+BR9o5h5t2BM45QqiL4s7tN3zsjyiK6rpuQrls7NSWIbsSrDBAM+fb4+6WQ9tvhDYn0PIVlI1aYbv1ds1NW+1qLyN9NuKzDo9l+HYvuuTFdjq0o91cZopth645vgLUAU/QHK4J9C54zCnKer0bmWCdyx/b23WirCC90o0uwUG0FGinzSXbEViHdbqvMy7R3IkUyBljhJSOWF4rAibiQBsaJfLX//n/59Xf/Z39JEYJM10BIrebt/zrFG4js47hyhRt49nZi4UuSUTWWmOMsdZYu1LDSj3eHOy0VmX+lT/43de/8RX0ISMRXeu133n+lsWaMQYIiCgR3nj1ldl4IoRAwRljxpgVV/CV1t9xWBH360vIRl3PY+WdrppIy7S2C2k3AZuE43qLbZm45cNGIXuZ/rbHdGM9sEzzy4iYxkTQrAePtTNeEt7BJfCdgse8EtUsZSvOpSu0fuzr149tpflMy6toM/lX/m1YfJ3J1kXYeo8aidmGxqjsM/vJ4N/M89A0xRgjgiSKtbbIGOOyMraqtSHIinIvjf75P/q5z/3yr/A4zEjxgPNaPRkDbWHohukXZ8EXFvG2f2gQBMaYLMuqqhJCRFHknJtMJu3M7Qq9jcw5J4Qwup6en730lT+oq8oHP5VBBMAcLbya/DkpoOQCvG1h4fRgSd+5c+f+g7uS8bquwzDMq7KNfLsvT0CZLljn1aZfrBWnb52kKylu8aRnF5KPFTceVoJvXlL6P3Zd3N4orHFOk2F9j9zlTeHBP+8HWy2kTwxbKsEO2F7hxnFsa0vbizMCQG6JANEhWgDGpfNPGjXzqi0vNtpf2JrZbl2ora2c0NLtbKvapbVrnWorUhIRG6eTxgHIWtt++6IdhbwBC+SD4s/95p2TUjCGRN40RtZaxsTuMF6ilycxEAEUdQnoiIyzGgGcAwReMDa22VM9+5V//tk7X/rtkYiKWZ2nMRGRdZwhkLHWEEPigXZLUT/bQtmnaK211r6DxhiPNjFEwR2CdtaQ807/QjImmeNokEgwJiVHrou6tEY5B0KAEHldT7LMEA12dmxeuVr3+z1ttZQCyUQIUmunXUCSOSpNGTJ370tfPn/4sF68Vavq0iuO8zGCeXA2bRcuF46AABw5wcty8ubLXzb1lDFWakrCmNvaIQBnwJlH29MfOBNMWG2dcZJLyaUzzn/m8+d1F46ZROQcOedljP/jjPHFnHbWApFP8fl92Y0aDRFpqrJqUqrCkXbOApCUUjAOQNYarZXnz/lLyAhNteScR6mtq7dVB1q8Z9twaXvVb3N4G8/mysPqRF2UwcWDcHMc1qaGR0BrTc3rLu2X/5ZPXfySCQDWmEBKhmiN8cR01nLvBuCM0VoiE4DWGAbMOWrPNbvwXX2Che2CCMsdWZfvcwq3yNUQDVs7+jYpoDGVcEBGDi/M5QwcW7zqvnjb3T3G72lNhP1bV267VoA2A22k4PY6m8/rdwfngnJ5NW6a29k7uCjbUGvToPsiHCnUOANIbu7+q3/4c+bofm8vrc6nQRAgR61rznkSh05rXWZxsHrQ2SgvROSDJzcHmj6KchyEjMAqTcZ6X3EOiI7QQDkrmKVQBkqp88k5SDa8tqfKXNVFlU/3hsNBkuiqysbjfDKpTJ0X2eTsPIlipTQT4bSoeJTwQEKIDi3X5Te/8ZXP/c6vE5CU216M2AjOWAA3nU6dsVJKIeaezBxQlVU+ndVFyQHjIJSMO20IIYhCJrgyWlvDpWCCV6puTmaEEEIIH1M6DMN1JWuFes1C3qVW+MzOQhQmVus8z5GRMWY2mxK4OI4baeL98Imoabdd4UYRsHEmtz936T4b8cTlWETNerlmxiFa2EPCMBRCNJg0NXvJ1RhSm9DxYRg2dENEKaUQQiklhGCCC8FKVVugMAxlKBtk+AI2yq+NBKFl2J55C3QJim8FHuNvCJe2enYNbbvnW4a8C9aptp3oW9C7an5EtNYm/VE70evDc0tZCwvvPA8MQ2TksNBU1JW02b/4ub9XHT/cSwfj8TnnHDmz5Mq6ImdGvQRtvW7R9x/aCoL/1Tmntfav9/kpGoaht8Q558BBL0rjMB6fnoGjOA7H0/OTs0eHo77Op3e++Vo+PhakQmaTAHfScH93IJi7/c3XJ0cnkRDOuXQ4mmlFRHcePQgTxurspS/+VmZUzUDXV/a2jYKQIzs7OSmyHKyz1iqrLZExWggeRSFjWBT5ZDIuywIRlKqJnBBe9yLGkHMmBLfOMc4BsayqvCh8/4uyXGfLZtqv8BsslrfmM7REJ+cyktH+3iFj7OHDh8jo8GBPqWo2m3nDwsnJSTPnsyxrF2+vyhvl48oUgNai/lgCPpbtcaFvNtCYCNjiFk07WH+779Da+XlvaqWUUgoAvMT3IeWDIKi1rqpKGV1VRV3X2hittUPyNTd6Q2OZ2d6jx/a6oWGXPHlsDVvgsS7vW9b8i0NhRAQgxEv151uEdf5e/9xOvDyBtjMiIhK5Zh/hmdgYQ/Jip2wtIQJn3DanIgSN454D4AAS4UTbPR658yI8jE/P7//6Z//+v/cX/3dxLz0+O93Z2yUAJIiDeDKZRlGAuHQi0aAnpfC2CCmFNwt6S4Ixc73AmAuWDcOgLnUUybqurx0e1nU+npzduHbtjddee+NLXyzL8s7bb3/l939PCLG/vxuGYV2Ug8Od/Z19bsHk47fPTp5/73sn2QSFCGRfxKEQ/Pj27XuvvyEiqDQAsO3PIq6D1tqROzk6yvJZunvo56gMhaS5wuL3Nb6/fmrVdc0YC4IAF9erG2mCiFJKWLbetAbuwrTSqEvr1rqN/IAOyrISgu+M9pDgm6+9miTJe97zHmNcURTO6qeevjGbZlEUNVvdFanXNLSFu5qczdftWK0LvtZrdIDz8MhIDpyzF5lbIqPRAbH9SrJzXAi/1Wjo74tzzo0xXgFXSvlLB1JKGXFlNSImSWKMcWSsoThOdFU3Zbd0Z71rXf29kqRrC83t7V5JfD5mB7SC4pa2ryoo2/mXW6GOz/M8K4YPoiVv0se2u55l8c46a6+cnquMMbv7TwF8vZXZZ7C4gqh3cgYYWwsAwjK0MC7KvZujh3e++as/99/+e3/lr+yPhrXSFpi11gbY39mZTaZBJKBF2Pa80loDgJTSGKO19rqAX8D9DtpLSW9brJ19eO9RP0mmk5q0fuv113/1n/73SRIxDr0k/Xe+7QPn5+cPHz5445VvOOf6/f4rr3zxxrWbqlTW0tPPPFsU4w9/5CPjbHYyKXf3B+Vk9sarr1lHtQJAkCLRZsMNxS3gyAGA1pqMloIxA8ZapQAXthtE5AKJvBZsZSCrqlLaWqfDMAQAY7U/hlal4pz3+33OeVmWjmwQSmcvZOXy+C4duzUsYRcmtrYs8xmEEGVZZlmWJvG73/3u4+Pj3/vC77zr+ReDIGKMFVkexUFd1caYKIrs4lJaWzNCXLxc/i0DbvqKAGx+/6et3DlrXRCI5bVhUdJ5IyYSkQPnyBEQMEBGRinnXBAEQkhfFBElF84bax0KwZIk8quOEIKktFoHvVDrWrKwUrUxSra24T7EJON8Hf9WTzYsJG1oVJCuDBvpc0m4ZJjGx0jDtoCAq4u8bxGW9cSllMeuCZ11XqqtucHIGHPzuRdt/ss+nTHmHBjjGCABzQUizYsQgAWwAoaOF6YghKiAmazia4Pbr33xF/6h+J/9L/58mg4mpQ5kqJQSjMdp4q98tjUL/68QkjEmhGCM1XVtrQ3DMAxDtohHyxjz0RiNMVVVsUAAWEb69Pj4we03A8lfeOapXi+trclmM2s0kHn+uWeeur5/cnKS5zn2EqfL0ahXV/rLX/rdl77+lft33/yBP/tnpkj58VGMcHY61p7sTGqjr0pnLgQSAGNaKXTEGQPiAPNZiohAF9srIgJHgZCOca11VitvtwqEJKIoCK21k/Ox1xAZY0Zpf67AWvEo25tEWrw/hwvjul2OAd7eujrnRsMBABRFxjnu7+8zgLffeuvmzZuDwSDP891wHs/cGNN+8WJ979a1/1jRgBARWfOO50UAK0R/KrBhXcc1w5yXVkqpxjeg+YmI2mfZDpaOd3yiVx5pYSgsslwI4Zwry9LTGRGttVWeIUBR5gzAaM05l5zVZSmT1B834/LxRdcMu6Re1XRzi2ZzeRVtKRutxvFeh0tZxy+jx3ZleGKdcSOfradcqf7ta/i6umqt7e3sTvJ2FQz8MrteHAgIGA9KrZABY+g0BZU4z0/3+/LB1//g77769f/of/tXn3nvhx6ez6Ioqss8DOQKOg0OeZ4757xZ0JvwlVLj8XhnNPIP3vsj5iiK/O5Gok2AqulkenI06KcvvvDcK698Y5pPj45O7t27Y62tqiIQoq7LIAh2d3eNprv33mYMrz918/kXn3/zjduvvvSV47tv/0//wl904+xklp1OzyoAJJAA6orbZAAwloAsI5hOx3VVcBEKIRGclLyua6W03+MLIZWiuq4BHGPAOTOGjFHW6jiOoygCC0EQaK0n1cRYG3AhBTfGAF/yImicRRrT1crudd3pasFRFAbSi4A0TcuytFrfunWLIxwfP8qy7MX3vOfBg0eD4c7CXnGhdTY8ueLDsdL0RhG8+SSuY64R0eL9NGoLC0RAnDtFNvj4DF5KzhMX4fM8qt7m4A3QnsGatRYAtNbWWq211x8JHGOMERhVM+RFlg1GI2+/9jX4Bbtpt8u5rU2KLsVw0+hsqGhz+iVgawwZgG3vooBdBMLxNSGRD/18tfAb3zos6LJKxwVlr1rP46GlNVClLw4QnHPABVi30YrmdURZGRUAIsiaOMZVpnsCzyN9EAfTqvz7//fPfO//5D/8o9/3Z0ptkIFAMK2HWtq8ImToudk5hyzknNd1PZ5MTk+O0jTt9Xp+5leVc87leR4ZNRtP7ty5zZBefvnrv/RL/zxOo92D3f3B7oc+9CHOeZZNx5OzbDKdzSa3b98ORGyBIedv37vPHjzsxVE+m9qq+u/+yWf/zEe+93c///mTySkEwBSQ0T5y8dWAIVjwim1VVY5ZpVRVFZzPzysBwMugKIr6/T4S5XlujJFSxmFY13WZ51ZrckhEUsp+v2+trarKWpskiUPmp3H77BgAvEOSf7C48btERLZ46nqF2pxzrbVXbuq6DriQUTqb5ru7u4iYl9Xv/NZvvf+D35bneRRFRCQWNzXb0sc5B1sVlvbILrSzlsfP8l6/XaQpReRVOdccr3ntL5tMcfF8c/ts14u8eXN8fqjiCwZB4M0vPps3v+RZPpvNAGAwGCRJMplM6roOgiCSgXMuEBIAnDNHDx9FUcQWvaaW89BGx6AVaNOkWaWurNBsSuyqYvv7IisgwOuQNLfNtmKTcQDvWNYwEQJcBD57LKwsjBs6sGmJ2PgZAMjZ9jbZ51hNWWp0c+XrWNGifj8wfnT9CQZjoFdoSZZL5vTmt4gIQKHjlgtAYrZypeMAHKKaZ4yMdc/fGPz2z/+j2e1v/vm//EN3ajwt8WYKOi/ROsWgkJD2ezavd8LEkjUIZV3VznAhqroaDofJoM8tnpyeam0B7E6vV8zOJ8fHuq6Oi+M33njj9u3bRVFwzqMoskY9vHuP3xS93qDXGzDGqqp6MHtgLQVBIBjcOrh27/6DWIo4DrVSt566kee5yMe//YV/fVrOEAA0WgbW0ZNYxZwRgjljZ2cnXOXTWWaRlUrFRCyOtIWsKIZ7u0EU10U9Hk9NUeztDMeP7vf7KRGenY7DKB3u7jGnirLo9/uT2ZgQiagoqt13v7sAVpWllCIOk3w6s86FkmXZDBgDpwWJUITOOXKOMRYKWdaKCe4Q67ru9XpKKUbAkWlTI0NEJEdEaKxjjCVJr1TlcO9QP3zwzM2br37tK88897wFO9rZm5TnURCqsq6NSZIEEZW2QRSSReucQ/CamjGGOWKMASMphTfvzjnQESIGZIQMkIu8VsCEEMLqmpzjVjvrwihASyh4kZfIBSEYsIhogZBIqQqMVXm5MxpQBYSWpKvKoiyLfr/viA2HO+fjstdPi6IwRqVpjGT9TkJXlbOqLMvz83NjTBKnjDGl1HBnJAMOAALo0aPj/f3dKh9nx+f9Z16s63o2mQrJd3d3h4P0we23rl07mIynab93uH947+ED56CX9ovpJIqius7DONGWhAystZyhqgokFwcpQ66s8bZIRgBEgnGFzluHvWEKheBCOEMr+sbGLWNbF8ZlP/lmrbLkGHrzBrQDbiEBIhCCP9X08uLxO+XLq1TrBVdW48tU27UjhjXBB48TuO8I1HW9iPXqG/Luqdti3TvnDCAAOiBtoXaA3ErhZMROTo9uXB99/WtfHP/sf/UX/g8/RJqOi2KU9lBDPwhCsnWm6rIuuDifjAeDgQMUKCYnY4Hs4cnYWiuE6/V6ZVU+uHtvnERVNnvrzdfz6aSoi+l0WpUlODJO59p4/evVV195843XvToShiFZjQtzm9Y6DPya74QQVVUhojF2PB5PZ23rwBNaaRGRwNZ1/eY3X4/SniGXVXWydziezDjne7vDo0f30jQVDIqiODsd/8Fv3TFaMQac8/e8+/29UW968tAYJcIgz6iuayBGCFrr+3dvuyC+fv26UqqYTqIwNMZURRmHURyH0+kUjHbIACAUgoim03Gv18urIoyjULIyn3LO4zgpZlmYhF6pYQiIDDlzxupaR6GYTCbDYb8qi2eefqqYjoModsaOrj2d53mSDnSldW3iXiqcIivAZgDklFbOSi7iMOSCW2trpcqqJCIhRCClc44AuBRKgdaOOULgSOBUTUZFUZC5ANBpBQgYci6SgXXOaMM5cc51UQSBHPb6J8fHSRLNZrODg53790/UuIqC2JX2ePxIa22vlwIDEPrm7p4FOjsfA+NMiPtHxzv93v1796y1URQVeS6jaDYeE9Hx+en+7t7Ozg4o0x8M86IWMsqK3DuPl7U6GBxEcRKFcV2p+w+Ph/sDHtCD47eBo7ZFpSlIuHE1AAvD0OZVnmVJkqiyGvT7YN3x+AQAesOBlLIsa45MBjKvy5AHUsyNsYIjgkOHAE7r+bOLja3zquz3BHApu+G6JnVJ2D6LrjTHVsjxBJNzpZ6VNWSj5YKILJm2NPR7ASGZVR3iEJEcOSCGjAAMQEUABjgnwblxrq6y6/uDR7e/8Q//3n/1Z/+X/6uof/N0OuslPVVVgygxuk6C8CybIpNFpZw2aRikYRBz/uDkaDaZPjx5686dO3Vd57NMVYVgmMYhWTdVZj7lgsCbfpxzjLFemlir5zcTwAVBUFUFAHAUWZYFQVDXtTEmkDLP8zAMpeCzWVlrRwCMM/JmuK3Pcm4mAwOtrUR2dP/OTr8HTj/3wovGWg1Bv5/GUnzj61893Bv+1m/8MlkVCAkiSuNwVuaIMDmbfe7umx/57j9+cHBtVpQuc4PBIAiCWTZhTCBjb7z6jfd++NuP779d13WS9gRY6xUxZ7JxlUSRcdYaFYaht7EGcYSMgkAgOSFYFCVlXmTZNJCiLsu51x5j/n8C77bCBr1UcmGqKsumQFSXhTO6PnpbcjGbHkdRYq0tziaD0bAoJoMkdkoJBnEYGaXPT47AuigIbfuGLxEgIQCzACi8p59zLpBcCmYcgnEBDwzpssjIal2KXq/HGRI4U1ZFXcswyMYTcCQ5e+utt7Is+4Mv3fvw+z98MNqpZzpJhnEvnubnVVk6Pb7/1lky2HnXi++9cf2gVOZ8kiPyew8fHB4e9nq9KIrefPPN0c7OC+9596NHjx7euTcdT4zSO7uHcT+oqkqiyIt6Npt5D0Tn3NHD49lskqYp59wZqko13NmZzjIiQuR1VQFAHMenxyf9fj9gDK0d9VJV1g8e3rOk9/b2bF2V2UxGoQxCsEYIVlVFe08GgEQuENwRb+Zm2w67RSxu1I0WZS+lNl3tPeUn0BEei0GHzXgtW0ephgRPLB8vjx4R+StqWm/RDP3JFSNkAOjj/xETtTJ5bXoxWGt1le3EYvbgrX/y//zM9/77f/kD3/Wdt0/POLDZw0fc2iAN8nwagdTW9fpJVUzOjx59+Y3XXv7a16bjCQ/c/OooURIHjEipGgk4F96qTa0wy0SU5VMAEIIJRGO0EEwbCgOulEZroijyIp6IrDGMMcFC78TTNug80TOSbB4O3ZrXvvEVLsUrL38tiqLdw6e0rsEZVZVf/t3fSOIwDoO6nL7/w++uy2p3mPSSmAh/63d++2tf+sL3/8AP1MVEinB6dhKGYb/fN8Zk2aQfiZd+/7ff+973CqIHbx8xLi0g57zXHyRRWtd1mqZSyqpUPJBhEudlMZnk/o62JRdFkTOW/N0SZS2RIauUslZzzr0prdZW1yUi9nd2UHAy9vjREe8ndXY+unGDXCW4jsNwPB5Pxso5d3d8HkrunKuKkpxNwkgKVuaz2ujRaCSQTU7PyjIHAO/I3Ts47Pf7gQyzLDO1Bs61NgoMmFkch1K6ssof3X14DBCEYb/fD6N+QDQ7O/OxxBHx5o0bxqh7D92v/KtfOxjsPXVwrcyrw+sH+zeuWYskxQc/+MG37j7417/2q089+9zBjaeNddf2Rri/Mx6P4yDUdd2LIlNVs/PzJAief/p6mc+OHh6bMAyH/b0b10+OH/SjQJLTeaZnYxVwrXU/jtOQ66wyOrZlebBzXU1PB8OdwErOWZZl2uXF+PyVr375Pe95Tzoa3Xvrzvnp2Ww2++B73zeUyawqbKlClKqsjDE7Ozs1aCEkIiJwIZkzVqnKOcd5uH0yrsA7Mv236YZdZuArQRf6WypaEW3bF4S26fAy6G3Mtm3bTm3HBRQCEJnW23zuARr/WAJggMAEB8v6cWBUUVkXRDwUXACdT6af+7l/eG13tP/srdOyqtA8fX3v5NH9d928ocfT22+/+dpLd95445vHx4/KIkOANJJWOykZwPwk0VrrEBln6NCRAwLrLABwxv1xYRyE1lp0RGTJh16AebQFAPAmGwD0iqRSStd1bcEBNNmEEPbqkd+90R8A/HXks+NT8+BBr99//RtfTdNUBLIsy/39/SAINLnCuH/9m78ZChEFoSOzu7u7t3uQl8W//NVf/r7v/f7ZbMYYy8bZ+PSBP5YRQtRFffbobpSkacCDMCBEQk66PM2rNE3PT88c0MHhdUPu6OjIODsa9ImIc67y6uHJadrv93q98XicRqkQQnDmDxbsImBlWZRxHPfS+OH9u5Izp3UQirOzszgajGG8f3BQVRWi2Bsenpyc7O7u1mGZ5zk5Oxz00dFsOp5Na8n4+dlRdnaCiMig1+tFMsjz/Ozk/OTojhBitHOws7fX7+8YYlprIcO6Lsfn53WRS8F6aeqcm81ms+n05NHxzs7OcGcHEYc7I2vt7u6AiK5dv/VHP/LvvvSl371/5/V+Gt+++9qDk/svvPg+g/K1t+7euHFjtLP79Ze/cfTw/nvf+95RuHM2zlxZvP6VL41GI4545+23hsNhVVWnR/cGcXzv7tv334ifevZdN556+vVXX3FWn9x5A8BZpXOqtNZ80Du+Pb579+6tZ99/48YNzM9dfnb7/ptHR0cvPPcCY+zUVIj4R973otXV5371FwHYU9dvvO/bPjDO61deeU2T2z04BGLGOUswnmQiEUBMKeOc5lYyhiCkCAKjFCxv4OanT5tm3uajFc+HV2HabdLwHVG4Ou2GC/W43da6btz8usWOfyWbwkZz7JZurgTNd8YhR7rE3YzF+ZpjgGQdED/LsgBAAyCpqlK1gv3rPXNe/uzf+fG/9J//F+m165SIe4/uDKT81Z//p5NHD8ez8en5WaUr5yCJhTamthosEFHai/v9/unpaVVrKWWpHEfLATifu2QzhpwBEehaeeMtIjDGyDnBQUppjX+uxAghnCNtTMBFVWt/SIZ+R+cY4BPGN+VCOKMIoKzy/d2d0yOHHPIsu34wEFwWVWmtvv/wgQgiZBwRgZgFmOV5P+2dHJ+fnp/2R0NE/IPf/93BYEBE0+m03+8zxDyf3bx5sy6zr3/5i4fXrj/z7POVqrU1o+GuQ5CEoIpeHACxYnIqwqAfSUdCkAWliSjlnEcRWGOyWRSF4+OHyHkURWl/EMcRIRjniJABKlXPJhU4ipLgdHwm0e0Nkunp8cOze7Pze9PZbDqdShl49xQMw93d3Z3hKCCLCHvDgVKqqqqDnWGe55PpFMGZKo9kQGQjgflswsLwwRsnX/m90/7O/gvv+UCSDmZT43jImUwGO1JyUddKqZ24L6R8z7ueffPNNx/duR0m8enRAy7EKy+/9MEPfRg5Tmen1596Wsb46OE9CkStq6999Yth/+CZW7cePHhQFvkfef/7zs9OPv8rv/iNnR0Z9wIpsyz70ulxlRdENpvN6rpOe4Eq8iSQgYxuv/5ylKSqKqNQamOkEEKIr2bTySS/eW0fEYVkv3/nNSYEMLRA3v//wTe/kCTJ0898IEmj33/tpaoq9vf3oyjpRfTWay+dKNsfjIZ7O+kwivtRRGS0Q8RyNoUgDHiEMkDOtLNaW6WyKAhgs2J0qTPoFcGyOAZ+0p1yI54uwfkNov9DWDr/B4b2W5hP37r14M5tRwR825PBCEhg/W22QHJJ5IxWoNMw1M5obR1jPBCh1FmRG057o+Tv/Z2f+MH//BP9tE8I33z5paN7d45P7hljjFEcIJAMLA3iRCDL8+K5Z54dj8/PHh0BQhiIqtZMSGM0LM7UGtcTax1jKKWc22WQlXWNAFWp/AbZi05rLTlnwRIAD4RRBgjIIQABXXjwXQmsMRwZkOv3+6qqRjtpre0kq47PJlwGURTJMCpmubZlEEZE5JR2RiRRPJ1OETEKwun5+P3vf//Rw0dZlgWSSykn4zNrbSj5ydFDa20v6Z88vH96cnzj5s1er/8oy+q6JsavXbvhKlZWFedcOxJCHB4ent47JqJsOotkQETj2XQym45Go5u3ntbKVJzprB/FqQiiKInTNNUSEeOH9+5yp6pxXo2PTx7eOz05QlcA57Mss+RmRa613RvtKKW040KIXtIf9QehjJCzNO33R8NeLznY371545quytOTo/v3bmtVR1FUF7lSKpA8FVyPj778ufvpYPjsc8/FuzeNVspqqzT4C3ZclESFyd/zrmffRIjjGBH7g9HZZHz/zpuCRx/69m8/m+bPPPfhg8N3feWLv7u/n+STc6Ozs/tvHuzv1yr7/c//Rn/Qu3n9oMzyrCqcc2++8U3nnGRorBr0+tzR3t7OcZ2nSdjrpfWjk2xS7gz7DKwyJRNRLGUFbqcfpqmsy4qDIFNZAyLgzmhG1Atkdn7GbPnaV38vn2VJEgWhrCdHShuUAed8nFff+Z3fKRJ38sZ9f+coktFoNBod3DBVoamyKAiYCHgYCuTSuZanekui8eWbrA3QJg+Tq8I2adg0c8m6NgrEy2C28YRkpV22hs8l5f32Rrt2zRcqZOsA4Y/8kT/y8M5txrnbcqKM8wsqCI5xHgSB0NqCCxnL61oKMADKuX4UmNoqa4sQeq46jOKf+8xn/td/6a985aUvHd2/q/IpcTabKQAQAm5cu3ny6ChmUZUXN69dK4t8Nh3HUVRrVdUGADjn4Ix15NzcNWF+JWNx8qON5QzDOGG1FkIoowSicxQI4VmNc06OOAJDQWR80C5/N4LosT78m4ExBtbNZjOOwABu3XoW79ybqjJA7piYzbLBYFBVFZDJM8UAJBfnZ+dBIKSU1hggOD56OByOprPxeDw+PDwMApHPShH3hRDHj474AYuj0Fh6dO/uOElHoxFjrMhm98qZN6710j5jTBl9/uB2mRcc0RmbC+GcOzg42O/vF1X14M3XnHNcBLMktQ7KWgkRJL10MOpHUXRydGyNPjt68PLXvoxW96KQLCS9PjdSWz2MdiqoTh+OAyFkDKrSp+PTIkx2d3d3RnuWw/gov3tXeYcSR0ZyzhAZg6oqeJCEyJ2tq2xKTnFw+dHZm7OHIh4iESIWZcYYI4cyDI1zhcWvfvnLcRTlWfHcc8+98sorvX7/+RdfuPv2N/7FP3vtw9/x/dkMb9587iPfEf3yP/vs4W588vCRMWays1Pk1SSbTc9TAJBBkFdllk05Jwam3+tPppVgxECfjc939/bGx0f5LIvjtNeTRqlal3HSj+OYIXNkgjBYHPISGL67uzsrclXqOE50ZfrJIJvkaYjPXN+fzSaojXa1kMFkMs3yOtXwe//iX6S9KIwSa10Yhmnav+Oc27+W9kY3nnrm2vVbQZKCQGNNkRcoY1wE62vfBN84kS9zxnIZ6JSGKxfjN7bdTmyfgi8d7nT0gZqbUi3pY4GaF0Swo2crK4BbduK5+LWj1AUC/qhpuY9z36XWht0Y19Dog9/xJz73+d+ZnD0KGBjGmmtJK/cfaHGARURlpQAAhdBkEAAdC8GRgdm0AHScQ78MAJyFWpvyH/y//87hzafqrDqdzCpnAIAD7MQDW1cM6XR8tjMamlpVWg129rKiypUDhH4a1XXd9ItzbrSJYlnXtWD+NqFDxrmUWV06cBx0LFkBjhGQMhBIJkVR6hBgPwnGpWXAEByh9yh+ohMUAASmrQtCFoZhYHQSBNnZw4MbA3HGrLWmyvZH/aooqVZJP+nvhQ9OZzJONNK0qPfSGJ2OOd/p94pimgSyBDc5P33q1q3z8/NKKUJkDKbTcRAEoZSMsWpaHc/OGWNJLz0Zj8MwLIrikdZcyl4/1VobbYMgmE6nQRAURXH77VeHw+FwOBQMx+NxXdd7e3tBEAjEOI7Hb03eGo+VUuPpjEsxns329w64TIQQSSCttaPhcHd3/10vvPvhw0enZ+OqUo9O70bIx5OpDeI3Hx6fTGZ7uzvPPHVzb5TmeV6rEsGVykUycMbFUWqqGhGfef7Fe/fufPP1V69dO3RUG8Dpw9v7B4dFXZ2cno9Go6zIQxnUdRlFvV4cD2JhMnX71a/FSe/tR3emZw9uXr824PTF3/gnhzeuv/KFGTinsrNv3J300vj0/MwYwwNRlvnDo5MkCR2wNJaSYxL1j05O8rJiXNRGSxmasgQpGZecC631aGfw6NE0CqI0CgMp3nrr7V4vOdw/8HGC87weHgxPzk8454NhGgjpnJzNZkkk42H6YHwKAHEcG6XL2VhKebA7FGGAiGVR5LYgokAKjWWvH2eze9PJHX32xtvfkDeeeZfh6f7N53auXbcyrFRtHHLgzkHIBCeoy8rG3DnHkTEuHKEFdMSsA0k5F43QdLiIuiIZB4YA6Bzgku+wW/v3cbphW+he1bnvkqcfa/bBS1Z/NViXes3XjcK06XL7QaUwDL/zu77787/+q7oqvJ86te6HrnjVr6wZHNABGecEoBBchsJZ4y+b1srEPZmEQVnX55NZbfwJr5MM93ZHARfnp2fW2BvXDnZ2dx89fFhWFShV1pqB34VwdMQYt+4CVX/TIAhkVWtEjOJQKwvWxVGI4ALOZ0UlGTBCJIsOQgmxv8lwyQvujwPBhbaVUUDWSO95p8tSKzK2lyR5rvZHw7fGk6dvHozH47SXhGyWT87jJEx2Ul0XDODawYHkTHKW59mglxLR22+90e/3e0l0enoax7G1NgqCPM8BIArC4e7ubDarisJqXVmLCHVdhwB1UUVJUszO/O3c2WRijEmS5Pz0tCoKBpAkya2nnj49PZ2cj7XWZ2dnzz33nOeE64cHRV2lcZIVuWCxUjUo2ev1jo+O6rIsy/Lk5Gz/4ABII1Eax6qsjk6PJWMUBWdnZ04rY8xg2HPOOGO11mPnOPAzOtbaDgaD3/iN169dP9g72Hv77beHo/5weINUNZlM+sOdp5/un52fDwc72tSp6BNhXdcTN+GcIeIsmxhLp6enD+/f293dNc6+/vrrWtm6LCfnsySUtVZRFNV1FfI4ThMHxGWIyKsqA2DTrBgMBtPxeDDozSbZsJ/cuHFjNptJLoQQo51BWZZxGKVp6u/e7e3t+JAZRVGEYZim6Ww229nZkVLWdV3mhQ8FIqV8eHSUpomUMs/zujSjUa/XS8qyfHR0HIfCO10yxoxRWtd1XTpgcRwX2SyI4rdefklEyaO3Xhnt7L34/Hc99fRTTrJxkbFIWmHzunKhHXEBHJwzRldIIOYXMtGywBhDYDnnAMw5i4hhGJKZx5u6jOC67E754t/uA9m20LwkNHrdhXL5TjnKdB2SdOO/sctSSqgWOTl74YUXvvh7v1NXBdukCK/0vf3VISMgh0yTY9YxbclZAEJADZBywQS3SldZBlwaYySD4aAXClFkOUM4vHGt1+udn50UZVkpzRhaR1IyKaVkvLqIBgqIyJh/zgKEEFhr50gyrmzlCBiSqTXEnBMEQUDKOEfAUDAeBaHTmpo3sqnbIeASoK3hyJAcR5IMVV0GgoswtMZYpa/v7lXT2Y29XV1WITJm7PM398uyZFLEcfzgQe4coNXTcdHr9cdnZ6PBIAiC6XjWO4iRQHLBgJAhkRsNBo8ePdoZDp2zRZELyYw1+zv7Van4YHB0cuI9aXq9NM/zw8ODe/fu7eyMACAMw+l0ygDPz8+11v1+PwgCb0V98ODBcGdgrZ5MyiRJlFKjXs8/C/Ho0aO333704ruems2mVqu9/YOjB3eefvppzg5Go90Pvf99xtKrr776+muvj0Z9QDdIYl0W5+fngRBBEGSzTIhASmnAPji6Fwjx8OGDg4ODazeuv/7anevXbvb6g7OzM0IY9PuzLPNPOEShtJbyPL927Vogo/v37w93djgjrbUzejqbFHk52t2xoMNQvvji848ePXLOpWmalTnUtZCSc15VFSKXXFprh8NhXesgipKkJxgHZ8k6JGCMXbt+IBi32jhug0AoBUqpxr7st65CCCm5UlU2ncRxnKZxVVUAbjabHOwfnp+f13Udx3EonXPGX7gc9hN/2ELOJElitPGxSAAgE0FRqJ2dfhAEu8LNTs4fPHj17ld+WxPtXH/68NaLyd6Ng5vPHx4+ZRxqNUXOHaBjJBgKjmA1OEMkhRCARESOCJE7IqNMcOm7c7Dd33Bdn1rZMq/kX9lEz89hLo2KP/jcKE+vag64fP62BGw62GWJcA76w53rN586Pztp+/TBJayrmhx6mUjOOke14wiBAEIQHIwlpSpCDkjk0BKlIUvjQNeVqstRf5CEwXh8Nh6PlSWHIKSQzIZCckBrHbXeOEZEKYU/LyYixoAsKKX8WBhjrANwFAsMuFBoAYGsAyIQrlTaIIe5PRa9AfRJwXEkRpBI3kvCwmkRBkxwx8AwA7pKA8E51xIr5ga9yDnTj3pZVghndnsxAOMMiGNdFP0kkZxLzq8d7KZxnOf57mDAOFRVZY3CQCA4coYc76VxFIvpJNN1BUSHh4cAkOfF8aOja9cOwVFdVjeuXT85ORkOh5xxBhgGIol3yyIzuh4Oh1EUXTvcH4/HeTZNkoQhDXvpo0eZDAOnq7QXf893fffv//7vl3ku0IUCwVT55PR2nT/33Atf/eIfOOeu3biuqzIOGVkdx6Ep6zgKcTSaZZO6rv2jFYi4szO4ffvO7uiAMXZ6enrjxo2nn9p/4403PvLvfJCJ4HwyPT09P7x2A3G8t7tbVUWv1zs/P5/NZs89t/cd3/ntDx4e8UAeHR8fHh6enp7ujobHJ8cH+4ec86Ojh2maGGO4lBFFiGitlVJWlUIGSdSfZrN+mp6d3eslkdY6SZJsOiGwSRpxBkbpvM6IbC+JkigSTOV57ozyZ25JFACAM4oj80HVmmni74OPx2PnXJIkUoraFIwxzrkj423TQSBUXRdFUVWmnwQ7O6PZZGYJRCAeHs8Ywvnp6eHucHfQL6zMivzhvbunxydhHCMP9/avPffsu3bf/52CS+QcQRoEbQ05kDxwRsPi1Re/S/NNg72Cc9hjQjCsGwevOieo669loXuCE5sLrNb+2FzFpEagYwu293RlAUBEH2RwnsjlYLTzke/+o1Gv3675cpgyAmaAHAAD4MLveBgACCm0s8ZZKaVzTpuaAURBODkfZ9PZqD8YDAaTbHZ2do6coeCcM4FMMu5DMGmtjSVEkIL7mJ2eDzzy6CAMhVEaCAIhJONpFDAOkQzIWh/riSw5B1pbY8H6p1d8fxej8WQikRxFCDtpevNw/+mnrt842BvGyd5w+MzNmxKpH4dgzSCO+1EkAQS4YZoO0zhmLA2DNA5JK1OVWTbt91POoCrzUS9lznJyAshqxYB2R0Mk9+yztxgDxsBavTMYXj/ct7pOkkir6uaNa1EY9NIkTaLRsC84Dge9/b0dICsF290ZItk0Dp++eR2ceXDvjlFVL4mG/fTdL76r30uSOJycnx7u74acSc4e3LuLzu7vjHSVxWEgOStm02sHO4K56XjSi4IkEOVk3IuCdz3/zHRaFUUx2h3M8qm2KkpCEXBl9DSb9Yc9XZejQeLIIKLgqFUVJ6GQ7M6dO4Nh77lnbjHGGJIXnkWWT87HO8NRXRaqKmeT8YsvPP/o/j0pWC+N9/d2sizbHY5Ojh6NBv0sK40xVusyz3yADK0URxYFMoniMJQcIcuyfhqDI3BWVWUcRs5Yjmx3d2SM6iWRYIxzPpmc+1U/juOwFdZMa63rmgHEcVwUxWQy8XNNCMEZS5MkjgJnbKV0peq8LMaTuRrIcf6cAwAYImUtIhrtmAxBSgjC4xzePs2+cedsUpbARBIFEXd9TgOmpnde+8K/+vlf/6f/7Rd/5ReOX/0KL857aCPOJeMIPI1CgYDOIhIQaaX8SdpGO1jnFIUOGbSS2Ez7LSc77X/bX7dD5/HLpftw+cxbal6XyD5lyd+QobHufR/40Hd853ezxbtU7Y32eusXYpgDgLPOEoCUIggCQFLKMQYMiYiiKGKMKW2dpSSQWuu6sr1eb7S3WxudZQUBGktRFHFArZVzFhGcs7XRdrEqOueMdY17jdaWMYyDEBkRALL5WytI4J+y8+80IYDwwdzZ/AGsK1G1g9YOAdIAmDNaVeRUJHgSSIlOAKVJdHZ6TM4WeRZF0WQyOT8/Pz89C2UgOHPaSIAokEQ2igKra12XDJwjM52NBUdndRKEu4MhR6yKwigVCBEFwXA4PDs90bXinBtVjc9OpuMzIhvHYV3mSBbJjs9Orh3slfnM6jqNwzCUSlXGqJs3r/d6SV2XvV7CORZFIRnfG+0AAFmX53mcRNdvXHvw8A6BvnXrqX4ac6QoEJEMRv1BkWfXDveBrOBEpo4Ef+HZg3wy2d0Z7uwOh6O+lBLQ3bx5fTgcKGOsNmmc7O3sOqtDKXpJbFT91I3rQG58eialHA3647PzUIrd0eDDH/qAYMDAXT/cL/OcAdy78/aHPvj+YT8NwzBJkv29HcHxcP/g0aNH3/GdHy6qgjE0xnCgUHAfjyuUUjJuqioQnJNLw6CXRL0o6qVxHAWj0YBzzKbTIsuybBqGkqxJorgsc2s1gBOCScn9/SJrtXOuKAqrteQ8CgIfY0kpBeAmk9nx8anWOooiAOYcDAZJIEJwWFUVOQyDOE1irfXp6Tgvax/KIYxkpU0NMK1pZlg9m4CtRsNeGAUPjh4dn50bJkoD0ze//Nrn/9lv/eO/9+v/4Ge+8M8++/DL/0Yd3dZnDyfjM7/CWV07rcJQBpJXZd7e4z4WLnbK7SK42LFu0dq6xMflTYfr4vVJZl0HsI1VLbfVxrKNTBslKaUtF6UdlrVOk/j9H/y2r/z+b+V53rYJbF9U/LVlACAAS9Y5DgCcQRJHSmsAiON4MssRIQwkQyxKvbfTPzg4UMo8enRcahsGHDgHA845JGKcIaKyRpv5Iw3NeU7zbDHnGMnAGMMIOIBA5oypifq9xGljHPBIOGMBIAgCZTU98RHyOjCG1g3ShLQ6enhXa91PB2ChtoZzXmmjtdYm6/V6PqCWDBNtbBhGWmfWGIWorKkKu3MQTmazKAjSNK2qSlV1HEbOuaoqhOhppYf9njI6ioKyzDnnSZxqraMgVEqNRgMAGPZj56xSinNe19VgMJjNJnt7O1VVMQb9tNfr9Y6PjwXjB3v7x8fHZyen+7t7r7/xphCiKIokScIwDELpdZ+yqsMw9LWlaaqU2tvbG4/H2lZpHI4GvYO93ePj42x8/sytW1+bfMOpOkQM+72nrl+7f+8hIZNcxFKKaAgAHNmzzzz98N79qsiee+bpe/fuPXXz2r17D6qqiqKIIyHZ0+Mjq/SL73rh61//ehrFSRIro41WZZFFgczzWRSET9986vXXXw/ioKyLyWQyGAxC9JevKYljBBifT/uDnrWk6iyOgjCIqqoaDAZVmadhmmVZXZbWGKVUkkRIMBoM33777V4/9a9N+P42z7AAADjDBZeSDwY9rfUkmwG6MArLstzfHwBAVfk3viwQY+iU1UII/+RfXWtELngQSFZrRcqZuuwN+rFMLOLZOJsVpS2CHc2n2ZRxnQ57zplZfRwOoqeHz2SziS4LfX7v4fSEdOZ0qUjw0bXBaBSGoXFWyjCKA84Fkm09lPBEpyhttW7LscBj4TJqWvsUBZ7oTLnr5HpdKG9UPC+k1eJuTHt/DQDGqHaBJEmms5m3ttR17aMhbJGGDXihwzmSJW3IcBULEUdhmsZQIHOOMVaWdRyKfr83mUwOD3d6vd75+eTk5NQQCI4OMRCiLmqyJCSXUjJAY8gRyFDSvH7urTY+2KeUMhDybDIDAClYGIaqqpQyo9FocnaOCFLKWhvnBahRZj4Y34q58IKyAJBEcZoIY8AEMpS8qqsojrMsE4GM47hWRhld1Ypz7sBprcuqKooijmMZBFSVOzu8qgtHBlFWVVFVVRonjEFZlsNev8xyxhhIgQRZNt8VCmQOsNTKB/EPQlnXlRAiDqPpdBrHcSDkbDbr9/tIkE1nURzOsmmvn1ZVBQA7u6O8yITk+7t7ZVnOZjPGYBEeVROA1iqK+lEU+ksR47PzJEolD8KQsizbGQ5UVXKEKImrohj0+sVk5rSeVTUaV+fZ7v4B9Ad1VSfDZDgcvv322zvD/s2bN+/fvTedjFVdScb7STzLM3BE1hSZjsPg7PREKbUzGBofj0ObOIzKLCOGcdQbj8dEtLu7S0RSysHuTlGWTtswDLNs2kvSftqbnE/TOFFK7Qz2lHHOuSQexnGcTU6rCjnOud2f//aS1DlH4BbGvsBHaPeByufP6WEthKiVokWgwzAM/eFJFAdVqYgoSRJyWJaVUjqJI0QsS0WEnFMQBFpba5UMgzB0oWSo8lo5xnG/H+W1epSpojgbxixBqScm5nEU7EHBv16cj5Jgf/9aPj47OT0Px+O9pzBKenvXr+V5XmRKhpGyZZZNZRgNh0Nr7OVPA0WjA/rJ7BwgkiPjSM5Newu5MA9dzpdMjc05SVtLgpa2uB7NcdGQ8yqoV+IuPIF85pZntUejHVN3o6K6EK92od+xlfRmR7ukjS6Kw6IjuHCBnLeF/AI15xwh8uTp59//J/7dP/0Lv/ALYIiHoalKWNzn7RIjCJIhMiQFmjMsa7p5kFwbpK8fHcso4SIqKoUODvcGVVkLwVLJq2x2ejomhuQgSFLnXFVrJ1zEMHAWrVASFUASSKFtjaAAnNYhUkTkimLY62da56pmAgEgiKOyLNG5m9d26nz6MJ9JQlFTph0HkEiMQMGFHGxTaZugZxJIMwCav43A/GCSw2f202Go0SgA4SAstekPo/NplSQJADDSYRKikMaYsiw5Y0B2fH4ShiFjvCoLMoYzFhD0e/2qqsI4ZkKS1k6pYZpms5k3P/VlXyut6joeDrOz8QxpMBgIhoyxulQyjizjRuna2N3RsCgKZzRZIxgWWpG1AuOyLElYMpZzzgicNlVeIIFEOtgZcs69E8/Bzk6e59xa1NppLYKwLIqdwTDLpojIrAnCUHIGPMzzXHLWi4Ipc4yjrY2q6wxo0EslUi9mkZScYcT5MI0np6eHh4dVkR/sDJ++di2blVq5XpRqpeMwnM1mlou9/QMyhoxJ08RYNyvyvTS2pQNgVZajdeBckU2jpBfKoM6L3X4vn03DkAMkYSh1XSeR4MxI4cBRwCAvC4dYT8e7/T7nXLkaLDJL3LGeCHtBSFrHgazr0hqYlZV3XQBrBQDVulaKh4HWmgE6Y42zYJ21LpQyYZI54Egy4LquiKifhAyCXBXWEGNMG1NWFstKSi4CLgTT2maVIgJnwNbEeRkGbASQWTjKXartrpAMq7KeKnB7yagalzNGMkkT6x7ceev47tvP3noO8rNwsJseXguGA40CypJby5RVUcqMAV0ngiTDusW4RLA4OJlftO3UDS8+d+8uu6Ctl3VtsRlj1PZuceTQB4lZsjxurKENfBHTeJFtfjLzuCi8l4WNtkUA+MC3fbs29l/+0i+qIheCWeP8I7ZtR+g2MCRLZA1wZMK5w1GMnI3Lam+0c54XSlVlWaYJF8iUUmkciyC8+/Bkb3//4dFJlIRANs9LwQERRSjJmtpoKEECA0cyDpQmtAYcMYQolLtPP1UaunfvPqB3uwF/HJQkCee8yHLJOTPOx0BMY0FEQRCC2oz8NpivPf4zW0TJdgIcBxIMmbOckRCSrK3rOooCALDWCo5cBIhoamNqHSSRTzfG+FPXOI6DICjrKo7jXpJWVVUakyQJR8aRJUkM87dB7OI1QR0EsixzZzQ4R+TAWbIGyTEgZ2yZFwigqrrMixkXgnMGCI4kF3mW7+/v53leVoUQwmrDORpjAESvlxRFppTKsulgMCCynHNrLTgrpfQHX865vCp4FGbTSRiGcRhwhPPTk0EvretSSk4kwlCWZcmY52cqslkviibnZ71e7+jhg2eefgrB5Xk2HO0HOyOtNTkrOAukcNYIHjCOZDU5qZWOw4C0jsIgCALmcOJMXVae8SxRHMdk6fDwMMuy6XQKziVJMhwOAyHLvOBRIIRI01Qgm0wmRVF4B0DBoDcczqZjzliWZXlZxGlCujZWIzmrFfmDWkBEZAzRkZ+ziIgESOCArLUYgjGmrmvnHDKQKDjnztgwDK2wDAUiJyLkzJNiMpkBQBCIJIqFEFprpRRZOxolVNa2tnVtpg4wiXpRlIZYTysmsSzLorBSymvXDsqsfOutNx7OToWMbzz9wvMvvn+wdwNl6ATPrRrkBkNZSldwBMajrby8JA03HALAheOeV9+6lM6uffGKVbH9eWVDxgjcYqe8XRpuMU22C3Yd++AVT5o2ljUYfuR7/uT56dnnf/NfcXIomDaurjtfU3JkAAUQCsYi53YSSZydFkroWVaYW8+/680338wK2h3RcDjkIjo5OxcyOJ+MR6MBY+z0bJyGgpwZ9kYWNPKAa1dOywEPFJpZVWnLGLhE4rtv3QBjzsfj07y0AAGA8G9fKC05j+MYgWdFqQl2ktTUSnAwxsgwLFTVhfxWMI17IiBrltkEIWIOyL/nS5yTAzTaOaj8+1YWyFntnENwSSxAMkDmLBhjAExDaqtVDZQkSRwFUgzSNJ1Op7Wy3obFOHrbOTm+cGSr/fNRAMAZ8yo/ZyyQvCxLKSVnPI4ChsQZlEXBOVprhWDkVyujhGDGWMaCMAyNmbvLjUajuq7zPEdwzlqYv2FtyaI18/D6p6eno9FIa727u/vo0SNvtWCMRUGoqto/gzXsD7TWp6envTS2pnrPu1+oi/Le/TsuTa9duzYdn9X5lDFWVxVYO9obDZLQv5Czvzea5pnkrNRVGkd1lWvjbFUZ47TWLIJhkogwmM1mVuuqqupyxhgb9BIkV2QzKaURPIqCKi/8C1BhkgRBYBZvMVZ1ruoiCAKrjX/K1SgtZEB2frnTOcfFXFzIMDBKIwOByBhy5Mig8Tlj5BgCIHDGAQictVY765x1hIRozOJZK61pf39UlmVV1VM145wJxgCAMcZDGmHASE2VnWpT5zmI3m6QaJuFYWicAyRXV0arQMjBsFdTXp2fv3Xy6OgbX927+dxz3/adO8+/UDPItAkl44yjZa5z5zYHsTLJvWTwEuUy5yErMmtF9nUVb1vZvL65OMC92KRSy/tvCwLN02iLbPPHdPwh7qa2EWDFLub7vBlV5887Wn30IOK+tfX7PvDBo3u33/jm6z4xCENVl2t1LJpFAibIVgeDMA3lRNuzqpa5+eCH3v3yq28qQ4c7faP0/vUbt9++W9bKAQFgHMdHR4/SKDBajUZ90O5kmgUxpGFERIM4qpjLZrOABWnKeiE6VZ0enwXJgAlBRguxcBtwgAKJqFS1MuAAQimmZSkDoSvjpNPWArtyzP/VsfFvHyNe62PAwWrjnPXPrRJZQCBjnXPE/asmzjmHnMdxWBniyJA5L2fs/MnzijFW5HldVf7M3dSKEYTB/MxECMEBg0AyckrVGIXeB9N5z3nGvQoDRNbWaRQmScIYM3Wlq5KF4bCXZmVFRPv7++PxOAxDiCKv/MRRlGWZfzYgTRKGWFdVOBhoZRljURQCgGUAQIIT51yKwJrAWR2FQV0VaRJlWRbIBMAJjlEo+70kyzKtKkQc9FOJ4FSNYWB0+eJzz85ms34c3bpxbTbLgkAMeyOlVCggz8teLIUQqi4lQsghkhgI1KVlZDhQqSoApqocGTNaVUWeAoLWeVGEYRhFkbGGnEMuVFlZa6MwsNYqpQMppOAMQWudZaWUPC9LwQc+XEIaxbVW4EgiCMG1A2vJizznHCdEcEiEgEjAEJEzry0ZVXPOQ8EBpCFnrQUkIbm1gACccUQUcy840FpPpmP/2lAopFe6ldLGQCxNyOQglMbh2JrK0dEkM3m9tztwZPI8CyMpEOu6ljFngjGDQRRETJCp773xtQcnD983+WMf/p4/nqc7DNBqGzBO2+ILAFwy9jVc5aR4rWBTauWc4eKlbVhWG1dOJC5zGnMVhOZCv3VUsr1fbuPnutaS0eH1m0898/xbt9+w1gkuVMc2GQC4BKstOhoE8nB/V3A4P36klPvAs4fOuVyZYT/p9XpVXUyn07Np3huknHMi0FprC4xULwk4khAyksAFEwwTwQGoKAoCiEJpyhyRQSiMA12rUqleEoIyxlhECCSXQviTH0AQDKw2nPOq0r1UaF0LxtrBHC8LF6PH/V1zCS7hsN9P0SprSSAjZ0xtGGPAWdqL67rWyhD6t88ZkbNaIyADIkTGGOfACK0hY4wxLpBcax0EQVVVxSwLw1AI4ZnEe7H5r1VVcc7DIHBWz9dIcM5qcsY5xzlGoayrgjEGZL2LXy+Np1MVhiE6C9bEQY8DGWPiKCrL3DkTRYG1mojVdUlkw1DqCslYETEi4oIxQOdQSqmMvnHtYDweV0WWJEkah/lskkSBEKKuK7I6DqXVsqoKREyS5Pr+3tHRUZlPD3Z2yrJEoqrM8ul0NNwpyzIOQySyWtdl6aNRTKfjpN8THJIw1FpLJGQQBVIw7iNTaGUrVaGzCMQQemkCAAzBWWOthUBqZYwxUdgDQK2dMcqfF3uPmUE/9ZG+giAgsEWZ9fv9Iq8kAyEYJ7QMgTOttSECdByIIzgkIAuAHBEZEJG1BhkhAWPAAC1nUkh/Kg18oe9bRwgMuUO2v7Pjb7l41VJyMej1pZTT4ohblIGwXGqj8lrVms6MCosijiMuhXPOIXLOvf9ZmvSU1eMq5xziOCqz0y/95i/fe/lr7/vI99184V3p7m7mdK1NspWXt50pr55+zP/bsPNdyX8Zk59A5nBJo5yfZy5OXdoHu+vItLfDF8cyAIjzp2M32g0R8aoivctuGIUSDKKMvud7/xQi/sav/6qPnNoV/so64AQhuOduXnPAxnk5ztzhXnJ4uP/rv/f1pw53gYsHDx5cv3F4cn6GAHEUZHl5eHh49+7dXhRwBjs7O7quHp6cDAZRGLFQRkE6ygrlKtgZ9fKzWSpgNBwSkSE0ypKDiKMRAshJKaXkninzSjGAQS+0SlutkQHnPBZhlVVPcJTcjBwBARAHl3IYRhBzqI0j5CgkGuWMIhLefElETCDA/OFj55wD5DIgInSOEBgTHMEwg4aqysWxsErNx1dwhzDJZpEUvjvNGy/owzVyNKY5dpsH9eEcgyBAxKIopJRezTw/Pz8/P+cMolCen530+33OwFnNEALJJ9Oi1+sJIWazmZlPVFbms14aV1VFzmitIxkwTkQWHIKzzuheEk+NlpwhuUEvzaaT0WhktUJy2XQCAL0kNsZYrU6Pj/tpOh5ra0yaRFpVdVn5l17qqij4PHxLGAgEl81mcRxKhqqsOIABF4WyrsEqxRgKhkEUakmBUjqQzLuwIvfHwQywKAofIjcIgrIogsB7HLqyKADRh/s2tfJLiB8gztFpFYecHHEGjHEnvd2Q+1AgPIkQ0dsK/TbO+VAvkpMF6xSBvxOCDMg6m8aRn6daa3CWgBCIEZRl4V1lgZwxRjlXq4pzHochFwJZAJrqrFKaHAByeTQu9wEGSQ9I67r0dxaCQDjLB8NBHs0msxm5OgwDnWXHb7368M5ryWj0zHs++MHv/uN7h89s3rgtoFM39CfIzdR+Yo+LLQY+RkuBbHFxR6XJsL2GKyGA2FToFvXPf19kvNrLqGo2jePYADoM9m7cevq5Fx7de9s/DbEZrAxRP7cXHgzj1+88mhaKATy7v3Pv4YM4gFmRV7Xu9dJKKW0p7SV1XadJ9OjRIyllL0m1qg4ODl5++WUpYa/fS0JeKZPX1cPxeWWBj7Nnb17Pzh4S2bx2LIiKopQANw923r57KqWMZGCtts45Nz9JCwTXRW0BhABdK56G5ol2yt7eu6AgxRwGEezFwhlDBMgkcE6akADBOYezrPah9olIz73RwSsouDi1c840TwCPdmPnnHXkPYqTJAFHnKMF4gxroxHRIRhrZBQColrc0CJy4MMscs4FV6qSkg+HfS9V67pEJOdMFCXecu+jEvibPGVZ+hdjsixLksQ5V1WV1loIEY9iMjYUkqxGRkgIzoFzzhhlLQBcPzw8OTnp9/uBEGcnJ5JzIhoOBkVREBFGEVu8fHR6ehpHkdbaBzGLZEDGWqUHac8/kz2bzRiBruqAC86gLMu6ruM4FcgYY046pRQ6LPKSoSACR8g5I7KB5ATMWqNrKxgLI2mt5QyArLcekLHgrcnGeOOmrpW2Jk3TUpWILI3issr7aa9SpK0JUCKA0cZZyxkjRzLi/kzfv7xM3uMVEZggThwJEZ0F45Sx5IgK5cfF7wVJ8gCRO2Zra71tlzEWBAFf3Fdw2jjmRGj6oXCKW6anDqwIUu5ms9IZk0ZBEATWGutcFMdFlp2dZiIQu4PUGW2VCSIRDoLKGdD5m1/43MnLLz3/vm974U9uZeWNqRu3n1c9behKX5z5OiJidKED4sIdZ6NA7JKJF7bbxXU0avkhbyzR8bcZuhxN+kmo6pKJIEwHz7/4nu/5Y3/8xo0bssNWCQDAw5DD9Z2e08U4y3Pl9kfJKAqzLEM+9xPkUkxmUyKKkjgQvKoKVdeBkOPx+MaNG3fv3J8V5vD6tUDyhEkw+sHJeWGhN+gh4fjsKE3jnZ2do+NsXJQcZRqHqphVSvmosUVRl5UGAL5woCu0TcJQKeCcT6dTvOIQe0AmAJi/DxkIlgQ4CEU/5MYqIiLGyaF1gAicIwD424RKqdpoBOYt+kqZqqq11tbOny13xjpnvNKhtY5imfZS/1xRVhReVvoDcaJ57GU/OZVSfn76O4tKqcV9beY9ChsX0X6/L4QIJc9nk14SVUWWzyZIlqwusunkfIwEVhuyTteqn/b6ac8ZW8yyqqoIrLXWKF3XlVKKnOOI4BwDmJyfp3E8HY/JWo6YpkmWzfI8M0YLweu6mkzGdV1VVVWWpSdFWZZa65OTE/9quxBiOp1mWebf7fLH676nQRAIIYwxk8nEm1CjKABHCE4ILgWTjOuqdtr4c16rjbXW1CrPcx+NBpGKIsuyKVjT6yWDQa+XxmEkoyg52DsEgCiKkiRRuooCqXXtW/SAiJLxUMhQSKs1WTs/1LfWGeuM9Zf2GGNRFCVRzMXc6sUZE8gW+zaQnEnBvEdAGAReqZ/fEeDcK8WkaDYrprMpQ31zZ/DUTj8UXKlaRrF1c98D54Ax7sumfYHOCqtjB5J4EsU8CU+KnLtE8DjqJyTrb3z932xn5g26oZcmhi3fdvZHvW2v6YVkaDazrQMQ1/gLrgixpphD194Lz7dcjhoB3bVFXdsyXyiUGwWmt4zAhZK4WWLRJpOZP0zaiEZNxKJIGycDDkzcuPWu7/uB+Lf/zW984+WXJAAjMAAWgUehreoA5JCy9734dJwO37z9tlGw14fv+fYP3n/zrax0tQJGerS3zzifFJP3PHvd6vrMcSJ8/tZNW1dP7far8Wk5nbxwc/+5mwezsvjiG3fPc8cJroWQZXkthk/1iv2nn/nCS6/UADs9GQCEkteKAGBvb+/47MxJqbQOrAUHacDqgkQYjOt6JxYRUbI7vH8+he7Xry6cLlfo5gxjLg2EMOapURQyYMzVyBiAtbYuJxiFYRyVCgulnLM+eicgknPKKL+MSclByLKsOGeccwRmjFXKCMHIUCQja3VdzJ06kygBAqWN1plfReIgLIzVdZmm6WlOSSiBmLEaHEWB5JyD0craJEms1lZrsoZzbqrKKFUz5o9WvOrnt9I+ZqW1Nk3TLMu8APJeIyfnZ8Ne/+ToOBAySBIZRJN6UhtdZLlS6uDgwL9BOBqNTk9P0zQlgiAI8zwf9PpVUcZxLJIom052d/fJOV2VZZnHwYGqMin4dHLCgaGVvSiodD3ox0UxA4ZqVliDxlhrbVUpRPRSsq7rWrk46ZVliYwcQFVmMhBK1YLIOYPgqtKmaRoEwjlXZjNnLQHEcUxgBWODJD0/PQ04H/RTLlEgR8SiKgHBKNUf7nAkY4xgkOc5Q7Q0f56QcVFrzRE5zh8B4mEQc14VFWmlnAuCiKzrJZHfShvmJPdO7FRrDbUNgiBNY2uUQ3JIAMTQ+sMFIkp24tiFVVVMJ7M8qHga7VuyYzup6jAKK62cqcEZRALOWMhtqcNIALDzWR5FoQwCU+sboz3rSEOdF1UKfbAX4u6tb3yF/cCfBEeISJzIWmB4qfiG67KgdQa98L95hxz8HquerKFxtTj1V9p3b88sGAdODEUQRBJBHBy++O73jafn548eCcJYCCthlleC4MZ+/0DowWBwPB4/OJ2FAB96/t2zWf76w+PKQNJPTiZFEJdFYSUDi4zJ+Oz+3RsHw3w2PdzdVXV5djw+vLGfpunpowevnWSTQiEBAT6sg15At/j42q33fO2V1xxAKJlgHMn5yEa9NJzNZrW2ALYXh2VZJxJ6SXx2niNCABAwEM4ya4UPfNAxjOuEQAAE72DBBoPetUHK6yIfn0sJxHiEnDFyCNqRNZocECABNVGEL9ZF5wDALqJjGOMQiTEmBONcWmvnIXTBEYE3txNhEAhaPHigrCGwSlmAPA6k11YAHSL6NwR9K2VZgvfeQKa1ts5yKfzW2Nt8jTH+1QQA8PETjTE+/I/XQH2e8+kkjWLjrDK6qEoiaCIDzmYzb33zMtSrfkEQGKOJyFeutYqS2OtQxJAxoZTyHZFc+LuD2tnpdCqEYIIjQVmW5Li/FN/sfubd1zUAE5x7PAXjHoG5oVAGRLXWuq5rJrgMOCka7u5kWUbWWGJk7c0bN5xW2hE5G0ie9ntD6ittT0/PsulYBIHWWkrp919AVGvtLZLT6XRnOBwOh9PpRCkF1o4nk9FgVFUVESlVCSGBoXfJFETWkj+3CYT0BkdjjH/jweuDfsuotTbWckDkQkSh80SQIfaZgOz+TDMm4jgEo/PSCgFBiPks2+sN/JE0+kB2iEIwa3VR1WFEAkEpBa3HztwaRyM97kx5Xeq1f2p/Xb9zMp9FV/XYWHsXZmNzrdOVK1V/ZVhB5mLzbq1Dbr2/iLMAGES9m7ee/y7B3n799dvffD3PZ1DDMICIYeDqZw5ujMv8lTfu3bzRe373Zszly29887yGQS9V2uwMImeUUTpKQkNw79793Z6wqhz0e+PTR7pWo2H4rueensxmX3/zNLdADhgDC5EM08CcfNeLe1+8fe+0cEKw/f39UMD46IiED6EujHUcABlwxERCGkofViCvKgaQhJxbIquN2TpWFxr84gIPIEf0XguBENeuXStPj3SRRTGzZI1zhMyRq5UXc8w4IAJHwOaBcr0jF4IPGEGOCIhQa4sIQRAicucc+ZMxhogMwdfgnAUBHAGstYwxAJckiXcvlwGv61obwxhyJg0RWEsMGYCzDgk4J0SkRcwj4xwSWWuDIKiVEkIYax2AlGGzyyai+VaOMWColOrFCXJeVZV/j9RWzpnaq5ZhGHrL4zwSal0HQVDXygu7siz9BeG6zLwUcAiTyaSuayll0A+UddoRKqOU0cZFUcQYGu28HBGLlxs8YtbagHNDJgxjv2GP4rCqa845MWatM5Vx5JJICMGsJX+27lSNVqdpGkZSciYQnGC21uQIyKqqdA4sOcm5RiRCYxzR/LFZxtBajQhlXXHOlVJ5nnusLFAvTSXnhjHHmFIKgJnaBFHoj/4ZgF8PfIgdABAiqOvK7w9Y6xV5zrmpleAoGCLnBABW9wQE/aTUWZ4b41yapsYYchrAkaW61nEsyDrGmHXa1pojs85FQYCopOQhi51RDTsvYl4TeDcTmscueQysiCHadC+YWtHz24nrxR8LXWfHG1t8ggOWLRVesuz8X8Yk45Z5p2MBBELInYNrzzz/rhfe9b7TR/fvvfX60f23q9mZBNePo7PJWHO4tiv3d0ZcsvtHj86mxd5uXGmstRqE0dm5ThPc2dupamUAd/ppEgbOmDBNjBAiDJRSL7/8zSMTSqojBiVJjjQ0J9/zbS+8+fDB/bMiCmWlzHQ6dXUlAIKAiSAcT4ogCPwKbKqqlwaBQMHQIWkHEYdeEpuiPJ/WlfVW7q06fssfyd/gH0SRtub89OwoiW0xc0QErNZ1CAwRHTFjLBEwRoToiLhj/sVB5whxcbpFrAk84cfBb1QBgAvhx9qfHVvr9UT0/jTausibXKPIa4AMiHMk4s457SwA8zUKoDAMCW2ltCTw6olWdRBERGQtKWWsJX9P1Tnwqh8icimY4EQEDB0QY4wEL+oqiqJZkadxbIxhQqiqAsb8kzTIudHaKqWM8d4/zjnnyKDvlnXOySDw7tzW6iRJkv6gqorJeCaEKKsKABjnXmklIs5582gtLfyKYKFWMwKn1dzn2ToBCASGSApOwK21zhjnLEMMQ4kOralHw34opBCMMVbkszSNOTkLJCVnSNp6kxxDolorZbSta+Osj/ZalnUQiF4v6e2m3jtdCC6EICDOOWMYx7EQoqxrb1twxnLGLDlEFBwBkIh74S4F4yxqBIVAxgX6e9DZrEBEzhnzdjkExjGUwXtuHd59eDyeubrWIgwEISNlrasrFQQB5zJJEkemKnIuwFqSCJb8O5GcWLDKzAv/Yw+X9Tdsw4pAXPKS6biHdxV4zI671cSVTf5bYN0y0JVnjobz4aa9zxN3DIAgjHqPzmYgwlvvejdD6Ify/GEo0ZIz4PTk5HSHyfO7D8zebsUoSALucDLLrh/sjM/OQwnXrl1DIe7cubu/uyNBJ4EsVNUfDChOSIjf//LXjQUSoTGagRtEMITqI+999sH5+GsPCiHQOBiNRqrIGMDzzz99cn52Ps4dYF0rxhDBMQ4cQUoZR+Ht41MCiNNQCFEZUxvvIBOAu9qNFLKOAZa1K6p6lPZJMKNzo0EGwJAzRojkwBEwcj6QLfrrIQ6IHDGGDAkQOJfG1F4++teRjCbGEJkjIuK2CaHmLCCC0XM7sQMyynKujTHWaowCKSUTWNfaae3ISzfnGKA1RGSMA7Lk0DptrePknHNMcGOtCKT/7JxzyjoLUgoEtIYQkRwa7RhjgFBUpbbGOKqUoroWQjAhjHOEmJflfEeslJSSCVFr7cWWMZYL7q+4VFXFGGOcO6Kq1kSktZVSametqolornBZ689VmBRE5BAASDs7dyHic3HpVVHGWF2XPrBbGCdEpJRCAGc1kXNEnEE/ivq93nA4nE6nVVUgMs5RSokRKaUckdYa7EJxB0QuRYBorQNmyUkRyBCElNbasq7SOJGcT6cT55xfHvx5t7UmlLKqqiAQfo7EQaS1dsYiZ5JxFoT+yMVTRiBjnDswriZdK8YYceaANDnO0D9ji4CALOVwc39kzdlxVkW6Hg37AWfW1KrQ0+lUchGGO4GQmnNGzhhDnMeJRC5JE4rH+I08XhpeScXbqB5eCVZE7Zbzk3dE91xpqH2KvY5AGywQzaMFzV9t19oAujSKtYHT6ZhxjkTP/H9p+5NeybYsPRBba+3mtNbe9rn789dFRDIrmUx2mVRSRQmiQEADVUEoFWqumQABGmmiiX6MBoJGElACiiJECKUCmWQyG2bDjMx4Ea/17vptrD/dbtbSYJuZX29fRJC1Yc+f3WPHjh07ts+3V/Otbz16eHv1/G5952PIjM0Jc5t1HL5/vrw4nfatywkUIDOcnIzLsnry/Xenk/xiVp+P8q+++urRg4ddP2z7vppMTZn73mVu14PJCvuoGH73x5/fNvzn39ypvBxnRKSGoRsG//H5mJmVzgJ2HIUAyrJqdrtxmWmtlFLL9SYApFXX9Z0mPploDuq6ce/8svcu370rIKIAWudSOaWgGo1nwzoO/c6YZPt5EDqG7UQwGV/pBki/HoiAkIiwBB+ASBARBCFx0kQUEHMUEdQIkPqaIpFSKiKSUQqBIsdh8IjCDE03JDohg7AkLotiZubQDx4AjNZCqnNDCuS1vQMAa21gUKgCs0L0gfckHoQYQ4oqioiwGDIgKKiarq/ryu2boPuEQYmmk7DMOW+MiVGGwccYUiqmKArSavB7l1xEEMBaq7TuB+/bXlu0ygpLjJGRKZUwOkfGHsOF6d/kjUUQAfEcc2WVIu+j1poZrKJhGHzfkdHGmFyTc45AQKK1GjnOxiOXZ7e3t2T0drvNzb5/sXfOBR58AFSoqO27Q2Y/iIgLPi0mfhgybbz2mTFJ2cw5V+UFAKTMuLUWRZTW3nvvBwDeCzFz6oghKrGBiJCFiJRGAh3EoQiKxBA8Yox7B5qIACPE4LudLeqTaRW4iSJD37DCIrP1Sdk0TQi+H9qqyMd1aa0Vjv1uIBVRIYm5Lzgjsteuu1+D9gNoeASFtx3kN4ypd6LGr+HM/iCe/hoskP9U4/7JaJMJRLNXEmRNEBTEKCr2zW7dtat5nXeapO9cty3z7PmzVX1+6sJQWG1DfDDJTJZ993L1YF4vbhdlkfmId3dLCeEf/M5vYYyru9sff/H59fXttutOLx9+8/xl42TdswEY1Qrc9u/+7t97+uTJXz9f2KLohnbVw8msdl1/PslPZvNvvvu2idAFUABZboui2G52QEjaDC4u1r7Kcjf0EB3FWGVKtPU93TXDe3NS8vZTiQJ1XvTexRhfXF1bEfJ9jGKsgehFJEkHKSAGZI4A4MMeColAa4WKInOMjJJYOCrGGEIqQwZEjCyRBQmSnEcUEBZAEcAQorU2RhbB4DnLMlDBi+udh70Q7z4eRaR7F1Pfj5SO4b2qLXnviPadEvq+x2NN7v5MUnhun7442qdAiAoFgQEUIgD1fZ+ss2PIiDnVXDMRAZh44GGIALN0XW+MKYrULSS0bcfMRVEIBCLto2cWYM4yLYJRRO31LPaphuNsjMIEmGWGEZij0sgSSFEK5xVFoTU55yKjUVjXleuH1Wo12Gw2nVZludI6pKRT5JQbAVTacr/cuuCioCLjnNNagYBWKgYBQGFMBw8h4F4ngtu+y/OcACVyyookYlDK1w9dl2WZ0vYYA0mtHkgkcIgxIiCk64uoidSBlclJyVghgAohmMwC8KTKrbWrXbNeuVYgxphbBcBaq65p+7YZVRWwJMJ5H7YQwKJW9wiF6VmCQkFIjX8/1BflB7e879X3ZaJ/mfG2dfYfs9sH3vgfOYJwjGwUAkeUCCpJBAAMvRF/cTL79q//Ina73c1Vrunq7mZkyuvF3fxi3vS9X24ff/TxX373ZDzPIQQQODs7i4C7zeLxx480x93quuuG7Xa7WDYPP/n4q6+/2wWOOkOty8Ke5+HzH3/8dNX+0Vd3Z9MxNhtmeHQ+6tphWucXZ2eLuxvnwAsUZQWuQ8S+77NMee+d1kPXZxkoa8T1hcI6t9p1TR8o6kLB7j1w+DbDRgAEpB36IAIEvY/OhVlZgdAwNFZpTvhHlASQEZEZBpcqO0ApMGafIfUejNpLgnddxyxElF71gUMQIiCKABD8PtkCAMPAAO7QFgaUCsycV4VzzvtICIQQY+QYEdE5LgqDiCFEgICIAtAPQ+Kp+hCIaOhDnlsRIdIAEAIQRa2Tvv1+hBCicHDRZna3a7LMggAQBobc6CjMIAwCwsogKuqaPs9z2Ndg8JEOmWVZjDEVSupDbFREkp+e8tcS9/srpbz3xyZNcI+B67xDxLLM3eBijNpQ7Ly1WqkMAEJwSmVERAqiD64fUuojN/bFixdVOcrzMoLkReG7vum7dr3tvMvLKgqHQyxj8CEKh8DG8DCkHFfILWy329xmRqngfFmWeVk455wPMcasyEVEa+WcT+vKPv8TfYxyvJJ93+dFAQe+sCaIghyCjzHPMoVKEJAZARQQMyMDKuV9IGIlbElO5wWTbtu+67osy2bTcde02/W2aZq+7ZTCk+lJkWUAEDom9Ypdt8fB+6iFQCICeMg3CwEAISiAxAlLwt/41jgEhveNzN9mTf8g6Ny3Oo8+7/E4H8C448Hv73n/3A4HZwBOwiTvPD7fG3IgbN//dj+AsyHm2mhSiKiUyqzpdrvQdqugR+Vk+c3X/uWz7eolZNiwd97fud1nD07b3W45bMtp/uLO3w30eGpumv7jv/XjaQX+9gmEfui3m9VzyIqL6bhnPvvRF1/d7W66mOm80jiyfGJoPH/wV0/Wf/GzL7NK36zXo/FsbG1smzEQ2ewX1zdN67Mqcwo0yMXlNHRDHjmTOKozwC6jMDNGut6aTBezdecdARpQmjMAwGSEASHog7QjKpI9/L05TCYlADCI1XfLtReBzOo+aJ2JyKQq2IXCZsl18hyyTGcZGANI4HxwzoFgVhgW9CF2Qw8kqGBwYRig7yFGESQG1Q/SDtwLRK3FWtRocmRgk+m81EVlGASVip6Dk5hKsZUF1D5C7yIBcPDA8aiTmX5rFnKevaBjYKJm8F3kLnIXYyTa9rztg0ccRBofN53fuuhBe8GmcUppYPExikQgbHvno5is8FG2zeCjDD6K0gEQtGJSgdQQGY1Wme0lBpC272OM3ntltDJ68C4MfXBDRhoDMIMPDEpHQABGlBiD944hCrILrneDUspqE1wUwdzkpS3rsuIgITjnemMMAmsQi2pc1cTSu2E0GjFz27YsIc/t3fVLRUBEvh9IeFpXse9HZWFQNImIaE1peZAI47oqMpNZHfs4qsaIiiPU43FWFCHEEGJWFMqYruubpo2RGSDG2DRNYN42DQMkvn3KBWWZEWZFpMkIqxgQhFApVOSCgCZltMksgDg3ILLWaFCncprz+exiMn50Pp3ncFpCCLxed1cvrhnk7OKkHJWjSUWarm9eut77IZQja0rzat5KYmagIKBQIqv/OlkUOLjA7wvwvW/L+w6VnvzyGYzjzm/772/s/Pa7jnB539N/pz9+RMZ3no/Wmgic887103F9d7uYT+fb7XasXdwt7p5/U+XKNRh8iH0osnpUImDOu5e/8dmDhu2fP/n2YlLc7cKsyn7vRw/+7V/+/FkDv/8b559/9skf//s/++xCP70bXKSv/uqrIDAf16OyulncVJPqZH4iqFarjcrUfD5fwKJpdllup+N6Vk7/+unTiJLnReOHzOih7egkH9eZ1jS2I1LoXO8HePjgbLdYxqbz3aAIVGEUi7SBgRQhMyZ/VPggovF+7Q8kRRhBIIQAykRhDJ4UeT/UVbVe70bj4u5uW9RF07ZaAwoxazlIDXEEJzH20Spg3i/ZzEmfkEUgwn6VAkJm8QzeB+eCRQQUIpTIlBLNgkTkAscoAuBDjHxc+1BrIFIAeFjED2xHiYfsBIiACAhHIvGOU4fXQ7gThSGlm3e7AQUyAxxBFBFR2w8igCghhBhjCJK8/tS380CZBIXAhzkZYkBERUikUryFmQOzVhQFWKKApLNFxGSl7S92AnHelwUzsxchwGO9thyYv+mY6rhdRCs1n0zubm4zbUbj8TAMnIKnbVtm5cOHD5nDYr0qimLbdnmet33XNJ0IWCvWWhQIwSGJMUarfRGIF98/e6aUSnqUTdMYY6bTafJIUrx1nD6LWURCcDGm7DOlXHkKuQpEImWMAVQheMRU7hhS7CH1IIjsAbLj0azVo3qUBqjy7u7m5uamabZOiYSgrD07O+MYoxv6vm/aVgQBJu+byfDr5ZT3t8E9FPu13c/Xrblf7VDv883feZ73rUh4HSXTS3SwGd4wNt93ZObgfbTWkq4GH7OiXK5XfnBjtf3Fz/7s8nS0vX7pu5Z0lufFi2c3P/n00jF/fnmKXfgPT27H87w0ft3nX5yOv/ryZ9c368lo9JMvPvnuq5+PyiIG/G7Rbns/mRZG6cLY9fru7OzMS/RRXrx86gLMRoX33vX+dDKx1g6hT8W2oLDrOiAc12Ufu9urxcm4kiDM4nuvBIYAROqu6X7zQp+Ni9tlG5lmudp2NEREGJRCBsOpaFI4xVXed32ZwSjNIYCAiAxDHyWOMjsMDVX7i1oWCoWtBtLoHSPEo6RvFBDPwiCJTZhuZEnBNQZAY63sO+QiE5JEBogMfRAi0AaFAVCSZruKMdGEkCBGSeI9ySFQ2kByFlhSxjT91vyq90Rq7goAICycGIlIISIDA0Rm4EhZZvowGAs2L0EYRAEis/eRM4VESliAIhIx4OCD1goAUvz0MKMQgH0AFEGNqFSUfZ0JADiWtBzRQfElhftZEJN61oHBLnKvH84+kxtj9CCCiEMftYZ9+2OlExkzy7LtdmuMYYC2ba2189Eo9Y1IdPfb281uvVFZ3ve9kBp8MMbEwN6FsiyNVjF6bSCdV3JOq6qKfkDEBIV1Xe92u+12m0iX1WjUdZ1zrqqqo4PMh95qqUSaiBg4BhYkpRQghuBhX9KWlg9CAqURUHs/1FQDgFLq7Ozs/PySiGanJ7//P/nHP/7xj58+ffrNt1///Be/+OM//mMRub6+bpoGEcsqV9o494p9/c77+tdHw/vjDVMrjbe33B/7XnQCmN5+/PeXxtX7uPbOz/2A1fk+S/bDTvr9YUilEJLWumuGk9lkFYPRavXNzx+eX379V39mEEajyXfPng1Df3I2GYRcsx7XxfXt0HeumuauD5f1/PTE/Ju/ft623X/zv/rHT58//+bru7Nz89OmvOuDQmyaLtf4m7/zd7/55pvr65d5WW6A1tthMimt1TF4iTCelBLZeWyHPnBcb92PTiemyH765HqS20pDVebdbogcYwjGmDxzLjAQlAal3SplTVFA2CkOaT5IFCABUAAMqIlEOLy77BHADTEzOSEzcRRu+16DTIoCHcYYyzL3Pszn85vbRZZlPgwsAQCAgUU4AgsRaaVIJAAS73s4iyAIgQgogBBjjBKTpvb+xwIWEgBgBJKEnombDQpIp6hfjFG0JgBiYe/j63GVtPjJ4ZAEAHKQ1UFAJkGkpFWKLIjADMGzUGAEBB0ZfIx975ISASGAEAgRaknNNA7ICsdzBmEOe4olYmRxgQmZklEpohQ5z+loGaXCbojMIsBACMAsh/7pQkRImLI0pBQiRkkoCQSiNZRlYa1VBMgSY0xsGycREV0/aCRjzG63M1ojwMX5KTOvVitrbdP31trOeRGJgWOMbQsiTZFngIGU9n6o8+rVLUZkjSmKIhX8hBBOTk7SImSMSZXOSSopbTxGpVIkFI7mf6LTq30yjcgQpcTXXrfNGMVBYvQxODfgZrNJ/UuVMi+efP9P/sk/+Wf/7J99+vjh7/7uP/jf/lf/m+V6FUL4oz/59z//+c9/9rO/vrm5y/QrT/mdVtd/GjT8NcYbsb9XRuJ79j+C1NvG3TvHG6HM43vfOM47D3Xc5wPIyMxlWbZ9R0TW6t1mbQmuXry0rG9vr4pyopGfPn9GmiZlHYO767pT64OZ/fXNy4tJAexNPpob9bPni+Wu+9ufzGi4ff7dt7Mzdfr5b/wP//rnAEoknFTj85PRz778m8F5IkzKyXWdG6UlskKqCtyuN6nL0vXNrWSEBN57lWlDgDF8+unDbTM4PyCiRorOZ1nW+oEjnNSzYX3tBzcYNcnko/PRFbvtENtBAgeBIECgtCR7B97dpTsIHEvLiSiKhBA9IyoNiN55RJUSBc45AdjPbxEOkuJiqdREJXUTPtS57EFKfOAQ2DMk9hvs18t9iUKIkRNpUaW6dyEhZJJkAwIwIAoyw8CJCJVO4GB0QVJVBAAWoH0GRABQgCBGiZHT1yNCAQKU4KNWKgg7F5TSLnhmyHOrjPjIPjrY9ycQpUhr7QeHCERIpEAkcCRCrTQJMAcBjCAgyIIgwJAuemKdYERk4cjILIKSjgMMzHs+uVLEIjZ1KOa9i5MmuUbcSzz4AQ45cWbOi7zrOqWUzbI0+WezGRzULsajUQhh03Y2zzWDjhz7kGUZoks+r1KUZVkIuFxup9NaW5PI5N0wBGaJ0VqbxCiHYcB7zfaidygikWmfhWelFDLJvgWkKKUQJISQYBpYUAAwNb/cNyFQRJTr1Kkq5bsAYDweI+Jf/dmf3by82qyWk9mUtKpGk7IsJ6Pxf/1f/1fL5fKnP/3pH/7hH3711TcfQAwR+U9mG/6SG9/e4S14eg8fkA+r+uvb41v73/eI7//5huf7tjn5xsY3jvPGiDEiqyS/7H0PEpa3V9vF9Uhi03SXs9O/+PM/0VZdXJzttsvJqO6gKFh9+fxWlD2bljd3d/npZDwt/tVfP/vNR/Xf/a0fffnTv7ACl49/9P/+k6+BfVHlMkiR586FXd8jUVmWZZbfdR0zI0pZVnc3N8aYpODiJMyn9Sb4TIYHlxeLzXpU6Qez83bXbLZt23mloMzIaLJlcbe6ezAeM0uI8NHFGSpaL1+ORuF3fnT+7OVm1zaBwUVY7MIQXYjwgVUTCaIEFhYGUYRKu+DXTVcb1TnHgQGE2RERMmqjuAsECIpY2CuGAJEFOJBJ5JX9NZeDdx4hCoFCQEWEmmEfFmNGAE50GYUojIm5ApEjexHhAIhAzEDAIJqImXEvMXtMlIECSiHHw9QTIUQipVLoFJGSYZjYpQiEQBhcFPGlNSbLh2EQhG7wfE+qJ0SIwgyRjCEBIkKFMcYQIwkikZcY95avCCEjsAgEATSkUKl9oSIzhoguCoAQoVKiAFNpYWCJEoABMUDi/bAAgUYEgET3EZEYI7JYa5VSWqllsxUR54NzYTabEJEmVVXVy5vru7vb0WiMiHVdr5u+dS4KAEJy4UMIhFqD7vu+711ZGGNM13Vd11mtsixTShlrJ6NR3/eLxSIRwlN/oq7rRlWZMpbp+ierEEkSkVuEEBGihBBSGENrIyLBR8ySWFGir3Nu0cdYlmWqxRTmwbnlcnk2mQDAv/pX/yor8rZtx9PJ//q//C/rulzd3lR19Vu/+RtVkX368afP4EMyNv9RccM34OxXGr+qrffhfd6IA8IHA4XwQwFKel1x9p3DWts7R1r5oecYaqs3HB5fnDz/9m/qkfnL//AnAkEY1svVuLKPzs9fPH+eTR58/5d/MZ1my+02N9UnDz/6iy//Ap37R3/nd7798m9u74Z/8Lt/9//x3/9ZK+as1CvX1lYrkNvF2hb1ercdVRaCj9FL9LPJOQA4F63VZVW2bavQOO87N8QIIYTddq21evH8+SQD0FYZQEStdWaszs3g5eFUACQi9O3WFFU5PUXxpll+ejoaOsiMEqWf3i6fLfwmQBMDv+dKsLy6SiEEF5RnabyvTNa0fVmYrvXWMiICKa1VLyEFBBFRKTIGfBARPHoJaWa9Oj4LMySmRYTABzNpbxICC0CSHxBBiSAI++Z9CCAQWLQIJr5igrzEk0hxGYTIqdT9EOohpD2vMHmjShsSialzJ6IKQWIMiXSfZCAYpB2cwb3ZmzqLIsYYIYRoc0xSAilX4D0gcs4uEkiqzWYRnUCXYwSEqEgFBokhCiDqKOQjE4IAJGa6AhJk3Lez5BgF4UhFjIyglJpMJul6aq2PSq4uxtFo1LZtSvHPZjMJsWma2XiSGTOZTLTWAlAALrdtCDEKFIX1PpJCRMrzPM9t1zfpB09tRcuyTEJBKW0SnEt6uqPRyHs/eA8AdV0fIwbWWiKVSnEAIBEJRVLkN115CSFkJjvw8yk1o2IGEWYJwNK2bdu2WuvT0/PLy8vz83OI4eTk5O//w3+wFyLKLDD3bbtc3mmt+76/vV2sVwuYv4kS9zHk188pw+uO59uW1Idtq/sm26/0ifffDgAC78C1o/f99il9OD54fMsH8idppOlFgD6E+XT6/Zd/ZSXsNtvrl9+C77NMFGZt2w/b5qPHP776/ulZqf7Fn/4MAAoVerYX5Xhzd/Xl3fC/+1/+/t3dsltu/9ZnH/3zP/1+y9l55nlgiVCUZuh7pYwLbKyt69oARD8URZbn9uuvvzYGvI/D4JtmcAynVVFV5XrdJvUUCZBbU1V5UKrxPjNWhJtmpziQhpH1gYmsdq7vA6vJKUU+qYwpTBPiqDLTk+nDk/Evbne/eLH5/rb9QDM9RNGagrCLTIOPSqKIILGAABmj2rYvq6rrPOkkRyocgSGxo1FpiYGBKIUGRYSQ9sAFqBFiSHUpwMLMyRmmCIwCoElEkhmWflFCQFSIggloBAABEUMI6fdMtlsyQokwFe/hoWssH3IdYYgxgFKsyYhAkEgIWmmhKAJFkQFI1zlCMEaFEPOySK5o6mRNRIDCLD5KdCICxggSkAZNpKzlGACDRAgiRGAMoRgR73tWSKLAOWAGbURARVGKGBLuIwPIIVSImaEkXZG8yxBYCBOBMfmqx3xFykA3223X+dGoCCFsNpuHlx9N6tHLly+Xm9Xnn3++2W3Xm+317R2izjLb9q7vnXOQZYj7MkEWxqoqC6OPVHMXPHpfVVWe55vVajqdpm6Cu92u7fuUbu6aDgCUUlmWWStwULpshw5T0FaAELMsA0yNASCFGohUEiUiIqX0brebTqdFXm2bXd/3y+Vd3/f9MCBA2w8fPXz0G7/x408++WSz2z5//vzJk+8+/eTxMPRNs9usFs+efDc5oCEf+PeHoiiEPRoKISBAhGOdCjIBANKBepD+iQCMYABAmA/Fg0AoABAl5c7ephweo8hIR5wSYFKvDnxvpNwZ3cuNkCRrIb7b+U0Yf890oRSiPrQSPe6cPpok3WavAauIgHoV373/FfCeYhgBH48jwOkwo6r6/quvyiwvQf3xn//xaVktVlzOZy+fPRtnNLusmVvU6Kh8ws0jNdQ237h4eTb+/3751U/qYqSa766+Gv/mb/23f/hT8fLZiHYD31LxSekePProZ7/4hky+23WfffowOLfsWg1Q5sV6vdW23mx2Dx+dv7h6Ph5X//hvf/FH/+YvUOC3P/kYTdb2QjZWl7O22+KGFQupUKnxYLkRFwe4OD0ZvGubLQPUmWK3VkUZinG3uy1Gs+vlRhV+Pi3L599+XAJm8KUDQFRgiQNCZICAAAQqQhuCMco7cFqFGCfWRvbtwKQyYZVI1NfXTTEioDHQXWoCFYVEgDEiCRrwEpOsTIpPsefkeAKAtppdIEXi2VrduQDICiCKRJ9Iy6AANYGwRAaiiIDJqNQEAVgi68wE5zmACqnCF5MpGQEEUgMjPHSRD8MQlNJaC3Ns244I9nCJUSIBQN/6NHMFIYnuDMMgghwlSCLicJpn1DMiIaKPgkyI6AX8EHwXFIHWqAyyQNd7ZgBQDNHFCBFEIMuLGOO2ddbi0EuWo1IEwBHFB44MRaYAhRRYo5WioeuZJTXDUgRlkYlI0zSoVdu2Rthai6SAPfo4KuqiqMbj6W6z1WTm85MQIgqURV4WWR+kaXwMQKxyDQiglAIS51tACC5u2zbPc2stsSAZYwyQikja5j7Kdrmsqiq1UtjttkPXTscTIhqGoWta51xRFCCiEBXs0VwhMMcQWWudnOjBO0RSqIXBWpvnWdc1AuC8B2ytNlGF3XJtgH7jiy8+/+RR27aLq2d/M3RX89lquwGArh3Wy11d13meb9ft5dnDDn6e7uUi0ynkAECCAUiE3x83FEnr9H2jDPcFLLBPih1xAw4w8Z7jHKzII0T+WoQceY9uzRtb5PVs8pEi/oPHfwM937nD8Ykxdhg8Iq6XCwQYV+XP/+rfW6X90PihXw4DB/9isfxf/Oe/9/LlS22zf/s334+FA6p26L/46HTtpG/D/+yf/cNvv/+Syslf/s0vNMB0VltDvt9o8VmW7XY7Y8y66SaT2jnHbthttqOqAIAHDx4sfvpl6vnLDHVZuWboPVyejXddG0GCQE7YbXdWo7W6QkKjNsul5GbZ+vNpsVwuq1F9cnbadV3btgRojFksFhezkfecl8V6vUUJ8+ks4nAybz/ewqoPuzBEIGU0cIQoEImBFaKQIopKKeR918KbRfvgvIzCbdOPRtVkJuttRNoVVgNzBA6BUzd6IVCEcDD90r2BWqn4KtWY57YbXJabfvBWoQgy7mk19yM2aU0UBqGUcwDEvQhj8Imlkxi3EvfZCjBGHQj4kly/1LAocDAKEEFrTCnOJM+X3LvjbEEUJCACFznxkfaTce+UQ0rzIuIhKpkmEBBQTJG+KBFSohhhb44QauV679ueWWIAMKRUFJEQGZDVEZ0BhoHL0oQQum5QCCKQqqFBIgAkFUUiqqoqxRDrcV1nhRKYz+ez+ZwImmbb75qPPn6U59lms7Z5tts1rDJrrQCHLojEfS05s9GktdakTqeTzWbT7RqlVD0Zl2XpY2j7HgCGoUsy45rIe2eMqapq6IfUwy/LslTcnRz2VKNyvIsP8Vwh0kQksjdWUpUkABhjYoxuGIwxdZlbTd7133379cl09E//6T999uLFt99+d3NzMx6P17utD8PmertY2NVqhYht284f7O/lJJyulIJ9bQ/AB+OG74SP92HKfn58wLs8vjN9eXqvqijjXnsOAPam3BE+385yvBF/PG5Ees0jlmPa+p5rfx/djsf9Qc8dDwJzWlPft22ze3B+trj6/uXzZ7O6MJSlHvPC4cdffIqoVuvGi+x0FZrtJz9+bN1z0vm//fMv/4vf/9Hy5moIsoz09HaY1EpJEDPJ8ihDq1BrVArRakAS5xwBjKfjUVEsVuvbm8Wm6U6m4+AHYWi26yd9czGvbheb0aSmzIgAstRZtW1XFKUYjzdN6x2cnVXbYcWhJz1u215prW0OvXOD63oXQ+h325/85Cd922g0VVHd3t6J55zg81o9jSEwDJaYlHQBgTQoDxBYUrBcIpMIgWRaSREZMITYD2CsVzaL0vbe5bkVQggiKDEA455Uk45x4BsKEQoheyaS5PcC7zlYe2R5nYqVfmYBsCpNRUFEYOF9phUjRxBMHSxDKpKQxNTZs1JS0iKhjNZ7YVARiFESy+WeAcBJQR1Tn/XUcR0kqfOkGCiLpNPEvYV79Gb2Jyqo9t87IqKQEAAg4BCgDzGFOrRW1moA531UAgyilChNWqd6UGDm6ahIwq65zZg59eG8vb0ti6wsy/R5u90uPdFar5abTx99HId+vV7v2p21VgONRvVms3Fu8DE8f3FV1aPb1dYLCuijmrJEjpzyTYgZOddXVTGuS+dcai1Q1tV4MnJNlyRvJUZUKjEZY4yzyTTFFvnQIU9SBvxQLZd8+ePddygV5/vRrZQ6B0bhiEoXZVbmeddsu2bzB3/wB3/4h3/4+PHjajRaLlffP33y8ccfG2PQ2M3m5fX19WQyY+Y57D8uYSszA/MRnH5A+xr2FVn3+zfFNyBj78/unx/efng1XUu6t+eH4eb+qwpQ4B3ZjLeP8xqu3YO/Nw4uIvQeyMZfQkP7+KsgYoxBKRWDn0/G3nU/++lfnZ+daIm3T5++ePbi7HQ+qcqyyH728y+npxd/8uc/7SM5TSbcPRrpf3fTnpzOf+fR9F/+0Zd5Nfnqq+eUqdDH8fno5arRRpUkZ6fnz69eiEjwUJfVeFy/eP60HI2vrl6enp+HEKrcej/crYb5yEwnY+XiYrN2Ecrx6ObuLgCMqpEiGvpYZYpDWK/c4xMzrarb9abOVfDcDX0IweSZCKA2ShkirZifPH1+cX4C4ne7tsyrwF1WVLvbu88vq6zDX7zcOQlaa00mKbkKJqY0hZDIdKos8rOT02+//rYolMmp6R1SKAoSVF3vAYhFMZAQg0iMEhPS7eUO4Rjq8gxKgEiG3isFwQVrtXOBCKIcvRUAAJWgSkARMQfcY1HCOEAUlARZBJBaNUYUEMEQj6spHCIoiAjGpF853i9cuZ9eO0wGBE4lKiSS0I9lnw3fn9ghmomQ4jr4ilgmcgzyJHUCiAKeQbMggiJQmbGAw9CTAq2RFB6dnCTO1nWdCJyejIqi2K031tpRVW+329Tcqm1bZrbWpoKTYXC2LJ8/fx76bjoe53m126zbZmvRfPr5F+v1OgrnVXmz3BRVJUPcNH2CMNIKEUQiiiDum0ANwxCS4LbWCnEYhvaqzW02Go1mk0nf90WRz2ZTo/T19TWIGK211ingni4g71P1SYSCRfahZGbZq+AgQrLgQBBRKQ0+EhISKiRmzowqikwrDBFns9mzZ88Sc3OzWv/J1e3ZxclkdmIye3Z2dnt7u91uP4bH6eqFEOCgH5F+ffk1KvPuQ8nbxuDbYKTegqS4R88PYaKIqEO9woezGR8+z2P48hjvg7fO58Mfcd9svH9wrSjGQCCns9G/+H/9t4Whs5PZzbOn2+32/PwUJE5GZbtrBheGCA5JEKpqNCvipuPF7fJ//g//1h/9+c9icN+9XO36aEs7G9nE1N82/ScnRhAA1dA1WsH56cmTJ0+yLLu7uzNKGZN9/f0TVERoLk9GZWFd25zNL76+WlxeTJxzfe+MAu+9UwSkxpPyZtkjwOl83A1tGPjxFw/9dnN5ftEN/abZpVU6gihEW5REfH1747vdFx9/kmVFWK4zQ/lYEctMy+NSL5rQhuApiDHg9xdZKUieX7o96rreDqCt1GXZ9303hDzPCHHXeKUiouKYCv8IcF+4lnw6gORdAgApxQoBCQhAAaIGqxWHgAi859+BIpG9W4oIEmPY16WoZLsJACilSGLca8ymZqcIkJzTdJy9FEKi3SRaYmILp0wxM8eYCCKQiklESIT3hiqCf711rBCiUIo7I+K+ukYkufMCgBhTAD0ZjwfLlK02EKNSKnjfDxGgIwStdW5BayUSI4fogQBspqosS2e+2+18P4xGozIvktRNIvolwYjdbtd1XQixLIu7RXsyyX782WdlYZTWcjod2mHo+7bdVVX1119+icaSssv1VmV5lpmh90Ao8RCkIkYRFOj73mqt8zwVIwKiUVopFb33ALooiiInonbXjMfji8uz7WKV4hIxekLRhrSxMcbtrk2/3VEZIN2n93UDXt28gFlWxOhfGZCceKgCIJvNKuWynXOn83lM5UwoQ98mfaAHDx4A7HuIGmNAKa31fUB4bzRNUu+W+1kRUAivtVgSkcS/ByFAfufjDQPtXpLiQ/vTPd5GIkTA69D2Njy98SRVuad/j08STe34iCDH5/ie8can3B/trplPx3/2p39KGB8/fLBbr58/e6KtOTs7a3cb5/o8t+Wo/tO//GnjeNnyJ6YfT2Z//qz7fAQT1T4fRkbJk9stAqB3p2cXm11HECcZ1XW93bVCGBhmk3q3221WO/YhM3Y0Gm02Gx/2jTus1au7OwK5vlsQAAAF50GgLA1p1Q9O61yQRWQ+HXXtFmMojfH9VhFZYzJjq7zI8zyV1ndd13a9IFCmRtPJetds1ruT8zPneiZq2haG/pN5/ZPL0USBYoDoIVVYcCoqAAAYhtAP3gVflxACb5shMIUAbT+kqBoLhQg+sncx+L2zgqm7XowxxsDRx5hQVWsSEWspsuTWcPBWEwFohVqBVWAN5ZpyTVYro0AjGAK9d05fsY73/5N476571cznvrchArxfNPkIggBJguxYvpkmQ+ItQgyQyv5fjSipzPYYCDvMTNrnY45eVPpLIALEgza9QFQKsgwVIYfIIQQfgh+Eg0KwGnINigSBEdEYMyqrLMuGrt9sNmFwqQ9n13W73a7v+0TDFoG27eazfDIePXxwfnF64obmxZOnHOMXn342n8+vrq4uLy9dDKvNVhC22z4yV3WR53myEBWSVdpqZaxWyef1IdWwq0Nf5jzPvXe73TZFKra79d3iJildIwtETmI8x76G6Qei1we83lkkzQoROej9YLLYMTWMVsa5QICa1GQyapqm7/vNZmMU5dbkynx0ej6fTDn69WrxCn6Ot7a8+nF+mSbCrzXY3EdkDkc8fpm33/ZGXE9E4n1sFXjng4AJ7oEjvImqbwDi8cm9Cfde4s77wPQNx/8N+/eNL5VG13VVVdzdXPddM62r6WT01Vc/VwqLenS3vEWUsshsbrSxaMyACgD+i9/9zWfrfojmtz85f/nyahj8i43zmBPA2TjfNA3oDJx/eD63WcVIL27Xo1FujFne3Ty4PNksu8vz8yKv1ttNWZgsy7QmTSoGGFXF7WodAJqmmVR1DMAhzk9P103nXXSuNyazynJw1mCVF0O37ZvdixfPrm+u+r5l7yAGEo7Rt23bDX01qn0Mzkedl0T6x7/xE3ZU5Hmea++3hobHF8VFrTMGQkCBvWGEwAA+Qu983/eTyaQfYHB+cJ4UDMNeGRBQCVCIGAQCc+R9ayofo/dy4FFDPDhTuJe6AxGR1NsEUSFoBUaBATDImtCgGEXakM2UsZSA69Cejyk5z8mOILwfdRRJrMZ9iIoIFIFSiaQNkSF1FEFMLhsc4oxyXDGTdUkKtMKU4tgf9+CqSyL/4F6qQCtDBArvB9P3jxhjiOw9K4SqyKvCGA15hlYBCUgEJVAYXeTGIkLwJNBud8MwGKWttaOySj5yEtEqy70Cdtf1SmGeZ5NRfTIZN6vV7curKss/fvDwfHayXW4V0m/97d9cbtaXDx4WVekjIIFzMTU4bRrXNL7rfN/7tm27XdN1bde1IXgiBOa2bdquiTGI8NnZWVVVrh8Q8fHjx2dnZ957hRScT5HNVMPX933btnjo/XuwxCndcUk//BCVimlBijH23iGiUioyeB8QVZYVxubMrLUOzl+en9VlNR1P+rarirLIs81q2bftxelZYbM30InvKUXCB9DwDePoiALJbr1vph2/wNsj+QJv48v79v/weOONbwPi/T+POx8//e1v9PbZHpfxdyp63TcMkxJfWZYK5fHjj//dv/2Dk9nkwcXly5cvAYCI1tvNYrF4eXvTOR8Z52VmOHz5/e35uLy8/Ohq1T6e6DWWTvByVip2PrDzfHk2Wt/dqix/cXVlEMqynM/nuc1evLibjLMyL66vr90gRVGkJrzG6tN5rZQKCERQl9XqblEZiJ6Xy6UgdH1vrEbE9Wo7n49jjF3TPXr4YFyPRmVVFaUwN02PiGVZMidFk92zZ09AESm93TYs8uT5s0eXnxiV9c5FjKCDEn9W5b/58LKwmmg/jYiMIkUKlTJt23KEgSEvKgEyWUYIIuIGCWFvbSGAUpqIlErVxPvgmdFWqT2mhLBvNp1bE5zXmkTYGEUgJIAgCoUQ9isoM8reG8DEzjBKa504hoigVCJIpx2AiLRWRMkOhPTjpz3TSRKh0SrlPUOAYfAJ3Y7T6ZU1c0gAEYFWoDVqhZoIE3ITJsnoKKnzcESS+5PqyOxCFK2BAGIEH4YQnLV0fnp6eXEyHhUKgQUQWBNqhakVXFVVSQDRWhtjbNt2VNepWVUIYbdrnHOJ0BFjzHM7GdfBDxy8Ucr1QwqtrNaL//Af/kPbti9fvuz7PsssAGSZJQKl0BjIc1VVWV0XVVXluU3HN8ZMJpP5fF4URbq1EkspKfcMrmvbtuu6zNj5fJ6qM4/9rLMsm06nfG8cb72UQjned2lFTFuGYUCtkjez2Wx2badIl2U9Ho+T/bhYLFJosizL5XI5dP2oqhHx5cureC+akXLKtJeX3WNCMkpBJKY1HmnPKwaJIBEFUGifMiZBEhAN93g5Ap7Fsbi3ISZNl8Dx+Dx1X0URDkEQ3v14PWvMIIKAau+JC8T0AGSWENm/7WunV5OBgYnThEgAKEIAEj1KJGBNoFCSKXpModyf4kd8fPWrAACw0Yjg+9XNKNPPvvt+Op5s7q7bZnPx0Ue/ePa0WyyLTH32+WPv/XozXL1svK42Av/4k/pP74bnjXz2WfEv/4c/t+Pp3bYIvTtXnScuTy5/dHbp15vvFtv5p59VQZohPH78yAVer7Zt29elmtTlpM4CRpWBSMyM1YDNZosSyyLvAlllxmU1Ho83HsAUmc5MgN/40QOicb/dXZ4qsCeb1lfWb5Yt5ipgjBJQQVFYALi6acazSVEr14PvoNQVi6/H+Wa7mpRTMm42NpNSFVYbMtttcP3u8cX4v/n93/7Pf3Ty2QmG3nGEyMYoHXyjlCijlYJuiDFE6T0wdG1oBXdB+sAgqJCAI0hEYICQhNoHH7xPlA5oe1/VSsADchCvDQAyEXofci2FAbW/VUBYMEqZkSbKlE7KllZpRGSJ2qgQBZE0khImEQV7NRhzoMkSgTGalGFRLibsSAagHCUyRUBroxQphVoTAPvUHkWAEUMEHw4PL6l5qdVGkyJAAiFhElbIChkYjNYsgKARtADkyhrQRmsCGFV6Mta5xRBi8JxbshqNgtxCYYAAY5QhQjOEBDFWm9l4kilttK6qChDdrnF9FzjauggEHkApujiZjQt7e/diuV0MYeh7/+DBI5tnoEOIWBZ1XZTinCEpFIxyDd4Zo8ajihByTRIGiENGUGo9G480QgzOu75tmul4cjadVzY3xorAaDQeTydGZ8HzMAzW2sV2y1pHpAAYomiTOR+73uV5rkknGVIO3LbtMHTGKEUQgwNmiVGEfRj6viUCbcAPjfO9NjSdT8uy2DTbznVRgiAk6ntqTAgsRZanZq2jqppUtdzTsBlFFpKIoAUUaklMLPgfeRwtxzdstF/1OG87wh+2Sd+35W1n+e2d74/7aHgcKABkrLXNbovR3d28PDk5+e7JUx/45OK8qkoQPz89d2CaIOx75cOPPn74/JtvHsyM7/wQApB9vrhatgEVGCB2/m+++nk1KiTA+Xz+7dMnmYbrmysFmEjvRVGE4L755quyLIcBJpPJ7d26LMu6ru+WnfdekyajuqG9enltASQ6bfDkJFNIv/jmpq5VCK5tGo1wcjLKsmy9WiBwUWS7jQ/eFWX22ePT5e16t91NJ1mmqcwtsBS5tdq4vssUEWCmjVVaIY1rk+fF3d3drukmk9nDjx58/vikyBRAAJCiqobBDz4EAR+jY+giM0JAYiQWiYIBJYkk8D5Oh0SkCAiQOQowERgDR+/VKNJpGNL7+tf0gyYTD7VODTYFAPTes47IUURijMmHTSiWacqNslZZSyCoFCm1Z+qlGnBN6uAO33OjaO/JxsghSBLFIdo3RE2unlJ0zL0gAhEe2ST3POukOgyIkQiQGDBqBKQIEqxWKAASCQSBy5yqApp2e3V1u912zECHe1ZrXZY5EU1G49FolKI3Ie6LFMq6UqSZue+diFgFubXpC67X6+RKV1WVGgaMZ9PB+6Zrk5I5C/bOeR8AwSjFHAyBiBRFXmS51pqImqYBgGSKDkPXNE0qlbPWJnsw9YO21mZZdn17Y7Ps2Jx6r+LFCfuGwCkUwYKw76rKPAzDfWc2cfK990PvOe5RxTm/2+2ccwiKSB+bMqcc+v5OBzaahq713vvwA21/fnU0xH0Vyi95hDc81sPkprd3+PB4p7t9DLW+4QW/87D3Z+T9jfBDgHgcdLAWmZlJxRhno/L26rkfhrquWXDXDnmZKZSvf/7zu/XmxaoBW5DE33pYa5ZmFf7Ojz/1HaCF67vmum+NhXpSno2nuTJtcKLh49ORirJ1bjQqiGA6qwlEaVIKSavBx7u7XZUDMxsNxqjb29uiUEobZpfnedN1SgEh5JniOHzy+OOnT5+OKqirwg+xb3ZucGWe983uZDp1XWeQPvv0HAQM4XZ9NxsX07oorZnWxdC3ozpf3F4bhZrg5dWLcV1OJ6O+65umizG2bXd7e7dpe0ClEOdlXpIoCIFj50Pb9m0/BIYuxIDYRugBBgFOTgdIEPEiXiA9EgwpleL16RdMWdT7+Y2Umojs0x2l93XBQMLIEWIQhUQgiKLpEIkWgJiIYgLCuBeXIKNIE3ofAEApAoAQIYRkBh6zK28uw8fnyfdMhRP3p9C9nQEAjmh4PMK+oI0AUIgAgbUSa0Er0AQGRQNoEgLhIEahJtxtWiLQGrPMJDkG5hCjj+z3R2MBgMRt9t7frZb94FCbsh4rpVwvHGBU1Wcn54vFwlprrTWZTcIKqSdyFB6c94FTBJQZIoNS1Pe9xJhlGUiU4EPwvh8UQWHNuKrrui6Koq5rRdR1XdM06/VqGPokV9P3fQjhKHYNAKk7qI8hGXEikvaJMfqQkioEQEmI5Hg9j26y9zElYTgCCMUYh8HFyEQqqSi2fTcMHvZySgyEfbMrigIBRlU5m4w/fIP/J9Gw+dUg9ZeEnrfHh6KTbwHf0Qb8wMe9YTC+c7yRIJLIzCAh2rzgEHar28LSyfhyvd1sm/bhx4/Ox/r6+dcPHz58tmifLPs8t9LDR7V+sViyRd/tnr1YnD8avXyhIoAJMJ2O3boRpCFCJv5Hjz69fvJkELAgdVW6oV+tl1ZR24bTkxkR8WI4Pz9/8eJqPh0rpBDiw8vLrhsyhYiy3nZVqcuSxqOqWS9vlcwmIwgut/rsswebzQ5Zj+q81GXvXG6zZru11lZWNav29HSy2+1QQWYKTfpkMo7etYTNdkOT0ceXD5brlQJ69NHF9Wq3bl2em673264PHDbrZVA602wQ8sKykI9hCJBEO7WiwBEPnfMIkEEIIKaySwAEoABKgdbJONxDEDM7EUSgRMpPcSUB5FS6tpfFTCW4wHt1vJRz2zcvRVD7Bqb7tEaqNU3hbGaOEYxBIh2jY96T9pmFDrcwJ4LgYcYgAiokEmZIGrUsEhiE45EpeX+FFniF5q9NOYAYAASUAkJSCEpEW2DvrIFMK6MSJygikVFirdmX62pRhNpoIlIAfnCqHo3H41Tj4b3XmS3qarFY9W27aXbex9zQ5enJqKo5uGEYMNOr1SqzVs3yB5OxWy23q13kVAtDhDoACEISWPUDK2SlMAG3NRlK0FonimhO2kVOIWwQVkQhxtP5SYq0rlYr770PAyLudjtJEhIc+74/3qFESkSioCAgKhGRyMxR6Sz94ACQPAZhThLfyXJMqjxEqZZZa70nqMG9Jcpam5VZdENhTTUe3d7efhjxPvDa+8TffzXs41TB/lby9w2P9cOwBR8ErF9pvPEpv9Jh9ztHFpHgvCrItQ0Szx89urpdWGsvzs+gvdHa3iya57ebzz5/9OT7Z59fFD/++OG/+8W3G6Tvn151TnZeBieAMDKZgrhtttX4xHmwWkXXbdersrajotBar1YrqyhRqE5Oz6+urqaTTEQQwVrdbHdlWTBg0zS5wd1mLQIxxtGkFj8opTbbpioqk9nM6N1m7fp+MhrfvHj+8UcX80lVWNJaX11dMfHktCLi09moazeKYFQVwQ3AcVxXu661xiwWi8lsum66xfVdFJUZ0wwDM1/f3pTGOD9EVCDCAooMIBWF8X2ALgRAAIwAACiMCJxitLLvKbknbcU0MTgqOFJWUxdRSDxkRFGABKRIUKH3rHUUARJI+gVCAoSRE3Nhj0oEKEQirNRe0hAB4NCHILm6ST4PAJQCVCiMzDG1Kt3njxOuiQBAiKIVIhICC0NIRJF9XuW1aXz0iuE4ve+5R1ob5zwAKEV7pEbJrWH2eY6IUSFluY0ckCErsmOeAYFJKyQUYUC6uLiYTCZZlnVdt1qt2rYFRVmWlVXVD8NuF4wBm9miKJbL5W6zQpLg/XRUaKWqqnr58uWua51zqTMBKIoxhnTdUJhjmSsRid5ZrTJjzk/mbugybYbIt7e3xpjxeDy+uEDEzWazXC5PTk6K3A7eZTYbT+qu6/ouElFaswLvuTV5noOiIXijyKUARWqczBFFNJl9uboEjYpIJx6oVVZQQCB1zkLcCw7hUcwxBGYmrRKSMnPvhno06rpudbcw9BpB8O3xa9iGr7SCf5lxH/vub/w10O11P+WVh/v2od5ein/tIfKKjLGnASEqosjD6nZZV0Vw/e1yG1E/fvx4c/cS+s3Z+aO/+puv1lvfb59enox//Pmj7568uG39luMUyocfj3/2/VXPBhB+dHlW6BAm4y54CzAfVc53JtO1zZVSbdt6509OpszAzMPgX1wvxpPRdrvNMhOcH5yzuvDeb3ZNaW03OK1VUWTe9cTBWks2d31rrb68vFzdXS/umvMTenT28d3VE8Lz8Xh8d3fz6PJit9sNw0AIwP5sPnfDkGe22zWJ0liWZVEUmBWBJSuK+Xz+9Oa2baPVSuts0QxNjMjgUECRQGyHnn28/PjCgZNtDwIxxj28IcG+jS3EPWIBACgEQGQBDuz3FSGACAiKJaoDW5pBFAgpVEQHwWRg2ONpWgkAIEZAFCHgeABKAQaCxLtOCVxKxJp9wjpVJSACkQAK0pvx4oRs9wkZr5mBkAjVR3c+vYkBIPURg9cdEURUogCCUkhCAJFQSECRlJU2xvR9JyRKUxjEeWHwRpHWClEQIIToAxiDpLVzbmi7ZrPdbjaDc0TEAbqh5+U6xqgRqtzmuRWOAr6qirZrs0xnWZZnWYyx7fvVeh0hprytRvAimOKhmFjoFGMEBhQBiRx9bqzco0Yvl8v+xZXOstls9tFHH7Vte319nagzVVVtdts8K5nZZFmiKHofmGXwYR85RolRfAyUJA45GkRtDOzv9/2VRGYQVFY57o02iCAQvZfgfdLCiRKTZDsCJfE1iRxjzLXabHZlWVmru64D8B+42X/tLMq9uZLY1+8Zb4fz3vj3jZc+MN6GwiOqHpf6+zu/bQa+HV78Qbh8+6xSWeoosy9fPBWJlw8eLbZdNZqGEHy/jUP//ZOXbbS2GFkFZ5Ps3/ybn9azC2tqZhib8XxiPUNhpR4VpQ3TLEdLT65XhYLLyVRl6IjFBaMsiExGo8loTERFUd0uloqUMWYYBmAJ0RfW1HUdGXYtPDw/mY7HzGxIa6Q8z3vvN9uu2Qwisl4uAODjh3NNoBDm0wlwWC/v6rxod9vz05NPHj54cH6aa62I6rpmHy4vL0Ukr8phGFbrdWCox5PBh+u7W2PMZFIzx74fJmOrtYqoGYxnbTPlfUgCBwAgwEh74WLcdxe/d/EPfisDeoFwePjE8uMkAQEBMDBFBh+gj+CCDD4gAKEm1CAYBVNxXIyQFK8YAAQPrEAFAIl+IUmOPzEXUxBRJEGhHOZDsvTeqecoIvqe1tFxOtHhO70+teCeOfha3FApxRKsosIaxKhQMou5hUyDtTYlgkTEDd47IYJhSCASYE/4Ba0oy7K6HtVFWRRFURQpaIhaJQWtqsyrMp9OsiK3J7Op90PT7LZtW1VFlmWLxWq9XrvgHz16NJ1OURFzgL2eLVAq+yPMDKAABzaGhBk5Nk2TZwYFtMKyKPI811rneYYswzCEEKajui7y6XScJLURcTQapWhmyqLEGH2Mu91uvV4Pw+BCSNdn8NH7kNIKIpJ6aiedV417qYh0YYxJpYD7BCMixhi1tuk3BQBhUEqZzArCdtsw82K9ulks00z4wPgfPaf8TsPt1zAM32kV/kof+r6X3sbN++PNuGGCYBY3NBDDg8vL27v1/Pyj0XTm+s53u5PJmIVul+31altlNCn0bAq3qy52LkOY2IpDUxAghKIwYVh16/WuafJKT8p8UlSL9cJH99HZeeo2673fbhtgqarq9nZRjerEf3rw8KOqqkIIWZZtNpvxyOw262a7NTrr+74sy77vQchHPjkZWU19319fXXs/nMzmy8Vt3/fAscwz5jCu66vnz548+d71w+n8RESSMdg0DbMIw2g82Wy2vRvulsuUN2Tm3W4XI1SFjuxYYu9C7+K66ULkGCE3RbtrnHMooJUCgGQCJYx5rShzf/dBBGHY0xwEIAAEER/FCQQWBmCgQ6gJibSPr0oUZJ8cAyIkZVAhKtpTrA+m2b7ZVSoCO1QfqUOLVCKwhqxNaRkgSrFMTAdJj5hsSq2SXn/SVIzC6fT2BOwD/VAp1FpprY4e7nE67ZXxY1BKbKYUCREUucly0mYv1pLqAochCkJRVdqSzZAUCMRDYQwpMoQ6NZBbLhbe+6qqyrJURqemyd57YwwRTiYjINFW54Vqmo6ZT05mRVGcnJwgImrV970wx+g5xr2hI4IgmjDLshQqEIHRaFTY7OTkxFq72Wxi3DMHy7JUCtu2bZpmsVg0TaOUury8RMQ8z1MCGhGHYWiaRkTqui7L8sBjI9IqtbKJsr8+JJDEsVPKKAUHlVIApDXtfWTCpKKoFDKndgUqVbmkTAsk9pVSeVkrSgrbP2D66ANIwCHrlgpCEO7LDt5XD3zVW+7oNcQ0RQGObtB+DwA4knje8hfk+BGv23R4H7nw0Hr1mLl7w9K8v+re337vgK+h5/1V/f6eEgMdPk4OZQmIGKM7HotB0FC329V51rd9Nj7ZYHXyyUm7WQ7tpmt3o/nlk/Wwbr/JC+N3ND6fr5aL3Q5cYasc/AaLS/Xz77ee1Xw0Un7ls5NtXa6frnKrZh+Vz9vb1V18ePEg9i93bVPk9PjRxXa9OT27+PIX32iD3g+T2dlqtdlsNtvt+tHjB23bBpC286bUTKQEIMCm2WmteBhGptTa5XkpkUeTkXPt9c2LUutS6223jeleDub0dO6c2zY7F7wy8e7uZZYVMUqRl1mWrTery4vzrg13t5vGcSTlnEvOZuNi16uepRHpow8IyKIIeu7KYtwPkRFEAgJopAEYtKRGKnDvkjoQEKgQRDgIRAEERBAFCMgiEBGEWQEYxBTKixwEoPOyB68gPjnTKDZ6o4kFUzVYBAkhBAHFGA71nXxvYiTVBoVKBELgQwCRACVNaU4N9IQJgBCHwac45nEuJWcchJ2PmqJWWoSFhTkGAQMEAphq5YiOBVnWIDBH105rZRRycESY6aztHQAgUoyiFApC4rKwJ1SYZVnwnkBybWpjHl9eDuKU1aRJg0IQ3/Ug4l1gjt77PM/LsvzuyfPdehMja60UAYhqNsPHHz3QDM++/f6bJ9+RNatuMMZmuYmDk8jWaCCJMWLoNKFzsSx0bujjB2fNbtm7thkcAER0gxv6vh+NRiEE7waT5yGEZrP9+WZT13VdT5quyXKlSA0xGqVAQGJM/N8yr5q+Y+aqzMWHssokxMEP43FdKAlDM5/PFZZd16ECUgAKptnJYrHIsqIejbuusUq7vhuNqt1uY61N1SakEFiC85qUo2G7W2ukLMtX280cDuUo8gp/gBAA6Ic1bN4aH8hCvBN679cb3n/XK6Wg11+lQ9uKN5yLe2/84VDg/X3eDlken7wNpm9jq1LqGBTo+76uCzYU2f/Nlz/78Y9/Y3Zytlwuh2FIdSnru+vNzXXE6Yv19flMT5FunOoMmqGpypzm9u7uruscADS7zY8/mTWL7bZpAaRtgtG62+5m03I6q+8WO01KE03HE03q9vbWx1DX5a7p/NCVedZud/PpODi3ulvMTs+G7oZDNMa4xhPGTI8G10Jq7L0beAijohjVZZFr5OD94CRMJhPveud8O/QIXBRVVRV975z3IPTy+o5IK9UI4mw2M0Vxd3eNilAjCWojzRB8BFvmq6YLjCxJgj+pWIIIrLZtPT+TRQMiilTiwX2gLzMACO7r0VOU8PBDAMArNxYgLUqJ4JK27Dcnz3SIQjoiQozAUSRGABRJIsCvTYO0PwHdD5+k7cyplSgfl8zjHvbVdADcS9izpPJBkFTvnqSnAYAOUcW0zpIku4EVYp5rkagIRcSFhA44+PiqdHof5dzPRq1179wwdIqgLm2eWyJabda60BBBRPphMMbkRQGKvPe+iWVZGaOdc67vkEAhskRLEGMcFSUZvd5tU5IhoOSCzvkYhJlT/lqYYwQOMa+Kvh+QZTqeXJyebbfNZt3meZ7c3mHwEMGY3lpblmU627quOzc0TRNCIK2YeehbIsqyzPsQfdhTCzWOyqppt8BMAIXNKKcit865qsiLaZZ082az2XK9GgY3mo7LsmyaJsuM9346GjMzS+z73uYVEUlklhgZ0kzbE1RJ58ZqrZU1AB8Qcf+AasO98c6I2y855IfGfmIdQzDvYmu/sw4afpWM8DvP/+3TOH7ifbP03jvYDUNd14vbu4cPP57MTm5vb1MH8WHo0u/048/OV61tnDyaG+38k5tu0Use3fWL29Oz6d3dMkYYlfnpfBKj/OgnXyxXLkT43b//mfJQ2Xw+z8mEYZDC6IcfXfp+WCwWqUt327Z5VWYKFUKemclofHdz+/GjR753IiCCVmsfYmrVKCJEyBJmJzNljXN+s9l47xFxMqrm02nwg4RY5LYsy+B82+68c94PpK3J88+++PFoMjNFOZ2fLNebm7t1VlYMuN5u274bj6ez+QwQt7tuCOBYIgNDqllCZggMgyjQe5n0KKy0+fAyFhDiwbNIF58PLUJfXf3DE5JXD2QUwWPMMSRlCFExRZVSjPBeWfL9tmKIQOpQZPX6OLRxfy0qfcyiHGv40p+ps5HRe/0+3CtgHipYAABYIyhNRmOusTCkSKzZa1IwQxQIIM7HKBJFDn0NXl2NtnPW0HiUT8elRmLmyWQym82GtttttsD7fu3WWmZ2IWWrlVIa9rwOyDJjrTbGoKKTs9PLjz4aT2b1ZDyaTtpur+yilErhghAiAVal0Zlq205rdXl5brW5u7vbU7g3m37okaSqirK0AORcGAYfQkjtYkSk7/thGDQpDjEkniBzjCHGYA4dRwHZGKOQyty+eLaxiqIPo6o+mc6qqsqsHY+no9GoKsq6roe2d27Issxam+K9LHEv1RNZQjp+DCGkMGWMfp+yi3G93rZt+xomvKWa+kuh4duo8c7937M9pqbex0f683WlhlciDu8b79J3wHc+3x8nlTgcHhI5PSHAt3dGeQWsR0A8zsXjORilU1v5ptlN56fMXJYlBxf9YLW+vb0loifffrfsmlmdjbVuAwHAp2eFzquz0/HN7dVizZ99+unQ9wri40effPX11wBqfmJO5nWmTab05589bNpV24dJVT+8uNztdn3T1vUoFRt88vHDqrR91//o889SAaY1ed92CkApI8LJcOAQi6zUShlFy+VSGPM8H4Zhs9lttxsAsJmeT6aKoOu66F2SZknBl3FZKYDNajGbTebTyd3d3Wa7Xa/XT1+8cMFX9YgRnl+9fPp8uW0lou4FBgEPwJBiH3tcWTVD3w9Frq3RyfwBeC368sYIqbXAfqcEOol2kzZhihsy4N7WA0zyqonLDfvIHQCBoGak1E4isXlFJAinx71VFo4MwfvRPcT3rp2pTizGVNQMx7ckWv7RrTlUiAImYyXxIYVBGEWSfBLHwNFB0vsiFMTA4liiJLMwyT7vP5oAi0JpraMPiGisyrLMGNN0zaiq083vve+Gvuk7F7yyRimzD0HCUWwiGk0JJnrvFqv11d3Nar3uvRuCT4EFEbFKS/BWISnIsszHWFZZDD6GcH46n02nRORj1BpTI2mtdYruWWvzPK/r2lpLRIXNTmfzk+lsNBqNRqPpdDwZ12WRpQLnVCYbggeWqihD8KcnJ2endjoa50ZHN6zXW2GeTCYaaXW32mw2HGKe533fW2sAoMzyxNCO0WfGKqVIoVZktbHaKIXHNnvMrLVlAFI/0E/5h1Ubjn7rh9HwfSOhj0I6PtKW9+2fYOsIcK8QbS+lsxfmuv94e8t9Ia/jI2HxoWL/1eMo0vPOb5dlr+le1GW1WCwm47Hz0fm4WCw2m01ZlpvNJinKPfrit3e727F0hRn/9PrOivyt2fivnjzN83yxbs/OqydPXhgNZW6//PlXLxeDRPfowUdD02gEAgSOwLGqC6vV7e1ts90VRTUMQ9/3udWa1NC3s2mRGWUUZll2/fIFczRWaVTe9cZCXRfOD0nYzlhtjBm6brVaey91XY7Hoxjj9fU1EaVq/xRu3263y+W267ow9JOqzKxqtqt+aKfT8cX5ORGhMa3zTd91vXeBs9yQgZtNYEAGismW2aOJQsB0NxoFCDFV8ldVRe835Vn2qlawJ6wISeJIQxBIkBcFA0AEjIhJkC0IS2pGnARitErpDh84RGHBNIniB1bZQwe9pDYqktx0SkJe/ErYhvbqEgIJaBFQgAFZaUyCY0ccJCKtyVqwVheZynIqMpVZzDQYDVqBIiACZoiRBQiEgpd4VNtO+C57LZ80YowcIgAbUrnN8jy3mUniqXLw3u7foXluDSkJ0Tnn/cCBOUbvvSaaT2dlWXuOTdvuujYEHo+n6b1dl1IQXNWFRgrDUBa63Q2ZpgfnZwpJRATVar1N9XkHcy8mg5GZQwghhOVyudlsRCSEsF2to/PH5lmZ1UiSCu+sNn3fEaEbfNc1l2fnzW4zm07LIiuLjIja7W6xWGSZGVf1MAx1WQGA6/vdepPUvTQpP7jl6u5VK4k0mw5DKRViTDIQdV2/9eu/NiPfi4ZEhG+N986p90611xjX78PT+xuP8++NN97/9Psn876zuu93f/grHL2ht08JERNT5LCrdF0DHEejShCdc7e3t977u5ub+XRirX3x4sU////94cMT/L3f+vz7l9v1AP/Zj85vn74UnS0Wi7wEF3GzGRILYBgCWbg4yavMchTAMJ6OOGK76+qCPvn04xg9IKfFViFNRmMOrm2bs/lJ0u+8u7uz1gpyjNH1PgQ2BIQSBheHEIZAwlabosjGdT2d1sy82ex2XZvl5bfffutcyLIMgAKLMaasitF0kmVZ3/dEOmUA2264W6wYNBMhaaWN1iQIylibVQQQicIrI2bPbUbEPC/b7fZkXEYn3nsAapruA4upCErq446g4JWO5l41HSACepQA4oX9HiIxAobkBwsl/U0BigyB46ErHlHSqLmfIJZXj8MMee2nZ+a0+Y0pIanZ8uFx9EsIUCEgsEJQCCCBELQChKgQDIAmNKT0vpZZKaW01aSIhRIxKMYUCVV7Y0AwiMhBDxIAyrJkjr5nBJ7P5xdnp4i4a9sXL6+OU9QonWljlJYQDSltlAD3fe8H0VoljazSFCfTkzLLU30eKbNer3e7HbMopXTqGpdItYjCAQDKjPIsG9d1Xtjdbvft999HpBiEUGtlU68okej90DRbHwZjFUtI64Q2FIOzRvV9Owxd1zUikttM6dTIKxBR27ajUcHMIbjxeNx1zcl0lmUZe1dVxcl8mllLCnNryrKoiiLG6IPb7XaJ7VRVVfruycZSClPuqK7ryWRirQWgwBxjHIZXQcN3QsGHu0S9OX69uOE7j/aGZypv3FCHl36NT7x/2A9sf3uu399yXG97747mNQG2u22e537o2j7kef7ZZ589//6bpmk+efDpT//yz1arlqt6wru22Xy/WJ1kVFv9lYPzyzI6tWs23eAFSGs+OZl993SRjeGLT07Y+U3fl5UZzyYI2vdhXIcUAPIhtENPqDgEYbVbr7Isa5pmPp+/fLnLChBkY9UQQt+5olCEMUaf53nTNN4DABODRPbsrMlZAAibdlAMFxcf5bn1zqUqUaUtGR2ilFU1PR19+/33667vhji4UI9nt8sVkKAyQxQfBYC6wTWdMMKeoiZwCOulYjRh7/7O3/7xeGTm87v/8POnTrR4ZxUMH2q4QAis7i3RR2VNAYyHpAIj0KErigIgSK3omQMjYkRJ+VvGQ/QNmRQcMzOyTz4fPoJDSsgcF8UUaryvKAUHKIwshPen0KuXrAJCUFqJSIyRlBABs4iPjADEkYARRIADEDFZEiQACT5ZNHvj7shJT8xMpD3pJASX51k9K6syZx9ub2+3TQMAQ/CZzpqulcjGGEAq6qooina3DiF4P/ChZJBQa4WX5xfT8aTveyBkBmvt/e+Y5ca7aA1GH1RSMxcAlCqzKHG7Wk+n03rXffnkZj6r0iVKJiEg50UOAElcFgDyPLfa1FXtBxdCmI0nicqDKFlmBMF73/f9bD7fbbdlPRnXVWGzH33x2Z/92Z+t1+vZbLbuWjf0RVGIcJkXWtPt9dX5+Xlyz9M5W5s0e3i32yX7NMuNsTaZzCwBjU0EHWNs27YZfIhy+F7bkO+Nt6fFfUz5sM2FlMqpXrnKacsbu3144LvY2h8e8vp4Y/sbO8Dr4cL7+79xVxRFwSG2bTueTk9OTp4+fbrZbH7v937vX//rf319fX3x4MSOqsvaPHt5Oyj4bDa+vb0dfzr3y5vdrmUAH9jkxWxWXl9fR4aiqkLYdE2bZ3U3tPW4+uM/+ouPLh49vDxZLJdN0xRFYa0VkRBcbmwYXJbl7dDvdrvxNNNabzYb78NolAHAeDzOc0KS0WjknScCY1UInkC8c7vdbtf0pHWWF9pmV1dXd3dLUmoynZMyvXcCpJQKop48v962A2OGNvegX9wtA5rB7/XWRAQVDYPf9UEp83q8P9lKgCDj8fif/E9//+m3X5/Mp8wsIWR5Hj4IhQSYYnmEkHraJtofHtiCghAwcf0gCLDsxaIlRfRYQmQAkEP4jhkih2PqI74uWZn4ice2unum2yGJd3STjxODiNS+9djBelJ0FJlIMoma0CjSCpLwstVYl7YqbJlnWWa0Vql4Jor0fYyBWTBGYd7bsAnQkyhs0qQgwmRLcoghBELUSKlEt+u6ruuYU+Y8JrWY4L2EmGkTQkgKMUYprcG5kKqDk7xiEuVOKoSIaK1V1jjnQgh9z3meA4jS6FwEFqt0Stdut+vbu7ubmxvKcL1OWuld6rk4DCEEH2MYgk8HLMtSa10UBQBsNpu220HkVGI8DEP0IaWY+74npTabTdu2Tbv99ttv67perZeD688vzlJTZuf6GH0yZpk5pexzmw3DkEzLu7u7lFqxmT4K2ITo+mFAUEmWou/71MnvPqS8MV6zDdPMIwFkOWLoG297488jVr599Pse7mHdg3tbXqM9vx6jjIcJimm1lnt57ftHRsS3iwbSMUnRqyD3Ibx9LJqG1+EvPeFDH6/ECtq/9x4/LkrIjWpDOD05L2an33/7tev6+WT6i7/56+dPn+aZFsaPfLOq5jfNy9zB6dloc9dlweXnZ5tI/ult3vt67k/PP/mrv35uDMxzaRozm43X6/VkPH7y/fOiwoH7TWdu7u5ubjfaFvVYN81OhLuuU5S12zYzWV2OuqZ/8WJ9el7d3jajQmVFmOXqZsn1iWIeQgSrYZznLjAQqlyF4Kbjil0bomtDn5Xl1g1+ubLWVpOZ6vvT09PFYrG4u1tsNm1wDJrIrJ26WoQIrkYYRxS2MTgiKaoSfdsknh8QkhYOIIwkqFSI8H/8P/zv/0//l//z//X//n8bdX5emruNd57FZODfQ3HAsLctGRCT+5l+u6T3JZET9gEDRFAKUDCZUALADPvedToCxMiH/nYBQBiYQSMYpfCQ5Ug9hkKQpOV16FwKRKhUCtjJwfRLBmPEVKmmFDMLSBQJXhDAaDBGZ8Z4PwyDR4JMg9YoHJWIySh1NxAWAEx8bBExCgASAZCGIQhERM3IhkxkD4zKAIIgA4hHillhvXNRgs7MerO6u7tj5BgFVC4SQ+QMwVpdFMV4PGUQ7p14yYuSAYLrtLAmyC29WLyAjBBxXp6OppPru9tdP5DRro0iACj1SLngJDIRFSbzAm07fPF4mhnUs/l61ytlKEhe2aZzxkCIPHjODGhb5MYqxlFeEpEEdhJ2u11Zlnmep5JhAh6GLrMFABOQJowiZLRzrotxcbt69vI6Obz53dIoLSKZ1c5xPRppkzWqQdBEsa7rruuyzCzXqyzLTs8uCAJGz95HwW7XplxN0zRlPirrKoQgEuXeahxT5lBhACiDOIZAvzTf8H0O5hHmPnyQt9/+NhjBe8pC3ncm7xwffvUD1uURavFeNDph7vGIWZZpohjjtm12zj979mw+m0/rYmeUj3Fqi9vr24uTyfLuFiM8Os+jG+qqNNY+f/nyagXjTD16PO9ds1k3w+BPZ3a97iwG51wq8PjFL35xdnpqrV0vln2XupGR1rrv+3pUllnpncToc2ti9Lv1ejoiFLYWFIopMhE5OanKqtg1fW7BKIjBi3AYQlGVRHa7bepcT2dj8c7kWapyR6Q8z7uuCyFcXFzU63XssWni1SqyGtpotqx6wI7CposZuUkOmSLhmHsgyDfUswgA73Ep/QQCV8+fX/3i6926OZ3Mzn7vH/13//JfCUPkDzYmlH03qIO8MIiA4b24Ax8oOAIAEO9z/fdurgAcFlJCUAqEMCWUCVHDIcSePHmJAEk1R8srzXNgfkVgJEpVdPc9hsgSSaEmnWQgQggSwMdAHIjIZvtiW46ilFK5OVbLvO6Q7CddjJwoXLJv0oKD9yiABhQZRQAcEp/HOTedTKzSySFQSnkXlUbvnSfiyM65TQzr9frm5sZHLqyJ/eDbNooYhTazmaLM6E8//TQEXq1WX3399e1ypbPce+5bV2VKKSsQkxZOkdoJoATn5/N6s9kg8HR2Utb1Zvt16rdlNCKgJsrGhhiGrvFdOyqrpmmMMbPZrHPD7e3txcXFZrOJMeZ5nooI26ZXgpGZiHyIsfPW2mazBWStlLhgjCnyjAiGvkeUMPRqMhER59xkUgjHZruryyoElxk7dL0m1bQbZq6qkbWZyJDEykajiQs+KTl2XafMK7jz3sOb/LkfQsP7XuSvPY6m3H1m9REN3xdAvI9N78NcuU8k++B5vvHS8c+jrXq0Iu/vQESgXqEhAXrvfQwxsID7e3/v7z1/duVB3a13gQURRwVOp+Plcl3n+OnF5Wb5crfrbGnbAcqiEHLVqHRbNLoCuZ3Nx/22OT8/CSFMxuNh6CbjsTGGfRiPx9vuLlEWUMA7Vkg+uK7ph8FNxqPl3S0IGK3KPGt3nTVaXNisFqMiIwECmU8L74Zm08wnNQA0XRsCGw1K2822IeEcibuh6zo/xM2uBQBj2pcvX27utj0pMmWEdtOAB2+0ybNcdx0PIRAMCpiZFDqrh6gUAyf821+3vST+v/2DP/iX/5+/rQFur1789m//zsPT2fe3yw/OkqNYg4AgIqAgIOhDU3ZBCPdLnXDfqTM55kkfjAUIUECYQStCSDxCVEZxiDGyJKEaScYkKJV6a6T5tn+kWZrwMcaYooqp4EQp1Cy4Z1ArJDJoREdENFZ579kLERhrU/6t63ye0f3Jtk+8S3LnMXiOca8jyyxEmOeWmRGYU8RAKUNaKTV0XapUWyyWKX1rrQ0hhMBKsyEwKoUXQ4wRmPuBBRkO7DFNKrd2Ph3f3Nw9ePAgyzIW3LTdrm1PTqa99651AjH6CFYIsK7r7XbLzAAcQpAi73p3npdfP3222HSiVD+EPDfMHH3QmEp2pKoqjvH87Gy1Xq9WK621VTp1c076g4EjEYXoyqL23vfeGVLWGCIAobocDW1Xz+s8z+sq0wrHdc7MChAimywr86LrOkSsqmoYhjy3ibcYQphO59vtNoQQO67KkdEZIrZ9Z4zqnQvMypj7GVE+hkjuGUm/WhblPny8b/9fxnh8X5Du7be/4V+/71Pedz7Hd/2S+8M9l3nvud/Tp/Deu75lFqX0F198enu3avohK+dVPQUhAjZatd3mZF6fTec8tBZwNi2DNiXoZ1fDxWX+1fdPEYvl5u70BIZ+c3frNFwTUVkUxpjJ5aVzrvPNbDb77tlLDt4o2mzX47HVCIqwBzYEhnDXd1VpEBE5agIt4iSSgCIIfujbJgJM6jKb6Ga5GU0qqxWixChd12ui0/l0ubg9Oz9nwa7fkjbJZxmNRs6e79a75XrDBPOaPjqd1rkyljYbHga767h3vmujroUpdCGUmJozCAC8+k9wsVr66ATgq2+/OTs782GYjKs+7uvM3h4IoGBPWcRDUQeSGAFOKygCIcAhZAIqAh8ECAGAABmiAGoVQhBIyq8cJDm/KsYICV8AcB+BAWbI9Cu2P3MiBTIgaKUiR2EAAaJEH0x+McYoHASYNSERKK2IKHhnlUKNzDwMLpmhSlHgfUNGOeSH94YnIxIxR2bQWiMIc0yLMTMzR+YYCRRC1GiYrQUF2HXdZrW21mptAMB7pzSgABIys0BMwlyE2se95lXS/UaJIbgY43w+v7u7Y0EXg1JqNJks1+sY2SgVQ1QKNYGgRO9jjCl8mdn84aNHm/X6brW6W6zKqly2faGAKFnInBuTa50ZPRqNmqZjjp88/ni73XZDP5tPh2FYLpfGaCLSoEWkl77rG+EkUhs4iMozhaQJAoFGOp+fWBUWdy8VkjFmNjthQZTYdZ22ardrlFJaU5Zl6/U6AaJzfVVVRLpp291up5RSyoigIDJzN/Sj0QjjKxBQqUXO62Udv5Si130ouR8NPL76g/7p/R2OZtfbccP7O7yx/w+OX96Affv4b2Plfcf5/vYYo7bWaNUP/vnV1aNHj1ar1eXleeti8O7hxenLu0W7cyejUdtsLubzTdettq1Lun4sQSD0w6QwpUnKHAAAmbVEVJfldrf+zZ/8xnK5/PLLn5V5psicn549e/by7/+Dv7W8W4yqse+HotQgcTyqkIWI1utNlSmO3hpVGGOUFJml2WS72xlNluD8k49uFyvgUBRF07SCikFe3iw+++TRs6uXzFyNxgKkrc3zfHF7fdv3t6t138ePzyfzUfH4dLpePtttt5NJ3g6ABtVOo4/oY9EDApicYs8R+I2M3PVqcbvZ5JMCQmhcnxXFixd34f1LkjoUiuIh+YskGokpprwIvBZIEY2orCLeh4MZgYgVg2fet6wCEEEWwShMPlmFtFeMFaWAkoX4qsXdK4UxIgwxIoLN6IgpyeqyIgoBEPY9AFgC7y0ORYz06oZKpJYQesDjop7gHGAfcKcUnUx+fgpQOucARBEYBUohgiBLlHAyHuV5/uLFCyDs3TAdTzabjQjkmZUYNQEgA4NCAkJjFMY9qoJIUhXrum4hfHnxoK7rr7/5rg/Rhbhcb/LSKiXRB6NoNBoVme26brvd+hitzbTG5XJ1fX17dnb27OXLZ1fLxkE5zhQMbhgyo6s8q4sit0YrDH6YzybL5bLr7G63EZHFbWcyW1XFZtemiBAATiaT1PSZmYExhJCXWdu2BHgynQnHIsuazTr6wIgK0Tlns8I5H2P0nUsNDLz3u92uruu2bTebTV0ViBgCpxRKnud972KMGAIzV3Xlvdf3POV3lrf9sG34g1YV/HKA+OF93ggjvv3q/bffx82jQO6Hz+po633gJH/wK2faRGs1oYjs2u7x409vX14XVvtuOy2wsIY5KuHTeVVVxfL2Reu7LM+tw++eLKrSOserHZyNs8rIKM9Xm+18Vpe5Yua+7/u2ef7iSkIcj8eEOITw0eXl7e11WeBmtTw/O1ncLHzfVZNC2BFwVZXtbmcVaINEAkgE4pwrMjMZlxKDktg2jY6DRK+1QmClaPChyPLxfHx9t+AILsR+2BCBQSisyq1+PK1HpvAC48mInWu7XRfYa1X5wkdXGClOtMnCpguhA2Oq0oY+DC4g7wErVYpg69yTF1c2L148Wzx9fjWZTeOLO2VtHN7dm+IQMdxrw6GIAkJEBiACwr33mnT1owAxkERASs45IQIhgoTIRkHq4if7vvPALApBIQFAjIIIGg+HDHwsPlH7jYiIEj0CpGbhIEIgSQwthQvTzoCcIjVHmy6kkjhEZRBAUoHHYWpRsmz3k433QSs8VFunHY2mpGurtChCQ6i11gozY5NYfoyiNfWDF0Gl0PVOBNAARyAArZEjRyLhAIJaKZYYo1dISMAIwzCEHkye3b288ZHrcbnbtVlmUpCUQKqyzLPM39wxYO8GFDK5RUUuDHVdzWYFbfsQPGkgBkuYW4MCMQRhQpS+78/Ozrque/jgQdf3u91utVplWfbRxcWubVMOepRlDDFxto3SJyez5XJJgCLc9e3Zyend3Z2CeHHxEQB4P2y326m2nRtMZhVx02yHvi+KoizGIQRhtsY0TZPiwlmRD31IDQbKunIuaCI/OCDEe1yW5Ckf+QbHSfjugYdxHyx+GfvrnZbd28mTd8LfOz/iwyj2AY8e3rJq37f/K7/4rZM/qkukQaiTphuT0VoHP3z68OIv/uQPJch0MgoiSqAqyuubl3lR9MFd3d5uNtvCkDXRO5jWZdN2da0LYyfVhEN3dbVOlPqmaf7h3/s7/+gf/aPJaLxYbOYnUwCoyhIAPn70KDo3n08zq2MMGtENPYEE50ZVYYmsViE6iTyqiqHr7q5v+qG1Rp2fzOsyr6sCJHZdnxcVkl6tu+ubOyLyMUQAVBqRqmo0nc6rqqLQK9+NLeUQqyxHMnl9oetL58oQq87bJuiedFDKaYBKKQDFcAj1HXJiAM4zEdX1OLcAADHKuMqje2+bHoJUn4aUXOYjm2dfXQcooEQMgiIwBFGAo/gQvWdmQBESIQGrITNo9J4LoygZd0B0kJVXYA6znhRaq4xJ9t++PV4IwTl/rDwLIXgfQmBEtNYkaSlEZBBhRMTUC4kDKyRrtSIVozjHMTLREShfE09CVEpR+nZKKZEIyFpTsjcVCmCMgaOLwoFQjCaNlAglMYIy2TAMiftVVUU9ykZ1mVtlrcqyjAglBmYBZqNIa5IozKyN0XbftrJtW9IKANq2LcucIxRZNq4rrdS4qsuyPCaCkXTTuMRNKYrC9x1HsYRlrqeTclxXdV5ORuOkrnhyel7YDCIntYS729vM2tlsxsy73W5c19PptKoqANFa5zY7PT1Ne9rcZkWmtW6axhhFChRlaVI4F7IijyD9kNRROqXUeDxOcnZJl8xa++DBZVnmKdQ7GldVXeSFRcTUZrppmuhTMc9+xMR3T9P1B+OGbxhW74SP9733jT3hdVTCA5/rDVf0nUCJhyzKr/q5v+rYa/wmg+Kw1Iu8Vs/vnHPOmbpQICorttvV6cn8v/+X/+Lbr342Hdu6rtvd1pL+7JNP/vQv/mw2nwCLYOjagVnHEJod27I8PSuFPQ96s9yoUk5OyqZprq+WVaWur6+HYfjmq6/PzmYn01nbh9vbxXw66/uuabd+CG3r5mWdikB3m20SjyOifZ8dCJPJadc0bd+VpjBGCwckCH6oqoK8DN4755XB7TaczVVWluQiaYUCq83WDc1PPv9ksXUqVyenp9EHibBYbXcsN5v11wvPCG0HAFACjGsz0XGSx2btIwMBRJH79ZYIsLhdTCaTr3oY2t7okoMYnfn3MWwAAEDtazwEQIBFULRSKEAxZWeEEDNNROQS8ykmAdR9mycPnBMoUiGCjxwAjIgiYsBUdEckxmgFGEJgYSIM4UgROwoUiogAyiGvgjHpKIAIRGYFxzgPcwwSY4gxZlkeQnBDQMQsM6goRh9CsFbDgaJIlBZdBQCKVIycCD0xAmJqSQoKWWujEAgEJO777QaxI4us4ioWtfXe51nWd50wOucUSkTwPhJB8hOZuciyYRhSE90D5squbYno2fdP7lZrUCSCqRFz38fZuLi4uIghTKfjly9vUilblmUxQJ6bKEJE3z39TgCsAW0UAWfGoIDW+vx03nuXZJza4IehPzs7++b7705P5wBgjKrq4tnzq5OTEwAoikJEiNRqtRq8I8Cvvvr6Rz/54sWLFxLZe//9999/8fnni5uF9/70bB6jnEwm17cLQC7rqtkss6wQkclk4pxDRO99lmXJAi3LvO27rsME30qHMh9hjGWeb3a7+1W2hx/9HgSJJIkLAFQiMc1DpZAhAip4Rax9ZTfdMzZfh8h7f91Hz3uewjvO4x37HzgUeAwhHXgbmLgUSdD9YEWiVm9blIgor4rwXyPxpAzxfiO9eolDJNx3sUglUUnFRFgfFxTnQp7nCjUpJO+0yr24/+d/98//s4eTi7KM/aprt0jxu2+/qvR4c7cenZjl1jHVmO2UKf7+333w3VdfFaBO56fXL2/RCoHpPCMqQGCmoqi01rPTyWeffVKUpyccbq+eGWM+mp9ikK+++qqu7WQ0uXr+bDKZ5BO73ixJaWNUcPFsNG9368Z1iJApDYGtDoi87cJ4Mnvx4oYFPro4e+r75Uo+/+J8s7qOgsyGHROJNsqB/M1X30/qqs4I3GoQ/dWi+2bhVs3QtGFWwNl8Qtq2XXhxvWx3/rOLamTVrRAQE4MIMGhAAGCQGBDWy6vpaNwhdDGe8jqTYctZIlYLwhtGd0qhBGRCpH2dnVIEEECA0wIlktLHghCMEkIUMswRiVExB4SgxQRmtkZbk/eDC4ElhChgrQFgEkYJSpMxCiJ7z1rv53aMIpExKeADaNwvMz4IIpTZnouTGTMMw5A67REpRAYJUVgCcxAABPHRs0/wR02fyo8BkRSoNO9i9CYzRW4SoiolJAAhKEXGqGFwxihrtEY9DMNoNCKiAeNys3IMQ+uUUkPwJtMSI7ME5hgikQ0++NAbTYjowlCPK0kNlZRCEGIY2WzX7bQxZGzrnNa6KPJ201yelp8+eIAARLbfNRLZ9cOu61ghAFhUhck26w7ABgCTaaMoK+zs5KRrtizuxfUzhQikXzx/ejYel6OaUM7mJ3erNTOfn5y+fHkzn84I5HQ+Q8Tnz58XVXV+frZYLGLk6XSyXK5MnjdNo7LMFNX1cv344wfM3LYdoHIDT0dTIdztdkVRhMB5XgpjWVhAHv3/afuvXsuyLT0QG2NMt9w2x4XNjMzrbxWLTQokGpK6QAoQ1BTkqDcC1IP+gQAJ+g3Sg36DfoBeBT221CBFtCiR7GKZJitv3cx704Q5cdw2y003hh7mPidOhstksTixEdhnx3J7rznHGuYb37doh2HPkXWltdZD3M9hn3M+Ojq6vr50ViOa4KPWdhxHgEPvTQIDqDAnBE5ZQGlg/hvRzAP4QFYSbn3AdyPid73Fw3v4nvV8q6Z8/0O4rQO+deSPH/97m91DbuP9/7q3+VvHV0qxSIqxq5sp+sq5n//s5y9/99uf/b3PJflxDj9/9vTF8wutqrp2IMqaPPppuXbbzfxnf/alJXj29ORoffry1bVSGBMoo/bboWu0UvLw4dnx8dF2u7m+2lUT5uhfvtz+6lefXl9f97vtPIf1erm5vi58NrvttnJOKSwVtH6zWa3b/XZ3vFoDYFs387QPYV6tjvZD37auH/x+vz87O7Wu3+/3RivIKjHELJKTJRGNqNT67PHzb3+/QPvFty9+ewGzgpjhpz/9dG0phMCIJ2drJP3q1cV+P6AHVYoZwgEE6VCpJYVCuNnsfvKTn4mAc7UQGatgYCg0v7emkG675ApIB4tHCHAn0JSFFQIpJMGcU5lLnKVdKD9ziKnUHPCWy5oIhCWlxAwsReyNKHEhlEaQwpWAB+bXgmsp+76ZKgf4IWSlkZQoRaUVLOfs/ZyYbxuUWIBK5/E4ekQwRhmjACAljjHlzK7SzBwDc+JIrIHKRXofFYLWyliFiHRLrjPPkQiCz0oEFBpN/W7/k598ttvfiIhSlBLPcw6QnQGjIGdQCoxRgJKCkAJrtTY0ez+OI4gopRbdAoQ5JiLq+36eZ2NMa8w4hzR7IlivjoHx6GQNmUMIRNQuukQYc2Jmq21KCVCllLqu4ZRTyt7zixcvGmuywl/87CcistvtTo5Ofvr02Wa39Sl+9tlnU/jter1WSq1jtpUJIWy32+LQFerDGKPWZp7ncZ4KLy+yDEgist/vY4xW6aZpmHkYBu0sAFhbNY2OMYdCcI28Wi2IdN21yprtblc1zcuXLx89ehRzTsL7/f5ofdY0zRyD1j+kEnWvZfNtW/PeDz+cOvxYheTOIN75ce/6j/fH3cZ4Dwv93s0+lH98yyX80IW9ORS834e9rwBTAF85ZwGaQuz73YOzk5zzxPD7785bpwFpimG3D0fHrls3u10QkboWqxwHv2xtnMMw+D//775QyuSUlsvV+eVVVSmB9JPPPg9x+qvfXDDLr371hzHLn/7Jvzk9bX71i5+/evUKEZ8+ffzNNy+P101hwPdzAM7rZXeyWivEq+2wu94uV85oqupmGudHj59m9teXNwBwdHRS1fOri+v95JW2IsCkM2NI7EMEBNaFbkj983/1xdnD1X6gbzbQAyjtjMHvvn1+o3GccgYQAFKAAOvlqsa081NlUASFGZCS5AhiSM8x/f6bF3/rb//3EKAfx8bUi6OT13GXA8OtKUR4Q2h6e0cA4NBcIihcqiCqML5wzkAGClxGKYMYELkEK5xBgJXWSMQCOXPJC5lKKaVEoiQmAFJFp6oE5EgEMeaCPTzEIQIAwAxKS0Eaaq3Kk77wtQC8yY7KAbZdOKMO3Owl9GbmkrEMPhGR1kqZEnhAzikn6Dpb5GhjFEQwhEqjUppzXC4XfpwAWCvljOaY+t1G4MAUAwBGk1ZoFSFwjFlr1KYISKWiL51SjFFSAqOBYw7a55zXy+VyudwP0xzDMAWfhBG6upnD/uXL12e/PvKjXyzabrV8fX0zTKOPYdNHS1AtTMkRXV7cJACtoa0qZ7Qfp804/9Gvf9417apbfBfzql2cn5/PwZPRf/Znf3Z89uDlq1dVVVVV0/d9SUb1/WCMWXVdSmm321nrnHMQEWJkgUIHXFVVTOno6EjBIeZ1zo1+vry6AsnOubOzh9rkolN6dXVV+MRCCAAwTdOTJ0+KGEDJeg3jHtBorcapB+juz7S3VvrfmG/4gwWWH1OB+dBe79rE++YVbm0Z3Jpked8Ryp9vpSDvX9WdDf2Q6ddaIyqRpJQap+n46Oj/9y//mxcvXjS1CWBVBtTumxfnaFplSCnabnwK8fRhu93mJ49Pry4u21YrhcxsK6qo2mw2yOiMBZiGcXt9dX529vAXv/jV5cUmxFFr/cd//MfnL1+8ePFimqazh4+ePXs89vtpmrTCrqu1SArRapUzPzxZ9/3eWTVN09Hy6OZ6Y5yNYyCiBw8eMfNytWoWy29evMyM0zQ7a6eQp5ljBtQgApIxiMwZZqx+89tX+wwJKPn4yZPHU7/hlNqFE5FtPwmjAkHEfT8oAKUNM0sEIcgsBEAElbE3NxsAPD1abjc7q2l9fMr+NSoqIL67cWCpUQpLI8mdqJ4IMBsHt9ElpwRaH1on52EmxMoWRSHhDIiAKoEQoihFzIwImpAQENjoO/B/1kS3uBYAIrllgPr+vVYFel0s4G3XMlTVAfOMKEikUFKSlLiubSl5x5hEoAiblDMSgBSoi4DRSlstJmcOmsiYQhCbUKQQIRZ5zKqyIJkAJcfHjx6M45hySikzAyFpra0xGgEkVxUi4qGnQggRU+QQsnGKKNeVjXMAACJaHR2dnT189Rd/HmJGpUA4hSSCTdN1bc0prU5P5xDOv3txs9uiUqhVXbMGEZEUIhDWtSpAUK1wmnxTVV3jxnGchzFO43q1UAp77wFhu91qZ7/86qujo6PNZrNaYQFja62dcznnAjs9OTk5f/GqWXRF5SrGWKSZp35YNlXhUY4xElE/jSLy2WefpeitrYrQioiM47hYrAoT+O9//3tm7rrGe19aX1J2hFJVVT9Mdznce0v7XjhbaMnfshEfHx+xaIWL4T2v21rt3cB3xv3jvBWZ/uC4f/zvNU3fEiO+Rf56N+7vft9E3jeFIt9rdmGEIkFTcuFa0zD0U/CszZjgq2+3yrUhk2tqUHSz2U/jvGhtW9kwTtO4OT6qrSNt1epo+eDB6Xa/B8zOaO+ntm2Zue1qALi6utLaHh8fO1NYiNNisajrut9tU0qccu1K8QSatnLaEGBX1RyTUfj4wcNFU4cQ2rb9F//i33766afHx8dFSerrr79+/fp1adgkAp/Zh+QjJ4EM5DPtZrkeElX6m5cXfQZWpqprAL44fy4p7UZ/sx8nn4x1VVUxQErBKEAADdkQOAKDoAUQIAkrhHGOl1dXf/DrXyBCAO3qxt6CogpFAh6yjABIDJJvf2u8bbYr+DxCfaDhKm4gCABMHhgBDWWQJAdOh5i59BsopYwhpQ+81khgNWhigkQgIllEJHNOSaEoFE1gNRmFBxgNgtZ0S8hwiNnLvCgQH4BCM6OUMkoRKJh8CCkxlPMhAyVmH+MB/FiKxbcRPSKmdDfVD6mkEnl0XbXfz9M05ZyVRmdscetCSACgSwUphL4fSjOlIieCwed58t6nFBlAEylm5gQcE2cghXVdi+Dl1Q1pm3MGwLZtEXG73YUQTk9PV6tV4bU+e/SwqutxnkQkpTxNvFwtPvvs2WqxaCoHIE1VdU1NwtYYa+3r83Nr7fHRqZ/jbtsXHw0VFaYlIionKpXly8vLm5ub4rKN43h5eblYLLTW0zDeFA0yUqU2uNlsLi4vQwhl8td1DYi73U4E+76vqsr7aRz7QqN3dXUzDEMBe6SU6rouXPHOOc6w2WwIsG3beXjDfX3rRX0vdn472SfyZtO/kfFeO/sjjS/c8+wORHX32gbuKEbuTKG8aTj9nsf3g+NDlyQiSn/vJ4pcxCbJNTUi/tmf/snf/qO/8/iTz7+72Nar+rvnr4XaIYxTiFfX46JrHzxYh3kE4a624zQ9fHh2fX0VY/zmu2+Pjrok4io6PloZoiePnuaE2+2+7/tHjx785V/+5TRN0c8A0O+3Dx+czvNM5elPgojMPMwTo3RdV2AfZ2dnX3zxZVVVJycnq/XyJz85u9lcaW37vv/kk0+ePn1aGkW9j0TIiBkpA2TBwDhG2Y5ys8/7Oe08R4Cc8zwNCiBn2E+etMkAc4whBB8DACgU54whIBCDoBUq4dv5gzlEBnjx4sVnTx8hQT94YPjJg648kA63706bDCkyZ5F0W+NCREGFiEW4iTMCgDFARDFGRiYEBGLmGItuslHKyC2WBRGVRkOoQBSIIbAGjMbCtFoE9YoEVZkviKI13UJtAACKVSUq2gYijCAoTMGnzCCAzBBCmnyMuRCKwe2T81D8K1gWESECY1TlzIFbJSXvuXwXZo4xh8A5F8l5vdvPxsDx8alSJkXuloubm5v1ennoP7wn1cvMMaZxHINPiGKsvqNb0lrfZfIRgQSMMZlh2w9VVZFWPoZpmkQYCWIK89T7mJuum4P/8quvxtnnzH6OInB0VC8WCwDY7/ci0jaVJthcXy+6VmvVb3e//vWvnz9//md/8ednDx/Yqn59czXM09XVVRGAL1Q6ztj9fl9mpnNuHMdi7gulDcdkjGnbtpgzyDxNU9d15QcRwovrKxFZrVZlbiyXS++nGKP3Pue4Wq1ijAwSUmwXnTJ6P/SC0HTtOE0xZqvdPIdyzDdL+77ERNENw48qAbz15uODPzDeG6i+ZYneHfcj1juP8r0Xed+c3ffy3vVA3/VD7zZ764Af+U3KAzwJz8FfX1+enZz+03/6T+fICSiDqrput2efx6GfphFW6xow+CksW6yqChjOzy+0dgI0T/zqojfGWoNNa5XSFxdXX3159fTJJ3/0R3/0r/71/+fi4uKf/JN/Mk3Tq5fPlVLDMDx9+nS32wGwZD5oQQBMfp7neTfsylP09HQdQri6umDmp08ff/fdN9baoZ9KW2tpfC6LExALJz0DxiSjlznCJLCPEAAFtambQ2ShMAqFlKGozRExc8GN+CmWdhoFqACZGUtpQtBVhpR6+fKlImmcmiZ/ef76uHGVVrdQgbvfmbi0lcEdKcPh104MKUJmCiHFBFprRijAFEHKAiwCBCyQMmYWVFBAgpkj3j4rAcVoUlq0AWu1teXZQUqBMXBrH5FumcQUgVaQ8yGSyplTLHLqWgTlIC2AOUOKJUyWlEBrVEoBYC5yHXJ4hNe1sVYDSoyxdFMgotWqdJ4QkTHGWo2Afk79flIKYoJXFxfb3bRarZ49e9Z13bffPhdWpTIjAsaYqjLGIhXpOWBSUlW6bozSApAQs3Ou69rFYnG86pxzbbtYLBbr1fG+H5UyhRoLCZrGdF3VNNUc/Mvz1/00klbKGO8TIhKgJqWQOCWWFP0sKeecjaV5Hi9eX52cHHk/PX326er45F/+6z+53u1Jq904MMDqaL3dboP3dVVdX14qpfq+994XEtbi2dx5c8yMAinEQjtmjNnudwVQXXzDQvn18PEja6phGO6KWqVJuXQlLxaL7XY7TdNmsymn67pusVgpMgUT+qFK7934T15TFn5jqu5mOdxz+u4s3WEDhLfME95LGt7fsfyJ7yMNgw/XdO5f5/cpH965chH5PstFYZFDxHmeu3bx6vr1P/gHf/zkk6c+JiSz66cxZwPu9KHzu5giIvH19YbIrI/q6+ueGdq6i4nPzzdAsF4tEHG33/kwffL4yTe/f/Hs2el2ux9/85feT3/nb//Rq1evzs7O/uo3dHp6KiKXVzfL5TJPU9U2N9tr0nh6duaHQRvz059+/m//9N9dX28KTCznfHP16vV5rmvz8uVLEdnv9z6EaZoyUlVViXMuRUyGJBJZUoaMpLCaZYyCQBjnGSARApACViAREVmEFHA8uEHGgIhKiQGYAG/b2ighKEV5Tt9999xPP3/04Ozm68th3ytn67qGaYopMwAR8aH8Un7wN8X8Q5MAgAYSwRiFAWpBAWEBrfU0R9RoLJEWjhJC1BpcpTRhSilnKROBhXWRAhWgwkaTDvrxiATIjkx5bCOwiBCK0khEKQsRMQtnzhmUQkIiRFJUuiiYATVZpYuPBgcQIhBqFr6dOUwASpMmVKaUWVCy5Jzr2shtkhERStMsAGTJhICAxsJ+6P/9v//3bV1fX1+PM6cEpKh4lxnEGTAW67qeppGFM8+KSOmyImC/HzWBVKaypsBRQ0ghs9YawKeUUKFTBpBjikh5uV4v1+vJjy9evUREpUCTIkXTNF1eXkpMCrBtW2X0OOxRoG3rusrTNK3Wi7/67VfPnj17+qy9eH3FMgPAOE8xc9ssFJEC3AyDa6vyBUvGsJizeZ7Xi9V2u+XIbdtqrWOMhazXe99U9atXr+Z5Xq1WXddtdzvSKk5x32+NUVVljVFE1HVd5ZrdcPPq1avVaiWSHz582Pe9iGw2m8Ys6nYRc/be33HE3lqJt00WFTphkVTKduXRCgX6wIICComwNNKLovfpK72jynR/3DJ33ol0335SUPEKUWFRWyvCO/B9B+3djN5b3tyd7kmWokEOgsgAd6lKeMshvXehRT3q8AIGlPtMtIfw/B7cprCGFAgCSDh+8Pjs2S/2E//DP/6HwFFbJQaS8d+9DFc7PvvkeD+xtuurTfQMkWPTKVfTHKaubecJJGWUGQG0ss2ie/LZQ8E8zsOLF6/OTh+HeW6q6t//+7+s6naaZwGoG+PDoKyZ51FrzSHtd7vKOqXUt98+Pz1Zrlarquqev7yo28Xjp0+Wy2XbLrCSKc3b7Y2z9vnN9HxqV2e/WERoyGgRp2DRUttZVjAL9zKJGAWkWLSgFtICOiYn/iAiB0BC5iDfkpVCA7lyCq1iJVqjRVRZNFDMYICB4U//u68/ffZzyynneVct/vOnsEDK0IqiLLkq/P/EKIQAGTAhBIGMCESGCBFjjIRgNcScBIic8pKtI+8lTixJ2lofr50SCUNmIVSaUAsSIkiGwmzKAswQQw4+CXNlpLaiESBHp7hrNAFbS1qT0jqmrBULR5BUVdi06Oqsnbd1IIog8fCMZygUp4igtMQUfAyCgIoKJYFRShFxYgCy1pICgQQqawd+TCAaSQGitpqRU8pWm1qRBrAKchBgsVXz8up6iCkLZYCUOKeIIFahJpMTjX0mtIQkGXPiytUCCsmtVytbuQB0vh2/Pt9f7/YhhzRPINEZbZSClIBjUzmrqt0mTsOeJe3343Y/T3MUVD5F1GgK4YVWGSmEEH1om4UgzDGBItHw+up1iOPX33x5dfEy8zQMU4z5eH1CRNc3l8M47saBNZToNXGO0fsYEbFEyhfXV8oapej6+mqeJ6UoY1KOalcxc9t1MbEApSwimCNXtdVaL5frEFG7rmqXum7Ob67GaTLWKm3rZnl5sZlHv2q71lWi4jjtct6DxJvr3d1a9oQgoAEFIRdgDf/NaebRB8aHtn8TLt2+8B7o7y1T+PHx3ouUd7zR/8gM5lu77Hb9crlEVOfn5//9/+J/aKwtWXRADaRZ4OLqetcP+6E3BpjZGKO1vtnutls/zvNyWYvkfR8ePz779Onji1evht1+vV6fn59LTpubdncaHQABAABJREFUq7Ozs3meLy4uCrihdLkvl8vCtP7owUNmjrP33jvn+r4vYk+o1CeffIKINzc3ddOEkOIcn336U2s6pavrXfjzL7/bZw7GMHPX1at1Z6zzKacMDICkE+ZMkokTSlIqGOe19dYAp9vbySCo1aG9ofwmJfBBOaDnCdgZpREA4He/+/3Q7/7oDz7nAFfnryTbzz85q2iCzIpgzhlRCMwhgQiSAXLhUmVOLBmksFczQ6m6yoGLQBALt/4hC4kKtIaUIx9kKpkIrTNaG2bICYNnAGqbxhgzTxKC1JVdti4myTG1rQPm/Z79HK251T4BBUIoxBk5gzAW79sYUoqI6CCWJECkAUH4FggjXAojRFSa8OZ59j4DgDFkDFpNMfkixBx8YgYi9DGgMkqRMHbLuuu68gtPEwBmY6hudFXp2pGxCiCnlEP0OUSjyWrT1HVdVcYY76fLqy0iiuTa6UWriODi1fn19eXNdrfZbUOIxhilMExz13U/efZZKVwMQw/AxX1zzsUYFZK1tuDTS9gRk2/bNqVUChdt2y6Xy9Iqh4jHx8fL5bLwynRdF2Pc7XYA0DRNSqlkEq21fd9ba09OTsoxSwLhLsgzxhQ04mazYU7jOBbU4TiOSqnj42NEPD5eK6V+//vff/fdd69fv97v90WoKqX0s1/8/PTBGQPlLAKQc5F8ORBxf2T8QCD948eH8oYf3+tdO/vWnx/K9/34cd+C/7Vt3/2LKW+Ojo4uLy9FJMZorf0//O//j1kwZZhimmNOAsMsiWWeknEGBYYpKKWYGRTMPiNlQFks9Ob68ttvv2Xm5WIBIg8fnKXgHz04zTl//fXXStF6vW6aZpqm8kXOzs5CCOfn5+v1+i7t8vTp0wePHpZOdREgrQTVxcVVZgbG6+stkrna7AODcfjbb78bSCml6ro2TTNn2M85CAAqZtbAjrJiRkmaIiQPOUBOKKCECUAyMwgiZBafys8iCKwQEfEQazDXdSUESkMW+PLLL4+WqwcnLaR8tfHHjfrZiW0ANDYCJJIx54NsYYkxABIAA0SQIMxw4P0vRY+cJCe+TZCQyAEJSATKEBFgkelkyIIAlBlmLyzkZ5jGlJIQGkQShpwQgE/WHYrsd14hPDyzzgAnLmLNclANZU7CCVKSnAUASpMvoyAiKkKEELMIaq2UNcYYUshY1ma6m0WIh/RiSf/kULDfBABaa9fUSqlpDnPgxFzXtdY2pVS7qqmACLQSAM6cRFiRWKfbTikEzlK7atk1TuthGHIKmtR6WVXWgGRnVFPZ9bJru7qu63a1NK4uog6aVIoMIsMwxOiHYbi5uSmPVY1EwJqgrl1dO2NM01anZ8fdokkpFQzgYrG4ubkpmfT9fr9YLIpR01r3fV8E1JqmadvWOee9LwLKRbSnbdsQwjzPTVM7Z51zpZQc4tz343a7PdAuNM08z4Xr4fj4uBRhlFLG2hcvXvzud78bhuHi/LxpGmurENKuH69uti9evLq53nrvY5Z5nodx9CF4739w+f8oBdGPVCH+042P+KH3x4eu861LpdvXjzzsD54uJW7bBQDU3eKvfvvV5z/96f/p//x/0baOQoExAYBWSJZvV4JSkDjPgQHB1aAUAiSrlda6qSutlDHm9csXkNNq2e02m5urq91ms16uUvRPHj9WRPttDyzDNJ4+OCOiMl2K/1i3zTT5Xd8b57b73V/+5RfDNCbAq8326vr6xcuXry6vjo+P//CXnwYv+93WKqu19jHfbPZX23FKUBoySitmToAAC6sb1FpACWBGAkBgjQe9ZBFIKeUERpEqgprApFBrpREJcIqRlEpAgnCxGX7z298LkjCe3/i+v/rJ464FyDGBUqDggH2+jQ7ywRQe6ir5flKXi5bo4V4wFzZtktvu8ruqsCDkzJOPc0jFYha2rXGavPektS5UF8zj2Dunz47b6CWG0Na2awwpIMWaWNNdw3IhBIPCCgPIIgc8tlKYo3AxlAREQKp05hywiiX9TYgimLPkzNYY50Dr8hDBzByjT5KUUkph0zQFGrLd7r2PWltFBEApcUqQM6TIItK4pnHqaF2fHq9DCNfX+2E3l5hsmubtzV4BWqNTDCWkYEm7fpiD956nKTrtjo9Xj84eEIIQNk1TLqZr67qyBHC0WlmnBfLsx2EYSvZZADLzcrkshm8cx3EcC+6HiIp2aPHgiKh4bcYYpdTNzU0pJXddt9vt9vv9XUxzWJW34quIWNW2yEhtNptpGgCgIHXGsX91fv5v/s2feu+P1yul1Gq1evTgQV23i8XCWte23TDNqLQPiUgvl8uu64pnKj/knP2NVVHuen4BgH6EwXnXsN5O4ntX/B9ie++Sg+VPoSK9KIfjfK/h4T+An/Hd/8JbiZXi64nIycnJN9+9ePTg9G/90d/5N3/yr1Apzjll2Y1TayknCRiUAmEE1D6G2kFM3mpg5spoAOi6bnezMcadHB9rrf00d113dX3RdvWrV69evXpVHrA3N1dV1bx8+bJr2to6kKy10kR/8Rd/sT4+Pjo6ev7y5TB5Y8yri03OoBFOH5hhYO+H3//ut/X65GdnVa1t3u+pqfthurwJQ4YMQKRRJAPn6hT8BJCnzJwDABhbh5grk5FFQEAB5oPl1AaM1QkAYwIGBWK0UgBJeI7JNotxuwdQAPnF1bYjMAhMuO3Hk4X9/MnRzYttuTtYbtAtQEUEGIEEMpS+dBA86NYLHiopLEBAuciVEAIQYmnMgJRYBIiQRVJko8jVVYqTc1oplWJIKSNlZZVCJKUM0X4fncvHx62IbLejqchoZEZQyCCaCzsEgFLsU6n6aA0AFDlxAkIQokPlhDMAKAJNoLUyWoUQcs6IwgwsorUQqWn2SlGJ6olImEOG2gERoGDT1DHM/X4ossvW6pwKwY8qyKEYIseoQDlnwjzFGI9Wa6P05fVu6INSsFg00zAWErOHDx+6qmagOYSYs3aulhQLBQkhAKSUhtCHmH0MzByLADEicBr2U9XURX2073skKhH0MAxak1YYYyxtjt77fd8T6SJrMU1zznm9XgPAq1ev6rpu27YU9EzigqcpDSol5ZI5smCBPWitnTVKpXme67rOOTdNNU3DPIeXr749Ojr66c8+efjgsff+5fkrRGzbdrPZ1G0XQhCE9Xotwpvry6PVmgFK93fOmXP8uA35GL/hfUPwH+lSvTvwna4R/P4HPz5p+N4/b5nkSzR1W7yW91tYxO/byx+8eEQQZObDjQ9RaTv5fPb4E/hv/2VKAghJeJ7heNVmP865ECyRIuNDUAqchdo5FNjtpqOjxXazM8ZKzt9+8/z4ZL1adEfHq5evnnvvHz9+XAIHEVku1yyyXq+nYYTMbVPN40hEv/rVr/pxvLq57qdRgBLn1XqRcwSAXT8/fvaTefTD5Uvc3xxV6tknnwwvvxkQE0ss3cFoc0pFvTP7S2fh0brRwmGGpnYZ8eV5ADE5Ryo3DkETKEKnEVlAJB8UeFiASBhZrNIxZWVNDqmUW8loJdkzDx5eXW4eP/3pN5v9+ZQAIAkfnklv2sURDgjnIoZy6DYSRkEGBGZABSwHzzKDIAIzMFIuldxDQkoIhZQ2hf9fQGvNlJglxsz6kI5crxul1Ha7R4SqUjnnQtoBCKpAhhQAABFbQykxImijAQh8iLlIfQoAZCman6hADqidW5ys1pqLgJ+QMPoETmFmYQatiYUVgrOKWRSAVjjHgAjW2mEKIWYRMEYjiEakNyV40hq2N3BxcfHowcNuuYqZd/1IWs1zAMJhSNOUnjx+Ovn55fnFdj9FwnmaIAshlMCWmY1TcYjb7Z4IrK3ifm81rddrkDynqJC0M9ZaUgpRKaX6aSbJXbfKKTRNA5kLdGaYJqV0iaO1NSGE/X6/Wq0ePHiw2+1COPDc9OPsvZ+m2DQWAJRSrjJIUupdOccYvcG2hNVKqco1McbC6loaWpbL5fXNZYp8tFrvdruXz7/T2oTgtS3UDBC9Z4SQoh8HBNeBKYnmj4//NJ15923cBy7hXfP63lrHu8Xl9467/8W3cDZ40IUAeKcf+8eNDz0GrNZzCK6y2/1utVrNo2SG//n/4n/1z/6f//cwB4WglFKYiWiMXDvttAzTPAWVAWxl2lobo8Z+arpm8rF2Tikzjr6pG+fc5z/9yb/7d3/xy1/+8ptvvilJ6NJPknM21nZtHX0wpDRStVxudruLq6vFYnF29qDpVr/96vfTzN1ysbncd029WDTffP3i5OT06PjUVaaB6vL6wmnKDEkYCBB16YdTAJWCBuGnT9tPH506hQAYmS53g5X01UVCQSRgFgRwRhcl+5wjUGnHABZAOHTyWkkMQhwzFF8Ja6cwsnCePYwKp/3mV5+ehC/P+wSCkAsx9O2PLSB8jy9JRBghMSoUkDv5Qy0Ct/wOojUxFt6vgjEAQQKVE8jgx9roFKIIW61JKZBcAM/K2Oin3TAao7pVNwzDHHPTOD8ERDww0ArAAe4AlVYRREAQMyJYU3xQEAZENAqVUqQQWDhliTkC3EXxd/Mzpdy0TgQ15FIX0gRaAUpeta3WhJAAuWRXMkMCcQqcVTnnGAJoNAqIUBvUWh2f1mGev/zqpbVwfHayWNpxnqZ5enB67IwySh8fn55fXaI2qxO7G8PoJ2BwzhiFVVNPwYfEc/CzHzODiEcURFQEfoqHXpHJ+xAYBFFiFkINki4vrx8+OO77PodYVdX5+TkQ5ZxLljClVFUVgmLm/X5X7FqJkVer1TRNh81yAGTrdHl63ap3KWYualMxxgdn7ubmxnu/3W6fPH1U1/V2u7XWxhi32+3nn3+OiLtxmrfbpmuVWux2W20NIM9xrpzLSSGic05+qBH5Y/yGdxWD+x9+yDp8b7OPn/N2fr+114c++fh49yIP+97f4G6N3Xof8gE4948cIjKOY9N1BeAeY0TEOcQF4OeffvLVl18hAhEpZD/HEODkqBnGXYxA5Ba1Ys59P6HTVukQQl3Xlxfb1SovuhYk//pXf/inf/onq0V3c3U97Puu6zabTd+Pp6en33777enDBzHGxWIxbHdYuRDCo0ePqqq6uLo8P3+9H+LRyTrEuN3siUAQ/D6ImC/+8vmTMxJhrytXtTfbnTaVn/OUIAALIqLUBtrK/OTsZNE2r15ur6+uMsM+whDJNCuRnVakFYYQEcEYrfWBvlRrbQVTzolRWGkEBqhIzs5Ov/jdt1arunY6RQ6zBag0sFe1W/7ur67/8//BLy5fj+f9nB3v+8xvpzQKu1ouHxXS/CSAJHLXPoBvVJ4LlrSwMAAAUUlCYc7ifcbEGhURxSQSEhFUTjtbXV72Xafbprm6Gseh7zq7XDT9sC+qBKWQAgKF4BAQlUUASinnJESpsL+mLJKFgZklC4MgIRbhqpSyCOScck4iYC1oTSLgY5qnrBRYowCgqsyqcwiZORldl/yaIOSc685pZcLUu0rlDGMEAVEEABLD3NVLZramqo6pn+bXr6+GEZoOlFbXm5s0yXJhmq4VVMaYKUQFaK2x2jmjFOW2bXOSQhG4Wq36YSpeXgFC5xS8J2McFjlppadpShyttQp14bJt6jpMs/dea1Pkq4ot09oQ0dCPVVU9evRov9+XJGDpR0bEeZ6dcwIq5xxjTClN00wExuiqqjjltm0L88J3z19ao0RktVppY4ZhsNaO4zgMAwhtt9uUkq4dS/r222+VNYh4crQ6P9/Urip6yiAipbvzo0MLAmFppBdAlQGSJAMCB3Ee5DecvYIIOXPBDchBUewghnfHjvVW/u57aOd7V1OOcP9S7pLf9z96sy9/z1a+2ZcQAFgY4I0bCADqTfrxTfAMt8WV2/Xz5ph0YDaU+weX7yuI3n01RDSNG8a+rergAxEowtHPrDiyDQx1a0BSTgLIbQPTtEvaoQ05TiGCMUorNYypWhut3dXV7mefPTKKQPLJ0YN//s/+2c9//vPVqp2m6fT09HqzVcb6uGEQZXScva5dxtytV1XtCgTy9euLWVQQM8a4+XZzfNxVVV2hGsapsdZKXi5wM+thDKQC6uxc93wn/QQaIAGD8ON1dWzD0sTnFzdffPVKCGaGIEVzjV0Ya2v2fq6cqWjdqriygxYwaGZmjJ6QJKkQM5iUs3CkixjrEyCCzLkmdfbo9MXvv1EWa1fv5rGPTA18/fz53/r1E/3FN9ttjmRGjkKgFEFkBGDgRAd5ZY0giBlECSADCCiCnLNSGgBYsggEn4lUYr5leRBJuSSQCWAI+vgonh3b519PRhmBmDEFDrZx28HLkNZHdYx5OwRbuaOT9YvnV3WliWieYkrgLDpXk1A/986Rq9zswzyL4iSkYshNo7NgziICpEQpZAWQwJBlZhFUJDHmeRIica4Snp0l7zGhkTxbkoFluWhXjdnv+2H0DKDIKJQ8hwwBBMYhOK0qq1NKgGANKaVIyCiVeErMy66aQyIl1lXj1FurTh61Sqkpplfnz3OWcQ5Earloh2kA7dq2+/rrr9u64RS0tTlnSdFppRGaxcJ7//jxp9M0AHBpN94Po9aamEOICrlr2pwlhmxcDaRjzCFFROGYtbPM7OdZGcoE19sNg5AzlaIcMkk2Som10zQtu841rtjQEEJhVzOkdtN+uVwAYNN0Od88fHg6jqNziiNXtmbmcZitqeZ5Pj4+3u53fd9bpVeLZUp5HMf9po8xb7fbZw9PF0sXM87jTY4zwKOylhkyIGdJty3xQve5W98ad3nDOyexfFKs2Jsy2a0o6P0t393rrSzkWxbnvkF8r8v2ofD5/p9/vUD4btz1Ed4ZxPfG8ncflvtX4DXe+xDC8fHxZrP5gz/4QwAYxxiTMMB+8HMCbStmcc7lDE1DpaxWHhMhhKbR+/2+fM3dbnd8fPyLX/ziiy++KIXjotqzWCy6rpvnWLAIiBhCyEkuLy8vLi76cfjd774VRGvV6VnXD/12u5t8apsqZJ59qJuqa2xd6WFgBtz0Q5wGJpWVqwk+X8CzFZGtf7tVi0Xb1qrocyJAZS0A+OB7P1tDyceU9lbnojISuMiqfZ8ZiEFArKUQgjFGBK63+/1+/+jJ2YFMF4A5tW07Tv765ma5XnSrtrWkAUAgZ+ZDxhBvWbAhA2SRAp3PAIyQGXKWdBiS8y0aUaTwO2mty9QgQmuN0nG7g3m23VIxRs4grMYx+DkeHy/rGi4vp5yztXqz2fs5ag0hpBijc9o5CEGGYQw5NU5BBgDomnbZVVprp9XxqvE+SWZNpKkYcgQhRWb2IackHFkSkliL1hJiNgaM0XVjY5qryiCJsZjjVFWVMZqoKNzz3WxsmooIQggxJqPIOUtE8xyurq5CCM65ors9DHEc027XV05bY8Lsl93iwelJ5VzO+bNPP805XV5uYozbbX9zc3N8fLxYLE6Oz2KMJSXHnETEOaM1jWN/fHy83+/neby+vmZOBQlYAtjJH7AvwzAUgdAQwtHRESKWSNl7v9+PhU7Rex9DBqEygbV1qBQrCj4CgNZaI7WVq61TKD5MdV2VvHyB5hQmm+LDjuO43+8L5vHJkyffffdd3/fMXAhvlKLCP6S1Xq+bvu93u11JQVpTfdwI/FiVqLu7cqDHYC6m8M6OKPUeJsW3IuuPR8FvOZVvXcxH/vfd4/+Yova7p/iRnx9+ChallAIcx7Gu66ZpXr4+v7i4+C/++B/s9jf/4p/915mxMialqATmJCmVUgGMI9c1eu8RYfKzUTqlNM9S14/GYZ9Y/vE//sf/1X/1/2qapjx1CkrLOdc0zSefPB77oapsia9Lx35Vu5yztma7HerWTtNQVUprPY4+RjFOm4okRWZfWXIVTD5sxlIayMta/eTRyVqnzb7fzGrPzSOC5arTPsl+nKMAZ42QBDKA012cdtbktrIpQEIE4op1yeqXZFMh0CfA2lUoTESlAnu9uVl9+gkQkYBTEKJvmjp6fn151XRrUPLouLEzXQ5+jgKkWAQkSwY+NPyJyCELXGoIpqhxchGLBywN0kCIBcdbUqFILKRKwy1MM1zdcNMoVWXFBoBE8pNPPvnmm2/WR/WDB3R+PjQN1LW7vNkRo9KIqFhEALUWEUgp3PqeiTGnlEAAQecUnIKCx84COQlnTgwiQAhaIwDkLAeZPZCYIzGQEmBmBlJsDBmNisBaa4whIjhoSB1WWZhmQDAGrdUEHEOwllbLSpJYq5UiCaIF2hZcLSmLn1JSqXZaIW42G02qsm6eR2sts2/aKoWYUqqrFgE4ptJyiohFEcUYVULAAvuvqiqmHgC898yMnOu6JqKiC1i0Ro2zDPL8+UvnXDGaWuuqskK42Wwyg0+hSHSRVqCImTPDfp5AERFGPzlntEKjXam/55yNMQBQjG/5NS4uLuq6vvtcRKy1m91WRKZpItLGuXJqAjRKV9bsx808BUWhdsuPG4EfrqJ8yDz94I4f2usjdRW8jUs/ZEPfO+57hT/SDr4nz/jRa3trMwAwxpSHnnaWjN7sd8MwfPLJJ4jqv/yf/E//+T/7r30SDQxJWMBHv2hNEi45TCIKIVqNpZlht4nPfnk2T0O/2/+jf/SPvvrqqxg9SiqPnM1m8/mzT1+9vvjiiy8eP37cVK6wB5dH8aNHj7799ttxHLU2pDHnJATKmv12bhoX5hg41EYpSM6oNKVnT09ebechDEOCIwdnVawxnm/8txc5UyYM1xu0tlJIliQAFG1iqwAUpTkroLZiq9M0ShJwS8qzZBQiKctWCImEkFhSoc5HgKOjJYfQj3O3PupvtnVtpznocWrqevLjvNlkgZaDE7QgM4vQIdVrNMRUbCHQQTweSAABVfH7kKhkEAVYEARJA0OOMUPJfmgQkRhjJnDKbcbJh7RYgG3UOERFymcWhHGc27pZLEzOeZo8EoQsGolBqLipCoqK6QEcKZA5i4BRSCQp5UWjMzNzIkDSwEwcckxQtRoRmYE5ARzIb0QgBHAVzrPXCrzPy1oxc103Ic6F0hkAWDKBQkQkqZxmzsBCwEYTAAhz38+VoWGIAJAzhwwFgwPAjdPdolm0Xe0qH8NisbCu3m630+yrSotIU3eayNrKauOnqYZY3JpbfMw0TcM8j7vdxtqKmY1VIeaUuOu6yfsMwikpgtI0AgCodGEVjDGyiNZaBEMIRU8aWABQGSKiDOJ9LII0FUHMSTGmlLu2JhCtCRDHcT7Uu29V4Yt/VzdNIWsAQmb73fNvtNaAeHJyPE0NM5fOE2NVCBCjn0JaHR1Z03397e897QAefGR1/3AvylsxY0kj3gXI5b/oVhz5fvz73mDz7r/uB8VvxadvxaofOk4Z7zWFfw1j/W6Y/27Yfv+wJQwsDnnf98MwnJ2d9X3/u6+/rdvWOkeIiSUACIPSGEISxmmGxaKOMRNRSmKMCSE8eFCX+71er19+93xzdf2rn/9Ca93vNgqlhADA2Sja7XYi8uzZs6ZprLVV1Xz33Qvv43p9jKS9j4WUarebm4XbbnzddACQsqxWq8WiAwGryWk8WlY/PTG/fPagW6y+u9h/d+V1rc9Oli3BfpJ9P+12Awosa90YtAAgoAlFQgVKEQQfi3o3KhNy4kNBA4mI1CHZW8hOQggCMAUfcv721eX5xVVKHBMDwhxSyKBMVVaFpuQIKhANAMLFA8Rb2iUpregAESABJpR46FeRBJgFs0BiDimJIDNkOVB7cZbIEhkkQ1UjQpoT7vaQZEbKIZq//M13tqpmL5fXQyG3yRkAgVBNYx6HJKSAtPfiPZeqKACklJ0xlTXAIpwrpwmTQiYERWIUKM3OYl0Bok5JQoickaXQGgKhFYYUUZgQSBIEn5HBaLff7wuHMyJIsbmQAYBTqqyrG1eUSuvKtm1l1QEWrqyxVa20yhlyzkbreUoEyMwx+uVyiSgxeVdXzilrqhgyM7dtW9e11nqxWJSphYgxRmZeLpcPHjwoTAqlV690HGpNhUrrzYogBIAsh0TTQVCQOedDYq0M55yrK+ecsqasIiJwTmtNwGw1Ldq29CYXJE3x/spJ4bYuX9zkeZ4LZnscx0ePHhUC0BKtxxhDCDnGEqrnnG3lNpvNfhjWq3a1Wn/cCPyANXw3u3c/RXhnp94Kgd9NBX7IrHxkxx9zVfcjcfXjsNrvzWDeP+D9S3rrsr/3Z+bKWK31NE2IuFgsOKbt9c1itby6uTk6OsmF/gvBVWq17GYv81yatEhr7VMUKgq8WWu9bDtEXK0WV1cXhYFjsVis1+tpmhTKPM9a66Ojo5OjdV3Xv/nNb7799tt5Dv04XG9uVkfr680NIAPRduNDZOu0n6OtYRx7rXVdVfMcNpvtcmGH7c3usn96tPrFiel3+9+82r8aUWtoKfE8eQafIQHkDAqxsabVurZQG7KcNcS2VZLAj2A1aQVhSm8Y95APqgkMKLJaLbu27rpGEMbRm7oSgN7nxNDPiTQK0GY7pkjWWqWw7bq2cktrFgqMEiIGgHhPuEZuy80MkAULbU4CyIgZMSNkgSyQ4uHxjIpyhpQOppUyivi2VV3VTQl8hKarBMEDTHOyVjcN9f3k59i0TYyQhUmDMsQZcpYC2ZlD8tELChDEnGKKBTpeZFiIwBrUGgWEWRDFOSOZc+ScgEuiM3KKnIRBYBq91gYA6poIoWkajcp7z5KIDvIpZcaVBGoIAVnqqrLaFM2QJ08e11VljOUMMQEIZYYQJMa4XLoSqDrnvJ/2+/1+v7+4uFBkxnGMMW02+2ma5nl+9erVzc3N06efnZ4+WCxWTdMR6ZS4JP7W63WM0RjlnLNWO+f6fihkM5FzKuVgzqVvJNx2JVtbFbBB13XO1vMURJg5+xTGcZymFCMohEoXJousSS26xhhjrdXGkTYlUwQAwzDcFql1yR2dnp4WWuxpmgCgqqrtduvn2c8jIh6kaTIbo1arVc6x7J4S5x/qRfmBKsp9L+nHWKsPeVXwjvP1rvP41r7vvrm7sI+fHf5aFZX3XvOHkpsAUFVVCIGZSSvj7DzP8zz/3b/7d+uuJa2W60WBhRhNkrNwsFYpBZXTOWdjKxGo61qAOEHXdeXhSUSffvopcyrPxjIPjo6Opmli5tL8FGOs6/rBg0fjOFprHz58+PvfvXzy+BNEGce8XC38zJwpsYQArqI0RRHZbCdAVdVtTmlh4PG6Mabd7KYp5KauVsuWCEcfTV1FAVRWEXCSOM5hikrAKaoITxfKqMSZSBFgAAl5ykXsmG/deuQDhqmIEMcYD6WPLItla51OGQQgsfgsPsA0hpxEE2yGIfrQGFo4ZYGBMyr6XodTuSNwoELKCAkwAWYGBrm1iShFI4VR+AAxQMSi9i5ZCLNxqVKUostckZ5ba5JABlFkrFU5Q9+P2hCzWGu0Nj7G2UciMkYxwxSCdrppHKJkBqXJWisCSghEgSgRFIacS6M055yIRBskxYhCCoSAOaEiFkBi66iqdddVbeNS9gWnAbe+dslFIuJyuQTmaQoiYoyBzMMw7He7wgYSY54mnxm11ooOkO8SZi7XK0Q8Ojl+9Phxt+oAlFK6aZqua4pjeHp2vFi0lWuEVQhJBEuEmxLnLNM0Fe1mrXVpJXZOt11tra3r2jlXukestUpr59zR+gTkIP0MAMMwFSSND1POWSnlnK0b1dRkiTiFypramsqZrm4UYNsulqujdrEqHBDlRziwEDGLiPe+VFGccw8ePLi4uHDOld67pmluaeEJACTlOPsDeSKitdb7H+hF+WG217dCWrxXKb5vKN+1Jvdt6FtHe6+thEN+BkkO7KHlVf58d5fvfY37eO//uOLy/fFey1uupFD7llLXMAzzPK/X66urq9evXz98+PD4+FgRKEVaEwtISohonJ3mJCLbbY9wMG0nJ91ms2mapus6uiUgePz4caFjWy6Xu92u8Mecn5+nlLbbbdu2fd8/evRos9lMo3/48Pjq5ppRjIH9frC2yhmcrbUBZZXVpACPjhZ/+z/7u9M0SYYnD9o47r68StaoT1qAfjy/HEZ0YCwlzwCuapR1zJC5UOQrp8iI1DXGkIBMU69FhAAMmbsf6rYoX3rpsLCY3C5s2Pd95Ky0njnZyk4eQpC6ajJTnKPWOrAYZ0+Ojs7Wa0sgDMIoQAB37cslKjxMgyQQWSJzEI6FlU2knJ4FQsolta+1QVQ5izVgyU4D+Dh1C5djs7mZEkPdNv2QQsgppaK4xAwhsDIYY5xnX7hH/Mw5S2HYzTkJiamc1hAjh5i1MiIqJQiBc0IirYgEKEWIiZHEaFSKtEHnlKuIFGiDxoBIbhonkBbLBiBN4y7nnFJOqUyENzXlm8udUqqpKj/H/X4UERTs++HychtCEqAQOYQUQ8oCSqk5eEG43tzs9/v9OFxdXf3VV7/bbPppmoxxAOCcSyn1/e7Ro0eF3dpaq8jEkFNK1lbO1QUYWB784zgWXSet9Xa7LTJMh8i0tI94X5iuyzWXPvqqqkr7c13X1ulSc0UBq1RlbWUtAWuFSiGSlF1CCKUQXO5127aluaWE50VpwDlXfM/CARFCKBQ7IlLyDCUJkHIoJLvjMIeQ7nOVvnfQQa34APRjAtAg+k2FNzMn5lTUG+4Xju8tgHLD8t2rUA7evn+z/bvjzr6UP+/f/vvbiIhKTFm0YBG6FQQGycIKhITvrlMkC7Ig871Xhnz3+pDVJmHkfPciYRJWIEreeNfIb76gMSrnaBWladKCx6s1M3vv66Nu8OGP/tbfBQaDVDuDCExakRQaznH0y65JgZGlrZxBOTtaDf0u5xxyWq1W4zDM0zD5SNpeXm82u16ZGoCePft8GKa2bTe7fczp1etzAZr8PIZA2hAaZTSixDjnFHIYu0pn7z99uKwMEZn/93/zJ6+u02aEMartGK72/dWQo65MTcvOzLtZA0JWFcKw3RjMxoJ1IAQMMocECpBNUxlnQgrXtau0VoIRMM4eYlSiCDVkMABK6bTZz0rbyloNUKlKmJgBiQ1gH0NUIAA5pV0OM8KpWzZi2srUjRrn7bqqHABIBmLAg3xK6VQRERElou6QNwkgAETABJSBImIgCAheIEiOnBkykIgm0NK2hhMMw8SwjRz7Ecb9tqsoRtj0OQgkEQHQpFPEEME5i4hVZV2tAGC3mzJCTLDv43brp4BZVEg4xRwkMmTUSpmi0MyE4iy1FTmtKktOM0fhnDVaED0FZIZGaxOTjVhh7WfZT9k47WpHhJyg8E7nmDGnau2SwpthNs6enB1prQRYKYhaP7+etz5l4wJpNk6QBOhstcIYG1OnxAhmfXS26FYxAGu62OxR5OHZ8SePH5yeHH31V78pXlvf96dnx9qQIO/6m4urV8bpEAJppa0jpWLMQHoOiQVzTsxJ6OCeZ4aC0UFFrq5Kr/Ecw/X2erffZI4hBIVUmcqQUoCKQGEGmVGoaTpEpW21PFojYte2kLJzJudYrG3BDyllcpbd/rrvd0rhbrPdbDZKYVVZP/fMaRz7unFNVUcfCvSnck3TVlVtWOLkh9G/0UUh1CBYDKBIQSvIB2vK76Kj4eAb0ru5wpLXuL/Zez//kePdvB7igcvhDpuNAgjI/yHNxX+9cR89jogKoGT2Sx3tlsLkoHBPRKu29dP805/+NAOEnCwrRPCTZwZbKeewhDDWAidOKYnWdVVN09DWVVvVQ9/nHDmmeZ67ruv7/uHDh+M4hxC6rvPez8GvViulVIj5+ma7WK0LwTqT4QyIighzjiGBc9i0y5eXu5g4MWYQAXYNDnnkOXkPSoGIIEnKUWuQnLQCYtRaoVKSEgM6I8YgM1sCkmQVNNYpSUoTRmQGaxQQC0CMHBOQFRFJCSiFV69eWKuRYE4zAKWUAHDRNf3QawRC3afgAR40FhUgZz9NrjIc02Kxuhq8zyIIUqgivjf4rZim1FgQhAETs9z77/LsQ4F5ykpxkU/JOcfIIqAUFhADERAC0UHWDFCVz/MtBDVnQZS6tiLhlgupzFOmogdd/ArmkguOGZglpXiQvGISOSgSMbOkLBqsAYGgtDleLYkk5YAKQkhGK6WU1ofebavBGL3b+a7WwLDbzgppuTi2jnKI3E/ZJiAqonogoBVoZABYr9fro5MhzNvtNmROKa3X7c0wLBYWAPq+J+Gu6+quvdlt66pFRGZWWuc5I+qqqkSkkEibW+nCgknUwgipcDuW4nqJ5zlnH1IB5ZT49I5uuhQDWbDkfJTSmhCQnLHzPH769BMRaZoqRu/91LZ14a25yxUyF650MsZEySKyWCx8DIU+5/j4+Pz89XK56vt+noK2pZa4maaprmxMMUYyGoyxP7DY3/3o7j7fD5Dfdeje2uXd9/ezfu+Ot47/8auE22zRXXKq0M9p+Vj4fDc+HmX/B41ydrntwwGAgpIBOMCjss/jflwdHbfL5RwTg7RtbRTlXEynhJS999ZapaGtnbP64uK8dtX25qqq7eXla2Qp9ZOqqp49e7bb7dbrNRH99re/7fu+BMv7/X4YBga01qLSylgfUozZhySArmpJqXFO/TRtJh4ijLPUjmoH65MlaJwAEKBtnNHgjNYEXau1QWMJsyBAYsgCAOIsLms8afCoMxYj5qgkQUqSIgCTgsQZhEQwJUgCB6FiBFMp1EiGWA7cGQUnzcAiEBiiVuhaUmCMGebBaGrrKs5zZajfXZ+slgoAD4453ef7AmDE94Q8ZQ6lW+Wpwz0vNOcAOWOMEmMGLnJLiAhGU2VNuYNaK2aILCnxPPsi11n0Ea11SqkinoBAgopQFzYGuH1CCyBRIRNDILJWW0tKwaHIzqywtOXpg9lMYrTKDKjiYmXnOIzzxBlEIOeck9w+XwuMEY+WtdWurq2p7HY3fvX7i+12Pj57aozRRJAZgbUCp8Ea0CpP06StIaNLqaFk00IIRivILJBPT44A4De/+c2rV6/meby8vFwulyJSwNWIOI5zSLFpumIKc5bRz0WcM6VEQgqUIaOUASCjrCLj51iWRjHMdym8lFLXdXVd36LiIYTgvQ8+aU3C6WZzxSlMw15pHId9VR3Ea5TCkrK01lqrnTMlWem9L87HYrEowIyua0tpBRGHYRCR9XptrU2JScAZa619Own9zvhY3vB+b8a9z/NbrxIX3+UT4fvWrYSc774+ZKHuDnj/JZK5SBrhwTU7hLfwnjaY8mcxl+++3j347ev9g79v6O/MMdwa2XK3yv8aYxRjU7Ui+Omzz4PAFEJ5SB6tDiW5krvIOXMCECbAo/VyHvvT01NO+Xe/++oP/vDX+36Xc/7iiy8Q8ebm5vLy0hhTVVVJWk/TJEDTNBlj5hCZOZconJTIQd5IBH2QaYwnZ6uzB6uTY7NqrNOAOfk59gNoAEuCkjhFTWA1oqQcowLQh6cOsEBtYOlwWeHpqlnUunGgSpswSSFP5qJDKwh40IAXETK43Ydnzz75+c9/9stffv7zX/y0AAhzlvXR8vNPHjhFY4xTDJwBUgYAa62IHK3X0bMEgeTXtVEH7I4g0UGb/bax8u1pU0wMSJGWO5RiuUwPEhGjTXFYUgoIbA1WVltDIUTvU0qJ5cBuLaiyACIphcySGYjIWld+21KWZCShAxKQCFBBzpKEY2YfU0osIgKU+UB3WErPRpNRiMCKwCi02tQV1LXVmqZp4owIRpEOOXufQxJmJgVEyDmiCHMUyYiinVEWXl1u/9Wf/LkPPAbuZ46p4OyMMQqATx+c2aoJIaTI7aIzxqDkmCJkRpHSNVBQYgBQTKFxNuWcUrq+2oQYF8sloWaR0vZz9+wvzUdlDosICkjm8v5NU4aiO/IeBmGQ/X7vvUcS67SxSinlnCskiV3XhRDKBOADtbgpRcWUUowebn1SAChtJ4hYxJeLdfbexxj7vgcAWzkAKPKqjIflaYyxWv+gV/QBaaf3+YDvLYD8oH8nHxgfv6z3HAfhLUfwvdWSv97BP3be7x/t7kd4ozV5bzO8bVUslRBBAKRpDq5uQ/DDMJc6w2K1rJxdL+tV1/Z9f7RcLRaLEl/8/b//97/77rsii+O932w26/W63PJ5nodhKLiwqqqywOTDrh+HyffDlDIXKLhPse/3MSZncdk1cd5KGmsNmKMFgCiNXSyc6Ro0CiwhCFROKwKtMGfoGqwr4xQ6DU5BY7U15IwgZKeoiA6jgDBGzj7IIYdbJGQEUuKc2TlnDMQYz8/Pv/ji919++aWAtFUrGYZhWFbdk9NTQ5g5aoDONMY4H9J+6J1zi1Y5DZjj6bLpFChgkIN/d9e3/sZNhFv7ePtAE6LbVvTbWwOAqACTMcoYBAQWJiXGglKiNSoFiEoEE0tKnBLHCKiUtRaRQpB+mEpNhkjlzCnxocbBUPxiAEBFhAoAEkNiSAWAxwBAKMAHzgdBYIKslZAIAS+buqvqMEc/BRTKWWKGnOT2uwrJgSsM8hx8CHMOc3SGHj0+ffBw3bRq2/s5gc8QGHyGkABJAel+nIuucbdaGmOur6/7fuy6JgVZL5efP/vMe//69asYfeKMirb7Xc55v9/nnI9PT3KW8/OLEFKMmZkzCChyti5uY3nwAwAzZ+GYU0gxCyujI+d0L9UOdNCJLvKnd2FvASSmxMIZEc6Oj7VWy+UCmZ2zIHyHaE4phTCXXoNSSCnWsBw2hFBY3HPOqEgbM01T27YZZNvvlVJa2SQcQsg53leJeu94z3+/1w6++Zfl+1Pxe9bwbtfiKCJ+sMCr4I3Zkvcxytx3NuFN0HR3kQd6ULlXzv6IHXxjtT+0xQfG92RX761Gvne6u+IPMwtSv98fnyzbpjFEWtuxn4+O9Gq9oGEOQplBJA/j5Brys1qv1zfbfZz9T376WUixgspW9cXFhfe+wAy996vVarVaPX/+HACAc0w8bTYFvy2YfIC6pn6MhkVESIAInMXW6UpDFqgVVdYOuxEYwzQLGglxuXKCkDO0DoxWOYsibXU0ThklmbPSqEnqSmtNZaECKQAOiWMCSDlkLHIlwhyzpMhAJACgsKqs1c2//ld/6RpwDkCUD3kaR2fo1fXe9/NqtVos6t2uXxtbVc1mf8kp55T3/fDo0SN5db0bZ8WxMTBlyAAlc1d4N+Ddu4wAAgeDw0zyhtVNgIoyWfTcGDTaQPAxlgiaiUDZorZOnAUEM0uRjx/H2DQOlaLM4xgLYI0o46EZ9RAjIyEBiWQBYRBBKh4qIyAqLGwTCASsEbRWIWWtwBgV5txaPOq6ylGYRgV4y4lZyBMNknBKIqyJgLCyarWq2nbhfdz3/dTvY/I5QWBUWoGS4kl5ycu2qZx2zgHhZrOZfNTWrFaL7XZ/czMer9scU86ZUy7uWJEoWa1Wl5eXwzBoa0pOo7ToZUFUKYQQQy7zvxgjkYPYCBExQgghMQu+idK4UL/dWzs555AzImhNxmitNDMj0jhObdWklI0xR0fHr68uARAJrDNF3ijnnHMEIEQ0xig6uPmlZbBpGubULroYszEmhMQI1lqtKaXkg2dkJGQE5PTxxf5B3/DuzV3IfFdB/sh4y2r8GDft3eD6IwMR76Nt+G/UDfzQGe/eH76jiNyyVxRnsLwpBG1klDKkkZb1QjJzBi/w/OI6x6C1SillgBACItSucsY2TSeC+3Hox1kYv/7mu+vNzXcvnj969EgEnHMhhKLVXXRE1+u1McbHhErbyrEgEGSBxOB9EsnOmcrp2pDTInnmADFmHzmCiKKqccvOLBaAknMKnJO1Zp78PIfkk0ZtibWKjlJnobNolIpJ5igxSWJiIVKWNGTGzGSrOiQugpopgwApZcr0vb7arRbuJ88+W7RdCLkyblG3KbJY04c4DnsWXwhodvv+qp+T6DHAbpzmEE9PT3MUp9ARtArcnTMogELvj3cQ4GCHQKTw1mD5JAlHzoSQE+fEiGQIhCEnSRF8KPwCIYQIQCWuqmubGUIIImitOYhjMYSYlMICgrx9hFMGFMY5SAg5xsQZIkNBL8uh/KI0odakNRkF2kBTm9NjfXa2ODpqLSFyXi5q57Cpi9JAmeKqzG6l0GoKc+Ik0YfLy8vtZrbGdE2LAoTZWGWUclobAk1gCS2hcfbBgwfL9XFK6bvvvttsNlrTcml2m0Ep1dQupVBiDq2patzr16/6fjfPYbfrS/V2ux22+6Fk6EpbEd9ytdR1HULKgokhlHhU26JsV2ImEcnCpRukjLbtmqZxztKh6SBN07Td7hERWYZh0KQkMxFV5o3wMRIQUXEDC6x6nue7Am8REigj5zxN0ziOhQcshCAiu50ffQJCZQ0QhPQfzX39jp16T6T8Vs7u3Q3eO/BHsCXebVPChfvHylDqyh8Unv8bKZ7cv0IpjKQAIqKVgts0SgmjSi5jnAdr7TjsF22HAJr0atnd7PoQgmuXOkpTZaWUVUYbBZxev35NRG27KMzDJycnL88vxjkcIX722bMXL17UdQ0Qb25utNaI+Pr1awGy1g7TjMqklJyz4xi0BkSo69oZHaZ9CoAWm8qNkyAoHzgkQGLjECCiAhDQiBGldtVuFxGAWZq6NnZWwMDgFAhISmGYYkySE5ACBlXXlrQZpribMtmsBZQ2xFJyx4gYAmcZPn36E2VxmkartSMVo1eAGiCwMAAqqBvbLlu8ma52u2jIZ3YVvn598+TBMQuulw0LtxUG0RgTJxGAfHh4k4AUWtn39h/R7cwpk5gTCMrSmRhjjFFrssoiHp7upiIExRxjBuJcOHKMxrY5uEjKGa2VtRYgEBFiFmGGgogUUCCQIbM2B0kWVADp0K0IQjlldSBrACQBFAWgDTaWlo1VmPuh99NYd03KERGsNSHGAvQTBiQhIpBEqC8vh7aNtWsqK5wkhFkTUhbMARIoBc5oo1gDZD/f3NyAkE+xruvFYtEXUB7hgwfHy0VbIlBmDolFwKa0XB0REWlzfX1dAAxN14UQxnnquk4ZbUQKXZP3ERFjSqS1937y3hhtrWUEUIc0BTNnfoNmE8Sbm421mszBXGhdVBfzfjc4Y5yrtbYA8OVXXx0dHfX7kTEV+5tiLrWXcrSTk5Np9Dc3N48fP10sFgA8TVNKwdVV0zQXr/eoDTP3/VRV6uioGaYZNZXvC/AeZpn7Q9+fTofHLiFrsvhGSfgtiwB3s+2eZ1e6KQG+F4siIoF+K5d3KIDQG6TO/VD3ruX5/lkAQKgwLd6WLxBRoLjr949834LfHf/+xdP7FlA52FvWs+yuieK9zQ5fCvGOtqcEDnDL8UWqSjGANmOcGGAKg1OwcPDyRtZpXC0qjn6ep3rhEppvX18rhE+ePH765NHzb75+/OTh61cvEPGP/uAPL69eX1++NsY0TaN1AKBpmoiITLffXqFA7apvXw/1wvoY22U97ydCwBwZUlvb2ihNLIzLVXV5uQkJqgpIKUkSM/oJWCcCmGcwOpydtFc3g1GgzdgAISIaMlpZpXLO68qcPXq4HcN+P2x3fc4xZlTaWhWQOSkzMkwpgQJn9baf1mcn315c/e/+x3/v9X7+v/7f/h9sFJNkBmtxjACJA9DlxEtFXa2oa1Tylnkc5kqrZtnc7GYO26dPHr387nmtjKmkB9EAuwMxLTEXbpoSrH5v0iEqklxwiCBslCJAzSLAo4+ayDllCAFFJAMyaogeGTMLkAalyGmds8QY5xAr51JK4+ibysQYOWdFkhMyq5wzMGiNpEAEsoDWCArnKQFQiFBVzvsQQqprZJGYxSdQrICzEl46XNiFU7Tf3fRTzwIyxbqqpml2GJWGlEWQyBhOsN8FZrCOtQUN+dF6Nflx8GHKeQoQAzhn+ykQRVuZunZCIixPHz0k0trjdtfnmDQZ5Q6ZPq11DnGaojJdDsEazMPsbQCAzW5rrDHaRs7b/c4Ys14f3dzcFMYE0toiCiJp3TlXhAScMQwHzLOIiLEAEFNOSYhAJAEAGU1OsUiOqTD0xJgiRGbRisi5tq2JYA5+tVps+00GJiRrbU6c4mRvsxnzPHdtBcjHJ6tp3g/DcHxy1rbtbpe32/3q6OT0UXV5c8PMdV0p4hBmpRBzSn46Om4n/h78GW75ge7G93FbPzpcve+7HWwEqPe+7nJq989SXOX7jvShKn877qVa812EfmeM7uzpW1/m/v/eBe9vRfd3R37rQ/z+uDvUffz6XcagfPjeLEEKMYdIVCz1AX+jCJqKjFHjOEoGrUErG2ZvNQFAyV43TfPNN99YaxeLxcXFRemld84x8+9+99xau16vi/9vrR2mzMzLpXPOpSRXV9PxUe0sEOaUI4Ks1gvmPM1TCHGxaLpOIULpZ9eajAFgIMLHj49SSjc3Q1PR2ckypQzAXVs7q49XKx/m1XqhDW23N5vNbrs7cDoprWNOWmMGIKIYIyLEDPMcEGEcx6bS/+t/+r/54vffMAIplRNrAD9Md5FITHEcx+1+GKY5ZgCtjSIAACKfM2t91feDwHWMpnJ17drGrGrdKERmBM6S5PbBKPeev3JrChNARojCUTgTiKIkkJhjTpEzMyMqrbXRhrFUfg7QbmZWCpumUgp3gw8ha63mEHPOxuqU+JYdRwm+SecjAiglIswQI8cIKSWlqGm00qjNQQgpRp8Sk4Kqqgpl+jzPiECEpdO5rq21VDtVV8oZ0ZQIU2XVotVWw/F68fjhmVIKJM9zdFp1jesWjQ+hMmC01lo755jh7OxMRLquOz49aZqmBJuIWJRJmPnk5AQQt9s+5OS9X6yWZXYVLafXF+eFpHoYBkQsfW+FuboE13cNJ6Uf/G7VlO6s4nXCbXxGRBqpxHDlMsqiFhEi/PTTT0t78tHR0fn5edFR6fuheMcAoLUupE2lFe/mZgMAwzAqrau6LSQXKXHVNIXNAQCccwVPbq1lhqZdMMD1dc9/45p59+0gvM//emvL+w7gnQW520Deaem7b1y+F4DnQtwkZQHcuYH81ma37+98zDvT9tYGb413nwTlE6XesGgXPrX753p3L1LASYxSpZ0IOCtSIqC1WKP86K0lrSwiztPYaFgslsz8xRe/XS/ds2fPtNabzYaI+iFba682Nwy0Xjda61evz1NKr17fnJ1063XNpDTTzXZfObVsaBqmJ0/ONpuNq4yfxovz148eHk/DPuWslCo1WWsQECXnnKGudQGCxJirirznzLumtsvW+nlyzs5+tFbtdjtt7TRNPoAIMJaqZQIAZY1jiBFiBK0BAZjZGTeGcPrw7D/7h/+jf/e73wWBwlhiSWXOTrkdp3J3p5BjzFqhc7Yh0zYLH6Zxituddw6uZ++cBkWz9zGzEmyt0Ugyh4nhECMAlWlyHyDFdJATSFJmS/EYbxPNLJEzA5DKqBWRlJb+wrkgIjEmIjTGaGUAghwQlBIzI6bMoLQq7c9EJCAh5oK+jiEXBSVCzFzyw6C1yrlI74E2hEpxinxo27Cz7zmL0UZETaP33iuFXWMS5xg4ZUFErVBpUIh1vZyH8ebGnx2vPv/8mX19dbkdrrdzYGwaW1sT/LTfTpgmp2geog99SqyMLi103sfyYE4h933/b//8z/o+oIb9np88qJVSTVv98pe//Oa7b/txWK1WwzRvt7vVajmOY4H7FWbDO++hTG8RyXKPI5kQ+UBwdeC7PDyzbrs5iuchpamBiWi/3z969KgIyf/sZz87Pz+PKT18+GC32xERQCmMhOI/VVVlrTHGIB3whsM4pyyk1DBMMfNysV6v16tuMU0joYxjb1y9HydtrVZpnn6givLXt4Zv/SnyfnNzyJi8kwd83xHk3Q/f3f7NT3/7dHrLvN6el+62vzO7H/ki756lvLn/PLnvJ37IqlbGDsGLyGazSRkYwRAKgbNoFKBzMR3cS2OVs2CMEchd59q29dPcHB2VNuTNfrder+d5Fsazs7Ndv3/5cnN21jFAP451XW82PRjrJ1g2ilDa2oTCGNjvmUEp2N7ciEjb1HMMiKhIGWNYJIS4aNXgE5Iax3GeYbHAygIAGBRrNKGVnI2xOVORgiBtIntlVQrZWjX5oJ1NMSOqlBIKACqrgYhIqzT5rm4BdC7agZGtsT4GBTDnAHfxLWISSUkSxChIzqDSrI1rrDZqt5sSp5SgOapBEvsIwEqoUoAafIaQ74cFVAzi4dhYCI1EBASkwBq0RlUepMBJADMoYFGIB5Dw7ZGYOYtPwTjd1cb76EOsasspTkHqWoNSKUQRKb0UMWYCsE7NPhMlREVEWlPOByVlJEiJBUEZMtZmlBzSPM+l9ASHcvlBu45ZmiYbJOUoZ0YWAFGImmTY7xwpo8lazZLneQwhKEVWK2Qeh+Hxw1On1X57ZbTy3i/rehiGLOxjzsKli4OIkpb1eu3cWYhfTTGv11Twesu2yyCIoklNMSCCMWqOoejh3XHQluVQVRUV2LmIBgIAxsOSyZlRKRLClO55PgfGVhGWzKSUMYY5IeI0TQ8ePDBGffv1N9qaGKNPYbvflXp3GeXUhbRGGb3b91rr/TCmyBmk34917WxVi/dzDBTiNjMRCuT9fkRnd9vUNWSsZgjvXbN34/3W8L4H95GV/6F933XW3j3aXXD61u7v7vvuNm9d3ns/vA8df6/z+NZ4K+h+Y6PhXq4B8r1v9P4kg0jmHFNKl5eXBKAQrFEoWDsjOVml5mnKApWm5aqjPDVVHeJsrX3y5Mnm+po531xdP3j0kBG01k3T5CQXV5fGuKOjSkROT5fDficiDBBiaFpgZj+n4+NqHPpFt8xJuq42ilBSQadzjMaacZxjzNbqGHm5XExx731myKuVSSkZRUfrRY5+v98ul0syahgGWzUxZkQ1TdM0izbFVdJCnBPPITNnTlg6WLXWDBi9TwIppavfP09TJEEWFk0ZADXFVKg/D7e11KNi4pR9mOfamYqxrTuF0rioBA3Ey83kDIKAQkAQJeAIk4gGERC+5esoPZMghyYlIiQ8qLqgCBUObRSFiKAIGRGBAJBCTOr2XitN1rqcs/cpxoTWCCEnSTEjEamMpH2InFgARLJSqBQhojABcIwinEVygVtbe7vmJeUMDIwqcc6IYLQjwBQ8FzuYEAG0UsaoHKIxVFnHzMmHnLNiUKQIkja0vZkln6/TerFsA9N2N0TiVVdFTlcXl+uuXi9Xp8frHNNytapinoMPmx0za22UKve03u33ZipPgLzfR6jh8YNjIhqnUSvlnNmNQxauqqqfxrZqCvEX3RLdHxY4HvB05RfVB2vOtwtE3oBDSQilIC7UrT0FABKwxjhrvvzyy6OjFSLe3NzALdC65KOKEWzbVillDA7D0JjKp7FqWgbMkpqq1ibFGBURkA4h1NbN81Sq3oIADIulgozb7VQ59961fzfejzf8a9VivyfLdM/jOxzzra3fdc3ea/Xue473reddquIuL/khs3v3/r5H+Z6r/0BOQRt1Zw7vJxbvErJvGVzhVN5vNhs6xGpsCcMckbmuHIooKh2yOAy+aTyn3Fb19eXVPE/Pnj07PQ03V9euqYrbW7dNjPH4+Fgptd1uMzIAZOF20QzX43JZQ/KNgxTm1hqjYbWorbXRT6v1Siu8urkWyESm3AutDEDabvdVZa3FYQrWWgBIIUY/GUWMWBictnt+1Lnzy6t20c5RWGAKrLUae2+MmX1CwJwksYCSmcFkJpCYMwJEzn/+J//tMHkEcM4G7wFAaR1zBuB3bgSJQARJPg5TnEJQmWttrdFd3e3yZJxNk+eUg085Q9e6rtEXmz4LROD8/dx3uQ3IUhasQgQWRskiQoiloRkAkAsZqgiAQmDJLJpFO60UckpRYJ6j1kqM7H12GqraDvMMuegas49sWOpKgdDsA2kjkAUlZTG38y6lIIKEqDUwSEqJkxgEY6zSWFrdnbMR2fuYMxiLWmvJHHg2pOrKwm1HoyZoqjq10Ti72+8zKhbdtmbKMgxzV6k45/1umofJD/tPPvlk0XbGx7ptyLrIuZBZaaWIaLVavXj+7XY/MwBpqJrq2+evjo8eHB8fn8N5CKHt6n0/jn5umibHXCQBSmBUmA3neaZbmBEoIj4orDEzC2DOIiwgigovAhGBZCbAqnKFuklSZs5KqZKv3O/3Zyenc/AppZubjatcCIFuG5DKkYtWgY8zg+x2uyyYWALPTdNebffoZ0Jwxp6dnfEtaXzbdAkFBFyzANF+/pvOG/7geK9Re+vP+2WKtzKJd/nX+4cquQpAhPd5dm9ZzLsP30oa3k8jvrvvh9h+ypS9vw0eCu9v/3TlmlM6zJ6+77EQCTA7o4chtI1RCuuGsqBS6KfACeZ5XnYLlLjbbZ88eXJ9fT3P89nZ6VfffnN8fBxT0jk/evRIBPthCDFm5MTgd7MoKNB6o0iBnB01cwzOYYoheN91zebmwlqtNSllELjrKmYgpbqmu77pUYfjozPS/vX5rq1V2zrg5GNYHa1E5OZ6t1o3292ISu3HCGiV4eRDiBwSADIzKKW04pglZWGAkNkQoVIo2Yfwb/703woAIRytlzeXFykDh4iC71AwwF1bJwIw4hRYOPs0bSZwBLqpTW3rVX206OZxOn/5au5nn6E2EAod9j2DiHjw5FmkOOZSiEoKHFokFxmV0tzBgijWqIKWAQBmDmHGA8pPpZRFRCmlIjNDDCkmUARZQBMaAyQQEwPnnIGFEcloLRyUIpZU2i2EATUoi6XnNsfMAjlJzpElKQVEoA0BmJhiCKmtbYoJsgCy1Zq0ilEQc90ujXEdd01T7Yf9xdVMhkICTmw1dU0bqa+sUQjRh2+++cYY2w8TWh1YxnHc7yerFQJEllevXmlrqipkVCKy3c7rhZrGfqvUOI4xxjnHGCNp5WNgn4wxd50nxUM8yJsQEZHQm+5YZTRmQSLgw1qj26zuXWkF8UBDVSCZl5eXjx49Oj5eExwew8fHx7t+f+hFYSmFxJwzM1hrC02AjznESNoiYogRAIwxWitDqmAPC55RKR1SGKd0uvbHJ4utzO9d43fjP9gaftCJe0Mx+H3bd1utvb/xvbjybX/tzol727P7/unu3t9zzt9s/NY2d2eRezrfb23/BvD5/W93vyJeIDW3Vu/9GVnOsXyFeZ6l5LCUatuKszpar3IekdiHSIg559Vy1XWNtVqynJycjH3ftu1qtQKAm5v98fFx27bX15vVarXd7m9dCVf45q53oarddjs9PWtbgwL+wenq/PKy69pxGpDy0XE3jqMIEOE8B9dU0+SHcT4+XjaVNRa++eaiaY1SYIzSmhrXkKQYUjEBWcCnnBlF0evzuT2qSOt5SpUzKbHRdvQeAEkpzskaNcdMIoSYGPq+///+23+tLIQAbVtnv9hu9o4scA4H+Xm8C0HubhcLoMLEAggTAgB4gcr7aZpShgfHg0GaPNdaGwWsMoBkhiR473EIcmgGgfLjF2+wCKrc3fCDlNVtD+Vdpl8EYszFfUwpG6NSygC0WDQ+Bh9SXesU2PsEBtuuApZ58MBQVXY3BqcV3DbOK4XGGKIYAzBLCKJM1qQP6J4sMXoRYYFx9ADQtq3JyvvZ5+CssqRQIKaZmLQ1TbvY7UdmSCn14xCZQUHbLaewL7CQvu8Xje2aap6Gp588XiwWnEFrzYjezykl50ztKj/PJ2dnx+vVi5ffMbNPLALLzjCnGGMI8ziOKWfQpA0JUkiREOUWR3Hg3WAxRuWciQC1glvYBmmliBQRIt42Fx4ePGXFh5AKKKIw1JZ+u6quQgivXr0iwEePHn333XeMB8yJiHCWg9AKc6Grmed5HH3V1GmMTaVJ2YuLjSA4rdq2I5G+74El5hRj8j6QUY2D3W6f09C1x+9ds3eD5J4jVla+QtIHfe5DevmtkkIxK3xPIAUAOAMI3QFrQKjwD9/3y+6gLXAPdXjX3Q23LvF9E3mXSS2OYYFTlBeL8K1awn1n80PpyIIzuPvk7sgF0/PWjnf/e98HvH/NJa9c7qs2dPcyba1Qtn5vcgwKnIbn2+n5VT+lKaahqlyO2ejSVgmmwv3VRZzGzfWNta7pFgxFvp1++tknxBTHsG4XYz+1zaKqGkaCFECYjK4qtBgeLlHH8fHxKmbYbPada2uljtsFT2EepmW74JAIFDP0w6wrjRb203jdhxcbGSLspmgdzj4UB23bTxkmIJxnOH85ssAQ082YvMJNH3djTgCBAbQOIiwUsoySEkCKGUrjB+euccmPX/zmd8SoAH7xkz9QqmOgJAyQ7n5eeHMfS34PoJg3YYSi3Y0COCeODBbx6rrfbPeLow6M+JwwoWZqABYIrWQtuURtIIAEeGgYgcQAgoC69GYVO3noVGHhlAMLF44GItIalUZn0GoAFULODCnyPAerTWVVPySwRBYTwDSkacoJIBH0OVWVZeZxnA7eUxI/BRTFIEJgLSAASlAORQMb8D5r1YwjkFKkKSVPMi9bQwEUGxKds4SUbFVLhuhTa6wmbLoWVD14ykwXV9sQ8mKh2lr7wN7P15ttXbVjP/hpPj46XbTLo9Xxo5Ozs+MzBZhiBIDO6u3mehjHxKCQKqtjiK62TdvOMbVdB4ScAUGzTyqBEGTgkCNqUtYU2pQkbLVWSBxTDlEEkFROPPTzPPr9dtjtAmQ22pFWytjEOROygv3kp5ixqoJE1zhtDqX81ero+MHD5y/PhQ4MNEZpP/nSVdI0DQBYW+g782K1TIzGOR/Tfr/vOldXVOsqBk8ELPMw7xME1KScrbVLCRiQQfbb7d1aTniIBsqqFhDAH9JTfmvAvfwd3j407szEW/vChwvQ757izmB9aOP7Me9HrN7dYd/7X/e3uX/k91rPj+x7f/e3RsFGNXW3Xh0zQwhFFUg7R4iYUgoh+3muqsoafXOzOTk5efz4cUl2KKW+/vrrwiuXc378+PGvf/3ruq6HYShBijHGuTqG5EdfYAqNs21XF0bMEsh7H62t5jkjojHGWhNCUKQBMItoDVmYCHJCQUgJghcEiHPs+xkYg4dp8toQGWAEQfA+EdlSNMwZCgFnSkkQiBSUlm0EhYSISSDGmBJk763TgPDZLz4JONvafIR5+CO/JyIYQn3bcJ9zFkGFgCiG0GjSBEigABRBof+nUlsRKNzZCACSE0tiSAJJytpAQcgEVlHJz+YsMR4wsAXHpTU6a6zTxczFnK2BeU4lZZyEc84IB3KBnHOhCss5p9KGoTALG2O0Jq2VNYqMEUbJIIxEFMJ8crJw1mpCTaAA14uFUmrYFwroSKRurrbee7ylbNlsNhcX19utZ2ZjjHNaUh6GcHRUNU1NRNv9rswf7/1i1fX9TilVVbZpqqZpnHMAUNf1OEYAsFZLynVtrSn9G733nvEQ97i6Ki1xiFgYucsdJDqsUzxwlLyBsimFyuiua9er1jWNT3Hog/ceUeEtVzQzFzmnorCWc16tVj7GaZq6rhORMrtijIW/uuQZu25ZVU3fj0opY1yhODHahpD3e991XUqHvcrFF69/nsM8z1Vj67ququb4+Id8ww/Pwo9Zk/spv7di0g+Zwvce9q3tf/Ck9ze773W+1/x9xFbe/xYfOu97I+6PrNsyiLQi07bdw4ePtQZCUFoBkYiUSVBVhpmLnqQxusCplstluZF/7+/9vXJT67p++fLl1dXVfr8/OTm5lVFPwzCKSFVVi2VbW2usapybx92D09MHDx6UmRRCODs7ZobL6w0RISpTuZQlhOSKxrZASLm4vUTYVFXhQDXGhYT9mBhFWyhzeJohMRaIcubCIS6FoyWLAFJRUGI5hL5N0ywW9ZcXLz75ydNVBf/b/+X/7KHVafJQqaA+0GX8zj269x6K9SHCnGWafAgJEViElCiFhKIYFIIGIAYNSICFvBXhVrMFJAmkW9U9LxJFAktmKDIgIsIstwzpnHOunUYUkYgoqAq3JohAzuXyKCUOWZhZkIQhxMwiQMAIDKCMVloTUbGTzJBYUoQQcoqAUlpu+eZ6j8xO6aNFZ7SKs3/y6PGTJ6fXN2Gx6JxzbVutVithKMoKbdvWtbUWCkzS+yQidaXC7EvDxsnJCRCWSPP6+tpa+/uvvyq08AV4/+mnnx4fr9tGWU0lHAwh5Jyqqip2HAB8TIUjaw5RDr0SnFJ+E7cxMggqstaayhWLWUrKIaTJh3GeCtUmagTSieEOTU1E3vsYcwgpZwkhjPPsvffeF4audtEppbSxpWm8aRpjTGHKIa2qpru6upnGoJTu+14pWC2rMHvOSTJzCmUWkoBSigj0IYQzRJR/YO3+CGt4F4q+azjetRc/Zrxrfe7btfdu8P8n7k9jLEuy9EDsHNvu+vbnW4THmhmRmZWZlVWV3V1bd3VVb+yFbMyQxEgQNSBBaIFGEMQBBhL1hwJEYn5oIBCEpF+jEUBA/zQASYBDUENyOE32xq41t6rcY3UPd3/P3343245+2PMXHmtmFnskgyPi+fV77dp9ZvfYWb7znWcND5+Gf/48Mgs+S9w/55zNTvDUP3EUWtu6rtOs5R0DJpyjZdE09doJENg1GCAjyNOs0+kkSXJwcMA535AGG2Pm8zkAtFqtwWCgtb5z52C5XLZaLfIYRYn3vimruqpMUwtOKhJluUqSZMOFKSMlhIiiBBhz5K11AOgsNI3ziMC5tQ7QRpLHSijBleSSMwDvvbIOGm2ZZMi48+gAtHHWEhEwBowzCHLCg/U+AOsAwCMYTwxBRYIx1gWZoyAG3/zdX+1f7jsANC6Gz4A4bNrm6w3hZuec9WQIGuO1B4/MOXDrsvOAAAJAEHAAhgzZGmZjkFlAC2DWmiKe1SCFhkgTaAqP5vyajoYRgvdgbUBEBv+jQyQuOCA6D5IBADjnQpFSS2fuIxZoZAPikK0zqXxAHYK2zhpvjHMOECFWSWPKwTBJFDR1E0nebXdeuHa9WhVNU3nvd3bSKIrqshoMBta4KIo6nU6QC4wxIgiFXBChqSnwZi6Xy62tLSFEUdZHJ8fT+WxRrMq6ckSTySTLMmt1liUPDg8/+uCDunZEngG1stRq8MYa74y1obZJsNCISEoeMj0AgqcK104wIkR0APbM0RRKSjlH2riyMsuVL+uaCIWMAIWxzhiPCCFbJmSkGANa6yhNwntR17VxgRgy+NyDmHZJkqwr5DVGRokxLk4ypeR8vpRCJHEsGUNPsRJKMMaYElIw5hwhYhwpzvmqKIqqLOrq5OTk+avui+mGeJZfvIEdPVWBeuzDc5b7ecFHZxlyz78EngBgP6ed73xz5Fl2/We2Ry5E//CHWPCZBiSvc043NssyTx4RnV9XmMyyFmO8KArwFMrcgLcHBwfL5TKOY2utEGI0GtV1fXp6WlVVkiRBPlZV1e3mWZYtFgulFOfcNDVD6HWyJI4QMdSTPR2NiShccvTgJDDcee+Ndotl7UFYh6NToxuPwIUAySFSjDPX6MJ7zSQ0VhuHXEpLwISstV9WlgBcCHVwYIwzJhB5MEZDDhxHhpwTgiPwCIyxqiiolTXkr/T7/4f/+H++C/GNvaFDqMHA59uHNvMSzg2GLQC4dciDW4KAKF2DOhkqxiIAQu+9N+ANeEfeMrAYtELyAA7QAVpY64lh/JbAEYYKfJ4gVPkoag0AUnJg4Bx5Cp5lEIyTA++AIROKAcNAAcsECyMM9mClXVk6rX3QUBgyYgjIGTLFMRK8ruu6rrIsZQw4svt372mt4zieTCbW2izL0jjZ3t5mjG1tbQVEZOBoAQhIRsY5F4JFEsBTXdfTqZ9Op5P5jHO+s3vh9PTUOVcURZ7nwHBTQGJ/fz9JkiRGzqAsNZHLMpEkCQAECEvYsBFRa8MYC+I7qEObarGI6ANHSVmWZVPV69wbzlEpkaYqy7gUSltTFHVd19aSEEFZwxC/EkJsfPjBD7BardI0bbfbVVVxzsuyDJm5dVWVZYmIjqCsGy5Unudbu7tCMEQkazkDziCOFUcAT0qpgNx2znjvheAhQZYxJqPPqATw2Rw2eAaWPi8ONqLwMTn4HL3pOQ3P4Wye9arQWUrJk7d7srcvdPfzY3jq8af++qxnRKSAsOl2u4AIyAEcF4oxjYhA4BwgkGkaCTbJs1hFURSFkqG9Xq8oiv39/SzLPr196/DwsNfrBUKRohzHadJYo521tWUcu62828nqYuG0SXtd0wSmIyGEsNZHEZGx2jrnrIgUc6aqTOMBCJCJWldJBJEEFVCzFiACLgQI01QmTjiS8cSWq7qoAYAjA47reLpzzgUCFwBkHL0Dzjx544kBRJHsdrvO6A7PPnj306wl/st/9I+8h3anHxOzDpovODnEgBw4H0hyQCA4DxaAGDgfAiLIkZBxDmCQmjXLG605vQLrEELg+grT5+CssgAiegJEQwS0Lm0SCo+GciyewHtCBIZIBNYB4+gJCEAIzhjz1jmw6ClQujIMEW7kAMhAcPDeMwRia9L2YJIbq9ut1riutdbDXs87EyXx0fFJlMaKaDpZ7Oz0a19rrbut9mKx5Ex67wN1FeNRHMeArtbWe9fqpkgkYrU1yKqi9I6KukLB804XELM8m8/nUsrVahV3IyHEdHxqdWMt5XmC2AC5OFJ1VWGgDuTcInHGG2u1A+4cntUpdJa8d0EyAoC2FABvjDN+7qXgkgkhnEMico0PwhQRlBJwhp1EROTIOXImrbVFURCCIz+ZTIRgQog4Scqy4ZxZaxhjBGiBN02jLXXavbIsozSJIqWrGjgwprzV5JS32jkXCXlWAMA3xhVFAQLKsqlqaEXx8xfbZ1SXf6w9KbboifS4R5byM0XG46FbeK6B/ByTfKPrfaYIfs5gNnb3Z151fsDwqMoZPhhjiJwnG8cxEDnnKuOdc5xjSO0UAoPrhDEmuUjT9Pj4OM/zPM+VUlmW3b59Wwhx4cKFxWIR3NhpmgaEARFxjtYZDlRXxXIxD7EUa/18Pq/r2lsHALPZvGkMEYW9nXOhosQ4AIIoQefIWuAIqYo4Y+BRSkbEGuOFTK1z2hgPUFRmuSIEsOCJrUGGxpHxzlnynkKZGgwwvZCIBsAEj6IoiqKPRscVQBS1uZO+hulk4SNR42ckij7l+/fgACySBXAENli75D2AIbCOQkSCISGSQEg4JDxs8v5hhZSzOSQEQgqB7EAi64FZQA9kgfQ6xgKE4FFoD9o42mhGnhDAOxdMxjW9CBAQboQmnOkNSrAoYrFS4STvvbHOOYOMEIC8Dkx8WtumaRarVavT1dYcHc+yNNndHRBRnufW2sVimWftPM/hDARWVdViUZRlHaIQVuvlsgr41t6gH8fx9tZOp9PJ8nYcp4wJoSKl4sC23263A4yZETR1FTKFETHP81B+XjuLiA6Ic54kYsPQdd58IiLvIcB/A9dZoNsKqnxwWzdVY7VhjEURxkpKzumslJAxHgCcc4wJAMiyjAnOOc+ybD6fz+dzZMwYs4EZBkW1ruuqsULKslqpRC0Wi6Ko40TlaVIsyyxR5AznnCPz3ntjAQLBGjHGGA9bOdhHGaOfbM+Uho/5CjftvJL4LIXu+drZY38938mTYMDz53/OuzxHqtK5dv7kZ90CnuEEeE5jDMLiiBMlpBRyncUZtHfGGFlCxBAvm0wmx8fHV69evXbtWnB7h5hJWZahZl6WZXEc3717t9frhbT54BnMsoxzVFzs7OzkWTYej/f39wNOCDwNBn1rbciFimNRFKXWRgqeJJFztFisIiXJAeccnPcOGKq6spNpU9aGcWwa5xxUpdUelMw80Jr7nsgTebcmF/QEjrwFCGR+XIR3tZ7NJuPxaStrA7JxWcbbOwuAhbZlWQv8DIK5p32hCAjEkAD8mcHrAQmYc2AdeaDgySIiZJQrkUgWM5TIQgE89MQfTu4j8RkisOA9eU/oz8pLhaBQY613wKSSIvKemtoTUa4UQLD4WGN9pe36OwcAAMEYB3TGOmOJKOS6bFZXwHJIyeOYxbECIkTM0jjLWjvbu/fuHXIZpe1IKRUCDovFLE/SoLItFovZbAYArVYrz3Mh1uEIznnT2K2tTpjrpmkIYTQaLebLBw8erFarxWJVrKr9/f2iqDqdnvdeMC4Yy3JpDAghOp1OoLSx3oXdmjEWHHYAUNf2DAEnhOBKCaVkIPSNIialCInqdR38jR4RnfHeWqI1ghQJwo7unCNyUkohMHh72BlNcpDUURTt7u52et3ga1qtVsYYOsP2OueE4Hm744gQUSmR51FRaKVEmnKphBCilaV5niNAXeu61hvbsWlcFKksY+czKZ6+1s5YDT2R3wgjxr13jrwn73FjVgAgAAtlwBgROEAfPnuyjAOg92Q92fCn8MNCFbU10GGN4/Rn9KjnluYZUxYRAmyuCmsWAYK7CpGHMXtkwQe06eExfXMzAGQPIUGP3ZGeIPjafNg0du79xXNh9PPYyfM+RGMciyQ0Ju61FUBJhgEg9xIMkGOMKSUEelev0Ok8z7/y5dfH43FZlm+88UZd196axWRiqqKdpkBWm5pzvn/5EhHVNXGmJrNpWEzOUZ7nJycnXAilxL1796SMZquFAxxNZ3mv0zi/Kl3V+MZCA4YYmtoxA/1OBNyoNjS+WlSax8oztWzIKz5tTMZcP0+5yFYGSoCFq0AKC1AiNQA2lNRaF+k8YynhklA46y/0WzvdTPC4JrVYzbv9TtM09+/f32Rqeni4gwbMzHkE6NObIyCwjtwanIgGsSBfoW8AGgDrgUJeBCI5qBrnLDJACcBCzW1gboOrDQXBzmxpC9Ag1ogNkiFwCAbBMNBIjgFIROuhNtKCRCCEGjXnFKLTjAEBNB4a55FJT6yx1FisHRYGVppqByRlpLgnEkLFceQ8Gk3OeQ5ccgBvhABDlYhZp587YySK08nceSwrqw3LOoN2d7goVsY7UDIwlHPG2mnCPcTCDTpq2O+eHM1XqzJJMgDIsqzV76osGe5toWJ5OxMcP/34kySKAWAymkQx11qb2inOlJBVsey2O02tBZNSyrq2ZdEE4FRdW2eh0b5uXBU2B8EaZ0ptiFMgNwubgVKRVJK4aJwPLoeQeAqMhGSejCcjOZecM/BKMKtr51ytm8ra6bw6nSyKUp9OZsbZ+XwZRXFZ1uBdmqbIuHUAwPrddjvmObcZ5ylj3DQJh15LVkUhZVTVBgkceUfWoU/yiEtoGt1ptcA6ieCtM84z8XCxrYsPe0ICOjMeHvEbhmUapJKQHNYxu3U1LAAgwk2PjylK7FGW1vO9bezQ8/LIbZK3H9UH6dF84XOX+LMjj+WiPF1fY19QC3m2PvsZxv76pLOoDufcaBcqVBKRNj5s5KHsQ7BTyDuG0Ov1siT96KOP2t2etfbg4CDLMvBufDK6dOmi9UTOZUk6mc4XZVnrhhDa7dxOm0BibI1tmmZnZ6dYzOM4rqqiKArAwKzHRydzrjDL1HKlrQePAV1oEYBznsaANpaCMG4AbGOcJ/SGW+MKBhxtaZl2QVci9J4A+Nl2COsag+SAaC0cLRDnHKMoipWEdcjVBY45Y9bWMWPM+7XGiogBF8bOmMOflSf+9CkhooCqJvBAxhGtCzQEf19I4vTsPOXGs7sKc7zRG8O/nsASNejdmjwMGGPIgDGPyDwRBwSitZcSyTnPGIZEXY4gJSOisqyySFgDDWusA+dBBGQ4g3anO5vNlssyyxOnTSdvLfwqVBpx3ntPjLGgHIVk3qPxUVFYoarTU9ftid3dzng6Pzxc7g7i3Qu9QA9jrX9wPGKMDYdDQhdF0dHRUayidrsdx3GAKFrv4jieLRZKyaKshv1enCb9bu94MpeRSpPYehdYlgRnSSwJWRAIRGS08w4QgDySp0AOZ62zDhBBShRKktHBPkUkhmyTzmzt2gV5Xg4EEzgk7TlnVCQCeaKUIlQFCBmBaZ4F28ha2+t0tdZVE5WzKsSpV2XJGIOmjjGu61rFadMYpVRR6PDI3jcAgRngM1LvHkqitfOZwJ9rawPkLJFjU0b9SZtxc/Ljq/ZMjdpQum54Xp9UxOhpgRHajOzcrTd5gE81559vqv+5tMdutBl/LGPGGGMiz9qtTg8AIiU4596vQxBxHKdRTERlWZ6ennrvoyiqquqDDz74+te/vlgsdnZ2jDHgaTgc3rlzBwBWq1VVVVLCYrVMkkQyTGI1GHTb7XaiorqqnHOtVivwL5RNLZRMEqmUqmuNUlqAsqKQLJWkUjBEj2apm8oAwKpx44UtGt80aG0y1zAt7aK2DYE7qwDn1wCLMxsZ0AIFz91ZtSzbzlLGWJIkdV2zUDRZa875ZkVsqk7Dua00GC9fSBSG5oLAAjAEjXON88aR9QAePBGSX5vJj7IffmafsM6NWTMkVt6vPJUABsAjYyQIN5ztxDhgYBPza6nIGBOcCcEgYBgd2OBRDd5KAMSQL2O1tlEUZZl6cH9qjCnLWkoJnhAxjuNWuy1F1NTGOefIzxbzNM2lBER+ab+b5+3lshgOBlvDtGrqpmkmk1Vd1wGQyLmczRYhGSyJs+Wq9B663f5strh8+aoQwnqvNSEiR/DeF0UxW8zLsmwaY61trNXaagP2TAJsFJowd1JyRGQMOBdcCKmYUiAlcM4FQqg4j0ghIwgxlIQOJWAfpo1tZEIcx2XZcI7BBcQ5L4oqiqKtra3ggrTWlmV579691WqVJMl0PjsZj7TWznkhMEoiAAjAI84D4AFh7TQEYwwhegTvPTl6Zsm6s3Y+7ezhUSLSuj47/piIWcPQN39df+DssZPXi2Ytyp7wvtHjLkJaJ3g+RffcfD7v+FlXSvmCOt2z2ka5e+z4Y91/ppwNKo9zFMdxvz+cjEfeOockEBQXiYqsNlWx4gyIKM2y0fHRS93uycnJpUuXPvnkkyBSpRRKxUmdCBUtV2W3210sl5VurDWtJEIABmjqejlflIt5gOBoXQsVISJDVhQlE5JBIJqTzIIloxhHdFIiIDlHSgFyJqOsdE1lrbbgSAOAY+DJGyJH6MPskcewWQbbAjA47ywAIBAieOIM2q3ckasavVgslZCh3qOU0ebrDf4jY8ya3InzoP4AQDjyOadp/WZ6YIAMwABxAO+JIyKiIOIABOiB+Jl/E9B/zuXgERitMYzuTI6y8OjWe4SgKa/DqQSAawUCMZhOTApB5Ky1jIMQzDlkCJwLzsF6K4g4RyCXJMn4eNnr9l66Mbxz505RFIPesD8cHI2PuQPB0ZK31iUYca6sXVrddNq9o9HUGselCq/Pclm2MmmtSRIeRUlZ14yJLEvqup7NFt77nZ2ddrtb1/Xx0ajT7t369I7AxnuftZQxJs/T7e3tPGtXVdWYRa11YywxEFIy7r0PzIzeWsd5yNANpe6Z1oYheHKMCeCCc0BPRM4YF0ecgkvCA6EH4MiIA3rgZ66vRxQqa3W/30qSZL6YOsf7/X5VVWW5qsuKiJRSVVMHygbG2Oj0VNelMUYIEWIvRGQMANOpktb6UKqFCWGMY4LVWksmEQEYek9An7HGHlEd15spImNMCb4Z+vm1SPS4Jbv+01lCzGMa00YlfuyvHDd9npnSa6X6oe6Aj0SKz7BOj8q5J+XX2cCe8cT4DE1hfcET0vAcvdn5veWx1wvPKHO8MyHfCEFmWYsBWEdSQJrGa13J+Xa7PRz06tV8NBrt7Owsl8tA6DYaja5fvz46PpnPp1GU9Ab9o5MRFzhdzgFYWcJwK+aMcYS8ldYFWKeTNItUOptNoiQOLmDGJZDW2iB4QqyqikhGXHDONQE5zYgpyQVz2rqyappGEgjLfG21Q0Di1ofUYR6+3/B4YR0E/nEP5wqrIgewnSyJlXAOj08nVVOrKGKWOefxXBCZyMWxOu/JDiphSKt4xmw9pZ0tKhYGwwCDMcsQkAV56BGAByYbBAbwDG/K05vHYGfzUAaZAADBEiB5T14yIAKGECoXeARnwYe7IxC4EEwISTfWes4ZDxDdYPowiGIZRbLd6hwdHR2PR+12e3t7u1hVTdOMRxMueKUbJlXaysF556Fuqlo3Wmsl4ygSTW2tb6zxt26dDgYyqKVpmjpCY5xSvK5r65wH5IIHWEKe56tqlWLSNE23o6qmCsXFnHN37txJ83aa5to6670DAEIGgMgBnAfijCO6zYsMa08acIkEYLzzZv1cijMpAm7bY9CdGWPg0SMhWI9nYJ01Z0boTinV6KqsVnEcc86XyyUARFFkGu2IHHlEjKKoahrjXFMUXCCXkXWOiKwn5xwTgMjrWjNmHZFzxISDcxmTTEkJzLvmM1fZUwzpILDCrr4R4xv6hjMHIsET+tSTRvT5z49pVY+5Cx/TKJ92zkOumjWMbH2PZxVB9ed/OXenp57+bJzjM96k8+vjfA/IArGlseS1MQGoppTgyGQUd1rtyWQymUzTJJKc7+3tCYZFUezt7U0mkyRJxuNx0C6td1xKACiKot1u3z882BkmaZ5y52azWRqrTqtldZ0m0Ww2I0LBmfeAXAbwKiIKGa1WpbNknHYevWVKgpAgFS9r0+rxuvInY1sW1qGwhIYBCPAGzuoWwybigAQbqbaOvdLGieg5QL+dgdNCRLNVGTKmgytww4FGRNbagPIlolAZ9fzKefqsPKPR2e2DtOJnrsywIwEy8B6BBABQyGZ5pmqIyGkNuVkfCN1bOEvAAGC0FqnB60pEnHnOOQO0SECEHhjzgQRMO1ICVBqDd0WhIymQeRdC8gBMQBYnaZoCQy7k1tbWqirDdnjp4qUHDx7wOOLcrrODEYi8c85oF/D5SqlIxbU2g0G7Z+14PL16eW9V1oEXutPppXlWlU2mlHG+qioZKQYY8AnWWuTs8PBQShESlhBx//I1AHF8Mq51Y8kTAHmqG+M9MEDOOQJnZ6EvxtbeYynBeYdCcMYJrDUOHQAHIYSzmogYQ86lYME7ZIkAudzM3UNTD7HRVRzHAV8dTHLGWFmW7XYeqrIoJT1AXYMxTZYpox1jZJz3noLUVkpxGZlqQYi68VEiq8okmQKthVBaG0FEZ2DP56+rp0RR1qNsGnautAidVbM7z2p1/sPGpfjUDuFRWbmRqucW5VqynIcubiQOBac1gMNz2igCALBnE0/8/6URuaapAMB7ezoZOU8CgYE3jeVSGmOyJImkSJIEnfZAWpt2tzebzS5dunTnzp3hcHh0+IAxptLk6OS4amrtLBVlv9s7OZm28nzY75Iz3jrLbVjTRJSn2e37x52OAiY80LJ0keJRLLMs87C0BYAj70wSQ6Q4R2a1i3lnuJtH/DSZ1Avt6yJYEghEgIEMcM2tH2bAB88tnMmVc7vRoJcL8OBgXi1VFHEly2Ll3fn1R5yHTGfHOU/T9M0333zrrbdCWdSf73veaPIUtDkAInABBQdeICEGfsN1HMQ8Qx6ejXBdS2BjlFggfhY74mdmgQdwFIqPguCEDJlfW1+co/ceA0f3WYxIRBjKgzhHACDYWiWy2pRc53k+Go+zLGuMZkzcOzxot9vWG0R03q+WhXMuzZIkz4Cz5fx0Oq2yVtwfDE4n08PD0d7+sD9o3bn3ICBSe72UMbZYLFarldbm4v6lS5cuHhwcOOdiFRnTxHHc7bbrelpXFYGLlOj1h1mWNdp77y2tM5Q8IVkLZ8UpQ90lCJA7ti6appRarRwDyzj4dYUY753XTcP5BglCQJzIAiAR8TN16rF3P05VYAsPqfrL5TIYyEdHi25XRVGktWWcd7ux1rquNZfCOS9lVFUVEHAli6rm2rXTmIis9VLKQG0b1EPOubXGGOL8s91cj0dRNktECMW55Fw+Bm3ZBEA2+JKg07lz7XwEZr1tg9/4UzlHEeL5UqqzJoQIjqTNAOhRVjX3BdvzH/upb8VT27POf+o3S0RKCO9tSB2tqgoA4phxzqSUHLEoivBEq8VysVicnJzked40ze7ublEU29vbX/nKV1566SVrbWAxIoZ5nvd6PdPoTie1Vo9Go1arxRjOJhNEnM1mQojxeDwYxHEcN03T6/WEACIaj6er1UoJFimWxbFkyBGMcd5b7+DOR3PhaLefXd5Ndvoq5sCBg4s3LjZ8VI2mzaHzfyAAgK1+v6lrZDQazVudNjEMQKnzqn2QemEeoyj62te+Fmgcw7fxRScLIOQQP7KhBvyMJeeJQvI0InJA9hympme0tYqJwAAFPQzZhZC9dYHf4ewVwLUY1YachzhWiLgoTVWZkFvp19x3yDknj1XZTKdzY4xK4t5w6BEG/a0kTVUUFWUVyDuklL1Bv91uN00TKtUBQJaxLMs++eReFEWDQT6dToko3MIYI6UsqtI5d+HCbrudlWV5+/btsIq01kqpxWIxHo+3t7eBsxCvyLJsMpk0TcOF1I3V1oTYcQh3EJExRut1Dm4IgFjrm8Zba5OEB9i/955LGcdKCE4EnMm1hefWcGsA4Hydzns+cBomyBijlIrjuCiWi8UsyATGWL8fI+JqtXJESZIEOzpNYwAwxjHGrCHjnZRKa2+ND10Fam4RvIeMOfIqigghwBieCmc+38QZx1eQhuuzhRBEbhMFgzXOZr3C4FFZcDbZDzkK4ZxwOb8UH7OCH5M1j/kcz/cGsH4evj7ONneBh4rkeQnozyC366ufvNGGlWjdlT973x+Pmzzy22Y8Hhkny4kI0YHwyMgaxRAbyzmfTCb1/LSu5l6qRaUT30wQWq1Wp9UejUZprOZVRdZEiq2WRb/f73R6k8ktpVSad4x1SZLXZWUazT1IIZfzaZrFTdMIjuTFclG0kvji3oW7d293u91Sm8qDNVwgrqxrFpO0HZVLHctIV3ZSOp5kxKjN8fogY0q9c+Leq6CHVfnpUVtgL1epwmt7iT6pZqZSAowBIESQBAGISgSec3TOAXLGmHcOwEvBrPVXB22yRqb5ZLkggG+8+fpbb71TTZfA0XsvBfPW9zqtZVkhotaWobqwexEJTo6OL+zuTSaT4K33YIQQIckaz1Ggb/wn5w0XCH7bM6lNBARoARigY56HReHWihgD4kARcg/kiPw6UY+tr31WxJm4x+AhJSQQAByRI0SMe+8deW2BEwnOBTggTwiCAznQWjMGsQBGUC3LLALBUXu0hjgjQL8yNa+ZG427nU4Upcb68WQ+6PWE4EFRDnjmyXgSsnoYYycnJ5yj82w6nfYHrQAh6PeH9+7dyzu5UJxzPp3PhBBcqKPj0yzLAo0Cguh2BgAQxepkPIrTaD6ZSCbIEmNyuaiJ8QcPHjSNiZWodODmsIjIBdBZIZRgDjaNRo5ZlgS5k8X9ZbFCsNrq1coNegLRcYUENhSbJ+sYhzRNZ5NpmkRa1yqKjfONcZyLpjEcqNXKOGoGKLkgIo7MWh3EmXMuz/O6btDaxWIxGAwCzw1nLJKiqQ1wJqUqqsIDpB25KJtQ2w8RSWvunPfWe99YI3kCSWU1SfbwZXYIsDE0/VqYPN1SJnpY5OVztidFGz3Ds/as85/f4aMw3ceFJgBsRCQAAPhnFXfZqLQb/fH8jZ4cxrMegQMicgTnibjgiEzrBgWTKheJPh3P/5//j/8KkSnpB8Nhqt3exQ4AzFcrnmTauzxOsiQtimW71233ulevXQPEJI4PDu7lrazXax+ejNYgBOM551xJ730Ux+OT004rAyREunDhwmw2S9u5tqacFFuXdgyVVWE10zKJHXkWs552jSm8hywTpOS0ahaLEi2UqrU4LRS4naWLJK0q4zTEwBrjAYAzRPQBHcIQ4MxECrscF8JZba1PFA+UeWVZns7qK1d3/tk/++8AYHu7V9RuuVxa6wXC1tYWTKbj02kcx8WqfOmll37wgx/keY6IjW563cF0NoUzN/F5M+qs0NojcnD969OmdxPaCvZIsPY9PLEW6LH/n94VAiGBW1vc4SCG3igE1j0RWQ6IDJSKGLPObFB1wCHsuNa6kGYNRB48MEDJeF3X91er7a2tk5OT/Qt7HqBYLNrtdpJl5WoVRWlwrUoplcqOjo6yLAumYlEUSkVVVRFht9tdlksCFkURYr1arSLlHPmyLJGYFIIzprVWSuZptn/h4ulkRKZSKlqVq1arE0XRbLmKoqjWBjhTSgnhQx6hdQRAjLE4FgBgjDEO0BOxJhiCzfJESuj0E+/TxTyUV+a4tgEC0Rlw4ACAnCEXWas9m80dARFqTZ1OmsXJ5PS0t9MNgiJAC4WS3vvA418URZLEUZQcnUytPY6iKEmSxaqQUgadtKmNULzXS8CHVD8WaBNDKnRQOWeLeaAp4+yzk3fFma738Mz1PvwFEXsb1Xdz5DEt8jOH8vz2qFR65C6PvS1nJzz9AR4He59zTT51kOePnBegBEzwdXCAvGaMKckZkFDq+z/6w3t3P7jQbxnHWhfz2XQiot6twwetLAfw3U4nlirLsiTJaDZriK6//CUWRd2trXaeVcVysZwenRxrHSi00FlX13WEgIh12WxtD3RV53m6XM3jOGYcjg6ORMRaHTE+PakripWsGmOhUimrS9+LoSVBKZHmrVnjbz0oywauDuKDBVngHvhRaRUD5wGZYEyQrQHAQ4guAobo4Jn6730A81kAEILt7Ow0TZ0l+WyxunplTypFBGmiOBOLxTRMgxABk6EhENZnbaXUwcEBAEynU8HFYrGQQnpwISNtY5QZY56XSvXoRPkzu4Zozft/plvCmcfT4ZrIIfgCPHxGkn7gbVhDbZAAGTGAwIiGiJsQOwrijDtjvVunFCAjiYgMGWPaAyIFzVEKTCORJSqNU/CmrsvReHzp0qXJZDLs94RS0+m0MQYAVBxn7ZZfLueLRRzHcZKWZRlFSd6K5vO5cy5JkrLWxrkgNAPYcHf3QlVVp+NplmVKyKKo5vNZ0zRCCGOabq+tlDpdzKS1yFlRVUIVRVla71QcT1fL8NjWkTEh0xc4994CE8g5jwQiovWurl1tIGKwXEJZV0qxVjvLUgleN3VpGuGcAzAM0TD0CLV2wDSArzXEsSQi7y2SS2LRbaVFUSRJEqxya60H8t7HcVwUpVKBZ7eMImatA2iyLLMACGicIYBGO0kuzTpluULk3kPT1N6vGSK0tkQNERrjuMBgXD/1vd7IDUHrIMlzF8a/R3uWEHyaCIMnBdN5kfrU4+dUiUeAN59TGm7uu4l+PjlOd+7zZgzIGBFpa4PP23ufRvzjDz/41//ynx2dHEXMv3ZlcPnaq5+OT3ZvvLiTXSjLXQZ+dPKAMZotpx98/NGFi1eGW7tH89N/+Ud/Gsfxi9dfODgZ71/cvXj9xid378Nkenp6miSJjKNVVfoy0HlaDthptULCctCBWq2Ec35ar4jg0pWtTEZG65OTk+3OFvTZvJibuvTOTlbNwczen4NgsCV5T66WDiyHwkANYBGYQGus5LFzxvt10iNj67Ds5osiciG6GkshBVcqL6qyNrAqq+J0wiXu7V96cP8AEYUQCJ4xVEoFgrKmaS5cuDCfT4uiWOd3IlhnwLPBoBdqp9G5IhNPfu1PWUhrg5f8OvkTYIOjhictYQq+n7OgyHMbri8gAotAZ8VV2DpUAkhADIJfsWncWf4pMAJC8uS8dYggFeNAnEhyjJVKVISepstFq9Vi2kym0yzLZotlp9UuqT4Zj3Z3d+/cu8sYu3zpIjE8PD6KoiiK0wA/7vX6xpja6CAEB8MeAEgpy6K+d+9emqZpFperAtLUmIZzGUWRtXY6nTa6slYbA2kq67re3dne3t2rbt1xzoxHM644BEwNESBwHsADDFhALlseSNuAmIREQiwiLBvybDH3dVWfQqO4IC/i1Aa3myNyDggabcD5hnNsd1rBr0dUrRaNa46H/bYx1G63y7IMTvaqqsqSej0QYp3dXJZNkiUheLBarQBQa+0cMEQhyBhYg3KkAgCtjSMAhs56rZ2xIevJEyfJmPssulcBZz7jR5bBOf/d44vv8wUWnirsPk97+op/IoR9JsTPG+OPKI/Pyth7zB0JZ9rlk1Jyc+ZGGp6Pm3Mh0VnjXJK1wHrnDSL86Ad/Ojk+/Kt/8a8qPP3N71z/p//0T1OebPWGo3sfp3mbwH3nV75+fHBvNpt971e//fa7HzH0d0ez1a37URS98/GdOFLb/d7LN6+XJBqPLEod8tWyMtZLvg7IzqezKFLDftcaU5aruq6jOCUi5uXeTi9WuFqOtoc7jWlPZoV13MYJAFlrT1f+aIE1il7EwbFeSxa10QY8gBACteXeEIFwPCBs1vWOKETPiHM6H5uKIpnE0WKx2NvbWYzGBHA8mjGOztHpeLqqagr5/40Zbg+iKLLWG1sh4pdeevnk9GQ4HB4+uA9nbikpI46sleVVUQYSZq01+XNe4UeNgMcy+TYCEQPwAIADPBaaYQ//JQB08DkUgM2WiusEFQ5EoRMiARiYtz0COCICIUAqwWjtivEenCMUyDnnjMBach4ZWWvnZaGiuCzL3d3do4PDdrsLtdHWqDgSSp6enobnff+DjzrtfHt7+/DwUDIuhGwaba0LRanTNJ3NllVVhRB2FMWdXncymU0mZbcbG9v0+/2AYzXGCMnKcgUAvV5S102v16t1c3p6yqQoFrP+Vq8sK2ut944IORdCMOu9cwTgPQBDDJRFgbIzuK3SNPXIPNTkfVE6iq1gTIi188QYU9eBxoZt8s4Ca2GWZYat3JrbiZdlGeA+jLE4jomq4DrUWmdZhsi1tSFrZbmsLAViFEZEaRR75+ra5HlMREIIpSRpY42z1gODOM103QBY8mvmyue3P/8Koo+1J6Xbk3GY55z81GvPC75zlzwif58vhc/LRP9E1b3njHzzTnrnBGKIjDe6AoB2K5OC/W/+k9+69bFpfG39cjDsnFQwm0y3hh3to3Ym6nL55ddvvPP2T2aT+912hFy+8uU3iWg8Hn/66adpEt1/cHz/eNRu5f2sJ1HqugQh253eeDSiVXHzxWsK+ycnJ61W6+Bg5j3EcRriUV++cG17bzhZns4Xyx9+fHdRwXQJQsqyNJEAxmBamxUAAPfezxZLH7VBKmY9cw3XdqBgqxVFHN49aTgAR+6RG2+dI0QPuPYSBPc2EMVStNttJHd4dLxclcCAM2atF0KcTidnSETPOV68ePHg4AARMLAtkX1wcFDpajKZpVkiJW8a43wZSZFlmfMuy7KQm/jBBx88+eWfh7s+Mlnrf9ehML8O/YULAYKpCwBrKE1IcX7eYsMzjMl5sek2BwjXYRhC8GS9RwDGhOICkYKz0VtnwTvvnSUpAREYB8EQ0Fe62Rl0q6qaz5bD7d2yLNM8A09KKoJ1QRshGHgy2i0XRbvdlowT0WKx6A0H7Xb74ODAWf/CC1dNU5ZNU9f1cjWvqqrb6fV6vcVioYQUHJu6DiF7JWNynrytm1oI2TRNt9PXWs9mM+99VVXWOW2c1uQ8ce6BcWu91iQlMAacc+TMOYehDgRZEgxAW2cjBa08RtCCewRPTikpEFFw5qxljAVWnrp28/mKCBgDKXi30xEMTFM755bLVRSpNE2Xy2WSpYHlMyBDtNaILI7juq4RsdVKfFkpGTHG6rqOlGQsMmbOGDtDnviQF4vceueb2gARY5zIav/MWMJmgT1dGv58Pr7z+iA+iqP+/BrixhB+zOH4aNjkYefnpeE5GUefB1ax0S7PhywfG/P544/5EBlDJdflDQUHjrC7tZXG0Z/92Z/81l/4yq37Dz64dVJCj2O1XAmnVOSoqItO9+pf+v2/QJ7/5J2P7x2OLIPloux0Or/8q98pl6ujBwd1XT44Oamz1s72Vqe/dXD3Vq3NYDCIGNNaS5VKKY+PR8Y4yYU2emt3yxjT7aS3796/dTIZ1/7OCXgJtQXSRhHMNAAAAcQIg04SMV8sTL1ctNodaW1d+IzB1Z7opUwiHZWwLKH27gxj4Ilc+O4DqJuIpGBJkijBOJd37h8ZD1IpbTQAs84KwZzzDJkxJkvj6XR6+OCEADhnaZq+9957r7766k9+8qNLly6uiqIoKhmpLMsuX9h/5913GLK9vb2Dg4OXX35ZSvnuu++qSIVv+Lwd8Pz1+fj2eGYbb1S9NdH9c6MoEE4mgDO5eaaBngWxPYSsiofL3pP3nsAAAEda0zB5tNp6xDSCRAkuBUfgnI/Hp51Oe75YLJfLK1euWF0TUZZlgL6ua3JexdFgMHDOnY5GjDGDmKapUPFyUQSu9WWxME7ncSyFMJwjopLxYjFzjlQchRp+RK7bbSNiVRVpmi5XZm975/R0YhsdghWdvDWeT+GMXeUsrRz9OvZEKo6899paVwWWDRAhMsu1UuAqYBy01syTZ6i4YNxbXSOi4AoRvLOMMc5YlrKmMVwyBFitasF8K4mrpu602iFuHiLCcK6CeagdaozL2+1Q9SWKopYHIrLWRJIzsMaQEOicYYzXdW0tcIHIGfOidrpqmixiQMI58N4BfAb3NXvSKH6qaPjM9uRVeK49/+Dm8ufc97zz6PwHfEajZ7Sw52w62SiSj7Xz9I7nB7/5HNgovfcBzCWlnEzHVV188skdB3pRLW/fP7WQWUaNb4yLauOLRtfGfv9H36/raraYnoyPh8O+qUopQDfV+OQIGV29evX1V1/d3d2dF/Wf/NkPD49Pdi9cDATxRNRtd8qytNanSdZqdTxQ4Ke7duX6T+69++7B3U9Gq1snpoKsMqkjroTyiEzIKEnjSAoEtCvFdaeNV/qwlSzbotjfgutX1O5uxqRtqN7f63ZagafEcYQAutvMSlipg8Gg1WqVZTk+OTYehJRaWyAmZCCw8XRmAgfQ5ZdeuXnx4p61dn9/f39//9q1a+Px+MGDg8l0ppQwWgdKR854kiQhliKEOD097fV6gQT3sQX29M31zG2HiLQuQQrrTOpzkMHPiT0Mp50VNt0cYxvPCQV2sjNgozyDPVhLTUNaO62NMU5y5T14T5xzIRmAt+QJmJRysVhubW0VhSmKgjHhvS+qcno6SeOEcz4aneq6zs4Qi5zzqqqiKApR2+FwOBz2wjeDiJGQcRwnSbK1tRX40suyrKoicGI654qiSLPYOTedTtM0zfN8/8IFIcRisdhkDYWvXZyl5CIi46Gik/GeGAOleKKUQAaWXC1Jt2wFHBLJIiklRyIwDMg0umkaQC+QnSVfMikl58gQA59CWeplUSBiiAgVRTGfz1utVpIkoW5ykiSB/JhzPh7Pw1tWVVUsla7rYmkFQ+fcqqjD177WXQCco7qutdacYxRxrb0l7wis+Rzo67NFtjZu1odJbDSjx6SPB/JAjnz4EMgIz4Tqw637WdJtc/wxppzwPE8NcWyoL849jD8P6kakzcjPen5El9wIR0Q8j/F+antMej41gxAAbL3K8qSyWqoYyIF3DMXJaP7hbb936cJkBj/72FdWi6boq+6ymrQS+sobr3tKGz38wVunB8ei1b/x9vv3IcpU2m71Bv3e0Dm3WCzmy6LV6d248cKFl17+2ccf/5t3Dmaic+ONF8fkfvLuB9OmFq10NJsg+W4rXy2ngtMHH77z4Si6P+PLChLFEij6qtpKXTvSCdFOJkVddrjbbWErQsmw1WqRkBLZbgIvtORexKGuwaPzjJez/Xa838GuAkEWyAVyNGTKOWII3UwOukkxn0ueTmY1AWNnSVfeey4EAbCQsORdr5Vdu7wHrl5ORzevX+l12/2t/lvvvhWlydbWDhI4a9M42h70EdF7PxxuDwZb29u7nPPlat7rt157+ZVIquAjJ0KpYmQiWL0BkxEmiAW6QVrPIHh6yEXjyXsfSqA4BuaM0jOkmjyrrekU4fwa9nSWrucZOk4GyUDQogkjTtwbrZ0GQDSeGQtScs5sJ5d5pkISsLM2i5MkjVarCgCstl//+teUEIjIuVzMlkmSzOdzY5put51lWVEUvV6naWqt66oqGHjnzf2DgwdHB5yxLE3zTscBiEh572ez2dHREWOwNeinaW5MKNFp2nmqBDs9GZlaBzLr5XJ5686dIAQZIDjvLPeOlY3VHmScc6GMdZx5EBzYmgEbvDOkPXMkQQqDuBz2GYNK6wrIEjIPwjgvI8U5Xy6KAPP23ldV09QmTVPnHBMsSRRn3HnBeI6Ip6en/X4fuTgan84W5XTpi8YuF01ROUIZp3maRtoa611jtGMQ5y2eYGV844BxNJ6WpakasF6CEJ6hcWAJCAEQeZ5U3usSCKHgzcP55ejgLMH3LMbwhf2GT+p0Tx78ol09S//aSOGn3gK/eAGWLzSq82N48kiSpaPRKG13AMAYE2dxU9an08my8FVV0acOEXu9zmq1iqSy1q7qerksJMIvvvm1SxcvLpfLo09vGe2Oj46yLFNK9jvdvQsv6LpZLuej0Qgqf2Wv+9ql13/64fzjn344TeHlX/jFInqwOLpXLhdbnRYATKZzQjVe6E/vnZ7OQApot2NnPQcG6DlnyEjFJNBub2XTSdHPRZ5Gq6pcrRYCADjk7VRyyPNstpgrpawnZrw1lhFEUiSATlsKpPneI5Li2M5z29her3f3/gMLBMiauhZSOue8N+BBSGmN4ZyTd6enp7PJ2BhjHBHjjbadTucP/uAPkiR58OA4OKSIaDgcvvP2e1JKIkrTNNQO7na7r7zyyscffLy3s3X1het/9Id/UtaV0XUAQG74b85TPwQH03MmN+Bo3Vly+8+zajfrxG/8kmG7RU/AOSIjQk6EjINggOQB0Hs37LWZN0kSc847rXYoSz2dTpWSgrHZbHbp4n6xXDRNs7W1BeAnk0l8xpe+vb0VcjaqqlJCbG8PyrIMlSFmsxkRtVot730URSGdua7rnZ29+XyeJIkQ4vj4OAQl0jQxxiAzw+3doqqL5YpJUVZNlmUeoawr78E5Z/SSMaaUBPTauHUACgEYcsYJARnFQhA55EyQ4QyFELbRznsRB74vxjmEtDTGWKuVVavSWobBAe1JSAEEWmtT11LKZVFWVaUtIOo0ZUS0LHVC3jkTioiOJ81yucrzzBgTgOUBUeocMSDOoWxqa0O227rcq3cQSqc6D/LMffxw+p4mOb5wku+TRi78XH7Gp5rM5/t51ufHOnnyr08VzU8983NedX4YGwFdlbrbH0YyDki6brf77rvvLpdLB1IlrTjvdAbbs1WTdweV8a3e0KO6ff/weDy9c3D0gx+/82//+M9+8tY7lW6MMbdv366q6uTk5Kc//el4PG61WlcvX2as/tqXb7x4cRj78je/84uXLm3/o3/+RydldP2FG1nWmi2W3oOQ8WRVf3J4OirAOZACk1ggmiyTaSISKdBSnjKOlqHNIkgigWDBk5AgZUiVM845JjiX0hGsSiMIQ26A5IIjAyDvHBIAesag3cqRQCKfTqe1bgLdEGPMWUs+ZHmgtw5oTfm3KprGuKqhKE7u3jt49dVX7969e0bXyEP4OMuyTz/91DmnjX7hhRem0yki3r59+9KlS3WtDw/ukbcc8NLFvVaeZmkMnoDcBoUTNMQgLJ4jCunsfQiB6p97G10vCL/2quKZbd44r43zyIAL7z2AFwwZOhVxzsBbbxuttW7KajmfzyanSRLHcYQI4/G41+slSXR8/GBnZ2c+n45Gx8654I5Y5/ktFkVRMMa2t7eFEEVRBHo0pVSr1dra2tJah6+Cc97pdDqdDiJevHgxXHXx4kXnXNM01hrksqiasm7qxsRZvrt3Ucbxsiydc8a4EK4NXJyBiFcw5JwJxhhjACzUTTWOVmVT1FY3FpFLqWKp4jjO0wQRQ0CDsXX+XwhqI4I3hnMOnkxASntX6wYApJRNbZSM41gRUSvLpZS9XopIi0WzWBSN0XCW2ojIPQBjgMi999aBcx4Cu1twlSAnZB5RW6oaAA+CgRCcIX/MJmRnMnETXPnCuuGfrzp23rh+svOnKo/PGc+zxvY5FVj8HJEfPAu8qCipGy0EAfpWK/vH//gf/7P/5p9sbw1OJ4uyLIPW0zTmdLrQ2h4cT4FBlkS2DT966708TXa2tlvd7nyxSNP0k0/ub29vt3q92Wz2zp13tNa9XufKzktvvfv93/yl7Hu/cv2H35/uD1/5tV+9/pN3/s3yAX/zK68388m9o8M4Tjv94fTBuKihFUOexEAWPCFpzgR4LwnA+1aWTedFKxPOalN7jiCjqCmaPIsiiVyK8XhcNNYDY5KZ2nsOyLg1rjIm2Jqcc+ddEketNBMIRDQ6nYkk0toorsJ+ICU3xtM5uqM0Tqq6qhp3YW93WRZf/9pX+4Otn779Y/SOA4Hzjaml4HmSruYLqXjToFLi4GB2dHT0zW9+/dq1a3fu3tK6uXr16ujkaDo97eTZ1772C//kn/5TKYU2Lo7jqqqCThRULaXUhmXgKRMX3GEAABDAiWeAmy/WQqGndTU+QAAIyJTGA2cgGFhPHEkIJgEExyiSaRSTa5IoUkK0W1lTVjyKQ0l48PbevTutLDfeI+KlS5fu3r17dHQ0GAzA28BIlKapM/bq1asHBwfGmFiqyXyR52ld10FmhWXJsIrj+N69g36/e3h4FMfx7u52URSBeV8p2TSNNdDt95M4Y8qMT6f3HowAwDoAbCDk13JB3nkE4531EHFkyACBQva3JyKy5Hkors0EAOjGemPB+yiWQMFbRZsKHM45a12qRGOs4IqIXONCDIcRCBlZR6EwJEdYLpdBnso0dc5FETDBtdZCsDhOJpNFkmWIKGXkyJMJjNaIwDlHSx4YI8bAe0/Mee+8jyQYzwUIQ/Y83JA9zTL4c0DY4GbP/SKNnlYRFJ6QQY+Jyy/a/xe68LEziZ6eWRiGvSyLJEmqqsqyxFr7xte+enz8wDr91k/eQWTW+kC212gLAHmer4rVqmiKYpQobrRL1Mf9Qbff7zImXnr5BWPtzz78cHd358LFS7P5xBMV0FSLYrD1+rDfG5/8+Pan75wU8N1vffvkpPgn//1PvnS5d+3KzcN7t/iy4OS3ugyIlAyl+KCqKJIGAZSSzhgpo0jW3nhrvRQAiGS8EiFLBL23jbHWgufkgZUWjPVLR7PaVgGKwhghMIBBryslz5L03r17GEIr3munOceQJx+E0RrHDmCdvnhxDxGNMVyo7e3du3fvLpfLoC8QURQpY8zW1lZd18a77a1dznlRFN77b37zm++8884nn3yilMqydDQaxVEkpPzgg5/9xvd+dTQ6/fE771ZVJYQQQtR1HW79LFF4fn7PgxO/MOM2AMAZEzjgGocYEFfAkLz33iH3njhHxoAjFIVhzEO0TrcA5yhPhRBFsez1O0VRJKpV1zWgz/JkdHK0u7u9vb2ttY4TJTCu63q1WnU6nfl09v1/92fD4bDb7a5Wq61+L6iHy+Wy0+nM5/NutytFVJZlp9MKrva6LheLRV3XTomiWHHOkyQRcc45X5VFmrfb7XZtTBSnTdMsKy1jabTVlWZnJe6E4rZxjHnkjDxu3lABTKm1WuCcJRcgkCCc8+SllJx7a3xQ1UN5A0TnmxBbE5wZ5xwiJEkUki8DSowBhl+9p6DVRklsrW0a7RzI2AOHuq4554jMaucIhBBAzJJvjLGWGHOck3UUSEOkZEQ2TL3xdJ4ehD1t7n9+3XAjGmC98f48YejHPIaPHXlqHObzdPVkOx9IeVYPX6jbJEkYgzxPF4tFkkStvP0//et/g4iODw/++T//5++995415tvf/uVf+ZVv//2///dXq9XW1sA5t1wsKu0YQGXcyWR6/8EpZ3B5f5cJORhuqyg9PLjnnLPWDPZPkvjSP/gHf/CVr3yld1G89Nr1P3qnPr7VqGH7O7/+y9//4z+crcoXL1+anB57sq04BBm81hYRGAMZCXIemRMSZ9OFjCJdlp1ewoGKqlaCyUhao7mHxrk8Tw1VyKPlqvYsWtXN0kBpgRBQCLKWAPYHvSxSRHR8Oj5d1u1uXpRhra/pi6SUYQ93zvf7ve3+AAA6nc7p6elsunj11VfzPE/T9F8eHWZ5ulwu0zR2zvV6D9/q/f395XJ5dHT027/923nevn//vm5su9s5Phlleb4qijiOjXFNY958882XX3v9vffee/vtt4PwDUXXAtfLZ84vPU0v+JyN1v8wBxSIv8PvEhABrCPrLBEEnD4yTHNgjK2KotfKyVulRFVV6CmOY8ZYLJWUvN/bMcY0VR0i6ZxzQL9ardy6CKcqihXj2Ol0TifjuIy5EKvVqtfrpVEU1mdI50gT1uv1lstlmqZJknDODw4O4kQplT5MHPDU2CZJc8ahruuyNMvlHBkQWwcbvQfGgYisB+a99wCIzKMLRAcYmG5RMOacd8YSOI4gYwlAyBnYNXqXBWTNGTmLceQBjLHIeGDTiBXPEgUOhBCMgza1EKKdp8aYSlfIhJRSa6u1jiK1KHRIZ6orba0NcEgPgMC1s977UKqFELz3IV+dITJG2oInT54/9oIzeIpV8HP6DZ9v4X7+fh47cj6A+6Sm9qyuPvPunz/Ucz6a/GTn5x/WOROAC1EkA0x0dDI5ejB67dVXt7e2rDFSyoN7d//yf/AfCsY5sunkdDGfeweRioRUDgAYb/daXLK7h0c/fvv9t9776Se3bgMXcZLNF8XBp6u6cqTg+++9/y/+zU8fjBlj4qWbA13Nqnr1re98h+LsrQ9vxa1BuzssqyaJGHkNHpwFJriIYhVL4zwxrLWtdcUkJEnEuGcISmLdGESK45hz1NZVDTnyUgoHsmyg0kEDEoGigCNs99qcqNb6wXiatuPAz84IvXMMUDCuhESAN7/2tW9+4+vFaoXO7GwPj48OP711+/XXX798+fKlixfeeectKXmoYuG9bxqzu7s7Ho87nU6SRBcuXLh9+/b29vYLL7wwGo0YY1euXBn0hwAwHA7H4/Grr77OGLtx48a9e/e893/zb/7Nv/yX/zI8ujE/sz3xx59j/z67ECx5RxQKPAakN4IXjPlQRgYBgJl1ZUFojFlVVDaaiJiUjEti2O/3p9PTwLOyWq2qqhCCKSUYB+s05zyOYwBI06TT6RAR5zxk5gVfxNbWVlEUDx6clGUZ1mFI6x6Px9775XJZ13VRFNeuXUPE27dP0jRttVrW6bJcNVUpOKInjqzbipMEIwXWkTYGAKTEAL0QAo0jYkAMac1LDwggGAoOUkCkmFQcEYMB7cjX1kCgeDBBjkebZBjrnVDc2DW9AkcSDBm4simdN8YYra212nsrJYuECCE1IhfHcdZuxTFzFsqijuPYw5o+EgiNp6Z2zpJAIVjgUkHGgSMAOWctETgPzhMgf3KBPOY3/Hmk4eOL43NrcM/vNrQN7ObJc36+u3x+7fJJ+fvUg+ED59g0VRyrEDhzjrJWTsDG43HTNN/55W87o+/cvfP3/t7fA28FA/TAiKTi4XwEprXV2mat9nAw3N/fK+vmg4/vfvDBRx998umF/UtYsR/+6Y/y9iAf7O1d/tJHt04enExPTo7SCBia0+npCy996fqXXn/7Z7ePJ4tLV685W3vv4zjyHqyBqqyRkUfQ1nd6ibUkFaubFZKNFRhdSw6RlMY0IdooJVjrHXmtXW3BASBw8AjWIcCw2xEeBGOrYiFjtnPxQl1b70gwxpARkPPOk/0rf+U/HAwGdV3v7+9fvnxZMrZarQRnVy/vR1E0Ho9/9t5PkyjOkripXafdeuH61dViqYRUQgZU3Xw+f+ONN/r9/uHhYb/fj6Log48/unL92ng6a/f6XMm6rpvGDIfbeZ5/8sknr7/++t7eHhEFe/kz6pGeW7lnOMIvvqKQB25FB+CIQnYKsI09CAgguMSACRPcEUWR6nbjumkabYtVFUWRVPHdu7cv7OxuQq5h5a9WqziO4zgwm9be+8lk8uDBg+AQCNjSuq69c4vFgoiuX7+Srv1rUXAgbgChcRxHUVSUS0QcDpOTk3lwLGRJkue5c66uS2ObUCeACIRgxqyVhsABkyQJ50AEAUsHCIjAOSjJIyma2pJ3gmHg9Aga+sZlHFrTNEFMR1FEwKSKPIC1HoDAOyRndO2cs2S181KiENwYHdJXQpJymND5fO6cb7XyYEZ4750lYLiZbqXCQXCOGAFjoQaq9x6AgQO09LhIeWZMmTFBocQVIoKXnDF8CDA8by1678n5UIQ0/IRYDnsKfnndNgLlyfDx+ebPiuo9pns+HOhTUIcAZxrleV11LbAYEgJhIBRim890DrANjxr+T20cHr8dBmsBmFKxMY6FcjUcdV0lsVguyt/73d//X/wv/9df+/q3QST/4l/8K2p07vwbO/y3X9v7S18a/t/+1v/4f/v73/wr336ljRRjrQTqshzdfxAD73VbWbtXG/jhj9/75MEng173z94+uHv3ZLbUH9+vbA3jZTGZWCkyKflsPuKSffs3v7fi8TsPxmm7l3d2JvMGBCAoiYm3TiFvtzPBvCRoRaAkQylkEjcWrAXOUaBAj85ibaC2/HTlT5aVRmgAPBKBS6TgABd2dkqq0l5WlLUzNDqaAAAgGHBIPhISgf/Gr//2oNv7kz/6N5cv7G61242333/7nU5/+xvf/t50UW/t7N67d2+xnHzp1a/duz8igF/4xW/FWefBaPzya6/fOThE5M7SYGt446Wby2J18OB+r9d7cHRwee9KorL33n7nxRdfHI1G86Lc2rvQ7m1Zh0mSvP+z95wuvvedb6aKK8m9c1IwBFBKBDMDEZGztZOPHt3L8TNrqD2lIa2TWoJA9B7Qg/BAYGutPWMOwHnDGViHReUVk0hQrepEiiyN23myWs6BTK89WC6rJMmK1cpaG6toOjtNs3g6Htumubizhc5ESsZx3BsOLBGh17aRErvd3NpacPTe37t3XzIeS0XWtbM8S6I0i1Uk5oupMyZWylmqaj1dVMNhO1YxOOZDhXGwaSIRqbFmtlyVBpj3sRKNhkqjIV7V1lqLHoCzSCUMED1EinGAurbGGSGRcWac5hzTRHCG5Ly3gUESHCExNMZEUQyA83lZl34xKzkCQ++tD5qvNt57CAaTcehIzJemMd4R806bRuvaKaWMsUrx5XJlHdTGcc6TWMSclHCJBCFBk5MKVYREwIQC5Fwoh8AUzJegDDECrrw4x4hkWUDmhzldH/xcfsONQHyOSfIsHeoxm/rhqvq5IIqfed+HtztL0X6qMvvkkc85no0nnh7ZLR65fLlc3rt37/d+57d/8O/+uJ1lVQM3r+1c2UkXk9M8z2bjk0G39b3f/M3f+r1Vqz/sbQ/+9X/7r5pK37p3/1//4Z8uHGRZurt7aTwpP7jz4PqVzmRy/9ZHH128dKWxJskwTdPFYikUC+gzAPjud3/5z77/777/4XhnJx7sDJeTOWCFDKyRTBmvS8ExjcE77y0pJcq6iRQkkkkuPGntrPHeOTDknAZgDBkDZwGAc9RGX9jqA/q83blz+67W4JEWiwUAEIES/Nd+7TvzefHRJ7du3Ljx//lv/5vt7e26bpraFM1ESrm/v8+F0Frv7u7+k3/8X79w9dr9+3eJ3AvXrwH4KJZXr12eTMfj05OrV68aY3Z2dpqmCWn8ly5d+ujjD3RRHRzc01rv7Ozcu3fvxo2X2q1upPT09inH4Ts/+fFwOJRcZHlanEzzLF8Vq3Y7XyxWdIa/aZqGCY601l82MZx/f4NmvSQAAMB58ACciCGEd56jZxzrmtqdKJKxrmoljY0k57IoKlMvhBBbW4PBYDCdTrvtTliEnX7fNvre3UPBGKKfL5cX9i+20vzuvdve+yRS4L3kvDFGSpmm0jlC5IwJAOaBNbXxDkIK0LIoyqoIcKKiKAIqkHNurY3j+PR0yrk0pgos+Qx4ra33YJwTgsWxdEYTgXfeWe2c9RY481KiEoxL1lQGgDZ1QeksmqSU4nzNSklEq1WZJJFzDeNcSu6sllIiOedMJGVd6yiSgd02SeJerwewLgi+KqokjoN2pBSXUjJUs3mFvNHaSg5IAMiCPue9B8YAIMviZVFrA4yBB4jjKI49WcMQPEKep8+fymdayhsug/M61Hkt7LH2mEr1mB73pD/u52uf0549P57HxvbUPuEJXfXnG3C4Rd5uLYviyuX93/ut763my19982YvZUeH98ti+bu/81vg7c3rV8v56V/8te/8R7//O9984/p//l/8nf/L//nv/L/+q//rOz/+o//sb/3PGNUHt+9B4rqDrVt3luNRdfNLV0fzOz+7fedPfvxgMps7D0SohETwzupitXzp5vXv/cVfnTd6PF1xGXW6kKZAaJCBQJLcD3rpoNc3xtZFzRHIQ6okA2+cq503Hiyhd4geDIFZbySenGcAnXbOEVZFXTWOQh05B0DsF37hF9782i9u72w1TfWVr3xlPB4fHh5+73vfOzw87A0Ho9HoypUrURQtV/Mvv/Haz957986nt6fT6a1bt1566aV+v2+tnc/nZVleuHChrutrV184ODi4ePFSu91+991333jjq0IIziSgn80m7Xa+s7MzOZ196UtfStM0juN2nr3/wU9fe+21Yb93cnK0WizzNIqV2NoaLBarKJKMwUOEtnUbuofHtvYv3kK5GMQ1+SMQgkMIBVkER8khEpBIliiIJSQpq+umaRomWZZl1lrvSch4Z2+PS3lwcFDVdfCKSilPT0+dJc7l/v7lLG1VVcURD+7cn5ycMIbO2GALI6JzTnAuhJBS9ofDOE2rpgkFiOfLBSHEseICpRR5nuS5lFIArksRRCrhIi7KGoh1Ot1WnrXbXSYkMEySSEompYhjJTlmsUgiLjkqwYUImE3ukdXarh//bNkzxoKvoK51oFwFAKUi79cEsIHm0nvggFkSB8eo9+DJxnEsxDoWlySR935VFJxDHMeB3zA8dRRFUSS01ojAuUQuPIFxFhCFEHEch5rJRQEAoGTCiOuGOIJzwDlKybx9Nl0mAHwhv+GTq+f56+mppvFjv35+0fOsvz5HzD05BniuDvvU9uQYNm8UPmqkby6pK63idDaZbrezKwOZKy99s729/aVXXyVY85hubw3iSJaLuWua8ccfnty5Baba39/6e//Hv/1f/8P/8ttfvboaz1fLca+fOAnff/c2iJ0LF66mGb7704+qqnHWl1UdhnF0fH9vp//11/NXLl184epeux/H6V6jIYlgmHUGgyiJVbEqq7IBR85REskkAsmQyDnyxkHtwRIzDgHQEBjy63rgQPs7W6appWBR0potaiaYEKLb7b7++usX9/ZDDbzxeJzn+dtvv/31r3/9Zx98aKyt6zqO0zTJEXE4HLay9I/++N8SQF2VV69eDSR39+/fD9Dr999/v9vtImK/33/xxRc/+uijVqs1HA5PTk4Cane5WvzCL/xCqOCxs703ny+qqgJvTx4croplVVX9fj9N493dHYY0n8+Hw37TGCnEJsMXzq3VjVf6OcvmOe3c6kFPQASOwBN6QB+0UQ6RhEiCkigVI/IhcEREVa0RODDhLK1Wq729vUrDYrGYTqeB2Lndbk+nU+fc8eiksU2e53t7u/sXt52tsyRVSoD3RMQ5z5OUc3TWHp2cTCaTOI47nY6UMm+3Wq1WXdfTxVzrJuSpcsA4UUkaCcGSJJMyssbv71+VUeQsnZ4Wq/mirsNyIi7QedNUhbcERLZ2ZWm0dohABNrYRpuqpiDdiChwTW9KoBhLZdU02jpPyFicSAJAhs4Z54yUjAVDynsiEgKcI0QMJGDT6TTAyBmDdrvlvW+apqqM99A0zhiTpqkQAhlz5AkQOSPkYW9YLlcBTpimIBg6r7kAJb3WptNRWlulxGfWRflc0nCjPZ0/+BxJ8eelCX7R9uTd/RPtWdcy8E/9eRSU9jA/mgM+/EFkAEiERAz9siy4UNbae7c+3e7m1eI0VlxbYDzKOr3CkIjTVmfQ6fYnk0ltAVm0tbOHBNO7d6rjB69e3v0v/4v//H/0W98SmhbzwoGUSfdkPPn0k1vDdjoYDj/86NP3fvahtV5FyWKxiAQ/OTm6IE5u7LAL20ln0H9wWqBo9Tv5cjwvK9Nou95FOSKDpmp6nRyZ8MAIpQc0Fhrji8ZUlizgWS1azxF6/U6Que9/8DEAALErl65+97vfff3V11arVb8/bJpmMBgcHBy02+2bN2+ORqM8zw+Pjt988xellEVRvPnVr7z303eODu5fv7qvlPryl78cRZGU8ubNm51OJxT8vXDhwr1797761TdPTk7u3L73xpe/ulgsjHG7u7unp6fz+Xxvb+/2rbs7O3shBY1zPp1OQ9zgja9+bTZbnE5Wq9VqezDggKvVSkqutUWAEL9eTzFj50v04b9HZudmbYcK9BZJk3dn6G6GwDB4U7yU0hintQ4jny9Xk8nMI7PenU4ng0EedhTv/Ww239veYdxpXdV1QUhFvZrNx0Uxj2JB5CIpAUByhgRpFgtkxhhydHBvtFqtAGAymTRVHUVRURS0KfZkXfjGlFJcCs55kqW1brS1o8lpY3SWsqryIa3QWI1IHKhpCABs4/I8TiKeRDJN0ySJzrLCN+8aeA8bp7/3Po4VADCGzrmiKAMQVUrpCDy5dp4yBqapjLF1XUsphGBVXSJiHCtrdV3XQrJut4OITdNwzqVEKbkQUJZlqEjuvS8rZ5wHJjiX3lNRUFkDgFitqiSJVATInFAOuW23k6bR/X53OdefOd3PlIbnd87zBu/zdbFn9fCsX5+vi51vn1/ChnMYwfmfjeR67Baf+SDPeoTzZBPnz2fgu91uY50Q6urVK4vJNBQAWSwWy+WSC3X9xk2eJPlgsKprlefWsijOFovCWh+rKBa8WS5P7t35X/3Hf+Ef/oO/89vf+BYzhppZnpg8Fkf3J6uy2trbZUK99fb7hwcneatTNrqqqjdf+dovf/O6dfOj49MXX7leOXF4zK69/IJQ3dOZj/NcxFFZEXIgAqdN43ytnXVgHTqPhljlqCbwQFwyshYIut2WaXSWZcvVyjgiwP39/d/4jV8j509OTrqttmT89u1POcfFYra1M/zgww9XZaGd/6VvfKM/3L5///CrX/3qfDH96KOP+v1+0zTXr15utbIPPvjZ/v6Fd955azw++eVf/lZZruJY5Xk+nU7feuutX/qlX0rTlIja7XYcx8vl8srlq3fv3u92u/v7+wCQ51nT1B9++OFgMPiFN3/x3Z/+rDfoS4Vf+cpX6rqO49jU2hnHOXband/7nd+1Z+nM/qy+MzyDAv3naARgAQLDPJ4tEuaRPLcOtKOqMnGshBBFUdV1PRgM0jw7OZnURhtjBltDYqjiiAneauW3bt3aGvSquqiNLupKqrjT61nvCEDXtfcBU0dNU1lttNZON9evX750aSAY1OUqVsKTLYtlv9eRSnlPurIBulCVTV1p72AymYzH4+Px6Pbdu6djM5uVWZZECrJYREp6D5JjFEulQEpuPQT9WltT17XWVmtvDGy8hIyFEphiw/bmHHkPSsWcc2PAOVdVFgCU4qGEFjjPkaVrhCwFSpsQKcYzjJ3WOrDvhOAyAISoS13XVdUAAHIAJozzVV07ICEgiiRjrCwBAIRkSoIUQB4451kSz6czIeAzq8s/Txqu5/tzpL7BZ/kNP4+8+/ztyWGcl5LPEbJPvfsXHVLocCMKzz8sY4zIMcY8AaDI85ZQvCjr2pNeLfe2t3rd9qtffvX1N768tbM9XS2ElHkiqnI5nY5b3XbV1KuyHu7utXrDTrR9oZ/85d+88b/763+h54EqcI1nCV+U1Z2Do7Td7gx6dw4e3L59F4HHWf53/+//5KRhu9e2v/K1F+7d/+Ti5RcXwP/kw0/ifFslyeFoNZ4tSECcqCyL6rpZabsodFUZ03jyDJk0gA1DgLXIYACtNGuaRsXJ0cnIeiKE69evL5fLui6zJGp38iiWVy9fCflhwW0UtL8rV6689dY7Fy9e3N7evn37NjjrrElj1Wq1fvzjHwexNRqNrl+/HgzGJEmGw+3bt2/v7lx46aWXjDEIPI7ju3fv9/v9S5cuee/39i52Op1GV8Y2R8eHg8Fgb//SbLl64cWbp9OZs8QYL5smvDxZmgDApUuXBoPB7/+l30+iONhidFYM88/NcMGHP7Sul0Leg3G+tlhpphTXlTZmjVnxRJyjitE5Z8kfHh62Wi2l1Kaw0XJZpEleVX6+qA6Plh98cmyIrUodRVFAbnjrGCARJXHcbrersmjlmeDM6KbdbqVRtJo3ZC3nMpRUl1K0sqzb7XW73Va3027nWus4jgfbW9deGHoPZVm025EULEQbQrFeRDTOE8KqsJ6QPFrrGWNpqlpZ1G3nj73pm1dAa+NceEOZlBB8HcYYqbgQUK40oA/rREphySNCmqZS8ZBQxAVWVVWWVWDDDiAbYxwRBRSR94Bccs49UFObsvGc8yyTzhkhoNvlRNTUrliBM0wK5qyt6xqBMURdPS9VCT5TGp4XMZ/Hr/ekiXq+w/Ny59/Tst6c+ayrztOFnR8VPE00b57uyfYsWbmRhuysBa4wzqBpGs4lF+Lw4AiASRVXjbm6v/fKSy/evvXxT370gzxPu8N+r9flAhWnficl19z+9KPFaglKjWeLnf3LrW5UzeeiNHmz/M/+5m9fGXBPvqyTNMsA4f7BUdOYa9euHY1ms8Xyk09u/cmni7/3D/7VUhf9LXt5/9qD0eja61dN3v2TH74/3N1f1aAt7F8eaqvrusmyliaqLWhD1gB4JGAGSHviAWOGkOdxgLk556YL7b1/9dVXX3jhhdlstjXocY47Ozuj0ehnP/vZaDT6+te/fvny5U8//XRnZ+fi/v7bb7/NGPvWt751cnKita6qam9vjzH28YcfBWDgfD5/9dVXX3nllTt37mRZdnJy8v777+/u7t68eXMymYTqkQHTrlR069adF164MZvNkiTJ89yYBpGste12e7laLZfLB0cnN15++Wfvv9/pdIQQFOp5Obp69epoNBoMBn/1r/7V7e3toF+EaQqL4efemx9ZzMSAQlAVvPfegbbUGN9oKmvvLAkh2+02AFS6CXyCaZr2er2Qq/vJJ3eTJAmFj6WUnMm6bvIsFVypiGd5XDcEKLvdrpRccoGIeZ63snxnZ2d/fz9P0liqrf6g3W575zrt9u5OJ+Cf15asJVjXs8ayrBz5VrudJMlkcrpYLOIYiMB5yxkAURohADjnEdFZilQEHJIkiaJoDSr0FBiGwuP7cxXPw7uWJKmUGNLGheDOUai655xL0kgISKLYalMUBZz5LvCsKlGe59basqQoksaA9z6kGAGA1jpooFkWAUBRuLLQxnvO18l5XK1R60WhveMMuTWyXGFAoSZJYi0Fp8RzWkBLujN+QHbGeGis1URuwx4YPp/zFxARoSf09KQp+lDWMAydEzkih+Q2/rjHpNjDrYYYo0e8eByQA+dIm59wHMkhueCoAWCIPAwgXL6mr+NAjJARMmIcGH+k5/PjCar+eQH32H4AAEgUQvoC0JMlcOFnYzVzzj2kpEB4sJI5fdoiO/eW1WXc7pwcn66mi26a11UxPjoEb/M4Xpb6dFZcuf6CEEIBHN75FNGDhNVkNjo8ahrT7g63uoPf/eVv3uzhHi7L0uZKSILpqv7g6DRptU9OFnfulcyIyxf7exde++Pv3zoYHXvuR8enVy/stV6+/N+/fXu313nzaurnY+t7pUlXs6UpTcTBA64MTB2M6sajRGDOOcmZ8LDVaQsJLFa3HhxZgDgWgVBAKXV8PNra2vrww5/+8Ad/0lj5+//Bf7S/f/mdt95lIF+5+eWq0ET40iuvIWIacU5uNDn94NO7+WDva9/6lRdvvnZh/+rh8ckrr7367rvvKi5MbVpp69XXXkrzxDjLo8gRcYHjk6PtTksbo5J4/+q16WLZG27fP3iAiIeH9zuDYaOtrs2Dw8Nht3dhZ7tYrba3t0ajU6FEofXW3k53sF1WJsnysloN2lknS69fvRbeXCHWPvUwyxsunOBY/AwU9/k9OOQog/cIDsBYDwyAsUZ7IJBSjGbegTC66bezRIAzdVVVnMvT8Ywz1WoPszz/8KO7jbYyjgpTl9axOPbgklRmeWStJoRSm/uHs7rydVlt9frGuDRvTSaTsli2Wq2qqpqmSaOYA81mE85RcJLgvdFCgPXOehclmSNM4gxEVBtb6yZWAoGEYB5gtXKrRhgQlaEAsUYkIZm1NpJQVoXzJssijkxr47zXxjHBjfPGAeeyqj0hIA9Fzx3jFMVCSHIB5sa480x4sI1mDGrXtPstAkrimHsk7TigqZt+t103ZZqmvV5MBFmaZFmGCHWtIxFFqlUUNQJYMsgojqQzwBxPlHSmkbKJo7SqoTEaOXBFgM6YBsCDU4vGe7KZaDXcnJ/B88InHHkm3vDzb5vPUaCe356rdj2ikwLQ+bSB8xfio+joszXKngSb0znS/83zb1S8zQd42je1+XxeYuK5VMLNJumMbW/3F+OqWLosies4Ns5xLmazhXNua2snyTMgVpZ1mnem06lgHDnN5/Msjuq65oDL1bwoitF0djgebw+3rt+4mSRJd9A7OrqzWC4/uDe7tQTNVapQV4tCiDRNO5EYTeZMtf/Vf/en87kGkIQeDI3H06sXh/HKH05n0/v65v5wu4HF1I4ciDjyHmezunEg4qipCgIXCe5QWmNSFfAQ3tqmKlbdTobIy2J5+dLV6XT6S9/4xq1PPvqDP/iDfr//O7/zO5zz8Xg8n89ff/31KIoC497ehZ0HDw5npw9OT0/run7t9a/euHEjjZPRaJRm8dbWVpIkP/jBD37nd35PcDXc3rXWRlGSpqm1NsvSsiwA/Nvv/EQm8Xe/+93RaBTHsRA8y7LZbNw05uLFnpTypz/96dfe/Mqtjz8J+kUoLt5qtfx8aq0HT1eurA35+Xzuvf8bf+NvGOf/4T/8h3fv3j0LcTz0KiKuU77O18P6nC0sGY/gCbX35IEjSGCDQVZVRaISoeRWtm2MGZ9OEblxdjyZ7mwNlVJloMn2jW6aVeGVAM4ZBGCQ9eQ8ApRlszPcZk6syhURzObzxWLGOcVRHkVRkkTz+RwRvbElreraRlGUpHFR1N6DjJKTk5MoSRezeW2gqqqqqSwR55wxIZgn7ieTknMQEhCDf404ByE5EZWl19rFsU/jRMrEeRvywZ0Dpbi1Jkk4gY+ixBmttfZrbyM4B4zBGds8y7JU11Ug8RZS1HUdEk601mW5JvsAJcMLaJ0VQgADRPIAZK02FhGYBAIUUihlCYGxAKxnjS7jGKIoqssGgTgHYsAYTme63QFjDHpMW58Db/jv78t7joX7rM6fLQrdo7+Gnj/D/3me/vo5jZ6oHLBRA89LQzhnCJ9/tGBehX+DHNxgCzaWcr/fPz64zxhDZ48O76NAjkxG6sqVK2VZ/+z9D9Osk7XaF/YvKaW88WkaZ2nalIWSEoikYOjJ6hqU2Lm0/+Y3v1FYE6URB73TFte2ot9/8/LXX7oAzmqtJQBYW1XV/fE0yfr3DqZ3DibAs8ZApDIgrmR+8NFRp+9be/knJ9GfvDNTfVWSdqY7KfRkqUlwkGK0KAhACm7tOrVra3tHa61UfHp6KqX01ly9tH/54n6Q+H/4h3/87k/ff+XVN77767/RbrcXi8VqtZJSBo6Ge/fuXbhw4f79ex9+9NMXXrh+dHR08eKlV155tdPq7mxtqUh8+unHvV7nBz/4wfb27vVrLwqhBoOtVVltDXesta0sa5omS+Jbt24Zb6++8GKa5JzzwWBQVRVjTAiFiDdu3Dg6Oup2u1evXi3LsigKRAxZuujJWtje3m61WnmeO2eMaeaz5cWLF+fzea/X+9//7b/9P/lrfw2AGWOC9cTW/H0/f3SFgDlAj9gAaxxoB86D9zSdF4RMqHixKitthIySJCurJs0zY4AQggR3znlLUqh2LoVAAF+XTdNYZKAEa+dplIrT01Pj1lxYnmy336uqar6Yrpbzyenpcrn03rc7eUjHnS+asqzTVppkSZKlwPj9g4Oj49PpbFGUtdZkLVjjrfXWeG+9IyAEQoYh3eZs1SdJkqZCKXCOiqJcrVYhB7muzLp4NMLmXWgaF9gZtHEECB44cnIABIwBR6aUCiqIEMJoG94jKWUci8Ar4bQhohBUIQTGwAF5742zPsSvHaKnSGIUi5DH60hoyzmCFByIwtcexq+U2tnKnAPnvLX2+Hjx/En87CjK/w/aY/oXwNoXc+aReZ4z8cyW/3lu95jf8LHPG11yc+HG+fikV3GjZo5Pp3mcNKaRjCQRALlae4Q8axtP81Wxtb2bt7uc86qsI6WqsrTW7u7uLhYL59x8Pt8aDC9dunRl/1Ke5612f1U0dWOTJLl++VKzWnTy5M39/EYHrEMjIw7AvSFUR7Np1u8XNY3GC084mU25FOAJRFP5TlP43/rm/s2bw//3vzlcia2Ez6SUVe3LxjXOI2NcxbUlCyySKk1ja22atx88eICIVpurV6/u7OwcHBzcuXXLe+j3+xf2L736+pf7g63j4+M0Te/cufPiiy9aa5Mk2dnZKYqiWM2+973v/fjHP753cHzzpVekiLa2tlar1WQymkwmiOgcffMb307TvKya8el0a7gDAHneWq2Ww0Hv1q1bzpksy65cviYjdXBwsLe3Z62NpCrLcmswrKpqNpvdvHmzaRprbfj20jRdVyoBePnll7MsK4oykmo0GhHChQv7cZweH40ePDj+7nd/7f/0d//uiy/eDPk8SoWaShQs5VBv5Is2D6Q9aee0Dw4UsI6MA4e4LCtPrDHuwdEJMpamKRNKxWCt9QhRFIWNWcoojiJE5FwygSoWSZwE2B0wBA7aNLXRcZoEZXY4HKZp2u12AwwbALK0ZT0IwdKWSvKUMymUrGqNUjXWx2nKlYyyKMmjOBbIAcALyZSSSZxIGSNwBwgMhcAgo1erwjkXoDDOgdYEa9wSRhHz3gshmsYgrOUjQw7EjAZEfiYofRSJWEVluQr4GCklYxwYNkbrwDd8ViVKCJGoKFERF2tlxXsfSs4jA6GCf8tzjlwQAWnnjPVV5b0BY1xTG85YkuRSyqaBqq4RIc8l5+C8T5PPcIA8byd8hkB8iLkDPPfzRRoRPXTYIT2C73sC3LMxTjftvO9yfSEBI3BAHiH8bHx87JERw/nQyvkPT44QnnACbAImG2dTWIWI6L03xjRNQwx9Y3q9TjWfT05OesOur/XW1lae53t7ezdfegmlRCHmyxUiRlHEUADA0dGR976qqtdeey1JEqXiq5f2v/TyK8fHoyjOCKNOd7usbK+/s9L+/icfvn6xvROTNYYkd8hC0vhoPLHeE7LpYnp6elJVxXw+x0SdjIqt/uB737j+1ZfaL13ZPT6tCiGt0QwhSURjfeO99gRMAo+t0RwoTRIAKKpma2tnZ2dnb2/v+Hg0n8+/8a1v3bhx48bNl8njjRs3tHG7u7t/9Ed/1Gq1tre3t7a2Pvjgg4AlvnTp4ntvv/XjH/+klWe7uxdanbaU8qMP3rfW5nnGGOv1epevXjsenQyHw/l8fvPmS9raOI5CCt3t27fTNAVkL7548/btu91OP7wY3V77zp07/f6QiIwxUspQ9khK2Wq1ptNpGsfdbhsAdrf3rHVJFDPGimKVJFmn13Pk4zRJkuT9998XQv2t//Q//bVf+zUAqOs6hIy01mmaPp8n8ekNEYBZAu3BATgEB2CtF5I7wqI2s1W1WJZFrZvGaK2rVRGpJGDoZCyMJ+uornVZNVXlq9o2mhrttSFtQVtfawPIhVRCiOl0PplMlsslEQU/QJIkUkoUvDZaKNlqdxljrXa3qErnobHudDKL4tRzhswTkiNnnLWePKEFNES1brQxzq3fCHf2XhgD1hIRKaXyPM7zCBGrqorjOI7SMClEgIhCiEipsJ04B0AbOi8fxyqKoqYhTzaWylpLRJxzzmVIONFaG2MkF4Jxb125KhARyAFA4NpBDJSRIc4BZ28uEJFzZIwTgkdCkcWq9GXRAHGGgCjqug5E3FJKGX1WzbxnT+4j8d8vvDg+q7eHkZbHT13L1od/eq60XZ+GnsA9Ziw/Fqh5ciSPyVl41JP4rDue1wqD1yOkIq25NyLVyfLZcjYbjxj51WoRC3nt+otxopIsbnc7KDgxTPNMCckBAo/m7sVLgqut4Y41Pk4zIURZN0xIa+1wODw8PBxPpoZYlHbINUsNw27nV28OXuoxY8E4ppxmAgHBGl9UpRA8b6UHh8fGWUctwer7h7f+1R//eNhKv36FXrra+9GxQia7vZZUMREoJRh5hh5dzQEizpuyrOs6iqI7d++12p3Dgwftbv83fuu3iTDL2x9++OGbb7754MGD2XT6ox/96MaNG7/yK78Sx/EPf/hDpdTNmzd3dnbeffddxli31/v2r/zq6XjaarWOjx8kaaTrejAYci73L16ezWbewWK1vHr9mrY6jiPT6F6/88Mf/vDChQt37tx79dXXnQdnabi9hYh5nh8eHgrG2+12MLIuXLhwcHAghAiv6507d7Z3hpxzFooaWhcU0q3BYLVacS7zrO09aW0GW9uc8zt37n33u9/9a3/trwGAEMJaK4QoA2jtizZcEx06AEcAiEDMe6+ta4zlQs4LM13WKooq3VhrpZTtVouImqY2xtS6aayrjK2MtwSNo8LAvPKLsvYopEqzVssjMMGzvMWlGG7vbg13yrJeLopg/C7LCpDP5ivrsWya+aKez+cqSiwBF6qxtrZuVVRFWZdFXTdWO3DItIf5yhyf2rL2zjnkiIwRgXMQkINJwlWg7TprzjmtIch0IZgxPo6lcw6Rew8ewQEhrpm7vLcs2LDgYwVkA2N5AwDeQ5qmQR8MFQLCDhckHSNATwwwaK+MMc6Y9x4YEqIxzmiHAIoLBsgZeOuUkEopb2CxMM6RUJwxFEJUFQUpv1hUz5/Dp0vDZ4m/p8uv/wFaEDibkn7PFcf0FIn67EE+6Tc8/1AbSfeYcHx0YOsW0icDtiD4DUM7uHOv22ujs2BBJbES3JH/9NOPT05O2r3uzu5uKNRdVkVZrfK8LVRUV02332t12ipJjSNtveptXf/yV7705dcH/c7FvQFHv5ifTmfj0+n04qWdOOIv7/e+eb3/YptisioSztg0SY0hZ2CxqLS1e7tbo9FsdHJf8V6S71x84VKrGxntnWF7F7p3TkzlhUHGBSNjmTNfurp3IZff/qWvvHD1im6q3a1txrhzlLbag+2dX/rGNw8OT6SKR6NRSGy4e/vOZDx64YUXQqLxv/23/7Zpmtdee221Wv34xz/+3q/+2kcffSJlNBhsbe/uFEXR6ArRj0enURS9+qXXW50uEJvOZ1Lyra1BSEqJYnl6erpazAHAOPrqV9+czeY7Ozuh9JpSwlo7mUwuX9z/6KOPLl261Gq1Tk5OkiSZzWaLxaLdbmdZNp/NOu1WHKeMrdU9xliWtra2thaLhRAia7W896PROMuyBw8efP3rX//1X//1IP1DFOUzoRhPWVchuIzBd7M+yACVktqAtr7TbSVprK3XjWm3O0mUImKkBBGVde2c90AErKqdQ25RiCjmStUeGkvLqimKShs7mSxPT09beSdJsrIsjXG9wSDJ8qrRKoo98MrYsmqmiyJNlSeM0kRbsyxLQO7Ic6G8R0ABTAFK66R2UlusLUQRCMU558gIMRQeAYB1DCTs+nWtw4aRZbKq1qgaQEAGRGitNWadRi0lBmmIDBgD5xurdRRF4ZUJMaJQOqwoCq01x4evYRxF7VYrloojY+DBk0AW1EMgEoIBY7W2TQOMcSGUYCA5aAPWNXHE+4MkTQHRW+usM+WySVMR6OjTVD5/Ej/DUn6qWPkfWiBurNTzovD8r+fF2efsbdOeRCCe1/WevPa8W/181CXog4iolIrjOGgWZVnOZ8u9nZ04Te7evp1GmKZxJKW1drVaNU119eplEQlCXC4XUSS9dY02xpjR6DRKcyI01htjpFQVcEOAShjTrJaTqpiArWMBLE5zCdAsa+0v9dPff+PCXgQrLRmDsqwRGIKMIlkUerkstre2bZXcPvk0bdN7/+6dT24v0hs3eU9tOXfh2qW7x9PaQJpnQPC3/pO/8Qf//B91pVstZuOTo36//+mnn07nq5df/dLu3sVef0jA4jTJWq3ZbH7p0qX33n0bkd54442yLA8PD3/wgx8MBoObN29+8skn0+n0d3/3d+/du/f++++/+OLNuq4BMIQy7tz6pNvtXrlyjYjSND0+PlZKvPHGG9PFNEmiUOPi+PjBcDj82c9+9qUvvSajpNVqMcZDSlaSJMfHx5cvX66qKs/z4XD41ltvdbvdKIpCUZTApheYIEI98qIo0ji+f/9+v98fDrebpomiaDKZFEWRt9uMsa2trR/84AfXrl3763/9rzdNE+Y3OBO/6KINu+tmHwUAxlhjXJYltTbO+VDHW0ZqOp83db2cLzaEfcDQAyOGnqHxNF/aeVGvat1o8MisI2RCa9/qtPv9odZ6MpkwqdI0XaxW1tr5cpXmbeNsq9XpdPv7F/eRs06ns1wWnMn5fDFbFM7SfFUBcSJmDc2X5nTSTBeNgyjJ22mqhOTOGec8Y6CUlFIw9jCcwhgTgoVYhzEmjgOIzyFCVZlwPFKxMevACAEgEmOMC3TOhALHRPT/Je4/giW7sixRbO99xFXu/vyp0AIRQAJIIGVVZlWW+Cz7LMFu6ya/sfnNvpFsigk55oQjjsn+A5pxxAEHpBlnHNOMxjb7ZDe7u7J+VVZVKmQmMqECCP20qyuO2puD48/jIQIIILOyug+eBVxcv3793nP32WKttdu2zS36Qkp9328STev6ZErDMCyXy6KwRmsUAGYUIIC1xdSEiDFK8ECQaZeMCJcuV4jJh14bQIKYgtIwnVbGKDfEvH4796VVG7ICYP7tmXgLzJISnhMe80F/nqeW8XeAz5CAKIk40bo3leCnuSIvmVUAAMhICSnlXjPwaX3DjSHLOYvN4ShEhaIJNK2zhEkkvVD3uOgJwqfN5XNTOYdgF49tE0dbazNtKOf78hInItOmmI8v6/ksPfjBzu7W/KQbTYthsbh549r+5UtPDp5WhQ1tW1vjnEsKFTAnN54Ui8WJLggoVU2tmhJWq+OPP/rF3/2NFhf61fu//NXB0XEEKk0kbQYnybtVGI6D+8qbN8fSI+cuHSzIIYIALNruZHZy6UrTGPPuzx8+Piv/X3/1q/fuP2by40sVrGY7O9Mn89XRbHl5Wvzv/rf/m3/2X/6Pf34Wf/XJ4/uHZ6Jt6xwD/O7vfNeY4ubN28EPo6aaz076YfXRRx+NxlvXrt9+/OTo6OgAEb/ylTeuXLn2/vsfvvLKK3/8x394cPjoL//9v/nmN79597XXQopbk2YyKj98/z2X+Bvf+j2ly6Kqj49OB+++9rVvPHjwuLIj0hWD8iE8ePBAG7LWfvt3vuN8MrZERUVRKqW6VT8Mw6tfudv6zhbVwcFRXdfT8eTJ44fz2VnTlM2o2NnaskVBpU2QRNJkNHKuf/jw/uXrN3wITdP0bVsYPW5qhcDMTTUaOleY8taN2wRqfQpfftN81qBc/Et5UoJgJtFqDBy9R9Kny66NicralrW1VowiowFVjKksa0SVEocQTaGQeGdb1QVUFpqR6nxoY4oxJdAHp6uTlUdTOB/OZvOVCy74wbvLl/fPzs6UMszsXOi6gXW19JGKZohAuqjKAhQYA3Y0imSGBAwIGgBE2CnoV0u/WvpVy30PIenBSeckMCFYray1FoHLSgFHDoEEUkhD55ENsFakY4wAHGWoC1MY5YM3BpQmAtGCjbaC2PYOSAsq50JlC4VidXbZ6sgJCLuhA4IkyRSGjHYxjLemtqzbtt/Z2RnVpQbGKCEkJmQCbSFGFxJEpG4uhoyxElMPAEqVMcJy5ctxpSwMLiQeLip6ZVsnCBcv9uf6hnLOYcI12Yg/z4H67Q78nPGcqwgv6L9etHGbqshFF/ILfcnn3n15hL7JoWxQAlVVNU2jtQm+b5czez400my5mM1mD+8/SCF+/NG95XwBLM45TUopBUJV1TRNEyM751IKftUycwystZ7NFojKe2+MOTk5S4KrrmvGI+fc4uxsXOgxuW0CQjLa4JormpRSSBRjunf/6d7e3t7u/sHJbDrd/uqbXxPQT58ct25ArXZ2pghQluU//af/7Cc/eQ8BBue3phMiaoewtTW+8+pdpZQPISuIPH78WCl19+7dDPqdTCZ37tx57bXXlsvlT3/607fffvvu3buLxeLx48d933/n938vw0H29/efPHny5ODwd37nO1vb052dna7rPvzww29961v37t3b3d1tmialZLV+8uTJ1tbW6clsd3/Pe0+EmaqVfcPlcnl4eHj58tUcFAOAUiprPeXOmcGnzHXJ/uP29naMYbFYVFWzt7eXk/qIeFHiMC94uffmb9wbAOAZdRcAFK3z/YGTMuuJqohijH3f933vgs+tUWKMbgiz2VKrIibp+hgDxgDecQzACUG0NaYqayLyMe7tX0alV92AWq36zhQVKFKm6F1wIc7m8xCZEXrvVl07XyzbtnXeOxeWnXMuEqmTs9lq1boQGbOU5ZpSgojGaGt1lsYJITInpVTnfNv6tnXeAwBprZQiRLDWDkNAxLKyIUQRsdb2ffI+DINDXHfKttbWdZ1EMhAt3zXDMOTkLBEFN6QQq6rKU7coS0AMMeb6Utv3zCAIi8Vi2fZAKofqyFIY4JQUESlAgCF4FxMLxpCTnkkE+j4Fn4jQaBBB7+PnX0CAL9Swec4S/cZz5cUhnzNevv1zB7axXxcN2Ys+4JeMqZ/7Ovj8/OnFA8gWOYMNich7P63L2eGjoVuR0SnF1XI+aiZ72zsEqLWeTiZVVZ2dnRXGAoCPqR41RTNODD4EToljIhBEZYwZj7faVY+I3/veHzT1eD5bhRDHW9MEgtow8+LwYET+javEwsBRE+ZSUuIkIixgDHz0yX0iurS/c+/jk//3v/63Dx8ckLI+pVfu3mnbtmnK0/n8ycHJtWu7W6MqChyfLT78+BMBeOPNt2aLuQ8h2/rFYtH3/eXLlzOOL7ciQqV//u4vnhw8/trXv37j1vVlu3p6ePCLd9/dvXR5GIauG956662nT5/+8t33trd3r9+8lVuqf/Lxg7fffhtY9vf3laJh6AFguVwiQKaUvf32109OTupRkwEZ2WAdHR3t7+/P53Ot7dnZ2WQyads2tw+tqmo+n49Go5z7u3nz9mrVAcrBwZPj4+Ohd5kaCOfpjpwflHXXt7WSfn73H2IT13sgFMIoHCJniZeNJ5EBqkTknGvb3vuISrPgfNWfLYKL4CNGpsiKgSKr3nE3pGXrTuYuMLz30ZMgPNqaojZ7l649OTxKohJg74OpajJWFWVVj2xRlUXV9+50tnLO6cKWpQUkH1IIECIIA6JC0kDr5bOsrFIKgAFEa22tyTo0RGBKqipjC2RmF1NKQqQY2JaKIfkQbKmV0ZGTKQAAOAEREqD3HiURUQiJGXK4OhqNcrOUfFnLohiGgQAVEiIxs0+RjG6HARSJoCCA0OmsdS5VzSgEhsTMUNelIUROyEAEznPXp8jKMwgAEFprk0DXDZwAFKXIwz+QpwxfWrXhH3t8Zjx7IV7+VJ0aETfwGoJPoW2+cOCnKypfuPEGuLsuqiRprDy9/37wPkUhFOf68dY05xYXZ7O9vb2To2NgiTEqROecrhrXdQdHx0qZZjTZ+C+TyZb3UWvNDIeHh7PZDADOTmYcw2K5RGsvX78tqihM8a1vfG1UWxGJKSq17qItIogQPCDCk6MDW1S7u9OHj1bMVptm99LlBw8eEIHWuijrIOJcePONN5BQaeoHDwjT7d3r125Op1NGVkplnGBRFFn7Ojt07777bkrpD//wDydbo2EYFovZxx9/PJ3uvPXWW8EnVLRYLA4ODrZ3d373d757dHRCqFfL7pvf/GZ2G7e3psMwTCaToVtVVfn06VNr7c3bt6qqasajnKcvikJrhYhd1926dWs2m+Uu4xkTQwQprUmyk8lEaVRKjZqJMSalEJNHxEuXrmRfkuhZXW7DVgaAjAreXP3nCE5fZlycKMKYYgYechLw5zoIigyiQqWVKVCrtm1D5Jikqse9YxaIoLrOe8/ex9zifcOs35o2RVkUNa1a9+T4+GzZrZxjpQLA6XJ5PFuuBrca3NOjo5PZ7HSx8DEBoTKE2sTEzgcfRVCTUqgwASZeV42ftZgGZmZ81scdQWSDPctsxTzbjbE5/kgpORc4rUOlfKW0VijCkgggw/U33kgOpEQkg2ycc1VVFdYaY3JDGDKmKIp8LYwtk3AIgYwmAiQUzjDvpAiauqyrAiQpAk1KFHQOXFA+UQTwkQUVIvggPoEwCpr4RdbrC6zhZlk7R/r8R7KGn+czbnyxi9s898GLe3jx9d/WeNEK5wOzVdnPTo7vf1iXZvB+VNXjqgTE119//caNG7dv3z46OsrhQ65HG0XDcn5ydhpCKppajceZumSMefr0adu27777bt/3Wfe/rqu9yUih1E3Vu2HlUpfMj3518INfvLczGRcKFUDO1SNkpx5IIQsU1nzy8NFq5a9eu3r/8enB8fHlq9dPT0+Fo7W2HG0tO/fNb/3O3/39j1OSmJiU0bq6fPlqllMeN83HH388mUym02lVVWVZzufzp0+ffvjhh1XZfO9738uh1gcfvPfhhx8WRfH1r399cEFbUxRFBmO/9trr3eAePX5a1tVX3ng9S29lQYemqp88elyWRW6wNZ3u7OzsAUAugyBCjMEYk1UbYuDRaNS27f7+ft/3GXH94MEDa7UxRS4ib21tK2WapsnagwcHB2+8/na+CelcoHSzaoYUy7oqqjKkKBfSSb/ZWGcqOAXmwBAAmCAy+CgsBKQEMDFEgaKslLE+plXX+8i2KHRRsKAtjDZKABJziCmmRBpNoRdtlxhImSCyWA2zRecCM+ooNAQOIs4HUpYFdVFqWyzb3kdmBh+Cc94FCUH6IcbEPkqIHEJWaeU8V4YhgKTCaqUwxujdIOsUkEqJF6vgXEzMiOhCatsetWoHD0rrQi+72DsmbbvBi6BSSgQU0qiushtYluVo1ORKo3Nu01JKKdW2q6KwiJixNUqpsqxmsyHjcGOMzgVjVP74bDYDAiEoChudF0lEUBQWALQtXIJ2kD7AEKHtY9/32UtNSZKAMYXNvuvnjy/VF2WTd/uPYw0/08B9Zqgrn675/kPC+ed8zy/cz6ZB7ad8CkSlDLfHsT0rSFyKwtFqNdneyaW03ruDg4OvfevbZ2cnVVVpra2m45NTU9rt3X3QFkLUtkj9IN7funXTt/PpdNq2S+JUFMVqtSpVaXwIKaxad3A074JAqd9/ODg1SARLEAVClpDQObdNAGnwjhBmy64d3PWb1yWGd3/1XkqpLsuU0nyxdBH+3fe/LwCAUNV13/pXXrl9585dZqiqKpuP69evf/TRR/P53A2h67o7d+7s7OyEEITx4cOHbbvMyq8AECMro/f2LiHiD//u769cufLg/qMY4+9+53vW2tPT04wyy5ol88WZD8N2MV0uZjHGr77x5sf3P9nfuxxii1qh5Jbk6tGjR9tbUyLq2qGuRt4HACAFGs18Pn/rrTeXy/b69evMcXd3VymNCMBxsZx/cv/Bf/+f/4/WuVREIkrM+fIppbz3uSqdXe9fN6NycVz8aPaoUCAkZBbNuX8UAYFLLD6QcG66UBTFYrUKCZyHolBChKQydjml6ANITJG5Lo2LaToecQrGFkT0+OAYBKy1RARAXR+qqrJFhaCCTywoAiwcRUhpa1TwMgw+ASVOIpjytAVhFkSwCpTKfkZuErfOjylDxIo5L0sJBUIAIlDMWq9dSK0jM/S9EwHApDUBgFFojPJDDCEgqqJQ8by7u9baGJUvq8QYUnTOBR+V0cxc1JXWEEIiiqUtUuoUihCpbNeQEnOh9XzelQVYqwXU0PWsCs/gu4CoWFgEMEJhFBAmjiElXQiqLzB3L6uiXPSzzq/3b62Kgp8zLr714pZwgSy8eevFA37urS9z5M+Zvy/5S587sJSSAIR+YcBzighqGDpEaerRqu+uXr/W9/3V69dzFoxBRAQkEfB0slVNp5KSdx6stUWpFD548GCxmN26fWN3d/fOnVdsoUfjWunKmCIGV1rSEDiFvb29yRSiBwAoNFXWnPfOEQRISbKSFRIKgA/p6Ojo+Ox0tWxLW1TagvB81TLpPkQGKGzRtwMA/Nl/90/Hzahvu3a1ij7s7+/fv3///fffZ+Zr165973vfyxyS/cuXfvjjH8WUdvZ2b9y66WN47StvPHn69NrVG6RUxvcB0KVLl157/Ssi0LbdeDwBANLKWrtYzkTk1VdfdcNw//79P/zDPzw4ONiabEdOGw3RnGVbR1VF0bbt9vZ2CAGE9vf3D48OptPJ9vZ2URR7e/vL5XJv75I1pVKaOT558ujqlcvXr9+A80Uu7xMRcz6+bdvRaEREXdd9Znboy4/zQsr56QdIAD5JEPAMPqTBpyFw52Prwul81TvHhEAUGUKAGEFE5jPftT4EJtJaF0SASCLY974sqtlskRi0tv3gd3f2t7a2RVApo5TJVYIY+eTkbD5fhRC1NmXTFEWRBNwQWKAoKwYEIIb1pN3QFc41wjkLdOZ8iwg7F5MwEZAhkZyPo8lk5Dyr8xjcWIsEzgOgEoGUkiIAgJh74gH1fb9arfreZcpWvn+HIYhI1dQpJRZBhZkfySHu70wLXQxtpzWV1mT5K22gqZUAugiBOQF4D1rbwXkfYAieBXwCz8AC2e4ppYkIEUIC78+FIT5/fEGXqIs1ZfjtKQa/ZDxnBy++Di+YwnNi0KdC6XXQ+lyD0/PHL/nql9vT50bGG25yfHheazKmOH761CDUdUlaAcuoqmezmfd+1bU3b99ywa+6lkF2dnaU0chc16WI+OUyRdGmAFSgqO/7tlsSUdNUk8moKIpXXnmlLG012luueg7REuzvbE0KPTt+Wlf65tWdWkP0Ga2K8CxPSoMbNodNpPvBM/D29q7vh1W7GIYhJtnanl65cgURsjzJ/+F//6/u3Hl1sVidnp7m5rwPHz5cLpdvv/3217/+9aqqYozvvPPOfD5/77337969++abb6aUHjz45O7du0+ePKnrem9vzzn3ySef3Lhxw1rbNE1ZVhnHlwN/EZnNZnVd37x588mjx7/85S9eeeWV4HxZ1s45EbFV6b1HRGZeLpfj8ThDBS9duhRjrOs6N1A/PT09Pl5kZcOUkvfD7u5urorM5/N79+69+uqr3sWc8HrOGmYjmGFSw/DsLP0Gq/7FT2DuO4gomRuACACBJYTkfRocd30EBUobrfXprDeGtrfrS5dGMTJpQKVYMDGGyD5kcXIgopOTpTFmuWyHYaiq5vHjo25w2haRJXcZXK1Wzrm2dcZore0QfNu2gwsppcgyDH616mNIPnKMfD55MQvZOMcAoLUmRO+jc4FZjNHWKiLKwgfZ3IfAwzCIwHzuvY8A1LaeGarKxpgYsq4XAkBWbC3L8mIIFUJKKSdDoWmaVds679cLNqJReuj64OLW1lbXSbdaJQ5Gk7XaKrKalClCBE7QNIW1oK1xLikFMQkplUAlpshAhCFBDJy7+yJmWZ0vqCl/ruu4SRQi4jOuswi9sH7mB1lC69mL55vRhW0+c8l9LhDmCxqcF73F/PpzFkouCCts8okZOv+iRF2uFb64/uM5nvEL84wbiwwAlkowLoIMvaoKDXBmrRpcvR1m/98f/83uaMtg2AHoUvN4Qd+9ebVt274djo9OI6CAunHrxuJsphT2IY2390AbQWQAYAhttzpbzs6Oi2Zk66Yk2t25/Hff//9NR82RJo7L5NzOZD9wSsxVoaYDNGNz2cz+H7OyV3aXF0kgYMEcNaAxMYbc+VeQgCUCgB/UQs/FGtC6qUfL/vCPvvvdv/nrvyIBBtrf39/d3bl37+OsxIkIbdu/cuvO2dlZXTZnJ7PE/N5771VV9fbXv3Z2elwUxdMnT/wQ9nevEKgH9+9/4xvfQKGfv/OL1157TRdr1VjmZK3RhY0xWmtDCPWoKYvyow8/RsTbt14tioKUjsJFVWbR1lyjb5rm5ORka2urd8N0Z1tb03UdcyorfXZyuDg9euXWpel0GhM0k52dCKPptlaw7Nsn9x/fvHz78uWrprYcJKSorfEx5EtZVZVzTkBl5fhluwBJxKiUSvwbKnqdT2G+8LooQERQQCzic1N6AYvEBSqFqtBd5CEFZIVY5tgVAZ0bENFqSiExA1QlqLjyPGrqsrTMPNqqnPdtCEopbbNqa0rC9ajSWq+WS2OUD4woxhagkSm5LnhGEUAQErEFGaNZYoyxMJgSLJeurrXS4Fw01jrvhaGutapUCElr0oVGnVyIaMho8SI+RGUUkUpRCABIqlo3ZaGEU+AQYueX2qh8xYnIGAJg0ras9dPD072dsXPO+2BtAUCRUzOaLhaLAKc7lwoQEkHn42hkhmFASlbhtALNQ12WDuyyC4xKEfWLEEEEQcQbAEwyqoB0ApSi1G4IK88Xl7hNKiP/5fEy35DP1aterGa8aCNemBzPtn/5p14Mii/u5LkHLxkv+a6Lx/Ni9eMzf9qLlve5I8kwW2BRyMAJhJznoig//tVPJbar9qyuy5C8YFwsj4+On/7e7/3e7ds3Hz74ZOj6k+OjdrEsS9suV4JqLUhVWIVImg4Onjx8eP/o5DhLQM9mp0+ePvrBX/+3P3/np1oTYNyaVmVF0+mo7eYAqRmZmzevHwTz9au0DYsWoKyUETcqlVUQAwiAIgWwwb+DgKxWTkQ4xNPDwzs3r25Pxyen852dLQB44403+r4fhmE2mznn9vf3ReTk5MRau72z03Zd27ZbW1uvfuW1s7OzXBrOaIlLly49efLk8uXL0+n0hz/84c2bN69fv75arXKTvLw+MbMhBQA5Z7dcLuu6vnLlSq48GmPOaf8JEiNiptZlwa6iKMqyHIYhv75YrMajyfHpbHd3X2u7Wq329y8T0e7ubsbx7O3ttW1LmG3xs3pgThp677uuy1jFDeYGf9vJ8dxDigWDcDoPPxghAa4637YusQhD14VVN4hw773z0ccUkyQWQSStlNaLxRBiSiktl93ZbNEPngVExPs4DL4bembW1hZVLQjDMBhttLLGaCTd+7BYDt5FrTUDG6uqqiwKA5xi8MCsNQAIgGgNiIwo2gBgBAQiCCFlfVylTPCZIIzAqFAXyhZaESYUXxqejM2o0hlZiYi2rG1ZKKutLTdBWz75OQRpmmoYnNYm+yJZsQ2QkQQAckydT2OuveRFSmvQmmKMSmP0wRZ6tQr5bIgkgVz+hcTAiZyLnMAYZYFi/AJxmS+IfD8vcvzyWbaXzK3PtIPPmaGXWOHndv5cvPx5H3/OTF80uF94G1zcOBEwkEIxGgA5JWTQRPSrn/6lklVdGSBEQ53rt3cm01ExPztZLma3b9/MosvHx4euH5qqmEy368kWihw9eLhaLNLQn52cTre2plvbzWh87fr12enp8cHh5f0974atyQgwON8Nrq1KGjUlksQYjo4OYfvaH7++9c1rGBA9JwPA4qPIpC4LrSXTIwSUWosslfWo7wOCAMN3vvX1ex++LwBRgIi+8tobWSYrY/eMLvq+L6tqZ3f3gw8+aMYjQdje3cnqIJlb9ujRo2vXrs1ms67rXn/99Z/85CdEdOfOnWEY6rpm5qqqQghaa6t0Lpo753K0e+vWrQcPHuRGepnovXHzSQAAcu04G8rcg60oipxGPDg40rq48+pXHj95+upX3mBmrXVGhudyczv0o9GILzRT3kyPjR3P820j1vDbtYYRIAoEkKzxFQQSgAj4wAKYgHqXQmJlUGvyKfrAfeA+yBDBR3ARfMIISBq01kg6JFh1vGiHbvAhCRIJQEzS9sNssZwvlz4yaBNS7Aa3XMVhiLm7J7MwQl1XgtwPg/NBaWxK25RlZYyxqLQU5VokxRgAYCJAUCLIDCEk76NzyTkIQSSk5AOHCMyUdawwGS2KcFQ3hTFt3+V1iwGXbdv3fU4uZcLCJp4riipGbtsho3cQpe9b5phR8Xk+5NU0x6iSAhEaq0OIMcZ+CIXR55qosvlfEkgRfEwhQmDGc23zl48v6Jl3cWze+i1Olxe9v88zfxsn7iWHsTnL8PnW7eXZwJfbxE9ZUkUiiAKEUSQ5n5pitFqcSXeyN6qUwGrVMaAPA8d08PggBL+7u/veL39plPr6179R2uLo4AlnoH2SsizrstQEZyen48loGPobt24DwIcffLC/vzv0rTFqb29vNpvlom1T1Y8ePLx27drO1vSNN94cfJodH+jYf+e1y7d3y6WDeqsICZQ1rh9ijASolSaCFCGbjL4bCIlj+NrrN7vF7Gc//clX3nj1dDbf37v8yiuvvP/++9PpVte1165dc84t5itbFqezszuv3u26TkRGo5GIWGuVUh988MGVK1fatp3P53fv3j07OwshfPWrX83+lzGmaRoRqapqo4OSWTpnZ2fXb96498nHQNiMRxnBu4bmqbVuSkppGIbxeFyW5TnnXxVFsVosm6r+6KOPr167sX/pqoja27vkgi/LMvgUUtze3s4Mlu293d4Nm+su50nwDAYmQEgMAO1ydTGr81sbBIIQAQJAyKA+AYFs4xQLxQQRUJlCWwMkTJQIgoCP0AfpfOp87HwEwiFE5xMZo41mAUZtq5GQ0kVZNqOyapTWgWXwYfChH8R5DgwJQGlTFkVR18aYzvUibAwYDZAkBg/ChbGKDIJSZFKE4AVEcyIElUSQDAt1vbRdYkEkTAykITAMgX1kzg0xEsYEWXwQiEKAboguxBhjVsSBc0xuVnvK4olZrywJhJQEMYEkENR0HsJJjD7G6JwXkRBYK9KKiqIgBTEmraEqzN6uNgYwazyAZIxUFIgJFWHwKYQkhMr+pvqGG08tP5UL47cySV7c1Zfc+cv9xIuL/2eOjevxmb7klx8iiVMW6mYGTlGmTX366IM0rC5vbze2HtVj1w/MvFy0s9nqo48+AsTX33xzd3f38OnT2WzWNI0mFUJYLZY0GmNKZdUohF/84heDd4+eHCTAk5OT1WpVVVUzGQ/eTban89lqd2ff+6i1vX/vk+3t3aEPs1l7a0u3qZrW9df3SwKQel8pTbqsK11qpQGQn+V8Y4yAqLVumvrb3/6d7//1DwTh3r17uij+5b/8lyml7e3tLFuitX7nnXfqur569eqNGzdyQSPHvzHGhw8fLuarr7z2xunJzA3h9q07CGq5aHd39pVSzjmtdbZi6xZaSmX2d3YQcgB7cnJy9epVeKGx14b7GELY2tpCxIzQrOs6pbRazodhmC0Wr732etOMk2De52iy5WOw1pZ15UKsqio3Mt44I5tLn8Pt/FQj5b5FAIAA+FusFsp6p2vRQ4Rc3hOlehdXQ2RSgLoffO8DKE1a5bIfIyYGH8FHiCyMFCIMMcvHqghqCHE1OFvUiXG56k8X7aqPgZHJMCky2EzGo3GFpJetn6/cYtGdzfoUABhKq+ra2IJEoO/9YtGGwCFwjBIjpAQxSv5LcR3hZ2EbonVnRLKKLIACRh3Y+KiGQEPQWuvlsm3bXltTVGVkJqLpdFRVRXbD88cBIIQQI5yczIn09vZ21r8B2DSlYmM0kogIEWittLZEqjA6hcQxAQBHqGvjvRvVhbWaNAiAAKAiBGSByCJkfAQfOPueL79Wn1tF+cxwEj7fcOALlKb1p15qaL7Mnp/bfmOmP9OevvwIn3v35Yb1xe0/vbukQCEKEIugtaUWtzx4T5JowMt7+4N346qcL7qtremNm6+SMcvl8jvf+4MhpuVyubOzs3/58ur0xBLVVTn/5OOtG9dOP/nkr/76B7asDo+O+Wh2dHxw69qVg08+ev8nPzIQI0DrYkqSQtrd3um6zoe4nC+OZ6vVCm5Oq1DvMfnXL1UTODt+8rACIL8UC4qASQUOzGCMSikxg1bog//u7/9n//r/829BaUHlvAMIbdvN5/OyLEN0zvc/+9nPvvvd796//+D09LTruq7rst5i5l3duHa9LMuf/vSnV69evXPnzoMHD5xzBwcH3/zmN3M5OKVUloVzrizLNTLGeWAhwGwNHz16dPv27ZxFypCaNYk4MQJoUkOM+RbKjL3s0K1WK8D485+/8/rrr+/sXTJF9eTg6TcufyMEt7OzZ601xnarFQCUZa21TUIxOXghUywixhhAIFpbw5ejDv5BA4EznhORACMLI6CAD8LMCgAyk490EhSB8yNlREDSLKKUFoLBJSJBAh+Tb5OcOmPAWqOMBYDIHFwUSBwAcBh8zGrVWSIQQ1SKCIGZSaHWigm9TyGAz2r66xQzcAJExYmBMNedjCUiCjE3R7Y+JgYEpRJT8kFYRAiUJMODCyJQFBqVGGM0AXAiog0GAxG998zcNHYY4uYuM8ZwghgjIjGHDLhRGpF0tmWKTFno4FyMXmstNk5Go4Ojs7K0Sinw/Kw6gpIziSEKIxgBEdkAHj9vvMwawj8ganj5Bze56t/AKfvCfT635+e+4mK97/PSoBdf/MwjREQNrMkgcMIYBZqqXh49jbP7N29eDsHVWrd9uz+tnx6dGqPLsv7q21/d2dv96ONPrt24tX/5CrB0i8VosjVbzKvCcAzQruZns4cPHxb1yFS1pqJt21/88t24Wg4h/v1P/m6y1bAxldZttwKJdWlDikgi4O/cnYy2d73Q4qzd3hr/z/78K09Wcnp6ujg+/cUJEIAyUJmijz6EBACkVIreGPzbv/v7rhvKZnJyfKa1FqDHjx//+Z//2ceffHT29OTSpUvZERuPx2Vdxhg1qSuXLj958mQ8Hu/v7b333nunZ2df/epXy7J8/PhxCGE+n7/11lvrYLzvq6rqh2E0Gi2Xyyxvl9UGR6PRqmuPj48vX77MzKDWHGE8r+9n0DUAxBhzoC0im46m3vsw9IdHT//F//C/PD2djSZjACCCoijqulbaZD2hruuqplZKBZ82fsHFa83MpjA++pTSarXKX70mrP22xrlvmP9lERAQkJDEaAOSXOKUoLCKQPmQSKfEAgJEStYfI0Qchqh1yj1PkJLSWhkqtLg+AqrEkFWrAUBp0tqWI4WgXGiRONevUkohgAE0RhUGAdIwhJTAWhqN6rZdaa1CiMagCIQQrTHI6MMz3g7kOIiBVBAPqAABhROhkAajWZHzgZiBNEZOoY91aYhw6HpUlA/De48o+bFSajKp+75fLBwiKmVSCqtl1zRNTknnJsuEyMx934JQU9u6LkMSBVl5XmkCRMkdY/LNmXKsLMAAnIARAIGZI3+BNfsCcPYX+Ee/0bi4z8/zDV/MJ37eMWy8xc/8lhfHRVYWXMgAbBA5z6UmX/Su13vmSIgpQeQUIpraHN97ENuT5voV6XqFvDtt+hSsBte3RWVDih/ff/jqG2/OFnOZzbemE6M0r1aSwv2PH96+eX1+dHR6eqq1nq9av1ilIY7HTd+1/WyGKpO6CMgSsdG2KJUPPadQlMV4UhXN5N7Tkzv7Y1vZpUuv7uD17cK98sZOIX95wD9951cfPZwzprIwHYQc+FgNPsjR6Wxrun10PMtymGVp/+AP/uDevXsnp8evv/56bml2dna2WCzjSby8f6ksy8Visb+3R0Q/+clPROS73/1u27Z93zPzbDZ79dVXy7JcLpdZpl9rPTKjtm2ttVn3YVQ3WuuHDx8+OXj61ltvKaWG4I0x2XfgECBnM5BEJPcFnkwm2dPM1jA38/3o3off/e7vtm3rgq/rOufai8IYY1hg2bbb43F2crXWbtmNxlXmxuZB5z2hFFLm0g7DgP8IiFpcTyTYOJ0CkoA04RADAZi1wEFCAKMwsuR7FjehD7MIGatSTIJilE4cfR+0xaZpoh9CiBlzp7UCgL6NPobSgDEQAxChCGbiRzPW4CDF6BJrBTn4ZeZ+GGxBSqFzIJKYJQQoCiDCEKAoEFFCYCIwRiEB5kZ2DMKgFdlSVQVoHVEYhKLjurBFafp2FVywpI0BF7hpGu/9auWUiuPx2Hvftp21LLLmMvd9nxs3I6IxpigK54ayLJXR3scYxBiazxe2tNGHyCKIMXEIQBRCAGYQAEIU4SQAWZkQNUtI69P4BRfrU9Ywn//zCPSz3aWsfPji4E+r8NPnfByeIbM+G7yywf09F65etI8bC7jRaPqsb/lsO/ui1Tv/is0PvPgp3HQdyh/afLCAIkoMpJIzlxu0q4+O3//r1y9fH1fjpIp+dWYVKdS7k/FrX3trujtFVVy5eml3d/vho/vOud3dJvguAQ5tvzVuFov58dkpFeb4bO5E90PY3dq698GH00nx6PDpfLFYUg1iU5s8DgZhun2pnBTHhwdWFwu/KsownhTHq7apxwAU7fjs9ETZeMLl71+Z/u7V7/7lj37+N+8+OfJBwAKwRdBahZRsUc5mZ7DWtaT/4n/wLwY/rLr29it3SZlV25dl6WNYtstr164JAoNoazo3nJ6e2qp8/fXX5/N5Xddn89knn3zy5ptvFlXpQ1TG+IGn+9vz5TzGVJUNMwc/AA+oiw8//sgo/bW33wjBE5qCtAKSJCgYEiulOCZT6E1dW0Q06RACKgBJi7Pj45PDKPqb3/rOu++++9prd+/d+3Bra9w0TYxJgIB50pTZ5kz39gWAlOScFKzZkyonJRGxDW40Gvl+iIMDgD7632oN5cJtIBf/z57X0hCJQZA1IgiEBFWhZF3kIUKdhH2KLkVOpJXmxIHZag0YQ5Cu600JGDDryiitiUiZVKQQowCqslQsMQUvAkqBJqKaNVJmLlWlQcQQIymOkWNka5GIBMHYNLiIiNW25RARSUJCgBCSLQokHVRXWQOSMKVCowKBBNoq75gUaCUpOmvIau2CJ6KyLufLVd45Wns8nxtjIkI3c5OJQYSmqbq+A4xlpUIcjDEheBFAUMlzaY3elhA8IBSljkyhT8zcdT5pswJrUuzFRQDAZFFhYgfSkWyBnxTVvO9HVuwFDLK+kMLjcyTyp0xbdpheXnX9kuPz/LV/4M4v7uHFCs/nffVzwdFzG+OmNddnjc87khB7pQAh2gKCW/34Rz/QBqP4J4cHfXBIFIXbrlPWfPLJJ4nD1nSaqQIppdGotkpLYmTpug5AANk5t1wuF+3qyZODZdsdL2bj6dbJ0dFYm6ktGkMxhs73ZaWNUbPZSQwdYPLRq6I4mc/rqtra2nLOee9z4cXqIsa47NoP731weX+vKamAHJLyjVu3plvbIrk7kqqbNZv97t27fd9Pp9PNaem6LqtJj0aj8Xic/bXMIblz587jx4+rqloul/fu3csclbZth6Efhn48rlarJXM0hpQGW6gY/XI5Oz480oQZcJM9ShHJUAw8Fwchoow1Q8TRaJTFdDNS5+joiJmfPHnyzW9+WwRFsOuGw8Pj/f3Lbdtfu3Yj72cTql+6dCkrRFycDHIOPMxlnOwbxhjlt15Qfsk4h/wy5qKz5L8hpiHKEMX56IIfgs96+wAcU3YcWSQhIlHOhaWNfe9717a9c14Ei6IQgd75vuOUADGXfcWQASClyGgUkRB8Rs4ao7I2dUgcfEppfSr6joMHFFuVRVEViJDYsbSFVn7w0aeyUJUtEBEJjFFGo1YgwEatoYVEpEllj76ua22VG8JqKd5FtS6orJHjWVtbKZ0pdCml3KYmpdR2S2aOUQwRACiFtkBSTAgcU9e2jGsqJJ/nWBBAIyZOgROfa6m9/Jr8GnHBrztRXmL1XvLWc3bqxa9+Mc79zP0/Z3afs5gvObAvabJNaXzqu35pNB8ePb7/4KMEwafBVOWy72bt0sdgyoq0unXrlaIoTmZngcPTp08nk0m/ajnF6DyI7GxPjabCWENKYmqasSBEhlXfPXj6uCyaphpN6mZ/dw+NseOpnUzvvPHGvFt1Q79/eS8m71Ms6qbruuPj42EYvB/6ofPez5cLImJFpiw4+j/5oz8wAAYZgK/fvHb79m1E0FqHkLrWXbq0AwD/6r/+V1rr3d1dRMw2YjweN03zxhtvTCaTLJQvIltbW3VdHx8f5x5MH3/88SuvvJItSzZhRGQLtWpnwp4UD0PXd4uj4yePHj/I2MOiMCklkaS1NvZcDf8ClTgn/nJLQiKq64o55cwjEXGCGzdudF2X0TbW2itXrnRdR+eNffPxM/Pu7m5Gbl+cUZsoJIPaROTLkFj/kQaDpNy4jiAhOAEvsKY2R04JZIPEA0BcaysojVorAKnKWmt7Hv5Dph0ySze4lJLWqmnsaFw3TWWMTbLRWch2iBHBKCCC1TI5L6RNWZZVVWqtfIJVx95J3/EwBEFSSikLpEBpEI4IoNeiXYNVWGgKg9dZWpWjJlAo0QcCFJEkEpldCGsBGw0MEmNUBrNOOAAoMgCgtUaklBLA2srni26MKUtjdIkChcFxY0a1GY1sUxUpggdO6/AOkkgCIQAN+bpLVib/QmOXtcBfBqX+h6yWL7Upn7fbL5UffC6793lfhJ+mFohIFvuFTwfUm0TSi/H15/18532I0JSF1eZv/+YHp08OKm5uXxr3fghDbxEjaoXIQDuX90fjrahxe3untEVprIzHxweHO9vbp8dHjx496vrVjRs3lqsOkbZGY+Hj49Ojgtj17dN+uHvruq0nj+4/eXw68Gk6OpUPH81ev3nbVHpwftRMTs4WVy9dDb5dLtr9/f1h8JOmAm06F7WtnVJXr9149PgQNb1yfffdByfT6WRrezqtr/34nZ85H40xIYXjo1NEdeeVu48fP86O1dbWlohMJpP333//+vXreW0Xkaqq+r6PMW5tbS0Wi/nZzGpz++atk5OTruuuXr16NjsprD4+PnauQ6y0zY4n1WUznU61wpTC0Cdtio3UHRJyenYRs2+Yb4C+7zdyQdn8Pfjk0Y0bN3LiaYOgVkplBzDfPEVphq6vqirfThl4uHEbn0u2rFOWzIQgiETI8turorx0pPW/ArC+IRCAMJe2hQUIgHCd3uQgSqHWBBxFUClKCdq2D0FiBEQwBnIDpvPkKAKAC77vvQhoBUQQfIwxGq1AOCXRGpRSISVbkogEH70LCVBEtCKj0SUVYuqHKMKIurCGFCuFKEQFFwoVMUKqCqMUdt2gMCmDKQmB5CqQRsrXKLcoSAm0VUUhSqkYIwMwgzEGlWKOKYouiYhiTLkVX1GaDNQnQmtN7CNzAhJSQBiNNlo0B3AiMfNpBHhj+FiIgAiUyvjwL7gcX1BF+Y8XOHyJIZ9u9/5lDOJz27x851+4zae3V4iglI0+/eydX5bgRwbGzcj388YWaMglqcryzbff8JG1KZrtibWWJfZ9rwAXqxWkeP/+/cVyFp1fzRez+XKyvW+MApTxeByOD/b3rgSlPjo9fOfHPzk6E62xjWpnBAbigyeLV69sv7K/tT9t9nd2T54+3t7fG4+3vI8u+MCpsiNbytlsWe7vPzk6Ho/HHnTXrQDgO7/7uynJeDyuyqYf5kSgFKXA3/rWN/+X/4v/1ensOGspZhWD+Xxurd3b2zs9PS3LMkfi2atyzi0WC2PVrb1bi8WCWba2trp+BcB9v5zPV5NJ7VwAGJp6jIQ723tFYfq+CyFobbQWAGGOWRU5Y0rgnJOeoyQiAsKu65qqThxIwf379/uu+8pXviIiuTLA53KtGwdz46VmqOPGSm7UrfFCa52MgkwpsbBWlP5hwtdffmzgZ3LhKSCAQBIwKBFQATAIMQuiVagUaJ0tBSAKswCA1aa0uYkRxxiFc2Mmm6A3REopYEqYQERr0lonWZ+HyIIAWlvSygdnTeFT9DGEAMJCGrRGUkbxQAWmJCnxMMSy1ERWkhQWgg9oVFUWwD4Fj6LrsnDOWWuZsqprslZbazOLzrASEQBOwSeWPIuiDxyzpoYwA5AIYwy5Y9SzohYibDDzkQMiiiQWBmRNKAJDhiACZDN8TtATUFn6IEfQX3BR1vPj09fpM0DRX2gmPm+DX9eevvhd56/krA5v/mCNtRRYa0Q8eyryGd2snnMNLr64oYI9Fym/xLdVurC24CgpiQ/sGcQ2R11UpogIvUtny07Z8sqtO69/9W2yBQB0XUcCWiGA7OzsdEM/3dl+5fbdN99+azqdEoBRVBpbFfZb3/jaH33vD2azxS/fe//f/NsfI8H1y1VdNwLqZAVzZx8v4K9+/vin9w7OBmGg6XSaWPb2L/kQr1y7XjajkMDWY1F2GGA1+NPF6o0339TW7G5Pbt64nQIfHBxlMlwIIUW2Vl+5fG3jAGbR6dFo9OTJk9FolMWucyEixpgbbB4cHOzu7mqt67perVbMXNf1crnsulXXr+rCbm1tAcAwDCICgCKoQHH0mkAp8n5YLhaZrLKhx8E5fzlbOjjXBDVWaa0Xi4Vz7ubN20VRtas++LQ12bamVGSmWztuCEPvRcRaOwxDtnG5tL3JC2+8wotXNofVsDbEz5rq/EcYmTmxrjhvjgghybMJzQBJ1pRtIg2QcS0gGYEowhI3PdpEOIQ4DD0kiDGl6AG5sLoojAKMzidhRkjCMQELxCSDS4Pj03nf9wFBFaWpGmttwQx9P4QI2kBRKGVU77jvQ9v2XTu07SAiwCkEd6FYjzECMxDplCSnI4VESCpr6lKXVhcGAQAFOCZJDIQxSts7HznGiKhSSsOQmCFfRO+9tblfc26tF4koq5xlc6mMKkoIAixruGgEyGnEfEZzl1PIfa5fOl4WSn+mIZPPGZ+3/Ysf+YIj+pzxklzei/nBf/hXPJdjenGE4BHRWl2WZRReDjB3cRBFpIc+usBRKIKar7rJ9n4QOTo4XC3nk8kkDK6wNifC67pmwBh4tVpZbbz3hdYKRSE8Wc1O5rP5weF/9We/+//8v/yf/9f/4p9e21aXdg0AD8EfLXuvzZM23jteFNu7C+8Oj2ez5WqICUn3Lp3MF8tVJ6BmZ+3W9JJL/PDw8Pf/6I+v37rlPU+aaRaazim2orTerxnHm/JFtokxxul0ukE+A0DTNIvFYhiGu3fv5gz34DpEquv69PS0rut1+03kmAajgYhJgdEY0xCT834IIaCkGENu/yQiIUY85w5nEgsA5KRelv9arVbGqA8//DBLzHoXstdQFEUOnxFx3enpPErIvNTc3hcusFAuzpnsHuIF9Ot/zFhInnsiBHLexhhFEADPEYcgG/RlCCmrtaUoIBRicC6GEBGlrsvJ1mhrazwaNdev7e1sj4wijomjR0mEoggGn3xkFyUKMMCyD2cz3zsAAU4QUsoaDcwshKAQBDhRZCRUQPlIAAlSgrK02e/WmsqyzOlLRHQhMmDkFFkYxMcAhEaTVkggxqjCqNJqAs5eoSBkWLT3uZMUZJBN7oWQ2xLk9QwA+qELnGISHzh48C7GGPMVXp8pgQQQZN01UyORACIKfbE1fAnCZv3Kr3eBPwvv8ltJRL5YUXmJ43buS37GZs+hcD/Pjn/hQRaF6fuWQOlxEzlpBY8OlkD8xu5117kQ0mgyHm9tj7e2f/KLn127fmsyLm/fvj1uRk1hV8vFaDQ6nZ2Fod3ZvfT00cPVYlkV5XK1LIpiVDerdjlLQ73V/Fff+S/+p//kT6u4+KPXb/6Hv6JFapeaY4IIcLwKSgPdfzg7efzGK1e4Dau2L8v66eER2ULpKiYAAhE8OT7d2pm++96vJpdeeePNN6fjraX0VVWdnp0KkNbKDf7NN9/8i7/4i6dPj+pRtQ5hYjw4OMjSytlQ5mT2crlUSuUOTc658ahcLBZbk521SkK33NraWizPhq4V5Y0xKOJ9l4jOzo5dv1REMXqtx1UzRqSyLAE4hKTJwHk8G8/5J9kPXSwWuzvT4+PD8biZTCalrbq257QW3HTO5QpPbq6grRGRqqoUUq66ZNcvq+x85lW+uASu/yWU9I/rIX5u1nwdxQOLEED2GkUgBCaUJCIABa09SqKMAcTc4Mn7IcuQIqjFfIgxxQiU3c/EOWjKXZIVcmGtUkpaF2IsbcmyLuOmxCnxOt6MUBdFSsnFiGVhra5LhejKQochimBKyRpjNQQfYmRrS22KvAIhKgDOayoRReckF39AxxiDMCIqBSyotWJISpkQhpQSKdQajCkQJaWUpcCyyq/WmjQaawGN9wTUMSBL5PU9TQicaeACoC/4hhlLkb7I66eMdAcAECFQiIBKR1gHj/nGoPN+Ooj4mcHpJqrH8w6WGxYOkcphALPkEw2AWhtmyQI/58RQRWvVKT5fs1P+y/vfxDKbSbNZ3p+z3Yi5MwNvdnUxsmZe/8l5kJI/tPnsRZcwh9EX5yoASpYDCX5UjwEguH5Smet7E0gQkxkc7F++CiRXbl4d7e02uzu3X7ljFFUalmcnjx9+cnT4xA/90LehbUvSZ4dPjp8+efr4gfddqfHKTv31V67Ubjaar/4n//kf/8//+X+2PLv/zscfvX+82L96xybKclgACGQPZzzg9OOz/vvvfnT1yg3Sque+HBeShKOgVh7jaLorWgMpFqPNqCq3nRu+9e2vfvzwiQCQ5sgJRP/pn/3TEIKAzxFlxkufnJxcunTpXLwTU+JhGBBle3tLEgNDVVQiWJY28RBix+JFRKt6Z3qdjNKoVTK1nhR2IqCjH5Lvo5u5bj50fdf1o2aqtT46fnJ8+BAk5cyg9wHBjseT4LvoT1fL+ahunHMnJyf7l7ZjHBIzqSKEMAxDBvTmjGFZlsxslAYAZvbRCXJmIiskZEEW2PydzxNNJCK2LBggcEIEEMHfZL3+hw8GYEnP5PZyrIcIKJBIRSCiPAGIAAqNGkHXICSMkYgAtHfQdewcLXuOjIBgK6pqpQuwpSaNJYpOiRIlB90qBC8ExCkxB+GgEBQpEGIPKQESrAZnC9VUSoHTGJtGWUOreawtGHBKJYHgnEtJiDQzD24oK6sUeu+ypjWATgldYO+idzHnnavCVoVWKMwQgxhbtF1PFtGUR8tOj+ouDgPz6dIfng4nC39wstTaGGMoVcIqsENKloCCBJ+0wXWmAQkBFYA5Vzv2yBETAveK9QXRhs90d8615M63EIEYoyW9ybPwucwqfNr0bD5ybqGyNSSijSR11qvQ5/mgZ05ZjAERRHidNwZgTnChtvvckAstki+u5zl827x7Mfz5PFLBBmV94RU8//+nImV4oSR9EZhtTDmbzzM2+OrVq9OmmExGkdOs7do+Xrl2/cb1WzuXr50cHX/rd353Pp/3g9/br7q+LY2dtXOtVD2aPHr8WIOskSsp9d7pmO7eeeXGjRtVNW4KHVx3cHBwOJudLDtTVlVVNY20ZwsBAWEAWSxW21Ux9MN8udC2NNoaU5z2p9s72yer9tqtm08OZ7YovNAnT48/OOi+90d/WhTF8dnpe++9hwj5rCutr1275r1fS3gZs7u7u1qttre3c0XFGBNCzImbuq5jjIp0OOeN5As9DB1zVEoDRCI9GtfL2bK0Jak4mm4DqtFo9PjsqXet0nWMkSlZI7mtilJKknNhqJtxjCGxAyjabvnw0b2m2S6uFU+fPr1y5VrbznWljVUiicI6Feicy0DIbN0AYO2MxJibixaWn7uOz83ebE+tsTF5RPiNQpff5pANgyX/K4AAfB61GUWC+T9IwiUUokQREGqCJKXoCKg4BFGkCJNGAhBOIMjM0EP2HpFQXIzBsdZQmJIhJKGYMAknEVFr8TdCjjEqhdYa4NC2nVYwHivChEoJkIgwIJ731yoK45yLEY3R+dx6D3VVOjeoc3JeSpJSyFEwSbSlZhBbGO9g1Q7AynSvoYMAAQAASURBVPWQEi+Xrq6VD8laGo8rN7QiPBpNlv0qYjK5Z6+mxtaHy5mcZwYRnjXIRETkTFhmFtBfVFOmZ60REDMwB4Wt1dlxQ6TsPSmlldIbJy6/dY7fRhEARYwQhaMwIwghI3Cu60jKfwCMuJFdyE5kyG8xZ51u3vhf54nl9dONCErmYGWGf4ZHbH7MZ9ZDPvNnP1ctgS8AA51P0/PBzPPZMsYUQiStm6Zpmsr7IQR3tOycaBGDokttENUnDx4s23b/8tXbt+9U9Wh7d393d6+qm7JuXv3K67dv397a2rp986ZSSmJy/bA4PcGUMHn2w+OH9+fL2enZ2dlytWr7w+N5Pk6tSRtFSGez1XiyfeXq5UXngEiTWZy149G2Loph8A8ePKpLLYQ/fPeXP/zlg5/+6sMI8LVvfP1HP/khMxdFiQTamNdff30ymaxWbS7C5vVvsVhkNf+Md+n7XkSKoiiKihm89wBQlmV2tdzQzWenJ8eHilgRWyNEtFotnBsAOETnXO/90Pd9XY+qqhKRrusQFaIajSZ7e5diXD28/+HJyZPBLbRBgZgkCnKIw3x+4oaws72XG2sAMFLuhm6GYdh4hZvJkK2hCNb1KMcocB7FXLzW+VLmO7YoiqqqcroK/hNDKS7oZp8/YQAWTiAJIAoLAKMklsiJkqKk2EPoB47eGpxsFdvTpi5MU5XjutFae5e6TnxkVGZgGIKs+jBbun5gJggCy6ELgkkgMYdckeGcd5OUoHcpRg4hEagUAEEpawVUYowJYsKYJDJE5owTFxIhTCBCSNoCgU8JlWLAyBI588CRQZLIeGS2pg1CXsDg+Mgv23Ry1o1GzWRimqapKpN7inGCYQiogJkLY4qiQKVEpGkKYkB6lvTLjENBSCAJUDgzaL/41NNFxfw8FbzrgYOcl942TuLzF+3Ci8xMopBJIiTP0SWJQKIMWaJcCKOUJIQUY0YGIJHON0PeID9Qylw0T3RhrIPnlDYskc3jFz1WXFfUBVjWSt8Xo6SXvn7xLUn8qaCJs91OHJO2ZmdvzxSF1vby5ctKqbZtjTGBTJ9Yl42AckO6c+eOIFJhbly79tFHHxwdHP7dD37QNA0I+8FxTIN3VVXNly2CmkwmkCIkDn2nIZ6dHp4tzrZ290Trg5PZxw+fAKqirhAhJY4hMEgSmC06F/FottjZuwKiiqKsR5Nl21+5dmO16hThk6eH733wRAAA9eXLl73rv//9/5C9J2GIIXz9699oV32GaOTcyOPHj8uyRMRcLsyUlYx/ztvkVxBBYgLmMDjX9fOz0241Xy3OXL8CgFwprus61wHbtk0prUWMmQGgaZpc8BWR5fz48eOPjw4eLhbHWkMIvfeuqqqytLP56ZWrl8L56LpVTkjlEnZGX/N5G7yc3CTUIGRNSaj5XOoVAAQBCAWf5Yuz21iW5cVl9T+pNVyPHK9lfkUCUAgKQCFoBEIkybBEWC274HsFwWrUChSAd8N8McPMyYhrBQoiANCJEUErU6BCZkAFVWXL0qYEbpDgmRnp3EWIAUIQIqW1UkhhYESsKlsUhXfRJ3ZBXBDnU4gSM9oFJMYIsm7TKozGFFqbLAuWy0QimMvNiMoYG7z43g89D71La7CUyopHSpkMSEgp9Z2r61pr6p0D5GyXtC3IkNWkBAAynpCz/UjrWjxwWrva6yXxpUNfxBNky3J4+Dj4bnv38rlbG5mZWW+U3DfzJjtrkENIBkUKz7M263gW0AdvjNHaZMsFQiAZIbnO3GXYlKz7jeU03/MFELmAms42Wj7dHXxTkdxs82JE/9w+nxtZfPziCUPM7sNnqDbkCD2z1txqUZXN+x9/ECMPg18xN+WOLuvDo5PtS1eXq3ax6nbK4ufv/FQptbe/Uxj14QfvF8Y6109Go1U3LPsBtFkOQ2FsUVRPnz5+9e7doe9PT0+F1MlyebIa5v0QGKvR1mzVJtnEUMIAB4fzyahUMTx4+Hi7qQjx5Gy2e+2WC/G1117zg//g/U/6AWxRKWVfu337//5/+78uFysAEzmgAmG4fft213XT6XQYeqVUCKFt2xs3bvR9n4X4tdZN0zi37nmWU8mIGEIwWvswiMjWdHJ2dnJ0dNR1q93dXV2URVEYo/q+RWPLci1ph8DG1udrraQYmKMQrdoZYkrsFovTZjTxPhwdHfXDclQ3hR01Vfno4X1FsFzMjobh2rUbWhdZOCeHySKS6zwZqJivVJb/yidKziEsz2WZ80Q678/3OXfJS8c/hjuZ7+AEoM5nJAEioSZUSAQMCJqUUri9RUojIiaXfOLEEiMHByFFHyIKlCVZa1FhTNL1DoDIkKGCjGdm7yMBaqLIjAiEuVyw7v/BUVhJhq2klE2BDiG1bWgqFOa8migEIMhShIjK+5hBrHmGhBAUmXaIRSHWGkQTY4wxGaOssUPrut5zAi9RKzWeAGmyVoUhCyBGEcn0GSKtyPjkBMF1PnJqJlslGRGxBMIxnyUFgueVZQLgLKGGmjhuKvTwWXZARHS+inldBYCUwuHBk3Zx1g/DRn84W8A8YzYhSa765fWfmaOXLGickf35LDCzj6FpmtFopJUlIpG1qCcCESJsejzhGgCRSyrPz7BzRFh+LOdvEVHmVcOFnCZizjs/7y2u94Yb65k33iQin3XFuri9XIhcSEEuByFhSiFFMUqNx9v3COerlalqz2J1cXB4NLt5pbq0/+6HH4E2O/t7H9375E+++41CTNe7wKmpG+cGQTqezR8dPDWk5vNFU9WmqLrQjkaTsiwHFw5P57os3vnVBw+Pzj64/2TW87KPZ/MWAEyhORGnpAD7KElwa393srUd2vl0Z2fp5z9556dXrl13/bCzf+NkESOAuPCd3/lGoegHf/vXSmsQFVMAoK2t6WQyOTudV6UlopDi6enptWvXUkpFUWS4TFEUmc7BLMbY1WpVGAsAWmuNMDgG4P39fa3p6Oio790weHGpqard3b2Hjx6jKY1RTTMuisooqqvGWuuZBtcNzsXklCrOY9WYODLHoeu7VRuia4Xu3nmjH9qz2cHe/vZyuTw7O9vfuzoaF9k0W2uzws0mg4y4rnRpbYjWPBYmRFy3FoDPMl57e3unZ8ebifElx5dJsPxmY2MQ84gimDOHJCg5KcaEphjVKSXfD70LKYJSbLS1RvW9UwqBUxL2LoQgcF4PbHuHAGVhkKj3kQFsxqWD4nMwBp5rLIbEIGAQygJAwPuoddQWlNqoq6zXGWHI/2XzEGNCXKv8CiRrgZmd81prpTQzORf73hfliJMzRYZtIyK5EDyH7a2tYRgyS90Y1TRNv1wAQJBYqgKR/OB8EBbG4C/vWbX0mIXG12seAEBC4MzS+3KXSRMCCyAigyCKVjh0bXDd4P2zC3NuMbXW6pxaD+su0QbO29Tlpxtq4brJC1HTjNpVo7XNIQwzpySmsNnFyOY1W9Wc5dm4nBvrRkTqvDM0niOoN0CQiy7hS/KA61eeWcPPHRfffe7xxqFIwdfVOKSU1feG3tvSxCSjwhaGThfLrZ3t1aotq6YPh8ENR7PV6enp44cP9vb2trcmmtRidlpVVeCUOyWdHR4uVi1ylOB3dqbz1v3yg490XT49mR0tuqenCzDNdO/SfPWIkw8+ghAikjYQ/JODw+1m93Q+uzEdW62nuzsPZmc+xsLYX9x72DGINiD4yq1rP/zbvxbEmJJGAMjw/7U+e9v2WmOOTSaTyXw+b5omQxxEZBg6a0ul9MYxJ8LEARBQ4xB87xwZXTY1aauMzTneTHP23ocQiqJq6lG7WubpYQvLHH3ol6uz+SwZIkFyLjQWQURrParr+bzfnu5NJpNHjx4mHoi4qoq9vUtNs6W1zjyZvPpuiCiksmgbhRByGjRjdRE1nHPg6IK5E5HsgLz22mu/eu+Xv5Z1+0cxhRcKKHLhtQGAQEjAiGQYooriJXx0f6YAFAEB5E4PEINIVNYapRIH4RRD8hGUzhBu45NLApEBlQLiuI7k8FwHC2hTy0YyhEajsdgUStgTUW6EDWkQAeDzwxUSEGBJCbPqV4oJUiStUCEAWFM652IUDkGLiKAPHAKA6iKzQcpJW601YGAW771zjtSaNfSsESYhAIyqEaBZdL2LoTbF3tZ2pQ+ZJYuMASDjmgCuUFIONwn4iy7X2sSklPLCs66bsmiCZ1q1WaVdUpIk5yjWDLzILKgQgjXPxKiz55jnSkgxuHY5VyK5smwQMUUOAmVZZtOpta6qKmeyQki5SLJ2FRFz5QThGV0hJ54yCG7TA4jOhebhvNb8bIJdmLUsfNFo5rE58osuQ37xuXTSJl9Zl2XZlGen84ODg6YZ+Rgq0zgeSlsoAFvWp4v52aLd2gaJy6YsP/jk4c9+9rOmrgeGVe/7bhWd98FNRtWy7bbGk+V8YRSC97euXWsH98Mf/7QdnCY974eHT4+AVNsPT47vERgkDcjC+SqE/Z2x0aKsWa1Wc2RELEbjt99++/79hxzxr3/0SycA1kLvfvSjv/+bv+5d8KB0TJGIGGS5XKaUdnf3y8KEMDjnLl++PJ/Pc/Pivb29XKmoqsq5IAIhhNzDgDkdHx3vbk+NMc65p0+faq3Lot6aFIvFcjSaLGdni8WyqpqT+cL7arVc9r3LPJa2ba1gVVVKoVIYOR6fzGKMpDUze+/H9Sj0/Ycf/PLOq28dHBzM5qfL1Uwfy9ZkZ29vr7CloMzn8zxtAMAYkws7xqqh98bYGLmuS+d6a02WPLh4HdcRgADQOjd68+bNdfDwQmDxn3pQdgoSJAYEQgUCIjEBJNFRKxCtoNCA61AnAUjbO4UiDHWtRpO6SuJ8XC7DEF3OcwwhhAACQIAe1pVLXJ+BtUEE4UIpYzRAZOYUwRYcI4tIqXhtZITgPI0lIoSm65xSYAwpRcMwpASTSTMMHRFZCzGkrospQVHQZFwHWhkCEc6yiShU6CrDp/I1zXTms7OzUpsYuagr3zoowdoiLFfOi/hhtxlV1oQQwjM9V8q1GkQJAkqE6YtXL42iEWJ2eog0iKYE1io6bzSKoASBiEBQGEXWjYkJlHBKISKi1QaAMzBQ5UWF19aksnWKKa2piJTisDaySnXzFgCUUqhoNZf1HI1B1olcJZj9cGAADc9o9pm+g4hlWTb1JJswY4qqqauyQUSforZKKWVMoUkJS0oiMTFz2dgQ/NrqkcrObM6Fwdoa5h9yDv1Jz6xhijIMTmudlWZOTmcc0+1bNw6ePDpd+v39YrWYPz56/JW7NxareR/sousfnZxqa4rCvvPhh67r9/Z2jpft9nb/6NEjs+5W0o+qOj4+aAo7rUbih3nba1M+XfYny14GfnCwOm7T0Zkfj+qm4NYJMFMWXddgCTmGZT8sTmh67UpHqlEG+gFQjarR4WzRJlBap641xtx78HD9w1MEACLNUQTC/+n/+F+Xlr7y+mu7u9s3L1/twF+/fTcwTSZbJ2dzY4oQQkW6KvQw9FYJcN+6gZn7YXZy6i7t7Y5qA8iECjUC4Gi8VVq1EDk4PN7b2zPIkIa6tgnScjWYqtme7tqyQIkxOCLa27/s+mXXK6tK1w2Qojb47q9+tn/pUqnVr979qYAvS9PUk7qaaq17N7PlxMewO95noaIolu1iazJq22UaqCxrRBqPxxuyswgnH621pKjrutyvCgASJ0gpA7zvvHrXWO19LIz14fNVDhHgnAFGIht34+Xm89fILX7GJgwAIJQjUomcEBBAISACSyQFSpNSpAgFSIAYSCeHAKAg+mQ0xRCWy6At+gAxCoMI5nZ7ACzn/wfMs59QBDSgzXFDAkBZpVRqiAkhs8vTWmy87x0x17XNq1FtIyZQBiNLCqyUiS7MZl1hrfdeaxLBogBmKQrNPFCCvoe6MU1jU0pKY2BPBfAgMQUAKEsbo/jIrMH72B5D01QnfYeIptRB+GQu8WT1nUv6o0PfGjjqQFATaU4OFaRsqoVJIL0Ufo85fFg/3xSIUYgAOKIwCyIyrvGqIgLCkFEyOYAF5Byky7kQOci5bwgAAC6EvGWWGMtpHaW1pJSR1swMzAzrfSIqWJdWMuiXsl0NnM5jNE3EucWBiHRdn80uIhprzyNuUWtraLTWtClyiWQ0BiKiVlrZ0WiU5TH80K9dUY3ZPcnpW63qzblL0e9sbyml+r4/m8+aptHWnJ6ePnz4EAAG74BUjOHkdFFf3Se0CAFQnj45bpqqtnXnhsOTY0BZLBanp6dlUSmljs6Ox3UDAJW2TbkskM+W7b0Hj52okHi+mi9WrQ8JALquAwZjTAgsfC70pCmkGMNaMd91848//vjajeuPj4+SLopyVNhCRPhc4er8JK/7FFttQgwoSZH68P33Pr6HPwOVBCY7e7fvvj6Zbn/1q1+dbtXtarVq+6aqq6qaL04eP34Yk79z55W6rgno5OSk6wbn+rqut/dG7WpQ2nZDYBTvh5zQ0KQ6F7z3JHB2dlIURYguMcfkZ8t537UZ3tC27dbWdLFYnJyc7Ozs7O3tzRaz27dvP37yCSep61ogrdqzGKO2S8DYNOVq1fVDzB0CtNZaVX3fW2tS8syc+w1prY2BlGJKWSBaYszrnxApABmGYXd3++7du++9956IEFL6R5CxebG49+sOWesNA67ha2AIEImZo3Bcw2IgCUwntR+GEDgyKO2zXyaIRhGzsHDiLF+9Ds3jsxj9PH0vkgAMgUIiEjovVyKub/DgIievtRFI7cozQ1nqYYh1XRhjVquV92INEmGMghgAEUlzCgCQ5dxjzH0pgBMJynI5GAMCUJakTWmMEhFOIkxFUWhtRVTwzrmegZVSjGCUNhSAo1b2yo7tRCvlTpahIJHEnIAJlJCs6ypfcPL1Rc3qZ5aSJGMDDREoRES1iYLXSMC1B7gBu2y+CRG1rMssSBijR0SSdXy9RkIACCOCIhERlHMnHWldV8klZkRQmCgnDiSDtCEvlRlaAxDgXI+aOQ6+29BRRRIRrZOVsGkMhJmhRUSARER1XTdNg9oszk7zbZPhGs45QCnLUpiuXj8/WcRDt+j7frVaXbp6ZT5bosilS5d2dqaI8Ojp0XgyQpTIkBLMFi2TEU5Hh8vyZjN3ixBdSBFRfIj94FyIRLobkgttClEhFUbV1lil+nZ59epVa+3pbN67gKhIMwKiRA7BElijtNYoCRF9jEpjWdRt25ZaaVNEhsnW9rsfP5qthixTaIzJdLfNVcgruYgYwqq0VWG6zvnWA1FR12dHT5bLxXy++PHfXfvqV7/6+7//+5cuXXr8+LEIb02mDx58MhqNNCmQhKQAs7aoKGUQlHPBrwZbCBEN3nnvXe9BBFgmzaQo9elsxhz63g3DIJDa+cy1CwbZnu4eHBydnJzU1Sinkmez2eXLlxOHxWIxmUybquo79+jxx953W9PLikwMPUiSBFU19tEjGu84ayY+OXi0WCxu37pT2HGMSds10aAoipyT2VTG4Tz38nu/971f/vI9wfN1/bc0fkvpRb5YaM5iXwCQBFGEkSJyjlcVglKwmHcIYAwwgvdeW4OKEAAjIK69JD7/Q0DepAcI1qiPjKhOkFLKYGbJJUtSpFQKzIIpiDEKQQ1xIIIkyqjoIw++R9KmABYBpUFiAul7KdgbY4Co7QYfvTFGBJKkwBL8EM6bx6cEPrBKWQ0sIIlm5V27SaBlyTVGBCCtQBGihHFjatClAl52WyN92sY+QRQoEKKAX3fpetm4wFPOm2YGExHLuUAOK0TM/D0RQVxX3+FcgoklCXA289kNjAQKMnAJNlIiG+x0zltrtGvjy4Ln6e0YIykNzwpbSXI7RVqHzBdKwLgGTpyLdYugMKcUlc6EGIWIIIlTeua3AvjkRNa+KjP3XTufnTFIcF7WvQr1xmoP1mpdbM7Qx/c+zJWBvd3t2cmxiBDiajHPSQAXGTtHEOJhP53U21vTJ0enq94VhT49PTVWE4FAVEoN3gmSC1Ek1PUoxuiGmFCSJBdSU1gw9mS2vHLliouSGF1gTokFLEGpYDIZ5Z+cHVhm0dYs264or4N4U9LBydnB6aIY77XHHaeIAIogXChJrRU3iRLHSVMByGq1GDc1F/ZP/vgP7n30yS9+9avlsrt2bR9C/86P//beB+/+7h/8xVtvvXV8chijv379+unJ4Wx+SsKnpydXLl3K4oExcoxpOp0en5wdnzzZ2d6bTMaj0UgSd6sFIjXVqB5r53qFEqMPrgWAwqBzgwvp0t5lkNS3w87Ojoi0bVtV1WI5a9vFeDyu6/qjjz5q29XB4f3p9uj0lKbT3eVqXhYTYWEGTmisAlLGqn44Oz07OD4+3N3dGY2mKYL3oSzLYVhIZjErlTkFMUYiLGx1djb/xje+YYzh85n8a9nEz222h/IcbAsynuzL7/qFsTGIAIAAWUDGEhGJVlnqBnsJSqmqtDGGzBoSkZQEEueyKxLkNptrIqIIICDg2v9E0AhWUUa8pSRAoARjEuZELGmI1uoYY+6oRwSZUKwLHSI7l8pSK6ViDEoBi5C2ETyJIICktOrBxFQwjkeFj11MaRi4GemUkrbkQwox+JUYA0ZjZY2PYehkPE65ckigAifvE0IyCgqDoBA4gqSRVbs17E4qQj5eeRa0ovrEQF8MwNbwqUwFAQAjM6TwTAk4XqyKJI6bmEupjJ0mIgqJIds/RKCcNuQM9VlbNxJBlnNvP0ESkE1NA88L05jp3Ejr7jgEQoREEjNyIvd7yTNVACQlOV/hsxPJwoSkcitWEMg+5IZ+EuOAiABKoUIUwJg4xRiNUmvjngIAKESU5IfurJ+/9sb6RMxmZ9Za54azs9NVt2yqUVZ5cc77xEpT7/zWuLIWnh4dlmUpyCez46IqdqbTs/lCBEKIdC5XlSvhhF6RJoQctQXvOkl1XQ4xRcAQITMEQEgRjyfN9b0pIs7m8xA8CpOivF7OV/3T47M7N66cHD+9dPnq4dLHhMtu0Po82Zq5Dczn+gvaKNKGtre3hYPrE6ICgH/3H74fY9zZ2e77PgZvrb2yv+uc+/Hf/7dKxa+9/Y1fvvdu16+0gtV8pg0hibUaQLdtu1isxlvTra0tQDydPeq6TpPJebrVYpaJWYvFgjn2fSuQkDiFWJdl37ar+VJrGo1q51wMg7HlpUv7WuuHD++XlR2Nm9Vq/uDBAyJIse/aGDlc2rsUfTBN4d3ghqCtAqGiMKezJ/c++VnXzxMPT55+Uth6Mt5HUES0XC5j9NeuXbPWeh8INYDEmEpbrFar/f393//9P/j+X/57rXQ8z8z8A6zW545sjuDXRymuPZZz5E1ObgsQgnhmkZx8ikSUbVPbtjGC1lBow4CRPa79QWQUFgLKEDLKUoqb71FZ+wE1GUaFmZySBHItVYRJwJIIQoxpTRImicyrnsfjUgP0PsYYiaCqlE9ALKOR1Vq3q55ZigKU0l0Xq1qT1t5HXQAqsEZJ4sSgrEKORIAKdKGNYEqONLk+cEQglRL6AIUBY8BqBVoNQy8imqApAYGtNpo8R9Egioieb930GUPnk3Exm8jMPqXKNrDhokFCpBzDoiIAWfdCBAFkQk1EprDrE3k++BwNk/0RQQzZ3mGWI0/5DMp5xjArdiSOiAJrABSwILKgcDZyudv0OcNPADIU/LyQzSKABERC0QfI3IP1vEFEQSRtFADQ+tvy6VGImFLYoHbzyC7tunEDAACsVov81DlXVOVyvgghlNbWowkBxMhA2Hvft+nKbnXj9i1+9JieHjRNM5+fMSMRISg8r5KvZYpTUgZprfa8PmN93xtTLVbtEHzwSRJoTVVpJ+MKmRnBGi2caQZSFVZrHbz/5fv377xyg5GeHp8YW/7y3v3TuUOEyWTkU0TM53NNSxeOnoGFDg4OkGB/d0cQrbHeD4ZUSoyI0Q9G4XI2D5yuXN39/r/9b4LrJtPts5OTu6++MjvtOTKROj093tra6rputVohYt+3Wuu93UtnJ7N5WkiEq5evJBBJPnKYzWZEoDQSoTFqGDrF5KML0aXgjEJj8OTkoB6Nr1x58+OPP66qarJVHxw+Xs4XRgsAkFWL5WzUVNpg17V1tUJUtiDSeHDweNRU/TA7OTlUJrKE4+OjsphYW9fVaOhXpycHMfrpVtM043a1wEZsWTjnmEUpdXoy+9M//dPv/+W/jynCZxHVXzY+R+lhg+bZhMsbKNyvt/8LY/MBERCEDJBR+S5OCMCKIMKAOb3IwAApSoxMqJMWFkiSEkOUBAgglKvoCExAGy5gxmxGhSygQAhQoVY5/4ZQ2AztBFIkwBzB+6AUAKN3zIzCQAiKkBMQYoiMiCwpcu5YoKwtkvDZbBiNChdiU+luiOOmcDHm+nJVZTQeu+DLsrRVcjFGhuASYwJAQSiqWgkrpXzg3Do5BE4IbTcIKKth6cFgIhGNoD73jK6HfvF6JIkhpQIbRARAYkEUzEATEdIIROfZPGFBQBHhjMbM/l0UlvNGPJnIpSCDMEWAAZAFXEYPAQBzFMngGI0EnM7tLwJiFObEKSVLClHj2vvMLOwkIIhrtBQAIIkws5CkRNnIrss5+eqAgJg1eQZTZJ8ipHXjPdlo7eZCdnYs1aeIKNbafLqstYt2VRflZGsUXWSOo6ZsnU8C3qEmnM37n/38VyxgjJ3P56XVKQkAF9qQwmx2MdOGFAEpU1hBCDESoNEmctAiwzBYWxClmJwABBfToFe+t9Y2ZUaW9FnsSCl1/fbdk8NHP/jhT25duzT0nSon053tx0ctC9RN5c/mSoEIchKtdeQkMX33O999+2tfvX/vo//wl3/54NERACDAlcu7VVUTp6ZpkFlEXAyj0Vj86uru9N//m//mD/6z/87lK/vD0C2Xi63J6PTs1Pfu+rWbWlNVFSF4750yZtxMFrNlU1aj0aiorDF6sVwwR6sL5phSCiHZyg7BuxhY4eX9/aePHyeJVWHmoT84eFxVxWI5v7R/JaXY98sQV+PxpOsGTGlcj7WF1eI0xIVSqqrHBfB8vvzo45/tTHe3pnVZUdsNImBL7f2QuHchPXr0cLZ4Yow6Orl/Nrdnp8srV65ere9mDIfWZrVa3bh57dvf+vaPfvyjX9dCffnxXBbxSxrE5zd7VsvOweeamyuISQgFlMHKFhn8xCxD8O2QNGFClZijQDz/PAAjZLYi8FoylQTYSe55wkahBjEEGBIhKlDGGNTsvSdSyAJALJwClNaQpq53SKA1Ga2JKEZPWsXI3ietI5xzPUSSMWq+YFugMPjAwtC7iEIA4IagtU7MzBC7GNkrZVZd1BrjusIlKCCoWDiEkGIQER8hxRgCEHnQxigICAlJgRiQ+IVVlPOawwaCzyKShAfnidY4IiIysIbpMqQLHvUzpS88ByH6tO5NRUrJeZPPTZ+XXPtj5sE7rbUiygbUkLLWKqWMya8Ir8WFOMbkgyelszpODhRSiiklESpKnQl/iEgEEEEk5RIJqlz1liQIEplZWFBMrnIyrll9GdKZ13BZE3LWjF2ji4tTMKuQ5l/aNI3vB+EIiZumuXzl0r37jyQlkIIFgo/vvnu/rNT27m6blrluBgmYOKYEAByTIi0iYMg5r4wpTTmfzWIMRVFw4tziazKZMNgunYYQqsI2o7opbErJWhOTT5o4ikKJfnjn57+oDJY6wg3a29t/dHh2eHgoAEZBVVVHh8e5CI8IuRT+3W9++6tffQMUpHTzT//8z/b399tu+Ou//sHp6bFtu8t72yy4Wq2aptnfv+S9D/1qfOny/s70L//Dv/uzP//zra3tn/zo8eys2Lm0LzGxxCtXri0Wq0zjSymWxlhlyrLO0fFitVy17XRrjFW1XM45pK5rRzRywccYy7ouddl2y7IuVqtlCM5YNZ/P6roiorOzE20wsWMJZWnDgNYYF/uj48eEVV3XkYOPy8PjpwdH951bAl3u+nY+nzfNeDSqE7sYQ9ud3n/wvvPt1tb48OiBc2Ex74oS9/dvaW384IioKMquHf7kT/7kZz//aUy/Xi3l8yolG5fxed/x16+srA3i5oP5NiSGHFQBKKHIgkoiY+wF0pC1torCIqqMMOk5nn8/Qq4EAICsizI5yAICSBCFz/vnigBIBGYmBq2BUHlJ3ou16GNCBmMoBg4knFwWf+26LgRflib3PlFIpVVENAwhQTKWQFLfBa0gRdC6XC2H6bTuu64pK+f6KNlNgqKwzNx3sSx1YlBrfiVGgeR5GJySEEBKBK1062KIEAIUViR6iSAKMpRIo9gUX36GNzxlydEigCgNVWVJcBh6RGyaRikchiHGqJQiMiH0KSWtUCuLmEGIqDABgFKm0CYEOu95ZjhFrQkRIwc/OBBiAE5AQBw50y81QkocQiRS+Vs2oG5ObJDKupHMxl9zkxNAZi6LRh1TEBa9Vi9jUspandYZQ0ZAhSiiCAkJA4Awk3co8AxjKFTotdVmZgVg8lvJt/7ZGYxZ6ygr8XoJIVXFuHXLxarbnu58fP8RCJD2HNMAcPXydDlfdINzDo9OW6VJK9zf3jaYFKAPnjVkpejBh24+OM8xRkKI4LfGI4xu6P2y7bf39opy/8mTg6ZsimJr/9JuP7TdcpmJkt0Q0VifpEc0KN/9/d/9u7/5+yvXL1fTa4dn91HbesSnZ0+/+tZrbdsuFovrN65+4xvfGI1Gjx49/OGPv09oHz89fPXV187OzpTR/+yf//dWZ8t//a//9b37j++8cmu0NR3XdmhPx3XdJYyRUVJj9F/9u3/7O7/33e293cOjo6uqZrvOhwxDNwyxqUchJF9QWWjvOk4+BNd3i9OTo6YugJKLXRwCogTX12VxdjYk53tAVdjehcH7THBaLk6r8tLJ6b2UUt/3VTnpO6+UGk1GXdeVumrKKiRB7pczp/d2h26mMRENDx9+0LWrcTOazxcEtLu7e3r2cbdKhbWF1acnh2VFuaQ+OzsmoOhDriwpRYdHT197/Stffeutn77zDpFK6+RhOleeWyOzGdcaiEowATCK5nUu8LzTCTAAI6SMTIS1GD2sC7agMlYx+zfrfRPAmiv14nhmmp9ZVb7wdI3MyE2X8v0/OGQQAXCSWCQBeBEDmODcBG4sNaBhTMAMJIlJKNdrBaQAqEARJCTQtK5BR0QfIgtwTFqbFGLfsVKg0RZad90A2JU1DoP4GIjscuHLUivNKLGobYwwX3ilBAkF0TmHJLaEyF01Ief7VgBFWaX7wZkSEiZj7dmsq6qisrxo47JjTmAIUsTOiy1Ja0yJS8Ld7er4uNvesWdz35T6uo2cjMZuqpunbbxw7taMYHmWwZBnmbILp5sQlVY6K9n1fZ/LwUVh8nK5pmdgRvAoIlRKB+eYYWCPqKwtx+NxiMk5hwLr9i3IICTIMabgU2nW+IYN2UMktwBPAJRjbu99jCl/e1NV+GmpruyWOucQCAmz+4xIqEgQnB+ICARSSnyOkMqOt6a1/ASKEObiyZq+I7iGEWSYBQtnuYH1GWTOPJl8vNbalAIReT9MtsYhJCLgKESkiGezhfeceJUACSlG5gRt21oNo7pSSsWU+r4P0afE0QUBpZTilPouMC8qo7tFFyPY8XRnurPqvAIMIfTtYtUuUojB+xDC7u52iAmACXCxcEqZr7xxZ7bs3/3VL8tSdYNvmq3j4/ntV24uFosQ9pqm+dWvfjmZjDLW//j4cG9nslzNcsTdtYvk+J/8k7/4q7/6qw8/uv/WG7dRaRZVVKOigtVqoUmNm+psvvzFz3721bff3p5sAbKxajabVVWlDaGTsiqOjh/07Wpvb+/Spe3lcvnw4cPRuL506ZJzjuNwcnzWjEqRBAratl0ul9Za51wOoPreiXQZB4OIWfmmKAo8x97nLswA4JzzMa7aJVEZghNhgbRaLbRekz7L0obgDw8PVqvVqJlaq5fLuXN9YmBmrWpE7LrW2gIAcg+ssqhXq+4v/uKf/OSn7yReV5YyAdRa7f2nnAu84OAlEHXB/5MNaQ3l3GadQ9A+VWOWTau8da+336Bsc84g2xCx831aFFYQvPchpAQgAAbpxXaAubDpM+OAAAEyDgHXtcT1faXyAwIAyOpHiMCc71kwBgBgGDpdaFuSCIcotlDC6BPrApzzJSokCCFxwnNmZ0ICpUkrQWQQSB45aQL2IQFwjOBTRBEmQQWoaDUkxxQRQJ9LuyIAUhD0PkCCInJZQlWUvoohgkIYBp7Wuvd+Z/wFJ3KtfX0hJkAA5CQimCW2ADLuci3Fk1LKCJWsMYjEiYPzLWpSVhmriCBGPziXCyaCtJabFkRF56CcuKmu5Ag6dywCgKz2syHAyTnVL2tbRk5ZHy0/TsJDjAkkgbiYOjcMKfgYejckdoAx9zgOoU/JMfuQBgQmBWvyn1K4ToeKC8HH6ELIDzbSOPiMOA9lYaxRCCwc+75PKWRRA2Yej8d7e1ukgJRhwRChd0wae5+cj5lcKQJt33eDB1JVVVltNKnSFk1ZkUJjVF2PSCkhGHw6bUMXwAscncxClKZpRuMagVerE6NBJFlrU5QQUxI6mw8hhP1Lk6OTs8GFV+6+OhqNhiGNRuViNi8taaKz06PlYgYSmtpqhVlrzvt+NK4kucKgtSQSYnJHp8ff/s7vXLt+6Re/+iRE2dm/cnAyc85prSeT0ahuLu1sa+b3f/7zV2/eHtU1AWyNx7PT0+V8PvTLo8PHRlFVF0opRBmPm8nWqKqKpqm11gBUVdXu7h4zhJB9bYzRp5SyZWzb1ntvra2qKqcLMj1rTdBEPNdoQFCgDYXgnG9Xi5n3njnGGPu+HYbBh2E0rjM578mTh12/0AZCHGLywzA457quOzs7a7tlWRYifC6Xohbz1a1br/zhH34XELQGAI6RjSm8jxdpmi/alATPWpdtXgQAOscGbj6cjRet7SBubjz4wqrniwOfRbo5lYRZc4CAFBMRiMppdY1gLuidZvTHBRHRdclREmdmnkIgEFI6MicGJjqXDKcQIiAorYlUCBACgAJlldIYIFFhXIK2BwabQPkQtdWoCBRFkc6lzsXALKQE0ZgslMUpQYwQPMaAIBYoy68BM0eGwJIAfExnbWoddQF6DxHRn1dr2y4OA/gIgwtaAxIUVlnFtkANcXukaxX2Jvazz+H5+FQ/5YxTSUliRKshhJAtGgLFsFbNBI0IQkTakNYaOIUQYkyZgKxUAUKDD0PvmUVrnR1DJNGkNvqsShExbjRy8ov5SFJuSwPCIKiV1iqHhBfVDDfHjIgM4LOCc0rMnCQlQQRGisCCiIBJhBNzLk0nguSjIgOKUClOzJKA5dwIM0hSoEiBVoQA6wY2AACQAVb5NJjSXOyzMAzdG29+5fvf/7vzbq4iwAJaIEAGLxAxs48AkLz3VVWQQqUoZ6BjFMYAaFJ6Fr2QMoDctv18MaPod3emTV0SBOfc5TuXnx6chJMzS+b46EQEYuSU0s/e+VVRkhMTEjOAMXpvsq80BdcrEFQSXJdSQomT0fjx0yfj8XgYhpSitSYFLyJVbYe+bUm+/Z1vA/z9h/c+uX718t7eXrs43RpPVqvV/u6uc+bp4aFE/PHf/e3dt946PHqKiF3XjUajsrJ91+/s7IrUiLhYnk6n0/393fl8Np/PlVIhJKXM0PuQWCJqbeu6DilqXXrfylqzw+QUcwihsgWyhCEolem5QgKGVOBUkiqKIqYUXPTex7T2Lruuy5D+DDQhBSG6w6NHIQzz+WwYBmOwKKoU8f/P2p8+yZJl+WHYWe7i7rFkvqWqeu+e6W7MYABpgCEIDmWkSKNMMv27/ESRkswEo0ESNQsAAhjNAkx3dffU8rbMjAhf7r1n4Ycbme919TqU3Gp5S2RGpEf48XN+57eEEE6nd8+f3zq4GYzj0N1tL+flv/lv/us/+ZM/6Tu6EGLPZvKf6xq+sg3po5cbAvkvMQh4Koj2viPsBdHt8Q+e2kb8AIb8beDLR+NlvJZCh26t11oTFwSOTADmZgSPOhZ/ZCNfe9i+RnEGGBhyYOzRHQDqToBu2BwiOSOaQWsQAoYY1EzFVYEZkNlcRK0JtAqITUHVgBMgBwNQA38vAXQgRGSpxQFyghCCGmhrVRsFdHdCcCQ1czE1KK2WCuK2qgYAc3RpBIDm8+YEEJmrODFu24YOEaGYB4KEesyg8TdtUd6/m4iIDEDSDMBy8ib6FJb2VK1cPEbmGJgIwJAph2EE3GpxQHVF8GFIMcZtrdu2qSGS89VDGwEgRo4xYjNEVFUVaV2tjKiqSNdtTN9KX0N1ARTUwBzd4Ur/ZmYOjECq5todMOhKpSJQLdYqERF3Xo4AIgfcWttKVYecRk4ZzcGViMgQuyQRkcmZHcncPeX3e3nR4t5ZltwcmisjuhkRlrK+fHb78ceHL788MzMAm1NrihSYQEQAkfoYYnCeV0R3UzAlTiJiBgpudX3/XjCaNgRMiSMCMjw7Tt/59je2ut6fLvcPl8uyicO7V29TSlUqAah6jAEp/ru/+NFS4XgcY4w//enrb3/nJaJzwG3bAHbrOscYa5W6tU++/Q1TYOQxj621bkvz8Scv3r27++KLu//df/lf/N//h//r3/zop/vjbR53N89uX3+5/exnP/vGN77x8cuX0/54Ol3+7M/+7HDcAUBKYVkud3cFkWNiUBjHEcDu37WeRt/KeillmiYMfJqXadrXup0uF0BT1cgCQOM4dB6CiJkJonNMKHp/uqQ0xBhVW8rRkLRWREOE2qxWQ+CYcMrDvBVV3+0mM3v37l3OuTOxWltP53dqKlLdMaWkauOY13J/d//F7e2LVkubS/8cfvb5zxwv/+Sf/sGf/MlfDCO7sYinONS2fFjlHgviL7nGekFEAHJ4Mgn70A/iQ+Mp6M7+jwURfhld51ddx+99Fh5tBQBAARKBAXayLYOTg5r2uCRzQAPHviy5vhoCBtcIPiCMTJnJyRX9XKW/JAPvZJ0+STYDLC0jxJiIxFxLUwLgAFLFETH4UgQRmKFWcaF+y4kxEFJrTZoh2VoFDGLClIeYsEjrr0kebU+b9ghQMADVR81Fp0MGBPDU2W0KFNicNpEQqVRlBBFTBmZurQxjepD6y07h++Or6fLurgqA1oMZH3lwPdfJtq1Uafv9noiAsDV9GngBmYiktW1duq/BtEvgKt43JU4E4KqiBH3koaukrwdH9cieEJ44j51k87SqJvo5UmTnxCAiBzIzQyd0ADBTAUVDuO7OOHHiEJ4mbkos1trWNm1Ruj0koqsTBiJEIApMhOhgzVT9A76huwKxgZl5VTH1bp8XQkCTdZv/6R/+47/4//7o1avXW2lACNCNM5+aWeRATNDUACgEJHB1WLZKoUfrer9eiMhNwa+S8BjjJ89evHz5nIj2N8//9mdfvH57/+lPv1AHQFzWOl5Jc/KP/8k/+clPf0Zz8ybzvD6/vb0z+L3f++FuPx4O+3k+vXv3bhx367qe39wBgIikOGzLUhFCCDmldVuZLOdUa/2P//Fv/vl//sf/87/613/65//2f//Hf/TpTz/bT/nb3/3uPM+fff5lbZ8dj0cYU9lSbVspa4x8e3u7ruXh4U5KDZGGYTDT0+n07NlzDnB+81CkHI9HxB0z/+Rnn97d3T9//mzI+QkYYY4dKe6TQIe9lqWqkA+kZswObhy5qdq2qhp4CCExM4CliIE3psh8xTpUBRGn3YjA0zQRWW2l1G2Z2+l8V6WpbU3WV1++U4X/9J/9Z+fz/MUXn71++6PvfPfrP/70r969VW0r01BbJYLfKF9+IhheB+FreXtchQIwgD62gb0ho8emEhwfgcOvVr9fsw1FQHq08HO/6lzKBjEaood+PbkBQER0AAJXhOBXwu01780sgGfGiT0jkDZEDIyFXB6T2jvrGw0QYYxBVdalhUAcEJzczRBdUNVSiilQLaVfdmWzcYxm0lQN1NRq9YTGAKIWiICoqtVVxBQJ8gS1RlVFAHMWQSB0YFF1v45kGBAAWtMUQynSNWlraUwQEjoAOtQNKEPgtGxlH+L2962GfUdsSrVKSsRMKaXuEEdoMaEYq+q2VmIDe4/xDdPIzL337h5QOefdPtfWu7xuSOumQA7kIL0Omj1pRQGgXwO9CPaxqON3ZtJvdNB3OIRm7qbeKooDEKCbqYMigruCaXyUz7gpEDJdqc45x/2QAUjUwTwwI5ipMD1G8bqZCYGpNpWm2t5HtaK1q7M6IDEzEl69jFprbWvPnt388He/OWT42d+9WVYZhlxK6Q1/Zzv2+DaRwswpEkibNznPFUIHnLxfH6a90CExL5vcPVw+/vjlpfoXb34qwA8P66d/94UAcErLUvdjSimWWta1ltrmdduqdKLll19++dEnO078tz/+8fFm941vf+tHP/oUOZ3P8+E4HfY34xgZoDtdMBGTHHY72db9buxJyncP9//8n/+zf/Ev/sWf/+t/85/803/ycP92Xtf5/DDuDpQcY/yzP/3L7373xe/8zne1FjCTWk/371Icpl2+v39gRiRvrY1bbk05wJdffk5Ez569mOf59HDZtjoMu91uPJ8eHr3WlRl7wFNrbV43UyAOYl5FAXwrOu1iCEmttNaIriH0IlJrA4hEYV1LCJTTOE3j3d1dV1uq1o5QD2NsrYHjsp7e3b/dynx//+7+7rKbbrcyO7RhDDHhvNz/J//sf/t/+e/+VQhBRLuP8vvr5P32+H35wiub+ef+uFdA6APy47qjU2WeCiJc28n/NZI9ROTeGLoBXOOaKgCKM0OIQACt9esrmLS+LLGrjgXU+5obHYDcY+BA7gIKTuhjJlOv6uIQOACAuhBAyEmLa1WrxorMTMAAKKLmICIhEnPXy5LpdYFrANq81+b+1BTIyZt6mUs3dA6JI0RCbGqOoGatKnAXvAEY1MeifFrbYJBvQhFFcOZr/glu2gKikzSIBMp4RqhLq/wbaE0Bgf3nsdteRIY8qjUzD4EdtLUWI9/cHPLgpZR5ngFtGNI0jABUa12WxcyGYZj2O5U2z7Nouzkc3aSTpIg5UnDCrl0RKY/Phere8XJVdbySM6+gHCKgdSjkQwsWfDRlKWXNOQdiM0PyGDkQiTi6MbOrdfQzx9StClgEIUSgpkJgIRC6l9Iso7uZdm6UI/VaL2IGMPYzU6S1qkAcQ57nSwrJSFLIzOhuNzeHh9Pdftr9/u//cH+8/fN/9ZcdZ4iBzKx3iU3FDFyg1howtrICTeqQmB1czVKIrVYGUCZXEHUA/OzLt+M0vXu4v5zuPv30bYhQGqShM7phWes0TSHAH/zDH/7FX/zFw7kpgap/8vWPX33+5cuPnjPzOA3rut7c3Lx8+VIFmOs8PwDYs+fHdV2HMRJgk03NGcMwTqI25NhE9tOg1v6P/6f/w3/33/4Pf/6v/83v/4Pvu7WmfszDl3/32evXP7k5hhfPX7p7jDFEulwuz58/d8M8EPFUa611G4ZkLvN8+fjjrwHTus4ppcu8EgVptm3bOI6IuN/vU0p3d3etad9UhhBKUwBMw1RKEwNmLiIThVor4JXwpELuXlutW2kuALhtGxEyY2ttWZbnz5/HSJuUy+XCjPvDSETDMD3cX4YxhACX+WEYx+PN9Nd//Ze3t89fvHju+NGXr35GDD/84Ud/85evCTMSqP0cHvgVRjQ+2QL+XPraLznIH6V1v2YE/nCU/u2Oa1fpAAgBkqMBKDMwkao1BRMBAHRgQgS0zt5wA6AQo7ciDkg0DCwiLmIIE0Zhl62SPV6YDRV9WRYAoNCRVeymh+YekAGgVlfRlACRTJyMT6eSMxABEnfjWmKtTWLWR7k0gaMayEKzaR5tK9qRpQYQzFJiAHQmFVUMaibqDeAWsjGAbSkljmKApZqYMwJjrq2ICARYpaab4defwPCEViB45yOLOSBMUV2dUwLTUrYYI3O8XC7H3UBgzGFr0CxfCgJKyrS8NbOWwthK5UCEjICv39wNx9vLfAnEu4GrCZrH0M24eh3sUhIW6moQIXCpGwD0oKylVHYY82CkUmtKybpShcFFcx4cs5sieWKPgdzrVmpKSZqYSW0bGua8W+pW6hnRIk7d6GsEr1LXrRFHytldkcDBQiC3ZqAhETarmz5VQ1QFsxDHngdirhSjsy/bBchr22KM21Z9q9/57jf3x93/81/+GQHEkGu1SLUa5BhEax4DBs45uob1vIVAZetXB/WFqbiD2rW3dXOAv/30J32fSSmsVYYhqWprEgK5+93pHAxyTN/+1tfzu3d/98VlGINIZYLvfOPg+gCyusq7N69yHjffipy/8+3vffrpp2o/+f7v/u58uuScYxhUfHc7reu2reLIbt5XWA8P9//1//m/+u//+//bX336dz/4wQ8v9fQf/vyvXr48/OM//P1vf+vGHT/77POb47Ou1QGAcUoEqCg5gpls21ZrDTGd5vvElHNcZW7kNCTncF7OIXpMvrWV025/E1vxrVw6sebZ8abW9u7tKYREFMx02k1mEljXdWNmY0DU2i6ISJmxWM5hXdUMQsqlSh4mNajCWwN39SpmNk7DEBmslIVwH5bz5Wtf/9q3vvm7aj6Mk5nND3g5n6u++ge//+03r+7u35krpRCrtivAAR4DijgCBE6itQutvjJtkWMAVpC+vkgxL7Uw52xV3AmhOcQQikiXUiWCZoAIff3Xy6I4MHT0/KlYXoufuxl6QUD0ABABGZARjdTdxUEqMhgABAI1LwCRIPZRz65b8AaGUgaET44BrV3mdphCJJTqxUsIcZfjVpt7M/fATgQhxVqbNQcEROuvlBCJFRHVoKlrwRiAggPplLAUB4WcgAhrbU0scAL3UhqhM4MjiMHmqg5lA/ArXxIBmpFthkAFwAmCiQAUDDuXAz88jHtYwVSQPHJaS9UGHBC0IkSnujqzAb1q798XuLJb3tPjn/wN+y2lw3Mco3k1dXIENUBKIQcmRoohSPMYhxDJQOa1Sqvm1UGmad8aXdYqlzZNUwhDytGovHnzxsz20445IqqZ9NsIMWMIWGVdVlHlFEMgd4spo1FrrUgzBCQUtU2qE3Tyl6oiGDN7ICIIDBQ5BkJTIgBgaqhNyGKr27qUZho3NQN3HcaYE5mZWAPjFJgpOqGZDUNy92W5lCKBEckAghqM43vckMhyDpxcrTEGVTPZtLmqhkAEZKYiery9efPmi5Sm/+K//E//3//yzwANUZkjSVVVaaBN2q415U6xVL0iXO5Pfjzv9+YAQEghULeVKEWIoLXW646I9cpoAH/xl381pLiWutulpupajzfD7rC/XC4cUAyHIZ8u59Y0pbSV5Z/+0R/+2Z/86U9j/MYnX5vnmZH6fHpZFlVnyu7eFGzrTbr/0R/94Y9+9Omf/Om/Ou7iH//xH754eWsmy3Lpyy4AKHVd11VV1pWZ6NEqxru3OQCspTJw3WYjbuJv3rzZtq2U0FrOeWi1zL6mlEJIPUYihNBEYgzjlLe1WoGcY7+VmkEISe0KcHcfdRWfpp2ZTZO21talxBhDSIj8cH82s1LXTz56GQOdHk58cyNiMbG7d5xn25abm2eH4/6nP/3pq9c/SzkFuJkv5fd//wf/0//rL91Dky7qf9/SEQHY+0RyAPC+K3lEf6I7sQYDdYgMIoUBAmi/zvt36l+OiAR0NRm5rhAAAAyACNAcHm21rs9zXeFcSxE8Ohv23OQnGuOVp9nrKzopkAGBx0AYkB1AzM0zE4uhe2IOqIiM6Dkbqiu0lAMSXWYzAA7JzFrTro5GQvKen34dK+1RKXv9DCMwkal3matZD1MGADAXV2AmhEflDwMqMHIP2et23gaA3jXZqNfzgj3ZkhFCBNiEubMIwEyIUcXcQMzdGuKV/US/qdEOCBhiBFdR45gcoEmZ13MebvExAQMdtdnSFjPL+xtVrdLOD6e37+YY0/F4CDFTwDHtS2mXh3VZLsOYpikRIyOFwIkD9C25W0BCIgcFR2LMOVIXJRNE5O6M08xbrarXgMfqPoaAxIjcjc6ZgGJA8CGjqppUqdWv1GhHJDfuBs+B2R3XrZmCOUwTAQIBOQKRU2/03Yiyaqu1ukmcBsLg7oiMH+DXDg3RUoi0iwFSa01aU2tMkFPsfvNIXLZ5Pw2ny+X585d//J//0f/4//jTlLBsHTonRAWHbdsuYOPwnrKDiP4Lk1Nfn+E1GaYD5dLtSYio35N7TFJVTcMEAOuyQvDnH72YL28/eXHTRUHEPM8P42j7w7TMm2obhnR39/b3fu+Hf/VXfxMJX758uSyLWZy3tdQthkGsAVCi0NvV7XT/7Pnt89vb+o/qOI6qcr7c7XZjCNHd9/s9M5XSiNAdOKCJxchP/hrMGELCwOu5rOtqxGq4Lpc8XPNwSmmP2ZIQQnATFVdxIli2FdGGMSFHRNzWutvtAGkYByIqpWzbdrksaRxyztPw7O3bt9IsxQEQY4yttWVeAXDbyulUn90YIhOlKuAYEHFel5z2Oce3716v60psy3JqetZiIna5vCYcvv7N/Wc/u6Q4VClwBZf69Q8dEIfrFuOXXGA5Qo7RtA3DcL5s7lCaAAEhEDOYdjiROkzTuX4ciQhU1BSvlOyr0P4D2cp104qPmHPnUaMDA7BdRTDkAEjmQOhElM3RHQ1InSIDohKY6S4GgIpugVgxiAiB58RT9lo0DahDqnUrFQioCjYRhC6NdgUFJ+7CWVRwVOiQn6s6P4pY6Jp2bWZXtqO7S/Ocg3eHVATtcQf4eEdAMAR/xFN7tLv0zg4dAGKEHMFnoYAIzggGxkCG6I6mANcx3NV+K39D1XZda/V8qdI2tVaaxBjJkYhiF725RqLLuvT10pDSNBTmOA0JUOZynqZjd6foDPVlkRBxv5+IKFKXSfrjhc2KrdWKyLvdJKbLsphJzllaRQ4MiIj6yKShGAAZHJopuBOhmaKrmjmq1KpSrQl6MrPaWggxYEophehOWIpDcWm6rLrM2zAMY45u0FpzFyIKTJ24W8va628nBofAHwJD7g7ghJ6IGMHUjIXAmZlRHQDJMxFQaNqI/eHh7vb2+fd+5+VPf/omxiQiJjoNk7YVAGqtu6mPlo+dhLs/3iS/gkmZmYgBuJmbSV/P96uxyzDUwZFO9yd1yCEQiLl953ufNJH7h4daa87REGKM6/b29tkNE5xODzc3N7/zu9/+0X/40bQbDocbd5/r6gAcSWtljjnHWjdVG4ZpPp1TyiGEZVlqXc1ba4zq3SWsX5KdooSIMZK7dovZ1trbt2+HYYp5xCvlHlqTm8P+cLghEABY5jqMyd3nea1c/NGSFoO1tpo7eE/oo22zWmU4xB7IG0JSx/P5LL6EEF6+fHm5nF6/WQBziCFENteBc6nqjsMQ5suyrbzbT6fzCp6A8OHhYciy3x23rVwuJw7+9s2XMUvZrFWOcby7e/3y409OD/PlXPt6Srv3nRoTMIH+MsNCckDEyD5EisFiijESjmjmoBAHIApOqBG0E04NzAAwVBNUQWB06+2UO1hXtV8Na8AA+NqAvXdjcrjGZnr/W3wPDl4ZGAgxsYu6eTMnFQdydwKICMTA3fbEOkMWGdGaogKocvAhAwCINgeLfKXUdtNAAkNmApOrAd11bSoAYMAM0gDB8dFKEQi6TWDXbhmANAEC63xdv3bACmAGhu6PrfIjp4kcDUwDcwwOphgI0c0gMG5Nc0hrbe6AxIBgaOYmv0U1BAd3g66XQMD9tHt2u8OYqFvMAG4iagIAKcTAoKqB4OZm4IC1SAhS64ayyQLa6DDEnHMIKLoRO7gG6qYIfWVB7t5MxymbraLqoO4KYKBmLiHk7gc0xGQITaT3aGAuqmCSIhGgtWYuruLSWmuBcRiGGGMp7XKZEfH2wEROgZrYY3qfq8v5vAFAjpGIELqJLjJ2vtd1YBGxeZ6bSErp5rh/Xw0hBQqtqojExE2atUqMgNCagCFR4Jy73fQwDGb++vWX//APfjgvD61Nl8ulVhGtTJTigFCb9JW6+iMF51e9T1dmOABz9ygMrQkRhEC1thhDznx+OLkYAjD5w+nueOyFDEWEOYY89D1V18ABWIy8LJdp2n/yjU9+8pOffPvb33754uO5bg7aleAhEPE1lZiAIkemWLYqIofjjUN7eLgLgGYWAiM6B28ivVm7Pd50xswwDO5+Ps/LsvlaOt2aApdy9/Lly5zHbTmZt34n37bSpExDDiGkHFIOa1l2+9EU7u9Pstp+d0NE87wOiba1hVBzzkShO/6fT/Nnn/8kJvr44xcpBwq4rfXh4QxA2waB0zTuOeA6LyKXWus0TcuyIRBR6MYizNRaVWvubbc73pfVjYcx3z+8/t7vfPPf/9ufXXd7wHg1KISrOdzj0ZPgn97ILuNsTTlZ2do4ZDMgLMRMhO4OAd2ZHu1LCoR5lmKu3aYXrptfM7+6K/UqB9CNkL9K+cGrOZcbOlIfKOXaFF11p85digqgbq49iF1KHROYgTQDBAqYIjOjCafgJgpuN3seE6zFRiNFFvWqPb/eHfzKlevkanQmBgI0JSZiAlF1R4cQiBDN1PqPTYDAXZaIQE4O2qPStfO0e0G8CmY+OPyKHPRfuykwExikzNtmKcd5qwhsZopgjNqHsl9fDZnYzJGciDtqn4imHMbDvtba5UpVtDVBRHCMKbjXdVuIIQc31cAGEVQJQYl0HBKzcwASCJG3TQlCTxG/JjKrO3htwCFwIABk5q6JVm3TLtdaXYUIkRnN521trQ3TAQDlqlWg5o2QxMjMAZAwOLIBiXlTccN5O3Pk4CRiWxNVQ0JwYQ7uLiLM6GiIaGbVG4Aj+jRNnX8LyCK1tZU5P21RmoKpMIG7App7V7EAAJg6ADGTiDSVYZrEXErbH3dV6/e+/71/8+d/6645M6hWdRHJkdujqcZjG4jw2BV+CBo+PaBHUrRmPf66O06rQgj+7HDc5vvjcXp2vPnRzz43hmfPnp3PMwZMKR2Px22tTKTiKQ5uuNVlHId13QAgcPrk61//y7/+D3/we8EYTbTCGkJgQm01Mx0Ox/O8dukkE1GM8zxv28IBUoqq2lrpdgOllP6Z6V2hmXAMIaTDIRCG+/Op1rrfTyFSSmnMsdattQbgIYRaW2ttnMbDfgdoRNCX9TkPzIEYSnPV2snqDw9nIoo5L6WISM4phHC6nF+9+vzlR885+LZdOIbeiNYqqtjV0Luw45CWZZmmfYhDiKbNmOLNze3hcFAVQNuNw2WWIXOIdP/mPIzByI83u3/4j77zl3/xk852CETkj6tjv0qF/To49wqGCFAF3DVFcEM1P6RUSosxujQCNQMiIMRxCO7ozrMCG6gDcWxqTU2at24g9cQQdOh0RkWAq66kV8LefwEDWt+vXDWAV+meO2xNGZGQAMHM9DpfgzukFMlE1YmBkZgRXIY4ENtaVQQyO8ZOCNJ5M0eK2PlECEBmag5M3dCC9JFypGrFvWu9Aa7ezO7vkdYiTUTUAAnB+4sFfwxEMvj5OugEqI8NHIhabaDX1BYlBkYIBPzEYerm3ci/zXY+qDWAK5SrIt4UpHmx6g/LshhSjBHU0MyRq7S2bjmhiqM5MTKaSd3KQpjcnRk4WK0bO4pIE0QKgKoqpbTkKVNGxB4t2NX1AEBwDV0FAZXKBDnwVUDNJESq7iYxXB0bVRUAkSOqNkHyUJut64WZkQKFZAZGKE3EogqVzVR8nDimYT8OKUVkvg4XCNcUGO1J2NDfmE4gX9f14TwDHPvJMkdzJabAAQFjItU2LzMz5zD0mNNlW/fH47xuhFxFQ8qlbNNuN4x0uWiOpISmsq4FkBX4iWsJ1w/0+y3Kh4d7d7BDRCSCUpSvJHsBADMjhLp6vrHvf/+bb09fiHsM6eawn7d5W5vpZRhSj2GqtQ7DUB/OHXO8xkuV9tFHH/34pz97/vzYgz3RFVQQKafESITVwYuoNBvHMVIW3RA9BAKwZZ0BrLvpxRiZ4uWy5ByJiB3WdUPgm5tj3EpHolV1Nw6iVkpR7X1o7MuQ6Wpp0QC41iKi3Tdkt9slw3dvT+4WQt7WBQNzzKq6rDMz7w5D2ML5fEZyd2VmA2QKrcK7t5fjzW2n8Z/P5xhzzuM0TSGEw3F89/bezFJKh8Nh29bTw93pdKpFSyrjmKZpGIZheJ7m+bw/jLfP8sOpaDNE/rAvwytr74p2PbknbAJVYDrsWtvMQBRKbaruBjECGBCBemeUGQCMKGlHFBKHYV7rZS7VNSp0ymrz6z/23uIP4NGH5amXRHS7WnT1YtKrprs/GoAh9OYGnxSBCBwDiDEpMzsYmDk4hNUBc2Crui3GDJGgNcDmkbrQDKWLhTuOiYBOBm5qAEAI6ADmHJQZAbD7dLlfMUcirFWuTvtiBg6AZtaNdt5X+utl8PRvR5ZYRUs1U3ZyEUuR1VqMoNYCgrh2tc61mfhNNmoBAIiuQggC5BCe3z7bTWHK4RQjcczjtIlstVbRZd7EQ06xQnftJ6md9FeYU62rg3EEYAtxrK1dzvOQY5/nzaQ/HRJ058HWWq3S8+abSufcnk73+2k3xGxmiBwy55gMfLnMKSVC1CbiCmhEsanPlxIjo+uyzCml3W7HHB102u/m81I2LZvNl4boh+N0ezuyQ0qRe/C2mxuGGENIJkUdlmW5u3sQ9ZubZ4fDAZweLg9PJyvmxOQBFFDAAzGL6fl8Zg6+pwQBvKZxuFwWQHpYLkOeTqeTux73h3/wez/89//uL2ptIfAwcCnamrobUezKractyi/ihn3P2Bk2+/3O3S+XyzRNwzCcz+cuVjm/uyeAHOnLzz8dE0MamPn+/gETcgx3d3c9NvNwOJjBPK+73W5dttbazfMXXYR+c/NMxM4PD89vb1NK67qq1CGNKYVSV8BWWwEMIVKpM5CH0PNqPCamAn0EvlyWIU8x5tPDHQCllNKQz6e51rrbHZnCMGZE2LYyDNP5vHZc2EwRcZomkVbrNl82RN/tpiallIqIpWy11jSMzDxNg4gxx3ldu7VSDDmmNOSx5DrmYVkupa4ppXZemUprThhFa8R8e3v7+eefx6iHw6HWBoBffvF6vz9+7WtfB6Af//jH6zIj+uVyiXF091IvHXJ79/bUWrnMnz1/8bXSXi+iZgL+KBBG/NAb5v1CAxCQqhuH/PAwu0HgtVaFPk1TRAYOVGsR61A17DMQQAhuXqSsUoAIcgqHjM28mq+qRaA5uIE+7p3f+085UAcLu8nT08cKoFea1D9sj7MHASKgI4ppUyfwQBRCUCtIQAAcnAiGPA3Vz+c5pdS9C13EkNywiqqBdZkNwtUm4Nq6ARMzgqqKWIyIiLVec12IoN+Eylqts9DBAbon9CNQiFcP8g/6gw+QASJ1bQ3MAZxUdRzjumkKvEkjApdr/TOznqv0G6qhQ08dkauJhbcffHLztduY86jyYl0LUSDmIq2pFCmqCsinS3p9d9/AQoB5PechJ6Bd2rtrJFaXusyZGYa4mW21gGHOmTmWUhiZSNlSaXVuTV0ihMgRiEqjEBJwuNTasfnIgcm11jFPpTTOkTmt6xyArKlXFQngHlPc39wSSG0buEfCVldVRU5VVgcYxqHW9nBPL5/t5nkhQiLWqu6KrqZz5ODNY8wpHbfLcv+wGvA0jc9ffPz+ZKEjIHNsDRBEmrsCxxg4cQjIsGrFlrZmVYRCmq0vxfG0zrfP9i8/uvn8s4fWFIFi5ByI2MFiYium1lMboe9hCai7ugNy6Ax2IhjGFKwQ43CTAMTscphYRGtbVX23z6cV357eAeu3Pr6tukECFhOgw/HWHXIIy1xupuPnP/3Z977/D4Bo2e7mv3v1/PY4DsO2bfsprReYz4tPAi4cyLxe5i1wIqNp2K2tGfhuN7nbVhZXiTG3Vna7g0hdlmWahlqrmY1jvFwepv3HKSUkD4FKWdb5BHgwk21bxk9GYglRS2m73SGSne9fc4y73S5yOJ/PojTPKk1yzoRx27bdbkwHvr9/UMGt4n6/J4ftsk7TcBgGa5u1Rdw44IvDi1evXon6J588e/v2rbnmMHz0/EhEy34Xw3Rz+9HWqrqYxpv9i5fPvn57exs5LZe5ab19djTTu7u7eb30VK9m0DQM4wtHeX77zOW0LXXKWWpBgQCmwPY4xTqAPNIBB/eB+fXbB1BIkRSYI7QiIcNa224MYrps0ESQ88OpCPPLb8VG+uMfF/eBsEa2AEZMWmTKvB+G87wREoZ4fyonAEXuLjnuzQHEAZCjmwPodfPn1JsQwAbIoPCYQm8AjI4AewQCIaJWZRoNW8+nDQyGjstlLsUjQ44OtjLKtE9N1ataAyCoDuJQPTCK9lJIAABNVXrtAyzNA0AIAVWByJFEZFuqEQq5GbBDIGcE7ZigPwWmvve4dTcAVjBEZC2UYcUd20x5WN82ZgwZMMD5zgGzQVGAwjAojIDzb8QNAeD9DI8IiJeyvj0vRyQiEgJ3RTVnTHlE5XleU0rPxnG8vf2PP/5RrTWlYRiH4H09ahQQpZNCgogl8La11toQ4pApcBjHHSJuy5pinISkGRkyu6GqtpvbGxFhwHUt1gTca90Sh60JqhGKu3PzlCOSt6a1FAvAIU0hxJTcrbVmYg/3l9Y8BGSKRLLMpaxuCpeAIRIRm1ln8LSmVmpjQUrg1I1PRGRZFgB/8eLlU7Meifv7oaraGmBxgJvjM0Q0A1UfhmHdSkIOid372Uih6wbNvve977n/9LOfvBtH2k+7y3xazn44SggACNcAhC40dOgGowTgUgkgB4yRIoKaOEDfyyNCa7pttVU43ozLZUXU2vR4E29vb+9Ob2NOaWR1nOd1WbcxDyLCMRyPxy+++GIYc865lHI6nWqtMcaujRORdVW1xsx9jbht25BZTVxF3Nd17a7oRGFdVzPhgCLStTeImHIY0ghA83k5n2dwCpnFAUOc5/NuN+4Pk5kAuXkdhrg/DAFQHt2MRAQIu9N4SgEApmniAO6+2+2Yhi++eGPeiIYxZfDQHyPNzGBdS9/b5Jx1LaWsIXJrGkNuZjmGFy9ejMMx5Z2dHpZSb477UsrPfvaTy+UUA43TUKuVura2pRREw7ptiBJC4hxba3d3D7vx9sXL27dfvltLOYxJBbyJ/grtiQAQAhGL6lbNvY45ppxbE3DbijOiGzRFdEeEVVVxQoBxbGXd9lMOrA6izXLGGHmtxQSGfYgxrGvJBtVUrrsVgp6V84tQSy8leMXm/BGC7KqZLi8dhqmWZbdLtdacQi3i3kyvIQM5Y2AGcFUjggEhIkSiXQajWATPq5xnEb9OpOZXGg0CqIMQmEFDZ3AMDADq1q43D792g48j7SPw+uFLvzZ2V2bNe6idEDEG6IrDLt/FR98s0CskQISEyB+Alb+mGl4Jb04I4O8up22tX57PkZOq9ijkkFNMaSvLttY0Dmup+8Mh5MQtmYmqR0aOTysedEcxUEciJIAAeBimwzAx+PObg6qWAONuynFAMTKnGAxh9Vor3T+cKdOAzMxDjtsWn90cz0vTJinEFDp92i7bcqF5iAlQ0Lq7QWCkFKKqch5OD0ttV+6CiCETc15LPeY9AJatdWobmbgjYRCxZdm2VkNIFLizPq21J30BIhK6GbgaAFxNQ0MgCq2VKgYU0HHIkQLXWlUhBiZ0VWtVmPnr33ihWt6+mh8uDznG3U5BjREwQEQCAIveHRXJAiKaixkEgjwwEZiXPE5dwLtVMXMRMAVEOF3W3RjOs9w+i9N+dzrdHw6Hy3zK000iulwWsL6qc1Xbjfv7V69KKcMYUwophN1u16nXd29O7gNz6D6AMWR3REJ1aU3MzN227ZoH2wljopWUukdh/ziJoHLY7/fn81y3bTocEejhfCqlDgMgeSnbeT7lnGIMKUXApo7jlAFApJ3P560WANjvjze347IsCDwMkQiWZVuLIcebZ9NunHJkE0VEUyei3XRQJ0R49/ZeRForrbWbm4P7/cNpEdOPXrx8djwyDc08cjiMg7sjaanrm9dFtKi2YQxEfv/wpkOcx8MOAEppVQqCDyPXdgk8HW/zuzdyXmsENCAApw+1IgBXa6/+OYEuiwetDmg5pVoNENWMwPxaD4w4KNlf/+354xfwe7/78tWXdyZIHKtIoB6ZpJHQBkdQRH7xbFjuegyxukMgfMqHhKuJ//vhsDNXpKMufVcLgIABOi3KtAkz11pyRCnCjCaeAop0Zh8zk5l1RGubCyMMCZAjMW2CbMIN3jXAq2NzX7hfvSQaOjC4gpr2TPMmav60dLpWvM6x1scX/EsK+iM2+/hDuZg6gpvGAISqAuD2yPQCcGO4Brr/ZvY1XK3DO07PCv6wrhc98TiBmhnkOIQQuG2OcD4/ANDe9n/3+ZfH4+2z589F/f58j82WNmfPfTW+1tKqMsdaBQiJ4xDjMAzuqq6g0rbNoJm0lPPhME0xq+rry8Nyui+a5+VMGBCvHl89qvVAPIawi5kQzKyCf/FO39zZOGY14tB3+2DYfXEsxhQilVY50DgmRDPVZVnCPonYttXLZWEM4zhCghASYChS1IAwqBsixJABYFmW91sUbUDUCTTzuiCiSDWzYTcNeQpAnVeK5IT+lC3Yv7aUEiI/f36z2w0/yp+++eJUWpMGU8zgXdNlSJYYOAATrLMQASN0z9EQFNBNYJmLqjoxM7uhaVVxZkbSeZPjbfrkG19j1Lu7h/Pl4fbF7SNPG/OQ4LqNQQrhW9/6zmef/ex8no/HidFr3XpTxpGIr6lVZrKWrRv71lZFjAMHDFsVdzWFJhLJRKR/dDtnoJTSWtsPtNsdWtPLvG5rAUIRo5By4sDp7eV+27bjMx6GQVUvl8txf0yJe4Np4LvdoS9kVLW7w5Xi05TnbSubPXv+srYSGAFcvErRtWDoPT9FDkgUbm/3pW0xhmEY1nV9N5cQgoghsoio2BCY075J7Z4OzDzQ1GQtZTmd73OO3dwzRgYzZxr2Q84ZE33+d69aXQ/Hw+2z3d/85StKhI2tryMemxp/XCkwYDXtnlSEoA5zka0qOTGBiHWalKqZScjxbrMIcDnD6y/fEAB4aKWlEbS4uvVQs8RYRRHXaZqOA7hfDZs6J6Tvjj9kkzxtD6x7HPaAPQAD6rTEQJjYat0ikzSYBm5NpjEAQCQEuLb8fcOHiEjdeQACIaGYKZsdEgxH2M4gAqKgCD1x1BGQoBlEwm4LxuZ9nc2P+plr3wcAj5CmXevjBwXswxqITBjAxMy3taLAmGAYkZlqATck8mtKA1w3Ir8BMuzVEBHhWqEJABy5tKZtO+526gRu0LNKWxHT5oaIioQU7h8e8jCe5ouqq1ZyUMcYGRGlWRUNnQVuTpEd8LwtqEKAGHg5X/Y3x+1yqVXiy3Q4DNravLVXd+etzWvZpNk0TaGFWgoRiDqhpRfPAaluKwCEYeAAatU9Il4dGMW0lLIupbV2uL0JgUIAMwgBkKIrh0AUQxWrW61FYqQmGgKHEOdlmy9rCAMnejhduv5vKxL27+3Dux5OVbdtK1tLKfWus1VNEQC81urEzS4hhECMBOKKgEA4DBOSvXn3FtF/8IPf/da32qc//vztm/v1UjAAMzMHIiB0b9rMhnHoHz4AMNe1dio6MAUDNAEVa01EobtdcoZvfuuT/X6/rutcVo4hDeHdu3c3xxdmBmoBaZ3nKpLSIAZvX78GoG9+8+vPn99eTvedC+mG0zSZi6rHGM3Y3WvdVDkGArTAIcRIRE3VDNRIZDOTXgdTSkTQ16NNq0jlSCHQVlZAQkQmIg8xjggJGdbFmFCqEIEMAkDzPC9rGcfxxYuP3rx+d1m2Inqzv4nRy7qoioIDcq+/jgLMEVhVy1a3rThySinnwX2/243yoKW0cdxN01TWOI5DhwJiCIEQydVbnCZ3L2UF8JhiiMmh8oIpx5R2blC3TRW6ytDMwHwc8zQxg+/30yffGO7fbAqA/lWc3h0Q0B8ZxQDQxUMGIO75OrACOxCCAqgDo8WUW9UQA1GVamUreRzEtFTNObpra+bUVxCwruthGtWrrtr8/arBH+W9XzneO+hAp7L0kFFn13HKAWHdys0xurRpZDObhtRKRXS67oah8wHWVfI4AAB6M+9G+ZCHMAC9IFrmbStgRNV8EVcHJr7qQjpFXBXMCYCJegr0laTpeFVO93jnpxXyB8fTkrn/Vx2K6EgQmSBiJ9xcNRLXDtUAwBD8F6iZv6QadvPG/sOSAwIaoAO1piEEN1Q3V1m2VUFDjsG5m46cTufX795u27bf7+d5Zmavzd1jDhSY9Op7GMaM5qZyf5nRbRrS/bws29Y4isgdrefSPnv7YOoP21wsbKIKQUAEyAyWIoEQcEssb+5AD/v9kJnxsl7m+Zxz3AqYYZdqVIV1bdsmqmAP5/1+H2MUEXcj9jzkcZzK1oqWJtLlySJSBai5Gy7bCqR5GFMK7kwIteqHDJimgldmgHZVZh53GQARt+26X4KIrXkQyTkxsKoaIhHVeZmmYbc71Lo9nE/g/O3vfuMH/+D7rz7/8XzZ7u8up5O6AQNEpEDxvG7dm5Po8a5MmTm2trRmV0dxgCHCNOVxzB9/88gc3757m/OYhvz27euP0kvCVKv08akHb6l6Ka0JxJBV27Jsw3jJOe73X3PHu3cP27Z505RSztGshwtBCPEpbJrQU0QiFgMKfDmfMWDICRHFBRQUjAKVtsmsAESRQBoCEqOZjuPRDZZNRLEU4aCmNsR49+4ccyql9X2xI2Pg7bQZ8N3pPMTEzJfLxQmJ09u7t8fDyJyIAAMxO5KrGRiK1nnWZVlq3e4e7lvTbW0iQpT2u3HMMQZCYAMgBje1JiklSlmtXC5ntcKMh8Oula2qq/haW6sKUMRURKYxAtDz5zelrLVdvvHNj774/KcESojgjuRkaO8v406Hv5IGxK5+/YykrozU+S/m2InRTVUbRcBlLTnit77+tddfvrt/2HY3kaNLj8eNjIitdSUSYWuk3eHpva7ZH6Up+HONYS8v5OCAbt7j5JUciCAHNm9DhsDIIZhIZGitIDk/5gipAzN2F3cMSVs1h569h94Lvb08xBPSQtYcSLCJdxwTAdyuiiu1K98FOZi3x93x1SHtMU3hl0OfhNQTkLpvaNfDhJwADNGqam1gRBjETNWvHbq7m9tvKoZwtUHlzp21rp5kYJJSxzBUq1KvCet9mggQtq32r+pq0O7Q5cZbrbW1Q9gTBSJ1AAMj7V6t3GpFhKZY5gURRd1jbO6fPdy3L195Q+fIIbmpqhOmUi0QIqWmLap5HB+Waj5DYHZ+d7nMy5bzbpNZzUS0eyiKokNEwrdv3gYeKMQY2cy2bXE1ANxKA9RAGEJQtWbKYuvqMYzMPK+LIxwOByLSVlMK/gHYsG0bog/DYODLsij4RGOPM1Y1DinGXE1d2/VGp2piBm4cdrvdsiyDp3HYb9umbsh+We6/94Pf6RVqXbay1rqU+XRe5+UQYs+T3bZSq4uBiG5bAQAimCY4HHY3h904RWYAtOfPDl++fjsM+d39Qwhh3B3OyzLlXGvdDaNqixzGcXSsy7oClLKW/WE8Ho/DkLb5sq4rc6ZuD2DeqXk98D7GSNx92Exqc9WQopmJGiCmFFUN0fWaywbujuQhRxEppYk2JAvMXSw07dLrtw/zPAOGkGItAm6bFkSIKcRAbhWcLpdLbza3ba3QfPCcaEjZ2M25qN6fzrtxQBgJzFwQPYRAxNs2b5u5uyoxx1bt9euzKXzzk3E35s72YG9NjZ2BwMQsGCLmnJHsvKzbtpWy3hz2l8t8Pq1rUVETc0TEwIHiMAQz40BrW29vnt/c4DJ3b3Ukd/3Ao/AK4oEjPdox4FU/IQZGT1415Ajerd+9devfV/e+lC9ub+L+eXz3pn308e58nlVht4uI2ETMgAPJ2tQAkZ58+a6UlF/YQ1zvn137ea2URg6BYWBosiHYMASRmsdUK+Qp1VJD7ALsHqtr3XI+xrzOC4AxITK4d8tCBKSB6iEDO87F1TAn1ObVjBCbX/3QOjmRGEXbVQH2yFd/ooL/0lJ4NaF4/Lu+wlcFRFQjJKkNqiMaE4hcbdPIwdVcEH4bZd6V3fahRWVA8mo0AaipOA0UY5QqIoLmjLSUZdu2mEcAePfuHccAoGupUCQPKcZooCbQWvMiALDf7wWxu2evZd3v9621EDJENg/gyIGbwtJadqql5iGWtQpzjklawSGuxXIM787r24eHmAIzG7A0K6WItG4x1OPp1ZqqHQ8vh3wobTF3M1dVDtxrYIhxGBI61dpCCMPIYPVyXsdxdGRkCoFqrab6/MXtZV6fTsu8roBG1H23GBFFFKAOw8AhdUfPSBGQCJzB3bp/LANga20YBhG7zCUPCU1KXRD97dsCYMQQBz7cTGMa3XYmW5nbOI5EtG5V1QIPTXxdy7t76SKdYUiH3ZAyNNm2clnmUyAorcXEgLSs637aFZEppZzzsrTO7Wrqy9qAYJomM12WZZw4xtgRenc/3t4uyyJm2hQQYorqdrpcnh+SKdRaESEjNJW1VGTajWM3+u+yihiDA4YQVlkIKCaMcSIgEQsIKZBIXdeZGSnGcZy0NTcRk/1+r2qttdZka81K6UG6IaSXz19Yk3W9Px53cUp3p4uubT6tgXC/yyElRORukkJhGFFEiIIpNDWEUMt8eH786KOPduOwLIs1G4cjIoqqSWNkbdK0qpVlPV/Wy9VtvWmKwzhS1RWIcuruPvNGZRiGN2/eOWwhEDD87ve/86/+7NP8y4VfBFf0uNsUARG4eTVFuNpZAJAZdUxE1SLAfkfMTDZu5TzX5grjkEpTMVCDy7L1BzviurRMEGOMRGzW/OpY9Ws9Y6l/dX9EjDQl3AVcVzkeyE2HxNtaD7uYcmCCea4xQoyRiBRMREWUmbdF8wAxBubQWhMHYkopqa6BIAXYChDCkIKAlyqOZK4GQEjmPZ8A1Sy8n32pt4T2C9MxfDD1f8jGRUA1bwAqTmTA0AwMmJCB0NS715i4s4P4b9ooA4Qud6zKDuo4o4O1HLMebl7U2tZabg/HISYzgTBsW+nlwMk94LLNx8PBzKI5Ro6RmUPOGQCk9NA7UE7ny4MYDGOKMWzbNsVhPc3xBYMwKQdlMGwGIiq1hWEorq3M4zhak7vzXUpJwCNTFSulmUsGDNHVxEDyMGHdatm8WrMCjm6CjoD1dHkQdTN0d6nBxYcML48UQhx3u22rLViIYSuLu03DztEokqMNI4UwLJcVPFLYnk5WKTJN06u3p60WFS6XenOTTc3WkrMhwDSN5iCiSATECJwZEbHD9qWsyJSGwRA2UTHGwARNDFydDRkDq3kzKc15Op/VrHU7W8WtVX35/DnweV1XU9hKEV1fvHw27Y8K7hZ0FaktIROFcX8kghByiu5Qdvto3ph42O3zEN7dnQDkxcvnZvb5Z6+Px33Oo9TV2ZrItEvLsoBCCKFWZ+Z13V7XNy9fPldPX755fYM+TZMs5xyylDbmXMpaZYspImjZtqXZ/tmhm9/EBAAQUyBFacvpYvcP3WVaSym7cQw8vHr1atyhIRgCRe5B3mZ2Op0P07Qb86nNBsoxJA5jChfb9hMmtla2uq273W48DPd3D/Nludm/7PndAC2w513KiVPKzZc3D4uIMsXm0Mc9IgoJm9RxN/z4p58jkUGsYgj53b2pld0+/O73XoxTPp/Prz5/ePnxSGm8XE7u7fb2NmA43S3b1pBB3MG8G3z1BbM5OlhPvOjTMgHRNUDZAUDdFKC5fbiKbgB28TFC5pJjBnFppdaKQiEMQFaaBMaco7uVWimiqyWVwV0BFKgz+Z+cup+UGHAtzOLe9Z7IbiimxI3i7ghlled7YHVkpJClqZv14cBEEXmICRNGDmaWeennuakw85gInFTUYGhSFHwYgd1VIZlzhTfmRAHJVa/h1G5K2JfaCHCNn7ard9dX69TTHzxScASou1uBA7y62PN9aGds0gKKg2jlLmU0gGiwAWwE+sGo3BGwryjBwuOTfbCwMRORGCMBquojYEREISWvWymtEvGQMo0hMI/jGIiKQKsuJGUTZuwmA2bWvDAj4FUy2VXA3WdpGKbdtK+iD/dz3VYDGoaBMEzjXlXXpYDZOO5CCMtWphyu0Xoe3NGt7xBT58qDO3MQKU1MxZmpVElADt0gvkoru3EYM8dIVWS7u3NHEcFSQiQRDdzjGsQBYgDEHiQkV4juegZBVcxVWhUFZt5WIgIiMs/DMACh1tbPobn2pWQPuiJGcm6tbacTIiIFZqZrjo+7o6ptxTBgQKQwqEMI7E5d8YbIZZu/+OLLME1uyEw5j2ayLItIbU1bK/vDdHNz8/btHRF99NFHrZV1XadhuJoTIYYQTQkRQ6BtW8VajLGpn+fLZTlfeYIxp3T1Ca+1hhByzjc3N6DWOYmHw76UAmgpJUR3AgU1NAzoiObeVKtIWOVyWQztsNulOCBoF1Yr1GHIjqGpqfZ8BwwhrGsppeUcU07utcvU9rsjk5/P51prpyuISGT8+OXzkAYGFJF5ni8XjcPYk6XO53N3mkB0EaEYUkqHw36eZzMHpzSkcb8LSE2KiIgqx/Du3TsivCyXdSsxxiJqpY1DOh53y6Zbm/fj4Vvf2bWqVc1dzSIRbbW6FDc+HOB87yGwiKYQSu+UmdTUfx7+ssc251dhWARQzGVrK0AKMOYQY44J7x421QIAoi4C7kqE4I/MHSciZzO9WoJ9UEd+/gXgo4awT63msDUFL+PEz57vM+M8n1XBaItoTDYNKecsLO6u5lpqxQoAHLhjk0Sha4FN1QzE5AoJIIACgg2JzOzSrKmpAQU2INBmDnSlsuDTS/17JSE8/WQKvjVppmJwxQrd/NEejX6TFfnTET6sjv3XqmrQtm3pMYgdQuq2+8wRsbbWcg4hhJSSiHb7EC0qou5Wq4QQvLM+yEOgccxmItK6qUlziTF2zlGt1R17ZolJraKl+TAMkVkBkLnv8i6XS7cYosBSpbTatHurBHdAZMJgQE29NRURAERKauCuSJoTpBCmkZm8dLVXlWHcibqUcpMOhK7aqsC8VDdqsqTAMYV5Ppe2ATzr5+ewy8AUwm4YUkpDKWVdVzfkEMwEwNaykBH0OCokYldVbRWYm139Jmpt7hASiqoUiUBO6I5m1sBbpCFgDBQY3d20n0xU1ZgGkWVdWikthICoAKiCDVwERQyg3NwMh+OIiCFaqSUP1EuhE/JV5Ow58/Fm9+z5npm7U4aIMDMH1LVJbZ1nl3Pu1JN+DDmriaGnHGrbtq1R4J7sioJmwoFiCqZ+fcFC61pLa25hP5GbRMJhGBBhnOKyillDhE5yDCE1cZEyTGOIed3quq4hhJSGFx8925bZCWPIiNiklHWLMYZArhoiDWNywxjjNCGFeDnNAULnGDAz0tVdEfBKB+w3e47cv8laFAEu69KpAjklZjbRsBtba+vWAP1yOh8Odb/f11opYM7ZPbh7a8UFhyF+4xsf/Wh5V6oyvHd+/XAy6zBdL0z2nmv8S46uzO1JUibgoDFgt3HpAfYIYAC1QYrOTEWM+j6FiBGpW3Jd28OvlsKv1hJHBa8GVm1dbcrDZduqQk6Do5sJCgBZCgHdl23rW4luORyd3a3TOTigKZgZKCABInRRn5uYGxPud/G4tMvmxcEMgQggANjVk6f3qu5P4Vm/5nhy2u0k7Eec0U9V+2ntNfppkZWv94bfphh+6FuO+HQGvd9jAYlIwtWPU1UDRTHv/O+UgrubmYqua1lX3DYBtPmyIeK2rSEEYgiB9vu9ez9D1BcO0zTlHFtrpRSmwETjkMrWVDUnyMlz5pRzrbW2S/AQoqU0MmNrhojuHYdREbq6QBMadItBdpdaK6UYkWKiIWcmAxVCdGi1wbK2J81Da9clZpFWSq3FzXBdNw52PA4Acti/d/QaxzzPKxAOOe52QwwgbSWmnCMzD9OIiAGotaYqzDGESNwZ2hQ4xBgRcdetvx/5QMERmACuMS8pYEoxBmIttVZHiCkul3VZ1v3uOE779TT30buphBBCzKJwmQsHnJdF1Lvnwun0sJVlHMetlJRSwKBqtTZEDDEc0oBEffEKACFSShERt20LIaxlo6eDubTaWmOmGGNtW611GNJWy7IsOUd0QERmZiBp2lprTUWMiM1TLW3G5o6MphFDDsMYHEEuF5Uac8o5l601UcIEYCmOIYQua3XXYaDT+TJfzjkzgC2LI6m01i21RSTnuNuNtUoPHQWnnHPnV6q6u4cQuoK1O+v0N/1yOdUcxnEcYvTa5rWY+1YqIr58/mJZFjB/+fFHD/cnVWxN5qXVNq9bc3fAdrzZj+No0lJKQoYBh5A/+drLn/zkyzTEdWtM7PZkYv3EenlfEH/tQUDo4AYobi6+SXOAXSRwAkQEA1V3EAUkamIEyPj0RNZjp37DE12TrHpdIQBHQlWvVcxgqwXBX+ziFN0MpLZSi6sCgAESIkcUh9YcHfLgqL0+PMJ/joABnchNVClqYJgYaMRz8VmlryqIiEzDdc0ECk6PN5APRfq/4vV3GfhTo+3FrutjeOoZEQEg/lqjvK8c3eH5+gqeZumu/XI1RFRrpGRmrTUg7OMSEeUY+/SxLOvDwxlgckemQJialG1rzEKEOWfYE3Nk7tZqZFbhyjlSdAR3RMsxDCmGkNTF+9VjhNTLLoeQGSIiAipSYh67CrIz8vq1UUrrPYKIllLWeT3shptht9tFsNrfOQBQ53ltu92uw9JAYdlqjLE1X9baGhLxWhrVOoxp2mXi+OH5Wmtxw5Ay6JlT3O/3IQRRba1pqzGnIQ+95+2xYe4eY5ymCZgQ0YlDvr5ycIL9oUnpv+6Nc2QM3U90acyRmUNIIudaq2TrzL4QgmprKqq6LEtp3Q0/MtPD/eKOw5BMYRz22osmRDXYtqoiKYWUyN1fvXrr7sMw5GG49obMpnDY36zr2g0dYowpJSICoG3bOlkPETlyAnd3RI8p9mpIRKXKutTWVERrWd0JPG7FiCwmJEJV5xxDMGZKKeQUAayUUkpREUTftq01KqX1RDBVb2shDtN0cKtVtjGnIeeccq26zRv0JKmtrUVUMcQRkM2hmzC6+24fEVFd+m9jZAPXWh2UuTdStizLuhZ3vz3ePo1Hp4czItfattJCHAChCRDj5VTHUXdTcPYQHEDWdV58uXnx8e05nk+t7z2527L9fKtjH/7mV12hhH3MM1AF6C7HhKRI5gaGffQQMzUw0WoQsdP3nyyi4SmH7xcPu1oL49NYioiAqOrzPKP5NGCMcRrzs/1Q5vv9frdtWyst5ghEy1bcLcTUlLB1WZZT9xbu9ci9iiMoMjohOQKAmY2MiGDBzaC6ICB15y90R8erOPDXnZh+/GKVNACDxzJ69fPpfSMCooF2jqd/1Q/nlxyPmrOfd0+h7hTyyLZrrdVat62aI2FIKak2Ea+1qhMAcEjSFMCZhxASAMTQkBwRAUNt3R2oUTfwNlXVBAydduCGSBwwhxhjEHyKieBpnEKKnfDJQO6OxDFiD5DqtM+Usd/NmkhTQb72NAmoAx1ETMSI0KqVapdV5qWF2HLOh8OBAy7LspWlFL6cC3EWU1XDGFUwhul8WQCmfpbWouChNnVEk5qBch6GYRCR1detX4HNe8/r7iJc25ZznqbJyUwBUbo8rnOfeh0HAABlNEBA7LIEa7UFQkSa57lK2+33w5CWZau1EkGMHPNQaz3Pcy2KGOfLNk5DayXnxMzoMOynUgoUUfGqVzOYgQIiiDYMFJjTMBCR9lQEJGC9rEutFQgxsLi5tF7QsVkpJYQQYqylEuPNzU0pZS0FEYOjuy9LkeYAwZy3ujFFCrFVra1bT1nYJDhIw2EYEmcKQZsAQEzDtl7yELsC2t1DSL2PIwwOcHo4S+ctYQTVu/uZYrDWEDln6jEprTqA1tYQe8AsIYE7tlZbw/1h1/3VVVFV2VDVVDcHdNfL5fLRRx89f/781RdfEiMinU6XGKOIjUMOIby7exCRZ8+epbSI2LqWWjdVJcQe71fq6fnHh/v7dzlxqYKAKYVaBX7xEuyX+68clR+ppIjgXadBgFRVwLqP4tVQ0B1E3K9hUu5XWg34FfL6lVf+9W/dHjE1Z8SlWszwbEeHIRDRYT+MOdaFu+K7SlNthGkc8/Vmr0nczSAYiII5GRgCi4GaIpqruruBe0Mz4xiDt0OC/ZiqwrK2IsZE7mDuHcbER4Dv1zWGnd34+IArk/xKGMJf/LLWRUHwWwzhH07K7h9Uw+uUpIEjundQoLWGRBi47/tcjZllk5SGmzCcTudSZNuWnhDvjt3NeitrKY0IEHS3z8yYhxRz7GbOqgqgDIkZzLQUHfdjcwC6Bg85Qp9nxxGZyAnMiAI4qqkCAjO2VmutRUuRnp3kOScO2Wxzq65EgZzYDC7z9nCuKlCK2h7G3ZQiE9H5fJaGpVrMIFIMLMZhLVLLdd7px7xutdllroOEYQBbawgZkcfx6o/vCpdl7TeP3vuIaRMrteY0EDlid1rq/G13V2S6uiiDdv2Qu4AbIht4n7sBYBzHmNMEcH9ZY4wpBw4BmELRJhg41SbQSXOBVRu41lqZWdysiYtLg5ioXyoxxo8//tjMTL01RcQrFq40zydmPhwOfR4XkVJKVx8C4LJtqmJmREAhOeI8F0RkFmm6LBthinFQAWZi4j6lti7lN6vJq9WySqKxk7p68GxKaX/cTbvB3YB8t9/3yUvUCFRVtrLEyIfdHiybW6ktIaWwY4oqjhCYqLV5KxYjAjhRiJFaa5fzXFuJkV9+vAuV3JEQzBCB+22JEKZxjBwASAUvcwmRiNJujCKV0Z49O8QY5/ksisMwik61qPsiImYSAyHyMKTSTsfDi+fPw+V8dfDtZ6lrNZ8usWsp/NXNGz4Or8zk7ipmnTn83tvKuFMbu8AZrzau/sHFjv6UUfpLqoldbRGBAAJBIEcwYt7t8jc/3k3U5st5O721ONzcPHt3/3YYBiJqTdE9cRTT1sBNe8y8drahozm7gQAbOKKbixiYoxmW4iM5GwwBhoHM8Yx2WqWaKRGYP1rDdvzwPQHolx4fdtx+DQcCBPSv5p4YfHAWfitl3gdPcsVf+5an1grunJgRFZ3o+shaa2QkokA8DNPr7R0QBuLnz5/d3z+cT2sfqTp9QURKdRUbpxQDhRDMxMy2bTNpfeImAHMxR/KexCrrulHgcWR3byIhhGncN50jRWJwUHMDo8dhqm7bVspmZn2Xy0h5iOAEHobITFBrbQ23Cq2pGaU81tK2bRtrQgjTNJjJcrlG87S2UuAQwrZtl6XE/B5/3damRtLAchiG5K4pjwBYSpFSt2WJMebdvrsqdCe4joKlNDxhsp3WR3RF+kurDkBgYFcQmcABfBx25pJS6KtSd1/XOVA8Ho+73cgRmhRD2O125qVsMgz5cNxNYxDdtNUQqbXSh1xTcCAiMIVaJTCkHKpq4EjoXbr7eHuG/X7fm8GnbcDjIBxyzm/evV3X9dmz21JkKe92u91+vzd1AFApbgzM4MFMU3QAU9UmRt3MN4YYxq3Ny7wJXwkG53luAg7MAYlwWda+xe7Ew1orSFcKY6Dc1OZ3pxCCGZsSxajqtW4555SGGMSqhUAduET0eV4RHVBzPl4upya6G/cp5lIahxBDdnckQ6TD4TCfl7JJre18LsfjIeQEAA7q1jjE29ujOzMSIm6tMnOMUZXMe4JjHFLNmf/RP/69f/k//nsAIKIm+lVxLP7SX/7cERHUwR1E1e3a1yQmVSPswhUwcHJHROvJeX61aXhPyvtNXZC7c48SDSGggfmy6b0u7QBf/+7HN7/zzc9evf30s1epTYg4z3OtmqcUQjifZhEgBI4cAilcc9zMoYmognqXQfRhv7dWCUjWKpkhIrBuiYNnbmJ1sZi4AZgbISCyI7hdiRa//kd470aBYA6/pC3sP+lvixkCAAQkc4sIAGTgjAjuss4U2BiprOs0TaoKatN4eDhdSl3bVo83u2kMZm2/j9KEGd+cah4HB1qWzSDWVodpNw437XIWESffHfaO2nc+KUSjMM8XdWPmMQ8csxqkGG0tE8et1mZrCEG3izFAS+54friEnFJKIo1DiiGV0kIYjjejAK2fv6EQ1V1dBxoD47JI87hJfrgvqkie6sYuKmo3twcievv2brfLNzc3FJjjHJM5Wh5HabZuDdxPpxOSAXzST9a6SSk1DUMaPD8bXn/xqj7os8Ozu7cP6zYfj8cidnnzbtqNu/2eA1LgaZcBIGRuar1fv7bdiO7m2qIDMzGyE7mKiyBYJHKvOQZptWpTh9N86T1dyIGitma1ypBzOiZvG8o2HMb96OAVwOM0EdFWylKW3f52XVdCGG4GBlRtYgZFmvPd5W7bts4BCpz62JQj3NzcXD2iiUMMCJEobNs2L5tbVKnrYobAHObL1vfnnQ0OANsq5mXaDaLxfD43Ka21GJXDuK5bHlIpOu0POee3b95tl7qbbszr5bIAORGtax0Geni4MLOIqhp64Bik+5hhlqbuMk0jsTRotaq7JaZS16rby49fENG61Pu7OfBQK9W2ffNbL9XrfJH9IQ8j5ciEmOIk4rv9gfD+3f2ybPN8EYcVnYZhkipL9If7y81uvL9vX7x5B4TPbjNAydNQyiYmgQYGqFW3rV4u757f7C/y+vZ79Ml34O8+BcTksCIDW89H+7luB+FX9m7tSUbywSqgOTh0utz1u3TRDwCQo14nxyeZtP+6FSoCmnfXhuZkYuIegKrbW4E//2z54u7Hf/z7v/vtT77L+fb/81d/GWm0qscRM6iWmocgBZQSbEsIGAgNaN0EOS4FDIACEzipI1gAUEPxypG3C7z8+rOH+7vsYEXM5HYfb3fxfGkaaBVYqxkoQQwIBQyInqbVDw/6QI5NSD0EHsDtFwGJqw4Q+0MdoAvufs0Rnp4OEZ4oge7s7lvZlHEYBuhLD6JpNwDKOA4pdU4JjGPGiQnDq7vzttXnz17u9uOrL991YL7Wqk24h8EApJQiD4C+LAsitSYhxsDRzKVUirEP6SIipaI5EREFU5kvF6RQa4V1JSInzHkcBgVDd2RirU20Ro77/d6anM8Ph/2eiKSptKWU1qq7aRWp0gB9K4HjgMSO1FSAkIiGIW3VRaSJxES7aQiBlmV5OlnujsAx5iGPl/vZFUTl1fz64eEhD93i23e73bgbAYADDsMADH3eJA6PRkH+AfOTiY06TmLqag5K3Z/GPQQKYai1ovuGEEKMMarBfFk7HW+eVyI63t4cb2+a6XqZ3X03TkMeORKH0EwJnQCZOYZsZlpF1SzAVsUUmGIPrFjKFkJE4Hjcr0tTbUyRiLatujZE5BCsKSKOww6cWmsNLYQgUvp7PQwDIgN0AlNrYog4TVNKQgS9I+4ruE5R2O2nYRhCyP2zMa/Lfr/vD+vq8m3bhmEY4m7apRhDb1FjYpE6L+ecOVNiJlXvjjUpDYTs2rYy54H2+2Et90Cw2w1NcDmfbqb9YUqIvgvB0e/vT3VZ0y72UApHUdFxTG7i4JHh9jBI3WhIOfK7+/shAKHePr9tW6m1LsvCBCGEccyICFjGcfjyy9ff//73yvLZ61frMAy1bWqKT3XquvH0Xy+L+HCj2ge1X4OjffhXvz1Z74pVuyNCN0p4FsKJ4KeLfD7D+X/+7A8+fvj4Fv75D57/6NMTTLGBCac0pvvXDy9uJlVdnB3BAbstQKsNEZhYtLe23l0dgdAFVDUkeHh42O2yaSEGIiBwBWUyDDSGyGy1ipgYQGJY7JeUwl/8GX/jjr6bSLn9VqPyB+xrfw9wdMzIzDykDhoqOGgD8P1+tz8MOQWRaqYxxkjBDG73073UaYyl4ZCvZlzdQBDArUmtDdExBSIyJ63CFMdxp6rbtkZijFTXwoitVqkNrzO7E4HW1lR6hFZvkbRscy1EAShM0xSID9PODRMHTrlsi5nFmFur21ZVvBSppSISsbv7uhZVT5kAhKgMY7i5ORh4uZtDBOLAwYcxhkCl8NPJ6uHf1qyUJlpAyQBK2foFzDEww26auhoHyTHwY94FERp1zr2Bu/BjQaTOFXC7lkIHcAWHVsTVQghgmlLq7BCTZk5l28ZhN+6mLolzQmbe8XR5uPTvua6rb8CMMUZrgq6twcPDpWyt9axB964aHsdxHMfz+bzMZ4Skqq/enlQaM+7245hijEwYr1Ina2bGHC7ruq4rgKeUUh7UzByiATMjB7/y1W0cJyJiHjs1j0OOMYYQaq3btuScY4zLvJRam7Qc0zovjMSBtUkM4dnNbYc+3b1DsSG0/u5zgBcvbprUjjys6xpCSilJ09vb2xgjoA3jaH44nS61rK21APrx8+Pt7bQtqymqakm63+dGnFI6HPjhdFHTELFsTVXsYfv4xfObr3/URE9LAROV7XCYTqezWU8vsGFI45iRPKXkej9OmcJhmZfv//AbIj+7f7cBRICOZZN736H6b3MNf+WCx6+O3L/wmN+etIwftI7YOYyg7htLhjRYVEp/8TC/advvneGPvvXyP/vDP/i3f/03s8BlabHBixcHmc8mwBxUHQncIWe2osSpqXWijTkEBgBz7MtMyDm0Tdw9paTWErMTeWvTGLYm1YSZxoFVYTOpX42G+l9/ZiYEZKrmzX7zSQ8f/qZ3HH25QYgx5hB43tbWFAA4EAPEiDmFGLtMwunx8btdyOl5HrnU9eVHzx7uL+/uTrvD0Ro2aY2g40AX0JzzMAyqWKXEPKCDiqt6T4rrMiYmUrVtuxDDMAxm0L1GOn89BzazWoRZDKgSEcKzm+O21VLWcRxTCp1bN8/rttZx3BOj2sYMMVAISQVq0b7RNmsikWkgophCSHHbtm1ddJ9vDkf8uVNEPQTG0IKzueYcduNuHMc4kJPvd/thGolIrZlfG6IPzu0jndMBQDstzswYAXtXbN2OE1wNAVXkuh8PAR3UbV3XGCZQ2LYNAEqrW6tUC3GM3LYqgaA06cAlJ44xjim5oyz14byW0jhERK61uDVNaAoIcZnrPBcVErGlABMMQ6hFyIEZAWDd5hBHVQcnStGXZcgTEQ3D0FRMUURM1161wVFUOAAHaq2FEJjJjHNOtdZt20SklJWZhyEQ+zilmGganp/PZ6IOLlvnfm/bZqq1ilqrtbYmMebdbpgOebef3r5dRQSR17W0erfb7brH2m63O18e5svpeLMHgGWpOQ0IGkI6Hm6HPGnTZStD2YjApUT2++WhFX12HD/5+PbhAdb5hAD7kX/4/W//9X/48TI/jEMkhGmMl7sLuIF7l8dxwFoLkmlpOQaHcH//ercrv/8H3/zT/+lTEySgvrXvwSlo+Cshrg+Or3Cn3X8l/PX3Em/0L3j/f3cD6HB1dXgWba9Svd0xvNlgXuHVsvxX8d3zl9+YP/8ixXC5rC7MCHkMbsG9lSaMQJGSkwNX0chI4ISI6IjgZoHQ3Zkx7mhe6rPbGBxVdYjRRYBxrWACQBYRHSD4rwESfuGn+U0lboyRYohml638ZtcGxEcjtp9/go7xq10zIWOMOdA0TVs5qTYiv06/AIDOgexcdtMUh7AtGNOwLas0CWAemUPa7cb9blSV2jaAnhojD/dnVT3s9owI5maWQmy1QAdWzFoTr9ZbA2YmdGlNXAJfnYECJUdqZWuljrsDjbm10upay6aGtcIybyK+P6SBsWxCRKp1txsx07ZVAJMmF6m11tvbwYDMjGM4HPdgetxPzPj89vZDFCZQJAouLt0iKDonHnIKiZGxm+n3d7IPOIgYQsIn97vH00wQuqQPrx/0R8YAsD1+714rAaBH3XdCaC3CFKvIupY8Do48z7NYqVtzdyeuQUKIil6LIkDcxXVpa1FpbhbYQwiRxhgDusM8r9tW17W4gTsismojCsyZKIi5u7maKQgYU0S+fkKYCIirdM54X08Bs3cVYilltxtzDK6dReF9nzKfLyHEwME4EWBgHIfUaYwP91XE1nV198PhIGLrOhMF1RJiuLk57HbjtoqINhWz+PDwsK4rAqWUVKBs6zBMMWYV4kw9vBApMQ2mSjhS4p9+eXfZCoLFkN2hCCxtC95udsMypU9eyOHmCLIdpvCtr39XRNpW7u7evnr1xXlux+Nwexxcawgwz6VWCYFSCmpY6iIapbp5AWkB43x+YLQf/ODZf/irOzcwMwR6ctZ6ElH8vY6/7+N/qwOvXtMAMFWgifgYx6V9QqQaXyn/1Vr43/3sf/MPv2+IWNshI4bw7qwD5R1pCGHZNASotYGhmoD7lPkRFvemigiMkAIrOQMyw7a1w5S3rdS2IUFZBQGGBA4oRVsBQ4h5QC8//0rxl9gdPiIPv+ZHVNVOg/m1pKPr8b7xecINicidmLmJdMFPjGguW/VpGnLOiGBmBKBmV+l7CDlnaRXQkRSx7qf48UcjohAlDjGngAgph2E8ikg3ZO1eWNu2pUDjmHNMZVtbK2YgTZEpxqgqpqCqKYWnUtJNN01cSdQsxkyALkpM0ziI1BQIQ25NmRmQiYKKOaG4mWFTIwJxMxOTRmROsTQnChyiNEkp7fa7GFlqM90AUn/enKMbAqGIpBCIY0pBVVl8Ok4cQwisLr2E8ePNAqBHI/iVeASOeE2+dUMEEhMwczV3I7iSo5Z1izECqqrP65xizjnvpv3bu3UYhtDIAVJKPSO4zAXI9+PEHF1028rWKmHAMZbmD+dlngvRwOyd2DxOOUYGMKIkItM07SYSMRGJIXd8ExCJeCvFRZnj1rqxm/f1vYOadBEkhBD2+/0jb9mJaJqm/X7XF9MdAaxFiAgAmXJOkQg7Z0u1tVaYuTW/XE5dPbht87Y96uoDAPo0TmrRffNyvaM4wM3traqV0mrne0trKoljqXY4PuMQT5d5mbfzZZ3nttun03y+PwVG2O0OMWZHA/BtuewOyEy7w97dP3/1aszpm9/85v3D+bzcP/ztj5bapl2Mkb/17a+35eF+nXOCIWd3rLVaEUSfptg2X+bKQHngaZrevj0/f/bi46/Fd29aa+BujOR9d++/jh394fT3lQ7x/z/HlcuCP8diITAEAYxhUFZO6VnOLyO/OG8/+xLgP/74D7//7fnuy9NpJWthGJWG0+XtOCYOME07XzavygiJYIhABETYo+YVDBGAUQ3WVW9v8v3bEo6Ruc2r5YxERKAEAMgQIDRVAyntw5f8CLx2ItoHOOlvcWYWNd425yC/RRcdfvEbPr0ZZo5oCh5jIINat3Wb9/sRANBAVVsTVWUiE53G/WU+1VoZLQV89mw67KfT6fLuJCLNXUTLo45CSynMvN/v8xDLujDjcL3Sirq4YZUWMcYYHQEREo3IhgwpB3cOIWgTd29VRWvklCOrNgRidAM4HvdipLqklMxDq7LWnnpuiGFZNkQ3M5HWjeZTzK9fvdvtdjHm1vT+7uH8cBpieHZ7bNsZ4MX1ZBEjKkIXVhsFykMqZXbwGGNMgZEVtFN/rviQP+JEV15UP8OdUuXuToBunYjmCJ0zQe7OMRAHUUPiViWPe0NyYgesTWqtXcKx249DSuhu5EMaQ0jrZXl4uN+qjONYi7mXpgYYmKO7IPaU2qsvU4zcWklpSGl4++adqt88ewbgaq1Wgcgiuq21750tWKdGH2+PTIEomNndw/31+kbsE3pMPI4ZoNtzaSl1mTdmBiemeD7PtUYO3rPAEUGkhjB88snB7HI4HPoNcl3XLoLejSNFAKy1Sa2FKDKjIeScj8fj5bKuy31votelxLDdt3sze3b7QkRrsctSHs5lmpTFdmMYx0yMx+O+ii7LAujzMr8+L1sx08AhK8TzJj/94u35fEaHlIZxH0JOUhcOng/jYcngY4zjfNnu7k+tSUrRFPtpLOs2TkdTfHH7opb6O7/zNab7+/vzfAF3C8xNzX8T6+O3gcP+fzkeSc74yC8GAozPA20S7gEdP6/bGcp34vT742Cf2Plu+zd/+eOvPRvDOIjIdz755Kef/V2pwEH6l09DAtsIQyktoBJ5X5KgmxAAAJEWx4gQkMYRtq0iJ/NNDYccpGptgCwhpgFINtlUEelRfve0cryenb/XD1sBwMBN4EnH96uPn9ui9LPT2W29gynSlmXZ7Xb7/diXoSJCRGjXVemVSaxK2MZx7GLvaZrMAJxToHk9laJENI4joouYqob4v7D358HWtVldILiGZ9h7n3PuufedviFHMBkyAYVksAAtB5TqKktUUAQRFLXs6OqIpu2O7q4/urqjIzo6OuyOroiOsP/rKEXbKkAEwanAAcpSFJllUJJUMpPMb3ine885e+9nWmv1H895h8z88gPkSyOM8In3j/veu++5Zz9n77XX8BvIsa8t+0abzWYIrpSsTYYh5AoI3B8sCqaqzDQMg9pivRFtZmbMPvQ5I5pas0YixqHPIpdpmmrNOWdVA4SU0pqTSEMmbdba6j2H4AFcKRWgtWbex8PhhEzMOI6bmtPxOMcQxml6trM1N6njsPHslmUxQMSNcw5QpVVAQyDaOHoistvD4rMJstnzF3rfZ0QCZEIgcowGalqbWAs+mlnOmXxItQ2tLctyOp1SAmaOMcYY+6RrCFFqqyhLmsdoXZTfOQJ0NzcH9ihifSLfmjhm7+mJdj/2qjaEwDwCWghOpYXgWtV1TbTbjtMF4Fpy224nZjZotdZhCETOu0BE03a8f//h8TD3R509ifO1iupZAGIcxxjHYRjN8HhIRMTskHo3BnI2Zm6yjBP7YM7Brdt3bm5ulmXZbi+jiwLCzMfTUmv2gVUxpWSSel6MiOO4aU1rra21UlYRffDgQRGNYQAAVbi6c3V14UMElbTMp4vtqCLLeiQCdSGEYX/76v6Dm+vHR+cCmB4XKQpXF/s7d+58+KO/UqXlvL766seutmEzhnnteh1JxMZxijGC4XY7qQkjp5SCn6ryxcVmno8vvXhPRNZl6ZJO53TGfpWy7RMyxLcyPfz4V+qedoi4ZTWTzegvb7/wK4/up1Q/muejiy/f3b6uaZnh4andvty2fPilX/jlF27zcRvUWspQdd4MUcTGyUlrjg0JiIwJiZx7csrVYLNx83G9urp89fXr3X4KwYmqopAHRlAB0aJKzBaQ4EzJ+fhQ+OtfyF71iWTir9axJTBAACIFhCcQa2SHPrjgvKQ2YgiG3PTeravdODBQTWVZlu5dSeRSrmsqatV7J7WNcai5tJIJ2zjaCy/thwlNS061VVzWMi85DhNbupiicwSEpemcM5CVVhVdU2XPQNBaRqgIpdVZRMZxZGTvAwCUkkIkJAHHpdaUFrDa0pyPN1grtYbI+80FNC2nk6RTJIAK3sZxuFAhVd1dbHYX4ziFGEPOa8otDpsO50MDEWF2BuzDs0/ieFqlFiYdvGOVQIQmmzFO01hKKimbSkuZEJnIzg8VQulWMvg0MpphM+i5Xm+8IRF7Z8hNzIiHuKHo11bIO0QMfnjw8OYw16L+tC7kQhUToyKCzOBNuRqWm8PDB4/uJynDdidqrWktlpfcJb5XqRW1kQLrMLrNGHebMXrabjxSQ2rbnW86GyS1AtiArKu8MOPl1cW9u/shYkmnzdZvN6MjbK0B0DDyrVv7O3dvhTCmVEXM9ZlPQ1PnfYhhdC7kXG8Os4Efp6Fba43jaIoAtNtdpdTWMm8uRnZqUAzKvReu7r10R6DmsjLisqSclhBgmmAcDSXPp/VjH/vYus4GMm3Cyy+/uJZshOQdUFiSaPPX16fa0me8Z395Zcxr8F3uIFSBKppSIQojDdC0Lsd0uB4Y2cCBH+KOwVQl1by7mGIg711Vr/5qLVibpZLZ0zRNYGyG3kembc1u2O7M6dqugVMpSYoe59dffPHyXe++Sw6qCnH0flJABMLu9ICAAIyE4BHis6j13Pq3jgWfvBjJABrgU/lD6wO65FZ1rz2uH7v/2FN78crfuRz3F9t6enhnvPCKda1F5xffeUc8fOi+kMNclEM4zPDo2DgMqVVDWzOkrOO0a2LSmqkSokMKnh0jGqAJGqzzEhwzWBWqmVhcnQEaRs+3d3FE3Xndod3x5sEEVIITUP1VnU2eW33rVCqYdFsU+ESyyieuc26oqkDnwq61plaOcgwhXGwnUxSt67qKZibY7nYAvcHfOTnaYRNPYYm9Ed4tiWttUgWtbacB2V/fHJdl6e2ku/tLIJ5Lymsloug5I7S0+jCe56vaAI06bIO5SS451VqGYfDsas61ltaa9wOH0IkTzBy8BwDvfV4WNdpuBpi6zDqxW1XAuBA3M6pFzBCMAblzenLOiDBtBkYqpamqAnUi7flKYtyMOx8coG02k/fcaYiMyIwIKKWKWtdwPNfIiIpdbrZ9wtb3TysSmVlrTZXOTSU1lZbKWnJreIbp9dK71jqOYxw8As/zisA3N8ehuFrbcT6ZMjpfcm0N+rDVQEybJBEl9KGUktYyuItx2M3zMVcZp3jrzr0hOARmwO04CZwtt1Q1LWv1FRFjjGCEwONmDwCnY8o5u+A322lZ52Vd1rWWctZzrEWEpebWEYLMnsgBlJxzKcUEwLj78BE3ZmSHBpgKDiGG4KTrMq4rkdtsNsvNsuYMYNvtlpnDEBE4xqJg3f2OiEpJIus0hPl4o0CqgMghkndeTYIDEK1au4IZIuac53kWEZF68/jIwQ8A292I4AD99fXh8eP7201A50opahZCQJtaazeH44MHjzabMcaY1ppSqkVzoXWdp2F7Op1SmUN0m3FyHMEcmEwTEeL+YnjXO++++vrj+ZSaQAgO1HeM2vlqQEVQQm6/jvv933IhgD0vg2gACDmVSBQGOxzX27fjMmcLSLSqi+uaL25ftLpeX5fRX9+9Pc3HtC7ZOWqqFxfD48eJ0Zhss5nSsnTjEO8cBUdEoLiua0o2BJgmTmm9uPDXhzoAILsnYoGqCt6z9+eItI887WMpjZq9NlcrDQw8YfnVItpvZLnnRy09d+kYriEwiLLzAsJI7BBUDO14PH7nj732zV/5zhhjl/bqV2THfHQqGJHFGPt3hsgx0GYaif06H5vnEILUtt/fa6btILUutQqaEEQDrrX0AgoACNA5cs4hmXdDa62k7Nlx6I07Dc6pCTOr2n/3Y6/2s/iWL3+XiDCppMYo4ziEcQBCALg5LKUVdkDIIiANWgV2CmiltA8cSn+FL3rbpfdRpK7r6p8bhoxD3GynH/iFj36q3fymr/xs9oymCNzdRf7i3/+pT3XwH/897zMz82gIKtZheoyEhvKk1q619hFEHCdysYkyIRGlNc/zPI5jSgtAp4W0cRzMbJ5nMxQtzpjI9tuNC9O85MOSpbY4xN3FZQdD5Jydp2kaEe10OizLMoRoYCI6xrgZRkWQZvM8P374QNp2nufgB1UoJSuIWFtWXHNa17SutRaTBohQQADMswMwRIuRnXPQ1TpUHUdE7PZcZA0QHfEwuhAG7x09sRJqpZCDEAYfY5d6ZcY+k4mRxykqWGut1MLgVKRVuX11eX19XbIXrc5p9JEGbsKOAUG7zlBvTYhIF8cspWwuRu8jIvsYVAjJP3xY0yHdufdO772qAJCIGfKS8pIyGEvrZHNkZmUEAxE5nY4+Bu8R0Uppy/F6O+2cD9Zqqqdh2r7rXXf3l+OHP/Tqw8ellmZnz9XQ/f/kPGj+teFKfgOL4I3NkkqGyzsD1JkVcq4xblJe3ahL4TnlW3smM1nhcCwv37s9jcP1cTktqRbloBcXvtaqDV67v9zZRzM9XN8YaHdGdY4VjBFCCKUUZk/oQqhrLgbUmjjHZijSBWUbIo4jrkV2O7e2FrfbB/PjZsDoTD8xpXhrl3tKJIcn9blzjjgMPpRSzFSkOcbog2j23v3lf/IrAPCX//GHv/kr36ndl50ohAAgiDgMQwfKdlFiRIzjcLEdN1MACuli0334FGGdFyBUaSBaUspmNmkIQVrtDTcwYUYkBFRVjT5IrWgmtRr3kTkS0V/5Zx/7hFP69h/5UP/i97/3dnDeMaNJbQC9w2jo2ANwya22bJLDEH/m4fL8K/zkR6/7F19wd2Qan37/zp3L7/+pD7/Jbv7//vEv/onf814EABM0/Pa///NvcvBf+Xs//01f9d7WlBwDWE+smAmAxIzIOWcmQOj4bNJE3vsuF7wsKaXugCzOyTBspmncbDaqDU2nadptu32VGz36ODx4CEtaHMsQIqA8vjmeDnNttc9VHUErmcC89wBaSgNUImeiBEpEtdZ1yfMp6+BTKrmu08bVlm8OaRy2BEhn+JohMkKH1LCBiDQzGAYAPGvKD97VJuwRuvO19i4wj0PMObWcHDMigVFrWnIlcgCtS2SVUqCUPnVqKkTECMzmQ2hFNlOcT3x9oykvwetuy2MgtQbgHIUkUkpzLszzXErZbrcxRhEZ4qCqCuaYx2EA8/vLXav6+PHjcRwvLra7zfbx9cNOp5nnOfKYiwKxCx6TlTYT0XbaMOl2uy01resqps20qeT5CAK7i5FAHzz8GFP8nM9+96OHpw/80scaqCm01gg99Gr1rF3w72qdrf36J0fNzDlij+wsJQ3BI5aqNdAGhpbLIgIh+Mc3dVkfXN2aQM4TGBB1MeZch2momlpr4zjmskrrfXNwLpjVMQqoSAWOAGg++pQlV3EOvPeqwNzARKoQ4RB8LaXkubuvE0KHeX8680KAZ4peiHa2dQZmZvStFTNh9mZk2mrNopX5WaKET8xViTpbA2s9lyGtNZHRzJxzreZpiHEIJVfnwDsstY1xPM4nIhLTGNjU55wNlB3hebIKZgJIAF0/WuZSAaBXpv2LXqe/ybl9/y88/IYv+szadF3SKeU1N1MmZAQupQhLcDjs+KfvL5/qFf7F/fWr33fn6X+nIXzdl7z7u3/sl9/kj0oqhmexyG/+HZ/zl3/4X73JwSZatHgMiAzn2hkBwcxyqarqXNhuQ2utVMk5iwJHRiIxJcdrTgAKycIQhiEwm2iNA96+u0Wg6D2Tl5aXtALlO3e2afXzuszLY2aeNkOt6DzXmo1gGsfe8cg5M2PX11iWVdUMyDn36msPS6llA+u6OkebzX7c7IbRL6fqfXPOamsAHW1O6CitBQC64HnnkzDzNA37i1AKIRp51xqta06pMVvJcynJmvjARJRTUwTCqKKlNu+xSz0ys4idTgdkGsdxGgczm8ZNTTWvM4GOMbYKiBADDaPHXKIP4zielvV0Wi52PqfSGoQQRCRGn9baVJxzCOInvyxlCBEiF02tFZEmWruBH1MEK7VASjnn3FXZnQs555ubw717Fz6wGjlHIYRe1qCRql/mWkqJ0bOnlGfA9vJL+6WVhw9XFVWrhJ4pNKkEpFDe5IL5dCyDbkWPj4+nl+4OraxEeDot+31Y1jpyGoM7zF0vKjaDx9f10JYXLryPY8mr9/T4wcoBSikh8OEgu50DjIsstUGMZMBNqnPueKzjiKXVOLpa62a7yY9nIqcKpSQCcB57N8O0XV76kip7f5NmsbNJAL4JNOmtWA6eyD0+7deqKpL1YYW0hqDsiB2iOnveZwXMMXciSkoLE/U4iAhdJdT7SERqxczWdU6p9KmlqIpUBevw43GMwxBq9szMpOA7Jku6vAGoKiqgqYhzzntuJkWKcw4B//KPvPL8yXzLl789pfydP3n/6Xe6aosCVdFSrbZOj2qiebsZrm5t/+G/ev35V/htv2n/P33w5vnvDD48/Vq0gOnXvv8d3U8juNDVVv76T54Txm/5ivectdwRkUih/bHf9h47T44VAIjor/yPv9QP/qbf9dkAJq2XgWamACRSAUhFahEAINfzNUp5FhFiz8y11tZKJ/PG6A30+vrRMAw5S20pBkY0kFpK67YNOZfBOz+MttteH1xr5fJyxzTUkokgl1VrATKxtp5mJNIuoAkATIBW1pJz3ux2tGQzI4I4OCRIKS2nY/BbEesI0N62Lk2h6ZKqJ1SzRvYEyYExjvv9NM9zSkkVpGEp0Jp5z6daamsmOgh6z1VYTGGuzrmcbV2TdzwMIfix1FSKbqaN54GQSk7iKiHWXLbTRoHMAnJhh6raDZpLEx/io8cLu+TjMG5ciMPNzU2p1dMISABQa075NC+zAXkXhzAeDoc8H7SsZV2YIgdoFaCbHAGskJlCCIEIaq3Hw5zW0gnv3o3qkYjCOD44zXfv3iaW0+ngpA1xApRcjpvdBEA5WVq11SxCCGS/ninBv93q8JonBTk9dWqpYPNip1miDykVxNYatwqnJQ8DkIHzQUw3u5HHsKR0OtVpw9N2YtQQkup5Dh4nSLXUWoFcbW05KJ1Om80QHLlQfQw+wrxmR4CIw+CWuYWoZhAiIRojGAIRIFMVmAZH1RQagAH8KpTt3/hycAYx2hNgN4iItnIxbkw1pSUE54NnZkZ8qvIEAPM8A6CadRIVPfkps0OEZVnmeTazzW5a0oqIpSkADtNkCKfjklsdo/dMajx458kDQM7Ju6hqXf8VzdQaIYXgKiIQGZgU6QIfz+/LN/3WFxCxVS0lf817d9/3C8f+/e/8mX/9e991C31QVUNA9ogNwBzauIHd/lmk+4/fw0PcbKbw2z9zl3P90Y+erfK+76c/9v/9rz+vf+2ZBM5iXJJmBVWwp6EQAEQqM5oZkaOu1qnS4YmdpPw0FMKTKQqjqVQDQWAAUQRttbeWEaE1MGuq2jvN7LDk2lVXAchMQvTe48NHizRAj0RO1dK8tKaMrKqnOTvnmP3y6Ga73d7eXxzmU2/QqRUwAGgGIlrVsNQ6bAatelpPtYop+xDJoRVoFVprpaZpDLvdiGgp1ZJXib7mKmJE7D01A2lSa1U1ZQ+qiEjkRKoBImLNkFJbloLMTzJiRMQmriNAEYDYEfucUil1M/pWqdRSsRGxc9IqePJmpEItqwqkZQ1hGELYTLvNlq4unFqLk1dt3g0AkFPxYYrBl6wxxhgGphjC8PDhzRBksxkBBdFqW0I0ZorRPXxwbZpNPRjcu33neErzqdQqeW7bXRwGD2A5FxHrssHzcXnwcFGFEGDw2+A3ZV1PJU3TQASlFBHxgXOZa1t3eyfarvYTXvLxMK9rA4O0tlp/dc/f3+BCBLRn2Osnf42AsUp79Ki8dG/PrnhPOa8OHY0tCxN6BA6hVl13fpLVHh4g1/Sud94zzVeeDodlijHGwUxLKWuqLnpkVpB5hnEbq5RxHETaOI7XhxyCX+aTcx4AVJUZvedaqpF4RmZaU5YKaVnHYRuWU5YOA/z0Pi0cnMGGBghE9HSKMs+zd2crKEQoKccYnv/N4HzXAQeA1pp7YlVhZn0S0qXk53ktpex2uxBgWVbnJYSguNRaxzG64ImACdk7NJJaz/J/DESuK6ISQQghpVOvi5Goj1lzfVZTiDUTfGLZgn/4i+78tZ98cP4ZS6rzcT4pxnGzIyoGLWVQyyUfn77CC3evarEqtt1MQ5Tf+767P/jz9+ETFmpKqVspdsHh7/rRf/30h1//xe9gOgdpMgQH1DUngJAJpX37//TBpwd/43/8mwBAzRyzmaoAMBA6MFFVbS2l7Jzr3PfeE6i1NjGRisiXl5fLsizLAbC++NKdTQ6nQx4hIlCxcjjMqjrGyRRLw6aGmg+HG+/idrvleSajWte8zD4wgilaFWFmdHw6nZxzzrGomhmbQ8QQwvFYu/cIshq00ymravBTa6ICROTYe6AimiHnrERMRE2hG2CJiJi2pg/u36SUxHTcxmEYmmhrS9NaxRE6JlDDUs1MW7PS1GRFNATnnEPwJYu25l1cl0roIMA0jrVm7EoK1poUZpNal6XWWkurhpDSGirudvvT6bTMaV3X7XbabEfnbtZVLq+c8+o9qergvYgBljt3r0BtnueyprAdcs6nUwrDGKM/nZaU0+XluN1uUyrrui7LydGOyQXPy5If3D/stpPUUmud9RQndoEnHschpDwD1hh9Kc57BpQwyGYXL3a3bq7n+/cPN4e34rb+dSwC6NJM1ARKg9Mp3branuYTKiB6GHG5rlhBrb5w4R88suDmTST2YZnLRz7y+uXesck0+OvHCSlxAO9ZAPJcfeCLy4tSD4fDvBuNCBjlcDgOA5dWmwBbu7jY5JJa6+Im4DvvrTXPoVGZj7AdHSt0hU7ST+8YxQE4wmZGpiqwGoKDgdEQWm35e//F9afcRSJmslK7psN//6OvfPIxf+RL7jKpdyGlhZnRFKSI6A9/8PjJBwPA175/G90+l5XI9wJ8nGIch3k9gZHz3PHGvQH/t37+7Pv+9V92OY4DqImoD67mFuMzxuGwiXleQ/Ds2Ufb7/yy5M3ou03V08OOS40+OEfGFqIv5Q3aN1kaRVZthSy45woOgD/ypW83tNrEEXjvm1ZoRkTIFKMXsfQc7fJP/M7P1LKC6mYzLqmlVMxsHEc3eFEwEVUdzmqjQA6BPNVal5zTKqbjEHLO7GCzHQgtLXm3uXTuNM+nYYiDH2tTH2IBLa0Q2BAGM93t/faC13RNrGs6tpYp4LyuwzQCUs75zt1u4m7eu9YaQkOknOd1rTmVZhOAG6ID45zaEB2Qz7nkaqU0ZjbSWiqRCxxWW5FBpIoIhcgUs+RS8rIs3W86leKnXRU+HrI0ixE1JwUI0TvntE+lHao0URqHQaSWUhANCGsRBXOoKaXWXCriiZsz57hlyZWbrKLzdr8FCg8fL+vS0Lk42s3ppKqtVDUQOKLXW7c3D16f5/kYgrPRM+M8z957IkilMvPj4+N1gTshDlN0czJNKnCxHauU43EdhnG326RlLhnCpty9d/nqKw9CIDEFwtu3b58ON4DBpAmomaaciWizGc2MOXvvkaBWA8itXd++sz2e4ObI8MSnHuEJi/03nBM9pQDkj2u1KwA0AFAJSRxBVXztUIrx3ctbHOfjYXWz34TB7cKDB4cscrWfEBrUIlL2l5yzvPKwRY/eIyDVrM7g5ih37lw0Sffvl4uL5eW3vf1XfuVXSgNTuHNrJHYpFRFEasOGtJuoAJjZNMV5ztuJDYzRTglgcKeizYABiFpTIPBPJu96lop/67Lpj9OwecpTBmR2KPJmEPAev9WsOwe/4THf9WP3/+Rvf0cHMBI5IlXV7/3Jh5/qNf/6T5z++Je/HYqpSghhmiZELKWIWK0VyYg5UB/1PHtvRFhrPZsXkyPH9pyso/M6DdwaIYELmlKJMfpw9tt9elheE6g551rrt9kbPIRq7VUnt9aQ+ft+/FnP8bv++a8AwB/8oru5NWACAAJp0lC69A98xz99lhj+pR/61wDwde+/nVJRNdXWWifznaUwEM8tiBBCEzktS9e28kFl7bxGDJGdI6ZOCwVHvN/tAMB7z6id+DjPM4/ovT/Nh9u3b929e/fhw4etyTzPZuqHOI6j85FIGME5V2oDEFVgZzs3EFEV8I5kCk396biA2WYKPpCBEtFut0vXc2kZmoQwNIO6Znmi9KSq2uzMWVJ0zo3juKxFJIvow4ePxnF8esn1CW9tkksVaUTE3rELpiRSzTQEF4Lr7WYX/Hqc+2aKSK1VV/VE3vubYxlGIo85tdpAhRRIixKfddHHcQqRxskFRkC5e3eHaLmstSpRdJ76RzwM9ODBg/1+d3nJr792HXx86aV7Dx8+ktriGNpckVy3bLq6fZXWdRwm5/y0CbVWhAZWzRo7yLmIIiCqVUDspmYdhsGO+pXcIevMuN3Ca68Zdaywdk5ux96+NRXim0QOR91OwBig5ZIX3Az+cg+5aEpJSttuQ0rleFwdISAwwN1btz/66uutwGYktOYcT+NQ2wpmy3xAhLt3/Xyqr736K9tNOB2Z3Pr4sI4DxAhQUArNR/RRSgXPAEBqOAxODGJ0aoFCXWqrmvQc/4LBc/ZKBk9dOhD5zSUjf43rjW2XieGv/eSD7/mZx2/ym8MUEVG0fc9PP/i+n/2UR/7Ff/SRZS05tQ6p+u6f+JSh8PynyQC01mwmZ8/l3BA4Dp74bMmSc34+rROwqlVAEK0DPErL3/q7Xuw//Z6feBCiDVGIksnBMcbgpiF6dvQccbGzpmKM2+30vELE86sbxve67zgfvvrztp9wwPf+5P3WqkgxE+0Qt7Y2KWrtG778HZ9w8Hf/xMNa2lPsW78fnmIte3XcWlvXNc2rqhJYSbmb2BHBEPw4BEQTqQaNHU2bsauE9QJ929duIoangrvMTkQQuNbajeRLyiVlIgKx0+lkUNUKgPqA4+CmSNvRXe7CNMhuC/u93+1DHFCt5VyXNbdqZlir5Fxb1VpbKbVj8ZgZ6Oyo01ozQxVTgSaI4I+HfDzMzAGBpGlpVcGY2fno/KBGObW01q5XzA69Zx+4x8Q+t+1/gskjcGttTumwLIjmvHccWtX5lI5zKUVVoeamzczMe78dJ4c0z/PxeNzuYhwcojappabWWpNSSik5gxmYENg4uHFwMdB2M4SBQnRVbV3ag9dvXn9wjUjDFA10TachOu+QWERTqacmiZ0xg/PoPXfbyP6PHSAaooxjPKP1oW13Q2dC4BkaTZ9WwvLzizAQEAM4BLU2L3NKBSE2qRQAQENwrUEtJsolw3YbXn319WmKL7w4MSqAArbgzTm4uPDeAyLEyOMGkIF921zSrdt7MFhXyCuvqxkoYEtFipyZ2102uNYG5A6nmT30qz3GAGcZCO5eCKJnnzVE7tqRb8kmfFxueJ4pW8PnZltf94WXIboQgklLKX3nT5wbG4io0J5/H1/z+fv+3Osx66//1Dnw/fWfevhVnxEQ+W88V3f/offfyTkxc3BOpH7vT59f1kDYYU21s1Z6YjgMQ5dNdc4Bgliz5zD7qs3MRKoyC5iY1VaxPLuMtrshxE5RwFzATDsQ9/k3/8O/VL/mS253550f+LnTG27WOMZaxUxjjM0aIv6nX7TvIfVv/eT51P72z53+4BffVm2OGMAIzFoVgDWtf+j9dzqK5a/+44/0g7/rx1//A1941UUMzaSUQtRUobUa/Ph0nxEhOq8e1jQzEYgxoQ8s0kpqIqpkMQxkQGAmDVRBVWp2BER0OCwhuJSW6+trADgej0OchjDEGG0t67oS0RACIrRSw8gApE2KZnACAGhCSAhpM7F30chKFhVIua1LKopEjES5NERCJrLODD2joJDOfG0zPZ2WIt3Ag4BIlUSBnBcRdqxgtamZILIiCRigl4Y+snfMjGBkICKSSiY7Z0zOEzkk4SaircWABgUJHHuXGQk84263nZcTgEqFVrQNiiaEEEPo+f44xX4V1VpUFaGV0jabqbWWy7rfb0RwXm7iEHawZfKOxwz5NDeXbIw+RqdScs63bt2aRg+gntE5AkDH4zhFZjQT60YxtfYHqnOOzjSC1mGV2+0UYyoZTIEwqDVEe8ZX+Q0s+9WUIEQEwbyDKVJkYNPcKqyQK8Toq6mCxZFMzniD07FstvF0zLdu7ab9/tVXrqfJDKRzUocYa63LnIbBbSee5yyY0G+ubu1q1rTW1iQwkId5boBQFQKQSG1otUIIGiMGCPmQcwJw4AyaNe98FTibQT87n7dstNJnytBpOohsBoj2N372WS+3P04RcS0ZnrmeQpXS7eKebSioGQRmJLKm//kX7P/mv7h5stdWnotfX/ele+YYQujkrecTsabVR9fE55xLq7VWM0Qmz9SHqsOwIYfruj5/Gq210qqV6lwJYWBPS3rW+EPE6MOZJmxSStFWEYkR/7MvuPjb/+J8st/3Y79K3oqIIrU1dU43mzHnXEpGA+/913zJ1ff92NMEWUWECYgcaG8kSCm5i5juNps/9uUv/9UfOYPGe35jZrU2seJddM7F6BnBDIiAXVfMlhDCrf3+5rjUllPSaSBiY+4kV/OOSimeHSJ6BmbuiSR7NBMAijH2oqxD/27duUKkxZYx+s1mM00jE1zstylnAq5Na82FmvfMRKrmmBAQQaV2t2iQgrVYR+0CACJhN4mGhogiRgTMbCoAMI6jqramKVVmzq0xOzFYlrTddAKMNJVaKwLH2O3hBUDQXNJCNATvVTWVlnOurW1Gj4jETIQECIFjGJlZbBlHz4zIOFTcjEBEPuqL232Tsq6raq2lOY8x+t3FZl1PXY8OwKtqKc3MVKyHqmmaaq05p1rMAEUqUby+PpSsqM4hO7ZunBA8IegQGXzo+l1IxjQwY0/9AIGQn4LYmKGX5PBE3YOIYvT3Xtj+ykdOYE+Mgc8P7Deu4X5d680DYgVxAIDAbMMYPJO2VkojiDlbzmJju7jYPn50aCCbrZ/nWmsdt+Hh9TEwXOxdLa3D2A+HPAw6jnFd0moNkZzjB/cl58Pb37YfJitaPHFT12arUqbBtdoYqVMtmaGJeDJysPEgCjxgFpsTBF+um0ciR6yqoq23PdmBvBXjFfd0l58UWfAcFQ2+5SvfNgwDoas1N7Hu6tlXbhWgPi/K2xXYic8KdM9vfZ8tPv0vMqFZR4SJqDwHwu+41hijmal2sUVzjoY4NClIpNBdnp/9inPBzDpzy56oNP7NHz/3lX7/F03jOKIB0hkUHYIzQxFBdM7xH3j/rb/xE49+LZu1pLmJqmkr0rQSYPQBAFS15WfBl/BZ27KpillrzTkntdInCXIgGZIRsJmhEfH5TfrAOeecq4g4NiJzbERwiZvjqQGoWos+xLDrZqS9Gh3HMYTgn5iNTNPkPK3LcnPz+O6dt202m8Ph9PKLL4YQ7ty69eDRIzS7uLjY7bZgklKaBtdVYUyxFjGHzjkkRwQBoDTt++yZkpYmJlXI+ZoLs4s+iEgHjfMTshA+edAxeyKrufQ5WC717KlSYLcdOPg8n8xAm7BH5wlFam5mRuxyWdnZZooi0JUxybFIG4bBewIUrcWxjeMwjmMustnGUsq8zqa63TIzK6QwsDf2LqoJoiEaodVcShHnWneydJ4cB1WVVpzzHd4gZ0ofMnsRMZXjYckZgMA5Nw2jd0agAMbMLRfTph3OfabbS625e3+f7bMNCRlAAQjRp5RUScTMKjO/7W0Xjx+c5uUs/PWUECHyFmRAb1JREiGaNYE1mWfhwRmyoFgvD4hOS3XRsQNmUATnQJHyWuIQ0lqKtBfuXD16+Dh4cB5KNefBeafWlrVuNpvbt8qaSimtVUkLELsmsJSCBEwesCFo9JxzQ8/MHB3Mc24Vbu3h5Xe+HQg/8rHXHz1KMVgptSn0BI6IzPRTjC1+3cu9+Y/7U2tJqyog+vYcGqrLsj4/e/WBibyZiCigPn/bn2nZzxb1J5Wqttqe/0nJjbB2BdkndYQicm3ZAGpKy9qYuTPD+2IgQ+eGoTNhDD/uXREboCBy70G0mhABiQiciJooqP3P3jf83Z9Pz5/4N/yuF/77f/jaG+5G71jVXEIMIQTUnis9ezadE17gbkbcz8IzGxEA5Jyf7/j26EAkiMyEZpbLqgLeIYCqKRJMm4GZzaQ122wHdltAHUII0XWDjlJKTachBAb0xNFzhzoPw6CqVxd7rW03bYY44Nb2252qEgGjERGhmrZSUlpOIXiApgqAjR0Sd5ZCc+TQ8CkRKETaQTRtrUhRUFXv6cwiMCFCM2EO/SPuyPJSiqq1UgGgSHPOgZEJgINSSozucr8vpfRnB6GSw2mKXfuDmX0AkVxrRZIQnQGcIeKoJtm0eQKGYk0dg0lrJZvUIcRpCsxcZL25vumzixiio/NoYl1yE0prKyUBWoy+X3VmqE0BoEoREUdM7FQBCXig27d8Lmbgaq0h6H63rS03TXEYVBUBTASQBQ2AVTIR9WgoIl0Ku8NR16WEAGmtiNRar0DLdjf6ALz0nQdiUAH9dflg/lstBUIAU8kFbqSVbN4TMbZWyNM4xnVdb67X7eSIeZkzEjAAIK5riTGa6EdfebwdvWjdbMd1yX3uF9yQUsqpXuwhBJAiJXMuWK2xB0FwfR7rSFvhODgmESHvb04lBH755SmMQcpctN67M739pdv/+sGj42G9OYA0BQIkJ2f88Vuw3FOyi50X6HP36l/5kVe+7gsv5zV572MY1vUZiY2Zh8HT85kkgHPUmpp10eznx770TDMDYF1Xz65fkSLy1Ky5rycs/WdQO9XmnfPeq2rJJYRAPnzdl118948eAOCv/pMHf+iLJmZE7wAADZ6fL7VWRCoAhBaInDTrfNUYRhHtf2uz2fyB919O06TWihQf/cef1rM39vd/rv5n778YhmEThlJKt6lj5vhcdEY1h84AvucnHv7uz/Lehx4p+jwh5/V5vuU4jmfYEBg+GSgDyv3796dpcs6rgpnU2lQFUK2VEF0I3jHa2QLbOtpuu912J/g+OBjHUURqLkMY3/bSy+MQVdtuuz0ej7XkLnEYokspEfWOPrRWCERUzdQ5QsamVSsYWSQXQlRta1oA8erWxXZDng4fe311RMExqGhtgV2XaxUUVWQG7xyAdnXFfuKqutvtahHRGgLnmgD8EP0wBMQNEW0vNrVWWtU5dJ43mw0R1bzmUoYxMrl5TZvNGINzjkDNDy54AtRW1jht0AwRL7Z754eS21rWWvJut6u19stVGgBjrXo65jgGBGeGrZpZjdH6006qAMAwjABwOp0UYBgmEWGwF168UmMRu3//YW0L8diWNUuJIUhrgal7/EhVIWT/rE5S7ch6I9IYfa0NkUVsHKNq69BdswQIzKACBsqMKmZv0Uz5TZaoAbAHZwBVqi4yTjD6YLymLNMGLsf966/eVMFWrRXyg5qBGIrB45s8eNhuNseb+eISqhQxZcbSqgOrAnXJ8wL7S+e8+QFSw/uPRMyLeedSqXUYqBTQURGtVQhBXaCqGgDZe2IltSq6rMd3vH3IJd4c2sMH+fFNrbUBELsoLf3qJ/mrLWeGRAaKPewQAiL+wS8cv/enzo25w2l27BEo5493KmCXa7PnYtxpXl2mXNbOY6fn0nLvGfFZiKq5QKAYfa1pmrb2XKa7HS5yLcu6xki5Nm1tHCYCnZPEZjk17yZGcEZLehaaiWhdc1QIYVjX9W/+9LO3Sm44z6alT4fIDVFVKxQxAbLv/5kbAPjW3/kudLikmko+rekHf/oNNvfv/1wFgL/9E4ev/dLb1ZFoRTKoRYX+2k9cPz2sKThvf+1H7wPAP/hA/X2/ec/k83Jk5t1m21r7a89hjCaCQymmgA5F1TkXg2sNvJ/65KG1ioiq1oNIzlkbUIik1AOxSFNwjCEtVRWiZ0ZHdOZ5V0kKbCBcrJQicpim6XhYWDwh5mWupQzeFZVUKgDUqiEERDZTNFJVUWDCJHPitbVGyApW6/U4jvdeGtiBNEPE68Ny+/aGvc+1NlhNrQtHpTXHGImoWiXP2ICgTlHDBaUVxkgxjiKy2bp1XePEpZSc5t04TDw4QopsZmVNMHnbhmEaruejH92Wq3NdPA2YPQCUIlVt6xyiKVepC2IbHDqAXdiyC7VyaSpKyrik9XBKMdLNUjaoVi143m4mA1kXrUVDaH2IF0KIMTL5moqI+TGgGVl1hFdbX4p5K1PAfdg4R6212orzTpqYaR/w9LZPFQGgUmcFnaYxkiNIaO1iG81MDBF8XTWZvevd40//1GrAQLU2QNwYzJ8eY5Rni0FjQCuVCEghBtAm0KRUGEeqTZf1GCOaGRCAh8MC02DeB6lpcGAKaHW7dXluOLKZAjhCWJOZBRUwKccD8NUETRF5jJpL3YxucE6kqep2FwFBwcIA7BBnvtxv53KCVXlw5Fj7vuc2hBCucDvCyy+NreLDR8v915ODAQAEBEEN1Z6Q60ABwYN1W5VPrKg/YZR6nqIgwLl8PDcQn8W4H/yl+vs/f2PQiOn7f25++v15ngFgu7l4+p2/87Onr/3S2yF2ilX73p94NoqJHsfhWQL4A/+yfe2X3pbWdrtdq/o9P/UMoGMIrbX+GPfeA3Ja1+PNYh4TISFGv9mMQwju+Ur8u3/89Ee+eBecjz7Gj880g6FTaGbe8Hv++QkA/uTvfHnNFQBo8v/dPz6Xw//tD33o67/ibmkNjH7wp5+d5u98H3/z133uJ2xi1crmQggeQb37jn/27P3/kS+5S6AMz3xH85rCYNM0iUhp9a//5LMe5Td+2YspLWJAziMHEEmpVjBmNgQ19Z5DCMzOzFJKKSXvfV5WC8KDr7WWnLs6xmmenfOI1LFHIQREKyUdTzd9FGCiqnI6nfoAKqXUpfZ7OS9gvTsB0Do2RvXsUdVLvMH7Iq1VidFthhGIe6p+6+7Fuq45y1ggemWWTfC7sH/90UqI4zhKbaU0JhyjK6V4P4Q4EiEz3r59FaKrKSPi6foxe7edtoW6h4x5xyEEcigicbsdhthaq9I23m+2W4ByzrhreTrCjjE2EUREdkzYDX+RHDN7HxAJSOel9Li/342b3XZT8+nm6Jh7o1BMlyXVCs5zLk1NehLgnSFzCB6fmOsG53sWSd5RF4RH7E0SJke+y7azaDNFAFQV1cbkCR0YNQMxJASxbooDBqaAIjIO08VFOZ666iZ03OJbMiV4k2UAqhq8Q7AYAE2IsDbdbmPOudbsvUO2nBsAxOg2ozseS3RCDOMUHGGp1Tm3vfCnpVxehptDMYUwgjRQQRVecsObm2EIT/8ioALoGL0jFBECNEUza1U3F7tccxUZgze0NeemEkJwHFtV6/Ykzpjh7gvTnbv8+PFNLnI8QBVAA1FCcwYMtJpVgLMKzpuvT0TYmEHJFSj/0a+49R3/5Hzffv/Pzp/8m9oEAEpev+YLL77vp86B76//8zcYy37d+69C5Di4r3v/lXPuO370/qc6EgDWdUXEcZiICBQckveed3AqiYi2m2k3jdtp8o5GH/7El9/5Sz9yZuB914+/Ab/lz/zHL11tdgBQSvn2Hz3/xb/4Qx/7U7/txaY6jMO3/PaXv/0fnce73/lPPomKBxA8f/I3v//H35g/9Ue++B6hAVIIzzb2730gv/HBX3I3pWRI3sfeR0NVa+ZCvNjsbpZHKWcTIWTBRkQMSICBuBv0mmrJWWojIiWJcdNpHkg0Bh/HAISldHo31loALPqQy5rycnFx8VQB6HwPGxgiAXhGMKEzyByJDJnOlGpyMaL33gy1tv40qjADaxzQ8xhcAFEmM49+uEwpDT7Uwuuqm81GDG5ubm5O8+5iSHlZUn3x3u1hGESESFnYeTc4ZgxINvig2gyad6OK1JxbKcQwTpPjkQnz09qRydE5rDOzGZaS7cmMztT6gHtdMyI5DmigrTrn2TsGcMgmsN1dGsi8HokAEIbNGIKrtTKymTji1pr33PEuZ3lSx0QIQIhAnp/C5p90nM5NDFFxToBJGlYxREJHRdTWIiLEUOv5g2DyiFhr9UO82G9ubg6AgMifbnJuXwhQm4WIoAZApckQsE/YO07sCTAWRSylNsVw99b2dDp5x6WUpOA93hzLboS7d/aPr2+2G85NmNkxLUsdNhGWpapqTmYQHIBBJKpNh8AGkrOYA6IzrBrR5nUGj0DYVJAJsFt9gIgAKTGYqVoFQufc7XtMOORk8yLHm3JzVLDuKxBbFQAmJLVnIOWnSiLPJ1XuLAluZzMqs45DlpLr13zh9H0/9SnVrgI7MyODcTv+vi/Y/K1/8QYREwC+5be9MA6OULwjFWB8o4bcc6sj8gBwXXItZYrDfnfpL/Gjj+4T4eXFntG0iahMw+i3b9Zd/j9/7Re9cHmn9/Ll47klL+yvTuuKzr35+/n9X3o7hmf6hv/Jb9n8Dz/9xqcJAH/qt787Og8ovcv5rb/j5f/2hz9Re/Hp+sO/5VaMsShwcJshInAthQGGEDfDeLndDh5u4MY5x+REzg6C4zie1kVCDM6bqIl677v+4DBsU1467LkTeFJNiOg9i9Sc19ZKv1W78nPwYx9DI57HI7XlWqtI6xNwZGdmzgXHTkRyKcMw9A5vR8xBR19NHtRyy865MJLn4AhqLgg+OHGOmwfnYgykqraL290m57VJmcYYPS/HQy3l9u3b8WKrYIgYlACt477MtPRUd4i15toE81Jrbq3RECqhijAze69dREUVgNY1t9Z6ed75oyJtnRdybjM5R+CIHRE0PV7fzGsRgZJqKmvKbZjY+xjDWGqWKnEIRD44XpZFapZShxgJDQlMW58NIlmI7uzjgQh2Th5V+9SYShYOBIDaB8UGqprmBKgxRiRSAzPtmBpGKlmngZHAFNhx0/pWzUzfZCmcjXsQoJQqClVMFTRJCB5IWxVEHYaoqrqUfg3sdpt1XdcEl5fxtOZxyzeP5Xi62WzCK6+Wq6thTbV0qgSu5Ig6sVLBMTBBTqsLAKBmovo0dyMxnOe5Vhg2XlRXKduLHTZTwyYNCQGwtu6HjtpalrKb9iKmNY2D222me01zLcfjejpZqw1A5eNVxd9wvH52eUVzAPpPf+wffdkXf8VnvPfjsMc//Asfx7j4He89/fAvbH/He98An/zJR77J7j9/cH/NX8tv/Vpe7U1epB/21r75X/X4X9fB/2H9e7Eu/UudjdphNN771nowxyfaJeevGUlMiUgRSm5VWmco5DUx8zRNPrBIN1EwMxtjqKJI4Zc/9Pr1Y3A8ALY35Im+tQsRCW3j3OB9nleAjkiD0QczERED8Awhus7UyqdGRDdzvb2PAiZSh2EAVGrheDyG4Pf73aPHj66u9l3+uUpjxjMF3tA5V1OpFTZbco4QlNBCf+5W7QPYora7u+XR36Tj7uKiI1h67tp7cSLW3crQcV4qEfWNMjPFNo4DOzwdc4+/iOYD/vFv+px+vrfu/Nlv+7Zv+/Zv//Y/+Sf/ZG8QI2LXNzxPqM3sMz7pRv3kW/dT3cy/rpv8+YM/OV78etev8U+/yWH/1m/+rT34P6x/L9Z1fWVst7333vkqrVbRMxize6s7JOzoQhVRhVZEwUxEm4Aah2G73fb0Ma2lc/Bj9MxsCtJw2sDtW+PN47VJ60adn+7V0VBnVxwGMygKjNha6+3RUktTcKodDMQ+LOs6DrjkTITDEE6nNUZncrzz4ubmZr4+PHrHO++8+uoDRPCBRr89nU4pnecBRByCTZNrkktu0WMYBnemLYGIDYGKWmst+JGyS6kAgIiotg65A3CtllrzOPJF3MQ9zfO6LCshM3tVWmpV1WEAFwgRneOnLcvn19NK2czcE6ruufD5d7Dvb7L+Q+D4D+vflzWEgZmDD9rUFDy7WisaECBgN0elUgqIBu8bqKqG6J1rKuCJveNapNVWa60te88UvGdqtZm5JmmzDd612kwEABneClWCN1sITcUJdPXMWvtcB1JT7y0EbyCqCkataqmtljZNTlW683Be8naKpZRx8q+8Ml9dcYzxwx9+sN/7da2nk15dgjaoAmBaS2YCRNgym2Et4MhUNdcqYD5wbeKIvdNS0mhb55yaMTMaNSY0Q2BGJCLOFVFqXdd6MuU4BaYxp7KuZRzjZrNtNUszZjZiFf/0dJ/2DZ/fA3cWygAAgA7x6+szb3/euq6n04mI9/v9drtd1/XRo0cc3d1bV5LSbhyICNBEjbx7NOfXX3+9inrvt9vtGIPUMo2xqT8cDpeXF6Xm4/G4mbaHw+H7f+6NpxCfe/fzGSqxm7aXtWgpxQdXawYtpuy9X/KCTHHwm3FaT7PU5sgbwlnAJnhE1LOZAeacU6vOuSFEba2l4pH8OHjvH99cE9EwTOu6qpn3/pXHh4ePr5dUDDgVNSDnvKrGGP6Lbz0LLvzA3zuR5Dvb6dbVxRYvTuusIByYGEAUFFV1yfrw8UNli2Mo0loug/N3bt2trW2mCQ1ON4cYwhhiXtNutzsej4i42YwhhJvldHM4LaVmkcnj5eVljPFwumkqzJxbIaLUWsdpVmkhBFVdc9psNkFiSimOgYiKlDUvKaVxHB4db7ocb8m1o6hMcbPZHI7Xu91ujFNHOJeUVVvOec3rOE7IJM1ErJTW1EIIvZqoOXUrZ7Szvv9+73Oup9PyJb/l/f/RF33Zl3zBb3nXCy+zQbxztR6P0XUcYCMO6zzfv39/vLW/e/cu7K/gdMrLAoStFQAIFHyIdTm1Vogh+AGHMS/LP/jH/+MP/9A/+rlf/JePr6/3V1eXl5fexePhYABrWZm5qdycjt67YRpTSq2ut27dGYdNrbVfwLXlLvTQWmP20UUiSstaa766unpwmu+//sjHDQB4z7cutzU3FZFm3ntGi95Jrd77kqqZfbic9Xr3252ZoTv79kXnEyYzY/IKioAm2nJh5jFE8FRVvPdNJaWCiHldzdAxO2bfiBmZ6Im2PKW0jONuv9vdHFL5NFsjPb9UIed6sRlqFQZAosFbqlm1jVMUkXXNBDCO0QctpY4xIIBzlJe0rjk4nhe9dblZ5nS4XsYYjjdC5B3Bcjw5x8MYa5VSShNTAZC0v5y0Ld1TJK9KHqbJ9Vty8LhYUdWuu+q9L1JNO2uz5dacp+0uGkgpJ4JNUzU1ds4HLRU4qh/VGFpurVvrQH3+ZD85+XOIYOoA0LCaPpuE1lTWU8pLudhuPJCW5LQEKNO0O51OIrWp7LZTDMGr1VqvPNtu+9r1wzCMPHAja1UFrNW02461lT4sPq3zpwqF/8vf+e7dZox84X0EgCyZPAkAsisGu4tNSktDa63kpS2lgpEBo4OuhFhziSFshtGzI1KxtpZaWyPX5lrPMz7RYG0MsVQBa0MYow/zuqD3Q3QxkBkDuXHg+bSMcZgPKeye7Qm3HIjB3IPXj20PolVEUIyIwKj3dLNZkurJxzi2eV6WpAPMdaUGuZTc6mr1lKulE6g9kpQk55zhyN7HKi2nkmprrW2HcFBlRgMhAgATraq62V4cjkfvPTM/vnnsnNvv96q6SuXga5XocTNsDKgaVKSryzuHwyGnBADbafDer+tqILcvLxHROToeb2KM6FEyrqWGYRCT/Wa75CSpITsQBB1R1iF4RBCAOI6O4NHD+4zwhZ/1277yK7/yy7/it966dWmigNpaXZbFDo9rWslzDG5d1sOS3TDdetuL28s9qN187KPby0vebcCUGtdSsmmtiTzhMAHikpM+mh3gf/Kf/96v/urf3Zb0bz7wS3/rb//dH/zhf3io6c7LL9/a3Tq+ctzsttfHw7iZNptNWlYTm+JWs3CE6KNX0FJhmlQVnUqXfHDi2U/bjchQmlzETbuonTK8HafttNncHR8/fJQIU0r7zdYRr+taSkpayLuntiV9ThKQtm4EgDkt0zTVKrXWIU6qkHPeTHuP4MBVk0A8Bi+GngQR2W9UteeSzXt27rjM0zSRnaKXkneju/XCncPN44UYVN94WohvoTK+ARCKIYCeUonOkVQRyXUMvrrQSlrQOPA455zn+tLtsTiQWsxAAeLgUMkMqea5zM4xMJyW4j0MgVU1KZIIUR4DO0Dn/GEucTO1UjuuYFkbIUiD+VQH7xZLmHU3uRDcXIpmqVVojKPh8Xhsre33+z6CD2Fy43Q6rnldq6A0RcRhmJBsTdUxAkDLjQyif3YvEzACPjUwQARDcHbWlQSDjxv4cvDDZhAQF7wL3gXnvb8kCsM4H0+O3OgDGZQ5GegwDAR0td+D59xk8CF4j2EAE8+uqYCI9957D0R/9D966Tv+6SdKw/6XX/WZzRRLoYEcoXPOI7QCZoACBIaIVWVNpWntOES03tvFfl2ydyFGDh4BAVGVtDurGTrnHDutrZgUaWSOxmBNFq3MTEOYayZvFxebPTtyHoDWJZORSWryDIY9DIPUuuQUYzwt85MWRifDEyISOWQHAKXVdV27UUyRNqd1QMxzKq021Y7U09aa8ZqriOC5Umgi0tn7tVbV1qnfIlWk9RFwqdLb0h1t1yXmY4zRbdSatqbamkrKaVkWBetAqM5ZRJPuFTcMwzrPqla6sVcth5uT9z7GqKhmUKR5FyqBahmGTVrLFMdUqqPoiB+9+rDm5fd99Vf/F3/mT33u2z5TWymlHI9HkUpEPrjNbgtEXX4RiMJE+3Hrh42PYwUFZtpuadwgIjBCE28CCKAKooAKJobaSi2lXf/yRzbjRGrvevs7/tz/+n/19d/4Dd//P/ydf/BD//CDH/jAbrdL6wIqRNxFyUQkSdvc3jjnHjx44L2ftpvD6VSlYW3MbNxRI7krhqSUgM6wwVJKqmW0UcyAMJfVQIuUlDQta2m1lALPmWsvyzIMg4KpGYh6H1VBmnW3v84xjzEaaVUxReepVGlSRWQYYyTMa5KmLoQpBBd8Smld14vNkEsL0ee07HbTboePjs/ZWn5CBHsLW1t0JqQJQFMlwuCc87imlYlCcEWbNAVrjMoM63Eex4BjyLmoApmotpzBRdgMQ8kNEff7WEo5nUqMCGro4HiU7SSeEaxdXsR1XcgDoxEb2ZmwSqTkCdgjFyYPTESEDACERGlembkHk45h6tJWXUM3Fe18XzBjZh84OM/AhVr0zj9vcneWv31KwwNAcPCcAMLzmztOYZrGcRyiC5vNRrSptjhOztATj9M0xgFAaykpVYzAjiPyfrt/dLhhIynVEUtTYO1+8z3j7dbyf+wr396BHQDAaM45A22gta3rqcRaPbGZCRgYNZV+LbZWyHF0LoTA7K2JggChqRohM7N3BlBUECC3ikyeo4KUVlEKGhjZWvMy5+AcAR6Pc9/WbNUzupERCdkYMQ6jQwdwsTxHeZ624+mgRWRyHrQBMjJAt+dGJPLe+2KGTNLjFJgfYmfCVFRpkltlZkNr2ppUBu1MDEBUVWYkYnQMAOy5a/YQ+dZaH2Cq2rKsRKRqABhCzDmXUmMcuheogNRWm2lptTUttU7TxGcCtDW1pwY9IURVVbAQgikyrz0/KtK89zfXh3HcXF5ezqfXHz9+zBRKjiYspr/y4Vf+8B/86v/9//bb3vnyy3ldDtcPutDDbrcL49bMFIyImopzUc1aazQMg48URvCenQPiHTpg1loJSVQZA0ABIgCDzuNXb9UD2gBTSolc9MG1XF6+d/e//NY/86e+8Y//pe/8jn/4Qz/0C7/0iy++9NKw2dwcj6WUHtCb6nE+IdOaU11ks9tSznnO6AIiiNRe26pAaeqChSGamWRNJR/mU2uttpZz8t7XWsuaahMAMEJG9+xmIQzjoLUBoYgh+dKkiAKANJlTFhEfB4JuYGxqWEpJLSFagME7Ukf9RmytsHcxxgik0lQoBNbWfAx371xeHx8r8hM/wk/nUuuWUcVARZD9EGKs1RGKcTURM4fqGIIDFci5DMFthtBn4t653Ta8cn+ZJthfbg6H0+GYxoEvLoacc4zBOxq4MhmYmtoYsOXO120A0Lm7ZmAATbKRo2ZQKyoge+e1Na21glnXKLAnfOIOhKytqDZ44jpBDAYBgFrJROwIDaRzlvp6nlL8ZGOffLpPeZRPjxidCyE4MDM00ZKKmjjnUiuKgMxFhRHJO6hURKrqmmsFYB+aakrJIzBzK3Vd195UNjMCQKL2RP4ByapILZWIFEREmDGtszUhwBijj4OYplLm49GFME4xxG7FZ2oIRCH0WINmVlWKNK0NABSIGABRzFRrf/KBWWmtpNx1mM1kWXLnMChwUxHJvQU5hIg+TJsQt8/mUE2lgRpYkjJ6p3LOsrvEITpGxw7Jx9g1Uhw6571zzlCLNANw3hORGSCSD9E5N8RNh26pqgvnXcpl9SGmlDofvYmpofMjUnjiQkUxDB2zraqErkkhQCA0gyqlmQKiIjjnRETMfBhM27qutbYllcuLLZMn4lqEmS8uLkppp3VFIiRLqSGWq8t45+rW/frYDHe7/fHm+sVbd/70N/yxb/2mb1iOh3/10z9z+2o/7DebGMgxO6cEhgQAgsB+oOC0VnLshg36COSAHEWnqkDOcsnLSmJlWb0jCMCIJgoEzp8HfOy55bq/3JdclrxM2x0T57Q44P/5n/2z3/j1f+Q7v+e7v+u7v+djH/rQy+96V661Qyk3m00SSSltL3ZkVkppKt5HBjRC770plipmRo67rkRrDYnUbF6XWmt3wnPOqYiAcWAAGtizd/AEb0pECpZbBSBVYYXuHYjIXZGQyTEze+o4SAFTURVwnlUVVM4SP6i1KvsWQ2Dmw00lcqW1MXIu69XVPnzkcWryqdLDt2w94c4TgRk0haXWhnYVWdSWteVqnrwRMkhwbIRN2lplYAbgNQtAGwBu3x2urxNiGgYaR+yVk3OulTqf7IU7m5IXBBhGcmRXl36pZmbShBijD6qac12TkTXI4LmxCDF5z6pZVadhIKJ1XbtAZM8Eu1ypD849kQUDUBccMzvGzbTNa1mX03OpITxVEfxEZh6cUaMfN2G52E7OBa2aczVpBBZ8mKbp1ZsHSWqZDwDgnPPsmpmoppJTzgK43e2bKXsn2sIQNNVemvXef0+UegO+q4E2ax16Ts6LqTGZajMFAJKmtbbWRGSYJvaOmKoKqKAao+vcAwBCZEBUw6f6YC5Qba1q7SZTzpPWVkv2SG4Yur4pES3LYqKOGNAjABAzQctpXXNN1Xvvnj1O4LjMTZSZj+uiOrRWzMy7LjBB2qohhcH7GAwBQMEMmQyhf1rM7Nl1rcoYBmY2JFXojzMAQEIiAlSnjs7LnRVxEGMczcxFWpYFidCxgBkhEqdaurAroQPE3KTU2vuYpzUhokMYhsG5Acm1mpn5OK/O1XEcRcwZTNO05BsRceTWOU3jdjdt85Lf8bZ33rq4c3NzfPHu7c98+0t/+lu++cU7tz/6kQ9f7Xbv+ezPYu/FGTIRkSGid0AEprUUZgfMiI6QcBgBSdSQua5JWxl8aKcVcgI1V6ozb8559kDYTLSo5KJphdZOxxtX1s3+chO3c1qGOMXdri1LmY+bIf6ZP/1n//DXft3/7c//P/7uD/7AS29/x707d5aUDofD/uoSCJflzB2YpknMyIVeTTcUBgQANau19ucrMJkZEXfxuWmaiCirdqVZaWYfz3Ltaozdll5EqjQDA0LRBgC+S3N7JmdmhmatqYL5GLxnQzA5P9CZGUQAFBFzXplZCEQqsNdWptG/cHf/oVduOm/i3wXqA5EQREwFJLf9wGvWqgToCQmbqsIUQrIK5FShLkKEFGKr+dGh3bnF08TLIqXoNA2llONpHQfvnFtTzU2InSNE6o8HM2URUUEwUsdqaCAGWqoFAEJWQ5FmyNEHZCIx6HmyKjKfe35EgdHMI3NHHaoqEKq2YRiHMTpmQPHPS6u8kdTjORr2PdbnqOE9k3TubP4gYEBUpJgjISi1jONoTHPNZiaKWZqxY0R0bEX8EFEDIJBz0blhHAmg3/O9zufOJkYzs1QTkWNCRZdTYvIhhE5vKqX0Z/hm3DRtnRTFgEQOAcmwpAzdaguxzxbkibiegFETIkJkU2D2HN00OmYutYoIIE3jFqx7FgcRdcDOuWSorZbugKHPKmUmT8G892uaq2kDRTMCJAQEVEIgKq1CF3DELqGIwKQNfBjIAMmDGiI5F4go5eq4b3bX/de+Od5FAIpxfCKiRfrEo50cMVeAsxcd0VkKSAFVwTkygiY5typ65oft9/szbwxsmiaAqZRiNbELgOw8qkhOFYzGYbPbXazr6sm/6x3vlKp39les9K6X3/7ud779bS+9PAYfmO6+/SVyjm/dWo7H6fJKSikiyAQGKkbEbtq1msFMiVwIwL6JiQEpOnQNBIuQ1KDSUvZIjqCuCSICk+tmq9hlYNqtu7dqrWk+Ddvdxe3b6bScTjfb23fKo+vWZJ7vI8Cf/wv/n6/9+//g2/43f+7B/Yfv/Ix3juP46NEjZo7joE12u93NzQ0aBueQqYoAYGeqtNaktf5U7v99Cp+exmBAiM0FR8gGDcj1JmxftbXaGhEZgoAh6ln5u6mZheicc/0BbZ3jQIZq3jvvvVpDYhcCdo+omoBwHEdyOAR3SlkZU65TCKrl3ov7j75+0z7N9LynoVbVEAGf+AnfrFINGJiRAaRKBYUsQN6V0kppZhAdOYfIPoz64FG+fXu6fTccj8d5Ts5hjJhLHXzcbkLKdRiGVXI6td3EtcrZpUoBQUpLehbNi2vJgcCFqGprycg8DeNmMx4fHbqgXyeGdzikc05q7qVtfwXvPZC1Zui4tMZE2+0W8Fnb1z5JwQHOM+UnMVCee/K8dn1NRCLGLpjZWtdaa67JxTAMoTY3TlsAKFV88L1iZCTnI4iCmFlj51Cs9/trrd1aFwBqrZ4dh2BmhOjYB1VHzs5sfXDM0XkAEBGxHvuxlNKjIUCPAYBECud8k8yeZViIHSpERM4FAKhVyGCMw7QdWu15NTaDUurgg/eh1eb9eSv7bpJ3zdTHUJ+7AUKIrdUesJAJzRmKEashgDoMyJRKbuciCBSh3yFnlWNRRuCuDlCbMpkoD0FMwdA5hJLtSS+5dhFAINWzZHEXHzXEGMZaa8mtx0pT8C62Jq1VA0XEZnDueRASOx+i9iEMAAAw2LIs6HiMIa1pmqYmltMpxqiq++3+1v7W4fr4Wb/pszfDxkQlf/C9n/XZX/D57yPTzTRtLvabi8tsthhOb393K7NF551DZgCtZUVE9IEQVNU7j24AQ2JihwCEFJk91MzsmuXjcpzigAwpJ9PmfIQQyBH7CGEAVcm5pETOUa0wzzF4F/zNo4f7YVNS2gyjIX/ox3/6S7/wi//Zj/zof/Vf/R++/wf+9nve8x53sT+cjtRdcQH3u4vjfFIw1GfsVCbP3uEGu9zCbtosy9Ib8CEEFSCH7J0hmhl55wFP9RnlnJmrCiNYqwDAfLY/P8tZenaOtauwiRKRRy5dnAEVDJyP7FDNmmkF9ah+cE6wNAFWMi4iEUxr8sP4trdPH/rwx4m9v+Wr38LneYJBd2ICsYSAAB4JrBIKeigF5tr2k9NmgqAKqaiV4hHGkTeb8PDhEuMyTRNagrMhRDmccvCYqmVZW1enc0CADs7BVxFMtDVANrbOoCfowxUR6Uqg54rHenfr3NQaBmYWotZa1f5ZUAie2Ndaw+BKrkDeMeT8cQibbrnzLEk0cna2mjYAIPcMb3hIS1erHiIYQjapUI8lTWCbzQagSmsiAmbTOKaUFLCUOvjBRD1QSSVuHCLlnLtWCprFGBFRmyhSb5Z1mm3PE1HRmnlisrMkhJqCoQCYAiNTH62I1FqBMcRxiFGWxohqlkrp2tddiyXGKKWmWpi5S3gyu8jDvNxcX1/7GMfNlFLKIgqYlmW/YxMBUzVU1J5w5VbxOXCDmKaUSk0hBDBoraFK3wQyaEEN4akUghFo1b6xYtrSQgZ+mthhrSpSfYw+MDwRfA0hhDB09YFOxWJPYtDamZCp1gDAKXVJxK7M2Hdju92KWClCqnRuFOoZNoBYSqm1OqanYzgiyqV476+vr6dpS0SKuNvtDoeDiGynXRvaO15+x3babMZxcH6/u6gpv+2ll51zwQ80bsc4QJwyaAgbNaki0ATJ0AcAqKqEAEjADpBqFWZC8qYi4BUFFc2giB6XFYmUEEDNrKmgCHhEQmMCduV0PYQRkcq8YhA/kRuH/dV+uX89bXY5JdX2zre/4+GDh5v95f/9//0XPvMv/Dd//v/5/3rv533uyy+//NGPfvT27dvShBHZ+VIbAHQXrlYEfRuGIQR3WmZVvby8JKLr62smury8vH702BE7hmbSFZXIufJcNNxc7PoHrQre+9Zyn4Y57wGAnSNmUGR0/RZAh9SgtUIEgBaIRC03cYG3281ms4kxHo7XqWQgBiMCTrl6BKP09nfc+9CHP/RWBr9PsfBJckSdJQ7AAUhQpZppJBgGEtA1V3xUt1sa92NaS0nCDD44AM2lDtE1aTc3y+ARyUTqdjsFtlKbQ8lFEfHy1sVpPnh2uwnNrFlPlSiXUivUWp3jXv0ggPfeM6vqOs+uN3mftI/OaSBAz66qSL9NTFFRRSRXK7kIaWWQ5xxmnvQcngZEAgCHwEbN1AEQyfr80SJNFUJoTCytWaPbF3fE2ppKLytMcX9xtcxLYL9CpcAc3ZpmUeHIlaoK+Oj6fGBd19PNPE0TINQmUDIzG6lDpyRnZzOCZhoGdzzM3TDkeDp4H0MIFF1eSwiuKhhh1kKAolJQmpqIYKCW2jRNfZh7yrORHU434zhatouLC7fxr9y8fnM8OO+KZV2ac66UUhvsLneC1nGhqKVrWccY17yIGMBZteyUl6WsPUW3tpZS+gOjxzIjm083iPKEqWo9WvUiN4Shtno6Hna7XZGcUtrwBhFtlePxePfu3c1u9+DBAxHZTlMuFRlLyc65eV3IEzHNa768vJSqWRsG15IVE2QsRRpalhKmeJgPkaILfl5P42YKYdRmKa+ImEpOZe1KaEI6Dtuc6263y5qImb0vVfcX94rk/dX2+sH9933259y9ur0cjh/+xQ9e7S7ubXf7/f7Ou9+N24suOU2So5nxiGaOCAkM1LQYNIdi3hgYusOB42ZGWpwhQ6FWW02e8Pp0ktoePn5E3r39zu31eNhtr9TaWurmcm/BwnTp2YvV43pDIDskqKuw0W4/7Del5Kql5uw9DtFpTen1V//sn/u2z/usz/m//Nf/x8Px0f7erXSa93F7vS4AusynadqY4jgMj+8/fundLwPACuUd77x7cXHxwQ9+4J3veseS1/1+/+hwfVgfb2gX/IBKIcScEzjHjPCk2DIUMBvHKa2l1gRk7InInamy3RDPjAkxOAU4Hg8genmxB9Wcc8JlGIYxOgWYhtFExVQNw7DpT6ya8ziNMcZHjx7JfPqc9+3+1c8dECJSVgNEZ4qA9a3SPXz6zH/KxSDoEhTUREfftdJRCt7ZbbJbD3PLq2tFDTBGB2gijRGIfBUhcp5sSaIGowdt7c5FuVlACcD5lOrNzc3F6EkrKxpyzRLHOK85RG9WvXceKbfC5Gkp03awQGvKI4WUcoyx1lJbjjEyMxGraq2l57aOQ86ZqaGRiOSbZX9xq0smO/dcr5D0OQIeQS/kzjESET6+R8vse28r55zWgsC9Pu92P6rA5J1ztVYRbabDEJ+mIb3fdzoup9Mpt4qOq0qqBZgE7LQux2Ve0lpaNYTS8rwsy7rW1lxgQ2yqVWszVQRFKFKWnEopIrXn871ezjnf3Nys65zzKlJTSog2DGEYwul06Fmkc66/yWVZDofDw4cPO6APnyzvfZ/w3NzcLMvyvKyLmfXR1dM9ORwOXe0u59y///yO9Sbd6XTqDPD+V548V6QX4Kq6LMu6rl3DMaXU0/7T6fT666/3NzCvaxeOf/Lm8zzPHUYgIiGEZVlExHt/Op1SSt0LJaW0rPNZcY8oxlhr7dgXZvaenzxOGZG7fWDHwaSUlmW59+KLKZXLy8vNcKGFyPw73vb23W73kY9++MWX7tx74dbuckcMeU1WVtRKKgQGBGhqoGZiT+7LXob2ti884T91RTIAkFIREdVOx2PfgVdeea1WOT08xu1e96O/td+wT6+8pmWtVKEqAmy32zhtVqvFGojK4xOZkgpK28ZxPZ66Mk+dl/lDr3zl7/k9f+cf/L2r7cXP/9S/pDE+qEsYhwfrcbp9SUPw03A9L1/0W3/r5dte2L5w932f+97g4i/94gfe8573lFynaZrX5fHNNZKrtZ5Op27U45w7zAd7Ts7deQKynNfNduzAeESM0W82G+ccgOWcO88npaSq0zQ557ozxG6361pN/Z7qFVKMcbfbtVKi91f7/TRN/VK5uLhY1zV6vnN3BMjaNadUAQTfUKL9LV0qCgC9PunX8+PHR0TcjqxWiCVG16QB6DgGQ0CoMeAQCUmRIEbo7tsuDNttGALvBne5jUNAxxhCQO5uX1hKUYVaKxMiYmslOqppNWlmCtqb+119FYZhAAARKaXknGqtClBaO4+YpVVp3WO936H9dn7edvgNx1G9uf4Gi5mHYdhut8EPzDyO4zAMzK6Utq4555xKFlMR7RkQogE20YpovZLPOadUlpSr6GlZ5zUZkiGdGe5kueXc8lpyVUGHzVpTXXNac8q1pLKWVsW0qSjIvJ5SyVUaewdkPgYFW3NSa7VlYiAC50ikIlpKS7+S4Mk4SLWL0Tcz8957PtuVtdZqLo8fPprn4xPNK1Ft/QuR2nljfXV3ITMhOo+JOwAbzgBOEakdVslni1x7Gnb1iS+aPpEm7Qf0+0REHt88yrX0DxiIztNPlaeHAUDO6/F4fPTo0fF47B8KIvZYP23GHu9UtZTU/2KHGpidHwD9lBHZDDnwa/dfrbVeXd1Whe00vXjvhcDunffeNfnpi7/wS5j9L/zCL/ziL/7Li8vdrTuXbvBmonmBVLA2rLXmVNNiWlAF0MDObQF6gtmyrlSn54a8StNSrLblcHTs8lpee+VV58LFxcXp5vCaVFXws7RHxxqZXrjlhjG99uggZU6ZyYf9Be+2Onhg0NPaMVibGBxCWWfUGsDS4Xpc281rr+E0fu9f+57f9NJL//IDv0Sb4TAfBz9YkXe99DZYy+/5it/+n37V733X295+5+oyUjg9vvm8937+Rz/6yod+5SNxHETquB2XZWkiuZaHjx8uaWlop7Tm5zRXe3lUWjXUsyxNzjc3N8fjTX9kzvOptWqEOefj8SgiRthUSvfILmVe19Oy9MezguWcSymIoCq1FkTw3qW0AhgiMPNnf/aLSEDgzTwzAirYc4iHT89CgEDAjN5RbbXjb0RkHJgQpDWE5gIomJgO0xA9EIhJYbQYIQQCJgEB9tM0kUq0chHNmzG2EHlZS23qvQfiGDtEBkuupjCMQQ3YkSMIIQw+EHGPyJvNpl/hHeqoqi54Q4jjEIZI3oVxcDEMmwkRay25plRy/cQISE8cq/Xp/wHgLCj3fKZTW8uliUKVlkourZbWci1VBR2Tdz3QuuCm7WRoc5oVlTxx8H7w7H3rlqygOa/r2pkbrbXiHHnP5FjBmkrTCmTsnZiWVnNZc1l7XyzntdbcXU1EpNauwcv9cQrYvaggpVVVnCcke/jofsqL89RaMRMAFandkvz8u4RSy7KcUlpSWqQW5ygE15/VndJrT7aiDxae7sl+v+/wvZ55wRmhqR0k2CcwwzA8nVc+MTwBAOiB+Kxxwvw0Pvbmae+odq8eQ+j/TsvxeLxBxzFGAG0lr+uKaN7zus7rOjtHrZWc1xDcdjsxYz9rewLQR0SRWkoSqXiGu3ePeWbGe/fuIeI8z7vdbl3ySy+8cLnfv/zCnXu3Lr/qd/+uh/cfvPbaa5/7ue/7TZ/5WRe7q6rVTKFVSAusi+UkJdeS0BpCI3v6SEAzAD0/BjqcyKw/x2tLqwshIJ8OB5A2TdPN4+uPfuRjrUh+ePOL//qDR1K33/lhG8IFby53n/ebp7e9DMO4HFJ9dDAxip6nKVxdGqFYg+Cb1nEzlJJUCmibr6+ptOPjazX8wR/8B7/5Xe+ZP3b/hdu3rjj8rvf/1ve99K7/3Z/6X/zpr/36C6MXhs37P/t973jp5a//w3/089/7vlc++uoLL7z08OHDYTO1VsiHVFtuNbeaJBuqgp0jPQAA5Na9ZWie52k7AlNVmdN6WpcihQPnlouUzWaz2Wx626dfY8y8LEsq65LmxzePxJqhdorko0cPPDtG6gn7xcXFOI49wU9p3V7w/qqLCTgz6QKIn+7lCMzAs/PelwYicnW1KUUZbZxQFGpr4ziKwPV1Q4qbaTKF/kAPjjvVXcSuT7MKgMLg9WrjBwbsXpMZmprYuYCIMTokVCACR+gIenswOlZVMmjaci3I1PElYqpghlZKWXISMAHrtIKeS4lqrqXWmkpJ5Vnb1xSfd2rqV+/zlfTHYXC6109rVErr7hBP5NSxY8F7sOvVaErLXE/TNJGj0kqupbTaVHLNl7vLlJKYhiE2lZaFmQGh1szMRGBGItKkGIhaA0TRDlYFIM897NYUnC/FWmsGQgxNSu9ti7XSpLTag9hxXlzwyETAXWhAVXt/4XQ69Yuyd3ZCCF0zuedr2+22zyV6zHoarZ5XsQbQ1koIodfsTxMuIhRRO/vVnqfb/dd7XS8izoU+AjvPyER62YsOi5Rmio5VFR0i8byugSnVQmfvQOjzZDXdbDY9/XyKyO9vo7MA15wuLy+dc/M8u+BzzqCmTaQ25wIjqQkaBOdba8MwtNZqbvdubyK7F++9kNfyrnfce/GFlz7j3S9/8IP/5sV79z77sz53d7GptZZag1drta4LlkpDiNEbO2mF2INjOHuo9fj3ZL86/QnRAFAFpMnh1HLK86mzdEXqfrfd73evf+yjF3fujEMEouPNadrdqhjToe5u3dqiKx/9aDkcAjFvvDKSZzLXtBap5iHG6bTMackhhIpaHj7auXu09S3l/+b/9H/9O3/nb91fri/ed/HNf/yPH+5ff+ZnfObj+w/vXu4ur97r4qDE/+Jnf/aXf/lDX/zFX/zKg1fv3Ll7c7oOIXg/vvbaazH6ey/e3e/3x+MNexqGYXlC1Cy5jdOWmY+nmxh9KtkQXPBmBmfTvbrmZb/fx+hLyz66VmpKq2NENPQ+xnhc5v58DSGcTidErC37wJfb3cNWvOf9fnd9fd0ht6fT4YW72/kwozhVGEaXPr1zZoAz9gVKqUwQHKyrXl44ctAq+DAGv6qYiBGigZ2Oy3AxMDpjQfC51pL7eJYeXWv0xTvYX1xc7ralpLWKSB1HdMGtayHCWm2/3xBRCOzYcm3kUFVrXnka1nUdwlBrFpF1nUppzNzrOSIq0kpJpTgAqFJSWlJK/cbvSAwO/BR/CgBmb6BpfzaZ009qxipqbjnGER1as26SgSZVzogZM601H9b5KfCn3/8iktLaRIiAuSdnxVTDOPRylULQJxGnlEIMzp9V1EWEEFRa1zQeh2GIdjgcpLYG2KTVlvujspQs0pXXkMh1kl9n+PbLC0AA1UDVjF30ng0kxOgc55ydd47ROXKeWmuidRy2KaV+Fn0GvSxLa+3q6urpntzc3IjINE3zPCOZ89QadahjrWsPTCkt/YunVMp+KTPb08QeDfrpdz5MSqlP2Dvuw0BTWdWdE8Zac2vW88de5nd/1BhjKaV7T19fX3vPqq1H//6Weh7q2AOQ2bkTyoxm4JxLZW1Frva3rMmrH3ulzuu7X377F/7m3zI6vHfn9gc/8K+GOH3xl38ZkFsPxzKvNzc32owANojeMQP2SUEtGQIRGXQn6DPTs2kTAELgMzCbGYiNWFrWltJ8ev21Vz/wr/4lEd27d+/xw0fHlturr/7yT/zMe77o/cN2rAEGPw1ZHx+vrzb7eKtZE0JPGAtCanUEDZdX7XRoxUrN2/3FzaPHrdTkZL1/rbXhGKbd9h1ve+kb/+DX/NKH/82XfNXvQKLLWzsxoQt3a7oTw7iW/G8+8OHbt27df3z94dc+dvvW3et/c/PRD3/0xRfv1dacc5eXlxeXO5G25tQTgme3E8L2YrecZml2/+Hj3f5yXedSKgB0XJfzVGoSkVTy4XAYhuHcN0RUBDLrn12Rtq5rL/3GcVwOx7Km/X5/+/bt+qSecNFJklbBB3rpbfsP//I1ItTyBrZHn47lHZWmNdWry+2jx6fT6bTdjqfrNQrEOJaSliWNwziOdDjMD65r8DEMQ845rUoEYQgInMqaixD6Zq4ohDi60HKtTYjZlVwATQREpEgDAE8hrSlsHTI1a/9/2v402LIsOw/D1p73me70xnw5Z9ZcXdUDeu4G0A0QJDiakDiZIi1TdJhBKigFKUgMyCFbtn6I4QjTlGk7JEs0KZGgYc4ASAwkIAIEeqruru7qmiuzcs433/FMe97+se97ld2gQkKbOtE/Xldmvvfuveesvdb6Jq17tzbNDakHDwi8d9ZZRAn45PyabIpIyp5PYFQxqNq2d1aLjPsnHb3OD+on8JKzQeZs1X3+t7u+6brkum58crPQfdOslOqSPxITFNGAcHTeUIbLYnC+GMYYY4yEpEIyhKOQDBPABGTGuaAIR0IRxphQpHR3tp2NnLMQ1lNeoiCl4Y5SyjjRVqWFfK9URNHHABgRRjGmRVGcbaN5om075wGg63Tq16y1hJCiKPI8X4tPlZ7P53VdM8ZyIQdF6YON4BGOITofLCYQwTtv8BNHiLFKSJZGclhHfa53Rtbac6v9c0pUekPoWfbpOZ/8vOCGs8ta62NSvHpjDCIYU8KlSJSd9IFhjPNCAkAimadJnFKaNsrW2tTJat0njufZsEw4l+lTT0retEfFQPI8L7Nid3v3M5/45PVLVx7fv+dU/zt+9Hdnojg6PKGUdm197/Zb33ntaw8evFMvm8PDw/3Dw7prQ4zBe9v3rlEQIzrXwCdSa/QQXFzjJwQQQYAhxBgc8s5rtTg9uXvn/ccPH/hgl/PpvTu3KYbuYNb2+rV7t1756q/ffeVrbP8xrI5CnPMOgUNQ5r4quxCjCxzLPC+CBwBMmcSAnA0ZF1VRIkhGpOTw4DHRDjiLkxzn/MUr10LfAcQYLMkJk2gyGZYlb+cnRZlRilf14gtf+MLh4fFitvzoh3+AEc4p3RiNpZRG6VW9UKpLXcb5zYAxBcCASULGiiJLHyhCiAsKKCQ1C2CUjNdijExwIBgQwhj3WgFGyYXMGNN1XdqvpmyvxfQ0BOes7vomRJfnMgZidXTOX7iQV0OgmHqPEPqf3eyLIKCEUJTapVCWRGuPMXYBlLE+OsoRwUCIkwJLgToN1jsXvAs+AGAKlGJMguCkU6Hp3dFs9ehgqoznnBeCQ3QInJREcCoE2OC9D8YG46KyEBHJykJkUltDGE1vZsKm0mx0ju1wQsssT3xSxtY5GSgCl1mAqK3hnBLywewbkyJ6PSyvNw4fjIHrRc/ZFULwwTpvjDFaWUopQIgRWtVvb2/7YBNkgzFyLjhnt3a3nHOMCwnRGOWjix589EWW4aJYLpcEoSLLMECq323fc1Gm51xrZYwZDoeEEAyIJB8r763WCOHoA2fMWCsE5Zz74NI8m66u7/M8RwgRso7sQAjFCEVRGLNKhaPv+wS8UkqThUSWZ8651L6t5ou2bUWZJ457gsXP+dtKfeBhwxgriiL9w7Qpj2fS8QRGp8H2HPdIV5pqu06dQRwGaGSMpceAnaVQpW+ltU68a865916pDgAYo946hGOGxenp8WQySb1w13VKKaU6SnHdNFJkyRwpxiil7LVCCMUQOefGxFRzKcUhgHO+zIrRcDQZjU2vIMSNyfjG5asffvkl1YcH9w9feOHl55576u133njztVffeuvb169euXTl+UXTNF3LhGBZzq2PEVFMmEjP/FoximL00SLv0BkdDNLuwDlvLbJ2enz09jtvzaenbbOanRxrrZumOT4+XLTWdf1qepwX4sLF3c//8OczLp66fiMbvmhij0eUX9iy83kIkYRIPcGENSenmeSMMZJBu2o4Jkhky2YaCIQQHr9/79rm0I8yv+KyaQ5v3drY2pTjIXS9BIS9m+0fDDEOGe8eP37++ed/5h/+Q6XNF7/4o1975UsE8IUrF+fz2Xw1BwiIIvQEq//86nvNmABMZJ4t61XbdxGi4CzEuFytrLU+eqVUWZZVVaVthrVWJkqm1QAhy0TtjBAMoUgIstZmUg4Gg8VisWzqPM8Br1crfe9OT1ZFxX3ort3Yfv1bx5RkPrr/2ZNFEQ4hFIXUvVqtus2t4dIs+75nnCDw1hqZ0TwnSlmlbJExHa2JPhgFCBgDhMBaE3xgnPfKAIDxtgU7GdIi4zFGCDEEzyg21lMK1lmEEUHQq5S/jfKs9AHXi1mZSxscpTQ9VqnRTot7hNB4NCaErFYrjLENvus6dKb1SNQRxljXPhkk969S5kUAhAGCCwHCk0tZQl0EpS3GpBzIrusYJwghZ+NiOaWUGqM55zTPjLPKaM6AUUJwNKonhEgunLEQQoCotaKcYUKVMXlZNk1DKEVKLRaLnZ2d09NTKSXGxPvgfaCcAODogQlOOQNA2BJlNCUgBCU0ZEwErxkFRkTb1KPRxrlWnzG2sbGhtS7LHAAwhr7vh8OhlKJp6izLVqslQrEss6ZdSZmPJqPZYuaD54UEiJQmvX1ECGIMKcMhPJFYVlQFIqhpmqIosiwzxmSZbNpllmVZzrmglGJjnZCFtTZEhwlPiIVzTkgCMVprsixTqgOclcOsbZsAMi19k/OrtVYI4a1pnR2NRlJKpVTXN8k8ysdAOVs1NcDaXRkw0tZwKbgWfd+PNyazxZxL0am2yPLlctl1UGZ2a2OUF7Lh1Dhvej8qJhpHKaXE9PrlazcvXrl28fKzzzyzc+3md9589crlq5Mq04uHOxU+3tg9OtWNv+dCBtoLxm2jjk9Pr1y7Ijxc3N7RbEIIRRHHoCFYjDxEBIC90kB4FBAiASxicGa1CPXs5PSorVeSi0ez+q137iJKlm13/Nq7y7o3bfNHf+In9vb2eut+6j/5K9d2tv7Tn/qPduV+jznfR2J3i4x3sdE99zJCYKIcMV3XQfVZnhljSJEbhniAea8DuNOjOxsnF4fFc0H2qGzGjNj5ojs9XNie+DgijJFoZOhrHl37tVe+dfXylY3t3Tv37j118wWKYLo6NdrnosCMOGco6ilB+AkURSk1Go0wRkII54hWHcGglHYUQ6RCCGdt9DFon48ySZhuG2MMwyTPcylzfaKaeokQguizPC+Lgbe2rmuCAGM82pgYo7quE5nUym6Ot3V7/OhR//LFXROazd1s7zrs3+shZgA9AJwrys4IDAC//aQ9HBMqgyOONkYMUSBQIYyLwllNKbI6NotWiqxt+8moMLaNEax23hKMBcZh2Vgck840Sin7qHyIxgQhSIgmK9iqsZ2BjUrUSlPaEnAEIW18XhYhOKDItcoYn0tGc0G7pq8VEcx2HpTNKuIJISQjhCV7Fyao9YxygRBKH4cxBlHStq21FjDClPRtBx44i/WyyeTWE8XQRogJckSIAniUclHgA7evD+rl8eEUA2SlnEwmDx480NbHGPM8n0xIOLMVA4DUhnRdSmujbdsjROq6bZpmZ2cnBEhqJ0ppCJ5SwhjNMumcGw4Hy+XSGM05E4J3XWeMRggoTYktKTfdO+e8dwCRc55lGV07ggQhBESslGrbNvV9AJAYSQCQYF9CcFrbUUrSiNq2bUJFRqPRclmn6tN1XZZl6d+e01/OfSXOvyecqZcAoO97wQRjjDGa2IWJMmaMkVIm8k1VVQDQtitGRZ7nXd/kWblYLJwzlNKUb2mtzbKcUo5QxhgzVq1foHfBQSKsAUCEtdVFCEFIloBgyrB1GhBgAoSisxWB29rYzMtKchFCGJRDjMTx/uPF8ezE6qvXr21tbG+NJwXPfIyX9vbGg8HT127sbm7t7e0hTN/+1jciwVygrl/pbv7KK1+9dffh0zcuf+WVr2zno43Nzdfe+fbTTz8rOAuTno0ngeeYIsDpCUqG9SE4b42O1sqNobdee51JjjKJiADKd3cuvn/rzre+9a1HDx/fefjQA+dF9fCwfv+4ZgD/+X/1dz/yoWd+/Pf8nv/ir//03/9b/+8//r/5d//T/+NPfvRzn182aivPsizrWg1MGoJwtIDXYnDdNIlV2jct4EgpPVksMPKnhwfl7pV8YwPUqVnUHEmjDEWsWTS6r3nGlHKLqdFN86Gnb2A5eHx0enlvp66X3ntUk77vMYFClgA0IL9arcgTLiiUYms1xkk06IUUw+FwNpslhmC68YQQHiIQYJKtpqu00rXBB90NBoMEAyYag9W6rusQAiVsMBj0qkWMaW3n05kQWde0QrDRqOeC4siXy2VV5UJ2pndwLqf7VzlR/TYuhML5HuCMKYURIIBV3RYCUUzKIV0sVUURY6Trlcy4scYYoAT1WocAozHVCrR21kMIPeWUMWyMMcYLcZa2ChBjHA4GCLTgNPqgVma1XCHGemOtg1wSo6zHIcM4hDCfz03UVVXleX68WFBMyrKcz+eLxYJLkZ4FQghiwnhnvPNGE0KYWDM9KWYYEUqp+25+TVrcf8978ES6/Hf/2ZW9rcuXL9+/f//k5OQLX/jCW++83bYtY8wHk6CZxAcOIWRZ1nWd1vrSpUvvvvtujJFz3nXeOVcURULKUjqttdpaxjkNwTFGGSNa9xgjxogQLDGKEY5eWYwJYyRR/9L6n3OW0Nv0eccYMUKEkL5XUspzADcxk9PXaV+DEEoClTRfG6MopWVZLhartMLLsuycx5Ca8HSDpsn3yVVRWgKmZW2Zl4QkTBlRir1Pn3JECHHOkrg4vS3Jbvrs0A4xxjOeoEk1N4Eh53vG5Cil+vV60QcLQJVSaQ2fuJxpEEhTQBrMhRCEsAARIdI1PcpQnueXL1+cjCbP/MRPPHP1KdV27916ZzmfTwbV01evE0Q3RuNBVVy6fh28Oz051t6LMm+m8331/s//7D9+7VtvbG9vHx4/DoBkPnz3vdv4/t2IwqOHd4UHEdnLP3zdVUPOGUCIwTpnEXiCIsRIAGHOwXkcEWckgCOIFKPx49PDh+/fgwBbW1v3HzxslNYRHt69FRAHObRWTzaH7z44eOX//Ff/n//lf/X2t1751Kc//dP/zV997spT+WTDH07DYIgZkZZDkUVtnNHpw+1WS+99sEEIYaJWqhNC1svTB3fev/HixyBES3BkqGnbqiqqfLMt28P3H85bpanjIV7cGJpI573LGWCHRhd2b926lQl55cq12ez0wYMHXDKEkLa6FB/EmYXomnZVFEVeyHS2CSGyLGuaPpEW0ocbwM6XM+O1i1ZmMoTQqXY0mhhnjbNlWVJMCCBvXd92lFKZl5wx5xlCaGM8JIAAcHAuz/iKgzEdk0hpl+f5eOIOHxuAD5giGKNzqX78V9KL/4eviADWoS7JARUwAEGY4IAxRjGOh9ViNi9y7Jx1HpwFylAMkDyiALBSRmsfIz1z74uJRICAIPDWgzLae5AMxeCbpvEmPHNjSxAshDo4WQZrwQGJQAnGPDTOc8aArfULGKPUD1ltkttxel7quu57QylSlBHOACOMCOc8dSTJxsZ5L3Nx9nvC2Xv1vcT1GCNN7IcYYzIIOP+z7cmEIOy9X66au3fv3rx589d+7TeyjAtJ15Z53p8LBoUQab+W6vFkMpESrVarhJkCQLIads61bZvlwnkDKHBBtdYxgg9WSGZt4hZhjDEhmHGSjAlSgRBCOOcAYc554qkKnnHOrQ3WWmvtaDRK7sFJXlLX6x1B2m+mgzrP8xR1mP5aQn5HoxEAGKUjrBV15xvGAPHJkzaVQoRQQnvPdxOUUqVMKkneu6IotNbWmvM33XmTZVnTrtLvxjkP0RljskwIwReLRZrTAWIIPsZQloPgAWMcwSeIBtZyoXV/mjpWtHZC5+fsSJFJjCnDrG3bxyf7x4+PMfjp8y/RT+Mf+tznP/+Zz/Mys6eHum2siWUuGWezxw+ari0mE8nk4emj6cH+T/9//zpl8j/8qf/s/uPDv/V3/usvfe293W01GIAU5IVnntqabA2Gwx/4/GeqmzdsRDGqGGMIPgaLIESICWHCgECriCjlhbYGUYqL0iDar5rTw30S3ac+/fFHJyevvnFgEVLOI9SUedYspsPRgLMhhrB386Uv//rP/ok/8+d+8i/9x//RX/7PaOMuXbpkh1IQgAFBnKvVEqxha6NLHEIgCEeMpMhYha1erU5P9HIuxwNNqMhlf2r6xteLxWi89fxLLy3ms4cn+3lOQiTTVVcJdnFr+/V334kxXr5cXG6xAAEAAElEQVR0ddosH+3vX79+fffSznR+2vZNOD2ezerz7jC1penJTJNaWohLycLajblYLBbK9Mr0gKKPkQlmjVNaB/ApkEdyYXrVW8e5ZJgQhK21y+WSMVIvV2VZjkajvteMMQ8RAJar2QYfZllmld/eGR8fHXn3AaU/6UTh+/PEThvwJzqi9CgKRqOzVZFbrSlDIQQp+WplEAKlHeeEYNBWM84LJutaEWQJwWnDE0KwNjCGEULaRIiQPFkYxn1vcIQAxHu3sbFR933bmUHBQgjG2KrMbGuNsRgDxpgg0tZ1XdcYQwihaZo0/KUWpyikUioiqNvGey+lZIwt69V6PnOhbfsQGCHsSZjke671g5wwh7Uo5bvaw8ApsdZkGT2eHu1c2H3mmaf3Hz0GgOFw2LZtCEEpldb56YE8OjoSQjRNM5/PsyxTKqWbi1Q0q6qKMXZ9kw4uZyzBySkDRR8QwgRhgjBglHwWAOCcmZy+w/rXOuOsJLzCuZh4J3meL5fL9IX33hjLGD0HytMUmWprWmanAp3+8tpqzK2/WHOGwpoS+ME7EtZyi7IsnbHGmHTAIIQwBkIIY9QY7b1P3MYsy9P4nFRZq9Vqa2sLIrZOY6AAkJDu1DmmF/XBDwKPME4NuLU2pXqvdZBurbBOYE56gRhjxshqtWrrbu/CxY++/NFC5M65TJLN4cQa9XM/93MXtrduXL/y9LWLFMd8s3LGzGZHxurLly8t2/7w5OTRo0e/8Uu/8JlPffIjn/yhP/3n/oPbj48jhrwSD+dWtN2I4LB6+5MvfuTzv/vHxe4EvGaU96slWffMKAWvOaODczFGURTOKEoaIUofPAQ/3Ni8+dS1w6OH01kHLl6/fPHx/ili1cHxMnifUd8Hd3Q0QwCUElGKH/jC/+Lv/+2/Ekej/+1P/sU/9Qf+jZ1HWzc/9uLy9HCneHrICgxgjF2tFhSiECIimM5nK7MaZFsH0wVmtJtNH7zzzjM/8gWwGY2OELY4Ph7ubnX1SusVIeSZm8+opo4B+Tizizbn5LOf/syq7TZ2dk/ns5vXr82b1RvvvNn3PUFYMFlkTp0ReDlnCKFE2NJaa20IIXmeJ9AzabeUUk3bIgxSSu8h9Y99r1erFWYEO4gxWm28tRnPKKU2+F6piEJELK1xiqKSghd5VavVZJwbZzHGxmgf3PbO9pXLs7t3k2sLSRTXJLn9bZfC/4ECgRDCETobhdGErl3yMYG8AGuS6xcOwSkVre05Z5mURitrQwi99yDkuvpoGyOCTHJvTPBOVjmjQTA6X7V9W2/ZCIgghKQQnPOTkxlGXmbMOxcs6L4jRZqZdGOV074sS2v1arVggpdlKaVcrVaUi2Trm34iBhRixIAIY5x7vFb7fUBIOl/0PfmS6fn/jxEh+AAyy3IxW85stISRvChee+21P/tn/tzf+Tt/52R2MBwO4bt5HgBAKfM+SJk5FwBcVQ26rh8Mht77vu9PTqaj0Yhzas36OGVk/aPTeAgAiZqjjA4heBch+gTIJnw1Ybjer9d/abRMDWkSfgKA1npra4tzPpvNKCVpxE7uIAmYSz9uPl9ubIwRIiGEPM+Pj4/RmYNu8B4R7JzzMZzbyZy/J0qplB6XZdlS6cR2TI1bquCJ0Jf+Ttu2nHMphfeBc26MTl1nAsI4X/MH03Jw/dNDyPM8PmH6kOZ352yeD84RamM0Y8xawxhLQi6EAEN0zpV5dvHCpXqxunf37t7WhU/8wMc//omPqGWNfNycTBjDTb2cL+ebg8GqnZZ5QQUwyoztTmanp7P6G69++9KViz/yO37vx7/4JzUAkxUi0CvHCOjOVrvbf/QP/+FrTz3Lq4pkwjtlF0sAC56AXztfQXDgPPKRMB61oShiHIJTMQIwKsq8kezlj3+s77p33nnn85/8pFXu8HS+tzk4Oe0a17tItspC9d4Y1xsvK/GX/vRf/D/97//SX/t//bW/99/+t5/91CcHku8+/wI6mMEGIgHS+9YZBasVxlhZs5ovUMZdCCZ6H8z8cB+UIULarh6Pxw/efHOwMQo+CiIICvPDfSEExvT61UvPPFfMlv3d/YP5Qj1+cEdb/yv/7JcX7VJURVt3mCJKOX5CCUcpq+u6LCvOxXL5KBES0oCWPtm6rimlXLAkS5eSnIlBvfcxy5h2PjrPOY+Je+tdXXfDSiIk2rZhgvkY6nY1YRur1SrSsLu7PVvMAWC5aIQQkuMbT1148PCB9wHFiBBOcwMh9PtPo0/Ek7WWMoYQDETGkQsBR9x1sLmZrflhECFi1VvKYDTkXWe6xlaljMx4HwCAMUA4YgDvA0aAKeYER44pDgSBso5Sumz7voPm8VQIEl1EvWaMZBJ574LzhaSBBaUUFSitiVStcCRlWbZt6z1UUoYQ0oOmraWY5GV2Pvk5Y1XXp2MJ4+Cdd/4DlW0485o6f90IIRpjRBhi/N4p2iPoncryfDpfFiEYY77zne98/jOf/9lf/AdN01hrEwukaRqMsVKac5H6oDThozOdDcHMe5+Qb0q5lCGEwJnUSiFEkqEXpTyp4pqmiQHFgHz0MSLngjFOiCCE6DobQgg2pAJ1Rs3RGDMASLvLBLN675VS51+njjq5JNC1eSpwzu1Z3FJ6vTjCWjlHifceUkLm2iFifaWBXQiRXBswhgTsUIZDF7y3lHIhhBBsPB4npkv66ehMgde2baJKJVAsxti2bSqj6RdLVTVtZtME1HVruNx733VdnufJSyJV4fTgpQVuxEFrPZ2eUESHZbWYzX/h5//J3bfefeGZp0dVrlazgP3Vq5dH4wECPCqq1cmR5MIDfuutNzzLl213+/6jj//BH//J//gvOwBZiF7roAIHh3B/c6v4D/79P/Oxj33k8o0r1Xh8+vAxBjQZjgCh4JwzJp6JsglCEYBwrttaZAyCU33PshyAYgyXn3/eKf3o3v1PDjde+9a3C0Z/1w99anNz88tfee3R8T4tMxRxzvJBOXx4+PDwdP8v/MSfvLg1/NW///ePF6feOR7Ig4cHW8orYxnBy/nCKLVczrVSjHPOOQ5xOV/JqlrUpzzjQZswm7MLA8e59oEQspwveFnM63aQZ5lkzplgzUq3XGSbe5fHk2du3rj6pa99fXp8fPnCDp2RzhkCyNlACNkYbXTH65sBY9y2fdu2aXZJGqE0c6RDNNk9jAYjo7S3rshygoizIXqAgDBCFBMIkWJs09KJYB/Bx9h0nQ8uKwvTK2td07bex+GoiBA4Z6o3nEtKSV0vBsN8NM6np12ESDB4n5qd7ys04HuiqBAk4SwmlCLIy3x6ssokpGlJ1ZoQnEw5EIK8EISCd0YpRRkIwdKdkBaFlKKikKq33umMY8G5sVpbMEERRh1G2kUXPaeYR7RaNYxizllndQRAcb3Kd2vyLEgh03auLLMsy5bLpVKqKIq6bouiqKoql1mzqjllEKLpVVFkGFNjGoTwk9GD6fF8klYYY6SwXkjhkOR9ZxfP+PzhoteGS1F3LSL4lVde+f2/5/dPJpPVanXuBmGtraoq9TvL5TLdFlrr5K2yWCwIZtamLi/5mqA0/aWxIsaY+rsk7z06Oiqrypj1zOi9V0ozxqWUCZCJAOluO98TJ21GIgYmA8jzMpTOas552zZa69Rt9b1J0bpKaaXUfD4visJ7HyJy8czGFSHASAjBEfLf5XuxRu/m8znFJASXZu00t4YQpMz7Xk+n07QcTC4yWuvJhCSOdEKipJTz+SwEl8SOlNIQNGPcWqe1AUDO+dQqEkK8hwR5e++7rhkOh2mmThDKYDBIk3gIrmm6TGTBo0xIhNDLL798cffCjd3Lly9sb4xKTLwoGSEE5wNYdVAf5Qibtr374GHfGT4uXvnmq/lw+C9+88uvvn7LAw7WeB8lUAHwu77wwh/6wR8ZTvIXP/Whu3fuHu8/3Btv5nkGxgGGGHwMITkAYkDe+RBCUIozGp03ekllwSiOts8yoZyXW8MtE8rhxCjDMaqXpxd2xn/5L/27f/sf/sx33vxOJuXVzXI1Pf23/uTvPZkfXn/mhY/+2OdB2asfuqhaHVb+8cH+V15790W9NZ4MHz9+7EzftnVRFK7vp4t5TnwwtFsuG9MLAvPpSdDW+8jK0rH5tZs3vvXmty/duOG9ma90d9xyjKQQQojpfLr/+OH2lWs0q37/j/+IRcV//y9//Z/+yi+3RweUslFZJmjrg3KBUJ7LtHVJVNnVakUIGY/HdV3Hs6CLoigGg6FzFiGslOJMIgRd143GecYFAHRd17ddXlRFUVjvheR93w+Hg0zKk74njMUYt7Y2Ivj5YkEo1X2/vbvXdc1yNZc5DIflbNbFkIZlB99vkF7y73pyxnYRCEAEsMGvmjrLUAwRAJqm4ZxpZSFGyWmMbjmvs4yOhvlipt2ZhSpjLAQgBDjng8FA61PwEWMA76wNk0le99q6WOs4KGX0jnJeDorp8UkUMBgUG7JcHZ+6EKWU1XjcL5cheimlYAIA0uI+rYkSBTgpiZtVzQh1zlV5gULUsRdCGBO6rpMyC+EJKdGZu9KTiFNazwFBiGAU4YlO0jMCYjIaTKfT85J36/Gtp5/60Ne+9iUpZSLNl2XpnIdIjHYEM87kol2MRpPlsh4MBkopHXohRK9C0zSU0jIv2rrhnGMCMXopZd+3Mfrlci6EyDIRQ5CSz2azwWhMOXPGNk1d5oVxPs/L1EyVxSiRqqTMJcsZoYxQjJHWCiGQeYYJ6bounRXNqi6yIrigtY7GYyCcimbVJp1yWzfDamCUllkZESWEdH0TIOZ5HlEsy+LJ3nBQVqkPF4y3fZMyXoyym3tb+48PCSGAI0O40wpjLDKurUpOd31Xy9FmLvN6WecyQxEkl23bUsYhBGeM9w5jMRhUy+XSao0xTj1g0hpabWMeVacyUdSrmeRF1/WcMh90281Tk1vmJQFRytFoMNnZ3NkYbuQi39zcvvrUleGgwGBxNKuTE1XPp/v7XVsTOSCYPXh0EBC/dOOZXkG77Gf7RzWTBYennt2TRBzcv7+7Nfq3/+1/c2Mj+9b7hz/ysY+88cp38rxEIBQCp9vYOW3imfoISwlICkowIOiNJQRjH6ixSK/AOSSkAYjWQBMLyfzyZGtr0jW72xe37t+/f+zCn/33/uLdt9+69ebrly9fXBr71Isv/eD1a8t5p1ok84mvIRp8ujxhnZUEfuPrX//iF36QMTo/XUSvoyDGuUzw5bSjFWn7BlqdZ6XBfm5ON6FEK0eK8VKsJjtX771794Xnnzk6fjwoyvnsxPSUcr67u0tENhiUq0Y9fPc9iPwHX3r5o8996Ntvv314fPTenbsni/pus39+M/R9Rynx3mHMBoMBxqTrurIs07mbxogQwnQ2iwCU8b7rAKDt6qIUbasFsNZ0osp6X/cxQnQlkYPRMHRtKWUwlmb5sKwIIYvFom4WWVXJLNdaF0XmgwYUApCT0273slws+GJmjDWAACJDQAH1v11W9hPa3LMvETIIFR4QRuACkwSC55TFiLpWD4fCORdjSFQc53GMlkrf9SAETUsmBCA4ZYR2Tat7X1XSA17V3WgsEKIZxrptIxDdqzwHRByikjJijG9ao1BnHfBMIiw61RIGEDEhhRB8vphKKRfLhnO+MRkrpbSOfa+TFVDbd5iSRVsjhPJhZb3DLFCSZZl09oPe8LwOpu0TJKt8jHGIwQd/lgu8vjrV+3gmpWAstV3T45Nnn35BCME4EYIqpTCm1vap1s5ms6tXryYLZYzX5ght2+Z5Ljhorbuuq6qqqiqM8WBYKqX6Xlvrve+klN5Ha32eCx8CIcwYI4QAGr33bdtSTpfLZSLTpKNgtVolFUqRV13XnS8T67pGCDHOKaUUkzRLbmxsnJ6e5nlOPVutVunlpLG3bdsY43rQJsk6e62h1po+KT/Isizt/pIXG+eSMUExqed1kZWEEIZYxJ6CQxEzwoXIIMQUuKOUSh7IaZ8AAMlXMcZAKY0I0uBvjEERMMbkTGscQkgNSGJsOOeKnBHsWM6azmNMYwgxgpQyBu2ca9v6/eXqKD/c2ticLWe333prOMgZjij03WqOnMLBl3m2aO4vl/VkY/uZ5z88HIzfvHX7zt3bn/jEpy5vTEpUf+iFm/fv3f7kD3zq85/7wkc+8pFvfOMbn/vc50ajUQyoruthVR7tHwDymeDOJdduLoRA4I3ViBApZZZlwVkXPBIUMwaMRYwwIJzlxmguJUFo59KlPM/r5ZIiqpQ5OZ5eunZ9Y2NMCBnu7rqInLJaa0QIYIUJu3Pn9nJZHx8dFEVx5dqN3/yNL29vVAyAc17XdQBIYNTju/eKYUEx1tY443Fq+/tW9W2McTgc2n7y7q1bW1ubh6fTvcnmarWYnUy1Nj5AUR3ffOaFwfWrfd3fev+9RauGRVXdvEEZ+8brb/InMsOU0iH4jY2NECIhNLXqAOCc67rOmAgAnPOUTJRYX0lHgRDiHCf2bjINkVImB43hcBgYefTo8WQyFnk2Wy6iiR5it/aaJQghD3GxWFhri6JI+OHOhdFsdkwIeAcYIef1v86APeQBIiHgvZeCpNWbkDgBegAAEbngYgQEOHjAAClhGaHAGPYuBm/a1gKAUibtEPtOG2S0igDAMWYkYBRVD1O7IphZ8AhThoOJQCkYo6ijeSaWi6bY2IlWp6BwwigT3HqXHmTGdIwRICRxKkIxy2TavBMKUkpt+kyMnqyG3/NCY4xPoijxSQ7OweFh1/foTANHMM6zbLVclnmxOdk4OT3KpcyklCKXXB7sH1WDAlDY39+vquqcNOe9dw6aVS14NhoPUhMREfI+LJfLZLuSIJTU96ZpFwBzzq1zQggAwGdS0PN1ZCI5pzqV6lrXrb0SKKXRr5WzVhtG1v6ajDGrdNd1lJKMC864Qy7VtTTkEkYxAedc3/drJxJY7+PO3xPGWCqaiTNYL1eDvKSEDaqqSxTQEBO7UCkFGEGIlNI8zzGghCadK7TSsi/52aW9gfc+LRySFirpCZL/gjFGa52WnsiB6s3BwXQyKbOsGAzKeVh2Xe+9IxT1qnbOMcJ8bV2wjw4fjWm1MRlsjgabkwHjlYt4WS+XzQoQGo43Cc/ni+Vkx3/ta1/7A7/39/zwj/zov/xHP/Of/OSfd75drD7y9DMvjrYuvvHWO/l4kktR10sAjBE9Oq4loxECxaivF14IyAoSXbTGek+lJIQwyhFCVAogEANYYyBGziTwrDOOcaaszrK82mZK2fFoa2t3d7lcLDu1e/Fy13fHx1NZDmXOty9dita+9c57abncNqu+7/u+JwQNx+Pbt94TNF6+tPvcM08ZY1ZNIzezeb06Pj4elJUsBoDQdP9o48aNbjUvq+q07+q63j863t6YAKKA6Nvvvr+5ORF5cXh4fPHixf1HD1arejTeePrFl5576tq8Ud987TuPjo5sBNupa5cuvnlvfTNsb+wE5AkhydaQEOy9894xRsuySMxqaw0XAiHkzyyErbUYUC6zEEKM68Q0f2blCwDGWutASKm0bto2nb7VYBCSwTtCKckg3U7loMIYb2xJIcFpBEBDNACAEQ7/Oty+YozOR84QITgGL4RQqg8RGKPB+3gWf+Wd9x4wDghhhAJCwDmx1iOEtXaUggcQjCBMojNMkBA9JhFj4IXwxhCCIWJtbF27zQ1pPHQ+ZoyMJ7LuVCYzxIgyTuQZ5cR7FM6YcAkaDRAJRkKyGCOgQCgK0WECXKyJgIQSALDWlvl39Ya/9fXSGCMmED36ns66NzrhJMaYrm3btq2KslXtnTt3tre3u74RQjSN7UMvZSYzHkLY3Nzc39+31uZ5fnh4JGU3Gg2TtY6UUvWGEHJ6eppMFrquxmdXavHSaamVxQQLIaIBrUxKXynzol21u7u7qdNcrVZ9308mk7Sqe/Dgng92PBy1bcspq6qq7/voQ9u2CKGmaSbDUbNcJfgJAJJ6DyEshNTacC66rrO6wxanpV5EifcXtdapIqcrqYxTRSaMLud113XIh83RmAACHwgmPkbvfTLj8t5jQARhhFAIMcFKacWePkhjDCGYUpqgmzVtKIIxhnKeKibn3GqTvHMQQocHx6lEhwAhxLbtKaWj4SSxmqwyXei2t3aNsf38pCxLIYmUHDBaLpeL+VT3fSJ7c0FPlidXruTDycYbb7yVFq9f+cpXtne3MOLXrz4VI1806vZ7x6fTmnCilFLGTiabm1sbbdsSDNOTY631pJJG6XnT6Dwfb24OygFinCDUzmZUcJYLgliMAQMQD0BC1BqF6COKmDhKqJD55kY+Gs2PT2WWn85P6aodj4cec4L57GTRHR5kWb6zs/P22++mT39jNNzY2JgulpzCZFA+uv/+/v4hjvDCCy/MpovFbLmxsWFxPD49FZgXTCDv4HTGKF7Op23bUi4uXrr66qvffOmll1rtdi5de/vtN4tSck6//I1XxuPx/vHR5ubmwenhU8+9dPHGMz9UfvLw+PTVN96++ePPfuvtW+c3Q56XAfy7774LADeeujk9PUpjV1oZJ4NOa23K5EufLMYYQkwracbIqqmLogACTbsKMWOcrurFarHMK8mkPD49RZQSjLW1PMtwBO2stdZoLaXkUhwfHw/JyDkH2Fy4yO7ftgQJHy2h4P/1mTmYCDQi4zxDKAIOHikT8hwYY97r4CPGgDEKIUIkAIiQkHpYQlDqJDCikmIbHQoEIxy8xwQoJThDMQElCHkPISAP0bgYEF42HaOMYaI0lAQZ55wymSybpjFdmyCHM4IHNcZM57MiK6SUCS9NlS41OtY6TKJVFrB/EmpHZ770T77YdTMYf8ua4ZzUfi5TSx4w9+/fTR95Mr+y1h4fHyfgglJ64cKFlFewubmhlEqDwGg0Ssv+Rw/309NLKfUBuMi4yCLgajAKEWnjIuDEfEYIpUKcsDnGmGDCGWe15ZRLLqOP3npGWEJvQghVNcAYxwi5zAZllXiCqSAmQCOJe9KbZYxpmiZ1pqlsAUAy4k/cyXT7pk7tgzclRAyob7u0qd3amiT8OnF0EhsGADjnhcyqvEiTO0LIx5C8HtKHlHrwNC8jhL0PIURrnfeBEAqAjAnnbWlSOABAEqJY67W2meSMiRQGYO3az8M5l2USIPSq7frGWDUejzc2RlnOu351cnq0auqAEZUiEiyywdVrN7kovvXtN/7pL/xiVVWHJ8fGGFxuzi3+xpvvPTw8rTtz/8GjiLALcbK5NRpNLl2+PByOB4PRV776yr/49d98tH90fDp1wWdZxhkL1qq+bZvVfHoqACHrXNvqehW1Jj5EpezpFFqdIYpdYFQggoHifHOj2N7Kiny8vb136fL+8cm9RwfHp/OuU0Lmbdu+/vrrX/nKV9q2fv/99997+63ZbMYovnr1MmNsOBz+0A//yB/6w//LpjN/62/9tNY29fVpI6yUmi8XVVmq2fTRwwe6V1tbOw8ePNravZRVw3dv3XYBnbbN3s2n+ginq/r6M88v+76z+tHRge6bxez4O9/46sH+g+X85OnrV958/Tv3b9/+4F4I0KzqLMvGk2Hb1nGdQ7ue1tPck2RLALBeToXkz4RSn0EIOf9kzwlVxlnKWYCojC6qMivyXrvT2TQgWEeqEbJqaq11URTGGKVU39cXLk7ygvqoAeBJ+eD/P9d5pQgBaQ0h4r5zziNrwbnkcAzJg+s86zk1uQCg1Brn5JylJg5j7JzBBBCCjGMUPWUpjQQwikZZhJjk1BgDmDRdxIi3bV+NgAviQsjzQill7fpdhRCtNkbplBCAMfbecc4IwUr1hGDGqNaq61qlTN/3af47J5DAd2tRzvvENYoCv0WqgiMYa7TW3rlELQSMkjZjNpsleS/GOMvk0dF8NMoT71QIsVwurdPj8biqqvl8Hj0IkSEUB4PBctkOh0WMURuDMYkRvA/GWABkrVut6q7rtzc3ldHGWEJpUqUYYxgVnPNERklc5fF4nMpx27bJRy+EUBSltdYbW+YlRKy1blaroiiMcTEiQlgus0S1AYC67qpK53k+n8/hTGcSgk9dIazN+r87UxwFyrAPFpNMEME5t53CCFMu2rYzzndKB4gACGPCuYgRbPAYE+9joiacnzFh7ShDkzKPQjyPpiIIc76OvEn8tXT2pBuUELJc9gggy+1kaxJj6Pu+aZq0Oxvs7CKEUAwUQVGUjCCEY1mWpRTHWk2nU+cc5bwsB7fvPJgMRzGiPCte/uhHtHHOu67vLb966/H+tUvjafewabpiODABMBLv374fABGev3/3zquvvhoCTEbjd28/mJ7wm9evXdm7QCjx3tMYhRCUMa96wBg88hAjZumWxRFiMAjA9pZx7lxI4YhKqY3Le1Gp4+Ojna3t6XTqfdh/uG+N37m8dePGjX/5m1/u+z7tFi5f2gOAejnPhJyeHEvORsPqT/ypf+cXfvbnfumXf/HDH305y7K2bjKRLxaLTMq2rQdFXi+WMcD27oWut4fHJ5/77A/+3b/3M0VVPnr/0XA4VEYtFvNV129ubjhrdNcfHR29f//hzsUrW5s7y7o+mK4GZfni88/+8qvre6FZrlrVUoan08XG5jh1DGlAPtsROe99ogF675PpHkAyr4YUU5HKWZZlibqb1GbJ7/KcGYYQWGv7vk9ck929C7du3Vosur29zfQjIvhBxTZ3ZNs2CJCz8K+LgA0AjIgAIYLHmCplKEWcw1qxGtexywgBISiu7aw85yTFGBhjY/Q+RISwEKQ3niAoJc9y2nUdCoEQTCgwxtrGMxSoQN47AgQ89DZkjPMMMymkx8ghSqmLa6qJMQaFiMK6a6mqqms6rQ0hVCmV6lWMJiGgzoUyLwN8V8bRb+0NP2DYxPi9jl6Dquq6jhKikjt0jL1SddM4a2UhEMERQfJoywpaDiqMESEYAOV5PpvNYowbky2ttTN+tVgigquqwBiMMdo4SmliiqQPfrFYpGc+7QSV0gkuIITEEFKlS79bAj0YY4mx7JwzPqS9mzGGE+q0SRirECKcbR4TTd8ZawlFlAQEESPMUHJv9xCB4LZts0ym21HmmbVW6945R544JBIDPPWSCGOrDQAgghljq6bJy8I4W3ctjkAQjj5AiNH5gCBpB8992ZL9F5xRQL33JFLnnDGuLJGQghDiYwpC0SEEUSUPKJseD++BUbBWp/VZCIFKbI3V2vV9TwlhlGjjGSZ93T9YPOpblXOGgIwHk16rZdO23enWxjZjbG/vYoyxV4ZnOUX21t17RA4GBb3/6GHGyCc+/ulXvv6dV197ezpbTg+OPMT5YqGMLopCiCy42zdv3hwOL5mAlQkE4YJhxihAMFY1y0U6HQkh0UcXvcgzUmQ2+ug0OIspQsYxIYCSgEjXLHXXb22MDx7vC5E9Pnw8nmwcnpx+5StfGY3GW1tby+Xy5Rc/ZKyKPnhrhmXZ9/3Vq5f3di+cnJws3nv/45/+9O6FvX/w83/v8sVLw3xAI3l8sC+EsMFHCr3RzeFhlg9EJt94/a2PfuzDP/SDX/iVX/1nL734wjde/ebLL7+8Wq1Op0uEyGqx3JyMfPQhhHq5qOt6NN548bln3z84WZx+YAnFGCOWDIcDH72xusgK57wxFiGchOrpmF9Lp+wHHSLDJFhnwCeScJ7nIYSIIG2Tk5ddcJ4RulqtnPOS01xmSeiWKKiU0rTxTmqlGEnXdYMRYgKC4T6EFNn8fVzotwicCY3W2Fwyxoj2GhBUJffRO5vshGOMyLoUS0soRdbGGCPnJKGRxrgUMQnBIgQUR8FwdBYDhOBiQBiDEIwQhYmHGKXASntK8HTaXd0uXdBd10XO67pF0YNAuleUoFzIUmSUUh+9dtYojTFeLpebm5twFsmb6pmQMsS0W2DNyj75Sn/ry8cAkIL10o72g3cBYYrXScSM8zQmZ2WRiM1Jk5dam8lkMpvNpJTT6bRPCVLaSilPT0+TXKTrusSAK4qs1xafpQCnHVye5+lEPXeKDiGct1FaWWt9GkLTDCKEYIwtl8s16xjiOf34nFGZKmaMMTlXZ1lGMUmnt1aWUREDGlQjwbOuVYwKghlCKIHdSqnEnDsHOs7fk7Ztk5Gqc24+nycFcQjh7v17ymjCGWY0bQzyPB+NRqPRKM/zc4QkFcFz59fULiXhSoKSnFt7YaRgwlQB02OQjoe+76WUQgDGyFrbNHWaxJOjz3g8TP8EAFTXe2MpxlvbFxjlTd0v543WvsgG169c/8jLHxsOh7u7u8aYh4/2jQ+YsF5rre389PGtd97Ftnz52R/+m//NL/61/9v/5zd/89Wvf+vbs8Xq4PA4K8q8HGAqT6bzVd1/89Xv/JNf/OevvfGesn4wGudVFWM0Rjvn8kFJOQWIDBOCojFqWS+65RQyFiligkEE3/dgHFjPEQCORZFRTCig9956c3tz6+Dg4MLF3aZp27bd3Nysquqtt97y1u3s7AwGg66pR4MKRZhOp8aYS5evLhdtNRr/m3/0j8znc4TQsKomo/FqtSoGlcwzBPiNt97+8le/1tTdsqm//OUvE0I+//nPvvHt125evfbVL39lPByXefne27dxxIePT45OpwBQ13VZls7q+WJqrb3/4O4TN0MNANamvFmTjuTU8rdtm/Yw58ZC1q6dz+FMXZ4AZc757u5u2p6nG8y7yKhwNsSAKOGMcoxo8LDWkhL87rvvKqWuXr2qjUmPbfCobVtMdVGmyGD6rzFKzwZjIwhJCAVMIETgnEBck//Xi6AQU4IkIVhK7n2w1iuluKCUAaXEueBDzDMQnDJGvLNZxhJCiBAwxjgnhCIfIMu5d5EgrAwoG7KiWK5WzjmGyXzacU7zPK+qSjCeJLoxhLTK45y3rU+bhIQ6AkCyeU8PbFLQnV9P1rrzrzGgYA0BCIQG/wQ78WR+zARTqh+UJXgvOCMYcUqGVTU7PR0MKucsQsh537RdiLiuGwBktSnzfDIajIfDQZUPh1mnnMwLROhisSqKSjDS1g2EaI3nTJ5nPgyHQ4wRQLROD6qcM4xjVH1nrClKjhnSru1126kuQFTaIpK4RS0hSGQ8L4u272RVKGtGo0H0bjmfCyGcDd7FvtNFVSrTG6fLPPfWouid19PZsdKdMabXinJKOXPBA0Zt23adIoQJkaH4gU45jUJpV5gzXmY5Y2JZ9/NlC4CDDQyTQVZAiABglGqaBiGglDBCyqwcD4bjwbBd1VWel1nmjXXaJFAsxIgw5QIhgny0jGPCiDI6BJ+cDfOyqFetVpYJqS30Jg5GQ2dj3zmMCQAMJ1VXd+C5d9DpNlIzHg+3h1uc4MPDw+P56UkzX9lu1izuPnzwne+8dnJ69N6dO9984y2L0Dvvvd21S8FI0zQn+w8//vGPX3/26Z/8P/zv/u7P/wwVbmdSXp6MrlzamwxKtVqOpMBeZ4JhQTpv33xw+NP/4Jf+yv/9b3/tW7f2T1f3D/abpmURjapxLkrvAxXcYqB5Xm3t5OPtEKkHBkIC56zIjNOhb4PqM5ohRFptdPT5qPzNr//m5u7GfH76iU9/crVaPbhz98Jk8wuf/xzG6PHBw0bXALBarZqmaZpmc3Ny//7d09nJYrnsFub5pz+U3pALlzazjHTLKbZGMHfvwd1f+NVf/9KrbzUKvvGt7/zSr/5zQvnzH/7w4enJzadunBw+nFTiIy89IwUqKy75MJdV9P7RnTvNvH5871E9n4kn7N2kzAFAKY0DCiYCAAJidFB9Os4ZIcTowEUxm3ebWxsIIaeNoEz3ihFulIIYlov5oMyqQZ5lMqLIOI+YL+r+8eEpZpLn+aozRDATTERAGE1+wylkOXhPMM5yjDG2NsQYr92YIOw4jyEAApZ6HXyWZAuAEfyPZOx9T2MYYzQeRYC61W2jNsYbwcL0tMdQaIO0icZ5wJExSHkew1GFkMkknozLsiy7VjuLvMMIU+sAUdFoN130yhLjsNaW0iAxWp7OJPU4hIyCVZESFLGDCFmVc56T3qn5iuSCZAh6qDI5KErrnYdABaOM6a7HwQOAEJCqXtIjeO8pxQh7SmkEy+kYkydCvlSAmAzMIQSXaiI+m/xRCPDkXJ02gMNqkOh7ZV50XY8Al4NqNBkvFos0fnrnEMB4POzbjmKSSltZlnVdL5dLSrgQ6aRae99zLlPrt1wuF4tFmnm99wlrTjUeAKzxAFCWJeck6eG991qbNQyC10nHKdopKU/O9YlJ+ds0DZz1zEktPxwOleq11oSgoijOX2mILik9ksQnfZHINEopxj84IdZKG2W9WysNlFJGdckDNMlOCKNpDdR0XdM0zqUdMxaCJT9XxljTtE3TNo0bDsepTbbWGqM454lQOZ/PY4zJVzxNUmk9dObIDZxDomsAQNO0CebmnO/vHwTrjDHBRYIw57zv+6LMk1hisVjcffDw8PDQOLdcNUcnpxjTN998+8779wbD8XJZY0L/6B/5t6py/O/9+b/wxhtv7e1erIpBnhc/+oUfvXLp8tM3n/6dP/Zjzzz9dFGUFLPVopZMXNm7sFqtXn/jjf/i//Ff/tqXv95ZCBE1bT+dL3utIuC264pygBBBAcUYhZSYJkv9CBgBACKYSAnOkBhwsINCjqrSqf5rX/mNk4N9ZNyPffGLLz73bKvab377Wzdu3NjZ2i3zKkUSX758+eLFi23bpohOIUSIjgs2HA7n8zmldDweOxeauivKqtd+vmweHxwdHp+IrPq13/jqa2/fJpReu3aj7/utzZ1qMNnc3rn+9HPjrd3xzvbxfPH+g4crrR1GWTV47kMvffaHfuiDx8np5K+HCGaCh+C11mVZpr12WvWmJTUhYK1Ny6xUm1KPzxgbj8f37t1LveR0ukyjTPJ3AEiwCWhtk8d5jLFpmjQbJYsm5xzGNMsFAPSdpRRfvloaq/AT0N+51QiknIbf5uVDDCkTHKIPMaHiSmuEsY/BGu9cQAgohRBC17ScsYQo9n3vffQ+Om9CIiQihHA0NrjgEWBKqfcYECYUAaURg0c4IBoR8g4GA5R8Trd2tlNCuhBMqS65LDvnCKWn02nXdan7S6qttBlPDxEhhDHGqEgDXEK6nnhb/G/V7NAz0lA8d7JJ13g4SWDx9sYmQlhrkz7Rw8OTtlWXLu1lWbZarZpVTRlJWScMr6nFWuu270II+4cHjKG03zvHdNpWl+VaNZxnZdM0ZVmmedAYEzwmeH3fpNq3WrWU0kwW1kTG1taBkAhEZblatqkuJ5glaYExIKVUUr+EELTpK1TkeW6tadvOe5nn2bJZpQJtrUMECBUJ0DgPUUlIUS6z8/cEY5xnZZZ1fd8TzjxEpZRzXkhGKVXGBODiLJYhWTxprVM8luDJ9Ax3nZIi9073HcSA8jwDhUIISoGUiFPuABlTAwmUUh9dUeQnJ6dKKRRBlny+aDCGwSD33lJK0Zkbs1JqsWh3tyZa97tbW8F53emuqeeLWZ7LhNsURZXJUikTCQ0AXGTT+XJZt5/8+Md2Luz92pe+9sf/V39q+8K1//Wf+tPv3Xn04Zc/XDcKIeKtfeOtt0MIt2/flvIzP/a7fvyPbu385le++gu/9MsPH+8HFHa3N9u6258ufvaXfvXy9atlXva+w0pdv3qNV0XoOghI9yoAzqsyOksRIMDgHYoQIShlIPSZZKpebW9NrC6mJ8fPPv3048ePX/3m1z/7CS4prcbjmzdvKGNu3boVnNsYTxgj29vbSZt0cHDgvd/Z2Ykxso41TYNiyLIsokAw9S6UZdXet5Px5qOjNiJ8eHx69fKFnb2rv/wv/uUf+f2/c346FVl5ulicLlar1YowulgsWuUQRWWVH85W0/o2sKz7ztsPT04B/vz6ZqCIMlx3OqIopTjjDODZbFYNsmRz1zaroOK5jZsTwnvPGNO6Y0IsF/1kI1rrW9UjgjnFSilKCaWQniPGGAJkjfc+ErIWzqZtuzGAkFNK7U0uEEKWi7rroCzN9h5/8ACCZwgCgtQLraVy8ftiIAZI+jzsQrDeYcai98a55NzmAZLeDiHkffA2SMlDAOcsIMw5ScZMiAB24IyhBAUSKUXaGu+IMp5wAIRJwCbiaIEEpw0yHpiJ88WqGCJZFEM5nD54XJXSaX16ejqZTBLF3VqbTHMT6pDnvK5N3/fpqU+TXCZRCA6A900r6He1xhEg+Q0iRNJL+cD7OkZ40sMmhAAhNk1zcXfvM5/5zGuvv/noO9/pVM8FHY0G3nvV9ZmQVhirNCfUqGTNwoUQ5aCaz2eAkdZaZhzWgHVIHo3WgjGOc75cNnt7O3Xtk0JguVxaayEQKTxaG69GzgVAu1wuR6MhxqzvVcJPkhlMjBBj7HuzWCy4oEkzZ3oVnB9vbKSgMiDQKTVbzhijmCHGaNe1RZGnPmsdGmXMYDCQUp6cnCQ2gPc+8Rat+yCDNQlgJpPJclFjTLTWvTGM4MFgoK1NLl4KfDobORV5Xi5Wyw2RWeMpWncHELFzoW2NlGCMy0dlgGitQwAIYG0vhkgiBulE94dojCmyPARvjBICjUaD5XKZFzKEkLi+dV2XJeOcdp3HiCml5Ugu5zMPru/7BFV1nfIhxkAiwhhD2+v9g9lTT10bjzb+67/+Nz/12R/avXDlh3/X7+mV2b109SvffK0q8os7mwT8dD6v63pja/O1t99+49b727sXvvHqtz708kfu7R/Opie5kFs7F5u2f/fOo5/+uz//F//svxOVeeHlZ3ut5/PlZDLBnOZ5qYwGQKbpBBcQvVMagkcuONX3bQdVkeVl3zVdU29sbY0mG0yIF1768PLgODiTCd6qllD+zDPPzE9OBeNcsuR6++jRoxjj1atXk3zee085j9bkWfne7VsYIkKoWa44odeuXFo2lsny3p278+ns5Zdf/pt/+2d+/V9++amnnnJGc5EvFot53SGMm8bMl/WyWYzGY+99UVTFYMMSurGxBWfavLpZIoISo35ja/Pk6Lgoi8W8CWFtOlfk1Wy6Suv8FMCdSGMEE4zxfLkqB3I6nZXDajQazRYLY4L3EQEIzjHGXdsyyr2NBEVOeQQDEVflcLFY9J0ZDgrvPcFEacMo6TqLAAGEokLjCSxPWACFMSDAZ/KBeJ4W8Nu7EBAMAaJz0CkTASJC2kNwgTEQjMQYvIuAIkGAMFjrY4zeAyaRUhrBAwIuqNcQg6MM4QwoJfOFC94Dolo7wEBI9BE5F4Ix4CNGaGsiXVQWXH16OtzaSKBQURSUsjzPI0bG26wsqOAhBGNjs6oxIAzQ1o2UsiwKrbW3TmsrOI/ge9VWVf7Bs7x2dn2iOMZIIaYlYgSAED9gJy4Wi4hAyuzx48fj8QbG+OCo5RyuXNk7PT3tQ3fp0iUCaH46zfMcRdDaAiYhqJ3J+Jlnnvn617++WC02Nzfn0xlAAsq8c7YsS0KSxz0ZDtcRxoJnIfjptNncrARjZ05tkDq1EGA+n5dlWZbl0dFRWjmnmyyxExirUxJpekl5nquuT76BzrmNjQ2llNLdYFhgjFGIy+USzmxvAABQMEY/OcskLSA58/A9f0+cc/PZ6fVr1/O8VLa11noPVc6LorCrVd8HkcWMU+tjXbeDEg8Gg4ePDgbVKEY0Ho+yLNt//N54PFJKM0aqqlRKNQ1gjAXjRYYJwkbpXvfOuapYH3pt2ybFt2B8uVwyTjBmEXyK60uuNjGG6MN4NOKUDofD1arhVAChzqmyrIzWOIaiKJQyXa8ABeeCMsa6+PRzTz994/o/+rmfe/qpZz/6sU/8+3/hPzyYtcPx8Pajx8pDUDqcnE6G5bxp80IezJchLo3zd/7FVyiDb717NyvEZi6zolqs5stWXb5y/Z/84j/fqOSP/47PuTfe2NrYvHDhAsuLej5PPpWqrhGhThtvrA+OYhK9Q9ZzTBartu91WeYbFy4NlAJMRtu7J8dTpB0ieLmcy6owRr31xneKrPTWcclGo1E6nLy3p6enabbwMZRlWc9nVTUsy3J6dJiCqEzXP3PzxubGhfuPD08f3xsU/PrVK1Uh7j86qEYb9WrhrdnZ2bp67UanzGQzXEdI5rm2Zrlc9r1SLgyqatl9EGCcAMDzyTdGn3htZSkppc55Zy0hLIBPd441miKc53mzqtM+hxBmvOFcMCG6rsMIEEJ93zLGskwuFivvfYyAMc6yYrlax8xaa51bG9nHGJ23zlvvYTQcYBxDMFevjt+YNiGEM4uWD6ICvo8rUcxIiAGg1+ukM+sAAGhEATCKCMBBBEwQIci59FMhhOi8cQ4QAkop8sEHoDRZSPsQABFEMO2sQwFQjJSwEK3xQSCUZZlgBCLBlOAQjDLXr+zVXcM4GZXjw8NDRAkiOBHsBkUZopsvG4yxlOfVHxJI61yYTKpmuWj7tqo+2I9R+l12XumLtRPqek5+AotKK1ttDWHiN770pXfeuxUjDIblarEE55996tlnn3r24cPHW1tbzjkXvMhkjKnAu77tVqtV36rg1i6BZ02+BYAsYyEEjOlwOG7bdjQa9X3/+NGB95BEGgCAEM6yPISQDG/LYjCfLRkVyUEzFawzXyySYNmE2HLOR6NRURQHBwdJyTcajQhFy2VbliXGkLKoAYVEjRaSSSnzQvR9v1wuz/GpZCGZ5prz9yTtVZfLpda9dcEFzxgkXQFCyEeICPKiAoBOBaWtsd45SIBMlmUHBwdC0GRwkmXSeyslV6pDZ2Zia5tu4xK0nfahSQ+DUEQ4Om8Ta7dt20Q0DcEnC7U8K4PzUgqMcdNp7aON0cawf3JkY8AYex85E3t7e9evX9/d3b18+erFixcnw9FXvvTV7Y3Nz3zmc//sn/3K22+/hxg+nS577RAlnfXHi27e9AZQq82yaWZ1fW//KFJQDhAnTadPZqvD46P9/UeT0aBZ1YNq/N6d+3VndnZ2Hj7aPzo68c5jxo+Pj5u6jTGatq9ni9V8bnuNvDNd3zV1cBYAHj9+/O67t1Tbs9GYyXyyc+HZ558fbm0RwfM8f/D+3fu3b0fvhGDloKCUHhwcpOMqDU0pV8SaiDFzIbZte/HiRa31owcPDvcPgGCGyc72xo/80Gc/+uEPCU44Q9euXwEq3nrn3byoVk379ru3vvmt1x4+fKi1Nkp/59vfTikR9aplmOi+GzzxOHVdp/t1AHfSL0+nC0rxOYsgsQ6MWUeJpqMr/baDwSAicnhcE8zWfGzCpZRWO+/XvtnJuV5IQhnJck4IpL1hURRZRtPe0HsvJUeAGccAwblAkNjcnIw2AkBIQRpPlrbvD2tGARBCDEMMKHgIHjwABnA+GuO8j7DO7k6O0RFjkJJlOSeEIAQhQN+rXhmMkykqA4C8gDzjgEwIECN4B/6sZFMCkmLbq7Z1xjkus9lsdmFnjxOmjbHa9H3fqT61MspopZQ/EyCkpUSa4VarNsaY8aws8+RD+mS6PKHot7IyMQCk7Kj0Ss7/ICsK63zTtnlZvH/3Xt10jIPxniH6yY9/6uUPvfSrv/qrUspEIOi6DhHS9n3f98tFPZ1OUYQiyyQXeV4kqKQoiiyTlOLhcMj5GQRhnBDi+HgKAJcvbXWtqus6CZOTjg0ABBdFUSwWK8ZEWQxCCN675MXgbFitVukQ6Pu+aWySryV/hMFgsLW1le5OSoExkpAmKc8tV3lVVUKwtPOOZ9FXKRfFe2+tw+gD93DGWJ4Lpbu6rhOELwRPyhYAYGxNOAgQEQLvfV3Xw2HZNA0lbD5fWOuffvrp1CPXddurbjgqGGNCMues09bpdbEjZE0yT6ZnIaxNZweDCiHAOEWvhHQwJOIRBuCCnZwcNX23XDWPHh8Ug2r/5OD+433jfN109+7ff/z48fTktK2bGOOjR4+stbdv36YMSykvXdg7Pj4OEQqeF7mECMHFLCsBYFV3nTJd1zVNo7R1DkLEmBBnASLuPPIIC8kXs5ODhw+G1UBb/9Z7tw4Pjtu2DREZ64MHKmRv9KP9/VW97Pq26dqmWXVKWW+U0Z3qm+VsOCgzyQ/2Hxy9f7tfzcEaIOTGJ39g59KlBw8e7O5sjasyeDudnkQUtra2tre3lVKr1SrlQ5ZluVwu87zc2d27dvV6U3ecsmvXrsYYprPTpjcXr16rxpPxePz8C89euLDDpdDGFeUwYHpwdHzt+s2NjQ3JOcVw5/Z7i8XsY5/42NHJ4WK1fOHF58oyRxjq5fyDB4TnyQXQaquUBgCEIE3EiWfGebqpIMuydH6v4yVCSBgdpaCMni9WBLM8z7tOAcBgUDBGkuU955RzijEkZgkAYIzLsszzPIR1VtqqXSnlGOO9qilleztPM8YuXRYyW6uoYowIkTNI4LddDhGsychPxKhhRlDyN3QuuphMpNeGqel8WqtXCeGcUArWgo8QIxjvEdDgIeOc8chYwAAYkRijty7GQAE4Be/6YVVKiQCTZb1q29g3fdd1SpmkvCiKImVqxhgXi0XTNAlpTAhq6iEoRVLK9HgyTgSjVn+PYjE8sTcEADhH3wHOkOZ0WWtt8BcuXLj1/p1O9ZRS42Eymbz0wovPPvvsz/3czzljB4PBeiGSScIoYVQp65xLPDutdVVVyYksbcESQQ9jiNFba2/cuIEQunPnwWBQXLhwIQ2wWjuMcdd1XddJKctigDGu61qpkBiOSSefgJdE4oMzvzOEYGtrKxGOjLOP9h8vVsv9w4Oma8tBqYwmDAOEFPKXtA2pDmrdxxhHoxFCKB3s6Zc5R/fSlehjCCEfbKdV8EAIcW6tEyAEAcad6r33nCOMsVJmMplobdI78NRTTyXzhfSds4zX9fpJjs57DzFCIbMk50ovNo055/rIwaBMxMytrS1jzJlAKi4WC6UU+JDEasq6ze3dWnWPD0/Gkw3KhbKmLMvLly8DwJ07d+7cvjUej9u2DcFtb2xWRZll2d7uRQAgMehOCcYxINV1GRfGeG+87rXVwSgLANGH4CIkmw/MjPPROxyd6tuqqoSQr3zjm19/5ZW27kIIxrjpfMYTDTvGTvUBonH2dDFb1qtIMMtkINFrVc+nwSiOsWpWqm/bxdw3y+Z0uv30U5/41Cf3Hz5azGfDshqMq/uPHr777rvGmKqqEk821aCtrS1l7OHhcTJMWiwWo9EoRp9lwgPbvXRVZvnJYvbiSy8998KLCNMLFy+t2k6KvKiGDx8+nEwmu7vbG+PJzes39g8Pfv6f/pOT2XS8uYEpqUbD0WS4sb35wcPinFFaCCG5QBFCCKPRgDG2WtXpsNzc3LTGS7lWnqRfJn2ydV0DRoShhIM/evSo67rkPzIajc4YcxBjUr1bhKIxJokUEoEXAJKByGrVOOfKskQYymKwvXV1Op1H3BVFxtj60T5n2Dx5M/9PvBI8HX1AIXoX/VnwRjJOjQAQsffR2uB9wBgzRrwPfW/aVillMMaZzIUgVUUigrYxSpm+j9ZagkJeUIyQYIwk424AToAR4qzX2lLGyqqKEV27thdCsNanlmU2m51XgNQQJEJFOjDOoFGfGpquU4vFghCS5fLJWvevxJRSNXQYUxQpgQ+2jKUYzI5McOjCzu5yvmqbRlK4fvlyFPFXfv2f7x9PN3Z2O2WOT2cuhjzPIcQil4Nh5oM5PD4kjPgY3r31bowuxpCG2b7XWltjXFUNlVInxzPJh48eQJ4Nk3opy4qiLJu2p5y1fae1vnb9ipRysVg1NRjtV/U8k2xYjgnOGM0Wq3kybug6Ax5du7L76PF9E/TG7rbMOBd0WS9csDFGCLGZLzeHG03nXAyy4Eo3ALBatk2trl6+kax3CEEp9jtGT2hkHMiTFLOsAIy5FCKTgmAfLGCIFLDALqrROIuu90iVw5wJboOP0Ueww5E0eoE43T85eP/BHZHlLhDKaVGNjXcFYziC9z7P+WAwaDrlXQw2CloNy42d7T2K6fRkljHOCQ7WWKPqemmMIgxnBU81mlNGqCvHFeYyxphxuLBTfee1Vzd3Nkd56bX2xu7t7QGKhJDJZLK7u9f3PUbw9PUbTdO0vaq7+otf+OTuiE5b7QAbZzFFEUJvtAeYtWrZRxORsT65hyMIuRQxOB50Xaul5neOO4XRg4MH3vsqH6f4zSzLmGTbF3ani2XT2s2tS1r3jx7cLyQTKOp21XcdY0KKMjDmMLq3/+hwerRYTR/cub06OQhdmwWrDw7yi5d+9Cf+8Pa1G2+9d+vOO+9eGg0ySU9PDiJYSvHRybFP2rEs2xqOpORYSloWs1XNCKMBj4uKB2Rj3BpvVsORdfryeLx/csQQffnZZylyBMxkPHjv7XcR8LIaXbx25Q/+oT/yY7/jx1kUb7721pe+9sprb79558H9B4/uf3AziJKLCgGx3jFGKRXD4RATYBxTwhGwk5OpsUnUEJ03AWJAQAjhUhCGQ0gWSoFi1nVdiK4cykY3SreMk6bpEKTngrSta7uaUi5l7n3U1lkfRJYZB6umRZZxyqSgjAqt9e27bxjf+5jvXIIQIgKOEERwABgBJeS3bfXlIzjAfURNCI4gA4BQHBZS4iAZcAaYABBgAouMMUmWK4MJJZRURUYQdI2l1Gc0QkAowniYERryHCsTmw61rZAscmJLARslLxjkkmjrgALNZYaI0i3OUF/Pe9P23gx5ng+rpndGaQok5xJjvOy0J4Qjsre1kwup2k4IMRiUASJghEjftabroRiVUXygpDjzx1o3y6l9xmd7ugjfzb1crRbDIT49PS6KjHM8nbrnn3+q65qvfvVrIYTxuIoxLpfLtFjx3iMcQwhpFI0xaq0nk/F5Qkg6LROFJalWdnZ2Dg4OrNN7F1HbNakTTMSralBIKYXglJKmacbjsZS8GrCj48MEsCQEPYSgdRCSWWu9t4TRdFao3mCMd3d3i6JIIarpyGUyA4CNjY2maVLQaF3XQoiqqh4+fJjWl23bJ0w5xoiAFIV80vfi4cPHm5ub6Z9QSjln63AoThIInl67MUZmfG1O4f2qVTb42Ww2n89jBOsMQjH9/jHGiNaClqRETFEBjDFGcNe0wXlCSFVVnVZp92ytTTtNaz3nnFJc18uEJs1msyzLpvPZzaduAsBiobIsK/OCYLq3t4cQ8i4gsnbW29vbu3nz5mKx6Pv++s2biNBvvPptwJQQlCIK0gtPAw9G2CV0kJCAYDQaMEa06inCCGMA6FWf7q3FbHnw6LEQYjwe7+3tLRaL1MSl+a7ve5mXgMn7d+6VwxEQenJycnS4X9f11mS8MR7vbm6cHB60TbO5NTk+Pn73vbePDw9V397/9mvLk5OPfu7zv+/3/b6Le5fevfV+Ipq1dVMUxdM3nxoOhwwTpRTguGrqd997mxFKEdbaXrx6dbyzMxwOMSWZLAijlNK6beq6frx/CBBefP6F1WIxGgy++IUvvPH6a8cnR7/+3//qO2+99cJzz/2hP/xv/PAXfvCpp54aDAZps3x+MyilDg9PEwy4v79PKU1q8RgQY6yqKu/tcCiGw6pt22SaHUJAlJRlmfbdifqqlIoRBQ/OekJwXdfOuTzPfQBr7cbGRlmyREdr2y7tpmCtWF+TzM6ZYSmWI42ofd+XAwzIEEJjAEIQJtH77w9MCRFiTLG9AAhH7z1jKBkJQMQhgPfBWmuNS2bX1vmu67NMCAlK6TOeLEo3SXoJzjnnDELrcL70k2KMGAOl0Pd9jDGlyCVnlp2d7bQMYewDlTEhBGNIHMM0GJVlmaarNFF570OI54Hp59e/EleiT/zX8OTfsE6VVeacEZIiHIcjQNj3qi6KQvWmaRohsoRwWeMZc+kDbpqGMaa1SQNdWZa9qre2NtLAn0DA09NTY5z3dr5oKIFr1688fPhg7+JWGgkXi2Z/f39ra6uuu5Q9ljYv1invdTXI6tWqaVdNqzmnlALGaDAol8s6ywRjrO+dc947g41pmoYxtFqtEEJ12wwHpVKKckYYzYo8QL+YN0lqvapbpe0LL7zgnKvrtacsY0wrE/wHm9cQoG2btNBMV9dZTIAQQhmGiAHcIC9Wy4Ygam0XKRVBVFW2ub3Ztp3WOss5eMIoS0WHcZJu3KZRnJOsKHyM1lpCkVUaR+jXV4dwNJI75yjheZY1bSs5gxAxITGEEIO1fjQazefz0WhUDYo3Xn9r7+KGMj1jrCqKxWyutaGUIww3b1zqlO61ffx43zl3+ep1F+LpbNH1Zr5S3oGQ8pzjCmfYEaXUpvoI4L2/dGHv8PCQMUYxc8H3WgOA05YjePHFFwuZPf/ci/PZcmNzu8wHt2/fliIviiI4J2Rx8fKVxWx67/7DvQs7165dOzo6qleL6PrBYLC5uXn9+vWvf/1r//hnf/7q1ave+/3jk6vXbwyG49ViVi+XFy/sfvKLP7rz1htvvPFGCEFZs7Gx9exzz0Uf0hG1f7RfFNl4OJodH2dCLldN9eIGHZRSAy0K0ywZY818UZblvbsPhBDBu43J6DOf+sT7t25/+IUP/b7f/bt/5V/8yvUb115/7Zvvvv1mXpVcZK3Wi65DjI/HG3cX65vhxZdfqtvG2l7prioKH2OiW6eVdxLgp6X+8fEJpzQEmM1mIYThxYsxBi5o30NicQFgjLH3yDvEOeq6rsiHlIJ1hnGJMY4BTacra2F3NwsxzqYrKSglPB2oy+WSEMQY8d73fd93OoSAUCyq0NTgTACg3lsuUur3b3dYDnidXAsEI8KAIJRoYC7EECD4dGpCwNj7KCRVuuMcMiEBBc6TRbH1HmEM3ntMMIAnBCkdEbaUofPSlgwfYZ3OGq1RJcq8dYxljNLRxoZbttOuTmSMZI1MCMkynpYwiYEPAKm9SInBzhiltBDyyZoLAE+mJZ//N/pkpXySqo6wJ4hKmWvd57kYDgfHx0ej0SiTVdM0WVZ47wlBya0+MR4ppW2rh0OasFGMcVnmxnapSOeFfPToqChkWZaMMedMntOdnR1j1HCUT6enZVkZYzjH1gRr7ebmuCiKk5OTS5cua62rUpRVjjFuOyUlYoxIKY+OFkr2Vy7tnJxMhWARQdrLIGB1M8OAkkwny/OTk1PVt97bXjkpJSHMu07rOJ8tu76mDAaDwdtvv729vV2W5enpcTzzI3nyhBiNqhT9o1SXECHvvXMoHUQIgyBiYzyx2gmeJU2Ldopy2rZtWVZK9c656AJEF0Loug5T8N4jIDGCyIpkIt2rFiFkncsLabXOsmy1WpaDIkQUEZRlKUWujStLlgQ8w0RA9YFSKqUYjUYPHjywziEcs6LMRd61Ks9LyTO8gWNEs/n85ORElsOdne3xePL2O7efeu5FTOj+yYlHICXnnKYmN91kZ3yAABhhQDGEvu8P1AHn/Cf+4B+4fOXG3/gbf8OFoPpOcnxld3s0HLz43LNN00w2Nw6Ojy5cuFCUgxS4KqVc1vXmZPTyx24cPLi/XMydj3t7e957inDbtoRJwOxHfv9P/NCPtN954/UYYzObH+0fhABZXnJOp9MphHj1+s29vb3XX3/dQ9Ta/tqv/doP/MAnvPO3b98eb48Wp9Pd7Z3NwfD9W+9ubu+cLlfPfPjD9enroHUIYefKlaNH90yvU69XUJRxNpvOP/3Jj+8/ftj3/YdeeO7WrXc//PKHtNbT2QJjfOPGjZUyt+7eu3v/g0n5jTfeUEZXVeaDzYQwzjHGTk9mMUaM6Wx2OhoN0kLTWsgECdEpo4MLANFDRAgRClVVnBydIkIp5dqYtvXjQdm2nVIdpaB1H6MnhCSWbpZB13VZnlu7ThALIThnMAYhhMx4jNE6ned50zSME+fDZBMd7wPB3EcXY0CI/HapNggAUExh82f6fW+tTeyP4CGFlkaMI0IAmBDQGqTkjBOtU/QjIpgq45K4ngFDCHFBOmVTln262dJ6M0YgBBAQwMhryLLct3NMEQY0m81i0wMjw+EwoQUYY4pR2vUHCLPFLPl92eBC8JzSTAgYDKydOeciOEK+m0/9XZhSgLM85RhCwN9tHx5j5JImtUNyYSMExegDoIOj07KUYGOyw9rc3MQYe6e9D5PJIHjo+365XF26dEEplUwxpOQhhBDW4zoh5Ph44ZwnhDinJpPhYhGLopCifPx431rIs5JQpLVqW322K0UIoSIfOPs48DAeD+fzOWPAOV/VNWCUTCxCCJiSXBSL5QnnrO/75DdRFFm96hGaD0ejVL6dCwRD2ldKKcfjycHBad8/fOqpG6PR5Pj4MKn9lPquXUMIVKnOe7+zUyWNYAjOWo0xhBApQ7mQnFDKMGN0WbuI+slkMp1ONze3EvmWMdG2GmEUYyyKomsV5zwrBQAYY9J+PUAEtA4AKAclpQTTtWN2VYgsy9q2ZUzECAiAMVbILPqQhuiua9q2zcus6ZsLly7IQoYQEEAAP51OU9rflcsXRV4VefXG229/5CMf4VzMFstV3ZeDwXS6Usok5DrEM8NOjENEkDhijDlrMYG27X767/wMxtR4V2ayKjNB0bNP31RtMz05riRQzj7yAx9779b7TdNMJhNK6dtvv729vQuY3rv7cHd3uxwOIPi+bbwzQpa7V2+ovgOMAUs6kB/7nb8XEIJmNb13V2vbK2OtJgTpXs3nxNv+hZc+dHx8jDEtyvLWrVtXr18ry3J/f38yGN69e/fK3t54tIEQWrUdZLLrGqt18NauVpPJ5JtvvBNjRBGGVVEWxTM3P/6z/+gff/rTn718+fJXv/rl3Z2dxw/vY8oHg1FvwzvvvTva2v3Qyy9Nl8vffG19M2RFPl0029sThOXx4XFR5cmjiBBmrVUK8jyP4Fd1n+zNKS0YJ1or42yvlffOOUgCMsJSqrpxLpUDYowhBJLqdDisnHOXLm3EGI+OZts7ZDzOE+EhRkhjtcx4CpJt27aqKmt9r2pMYHdvbHrdNdE7sBa+L/o1JDpyOCsLwUXjg+A0BgQoopgY2QgAvIuIgZTEGGO0kZKFELSG8SCn1GOMnfMAFmNMGRPCYUK8986F1IwRkuoqQQh1XVdKyhjLpMwYi4RoayXnvekJKSklQnDGErrQA8CkGoYzp6vkrOrX6QsscWukFJR9VzY6AAB8V7vzXZaHT2Iua4uagPKsPD09lVIC4BCg71Tbrt2lYozWuhhj2h4SgifjzdFodHw0DSEyxlb1AmNIPKOmaTY3q2TJdXh4yJjwHmazmcx4UhceHR0dHBxRwhECzuVsulit6s3NsepN8CA4rVctY5nSvu0UY3Q+r7c2Jjs7Fx48OCaElIMKALIs01qvmmWZy/MYiizPKaWTjYEQYjAYeO+t8ZyLpIohZ1klZSkZo48ePaKUbm3trFYqcSPO35O2WUd3pvgUbfrkAJZ+LqWYc951nXPGGJNot0KwsswZI01TI4Q4p0Iy750x1nkTYzTedVqFsKYK9aaXUvoz82JlVTJ8zmUhOLfGIISFEBhjrXVZFoQQrXtKsZSyb7uTk5O2bYtB0fX9ZHNjWS/v3r8HBGxydfSBInzxws7u9mYuxWI+fe7pp5OFNWA6Xy6ZEKMqB4AYIXE4AAAwAowIIYhAYo8STFyAACiVQkJQlonLly585lMfR+Cff+6Zixd2PvTySxjjf/bLv5JupL7vF4vV9vbuxsaGUiYvBzIfIMxdiJSLtlMn09P7d++dTGfGBkDE9KY7Op3ff+AWy9F4I8vLPM+llHVdz5eL49MT493BwQFgtFytMCXWu8eHB9sXdi/tXV4tm2vXrnEuECUXLlxAIYI225uT9955SwiGIeiuFYxwRqLzfZfszfFP/dRPvfbaa6+//vof+2N/7Itf/OJwvCFl7iLkZTEYTfaPDt94523zRIBiNRhoDU3XTkZjKXmiChRFhRBq21YISOOR9z4lOCTuVFqpU7qeWJt2lWVCCBajRziWJQCA9955W5Yl5zT5myYdSwjBeyCEXLt2LWVIZJkIIRirvHeJ3356Ok0SLAQEI5CSb25nxnWc0e/P4+vJf+RjNNYrF02EBC6nP19zvANyIXjvjfEmJVYl7zyA1apL0gaEwNr1P+GcZrkQklGKCEHpzEjDsrVemUgFXy6XDJNMSoygLEvGSUpASqkhyegw7XPS/03TMSR1bIzpxuvaD3TiH1RD/8HqMPFsvqsaAgrn/xUAIGKMqLW+abq+D1lWaG3qurl//+DCbrW9vZ04U2VZzOfz/f39hKIkn+oQIM+z9PvleZ5+e+fsYlF779NkNBlvQISyLJNZIyFkUI28C11nJuPRwcHRwcGy7zRG1PvYNN3m5qbWdjZd1nWIESUPJGMVo9xasNYlcTFC0Ri9qheXL1+uqmo8HKYwnbpuRqNRiHFZrxLJAxPSdLBYLbU1COO+7xOHsSzLpmlOT0+3tyd9r598BxMvhwsqJU8fQKJzW6vPHMBQXdcBgZQ8y8V4XA4GA60URsgYwzmtqkoIXpZZlvHkECGlxJgoZTHGxtmyLLJMIoRcCFlRpDKd/louZMqcDNZTSoPzJNnbOe+cS5s+Y8ya7sNQCL7vew9h2SwZJ8vlfDiqnn/umZxzHFzG8cZkgFGsqirGcHJyorUZVKPPfvazVy7uwlkbsbaSdNE7E31ITCYXvI9BZHkSDnofGacvvfh8DP761ctHh/tlWXzzm996991bqVm7fPkyxtR6p7UeFGWWZWVZzufLcjQhlBvnt3Z2OSWHB4/6tmkW8/27d7pmJQhWfffw4PjWvXsni9l8uZjOZ9vb2zdv3uy67v7DB9qaxwf71rum765cv3Z6evrt114L2ksurPXFcJCXhTFmMZ8e3Ls/qMquXdaLKcGAIFy+uGdUhyBorRGmu3t7b7/73n/+f/m/1nX73/13f/vGzZt//I//iY/9wCcyWTRdnzyEAKP9k6PzmwFjXBSglEIIgQ91XSdGdIyo791gUHFBGaMUk+CicV5kMsTogtdWYUowxkXBu67HGHtvMYY8l3nB0Tp6m+aFzAuZIEpr7XI5V6rLMmCcyIwnzxgu1ocxYyzLRJYJhGA2m3Eui6KwBqy1m9sZIuA9AmDfH/s6RBQAIoAL4EIMABiB9d56F0KIMQAksndMuVEhQIoaT2vNLBNaQwJaOWep6jnnvLdpsE2jbiqp6QwOIeS5CCF4uzbYT6r/pmnS8iHpMpLDHqW0LMtW9Tb4gIAKzgktsxyFiCOkQpFnZZZlKaz4rAKui/KTrzTRx9Mff5eHjVIGIaK1vnfv4YULWwnPms/b8bgaDoez2SLpNIbD4XRq6rr33nddt1qt5vPlhQvblNJEoer7fjweR0jSY7DWJrPC5bJ2DpJZQ4LG8rwsiopRVlXDzY0tjEHKfHNze7FYZFnmXZQyDx4zColhJyVrmu7kZDoaib6Dtm0jguWyIQTleS6EQCHWdZ0gbOsiAPS9ns1mALB2dZVACMGIDAaD9DcppXXdJOAlEbmTF066yrLsOtt12ntPGbbWJuZz26pUhpKABGOczDsxgRSEsjXZSFkuxqrkGU4ISv1ylmXD4RBjSBTCFMvHGKtba4PpVJ/8H63Sq2WTCPfJCCf1IF3XpoppjLly5UoaEJKIJUUDrpplAACCBoPBoKymJ8cUo/FwoJS6dvnK4f6Bt5oQUi+Xw+FwPB7fu3+3bduqypKMyTqbOkRKMZy5zzImAHDf95zzrOBVJVerxSuvfJWgWJY556zrm/F4fPnq1aIodnd3062ilDo9Pb116xaOsL+/f3x6cno6RZSV1XC2WOacXNzbNl3XNnUp5cO7d1995avN9MTGeO/+w/dv3310sO+9n05P7t+/+/zzz2ZZ9t7tW1JKzOijR4++9OUvl1VljLl/917fKspY07VcSufcjavXvvm1r8pMaq2/+c1vLhaz1XIBAB/98EcuXNjRzt67d88YF0K49eabP/mTP3nz6af+yl/5q7/5G1/e2Nj6gU984vr1m5ub20xkypjvJqzFS1cvG+Pqus6yzNqYlk7JTCUt+7TWjAmloOtUlmVFUaTqlm6qqqq8B+t029WYgJQ8xpD8kwaDQfpWu7u7VVUlZIax5HSv5vN5ApcT8JrneVEUiR5fVVVyyczzsu/A+7i1U+3sEu8jAvZ9eWLjGFEECIAAowAII8wEh7OW8Dxr00XvPSBEJpMhIUhrixDxPgLg8SjX2scYOeeEQJJdaQ19r5VSxoSz1eFaxpf6uL5Xk8lESokjZFxkWbaxsVEUhZQyNYBndyblnDNOKMOAAiaAcOSCGqt61Q4Gg6Jgg8GAMbZYrJ78+GL8Xr4RRsCSKi8C4uKDvhgBPz6ab29dqFcAAFLKtm0ohRj6uplJSa31SnvKyuUSqmoLE0YYI4yKTDZNMxgMlstaqW48qjY3Rl1TU0wwgb5vV6tVUZUIh7wAmeHVajkaTZSy8/kU4YCY7U19cHSACcSAtbYXL14ECNP53PmOCZPncPP6tbbtnHMy54lCRSlIKa1OgD1JCuVFs/DRzeZHbTvf2RkE3wsSIHiCg9Z2teqsga6zmxsbgmRKqel0moy/QojO+bKskqH/+XuiTV+WklERPLt/72HKlQ8BKCXWxsl4GwEbVoNCcNu2o6KQhBw9fpTnOeWSM0IJAU+sdSG6osyMM9aFpp1FbKnEyveYAWGEUtx3NcUgqMSAYgxVVZ0sZrzIW207t1KhQzgyxvKs6jswIToUp8vV6WJZDIuAvQ8GwFNKnXPWdT465QIvy2VXMxoubo9cvfjEC0+bZmZUB5j2yoqiZIztHzxCMWxMxhSjvZ1tjoEgQMFjiD5ggPQ/cM6kuYdzmgHeHFQ//JnPffrjn56eLhYrtXfp+p0HR1zKwWDw1FNPHTw+rKphWVQI8GRj896jR/ceP6yqamdr2xkdPIis4tnwYNEfL1Tvgyjye48e5oOBHEweHM7eee+drCofHDx+/869t9557+HB8WiydfvO/RtPvwiR3nrv/X/8sz/P8sGi1a+9+fZ8vnTBm2Du3b9TNwsUPSNoUJTdsv/6G69v5/zw8M5sunKYH8z3P3R1d3tj9PTTz7zyyivD4XAymfgQbr///odefvmP/8k/MT+d//wv/sKvf+VLp3Xb95EjORmMOHtCukrcqCwmo3Ge54ihGMAYnedSZByRtb5gUFZp3iIIGOHeBoppyu2x1jdNU5QSM2ps1MZYZ4JznIiTQ0twlsnKOhfAK2M7EzIsGGPZIJ83i2UzD15jHLsuNI3a3NjWyp0cL/rOTU9rADCmkxRd2dvc2hhp1YzGJcYhgv1X4Kj/Y9d5vYsIjPdpo+2c4wW3MWofYspU8wEQAANrnTGKcxrAx+gJBaX7SDwVAIicLLrO4mXnmy64iHoFbUusw70C65EywQXQ1gEmVulsWJIYx0Wx8v1KdTLiTOTU+4zx+byNwCJmfeetNd7pjItRNRhVg0FWWO1OjqYE0WE18sYMKra3u72qTzmT568reJowUoxxUnIjdJY0+D0dYyqUIYTDw2PGgBI+m81SXaiGA875clmn3qSulxhD0zTz+WI+ayjlIYSm6bqum0xG1npjHEJYytw4yzmilDbNCiAIIfb2LlprR6ORtfb0dHl62uZ5vrk56bpOa00pqQbl++/fOjh4vLGxkdZGJycnZVnUdX3p0iXv47ldtnOQyI9CMGttlmWp30Rnxn/ee4SIEGI8LvA6FiowvvZlCyE4F4xxcMaHSt82NWtPvilpO3Pp0qUkgjbGWWud8+kAJ4Q8fvxYGxfOvgMAdHVDAGG8xgGT+gUhNBlNxsNRqt0IoYT2nJ6eKqUwJmUpj4+PCSGj0Si1z4vFIoTw/+PsP2Ns2/L7QOy/4s77xMq36uaXUweyu8lms0mRHKUZjkRJ1mhGGskWbMtjGPAAYxuwvxoGBrANA4b9fQwMxoZheSzRSiTVpMTQ/djdL7/7bng3VTx5572yP6y6oSk2pfH+cHGr6uBU7X3W+q9/+AXRGwQkSZKqqoKAhyEWQmkFvk2R53me535q7+/dYCtkp/oOtEJGHx4cJFHw3e9+x1q7WCxu3LjxxhtvHJ+e+IyDMba3twcA7777bpZl0+lkd3eXcz6ZjjByABYhF8fx/t6O0YozwhlBlARB8KMPfvyHf/T7r7xy++LibLVehBGv6/rx48cffvjx7du379y5k2bJwZX9d959+y/95b/41ltv7RzsI4J3b1xv++58drEpC5/mXDk6dA6k1rPZbLFYLNcrpfTnn99J0uyTzz7/5M6d93/4ww8//VRa++jJkzfeeufx8cnhtes/eP+Ho+lWXbdFUVhwhJAkSwlmWuuyLLUxBwcHp+dn8/l8sy4//+KO91dKkiSKgp3pNM/T733vdwaDzJP8puNxFEWvvXp7Op4QwoqirNqmKOvVctM2L0otQkhZbopi7RGCjEIUxYQwrWwcU4RQGIabzcaf1lKCnwyUZcl5KIRoW8l5kOe5c8gLbvadAADj7GjCHj8+adt2PBrVdb1arQigXgq/kncnW8hYZxHnQT6OPAeUPPPazrKIUnDOtW2zv7/nFeSM7YfjAMDg/+4+y+6l6zKOWNDaauX98C5DB8aIUkyIp+hdTiAsOK1AKe+MBlJKrZ1SVimJMXhUEGUIkDXOYyEtQsgY8CWttXa9XjNCfWulrmul9bOiDZqmRQjFMY/D6NKz1zqwzgtIZ9nl3meMefkCnxz85H39yTu9rJSfQ36e/6woCn98DYdx27ar5cZZ5Kuntm0ZI1KqLE1ns9nVa9l4PGwbmSSxUmY+X3IeNnXX94qzuKrqumoJo1rrvb29g4MD77OVJJd+csvlsu97zhHnUBRrH4+aVlOGrdVhyHuhKEO+kew3eVVVg8EgCJgnY0tpsoxdqjlR2nVdVVUPHz707ig+tfZ6MEmS+XA2yNLRaLC1lU4nOcao7WrfCnTP1Cu8pubzKdXzq3p2KaXWq4pSCoCTJF0sFh7LTUJfRHjZWowQKsuyaRplZC87wC5NEy9hMszyiId+GJVEl0bjjNAsG1jj0QyXx1dVVXXdN01vrSU4xJghhEJOjRJ5ni8XpTWE88BPjZIk8WEXALQ2UZ6uyiKOQmTM1b29AMGrr9w6PTtOkujo6OiXfumX6rr1GjlZlo1Gw7OL2fnsoizLO3fuVFUVB/zg4KAsS4wcRoDAGS0DSuKAaSGzOHrjrTfny+Vbb73BLqcE5uOPP7RanZ6eX7lypLX2yOSPP/6wqopPP/344cOHd+7cefjgwcnZ8Qc/+P7FfHZ8enLn7hfrskryQVN35xdzo90nn935l9/7vR9/8NF8sZHKjcbbe1eu/uCHH3z0+d3/+//rv/3s3pdns1XVdaPx9MOPPk4Hw48/+azthEO4LMssy+q69q0JwPT09Hw4HodxenJ+EcbxH37/j6WGtpdaa+Sgrta/+J1fOD1+cvzkKWekrqqnT5/evHb16HCva6rVaiWU0caxOBxNpmGUvrQSSu8vhjHinIZBbA0uy7osS0o8eIBprRkn0y3OOVCKgyAQvbMepucAELLaia5vayd7hRGKgmg0mXa98vtwNptxxgZZTjFxFDAlspPFcm17xxETvUmyAWOXlhW+aePN2qSU62rpMBoOJggIpXowYhhba/8t2tf/5vV8/WOMKfXWbQDgZ0SIUi+l8yygWA/JAYTIs1bg5TiFEqa1w5fUaeCcUkYuUbeMUAKUgp+4+nBUVcY5ZIy9uLgoNxWlFBHsWw2UUoxBSgCwhKIgCBgmXkFDa62UybLM8/YcIMaJMcqfGca8aBQ8B7G/fLMv0JjuJ6OllA5jzFgQRdFyubYWuq5DQC4uVnEcv/rqq5yTJImscXmetl1tLcRRVhZVU4s0yZRyq2VjjJ0vNidn51rZrhMIIa/Ta7Xpuu709JQSvtl0i8Vya7qztTVFCG02JcY4joFzaqzY3pnkedj3rRfpi5MQYyxV78fnCCEhhJSQ5znGeP1MOUprnedpFAVpFvthn2/P7e/vy2cyGLPZbLmsjTFK9mVZpnESMIoBaXnp/80ItdpUxYteQ5akURCmcdLWTRQlzkFdtVrZKEy0sp6LGsVpUTdlUwttvAdQFIQYOUyJUD1CiHlkQNkSQjCgKImrqvJirt5Wre+F5wjduHHDO+H1fY8QJEkYBAHGvK06Twht2zoMQ+Sga717lFmvCi/n0/fSZ0az5UIZ3XVdSElXFYcH+4vZfDKZ+C7Mh598XNaVUIaHYVFsrLXD4XA6nZ6fn7ed9NDoRw8eIGsIOIYhi8MbV4+MVnu7OwEnm/WqqqpOyJPzs6Ojo/f/+PthGB4cHCxXC8b4o0ePjXVlXT19+vTw8LBum9liHkaRsfbuvXvgcFE1x6fn9x48HE0m1qHlarMqyqYXXz5+gjA9unZdavvJZ3dXm/qHP/6Yhkmcj56cXqzb/ve+//4PP/zk+OQiH0+F1I8eP2VhNFsueqmSPPPDxLt371ZtUxQFYGQxTLd2zs5n27tXPv3s7pPjY87DpmlG48HO1uTq4cGVg70H9+8uFzNGcBTwjz78cH936+e+9Q0WRLP5slWi7bqL+dICfWmDSKlEFAdxHMdxjBDxKJmuAwDgnFNKMAEpu+FwkKSBD1Ueg22MjWNuLVRVZYwzBrquo4QTQqqmoZQYA0VVSim1Vk1VRmHQKamtpZiIVr/xyuvf+Jlvdp2umoYHFJB1YBB2mIADE8WBVL1xsF4vGWO7u7sY2zjWSYb//1FtQH5iif2449mX4P3BqfeVdGCMM9p63xdtjDbGx0/CMHlGHbEWOGdBQAnB/uC0zlinCIUwIl4Iyo8igyAIQ2jrZme65XEd5+fnx8cnFtxwOG6ahjHCA2+UJoxV3h3BOde2Led8MBgIqeoGgiDAGCjDHpf+8kTUB/GXIx5CXuYCgbMIfrJeHg6TLMsQck3TCOHdFch8XvKQBlHctu10OjXGpGnUNe3WZCyFWa02Qqg4jsqydM4FAV0tS6WhqnvKAwuwXC6qqiIUeEB9TsQYG4/yYgNt21ZVlWUZAtK27Xg8CkMehkHXdXEcEkIAnOdsM060NkL0Xk87y7I0JehSDRuen5B7e3vP2HvCE3eEEJvNhhD6TEMJJzHK8wyeCSn6+Sk8Yy96J4CfgCNh7Nu6fn6ys7MthA7DuK5bb2NQVVXXCYSxc8hzxQkhiGAPsMDoUrtfSqE1tG1DKAaHtbIex9U1LVhYrVZVqfzK8NU6AMRx8FzRd7lchTS8XKAWtre361r3fd80bZqmHmTAObfWeaX4ruuiKEjT+OBgr6oLpQRYt1ktlstlFEXKOGPMfL7Y2tnGgJbLZVmWg8HgjTduD0cDnzCmaTqdTsMw7Lt+PBp6C9nrVw+RM2VZ/szPfG0+n9d1vbN3UNd10zTHJ6effnbn7oMvl+uVNnY2X/zDf/SPpbZfPnryf/6//l9a0Vdt83t/+Pubolyu1k+eHv/ww4/rpjMWqrpV2r7x9jtV0z58/DSMkzCKrYPFZqOtMwgVTXM2my03G2PRD370YZYPWyGfnp6dnp6Ox+MgCLpWHJ+dG2N2d3fX67VQsum6z7/4QmhDgihOh1UnPvr4c8r48fHJ/v4+JbjcrF+5dfPWjat9U588fRxHQRIH7//gDzDGo9EkH40dAA1oGEdKvRgzZllGyGVThVLatrV55rMmpfQeDN7GFyGXJLE2EgCCAGllnzteAIC19uhocmX/wGqjpSqKCgBJCWmaZllWFAWhSClhnfaCYBij6XT67W9/mzGoy8qvEyGErwq9JQhCKEkiA/L84mQ8mKRRDFhlA0ap+9N6Yn/W9ZxC+qwldak9ap/xRjDGCF0mdP69pdRCKKX9bAQBIPPsxR7NBmAdGP/Gxjynflj3TKb7GWwQ8jxHFnloCuUcERpnadO2URTFMdNGwTOulFeQ8SN+66CqKueAUu4Rx8/hLs/vyyeY6Cc9AvFljAT3J86NZzAo1zQ9Y+D1QhACJc3p6elndx5VVdW2dRAwbVQUhx51gQi2YJZrgTAOo0RbQIC1cpTSJAmlVlqrIGDWWsAoiELjQFuX5rism06Itu+CIBS99cvOWgtg/REkhABwo9Go6zrnoCxLj1DxC2uz2QDA1tbQOVeWIssyj2R+zpSihHedKMt6d7pvjCvLqqqEdzsEh7M48bYBns8YhqGUcrVaGWNedlABgCAINptNVdV13WhtMMZBEHIeWAucc0ygb7uDvSuj0UhK6TBS1vRKGmdlrzwgBgNyziU5W67mvez6vs+zbDAYJEmCEAqCAFlsLSRJ8ujRI8/f8NmH996NQ2YdrNfr/f0rcZT7JxAG4JxrmnY8Hjd1B84zvQznXEvNadBLtXt4MN3bIZSORqP1eq21rqqqqbuqqaumHYyGhJDVemEBwjiez+dKqeVyWZSbJI2vHB4AQN30g0EmpRyNRtPpdLVa7e7urhbLP/z9H/zs1342ihLOg0ePT/76f/SfAKZ1L764d+8Hf/yjXuq6F7P56l/81r+s6i4Mo9//gz8klK2WxdlsvnflUFi72hSPj4+Pz86ePD15/OT4e7/3r2/ceoUHIQ8jS8j9x49Pzs4//vSzyXQbYdp38ny2ePTkuKzqL+49+Lmf/wUASNN0s9lYrShny+WyrtqLixln4arYIIKVsQ++fDQYjpu+T9Lhx5/eUcqcn58P0jSJ4q3pdLNaDvPBu++8NRnn6+Xs8GAnzaLZfK60CZN4USzrrhgMkoC9SC6cc8/d7JxzhCKtpZR9nAChqOs6D4T2AFsPqG7aKox4Pkg9eBDAMsb6Xl+/enTz5k2EHcMkZMFioff38zzNmqaJouDw6pFQMk9SZ1Tbd9q5+19+6ZzL0pg+sz3xHDUfs7ykFWURIbDezJbL5dWj28ia4ZBbkPBvIIv/XS7/ztaClyNECDnwiFSNsCMEKEWEEEoJQthaz2l2xl7C+owxCAPnyDnr5xX+5CCYYATOglbGaAdekx05Y/VgkG9tZZTSqiz7VnjywpPjpxgRzoMoCjlnGOM8jyIedE2NHTBMfCHYtq3WllLYlOVqtYnCRGstpX458Pk88eUOoe8bWgBA8BMkPgCQsm/bGmOIIkopcE4JQdeu7Qvh4jje3R0ZZxljw2G+u7t9fPwEALySYN9Lr/TX933AeSesNKCk9hmvMhrAdV0vpSyK2o9ioigKgiDLUn+wOAdd17Vt73M6/0kIoTz4wDkXhrxt2yiKCEVFUbRtV1Xaq7NYazmHwWAAYD3iycM7fKQbjUZFUbVtH7Agy8Isi0IeSil9d9zr+qJnqoL+VFEvAW6f8+2TJKaULhZL0du6aj1sAmOs1CWSHgDiOPUlW5qmFiPRSYJonmVSynyQjifDVrStqH17RUq5M93a297p+x4hMhplaZqC569i/BwEjjEGZMbj9OTkJIsHFFNCiDb9YBhoZT3WbL1ee04O55zRYGe8vbW1hQi5//hJb3XVtydn59iBzx870TPGCGNa681mk+d5URRBEERJYq2dz+fT6XRna/vi7JwQsre7tVxXXm377OwsG4ym27uv3r7pLCwWizzPl6sN4fx/+7/7L1997a3xdDKebm3vHxRNe//LR0k2IkFc92p372A0miiD3vvq149Pzv7xb/4T68jxyUXT9kVZn5yfN32PMfn+D96/+cqrZ2cXXz58eOXwsOv7IAy9mBVjTLTdydkpQmg2m9V1vb29TREeZjkArFarJEmapgmCIE3TQT4qqgZT+vTkZF1URdlGyeDxk2MhtY9Qk8n0xtVrO1vbWvYUoVduXc/ScDE/n07HgKxUpqir8dYQY3dxfqLlC1uIoij9LlJKO4eSNMzymHGUZXEUBVL1HgCLMTbGNU2zXC49XI5SYq3BBCGEMIEwxEEQ9KLNkxTANVU9zNHhwdHZ2RlCwAK+LtYsoBTwIMsxpWEabJri8zuf5nGURsSnhAghv+O8dxhjDFBgQIYRPj055yS9cuUozVg++u8UAwFeqhcRQs/7es45gvBzTN5PSOM8ww++oHU6jIB4lUYvIoAQsgaeSU0jAPxcYRDQpWB338um6VaLNef8+vXrGGMLzo8E8jx3CCw4giCOIg9B9x5tfubpP33CcFFUbdMTwrqutxasfZHav9w3fNEbfelWfyIaWqfLqgRkB4OBrxC7rjs4OIhjCu6yg1DX9fn5uTHGKG2Mk1I6ZyjFo9FlK9enx3EUsjCIogjACtFhjD12XwiYTqc7OzvrdeNZvWEYtk2vNSRx1nXCU9CeAehYWTZPnjyZTCZpmnjWhyfPUUqiCDwvqqrqMAy8Po21uigqz6GWUpZlOZ/P57OlFC4MLzUtnHNaGyG0xxX7cTZjzA8isixrmub5MyGEeJ0Yb0HHWcA56bru6ZMTz6LjHE9H47ooy+KZ9RW4IAy9fRVn4Wg48R9nHIcsoJgiv4K1kF6z1kjNGPNyoV5XfLVaeU1T39hdri6Go7zr5NnZhdc3TJKYUmKtGw6HFxcLL1U7GAz29vbSNB3mo8XF4scffnh8dko5WxfF9vZ21wnn3KW2Yy/9p58kSV3XXiAyCAIfaADg7t07eZ7GcTyfz8OAGuseP37c9/1msymKYjQaTSfZxdn5gwcPb926NRxNRK8++OhTZczjp08//fyOBXR49dpnn98BhAHhoqhOz2e/8zu/85v/5J8eH59++ejxlw8eCqUx5VJKHgRlWT748suiKH7rt37LAe77Xkp5cHBw//791Wr1/OEopS4uLs7PzzHGg0FmjIqiIORssV45uIT+Nk1TFIVQshN9kiSLxYrykHK2XpfeXvH4+DhP0vV6vb+/jzHuRRuG4f7ONiGIh0woxcJgtVkLIXhAMQFf7frLe35pbb19Y9u2w2Hu9RY9zABjfHFxQSnPskxr0zQ9Y4xS4pzz4GRCMcZ4/2BXafHlvftJEjdN17fuxrXr3ihxa2d7udzMZmsgGLR32cVSa0zJp59/EoZ8kg8opX7iRwjpOudxnQAQBDFCLk6YUfbJ47O33nw3CNHRtReFzn/X9PBZlLjsAFJKn7+Bc85ap5T2pij28hQnzjnzYhphMcZaW6+jY4zzrBWlnHMIY4oQ1tpq7QDAx3dfLbVtm6ZpWZaUUmn0uth4FLMQnbVWKYExJoRgAn3fM0w8D4898yj3P/XazC9fPo4/j4aXLVFwFACsk1rLl4tlA1xJxgLUtFWaxcNh+Nqtrz6+/xQhLPpeCckojkIecLpcnHNOwwiAgFS0biwAikL66o2rk2xQ10AptUo3TXV4cMUoq6V2Gh1sbV0/Gl6cfZlnfDTkSglrdTqIfT+FBzjPYylMU0shlDGGMZ4kkdZ6NruoqioIGELIWdS0NaE2irDRUkrpHFCClGyCOKrrlmJCgHdF76TVvQaHWZQYB4CtUjIIgqbtwziK8mB7MuGEBJT6JJwQPBwOhBIvD508AoNSAsg0VbiYi+nWgDKgOKg3anYmxsOBQT2PMSA5n58lSZJE8Xx2PhrmlIWdaC8Wp01Xz2Ybrfl4eFCVSnRKCiO1Wxf16XxGgmC5LsIoKoqi7eokSXypPsgGVaHAoDDKAJHp3ni2OQ8y5jCUZYUxMRJEr+I0Gg5H2EDKItHKh4+P44DfvH5td3cnz4dFKQmOtFT7e1tbk+0kjKKQClFxYkBLrHXGudNQVfXx8bEGgyjabFbWwis3Xy3bzhF6+/U3hLGdht64RuqL1eZHH318eP2GpfT+o0eL1TJOk62d6dnFaW/dyXw+X6/+8T/9J59+cYfFwQef/FhaUfbtZ/cfHK82jy4Wnz962hkntPraV97hlN69e98YsyqLJ6dPLxbzO3c+Czg9PDj6/h/+wEq7v72/XpZCORZljXJV1XTK1r1ezNdZnOztbi+Xy6JrwyBaLFadVJuiKuu6rhsMGANezla1UBjDiNsBg7puDYKmmUNXRjFORoMk32I0uHv/xzx0W9lu34o4iCnCGFzdFK1qgWPzkiFvGIacASU2SeIwDIOIa62n0wkCC9YxRgmh2rhO9EKqupGYYOtQFCdSK6lVhoMgihgh7XLtnL125RBqgQgdTDmL8b0vP0cEKAn6DqIwGKQZCslyuYwCZpRZF6tNXcVZOp+vrJGib9q2GQyH2kDbdWEUWWsp6IgOsI16Wz9ZPLj35MvxeLo3jjmnDhzBAXIDgIhcui6/ANX+iQs/4+Y554xxWjtlwQBoLT1exyHEAk4YxgTCAGujCcUIgTEaY+zrWWNMyBNrLcHACEaI9j1wFlAGlGJrrdRCGcsCyjhV0hptrdUIufPlRZAlre7PZhdK90b0XVtVVYkQlgKGo6nScHEx5zzM0tF0uo0o69q+bcECDIf5bHYujXEQKtciAlq95CiPveq1r5Qvu4eX4Q//G5wdxkjXKYzx0eG1JM7atr167WA2O48jrrXGGNI09bJXWTrAGG9tTeMgbqueYlBKzWazydbW0dHR1cOh7Ns0S7zKISGo6WySpd4IMU1Tr9yrNTDGiqIII+4cIORGo5FPfafTraKoiqIBgDzPwzAKgsA5FEWJtaCVQYB9jdx1fRRFcRx6vb+9vb2mMUmSZMNBVVXb29uDwUDIbnt7FMVBGPKqqhgnGCM/m/cU5tFo5GF3XiExDF8slL7vvQShtVZLxZg364G+767fuLa7l6zX67qunzx5WpZdGMYYYyk1pVwIVRRlGMZa2bI0SovFYrZYzg4ODhBCXorq4uKCcz6dTrMsravKDyi9yIX/1VlG67qnDlmhdKfyJJWtpIg0ZROFyd7uUGmRZWlZFixgDjlCUZpypUwYJwcHBweHV9bFpteyUWq0NTUWeiXhUlEOUeKs7rMkRmAIgizLtDSj4cQCVtr8+KMPN5uNlPrOnTvHx8cAoLXuum4+XziEHzx8NBqNMKWPn56cnF3ce/DltRs3//iPf3RwcPTo0dO7dx+s15uzs/NiU9+/9/CLO/dns8VmU9Z1R2mgte068eD+o6JqpNanF7Om61997c39K4dBmP7+H/yAsvB8Nr/34EvjYGtnOwzDtm0QBsJo2/aAEeHMGUvAbW1Pyk2RZZkfQXqbMMJoJ/rZfBlE8aNHj9q6TDm5ejCdX5wHQdQJUVQNZ8xomed5FEUhDxbns6ZpHOCyqYtynWVZGIai6z039vli8IqNaRY7MNeuXZtOpx7Ts7+/L6T0Su9aaymUXyS+2vApCcbYm4565MD5+XkYhgdXjupaA4CXwh6NRnVdj0aJb9csFqV//yhizjlMoCxLQmBnZ8dnphjjvb28KHpGqRC90oIxNpvNfL/v3t37WmvOgvEWBQQOlIUOQDkLyMGfwVH5yakrAIA3d/TDCt9JRIhgTHxXh1LCGKMB9wWWc8446xx4Y14AIIwihHiIrL2sXK21zoFzoLXVWhsDfkrpgW7j8bgsS8oo53w4HPj+w3g42pqOhoOBlqrvVJ7nrejXZQEAlDPCoesbZXSUxMi6Z94AEIbhn3qPL4X+5//DP+EKgJwSErS2lPKiqPq+/97v/jZPgAcYEAQhk1J4FGEcx1k2qIq6KkpMIMsShFDVQN12veqdUrduXhddf3Tl8OxsHQQBCyBOo171SgvPu66qSmtwDvVNTylOM+R1Eq21bdt3rQBAlBHrkJCy7bq269ebglCGMMmyESFB1yolTdu2W1tblNLNZtVLYYxJU+qRmV7NoW1bY7TWMggCxslwOFgsFoyRNIt9BzNJkouLi7Ozs6Zp5vP5fD4fpNnzZzIdTT35UfWiaaosi7tODAYDGkBRLKfTSd/Del0oBbdv30rTnLHAL6Y4SpM49WjQ0Shar3ulxaVoHMDFxYVvKvdtN5vNvC4kY8xo541SPTIZHKYUsigxQrZNg4FQytI0LzZmOtqOAn50cNC2NSJAAiJV33UtZWR+sUjjNImSzz///OnTp0VVz9cbGqd139MgRARjDF1TOSOHg9Ta3ug6DBByRmtbFLVUtlXq5GLRtr3v5ijlO6QGACOEZ/N13XRtL4TSRVUbB9rijz75rKm7J4+PR8PJzvbe559/cXR0LQzj+XzZ9MJoV2wqD4cKgxgjenJ+8fjpkzjPl5uirLov7n754SdfRNno3sPH3//hjyiPHh2f3n/wqKnbyWRqtQkoOzk7V84tVxvfx1wul+PhKImjxWqpnRVSIoTWm5ISnia5QwCUMcbqzWprGP/yL3xzcXEipSQsWK5XnFDQZjwcUIKodRdnp53oeTLAjK+LApBF1imlA8Z58DJez7GAxnG42ayEaKIw8UxWv7c9i58QopUiGFsNYB3BQDCmmGAghJAgCuM4Zoydn1/cvXs3CKIwJl0jA8YxONH1FJM8zbq2pgSFIU7TNORBVam2FgihKAoHg4GfsHmlZCGER7FwzlerpQMDYNMsHgzS9brrOmEtbO9xhL1OgQDQ1gA4Bj/ddd79pNjDs9kxcg45B9qCUsazN61xWjmjrVZGKyOlEkIKoZVy2oLShhBmDHi/dd9VpJRQSh0ARgQwKGONAYcupX2Ms3meX7161Tf9sywLovDWrVu+9+qb+D79XK02y9VqU5RN2xpwhEAYR1L1q9XaGHt+eprnecDg36yX//Ro6J7J2D2/rDO7u9HO1u7Dh483m3o8nRwc7GxtjYKAjkahc7ZpGqVUL1Tb9mEYqt7UtQoDcGAYo+NxePfu3Y8//bxYN9hY0fVhEFy5Mu37fjBIvcmZMQ4wMsa0jTIKKOEAWCk1HOYe8tJ1omlE38skzoaDzFq92ZRKGa1tWdZt29d16yyKwmSzKRgLqkr6cZUXsp4t5jwIqqoqiiLOUqFVWZZehquuy62tCcYgper7Pk29kxTNBykg6x2b/Cys616YRvrjfWtry2injQ2jwFqLCQyHg4tF4VWYwNHhYIgRVZ0KSNC1omtF0zQ7u1uL+aqpBUY0TfF0OplOp0+ePPX9ysu5G0IUkySKoyAEa9M4bsoqZAEBbKSyWoecZ1mW5oPRcGyNC4JISdMJcAgX62KYDwFIno8oCQbpKKA8j7PD7f2EBrcOj67tXfnq2+9SRKu6lQY1SiHChBBZEmvV1VUxnQysUxipkBNwJg4CrSwhjFDqEPiJEFwCtS6p9b55jzG9/+Ch0nB8evHp53cMQr22DkHV1J3oF6u50vr+gweUsbqtlsultoZxIvt+tVhUddH2HWNssVk/OT45OZv98Mcf/eCHH52cLr7//R9TGn/0yT0Wpqdnm6LpP/rkjk83oiCkYTRbzOM4Xa43XvijrsqrVw5Go1FVVZvNppMqy7KmaxdFoR0sVuv9/f31arY9Hv76X/r30iRs2zYIY2G07qWsa4IdOBUQbISs+vb+k9NGyKKttJYYY4YJQUh0L6R/vUnOutgkSTSfz6uqQQgTQpum8SHD9236XgohhARjjYcreDqARwifzy5OTk7y4aBrRV3XlPIkYdZqP1fs+369WVpr+77X0kZRdHBwEIcoy6JyU0Q8iJPQKt22LUJoOBhkWTbI6Ww2C0NujLJWj0Yj31jkHOqqBcBRTBEC5xDy9sNAHQCgf1f+8svzaI/Pc85Jo5U0QjmlDELEWpBSi8sxMVBCOGOe6EUpaA3mecOOXLLiAABj4gfWnrXlGQqYEs9Ds9b68DcajTBCIePIuc1qpYXijEkpy6ZVFpq+T/N0NBkMBgNCadsDITiKojAM+/5PqYD/ZDR8Ofa/nBtyzvd2dqMoKstKKaCUejfVQZ7mWaaUAkBlYZxDm7IqqrrrFGMQhkxrIYTgLOw6mefJt77xXt91ou0ePXySxhljgbMQxzE4bB0M8hHGOE0jayFNIkpp09QeQS2lbBrBOY2iBAATQgLOCYYkiYIgIIS0bT9btHEcb29vK3Wpje5lZgDgmdlTQznzLPHd3V0WBoQgz2OBZ6xvhJ3vyo9Go81mMxhklGLv29n3+uVD4vz83I+GmqahBJADj45O03h7O50vlw4wYTSKoovTM98EkF2vlG26dr1el6U1xpVlPZlMvEhiGMSU0tFo5MfZ3qbKUwyVNADQNI13CGsayTm3Bh49OQ6CaDieGAeiV2ez+e5uPJst/sKv/EWGg53pfhLmbdF1ZU80uX1w851br/zat7/zxrXr33r3vb/0q7969crhYrbCmGmLlTFt03NKsjQxWrRdMxoNRsPMaWFE17cCg+3axvOZMMbPx+vP53Fe4KttWw8wAkSkcien50VR1XUZRcFyuSirTZJGD768f3L6dLFYlHWxWMzW62UvaqU7SvFsdn5ydrxYrX77d773xd0vq1Zuyqao2qLuyroHhM4vFoSR49N51ckv7n559eq19Xq9tbXTd9ICdF3XS0EpdRa8LRHCBAjdFIV20PTiYraQyqzXayGEVioM2N7BwY2r1zCGvu9pFNTlRnWtEK1zNmI0idP5prj76HjdtEL1SknOWMBCP/14fm02m8FgwBjT1m3KYrlceT2VKIqsvVRtIIQEPKCEpykwRhDyUFNtjGnbrizL5VILIcIwjLNUCFHXHefcs6qGw6F1ummUc67vRRDQvu28tsj2zhTAGav6vvXrs61bIfokjiaTiTGqa1s/DQP/fJ4R3bIs63tJCThH0Yvg8G9hL/+biBwfwAghjBKCqWfxOgvWs/E8LtFY+xLJTUqwFtIsZQx53pcFp5QyzhoD2g+fHWgLPko+z0WCMPRrzPuplVWjjPRCXh4XobThQYgJVQZ6KTnnk8mk6RqMcZIg71hXbQpK4WVIwJ8eDeElZt7LVxREx8enn312Z29v+733Xh0MBk+enGqDKKWbzYZTrqThHJQyURTNZrO2gySJEHU8oBjjqqqDgE9GY6WUVsY5GOVDrc21o2sYIdFJC95VrqeUa62DAJxzIWdCgHPIGNM0TZqGBNPFYqGUogQGWZanKTinhPQjfIrBOk0Zdg7quk7T0KuZ+ujmPRM455QzTxC21oZhzBhjLPDGGgAQhYkPSR5k37Z1GHJCvMoQZNng+TMZj8ech6vV2hjHOWAMTdWEQRzFQRRFbaOMon6cHcfx3u5u33W3bt9AGKzVUnZJgqxxaZrXdd201XK5GgwmHkpJCImiiBNqlMIOrNJZmhbrzSAbaqmsNmkcOmPzLGvbfjLZytMsDqMo5AfT6VffeotofbR3eLBzgA3uym46mO4Mt/eGW197492vv/POq1cPA+Reu3nNSjEej0fj7ZOzhQWwgCmlTVUlYTQcDs/OzngQDbN8MhqOR9n+bjbMeBIxZwA9w2f5xw7PnMle3irPlccQIm0n2lav12vGaJYOlDSTyfj8/FwIUdZt3bV+hyyXy7Ozsy8fP3n89OTzLx5qB+uiqqo6ywZFWTsAwMgYp5RR2joAbWC5LtabOozjstwMR3ld11JKKXVZ1mEcNV1/MZ/5TVI29Wq9xoQ1Xd/2IgqC1Wo1GI57oT7+8OPRZCvLMqWU1EK2TRZwrXupeiVkEEQXRbmu+3VVY0ocGAIIWWeU5PRFOJxMpmVZ7+0etk1/drrqWhGFiU/Tnsu0bG1t+VR6Oh1HUQiXUDhDCN2U9dOnJwcHGQ+jsizbtk3yzAcvT4H39iPTqZ9TQ5YOgiDwVplN0wwGA+eMEhIAkjCyFjabjTcImozHbdvl+dA51HWdr6YBIE7CPE+FkINhAGCcJc5SAA3wJ3w1/5Ro+CwIvvi/cdY4DQAWrHPOXgKwwVprwY+VESHEYSSNkVJjBMYCIcyAM8Zoa54BGK3PVZ29xG8jBIyxTl5CO+I4FkoiSrSzWZbNlovTi3NhRJrFURQBwdJoqe1wOOYMYYyWy6WXBCYYM0LzNFNKFUUxHEYva3T91Gj4pwridq2yBibTbDweStn/0R/90Bp0erJcLFZloSjhRtkoisGhgIfWQJwElDMAi5BJksRqxzCbn188ffq0bdthPhBCLS4WTd3duHozYFwKI4W9uJhjjIVQScKF6BwYhKBrhTGu60SSJErLxaJnjDCMAkbikIuuB2etNgThOKZnZ6fr9ZwHgAk45/ygY3t7t+laY4w3dfRz6vl87vXUvGABxrTrRJYljLH9/X2l9MXFBSHk4mLlE3VrbRjy9qXG+fbuPmDsMAriYHtnZK3tOjEejSjhm02BgEgByuimazHGXpxia2uLUOil2NqeJEnUNDIIgrbtptOptXZ2sRwOhz6IeJnC4XB4eHi4nC8YY3k+jKKoLEsA2NnZEULt7Oxc3T08mO6FmBNpJnH2ra98lVv37muv/oVf+9XZ6UlTFLvbW9PhMI+if++73/25975y68ZRmkWUwGQyRBhW64Il8ZcnZ57AAAB931ttsjTXxraXaMfR9atX3nzt+q2bR7euHVIAiqnW1os7eY0mD5VAiHhCEQD4f72oJcbYGOha3Tb69HQtpZ3PCgSBNRQcqytxcb48P1uURVtsGtHDYt5EUSB6FwShEGY2X3rTH2MMRlDXtXMIExbFadebz7+4f/X6bc+MeCZeWVEe9r2M0yyO4070Z+fnxjgahHXXzpeL0/MLZ1UURULqxaZ8/8cf7uztZVmWBLwTrdEiClgvul52XSd6bU6Wi0XRnM7mNKAYg1IKLJJS1nX1fDG8+/Y7s9l8tVpfuXK1acAYx3nYtaLrOsawF9pAQNq636zWcRhxyjhlBOGQB1mSch5WDUwn2z5VNEYRgobjmFNmlA447duuqbokisfDYchxWZZRFF3ZPxiNRqvFinHS9z2hyBizmK84J74oLorCOYMxUMqUNM6h8WgahiEhyAsl8AAdXhtQbh2A84L3CBAQ+OnX80HKc0en5+hrY4y11jmDMSbUw1kQIYhzEgSMc0opphQRjhAhfkhgLfT9T0QlRBHyLuSYIATGgVdYQBjHcey7apfiC1F4MZ9Vdc2DgHFe1sVq0/TCWEAefRHHsdYSnMvTDDkY5gNjHCN0MpmAsf5U+LdEQ3hWM75cFU6n26PRCAAePnpQVpv9/a3ZRRvw+PxsE0VECBWGcd8J79+WZElVibbvs2GmnSfDmdFgkOe550tdvX4jDOJi0xargmHmtOu6rq5BKW2t8x5sgKwQPWO4rmv/dzdNgzEeDjHnXCshupYxFjI2HA4wIKWE1SbLI2P1M7MBg5Cr6/4STATgnMuybDQa1W3jgX7GmL6T/ixFCGFMBoNBng/rug4jbq0dDGKveAHIPpei89dsNru4mCOEqkpcu3bUdU2WJZ6NAAAIkbqRQrjRaNT1TVmWhJBPPvkoioPRaND3re8JlGVJKcEYBzzyyG0fSjypZrFYdE2bpul6vX7zzTd9KBwOh157MQzDW1dvHOzsbuejPIxvHx39+T/3yxFC/+O/+3e/+Pzjvq2//rWvNFX53Z//+b/xV//KL3zjGyGGZBBjbK8c7rdd/cW9ex9+9slgMv3hRx8jIIvFYrNeR0HsZ51pmkopnXGb1bqpN/fvfW5tr2THKFijL2Vf7SWX4Pk+Qd5sF0ArhZ7FREppwANtwDlMMKlr0ffGWdw0cr2pu05J4ZQCrZ3o7WQ8yfKcEJKmYV33AIAc+K60/z0YY0DIWujalnKmDCAgk9GobZu2q+M4Xm7WRVFQFnjwedu2nrcjhNgUpXOuKIrZ2flgMLj74MGyqFtpbt5+1QvoA0HOatG1Zbnx+jdS6qdnM8C07Xrv4eWRVePh8OXt9OTx8WuvvvH40TwKsygm1oLHxPmU2Xdajo+PfUrotQbIs4jQtm2xqTzLQAjRdtIY8/Tp462tCWPMD5GfPDkejfKmaU5PT69duxYFgbdR9pBnTw/1VPeuuxTBvLi4CMOQc84YTpPcUwaVUuv1WmnXdZ11Jsvp3kEcROBTvWcB799VzeElaJ6HYYO7xPRdQq79MWmMMc76WOnB2FobpbTWOggIQhAEHMCPpB28xP8zBrS+bFL73OXp06d+MXiKqtQqSuKu687OzpxznEMnwDjbNb3oeuTAExwwxlVV7e/vt217fHx89epVz5X8d4mGDBiEAAS/mEAjUR7tZv3GjNIhcmANiRIgjIwmWZIPDDIGGRaSXnSDYZ4mcZCigJEQhYymlmU9Yqer1WQ8dlF6crESXc8ojjJ6cH3vbHkSD8PpbnJwFDlnpZRXrx0G4aUobpSG2tjNqjQaKYcwZ3u7k5gooKyRMkpybZFW1jiLGYQJZmFWdxIxAAyDQRZF0XA0enp8QQ01ymaDoVJqdn4xzgZt33VKhGF4fj6jmBFEm7oMOCEWr87XOIRVsSKcFUWLMSeUt12XD9OqfFEcffnwGHHAxGALDOFBkiMIdvf3T09P+14GPOobaDs6GE4IJ0ojA0w6QxDsDfdAOae7gPWg+1E66AvLUYCN4yxmNGCMediaN7oM4/hwd7+vq9s3r1PEQVFR6l/82s9f29r72bfeuXn9cFUv96/sffvr38qAvHnr8N33rq/mpz/71hvfefe9rxzd+LWf+8433353wIPdfMgMm5/dJ7i9WIjfef/ReWPW1QZpIYy9c+/LdDD0TngRDxhQZolBgBgTFqMgu/vl6dliozREceasNLp/pnJsAFvAFrBzgLV18IxL4JRiCKyUrRIGQIPVzhgAA1C2wiAMGDz7AADAQltXHLW7YzpNqFU9wuAQMc7LoYADwARbaylBlDgASxAGgB99+HGUxqPR6JILgakxRgjVd/LJ8elssbKY9tIs1yWhvKya2XwOBHddtymK1WY93doK4mRv/0hbnDPbOlwox7SI+hIh9NHj44dF5WxPkA1ooLVWVuTT1GEI6Yuo8fTsbDqd5gPa1Osr25N8SMIIBSEjmBmNGY2auus6tTUZ3L55jWHcdnUQMmMVQlDWZa0Wr9/YO73YtAohBTduXtXM6l4nGafc7exsD4eZtUYoSTk3zjlqNtWq7irRK4TBWIR5FKQDCWAJrtreAYqiwGgJykzTCSineqGU6GTpiA1DUq5qDNE0HxazYncaIaQBBHIMHAZ4UQD9icu9yA2xA6SMU+aSq+wcWIAgoNoaSjnnIWEBQsiL3fa9BkyUsV1vCY2BgNDSYQSO8IC2rUQIcY4xYtY+I7cYQA5xDE1dWS0ddpVSmlGgLIsTK8Ti/OTK7v4gzfquwchZowJOBikq1+XFYrUqtFSGUK611kZmcZwl0WzdtKpVyjnNxqMX4HOvXowxdc4Zo7xgAwawlGJA4ACi+IVgEQGHndvbGmNrBkkScr69FS3mRb2uuEVv3nxlmg72RlOrbVXXQRIPKNmOs3615kIn4Finro7GA4x121KAg51d0Or6lSPRCbDO9JJTxggPgnB2sXj08EkSZ1XdxUmqtczTII3DiDPZdgFC2+OJ04Y61BY1Ne7a3kFM2CTLJukgixPdNwGGYRoqKZ3Vw0GWJhEGWC03jHCwjhEa8UBKmYVxudr0fb+7u00o9dKBw+HwyemTqm3AerVE4IQghKbjrapqnEMGXjDztDZ5ls0X3XA40KZzTi2XK3/gUIpW6+Lq9Unf6uMnT02v0zjJ4mx3sjNMBqpXBNEsy8aj6Wg0zPMh5zzLsjjlDx8+nE6nqhde0XpnZ4cQMplMbhxd3d/a2R5PR3n29uuvHz9+dLC3uz2ZXj3YHUTRZnbx7huvHR3sreezX/72z188erSVjq9s73/9nfe+8u570+k4GGU4oCRm69V8MBjNl9W/+v77P/7gw8l42jXNZrV4+vTEJw7W2rZt27ZN05gQpI1inHpuorejHY2GBDmrPbkcCAaMwKshg/eOcgY5yzDhBHuuAkKAESboUk8Po+ftRUQpAa8HhXDAyf7eZDwZeUSYc3C5yZ51bzAhz6TJtNbakwoowW1TgbFfefe99WLpra+6rquapqjKJEl8tS606pVcr9eec00IWW3WNOBBlBxevfb++++HSZxnQ2Fp0zRdtcYYhCXzWvzghx9ZpTdlyYPAV4UYYy8yMtneeilQ2I8//vjNN97ue+Gcq0qTpjmjwWq16Xvdtu1qJQaDBCG0s7Njrc3z3CeM/jlgTOu6rapWSk0pAICUsqw2WZaJXiGEwjCs68Zr8y2XyyhKPElfa73ZwGazEUI4h7Is883K507cTdfyKG672hOoESIBj5I4FcKs14VziBAymYwoBYwvh6h/Ni3lubTBs+EvJuSyx8cY9p45vrx4piSIvBmAZ50CgOeDeYaJcV4DAozvHFqLMVCKMfG/xWGMOeecBZyH1tqTk5OQBwCwWq2kUsPhkBASBJFzbjAYTSYTa10QIEp9vmr9k4nC5Pr1G5TSsurazp2enANi1rx0n8/G6JeFjnvGU9ZKgQEDsCo2z1/83iu3x2Gwnaau7/ZGA2bU/mT8+vWdX/ja157cWYZC//lv/dyb127kAXdWA3YCaZTy45VsQPKMRUNSilJz15frPGT1Zj0aDHd2dh7cvVcX1Xq5jh2bRvmAJSkJq2UF0o7jTJadtK5VIkpiKeXWcICMvrK9Db2Khpkh4DhZNhuWhSyNatULraaDJOYkDQOKwdP7mqaZTEcWoSAIGaGX2CWrkjQaZAlCzpcn1lt6e2cG7JxznPNqUziLhumw70WxaZuy294ZP38mTQe7u1c8krbrC0QdoXD69CxJcgBkHRweTrSGkEdKKU54Gmerxdppxwg/PLwaBTHFdH/3YDLeOju70NZdOTqSXW+19vOc9XKVp5mzOmIsC6JvfvXrCWWvXb9+8+jondde356M337z1WEWpwzf3Nu9fXhlexBzpG8e7R8/uD8ZjN+4/WqepD/z9a+X1QY463QrbB8w2rTq07uP/uD9HwsDbaeautssZsvlOuARJdwLW1R1CcgBclL21jlCyHA4zvOcEe59YhEAA2AYU4QpQsQBBWAIAgACQMExgjkjGDmPpMXeYtcBdkAACMI+HBrjwGHvVeacG47yOI6jKAiDmBJ6uTzRC/6DtT8hsQcAGDlOaV1WW5PR9va0rsui3ARR2HRt2dTnswtMSRhHTdcSQiyCVvQ8CqMw0dru7R3kw8G6qD7/4t7T41OpzbJxWtu+WSndbbT5vR/feXi2MEpTzjycOAiCoqqXq5WPyM8XA8a4LEtr7XQ67XuRJEwpXZb1YtFuTadKmTAEhC6Zlz4cKKXCIB4OR4PBoGtlU/dKQd9JT4X01FJrLnWYvFiJjyAeukgpk1KGEU8zWK/XXdf7VxLMjNKMUkJImqYA2BgDBLwvlexVXVRSWqGAEIoRtdbmg4QHP9EZ+zNC4ctf+nrWfzTaeV8nhxCSWnk+hTWX3/QzEIwo5xQAPIDMWfBSx4QAQpiwIM9TxphSVijjwCKMEQFrtac5CCHOz8+1kVEcxGliraUMe1ao96JI03Q0GmRZpk2/uxMzRglBfd/78/WDDz6KoiAI8I8++FhK03f6pfuCZ5jzlzDXjAKABYIsEMRfyLe9eXjlvRvX/8qv/urXX7m1nybbYRBpeWWQ/+Xvfvff/8U3BuC+8dqrsVE3drfzkCvZb+3vPDk/1RQMxa0ULGSOgrCOBuSVN141yPE0fnj8pJF6OBm/8torq83GYrRpKsfpeHeKQ86SaLA1GTo6xrHe1FkUV0J0nDysNnUe9G03TBNnlO77pii6srJKOm0Ywt48M4rCIIwB8HJRBCTQDoSSzkHbthZb7Wxdl4Ms9Y711kLTNNvb21XZEEK2t7cppWmUSimzNH3llVdnZ7MoCLW2UfTCddAoGI+mBOPVem2MyfP89o3rx8fzLJ30jZ2OmbXSGEjz7ObN28t1UZZVHCVJkoVhbKRimIpWDLNhEqXW2q5vL2bnt2/fZoxFQTgdjtu63pmMRVNPhoPXbtwaxvHeeLw/GWMl/sKv/NL+9uT127dTTgcR//qbr+UMR4zsTEam75m1e/sHh9eucc4HwwFxrp+dppwUyzkP6P2HJ//8d79fdFJbs5gtrXbj8bDYlF4S3GcWfd9XVUUppZwJIfpeDgYjSjkhpK5rY03MwpCFHDHqEHWIAaIYU0woQADAMcJgwdjnEzlsDTjwNTFBmOJLjpezCGEcBAHCjnHqOS2McE9fRS8uAABnLVymJNg7czKKMbi9na3pePjwwZdXj44wxl3Xbe3uSCmNtTyMN2WNgAwH46Ksv3z42JMlOtEfn51+81vfaptuvSk+v3Ovavooy47Py76TTbGK0uj+2eJ3P/icRAOK8WKxqNvGR7EoCjDG2pj+Jfiu7+5//PHH21u7Ozs7O1vbcZQuFtVwFDddHwZREPCqqD2lys+stLK++dW1om2scyjgTCkjhKGUemOJvhfj8aTvxWZTDAaDLMsQQtPpVEoFAN42ZzRK/KhKCLleb8bjcd/bKIoCzimlw+FQKi2EcGAo5RhRa7HRTilwlnAe9X2PiUUYAAFGlypWP+1yL4jGAAAOnPEYaQDnwGH0TJPGeqxMJ4UFbAEQIVJraTSiDFGipHOAjLOXxxvGDl0OnQGsN5py4CGQ1hijrI2SOEkSBNa7BgZBEASB04YA6nuZZZnXkcvzvG0bgiHPE3BKyb5tOw9EaZqGMqAMO3jhrne5PrGPhj+h/I8vX6CdA/SyGuKf//a3f/Wb3zwaDf5X/+A/+5/87f/417/z7f/87/6dX/v6V7dC+j/7u3/7L3/n5zOn//1f/PaVYXJ7b4eL/mY+2aLpja1hLPHhYDRAJEXB7nC7N0KBdoycLmcn52eHR/uUEim69775VRyxTdvyQbCs1tEwMtT1Tka7ExsxTdHu7i6yLkZ8fTwrT9eTOMl5tHp6dmNvXxYN1yZFLAEahcl4ukVYRFmEEB0Np1kYMUSQgzxKkLZOG4SxpbjsGm1NGPEoipIojsMoCIKqqjihdbGJeEQpZYQzyhnhm3WZJEkcJpy9nF3D/fsPruwfeJR1lg62pjtSQFvqroVBOqjLTRDCutgsV6vRaDSajKVWt2+/kueD3d1dxhjBmCB8tH+wNRpvDcec0LPT44SH77799mI2z+OUIfyVN97enUx2xtPXbt169fr1o93dX/nFXzjc2T7a2yFG5Vk0jKO9ySQgmFGcZANK+ZWDq/nONBsNEcUQMGSkqApqnev7jz7++J//9r9eFjJM08nWVtO0hLBeyc1ms7W1tdlspJRN03Rd53d+kiRaa2OhbURXCa2NUTaLY04ZxYQg7ElYlBAKiDjLCI44Y5Q4Y5QyYAEjQAAEEAGgCBhGhD4Pb87ne1L21kIcRm1Vn5ycnJ+f13VjjEMIuUtctzcbf9nTEQGAMTaJwu3x4JXbN58eP14u5376lOe5RSC0AsCTyZa1UFVN03RCqDhK4yjdlNWt269+9MmnyWC4WG+EsQ4TY/H5Yj1brrUDadAfvP+hcAyFsTKm6lrM6KYqT0/PAEAptanKKH3ReGKMUEqLws7m57u7u5QyYwwlYIzbrOtnHmrZ1tbWcrnsuk4Kn+6xqmyWy2UQIEKIHzppDZ6l51sTg8FACFFVvb81D/8SvYqiKI5jXwmmaerNuKXQlHJnQAnJGGnblocxplwZ5fe/c0AxQwhTCtJoggMhBMYuSeHy+PkzB8ovPf7noGvAGPDLGESMPJ4G08tP2BjrCzWpnJSya3vAl4JMAGDcJd1ASrleb5TSQYCiAGOMLiH9nLVNTwlfLBZSylGeIeSqqhJaLRYLAMjjFBx2FrVta5yW2qQJl6LzOO0oCvumPT8/HwwGSom202+//VYYBvilG/X/f94SfXYfBDgNMCMYQOsXEh1GitdfeeXVo0MiuxElP//um1cGya9946tvXtvfHwY//7XX37i288a1nb/31359JySJaqdxeP1g763XXv+5b35znGdbW5Pt7emyqqbTaV3Xx8fHTx49Ub1dnV+YqqadiBfl/+DX/sL/5r//926w9FuH198abP/K7TfCs6Vqi4ja7TROkONCiGVBpTnc3j1ez49ev91h3YC0AQrG+fXXXzEh9X4Ino2Ajc148Nat27f3rlzd2Xnrxu1RECWUt3VnreUsdAZCHmCEAspG+VC0/SgfjIejYr3JkhQ5iOMYrPnggx9Zo4wS0+m4KtfPn8nVw/Dhg1OnzSuvXOk707bdarXKsuDJkycYASGMEcoZUp2ghFipGODt8QRbyML4yZNHgyx7+823kiAmDr7+3ld3JuO+LiaD4fnZ2WQweuu11wdhXC833/35nzt++OU7b71NMfnaV96dDrPl6fHbr97aG4+3BwMvdn798EoSRk3bR4OcJYPhdI8FXFttjAHd18UGGaPbdpTm66Y7vihWRU8YO3v6aJKPq7KnYRLF4dHRkT9yfSj0lCmtNWAc8Hi5KLpWKunCMI6iyEthIoQwooR4wIbzT963h5wFB4AAKALiu0vYi3teMhaccw4spRTAYuSyOLh+/fr29m4cxKLX1gDG5Pl5fAltu/TcwABgtAYA5ODK/m4SR23bhiF/8uSJc5dI0ogHTdnIrrdKe0rSZrUeD0fecTRJsvl8wYLo4cPHs/nyytHV49PZw6fHUrXrqs6n+7/9r9//8NM7e3t7zplFsfZYiCzzGEDRScECTvmLKQpjbGd3iwewXC6bpt7e3mqqWhmYz7rhMDfOyr7b3dtyznr2ui+60zT1Hhv5IDVGKS3CkDN2WR0zxtqmb5seHI4i6hWVCCH+0DLa+c4jYyyKIoJ9JNWr1SqOqaefNk1T1zVh1COuQx5QhC+zJIqMUQDYWMMDvL098vBA92dkhj8BNnQAgAARQjhn3m9Oa22c84mq/6QII8ZZ4zwgERhH1jl1OT624PMxa/0oWWtNCEaEOOeMdtY6cAghghByCFdV1bZtnsSEELDOP6KiKMDhJEmOj48ZY0LKzWaTpIwQ5MvzOIgDEty8eevi4qLruu2tNAqAEJKmmRQvV8ruOez8+T1Sa0E5hawl8IJsAABxkpzPzjhlO9vjulyOs3B3MtCdLNqi7ZpN0w2znFH66sHW//p/+j/6b/6f/3DZ2aOr+3ePT7+487k1klDXy0QhtpNHV69cBQOhxQCAtXr75o1Xr159a//wrW99E7T5T3/tL77//vtZkt66eQP9p39/UayPnzymnKRb2//D/+J/8XBt451sXi4jh+5+9ulrt25qafJX4+l0+tlnn331jbe/vH9nPd8gxndG22utMoJ/5p13qLXOuVcOr/Vb+xfl+ns/+j6lgbUmYHyzXAVBdHY6D/jqypUrgzxfzubaSISQEGo8GJIxefjwUZJEFuz2dLiYP37+TCh2WULBGeSk1mg+n3HOszw8flpMhknAeDZIDyq6M6au7V55663RcPpJMQ8R3tree3Dy+aeffvo3f+Nv/uHv/9Hrt155cO/uZGt889pVo/TOeHr/83u/9O3vXJyereaLpij+/t/+O8ro3clOU86OrhzMz2bT0bAo1shpyoi1dv/K1bqqNaYsHhjjQCsKqJeKYyRWyyBgs8V8OMg6LR8+OdlUfZZPjBJxTI1UbadaZV65sl1WG0KRl/baFGVTtwRTloaUcCFU2whrMSEeWGMuz050uSUAOz+PA4KVtkpp6y31EHYOkGcrIAsOAYB1vuRFCPkNCc7BcDiMoshxmiSDolgb47XNKSbEGk/jtz+pQIwRclkaXD28Mhpmp+cnmBK/RX3Dt+97pVTAuJZ+89MgCNq6vn/3LmPs7v17X33vK1VVz5erV157vaiqLx89ipJEilrZybLW//qPPsyzUUCR0kJopa2py/LVV16hFC/XizCJfC/y+V9TluV4NEpTHEXhpljdvHG72939+LOL0YRbZEPG1ktLkPOMe98WZIy3Tb9YFGHMCQVjpdbA4wCMJIT4Bq63hWKMRdF0sZwBRn7nS2GLokDYTadTSul6vQ4DpNRlAZhEMSckZJxSWrdNGGSbzSYKeZ7nlIUAVvRmkNFOtN6NwIEaTwaMr2XvLrPwnxIS0U+qQzt4UThbB0pZzpE2lrFLYXaMqHWaMUop07oPg1gIQcBaC1prxgLnwFeshDBldMhDZaRSoMwl1kBbwNIEGIdhfPPWlc5UZ2cnotPj6QgYinCU5cPZbNa2NsucksoBxHFAgASMi1ZYA8Ypb26MMc3ycDoafvHZnTzdE+pPKFD8ybYpBYSQQ+AAA0rCF/5wBsPu/l7XtG1fc06berNuO4aoAYWtigNc1wvRmygb7F65+vf/5t+4e+cxH0w7Evy3//Q39/cmm3JTtP2PPr5DFbx1/XZX992iGOTZ3/orf/VwPNjf3QciZ+ePh9MtkvFv/8U/N39yXKt6lOZHV6/tXR0162K4d/Rf/R//9//v3/xnJOAX8/Ot4XSQ56PB8OrVq33TTqfb3xv83tMnJ9d/8Rc+/uTTdV0Sq7DsRyH71rtvL85OV5v2cDK9/fXbi7Z6fHHaIXtyfJzkIYlgdrHCGELOkyhKknhhdFl1Z2cXXdeNb9y8du3a2dmZRdC0LSE4il5o2CRxSAlt23o8CsMwWhXzfBA7bOIE0iyME57n6d6YJ2E/SkZv3HoFAPO33t4eTxiK4yTURiktrh9dZRR/8+s/c3z6+Ge+8hXrsFH6048/vjg7uLK3f7SzFzC2s7W9vbVNOEnTNOIHYGxdbkY7O6oqtw+u2KZyWkdJRkaTXtmAR8og03QhJYv5xXQyWgqx3KzLplwsFj/48Y8tihgPO1E7JetajidDHidRFPzoRz+y1pZlOd6aXszmTdOFYRxgzBg9O73wvmgBCxBGWlvACFkAQD7J8763fg8LJbUDDEAwgctmHzbO9w0dgLMIDAKHHMLEGYMQBAHNB1nbthgsIcQ51DSdVFaDxoRg7LcdeMyDdRaQF3DTN27cmEwmW+OsktXFxUWURD4artfr5XwR8gBjegkL165vemOM1mYwyH3w/f77P/jrv/Eb6+WyqurDw8Pf/Cf/LE+RsYfvf/CZw8E7b716MSuaapMNs1b0votflmXf9w6DcVaZn6BtCCGOjo4cmM1m/eTpo+3dg8EA8jwvyxKs2tmJnXOLxSIMwzRNDThCyGazEAL2DiZ9v/CcXIScVOCcU0p1rXAO+clsEARKWWttFEUIISmdlNITvdI0ffToEZ+GRdE4B1kWaq05j7xbpAMCGD0npLad7FuJMUwmkyjmHhjf9x3nObq0//iz+obPJy3PX6aNBWcxJggZP/Nx4DDG/sj0sTIMQ4TQpQK2MRgjjJ2XPgQATwmx4IxxZd0yihllCFujrLFOKY0BZA+DbXDOPX78uGshCsHjsVnAkjiu63o8TgAcw5RxYsFQoISwKAwklkEQfvDBhzduXEcILeaz119/9eMPj8mu4PxFfHtOGXx5TESJRRYwdqbH1ugXsKPRYKLWle0FJY4GLhpkEOWIxHm70FIo2cY8XplS9ZXsyraTb731xmZTZsPBu//z/8w0tTLaGD2bzRKIbEyT7XES/C0oJViiOVmInkIzGo2YAQvWSJ1sbTlpCaaNYsn0esCLttc33nznP3/19WK+2BSryWAKAGmWAWemq40Rf+8/+Q+E7J48evwfvvdOK7tP79753vI0dK2FLp8O3n3tyrWrB5zZ195665Mfv/qjjz5+8+2vKQfhMPje/PddwLIkYQ4iRLM4GQ2HTCgzgC8++CSwbJxMDg8PP/zwQ9bjPJw+fyZf+erPfP7pZ9iyyeCw785uHF5brktGg53h4NUbV/MoOdjZfm0XiaYepvGAqkESkxpvx0yoPo/T/YP93/q93/7VX/ylQR7sT7agKy8uzr77zW83TffNV17r2+473/r27/7uv9zZmVpRx8O0lW2IAjaItw8sKAXc0YgppV2SA2WqlYlGocUOGZcxW3dGdaabr89X5XrdafvFefWv3v9kU7t8mNRCasVoEMSsv3V764ffv9sKUAaMskHINpvVzu72F/ceBmk8dPuLxVzU0io8zPK+78Eg6hCiBGPcNA0lBGPieeuY4kp2CIBh5G3JAPwOtzHJK1kncSqUVKCN0dYCWAMIwMH2YDiNIy3FbLawmIheb5QCBAGlzhgvxNJJ5UBTAO0wMO5UFwB8+93bR4f7H3/ymTPGt8+llIvFAiGnjOZhIKU0DrJBfnp8qp0lBEJGhKxuXHv94vRse7r17lvv/Nf/9X/TKX379b0k254tnzqDv3/vx9/+2s+ibPRHJ0/Go0lXrmpV0iiYbRaWQZBGzjmMcV2+gOITjPOMCyH6TlpkHzx+lAyG3/rGux9++NEwDeuie/dnvjWfz1dFsRtFFgFGeLFYNE07HHIMKM73jo+fJFHAGZ6Mo8EkePi4d9oxgpQQBKHayHyYBkFwdn4upB4MiTYCS+eMRQ6cgdEwc1adnK2SNACn44QbjUSjpzvjTVmA0XWvtiZXyuX67Ay+/vVtTNzx2fF7b25tbw+KTb+7M55uw/lTBS63SP7byMpe9gY8BEYjxMBaCwiDMYAsKGk4ZZS6rhFhGCCHjbGUsK7rjHMAYBzqJVCrEWZKqYBTrTWl2BrrnLNOoWdwbutAORzFrOnF2flJEATbe5PlYmMNJgpV60XEgzhOyq4Jw8CCoSQAQMb02mkAy2PKA8RjrJykmAdBMJs/fe32e8cXH4ymLxCE5UYDBJ6ZxnnoHNJaUgDrADACixCyL9qM3exxmIYoBIczZzjXOgwFdAtF06buy6IJA0II6ZWsqnUQxV1XZHlIwsD1Qlsahgkwcj0c1ERFvSUdAt2rjNJByA2drk2Fc4eI1sZoi4gJKbVOOtEljoAWoVFCNFK1CLk85YPxgemklLJYz/zw0TljrLLWvnbwtkPOgPvK7Z/5K7/81x49esIq8ubtV07S48lka1NUYOBr737lYG//2rVry/UqdfavfvUbT07POA8SHiKEWMA+vvPZ5MoeZfzpW2+dnJ2/e/M9zsMJoxjjQcwBVv6ZREJ95533ys3q6uFRt1zs7u3Ng7BrxeErtxMeJkH41q2bF2fnfJBujXOn5SSNqoCOkphwtp9nZjK21q7Pz9Obr+yMRtE77zTNza3pDmOB97TCGP/Gb/zGvftfTCaTviriUe5Wa9GKbHurP7sw2hIgAEAxwYSSEINFxhmwmIVcSlOVtQXWdnI2X9edAalEsXp1L7392q0fffL5eddzHl29env/4PD/8fjk6u2vhWHYGwMAXdcRxgeDvNhUWVJ0rQBMeMgBo+fVqNHOgMnipG872Ume0zzN5ov5ZZGFACwgAIyBUOqck6jPh2lZt8ZZaSxn3FrJKMOUGNEXRXFBqVR91wpHmHUIYcwI1VIigLfeeGNTFifnZ9Y5Yxzj3CJnwf76X/7lr7z37snZsaNYtEJK0bcdxniQ5+fnp5xcMr6ttX2/9uIlGOxwmCdJMh4P//j7P/hb/9F/r67ri8WFxWy1WQ3H48XiSS/kydMl/wZfluX8YnZltN30DXKgpdrf3RuO8j/8wz/wAg1goX4mhZ4kcVVVZdEzxo3tR6PxarU62Nvf2dm+d+/i5rXtOI4///z+YBwjhLydTtM0YRgIoQgh2XCo9ZM0Tatq+eYbrytp5qtme7pnVFdVVZIkhBOp1Wy23NvfmU7HCMxiURxd2fXu2+Px0HtRxUmYJEnXVgCYMUYpXy03YRIsFz0C7I00bt6MptPp6dlT62QYRAihvu8Gg8FgEJ0+7hwYhP9dK+XnX1rnrAPsk0EHxhiDMLLIq4WaZ9w2hy77zRicc9ZPyRCAtZdiDQYAWUcoYEycdc44AIcQqlqRjCOPu0zTdHaxXFXt4dG2bFVRV4SQkAeEEEpIVVSUsvEo7/t+NttcvbrXtnI4HC8Xa4RwzKJNscii3dFwUjXL5zeCCQBo58wzIowGAGoBAFntwBkA+yJpxJNXtSnK2f0ULwiQtlNBEjZ9pcQsDkMEQVmW1iBGE6e4o5FAGxZMndOIp0ES6kaIVckx5mGvWSgN1qKFruEbi4AZy7I8MZ0ArQKKPegWGw3aqLbwmgtZltAw6EUrOgsYxWHkrEySECNaVTVCNOFx13XOdm3fAXJVKbIsef3G7nK5VM1iezhWQg2TgVPmtVu337h1w2lxkAcgBI/Cg+2h1ppjhhCSVuXxmzSMrHWv7e/NlivKAkIIffWmEKLX+l8+/kf+mbyzv3fzxo17d77Y39mZ/vy3CGHtUW+Ni4JACbk73RowGoySkFEwEmO7lYXB1f1W9BGm10cj3HaHR9cA0FaS5kGQTqcnSiZRNB6Pq00xmk6UUiQMX3vvvfnTpwjpcLbupxyfLIAxerhl753DlQntAQGx0iJAxhgHYLRmhoVR/PDBl8NBJqRxiFfFxWcff7KbRX/hW2/sX7m6m8I/+53fy7am3/7WV//VD360LmE4HG6KFUJIKSWEChBlNChVV5ed6AQCwnmolUGYOGsQpmmeVsVGCR2H4c7W1mK92FSlBkccYADse4kAlFCEsTJagNlsSocAHARBIIUIGWeMvffeO4v5xezktO5aay0Ow6oTlZIAEHDagxrkg/Pz814KrS0miFBujSFYcYC3X39ltVoUVdUIYa1Jopgg7OVeHjy4l2/v+OEJY6woKkJI3/da9kHAOGVPHz0+uLL39ttv//jHP66aejTdfXp6ooy0zj09P004FEVxtqqc1FVXG6dDxjGGXrRSBlEU+fZfnufwbKimteZBYG3nnxWj9OL8NGD8xo0bq9X6fD5LHz6cTgdBHGRZenJyUpZlluUY0Tyni8WsEh3ncHq6fPPNK3fufTkcpoyitu8CApRSqXXIMEKobcEakyRJUxdhyDabjSe27+/sOOecUYyRvu8YY00nBvl0sXp0/fp1B0r0MJkkhJCTk9PRKPe8eweubVujnRR6OBzu7m3f/eyx1oAxmJ8OPfwTkMNn37w8/BBCFjkCYJxFgChjXqgFI0DkshQnhFDk24XWeq0Hr/D67K0wxghhAGPBIQfOuTigABDwSLimKApjjGd/e0hWPhjbBpqu8sJfURSDw10rMIayrJMkoYR3rVyvSx1Ar+0gE2kyVPZFNOScOLCAvGbEpREg9QQBcBoAwL2YorTzf8VoTlkeDAYAKizWVOFM58dlZ3qZxdHuiLWirtuirleEDmUfY8SJRjgwlArRtdholqRKR4T3EKgoYtCPbWuMq8OwFj03xgU8AsacVcYo47CUfZYQFmcgpe77siooZ2EYNF232JTD4ZA466wYpLHoe9lVMeeWaaW6PE9t283Xx1mWRRkSbhPYQPSCh7SqSi17bES9vpgOsw3qzs/OgzgSQlBHjDHzzerg6NDVvRKChPGN/Z3zs4uAckZRjIh4yTTyvZtXm6Z8+9bVrmmvjXIWBqvlhodByAMtZRzSAFSSBZTiru0Rdk7VwyxEYHamg6+9dutwa3r15m0WJM2mEk09GA2vXzvse9tUZT7ItewxQqKug9EoTXJstOXYLTbBMO2qIkK5m45UqxDioI2QimCKEGJh4IwGrZVox5OhZ9Raq7t6/crh9PrVa1f3Bs51t/by05t7P/sLv7x9/dX/8v/wfxoMwt3d3S/ufk7gkhOKEOn7bjScamU8QA8QEkpeOhARVFUVpZwgh8D1UvZCSGc4I8RYhLw9rtPWAkbGWaVMD5hQDgQbKa1DlFCj5LWDg1GWMmedVFVV1V0rbd8pDYApuDiMsiQNKHt6fpJlaRQFCGOLg67aUAN/7dd/5Y1Xb/zW7/yLk8ViUzUU4zAMgyAQfY8xRoj4gc9yObfWyr7DGHOK4zClmGiti+Xi7/69vzNbzD/9/DOhzPbuzvliNV+tKMMa3Gu3Xi2KqmraPE1RSAlHoOxkNKqLsinLpqwRgixO0ugFT3m5XOzsTnthwgB7+kQcx6dnx0mS3Lhx44MP7iw3yyTLpOpWq5V33M3z/KOPHuxsj0aj0dOLC23g6OokHw4ePzkOw3B378rp6azTYnd/vyxLhF3Ig9GoU0pxzuM4DcO4rdvXX3/9+3/wh6+99iplePPFMksj5wxlAUFksSpPjvXXvz55/OSBc76dumxbyDK9Wq0IIZiQ+WImhOh7WxSFz+sxYPPTVWxekmz4CZNhX2M+ew14lge2Loi48ohELxfoHCEYIUyIM8Yh5KwFB2AtEIIxpl4+8sWvAzAOsLGY0arqnBsyFoRhEoYNxc5ajegltFtKKfoeAOI4jKJouZo757a3xxcXK4RcGIZRzJdLINQljHfdam93Px1cff6LojhAl+nqi3ukzgHCBCFrMaCXRB8Xj7ujq4fp9oGuFiend0UziwhKg2Q8xovZRV9BGqdpMhxuTaQCqW2SxpyH2pm+3hhCAoYdiHYxixU2JJSEo8CFiUMDbFzUuyQrz2zfN72om8YCGg5G8SBDyJ1drELG0zhjaZozpqRExlELcT7RUhPQCLm2rTCGgOO2XVA2IJZ0Zcco3xruekwH4rzcNOPxuKiqNM6kQ2W5CplTfcGEOxgOeilSxhjgplEsywKtOqs5p21XV3VhLCipRW+NFNa9iIZW1WA6MJpgCVqbpouJihkD13GGRymv6yaJqAM52hlVbZ2lAWU8yxLC2fWDvZDT1ex8NNnOk4RSqlTPozCOMillNMxt22pjeMjEZhmGIbJ9R4G3DgLeV1UkHBomdNkorQKMqUMIIUcwMEadNVIjZJXqi2JtrQGrfuk731jPTk6fPFolaGdrGyH0y9/99u7hlX/4z36zWC6/8tWfBQDOuZZdEAQOkbqRzqLxaHs9WzuHCMF+YEIJdsYiRPI0EUIwggkh89VcOUUw9MrkjD6Php6qp6xVABRxo60zFhzRWoPVe1vjV27fODs56fu+E/2qKrVx0l5a1zJCR6NR0zSz5WI8HNZt0yvFGBVKjvII9d10lH788YcOEa21c7apW60UxtgL9HvLVi/hZ7VJ07Tt6qZpOCUC98Ph8NrNG6PJ1ve///11VfMo3trZe/D4WAgBxmzvbru6qHshrROdmOyMuieNhaAoi1u3rn31q1/5l9/7bSmld4N6vhgwAaNdWZgwVBwrr8jguRPb29vTaepx15vNxus2eym8IICua9I0BeOiCJI0nF+cJzHVEtW6rWvBCIRh2Pc9gI3j2Ovma63bthkOh23bzOdz5+zuzpbW2lqtnUuSpG3FdLL74Y8+C0OQUlKEwhAJIU5OTq5eHXPOl6t5HEc8oJzTOI7Xm342mzVtYR1gbH66EcBPhEVfJl/GDoIBvKHo86hoDAC1xoBzCBx+TiXyEHqEMcUYc46FsJdyHIhirK21Pj+9FIMAwBgNh8NKzpRSlOHxeHx8fOKw294ZrlcaYdz3fVu1mNCA8zBK+l4oJba3p2madn1V1XWSRMbIfEDjiEXB7pMnDw6uTEbxPkDh/9aXvZU9dMw5bxFlHXIWHH05SO/dvK1tTdafYOOu7l+F8G3TNXVboKbe3R5gq5t6czE7wRRHcaydjfhN61oehhnHGANgY5DujWgmYRwNIpSJqqoW8wB0SPIQYggSwQgJ8p2965gEYEEDMtjtjaeqaaxQTnayl0KIOEoiHoJDLEtNWzddxTk2WnVCBEEAzTLgRPcqDEMUBrKpm142Xcezoem46ctGt2AVAdV39aooKObT7anpWtCGUEadJpQ1VWkRA4wwGCCAsWMMM0Ja13tEyLNo2CJQjNK2axNCOeckZULKJEnqukEgohCcE4wxxnGOQyG6fDQGQG0jjdJZltEgiZMUIdJ1XRZnDhQGk+dJt5pb56IkEW0TJKkQAhOEekNHuWi7NMmBYFP2hAdWtEAICxmA0+BU3+q+c0or2TRNM5kOL06O04he3d969NkPZV+m+XgwHBfl+uD6/hdfHv/T/+8/TmOKQZ+cPk3TZDmvwzDUVjR1EQSZtcgzlwNKEbiAswBTbRRFzklFMChnFDiLrTVOWwgwIghfbg+MnXXKGmmdAQhdH2HeWW0ADnb3ys2KANy7/0XfqaIqOymEspgRRrA2zlnLAu4QzJcLpVXOMr/DjDF5HgXYfOe7P3vlyu5Hn3z6xaNHq80SY0AOewUnr5KZZVldlISQLBk8efKo6xswljGUJqm3A0zz7M7dL07OL4TUN2+/Op1uX5zPEEJDRignRVWbNKmEUErVbW86F455nITb29uPHj06PS1v3Nj28/fniyFJwiwbYLxcr6rt3QiMrovSgLuYnWVZFkWRJ4Ayxq5cubJaL3rRrpbFjRtXu1Y8fvz02tUr1lqjBEGOACGEbTabra1cS9F1XRiGQnaEEKxQmqSr1QohNJ/PwzBMwtDrmP2tv/k3Pvvkg8XpOeehVvbifFFWcLCfzs8vgohNp9Ou65qmu3Llynw+77o+y1KMaJ6nbZdklTRWEeqSFNrKEOKF2v6U6/nsFV7KE1/6KTyj+YJ1CAB6ITz1GADMJYbFGWPAAEIOIRRFkTENwbzvJfimnQMH/qeYYIKxY4zGcdxqijHFCBdFIaWc7k4wRlXbjfPEOYQQopgQzBjj61VJKfVsJQ8+RdhpreM4NM4QQoyBs/PjW9cOnkdDJS+tLDyy1VtZYY+7cYCdRQi/iJf9fKUEKDrBW6/A8MBJqdtT0tyvxHJdz2fFLEqzw6uvhvGW1IlxeZCn8SBhIcZGNsVyeTGrW5UN9hJ8wzw96b74fSif8vEuOXpdDV0lfijqjTOKYItBgW5cOVOrU9wsm4sz5gzDtlyvNpsVEKBxYBmqq2U9P+2ajZZtUxWy6wkQ1Svk6qac9d2q7daL8ydn81NgaPtwd7K1pdoyAlWcP5bFLOU4JCRNUx6zVjUkxAr6TrcGq0oUllgCGmnBsJnkUcIRQ4IjxZEZpS+KoxDDJE+t7LeHgzwOtagjhodZAFpEjCRxEHASEpaEATYmjZNiva6LQrYyDkLOWMBYlqYYkFOGYYSM1n1bV2vV11EehwHBFBEK4EwQBMhhNMhAOccYG6SmkZIRpzThzBgJRmktHZi2q/uusX2LMJtMpm3dqbYd5Znquiv7B6/cfGV9dnxx+jQOw6Zpfvdf/d7ZfJWPhkJ0q9XKH37eoppSxllQV72njvlvcsoQWGptgBAp62kUhRgt5uedUGAhIWQSZ4QQ96ytZJ1TxhpnAcH/8h/8x6U4u76bDSL0a7/y3evXjuq6WS2L8+W8bDoNyAAobZRSzlqCcN22dx/cN84BwufzBQ14QCkYh10/HWdf++o7i9VyWZS9kNvTrSwKZdcbqcBYhonqBXYABGPKiqKglO7s7GxvT4MgkKofDofj0Wi2Wt97+EgZV1TdwcFRVdVVUYtOjrNkU6zSLO6tbrUOg1hpsz0aIITSNL64OH/w5b3hkHoZrqZ9oW9ICZJSBjyoa0AIeeYJw8QYu9lsANymLBarzc7OjjebT9OUc9b3vYeqJFEoRTMeZlWx8cFCa50lcZZlzjnP+fVSEf2zazwee6XOOIp++MMfSinH4zFGVPaS8/Dhl7PRKKKU101ZVUUURaJXYci9+Zpz4HWurJOMsSgKCEGYmN291Dr100LhT4uPz6pmL+nKML7U53AOSWWduwyTPng6B8oa34FRyjDGCME8oBZAPyvRn9ut+MBECLm4OKsqLaWMoqiq6iiKJpNJWZZ9bzBjGPEozAAwpUz0SmurpFvMN+fni826TuJB32nvI0Jw4FA1Goxk67rmxWFWVS0AAuej4eWo0BOTNQAGTNFLRoLJ1Wk02LJl3y7mTT2zss2ToTRXkgHJJ6N+ubZGOcyCJB3EEU8STTkCV6+XfV3l2TDZ3gUSWsSVPG7yPLl6m3Pov/zs/I/vIIR4MmyHwc6VIwhpd3HhmjYilFIkhMR9dz6fAaDd/SuD3S3RtJt6o8FFWCIM3q9uNBzzMNbCWgva4DAcGAcW6GicTePcOKS0dZtZvVpgp4lswjBri1UU58Y43W4QCTGGkCDsrHPIUAQYCLggijvRN+vl0dGVqiqc1UBhlL0gY2VBsFyv0yzL0qRv6r2d7aouCSGjQaaNXS8u9vevWKW7vudJmGV5lo1Er0Xdl6oWWky396RFQllOGVjUFMX+tUMptLW626x4FMqu4WHa9y0iNJhs0WXp9vKw7KFRsD2gT1dmkBGq+7IFZTBlnCcAlmEUMH5eNnkcHezunT+6Pz893xlkR4c35ouL9eyTp/VqtZifrop//Qd/EGfxdHu3FZYx1nWt12hBCA0GAyGpFNaAQYhQSkXXc0qxtQ4sx+yv//p/8Ecf/fh0cY4sRIw4a7MgIspiipFFzjmHkQGnnXUIAOM/94tvqbMvxjlxOHn66IFSyhq87iqLQAM4ZQijRuswDEXfI+cMOAD49b/yH77//vtPHj8WQmAHw+EgS+ztm9eOT57c+eJeawnjYdu2SAlv3K6UCkPmkY+xTZ770tVFGcfh9tYWxjgKo3v37k0P9nqhlLFN2/VCPbj/MIoiMABardfL6dZuvVq2UjqJMp4HSfrl+cn23va9e/d2dqdRmgghgGD3kghKHMfn5+eMhUksgig0xjwToDw6PTlfLteTrcn29naSJE+fPnHOtW3rY1nTNJTCwwf3Dw8PNuulMXYwGPZ9Px4Ml6v51vZuHEbn5+dN0+W5jqJosVj0fT8YDdI0fXgx22w2aZpuVrM/+qM/iILQM6CJIXULR0djjEyeBXW9aJpmNhPXro38NFxpWRTlaDSilKRpXFUKIWet3t3df/TgibHW/ZRi+U/kg55d51H01sJL+hpe69BaAPrMIPA5G9MYhx0CbY25LLQZu2S8YoyRs5QCIcTo51LYjlIaMVEURTKMhBDeD11pwQOOEfWRHRxO4my1KbS2zmAFtu0E58BoZK01upFSTUaJdjOj82SYPnl67/Yr+/4PrqvWWu9q7wtiDGD9TBlzZJXtwLxwUo92XhN33u+6Jx1K9nauqXq1qWWcpQlX3fICC9dTRONYbJr8yha0Etpqtb5ghKSTPTragXrZnT0g8QQl4Wi006/OTn74TwGz6PCdePuA793AAZYPPuOihKrCydTkWb2aRX1RCDUajIM8lxKV5wVnZEAdEvVSFODwMDlqe2Ns3zZrpRFlTsBgPJoAsoABjGw3Z9gaay3lw60r18GormuM6iiTnaiNlcEwM1JZ5cCgKEl62VOHjNMA3FqdRCGnZLVYpmmKMZbCVkXxYmVQyIaZc44QlMVJ13Vb092qqrrOhGFISK+UmgwmQdCIrtqcn1Ie0CClPCBR7JrGt1cQsgYrC5aHYVOW0XhLdA3BjhiNwIHtwzDohAQhbcTMumJJaKQhSqmca1EnhifTg83ZI9SVjdJZQBEyq15QJERXGGXefOPns2GWJF1fnaw355pCmA6Pl833vv/p6dpuHRxSHoQgkbXImcV6MRwOMSEhp8VqYw0FA8EoI0FEe121ZQL6W3s7f+cXf+Wb33zr/0aD/8/9e9ss6XTLHY1JrHVJaVARlks573sBWQAKufa/+Ad/441rh9/75/98azR+dPbok7tfSg2FFJQzozz9ylmlEYCSPQEgBBlAzsA/+ke/6emhBNkwJHlOX722M52O7z16uiorQhA4FzLWaYbAYAxaayCgtYzjYd92HGHpwGptjCmKGaUEOUwpDcNYig6cc8oiK2ZnX969/0UvO2cZpXGzqMtt0kkXhlGLldyU26Mhmp8QghmjSloFdrXa+DOjfsZGYSxnVFWqJAxkZ/mUA4DWGjvomxYMOKnCnBZFiRHtZU0IiZOwbop8kPOA9H0fxBFCaFPUymllzeOH1fZONop474wjJM5SAFcVqzgJ2r5LCAoItgC9knFI4yz+7MHDFtO6M5PErecQkiDKF6tzGiakl3T9ZBMQGA7Hq/WCMuyABJQyZB88eMQCmgyypmxsjycTZUEjyB28yJt+2oUAnL1M/RwQwCCNIaCMBcaIVtYLYytjpTEIkBdh8LkexkgJkUW8q2psndUmDFgjFDKWEAwOW2utMxgBRsgZy9KsWjfbfAQKd1VFsQPMiwpCFiPnlGpDBnGUKiGigJ/03dZkKKU0GpI8HmdDQsjF8RnBgB0wMi3FU9JNAL2I7FGUPAvZzlp9ibABB+DAedIAeaFhU939kIzZ0PzMsD17fHpnlB5tDRCQ8Pz46TDKdJ6M4xyiOFDKrYoe2Wr1OU+upVe+gbrSfvY7FSFo780ojSSbXnzwL5r7f2Tf/Eu3fu7PwekHVlnz5UdrF+RD3tYmTjLFiWuaEQtaFOdbnLGhEI5gMx2iajU7ueiTeCebWNBTlgQxK4xMotiV7ZyRXec06F6pvmmrrmmdUUkUYwwClUij52R4ZAE5zJk1TuMoEF3LwlAbQxjXQgQsUNJ5PWHfelBKeRsa0b6Yt4Uh55Z7AxAHOB0Mm7ZNswGltG3b8XAkun7JzGC4BUHMw7BpZTrd7hQKgoSEBQCoTvRS+HKAUcwwQk5HcQRKKiktAgSYMBwEIQRM9wZj2jcNASR7yTEjgIve0s3nw4NbZdGQ1WPHxjqaos2XWTZ+8vghxS4ftPceP2rrui+LplwZRD77/kef3X18saqPjo6E0rvj4b0v7uy+87Xz83OM8WK5ztLhquoAEUyYIWgQJWK5Em11Y3fr19/96mtbE7UVF8vT3/7j3+Ggo2FYN84wPnOdS3EsItqdH3MAG4Wu4AHqBbx1a/+DT34MPCuauqq1qGYWEYyxkQph7JzFmFhrkQME2IABh8Io6JpWiI5RHIYkDEgaB5NRPh6Pq6qq69oTnP3QPEmSrm090ytP0qqqrDaeCGyRxZQqJXw/KMtT2as0jbMszeLBxx9/nOfDdVk5iwCw0LqXmgShULbrFMQsDENkhdZyOh0+efIkSVJrrRclJIQULx2NntPddbCzE/sWIQCs12K5XKZp6pwripIx/v+j7D9jbVnT9DDsy5Vr1cpr53P2iTen7r7d092TyOkZznBEEiZpjEXSImzBsGEYMGTYMAzDMizJhizZMkBahEXZ1o8hKZMUCQ7J4VAznM7x9s0np51XDpWrvugfddJwmqJUf+45a9+9z161qp56wxOozTjnURQRQgghnPP5bOn7AQBPW1dKqUXp+Xni+8DznSTP3DBar2Pft8uy1JJ3fR9jlKZpf2sbQphlWbe9dZKmjx49Gm7vOI4FAJJcaFNDHVJmqrzqdbpFPNne3WpF7sX4zHWdLNMAQNv242QNsb3T64lS0TCKoojS07r818Qn/fGjUZ03enVCkJS6Ee1B3Sg3AXzm7WaMMgZUtcKNKTq1pJRZnpUCBJ7Dq7oZLEINzQu2DczzvOnu2+3tOF/lZd74pxljOK+anHHbtjWARZYCAPI8D4JAeBXGeGdnZ7lcuq7LJccIGaMIBTazhNQv//4vUP65TrnJiVEGAogleNEIBB4GeDAe/yjC3sHWG2mR5tIvT76VmtFoq6d8BrjRaWZ7bjFb57IebP0q6KBq8rv1+Jx2vh50rgF5HM9uyfOUWlb/r/71AKzrH/12FRxSx3Mt5QUuzYTQRDgWNLIwFe10neNSIQxDwnwiknkxnWKMtm7cwDtX9OPbtayqXNluK8svZE48a4AJQlCJYpWXhRDCZsz3I2rZMi/icg20kVJThC3LMsoYA2zbzbMYMUotGxMihYBaYQgpRNCCzdza8x0hhFYaIaSNhC/5+mCIAFAIGKCkRg5z3CQvCLMsSoqi8HxHKo74BnNAMeBFaiFSZwkiNtQU275SysGW4/vAaClqI4XglUwTN/QA1NpIRBwDMVfaZhAQiogkCGglsALGAAwQBihqu0XSK1bL0LUXVng+WVy56oPOaDWbb29dHl88nK9PH58+/uzj82SVGbVeF7Xthm5raFeYc/7qzZsYmLbveo4dRSEEeL1e2U5bA4QoSde5j1glKkbUr9185f3XX7066FfFpj/obNbrT2enX7t2RRId+o4SVny+0S7UOrG0T7XEQV1BzBX8rWuXvra7908++gNsd4o8hQZAABmh3XZrtZpZXtAsf+u6Ns2liAimVNYVBMCmyGLUsrFrU89lFkPz+Zxz3nwLhMayrEbs9czfQSOEjNKMEYp9z3EXRwvKMIZuI6k0xnS77d3d/VpUd+/edWxve3u0ilfUsrNiQ5kjEbRtt6y0FNAnvoSi2w83ywvHcYq8whiXRU0wqyvDLGlZlnyGG0VRMEZ8H/q+v1zMlFKcS8sCtm0rWTLGtDZZlnnIB1BrrSml7aibpUWeq27HaRCzLJ868dk2IIysFnMVoKDb297dno4vXItSTALPZ3AFgG5WEI33WgOmZVkybCMgi6JsdzCjgZbjpNAIZhoaZhtCdZ7HrhuWJY+CIGxF5xdPjDGtVvDhjz/u9yLO5XDEzk/NfwPJ5o/jIIQQIqMVaOxcGaNSVpRCrcEzZzYAngVyagOMVBhCjIBQ0rWZ53kGQpkWFqVNIf9M7okQegpSlNK8AAihJmoVIBMEgVJaSVPy2qKsMUzUShdF1YigDVDNvNvzvPF47PkuKADGuOI5gYBhAvTPcOt5aQwKCXz6EgYGviyRT9ZH6+mD/v5bzOandz7avXY4WZ+q1Lr2/ls11BY3wGN1llqF3CA16HRiO2P3n8iMst1fFIFZlD/taq+ltsHbA9A7AOffTE4ehW/+GZhlTC0NJvb5PGk5tN/VRW75trfayNOZHA1UL8KLFZ5OpahV2Au6fcCh/NGPN9RuRSRL66LiANSEOpj6eTZToiLMarVakFpGGdgEaAjdjrrGmLLItJBAKyG4lBIhCBRQUjLbEVo5rlvkuUUZ1EYjwzmnjsOoZZRuIv3qukboxROi0dU3+XYCOQpix/OF0saIJues3W4Xm3UeLy3H0QDZYVjXCiGACDLU1WWljEDaCC60khQDSog0AghuIAKIQIIptaVBShmdpUAbriVjVNY5xZCXudYarUt367JaTor13PH7YRjF0zHtbO1d3T/+/G6nHU7mq8Dv+q3U98MycwJAx9OZ5bi/8o1vTKfzPCuvXb8yHo/Pz07anZ7v+1GtkyQvCoGghQl0DRw43ntfeOfd3mALIKwLy7cOWPA3fu93H6b6+m4w16t7J3OhgANAXQMDXQ0zpIGTgBFs//X/w//05y63Pz1ZuQAeH528fu3G3ScfUoB8z79+/ep3vjsFT3eOiBDSeN1ppeq6pkC7DDFGCFI2Y4FvU4ryLI5rjjFuqnUAtOd5UgghBMMEYEQplaL2fCfwHKO0xVjgOUDzWknP913XLfNqa2vIeXX3zh2M6Td+7U8cHR1NJhcGYC6B1LwQ1IGk4oYAJrksZfHmL31xOnY+e/DE9/35fGExZ7XaNNS8+o/6GxJsORbjVSklqGsBIez12rZtT8YzrU0QBBjTosobzjAhJEmSzSaOWp4xMMsyY8zOaCvP89VqdbA3Oj2fhK0QY1nVYjAYTC4uAtcbdjsAgG6nAzQvy7I5dWmaWpalIYzjmHMplahKcfPVoUMi25mOBrs1zyzHPj6dGGQIYZRYlCIv9BDFvJadTvvx48d1zdfr+N333j49K06OjsF/l8MY49l2XZfQaIwwAoBiCAECGNVGGAMgBBhAiOFzlrUyBihQFBxohRByHEcIkeUJpRSApw7nDSQ2k18CEUJAa31yfoYJ8X2fMcYYqyGnlEqtlJQYY6E0IcS2WBCw5tPRWhdlnuUpxjgIAgB0niaubYUtf7N58fE9T3wEL9WJ5OVHwovtIAB15gN/5frF7GI9fP19uVrr83nrxi4I28VyZiELQAIhRtj4vg8wzk9vUdsjnWs43LbLBaxTYKnMFsoh4O737EyFh78mkynDG0P9Zax7B73wPOGwVh5bTGa9Szt5Wnk1BkczjVQMEG0Ngk7fFHmczkgP9+wOUKzdjdebSbtzE2CQzk4DbwvYSpSlMEjXkktNCLVtN+j7QFVAK4tpLjNtOESKWABgTi0LEUwIVtIghBjBEEKodCFK13OU1GWZe56nlMmyDEL4ctosQgQATSm1bReTAELj+kjUlYaGMKoVsGwCvIjYrkTMbXcBoiyw8loC4lDPsxGSdaV5LYCB0FgWo57D9FNSP6RESIUIJJalhQKlME/HGQZpDRHSSAklEfL0k89q6gG7hZIJ2zlg/iuL47tFlR4cdtbT2Xb38MGDn7gMbeKF0qrXbrcD/0c//bAuyp//5V8RSs9ni8HO5ZOLseeHjDlhQObLREmNkNRS+Fud//4bX9y9NFipleC6XG2cdhvE2T+69Yn04F/883/23/xf/tX/8//6f3O4cy27++Sb3/9n41o9nhX/3v/sf/Xr/8aflHAZ3Lhxnq33Pv4X//gffeJ1ttfjxSj0zpMCIfTN734PItA4Tb3E3dUAAEJIaBNKsTEKQcCoYRRBaMq6dBxPCNHMnoSQUojG+QpowzBxLBtq0+10gFFGK4d5vV5H8AoCTRBWQoahL7k4OjoSvPrKV79gBK+yuNNunU6WRgPI8CYvMas8SWzbMRBBCCfTcV4VXAhqWZ4fel5w//55FFHLxkVRPW+fLMvi5dOnI6UgzcsgCCAycZbmdYURtjTwAj/JYwCQ6/i8lkdHp3UFDg878/kSADkcDtfrda/XW6/XVVUMhz3OeSuK0jSdzBYNnXtvf+fxwyeDbkfIepPl63XRCoKmv16nBVEaArxa5n4AwsiZXywRAbu7u5vN4uz8dLUGnbZg1K1rDiEUgkvFm7ixew/uW5ZdV/LifIKwcXxQvtiW/7c6GGPGqJpzSlET0sBrCWFj36CRARBBQgiEUEslpWzkv4QAY8wmSRpTn7oWUopGrgIANEYrpRofSyGE79sQwrOzs/6wHbQDzjkygHPuOW5VlZQQiJHUuqEYN25mCEGLsmY+VhTF1vZ2mhZSyk6n49rW6mW66PMw6ZfsbMlThyZogAEve1m0drw+2tWiHFz9AjDrTX3H6+0F/dfqLGWVlh2C8toUNYg8l5MkXmy3BvXodSNzlt4HlSjTWkoA9663zh/VQahuvJo8vh06LVDtQXMcDq303hQOWn7QWp+et4bb6UUcWN4aFe2OMSrwwS61mJZJWSwCgzAdAogAEXma+167SDeLxWr/YK+uSqadSiFqMdt2bMIAAIYLA6AohZa1qjnnXOkaY0QohRAyx0YE1nWNganKnCAsOScIEYKMMQAaAIwQotkP1nX9UoIuoMyW2hgIawEQhYxZdV0y20HAcFEbANOsgBgBrWyHqqo0SBqsLMJknQEjoTZGS2MMhohrXZaVUoo6ngTGcm2GWVFLZQAy0BhIKNVFjYFRaYIo4XVBCNbKbGYXnajFkJG8TIpq/Mkn1994u3f5cPLZTz/+6Q/6Ua8q5avXXnloi83mwiIsXy1/7utf29sdffTprQf3bx8cXhtub8UPHmVZpoTudvrn5/dFJRjCWnBV5X/q/V897PeTZB0EtNXynqTrlu/Ozqcn9QZI8x/8zf/76JXwN//qn339/Z+ff+97O19wv/beN6aLR1KB6E+89vkPvvX9/9u/7/Va9x6dZDk8nhwlpb50eJmfTc8WMwCAMc1VqCnFShqlDMYAQuAwzBi2GSUU2g5DyNR1iTGm1Gr6spdzyhtkBKBJ7zNKCUpQmReeZfe63bzKodEWo1LweJMf7O6tFrNkEweerUV169Of7u3tYdfeZLkBgBBScO5UdSuIojBYZQlE6lvf/k6352ttGhvB9Tq2beA4Ts1zSpF4Vj64rsurDWOk3WmlyQYASCnFBBZFQSmyLVdKeXFxYYDsdDpK6fF4AiHo9QLOeZYVg0GHEHL77ikjtBUG8/l8/2Dw8OFDRqCCeDXf2BZu8jMB0GVZtqJgulwpBbTWVVVFrYDY3ipOKKXJBrz+Vg9jPJlPBgOSl5mBAEBi2QBji/MMY9xqtfIyW22WjuOFYTgcDqfnG87l55/fDtsjz8dl+q/MGv6XCqjmaILLtWq8XRUlDADZPOGgARoAaLQxCiMMMIAaeK6jhcAY2zaTvJaKu5btWDirFIQGAg0hagrJpsvWSgnFMfFafrTcrNv9tk3sdJMoJRGCjVtPQyqIkywtqpawLcvCEDrMagYpdV0jDDjnjmcThi8uLprQwecg+BwKn7+1hm8IoFEASGlecsq2dnm1RtEwqR6I6VkUvBu9clmWTQoMkVIiZlmU1WUBysqmDPTeYuux2Yzj9TxdP8G9LbrzjrXeVJ2+pbT76PNweL12TOkssmAff/gpONjxscNPT9v9ruAouP462Bu1mW1ioBWmgQuoEXlsYYK6vdKlAJI8O/N2d/PczJbn+zduAhIixrlUtu3Ynm8gFHVZ52lepMAI5ttNuhshBGioNTQa1QLUQEijtRJGKiOkUVIDJYGilErJCUGMscYpr3mKvtwpY8owtSFxNKLyaWooRIRBTABEAGGImeFFtp6aOi+TJZSVLBNqAwcJbCRGGkihBSeEOI5HGEOM1Uprg6WGADPXCzAlknMjFdC1lFyJqipznsZ1kvA4kWkSUjNPKmKUiMeFwmE74suT9XTVHe6MhleeHJ/9+MNvQVz8wtd+4ctf+Hq33bMd9sFPf/zOW2/+8i99HQNx97OPNC/6nVZZ1kmStfx2vEmNMhahdZpdOdj7+avXTqq5YfASi+LlZufylauvvPK7H/1wbgDg4PYk/nf+F/+7P/dn/vJf//f+H/+X/9N/9Ctf+DoO8sNf/s2//p/9rf/w13/zt37pL/1v/84/+u3v/uTv/M53NtKuWXC+3jw8O5mt5wACjDEwoOn1fM+LojAKHc9iDAEMFMHAdqjnO57nPG2iAUKI5HkOnor8VeMFbds2MgABiBHACBmteVVTDB3HYhj5rksQ1EJaBG8P+g1PaDTohR5dzMZR4F6/dvDq9SudyKcMCFELBcqiDlv+zvbAAFGWhUHQbbWUUkqpi4vpyUm2vbVtWVZdq6p6MYbXWjb3JNS6sTJtbg2tteu6QRAoZVarUitEMJtO5lWlt7ZGjuPUdQ0hqLg4Px8HAVosFlLKbreb51mrFa5WMYYIY8i5YpQuFguI0TqJm3wV30dNP0gp7XQ6EMKyrngN2l1mAPYDh9lhkqzLst4/GIYRwURVeR563rVr11zXn8+WjYVEu9MCAGgNBoORZWP5r4td/+NHVXEpNUJQCgUMVMpgTCDEDZyhJlxU62YmCCHQWgGMGjFPc2cBYCxGCWmsa4xSqolSfE7iKUtd13UQBFrrOI4ZY81d2QQuWpZFCGmuEPK0ZjGMMUrpeDyuqioM/SRJlDGW62it42TTMJya42nIsDHNSrN5kTyFxeaWf2nIqPIp2noly1ehxDkqBKNOuU88LIolabm4lAbWhah9YwooqVCKn6kqdgxi0Ssy6ACxQatbNOqDixRsDYGH6vVt6nbyWc7yE/z6NwIGi/SEIiU2G3frapGUoExUtYY7b/qmluszXudWq4WsXlVxVAmlUgSCi9ufOq576cZXgE2T87ta65ZHDIJASKkEpRQQakStREUYKspE88pipEn7ocQDylQ810hRjEVZWJQKWWOMFVC85q7rAwCkVJbNtNJNTG2ebl5GQ2gwZhaznCReNzdDXddSKUotCKEXBgp0kjTnNPB7HaUARkhpyoEBZUYQrsvaGOP7PsKg4kAD4/qhgbCUSkplBx7iStQVBlAZhRiWde1arEhTog0vK611bTkBSOaLLOpthavJfJJlrcF2l8aFAjj62i/8yW999x/+/jf/wa//+l/5wru/sDXcOT8/q6rq+9///ld//uvGmE8+/dy38PnxrN1un52dW05eFfXVq5cCx16cX1w/vLxeXCii9nt9ykFtkVfCwdFPbv+1b32XQ9oCYWyJx4s8x/R//u/+Jz6oJ8l6UiZf2708W8mfPJnxGpjC/sNvjacKlnQtoJmVPE85thCWQEllIVYDYYwpy1LxWitgM+DbVhB4zMKMMc4LKWvKsO14GOM0zZhtNU9fAJ7GD2EAISG8LhnzG+GBlLwTRQyT5XwBjA79QDpWq9XqRu3f//3ff/PNt/s3+4cHWx//9KOqqpQQr968/nf/4e9QDNxWaOpiNsvLMu/2ov6msyiW/d7g6PhcCu55AWN0NEStVuvk9EkYupzX/Jk0qQE+x3GKoggCK47T69evrdaL8Xg+GHQopWVZhqGFMYnjdL1Wh4c9SunZ6eloNEAIlGU56HWTzYpS2qzLCcGLoqAYaa3LwrguaFJmGn/y5XLpej5jjHN+eGm3yNNVkjdu+xCiWuaSUy+wldKrZMUr2O63lZZ+QNdLXZSZUooQWnMeRZ2PP/4YElIWte8GFxcXbhi+8urlH8ye/HdCQwxRE6Nc1TXGRghOCDNaEPI0UEQ3waDP4KYoeLsdQG0wJbbFlMQUIeK6lVJCKMGfmmY+g0JgWVbffiq73N7ejpN15mSu7eS6boIrnics17WJur7jOFmWEo9ACJ88eWLb7ODg4MnxkRO0tOaIkl6/bzt/BA31cwviZ4sUBABAmGoDAEAEvmDYEGeIkkfYIjwHNEPc7cJAiNN7ZTzGtKOc3nJy4jtKOS3auqyDCCu2yjPguICV0nYoXTKdg01FaR8wUBllKYLu3RNJyV79iqR1fnSXIg9cfpO8+1XQ6aG81nkRDAZ+vayTeLopgRPiVlTVipfcFGsIMYHu9vVfsq++C7xy/fkPw63r+OoXIYQVZHW2oU5Uhb20qo1Uxdn9Bx98XGeFMKACiEVtaFEhas9iDGEjDReGOa2C61oazjk0BgGgRC15IUTJeSWVEELkeWmjF+fEsiwNbQUrgD1r2KuzrMbEtisez4RSPBuXWQ4gDf1Wla754gKLmPE4nRzpfIWRnaY5xMAAoXTNZU2wbTsRXx7BeOFqYysIMBEYIQJBVYvNhihBNSiKAmKQyxw5SGNhY1NxhTGulewc3Ng7vJYtTjbTI5vUVbV49OToxvWv/uLX/+xisUC22jk8vPn66zdee+Ng72AxGYceG2317z14SB2fAEWQUiJ9ZX/4/rVLN7utX371+pu9biXwbsuP03zDxfuvXplMZv/j/+ivPbQBZjCGG6aqGoA2Nb/6xVe//NarK87OZ+YnG5B5Edkb/pOf/OTLX/9l4qC3Lh0ex8tlXZUSGAMIYghCiqDSHAAPQqrKeqdtfenN/deu79+4erAz6A2GbYSVUgpjYgCGiFLmQEQQwM3KsXFhoZRKIxECxijGSBzHUkqMqah5O2pNJ+etsHf98tWW4yBeLs6PDrYHDoNXLu9Xebm7t9Mdds4mF2ezeVLVBgMvcBAiJSK04p1q0wo7ubGTTRwF7tb2zng8tjAYdVu7w27ke0II6yU75MViRRiqeMwspLXMU5CldR4XnZbPMMryGGBVirrdDtbreDCwXdfN4sx37TIrLUIcGzoeokw6Pi2rCiILAiKF7I9ajudqDSCgtm0bI9brdSvsJPW8rvPI7gaesZkFgB20zGaGZqfU9XXgdhE2VV1IU2kDi0KXeUUJqivg+N50EUehl6031ID+aKcoked0hdHIwph5q9Wq12XMgpQ2VOSneAT+qEcDfO6d3xhzAGmgBMgwiwAImYUx0RAaow1GCEFICaGUUoQYxlBrQkBdlAYoo6SqK6yB0VpxETiuzSxGMWhs+qCWRtueb1AJDbaA2/Y920GYMGUQosC13XgdW647XSyEVmmeEAxEVYlKenaQ54U0OmhHgNCkqJgV+JYtK+jYzPes+fQlTqUhzZvSWhvzdKmNIABaqSar6uXRAA6RhH1nMeW20peuRtjVZ2Pe6YSjm6A6j+cPWv1rwN+OF4+x3igU1evJyOuUqEJ7r5cP/0F87mzUMFcb0BWzTNaP74A8zto7nS98EdZZ8smPvagNAw8yT6/i+uSehTZer53wACDXiHLncOD29+IEOaRsBQKHu9rxQD+q9cRZnJs1tC7dANnGm04q13dxId98f8lq+8mHTpxRAGj7tWvvvL21t7+1f8l33CJLCMaWzWpRua7vBn7U6UjJXd+xbTsMQ6WU0dhoCAwhkBDCGLVs23ZdNyleOOAWddLqwMC9Ppk99AaHTq/DJ+c6vC6iVshj1z7IimWxmchqbRGVZ5vNcg4MDFodBTAAmjGGICyKLE1jozSERvOaeN1CoaQoAcGbyZgKTrUwMicQiKrWWmolhRAIwCJLuajTPJNSLpdLpVSWFmVZXz68Opkty4z3uiPLcpQyw+HW66+9kaY5xSyMWp7neX6oNCwq2W53hsN+WebI91qu/9r+4Rdfe30/ii63um++8dqFTA92tnEmwjB89fL17/7X3/9Lf+M//Mjj3QooIRpvrlYUAEhu3Xv4+f2Htx48Ig6dLKd3Ht5t9aL/9G/+jc/v3Vomq/PZRSXheJ7avtMb9gm1XMcHiHQ6baArIPn1y/2f/9pXrl272ut1IDTMppzzqqobg6bGoxBj3ERoNkw9hBB5ie3U7XbW67Xvu0AbaNTO1mh3e8soQaEOfOfdt96Ml4v/4V/+N9uRX5fF6clRKXm72z1+/OTKwWVTccSVR1Cdpq2Oz2t5vowFZIfD7ihwF/OEYZJnVZ5p23M9zzk/P5VGpomo6xei9dFopJSuKr7ZbCCEly4PEQIIQd/3LcvSWleV6fUiAIDrskZg53heQ9vqdCPfDxhjWoMmPrSqCmOMZTHf8wjCSgFjVJZlruu/9tprVVWFfk8phbBxnaAoOGPU88LZdI2xGA5sUXMlZJHWru11ojajcLPZWJaltbIsq9WyKMVKi3an9fjx48Uidl13f38rSZJutzscDpVSlGIhn/bL8IWo7qlTQ9PwPodF8FRhop+TY5Q2jYwEY/QcQ80zRweMseu6juMwxjCmykCuDReykjIv67oWjak4xggaAA2gDEMIK143ZaYQYrOJJ5NJt9vdbDae52mti6Kq6zpN09Go3/wTjDHP8+q6RghpbZqaOk0zAACAeL1eN1OXn3k8rQ2b3xxjDACSL8kVOa+BKAEK/QDz1gDkWaKw7TrFelPXpmND6uAkMZ1h32xOodsmvY5kpQXszR/8gxb9Aq4udGCjm+/JdD0AF6DTEe2Rf/X16ujJ7Ae/Q3euA7tljELpCixXMss0FrAbhjvXeTax/R4A3WpxHNYPaxXN0zZNH0iodb3AJVHRCKoVfPRAWm6tBQup2b1OfvJd8b0flaOrentA2qF10AWEAATHR0fr+ULXYjGdJMmmFIUQIk3T6Xjs+l5DzG6SMzHECBAAkNYAKAO0BkprrTuD7vNzoqWTJJnSm63BTvLj75ibX7Mv38DJst+6PLM763LZBizeTAhSbq/VHrT9KJwnm9lmYxh7RtDV7VarFfjQSFFlgleKhO7uZXswXOVpy3YAL1WZGiSAUcvF1Gjle05dZRhqDEGdZ2VRFUVh2/ZsPEMIFRVPs/Kdd7+0Wq0Xi6VtuVXJjTLxKgYaxnFaVtx2vMH2wd6l6/3BFsRUiJoQTSS0PbcTBlvIMknKIiur4vf3L/HVptcbXAuGf+3v/u3/3n/19x7FspfrJXtK48+yYrVJK60TLgSkJcBHFxePTk/jsvzg00//0//8P//s/mNoWes8R8y2XDtJyzjO4zjN89x22Hq9HoTWdtu5efXSlcNLQtRcScu11sk6ybKyrgwEymgtFcEYQeg6T2sxAlEDjhhji1DGWF3zTqeTp1m33bIo9V3Hca3RaGBTNOi2fv1Xf/k3fv1PJutF6Fo3rlz6/OMPu6P+d77/7eFw+HNfev/s8dH2oP/um2/yuhxu9X0PnG+ymEOUrr7x/jsQI8uidQXiBACDyrqcLSeOY1MLWNaL2hBjgjF5fpO/8upVIavlag6h2WySzTrZ3u56jruON017m6ap4ziNdcru7i4vpOa6ubHjOFZCdrpty6JZWkAILQYIxfFmE8exkub09HQ54xBiqcpW2AcGbuLVJx/dy1OzteNduryzWKwoZf1+FyG03ixthxqleVUzxvI8vXRpXxrZ63UQQlJKrcHZ2ZnvhVLK+XxOiSWE8HwLPM3V/NnM5OcA9/yr0oDnzSYAAECEMWSWhQlpPixCCCS4WUg2yCi4Kso6LeokLddpsUryrKoqIZV8aoMIANBGY2MgxAQzKXRVC61B84xJ40RL1SxwtoeDJEkYoc3IAkKICczzvKrq5nPhtSSE+GE0Hi/KssSU9Pv9l9/Iv/QeGwcd8DwtxbwcysOl5UY5mEm95U5n58tH0Y2vYllInVKFgNNV9cbU09lFhkevOTQT03Fl9UShnV5E8Sz4E99Adts5Pa90DLhplaYie6vHHz784P+nd94OuvulLjSyVBLjbOwNenz42nxVl5/+AaMdqcv4+CdUINh9B8hpXz/W/k07jynblZ2WefAIFExcGRGT0N1DtC5X3/mDjc77v/HnnfZA1LoKt9HpR4vpbLZctdqdQX842rs0Go1W8YZzXnPBLLs76JdlmefpcrUAAEgpCcEYIwSamEoppRCylrwQLzngVoJj0Doff4qRQ3euO3f/a8isGAbI0HavH221c+lHVnR09/H08yd8UaBc+xIPmW8XkhLSkA8oJRgBYBSEwGIEI8Y5Z4HnhYEWUiY5tm1g0TxPHJtVZcqrzKEUGMWLtOV7RZ41EWj7+7uE0P39A2XwbLHe3t1xPKeu652dHcaoH7ij0cBxaS2F1GZre2/n0jXXaw2Hw73d7TyJCaMHJGCzLNE5HQXZbHrD61xr93f6Q5fjv/z//Pf/99/+544BjmUtCAwE7kWBYzPXtQ0ERc2TqtrUfJEXEqC0FMLA2SqRAAEMs4pXUidJVhYVgkCK0mXYswnkNQbgN37l63/6V38JGjGdjqWUq816MpvOl/Msy6SUnHNCSF3XlkWl5A2DGmrTlCSEEAIRpbTBFKNV4LlGCwuDeLPotoLtrVEY2L5rEaiLZDMdn/253/xNLar3v/D2k4cPzk5Ov/yl96MoevD4UVGViurh/mi5Gu8f9KZJmUr49S+8FWAQtdoQwiLnlgXCqIUY8ls+tZjWoMhfNAppmhJCHdsLw6jX6y3nY4rN9etXKbWibmd7e1spBZGJ48oLfKFMlpUYY2KRrCxd1y6KKoraEMI0TXvddpand+/eHQwGnu21W62wZQWe67l+4Lfzquz2e5Nxwpg9GvWqUmCMMYarBTAGDbedoozXqyIMQ8/zlDSU0u2dvucFEMKal45jCSE2m00l+Nn4oigKzyPL5erJkyfNs3+9Xi8Xa8clT7klTUHwzEmhwbtne/wXaNhsFzVEBuHniAkRFkLUdV1z3sz16lpUgnMltdZCK64kV5IrVSlZSV0KXXEgDdANIREAjIBRgIvKchwI4Xq9gRA3dDfXdT3P8X0/z0XLDxhjWZyEYbhYLCzLAlADABqdWBAEgqvmmkmSTCiwXsf9/rCZM/5xlH++X34Kf0oLhPHL/4fOQaXnpbTIzmW0uNd/98/Wy59UKxm22shUkoM44x6ftwY7INjLjj61A9u3DzkEILsor10t7x1FfAE0IlJWaw6678LjH08+/Kd7P/9bvb0rAELgumx9AZezyu0pfwsliZ8unNDNTYnXq1Z0GbX9xaNv54sSdN9E6tyQPQNn8slDMtwFFg1bh/nedXx+Jykee1eudG5+Hc9n6tHE07Z99vHGvdzudQfDLYipQmg1n6+T9ODyJcdzvaCFMeacc15BCBljTV9WlElZpRUvOa+EqIWouaq5qrl44evjhxBBPeheWa9PELpYPrpgEttRLcEc6oj2r7euDvxX3jr40tet/cMVodz3pWenuqqx4Ly2GMEYNi54Df1YSQmRNoqXycayaZVneZ4vF6vaAMYYhEaIGgCT5Um6WTNKjZbtyA98x8Lg7p1bWRIbAzudXl0raRSluOLlOl7VokrTZL6YIASiqFML9fDx4/l06odRGEYU4VGv38lhtL0F+/5B2DEns+uHV77881+LWPj5/fu//h//u384OX3rykhIwGsdAoQoaYWeqDgCyn8emwUhAKDm0gCQpDlESEiNCTMAQUQcC3Vb3k6vs91pbffb1y/v/JW/9Bf+R//WX/jkox9furS9v7+7SVKNSF5Up+fzZl34dHaDUFNHNLmUDJOnk3UDnt+QWmuLMkJIp92q0tS2qEPpcj69cvmg3QpGw+6jB/e/8uUvHR89zrPk8MplXtU//u53R73uaDQaT6aFlByB8+XEatmWTTRWftf/59/8ZtTt3b17fz5fIoSWy7TVspQWXNYamCxLhHhBUgMAEMyyrCzL8vz8HADQ7bYXi9ntew8X61VZ1PP5wrWd1WK5vz9M0zQI3IPLe7P5xLKsg4Pd04vzsuRNlh6vedPiZVldVVVd8jTeOBbxPKeu66riFxeT/f39QX/45PEJgLqqKkIxRpbvRgBqx9N+4FIKkyS2HQoAkELv7W+BZ4uCMAxbUbBYrKqKKwmEUHUtm+SpIAi2t7eXyySKIm0EAKAJ9nwZJp6vRJ67GD7/0rNwbK21Vqr5r252Jggh/HTKgTDGTZqYlFIp1URHGYC0gbrh4gAEEFYGaG0IIc2KKY5jABCXIEtzAohtuUWWCSGyLOMc7O/va61brZZlWUkieF03iOa6rucGju1Np7NGtlQURavlNc3+y+/gXzKvNc8yyQB46tpojH5JkzsaiGQZjd4qP/odsf8W2iSs3tCwzedTYQeinrN4seSRNYjS0w9sf1tYl8DiAyXX+Iv/A/v2hw7PBAc5X6KK2Ifvg7PvqnJ89Qu/0QqH2PKX8SnMMygkGe1Zu4d5WYDZE0fkJbG9slKDnZLHy88/9rydzqXtfH67zFBup7JwaTsAqACDXSCV/eMPC+wyvG8zhOZjoIHqlrVd13oYEYYpq+saUVYIjWw37PbLWjq2ZwzMy3qxXNqeyxh1XbuqKv3Ur69xTcOIMkRZw+pk9gvyQZ5qZRKb+a3IR2VZhGH88e+JTVGObpD6DDy6XwVbwGkpK3D7W929y3arHYxGrUG71rws86oqeGPoBICQWhkACK0EtyzGtJGb2HMZYbQoimQZV3XR2NhVVeV5Hud8uZwXRSHqIlnPBC/bgVcWSZ7EEMLhaAQgAoTuHuwXdcWVLOpqtV43WlpCCKZouhg/eHgHarW/s9/xo63t7QhTWVTj9eKXvvz1Tob/2l//z77xf/x3/uL/528mAlztB3kVd32faaGkaB+MupF3/fIo8q26qn2XhoGjJScE2ARjADyL+bbVb0cEmNdv3nAZ3Rl2gK5euXm4v7flWZhi8PD+57PJ2db28IOffqQAXif57/zT7z0+WvqhE8e5gVgDhCBpdMFVVUEDjNINODYXboOMGGMEYRAEeZIyjN55+02HYsmLusp8z3Jd1xjT6/U++OADhNDZ+fn1azccz+2H4VZv8Oabb35293bQjl55/ZV4s0o3S1kXzPUuXd25+2DxO9/54f6NNxEEcRx7Luh1ozRNIcDNOez3vEH/xdiEEJZnwPeDeKOEUISQ1Sq7evWw1x2enk8qzhljxuiyLKuqatzApFYQQs7r9XqFEBBCBJ7vutZmswqCYGfUn0/m/W7/0v7+zetXRV2enZ35fuB7wSaNw4itluDifOJ6DudFVYnZuLQccPnSSJQicFqh7zKiMYC+4+VJCpTUEjS8nEsHh1XFpTAIMsIoZVQoub27Uwuel4Xtkt6gz0Xh+c+s+QFG6CnbpN1uP63En30KzR+a5IBGZsPV065ZKV3XjdZfcs6FlM1Tra5rKZUQknPROAA0SK1fmk4CAKRWCFPGiJImTjmmzLbti4uZUrrX6c5mKy3l88jtbrfbRIF7DgQACCWkVmXF+8PBOk6kBohQLpXneYQQDcF6vXaDFylRP/Mgz3FSa4lfapTL7DyI3pond/q2p7rX8s//Vhh8WYrHVqd7tlivH/50FLaHX/6FePGkhUrjjuDJcewJuvt6fPd3e/13uBpDFHnJTFy9CY5+sjl6jLaG7PKrq4uLTnoGtG/rdB0cKESte9/DUrKdN4BjO/M7uTNEx/edsGPffMPwBGzWDmsj3wV1rj0AUS9eJ635I1GUeGfbS+qc18DbReJT4I8YHwCTFXtuthmLccIcOylKx/eiKEo3a20wl0aowvO8/rC3mY8l50WeOszidc0c17IchAgEBGLUPFohhHW1en5O2v5okRxV1VHUHsCa7r16KZt4qycXzuTU3TvInH1w5wOFe14rah4vAEJelWWVtj0vs41SoqxKy2JcaaWNZ/s46kKD403WciwgpDYCIjlsh8vpzPj2bDG3GbVtS/DKcRyMQBzHwmiM6eRs0tuBb11/9fhs0m23rTBgtlVVlWWzg0tXFovFcNRdrddcGAuZKIoIo3kOBCez6bhKxbA9JPO11joK/VFv5x///u//rX/2T46VKRFob7fqRZxkadhyElECRrb3Otk6Xufylddfy9KCkhMEsYHIRsD1fQzhdDprBbaU8trVg9PTU2Q4wzpst1qtVpqmlw72zdbW0enRJk0kNDtb29/73vd+8vGntUKdfii0KvKqub4bMi2znIZSY4gB0DTR9c0EgxBiTJP/CxtaHwKQEbx39fDs9DhLYte2bK9FkN6kmx/86Ie/9Vu/5Tr+d7/73bKot4b9G6+9wqX45re/RSxvELR2wrbjOMzH54WRdXz9JvmP/79//8/+hT//5/6N3/jgk+9ZFqjKVGsV+n6RlRBqz3HybPP8Yliv14QAjGiv5/b7/c0qvnHjWlnLi/FECjAcdhhjdS2Zg4VQvu9aliWlBMA0BDrXEb7nVtVmNBpUpVzOlr7Xun7tlffefvfW/dsnJ8eUkmhrK03ysq6oa23iyZUrI8uSWss0iwWnWaZ6O4BzXhR1VXGMoeO661VuDAQAGWMcB6eb/PBwP01zjGia8aqse33V6XQm0ymEeLEolZrs7OyMx2NCwGDQOs5jrYABBr0wMiBNEunP4GBD+NxGHyEIMAZSAgwARgjoZxUiapIYMH5aSzbYhxFAEBpjtAbaGAIhgUgprYHBlAAFQwc3tKqmlzeQliXY3t5WgNp0fXFxQRDWWpd57rqu7Tpai8ac3PfDR4+OEQJPg3EkxxhWVUX7VrKuAHhBsvnjB2pSoihCAIDGGaI5eG5AUOOzGd9/zzz6vWDwlWl231IoLo26/+NXrr7Re/frIHuikyyFO6AejwPeoi795F/0oreBS0wKzeJWvXeDj++l+STutOkr74FsY52fTpe8GynZ+3Lb5h31yPcDb3Rdl+vs4kFtfJhudNBZ55lez5CGhTJlnU8fPIqTQj8Y6wefEDVP/ZYOetXZaUXXnlPX5eO0+2ZpbZWBUa7jnp+q0wWByKL21uXDVr+XC04s2w9ahNjNtbicTqWUjVZUSun7vhBGSKM01AYDQ7UmWhOlsBL283Ni8HLQOyjLKo6Xhdsx48Tx+ruX+v3+QV2Yljhubb/iDEPgw4JKHlDT8chuLw/tx2WslGhIucyxCWWW4wJMVF7YWzuu30rna8N5WWTr9fT86GGbEQNQnudSq2bHGoah43iO40CjsmTle06ZJx9//NNer1dV1WIyWa6zslYAMWKFUWtQlCJqDajlNV5JhADbIQCqLE1mk+np8QXznL5mA07+3//lb//Hv/ePbyNjQtuzXXARM2xLC8AWzT2IQ1tVaZUknm8bxR0LX97bpgRaBF3a2wodxrD5xa9/+cqlXYbNbHz65ms3jKy+9pUvrjabd77wXi34vfsPNnkaRi2/FUllPrtzByCsEJqv6zgt06SklBGCtdaEkLIsLctqvAK1UU3eCHk600VNo9qUG5TSwPOFrFeLeZbGb7z2alEUEMK9vb2yrBfLVbc/vH7t5ny1/slPPwxa4fXr13/lV37l+9//PjDIse3D7d2/9h/8X3/rT/1pChBz/CJfdbqB3ev9zb/99779rT/sdDqBR6u6CIJm82uklJcvX97dHj6/GDabmDFw795DAECr1ep2u6vl5tHDJ2VZAwDKshyPL0aDttZaKOB5HoRQCDFfLoQQ2sg05VJKy6LD4bCu66qqb9y48f7773/7298+OTluqML9fj/OUs5lWZbKCM8NbNtNszUmZnwxx9AejMh6vc6zEkIEoZkvxuvNkjHW6FWEUGHoAoDKsjYGbG/taAWa3w0h4Pv+aBQAAzHGSZK6ntPrd58t7Z9CIcYwjuPnYsrnUNh8HBhjTFhDx2l2JhgjKZsPyMiX7BiklNoApbVSRimglDGyudMAxsAAgKHBGBsAlNIQkSb/gHOulLFtZgy0bbvToZPJpCiK3d1dUfPPPz/b29sjhCRJ3twjZVlsb2830+f1GjDGpJRhy2/G0O122/NeeJU+nxX+ETSEBgENudIAav6SaLnVGSzuPw73d8jiidQdU6wtpdfZbHb3Q+fGq2TnVRjnq4tpe7cXuGkx5R2Djxcr9srPASr05IiolHW2N4/v4WkGo2v7b71n55KfjrEPezs7F+cZIdPNesZFR8pAVcsiW3uWr9VmM31SrR5F1MEEZ8tTkazydBm0Og6VC1qiraHnduuzhyK+qCCzYasM9nGw7wHpGImzutgkOurT0W4wHBiMQcllXJbLHBsCmAvdQBZFFceyKoHk1CaAIEFgLDgBFkWiKqaLxRnFREmBUA1g7njh83NCyZYuecdt5eUcJkdVOS9mE+TuLAUqNAc0MHWCgAIYuRaRRVbnORC6GwwH0Xaj6nQdP0kLpZHFnCrNsQHg6BHlqd9yayOklG2/5YfBo/GZzqaYx8uzR5v5RR5vRC0xsoCxgAR1ZUqu2r0+ROZifOL6fiEML2YOzGen95L5md0O28ORQRBDI4v1+MHddDyn2I6Gu1deecvV7kj5LYou0tV/8g/+3g+Px4Q5bdupk6rkRQWg4yJTAL4R2x3c9mG8rqjFKgFWm9SyHMuyonZY1pUbBJXWB7uDOk/efvP1a9cvX79xiTlwtD0UWu9tbZ0eH73/5S9Iw5XhjmdrI4WsuTaLJC+59jzoWtBhoCxLRB0LWLrULa9VrDMKCNAGGFjXNSOUIAwU8GzPshwEoOc5lGKlpc2Ix9xNnP3wk1uC2oeH18WmMmVOgVpOLl6/dm17a7hara5evQoJfvedL3vB8PN7x4y5h1vbNy/v/vBH37pzfHf32qvZ5LFNaK4oBOmwBSyHEUg8N2gsmg0EaVYgzGazWVa+IKy120yWAGhwaXfPIurRk4cagla7k2ZqvQJfeOs9yGXHdzGgZQrOzuabzdphoeSyqhMtMcAY4BoavZouQ49FUbSKq7/1X/2dWxdHtB1Rx11uNlmRAaQR1L7t8MK2vVUUhVq5bmsYJ0SZYn+rXfOI+QSgTAlQpZbRJMviUqSZxMIgUfOWZ2+Wi+l0mqwWHgOzaR5FEQAgzdbdbjfP67Is2+2oqErPp4MdQLELgFFaQwjajo0pBxA0yR6gCd6EQClltDZaaiUgNDbFyGjFa6m051mEEGIRjDGAxhgDMWq1WgQj2KQVAwAh0AAqA5VBFGGGnjrQEAhEzaWobUY9ZiOsKl5jZDNiHewPMENH5yuotIWY4zgYkSQVlVSLOXB9i2F7a7Czt7N7/+49RnArAOenZ0CbLC7LukTA00IOR4MXaAjEUzMeCI35Iztl0DwTXp4brk/v1mVBgJWuY63SIrsAqjo/mnT62wHri+pBnCed7mG1judnhabxqhC721sA1tliklaqgvb07LzjUb098pmGc1KJFAxse/dmvD6O+lv5+sJCoZE5tYt0VSguiuLi9MnM3xp2L/1iRSWgPrT2sW/3tm66W7tZkY7CLYDti5NbWDC/vU3UPE+1Q4zkhapzkW+QFIFFkZEWAVwqhGmSJEqD3uXLQghkgBJ1zQsnsC2LAoQ67X63PfK97v7BDU02ZWnZ7HK70/3szvddjxnNirxW8fz5OZHJKQ58b3vQt4altpE7DAad1fkHkVnTGEzPN/N6Njk7nRw9mpydzSYX8WrOi0JWOQFKUlcCmKWbyKWmTtPNOtzeSWpTVVWa5uv1uigqk4ubSAABAABJREFUYBBCyLLsTqdzdnZhDORcbjabyeRivpiGoS+lkFoBjB4/Ob1168GVK69cv/aq5bh7B3vb+1cEIIQ6UpvlxcX8/GSzHOeb+SLZJJxDx56MZ5ZE8dEEFrzjh6s0/of/9B8fjefUZYXiaVlRhxFGmp2SbVubTRkELd/3tTZKqariUhmhFSQ4iqK9vR1GSZknSRKXZZllCYGgFYVnZ6eYwLoqmw7ls88+29nZQYhMp9Oz04vZdJHnJcaoIRI2dV9D+8CUNPxqwuyS1818yvO8xs2wqipKaV1WrmeXeUEwanl26Huea9uOhSF6eO8+obTT7ykAwzDUWh8cXv7www/zJN3Z2XEtmzlksZ7tX94lFvJCLy+zw+uH773/pVt37xR5NRpuE4sVRR22W4zZi8Wi3W4bDYWURVE2sycp5ct8w8WCQwh+7Ve/urO/98Mf/xiAxu2zTlOwf+DPV/PRzkgpBRGwLKIUaLdbQogoihBCZVlKoTGituv5YcBsC1N6+/ZtxphRBgHoWLZSCqFGbItPTk8JQd1uXwhVVsmTx6frTUGZZtSbz+fLeVpVIM0z33cxxkHoCSE8zwt9j3OZJMlms4qilh+4b7/zumWBk5Oz4bC/XsWr1WpnZ2uz2aRp5vuuMarVAkKVAADGGDCAucSyLEJe2sCal21Mnr4ujX7W/0ItJFAamacTRi1VXVZFUTxljxJICHzOSWyWMPC5CB02NEZV13VWlsaYIHCSOJNCX5xP21EPAOT7vjTStu26lg8ePLAs6rpIa7nZbC5fvtwIk3q9njGgMQ2ilNo2bgrGqipe/s3/JfIQeL5FeaZWfvGFs9MHZZqYyuhaEFhtNuPjxw9s6jpBG5rclDTouMA2IgU24mnNt66/ijHcPLlveGEwMZbfGwyRKHV6Pq9hbBFeWTjJLj7955L67mDXIYRCCGT16M7Hro0QVFLqa1dvhq3LRfaI0E5dgaIe+94AIfL49mcdp7fmWTUf9/qvem2aj+8R74YXSFBXpioZMtQoAhUwKttsss2qKAWkLBwM7ai1Pj9zHEdpAY0hDK9Wi028qqqK1xIhBgytcx2Gl7jJcr5yne133/ml4/M7EBedaM9u7Tw/Jxfx8Wp8C2TAGQ1biE+n99JKdfZ/fiN95sddNyUbqSQHShMEgNZlnqbrRV1mjEBNHYSpqPP15KxKV5xXSppwZ992HIoJUBpogxGSQiulLMuOWr35fJllmW3btm03eX69XkdpQJnz+hvvfuFLX58v0yQtEEKQkbzWgFhhp0MYVUpYjFiUuA7b2tu9+c6bw4ODV195w6yKi0/vo5TbhC432XS5MggIowHBgOBaCik0tVhRVJzLbjfI8xIjKhTAGBoAl+vNxXgapwnG2HEtQsHWqNfpRFs7ozxPbcd69OhBOwo5rzqdaL1exnHc6/UghMvl8uJiMpmsEWKNbyt8Fn/RtFdKKaMBYRRT1qyVHcexCBVVbYyiFAehRwnyPcdCxMK4H3V6YeAwbFFkMzoa9D766KOjo5Oz6RgiJDV46+13oyj65je/ubW7tV4vr1+/LlS9SVen5yfUYu9/9cuXb1wzjPyDf/I7q9WKWgwSHKeZkMAAOFssACKYUSlVUdTz+dxxnLDlK6U3ixe1Yb9Pv/GNP3H77p3vfu/7Uaez3KwRQn7g9geg04nOL06NMYRRrSXGMAwJJlBKnmUZZc12zsnKijI7jDq1EAYCBUzQCge9HgIwTXIIoTS6oThUVTUc9apS5llBqL44j4EBr781UpKmadrp+NSGUsq8zDudluva68WyzFII4Ve/+r7v+8vl0vHsG6/ecDzWmOASbFmWNZ8ldV1Kqcui3hqOxucXFqGuAwjFSgsAQKfTakZ7TQo7AE9D6CHE5gWgoBfTwCYVlBCLMYsxizJKKcMEA9i44YGX1rjNt/OnfojPXwSN92VZ1JzLsqwRIlrDuhaMuVlaC6XCMDw6OrJtUlZFXdeO4zSjFc/zzs7OAAC2bWMMoihqnqNSNP6Sf8Ss92cezxg2CgDT5M8/PTCyRqNRXm7yIrl//2GR191u/+DyJU0FkgJVQZLWSTZ2mcrT2falN+vl/OLsDBNW1lUYeATINE64hpJs93d3PHQMNxfZCm2/8tXB9rXx/e/Op1lWjNM0P9i7IWFmIGhFVyTUAGSwUrjOFT/uB6N0vJidfm+33c+UblOXDA7L/IIYiw6vufDCoFDwCiPQJDJIKY1UjuO0uv1oZzcrSqCNKGvHcQxQCACgZV3XteDUthzHkYoXRVLzQsjc8lqO3yvq6nRyVwGz1XtrMs4ny3vjzb3n5+TS1a+ny8XD23+QbxLr+ttbw6vx7U/ih9/pXttCw1dLtkWQpswNo26r29/ZPej2tzREQog4jm1iap5T23FaUdTfHmxvA6PqLAYIWxZljDVsxLqui6IQQrS7vUF/FIYRQkhr6fvuZrNar2YKIuq47f6oqlXUHtTCxGmWbNZlmlAIRN3wrVrUcZUBEsDFZPrw3kOK6eJk/IPf/ebIbe+OtmolHz16Ekad4bCHEDZSEYiQQYxYnNeOY/lhIKTWCkynU8chmBJqO7WQeVmt1nFZV5xXtk0vX96nFoMIKKVKXjc8Bs75er3e2dkpiowxdnR09OTJcZ5VUgBgoJQSIyqEAEpjAJEBGEIMny5GGGMaGNd1MYCObdkEUwwphq5tGS1D17EIjHxvd9S/fmmHIdUK3d3tUbcVRr734cc/vfvwEcSo1Y6u3rh+687tV19/LQhadS2uX7/OtZ4tV5/duasgGs+XP/nok9/5Z7//5GzS6fYbUq4QwrIgQkhqE4Zho21Q0tSVxgQ6loUBbLd7zy+GQa/zwUc/XSexFwbrOEWINKzgwHM4r1qtVpMSJUStjfB8p8GCOOZSaEJInBQQkflq+fDxo4rXaZGXdWU59rDfpRiu1zWCpKw4wSzLMsf3B1u907NxHKdB24fAAgi0e1grHHguRrQqjW25nu8AqI1Rvu/7npPGyfZohDGSQErFmYXX65XrWa7rPnhwRghrel7GWFFwSilBcDgc9ga+lLWSEgCwjicNGr50QAAABA1N2jR8GQCQQdCgp3IO+GzXrIXU4un6+OWV9MvTOm2AhqD5XgghIgggqDVwPF9IU3NtWY5WgNc6TYr1Sgol4ziezuSly/uebZVFboxSSoUt//79+0dHR47jcF4xRgkhrVarLOuqMo0v+sto+McLwwYNn0H+H/0qs3r+zvbDo1tVneztXWm1drhGAog4WSjuJfkZAoSXep0cO9ZA1snx7Y9d15+l3Gl1N7Mzk68wMLmmdntQnN5VU0kC2NpqgbX1+OPvKoCHW7u2EwTtrgS4Voa5QVlx2u6uL5aWjWu9QronZGJQ3Gu9h63Yj9zM6lWLI6e3jToDFZ8X7rAqN0JqymytDIBYA1JwBakDqJNNZ2EUpWm6Xi+l5HmeAS3LIsuKOvDbEOA0TQBUiKiiXG+SSZYWnU5ve3cnjFrj8dTv9nZ3dymlfe+FTpnPTw7f+XLv0vX1xaP5j79Du73Bl37Ru3Rt/JMfW4tFEA3Lg7ej/q7b6pUCaeZ5Uc8P261Ol1ArW5x2Qp9YPvFHbLgvNM7jpckW+XJRFblWUoia86pZZDfN46XDy/1+v1Fuaa173bZlU6FNXvAkyxEmt27dqqqKMQaUDh2SbVZHjx/kaQYQUYCE3VF/ez9y/ZA5qycX3/5H//xSf4cqJLWOq3S9jgPb2+4NXjm4jIXWFQ8cG0NYSfXG228EQZAkuda6qmpmUUJhVVUYU2rZRcXLiudFVVV1kiR5VSZZPpnPuJC9QX+2mAMALi4u8jyP4/izzz6zbVcKI6W2LFwUFUYUNMNyCAEAmCAMEYYAI9i4WzOKKYJaSYZgpxUOe+1BN3IY6gWeZ9FOGPaiYHvY2xsNEFAIga1Bt8zSt15/TdT89t1bq9Vqa2vr9PQUQeLY3je/9a3XXn/z7v2HCls/+eiz8Wx9dDr5w2//6Ac//uSDj287Ya+sciFEU6VybowxnucsFgutte14xkBjQFHkeZFyzvf3Lj2/GC4uppPJZjgcbm9vQ2Rc1685B8DUvFxvlpQSDcFqkwL4NPaoWY5T2iwxCMaAMgyRyfNcCBGGIQCgLEslpFKKUmAgqmthICiKKnC9i/FpGPS6vWi9SibjejD0ijo5PjkbDDtNhmtWFn7Lz7JNXddagaLI+v1Iazmdzghmgqvbd+7M13MIFee8KECa5owBZmEAAMH00YOHlmU5luuHpimMLGa1IgdBgjGAED/T5JmmGAQAaA2U0s8IhFBKWUvZAN8zEuLTLYrWumlxKKUNQ+aFAhoCCBGEsIkJgxACgzQAwKBSSIRAXuXqmbeWbQNKrVt3br/22nDY7wlZGwOk5IRiy7JOz46D0GuMPILA47xqxj6eRyjDDTH7X4OG6OnXADB/RJl36eDqJ9/7Xujbg2H30aMnq2XqBe1NuslXoNIZsY0WG1MrUftOYN2+/UGvHRRFYXl+VuSyLpDmxhhq+dn5J0WNrM4+0J6IzzfTH7bDVje6sk7GtjushZgsTiGIDCDMk/c/vWt3Ohx2BbLtvgXYttu9Lp0aeQfA6qHqibP9CqNBnZ7h/oGLWQkBxhQS1mRXU2ZDRIQ0eVr4vaiIV1m6HmwNfN+1mZXEawRMrzvywlADmBb5arUyRjmOtVzOL8Yn09kJwU6vdSUMoqOjH1o+7LZf1eDFDTBNjk4f3o2iK7s3Xmfh9vjz7+nNQ1HirS/9Zhb18nIVJEuFSa1gVqlNWm2ysuBKagMxCl1rPp0haitAL44vqqoKHQZFXpRpXRZC1EpyIQSAGmOsgRZCTCaTsqqm0+lisbj1+Wd37tyezWYAEubYCKH5YhJFoahzLUVDVCaE9PvDnZ0dQohSWhlzfjFxLYsK+a1/+E+v9/csg6TREshlspZSRn7gANxm9jAIQ8aANuui2N1qD4Y9CI3rWrUUmCHLwghpWVecV1XFCaEGkqzg88Xm7HxyNp6OZ/NHR6fnF5N79x/lRX18cnF2Pr374NEqTlebxPE8y7W4ApDgSvBmNdm0VMYYizKEAELIKGEzCowiBClZtwOXIaPqqu1ZXc/dGw72dgZ7Wz2HwU7LZ8hs9XtXL18iGLQ70eH+7qXdnb/wF//c6cXpbDaB0JyeHkfdzoPHj5jlvvHWO7fvP3x0dH773uP+YPfg0vXAb3MBt3cOhIJKSEKQ77u2zYLQQhgCo4SssyJtXLmEAFJVloWVkqJ+MVgnBDgOsG12dnYqpRRSp2neCMgYYydnpxBgallN1d8kzQuhjAaO41mWgwlYrRaUEte1i6KIoohztVwuhRLL5ZLZjfkVmo5nRoJO1DZA1LXkKkXAMxq4LbOYpzXPw5YXRS0AQIOqCIMsK+pSWoxePrhkWdZsPGm12hUX0/my5hJARQgaDu08Tz2PCVFbFjXGAKWvHF5yHMdzAURAa1Bz4fmkqhoN8cuavCYAuXmxkbAapZRSQClQcymeGQ5hRonFGpetlweFT8tAhBBChCCEkNHQaKjAcxYOqIWAANQKYIyVFr1+JFWNEMjLUilw8+b1JEksSrQEzXxZCAEA6PV6i+UsjuPmnyMESSmb1MCiKHz/Bd/w+e/zcqH60twQAgBftMrji4cuo1Ci+7fu9Nput2sdPbyXrHMXu8bikIbHD++rIrPDwb2TWyELCgEQMC6W+WYx2Nl/cjEX2hTxsjIWs9zx6bfF/GI8r/howFojMr3PLJzHm9lk0u/0o6iDjL5/59NrhzsU+mlxL/SH8Sa7/+SnVWEIs1bxtI5P3cE7hK+EjJm1y3jJTdlxu5bFgBSCV2WRQQNcx7Us5gVBPhlvVoutne0yTWbz6Ww+aYjsABlCSLfb3dnel8Jkiei0tzrtnVYEZMXKFMbZOaJFv3N5epEXfNna2n9+TnpbXwitcHb0oyQRratbWzd/ARbh5N53j37wX5TTx5pjd2sXY0qZvbWz2xv0W2HUarWA0hgi4rWx5ci6KpNV17ODbkcpJaRB0NS85KLQWirNpRRVVa7XS0hgVVWuZwOgF4sF5/ziYnz06HGa5J7r50VCKfRcaju0KvLQDwR0sB1aXhCn2XQ2VjzHqsKqXBXxejIZ2gFISwqIBgZDVCXJerNxHFtXVR3HB8NR4LmlrGyf3Xztxmo9930XQmjbDCLAHKaNZBYlEBVF4bi+AQhAIhQQCsVpmWSV44VpXudlDTEtKl7WwHU8i9kAgIuLMaUU46fMmMYRoMmv4FVNKaWYEISBVghoAgEjkBHEKPY9p99ueYxYSLdca384ODzYHXRa/V6keKmluHR5PwzDusivHl4iAPz817/WH3Rsi66WC9u21+vlzu7+r/3Gn66V8fwoLatVkmZltTXa7g9GruteunQJY+z7ntESQ8OrEkPAqzJPSgwMRMb1bAAAxiAMfdezCSHwpbAMoYFFyHI+tRkZ9Npam6riCGHGWLvdtm1Hag2eeRwMBgMpdJ4VlsXCMKorbjFkWwQahaDptFsYQCVAJ2ojhJabtTGmuRmXSxB4juc4QoiqlEJm66VECHQHlmOFhBpeZkLWZQk0MEoJaluEkKtXblw7vGyAPjk6znMxGIy0MkbDIAhbkUcoCoJACOF6NkTatu0sq2zbbhiRQiUQAkyAbbmEwiLnACBjnpKun50ADeBTRHsu6sAYYQy1AVJqqZRUShltjJFGS6PFs6MpH5/+lCYK4lkV+TQ575kW0A8CAEAQOBBqSlGarhEGcZoEkT+dTmfzSa/fRQgQihl76jaQZRnnfL3elGWJEKqqihIGnnIH9cv+hj+7NnzpNYRf8giJV+cuo0DgbtRezI4//fg7oW/t9PcpzTRoPXj0cBQdWASdzj8AyMOGsaAPtFqdPt4ddH7wk58OL90wAKWz81bYxyaGODyqp37fo0t8cveDFQJVWqT5ydZw5DmD+dm9ydnx4e5NiNN68yiEUbz4JJufvHbzTWxmPElVsbScLl8/zguNJdP1WmrEV1wrqcuMFwky2khhlABGZZu4jGNRF8N+P1sttVEWwY1gnhHy4MG9yWQcb1Lbdju9bSlwkRnH6rhku91GefF4s47TDVYSt3shRCadHT0/J44xrZ3X7PZhmX66eDDR5Rx2wOX3vjYYvJrPxsn5p6t7P2a2oySHEFRFKSRnNtNKEmySCvVHe9hoH2sq82p8hjDV2OK8StM4TzMuaillXZdZliyXy6OjoyTZpGl68+bNra2tq1evffGLX3z77bfDMEqSZLGYxclKyFyK2nEcxRVyW8DyDGJKg8D1KNTj4weri2PsUAAAEbofRGmSFEVGMEQ1p67tBf6g12/74aDTlkpIYHYO9z3faQKJGjfTXq+X5SkhWPLadiwppTFwkxQYU4gYr7UBiNl2lpfMtg1AecFdL2x3oyzLMSZVVUMIwzBsrj3nmQsDRVgIUZZVoz7GBFJKizzFBLm24zjWZrWIfP8r739pdzSMQr/Kkq3RYNjvvfP2m/u7O37gKaU6nc7h4SUpJUG4E7UIBH/qT/1qKwzOzk4ohtvb23EcZ1n24ccfZUV5fHoilNzE8e07t7717T/M06TMM9tmW8N+E2FOMayq2rVZq+UCABgjnPOiLC0bMEYWi3lVF8PhC76h61oNA7yZ85ZF7TpeY09QluX+/r5WQBvYKA4bGVxRiJ2dHYzoZDILQjdN4zSNtVZlWZ6cnESRQwgpRSmUBgg3c2TGQLfbrYoyy3KldM3L8UU8GnUMKKTAnU44X0wghO02ns3SiteEkK3hdr8/PDp+DJRer9e2TSCEQdCqa6MNJARVVdnttimlWZYqJYoi8zznypUr0+l4Pp16vu04TEkguJSyarjcBNOfAR/oKRpCCCBClFLbtjGF1KaIkgbshJJCyaZwe9o1m6ai1EopqbXWWkj9bP4Imn4ZGJDkWVmWAACphO2wJN0EoXd4ZRchlKbZ7dv3tZC2bUeR1bTDnHOMcZ7nN27cCELXsixKaRzHrVarruvGCenlWJufeSANIIBAGQCggeDFvNQLIstzuSnHk5nWzs0b7w+GB/PVNOXy9PHtTmBj3xxPzgPSZkJR21rPH9ey7G7v3X905DCcrSf3H9/tXNqTovz293+QFsnh8JrM+a1HPx7ubgNFMGVVSYLR9nh+usyrwc4+9ay6ImnJc6Fq0RrsXt2sVgLQTZEMtg6ByqskSeZnUuSL1dqoyvcUXx1nqWAUYWS7wbZUpeKVb/nYZNQbYifyu9tCqvPz8/V6/uTJA6H5pf0ry3W1WCzPH93XWrYuXa5RZcFxll5M52s37OxttamYxYsLTjrs8CvOC7ohSIgGTh72Iq/zDmW6LiWjHSVtd3Bp/+2f33n76+H+zeXkQgiRbDZKSyFEmsSY0PUmoyYv8iX2GAgD4bjGYlVd2NiEfisIWq12p+YizbPlZr1er6Wo43h9fHycxtmTJ8eW5RSl2GxKy+9CIIskifygG7XjVbxcLuM4rlQNxVLlmYNczwolF4vVQhg92t133TCbLHJYJunKAgAwlizX2iKD0E/i9flmUVBwvJnP4nxn0Aqgmq2mhBCPuRRa0BjPc/qdnuSa2M5qE2NCAAAIaAhhyWtk0brmWmvXsYzSFFsEkSKJbWJc16nrynFspWQcbxACACgINYCSEUgo1oDkCpYSAQR919LYUMeupagFRxD2upHRlUXM9nDwxXffunp1l5fxznDQ9kPPslo2Q9qMWv2AuUjqTtT2fGc+vhhF0cPTkw9u3f+Dn9z6vR/c/n/93d/9/ucPx3HyeHz0yb1TSNxBu3ewf2h7EfKjRZwbCc4n47yoLMdzw5YXWpZrBUHIS/3THx1bzIkixmw8n6VRuOX7/qOjj55fDIPRXq21kjAIgvWGZ2W2f+ng/HwRtXpaa8FLXhda8EF/W0jz+MGxkbTpQB8/uQAYYKiritScxHEmC/3K1UNgSmBwQJQFqOM4eR3PFqcd3xn1R7PliW+T0fZ+0HP8sBMEqm0HjAJie/NVja2CKyVKmsTV/v6eAfR73/1RJVUNdCJ40O5Mz2eqED4ls4uZLNXucItRsLM9KDPjUt/BVuRZv/TLX3zw8AjCcNTfDjxOtNfpICExABoAKVVpjAIA6KeTNw0AQAAiBChBvm21XMdB0FSlZ1kMIdoMGgEikFFkIdgMi5VST9tQZbQGBhIktNEQaAQ0hgJoqYA0ACEsAaylRCCKWhBBvVrG3d5gvFjxShEIW20fWjwI+mkKbZvzuqQMOS7jorQcK4xaleRPTk+LWkopW37QjdpFnvPyhekGeNmh5mmpaIgBBlGmRQ0xbsC4Ofb29s6OT8qy3NrZZtSitp3mmQbm5OQUIbS7PZrNZpZl5XneDqK6LtM0RQZVuJrNFru7u8vlstPpMMZ+//f+0Ss3vjTq7Z5d3Mmy7O3Xv3x2djbcdufTzZVrVx/f+lQotbO9W/NSGzmZTGxmYVozi2JIlMqk5J2om2dJlST3Hz64fHiVV2UnahFCsjRhthu2o3yTE6aTzZkxqLMV5fMxNIxRDHz/9NanQpSU0qpIEEKff36r18KvvPWe5UQnxxd1XVXHDwZbl1Dn0FePqEwW65nauuG/co2ky3L5ZCTXBb30/Jw4NZIbphgmocUsUNeqqEqELQBxVVUog0oLJ4iY7RAApVLAGAQpI4DaVplstEJKQgohpRZAtC6roq7qqhBKVlUlpZRCBUHLpjbnfDi0AteZz+etsGUMLIpktlpgSnzHxZgaiIUQYdS13bCo6rycMYd1w04tKi7qsq4gRNs7B2dHx6ujEzqMNvfPdw/6kmGVF7Xm6/X6dL70I+V3OtPN5pP7jwajFmOsqWtCz1dSE0LyulRKWZblum5WCimF6wXr9XowGFRVZbtOHMdBEKRpShD2fT/LsmaCWZal0PJ5G0UpdV2n2TMCBSSQYdBebwolTJIko25AkCIQWZZl21ZdFZoh32m5li15BW14cXZ88/ohMKjm5Y03X52cHh0fK6kBpLjT702nU9t1ilXeiVp8fP7Bhx8jYn322e2iVk1a0Hg8nk7nhFFL2b3hiDGmgBFFIY1GCHGhKbW0Bsv5gjICIUAIZgVnDDR7D8eyi6JqbubJeP38Ynj06JHrgjSNe70BIYhXAEEzGS8Yxd1uVyqVZdz3LQiN64LpdN7pdCAECIFWK5hOYwOBEAJAiAkJAtd2HAhBxet2K2y1zSotGpoHVFxrTQij1PJ9ezlT88Wq3Q7KgrueTak1Gu6Mz88dy1lUpeD64uIsjytRQdf1j49PPN8e9QebdToeXyAEvMDTCvit8OLiYnd3D6Iz13XLvLAs67vf/fDwal/rGuEOZRiA/OBwx/UhAP+K+CjT2PcDBI1SQEIItW7q2aZY01phjDFGWmtozFP0gc9Nw4AxT1OZX/zEp8AEAAAMIwkUUML1HMao7dRFUVRFgQ3Y2+2322FDLfQDb5NWDZzNZjNCrYuLi/lsxblCWDiOIzmHkDZClz/uW/PyX5uPHmkhCAFGypft22TN0yxpNPC1FOt4U9TVBx9/stkkW1tbZVnXNa+qyhiTllmcbHzHBwA8fPiw3W4bYzBEg27vW9/85o2rbx0ebv/wh998eO/s8v4rF5MnQYtNJsn+/u756YlRstfp1GXu2taTRw9d2/L9EGERRdFkMuc8MZozO6iy9YPHx62oMxpt+Z6rpVitVsLAgsPp5NRyoqxImYM6r71brONSpZh50MiTTz4SVdmJIkapFNr3w6tXrxrqfPzjH9769OPDt97dufzKVr9nM2JY4Ny40b/+5VH/hl6NzfI0ooHfGl5kF4i8cAGiLtImtiysK8Baoes7hCCCIcbIYRaj1MaW1AYRyjo9N2obTIRUtTDM81vdgeN4jNnY8ZDlAg2l1NCgRi1k23a73WXMrkoRdfq7OweO7SkAt7e3PS9ocu5fffXVyWSSJmtRldqo48ePvv/97z9+/JgQ0u72lAS2bedVmpdJd9Btd/ubuIDYfu+tdw+/8p5SitkWtzEDaDjYsm13Y0BN6CcP7v/0/iPPpw0rGEJYFKVUSgHT8Es4l014W6OcS5MNxrDpSnhZMYyeb8AbW3xKqZSyoZ41d0UTMtMot5RSnhcAgBihTfBuVVUYY85Ft9Mp8owRPGh3gVYUwa1BVwnebrVaoWuUpAy7rgOA8Xx/uLNNXJc6dn8wsFzHchjEyAv81Wbt+q3BcItaDqJssLU1Wyw++fxOwcVkMq2qKooioYzSQBtIqAUQ6bRHuzuXOZdlWWGMKMOYQEIBYyjPktFotLW11ev1jo9PqOW0uy8YNt1u98qVgzAMs3zj+VYYgGSz6UTuM2d/0OmFftDinGOMdnaGZZkDABaLRV3Xw2GQpkVelHlWCq0aekrJQRzHCJOiLqQxlkWkAH7o9oaDWsnlIpc6rwsrCEF/EGWp4CJrTBBmE1BVstPFm03GmM1sBaDK0ny9yqTQGON+v885UApcu3bNtu3FYpFlWZalu7s9QmCcJn/mz/zm8cmE67ozaF+cT6VUEIOsmM5ms58NhQCAZ8Y2WmspNedcaA0wRgg3b18phRBECD7bnWjzzCUMQgwAUAA0/bExQBvQdNDPgNJQgqECAPDQD2zbzrP07GTsuZZlsajTS5K0rvmTo0dZtrFt6nneZpMxy4qiSAjZ+OZtjUac8zzPhBBKKSHUz+yUX4ZIpI0Gz2jZL2+g42QzGAyMMWEYPnryGFN66+6di/n00qVLlmVlWRZFURC28qIoiiIrs6rim01SVdyyLGAgIeTBvfuX9w9Cp3Xv9mcE6q++//XxxVypmssy8NtxsqnqklLKedVut+7c+my9XDqOM54+7PauPX50t6rH7WDXZt6HP/rHVQ72Di69+u4X4vXaKPH48WPXDwCxJKTD0TYANcHQolbx6PZ8PoWaMUY363kSL/u9ThrH4/FYCFGWpdK63X/9+pW3I2Y9/PAnNUQp8xdljOoTOyMa1MHVPe/q27QVFelDbDIKLz259c9fnJM6KcV8M/7UbJ6c3r1TZwUjBBldZmlR5VIpxKht21kSZ9NxslhqwRFCZZYmy5VWAltMa50t5vl8JiXXql6uphcXF3Ecjy+mn31+exOnDx8djy/mQkFM6Xy2PDo6Wa/XZVkeHx//iz/8/YODgyuXDzrt1nq5ms1mOzs7165d84LQtu2t0d7joyebzaLTj5Iij/OqN9i+8cY7UGNsMehas+mYuU4QtVyAAWOTLP3owf1FkWoAqMva/bbjeZxzKXRZVozZmDJpTFXXXEqEkOc7DV/aaG3bdlmWnFeU0ia8yRjTmMc1w3hCSKMzAS+ZQTW42axNjDFNjaCElEIhSJSSu1vbvCh924p8jwB99fDy3vagKIorV66EYWhR5jiOlsryAtdrDXa2LN/FjhVGQS1FycU6TsfzRZqVP/zxT88mU2JZSVaMZyvCrCyvRqMRJkwqs0lSatnMdm3bhZDWla4r5djuc8OuyWTiONRxrNlsWuSpVNyibLUqCaHyJebdxcWiKApMIKUkTZOW760Xy7Iszk/POOec816vN18uVuuF7/vNePTgYLhcpg35nEvQqNYwphDC5tbjSsZpWfGqMbyqKkBtvN5sjs9WUeRn+friNHM8IGSZJmVRFpRYgW8BDaQUX/nqu512P0sUIQRhKoRyXSfLsulkPp/PHQe8995b5+enbhA0zy1MESYwKZKdnVFR5pt4zrnw3DDsBNRG0gBgSEOH+m84nlFtNBf6qcmCkFADoDRQhkBkUUwQYATJZ+7ZACANQeMa+hT+Xvw0YAAwGihgsNEAAAKkUlIImSQi25jt0ZBSKqWez5cQQkpxzVUQBAYgylCaFo7jMmrbtkuplSSJVsp1bUJR07K87GHznP/48tt55nX7PLnv2RF4fpaku7u7n3766cHBwcOHDx89enR4eGjbDCGkAUjT/MMPPySEaGMgRnmer9frMAw1gJBgY4zruoHnL1bHs0n+xfd+cTx9aLtq2D/kFYW4mE6nCKE0S6Io+uEPf7her7/0pS+k8fqVG2/fv/ODIq8v7b+hTHx++uTqwTuuY3zfL1YrpdRyuQyCwBjj+35vZyeexMnqTBYVAc7s4uGoG1HgrVdjIcT+/n5VVVVVXzm8duXKtcuXL7fb3a1eaKxwuHft6uuvVJu539uyo0GZrDbrD0wNZRlgQDCybe8q9gbBHnrlza89Pyc2iwJ3W3Aeb560nVCV9fTkeHZxXla5gWZdxMfz8yLdKFExAi2GEFCaV0DWFJqiLowSxGN+FFACOM8w1MN+xBijxPJ9X0p5fj5O01QodXx8cno+1gAsVhuEqed5nuf94i/+IkJgsVicnp6GYfhzP/dzr736KiGkKvKTk5PJxUWeZgeHB5skPj8fb2/tGmN0XW/SpJivg93ebDGry7SAopittvb3OdLGgpUCr7992O5GQtSYEsvxDMJxnBJMIcANUa6quNGwqRAbjBO8ohQ3McdNzmpzt+d5LqVsHAqaeqAhSzYsk4bPXNd1s9pzbRtjICQo8tyyLKA0wsC2aBKv93e2f/kXf55A1e+1KbHXq3RrsNXvdOuyRogwyxmMRv2twSaOz85PHM9brVbrzWa6WF66er3k2g3bnf5QGVhwsU7SUui8lst1bAyMOt1Wtwsxmy/Wy/WGYFrWotVpQ2MYAZ5j5UnqeIEXRAYoZpG6rvM0Ozs7wwgoaebL5fOLgVK4Wm1sy3Ucp7ELvHR5P/DcPAfQgNlsNpvNjNK25SZJcu/eZLVacS4dBxtj0jR1HVZVnDEbIdQK20VREAIAAItl4niMcwkAMBqHkfP4+HG7bV+9erWqquXceD6ueRG1Q8chhJBOz718aeQH1tHxgywt7t2ZAO31esMgCAAAlmUVRVGWZbvT8gM3CL3GghsR2BRrrVYrSZIf/OAHzNV1DebTbDCM2l03cNhqwRmzwX+LQ0NgQCOngnktSl4rABDFxGKIEIgxQKgJZWr2J1rr533qyzI/A4ButH8aAq0YAq6HN5sNr3UYUt+zXddFCJ2dnQllGGNbu9vMAgghwbUQmhC8Wm6SJKtrgRFh1NLPkqqyLMur8mVXmn+pU36KhpQ05mUAGGNZLx4Fm82q1QqOnzweDoeff/rZeDze2drdGe0MR90nRw82m82de/euXLtRFOX5+bkUmkvV6fXdMPQCX2q1XK8opZvNhtje2194c7aapEVNiH188kjwQknIhdjE8f7Bpc8//1xK+d577+V5HkWd+/cfG8APDi5naX0xPrly/YrttOIs8R23LEtCWM317pVroqqhkuf37jCCGFIWRrPTM6TrNN7woi6L1HadsuKrdWw7nut6eV7meamVWBz/uDWKJlxOnjzutQNS1q3h1fb2G1HwBs/HyeyndugJr6v7gULGKn2BOi9OVpEiKfs7N7evfjnPSqO0a9m9brflexhDQnC323EYRRDWRamkIIQwijFBdV3Wgm/STbHZGF5TjICSRZnEyVoItVmv4zju9QY7OzvvfuG90WgEMYIQY2q99957hJBerzccDouiKIsCIeI4Duc83myOj5/84Tf/4JNPPiIIaqlGo0GZZ7/927+9d3Cprnldl+OLx/PFIluuv/jLX7t//ggAsyxiErizdON6pKrNF9673u74Qla250gNICYIkjTJq6pCCEGIEcJCCAOBFtJzrIYkOJ/Pfc+r67qBtsZWs3n8cs7LsmxGkM3e8Hk/hTH2PI9iYlmWVIIQQDFAEJRlUeapQbCu68uXD4BW68X85o0rh4cH6/VytL3DOW98hhzHNkrUVWWMmU0unhw9unv71tnZ2XqTbO/tH59e/PDHH8dpwYX0wwgxK8ny2XIFEdUG2bbLHPt8PLlz9/7Z+ZgrbQyuubZtu9vtLpdLx6FVVTm2l6XlfLaGEPi+2+lEyIAsM1ICDSB8KVWy0+mVpSiKKktLz/Pb7TYwCCDEGHBd5+qVy5tV1gr9MAyrCkQRNgau12tKLQCQ43hhEBSFgQY0hqycc8chUJu6UhBIyVW71eElaPkOpfT1N95Kks1sugIGdHsRpbTV8j03StL148ePtne7W1uji4uNZWNM6HicI/RM98Y5woAQnGXJ/ft31+vVZLJsCtxHj46NMb4Xci6yvGpFrpT65PhiPD5rt2zPc9JYr1cv0P9feRjU8KU1QM30Q2uNEKKUAQCF0EIozmUDhQoABYzWBhjYQOEfX1Xr59tnDWwHCyXLWkKEuYRScttjs1nuOF4tlOvZtku4FHWtHM9CCHmeNx6n8YaPRqM0TRGAnFc2o57nYYwhfqGk+NloKKQCECoFIEF1/WKL0pjk9Pv9o8dPOq1o2Bt6rrs92rp9+5bnubbDRqMRACArqpJzROnu7u7x6UmcpQqY2XLR6rS5FFrrKBqNZ0+enNzp9XaThBfV0sDi/GS+WK93Dw7uP3pILHbz1dcNxGlebpLEsXnLukEZOB1/0Gu/nud6md3a2n7l5OgRhqgoq7AVTU/PbNvWvHKIFrI4v5i5rhUnE4wtrSW2pOMGBlIF4NbOQdQZcKE8z7NtmzHG/Oj00f2dQc/1O/dv341n59NbHwMF9HBgty+1iQ/Ob4mTT0hpWGt35VJpXii9uS7Hs4dAcaCt4Y0b4c4OYjTPs2S1LONYlSUzRmhDqCW1Kat6td7M1xuAqOuFruN7XktwNZ3Oq6r2Wx1o0L07d+/cudNM2Rohyng8vnXnVhD4u3t7URQ9OT6O49gYs7e3Mx6fP3x4/869eyen53EcLxaLW599fvLkyHNtm1HJK6Dl3//7f/8b3/i1TrtfFFXN83U80cBwINv9ztf/3K/98+/+vlD8MV/9F3/771YJ/8p7ly7tDdbzsecSY4ztOmlZIoS5FMv1hpCnGXXPWLKkqqooDNbrZWNEiBGqylxrHQQBQqhBxibV+5m/E4YQNoJ5IUSjUnAcB2OIIcAEYQItGxCC4jh2XRdjfPz4yVtvvfHeu+/84AffwwR2e9Em3bTaYVomZZUworN8fTE+/sEPv/2973777u1bvu+PBr35fP4v/vCbv/1f/r3HR6fLTbzJypPT8/F0FoSR1GaxiRUgdV1btltUZV7VRV1pA4XUQijPc7IsabXCKGphjEejrZMTnqXS8x3OeZmnxpiWj32f1XVd1i+GyPPZotvpLZdrxmxg0Mn5xYPHj+q69n2aJIlNSRSyrcFgNluEoW0MpNRCiHDOszRfLTMIkEWBUhoZlKdp4HotP0AIAYBqrhAkRqkyU1keW5SKWq43y/VKGA2qquCcJ9mMYDdN49BtR+2gLLhj41bbdhzn4jzzWmyxSAgh80Xd63Vcz46i1rvvvZXlGWOwCSrJMrDZbBaL5dvvfmk6WRLo9rrtvFjHq7gV+lEb/ok/ea3Xcf+1YNi42UAAjTFSa4RAI8RTGmR5maR5UfKqVg1sQvh0f/JsSAga/xgAG3hs/vg0pkoDQCiAEG3WWV3XaVJVFfd91wsgY6xxn7Ftm2A6n606nU6rHU0mM8cGvV54fHxaZBUwT4faUkouRZZlL6PhM831Czh+6vYKDDBSvqxT7vf7aZpOJpO9vT1M6On59J0331otlgBozvnR0fFwsPXo0RMI4Ss3X0uz+Fvf+fb1V272+/3JdKq0xhgXRek57pPTu1pR2+nH6WS9Xo8GB4vZvKjWN994azyZBEGwXKyNMc2s3XEcUXndrfLiPA2cq1n1JMv5ztb144vbIfPjzardHZRc1FJZvn9077ascmnBm69+8fT4di02fe+VUhQYFmXFADSUsloIYwxDWBpQF4XR3O2/u0WK+OhesHvt+ntfvf3RD0bd4MmDH3Vb27jVIu0tUdV+h6QXj5ATdLcPwOr8+TlxBvsKsbuffA/plG2/O+j2IGWMGCWkNoDnRaaVdnuWwzBjQeATiKoyNVoUZR5GEYKIMcezvCxezqePq6rcGu1tETtNU8/zKl7HWezZTrc7zIq0qiqtRFVVgKDVen1ycjQej8uyvHTlVanMJiuXqxXAbDTs9zvdMk/rWk8ny729vbe/9rXZkynGOEk20MhWr2MsdOfzT2HPu/HGK5vV6gKov/Jv/VbGzGazGk/OA89KihoATS0LQIyghhBvNpvh1kBpAzBqknMdx2qG0I1MsPHuZ8x5oS/Wuq5rz/MYJs+1bo23XTNRajAR+x7B0HHdgnOtTWO0VyWrk5Ojt9544/Hd23VZ/dv/k3/7wx995/PPPx8Ne5VAQFcQiDwKCWHzZbyMN3mZLeer/f39y5cO7t+59/HHHwuDpdCj/iA+mQtdA0wIhsoAZYBDLABQVZXL5XK52ITtjus1uAOi/z9h/xVrSZ7mB2J/Gz7ieHe9SVOVlVld1VXd1W5myOH0cOi5dBKll4UASqAeFoIESNDLYl/0opcVFliAkkh5cA21A3LI5YjSDHdc2+ry6W9ef48/J05493d6iKzMbHLIjafKmzdvxY0T8cX3fT/XbAbRNSL2ZhOFQeA4zs9//nmzAUzLJYQgJKMo6nVH/jru9/pRmlWVeEXgtW13f3//048/WS7XvWFPAdTuti9O54NBwzbMMAy3toZJFG5v72ZZ9vDLS4QCSrQPP/zwj/7kjzUNBv5G02iWpFCnpycv3n33PYQQr1iW5kYTEIjm85Vt22WRadRerVatVkMbp5RiIZjrtINgoWtOxSoIDMaYvworJhSoagggjGetlqnrdHfXdRxns9lUrDg5OTk42KpKGEWRpmHLAY1GS0mUpjlj4mDv7dni1HN1zoQQ4oe/+f5wy/n0F/LjT07/ewviyyoGoZQSElByySQDgImvtW0YYQSkhK9rkPr6n3ztwC/f+Dn1jwIEYohhXpZBxIc7LqGiqMphpzsc9leLNcJcM1RZlp1Od7NZ9YcVJYYf5BoGjUZjPp11uy3TND0TCVWlRa6UQhj9W2f9+lAKIFVPAAoASCF4PVePp5OyLLdHO6PBMNoEvU5DqiqIl4bZfHF6pWnu6dkVRGS4NSpZ8eTp0263vzXY2vjh+HrS7w6ytKgqXjKeRpltUorV9dWk2eis/fnSnz14930hlKGZWZzdPj6Mw43kpetZN9Mr3cLzRUQpJpStF+H2YMSrjaYI1ADEEkImq6Ll2pOLC4iI3ey99fb95fR8fDW7e/cDAFCjMTCMLdtpAASVErxIeB6m0bLIwma7oVtmFZwuQ9/ZPiiKLA/Xb929r5ntfntkdIZFvlFR6CAiisjtjjBpgDwC8DXOjjRb64xufe+39r/7H1gC+jfTMoklF2mWl1xYXiuv1Npf+etFngZZuM6SjahSUWYmxcFsXAQLHi3LZEmx3BoOtra2Xa/lOAYA4MWLMyCIhuzD43u7+7e6w61O28MYOo6Tl+zFi4snT84F0B+8910/iWbL2XI5l0qFGbvz4IPucDuvSsch683yB7/6VxaXZwiYlBRxyButHQolSqPp8uzpk8//wv/ob/31/8Xf+7t/73/8F//DvzTo2lkZVQT7Wek0+hrWyzi2KJRSUN2IM5YmTINUFZWpmVBiIKGh6VGwkZxhKKsiHfY7RZHHYcTKqgYKyrJM07R2/dJ1ve7HW61Wu902TdNxHNu2WVnVQhRKqWlqnAOEgWnpScwW09Vv/vCHN9eX/8l//B8fHBzt7h/PV3GeLA0KVMmSIJrd3Mynl3m6mU3HW471q++/nwfRv/6DPzIbjShLm54jo1jq2nixjuJ0tVgVadFtdIokDTdBnpUUU9PS8ySWggEAKs6iODE0G0MHU6fgvDfcjhOwvdM7vmNOxmuMTM3wCsaZ4kkamBpt2K/X8K5lFnG6PRptAp4UcP9gZBi64sC1bY3CokyWyznSaX8wGE8uG6Yb+dWvfPfPBUGSJSY0FCT8YH9LCtQd7CnN8bM8LQrJheXaQhlCq/ISKy1dLnPP1SzqIDdbLUizhaXgVFNlBc7Ozna3tzbxahNM+oMmK0Cahr0hbXedxUyVebG3dUwQ8/0V51IhcXq+uh77rU5jtfBbTrPrutHKtzVyffkcU3Dy4kmaxbpNri6r89Ps8fOT+SqOMoYBGvS74KVWDQBACPllRQeCCgBMkaYTCJTgGEEqhJICIIxrAzAuRSUVF0rIX7IEU0pBACBUEECgFIBAASAhIBqFCFMd626ZlRwTy2tL28uQMiBDVVFirAzTvr5eAmBwzqkJEEKz6aTZwFRDSRxoOnY9BxNUlZJS3bGBoWOpXvMNX63Fa3U8fJUu/7JXVOrNEJx+v39wfOy41nK59Jqe4zhB4OsaefbsmaZp19fXzWaz3W5blvXJJ5+1Wq3aT3wymYy2t5Isvby87PV6YRjW8oM8zz3PY4wVRXHnzp3aw1YIoZDabDZRFIVJcn5+4bmN2pynbkt3dnZqLLjRaNTZPbpmYozDMCQEu67rONb44vrq6urBgwe+75umGYbhYjFnjFFKGRMQ1p5RFAAQRRHGtPaqu7m5oZQiRIIoFhL5YVTmy07/KFjPTk8+ZqkCCPFqHq8iab1eJG+e/qwanxXTVTqPveFg55vvNUbDikKj08oQmIa+1nJ3RludTsfQzdrsF1Od6oaA2Go0sKYDUiMVMIzjrMiJrgVRzLg8PDwihOzu7l6enV5cnG38te/7nudBCPv9/s7Ozq//uT/7K7/yK3EczudLpaDvB+v1Rkq5u7u72Wxs276+Gm9tbSOEVqtVo+mmadput3RdT+Pk6dOn08niL/21vzFbrceTaZYlVxfncZqleV6WZafbr1fNmmbUHwqltI69qDMx6jAj0zRt2242m42GizHO85xzbppmnud1cG2n06mTqTebzWq1iuM4z/M8z+swvFfBuJqhv6LgAAAwALysWq0WQsDfrB8/ffQ/+/v/0yyP/vP//D/Lsmg0aDUajarkumnc3EyCKK64HE+Xi+X6rXff9ZPsj3784/FkIRTiAhqO1+oPkzir9fl1zY3jmFLd1PU6qTmO4yzLiqIoikIwDhGo8Z8syxqNRlVVjIEaHDdNkhdpq9XI89hxDKkYJqrZfF0NN5tNfXs3Gmbgr/KcQQi7A5uxcuWvPc/r94dA4aurcVmCMInvv7s3GLZ+/vEv8jynGjQMWJsLRFFECDk9PfXcJkLIsowyK0QlWCUIArePj7iohGC80JXiVOdZBqRElkUxhr1eDyGUJtx1GgoAVmHBARdFFOZZptIiHwx7VVXVXgn1unmxWHS6rlQcE3j37m234RCK9vb6QggloZSyP2jGWRgEvm0745upTusAA4ARRBgDIOuP7w3Hw5cm0nXXp4Co3cAUUK84Km+K3P6Ng+CvDcFQHcP30oyKaliiCgJkW5RqkDHmOvZ0eg2RCjfB8fGxTrXpNHMsOwxDx0QIKts2q0p0u20pa/cwOZ2ONY1oGlFKEUJarea/6zTqk0fwZTwgBAC8ycdpDftpEj57/nw46pumiTCEEPq+XxTF5eXl/sFuq9WybOPp06cHBwej0XZZlkEUFVXpON5kMrt15/bl9XX9GEAI4ziu0StKaZqm3W5XCDabT3q93vVk3B9uIUg0ajiOt9lsfN8HAHS73SRJNpsNY2yz2TSbbdtqxHGcpqmUstFwIVTT2TjPy067p+umaVhKKUIQ1fB8PqmKstvtSilN0y6qihBNowYEeLlcKqVc1/WDCFOt1ekiTWv2BuvFMpzNbMsY9HuL6UTlWZnF8WZ1cX7y6po0995xe3tOu91yTBFkpz/+xelnjzbXy9XllBaqqzeim3X9KCKCKaWYUoQ1rnCclgLgIEmXfhimKeMyK/LpfH5xcXEznrc73U63/93v/0BK3u93Ww0vClZ+sPF9P0mSJElarUae55PJeDy+qW2jOOdZlu3u7k6n040fzKaLZrvlNlqMlZtlOB1fcS4xxkrBIkkUVz/883/FcjqW19ZtSwjx/oN3IcZVyV2vWZZMCqAZlgRANw0FhKlrCCHGSse1NE1DACqlKlYAAFzXHQ6HnU6rzsoQQtTStOVymee5bdvtdrvRaDiOo5SqbWzq6hNFURzHGGOAoFCy4qzdbGAALUuDEBKEG013uUyyLPvd3/3dv/E3/kZ/0P6TH/3hyYunq9VqOp1+9fCxZloLf3M1mUdx9uFHPzibzP75//dfPXz8PElS12poht3qDcOKbTYbx3EqziEiZck453meSym77bamUahAbTRb52ZQSvudvqmZi+liezjKk1zD4GB3z1/6rbb70lVIMl2nnU5LKek1XldDIUSv15vNZl7DybKqLIRSYHdve29/+/Iy0KiloPbs6fj5sxeYgGbHcRrOp19+jDUogBBC1YzM4aivG1gpJQUwDKOqOJClYxuWYQMJHUtvNpsYKEJQHjtcyuGW85u/+StrP9R0hAl49uwkDNM0lhcXV52O41jdKEq6vUYSF65LgsBXECZJMl3Mfb8oikLX9SSNqqrwQ9+yjCSLN5s1xhBRpABKkmJnZ6fdcQHknPMsLSjVSpZXVYUgAgBJXkeg/OkQxMuK+YaUu143v+IP/akH/1rdAuRL6zCEQH2Ht7vQNO3FilENAIilRKalhcF60Gu1Gm4cbjAEGqGmbkGF8qz0PE8pAJGiOpGy2mzWmka4qAghtf2tEvLfdRovTxhCIMpKCgW+zp2oj4eff/bw4UPbtcqqCuNAt8z1enV9cZGm6TvvvCOEoBoej8cYY103Z7MZIqQsy2637282g+FwMplxzrmUSZ6lRW577tX4ptPv6ZbZHw3TIn/48KHXaDx8+LDXHSRJcn5+2RsMF4tVVVWNRsN13cViYVlWLecOw1BwCCFmTNT2n3mRJmlUVRXG9OD23dlsVlVVEPhlWSIEdve2gyCY3Iwb7dZ0NtN1o2Si5IJJtX9wZJqmZTme50mgoix3W113sLWz/5bhKMZBEsneyFmtZ53hXarLTjh9dU2yeBX5N1dPf5qsnxudVm9/r7GzZfVaZqepTL2gQGu6V1dXwSYEAEgF4yiNk8ywrMHhoeV6va2d0cFhZzhqdbq9wXBra6s36H/z/Q86nZ5C+Pnpi6wser1eVRX9bufeOw+4FI7naZo2nk0hVJdX57ZjNhqNNM07nY6maXt7BwgR3/dd1x0Ot4qcZ1my2YRKsSTMMYHr9bpIszu33up2t+bLTSlkURS3j29dX1zO54tWt1MUJdEM2/OyopRAhWFIIAIA2I5VFAWGyHNcTGDFSl3XIVJCshoxJAQhVBtiKghrk07BWKWUNE2j3W6Zptlut3u9Xs2neWVkgohGqG7qRpqmhBCgpORCcuU4juPgFyfTohRPnr64c/edd965H0XR2flVlGZ5xU4vr8OkZBxGGfvJTz/5p//8n9+Mx6PR6J2375mmmabp3v7h2eVlnCaGZWnUiKJEKQUhrqqKsZJzLhiTUtYOgBAAIQQrq6IoZrO56zQ4l6enN46jp2lOCFUKYowZExjpWVZkWZEkKSWvV0lCScuxEUKKcwgAQvjk5BJh9bNffNkfma3O4PpqDAFIC1WVoNttnl9c+eFC10ypgGXZg87A0IgC3DD0yWTuuo04zgkhtqW1Gk1ecsmUYzrz+VQhjLD+5WdXvT61HLXxQ4xompeUUsGBboA841JyBfhyudZ1XYHCdd285IPRlqYZaVHZlnv79m4cFazkuzv7EKMgCG3bDAKfc95otziXjAmpUJKmEPHhVtMPqySvGo2GbRMp+askgFdD5euCCCF8uRBUCKE61xjj12Xx31U63/xb/EYgC0KIK8Wl1GxVMTEatrks6+QVISspue1YYbCJoqjf1XlVNb0GkKrWg5smAUDpBrVcM0kL2zE3UcAYI4QqCeuAl/+eavjqt3qzGmZZ5jYbGOPT87Ner7fZbDhjuq7fvXu3qqrhcLjZrKWUvV5vvV43m+3Ly8tNGLieZ1nO9fVYKlVUZVEU3W633uN+85vfBADYth2G4e///u+32908L03LgRjNFsudvd3zs0tdM/vDQcmqx0+fYErSPCMaDePIsMy6E6lRTkLRfD5PksRxHMuyzp+f6LpRT0ZpmsZxvFwubcsAUH755ZdMiqIqIcYYUQSJ7wd5UdVdMKW0sb19eXXFy4o4nma5XqtLDedmPBESZEHYGw4b917zDTEC0HTat97z9eFqtTAt3bZNjLFhGFVV1efT7LQ1TZMS2LY92NvtbI0w0XmavvwRUgrO6m2AYdmmaSZJMpncbDbrOEksy/rq8aPNZhNFCULkm+9/mOf52cV5u91erFdHR0eO4wRB0Go1dF1vNpvj8fX19aWQ3PO86XypaeZ8MRkOtg2dEKJhDMuK7x7sd7r9LGdcyKoqbt0+fvr06RdffKXrWj0k2rYNFCKEJGmEMYQQMsYajUZNi6mHiyzLdP1lprsQDACJMayRZds0CUJlnidRVOY5VApIWRVFrTypCYn1P6w5yQAAgnBRFJZhtpqNLOE//OEP8zzXiW5bjmkbv/MvfvzsxfXZ5QwgE1EnK6rzq3GUFkGSx1m5DuKTk8unzy8Mw2i323fu3Gq2GkHg3337rZOz00dPXiiIwjg1DIsxUZvumaap6/pms8my7KVRAONKqRoPnM8XNc4TBjFCgGAtDCPLsizbtexGWUkhESZmlnEAaRi/AUpKWFXVcDRYLjd7u92b62m/35jOJ2/dO3j//Q8ePnx0eHjcaVkaAc2mXfI0jlOvaXMuAQQ6pbbtSCn95QwTVRSAM7UJwjhld+7csW07T0tD03WDEkIctxXG1WZd7u70yyr/9JOvCCGGASrOR1s7nAMp+fb2dlkVVVX1eh0AuWnhOAGrZWA77v7+wWSyWi7XAIBWq5UVpWU63W4HIcK5XCwCxsTWaKfX6yiJ1+sAUTUY9BqemURlp987OBwpUA+eECJUU6n+7ToipWKMq6+zQAkhEKmXWsx/76QM8ctmU71El4EUAChIdDDaaqVpYVlWlvGi4AhJhEGr1RqPx3Ecm4aOMeScV0XWbTcFk7wStm17nleWhee5lkPSPC2rSihgGm6Z5Zj8Kb41v1wNJQAAYAwBF/Wp10ez2ayq6uzyau/woD/ayrLs1vHt28e3azJtGG4ajcbW1jDLMtd1CdbOLy/u3bsvhHpxdqEZlhAqipJWp91qdj795PPRcHs6mc9nSyXh2enF22+941hunpeO411e3QD4MprLse0gCB4+fFjHyy0Wi/l83mw28zxvNltSyjgOyyqvqqosS8MwXKdhmmaaJrVKsV5R1XkIRZGF4abTaRVF5gdBFEXr9RoAYJhmvcpc+8s8z6YnJ/vHx4vF4vrqJImxQsprUs8Z3dzMomScbIrJ1eevrsn07CwZX2WnT83VjUrz9fW48gPKOI9iylgDUx7FlmkblsmFCIJgM5uvJ9MwWCMAOCvjcBP4qyLLq6qK49hfrf11UJVZUeaDQU/TSRSn3f6g3e62O4OVvxlPZ0UpGo3mYr7CGMdxjBBqtRq2bbfbTc9zsiybzWZvvfXWs+dPmOBSQQjV0cHtZ88fNRwPANludxXVNMtdr31WlU3XODt9dnJysrtzuL+/PxtP+v0+L7kSTHJWZKlp6RhjIYRGaB0LUe9w0zipl82EIEJfEm4whgiBNE11XW+327VCabVapWkK6mCNN+J3Lcv62vtPl1JauoGhMnWDCfCjH/3ob/6tv61rWDe0ivHuoPkv/j+/9/Hnj8eLiJrNg+O7B8d3BdIkJDkTUmHTblxdhhrR33//A0w13XGmvp9W4uNPPocI1y+YOM07vb4fhAji2ltFKVHTvwnCL/sRhJQSABHL8YI4Nh3XbbhJnummnRUVAFDXjfl8jZEmuLIsh1K62bw2Ty5Z7fQjW01r1O9t7wyLIgvDVNfMx0+ejyfhaj2juhwNbcvUdY0YupukUVUqSwdFUaRpTgiqWJ7naaNB4jRzHC+KgO/7vu8zBqqqXCxmhmWv/exnP31y5+4wzaIsZlJgqZgC4OIs8/3IsXUhK6VgEoGd3ZFlG0piTIChw/OL69nUH/S3treGQog8B0VRCA7CMBEcLtZ+q9XRDC1Nio0fKSCCTbrx06rkmyASHM1mC85ZyYK8kACAmkPzpif0yw/35d6wTsyF/X4XY8A5rwHlug7+eybl2iFRSgkBIJhAAKWSECMAAdG0g6M7V+ObKARFLgwLOLZTsgpTVFS5bhhVVWIMoyjY2homSWVZtkaoECIMs7IsdV3XdV0zDV0zy5JRqmfZL+Wi/CnV8M0utn6H18f5+eXNzWQ0Gu0d3RqPx/3eoN5Epmkax6HruhDCLMuklLbl/tEf/clv/MZvMM6zsijLMgzDrCw0Xe90Oj//+c+Hw6Ft277vO45zdXVVv17iOHWdRpoVNQlrtV6PtgZFkX311VeDwWA4HHLO4zh2XbdmPhZFniRJlmUIoTAMMcYNrwUhfvr08XA4TJKYMVY/b1GUuE4DKgGhms0mmqkZpt7qtjElNzc3F9c389V6Op1ShGfTMVT88uyk4Vk6JZyVk5vr2eSq4TkP7t1dL2ZpHLQar9nXhz/4y62Dd7RGt9HqKJuihhmDahIurv3p0/HZZy8ePp2cJVkqxMv3p+vZDc8hEHJWVlmKlXJNw7ZMBECepi8lumW6vdVf+6vlet3udXXNNG0vClMIKWeq3x9ujXb6/YGSME/Sbrd7cLh/cXGGMS7KDGFwdHQ4n08fP37Y7vaCTdLptvK8XK3nSZJhAl3XxYbtR7Gu6zqFRRK8eP7o1tHR3bffFax0XKvMC92gtm37q4Wh0c16TSnGEKRpKhUnBBdFEQUhxljTaM3mzfO8rF66OTQajXoxhDFuNBr9fr/RaDDGFovlarWqxSphGNY6qtrjY7NaG5peZ+wahnaw1728Xv2zf/47e/vDwaBjmDROk0rAP/iTj//x//u/+emnn//4Z5+c3UxzJpebaL0J/+QnX3S7PU0Dve6WAvRqujybLYVhjTfh6XihO22hAIDY931dNynV6xhJxhjFBGOoEVLrCIWotasMEZwXleM2AILrTVwxkeaZgmgyuQZACQEMU/M3cZ6nSgkI3zRPButgwxjb399drRZ5npUVO751MF+uykoCAK6ul1vbnX7fS5PAMEmeCUMzQ79ECJg61qmhaZoCvChTCGEYxARrDQ9cXd1AgE2LEIos16gEv7iYZSn48KM7VIM6bbICDIYtjIGhQyngaHBECFouoigAnuekSbmcZwgBTO3lohiPZ5sgubqalQVrt40wjPKMpUlpWi6CVEFimW4SF1nB1pt1t9vNUiklJERbLlLXaSZpUGfmUYprjiCEAP5bNJWXqUoQ6Lruui6EQLxMOwG1OvPfMIz55XIIDEsn5OU31OMphJDq4PJi7tjNnZ2hYKAqwWDkxHEShqHnNquS16OxrmtKScsyHduuSq5pehSEGIP6ldxstizL8sMwS0vTtOP438xF+TeVefWfxC9ntQAA2u32e++9N9ra8ZfLMIqzLHv+/MVkMivL8vj4WNO0OA41TcvzfDab3b17Vyiuadrjx4+zLLNtuyzLwWCwXC+Y4L1B/3p8U1SlUBIgWAdI25bLuVwsFmVZYkxbrVa32/3444/7/X4NjK5Wq9FolKbpeDzu9/tlWeZ5ynhZe1LWw+nDhw+3t7fDcOP7vmVZaZrXGHQURWmaPD95NptPv/jii2cnz7/88ss4jlutlmN7hJDd3e2qKmo2nGXoSZLwEjI277c7acCm48fBerY3vFWkC/aGhcfq5BPTwdaoz/sDC0CDCZDlqChdTHqmPXC8odeoKl4bOwshJBecVUWaZEmEEURC8IqpiiEA6t0lpVQjcL1e+v5qf38fIZTkRV5wy/VMy1IINhpNy3Km02mv19N106Aaxvjo+JCL6vDwME3jVrvxr//177VaraIoIMGbzUZw2XS9smBFUUCAqW3njAVxKAWbz25Gw77ruvP5UiP0zq3bRVHoVEuiuNVqcc4t26hvxzAMpZS6rnPGhBDNZlMpxTmrVcmUUoRBTauuuaJZlnHOdV33PK/dbvd6XYTQauUzxkajUaPhrtfr9Xpd58HnaQqgBFIZhpHmWbNtLf31w68+tWx6fPsIIOU0PazjIEl/+ovPLyeTx0+fXY8n600wmcw4A67r3n/7jm21KoaenV0/u7isEP1Xf/gjpFu5gDXDtqpkTZWtK/VLAAeAWihdt7e1blpJ6HleGIbBJsQYWJZJia6UwgRiotptE0JgWUgB7np2vRSrj/39neVyiRBar9dhEAhedTqN+XzOmahKTik4OmpTTY0n036/F26CYJNq1HBdkzPg2LahW0WWCwHqFXAci4uLS8PSpIKmaVcVxxjevn17PlteXYdOcwBxRghJEy4EuL6+1jSt3erdjKdPn5x3u92L82W71ex2u5PJzLbaYRhDQJQEN+NcStDptDqdDgCAELxYrNMEhGEcR2kcpYRoN9dxlpZpGiNMDV1fzFe25RGKlIJ5nr73/juNBqgNCuve6WuG4BtFBCGMIaXEMIw4jjgHGANKsVIvgdmva+KffgwGg9FohDFUQiCEFACcy063aVvOH//xT956+1bDc4q8AqhEkBDNmC39SvBK8EoCQlG9zr5z58719bi2F2m1Gi/1AmWJED59MSFEq/c2/57TAK96Q4wwgFCI1wGJ3cFenLEoTc4uz6azm9/+p7+toJRAbQ0HDc/e+PP9vd1Hj55gRKXiR8c7RS7Pr64X87Wm6RAi17ItU5+Nx+/cez+OyqfPThzPlUCkaeq6rm0689WVhKUAAmCEqa5b9qPHT7kUzc4oy1lZiHa7O53OpUDd3ihKWVEGmEDLdKQACCFNI4vFotVqV3lW5KmuU4RVKct1sEZEKSAubiarVdRo9EaDPZ06hGpRnp7enD95+iiKorQou4PhqD+Y3VxHq4U/uVYirgrh+6v+Vt+w+obTKSW3vdF0ffXqmjS9VuanRZjjSlZAJlWl2Z7uNJHZGh293do6bg6Ph52BEtJrOFjDQRiXFeOiIhiIiiVJgoAUgtdJeAoALtV0vhJCjfojwMVmtXZMoygTomEpRLfVlKJ4fvIVguVifjWfj4ui2OkNMUCWYXumGS3mm+m402h/8/3vhGWGTGS7A66K3b230ywE0ojSqMzLIg2QTFmeYmI2GoMsS9Jo+lf+yl/bGm43HTdJklIJoJlCEg05SOgQYoUqRCQkMq/yosoNkwjOORfNZjuNMyChlNK0NIqlYUKMVVEUrOJJnE4mE0oxxopquNFw4zher33X9QaDgQKiYplUrBS8kJKYlFDQ9kwlmOs1GTfHN/777z7Y3+pCnpgU65plOq3xpFhtsoub65IV+wfHw57nUO3u8dbW8UFQFF88e2G5/fPzGYWaRqksEoM6RVbqOm63G2kaxXmkWzrWqIIIYoopRQTXja0QDAJJCYojX9f1NONCAEzyQc+MlpEs+dmT6c72NsYlwXan0wUwB+o11Y4gyoXKBUtYUSrhNvW33367zLmUMs+DvYNWEARxyFvNFtFYs2VrulkInPJct0AW+WkRLde+41hVYkheDrfRxge9frvlaUXqI4YpJnY7EcKoEt125v/d7z361jc/4Bn49nv3vvXOt+OV0J1Vq9lnlXr2ZHLn7eH+bev5yaPhqNXqUSm1SgWD7Ua4AJPJ1a27O9dX0Wi3kTORJ9Vv/eaf9SzlOYACjeDcboEkYYADDIRpl0pqQmWORxViF+fhe/3hX/j1LYAowAIBTCTWgA6gBIAqqAjRgDIhkhApznl3Wy2WAcJYAcyFekXE4bwCgECIQY3Vfl2VMMYEAIMYgR8KpThUjEOdWhBKtwEo1V3LuHh+8pu/eYvnQANtgjngTCdIVFIn1NBAwRPNsK6u1wUPml1DQVHxUtM0TdM6nU4SR7bWNnXw7e9+C0A9jl5vAjFRjAkEtVdWYxBCBDEAEAopwC9DP1mWICBPn5/cXF09fPjw/v37W1s7SsK9vb0kSY6OjiaTST2ZW5ZVD1APv/iy1WpubW2VZXFwcBBFkec10jR9+vRxTYxKkoxo1POaq9XK85r1INztdmvLk88///yjjz6aL6YAgHa3VVUVhLCo8qqqojioBxzTtNM0bTTcNE2TNLIsM47jklWaoQdRIoSs9U9ZWqRJfvfu3aKofD9I03SxWNmWQ6neHwweP3n2s5//4vd/77/78uFjw3LOLq7COH3y/PTF+VWUFVnFDMdd+BtIKKLadnvn9TWpYqkKAyiUVr3etmk4tu2NhttCsPH4erVaXFyehJwWyGTEbu8c9++91zh8q394z+luG47d6LaJYSKdWo4dJckmWHNeDbe2Eaaj7Z3Fcl0HzlFMlvPZfD49Pz//+OOPDcMimnXy/LTZbO/uHwZBUO9qoyhK03g2m9156631eq0EoAjXa9NGo9HptDfBWgFRK94opWmRE6JVXGqGdffte1dXFwBIQjBCwDTNNIvrl7wC4hU+WKuaCCG14riqys1m7TiO7/t5VmZZjjEVQmKMy7JYLBaLxbIOzEMIUYQJQq5tJ2EyvRmXWTHsDU3NrPV5cRxXVZWmaU3MNgyjKHLbNufz+a/+6q/WGWy1tJlSaho2RRhD0ut09vd386psdzqjnb1PvvhSN+zzy+ubyaRgVRiGjAmlVC2JeWUyVjNLhFIIoXpwrhc+hBDDsGrsuNfrSS7abdfz3DiOD4+O8xJgSquSj29WjJUAgCwr3lwlxXFomJppmrUzRbPRevjVY9t2wjA0DKqUElJCpBzHKoqi3W4TQq6ubjgHhMBms0UprqoiijIIlcKq0WgQAjd+6DTcqiqCSOzu7xBCHn05x1p5eLC/c2Ar4Ny+u/PJZ1/deeu+ZogklpCEd9+6vV4qTTMYKwK/cJ1mUcZZykxTIxQBANI0r6qKEMQYcy0riYGUHFOIEBmNRlLx4VBfLWPT0jWdHhzslwUDCgkOHMeqPxfJAVAM1FxlIACiAILaploIAQATHCAE2x0bQeOVLF19fXx9wWp365cZUuCVdgWC1WoVpwmouTtAVayiFHDOEAK9Xvf8cs5EdXS0s1wubUdDBAMAut0upXTQ7ygJMcanpzd5mrmuGwSBrutJEsVxMp/PBeNSyl6v89Of/vTm5qbRsF99fJTiX2oVFQAAoHq/Weuv3qyGVxcX19fXcRxPxrOt0c69ew8uzq9+/dd/gxAyHA6DIBqPJ3fu3CnLcjQaaZp2fn4upXz//ffjOG42m7Unc7vTmUxuvIaztbUFENmEcavZm4xnk+my3ekFUUKpfnV1pev6j3/84+98/3thlCCEIFRZli0WMym54zhf85uIFKAeQhlji8VCKUUprjhzbE8pmKaZvw7KkkmBsqxstTpFUdV2cq1WJ03yn/zkZ/56kxXs3v0HvcFw//AQU1pxPhiNiKbt7h11+wOFyXLtz1arvYN907U0Uytbrylms5PreLGczS+n/tnTp4+zPF2vl5PJhDHhuq39/aOjw7si83m6Xly/mJ09mz35cvr4i2KzADzDrkttF2qUS1EJXrFS04hU1eXVje8Hq5WPMQ6CwPf9Wvnruq6U8v6Dbzz4xnvHt+784Fd/PSvY2dk5r6rt0VYNnbdarTSNG0335PQ5QqjfH0ZRUrvFZGVh2jYhpMgyzjkmVCpAqI6p1un147zIi7TdbtWv9FoCQDWsgJBKQagAAJRSCHCWFQihvKhq2m2WZXW6W1EUcZSmSVFvDD3P1XRKCDYMo56a6/4dQtjttoUAeV5u/EAK2Gq1EEI1RlevOwhBNa1qtVoVVXlyevaNb74vuIQQ84oNBr35fKER/c/86q/1Oh3f97///e//1l/8q58+fvr8/CrOi02QbPzQ9wsM8Ct7iNpqrO4+aplgvfWWUmGMNWoI8TLQrcirknEhlGU5zWaz1+spBV3X3dreupkkQZh0ez3LMGeTaRxmGnmNjdZ0biEEBNg03Dgq1+vo5nrjOF6z2ZSSU1o7mOEsy7Msy/M0DDIIAcYQAiqAbDabnusYJoEQGoah6TDLSoRlmjMlwXCrFYdCw42dA3ry/BLA4he/+OlkOvU85+nzJ5bjEYJ1A335xZNWm7w4uQiDAhOQ57mSmus6SVhlWQwgyDNOKR0MO1IwqmEI4JOnDxtNGwIqFW92GqySUVjnyfE8Kw8PDoIgrkrwNefUmE03GAOIpFIQY8BqvV3dHioBAFcKV5XqD1r+Ov3T6iAAAMCXDjWvrbRqEMawaU2xqCXMGGEAJMXAso2iyINwtbXl+v5qtDVgrNR1TUpJCE7TGEC5WPtlyQCAug5M01RCSiEankcw7nVbtmlZlgUwslznq69e+H64s/O6s9F0UpOs3zjDV5wgINTXPnT1cXR05LoNQuhgMPyzf+43r24m73/4LcvxaneKLMu+9eFHcZTu7u5TSr/88ssoCH/4wx8GQZAkMSGkqiqv0fL9gPGy3mpxzgFA6004X64Oj45vpjPH8abT6eHRrfPLi35vWBSFQtD3/ZKzPM8VBEJJAECYxBBCgjXOZZKkpmkvl2vOeT2IYaIZlr3yfaoZEiKCNQBgVXLORRTFt27d7nQ6RVXeu//g7lv3CDUrLq5uxutNkJeMaIblOAChdrergGg0Gq7tdDod2zTGk0tDx46nd8rg1TXZ/eh7jaN7zuDYdrZbbdswyNebYw8jChRpNQfHRzt7o0G/1Wg5Rts1G5bBi3Qzm0TLZbLZAK6UBIwxDRNL0y7Pzhyv9d3v/+Dp82c1GUoIYdt2HMfT6XgThRATIRFGmlSo1xuEYdztdjebzWazuXPnzsHBAaZkuVxKyRtOo3aiLjmDCJmmyXhpUBIEgWVZaZpKCfrDLaLpQRRfX18Pe13XNos0qfl3GiZ1HArCtVErIromgIrjGACUpmldYjRNU0o0m02MKaU6YyLP8zRNsywrSyaVqH0ZKNVN09Q0zTAMIUS/3/H9JAhipWDtj12WJUKorIpOt00pLcucUCQUXy6XXrOhUf3Bg28opaIo+fzL56PR8O///f/5N+4/ePTVl7t7Ox99//uT1fp3f+8PConWQVZWgkmlJCCYYkQAAJZlMcYghJr2cltUL5pN00yyFELIpCCEVIxVjCFCgEIY41arUbMgIcZnZ2dRXEAM0rxgFTAssyq5FPDN5+clCIOwUsi2vfU60DU9jkH9Vqu56PP53LJ1x/bKsoRIObanJJBSJkk2X0zzihmWm1UpY1wI0WybrFKIQFYCBBGm+flJTDSOEGq17fFVajpqvgy+8/1vxomPkcWEmN6U65X49vcOIYRpBJ0GP3lxmsd6WmxEBTxXoxoscrlarQyTQgiGgw5GumVrl5eXum5mRRpFkeAYAup6zTSLpFR5nudJoWtelicQo2a3ZZud4RAMey5GREDwknQJAUZG/R/17Ot65nwawX/HAcAvIRNvkg3qylCb3CAAEZCaDuI4BFACDDr9zovzRVFVmMA0TU3Ddl03jnNIcJYpoAhQaGdnq6r44eFxmaVA8J3RVpmWGGPfTzSNaJrWbpu2bVT89SaQEAyAVEAAAODX6Xgv96JSAoR+adn59PmLF2cXJROtTu/09Hw4HNYjkuvZ0+n0+PhWURSEaFtbW8EmiuP4m9/8ZpZlSRQMh0PdoACjKIpM066qAiKkW+ZmE0oFbyaT4dY2JHixXF9djxGmvu8vl8tuv6cAury6kVLWpm/1G0MpBUDN58B14lrNDuv3+7WhI6Z6GMcV55ZlDQdbzXa7LJhQsn4Y5vM5QFDTNN/3AUCNdmdre/fo8NZ3PvqeaVtCSUr1JEmCIAjXy9nN1Wa94EWxXExMis5PnwfLKdj/7qtrEo+f8mRh6pjanmPsFZmmaw3TdIsizUt/6Z8+evrHv3j04mweSN0DRltqDeh0od3V21uQSygkrxgruYapbVoEYVXx9x6899Of/pxVwnEcomu2ba/Wm5ubSafTsSyLM7FYrYXCm014//79nZ2dzz//vKYc+ps151yn2unpSZ7nglVZkta/KSFENw0ECcZ0ezRKo5hz2el2S8azLEvTRCnBeLlaLcqy1CmpPQoZExhjCJWCEiFUo1VZlgkJypJVFa91x2ma1mXOtm3H8SzTqRmXjYbrOE6dVl6rLTVN47zyGi4AoN/3AABRlBTFSxuYms7VbreHowEmKMuyVquzWm9W6w3EpN1uN5tNycTf+Nt/4T/9T/8PYRD/w//TP0IY/MZv/Poq8H/0s19EWVkJUHEeJmlV8lbLrnvAV02HeiOnVEpp2zalGgCAM8k5/9r4TtUtommaUAGEYZrGuq7HWZompWUBJaEQsCiTLAMEG7VKqj6yPJFShmEouLJMp9PphGHZboNagp1lAgDYanak5GWhXjqBC8w5wAQoiQzTXK03EBhSVkqBsqwGI2/jq/V6TainW+Ty+ulknHf6JPDLW7e2FlO1CSIFwHy1RJQkWbi93QvX5O5b3TCe376zb1qaEEw3QK/fMQzguXan62AMw1DN50tMVJ7nURDqOh2NhlEEAIRlmSVJniTCsI3rq9XB4R7BGoaCUhpsUkRQo9G6Xq6iOPvo2+9tbTWFFBCBipdfvw8UAAgiIAQ7OBykafqnEmle9okvcWcIAKpXdUqpl1uaPOOcYwwQBFIJAECv12o2m1JKjOl0PusP7TRN86xUSjHGIYSaBYu8GvQ7UsC8LJIs1jQtiiKEUBKl0/FEKWBbnmWauq5HUQQhhJi86WFTD0CvGtW6Cn69zqy/443e1mu1D45vPXjvg92D46Pj24PhFqFUQRkEgeu60+l0tfLv3LlTR4x/8MH7Uspep9vv9xUQQogoivb3DyfTOUKk1WohRMaT2WYTUEq7/d5kNu30hpswqqqqKIr79++v1+skzxSCmm5SSgWASZxZpgMwaTQamGhJFiOCO91uGEeWbZu2FUYJphoiJMmyTrtXMK6AiONo7S8hVJxzAJSUAgBZFJmEwHTsIi+fP3/x+eef/87v/M4Xn391c3Pz6aefhmHo+35tcO+v1k+fPgUCTKfzZqMRRdGTz3731TXpf+PPQ2Kvr5+Q6NH1/Cd+9GixfnZ1fbLZRIq7omizrEeRSKPVzcXJ9enTcDmnipka0Al0Xc+2XcaEEMpx24bpAIBv3bq92WwIRN/56KOaiUJ0Iy3KH/6Fv+x53v7+/s7+QZbm1+Px1u5Oxcv5fKKbpuXY3W632WwKyWazabfdXC5mP/vpj8sy1zRSlmXBKk3TPM9L07yewizLKooqTWPO2Wa9HHSaDx8+DILAMIxaQFW3q7yshBBCMoCRYRiccyYkhBACtF4FEKLauJAxVu+has5NVVW6rvd6ncGg1+12B4MRpbpgPPA3hqZDJRuerVHSbTejICOE1Ogz1Yimaev10jTNbre73oRMKES06+txEIZfffXVztbw//7/+If/0f/yP/oH//D//E/+yX9jWdb3vvc9u+n87JNPH704hURf+ZuieqnsUkpppk4oBgDkeV6/1+vCxDnXNK3ivOLM8zyAkaZpjHMIYZ1xSSnN06RiBSvy7Z1RxYpOp4MxRhgopTrdnmHoJQNSkfSNmKGa7R+GIcb0/Pxa17VWy7QsA0K4u7sLIVgt41ZzgDEOgwQAJCVfrQJCEKVQCNHtDdNESanZjll3mq2mySvgNnpZzi2bOp69szNsdxwEca/f/Na3Hzx/nDXa9PT84vTsMsnz6TUvi+rOvX7oy3bXPrzVWi2k6zTD5LLMMcWabWNKMatAVQmEoE61OI50W51fnu3uDSmlYTw3tOZ8yhiPyxw8PznhXGo6XC/XRcoQAkLBTVaFefrxx59HyRIAxTkwTAAkwBgBwAjWlAQAgZ3d0dXF/JX/o3rjePkV+aoa1t8gAQS2Y1S8rH3MVN0b1m2mY3bbPQjwfBGHQTEabS+WG8ty2s3ueLrMyrImtyoJi4pVrGA8sx1ne2enfqNr1GSVWvtxGJaEkDAM15us1uO+LnBQfr3KfFW1AcEYSoXqMfkljg4AAGC0fxhuNqsg3BqOAIIVZ1xUaZrmWVSWZRRFBwdH29s7P/3pT7e3tyFigiGMcVEUmqHHcby1tTWfz+M4vn3rSAj17OlJUZQAkdH2dprnmkbHk1lZsu3tHc7ZfD7HGCdREiWxZ9msElxUmmYYhpUWOcGaUiCOok6nJ4RI07TZ9OIojaKk4TWztCBYkxBsNhtZr+c5o5RCCOr1TZwmSZ4ppWbzeavV1iGwbbseJHWqaQRjjCtW3kzjLM1dt0EQffrirMiTm8nk3jt332q+5huKxeduf+juvc0q8hauQBItJ1cSiLTKVuF1WVVeq9m2tjECZZmLqoxWabae6DqWijVaXYwxANByPWDbkou4KE2vpYT0HHcyuen3+4hqeVE2mq35Yg05n85nQlzcuXU7DjZnF6e8yLq9Jja0g/3Dp89PACyUUhghqEAchJ999mlZln/xL/+lVrudJNnOaDifTeMgRpouJdAoCaMoSopWpz3stvzVPI7jbrcPwCmEUFQMQgwhVkoIxYUQGENdp2FYP/wIU1zkVZrmjuNomqrDahljSgnDsGqFSR2kiRBKkqQoiobrKSX8zcp13TTLKSUQwmZLi6LIts3NZrOzPYyiQBmmlFLX6f7+wePHZ9/61v0kiR49evJnfu37f//v/b0sSf9X/5v/9WoyMyS4ffvO/uHedDl7fnYxma+TJM3zkhXMtW3+stK5RZmx6uUtXhfuoijrGT/LMqVUq9nBWEkJCKkhTmCapmnpUbSBUpQ879uts9VSM/T1Mjq+00oTvl76nYHXG8RFzrym+6q9UEoZho4gVQpenG9MCxzfOjw7vWCsLEumUS3cVCcnZ+9961ar2RdcIYSKXLqOA2AcRZGaLssKzGcbRBAAwHUamAjLQtNpyHnV6rbDTRLlL8Kgvb3XWCwWTpO2mm6ZKbuBvaYNI+2Lr/z+NgjChaHb4/FNr98QDAgOl8tUMR1TSTXQbHlp4kugsiwbDkdFmkXJNElw02sjLBGWUVxBAKgJ4ggc3W4RiLqDxg9+5YP/4v/5qZR8Nl39+JNHDEgA4M5u7+J0yQQvyhRjChQEsATABAp0+0iIMgoFAOjN+vLLbD71NTVHIPQSsvUalu/7AGAIYL2lk1IiCIQsoyihVEMoZwJcXU+Xy3hv58C2jBdnK00jhkUwxnGaAIAIBl7Dyor8q6++slyn1xmkaYGoc3p2s/ZlJSpEUK/nKknePB+EAADqzQ4RAECEUABKCADGmGqvl8RfPXpMCCIIM8abnhdu1hiBPE+BEsvlcjjYOjo6Ojk5OT4+TtMIYQ4k3QRBHMdHw97z5y+Oj49PT08xxq1mZzpf5HnhuU2u5M7Ozmw2u56M1+v41vFhXparxdyyLNOx15vAsqyjoyMAwPjFuOl5mmYARGDtlAcEIeTq+rJmMEVRAgCI4zSXfDQajcfjklUAACF5o+mGYWhQezqdJkkkAA/j2HUbhOrr9Xp/NBRCJEkCgZScIYQ63XbP65ZchkGcxhmgGCCNK7RYbuKff/ZQew0u5YnS0ut880mebOa5wpjkJWu2BmkhCHJ7W4OsqIIS6DplSgxGI89tc851A4fRSrKcVaXjONQwWFEUUihKsWk+//KpYZr7w35eVADCPM+7vUEQRFXmR1EihHhxdjrqdi3LkgTMZpM7975BNHozGe8d3AIAdLvd5XxxeHCwDOKHD7+yXec3f/hbq+VyRTXPa+RJtl75Tddar2ZxFEFCgRINz7t88XR3Z99rdjebf2k57STjdUvluc1CFUophFENJdeDJ8bUoEYtjK/bIiEBIYRzWbNV6rC0siwty0qStCyrFKWuawMG0jRutVpVxbnglOJXIXxFUViWpVPNMIznz5/vbR8dHe789KcPf/CDd4f97v3793/yk5/8k//6v5SOhQi2qPm3/87fGU/PVhv/ejoJswRKRBEWSNREQtu2izL7GlC26kUh5zyKona7Db+O/UnTVACV56XXaHAuqa6VZYkQNwwjS5eaRlbrBdUw51WrbVq2liZVmqYkzIUQBZMuer1KKsvCNE0pZBRFh4c919PH45uKFf32oCxLAFC75ZYZu76+dpzBenMthKyd+zAGUMLFfNVseOtVhLRK01C/3/fDC03TNn4GESAE8ooOdsDjn6ujt0FRVJPF5dHxWz/+4xff+I7e7lif/yIYDI1mt8wzZlr6zSSM48Rx7TyreAUkZxjgIFilKZJCNRsuIQgjOplMCQW9Xs9fJ5bJXM/cXHBWgfvf3Hn86YpS6jnNTsf77PNPfH8jZVMIFcTZnbdv/+SPHpc8Y6wASMO0kiVQQEIMpJQAoMOjnU3gY0SFZG9uBt8siDV8/Oqvarsb2zbn8xqYhggBhIjgEkFgWdZouDWezHWNsophREzTDMNoazQyDSfPE9ttUEoxMdM0VUDmeYkoyYpUJ3pVVawSmyBdrYXlYMZYlmX9fn8yXjquAYD2p57eyxIJAEAIQwiEEG9aPGxvb9u26zie5TgKgiANozycrWc346lpNt+5/03GYK/XIwQfHu0vl0sMBauKVqPpL4OD/aPFYpGEwdHh/mK1nExu+t0ORup4fy8KgvHV2HNbb909tm1TCGHaTrc/mE5mWZZtj7byPFGSsTLv97tB4CdRxKvKX60a7lAz7NPLS0ZgyNgkiM5n6xfjWZ1X6ft+zaeFAJdZpWsmxMBruq1us9Vq3bl1y7MdlheyZCc3N/NNsAz8rMiJRodbI9drzVf+5HqapxlCwF8vd0bD28fHg36/1+m+uUvNGdK23rZu/Yp9/y8dHj04OL6/s39vHeS64ZqmzVglecXjjcxzz2zEUZEUFdQsZHXbW/ca3Z5mGgCoLInzLGVV6bre1dW16Zj94WC9XjPGdI0gCKDirEwQgowVlqlFob/2F/46yEt56+57QRA8f/rsrVu3DAS6ni3KRCPw+GgfScHy7F/+i/82LwuAScrKpCqAqa3mVxirKE65UA2n4ZqNZ8+utvbe3t4anpy+8FptotGiCMvEb3i6kHmSRgAIx9IwVFBC23BHo5Fh0qTI8rJYrdcAYkzJ1+wEybGqFBNAMFbqVGOM5XkKMDAsXQjhuc08Y0XOdWJoWK8N6pWQ7WaryEvFFWMCKtRt93Si9rb7+zutF89e3Lt3/9Hj5//H/8v/jSHM/cyfzP4n/+HfHc9vopSdX65nyySvFIS0LGszGFhbz2KAMcBQSYqxZRg1g8cyHcf26jquaVoQR1lWmKappCQUVGUKEY8THyDptRpJVmQVH432ATQIUFRpZVJgiFaLwNQtLKVkr5+QYCOqitl2I9xk73+4/937H3TtRstrIwjn05lrGhUrAFVFrnK2MV0TI0NJYDsRkDZHxLBgWUVliQV3hZJZnjAmTKua3wBC+fX1/Gj/LZkPuoM8D3u9/ujqBcjExf6xt55p88Uk3zjf+MDTKIUMt1o9y4GixBal29u03W6kldQM7HlbAJUAgMll3mq0m55z/+33IAHxhltaSKA0SRehAkHQckmaFLmwijL8g3/1ydlUJFV5sNXUIKqycmfL7XqGAYltahBUggEFmaYRJcHbD7oYWlt71ounIVcMIf1lq6WUoVPP0i0KGwbSlAAKm6bCWAGAIRIIAYShZirOapCdS4mEBApwKAHK6d5OQ0lot1ijCzA0MATrTbxJCs/R8wJgpBmGWZalUkLTCELEoJppeEUB4rxksCI6aLdplamqKvwVOH2+AFI1nNeRh0UuAYBKCQDkK1daBACQX3MRNO01uXQymXDOKaXL5TqKYsf2gCJKovv33717966u61G8UVA1Wt6jx48Ny97dP8yKXDN0z/MMwxAVGwwGjmMtFoujoyMApKZpo9FwsVhApJqeU3scSCktyzo7O8uybDQaKaUAJicvznb3D5lQYZxKALmUJWOGbY0ns0oqCcnJ6eV4OmeMGbrmuu5sNmOM1Y9ELTZgjMVxXJZlEAS2bdf6WcuyajmtlOKdd9558ODB7u5ulhU3NzcQwvXGhxjpun7/wQOFoGYYt27f3drevXNw/9U1OfvqT1789F/6Z39STH5elsV0PM7TsNttc15tNusg8NMiy0WRFGGUrli1CZbnF89/fvLwj8anP1ten1JR5OEyW880kRmqKNYzC7Lt7V2sUSY40bUgCPr9flVVvu/7fmiajkbNd+7d99wWpfpguAMBXa/8+oppmtZsNl3XZbw8PT1J09hrOEkS/+hHP0rTdLVa1TKprCw009BMw202SsaYFFu7O4ZtpWlaliVQqJ5wDcuEEL7cqTFWN1y1G+ByuaxdDouiCIKg3lXXLyEAAEGIEEKIhhApyzLLMgix5zYghK7r1p2g53n1+qLOFEXkJeulJsTUxFLbdUpWua774Ycf/uEf/uHp6em7777r+/5qs/of/t2/k7Pyq4ePz66urm8mVzfjJMvBG4ZRnPPa0aOOWiVfy+9eUSbrwJbabK32qqjxFozxK5fGGm9pNTuEaI8fzQ3LkRCmudB1/cE771CKLdugb8j+HdcSQmRZZjvm9fX1zWRcCWZY5nQ6tWzDsqxms5GmZZ7n9QZJSg4hqHEGw9A4U57ncc7jODMNW0ohhLAdnWhFVQHJQZZHm3VyfHvv/OL5xo9v3RksJvKdbwxW680XP8uwtTh9vqEUSqEDWDlWr9F0DJOwknR7LgQozeK8iIejNsLYcbxnz5796Ee/+MZ7D95/990XJyuCTdc1K5FvNvLgYJtSijHYbMIoiglBWZYhDJTCmmEmifScwc7ByHSEQhWlFCiAgF5Vxb139mbjarAjJbNqPpOQLy/vG0aqEGNMKSQYYKTfuX0bAME5gBC8c+/2arUBCmCECEEQwq8tvQDE1Gs4luUSbEoBhCghYpTiH//4M103m46+mK8o0SkmFJM8L2q2w3g8tSwrSZL5fEkpbTQ8BeTNzaTTdo+ORgiBNz1sOH9TZPmSJY40jYAaahbiTVUzQiiKorJkQogir4IgTtLynXe+ASDd3t3xg2UQrQGsHj9+uLW1dev4rT/60Y8Xy41hWJ1Op+k5AMjRcBgEwfb2iBAUx+Hu3rbv+45j9/u98Xhcmw8yxnzfrzlr9S27CUKhgOm6YZRiokOqBVFie+2iKJ69ODXd5ibOf/rJZ3nBPM9pNuw6r8M0zdqEsn664jiurRg7nU4tnxoOh61WS0iuYVKW5WKxUABNJrM4jpMsPT09HW5vIaphqr04O53Nl1c314v1iuiaaryOhvjmd37j1u0PB9vfMMgOxbDbbpqmaRqaplOIQcEKyzENx7VcD2OsJM+TsEyCyenjrz7+4/F0eXU9fXF6sd4EeVFVJQcA7Gxte56nlNre3q4zJ2vz1MFgsH94W9ds22kGQXJ5eY2JDgBcrteNZtdxmh988C1N08IwpBg5lunaumObg25HCfazn/74/Pw0TdOz04tOq+043pMnz5rNZu3lGUVRrajL85wJpSDIsoxxqeu6EKoGRmrgpSiqLMsNw4iiyPd9CKHjOPv7+71er65fzWbTMAyCNSXAS+YdJpTqruu2223D0CpeYgJ7/U5RZgoIzaSGWfPFSM2wkVIyVtZBw7Vzqmnpi+Xsiy8uT05OasXnD371B4Zjn1/fZFx8+fjZxc3EcZucyZo/WA/p9aNYl7P6jS4BqP9HmqYJJTVDz4qijoV4CTR/vS2qa7Rt21XJIMSaZjx7+qLZRMPR7tn5lduwGROUUsvU93a3XOe19a9tmwAATSOEQqXgcrUyTJPxklK6PRwVWYqh6nbc+saOogwAQAigFACg0jQtcqnrulRVnkpCdM4rwzBczzi+0+10XAhAGK2CTd5s6Tt7vRcnlzt7nclVFWfTe2/fLjPz7jtafbazWdTrty/OFgDytb9Sklxe3bBMYgxcx2y1PELI1aWPkfad77z3o5/80fX1NYJgONhjIgFAYQi67Q5QmCAYrOIkLjSNCCGoAaKghBDGGYxi5oczCcvRdrMqGaVQKdJsmb2Bt16X3/8zR5/8/PQluxPhmqhfo+RFUVYVq6pKSgUgTxN+cnKys9vTKOEcuA1ts8oBeJWipwBAAEGpwCZKHMfcGh1Yeq/d6MVJSKiyPcvQyXy2ajbbGtaAAPUyBwHkWHZZstqjQCmlaTiKfcvWMAacqTwvgyCqKvBmffuaV/BLNmWkqjgAiGCkFHrTeCeJsyzLCKJlWSrHIZpRxcl8vun3ei/OLhjPbUefzCedfjeKkt/93f9fmhcPHjy4devYsaz5fKqkbLeb67VwXffZs5PRaNTyGn4YxGFUVOW77z4QCkRR5DhOURSe502nc6obpu2E6/Voe8ffxGXFGqZVlCKvxMjzFtNplGa2Zj756kmSltvb265tt5vOeDw2DANjXDebZVFffVkb1VCis0pgpNIiyrKs2+3ezOZKSkr1z7/60jEthBCC5Patu3lVtlrNsiyxpmsY7e7diaIgr1iHvmZfzy+fYgyVUqapl8LiUqz8DVPIsFxdN6u8yIvKtLqW4emEOo5jWxryHFBmgJXruDB0etsygKFxfxX4G6dnmY5zdX4x3N7aBJGmaXlRhVHQbrZ73f54PMYaHY/HlOK9wwNevsyNsyzTMIzZbHJ5deO6LtGo6dhPnj4dDvqL9Xo0Gkkp64jRxWx+eLBn2/azpycEa61WKwzDmhmzWq2KkgkhqopxoSilUgIFq6ri1KSUUkK0JM5qikPdXlFK+/0+paR28C3yAiFkWRZXrG7HCCT1qyivs/QIrn1VsywLNpujo6Msy4qqrItRxUuMoKYRVjIpJYYoiKKerl9cXY0Gg7/7d/+C41jbOwPHca6vL569OMEIGaZ9cnETJKXumI7j1YhffcfWjOsarQYIcSkxhHWlQwTXsS21BKU+AISc81p0XBaFEMowrThNdvcPrq6uhFDtRudnP/9stO3u7Rw8ffL89Oxk0O1xJnQK33icGASYEAQRUxInLC+FjOKkboeVUqZhFBVfLFZ7+0eWpfmCUYpMExV5Ydl6VVYQKUJgkcFgkyHM+v0uq+Ik3SDkQUAhVEriOFk3W+aTR0tEn/YH3mKWLidFs8tfPOGHtw2MaZzGhDhHtw/ms+u252IMDZ0iqkwLAiB1jVRl2Wprtu1ejcftl0ZtYDxdNXtEh45G8zgJbiZXW6PO+XS90240W9719cwwoZJGliQEO6aDKcVVQS1HAQAINjhIv/2db3/26VemQQlV82kEgMIIC1FCCBFUUgGkXvo7MKEwJrzkEOCqqrJ00253i2qDiSyL2hlTQQUgkAARAIBQfDJfsKqY3sx39o4nq0cAgNFWXzOMwAerqd/tYkp1wzAMw6jyQgG1Ndjyk0xK4PubwaB76/ah72/Oz6eOS23L5SyVQvZ6rWbTe/XxSQEAQK+6wvp4mRLFhZC/LK6u81sppUkcI4Rs2+71BowxhVEYBAipMA6gAtdX0+fPX+zuHHz0/e/3uz2MUd2Rdrpd121QqgeBv729zThP09S27eVy+cG3PuScI4QJQoyxZrPp+0GUxHsH+0mSaIaFMF2tF57XDKNUQtBsd+IkX2zCQoLTh48m0/n3vvtRv98vorCe14bDYa0Gq20tal+v2lHi4cOHdbzWcDgkhPi+f+/tt5fL5ePHj/f39yGhmCAM4PX1tel6QXhR5Pm7776LMZ7O52kaB3EEW69x9nZvq+JstV6HfmZoKIpTiCglpCgqDrDntiBGgJdJsAkliKKISUkp0U2j02l1Do9AFCpWJbMFyzNCdaoZi+VaQqBpWpZlTIpaRtJst2aTacUrxkuv5WkEQajshqVTwhhjXIg8syxnf39/Np8Irra3Ro8fPzw+2J/OZq5jMalOnj+FCty7d2+9Xrtec+Wvt3d38rKIkrTV6UZJPJlNNaTysgzjGGMMMc2yjBJNwZJSwhiqaTQY0TRNHcdxXbvb7S8Ws8Ui7na7ZVUmSWqa5uXlZT0oSwiklEAhTdMcx6GUAllBCOt5fHt7m3O+WCwMw6A6A1BCCIUQlJp1lVcYR+FG1/Xvfve7/X6fV8VsNsnyyPd9AAQ1dEO3Hz4/O7ueuV4rSwvDsrIsYUIAhCQAosbWMYYYv6L1AgAkUFDK+ncBANQTPaG0LqAQKYSQ67pCFgAA27bTNEUIbTarOAK6gVzXbbVaQgil8Hw+7/e2q/x1Zp5UlWmaEEnL0rOs4KzsDbams2Wn3QzDMIqi3/qLf+l3/sW/tCwjisJGww1dNp5GlOoI4qrKENQohZoOlz7fGNywC867mq7ShYCC9fpNXTccN2eMhWFw//7uxfU1AOlqqmFS7R15X328qXKT8QwT+eM/+ezP/Ma3f/ufXGaaMJyi1di6UJdVjjabjeeYCIOyrIQCeZp2ms0oSobDju8HEpdVhaQEhwddwV2lzPObtRAEUxpHrN2grtmsKiCUKKv19miryKGuLXTNLPL8G9/YKqtkOS+//b2ti9MIAKTpqioRwgJDWK/hEAKUUsEZ5wpjQBGQElmOvQlSgmbf+OZbk8kEAIAxAZyDl5kkdbg8yDJWjwuPf/8PPvzucRSEjCtQys0mYAJQQ8ecxllq2/ZgMCirBGO88QNdMzNV7O0d2Da9vr4BAFBKJpO5Rg3LpHVgBgDe19MxrZGGN2lAXxvpQAB+uRr6fhDHKWOs1WkqKMfj8XK5TNM0iEJAMNGNTZiu/ahi4j/463/zr/7Vv9JoNNI0hRDWs97BwRHVDKTpg8Eoz3MlZafTmU/m9+7dgwqwktVxDUkURVESBMHuzn4SZ0VeUUrjOIYQl0VVcsaExFRfrjfnk8XF9WS5XL77zlvv3rtbpqlSKkoywzAYY2EYOo5Tsyjq7WG73eac7+zsvfPOg/39w8FgsLU9PDzaXyxmWZZZtj2eTDRdL0u22viGYcRRlKUpZ+Ljn//i0aNHz56dTCaz2XTx7PrF6wfAaJHm3tGDP3vn/T/f6/fv3r17cHRYP/wYYwyRRiiACSYp1UqIC91Spqd5Hdtp2cXNKShDqHJcxRqoqsTPwyWRxcHB0fOTU90yXa85n8+Hw1FZlrPFvN1u137RaZ6fXZwHQfD42dMgCCbz2Ww2S/NMKbW7uwsA8DzvG/cfBJvlW3dvQylaDVfX9fPz8zRJvvrqEdGM23ffvri6cbwmxHixWjEh4jQtWFUURVVxiCmEkAkJMEKY1hlPTIiCcWqYumlZjsOVPD8/T9M0CILNZlNvYG3b7nQ6rabX7bY7nVav1+v22l7DQRhkeVIJXqes2LbdbLXGk0mdT48x5kJgjOssXUiwEEIIYVpWs93wff8f/IP/+rf/2e/oui6EUEpKKQnRpkt/6YdZxU27AQAo87zeANbLqXqtWcuQ6zeilBLil7zrl8tKhDRNIxqtB2oAAEQIYZzGSb12ZIJvQt/zHE0jD+7vm6ZxdT3JskQqTimtpTW9weDVzVCrFSjFjKeO3Viukvl8KSUgWDMM4/j4+Hd/93cVhHfv3k6SJI5jQhEmoG5Ru902Y0yqElMBlI4RoRSHQYqwNHRKCNnaaSRx6TZhmkjbcm1Hdx17tRRJoN2517263PRH+mKM2u3mnbcPT17M0yLx3G4U5giD5XJlO4RVyNStm5trXQeOY/m+b1vueDbLMmFaqKhKhGkSySTJhtvWd771UaujER0kSR4EoeAAIVmkotcBRZJPrm+GgxZFdHs4rEpm2fjOW7s//9ljjPHddzqTSyaE4Fy+4lS/VB9CACEEENVbOEqhUlUap4YOuASNhrGYBq+bMvwSwZBCmBQaGHAuB8NuXgDfX3uN7vjany82lZBuAwslbddaLJZCiChNvFYrK6s0TetwRgjQ2enF5eXm9u3bNQuqLEvGWJr+sgu3eh0J9boaQgiAUlKB+oX56ps3m6AGH+bzOee802sPtwY7u7udXhtC6G+i0XDvvW9+9O1vf7eoytOzk5urayG4bZpRFOm6btiW4biG6Szmq73dg53tPc7larU6PDziXLiuW9+C9dazTij3fd92vTpKlBBSc2gRQnEc30zG5+N5GCd3bh1/9P43VJWxIlVK1S7W0+m0FqjUXvOmadZToVJqOBzW83it6D45eQaEbLUarut6XuPq6rqsqkajBQDQdb2etnRdT5PMcRxCyOHh8a3h0atrUqxfOGomoy9x/ghpEGto7c9Xm3nFciny68uzk+dP5vP5ZrPJ8zSJQ1lVvMySzfL67Hm4WU8nN5cnzzebDSbEsm2EsWk5k8mk9s46Ozs7PDxMkuTFixeDwcCyPQhIUfI7d97yvGaWF3t7B4hqjuNUgjNWUkoJIVdXV6ysBJNlVezvbiMM8jzXqZYkyXQ6jeO4NpScTqer1YpzrpQaj8eO4yCEKiaIRiGEJeNCCKWgruv16hAAJLjEGHueJ6WsIW8I4c7ODsa4zjKtzdOUElmebDbrOA6zIs2ypCzzKi/iOJRQttoNBcR8McUEdnrtsswZYzU/EWNcVRWluCzz+k4oiuLTz7/sD9Df+lt/o9lsBkFAMbFtNwrTF2fnYZw1W72SsTzPoVI16FdPOrqu17KleocIIQQI1l8RQhBdkxAggjF9DbkABOuyWLeHlNI4jppN7/z8bDDsdnutYJMNB65pGUCCLMs6vcHnnz2eTVevboaKlWmaQ6SyXGqa8dGHH8RhEkcAQ1IWzPOafhBpup4kied5aVr5ftDtOlywJI329vaajXZexBgDAHQEDdM0q1JACPwlE0IIsJlPI68F0ggYhvXoyYuqVKYBdYMWZdhqevsHI8azz34xwQRYLnj08AWACAC0XmbrTYoxjkMOFD083JcSlFVWL0M4A7oOdFNaFjX11mKWDoYtqmX/5L/67SifU50gbNq2qyQWTJRJvj3ysAIyc9+9f+g2iiyNEQS/8mcePH18laeg1YVCiMuLta6bUgLL1OVLjMhwTKOGsF4CsxAJoTCWhm4UOdjZNcsys0yX1K7XAGAAKAIaVgQAS8MEg/lk1us03nq7xXh5cTZ9684Hk5tI04jbcCpeKihNh1a8vB4vpZRlwQBAk0ksBXj48HGa5o6NLMthjPf7XQAAY6zTMQzj9dpXSgleW5O95KiiuixiBAEANUpYH61Wq7aDPz8//8lPfvRP/+lv/6N/9I/+8X/x//pn/+yf/uLTT7K0SLMqTcrPP/tyOp2ufb/WQ33yycc/+dGPCSEIkmazZdru/XfeIYTs7OxdXFzcvnVH0zSl4Hq9aXqNJElqCHg43Foul47XUEqJitU1uxY7c86TJDk7O8vKajDaevfdd4Fiq8m44dppEhFNr5vBdrtdpxLXTymEMI7j+ouEENM0fd8PgqCWu9W+uH4YFKzSNB0AgDXq2Y6omEE127aVUrPZzHUbl5eXHz9/9OqazNfJ02dXn376/KsvL09Onnz6xc+uxpeEwrU/n0yvF8txHK6jUAYbrrhuG62m0zIBaWj2Vqvf2Tnsbh+2tvZ7e7fN7rYzOuC6d7NJzs7OXNddLpd7e3t1wtzx8bFp2tfXU9tp7u7uLxd+kXPXaWnUDDaxbupVVdUE8laz8+GHH67Xm263SyC6vr7udbp5nteL1Fqiu16va2eNn/3sZ7du3Voul3XdAQrV+wQAUFVVGGOIkWma9WYaAEApZZWocXkAQF1AIYRJktSUz9rIUkqJAKSUEg1LydM8q6oKY1hbIiZZpmoTSctaLBYY46JgtSsiJrDGUvKq5JwjSl68eHHr1v6v/dqvOY6zXC5r6V6R5VdXV7bl2Y7HhEzTtNVq8aqstwp191fTfepaXy8r6/1gXQ3rvSf+eoiuq2E9H9WqmDp3rJ4t+oNOWeaXl+f7B+04joMgSFNweHjIGG92muvgtV0ohDXopJpNHMfpYrHY3d0/OhrMZrPd3b04yaJEUsOsT88wsFIgyzLDMBzH+fjjT4+PjzlXEAEMjThOIISaZiEEqoK4rpvm6zgqLBs2vL4UsNkEGz8THKWZXxSsKNIXz+ejPbCYgMePzw9vO9Nx0G63qkrwSu92AYSYMZRnbGtrSwFACMQYB1HcbnfTFLQ6lm5QBI3Al5yzKJm3Wp009/OEt9vdt+/dV4VgFbBt2zQwQWB+U42G3sGR9fTpTa/X29qynj2eYuAd32nNpxEAiDMFAMjyyDRtIRQGCmPMuSzLUkqpagBXYQAAggQBQKjM8mQxj3f3RnWeJQBAI8TSdVPDGsVYAdtyoyioeKppxF+rLBXb20Nd1zdRuLW7jRCwHef8ctHrOabljKeTPM+3trxOp5MmebfbX63kerVZrzmE0HYsCCGltL6Tv66GqlZngjcOBAAAmDCpAJT4tV8ROHny6OFXX8xmM41ad27f/85Hv/bRh99/cO/9b33zu2+/9QARnBXp8/OnVsMFiBpW4+jWsW4bSZG3h8P+aC/NGNYtneJlFO/dur0KNhXnh0cH6+UiCta9TrNklWmaZfFSvWAYlmWYeZoBKA3DiOMQazTNC8trPDo5ifJiu2XcPRyZGt4EEbHsrCpt18qzKM0z07YkUJqm1Y64zWYzCuJevyMk8zcL1zOzPErSCGMMAJqHKwVBXWoRxvP1ynFdWYqqZAAAzdKzPIZE9QcDBUCWV23v9XDU29kxvcbB7bdGu3vbO8dbo8NOux+FKROqYhIRszvY2z/YHW0NOr2213QRgd3hoJIyylJcVjIrZFGJssrDYH1zWQWrdDVpdjsCKMe0DELHNzfdbh8ibelHQqFWZ1BWXLdNzTLTqvjt3/lno90dQnSqmTlT6zDdxKlpuYZpbW/vEKy/dXx3d9gfNiwqi6P9rbzMTMf++Y9/4vub3mj47PxiutkATV/4a8fzCJJcVBVjGSuZUsQw6ldoUZZUM6pSKK4QkIJVBtV1zSoZEwqu/Kjd6zfb/bQoC1ZFaQKppjDRdZNizdStVqNpGAY19KooNEKUEKwSUgAECcHGchUoBWzLKoqqLLhuGrUTDwdVbXw5HAzmk/HNxWkcbUyDeg0rU0pRGkVRFIaOZWFK06qQJq0qphSAEDUaDaWUqetQKcFYrdEGANQzitPwsiyDEGqUlHlRY991BQcAYYwl4FJySjGCSvCq2+1ULPdatkV13QBBkggF1uu1Y4n3371raa8JBkB4EMtN6Dt2K8vXT17cBPFCyLDf2x2Px5ZtxEsgkqSomK4bCghIACYSIUQQlBzk5VQjTd2AAi2E0De+9Bq6goWCIA6rPKLvfqNRJWBvawjwQkkdQ8uwRaMtY9/KU2C7RpaJ2++Y6xnIfH1rm0shdMNM8ohx4Gkty4MvTrLnp0+oDgT3ch43vC2jkRnUWq+uGw5rN/OdXYAxZsLiOC/i1GviR49PPvnZ7zc9gGz7R48/IwUqJVkkL07PouWqNEzww7+2+3u/+wgKTaj87Xt3Pv3kBABCsAUAgBAURUohyLIyz3Ndp0KooqgogUoBILGUgKlSYTDcGkRhhgCI1tFOz8UAAAiwhgQvBBe6YQU54Mrobbnz6yrPWLMLrhaPZuNCp2B1A/zF6a3DwyrfNByo4x0/nOUVcp2248BmW4dAe37yfDiy/OTCtPTZPLD0fprJf8uxBiAMlHrNRgAvF4ZCQgiAQq+8HAAA9x7c/+ijj95999237r092t5qNJuj7a3h1sgwLEI0TTMgwa1mx3EbXqNlWdZsNru4uEIIffjhN5Mk8TwnWM3Pzk5N09B17dGjRw8ePLBdN8my/nDY7vbKskyShGq4TiACQDabXhRFbqN1PRkXjGOMTdN88uSJqMpmo7G7vdPyGmmaCiEMw4iiRAiVJAmltCap2Ja7Wq3qWAxd17Msu7m52d3dzbKsbqYsy4IQ1pPacrF45513fN9XSk0mk6zIa8S5fpMv5wvHcZIk6Xa7tv3aE+3JkyfT6fTRo0fPnj1//OjpaumvVn6wiaQEmma0Wh3btjEhRVmuN6vpfHIzGZ9fXhRV4XiuEJxz1uy2CUFllWuaxqRYbwLLcvK8tFzn5OzUNKzNZsM5D8Pw6OiQELSJwsvLy6Iovvjii/v3393d3c+y7OtMzqDdbkdR5HneV4++2tvbc133gw8+2N3d1XV9d3d3vV7X/mCe5y2XS0LIT37yk9u3bxd5BQBgL6lhGlCwtumu+3T40sdDvcF7ABDC+qXl++F8Pq+qStM0SvWaspMkSZ7nZVnWnL6yLOt1R33lAZSc8yAI4jiUktf+bJRiKQUAQAJYVVVZMIBwwfiL01PNNK7HN0JJAHFRsvliFYYxobptuVmWsbKUQuVpUS8KdV0vy1IpVRRFPZq9+opt2zWwVvcFdRF8UzyrVG2GWNUKlppyWNNjTdOIkxBCWJalbdM4jvM8HY+v33777Vc3Q92D67qZ52Wr1eoP3TTJFoti/2B4enaGILl7d58YgDN5cXGpFGi6Tp4ApYSUQNPQeDyGCnhuAyhQVVUYpkVRGLq98XkpQoWY6diTG3Vy8bmpd/xVqWDuevrOXpfLuNV2XyKqpXKbYDKOHXv04vxEgFxwQ3Cw8MeORw2LJ3HWbNEkSaAECJHpOMFEZQmwPQyV23B7EJWtxlae50laZakgVBcSQkiKNMuzZDgcYsA3a22RXT15enO4vb/X3pmOwwKx/lDLUpEmgGBQshwhABFQ6mVSXn3zQAgQermbw0BRDDiThgk1TZuMA40YYZSu1+tBv8k4qD8mjEFZlhSDzz77wvM82wMQGJpmWpaRl0GZk/3j5i9+6ud53u3u5inY2sd5BqoiNQzDNB3OKwWqZtO0jE5ZCMuBVZWPJ9dKguUyunv37ut3mRDg38rzQwQCAGTt1/B1ahUAAHieY5hmURRpmqZFniRJkqbT2Ww2X8RRUsub0qL0/SDPc6VgwYVhW1u7O1xJiNRiORtfX7uO4TrWk8cPR6PR3bt3gyDElPYGAwXBernc2hoRgluthlLCso0kjRpNWymYpnmr1aqqKgxDQ6OObXeajdFg4LpuGsUaoYJxBCBBuH5QsywjWKsrYz0iUUo3ftjt9OMoRZAoCeMobTU7/joYdAfz6exwb19UjFKaFfk62ACCNdNQCNYzcrvdLmuLUCFa3c6ra3J2dnF5eX1+fh4EAUIkiBOpYKfXlwpwCba2trrdbsEKAQQipNVtH9+5tXuwN9gaYY0Si1INFmlUsYIQEiXxlw8fWY5rOw4hJI7Tvb29ijMh5fVk3Gw2kyS6GV/5/sowDAmAoduD4fbnXzy8Hk87vYFhGOtNcH5+7ra86WwyHPaPjm7VovRvf/vb77333vXl1fZoy/f9rZ3tIAhYWXme98VnX/7hH/7h22+/HScZF5AJyJV8FUZYz5X1OCkk56KqvwgRQAilaaqUajQcwVUcx3EcK6UajZbjWKapYwyFYFVVCMEQAppGpBRSirqqllWeFynjDBNoWghipZQsy7KeDADCmmZIKUtWtbqd2XwJMS04r6S8ns7jvBIACwCVArwSnEnJuU40BUE9ENSgWcles7tfBSLWn5qmaQghKX7ZRODrwzCMmiSMEEqSGAApJZeSt9sthEgcR0KyTqcTBIFS4uDg8NXNoAAzDKPMKylBkmSGqYSAug64jG+9tf3HP/p4ud4cHe/ySty/dw9IkKVJw9UQVFmSU0w0QiGEtm17DU0KVRYAY+ivUwVBlrOt7a6m23Go2w2cxEgwBKCCSAy3mraLF8vg5mZaliWGpmHBNEY3V2Gnq7U7VhYjDHUhgWHQ/shYzNN2x8MYj6/AxcWFhtuM50dHexAXF2fhYlY5HplOfCFUlsNGw8UYA0IJpmWqRr2u2/C2hiQI5CYKi1z8D/763/zjf/UFAABg8PaD7s2lX+UAEw4ABy+vK65rn5Q19foNmwbAEKRKip3tblnkFEGNUgJBWUqMsWmgoigppULUWzKwXgVB4Le7JI1lXVJ1E8RRsQ6CZtv9b//Fp+Pr4uB4Rwh++mJmmqbvB1eXEwBAo0EJIVdnK14CtwGFEo7rUqp/+OH7m9X6zWqo1C+ZLQIAUI2fIAgAxAi+xpRfvHgxmd5kRV6JCmPc7LZ29vcePHhw9+7bo51tx3YxIhAgxpgfhJPpfLX0ozgpqjLLssViHoZBWeWGoUUbP09S13UhxpbtJnG2vbUbhQml1HNcxhgCynEcy9DzPJWS10scgmmUxIah9TodxzLLLIUQ5mlWl7zJZGKaZlFUEGDTsOMoRQj5vu95XlVVjLEoCmp6RN0sSCl7vd5isdB1PY0Tx7SKLE+TGCEUhiEXshICYlSzsmv08BVXLoxeuwB1u12l1N7e3u27d7KyiMLED8LFag0AOjg4ajXbi8VCsIogyMpicn1z+vzk9PnJcjafjSf+fOqvluvlItz4jx59NZnN8pLptkMIDaNovV5btgMAiONUcOU2mkkaLZfL0WiEEPrkk08ct0GJuVoG8/ny6upmE8ZRFN1Mxv1+v+RlnKVMipIzIYRpmq1WQ0imaZRVxXw+H4/Humb2er1er/ezn//i408/G2yNSiGLkhV5VZYlhi+ppgWrEEJS8foySslfydrr1q9urgVXgqsir+IorUnvmqbVFtb1vrIoCqUUQlhKWRRFvZfUdVqDVBjjijMmeBRFnMkkziomNkE0Gm4nWa4QlAhnBQ/T4ma2rJikmpVmRZKlCGMEYZbkpm7UAw7ELyljEEKhVMV53bfWBO8aWAMA1N1izS97qeCsD6TqX61eodY07BqdjNLAdjxNR3kBDN0yDKPV9f74Rz95dTNACDBClukYuhXHsWkRIHVDp2nml2WZZ2A+jx4+fhRtwr/21/7qO/e+oRRgTKRptTXaHvb7NdiVxhnjFYCwKgEXFa8oQqAogOWYs7mfZRmC2tXl1HaJbVlxyKMw7nQaaQr6/bbrmXGcKIgBwuPput3r65adV0wobDogTQvTQkBh27bKoiIY2A45O73OcyBRadl04yfBpijLMorXeZ67XpsgpUAlgGCMaRKM+o2sShLGIeDZQvveR+8tltHPPr9kEACpDo6bJ89mQFEhSwAYAEBKgGCNZYHXHD6llJQIAoRByRhGoD9oxUHUbQ0UZ46FTJNsNps6W+oVO7q+VnkRE0KioLLcStccXgEhy/fffxcbVZGrk+fLRsubzWJ/AZotm0Capcoy9dF299bxYbDJTcNqdTTTQZtgMxiMJOOPHj8D/94DgZcUVgSUkuKX1CqsrKTicRwvFovpdPro8cOvHj/68tHDL798+PmXX5xdnE9mUyakZdqNVhMRXJbl1dXNkyfP5stVEAT1fFSzzBqtZsnEx59+8sPf+vMAgLroEEKaXqPZbBZlroA0NB1jHIZhu90WQuzt7WGM8zwPN5ut4RBjXFvdYIyzvNQNK80yCKGCSCgQJakEUEEAEGSCCyUty6pleXULoGnaer3WdX25XNumE4YhLyvPdXRdq+tvmqZBGFJKh70+K0rTNKUQVVX96z/8g1fXZLNaf/DBB/fvP1gsFgihTq/baLUx1RqtjlTq/PK8KspoE/CyMqjWdD3PdijCeZKuF8uHDx8vVss6cenOnTv9fr/T7WOiEY1CiBSAeZ5jomGN7h0cKqXW6zUhiFL65PEz12m4buPLh4+SLFcAUk3b2tohmtHt9n/xyaftdteynPl8HgQB47wSPM/zZrN5dX1hGHqn09F1rdVqpVFaT5cnL1589vmXUVYkRcGElEDVCEONRdQsq5r1Ar7OMONv2GTWAFdNdU7TNAzjKEqSJEvTvCiqquKMCcaElKoOq6vLZf1Pasy3hi80TZdSYUw4FxAijEkYR0EQMCGDKNQM8+JyLCBJc5bnJecCQYIQ4kLUKgLDMDRNq3V+dUv7ql6bpln/sa54NcGiLoIY0XqghkjVv7JSsjaFBQC4rhvHcW1GOxh22+0uQshywXSyaLY7lq1Pp/NX14ESwBjrdrtVVQEgDU2rSmVZtm3b/jo+Pt5rtg1WSYTIf/lf/ePPP/+i2dIx0hgHpuk6tlflNUFHd1wMJIQKUYpnk1hUQBUN3/cX8zUx86dPplRDnT6JwjIOwXIRAUA0Ag4ODlptJ00ZJRbEVX/gPH96s5wnpqlVLJMcW2aDc7FaiCzLdRN7nme7REFg26g/bJQVwhoVQPgbtlxP2u3m4eFxniamKaAGpBLbA9JwjbRKezs7FIAnP31+5+Dof/+f/V+BqwMFtnqmlHK5CADQhQAIA8t6uVFlEkAIXr1y6oBQAABCEADQbBsQiTgqEQZCFpIrDIFgsswz17aKCmAKi4pxCYIgsW0bSCNNio++dzeO8jzBW7uObiQstb/zK7tHtzuPvpgHm6TdHERRUFY5RODmZuz7fqfTIYRQDVMMHc+mOq2R2MOD1xgAxviXWteXmHJtA1/bj4HXDBsMYJ7nWZIWacZYWZblcrm8vrlarVZcsq2trXv37u3v73sNt5JsvV6ncVY7mtRLOilVWfHpfHFxcXV+eS2EvLy8/O73fkApjaLonXtv1eut2hO74bhbW1t194claLreaGsYx3EUJUyIouLHR7dr+q5mGllRNhoNoSRAGBFarxFrGle993Qcx/O8tMjjLJUQVIIjSl6cnzXarU0UmqaJENI1wspi1B94rltDnAKoPM8PDg7qGA0gZB0Y3+q8dvT6lV/5laIoTk5ODN1qNJtREvvBhgkhgfI3q/F4nGZJ7XG/Wq1830/TFCNimfbWaPveu9949/1vbe3sJkkimDx/cR6GISE02ESYkoozBVCSZFKAPM9ni2UYhjs7e19++SXAiBrm5199aTmOYTmtVitJ0ucnL9I0h5gmcVExqenWK/C3jnUviqx+E3T7fcuyhBDn5+eGbrXbXd2ys7LaBEkUp5Woc9YBY0wqhRGtp5I3J4hXrD3HcWzbrnHksqykVAhhhIiUoCiqNM3zvORcQogRIhBgVgnBla6ZlunUgmJCCEAUKJxnFatEXlRxklUVlxIoCVnJqpILIUzTjpPMtL1NEGOA8rzQdd209Fpo7DUaCOO6atdNHxP8VSmvh+Wqqmp6R73AMgwDQvxLXSGELwsiBhhDqmGMYd2bxHGMMYUQ3lxPszxvtRyhkGU6vr+Ko9fs6zr6vaq4ktwy6XoVLRaplKKoWJ6rlb+sRLG9cyAUXK/Xve5IAZ6lFaUgDOLf+PO/eevWXhrF0/FMCEE1LU1kEPi22UUAVKxgTCgFBiO7SMGtW0PPIwAABGlZiMV8zSpweXmT5UGjqWGATUO2mtpmCbKI2RbSKCgSEUeprtm2DcMwppQSAhGSoy0LQ9L0RkWuJOAACQBAVYLhqAsV2NtpOh4ViCsAB+32we7OfLNerwIEwP/uP/nfYtUJMljSFCjne98+Pn+xAQARhJUCAALbMYECUnGlgEJfD54v2XwAA1AyRTWINA4hXvsVABJTwDhkjOs6Loo6mtFmTNUvYiUBJeZ6ld2+u9tpDxbLOUL0zp1jigsgQZHzdz/oJRm7uUh7IzUd5wirVkMDAJQ5mE7mVOeOYwBpzlexpmmXlwsh2O7u6HUbiP40vqGsXRsggghp5DWojKDSCQVSCcbjIJzejIO1n4SRbmppmvphMF8t4ywpq6puE4QQeZ4nYcKZ+PTTz88vx+eXV+PpXDONo1vHYZy22t12u/3zn/98NOxPxzeDbh9C1G53MCbdbi8K49pUueE5CCiK8CeffGI5jhCq3++vg/Dy+poJTildrFe26/z/GfuvGEvTM00Qez/3e3P8iRMuI9JnsqrIYpEs2m729ExP9yzWAFphBAmD0Y1uJEGQBF3uhQDpYm5WELACVnunNZAAzc7Ozu5M705Pd5Nsclhkk+VYmVXpIsNHHH/O791ndPFFROaYC/0oJE6dMCfzN9/3vu/j4iw3bEsgRAnrtLt6NoQxrmuuTZs5l4ZhmaZdVY1SiBDmeYGUwAzD8a7CnTEByzDDIIijtOE8aLeklLxuDMqapknTVCllvsVRmkym8/nCdd1GiufPn8fxmjEmQU1nMy7Erb2dXq9VC265ztbu7u7+ftjp2L5bccEVKCBlWWNE4zh9+vTpfD53LEc0UkrJqOm5AcbYDXzAKCsKALi9f/fw9TFj5mi0tVwuN0fbQRAwxsqq+erZizRNHz56vF4ld+4/cOzAdULP9zEhjuNcXJxJKRhjLd+rq6IoiuFwWBTFaDTa3t62bfunP/1p2GrldZ0WZV01WjkgrmouLTJVGAMhWKvoCEEa0SKEaJmzzhHXBlmgMMHMNGzbck3DxohWZRNHqT7tGFMALISQAgRXTS2UJEUl0rRcraI0LSaTZVE2VdkIzpVSnudZlqUkCoJwNl8iYJQYlFI93ROyQRQ5vkNNqr08mqbRfCAJSk9FMMZlWd4Yp+sXpmnerIFw48YMAKDquiyrDEBqbwXbtg3DUgryIqXEYozFcVqV3LJs3Urf3AycN47j5GmGEApbvpLE9zGhjcHMomgkFK4PqzjZv3N3PM3OL8Z+6DDTanXI4fHJf/Ff/ZebG6Mf//jHf/tv/+2yAs6l7/t1U+WZQAoGG9AKQsIASbvT9cOWVaZ8d69rWRRhVRTCMtyz0ynnnFETE26YiItmtGn6vluWpW0bSgGhcjyeBqG9sbFBCYviKE1Lw6DRuv7n//SzdqeX56XjOKaNeu3thuevnr/4+juPXIdlRVWVsimFa3vHZ1F0nn7tYefH/87v/d//H/9fZiuogeDGcsSLLyMAqaABBZ6HqyoHoADiukIU19NYhAEQQlxiy6WWB1XN8xSYhZgJBLv6OmAMeV7pAlPPDSmlRQ6zaf3uN/Z/9hfPXI/YbpNE4u/9z/7eoI8PniZFke3uEa6g4rN22DVN4vpGu9URFT09PZMSOM/jtWi33MU829gIh4NOkq7g33bcVIgYIdBpWEopId80RGWWZ2k6n0wbXoVhOBoNHz16dP/+fc55URR1XZ2fnz1//vzjjz9+9uzLZy+fvX51UBWlZm+99/X3t7Z3R1vb3/vBD+/dfZDnRbvbqev6/Px8e7S5XC4cy9y/90DPd955/DWMceB5AGBZFpJiZ3v76Oj17du3XdeN49g07SzLFotFd9D3fJ9zbtiOlDIIQ8aYDj9LkwwhpPUtujhK07Tf78dxXJZlVVU6Bx1jTClbrVZBEBBCKCaj0ch1XdE0GpyNokjLgefzuVIqCILF4s3kNY7jdrsdx/GTJ08ASb8VYkYty9KJTmWZ53meFHmc56skXkTrkot2f9Ae9IJuu7+5neb5p7/7omma/f39x48eadN8AYoQkue5hsu73a6UyrbtKEru3LmjP44xlqZpFEWj0UgI0e/3Hz362mi05TgeJSYACoKw3+9vb2+/evVquVx2Op0syyaTia4K1+v1xcXFe++9N5/PGWPf/d73/uzP/owQJgXUvNF1nyYZaBK7UlddpNauaZ6z3my094weqhqGQamBEFYKmoZXVa3/K8uqLJs0zaUEKSFN0yhKyrJumibL8vk8XixWWcGFUEEQWpY5HA4Gg0FVNgY1m7qmmDmOE0fpYpG0Wm09B1RKZVlGTcYMesPffst+kehFXJeHmnVICNEDQc031He7+lcPAEBI6bUSAIIgWC7XnU734mJ8cjpnzKiqyrIoKLxexYvFrCzejJLyXOnNYzqNlZKLReq4jDLV8Ho42JAKXB/0BOaDD+4pBWVTcamUEhiR2Wzxi1/8+pe//NXv/96P/+RPvq2kXC0T27aXiwgAPvz+TrvdphSmlzklDSMqi0QtlhKKVssPAsM0bcHBsqw4TiwLqoJbhhn4tmMb62XDsGEw5Plmr9eRUDx/fpxlRatt15XKssIwyKvnEUJosQLOpe3Q49cRM9ByEQ163UG3JyVIhUDg1TLmEjzw/qP/8//2P/3P/18H54nlCKhhe9cmtjEd14BAygaAdrqt9bpAQG+aSylB4yEYY4x0IcaEbPqDYL5YAzApG8pAScwYaRqBMSIEoigKAkcIYZpGWfDpOBoMjfH08ItPpo6HOgP46F8+qQv+9/7e/6RMebJwBF6+835rMaYPvzaqq6Is06Io5rO40+6NNikhihHv7v37mEFd1zu72ydHxzeX76YeRG8ZHVIiQVKkuAQlEH7j6PXND75e1jxOcmY7CuHpdLpeLtbrNSOmb9pQyo7fWa1WXhB0gjZCqNvtEooJIaPtWxgpy6ZFmed53tTSMM0sWp2fn/f7fYzJKq4//JN/J7u8oJR89/vf03MxzhdhKyiKbH//jmmaSGGkIF6vOefDXv/o6Mh0Tcd1T87P79y+e3Z2trm5qR8Jp+XEeYSwNChhBBPT0Jwyz/OaptH1pvb4Wi6Xtm07jpMkMq3KQdiaz5dhGLZ8P8vSqqjTNBVV6Xq2kI1SqhV2oyw3riOnAcBzgzzNlsvlw8cPai6YaS+WUc25YdKqqrIkZ4yFrS5DDANRDZ9dni/GZwRBmacIoY3BsNdyb+3fWa+SX/76k82d3aSsHCk555Qadc1dx5dcLafTVqeNmFXXAkm0PdhwqPHonXcPDk9My71z58FqtQJEVuu1QpLLBmFUCUkNu0pyatllmkopB73OfLbMlvPKDLqDfrvdjuM1IpClBSEkiuLffvypFwZxmiisOEjMSBKtPM9NclLXDWNMgMKEMIsVRYUxNihumsa0mM6Ka5qmqEpCqHa9UUrpfSjP86qqKcWWb0ipqqYpS9E0CqlG77uegzWiAgC8KWyLCV7PZjkgGbTCfFz0epsA+LcfP+l1WoQQBcKynDzP9SRECMFMouH+K00LxqrhpmnqgYkkSoBSCkzKkigyDINjXtclY0wBNk2LGqwoCt90CMZKcsdDdY2yJA/C8OL8xDBxUaRB4Japquq5zWiRi6Iyalws48IL3lh47GwOGKGSpRJASc+146quqirIMjG+LDsD0zKh67i/+e3r4chrBe2iiEWBTRMUqqHp93YaJVf/2f/zHyxXESFISls0phA5SBNjevjqhCFna89grKp4XZaYk8q1Wu0eev2ccdVwBUlRK0KZycuMrufI761PXgFIfHaWumGApHp4593p5GdlihvOkzXd3XfXq8xxaatjVyKVDZQFabeskxdNgaPpWn302yeDEW5eKwPDw3duVSKZnOC/9R3yrfcf/5/+5B/YltPr5fEY37nfPhunAIJRxkXTabt5CqDAMFVVAQKkuKIYC5C6MG+wkEpQKoIuUOpNzuYWwaiRSoAyCskRQiCEchwry0q343POm6bOc5icrsp1ffpiduduUJSl73nt3vz/+g/+y7/zH7wDhjCDRbXqrZeuJIuDw3M3MC+OVX8EHNHZatEAz7OwKM5nH09MBsuZXKyz+lqIDAAIXxEeAECpq9EQFQBKCEoAEUNzEfXR6XSqRjRCREkqJGCMvSBUCnEumDKqmhNCvvGNbwRBUBRZt9XO83wdraIoIgRJ0bx69WJ3d3dre9O27VYQxnEVhA4hKM/T3mBYRaujo6P9/dtHrw/7/b6U8nJ8vj3aXMWR69rL9ZqZhqXU5WQ6GAxmyxnG2KCGUqrdbsdpots6veTVdZVmCWMmIrSuuWEYjNEsm9iea1mWrh30N2OMNRsxz/PQ8+M4DlxvvV63Ox1CiFSwXq87ge8FXhJnlNKyrrS/TgTl9Y4nLdO4detWUuRlUZe1nE6nlhM0HLQ1YavVcn2nKIqzs7OiyJQQpkE2N4Z7e7dHW1t1WVJMvvj889U6vnv3bsXF+fnF5nCgi9airkzTfv36aDAYrOPo0cN31qvFxsZGpxUihM4vx48ePbJsd2PYy7/4PIoi17UJ9bIsM03bcZzFbFrzejQaVVU1Ho+DIGhqIYS6nK4M2zItp24aXSMfn5yEYXg5Hg8Q1HXd7reahmthSV1WcGVwpM0Bb7ZNBNdVmK4cAa7SXOEtCxl9lizLtCzLsHEcpWXZEIyISYQQtm22/ABhbWioGGOKMc654MowjLyokyR55513up3+L3/5KyklYVTbVl4RfRC6QXt0GQsAjDHbNHQ9e1XVSoWkMkyKAWwtNKTEpAwwVoCrqhLyShRoWpQSVFbZahV1Op31eq6Ucjy3rmtCKGZNK+yfJuMgdKYXJUCIEDINqK/3Ro1WW6aTZUuESL/fPz09h2sim5RSZyR0Oq3xeLm7O2g4ViCyDDCG+XzmtR3gYHbYxsbGi6+mSnGMcRAw4JXnhuPLfHO7A4oqJXzft21bUDm7iNvtO5icCqkQguUiR8g8fl2FfRm0zGQVDjaEEPViWisUd0Jnvjz1PW+wAeultBw1ncauY0lBMYt50ytyurlFTk9WdW1jZJqmtVqtMMFff+8bh3TCmJ0mZVXJ/93//j/65a9+d3xc333cRUQhKO48aP3T//oVAiREAwCO48znK7iO/VKgBABSCr2dJI+AWcRxTNEI3lRKYqEkIUAIoQhzKVzXTpKcUpLnOWOsrut+r7NcLjGG3//x91+fH336u9cGEUFgjM9npycXpmkSbEmZT2dn3Y63WqyocoMWZoYMQ+/J5+vvfHcvTeO6QotJFrTQMq0bnhv0TS4KegN7v3kHU0JBYUpJU9dvcxE//u1f/w//7L//q5/+9Msvn3z22SefffbZyclJlMSIIMrYaHvrg29/a3t3RyjJGDs4fv3VV1/ptHhCSK/X++M//uOtrS3Hdk2TEYLKpgSA+WI6nlysVovPPv0txiSKIgDcarWCILBMZ2Nj1Anbvu8XRQZSpFmCkLJtUwhhezZI5bqu7sRv3JwopZoup5RqtVpCCMdzV6sVV1JnaOlWJcsyANAE3TRN9dOlbZd02WgQSggrilIBxtQQQjDTKsvSMAz0FrKkQJRlqQPhXNeNokgCrnlzORkDxu1ulxrGcrmMkiTPU9t233333R/+4Pfu3XvgBa35chUl2fHpyXq9fvz4se1YeZZQigEw51IicB1fK9i074AQYrFcbm1ttdtdpRBjjF7zzLd2dgSoMAyztMjy8tbeHhdisVropjIIgqppbu3udzq9MGxjjCmli+WsaZrz83NKaZKknU5Ht+dKKQRQlqWU0rFsQoi+xQFueLMSIQVIvi07JdfxxBobgeukcKWUrr6VUlVR25YV+p7JqG3SQa/dDj2pGh1GqiXGjDHHcTQ67Hoe59z3wtPTU8AIERIEgS4uNGSsa3wNi2vY13VdvdXZtq2UStPUMkyNiaErjxym2+orIAhjKaUUghIkpQApur22ZVDbZgDctKjrmUopx/Ewoo0omwYrYRgmaXgGAg96A8BvpKuWbSCEyrJ0HSjyWkrZNCC41LIC3YDXdd3t+RhDkkScc0KUwdDGxgATiFY1YLxYRu3uxsZ2iLB6/uXCts3bD+HwYL65sUFoHcULBCSKYj9wCWGCo63R7t7+VpHljAEjBCGUrmFjE2q+LmKDUYewOmy16hw8376cXHhulxqNklhB3e1srpZ5nseeb8ymNUFWZwM81/ZDdPA8wSCHg06vO3z25PXBy0vbcr788qtO19y8fe//+H/4T/YeGECrV19l9x67y0WymNWEECnBcQyMcVleWYsCaEj26v4hhNCr0SEihrItJ40LUQuhGiURANJYpRAKY9w0V6GshBBKoa7LMLDvPxhubLTms4vNTas/CAhuAJE4qaI4dazudLo0GHQ69o9++MHlWeMFwBsgrDYo3d7aS5JkMSv7Pc8yTFCKi3y9fjsz780c+c1qyIUEwHUtKGNvr4ZJkgSePxqNRsP+ndu379+/PxwOW52uEKLizTpe/exnP/v8iy+yLLkYX8Zx3GqHg8HAtu1+v19XPEky07SFEI7jnZycHR2dHZ+eT8azuuJIqp3NraZpqqoaDofr1Wo8Hg8Gg8BvtVtdBUIbASTr1eZooy7zTqeFMUYKh34riTMhFGDCTMuw7CwrrusRSylluw5CaLZcdDodx/WquqkbLqRCmEgFtuOmWS6FElzWVePYblNzz/UXiyUAMgzDNOyiKJMkq4WUoMqy9H3/7fOlrlKoeLfbnS6WmFDDMC7Ox77vP3jwYLVanZ+fT6fTNE0BMOf87GL85Msvv3jy1ZdfPY/i9PT8LAzDH/3Bj9fR8tNPP7Ysy7VsIFgh0tRCT1G3t7cZY8P+YJ2s9/f3/bBtWCYi2PECwzBqUWNMOJdV2VRcvHx9EMdxWdZJkq2iyHYdLgWXcjgcjkZbo9HW5mjbcW09Wi2KIgzD8/NzPYXUHj+MMa3stk1L47Cc15p+rC1T9cpyM0nUvhhXbJXraaOuhvSX9COBEAo93zZMz7GGw/7GoG+ZREmOgDPGdIgAJqC3qKqqKDVc1xcSfvnLX2qJS7vdbppaXpfkjDFNVLz5RNu267KkGGvSqBIy9APOOW8aigkGhBRgQARhXje8aXTlQinFGKSUmEBRZq1W2Om0LIPWTRm2fKVElmVlWRVFtbW9MZnMk7jo99u2Y0RRIgXY5ptWS0P2WVYQAgcHp1EUOQ5owL0oGtu2LdtASB0eHT98uNdqe5ZlcVEZ1A/DEGFwXF+hanNz8/jocjAyFOLxEnNRvvf+rflYffrxuN1pbW1tRVFsGNY6mlR5hTH9zV9/torGTQOUkSIXoITfMpsirKrUtJv1XAoBrQ4GRc9OFyB91+5QZNVNFkdia2sLEXACWhWwWlSY1cONTp7L1kZ1+KJA0ESr8XQ8bhoVhsbD+/cFV//r/83/6s9+8ovZqgw7dprFTQUPHoeLedrwqyTiIAiiKEFvizoQAIDCiFyzmQhSjCDClMmsZJkSDAiAmgYCIrlouFQKyrK0LFw3oN3IGWPzWY4x3t/bzfM4y8r9WzumwWwTZSV//uLIssnleXz37p7r0bxcCVnZNmt3/MW0ubU/GG12g9BJ04Y3aGe3pd3muBTU/LcnWF1rkxRWgJmhTWKrt1fDvVu37z243223RcMRUk1VLpdLrQL2fFcIMRqNDMM4ODiQUgyHw9ls9tlnn81ms7IsNQLoOE4cpwcvDg1m7+7st8L+zq3bP/zh749G22ma72xubW1tRdGqKDJK0HA4lFKGYbuuK5BS8qbdCnzHJQi7thlFK03syrJMAugKVEpZl5VWHI9GI22eHGep4zjtTkcoJBSquQRMEWFJVjheMJ0vNYfRdOyiKBRGZVkmSUIM5ro+piTNyzTL86IsigpTCiCFelMbZkUVJ1nY7sR5gQm9uBgv11Gn1211uvPl8mI8tl3Xdt2Tk7Ojk2OEqeO5hJntbmf/zp0gCO7evWtY1tMvPn/16tX29naWZUVRxEnGTAMRnGRpt9u3bXtra0szLjudznK9UohUjbAc+7PPPlssFtPZ7ODwte064/HYMKxbt++cnJ9N5rMiryzLllKt12tGTQ2a+76/vb1dloWuoTDG2sdfL9ZIXq10pmkCgP77XAMOV23OTV+slz9yHVh80wPpKYSGfZVSeZ5LKVutloaSq6oq8jTLkzxPyzKvqopgMA0DAeRpVlaVYdqmbWlEeDyeZkW5f+e2/vvo4l0ppVdhuGZBavUkr2vdRGdZhtQVr0h/VaMiev7geZ6+VQgQKaXWLzVNzQiOorXkdb/fL4qizHLHsYqqYoyNJ7OiFAhpFjFaLtdNLUzTNk2zkW9GSRjjJEls2261Ase2irwyTVPvNISAUkqXpds7HYzYarUEwAipy4t4OpsMN0zDK6MY7j++w2Uyny8AA0Y0jrjntlZzRDEui4oQ8sE3Pzw8uJBQ63DtxSzttH3XISZlhmE2vOn02Mlh5tjWYGDURdUOvPV6DRjmc5iP1ce//ezsJBptekrAbH6hkY1WN8gTwjlfrSdF3hgmakriBw4zuWnSOE76w/bZ5anlWn/+F//s//IP/m/3vu5PJlUU8bDDO+2h7WAFIERjmJgxFkU5IfhNWt6/uspIxQGAEGT7JkIki2qHmQgBMw1KDQRCR+xonhxGoMttbTCjXWaePXtmWayuJEgYDkeuR6pKDYbtLz4/dByvKCvfd+q63rvr5hkvUrPhpePXz1/8zrFNBLisF4QoAJomzd7+1r+2Gv5rayLGGJqmkRxs27YM8+ZrJRevXh9N53MheFVkpkF3tjY3N4YIIaxACXl09Ho5n7quO768PDg4CMPw3XffvX//fl3zOI6lgPHl1HX8u3fvjza3mWENhqPhcIs3sswLRmhR5pPLiyRal2Xhuo7j2rZlmaZpMEIxbofh3tZOGq07rbCpasnrna2t+XSq+76g1dJe9qZp1mVtMDPwQ9fxeCMQ4G6vXwuhDUjCMNQ3pbYOU0ohQnVpmZVVzUVWlFyC4/qMsSwrai5qLsua15y32+2qqorqDc5+fHaOmJFmxfHpWZrmVSN4I6VUk8mkaZqNjY2jo6MnT75st7vvfO09y7KidWI5tuN5i8V8vV5/9tlnn3zyyYsXLzY2Ngij6yipuFgsVlXVhGEbIWLaluu6munS7/fjLAWFqroxTGt8OTk5P7NtezKZYUQMw4qT7Nbenud5dcXzrBxt77h+2w/bUlxtsGEY2o55587+TdTJer02mFkUle/7aZxQSq/kyYRqb0pQVwM6hIiOOrm5YzS4DNdNMb5KiQJdphFCtIQjCIIwDHUR57qu69o6GMrzvDAMLcvRy4SUXMtXbNum1OCcX15O9L86z/MoioIgkAi4aPTnajj7xrtQF6eJ9iG2HW0Bp/n2gBCmRPPwASPTtphpIIwJITdDFUKRZRsAMopWWJm25U8msWFYhmFSYihJqlJgBbzJMZHHRyvbCi4uL4uqFuLNA+I4TlEUTVMFQXCtiRZFUazX3LYtPcesqopSfHmxcBwnS0vTYq2wByCTrGJWGS1hNl0AqedTzhiVUPtesF5Wk/EMEzWdzr/66rBpxMP7H/zej79xchoBIN7QxWLmue0gCBg1N7cCKUVTC6JMx3Jsp7YsK15RbHLXhbOTFWP25mjnD//mD0QD5+fnxEDxSrR7KEukktZqnbfaHgiPOQITurO/WcvSds04naVFRKh1Pr0Ybgcn58s8LxmQr3/j1sHzo/WqoKzRhaGeQelWV6+EV5nsQiqluJJCCIkAUeIFdp41dQYEYQVQX7kKKUqp3n8554whfYk5F4SamNCiKC4uLvq9jcVizQWybXv/1kY7cBGuDeqnaUoZGIaxXMSmW0hBVqt0Oo7W8SrL46KoKCNV1VCGFMBsllX1G7rov/XAUkpQgjHQwvubL3z3+9//wY9+9OMf//idd94Z9HqbGwPToIcHr14+f/bqxcsize7s324F4aDX//73v3/v9n4QBBsbG5eXlxhjzTgBAMMwZrPJ5fj89evXz58//+qrpwevX56dnc6n46oqKMV37uwTisoqT6J1XddZGmMFnVZw59atVujbBmv5nmjqXrdDMdEOYJorE6cpANi2rdvtrCw6nY4ApYuCsiw1CqnbGYxxt9stisK27ZpzZppV05R1VTVNWdeYEglK8yWVUkmWw1sKaAlvTQ/yImx3Ti8nZSPPzy6FEMvlcrle267XCHl2cT5bzHe299utLmMmZgZX8vj4+PMvfvfy9cFP//In0Wrpu7brOhLJi/MxMcyqljXnqyiqqsr3faUUYLRer2+CiREl89WSGOyjv/71w4cPq6qyPddvhWcXF5RSIdTvvniq7fUpsaJ1wrmcLTWWRVarRZIkWt6vlT/dbveGa63D0THGSCqtwyNIl2D4mqVMEEI6O0KKq9VQrybaCkFdxxbrsZ2ef3c6HT36pIZR8UYpFbZ8Pwy4UFXVMGq6rltVBQD0ej3btheLxXw+b2oep3kYtLqd3p//+Z8bllVUpTaA0PufUkrrTG5qQD1jvRkgaiW1QenNnFHzb4QQuqQFuCIHYAS2aSmlAs9Jkmi1ivvdUZaC4IpgVlZcSpRndVM2nY4zHLarEqJ1GceVaVmXl/+K5R0hOMuy2WxyOV4YhqHzBhgDfapN05SKCyEW87VlWVKCEM16mWGM79xtgwqUxJ/85tXLr3gYmk3NCTIfPBiWhRAQ7+z5cazuPxgRTP+r/+IvOp3We1/foISUmcwyMZssi6I0iFE3SZpUtmMAklnKFdQICZAWIPjO997FVKxX+XxxypgpFfCaYURN0zo/n8VJaRgoDDpVndUVmLacTqKmaRzXn8+rwWhQNY3nd/qDzQ+/f882oWkgWYluO1wvm298/dva3cU0jSRJ4C3+plKAlO6Vr4w/uJQIATMpNVm0SJACpBTGkGUZZphchUkBANyMdzHWCkEep3FaRJ1ep9VpN7WYTGZN0+zvbxAs4ziO18VysbYcGqfZweux6/iCw/59dviqcCxX8CvPiCKxEQFqqCKTk8vs5vJdo8nq7QoRYwyAriR5b7u9pnkJAJeXl8fHx0qpLEkml+eeaz9+9Oidd97Z3t6+EQIfHbzWSU8vXrzQw+zVKuKcaxMBTJQQTavthS3XckzbNhpeSFWv1+vx+OKnP/3L9WKulBiPx2dnJ6ZppmnaabVv7exShG/v79uGiRT02h39hAshtKGDLgw14XYwGGi7FNu2kywVoDDGaV6MtrYXqzUilJlWVpSYsiTLq6aWoJqmWccxpTQrcmqwKEmaWoDCCvByscYYN0KuVqs0TflboZEbo00J6NnLF4fHJ6s4qqqm2+8bhjEej1+9erVer997770wDOuaP3v24osvvojjmFJaVeVyOb9393an08nzfGNjA2Psh0HdNIZlWZZVVdXh8bHuB6fTqTbTvulYPS94/fqo3+9rC9soippGVFVlOvZiscAYO46TZOlsvlgsVnXFF4uFRvbPzs7qulRK9Xq9JEl0+0kIsSzLNE3P86qqsixLy4oNynSejFIKIXLlYyyvzEg0Io8xftvc4aZEuhnkua7bNM0V+oSQ53lu4MN1eBMmrKjqxWLhOE4YhlEUaS94/VP9fu/WrVt1XSPApmlpC3TP929uVnXtXailJpoCqcSV0Y6UEmmWj2lwJQFjoRRgXDUNogQzCldJAFeSmCxLTdPM8qQqhe+FvZ6pQ9QYM5O4xozVZYOhqZv08aM7UVxYLvFboeO+ASU1kavf7zdNs7HR0r2eEMJxSJZl2mcsz2UUJYSYSgFGWvleV1WBsTx6lTmeOjvNEPf8tmh1TdvYNt3k4uLi1n6YFnF/QDCWy+WaEXJxMSYUuODzWdHt+gZzVqs4TdPQt6uKl2UVBE68WuepclymoJIC1vH5rf2wqoCakCdN2Ib1sirLRqA6T6Hh4PhifMYRQhKyspSNQMtVhDHFFN7/4BuzxXJ8Of/k40NCYWurncxh99am55vPnmSHJ580NWihRl0rjLUjFrppHfAbHwSJsMIUGGOI4DTNGTIJwqYFOk4LEyCEmOaVMqRu4KbnkCAkUmVTVKI6OHjlBn5RNBLBeHKKCfgBotRaLtdbW1tCQavTCvxh0zTvfmOkBImWMs+4budPjzOEEDMFJZZlvHFguTE0unkHIYSllAhRvQy6nn3ztc9/8xHw2nGtVju4nIyzohht3dra2olXy/PjI8sgvMyzJE7jyLSdh4/f7bUHFnOkULdv3+4NuqZjCOBpESGCy7LUkcdxHK+TtG4EImZeN69Pzndu3dnevS04brXaw15/OZtalrV9+zbx/Xe//WGnO3Qsd6PT63geh0RBPugGqOa4Uf2gY5tOWTX9zVt5LYqGW747mU2DVme+iPJS3hiT6Ee3LEu9ZGNMXdfPijIvqyTLm0YY1GyKuqjySvKKN0XT5HVTVg2XCmOK6Rv5AWLWT37+i8l45pr2w3v3B4MBIWQyWUTrrNXe2L318OR0/vrsrBBNq9fdu3V7e7RNFbIwuzXa8X1XSri1e880nfV6LXhJsFwsZ5ThxWp5OZkoQqIs6/YHtuNijMuy3tzcvrgYA8CzZ89MywFE6kYcnx5JEJhSxw2KqjEsp+ZSIWJ6juV5RVG3vI5SxDTtly+fI6osw+51OiYhabR2TSPwXMmbpmkc2zYdu5I8KXK9vhBGBSgGBEAqyiURCoEQSkhgjgWYFlWDgOjHHiFkmxYGyPM8SZIsy5hpUINxKRDBXIqGV2VZpmmexUWe6dSBsq5zx3F8P0yzKklL03Qty3H9oN3rbmwMZ8v55XRiuHZZVwCIIcPEps7/qqrK8zyQMokighDFmBBcFDlg0NBZVVWmbWOMGZgMiGo4BpC8YQRThCk1sMEEIoAYJhQQt2xKDBKneVosHbdj2ZDGi1abNhVt9x2/ZZ6Oo+3td1yvvjw53NlG1ZpNLo49982YiZmc2PXFZTna2DBpsre92Wn3F6u83Q6LVC0nCwoGgtB1B/NFYXk+MnCUNW7LEkpSZnfaKlqbLISNW7A699qW+3t/OHhxsIwSe/euw0xgqHVxuvzFL7902wJZXPFKgbz9rjncbNserzNMKbsc540CxwSomsd376cryDNF3QpKFkfL5YyDMBDvN+QAAZICHGZaliMUKA5b+2SxiAmiDnNkCXs7naoM4nTy3oNgd9RPCvnrj4//xo/uLSYXUEsi8f13q1/+8pUi9Se/mmNp9YfufD5nxJaCAkhAXAhBCBMgJWDLsIlSJjWLAhPTsvoVmvtVIZArcsiZYjayME6TysSopATqUlBqmIwQDBQj37GrCkB5i3mKFTcRDV2LmbCO5GBjVPNy7/Y+4CzPgIticSmQ4oTlQojJON69NZpOijwx6xKYrdwQf+s7H5gGrJYlF2+0KEI0SglKr0A5QphSCGsmGcEAgN/2vna8IM3Lfr/v+75WQSfr1fMvvzIM40c/+oH2CnRdd2tra39/33GcRtSGxcIwPD4+Pj4+1kTcoqiWi1Wr1bJtd2Njc3d3r9PuhmFbKdXpdP/4j//k9u3bgGSWx5fjk7rJ/NDYHO37nY3A77itDmOs3Q7Dlrsx6tnYarthN2iB4qbDkjJdZYkkSIfh9nq9NM2FQmma6opXj9j1gJ9Sqnk5lFIulAI8my8d18+LihlWlpcNl3lV6vZKguKNQAhhRJlp6Ow9fYzH4/F4/M1vfvPRo0faES9arQ3DGI1GBsW//fivJa/b7baOTxBCvHr16uxyXFUVJjTLst3d3bouj46O5rNlq9WZzRatsBMnmWVZmjiSZVme50Lyqiosy9K5Wk+ePPE87+HDh5rXsjnallKu1+vZbLa1td1qtbV3IUEIY5TnGcb40aNHV1AD55ZlWYbpeR7GqBWEnmtrSopl2xhjLq+WNm2Eha8NpeHaAlMppZlMunIsy1J/g56LNU3DeYMxcl2HMdo0dVHk6/VqvV5NJhMt45PoSvanf5U2idFVc7vdZoxFUaQ3S8340Y3tzaYtpdRou25cNIwDANeJBVf8vquhOCFNozPnr35W3wPX+IrUP845pxRLyTmv5/OpYVApFUYGJQavG4sxgiVjcHBw6NjtbrejJHNcVhaVgjcoipIkT5rJOKorEfi9g1fnFxcXfsDGF0ngm14oizIBrPyQSAFFfYmxwShLsuzkteh0BgiIqMS9uwPbFa7bGEZNKJSJaZgYFFMCFNS7ez3JwSQ9HeSLEFrOmsDdDELbslVdSaSsbg8jZUmlgi7FiMZRQSgAxQRbCIughWez2Uc/f76xscFMkBI6HQyNOdhkCJxWm3kthbENAKvVyg+cIpPrlTo5Xj5/9Vwojhn/xte/9fJFRJhy7d74IiGqwwzY2C6bWjaNbHhjW7aUYJpX4YW6tmuaBjAI2ViWCSADv7VcLikF07QRAi4F5xJTijHGiAAgXTvr5kNf0FbLnc/SwG/Ztut5bp6lrZZnGAYlhhRIa6bCwCvLPM/rzc2N46NxVYrxZB2n57YD03EiOHr8taFpkc8/f+p53nDDAuA3l8/3fQ0nanhQSg4AGCmQQujaEOE3jl7f+Na3wna7qvn2zq1vfetb/X7vzu29v/mHf/CjH/1oPp+/ePFCmyAlSXJ0dHR2dvbpZ588e/5VWRWMkdFoNL6cOo4zmUy0Darj+vPF6qOPPvrlL391eTlWEjHGXr58+Ve/+PkvfvGL8/PjdsfnUC3W86Liq9kSAJVJMtwcbu1s7t+5RW0jMMP3H7/fb3cUNHVTcMWLsnTDlpJcx2Ks49i27dPT0+FwOJtNNNFaA6ZxHOtW8bp1rTSqoBcCDRw0jTAMA2GCMS7riktVNXXdiPn8TRTG0euDMAxHw77kNSCJkBqNRu12yHk9m81++L3vb2xsnBwdt8NWr9M9OTkpmzpstbZ3d7zA39rZpBR/9NFHSZLs7OwUZakAI4R1T1c3Is0KjLFtGk1VziYTXdXq7tg0zfV6fXx8rB/r2XQBCmNEgyBACNV1I4S0HVM0FZeiFpxR03V9zwviVayHCUEQBJ4nZDPsdTut0HcdxpjBLFCYkKtBG+e85gJf28xgDPJabaqU0idNax/1LA+uGyJ9Jm+MvADAsqzd3d3hcBgEgZ766T7XcRyEcVGWjuMEQQAA/Ca/iVI94tS/WTvf4GsTf/1CL2n6JOgrCAC8bvTarVtgzrlCV8xw7dglr1ZGAIUxxoxRpSRjBJASki9X0yxfb2/vSkFkIxezpUGNTuDcu/POYrHy3cH23hCBBVjM5oXB3ojWTcO1zEAJoMSwTJeAVZfV5ijMEkWIa7jNfLUEkKvl2DDAYjRNU0KYa1JG2dPfvVwvagBYTJeDnl+U2e/9+NtHB4eruZqMFwjzogApwTCBUjg9Xh+8mAlOCCFKuH/5Lz6ZzVeAlRQsXteOy6qGXF6u9u4O/Ja/XGbdlgXAERimRTEtAUG0YGUhu31ACM3na9u0MFEHL2ftrmlarBGJYeBk4cdR5obW7QebH338Z3t3h4YNv/7l8X/8H/8TznF/pDx3lKWcy/rv/J0f/dGfvLtaFlIAAqQj26tSMEaUEvrNRjQYIymFaWHKEMPsZtLF+dWWZpi0akqEMALCJSgFCiHeKM6VkCB5Y5loPJ6A1KTgSiqxjtPnXx4gZUzHk07HbqpGCdlqYYxUkYskLrd37KANfohFQ6oChhsdy2JZWuZZHYTW272vbdua9nDD5weQV106IRgQgbe8r6ezVS0Vl+qzL3737NmzTqdT13VVFUdHR2VZfuc73xoOh+v1cjabJWl8eHgYtINH7zwSICilFxcXQoiXLw62t3Ydx/nlR7/+8z//81//+je8kffuPdja3MGUvnz54unTJ1mWbYxGQdAp8ma5SEAxx7GXy0VdV1Jyq9WWEoTCgOj+7fueH2BG0ziiWLomI6CgEVrGO58vAXBRVMy0bNuO1mvGWKvVMgyjrmtKqe14lJkNl0LBfLmquSiqmktVNTwrSqGg4ZxQJkABpjWXlZBZVeVlZVhvzmDVcB3EdXx8LKUcDAZB4Huexznf2dm6uLg4OHhpGMbp6enl5WWr1er3+3fu3LEcDxEym83+9E//NOy0v/b4Xdd15/Ol5wVxnHIJeVnrMDmQihASrVZKcB0PXRQFISQIAt/3NWaaZYVlOb1eL47juuZZVmjrncnk0jTN4+NDbaKTZdnDhw/jOMUYC9HYpkEpBik77fC9xw8MAhpeYIw1gmuCC8ZYW8JIKdXVQI7rhEXtg1BVlSYV3oC8cG0bo7ELzb72PK/VakVxvFwu5/N5kiSNFBpsMU1TSkCIdLtdwzAWq5UQwvNcSsmNR7+G1PWokTEmFIJrxYtuajjncA2XgbyCdPRAkBDC5ZURGb4KF72elAOh1BBC2I6pl0JKMcbAlYzieZYWeVoPev0ig6qoe93WwcFh0LKlwOPJSZbWQRBkCZT5m04ZYxxHaV0Dwqqua8pEXfOizPKM53nueUGRG7UoHbtl2oDBB8QpU8s57/aN8UXR7ba3d1qzC/7qy+loBJ2w9dXTcZql86lQeHXvoZdEnDfY9YFSmJxLJVzO6ywtonX98OFOv+8KjvJcNk3DDHXn3m6r06rlOi9VvOa+DxsbgzjKygr6Q8Jr4/RkWlUQtozvffjYcUkWASioeXr8OlU4c+y2FBGi2dbm7vMvz7udfQWEWEBNgxdeWcvv/8Gdl8/HlBoKJX5If/3zQ8EBAAzDUKAoNQAAX9VSWIHCGGFKEQVAVRA40TovSo4xlgJ0GVhzjglRoLSjilRQ80ZwxRVIAZxLgtDezh6S5Px8MZ/P+/1+Xde/+3RclTJPRbvdBpBl3mRJ/s7XHmIkW21HSWYZIReq3TXanZA36sunB2WVh0EXIUwZYuxNtcf5FYry9vQQG4b2s5OgFBdvEOiiKhGmhBlbm9sSweHhYVHky+XSD9xer7dcLqfTKb0+LNu8uLiYTqeu60oEW1tbCKF79+55nvfLj349Ho+DoLW9vb2xubVar8/OzqbTqWHQR48euK6LEDVMhxJ3a3S3391drs8JLmueFHm8ODkRQtlWa9jf9fqd7dt7i+Vy7/a+RQ1eVHe2tijnvKoXi0WWZYyx88uLu3fvnp+ft9tt3/fLstTPSZxkhmH4vh/HsVCQFWUjpEJYQyv6T6VUI0VVc4VwIySXSgJtFIi3rMJbrVan1//4089HWzu3b99ut9vrOF4ul4ZhlA1fJ7HCpCxLQuide/eyIncdX/tNnJ6efvzxx67v7ezsZGVxeTnJ89xxHMdxMMbr9ToIgrIsdYKVBjf08jefz4fDoe/72rlgtVr1er1Wq1WW5e7uLgAcHBxsb2+XZXlxejabzQzDGG1tVrzR0wODsul0ahjG1tZW4PmMoMvz89HGYGdzBABcCt2TGoaFECHsytlQCzT1n7r+0ngu59x1Xd3IaJmwRqX1oRUmWqyi7RIUgGXb3W53Y2Oj1e0wy9TlpAaOltEarkGYoihu5rzkrTA8jX1jTOVbWApSSntHM0JvIB1CCGCkECgllbrCVfQCrfn2+k6om5IxZtmU85oQRCnd3Bquo6nv+/NZ/Ed/9EdlAWWhzs7OLy6ysiryIsYYr1ZlVcp22Ds6ftMomBYjhPT7ZqflBp7jt1HQ8tdRVUugTCVrmJw3UcTLQiGFGLMD12FE1Q0EvnVrv2Uwe3vPMVlrMcH/y7//91++OBOKmTZs73Rt22YGKspitVr1BubmVvfyvPzq6RkzUC347ds7GJndzihNEsdFq4Xsj6ysyj/+7JnTJggBUgHn4ulXrz788HuWSfobZrcXeG6b1zCdxwgMIZBUxGAWAuY5IVLAy3prp90KSZJkzDTSPGPMDkNnNSuJlTIDbCv8lz9/xnk9HLHlYj05lxhTjHFVZwCaboWrqmKMaO8GjIFzCRgE4r1+d7VM4SpPghAMUsokKZVSmGIupWEYCKCp9T4HGCPOeVFUAIhg5jpW0zSnp6fdzsB2wTCc9arZ2hoZJspzyZiBcCOEUJAHQbheNmkClqOEigHIyWHtOkEURVVVLpertzPztCZNV4U3jDFc1xwAM0YRBkberJ1Pnz49Pj5OkqSoyg+/891vfedD07aDVrhYLBpejUaj4UZ/vV5LyZfL5dnZ2d7+3fe+/s0oSi4vJ+sk1XaET58+ffy1h9/+9rd93zVN07bNJEmyssiy7Hx8eTGZ6q7K99qtdt/3Q8YsJQrTwErU8XoVrZd5mhFCGLU7o95kMb21v+e7QZYV92/f6bc6VErDMHTIVFHWlBhSQBzH3XZHk1SyLNMdqEJ4MpsDJlxCWXPDcrgETI2qEYCpUAgzVjeiqhohoap5lpe1kI2Q83Vyc07aveGnn/1ue/eW7/s1l1GczpdLy3YvJtMvn32V5eV8sXI875333n316lWv17dt+8mTLw8ODp49fWbb7ve+9wOlkBDCdh1tTpPluWgqpESWZXVdV01dliVhzPUDnYya53m73b4xgtza2trYGCyX8729Pc75wcHL27f3MMZPnjwJgtZ8Pv/ud7/vuu54PNbDwYZX4/FFEAQUw9ZoyCiO18siSQbdNjVMIYRQ8sovC5TOhr8Sn4AEpAhBNwRsda0UvmlLtU4OYQVI1k0pJVdKNE0lRFMUme/7nufZto0JqaoqSZIoiqI0qaqKELKM1nmedzody7LysgCMdOWo19wbFFtP+jQJQ08q1TWcrRv2m0sjQd2MiTHGAiS/VsVgjOHaexQApOSUUim5pqMDh8vxmeu6dcP/6l/+rD+045groGEb8Qaqpmi1etSE5SJut9uqefOJVZ5hIArEaj3r93t5VTaymM04AnA98+DlJa/gzv4wjpcMtxFJm1qVBe8NIc9U2LIODi4m89M4Tvu97W++/4Nf/eqZYdgVh3aX+c5OkcnegJomM5hX1VmnayoFTa3e+/rmq4PT05PLLEsAccEhT4HLxPLMjz95ZtoGopDExf7+8M6d/uHhK9PwPN9MsrGC0mDOxoj97CefTS9zZtZF3VSZvb3dT1eoLJN3332XMbZaRRVfOm5VVQU0IvT8H/3h8INv3f/JPz8IQsP3w8W8+clPP9VcA9s2W20PQNZ1rUkITXN1dbhQNRecAzPAMGiaNJSAEJpqCgpjoUAHb2hBOgJQIDHGGMFVEDaHl69e26a7XpRbm7vn5zkCtrmxdXZ+iQlOsth2jKqGMGjXTdE0lVRNXiSUGqYBSVyVdY0JSI7Wq6Kscj+wywKSuLy5fHXNbzZ7fW8jhDDC+KoikFKKN0xjjPFkejmdz8qy/Cf//X/3l3/5l0GrIxS6d+9eEARffvnlb37zG8aY53kaH/jm+9/56U//6umXz23LaZpGCDWdTvdv7U2n07LKESWWa2VZ5nr25ubGcDh8/xvf6nX7e7fv7O/vd3vhOpo+ffbp8dkLpOhiurg4OVWS97stpBoMwvGNbHYZOg6v6uPj0x///t9sd/tRnnDElVKOaTHG1uuo3x9MJpMgCHSJcW1Ab+onEAAIM3TTpx+ta+UASZJEISiKohFcgCobvoqTrCzSrJjNlzfnJMnysm7anV6cZi9eHjx78UIoeP7qAGFqmLbl2P3hIGiFz1++6A8HaZp+9tln8/k8juPhcPgHf+NvFnllWRYhbLFYVLypeOV6Nq9r2zQD3728OAuC4KvnLx48euyHoU75GA6H2rlA29lqCrECMZ2N8yINwzDLsi+/fHr79n6v0791az8Mw6IoMEVxFtuWUZa553lKqcVi4bru9mhz79YORmIxmxBCKDV026IXHQCdIsduVkCMcdNU+i+gu2B9SvUq47qubplv2mQppd6EtJuWDkTVQ1tdp1uWlZd1WXMpwLZcZpCyLnQpodOvdBC7Fgvq33wzy+aca9MaSqlWOOgqlRAi4cqLTM+yESUAIK/j0K7SArCSiluWUVWFDobX5tiMWYaBP/jW+3fu3JktZ5bjLub5dJFGK+WY/bopT07Gt/Z8wzIlybHxplOoa16VvMz5dLre3b1V5FYt67oBjK0kLuJV2e2aSOHN0cAwSZqspaqbhoOE9SqO13G746aJdFz0wXf2fvfZ8+k0CTsMMHz55fjFV+NudyiEiNcySZKsSNutwfd+8Ei3ERsjqyiK23f7QKAuWa/b8zwvL1bMNAyzbTsIULFe5HnGqZnlebpapraLucoZNZsKe15Q1IXCKGiR85P45OiYAf3g/U2vlSXpejmVZYZ4ww5fnPuB/Ft/+zYmAuG8zIzewCkrzhukACquEEKU4Tt39phx5ethGBYgUEoiBAKAmQwz6Pb9KIrKXNm2xTlvasE5gMKUAiGES6VAAkgBgDHCBtYXToLyAwIAaVLalnF4cPQHP/72i+cn48sVl4oa1ng2wVQxCoCJ77ueF3Taw4anXCZIGVkCjCKlVFOppqJKaf4iFPkbFEUpBW9Z2uh38NssRMbezA0vLs+m0+nJ0eFqtVosFnlZHR4fTWeLL7744ne/+522bJFSnp2d3bt3p9Vq/eXP/urpk68wommah0GLMba/v6/x1rIsEVJSyrPzE90ZnZ6e/Nk//+lgsMmY+cUXv/vtxx99+tmvJtPjyewoSyvfb2dZUaTJ5fkZJRDFs5OT5+vpRNVFto7/1r/zH7iuJxHCJiMOy7JM27tqjohhGK7taDKwLhPqutbgQF5WesrueV5Zlq1WS+OVuh4pyzLNMz2EElLmRVFVTV7VXhDenJMXr16HYVjWzcHro9PzM8tx5rOlHwbj6QQRSpjh+gGX0rCs8Xh8en52cnLSbrf3d/e//a1vFUVVllWeFcvlMgzDxWKhFWMGI3fv3n316lWr1YqiaGNjo98b2LarlxLLsjDGQRBcXl4CwHA4/O3Hf+37vl4ZTdMQghNCut0uIXQ42Miz4vLycn9/PwzDo6OjQa+vw//CMCQEbW9vhp47HA7Xq4UezGk0uSxLPXfTO8R1zSUBrlJN9Juu62rnC40mo2u3fe3lpXVpcO1to0coWl9s2bZOrdMXpaoqSqneR/M8Nwwjz/Obpe0GU9awjF7Obt656qOlQtd2TPja0uamooS3NHwaXNZ7v5TScey6qQDANE3dFUkBtm0/efJkvV77vrtaxwDGcGPHNOzzs6WU0rHDwUYohKBGg964u8F6FUuJ+/0OAgCFFzOoORBMMbhZ1rz73u3vfv/xcrbIsqziM6TsIDSD0HDMVm/gTi5zzIw0BSeA3/sbD/+r//d/zahT8QUIIAgmk0kYupJbTz5L3nn3nt+Ggxfjdo8ZzJmM8/6g6/lWVk727liKO+t1lCS15ZJOr3VyOHc9DxG4PE/qEt2+uwFIpEnDGBlsQlFmCOwoalpdqEvSiBoAkkiOtoL/6X/473/826cUe4ZhB21sWrkCuLUzevrk8/OD2vHQYjmjZialtD1S1lAUJiEoirI0i3u9jl496rrWJFTGEEIQhqHjWINhf7Vaca5zoxSlVCHQWQ4IKUq1E6JQ15deaLwLlJSSACrL+r33vmGa9vn55XCwkWe17TppXiyW6d6dvYaD74cnZ6eAkGWG9x/eEipVSjHiVwUwxggFJVlRQhA6nuukyZvaEF8J3m+oCwKuEkSR1PRUJN+shnmqGm4kBQYa/ujHf/K97/7e1+4/3h4OuJQbm5vvfePrvteWAu3u3et1t7KEv3j9LOy1yqbe3NoZbIySLO8NN7obG1VWiKrZ6g+PX768t3+HETqbLZjp/M//3t91XfNnP/mzJ198/OrFc5NZjDij4W3LMQ+ODtIkNyxv69YetawyL3xmNQpVEr3/wx+BkifjC2bQMl77BGMkTIudXZxS2+BSCiURppZl2ZZnMDvLK8dxDUoZIRhUtFoCJlXDMWVxml0r85RCmDdQZY3NbKxwLXic55WUXMi3+ZmNVL2tW7/+/HfPT8+p5x+ennElleCuZdqmgTGuuUiyfDKbP3vxajyd3r1/7/bt2xtbm1VdF2myWk4uxye2zaIospg56A5c2+6GwXRyiTHGhP31bz7ev303z0uEcOC39ECt0+msVgvToK3QH1+eE8z29+4Y1GSENg23mHn/7t3peGz7rsIwXcy2d3cNwyJAuq3BvdsPVJ11WkGUFF7Q2xiMOp2e4/p20J6t1giwSUyDUNOwi7LUHJNalVJR4AxjDAQQtkzTYripOU+yzHIc3TBLgDhNhVIGs6SAhstGqoo3hmHwplFSCs7LoqjKMktT3jR1zSk1TNMumiYrcsMwQHKGic0M3jR12WhrhqapGSFKyDIvqjK3TJMoKavGIFRwZBp2I8RyuRQKpXlOMbYMw3ddUdVVUWpp/LWUWAJIQjHGFIFJiS0F8TzbdOooGa+TtWk7Aqqwi5pGPvlsadmkN7Kq3Hr/O63dfVKl8527NqJiPbGkmDYFUSrDKvDfpEIAoDpOaqlQ0IXVIvH9xCcd3/YoXTAKP/7RH9l0K8vqYfteEdOyQJ2Bqkta1DElNlKtXp/7rHvvtnl5mv7qN8edbRUtCVIQ9gGp0So+bXU9JaGs4iLGGKEqNb7+vldHkEUmQu6zJ+r+nX3XXzdZw0tkEC9PYl5VBmoIBYWgSorlZBm0oCq8NMEYU2bX/aFVlZgZwCvOMDgeWGb4d/7473/x/NO0Lr1wmNcT2TgYdUfbQV43qxh5Q/f8pEICDCSYagngDHwEqRTM9+3D1ycP7+1SKhHiAFhJDNAAuN0hUG/e6ewoeryY1BYyFBeygaQslAJqV7wmUpimCRiRok4UAg6E4AorQMqsGmCGsiwrjmpM8zsPOwevps+frhHhFpOiUskEHb083doFQMUXH1eEGfPVRRqLOjMcB9XckqZSrBGKZWkKtaeAKlKNJ2+0KNpbSw/HEUL6KaeMkVpAXXOEyI3+AQBu3d178OjRaGubUmoYVDW1ksL2PTMIlFLT6ZyY5oPHX6PMfPbs2XQ6b4UdJSUhZLg5Onx92Gp1Aj88PHrt+/69e/eePHnS6/V2d3dfvHhx7969brf79OnT5199ubs9+vp771CK87xcrePj42OGYDQa3bt3DxGmYZl+v3d6ejba3JaY5ElkuwHGtN0Kk2iNkQpDHkXRYrHYvbWPMc7zvBWE09mq4rzVaumaBVPKpbRtWyeHaBRJz/41Mdu27aqq3yqhQSGoeYMJzvMc4Ko8vHfvweXl5fHRaa/fkVJyqe7c2lku1wjLoigVwrPFcjweM8ZGww3Pc7TJWJIkTVmk8cI0Td356vo0z1NmuuvVant71/WC2XyiaxzLMpIYYQLtdlsppdUXjuOcnp5yzkejUVEUWZb1eh3DMIabW0qpdbTyXff0+HhrZ8c2zcvL842Njc2N0bMvvxq2bNOyQXJGEKW00w7jol4ul+12+/XBITFMhFAYhnmZ6ZLtqjlFQpfznEulQCnheaEWbtZ1vV6vr2T2GGvnG4VANY1m5+iuWVNqtN5R/2aNSnOFPce5QrfiWHffOmwvz3NdL0dRfE17qrRfNefcMCilNMu5aZr7+/uvXr3SZ1Jv8pq0Ia6NLwEkIQwUklJq4xykUJHHnu/4rsPrJlrFBJGm4iDFv/vv/eFqvcQEHMeazuvt7c7x8Xm6yLc2d07PTke3XAosjZFlWd2eLa7Fq4Qi08RJknSHYJpm2AoqUSxmTW/oLEsetK0///NfjHZCIBE1uWGqjY0Ny55XtVzMxvfujso8WswWP/7DByenE0ZJLWtEEFKoKlQZzxYzvLe31+4spSjXsQwD8/Rk+uidB7/7YjydHzJmrtalY98mGIBALTg2CDVRXkBVMUANYIKA+l57+dXKs1FelmYB/d7G2dm42211R91kUc/Gye4t9t3vbf/s5//0r37y4uvf7RZlgghgxCfjaSPSsOXef7izu7f/0V/8bGuzj6EsRbzdc6oipwRjKtO4Mkx49fr4nXfuf/b5C8JASUIxqup07/aI12yxerln3qmrA6xqDfsDBgCEsbwmtQBjDFOB8dWAhWCulJIK8hwYxhjDfBZRmzUVp9TCJqGU+CHYzFFQuJ51cb6wbftXv3zS7jizi8XuvjG+rPMiwgSaRDoOzROVJKkdG5ZtPn78JiXqpsq5ls0AQgg3jQCl9CTlbUeHD3/wXWzQf/bP//Q/+c/+03/4T/7J//jTn/7md18UCNmtdgXI8IKtW3u1VOPZdDybV7yhlC5XUafdS9JcgLq1v5fnOca4N+g/f/kiK/Lvf//7ZVneuXOHUvrzn/98Npv90R/90fe+94OirA8ODl8fHnMug1Z7787tvTu3V3G0mE1c28zTdDGb9bsdz3fKojBNE2HY2BxR09i/fc+wPY2iGJRVVdXwmlLGpYiTBBSWAhQiXELTiKpqmGkpdJUhqU+Hbqa0+z8gYlgmpkTq4D0p0iLnCqrmzQ7RSPHi4DVX0jKdPC8ty8qKch0liBBqGOPxdLlcPnjwQEPqnhcIIVarVZrG5xennuf1+329cOuZIAKoy/zx48d1XdumVWQ5KBHHcRRFy9VKSrm5ualz4LKs0Ohqr9fr93rLxcLzPCHEnTt3uoM+xrgVtpuqJgi3gmC1Wgz7g43NzXUc9UdD33EBoNfrlHlGMCil6rpertdaCCilTNIcMGq1OkqpG1sEpcS14StWSgkuNe+vKIokSTQ1BwBc1wVAmhZTFIWmAeqO9SaFtdPp+L6vZZSO4+gZpZZgYow1W40QctUUI5SmaV3XnHP9QZJzRrEUDQJQkksuyrqSIKI4LpvSde12uz0YDLRVhG7q9UhUE3RuGJGEinYnePnqxcbGYDgcajI5AJ7MJ3mzitY5503TFK7TVmrd6zjRGs7OF2EH5ossK+I4klLxpnkj5AeC2u2w02khAMqYVHQyLRQwKSUXwEWZl8q08NnkwPNoU6vJRaEUKkvYvWXfvjuqC9rtsXffffeTj79ohEQEMFNSsSzGgPli2lBab+/2Acn3PwjLKjk5vmy3++2O1e17VV2aFiRx0W4FmFpFXXFV256PMMpyJTgBIeeLpNUZ3bsfGgZxXNzrdVfLTCqsICVYlnnV7zvf/u7X56vxr377Qig2nURlmTouEFZXpep1B7PZrD90vnxyIAUQKtZLTmlVVzgIXYSVH1LPM+sK4qjc3hl5AWDEpRBNIz74cLfM8Nau1x+0V4sUCdtyrm4thLAUICXoG4wxpLjSsQFSAChEKQIAhMFxwLIMQPjF89O9Ww/qWlZVXqQiTbNe32TM2Nxueb61WqaGSaIlnLzKb+217t7ZIgjZjmkbiBqEkJpSDBKKrFYCzybTf3M1fPvQsVag2QzirQTRxWIRx+vZbDabzb744ouPfv3Xf/bnf/n/+Yf/zT/6x//so19/enI+fvby9a9/+/Fnn39RVtVguDGbLTc2Rus4fv78hWW7RdXEcboxHEkBruPfvXOfGVZRlZ7nTSaThw8f/t2/+3dns9l//Y//m/l8WZS8KKpGyMFgY2dnZzKZLJfLijdRmjiONRz2yzI/OTlxXRshVOR5nudeEIadtusHruUuZvOtrS3JBa9qLwg4F3lZmo6dVyUA1LypmroR/Noe4ypfTVsV6NqQc46ZYZimxjEBQCiZZkXNOXorGOj45DRO0k6nB4QqwFXNT07P0zyvuRyPp0mW7u7uzqaLuuKj0ajX62l/sziOt7a2tra2ptOpUHD77j0ulA452RptrpaRNsup62pra4s31fn4kjE2GAyyLGu1Ws+fPxdClGXtuu5oNGKMcF77vtvv94UQcRxv7e4wy2SY7uzsrBbLrdFmGIYA0O52+8MhY4wgPBpuSMXLMkcYL9fxOs6VUswydVW1XC4t1wnDtpQgxNUmAdfCXoKZHikul8ubOs513TAMq6qSUgIgHZ1MKdWTuKZptKRaB3LeQBw3+9DNYBcAdEWp10S9+lNKEIK6rrIslYpTShijhkEJIUHg27YZRdHO7tbGxka71zWMK4BYV6OaqYMAKwk3snshGoMi3zV3tzeyJOq2QosZ/U5fNtLx7LRYJmmplcWyVoRyIet2106jfGtns6oAsbrTDZXikr+ZuydJImRDKEJglmWZpRVhYFqwWpWGpX72V79VSoy2NnrdTYTtJFK/+sV4OS96LU8KMr6Y5Al/8GjX84IXL6egrjQYhDBZG+++dztLAGNgDE0n2oPDaHWC8XRq2YxgRhh9/Pjher22TCVqME0TKxB1JWvFyypwmWULz+/98hcfJ0khVS2VrMpmfJG4TkiBVTmXUI92TMHR08/jPEWWI5IYVVUzGm0QAvNptrtzbzHn29uDs6MJUnDv/l6eImpwyZlSwrYNgLyqK9vy47h4+tWTH/7o2w0HZuJb+90omdq2nRWXlumcHK0QIPmmogAuJeeaPSosyxBa+wn6xlOAkQBFGQaMMMW27WCwP/qXnwLAzq1Ru2+1291Wq5WmOeBCqsq2XMdTrmuVOfEDp24K07Tu37ltWxZWMBx6nNcffvhhUUCeFePxm075X6sNdSGIlQLAWAilJ9433/3Rz3/x0c8/Oj08CZ1AVqKI8yqvppfTVRQ/e/Hy2YuXT796tlqtw3Z7/86dk7PTJM467V6alxKTsq6llEcnx5xzwMTx3Ha7TSntdvqT2TQMQ8dx/tE/+kc/+dlftVudquF+2Prau+89fuddTMmXX32VF4VhmlwIQkgt+Pn4spEibLc55y+fP5uOLwf9DjaN5XKZJImUMs/zQbfnerY2Uymqpqy5DiynzDSYpS0O87Jmpq3J2JppfJN5dN1qEc4557WuJsqm5vJfAZ64BMtypMJpVr44eFVxMRxtmq4nJERxOhwO8zwPgmB7ezuKktPT0/V6zRjZ2dlRSmn9XK/Xm0ynTdPcvXsXK7lazBhjlmGul/NOO/Qcp6oqwzBa3V5RZGkaHx8fw7XVwsbGJiGsKIqtrS3btoUQ8/lc24u2Wq17Dx8YhrG/f0vIRoGYTqdVU2dFGQShbdvMIJZlJUkSBK3Ts8tVnCmMNNe63W7XNU/izHEcZhiaO6aUAiTRdZqoEErPE/SuqT1j4jh+m3XIqGHb9pWrQsWLvDIN2/dCULjIK1DYdXw9DNV0btM0NVqtl8LQ9yXnVVFYhkEQMigNfX+9XGdxlCWREg2lBGPk+36n05GK+4ErQWRZNp5Np4t5FK+0EoZzjhHBGOul0GCWlirVTc5FKSXf3BxJKZ8+feY4DqMmpXSxWF2TuqHT6TFmKokoLQizXj8fgzSLIvFDEq/nTfWWaB1hhWCxWhrUT5IkDEPbdAmrlLAb3szG1f6docGcsiyztEjiwjZt16etVsswqONSx7V7fX88XkkBpmPPpwoUCJ5LIZJkDoBn07goU8UdArSpUaPy+XLx/gffPD5ZLi758+evsiz73g/eBcVdZtqGDUIyBHXRdFvG3b1hFKeX4zKJasexdreHnF+ZtUhh6uKLEPLpZy+XCwzSaoRcLxqlzPk0sywnjeGrL1+2Ay+O0um4AQDDIItVHrTsomiOjjLXNlttd3t7o9VqKcCHrxcY48HQEJzv39549azsjdRykVkWnp4pw8qRIIbBdK9AkKaxgBCCMqy7Ugxv0h2k4pRiBGS5XK7jtCzEbLISAgQvCaDTk8XR4aQVdvzAzvOiEXkjYoS5Ung2jYucSyniZJHERV2JIHAQgqrMNjfC5VJ8+OHjf7Me/FdqQwAgCFNGeNPotkUf63XMCOmF7a2N0dZwk2LC62ZzY2Sb5u72tuIqWkbbW7t5Vj776sXBq8Pt7d3js3MhVBAEEgAQaZomSTJqGr4fTueL88sLLRbmnH/++eez2WxnZ0cIpRRKkowLdHJ6zoUKOj2JacH5OknPxpPJdA6IbO/sJEkym8063Va3E2Rx9Okvf/7lk8+PXh+8evXq0f0HQRBQTMIwTJIsy0vPb+dVXTacGCZmhoawai5cP9A8j5ukXYSQjhxybNegDLSyn1DTNPmV0eEb1pFhWGXNoyRbx6nrBf3BcBlnJ2fji8nUcr0waGsezOnpqe4Hb926ZVlWHK89z53P5/3hIEmS8XgaBEGSJK9fvw5Dv9/vl2UZ+oHvuA2vCMHahms+n5+fn2tnQCGE7r4dx2nKajQYaquY4XCIEMmywjCs05PzIAjPz89tw4xX63YnvAoVASwkEMw451mRn40n55M5VzSKIsdxCKNFUQRBUBRFmhWO48G1F5O84usp/b+a5aPDmKIo0ob+GlN+I5sTSu80jLFut6tnpkKITqejKy+NpGsIW2OIN4C1flP35pRiIRqMIQgcUKKqM85rDLLhVZYnQjZN05RNuYqiJIubprIsy3Ec/XsY1RxwixCmkW3DMJhBWq2w3W6FYbBYzp6/+CoIXMMwHj1+cHm+jhZFHK2UxKbpFnWRxkpJ2u+aroUXE+m7QVXKdtcyDMPz3qRE2ZYPCmMM67hAGFzPXk0q18eWYRYFYGkPNuzXr44Aqyjm3/zO414/bPU4NYvlar2xGW7tDCRunn55iDBFBIDDzs7Q8wBhZDDLdejBi+Wd25tYMcOkSlbjcXH4+kwpUeZgWH4S88l4Sahq+dhiFDhKlun2VvuDD3bCwHn2bJwXpedbVQWnp8u8yIq8IQQrLLKi2NhqIwznx4XkdiNyQAVFHQAWR6XrDuIoo8TqdlpSoDyvCIZuN0iz2DQxY6wqm+2t1mq1xgoDyNlijBCyTPLJx198+OG3797vPXv+2jRAyHRvb+/yLAOQWIGu2W86AMYAIZBKUErgmt8qleQKCEEKFDFIknBCUeDZRVGHYQgIJpNVnhf3H2zHayjK2LbtPINW2zFN6noG0CZLjCzDg2ErSVdCgOO6RVHZFjx/+eTr33j3B99/fH5x8tZm9iZX/kaOggmAuG5h3nYoqLlEhIWd7nKxwhiPNjZMw5hNx6oRw25/tDFohWFRFIeHh00jesONdrubZyUXarWOq6o5PT/b37tDCDk5Pi3rZmtry/dDbVel18QwDLvdbn84kBIePHzc7/f7/eHHn33+2ZOnh8cn5xeX48n04nI8Wy7OLi/+8md/9cUXX5RlzusqS+JPfvOreLWcTi4vL04wkG9+85uWyTDGdVklSVIL7vietqvjjeRClVUjuEJAmGGhaw9nuO7R9GpoWQ4AAikxQowxbYFXlqV4y+UsK/KsyMu64lxubIyW6/irr76izPD8AGOs/amWy3W329UcRnIdtnl8fKwFPBeXE0qpBMQY29ndwkgtl8vVavXw0f3Ad8fnF0II3/cn06meo3W7XYRUu91erVa+7xdF4fnuYrGQDd/Z2XEcZzab9QeD+WJBGNX636IopOSOafFaFEVRlHUjJCK4bpqirP/6t59Ml0tmuVrRSAiJ06QRwjDMsqxuBt3XfYS8aSLqutZm1Jq8qV/oENEbvuGNplj7y2qbvyAIpJTT6VRHbum/oQY9dPyebdsa/sIYm6aplBZNQ5qmrmvbtmWbFiGE81qvnnqkgwkRsrnp6HWtobe3t5waRNM0XNRKqdV6sV6vAck4jre2RkmSxfH6+Pj41vZGum66vQBjWlfCssyPP07yUtkMhx52HdKINI+pwSyMKeA3rVZeNMtl7DjOfJYJEEWWZqnEQJhVWpStVquL88M4SuO1oARms9l8Pu/2zTRbtVpkejHd3uvmVfLJJ8+klEJWiEC31d4YuZjIi/OFactusGO7Mk2jze3Ww69tmCZZLvPTy2MloS5z16V1heKoevcbO6v1wrbC/mDkBe7p+emL1+eUmUHHS+OybmA0CmzLkVxhjIsy3t7rBUFAiTkdZxiDHwKmUJYZgAJAq0W5XkshBMK1lFJUyrJge7fbNE0tZFFUEvPlPLMtYpnubD41TKyU4gKPL/Lx5HJzs3V5XmAK/UFHcPrVk2WnQ0TtCF5xLur6in2NkJZacsYIgERKJ6lIhIBSjAAwUZQZjmMB4kBgPJ5+/weP9/b7eQphm2xvD7Z2Ou1WN/BCz7MRGEoJO4CTo+Tj304Rq2pZCQmc88k0+sY3t2/t9ON4dXL6uj9o/5ur4b9SG+q7vmkaTMjbrve261yOp51uDyH08uXL2Xze7fU6vW6v0+51Osv54vDgdZHnvd5gZ2en1+udnJwopR48eLBcLufLhVKQlYWm48ZxrMfnerCtowL0M0Awe/DgQVU1aV786T//H09PT4WSiJDpfHlydn58evLk6ZdfPXv+4vnLVRTrNLinT58alPC6oBh9/7sffuc73/F9n3PeDsLFYlEUBWNmWTVFVQJGeVlceZwQjClpro+bbQoAtFOA4qIuq6qqlJAE0LV3gHhb8JBnJaNmUwvKWNM0FxcXtuPZriOESNJUYVTXdbvd1n3ljfAuiqJ2u+267vHxsWVZG1ubet6n/W9s07x169bl5eV4PG61Wufn57qBzfNcT+u0eepwOKyqChRut9uHR69v375NCDk/P9/Z2bm8vDRNEzPq+36WZaenp3o4q5TiNafUcF23qBrbtou6Or+8jJKUmpZpmovFQovttMjSNE0hrq4RuXb8vykVNfFbLz0aEdYZTEIIvb+YpmkYBmPGDQdbExJns5mO69JkT73j5nluWZZeYfUHaV7klXS6aRACzsVqpftf2dRlmqaEIMbIlebfMBzHGQwGeibb7/c7nU6328UYK4W03R4lhkYqLcsyLEuA6m8MK14t1ivHNxRGpxenve6AN2Q5H5dl3dTK9R3PA6VYvCju39+lWGRp0ZSm4DhNyrJ+0zwpiQHAdV0EsF4vMYASEEeVZdVVZb7ztYePHz7ACq/mwqDuqxfjJOIIESUpQd5yXt2+v0MNcnFeUmYiBKqGVy9f1lUaeG4cibv3dg4PxgrlQkrCSsySPEVFLrvdTmdoAIiw5StpfPX06PbdoRMQLwxfH519+eIsrwERS6ogTtLOoM0ouK7PGEuTCmPcH7S/9u7+F09eIDDsAI5PL20aSIFMuwIsi6KoSrm3N1Ag1vFEiEYpFYah55tpnpsW5GUluWDEfP/994u8sW3bcUxMEa/B99z1KrIdSrG9v7e7dyf4Z//oy1YXQDFKDcYQpeTtQkxIuMbTmGFSSoBiokPlFQIpeZLWSZ5jDJZlUApNlSdJZFv45OyYUqpQ+fHHn9pWaNu253YXiypsM0paW6OBQmK14kHg1VVlmc677z1crmbT8Vm/310u3wgr/7XaUL/ACBNAuipqEHqDs3Q7wWjUmYxPqYl39rZM0+Rc3L/36L1vfdDZGHSH/f7GkAsxmc/Gs2lTCwC4c+dOkZVlWc9ny8liGfQH0rIVwmXdzJM4KgvT9zmQWsiGyzDs+3631emu4mQVrX/6Vz9van7/wcPzw8vx+TRb57e29+7s3X/3nQ/CoO+Hg3Z/YxUXp2djAIypGXb73/7O97nCr169mkxmlu2us0RibJh2WTS26epkdMtxlnGc1zxOM4wJpcy0XNcLqppLhQCRoiy1rrWuctt1sMEMw7AI2IQ2EpaNqMWbCXDNuUKIWhYHmC1TIZDBGFEoTWKb0cBzXNfNsqRucqH4cNiP0+T44sy0nVan+9tPP/eDtmG5ZdEwZttep795K6tVIwRC6Ktnr4Yb21XJfV/zh1oeM4hSDJNWq+N6ATOs05NzjHFR8Xe//s11kk4mE8/zzs9PQQmDkTxeP3/6dDlb3r/3mBIHJAocG3jt+R1RV0UyT9JovIgn67xpCFSNRZjiIlon1LAlQF4WkvM6Tw3TB4UVYiBNKSVzuOOypmFC8LquNFihrn0QpIC6aeqmkYAZM/XOQQhlzEAEN4JHSaw3Gx3mp5RCSgEmheJgWRITx3FkwwFJKSqKkWWwqqhNZnTaXlODwTDGTEpEqRH4PgVkMYMRSikVDVBKozQijJZV03BVl9V6tbBtW6pGqApTxGWDMS6LVIpcqBikeXZ0+c6jx3kklEK2Q5vaiqLkvW8OpaCc10qJMuNhB2zbPz2HNI++9l5b5JBEKQYCBGzrjdtrnS8MAM9DXKFakYaQzsCI5rC4MGw/zcVUitCyDcPnClfAg8fvQ8sbNqIuGjrPlCm4jRlIe++eyVgDss0MsGzHddnevg9AV0t8eSJv3TcvTprJZc05t23ZCXybSqxMpGD7Nj08Xm6PzEGbnbxYjja7UkC0cBoombekEoMoRU0QyXmDswQwq7/24ME6i8bnBrISywUoPcMwAr9DDXA95XrW5DLNygUAW6cFYHeVr3YCa++WfXg2xbYjue1R94//xgd//bOPXx0stzZ3uYglVwg33//DFq+dJMvv3BPvf8v5R//5OSCoM68RvFJrRHqWazUKEEECCQQGNVCZWZbbFAXCYGMJQjZKeQWvLRuAm4hiIVFeNZhIQtDlxTSKasen7zz+RlnPJ+MUwDk+O7k8Uwov8gjKddPfmm3fFeeHZNBuF+vi1r75wx/e/sf/+Cd2YL14Ue4/CM8P3zgW6m7mjfhdoyi615AS0LUriT6SJFFK3blzZ9gftNvtP/zDP/ze9743GAw0H+X+/fsPHjy4f/++ZoFgjL/5zW8SQi4nF1VVYWasV/H5+WXDxWAwWC6X5+fnjuPkeZ5lmVLIdV3HtRGGs7OzFy9evDp8bVoGxvgv/uIviEnb7fa3v/1Bp9NBCM1mkyRLu73OcrE6u7wYbW12+z3A6Munz/7xP/lvf/PJp7USrV633R+so3SxjIlhUkouLs70v0t35YZhYEwNy6rruq5rIcRb3AumjQa4FNRg9K3DcxxGcNW8cbLQDaBeEQCAUNrr9TS8YHv+Yr5aLpe+769XsWVZWVZUVbW5uen7/q9+9StdKtqGqd0JKUGr1UpPMD///HOt2djZ2en3+xrm1qmy2stL21s5jlOU2c7Oznw+vwK+hYjj2LKsly9f5nme5NnmznYtOOccMIrThBosiiIuhFIqiqLpdBrHqQ5O0p8CGGmr6mvXa3RzD+iTQwihDOvZpYYa9EdrOYqGcfXsVf+UtsjUUXwIoU6no2F6y7K0IZhouO6s4dqsUF1HIeupnC4tlVJBQKRUN8Wpbnvrui7LUiftEUIQgslkcnp6qv8tnudp1qEm0OjXCCHbMTc2tl+/enZ5eZnERa8fYgyLZbKOi/Pz0wcPHtR1c+3AyKQETZA8Pz/v9Qbttn/rVpjnKWMsL950yu1W1/ZxtzuoG4UJanKaZ5xRjDFCGC4n41t3uxwKQqCqeLsrKPYrvogWUNcL2yLT6ZQ3mFIR+G2MgVJlGp5pGULF7Y51drxGpDo4WAV+1zCYwSgAOI776W9ORpt9qZparo6Ost3dvdevJ3fv7VU8f/bVa6XA863AJbLBnEPDi3bHW69yIZRQ8O/9+9/LU/iz//GLNM0JYoYBpovzPMe0AgSS26IxFErK1AWk3v9gm3N5eTF79OHDybxIl3LUcmVR/P4Pv/2XP/tVSUyM5fnk1a07LQD2tW94nnXr8PX4N78++cEPv7Nex2U9AeUJSLOUWybjdVZUtWkwwzBcF4q8wpjoGwEWGbgAAQAASURBVDjjFSBJGCBAkgvDMBhBVVEqpUzTbBpoSo4BEIK7dzbKoj45OTJM6vm2UohRslqteIMRho3+9g//4M56hlfLOK9WO/ut+49u/+W/OGp3vG57896DvcVE/s0/+vq/WRu+fWAFCsibIvbmC1pYOplMbNvc3NzMsuzo6OgnP/nJJ5988tvf/vajjz4yDGMymRRF8fu///udTmc8G8/mk/V6TU2j1WpVXKxXseuESiLA2PdCpVSeF4SQMAyHo82qqriSqzjCjOpEJ8LI3/zDv6Efifly8Ytf/OLp06fnlxdCiNfHR0mStNvtl68PT04vP/3sSVbXe3fvL1frKIuny9V0uV4n1WS2XkdpXhbMIpQYhmWmaVoUlZaFmaapmcCci5sMNoSQYVgY46IobgwtpJSy4YziuqrK+g3riFwnDSFEdHzgcrXmUtRVgxDCjPphqKP7BFdN0wghm0a8ePGi3e3oUMCqLqbTqevaAOA6FsGACG512js7W71eb7GcYwWOY5VlmaSR1gtijC8vL5umkYprSV9VVTpRoGmar3/960dHR47jCCUHG0MuRRzHqzjqDQarKMqKIk5TAGyYFmFmXpZCSWKwvKwRJo1UlmXpZlyfjUYKvfLeiJb0ImgYNAzDm/w5dZ0moX9QQ4F6gbuCBaXUuYkYkKYxOY4jOUdKASjHtXndIIQsw6TU0GNc23IBIE1T02SWZTW1YMy8VtOjG5scXWZqMV8QBHEce0Gg44qCIKCMRVFimbbjuJqsoxv/KIr2tu9tbvWbimdZCbjgqrm4WHf6QV1zpUS73cqyTEqZZdlg4CKksoyvVnBxPrNt2zQdZugQvjdPznK5Ho6C8eWyFVh1lTiuVZbccTzTQZaNV8vG9Iz5siZIIQXvvN+PFrVtK6zcXp89frR/dnaGkS1VfXx0STFwsZ6NIyn55nYQtp3XL5dA4fy0LDLKTAGoxBjCsH1xmhkms2w0HOEf//4HX315dHyUDbeHL16/7nQHCFCRrwQXWLr9ftcPCMLCYPZyOf/h7+0zA375i8+LHJhpNA1TCmyXr5PcdLFC4NmdIm0oAyzau7vd4aAjuSLIzCB9fTgBCTZRf+sP7v31r38+XVWNFG4Id+7curxcW2714Xe/9c/+yUcY0TqDf/Fnv7j3sG+gLoHKsw1KFBJGw/MibzCmoFAQhFxBVfG6LvUmKq4QO6jrEqkrzRwIJRpOACzDaLfbTV0yAp4Hglc720OMGsuw6lJIrpJ1RQk6vzizDJsyZFq43w/27rb+xZ9+tY4zQuWrg9Pzi6OPf31qum+u39ur4c1rDAAgJaUASuk1Qh/379zpdDrfeP+9Vqu1nC+apnEcW6+ATdN0u935fI4Q+t73vjedToui+PLLJ2VV1YJLAYPhyPfCg8PTJ0++7A6Gvd6grBshAVPDcb2sKKVQi/UqTVM/CFfrKGy1W+32t779zcPDA02a+cUvfhElsWGZpmnWggdhaFjmZDpbrZPD0/NCKCDWZ0++avc3aoBlmpyPl9NFHGdlWTVCSYV0fryV5mVRFIBIVVWMmVyCpgpjTJR6Qzk0DItzTggGjBUCjDGjOHAdLKF8i32tXQOu6DgEFIIrPNpzp7MZAFYKYUwZM4UQy/XqcjKJ47jmEmNaFAVhbBUl2lYoCALG2OHhoec5aZrmea7dDZqmkQ1HUiwWC6WU5gz5vlsUmfZqPD8/146Hp6eng8Hg8PCwKArDMJhpekGwXq+n81l/OEjzTEqZpimmxHLsJMksyzk4PA5bnbIsCaNF3SjApmmr67wRpRRc69aFkHqr0IUbeitMWbcYcG0Po6ecN94N+kQppRihvG60V7ZhGKJptKUCI8RiRlmW6lokTgizTEeXk9rN7Co2vpFNLbTFWVEUWjF9k3unidBBEETxKq/K0dYWYJJXJSHkegU3tNBFDzE/+c1nd+/uJkllmd4yniOEolVBCKYMPv/dp0qH01uWPhXz+bITmts79tHRshF1mpeWTUBy/NYoKcuyza3+cp4EgZcXSX/D3N5D6yg2LMGou5qrQX8rj4nJHMrA9YzlokoiXmaSYrS3s4kpYabX7pLFvBz0Nx0XpKQmI6OtTrQq45gjDAB0csnbXdPzoNtrF0URJYvzs/Gjr217zvDj3zzBCH/y8XGcL3/4++82NVJKUaZs2yhyjmm1vb09HqdSNTu3Bo8ePfr5zz8qi3rQDxESUgKhtNWlsgbO67oC1wdmYMOAKF7efRgspgIhdXaay6ppeOH40O4PL8ZxXAil4M6jna3t3uV5jMH4D/8Xjz//+EI0SqnKNNz92+3J5fjVy7HrN1JQSiwJRSMAY2hqkWV5I0QQeEqBvtYEgZBcyiuTBM4554IiYlpESskYFEVNEDYo5k323e98w/VMTGRRJkoijCEMQ94Q06TdPkUyzPN49w5DyvkX//zA8zc3bzNEpJQyiqv1qijzN5fvbTzgzZtXN6/619fLpmnSKBqfX8znc9M0o/VyNp0aBnv33Xdv374thNBeALPZ7ODgIM/zze0tpdRgMGh12mdn54Bxt9t9/vJgGUVhpzedLaM4v5wukqL2/PYqTSlhi+WqrHnVCNv1799/8PlnX+R5fvfOPQGq3x/eunXr8ePH7V7/0ePHQbstFMkqvlinl/O16bXyRhlu+NvPn07m0RdfvXr28uBsPDMsZ7GOdBul1V11XTdcYoy5UFICY0woxaXUYlsBSoCqBUeUFHXRSCGUEvwqCi50PQNDWjZvnxPtVypBmaZZ17UERRidzWatVjvLc0wYMViSZ41UaZIHQaupxdbWlvZuef785eXlpe+HGNPT01PdVnPOj48Pt7a2zs5OPM+r6lJz8TqdjrZ0LYpCe8Fq/UYYhjrmqaqq1WqlcZvBYIAQiqIoybJOp2Oa5tHRkXbKirN0uV4bpnk5nuZ5iRAREsqyTNL8Gilqrjx+MNLUS70IKoUYNXQYPCagLQivXBgsy7xmqmvGkobFbsATfB3crItEg1Kd0HC15gIIrhMjGVwnNWtvIe2Lo5TS5TxC5F9rk28O/SPaB8x1Xdt20zQty/qm6tc1rFTcNJlpGgjDp59++kd/9OOjo2PLdFzHd103SZLhsAegOK85l6tVpC/9cNgfbQ4Yo00NZVnmWYWJwpiSt6j4tm1Op1MhlOQicK3J5QVBRApQ0ETrtKnleHxR14IRB2F48rsj17MOX2VZXrRbG54VSCnn87lhKpBQVdx2kLbGkgKOD1MALBWltjx8taBYUKoAxOnpPOgAr0nYIZMzvJhXSikFzuX4rKqzNMv7w55hYpMZChrbAcbMbsdrd62Njd6//Plnthnu3OohzDERlEJTQqfrEgNXJe+GPWKsuUh5xboDtH+v9aufH2MiXJtWy6LTZsSF1+eLpy/jWsD3P3zkknxyGR8dzsOg0wp7n3/yQggAkHWT/eHf+vDpp+JP/t13BYc0zQ3m3Hu0t9HfIATbjokoXi5T27YpBQmqERwjwBgb5hXVXwghJTRSMEYYI5ZhNhUkUWoyK8+zskjCMFyvV7ZDqlI6jsdFXWRSoeaDD++so0WZOYOh+/zLsUFZfyc3TDPLCmIqQASo/PLp5dv1ILrOfXxTG2KkPT8AX4OG+lgsFqPRaL1enx4fc16vVqs4jl3Hmc1mh4eH7XZbq2UHg8F7773HGGPU7A6GrXbXdb12t9Pv923X7fZ7L14dxVlVNurkYjxfRk+ePtu9fbfiKEri+w8fr6I4LysvCM8uxpTSBw8erNfxdDLb3trZ2bkVtDtCqtOLi7/8yc9eH5/MltEsii8X8cHJ5F/81S//4X/7p88OTr56cfT6+CLOckTwYGNYlqXn+cPB1jqOrmwpEGLMRIgkaYox1c2Xru8wIqZh3ehqtekjl0JygRUwgilAVrzZTwghuljjnAPBXEkAWK/XpuUggjc2RkKIOEpOjk+zLGu1Onme52XheUEcpY3C1HL37z2sGwGIhK1Orz/sdPsKI66krvs2NzeDILBtO0mS4XColDg5PWaM6BKsLEsAqdmIL1++dF1XM1Ru3bqlgxzTNAUpfd8/ODjQRL8yL+I4zsvKDcLJbEGZWXMuEaR5Dpi4fgAYSymbqhKCAwAiWDMBb0Qj+qbhvNEzPg0969e6o2m1WhoF1t/8tturnhU2VaXlejotAKTASDGG9PSWXLv8cy6VUr7v63gGzmVVNY7taqjaNM23X5im6Xp2WRYAMBgMer3eKlqneYYJ4VxiTDWp+8YWO4qid75+7/wi2hxtj0ajk9eTfn/k+gwAsjzRxbVt25zz+XxOCLm8nGEklquEEuyFQZLWrmcazHIt9+ZmaLW96SRaLleGYXmum8bo/IRvbwebGyOCDMb44eHTW/s+Itiw4PS4Nq0gWiJiwAff/O7lxZyalmVRIIoZOE0T0zIwyF6nu5qvV4sKG0xKxqVM0ypP6HDA0iwejVrf+fBhEvPF8iJeS1BgWqRu6p2dUV1XVVVleZyk0nJsywZMVBj6u7dGQlbnZ9Mvn1wIjhApsyyjhCDULOfcd1k7dMqMmxZt90iew2rRbO2GVVmfnaSmDTs7+1v9nbt7u9u3sATBG3jwcO/87Gy9nkRR7YXwre88+u/+4Vf3H4WEgGmSP/47j9Iievq7pBSr2w82KfPBmJ8cxgLVlZCtbjAcDoSELEuoQREiAGAQ6limbTJtfi6UJAxhQizLACRrLlzParjU+NvLlweB3xJC2A5TUutEoySpW23DDtAXn58tF+vpufJ9b7RD1/E6iTAmVllLapl2CK9fLf7/qA2vD/kWt87zvJcvX2KMNzc36rr+/7H3X8GS7Ol9IPa36V35U8e3d9f7cRgHgoMhAYIEQVLLlYJLBleMUITEDa1CLxuxEQopGNLGroLSy0paUSvsKsglFgQIYmEGA8xggJnr5vr23ceb8pVZ6TP/Tg/Z3feC5kkPio1APvStvlXdXSer8svv+34uCAKEUKNDaLIimwjHoijG43FRFIbtrKLk6Oj44Ojw8PBwOp81DqYCkIOjs5KrJKtM17tz//Hx+QRAPBxuFEW1mIem5e7tH/Z6A9O0ijRL03xzc3uVZmvrG9PJrKrY3v7hzs6FVqc/j5LzSThfJR/duVsD4nb6mxev3rm7h4nBheK8DsMFxlCjBlKkyKumWikFm9vOarV6Wgdpo4QFANi2rSRonKAgQk1QOoRQo9g0dNfWxOenBDTPgqca5yAIiqpyfZ8QAgFOsnQymzHGrl69ahoW59xxvOFwPYqitMjjJLMdr2ZCKDhfRjWX5+NpkmTHx8dCCAHE7u4uALIoClZXlmliDBsDCMMwOp1OmqbNs40/tq7rQRCYptnv96fT6Ww2q4qi6ejOzs6W8wWQyjat6XRq2bbjOJPxjHO+SlKqG0VVWo4NMdEM8ykKjFlVN3vjpzIl3AjslFJN69QQpJtdAee8qXfgiTVW3dS7RojS3C0agy8lRJ7nDQ8RQ8SqJzof2zZ5VTcOXRgRxrhSqmk5NU3DGHPOqxJICZ6SwGFDvnlG224MtD3PG4/HZ+fnTQFttoTNdWXbdtNBN+HaBycPLl/a/dX/9r/91re+OT5XdcF1TfFKuK6LMGhsxptusdXyIQRcVJ2WjhBtt4Oq4oZBKNW+2C6YDg28IYBAKcWZdF2X14iLDENUF/L0aNFv9XY21oQsDVtXEC3DsmbK86FtWz/58QemYZsu5lxhgsqy4JzrBmi1OlEYM8YVBEiTVAdUQ6upt7Wx+fwLlwf94fd/735dKQXE2rqDMeSC2wZlvDZNq65rhLlpwjTPLFdKgefLE6rXguN3f3JKsFaWeVHGkoEyEUowWQEpak3jSoI0Gxu6rhiGgFRF9e6f7Hc6mudq47NpyorjozCZy7YD1/ukE5jzZYX1AEBw/dZ6Vk7OjjMlaX+oYyhfeWP744+OMQHvvXP6xpdvCsU5AIsoC1dL24YAKAVYq0XLump8UgjWCIakWcIoSXWt5kBCQA0da5hxkeZcCMWZ4gI4nt/utiSHkgvBa1ZJJSSCUiN4e7ub5+Rgr4hTWZcGxqWhwzIDpmlKgSAAmikVAgB8UUoE/7UHAAAklQQAUAqlEF8cBNI03d7e3traCoLg7OSEc379+tXBYAAA6PV6SqmNjY0mBqghT1Qlo1Tb3t6+euV6K+gAAJrJ5vj0NE5Ty3EQpqs4r7j47PZdxw8M3YrjNGi3R+eT/f0D23UQQkVR+V7LMCzDMCjVH+3th6vVtWs3hASPHu8vwigpisl0OZlHs3lY1eL0bCQVgYCcn59btiEkcxwHABQE3eYSrRsIGEFN05ocqOa2UNe8uWYavptSKi+LoiiEkk2fAgCgCFuGgT4/JeCZNXQzHhZFQSmN47Su6zzP5/M5IYQxFoahUqqJul8ul0VRuK6b5rlmGHGaPnz8eL5cnJ6e2rbtBUGSJAihwWDQjH4NRn92duq6bnPLAQDM5/NGzgEhdF23sfYpy7IJn4uiaD6fj0Yjy7JGo5Hkoq5rx3GaiZIQskqSNM/SPF9bW2tojE9oyZw3IcJNJwWfRtA9s7xsBuGmBjUONEqpBhxvbjCaphVF0YiXm56xWfs2ue8NLNjcNcXTDCkMEUXYoFqzJWw+joYE6nmeYRiMVw01FSGwWKzA0wVlc4AvSGUQQkWRNcN7k6zABG82hs/qYJOpwDmvWQoQZQzcuXPnOz/37Y8+erS21oYAzOdzz/O63W4cF5TSxWIRRdHlyztRtOz1u1laxXEMASyq0jCsLP2cojEen1cFaHes+WSuaYbfQgBIv43yPJUcIgAubj9v6UFSLDkXVS3TFAAi1jeHs/nZeDQ3DDMvVghC33cBBEKIjc0AQiiEghgorpBWU11nQt7+aBGGycHh/p079wgIyoILrl7/0qULF3c6HRtjBYBcRcn1G1eklJppFXlle5hgWzOYbgpeYwSI4Kpi9aVLl9bXPSUNDAFB5jKcC1VubXSHQ+v8dLEK1dqg7zm9xw9WXqAcVzNNEzv03v3zwDK3Ovpf+Jlrew/vXbr0/MFx2O7iF1+6fu/BXaHyw8fVpWutqlaORx8+mAlYFRm4fXv/y99Yjxag1YVVBdaGg2g1Pz1dtFq+aRq+75clUEpJxllVYwgcxw6CQEpQ10pBEK5WXAFNQ3Fa5TlL4iwMV406QAhJCEnTrNvtci4IIQCyjz+YI6IhCBRMLl4zV9MuVGA0GhcVo8TisuQcGObnyuMvHp9PygoARHVWK6CQRj5/9e7uhbXBlud2b1x//hvf+Iau0yAILNO+fGHHNrT9vYeWqa0Ne5qG6rrERA173fW1XrhYnh6fFEXRCnqd7pASo9/vAwBuf/oZpvR8PBIAvvfZp2FVU90yTEsj1PVspVSa5FwiZFhSI1nN0rL64x//hBjm9edffnQ8fng8Ol3k54vsdBymJdM0raqEaegYYt1AWR4NBr2qKLvtDiEoWs2TfOG1OzUTvu/PlrM4ji3XyauSA6jpZpLmtusgQommF0VlGIaSQDcdzkVVlFwqBhAxfaKZCMDqC4LzmnMJEIaKSIEEjBcRhajXahdFwXjVbrdt2/IdHyJQlLEQVcmZhHQWpZ/eud/ktIynU9N1+htDy3NGk/F4PD4Yna5vbTum59p+p923bVsJZuuk5nB9fbMhskiJut21qpbdbnc6mTepL5ZllWVZ19V8MWl3fKjg4f5hv9svysq0bD/oTJfRYGOL1bWsmRLymWDjGXTeIBKaYUgAiKY1uxSCdSYF1RATtZBIN5xVkpuOTTA0Da2u8tlkIhhzbQcCKYWQEAFMGvyhLEvLMgnBBCkNq7pIpKgIVhhJwUtNR4SCWhWiYixnCatrIDUAVFVXNXdaLsRIKAkgFULVdR0EDgBguSyThJWVqGpeVHlRF0LWGCkuhJBKAey4fpYnCCmMMRBEQS6BYIwBICHiebEiGibUmI2QYcmgBz/45N3dK4ObtzaWy6XvOAAhDrK0KCkFi9XJxsa1aIkn89F5pLBlYuKEiykUBiwd3ci7vc8NDoWMRmcJZ8JwxWIeWxQjgB2nO1qsFLKGW66uMZ3UstZMh/teV6gYKHDj5iWDbHttJUCllHrx+a/ESdjuWKJ2ti9slWqRFFgC4JhtUoN8UW1vuNduDQ+PF7WCqgauXQMDHI2UociVTWc6yvr9ksp+4A86A8HzlqozjUJWA7c1b7tXdBPMFksAMSQMA7PMy42NHmN5WQIu8GLO/TadTdCV6wMITQBlyc4rESvgHRwzSjvdrv57v/Pji1e8OCnWdrd/+O7t2TKYhR9grn/j2zfu3J6tVqDVA1WVHHxmvvXtYFGenR9TogHLtD5692Rn12u19CjMdcPUDMxEjQDRKDMItpxCcHB6vLAdEsepbbuag8bxuFZASiDrEkuKhcGY1EzAJBIAKqRqzqEecllD4FIdQlKvFv4Lr62Vdb0chbJGkhGMq6rOvvsLL9Y5gAosx1U6k6gAbSPQ7M8v5jiOlVLN6gwA1IztCAAgGWvM477oYbO2tra2tub7PoQ4KwrTNKfTKYQwTfPHe4dA4Y3NHdcJRqOZrpsXL1xlgp+ej/OyQAQrpRaLWZYlEML79x4SQrgUUkrbdtY21iGE9+7d4wpUNU/Lqr+2PluEJ2dnuxcuYUw1Qo6PjyeTyf7hQavd/dGf/ng8nZ2ejVarVZqmCAFdp7quWxYlhOiUmKbZPOX7fiOHrDmP4xhCWBRFsxBs2pAGtQRNzK4ATQtTVRUAiDEGhAQANKuuZpR+ig98jrMjhExTb8wLAACO4zQ0jsaRP0mS4+PjB48faBrRTaOoyiiK7t27d3Cwt729qZRahGHTV+ZZIYTUNH04XG92r3Ec67q+XC6Pj4/n4Xxt2K/rarUKhWCr1cqyDAihEGw0Om8ifeu6Pjk5aRq9VtDJ0oJzvnvhwsVLlxhjrusyxlzL7rbaVVUJJX3ft227qMq6YqZhZ1nWuIWrp47/TRvIOUe4ccmvOedc1IxVEKkizSBChmlyoTAlaZ4jggHErudRSofDYWNWqGmaYRiNQbRlWc2w3DR0zXKw8cNufisYy9IYIVBXhW4Qgz6NrpaiYXfpGh30fQBAVZV5nldVUVe8qqq6YpyJ5htclnXTezZvHkAJ4ZPmUSmo64amaXVdClkfHJyyWnbbG65P/uk//e++8fW/wNWKYIszzEpzNp23gnae1Zouz8/PPFfvOP1H9088v756bY0gISVPE3blyqUvDApemhUKSAgMCCFCklKKsIiWUsjUsEvH6ofRLAwlwXoSzgEHhgbareCDD9/urWtZWmGsHj16qGkkXuUQ8ZPTAygBQThogSwPq1rduLFtmuZnt+9tblz0fdOxnDjJ/a6layiK5kHbpRR3em5d13k5n57LWoaU2O2OV5blxZ1Xzs9iJQzHsaQQnkdtx9jfPymKjFCkGwiAyjRN29KDViO7hK02fu3Ny4f7Y0xKKEGcjuazyAvwfFo99/zV1SqbnaPLV2E4B29+bT1doXd+/NnNm9c1CjQdCJVSCt9/Z4/VFcagYnlVsw/fO/nOL7wAEfBbRhzHGOkAyCxlEImy4OsbzvpGnwGplNha30jDxCBEIwAhqJmGVIzzGuOmcUOm5RACsizLEtnkQTAmqIY0M79xa5fVIo4YANnGlm2ZbrSQZ6fjoGVaNt7cthRiZQlmy6iq82cfn67ThkgGnpALm9wIAAGQQD1Jlnj26mYsMm0nyTPDsGzbxpien5/7Qefll15/8aXXnnvuhePj86pklumdnJw9Pjw+OjmxbHd9azPotFdpcnR88PjgUbiKFEDdTv+jjz669fzzjx/tGbq5iuI7jx/HFQuTvBLg6rUbj/cPDctiXBmG0Wq1ml/v338wmsyiVRKlOeecMWCYZjOmGbre7Ox932WMZVnWKNiaKy1cxQ17GSHULO8bVp1SCmBUsrohYei6npdNxXwyJEKMsiJHBDc0Y0opAeoLF4BmGbplGEoBxhgASkGQlxkX9aVLlypeW66zub0ZxWEcR1VVzBZT07GvX79uey6mlBDS7fZ10xICpnm9f3Dy4PFBFMWmaSOIP/rooyiKTFNHCEVR1Gq1mh4+jldlWS4Ws8Y3HwCZJKs8T5viwrmgVEMI33rxBdd1my2k7/vn5+ee5zVnoKoq1w+iVVLXnEnRzMLPKmBzxpofFgAgBG+weIQQpVjXiG0YnHNCNEK0brcnpXIdP01yKUFVsYbwDABwHKthpzeFr/FJg0/dJBukuJmFO51Oq9XKMmkYBgQyy5LAdyVXSgBW1VJKqKROiZQcY+j5pqYTIViz6hVCNTpyKUGjbm6gGKUU53UDIislG2MxAACEqqwyQrntwOWc9QbBarVKE3FweH97e6iUYrVKIiolKEoZhrHjEUpJUSbRPDvZq9Y3NaoLCWusA8mp738udMUkKGshgchTuFhGiCpMBJCKF6Ddx7bP6gp7nrOKa9dsK04ubjtvvL6brI7CaBq0fd/rYgKkqFgtWQ12dvuDtQAoLQwTiqlS1Suv3BCCP3w4vXRp++horhEhVA0RNqnW8uyzyXF/2GVMKCAs21gszz/54PzKdVSVsmaVYdIy0z746X0ETc/zDItmGaMUIgQmszETwG1ZQGPholBA6EaqEVJWyWDovPrmpdmEQVhfuriGYN1u9dc3W7rmrG/0Pvjpx7WoJ/NwsOZtbJsHj5dbO/rjx/uWrT33/BaX0WDQWo5gtxsMBl67QwkF9+4sKjG6cWvNdpUQwtBdqeRinrc7dhQmna6zipeAwt6gO52MXF3DQugaKUslFdzYDBCWlFKCDSlBkiSQAELIYp5TirK0FEJJVesWI1RMx6mUwGuBoANHo0WntT2brgDklmU6gaZpqLdueAGyzc9XhJatNwbpTU1swGWkgMKaxtiTSJ1nrw6CQEJQVRWhWq+/1u72rly9GrRbAOLhxnqWZT9+5+0ojuu6lpJDDIYb65btxll6cHh8dj5GCPUGgxdeeOHS1SsCqMl8piA+Pj596aWXsiwzDONPfvKu12orRKaL0PJaecEOj8/XN7YODg4ghK12l2qNExeZR5HleFQ3CAamaTXeARhjDKDjOBqlpmFg9MQxtNGHNQuppgg29lNNH9Rsu5pN4rN0JKGkYZngqb6iqpgEQAJQlqUQiqDPzyChmGBoGoamaRWrXd9r0AMmBCJkOBz6vk91YjmmaZtEI4Zh+L4PMTo7Ozs4Otw/PFqEy1WUHB2fnp6NhEISYM0wGscHhHG3211fX7csI0lWo9HZbD7RdWrbNiEoy7KalZZt6LqmaVoYhkEQjMfj5h6wubm5SuL9o8Oz8chrBWmattvt0fk5JSTLMgDAydnZKk0UQBKorMgb8uCTie+pyKRRlSglyrIGCmmaYeiaZetUw1A1/l2SMdbQpC3LaUwWdF1vkBNd16n2JHqJEKIbBiZPKCkQwsZVN0mSIq9ms5njOEoBiuGF7e233niVVRlBWDBelxWrasPUdIMCKIVkvu+6rmlZRoOQ6LpJiQ4BllJCiIVQjImGGPR0q/gkJ1opxbmUUkpVu551+fLF0+Pl1k47nCvb1veO3rl28au2CwDki1kuFJcCKkmFLAgxLMvteGCjb2AiWIU6HXexnLRba8nqc2HSZFoABABCnGucc10zHV/kqQIKDDc02yRhuNze3vVbMF6ldc67LXtjaFEidi9eWIYpq6UQzHaMPJW2jbtdi2Axn0QawXXNbj138cGDB8fH5xcuDk7Oj89PV72OW7CaatDWtOODKM3jrd0NioGmaRDVUsKqgK++fqOsCst0233vT3/8LoQAIpQXkW4gpQCry3aro5uuqCEmkFCQpcCzW14ACDSyGFy+uv7xJ5+0Ws7zN25AlX3ty1+7e//RdDIP2ng0Gr355hvf+PYlUYPnX+mHC37//qnj0ToXBDsffnCi6Wxzc218ls8X8yLnumZ5nhn47U8/Ob18bdAbOEVRLJcxgCDPAMKi1xtgygkF3bVenMV1ma8PBxrEvOCuq1WsfvHla5oOy5IVRdFq+ZpG1teHNRfz6cpxHClIr9tfzLPB0JhOlssZMCy5sTE8OY4IQRhDy7LmU6brel6WXEnHcRBCja3Zs94QAKWAaOhkT4Y/CIGoavDUvODZq5uhOE6zre3drZ2doNUpiqLX623tbt1/dP/47JgQpOkoaPtJFvu+e+/ugyiK8rxsYFBE8Hg8Pjw+jlZJGMXd3sBvBXt7e/fvP3zuuReKolIQPdw/BISejSatTqe/vnFweFwx9cprr2mGwaVACBdVOZsvNc2gmgEAaHjRzwwFMMbdTksIoev06ZWsEEKcy8YRQAjR5CwjhJpJFgDQRIxrmmY6dlk8QRsaTrxSkAkFMRZCKAXTNEcAetbnvj6EEI1g2zZN02xmWGpoSVZUVfXw0YNlFE7nk1W6whrVbb0WPIpX8+UiSTKpIKX6cDhczMPT09Ner9fr9ZFGOYBJklVVHWep7/sb21v7R4eu6x4eH06n02b8b/DrxuvF9/0mB7aJVG66Y4xxmqYHBweI4MYJvGEgAwizLFutVlKoBw8empbDlWw8HAl94sP+LFypkbIppRAGZZkTomGIlBIUK8mfsGca266mR2vkJU27bdsm5zyKIkKIrlOEkONYjuMQQsTT5CYIoWA8S1JNJ2kch8uFrgGlRFnlW5vr3/m5n/N9FyEAISyrHCGEMTRN3bZNCFXDxzZNsyE2QgirqpYCAoUIIUmSNNWQkCbJF32BACSexJxCHC4ThfI8q3mlI1IN1jo//pPPXnn1RaQBBYFt24ZJ60pAiB3LhsLc2OGvvPq8EsYqwiWra15duXLp/p39Z1+Gxw8mpqMJARAkLb9tGkHQldNRrJvA9SRGloIpBLTIFIR1f027eKXrWP7jB8vf+o33+/1eE4+1XC4BBFvbg5pldVnYlm/qVDBwPjrod9da7db+/sRvW3kBkVKWgwDmvM6vXerFaVHJemO9RXUdoJJXFiXoxpWbX/nKJSlImq4griEGi+Xk6rWd1SoDCliWIWqZZwJi7Nie41BWgeOjSdByCHKBBL2BkyTQNOhnnz742pdeCNw1TdM4g4YtDcM6Hd3urdFOu725uf7933vYaoN2O0DQDBcVVODFly/P58t4xRAEGOjhol4uipItzg7AaHqysbW+NuxRitfWfNvWzs9D13X39+cIwawus6IyLEsIAZTUDVSUNcYwSSIAlGlqjAMm6oLx9c0NQnWpeFlms+lCN7QiA+vDnaP9kDN9c9fIEhmHYDgcMrlivMIYSCmrivNSxVFRlaL+/F72bz8QRQBAiTFoIMhnT9i2q5RyXD9KUiYUV7JibHf34jIK/+APv7978QLEyLBMyzY2NodZnvie0+/2fMe1TJNzniZ5zYVuWpDg09F5HMdZWjS9SdMrKYhuf3bXNOzNrZ3f+b3vbe/uYt345O7t6Xy5sbUTxVlRMaEgpbSs6zRNmZBNvaNUa/aDAEjXdTWtkYbCBmesWF3WVbvbw09T1iiljSahEaJKKYVQCBHHcdIiNw27rjjnvCH6EkIMy+RSMcEbsbBGPgeVLctybdOxDCBVq9sRQPX7/QsXdrr9nut7DeHD8VxM8dn5eV6WL7786nO3XkBE0zTdb3XSvOytDV577Q0B1Hg6dTw3K1IhpBcErutvbGzN5zPD0CQQURT1eoNed9Dp9MIwjOMUY9xudW3LXa3ixgAmSZIgCBqpxoMHD1p+YOpGw9xGlDzce+z43mK57PU6iyg0bSsrKyEBeBId1yxMQfMjo6c5cwAArjhjAiEipazqDACBCdQI0UyDSU51Pa9yRElRF9TQmRQIgSiK6rp8ppwjpHF5qiFSmk6UEkIwVpWua/u+e34+3t7ebLcDSsEqCtN49eEH799/cBcTCKDUDUoIUVByKRDBmqE3KpcGlX4qJcbNhwsA1KiRZ2WDCyEEIYRAEc5FXZcQCQCUYRgY6dNxeHI8vXAVL6dK07T+kCYRPD55JAW9cXO7Zlm73fV8gzHBa3Hx0vre4+l/8Pf+RlnFe3vheFykedUKBqtkfH72uZV8nErHpeGS59mKlTVGluQgy+orV9qBZwFuUE1mWVZnQNPx3/8Hv+J3NEzb7709MnVLqNSyKQAoS5llg83N9ioMW61ekWVKcd9xBv1OuEzjVQERMEyoAK7SStMBwKDlmq+9+MZsLpZRuLnpIywBBoJZnBd7j0+v39xeLBZcKt1ArR6Yz+ee725tt4UASbo0TZMVkmoySVdVxSgl87lwHG9///yb33wjaLU/+mCEENAhePn5W7/zW3/wM998qyg5Z9J1/O5A/6Pv337trZ0f/MFnQIG1obNaFlXJWn4bKEC04nB/XpXANLFpaTo1dc3kAkDZOj8Nw3DFeVlWRVlwTUMEo7JKfR9jDNM0JRoSCGRFLpFEFHueXhY1UIpzUFW1rgNChR9g07IAwJpGAJR5DiCqWkH79Dj8+MNRuxVgDI+PJpToSgk/MKNo6Xk25wIrChRdRSVGmmV9PudVFQMAQoAbksiTathQDCEEzww+myMMw2UYOo5TVixcRasoRggtFovlIn7pxdfarX6alBDQVtBrHjx//ebO9mY78BvPO00z1gbrnhtgTD0vuPvgoW6ZnufZlhuvUqLRIis77fZ8Pn/06FEcpxDTwXBtb/9wsoh0w9q9cMkP2s33vh0EDTmDUr1RKWiaxnktpTRN09KNZ41tUxMbxUijk23+ZyOntW1bKcWFUOCJEKIsS0gwxriueMMyaYasZo/GpcAYC/75HUJKSQm2DBMAwBhzXXs6n3ktz7JNTdNMxyS6xqQ4PR9xBSild+/ev3v/vlIQKLIIlw1f+uHe4729PSZYkiU//PGPNjc3kyTTNG08Hud5HkURYwxjaBiG53mEEE3TOef9/lpD37Ftt9XqzOdLznmapmVZ5HmW5xnn/OTkBACwtrZ2cnICIcyyzO+2m1QA3TRmsxnABGAipWwIKA3VpuE/NwWFEJKmCYSwcTkUda0kd0wDQljXpRCsKHPLNvM8NQxNKQGAbBICKKW284RV86QzRUjX9cbTjHOepqrxoLZt7eTkKElXLd/hnPd7vVarhQAUgkGoTNtod1u6rhONMi6Lsm4qddO3PiuIlFKECACIENo0qk8gIAQBwFKC5rFUHGOMkTE6Tztdp9V2LMsL2iYAcDkvXn7l5u//7p+88sorZQnqEg7W2p5LFvPQ9pkQ4F/8+h+/+9MHiACJOONASj1OR4x9zrAxdANCVqVAoyJL07LgkoOLV9zNjRZnEACU56XjGp1Az5P6N3/zD8O0PptNOABQEg3piLAkzg1DH647XGTxKlcMnZ1NLuxuOo4brebLRZoltRIAEialtPRAKEl08OZrL779x++yGggJ1oa+41t5JjRqAgDef++jk9MjSHi3Mygrbts6UHq4jHXdQAC0AovxPInKfl9v+66pGQgrCEHFRFqUZyf7//I3f18osFoll660FtOV4xg1X1kWqEtU13UaK1aBb//szxCiX74y9Dzr7DiWqi7KiFJw47mts/1CcQSBxmWoYMErWeagv2YYZL0sKtvRMQVRlOkm0DUvy+J2MCjLshV0lpFEBHMEiKFHMXv+hZu2BeqKW5beanlXrm4rUPstZ7VaKUgRhp7nbWwEQVsjRHv4YIox2LnojU9rAIHrEaWUbbU45zXLlVK8VgAQXoqqYuoL7Oo8qwBobN4hhPjJAl0qQCjlHDSAw7NXe56HEGZCDYfD5SJqtMmMMc2wN7Z2R5M5wfruzqW65lEUC6Fef+3VrfUNQ9dFzRoMxGu1p4tlnCRNQpsQqhFXJUnS6w4C1xuPx/t7e1/+8pf9IPjwww/X1zeEkm+/897dBw+ZFNvb2zs7FzzPm8/nnu80U3BzsT3ZE0H4RN4gpOM4Ddu20UU0JL7mgm82Yg1RronmaNBzjGmzN2xqZRPKLJRUCuKn7ZJS6gvK1CdNkGFotm0DAJIsZYwdHh7GccyljKIoy7I4TeI0qapKAoQpgRCmSXZ+fh6v0tl8eXY2Ksu83+8qIMbjc0pxrztobFwXi0We51VVtdstx3Eo1XTdzLLCtu0kyXRdD8NVkqS25TqO04zMrVYriiLPd4oyK7OcQEQIuXv3bpqmNWftbsc0zUZTdHBwIBV40gZiVNd1g5I9C3VqwHeMcZ6nz3YRTS4CIYRVdXOWDEMry1IqEcexUqIJjfI8z/O8PM8beiOEsPkguJQN6xNjTAjQNK0uSohUmnFCCONVkpRxHNdFaVmOZmiaoZmm0W63Dcu0LVcpVXHGmHiqJdcadjdjjHOG4BMRIQAAKAQhbAAcBBstDSQUCMEaHXSega2ddhKpZXiGscpi0Ol5Z2ej87O0LOXGRqssFMJKAY4JrFi4te0tp7g/8LkE2OBBDyxmebfvmtbnXwYNa3lRUwq2NgeOZZdl6XudN9+8XpTp2ckCQrGK0t6g3e9rRQYe3E11bZCVC4EARKLnX5SqghBDQFodZzI9tW0HI+NnvvrmfDE9Ph5xDigxENaoRrK8dn13tcrclrO+QVuBc3wy1wxnMlu0WqamIQTMJFkBAN54/VWgcFGyPKtNw6PEnE+zcJmUGZMS1CzXDQQAcFxItSeeuOubnSiOi6IgVG5uXLp+o5+l/LvffcvWvZ3tjZPzPUzAeLT0PP/wUfHc8zu/9s/+ICvHVR2naZ7GEiLFRHL12lDI9Gg/02mAoAFJrRlMAoCBsXVRe3Bv9ODR4aXLF10PAABczxiPItvRoyjVNC3LCgDALIziPJMYYgJOj0/eePW1+TwUXCmlbNcqKz5c70+m40cPp5Zl5VmplGIiDsMFRuDNN188HT9KIg0AcP3WupTSNnqLRYiQqus6T0uKKYBQMvnFOOyqYk0dBE9UehgAgCQAvBaUQin5F1GUx2fTS9dvIZ0uo9iwvIsXbhq6t1zEos5OD/fLPLtw+dJoPvV73bPZRGi421tr9/qe5zmWeXF7AyMQh5Fjuxghz/W3t3bmswXEWi2kQnCVJprnMQCRbvzpO+9+/VvfPD8fZ3H5yvOvJ0VxPlucTuePj8/6G1uI6GuD9SIrm704Y4IgTBAxTVtAVJS17dlFXRmGZZmeAoQzWeRVUVVpkVJDh4SWBaNEk0IBBTkTgnP8lHCnYbKYzhrXZc65Y3tVUbeDVhLHdcUx0WohNeNz+UGmBNco0mngeSyvTWTwnBvIqnKxnC1cy5aSK1BDoMqUYUnabmAYBqTICjxd123LMnRTCjiZLrK87PR7lFLD9GbRJMmLXm9AQSmLou2sRVGU5xmmZJUkRCMI8ywPMZKU0qzKhOJKic3NTVZWVVVRotcVv3D5YpSsxudn6SqGEK6trVFdG83mURov40gC1O+vZXnR3CFUwySHAGLU0JlNx2KScyWQQAQC3VRKKc59JmmUL6kVYAADN2Alc0xbw5RAAgSIw1gjqNtq50m+WCx4ncfJ8uxstJjH6SpVXCmler0extjxqEKCqVpJ4necKIoMQCmBsVIlgqvxKEvjNFmNR6P79+7maVYW2aDfb3s+pfgJaoyghKgoa0INIaFUNUKoKoVtO3mRUq1RGWlAqWYvjqCGsMEF+snb7/eHuubRotTfe+/uhYvbl66sL8L5aBJT037nxz/52tffeHR4+2y8MBwtzVdUdAdtbZlmva0KQwsLY20N7l7oFVmpaZ/TrYIO0AG9ds2//XE2CidhtgAUXLr64nKV7x2I8TjVTOv4aHbvYWI69NK1XIn8s89Gly5ewCQbtswwzHRdN626zIvJEe52uyU5/eTuUrmSY820PaKVUEDd4BpoSVnPY2CAytetP3nvcQmBkPl0dCIJoARnxXwV1hevBcSkj/aOLAtohsBEKpgTDA4ehoYFiQHqykF6IRVQQnv04DxL2XDT7HTRnU8XjuH9zHdeH5+NR2eR2QXvfPBZVdQPHpw/XqSdtkd0c2/+0XxVtXwLg0U8BVzV42XJhKeYrmPz1S/1bt95rIBWsRjiVDBQFxYmqrNeprEK2n5VgpPT052dreGwOz4rX/mSs76hlQkFErZbugKgEKlQiJVKI2Dv8TwpSqdl1aJu9y0hlwAAIOFyXoocmKYuFdesxNA6ZcWuXOtP5g/CsdnfIEChdo/s74VZVqxCqSShUFfSJlYEJZUM2drn3R5CBAAoJYdQScml5BACSDDkAkIgIUJ/8sc/+tt//4kF2D/87t/u9Lq25V+5diPLsvX19fl0WhV5nCbL5dK03aqqN7e37t27d3B0+LWvfXXYXnu49zgMw7TIEdXefe+nlmU31L9+v//BBx9cvHh5ba0fhmG700rTeDJdmKYxHo+TJFkfDgkEN65fv37l6r/6vd+2TeNLX/rSw4cPt7Z2MNG+973vV4wnWa5pWlmWF3d3EELHJ0e9Xu/ll18enRw2dseGaZumGUXL0Wh0/db1e/fumabd6w1G5+OLFy8eHBw0smtMEOe8MUleTGdCsMaqnos6TfLuoM8YS7K0LGqhZJ7nBc9/9i+tgz8//vwAAADwq//9u82D/9lff/P/v+/kz4//X46g/R/+w3/4v/pv/ptf/Tt/5+80OygIn9KyGkneFx29HMtYTMbvv//uH/3g+6fnZ6sspbZVI3RwcppVNdV1APHZ6ajb6Zu6UZe1absYUdOyBoNB42tvu24YrjRNG40mrutfuHDh0qUrhmGkaRrHaRRFaZoBhHqDfrvTmS7D/eOTebS6dvVGnBQff/zp5ub2p5/evnPn3q3nX0jTvFmTaZqW5tlwOGwiioqiYEw0jgyz2axh0oCniotGe9fEGz3zBy3ycmtrq/GdbXUb/S8wTbNBWmzDVEoRhBljGqGcc9d2/q1n88+PPz/+/Pgf9fFv+r2iZ0/8ayjKpd3dm9dvbKyvTSaTjz/++Hd+7/ce7O3vn57ptg2pfnR2fufefUTo5uZ2v7cW+O26rrd2tpMki+O0qmvTsaWUXuC/8NLLL7780q/8jb/FhXr4aG88nZ2cnp2PxqZpxnGc53mn04UYZ0U+D5efPbhne36/v1bVcjKdX7p8lQm5t7f35pfesm27iTGqqorq2tbWVhOa4bj+Kk4J0fI8b+S3hmEsZ8uGWtHQL7IsaxADKaVm6HGSmobVEG68Vvvk5IxS2g5aT52sVEPBQwhphNqG/ev/bPSvn7Y/P/78+PPjf7TH/+k/f9g8gH+2IhIFlKYbrCoQQlJ9rkXZ2tpiXHh+62Q0vvPg8fHx8dHZGBG8XC53t3ds282qWkE8GK5vbG1zzgHCURRTXStZLYR68YWX1tY3ojAOo1gI8e77Pz06OhJCUIoZqx3P9dxAATRYW8+yjBDiBS3XDySAH37w0YULF1bhUgj12WefXb956+Hjvc9u37ZsuwtAnuetlj8ejy9euvTgwYPlcnnt6vXxbAoBrjir69J13SRJ0jTNqrzd7ioJhBQ1Z7ppWI49nU5d151MJq1WyzSsJr5SIbhKs431Nc9167rWMCkgJBgLIUzTNKhm6PT//H+5WwvQCcxbl7dbttn2/CxLp9Mp0WjJ6rIuvJbDBFuES9/qQgls07JN8/z07OrVq8Phmu/7y+UyiWNWcwCAgmAwHEzmk/F4/NYrX6V6jaUmOPjpRz8cbm3/5b/81/6L/+s/+j/8r//T09PTOI6DIJjPl1/72td+9/d+7xvf+AYT/L13397a2EQIsbJKi+xHP/rR3/27fzeNVoeHh0Sjw43Nx48fDzfWhRB5Vs4W8+FwCDD5wZ++c3vvlOg2QmgVLgzLzYqGqRNzzr1WMB6PpZSmpuuaRahikpV53huoF1689vF7J3GsGpwtSZJG2LNaxYQQ0zYBgMvlshbVcNDp9brHh6dAoKoqqoptbPbyNGW86vV6WVoQjBeLUDFAdHTl2tWPb993XYNC2LJtRWmapqZpcc7rmlNNS9O8IXIjShrqIkIkyfJ+f03KRiGEAAAQiSyPNI3omg0hKuu8rrltulGYjkYj0wZrG9b6pr//8Lzd8SglGrW3t67883/+hy+/2rlybfP/819/sr2r/9Ivf+u9996LV0wpZZpi92L39t1q787k7/69Vx/efqxRF5tqY/v59+/80bML5J/91t76xuCT92KI0ps3N20Dr5LI8d0wjJSk4TLSDe0XvvvzP/zTjw5P9vp9K4s0USqI4r/217/z7nvv9db7ew9PLl68/MmHH29ut4VCd+/ML1/aYXWR5otoZiAqk6RYX98cz04FAz/38y8Ayd57595gMLhzZ6JptNtjX/vaBQnUbJHcv1NHM9VdS/MVXts1CbUIFaOziGWtPE/tVtnr66++8K1PP/3s/uMz09TTolzrGWkIHb/42//+Vz/+6ce///v5V1+Sf/O7f/Nf/fjdh4ujPHYDE3X66fruiz/54QdEDl77qs25OjsfHz0upSCdgXm0F0tOf/l/2l7Mynd/IL1Oxpm9mCa2owUt/dLVzvvvHOrUs7xsdCI3t+H29vMHx5+89OKrv/0vP7BMymqytetSje9c6Bt0/eHebQjh+DxqdeFyXkJEy0J8/VvXfvj9e7/8t57/7P1FWU1MbQDsRZWbw03z8f3o/LhCVEqGJDepyb7xnf4n7003NtcwLT94ZyoE2L3UkTJ1HO/4IKGasGwjXKb9gVsWHP6bnWGDMTdEs8aB7tkTvf5gtVrput5utV5/7ZWvfvnLhkZOj0/2jo4fHR0Vdc0BuPfoUX99OF0upmGo63oUry5fvro+3Aw67aDdOjo8+fT2Z1Q3P/nszgcffcQlIJqGqc6k4hLMw6Vt25ZlxauU1YLXddPN2a43n8/ny9BrBX679dEnH9+6dWMymeR57rpuVddNMgaEcLC2dnB4qBTUNaPRFM7DZeMS2nCq8zxvgLNGvtIwM5o0u8lkohm67wWMsXa7XRQFIaTdbjPGGsuWZpWg67qhEdukOoVCgKpiRVkDAFbJClOiGXrJaoBUp9MRQi0WEcW0roVS0DRtjPGVK1eqstjf3z87O2ves+M4jfl+WZZhGAIAijIjGG1sbFy4uEMIOTo6+tGP/rSsq7TMZ+Fia2e70+1zzhvqO+d8Nps1SS9NCuunn3568eJFSilSoNVqXbx4sTFebbfbgedzxgaDweXLlznnTVqLlLLJqOFPjwZBbhxfPM+Tkj9JSVaoaag1gjzHbogsjY5IKWXbdhD4q1XU4NGe53H+xD6aMWYYWqvVsm19sVggDFzXbYQrZ6dh2/cGa21T0w8PD6UEAEFd1w3LTpKkga3TNKWalqZpHGemaULyhPP0RESklBAKIoIQgRBBiDjnlOiNrhxjDADWdSPL8+l0WlXyS1/6ElBwMQ8hUrpmxjF79PiYGvDKDQMhWGTqr/yVbx8fV1GYdbsDxoo8TwghgqNeRxcCHOxN1ze3EMG2bUMkDfz5BZKkoNX1bRtkKT85Otzc3mKsth3TMPTlcl5WbGNtsFxMHt7fgwRIiA4PI4LB66/dXMWzJKururhx48Z8PvZ8U6IaYyQZWSUxkLXvu1yVeVY6LtZ1aBumqEHF5hIUgzVcs1jTMKu0dKVFC9Tvr2eZCKMEQqJbYH19o65SSvR2u13VoqpjBfjmZq+uxH/8H/9vgEKMKcbU889vDQaDqmJSgSSJ4hhhIr/+rdck1s8n5xhpyTLWjcx1Oo8ePY5DwPgESmg5VtDqRZFqtfR+r8VqsLaJTUsfn6eECiGl62mGCcuCuT7hHGjU0nQVzoTvEdfxi3w+G4E4CV//areq2atvXPJ9G2E5my4X4fTe3enR4QQTwDjQDMprubVjJSv+yhtbk1EGSZLFWKiclbbj87OT5WzM/JZR18BxAgkq3ZS65him7rrufFITCoBCQgjLNlZRCoDigkGA81xxUf2bXeGzaggEl40I5YuTspCgZqIoClYWnu1c3N197uatXruDCR2NJ/cf7+0dHfeH67WUZ5Npd32tP1hDEM8Wi5ozVnPGhILAMKzGANFxPKVUkjzJbFIKapph2M5kMqOEZGlq6lYSJUqpNE3b3U5ZFR9++GGr1drc3PjJO28//8KtxlwPIZQVOaX09PR0OByuVqvReMqEBAqaph7HcVrkhBDDsDqdzjMH+UaQG8exaZqNBrEZog3LfObYXJZlq9VqBNymplNKIQCGYRgatQzdMCjGoOY8TXNMSV2XaZFTg9quxRgbjUZpmuvUKHOmJDQN23VdQzNfffXVt95668rly6ZpNtLgZlpvLPXLsmy3251WIGqWZ0ldVl/50ltZkgIlqqL8yQfvG47NlEQEW7Y9Go+llKPRZLFYGIbRlLBOp3N6evr6668rpZqkp7W1tcVi0Rv0l/PFaDRyHKfX6x0eHhZF0XiXAQCbW8IzQXFzNhqfC8uyCEUN3RI8zYHRdd317Ob9PyO7ZFk2HA41TYuiZVkWlmUFgdtU+bquhBBVxWzbvnTpUhMJ3XgDd7s2pdRz3Fu3bu3s7BgWEkJkRb5YLDRNS5I0jmOpYFVVhGj9fqdhzEAIa8YAQEwKjKl8qqNq5DSsFo0mvSHcYEQRJFEU5QVrd8wsy65fv7mKct93hQJJkpQ1OBudYkTzoj4+GlUs/tKXLv/Lf/Ejg9rDtR7VQFlXXBDOFgiAe3fG61sXnMCjmiZEJsrPLyHBraJM/DZY6+s/87U3j05ObM/dPzhQEFANXtxdk6JaLKecIQhAmlWtQDs7Xr304nN1XXOuEQSXy6XnWLdu3RKi9jwvS+VqtdrcHbRavt/CQighRZbPV8ui3yN7e6ODvbFpeK5nISw0jXDONYIotvI8JwRwFbuucfXaDgAgSVeTySRoYcfDZcV939/avPgf/J2/f3JyMuhbWSge3D4pyhXE/NbNy1ku7t2LX375AuPkvY8/KLkg0IIKuC6O0nwyWblOazi0l+EcIHbn7tg0CaHSNCiG4NZLQZbXUah0m3EGERa9ftBqtWwXnZ+GBjU4S+oSBG2yGINHj892d3c//WSfauDv/YNf/NrXX6n4gsliGWZSFRiDwPclYEUGqpoJJrtdZ2/vSKpqtaqwhhHy5rPItvzVKp2PgaYDqQpLd6LVkhDQG9iCa1LWlOL5hDuODgDKi1TTSJYVGGMhQZKkrkukqr9oXdj0SZ9XQwCAEABC8EUzy7rmnU4njmPbtqeTURonnml3/IDoRnewFsfxYhnduX/vn/+LX4/TJE6yw8PDzc3Nn/zk7bt373meN51O33nnnbqux9NJkpXj6UQqELRbfqsdtDrrGxv9wWA2m2maFoWxRqjv+2EYnp+cN5eoaZqdTueTTz4xDCMIgsf7+67rPvPdK8uyySdolo9xHEugmsa2sfYry3IwGNi2zTnPsiyKosZQCyHEOH+WFMgYS+K08fhs/mBDaWxyiBpOjE6poVFNJ4QApUBRV5qmQQKzImWCNw7PlmWxktmG/dpLr1+4cCmO4729Aynlpx9/Mp/P5/P56ckJAKDphZvXAwCa+rtcLi3bODk54XW1sbEBJN/d3bV07cNPPr736OGnt+802BGEUCnY6IK3t7c5547jNCvOJls5z/OLFy/O5/O6rsMw5JwPh8MqL4RQ8/kcKBTHcVMElXqiTX5mztqELjVNsaYRquHG7hAjqrjQqfbM5rbdbjfxTJPpaBnOL1+52PxVVVV6nkdpww+3pJSNHezZ2WkURQ1FpuFIlWU+nU7v37+PEGJMGoZx9epVCUFRlHVd53nx1IFGAQAEUEopKUDT+kGATNNsZggp1TNK9rP0LgAAxnRvb282SwAEX//61/I816hlGS6CxqNH482dtfUtfzydzxeJadq6Tn/0o/fffPPNC7ubd+88CFqe49KyrAg2dCyGfX86ZrfvPijqajQaaUTa2ufe18mqFoJTnd26cV0juOas0+sWZcl5DQCoqsIw9csXdzG0ihwIjqRAt25tFVn62af3skwwXjX99f37d7u9YLlcAkCzTFYsDuNlu2tSHQkBbBv6dutX/vpfSSNzNpKnp6skyXYvDqt65XsQ0ThcFau4FhyYtrpy5VoUn0NAIFRCCACFaRHDBG+9+SXLDCbjeVWrPM9NrZMnACJODbC5feH+g+PtrS6CaVooPSDr27vT8/Dm9UAIgTS6CAHG+PKVC5pG8mK1CpVpaYZJGasQ1C5eaa+itCqA7UFCNIiEaJhPdXx6smI1pxpYH25t7/aErN768u4v/cprG8Mrs3Fx5+6H/9k/+tWzk3h9fc00nJOzfdchRVFrOs7S2rZ1yRRGetCyKPYVqLMEjMdzJZHpVPMz27SwUBxIm4vc0A0u+Nq6n6diNq/yPI9jYTs6AEAITgiREkCoKAVCiKtXr2IMv2jW9Wd6QwUkAEACQBRW2uc65bouGwHcIlqFUTybzStWd/q9rum7RP/WV7/6ra++ZQHw9g9+eHh49Oj4aG96/pt/+PsPj44AobfvPNjZvPjVN778S9/9yy3Xee2l52/duH7p8sWdnZ2W7127dPHRvfuPDw6Dbi/Ny+7aEFEtr1le1XFelJXAxPBb3dkigoQ8fPhoY7i5s7EdRgvLNqTiVVURjVaM2a6rGYbEIk5XTHDDdCCiRVFRw4QQilIGnm+YWlnnWZ1ptsGlYFzallUUhev6zdjFBJNK1YzN5pGQ0g+Cqqq4qF1bDzxDiUKjoOcYO15blUBhlAuelpUGSF0y27Q458tVBDAydNPSnel4YVCye2F7d3e71W5/5WtfvXXzuV/47l969YWXLl68uLE2dDVDx0TTaBRFGtZanh9GaVXpnW5fsPJW78J+EW12HITIsNM9ePTopx9/MIpmkzgsOA+CdpkUOicSg+npvk3oj+4+2Ljy4mZvPc3nbjtYJfFsMm17jkmplOL23Ttr25sP7n4GCD0LwxIiwRXgnGIkFGyEPUrJildFXSjOPNtieYlJgLDQKJVClxAAg87CyDAhhoogwEVtO2ZRZhsbG+PJxA+CTqeXl4kQEimAYQtTpiAC2PBbLUS1mgvHdWvONI30+p2t7c3NzU2r7VIgq3BlekZeFbpCw7V127R81zNNw9B1x3F0XW9Koa4bSZZalqOZBsKQiSfyc1YLjBHCTAFGCBUcVWVuGODB7eM8VhQCxwKMz4Wc7x/eu3jpahrPXri5joVj4U6dla1W+/AgHI/5cy+sf+973/uZb34DEBhnqa6blICqmADRFnTl95DrtzUCDM0uWFrjzxfrlGR5zBZT8St/669+eueh5WDLsl0PUDWkwCn5iqgNywmqquo5dhVVX35t82e/+8av/ff/w9WrL9VZTIgdpzPHh47li5xSDQJYQQykQAAABerti5hCEp9rf+OvX375xmYU5giaO5fcYoV9W3zzG1fiRIynpFbUdbyqBC++vJ3G9GyUao4QCldx0W9tHB8nz794OY75+z/9UOLSb1GEkOEWnT7QYbvbRt0ePHycUVtpdbiz+eJkufIdfXfL7qwhCYMoLFAF3A4/Pq9mUX56UGoSDrrY1NRkutJbKtDz8xHTe3J6KqVZbfp9CsDGhdAAF2TpShj7gf3CKz3fd/79//Dnfe/CH/3g+8nqtIyFTtxXvmQWOZCCEU1UmdVdhwoVqxWzLZ1ipHkgzUiaRYbFl7PU0pwr13pFLmeHyfo6Hgw9SgEBwoCarWsQgFZgzybzlm8wJiAqVO0hyKEEFat1E0MMWn1PIOW23aSUAIFGP9qoDJ5KLQCCEDTRKAqoL07KTCqACdENhCmm+mgyzquaYE0ptbOzY1nW9tbOzZs333jtjaODw48/+PDXfvNfvP3T97rDwTyOLly9fOfBnUWyKgT79Pbd3mDgeP5kMjk/P/+jH/7oT3789nMvvrC2tsY5b2xgFlHYeBQ3poTz+dxxnEY8p+vm4eHhYrHotHuGbnluYFtuEmesFg/uP7qweykMQ0JII65oLJeTJIEEdzodzmWv12u328vlcjqdrq2tLZYz3/cZY4SgRpdNqZZlWbvdDuMV1ih7Gu1WFIVhGM3GynEcz3d0AqSUT9XcsgkJ8n1f0zRK9FartVgsbNvO8zwMw6Ojo+Pj448++uiTTz65e/eulBICkCWpArLTaWOEnuSfrFJKaZ7njuO0Wy3N0DVKjsdjw7BeuHnrrTffhAD8zu/8zqefflrWhWZgRYBumVLKeRjduvXcB+//9LXXXvvss884kxCgsiwdz0WEKqXG48n6cJNzblpOp9OZTCaNSuQZiapp1pqOtSxLAICmGU3kpuBKcNXofIq8Vgpk2ZOFYJ7nzfq1EU3u7+9vb2/rOmhURg1dqcliXa1WhBDXdZtotMagnzE2HA57vV6n0+t2u40FQ5qmzTK3eYfN3rMZAhq7/0Zn0hhGNOJLjKGQTEpZ17xR7DiOo6BcRsuyzDGCCoDt7eHZ2dmFC5ce3B132z2lgGW2Ts+O8zxyXVcpBYCIouTFV3bufrr4/vfeufXCtuu0MQyGwzXb7M7n87feer7X663CyDTtfn9tOpl/sY+gRFNKGRbcO/iYcyVkWRfCMTuT2b5hqTQCo/HCsklVM4ng5sBcFcWj2w++9Z1vLReTnUubXJQEuZ998thxdYB5XUIAoeuTOJJb2/08LwAAlNjIyP/iX/6L/+zXfito46LKLMvpdFvn59PxeHrj1nae50WaKYXabdoK+u+/9+l8FkFAbcOUEHz7Wz/b6yHf9//L//KfAgAgUru72xgZYRhrmhatxr1BMJstuj3L91sbWxcqVj18dFiJ9KUXXx9PMkiS+UQGAVaSBR0KFBmPVpouCCGMy+l5fPmSKaQ7O60sTTNdncUgLVZSga3Nndt3Hl65Yf3CX/nWrZsvzpfHdWF///s//P3f++HpUVQU9WJRHh9NtrcuO64uZEmgZdlYMA0i4NmWbkqoEIUBQPPBWns5AVIxbPA0YZZjsQq9+PKl0WisYStowbwsXadjOUApdX4+2d29fHhwYlmAUKQUsCxKiMa5CJeFQQxdp/fv3NMwQF90tAcAPF0jIqWAUgogBAH8ooeNAqiquVRwNJkpCGfzJcKUmmZV1wqg09NzQ9NarfbXvva11199w9Stg+Oj5So6OD0Mk/jD2x8v0vi7f/UX/vf/2T+K0+T3/+D7733w04Oj46Kqf+473/mZb3zzfDQJw5UQT5SnCBJWC90wGnesrCwa1wCgEEQoyzKMqBAiiqJmm16WZa/Xo5Ryzh3T6bR7Tea9rut5UTbCu7JmraCdJnkQBL7vZ1myd7iv61rjsNK4qzarNMMwbdvOsqyqGNG1J7aGCCMAHctuJH2OZVICgABSgpoziFFZllTXmqVDYxUjlKyqynXdjfWtra2ttbW15hTP5/PVanV+chp4Xr/b43XdTL5CCEKIFAxj6DqWholEqBt03/voY0Do1nDz8s7FX/7FX1JSPt57+P6H7x+MjqEBO91uluaDtU0B0YfvvX9pZ5uaRp6XaZHrpkUptW374OiY6tr27s7paHz1+rVPbt85OT1n/IlNLGPMsEwIVUPPpJRmWaZpWlOPFotZp9NphgPHcTgDi/mK8apxcrVtGyhUlQwo1G538zxfLJabmxsAKC5qQpBpGq7rpmlKKY2iqNlLFkWRJJlt2xsbG+fn50VRaZqWpGlV10SjAKK8LGazGcSIUhonyWq1khA0qTuM1c2ILYQQXBKiQaQ0TaONASKigkMlMQDo5GRimhRiiaja2OoDKBeLBWNsY80ZnY52d18+mz7o99ZPj0MnYJsb/emIdbrOYjHrdrt37zwOF2WnvWYYxp3b4yTBP/ftn13O5kdHkzRNOZOCS0LI6Pxz14a6FoID25WP9j8hWEtXOaa1bbW5KG/evLGcgzhZMIZ0CqMs/aXv/uLHD85uXrpKbJ1XaZIvgsCzrSCNZcVyqcp4VUGFXJsmkWI87fQ6XmDP5qvBtvXJndsffHxgGLpmAiFhlIREo4twNZpMTduRUqZxrSQKF/l8WkOICDGyPLFM980vfXl7e/t8dGpZwDC1na3Nk9Oj+SQP2pQzxUS9udU7Ox0PhsHh4bGExnw5kYA4nnl8OkljZthoOZW6JqUoympCkZmnoNXXvKAjAZUM/nu/8urRaV1loErrClYXNy6fzefDzbUwVL/4y2+9+qVLs+U4TKazRfq7v/t+EqdFBiyjB4G2udlazJMs5WvrflmtsoS3O26ecCVAsqoprSjGSghWqm7HOzk53BzefPRovHHBXcUszvJ79x5gCH3Hth3d0MDp2cFLL+9ACHWdSAGXC14WII6jwZrz9W987fxsiqAGAAjDSDI5Po8JJpI/6QqfbQyfTMpP/iulehYkCgAAICsq03Zv3Ho+aLct2y1qVtaMEK3d7URRtLG5+dMPP7x+5epytqyqqu23A9/3PW+5iB4+fAgAuPX8c//P/9c/cX1vuLlBdK3d6TY+71G8+t73//Dh3n5RFOfn554X+K22gkBBgDFFiBBCNGokeeY4TrOTsh1PN42g0wYYMSkEUFzJ8WzKlYySuCzLNE0hwJqhN4YOCsCqZnX9BDO1LGut16eUTiajvCqF4lwKTImCIM/zfr+fZZltOxDCxnfPMAwMUbsdsKryXQchYmiabWqUACWAFKCuuQRKM6htm1EUIQUoIpxLy3RWcTyfz6fTabPUC4LAD7yXXnrp9Tde/eY3fsaxTJ0SnZKW586nMyABhAhIbjsWAEAj9Hh8fv3y1U8e3s+KcnO4ub42NDTthRu3LMv80Z/+6OHeo9lquX92WBTV9edf/N4Pf9hvdQb9/ni+AJDqhlXV3PWDO/fuB+3W17/xrdF0lqTpo/2D07OzVrfTVD2EUAMcYYwBUIyxhpfeNOa6brTbQRiuPM+DSMRxSomVpmW/35aSC8EaQLlBSwAApmnnea7rZkNWNU2zLEvOa9ezAQBPzcaRrplFUYxH08ViYdvufD4/Pz8fj8dSqrKoiqIQQgAEAQBNJl8DMTHGNF1/6phNGo15M9RACC1bk4o3SnOlwOnZKC+AaVtEBzWTrZZnu/Zg0Avni263+9P3Phn0N8uSx3HieR4EPGg5tu1KKYlqtfuV4+B7ny4fPnxou/zn/uLXfHf99p1PDw5G16/ttIK24ziTycTzAt93n10gSSySmLsBj6LIcc3RabFc7Q/X+xDQcJlbJrrx3Hq0lJgoAcHZ4WnBgac7Z/OpEtzxzJPj2XQ+unTlRp7Vum5zzj1f39rYnIwjw7AodvMyMh0YF9Gv/9b3/L4ugMKGLEquUM2EVBAQglZxGidRkRWajg/2DnUKq7qACtq2ARD8e3/vf051zTRNTICUPMsTy7KAQqaFgyBod2iv38ozznheFnXQ6uydPCI6wMR6tH9vbaN7epxLoDzH7Pf70WrBKiIkyPIiy+vFPL18eQPKxce3jz3HcPR2HHEkquvP79o+9NyNo/O743H0gz++m5bjk32xtu5omkGpQYnDanH12i4E5OGDvU7PMi29LEvOoO0YUkDOOJDA923TwkCai0UYtM3RaLKx7i+jWV6ysmJ15WCMMSla9oDV4Mq1dhPxrWnaZ5/dgQAiCABkr7/x0mKxgFgrKk4IrIradSyEgJQAE+3fiSlDCBte9her4f7h4cnJ6SIMm+hk3bBWqxWmpFGM7u3tIUSmi+WHH3+aJNna+qaj26+89GoSZ0BCXouPPvhwMhqburGMQr/lzeczx3Hqmn/yySe26ziuF4WrdqvTFLVeb7BYhEIIQ9MJ0RhjcRz77dYzf9Ysy05PTzudTrfbbby5niEqnuc1w+xiHs6XiwZP6Ha7nHOI0dbW1snx8dramu+4hJAoihZh2JgXQAjDVdRMYQAATOgyDAFAvu8jhDzHQQDoVCNYMy3d9yzPNoACVcWSLGOAW7YBABgMBkHQbkbIxWLhOE4QtBuLiosXL85mM4xxliVN5JPvu0HLa7X84XColEIEQ4hN2y7qyvf96XhMHTOwHE5IVbGqqsbj6dH+8eWLF1996ZVWq/Xjd97+03ffnkTLmgndb/3av/rty5cuAQDO51PX92/fvef6wXg2Pzo9e/OtL//0o4+TNIeEnk3GpusWRdVMxw061Nw2IIQYw4ag7jjesykYAJjnhePYQeBxhjgThol1AzFeAiARBo7jYEyyLNd1HUGyXC4HgwGEqqoKQlCe52VZNo7/EGLDMFarled5vV5v7/H+48ePbdve3tnp9/vNSagFT/OsWR00PhdNwBZESCklJGsMO1jNG29KKWVVF41TTlFmtm1neV5VqtPR5vOlH9hXrq1LVWfZ6vHeCCHgerbnacv41DYuHR3NLTulYF1x0h2y0+PV472HL796EyIRhmGWVpcvXz47O/3DP/zBxQvbwzV3fX0YJyuN0oaK1NwDnk1P47NMN5USuuXAqgSrVdxu9S5c3F0sFrrmJEncpL/qOrl3706rBWzbns1mTbbaKioX4QkAMi8AwjahkPH87HRGCK5KcHYUbmz0ty+0r1y5iqBf8gpCqOlgPFps72xgpHMOhhtrVVVBxKVURZknaeb5lutRAIBuwMUi6vQC2zGjJLJcWlU1hNC2bYAUF1VerNaGfSnAZDxnjG9srOuOsVhNnn/p6g9+8NHl6+sQ57NzYDqcMWFbLcHgZBy1go7gQCmIoNbtgqpUp6cF0erZKPraN69tbAWu74Tx4ujswWJRfPLhyfaWK7iGlO+3SLwqs6xYrVZCCN1ACKt4VWdZsjbYMhx4cjzf2h7o1BsMbclpt9cSQpyPJ1Dar7/2Zd1KhIDhDL/1lUsQa2en08BtZ3Hm2s61K33O+Xg6QfCJlZwUSEqAibx4aeuPf/gJoXqeSEwQwqDMM0qBRqjg4lk1/GLRe+LUggiB4M/0ja1WSyk1mUxM06yqKgiC+XxeVVVRVHt7e6bjCiUd11+ES820Ts9H3dZgcjLd3dxpeS3Xch88eFQUlRAKU9Tr9TY3N6NluJzPmmwjwzIhhOPxmDMBFCxZrVsmpbqum03CRpZlhGhMCsfxGs5gELTTNJcSbGxsGYalacZiETImkiRpVoFFURi6JZTMijxOE0RglmVBEHDO49XKNM1ebwAQPDk9lgAwIZrI9qqqmjg9IYSUarVaNYHlSkjP8wjCECIMkefY7ZZPEahrVdZMQWh7jlQ8jmNes06re/PmzQsXLnitQCklJXAcJ01T0zQnk8loNPrRj370yScfeZ43GPQ0k2ZlVlQlpjpERALlt9rT6RQqgHVjqz9cpKtO0EqK8uNPPnNdFyjU63SvXr4qhLxz5+7th/fjLJ9Gq9t7j7/+9a9/8MH7AuMfv/PTVZIdnhz/9u/+3ptf/srb770PIMYa3ds/6K0Nz0bjrMjTNG9WhA0OrpR8wljKsib4kHPBOU+zxNCtLMuyfKXrlBBaFEWcThDmfmC7ntWsaJs0EilVg9prmuY4NuOVppPhcK1RGVmmAwCIokgI0cSkDIdDz/M45ycnpxAiSLCu60JJ03abWbixOGr4QLqup2najDPNd/eZFWMTR4Mx1HWSFbEC/Pr1i1zC6SzRNWwapKrz525du3KlRwz0l/7Sd/7T/91/cu/+w+vXrzsOiEKBALBtezou+4OA6nz/waLVNn/hr73xxutf+97vv68Ac33DtrQsSaoi82znKQsVafrn0tVu31zOqjzRoDIJFRLI5QI8uHd87frubD46O42zWHARSiAJAltXdlUNnI5XpcX2hSv7e2cb65vtrv3w8SOESJJkUkrHBXlaJFlmmX68KgQnm9udwBuMR3OMYV3XtqMBqSMkq4q1Wi5nFUQqWSUYE9sCFy6uEap0XZVlqVEqAdjd3Z7O51EUDQY9QnBdcV0zDRMahlHW9aA//OTju7btDnq7WZZNpqe2E6SZ5AwIWQJFkxAM1628qtKkkNydz/PhWscyNUqAVLXjVe9+cLIxbL3y5RcBBi3TjtL49u3bnCnLrVTdj6LkwqX15RgW9TwInOW8ohqo6xwhDWFAKZQSjEdhWSNqiFVcSqDaPU+CmnENEyVB4dh6u91+8PBTpeB8FgFQvfnGK0qZigBWK5N2OI++9Mbr47O83XFXq6TTbfV6HSGElEA3wL37d6QAQghqgu3NjeduXRZS+p6+vr4GwJ8ZkMGzvSHGUAElOVdAfRF4Hp2dJ0ksuXBdl1KKwJPmcTqfN1v5VZwSXTs+H/mdbpxnd+8/UBC1Wp3h5hY1TC4UJDSvaghVnqecVZZtGoahhMzzjLEaANRqdYSSQklMKMG08VLmUtScVSWr61opKIDCGDd5FMXTIwzDVqvV6XQIIWVZN/N1UxA5exK/G4ZLx7GzNHZtJ45jw7BWUby7cwEgOJ6NMcYVY0+jJhkAoGJ104Ryzh3TEkIEnm/qlGIiBKME+K6tUwIVqKqqrEvGWBAEvGaCyziOx+eTPM/39vYWiwXGuCiK5XLZTHkYY8aqLMs++vTDO/funJycfPLZp6ej862tLQkQF6oUrMgrwSTWtTrNFQYAyvFiVtaVadqmbvmOvz5Yf+v1t86OVx/d/jSMVr/9/e+fTdO2H/zkJz8ZLeePDo7ysvjs9t3r16+fnp6OxmO/3Xr7nXddL9g/OpyHy2vXr3MhGqY9QihJVg2jGzzlJDWQhVIwCILFInQcR4h6PDnXdR3AZveQWTYlBAhRxXHMGKNEL/JK102E0Hg8NgwDIRhFUUNyhBBGUfQsWbTIq4ZtnqZpkxHfpIbmVYkQaXquRbhM09SwLdM0GefNXhVjDIBUCmiagRB6SjYSdVnpuoaJStKl7eiaaayWVVWCjfU+JShZRQrIV197Kc1Wb7//4//iH//nJ2dZf0iuXH5OMbPmUVVleQKuXB/MzrPlcv5Xf/m78/n8v/q//3NeU9tyV3FSVbnraUIwIViSrDSdFmXmeZ+L1vtDHQBw9AgQihAGCFlK6ePpyLLsqgI7291/72/+T6LlOeNAQzAXxbBj//F7b6931qOkzmOpYGlbTrjM3EDnIi8y+cKtmzeuXeAcFEXe63tHj1LB+O///p8IyQi2y5ITpHqdtVW8nIzY7u4uhCqOCo1aQFHGgaaRzc31TsdXki7moeeZAsiyyj3fahzgx+NlnpeYys3NzQsX/ekkqku8s7NzfrqyHYurYhWW7/z4UbcX8EpOz4SmoU4Q6KYulFyFgBpAgiyLa0pq25KvvHrr4VH29a98c7qIEZV3f/pJnINBP4AQF0V9djy5cq3bafvnZ4vtbUdxWOaIEMBFVeQcKGQ7Zl2BPCHHJ3PN1CABBwfztU0tTRmr0XQxrTlHWPc7RpqFh/vZt779Zdflv/ZPf0uo2vNAWcXLxfz0+GA0Pi9K3pgh2LYZJyEhyHbA5lb/o48+1TVY1QVjQKp6sNY1NNBqu1yUjcv6v9YYAgCQlAoAgAhBAH3R0aso8jzPy7JYLpdCiLLKNU1LkkQp5fv+Mgxfe+21Tz/7bDydPD7YPxmNuFQQkyhOECY/+vGfIp3GWZrkWZKskmQlJW/7nmXoXLDmffTaHYxxq9VhjJ2dnTHG6oo1C6ln0pEmn7cRhGVZ1mq1moYOQjiZTJodeRAEEMJvfetbu7u7zYW9CEOAUFmWAEqE0Pr6+nw+b7AR07SDIMAYzxez5isSRbFhGGVZNmUCAPAF5p1mWZZlOQAAKXnjYQshyMtytVplWdJAEJ1Ox7btZliu6/r8/LwoijiOGwi10U1fu3btS19564033rhy5YqEqhkJTdsaj8eEaCen5wBBy7Jmi/l8Ou30urPJVEjZ7nVrzpbL5cHBUSvorK9t3Lx5YTKff/jxRz95591X33zx6OgIIXQ2GgEEl8tQ1/U4ycIoNk37ww8+opSGYbh/cDgcDinVOecaoaZpaobBGiNbwQAAUqoGmDJNs9mKNBl+ly5fuHHj+ny2pBRDJDQdcl4yXnU6Hc/zmum1QfAtyzIMrbFKbDJbmmaw2XKUZdnt9l3XjeMYY2yaZjOPM8Zs286y2jAMx3GWUdjgYA3Hu/kSZlkG4ZPEggZLaaohAEAIRSmN40jTEaXk00/vAgjyol6tVpSSdifQNKIbtCzT9z94d31rYNvgT/703W9/+9vLZeG5naOjE9cDSqk3Xv7Fr3/7ue99/zd+9EePA99jvCwL1e22Ll+5aJp6swNttplfpOkCAGwXajo9OxKUQozx6DylFJb1cnQWv/TCK8+/eEE35IN7+77v8JKFafT81auH5yeWph+djk0jUKBkTAlGAKpMC6UJA4oenTykRF/FMy/Q4xC1gm6va0EIkhXXMFZKzGchJWhtTcMQZXkaBAZQGCPTMMBqGXbb7aLMICAYGRvbW8vlMgh8IUSD8gMA8rxstY0H9x+1O45j+6xGH330Sb+7BaFK45hiL5oIBKsozOdj5XmUIC0rqpqz8SgerptlHQoBXnjx2i/8wl9YLhaVst/+8ds//WjP9GERiTCBdZUDwBcTuLbhrK2bR0dHngsGg97J0blOg6IECAHOYVkywzDKApQ5DZdJq9NWGCzmtd9TpmVxoabThRT6lVtBmi0fP2I/9xffME3RbvWA4o4PBCOYyHYPfvlL33znnY/6a9DQXc65ZZtVJSxbxwQFLdfzdEpNLqXjgqoqx2enUoEXn3uOEizlv0OZpwAAAErOAZBffAXnYjyeGIZJiT6bTCnRNULSOJGEPjo4XsyWnuedjc7TsuBMxMvVxvbOn779zpXrt9559wOgqKikqDmBGENPcMKETKtEs7EfmL1u0G0FcZGMp6Mg8E5OTkzbKnk9i5fEt9OyYFIRTbedAChiOx7S9JIzTDQhAdU0jHGn05FSuq4tWX14enI6Hv3uH3x/Fi0LXuessl1vMptCSOJVJhWsaq7p5tlojAjNyiKwPZ3oQqpwFc3CZX99QDQ8mYwszz0Znfu+m2cJ4+XasMdFqZByHLPmmGqOp0PfkDUAiVBhkuQgFkg4ppMlCdQgdQiCcOgNfL81m81cz0MYACgsDWPJPEOPZuFiMlNVZRt6WeeWZ4/HY8swdNNet3wNwdgU7/zk7cvXnn+5d+vj0zgt6zQr4jS/v/fIbgdZWalaPXfhpud4h4vx3v7jjqXtj07zoqrCrARAAgAxMSzbsOwwSU5Gp0DHx+PjYa9fFMVkMiI6YbKsqoJVhajqtCypQWtZUg1UeaVpOmNMAsGLKksjy3Y/++zA9wPNrNMqCTNdCKWbQCMqSQpdcxgvFSxt29YJKxLEGdUMHxs1IgbVcJomCtSWTYSsBVBhGC6jiHElAG53ezzNe/2222uJnEkBUs6LLJGAYGpmBatrDiGWXCGAMSSA6AJAoVRWpETDZZkLISjVFQDRaun5rmm4k9GKAAoB2NrwsnohcKrp5uHBKgyrb/7sV7JMydro+Pb50cKy0ze+0jk/Pz96PBsOduoqHUcf/ZP/2490unbpBpAk5kxVPLtx89ZP796Zr4TlwFU8xkQ/Oln2u9f0LxByO10HI4URO9yfxVGxfUFOTjmGhPH81gvPX765/b/9T/6PUO9JVrtB25HaGy/3D07mSieqqBDOLFNjBdaMiiB7MRd5oTRXjM9tiKt4qZmm+of/0V/de3jc7SvHbOkGhkQo7usmq6rqlTc2Khb5TscwjNPxYrqI8xJ4PTqLZgDSgkcYu8TIz45qKEGvbfNCVFVVVWAZKlenO5t2r7N7++7R8WgBdXwwvpNlChiDvZN9t0O44obRibPUayOq86oGSZLImvom/vJLb/0v/sFfubCz+9nd9396537H0ifzkY1AlblLAHYvKFFtrqa01S7aPcyZeX6WbF9uOe3Istqau6TUTHIF9DqKIk3Lg8Bw29V8KZbL5Ve/3q+LbHRQPvdiG0gzL0Crrbm9wds/Hr+4tfGdrweP9vf6m5tVKkyoWcQgVGVl697xWWu9bzoKsKK/poeLskgcqYrrz9v37867G1peU6Q0iIBm8UVUddbw+x/sjSYRpFqThNHMkQ3hH0L4tBmEEAH0xVtfWVeaph0cHAAor9+8MZtPPM9jrGr4K5xz3/fvP3rYpDh2u92PP/74woUL7733XlVVg8GgkbI2Eq7GAj5N06qqEMaU6vP5vCrKfr+/XC7X1taiZVjXtWXZB4/3d3Z2vmCIj+u6xhibjm0YxnK59DzvqZcyadKdGjykSU1q/jlN06QETbIShKiRwTX4cmP371jWWn8gpVwsFovFwguCrMj73V6yWk0ms52dnYZ1RKm+XC4Dz7Eds/kpqIZ1HRUFVxCtkqzT6TR7rgbV8X1fStl0MUdHR1euXbt183kv8B3PPR+PGh3bfLnY3d09Pz+fz+dpkff7fSHZdDb79PZdCOnJyZmu645rGDp476fvp3kBAHBsryiqR4/38rJ2HOfChQtpmhIClqtoHi3SIq+qKo+TVqvDuVQKSgAppQDh8WjCG9hVymZdW5RlI7+rqgphqOt6c7o8zyvLcjabGYahVBOUiCAChBDTsFgN06jgUgkFw3jF6id9XzMoNBrkosjOz8+73e5ivmy2ew0DUUnQAMSNEKhJtQ6CAAAAn+R/EkRw00E37XnDim+Eho30uDkIwkrIL8ZaWZaFIE6SrCxLjKFlUd/3kRzEq8JyRVGfvfPuj7Y2L+sUrKKs0/NsX/7Gb/zRW299ZToqxmN2Pjsanc93dq8CgE6PF5bptXxLCvTgzsnW5nA+CzUdE2xQSk3TSJOyqqq8qD7vIyBsd2ypgITg+DC8ceMCkEpJjRAwnpz86v/713d2Lrzw0qWirAeDgWEYa4PNqqoIIdPpeb/fVgosoqlhA9O0GeOWDfqDVpIknAGpysFa93d///uLcGwbl9Y2vSJnjgPCMNR13XMDpSBjDBEFEY9XmVIKAqRphuu6ACBNA5ZlmUZrfDZfRZnnt0xHc1yj4iDOwk7P2dq+9t47n+V5igBwzXZdMMMSpg5Xc5CtuAb9/f2R64Hh2tb9u6eWjaNlbhjyOz//rXY7eHB38o//8X/d6w24IPPZwrIsXacYiiAAvBaffrofBM4qAltbW/fvHkzHuecGo7NotQpvXrtw5fJly9R7PbOqqjTOAEBA0Spny+Vcw/3L1/3jo3Mdb7SHcZGCq1c3D+5Pl9P82395qyqDssy3tgfXX9gejVZJkkIA8jzd398nGPq+Wdflzs7O8eFEI0rTwMUL1w/2p57b91uoKGrBAYAyjpJOa206O1uFpfpCVPKf6Q0BAAAooBT4s0pmXdcdz7FdO45XCohOp4UxKqvC1I3J2TgIAibFyclJu90WSnx251Nd113XH41Gvu/neW5ZVvNthhB2+z3BVVmK1SrJ83K+XFiWtTbsbW6sj0fn5+dntm3zmiGALcMejUZrw2EtOEJoMFw7PT1tt9uz2QwAgDFOkqwRh1FKpQRpmjc2DUmSWKbT/HNNWYQQRlHMORdCMsYxJUmeIYwxREKIwWDQ7XaLojg6OTYskwM1m802NzcfPnxo266maVubOwAA0zR5WZRlaRiGUsLUDcEkwfh8UhV5XVe81+s0jg+dTlcBIJQwDKMoiul0+tFHnzTG1BUTmmHsHR6cnJyMx9M0zVdp2vC6IVSjyfkiCrkAAJKqZFG40CjwHXTv0eOdC7txmnIpb392hxDN91vrG1tAqo3hUEpwOjkfh/O0Lk9OThzdzqvaD9rT2WI0Gp2ejRgTWVkVRTUcDquqCuNVcw9sRGyapgEAGv9Hx/bKssSIapompbBtuwlOAEDG8cr3W7xURQYQoYxLiIiC8Gx0DiDstjtKyrPxxHXtJmhFCmDbbhMKVdd1XXPGGFCQc1HXNSawKDKhpOXYaZ5zzjEljPHm83rG4GlugU2aKyGEQKS4UEIAKQEAFBOKCVRAKVWVzDTtMAy5YIzVg0EPY8xqRLCmQNnu2lHIHtw7/os/990HD/def+v5IiNRMnn0aHZ0VA+33L/2y18FQAJlAQDmkwoqi2gsjhIdt01NzWexpgMliRBCYbFcJHEcS/GFmKGy7g91ywJ5nq4isrPR1zG6dum5/Uf7GCvBQafTGU0P+gM7zWKMkW0FEMI0yS9e3nA8ulxmna7X7jirKM3S6uLl4XR+hABWAkhRxsnMtt1bz1365INzy6ZZVnueV9dSKUiwLoTKsgQi6flmWahmu5omxcHBQRKnlNB2x89iDiSQEjDGuGJOy1MAsAogTT18dHR2Hrc7wfpGp66Ua3ueh5I0qivQ8p0qV55Ddi62Tk9GluFhIucTeflafzjs/3e//i9+8Ed3huu0rutVJIREw+HQMDXT0m5ev/7px6df/8pLi+V4fW19uVwuF0yjBue8392xHf32JwcPH96XQlRlEQT+cH1rGeZMIABBOCNZEm1udRS3IVSmzU3LRgh8+PbRt7/9YpQfTpehZfqajr0W3b3Y63Q9KaWmAVbX09lEKUU0TKkeLqpaZINBZzFPgQLnJ/HaJpUSIKBRTKqSO3ZLAVnkTULwv7MaAgCh+rM4i1DC87yGx0Ap7fV6i8Ws1+uZml6VxSuvvLJcRH7QXkThbDZrRCOffvoppTRJMoxxnpcaNZpAovF4rCDQDb0oKsaEpmkKICm5UiJJVqyuG6LMwcFBw4nL81zX9dVqBSF0Xfd0dL6zs5Omqa7rjSilca5urpbGELuxYDENuynoZVkSSmvGyoopCLiUvu8LwYRkjdoEKhV4fq/Xmy0XB8dHpmM3xmKE0r39Q4xoluVNU1aVOYYoL6sLu7u+a1sGLTJhmERwHIbR+vo6pUTU3HV8xhhCgFLMOb9w4cJ4PH3nvffOxpPJdL5KsqDdMm3LtB3Dtq5cubK1tSUES5JEIdjpdbGmQ6xjSl3XLfPE87QoiTTLXoQry3SoblDNWMVpbzCcz+dJkkgJoiR7dLA/W4XUMAnCNQdZUe4dHM4X4TyMuFCrKFkbbmiGXjO2XC6blSvGOI7jhkXU7GQty2pOeNOdEUIMwxCCa5o2m8167Z4QgFewYqxkdZpmpmk2fIMmHKrT6czncyl5r905OpolSUZ1XWH51KVCNVldDSGRizqKV+1eN8lSiBHn3DD0KIoQIRhDQgjGsGHtNJY5AIAvtoQYQp3SpveklKZpVhbctp2qqh3XaneCoihsryrKpNtZx9ByHfOjjz67fuPy//I/+hvf/947kgfLKP+d33lbo37QpptbgyytHu0fIh3aXrvI5WDgSikv7VyNVzPGla4TrOlY0wkFEsD5PNK+YCWvFDRM1um6RSXynJwcTNbWncDz792dci7feOuVtFienY2ee/7qo0dnL7zwXBKXVV0JIQFkeRFCSIoi0fUmsw23AjNcjhRQw7VhtKqopnQD37t7EoYhgmavbwmgKIVFUQGEEUI1ZxCJVtstMwCR8jzP91thmJimHQRdxqpwPvdbJoRqOl/WnLOaS4CgDpM0X63CTsc7P50fHiwQlH5gFXlmme6tG7sKpbyu2kGn3wsEk65j8kohaJR1+P/4J/9Vt2vlqXr+lQu6gcJFPRgM0zSdTDIA69H52RuvXj07PRKqbLd6SRJDCFityrKcTlZ+YLRamhQMY9zp2kW56vV6jovDZea5Rl2Kg/1TjVLbdh7v3b924+rGxvDuJweeA15/fQhBFxs1UFqRx7PV+WQyMyxtNpWWTU3T7HRN3TQMQ5/P4iIH7S4oq/xwf+K67sHezGspXQdVKeuKI0Tms7jf16pS/luMXp/0+whAAAGU/5oyz7Ls6XzW6XUdzw3DsNvtCiGk5AYhFMOrV68+evRoNBotl5Htuk3OEYSwKa+6bjaoQsOQKIta03TGRK87aEh/s9kMILgI5zsXdvuDQVkWjcgkz3PX9xaLxfb2dhMz33SCjLFvfOMbi8WiUTho1KCUNrv8uuaO4zVkkTAMW0FHSpnneZTEGNPZbAYQUQqWrCYanc3nFat1XQ/DsPHIMk3zwYMHXAoAAJfStO3z8WQeJYZpcylc1+31eq12N8nysiwpAqZGAQcVA1WtpASaTga9/tnZKE8Lw7B0XV8u577vZ1kBIJaAQIRXaca4/PDjj2smiqocT6anZyOhpOu65+enjmfbtm1a1oOHj/OsLIqCMWZZloTg/Q/e6w36XIFwuYqiuNvvPdx/3O70w2W6sdEHCsR5NouWhFLGhBDybDShuh5nqWEYnU4nDFftdvfs7AwgiCmRT+92jSlGo03EGBOiEUKf2OhS3OQ1I4Qt3WBlbZq2Rmhd17ZpIgWyLG2EdE3/mOc51Qzd1KXiq1VoG2i1SBBCEALOeZPzLSVotitNT5pkWbP5zbIMICiUdBwniqJWO9B12vzNjUmErutCsgZHblrp5s03jhKEIozp6elZv7emFNjZ2RCCQ4BtFyZJeXw00XTS6ZnRavLw4cPf/I3/4dHdmDGWx/gv/eJX230qBaFGppPW++9/hokgBM2my+2dYdAC21sbZZ5BSJmQlGJKTCkFpfDxo1Ge559XQwEwrU0b6bq2WqX3bp+9+MruIpzqujlfxO2uDXH+wq3XTk4PIQRb28MkLgyDcAbKMtU0bT5bIkQ6nc7JyUnL9/zA6fU73a6XpXNLB1VVhvFkdFZfvNbefzQbbgTNqqEoS8PQAISNj1lR1kACKZmU0rZdjIHgqt/biFZzCGvTBkm6KktmmmQ2W4CaaMQAiu5c6BONYWRlMVhbb3GRDfrbeSawJr79cy8RTWBA57Pw8pWLSb5cTIEUuNdrrQ13sjJHVLkeKauUM5xlSRzHpgFYXW1sbKwPN8sq3tgK0izhnPu+WdVVnpdnZ6Fl62vDtmkDIZgAVZyEtutnhfA67mpZXbnpWHrv7HR0/dba+DxLszDN4um8/PpXX+BizqX9ve+/v7PdNU0oINE1XQjW61EE6pYXIKwopVTDi3kqFVjfdPK8WC4SpYRSgFKysdlnFWc1sG1zMV30By2KyRfQ4j9bDZUECgiqaRjgLxrdSIBs11suQ4yJEGI2m129erUoilU0v3r1crJaffDBB2GcWLaTxFm4SqaLOdZompe6ac6Xy43tLaJrrU6v1e1UVVXk1XC4vozCmgkEiWmaQoKT03PGOZcMQjifz3SdJsnqWR48JJgxVnEWBMHDx4/yvHzttTcIIc3sDAF+ShUGZVlalpMkSeNFapmOrpnLZQQwmi1DABAmWhiuDMOYzadU1yUAWVEwxrIk7Xe6DStQAFHWld9qLePofDyhpkV1XTeshw8e3753n+rmYG190GmzIrc9TUlYFqwsaorJxUu7cVSUZY0x1gz64osvuq7tOM7W1lavOyBUb3c6teCGZU/ms9OT86pihJCzs5FlWWfjEYakrmvTND/+7GNIcBjFmmYqSUzPfnx0UJTl3v6+YdmrJBlPp7PFQndaFQOD7vrO5lZdq7wowjTWbSvP82aZa1BtOByUZVkURZ4WDUUJY9w0v83mrnEwa3Dkpv1HCPm+3wjphBBAISGAECqNV4ZJEax823QtLXDsIstOj08E50G7VdX1crnEGCMAKCEIEcb42tqa55uMg4Y/IISAAEsBIMCu63IplmEICZYQNCXSNM26BoalQwy5FBAhCVRZVwApTEhRlZiShqYjlKoYewY9A4Xms6Is627XMy2trkvDMDjDGjH7/W7FZq0u7nQ6v/UbPzh4nJkWwUi/cGHnwYP7EOYXLq1Nz9PAp0iBy5fWinxZVTxeFaaNhuvt+3cPLcuqK0WoYDXI84Jq4OwkTvLk2QWymK9s26Aa16hpWOD0jFFDjaaTvJLj6aTmBYB8MorCMLx+fccwcVFUQcs5OR4RQtK0rDmz7NZkHFKKg5adxDmldDmPfv7nv/7Lv/xLZVkFgdfuOkRPl8ul61m25XIlGa8UEGmaJgmXihwdjiEBmg6qOsuzAkIwGiWcQSE4ocowZJIwCKjrOLyWBGuiKtI4sR2Ni8J1bQABIopQVFXwnXcfnE9OHj66W5ZFEmfdzjBcLVYxqwrgeZRoelUg3SLUqmzfuv/gvN8dTKdLz3M0TScEQYB++7f/qNVxPc9bLGbhMm13bd0A8arwfaoUUKC+cnUjLyTGdOvC7gcf3lYQcCkwBmkav/jK5fF5LBXbutA6PcpPRlO/pc+nEwptDvl0ZG9tWKv5HEGTSTWZrGzLL0q2mIecl0pCy3UWsxwAxnjp2G6WMamqbs/htbE+HBAKWI1MAzFeaTryfPPfWQ0xAQAAVtYCsC/yDZWChGhZWozHY0O3GGPT6XRnc6fdctst//j4kGgUIxKGq7rmdc1t22a1CAIvz/OiKJq7aFEUURTrlrlcLiHAGBOlgGGZzz//fBivmBST+cx0bMdzg3ZLKAExZIyleXZweNjpdE7OzwzDiKKo3++/++67YRhev36z1+vN5/OdnZ08Kx3Ha9gwaZoahtW0oo3OTNf1siwRJGVRW5YFESKUcikVQVwKJjghpLGzXV9fZ1Wdl2VRV/9ftv4s2LLsPvPD1rjn4czn3PnmzTlrrkJhKIAACLDJJtlsdovdothiKNghR9htSZYf/OAhFH6QIxyOcLQjbIWssDuskLrdHRDllonmPIAECKBQQI1ZWTnnne+5Zz57Htboh51VQFPeb5kPOdxz1tr/4ft+X1bX3eHoo08+fnZ8YtrueHL55Z/7imHah0cnQoh26Pu2JStW11wqFMdpkiRbG5ubm4PVKmpmi5/cu3t2drZarQ4Pj6fzxZPDo8Pj44vxpCgK1wtu3bntBQFjIsuysN3a39/lVe05bpJGSRptbm/1h5tVDYtM2549nU/zKi/LUmvphwET9cnp0eHZZRSDPCr2t/d4BfKqlhBJBJpYZMGqK1f2Rv3B8dGRZPzK7p7rukKrhn3QdKyNVCVJIq21Qa2GIcgYa7VanHPTNADEeV5KAVmt4jh2beL5BEjmmMSxaa8T7GxtlGU+m80cx1NKQwizPIEQEkSVArPZ7ObtG60WEYI12zopNUIEQgw04pxrCMaTS9d10wL4vh9FkecZWsu6rhFCCJFmSdLUiVlZCK2k1lJrQghAUAGNyPP7HQCwXq/7g26epw3pq9fZqWuBsBpt9OsSzif8/LTe2936+i9cYXzV6Vmz6XpvfyPwjdVEfuGL10wKAORcKAjo+Dy+fmPfDWgcI8uytDQcD0uBNACuj7RwlfrpAaGIQK0dDzOuR7sehAASyiWueF2J2DKDMOg/fPgQABDHcZKuFotFq+0ihCk1A6/reU6WcMsMIRJFmSRJMRvP/xf/6e8omc+m54ID3+tCkiFEtved2XQZBK3m702SNcJACFDkYjYRAADLwZZN6roOQ7fX854+OWa8YhXvdrtAA82JaZqOhSnioQ++9tXPzyZzoMBgw969YhwdniHkxWmytdN/84svxGvFOWh1Wx/fe3gxGacJQgjs7NuffHL89OnEtOzdK8F0ssLQzpJ4NDTns3mvPZBSR0nc6niWA8tcJEnKa6I11wDw2igKvpznhKKTswsIsNZ0OosfPhkTB5ScdfpmEWvLS+MYzKbrTh9dnNevvLrbH4VKyK2Nmz/8wSdBy5dcEd1mrEwTdnB1FIatzc12HJe7ezsAQCHEYpZ5PlZaIEQoBYalXZ+cHmZlmQ82UBYzxlMIJee807MF/5vq6+e34fMLEIG/QW2wbFtrONgYYUQfP34shOJcnp6edrrt0WgwHp/PZjPDMIqyNAyjIdA1EmiMcUMYbCJK4zjWGtqeW5Zlu9WVUnY6nSRJ0qzgQlHDWq9jJhkAynGsRuXTCAwbAigAoJmpNw68J0+eNGYGzvnBwcF6vTYM43lsvBDNbdiQZhzXnU6nCKHZYt6MLxsUdpKlxDQagSGllFU10qDVas0WcyZ4VVVJnu3uH3z3e9+zHBtjvFyu9w+u9ofDhw8f9vs9x7YQBkBDjKmQ6tmzZ7Zt37x589nTw36/X9d1oz1uhM1JkjiO43vh5XQShCGllDEhpS5Z3e12Z7NZq9W6OL9sfHKr1WJ7ezOO4zjKuUDbu1unF/FyuTRtw/O81WqRZZlpWePZYu/KKEuyumTXrm1zDqIkTvMMAGBZVhiGYRjWrDRNGvrBm2++GSWxEEJq7ft+Yy9rPL9lWXqexzlvQj6TJEnT1LRoAz9MksygtlJaaWFaOAgM16aC1aZBfe/5tqrRaRLDiOO402k17yHP81ar1Xg83twaYdz4m57LF4QQcZwqCGzbdhxnPB6324bWmn/6ryqrvFE1NLNLzrlUz4WHUkqpFTHoZ003pbSuOcaAEKOxVzaAy9Vq1e22Pvjg0WySffLR/Py4Ng3U7mHHy0e77OJ0de3q3icPHl2e5O2W7Tqo12ulcbIxcnil4jUbDAZ/9MffHp8nWZZlaQ2wkAJiTKkBtLKK8qen6Nq1a8vFyrRwWdSIVIZt+H53scr9ljFf5atl6tq9XqetFIAAP3nyGAAQhn5Z1kVREWJxUSFoTmdL17MNE40vpteu3To8evT2j95eR3PBIWdoe88uc02tdDFPpFYAAExAWeWDQc91cFVKwQEhRGvBOVuuFtTAr7z86rOnc855VfJ2q4sR0QrbhkmwYqw+2A93dgfRssSY5OW8N/IxdQj1Hz48397bzsucVXZdAs93EAaGAURpX7s2UGjluojVOo7Tze32cp5dnpe8LqViL965NR5POp3O5eXUtm3bM8/Ppp5nl4WCSJsmUMLkDOSZ0BAaBhQcun7ncrLiAgAEtNC9XpuaoCzEa29sZ1n2+OGs5vXGaN/yaFmlpuE9eyS2r6JkJT9+/wyg3LZpu9WVUrO63BptLJdzjKnrummiDq5uQQgxJoyB0UY3iqPjZ/P1er27N+RMK82ogQghg2H4/78yBABR0uRzAwXwz44Wj58eLeari/GsBoh6wZOjY8t1zi/HlFjtVv9HP35/Y2u3qJkCBFNTKU0BYlVBDayB1EBCqAkEvu0AIGqWCVaGLc80cLfd7ra777/7fuD76Hn8CG+0P7ZtN7tgJWQcxwjjqq5Xq8g0bVZxJtnF5AJgdXxxsrWzmaZpt90O/FZRFIZhbG9vl2VpuV5e1XlVSwCxZUBK1llCCJFSCyb7nT4BiNeiqCtgwlUeG4YFFea1CFxvd+fK6dlFxRlXkgNRcv7g4aFhtqJarObjOzevl1LfPzzZ3x3pGmBko7qmLbekNF1H+8NWq0c/OX68e+2OVCBLylF7iKTe2R32R21qk62NrXfe/UmtBK9ZTaGP7V/54jd+eO/eyB+ez8fAMGbLGFGLIJwt5v3ALotE8zr0wNlk4oUtwyBYq8vxebvdjqfRV3/ua7/69V9858fv/uKbX9ve2qjSKKqmUstBr4W0mF6ehi0nLeLBRjeNIyWZaxoGwhgijLFpG4iiKF/XZS5Y1fJbRVoWReF6dpalpmHnRUGpiTEs6yUlWktDKNAbuRJXlUgNg7ieRz2P2J5W0DEoQVoIUTOlAaaGXZWiG24+uju3KQzaKM3MgkmOyqoyJDAFEbwEJY+WcSShymLUatsFKwUCWgmLBqLWRbEq8rVr+yZ1oVYagLqutRQGwkWSBrZvmxbnHEGiFZIC9Lsd1zOYSCGSVcWESFyr0+lYn3wYzS71N39lb7AD4lhuDF9dLfSXvnFVUyogAHbNlWlanV63u5jx4Q42THTyOP3al95khflr/+4XDp9NtFQddwvoZZ0xVmNtLpaXxmcHpBS1E4TLVdTpdMen9cuvtNeT+vxpMthk0aUhhDAt7YZmUgKTwMHGCw+OjohUWTEvNMpZhErXs6vVIvV8f7mo//bf/sUyzz755O1/9x/9bYAgrLer+vHtq9cVL6vIF5UEcua5AQdgvQxmy8dayVZPSm0oJQkhhmHmObddC9vp5raxuMQSCkjL7a39ki2VgPECYDm6ftt898Mfha0eE+L69a1oovd2tj65//7Na7eT6ezo6XGv3wHKRLoKqT89Apu7bNgXSLa6fYsAL/CARVWVyfUSKaG3htvQSKKI56mBiOj1O7yqvYAuZ3r/SjtocahhXqTEBIDwbK0F1/1BkFXzitlAAKSxY0rXlgYFRWTffLG3Xsk4Ar/1W18/fPxgf9Sdzfn/7j/7p7/yt69udvqd/sj2cDVVg26wThf37s+mUSWpmE4qNzQWMw4A4DJihTZMSG2wztOqJoZJx88qt83MrqlRV2s5DD1ZQWr/9KL7TFYIIUS8KRoxhED9rN4wCILxeNzw4h3XjeJ4sVi0221EMBN8tlCNSc4yCCEkTRlA0Pf9ZjCvlFivU4RQzZhByNX9K6PRKM9TBaTre5988knQCjHGQeBxXn+Gt8rzvIFCu67bFBpa67KqbNtuiA+dTuf8/FwIMZnPvMC9uLzc2t5wbYdi8uzZszAMszgJXI8Q0uASmnSUPM+bRepnwep5nldMmKZVVcwwjMat3O12W0E4n8+TJCEGLary8dMnTuAbhrG3t3dxdrK3tyeESJKEGqCqCw1BmZecC8Z5q9VptVrz+ZTxcmNjY9QfGIbxxhtv3Ln9YpLly/Wq3e2cnp6ndZ3nOVFgtpi3O+F6OtUm6nX6h6dnaV23gvDy4sLvtmuoIdQYoV6vc35x0Wq3G3wZIQbnMs9FFcWf/+qX6pUqgXzx4GrQCZPlGlGSlUWaZ6ZtdXqDxWq9vbt/994nnPOyqrSWTSJC8+LRWmOMHMdpXB95njf+5QZ1TghpoGeUmpxLBOn5eJqmGaufIwUBAL7vNzTyxpSC0POUeq0lRNJ2wMcPzlpe37MTlmvOzEonpmPnSVFXXEqlgNYaAo0QwgRThIjSOklTx3MxIUErXK5WUimIn8cSENOQUoZhmFellJJgQ0rJeNXvdx3H40y6TnBycsY577S20myxXlbxugrbIFonrLSoWaX5xA+sP/r23Xn0qNfu15VgcvaTd+6dHJ9pDJ49Sl977dUvf/lWGouwo//w298NQ4vxWmvd6XRM0yyyohVgAH/aKWfFnDPkOBY2SiHUrTvXLi5yjcpoBRCWab6wLT+OY9sEAOqSVXGRGI7T7/mzybzKyn/wD3/9yv51zoFlEqXrqmIX59NvfONNRGC0Tsbjc4LcqmSMaSm54+JGSWMYIIoSLR3BIWcKE2XZRAitFSYU+IETR0VdybxIPLszHs+ieKYlenDv5PYLuwBN+oPtrNBxsbhz5+p4nEyXqyRP+oNuVq0Xq8sXbu8WZZzl9WjU47o0DNDuBYvpyjQrya00XxjUuXKw+exwOdgIXnntwKSts7Nxuw/mi6zbHVpBVlZECF6zamdnw7ZtiLRlEcOgQgiM0K1bB7ZtZ2kexzG2Kcul51nLReTYfpLN//yPPszSot8HJ09SLwDLaL13ozdfgOmcd7r9eTRDTmqaO+3Q2d0NWV0CjQDKKGwZFv/BX38EEKiqynbtsiwRAghABFUrNPOizGLS7eJ4ze7cuba3f8310HAQNl1RMz5q9iVKKfR806iBAupn54b7BwftbmcVR+so0lpfuXIlThIhJePyybOjVgtgSp4vJZF66YW9RqhhGEaju97d3fQ8bzgc7u/vT6fTZmbf6XSyLEmr3Ak9obgX+I00mhBSC845BwARQmzXwgTWrEQYlFWOCDQMw6CmYVi37rzw6Ml5FEWGYVR1kRbp9evXfd9/4fad9XLlOE6SJLyqHdNKkqTb7wkhIMFZWUAIy6pqBCXNfAoAwIXQGpqmXVWVTaytzU2oQZakeVYiSiaL+eHpcSsI4zg2DCNLkv3dHSW4ZWHbNhkHAKAsTpZR7HreztZuniXL9SxN0zzPR6MRQvjhk8cAQaE0NW3P9R+dHEdZfv+9u/3RsDcauBivRPqVN774wSefHI8vtodbeZrN0ugymnfboeKSECK1UEgVZYYx7vX7H31yX0PgWbQG4gsvHfzgJ2//vV/6lSAIiigpqlwBCTFkii/i9XJdjkabeVY1KmgIodI/JeZXVQUhMk27ucvKKm9MdUoppQUAyrKsTqcjFSgLXhYSAbvImVKgcSVLKZUWhkmoZUKIG0prI6HRQColLAv1R72Ls8WNqy0DAsUDw6dFlXb9vgQaYkSwoSFQCkihAUCMieab0GD9mzcZQqi5nU9PV67jYUrny7UQAmPapGbbtjUY9rIsUwraVmhQh2Dz6Oj4crxczsFosx20yMX5osgrAPnTJyejLct2gSoG7a5x9PT8gw8+vnr9YDBsdztWvzd6770Pr17ffvz4sW0C3zcgkJ7t2La9Xq9t2261fIyBqH56QOJkDrTheZ7Uke8au9e23nv/SGpQF8hxcZIupeL93pASYBjI7wSXi9kyWhNisJy/cHDz937/d9979y4AwLD01Ws7v/u7fxFH1eX0+Ht//VdFUW1uDcocnF5M2h3nG9/8ubDlcAag0gAAzvn0MhfCAJrYtqYGEBxESdHuBFrLLOGiRhCA5YJxpjo9N89UnpG8Xt98yRGMPH5yiQxgWMHp6UpjkKcrUem6Wv39v/fLaZaUZe74QALuuHT3YDQc9qAGQajrHCkNHDtYJ4skAaanoKmjbG6YVsGB65Ojk2nNszQr252w0zU63bDRgVHjeTrx6ems5beWy3WeA841IcRyYLvdWkeMEC+v1uMT8Ld++cVkBaL1YjjoVaLo9ncPbjkfvH/4f/+vvn3thQ2l/OliurXtW4ZJsChTpXUJNKkqppRheqjmDGO6WKQIIce0kFKSZxCDk8Ps2s1BXYE//ZOnWVn0Bk4al40doxF+/TQX5fl6Reqf+QUAADx68gQhHK3j4+OTs4sLTCkTwrYdgNHZxXmr2y7LWmtdFNn4cnY5Pvd933RshJACkgleFMUyWk9nlycnJ0qpIPBGo9F4Ok7yLGj5Qsqm6rQcuzFvSKmxYSZ5hjEEABBKNVSEoMa5LLWwbfv05Mw0zZ//+S9EyfrBkweb2xuz2ayxUUspX3nlFYPQqqqafUKToay1bjTG7XbbMIwkSQzDaqRwaZYhhMq6fn4OhWh5rU6rizGeTCYKaNNz3v3wA6HkYDDK04xVZej7nu8CJTmvKw6Qpgal9x89xKbVbbcDzz2fnXqeBwl+8uzpk8Nnjx49KfIqCFpcqNFo8+MHD/+93/7tV2+/lCRJb9C/ffXaX73zvf3N7YvzcZyloRNghRSC8/Vib2OzTPNOp9MfDT95cM+wLNu2pdQnF5ehC8oyf/Lwwf/sP/knx09Pnjx7+vnX34AaHZ08TsvI9qmC7PD4se2CJIul5IIrrbXUCmMIkYYQVqzOiwpCrLU2TVMpyTnXWlFKfxZf2HAGCbUYB2WliWFKqbVqlAewKsqac0IIQpgQ2gwHEUIYQy4qTPQ6jfNUXN+/9vnPXY2SNWPEMDGr6obSRimFAAkhGGNAalbVDb6wYY41b9nGJ15VVdgi8/lcCFHXdRRFSuum5N/c3NRaYYylgFXJOVOPHz8+v1jz2my3TcevqlJFK257yjDsLJGYwL0r8PywWM3iqlZlRkebIZdRspKXkwmrda/XdhwgBXrhhQPTpJzXnVa4Wq2m02k7dHd3Nra2fpqLImokmFjMlgjgF1+8VtZFntWmDeOlMixukKCsIowsz7Mh0mfn5+1ed3NnO03Tva3N3/g7v94fhMenxdUrG1kW1VW+t+eHQc+wqeM4vh9KVa0jkSZFp9P+9r/545rlFFkQc6VB2HFPTrhBbcuyWh3DMhCvpJTK8a28KuezxLZ8wwRJkmlpcl5vbXcRIudniR3IxTwlCAy67flkVufVoANcF7dD6xtf//L5xSEEiBCDc+DYPkDw5HTCmHzrrS8zngoOfJ/0h8HJ8eX16/tMJM+eTc0gNkgncA2nldU1OD+TbmCWZTncaDFesVoFISSGbARbQILd3V0pNaUAaFAnJYRwfDFhHJp+ef+D/Bf/zrXFBbp9czNeL7OsMHDAxNT1rBde3uq2vX/+z/6cGkBDdnz0MF6IwchGCKcxuH67ncWoP/SvXd9LU7FcJKYJOq0wS9O6Alf2Om7oTU5zSkCn7QkBZovL9z78wHXdJmCnKQmbKhBCiH5Wc/03oqQQIV7gm7bFpTw+PYUQIoIfPXogJQ/DkDGW5wIA8PLLt9548w3btinFe3s7YRiaptlqBVrLVqvV63U7nc4yWj89elrWlePZnucUZdZY65RSxKAAoEZP21zYZVlSA5smBUBBqOu6btByQSscj8d5WUAIkzQ9vTh/5dVXi6ISQtU1XyxWN27dft7cISKUbC6dpkOM08RxHAAhY8ywreZoNV2YUoqYlpJACe1adjvsVFXVZCWnVfH48GhrexciIqWOoujK7p5UQEugASjTYn937/xynNe1RS3XtpIyupxfWpYhpZzPZ1ILTMnp2cXDh49/4ed/IY+TH7777vsffnDj6rWDg/22686WszorXrx1m0BiGRar+LDfV0wipZFGjAmN0bOTY4iA1jotyiiuuqEnCchmc9oJ/oPf+I3/x7/453ujndHmVlklp2fPFutJVkXnl0e9fhDFiyheUkpt22as0hCUrIJI53nebJAEV82yQqnGx/r85wyRtmwjzeKyLKuKKYmylGFEhJQ1q1hdYgybCrFmDGIMMRZKS6CpRQ3bYkJoBKlFAQKnp9lbX35p0CUyIxgp23UaQGGTxtXcvIQQAJBhGEXBGtSFbdtNJkEYhp7nKaWlVgBhqZWQerVaNcJYSrGUXErpOsHJ8VgpUBbaMECv77/5+deLKgoCx/dCpYGUMkpSweh0ktx5jSwvkYGhQ9snZ49vXLtSM25QwCrx+hsv/vjHn3z40VPHs1ybaiAZY6Zp97s927Y4z4XIPzsgVW4mSew4QZURBfI8qy1H15WmBFzZ35yP6/Hl46oSQeCdni5+8IMf7O4fjC+nacq++IU3x+ennUHHdUFZJZ7rcs6H/Q41nPV6fXq6hIBcTCfPno6VBNSAlgMgRhhDx8UYg7BlSQGogTACnbaJMWYMdLsdrTWr1fnZqtPpYgQ2d5z5LMpLbrhaqkoxA0J8dnb2hc9fn43Xu1tbX//K5wEHmle726Gs2N0PHghO0qQaDNsamnGUWRZ49uRcCAEA4qJMU7G9214vuOdZV67sJ3EOsT6/WCPgVlUZBvbkvKoFryvh+eZ4PFYSE4qU5mHoB37LskFDAGqEz8Q1HNsKfXLr9rXLswhB8Mbnrj9+8PTVV19VupxN0lbL0ALxmm1tOP/oH/3axWkcLeMre14QdKQAdYmD0J5NgOVXZSWQyYHmlIJmyKOBqivRbZHrV/eyPDMd4+TpbLhpY2QnZfq5N750OV67rvvZjfcZzwZpDQBAAEPUCM0+fahppnk2nc+oaTZbS8tx8rLUWuZFyjk3LWt/f+vazRvrOP7o3scf37+fZdmDRw8bRcgqWvf7/bKuS1ZP5jPLsU3b6vU6ZZmnaUwp9n2XsarJ5xVSNm2aZdq14IxXzYqZiZqaBCHQOE/iOHJcN8syy3GHw40sL58eHQ43RmG7ZdpWkqWHh4e94cD23LwqG3R2w6+v67ox8zmOwwRvtTpMCMtyECIY45qxZnTYRJ4GQRAEQRRny9UKQPjh/Qe1VntXr3GhkiRptdrdlo8QkAgVaRa4Xn9j494nj9pBtypL0zba3TDnmeEa1CRNfjGry2vXrmklrgw2//A7fwYtqxO0f/df/w9KCST1xWz8uTdeP3p8qglSGGbrJLRdLpUB6Wq1KuuqqIrJbEoprWqWVaDXbWdZpmr+4/ffHXWHuRCHTw47vWGr1To7Pz86fZYVSc0KxzEpxnVVeIHfcHO1llVVCKWKIgMAWIYthdBKQQ0MQpWQZV5opZqaXUqBEEiLPK/KvKqoaRd1aVrUNCljlZIcIYAxbuZ/TUuBEDJN2zAMKTWCBGtFLPSTDw+fnhy98equIWtV88l6CZDWCCAMEIZAaylE4zRHlFAL14JXnNWCU8tUEHAlXdu1LCtJEs/3Hdddr9cY4zwtDMMoq7yRZxdFlSZFWZaDkevY5stv9BlPwqC7d9DN8hgBJCVrtwYAgIsj4PvkF35lZzHF//h3/ue7u9usqF5/bcPA5uufu17W0aOPi69+88b9R/dv3rhOEMyyrN1uL5fzPEuuXtmyfrpEAY7VNqh9Zf/abFrdvLH/8Uf3ez2nHRi+j2zDjdfctty6LjmXvYHr+6Fr24v51PPw93/4vX/13/+raJ0VBXA8DAGtKr5aT46PT1wv9EOjYuqlV7YRpJZtLNczSrHgSPLatk1CgFB5uw8USKuqAAAUWW3ZwPUogOZqmQsBHMcmGL708o04k1IgIerugMZr6TotroRj4cC1vvudHz99enjnzk3LMCkxP757v99zXaezWksp1fn5DFHa6YXRukqTEmhaFvX+gTOfXy7mpeOak8vF3tVBmXoEatNkJjVd13U8ulqU/f6OaRvT2UIpo5HsEcMsSv6511+oq0JLgRDUGgCg06zY3hql+eTiGFy7A55+stg9MKN1XtRyOk2VWoXO1sZgeO/ek3U0/p/+k19aTArbdre3r63T2XIB/Za3sWXVlWh16HQSHT87N4nZanU0YFkeW5blu63lfAEQUEDNxjkhTEO5WrGz8+mVPa+ByDU3XvMN/Cm1oeEm/ewWRQHteZ5QCmLUVBNlXS3XK4pB6HsHB/uU0sV69fDRkyfPLpUG7XbQ5GY0f0gjv8jzPMpSroVSwjDIfD7/NEXTMGxLgkaMJhFCmBAldSMehBg30UINx58YdLlc9gY917MvJxdBEEAIkyztdvuzxfLp06e25yoIDNsSWq3Wa0KpVMp1XWLQKIowJU06ODGe5wibn/LlAUZaQ4SI1roZFTRSj3a77fvOcrnMyuLw4mK6XIXtdncwzNIijZN2u8MqwKXSWq+Wi1t3br//0V3P8ZEG1CRnk3MFZF7lFa8sy8AIdDqdxXw6GV/++tf/1ocPPllWmQUxhPDOiy/ZmD44fbpeL4sC3Dt+SgI/T4vADRjSlBCMcavTKlnd8BxPTs8NB2CIfNNe5+nDj+5/+PjhV77w1n/37T/Y3tnrdAZa6iytGBOu43leACHEABdFASHU4PmnDqBufDumYWNEkzijBrYdUwNZ1UVVsqZmX61WQkvTpLZtcya5lAAK33c9x2B1URR5URTNCOL5x4cxghghohVkjCNEZCWoR+dFdXaW/uo3vzYMmaq1Is3MGjbVJQBKSokhxEA3waSdTqdBbzS1ajMm831fKhDHsW27o82Ny8tpGIaNu1lrCaF++vQpRCBJCohkp9OpxZwYjPOqKIp+v1NzZZl+kemiTFwXJEvnzS/3Wx3wv/lf/289a//qlYO93Q0E69dffWEymWSZUTMx3OyenZ34gWeaZoPdNE3q2Mad21c/OyCdrkeR9eThE1aD/f39NE6i9dxx+c2bO1mk0iTLMmR7eGNzhzONAFrNluk67fU7JcvvvHpTcBAEgBraIq6qSa/vMyYocZOEBUErLxecyd6g5/ku55Jip4FZKIkrXjmOqTQHAGUpz1LZ7RNMBWdgNqsdB2jAKbXSXLRaxmqZWGbY6rlKwyRdbW33j07GTkD9wD8/z5jmYX/4B3/y4TrPMUZQYd83V1H8ox99SAxKCCoLIBUMW92iVLdf7iSRdG2yWiyfPc5abTA9kxDXhlWJCiqZ2Q7IMs5qUNc10Jhgz3VtywJxHGdZ/sUvvHl4+ExpgRDAFArBO6GhNT96kr7+ua1+exAlT/Z2rhhOlsbAtKyj41ySyHS6lgePz48U8CWtCO5yUC3jnMns6GhCTOw4QRC0IIBAgTKvKcKWTWwHQ4iLnF9eTgEAhkkosjHGo23j8cN1tE5clzRuhWaR8hmrDT0PzJMAAPBZoBoAYDKZpHnWhPNubW0111xd16ZFEYbPnj375N6j5jCMRmFelY2mjFIqtCjqqsmWU0oBBA3DkEDHWRqEHkTac93608R3yzIa88mn0DppWZZhGHmVE4oB1KZJIYTj8bgos8FgACGczuetTqcqmdL64Mq1JM/u378fhmG317MdZzablWUZhuF8PkcINVcnQqhJ9QUANCaNxtfclJyWZTVpIVVVFXXVoG46nQ7nXAgeZ/mf/MV3OoOhVEoIBQDSUjkOEgpAoFbzhe97q2jNmOh2+7XgWZEqoBpxn+u6jLGjp88wgO3Q//zLL7f73b9+5+393b2dzS3DMNquP81WDx8/+sJbN//63Y8Y0t1ut8qr4/G4HXbOz+e94cDx7LOzEyHEbDbTGty4dZMoMMvTlmFzm7x688UKAoTI3vbV0XCXMXVxPmFMOY7LSu65wcXFRRzHjDGlRLNAVxA0vjdKaZZlzRSvsTOmaZomuZQyCLw0TSnFVVUgAsuy9H3XskwpeZ7nVV0UZZamaVrkn8WVNIsUIRSrBQAQQ8KV9Afg7R8diqL6rX/4hbpkkD73+SoIEGq6JtWk9zUhKo1ktd/vV1XVfE2bj4Mx0VBz+v1+EASEEAgxxrDX6969+6CqKq3AzZtXbNtM0jmlplAxppVrDQ3DeOnV8MEnFyfHE8dqCwWyNLn/Yf6f/K++IBT4P/3n3wKa9VobBze869evv/fuxyXPp9M6aFt1XTbpDk34n+vZ6+Wc/kzU2nj6tCpAEmd//zdeuDy/DDynzFSrhYb91unhHGEwn5Sr6NJ2fdO08ySfXU4sg0AIhOKrdFWUzLIMpeskLhGi/UHn4GAnTYp+vx1FketaWdbABdRqBbTGGGMhgBSIECIlxwQ4jlflAmgQhp5tG9E6kwxICDQQQKDv/Nm90cbAdf2jwzHjxfUbe0xUEKn1urx+a+/0PF1HerKcAGymGfC7Xdt5HmpoWWZVA4QAwmpzs3Pv/uMnhxeW0d7Zd6eXWbvjFWm5NXIsG89nkWOTqpS+5whZbQw2goCenlzmeUmpnaUlAAAiwGp+5crVg4Mrq/XC87ymP0UA3Lx1/dnhdNht+a1cS6uo4tGWtVoUeQ76/VFZeesoDwep67ceP15ywPIcdIZhlF+slgpZGsEuRBJR9P3v3q8qHfiGY9qhH2ggINSmYVPDUhIZPs3jqt1unxyPe5tGmRg3bl5bLp/nzTXpjz+dDUqoAABYkUax89mH/eT85Gw2KRVfxOusLCbz2fn5ebRaTxZzQAiXAmGgFfS8oMgrx3QaSHtRZFBpAxNskEpWxEGMFRAjxiUAoNUNOa9Ozo59L8zihCLsuj5nkkmRlYXlW9iGXAoptWO3VuscQbOuuWXQdsddrRZ1Xbbbbds0WckghEmerdJ1r9cDAEyn0zRJup3Oxmg0m04RhL4XrtdrDRUTtRfYUouG4OKEVlFlnhtcTFZBq19LjTHuuO5qsSQIQ6EwgLwWBBiD3gYv5ELE737y/vHR6asvv35xPpmtlgoDJpQtgUaUASIL8cZLL/zF23/R3RjimrjtMK6KKIswJdube48/frzV7X3h5RdgyznY2v33v/RNiaF06MfffXs+n1qBs1hML5fTX/na36ozsJoubQEVUYNuGHbafs8uJpOrvWFl43GxghV/5dbu/qC3TiMktTSJrwAl+htf/Nwf/NHvD7ut3b1N0yYVL/IiKqtknswu0wmy0en5meCAUlMilVV5XSvLsCGSACrbMeuKawUdx2FM2g7F0IyiZavtEogl09RAWkmsbYRhGJoEMgPpqtBSmlwqBESSZFJqrbVpGVVVGAZxXFNKISCVlVAZ8LvWf/7//Ff2jZd3Xg4BWxBkIYIVElVJEZJYmwhRJ3TjOCYE1UUe+q7ifDQa1HVZ1iWAWkPNFZBASsHOT06v3bi6yqO8WAehPblcK4kI0d2eRQnJ0phJZNA2r21MlEZZljLH2t3Y6+5fGRZF5Xp4c8/8/d//CYKjX/zlt5KU/4vf/fHx4t5o81Z/x37v43udDRklMYKw2+8lSc0Yu7J/wGsT0URoskhPPzsgvrk12nIpGvrBRlqvcz51XAC1g0h3nsXAAFVFOq12lUdX9rYZq9ar5ZuvvfL6nVtlrpUwo3je6VuSk/6WHeeL+Wp+dJhNVpe94SAvyqLQ3QGG5nmZBAQDRHJMAil5kXLHdLhUGDtA11ghJwCmBYFSi0nZ7YNO4K/X89ZQ2QZI0iUm2m8DIEVVrK/v3CEMf+lLr/3o+0e3bndGm97h/eLw4Zmsga1DCr2jk0NsQIkQNeF6XUrJh1s0l+XxGd7fLXnELss41XrUxV/96vVHnxQ710NqOzUHGiME6fnZyfW9q0yXswkP/K2Tk1hUpm+3EZA7W14uk7KmAqQGDpQQL786Ojk5ShYgz3MlPQlhLWw33FzEawCA75laxMvlhSz6/V6XUvbkwWmvD4BmRPrxuRj5XYKWYcsrK7legpdf6ihFk6LcPhg59p7QRgUWCJGdvR6bC4v6uTpdrzko291BfXp6fLl4vjFuelP9KcHr+RaluSDFz2C/GpxBlmVpmj559nQwGDznxNi+UkBwxRVo/rhm94cxzsuiIVHneWYYRCouhJBSh2HYrCzyvDQMw/M8jDHGUCnFOW9cGTs7W00ghhACEdzv9xljjFVNedVqtcoybzbinue1O2FjeqGUbm1tNXf8xsbG2dnZ9vb2YDBoVpBawbIsm3WnbduWZTQZUgCAhoLz+PHjoBXGcYwp1VojBKhpKAWa94Zt277vQ6F4xX/v9/9Nu9fdvXplOp95tmNRYDsmE3wdR0zw0eYG5zVAaBWlnudkcdRqBYZBsiLdu7L7xbe+NNrc8g3n8Ozktddf5aX+qx99T0LVdv3dzR0OFMbYIvTVl6/84J0fCQKRQaHSzT69rut+v5/GyeXFeGOjvbU5qutaaUEIabVajuMcHh42UaWnJ+NedxT4Hc7UbLqWAg76G0qihlgDISzLWgvJObcs3AgPPxv5RVHEGHNdazpdAqCUUpwL3w8baQ6EUGtYVKVS2jTthuPCGJNCN2Em8/lca8iZAAA1pWJd12mWYkx9L7AsK03Ff/vffGtjtGNakIsCQNGYowkBTdFq2ybjknMpNCiLmlLKubRtF0H8XNKIgZYy9IPpNKrLand3l4vi8iLlvO72DV7Da9duLFbHG6OdsmQ1qwCQyZoslmcIq8k4Zjx3fKVAKrnNSuv6zda3/uWf/OZvfwWCgnP+vb846fe789l6Ngaeb0OIq1JKoDEyvQA9uHfZ6/u2MZzNL3d2X/zsgBxcuf7w/vHR8ThsedPplDPgemBjYwNjrhiAECipARSYEiY4ogRhzBibzpe+b8VpMui3HdtXuua1YTm6rlDNstBvjc9mSVywGrRanU57NJutwsBVCikgtdacg6qqCAa2bVJKDIO0O45lm3WllC5dhyjNECLdbqfbw1CiVgetp5jQMEri2Xz5yquvvvf2fLnKr17fUEp/7ZsvPvw4f/OtLjIWSVFCiOtaMsY00JZhYozXy9VXv/J1kcutXXs9RyZ2Z4s4T62wA6eT+NrB7noZWzaVvDYtWtXSsuH2douL+vDZ4/4AVVURRVGn45yeHs9mk7pmlulGUXztRqAkujgtRlu20tw0TdshZcmzYjmdztodnGWZ6/qCg7x4jll6+OhBv9/CGCPMr97up9mq17cdC80u570uyZM6SfJu1/3zP//us2fPCEEYowePL0YbW4alhWA29V9/c//46HJrp7W9N0CgYdb9j5IAAHx+qWn4bylshFCGYWFEWS1sy83zstMf+GGrrEUU5xVjUgKIkZQSQCUEy4rS9/35fIaw3rmyVZSZadJWK9Aa5HmJMSXEkEKNx/MwaDew+GZyRCgqik8PJyQAAEJImsbNgI8QgjCQUiKCDYsWRXF8fKyUslwrilZpGl9eXnY6nV6vl6aplPKTTz5xXXc0GjmO05Tlzar6M5V1nmYIwCRe72xvRmmSZhmkRn9zkxCU5lkjIBdCNcJJx3EcwyaEnFyc/Q9/+Ie/8Vu/iQ1KMHQwzstaQSCUbGIGFNBZnrTbAasr08KL5TRsB0Lx19783O7+3o/ff2/87BS51rVrB/vb4V/++Adf+eZXt9vDYWtYS+X7viiKO1evTpbqk7PDy2jZ8kImRcvzLy8vBxsjipHkzLKMl27eLMuy0+lsbW01w9w0TQfd3jd//ht//cN3ELY8v2NboZIIaJpEqUktDEkDH2x+nk1r/CnBEDRc1eZuchyHUigEb2hdYRgyVjWXo1JKSc1q0WyEm+EfQkhwhTHOsiZQFDUYrubNatnA91p1LTiv+n3n+DCRAu1f2cKG1IBJKaTUUgDf9xmrKYFFUWmAms6l0RVACE3TRlopIQPXGI8vfd8d9OzTk6NkvWK1Ojo86Q+6y2V15WAbQmWYSGvJC5Dlq1pMnz0Qnc5Aguj1N14ZdLYI5XEkAs8bn6fzafTC7dffeefPwq4wTDOL6QsvvXz/wdMiA1WVZVlmEFMKiKkwbYsx9cH7nwxHu3lWQfVTU9cP3/4gicHWnp1mi+V8YUDb84y3vvTG+cURQlhrUJRxXVdlWUKMHM9FlLQ6bQ3BKqo0gn7gFEUBkZacmBZAwPV803XaZ2drQshqFTMm8lRF6zxaF4QQqUTTfknOIAQY45pXEkjHNQzDyBLuh8i2QoRlUVQQaWoACPhqEbfDzdPDujdyp7P8Bz/64MMPjr7y1RtltdZa1CxxHf/w6dILKBN6GXNiIM+2tACmQRzLFkLNLqN2t+O0VJxWLHGHPbB3sPX0ybFtAy2rVmhq0VzT9f6VNjFVK/SBFlrzVuiGoX/tyj4A6nKyoiZJkxxIf7RFR8PuJ3fHX/35V7KipAZACJX1imBbgTSO1NVru1VVCSXLUsxmkyAIhoNBtKp9ry2EiLK57VeWTW0bZmlENL12ZVSlHGMglcYYNEhMCLXvg3ff/+DK1baQNZAtoVdaAwDFaj3X0mlGc38jD+B5bfjpEPGnt2GRV1vb23meB62QCX4xHldVxYQqClnktQIIYWAYBsawOUsaaYCh5Vob20PDQGdneafTAQBQStrt9uU4hgBvbe10Oi2tda/Xa8LICSFJEt28uXN8fOx5AUJECMFYJbVyHIcrmaZxVdcIoVardXp6qrV0XXsVr5qKbzQaYYzX6/VsNlsul01my+npqdZacI4Q4kw2tlzLMiillmk2aL88z3d2dpIkYYydnp8hari+s1wubdtWEHDOMabNBT1sddI4I4bxg5+88923//qtL39ZcoGEBBg0I9i8KrmSGxsbjx89BQBAoHzP5bx2fFcCuYqWf/Anf5zm2cs3brcGvflydm1vlwHwb/7kD0xMWraf52VZlmWaDdvtXg/89U9+GJf5/vauUmrU7WdZKbRq+8FqMddIh65VVnkQBFLK5XLJmHAsa7FYlXlh2c5kMqGUSqBNx87znDHW6bY8N9ASaAkYYwgRXmuLGk1cSVObNwrNRqTt+76QDCE0n2cYY8s2GC+EYEoBrXGTTP/ZGo4SghEyDMOyUJJkzUy2uQoNE0kFhFBAo8b4bBnmh+8/2N4ZuR4lBHBRCyEMA/Oaeb4jZMX48zcyNnDJaghhnpdCKM/zlOQIoU4rzNPkzp07lmWcX5ymCR9uunlWUgJ29kMus2jFHQ/uXjM+/PHqyv6rV65trZLLIiff+pd/kJeX16+97FhtgGPTAhRb+1e2q9z45V97s2IaIv1f/hf/9cnR5c5uDyFEMRqNeowxy5dJxN/4wo3798/W0TRoDd5/7+PPDkgUZbt7Vza3umHLpdRMorLTabVaZDFZewF0rJbjStM0ESEQwsVi4TjO5Wx6Nr5wQ5rlOee1aaHppbJdS2l8cXHR6XQePzoiCJgGocQsy3wyXWGK6koTgqTkhkkd5/mEvZFeVnVpWkhwuVrm7a4FNKIGaN5JBHpBR6UR6Aw0K63e0NjavP3h3bPPvTWo2LKsCsHL1TyBZpyv/fFFYtphk/m6jvLAp1DpNI63Njbni7Fng9Fm/2JxcXlUGsBvbYh0bQ17hoFJvKp9t8WZbjgAAKo8zwnSvm9SA3iO3W63KaW9nlXLIl6bTC42t1vvvXNy54Vrl7MHEJCdvQ6EOsvXrhMizE0TBKG1XK4xxlqB5WpWV4Vp0l4fC6FMiyqNW127LFgWF1ryV156Kc8WVc6aHWlVgtAPqqokFGFCk5RprVttcHp6RhD50pdf+uRupiRUkH0WzN08n96G4HmnDCFonOHNs17HJydnURI3xD2hpFQAU6OoKi6UUkBKwCSTQGsthRCOY0fRqt3xyyqzbHNv35JSxnHahB8SAgBApmk2rWvTo5kWBUDVdfna66+UJW8yPB3fSdPUMAyIdJNUWVWV0tp13Xa7bVkWMY26riHSy9U8zeJOp9PA5W/duhWGYdNCSilZLXQzFICwFhwhpJWyLNMwiQbSNI31erk5GpxfTizHPR9PbN+ueFXUlWFYTaazYRicc8uwB72e43hM8L/8/vcms8tXX33ZtCghsCiFAgAhkCepY3sNqQEqjRCSivcH3bIu7927RykNgtarr756Or64nM0Pnz7DFHzvJz9u9fqDXq8dBJP5rKiKlu9sj3ppVRHLZIzneTnqDAglZ5eTQXewXFYHN6+VedYwKY6OnhmGIRmXUs6ns/Pz8d7+9rNnTzivlVKGQSbzseUa48kZ+BRoWJdVkiTNDIRA9GkIJ25YuaAhI0jZUFc5A3GUbmwM67rSWguuuJQaIkKIaVKlBWPVZxhXx7GKQjREGaWU1pIQhCDI89z1bMsyVqsaQWOxqM/PJnt7e9P5rNNpFUVBCEII1WUVBAHGNMuritVCCNOklmU0KQvrdfxZruxoNDo7O7VtOwxDy3Tqur4Yn7362p0oWtR1DqGWUm7vtgSj81nU7XbKAiCkiakAIH/+Rx8b2L52/eobXxgeHVa9dm9jcPO993+yMRjagZicRx++/6EXMsdyLRsn6TIr17aDi7pWuvra1986u5gfHc2S9KdEr4qxw2en1ATROumGXce0uq02RCyJeKdDy6y8eqMva9R4e3q9bllXy+XSsm0AQJLlCADGU1YBTAWriOPTxWLFK9DveDVLbMfEhkwTBoDq9cKqjjUEWmsCEdKIQKS1LqscQhiE7mKeJ3FNDdSoOIPACwJvteSOY0AAXVf0R+bkcrGK5wbZ8NxASbBeRZ7vdnstxgHndb8/yiqRl0BrbRkg8FzBa4zxah0rmQ57KM7SqgaykDsb++u4eO+9yVe/+g0EaVGAquS+3xIc7O3tz2dLqNBgMBCi0lqOp5O/+Kv30zSllHKho6i8/XJrehFBYW9uodWSWZbR67eavpgxkabJ9Rt7UvIsqxljWsF+L0zWUcv3drb6s+kiTRNMgmid9XoDJaEWWAlODeh5rmEQIRWEAEAtFXAci5omIsZsnA1GbtgBjjlERiQZcO0RwNVnvdHPhn8h+Ok0Uet/q250XN8wLM8L4iz1wiDNy+UqKso6yTKuuAISEgAAkJLnVVnX9SqKENWjrQGl0LKIYRiLxWI03Ox0W5zXWQ4Mw/jRj35EKW0SFwnBlmUCqJrMAMcx5vMFJabjOMQ0kiQRUkKoESWWZWV52myoK84whovFzLKM7d2ti8vzOI5d1y3L8vLycnd3d7lcNlEECEIIcLPrbP63nLPA84WUXAitdRKtDg4OyrLs94fNQNNxnMVi0eBFy7J2HEcIUeYVArhZwk6ny2fHR89OjizPrWqtAXAsgxCyXq85Y1ujzWiZJFE6Gm5cu3qDc75cLgkhaZx8/cs/N11N7n34YbROtrcOfu0X/+48Yn/1wY/73a4sK411JgtKQNtztoZtAJVSMlrHd67fqmtxfHHhur7lAInh06dPOeeua1uWtV6vGWPXDq67rutadhpHhknW67Xr2kIILvQqXp1enDDG64orBRAiWZJKCZqoPwjheh03iuuGoNXcm80S33XxYrFotUJqQABVYyBRSjApTLtpCBBjVV2XnNcQakpB48tEGEAkEdYIGqZJqaE4r22LSCnbLeeTj4/CVq+ueZZl1ICYwCD08jx3LZtLXdcAIag08wNbSP7pPzIqykopHbRaT54dpmm2Xq8JIaPN9mrB+4PAb2nL9E3TvnKtn6fKQG1q8sXy8tmTqQH7rZ48uA7mF3J+mVdsDWTQ7sFeH5weLw+PHsUr8KUvvrS1BeJIBL4HQBmEzu7eJhc1oXq9lg8fPmh1BoosisR2fdD46Jun27NrLnd3d4+fXrzyyis3b960LYKBjRGyXeL6qNW2ikxShBGEnPOd7c0bN25EUaQUsG1bcOUHdhKDqq4t24cQcF53u45tGaNhO01T26FlDbQGTWWAMa7Kuq5rKRXG1CAUI+r6HqVwcpFDAOuK2y5mTHoBBQCkeXF5WVBTJ3E92ipWc/Ds6BhB8+hZDpQPAPEcT+mVY5hvfqXPRHH3o5MwdDGAQILRoGfbFiKkrKuNzd7+vp2k1fERcJ2i37X+9I/v/+P/8O+UlVqu02988wuGZcbxutfrhUGbczVbrA3LBBhwycJWm1BgecHetYPlFIfDNFqq9ZLbfvGTdx53OnZRFBjjmpX97q4Q1eRyeePmlSTJtAZFkUGIr9/Yk7J2HcvxcJLk48kFBKTf25xMZ5NLPehvM1nabhhlue3QugZBYNm2jRCgJrWcII4ZgmYc5Z22026NLBsapnl2tu70QTPzaabSP92iNBWjVJ/q0T594jhuuPzNbUIpzasSQigkhxhqpG2bmCYlFCmlbNvqDwLPt9N0bToUQGUYBABUVYzzmrEqDAHn9Ysvvnjt2lUAtBCsgfgDoFvt4OzsxHGcsmSNJ8x13bouLctq6K0QAQihYVuW61CKm4FglERRtPZ9L0mSptJMkiSO452dnclkMhqNGteXBFpqhTCmlkkIGY1GpmMzyTSQjuNEUXT94Or9+w+1Aq7vtDohl6IoS4gwwlgJbVIDA0gQpohujjbabX88GSdFqrB2LeC5QGtJEaaYYI19t1Xm4IU7L/OKr1YRIaQqyk67FTiu4PW3/+QPAsfd2NzZ2Nj70itfTEvwwbOHZZWzhHWHvYv1NC/TK8NBx3GhkqZtEWJsD7cQMdZJPpvOLcd9795Hs+ViZ2fr/Pw8TVPPcW/cuKGUilex67oWtQ72r6ZxJoTKi8qy6WQ6Ddvtuiib6Nem1DVNkOf5pxJr0FyICKGikE0XrIFSSpmmVZZVlmXDYb8JsWvUSEWREYoxAaZBlNJaCg2UVMJ1DaUU57XrOkoJhECWKGogw9ScC4RwURYAAF6T46OL4WBrtly5ruO6VpJEvu9XlWCCQwK4ZIZFCUFFkZkmNQwDYpwVueN5WZYBAIhhFBVjQlxcnHueFYb+dDZWWpZlfnk5K4qCGHx71704hgVfpPVcSQKUf+uF0WibmKZ9fjK5++Gz3/nHv/T2j76b58tux/Ps9Auvv/krf/vFTmhmES+Llec5giuIkWBoteRPnj5wPeP9955ev3Y7aP80T3k4aiEMHNtLY/GHf/hHvuds77S//5f39q706hK8/vmdOI7LQkANiqLod3sQwuPjY9dxPM8rstwyKatVGNpHhxMA6yKXAPHACxkTu7u7rNaEIFYDwzaFhJZFAEKcP3+rQY0aSr3neetomSXKsqxoXQJYE+RQQ69Wq9GOt14DPzBOj9etjh0EdhCA/shESFc5WS1EExz02ut3Wm37/r1LoIFiGkOkJEjTeG9/Z3d/D2DS7bR8H0RLiytw80bHsew3v/h5Ket/9v/606s3bgrNbt65xngpZBVFkRagKuVqFRkGLWsBMWm1W/NFgolRMx60QJYAIcGVa11emVFU7uyOpICWZcXremd3K44q0wLjixlCgBDsuQFGwnWsy8sxoToIPISV4YAkz27dGXQ79ON7xxqJx48mXKBaVpSCKK4g1AiBsiwnlzPbCakpogWYXBadTtAKh9SqF/MkCMOf7ZF/6kWRQgAACCYQ/lteFAjR6cl5w0yVSmGMLctZRXHjwa7rigtR80oIoTXwPF8o3ut1onh1fn4KIWjCiQzDdBwHQthq+U0q/Gw2y/PcceyGpSiE8H2/uQFt21gu1401tZl9tNvtMAyjJGlagCaeXAhhWVazvBZCeJ4Xx7HWent7ezweN37kqqpMw2p0cM1/qonQIxQVVdm8EZoMP611nqRxnLZaLd/3mzKz+Z41WVdFUZmmjQDUUhKElVJRmjiBH7YcyzLyLK2qqq55lhWGYfzKL/18npcffPBRQ2MkhFy9cjAaDMdn57devvNzX/7KV7/69YvJ/MN3Prx9Z/ejw8effPLxV7/w+mhr48P7d5fL+Uu3b7VsByJ9995Hvh9Gq3h7axdTMp3OTdtiSt28ebPRtDdr9Kqqzs/Pd3d367re29lXTHEuo3UKIVIAxVkBECmKqtNqNTxHxninFSqlGuzF7u4GxjDLMsMwTLMh5WnGqkZzACG6nFxsbGxUFUAIMcak5ForQlCTCQERsG276U8xxpiANBWOYzFeA6AsIyyKDKDaNI265o6Lq6qyrdazp6dpmt+5c2udRIQCxqqiKAg2AACGAaMoxwRJJaTkACheM98PF7MiywqAiNSgLOut7S3OZVkAy+E7OztX9u4s18eXk2VdIMOE52eT3pDEK2UalmWDsOVxBkwbvPy5FpABoXI1pWW9vnaz9+jRU99382L8c5//RdeV12/sD3s7XFQAIFZrzw2LSnXDW5ezR2msEAZPHk83twafHZCsWnV7pmlaWVpXRSmlvPPClT//4/d7Xct3+l6rSpLi9HQKkaaYZFk27PVDz8/S4uLiOU8eKWrbdLUovQBHK/7aKzd8P1wvkuaAFDUrC6AkMgwrz0Wz2TcMs3Ft1RVnTBBMF4scAZcQsl6BLF/7Xsc0SVnWbqh7nSHj2DRhstatjhGtgNeqhzv1+GIJlEEpcq2RHU7v311ka8O2cV3XACClgO85r7z6qtY6iovz8/PQt0+eqNGm+cUvvqqYvcrvfu+7b29swvuP7qdFevfj97f3NiDUjcF8OBqt1jGhtNNpxVFalQxCGIYtAS5PHwOFVoEPfHtw7Xp/fAyGm+50Ouecv//e04ODPQgsIasiV52OV9fcsqzlcr67u7NazALfbbfbGMMoviQUegF0Xbfbaf3w7Q9sN4TIKEvmOHBvb5DnuW3jJKkNw7wcxxDXndamRdt37/34W//yu6NtACGcTmKMcbPxa9rHn+2UhZRcKwD0T2mvmADTtpSmQmClgO2YVZVBrRSkGmlem9vbGwSZpqsINRQWgLerMjUoQNpYr5JB39/eaj+6d0oMul7H8So1oGFoSIB2TaOquGk7ZS0gtqSGjFWWYw5Hm6t1nmaqOwg3R9ePDs/boaM5liLrdfvz2bLIq6piAABKaV1WlkkhUBLIVbLI69R0MTXB5fS802tHcey4Zp4XJnYIMrVSCGuhakyIaUCglG/5GKKqTDY2e4Dg6SJV8ILnuIr1ld3BerXUGmgs04Ihy8AUcVYBoXYGO4AjXvEkjRQuDJswjaFpKyzX8eSl2zemZxdnF6fbe9uWa02nF92Bn5SrrMq7w02Z56JOtGl//y9//NYX7/yT3/yH3jL8v37721e2XrpWZMim713MenZIEdZatYYG0qrQpWthUzCla6kq18Tn8/PZxXyjP0BQbmz2q7rgnNsO7Q/a5TJKktl5UZXaJYxXos4wLdcLw7ZqLikxMCJKgXa72+t04yjlZc6KtBsGGOq8SCmlUguIAQKebRFqAIO6y1XmuNgNQFlqrLwoqrkU1FmYhAIJBDcrVBJiYKyVUkrQdtdUKKt5xbldySUmZl1R03akVpwpAiDUiee5j95ZII38LhAZVMwhAbAtQ3IhBYQAYmwLqTiXzVo5Sqf9XosXEsGS2hXXlee10ii3ffDqGzeKMn/y8Fmeqf3dvpKYYFsJalDbDTjjpWSOYdWuE7z3k2eu28+yZB6dhB0kqnB3d9d1O1t77ZqbaZ0vstnJ/O7BS25v1E/WyqCciznWJMmmB9f2i7x+6dU20PHRs59uUaqcDLf8NFvMLtVwEOzvjTx7x/LVdHnW7eoiZfMJZtLUAiCsi2xlEFqmukw0RRBCSK22xFLqwgvV4aP15lZHY3337uNw6J6fR1LVUCgHOxv9XladBkE/cAMNKqHqVjDEFCyjjJLe+eQkXUEjSIBRbG27QNOgI4pc5xnSNYV46luBqAChq9GG4zvex+9PDGJsb29GS8ZEmuf5fJaULCpLbWKNtKQYcAZ29/cKOV4X51zSTqtmGF2Mp6Jqvf30wR/81U9AsbVY1Qc3yMfvLNq+y1IvjxPbaDOWSQaqcj4ceOmK5AnWOGMC2z7Bpvy9f/MRMIFpW6K2J5PjINQ7m0PAjDzT995fvXjzWrtDGUN5anEODna3NjojyfIsI4bbVtSPYur5JlZIcSIVqJhR8CgIqAUcVmSWI3UJPdcO2y2lGS+hAUjYplpQG7Sv3/QQqZ88zD7/1lUCu9ScswSELbexQinVrE+Q1hpppQAATWDez3bKzYSiWTUyxjAhnHPOeVVz0zS1lkrJbm/Q7fTqmgGA3M5Yi9AxR1wyz7dPnmV331tv7CoA5cbGMIlA49tL09SyHM92fNehGPbarSRJMMZaCdcxKQGz2dIwUFHGYeBHyVSBvNfZXywvK1ZDjNIsq2outWp12gAAznmaxQ2VYDKZDEZD9Wl8cKNSbIphpUTjdmjEX1xKgFEji6uq6uDKlcuLebu1z3VhevDw2anjOGWRd9uDsiwofa7Rb4ZrDa4iyzKoQFmWzwHajH3h8188PT0ti7ooMsdxKKVSK4h0nmeQwPV6uTO8EngGDfuuD9988xdeeP36IllVGv363//Ft16+npRWFaW9fqhbLUNVlysVV2xyubh5cJ0x5rf8QbvvEOvx0ekLL7+UZdnu9rZJ6NPHT15//VWKiebs+sGe4XhYAxOjOANVBQwA0pI3lTJCqKpLjIFSgjEWht6LL76IMWacfxaNwpmEEHPOAAAQYIxhUeiiKAaDdl7EnHNCQKOCUpJrrRGCgoMGoIAJArDJGIAIISV1g70mhGRZghBwHMcwSF0zy3B+87e++cF795F2vBD0RhYmnm5GkxQxpht5DSIQQsi5BABqDZp8RNu2gyBYr5esVt1ukGfFeDyWirdCQ2tIKV1FMTXB6emk1Q4kVxQRzmtC4XAYXFycQag7nZAz/fEnjxzHs0x3vV6HYfv+g49297YtM1zMcsuyqrrsD7cuzgTQ5nwxVhJPJpPFLBdCep7/2QERjO7utRlT89m603W73e7Dx4+wAV599VWpuFKq0wnjuM7LimADIZKkedAKl8tmLlEwVlQ5C0IbAgIgcj0rTeuKK9t+3jYxprrdtlTM923O69l84jqtvb3hcjWDwAgCUlZpv9cDGAkBykJujbbm8zoIgjRN86wMgkAJEMXTjS1ne2sfQj3acparanoBww7t9DAlVlGmgd9XwuhtSc6VYdOaC8cBT58+PTk5Gfb7lqUGo+7x8ST0e2/+XPDRT+Yb2x5nerHig96eG7Knj7Lrd4Ljp9lg5IzPIqV4tzM8P82LOsnzJE9BXZdaWj/+8U+ypOh2PcEqAFmegvV6/fqbB5fj9XwWffkrL/eHLgJ+FCV1XY42bMsMWq1Wu922LLOZ1z19+nTQ7SktHNdSskYI2A5mrLQdQ2kpFTdNSikVgpkmxRhJJSbTiNo0imLL1rNJ0RsaZ8crYtSe6xkmiOP4M3rNZw/62TC9v6lFREhrqJVqctwZr4QWm5sdhAjnPI7X5+cXdc0BAHUlPM+zgyiOqrqA56fR97937xu/eJvVqq6yG9evvvzydrvTCsPw2rVrGGOt4Xx2vlosBOdZnFCMZ5Nxma/3rvSW83S9jmuZtttdJktEaoOEabaillmy2nTcZbQGAGRZ5noBAIBJZtsm5zxNU8fxMKYIEsMwGnC87Zi2bTecV0SJYRtCCNO065pjavR6vTSJbIO6NnzvJyf71zcULNq9Icawqqo0KVzHauj2GgKM8WK17HQ6vu8TQiAEtm3HWZyX5a/9+t99592fnJ1d9PvDJsaAUmqaRhzHjx8/hFAvV7ON4bZtuzyetsJhK7Bee+XlzR2HC/zCS3u/+nd/vVqn28OdVZL6bRcZcB2Xf/X2jwf9zdD2tdbIoG3b2+9tC2JKBfb393ud7uxy/Mbrr44vzmzL8By3MwiPzueGRj6luQBKAEOppJBFWQolbddeR5kCAGJU85pLVte17TpVVTUSP4INraHgqunIAAC2YwIIFovV9vYmgIpzYVoOQtgwbEKgUopSrFQzjdbNLKIZTWoNy5ILoRkThmFijA0D13WllHJdZzlfXb3u3bp5tcrswciVcDk+i7BBlRZIA6WBYZJmlCOlZow59vPgB9u2lVJCiPF40u4anVa4XK4xRN1uRylQVYwxxpkebXRefvnG0dFCKcCZJoRIVWECVssVNZBpOJzjd39y+oO3f7JaZsvF+sWXXorieVFkl2dRlihCiJT1X/3Ve6yE6yUL24aSNE6y2YTduHHVtn5K9AIk6rY33/nhx9t7eHvrysbW5sXFRRiadV0rKPM87w/D4YYhBZBSUcuezWavvfYaF0BKubuz6bsWRrbnm3GcxrGUuprOYgWA49iLxcKgltLAsikAwjAxY0xrTolXVWWrbVelsm3XcWldKaUUIcDAMMsySoHvu3lRVrWk1HRsf3PH39h257MVAAiR4ue+dj1eVw8fPLl56w6EuD/sT6cTiOTVa9tMgppziA2MCQCaQMSqsh0iJyCXZ6Isy1svBC2vv5gtF8uZ69AslaYt7n7w7ODqVlWDNM2zrGi324tllEbwc1/ccQPQ6bUYE3FSHly93m77jDHXM1YrySrsBy618wf3J2UJpGKYFqI2OFeXl1PTEQDARkJnGMbZ6bGSPEkY53UQBHVdSck1kHUttdZ1Xba7PmNAKtYfdEyTZnnKBdvY6F456PC62NzcrFmpNLh954bWOooyCJBhGIIrAEAD0/yZ27CZEgL4N25DpXXz5Ws4dIZJIAZeYFMDl2VlGMSwcZZVEELHNWqm8hRoRQ9uWkVqHT2JX3iNdLpBp9MjGCAgkyRuNCuUmnGUKCF/4Rtf+8Kbr83nUyUlAvBgf98w8f7upuvBy7OkPwy6/aAqZZQu42zd7vU9P6SGgTA2TXO+XDazKtNybNuQQHLFm92uYZoaAqUUJiTP81an05hwMYac15ZlCSVrzqhhWJYVxzHGuN/rdFrBn/zpu4toig15fjFmjBGCsrjstjtKKSGlECIr8uZl0ut0DUykBE3qvALyr7//fYjR1s4etWzPcy3L4LzWWldVATB484tvXL911Qts2w3f+ehPr+y+5Ac1zOFXv7TDF/zPv/MX4Ytv3Ro5k+ni4enq9vZgGusQVWfjWEPScn2lVMarl27evrF95eR0fnY5uXPnTpEkL92+LepqczjYHA2w1pCoDz9+dmN336VYQYwQAaVkmkZpwqVElAgBXNdqBDRS8g8+uhuGIca4ZGXDsDAMAwBEKBJCSakpJUGAxxcz3w/DNq4Fh8DEGBvUCVt2XQuMFHwuVgVSciGAYRDGmBSgLITWgBKTMVZVvAlRoZQWRQGUXK2nGMH1Kh+NBhvbba+Nl4vYwAQAZRjAMAyEoRBKAQ0RriqeJrmUAEKQZRkhBkRge2dUlOl8mty8eZ1VWZowrTUmgDHOaxb4PdcGQIM0YUrAs7PF5XnSaoVFmdy4dTuJy04PfHz3SVVq27YfPnykdOV5bl2i1bwAWpdV/sKd62UGMSab263J5azddpUENSuazXvz2C6wbR8p+4UXhu2ws47S45OLdr91MZ5wUXIuizJ2PDweT6RCUug4y54dH730yrbWwDBIWaUYEKWrsgAGhYDoIhNh22goc0VRdLuu1nIVLT3PyfMqCILFPInjZDhqc6bqipsmvjhf9fs9oCHBVrROum0bQSilhsCoC37nxYN2x8OULNeRFCQMRnG0vHIzePooTxM2mZ/3uhubO32vjS5OCtenEIM8KzExqjozqZWs1lf2W0yIk+O6O4DLWQ3o3MQbSnEF9ONHR93OAFHw0QdHX/7ale/86ROIq7Ddw8QCSBNDeoGKVxFGFkRCQQSBoQGjlJoGME3z5s2r5+fH3a754kt7R4fHg2FXSt1qW0WmPc+FiEGoCUEAqlarlef5wd5gOplsDEdIgzTNKTGlAIQYCJG64sQApkmrqqjqQmuAMWC83twcAAzquuJMt3tgvSwOrnenYzDa6JYFp9RsEFYAKK1lkzePwKfb5WbB/NmH3TSGDe+k2WkYttnutes6Vxo7nmvZFALMhZKaMSY8e/P0eHH8WASdcucAefZuXixcj2ZxYtvmm59/49r169PFPEmii/F078ru06dPu93uV7701sbGkBDMGKvL6ifv3L1zZ//yvI7jGBpsOqnyohZ6xRnI89yynMD30fMHN68OQgjnDELIlYyiiBAiBGtA80qpTquVJ3G31W4CfImBLcNK4yyKEkQMLhSEMI6j69cOluv843ufSA2+9rWff/z0ieu67U54dnGutc6yrHG/WZbVeP4cy6YUawW8wM+rMmi3NACPnjw+Pj6WQvi+DwCybdtyHQ3kxcXZJw/u/eSDH2Lf/PPv/Nn5xaM6mi0On/3Ob/wyFeD/9l//f4A3fOtLL5XZ8uhkcfJk3PfdngkAAMssBphACC3PHY/Hm+1eu2WezyZZXnbbnTu3bgleE4ru3v1oo9+brFOWg2/+3M8BLYSWBEHOgUZYSM0Ez7KcWsALWkop13WDIMgKUDHRHw3rmnPOPw2QogAoJYFSqqoK3wujNeBcdnuBlJIzBQAAmvb6YVUBqQQAEALUfFu0BqZpfrqzAkDDZhZhGFgDWVa5BtJ1bc+HQNtSylbbufvhM8fxtnZaGBMINULI8yzJmRBMSkCwgTHNsxJA7QdUSFYUwnEc00RJso6jqN9ru7ZZs5yV4OaN265rK4mKnF2OIwiw49D1svbcdrfrtMIAAiPLONCo0+sfXNv/W3/r68tF0g57eZ6PxxPXcjphR3B1fHxsWCYTXGklVYWJ1EAGoXflYDNOZxD9tFxgJfADojWEwOx0rHWcn5xP/NADyMrzNAz6AAjHpVrBLCssx7Ec+8mTJxubo9294XqxPD+/ZEKlaU4IaHf7dV0nRS6BNkyCELFt17btskptGy+XyyDwtYZ1xUejYV3XQeBjjKWEWoHeoF/Xuigq23QwxkopwRXnyrKsR08+Mqjz8JNxUUjLCD/5aDydroLQ/MJb18OW1em0Dp+dYugoSSeXq6rkeQHCThtj2Ov7l+cXJrUAyNYJz3MedMlPvn+8d8VN4rrVGQKsrx7ctGy/0wNnx6v+yOy02kErSJIkSRJi6miZmabc2u5CYIRt9P2/fne9SrwQcAZM4rY65nK2NJCzsztyfZTE1cZo+/ziWVFWy0UmBUqLy5PTo43NoZTy8PAQQpxlxXqVYoDDsOV5QRznhkFMwytKUZZcK2CaVGtpmoZl4UZFm+WJ7WAhhNYyCGGSrhivDw764/HYMEgz4WniuX/Gp/xpj/w/bpMhhFDB5yllShgWpRY2LLMqOSHEMEhVyaIo/MBuFo4XJ2C+PBsMO1IzRDNRe+v4YmOjDyGM0/Sjex9/+NHHYbdj2DBN49PTi29961s/+NEPj44OF4vF4eEpoc5gMBwOu4SAy3Fi2bRi0KBhf8PJs/Ly7NIxzGGvr4V2Lbes67TIAX6+MjZNM89ziDFEGkBlO1Qp5bsehihNkr3dnW47rFlFMMrTLAgCjPFkMivLst3paK1Nk955cc9zNhazMsni11577cGjh7ZrdrvdxqtrO07QCrMityxrtVhoKSXTpmlfjqdxHGNKiGk4jiOVch3Pdf00zU3TchyvZuLj+x8DqM8vTv74j373v/lv/7g9yO5/8OTjD7/72p03bhzs/OU7H08vTv6d3/r3+6Gxvb39rW9/9+Zw8Ou/9huYg9/7o28fnp+23LBmQiP467/6y5+7c+vPv/ceMY1Oq/VHf/D7/X5vuphZJv3yl774nbffH7XIizduMVG7NnAtrCHgvGZCaQ2zvBQSZFlWVMw0TQBQr+cfHh6HYbtx6SgthBAAaCk5IZRSo6oqjCkEYLVIw5YLEOBScyWURL1+2IwgISBSQq2hEBohQA3SUJIQAmWhAUCO41BKmt+xLKvf72MDS2ZXrDZsMZum8ZJvbvTSNGKMKynCwGti9gwDKqXKolZKGwYNAg8hACHI80Ipled5K6A7W1vT2QVCutNxhGQaMIzxchGNTxdKgTBwTErLsp5Pi/OzJF5XtgsXiwWToiijOI2qUn3xi2+99rk30py5bqh0PZ3EnXa/LDgA4uDayPFAQwjHyOj2DUKQ5wafHZCghdaL/PhwPhgEg8HoyeHZxSVfJ+vJ5VIomWdMA2GaNMsKCOH5xUWn2z05O+VMUISzLGMCmBZOYw0AwAQmcWkQ4NpmUWS9Xi9JcqUUhLpBn7lOkCYlJhohJCVMs7VlWb7X4RzM53MAAGc6ihLHtThnQqg041KUG5udi7N1nlHXs8uyrit9dX//4f2xG5b3H320tbUzn0dFStdz4LYU1Kgd4CRJNGDz5XgwGMRRvrczOj6Ke8Pg+DgKg1GZSamz9ZJdv71z5eDm4dHTTm8QFxWr4Y07W1C7tos0kJ4HCHQkh0DnZZYLpnzP04r3+mQ6zvM8dyxYFooQ07HQ2flxu+P7fjsrlkCDqmQQEMvRWfY8jHs+n2/0N/7Rb/52t9V7+uS0227bhok0mFyKLCs40xoSIYDSwvVswzDqWgKA2q3ObLpSCoRBT8MKKDNoq0cPzgcjr66UkFwp0CisYYNTahQ2P3sDNvfl89oQaP28YCRKSM45IahiZVmW61VjeqWGSS3LGgy7GON7Hx/duOO88cbnTMNfL8FwsB3nR6wiQojpYv697703Xy7ag84qXt24df3p8ZMbt1588ZVXX3rppdffeHV7d+vLP/elMOh5bm86nnb79nIOZrOkZuxivOaiBFB0fM+1HclVt9tN0xRjnGeF1looiTGh1ESQNNYI2zYpxRQTx3Hqsgo8v9/tVUVJEdZa+46bxQkAKAgCodVsOXN9hwl249bo3XdOlHDu3//Y8/0XXnzxg7vvhq1WA+87PDxsXM/NfgZCiJGZZ7XjeFKrtMg6nXZWpEIy3/eFUGVRB0GrEXIfHx8vVvP1cvrwwePlvHYCfXh8kpbVjz/4uNACIv1/+D/+n7/689/gZdHdGHqhM18U/94/+I9fudab58utq7sU09UqQg6dXJ68cnWPAXA5n0EIr129srk1cl271+9/9NFH3//xvddfuF1maS7KrSHxPAQtqgRnNeBCSgUQgut1xhiTUpVliYkZxSKKYz8MEIGEUiW5lgphCADCiAKoGBOW6V1cTG3bJgRBiOu6llL7geu7hhYaAyq4BhpqDQwDNOMIpRTGjaRfW5a1XtemSQ8ODmzbnM1mlxNR1WA+WxCqAj94/ODSMn3H4ZZJhQAAKMMgEGpCSJrmFZNCAAgBwhpA1emEZVFjRE2L3r5zva7rskiFLHu93vvvv2+azwNaT09n3W5rFcW2Q4si8324ubGRpcLzvPuP7luW0RuFNas0QErqP/zDP3Cs9h//0Z9t7/S3tvHO9l6aFExW3b5149YO1N7FxQRDr2TLouBK/nTG9NIrB+++83hrq33j1g7S5ON7jzyPKg2FRBsbW1laG4RiBKQE1DCCIIiipN3pzOfzra0d13YINSHWNQOQQKUklGRzKxgNNiDUSZIQgou8quu61+sphcpCzqbltet7k8n06ZMTx6WGYdz98Mlg0LqYzDEChNAiq4b9QZZlggOlYJzOOuHe6dG6KnW0KiESlltVdTkabl5cXOxdGWZZ9tIrt+/e/RghhAkQXDMmKdaGCXf3ur1er64EgGI+L/Oq3BgFkqGTZxmlnDFmGOTju58gBJRmtgOOTyZBWz9+cDkYhgRr26QEmB7djpbV5mY4PgdFWmzthMu5gADcfmH7yZPzXmen3+9UVZXEOmzTPM/zPEXaUzDVQFCKWy3Lcay6ruua53lx9+79L37hK57dIlRxXvqBbTtgvV4HQVAUNTYwQqAoivF4LCUwDTuO8yiqOFNJkmutuWDzxQQAcHZ+8uabb1Y1gABD2NR84DNv3r+1RflZL0pRFE2QseKiqScxJSWrOZeUoiRJ5suZYVhS8bJMEUK3XuhFUXHj5pWjZ+PNjf5yuZxeJkFoI2oIIbwAQQh93z05Oel22xqAqmQX55dZnjx8/KAos3d/8v73vvvR8cnE99tXrw84B8eH09FGlxJHK+z55pe+8JYWUnGBISKEaCkdx2ncYADBhrBQ1zWTzLIsIZht20Dpsix3NrcMQmaTqW0ZQKqqKB3LNqnRkA3X67WCjepturO9c/fus3YnvHv3blmWXugso7jhv1ZVtbm52e/3j4+PwzB8+cWXqopprbkUWZadnZ0NRkOEAKW03x9qrcuyLIt6sVyPRiPDMM7OzrZGg7/+y/fanZ7p+n/9zl+Op9XRbHx0dvna7eF/8V99C1ye7u/f+L0/+9Nf/5UvHa/V+Cz7x7/9m7OluvfwgeKq3e1czKdRvPzmV97qDuw//tM/uXnzuud5i8UsaIWvv/Hqw0f361p//pWXxxdnlWCjgWMZAFsmBEBBUBSV1joM2whDpQBjjGAjz8owNC8vpwQbjDHDJBhjhD+TFkpCSF0xBOl0ssRN0Q1AXXPGOELAth0pgRQKAIQxxRiaFm0Ui1oDQohp4fk8FkI4Duj1emVZnp/PqqpqtQ0uRFkzjHFZ5RYNP/7g8cZGMBgMAACN2LNxguYlMwximigMfdOkUsp2q0upKaWcz+tr168QQhirdrY3oygiBLXaHoSw0wpcl44vl50ulorVjG/vjC5OL7VCSqlut3tyduq49OzsqNPqdTqdy8tLSm0p4PWbO5aNv//9dy3ToxSm2QoizipMCUkTRqjcGI04++kBce3B4fHJtet7Jumv1hfTyXJra0cI4bmtsqiTOMMYM8ZaLXcymTQ0Odt2Tk8vMMbtdpdxXfFcKmgYlLGqKoVS1Xq9Ni1a1zX6VO6OEPK94Ox0srU5TLPlYDAg2NKghkhnqdrYGNk2ZQJAiLe3N13XTZJEKWBQa3dv+KMf3pOCmCaN1oBQ6bf1cNinDp+ca8WdJIlm02WnbxAr09L2bE9woLXudIPOIJwu5v3+RpIkcQoG/R3D0idH007YSZM8L5dxlFd1QbBl2irw7bJKTcvY3Nx58PgTIcHtm68GQeuTj87v3D7Y3e35ZiClEioe9Ya3bt5K8nG/1744Xzw7fECpvTkahW1SVdl6HdclNUxAKKhKMRz2tdZVVTGmWq3O+GLye//f3+90eut4tn+wdXR08mu/9nXfd9M0dhzjs9VwXTOCEYTocpy3Ql9JZNtWVWhiqKpA3T5B2l+uL3Z3Os1sR6nGZCy1BgghBJVGiCioAQToZwISXdcGABDTUAgDSFfLdTfsLi5XSlmsBlvbgRamRmm7F8wv663+COpkb3jj7NmDv/erL3dMdXlyFnYH86oyXVpUebp0N7bNoKuS2J0t565LuchfenVHS6Pb2vDcYO+gvbkZXrtJNYyzuGr5/nRSEUJcXyXZ1Da7B1d3N0aD+WxycnZs+W6tpWWbVAHTpLWosIWJCWVdbfWHBGHH8ZaTeSuwd3c727vt69ev9HoDy3S11trAKSvXabJOE9OzEIFCFlkVEWj9x//pNzAA61WGTTcpc6wdmzLDRAgDhMGzJ4+7vWA46vzOf/g7P/zJ+waFlgmBkkXJ53FUyGJre2AR7VhUcMUF9IJuJ+xNJjOJ6dOLCcfqwSLZ2y8sjlzSffLove9/7+GNnSDPc2CC//K/++Pf+trn33347kXB28Z8nJ/95v/kP7iJ3bc//MuonGtpKRHJoBco+Hdfu/n23Yu2zaKyLrPy5as3u77/cB4bGgyvHfzVwx9ttE0tkTCRC0uAgORAQ6wBNyzMuc5yZlgOpMqyjXbXjKN6NBpxrllFTQdyoRhDGnIAuVBASokp1wqs59oOVC2gaSMliWJ8Y+jkJVBUU0tzAapKt7teVsxd1zcNr6pYEJph4GutIbCX68s0zTUESruGweJayhoTiZBhIsxNRZZLZ3NPd7pOmpZcJlAH2crCACqhTAu7gS7KeHKq8izrDSCvYK9tuR793l+eCgmn0TkTrtvGTx8VxJJ+a2A6wHFgEsnr169UOaBWOtoxCTKpUUTrot02s5QnEd+/oZSWp48dREpsgrSad/q9V195CRvzy0NiEr8qyq0tf2drbxk9g9qByOSq+OyAXFw+yiOwv9PJini+zBbzLAws28/ny1leFnlCh4NOXacAYaWZFqaUcadlA+4k6dINqOVak0lZF6Zrm1WRhZ7f8X2kYpMiiCyukUKFH1KTWkUuuAK9vpUmCUG4LLKN4e7xs6VhI+rlUnIk8Fa/v7Pj5kVVsTLPybVbyHWVZ/U4U1LKKgfLeb2z0em3O6eny3gFkmLNODg/XYRBh2ADalDAFACAFSrLRWhdW63jwVb//FRqDbhMRGlQO4MGBEh/8xtvqiKznFFcVQZol0npG6N4JQ9um5NLc2fzih3Ijz46HGwOK04eHD2ucYIs6jjAsY0onktutPvBfL3QYHccn8wmk53tg/PJvCyIAuvQ6YZ2h9Vplq5N0yDY0AAYLsEuoAH64NH7Dz5Oh6NOu2W/8/b9SqdVHTiOSxSwHQIxBMpWUBFDuC763/9n/8tf/ZXPl1Va1CTjoJIccRo48NmzCfIIgExr0fimDMNqWMVNRwMartfPjg4b2jAAgFBELVNrKISwbaPmEgBQ5JVSqt1u8p7QZH6ZZyLJ108eH7744p033nhVCQVEbWHL8wJeM85LCLHWwHTM8/FZkxPQ7YXn5+OySubzeTObz7MaCFeB+NrNtuYoz0vTEUVibWx3omS9v79bFNmrr7yitZZcLKbzXrevlTIJFUK0w9bm1ohSyjnPsqzdae3t7c1msziOEULL5RIh1BC8XddFCHme55hWA/QWQnAub968iTCYTHIAOas1wvXkcsmVZIwdHBwcnRwTQv7Jf/Qf/dN/+k/XUaEhkFILzjCQirGzk1NiGtggtuemaWoY5F//6//eMAwpNNBwvlp/57vvtlsjCIzx5cIwrOHW5vH56e7ehgctoME//9a3JEWuA2wDcgaeHt1rbbzwcy+7BW8zE7R4MU0FhqDf6X7+5VeQDf7Vt79zZTi6/erLgW+//Z2/evuju9u73bzM7t17vLExTNNYK2ER3PFtioESzPe9PM22tjbyNJNSGpggBBE0Ox3/4uJy0B8kyUorRAhqNAef6WwEl0qC5XJNsYEwoMSBiAGNen2/+cJAqAFQmIAoiqTUTdbC1tZGXRWe5wCg67rSGtQVJwQ2LsDDw0MNVFEUUsokKQzDODs73d+9ff12GwIUhn5Zr4RQ2NC2bbdaHaAxY2I47EXruCxqqeSv/p1ffPZkDBGjFl4uAOP5sLcRpwmQkMsomrU2dvVyalbyLHD7i0XW7gRlnWhFn2Mxiec43u7e5o/efufKLeU6YZpKw4RHz+Y/fufjGzdu3Lt7mUXZcDi8vLy8dvWGhgBTCiFshnTNk0TZ7TuDzZ1BGIanZ+PdvaCsI8ccYQId24dIPnny5Pq160qJulLUQFJqCCEgglWQM1VkSTu02y1rvU573VYSF57b9Zw+xYHUGWMV1Fav36pr/vjhens3KKqSUJplmevai/lyva477W5ZVYQQjMzDw7P3332ytdM7elr3+q4U5IffPd3e7XMh232huDuZTcLWpuHUi1kOEFhMI6CM4Ra+9+HEdBiroKxNagClZV3BKAKQ6lW0OjrMer2wLMtOpxWGbhQtX3v9lbqutYZZmm9vBuPxGEAchuF0dmmatChKiNnlxWo8TvtDT8iS14BiL884kO5slsxmS9fx2q1eq9VK4pioUAgQBAFCpKoqxkCDAiEGDYLAMMyqqhq71HI5V1psbW8AIu7fO/x7/+Ars+lacMDFiiBuEup5nmEQrTWEICvK0XD7X/y//9XH9x46LuS8NjBxTFMhnuVRXbDjRzPf95shWNMtPYd4fdojI4Txz84NbdtOkkRq4bouxjjPS9N2bNuM0wJhSk2DM6m1dhzLcQ3Ga0Ldy+nyl/7OVxkTV/a3NzaculC+bcWrjBADI+G6blnWSvPhcJjmyWQyCVqm6wRRvHRcK1qX48lpngmtiG2ZnR7b2to4O44IwbbbOjx9enJ+8pff/c4/+If/TrRc1FlBsbG9tbu1c4UCspgtA9dbLOatVmtrNNza3HQc5xd+6RuWZ61X0c7O3my5cDzb9b0oTZqlUFVVWZbZtt38RIqiMC0PADXcBItZ6fhOUQmBKstpS8kRIR9//LFt219+6yv/7J/9Mw3A/v5QQqA1RAp0fdem6PT4DBPD7bjTyayqC6k4QfD0+JhSI4qSXq83niVZWrU7A2oHx6enHICM1ZyXm0Fvq989ixbjNH7xzs1oMh6OzO9870+U4P/wt/8RX1cSIxuJ5VoqkGLq/fyXv9wywZ+++/jmlb2oSOL1DAN4uWSGS7/7/e9u7vQl0IZhKMn3drcIEhCBdssFmhOKlZCGYSRRRKmhNBMchm3r/Pxya2sbUyA4BlB9infVWgEAEOcSADCbLnltAMgJdojBOZfdvgMA4FxyLgFUGEPHtcuyDMN2kzKqFCjKFCKJEGgipQCCQoggaE0mE9e1KcUI4E+/aVFd4k7PeuvLbzx5fGrZaDCyul0bQmUYxnKRFbnK8xwAQqltWdgL6J/++Y8F4NjQhIBe38/S+vU3Q8XxyfGkrJLZuTnaZo/uVoZdiMr1AkpNlabCNmld1wZonxwnm1v94+NTpQCrIeDh+LTev9oabVm27f5f/n/s/deTbVuW3oeN6ZZfa/ud3hzv7rm+bt9yt0xXg20AEARhRApkCzQI6oEhhh4UoiwVIqUQKVKUSFEUCdABBEiYZjdcm6rq8tf7e/w56TN35vZ7+bWm1cO+uFWgIsQ/QD0e0sSOzP2w9phzjjm+8fv+w391MIgZZufnw6OjkzAMDWBCLcA/vzdEQLr94OnRgwf3HhaFCiJicHl6VChplCR+4OQlL3MQQjASLuJRXQut9Qsv3jwbJCcn543IFiJHpOp2o7youZSjcTqbFb7btmwVhG4QNH3fLwvpezRqYq740g7Idh3Hc40BY4zjOHUh64obA1evXk2zWV3AlSsrg9O5rG3MsiBEFyNtBdXXvvnadCbPRoN0rl3PA4PiZBpG7nN3r1kWQ9gAYEqJELDSX7t3/7HnNR8+PCxqkFKnaa6NKMrED1m70xgOx1IYpZTR1BDjed50PiurhFB04/pGnscnx8MotGoxdz0GkubTotVwjw5zjFzHYa4XEewm8ezifHjwdNbrOxjjs7NBXQvfx1yUNc/94HM6RpKkS9V9t9sNQx9A9teaDx+dVXLe7YXIuF//5l3GRBYLholWyhjlhS6v9d7B6Wf3n52P5panKcUYuQgsx8Uag++HzIKlWOqLbvLy7fAv4g5/UZkdho3dy7uua8/nU0qZkJAkSdQIAMC22XSctppNx3EuLiZ+6LY7TllzgmnOLwbnQ0zUP/Wn30hnuapzgli6iB0XGaUZdSkzS9sNLmoh6kePnm1sdrTWi3nR7rhpUhHMo2DV8+2wkdUVLGYUM13Vwva9l1566cGDB7ZlbW9tEUCj0WR397Lveg5lWZI2Go1Wq6kRHB0dIAOWjff395ud9vHp4NNPP8UYWRbTyiCEyrK0LKsuStu2PdcljKZ50W31i2p66dKGhHowmHX7La5knJbUYlJKL4j+pb/0r/zed//g2o3rURRNZjMNBiHkUNTrBE3PW0zzJC/8diC1iprh3t7+n/kzf3p7axcMjRqtRZwWqkaoBKJrJYuqjNNiVnAD+qvP3yWmqEA8ODr42uu/NDg83treuf/wXnz24Bt/4X9zOSpBNdeuX4acH5885RL3ep3feO3GW/cOJAZV1usrnU/3n4KF3YA9O3js+k4cx1pyh1HfZa6NXReC0PJcpgTnnDNMlrfAdV3UlQIkeA2UWJubPSmwUmJJ9VjSvbQGrcG27LpWWWIwSC40oDrPC8uFKAAE2KKk1YgINhYlgRuki/xiUCMDnU4jXhQGhONaSgFhjHNt2wwQjdPE9/3lDA8lrKqL0HfffefjKqfj+dPA3QBDG12ezMEP6flwMJ9XtsMQlXlRZXlFLDgZ7I3H8JWvXbFszIgfL0bxrOivWHUpu70VQk0aQ7vVCptwdlQ7niHUfuMbXzbKjuM48oP9vUG3a3U6neF49Npr1+pqAkqDxF/5yu2rly79zn/70cfvPf13/51/86c/ubfWXzs+PjYaAYDBaLbIvkgQh7nz2bkT0boWR2eDILS1Ec3Gzvb27myaYqqnE6A4NKCSuLZtmmelATxfjIYXi+df+JKRrNnoRpE1Hie25W9urgihhFZKGUIsbSpKoSrM4HS6sblSVonWWoEBwIzaWVb4PlqSsmwLtVq+MWBQliZZq9ssykU8N4tF7fkojBxZ0u/8+uUsnz9+cno2qIyAuqjB4GaLnh6lnbXi/ERrVFpMFIn2Xc9yRVYM9/cvasnciGgFrVZojCAUXn31xclkVFWVbbuji6HFvEYjZNR1XTeKvCdPnmzvrAmhLMtqtJyqLp48PvLcCBA2giLjlYXEzLieHccZF9nLL17BCm9srCmjB2cjwU0QeMYooUWzGc0Xs7qupVSUMqWMZVNAsqwyP2IIo4P9eG0b5uMy8Nj25lqrYVcVX5r2GGOY5ccz7QcRIEAINZse1qKuS21MlkBZ6HaTFkWx/Kgv0bnLBRF/URxrrX9RTrWIE0ops7ACc3E+Wv6BZTHHhboq1laaw8FMcO5YyHEtDSqey81Ljc/uPbty7bLtIctyrl1fLfMiCpuYgBcYy7LHoxloHnihqHmz2ZxO4jwXACrP6sm4aLebjah3enHEeSVLV+g4asLew5xgyyD9wScf/einPz46OMjjuN9uhUGQp0UcpyvtHgCkWVzzcjS6ePLk8Z27z3X7vfc+eGdrZ/Pk5CyKGjdv3+CyToscMOFCLHmIq6urSshlh1oIoNQxUEVR++5zu8eHsTQFBt+yaF3XeZn95m/+5u/8zu+89da9VqvdW11JMiGNNhoRgn2XEApVCUcnF5oYzqUxptV2Hzy8t1gks1m8vX0pzytB6vVVr+Ix1xxhU3A1S2ulxPpaoxUSYeDg9Gw6HpV5hWg4mZQ/ffsHltdxHMhTeeXydUrre4+PwmaIHes3f+3XQfDff//dqytrSVb83ocftPwoSWerqytL6L/gxnFt12W2g32PMYoIxa5nCyGIZS/95oXW0ui8LL3QOj477a2uKGMwtZaW1kuczXJ3dBzHtpniBGFdFJU0Oq8KbXinZyEArXVRps2Wb0AhhDiXUQQHB6ee44chMyCXUoW6UnUNQeTneSmEiJqhVEJJbQwqs3x9fXU8zD756BkCYjSEYSPPizyvMaJ5rjCyDajLV9aTWBU5V0rNZpPV/kpSjIQQjailjeKcV0Ua+vYinth2S6gam+j117dnE2k7cHx08Wz/qW17m1t9jOnx4Um/1z05G3Y6HWqzg/2UOkDc6r0PPj4eHG5d6v7Vv/p7f/iDH/2z/+yfzIoyLyvLsRElaZrin8/xg64VmDqvy9df+yrx7KIq80w+evjkwf3HAPju87c21hv3HzxeXe1rrTlXccw5591+TxszmoxFZbtOsyxTglGW5barCdWdbmCgkpzN5wZhmSxUHHMg2fIkuPRQA8CnJ6nWhhAyn0267eDKlQ0A2L4UJLFod+2zs9HGRvStb79SlryW5Z0720Z5B/unmOjz0xpj1my5kqudnW0lTVHG25tXDIA2klCDiTLAparmadZut5YY4OUoYbPlA9KPHj0SQkwnc20UGEop1ggpQwApKeDiYvD4cbm23rl0dc0YRqA9ncwwlsPjtC6LxTwhBPuBUxb1dFbE6YhRcAPLGCSEqrkUQjg+c13H913fd7MsFQKWcnSlFOf1kk+DEHl6Xz7/ShshuH/vSV2LtY32eDxdTmcqrngl3IByzhtNr6oBE0kpdx0iFSoLkDW0W4oxttQtL3sp/1ilvPzlF4dUJpPZ8fExpfjKlcu1MAiw1hqwaUV24NI8Xqz0GlouHw9oMKNzdffl7boMHj05sH1GSWeeDgK/VVTl6sZqu+s6jjOf5mAEL2vQWms5HZeWBd1udzSc7+z20jTf2Ni8cfN20CTxwmgFL7zY73ZWP/nwZG21P5qk127c+Pa3v73aX2l4wXe+9W1jzPvvv//Lv/zLl3cvzWYzwGY0Ge5e3iGUDofnlEFVVePJjNnWxcUFJrBYLL6gkxVF0Ww0lFLNZnM2mzEbjKgIRqJS126s+7796OGhYzcIQ0Vd7u7u/ugnP94/PHru7uWne3tbW1uOAwTM55wrzSteSgODi2mcJF4QxVmcJGWWJRsbG6PhLE5L1/drJRqhJercC6KqKhTCClu8LObxZGej7VkgavH4/j2/0cxqbRT89d/9nhp/dP8YgNXpaG6FcjCrbUufDM5euf1C5OO/8rf/O6zUf/tbf++8UipPGMF1VYAxCBGNgFqW5TFswbIbK6X03IAQYllWLQWihBBCmZHShKF/fHxaFtKysW27xoBSZqlZVUohhBAG17WXPVmtJcU+gOS1DhpQlkJI0+t1ev2WbZOyrKtSIoTC0Lk4H3c6neWwiu85eV4iDITgNC8BoNX+3CqHc8kYa7ZCXiNK/OlIhA2apvN4Bv2VcDyeUwoIqDa61aWuD4RQy2Lj8fRiMGYUKWX2D049N7x0eaeqCbEMoiRJp80GXLu2ttJ5fvsq5Knj+/ZiniklMDH7T6dFKVbX2vvPBkHgHe0VQiiMrNFArqysYFrGcby1S//+735XgXnxxRellM1mcwlYVeLnq2Gv3WmFjU/uPxyPZlk9jxcF0o2wiYpKc8XffOu9wWnMOW+1Iy6y+bRaXenWvESIcFmenZ0p5b7/7rOrNy7XtUHA8mKRpnG/27JdkyY1GCCEnZ2dN5qUUGk0WaJrwGAl9J1bW1UBoe/zsrp2bWv/6TMEgAiPon6cjBhxLs6TZ3tnod/f2HS+8o3+m9+b+naTkrLKaq3EyqolJcxnWW8Vhmcas0LUYBR1fTC4tpgfL+DFFzaqaoK1bTtMCI4x3ljffPZ0HyHUaDTqWriuPRyOmq3QaJLEOWOs014fDyevf3n7nXf2L1/ZHY+Sg2djwUErWOl32h0QtXRtHyFzdn5BCRjgz794OQj8yWSSZqUQWijp+x4gqRFQBsPR2VL+4jhOEAQYYwMKI6fI5b2PB35gtzseo850siiKxGhcpiUsnT9qWRWSYAgcSqhdlgUBsB2mkcbYivzm+qr736uRP6+UAQABBo0QkF98DQFpNBp+5FdVcfnyDkLk9Gxg26zhWgzp3/jVX1lMYtdyKGFeECWJBIN/+Icf2Lb/n/y/vz8e1VGrmWdQ8dogSLLEb9A0TT3P7XaaTx4dPXf77urq6t7TCz/AWps844t4PJumb7757o9++kFecsvGF2cQhZ2/9C//+emIz6cV1xCnuRDCYRaj5OrlK+12M80yi1i+H9iOU3GuwBweH3306cevvPalvYM913Uajdbg7GJlbaWoC6kFtRwgn7sv5Xm+tbGRpmld181m07Fx0+syiobn5/0VJ52D4Gq+GPu+P5nPzs7O1tbWOOefffZZxctOt2E0GGMIowXP0rJGmFUVnJ+PhJJ1XbXablWVT548jaLmwwePeyv9wfnCwg4vlZDIc3yloVa61QguFknoBCoD34owxlErKmTV65CnB/vvfPD9eQa9lvXOZ5+2PG8QjxZJks3T5vr2H//yncf7A0PwrJTcMJvq65cvB673yQf3FVdSgu0609mM2ARTUgtu2c4iicNGU0iJKdHGYEQxERhcyhAgODw48wNLSaCULvtrS9oFgK6qAhOklaoqQQgyxuOq5LVqtkng469+9bU0iy8uBmEYpmlOCJXSSCnjhSizeqnhZ8zmtfA8UvOyLCVCiFKstRJCyVqHYZilse2gi7MqywppFkqLKHJm85gxBABaQ9QgyiT9FZ/X0rY8rdDSejvPeK9vHR3HRRnPJ4rZ2nFspeQb33rpg/fuvfPOz567dbPi8yznFVdCFlHkXb26vrJKL13ePD6cDobno+nx+mW1uhXc+2R277OzVmurLkPmsJdeuftX/vO/9+4H725srHFeYQwYNPsFd/lf+5Xv9Dv9PId333rfCrDk7PyM37i9UuaAsFpf6ymNMFGzyXhlpaG1M7iYxEmCkH3jzpo0/N7901t3LqXZOAoD0KgRec2wabTWWkklbWbHc5VmvNmyGfWEEBah2ECeZs2ocXn3CmhQtWg1mxhx0OHmluc5rel0WhSmrnTgekdHs/fe//Qrr3/17/3O24tFAkZevrTpumhlLbBc0WmHWqpG1C6K4tnT0yB0lw6lgUfyNN3ebFqMVoWmhABIrbVSJk3LyThuNjqMMc+3smRRVdxxLGUgDFpho3V0OCDY2trpRQ14680P/MCybc9hPjIQBOTVV65UhTbKYcyeTXJGfELQYPSs3W6enZ1lqbEtd2mUlGWJUsJx2Hg8ZNZywUJLZIzrusm8UtzzPPWHv//YEI4JChrNOC2jsIMQllyImvuuhxR0GkFZJo2WQwBJQfOkZhYoxDnnFsHLzsmyUv4CdPhz9fV/b5lcqvARQp98cvjFKR0hZFt4fa1/5dJuv9fI04xXoqpqLgGwOTsAJ5DNRvejD464ns6nzrVbVxvt1uHhORcl53w6KaMoevmF5xixfN9fzOrLV3aVRK1m78qVHQTs+edvb+zYFHXn8cnmhvfw04u33/uD6zf6J/tJs+kdHR1FftgIo+tXrr737tudTmc4On/zzTcfPXmcJOmlS5em89loOpFScilWVnpHJ8dxHDcajUajsXTjW54NhRC9Tqeu69u3b5+dnQFAGIa2BQT5K/2IgN3uWhicxWLx4gt3XddVSnW73TAMLcva3t6+uLgIG5HiIKUCAqWsCgEGEULs8Xie53me50Isifb2a196vddbqSuBkC8qbVsBRrbRaDqdVoIbqM8uJjtbO/1GiA2az6Y5z0pZuS5S2eT/9jf+QcsFVPLPJhddEp5M9xTY/Xbv4739v/Tn/3ixgNPJea51Piuihp0s4j/3Z/5st9sUQjSiADCSSGVVLqX0vKCqKqVMlmVe4NecA0YAWOmSEBtAt1reaJh6PiuKarkaLh89ABijqkpoLY0xdQ2YmKo0WRYrSdY22jduXPv4449ns2p1tY8JqmutFSyl11HkD4dzQpiUOs9KJcFxnIqXGIHlOhgj3/ekNISgZrMZxzGXmZQNTGWex93O6tZuR0totKx2xzVGC6mUybu9JqUWAHheJEU9m8zarW6nG4GBOF2kCURNz2hq+/D0yb6QdbPllznU0ihhTad1t9d2PefZs8HVq5vMQkWuLl++rMH0e9cePDxaLKp4GgoprXDGvLIs81de2Uyz7AtaEmMk9NwvEuT06PjGtZsaYD5baMRPT4rhIPMC1Wo1i4InSQKGYqLn8/n1G5ckJ67jCCEYdSkTts2aHWawwQw1m83z83g5fxIvMq11owWMBNNRtboOlo2kIJ5vCSEoIXmmNzc3Hz98SADSNG03W4t4WmXoxq0tZKLR+BwDlVLHcVFX5s6dOx998Hg2QCtrhTF5keWOTaOmlaUpxkZDmc7tm891Gt6VoiyFrBlxiwwZVNy4tf3o/hEFajGhtPR9Xwi1v3ccBBFjdl3XjUYYBC5CaDIdYUTysqqqenQutYaymnfbG1JSz7c4r2tOMAJKaoRKAmg4mD598sy2vUVcLdKq128yi+RF4brY930ppVS85iXG+I1vfA2QLsvPfSzAYKVUFEWLeRlPhe3JixPiOOxiPMqyDGNrPo83NrbW19c5lwDQarh1lVMAzCSlTHOryGV/teGHlHPuWu7yc44QMga+GM7DgIhBHAC0UvQXPfOgKmuwbXtruz+bTTqrlGA7zzRjjUavTIpiGsdr25tuiOoyuXW9Z9sGtHs+GN94MfzeWz/7D//jt/1+FTbrbgSBRxHyKyHjOQi1SHL53r0flGliMfXql7YQzZN47ocAgNurhqfArMV8jgU2NKzuPXx2/VY/y8oV3z0cxB+fDjJKnzx9sBK5nShkVrQ/vbADO3Tt6XC00t8wQBaz2Uu3b7XaW/sHDzvd4Lk7t4aDM99uSE4QKQDZjseOjp78sV/+yoN79x2nMUuEsr1JnB4OLgbjOVcF1qbVEcdHCfNbp2cXFa9Pz4+LIvF9v91onxydEoMIIGwJSUsuQ8WdoqiMEdkCz9OkyGbEI7Yb/eorX3lxd2Vnw1+cn200ux8NDjLKfKb7LbeYZSsunY6rJCtaAJttT/rWs0VuKt5Bhro+I/abP/2JaJFr23dvGOdhvbBc79He/eRi78nevZde+Mov3bX+rb/6lx8/PYqaLOP8td5qx8JfvXtHIfCjFpRQSeVQutzVHMdpNqO6rsu8aDYavKrtUPPaUSam4IP2AMPgtLJ9e7FIlpZ4RmiKKEKEWlAUpUSlAdAiyIpnUnCjLYJXHu0/NhVf64ezeaoNpoCMkIZr16aI1NQGhlvNZmhANbvAiF2mmCIa+nZepLw2lBKFjB84dU3qHFvWnFeeVEijqtFsXX8eBb7NS6vRK4uEDg7sqKu5ybNCBE3S34Bk0dh7mh4fxTWH0TlvhLjfwapa3LgRPbxX+R3r4d5pys8JAosVRUydAL3148dfeX271eSyAidIlSZ1ybO4ABnavty5ZuK5mQyYyPvCpDyvu761GnR1qZUp6loYVH6RIH/3777Tvt5jtj0xUzmgRQGA1bOnur/J5xfg0qbtiVqzosbzeNJqc6iYKa0022s12t3W5X7XOTs+EzyZTZMwcvMqbrU3ti5dXWRZGAaMVF6YKelL0IRqgjSiZDTNvIYzy86In7kRzjPVantVHmk2SReWhDyZAyYWYgZR+GN/cqvVakUdUwvj2etfefWbm/12y7WzTEZRrygKpA1GcZ10DNnDgAGB0dhtSIwYsi7qioAlDQGtmtidSc6w7HvhYj6d9FfdeFEy6gWBSMayHVn9/uzpw5MXX3g+SXOti2anGg94FHapraidIGgELT9OfYnNfIazhQ6bC89X8QI2tjcwxslchg2MsGQWaOkajR59OnrvvXcI8pUCi2wJnZfVReismKoq49ooNRuD1C61rDBsEVbJmiOXl6f1P/X6Nxs2jNN0Y7erpW0YphAIUxUyW9u0m24rH3nbN/QwYUs0yXLe7vMyecmUhs9dotAv6g09V3a63sHho+2dNcdllFrxIue1ajSDs9N5nEw67ZZB+elxgTH0+31CEACuawGgCTPHx4/6/T6GRp6VUirL1gSa7S4ZDWMvQGWuy7pAyHx2/yGvFbOc0XDBpUySJAg9Y0yWJUrwwPPX11aH5+cvvXDr4GjabLLpbOh6bOfSFUDs1VdfdW387rvvfv1r39ja2jo8PBRCrKys3Lh+82/8jb8xmUwYI5ZFLy4uzocXAECphRBBRldV1Wj5t1+4cz658HyHYJiPR2dn5wcHeyurnarkSkKn2zIA779PmaKAAAEAAElEQVT3adRsTKfTKIqWGsmizAD0dDq2bRsAtIKq5HVdY7zkXOg4ToVQnEuMYWNjA7Q8Ozvb3d7mupzP69ls5rju+ubmzs6NRcyvX7/eihqZqjSFZDbpt30u6/XtHWqY1MKyaZqol56/+82vfmV8WkZB+Hvf+66xrNWVlajfv3712ulZnPIiz8TOav/b3/pWlqQWY8igMq/yJDfS8FJYFpXyc4uFIPAwxr7vCsmzuP68ANGi2WyEIZrN5loBIKuoaqUUtQBhSQgqcqA0NMYIAZZNfT8Mw8CA4JxHDeR4njQ6SfKiKKrKgNKB59RltVT5j8dDx7UAtDFAGEFIYwJpulgsZq5rF4Xa2ekTQpIkEUJbNjHAbYc9uD8xyu71epaNLMdsbHR9L9SKjgYLSsFx7CzLHMdTJh4N57YV7V5xtDZaRArleYrB2BtbDq/l17/6jdlYawmWowBkVfFmI5ICb25dnU6nt2/fPDrey/Lq+ORcSqk19PqdokhbHffgcJSl1XQ6u3btSrPVUKCMMVqBxewvEuTsbPbu2/f6QY8GJM1L27YRY48fnrWafYtBmo+0BmOUqDTnejytuZIaQVlJ1/Xf/+AzY9TOzpbjeDUvlRKz2WI0Gn344Yd5SldWW3GSd1uX09j4AVW6ItBaEqg21nrNZoAQcj3L9YjjOFmWGcB+9wyZ0PNZVRbNMPrqG1eb0crv/J0feQE4LhweH/8n/9HvRmHv1nNXfN8vi4pSKoVGQKbTeS3AsizGQGsNGlbXG8lC+YHbbkZZkhNqeAllWQaR8a32xnbr0WdDQqUBLiobIRU01MUgzRbQ67c7fXsyKtfWNjAtlcCUgJIgdTG8GB8cPO32sAGjNAnDhmM7N2+sz+ezeJEu3WuXVCohRF3z2XRx5dKmVAWlINTCZjRJkl4/EJLYtt1oem+88UvNlr/3LO722lUpPc8znBSgLt/Z+ebrb5Ac0nqeqQWUbqNJFhN29fqaZbmDk6woy1bHKYufu+AuaTU/r5QR+u97RwGA7ZnVlXB9s/fwwSfNZkCRNR5xBLYw5frG7tHRQeC383JSpGBZzoMHD9ZXVxgh2Fhnpxcbm4EfojCM7n92oBWxLAsTc++Tk0uXLqVZbVDGaKSRBgJ5WXp+M8mLNJdrm/1a8O5KdzybAgIhVFFUm+t9x7I3VpsYI8dxnu09PDjeZ5bbbPYXi9n165vL3pAx5vS0yKvSdt2jo6M0yW3XrkTleDaXXEgptamq+rNPH4LWvu9rjP7d//u/f/n6tdPB4PVfetXBOE7zK9cv/9LrL56PxueD+Y1ru1vbrf2nw2ajKwWEYUMjWL6XZbOyKhHBxoBSIIQy2mAMAFhwmC/yTqenlGk2m67rLBbzKAg2NzeVkVzCfK40qqPWWnulJyV86dUXb9557jv/5G/sXwwdAk3PQ4wKgwKnxTybMQoaqiz95//cn+8HAEJlSmzfuR25YTw414I7LhSq8m349qsvtZrtVrNjMSdPUqWUFKrM66UHIqUU4c8xHFxUS1G9xVxKnOXGU1YppdgYkFwBosYQYpFaKo00pkRrEFzbto0AjDF5UXEplOKEIM9nRVk0GhFjGLTZWO9cvXKl12kbBVpr18ZJGtd1adu2ZaPJdOz5zLJIr98yIJXm1IKNjbU4i4EApqBNHYTMcSwwsL93xhgLW8yy1PnFBABGw3h4XrZanbKKOZdbl1qzCTRbnsExxRYvoZIpAgbaGV3ErX6VZ/Uffv8nRcpsqwFYAYZkUXc6vXfeOxxPU2pbx6cnNZcaLC5JmpeIgeu6m1urgMubN6OqVASz1bV+zVOETVmWSZLjX2gq/8affPXHP3gbF9IKXc8FUdcES57i04Opa4WOa7QGy7IoRUmc7e7087JUGqpSjcazTsdBGLioqlJsbq1iYsAwjPH29jazzP6zsWtFBoSQRZEbZFxMDABgAwgrqWrXtT2fhQ3qed7Z2XzjMu10g4PDJ9evX/XcRpzOX3rxzu/9g3ebbdePWLPRCUO30SXDyfnf+pvvKiFBEyGE54UaWJqmSzYdVlAVJWjo9r3jg8xmrN/vAlCKFcWuEtqPDK+R67LTg7wReUmSAtK7V1dH4/Fsgru97uHJJ2trvYuzIl5krS6ZTorLly9rRTFWhNibW6svf+mm5zqDs8lkEhuDz04nnm+dnw+5kEEQcc4tywIAjElRC61qz7Vsy261sVGghZEoH85KhNDlK5s/++k7g/Mz36V5njDqcV7VtZqL2X/8V/+LkDX/7G/82sU4C5oBNVybGrRrOep4PxmcTTBSRc6F/NzqdrnofeEV9flquNRdI/LzSnlrawWAZGkRNbyyynmtKYEsy+bzGaEIYetiPFAStAZKHNtmOzsdgMIo6+Kk7vVWo4aV55nnBtTyMBGzWaE1PjudhqFn25ZRFrMtLoUGbJCdJCrPFSZGCOV5Xq+7cvPWtlJAEcHIgNJlOWeWd36erq60jo8Pf/e73zsbTpIkWczPu90+QvjOnbsYw2w6j+OUOXa330uLtKhKN/Czqmy0G2VZIiCtVns+nWGMNZjamFLUxycTUFLz2nH9wfnpH/7o+7Ztb25cajYjgIoSvJinluWkWTEcjqXReGnnokEIoQ0IDgzbtm0hA4QwDTCf5bXQFQeNlG0zaltBFH567x5jgevDZKimi/nh4HxteyXLYHurs7t7/fs/e0sjsBDhWVFJ8+n9Z9/88h+bLeZGql4HHew9ff7lV9546eXFZHoyvmj0epbGR/sH3/nlXw5du6x4J7S/dve5rMjb/W5RlaUEpY3Qpqw4wuyLLZdSzHmllKAUU4rB0LKsbdexbFYUGYD2PSdNMsvFBmkhDa/BYmGWVsqA69EyL6UAy7U7nR5GdJ5OASDwrSBy5/O5MUYINZvNtNbtZssosAjTWts2E7I2oFzXrSqIWo42PAg8x6F5UTSb7mwxjZOEEotSsFxkuwgh1O+29/cu0qxotvwgQgRDWRS8Nti4ohRR4M5nue2qfj8CJC1HCiGEANshRmPHZXVlHF9gTJqt4Ph4JriMIhs0JAtFGFrbJK7vCF2UlZpPdVHoqsIA0O4gz4201oSq3UubWVo1O+21tV5R50mSOHbQbHfjOP8iQb7yrZv9VRZQnOQVw+3dK03bU5jai1mdxMXO1nqn2ZhNKoLwdJow24maQV4WaVJpaS5f2k7ToixzowkhkBdKCrS1tQUAhOrhRXXr5vOnp8dZDoNBOpnMOC/SRXr58uVurzWbDstCUAobm93RaFJUOmhwQnqYqPfeuXfnzsbXv37ng3c/sCxrZS2ocpdYQit29Q7SgLSxKcPf/MZ3PM979Pi821kBAIyIUrC9teG5rNW2PBdNhwohbDFMAGGkKGKMWoCE61mDk6zdCbVSiym0e5hQfTEga2s3EU06PdciwXwiDw+P1zaCyXjebDYRWJRi34vWNnthZCMEggOhdD4ripy7rj2eTDGmtm1XVY0xIISY5SgNFmOMsemkViYTlVrprnNRvv32qNVujMYndQ137m7XFTiuRbDtuBTZtJb5B+8O3nz7491r/o2trcFjsXUtVEp5PtGmPj1Sjos2diOMGhpnX9ALvzgCfr4afnEi/MVGSlWqZ09O42nRbrdnk0UQNLUELgohTavrCo4Jk6Jy+msIY1LX/ONP72stG2GbQO/sKAagQparm+0sLW2P5ImtkUpjXZSFY/tlyTVQRFia5lXJW13IMz5fDJUyWuujw9PpYkQwcrwIQPf7qyVPo3bkerCYztbX188no6DVGE1G4/GwKKrJZMa53NxojkaZZVlfe+PrZ+eDNE2pTSez8U9+9mM/DDQYjfDG+la/34UloceYn/zsrTCiAFhrzRV/+HCv1WlzXm1ubH927xPPp0rqi4uR5wdpmpdFXZal1tpybGNAaEEp4TVYluO6rhAAAISwsgBe69X1ztNnzwTI4Xg0WSRSodPBeGXVpxY8e1wolr/5wceOx6o6/y//+t/67b/7u5evXLlx7Xa3udpp9D/+5FRj69VXvmRbVpYZRPHg/sOtVocASkT14zff2u6txEVyfHKCaqhLeX1rd6Pdob779GB/NJ/aPs15lZYF10YqWFL+lyKb5dSd6zmEoCUDzmgwAEIJqUyzGbbaXpZnUitGXd9r1CVobVpNQDR94YXnLMsej4eAKGVOXRfGIMvGruvWosIM1ZxjjAeDwcnguNcPMMZVBZ5vua6d5kIos7bu2g4hhMVx7DhO2HCZRU5OTpvNpgaDKURRUBQFAOZcgIGq4lXNo4breWCMVEJyrpiFXI9VGSSZ2LnqScWNcJhVrW/4eQrMxavrvgFhW6FlORtbrRdfWcmLXCtGKC0yqHneXWleunx5MhvVJeKlxUtZZoJXcOXK5SePD549PWw0ovPBcMmeAIIQQq1mJwiiLCui6OeeeWcXQ4tGlIBjWZxzz9O3b3e1yrBxjFa7O9cocT0nRAiBwcOLcV2XSunQa0/OJ2UyA4C6rjGyk3TS7bLJuLAseny8z0iwtWOPp4fnZ2pjvfH6Vze2d5u2FYFRdVlNxucAmNGgqqr1jc5gcH7ruXXP6bmuTVF3NhVhqz7aS05Pz17+0tXZpD47TrevuMhK+ivrb71z4AWgtf4v/su/vbG5tr29/vTZoeuyZKZuXt1xmKeViJrWPE6kIEJCmmfLNUEIocEQ6rZ6wdOH8Y3bvcU8jxpw+era++8fzScmiAhzzenJ2LIcgKWNksMsPJ5cOLbDuUzighD0+MkzRDVloCQREtY2VgGgqLnrhxhjA2CUllJKqasKklnm+0Gr1WMUL8aLbBGnsQSAnd31ssoBgeNQKeXDB2dBEDBGsGMxA922++Znx9/9yU9+7Y1vW1ILrIyquMgtG7kupsTurli9frss5RdqwqXq8PMfftENRcqfz6J0Wu2L86nvRWk6jxpOI2pqDfNp7PntaXzBVWU0Go3KN775ynxx0Wo1/8yf+crrX90SspxOiyePxp32KsH202cPDCghRJ4QMJDE6fra+pNnx7bjzGeZZTlL9V+/H0huup1ACy24ipO6KKqiNIPBjNjOzpVr0vDAI1vrXWToaDSxXesv/av/0mB8fvnqDcHV40dPPddvddqEwdn5YD6fX7lyZTydhY1mq9/Nq3I4GQ6GF5/7xkmhlPJs53BvXGYlo063v2o7Xl4lh8fDXnf1yvWtvMwQEM9zWq2g5Mp1XWNMo9Eoy1opE/ghAlguKKCXhtyMUBCiBoQlh6qWBLOL8eLFl16ZpsnFZD5Ny+koB02vXfdOTmTQdt56/35n3d57evqHb31868ZtI/XK+lZSVJ4TEgRvffS+aweKG63h+u3bh/sHrz3/ootxVpVlWbrMSrH47d//h1igPIOvf/1b7V5/Hi/e/eDdoi4IwQr00lSEUosxBgBRFGkjmUWrqmCMEIpcz6YUV7wu65oQSgggI65c2lAaHBvnRZ6mcZqlCCAM2dpa69ne0zKtGSO+10KIKS00h06ndXExcxxn6XS4sblZ1fXpWRq1G1XJmxFeNqONgTgubc+VRjLqao0JYVHYZJaTlxA2mgawE1hCiCIHizlKc2ZhwfX+wbjX6ygNQilCjRKi3WlkWSoqi3OuNe+tuHleSU5cH2OaI3A0lNrA4V68sto+PTvKilGz5fAatbsW53KexPceTD/48NEiyU+Oc4Qd37UsQrs91u9GBwdHWhGt9XiyWNtcn07HSbrIsqKohFAwGk2k+Tn7+ic/Pvr4w+nx+YUFxgm04zJlUuZBVSqModNca7daeZIjZMBgg1FeK5sxLcz1nasuEo2GE8cVRi5lqNuLwMDxyeHa+orS1ebGztnp2PWAi3Q2m1mWlWYz28G2Y7muS7E/GVZh2Hju+RtZWvgenk6nRpp7nxx/4zu7CHpB6Fp2tP/sZHixCBpCKHX5+sbxUa4M9NbC4WgsFfRXVgh1Op1eEDqUgDH18dF5UUKz5UyntQY1mWTxIrNtpjUQi8R5Foa9s7NpVWM3klGj8dKru08fHydzsD3y5OAj3+tcnApq1c2WixDKEtXrB4AqqVMAFsdJHMe8IpRC0EQX5zXBLIiYNoQLEwRRVVWWhZdNXqm0VLBI8kazHceJFPr29ZvP3do9P8ptz7oYnqxvdH7tN16cz2M/sHrdaDobttrNsihA2a2e7XbhZ28Pnz769Btv7MoqKKuUYYvXam3LOjnO/BAUzD7nMvx/cV0xAmQMLLle6hfmlMMG7XTCF1+6+8LzNxFSP/vJB2HQtCzSCHth5HE5S1MII2c0GnI1bTQ6Fg2LfMbl3GLY90m8yOezjGALYSk5m00yyojXoA8fDHZ3d8uynE+LZUNH6brZcjHGrXYkhAGgUoCUoDRUtf79P3j7b/+dv2/5zjwe+J57afuK54bH58d/8S/95mA0tJ3GP/FP/OqjR0/W19fb7Q6lMLwYO16QZJkBlBdVWZYbW5vKaN/3HMdKkkQayRgBjW7f3Bmc5KNR9vjZftDuzhcTzunaxqVePzo5PRiP51mSGFS5LgGAPM8xZUoaIZSUGgAQNlprQsBI5flOq2Uvj4dgIEkyg4lUEBfZ4emZoZbCdqPBJsM4Cn3C6p+9eXLp1qYg2cef7HW2XFmVVZLZQVAKjqWMAnjv/vs//dGbjNluSI4vBkmWvnD7udD14zwbz6bEpt/76M2L0gC2CEX/8Pf/sARcJEmdZ7wsGEEes5tBSA2yMEUIAWjXtZeb4dJSG2MQslBGUkoRMEqtXq+ZFwvXRVqC0fgrX3757t2dnZ3wG2+8+NWvfnnvydRz3ChqIYQm43lZCNu2T0/Pp+OJ40CaVkqpWpisLIraeA2YJgslTaMRaSWX0hApoCq5MaYspG15UpjFIkEIKQW8lhhjylCa12CAIOrYRButgcZzSTFrNt0ghLWNRrMVKF0aY9LYpGnKHNdxJKVglK90sX3ZH49LwdGdu2vpAhwXFTn8iT/+p7a3d7KkbvZqhHS8KJCG7/7+R6NhHDZxUSaOrUKf3rqxKWUSeH4QBGmaMuZ4nlOUJUJoPlvc+3QYL/JOp1VWP18NyzqqK6iJ1nkFoAcn026n8dU3ekrAxqb7ox++PRqfBCFbKjmKolhf9SlBB0+O/uSv/vrNK5eUMoyB0QRAz+ZTz/WlrILQtRwzn1bzae14gKmWAlksRFhgpAjCnu2DsvafzuaTdDQZakDT8azf94y2di51Nza7f//vvF3W1c6VtZV+n1I4PRlubu54biPJE9uD6SymNpMChpOLBw/3r169jkC1I9smuixF1IDeWljkhDlmkdQVl0C1NghhjAgskuKzz2bElkmcbu+s5UUym+id3RXDYmZb8Qy63a5l0WabVZVIFyhqwcpqG1OBwOFcj8dTx+pkebq6Hjo2Ukq1u3aS5LwWtm0vLW2NMYRSAEAEFosEKHBVKwW7W6ubG/7wrGIOXlvvcF4fnz7y/ZDZ0nUas3nZbjevr60uUl4Rs7Pbb0Wtj+49tEPSD7vIeJQprMLeSlCV0Gy5ZcUZDZaL4C+6y2utsQGjNSw5sMtzxDLOh/tK56tr7SdP7zVbIcZgMa+u1JMnT30/KOtJnqD1jd7Ozo4fQpFWF6fzRZyv9AOM+OXL267rEuStruzkxaKuMLOokqy34oramUwvOp2O4wSMWpzLIk22t7qB6xXZwqZsMY+LAjqdACHs2IHtgjJQC95uBSdHJ6IyhLD1zZVnB4+u37zBa52m6dbW1gcffBAEgTEQp8l0Oh2Px3UtkiQ5PTt3fY9zzqUoiiIIvSiKlvemFLP11ejq1e2333v02cNHvZUuxf7DB08W8STPs8Bv2La9ud5fgrKLgnPOXdfFhNSVsCymDAghl3xZx7E6nTYYAAAv8g8Pctd1g4Z9cnbe6fadoDGcJoILzyeSWzee83/844tCHm9shwcHZ2tbK1Ho1Xl+MR6VsnIsQjAYS50dl1jTqlb7xyfNTnsxm9uMYYwfP3usiXnrwSfGg8ksee31r7330ZOPnjzc3djqNJrJbNYMI4eSwHY9ywapAEBKWRTFUjMQhv6SyYCQUlojhKqKz2dxp9MhFJgFkdfJM3k2OKz45J/609+u+Pztn73db4dS8roSS9pru9XrdvrzWao1XL16pdHwAGPPY91+jzCgFsvL3Lbp8l7ctm2ltOfZGJPl8AkYihBZzHOlNAKwLMu2naKqGbPBUCEUF6XjgGXZvt/b3z/IkvLOc1eYBQa451IhNMVhEgNzUoQ1RT4m9fMvXhM1zbL05Gha1annhotk6LvRg/t7qyvrUkrHV5YNAJjiZpm5caypRVbWQt8xG6utLB1rXVxcZKLmZWU6nc5ofNFbaVdVlRe823Uuzsdpmr766nNfJMhP33r/lV+6c/W59XLBmdW2mGfbLpfzKGy+9PLNRw8PfQ9rXXe6re3t7SwDrXUYhkrAw3v3L22t53ltWdZ4PCMUUQpVxa9eu1IUmVGuUFm764sKiYoEIbkYHrl2V2sdBAFCZD5LkcF37twFAF5LxlC70eZ8du1m7x/+vffBgqePCwmDzooB7Q/2WwZP42SWpDweU8e3NRhqYaHUyy8//+TJkzJPN9c3lKzBEGpDzZP5tCI2UOy6rq+MopQWRdFue4+f7FVZEHagrLTtkf1nM8tCO1ejre3u+SkvSgm4GJxNmK2NAS1twqRlk3bHNUDqGnZ3Lx/snbsuEzLz/IZlWZ7P8qyWUmJEkyRFBoSstTZKGYyR1Goezzd3VgVXw9Hps2cfE2wRKoejQbfbDSJalcL1yN7eyeaWNxpdyHguMRC3GwWea1fHo+rhk/Frz+8y3JkuFpG/brOg3fGYhRzWT5L059XxP+anDJKARSkFUOgXUNi9zqZFG3/9r/32xnqnSiwpIOhkWruokEbkZeGkZf2N7zw/OucUN5O8KhG/emvLd7tc188OLobzE6FkmedK4rABgKSRVSOwWpF/772MWOPQZdhgm0ESCzdwmFedX0igtuc2KQUupODG4DkxASKlLGsA0mxHVpQfHo547q+vdEFZthv+wQ++57fdi3Tw7OCE2czIRlIk9/eeSS5s0s7Tqq4yz42UEtIU83mdzEpCiDJyNJ7WPPuNX3v96y+vohiePUueHT965/2Pte6HzQZyqsrUiyJzWs4iTUQFWuC4rCbpAmNMJLIRSA5XrlxjLg0ivL4RhD6oUmjJJUA6zVHmpGKysb4rZqf9JmUWQ0yl08m1mw2NRTFhbac3RdVKiPwV796j4p3774XMmoqMEHAMohbUTCINl/td1mgIr7G1cRVKfXhxMsrjeFh0ikbmeDv9gWfgb3z/U+xEYXsVWXy8SKxGI0fjWhmtMKU4TcvpOGMkEFw6jsMsUlYFVxYitMh5FGFKqRtIqcn5eLS2k2iBJkN14+bLf+tv/ehnPz0aTXhV28+elnGeVzVk1XwaTwiJ3JA12h07Ss+PxOgIV4X49JMHrttVHGygTuBWEiwfFXWlDbIcMp+ps0HaXwk558PheHO7FSdTywKlAGHpOY3FvGKOhSlRimhFCSCCJWLtPCfM5hWPjUEIHF6hld16coJ4DZipqOW8+tpzeTqvc60y+sILWyeHOdi132BVDqHVU5wJpY2GVrtZVzpqLlZXhcyh34k6HTkt1P7orNXfPj0uV1ZtaSoDIDWueFHL9OCQE4cusqq3EtlM7z3Y+yJBiIYr16DbWJlOGdczrykH58OjJ84bv7r9u9/7iEYg1Uqzi7yGN0/3+o0Oc3Cik5o4R+NnoH3JgSImap4v/PVtRxthMVvLSqoUIRK0hFIMEzBaI9CMSN9ZaQYtIMeh19RI71734uKQS0UcKrS2HPunP364SCBsu9xMnn7sgWdp5F26QZ88ODw5mda5zZi0cMlT2WkRkEKqaVFNy0oz38R5LmjdCPtFlj/6SLZa2HYdLrRRGgBEIW1ADR+MYK2WGzWcJ0+e7F7pY2qwQh5hDAGoBBlvMs4t5ggBlRhr0UfQLGUJIADBmz84cMMCIw28b1kVYMWrUMDEaDZdDKSGqha8do3JpOBNzzk8Jw8/nfVbiOlGb2dzAXkS4+2OqVLb9aGqmB8phH0DxCANBEamRtIjMrNtM0/K9Xb3yWfx/WfP1vqtxTmU1Wgy1Ns3AkPwfHEcuajVcQAkxlTrz+8KP7f4WR4fMAYp5RcPWyv6wkvX1tcb8aLKi7ltk8DrTafl+kaPMbfR9Nqd6Ld+6x988NG7vJZBaHFeSSkXi7kx4PnWysoKxvj8/Lyq9Urv6p/+p79956VmVoyv316bxlkj2q25uhgOdrdv1HWtasBEaVVLmUQhQwBK1q12yLms66IRuVwa13VHo4QxFkXB/QfPvCA8HZz8+Mc/rCt+/97jXq9X17XjWFm+wJjattVsRkoJzvl0OkUIEUJs2wbQy4MhISQvM2YR22FRI3jppUuirOrSPHp08vTpHqF2s9GRtW4GUWTZjFGhoay4x1zHMEoQYEMIUQrCMGy1WkvoEKVACNSVYAw4lxejOM/zIAiURLZlUcykgDzjURR1+3ZV8fOzWc2574dPnu4FgTcYDBRXVVVRiowx2ENFUbRb7IOH94bpghDywt3nF4XM4uTd/WdMqWmeNxla87qdvvP97393lCw0RjUHiqgWEiECoJltCSFcx9Malk6qy6Kg3+8jLAFJLowyknNZ1QYBxci2mGfAeJ7z3nvvzWaLXi8iGPI89zzPGEQQVVxYBC9m8zzPDvePgyBAWLoeDiLSW/HTfCKkEFomSbpkvgEAIaTmpVQcIRiPp67rZ2nhON5yS7YsqrSglDK2RIFJA0opqbXGGBGq0lQdHV5sbexqrTGiUsLgNCcW5LE0BtbW2wR7jx8NN7d645E8H0y//JWXRuf8eD8LQrKxHZaFYBS08C03o8QqUvjS6ze3LrPJqHjysKwLt9kIwwap+GJjY5UQ0mj4gGrJtdYwODsbj8dh6PJaVpVeWVn9IkFWN/H+3kCLiCuhJLMcwyvnxZdupdncaJRnwNy029nIi9JoK03iXrPX9JuUwpNnJ5rYa+tBlua9fruuMmxY6PvpIm1EPSGUNibLeFHwVquFEFoqogCJp88eBO5GEIHnQa/Xu/fxyBjhkI4XlmeD/eODLGwEQpWeY41Go/Gg/sZ3rucJHw1g5zJJkjr0Vy1Htdp+lgulVFmWa2trGtDB0WFZS0BGmjie0f6GPHgsHF8aY7rdHlgJ0i0NuSw6xJ6vr0Xnp4VNrDBo1zU4jjOdTtfW2NraqlKfy7OiBsxnuVFyMBggAAAe+H6362IDG1tdL9DTWRUEweHxQwwuo14UtKQASlmRV4zZeQ5B1EjTVIiaEFLVejQenJ+qqEGjqFlWVV2J5ZVfXXOMsZJmHi/SMba9fDwZ+n4HM9i40u9ukZ+8++z6re6Na1sPP5pj53it30tjAMCddpvzyoBW6vN/9fnZEAD0EmX3j1mkQFFyoIUfeFWFg9C2XJpn3Iug3W8COFyXCIsih3bHQWBVdbyIJ54XRI2g1/MdlxhNlr4tZZV88tGDJ88ev/zqnVe+9EKjTV7+pd5sXu7sbhECUlAp68mofOH5m/1Wx2EaoXp9jfHaSFGABm20NgSQbZT2PJjNFoTqa9dWnjzeb7UaXNUvvfQljGyMYTabIaylNFlaWMyLGiHCwBipqsqyLIyxUmo2nyr1uceLNtIL3KLIzi4GZV1882svb621QEFVi+OTs8HZxLc8I2sPoC5zhSEta6bZtc1LZZ5KospStVrOxcXg+vWrhCyNz8PlXqo1LOKst0LiZL65uR7Hme/7Zclbrci2QqPR5Rsd3wurAlMMCFvGkDQtlqpAhJBlWVobgUydFRThizT7uz/4g7ARpYtUY6AY/YN336TaLAr5yqW1X3n5m82mzQh8/PhpxquyBqM0z0sQSIHGlqUUIoQBYKUMYzbnXEnje8H6xiogEAI8z1MGGHV6K/2yEICslbXOeDqcTCtEoKjKIArLqlJCiVpTRAXnFsFG8cBxkYE8Lx2Xasj9AO9c6vf6vh9AFPlKgZISDFLS2A5b+k8xBlVlxqMZ54rXcm1txQBIKfr97sXFlJcgJddaWxalDBmjhawR5syCNDF5Jhm1jEFGY1liP2CgPTCQl7Of/fTdlbXWcHSCCEjO0mxGMM3npCgW3b49G08MWBhZjkscx/N850c//PTWcxueG1DE0oVZX1nlIrZsMKAcx7EoXiwWG+tbNrMcx0IG8qS0bZcx/IvIu41LdpJmhwfTb33n9qOHaehHDvM4T9788aOd7TVRA2PSoiTLiqownoNO9s9EJpSqJrPq4eFZFEVRg6TJpNn0tKCORQlFoBFjNqVMCAhDfzFPjEau7RhjRuOZNny1d0Oq/NbtXUqtixMThA5lRSO4FGdpowuioBgAW1xIvPfs8ODpwclJvLaytrbaBIFrOVSCdlpN1wbfcy3LajZaeSFrbihjhGrbwby0t66AVhZjzLbNYrpwnYg4nLGG1PNbd9pRk53upbdvb+89PfU9opRa2kMKWXPOJ+MFKNjZXr0YiLIsHYv12i3AMssKP4RXX3351VfuMIe3WtFkMpeGC2kNTuPDg1NKnCytLMvJ0jIMCAKWZcpxLd/3p5NkMDycjmH3Stt1otXVVYOxZVNtkAEslQBiLaHD6+vtVrN7Pjm48+JuWvLdmxujWf2jH779re+8cDFMGYWyyqu8irx+s9kEMAD6H50Kl0OogBECA0Awk/IfY9g02q2joxPLYfP5fDovoigqqwWvgVIqubOxsel6lGKSZVVZ6E63KVXJqF3XuVLSD3GaFlmWWRZtNoP17e7gbPp3f+dnDx4dJFm8utb90pfv2j6+/dyV05OBNvJw76IZhXduv4S0wliHgYv1st8Ovu+KGp8cjbXWnms7lhs17avXdutKY4J+6fWXnzx5kqVcCNHtdn3fpxbcv/dYCGVZlDFiWRZGdHlBwEU1n8+FMkIrBYYQYlk0LRMvcNe318pyHAXun/1zv+G4FJBezPK6qlSdUckpRn7DGY6nz92+7RLGq9ryP5ciT+ezoirDRrRYJO1WSCm4rqcqINjurzSLsmw0I6MJIYZXEhvGa5UXdW/VHk2mo2G8shrZfiiUQRhhjMMwlDVf7a9xLmsNvUYLCeU33Genx59+/AkzyKKALXbv6V7CBUXwF371V7BxXrp5JS3VTz58f5LOCAUwStZc1gITDRgZjetKUcJms1m73S6LSgiRZcVoMF7pRoAgKwvLwnlRldUiaLh1CVHDURpsaylPVXlWLi0+sAGtDJJGS25TYlNre3339OSi3W0iLDHRQvAgYiUHXsvQt7QyyGAhhOuwILQQMq7rgIHjo7jf3XzwYPjo0XB9vWVAxHEchpYXYsdxhKiVUhgjQpExCtN6dc0j2LkYDV3P0lpKoTw7EpW4uJggsBbz1PMsrY3rNK7fWHu2F19cTC7trtZczibmxo0bRTVDQG2PO3ZTiDIvK15ClVtJNrZsBKbq9MIsFaenEPirtm3bto2Udbh3YpRJ43mv14vCyLLsstBZ9nO+YZKUl66sDofDVrvhWJbv9jCtPrv3uC4gbOobN7uCA2UmSRIh1O3nLmNAvVZzbd2tpP7b//AHF4O55wVC6LW1XpEIJctuJ5CyMoCFUEaDlFIICQBVxWUtv/HGN1555UuDwfnwIl7fbMxmk9ms7vV6vkfSNGW0zxjrbxiKYD6GyzfCTqv95NHgV759p64W8XxhM98LzNbGzeH52c1bV7XWjNknZwOlQCMQWjk2EaIuqpnntjvr5ujZzHdx6AdZBkmSU6tsdoKbd1ufvJ0DgrVesxH0jNKOzc4HZRA00jS2LEsrsra2tXtp07Npki5u3bpFiUuwsZnz6P4IkHj/g/dGw4VtW1JDXVpK0iiinu8oLQCBZVHABiGUpqnrQBj61GLzuOSKV6W7sulTy2m0G0lcCFULoQBwmkNdScJYXmqMbM9z55N5GFiBbz79cP+l5zd+8PvnW5ecr71x7fQpno7SukowcpdHQgRoaaP8j+4NMdaff//cFfeLhy0UH5zH25c2OyvNumAAwJyKElqW+v0PHpYltLqhUU5ZAEa2UsoYQYldVVUc135Ai5zzWiNk3n/3xHE0ISQew2yWNJvthw/OkiTRpqxkeu365du3bwqpf/iDdz784LOVtd1ls0JxKFLjWX6rEVWlsa3w4mLUbIWO7XGeUIbqEh4+eOI41iIej8dlWeVSAsa40cTjcUIIWXo2LcURSZIzZgNAXZeca0ocjClmeDydffLpp2mR1pwTxp88HaxvrLz+lZe+/PpLjYZ75cqV3UsbO1vbZVFQirWGJEk2tjarqorj0rJoUdRay9FoJIVO01SqqtuzBC+ZS5O4jpre06d7m9vbWapsG/kuJdgyxqRJdXZ+vJgbKRUltjJmtpg7jqWloBQzxnzfB4N1DUZILRVjbDSbvP3uO61m05Qwy1JVy3EBL1+/uuZ740X6nde+tLlmfXr/0SxZRFGDYkSQ1gpsB0sptaJSGMbsJMls21VKVRVP03R0kRqDlAApNRAwxjRaFmXqfDCzHez5AECUAoSQUrosZRAFjuPwSji2xesStLw4X3hOVJTGsqnvu44bjscTZaRlQZ5xSrE2GgCDNpRix7EQgM2s1dW+VnBxMf7WN1++dDmseel69mQyQ4jYtr0ExBFClogaIYRFSBg5S4QUsbQB1WhBXizAsMtX1qpcG+VolLmue36R/vKvvO779MmjbGXdXd+gK+2VH//g3cn0DGMQKo/jmFk4DOHGted++N0nSQJ3Xmxcvc0AlcPzPF/A08fnWmvbdi/OsrWV1dDz59Pp7ZvXpBCj85HNULfb+SJBygyPZyftrnV2Mgn8Zjyvsizb3Gw4LhucX9x57trG5sqjR8cE21zo4WRQl7wuk27HRVQXEmYzPh7FjSgyilcFWl3ruD5k+QIhkqUFopAm9Y0bN3w/XN63IOO9+/YnVb1I5mj38sre/tOVddhYv1SXWRg1Ts+GCpSShWvbN25sFzx/eG909Wrz7nPXm0FDykrJvNl09/b2qM0uX96VUmKMR6NRu9fAGC1XBEq01iZZSNsTGNl1BULEjk0wYouY91ca9+/tjcfz3R2r3exphT3fSZKk3XI9N8qLijFS1uLk+Ow3fv1P1EJ6bnByeqSUCBsOs8H1cFZMF/Pcd9uEKgLs8FmqJH7xpTv9lWZVKMrAcanSWmpZVGWzZTHGyjKXCgj1eG0jUlmWk6SL+SItq5wySxtkWVDVZkliLesyakvP6sQX5daq+Pf/rX/t8QdnCFa+9933/tSffXky1op7UmAhBGVgjNFGL6dOll/xF1JDoSTC/5iD6OPHe41GzwtCXusg7Fa8lEr0uivvvPfh4CzNU9PrR3nGjQLGKGjDBWfUc1xLa2AWFLmwLMuyrCoB22ZC5L0V/8Xnb9SVPtpLAnfFsqkQEjGpAN194drLr7zCZf3k6T5jdlFUG+s7ly+10ySfTYd1VcxmCUUQhn6W5Z1umGbzyVgYBCdnp9/+zpc9DwD06cm5kqbTjTzPIgQB0o7j5JlQysSLlBC69PlezEshlFIqCpuOb3NZu76nEQStMM3h7OSUYfnuux90283haPLo4FlWlN/51rc7UUgJnA5P3IY/X/CG5/NaOg4BDMy2ypoXRcEoaTRsbQwACI4XiwUY5jiOEuB6eGN9xSKWNiJL+eFBsbrqr2+G41HydO+ZHTgaaanqzfVVhJCUCgA3fVCgCCOB7+d5vqirre3djsPKWpmizkq4u7uxtbsjkfrSy698+/XXFwuxiCe25S5HHilmro14XVWlsCwHYwoGx3Hsum5RFFqBawdVVYFmlm0row1GG9u9LI/TRFV16nlWXSnLYlIqxmwpIQg827OFEI1Gg2GMEEoWkCb1xkY/z2NmU4u5dQ2UWuvr3YobLqrlfTSlBCGDQBGCtTauawPAYl4+efK0LEvGSFEUnudNp+V8XnIuATAhZNmAllIZ7RR1AQQjpjFGvJavf/k2wlDm/O7tF1ZXtjiXWmsEBCPr+z/63WbLX1tzknS6uRU6tvV3/vbvaQ1S1bbFLFu3Ot5sDM0OtkgHA9x+vn/z1pqGcjRMpLQePzkjFOV5mifKc/zB2bjR9Hd2t7KsVNJ4ntfttb9IkPG5riuImuTZ05PN7U63259NudJ1bxVf2rlxcPiIiziZQ50JakNW1EGL9Vcage8EEXY9lwsAhD3PMyCmo7Lf7xZlWlWV5bjzJMOfX+ljSikBstJfA9CDs6k2vKqq1bXu+fn5t7795bfe/JBRzGuMqE4yPbuQu1u9eXo8GfPXv3ypyiSj/MUXd8sY+quBNtX5oHz1tVc++ezTitdxkta1SBcxxqCUNsYgDLYVACrLAnqr9vlx0YhoXc2yVKz1V6XUFu1/+9d7jtWbz1KLEUKA8ypLyg8/uN/rNWfJpNlsH52cPH5y+KXXXsiKcr5I1rfbdV1bHioKfXo2wIR5bhgv5pIbzZkojeugyejMceH6jS2paiHA81zOOSDJmF0LrgxMJiWznFrwokrn8YJR1yBNCMuzqtGivFaAkdcwk2mVLOqqyDud8JMPjr/y6tf+d//rf6aG4U9+ePZk79m3f+Wle5+dRMHu6eBEaWxZFkZ4OWr5jxQ28h9dFn5unvzzWZTZrNraXYsX+XvvzTmvMYayBm241mZl3Ts7myJSSKONZlLnCBvGcFmKsiwxBoSV4EAwq2tx/epVycXV612tqo/fP/rhdz/GBHq93s9+8oFrt4UsMdjUU4s8vXxz+9bzdyzHZjbN89Jm8KVXnvvyl+/sbq81m7Tdbp8eHeVZ2eu1nz59qiXCyDrYP634dHW17zhWGLRcN9BaGo2ELKWUnucZA2BInteCG2NQWZaMMkadqhZcCvKPAmOclNJ2IF5kl7Y2AweuXb318PHo+u07D5/tl3mx0mr5NuydPvuvf/tvtvuNMqmX5ybLpnVd81rGcdpuN22GPAcwgWSWF3U1j/MoalgW+B6yHbxYLKQSRamRAct1qF3Np/VwNmQMdbpNKXmv18mSGCPKa4kkKIIWtcyyrNFuvXf/UxK4ke2XhcAUqwX8+T/5qzhsdBrReZGu227gQJ4thFAIGULB933XYUjKsqwpcYxGhJDJZBKGn2vI4yTp9hrMttOsAoJPz0aTycS2PEqd0XTRaDW4UJgQwnBZcddHSZ4wxpY7HMKGEBJGcHY2Xt/oaVNrw7OsqmspRI3Jkv0FoW/leWFZFmVYa+15XlmI0WjkeVhrOD5OEUKe7xBCqpK3Wi6lgBExBpVlnWWFMca2rSKlaVLZtl1VhW1783kaROSVVzqWRf/Kf/p7e3tHQWjbjmcMCiLW6XR2L3eu39jNYzUez1c36X/2l/8DRgKMwbadqqqff+GaRYPT8wdcpjdu90+OFqK2tBZ+E5Tkm1t9auMsj7u9RuiFq6utq5d3pShtGy+7GZ1O64sE0QJh5Y2HE99z19ad0SjZ2ulN51XQQs1WO6/n48mi2WznsfF8JI1l+a4CdXw0CAOWjstaqlY3cnzbEHVxLqU243Echit5XqYJaG2YZR3sH0muCCFaqXl6gMDu97aee7FXFuLS7pUnj04GZ+n66pU0H2SZRppeu9Xb2z+dD6G9YufZvCiKs7Nng8GTL7/2Rn+VxQvzwgvXW+3u02ejIIy01p7rVRU4zAo8RpBKYzAau4HgJeIyqQv19a/9EsOe50Kzbb//1pnro26nD6AJRQa455GizIocorBlEImisCgyx7O++92fCFVubO0wxw6aljTghwQw4pxwKRDhZQEWszASg5PRdDqWSjQa5OrVK7NZ3mhYVcWlMFpr23KVEpjBs2fjdqfJBVrE0zzPKLUYI2le5lVtjClyIYRoNvF0WI3PMXOlMPPVjY1/7l/8F6/cXb/xvJdV8tMPxqubqN2F4+NTjNhnnx0RQr84Dv5cYbNsWBFKtTL4FzopVYHSfGLbTjOCILTqupICOt2o1Wo6Lj4fzKMmC0M3z4TSOaXYcZy6EsaYKLK1lkXOMcaMsaI8pdhUZRovFFEbktNmGyirMHLTWOZ5+r0//PhidOD6HmI1Ino8m3a77Xa7PZnO3n//3vvv3Te6fuHuDUrJ2np/c3PzYjh4+eWXbcfXChCC84vDS5d34mThOL7gKs8zKaXj2MuShxAwGhV5WVUVY7ZlWcYg23aXxyWEMACu69ogAOKsb/SO9k92t7dvXb9yfHziB/TJ3uH69s7f++0ftjy/2XBrbUrDlQGsketadS0550VRPHnyJAxDIeogcMPIMsYgYp+dicl4Tgjb2trQpj4bnFiWs7XdSeIcEweQ1likCTRbUZLFzVbU7bUfP360xCkqZRjDuRbYQ0KIMAwv0vnDg2fbm5t1Vp5dnH3j1a9//fXX3n3wQJflp4cHV9fW2lGopeCcIwKE4bAReQ5lFPNaAiCltDFQ5JXrupzzuq4pA2YZY1QtwRiTpZXgRisiuAxDXPPSth2EUJroZrMthFnMCsKw63tC1EVRSClbrdbp6UzI0vEpxijPyqpUUkrOq2bL8jwShmFZwnINxQR836/r2nEtSqnv25ubYV2LRqPBGEuSZYcEMMaWZSGEqhI+92aLoa5BCm1ZjuNF81n2ySefvfHNL3EhV3odi9llNQ/8ltaQFePB4Px8uP/w0aOzk3h7fWdz08mKcZYYy7KM0chE9x++a4ySUgrJe2vm6f1c1sF0Ouv2revPdfNirrWS0pRV/PTp0zSN67qKoqAZNeZzcenSpTxPv0gQA2Z4xrO07nabw/H+Wz99pNGiEdlFXpX1jEuYT0x/pc0rjBCqKmi2OkkWxwvY2V53nFaz45Qik7o6OTlHAFHYKXLJSDSbLhACx3FExS3LchzHtu0kSaidra+vf/+7b4ftAoF1eHjy8YenFoNLlxpnRzJO4NLVxuhiVCTwyis3w9A/PV5sX2LXr19fTPQiOQ2bajFE3RXrzTffDEPkuq7WWgjRaLD5ogYApYFCE1GVZOB77V6v1e6Ei0VC5earX3EPn03aXXb/k+F8VihNOj2LUGPbtCxLRgkYOplMq7pYXes7vvNs/yTO50VRDofjop43W504S4OmW1b4ytWdvJqur21wwQGBRZ3FYmFblmVZ9+7dpwQYdcpCWSxwXASAy7L0fWc24W5o8VrVdSmE0AYFgS+l9jxPSqU0aK1liTpduDibcIFzrqzAE0783/3+d//8//jXWyvw5FEyGJ3cuLMlIPH93nBg6loAoOUkxTIQgs+Vh8gARrA0SFvGeq9x/Ozs6aP9V768NUkSZFGewbe+ehdbSIkmYzAbxdeutfIUkthTrMxz4/ic2T71apD9mqvAdxUXF1N1dFQXVS15ME3Gf+qfuduN+iF1S150e6HnsCKBo+PyeHA2jRMhqef3lIWsHtz80t1f+uba+kowPJh88NP7We64KKMYv/XTYc9HV3bc4QitNNCzBxW2Ki7C09n+aDb3vV3P152WlyYlIWZrq21ZcjweE+rmdeUEbq/rcRnzOsFIYUQ5l37oARIiK+jymtHovb354f7TG1sbv/rVX4qrC79jf3B///K161iDSOT66kZpBBBTVBAFoe96vOJ3n3seY6sWut12OFeuh8sUn18sRvMB8rPJHKLI9nw6n0w3Vy73Os2Kz0XF/BYMR9N40iyqUVIuOhuXconm2WSlc9uAdg3zpFstKoZRENo//vEPm50V6ViixH53+t/99EdJXJ5MR3I0OlgUO7tNUVqTSayUwVh7vsLKtnAd8youS8vzs7wUAqTUUmnKbMYgW8hux6w1G0QaomG2SDcurW3s0NN9vbW9ZgeKm5IxhPCCIhtJOB+MapMmJa8EFGVc8wQROD6o1zZdUBHGhBeo0+rWRY0VaB1xnavacmzq2hjpFrVqAD8KNQFSFWYWpztXVhGx80KFLZBcUEoIm0hOCbYpBUI9oxwr4Iw2hc4t29cm7/V6yFhvvfXWCy+669tibRtR3EjLc86h5rCx2d29+pLOLDeAySK25Hocx3PuUA+wWHXcRBR9TUqD0eq29fTxeGUjwoSXZR04O36oOyvO6EIrTfICrNBSvHc+mLQa0eqqUxXQXfU+/OizLxJEQo9jmZes0109O8//3D/z1dDZ5pxTBufnA1niIMBSD7rrMpnp9c7q4cFB0LEMhfufTQJ/3gorKO1W0D98CFtXIIjQYjHp9OBkPGq6UTqp3Baw5kwWerP/4rPzQ9/tfutXbjsW67VuH55+djGqbAttbtvns9l8Pt1Za+cpvziHzWutxgrUZTmfWBtXdn/8/sdB87KqqzvbX8HI1KI6fJpgTJUuwjCkxMEM2x5UQlAXKrNQGoduUCaJqcnaJfmX/5MPu1unVeGenZjVbYYprK72Hz0Z/p/+z//wYpCubYbTc39tF4Xd6vnnXosnqsxneVI2/PZqr58Xx/Gkcsha2JCgqQGkQJTVgkH36rXe6hoxijU61smRaDbb3V4nT7Nmk9W8qDgI0GVJ3BBRhqu6iryoEcFimhlJQIMQiUWbCJmiLISGVpcRwnIptaalgEXMNcJc1tevfvn3f+/TN79//OKXe8NMPH6atHz0L/zTf7aYlt1VNjgbcy4JQRiD1rDEvmIhzLJy1vof6ylfubz9ystXjg72956dIFCEkHbb29/fz/JFmsY721vzeQWg19ZbFxexFhgMGQ5HlmVtbtppGi/Vi8aYPBNag+f4ADWY8t5nHzs27bSa8RQsq86TmmBoN8NWq5Ums72nT/MkxQZ7bmg7kRu1Nq5c+dIvf2X1Sv/hvZOzUbFYLOKpefL04kuvv2xEbcBRAh4++Myx8M7mapYUkucrq83ltGlVF7brOI7T6XTm8zk2yPMCraAsS0KobdtKCwDtum6apshAo9FIskWcpYhAo21zU9+6+xznstdvzufzg72DzbVeEmcXF6euQ4wx3a6ttc6yzPOWdppi2QfodCjnXNR6Ms2+//0f5Hlu28z2cFXqrID+WmM4vPDtwLa9L33p5uAIpBpzzo1yP7v3IecyywrLyyiFmpeEIELQPIlt1xlNJ3deuIOwKQoZJ9PJdLRkLEZhUwvpunar1QCAslCE2IJDWZlGY0VrbYwaDs/L0rRaQVmWZS6rqo4aDqX0tddesyyL16AUtBvt/b3Db33z23fvXj/YO8NECw6OQzGmVVUzBr1eIKVEhFiWU3LOlWq2g4vBBIGlTOE4njZG1LjVbmjDuag5ryyGOa+MUTXPKIMgtAU3NecGZKttM0ak5NpIxqw0LQRXjUarroWU0vNJxWPblQa4VnXUCCajKUJ0MSspDuM5Z46dL5oPPlR1idutZlmWNmxWBXrvvY8aHZWlMBotXnrp2mKalfncIjQrTwiF6WwoaqtIabezlqVQ8Zgw6Vor9z7bG49iP7AA5wTbmEKrFcVZrMBgShmzCQGbORh+TvRqNmQyhk6LEDLnGR4MLhzHMcYQgrI89X0/CJpFUQW+d/lSJ83i6RTKot7a2rAs6gcWRhZh8oN39wyFazdWzk9LN4Q0K9KpsJy8GUS9vkuAJXHp+gCAsiybz+eEmqvXtt786T3BwXGcMAgWi9r1nLKKZ9N09+ra6lpvsViMRyWl1qefPv7ow5PDwwNimTTPvvy13STNl6MXQijLcsbjtK5rSoESJgrmBqB0KQVyfDmdTapSvfz6KqPRg3szKWVVlXfvXD09PZVKbO1sGTMbnhQGL27e3t1Y3c7zvN2DJQAlDMPFYnHz5s3FoqqKLAxDKWUQBL5rE8KYrX/0o4+vXL3kh6YoY8vGs9kCDCMUazBZKvMMCEGhH5RlHgQBxmBZVpJknHNCSBiGURTVdc05DwKbMbJYCADMEPhuFwGuSuCcM6eexU++8e3LP/rhu8mM3nlJXxyp/Sf82cEDsEbpwnQ6nSVATH8+q4oRQhgAKKFKK0CwfPnzllm+cBnbXO3tbq/zKsfIAOg4jncvr8VxenhwPp+WnW7j9a+8UFXge12E2GS8aLfb2qiiTHyfdrvtOE61BikMrxVlotNhVy5vr3SanmUjgwws4kVBAYoyPjsZTMdVPE8dZlcZ/91/8N7wfKGInYMsdLm62/sn/8RXsL2ap/Drv/p8IqrHD4+fv7aVVuXLL+3EQ0jieSNy+r0wzacM94KGrgUHAMZoWZZKqbqslqWx53kYfc6tMUYjZGzbVhKMQZxzZqHTsyFmxPadaTL5a//Nf4s0cxzY3W2eD5LQjy5f7s1miZE4z2We10sbzNks+9GPfkQIqeuaYrJ0FLIdu65gOlmsra2VVdZd7YwmsTZguxCEYDOHl7zIh7IAyRkmoip1HpfbO2uMWmtb1pJSbjusLE2Spa7vCyP/zt/7Lc9zmQWA9XQx9iPfcZyL83Ne14v5xGK0GUWUkrKQ02k5HudxrDzHHo+mQohmy7Jte3A2DEMfY1qWleM4H3zw0fn5eG2tW+TQ760vpvFf+2v/8O7zdzy3ZUDxClyP8lppA6ubTcxMWUNZltSywCBMgFoiWdR1SW1XGo38kF5cJEEjoA4YVUsJlEGeFwghywbGqDFlnnHKcBg5rXaY5YtFPAbQUdhsNH1joCo5GIox1kbZjiasKqvU912KEedgEWs2TY8Op4t53W5e1WQ8m9caCc657RZxfJoli7W1zpXrnWbDYpQenTwg4OpaF2mWxgaD3+kzy+GIiEU8pBBg3QlCdu+T8yIzthVk6ZwQJWqCACzXSvMqSYtWe+Xw+OT61Z4Rshc1vkiQft+4Njx/5+psuLCp/PSTvSxLPC+wPZ/aJE1zil1KrariUuo8zwMf4kVRVul8Pu+vdIqSzyem0Qy6XRI2w9Pzo25rqxaJiOnLL21UZd5seNORqou60/K6rXaSLD797OMbNy/H6Wh4aorMzBfl7u7ubFoWRRFnqtX2mK3LshycTUFBs20Dol5gPzucb+3uZPVFq9tSSgnBV1fWtQajkeMgY5Y5IowMqxIcl2jNy9I0GoGCenPHf3j/pExBStnvN2zbtiyr0YJWq/Uf/T//jc8+nF69ErZbvpLo/mf3e6tMK0QwGwwGg9OzZtRoRjZjzPddpSDLY8FxXclaLHp99733Hz33wk6eA6NyNq2KlGdZzhjx3RbPQYjaGAUA8/m8FQVFmWmpGKGEMK1ACIUxNUqlaQ0SCAYhVVUg17P8gOYxyAp1u804nRotL13p7j8eGSXXNzrj8fidn83+uX/hO2Upl5Mmy77xF6xrhDEgsJUWmOh333n/z/yFG/BH8UfxR/E/FM3GOhhxZef6/pOsMPuRd6W9Qp48faIBEEKLsen3esbkvAbAteKuAWm51drq5unJ0HaAWuL4kfeVN66NxoO1bTw4yRyrEbaL7/+D5N/+v/zJ//Kv/DhH6fSCXb8iW4319nbz9HT/0sYVyVV7Bf3l/+iR7dIwgte/uvnJJwdxzL3Q3tjuzWaJErTIqqKoNrd6FxeL51/pPHivXFmd37i18dMfzW4+f/UHv/vZ7tXo8tX1LJF7e/sKadsBStw8Ma2ObHWoENVsCM1W48ot9+Fnk8MjCZWvIX/5yxA6N6KWHl4kDz6Z/tf/1b/+P/kL/8edG7B76eU4VifHo7Q+bwfr02TuWt54OH3jmzcY2fjosx9fvX7rnXc/CwIXDIt82myrZGY9uj9++bUVZLzDowOMIYqaQYQ0Ko7367p2vZBfvdzpdFuD4d74HBuNm23jWe3ZfLy63stS0ekG58PR0V5hWShoGM8LxqOs0SSO1zjcn4U+/mO/+jJjejxITs8XF4O43bNAs9df+/J/9Z+/9b/6N1/53u8e/el/8i/+a/+z//nf/Jt/+zd/8zcptYSoP+cbKv35dWFdl/8/PwB/FH8UfxSfR6e70mr3j07O50mpDEwmE6V5LYASvywNYDg8GDuO0263q1K5nhXPqzwDz7ccxylK4bmtte3gBz/4xPGxF9Lzs4rYcj5ThOr33/uk1aHDkQDkb13qZ2m90u92OyuffPKZ0nUj6jPGyrK8cfPy4wePMSFVCa7TMKjq9t3zwQJUtL7ROz0brm+sXrt+dbqYu34rTcu7d+/Ox8nzz98YjxPGbKV0WWrXQ0KAVgCmajT8ItWgKcLQ6TUvBulwKKOQOnZwaXet0+rWVTqbLVqtyPXtv/Kf/vWt7TYC26jgk08+abd6t67dLsrUcVyM8ZXLW0VRfPmXXl9dWVFa+L6Dia7rMog6ZV1EYQMZazRcSEV2dnaKAvKsCMKG1mAM1EVpEcIsLGWNsCHUSCnKssYYHGYhRCzmlGWZJUUU+QC4LKGopOMgqdTgdBb5bpnDsycXH33w6Kc/eeb77uZmO03yNM7+2l/7Xdtb/PSHJ40W9X1/2a9bmjV/7hKlNSBAlGKEQCl18CD4H/wc/FH8Ufz/eVy+dvnjjw/rot1bWeVwfnAAhBHHpb1uN081Rogxx2jQSOZ5ihCEoVvkUBWQ55kUOgytbrd7fj7qrVhlKcrSuAEbj9P5nF+9sX5wcj7PEgUoFymXtW27QmoETpzKrZ3Ne5+cFnXW60enZ88AsFaMMaAMK4kWi0WRaiVRlWe+5WTZ8KP39xwPVlfWpxd0ZY0cHZ75gX3p8qqShnNOKdi25bq4KEqEgLkZAiZrr9UF26GPHuZbW5uEkbScpNnE96M4HbWbvclk1mh687norgVFZhttGQNvv/3pbFRsba57njcajRuNRiMI333r7ddee7WqSte1F0lNLTU4HVvMwVQYIFzo07N9pNlKL8gyfnY6CfzW2nrHGLAtipFK0oXvWVHk81o5DinLcmNj7fxiJIQwxnAOeZozxlqdKM8qggItcatpC1FvbqyeHJ3ubPV//Y9fWt9s9npkdgZXr0Wbu27FYf9Z6rnUdV34hUp52TKhAEs7UdAalvPhRLx4eLL3b/9f/0c/+v4HeRqPR2b3Ro/Q1kcf/2ylu7q61s2q8bs/G6YJba/KK1cuffrBwUuvrAZNevTsbH19PSvy0aQcntcvPr/lecm778atJh1fyOs3u//6//5f/Pf+L//eX/zz/9PdtbV/7z/7Dy7v3JSV+d4PftZYwZMpbjbBYrrg+tUX7hw8usgKeHZ23gzh7ub2v/9v/i/+lf/t/3Jr7cb+2XRRLl564VqWCWq5TZe89d5Pj57ClRvufCqzXNy47WnRb/TyDz4Y37y+6QdWXVbT8aKsasZsSnHUbJU8syxHcF1U8xeev3q4N/3kvWGn7995fiMvRyd7CLG42wvzMm66l4IumgxHvXazyBLfbX/y6SFzmOVDmQrbQb7nbm1tjYbTqqrWV1coQzd3Lv/9P/gDybCQRgkIbLfTjhbxtNdfG46Pb92+HC+Kk6OJ69rNtru9s/Kzn9xvdeFsz6l5dfc1pxmtPX543Gx24mxhFPdtBzA7P09tD924vpkshqJyS15u7Hqiyq+tvnL35t39w4enZ5N5Na1Lkc6SRuQFoVvVYp7wKFo9GyST2cR1rU6v9ezp8LXXb2Ag773zYPtaqy4qzmVVKq1ASn37zhqz9f7T2Xwi3AiKCnZ2etPReHPbn085ZZZtRceH5y+/4GyuRo7dODg5qUw1OAclLcdT/fXO0cEkcL3RwLS7koEQ3DU4LytodYLeWjg4KWwHpsMybOvOSqPIUJ7xK5dXPc/92Y8/qRV4jtftK4s2GHUfPTy683JvPMx8151PqyjCru25Przzs9Hl636z5V6+5szO2xfzT/vd3fFour7Nup3G/c9OPD88f1JFq917n03f+eH/69/4P/zbf/DT+1cuMwU0bJjjozpPIQiCMGgiPL11t/vJB2c3b13d3ztp9SKH+vc/2VvfaOzubu7t7Z0dQsn52qVonixuXlr71W++8Npzd/6b3/7Do8HkW9/88h/+/b+7pw5X1uirrz138EwdHj5sXGRhuL3/LAub1viishkxwLO8bjR912NgMK81Y8R1fa6mSkmC8a3n1qYTOR3nXFZCecNhvXM5CVvtp3sDzrHj1ccncqMXWcz/8MMfRWFk2/aH7+3/xX/5a9/7g08BquvXbv32bz+4dtdrd9w4qcfDut0lGNXHR3mv1V3pR8/29x0XI6CTUUGszPXUhx99+tKrlxFCi0XCGMqyOgjsRsMpU0lJLnVu0XBra/3DD/a2t/uEijSroxZpdby6BIsagq2yUv3V9v6Tg9svrdS1GzQsXoPnkCSdt5prcRw3oqbWmmD8/e/+4bfoixhjz3ecrGRMZTNV10KzGSBpO3Rrp/v+j5698Z3nJrN78aLY3OopHTfbYFnU85w6LtbW+vPx2PNBcGVZhhCS5zwMECG42bRno7rRcrrd7niUaMOrSlsWunp942DvZHOjG0R2pyfeee/hreuXLAg1Wmxsd8+H1XAyjOeBEJ/zGpYuUVojAMAIIW20EOKL1bDRaIUhvhiPur2VIq+isPX06dMkSW7durq/f3FyfO66jFngB1FVQpZWdQkGZF0XlGHf96OwNZvV/X6n3W67rv31N166fef6n/gTf+yFF1/8rd/6rfXN7ZXV1TQvj88Hv/W3/vDNd94MIzsvqroSZcEJRd1mA4QYX5zvXtm+dqtnLOAE/zv/j/9weKG+9frXk7h88mTx4TsfGFRIItJ48dJL3/q1P3X36KAErLo9apMN5g+1CGyLYWotFsnGxkYQeBZlUnLOOYC2LKsoCs55p9NCQM7PhysrfSnVZDINI384nBulldAYwWKRTCaj0TAr61qb6o1vfC2MWhjZVSVsm3FuwjBczOP5fN5ut5dgiNPT0zBymYWUNo5Dy7J8+PDin//n/mKr6ecJKIltB2sjRU2Hwzgt5q+8+DJD3fXLVVXC0RPkBKmQaj6fVJxrDYz9f7j6r1jb1jQ9D/v+OPKYY+aVw8777JNj5erq6qrqZrcImaREWzZh0BZkmCZ8YQg2YN8IkAlbdzZoGYIt2IYoiqJJsbvZgR2qq7rCqVNVJ4ed91577ZVnnmOO/EdfrGKL5t28HMAc+Mf/fe/7Pi+jiDKG+p3++dmZw0hVNaKRhBAv8D/6/NPf+8M/unrzBiKgrJ3NlmVtrLVVVVy+bXmRVmUT+r7W+uJi9M1vvaqUGo3OwxCqquaeewmJIBQxBkk7FqJutSLH8TAGz8XpaooQCSPnnXfeasXd85MxQlBWdVVnSRwRQnyXD9d8jIFgjxDw3HCyyDEEo3GDsAlCp93xjAGpGowMxmBBR60waYeM0ZPj6cnxSjSGUkopaAnpsm7FXUrpyenzqgSEAJAWosYY12Xl+yE2NAqd1bI5OpyOz9Ioam2tvSL1AhPnz363JNyGQTKbLTqd1rODMyANd8nh0TjqQtJpNxUkbZ8y60e2qLKLi/ELt1+eT8z6ZqcWs+W8Xu9vNSK3CPpDvyrwC7d3EZadbnuRpp12/8HD8y8+f9jrbk7GF2Dle+++j2zwta/ePH0+/ePf/6LTpt/45mtRFMxny7rSWiEAcLhLCOKcaq2ruux2hlLAxei8KApGneOjcX+dnJ5MEdaNqABRygVo6K61x/MLZSgA9iJb13SwFv3yF5/ceeGVteF6VTZ5CvP0oKxWX/7K2/P5HAFNuqSRy8lF1e9uWaQbsbqytzsdF3c/Pn7t1RdeffHVxbwsq1xU9eaWH4bk9PQUY7xarfzA5Q6UZUMp9dxAS141sLXrn5+umho6fTqZjxwXdvb6jSgnkwUmBiwu8roSOfdci1ReqP7QrysghCQtFsfxyXHGOd/e3l6tVm++/ioAaC2DKMpWopWEYCljDJESE8kduHF7TWs4OHiyudkxGq9WxWCYXHKphaz9wJOq4Q7VGoKAOg6zoMPQcV13uVz6rhdFTEo5Ho+VgeFGcPP27p0Xb9Ri1kp4tqqOnp0QaoZr/eV88e3fvHL23Dx/nt5+LRKN+ckPH/9VGs9aq9SvRBUMiCOkMQFkgQEHgE5M7ly/enY07vbaq1xO50dNYQ+fPomC4e7V/mhUuGxrPgbXzX0XJhdibcfLqkrXdH9/e7lstnaTkHs76+2X7mxMRqUo9WxWffTwR3/4/Z/83j9/dvqsWNsgBCmcwj/4T/5Xv/Xt7x09FNe2ryYhaWplLCqKFfY4+OynP35fr1g3COMhTR0cemJSzvOsefXltYNjMx6li6N5lmVF+Sz0w7/x77+VtEldWo2XeVbVBV9fa/V66uJkmrSi9Y2eNnUtFUZJli/rkiNimENFYwBwnbmiyYdDmi/VYuTzCNZ2Oga0VbyVGKwjA2AN8oLh/acfY75gHDghjdKhR32EmYCA4FZgWyFrljrwwiCkFqjBvDSS+bQXQYsURTZHFgNqqrqOOkGpVqMzGQW9pH9upQLFd67C+IwdPyZgEaeJQcC9oKglIo3LbVWUAH5tOfMYcDudzva2Xnjx1isK0p9/8hPrtrirARhoELIJw6SRAihaZYRy2R96Dm1pgZfz9KP3n65vbggNWisAq7VWQlipL+MWSqnlar5329QFxQDtNsQt98G9+cHTSRCMpdSiAWtaTQXz+RJhfHJKXN86ni5XQS0n/XXMLFFqhTUsZ1BXpcMDymA6lsbi7obJSoVc6bp8eYHzOfT6nDqccSRKNIg8jzHq6WqOvvPma999q708nLSCjiW4EhVgtL7RWWXgBVobJaVz8KQoxNOsODcyIRgjVn//D5cXoxJTEATbirSZ/m//6T/qdVmCWk05Y05VVxUxJGR82IcqlW6UzpcrQnWWGkLt3c8PsiUKI8fYuJT51ubav/Pvvvb1LycJZvWyzuZwNlqelbPHh/7abjQ6LnptneUXL7zW1xJ+9P1nv/zZgW22FpOy15GjZ5pYiBPTlJYir9OTR09WG9uAAarUaSd+UzApVKfTqUs0n858j7cTd3qubt5hqhwZ0WlyirTyDP/mr781L7MPfn7surC+R549X4HTLKfe5jZhrrz7Rbl9k7VaYZ41GItstagWrN0JDR5jXiFL//wP7yU9WBbH3IfZqNnp3cFArl4bFuUIYWC8MgJc3CVIbW/SMhdra35W1YdH+bUb+3VGrYLb+1uH9+b9AbbGb/cHs1l17Xr3w3fP2wMj035dzByqtYa4L4Noq2iWr768MznLhkNRV2Rzf3tcPrVAKNIbvbhYkQaWdc0xIKpdbgJZUqdPDw7r0VE+7LrHBwvmRHHPU7QCDIwRUTMLZSuBLFXW4iIzYcg6HRej5OysLgsHI8r46rWX94Smv3z/+d3P71pdvnznRtNICe7pCHVbm2m1CNZELUlTNrrIrlxJlMaMepfGEgDA+FegBgzGWGsxBoRxozRYO55MfvH+49def0Xrpm6qOy/ebLXCsqo++fTDzc313f1B0xTf+I2tl15f+83fed0JF5zzMGJSNY1AgMsPfvHgrXdu/fy9JydnTwMv/OEPPvvog2eMaZ/jV18dfONr31ytyrJ022v4fPng0wcf+N2mO0ziHlAGygqtqNG43Qn2rgyPT86apnr6+OTTj59SG3MO2i5Pji4izxcVPzs70tC4TvzpJ58LoQb9dcdzPc8jhCklJpPpaqkpYcbKIHRcp0UQZPlcKytEjYFcrgiEUItFPVxfm46L1964tbXbVhXohnqBsUjE0dBCnS2BcYKIuPfFqRTgR7qpLKVUShWGftwKLzl0dV1vbm5yn9dScEoC3/U4tVpqgMbqK1euAzJaUaWMKBXBfrcbf/Lx/SDqroq0LtzewItiee/uqNMe9NbaxkCWFvv7+/1+3xgQQiillBZ1XXmcWgOL6Ww0GvV7vc8+eQxIXLYUWASEUkBYGciyLCvyza2BNnJ9c1jV5vT8pD8MDJaIgtZGSsUYQdhaBN1u2xjl+o41PF8phAjnvKqs42KEYTo/Nc36//Q//K7roovztKn4Ij07e14BVIx7ruvl9WQ6sld2d8Dgvf2u6zqAgHMsZRNFrNXyhBBaa60lQogxZzabDQb+JS+AEFKW9sqVK9/81puLxYQw8cEHX/zP/qP/5drG5iIbU0qV0pRSIeo0XRqjuAOEYOKYB/dGVgdxHKarVW8IBlau6xcrslxOMRPcQ8PBjYePz26+sFs1BgGu62p7Z4MyazSOWnQ6mdeVZiRJl7U15OBgnhcpJiaOg2fPnn3/L754/+NPP/z0KOjBaJwDhumM/d/+83+6ueOky3qVNoNhi1L6zttftQCdNRMl1S/e+5xg+xu//tu376xFLeC+IrgVRGBNy4uAeTZuxWUlSjmZzlZhkJydTpqmabUiBFgJ2esE1iJjdLqaOY4ThrCxvvXgwaN0mWEC6TIf9LbrpnBd9+hw5HmBUoBIub3dmU1qrVAtitmkuHKLl5nT7jJZoxsvbLz+Tv8P/ruPu62b2sLhs7S/BZTSp4+OCNA4CLOFI2ugPONOZUizub0et+HJg0xp4ISX9fjFmy88e3ZKOOzu70wny+dPy+7QnhxPPQ8AoFGq0+F1XRsDw+GwqorPP3+0sR0pU3meP5/lrdb66DzTRmFsg5abF6vBMMmygjHP2Hq+XC1XMy1VO6HSim57a/9a78mji/29TUYpJqooqouz1GVrjHTrCtq9DmJifF69+5MHjx+f94b8jS/3964HV/b3P/jZaHQ229xAcZyEYShVvrGxmS6Lw2en3UHl0W6+sntXWlHgc9qO2g38/xNq4F9HlbEFizHWCowxmBDAiAfeG+9cPz05R6CDEGFir9/Yv/Pi/u7e5mqZeZ4lhAQR2tnZqSuVtP10WSAi2p3Ow4fPEMEY4+ls8vLLV1tRzDnnEXJCEBXfXtv85JdnBOnAT6bLowcPzP/1//IXP3t3FLVbf/mDLxbz2phYCS/PmiAIHIfWIr12vRcEwfrazuFBQxDllAQByAqWy9Jaq0BJxY1inhdVhRLCDAY9pZTr+s8On7WSYDGVAO5qtfR9t260NYCI0loL0ViLEABjbD5bAAZjzOZO74c/+MX3/+yX12+2lS7qCjAwDdUyXdy5s+3wYLkoHj9c+l6QplUQelIKxiFuBWEY+L7rBf5yuaQMN2DysiEUEavAKGtBGHh+floWkjKQAsVxkueNz1vtTjSdyHTRuAFV0k+SZOuKK2pQhiyWFy5DjPHlfLmxsbG+3tVaI2QJIZ1unKaKIJatqrfffCddZptbYZaNq9pUjVEWDNiqqZXRZW0ATFbO+8Pe1vYaZoAQSvOCMo0wGANSSs45xkAotJJYKOEHnpIoXWghGozR2lonXWVRTHZ2Nj/9+Nkv33v07/ytNxoBQojVnHqRKjJEsOdHnh+ZKoUsK6pK3rg9uHH1GmVgEQhZB6GPia1rwbmrlA7DMM/z1Uo4jqOUQggRgiiDzz6/26gJZbgz9I9P5R/+6V++8taX56khhPm+V9c1Y6yuS4ThzbffcFwSt9zAXweMpClOj2ujGXGNE9iLkSaMX7s9YC4sFpZRJnVqFJMN4Q7MFxc3b+9dv/ZCu4c49xbzMlua6bgMgtgaqOpqZ3fz8PnBYNB9fDDLUhL14lkqtvY8wPD0YPzh+893r7aOn89ff+3t7f1uLar5LL1x24+S0nfZ9Rtxp8f+6//qj156Y213f0cJVspFWam33rnlePDkwaK3YQkjcbJtqC1Kffvmq2Uh/cApikoIBchSxBknmFhK6XAQP316MJ+lCJHr13c+/+zR+Wn++Mm9sqifP8t9P5yMl5s7AcIyz1RZWNnAtVuQzpG0o15vYC16+OjpS6++xHz70x8/2N18tbtOvnj4+c2bNwl2nx9ebK5vBZ5LOQASnhfm9Qoz8exJaQQMO31LJmuD4dHhbD63+zc6jA7yvDh5ngW+s0qbWzf32+3u+dkoiF2hFfcAUbJaLRmD2eJkd79tEQB2/p//5X+jjZcucwOoP0i0RZTZspK9zuZLr18DxGeL6cbamuuwdgLHJwdlUS+nmZS6Ffku25uMRVlX125sKLt0A/L++w/u37tw3e6VG51v/tr1Xrf16YfPJmeiLpsgrppCu64tslXgRkKlQpV1jdOVmEyeD/rxfJwN1iKL6qpkSTv0Wpdkxr8iG/73tFfzr9PJmDCmtJVaBLFXZkIp1eu1nz59en56oZoGW2IN9zwvXSzLlfPP/uuf/v4//+zZ/VIr6rpuXlatDpEN7W+49z4/aXc5WCZErZElHMYnqj/gbd/b3gnrEq2Kk7e/EX35W/29m3pjR3zp69vGQNJiBNkodheLWZ7n00l5cT6tazGdzl9+ee+ll68dPHniO3D75ltJGxxPd7rOT3509Lv/4sN0udIaHR6eXYzO4jgGSwdrvds3X33ydEwoPHr47OTkIm65hHIlwRhrQTe1McZwzi/G882t8PnRkePiOGoN+91Op6VNbRXqdoeMo6YGTIumNnc/y197Y4MxZiQrqgI0cIKKMtWmUcqAxctVqqwqlQAMceBTsBTADzjz4OnJ8+PT86gF1oAQoqqgyCtlMgJwcV4nSWJQ8+D+uecD92F0Pi/KwijLCX369Hw6nfV6vUtILbbgOhQBWEOm0+mLL74QeAEhpNsP6kprDYCglmK5yqW22gJ1aKeTEOz88b/6YbtN50uxtbWuoZYarEFW6cv2RMbBgFS6RhQ5DiOYYgqeTwI/sRa0sp999jgI0eefHT64O379ra3ZTMYJ63YSI+1iWWtbcoqtIe+/9xQAONVFmXIXqqqphdFWZXldlIqSAGMSR8n5+cJ1oaqLy74qpaXvY62gP4h9x58uzhEL/tnv/uzPvv+j3hDA2OWs8jyvrussg7gVM0aLugLwe4OgrMeNyGoB07Htd7fCltrajk9P8tVKBbEbtcIsl8LU1tBsJQFBpxvdvff4hz/4Yv9aN89Ka9hkMg3DwBh15VrsOMhxnMV85XsthKHMaubQ2Rz++ve+cm1nLUyow/hsmjUN+vCT96t6gRAqqwyTJkk8qcvI23vltc2d6/D//Ufvj85zJ2rW17byolwt+NbuQFuFSci9QNnMWljMs+dHF9zFgNTFuQj8WIiaUhoF4a2be0W+xECshX5//e4X51JVu9t77737ya1b11qthBAYDjbTZUmcuiq1tfbksRwOnSiKo5gTgoWo4z4yAH/w+z/oDsEN0RefnTtesrV1YzaefOdb33N4lFdnv/M3Xm3FWNa8qaA/HF6MsuUUHMefTVdhQJfLbLmYuQHb3Gv/5Z8/JBz1h+6nH55981s314Ztxt1nzxa+71HC96/0jLHzdJoksdHYdSkQ5AW8yst2ayvLzXIqpVaXTIC60K1oHVC1SpvFsilXMgyp5/p+oPKUvv76K/c+Pey2O8IUyqr5VD68fzw613WlX3x572vfeuXG7cFg0Bmfi1++d+y6uBazIGSuBy53jIbh0FMSnZwuNrbjpnQYD84PSG+9AVv7XqtR5vnhaJXyy+JM+2+gan51N8QYK3WJoQIhBCEIIfPhR5+lSxHHrdlsvr62ZS1aLBaTyeLnP3t4+HTsuDQJt4bDnmzAoeuqqUXNMCKXK8myzDnHDx/eL+uqaRpGnPX1WEjhuMUbX9o6OnmAwJWKItmfHsW6Zi7uN2XKMdZqUeY55bJuVr3eEAOez0BJmxdpUU4Ha0OpNWP43uefWQvj8WR9Y2d3Z+Pqfvd8VPzRH3+mNeKcYorqRm1srC3mJeNw/eZWlunPPnsetQgghRFvpGYYNYU0UmEA1Wg/8srSbG/f9kO7ymf3Pz90abuRlYGsacig39fanhyfvfrq3nw+F0JIKaOIMoYt2PlsNJ9Pq6ZZLJaEkDgO87xEBPzAczghGDAGIOh8MgYwzAUL4uLiwvdByMLzUBjx4+N5Veukp9MFDIfD9Q2apjVGmGFCEA4CdHRyXDU1pVwpo5QCjPr9njHIgjw6fqaMttZGkd/UBgG2GISyQkmMMSGgjaCM/PIX9+PYZ4xhhM7PLjhnccyNAYSIMZpQcF2eF6tLvl1/kKSpcly4cXN/MS88l1tDtYLhWpK0yeefjJ4/T71YEWoZrBECi3nNqdGStNseNs6rr28knf5sNuYeawQoicqyxhiqUqfLshXFxpiqAtfxAYBQhAlIKRkjhIXjyYWSEIShwdT13cUq871W0zQA4DiOEMJxQAjx9OnTqtJR2KJOzjhC1t/Y9AHU6Kx4fpi6Xk4wTC+Q1jpOaJHDxcn4lRdfY5RbA43Id/fivf1AyOwSk0OZdVzsBw4mhjFmNELgPH1y4nnw7V+7MTmvOz14789//targ1s3rq714U/+8AtK8c6VIebmxu0bs/m54zhFCrOJffrsXl1BEKAwbPmhlVWkdPWd7377v/nHf9k0DXf909Nz1+WT8fIyaPT40RllGFO8vdVbzNMgZMZKZDEiQiptrd3e2iCYJS2XMToaXXDqVFWT5UuEgDFeVg1luCzkwcO81fbylVaCNGq+MbhelktM9W//zq//1m9/DYxz56WeIaMf/qtjgjtPD09+8dFfbm4nmzvR+x/+aJUSUYW9NWIMHDwUsoHxed0f2jJzyzJjDtrdHzy8f7xY1nVtt/ej5weLKOzNsyNrEVhoJcF4PEnaodGglK1roRueZQVFeLY89lpOVRgjyJMHU078TisGjYWAJOqfnZ9WpU5TpaSWwraTIeP+2dlkPl8OB5tnp7M0W2mtjYVG1G+9feu73/tmEPEnT+//7KdfAMDVq1cRAj8gvseNQt12R5vG5Z6BzHUiSkCbRb6yorIf/rzUNo+7aLkov/GN271h/+BgbOyvjr9/+26IMfwVxwsDIFDDYbvTgaPDibVoe3Ojm3RHF1OEkJJaCTg7SYdr7fH06Ztf3uwMIC9m2oCqURR6TWmVXWBouZHJc3ACLC1qhY1LPIzhl++d71xvX7/2zvnFoWyyRX7w/PnTjY1WXswRsg5O8sx0k0HTNMaYKGxNp6bV4pTi/qA1meXd3s4inTMPey2VLuDiVM0naro4u3b99t/4m7+xvU0pcYYb/fF4vErL0Wj0xf173/3uN/qDeHdnfzjo5sU8zw1zPKUMICOlaZqmLEvuhnmxDBK+yqbzRVZXEEaO4+JWy0eY53m6uTVczkyW10mHNBU2xrQ6OF8powznmBC8WCyaRigJ7XZXGS2qhmOCLHDOCYGmEVZZ2SitNVhU1AujkTUQtai11vN5Xam60o1cGQ2L5bQ3iEIfa2H6vY7nO77vR1E0ny8JIQhIUyuErFBmlVXEgU+/+ODsfJSuytPzkyKXxhiCAGNwHMY5DwNMkFqtlo6Dep0upZghzpiDQFhttNaEEKUU5YxyVtY1Z27dyKPjE6NgbcM5OT189HDkui4lbhi6yi6k8CnH56dZI4DiVl6eJ5G3GBcEUS21Urk1l3xZUqnLzyozlgihu922EHIyniXtOE2zKIK6rjHGWhuEkOMwP3CFArCUIJqmGWZ1uqqj2GXWM0p1OoGWpqqaOPbzvB5PF71+ezJ5XtYLhjtnx+XmZvjaW8PZfJHNyWAQDAZemduqVEWZDvpJq9WxILlDqgIoM6s07/Rcx/EYc7hjmWMYt4DUfJ5HUQsBK4tGSXP9Znc2PpO6UYK+9uLOd3/ty6cXD99+62YUMydA3MGUO+ejs6IUYPz5rNrcwabpGx32B0meQZRohPIPf3n+45989Df+9lf9oL2cFknsSrGAJrhxbY15uJVQhDXnlLPg/Nx02iFGsqlNXWWuAxgDZWY+n79w+1UANBrX3/jmlwbdLUCwd6UlpCyKAoz3/MnKKuCuisO16XxBTCsvzxh1b93eLevJs6dPsIXpdNpfB6cl/+XvfvzKqzcQEczPi2pVZq2LE024we700YMTpIkUsL4R3rx5ezy+6HTXykZW9fzJvfz69WFdAaZ2czf5kz/6zIt0nlWUQRzHs2kqZb1a5Y6Dq7oB7fS7SRQHG5vdKquwRVev7MpKzKb59nZfC+RQGF9cOAwcxylzskyXBEWjyYUUsRvBk4PnZ+cn6VzKhu/tXvvG119++eW9ft8py+W9Lx4R5MdRBLj50Y9/oCWUK3J+0kgpMZ0TCotFFUXR+GI06A2yLK3rpZW0LOH+veqV11+r6vrB3eXF+QQTaZt/e2N4eSxipRQhmFJMKXU4FaJMQqfb8glhRoqiSB2HBYFPKOr2OlrC7vZmmhZJF0/np1/92i2L6yQJEFbZarW1sVnmFeeUEIiTSCgplFzvU4cSSiBbhXcfPCsL1/fdupktZ9Drbp+elK1ueHw2U6REHEo9rktYLLJ2J37x5e7mVmd9s7NcLjY34s/vf3pwdKyUe+XGmuOCaODDXz4LI/eHP/zpL37xbqvVIoSk6QIA2u3OZDrBRAZ+UlRlfxjfvnNFKGk0AG4QIk1TIWBKyDRdUMqFkpRyhAVYxxqgVDVNqiWVDY4T9vDh4zzPO11XqtLziVRCKWMNVgocx6EUN40uiqrT6ftemKYpxzz0AyEEpsT1XcYop4wYusoqzlp1UxAUNjVELb6YF57DEajAjdtx58q1Vr/vhc7w1q29IoMo8JuqbkWx4zhFUUipldBaGkx5EMaEoyBkQlc7Ozt5prTBslEMM9dFnAPnzFgVx2Gv21KyvH71mlSVkjXAJZZPBaGrpMUYK6UoxVpLjCkiNM8q1/EYdR2HS1UPh5EFma5Wxshupw+oUcoECVDbmS9OWzH3POY5Xp1Dv9f2HU+o6vj5bDSZagMWKwPacRhm4PrYGMs4IVQtl8soCi7vucYAgEXIUkqrKs9Wpe+7CJH1PR9zyIulrsFam6WF67qrVV4Upef6ZakZdbXCrbDvOZ5szGS86PRRK4FySerC3HwhwVggG7ZbaxfnS89xPRcVVWWUnyStujaYVtZQSnG372dZlSTJbLowGgaDwXhyQahpJX5Zyzs3X210bYx7/VprMZn5Mfe9ePdqK4ppXjSeH/YHSb6Cs+fF3n5c5Ly/wYSozw5xb1hYI1XdevmVTpot/tUfvtuI6rW3N/KU+oHhbrFappRLoCYMPSHqTz953mkDYNnuhNjQTitmHIxuOt1ICPH5Zw8ePz777neuL5YXr778ztqGe+vOxnQ6taDu359XGQ3bkC4k0JHP2u1OUItMymb/ysZsMn7y6KLd9ozEWuK1bcjS5c9//mjQu55mS+56kwuEmbn+UjA6B2z41Zvtra32a2/uHzwZuaHOisYP+dlxtbfXzYtlK4Eyt911uDjP1jc3JpOFVlhbiwnXSGZ57bpuWViMqjDEWbrc2thsdbw8z9fXfULNo3uHDhfIoCSBTz75metQqSpRIi8AbY3rtZ4+O3ND2L3ae+3tG0Io7lRNlf783c8+++CIms7TxydJ2w1bupbZyfEZNn0pPO7Y/WstiqAuQWoYbjqEJst0SbFTrfC3vn0rnYm1ff75J/W/+uNPfvijk08/PgcMSTvEzP23cK6/Og0RwUoZrY1WqioyzvGg3xmPym7SwQS5HgtCD5Dp9RLHYZTQq9c3jp+Pw8gbn1YE2r/2zbcnF4UXqMiLj0+eMxJnxZnLu29/6Y5StBZ1yAdlVlqNJVogAojKKncc1DYEvDBgfBC1wsMDWwnrBe1aYkZaCHiWL154cX+6uJjNLzAmooFHzz9PV6U1vdls5rjk6o2WNTA6rzGGr3/jq0KIoioxhiDwpNR1Ddw1f/onP2zFCaFqMj1pavDdIIwYxrhpLCNMa10UQgodBE6a5o8en07n9Z0Xd+JwaLWbFauohU9Ol61orTd0McaiIYhmrktXC3B97DjUGLNc5ghBWYhW3NaArEHUEoZZluV5nltrLwuqqqKuKklxAABlITvt4WDQiYLO1atXLWghFKdJUaVeYD//+HBzo8MIYDCLRfHGm6+Px2NCCCUMAEdRazqfWYvq2morq7pI8+zWnZtnZ2NOmOd5QRA4LjHGlKVwHdbttQnV0+lYNCV3cL/XLUsNtuEULmm1l/QOKTVjzBrIqzrPBMHhcpkxxsqylKrudN121z87Lje2fS9qrGgX5TwO1wkhFhWUoMePsihkw8Fmtwu+t6aMtohe4vM8z+EONCJHGPr9Tt2syrKklHqeY4y5rO8uiiLPM8wRYRxhq4SOWtb3qcOBEXbZ5ggAQRBIAcZAp9M6fHrukK6siFDL/Strh09kuly+8dY2IawqkDRjwHnsd2fTst3q1kVJsKIMMPLyPOfMCUKqJCrLsqpXhMB8vkySjmgALK7r0lhQJrv7xepsdFZW1LC8rnRenV3Zf/ne/UdCT1ttF4N3enpurEjnpi4JdfLJuMYUKXzx7GAWJ2y1AFmbVmJ2d3ejBA6ePl8uVr4Pa2tBJ9546eUdTPStWzcs6OVy6TpobThM01W7E1qLJ9Ox7/NWEkexZ62dTpbtxN/b3/j87kf/6L/6by0IP0Ra67fffnNvd8/zHSVg94ZZTA1jiDLb6/UMVIjUF2eLJGrNR+LNt+/kubG1/86vx65HfvD9e0lr3Wi4uFi++hXfjWZf/MJ6nud51okWi0mVl6Mw6Eq9tDba2dy8+WInX+moRWbT0qIqit26sgiIMTCbT7KsyLJMKR22YqUgzyf7e4P5fL5YLDut3mI+I6S8epV1kthAwSlbG3qeg7vdFiGgJOztDxbL0Xwq3nx7750vvXn7pa7r+EqJ0VnBaBiGPAxxlo2slnVhPDbUVb8sdJpPHL+Sptnd3Ls4K4oMHI9hJlYLSLpsNpuBDrf3fVGB1y7ThfPRzyeh67t+jAnUlcHc/Fsz8q9OQ9CYYaDYtWCAU4DQd4L8HBBHtayNUVKKfqcb+x7ovNcHgZpWssvD+uSs+NlPP7t6M9zcWE9nUhrVaiMhM88JF9Ps4OkTjAwx3KEkCl3Xtxh8qwPulUJlgOXT57C7T2J2YVNoMiermmqh0Mp4vmjHDCuSZ9P5DJjbiqOe56546AprGzPudbr1ikdRc+MFIKZVF/RnPzy4detW0NKez0UFDqMcwd7WPuXNj3/yE2O543QRwtqWoRc4DDUVaKis9Sg4dTEDKfe2yMlxlbQAkVqYnAUB9Zx8hSdH6q/9tW8YZV2XNjLf27tVCxknREqltRXa5DUEgb+13jl+fg/ZepauLLeVQPN5vr7RY8yRqjZUKEQ6fTg5Ob22f8sI1/HnSbhxcjybTDLuRdPF+WQ2VVWcrk4G3Wtx2y8zlzDHbcPHH32hclSC1UysJeFsUlJUu+6CaExU7POYoHwwtMuRUwityCoMKbdclQ23blWqSpxXFfFbMo5DZj1jF64D4/O6OwwdDxYLZSEom5K5pN+NQa18k1itmbNM5yAk44HmrtvttRCymZInZ8ur+2sKLZBPTtMTHlBZa4b11hrL5821/YQD7K31uqHTDhRBIQVgSGz3uqoxw4ETRZrZADGmJY9CgRWlCBuLEWIOs6ax2UJb02CLQWJrlbG4sQpxi6yHoFSq9ltQVLRYZYGLl+VIY0FpnDenrQ7c/cislur1r8und8vNwTaS0PKCTsukqdzcX89kGgWoKsowYEI0YKhSsqlIVYIxfroSzCXJALTNHdZazuE3fuN7t660H80PXCAvbt95uJg9OVNrka+pubJ/I12oqqqr1Pnik/F0PN+7gWWxybHLveb991aWQJIkVVnFLdsIi3S+u9vCls6XxcaeK5qgLPNBd5AvwPdQVYob1++s7zLkZMsVTCaGeUuM+twL2xvJ4+PP52NEkfuVr7Wfnswf3Ye97b31wfZyqeaL5vR5/fUvv/Uf/S/+5gt3hlYxQrUx2I+r06Os393Kx9noTFQajF8+PzrRNfR6kE/F3/67a4zDn/yLTAGs74SDbu8Xf1a/8Xrn4F5RFyb0kicHD6LYpcSCxGU2u3knMLphjAQhM4r6vt/pUk5Chj3C4Pg4r+wFKMwB2aYBBcQ67V57MsV3P19irwBHZk0QbaxHfU+Xw9Cb/+//D1/+6Qf/u+v7QyPgxi0HWHnn9Svf/euv9vrrF6eHv/zx0z/7/cNa4unSML/pJzueT73A465LiYNtKWR6dgxR6FqJtrY6p/PPd673wh4SDRp09+rVtOX0Xn5x52I8+xf//IkO6+XSxr2mt8Fk7ul89a0v77xwi0ehuNSUjTGXl0StNUIIY4Qv+2svnV9aWy3V3/7bv/aDH76nJfXDbl5Mo5jfe3CQZ/LmrSsfvf/Fw0cfMtQZDnyLih98/+ff/NZbSdIBQIQwxpzLBEVRZHVZ9fv9RZpfvbaVLS2GAqw6eDLpr7ujSeVzIBhfvX5jlRdSSpfDN7/ytY1h0kiZZgUhtKhqoSBdZhbA8YOysIy6jkNrsRgME7Cs128NN63L4MHDg/l8eikKIYLzPCcczs/PlTIvvXT74cP7T58+dhymlI3jiDFGKGitm6YpigYA+r3B1WvXXZeurfUfPRn7oWQEzS7k/S9O/+P/+D/4J//kn6RpiTEeDoez2YwQorW2FpiDs5W0BphDHJecXUykxkoLxnFVFS++eH1jbai1JIRQBJxihEgQ+HUtyiqPovhidFaW5vj4uK5FGDm6YdzRYFxEqnRZApKNzIsMZuORNvVsIhBCUZsv0yYK2lrrpO25rntxPtndfcHqSNQEYwg8VwiRZZXWOox8xpiUOo5DQpGUDWYEIRRFnucFvuMGLpVSMo6bBnw/rKrK86O6FhYAY7AWCCGu6wAAooRSWuQijt2qqq5d3XE5Y4xOp9MrV3Zabd8P3PPxgjn8pVfu+LFXlnUY4+Uydxwum3y5XFHKNejloiIME4KbprkU9JrGcM4xNgZrz3PqujRgq6pptaKtra5RBpBRylhUa619P+QciiJHwAk1cYx1w8tyaiSlGKIY3/143Gtd7fTxFx+Wb301SpJ4vjzyvFVTYWx7nU7HdV2EkOO4DvfyPBdC9fsdxgnjkBerwA+lwI7L4hb84Afff+mVW6IAzmlZ1k8ejaSUZVlsb2+OLsaikUWWX1xcPHly6njucDh8+vQ4jD0l6PSiWd9oA0ArcpK2n6+kUqauy+Gw5zjebLqcz6etJHz67OSFl9aOn08Dv81dBQCi8rHlBwcnO1s3k7ZXVfUqnc5Hdrko9m5Jz9nLy8r38TJbfe+3vpEux6PT5c/e/ez//l/8s7/4/k8CZ/NL73w5jNDx86lR/PqNraPnF3me37q9d3GWFhlMp/OkzeOEra23lxP0N/5HV12f/OTPxl/9te3PPzmm1Ot0oy/9WvTRe6vZyHbXIAx9JTzQwWDNNZp+9Ivzoqiw7TQ6U3W0szd88Oij6fxid787XOtrEeYrHUXe/rX+zlXv4YMGwKWOWq5mq7TimAEStTzvrrPR6u76zpX/8z/44H/z9//w7qOjX//N2zfvbG6sXwmDzkcf3P/Zu+8xwrWRYYSByKKo5yPP0GftZO3kbEZpkrRbq2IJWLQiXBVCG+t53nKMDx83SbjteGK5nFeq3r168y9++EBIsKCsIqrqtFt7jIRf/Y75H//PrzAqdvc2FmfBX8EN/01lGWtrLAAm5FcCM9gnTx+1WtG1ax2EHa3w+eRsa2/Nc2PHjZbpZDHSvQ6sZmhzY7i5E52dlJ989q7vu9YQrRACarTVWl8ScowBzex4tvr1b79jNXBEnh8eOD55djy5trt58vz4fHQ+ni0dh2EDFGw3aDXCYMqKqsnyvNt3tIXT07MoaiHg+UrOpyvHU4N+UORSSbO5Q6RU3/n2G1pJo4ASJqX2Q39ze+j7UbvdLsuy3W4nSeJ5zp07N5QWWmsp4TKlqC0AYEo5Iez6C1G323/95Vfqyjhe89ZbN65e6U4nE0rp1lafMaa1Ho8nl6lGhIBQqxTkBVirMUXzuZ3NCkQswcb1WNNUSTumBDGC/cADMEVRhmEopZJS9LqDTieJI49SapVumsYainFNSTRbHn726T3KdRL5iwl0e0kYu4Bop98TuiwbmE+rdrutTKF0PZulv/aN3+J4sFiUnoORNcWqRAg450qpVZojIK7HGcN1U/q+K6X0fV8pFYZx0gqRtU1TEQJ1Iy1GUpNVVnAOmGJjwFqbZc3lNxMhErhOU9YA5vGjo6qutZQEw2I6q9SSMBwnzsHhySJNe4Pk/OIir0yn7cZBG5DlzGtqKYQ6Pa0w0ZFPlRKAkbZIKXA4RVg7DqnqJssyz/P8wFkul9ubG55HtJZgGWUWACtpCQULJlvVrYR3Okmr1aoqcXQ0f/mVW3v7m+lSf/rB+EvfuHX3i7E2FWHu1Wu7UQsIkQ4Js2xVlnnTNIwxAFxVdVnUCAh3rAWZLpvdnWvLefng/vO4xTHRQi1AR4tl8fDhU1H53HMACQVCCEEJIYRJCQDg+z6mRGvoD+J0ITGFKHCKbBXFHHO1WlqtpeN488UUtNzf3w/DMC+LIpfcsYt52usns/lkPhVhkOSFqHI4H4+zFe4M67MjMT5Fw22dLnQQRI+fnBDiHB0fLNKTXq+Tpcrj3rWrUKuLH//lR++/92xz7c5X3vnu4eG4ljMw/tb2mhBSCcco3NTGcSEv0kYV+cosFouvfneFCfzuP73/4ot3dvf7i2Wzu7d18yVnfI7PnkPU4oAqZZcbwxcoxfOpVBKlWTWdg6iZkjiOw2wF27s9QKIphbXWC8323tB1na09XqkVYaoooN3qzWdS1agT7fi8pYyervKzsfzxLx5bFnxx/9F7797/4IO7P/3JB48fnjMHRKPX1gLHEWtDbhV8/vETxvFsMcI2PjwYbe0OB4MBJfDKS6/6Dt/acsAW52fq7Hi8yhbdHlAaV4r+yQ9+Op1jxLwwQbs7A61Ko5vzo8Vqtbpyi81maV1NOLOXUbx/y4CNAQFzfnU3lFIijJumdlx2djGP42iw1j8+mhLsuL5TVXma5f/Z/+k/WRsMjbRgBCWaMcy5m1cLSinCxBjMXU9r2et3kiSZXIw1Fh+8/7TbRV96Z7+T9EaTJ+ejLGglx09PszQdbvTSrApCurkRVcUyiVsGSOC3uOtZi7Ks8TxPKViludJVpzOIgo5sBHOkasToPCurlR/C2kaSZYtWyxFCKWMm88kimxVFcXY6yfNcKTUej4Ss791/VJbl2tqg1eIYY8YcBJAX+vD58ceffPHs6YwyM5s9U1KOzypZkdB3Pvv0J8O1AWMMEyjKPIrCKIoYY0ZD3agwaBkNBiuhJWF4PFlGnRiwwcScX5wKUbdaLYQtxYhgpI3RRo1HU2NBKQCkp9MKA1lbG2ysrZ+djVzXV0p1e3FVl8O1BCMECF566SWPt5pGYWxrYTe3guPDCiwdrMfK6iBw/uiP/uDjTx+4PuXUUIKMAd/3XNetqipNa4QoQgDIcJc3snZ9p6yrphZhGG+vD5AFMBIQqmvpeG6RqzTTfuAYo5gH7Xbb8xkhTCsbtmKEyGIBGNB3vvPOS3euOxwiP9BKvfjyFaFUUTePD45OxxdOQMazueeSKIrKslEKgiBqhGi1IlHRuslch2ojKfO0tZyD1UKIxvFcTCDptCjFtWjqus7zvKo0xWA0UA6cuU3TWAudTlTm4AXYGga4zJaYMRhNnl27dqXdhcOny7OTxde/dfX+FyppdcoStGHDDQezVVbIy7EoCKJGSMf1CXeyrGi1eVlY1/HqJr8YnVNCtSJXr69V1WQ6Ll55dWd/byNdiP6gZXCpVKOE9tyAEGItdNq+Uurg4CDpuMaq0WTlunyxHCstLTSY6PG4AtRY6Szmqr/m+gGTAp+epHmZrdKGu3Z9Myoy5dBBmp/8zr/7SlXC04Pz2ayS2pw/zz3H+dKXr6dTpkyaLiQQ1R3677//frqs6lpVZbUxXO904rVN/+Gjw48/ePrFZ8++9MZvT0arskpr2dy/f2oNTmdG1VgIgQkEQZRnM1GSuqq/9b0WSPru9/PhejLc6P7i5/eWefnt395Op+5P/uKcuTUjUZLQ09PzWy9187wQMkMGimqOsS8bmi9BNmKxvBCy4J6qm6Ku9NHz9KU39teGW47TbnVAyHx93Tk8OPjk/WdffHx3cmbSVbH3gr95jaWZOD/S22ubvW5rfb1rDAzXgrqQSsj19ZbrUJc53/rOnSf3JOWyrGSap47rTmdZlcPF2VlW1No0Furvfu/61m6ISK6r9uHT2XgslqWKh+HulaHjWmPnRVk7DNo958Of6uloevXaVl3KzV152e1zSa+x1v7KbwjIag0W7CUAFqxlDucuB8uEKQE1vh8pTREWXkyjsD+ZnozOmryY5XkmpQVkRIMQNlIrQlieFVprhKHX6WCMV2ldC5kX+sHjR5RiSkkQBO+++24tle/Dm++8VtSrRQrKFGWWDYaJAVPksqzq5XIlpeQcWQNSQBiGSs3Pzs5d3m/FHWOLKArarU1R8a989VYUu0qLMAwv539jrZRKNOqVV170PE8p4biMUooxRFEURSHntK61lBJjTClYQ6SwTQ11kzWiZLh9flo8O3wsVXH71uur1Wo+nxJC8jynjFirhRAYI2uBc54kDli8yjJK6XgmR6OJ53l1JQghQijG2OU3hnOKMe0POwgRQkEI4bgEWdBGPnp4JmoUhoCs7zgkWxWYQN3kUqBehwRegCFGAEqXoiDGFpw5q7RSSpRl2RkGD55+9uzZM+woAqYTB6HvWmuNMZxTj+OqlAhhrXUYhvPlot3tVFUFgD033NreUMK4Hm0aC5hSii/7YDE2165f2d3dPHj2TGvtBf5qtXr06FnS7fg+9Pv92Wxx//7jTqfDOA49TpiQUgsJrhcN1oYG1elSOY5TN2qZpkAuCxJw4LR0g+uqBNXUtWYONxZFsSvqKs8LY4nj8MUi5dzd2twOw/Di4qLXD4SojQFAAIAvLTJRFIEFbWpOXNmIuqyuXdnKs6Zuxr/2rVeN0T//yVl3gK1qU08/ePjMWlTkwvWqIMCEUWuR5warVU4pp5SmWSmboh12RWnBVG4Iq0xVNaYOQQiK3DgMb+/0ENYIGaUrzt26bsIwTNMUIbhUipZLEUXRZDqXUgohrDG72+sYY9cJmwKMlUp4RkLcQoFPOQvqBgzo6WTp+65UVZpm1mrA9cZW7IcgFDKQnz2D4QZqJWp84t96qdM0pE713tUeptXG2tWT49nmdnD9Zq+p4dH9qTTlrRd9yuWzo8f/9B9/n9hht7NW103cAjDCdVwlWeDHnusk8XCZNhYvHDp4fC/1PZyXhz/8888cHi4W2vfx4dHhW98M6hJ+9ud6bdOnbnr/85nns60rUZZqKQBo0+4hIfSlhBL6ETLM5TyO4qYhFtjFifyn//gHv/+7P6CUlGWhTJMWs+u3+l/+yu7mMHGwy6j2fdxkElnwvKZp5lplScsrsqLValWFbSW+VpRS9fWvv5GnqCicSo2+/I0X57NiPsuQoo6LwwhA8eVcZUVFOTs7sVpEq7wkDG7duhm31XI1ujgtdza3OIHxebl3tWUB//zd2c41KyrfWH3ZlPlvysoAgMFaowABchwHISS1MMg8eva4quV4clHU5WCwfvD06HS00Fo2QnLfWN3FXG/sDMrS7O0Pz8/GSkipKkqxMrppGs5pGLlZmgZBkC/lV795XatwPF80KgvDtQePPnEc52tfe2m+XB0enQY+eC7t9wc/fPfHnzx+4Lr8+Pj0smPXaquVbLeCYpW7HtvfH8xmM9lApxv3B+1H906VZC+88EKaptaauq60lnVZOhQ7FAspFsuZ47Cz8wshZBzHxkBTy2632+l0CAFrrbJGKGiUMgitbySB3/L9/t27s1svXLl5Z6tWVVW5rst936eUlGW5WKRN01SV5ZxTAulq5vlMa0sQ63TjJIGT47EXhGHcKitlAY8nMwSEc26trSphrCyrhjLgzBFNHoYMwFy/1jk9vvAD/vTRyHX9uBU63CUMO9ytKl1VJQWPYmDYEvB2t4Zp2uRZnSQ9a3hVrza3Q8oYoRD6mBIM1opaCiEwxr7vq8bIWjHqVXVjDJRNnSTJZU+Y4zhaI2MVADS1BjCLWU4JNEq6LvN9TwgbBNFykYZx67f/2m/+9u98l7nw6MnTn//iUZxEYRgSar2Y1k1mNHE4GY8ySriBCmPY3NzMC6mR5ZQXVZm0/NPjeVWI7a0BNlYJwIxSh4ahb63VCuWF9cJAKUMJm8+Xb7z2ZqfTuX71WlVVl2J3XTeuR2YTKIpqfbPLGIkjpylMv0/m46ITR2n67PbNa1euYq2jDz56LHVO3bqqV9wT2YJLYVzXr2tRlDWmtK7ruq6VUk0Dk1FjLW614qrOGUcWYHpRNDWOo4HrwOnp6fHpk63tblXVcZzM57XDnKaRs2kdRX5R1FrrJOGYkOW8IdTECev1o0438rzo5GgKCByHr9IiDAljyPM81+VRDI4XMY7a7W5dIm1U2czWhusX55NXXt/ClF2M8qbkb7zTC3z+kx88vn47Pj5MWQjthGOwWaqGgw2pC+qaZVrnue4POMFu0nbe+hrrr5ujo/P33508e7oMAhdRjYmZjPPf/t7/oJ0MPvzo81Y74S6fjOdHj6nS4n/4d3fCEP/kLx5/9esvV1m0mK8Cv3f9dpf5pao7abrIlvj4cLW9F6VztLWL2knfkonjuntX4rPz1WJWNxWtCnPwZPUnf/wThcRnHx1MJqOkDVtbERiX0TiKiR8GSBNKJUIFKGOFHQ5b3AHXab3++lVZiyRxQAOjuswZ0JoR/8aN/uMHF9/6zVff//nJC6/srIrp2XlKKHdd9+LirNdrLRa6XAXnx+rh3cVyAlUzf/m13v6V7vnpY9mUVtsqhcmFuHK1ly7rxWr16pvDj98DIZreIMCIhGGIMb5Evf6VrIwBECYAAFVZKqUoY34cnI7OshwQchn109U0L+a3bl6RClbZ4otHnzw9nGhrnMCmi6YqdVGKPJOuyyyyvV4PIUsZtFqRlLLT6nHiUWY/++zo7CJlPueuKwWaXpxIa+eLvKhASYIMMpaNl2VhsFX6zgu3HEbns7kx4DsuWN1OWk2FoxZFaFWUWZbmvu/3B0EUUO667773XtJpdfsJ4zRJYqOsEgYhGI8vPN+hFC5ldEoAANVNaYxpGlDWEMIIwQgR7ngnR8v5fFGJ0c4VWK1Wjx8vEPLuPvpxksRB6NV1TSl2HOZ53qXhwypkjHEdjAx2eBBGzpX9jVaczNPS8UJlYLZYlbV0PJ9ypoxu9+LZbFLXYms7GgwGWb4oChkFHue8EYaCt7HpP38yiVtsfFFHsW9NXayAU2y0EAWsFqvbN3Zff+kVP4DZbEGQny01YwSokAKqClqRJ+tKNcJaa4yuqgpjihDJ85oQqpRxA386mbe7fWNMUVRVVVnAQoNFIITMi1W2zByOk8QXRhweHiIESqnLUp48z7//gz+NWkFRwZ0X9jvtwfPjI4xtGDkux7NpYS1REra2dgixQcCUENNFzl3Ic1NVBeM4ndcIYNhNAi+0BiwC6mCjBSWIEm+xqOfThcOdvKziKPnH//hPhVDLZYoBYQzWAMHMQKkEzGYLyqDd7hZFVlaLtfWO0eTJw8wadnR88J3vfaXbU9jyvJaD/tpockEYrK0N5yPJGNfKag1gsecFWmvGSBjCxQkEgUt5M52kBDudHok75OHdqUcGgGBr86qxjRdqKQgYdvB47DjO82eHQYAxxlKCMcYL/CzLstxw17QS1/McKStG/dPjAnFA0JpMZ1u7bYr8B/eOl6uzOIHpuMSICZVmWSZqXFWwWq2scZfLVVGJ2Ui5DsRxmMSxhRIj79Hjw+0df7VaOTyWUmtTX7u+/fRg7vrO+jYYjR0eFWXBXftbv/PNF15JLKAvPp6Xue50fTCCYnjhhZf29q+uVjLowMmReP7YYKbe/sown0brm8bq+qc/vffmV/dWc6cpvKhT3X655fr6/Ng4HjXGnp6dBbGze2UzS+3pUfHsySKvV+02KGXKYqWtaictMC7G8Df/vTf//t//D7781dtXrm4ulqWW7mpF7t2dCRMyhwcRzbOV77kamkbAZ1+M97YHrTDMs2XgtRk3+UphWo2ns6pMxxejrLi4eXv94nyRFUJDtbW9gR1ZCTAahaFfC/Hw4QUgPtiM3VDO59PpaLaz3o04T8IQAA4PjxEr3QhmU5n0fMrcT34J29egrOW/6bD571UUsNZqcCn/VTAFQCi5SJdvvLmdZ5KzSEF9MT1rt9YI9tc3O4+fPsrz6vRsTB1T14Cse+fFjeWiJtTmxSpJWsboqmoYJ8YYpVTSih7fP/76r780nWqDqTDLyN9umsXd+w8Wy3Jnd305191OfzZLMcfW8S+D/cvlEmMgCOqmpJT++3/zb7m8k+Wz9c2IMmstevzwyf6Vras3hj/80bsbG1txHFd1UVVFXVaEEIqp67Jut5umqbUQBI6UklLeNJIQQijSGpS0AGAMNEJLqa/d7BIUiNJvt8Ooax0fYcLnq+rS171aray1rutqrS95BwB4Yy1qJZ41ZDpdHB6eLtOJ4/gnJ2fzRbZ/5drzw9Nut+8FQV3XlFIpZdNUYeRSBk3TtNuJtVDXVbpcDXp8tWw6Pe/5QVVUU98LCUFCFmAopRhjEYetMocrVzY+/fhzPwDPc+bzlWhwXQtCiNI08H1GAZBhjGFEtNZCGEIIQqSuGiVNq9VCQC4XZ67rZlkmpQQgnoeEAM/zptPUWkQxqZuyLEtl9FtvvVaJBgBLKQ8ODtJi2aiGcjh4dvzhx08REGmk59O6rhkjGFEEVCl1cnq8s7MznY6rBlrtaJWrurZFuXJZRBA8fvAo9HwAaKQEMEWRI4QYcfNUctdplOScA+DAh16ne7nQqevaGhSGodbCdXxVw2QyC8OoqprBBkXg/9Zv/SYAnB1XWXFRluXbX+8KKZKElhUpS+EwDHTaVIhRh1KGMa6qCmHcSEk5i+MAtDOdn4YxwohzFkQtUje6Ltxf/vxeEMLZ6cR1eRjxPGueH4+fPV0iRKbT5vatW1VVcQ6O61KKF4vCaNYfRNrUjFDP5YHf6nfX/QAtZo3jAcb1wdPTxbQarAXEhcVMaMXdoNamFKXvcrq7t/H8+fOjw9XsDJK+2+0lVQaYyHbHV8LBGG9uBZPRwmft1Wq5WI0ms8XLL++nqxlGoHRdNM9dD57cVf+f/8f317bwm1/1wXbnM7lYltxBm5sb//Af/sOPP/lwZ7dT5PV8hr/92zeTlrM2bH380V0w8O3v3m5K+tlHF29/fe/44hNseka52zvrjVzGbe2F0hrwouqDX5589vHBR++tJucWAVpb2wArb9zuXb3u13W5WllkWRw5ZWaePZ4ePjuPE0ehpR/g+SSfLMcaEWR9TgNRIzAec/3RPDs7OXVouLGepIuybjIETppPw1YoBWCWx+H65r5+eH9KcYs5zWQyee31W0rCeLpEvNK4SrqkM+T97bJuGmJbgyTyGF6MhBHVnVfdV9/YSVr9MEbGwHSefv277b/403ncUZ0OL8vSWosx/quKqL+iNqDGFBYoAQcBno1tmsHrL91+7aXd87MDXXNs2w8fPYuigDLuUzrYMIuZy2lUlRBFZDKbGwJSB5TzWXqBnbbxwDhyudTz6anvl+PzplzKrW1OrKOEs301Svrrr762uxiRbDG9cmXn6p216SLXtdMKrFSwSo004DiUAEbIAmv+9CfvGqia2tHgeU4H2bnnKN+jX3w201AFkV9kJTZUCWmxrrXKpPISgyhapXkrcZq6cVlAMQEoHI448QgCo7G1FhPjEGCAsXSfPnnS1DWnncmoko10HK5K+Mu/+CRwB47jWm3CMGwayRhgAghrjJgW1o+dXOlpDqcjePL0/PGz0cVsOposCQ6bapkuFmB816OMGCWg3+42pVJNDsbbuw7SVtRrwiRxQn338xmhjLJQaW2xTVeYgkLErUEGUUqY9//+579PA76x1ZqNG7BIGv3wiapFR6vGpULbgHLXEKlASkuo46dl3h16FjurYubHBbFclmQ8eha3vJPzLz5/8Jj4zWIGjIHVdbnwlJLEkZxzY4yqvMXi1OOa4vbjx08aVfZij2FtDdVEYQqGaGJItcxF5QqpMUWIKWQItW3Mm7N5lYQgKhREUOdQzdDf+3tvf+8396pVe7IcxxGWKb9y3emsBXWNuXUcCaBkHPoARqDVYglOiIVMKQoZ01JYiy1AVIuSUbflI9w0xPVr4X3+6ZPVtPo7f+dLZ0+beXqGEIMasIcYMI6mh8d5t9/1iT9ZrRBijieT1kCYpZIIGSzKIgkjg0yWG+qSvNRFPvdY6LpAaWr9ajKBYT/stpKqlJW9GGw6L742fPq82rpCx6Np3NZNRYM2ypZQFyzpqU4SV6nudJPRWI0WT5LB6uZNRvzVYN3B2DMAcYcWuZsvKXZKhpWto1VaTdOcB97FJH98sMgLRDkkCa5FA8yWTW00Wi6P+z1nPrXzmeN2GkRolVuPuePR2WIhsXJHxxD6/TSFay90N3ZdRgYIk40d2NwcWgHVqjOajQu1GvZeDpL54we1MGUU99/8WvQnf/QojvzE3z1+Nv6N73UOH06WI31182tSLfwQ/+Ln989PVNjTi0ydH/n5HLkEOCZ3XurdfoV2O4Nark6e+2cXq+W86cStmDd97teyACKs7iBKkg5aThRW7rBHxuci9PuajDUIrbkbCtmUVsDJucS+1TZwAv/4CBs3uziJuv3EaKFFtFrNP3l/9uKLvcX5BLSbl412V9t7m1KDy3GvFb/yyjbn883ui6EXGE0yma10lQz7g81Bv9f59BdnZ+fHJ0/rMMQHT6d7219iVHzy7uSVV7RoDAKEgGuNCEGA4F+3RGlrDAAYrRWAEaIWsplMF8cn548fna1trjGGlG7yfBWHUZ37jmspbzDGnQFYeuZ6eL1/ez4dIxW0oohjPDmBwHGt0LKEom46neD+/QeMMQu6KApCWJqmp6Mxc1HR2PH04tPPP3nxxdtJLzo/Tz0PVtnScZwwDiwyl+mxzz//1PM8A9YYI4QijLeTDkL48ZOxMQoTkKoBgKYRnucRAoQAsng8ngAAp04Yepy7ZdUYC5QyQn61HDDmV7gKrfXZ2VkY+oQQSmlRlFVVKikdh1GKf/ruR4wxra0QwnXdpgGMsTZgrVFKNE2FEHicIYQopdlU727tPbw7nc1Gxoq8yAhVxkgAcF2XMXZ2VnW7bSklQhBGrZNn2o/My6/ejBO2Wpqz05RQSFo9QhECyIs0jv3LyhruocCPELatljObLaI4CEN2/94pQhYhpIUUQjWNlRK0sgghBLgs6rXh5ukx9PoJ96RUsqyEVlCXSOn6EnApJViLmqZBGPyA9Hrts9NRq82rqrIWKVnUFbguX6W5MRYhpBWEYagVMOYpCXVdL5egtSYYEEJhGE8mU0rhMv/ueWx9I2EcuEeuXN1Suna8wAvZMm24A2VhmzotC3H1aiKE0apGCDzuBAGTUlqL6sun8p3xZGStSTpM6rrTDR2XWVQ+vr9oJf5f/Oj7/+l/+g/avfbsAjeqElokSSy1sNak6UKbRsiSO6iu8yRJ6qqxGldVQwhxXXc+n/kBDSO3LGqwREnbNE0cQ6/fuTjPt3bJC3eu9nsbTVNZQ7/47DRb1VVVy4ZjjD2XG2tdxz8fLZWSnW5UNxmlIGTFOZfCji6KdCGxxVnWrFb52togCILpdNo0inMkZI15mS6MUdDp0TJHywuijb1yrUVRLy9T1YS+2+8NyQu33mReOhnVGjVa8VVa9DotZJjSDYMw6alBv//w7uTaje6Vq+uDtSTPNKHm9Kje3otaXajkzCg2GS+Xxf3TZ07k8NvXNg8PPktXU+ZAd6OTbLk5Ol7l5sV3zEcfPsma1IvCn/3k/MGDi7L0Vd1vtyGO8bDf29p1Xnh5GMV+4MZHh7PPPsh3r6H5RPpe/PD+9Ld++/U7rwwv1YmTkzPfiynlCCEhmmvX92WDz8+mlNAgCoLYk0oAgOMm54d6a9u7f/e0EWlRLHQFRorp5KI74IQ69+4fbu50uQONwFLgpO2enU78SG1sdEYXott3J5PRdGSHa53lzAbtYn0zqlM/SwV39dMnZ6slmp3RnSs45ANs4bNPn3/tu/0/+4Pcj3B/zTXQICwALhkCAAAYIXJZOH/ppAMwCBuMTa+/9ec/+FGr403ns7gdvvjSzdOz4zCMCfa1NYTJ2TS/88IVglqMOfPV/bLMRycCWeQwRgw8uPvIoc7/9j/+XwNgACgr8FxqtfE8b7lcer6zzKr20CMkoq7yPOfeF09mk3ESeZ7nnJwcFUXuOI7neQhZxilC1hgzm2VlWQd+1NTi6vUbJ6cjAPADhkAboy4LWI0xxgCyoIXGlqwN1q1F6bLijosoRZRRTDjnhGAMRitrNFyeNf1+f319XYgmTRdB4GxsrAlRay1dj738yq5SkhDkcHd0sWi1HCm064IfcMdhQtQEgTHGagCLGXeePT1rxbCx1v/Ob3x7a7OrdWW0dBzHgKlF1e1C2dQAwBgFwFHsPro3PT17tr7Rvf4iGR07xijPhcVqYQCkbNY3hp1uS0ohpV0s0itX9glFWVZr0wzX+nHMLoEoGNNL/V1JUMZgjDHGRdEcHBzKCkajs27f833W6zMA4CzCxBIKhBBrLuPqJghxpxtorUUFQQRpmllD6ib1XWc0GjPmxHGEMQYERd5QQrO8Mhb7rtdpQ1XVro8A8CrNVmmNEHIdp6xWrsfCFkfMPnh4Ny+n6xudqqkNEmEYZ1k2uygJhfl8+e1vf/vq7jpGSsmKMdLpxpThupHMYaICx6We54zH47qR7Q6POx6Aycr84hQwg6OT9PDo5Hf++rfHp+T84lRrub29bYxpJVG7EwlZdrqRkAWh0O60KHXBUiGU53mX2XypqjgOrAUprBBgjIlbrjZNsYKtnbaCVRh3povl6el8MTWzRe6G+OnT8vT8wlicV1oqWyxNd4ApBkJsIw1lBpDd3NhdzsGqEAFGAEVRMcaF1FlWcw6tOHAjNJ7kUtE4dsu8OXwyUhVux+C4tJFLsKAkjuMYY7xYjrd31sbH+d5VnC+1EtoIohu4cYOr2paluvPKRhB6rVZ3tbRFc4FwPR1XjNsHX4yWE3jhpU67r8KY5MUyK5rBUHQSIipoamh3W9N0dvB8fnbO3/vJ5PEXMQ/gl+/d94PWrTvbYc/uXMfHj5eR16rrvBKT69f2vEDNF4eLmagr7Tpsuczqys4u2O0XI4ProAUWZNM0Z6dZ0whKXKOhqqt2J3Ace3Y2uRip2Vjf+/zk+dGCOkTrYjEvm8z78te6kbO7dy3otHvTcQNG9NeG9x5+Ziycj8fLVCSd9mQ6dX3fDzzMYHdvY2u3fTYaK2WuXt350Y9+nK3qqEWs1Weni4uL1PfdKGoz6iatsBW7wM6j0H385N5wuJ+0Ww+/wJvbkYEMkCQEGfOvNWVr7eXd0FptrAKwAAZhuP/wwWC48c6XvoIxGo1PPvjwvSj0tFR71wLPccen2OV9jcaTyRSMt7a2Rji+OC8aYdJ0EYTR0fORQXiRlcYiIWUUgec7hBCHuVmWdTqdPFVpep7OGgDzja9++fr+jcCDN15+M44CKdXlzhFjLKVUSsVRhBDEsVvXdVHXhLCN9S1pNOOQtIKmKRCyBqzve0VeKgkIYYSIUZZTh2IW+l5VNYuF0AYYJq7DKLHGwGVjIQA2RnPOZ7NZFIVlVQDAMp23WtH+/j7COgz9qiq0thhj16WXjFI/YGHkuh4DAIRAKX0pTjkOX0xFENBlOq7KOo5aWSY4C6SUhJD5YtrutKQUGGNjUVU1bgDtdvf4uOgN+fa+m8S9IpfGCsIoxoCJNUYa3TQNSAFF2QhRa63B0Kap6rrgLJDKuB4lhABQY0EoaKS1FhkDVSn6wxCD3zQqCIIwaNe11EYIUTOGEAKMKcZYK6M1JO0ojFm2qqsCPBd7LPS99mKZZ2ljFPi+7wc8CjlYUFISQqqq0qCNUY7jaA2Xf1a6WGgJ7bi9sbEVRp7ruvPF2PfJxcWFMtlf/+u/oY0khOTFrC6J57OykJiId997r9vuUAz6srsGSdelRdEQilwH53lJKeXMcxywIIyVjhdMx0IKXVT19m7r//gP/jPumbySCCFAJF3leWaPjk+LolqtlOc5UjVKFlpLjGhdN8gCxriqysFgwBygDBCwpjYIkLUWIVsUK6v9h/ennW5L68Z3u2enMyC4EYYxpBrY2V8frm1rCxfjBVi6tdOtKzWbZIxBXRdaN67v9Xr+KivTVGGM6wbOL6YXF2OtgVBkQRpsjW5JVVlSz8ekyvTmrt0Y7mVZpnS1ttbL86VF+f6V3Xt3n1ntYwd2t7bTZYawuX9//uUvvfX6y68xUnManI+edLoRRnQ+huGwtViklLLhlTLNMmTYYmze/vL+7ds7jz/jb765h6DTCDyZLcGwbOE/+rS6+8lkeiF8x+fOymNef1N99POj/d0rWxvO2mDTceX0XK+v+Vevh6sFPHowvv3iXru9kfQ8TFCVeVev9Yqi4V7TarO6wWHor1bLVost5lm73bWgOYeyypKuffGla02JP/0ouzgjdQlKaT+Sq2WeLmtrSaPOu/GGF6addrS9de3hw3HU5uvb/dUCzk7Es+fPx5Pm2ZN5O/GyVD05vNcZUk6julEvvrxvteMGOJ3bi/Pyzks7UQSPHx2srQ2EyjY2XIvL9S0oirq34Xz8/vT2axs/+3HDGKOIaw3G4MsbG0KA/027zaWwQghhjB4dH6xWqVLKWtuKw3feft0Y9dOffvjHv/fFjesvX7+dVM2o3W6nM3r0bD66mEedRCqzWArEaKXEMjeLvPyH/8V/WZRNEARRzAgBRvByufQ8TykV+eGgn+ja9tvsj//lD+o8e/uVO6qoOKcYAee8qKu8qglhGNAlBx+MbZqGAFpfX/+Xf/B7Fxezbi9G2DaiMmCttRZhAEwQEEKaWhJCWq3k/HjqOM7J0TEAXDao+r5LKTYGkAFQGCwGgOOzs9lsqa353ve+wzgpy4oQsr+39+Uvv3N+fmqt9X330nEjpSaEEAwYIMtS1+PWgusyhK21tiizTsehDBOKOQufPjmmBMB4zHU4p2EYzOfpx5988vz582vXbrTihLMgSFYEvOGGc3GiX/mS9X0QNcOEMYe6Lle6FqJJEq41SGHPzs48N1gulOe5StfLeem6ly1dVVVVRoM2YC1YZJpaSgFFNXU9XKzwe+8ejMdz34stNIRJypBSoLXGiNa1sAaCwLNWT8cVwtButwh26tISDE0JSZIURaa18ANGGfT7bSFE1Go1qmqqssqbuOVqrcuyrKqqqiAOWuPxRdx2pNZpDsxxAbMsn16MjluJr6QGUhUrxw9QWeLBRvTZF2eHh0dhxCilGIjSpR94nDlSNkpiz/GswVpha4jjkv6gm63qxQQxX+W5sQgOjk4+vfvBxg6UVaM1evz4MOlE1mCM+NZmTynDGCurBow1Wksp2+0WJWCNYYxvbcZWS6vASGCOp6xplMSMOY6zWsDHH92rZDqfl8ZixCTlrmx0t9uNYvfw6IwQAEt5wNPV3HNjJSFJgna7DcgQajc2Bkprq4Egyhgqi1oZcH2slLVWKQlaMmmAEFhMm+4Qvvmda0VWWmspbl25Ea9vDLmrg7g5eqJa4fq1azRbmLrJCdWDATkfPYm8rd2r3nxexFG31YoQqT/+6N6Te5WsvVt3Ntb6SRREFuhktMyy0bOjg5svbCyWo+Pz9N2fnUzO3CeP5Xh8vrkNW+vo9Zf2k3Zx7Wryd/7uW8tz+N5vvvDo8/Oe/1o2q154uT+Z5KIB3w/TZXP6HCYX8uTkeLiexLGvTHn1yq3rt7qffSzcEBAKKKVaa2v1YNA7OTnq9XpFAVVVdLphp9PZ37sFCqx1PNcHBFLCl762Nb5IEVBjzDx7jEz7ja+G7/34yCgHY/rscAKInB4v9/YGv/bNNzD4eV6FYcgYYgzv7u8IoVd5VlZFUaiT55XvOWU1chyECXry7GGUkNPjc9cF3+tgChSHtT09O1smnej0ZA7ggOXWYowoAGAClxPVZU8KJZgBoMsfe3t9zrWoGwx4tVphDAjZl1+5cv1W/wc/+OV4lP3Bf3dwfJhevb7W6VNZDqy1fgKnx4ter0eoXGUwX2XAQVuCCHS6sVb1ZUCVEl7XVV2WnFBjjOfh4SC688KV4+NTTFAYeGUJSimtbF1pSjljHAMKfNcoGYcRZ3R7e7Pf73oOFOXKSHXZhWoBl2XJGAMLoA3htBFSa72+3js+XPa7g92tXlmWFLMkjlyHXm4KjLFaW4TAWnSJs6DM+fa3v900EIetOI49z7u073meZ63N85wxYqyyVjdNM50Uke8RCr7nUIqVEGGEGqXnM9HU8vxseXIid/e2frWYQ0jKptVxX3nlBQP6/v37xpKoxYU0m1trdaWkKjc3u5QSitF8mWuDXN8jBHNOd3Z2lIIsKxAiALjMIIz8KAowchgjCGmpmrKorSUGEKGEUiqEYIxevbaBaFFk6Nat9V4/WMwqz3O0aS7TmFprQObScUUIk8JmC72xEadp1jRNXZQe98I2ICDLRU4RaUTRTRhYK4RttVqX1bNBiC+d+7WoVqtVkiBGMcJ6uNYpi9oCjCdFmSE/cJ88fdCInFHSbsN8lDsulUo7Eemvh7NFFoZ+0zSUctdjxiiCuFbS5Y6UoiqKyThrGh23XISsaKCuIYihqshylWZ5k2alE8BykSOKpAFrbVU1Z6cXlPJLxzXGEISe1pJR2+kFCCvGyMXphDGCgCBERKO11pxzo0E0UNYLzsPDZzOlRG/QL2sjFKSrqszh1s3tMHJm08JxoMiauIUCzy+yPAgcI01dC4TQfD4+H59wB9bWIgDAiGLGPM9njBGAOAxVHWTlNPCQbCgQMVyPzk4W83TMSNLI5UcfHJyeHQ7XA9HA6dliOq52dtrj8xRTiRFdppo66vd+70etrhuHcdIO4jY8fngqatyKB57PETjW6rzIrl1r/53/8Npylmaj1icfHfzyp9V0ogGrqFN/+avDnZ3o5TsvDLqx0aPXX33xs/eXuubXb8aiZHFn8skHj27dSQiCt97pbW/tPXuymC5OOXd++bPz8/HSanfnWkdrUHDe7/dlw9796UPmS87d0WgURgEgI2Sd5zmlIBqDkXf3i0ftbgu70KiZhoZRXqXAfHF8Mv/807ONXYJheP3F4PPPzkVjsyxnJG5KqIXu9ePNjZ1PP356dDQ6O879ECVJZzTKpsvj/as7RnlBBJRTrUArwRhTEkex88ZbW0nSEdK6pFPkzcZO8OzJcrgFVbO8dWd4ejwHcAjmvwokX07KxqjLmfHSWK+UqUpRVfKdt25vrfWKdOlQx6WutdZY5br89ovb73zpellLjOGzD1dPHmSttluJUb5YXd2LmhVki3mSEEaisqxd1/U8P03TS3ZAVWS+41ZVFcexRWg8XUgjDDHXb78wy0ajaUocSsllnhpJbSwCjGhZ1AQzWZb5yuxube5ubY5HZ1ubA8ogabkYY7CYEGYtaqQVylxmbLXVjNGmaS7Op7/5vS+tD/uL2RyMZYzFcei47PIdtYZobRAGrRDnvK7E3bt3q6rCFhBCcZT82Z/92XJZX1IeEEKe59W1Rshaa7MsAwDPdztJLGXTikKtAVMmGywVOF783nsfv/7G/vpmP6+WnHPMsLaqaWqLzJ07d5QyR0cn83TeiW9s7LDTo7Lb80UZrVbaC7BUVhnLqDOZTCilnue5LkhttYJ0mWNMAEAp1TSqbnQUB47DrQXA1FpEKKKcKA2+75+ezNo9ogRxPXT7pX5VKoxpmYNSyvfx5b4VY8AEpDBKWYLdJOHHR1M/pJRBXYl2+7K8nAJQpEmr1RmPltagqpKYMK0vNwnVJcVaSjnsd5um0UYs00lVa8+lVvPVSvu+v1qt6lK1264SYKwizG90WdaF0AIAW4wAkaaRGGxdVst5igGKomh3Aj9g6QoQgo2dIaL6Yjx2PCuVkYoEsX9y1kzG9dkpJEmnbvJOx7VYMZdpZIAAQrYoszDkSikhS4SVVLk2lVJqPF5mWcGYYzRYA3neUEqtxUUur1wP251Y1n5Z6LKegEWrBfSHYeyjpIOmk3Nswfc9ENb3m3SeWVR6AR4Mu9PptN8bTqfzslTtXhyFfl2LupZNLcuirqqGMWSMqTLpe6AVLTO1vecg7P7l90dR7KQL2e3zahUcPR+3Eh/ZaGMHGlFii1tJQDE+P8+KHEftcFWWF6PFl7/yTrfvH58+PX7WGKsPDk+EHj+4e3J+3iDAWsuNjbUsA4SQ6+Ivff3ai3fY7/zm20bAKy+/QHmZNefcD46Om/HySdxmf/Av3+utBSxIDx7yBub37s7WBledUJ2PDpQGxjFzcVmbMGGTyeTiYhyFvjaz5XLOmDo/xtyXnPOmaazV3EHWSgDjukwrfFlse3FxZjQgai1oKTTl3mQy2dvfiHtgTJxnlahR6A6NEbOJRAhdv7a3v+9nq/TJk8+sVpzCcl6lywoR5vheFEW9Xu/g4AkCYIwYAxdn1hjodNyqwI/uz8o637sWWAgRgSyFpikvTutePz49PXdd1xiFsEFIWWgAQCvAl8ZDjAEjihC2FmltldTT8fHWRn86GjuM13WNAeI4Go8v0uwkT+n1a+u/+Tt3btzxFov0yaPpfCI97LRbOODR6GxGsNQNIoTkeU0pzXOjtAwCXymltdFa93q93tpAWfzKG69gRqW1ucwKaS8W45OTE9clhLMiF4xRPwqFAEKIEGLQc/b3dhgn9+4+CSP/yv46oZZgVlUNAqKk5pyVZYkQMMbyyibdjrXGGDg+Pg6CoGlMEseU0sD3OacI/apNVWsLAEKpPBf9/nC1Wh0+O+Ic6lo8ePCQUnr16rZSwDmXUmojL+3cWtuiKKMIEUJ6vV6eyySJCQULtCm1tiAanS6LJIlrkRIqMcZZlhFCEIK6ri8uLqZTuH79+nLCvrh3/8GTR4HXa/JBVox9H6Sw2iItwXW9xWIRhqHW2nG4EBKASqmNQk3TaKNEoxwHOGdh+KsKOqWMtgbASgmc8/FF47iQ5zV3dVGf9nq9VVqGQSwa6bqeMaC1JQQQgroWWiGltR+SXjdkDGd54fmO6wNCGgFPl2WnPUDAqhKsIcs019o6LrZGeT5HCMqqIATPZrPj45P14aCuS0p5USqCXdEAJZxSurHWroq8025zB44Op1GLFrWsjTBAKKW7u/taGW2kw2lVNXHoaQNJO5Kyvn49fvmV68Y2UlZVVXkhgGVS2PmyDAOcpcbBsZSKMEsdTClKV3OlIAg9AMMYare7RVFgjCiDps4clxJCwiCwBmFEy7LGBNUNNE0jhSaYv/jKnkX56dHy2bPz4Xq0XNg42ppc5EnSCSJomsL3vdWqAotv3t7e296j3ChdBYHned5ikSoJjCFCqDFaKUAIjIG6rq2FKGqVZYmIlAIWM9nrR5TZqsCdpAuIUYpXSy0aUeXI5W0L5c7OoJLHsqFarVzX6/e2AEKpFWXoxo3XL6afHx1OOPVfe+2lGy90XnpxP4paRZm2Ev/mHZ/72f/rP//IpaHXWjIcLqZGL6MHHz7rR9EXH3+6trbR6fbWt4demzI3QFylK1JWSuEyrSZScmGyJ0/OOfP80EQx1RZbUnWGJJ0pBdlsBE1d+nwPOefcsQhcrc1lv2PTVFVVIHxpNmDpsmi1CXfQ8fGZ47t5ppQEP+BKVtYkrWGOTcwcuVjID94/ODgcAbVWkpPzA2UX3c5ANHZt09+72hMFeD4/eDylDPuhVcqdzxdA8roCA8362qZqQInGDerVnB48UEJVjSjAPcqW5PhJwT2bzd1slhw9Lza3+haEhcaCtqAvzdcYAKzFmICxBpBkjDWlt74VnY+W3HNzsZJaSYEbgSnFFueroiTueV2URTF7+0tXNrbBKvBDOHhajWbNxg27Wvq6dnQjPK9xPF4XZaftNHJeVZbxpKynnNBilTmoch09nT0GFXGM5+NFp8eeHD5flhVydNPUoctBK6NKyggQtUzT7a2Xuv1eJsbC8kW2dKiz0YVK20ZpqVXdFMhol3NKiZSGK2i3a4Mqi2GxapJu8uvffnF6vuCctuOo7YcUQ6N0ZYx1iUDAEcEY0nwe+LwpU4dBlk8HW521tdZ8eYoZaGyo41qDrQJQyBhQGgHxyibvtCVTbrtD4tipixIIVwKkDjmHdozazo5qDEiUxJZSU5VgrU6XAlkIQga2uXPz+lqvd+/+3VU20QbW1ncQY+UUOR5uQC3LKvC3VtkhwcJjgdaNF2rElNZSNJYQRgk/PV5cLAtprBFNxMEjkOWLje1gkS7z2l/manM7fvpgnhd2sBUQwrJsRYGDBowYQp5CoBEoWc/O6ngot4bra5FD6jwKIKtLx10v85XXkh4PCWLL7MQL4rJmpZwwRhgj7Tbpxi5YKMqFBiYkunqjp03NqW9MGXqhsjUN63/5u9X5sql15XkMa9vvo6oCrYlsFGo8C9LhxpQEwYwzXyjmhx6iFnM8S0+4Q2N/FdCcS5+gONNapmjQoYTJOgfP66ZlZujq+UHZTwZUyFaPVMKpxxAxtzG0KiAvZoyF03llMVHWEuLVtegOnDylTjStCmDMCX1wOcLG8X05Oj1silUcxaNpfjaxwDDgMUdw+9rQGpJLZ7yqRAN+S2XL5mwyqmsY9gdZmjrcPzpeAPFXqd0cJJJVZR0Ik2AHamGtdgAvZYWLxs9L8ELodIFj5HtNq1fmWYlAc+wClk2JZMlOTu4bTbTCZVMzDxPq9tecL3+7vvvJOOqop4cPP7s/fvQwm5ybeXa3FNXz4/T4ueoPeDrJRA7LkcSsDFuD/Wu9za1wcnLg9cJFnVG/fXE0uPf58Qc/PpuejTf6EbK1aZjRzfraoJoKLoxb2r/3t76hSTmd+GG8u1qVvi92hrsuhl7PphOurextgVANRT1Gw8EadRyHu2I2og5zjVmutXejUJvGdz0zX85c19/otd9+PVprg4OQNRVY53/y7/3aZnsY+J3pTGlarTJguMUwA9DZzBeNWVsLe11+9rSuVwKDpwov9N2L51IrWolJmmcb2wMvcqwhpT7t9npHx7nQdrGctzrK94H5wHDv/GwZJFDVAETNsvPtq95sUhPsW0MQIKOxtYCQxf+aZnOpolgAY61mjCStbl5WjuMFQaC1uRwoAIBgV0gchJ4U1kg1GKDvfvsrV/cHUjWTSb1Y5NYqz3MRskrZMPQZY3ne+L6PEBKidhzHWut5HkZcNKooqrW1tY8//pgS1xpSVxpjhABRSi85C3leuq43Hs/XB539K12Kyb27T7hjj0/Pqoq5YZCmKSGEc/5Xw76U2nEcgnGSdKSU3GWU0u9///vXrl8Roo6TdiXkYLCmNUipHIeBsaBBGo0QlGXlum673W5qcBzX98I333zLaDAGPM/L8xwAXI9RikUDhKA8L+taIEItqY8OZ44LGBFMDCDIspUxQJA7Gl1gRIWS2iDHcXzfUcoIUYcByVZpVcqNXQbWa7cGUovHT54Mt6ApAz8xQon5bGE0kw3udoaMQhiZuq4551FElYQir7WWgIzj0izL/IA7DgzXO47veJ7nOA7CGpS2GlwXAIBa9/T40PMRp1wIHLccZaUqKyMckKjMdbcX3ryy9/Dzu83q/8fWfwbZlmX3feDa7vhzrjfp82U+7+rVK2/aN9qg0fAAQVA0IkYKzZAjkgpKE6GQRhOaESdCjAmO6IYagCRAcSBAoEEDaHQ30I3urq6uqi736nmb3l9/jz9nu/lwqwoAQxn54b58mffue+4+e6+91n/9/vGFU6fmaoGhIBlNa5U60tI0zSSJDAMImenybK21YVhBEMzA1EJqynCn0yGElWVpMIsSimgSTkvbrM3kykhblCEAqDfNNIKizEHbcZxhDM1Oc2/vwLKsmeTLMKiQZaNuBfYapkWrdnEyPXJcEk31+AQopdNpeun8MiHQP+l3Oo7jeHnOo6TEGDdbPrNKhEFIbhjUYBIhbJomIyyOUs55nue1WkUpxct0rtNNk8Sy6Lnzc3leAMEKwDaqP/szPx1GoRJ6a/OQEpZFpevgIPDCKFYSaYVAQyUwy1IAgO2gvJCmLZKkUGgahfnySkCocbSX8DIJxxPJgRJMCJlOIU1BSp7n0O0GRVGkaSFEGQSB0sp2cZrItbX22unOO+/eYaabZCMpSFGioiAHe4NHDzd6vRI0OzooeifhufNrcT6+/vS1/Q21s5kxK7l66Upv1z5/aXFhsen7fnfezMX+qK+KMl1ero4nx6vr1eOjYSEOfuYXLz31zPzt96KNR2OXtc5fml9dc06daj+4KRHAf/Pf/wxWF1ZWqge7e2UxLgr9+J6cO1VOxqRWt2ttnSfF4R4oZTmuO47i5ZVOmQGXwvZxwXPHsSbx2DCDKBukCXLMeQ1FweNOt/7cSwsXL66qkoFSOQ/WLzU3nuw2qq2VhQZwKNLcqZTUgizkurQePrzvV5jUsLl9WGuD0gkz1GTaT6PYsT2C2YP7WyvLa4AlxUHBR8yE7Q0V+DU/cE3muKa9uzVoVJtFCk9dXSvL3DHMNCySJBFCzLheH7Mb8McsbABAWGuQWkvTolzAeBROxlG3263UalmWMWYksWAsSBN+eNwHTUaD4bNPX7zx7hvAp9Wau7bWabXdNCsJ1YaJsxRMiyIECEFRZJZtKKXG4zHGBCE0HITNRqfRah4c7K2tryKEkij37DohTCldlrwsBUYwa7b1XL/qB40a29x8UmQgtMgK9XhjYLjOZDL5uO+aEKKUKktQSmiNMKKDwQhjXBTF8XGcZtHpM6f6vfGF85eG43FRgOOYZV4yTECD1iABMEYKNCFEwYdE2OFoohR4rpknue+4SVKWJedSGgaybEaoWeSiWmnOLbLRcZ5kRZ4ppQqEDF5kc/MV16lnPGHMlVJKiUouENJ5nmst2+1qloQXrriy9N97a//CU932POIFev/t3cOTe51usLTiZFlWZPi177+XJUVQMYWOqhWfMWaaBgJLSapBUIaWlzozpiGhZG6+ZZgkjlOEUJ5pRlEaATPAoGQ0yCgFBDIKaVqGpVRaguE4gWcZVKdJygvj/u3til/94ud+7K//R7/8ytNPNz0rD9P9nZ5lWSVPHdtQEoTMKtU6QohQpBXM5N95DmWhOOfVeq0shGUbZVmunTrnBQQhGA0T0yn3d6PhIGGMYCIJK0GA4BKDjzBQhhzH0QCIEr8SpEVqmoxSGoVpb7DnsFPjqNfpnH/xlYs/+O4TihFCyLGdfr9vmTbBBqU0niRaQ6+XCqmJqZLsxK8ApZRiRFiplJJSTyd5vd5gzGTE0FqXedFsBCdHPa0hL+LpdBpU677vprkOp0UcFZ0uyjKwWUNJWSTQarl+1TYMp9+Ldam1BsOwK0E1yzPP8zAmlofjJLd8fXySzi11To5HWFqOAwYlvACtEWAUxpBmqMjKWp04jiWEIAxxKRBCQeDkZYQIbc9VqSmyVCgFzNKEmqNBYtLG8y88e+nyeSStxcXFS5fOJlPbdRquDatLK1qYFddoNionxzv7+0OFxrfvbM8t2mfOrlGjrNVa03HeaPtlZmVZ0VnAc4v2xj29drb+S3/tyuIp8uD+1vHhTpaKt15/bFrkuZfnvvDVT/z9//evPbj/eO2stfV4fGp1uVqlccgbHTkclJefajseJgx++OadQqIzFw3TVjbx4kSdOltfXV88OoiFmiRRadiQZqgsVa3uZFk6HU08l/guKwtOGf/aH33j7fd285TwYiBzjTS+cq3d6TJRAKV2nmlK6TSMDWY5PnOqHKiQirueMRym4TiqBTXB8WScPvXUheEgrDao55HAs/qD8f5+7FXsJFYGtV2r5jroyuU1giDPyjhUM3n1DGPzcc/yn40NFUJIa6VBMkZO+hMuEWa0Nxi98sor29s7SinLMqU0bB8fbEvfr2VZoQX7P/5nv5yMCsMgSqK5+aZlw3AUAki/4kjgaZo2m4Hv+5xzITljzHVdzkVR8Fn8V4iMMmRaBCHQQqZpOWvqmEFVhRD93nRt7fSXfuwLDDs33ntPa+h2zz54mAzHaZIbs97hmdMeQjNeGSglNZrlLwrTtPOyWFmtHh7uzy+0TduZTuM33thYP1XTklMKvOBYAWiQEgK/GkXJeDwxDMjSYnt7t1KpKaUpZoHnHx30Ws1ACKAMDMPgijNq9/olV6oz52HwXReAA0LAiIUAFua6+3s9reVonKZpajCbEGw6NAzjssgqvmGbLI74weHm+gXyw+/f5Vnd8nW9HrQb7fEo7sx3Do8OTNMEDUXOkWKtRgUAirzkIktzWQpEqEZImxbtdFpS6lq9Uqlalk2lhMBzPQ/KIreoddwPsYmytKhWgjBRk1BEKSBk2qZfprwsYtMEhKF/0nvm+gXTtu8/fLC1+aTqmWdWFywDms1aGKamyZQuGTW4FP3+kDBTgsRAABRCmhIgxFAgDZOUJdcKtdvtMBpPJ8JxmeuaezvR2lp3OOCgbK+i0kQxixQ5Hg2nWoFGejDoU8o4nzVEFXlZKKUEh1rDIgQdH47XztS//rsfdOcN0CzLS88LwihL4wxprURBiSUEHOyHUayyIh1Nj6t1EyOW54VtkWq1nufFeAxSal4IhBAvSoL0qeVO4Pp5CqYJ1KRRlGzt9H2fTSfpH3ztG0A0RRCFpSqE69lzc5Xj/nG/N4pDMG2XIJzGWVkKjEEK5Lse58p1LYQNwwAExsF+zyRmdw4ada/MiVSylGVRQi4AE/A9ezjq27Y9C+SVErZtZ5nQKBcqnYbjZqfKGGPUQljt7WbDydH23pO7tzefPMolTN9/91Gewr0PdsIBBtAXL3azuBz3U677n/qxbhTn4wHUO/zxwyOKKVf9OFZKF+NRqrhj0tb7b/fu3d34zX/x3h/97sBg7pnV5+ea5y9eXDQZNkzkVeu//Mt/9zM/tVhxa5ZNtGDTAa7U8bhP5palkCbSRXeuZTA7L9U3/vBOrVZjRBqUhqG69/AOYaVpzHEBeZEb1NSKTKP9oOJKCaAsWVjLC+uMwuKyZVftH/zJgWl4DHOHqZ/9mee3tvaqwcL6ek3r6Pho0GwsMIq45pMJn5/v1qqVZn3eZFYSQjTJxuPx2qkzDx/upLF+7vkrSpVlTttdHxFAynSDYjzlvV724PEGYfikt792tmk6TlGAaZof6mn+vLv8f6g3nP23knh/78jzvCiKojg8OgIlwbKsjcebjZZJDLhz91691jrYmy6vdC2jXpZRNMkR0qYFng8SyekkZQae6aht2yzLHCFkGHQ8Htu2W69XuSjSLKIUDo52DRO1mhWtMwQAgKWUAKreqCCkixLCcPLMM8+99ebdSZgtrnYnI8Q5CC0ePjys1SpaayHUzLgdIWQ7aNZsOwmnSiOMcVmWhmkmWdzrnXSanX/8j//xX//rX2GMpKlihEoJUgIAUhI0RlmWTcMQYwCid3e333jzR4yazUbj05/8zIVzp0eDEAA0AMZISp3mMkogSwtMEML66tU1SjFBQEAGHml3mltb265XDSPeaVYsw47CTMrSYFatVmWm4mUBvOL4/NyluufWHj0YlQUIFTebzb3t7IMbW7u72+12Y2W1kiVpHOpwwseDseSCGbosFC+l4yGKyXQ05kUmSk2wTtJRyRMlII2zpTnnhReXWq0z1coKYNxoVmyzcetGLJDKYpzEpcYRIG5SlsQQVMgrnzmf8uz2g917m1sPtrbswH7hxetBYDXrQb3qaxBZliAwmi3TNG0p1QwDwSgCJDACwYExykWW5WWaFpxzLkMMpNkK6i1j3AfTBkKgd5wyK8tTaHSIKEkUT0CD4+I4CfM8N5glpbQdEyGkJMbacBxwfXT1qYvf//4bu9sntuk0W6TesPb2jldXq6AgS3lRFr5fMRxIIjUZCV5ihMG0GC+14Ng0bUJpFCauC5PRVGsNWjOCCEF5Nl5ZXPN9WFhuCSHCKHMcUEqNhsmXfuLTn/z0BaUAawADqhUzLyLbtQ+PRyBAaUGoIgSdnJw4njHuhwhBmZnEUL2jvDUX7O0MNACX04uXlpQuQCHMoCg4L0Fr1Wq4s/ijWm8SZlaCGqUG55wSplGutbBMr1IlrmvmMWhIa7UAcHFyFDaarU9+trO/v9s7QF5FnD6zoiTr9XauP3uqzME00MpaEIbhez8qK5WWlPJgZ1Lxu3v7o3aniqndajULPlk9Y0ZTeOlTc5/8YjC/Km6+M37/9o/ef/fB47vDyfjEsMqv/uQXDo6LD24eeV4wPgrOXGg8uHs43zon0Eke+wsL9u7WoFZxhcookYjTve2TdrstRM5M+uiuUjqLw5FnOkKC1iA4MhhOp+r8uZUoPa5V5jVCrQ6cP3fxre/tIMLycpzE5eKK1+xkPEOPHm9blvXCK2cRgcFJxqijtahU8HRSDofTg92Bwczlhdbqytk0izmXl68sbz3ZfPzg8TgEhWAc9Rsdeu3ZS9Wmv7x2+ZOf/cynP/vZZ194xq14tUb98PgIDGO2AsrZJFZqtvr9Wd4h1lojhEHjouCGZZ/0Y8oY58XW1saFC36chJRSggBBeeXymelEM9vHjN67/xBhs9mq9U4mBKugYnMBUkrQ5nQ61lqbJhOSAyhCPtRRSykdx5FSFlxEac4YQ0h3unXbwQAYNJ6ZuNdqFc6LpaVgGo7vP95cWFw3LJymyXvvPKhWfUKwZZizw/+MRaH1h0YHXBSMkTgOkzSRWs0AqNPpFBH87//91+Jp+ONf+pJSCiEQQhGCCAEFCGMYj6dKwszDwLatnGd7h8MP9WIazqyvFzm4LhUalC5nYpdKFVmOnUQ6TkYgTNczRAFaJwvz3YrnK8WVNJMUKr5jGbbvG8xAcZpNo1ATvrA07wUQTopxzz1z2W91SW/XxbpCjbHKmefhajXonRzUGo7tmLIAk9paAsbYMIFSqhQQqg3DEoXCSAW+iZDGWFgG1iUc7fYvnlvvtoyH9+9vbx71e0mrWUECKBDMtJKodzQ2qe3YUJT5+Yv+c89f7Q1GDx5sIwOk6UxKrgi6evncqy9dn46O6rVmGicIg+S03alWgvp0GhFCGGO2wxBoLSFJkqDipHk8E7rHcex5ltbkpDccjYaeUyuKYm29Ox2XCCstDcuRCCutJUKG7TBEYGat4zhOmuSuU0HYTNKSUhJGI8sxJyM4fb7aOyqDRtHuVKUEPzDbnQA02BZwzikFP7CTCJJImYZlGARRxKXiQmZZFsexaYJt24wx02QI6U670aj73//em7VavdOtHR2mBEyCCNJYA9z44O25uTVMQSFgDMbTiedWR8NpnmqQwPPCNMC0KAAQgnzHtRk9vXpuMhoLTgxKosmk1XRXVp3LV86lac4MYIwUOQgBpoUoBs92GvVWUZRlKcMk6fV6RVFQzBbmK0oW3Xan3awkYYQxNU1oLsjjAyOalrVOIgTd2owp0+2uv7n/QbPLTnqHc91FTMGv8el0ur8lsWaIJA9uj/2A5bkwDUPTGOOgM+f19qrHByUA9Hsj0CwtjueXzZdfvnrlBWbYqYKi2Wz+l//F/8dgVn8Yb23u7e8PxuNhtaHf+dHDy5eXB4eoUlNlCQiLTgt3m8Qh/nx3Lklj0zGB8ixkSun5RTbp69Xlau+kUAofHUxFST/xyRcLXihUuL6/dOrUH3/nfQCLgPtLf+V5v2bs7Sbv3rjZaAedrvPoyVEpox/74rW7d45M08ySgpd6Mo6yFJIkS5M4CtNhf8TLbHNz+97DXcMSk1HRatRNC6Sg3e48MZLpkByfRDc+uPX2+6/fvnPj3bffu/Heo0pQAyg/XgE/6kgGrfWfo79qhRAQAJxnXApVrVqe5+0d7s3NdT7zmU9NJqFpmr5DXLOO6DTNQWtjWuzWW/NOnRRFJjiUZRnHmWGAabI8U4hAlkG1WjUMQyoxc6VotVpJkiCE8kwkMUfA8kILoQLPQiDDqaKUWpYFoBHWYaQd12y16r/6L/6Xz3/5092F+f4gWj5VSaMIawQ6DsMQIYQRUQoIoYQQIaAshe0YgDRCYJomo4Zp2pRShNA7bz74a3/lr/76v/jn9VoVY0AEK00AG1phQCSOZFYWCCFMQYjStq163QrjfHV5cXVlZX/3IPBQmgtKWMlVUQIi1PMCpcTxYV6pw52bWxXfAg1eBS8szO3v70ud3r61QQisLs6VSQZazvZ/wIgQjAgTopyf6yqJtjeHvZNU6dz17CTEgIhpUdNiSZJtbx4JIer1GiIpwQYBMuukFEKCBpMaZQFalQwjpHlZxEpwyUFxqLj27qMNiwhV5LgwdZYd72/ZxCRYOR62bGM6ymwLnnuh2563bt7+4MYHR4zC/EI3LnhUyKN+f2938/LZ9dPL7d3dfcMwENJloaUU+3vHZaGElJ7jmBaVsmDM1Ao1mtUsj6rV6uHhhDGmJK3WTARAiSX0OIlEELi+XzGYQygGUIadFoXSCgGSAKAAc6EQZZMwnE7jKCxW12paWgqpP/j3N1799IVeP0I01Von6WRpuS5FUq9WTAPanSDLEg1gmUAIhOOyKLjpUsNEk3BaKj1LiwMApXgmpiBY12oVwyZJAu12e3PrcZqC71WRQmXCMTGpQb7+B6/lGUgphQDThSJD7763NRwlQAzLgVrDwIgjpC3LWpyrd5qd9fWlOFLNhpcmWavrdNrBtefXJtMYNGAmBQfJMcGAiZa89H1/Op32e8M0K46PhmkilALXNmtBazwaLy810oSnaVoJqMUMDdx3m9RCYTgZ98mPfeEaV7A0f+qkV1x56qwUWGt07pJp2fbOVra02llcXhlP0i9/6Zf+zt/961ubxyarEeQNBxPDzsE52N7bYKiWxqjSkIf7iWmL3ePtoFoXpfv0Uy/+1b/6c/OLHiIYkE2ZpUnS7+XdJZTm5XtvHX/60y9mSVpr1o+Odz/xyjNPX13h+bQaEKVzwqztrQNE+ON70Zmz3eeeP7e1MTm16pdF32bB+Ytrb7zxBiLQ7LS2dnbvPthhDmCRiyJbXV25eu3pu3fHS6dWTl+04pBX696NDw4P9kY/87OfwjSjFJrVTqPunL9cXVhs+hV87swaBtXvi3a9/dxz585dWPYr5pOHo+Wl00KI997bfefdh++9c3CwfZwmEda57zBVgC6giHNGPrIM/Sh1+GE8OHs0+6fWCAAD4KLgXKpZk41pGqPRaHl5GQDCMLx04ezxfuz4ZbVihnFCnOLWvceLp+qgdFEAYywIbNdlhmEAwrMs3sbGThRFCCGlBOd8Oo08NzAMx3MrGLHplLtOkGWFlNK0mGEAIawoirIEx7EsC4bDPqFoa/vgrfe+X2vUEMaE5YiAbXpSSaWUZVla6zQVWmvGGMZAKRRFISXYtsUY41LEcTw3t/Dee4++8pVXrl27tra2dufOpmmishSmaaVxOfOHRQiSJBGSW5YZx/EskW9Z6Pj4uOL5i3PzcaRNw1BKYQoYsVazowEPx8PpmL/06qUiBQ2cUJjrVFuN5v3794XgB/vhpSuX67VKliQYAyXgeQEhpOD5zITPNJys7D+5H6YpmJ6cjKa20QHCDRMmk8niwornUVEUYTTQOpNSm6ZpmDC7pStV6nuVKEoVLxmhlcBLs0hL1WkGly6cppg8e2V9dYn5DkTD4tmr1/7ef/e3VZlDqVXJeFGunKIvvXweI3q4P41ibfvQablKqf4gnyaJ1ijPEtdAV8+u5zkvy9JxnOFwKhWv1ep5AWmaI4SKIoviCGOslGaMRFHieHajYRVFQbBFjNSx3TJn7TnaO4kePtzAGGtpYcJNw601CWjAmBkmphTneT7TQgdBcHA0nU7KWqXqVcTBlukHNiXOwVFYb1hYG3mZJ0miQbTazVa7onQZxXmn68dp5jtOmesklszQQmfH/SPbtuMkxBjXapWyLH3PwRoA4HB/N8uSleW5OE4R0qurXr8/PHfmrOM4eSkBo0EvZ4YhpNACbAd8v3Px4hIv1eyGabYqjUYtDFPP80oe2aYVR0eywIhkacxrNUaZbHXc73/vLYSolJpnCiOXUlIUotlsGoaxu50TZjBmMmacObNummanXR8NstEYFpcb779zu1qpUJoLDpuPZHt5pJF+fBvbtonYoOJZUTwpYms8LpSy4mS4etod9nka2gunk92dJ6DBtu1bd94iGDzPO96XXGWN2pKIAh7Oc51Oxkl7jszPN3c3pGEY3/tmsrN/8sWvXP+n/+i3nmwMzlxo1FpKofzS1YVPfubCF7742U9/dvF4D/UHe6dWz1guWVzqFlnyiZefDmzSqBElcw1GGZtnLxMD195//8H5K8Hqit07TNbPVbN8kmZH/ZNwoX15NIz+3b99c2HxVLWFu203qBb/5H/6HZ53CwGYCdtlWcbzjGsJDx/tv3fjzctX11cWV9K4EGJqu3I47teb9uMnd6fT8cVLjcFgHEVRkfPuAtPCuvn+VqvtYwQiN0zaysKsf1S2G5XL584FduWnvvTTWkiDwCw2lFLODssfnpSllJgoLQ0ESkMJGgjDo4nQOnQcZzKatpqVh4+2h4MYIQthfOPxrTSFwFj2LTwa32tWzt66uXHq1IUsT03ilKUo8gzreqWO8rTAmM7Pk2bLvfUjpZWnCRI454qVUmAbFzJqtypUsZwfp1kxjXLfrUsNmBgKRJSAQppQw3SMh5sbKxdWf/Nff22peWaltT44LgwjKMkIMAHNNOFpGdlOkGWs35siQLIkQkuCERJVCphgXqt2x+GT3h6eP7OodXJ2sf6lT12NY009Nykz2wTABSitBIgcUcI4L1zfk4hpkTi2tXc82DzuSdNUJkiQAFhxulSvX1y3bRe/e6OntKj4XiTz4SC2GCzON4qiODjSHIOJ3LnqGFMCLMZQwcjOyhPfdbQSeRo3mgtKsw/ejpw6mK6XF9Bo1UeDXbDkYqc6ORRnVwKLNKOizItcS8e3eRDUlTazPNElGGApamQGKjhxKhrTXKa0ata+/LkXP/HKtaOj+O69g25LXF4z/+P/6JN+S/9f//4/5LpWb1mOEqcWjQsXauNob2f/cDjCkzHI0tQWzXjcrEM8mQC2DkZJKpHpOa0G9is4jo0whHhi2n5eqYDg9mg6LMqUkXavn3UWcJ4YwwML0+nRAS8V0lS7nlfkQoqsUTMW5mD7gT+3hrA9Nk0zDyHpWZ7ZUCimSOcpMSwbNFFC2NTSBak2aLXNDrbN3uDo+qv+o4ejwDIl5yuLdcJbpskOj3ONM0SnzfpKnkOYxogCxljJMk8gE6PhZMqQRYFMRwhR7le8aZgjZCcRRphXgrYVNO4/PqLmRCtiWZZWBiNmu6pcLAiiudCaCKwFBdO2DU6GN++OmEVBF82Gx0uI4onFYL7VGOyg8xdO7x6M7IqKQo5UxXYCw7e+9rXHG1uQKsEsL8m1gsgyDC0AITQZD1tVZAhndBg+9+wqszLCzBLik9644taEVsNhNrfQdfxulPeQBiWcZr2ZlmpjZ++7fzyxAmNSblY99PDh/QvXV773w1tpmh88jJ+/Fiz6XeBgGPDu+689eLyPTVA4Gw3GFnMQaGGEB+NDQhugxJt/YLXnsWH5hw+yU6ein/vZaxsbG0sr8+trKwdHJ4NBioh19+4RNqy33vmTar0GUPzge/e7rbbiSJWG71Vv39t69fMXqpXFSmWOEr63Nap6C62F7M67wLWstmwhcBTFSuEkI/Pr9XEe/vq//JHN3Mc3N043Tjc6dlA1EYXX3/jBy59af/17B+NBZlrQbpGqD4Hr7z423nh9++ylTu9kPB3JdnOVok5WpLu76jNfvt5qridlFo5T0zRdb+7M1Twec57VfRuwKD/xcoU5rNWFK9frr71268GDSZoPFxo1mIJhWFrPJCt/vqasFCitPq6iaK2llLNknJSy3W47DmRZ9uKLL/b74Vx7cRL2RoNpvcUUdwlLe73B3fsPHMdMs1Qp8Dxne/uEUdPznDgsCHKffvas7WUPHx4x6mgtMeFJkgVuJQnT48Pe4uKSlDIIgl5/qLUGDYIXjm06DjQaDc+xlBAUQZrGlILrmZ/69CeYAXEcixKCwKeUgsZSas65lBKhD8dPCEhBJ+ExM6nn1BA7fnQbrZxlURiWZWmaNgJsGQBcMsAmo1rP/nBGe1RCwMw9AyFECCmK4t13393a2qIUPiRoEY2JMJhT5HEeS8cFDKgaMK1hcaExPz9/5959RFGt0YjT5NnnXrYsKwiCj3ehNE0BIWbarme89r0PTBPWTwdpImUJQkVloYFDqcTqfHNpaTlNk6XOnEBAFLiBtbO/U5SFa9mWAY7l7m7uFbFEpJBSTieiEjSBlNWmdfP2vW9887bhLHg1XxH98PGD3/xfvr285pdiKEq1dtZfOdWOYtE7zocjJbiWEtK0mCV2LcsCgHE41VqfDPqWZZ1aXZmOEkIKRHCcJZ1ulZKmgAJjiOM4SafVKptlbJMkT+LCq7i8SHiWygLbtsaI5aUEhhqd7M3vD+KxX2+rOOSjcVzIoWkF1NRFwTFWiJSEEA2i3fXbnebgZHxyMrQssExvONiTUmWpNAy7Wrem0zjwrfGkbxjG0dFBtebkGXJMO0lj26bLS8tpDEVZAtUFnxGG1GScGQZOEzmenNTrzSxLC45X1mrDYVGp4+lEZ2UyGWXd7rztmJ7rF4ngqQLQBsVZytO0KIuCF6LWsF3XLcsyL4tWt5bmZcrHhkH39rbKHMJpzuU4yzKDucNBWORgmmRGkLQslmWZ52PD0lnKDYt4FfGZzz/7wbv7b79x2F1w87zs99Jut3pyeFQU2rSw6/ol18trdpIk9Ubw1LW1aT9PE24a1nToeBU43lfT6bDZzd9/I3vmxe7SSuP+rbC76AsJQqb9Q1ytOSeHOTaUYUi/Aiaq1Ou4FP0XXz1vuuGdD3qdBezV4Znnr3S752+9H732xmuXr7WLjLS7dq0J04F6cmfKS+oFaOVU5dTq+re+8SYgnpSH77z/bpaAQuL+w+3H9yeAXNPCP3pzt15vWTZ8+1tvgza689VwKkzUDScDA/sPPjg6d6kss+T6de8nv/rK4weDNMbnz16+fau38WT7ypXVvAjbHeOVT52v15cnk2mlG+8/4bdu3fmpv3A9jdHDB3c1OkkivLTYff+9O2+99qgawO72JArzLNvrNM+vX/Ye3N6xzMB2CTaL1hy6euXcvTs7k5Fsd51/8zs/+LEff842DCFKhIBSrLWeUalmvij/YU15psxSSlGKGWNxHCcJvP/++/fu3bdtPBqMPQ9xETu2l8a61Wlhpm7eemCYtkYguLJdK00hT3LXc6SEPNPD8d4zL6whBB/ceOw6VUJBCJFGqWFYlJLJJORc50U5cyDwfayFEEUZT2E6HoLSWupa0AjDcGVt5dd+7X+9dv2pZsvXCmzbCMOQEAYAUs6GLSmlmIBSwDlgTJWGLE+a7dpoGGWRNb9IJ6NxHKcnvf7G1nZRAGhFMEynYtaoBwCgAWM6uw4AoBEQRqWUt27dGgwGrm3MuD5SSYNKWYKGski064BhGK2WLyUsLLY459MwTjJ5fDxyK8GdB0+uXLpkMqIFZ4wZhmG7ThRlhNHHm/f7J1CrB4wgzTFlhsEUo67nwCicvnT1eprxlGc2ooaHTcJKzrUG17WTJPUcur6ymowiQwNPcVnmxEwyPpDKunn7+Pb93WdffuoX/tJfeu9m2Buq/VHPdiqgdLVKrlxarHRA6nJvbzrsqzIDLpVWgClIKQl8mEYJwzAveBjFzDTmWk3ftYSIKRjDftobHI2G2KtYM58Dx2VhxD0viOMwL8CxK15AkyiveAaT1LdUkQrCKLPs9Qs1XuB7t0IvINW6/cJLpzGGIlGOYwqOEFaAMi0hy6LOvGvbZjRNokm+tj53vN+/cvWMbTpLS5WNJ3tJfsgok4IAkkVREgxapVmChFCAwPNcXppS4igJ0zIspaaUYKTTUHmuvbt53J1rSKGZgTC1j46mmAnOLcCJQcEwUb06L2URxylgICbWUhsmwYjdu7dHAAGHwPOR0jMNQ73Z2D889GuIGoyLXAufUUdjvX94fLA3Gg4ERgCa8IJTjAhFmIBtG9s7R4iKgov5pebbP3pvOExfePnaZDKKJ6koYO303ObmZqtlmhZWGk+nulG3DnfTyXBim7her5RZIXjkmS2hM8/xNjbf3348NqjuzvsHhyc/fGPPCigiMI0ypQ3KKlmWnzu3iEg+HCXzy+bK4mq1DlkKl67Nf+mrlw6248EkGYy4V3P/6NtvAIZ3P3hndXXNcWhvT1+8Wrf9tOqcGhyRz3z+uUab9Xvy6GhSawWIqruP7l64uljv1B4+GP7Gv/y9oshOrczvbB8RCge7HGnnp37mC0kMmOl6w79zY2uh27l0/lQtCH7+53/hd3/nze6CGVTx3v6TWh1cp3KwN56OUMU9FYZhrZMoSbIMDIf2++nuztGnP/tSXqjVNbdM7MH4ePthNppMbLO+vNjY2T10rI4U4fLyYr3LdjbCF19+odVpLcw1MTvceahM2raD1LLdb3zznc/+xDMnJydhGM44e4yxmRnAn2YQZ3C3j1eBStUfDoeUYYyxbUMUJkdHJ47j2Y7ZrLaqNTE4yipVezqWzTk3S5WUiFLgQisl5ubxcJgokfuO6Xq+FCBVsrwU8ALGA21bAZdl4PtVvxqOJVK0Vq0B4FarNRjFtkkxxowYFR9F09DzPKwJxcYssVgIeP3NH8wvLqSpMi3GiJ512sKHmEJFKSWEYAwgQGtJDeC89Cpq8z5ePMUsy0jz5Ppzz770qc8UUhkWACiNwPXRRw4Js02BYAyU0plNB2NMKdXvj5WShBAlgCCNMJgWTuLM9ywpsG0BBlWv2a4DrmdNp9PpJPGqANhUiL/7zq1//mu/Fni+Umo6DWfQRsthnPPJJF1csquBf3I8ZVRLiTCm0+m4WTGiTF67eGFja18jwdOS2tTENC9xmkGa8SyD5YVFkyBRQM2jlqMMg8YJ+JV2LrK//Ct/8b/+b//7P/72zf/u7/29/QOQFDMHsKH39sIrVxYpLcfTZGu3H051yU1EDIwxYNCKYIwppUIITElRllESY0ZLoeZbc62GrbgQMr98rc1LfHIyjdJktiJoKC0bhFBRFK6e8oeDuFFn0RhqvuuYlBKSRtJyIS1g43G/vYgp8cbD0vGyopyUHJyKIYTQ0gBAmGjQJE8LyvTe3kEUFkFQcWzEqLux+RAhMhxNm/WF+cVaWXJKTa15WUIcx+2uy8ARXNkOEEL6vTCNNQBwUfJSA6h2uzEepUmcmIZfb/j9/tD1K7fvPFBAmKHDacFFXhRweLQ3v3DG9ozhIEIEQIKWAKhQkkYhYKltmzimkWax1jKoVphhTCbhwnILMB1Ns9FQxqGcX8RKkq2tUZmDYzs85xSDyRDS3POY0mI8AS7yp59d758kUqALl+cm4T4vjHBa1OuB68DRwWR5eZ5SnGVZWcDB/si2cDwRveP+2XOd9hwAyaSeSAFr50zbaPQP5Ge+tLS7u/PGDwZBxS0LubhaSVOot+hokC0u13mOOC/8qozDFMvKmYukFMXmziCMOQA5OgDB3Sjrza0CZZbJbERSLa04yaJJHEfRW2/eTeLJ9tbOg0cPL109uzB/usycue6Zzlx3Y/fx2vngL/7KC3/5P301TUtmwKmV8z/xE19cXV7f3jp4/70PXnjhUqVNd/aOS65r7ezB3d2v/PT1+eXW2zcerK+ejcMEtGIUzp5dzPJptaaZGeY5Xl6zALTmxKtmjNmToXy8eefLX35WlhVMT2zcrNSRSQzLUtNouLTU3Hyggoppmubps20w4FvffOMPv/GelNNwTKdj+NJPngvHYPnF/ccnN27d//znPxsEnpR8ljeclUxmqhrACM9WR60BY8wYAYAgCIqiGI/H6+unlFKMEaWUlBwjQymhtBgOYkpMhHRZiqKUgAFjmuVJo1FlDMoiNhkdjYeSO0WuwzC8dn35wd3he+88mEwHWqHBYPDyy0/v7BxLqWZkdstCSnKCASHS6XSSJHIsEwDyTCQxEIKWT5kf3Hx3Z2erUjGn04QZOE3youCzcy7n8BHEGyilnEvJodo0eifTMjdac2BQ+8bt26+/8860KB9sh8TChsXyggvQH8uOhNCzCswseFZKUcKklGkKUkrOS4yBUAgCqpDSWlcqFa11tRrkWRoEXrfre54zmcZJrjEBJbHvmf1jubiwQgir15umaTDGyrJUSmVZ0mpWMc3yIp0MwHRKXXLLqOTF1DCRaYLve9NpbpiEUlryUkoZhlwphJEpBdiWURbRhbOVasAYY1prxzEoMxSgv///+p/+xn/+XwAlh/vCD7z1C5VoCqNxqCRMk51wyPtHon+s67UOpojzElFgBhaZxBqVZWmZDiFECBEliUYQ51mr0XQcrQXTGq49fSmNDKV5XgClRpqWCEnThCTOu90uQvroYDJrvIujrN50CDaUxgiLOJGm0ag2VF7GvKCECsbsLIecj6K40MCUxJQySixKDVnq/R1BKe33p1qrsuTPPvNiwfNq3bz/YBsA/MDs98YaZL1iupY96CeYAEaIF5AmSTiNp1MNgIu8TNPUdV3HcZAGk6L5brs/ODl//uL+3snO1qTRso8PleeiZIKbXcgyHaeZ49hZKnQJSmnLhkrVGo9Sw6RFIer1KjOIEKVlmY1GLcsyQjEi7LUfvJnEAJopiX7+536p5LgsGaNMa6S1ZgZQhihFjLEsFYaJhTRHI5HnaG6xoSBUOp9OkoJDu904PNxFCiwTEUQRcEbNguv1s23KVLPZrDTU8mpNSUj5xLJprUneem1w5WnXIM50WlYqDWywMExdy3Y9M06G9apLqN7bO/TtZpJFjLGDwweOUbn/YKvaCL75u1tZWjYazv0HH/zar/7+5SvntNb9QQYoj8L0+jOLQpZpqD/1yrPLq+1p+mRuIfjRj+7cuPn4nTf3v/udh3/yrZ1/86/2/8H/8Mb/47/92q//s/vN+qJpi35v8vbb73a77WeffX7Qjy5dPm97jaIMvvyVzzUaDWrwlz639v0f/fEXf/YZ00V+1ai33KBGsSGaHVYIHqVDytTepnCq2jTNJFHRhHYW2P3b03d+dGdurtNqtvJyNDffLnkpVBRUwWTV/d3R1qPCstJuu712HkCa0yEGZBztkLX19he+cq0oIWhQ3/eebE6ePHkihFBKYYxn1KwP1dezpeTj8zLGeBY6pmk8q0Cvrq5yzm3LHY1iw7Awo4TWT52rbT4uDJOlIfcDQygsBDBqKyWFzBfnFywHKS3DqBgNsmqlRRAGnV+6dP7wMLJsmxrEr1Zu370jNdi2nWXZeDzutJuIgJA6TTLTtKWUSR4JKYQQhkmKUjADTcKhBKWxDgKzyGWSpHnGlQKtUFnO3oECBKIUBBtKIcr0/Tvj0+d9jGylVKXq/fNf/40/+cEbxACEdJpliID6SHOOEJnZLisFCKE8T9NcaYwYY4YBSguEtWGC1pqZRpYVxNSGaRMmmo0ul6Vp2k7gJVk+GkdKQqVqyFKn08nLz5x76tqzUqFqpTEelWUhXNcVpbRtmzIyDQFUUaRAiZiFos1WlVDpGdY4Dcfj0POtTHKsoJCqKJHjVcM4JQSazfrh0b7rWV/+8c81WysStO3g6XTSP0l/9MY2AMwveZgBL1F7rtlstQwX0hQwQsPRSVlaWQaeZ5sGkgpEwQlBzMVlWRYF931fSl0IUQoeRlGaZ1Jli4uLaZaunbEHvd7+buS6NlLYNC3ToLNWTgSG0kKIMk8JIG2axsHhJKh7lNmUYl7iahAQZvUH6tr1FUKQ6wRPHo3rHVAcDOZSSqQCJalURaVS5QV1HGg2m9150w2C/mi4sztsdZtLK6eIgcfDvBTFzBK3UnUrQatShSSJLItSAo7tZ1lyer1BsakEqvhBXqRI00YtEEKn6UALaHe6H3wwOrVW0ZJXAognyrSI77mTMPn//ea/oSYtSwAMJnW0hrmFGqNGngkACCpeFE0wkr5nmQYdj4ZSKKBmzsuyhIXFZpbk/+rX/12/l2uNCCFpmtgWsUxMibZMlucl51BIpZV3+4Odk9G+UFNmemmsmYWlAmqJo6OTuW4jiScmCUxb5LGq1Lx6x7ADRZlyHMuyqgC+adnNDr71fu/SheVT6+bWw2E8hb/4H3+m108wkpIjyjLfbvpVtfHgkBngOtXx0OoslCDz0Yn+xV/8hZu3dqZTXa+y559b/k/+s5/q78E7r4/DuFhcnEdgHBxOtp6MX3rpaqUiXnjhhfd/9AAB+eKPf6q72FQpMXBzaXn+mRe7L3yy88kvzL/0qVYh+jc/eDKa9I6OTvYPh2+++eYf/dEPnjzZu3v37p/88ft7m71//Rtf+9pvPnr+2eeSce0bX38koEJoee36BcMk168/C5r5bjeJwDbmBFe3b52srtfiKHU8bDCHqwI0nByiXG41ay+8+oXWuz86OnWm6ng2ANy+/6QU+d1bh3kmMSkuX7poVooytu/cHp+cRE9dX8XgtuehLCSARxkej6cYU9f1ASDLMq0lgPqoMw+01vqj6goAAOdFlmVFUTiOs7KyEgSBEMI0cVB1j46iIoPJtO848K0/fGM8iG2TFDkHAhKAUOBlapqs3QqQFp5nHh/3S54fHypAyrDK8xeDItdRmjQajZWVFUIgz3ODEYy0bZqEEKW0AuT5wfrpU0WRKQCNAAFL09SvBF7gYYxt23Qs2mqbQqiZMgYhpBTM1EMYoyIHjJFpsp2NWCs0t2SDMLIsX55b6B33fvVX/1eDApbaROBbRpkAxrPVEGGEtNaEAMY0TVMAKMvSsK1q1ZqdpmcC8TQvpSIIl4Aos7QCwhg66U129o4M04zjzLbsOCwNRL/8hZcXWq3f+/0/vHL1uVqjAwBpyrVUs3O+0qnnQr0R2A4IDqCRRqlhedgCC9P9wcl4EFoW66dxxUGaYo1VGI9Nk9kee/+Dm4ya1556JomLMN4rciWLap5SDfrFVxfmFnzQxnzHFDyLJ3x+sc5McOzG4YEGCpYJrg+YZaZFsAZRIIpRtUqFkLZtcc6zItcIylLEWZ7mWcEn1WDRD/C1py88ebQXBBZoVpYKAavVGkqLICCCw8H+0eqp5XAi81jPLXuDkRrFOQuIJGU2dXwH7W4dDI5gOs4BcJqPD3cLSoHYThBUAWcIIa1ZUcau6/R7Yafj2a4xv1TPCxmn8gevPZxf7DzZ3Gm2WnnCzpxrI6R5LihDjVrLIOzq1XYYpWUBSkFZQKNhQwnZlHuWGU44JaZh6mgCWTFpNuZu3ryJNFDMRS4uX1gdnvC5Tt116u05wpjpeV5ZaEoJ55IL4CJ1XV9L8APmOOY0nHq+67hWmkaSCwzg+dX+6BhjWFh2Lz+9cnSY2zYoxJXmlAEzkG0SkyHOeVlIjIhhwCQaWx74vh1UW73jLI6kkhgRo1ATgi3frUpeMhR4jixzORyl43ExN988ONriJU1i4QYmokQIRRBaWmW3Pxi5rv8TP/mF7732x4BFu2HVfNu3vKsXn9t8fBRHGmNAuGQGoqhuoOonP3Nx5+Dx7fdLZshzF5vPv3D+rdffRgD9k1QJenBwePf2TqPBTg6To53k7/ytv/O13/9Vy6a9fefb33r/k59frgVNXk62N/Yx5UFdfOazL3v2XBFjxmBlaV1r+RM/dR6B4fvs537hMzvbh0SgRsU4vdCmAJ9/9af+53/w+wdbybd+762vf+3BH/3hg53N4r13tre3RnmhGs1aUPW3Nwedbu3MmbV6q1ZyFWcnilcxA8EpgHPj9utlgb78UxeQaiwuzk8myPIIZtTw4FtffwiaYWW/+OoCNvMsJUUhFeCv/f5vHe3ByRHXeCwFcRwHANI0VerDgykhBM/A0X+2ijIrslBK8xzyvLBt+7XXXrt3b6darXqet7u/ncVEQhZN5bXrp6IxtDtVwcswTmwb5VmpNWAC48moWvMIhbJQna4XxaNLF88YBmVW3huGpulgiqIkbnc7Z86sTKfTdrttGcb+wT6zTKUUL5VSqtPtJmmqNViW1evlpmkBKK11lBSUUsOkpslmvYaz/mSE4CP4DcaIlGVKKDy6n62fq2WpAMyVpI5h/u2/+X9GGpYXFw1CNQeZl549q62rj8rtaOaymmXccVhRcISQaZpSSim5EGBaLE2F41aEzhEww4LpNKGUbm7ueIEfZ1lvkFFqODZEk2hwcrAyv5gm5Q9+8Pprr71+5vQpjKEsyyKXBDQzFCM+M6DTtpDCANiv4LKQgLVF2fFogDFDoDjSNqOYEEDgBxZXZVFwrfXa2lmpyJONXV4Ytm1lxSiKx4ya415uGnQ06k8GxfMvribJOJwmJu1E2VApEAWxPb58irk+IgQrCYw6lBHQJQBUq9XxeJxlGSEk5yUA5FkBpJwMxcXLq0IWTx6F9Zo3GSWterUsS0KIbZtZJoVQKysrh4eHCAFoe27BSxK1uX1kuhgQJKERh71ql1hG/dYHJydH8dKqD8oHDVJKjHFeTDEBxkylM4xhd2fKKBRlVm+6mxs7pglrp9a+94N3jo4zjcBgFS7SeqMqhGq363u7R4SwuYUKQkCpgRFdO23l6bTT6vputVrxV1Za02lkmLC+PmdYwJiZ53l3voNAYcRladgW3Llxcni812ouANZFUZSFnOlzV1cbvf5gOJ4AYDdwbcfEGJrNumGwOIo832m2qpxzhKTjGogmCOcE2RiDVKVUMggcpQUzMKUkihTGlBJTCkMCb3ZQtVqXpd87CaWUSljUYFwljldNkoQygpHletQ2nOmxvH2j51fqfsDyFG3t7hViQBlHsn32siFEudBZWF05d+6K+/5b01oHTFPlRe/imWfLIp30mR9gKYgXEMexb/xofPnp6us/fO2N7x5qBa057TheMi0e3umfu2yfPluJp1RJ6rnVIgfPo0EQ/PZv/e7a6rVa0Fxdaxwd77/7zuP55eLpFxqttnv/ZnS4lz68f/Da9265FQkIkli4nhVnh+G0fPXVV3/0znf7J2HVN06vNo53en/373zu+9/+rm2HF5+Glz+9YrtOkpXjSbmx0b/xzt5bPzi4f3fyB7935/AwzPPyg1s3DbtwbFprQzhNPR/G4yicQrVO+sPBjffv7x9t7mwXk5HmUhoO6swb9brx3W/uVRuiXZ9bO2eVSS3oiB9890GtMnf27PLa+lw8NRRwKTVC2LIcSikA5HkupcRSSooIBqlBEuxoJBDLpbSUElkOlrWws5V+5+u7a8tNkDFoaoiOUL0sTS3bxQyYZTx4EK6feYpAJUu146gyMR2rLlVmVzSmniZyHMajHsyvuIBIq7lQqZDBaJSGUWDbu1sblUoRuK3pdLS6vg7Y5EWiNcLICpOd7Z2N8YBaDs0yLTmUKrFswgtWJCBlRI1SSyRMaQrHYkauEhMBoniSaYdpx7YWul7cK7tNXav6pRLMEf0jube79eDB3XNnW60Gc03h2YBNliBTSzCYxUslQReilCCjJMWIYZCiEBYzMOFac4IdDSCBV0xI+JQ51Xql7hIUTgpqdIjW01G2sXGoFNhVJYo6c4BWs3ce7GlmK1o+eZBMp5FtBHkmKVQEHhcJM63M9cGw2ThU1CsQqXGUMJCO7ZfccKoxwtJhztGBOhkMBxnUTMeLYS6AF545Zwp359HDw5PNEpUIjKrTVTkCVVCbAyiK4NxTzfZiJU5Ib7KvlIUxkxrykhRlIUtUCzoWJQDg+EIDV9qwLWNGjc2zcuYpOBpHpVTRkPu+JIDffuOuZeIwkVzzQjGZRxaxLZMKDqZF7twYlDk6te5ub4yB5oz54TBnElVcMO3oYI/MdaFSH2FtlgUwhg2mkxEsLSrXIRYLCKJFHnbaqw8fbVgO7O+nBiJ5jjVF8921eLh7ZbV25XR162F/fpH3D1PTyF5+4WUGbY3LxaWLN27vKkSDhsyKiRZepepnfEwYFHLSDdquNb3+9KlGtXl6+bLv8BeuXPu5r5y+fql9ce1yq+m88Erj+nXvdKeaj3fnG8DBAAqMckApQkrkjsokLjHBxdHhnu/YnmnzLBWibLXbeSkrhjYValbwQnM+nRZIZVoZSoNrAs9TinBQaY0mJcYgBce4hBS1AtYMlmTJB8ejdIQ9K+BZ4pDE0jWCyxJNkeGE2Q7Tra/+zGWssYh1NCrdoHE8PHj66Us8B514koY5V082xr2TVq3NfvTDR/VKa67jMvvU/n5cr/mez7ISSVMpVFqoauni+Zeae0dpGFv7u5O61zApLCw0bu5uD8fs/No1lNUpydNcjAeTbGCtXXCmSXHn3uGTrXt2FZ483p9vr6yttBeW/Ud3Bxcuzp+92Azc+ZPjkZBw6eq5C1cuZsXeQpds3yk+9ZnLezu9vR1ozsGgzyvd2vqi8St/5W984+1bW73i4LG9tLh4/el6t20vL5m1llxZt9sthyLtGBCN7ePDZOeBPN5JyxhsAxwLrZ1uXLi8PA4PQVddp6s0BFUcD+W1K4s6MiySYU67i6WC0WvfHLk+vXRlrVpN8wgMV/3wzZuH+wdZNH366TlAQKhASJRlKqVEiPxp3vBDz00AABBSzQBZRY5tD3Z3wls3D158ZemLX35lMgHDYhL02UuBKCyp8jiOwwlfXTPef+c9ak2ZAZZlAS5cX+UpSmOY+f4EAdvaOnn44DHG9O2332m3uwcHY9DYshyEUBzHM4eN3b0d17Uty+Scc14URYmASilmK7fvG2EY53meZZltMyGEbdtSaNsklBAAVaTKsUkSRkrIWXh47sx5UNBo2kkSGSblpY7ixDbM3Z0dwzAwJV7gYAxFxrXgM8N4SokQegbRKcqUGTADMqKP8DhpmkoJjCHDZllRFlw6jjM31zk6Pknj6NyZNcdk25s9w2AGBUKl4OB6FWZDUMNKcwCIokgpQSgihGBkZXnSqteF4MNhNNepV3xXS44BxQKIbcd5EVSrZV5kUSISef3y5S+9eGW/PyIefuHSlfla94ONB8IhOoPxoHAcb9YuwhiJ48hyrKtPnak3/IPdyfHRkGDwq/xonytJESklhywtB4MeIci2gCKmtSZUua5rGIZt25jMClOCc54XfJZNVkphAClUFk0ZhjQKmcmSPCvLstut9Xqx0tyyzek06fUGRVG4gc7z0rRoteJRJqkhsxA/9fQ5y9GjAXAuJBrblkcRFkJxUSRJ1GzM373zwLZYpUJKrjA1KEUGYcCR49CvfvWrrc68W3EH40m17j64ne3s7C6uBAB69/Amkg4hpNeTCOlef2DbdpIkw+HwpD/a6x3cexJ//813+9NwZ29058FWXOYHvUkhiOFYtUbr1OqZz37u1evPXX/1U5/+9I996vq5hb/409d+7BPnPv/K6vmV6qm2cXHNXWgom2pdJovdpkF0OBq267Xh0VGZRMxrbx9N55bO37q3s7U7MZyAS2zbtle1FcD84uL27r6QwDkoxArOsFl4VaaxkKgYRwPAClihaR74QZaGlGLfqxcZRGlSqdXfeP2G1hpjfPvW/ek0wpienPSLFNI01lLbVmD75M7dD4oC+ZV2remneVaKIVeQZanplAqVFvYtWuNi6Dq1LFVPNk6mY0nNcn6ZMeJUquYHbz8gNOu0ao8e3/Vcc3HJrLdB6TJJ8zv37xEW9/pxOBEvvvTs48c7ydgJvIUrT3d/+NrjjfuTMDryfPvC+eVoCGfOVh4/VPXawtrZ9jQ6vv3wLmCI+p1TZ7zv/Jvb/+Xf+M/f2Hx/lPRffcabW6v821//43ffPMY0W1xuBZ7tB9bK6sKptbkv/MTyted0s2asr66sLHsGwWUKBT8wmVg6ZZalYdV6uYhqLbu5qOzG5MxTleUzjuvXFUnHffb0y7C5Mb17+0mt2njlU+ekBC7jaKKaXXx8mALKzp2rzrw0/izRCwAoQkhpjTTgj7SHCBGK2SQqkxD3DyOvBpeuztVablFwNdWUENP0CZWLS+1bHzyq14JmWyhhTfO80TaSdIwwYCIBSSm0lHKu3dnZ3VtZ6di23t7e8VzPMIyVpQZCZAZn7fVijXebrXqS5kkSGebsttSVSs13a/X6BHQyHE4oM7vthmHQ/vHUMKn+sKmGE0BScoKQ4rC+PDfO+0lRAJAsibKUd+c8TSUgYZpmnkitCeJSFGWcpinPvZqfCxEmZcU2cykAFCakKEEKAI3LEjwPzWbhh0BZyaUExmBmp1WWoiyF4Gp5Zenhw+M4ieqNqucNkiRTgmCipUo1hp3dQ99Wi2swHOBW18UaKIGyKCRjCNlI57V6Rcoo8Gia0CiNhRCMYk0gygozTMfj6crK0saD3fXVhb/2F37pH/5//2Vgw0vPPzUXdD+4eW9YDtsrrUIQXvKi4CbBzDJ5EnpB0GhWtIRBfzodKdezlxfXh5Mt0EQKyHNAEjCBKJoapscYS5MSEV2t2YA1F8UsW5KXXAlBEc4zcdg7mV+aty2zVrUJQpZhN1pWlp4AYlmRMgNNpuPAQxQFg37fINBqVBe6S9F0M0vQUW9PSY+ZvDPP9rf59vZmvWlGUxwnvNGBMgPHIxoBY6gs8uEg5KWeX2j2e+Gi5SNiJOlooTP35p9s/B9+5YsPHt1/98Y9YH7vJDmzfv6F5/BoeEKZtbk3XFquDwajdrOKUWGazLYRpkYpFKIkz6TpAMIgCca2sf9oSgxZHfa2NvcHE9ms76GbUKmQhcV2r5cJbcwvVxxJbcdEmLluQAlZXGwJDpzLvNR5lrTbDSlKRpYc171378Hy/Jxt2xSzPC1ODg+gBB6HGINJkMh1qxHkaSpKsEyTEcwl0oC6c/VazYrCEoCl6ayMpxhDWKJm3S/yyKB1KWhZlpiSNAXQyDCtZtPbeNhbP+1Pw7HjACgU+NVwlK2utfa3p0p7P3z99XHInQrLeb/TCX7/67/7yR+7tLpsPH4QzddWGi3zzu3xeDyc77b39vrzyzAcH188t2Zbvkzo6bWGViVC6tVXr/fDrWl8HA/x0V4+Pz+3s320vOwzA+Kk/5/8pz//4P7j3/udH/3SX31mOsqSRD+8N75384OVNbdR78b51sWLjaBm7e6ID97Z6656x7ux0Y76vfwnXmn/+M/88spXXu50Kvv7ez/+1c/l1z75+s23bn2wS8nEtK0kFkfp4+vPBNtb4Lvo058+jSkf9isXLzx1dNjf3HrEw879k0cmWs7ig4N9aVkWJg6z4z/59t3nXng+iU9uvx8rKE2j/dRz5J03jmrNk07bu/RU7dZ743OX6GSkGh148njP8WZ1Y/xRGflDQCqeRYkaQGmltSaEmJQpCUdHk+NdRRx49VNdpRTPpRcQQggmfNRXCjKT1Y4PlO2VSqlmyycaXEc5NhUFFRw5niz4JEtlvVY1DTg+PnEcr1FvJUnWqNWVkAcHB5VK1bKsWdbPMIzBYKi11gqCwLMckALtbB8irBEirmtpJer1umPZrutyXlBKhCgBKCjNOdcAmsPCfHWp3SUKEMaUQhoW6+trWpUIK5OyyaiI4+z0ylq9WkuSBGFMGMZEWxSQKmYJU60QAihyyDNtUmQQHMe5UqosBUKIc04JmZm0FGVJMANNJpNJreYvLbtaFmkU8yKvVSp5XnJeIMJdzw/jvFRRpVof9GUUJifHiRACYyWlEEI1W7U4nBLQ58+fPTnpJWEZ+G5RFETRjUfbD+8/KkvNGOvOty3L+JPvfffu/Y3r6+1u4N3f3buxsbO+tHS0s3uc5J5t5klmmiYhyHGcZrNVlnl/cLTxaEStuNVq3Png8PggV1oSqkwDgWZaQ5YnnHMMKE1zwyAV3wSNi5wXZaa1nrXi5KUoSwmYFqWQUvqu+ezTF3/2p7/y6VdfwUB6w6xaq6V55rseJigKh9evnT535gxSSCmkUYqRKYVKYoEx+BVqWYSo+tx8cxrl03G5uhYkURxUHM55KUrbdfb2jpaWVpiBpRILi40s581WcLi7d/Z0p9Ot3310n5l+nEWu6z9+vBGlTz71mRe3N/uUwtFB1GlDkk4pxUqLuflGmmZFwdfXzwDYQnPCcKfTOjk5OtyfzM13gCpMLMCQcdkfCQDHC4L7jwY37xxOk/ibr9/97a+/+8MbD3/w3oNvv3n3tfce/8lbHxxOo/F4aNoGZViBrDc67dbiCy++emp13RTTl66eWa57n3/p2i/9xNOfvLb0wrnG06ea8/VKzbGmJwOPQDousMpQmRo6adbqiuvpIDfAq7mBYzk2dXwrwBgsC5TOK17leP8kz1OElWUGjmMUeaqlWl62O822Z3umRbud1t72gWkEeTFeWLW+8503TauS88i27WoQ7O+GjU6VMry2ctZmLM2OpuP48PDQdrBB6qXQS6ve4sLSNNm6deOwZpuvvvjMwX5/YRkePbwx6oeVwOUqx5Q9ujcwmOf4NE5PKDK+/a0//pVf+ZnPf/YTv/fv333+pdOXrlZAgFbmwsJCf7j79g+PL15ZC0P1xptP1i/V4jg3TLvMhc7Uf/U3//Jvvf0ve4/Lndt8X0C6Ofjxnzx/68buZ3/sEqLxxuPx0WG0MFfznaVGy9l7YjpB3hs+fvN7x7/1r78tBf3k557zWiEDFoWHBxuyjOBwM99/hJCo9rbo97/3dsHh6efOdjuNk+Nhd8HyGvDD7z0qZXb+0tnFFSscsVrdIxSuPbMWhyC4mlG7ZtSrD/uU1cxfHQMAKCUwICn1dBplMSMGW1mtGnaZJoljNRhjpq0oZUmSpUlx786O63hSiU6nMZmEru3EoaC4AsIhGFOKp9OMUE0p+L6tFORZYRhWWcrNzU3GSL1eFYJnWWaaUKlU0jSdiVqKoqhUKvMLtbIUezsnaRYCQK1eAZDj4Ugp3Ww2pVRlyS3LQkA+jnXTBLSIqr4nJRCDmRYVCtu2SSlRSliW0TsanVrqNFqdg4OjJCv9akUjBaA8HykhAIECpDUYzM5TnUXcNBwpNaVAKZ05Kc+oEB927EjNmIkxzbIMkFpc6iJChAKlpe1QirCSiDEkROn7VcPAGxvjrUcpAJgmnUGllC61lkpJZpDRaDSdTh3HNgxI05QQ4lPzS5/5XC2orK2tFLw8tb7+8MnWd1777vmzK+vr6w8ePLzz4CEYOCv5zl7vzOkzoGaIXJBSen5lOomOj4+F4EkM3bl67yTa2+uP+9p0QErdaFYYY1JAmkAYhoxRjMBzTQSaECqEEAoQIZxzSg3OZZHz8XQqhGq3O0qImx+8+8M3vv/e+x/sHxRSwVH/yHEJY4QX6uz5ld29zePjY0J1PC08zxv083pzgTCaZ5IxUqnpaEL7/WGlCWXJsizTAFKUAKosZSVotLutTqc1Go0oA0y5UAppyJPy53/+5+88uGMHzmgazc3NZ7mo11U8KasV1h+dlKW1sNId94AiVOTKtKjrGVEUKYnqjdbJUahE6TnWfLsti4wxaLfqx0dHg0GCqWXZvmnRk0EyjXSaAiGYSyhlkOVA7XpckIOT/P6j8f5xWWry3s2daRLfvH/34eZOmMqb957cfbCRC5XzglmmX6svLC1dvHLu05//xJe+9Pmf/OqX/+LP/fxnX375L/3cT371i5/51Ivrr1w//8yVuSvnWwQV09FgcBL3j/bzJOR5CjymuizyRKrMMghlWCrh+TZC2jDx9EuzhwAAIZZJREFUqdW2YcLO7mBhfu7evbtZEnuOfe78eqfTeeet7ZLntbr34OHWk83tTrsGoEROsgT+2l//q93OmdvvbxtMnLtcBVVfXKm3GmthfLR2ymvWO51O5+Klc3/0rfcdo1zqLt6+9eCZl9azPE+nZOtRgiiYVlltsCiKiyKTCptWfToWX//91z7zxTNZAo8f7Tz3wtVnX1x0vOLJo+NrT19ZO7XW6/W+8fubZ8+ufukrn1xbW2UsKyP83/zNX3JPXfsHv/bP1jtISXM0hqLgZ1bXXvnEU4827yZJsbSywAVsPRnf/GD74b3jUmWIYtt3sxIL5f7+19/61jdv7u2Iv/xLv/y3/9Yvz7Wan3jlzJXzy0GQlkmxul6Lh3DnnclwtN9tnQckDw/6z77Q0sq6fXMHYXX1+rmjg7HkhmUbWzubllXX+k+rx38qLgStAQFCSH/IgMVFwaOxUMKqtQUzRDwRBKksiRxWS/MQIwuxiWW0Np4cVmuWbQaOB7wE0FyW9N03NxhjhHKCXckx4ETJ0rYMADg8PDw+PrZtI8+SQX84v9AFUK7rMkYxplGYtFtNx/Gk0LzM6nWrzEuDWpSAKHlZpKBAa6m5Hg8nFd8BBBjjgnMppWEZmFGkcJ4MsJKSgwKtsHj0eHuG+TKZlSYJT+Uv/PxPfXDn/r1HB0LBdDrFGAdBwCxTIUCAlFJSS0y0EFAWgBDhXPp+BSOaJAljplIwwykihBgGrAEpzRhLswhAI4Itx5cCFpbqXAleIgCUZsVoNAKgb7+1OerLuaXambOrtVqNMZtzwWUJAMPRCFGS53maZgpBtdaYTCYYdLfZOHN6zfO83d29h48feRXn9Lmz185d3ByMb2z1eMapghtPNubWl9a77SLLMUCahXEaDQbDo+MBY3ae5/OLNii7f5yunfGyjFMChmGYtiR0JtIEXmpMOTXAdhhokuflNEqlVLPeHq11WZZJnimtwygGjW3bTnM4OjnZ7/e1AXEESEmMVVnmSgFl+tTaYqc7v7hYR0grwaIY8hR1utVhXyBNGy271+tFcXb5Ssu1uoZpewEghKhJMdi9k3F3rkZYmWfcIIbgqe2YJ8fjX/jFn55Eg++9cXthealWNSbHQ9OTguMzp87Wgs7G9mOvivZ2emkIQcUTAgwD2x6L4rQ7vzAcjyYTAGkQjEbDfhzJbssSPCtSGQQscAyKTCnlNCzffecRI6Qa+BQIDxMLAxIJ4gUTGjJYaAUMyjMXlgWgTHK/Ud8+PHr/9uO7D3czUR7Fxe997+3/7Ruv/fY3Xv+db//wD19/78bm4Vv3dh48fkQNQ4KuVCpXr1y6cPH0009feOH5p5574corLz/9+c9duXb9zOUrC+cv1OfmXM8F06EYGbbtTafDoGJ5tqukRKhwfd2os+vXFwGVZSEpw65jTifDTqv7F/7CF0FT36u1WhVGdDUIwtFUC+J4Jlf63Xd22+3Oyqn6qbXunfu9Ss3YepyevRSMR7GWlu3KyQAcF9bXmtNpVMgSSKkk2IZLIPB8E2tqmtKwYXsr39kK47R/9vw8AHTmO+tn6mk+2trZePqFFUBwcsT3Dm+ev7j82nd2Ll3t7B30/sn/+HUQfH2lef167a/8wk//6x++9eAtfv5i/bnPGKiAjUjNNc8XetMxm2fWL5Y88b2aaZJOt35yAHlR/tvf3N7fqAYNyfGk1mFe3draHvyLf/HbRHfbzeDq5XPddu3/9De/aBqQ5H3TgWiY7z+JpT5sVM5JVA56pemWD+9GSZIw6nz6S1c3nxyPRiWBau9kBBp/nDf8eDWkAHgmW4GPFMgzzQozBWE6jWObLRFgRTbqdqsnDwGYnpu3AmP17p09BQmzzd5gAFiXBa9Wgo2N0LYypaVtV7jQWudacsuiFy+eOenvEoKyNF9cXDVx+O67bz/77POVir+zI/I8j6KUj9NqpR4ETp6naS7G41JJxzBBcFmpmKYVNRsNUPz4+KTZ6fJxKoRAQIRSrmkoJEzLJ7hASlsO1QhMFx/vpFGa2JaPTXSwt3/18pXFufqDx1umS4DgMiu0hS3bwDQvETDCtC6pqRASlgO2Q6WUFCOtNec8z8WMClEUghlQlpr5YDCilLINM8qivMwcvzKdxGkmvSrVCJJY+RXbsZMs1lnMkxRAM2ZFzPQVl5bhRzgsy5JRQgjxAjeKlVBACCaESQUSq6PB8Wgy3T3YrjcqMpPrSytnFpcfbu6+d/PhOIZOjSotHKt6Zu3cg3fepBQBEkrpkpf9IXgVJ/BrRZYur3Q2nux5gaUVkQKSCOYvEEoNrypzzrEyCSFSZb4PrmMaxEmyJI55rW4BaMIYl6VSqizLssRhGCNNbdfBDKIil6WY5jBXR0opg4DnOGlacJ6tri1/51u3Xn5xYWfv5Lgfzs+7R8ej02dqCCCJc8eyF1dRmsLuTl+U7Onnu1KFotCkBnGip8V08RQjYJuGr4RQukzjqcnc7b3tW7fvVRuuAsyojAfSCMDkdrvjZylPYgAnAx1gWuR5yjkoLRCSnMtKUHuyueVXvNEgb8/RspCOgZrddhyHUaQ18KeuLr337iax0NxcdXcrLEtoYC6zDCFpO1DyWAoQAiiFas1PkrFh1BVwrnhvOIhDqTGYFlQqwUFvtH+UlRFgJ8dEixIq7pMskaur5Mzp82++edd3mGEYGENQcSmDoNKybG37zSCglVpDc4poNOrHS449nUT1hl/mScWXokAWdaqBbTpsZ5e7Pn78eLdaM6TkcRKG08yr2HNt++qV527f3Oz3p2fOedubO/Nz1SxLFlf8b33ru9/7zobtJc8+c+7f/e6thfk2sdX9B9NPLfvpFHpHx55vTafIb8DlS5d++Pbbjbbf6syX+QEvjqlVUZAHbrXfm1gMnzl3+ubtR9u7G+fPrz149B5z6DgaPXthybKREEIp3Gi5T127/Bu/+r1mc/4TX5ijP8xuvtt7/HCHZPA//5P/irvoH/3D3zSV2Q/x/Hp6bhXefzz49d/+zf2d8tRpP4onSZxmeclTqNfEF35qYTI9SMa1G28fYAauFywvd588elJpsMPj/L/+r/9pZz6+cv3McDLO88XF1YYQbHAidvK+H8Dr3926+kyj1Zzv96O85LKED945eeZF5LjG8jm8/UA1awYzYQaI+aiarD6MDQmls3aUWU8bQsgyrCBwVk/7Fc8PPNcyTJ6Z9aZrmCGDepaM1lZOrZ9tUAKWTS03tawus8FgzA3k9WfbhweplobjIYSFZTRmaazDw/1Wq9VoNBijZVnWG1WEZhhu4ThMCNHtdjzPQQj5vs8MQii4rkMIcRybUFhcnG83m4QQKSVj1DAMrYEQMjtyUoMVglNiGCammNTrdcOyNFGtdmNre8f3K1jhIi1+/md/9uHD2wpDvdFizJybm1NcIyDNdsvzDWIQZmDLxpRJPzCrNQ+jD3n0pmk6tjWTaDqOGQQBpcig2HEcDIhQpLXEGJumubt/aFtOUcbNpi24ti3PssxGwz48OJESbN9vtJlfoUpzSi3TsE3TJJgiymayeI3A8VzAGGEyf2ox4fne0SEiwIvy/OnTK9354939u/sbBrJqjqk9Jm2y2lw0SzItE993HceybIMx7Pu4Vm0UBZ+fn5cCTybSq+bjoTRNe2HJAZaarNZq+6ZJBdeEUMNEjRa1LAMhhhEFAN+rGIYxU6giAkqJrOCGYdmOV61WDRMpAGCW6TmC62azOT8/jxDCBBrN2u7eph8ES8vNLJ8msV5ZXZyMk/5wf25uvii4YzW8aoKQznPr6JATqtptGwA7jjUeJc1GlxkKE+nZVceuGgbTmnca88fHh4Np6VUblVp1aalT971obLkePrW8PhhtWQ4Z9aBSR+fPNQhFvk/r9ZqQpeM4o9Go3wt9r1rk1HJMx/URMU2XKtCM+abjnlnragXnzqwWMpWaIoXW1xeKJBGMKpNgmyqTZADEde1K1apUKhV/Mh5JXlCGKMMEoNtpEapHJ4dUQq1u2YbJMOo0bVnIimuuXb10EoWCQSzxbj8ZhCIVxtb+9O13Hv/J9+794Tff+MNv/OCP/uj1H7179/0bjx8+Prn34MF4lD95tLexsSGl3NzYu3XjXuDbk+nR2nqz5PH8gu/7brNRJwRJyZVS77///pPHO3dubXbnyOn15blmO4kiRstSDhaX1rT0nntp2fedMoe8LI/2s3bXr1XmEdgLS3UpaJYla6frp9cvnr94znD1cJjwkpw+W5ciYRYEtYnrY8dxKnV68VLzyQORxX613n79zT9aWmq06mek1uNJaNrq818+/80/eNydM3/5Vy7+7m/fUsJeO1vPY/ilX/70Zz75yV//w99P94cZx8Iwu87pT3366aAz+H/+w3/2j/7p/5BHlYOdREFZqbLmPPXrOaW06V95/sWVcxcqrgvttsH5iWdX63WLuEBsgky4ce+H7cX6v/t3bz713PyjB2EWKkTzp59Zvn7lmcHJ6Phkr9OZO39xtVKvHOwPB728MZdce/pKELi9Q1FvgZTqY1T+x7EglSLHGM+ORQghDbwoUgRic+fEYUY0KaXcXFkcHo1qSUZOTkZlYUzj8ujkXSHgcJfbfnmQbO8/BgEwnfBTpxzPgze/G62umVzpIT7Jk6lQKivKjc39SsUOI/Ho8eFcp+Y7+MaNtwTAJIaoGLuuNx6lWZaazLAcPZwIADVJRb5vTCOYX0p8W/YOe1GYHx4Iw0r6J6BEXIoyTiFyimgo8rR/a9Nx3IOD7WngO0lpZeUwy2GUnphURRPZG28+fPRYSOvxo2OEgJe7UkrXdm3bHR+VWmGMIdYCAAgrYh8whpLHWQjtRZOwYnf/6HAvLzLQujAMlIZKqyMNcmlloiFNkmzYz3YfR4LD4uJqER9modx8NMgKaVi0FKATaK5Mhse6TAcP74cL8yJL0WRaNFtayDKMEgROmUGKosOdY8HzP/idJ+fOtpAqBsdJq0l7x0cPxw96g/h4ALNG6XIIhgl9bzx9GO8eQMuNkzLHxJyEKspgMtmzHAYEjrc5aHTnbdA6JVSFE8AEhnp7+4nACKQgJ8chIHBcNQgOTAvtbSlAcKCmXOSOU5yclEtLwcEorLhRGE3mFjpFRgY9nSQAkCKkNg2wWieL4AxG6c4TSMKHS6tBnEz/5Afqzh0wLTg63E4jfONHKqgcZgka9Z+0O/X97VG1DoYBt9+ZEFZubmejgQ5HMPQfVU/mCeGjYXg8CPUJml90H23eL3KIJhCP9vr79v7uScFk3odjBFar/u1vfLu3L3XJth9OsQUyBcTg+KQ3CVmeotsf7KUxNJo9oeGN16fLqzGX8uHmYRKXaao6czRWhxKD5s7JI420QEjv7kzG40KnPBY46VNRFIDBaWe93gYiuczNfq9gFDPKe8cxIKjV0ycbW299vwcAGeKzA1Y2yCgFrEV4fPzkdi/sA2gOGGwkhsfD0bAoU0AItBbREABAd/I0TYtCIgQIHfiuNxwogJ7FaMn7AKAQAGQfqT7+tFeCWEmZlgf7jxFAashBPzp1Zv74iPf6fDSIf/Wf/e6ZM51oHHz9tRtXrq7cvrVjGFDy5P4j1llX/b58/+2dT7+6uL6ysL13uHPweqNq/m//6o4GuPNgpCQO9z3rvIrTVOv4zq17lkUuP1V7+933rlxdno7RaDRcWNmlhd7Y3Fla9b/7nXd6hwUi8Md/sH1yFJZx7Fpovg2f/OTT79576//2f/ktQliZZu9+d3f77vHScruJ68d69Hf/1v/9YG/anXeyHIaHvNWxTg7Hg6Pi1Dr5g9+/LUogGIqg3HgcWiaIkkpFtZ72jqHIhNJ3wqn4x//j247t9sOp7Rr/9rc2f/4XX6lOz7zz7qPtjTsrqx3LjKcSfvidjemwu3parZzldz9IphPq+UxpzhhijHHOATCl7E/RVZRSrTUCcvHi5UavRn2HalKmUbNpd7t2xV1ZW6sJ0c0z2ao1Soe/8PxcvV53q6EG1a2ykmvLhE6nsjIfjoaJ69eIIYnBGSYI0zQpFCDXdcPJ2LSo7zm+baRZIQGFSQqaMMuOxpEQynUCjXKlC4JZlmrTcCfT/tryQtWxoig7PO7Xm8X62pnTaxMgMBqNMCUWC1SJ4nBYrZmWiTwv9NyG0kRqkeRJq12nWBV5YpqN5eWLadkpRUEIuL6TZZlBTd+vVryOUhbGoEAqJSgjpsk01pxznuFaw0Aks217qV2IkiKEKEOU5loxpVSj5WmUFnlJccU1pxiJ5ZWVwG+EUWI6tlIKU6IV0jn4FWR7gjHisLBaaWuQaRo6ro2xwgS0NCrO1DTtUyvz1Wq1EqQrC/MMaXkh9X0PAHrDQa2VnNE1pRQziNZCKl6tBqZp1KptGwnbdjXCacZzLgilhFGE9No8B0BaEa0RgDBM5HjItHC3UVBiaY1nznSUaWYAJmJxjmGsbMdAWGKMoyhqNTtRlDiGdD0cVGypDaTnRWlijLnKbNP2G+Naw6JX2eoCYoaoNez5Tmo5lsOmhqWrVS9eQlxklo1EaWEWVatVqqKLl5ekToaD0PXwXJM7jrew0Jubr7e7FYR0t8m7zUhJ2unavMRpLOc6/XrTbjaq5rUFjOyHd/ZOX5ivV5dOrVw0SWzbDduhhQx16Wg8mVt0AZQo2fI851wGgUeIORjt1Js2JYaW1nSSClnMLzQ6DeMLn1u4f7v/1NXnDBPidHj9+rW7d+9jwgxmY2yUZQmggorpeISLNM/kyqIwDFsrFq5Elk06c4Hl6Jde6swUGgjNQjbBDGzZtDVPqV4qMkawqSFzPMIYC6cpSGN2GpOKY4zq9XpRZFJK2ysAwHeD8XiMMTVNS3GhFByfFP9Bz9iH1TyiQSrGGAKdF7FlMMndTvNcu227rtvv9y9funr79p2XX3ra9/2FubU4TilTlZpvmLQaVBj4P/ezv3jt6sU/+L0/7rSvKmR84pNZybVGkckMUXiNNjGvmoNhLwiCMAyvX7928+bNRqNhsEZ3rtGZC4oiCZ5aPzmMTRy9+uL5R09uLi0tXb18pVmt3Ln9wVd+/HMXL73yrW/+wdNPX7EsgxBS8rwsM4qhFrSXF85nqfKd+Pqz5zDR77x1P6jYC8uVJC6ZoZ552jaNCiHEssnqypRRN0+RUBKQMExkGFhrneelkogQEzRtd6rHx9sEeUsLjVbzVFrwwXD81IVn0kT2TvqEFa364vkzz68vDe7dPqxWqwCQ5yXn3LKsPM855wgAGCOcSwD83nvvXb9+teS5wVipgSGGAAAEQAagAUwFhlYZwQYATtPUcRyllAZJMEhlAhQEKwAMknChmIkEpFgxjBkAkhowwlKWhGAEM3SYxJhJJREmCBDomQwSa8iFzCkxtDIwplke2RaepTilUqAxIYxzThnRIBEoAIY0VlohVCCkhMSU2LNcQMFzwphWApRklACAlqZGamaRIZQABYyakivC6IeZ0w+TCB+mEkRJmSEAOAAGMKUAQgGAKy20ogCUEA1QACgAsywwJmLW1Sel1AgIJmqm5VQASCNUAoCUGGOGkALgUgHBAKA0UF4QhDAzBEChwUWgtOJICmAYNBJCUcYAmFIfagCk5EoLRj8c+aydexbmY4w1gAYNWsycv7RGs050jAFASSkJIR/L72c/VFoqZWACWkuMQGmllKLEAMCKAyYFwhwACUkosbSWXKQG9YWMKQUAExTlXDIDAUhAWimGsEAgAWytJSCOwALIuORaBMyQCJVKY0AlhlnzfGLbJoAUUlBiAMx8KQoAU3JASGMqtBYIGaAZaNBQIqy5kIxaSmMhJKVEaxAyNZjWoABMAKaUIlgjoFykjCoFCoMtBEJYEqwACgBXcEYpSKUJEQAKAEslMSYzfwj4CH2plFCgMQYESAMSHBgjAAUAB21rrWdkzNlHgwkgAA2FVIxg86NJJQGQVAgDmvlQz+BJM7eW2XFNa0AItIQ/Rx9FCv73vjTI2YVCgAFAcqF0yQwDQEslEcIYYSEFIQTBh1VUqUoFmmCKgGmhMUGgOSCkJQdMABsAkGaha9sAAMBmIy+KwjTNWeQLSH00b0UpM4OYAEaSCMe2ES5mnpeUGKABlJC8JCYDRD6amRQApJQI6RlPGjQjlGuQSFuAQKiIYltDrrWBwQAEUhUEYwCmJKD/nVIwaNBSaEpxkaeWxQBUVubMsBEgBBQBUloozWeOOEJqSiwECgD/xm/8xq/8yq8YhpFlGUKIAoIZFlAItbOzgzH0+ye1Wo1LIUtMsaGUACSlFpgwITSlJSgbYypkYllWWSCENOAMwEEgBc8oMWbVa8MicTql2MSYIiCzEzqAJhRJyREwIcSsvUGDnF0XkxlSASABSGBEtSZKAiYAqCxyaRiWkjCLbLXWhkm1lkqXZaEosTRIAEEZFhwwMUGWGGONQCMAAEJIkeUmMwATrbUQ5QxQphQYhsU5V0rM9luMsYJZMkFjjCmylOYASkrNqCWEoEwrXSCEtWKgmdYaEMdYaY0wMgCJ2byZGe9hjCUXjDGpkNYKYS24YsySUmIiNRSgLExmFg2aEhshxEWKiRCCUYJAyY9oGkgjjDDVSmD8oU5qdjt9OFRk/FkbMK21Bgkfaqc+vpGw1gg00RopXRBCAGaWdQhjCoCVBEAKY8x5YZqsKAqECGOm4Aq0iQlXOp8JDwhhWktAAmkMygbAgDJMQHKKEMGEcykoNQCUUgKAIqS1lloTKQvbdnmJpSwJlTP3xCQWzMBSSsuyhBBlIZhBZjkdyUvDcKQASjEgLoRgzMwzyQzFmBlGiWUbzNBCCA0UNCMISVVQijmXCBilTMgCIamVgYlUutAaMDJAU0xAiFxKCdowTUdKqaHEWKVp6vs1rfmsKQsAtEYYUwRUCMUY0SCUErOLpiTMlFIIa61mZEyqtVZKzAxCpZQIMUoMhLUQuQaJgCFghP5p3fLDJJWefZpIKcUYE0IgDbNcOSFEavEfLAGz2FDqkhAmSqkVsW0bY8zLUmuJKeG8sCyrKAoAsCxrRqIUpaQGoQbJ81JwZFuukpJiJGRGaVDwkhocYxCcMIqEmBBc45x/5Emp8zxnjDHGpFSz+ayU4rwwTdtgVpIkmJagsWFYaZq7jp+labUaFEWRFTGldMZm/nAPliClNEwKAEWRAACjHgBoKAGAUM1LrSSmlBZlQghCiIBmgPgssyeFRggRigCUlJwwSjETQkkpZ8Q8wjAhSHEKSEpZYEwN5kopS54BCIRIt9s9PDyUUuZ5PoMhwcf15Y+Fe67rAsCMf4wAY2AIGKUGJgzgw62PUvqxkpuQ2VNQhAgjFAEgwOhDO6rZrooB8Ox+m30jhAi1ACjGFP351R4Bnu10BOHZ8zBiIADAHwY+H2+/BAMCYBTjD4MITAiZvRwChgDQxw7RiAAis1n48Z9/tFJ8+PDj0wfGHw4VIUIIw0AQAAaCgBIwZ8NDCD7iQ1MANmvpAYA/U6z/8BJ+/P3R9J0FuQzNtlz0IWf7ozL/R+8OwUfviBHCMKYI2Eev9efuB/pxYPjRtYU/P4aPZAN/Zhx/+svw53+OP/58//zX7JcZoQam5OOxzYgGgICgAIE/+xAwMgAYwvDR8/+ZF/roAQIGgCk1Poy4ZiNEH75/hMhsYsx++aMAln402chs7iGA/39jV7TjOA7DSEqyk9nD4P7/a++BkpPO7gIXFJ1Ok9iyRFGS0zhrXXt9S+khVAVQz+rFDGKJy10SadtVqsKfRWDvHVFvOUObWEK1rT9eCexz5MH2rBPcXx5X6vXllZI4TXCM/iclSwEQClAAX+9/3Rokj2e1LDJyqmrUCJJEWu2119o3kFFp22V+A7eFFH4B2wvC+1wjzfen9kC5iFr1dYZTi4DWuixM1dbjY4ooCzOKsr/Mub0rK288rKKIqArPKnzCu8d7FKsmkgRy1deYqSRld7uBu5U8nZ4BPttayzDymNdaIGqxFvf+MYAAXS2272U1Bnx6sK9OW3fKpolVwSEgxuOEIkKQ+uKA1+b6uHnwKSJQFRE8g6dA06JxFgPoiFoWgKNHZC5AECJIQkQ1MKD2lE9F+zGTsn6usS4U3bXCTdEL5xx7+KEillxEBkMAsbaO6tdKCpHPAy3tBhSmx0X+FKnWZUWRiKBR0h1l2CBKRHY7q0JcUkqgRuZEZKPcnyOtKElp5ViqtZKEC/8mu3xA4oChgLjNgH4gspVctf071ozLwlTeCuy9gTpwvO4A6r732g9GD9iyzHFQdKQ5471uy5Bt68bkw/iZi3R0bLtY8wf6b/WurX15b0cdcbcrLtrc1hK8TFKZ15rp3hD96zZUyClWDmlWdXggQ7iIawTod3D9YNgJ2wptICOqjcIG0ouGsPcm25or78w0yfYrIHMpUrERoJDxC7jvKw0ba9gquu9tQxxN+g6oDhdxhbbVAmDvggCi8j7EZxy2DKjr7mdP3F+mywcemXJGhuFHYxtP1LEpcUa09j3+i1XRzkhEcNUXUIAikblc+Hvzzycgdfp6Eg2vBPskKQSAah7CCcWtboICGZUnF0Bm44PQYZkM8lCbCHv1OzVhCz0hFx7879glUdURkI4PMQwLpSJtmznYR+6926vxdH2QylBnsz0MCuQRo2Pvx+W8z+2dAX34Rjc5Ypwe33t7Os94ynznaLbLe+J8TtT7mI+Wef7+Dy99C/UkVvzRxThzAHL24eT9cKUtZRJhAMjJImsGu43jvb4hZKYj617fk/V3amO//RDM/nPEm9zzLWAnF4/zNI2e4VTVFCio6jIiouzJdjYpZyXkc9v+T1s7bM8x4wUMX0IB8OasaaRTGykj4iTC06BOR5x/+8unovqbyWKQyRMp3Z1Nc9KxU38AzWsA/vnnu+VPNCM3SQ0I2ZGgKg7pHx48jTuDO704hTyFy1rL2b3te6wmydmoR3xwok5GO+rMsfkByJdB3LJehLLWSrWUE9EtJyNiSg3No9t7F6YqeZbDnu0LSMZj+C4uyKf4alHSVkzFe5dA4thyyt7agDwXyknyCHVceirBRoDRLCWhVDlcY+hJ0TF8EkMBubLi1UJD4bDEAYrjojX2QY2wqzvjdKWW8VaZiEVcryJXQIU2GeICUlydilqwDh75rgEBuexyeH/0xgXchsOTICtGxrTjDQhiIKK35l3a00zU0xY5EO8TyZgCPF9c/3GYpT0FbOgC0pMW0ejtGJMFoFyJOOavyzH1jrSWfnVtgXt0YMb8RQHYbcrDCyNe5iFHefgAgKpqns24gU2G2dapln1jsoxmGCB9QaO5j6uThS4kA+gs45WojuFsWU2wIWfupelj7PKHbQZeQEXUsH8e7gCwVvtRxxXhgOcNzt+3N05sphNNbTijJeOyWauCQEUSSWxiee5inBQhiC3PMUdb5LT2TNFgvkxxgTjVZGaeqTbg466Pmfyp1L8gIiLj9gfiy/h5UqJO2G36fGG+50OATY+aMVNqKCqGYfsqVudbjdLmohen/wetqWfCHJ1m3wAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 21,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "Image.fromarray(origin_RGB[4])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "c8dad466-7aa2-4ba4-81f1-0d8f57268081",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3.8.13 ('logo')",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.13"
+ },
+ "vscode": {
+ "interpreter": {
+ "hash": "f9307137f18f51d83e37da8476b4fe217ad2ef2bb155f10da85402ed3b56d86d"
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/python/app/fedcv/YOLOv6/deploy/ONNX/YOLOv6-Dynamic-Batch-tensorrt.ipynb b/python/app/fedcv/YOLOv6/deploy/ONNX/YOLOv6-Dynamic-Batch-tensorrt.ipynb
new file mode 100644
index 0000000000..c4f020369d
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/ONNX/YOLOv6-Dynamic-Batch-tensorrt.ipynb
@@ -0,0 +1,9363 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "75c5ef37-56cd-47ed-917c-b4cf606963bf",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Thu Jul 28 17:03:44 2022 \n",
+ "+-----------------------------------------------------------------------------+\n",
+ "| NVIDIA-SMI 515.48.07 Driver Version: 515.48.07 CUDA Version: 11.7 |\n",
+ "|-------------------------------+----------------------+----------------------+\n",
+ "| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |\n",
+ "| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |\n",
+ "| | | MIG M. |\n",
+ "|===============================+======================+======================|\n",
+ "| 0 NVIDIA GeForce ... Off | 00000000:01:00.0 Off | N/A |\n",
+ "| N/A 45C P8 19W / N/A | 3178MiB / 8192MiB | 0% Default |\n",
+ "| | | N/A |\n",
+ "+-------------------------------+----------------------+----------------------+\n",
+ " \n",
+ "+-----------------------------------------------------------------------------+\n",
+ "| Processes: |\n",
+ "| GPU GI CI PID Type Process name GPU Memory |\n",
+ "| ID ID Usage |\n",
+ "|=============================================================================|\n",
+ "| 0 N/A N/A 1463 G /usr/lib/xorg/Xorg 4MiB |\n",
+ "| 0 N/A N/A 2517 G /usr/lib/xorg/Xorg 4MiB |\n",
+ "| 0 N/A N/A 37235 C ...da3/envs/torch/bin/python 3165MiB |\n",
+ "+-----------------------------------------------------------------------------+\n"
+ ]
+ }
+ ],
+ "source": [
+ "!nvidia-smi"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "1569e541-7ebf-41c0-a7d0-7434a3618c98",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Namespace(batch_size=1, conf_thres=0.35, device='0', dynamic_batch=True, end2end=True, half=False, img_size=[640, 640], inplace=False, iou_thres=0.65, max_wh=None, simplify=True, topk_all=100, trt_version=8, weights='weights/yolov6s.pt', with_preprocess=False)\n",
+ "Loading checkpoint from weights/yolov6s.pt\n",
+ "\n",
+ "Fusing model...\n",
+ "/home/ubuntu/miniconda3/envs/torch/lib/python3.8/site-packages/torch/functional.py:478: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:2894.)\n",
+ " return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]\n",
+ "\n",
+ "Starting to export ONNX...\n",
+ "/home/ubuntu/work/yolo/YOLOv6/yolov6/models/effidehead.py:76: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n",
+ " if self.grid[i].shape[2:4] != y.shape[2:4]:\n",
+ "WARNING: The shape inference of TRT::EfficientNMS_TRT type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.\n",
+ "WARNING: The shape inference of TRT::EfficientNMS_TRT type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.\n",
+ "WARNING: The shape inference of TRT::EfficientNMS_TRT type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.\n",
+ "WARNING: The shape inference of TRT::EfficientNMS_TRT type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.\n",
+ "WARNING: The shape inference of TRT::EfficientNMS_TRT type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.\n",
+ "WARNING: The shape inference of TRT::EfficientNMS_TRT type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.\n",
+ "WARNING: The shape inference of TRT::EfficientNMS_TRT type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.\n",
+ "WARNING: The shape inference of TRT::EfficientNMS_TRT type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.\n",
+ "WARNING: The shape inference of TRT::EfficientNMS_TRT type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.\n",
+ "WARNING: The shape inference of TRT::EfficientNMS_TRT type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.\n",
+ "WARNING: The shape inference of TRT::EfficientNMS_TRT type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.\n",
+ "WARNING: The shape inference of TRT::EfficientNMS_TRT type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.\n",
+ "\n",
+ "Starting to simplify ONNX...\n",
+ "ONNX export success, saved as weights/yolov6s.onnx\n",
+ "\n",
+ "Export complete (4.80s)\n",
+ "Dynamic batch export should define min/opt/max batchsize\n",
+ "We set min/opt/max = 1/16/32 default!\n",
+ "\n",
+ "You can export tensorrt engine use trtexec tools.\n",
+ "Command is:\n",
+ "trtexec --onnx=weights/yolov6s.onnx --saveEngine=weights/yolov6s.engine --minShapes=images:1x3x640x640 --optShapes=images:16x3x640x640 --maxShapes=images:32x3x640x640 --shapes=images:16x3x640x640\n"
+ ]
+ }
+ ],
+ "source": [
+ "# export temporary ONNX model for TensorRT converter\n",
+ "!python deploy/ONNX/export_onnx.py \\\n",
+ " --weights weights/yolov6s.pt \\\n",
+ " --end2end --simplify \\\n",
+ " --topk-all 100 \\\n",
+ " --iou-thres 0.65 \\\n",
+ " --conf-thres 0.35 \\\n",
+ " --img-size 640 640 \\\n",
+ " --dynamic-batch"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "cee352a7-78a3-4cfd-8bf5-008fd4245625",
+ "metadata": {
+ "collapsed": true,
+ "jupyter": {
+ "outputs_hidden": true
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[07/28/2022-16:50:57] [TRT] [I] [MemUsageChange] Init CUDA: CPU +329, GPU +0, now: CPU 339, GPU 3465 (MiB)\n",
+ "[07/28/2022-16:50:57] [TRT] [I] [MemUsageChange] Init builder kernel library: CPU +327, GPU +104, now: CPU 685, GPU 3569 (MiB)\n",
+ "build_engine.py:21: DeprecationWarning: Use set_memory_pool_limit instead.\n",
+ " config.max_workspace_size = opt.workspace * 1 << 30\n",
+ "[07/28/2022-16:50:57] [TRT] [I] ----------------------------------------------------------------\n",
+ "[07/28/2022-16:50:57] [TRT] [I] Input filename: ./yolov6s.onnx\n",
+ "[07/28/2022-16:50:57] [TRT] [I] ONNX IR version: 0.0.7\n",
+ "[07/28/2022-16:50:57] [TRT] [I] Opset version: 12\n",
+ "[07/28/2022-16:50:57] [TRT] [I] Producer name: pytorch\n",
+ "[07/28/2022-16:50:57] [TRT] [I] Producer version: 1.12.0\n",
+ "[07/28/2022-16:50:57] [TRT] [I] Domain: \n",
+ "[07/28/2022-16:50:57] [TRT] [I] Model version: 0\n",
+ "[07/28/2022-16:50:57] [TRT] [I] Doc string: \n",
+ "[07/28/2022-16:50:57] [TRT] [I] ----------------------------------------------------------------\n",
+ "[07/28/2022-16:50:58] [TRT] [W] onnx2trt_utils.cpp:369: Your ONNX model has been generated with INT64 weights, while TensorRT does not natively support INT64. Attempting to cast down to INT32.\n",
+ "[07/28/2022-16:50:58] [TRT] [W] onnx2trt_utils.cpp:395: One or more weights outside the range of INT32 was clamped\n",
+ "[07/28/2022-16:50:58] [TRT] [I] No importer registered for op: EfficientNMS_TRT. Attempting to import as plugin.\n",
+ "[07/28/2022-16:50:58] [TRT] [I] Searching for plugin: EfficientNMS_TRT, plugin_version: 1, plugin_namespace: \n",
+ "[07/28/2022-16:50:58] [TRT] [I] Successfully created plugin: EfficientNMS_TRT\n",
+ "INFO:build_engine:\n",
+ "Network Description\n",
+ "******************************\n",
+ "Input 'images' with shape (-1, 3, 640, 640) and dtype DataType.FLOAT\n",
+ "Output 'num_dets' with shape (-1, 1) and dtype DataType.INT32\n",
+ "Output 'det_boxes' with shape (-1, 100, 4) and dtype DataType.FLOAT\n",
+ "Output 'det_scores' with shape (-1, 100) and dtype DataType.FLOAT\n",
+ "Output 'det_classes' with shape (-1, 100) and dtype DataType.INT32\n",
+ "******************************\n",
+ "INFO:build_engine:\n",
+ "dynamic batch profile is\n",
+ " (1, 3, 640, 640)\n",
+ " (16, 3, 640, 640)\n",
+ " (32, 3, 640, 640)\n",
+ "[07/28/2022-16:50:58] [TRT] [I] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +851, GPU +368, now: CPU 1609, GPU 3937 (MiB)\n",
+ "[07/28/2022-16:50:58] [TRT] [I] [MemUsageChange] Init cuDNN: CPU +127, GPU +58, now: CPU 1736, GPU 3995 (MiB)\n",
+ "[07/28/2022-16:50:58] [TRT] [I] Local timing cache in use. Profiling results in this builder pass will not be stored.\n",
+ "[07/28/2022-16:51:31] [TRT] [W] Weights [name=Conv_9 + Relu_10.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:31] [TRT] [W] Weights [name=Conv_9 + Relu_10.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:31] [TRT] [W] Weights [name=Conv_9 + Relu_10.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:31] [TRT] [W] Weights [name=Conv_9 + Relu_10.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:31] [TRT] [W] Weights [name=Conv_9 + Relu_10.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:31] [TRT] [W] Weights [name=Conv_9 + Relu_10.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:31] [TRT] [W] Weights [name=Conv_9 + Relu_10.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:31] [TRT] [W] Weights [name=Conv_9 + Relu_10.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:33] [TRT] [W] Weights [name=Conv_9 + Relu_10.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:33] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:33] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:36] [TRT] [W] Weights [name=Conv_11 + Relu_12.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:36] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:36] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:36] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:36] [TRT] [W] Weights [name=Conv_11 + Relu_12.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:36] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:36] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:36] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:36] [TRT] [W] Weights [name=Conv_11 + Relu_12.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:36] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:36] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:36] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:36] [TRT] [W] Weights [name=Conv_11 + Relu_12.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:36] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:36] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:36] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:36] [TRT] [W] Weights [name=Conv_11 + Relu_12.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:36] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:36] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:36] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:36] [TRT] [W] Weights [name=Conv_11 + Relu_12.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:36] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:36] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:36] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:36] [TRT] [W] Weights [name=Conv_11 + Relu_12.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:36] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:36] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:36] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:37] [TRT] [W] Weights [name=Conv_11 + Relu_12.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:37] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:37] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:37] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:37] [TRT] [E] 2: [virtualMemoryBuffer.cpp::resizePhysical::159] Error Code 2: OutOfMemory (no further information)\n",
+ "[07/28/2022-16:51:37] [TRT] [E] 2: [virtualMemoryBuffer.cpp::resizePhysical::144] Error Code 2: OutOfMemory (no further information)\n",
+ "[07/28/2022-16:51:37] [TRT] [W] -------------- The current system memory allocations dump as below --------------\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0efae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27748 time: 3.66e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0f2500]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27740 time: 1.43e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0f4bd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27737 time: 2.4e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0f4ef0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27732 time: 3.2e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0f4ab0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27729 time: 1.38e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0efda0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27715 time: 1.06e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0ec790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27706 time: 9.4e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0ec590]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27703 time: 1.63e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0ed510]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27700 time: 7.7e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0ed270]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27697 time: 1.07e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0ed030]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27694 time: 1.54e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0edb40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27691 time: 1.53e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0ed9d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27688 time: 1.54e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0ed7c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27685 time: 1.78e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559779432720]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27676 time: 4e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0fc110]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27673 time: 1.44e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0e8e00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27670 time: 2.8e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597794327c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27661 time: 1.9e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559779431790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25393 time: 6.8e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597794339f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25385 time: 7e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0ebd90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25382 time: 1.94e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0ebcf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25374 time: 7.5e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559779433d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25369 time: 7.1e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559779431670]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25361 time: 2e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0ebbb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25358 time: 1.9e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0ebed0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25353 time: 2.8e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0f5cd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25350 time: 1.04e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0f5ae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25345 time: 1.19e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0f56c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25342 time: 9.1e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0f55a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25339 time: 2.18e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559738191300]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25336 time: 9.5e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559738191190]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25333 time: 1.48e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0f5e50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25327 time: 8.5e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559779433580]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25377 time: 7.1e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0fbfb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25315 time: 1.2e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559738185cc0]:1280 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 124 time: 7.2e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0f85f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24733 time: 1.3e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974068a370]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 111 time: 2.4e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974062ddb0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 0 time: 1.89e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0f7f20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24748 time: 1.24e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597406dbad0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 116 time: 1.6e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597406a1230]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 107 time: 1.6e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974062db00]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 8 time: 2.2e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597406bc090]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 112 time: 2.8e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559740644920]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 17 time: 2.7e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597406b9aa0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 104 time: 1.9e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559779433bc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25398 time: 6.7e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55977942f820]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21069 time: 1.34e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597406ba110]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 99 time: 1.8e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974067f460]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 97 time: 2.7e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597406733a0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 80 time: 2.2e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0f8ce0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25318 time: 9.7e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974064e150]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 32 time: 1.8e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0f80c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24751 time: 9.7e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559740645be0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 19 time: 3.6e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974067d9b0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 94 time: 2.2e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559740674920]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 82 time: 2e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974067b350]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 91 time: 2.7e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974062de80]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 1 time: 1.5e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974067ada0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 90 time: 2.8e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559740674f90]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 83 time: 2.8e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597794322e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27679 time: 1.21e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597794827c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20139 time: 3.4e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974066f250]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 75 time: 2.9e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974066ec00]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 74 time: 2e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974066da30]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 73 time: 3e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559722308300]:512 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 123 time: 2.6e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974066c4b0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 71 time: 3.1e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559740667460]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 64 time: 1.9e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974066a920]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 68 time: 2e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974065e860]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 53 time: 2.8e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0f2b30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27718 time: 3.08e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597406f10a0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 121 time: 1.8e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559740667ad0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 65 time: 2.6e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597406b0b20]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 109 time: 1.9e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559740665ee0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 62 time: 2e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559740676510]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 85 time: 2.9e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974066be60]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 70 time: 1.6e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597406502f0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 35 time: 2.8e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559779352430]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19983 time: 6.5e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559778435980]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21048 time: 4.6e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597406dc690]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 114 time: 2.8e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0fdc50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24816 time: 2.7e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559740664750]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 61 time: 3e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559740675ea0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 84 time: 2e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974067c490]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 93 time: 2.6e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0fcbe0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24848 time: 1.81e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597406f1a50]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 118 time: 1.6e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597406640e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 60 time: 2e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559740662930]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 59 time: 3e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597406c91e0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 115 time: 2.1e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559740658ae0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 45 time: 2.7e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597406b24c0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 98 time: 7.6e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0f9b80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24805 time: 8.9e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0e8d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24697 time: 2.7e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974064a1e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 26 time: 1.9e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597406dbaf0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 113 time: 1.7e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559740649530]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 25 time: 2.9e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597406f1860]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 117 time: 1.7e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0f5150]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27721 time: 1.17e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559779432c90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27664 time: 2.4e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559740641e80]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 12 time: 1.9e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559740646ed0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 21 time: 3.5e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0fcf00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24832 time: 2.6e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559740645660]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 18 time: 1.9e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559740644310]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 16 time: 1.8e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974065a470]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 46 time: 4.9e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597406e99d0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 119 time: 1.8e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597406b08e0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 105 time: 1.6e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597380cd3f0]:2048 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 131 time: 4.12e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559778435dc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27667 time: 8.1e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559740666550]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 63 time: 2.8e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597406517f0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 37 time: 3.1e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559740673a10]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 81 time: 2.7e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974073c820]:2560 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 128 time: 2.39e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559738361110]:294912 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 122 time: 5.448e-06\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559740646950]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 20 time: 1.9e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974064b990]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 29 time: 2.7e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597406b97d0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 102 time: 2e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559740652cc0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 39 time: 3e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974067df60]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 95 time: 2.7e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559740655cf0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 41 time: 2.8e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559740651270]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 36 time: 1.8e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974065bb80]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 49 time: 2.7e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559740643690]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 15 time: 2.6e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974062d9e0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 11 time: 1.8e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55977946d530]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20019 time: 1.06e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0fdbb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24845 time: 1.9e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597794831e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20123 time: 9.2e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974062ccd0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 3 time: 1.5e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55977946f850]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20051 time: 8.5e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559740657180]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 43 time: 2.7e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559740643270]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 14 time: 1.7e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974062e220]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 9 time: 1.8e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55977946fd90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20059 time: 2e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974062d050]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 6 time: 2.1e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597406689e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 66 time: 2.1e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974064d250]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 31 time: 2.7e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597406dfb70]:20 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 125 time: 2.2e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0eb100]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24730 time: 1.15e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974062d130]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 7 time: 1.5e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55977946cbd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20126 time: 1.4e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974064b410]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 28 time: 1.9e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0ecae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27712 time: 1.17e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55977947eea0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20075 time: 6.7e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974065b510]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 48 time: 2.2e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559740662330]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 58 time: 2.4e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974066d3e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 72 time: 2.3e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974065d2e0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 51 time: 2.8e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974064a760]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 27 time: 2.9e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0e7380]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25321 time: 1.46e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0fe770]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24792 time: 2e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559740648fb0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 24 time: 2.1e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0ea850]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24757 time: 9.6e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974067f320]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 96 time: 4.5e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559740677420]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 86 time: 2e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55977942b6c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21045 time: 1.9e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559740648210]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 23 time: 2.7e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0e5cd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21094 time: 3e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55973bfaac00]:1179648 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 126 time: 4.71e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597406e5ab0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 120 time: 2.2e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0f4c70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27745 time: 1.8e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559740670180]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 76 time: 2.3e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974065e1f0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 52 time: 2e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55977942f4d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24715 time: 2.17e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559740661360]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 57 time: 2.8e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0fe200]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24829 time: 2.13e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597406779a0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 87 time: 2.8e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55977942fc80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21075 time: 1.04e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974064e6d0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 33 time: 2.7e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974064cdd0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 30 time: 1.9e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0ebc50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25366 time: 2e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974064fd70]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 34 time: 2.2e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0ecdc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27682 time: 8e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0eabf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24760 time: 1.33e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559740660c70]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 56 time: 2.5e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559740652740]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 38 time: 2.1e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0fe6d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24821 time: 2.2e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597406557e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 40 time: 2.6e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559740656c00]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 42 time: 1.8e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974066af00]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 69 time: 2.9e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597406583a0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 44 time: 2.4e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55977946ec60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20031 time: 8.6e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974065fcf0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 55 time: 2.8e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974062d360]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 5 time: 1.6e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974065a5b0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 47 time: 2.9e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0fc4a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25309 time: 2.6e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0f95e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24765 time: 6.6e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974065cc70]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 50 time: 2.3e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597406b4d80]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 108 time: 1.9e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559740664f80]:1024 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 127 time: 1.16e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597406b28f0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 100 time: 2.8e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0f7d80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24745 time: 9.4e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559738127ee0]:20 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 129 time: 2.1e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0f7860]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24706 time: 1.41e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597406706e0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 77 time: 2.7e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559740741a50]:20 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 133 time: 3.3e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559779a55e00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19986 time: 5.2e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597799eaf40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19989 time: 4.49e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55977946e7d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20016 time: 1.05e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0e6270]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21126 time: 2.9e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559778437560]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20062 time: 6.5e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559779a521a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19992 time: 1.33e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559779a54080]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19995 time: 8.28e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559740679640]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 89 time: 3.4e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559779a46b30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19998 time: 8.6e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974062cbf0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 2 time: 2.1e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974065f770]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 54 time: 2.1e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559779480f30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20070 time: 6.3e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559779a4efd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20001 time: 1.06e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559779a465f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20004 time: 2.21e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55977946c8b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20118 time: 1.06e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559740672700]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 79 time: 2.8e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559778437660]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25312 time: 2.1e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597383f26d0]:4718592 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 130 time: 6.05e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559779a46f00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20007 time: 1e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559779483320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20094 time: 9.5e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55977946e4f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20010 time: 1.83e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597406b0210]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 106 time: 2e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0e69f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25306 time: 2.2e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55977946d6d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20022 time: 8.2e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55977946d9b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20025 time: 9.8e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0e5eb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21118 time: 2e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55973c3a8ad0]:5120 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 132 time: 2.51e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55977946eae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20028 time: 6.2e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55977946ee00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20034 time: 5e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55977946efa0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20037 time: 4.2e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559779470300]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20040 time: 1.29e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55977946f1f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20043 time: 1.45e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55977946f610]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20046 time: 1.32e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0f90c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24703 time: 2.7e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55977946fcf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20054 time: 4.2e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597406b2740]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 103 time: 1.8e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0f7bd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24742 time: 1.26e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597beee6090]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20067 time: 1.22e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55977947f700]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20078 time: 3.8e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55977942c1d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21054 time: 9.8e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0f48a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27724 time: 2.01e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0ec160]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25390 time: 1.16e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559779430210]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21081 time: 8.5e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0f8c10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24712 time: 2.6e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55977947ef40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20083 time: 1.42e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55977942fdf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21078 time: 1.25e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597794824a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20086 time: 2.03e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559779480df0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20099 time: 1e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0fe340]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24800 time: 3.7e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597406b98f0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 101 time: 2.1e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597794802c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20107 time: 7.5e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559740647b80]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 22 time: 1.9e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559779482900]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20110 time: 5.2e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559740668f60]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 67 time: 2.7e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55977947fe10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20115 time: 6.4e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559778436ef0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20131 time: 6.8e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597406790e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 88 time: 3e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55977946c0c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20134 time: 1.8e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559779430440]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21042 time: 3.3e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974067c350]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 92 time: 4.4e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55977942b930]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21051 time: 1.57e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0f7360]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24700 time: 4.6e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559779430a10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21057 time: 2.09e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55977942e520]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21063 time: 1.58e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0ec380]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25330 time: 1.32e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0e5e10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21110 time: 2.3e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55977942e7b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21066 time: 8e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55977942f9c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21072 time: 1.28e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0e5be0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21086 time: 6.3e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0e5ff0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21089 time: 4.1e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974062ed40]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 10 time: 1.8e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0e63b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21097 time: 3.7e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0e5d70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21102 time: 2.4e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559740642400]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 13 time: 4.1e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0eadc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24724 time: 1.41e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0e8ab0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21105 time: 2.4e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0f4d10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27753 time: 2.7e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0e8230]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21113 time: 2.6e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0e86d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21121 time: 3.7e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55977942c330]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24709 time: 2.5e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0ea3d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24718 time: 2.57e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0f8280]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24721 time: 1.49e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0eaf60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24727 time: 1.69e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0f8790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24736 time: 1.09e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559738190ed0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25324 time: 1.26e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0ea6b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24754 time: 1.21e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55977946e660]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20013 time: 1.39e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0f7a30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24739 time: 2.09e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0f99d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24768 time: 3.59e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55974062ce20]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 4 time: 2e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0f96b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24773 time: 6.3e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0f9750]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24781 time: 4e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0f9ee0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24784 time: 1.23e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0e8970]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21134 time: 2.43e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0f97f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24789 time: 2e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0f9890]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24797 time: 2.3e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559779430be0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21060 time: 9e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0fd9b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24808 time: 7.2e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x55977947efe0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20091 time: 7.2e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0eaa50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24813 time: 6.4e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0fd2b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24824 time: 2.8e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0ec940]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27709 time: 6.9e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0fd7c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24837 time: 2e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0fc860]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24840 time: 1.8e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x559778437030]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20102 time: 6.6e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597406720d0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 78 time: 1.9e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597406d99a0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 110 time: 2.14e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0e7f10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21129 time: 5.3e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0fd130]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24853 time: 1.34e-07\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x5597bc0f9cc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24776 time: 3e-08\n",
+ "[07/28/2022-16:51:37] [TRT] [W] -------------- The current device memory allocations dump as below --------------\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0]:4294967296 :HybridGlobWriter in reserveMemory: at optimizer/common/globWriter.cpp: 438 idx: 1873 time: 0.00640043\n",
+ "[07/28/2022-16:51:37] [TRT] [W] [0x302000000]:2307915776 :HybridGlobWriter in reserveMemory: at optimizer/common/globWriter.cpp: 416 idx: 1872 time: 0.000603742\n",
+ "[07/28/2022-16:51:37] [TRT] [W] Requested amount of GPU memory (4294967296 bytes) could not be allocated. There may not be enough free memory for allocation to succeed.\n",
+ "[07/28/2022-16:51:37] [TRT] [W] Skipping tactic 3 due to insufficient memory on requested size of 4294967296 detected for tactic 0x0000000000000004.\n",
+ "Try decreasing the workspace size with IBuilderConfig::setMemoryPoolLimit().\n",
+ "[07/28/2022-16:51:38] [TRT] [E] 2: [virtualMemoryBuffer.cpp::resizePhysical::159] Error Code 2: OutOfMemory (no further information)\n",
+ "[07/28/2022-16:51:38] [TRT] [E] 2: [virtualMemoryBuffer.cpp::resizePhysical::144] Error Code 2: OutOfMemory (no further information)\n",
+ "[07/28/2022-16:51:38] [TRT] [W] -------------- The current system memory allocations dump as below --------------\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ef2d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27801 time: 2.41e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f4680]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27796 time: 2.3e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f3a60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27788 time: 2.1e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f2d70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27772 time: 3.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f4db0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27769 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ef040]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27764 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0eebd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27761 time: 1.16e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0eec70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27756 time: 1.29e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0efae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27748 time: 3.66e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f2500]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27740 time: 1.43e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f4bd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27737 time: 2.4e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f4ef0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27732 time: 3.2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f4ab0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27729 time: 1.38e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0efda0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27715 time: 1.06e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ec790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27706 time: 9.4e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ec590]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27703 time: 1.63e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ed510]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27700 time: 7.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ed270]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27697 time: 1.07e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ed030]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27694 time: 1.54e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0edb40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27691 time: 1.53e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ed9d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27688 time: 1.54e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ed7c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27685 time: 1.78e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779432720]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27676 time: 4e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0fc110]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27673 time: 1.44e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0e8e00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27670 time: 2.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597794327c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27661 time: 1.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779431790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25393 time: 6.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597794339f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25385 time: 7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ebd90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25382 time: 1.94e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ebcf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25374 time: 7.5e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779433d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25369 time: 7.1e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779431670]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25361 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ebbb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25358 time: 1.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ebed0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25353 time: 2.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f5cd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25350 time: 1.04e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f5ae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25345 time: 1.19e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f56c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25342 time: 9.1e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f55a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25339 time: 2.18e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559738191300]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25336 time: 9.5e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559738191190]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25333 time: 1.48e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f5e50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25327 time: 8.5e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779433580]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25377 time: 7.1e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0fbfb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25315 time: 1.2e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559738185cc0]:1280 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 124 time: 7.2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f85f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24733 time: 1.3e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974068a370]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 111 time: 2.4e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974062ddb0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 0 time: 1.89e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f7f20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24748 time: 1.24e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406dbad0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 116 time: 1.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406a1230]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 107 time: 1.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974062db00]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 8 time: 2.2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406bc090]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 112 time: 2.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740644920]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 17 time: 2.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406b9aa0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 104 time: 1.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779433bc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25398 time: 6.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977942f820]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21069 time: 1.34e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406ba110]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 99 time: 1.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974067f460]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 97 time: 2.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406733a0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 80 time: 2.2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f8ce0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25318 time: 9.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974064e150]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 32 time: 1.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f80c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24751 time: 9.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740645be0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 19 time: 3.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974067d9b0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 94 time: 2.2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740674920]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 82 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974067b350]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 91 time: 2.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974062de80]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 1 time: 1.5e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974067ada0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 90 time: 2.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740674f90]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 83 time: 2.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597794322e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27679 time: 1.21e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597794827c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20139 time: 3.4e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974066f250]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 75 time: 2.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974066ec00]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 74 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974066da30]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 73 time: 3e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559722308300]:512 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 123 time: 2.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974066c4b0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 71 time: 3.1e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740667460]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 64 time: 1.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974066a920]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 68 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974065e860]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 53 time: 2.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f2b30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27718 time: 3.08e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406f10a0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 121 time: 1.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740667ad0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 65 time: 2.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406b0b20]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 109 time: 1.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740665ee0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 62 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740676510]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 85 time: 2.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974066be60]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 70 time: 1.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406502f0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 35 time: 2.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779352430]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19983 time: 6.5e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559778435980]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21048 time: 4.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406dc690]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 114 time: 2.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0fdc50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24816 time: 2.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740664750]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 61 time: 3e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740675ea0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 84 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974067c490]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 93 time: 2.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0fcbe0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24848 time: 1.81e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406f1a50]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 118 time: 1.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406640e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 60 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740662930]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 59 time: 3e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406c91e0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 115 time: 2.1e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740658ae0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 45 time: 2.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406b24c0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 98 time: 7.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f9b80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24805 time: 8.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0e8d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24697 time: 2.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974064a1e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 26 time: 1.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406dbaf0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 113 time: 1.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740649530]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 25 time: 2.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406f1860]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 117 time: 1.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f5150]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27721 time: 1.17e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779432c90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27664 time: 2.4e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740641e80]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 12 time: 1.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740646ed0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 21 time: 3.5e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0fcf00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24832 time: 2.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f23c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27777 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740645660]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 18 time: 1.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740644310]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 16 time: 1.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974065a470]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 46 time: 4.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406e99d0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 119 time: 1.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406b08e0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 105 time: 1.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597380cd3f0]:2048 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 131 time: 4.12e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559778435dc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27667 time: 8.1e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740666550]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 63 time: 2.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406517f0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 37 time: 3.1e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740673a10]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 81 time: 2.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974073c820]:2560 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 128 time: 2.39e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559738361110]:294912 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 122 time: 5.448e-06\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740646950]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 20 time: 1.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974064b990]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 29 time: 2.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406b97d0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 102 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740652cc0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 39 time: 3e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974067df60]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 95 time: 2.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740655cf0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 41 time: 2.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740651270]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 36 time: 1.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974065bb80]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 49 time: 2.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740643690]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 15 time: 2.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ef960]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27785 time: 2.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974062d9e0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 11 time: 1.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977946d530]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20019 time: 1.06e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0fdbb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24845 time: 1.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597794831e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20123 time: 9.2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974062ccd0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 3 time: 1.5e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977946f850]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20051 time: 8.5e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740657180]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 43 time: 2.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740643270]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 14 time: 1.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974062e220]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 9 time: 1.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977946fd90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20059 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974062d050]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 6 time: 2.1e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406689e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 66 time: 2.1e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974064d250]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 31 time: 2.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406dfb70]:20 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 125 time: 2.2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ef4a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27793 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0eb100]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24730 time: 1.15e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974062d130]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 7 time: 1.5e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977946cbd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20126 time: 1.4e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974064b410]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 28 time: 1.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ecae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27712 time: 1.17e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977947eea0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20075 time: 6.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974065b510]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 48 time: 2.2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740662330]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 58 time: 2.4e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974066d3e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 72 time: 2.3e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974065d2e0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 51 time: 2.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f3120]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27780 time: 4e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974064a760]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 27 time: 2.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0e7380]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25321 time: 1.46e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0fe770]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24792 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740648fb0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 24 time: 2.1e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ea850]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24757 time: 9.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974067f320]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 96 time: 4.5e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740677420]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 86 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977942b6c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21045 time: 1.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740648210]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 23 time: 2.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0e5cd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21094 time: 3e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55973bfaac00]:1179648 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 126 time: 4.71e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406e5ab0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 120 time: 2.2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f4c70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27745 time: 1.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740670180]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 76 time: 2.3e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974065e1f0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 52 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977942f4d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24715 time: 2.17e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740661360]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 57 time: 2.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0fe200]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24829 time: 2.13e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406779a0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 87 time: 2.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977942fc80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21075 time: 1.04e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974064e6d0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 33 time: 2.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974064cdd0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 30 time: 1.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ebc50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25366 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974064fd70]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 34 time: 2.2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ecdc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27682 time: 8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0eabf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24760 time: 1.33e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740660c70]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 56 time: 2.5e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740652740]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 38 time: 2.1e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0fe6d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24821 time: 2.2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406557e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 40 time: 2.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740656c00]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 42 time: 1.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974066af00]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 69 time: 2.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406583a0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 44 time: 2.4e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977946ec60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20031 time: 8.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974065fcf0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 55 time: 2.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974062d360]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 5 time: 1.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974065a5b0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 47 time: 2.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0fc4a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25309 time: 2.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f95e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24765 time: 6.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974065cc70]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 50 time: 2.3e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406b4d80]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 108 time: 1.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740664f80]:1024 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 127 time: 1.16e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406b28f0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 100 time: 2.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f7d80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24745 time: 9.4e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559738127ee0]:20 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 129 time: 2.1e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f7860]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24706 time: 1.41e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406706e0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 77 time: 2.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740741a50]:20 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 133 time: 3.3e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779a55e00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19986 time: 5.2e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597799eaf40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19989 time: 4.49e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977946e7d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20016 time: 1.05e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0e6270]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21126 time: 2.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559778437560]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20062 time: 6.5e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779a521a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19992 time: 1.33e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779a54080]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19995 time: 8.28e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740679640]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 89 time: 3.4e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779a46b30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19998 time: 8.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974062cbf0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 2 time: 2.1e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974065f770]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 54 time: 2.1e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779480f30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20070 time: 6.3e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779a4efd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20001 time: 1.06e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779a465f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20004 time: 2.21e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977946c8b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20118 time: 1.06e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740672700]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 79 time: 2.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559778437660]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25312 time: 2.1e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597383f26d0]:4718592 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 130 time: 6.05e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779a46f00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20007 time: 1e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779483320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20094 time: 9.5e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977946e4f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20010 time: 1.83e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406b0210]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 106 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0e69f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25306 time: 2.2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977946d6d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20022 time: 8.2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977946d9b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20025 time: 9.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0e5eb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21118 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55973c3a8ad0]:5120 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 132 time: 2.51e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977946eae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20028 time: 6.2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977946ee00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20034 time: 5e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977946efa0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20037 time: 4.2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779470300]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20040 time: 1.29e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977946f1f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20043 time: 1.45e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977946f610]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20046 time: 1.32e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f90c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24703 time: 2.7e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977946fcf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20054 time: 4.2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406b2740]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 103 time: 1.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f7bd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24742 time: 1.26e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597beee6090]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20067 time: 1.22e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977947f700]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20078 time: 3.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977942c1d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21054 time: 9.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f48a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27724 time: 2.01e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ec160]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25390 time: 1.16e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779430210]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21081 time: 8.5e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f8c10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24712 time: 2.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977947ef40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20083 time: 1.42e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977942fdf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21078 time: 1.25e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597794824a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20086 time: 2.03e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779480df0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20099 time: 1e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0fe340]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24800 time: 3.7e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406b98f0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 101 time: 2.1e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597794802c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20107 time: 7.5e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740647b80]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 22 time: 1.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779482900]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20110 time: 5.2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740668f60]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 67 time: 2.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977947fe10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20115 time: 6.4e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559778436ef0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20131 time: 6.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406790e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 88 time: 3e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977946c0c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20134 time: 1.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779430440]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21042 time: 3.3e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974067c350]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 92 time: 4.4e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977942b930]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21051 time: 1.57e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f7360]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24700 time: 4.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779430a10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21057 time: 2.09e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977942e520]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21063 time: 1.58e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ec380]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25330 time: 1.32e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0e5e10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21110 time: 2.3e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977942e7b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21066 time: 8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977942f9c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21072 time: 1.28e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0e5be0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21086 time: 6.3e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0e5ff0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21089 time: 4.1e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974062ed40]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 10 time: 1.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0e63b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21097 time: 3.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0e5d70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21102 time: 2.4e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740642400]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 13 time: 4.1e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0eadc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24724 time: 1.41e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0e8ab0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21105 time: 2.4e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f4d10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27753 time: 2.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0e8230]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21113 time: 2.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0e86d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21121 time: 3.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977942c330]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24709 time: 2.5e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ea3d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24718 time: 2.57e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f8280]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24721 time: 1.49e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0eaf60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24727 time: 1.69e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f8790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24736 time: 1.09e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559738190ed0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25324 time: 1.26e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ea6b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24754 time: 1.21e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977946e660]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20013 time: 1.39e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f7a30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24739 time: 2.09e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f99d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24768 time: 3.59e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974062ce20]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 4 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f96b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24773 time: 6.3e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f9750]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24781 time: 4e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f9ee0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24784 time: 1.23e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0e8970]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21134 time: 2.43e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f97f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24789 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f9890]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24797 time: 2.3e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779430be0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21060 time: 9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0fd9b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24808 time: 7.2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977947efe0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20091 time: 7.2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0eaa50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24813 time: 6.4e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0fd2b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24824 time: 2.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ec940]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27709 time: 6.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0fd7c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24837 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0fc860]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24840 time: 1.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559778437030]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20102 time: 6.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406720d0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 78 time: 1.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406d99a0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 110 time: 2.14e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0e7f10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21129 time: 5.3e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0fd130]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24853 time: 1.34e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f9cc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24776 time: 3e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] -------------- The current device memory allocations dump as below --------------\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0]:4294967296 :HybridGlobWriter in reserveMemory: at optimizer/common/globWriter.cpp: 438 idx: 1874 time: 0.0086068\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x302000000]:2307915776 :HybridGlobWriter in reserveMemory: at optimizer/common/globWriter.cpp: 416 idx: 1872 time: 0.000603742\n",
+ "[07/28/2022-16:51:38] [TRT] [W] Requested amount of GPU memory (4294967296 bytes) could not be allocated. There may not be enough free memory for allocation to succeed.\n",
+ "[07/28/2022-16:51:38] [TRT] [W] Skipping tactic 9 due to insufficient memory on requested size of 4294967296 detected for tactic 0x000000000000003c.\n",
+ "Try decreasing the workspace size with IBuilderConfig::setMemoryPoolLimit().\n",
+ "[07/28/2022-16:51:38] [TRT] [E] 2: [virtualMemoryBuffer.cpp::resizePhysical::159] Error Code 2: OutOfMemory (no further information)\n",
+ "[07/28/2022-16:51:38] [TRT] [E] 2: [virtualMemoryBuffer.cpp::resizePhysical::144] Error Code 2: OutOfMemory (no further information)\n",
+ "[07/28/2022-16:51:38] [TRT] [W] -------------- The current system memory allocations dump as below --------------\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f1590]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27844 time: 2.1e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f1ea0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27841 time: 3.3e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f1cf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27833 time: 3.2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f0040]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27828 time: 3.04e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f3ed0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27820 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f33f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27817 time: 8.4e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f3bb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27812 time: 5.4e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f2230]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27804 time: 3.85e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ef2d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27801 time: 2.41e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f4680]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27796 time: 2.3e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f3a60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27788 time: 2.1e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f2d70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27772 time: 3.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f4db0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27769 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ef040]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27764 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0eebd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27761 time: 1.16e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0eec70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27756 time: 1.29e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0efae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27748 time: 3.66e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f2500]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27740 time: 1.43e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f4bd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27737 time: 2.4e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f4ef0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27732 time: 3.2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f4ab0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27729 time: 1.38e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0efda0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27715 time: 1.06e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ec790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27706 time: 9.4e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ec590]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27703 time: 1.63e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ed510]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27700 time: 7.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ed270]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27697 time: 1.07e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ed030]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27694 time: 1.54e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0edb40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27691 time: 1.53e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ed9d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27688 time: 1.54e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ed7c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27685 time: 1.78e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779432720]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27676 time: 4e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0fc110]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27673 time: 1.44e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0e8e00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27670 time: 2.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597794327c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27661 time: 1.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779431790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25393 time: 6.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597794339f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25385 time: 7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ebd90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25382 time: 1.94e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ebcf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25374 time: 7.5e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779433d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25369 time: 7.1e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779431670]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25361 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ebbb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25358 time: 1.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ebed0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25353 time: 2.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f5cd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25350 time: 1.04e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f5ae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25345 time: 1.19e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f56c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25342 time: 9.1e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f55a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25339 time: 2.18e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559738191300]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25336 time: 9.5e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559738191190]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25333 time: 1.48e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f5e50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25327 time: 8.5e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779433580]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25377 time: 7.1e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0fbfb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25315 time: 1.2e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f0320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27836 time: 2.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559738185cc0]:1280 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 124 time: 7.2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f85f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24733 time: 1.3e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974068a370]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 111 time: 2.4e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974062ddb0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 0 time: 1.89e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f7f20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24748 time: 1.24e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406dbad0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 116 time: 1.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406a1230]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 107 time: 1.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974062db00]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 8 time: 2.2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406bc090]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 112 time: 2.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740644920]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 17 time: 2.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406b9aa0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 104 time: 1.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779433bc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25398 time: 6.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977942f820]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21069 time: 1.34e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406ba110]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 99 time: 1.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974067f460]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 97 time: 2.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406733a0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 80 time: 2.2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f8ce0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25318 time: 9.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974064e150]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 32 time: 1.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f80c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24751 time: 9.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740645be0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 19 time: 3.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974067d9b0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 94 time: 2.2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740674920]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 82 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974067b350]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 91 time: 2.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974062de80]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 1 time: 1.5e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974067ada0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 90 time: 2.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740674f90]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 83 time: 2.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597794322e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27679 time: 1.21e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597794827c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20139 time: 3.4e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974066f250]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 75 time: 2.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974066ec00]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 74 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974066da30]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 73 time: 3e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559722308300]:512 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 123 time: 2.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974066c4b0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 71 time: 3.1e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740667460]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 64 time: 1.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974066a920]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 68 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974065e860]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 53 time: 2.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f2b30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27718 time: 3.08e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406f10a0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 121 time: 1.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740667ad0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 65 time: 2.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406b0b20]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 109 time: 1.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740665ee0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 62 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740676510]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 85 time: 2.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974066be60]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 70 time: 1.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406502f0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 35 time: 2.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779352430]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19983 time: 6.5e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559778435980]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21048 time: 4.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406dc690]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 114 time: 2.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0fdc50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24816 time: 2.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740664750]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 61 time: 3e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740675ea0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 84 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974067c490]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 93 time: 2.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0fcbe0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24848 time: 1.81e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406f1a50]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 118 time: 1.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406640e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 60 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740662930]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 59 time: 3e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406c91e0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 115 time: 2.1e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740658ae0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 45 time: 2.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406b24c0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 98 time: 7.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f9b80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24805 time: 8.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0e8d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24697 time: 2.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974064a1e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 26 time: 1.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406dbaf0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 113 time: 1.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740649530]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 25 time: 2.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406f1860]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 117 time: 1.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f5150]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27721 time: 1.17e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779432c90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27664 time: 2.4e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740641e80]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 12 time: 1.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740646ed0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 21 time: 3.5e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0fcf00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24832 time: 2.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f23c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27777 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740645660]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 18 time: 1.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740644310]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 16 time: 1.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974065a470]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 46 time: 4.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406e99d0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 119 time: 1.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406b08e0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 105 time: 1.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597380cd3f0]:2048 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 131 time: 4.12e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559778435dc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27667 time: 8.1e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740666550]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 63 time: 2.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406517f0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 37 time: 3.1e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740673a10]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 81 time: 2.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974073c820]:2560 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 128 time: 2.39e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559738361110]:294912 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 122 time: 5.448e-06\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740646950]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 20 time: 1.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974064b990]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 29 time: 2.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406b97d0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 102 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740652cc0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 39 time: 3e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974067df60]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 95 time: 2.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740655cf0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 41 time: 2.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740651270]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 36 time: 1.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974065bb80]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 49 time: 2.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740643690]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 15 time: 2.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ef960]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27785 time: 2.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974062d9e0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 11 time: 1.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977946d530]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20019 time: 1.06e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0fdbb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24845 time: 1.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597794831e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20123 time: 9.2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974062ccd0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 3 time: 1.5e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977946f850]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20051 time: 8.5e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740657180]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 43 time: 2.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740643270]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 14 time: 1.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f4540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27825 time: 1.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974062e220]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 9 time: 1.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977946fd90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20059 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974062d050]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 6 time: 2.1e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406689e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 66 time: 2.1e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974064d250]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 31 time: 2.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406dfb70]:20 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 125 time: 2.2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ef4a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27793 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0eb100]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24730 time: 1.15e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974062d130]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 7 time: 1.5e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977946cbd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20126 time: 1.4e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974064b410]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 28 time: 1.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ecae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27712 time: 1.17e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977947eea0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20075 time: 6.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974065b510]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 48 time: 2.2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740662330]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 58 time: 2.4e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974066d3e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 72 time: 2.3e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974065d2e0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 51 time: 2.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f3120]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27780 time: 4e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974064a760]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 27 time: 2.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0e7380]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25321 time: 1.46e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0fe770]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24792 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740648fb0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 24 time: 2.1e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ea850]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24757 time: 9.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974067f320]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 96 time: 4.5e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740677420]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 86 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977942b6c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21045 time: 1.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740648210]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 23 time: 2.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0e5cd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21094 time: 3e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55973bfaac00]:1179648 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 126 time: 4.71e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406e5ab0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 120 time: 2.2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f4c70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27745 time: 1.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740670180]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 76 time: 2.3e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974065e1f0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 52 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977942f4d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24715 time: 2.17e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740661360]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 57 time: 2.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0fe200]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24829 time: 2.13e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406779a0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 87 time: 2.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977942fc80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21075 time: 1.04e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974064e6d0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 33 time: 2.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974064cdd0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 30 time: 1.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ebc50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25366 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974064fd70]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 34 time: 2.2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ecdc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27682 time: 8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0eabf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24760 time: 1.33e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740660c70]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 56 time: 2.5e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740652740]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 38 time: 2.1e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0fe6d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24821 time: 2.2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406557e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 40 time: 2.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740656c00]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 42 time: 1.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f3d90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27849 time: 2.1e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974066af00]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 69 time: 2.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406583a0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 44 time: 2.4e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977946ec60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20031 time: 8.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974065fcf0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 55 time: 2.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974062d360]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 5 time: 1.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974065a5b0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 47 time: 2.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0fc4a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25309 time: 2.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f95e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24765 time: 6.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974065cc70]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 50 time: 2.3e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406b4d80]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 108 time: 1.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740664f80]:1024 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 127 time: 1.16e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406b28f0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 100 time: 2.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f7d80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24745 time: 9.4e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559738127ee0]:20 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 129 time: 2.1e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f7860]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24706 time: 1.41e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406706e0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 77 time: 2.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740741a50]:20 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 133 time: 3.3e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779a55e00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19986 time: 5.2e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597799eaf40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19989 time: 4.49e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977946e7d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20016 time: 1.05e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0e6270]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21126 time: 2.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559778437560]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20062 time: 6.5e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779a521a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19992 time: 1.33e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779a54080]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19995 time: 8.28e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740679640]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 89 time: 3.4e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779a46b30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19998 time: 8.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974062cbf0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 2 time: 2.1e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974065f770]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 54 time: 2.1e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779480f30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20070 time: 6.3e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779a4efd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20001 time: 1.06e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779a465f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20004 time: 2.21e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977946c8b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20118 time: 1.06e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740672700]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 79 time: 2.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559778437660]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25312 time: 2.1e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597383f26d0]:4718592 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 130 time: 6.05e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779a46f00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20007 time: 1e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779483320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20094 time: 9.5e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977946e4f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20010 time: 1.83e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406b0210]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 106 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0e69f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25306 time: 2.2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977946d6d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20022 time: 8.2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977946d9b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20025 time: 9.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0e5eb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21118 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55973c3a8ad0]:5120 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 132 time: 2.51e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977946eae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20028 time: 6.2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977946ee00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20034 time: 5e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977946efa0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20037 time: 4.2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779470300]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20040 time: 1.29e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977946f1f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20043 time: 1.45e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977946f610]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20046 time: 1.32e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f90c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24703 time: 2.7e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977946fcf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20054 time: 4.2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406b2740]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 103 time: 1.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f7bd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24742 time: 1.26e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597beee6090]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20067 time: 1.22e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977947f700]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20078 time: 3.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977942c1d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21054 time: 9.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f48a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27724 time: 2.01e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ec160]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25390 time: 1.16e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779430210]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21081 time: 8.5e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f8c10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24712 time: 2.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977947ef40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20083 time: 1.42e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977942fdf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21078 time: 1.25e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597794824a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20086 time: 2.03e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779480df0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20099 time: 1e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0fe340]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24800 time: 3.7e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406b98f0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 101 time: 2.1e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597794802c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20107 time: 7.5e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740647b80]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 22 time: 1.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779482900]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20110 time: 5.2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740668f60]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 67 time: 2.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977947fe10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20115 time: 6.4e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559778436ef0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20131 time: 6.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406790e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 88 time: 3e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977946c0c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20134 time: 1.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779430440]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21042 time: 3.3e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974067c350]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 92 time: 4.4e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977942b930]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21051 time: 1.57e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f7360]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24700 time: 4.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779430a10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21057 time: 2.09e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977942e520]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21063 time: 1.58e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ec380]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25330 time: 1.32e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0e5e10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21110 time: 2.3e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977942e7b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21066 time: 8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977942f9c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21072 time: 1.28e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0e5be0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21086 time: 6.3e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0e5ff0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21089 time: 4.1e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974062ed40]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 10 time: 1.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0e63b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21097 time: 3.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0e5d70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21102 time: 2.4e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559740642400]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 13 time: 4.1e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0eadc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24724 time: 1.41e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0e8ab0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21105 time: 2.4e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f4d10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27753 time: 2.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0e8230]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21113 time: 2.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f2fe0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27809 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0e86d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21121 time: 3.7e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977942c330]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24709 time: 2.5e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ea3d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24718 time: 2.57e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f8280]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24721 time: 1.49e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0eaf60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24727 time: 1.69e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f8790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24736 time: 1.09e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559738190ed0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25324 time: 1.26e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ea6b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24754 time: 1.21e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977946e660]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20013 time: 1.39e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f7a30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24739 time: 2.09e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f99d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24768 time: 3.59e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55974062ce20]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 4 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f96b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24773 time: 6.3e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f9750]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24781 time: 4e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f9ee0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24784 time: 1.23e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0e8970]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21134 time: 2.43e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f97f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24789 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f9890]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24797 time: 2.3e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559779430be0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21060 time: 9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0fd9b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24808 time: 7.2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x55977947efe0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20091 time: 7.2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0eaa50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24813 time: 6.4e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0fd2b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24824 time: 2.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0ec940]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27709 time: 6.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0fd7c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24837 time: 2e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0fc860]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24840 time: 1.8e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x559778437030]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20102 time: 6.6e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406720d0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 78 time: 1.9e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597406d99a0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 110 time: 2.14e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0e7f10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21129 time: 5.3e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0fd130]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24853 time: 1.34e-07\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x5597bc0f9cc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24776 time: 3e-08\n",
+ "[07/28/2022-16:51:38] [TRT] [W] -------------- The current device memory allocations dump as below --------------\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0]:4294967296 :HybridGlobWriter in reserveMemory: at optimizer/common/globWriter.cpp: 438 idx: 1875 time: 0.010558\n",
+ "[07/28/2022-16:51:38] [TRT] [W] [0x302000000]:2307915776 :HybridGlobWriter in reserveMemory: at optimizer/common/globWriter.cpp: 416 idx: 1872 time: 0.000603742\n",
+ "[07/28/2022-16:51:38] [TRT] [W] Requested amount of GPU memory (4294967296 bytes) could not be allocated. There may not be enough free memory for allocation to succeed.\n",
+ "[07/28/2022-16:51:38] [TRT] [W] Skipping tactic 15 due to insufficient memory on requested size of 4294967296 detected for tactic 0x0000000000000074.\n",
+ "Try decreasing the workspace size with IBuilderConfig::setMemoryPoolLimit().\n",
+ "[07/28/2022-16:51:39] [TRT] [W] Weights [name=Conv_13 + Relu_14.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:39] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:39] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:39] [TRT] [W] Weights [name=Conv_13 + Relu_14.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:39] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:39] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:39] [TRT] [W] Weights [name=Conv_13 + Relu_14.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:39] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:39] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:39] [TRT] [W] Weights [name=Conv_13 + Relu_14.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:39] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:39] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:39] [TRT] [W] Weights [name=Conv_13 + Relu_14.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:39] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:39] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:39] [TRT] [W] Weights [name=Conv_13 + Relu_14.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:39] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:39] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:39] [TRT] [W] Weights [name=Conv_13 + Relu_14.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:39] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:39] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:40] [TRT] [W] Weights [name=Conv_13 + Relu_14.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:40] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:40] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:41] [TRT] [W] Weights [name=Conv_15 + Relu_16.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:41] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:41] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:41] [TRT] [W] Weights [name=Conv_15 + Relu_16.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:41] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:41] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:41] [TRT] [W] Weights [name=Conv_15 + Relu_16.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:41] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:41] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:41] [TRT] [W] Weights [name=Conv_15 + Relu_16.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:41] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:41] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:41] [TRT] [W] Weights [name=Conv_15 + Relu_16.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:41] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:41] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:41] [TRT] [W] Weights [name=Conv_17 + Relu_18.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:41] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:41] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:41] [TRT] [W] Weights [name=Conv_17 + Relu_18.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:41] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:41] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:41] [TRT] [W] Weights [name=Conv_17 + Relu_18.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:41] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:41] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:41] [TRT] [W] Weights [name=Conv_17 + Relu_18.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:41] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:41] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:41] [TRT] [W] Weights [name=Conv_17 + Relu_18.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:41] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:41] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:41] [TRT] [W] Weights [name=Conv_17 + Relu_18.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:41] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:41] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:41] [TRT] [W] Weights [name=Conv_17 + Relu_18.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:41] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:41] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:42] [TRT] [W] Weights [name=Conv_17 + Relu_18.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:42] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:42] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:43] [TRT] [W] Weights [name=Conv_19 + Relu_20.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:43] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:43] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:43] [TRT] [W] Weights [name=Conv_19 + Relu_20.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:43] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:43] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:43] [TRT] [W] Weights [name=Conv_19 + Relu_20.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:43] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:43] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:43] [TRT] [W] Weights [name=Conv_19 + Relu_20.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:43] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:43] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:43] [TRT] [W] Weights [name=Conv_19 + Relu_20.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:43] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:43] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:43] [TRT] [W] Weights [name=Conv_19 + Relu_20.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:43] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:43] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:43] [TRT] [W] Weights [name=Conv_19 + Relu_20.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:43] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:43] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:44] [TRT] [W] Weights [name=Conv_19 + Relu_20.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:44] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:44] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:44] [TRT] [W] Weights [name=Conv_21 + Relu_22.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:44] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:44] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:44] [TRT] [W] Weights [name=Conv_21 + Relu_22.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:44] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:44] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:44] [TRT] [W] Weights [name=Conv_21 + Relu_22.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:44] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:44] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:44] [TRT] [W] Weights [name=Conv_21 + Relu_22.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:44] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:44] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:44] [TRT] [W] Weights [name=Conv_21 + Relu_22.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:44] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:44] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:44] [TRT] [W] Weights [name=Conv_21 + Relu_22.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:44] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:44] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:44] [TRT] [W] Weights [name=Conv_23 + Relu_24.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:44] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:44] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:44] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:44] [TRT] [W] Weights [name=Conv_23 + Relu_24.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:44] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:44] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:44] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:44] [TRT] [W] Weights [name=Conv_23 + Relu_24.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:44] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:44] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:44] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:44] [TRT] [W] Weights [name=Conv_23 + Relu_24.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:44] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:44] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:44] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:44] [TRT] [W] Weights [name=Conv_23 + Relu_24.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:44] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:44] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:44] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:44] [TRT] [W] Weights [name=Conv_23 + Relu_24.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:44] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:44] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:44] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:46] [TRT] [W] Weights [name=Conv_25 + Relu_26.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:46] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:46] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:46] [TRT] [W] Weights [name=Conv_25 + Relu_26.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:46] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:46] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:46] [TRT] [W] Weights [name=Conv_25 + Relu_26.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:46] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:46] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:46] [TRT] [W] Weights [name=Conv_25 + Relu_26.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:46] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:46] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:46] [TRT] [W] Weights [name=Conv_25 + Relu_26.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:46] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:46] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:46] [TRT] [W] Weights [name=Conv_25 + Relu_26.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:46] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:46] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:46] [TRT] [W] Weights [name=Conv_25 + Relu_26.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:46] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:46] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:46] [TRT] [W] Weights [name=Conv_25 + Relu_26.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:46] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:46] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:47] [TRT] [W] Weights [name=Conv_27 + Relu_28.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:47] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:47] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:48] [TRT] [W] Weights [name=Conv_27 + Relu_28.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:48] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:48] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:48] [TRT] [W] Weights [name=Conv_27 + Relu_28.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:48] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:48] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:48] [TRT] [W] Weights [name=Conv_27 + Relu_28.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:48] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:48] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:48] [TRT] [W] Weights [name=Conv_27 + Relu_28.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:48] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:48] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:48] [TRT] [W] Weights [name=Conv_27 + Relu_28.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:48] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:48] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:48] [TRT] [W] Weights [name=Conv_27 + Relu_28.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:48] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:48] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:48] [TRT] [W] Weights [name=Conv_27 + Relu_28.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:48] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:48] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:49] [TRT] [W] Weights [name=Conv_29 + Relu_30.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:49] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:49] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:49] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:50] [TRT] [W] Weights [name=Conv_29 + Relu_30.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:50] [TRT] [W] Weights [name=Conv_29 + Relu_30.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:50] [TRT] [W] Weights [name=Conv_29 + Relu_30.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:50] [TRT] [W] Weights [name=Conv_29 + Relu_30.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:50] [TRT] [W] Weights [name=Conv_29 + Relu_30.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:50] [TRT] [W] Weights [name=Conv_29 + Relu_30.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:50] [TRT] [W] Weights [name=Conv_29 + Relu_30.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:50] [TRT] [W] Weights [name=Conv_31 + Relu_32.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:50] [TRT] [W] Weights [name=Conv_31 + Relu_32.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:50] [TRT] [W] Weights [name=Conv_31 + Relu_32.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:50] [TRT] [W] Weights [name=Conv_31 + Relu_32.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:50] [TRT] [W] Weights [name=Conv_31 + Relu_32.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:50] [TRT] [W] Weights [name=Conv_31 + Relu_32.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:50] [TRT] [W] Weights [name=Conv_33 + Relu_34.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:50] [TRT] [W] Weights [name=Conv_33 + Relu_34.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:50] [TRT] [W] Weights [name=Conv_33 + Relu_34.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:50] [TRT] [W] Weights [name=Conv_33 + Relu_34.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:50] [TRT] [W] Weights [name=Conv_33 + Relu_34.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:50] [TRT] [W] Weights [name=Conv_33 + Relu_34.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:50] [TRT] [W] Weights [name=Conv_35 + Relu_36.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:50] [TRT] [W] Weights [name=Conv_35 + Relu_36.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:50] [TRT] [W] Weights [name=Conv_35 + Relu_36.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:50] [TRT] [W] Weights [name=Conv_35 + Relu_36.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:50] [TRT] [W] Weights [name=Conv_35 + Relu_36.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:50] [TRT] [W] Weights [name=Conv_35 + Relu_36.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:50] [TRT] [W] Weights [name=Conv_37 + Relu_38.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:50] [TRT] [W] Weights [name=Conv_37 + Relu_38.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:50] [TRT] [W] Weights [name=Conv_37 + Relu_38.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:50] [TRT] [W] Weights [name=Conv_37 + Relu_38.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:50] [TRT] [W] Weights [name=Conv_37 + Relu_38.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:50] [TRT] [W] Weights [name=Conv_37 + Relu_38.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:50] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:50] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:52] [TRT] [W] Weights [name=Conv_39 + Relu_40.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:52] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:52] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:52] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:52] [TRT] [W] Weights [name=Conv_39 + Relu_40.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:52] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:52] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:52] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:52] [TRT] [W] Weights [name=Conv_39 + Relu_40.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:52] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:52] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:52] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:52] [TRT] [W] Weights [name=Conv_39 + Relu_40.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:52] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:52] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:52] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:52] [TRT] [W] Weights [name=Conv_39 + Relu_40.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:52] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:52] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:52] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:52] [TRT] [W] Weights [name=Conv_39 + Relu_40.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:52] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:52] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:52] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:52] [TRT] [W] Weights [name=Conv_39 + Relu_40.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:52] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:52] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:52] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:52] [TRT] [W] Weights [name=Conv_39 + Relu_40.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:52] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:52] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:52] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:53] [TRT] [W] Weights [name=Conv_41 + Relu_42.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:53] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:53] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:54] [TRT] [W] Weights [name=Conv_41 + Relu_42.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:54] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:54] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:54] [TRT] [W] Weights [name=Conv_41 + Relu_42.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:54] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:54] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:54] [TRT] [W] Weights [name=Conv_41 + Relu_42.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:54] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:54] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:54] [TRT] [W] Weights [name=Conv_41 + Relu_42.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:54] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:54] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:54] [TRT] [W] Weights [name=Conv_41 + Relu_42.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:54] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:54] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:54] [TRT] [W] Weights [name=Conv_41 + Relu_42.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:54] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:54] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:54] [TRT] [W] Weights [name=Conv_41 + Relu_42.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:54] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:54] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:56] [TRT] [W] Weights [name=Conv_43 + Relu_44.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:56] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:56] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:56] [TRT] [W] Weights [name=Conv_43 + Relu_44.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:56] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:56] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:56] [TRT] [W] Weights [name=Conv_43 + Relu_44.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:56] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:56] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:56] [TRT] [W] Weights [name=Conv_43 + Relu_44.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:56] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:56] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:56] [TRT] [W] Weights [name=Conv_43 + Relu_44.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:56] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:56] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:56] [TRT] [W] Weights [name=Conv_43 + Relu_44.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:56] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:56] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:56] [TRT] [W] Weights [name=Conv_43 + Relu_44.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:56] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:56] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:56] [TRT] [W] Weights [name=Conv_43 + Relu_44.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:56] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:56] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:57] [TRT] [W] Weights [name=Conv_45 + Relu_46.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:57] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:57] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:57] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:57] [TRT] [W] Weights [name=Conv_45 + Relu_46.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:57] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:57] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:57] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:57] [TRT] [W] Weights [name=Conv_45 + Relu_46.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:57] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:57] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:57] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:57] [TRT] [W] Weights [name=Conv_45 + Relu_46.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:57] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:57] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:57] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:57] [TRT] [W] Weights [name=Conv_45 + Relu_46.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:57] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:57] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:57] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:57] [TRT] [W] Weights [name=Conv_45 + Relu_46.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:57] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:57] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:51:57] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:57] [TRT] [W] Weights [name=Conv_47 + Relu_48.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:57] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:57] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:57] [TRT] [W] Weights [name=Conv_47 + Relu_48.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:57] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:57] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:57] [TRT] [W] Weights [name=Conv_47 + Relu_48.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:57] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:57] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:57] [TRT] [W] Weights [name=Conv_47 + Relu_48.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:57] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:57] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:57] [TRT] [W] Weights [name=Conv_47 + Relu_48.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:57] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:57] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:57] [TRT] [W] Weights [name=Conv_47 + Relu_48.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:57] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:57] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:57] [TRT] [W] Weights [name=Conv_47 + Relu_48.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:57] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:57] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:57] [TRT] [W] Weights [name=Conv_47 + Relu_48.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:57] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:57] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:57] [TRT] [W] Weights [name=Conv_47 + Relu_48.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:57] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:57] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:57] [TRT] [W] Weights [name=Conv_47 + Relu_48.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:57] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:57] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:57] [TRT] [W] Weights [name=Conv_47 + Relu_48.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:57] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:57] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:57] [TRT] [W] Weights [name=Conv_47 + Relu_48.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:57] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:57] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:57] [TRT] [W] Weights [name=Conv_47 + Relu_48.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:57] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:57] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:57] [TRT] [W] Weights [name=Conv_47 + Relu_48.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:57] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:57] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:58] [TRT] [E] 2: [virtualMemoryBuffer.cpp::resizePhysical::144] Error Code 2: OutOfMemory (no further information)\n",
+ "[07/28/2022-16:51:58] [TRT] [E] 2: [virtualMemoryBuffer.cpp::resizePhysical::144] Error Code 2: OutOfMemory (no further information)\n",
+ "[07/28/2022-16:51:58] [TRT] [W] -------------- The current system memory allocations dump as below --------------\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f9220]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58481 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f8d70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58476 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f90e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58465 time: 4.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f6a00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58452 time: 6.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d3ee0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58440 time: 1.99e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d4a50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58434 time: 1.29e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d4810]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58431 time: 1.08e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d50c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58419 time: 1.2e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d4f20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58416 time: 1.28e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f5c50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58413 time: 1.99e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f5ae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58407 time: 1.05e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d52e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58401 time: 1.43e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977942eaf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58398 time: 2.44e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0eb5d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58389 time: 4.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ec010]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56256 time: 6.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ebf70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56251 time: 9.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf641dd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56248 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6411c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56240 time: 2.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ed9c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56232 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf641610]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56227 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5eb2e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56224 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf641f10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56219 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5eb240]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56216 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf641300]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56211 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5eb420]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56195 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5eafb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56192 time: 1.33e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d5470]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56187 time: 1.03e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf642320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56184 time: 9.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf642180]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56181 time: 9.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ebc60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56178 time: 1.05e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779445d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37040 time: 1.23e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794347c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37088 time: 8.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779443440]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37034 time: 3.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ccd40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34590 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cd840]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34585 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fd2b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24824 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cc690]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34577 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c8140]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33958 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cbfa0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34574 time: 3.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dd3a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42948 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cce80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34561 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943a210]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30891 time: 7.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779442cb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31467 time: 1.31e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ebe50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56243 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779435cc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28355 time: 3.92e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ca4b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34542 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d7360]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50112 time: 1.45e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d4180]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58443 time: 8.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779445fd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34492 time: 1.3e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c8f50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34477 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c7d10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34011 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5deaa0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52392 time: 1.11e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cded0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37037 time: 6.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794327c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27661 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c52f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46557 time: 1.14e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c7960]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34003 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e1800]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52410 time: 1.56e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d4510]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58449 time: 8.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cb1c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34513 time: 6.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c8ff0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33998 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c9e20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33995 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406dc690]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 114 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f9890]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24797 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c9f60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33966 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d4c90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58437 time: 1e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f99d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24768 time: 3.59e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740649530]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 25 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c6350]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33950 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cedf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37073 time: 7.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cb780]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34504 time: 1.05e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779448920]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33939 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779449d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33923 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf644240]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52534 time: 1.13e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779448530]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33907 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bcb30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43554 time: 3.05e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779448670]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33878 time: 3.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977944a1e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33870 time: 9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cfd20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49494 time: 4.1e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794480e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33864 time: 2.42e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977944aa80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33861 time: 7.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974062d050]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 6 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e24f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58392 time: 3.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779447d50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33834 time: 8.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779443800]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31482 time: 4.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943ce00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33819 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e8ab0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21105 time: 2.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf643900]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52438 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ca410]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34534 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf642ae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53059 time: 9.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779444fd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31523 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794439a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31512 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779447ef0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33837 time: 1.07e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977944add0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33840 time: 1.35e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740661360]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 57 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779444670]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31491 time: 1.36e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf647bc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53086 time: 5.32e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977944b660]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31479 time: 8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d1540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37142 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779443190]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31464 time: 1.19e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779440660]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30991 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dbd70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47203 time: 2.21e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c8790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33971 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779480f30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20070 time: 6.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794407a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30962 time: 3.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f1ea0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27841 time: 3.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943b6a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30951 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779431170]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30946 time: 5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779430ee0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30938 time: 3.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943b160]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30935 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f0850]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28349 time: 3.58e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943b0c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30927 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0df270]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40016 time: 1.52e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e37c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40622 time: 1.23e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c96a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46584 time: 1.2e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406b08e0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 105 time: 1.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e7980]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55549 time: 9.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d7750]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50118 time: 1.02e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c50b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46554 time: 1.06e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779443540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31473 time: 7.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943ae00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30911 time: 1.19e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0defb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40037 time: 1.86e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f3ed0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27820 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943a7a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30903 time: 1.07e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5de810]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52389 time: 1.22e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cbd20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34537 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c3140]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43660 time: 1.1e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740647b80]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 22 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943bda0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30882 time: 8.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d74b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37198 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943df40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30873 time: 9.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946d9b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20025 time: 9.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e20f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40138 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ca550]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34550 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f5920]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58404 time: 1.61e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dffe0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40135 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779440900]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30999 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6494b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56151 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779439400]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28428 time: 8.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d05c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37079 time: 9.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c3490]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43655 time: 1.04e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e1da0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40151 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794385a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28407 time: 1.07e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779436eb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28396 time: 6.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794483f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33891 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943b340]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30914 time: 5.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf642de0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53035 time: 1.14e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779439170]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28391 time: 7.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779436d70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28380 time: 6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779448490]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33899 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779436f50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28404 time: 8.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c18e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46548 time: 1.16e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794397e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28367 time: 1.27e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974064fd70]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 34 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943a550]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30897 time: 3.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5de5c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42926 time: 1.14e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794361b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28361 time: 1.78e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779435f70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28358 time: 1.88e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794364d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28352 time: 3.2e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55973bfaac00]:1179648 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 126 time: 4.71e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f9330]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28346 time: 3.43e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f6130]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58425 time: 8.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779436c50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28372 time: 1.47e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bc790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43060 time: 1.13e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779435880]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28343 time: 3.54e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c6ea0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34486 time: 1.17e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f23c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27777 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e5290]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55635 time: 1.12e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794331c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28334 time: 1.73e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fe340]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24800 time: 3.7e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d7370]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37227 time: 1.2e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dfe10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40066 time: 4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d2ee0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49512 time: 3.8e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c9b90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46629 time: 1.16e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e49b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55627 time: 3.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d5c90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49577 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c9320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34474 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f1cf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27833 time: 3.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f0040]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27828 time: 3.04e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794371b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28399 time: 1.19e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ce6b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37043 time: 2.13e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f33f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27817 time: 8.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779446f60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43548 time: 2.17e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e0bb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52483 time: 5.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0da6a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37753 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779449ec0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33867 time: 9.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f3a60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27788 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f2d70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27772 time: 3.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779445940]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34480 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779447b10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33831 time: 1.36e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946eae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20028 time: 6.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ef040]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27764 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974064b990]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 29 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f3120]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27780 time: 4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0efae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27748 time: 3.66e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f2500]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27740 time: 1.43e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cb3f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47221 time: 2.9e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e53d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55606 time: 1.77e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f4ef0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27732 time: 3.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f4680]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27796 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c9890]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46589 time: 2.07e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977944b240]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33816 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0efda0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27715 time: 1.06e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c66f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34489 time: 1.01e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943d320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30959 time: 3.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5df660]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52386 time: 1.52e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977947eea0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20075 time: 6.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ed510]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27700 time: 7.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6446b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52518 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ed030]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27694 time: 1.54e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5db9b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50133 time: 3.25e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779436940]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28364 time: 5.92e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c7d90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46677 time: 1.08e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779448fe0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33918 time: 5.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943ff80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30978 time: 3.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e07d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40119 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fc110]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27673 time: 1.44e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e5480]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40103 time: 2.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559778435980]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21048 time: 4.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e8e00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27670 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740652740]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 38 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943c1b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30864 time: 1.2e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf646790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52550 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cb9e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34529 time: 2.22e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dc830]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43033 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794827c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20139 time: 3.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64d800]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42869 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf644d60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52502 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ed9d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27688 time: 1.54e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779431790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25393 time: 6.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ebcf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25374 time: 7.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779448a60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33910 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779431670]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25361 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977942f080]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28340 time: 7.19e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf600c00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42929 time: 2.49e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f5cd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25350 time: 1.04e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fe770]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24792 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf643b30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52547 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ed270]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27697 time: 1.07e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779431030]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30975 time: 1.2e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f56c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25342 time: 9.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dfc30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40087 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d7110]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37190 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946f850]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20051 time: 8.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f5e50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25327 time: 8.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ca930]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34495 time: 9.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779433580]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25377 time: 7.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fbfb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25315 time: 1.2e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f5ae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25345 time: 1.19e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ec790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27706 time: 9.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779483320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20094 time: 9.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794468c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37713 time: 1.55e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f0320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27836 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f4300]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27857 time: 5.46e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559738185cc0]:1280 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 124 time: 7.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f8fc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58457 time: 1.03e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740646950]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 20 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740642400]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 13 time: 4.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f85f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24733 time: 1.3e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d5a30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49553 time: 1.37e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c84b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33987 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d99f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37801 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cbbe0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34566 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779446d80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40610 time: 4.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d98b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52404 time: 9.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406a1230]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 107 time: 1.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64a530]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53150 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bdf70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43636 time: 7.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794420d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40683 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740644920]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 17 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943e470]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30843 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406b9aa0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 104 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779433bc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25398 time: 6.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f4db0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27769 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977942f820]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21069 time: 1.34e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d7f20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37214 time: 5.37e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406ba110]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 99 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943bc00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30879 time: 1.05e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974067f460]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 97 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64def0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40696 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779439d70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30876 time: 2.08e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5da6e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52374 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974066a920]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 68 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740645be0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 19 time: 3.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740674920]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 82 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779440450]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31452 time: 3.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974067b350]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 91 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f7a30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24739 time: 2.09e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dd910]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42972 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cc3d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47194 time: 7.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974062de80]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 1 time: 1.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779439030]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28420 time: 7.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974067ada0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 90 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cbe20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47206 time: 1.56e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6452e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52422 time: 2.25e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943a090]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30888 time: 9.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740674f90]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 83 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406517f0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 37 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779444980]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31504 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794322e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27679 time: 1.21e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c08c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43647 time: 1.07e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559722308300]:512 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 123 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974066c4b0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 71 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ca250]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34518 time: 7.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f9cc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24776 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf647b20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53078 time: 1.67e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740667460]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 64 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974065a470]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 46 time: 4.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d0a40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37085 time: 8.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f2b30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27718 time: 3.08e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740667ad0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 65 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406b0b20]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 109 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e7bc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55552 time: 9.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0caea0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34510 time: 7.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943b560]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30922 time: 3.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0db1c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40001 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740665ee0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 62 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740677420]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 86 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f06f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28331 time: 1.18e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740676510]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 85 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f0ca0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27860 time: 2.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779434a60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37091 time: 7.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e5ac0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55622 time: 5.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779480df0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20099 time: 1e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e6f70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55563 time: 9.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406502f0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 35 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943ddd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30870 time: 1.15e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974065d2e0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 51 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64a2a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55603 time: 5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779352430]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19983 time: 6.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fdc50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24816 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740664750]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 61 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e0cf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52454 time: 3.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c9150]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34006 time: 9.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740675ea0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 84 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d8460]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50149 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fcbe0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24848 time: 1.81e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406b97d0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 102 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bcf50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43551 time: 5.48e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794474f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33846 time: 9.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794339f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25385 time: 7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bbaf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42920 time: 7.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f4c70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27745 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406640e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 60 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740662930]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 59 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779444860]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31496 time: 8.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406c91e0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 115 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974067d9b0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 94 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794831e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20123 time: 9.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740658ae0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 45 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779449530]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33902 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406b24c0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 98 time: 7.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c6c20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37147 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e8d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24697 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d3270]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37131 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e5a70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40034 time: 9.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cfea0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49488 time: 1.54e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974064a1e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 26 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bdce0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43599 time: 6.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794476d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33849 time: 1.07e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943a3b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30894 time: 5.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559738191300]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25336 time: 9.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e71f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55579 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406dbaf0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 113 time: 1.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406f1860]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 117 time: 1.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946ee00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20034 time: 5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974068a370]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 111 time: 2.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c4ed0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46572 time: 8.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f5150]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27721 time: 1.17e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977942e520]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21063 time: 1.58e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c9af0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46621 time: 9.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779432c90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27664 time: 2.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5eb1a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56208 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740641e80]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 12 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d8540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37710 time: 2.31e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e19a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55611 time: 8.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5edb00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56203 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f3bb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27812 time: 5.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bfa70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43580 time: 8.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fcf00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24832 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c48b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46563 time: 9.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e7330]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55595 time: 5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740645660]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 18 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779444b60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31485 time: 1.58e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5db570]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50165 time: 5.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597380cd3f0]:2048 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 131 time: 4.12e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740673a10]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 81 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559778435dc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27667 time: 8.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740666550]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 63 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406b2740]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 103 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946e4f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20010 time: 1.83e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779431ca0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28328 time: 2.44e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779440d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30954 time: 3.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c5b60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33955 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559738361110]:294912 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 122 time: 5.448e-06\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779447280]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33843 time: 1.84e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406b0210]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 106 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cc0e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34545 time: 3.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dd4e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42964 time: 1.66e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740652cc0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 39 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974066da30]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 73 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f80c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24751 time: 9.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794451d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33825 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740655cf0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 41 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779444250]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31488 time: 1.95e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c12f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46539 time: 1.78e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740651270]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 36 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597beee6090]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20067 time: 1.22e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974065bb80]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 49 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c2690]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43623 time: 7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c5fb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33963 time: 5.25e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c5e70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46704 time: 2.41e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740643690]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 15 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cdc60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34593 time: 3.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ef960]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27785 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943c560]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30852 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974062d9e0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 11 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794430f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31455 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946d530]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20019 time: 1.06e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fdbb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24845 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943f7e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30994 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c0dd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46533 time: 1.51e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f5ef0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58422 time: 1.15e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e3850]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55531 time: 2.17e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974062ccd0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 3 time: 1.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977942c1d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21054 time: 9.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943c7c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28439 time: 1.23e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf647a30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53070 time: 2.55e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779435780]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31458 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d0d50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49518 time: 4.12e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f4540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27825 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974067df60]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 95 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0da560]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37782 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974062e220]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 9 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf600980]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42977 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c0250]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43569 time: 1.03e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946fd90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20059 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bd3c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43604 time: 5.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406689e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 66 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0edb40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27691 time: 1.53e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64cf00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42896 time: 1.29e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d7f90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50178 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406dfb70]:20 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 125 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ef4a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27793 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0eb100]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24730 time: 1.15e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974062d130]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 7 time: 1.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e6270]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21126 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf645610]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52435 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e6130]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55643 time: 7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779448d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33947 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5eb980]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56175 time: 1.28e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946cbd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20126 time: 1.4e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974064b410]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 28 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dfaf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40071 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c59d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46725 time: 1.25e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5df9b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52494 time: 3.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974065b510]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 48 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974066d3e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 72 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977942b930]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21051 time: 1.57e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974064a760]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 27 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977942fc80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21075 time: 1.04e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794341d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37139 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5be260]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43557 time: 3.48e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d18f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37150 time: 2.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0da390]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37822 time: 3.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cd3b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34582 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e2cf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55510 time: 9.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740648fb0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 24 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ea850]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24757 time: 9.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e7f10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55638 time: 6.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974067f320]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 96 time: 4.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977942b6c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21045 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cf730]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49491 time: 1.17e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779441170]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30967 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406e5ab0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 120 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dbba0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50138 time: 1.51e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d0130]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53038 time: 1.46e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974065e1f0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 52 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dece0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52395 time: 6.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fe200]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24829 time: 2.13e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dfcd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40095 time: 1.52e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cac50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34507 time: 9.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f8ce0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25318 time: 9.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406779a0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 87 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974064e6d0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 33 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974064cdd0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 30 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c7aa0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33974 time: 3.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e3490]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40648 time: 9.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ebc50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25366 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf642550]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53047 time: 1.87e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e86d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21121 time: 3.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406706e0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 77 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ce750]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47291 time: 7.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf600540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42953 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943f1b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28436 time: 1.05e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f48a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27724 time: 2.01e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406557e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 40 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0da960]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37734 time: 1.15e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c92e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46600 time: 7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64b240]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53053 time: 8.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779440a40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30970 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740656c00]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 42 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f3d90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27849 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5de1c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42993 time: 2.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974066af00]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 69 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977944b380]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31531 time: 4.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ddeb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42956 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c3ed0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46645 time: 6.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406583a0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 44 time: 2.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946ec60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20031 time: 8.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c4d30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46569 time: 1e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d6270]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49628 time: 3.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943dab0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30861 time: 1.22e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779449b30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33894 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974065fcf0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 55 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974062d360]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 5 time: 1.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d4e20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49601 time: 1.59e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974065a5b0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 47 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779434050]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37102 time: 4.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f95e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24765 time: 6.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d24d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49506 time: 5.92e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ca370]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34526 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974065cc70]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 50 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740672700]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 79 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406b4d80]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 108 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794802c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20107 time: 7.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740664f80]:1024 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 127 time: 1.16e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d07d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49542 time: 1.42e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779444e90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33828 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f7d80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24745 time: 9.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ecae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27712 time: 1.17e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779439bf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28423 time: 8.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779446600]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31544 time: 4.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f7860]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24706 time: 1.41e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779a55e00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19986 time: 5.2e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d11f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37055 time: 1.03e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ef2d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27801 time: 2.41e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597799eaf40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19989 time: 4.49e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5db160]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50162 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779433d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25369 time: 7.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974066ec00]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 74 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bbe00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42905 time: 8.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f0b80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27852 time: 5.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559778437560]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20062 time: 6.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cb4a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34501 time: 1.26e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bc0a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42908 time: 7.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f01e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27865 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779a521a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19992 time: 1.33e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779447910]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33852 time: 1.54e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740679640]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 89 time: 3.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779a46b30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19998 time: 8.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d7870]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50121 time: 1.51e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974062cbf0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 2 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fc4a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25309 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974065f770]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 54 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e0260]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52515 time: 1.44e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779a465f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20004 time: 2.21e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d2de0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49536 time: 4.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946c8b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20118 time: 1.06e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f4ab0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27729 time: 1.38e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559778437660]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25312 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6457f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52459 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c75e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34483 time: 1.03e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d89e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50130 time: 1.07e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0eebd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27761 time: 1.16e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f7f20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24748 time: 1.24e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597383f26d0]:4718592 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 130 time: 6.05e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779a46f00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20007 time: 1e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0da080]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37814 time: 4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ccf50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47191 time: 1.11e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e69f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25306 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c60f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33934 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e4620]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42884 time: 3.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946d6d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20022 time: 8.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e5eb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21118 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e5d70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55630 time: 1.35e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cb8a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34558 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf644c20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52531 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55973c3a8ad0]:5120 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 132 time: 2.51e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf646320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52542 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c99f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33990 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fd9b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24808 time: 7.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d2360]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49503 time: 4.82e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946efa0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20037 time: 4.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779470300]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20040 time: 1.29e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d9320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56154 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bd930]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43591 time: 1.08e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946f1f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20043 time: 1.45e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dad50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50181 time: 3.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d2810]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37171 time: 2.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f90c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24703 time: 2.7e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e24b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40613 time: 2.27e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946fcf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20054 time: 4.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bd320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43596 time: 1e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f7bd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24742 time: 1.26e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977947f700]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20078 time: 3.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ec160]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25390 time: 1.16e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64b500]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40680 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779430210]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21081 time: 8.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ca0b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46581 time: 1.15e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf643570]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52413 time: 1.63e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fe6d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24821 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977942fdf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21078 time: 1.25e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794824a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20086 time: 2.03e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e39a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55534 time: 9.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d91e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37725 time: 7.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f4bd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27737 time: 2.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779438990]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28444 time: 2.16e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943c410]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30867 time: 4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d6be0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37206 time: 3.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977947fe10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20115 time: 6.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cd440]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47248 time: 8.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf645080]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52499 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406790e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 88 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946c0c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20134 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ca690]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34521 time: 1.33e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e0120]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40106 time: 3.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779448350]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33883 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d0450]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49539 time: 1.19e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf647f60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53081 time: 1e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779430440]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21042 time: 3.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fcaa0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28337 time: 6.18e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0de570]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40040 time: 8.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977944a7a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33858 time: 1.06e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559778436ef0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20131 time: 6.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974067c350]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 92 time: 4.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d5e70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49556 time: 1.97e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f7360]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24700 time: 4.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974067c490]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 93 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559778437030]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20102 time: 6.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dd380]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37798 time: 1.06e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779446740]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31515 time: 3.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943d3f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30846 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ea230]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56166 time: 9.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779430a10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21057 time: 2.09e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6499f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53137 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e1a70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55504 time: 1.33e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ec380]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25330 time: 1.32e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977942e7b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21066 time: 8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ec940]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27709 time: 6.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977942f9c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21072 time: 1.28e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406e99d0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 119 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e0b60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40098 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974062db00]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 8 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e94c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55675 time: 1.11e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f8280]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24721 time: 1.49e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e5be0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21086 time: 6.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e5ff0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21089 time: 4.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f6280]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58428 time: 8.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f2fe0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27809 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e63b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21097 time: 3.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cdc40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47280 time: 1.47e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf645750]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52451 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cb600]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47224 time: 2.03e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e5c30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55659 time: 6.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977944a600]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33855 time: 8.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406720d0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 78 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0eadc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24724 time: 1.41e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779438ad0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28415 time: 1.31e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f4d10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27753 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974064d250]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 31 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779437090]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28375 time: 1.19e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406f10a0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 121 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e8230]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21113 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ea3d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24718 time: 2.57e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740646ed0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 21 time: 3.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d4800]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49588 time: 1.57e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d02b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53041 time: 4.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794458a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33810 time: 7.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f8790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24736 time: 1.09e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559738190ed0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25324 time: 1.26e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c1110]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50103 time: 1.63e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946e660]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20013 time: 1.39e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779443ff0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31507 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974062ce20]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 4 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dd4c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37769 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f9750]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24781 time: 4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f9ee0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24784 time: 1.23e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e8970]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21134 time: 2.43e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6437c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52467 time: 1.03e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f97f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24789 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779443eb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31536 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977944b4f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31476 time: 1.09e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c0f50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50097 time: 3.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f9b80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24805 time: 8.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943d940]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30858 time: 2.14e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ffee0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43057 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779430be0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21060 time: 9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977947efe0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20091 time: 7.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cf060]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37058 time: 1.52e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0eaa50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24813 time: 6.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740660c70]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 56 time: 2.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e1fb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40604 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779443a40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31520 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946f610]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20046 time: 1.32e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fd7c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24837 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779449970]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33886 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fc860]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24840 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c6210]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33979 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406d99a0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 110 time: 2.14e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fd130]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24853 time: 1.34e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e5cd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21094 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cd580]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47264 time: 2.76e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d0e80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37049 time: 7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559738191190]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25333 time: 1.48e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ddd30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42985 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d0ff0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37052 time: 1.57e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0eabf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24760 time: 1.33e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cf200]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37061 time: 1.34e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dc0b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49636 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974064e150]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 32 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6007c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42940 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cf490]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37064 time: 1.09e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d3130]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37115 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dc480]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 39998 time: 3.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cae00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47215 time: 1.23e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ce970]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37067 time: 1.05e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d03b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37076 time: 1.54e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64dc80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43545 time: 4.48e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e2e00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40640 time: 1.71e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d0760]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37082 time: 1.36e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779434d80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37094 time: 7.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779432720]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27676 time: 4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d2f70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37099 time: 8.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d3090]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37107 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f05f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30855 time: 1.14e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794343b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37110 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779482900]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20110 time: 5.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dc970]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43004 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794345d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37118 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64d5b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43536 time: 2.79e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d31d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37123 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d2cd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37126 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cdb20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37155 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d1f10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37158 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d23e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37166 time: 1.41e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e7f10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21129 time: 5.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d5870]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37174 time: 2.66e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ebbb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25358 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e2860]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40607 time: 3.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977947ef40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20083 time: 1.42e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5eb650]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56169 time: 1.31e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f6540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58410 time: 8.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794403b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33813 time: 1.37e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d78b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37182 time: 1.36e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dbcc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50146 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779443c20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31499 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ed7c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27685 time: 1.78e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d1dd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37187 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d2230]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37195 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d5730]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37203 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0de1d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40025 time: 1.82e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779436e10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28388 time: 7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d7660]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37211 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64be00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40634 time: 9.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974073c820]:2560 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 128 time: 2.39e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e3e80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55540 time: 1.11e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d94c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52398 time: 1.47e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d6220]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37222 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946e7d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20016 time: 1.05e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d1b90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49497 time: 2.57e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d6aa0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37235 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c5b10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46696 time: 3.78e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597784334b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37698 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5db430]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52380 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d8190]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37701 time: 5.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf648a70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53062 time: 1.19e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406f1a50]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 118 time: 1.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d6540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37704 time: 1.22e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0da1c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37785 time: 3.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6428d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53056 time: 8.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d5ef0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37707 time: 1.16e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d8cb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37716 time: 1.16e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d8e60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37719 time: 9.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dcc50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37728 time: 2.02e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ddde0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37731 time: 1.14e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dd5d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37737 time: 1.32e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e1b20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40055 time: 4.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dd810]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37742 time: 1.14e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf600150]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43041 time: 1.13e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ddc50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37745 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dd930]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37750 time: 4.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cb330]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34498 time: 1.44e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dd9d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37758 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dd0f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37761 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e1640]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40058 time: 9.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dda70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37766 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6003b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42937 time: 1.21e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ddb10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37774 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e5d70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21102 time: 2.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dca20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37777 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794396a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28412 time: 7.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ec590]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27703 time: 1.63e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d3e40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49596 time: 7.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dcfb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37790 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d95a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37793 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f8c10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24712 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf645930]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52430 time: 3.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d4c30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49564 time: 5.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dace0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37809 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c8980]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33942 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0db020]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37817 time: 1.48e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779441570]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42872 time: 1.21e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d8a70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 39995 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64d8a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40691 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cde20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40004 time: 8.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d86f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40007 time: 5.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c8de0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33982 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0db480]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40010 time: 1.62e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0df9d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40063 time: 1.59e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0df4c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40019 time: 1.08e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0df690]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40022 time: 8.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0de370]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40028 time: 1.15e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cccf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46720 time: 1.51e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e58d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40031 time: 9.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0de760]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40043 time: 7.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cc260]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34569 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0de900]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40046 time: 6.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cd280]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47232 time: 2.58e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0deaa0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40049 time: 6.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943f3c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30986 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fb600]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30849 time: 8.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e2eb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55513 time: 4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e1980]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40052 time: 4.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943b200]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30943 time: 1.26e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dba50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40074 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cd4f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34553 time: 3.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f2230]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27804 time: 3.85e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dfb90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40079 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e12c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40082 time: 1.43e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e3c40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55537 time: 6.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e09a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40090 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943ef60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28431 time: 8.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c7060]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46693 time: 9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cdd80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37031 time: 4.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e0420]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40114 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779a4efd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20001 time: 1.06e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e4ba0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40122 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740668f60]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 67 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e0f50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40127 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e4ed0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40130 time: 6.52e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794460a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33807 time: 3.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e0840]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52491 time: 1.32e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e02e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40143 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943abc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30906 time: 1.36e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e4760]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40146 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e7380]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25321 time: 1.46e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0de030]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40013 time: 1.72e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943d7e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40616 time: 1.47e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c3320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46530 time: 1.49e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779439ab0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28452 time: 1.05e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e3650]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40619 time: 1.83e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779439e90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30885 time: 1.83e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e3a30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40625 time: 1.02e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64bb70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40628 time: 1.97e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64bc90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40631 time: 1.04e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ecdc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27682 time: 8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64c180]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40637 time: 1.62e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e32a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40643 time: 1.76e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64b640]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40651 time: 4.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64b320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40656 time: 2.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cd910]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47272 time: 2.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64b3c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40664 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64b460]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40672 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cda50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47243 time: 1.02e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779441cb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40675 time: 6.85e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977942f4d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24715 time: 2.17e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d9070]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37722 time: 8.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779441b70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42875 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779441aa0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42878 time: 2.05e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0daee0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42881 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794414d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42887 time: 4.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dbe90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42890 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64dd40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42893 time: 5.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64d070]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42899 time: 1.33e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bb3d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42902 time: 1.17e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d4370]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58446 time: 7.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf645dd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52419 time: 1.42e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bc280]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42911 time: 7.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cdff0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47288 time: 9.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bb950]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42917 time: 7.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794315d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30983 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5de410]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42923 time: 6.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c4430]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46536 time: 7.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf600f20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42932 time: 1.34e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740657180]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 43 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6004a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42945 time: 4.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf649ef0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53145 time: 2.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6005e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42961 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf600680]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42969 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dcdf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42980 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c8460]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46653 time: 7.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6492c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53113 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dd1c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42988 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf641ab0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56235 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dc640]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42996 time: 3.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f9180]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58473 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dd790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43001 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ddbb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43009 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf645b30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52416 time: 1.28e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5fe900]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43012 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c63f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46680 time: 2.79e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f8a70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58468 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dd080]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43017 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c86f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46632 time: 7.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf649550]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53129 time: 6.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5fea20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43020 time: 1.28e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dc500]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43025 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c6a70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46701 time: 1.09e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5be5c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46524 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5fecf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43028 time: 3.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d6fd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37219 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5fefb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43036 time: 1.06e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cf540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47267 time: 2.34e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ff5f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43044 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ff330]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43049 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779449790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33915 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ff920]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43052 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5fee70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43065 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cf400]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47296 time: 1.96e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6488c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53110 time: 2.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ff4b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43073 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bcdd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43539 time: 2e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ff550]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43542 time: 1.09e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c5ca0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33926 time: 3.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bfbf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43560 time: 2.06e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779440fb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30930 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bfd60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43563 time: 2.57e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e6d30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55558 time: 1.01e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c0010]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43566 time: 1.55e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bf510]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43572 time: 2.28e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bf830]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43575 time: 1.82e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bd5a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43583 time: 2.14e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bd280]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43588 time: 7.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5be0b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43607 time: 1.26e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bd460]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43612 time: 6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c0600]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43615 time: 1.04e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bd7f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43620 time: 6.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bdba0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43628 time: 1.34e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf644050]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52563 time: 1.5e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779443ae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31528 time: 1.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c2890]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43631 time: 7.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d8320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50186 time: 1.67e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d53a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49580 time: 7.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c2d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43639 time: 9.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c2110]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46521 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c6660]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46717 time: 1.96e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6485c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53126 time: 8.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c2bc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46527 time: 3.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f55a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25339 time: 2.18e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c1460]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46542 time: 1.26e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64b850]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40688 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c16a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46545 time: 1.06e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d7130]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50109 time: 1.19e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c4670]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46551 time: 1.99e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c5590]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46560 time: 1.14e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c4af0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46566 time: 1.12e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64ac70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53105 time: 2.46e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c9e10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46578 time: 8.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64ab30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53134 time: 1.12e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c9cd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46592 time: 5.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c99b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46597 time: 2.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c9380]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46605 time: 1.19e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c9050]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46608 time: 7.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c9a50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46613 time: 7.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5be7c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43068 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c7b10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46616 time: 2.74e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c85a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46624 time: 8.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c8ea0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46637 time: 7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e1180]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40111 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c8a30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46640 time: 1.56e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c7ed0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46648 time: 1.4e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d0970]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49545 time: 1.07e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779a54080]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19995 time: 8.28e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c81b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46656 time: 2.56e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d6730]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37230 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c7330]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46661 time: 2.36e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974066f250]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 75 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c57a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46664 time: 3.4e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e8220]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55654 time: 8.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740644310]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 16 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c88f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46669 time: 1.08e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c6bf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46672 time: 1.41e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c8110]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46685 time: 7.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c6e80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46709 time: 9.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf644890]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52555 time: 1.19e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779442440]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31461 time: 2.9e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ca540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46712 time: 1.04e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c5dd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47188 time: 1.48e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ce430]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47197 time: 4.13e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ce2f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47283 time: 3.71e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740648210]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 23 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dbbf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47200 time: 5.54e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406bc090]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 112 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cec10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37070 time: 1.01e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e4550]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55582 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cbfd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47209 time: 2.29e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cac90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47212 time: 1.45e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cb0e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47218 time: 1.27e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ced80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47304 time: 1.14e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d80d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50141 time: 4.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cb920]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47227 time: 1.18e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974062ed40]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 10 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e13b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52475 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e5e10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21110 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740741a50]:20 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 133 time: 3.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cd6c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47235 time: 1.33e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779438e20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28383 time: 1e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64b0d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53050 time: 1.28e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794452a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33822 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cd3a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47240 time: 5.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974062ddb0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 0 time: 1.89e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cdd80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47251 time: 1.62e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794453e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31539 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dc8e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37806 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cd4e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47256 time: 1.02e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ce130]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47259 time: 2.75e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cf870]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47299 time: 2.82e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d2000]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47307 time: 4.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf646be0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58395 time: 4.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cf0d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47312 time: 1.4e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ea6b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24754 time: 1.21e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d1f60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49485 time: 1.28e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cfbf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49500 time: 5.7e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740643270]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 14 time: 1.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559738127ee0]:20 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 129 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c7850]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46575 time: 7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d0ba0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49509 time: 2.75e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d3080]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49515 time: 3.04e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d1050]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49521 time: 2.11e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974065e860]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 53 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d9af0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52407 time: 8.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d11f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49524 time: 2.24e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0eaf60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24727 time: 1.69e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d2810]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49527 time: 2.19e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d2a50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49530 time: 2.47e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406733a0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 80 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d2c40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49533 time: 1.09e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d34a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49548 time: 8.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d5b50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49561 time: 3.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d5bf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49569 time: 4.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5da140]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53026 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d1d30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37163 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d4fd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49572 time: 2.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d5d30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49585 time: 7.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974066be60]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 70 time: 1.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d17b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37179 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d4a50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49593 time: 8.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d42b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49604 time: 1.4e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d51d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49609 time: 9.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ebed0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25353 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d3780]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49612 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f9400]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58460 time: 5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d1420]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37134 time: 1.18e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d46c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49617 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d39e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49620 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943b020]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30919 time: 3.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d57c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49625 time: 4.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d4130]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49633 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ebd90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25382 time: 1.94e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d3640]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49641 time: 1.01e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f1590]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27844 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c67a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46688 time: 1.01e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cfaf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50094 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e9ad0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56157 time: 1.16e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794493f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33931 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d14f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50100 time: 4.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d6580]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50106 time: 3.28e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e3570]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55528 time: 8.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d7500]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50115 time: 1.8e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d7a10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50124 time: 1.25e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d8840]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50127 time: 8.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dbd60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50154 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf648230]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53118 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5db0c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50157 time: 6.35e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d8dd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50173 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf647590]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55498 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dbe00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50170 time: 1.94e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559778433690]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52359 time: 2.91e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e22c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55574 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d8f70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52362 time: 4.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406dbad0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 116 time: 1.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c3860]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52365 time: 5.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d9200]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52368 time: 4.09e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dae70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52371 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5da970]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52377 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5da830]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52383 time: 1.54e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d9670]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52401 time: 7.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6454f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52427 time: 1.17e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6456b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52443 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ceec0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47275 time: 6.07e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e1560]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52446 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf644e60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52462 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f96b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24773 time: 6.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e0f60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52470 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5df750]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52478 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bb710]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42914 time: 9.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e0450]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52486 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e11c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52507 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e9070]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55646 time: 9.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dfd20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52510 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0eec70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27756 time: 1.29e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64e030]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40667 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5df870]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52523 time: 9.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf643d70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52526 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dfbe0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52539 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf646ca0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52558 time: 1.18e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5db4d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53032 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6474a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53044 time: 1.25e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf648d60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53065 time: 1.36e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779448230]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33875 time: 2.03e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cd090]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34598 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf647e40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53073 time: 7.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf648370]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53089 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e8e90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55662 time: 4.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf647c60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53094 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf649030]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53097 time: 1.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c04c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43644 time: 6.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64a670]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53121 time: 2.39e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf649180]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53142 time: 1.01e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740670180]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 76 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e20c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55495 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5eb100]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56200 time: 1.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406b98f0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 101 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e1db0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55501 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf647d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53102 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e2890]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55507 time: 1.45e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406b28f0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 100 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e4100]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55516 time: 1.52e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e4340]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55519 time: 1.36e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e3140]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55522 time: 1.05e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e3290]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55525 time: 1.1e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d0be0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37046 time: 1.44e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64b990]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40659 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e6520]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55543 time: 6.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e66c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55546 time: 4.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779442e20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31470 time: 7.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740662330]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 58 time: 2.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e6910]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55555 time: 8.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e7470]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55566 time: 3.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e7150]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55571 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c2550]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43652 time: 2.59e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e7290]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55587 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e4710]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55590 time: 5.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e4ba0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55598 time: 5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e55f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55614 time: 4.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e6320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55619 time: 4.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e58c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55651 time: 1.04e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e9760]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55667 time: 7.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943b8b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30900 time: 1.18e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e86f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55670 time: 7.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf649410]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56148 time: 3.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e9ef0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56160 time: 2.3e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6461e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53029 time: 3.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ea0c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56163 time: 8.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943e9d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28447 time: 1.14e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977942c330]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24709 time: 2.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5eb810]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56172 time: 1.12e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] -------------- The current device memory allocations dump as below --------------\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0]:8589934592 :HybridGlobWriter in reserveMemory: at optimizer/common/globWriter.cpp: 438 idx: 10652 time: 0.00555126\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x302000000]:3457155072 :HybridGlobWriter in reserveMemory: at optimizer/common/globWriter.cpp: 416 idx: 1987 time: 0.00202746\n",
+ "[07/28/2022-16:51:58] [TRT] [W] Requested amount of GPU memory (8589934592 bytes) could not be allocated. There may not be enough free memory for allocation to succeed.\n",
+ "[07/28/2022-16:51:58] [TRT] [W] Skipping tactic 3 due to insufficient memory on requested size of 8589934592 detected for tactic 0x0000000000000004.\n",
+ "Try decreasing the workspace size with IBuilderConfig::setMemoryPoolLimit().\n",
+ "[07/28/2022-16:51:58] [TRT] [E] 2: [virtualMemoryBuffer.cpp::resizePhysical::144] Error Code 2: OutOfMemory (no further information)\n",
+ "[07/28/2022-16:51:58] [TRT] [E] 2: [virtualMemoryBuffer.cpp::resizePhysical::144] Error Code 2: OutOfMemory (no further information)\n",
+ "[07/28/2022-16:51:58] [TRT] [W] -------------- The current system memory allocations dump as below --------------\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f6c40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58521 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f7a00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58516 time: 4.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f6ba0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58513 time: 9.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f8b90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58505 time: 2.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f8890]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58497 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f70b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58492 time: 4.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f92c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58489 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f9220]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58481 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f8d70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58476 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f90e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58465 time: 4.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f6a00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58452 time: 6.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d3ee0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58440 time: 1.99e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d4a50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58434 time: 1.29e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d4810]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58431 time: 1.08e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d50c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58419 time: 1.2e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d4f20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58416 time: 1.28e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f5c50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58413 time: 1.99e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f5ae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58407 time: 1.05e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d52e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58401 time: 1.43e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977942eaf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58398 time: 2.44e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0eb5d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58389 time: 4.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ec010]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56256 time: 6.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ebf70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56251 time: 9.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf641dd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56248 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6411c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56240 time: 2.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ed9c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56232 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf641610]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56227 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5eb2e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56224 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf641f10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56219 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5eb240]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56216 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf641300]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56211 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5eb420]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56195 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5eafb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56192 time: 1.33e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d5470]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56187 time: 1.03e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf642320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56184 time: 9.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf642180]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56181 time: 9.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ebc60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56178 time: 1.05e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779445d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37040 time: 1.23e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794347c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37088 time: 8.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779443440]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37034 time: 3.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ccd40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34590 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cd840]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34585 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fd2b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24824 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cc690]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34577 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c8140]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33958 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cbfa0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34574 time: 3.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dd3a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42948 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cce80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34561 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943a210]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30891 time: 7.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779442cb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31467 time: 1.31e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ebe50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56243 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779435cc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28355 time: 3.92e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ca4b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34542 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d7360]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50112 time: 1.45e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d4180]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58443 time: 8.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779445fd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34492 time: 1.3e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c8f50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34477 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c7d10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34011 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5deaa0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52392 time: 1.11e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cded0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37037 time: 6.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794327c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27661 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c52f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46557 time: 1.14e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c7960]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34003 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e1800]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52410 time: 1.56e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d4510]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58449 time: 8.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cb1c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34513 time: 6.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c8ff0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33998 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c9e20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33995 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406dc690]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 114 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f9890]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24797 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c9f60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33966 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d4c90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58437 time: 1e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f99d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24768 time: 3.59e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740649530]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 25 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c6350]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33950 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cedf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37073 time: 7.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cb780]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34504 time: 1.05e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779448920]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33939 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779449d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33923 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf644240]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52534 time: 1.13e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779448530]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33907 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bcb30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43554 time: 3.05e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779448670]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33878 time: 3.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977944a1e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33870 time: 9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cfd20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49494 time: 4.1e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794480e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33864 time: 2.42e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977944aa80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33861 time: 7.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974062d050]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 6 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e24f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58392 time: 3.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779447d50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33834 time: 8.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779443800]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31482 time: 4.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943ce00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33819 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e8ab0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21105 time: 2.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf643900]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52438 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ca410]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34534 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf642ae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53059 time: 9.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779444fd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31523 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794439a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31512 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779447ef0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33837 time: 1.07e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977944add0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33840 time: 1.35e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740661360]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 57 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779444670]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31491 time: 1.36e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf647bc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53086 time: 5.32e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977944b660]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31479 time: 8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d1540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37142 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779443190]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31464 time: 1.19e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779440660]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30991 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dbd70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47203 time: 2.21e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c8790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33971 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779480f30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20070 time: 6.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794407a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30962 time: 3.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f1ea0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27841 time: 3.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943b6a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30951 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779431170]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30946 time: 5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779430ee0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30938 time: 3.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943b160]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30935 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f0850]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28349 time: 3.58e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943b0c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30927 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0df270]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40016 time: 1.52e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e37c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40622 time: 1.23e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c96a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46584 time: 1.2e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406b08e0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 105 time: 1.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e7980]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55549 time: 9.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d7750]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50118 time: 1.02e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c50b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46554 time: 1.06e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779443540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31473 time: 7.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943ae00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30911 time: 1.19e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0defb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40037 time: 1.86e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f3ed0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27820 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943a7a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30903 time: 1.07e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5de810]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52389 time: 1.22e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cbd20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34537 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c3140]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43660 time: 1.1e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740647b80]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 22 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943bda0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30882 time: 8.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d74b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37198 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943df40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30873 time: 9.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946d9b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20025 time: 9.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e20f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40138 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ca550]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34550 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f5920]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58404 time: 1.61e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dffe0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40135 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779440900]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30999 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6494b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56151 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779439400]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28428 time: 8.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d05c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37079 time: 9.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c3490]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43655 time: 1.04e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e1da0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40151 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794385a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28407 time: 1.07e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779436eb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28396 time: 6.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794483f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33891 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943b340]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30914 time: 5.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf642de0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53035 time: 1.14e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779439170]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28391 time: 7.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779436d70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28380 time: 6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779448490]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33899 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779436f50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28404 time: 8.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c18e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46548 time: 1.16e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794397e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28367 time: 1.27e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974064fd70]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 34 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943a550]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30897 time: 3.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5de5c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42926 time: 1.14e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794361b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28361 time: 1.78e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779435f70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28358 time: 1.88e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794364d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28352 time: 3.2e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55973bfaac00]:1179648 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 126 time: 4.71e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f9330]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28346 time: 3.43e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f6130]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58425 time: 8.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779436c50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28372 time: 1.47e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bc790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43060 time: 1.13e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779435880]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28343 time: 3.54e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c6ea0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34486 time: 1.17e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f23c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27777 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e5290]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55635 time: 1.12e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794331c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28334 time: 1.73e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fe340]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24800 time: 3.7e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d7370]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37227 time: 1.2e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dfe10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40066 time: 4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d2ee0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49512 time: 3.8e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c9b90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46629 time: 1.16e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e49b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55627 time: 3.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d5c90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49577 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c9320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34474 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f1cf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27833 time: 3.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f0040]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27828 time: 3.04e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794371b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28399 time: 1.19e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ce6b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37043 time: 2.13e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f33f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27817 time: 8.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779446f60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43548 time: 2.17e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e0bb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52483 time: 5.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0da6a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37753 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779449ec0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33867 time: 9.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f3a60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27788 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f2d70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27772 time: 3.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779445940]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34480 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779447b10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33831 time: 1.36e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946eae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20028 time: 6.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ef040]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27764 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974064b990]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 29 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f3120]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27780 time: 4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0efae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27748 time: 3.66e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f2500]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27740 time: 1.43e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cb3f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47221 time: 2.9e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e53d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55606 time: 1.77e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f4ef0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27732 time: 3.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f4680]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27796 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c9890]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46589 time: 2.07e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977944b240]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33816 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0efda0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27715 time: 1.06e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c66f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34489 time: 1.01e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943d320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30959 time: 3.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5df660]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52386 time: 1.52e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977947eea0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20075 time: 6.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ed510]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27700 time: 7.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6446b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52518 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ed030]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27694 time: 1.54e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f73a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58508 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5db9b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50133 time: 3.25e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779436940]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28364 time: 5.92e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c7d90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46677 time: 1.08e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779448fe0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33918 time: 5.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943ff80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30978 time: 3.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e07d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40119 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fc110]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27673 time: 1.44e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e5480]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40103 time: 2.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559778435980]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21048 time: 4.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e8e00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27670 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740652740]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 38 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943c1b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30864 time: 1.2e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf646790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52550 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cb9e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34529 time: 2.22e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dc830]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43033 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794827c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20139 time: 3.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64d800]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42869 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf644d60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52502 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ed9d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27688 time: 1.54e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779431790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25393 time: 6.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ebcf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25374 time: 7.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779448a60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33910 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779431670]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25361 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977942f080]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28340 time: 7.19e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf600c00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42929 time: 2.49e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f5cd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25350 time: 1.04e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fe770]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24792 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf643b30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52547 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ed270]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27697 time: 1.07e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779431030]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30975 time: 1.2e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f56c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25342 time: 9.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dfc30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40087 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d7110]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37190 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946f850]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20051 time: 8.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f5e50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25327 time: 8.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ca930]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34495 time: 9.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779433580]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25377 time: 7.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fbfb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25315 time: 1.2e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f5ae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25345 time: 1.19e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ec790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27706 time: 9.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779483320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20094 time: 9.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794468c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37713 time: 1.55e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f0320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27836 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f4300]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27857 time: 5.46e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559738185cc0]:1280 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 124 time: 7.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f8fc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58457 time: 1.03e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740646950]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 20 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740642400]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 13 time: 4.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f85f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24733 time: 1.3e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d5a30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49553 time: 1.37e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c84b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33987 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d99f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37801 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cbbe0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34566 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779446d80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40610 time: 4.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d98b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52404 time: 9.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406a1230]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 107 time: 1.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64a530]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53150 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bdf70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43636 time: 7.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794420d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40683 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740644920]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 17 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943e470]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30843 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406b9aa0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 104 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779433bc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25398 time: 6.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f4db0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27769 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977942f820]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21069 time: 1.34e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d7f20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37214 time: 5.37e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406ba110]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 99 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943bc00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30879 time: 1.05e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974067f460]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 97 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64def0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40696 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779439d70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30876 time: 2.08e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5da6e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52374 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974066a920]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 68 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740645be0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 19 time: 3.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740674920]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 82 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779440450]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31452 time: 3.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974067b350]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 91 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f7a30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24739 time: 2.09e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dd910]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42972 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cc3d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47194 time: 7.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974062de80]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 1 time: 1.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779439030]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28420 time: 7.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974067ada0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 90 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cbe20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47206 time: 1.56e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6452e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52422 time: 2.25e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943a090]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30888 time: 9.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740674f90]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 83 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406517f0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 37 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779444980]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31504 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794322e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27679 time: 1.21e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c08c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43647 time: 1.07e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559722308300]:512 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 123 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974066c4b0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 71 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ca250]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34518 time: 7.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f9cc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24776 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf647b20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53078 time: 1.67e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740667460]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 64 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974065a470]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 46 time: 4.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d0a40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37085 time: 8.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f2b30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27718 time: 3.08e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740667ad0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 65 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406b0b20]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 109 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e7bc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55552 time: 9.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0caea0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34510 time: 7.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943b560]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30922 time: 3.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0db1c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40001 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740665ee0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 62 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740677420]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 86 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f06f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28331 time: 1.18e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740676510]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 85 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f0ca0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27860 time: 2.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779434a60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37091 time: 7.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e5ac0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55622 time: 5.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779480df0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20099 time: 1e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e6f70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55563 time: 9.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406502f0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 35 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943ddd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30870 time: 1.15e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974065d2e0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 51 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64a2a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55603 time: 5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779352430]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19983 time: 6.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fdc50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24816 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740664750]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 61 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e0cf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52454 time: 3.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c9150]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34006 time: 9.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740675ea0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 84 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d8460]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50149 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fcbe0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24848 time: 1.81e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406b97d0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 102 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bcf50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43551 time: 5.48e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794474f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33846 time: 9.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794339f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25385 time: 7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bbaf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42920 time: 7.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f4c70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27745 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406640e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 60 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740662930]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 59 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779444860]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31496 time: 8.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406c91e0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 115 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974067d9b0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 94 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794831e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20123 time: 9.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740658ae0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 45 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779449530]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33902 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406b24c0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 98 time: 7.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c6c20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37147 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e8d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24697 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d3270]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37131 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e5a70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40034 time: 9.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cfea0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49488 time: 1.54e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974064a1e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 26 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bdce0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43599 time: 6.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794476d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33849 time: 1.07e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943a3b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30894 time: 5.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559738191300]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25336 time: 9.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e71f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55579 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406dbaf0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 113 time: 1.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406f1860]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 117 time: 1.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946ee00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20034 time: 5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974068a370]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 111 time: 2.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c4ed0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46572 time: 8.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f5150]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27721 time: 1.17e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977942e520]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21063 time: 1.58e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c9af0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46621 time: 9.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779432c90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27664 time: 2.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5eb1a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56208 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740641e80]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 12 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d8540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37710 time: 2.31e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e19a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55611 time: 8.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5edb00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56203 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f3bb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27812 time: 5.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bfa70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43580 time: 8.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fcf00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24832 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c48b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46563 time: 9.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e7330]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55595 time: 5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740645660]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 18 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779444b60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31485 time: 1.58e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5db570]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50165 time: 5.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597380cd3f0]:2048 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 131 time: 4.12e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740673a10]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 81 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559778435dc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27667 time: 8.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740666550]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 63 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406b2740]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 103 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946e4f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20010 time: 1.83e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779431ca0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28328 time: 2.44e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779440d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30954 time: 3.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c5b60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33955 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559738361110]:294912 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 122 time: 5.448e-06\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779447280]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33843 time: 1.84e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406b0210]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 106 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cc0e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34545 time: 3.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dd4e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42964 time: 1.66e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740652cc0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 39 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974066da30]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 73 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f80c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24751 time: 9.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794451d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33825 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740655cf0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 41 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779444250]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31488 time: 1.95e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c12f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46539 time: 1.78e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740651270]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 36 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597beee6090]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20067 time: 1.22e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974065bb80]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 49 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c2690]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43623 time: 7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c5fb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33963 time: 5.25e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c5e70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46704 time: 2.41e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740643690]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 15 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cdc60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34593 time: 3.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ef960]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27785 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943c560]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30852 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974062d9e0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 11 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794430f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31455 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946d530]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20019 time: 1.06e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fdbb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24845 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943f7e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30994 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c0dd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46533 time: 1.51e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f5ef0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58422 time: 1.15e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e3850]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55531 time: 2.17e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974062ccd0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 3 time: 1.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977942c1d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21054 time: 9.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943c7c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28439 time: 1.23e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf647a30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53070 time: 2.55e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779435780]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31458 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d0d50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49518 time: 4.12e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f4540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27825 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974067df60]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 95 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0da560]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37782 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974062e220]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 9 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf600980]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42977 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c0250]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43569 time: 1.03e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946fd90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20059 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bd3c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43604 time: 5.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406689e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 66 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0edb40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27691 time: 1.53e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64cf00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42896 time: 1.29e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d7f90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50178 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406dfb70]:20 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 125 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ef4a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27793 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0eb100]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24730 time: 1.15e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974062d130]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 7 time: 1.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e6270]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21126 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf645610]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52435 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e6130]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55643 time: 7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779448d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33947 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5eb980]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56175 time: 1.28e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946cbd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20126 time: 1.4e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974064b410]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 28 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dfaf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40071 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c59d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46725 time: 1.25e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5df9b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52494 time: 3.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974065b510]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 48 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974066d3e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 72 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977942b930]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21051 time: 1.57e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974064a760]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 27 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977942fc80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21075 time: 1.04e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794341d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37139 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5be260]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43557 time: 3.48e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d18f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37150 time: 2.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0da390]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37822 time: 3.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cd3b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34582 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e2cf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55510 time: 9.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740648fb0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 24 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ea850]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24757 time: 9.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e7f10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55638 time: 6.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974067f320]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 96 time: 4.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977942b6c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21045 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cf730]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49491 time: 1.17e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779441170]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30967 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406e5ab0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 120 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dbba0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50138 time: 1.51e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d0130]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53038 time: 1.46e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974065e1f0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 52 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dece0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52395 time: 6.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fe200]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24829 time: 2.13e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dfcd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40095 time: 1.52e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cac50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34507 time: 9.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f8ce0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25318 time: 9.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406779a0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 87 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974064e6d0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 33 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974064cdd0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 30 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c7aa0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33974 time: 3.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e3490]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40648 time: 9.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ebc50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25366 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf642550]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53047 time: 1.87e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e86d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21121 time: 3.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406706e0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 77 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ce750]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47291 time: 7.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf600540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42953 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943f1b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28436 time: 1.05e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f48a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27724 time: 2.01e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406557e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 40 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0da960]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37734 time: 1.15e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c92e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46600 time: 7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64b240]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53053 time: 8.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779440a40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30970 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740656c00]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 42 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f3d90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27849 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5de1c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42993 time: 2.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974066af00]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 69 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977944b380]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31531 time: 4.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ddeb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42956 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c3ed0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46645 time: 6.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406583a0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 44 time: 2.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946ec60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20031 time: 8.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c4d30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46569 time: 1e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d6270]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49628 time: 3.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943dab0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30861 time: 1.22e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779449b30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33894 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974065fcf0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 55 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974062d360]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 5 time: 1.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d4e20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49601 time: 1.59e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974065a5b0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 47 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779434050]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37102 time: 4.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f95e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24765 time: 6.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d24d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49506 time: 5.92e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ca370]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34526 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974065cc70]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 50 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740672700]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 79 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406b4d80]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 108 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794802c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20107 time: 7.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740664f80]:1024 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 127 time: 1.16e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d07d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49542 time: 1.42e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779444e90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33828 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f7d80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24745 time: 9.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ecae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27712 time: 1.17e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779439bf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28423 time: 8.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779446600]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31544 time: 4.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f7860]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24706 time: 1.41e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779a55e00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19986 time: 5.2e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d11f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37055 time: 1.03e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ef2d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27801 time: 2.41e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597799eaf40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19989 time: 4.49e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5db160]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50162 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779433d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25369 time: 7.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974066ec00]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 74 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bbe00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42905 time: 8.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f0b80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27852 time: 5.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559778437560]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20062 time: 6.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cb4a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34501 time: 1.26e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bc0a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42908 time: 7.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f01e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27865 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779a521a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19992 time: 1.33e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779447910]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33852 time: 1.54e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740679640]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 89 time: 3.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779a46b30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19998 time: 8.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d7870]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50121 time: 1.51e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974062cbf0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 2 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fc4a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25309 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974065f770]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 54 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e0260]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52515 time: 1.44e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779a465f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20004 time: 2.21e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d2de0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49536 time: 4.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946c8b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20118 time: 1.06e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f4ab0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27729 time: 1.38e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559778437660]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25312 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6457f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52459 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c75e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34483 time: 1.03e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d89e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50130 time: 1.07e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0eebd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27761 time: 1.16e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f7f20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24748 time: 1.24e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597383f26d0]:4718592 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 130 time: 6.05e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779a46f00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20007 time: 1e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0da080]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37814 time: 4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ccf50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47191 time: 1.11e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e69f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25306 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c60f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33934 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e4620]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42884 time: 3.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946d6d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20022 time: 8.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e5eb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21118 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e5d70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55630 time: 1.35e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cb8a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34558 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf644c20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52531 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55973c3a8ad0]:5120 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 132 time: 2.51e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf646320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52542 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c99f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33990 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fd9b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24808 time: 7.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d2360]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49503 time: 4.82e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946efa0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20037 time: 4.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779470300]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20040 time: 1.29e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d9320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56154 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bd930]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43591 time: 1.08e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946f1f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20043 time: 1.45e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dad50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50181 time: 3.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d2810]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37171 time: 2.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f90c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24703 time: 2.7e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e24b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40613 time: 2.27e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946fcf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20054 time: 4.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bd320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43596 time: 1e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f7bd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24742 time: 1.26e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977947f700]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20078 time: 3.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ec160]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25390 time: 1.16e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64b500]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40680 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779430210]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21081 time: 8.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ca0b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46581 time: 1.15e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf643570]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52413 time: 1.63e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fe6d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24821 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977942fdf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21078 time: 1.25e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794824a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20086 time: 2.03e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e39a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55534 time: 9.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d91e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37725 time: 7.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f4bd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27737 time: 2.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779438990]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28444 time: 2.16e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943c410]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30867 time: 4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d6be0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37206 time: 3.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977947fe10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20115 time: 6.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cd440]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47248 time: 8.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf645080]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52499 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406790e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 88 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946c0c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20134 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ca690]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34521 time: 1.33e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e0120]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40106 time: 3.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779448350]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33883 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d0450]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49539 time: 1.19e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf647f60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53081 time: 1e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779430440]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21042 time: 3.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fcaa0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28337 time: 6.18e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0de570]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40040 time: 8.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977944a7a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33858 time: 1.06e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559778436ef0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20131 time: 6.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974067c350]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 92 time: 4.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d5e70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49556 time: 1.97e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f7360]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24700 time: 4.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974067c490]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 93 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559778437030]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20102 time: 6.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dd380]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37798 time: 1.06e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779446740]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31515 time: 3.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943d3f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30846 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ea230]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56166 time: 9.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779430a10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21057 time: 2.09e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6499f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53137 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e1a70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55504 time: 1.33e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ec380]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25330 time: 1.32e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977942e7b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21066 time: 8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ec940]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27709 time: 6.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977942f9c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21072 time: 1.28e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406e99d0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 119 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e0b60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40098 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974062db00]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 8 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e94c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55675 time: 1.11e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f8280]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24721 time: 1.49e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e5be0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21086 time: 6.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e5ff0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21089 time: 4.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f6280]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58428 time: 8.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f2fe0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27809 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e63b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21097 time: 3.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cdc40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47280 time: 1.47e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf645750]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52451 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cb600]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47224 time: 2.03e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e5c30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55659 time: 6.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977944a600]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33855 time: 8.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406720d0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 78 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0eadc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24724 time: 1.41e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779438ad0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28415 time: 1.31e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f4d10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27753 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974064d250]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 31 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779437090]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28375 time: 1.19e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406f10a0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 121 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e8230]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21113 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ea3d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24718 time: 2.57e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740646ed0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 21 time: 3.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d4800]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49588 time: 1.57e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d02b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53041 time: 4.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794458a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33810 time: 7.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f8790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24736 time: 1.09e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559738190ed0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25324 time: 1.26e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c1110]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50103 time: 1.63e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946e660]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20013 time: 1.39e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779443ff0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31507 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974062ce20]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 4 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dd4c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37769 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f9750]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24781 time: 4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f9ee0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24784 time: 1.23e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e8970]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21134 time: 2.43e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6437c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52467 time: 1.03e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f97f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24789 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779443eb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31536 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977944b4f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31476 time: 1.09e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c0f50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50097 time: 3.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f9b80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24805 time: 8.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943d940]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30858 time: 2.14e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ffee0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43057 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779430be0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21060 time: 9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977947efe0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20091 time: 7.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cf060]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37058 time: 1.52e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0eaa50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24813 time: 6.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740660c70]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 56 time: 2.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e1fb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40604 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779443a40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31520 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946f610]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20046 time: 1.32e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fd7c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24837 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779449970]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33886 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fc860]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24840 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c6210]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33979 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406d99a0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 110 time: 2.14e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fd130]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24853 time: 1.34e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e5cd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21094 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cd580]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47264 time: 2.76e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d0e80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37049 time: 7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559738191190]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25333 time: 1.48e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ddd30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42985 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d0ff0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37052 time: 1.57e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0eabf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24760 time: 1.33e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cf200]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37061 time: 1.34e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dc0b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49636 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974064e150]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 32 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6007c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42940 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cf490]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37064 time: 1.09e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d3130]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37115 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dc480]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 39998 time: 3.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cae00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47215 time: 1.23e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ce970]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37067 time: 1.05e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f8390]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58500 time: 3.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d03b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37076 time: 1.54e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64dc80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43545 time: 4.48e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e2e00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40640 time: 1.71e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d0760]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37082 time: 1.36e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779434d80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37094 time: 7.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779432720]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27676 time: 4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d2f70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37099 time: 8.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d3090]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37107 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f05f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30855 time: 1.14e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794343b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37110 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779482900]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20110 time: 5.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dc970]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43004 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794345d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37118 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64d5b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43536 time: 2.79e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d31d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37123 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d2cd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37126 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cdb20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37155 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d1f10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37158 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d23e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37166 time: 1.41e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e7f10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21129 time: 5.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d5870]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37174 time: 2.66e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ebbb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25358 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e2860]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40607 time: 3.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977947ef40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20083 time: 1.42e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5eb650]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56169 time: 1.31e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f6540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58410 time: 8.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794403b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33813 time: 1.37e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d78b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37182 time: 1.36e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dbcc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50146 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779443c20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31499 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ed7c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27685 time: 1.78e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d1dd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37187 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d2230]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37195 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d5730]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37203 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0de1d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40025 time: 1.82e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779436e10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28388 time: 7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d7660]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37211 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64be00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40634 time: 9.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974073c820]:2560 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 128 time: 2.39e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e3e80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55540 time: 1.11e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d94c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52398 time: 1.47e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d6220]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37222 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946e7d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20016 time: 1.05e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d1b90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49497 time: 2.57e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d6aa0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37235 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c5b10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46696 time: 3.78e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597784334b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37698 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f6e20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58484 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5db430]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52380 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d8190]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37701 time: 5.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf648a70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53062 time: 1.19e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406f1a50]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 118 time: 1.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d6540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37704 time: 1.22e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0da1c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37785 time: 3.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6428d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53056 time: 8.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d5ef0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37707 time: 1.16e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d8cb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37716 time: 1.16e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d8e60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37719 time: 9.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dcc50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37728 time: 2.02e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ddde0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37731 time: 1.14e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dd5d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37737 time: 1.32e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e1b20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40055 time: 4.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dd810]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37742 time: 1.14e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf600150]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43041 time: 1.13e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ddc50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37745 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dd930]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37750 time: 4.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cb330]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34498 time: 1.44e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dd9d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37758 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dd0f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37761 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e1640]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40058 time: 9.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dda70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37766 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6003b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42937 time: 1.21e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ddb10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37774 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e5d70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21102 time: 2.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dca20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37777 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794396a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28412 time: 7.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ec590]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27703 time: 1.63e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d3e40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49596 time: 7.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dcfb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37790 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d95a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37793 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f8c10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24712 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf645930]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52430 time: 3.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d4c30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49564 time: 5.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dace0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37809 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c8980]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33942 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0db020]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37817 time: 1.48e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779441570]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42872 time: 1.21e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d8a70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 39995 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64d8a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40691 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cde20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40004 time: 8.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d86f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40007 time: 5.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c8de0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33982 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0db480]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40010 time: 1.62e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0df9d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40063 time: 1.59e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0df4c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40019 time: 1.08e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0df690]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40022 time: 8.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0de370]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40028 time: 1.15e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cccf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46720 time: 1.51e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e58d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40031 time: 9.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0de760]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40043 time: 7.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cc260]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34569 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0de900]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40046 time: 6.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cd280]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47232 time: 2.58e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0deaa0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40049 time: 6.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943f3c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30986 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fb600]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30849 time: 8.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e2eb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55513 time: 4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e1980]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40052 time: 4.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943b200]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30943 time: 1.26e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dba50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40074 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cd4f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34553 time: 3.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f2230]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27804 time: 3.85e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dfb90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40079 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e12c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40082 time: 1.43e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e3c40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55537 time: 6.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e09a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40090 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943ef60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28431 time: 8.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c7060]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46693 time: 9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cdd80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37031 time: 4.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e0420]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40114 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779a4efd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20001 time: 1.06e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e4ba0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40122 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740668f60]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 67 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e0f50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40127 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e4ed0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40130 time: 6.52e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794460a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33807 time: 3.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e0840]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52491 time: 1.32e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e02e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40143 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943abc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30906 time: 1.36e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e4760]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40146 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e7380]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25321 time: 1.46e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0de030]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40013 time: 1.72e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943d7e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40616 time: 1.47e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c3320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46530 time: 1.49e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779439ab0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28452 time: 1.05e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e3650]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40619 time: 1.83e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779439e90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30885 time: 1.83e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e3a30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40625 time: 1.02e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64bb70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40628 time: 1.97e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64bc90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40631 time: 1.04e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ecdc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27682 time: 8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64c180]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40637 time: 1.62e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e32a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40643 time: 1.76e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64b640]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40651 time: 4.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64b320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40656 time: 2.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cd910]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47272 time: 2.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64b3c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40664 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64b460]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40672 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cda50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47243 time: 1.02e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779441cb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40675 time: 6.85e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977942f4d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24715 time: 2.17e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d9070]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37722 time: 8.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779441b70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42875 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779441aa0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42878 time: 2.05e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0daee0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42881 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794414d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42887 time: 4.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dbe90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42890 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64dd40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42893 time: 5.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64d070]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42899 time: 1.33e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bb3d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42902 time: 1.17e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d4370]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58446 time: 7.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf645dd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52419 time: 1.42e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bc280]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42911 time: 7.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cdff0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47288 time: 9.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bb950]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42917 time: 7.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794315d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30983 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5de410]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42923 time: 6.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c4430]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46536 time: 7.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf600f20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42932 time: 1.34e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740657180]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 43 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6004a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42945 time: 4.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf649ef0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53145 time: 2.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6005e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42961 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf600680]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42969 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dcdf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42980 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c8460]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46653 time: 7.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6492c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53113 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dd1c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42988 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf641ab0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56235 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dc640]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42996 time: 3.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f9180]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58473 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dd790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43001 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ddbb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43009 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf645b30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52416 time: 1.28e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5fe900]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43012 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c63f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46680 time: 2.79e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f8a70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58468 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dd080]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43017 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c86f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46632 time: 7.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf649550]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53129 time: 6.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5fea20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43020 time: 1.28e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dc500]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43025 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c6a70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46701 time: 1.09e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5be5c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46524 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5fecf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43028 time: 3.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d6fd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37219 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5fefb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43036 time: 1.06e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cf540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47267 time: 2.34e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ff5f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43044 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ff330]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43049 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779449790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33915 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ff920]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43052 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5fee70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43065 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cf400]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47296 time: 1.96e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6488c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53110 time: 2.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ff4b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43073 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bcdd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43539 time: 2e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ff550]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43542 time: 1.09e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c5ca0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33926 time: 3.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bfbf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43560 time: 2.06e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779440fb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30930 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bfd60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43563 time: 2.57e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e6d30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55558 time: 1.01e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c0010]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43566 time: 1.55e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bf510]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43572 time: 2.28e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bf830]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43575 time: 1.82e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bd5a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43583 time: 2.14e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bd280]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43588 time: 7.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5be0b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43607 time: 1.26e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bd460]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43612 time: 6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c0600]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43615 time: 1.04e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bd7f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43620 time: 6.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bdba0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43628 time: 1.34e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf644050]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52563 time: 1.5e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779443ae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31528 time: 1.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c2890]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43631 time: 7.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d8320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50186 time: 1.67e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d53a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49580 time: 7.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c2d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43639 time: 9.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c2110]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46521 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c6660]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46717 time: 1.96e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6485c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53126 time: 8.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c2bc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46527 time: 3.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f55a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25339 time: 2.18e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c1460]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46542 time: 1.26e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64b850]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40688 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c16a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46545 time: 1.06e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d7130]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50109 time: 1.19e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c4670]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46551 time: 1.99e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c5590]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46560 time: 1.14e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c4af0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46566 time: 1.12e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64ac70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53105 time: 2.46e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c9e10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46578 time: 8.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64ab30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53134 time: 1.12e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c9cd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46592 time: 5.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c99b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46597 time: 2.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c9380]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46605 time: 1.19e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c9050]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46608 time: 7.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c9a50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46613 time: 7.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5be7c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43068 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c7b10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46616 time: 2.74e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c85a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46624 time: 8.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c8ea0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46637 time: 7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e1180]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40111 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c8a30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46640 time: 1.56e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c7ed0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46648 time: 1.4e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d0970]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49545 time: 1.07e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779a54080]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19995 time: 8.28e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c81b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46656 time: 2.56e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d6730]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37230 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c7330]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46661 time: 2.36e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974066f250]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 75 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c57a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46664 time: 3.4e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e8220]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55654 time: 8.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740644310]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 16 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c88f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46669 time: 1.08e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c6bf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46672 time: 1.41e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c8110]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46685 time: 7.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c6e80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46709 time: 9.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf644890]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52555 time: 1.19e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779442440]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31461 time: 2.9e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ca540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46712 time: 1.04e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c5dd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47188 time: 1.48e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ce430]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47197 time: 4.13e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ce2f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47283 time: 3.71e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740648210]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 23 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dbbf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47200 time: 5.54e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406bc090]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 112 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cec10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37070 time: 1.01e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e4550]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55582 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cbfd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47209 time: 2.29e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cac90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47212 time: 1.45e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cb0e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47218 time: 1.27e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ced80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47304 time: 1.14e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d80d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50141 time: 4.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cb920]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47227 time: 1.18e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974062ed40]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 10 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e13b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52475 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e5e10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21110 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740741a50]:20 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 133 time: 3.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cd6c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47235 time: 1.33e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779438e20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28383 time: 1e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64b0d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53050 time: 1.28e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794452a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33822 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cd3a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47240 time: 5.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974062ddb0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 0 time: 1.89e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cdd80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47251 time: 1.62e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794453e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31539 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dc8e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37806 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cd4e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47256 time: 1.02e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ce130]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47259 time: 2.75e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cf870]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47299 time: 2.82e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d2000]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47307 time: 4.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf646be0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58395 time: 4.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cf0d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47312 time: 1.4e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ea6b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24754 time: 1.21e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d1f60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49485 time: 1.28e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cfbf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49500 time: 5.7e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740643270]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 14 time: 1.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559738127ee0]:20 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 129 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c7850]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46575 time: 7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d0ba0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49509 time: 2.75e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d3080]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49515 time: 3.04e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d1050]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49521 time: 2.11e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974065e860]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 53 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d9af0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52407 time: 8.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d11f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49524 time: 2.24e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0eaf60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24727 time: 1.69e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d2810]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49527 time: 2.19e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d2a50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49530 time: 2.47e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406733a0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 80 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d2c40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49533 time: 1.09e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d34a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49548 time: 8.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d5b50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49561 time: 3.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d5bf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49569 time: 4.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5da140]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53026 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d1d30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37163 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d4fd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49572 time: 2.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d5d30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49585 time: 7.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974066be60]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 70 time: 1.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d17b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37179 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d4a50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49593 time: 8.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d42b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49604 time: 1.4e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d51d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49609 time: 9.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ebed0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25353 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d3780]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49612 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f9400]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58460 time: 5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d1420]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37134 time: 1.18e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d46c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49617 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d39e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49620 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943b020]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30919 time: 3.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d57c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49625 time: 4.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d4130]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49633 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ebd90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25382 time: 1.94e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d3640]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49641 time: 1.01e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f1590]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27844 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c67a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46688 time: 1.01e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cfaf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50094 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e9ad0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56157 time: 1.16e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794493f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33931 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d14f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50100 time: 4.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d6580]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50106 time: 3.28e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e3570]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55528 time: 8.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d7500]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50115 time: 1.8e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d7a10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50124 time: 1.25e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d8840]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50127 time: 8.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dbd60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50154 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf648230]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53118 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5db0c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50157 time: 6.35e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d8dd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50173 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf647590]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55498 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dbe00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50170 time: 1.94e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559778433690]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52359 time: 2.91e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e22c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55574 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d8f70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52362 time: 4.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406dbad0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 116 time: 1.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c3860]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52365 time: 5.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d9200]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52368 time: 4.09e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dae70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52371 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5da970]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52377 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5da830]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52383 time: 1.54e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d9670]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52401 time: 7.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6454f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52427 time: 1.17e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6456b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52443 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ceec0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47275 time: 6.07e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e1560]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52446 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf644e60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52462 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f96b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24773 time: 6.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e0f60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52470 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5df750]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52478 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bb710]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42914 time: 9.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e0450]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52486 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e11c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52507 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e9070]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55646 time: 9.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dfd20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52510 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0eec70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27756 time: 1.29e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64e030]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40667 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5df870]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52523 time: 9.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf643d70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52526 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dfbe0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52539 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf646ca0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52558 time: 1.18e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5db4d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53032 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6474a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53044 time: 1.25e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf648d60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53065 time: 1.36e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779448230]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33875 time: 2.03e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cd090]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34598 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf647e40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53073 time: 7.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf648370]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53089 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e8e90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55662 time: 4.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf647c60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53094 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf649030]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53097 time: 1.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c04c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43644 time: 6.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64a670]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53121 time: 2.39e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf649180]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53142 time: 1.01e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740670180]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 76 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e20c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55495 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5eb100]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56200 time: 1.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406b98f0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 101 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e1db0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55501 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf647d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53102 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e2890]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55507 time: 1.45e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406b28f0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 100 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e4100]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55516 time: 1.52e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e4340]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55519 time: 1.36e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e3140]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55522 time: 1.05e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e3290]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55525 time: 1.1e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d0be0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37046 time: 1.44e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64b990]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40659 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e6520]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55543 time: 6.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e66c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55546 time: 4.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779442e20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31470 time: 7.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740662330]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 58 time: 2.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e6910]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55555 time: 8.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e7470]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55566 time: 3.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e7150]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55571 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c2550]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43652 time: 2.59e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e7290]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55587 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e4710]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55590 time: 5.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e4ba0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55598 time: 5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e55f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55614 time: 4.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e6320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55619 time: 4.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e58c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55651 time: 1.04e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e9760]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55667 time: 7.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943b8b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30900 time: 1.18e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e86f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55670 time: 7.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf649410]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56148 time: 3.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e9ef0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56160 time: 2.3e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6461e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53029 time: 3.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ea0c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56163 time: 8.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943e9d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28447 time: 1.14e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977942c330]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24709 time: 2.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5eb810]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56172 time: 1.12e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] -------------- The current device memory allocations dump as below --------------\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0]:8589934592 :HybridGlobWriter in reserveMemory: at optimizer/common/globWriter.cpp: 438 idx: 10653 time: 0.00629186\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x302000000]:3457155072 :HybridGlobWriter in reserveMemory: at optimizer/common/globWriter.cpp: 416 idx: 1987 time: 0.00202746\n",
+ "[07/28/2022-16:51:58] [TRT] [W] Requested amount of GPU memory (8589934592 bytes) could not be allocated. There may not be enough free memory for allocation to succeed.\n",
+ "[07/28/2022-16:51:58] [TRT] [W] Skipping tactic 8 due to insufficient memory on requested size of 8589934592 detected for tactic 0x000000000000003c.\n",
+ "Try decreasing the workspace size with IBuilderConfig::setMemoryPoolLimit().\n",
+ "[07/28/2022-16:51:58] [TRT] [E] 2: [virtualMemoryBuffer.cpp::resizePhysical::144] Error Code 2: OutOfMemory (no further information)\n",
+ "[07/28/2022-16:51:58] [TRT] [E] 2: [virtualMemoryBuffer.cpp::resizePhysical::144] Error Code 2: OutOfMemory (no further information)\n",
+ "[07/28/2022-16:51:58] [TRT] [W] -------------- The current system memory allocations dump as below --------------\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f9c40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58556 time: 4.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f7d20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58553 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f9870]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58548 time: 4.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5fe1a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58540 time: 1.52e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f7260]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58537 time: 6.82e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f9750]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58532 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f80e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58524 time: 1.64e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f6c40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58521 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f7a00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58516 time: 4.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f6ba0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58513 time: 9.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f8b90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58505 time: 2.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f8890]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58497 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f70b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58492 time: 4.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f92c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58489 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f9220]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58481 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f8d70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58476 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f90e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58465 time: 4.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f6a00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58452 time: 6.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d3ee0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58440 time: 1.99e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d4a50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58434 time: 1.29e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d4810]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58431 time: 1.08e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d50c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58419 time: 1.2e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d4f20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58416 time: 1.28e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f5c50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58413 time: 1.99e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f5ae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58407 time: 1.05e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d52e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58401 time: 1.43e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977942eaf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58398 time: 2.44e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0eb5d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58389 time: 4.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ec010]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56256 time: 6.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ebf70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56251 time: 9.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf641dd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56248 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6411c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56240 time: 2.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ed9c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56232 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf641610]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56227 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5eb2e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56224 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf641f10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56219 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5eb240]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56216 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf641300]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56211 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5eb420]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56195 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5eafb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56192 time: 1.33e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d5470]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56187 time: 1.03e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf642320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56184 time: 9.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf642180]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56181 time: 9.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ebc60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56178 time: 1.05e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779445d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37040 time: 1.23e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794347c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37088 time: 8.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779443440]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37034 time: 3.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ccd40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34590 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cd840]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34585 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fd2b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24824 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cc690]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34577 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c8140]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33958 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cbfa0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34574 time: 3.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dd3a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42948 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cce80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34561 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943a210]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30891 time: 7.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779442cb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31467 time: 1.31e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ebe50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56243 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779435cc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28355 time: 3.92e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ca4b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34542 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d7360]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50112 time: 1.45e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d4180]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58443 time: 8.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779445fd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34492 time: 1.3e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c8f50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34477 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c7d10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34011 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5deaa0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52392 time: 1.11e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cded0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37037 time: 6.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794327c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27661 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c52f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46557 time: 1.14e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c7960]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34003 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e1800]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52410 time: 1.56e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d4510]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58449 time: 8.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cb1c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34513 time: 6.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c8ff0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33998 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c9e20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33995 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406dc690]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 114 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f9890]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24797 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c9f60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33966 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d4c90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58437 time: 1e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f99d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24768 time: 3.59e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740649530]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 25 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c6350]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33950 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cedf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37073 time: 7.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cb780]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34504 time: 1.05e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779448920]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33939 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779449d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33923 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf644240]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52534 time: 1.13e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779448530]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33907 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bcb30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43554 time: 3.05e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779448670]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33878 time: 3.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977944a1e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33870 time: 9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cfd20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49494 time: 4.1e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794480e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33864 time: 2.42e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977944aa80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33861 time: 7.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974062d050]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 6 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e24f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58392 time: 3.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779447d50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33834 time: 8.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779443800]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31482 time: 4.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943ce00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33819 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e8ab0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21105 time: 2.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf643900]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52438 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ca410]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34534 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf642ae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53059 time: 9.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779444fd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31523 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794439a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31512 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779447ef0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33837 time: 1.07e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977944add0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33840 time: 1.35e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740661360]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 57 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779444670]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31491 time: 1.36e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf647bc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53086 time: 5.32e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977944b660]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31479 time: 8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d1540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37142 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779443190]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31464 time: 1.19e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779440660]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30991 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dbd70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47203 time: 2.21e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c8790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33971 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779480f30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20070 time: 6.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794407a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30962 time: 3.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f1ea0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27841 time: 3.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943b6a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30951 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779431170]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30946 time: 5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779430ee0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30938 time: 3.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943b160]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30935 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f0850]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28349 time: 3.58e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943b0c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30927 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0df270]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40016 time: 1.52e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e37c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40622 time: 1.23e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c96a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46584 time: 1.2e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406b08e0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 105 time: 1.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e7980]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55549 time: 9.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d7750]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50118 time: 1.02e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c50b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46554 time: 1.06e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779443540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31473 time: 7.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943ae00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30911 time: 1.19e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0defb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40037 time: 1.86e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f3ed0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27820 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943a7a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30903 time: 1.07e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5de810]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52389 time: 1.22e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cbd20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34537 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c3140]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43660 time: 1.1e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740647b80]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 22 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943bda0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30882 time: 8.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d74b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37198 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943df40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30873 time: 9.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946d9b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20025 time: 9.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e20f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40138 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ca550]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34550 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f5920]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58404 time: 1.61e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dffe0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40135 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779440900]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30999 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6494b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56151 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779439400]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28428 time: 8.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d05c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37079 time: 9.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c3490]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43655 time: 1.04e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e1da0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40151 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794385a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28407 time: 1.07e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779436eb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28396 time: 6.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794483f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33891 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943b340]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30914 time: 5.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf642de0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53035 time: 1.14e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779439170]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28391 time: 7.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779436d70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28380 time: 6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779448490]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33899 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779436f50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28404 time: 8.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c18e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46548 time: 1.16e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794397e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28367 time: 1.27e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974064fd70]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 34 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943a550]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30897 time: 3.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5de5c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42926 time: 1.14e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794361b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28361 time: 1.78e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779435f70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28358 time: 1.88e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794364d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28352 time: 3.2e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55973bfaac00]:1179648 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 126 time: 4.71e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f9330]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28346 time: 3.43e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f6130]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58425 time: 8.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779436c50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28372 time: 1.47e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bc790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43060 time: 1.13e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779435880]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28343 time: 3.54e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c6ea0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34486 time: 1.17e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f23c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27777 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e5290]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55635 time: 1.12e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794331c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28334 time: 1.73e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fe340]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24800 time: 3.7e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d7370]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37227 time: 1.2e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dfe10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40066 time: 4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d2ee0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49512 time: 3.8e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c9b90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46629 time: 1.16e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e49b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55627 time: 3.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d5c90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49577 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c9320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34474 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f1cf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27833 time: 3.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f0040]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27828 time: 3.04e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794371b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28399 time: 1.19e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ce6b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37043 time: 2.13e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f33f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27817 time: 8.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779446f60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43548 time: 2.17e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e0bb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52483 time: 5.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0da6a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37753 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779449ec0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33867 time: 9.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f3a60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27788 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f2d70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27772 time: 3.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779445940]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34480 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779447b10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33831 time: 1.36e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946eae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20028 time: 6.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ef040]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27764 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974064b990]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 29 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f3120]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27780 time: 4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0efae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27748 time: 3.66e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f2500]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27740 time: 1.43e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cb3f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47221 time: 2.9e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e53d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55606 time: 1.77e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f4ef0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27732 time: 3.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f4680]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27796 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c9890]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46589 time: 2.07e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977944b240]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33816 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0efda0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27715 time: 1.06e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c66f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34489 time: 1.01e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943d320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30959 time: 3.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5df660]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52386 time: 1.52e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977947eea0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20075 time: 6.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ed510]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27700 time: 7.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6446b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52518 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ed030]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27694 time: 1.54e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f73a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58508 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5db9b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50133 time: 3.25e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779436940]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28364 time: 5.92e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c7d90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46677 time: 1.08e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779448fe0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33918 time: 5.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943ff80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30978 time: 3.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e07d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40119 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fc110]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27673 time: 1.44e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e5480]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40103 time: 2.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559778435980]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21048 time: 4.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e8e00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27670 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740652740]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 38 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943c1b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30864 time: 1.2e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf646790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52550 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cb9e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34529 time: 2.22e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dc830]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43033 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794827c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20139 time: 3.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64d800]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42869 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf644d60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52502 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ed9d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27688 time: 1.54e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779431790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25393 time: 6.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ebcf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25374 time: 7.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779448a60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33910 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779431670]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25361 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977942f080]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28340 time: 7.19e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf600c00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42929 time: 2.49e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f5cd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25350 time: 1.04e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fe770]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24792 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf643b30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52547 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ed270]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27697 time: 1.07e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779431030]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30975 time: 1.2e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f56c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25342 time: 9.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dfc30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40087 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d7110]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37190 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946f850]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20051 time: 8.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f5e50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25327 time: 8.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ca930]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34495 time: 9.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779433580]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25377 time: 7.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fbfb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25315 time: 1.2e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f5ae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25345 time: 1.19e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ec790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27706 time: 9.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779483320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20094 time: 9.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794468c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37713 time: 1.55e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f0320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27836 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f4300]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27857 time: 5.46e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559738185cc0]:1280 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 124 time: 7.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f8fc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58457 time: 1.03e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740646950]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 20 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740642400]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 13 time: 4.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f85f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24733 time: 1.3e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d5a30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49553 time: 1.37e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c84b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33987 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d99f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37801 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cbbe0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34566 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779446d80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40610 time: 4.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d98b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52404 time: 9.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406a1230]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 107 time: 1.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64a530]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53150 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bdf70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43636 time: 7.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794420d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40683 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740644920]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 17 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943e470]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30843 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406b9aa0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 104 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779433bc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25398 time: 6.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f4db0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27769 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977942f820]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21069 time: 1.34e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d7f20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37214 time: 5.37e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406ba110]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 99 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943bc00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30879 time: 1.05e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974067f460]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 97 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64def0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40696 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779439d70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30876 time: 2.08e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5da6e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52374 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f8250]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58529 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974066a920]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 68 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740645be0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 19 time: 3.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740674920]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 82 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779440450]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31452 time: 3.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974067b350]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 91 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f7a30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24739 time: 2.09e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dd910]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42972 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cc3d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47194 time: 7.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974062de80]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 1 time: 1.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779439030]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28420 time: 7.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974067ada0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 90 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cbe20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47206 time: 1.56e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6452e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52422 time: 2.25e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943a090]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30888 time: 9.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740674f90]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 83 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406517f0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 37 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779444980]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31504 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794322e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27679 time: 1.21e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c08c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43647 time: 1.07e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559722308300]:512 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 123 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974066c4b0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 71 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ca250]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34518 time: 7.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f9cc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24776 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf647b20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53078 time: 1.67e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740667460]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 64 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974065a470]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 46 time: 4.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d0a40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37085 time: 8.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f2b30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27718 time: 3.08e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740667ad0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 65 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406b0b20]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 109 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e7bc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55552 time: 9.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0caea0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34510 time: 7.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943b560]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30922 time: 3.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0db1c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40001 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740665ee0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 62 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740677420]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 86 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f06f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28331 time: 1.18e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740676510]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 85 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f0ca0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27860 time: 2.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779434a60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37091 time: 7.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e5ac0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55622 time: 5.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779480df0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20099 time: 1e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f9610]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58561 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e6f70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55563 time: 9.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406502f0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 35 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943ddd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30870 time: 1.15e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974065d2e0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 51 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64a2a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55603 time: 5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779352430]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19983 time: 6.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fdc50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24816 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740664750]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 61 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e0cf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52454 time: 3.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c9150]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34006 time: 9.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740675ea0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 84 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d8460]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50149 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fcbe0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24848 time: 1.81e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406b97d0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 102 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bcf50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43551 time: 5.48e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794474f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33846 time: 9.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794339f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25385 time: 7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bbaf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42920 time: 7.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f4c70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27745 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406640e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 60 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740662930]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 59 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779444860]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31496 time: 8.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406c91e0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 115 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974067d9b0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 94 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794831e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20123 time: 9.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740658ae0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 45 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779449530]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33902 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406b24c0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 98 time: 7.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c6c20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37147 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e8d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24697 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d3270]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37131 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e5a70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40034 time: 9.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cfea0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49488 time: 1.54e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974064a1e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 26 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bdce0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43599 time: 6.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794476d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33849 time: 1.07e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943a3b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30894 time: 5.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559738191300]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25336 time: 9.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e71f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55579 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406dbaf0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 113 time: 1.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406f1860]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 117 time: 1.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946ee00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20034 time: 5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974068a370]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 111 time: 2.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c4ed0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46572 time: 8.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f5150]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27721 time: 1.17e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977942e520]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21063 time: 1.58e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c9af0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46621 time: 9.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779432c90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27664 time: 2.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5eb1a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56208 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740641e80]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 12 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d8540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37710 time: 2.31e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e19a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55611 time: 8.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5edb00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56203 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f3bb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27812 time: 5.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bfa70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43580 time: 8.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fcf00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24832 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c48b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46563 time: 9.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e7330]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55595 time: 5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740645660]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 18 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779444b60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31485 time: 1.58e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5db570]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50165 time: 5.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597380cd3f0]:2048 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 131 time: 4.12e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740673a10]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 81 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559778435dc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27667 time: 8.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740666550]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 63 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406b2740]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 103 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946e4f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20010 time: 1.83e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779431ca0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28328 time: 2.44e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779440d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30954 time: 3.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c5b60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33955 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559738361110]:294912 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 122 time: 5.448e-06\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779447280]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33843 time: 1.84e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406b0210]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 106 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cc0e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34545 time: 3.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dd4e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42964 time: 1.66e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740652cc0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 39 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974066da30]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 73 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f80c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24751 time: 9.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794451d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33825 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740655cf0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 41 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779444250]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31488 time: 1.95e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c12f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46539 time: 1.78e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740651270]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 36 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597beee6090]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20067 time: 1.22e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974065bb80]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 49 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c2690]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43623 time: 7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c5fb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33963 time: 5.25e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c5e70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46704 time: 2.41e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740643690]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 15 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cdc60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34593 time: 3.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ef960]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27785 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943c560]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30852 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974062d9e0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 11 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794430f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31455 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946d530]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20019 time: 1.06e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fdbb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24845 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943f7e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30994 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c0dd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46533 time: 1.51e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f5ef0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58422 time: 1.15e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e3850]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55531 time: 2.17e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974062ccd0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 3 time: 1.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977942c1d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21054 time: 9.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943c7c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28439 time: 1.23e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf647a30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53070 time: 2.55e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779435780]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31458 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d0d50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49518 time: 4.12e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f4540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27825 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974067df60]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 95 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0da560]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37782 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974062e220]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 9 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf600980]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42977 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c0250]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43569 time: 1.03e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946fd90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20059 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bd3c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43604 time: 5.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406689e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 66 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0edb40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27691 time: 1.53e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64cf00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42896 time: 1.29e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d7f90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50178 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406dfb70]:20 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 125 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ef4a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27793 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0eb100]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24730 time: 1.15e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974062d130]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 7 time: 1.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e6270]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21126 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf645610]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52435 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e6130]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55643 time: 7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779448d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33947 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5eb980]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56175 time: 1.28e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946cbd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20126 time: 1.4e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974064b410]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 28 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dfaf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40071 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c59d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46725 time: 1.25e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5df9b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52494 time: 3.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974065b510]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 48 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974066d3e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 72 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977942b930]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21051 time: 1.57e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974064a760]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 27 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977942fc80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21075 time: 1.04e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794341d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37139 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5be260]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43557 time: 3.48e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d18f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37150 time: 2.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0da390]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37822 time: 3.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cd3b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34582 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e2cf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55510 time: 9.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740648fb0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 24 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ea850]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24757 time: 9.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e7f10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55638 time: 6.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974067f320]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 96 time: 4.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977942b6c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21045 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cf730]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49491 time: 1.17e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779441170]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30967 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406e5ab0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 120 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dbba0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50138 time: 1.51e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d0130]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53038 time: 1.46e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974065e1f0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 52 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dece0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52395 time: 6.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fe200]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24829 time: 2.13e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dfcd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40095 time: 1.52e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cac50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34507 time: 9.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f8ce0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25318 time: 9.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406779a0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 87 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974064e6d0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 33 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974064cdd0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 30 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c7aa0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33974 time: 3.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e3490]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40648 time: 9.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ebc50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25366 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf642550]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53047 time: 1.87e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e86d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21121 time: 3.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406706e0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 77 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ce750]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47291 time: 7.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf600540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42953 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943f1b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28436 time: 1.05e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f48a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27724 time: 2.01e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406557e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 40 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0da960]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37734 time: 1.15e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c92e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46600 time: 7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64b240]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53053 time: 8.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779440a40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30970 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740656c00]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 42 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f3d90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27849 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5de1c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42993 time: 2.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974066af00]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 69 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977944b380]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31531 time: 4.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ddeb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42956 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c3ed0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46645 time: 6.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406583a0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 44 time: 2.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946ec60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20031 time: 8.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c4d30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46569 time: 1e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d6270]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49628 time: 3.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943dab0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30861 time: 1.22e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779449b30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33894 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974065fcf0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 55 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974062d360]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 5 time: 1.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d4e20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49601 time: 1.59e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974065a5b0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 47 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779434050]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37102 time: 4.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f95e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24765 time: 6.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d24d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49506 time: 5.92e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ca370]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34526 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974065cc70]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 50 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740672700]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 79 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406b4d80]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 108 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794802c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20107 time: 7.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740664f80]:1024 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 127 time: 1.16e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d07d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49542 time: 1.42e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779444e90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33828 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f7d80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24745 time: 9.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ecae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27712 time: 1.17e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779439bf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28423 time: 8.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779446600]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31544 time: 4.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f7860]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24706 time: 1.41e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779a55e00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19986 time: 5.2e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d11f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37055 time: 1.03e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ef2d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27801 time: 2.41e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597799eaf40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19989 time: 4.49e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5db160]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50162 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779433d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25369 time: 7.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974066ec00]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 74 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bbe00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42905 time: 8.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f0b80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27852 time: 5.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559778437560]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20062 time: 6.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cb4a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34501 time: 1.26e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bc0a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42908 time: 7.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f01e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27865 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779a521a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19992 time: 1.33e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779447910]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33852 time: 1.54e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740679640]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 89 time: 3.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779a46b30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19998 time: 8.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d7870]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50121 time: 1.51e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974062cbf0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 2 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fc4a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25309 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974065f770]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 54 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e0260]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52515 time: 1.44e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779a465f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20004 time: 2.21e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d2de0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49536 time: 4.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946c8b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20118 time: 1.06e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f4ab0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27729 time: 1.38e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559778437660]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25312 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6457f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52459 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c75e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34483 time: 1.03e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d89e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50130 time: 1.07e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0eebd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27761 time: 1.16e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f7f20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24748 time: 1.24e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597383f26d0]:4718592 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 130 time: 6.05e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779a46f00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20007 time: 1e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0da080]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37814 time: 4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ccf50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47191 time: 1.11e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e69f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25306 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c60f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33934 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e4620]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42884 time: 3.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946d6d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20022 time: 8.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e5eb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21118 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e5d70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55630 time: 1.35e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cb8a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34558 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf644c20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52531 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55973c3a8ad0]:5120 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 132 time: 2.51e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf646320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52542 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c99f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33990 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fd9b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24808 time: 7.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d2360]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49503 time: 4.82e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946efa0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20037 time: 4.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779470300]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20040 time: 1.29e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d9320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56154 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bd930]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43591 time: 1.08e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946f1f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20043 time: 1.45e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dad50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50181 time: 3.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d2810]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37171 time: 2.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f90c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24703 time: 2.7e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e24b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40613 time: 2.27e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946fcf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20054 time: 4.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bd320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43596 time: 1e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f7bd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24742 time: 1.26e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977947f700]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20078 time: 3.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ec160]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25390 time: 1.16e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64b500]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40680 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779430210]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21081 time: 8.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ca0b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46581 time: 1.15e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf643570]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52413 time: 1.63e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fe6d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24821 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977942fdf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21078 time: 1.25e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794824a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20086 time: 2.03e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e39a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55534 time: 9.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d91e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37725 time: 7.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f4bd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27737 time: 2.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779438990]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28444 time: 2.16e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943c410]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30867 time: 4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d6be0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37206 time: 3.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977947fe10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20115 time: 6.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cd440]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47248 time: 8.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf645080]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52499 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406790e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 88 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946c0c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20134 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ca690]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34521 time: 1.33e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e0120]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40106 time: 3.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779448350]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33883 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d0450]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49539 time: 1.19e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf647f60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53081 time: 1e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779430440]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21042 time: 3.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fcaa0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28337 time: 6.18e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0de570]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40040 time: 8.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977944a7a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33858 time: 1.06e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559778436ef0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20131 time: 6.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974067c350]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 92 time: 4.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d5e70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49556 time: 1.97e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f7360]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24700 time: 4.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974067c490]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 93 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559778437030]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20102 time: 6.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dd380]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37798 time: 1.06e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779446740]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31515 time: 3.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943d3f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30846 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ea230]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56166 time: 9.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779430a10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21057 time: 2.09e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6499f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53137 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e1a70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55504 time: 1.33e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ec380]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25330 time: 1.32e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977942e7b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21066 time: 8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ec940]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27709 time: 6.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977942f9c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21072 time: 1.28e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406e99d0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 119 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e0b60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40098 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974062db00]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 8 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e94c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55675 time: 1.11e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f8280]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24721 time: 1.49e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e5be0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21086 time: 6.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e5ff0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21089 time: 4.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f6280]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58428 time: 8.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f2fe0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27809 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e63b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21097 time: 3.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cdc40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47280 time: 1.47e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf645750]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52451 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cb600]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47224 time: 2.03e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e5c30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55659 time: 6.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977944a600]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33855 time: 8.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406720d0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 78 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0eadc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24724 time: 1.41e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779438ad0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28415 time: 1.31e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f4d10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27753 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974064d250]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 31 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779437090]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28375 time: 1.19e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406f10a0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 121 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e8230]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21113 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ea3d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24718 time: 2.57e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740646ed0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 21 time: 3.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d4800]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49588 time: 1.57e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d02b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53041 time: 4.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794458a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33810 time: 7.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f8790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24736 time: 1.09e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559738190ed0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25324 time: 1.26e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c1110]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50103 time: 1.63e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946e660]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20013 time: 1.39e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779443ff0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31507 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974062ce20]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 4 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dd4c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37769 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f9750]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24781 time: 4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f9ee0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24784 time: 1.23e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e8970]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21134 time: 2.43e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6437c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52467 time: 1.03e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f97f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24789 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779443eb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31536 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977944b4f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31476 time: 1.09e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c0f50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50097 time: 3.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f9b80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24805 time: 8.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943d940]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30858 time: 2.14e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ffee0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43057 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779430be0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21060 time: 9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977947efe0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20091 time: 7.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cf060]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37058 time: 1.52e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0eaa50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24813 time: 6.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740660c70]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 56 time: 2.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e1fb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40604 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779443a40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31520 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946f610]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20046 time: 1.32e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fd7c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24837 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779449970]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33886 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fc860]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24840 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c6210]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33979 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406d99a0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 110 time: 2.14e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fd130]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24853 time: 1.34e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e5cd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21094 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cd580]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47264 time: 2.76e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d0e80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37049 time: 7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559738191190]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25333 time: 1.48e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ddd30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42985 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d0ff0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37052 time: 1.57e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0eabf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24760 time: 1.33e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cf200]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37061 time: 1.34e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dc0b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49636 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974064e150]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 32 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6007c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42940 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cf490]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37064 time: 1.09e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d3130]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37115 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dc480]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 39998 time: 3.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cae00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47215 time: 1.23e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ce970]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37067 time: 1.05e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f8390]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58500 time: 3.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d03b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37076 time: 1.54e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64dc80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43545 time: 4.48e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e2e00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40640 time: 1.71e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d0760]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37082 time: 1.36e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779434d80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37094 time: 7.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779432720]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27676 time: 4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d2f70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37099 time: 8.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d3090]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37107 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f05f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30855 time: 1.14e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794343b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37110 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779482900]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20110 time: 5.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dc970]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43004 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794345d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37118 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64d5b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43536 time: 2.79e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d31d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37123 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d2cd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37126 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cdb20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37155 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d1f10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37158 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d23e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37166 time: 1.41e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e7f10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21129 time: 5.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d5870]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37174 time: 2.66e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ebbb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25358 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e2860]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40607 time: 3.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977947ef40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20083 time: 1.42e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5eb650]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56169 time: 1.31e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f6540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58410 time: 8.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794403b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33813 time: 1.37e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d78b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37182 time: 1.36e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dbcc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50146 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779443c20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31499 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ed7c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27685 time: 1.78e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d1dd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37187 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d2230]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37195 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d5730]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37203 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0de1d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40025 time: 1.82e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779436e10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28388 time: 7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d7660]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37211 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64be00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40634 time: 9.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974073c820]:2560 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 128 time: 2.39e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e3e80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55540 time: 1.11e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d94c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52398 time: 1.47e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d6220]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37222 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977946e7d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20016 time: 1.05e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d1b90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49497 time: 2.57e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d6aa0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37235 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c5b10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46696 time: 3.78e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597784334b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37698 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f6e20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58484 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5db430]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52380 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d8190]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37701 time: 5.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf648a70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53062 time: 1.19e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406f1a50]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 118 time: 1.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d6540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37704 time: 1.22e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0da1c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37785 time: 3.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6428d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53056 time: 8.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d5ef0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37707 time: 1.16e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d8cb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37716 time: 1.16e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d8e60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37719 time: 9.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dcc50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37728 time: 2.02e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ddde0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37731 time: 1.14e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dd5d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37737 time: 1.32e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e1b20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40055 time: 4.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dd810]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37742 time: 1.14e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf600150]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43041 time: 1.13e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ddc50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37745 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dd930]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37750 time: 4.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cb330]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34498 time: 1.44e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dd9d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37758 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dd0f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37761 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e1640]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40058 time: 9.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dda70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37766 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6003b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42937 time: 1.21e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ddb10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37774 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e5d70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21102 time: 2.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dca20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37777 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794396a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28412 time: 7.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ec590]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27703 time: 1.63e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d3e40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49596 time: 7.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dcfb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37790 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d95a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37793 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f8c10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24712 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf645930]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52430 time: 3.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d4c30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49564 time: 5.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dace0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37809 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c8980]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33942 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0db020]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37817 time: 1.48e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f7700]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58545 time: 3.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779441570]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42872 time: 1.21e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d8a70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 39995 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64d8a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40691 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cde20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40004 time: 8.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d86f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40007 time: 5.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c8de0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33982 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0db480]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40010 time: 1.62e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0df9d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40063 time: 1.59e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0df4c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40019 time: 1.08e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0df690]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40022 time: 8.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0de370]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40028 time: 1.15e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cccf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46720 time: 1.51e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e58d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40031 time: 9.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0de760]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40043 time: 7.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cc260]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34569 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0de900]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40046 time: 6.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cd280]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47232 time: 2.58e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0deaa0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40049 time: 6.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943f3c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30986 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0fb600]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30849 time: 8.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e2eb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55513 time: 4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e1980]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40052 time: 4.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943b200]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30943 time: 1.26e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dba50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40074 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cd4f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34553 time: 3.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f2230]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27804 time: 3.85e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dfb90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40079 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e12c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40082 time: 1.43e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e3c40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55537 time: 6.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e09a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40090 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943ef60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28431 time: 8.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c7060]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46693 time: 9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cdd80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37031 time: 4.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e0420]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40114 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779a4efd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20001 time: 1.06e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e4ba0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40122 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740668f60]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 67 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e0f50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40127 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e4ed0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40130 time: 6.52e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794460a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33807 time: 3.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e0840]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52491 time: 1.32e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e02e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40143 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943abc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30906 time: 1.36e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e4760]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40146 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e7380]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25321 time: 1.46e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0de030]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40013 time: 1.72e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943d7e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40616 time: 1.47e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c3320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46530 time: 1.49e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779439ab0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28452 time: 1.05e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e3650]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40619 time: 1.83e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779439e90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30885 time: 1.83e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e3a30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40625 time: 1.02e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64bb70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40628 time: 1.97e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64bc90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40631 time: 1.04e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ecdc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27682 time: 8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64c180]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40637 time: 1.62e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e32a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40643 time: 1.76e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64b640]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40651 time: 4.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64b320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40656 time: 2.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cd910]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47272 time: 2.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64b3c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40664 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64b460]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40672 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cda50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47243 time: 1.02e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779441cb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40675 time: 6.85e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977942f4d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24715 time: 2.17e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d9070]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37722 time: 8.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779441b70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42875 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779441aa0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42878 time: 2.05e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0daee0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42881 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794414d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42887 time: 4.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dbe90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42890 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64dd40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42893 time: 5.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64d070]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42899 time: 1.33e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bb3d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42902 time: 1.17e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d4370]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58446 time: 7.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf645dd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52419 time: 1.42e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bc280]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42911 time: 7.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cdff0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47288 time: 9.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bb950]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42917 time: 7.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794315d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30983 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5de410]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42923 time: 6.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c4430]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46536 time: 7.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf600f20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42932 time: 1.34e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740657180]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 43 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6004a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42945 time: 4.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf649ef0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53145 time: 2.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6005e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42961 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf600680]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42969 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dcdf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42980 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c8460]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46653 time: 7.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6492c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53113 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dd1c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42988 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf641ab0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56235 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dc640]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42996 time: 3.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f9180]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58473 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dd790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43001 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ddbb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43009 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf645b30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52416 time: 1.28e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5fe900]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43012 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c63f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46680 time: 2.79e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f8a70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58468 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dd080]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43017 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c86f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46632 time: 7.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf649550]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53129 time: 6.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5fea20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43020 time: 1.28e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dc500]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43025 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c6a70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46701 time: 1.09e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5be5c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46524 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5fecf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43028 time: 3.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d6fd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37219 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5fefb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43036 time: 1.06e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cf540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47267 time: 2.34e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ff5f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43044 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ff330]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43049 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779449790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33915 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ff920]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43052 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5fee70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43065 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cf400]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47296 time: 1.96e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6488c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53110 time: 2.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ff4b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43073 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bcdd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43539 time: 2e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ff550]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43542 time: 1.09e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0c5ca0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33926 time: 3.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bfbf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43560 time: 2.06e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779440fb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30930 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bfd60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43563 time: 2.57e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e6d30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55558 time: 1.01e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c0010]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43566 time: 1.55e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bf510]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43572 time: 2.28e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bf830]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43575 time: 1.82e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bd5a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43583 time: 2.14e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bd280]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43588 time: 7.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5be0b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43607 time: 1.26e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bd460]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43612 time: 6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c0600]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43615 time: 1.04e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bd7f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43620 time: 6.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bdba0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43628 time: 1.34e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf644050]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52563 time: 1.5e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779443ae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31528 time: 1.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c2890]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43631 time: 7.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d8320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50186 time: 1.67e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d53a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49580 time: 7.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c2d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43639 time: 9.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c2110]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46521 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c6660]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46717 time: 1.96e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6485c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53126 time: 8.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c2bc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46527 time: 3.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f55a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25339 time: 2.18e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c1460]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46542 time: 1.26e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64b850]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40688 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c16a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46545 time: 1.06e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d7130]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50109 time: 1.19e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c4670]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46551 time: 1.99e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c5590]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46560 time: 1.14e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c4af0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46566 time: 1.12e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64ac70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53105 time: 2.46e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c9e10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46578 time: 8.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64ab30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53134 time: 1.12e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c9cd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46592 time: 5.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c99b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46597 time: 2.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c9380]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46605 time: 1.19e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c9050]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46608 time: 7.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c9a50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46613 time: 7.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5be7c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43068 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c7b10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46616 time: 2.74e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c85a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46624 time: 8.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c8ea0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46637 time: 7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e1180]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40111 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c8a30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46640 time: 1.56e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c7ed0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46648 time: 1.4e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d0970]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49545 time: 1.07e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779a54080]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19995 time: 8.28e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c81b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46656 time: 2.56e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d6730]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37230 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c7330]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46661 time: 2.36e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974066f250]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 75 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c57a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46664 time: 3.4e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e8220]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55654 time: 8.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740644310]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 16 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c88f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46669 time: 1.08e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c6bf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46672 time: 1.41e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c8110]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46685 time: 7.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c6e80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46709 time: 9.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf644890]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52555 time: 1.19e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779442440]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31461 time: 2.9e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ca540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46712 time: 1.04e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c5dd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47188 time: 1.48e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ce430]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47197 time: 4.13e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ce2f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47283 time: 3.71e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740648210]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 23 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dbbf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47200 time: 5.54e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406bc090]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 112 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cec10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37070 time: 1.01e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e4550]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55582 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cbfd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47209 time: 2.29e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cac90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47212 time: 1.45e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cb0e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47218 time: 1.27e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ced80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47304 time: 1.14e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d80d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50141 time: 4.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cb920]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47227 time: 1.18e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974062ed40]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 10 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e13b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52475 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0e5e10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21110 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740741a50]:20 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 133 time: 3.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cd6c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47235 time: 1.33e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779438e20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28383 time: 1e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64b0d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53050 time: 1.28e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794452a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33822 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cd3a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47240 time: 5.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974062ddb0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 0 time: 1.89e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cdd80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47251 time: 1.62e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794453e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31539 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0dc8e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37806 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cd4e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47256 time: 1.02e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ce130]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47259 time: 2.75e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cf870]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47299 time: 2.82e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d2000]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47307 time: 4.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf646be0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58395 time: 4.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cf0d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47312 time: 1.4e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ea6b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24754 time: 1.21e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d1f60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49485 time: 1.28e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cfbf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49500 time: 5.7e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740643270]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 14 time: 1.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559738127ee0]:20 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 129 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c7850]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46575 time: 7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d0ba0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49509 time: 2.75e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d3080]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49515 time: 3.04e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d1050]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49521 time: 2.11e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974065e860]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 53 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d9af0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52407 time: 8.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d11f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49524 time: 2.24e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0eaf60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24727 time: 1.69e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d2810]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49527 time: 2.19e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d2a50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49530 time: 2.47e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406733a0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 80 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d2c40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49533 time: 1.09e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d34a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49548 time: 8.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d5b50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49561 time: 3.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d5bf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49569 time: 4.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5da140]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53026 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d1d30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37163 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d4fd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49572 time: 2.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d5d30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49585 time: 7.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55974066be60]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 70 time: 1.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d17b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37179 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d4a50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49593 time: 8.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d42b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49604 time: 1.4e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d51d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49609 time: 9.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ebed0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25353 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d3780]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49612 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5f9400]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58460 time: 5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d1420]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37134 time: 1.18e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d46c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49617 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d39e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49620 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943b020]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30919 time: 3.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d57c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49625 time: 4.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d4130]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49633 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0ebd90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25382 time: 1.94e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d3640]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49641 time: 1.01e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f1590]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27844 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c67a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46688 time: 1.01e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5cfaf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50094 time: 3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e9ad0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56157 time: 1.16e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597794493f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33931 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d14f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50100 time: 4.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d6580]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50106 time: 3.28e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e3570]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55528 time: 8.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d7500]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50115 time: 1.8e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d7a10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50124 time: 1.25e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d8840]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50127 time: 8.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dbd60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50154 time: 1.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf648230]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53118 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5db0c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50157 time: 6.35e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d8dd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50173 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf647590]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55498 time: 3.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dbe00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50170 time: 1.94e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559778433690]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52359 time: 2.91e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e22c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55574 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d8f70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52362 time: 4.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406dbad0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 116 time: 1.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c3860]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52365 time: 5.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d9200]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52368 time: 4.09e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dae70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52371 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5da970]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52377 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5da830]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52383 time: 1.54e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5d9670]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52401 time: 7.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6454f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52427 time: 1.17e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6456b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52443 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ceec0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47275 time: 6.07e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e1560]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52446 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf644e60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52462 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0f96b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24773 time: 6.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e0f60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52470 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5df750]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52478 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5bb710]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42914 time: 9.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e0450]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52486 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e11c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52507 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e9070]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55646 time: 9.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dfd20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52510 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0eec70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27756 time: 1.29e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64e030]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40667 time: 2.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5df870]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52523 time: 9.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf643d70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52526 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5dfbe0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52539 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf646ca0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52558 time: 1.18e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5db4d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53032 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6474a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53044 time: 1.25e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf648d60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53065 time: 1.36e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779448230]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33875 time: 2.03e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0cd090]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34598 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf647e40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53073 time: 7.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf648370]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53089 time: 2.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e8e90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55662 time: 4.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf647c60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53094 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf649030]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53097 time: 1.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c04c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43644 time: 6.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64a670]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53121 time: 2.39e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf649180]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53142 time: 1.01e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740670180]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 76 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e20c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55495 time: 2.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5eb100]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56200 time: 1.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406b98f0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 101 time: 2.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e1db0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55501 time: 2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf647d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53102 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e2890]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55507 time: 1.45e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597406b28f0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 100 time: 2.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e4100]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55516 time: 1.52e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e4340]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55519 time: 1.36e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e3140]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55522 time: 1.05e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e3290]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55525 time: 1.1e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bc0d0be0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37046 time: 1.44e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf64b990]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40659 time: 1.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e6520]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55543 time: 6.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e66c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55546 time: 4.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559779442e20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31470 time: 7.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x559740662330]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 58 time: 2.4e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e6910]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55555 time: 8.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e7470]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55566 time: 3.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e7150]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55571 time: 2.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5c2550]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43652 time: 2.59e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e7290]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55587 time: 2.6e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e4710]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55590 time: 5.2e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e4ba0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55598 time: 5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e55f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55614 time: 4.1e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e6320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55619 time: 4.9e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e58c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55651 time: 1.04e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e9760]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55667 time: 7.8e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943b8b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30900 time: 1.18e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e86f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55670 time: 7.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf649410]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56148 time: 3.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5e9ef0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56160 time: 2.3e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf6461e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53029 time: 3.3e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5ea0c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56163 time: 8.7e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977943e9d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28447 time: 1.14e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x55977942c330]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24709 time: 2.5e-08\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x5597bf5eb810]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56172 time: 1.12e-07\n",
+ "[07/28/2022-16:51:58] [TRT] [W] -------------- The current device memory allocations dump as below --------------\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0]:8589934592 :HybridGlobWriter in reserveMemory: at optimizer/common/globWriter.cpp: 438 idx: 10654 time: 0.00633412\n",
+ "[07/28/2022-16:51:58] [TRT] [W] [0x302000000]:3457155072 :HybridGlobWriter in reserveMemory: at optimizer/common/globWriter.cpp: 416 idx: 1987 time: 0.00202746\n",
+ "[07/28/2022-16:51:58] [TRT] [W] Requested amount of GPU memory (8589934592 bytes) could not be allocated. There may not be enough free memory for allocation to succeed.\n",
+ "[07/28/2022-16:51:58] [TRT] [W] Skipping tactic 13 due to insufficient memory on requested size of 8589934592 detected for tactic 0x0000000000000074.\n",
+ "Try decreasing the workspace size with IBuilderConfig::setMemoryPoolLimit().\n",
+ "[07/28/2022-16:51:59] [TRT] [W] Weights [name=Conv_53 + Relu_54.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:59] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:59] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:59] [TRT] [E] 2: [virtualMemoryBuffer.cpp::resizePhysical::144] Error Code 2: OutOfMemory (no further information)\n",
+ "[07/28/2022-16:51:59] [TRT] [E] 2: [virtualMemoryBuffer.cpp::resizePhysical::144] Error Code 2: OutOfMemory (no further information)\n",
+ "[07/28/2022-16:51:59] [TRT] [W] -------------- The current system memory allocations dump as below --------------\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fbb80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59110 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fd110]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59097 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fbd60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59089 time: 3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fd2a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59086 time: 7.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fb8a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59081 time: 1.7e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fabf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59066 time: 1.11e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fa7d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59060 time: 2.19e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fb100]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59054 time: 1.15e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d3a00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59051 time: 1.44e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fa6b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59045 time: 3.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf6414d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59042 time: 3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977825aef0]:1024 :Transformed FP16 Weights in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 59040 time: 6.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf6505f0]:1048576 :Transformed FP16 Weights in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 59039 time: 4.07e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fde30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58564 time: 3.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f9c40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58556 time: 4.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f7d20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58553 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f9870]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58548 time: 4.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fe1a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58540 time: 1.52e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f7260]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58537 time: 6.82e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f9750]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58532 time: 2.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f80e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58524 time: 1.64e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f6c40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58521 time: 3.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f7a00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58516 time: 4.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f6ba0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58513 time: 9.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f8b90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58505 time: 2.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f8890]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58497 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f70b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58492 time: 4.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f92c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58489 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f9220]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58481 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f8d70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58476 time: 3.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f90e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58465 time: 4.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f6a00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58452 time: 6.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d3ee0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58440 time: 1.99e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d4a50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58434 time: 1.29e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d4810]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58431 time: 1.08e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d50c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58419 time: 1.2e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d4f20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58416 time: 1.28e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f5c50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58413 time: 1.99e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f5ae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58407 time: 1.05e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d52e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58401 time: 1.43e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977942eaf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58398 time: 2.44e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0eb5d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58389 time: 4.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ec010]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56256 time: 6.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ebf70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56251 time: 9.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf641dd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56248 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf6411c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56240 time: 2.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ed9c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56232 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf641610]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56227 time: 3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5eb2e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56224 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf641f10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56219 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5eb240]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56216 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf641300]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56211 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5eb420]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56195 time: 3.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5eafb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56192 time: 1.33e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d5470]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56187 time: 1.03e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf642320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56184 time: 9.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf642180]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56181 time: 9.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ebc60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56178 time: 1.05e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779445d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37040 time: 1.23e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794347c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37088 time: 8.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779443440]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37034 time: 3.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ccd40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34590 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cd840]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34585 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0fd2b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24824 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cc690]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34577 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c8140]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33958 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cbfa0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34574 time: 3.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5dd3a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42948 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cce80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34561 time: 2.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943a210]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30891 time: 7.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779442cb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31467 time: 1.31e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ebe50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56243 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779435cc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28355 time: 3.92e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ca4b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34542 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d7360]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50112 time: 1.45e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d4180]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58443 time: 8.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779445fd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34492 time: 1.3e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c8f50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34477 time: 3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c7d10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34011 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5deaa0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52392 time: 1.11e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cded0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37037 time: 6.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794327c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27661 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c52f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46557 time: 1.14e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c7960]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34003 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e1800]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52410 time: 1.56e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d4510]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58449 time: 8.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cb1c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34513 time: 6.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c8ff0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33998 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c9e20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33995 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406dc690]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 114 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f9890]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24797 time: 2.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c9f60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33966 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d4c90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58437 time: 1e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f99d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24768 time: 3.59e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740649530]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 25 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c6350]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33950 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cedf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37073 time: 7.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cb780]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34504 time: 1.05e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779448920]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33939 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779449d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33923 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf644240]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52534 time: 1.13e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779448530]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33907 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bcb30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43554 time: 3.05e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779448670]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33878 time: 3.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977944a1e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33870 time: 9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cfd20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49494 time: 4.1e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794480e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33864 time: 2.42e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977944aa80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33861 time: 7.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974062d050]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 6 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e24f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58392 time: 3.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779447d50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33834 time: 8.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779443800]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31482 time: 4.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943ce00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33819 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e8ab0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21105 time: 2.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf643900]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52438 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ca410]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34534 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf642ae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53059 time: 9.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779444fd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31523 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794439a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31512 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779447ef0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33837 time: 1.07e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977944add0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33840 time: 1.35e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740661360]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 57 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779444670]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31491 time: 1.36e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf647bc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53086 time: 5.32e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977944b660]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31479 time: 8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d1540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37142 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779443190]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31464 time: 1.19e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779440660]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30991 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5faa00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59063 time: 1.09e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dbd70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47203 time: 2.21e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c8790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33971 time: 2.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779480f30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20070 time: 6.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794407a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30962 time: 3.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f1ea0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27841 time: 3.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943b6a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30951 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779431170]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30946 time: 5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779430ee0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30938 time: 3.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943b160]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30935 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f0850]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28349 time: 3.58e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943b0c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30927 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0df270]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40016 time: 1.52e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e37c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40622 time: 1.23e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c96a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46584 time: 1.2e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406b08e0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 105 time: 1.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e7980]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55549 time: 9.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d7750]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50118 time: 1.02e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c50b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46554 time: 1.06e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779443540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31473 time: 7.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943ae00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30911 time: 1.19e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0defb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40037 time: 1.86e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f3ed0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27820 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943a7a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30903 time: 1.07e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5de810]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52389 time: 1.22e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cbd20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34537 time: 3.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c3140]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43660 time: 1.1e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740647b80]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 22 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943bda0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30882 time: 8.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d74b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37198 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943df40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30873 time: 9.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977946d9b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20025 time: 9.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e20f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40138 time: 3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ca550]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34550 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f5920]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58404 time: 1.61e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dffe0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40135 time: 3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779440900]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30999 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf6494b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56151 time: 2.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779439400]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28428 time: 8.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d05c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37079 time: 9.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c3490]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43655 time: 1.04e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e1da0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40151 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794385a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28407 time: 1.07e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779436eb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28396 time: 6.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794483f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33891 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943b340]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30914 time: 5.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf642de0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53035 time: 1.14e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779439170]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28391 time: 7.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779436d70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28380 time: 6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779448490]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33899 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779436f50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28404 time: 8.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c18e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46548 time: 1.16e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794397e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28367 time: 1.27e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974064fd70]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 34 time: 2.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943a550]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30897 time: 3.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5de5c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42926 time: 1.14e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794361b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28361 time: 1.78e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779435f70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28358 time: 1.88e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794364d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28352 time: 3.2e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55973bfaac00]:1179648 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 126 time: 4.71e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f9330]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28346 time: 3.43e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f6130]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58425 time: 8.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779436c50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28372 time: 1.47e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bc790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43060 time: 1.13e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779435880]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28343 time: 3.54e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c6ea0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34486 time: 1.17e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f23c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27777 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e5290]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55635 time: 1.12e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794331c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28334 time: 1.73e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0fe340]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24800 time: 3.7e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d7370]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37227 time: 1.2e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dfe10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40066 time: 4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d2ee0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49512 time: 3.8e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c9b90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46629 time: 1.16e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e49b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55627 time: 3.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d5c90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49577 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c9320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34474 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f1cf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27833 time: 3.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f0040]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27828 time: 3.04e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794371b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28399 time: 1.19e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ce6b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37043 time: 2.13e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f33f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27817 time: 8.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779446f60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43548 time: 2.17e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e0bb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52483 time: 5.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0da6a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37753 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779449ec0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33867 time: 9.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f3a60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27788 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f2d70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27772 time: 3.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779445940]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34480 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779447b10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33831 time: 1.36e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977946eae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20028 time: 6.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ef040]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27764 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974064b990]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 29 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f3120]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27780 time: 4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0efae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27748 time: 3.66e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f2500]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27740 time: 1.43e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cb3f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47221 time: 2.9e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e53d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55606 time: 1.77e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f4ef0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27732 time: 3.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f4680]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27796 time: 2.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c9890]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46589 time: 2.07e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977944b240]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33816 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0efda0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27715 time: 1.06e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c66f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34489 time: 1.01e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943d320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30959 time: 3.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5df660]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52386 time: 1.52e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977947eea0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20075 time: 6.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ed510]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27700 time: 7.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf6446b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52518 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ed030]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27694 time: 1.54e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f73a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58508 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5db9b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50133 time: 3.25e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779436940]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28364 time: 5.92e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c7d90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46677 time: 1.08e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779448fe0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33918 time: 5.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943ff80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30978 time: 3.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e07d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40119 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0fc110]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27673 time: 1.44e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e5480]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40103 time: 2.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559778435980]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21048 time: 4.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e8e00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27670 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740652740]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 38 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fb690]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59072 time: 1.09e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943c1b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30864 time: 1.2e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf646790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52550 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cb9e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34529 time: 2.22e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5dc830]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43033 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794827c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20139 time: 3.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64d800]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42869 time: 3.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf644d60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52502 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ed9d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27688 time: 1.54e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779431790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25393 time: 6.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ebcf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25374 time: 7.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779448a60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33910 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779431670]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25361 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977942f080]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28340 time: 7.19e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf600c00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42929 time: 2.49e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f5cd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25350 time: 1.04e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0fe770]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24792 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf643b30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52547 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ed270]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27697 time: 1.07e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779431030]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30975 time: 1.2e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f56c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25342 time: 9.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dfc30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40087 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d7110]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37190 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977946f850]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20051 time: 8.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f5e50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25327 time: 8.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ca930]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34495 time: 9.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779433580]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25377 time: 7.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0fbfb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25315 time: 1.2e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f5ae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25345 time: 1.19e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ec790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27706 time: 9.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779483320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20094 time: 9.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794468c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37713 time: 1.55e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f0320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27836 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f4300]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27857 time: 5.46e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559738185cc0]:1280 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 124 time: 7.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f8fc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58457 time: 1.03e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740646950]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 20 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740642400]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 13 time: 4.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f85f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24733 time: 1.3e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d5a30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49553 time: 1.37e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c84b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33987 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d99f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37801 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cbbe0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34566 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779446d80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40610 time: 4.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d98b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52404 time: 9.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406a1230]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 107 time: 1.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64a530]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53150 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bdf70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43636 time: 7.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794420d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40683 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740644920]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 17 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943e470]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30843 time: 2.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406b9aa0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 104 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779433bc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25398 time: 6.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f4db0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27769 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977942f820]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21069 time: 1.34e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d7f20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37214 time: 5.37e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406ba110]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 99 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943bc00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30879 time: 1.05e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974067f460]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 97 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64def0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40696 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779439d70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30876 time: 2.08e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5da6e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52374 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f8250]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58529 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974066a920]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 68 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740645be0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 19 time: 3.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740674920]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 82 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779440450]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31452 time: 3.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974067b350]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 91 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f7a30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24739 time: 2.09e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5dd910]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42972 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cc3d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47194 time: 7.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974062de80]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 1 time: 1.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779439030]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28420 time: 7.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974067ada0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 90 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cbe20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47206 time: 1.56e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf6452e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52422 time: 2.25e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943a090]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30888 time: 9.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740674f90]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 83 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406517f0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 37 time: 3.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779444980]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31504 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794322e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27679 time: 1.21e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c08c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43647 time: 1.07e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559722308300]:512 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 123 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974066c4b0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 71 time: 3.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ca250]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34518 time: 7.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f9cc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24776 time: 3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf647b20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53078 time: 1.67e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740667460]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 64 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974065a470]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 46 time: 4.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d0a40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37085 time: 8.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f2b30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27718 time: 3.08e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740667ad0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 65 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406b0b20]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 109 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e7bc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55552 time: 9.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0caea0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34510 time: 7.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943b560]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30922 time: 3.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0db1c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40001 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740665ee0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 62 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740677420]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 86 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f06f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28331 time: 1.18e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740676510]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 85 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f0ca0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27860 time: 2.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779434a60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37091 time: 7.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e5ac0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55622 time: 5.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779480df0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20099 time: 1e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f9610]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58561 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e6f70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55563 time: 9.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406502f0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 35 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943ddd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30870 time: 1.15e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974065d2e0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 51 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64a2a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55603 time: 5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779352430]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19983 time: 6.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0fdc50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24816 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740664750]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 61 time: 3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e0cf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52454 time: 3.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c9150]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34006 time: 9.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740675ea0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 84 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d8460]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50149 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0fcbe0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24848 time: 1.81e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406b97d0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 102 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bcf50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43551 time: 5.48e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794474f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33846 time: 9.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794339f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25385 time: 7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bbaf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42920 time: 7.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f4c70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27745 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406640e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 60 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740662930]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 59 time: 3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779444860]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31496 time: 8.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406c91e0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 115 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974067d9b0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 94 time: 2.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794831e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20123 time: 9.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740658ae0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 45 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779449530]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33902 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406b24c0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 98 time: 7.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c6c20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37147 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e8d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24697 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d3270]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37131 time: 3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e5a70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40034 time: 9.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cfea0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49488 time: 1.54e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974064a1e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 26 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bdce0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43599 time: 6.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794476d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33849 time: 1.07e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943a3b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30894 time: 5.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559738191300]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25336 time: 9.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e71f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55579 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406dbaf0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 113 time: 1.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406f1860]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 117 time: 1.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977946ee00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20034 time: 5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974068a370]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 111 time: 2.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c4ed0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46572 time: 8.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f5150]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27721 time: 1.17e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977942e520]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21063 time: 1.58e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c9af0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46621 time: 9.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779432c90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27664 time: 2.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5eb1a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56208 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740641e80]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 12 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d8540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37710 time: 2.31e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e19a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55611 time: 8.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5edb00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56203 time: 3.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f3bb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27812 time: 5.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bfa70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43580 time: 8.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0fcf00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24832 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c48b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46563 time: 9.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e7330]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55595 time: 5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740645660]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 18 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779444b60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31485 time: 1.58e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5db570]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50165 time: 5.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597380cd3f0]:2048 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 131 time: 4.12e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740673a10]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 81 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559778435dc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27667 time: 8.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740666550]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 63 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406b2740]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 103 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977946e4f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20010 time: 1.83e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779431ca0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28328 time: 2.44e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779440d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30954 time: 3.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c5b60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33955 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559738361110]:294912 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 122 time: 5.448e-06\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fd410]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59075 time: 8.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779447280]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33843 time: 1.84e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406b0210]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 106 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cc0e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34545 time: 3.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5dd4e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42964 time: 1.66e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740652cc0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 39 time: 3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974066da30]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 73 time: 3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f80c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24751 time: 9.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794451d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33825 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740655cf0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 41 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779444250]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31488 time: 1.95e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c12f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46539 time: 1.78e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740651270]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 36 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597beee6090]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20067 time: 1.22e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974065bb80]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 49 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c2690]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43623 time: 7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c5fb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33963 time: 5.25e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c5e70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46704 time: 2.41e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740643690]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 15 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cdc60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34593 time: 3.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ef960]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27785 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fba40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59094 time: 4.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943c560]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30852 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974062d9e0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 11 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794430f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31455 time: 2.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977946d530]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20019 time: 1.06e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0fdbb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24845 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943f7e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30994 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c0dd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46533 time: 1.51e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f5ef0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58422 time: 1.15e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e3850]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55531 time: 2.17e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974062ccd0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 3 time: 1.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977942c1d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21054 time: 9.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943c7c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28439 time: 1.23e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf647a30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53070 time: 2.55e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779435780]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31458 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d0d50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49518 time: 4.12e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f4540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27825 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974067df60]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 95 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0da560]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37782 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974062e220]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 9 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf600980]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42977 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c0250]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43569 time: 1.03e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977946fd90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20059 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bd3c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43604 time: 5.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406689e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 66 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0edb40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27691 time: 1.53e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64cf00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42896 time: 1.29e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d7f90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50178 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406dfb70]:20 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 125 time: 2.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ef4a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27793 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0eb100]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24730 time: 1.15e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974062d130]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 7 time: 1.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e6270]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21126 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf645610]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52435 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e6130]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55643 time: 7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779448d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33947 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5eb980]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56175 time: 1.28e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977946cbd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20126 time: 1.4e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974064b410]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 28 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dfaf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40071 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c59d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46725 time: 1.25e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5df9b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52494 time: 3.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974065b510]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 48 time: 2.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974066d3e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 72 time: 2.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977942b930]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21051 time: 1.57e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974064a760]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 27 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977942fc80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21075 time: 1.04e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794341d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37139 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5be260]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43557 time: 3.48e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d18f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37150 time: 2.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0da390]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37822 time: 3.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cd3b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34582 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e2cf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55510 time: 9.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740648fb0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 24 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ea850]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24757 time: 9.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e7f10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55638 time: 6.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974067f320]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 96 time: 4.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977942b6c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21045 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cf730]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49491 time: 1.17e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779441170]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30967 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406e5ab0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 120 time: 2.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5dbba0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50138 time: 1.51e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d0130]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53038 time: 1.46e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974065e1f0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 52 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5dece0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52395 time: 6.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0fe200]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24829 time: 2.13e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dfcd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40095 time: 1.52e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cac50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34507 time: 9.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f8ce0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25318 time: 9.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406779a0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 87 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974064e6d0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 33 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974064cdd0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 30 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c7aa0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33974 time: 3.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e3490]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40648 time: 9.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ebc50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25366 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf642550]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53047 time: 1.87e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e86d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21121 time: 3.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406706e0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 77 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ce750]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47291 time: 7.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf600540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42953 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943f1b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28436 time: 1.05e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f48a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27724 time: 2.01e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406557e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 40 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0da960]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37734 time: 1.15e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c92e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46600 time: 7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64b240]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53053 time: 8.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779440a40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30970 time: 3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740656c00]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 42 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f3d90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27849 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5de1c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42993 time: 2.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974066af00]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 69 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977944b380]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31531 time: 4.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ddeb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42956 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c3ed0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46645 time: 6.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406583a0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 44 time: 2.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977946ec60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20031 time: 8.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c4d30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46569 time: 1e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d6270]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49628 time: 3.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943dab0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30861 time: 1.22e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779449b30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33894 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974065fcf0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 55 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974062d360]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 5 time: 1.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d4e20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49601 time: 1.59e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974065a5b0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 47 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779434050]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37102 time: 4.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f95e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24765 time: 6.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d24d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49506 time: 5.92e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ca370]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34526 time: 2.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974065cc70]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 50 time: 2.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740672700]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 79 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406b4d80]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 108 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794802c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20107 time: 7.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740664f80]:1024 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 127 time: 1.16e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d07d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49542 time: 1.42e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779444e90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33828 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f7d80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24745 time: 9.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ecae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27712 time: 1.17e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779439bf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28423 time: 8.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779446600]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31544 time: 4.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f7860]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24706 time: 1.41e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779a55e00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19986 time: 5.2e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d11f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37055 time: 1.03e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ef2d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27801 time: 2.41e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597799eaf40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19989 time: 4.49e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5db160]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50162 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779433d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25369 time: 7.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974066ec00]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 74 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bbe00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42905 time: 8.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f0b80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27852 time: 5.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559778437560]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20062 time: 6.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cb4a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34501 time: 1.26e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bc0a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42908 time: 7.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f01e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27865 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779a521a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19992 time: 1.33e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779447910]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33852 time: 1.54e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740679640]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 89 time: 3.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779a46b30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19998 time: 8.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d7870]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50121 time: 1.51e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974062cbf0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 2 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0fc4a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25309 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974065f770]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 54 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e0260]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52515 time: 1.44e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779a465f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20004 time: 2.21e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d2de0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49536 time: 4.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977946c8b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20118 time: 1.06e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f4ab0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27729 time: 1.38e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559778437660]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25312 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf6457f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52459 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c75e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34483 time: 1.03e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d89e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50130 time: 1.07e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0eebd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27761 time: 1.16e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f7f20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24748 time: 1.24e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597383f26d0]:4718592 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 130 time: 6.05e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779a46f00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20007 time: 1e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0da080]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37814 time: 4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ccf50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47191 time: 1.11e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e69f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25306 time: 2.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c60f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33934 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e4620]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42884 time: 3.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977946d6d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20022 time: 8.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e5eb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21118 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e5d70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55630 time: 1.35e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cb8a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34558 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf644c20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52531 time: 3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55973c3a8ad0]:5120 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 132 time: 2.51e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf646320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52542 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c99f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33990 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0fd9b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24808 time: 7.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d2360]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49503 time: 4.82e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977946efa0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20037 time: 4.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779470300]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20040 time: 1.29e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fe060]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58569 time: 4.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d9320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56154 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bd930]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43591 time: 1.08e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977946f1f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20043 time: 1.45e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5dad50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50181 time: 3.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d2810]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37171 time: 2.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f90c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24703 time: 2.7e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e24b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40613 time: 2.27e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977946fcf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20054 time: 4.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bd320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43596 time: 1e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f7bd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24742 time: 1.26e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977947f700]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20078 time: 3.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ec160]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25390 time: 1.16e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64b500]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40680 time: 2.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779430210]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21081 time: 8.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ca0b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46581 time: 1.15e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf643570]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52413 time: 1.63e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0fe6d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24821 time: 2.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977942fdf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21078 time: 1.25e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794824a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20086 time: 2.03e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e39a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55534 time: 9.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d91e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37725 time: 7.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f4bd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27737 time: 2.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779438990]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28444 time: 2.16e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943c410]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30867 time: 4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d6be0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37206 time: 3.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977947fe10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20115 time: 6.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cd440]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47248 time: 8.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf645080]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52499 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406790e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 88 time: 3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977946c0c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20134 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ca690]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34521 time: 1.33e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e0120]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40106 time: 3.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779448350]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33883 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d0450]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49539 time: 1.19e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf647f60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53081 time: 1e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779430440]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21042 time: 3.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0fcaa0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28337 time: 6.18e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0de570]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40040 time: 8.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977944a7a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33858 time: 1.06e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559778436ef0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20131 time: 6.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974067c350]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 92 time: 4.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d5e70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49556 time: 1.97e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f7360]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24700 time: 4.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974067c490]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 93 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559778437030]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20102 time: 6.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dd380]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37798 time: 1.06e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779446740]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31515 time: 3.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943d3f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30846 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ea230]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56166 time: 9.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779430a10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21057 time: 2.09e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf6499f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53137 time: 3.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e1a70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55504 time: 1.33e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ec380]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25330 time: 1.32e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977942e7b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21066 time: 8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ec940]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27709 time: 6.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977942f9c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21072 time: 1.28e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406e99d0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 119 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e0b60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40098 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974062db00]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 8 time: 2.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e94c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55675 time: 1.11e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f8280]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24721 time: 1.49e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e5be0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21086 time: 6.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e5ff0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21089 time: 4.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f6280]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58428 time: 8.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f2fe0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27809 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e63b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21097 time: 3.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cdc40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47280 time: 1.47e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf645750]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52451 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cb600]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47224 time: 2.03e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e5c30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55659 time: 6.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977944a600]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33855 time: 8.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406720d0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 78 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0eadc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24724 time: 1.41e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779438ad0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28415 time: 1.31e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f4d10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27753 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974064d250]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 31 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779437090]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28375 time: 1.19e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406f10a0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 121 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e8230]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21113 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ea3d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24718 time: 2.57e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740646ed0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 21 time: 3.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d4800]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49588 time: 1.57e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d02b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53041 time: 4.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794458a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33810 time: 7.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f8790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24736 time: 1.09e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559738190ed0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25324 time: 1.26e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c1110]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50103 time: 1.63e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977946e660]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20013 time: 1.39e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779443ff0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31507 time: 3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974062ce20]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 4 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dd4c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37769 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f9750]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24781 time: 4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f9ee0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24784 time: 1.23e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e8970]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21134 time: 2.43e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf6437c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52467 time: 1.03e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f97f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24789 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779443eb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31536 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977944b4f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31476 time: 1.09e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c0f50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50097 time: 3.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f9b80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24805 time: 8.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943d940]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30858 time: 2.14e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ffee0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43057 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779430be0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21060 time: 9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977947efe0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20091 time: 7.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cf060]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37058 time: 1.52e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0eaa50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24813 time: 6.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740660c70]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 56 time: 2.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e1fb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40604 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779443a40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31520 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977946f610]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20046 time: 1.32e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0fd7c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24837 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779449970]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33886 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0fc860]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24840 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c6210]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33979 time: 3.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406d99a0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 110 time: 2.14e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977942e850]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59048 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0fd130]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24853 time: 1.34e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e5cd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21094 time: 3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cd580]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47264 time: 2.76e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d0e80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37049 time: 7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559738191190]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25333 time: 1.48e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ddd30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42985 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d0ff0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37052 time: 1.57e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0eabf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24760 time: 1.33e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cf200]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37061 time: 1.34e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5dc0b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49636 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974064e150]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 32 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf6007c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42940 time: 3.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cf490]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37064 time: 1.09e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d3130]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37115 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dc480]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 39998 time: 3.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cae00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47215 time: 1.23e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ce970]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37067 time: 1.05e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f8390]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58500 time: 3.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d03b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37076 time: 1.54e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64dc80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43545 time: 4.48e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e2e00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40640 time: 1.71e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d0760]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37082 time: 1.36e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fd5b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59078 time: 7.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779434d80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37094 time: 7.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779432720]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27676 time: 4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d2f70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37099 time: 8.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d3090]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37107 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f05f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30855 time: 1.14e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794343b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37110 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779482900]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20110 time: 5.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5dc970]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43004 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794345d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37118 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64d5b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43536 time: 2.79e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d31d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37123 time: 2.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d2cd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37126 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cdb20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37155 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d1f10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37158 time: 2.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d23e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37166 time: 1.41e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e7f10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21129 time: 5.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d5870]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37174 time: 2.66e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ebbb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25358 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e2860]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40607 time: 3.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977947ef40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20083 time: 1.42e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5eb650]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56169 time: 1.31e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f6540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58410 time: 8.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794403b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33813 time: 1.37e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d78b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37182 time: 1.36e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5dbcc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50146 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779443c20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31499 time: 3.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ed7c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27685 time: 1.78e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d1dd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37187 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d2230]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37195 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d5730]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37203 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0de1d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40025 time: 1.82e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779436e10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28388 time: 7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d7660]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37211 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64be00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40634 time: 9.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974073c820]:2560 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 128 time: 2.39e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e3e80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55540 time: 1.11e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d94c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52398 time: 1.47e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d6220]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37222 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977946e7d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20016 time: 1.05e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d1b90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49497 time: 2.57e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d6aa0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37235 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c5b10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46696 time: 3.78e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597784334b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37698 time: 3.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f6e20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58484 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5db430]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52380 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d8190]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37701 time: 5.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf648a70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53062 time: 1.19e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406f1a50]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 118 time: 1.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d6540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37704 time: 1.22e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0da1c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37785 time: 3.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf6428d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53056 time: 8.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d5ef0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37707 time: 1.16e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d8cb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37716 time: 1.16e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d8e60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37719 time: 9.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dcc50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37728 time: 2.02e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ddde0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37731 time: 1.14e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dd5d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37737 time: 1.32e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e1b20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40055 time: 4.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dd810]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37742 time: 1.14e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf600150]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43041 time: 1.13e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ddc50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37745 time: 3.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dd930]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37750 time: 4.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cb330]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34498 time: 1.44e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dd9d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37758 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dd0f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37761 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e1640]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40058 time: 9.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dda70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37766 time: 2.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf6003b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42937 time: 1.21e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ddb10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37774 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e5d70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21102 time: 2.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dca20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37777 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794396a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28412 time: 7.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ec590]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27703 time: 1.63e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d3e40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49596 time: 7.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dcfb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37790 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d95a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37793 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f8c10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24712 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf645930]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52430 time: 3.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d4c30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49564 time: 5.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dace0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37809 time: 2.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c8980]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33942 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0db020]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37817 time: 1.48e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f7700]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58545 time: 3.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779441570]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42872 time: 1.21e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d8a70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 39995 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64d8a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40691 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cde20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40004 time: 8.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d86f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40007 time: 5.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c8de0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33982 time: 2.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0db480]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40010 time: 1.62e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0df9d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40063 time: 1.59e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0df4c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40019 time: 1.08e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0df690]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40022 time: 8.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0de370]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40028 time: 1.15e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cccf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46720 time: 1.51e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e58d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40031 time: 9.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0de760]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40043 time: 7.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cc260]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34569 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0de900]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40046 time: 6.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fb310]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59057 time: 1.16e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cd280]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47232 time: 2.58e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0deaa0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40049 time: 6.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943f3c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30986 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0fb600]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30849 time: 8.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e2eb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55513 time: 4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e1980]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40052 time: 4.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943b200]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30943 time: 1.26e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dba50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40074 time: 3.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cd4f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34553 time: 3.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f2230]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27804 time: 3.85e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dfb90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40079 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e12c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40082 time: 1.43e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e3c40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55537 time: 6.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e09a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40090 time: 3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943ef60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28431 time: 8.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c7060]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46693 time: 9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cdd80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37031 time: 4.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e0420]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40114 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779a4efd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20001 time: 1.06e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e4ba0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40122 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740668f60]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 67 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e0f50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40127 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e4ed0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40130 time: 6.52e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794460a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33807 time: 3.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e0840]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52491 time: 1.32e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e02e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40143 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943abc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30906 time: 1.36e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e4760]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40146 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e7380]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25321 time: 1.46e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0de030]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40013 time: 1.72e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943d7e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40616 time: 1.47e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c3320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46530 time: 1.49e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779439ab0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28452 time: 1.05e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e3650]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40619 time: 1.83e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779439e90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30885 time: 1.83e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e3a30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40625 time: 1.02e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64bb70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40628 time: 1.97e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64bc90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40631 time: 1.04e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ecdc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27682 time: 8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64c180]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40637 time: 1.62e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e32a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40643 time: 1.76e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64b640]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40651 time: 4.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64b320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40656 time: 2.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cd910]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47272 time: 2.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64b3c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40664 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64b460]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40672 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fbae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59102 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cda50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47243 time: 1.02e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779441cb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40675 time: 6.85e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977942f4d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24715 time: 2.17e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d9070]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37722 time: 8.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779441b70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42875 time: 3.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779441aa0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42878 time: 2.05e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0daee0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42881 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794414d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42887 time: 4.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dbe90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42890 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64dd40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42893 time: 5.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64d070]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42899 time: 1.33e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bb3d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42902 time: 1.17e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d4370]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58446 time: 7.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf645dd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52419 time: 1.42e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bc280]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42911 time: 7.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cdff0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47288 time: 9.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bb950]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42917 time: 7.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794315d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30983 time: 3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5de410]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42923 time: 6.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c4430]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46536 time: 7.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf600f20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42932 time: 1.34e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740657180]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 43 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf6004a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42945 time: 4.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf649ef0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53145 time: 2.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf6005e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42961 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf600680]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42969 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5dcdf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42980 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c8460]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46653 time: 7.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf6492c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53113 time: 3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5dd1c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42988 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf641ab0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56235 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5dc640]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42996 time: 3.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f9180]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58473 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5dd790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43001 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ddbb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43009 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf645b30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52416 time: 1.28e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fe900]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43012 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c63f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46680 time: 2.79e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f8a70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58468 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5dd080]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43017 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c86f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46632 time: 7.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf649550]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53129 time: 6.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fea20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43020 time: 1.28e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5dc500]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43025 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c6a70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46701 time: 1.09e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5be5c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46524 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fecf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43028 time: 3.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d6fd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37219 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fefb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43036 time: 1.06e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cf540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47267 time: 2.34e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ff5f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43044 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ff330]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43049 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779449790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33915 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ff920]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43052 time: 2.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fee70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43065 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cf400]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47296 time: 1.96e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf6488c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53110 time: 2.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ff4b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43073 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bcdd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43539 time: 2e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ff550]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43542 time: 1.09e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c5ca0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33926 time: 3.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bfbf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43560 time: 2.06e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779440fb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30930 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bfd60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43563 time: 2.57e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e6d30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55558 time: 1.01e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c0010]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43566 time: 1.55e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bf510]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43572 time: 2.28e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bf830]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43575 time: 1.82e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bd5a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43583 time: 2.14e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bd280]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43588 time: 7.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5be0b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43607 time: 1.26e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bd460]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43612 time: 6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c0600]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43615 time: 1.04e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bd7f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43620 time: 6.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bdba0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43628 time: 1.34e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf644050]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52563 time: 1.5e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779443ae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31528 time: 1.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c2890]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43631 time: 7.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d8320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50186 time: 1.67e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d53a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49580 time: 7.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c2d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43639 time: 9.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c2110]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46521 time: 3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c6660]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46717 time: 1.96e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf6485c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53126 time: 8.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c2bc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46527 time: 3.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f55a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25339 time: 2.18e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c1460]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46542 time: 1.26e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64b850]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40688 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c16a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46545 time: 1.06e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d7130]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50109 time: 1.19e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c4670]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46551 time: 1.99e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fc970]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59105 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c5590]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46560 time: 1.14e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c4af0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46566 time: 1.12e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64ac70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53105 time: 2.46e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c9e10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46578 time: 8.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64ab30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53134 time: 1.12e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c9cd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46592 time: 5.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c99b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46597 time: 2.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c9380]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46605 time: 1.19e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c9050]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46608 time: 7.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c9a50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46613 time: 7.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5be7c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43068 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c7b10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46616 time: 2.74e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c85a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46624 time: 8.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c8ea0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46637 time: 7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e1180]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40111 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c8a30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46640 time: 1.56e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c7ed0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46648 time: 1.4e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d0970]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49545 time: 1.07e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779a54080]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19995 time: 8.28e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c81b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46656 time: 2.56e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d6730]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37230 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c7330]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46661 time: 2.36e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974066f250]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 75 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c57a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46664 time: 3.4e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e8220]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55654 time: 8.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740644310]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 16 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c88f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46669 time: 1.08e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c6bf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46672 time: 1.41e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c8110]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46685 time: 7.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c6e80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46709 time: 9.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf644890]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52555 time: 1.19e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779442440]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31461 time: 2.9e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ca540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46712 time: 1.04e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c5dd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47188 time: 1.48e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ce430]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47197 time: 4.13e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ce2f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47283 time: 3.71e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740648210]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 23 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dbbf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47200 time: 5.54e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406bc090]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 112 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cec10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37070 time: 1.01e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e4550]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55582 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cbfd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47209 time: 2.29e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cac90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47212 time: 1.45e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cb0e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47218 time: 1.27e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ced80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47304 time: 1.14e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d80d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50141 time: 4.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cb920]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47227 time: 1.18e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974062ed40]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 10 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e13b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52475 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e5e10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21110 time: 2.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740741a50]:20 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 133 time: 3.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cd6c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47235 time: 1.33e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779438e20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28383 time: 1e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64b0d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53050 time: 1.28e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794452a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33822 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cd3a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47240 time: 5.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974062ddb0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 0 time: 1.89e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cdd80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47251 time: 1.62e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794453e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31539 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dc8e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37806 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cd4e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47256 time: 1.02e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ce130]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47259 time: 2.75e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cf870]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47299 time: 2.82e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d2000]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47307 time: 4.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf646be0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58395 time: 4.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cf0d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47312 time: 1.4e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ea6b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24754 time: 1.21e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d1f60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49485 time: 1.28e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cfbf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49500 time: 5.7e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740643270]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 14 time: 1.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559738127ee0]:20 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 129 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c7850]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46575 time: 7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d0ba0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49509 time: 2.75e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d3080]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49515 time: 3.04e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d1050]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49521 time: 2.11e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974065e860]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 53 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d9af0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52407 time: 8.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d11f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49524 time: 2.24e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0eaf60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24727 time: 1.69e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d2810]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49527 time: 2.19e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d2a50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49530 time: 2.47e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406733a0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 80 time: 2.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d2c40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49533 time: 1.09e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d34a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49548 time: 8.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d5b50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49561 time: 3.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d5bf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49569 time: 4.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5da140]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53026 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d1d30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37163 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d4fd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49572 time: 2.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d5d30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49585 time: 7.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974066be60]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 70 time: 1.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d17b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37179 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d4a50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49593 time: 8.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d42b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49604 time: 1.4e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d51d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49609 time: 9.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ebed0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25353 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d3780]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49612 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f9400]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58460 time: 5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d1420]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37134 time: 1.18e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d46c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49617 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d39e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49620 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943b020]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30919 time: 3.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d57c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49625 time: 4.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d4130]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49633 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ebd90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25382 time: 1.94e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d3640]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49641 time: 1.01e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f1590]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27844 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c67a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46688 time: 1.01e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cfaf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50094 time: 3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e9ad0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56157 time: 1.16e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794493f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33931 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d14f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50100 time: 4.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d6580]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50106 time: 3.28e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e3570]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55528 time: 8.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d7500]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50115 time: 1.8e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d7a10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50124 time: 1.25e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d8840]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50127 time: 8.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5dbd60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50154 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf648230]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53118 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5db0c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50157 time: 6.35e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d8dd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50173 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf647590]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55498 time: 3.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5dbe00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50170 time: 1.94e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559778433690]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52359 time: 2.91e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e22c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55574 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d8f70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52362 time: 4.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406dbad0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 116 time: 1.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c3860]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52365 time: 5.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d9200]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52368 time: 4.09e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5dae70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52371 time: 2.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5da970]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52377 time: 2.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5da830]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52383 time: 1.54e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d9670]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52401 time: 7.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf6454f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52427 time: 1.17e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf6456b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52443 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ceec0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47275 time: 6.07e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e1560]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52446 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf644e60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52462 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f96b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24773 time: 6.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e0f60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52470 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5df750]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52478 time: 2.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bb710]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42914 time: 9.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e0450]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52486 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e11c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52507 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e9070]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55646 time: 9.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5dfd20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52510 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0eec70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27756 time: 1.29e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64e030]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40667 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5df870]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52523 time: 9.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf643d70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52526 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5dfbe0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52539 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf646ca0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52558 time: 1.18e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5db4d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53032 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf6474a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53044 time: 1.25e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf648d60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53065 time: 1.36e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779448230]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33875 time: 2.03e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cd090]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34598 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf647e40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53073 time: 7.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf648370]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53089 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e8e90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55662 time: 4.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf647c60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53094 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf649030]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53097 time: 1.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c04c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43644 time: 6.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64a670]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53121 time: 2.39e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf649180]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53142 time: 1.01e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740670180]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 76 time: 2.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e20c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55495 time: 2.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5eb100]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56200 time: 1.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406b98f0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 101 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e1db0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55501 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf647d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53102 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e2890]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55507 time: 1.45e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406b28f0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 100 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e4100]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55516 time: 1.52e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e4340]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55519 time: 1.36e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e3140]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55522 time: 1.05e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e3290]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55525 time: 1.1e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d0be0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37046 time: 1.44e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64b990]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40659 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e6520]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55543 time: 6.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e66c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55546 time: 4.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779442e20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31470 time: 7.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740662330]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 58 time: 2.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e6910]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55555 time: 8.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e7470]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55566 time: 3.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e7150]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55571 time: 2.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c2550]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43652 time: 2.59e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e7290]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55587 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e4710]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55590 time: 5.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e4ba0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55598 time: 5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e55f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55614 time: 4.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e6320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55619 time: 4.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e58c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55651 time: 1.04e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e9760]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55667 time: 7.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fad90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59069 time: 7.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943b8b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30900 time: 1.18e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e86f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55670 time: 7.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf649410]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56148 time: 3.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e9ef0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56160 time: 2.3e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf6461e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53029 time: 3.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ea0c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56163 time: 8.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943e9d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28447 time: 1.14e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977942c330]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24709 time: 2.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5eb810]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56172 time: 1.12e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] -------------- The current device memory allocations dump as below --------------\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0]:8589934592 :HybridGlobWriter in reserveMemory: at optimizer/common/globWriter.cpp: 438 idx: 10775 time: 0.00575806\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x302000000]:3457155072 :HybridGlobWriter in reserveMemory: at optimizer/common/globWriter.cpp: 416 idx: 1987 time: 0.00202746\n",
+ "[07/28/2022-16:51:59] [TRT] [W] Requested amount of GPU memory (8589934592 bytes) could not be allocated. There may not be enough free memory for allocation to succeed.\n",
+ "[07/28/2022-16:51:59] [TRT] [W] Skipping tactic 3 due to insufficient memory on requested size of 8589934592 detected for tactic 0x0000000000000004.\n",
+ "Try decreasing the workspace size with IBuilderConfig::setMemoryPoolLimit().\n",
+ "[07/28/2022-16:51:59] [TRT] [E] 2: [virtualMemoryBuffer.cpp::resizePhysical::144] Error Code 2: OutOfMemory (no further information)\n",
+ "[07/28/2022-16:51:59] [TRT] [E] 2: [virtualMemoryBuffer.cpp::resizePhysical::144] Error Code 2: OutOfMemory (no further information)\n",
+ "[07/28/2022-16:51:59] [TRT] [W] -------------- The current system memory allocations dump as below --------------\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fcc00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59142 time: 2.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fc830]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59134 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fcfd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59126 time: 3.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fbc20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59118 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fbf20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59113 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fbb80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59110 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fd110]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59097 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fbd60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59089 time: 3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fd2a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59086 time: 7.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fb8a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59081 time: 1.7e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fabf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59066 time: 1.11e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fa7d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59060 time: 2.19e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fb100]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59054 time: 1.15e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d3a00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59051 time: 1.44e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fa6b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59045 time: 3.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf6414d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59042 time: 3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977825aef0]:1024 :Transformed FP16 Weights in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 59040 time: 6.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf6505f0]:1048576 :Transformed FP16 Weights in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 59039 time: 4.07e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fde30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58564 time: 3.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f9c40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58556 time: 4.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f7d20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58553 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f9870]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58548 time: 4.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fe1a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58540 time: 1.52e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f7260]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58537 time: 6.82e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f9750]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58532 time: 2.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f80e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58524 time: 1.64e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f6c40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58521 time: 3.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f7a00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58516 time: 4.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f6ba0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58513 time: 9.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f8b90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58505 time: 2.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f8890]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58497 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f70b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58492 time: 4.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f92c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58489 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f9220]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58481 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f8d70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58476 time: 3.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f90e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58465 time: 4.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f6a00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58452 time: 6.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d3ee0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58440 time: 1.99e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d4a50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58434 time: 1.29e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d4810]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58431 time: 1.08e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d50c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58419 time: 1.2e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d4f20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58416 time: 1.28e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f5c50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58413 time: 1.99e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f5ae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58407 time: 1.05e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d52e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58401 time: 1.43e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977942eaf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58398 time: 2.44e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0eb5d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58389 time: 4.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ec010]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56256 time: 6.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ebf70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56251 time: 9.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf641dd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56248 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf6411c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56240 time: 2.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ed9c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56232 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf641610]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56227 time: 3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5eb2e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56224 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf641f10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56219 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5eb240]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56216 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf641300]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56211 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5eb420]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56195 time: 3.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5eafb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56192 time: 1.33e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d5470]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56187 time: 1.03e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf642320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56184 time: 9.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf642180]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56181 time: 9.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ebc60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56178 time: 1.05e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779445d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37040 time: 1.23e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794347c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37088 time: 8.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779443440]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37034 time: 3.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ccd40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34590 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cd840]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34585 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0fd2b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24824 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cc690]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34577 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c8140]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33958 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cbfa0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34574 time: 3.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5dd3a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42948 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cce80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34561 time: 2.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943a210]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30891 time: 7.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779442cb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31467 time: 1.31e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ebe50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56243 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779435cc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28355 time: 3.92e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ca4b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34542 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d7360]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50112 time: 1.45e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d4180]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58443 time: 8.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779445fd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34492 time: 1.3e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c8f50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34477 time: 3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c7d10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34011 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5deaa0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52392 time: 1.11e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cded0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37037 time: 6.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794327c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27661 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c52f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46557 time: 1.14e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c7960]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34003 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e1800]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52410 time: 1.56e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d4510]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58449 time: 8.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cb1c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34513 time: 6.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c8ff0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33998 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c9e20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33995 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406dc690]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 114 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f9890]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24797 time: 2.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c9f60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33966 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d4c90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58437 time: 1e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f99d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24768 time: 3.59e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740649530]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 25 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c6350]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33950 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cedf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37073 time: 7.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cb780]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34504 time: 1.05e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779448920]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33939 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779449d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33923 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf644240]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52534 time: 1.13e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779448530]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33907 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bcb30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43554 time: 3.05e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779448670]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33878 time: 3.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977944a1e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33870 time: 9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cfd20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49494 time: 4.1e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794480e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33864 time: 2.42e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977944aa80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33861 time: 7.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974062d050]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 6 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e24f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58392 time: 3.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779447d50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33834 time: 8.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779443800]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31482 time: 4.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943ce00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33819 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e8ab0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21105 time: 2.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf643900]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52438 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ca410]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34534 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf642ae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53059 time: 9.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779444fd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31523 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794439a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31512 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779447ef0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33837 time: 1.07e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977944add0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33840 time: 1.35e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740661360]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 57 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779444670]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31491 time: 1.36e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf647bc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53086 time: 5.32e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977944b660]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31479 time: 8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d1540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37142 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779443190]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31464 time: 1.19e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779440660]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30991 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5faa00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59063 time: 1.09e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dbd70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47203 time: 2.21e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c8790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33971 time: 2.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779480f30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20070 time: 6.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794407a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30962 time: 3.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f1ea0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27841 time: 3.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943b6a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30951 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779431170]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30946 time: 5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779430ee0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30938 time: 3.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943b160]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30935 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f0850]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28349 time: 3.58e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943b0c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30927 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0df270]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40016 time: 1.52e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e37c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40622 time: 1.23e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c96a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46584 time: 1.2e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406b08e0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 105 time: 1.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e7980]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55549 time: 9.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d7750]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50118 time: 1.02e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c50b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46554 time: 1.06e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779443540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31473 time: 7.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943ae00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30911 time: 1.19e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0defb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40037 time: 1.86e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f3ed0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27820 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943a7a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30903 time: 1.07e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5de810]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52389 time: 1.22e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cbd20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34537 time: 3.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c3140]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43660 time: 1.1e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740647b80]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 22 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943bda0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30882 time: 8.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d74b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37198 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943df40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30873 time: 9.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977946d9b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20025 time: 9.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e20f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40138 time: 3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ca550]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34550 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f5920]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58404 time: 1.61e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dffe0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40135 time: 3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779440900]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30999 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf6494b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56151 time: 2.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779439400]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28428 time: 8.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d05c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37079 time: 9.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c3490]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43655 time: 1.04e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e1da0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40151 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794385a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28407 time: 1.07e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779436eb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28396 time: 6.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794483f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33891 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943b340]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30914 time: 5.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf642de0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53035 time: 1.14e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779439170]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28391 time: 7.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779436d70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28380 time: 6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779448490]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33899 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779436f50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28404 time: 8.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c18e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46548 time: 1.16e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794397e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28367 time: 1.27e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974064fd70]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 34 time: 2.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943a550]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30897 time: 3.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5de5c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42926 time: 1.14e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794361b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28361 time: 1.78e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779435f70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28358 time: 1.88e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794364d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28352 time: 3.2e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55973bfaac00]:1179648 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 126 time: 4.71e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f9330]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28346 time: 3.43e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f6130]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58425 time: 8.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779436c50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28372 time: 1.47e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bc790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43060 time: 1.13e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779435880]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28343 time: 3.54e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c6ea0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34486 time: 1.17e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f23c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27777 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e5290]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55635 time: 1.12e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794331c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28334 time: 1.73e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0fe340]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24800 time: 3.7e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d7370]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37227 time: 1.2e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dfe10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40066 time: 4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d2ee0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49512 time: 3.8e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c9b90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46629 time: 1.16e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e49b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55627 time: 3.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d5c90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49577 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c9320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34474 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f1cf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27833 time: 3.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f0040]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27828 time: 3.04e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794371b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28399 time: 1.19e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ce6b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37043 time: 2.13e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f33f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27817 time: 8.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779446f60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43548 time: 2.17e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fc5a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59129 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e0bb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52483 time: 5.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0da6a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37753 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779449ec0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33867 time: 9.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f3a60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27788 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f2d70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27772 time: 3.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779445940]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34480 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779447b10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33831 time: 1.36e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977946eae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20028 time: 6.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ef040]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27764 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974064b990]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 29 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f3120]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27780 time: 4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0efae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27748 time: 3.66e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f2500]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27740 time: 1.43e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cb3f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47221 time: 2.9e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e53d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55606 time: 1.77e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f4ef0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27732 time: 3.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f4680]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27796 time: 2.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c9890]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46589 time: 2.07e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977944b240]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33816 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0efda0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27715 time: 1.06e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c66f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34489 time: 1.01e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943d320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30959 time: 3.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5df660]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52386 time: 1.52e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977947eea0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20075 time: 6.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ed510]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27700 time: 7.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf6446b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52518 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ed030]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27694 time: 1.54e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f73a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58508 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5db9b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50133 time: 3.25e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779436940]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28364 time: 5.92e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c7d90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46677 time: 1.08e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779448fe0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33918 time: 5.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943ff80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30978 time: 3.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e07d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40119 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0fc110]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27673 time: 1.44e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e5480]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40103 time: 2.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559778435980]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21048 time: 4.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e8e00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27670 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740652740]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 38 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fb690]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59072 time: 1.09e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943c1b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30864 time: 1.2e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf646790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52550 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cb9e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34529 time: 2.22e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5dc830]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43033 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794827c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20139 time: 3.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64d800]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42869 time: 3.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf644d60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52502 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ed9d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27688 time: 1.54e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779431790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25393 time: 6.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ebcf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25374 time: 7.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779448a60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33910 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779431670]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25361 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977942f080]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28340 time: 7.19e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf600c00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42929 time: 2.49e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f5cd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25350 time: 1.04e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0fe770]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24792 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf643b30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52547 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ed270]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27697 time: 1.07e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779431030]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30975 time: 1.2e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f56c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25342 time: 9.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dfc30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40087 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d7110]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37190 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977946f850]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20051 time: 8.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f5e50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25327 time: 8.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ca930]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34495 time: 9.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779433580]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25377 time: 7.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0fbfb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25315 time: 1.2e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f5ae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25345 time: 1.19e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ec790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27706 time: 9.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779483320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20094 time: 9.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794468c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37713 time: 1.55e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f0320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27836 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f4300]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27857 time: 5.46e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559738185cc0]:1280 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 124 time: 7.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f8fc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58457 time: 1.03e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740646950]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 20 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740642400]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 13 time: 4.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f85f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24733 time: 1.3e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d5a30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49553 time: 1.37e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c84b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33987 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d99f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37801 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cbbe0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34566 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779446d80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40610 time: 4.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d98b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52404 time: 9.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406a1230]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 107 time: 1.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64a530]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53150 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bdf70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43636 time: 7.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794420d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40683 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740644920]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 17 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943e470]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30843 time: 2.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406b9aa0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 104 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779433bc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25398 time: 6.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f4db0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27769 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977942f820]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21069 time: 1.34e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d7f20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37214 time: 5.37e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406ba110]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 99 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943bc00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30879 time: 1.05e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974067f460]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 97 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64def0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40696 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779439d70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30876 time: 2.08e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5da6e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52374 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f8250]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58529 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974066a920]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 68 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740645be0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 19 time: 3.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740674920]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 82 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779440450]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31452 time: 3.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974067b350]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 91 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f7a30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24739 time: 2.09e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5dd910]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42972 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cc3d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47194 time: 7.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974062de80]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 1 time: 1.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779439030]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28420 time: 7.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974067ada0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 90 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cbe20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47206 time: 1.56e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf6452e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52422 time: 2.25e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943a090]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30888 time: 9.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740674f90]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 83 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406517f0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 37 time: 3.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779444980]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31504 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794322e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27679 time: 1.21e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c08c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43647 time: 1.07e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559722308300]:512 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 123 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974066c4b0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 71 time: 3.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ca250]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34518 time: 7.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f9cc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24776 time: 3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf647b20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53078 time: 1.67e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740667460]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 64 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974065a470]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 46 time: 4.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d0a40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37085 time: 8.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f2b30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27718 time: 3.08e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740667ad0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 65 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406b0b20]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 109 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e7bc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55552 time: 9.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fc1d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59121 time: 1.29e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0caea0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34510 time: 7.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943b560]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30922 time: 3.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0db1c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40001 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740665ee0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 62 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740677420]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 86 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f06f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28331 time: 1.18e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740676510]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 85 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f0ca0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27860 time: 2.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779434a60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37091 time: 7.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e5ac0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55622 time: 5.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779480df0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20099 time: 1e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f9610]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58561 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e6f70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55563 time: 9.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406502f0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 35 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943ddd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30870 time: 1.15e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974065d2e0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 51 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64a2a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55603 time: 5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779352430]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19983 time: 6.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0fdc50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24816 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740664750]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 61 time: 3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e0cf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52454 time: 3.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c9150]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34006 time: 9.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740675ea0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 84 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d8460]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50149 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0fcbe0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24848 time: 1.81e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406b97d0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 102 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bcf50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43551 time: 5.48e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794474f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33846 time: 9.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794339f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25385 time: 7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bbaf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42920 time: 7.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f4c70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27745 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406640e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 60 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740662930]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 59 time: 3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779444860]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31496 time: 8.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406c91e0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 115 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974067d9b0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 94 time: 2.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794831e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20123 time: 9.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740658ae0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 45 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779449530]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33902 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406b24c0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 98 time: 7.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c6c20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37147 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e8d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24697 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d3270]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37131 time: 3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e5a70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40034 time: 9.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cfea0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49488 time: 1.54e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974064a1e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 26 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bdce0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43599 time: 6.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794476d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33849 time: 1.07e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943a3b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30894 time: 5.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559738191300]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25336 time: 9.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e71f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55579 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406dbaf0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 113 time: 1.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406f1860]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 117 time: 1.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977946ee00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20034 time: 5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974068a370]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 111 time: 2.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c4ed0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46572 time: 8.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f5150]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27721 time: 1.17e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977942e520]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21063 time: 1.58e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c9af0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46621 time: 9.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779432c90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27664 time: 2.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5eb1a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56208 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740641e80]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 12 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d8540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37710 time: 2.31e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e19a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55611 time: 8.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5edb00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56203 time: 3.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f3bb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27812 time: 5.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bfa70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43580 time: 8.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0fcf00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24832 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c48b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46563 time: 9.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e7330]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55595 time: 5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740645660]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 18 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779444b60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31485 time: 1.58e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5db570]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50165 time: 5.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597380cd3f0]:2048 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 131 time: 4.12e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740673a10]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 81 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559778435dc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27667 time: 8.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740666550]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 63 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406b2740]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 103 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977946e4f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20010 time: 1.83e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779431ca0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28328 time: 2.44e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779440d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30954 time: 3.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c5b60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33955 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559738361110]:294912 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 122 time: 5.448e-06\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fd410]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59075 time: 8.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779447280]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33843 time: 1.84e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406b0210]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 106 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cc0e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34545 time: 3.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5dd4e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42964 time: 1.66e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740652cc0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 39 time: 3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974066da30]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 73 time: 3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f80c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24751 time: 9.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794451d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33825 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740655cf0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 41 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779444250]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31488 time: 1.95e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c12f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46539 time: 1.78e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740651270]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 36 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597beee6090]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20067 time: 1.22e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974065bb80]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 49 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c2690]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43623 time: 7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c5fb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33963 time: 5.25e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c5e70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46704 time: 2.41e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740643690]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 15 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cdc60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34593 time: 3.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ef960]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27785 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fba40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59094 time: 4.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943c560]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30852 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974062d9e0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 11 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794430f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31455 time: 2.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977946d530]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20019 time: 1.06e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0fdbb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24845 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943f7e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30994 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c0dd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46533 time: 1.51e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f5ef0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58422 time: 1.15e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e3850]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55531 time: 2.17e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974062ccd0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 3 time: 1.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977942c1d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21054 time: 9.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943c7c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28439 time: 1.23e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf647a30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53070 time: 2.55e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779435780]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31458 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d0d50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49518 time: 4.12e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f4540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27825 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974067df60]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 95 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0da560]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37782 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974062e220]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 9 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf600980]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42977 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c0250]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43569 time: 1.03e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977946fd90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20059 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bd3c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43604 time: 5.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406689e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 66 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0edb40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27691 time: 1.53e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64cf00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42896 time: 1.29e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d7f90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50178 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406dfb70]:20 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 125 time: 2.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ef4a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27793 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0eb100]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24730 time: 1.15e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974062d130]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 7 time: 1.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e6270]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21126 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf645610]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52435 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e6130]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55643 time: 7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779448d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33947 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5eb980]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56175 time: 1.28e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977946cbd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20126 time: 1.4e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974064b410]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 28 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dfaf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40071 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c59d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46725 time: 1.25e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5df9b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52494 time: 3.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974065b510]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 48 time: 2.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974066d3e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 72 time: 2.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977942b930]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21051 time: 1.57e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974064a760]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 27 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977942fc80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21075 time: 1.04e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794341d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37139 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5be260]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43557 time: 3.48e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d18f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37150 time: 2.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0da390]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37822 time: 3.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cd3b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34582 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e2cf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55510 time: 9.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740648fb0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 24 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ea850]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24757 time: 9.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e7f10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55638 time: 6.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974067f320]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 96 time: 4.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977942b6c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21045 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cf730]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49491 time: 1.17e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779441170]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30967 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406e5ab0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 120 time: 2.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5dbba0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50138 time: 1.51e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d0130]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53038 time: 1.46e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974065e1f0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 52 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5dece0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52395 time: 6.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0fe200]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24829 time: 2.13e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dfcd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40095 time: 1.52e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cac50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34507 time: 9.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f8ce0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25318 time: 9.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406779a0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 87 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974064e6d0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 33 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974064cdd0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 30 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c7aa0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33974 time: 3.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e3490]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40648 time: 9.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ebc50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25366 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf642550]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53047 time: 1.87e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e86d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21121 time: 3.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406706e0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 77 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ce750]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47291 time: 7.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf600540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42953 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943f1b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28436 time: 1.05e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f48a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27724 time: 2.01e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf623840]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59137 time: 1.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406557e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 40 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0da960]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37734 time: 1.15e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c92e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46600 time: 7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64b240]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53053 time: 8.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779440a40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30970 time: 3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740656c00]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 42 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f3d90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27849 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5de1c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42993 time: 2.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974066af00]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 69 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977944b380]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31531 time: 4.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ddeb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42956 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c3ed0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46645 time: 6.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406583a0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 44 time: 2.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977946ec60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20031 time: 8.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c4d30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46569 time: 1e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d6270]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49628 time: 3.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943dab0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30861 time: 1.22e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779449b30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33894 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974065fcf0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 55 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974062d360]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 5 time: 1.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d4e20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49601 time: 1.59e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974065a5b0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 47 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779434050]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37102 time: 4.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f95e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24765 time: 6.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d24d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49506 time: 5.92e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ca370]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34526 time: 2.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974065cc70]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 50 time: 2.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740672700]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 79 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406b4d80]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 108 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794802c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20107 time: 7.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740664f80]:1024 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 127 time: 1.16e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d07d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49542 time: 1.42e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779444e90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33828 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f7d80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24745 time: 9.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ecae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27712 time: 1.17e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779439bf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28423 time: 8.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779446600]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31544 time: 4.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f7860]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24706 time: 1.41e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779a55e00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19986 time: 5.2e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d11f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37055 time: 1.03e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ef2d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27801 time: 2.41e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597799eaf40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19989 time: 4.49e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5db160]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50162 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779433d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25369 time: 7.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974066ec00]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 74 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bbe00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42905 time: 8.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f0b80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27852 time: 5.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559778437560]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20062 time: 6.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cb4a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34501 time: 1.26e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bc0a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42908 time: 7.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f01e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27865 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779a521a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19992 time: 1.33e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779447910]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33852 time: 1.54e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740679640]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 89 time: 3.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779a46b30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19998 time: 8.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d7870]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50121 time: 1.51e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974062cbf0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 2 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0fc4a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25309 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974065f770]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 54 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e0260]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52515 time: 1.44e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779a465f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20004 time: 2.21e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d2de0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49536 time: 4.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977946c8b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20118 time: 1.06e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f4ab0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27729 time: 1.38e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559778437660]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25312 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf6457f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52459 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c75e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34483 time: 1.03e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d89e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50130 time: 1.07e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0eebd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27761 time: 1.16e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f7f20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24748 time: 1.24e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597383f26d0]:4718592 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 130 time: 6.05e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779a46f00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20007 time: 1e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0da080]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37814 time: 4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ccf50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47191 time: 1.11e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e69f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25306 time: 2.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c60f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33934 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e4620]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42884 time: 3.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977946d6d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20022 time: 8.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e5eb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21118 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e5d70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55630 time: 1.35e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cb8a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34558 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf644c20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52531 time: 3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55973c3a8ad0]:5120 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 132 time: 2.51e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf646320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52542 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c99f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33990 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0fd9b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24808 time: 7.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d2360]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49503 time: 4.82e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977946efa0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20037 time: 4.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779470300]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20040 time: 1.29e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fe060]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58569 time: 4.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d9320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56154 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bd930]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43591 time: 1.08e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977946f1f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20043 time: 1.45e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5dad50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50181 time: 3.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d2810]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37171 time: 2.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f90c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24703 time: 2.7e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e24b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40613 time: 2.27e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977946fcf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20054 time: 4.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bd320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43596 time: 1e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f7bd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24742 time: 1.26e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977947f700]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20078 time: 3.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ec160]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25390 time: 1.16e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64b500]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40680 time: 2.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779430210]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21081 time: 8.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ca0b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46581 time: 1.15e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf643570]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52413 time: 1.63e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0fe6d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24821 time: 2.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977942fdf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21078 time: 1.25e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794824a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20086 time: 2.03e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e39a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55534 time: 9.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d91e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37725 time: 7.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f4bd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27737 time: 2.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779438990]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28444 time: 2.16e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943c410]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30867 time: 4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d6be0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37206 time: 3.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977947fe10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20115 time: 6.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cd440]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47248 time: 8.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf645080]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52499 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406790e0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 88 time: 3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977946c0c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20134 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ca690]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34521 time: 1.33e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e0120]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40106 time: 3.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779448350]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33883 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d0450]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49539 time: 1.19e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf647f60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53081 time: 1e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779430440]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21042 time: 3.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0fcaa0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28337 time: 6.18e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0de570]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40040 time: 8.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977944a7a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33858 time: 1.06e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559778436ef0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20131 time: 6.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974067c350]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 92 time: 4.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d5e70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49556 time: 1.97e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f7360]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24700 time: 4.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974067c490]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 93 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559778437030]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20102 time: 6.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dd380]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37798 time: 1.06e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779446740]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31515 time: 3.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943d3f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30846 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ea230]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56166 time: 9.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779430a10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21057 time: 2.09e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf6499f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53137 time: 3.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e1a70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55504 time: 1.33e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ec380]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25330 time: 1.32e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977942e7b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21066 time: 8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ec940]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27709 time: 6.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977942f9c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21072 time: 1.28e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406e99d0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 119 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e0b60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40098 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974062db00]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 8 time: 2.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e94c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55675 time: 1.11e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f8280]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24721 time: 1.49e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e5be0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21086 time: 6.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e5ff0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21089 time: 4.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f6280]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58428 time: 8.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f2fe0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27809 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e63b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21097 time: 3.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cdc40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47280 time: 1.47e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf645750]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52451 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cb600]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47224 time: 2.03e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e5c30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55659 time: 6.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977944a600]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33855 time: 8.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406720d0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 78 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0eadc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24724 time: 1.41e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779438ad0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28415 time: 1.31e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f4d10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27753 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974064d250]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 31 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779437090]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28375 time: 1.19e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406f10a0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 121 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e8230]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21113 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ea3d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24718 time: 2.57e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740646ed0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 21 time: 3.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d4800]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49588 time: 1.57e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d02b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53041 time: 4.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794458a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33810 time: 7.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f8790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24736 time: 1.09e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559738190ed0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25324 time: 1.26e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c1110]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50103 time: 1.63e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977946e660]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20013 time: 1.39e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779443ff0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31507 time: 3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974062ce20]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 4 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dd4c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37769 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f9750]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24781 time: 4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f9ee0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24784 time: 1.23e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e8970]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21134 time: 2.43e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf6437c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52467 time: 1.03e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f97f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24789 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779443eb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31536 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977944b4f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31476 time: 1.09e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c0f50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50097 time: 3.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f9b80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24805 time: 8.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943d940]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30858 time: 2.14e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ffee0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43057 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779430be0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21060 time: 9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977947efe0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20091 time: 7.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cf060]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37058 time: 1.52e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0eaa50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24813 time: 6.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740660c70]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 56 time: 2.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e1fb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40604 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779443a40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31520 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977946f610]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20046 time: 1.32e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0fd7c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24837 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779449970]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33886 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0fc860]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24840 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c6210]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33979 time: 3.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406d99a0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 110 time: 2.14e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977942e850]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59048 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0fd130]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24853 time: 1.34e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e5cd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21094 time: 3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cd580]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47264 time: 2.76e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d0e80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37049 time: 7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559738191190]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25333 time: 1.48e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ddd30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42985 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d0ff0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37052 time: 1.57e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0eabf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24760 time: 1.33e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cf200]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37061 time: 1.34e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5dc0b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49636 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974064e150]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 32 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf6007c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42940 time: 3.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cf490]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37064 time: 1.09e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d3130]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37115 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dc480]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 39998 time: 3.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cae00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47215 time: 1.23e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ce970]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37067 time: 1.05e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f8390]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58500 time: 3.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d03b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37076 time: 1.54e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64dc80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43545 time: 4.48e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e2e00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40640 time: 1.71e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d0760]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37082 time: 1.36e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fd5b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59078 time: 7.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779434d80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37094 time: 7.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779432720]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27676 time: 4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d2f70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37099 time: 8.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d3090]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37107 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f05f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30855 time: 1.14e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794343b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37110 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779482900]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20110 time: 5.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5dc970]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43004 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794345d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37118 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64d5b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43536 time: 2.79e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d31d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37123 time: 2.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d2cd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37126 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cdb20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37155 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d1f10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37158 time: 2.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d23e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37166 time: 1.41e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e7f10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21129 time: 5.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d5870]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37174 time: 2.66e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ebbb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25358 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e2860]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40607 time: 3.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977947ef40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20083 time: 1.42e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5eb650]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56169 time: 1.31e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f6540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58410 time: 8.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794403b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33813 time: 1.37e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d78b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37182 time: 1.36e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5dbcc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50146 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779443c20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31499 time: 3.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ed7c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27685 time: 1.78e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d1dd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37187 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d2230]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37195 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d5730]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37203 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0de1d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40025 time: 1.82e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779436e10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28388 time: 7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d7660]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37211 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64be00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40634 time: 9.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974073c820]:2560 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 128 time: 2.39e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e3e80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55540 time: 1.11e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d94c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52398 time: 1.47e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d6220]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37222 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977946e7d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20016 time: 1.05e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d1b90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49497 time: 2.57e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d6aa0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37235 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c5b10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46696 time: 3.78e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597784334b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37698 time: 3.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f6e20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58484 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5db430]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52380 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d8190]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37701 time: 5.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf648a70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53062 time: 1.19e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406f1a50]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 118 time: 1.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d6540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37704 time: 1.22e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0da1c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37785 time: 3.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf6428d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53056 time: 8.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d5ef0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37707 time: 1.16e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d8cb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37716 time: 1.16e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d8e60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37719 time: 9.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dcc50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37728 time: 2.02e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ddde0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37731 time: 1.14e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dd5d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37737 time: 1.32e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e1b20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40055 time: 4.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dd810]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37742 time: 1.14e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf600150]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43041 time: 1.13e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ddc50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37745 time: 3.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dd930]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37750 time: 4.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cb330]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34498 time: 1.44e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dd9d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37758 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dd0f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37761 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e1640]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40058 time: 9.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dda70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37766 time: 2.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf6003b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42937 time: 1.21e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ddb10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37774 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e5d70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21102 time: 2.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dca20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37777 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794396a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28412 time: 7.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ec590]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27703 time: 1.63e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d3e40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49596 time: 7.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dcfb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37790 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d95a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37793 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f8c10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24712 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf645930]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52430 time: 3.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d4c30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49564 time: 5.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dace0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37809 time: 2.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c8980]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33942 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0db020]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37817 time: 1.48e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f7700]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58545 time: 3.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779441570]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42872 time: 1.21e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d8a70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 39995 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64d8a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40691 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cde20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40004 time: 8.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d86f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40007 time: 5.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c8de0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33982 time: 2.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0db480]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40010 time: 1.62e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0df9d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40063 time: 1.59e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0df4c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40019 time: 1.08e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0df690]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40022 time: 8.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0de370]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40028 time: 1.15e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cccf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46720 time: 1.51e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e58d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40031 time: 9.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0de760]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40043 time: 7.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cc260]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34569 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0de900]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40046 time: 6.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fb310]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59057 time: 1.16e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cd280]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47232 time: 2.58e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0deaa0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40049 time: 6.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943f3c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30986 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0fb600]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30849 time: 8.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e2eb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55513 time: 4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e1980]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40052 time: 4.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943b200]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30943 time: 1.26e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dba50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40074 time: 3.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cd4f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34553 time: 3.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f2230]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27804 time: 3.85e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dfb90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40079 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e12c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40082 time: 1.43e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e3c40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55537 time: 6.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e09a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40090 time: 3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943ef60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28431 time: 8.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c7060]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46693 time: 9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cdd80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37031 time: 4.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e0420]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40114 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779a4efd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 20001 time: 1.06e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e4ba0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40122 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740668f60]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 67 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e0f50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40127 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e4ed0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40130 time: 6.52e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794460a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33807 time: 3.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e0840]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52491 time: 1.32e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e02e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40143 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943abc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30906 time: 1.36e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e4760]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40146 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e7380]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25321 time: 1.46e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0de030]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40013 time: 1.72e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943d7e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40616 time: 1.47e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c3320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46530 time: 1.49e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779439ab0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28452 time: 1.05e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e3650]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40619 time: 1.83e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779439e90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30885 time: 1.83e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e3a30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40625 time: 1.02e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64bb70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40628 time: 1.97e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64bc90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40631 time: 1.04e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ecdc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27682 time: 8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64c180]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40637 time: 1.62e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e32a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40643 time: 1.76e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64b640]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40651 time: 4.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64b320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40656 time: 2.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cd910]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47272 time: 2.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64b3c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40664 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64b460]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40672 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fbae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59102 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cda50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47243 time: 1.02e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779441cb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40675 time: 6.85e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977942f4d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24715 time: 2.17e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d9070]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37722 time: 8.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779441b70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42875 time: 3.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779441aa0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42878 time: 2.05e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0daee0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42881 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794414d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42887 time: 4.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dbe90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42890 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64dd40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42893 time: 5.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64d070]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42899 time: 1.33e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bb3d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42902 time: 1.17e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d4370]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58446 time: 7.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf645dd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52419 time: 1.42e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bc280]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42911 time: 7.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cdff0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47288 time: 9.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bb950]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42917 time: 7.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794315d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30983 time: 3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5de410]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42923 time: 6.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c4430]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46536 time: 7.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf600f20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42932 time: 1.34e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740657180]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 43 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf6004a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42945 time: 4.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf649ef0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53145 time: 2.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf6005e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42961 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf600680]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42969 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5dcdf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42980 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c8460]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46653 time: 7.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf6492c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53113 time: 3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5dd1c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42988 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf641ab0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56235 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5dc640]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42996 time: 3.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f9180]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58473 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5dd790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43001 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ddbb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43009 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf645b30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52416 time: 1.28e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fe900]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43012 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c63f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46680 time: 2.79e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f8a70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58468 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5dd080]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43017 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c86f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46632 time: 7.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf649550]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53129 time: 6.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fea20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43020 time: 1.28e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5dc500]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43025 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c6a70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46701 time: 1.09e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5be5c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46524 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fecf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43028 time: 3.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d6fd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37219 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fefb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43036 time: 1.06e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cf540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47267 time: 2.34e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ff5f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43044 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ff330]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43049 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779449790]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33915 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ff920]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43052 time: 2.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fee70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43065 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cf400]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47296 time: 1.96e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf6488c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53110 time: 2.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ff4b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43073 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bcdd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43539 time: 2e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ff550]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43542 time: 1.09e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0c5ca0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33926 time: 3.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bfbf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43560 time: 2.06e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779440fb0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30930 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bfd60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43563 time: 2.57e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e6d30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55558 time: 1.01e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c0010]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43566 time: 1.55e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bf510]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43572 time: 2.28e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bf830]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43575 time: 1.82e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bd5a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43583 time: 2.14e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bd280]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43588 time: 7.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5be0b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43607 time: 1.26e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bd460]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43612 time: 6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c0600]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43615 time: 1.04e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bd7f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43620 time: 6.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bdba0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43628 time: 1.34e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf644050]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52563 time: 1.5e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779443ae0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31528 time: 1.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c2890]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43631 time: 7.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d8320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50186 time: 1.67e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d53a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49580 time: 7.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c2d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43639 time: 9.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c2110]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46521 time: 3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c6660]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46717 time: 1.96e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf6485c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53126 time: 8.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c2bc0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46527 time: 3.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f55a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25339 time: 2.18e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c1460]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46542 time: 1.26e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64b850]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40688 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c16a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46545 time: 1.06e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d7130]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50109 time: 1.19e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c4670]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46551 time: 1.99e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fc970]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59105 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c5590]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46560 time: 1.14e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c4af0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46566 time: 1.12e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64ac70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53105 time: 2.46e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c9e10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46578 time: 8.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64ab30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53134 time: 1.12e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c9cd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46592 time: 5.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c99b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46597 time: 2.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c9380]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46605 time: 1.19e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c9050]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46608 time: 7.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c9a50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46613 time: 7.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5be7c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43068 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c7b10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46616 time: 2.74e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c85a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46624 time: 8.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c8ea0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46637 time: 7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e1180]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40111 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c8a30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46640 time: 1.56e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c7ed0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46648 time: 1.4e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d0970]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49545 time: 1.07e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779a54080]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 19995 time: 8.28e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c81b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46656 time: 2.56e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d6730]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37230 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c7330]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46661 time: 2.36e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974066f250]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 75 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c57a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46664 time: 3.4e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e8220]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55654 time: 8.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740644310]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 16 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c88f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46669 time: 1.08e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c6bf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46672 time: 1.41e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c8110]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46685 time: 7.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c6e80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46709 time: 9.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf644890]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52555 time: 1.19e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779442440]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31461 time: 2.9e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ca540]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46712 time: 1.04e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c5dd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47188 time: 1.48e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ce430]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47197 time: 4.13e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ce2f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47283 time: 3.71e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740648210]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 23 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dbbf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47200 time: 5.54e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406bc090]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 112 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cec10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37070 time: 1.01e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e4550]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55582 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cbfd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47209 time: 2.29e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cac90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47212 time: 1.45e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cb0e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47218 time: 1.27e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ced80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47304 time: 1.14e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d80d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50141 time: 4.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cb920]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47227 time: 1.18e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974062ed40]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 10 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e13b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52475 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0e5e10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 21110 time: 2.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740741a50]:20 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 133 time: 3.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cd6c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47235 time: 1.33e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779438e20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28383 time: 1e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64b0d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53050 time: 1.28e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794452a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33822 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cd3a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47240 time: 5.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974062ddb0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 0 time: 1.89e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cdd80]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47251 time: 1.62e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794453e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31539 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0dc8e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37806 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cd4e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47256 time: 1.02e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ce130]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47259 time: 2.75e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cf870]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47299 time: 2.82e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d2000]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47307 time: 4.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf646be0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58395 time: 4.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cf0d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47312 time: 1.4e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ea6b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24754 time: 1.21e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d1f60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49485 time: 1.28e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cfbf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49500 time: 5.7e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740643270]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 14 time: 1.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559738127ee0]:20 :Cudnn Builder weights ptr in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 129 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c7850]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46575 time: 7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d0ba0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49509 time: 2.75e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d3080]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49515 time: 3.04e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d1050]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49521 time: 2.11e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974065e860]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 53 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d9af0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52407 time: 8.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d11f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49524 time: 2.24e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0eaf60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24727 time: 1.69e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d2810]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49527 time: 2.19e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d2a50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49530 time: 2.47e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406733a0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 80 time: 2.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d2c40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49533 time: 1.09e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d34a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49548 time: 8.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d5b50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49561 time: 3.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d5bf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49569 time: 4.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5da140]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53026 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d1d30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37163 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d4fd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49572 time: 2.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d5d30]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49585 time: 7.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55974066be60]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 70 time: 1.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d17b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37179 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d4a50]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49593 time: 8.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d42b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49604 time: 1.4e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d51d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49609 time: 9.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ebed0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25353 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d3780]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49612 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5f9400]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 58460 time: 5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d1420]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37134 time: 1.18e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d46c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49617 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d39e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49620 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943b020]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30919 time: 3.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d57c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49625 time: 4.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d4130]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49633 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0ebd90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 25382 time: 1.94e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d3640]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 49641 time: 1.01e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f1590]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27844 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c67a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 46688 time: 1.01e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5cfaf0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50094 time: 3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e9ad0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56157 time: 1.16e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597794493f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33931 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d14f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50100 time: 4.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d6580]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50106 time: 3.28e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e3570]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55528 time: 8.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d7500]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50115 time: 1.8e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d7a10]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50124 time: 1.25e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d8840]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50127 time: 8.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5dbd60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50154 time: 1.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf648230]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53118 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5db0c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50157 time: 6.35e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d8dd0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50173 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf647590]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55498 time: 3.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5dbe00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 50170 time: 1.94e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559778433690]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52359 time: 2.91e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e22c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55574 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d8f70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52362 time: 4.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406dbad0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 116 time: 1.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c3860]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52365 time: 5.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d9200]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52368 time: 4.09e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5dae70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52371 time: 2.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5da970]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52377 time: 2.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5da830]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52383 time: 1.54e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5d9670]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52401 time: 7.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf6454f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52427 time: 1.17e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf6456b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52443 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ceec0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 47275 time: 6.07e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e1560]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52446 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf644e60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52462 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0f96b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24773 time: 6.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e0f60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52470 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5df750]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52478 time: 2.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5bb710]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 42914 time: 9.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e0450]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52486 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e11c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52507 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e9070]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55646 time: 9.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5dfd20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52510 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0eec70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 27756 time: 1.29e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64e030]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40667 time: 2.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5df870]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52523 time: 9.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf643d70]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52526 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5dfbe0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52539 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf646ca0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 52558 time: 1.18e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5db4d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53032 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf6474a0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53044 time: 1.25e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf648d60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53065 time: 1.36e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779448230]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 33875 time: 2.03e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0cd090]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 34598 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf647e40]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53073 time: 7.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf648370]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53089 time: 2.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e8e90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55662 time: 4.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf647c60]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53094 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf649030]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53097 time: 1.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c04c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43644 time: 6.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64a670]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53121 time: 2.39e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf649180]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53142 time: 1.01e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740670180]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 76 time: 2.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e20c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55495 time: 2.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5eb100]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56200 time: 1.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406b98f0]:4 :: weight zero-point in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 101 time: 2.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e1db0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55501 time: 2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf647d00]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53102 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e2890]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55507 time: 1.45e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597406b28f0]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 100 time: 2.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e4100]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55516 time: 1.52e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e4340]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55519 time: 1.36e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e3140]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55522 time: 1.05e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e3290]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55525 time: 1.1e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bc0d0be0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 37046 time: 1.44e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf64b990]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 40659 time: 1.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e6520]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55543 time: 6.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e66c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55546 time: 4.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559779442e20]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 31470 time: 7.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x559740662330]:4 :: weight scales in internalAllocate: at runtime/common/weightsPtr.cpp: 102 idx: 58 time: 2.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e6910]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55555 time: 8.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e7470]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55566 time: 3.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e7150]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55571 time: 2.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5c2550]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 43652 time: 2.59e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e7290]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55587 time: 2.6e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e4710]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55590 time: 5.2e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e4ba0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55598 time: 5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e55f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55614 time: 4.1e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e6320]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55619 time: 4.9e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e58c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55651 time: 1.04e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e9760]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55667 time: 7.8e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5fad90]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 59069 time: 7.4e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943b8b0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 30900 time: 1.18e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e86f0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 55670 time: 7.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf649410]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56148 time: 3.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5e9ef0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56160 time: 2.3e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf6461e0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 53029 time: 3.3e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5ea0c0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56163 time: 8.7e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977943e9d0]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 28447 time: 1.14e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x55977942c330]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 24709 time: 2.5e-08\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x5597bf5eb810]:151 :ScratchObject in storeCachedObject: at optimizer/gpu/cudnn/convolutionBuilder.cpp: 170 idx: 56172 time: 1.12e-07\n",
+ "[07/28/2022-16:51:59] [TRT] [W] -------------- The current device memory allocations dump as below --------------\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0]:8589934592 :HybridGlobWriter in reserveMemory: at optimizer/common/globWriter.cpp: 438 idx: 10776 time: 0.00609433\n",
+ "[07/28/2022-16:51:59] [TRT] [W] [0x302000000]:3457155072 :HybridGlobWriter in reserveMemory: at optimizer/common/globWriter.cpp: 416 idx: 1987 time: 0.00202746\n",
+ "[07/28/2022-16:51:59] [TRT] [W] Requested amount of GPU memory (8589934592 bytes) could not be allocated. There may not be enough free memory for allocation to succeed.\n",
+ "[07/28/2022-16:51:59] [TRT] [W] Skipping tactic 7 due to insufficient memory on requested size of 8589934592 detected for tactic 0x000000000000003c.\n",
+ "Try decreasing the workspace size with IBuilderConfig::setMemoryPoolLimit().\n",
+ "[07/28/2022-16:51:59] [TRT] [W] Weights [name=Conv_53 + Relu_54.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:59] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:59] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:59] [TRT] [W] Weights [name=Conv_53 + Relu_54.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:59] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:59] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:59] [TRT] [W] Weights [name=Conv_53 + Relu_54.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:59] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:59] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:59] [TRT] [W] Weights [name=Conv_53 + Relu_54.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:59] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:59] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:59] [TRT] [W] Weights [name=Conv_53 + Relu_54.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:59] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:59] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:59] [TRT] [W] Weights [name=Conv_53 + Relu_54.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:59] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:59] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:59] [TRT] [W] Weights [name=Conv_53 + Relu_54.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:59] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:59] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:59] [TRT] [W] Weights [name=Conv_53 + Relu_54.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:59] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:59] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:59] [TRT] [W] Weights [name=Conv_53 + Relu_54.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:59] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:59] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:59] [TRT] [W] Weights [name=Conv_53 + Relu_54.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:59] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:59] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:59] [TRT] [W] Weights [name=Conv_53 + Relu_54.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:59] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:59] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:59] [TRT] [W] Weights [name=Conv_53 + Relu_54.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:59] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:59] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:59] [TRT] [W] Weights [name=Conv_53 + Relu_54.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:59] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:59] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:59] [TRT] [W] Weights [name=Conv_55 + Relu_56.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:59] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:59] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:59] [TRT] [W] Weights [name=Conv_55 + Relu_56.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:59] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:59] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:59] [TRT] [W] Weights [name=Conv_55 + Relu_56.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:59] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:59] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:59] [TRT] [W] Weights [name=Conv_55 + Relu_56.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:59] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:59] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:59] [TRT] [W] Weights [name=Conv_55 + Relu_56.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:59] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:59] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:59] [TRT] [W] Weights [name=Conv_55 + Relu_56.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:59] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:59] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:59] [TRT] [W] Weights [name=Conv_55 + Relu_56.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:59] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:59] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:59] [TRT] [W] Weights [name=Conv_55 + Relu_56.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:59] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:59] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:59] [TRT] [W] Weights [name=Conv_55 + Relu_56.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:59] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:59] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:59] [TRT] [W] Weights [name=Conv_55 + Relu_56.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:59] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:59] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:59] [TRT] [W] Weights [name=Conv_55 + Relu_56.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:59] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:59] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:51:59] [TRT] [W] Weights [name=Conv_55 + Relu_56.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:51:59] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:51:59] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:00] [TRT] [W] Weights [name=Conv_55 + Relu_56.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:00] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:00] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:00] [TRT] [W] Weights [name=Conv_55 + Relu_56.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:00] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:00] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:00] [TRT] [W] Weights [name=ConvTranspose_57.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:00] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:00] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:00] [TRT] [W] Weights [name=ConvTranspose_57.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:00] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:00] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:00] [TRT] [W] Weights [name=ConvTranspose_57.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:00] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:00] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:00] [TRT] [W] Weights [name=ConvTranspose_57.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:00] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:00] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:00] [TRT] [W] Weights [name=ConvTranspose_57.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:00] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:00] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:00] [TRT] [W] Weights [name=ConvTranspose_57.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:00] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:00] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:00] [TRT] [W] Weights [name=ConvTranspose_57.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:00] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:00] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:00] [TRT] [W] Weights [name=ConvTranspose_57.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:00] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:00] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:00] [TRT] [W] Weights [name=ConvTranspose_57.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:00] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:00] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:00] [TRT] [W] Weights [name=ConvTranspose_57.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:00] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:00] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:00] [TRT] [W] Weights [name=ConvTranspose_57.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:00] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:00] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:00] [TRT] [W] Weights [name=ConvTranspose_57.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:00] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:00] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:00] [TRT] [W] Weights [name=ConvTranspose_57.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:00] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:00] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:00] [TRT] [W] Weights [name=ConvTranspose_57.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:00] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:00] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:00] [TRT] [W] Weights [name=ConvTranspose_57.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:00] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:00] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:01] [TRT] [W] Weights [name=Conv_59 + Relu_60.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:01] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:01] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:01] [TRT] [W] Weights [name=Conv_59 + Relu_60.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:01] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:01] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:01] [TRT] [W] Weights [name=Conv_59 + Relu_60.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:01] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:01] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:01] [TRT] [W] Weights [name=Conv_59 + Relu_60.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:01] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:01] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:01] [TRT] [W] Weights [name=Conv_59 + Relu_60.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:01] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:01] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:01] [TRT] [W] Weights [name=Conv_59 + Relu_60.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:01] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:01] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:01] [TRT] [W] Weights [name=Conv_59 + Relu_60.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:01] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:01] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:01] [TRT] [W] Weights [name=Conv_59 + Relu_60.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:01] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:01] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:02] [TRT] [W] Weights [name=Conv_61 + Relu_62.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:02] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:02] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:02] [TRT] [W] Weights [name=Conv_61 + Relu_62.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:02] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:02] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:02] [TRT] [W] Weights [name=Conv_61 + Relu_62.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:02] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:02] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:02] [TRT] [W] Weights [name=Conv_61 + Relu_62.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:02] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:02] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:02] [TRT] [W] Weights [name=Conv_61 + Relu_62.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:02] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:02] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:02] [TRT] [W] Weights [name=Conv_61 + Relu_62.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:02] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:02] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:02] [TRT] [W] Weights [name=Conv_61 + Relu_62.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:02] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:02] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:02] [TRT] [W] Weights [name=Conv_61 + Relu_62.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:02] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:02] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:02] [TRT] [W] Weights [name=Conv_63 + Relu_64.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:02] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:02] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:02] [TRT] [W] Weights [name=Conv_63 + Relu_64.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:02] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:02] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:02] [TRT] [W] Weights [name=Conv_63 + Relu_64.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:02] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:02] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:02] [TRT] [W] Weights [name=Conv_63 + Relu_64.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:02] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:02] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:02] [TRT] [W] Weights [name=Conv_63 + Relu_64.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:02] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:02] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:03] [TRT] [W] Weights [name=Conv_63 + Relu_64.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:03] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:03] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:03] [TRT] [W] Weights [name=Conv_65 + Relu_66.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:03] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:03] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:03] [TRT] [W] Weights [name=Conv_65 + Relu_66.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:03] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:03] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:03] [TRT] [W] Weights [name=Conv_65 + Relu_66.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:03] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:03] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:03] [TRT] [W] Weights [name=Conv_65 + Relu_66.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:03] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:03] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:03] [TRT] [W] Weights [name=Conv_65 + Relu_66.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:03] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:03] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:03] [TRT] [W] Weights [name=Conv_65 + Relu_66.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:03] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:03] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:03] [TRT] [W] Weights [name=Conv_67 + Relu_68.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:03] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:03] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:03] [TRT] [W] Weights [name=Conv_67 + Relu_68.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:03] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:03] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:03] [TRT] [W] Weights [name=Conv_67 + Relu_68.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:03] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:03] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:03] [TRT] [W] Weights [name=Conv_67 + Relu_68.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:03] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:03] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:03] [TRT] [W] Weights [name=Conv_67 + Relu_68.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:03] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:03] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:03] [TRT] [W] Weights [name=Conv_67 + Relu_68.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:03] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:03] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:03] [TRT] [W] Weights [name=Conv_67 + Relu_68.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:03] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:03] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:03] [TRT] [W] Weights [name=Conv_67 + Relu_68.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:03] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:03] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:03] [TRT] [W] Weights [name=Conv_67 + Relu_68.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:03] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:03] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:03] [TRT] [W] Weights [name=Conv_67 + Relu_68.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:03] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:03] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:03] [TRT] [W] Weights [name=Conv_67 + Relu_68.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:03] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:03] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:03] [TRT] [W] Weights [name=Conv_67 + Relu_68.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:03] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:03] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:03] [TRT] [W] Weights [name=Conv_67 + Relu_68.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:03] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:03] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:03] [TRT] [W] Weights [name=Conv_67 + Relu_68.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:03] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:03] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:03] [TRT] [W] Weights [name=ConvTranspose_69.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:03] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:03] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:03] [TRT] [W] Weights [name=ConvTranspose_69.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:03] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:03] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:03] [TRT] [W] Weights [name=ConvTranspose_69.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:03] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:03] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:03] [TRT] [W] Weights [name=ConvTranspose_69.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:03] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:03] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:03] [TRT] [W] Weights [name=ConvTranspose_69.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:03] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:03] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:03] [TRT] [W] Weights [name=ConvTranspose_69.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:03] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:03] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:03] [TRT] [W] Weights [name=ConvTranspose_69.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:03] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:03] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:03] [TRT] [W] Weights [name=ConvTranspose_69.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:03] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:03] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:03] [TRT] [W] Weights [name=ConvTranspose_69.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:03] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:03] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:03] [TRT] [W] Weights [name=ConvTranspose_69.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:03] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:03] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:03] [TRT] [W] Weights [name=ConvTranspose_69.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:03] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:03] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:03] [TRT] [W] Weights [name=ConvTranspose_69.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:03] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:03] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:03] [TRT] [W] Weights [name=ConvTranspose_69.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:03] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:03] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:03] [TRT] [W] Weights [name=ConvTranspose_69.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:03] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:03] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:03] [TRT] [W] Weights [name=ConvTranspose_69.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:03] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:03] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:04] [TRT] [W] Weights [name=Conv_71 + Relu_72.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:04] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:04] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:05] [TRT] [W] Weights [name=Conv_71 + Relu_72.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:05] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:05] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:05] [TRT] [W] Weights [name=Conv_71 + Relu_72.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:05] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:05] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:05] [TRT] [W] Weights [name=Conv_71 + Relu_72.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:05] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:05] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:05] [TRT] [W] Weights [name=Conv_71 + Relu_72.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:05] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:05] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:05] [TRT] [W] Weights [name=Conv_71 + Relu_72.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:05] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:05] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:05] [TRT] [W] Weights [name=Conv_71 + Relu_72.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:05] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:05] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:05] [TRT] [W] Weights [name=Conv_71 + Relu_72.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:05] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:05] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:06] [TRT] [W] Weights [name=Conv_73 + Relu_74.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:06] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:06] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:06] [TRT] [W] Weights [name=Conv_73 + Relu_74.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:06] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:06] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:06] [TRT] [W] Weights [name=Conv_73 + Relu_74.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:06] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:06] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:06] [TRT] [W] Weights [name=Conv_73 + Relu_74.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:06] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:06] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:06] [TRT] [W] Weights [name=Conv_73 + Relu_74.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:06] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:06] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:06] [TRT] [W] Weights [name=Conv_73 + Relu_74.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:06] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:06] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:06] [TRT] [W] Weights [name=Conv_73 + Relu_74.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:06] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:06] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:06] [TRT] [W] Weights [name=Conv_73 + Relu_74.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:06] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:06] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:07] [TRT] [W] Weights [name=Conv_75 + Relu_76.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:07] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:07] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:07] [TRT] [W] Weights [name=Conv_75 + Relu_76.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:07] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:07] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:07] [TRT] [W] Weights [name=Conv_75 + Relu_76.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:07] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:07] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:07] [TRT] [W] Weights [name=Conv_75 + Relu_76.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:07] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:07] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:07] [TRT] [W] Weights [name=Conv_75 + Relu_76.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:07] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:07] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:07] [TRT] [W] Weights [name=Conv_77 + Relu_78.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:07] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:07] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:07] [TRT] [W] Weights [name=Conv_77 + Relu_78.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:07] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:07] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:07] [TRT] [W] Weights [name=Conv_77 + Relu_78.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:07] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:07] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:07] [TRT] [W] Weights [name=Conv_77 + Relu_78.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:07] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:07] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:07] [TRT] [W] Weights [name=Conv_77 + Relu_78.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:07] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:07] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:07] [TRT] [W] Weights [name=Conv_79 + Relu_80.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:07] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:07] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:07] [TRT] [W] Weights [name=Conv_79 + Relu_80.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:07] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:07] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:07] [TRT] [W] Weights [name=Conv_79 + Relu_80.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:07] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:07] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:07] [TRT] [W] Weights [name=Conv_79 + Relu_80.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:07] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:07] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:07] [TRT] [W] Weights [name=Conv_79 + Relu_80.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:07] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:07] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:07] [TRT] [W] Weights [name=Conv_79 + Relu_80.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:07] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:07] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:07] [TRT] [W] Weights [name=Conv_79 + Relu_80.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:07] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:07] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:07] [TRT] [W] Weights [name=Conv_79 + Relu_80.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:07] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:07] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:08] [TRT] [W] Weights [name=Conv_101 + PWN(PWN(Sigmoid_102), Mul_103).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:08] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:08] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:08] [TRT] [W] Weights [name=Conv_101 + PWN(PWN(Sigmoid_102), Mul_103).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:08] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:08] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:08] [TRT] [W] Weights [name=Conv_101 + PWN(PWN(Sigmoid_102), Mul_103).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:08] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:08] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:08] [TRT] [W] Weights [name=Conv_101 + PWN(PWN(Sigmoid_102), Mul_103).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:08] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:08] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:08] [TRT] [W] Weights [name=Conv_101 + PWN(PWN(Sigmoid_102), Mul_103).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:08] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:08] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:08] [TRT] [W] Weights [name=Conv_101 + PWN(PWN(Sigmoid_102), Mul_103).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:08] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:08] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:08] [TRT] [W] Weights [name=Conv_101 + PWN(PWN(Sigmoid_102), Mul_103).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:08] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:08] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:08] [TRT] [W] Weights [name=Conv_101 + PWN(PWN(Sigmoid_102), Mul_103).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:08] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:08] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:08] [TRT] [W] Weights [name=Conv_101 + PWN(PWN(Sigmoid_102), Mul_103).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:08] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:08] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:08] [TRT] [W] Weights [name=Conv_101 + PWN(PWN(Sigmoid_102), Mul_103).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:08] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:08] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:08] [TRT] [W] Weights [name=Conv_101 + PWN(PWN(Sigmoid_102), Mul_103).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:08] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:08] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:08] [TRT] [W] Weights [name=Conv_101 + PWN(PWN(Sigmoid_102), Mul_103).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:08] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:08] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:13] [TRT] [W] Weights [name=Conv_101 + PWN(PWN(Sigmoid_102), Mul_103).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:13] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:13] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:13] [TRT] [W] Weights [name=Conv_101 + PWN(PWN(Sigmoid_102), Mul_103).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:13] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:13] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:13] [TRT] [W] Weights [name=Conv_82 + Relu_83.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:13] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:13] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:52:13] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:13] [TRT] [W] Weights [name=Conv_82 + Relu_83.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:13] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:13] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:52:13] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:13] [TRT] [W] Weights [name=Conv_82 + Relu_83.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:13] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:13] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:52:13] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:13] [TRT] [W] Weights [name=Conv_82 + Relu_83.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:13] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:13] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:52:13] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:13] [TRT] [W] Weights [name=Conv_82 + Relu_83.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:13] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:13] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:52:13] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:13] [TRT] [W] Weights [name=Conv_82 + Relu_83.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:13] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:13] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:52:13] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:14] [TRT] [W] Weights [name=Conv_104 || Conv_108.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:14] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:14] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:14] [TRT] [W] Weights [name=Conv_104 || Conv_108.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:14] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:14] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:14] [TRT] [W] Weights [name=Conv_104 || Conv_108.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:14] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:14] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:14] [TRT] [W] Weights [name=Conv_104 || Conv_108.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:14] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:14] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:14] [TRT] [W] Weights [name=Conv_104 || Conv_108.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:14] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:14] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:14] [TRT] [W] Weights [name=Conv_104 || Conv_108.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:14] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:14] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:14] [TRT] [W] Weights [name=Conv_104 || Conv_108.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:14] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:14] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:14] [TRT] [W] Weights [name=Conv_104 || Conv_108.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:14] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:14] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:14] [TRT] [W] Weights [name=Conv_84 + Relu_85.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:14] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:14] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:52:14] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:14] [TRT] [W] Weights [name=Conv_84 + Relu_85.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:14] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:14] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:52:14] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:14] [TRT] [W] Weights [name=Conv_84 + Relu_85.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:14] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:14] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:52:14] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:14] [TRT] [W] Weights [name=Conv_84 + Relu_85.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:14] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:14] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:52:14] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:14] [TRT] [W] Weights [name=Conv_84 + Relu_85.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:14] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:14] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:52:14] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:14] [TRT] [W] Weights [name=Conv_84 + Relu_85.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:14] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:14] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:52:14] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:42] [TRT] [W] Weights [name=Conv_107 + PWN(Sigmoid_114).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:42] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:42] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:42] [TRT] [W] Weights [name=Conv_107 + PWN(Sigmoid_114).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:42] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:42] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:42] [TRT] [W] Weights [name=Conv_107 + PWN(Sigmoid_114).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:42] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:42] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:42] [TRT] [W] Weights [name=Conv_107 + PWN(Sigmoid_114).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:42] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:42] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:42] [TRT] [W] Weights [name=Conv_107 + PWN(Sigmoid_114).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:42] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:42] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:42] [TRT] [W] Weights [name=Conv_107 + PWN(Sigmoid_114).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:42] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:42] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:42] [TRT] [W] Weights [name=Conv_107 + PWN(Sigmoid_114).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:42] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:42] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:42] [TRT] [W] Weights [name=Conv_107 + PWN(Sigmoid_114).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:42] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:42] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:42] [TRT] [W] Weights [name=Conv_107 + PWN(Sigmoid_114).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:42] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:42] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:42] [TRT] [W] Weights [name=Conv_107 + PWN(Sigmoid_114).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:42] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:42] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:42] [TRT] [W] Weights [name=Conv_107 + PWN(Sigmoid_114).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:42] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:42] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:42] [TRT] [W] Weights [name=Conv_107 + PWN(Sigmoid_114).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:42] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:42] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:47] [TRT] [W] Weights [name=Conv_107 + PWN(Sigmoid_114).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:47] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:47] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:47] [TRT] [W] Weights [name=Conv_107 + PWN(Sigmoid_114).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:47] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:47] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:47] [TRT] [W] Weights [name=Conv_111 || Conv_112.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:47] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:47] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:47] [TRT] [W] Weights [name=Conv_111 || Conv_112.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:47] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:47] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:47] [TRT] [W] Weights [name=Conv_111 || Conv_112.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:47] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:47] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:47] [TRT] [W] Weights [name=Conv_111 || Conv_112.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:47] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:47] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:47] [TRT] [W] Weights [name=Conv_111 || Conv_112.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:47] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:47] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:47] [TRT] [W] Weights [name=Conv_111 || Conv_112.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:47] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:47] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:47] [TRT] [W] Weights [name=Conv_111 || Conv_112.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:47] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:47] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:47] [TRT] [W] Weights [name=Conv_111 || Conv_112.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:47] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:47] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:47] [TRT] [W] Weights [name=Conv_111 || Conv_112.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:47] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:47] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:47] [TRT] [W] Weights [name=Conv_111 || Conv_112.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:47] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:47] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:47] [TRT] [W] Weights [name=Conv_111 || Conv_112.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:47] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:47] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:47] [TRT] [W] Weights [name=Conv_111 || Conv_112.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:47] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:47] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:47] [TRT] [W] Weights [name=Conv_111 || Conv_112.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:47] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:47] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:47] [TRT] [W] Weights [name=Conv_111 || Conv_112.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:47] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:47] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:47] [TRT] [W] Weights [name=Conv_86 + Relu_87.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:47] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:47] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:52:47] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:47] [TRT] [W] Weights [name=Conv_86 + Relu_87.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:47] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:47] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:52:47] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:47] [TRT] [W] Weights [name=Conv_86 + Relu_87.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:47] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:47] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:52:47] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:47] [TRT] [W] Weights [name=Conv_86 + Relu_87.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:47] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:47] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:52:47] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:47] [TRT] [W] Weights [name=Conv_86 + Relu_87.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:47] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:47] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:52:47] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:52:47] [TRT] [W] Weights [name=Conv_86 + Relu_87.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:52:47] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:52:47] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:52:47] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:06] [TRT] [W] Weights [name=Conv_88 + Relu_89.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:06] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:06] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:53:06] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:06] [TRT] [W] Weights [name=Conv_88 + Relu_89.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:06] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:06] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:53:06] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:06] [TRT] [W] Weights [name=Conv_88 + Relu_89.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:06] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:06] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:53:06] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:06] [TRT] [W] Weights [name=Conv_88 + Relu_89.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:06] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:06] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:53:06] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:06] [TRT] [W] Weights [name=Conv_88 + Relu_89.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:06] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:06] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:53:06] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:06] [TRT] [W] Weights [name=Conv_88 + Relu_89.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:06] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:06] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:53:06] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:06] [TRT] [W] Weights [name=Conv_90 + Relu_91.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:06] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:06] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:06] [TRT] [W] Weights [name=Conv_90 + Relu_91.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:06] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:06] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:06] [TRT] [W] Weights [name=Conv_90 + Relu_91.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:06] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:06] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:06] [TRT] [W] Weights [name=Conv_90 + Relu_91.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:06] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:06] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:06] [TRT] [W] Weights [name=Conv_90 + Relu_91.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:06] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:06] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:06] [TRT] [W] Weights [name=Conv_90 + Relu_91.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:06] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:06] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:06] [TRT] [W] Weights [name=Conv_90 + Relu_91.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:06] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:06] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:06] [TRT] [W] Weights [name=Conv_90 + Relu_91.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:06] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:06] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:06] [TRT] [W] Weights [name=Conv_157 + PWN(PWN(Sigmoid_158), Mul_159).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:06] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:06] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:07] [TRT] [W] Weights [name=Conv_157 + PWN(PWN(Sigmoid_158), Mul_159).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:07] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:07] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:07] [TRT] [W] Weights [name=Conv_157 + PWN(PWN(Sigmoid_158), Mul_159).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:07] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:07] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:07] [TRT] [W] Weights [name=Conv_157 + PWN(PWN(Sigmoid_158), Mul_159).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:07] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:07] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:07] [TRT] [W] Weights [name=Conv_157 + PWN(PWN(Sigmoid_158), Mul_159).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:07] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:07] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:07] [TRT] [W] Weights [name=Conv_157 + PWN(PWN(Sigmoid_158), Mul_159).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:07] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:07] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:07] [TRT] [W] Weights [name=Conv_157 + PWN(PWN(Sigmoid_158), Mul_159).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:07] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:07] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:07] [TRT] [W] Weights [name=Conv_157 + PWN(PWN(Sigmoid_158), Mul_159).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:07] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:07] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:07] [TRT] [W] Weights [name=Conv_157 + PWN(PWN(Sigmoid_158), Mul_159).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:07] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:07] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:07] [TRT] [W] Weights [name=Conv_157 + PWN(PWN(Sigmoid_158), Mul_159).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:07] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:07] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:07] [TRT] [W] Weights [name=Conv_157 + PWN(PWN(Sigmoid_158), Mul_159).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:07] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:07] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:07] [TRT] [W] Weights [name=Conv_157 + PWN(PWN(Sigmoid_158), Mul_159).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:07] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:07] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:07] [TRT] [W] Weights [name=Conv_157 + PWN(PWN(Sigmoid_158), Mul_159).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:07] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:07] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:07] [TRT] [W] Weights [name=Conv_157 + PWN(PWN(Sigmoid_158), Mul_159).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:07] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:07] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:08] [TRT] [W] Weights [name=Conv_93 + Relu_94.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:08] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:08] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:53:08] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:08] [TRT] [W] Weights [name=Conv_93 + Relu_94.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:08] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:08] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:53:08] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:08] [TRT] [W] Weights [name=Conv_93 + Relu_94.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:08] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:08] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:53:08] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:08] [TRT] [W] Weights [name=Conv_93 + Relu_94.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:08] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:08] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:53:08] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:08] [TRT] [W] Weights [name=Conv_93 + Relu_94.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:08] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:08] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:53:08] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:08] [TRT] [W] Weights [name=Conv_93 + Relu_94.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:08] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:08] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:53:08] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:08] [TRT] [W] Weights [name=Conv_93 + Relu_94.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:08] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:08] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:53:08] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:08] [TRT] [W] Weights [name=Conv_93 + Relu_94.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:08] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:08] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:53:08] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:09] [TRT] [W] Weights [name=Conv_160 || Conv_164.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:09] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:09] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:53:09] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:09] [TRT] [W] Weights [name=Conv_160 || Conv_164.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:09] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:09] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:53:09] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:09] [TRT] [W] Weights [name=Conv_160 || Conv_164.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:09] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:09] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:53:09] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:09] [TRT] [W] Weights [name=Conv_160 || Conv_164.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:09] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:09] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:53:09] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:09] [TRT] [W] Weights [name=Conv_160 || Conv_164.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:09] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:09] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:53:09] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:09] [TRT] [W] Weights [name=Conv_160 || Conv_164.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:09] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:09] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:53:09] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:09] [TRT] [W] Weights [name=Conv_160 || Conv_164.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:09] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:09] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:53:09] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:09] [TRT] [W] Weights [name=Conv_160 || Conv_164.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:09] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:09] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:53:09] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:10] [TRT] [W] Weights [name=Conv_95 + Relu_96.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:10] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:10] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:53:10] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:10] [TRT] [W] Weights [name=Conv_95 + Relu_96.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:10] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:10] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:53:10] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:10] [TRT] [W] Weights [name=Conv_95 + Relu_96.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:10] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:10] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:53:10] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:10] [TRT] [W] Weights [name=Conv_95 + Relu_96.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:10] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:10] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:53:10] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:10] [TRT] [W] Weights [name=Conv_95 + Relu_96.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:10] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:10] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:53:10] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:10] [TRT] [W] Weights [name=Conv_95 + Relu_96.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:10] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:10] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:53:10] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:10] [TRT] [W] Weights [name=Conv_163 + PWN(Sigmoid_170).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:10] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:10] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:10] [TRT] [W] Weights [name=Conv_163 + PWN(Sigmoid_170).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:10] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:10] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:10] [TRT] [W] Weights [name=Conv_163 + PWN(Sigmoid_170).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:10] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:10] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:10] [TRT] [W] Weights [name=Conv_163 + PWN(Sigmoid_170).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:10] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:10] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:10] [TRT] [W] Weights [name=Conv_163 + PWN(Sigmoid_170).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:10] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:10] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:10] [TRT] [W] Weights [name=Conv_163 + PWN(Sigmoid_170).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:10] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:10] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:10] [TRT] [W] Weights [name=Conv_163 + PWN(Sigmoid_170).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:10] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:10] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:10] [TRT] [W] Weights [name=Conv_163 + PWN(Sigmoid_170).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:10] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:10] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:10] [TRT] [W] Weights [name=Conv_163 + PWN(Sigmoid_170).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:10] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:10] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:10] [TRT] [W] Weights [name=Conv_163 + PWN(Sigmoid_170).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:10] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:10] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:10] [TRT] [W] Weights [name=Conv_163 + PWN(Sigmoid_170).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:10] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:10] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:10] [TRT] [W] Weights [name=Conv_163 + PWN(Sigmoid_170).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:10] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:10] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:11] [TRT] [W] Weights [name=Conv_163 + PWN(Sigmoid_170).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:11] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:11] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:11] [TRT] [W] Weights [name=Conv_163 + PWN(Sigmoid_170).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:11] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:11] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:11] [TRT] [W] Weights [name=Conv_167 || Conv_168.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:11] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:11] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:11] [TRT] [W] Weights [name=Conv_167 || Conv_168.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:11] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:11] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:11] [TRT] [W] Weights [name=Conv_167 || Conv_168.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:11] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:11] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:11] [TRT] [W] Weights [name=Conv_167 || Conv_168.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:11] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:11] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:11] [TRT] [W] Weights [name=Conv_167 || Conv_168.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:11] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:11] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:11] [TRT] [W] Weights [name=Conv_167 || Conv_168.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:11] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:11] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:11] [TRT] [W] Weights [name=Conv_167 || Conv_168.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:11] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:11] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:11] [TRT] [W] Weights [name=Conv_167 || Conv_168.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:11] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:11] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:11] [TRT] [W] Weights [name=Conv_167 || Conv_168.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:11] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:11] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:11] [TRT] [W] Weights [name=Conv_167 || Conv_168.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:11] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:11] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:11] [TRT] [W] Weights [name=Conv_167 || Conv_168.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:11] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:11] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:11] [TRT] [W] Weights [name=Conv_167 || Conv_168.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:11] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:11] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:11] [TRT] [W] Weights [name=Conv_167 || Conv_168.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:11] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:11] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:11] [TRT] [W] Weights [name=Conv_167 || Conv_168.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:11] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:11] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:11] [TRT] [W] Weights [name=Conv_97 + Relu_98.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:11] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:11] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:11] [TRT] [W] Weights [name=Conv_97 + Relu_98.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:11] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:11] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:11] [TRT] [W] Weights [name=Conv_97 + Relu_98.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:11] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:11] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:11] [TRT] [W] Weights [name=Conv_97 + Relu_98.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:11] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:11] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:11] [TRT] [W] Weights [name=Conv_97 + Relu_98.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:11] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:11] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:11] [TRT] [W] Weights [name=Conv_97 + Relu_98.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:11] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:11] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:12] [TRT] [W] Weights [name=Conv_99 + Relu_100.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:12] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:12] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:12] [TRT] [W] Weights [name=Conv_99 + Relu_100.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:12] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:12] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:12] [TRT] [W] Weights [name=Conv_99 + Relu_100.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:12] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:12] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:12] [TRT] [W] Weights [name=Conv_99 + Relu_100.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:12] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:12] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:12] [TRT] [W] Weights [name=Conv_99 + Relu_100.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:12] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:12] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:12] [TRT] [W] Weights [name=Conv_99 + Relu_100.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:12] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:12] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:12] [TRT] [W] Weights [name=Conv_213 + PWN(PWN(Sigmoid_214), Mul_215).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:12] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:12] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:12] [TRT] [W] Weights [name=Conv_213 + PWN(PWN(Sigmoid_214), Mul_215).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:12] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:12] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:12] [TRT] [W] Weights [name=Conv_213 + PWN(PWN(Sigmoid_214), Mul_215).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:12] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:12] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:12] [TRT] [W] Weights [name=Conv_213 + PWN(PWN(Sigmoid_214), Mul_215).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:12] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:12] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:12] [TRT] [W] Weights [name=Conv_213 + PWN(PWN(Sigmoid_214), Mul_215).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:12] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:12] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:12] [TRT] [W] Weights [name=Conv_213 + PWN(PWN(Sigmoid_214), Mul_215).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:12] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:12] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:12] [TRT] [W] Weights [name=Conv_213 + PWN(PWN(Sigmoid_214), Mul_215).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:12] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:12] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:12] [TRT] [W] Weights [name=Conv_213 + PWN(PWN(Sigmoid_214), Mul_215).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:12] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:12] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:12] [TRT] [W] Weights [name=Conv_213 + PWN(PWN(Sigmoid_214), Mul_215).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:12] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:12] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:12] [TRT] [W] Weights [name=Conv_213 + PWN(PWN(Sigmoid_214), Mul_215).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:12] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:12] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:12] [TRT] [W] Weights [name=Conv_213 + PWN(PWN(Sigmoid_214), Mul_215).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:12] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:12] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:12] [TRT] [W] Weights [name=Conv_213 + PWN(PWN(Sigmoid_214), Mul_215).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:12] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:12] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:13] [TRT] [W] Weights [name=Conv_213 + PWN(PWN(Sigmoid_214), Mul_215).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:13] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:13] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:13] [TRT] [W] Weights [name=Conv_213 + PWN(PWN(Sigmoid_214), Mul_215).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:13] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:13] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:40] [TRT] [W] Weights [name=Conv_216 || Conv_220.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:40] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:40] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:53:40] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:40] [TRT] [W] Weights [name=Conv_216 || Conv_220.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:40] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:40] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:53:40] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:40] [TRT] [W] Weights [name=Conv_216 || Conv_220.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:40] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:40] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:53:40] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:40] [TRT] [W] Weights [name=Conv_216 || Conv_220.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:40] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:40] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:53:40] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:40] [TRT] [W] Weights [name=Conv_216 || Conv_220.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:40] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:40] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:53:40] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:40] [TRT] [W] Weights [name=Conv_216 || Conv_220.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:40] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:40] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:53:40] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:40] [TRT] [W] Weights [name=Conv_216 || Conv_220.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:40] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:40] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:53:40] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:40] [TRT] [W] Weights [name=Conv_216 || Conv_220.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:40] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:40] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:53:40] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:41] [TRT] [W] Weights [name=Conv_219 + PWN(Sigmoid_226).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:41] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:41] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:41] [TRT] [W] Weights [name=Conv_219 + PWN(Sigmoid_226).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:41] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:41] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:41] [TRT] [W] Weights [name=Conv_219 + PWN(Sigmoid_226).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:41] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:41] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:41] [TRT] [W] Weights [name=Conv_219 + PWN(Sigmoid_226).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:41] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:41] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:41] [TRT] [W] Weights [name=Conv_219 + PWN(Sigmoid_226).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:41] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:41] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:41] [TRT] [W] Weights [name=Conv_219 + PWN(Sigmoid_226).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:41] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:41] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:41] [TRT] [W] Weights [name=Conv_219 + PWN(Sigmoid_226).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:41] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:41] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:41] [TRT] [W] Weights [name=Conv_219 + PWN(Sigmoid_226).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:41] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:41] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:41] [TRT] [W] Weights [name=Conv_219 + PWN(Sigmoid_226).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:41] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:41] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:41] [TRT] [W] Weights [name=Conv_219 + PWN(Sigmoid_226).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:41] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:41] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:41] [TRT] [W] Weights [name=Conv_219 + PWN(Sigmoid_226).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:41] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:41] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:41] [TRT] [W] Weights [name=Conv_219 + PWN(Sigmoid_226).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:41] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:41] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:41] [TRT] [W] Weights [name=Conv_219 + PWN(Sigmoid_226).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:41] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:41] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:41] [TRT] [W] Weights [name=Conv_219 + PWN(Sigmoid_226).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:41] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:41] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:42] [TRT] [W] Weights [name=Conv_223 || Conv_224.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:42] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:42] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:42] [TRT] [W] Weights [name=Conv_223 || Conv_224.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:42] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:42] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:42] [TRT] [W] Weights [name=Conv_223 || Conv_224.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:42] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:42] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:42] [TRT] [W] Weights [name=Conv_223 || Conv_224.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:42] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:42] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:42] [TRT] [W] Weights [name=Conv_223 || Conv_224.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:42] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:42] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:42] [TRT] [W] Weights [name=Conv_223 || Conv_224.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:42] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:42] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:42] [TRT] [W] Weights [name=Conv_223 || Conv_224.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:42] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:42] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:42] [TRT] [W] Weights [name=Conv_223 || Conv_224.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:42] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:42] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:42] [TRT] [W] Weights [name=Conv_223 || Conv_224.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:42] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:42] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:42] [TRT] [W] Weights [name=Conv_223 || Conv_224.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:42] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:42] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:42] [TRT] [W] Weights [name=Conv_223 || Conv_224.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:42] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:42] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:42] [TRT] [W] Weights [name=Conv_223 || Conv_224.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:42] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:42] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:42] [TRT] [W] Weights [name=Conv_223 || Conv_224.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:42] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:42] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:53:42] [TRT] [W] Weights [name=Conv_223 || Conv_224.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:53:42] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:53:42] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [I] Detected 1 inputs and 4 output network tensors.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_9 + Relu_10.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_11 + Relu_12.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_13 + Relu_14.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_15 + Relu_16.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_17 + Relu_18.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_19 + Relu_20.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_21 + Relu_22.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_23 + Relu_24.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_25 + Relu_26.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_27 + Relu_28.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_29 + Relu_30.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_31 + Relu_32.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_33 + Relu_34.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_35 + Relu_36.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_37 + Relu_38.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_39 + Relu_40.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_41 + Relu_42.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_43 + Relu_44.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_45 + Relu_46.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_47 + Relu_48.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_53 + Relu_54.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_55 + Relu_56.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=ConvTranspose_57.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_59 + Relu_60.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_61 + Relu_62.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_63 + Relu_64.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_65 + Relu_66.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_67 + Relu_68.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=ConvTranspose_69.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_71 + Relu_72.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_73 + Relu_74.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_75 + Relu_76.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_77 + Relu_78.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_79 + Relu_80.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_101 + PWN(PWN(Sigmoid_102), Mul_103).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_82 + Relu_83.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_104 || Conv_108.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_84 + Relu_85.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_107 + PWN(Sigmoid_114).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_111 || Conv_112.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_86 + Relu_87.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_88 + Relu_89.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_90 + Relu_91.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_157 + PWN(PWN(Sigmoid_158), Mul_159).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_93 + Relu_94.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_160 || Conv_164.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_95 + Relu_96.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_163 + PWN(Sigmoid_170).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_167 || Conv_168.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_97 + Relu_98.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_99 + Relu_100.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_213 + PWN(PWN(Sigmoid_214), Mul_215).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_216 || Conv_220.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Values less than smallest positive FP16 Subnormal value detected. Converting to FP16 minimum subnormalized value. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_219 + PWN(Sigmoid_226).weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] Weights [name=Conv_223 || Conv_224.weight] had the following issues when converted to FP16:\n",
+ "[07/28/2022-16:54:31] [TRT] [W] - Subnormal FP16 values detected. \n",
+ "[07/28/2022-16:54:31] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to reduce the magnitude of the weights.\n",
+ "[07/28/2022-16:54:31] [TRT] [I] Total Host Persistent Memory: 142544\n",
+ "[07/28/2022-16:54:31] [TRT] [I] Total Device Persistent Memory: 1786880\n",
+ "[07/28/2022-16:54:31] [TRT] [I] Total Scratch Memory: 430091008\n",
+ "[07/28/2022-16:54:31] [TRT] [I] [MemUsageStats] Peak memory usage of TRT CPU/GPU memory allocators: CPU 41 MiB, GPU 3306 MiB\n",
+ "[07/28/2022-16:54:31] [TRT] [I] [BlockAssignment] Algorithm ShiftNTopDown took 11.9584ms to assign 7 blocks to 120 nodes requiring 594750464 bytes.\n",
+ "[07/28/2022-16:54:31] [TRT] [I] Total Activation Memory: 594750464\n",
+ "[07/28/2022-16:54:31] [TRT] [I] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +1, GPU +8, now: CPU 2982, GPU 4585 (MiB)\n",
+ "[07/28/2022-16:54:31] [TRT] [I] [MemUsageChange] Init cuDNN: CPU +0, GPU +8, now: CPU 2982, GPU 4593 (MiB)\n",
+ "[07/28/2022-16:54:31] [TRT] [I] [MemUsageChange] TensorRT-managed allocation in building engine: CPU +33, GPU +34, now: CPU 33, GPU 34 (MiB)\n",
+ "[07/28/2022-16:54:31] [TRT] [W] The getMaxBatchSize() function should not be used with an engine built from a network created with NetworkDefinitionCreationFlag::kEXPLICIT_BATCH flag. This function will always return 1.\n",
+ "[07/28/2022-16:54:31] [TRT] [W] The getMaxBatchSize() function should not be used with an engine built from a network created with NetworkDefinitionCreationFlag::kEXPLICIT_BATCH flag. This function will always return 1.\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Export TensorRT-engine model \n",
+ "trtexec --onnx=weights/yolov6s.onnx --saveEngine=yolov6s.engine \\\n",
+ " --minShapes=images:1x3x640x640 \\\n",
+ " --optShapes=images:16x3x640x640 \\\n",
+ " --maxShapes=images:32x3x640x640 \\\n",
+ " --shapes=images:16x3x640x640 \\\n",
+ " --workspace=1024"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "f35c88c4-18bd-429f-b700-732eccbccfaa",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import cv2\n",
+ "import torch\n",
+ "import random\n",
+ "import time\n",
+ "import numpy as np\n",
+ "import tensorrt as trt\n",
+ "from PIL import Image\n",
+ "from pathlib import Path\n",
+ "from collections import OrderedDict,namedtuple"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "00c0a670-5bc1-4dcd-8460-4e3dafab57bb",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "w = './yolov6s.engine'\n",
+ "device = torch.device('cuda:0')\n",
+ "imgList = [cv2.imread('../data/images/bus.jpg'),\n",
+ " cv2.imread('../data/images/zidane.jpg'),\n",
+ " cv2.imread('../data/images/image1.jpg'),\n",
+ " cv2.imread('../data/images/image2.jpg'),\n",
+ " cv2.imread('../data/images/image3.jpg')]\n",
+ "imgList*=7\n",
+ "imgList = imgList[:32]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "7b5b62e0-be22-463e-b961-46baca126bd2",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[07/28/2022-17:04:34] [TRT] [I] [MemUsageChange] Init CUDA: CPU +327, GPU +0, now: CPU 407, GPU 3465 (MiB)\n",
+ "[07/28/2022-17:04:34] [TRT] [I] Loaded engine size: 33 MiB\n",
+ "[07/28/2022-17:04:34] [TRT] [I] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +872, GPU +380, now: CPU 1337, GPU 3879 (MiB)\n",
+ "[07/28/2022-17:04:34] [TRT] [I] [MemUsageChange] Init cuDNN: CPU +126, GPU +58, now: CPU 1463, GPU 3937 (MiB)\n",
+ "[07/28/2022-17:04:34] [TRT] [W] TensorRT was linked against cuDNN 8.4.1 but loaded cuDNN 8.3.2\n",
+ "[07/28/2022-17:04:34] [TRT] [I] [MemUsageChange] TensorRT-managed allocation in engine deserialization: CPU +0, GPU +34, now: CPU 0, GPU 34 (MiB)\n",
+ "[07/28/2022-17:04:34] [TRT] [I] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +0, GPU +8, now: CPU 1429, GPU 3929 (MiB)\n",
+ "[07/28/2022-17:04:34] [TRT] [I] [MemUsageChange] Init cuDNN: CPU +0, GPU +8, now: CPU 1429, GPU 3937 (MiB)\n",
+ "[07/28/2022-17:04:34] [TRT] [W] TensorRT was linked against cuDNN 8.4.1 but loaded cuDNN 8.3.2\n",
+ "[07/28/2022-17:04:34] [TRT] [I] [MemUsageChange] TensorRT-managed allocation in IExecutionContext creation: CPU +0, GPU +569, now: CPU 0, GPU 603 (MiB)\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Infer TensorRT Engine\n",
+ "logger = trt.Logger(trt.Logger.INFO)\n",
+ "trt.init_libnvinfer_plugins(logger, namespace=\"\")\n",
+ "with open(w, 'rb') as f, trt.Runtime(logger) as runtime:\n",
+ " model = runtime.deserialize_cuda_engine(f.read())\n",
+ "context = model.create_execution_context()\n",
+ "\n",
+ "\n",
+ "def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleup=True, stride=32):\n",
+ " # Resize and pad image while meeting stride-multiple constraints\n",
+ " shape = im.shape[:2] # current shape [height, width]\n",
+ " if isinstance(new_shape, int):\n",
+ " new_shape = (new_shape, new_shape)\n",
+ "\n",
+ " # Scale ratio (new / old)\n",
+ " r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])\n",
+ " if not scaleup: # only scale down, do not scale up (for better val mAP)\n",
+ " r = min(r, 1.0)\n",
+ "\n",
+ " # Compute padding\n",
+ " new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))\n",
+ " dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding\n",
+ "\n",
+ " if auto: # minimum rectangle\n",
+ " dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding\n",
+ "\n",
+ " dw /= 2 # divide padding into 2 sides\n",
+ " dh /= 2\n",
+ "\n",
+ " if shape[::-1] != new_unpad: # resize\n",
+ " im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)\n",
+ " top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))\n",
+ " left, right = int(round(dw - 0.1)), int(round(dw + 0.1))\n",
+ " im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border\n",
+ " return im, r, (dw, dh)\n",
+ "\n",
+ "def postprocess(boxes,r,dwdh):\n",
+ " dwdh = torch.tensor(dwdh*2).to(boxes.device)\n",
+ " boxes -= dwdh\n",
+ " boxes /= r\n",
+ " return boxes.clip_(0,6400)\n",
+ "\n",
+ "names = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', \n",
+ " 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', \n",
+ " 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', \n",
+ " 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', \n",
+ " 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', \n",
+ " 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', \n",
+ " 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', \n",
+ " 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', \n",
+ " 'hair drier', 'toothbrush']\n",
+ "colors = {name:[random.randint(0, 255) for _ in range(3)] for i,name in enumerate(names)}"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "c3c71646-e978-40db-8478-5c4329a058ec",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "origin_RGB = []\n",
+ "resize_data = []\n",
+ "for img in imgList:\n",
+ " img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)\n",
+ " origin_RGB.append(img)\n",
+ " image = img.copy()\n",
+ " image, ratio, dwdh = letterbox(image, auto=False)\n",
+ " image = image.transpose((2, 0, 1))\n",
+ " image = np.expand_dims(image, 0)\n",
+ " image = np.ascontiguousarray(image)\n",
+ " im = image.astype(np.float32)\n",
+ " resize_data.append((im,ratio,dwdh))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "b87a7e55-b0f3-498f-b261-a6954e662494",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "DTYPE = {\n",
+ " trt.DataType.FLOAT : torch.float32,\n",
+ " trt.DataType.INT32 : torch.int32,\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "8e5a4e80-aaf0-4b6f-b155-83442aee088e",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def getBindings(model,context,shape=(1,3,640,640)):\n",
+ " context.set_binding_shape(0, shape)\n",
+ " bindings = OrderedDict()\n",
+ " Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))\n",
+ " \n",
+ " for index in range(model.num_bindings):\n",
+ " name = model.get_binding_name(index)\n",
+ " dtype = trt.nptype(model.get_binding_dtype(index))\n",
+ " shape = tuple(context.get_binding_shape(index))\n",
+ " data = torch.from_numpy(np.empty(shape, dtype=np.dtype(dtype))).to(device)\n",
+ " bindings[name] = Binding(name, dtype, shape, data, int(data.data_ptr()))\n",
+ " return bindings"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "98f8f0d8-5940-4f72-9ffb-88dc4aa09c09",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# warmup for 10 times\n",
+ "bindings = getBindings(model,context,(4,3,640,640))\n",
+ "binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())\n",
+ "for _ in range(10):\n",
+ " tmp = torch.randn(4,3,640,640).to(device)\n",
+ " binding_addrs['images'] = int(tmp.data_ptr())\n",
+ " context.execute_v2(list(binding_addrs.values()))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "04f24b5e-ac71-41e5-9893-067f75fb6457",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(32, 3, 640, 640)"
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "np_batch = np.concatenate([data[0] for data in resize_data])\n",
+ "np_batch.shape"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "id": "bbaa433b-1b04-4bdf-a81d-ca7ba683dc25",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "batch==1\n",
+ "Cost 0.002882860999307013 s\n"
+ ]
+ }
+ ],
+ "source": [
+ "batch_1 = torch.from_numpy(np_batch[0:1]).to(device)/255\n",
+ "bindings = getBindings(model,context,(1,3,640,640))\n",
+ "binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())\n",
+ "\n",
+ "print(\"batch==1\")\n",
+ "start = time.perf_counter()\n",
+ "binding_addrs['images'] = int(batch_1.data_ptr())\n",
+ "context.execute_v2(list(binding_addrs.values()))\n",
+ "print(f'Cost {time.perf_counter()-start} s')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "id": "c364a3d9-405e-4b8b-b5fc-1ca24b6cb45d",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "batch==16\n",
+ "Cost 0.01679621999937808 s\n"
+ ]
+ }
+ ],
+ "source": [
+ "batch_16 = torch.from_numpy(np_batch[0:16]).to(device)/255\n",
+ "bindings = getBindings(model,context,(16,3,640,640))\n",
+ "binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())\n",
+ "\n",
+ "print(\"batch==16\")\n",
+ "start = time.perf_counter()\n",
+ "binding_addrs['images'] = int(batch_16.data_ptr())\n",
+ "context.execute_v2(list(binding_addrs.values()))\n",
+ "print(f'Cost {time.perf_counter()-start} s')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "id": "dab73d41-e63f-4458-aea9-85dc0907589d",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "batch==32\n",
+ "Cost 0.03227389699986816 s\n"
+ ]
+ }
+ ],
+ "source": [
+ "batch_32 = torch.from_numpy(np_batch[0:32]).to(device)/255\n",
+ "bindings = getBindings(model,context,(32,3,640,640))\n",
+ "binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())\n",
+ "\n",
+ "print(\"batch==32\")\n",
+ "start = time.perf_counter()\n",
+ "binding_addrs['images'] = int(batch_32.data_ptr())\n",
+ "context.execute_v2(list(binding_addrs.values()))\n",
+ "print(f'Cost {time.perf_counter()-start} s')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "id": "2b75c09f-3d54-44c8-9c8c-9198aa4513b0",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(torch.Size([32, 1]),\n",
+ " torch.Size([32, 100, 4]),\n",
+ " torch.Size([32, 100]),\n",
+ " torch.Size([32, 100]))"
+ ]
+ },
+ "execution_count": 18,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# show batch 32 output the first 6 pictures\n",
+ "nums = bindings['num_dets'].data\n",
+ "boxes = bindings['det_boxes'].data\n",
+ "scores = bindings['det_scores'].data\n",
+ "classes = bindings['det_classes'].data\n",
+ "nums.shape,boxes.shape,scores.shape,classes.shape"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "id": "26676d29-8c1e-4e87-ac97-bff4c935b92a",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "for batch,(num,box,score,cls) in enumerate(zip(nums.flatten(),boxes,scores,classes)):\n",
+ " if batch>5:\n",
+ " break\n",
+ " RGB = origin_RGB[batch]\n",
+ " ratio,dwdh = resize_data[batch][1:]\n",
+ " box = postprocess(box[:num].clone(),ratio,dwdh).round().int()\n",
+ " for idx,(b,s,c) in enumerate(zip(box,score,cls)):\n",
+ " b,s,c = b.tolist(),round(float(s),3),int(c)\n",
+ " name = names[c]\n",
+ " color = colors[name]\n",
+ " name += ' ' + str(s)\n",
+ " cv2.rectangle(RGB,b[:2],b[2:],color,2)\n",
+ " cv2.putText(RGB,name,(b[0], b[1] - 2),cv2.FONT_HERSHEY_SIMPLEX,0.75,color,thickness=2)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "id": "19c7cc65-20c8-415f-96d9-8ad0be5aaf70",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyoAAAQ4CAIAAABpEr+OAAEAAElEQVR4nHT9abBkWXIeBrr7We4S24t4W75cKrMqq6q7qgu9VDe6GwtBgFgEcAGphRRppCgbSjNaRmM2GmpkNmMzNqZlTDKTmUyU0aQ/ktnMD4kzkgbcSYDEQoBAdwNodKOXqq6qriX3fPm2eLHd5Szu8+PciBdZDV2zTHsvXsSNe8851/3zzz/3g//L3/y/MnOWmaLMlFLGkNGaOSAKIoJEIvLeV1XVtq1zjjlaa/M8z9aHUgoRQwgiIiIxxhgjMyOiUopBiAiRAABYEJGIiIiZlVIuOCJKHySipmlc047H4xBCjFFrLSIAkM6W/k+fTUcIAYiUUkopIgLEGCMAaK2VUjFGYWZmYGFmAEBEJI2I6WyRvYigCCIii1LKxWh0JkhEGkkDwGKxsNam0yJijFEk1nUNyACQXlRkEFFEmDkIpwEREREkIhBk5nQvD+7de/nll0Pw6ZaVUgBAROn9IBHSMIkgIgCktwGl85CIEHZ/2vw13U761fuYTvXgwYM7d+5orb1vidLYoECMMd20GGMAAFGJSAgBEbv3rGcQAJTRWus0VkoprXW6C+eC9x4AAFWWlcOdSVn2mXk2X87n89ZzXdd1E5j5o3sP5vP5eDw5ODhoW79aLSaTyXi8Q0b3er2i7GVZxswiwkgAYEjB+ojRC3C9qpTCLMtCCACktY6RlVJpYShQMca6agEgxsjINs90pq21IhKdTxMEANPpLK2E+Xzetj7P87Is+8NBCA4UGZ1Za9PEIaq00rz3BMzMiBJjXC7nIQRfhbZtJ5PJwcFBb9jr9XqIeHJycnJ2en5+fnp67px75ROfKIoiLdRHDx7cu3dvtajOzs5Oj5+JyJuf+8xrr722Wq12dnYkhul0Sgpms5lvWhHJsz4jtG0rpIre8A/+8K0Hj0/QZCBaZTayB8TBsNc0DaFu29Y3vixL9o4UIELTLndGvf39vZdffqmuayLtnJ9eLB49enJ2OjWZ2dvby3s5CXnvgxdmdi4wszIZEJZlL4CwKCEUUG3bcoiIaEiFEJRSxhhmzvOcJSqlnGtijErhdDrN89y19enT435ZolJFUaBA27b9shj2B4ZwenYKwe8Myp4xCkSBAECUuGr9zMm8DnXkxrv9yW6vV+S9UhC0ylu3GmXaYmtcNR7YYa77ZUEsbePb1pPNF1V8fDFzaB6cXQRQw8n47OR00Mt2JzsxBm1yBMa6PX708JW7L2trTi4vLubT0c7gxs2btfMffPjA6FLb3Gp9dHQ43hsfHR2O+5PT42d/92//vZdefDHT5rOf/exXf+crb3/nrU+++tr+6EZ1ivujG9KqetXsDIb9ce/D0/d/8k/96J3XJ//iX/yZv/k3/+PXXnvR15VCTUKMTCpGcTEiIirsHvaNFRIEpRRKZ+UQkT0ncwoAHL0iI4iCSpCBEJUKIbRVO5vNDKFI8Z/8p//dX/u3/v3X3/zS6WKhs3w46v/zX/2Vt7/37X/1L/7Fw1uHv/wrf+93f+/3bl574YMP79vezkePHpwvT49u3tgd7L37/ffzfi+zelJmluSlu3eePjt9cO/06Prte/eftt7funPdC5+dXTStj0Kz6TRezl5/44eKovjee+9mRW7zvChzZFleTl977RNt8Kfzc1F0djn1kV3TjgfD2zdvHZ8eP336eDweZ7lVWnOM42w43tv94NGj4+mZNXkEMUAxhM+8+onZYn7v0UPdy7WyRunF+ezaZK+ZLn7uZ372i1/8Ymgdh3hxctrPi7/xN/7G/+bf+Dc+++bniHRwrRLJDP43/+1/ffulF1779BtAstMb9Upz/OCtJ48f/PZv/PbP/9wv9PPhvY++37SLOy/d9qL+6a/+s7uvfOLBvff/L//nf3c0LCL709PV//3/9jciw//zP/sPbt2cVMuFJtoZ7f3SL/3SbDb7y3/lzztfI0bhkKx3CN4aBcAiKkaPiIiyMWLMnLzAxtqnmU0/MzOQMAOSVkoTdP4LAAhU8iGIOJs3i7lbreSlT3xO9fY9aFQUhInIZhkQ/hf/9X/1937tH7/w8kvXjg7v379//+G9z372s0VRNE2zuLjMTP5v/ut/zTW+XtYxRtQYQgAAa62Ics6xd6CANDahFQ8hhO9//4OTy4uHZ8/q6FdNrQAlMgAIRNK4u7urFDEyM1e1Sw43hBCcT/flgidCD6yUyvO8NFm9WNbTxRc+9em//m/+2+DC5cW0bdvPfOqN2WxmrR2NRt57RJTovfdGkUDUpCguZs/eV7L03iOK0qgUaa1FIksgIiBKFhsABIGZCc3GYRHppmmS800PHUFylPEKISBsvGfyxeuJSxOBzJxn/aZp3nrr3el0Or+c9/t9QNzZ2RmPx+PdSWZ7LgZUtMEYEPxisahXy6Ioil6fiLTWRBSY164tpi/VxpgYY1ofzOx9FGYARhStNSESUVmWvV6PiGKMIfgQQtu2TdMsl8vNqY0xyTonJJR8KiKqboAIAEQ4ufaEwAAgObz05nQS37oN5Eo+Pp0/rcuEVLb/h/Wp0qeeQy3r42MwZfO2DqsRiUh6UxrBdMI0Yenbn0c5oLWO7LdP+LGv2/6WDW5L31jXtbUmxqiUSl+XzC4AIPDmlOkbu1vD7klmZiDYxlvb/6c3M3OWZUQUQsiyjNmszYEQatSIRAl+JdOwdRLeANzNadOXpuVCRAmEEeksy5KVaJq6On6CqLz3w+HO7u7Y2hyVdi5Ehtu3b1/OZ9/+w2+dnDwb7+wcHOwPBoPLy0sRaUetXa6MtaPRKMsyFEy2aQOgiUgYQgha5yFwjIIozvlkODofxkhEUggze4eosT8YKNvFAxq7eUTEPG+VUkWWX7t27fLysq5rZnj29MmyqgejUVre1ub9fr8orDEmRrY2SIgigiTMrJSJMaoxNY1bXM7eeud7zNzv98fj8eHh/ksvvfTKK6+sVvXl5SVpfe/evfPz8zzPB73eD//wD49Hk3ffffd3v/JVY8wHH3zw4MGDvb0959y1awd5ng/7g93d3aqqqlVTtQ0zzxZzbbKs6LeuYeZ+lrMgKARUAFyvKhEJ7EGwLHOtydhe3ayGw+Gd3ZtGQ55n3sfhcCfLsqqqrcnH492mdiazx6fH0+mUhGKMZdkLgRHFGMXIWunlctG0zhSlspk1atDrJ0tNAptVkQA6EtRtW2Q5agSAsdIhhLIsB+WgqpZZVjx79my5XI6G/dliWde1QsLobhweDIosQzQIs8uLGAOSZLmWuj6/OH16cf6FN3+4KIp79+4V/R4pg0oPemWoVi9e3zvYn/S0WCVtVREIKLI2i4jaqlW1PFtUeTkc7O4LKqMwz3MF2LaeWZ4+ePSjb37uYKf/z3791z/92c+++tKL0/lO2S92d3dtXl7fP/reex+dXUyjzd//8F77zveI4O6du01VF73y9Ozs4vz8n/zar7784kt37r5UVc13H759OLh7MDakMIQAinx0MQYf6ijBe88MIsgMRJ0dYEhRnjCz0vQxK9EZK3nulY0xQaIoDKzIIJJmiASgiTyR0VpEvIvOe8/CEIFQICqEENzuzujp8eP3PvzefD4zWq1WC5bYNhViPLp2iBJIgVFkCS2hJlXkehPHfvjhh8uF25mMNanVYgVAIp09BIQUuRFRXdeo1I7dCa7V2iIqrSXGCAqjJP9HKWbL81xrm5ZQXdcoOGtmyhoAyLKMowiI8w5ElsvlxvKAgo0jMMak12OMvPYFxhgBFuEYPaAohSzBOSeC+/v7j58+OqvPhrevK2Xq5aos+udn0/uzh48f3csL9S/9K/+iKPObv/Xb1toU3YUQ6roZ7+x++tOf/gf/6B+muEsgApBzrmma5LNDHYiYENY+nroYmRIOYPijjnVAfhVXJ4sqCIic1oYIMDOAIKIPwVorwD5EpdBkWpYOEUgr1/hc54qUAIQQ8rJIkC65Xa11brPog1i22hBRZm2eZaHxabRXzSpdDxE5F2OMikgpjMBKKKIkwsUYY4xZugYRowgBICILZFmmtWIEjl2QkNiWzewAgFFaGRXbJjkORJTIzKxpDTq3hmXbUV45o7UTFEnERzI73eAA8OYN6XPd4nyeqWEOm5EpiiLGmC5j+xo6FPEDHpyI2rYlUohKa80MVVWVZWmUAYCqrtdThgkHs1zRIrwe3o/hjQ1E2Xhw3S0CEWYmwMhBmLUmDgFYWAIibjMfImKtLYpiw5Qkl+mcCyFUVZVmQimVZZm11hib2K+0vDbDlEiXKDGt4PR6suDwfIgQQnDO5XmeOI9NfJDGiNb0zAY6bIOS7rYZhRGJEBRs3fwG98DzgGzzeMAWHN4Yys2T01FuACAd7hER4YT8aGuUcYOslTGrus6ybEPhXGEvRMIEoRBAmMPV/EmCEZJYLNiEV3i1igFEANM6JWUAVYgCHZZKS00AAEEBAQJGARYAECQ0HXsXmdkFz8IsLCIYr242xTd13Yo0aT0k6Lwxi2fnFwBct8u29VrZXm9QDvoH+6NrR5O7d240zqOAAC0WK0I8OzurFstLd6EzO7u8HI1Gg8Eg3W/iw6pqmRhIZIKgmuiMMVobZiaitvFZlgFgTMONiBoVqMQ5IaPW2maWmdu2retV27ZGa2tNf1ASUd2sIvs8KweDns0L4Y6HAMBmVc/niyzLEJTWemOnAFHbIgMkoiznIi/34FqM0bn27Hx6Pr2IMZZlORqN+v3+aDS6fu1aCGG1Wp0cP713795yvhiPRz/78z/7+PHjN8vP3rx5M4RwdnZ2fn5+Obu4f/++j+H69etVVX3w/Q8PDw+Pjo5sVoToEXExv5hOp0VvsDMZE0DRLxKIbxtntLWZDcFd1rVzLSGPd/oucpZlIcTLy8vVahVCIKVHo/Hto5tt2wpJVVVPnz4FgLquy7J0vkFErbXO+6T1aDxUZBdVrUHq1bLX68UYBSTLbRQJIQhABA4uklaBpVnWybq1bklK6zKzZKq67k/2r7/44vTsXBHMzs/q1erG4QEoCsLR+eCaPM9uHd64cbTvOVbRvP3hgw/uPRj0i2fPnhmr79y5w4LLql7M5hCb33vy8NOvvvjC4XheV6NeCcAhOI6RSZzzSkkIjcG+IlZaD/s9S2pxOfPe37p1q+5ffvD9t372p/743vBPf/X3ftc3q5u3XrCeH3zvvVXTlINhbKrRoO8B6qoVpsFw9OjJcWbMYDwGgE9cv/byJ149fvLUZLZ1jiMYWzSOyYE2lgWEMCvhxq3DPM8CsDWlooyoRhQGFonQPUQofGV8REQwueXk2FgQEGjLC3QOojMPLMmAskgIMbgIQkbrGEiIRBETtr4pTR58gxRn84vVcvY//A//r/FkeHh4SMBGESouC9sbZllmJ6P+E4Mq+r7OCkXI8uGHH9at96GdXV5a0ycGaf3Fs3MxGYhermoElfVHTdPsTfZ943We9XoD7+PF+QUwe46BQ1n0V77NsmJVV6SVc265XDZNk7Cd0ZaUlsh7g0l/OHzv/v0WYmaLyNEYAyJlWZLGp6e2CUFR1KSSKyGIG1OstTaZRcSiyPPcGott60EikeYQgndWaWvtZLy3mM6FAYSYxdo8RvmVX/mV0c7gJ3/qSy661WpVu7rXL1JgGwIgGq2ttfnR0VG/nyuFAGKMOjk5+aVf+qWbN2/+9M/8sZ3xIISmA9OdC+BNfC4CIleQAhGT4d24j+2pTfMOQggokQWEmQGZkAA5xJYhCqDSSiQsqlnVrPK8IdKIwhwBlVLKtw5FovNGKQlRI/WLPglZpUEEImekIbLVpqE2xeSJ9WlcqylDxBgYEQNHUtS2bYKbyaErpTQIM6MwAEQfGMDFtW8iJEBtLAA457q1zSwiiTohAuQIIkopq3Se5/B84LHxcc8jsDVYEYkxEnLnd5kBkotkJBERQIT/lQMRmWWTheuwROTt7+r86fPAKC2zpmmMsUR6AzmMMZeXl671CYpkWQaUyAhiZhDi5JkTsCMirYDwYzHVx37V6ZcYo2IEUrBGHjq5VYEEaNq2TfQgc9wgj+6J6tJYHaCJMSZurGmauq4ZEhTL8zw3Sifea5M88tEn1JV4Jq11IjmTU9++8w1flxzwBmZtxnpz5duoc/sN20hrwzylgUpc1ObN0s3sx5dFB7CeR2CIiNDBxG08t/kukavZLcuybds0Ssxq+6rSlWwYrG1ULnB1X5uv+NiTrJRKK565uxLvfYziXVQaNwBXuvwmbE61NSwKgBOttX2nMcYOnRNlmV6PjzjnRCQrQGsdo2fveoU1eaEVISnXrpp2edyGfr9vrU2pvbzX3xkNBoPeeKfvvEfE45PT89Pj0+NjRMx7ZW6y8XhclqXWOrMmRlnMV+Xh0AKEyDE6AMjzPC2t4XCYAjWWgIA+tNDwMOsy18aYhCrKsszzPIawWCxSeFBXLRFFHbMsy7LSe0+k0qoQkbr1CVxamyMi0Sb9ioiY1qHJAqKEECT6Xq8fgtdat65ezFcnJyfJxo1Go8lkcvfu3YODA+9jjLEoiv39/ScPH02n0xCCLfJPfur1oiiqajmfzweDgbV2f+/bX/va1wTA5FmvP/rxH/3i4cE1k+WLZXN6euqiwxjEt+1qvr93Lca4XM1FxHuX59l8Pv/6179RFFnTNJPJpCiyGzdu7O7u5mXBDN/61rfe//6Hl4ul0bYoc6110zRtW1+7dm1nZ8eHdj6fn09npEy/PyLUZKi0GFzrgifAst/Lta5aiRG0pizLWu989CYZXx+UNkqbyKzLomeMiJgs39mj1XJ+68WXCmt808yq6uH5WWiq3fFoMhw+O79gcVnRU+VoNBrtHRwsqzovi95g2DRN2RuMx+OT42ejXv7JNz7z5N577/zhN9/8zBtlXioEFyKwtL5lpL29vUdn50ojxAgqjkejZ0+PhcOg7CHL7mjoV+e+Xl67NvnRL735D/7hL2uEO7dvl9YoAs+haapiOOHIk8nk4mKKSOPx+Pz84nK+sko/ePAgsybUrUKViZ1MJoh4dna219+LAiazQZpX33j5hRevHc+e9IsRgxImYRRixISvAFERIiMD0MYf4zoLubEzmBzP1l8jiFYGIjADIyulQCB4zqwN3rdtG6SYzhc+chN9hKgIFQpE/v/8j3/r+99/98b1o6IwbV2xBuCAoHq5JpE8M75Z3rl1tJwtDWJhsiY0zNy03hgzGo0e3H8yHo810qDXd2Sm84WIGJP55TwFSMkCz+fzpmnyPM8zGzxHER8DaiUIgZlD6Nt8PB5P59PkPkIIPgaJ7L1PiSGlKMZIACzczzMf2mFvlGWZazqKSyNF5xezRZ7naUBQIAXnMUZE6bQeyICcvEkyd65tEw5AxDwrLy4ufuhTn/6pn/qpr37tn6dgz3tfFIXW2hhjrW3bloicc977tm2btvLBikhVVb1e780337x58/pkMnF+xcyKYB08wxp4JQ7mY8Zftn/YGM+NLxMQQAFJsFs2b0jPFyKyAEMERaRRGbK58Y0kxgUAicham1xwlmVG6eV8kRm7WiyXs8v9/f0c1e5o58a1o/OT83rVWEuNq733pJUxGUqCDkJEmnQURlRVVXnvkzOKMTarlc4yBEEUIOkyDwBISEIhtFc0xJqtCMwsrJRStmMHgTn6oNeZ920HtO3FNgh1Q14wMyM/7+x4A2rXb4arJwhp40nTOG/4nc35ia7gl2x9//Z70mJjTvSY2qw3731aMIJQ17ULIVMGCJk7qM0AAlfUzyb1uX2Pm7/qNfW1WRMdSf787V1BEEQSgRAikcTIRFeZROx0XSrPC2Ns+iwDt20bY2zbponivU/54O6aKH1k67sUMQiDAAISEXYoOEG9hETSNYcYk5ddS3Y6OrKbPFACwsIggniFMzb/b80KrnOj0k0bYgLgvB60tBDXIY5G9CBdGhAAWMLmbSox5p0ZRU5ZBQRm4BCzrJjNZq33ghhYtFbY5Z4FEQkVAgkku6PXq4Gff4ZpjefWdCsCAiCLiywizgdUgQHr1hXOxxAsGVIqTaygdNE2AwABoAgGEUTuLtinCV0njdcrciNG2TwhCbAqBAKZL+aralE3q8Viwcyo1aAcZJm1hgDcfD7vllkUQcrLMjN2OOrHKLt7L5+cnE0vZjHGwHJ2cnLvow9j4KIobt68WZb9s7OLvd1dY4x4n0Bh27bL5fIrX/nKpz/96dsvvqC1FiZmAVTaZEaTNRl3cRIiAEcgxChUFv22batVZUw2GAwAQCnj2pZQaVIp855QV4ppiIgFAQmJQIAFhYVIl2W5IdWDb4eIANy6uq6zXjlUilar1XK5nF8uFrN5Xa9Go5HW+sGDB5/85OtHR0f7+/sxxsViMV8u2ra9fDbr9Xp7B4cAMBqNfuKnfvKTn3r9D//wGw8fPm5cu1gsdse7tfPDXv740SrPrXNVaNsf//IXY4TITJZERBjfeec9QhyPx1rZxEZPL1YPH31zOByWZXl2du6cm4z3DvZHisxg2Ov1iratW9eM93Ynkx3gcPfubaXUs7PzumrPzi6ePb03GI4FdBTyTTtfXOZ5bqy11iJKiA6Bi9ySMt77GGOR53XTCCmOrJSOITCS0qY/2OEQas82L6Lw5OgGcWyq1cJxHaunJyekzOXKibFNEGVs0zRlSfNnz/b2ZDZfDnr95eIitzf/2I/9+NmTB9/+5jfY+du3bzHotlmh1SFGk9lbt255VDbTqBQSTCY7H7z//o1rR+PRTj9TZrfIc5pdnkzGgz/7i3/qd3/v9//wrYtbL9xBY5UyUfj8/Jx0tqPtsF8oBavFopf36sWFpwCMi8u5JjWbTsnDqIAbN/tcZ9GHIu85iZez85/6/M9kAzN/PJvXq6aOpDIgBSSKEFELISJGTv8AkQQEQECw0zwIAKAICHZPtBAir596hGTfSQiAUgwVOTa1Y5Ao0t8ZOY7OewBwzv3+W9/95je/+RM/8ZMCPjbeIwhhDG4+W+Y9YAhN02qEZxczQoVCaEAp1c+HZ48e9oejbKd3r35Y9Mq8zDxHk9kgZK1ta9fMLwHEe08DVTe1xV5Gev/wWrVchBBIKwGQGpNAJUG0JDVJgY1zrigKa229qowxy+XS1XU2GoTIRBTZX5wtbh4eTKfTy8tLlduUAGLmnZ2dQlnspLfJm/OTJ0/m83nTVsIBOtlG8hhkrUUW79syz/q9nluViLhYzO7df//s2cmf/FM/98LtmykbEyMqssZkQJRZG2Ns23q1Wjx+9vCjD+9fvzYWEa20tXYwGBweHlprV9WlzUgiI2KMgYi0URur+DGwtX2kmD8Z0rVvDomeEGCQLjvJDMJSRy8CxhgiYY6IAiBJngsgVmnUajQaicj5+fnps+OyKGbTy/nF5XK+VJoW8/nuzvjs6en87OzpR4+ySFlW9PvDG7dfULne5BlWi4ojIGHlWzIUuctiwZpN0FqTMTFGBYJIgCgIAiDMCcMYpUIIpLXV2q2lI53xhJjuWiPVIUbvrNG4BUE+hk23x3AbgW1cNilFdJXg2gY0mCChQKIqcA0ScJ2j2yYa0pEyZj6Gq5WzwcQi6wWsETHPtNa6qqrg48G1I+ccUZK7dawnKYpyxattQ+0u17m+o81tpvfoDRjvXlqnVBN6JaSNr92E/puh+RioBID14yEbNGa0STyEiCQRRDqqqgohBI5EpLWy1qbkZspzwTozmPLKm/TohpRBxOQjt6dnc/LNUHd/3YaPW9Ovtd5wYM+vG8S1BnzrhFeC2eTyN3RUl2BGrbWOIa2kq4vZDCAzpzBlU1XAzGprPLenIN11N4xbMGiTceyeVYSkGumy3d3wi7W59xGABBViKn1IV7JZZAFgW9AD62f7atEkkLoNW7cJs7UsDLVWMUpmbIzxYnpuTV4UxWw2TUOaeKCN4C8IOFczNrP5eQhMWpdZef363mi4Y0zWNE1dtycnJ48fPz49flg1zvt4fv5MKzWeTHZ2dvrDUU659+2tWzf6/VIiM3FaMClJvVxUxqqUE9daW2sBIAZBxF6vN5nsDYer2WxW17UxmbVK0ToCAUlCSyBa05OMpBFZBGMUY3SWWZtlNtMppHZNK0Ag4H3IbGFNXi2XbVvneVGWpW89oHjfnpwcL5fVZLK3XC4vLy+ttVmRK6Vefvllbe1qtWrbNiG245OTMs+Hw+GXvvSlL30JAsfT0/M8633ld37vn//Wb33uC5/PjNrd31dK9Xq9b3zj20+Pj19/41PD8Q6xeuONN7yPwnhxMZ1OpyJgbXZzMlkul6enZ6PRyBjTNr5tfFXNptPp3v5EKcwLs1qtALiq54bU0dHRzaNrSpnwUri4uHz7nfefPnlSlH1jDMQ4PZ9XVWXz/PDwkLQ2xhjKEKLKjPcgzEWetc4jEnPIc+ubWmvNItraosiFw97uQXBN21SD3YO2rl2zQtSN8w3E46enJ+eXL7zwQmY0oMrzsqmdJoUSc2OrqprN8PDw8POf//xv/Oqvrerq+vVrZOyqbmxRNiGg0pnJF4vq3sOHr7zyymA0fOmll46PjxHx+v44g7iazziGKlxmNv+xH/2Rb337O8fHx4c3bgbhs/PpZO+oNxg+e/ZsMtmpqgqAhr3MaKqXq5s3D4Dj2cnJznCUo+VGXTvcNbzz/tv3srysXTOv57/5O79+XN3+51/5qlbZd956+7Of+YQxBrrMOEgERCBFiFokKkJcP7CbZ637YYuhRwRGIECRBNCImWPto6SiEEgRSyOuLPs+Bufb3Kq2qfLMTCaT+ezy5o2bJydPzk8vTGYFNQD18mI6r1pXc2n7Zc/70NTO+3h2Mc3yfGeyVzUNxNZ5nxXWR0e6D4qq5YoRtaHeoF9XS0ao61pbG0Fa73ixYA7cemut54iIwQdE1ES0DuadcxxCURR5ni+rVZZlZDTFACFwiByFIVqjONV2OKe1JqWYOck3m6ZpmwYAjDGr1YpQ5Xn+4fF7Z6enwbNShigG74U7R97vD9q2VYDBNR988H41fzafzQb9cjY7n+wOjo4OYvR1XRNqjjCdTlOOHiEQUQS5uDz/wme/cPfu3WSrDWkiSjGkcy1z8B71OlPEzABXWaOPQS58bkKRtqQsnafvwm/kNQRhFkRgjszcegdCqE1kBDJlObTW7mS5Uur4+Phb3/rWN77xjd/5nd9558P3eweTy8vLG0fXtdZFZg9fOHTOZcbGtnnl7qvXbt345X/0Kx+9/9HdV1+5/sKNw6NrRzeui+MsKyinNrSKdITI7JNgXyKntG9bLZGFEAkhCa43HnPjhSUyrevh0m1GiYTIkTmEoEKmtNWmQcp0lyhLjo/XSuuNdOwHRw8Rk0ocSdZUxR9xbA2+JFKQ1uLylAhKJn3zLZuJ2KDhTU4v/bCGBxA8e++J9KA/rKumqioRKYoMUiGY1oIQvEfS22iy887rscIrcvS5C9BbpA6mxHP3+UQMbtXZbaOc7dvuzotboK8TNiCzcOOuqudQJSgWYxyPx+mrQwitdyHEjUouBdMiUpZlykJqrb1Pqb1ON5egzyZj+NwtCIFQh4IFBDA+/2zIOqdJqAWibNF+ioyIsIhKRZcpcIxRr7VcGxghCQxFhucBe8oWJ8qKt6BbOpTR2prAokmBiCAxpAo+TDp4gI4SDN7zOjW+AWcAEqUbYRbuFpugIHASRxMCqcCiTRZCYEERCcwQY4quAVA4aRtVgm8CIB06p627uPretHC353qzdkWESCMq7yOiEkYQyrIiy4pOK1YtXdseP32a5zkR+RDyPM/KwpDK8zyEoLSuVzWH+rRZJqhkrb1ze//lu0dWm7pxJyfny6rxjXcxPH16v7nny7IvAHfuvOiiv3//PgAkVS9ptbu7G2OUOipjYpDzs1NjTK/XS8V9u7uZIGRFvmfz+/fvP3n67FOf+lRRlEqZtq3TclrWVfAeUQMpBtGdo+QNlEREjqDIOOc+uvdgd2/cK0pA1ToO0ZG2GVEIAZB7g4I5aG+youwPxkdHR957EVmtVtWqruv6+ORMKSzLcpCO0VAhaaL5fA4kTVNx9Lk11WppNHzi1ZeuHUxuXD+6dv2wqd29e/euXdtbLue/+k/+6cnFpUH63JtfGAxGhPrycrZcLkGRtca37bDf7/XK5XLpvQMAVNZmBCAPHtxrfaOUOjq6trs33tkZ7u9NbJbNlqvZxezk5KSp3bPjk37Z0wrqZh5jvH7t2s7OS5fzWVUtF7N2MBi0q4X33mTFYDBAQGRVaAJFwpn3PrPGOW+NYWaltMmLVkBnvWFv6L1vRAtowjgwRrmY79+8GQIAcPCakEOn552MhpehaZtaUy8ENxrv/Jk/92d/+7d/mwGuXT9ClbmIFxfLKvBoN89L2+sPT07Pd8eT8d5uXhQfvv8RRf/SjXFTVQq8LYpmNieVffqTr7334b0nj47L8f5oNKlblxccY1xUK+9bQ8Zntl5O80xlukWIh/t5P9dW6VLtXr+2G6tSKfShNQPTs/nf+O//ywD1ZHz9zc994etf//rnP//aa6++EL0TZuDIHIFQcyouhhRgpXw3wEZ5HXGrZA5TImMdeSbRV3IkgcHHACxa67ZuSGnvY68oc6ONQTb0d/6X3/jOd75rtZpenPT7pdIqhLBYVWVvkJ7fUW/APmAUjjHPc1JZZLm4XDQcSKvRKN+Z7Pjp1BS2GJQe5XS1bH2tlLTsBcVkhgyxSFEWLGKsnc1Xg7JHRBz8arXKB8WyqYjANc1otJvsuc4zWWcG0+TGGDHLYoykSCnVVjUBKqWapokxKrSJR08RYNu2SSCfQvrZdHo+nd68dWu5XIKQQp2MWFU1p6fny+Xy2dPjk7Nnu6Odvclgb2DOnz26eevox37sR+pm0bSrs3tPd/cPfSsPHz6qVu23v/sHf+Wv/OKNG7shhqYNALC3t5eEIsaYNRGiUrVdlmUhusQkKMQUsnX8y/P6no+5zo/9nIJhSKoPQcSuyoeki7iF0fskpR8R0mWuWwdPPrz/+9/89u985au/8o//UTEc/vW//tf/3J/7c//Vf/M3d3Z2itFgf3//4uJienlxeP3I5FlWFCcfLH7+M5/6q3/5r37qM5/95b//j7/xB39w/OTJr//dvwvG3P3kp9787OePbtzs74zKfuYhkMBqsfStM6RcdChgtUmDbxShgNWaAPMsC+yTkt05hwDM7NZsGVBXbAKqoydERaI188IAgDFGtaUX2ngWhrUM/UrWzEIISNDxbs9BLsIuO7Y5CRGuiQZAFK0pRtyibSCVmG0KBK02McbAcQOEtsophBmyLEfEEEKv1xsMBnnZSzPoXBDEGKMSMcYEfk5Alj4OAIIoW79ucFhCZgmyMZECgBgDIpISZsGuvknS1WyQI6+rFDcsiGyVPGwtrC6Xp5TaENGSiOs1ulzLiTKbZyISY0iqHaVU27aXl5cnJycAYIwZDAaDwRAANkMDz8PMzStEBNLN+oa52bxhQ/ZsaLzNCkiTAV1DCiQlQh39k97c1amKMLPWFGIMIakLiVRKACVUt60Vu3oOnXMbPJ4GpEuZc3xutp6Ha1eIVkREgqw5auDNRwAJBLBj5hEAmtoBgJDyLN6F9doWREQCZkmDnABid4F0tbJli63dMHCbBSAbQpUZgLyLRiOCJtRJqsHMTdOUZYmIRVGEEIqi6K6AebGcVfVy0+VBGUNKFVmWbsd779rQ1Mu2bbUmRFXk+fXrtzNrnY9t217OF3XdkjKj0ejictoAExEHt6hra/P93b3QBueb3f3DGOPx8bHW+u7dV6y1l5eXs9ms6JXOubbxZVmuVqvZbHZ+fpkovms3rlmTz49PAODOnTuN823brtcVIWJqv4KgHIYUPZ+fnx8dHRFRCJGZtTYiggqGZb+qKhdCivJ3JvuZNlVVE5EIF0UxmUwW1cp7X9cr7/3x8TEzF0WRZZnVOs9za+1oNGibJs9WIheffO2VGzevG6PadvXo0YOyLPcO967fuvnlH/mi0nY6nT188Pjhw0cPHjz65re+zcC5yff390eTcdkb7O3tWGsvZ4tkHJUytWsvLy9HO30QdMG3bfvuO99n5uGoX5ZlU9Vt2yLiqD86ODjI83zQGyijmHlvb6/f71dto7WeLxbz+WI6nRZ5MZ8vl+wIdQghL3sxxjwrCNAiKqOUVYryuq5JKREJURgJlcl7QzTGGF1VS13kvbzXNI2ESBKNUlYr37ax9TbPRqMRIJ1O53s7g9xmAeiHv/yj3/3ud5YfPRpMdpQtTmcLIVMdn1bODwaj8/PzXq8N0uv3+4eH+w8fPtwbqHFpYpDgPCEoYuF45+atfFZ99PTU6ExE5ovZ0Y0bZ2dnMYqCcHlxdnR0CLFZXJ5nWl564TZEznW+uFidnhzvDV+yuRUtaOXs5CQzxec++5nzi1XrQ72cLhYLpRSwSnR6YLehuEKISvF2kJMeumQSrx7qrSeRiAC7KE8pJQqjMCp0IZZF79Gz6XK5vDw7hebm9Gx2/9779eXp7rDMjT0Yj+7fe9/kectsBCyACgHrZlnPWEJuckFVDCcCIc/6l/PTQKA0BWZWyCRV25CC6XxaNXXR7xkGUtI8W9kiV8bwai6jfl72lnU1Ho+r+TwIB/ZZlpFSKBB9UEgxxqwsrO0yiT4GMjpwVEqh2hT5MzMbbYL31lpmDsKaOcRoVZfiyPM8WS3vfc/mTdN84xvf0IQnJ2dN0xBpY4zWaj6f37//8KOP7itLr7x6t5dZa2j67LKu6xs3bty6dYPFA/C73/teXtjZbHXz5s033njj+s3d3b1JGm1jrSDH6EN0GWIIzpAFgOl0OhgM0nuS8RRh0grW3SI2PnvjYuF5zmLz121YxltJKyICIAQh0sIqs8aGMF+tTh8+/fDe07//93/t/LL+3kf3vvwjf+xf+6v/+n/4H/6He4cHo9FoPp//vV/+Rw8vTnaPDld1xSDGGBZxbVv2eh54UdfH5+dVcHc/+eq3vvWtP/2Lv/iv/IW/cH5+/t733vuf/8e/Rdp+/stfPLp1/fr166Px0JBqqxoAQuui8ygika02EEPkGDA2WPXLQpBT6VaXxtk0exKOIZBWjMgcukr5tWqqSwgKADN0YygfZwRTWSNHIWGEKGKShB8Jt3U420hjjbc2jw9zTAkKRFTqqk/CxzDDhnXbxjNpNaZLJdIhBKVMuruDg4NV3VxJmfM8xfYRgEBFEURQiAzPoe1tmLSZ6/SrVgpjhBijAEiXZCSAbpGhUAwi6qqPl6wFUttYQba4JQBIhAER4aY6F1BEkK5uz7muX4hSKkUSyd0rBUS0s7MzmUySir9t2xDCkydP0jmNMVrroiiSanJjthKmERHcLmkkREUYcYOxInPKbybleBp6733WVdV1ZlFEaN0RQyklQNKl8JDWXTASsSkiyIIAvIVquUuUXmHhjT1NMC4txyzLVMr2IgoAi8QQjZINyqROyShEhETiWYSBEFHhGgqnM0dBFiTSUUIEBKXn04vJZCIigoCKYvTIgIyJg9ECkGTAwiJijKHOBJiEtJQiBPQ+djh9nS1NjkO6QIFCBNJ6uap7/VIElNJKdUWRIYTED2qAdb8oWzetVogQCIFQc3AximsqESHUxhijM2XyTHdBZ1svHz2aayQfGYAiw/7+YW8wVMr0BzlfJ6VUrzdYLFcffPDRh++/p5Wdz+f5R48Gg97sYuacOzq6kYDgs2fPHjx6eHR0NBgMfGiz3PT7/fmybpwfDYZZXiplGJCIllXd6/XyPG8bL106AHNrXPCpTjCE4Nr2+tERAiB2xcl5bpkT3SE2K/oDCwACsewNog8p3A/RJeVmwnP9Mk+UhlKqbWvnwqKuF4sFAFurizx3vrl5/VqWZS6wSDw5ezadTmez2Wy5cC274EfDfq/Xu3Pn4JOfvKO1jizHxyf37z88Pz//3rvvfPe732aAyc7O5z73+aLoaWN8aItMcT8fjMZKGWE4OTsvy74Poaqqi+m8V5S9ft7rlfWqPjk/80378ssvX79+fTgctqG9mF0AQF3XTdP0eoOD/VcQ0btwfHz87Nkpc3D1grSOrgbCZklFr+8dFGVfK6yrxXC4Q0rHGGvnSMgUudJgsYgMoXX9Yc+7NjaOUosNbcTzsvFZVrQhSO0j1la1RZ4zw427r77/wUfnj0+u3bw1HO8t6uba9RuLxYIRyrrWWh8fHzeL1bg3QOEYJICKEWLTFnkOKK6pkbKD8e7FrHnn/uOj2y/0RmVRFLu7e4vZ5fzyfDTolbZ/+vRRacpSg5+vog9FX6HH0ycnlyfgpR0OigfPPvqtr/+zL//El84vjyd7+021+uKXvvD6668tl0sOTWasUkhaMXexKGIyFV13PUQEQgAg6fSmiJgMaGTZ5B6TGVdagaIQoiDEFMKRPjs5f/T4/vvvfO/NT92N84u3v/LPX7229xTBt+2bd1/44bu3UCvQdtHEr37t928M+q9f3xdwTbVarerZqp7V7YrrXOUQvO3lImwLkwGvHq4GZe/po0cnT5/EvFy1tQIhDcV4ECWQKBwNyVBgr61a1bXzbqM8IQHV3aV0Fp452bGcdPDJUiqtrIhk1gaO1lrwMbM2vVMpldIp3vvQtMmcKugaKDZtvbs7+emf+RPvfe+dz336M72iWFYNAXvPJycnN2/eXM4Xn3z1VVvYRw/u3zo6FJHVqq6q1eOnTw72J5PdYVnmjx49ZM5293byPNvbm+zu7l6cP7V55peyWtW744nWiBg3nq5T9JMQaY4BUDZEgDZaGBKxs51Kw3VyeRthbAfbRCACiOKDQ0x+ga0pmzp8/ff/YDabzZeLv/X//Z+XK/jxn/jRH/mRL+W9yX/yX/yX/86/8+/+iZ/+6aqqVk09m81c8DuT8f3zZ1VTj8djBiGlq6aRyMxCUYiFiGrnAdXOwd7k+qHneHtv9+VPfPJTn/qh/+Zv/rf1qvqtX/31y2fPIDc/+TM/3R8OYgjJz/pm5dtWKUXMRmsQSTWZeZ7XoUp9pDr/hZ0H1Nr46AEIlSZNMcYmuBCYSGltSKBxLvnQ5GpDCCnvsR3Yo4LkU6lrMnXFMW4gFxEhKBGRNX7YDC8BEmBHpkRJ6hRaZ043C5LW/Uf1Fk3DW20sYox6/eZUZVgUveFwmFJ2qSKQmVMYpZFCcCnislr7umsFkoDg5ttxjSsgNZ5AREBG7PjBDssDbcHEKx3chg7ZBnEiAtihgQ2Q73RUW2txc1f0fApZtmT+6fzrslXKsiw1udjdldSaxTnXtu1isZjNZqnaPzVu2bRCwHUmfvucmwtO/yf00/0VKS2CNY7hxCHJVpOLzb1v7pqZEwTfAKBu3eBVPzOBq1HaLLgsy6bTabrgNLLb4BW31kGq+91030jTRvoq3wpbx8duMBmsalVrIhDiNKUAAFdWY/PR9Q9dBfXm3nmLGtyYDOlEeCm7ikSqbXzbtr1+keKbLMsSkdk0jYgAcJ6Z9coha3Klu0a1iIjrB0wpFTwntJ1+1UoRUVFkLAFB9ZRyLrQ+LOYXZ2cnzFD0ewe7+9b0YmiMlhduXbtz++ZysVpWk9n0UiBW9bJpmsuLs8a5wWCwt7e3WCyePXt2eTHVJmMGInXnzp3Wh8ViMZstUjQDAI8fP24bf+vWrX6/LwJak3POWpvy41mWpUJga6333jmntY4xMkPqHdCGNoSgrbXWcgiRPZIVcXmeEZXOOQDp9wdNU6c0ZZpiRCxLCp5n86lSWilMKKdaVHmeF71ef1C+cPvW3ZdfYoTj4+PI2Ov1zk9PHj1++NG97zdNU5b9g4ODnVF/7wtvWJv/3L/wU671Dx49fu/dD//hr/xqmmkB+Oxnf+hw/5pCkRDPLqbzy7kyWhiHw6G1tm5WCqmqKkBgEVvkH9z76Dtvv6W13t3dRQW748nh4eFkMgkhfPjhh82qSs9OW6+UIqNJI1stIUTn3LPZeeP89Ru3lMlQqdUSlFK9/jBHVVWNtIHAZNpUrbNGA0Bu7KpxHGFWL7Q2JstSyBQBIqA4CK7N6uicC+yL8d75k8dns8Xu/oE0br5aapNJCNZaa/P55awoitHOsGdJSLUuFkXJwdXe6UA+hBC54di27a1bt3qDYd0sNMLOzqCc7O2O+ijgK3ftYJ/a+bhvC6LWtX521k6hlV7R16hsw5Up6dOfeeOLX/7Sol7+8j/+jRjq119/fTQazKe1iHR99bY4j2RIYIss4S4Q70wtIuJWDzCNJCKMCCCERAIhtHXbZuva8BdffPH67uFn3/jUR+9879FH73z6lTtENDs9m7WVaqtBUQhJllsFMQO5MR7evnEE6AhBo1m24aNnp7//7bdHmdUH+w9PjqnMzo+P6xBIoCzL0uZZVgREMjq4lr0DZB9dfzgY744r50RYaw3M2ihrdevB+9ZL8N7neb6az4uiYB9E0Hu/u7urlKoWC9+2IlIURVmWo/G4ca1EJmVc2yZDl+yeIqORArT9stfOVulZUwjCMp1OHzx48Pjxw8Vy5n1LwMYorfDdd793fno2mezcu3fvxo2j/f390WjULGfTi8XT44df/NIXBoPeYjHLc7us6rOzM0OqaZoUHGKnZgkhBKVJaXS+QQFSXQsbY9SGa3iOfUmJjk07oOdR18YPwh9xUGrpHIMk9ZT3vm0Wq1V9796HX/3q7/YG/f/oP/p/3HnprrH9poUg9ke++CPj8XixWKxWK8Yul1JV1SbVY4yp6xqItFLaGmvtcrmMQVK/iRDCalWLhuWy6uXFeG/3+s0bn/n8m3/xr/zl1ezynfe+9/VvfsMFv7e31xsNQWSyM14sFt57hSjMrm2HeZ4p7dvWKBtcneCLrGXfa6CJyQlyCKywLPqNi9N1NeUGD8BWiT1vNWBKz0p6cABAJPUd23QGSE5qK4e7zSZuVVOmi0lK6485ym14sDnP5qu7R0/rENh7X5b9tl29//77bdvu7u7v7e2lBAUzA3My/gHWzThYZM2GJoXAxolvvmgzUDq50iT5SsKztLSoQxtXVylbvNf2uTZ3BZAigCuItlmL27eFa0H3VUZ2qzMKbzVWkA4OdkA1YZdUEZren56KGGNdd+tgUwRrdJaYT2MMmA66MbPSCCBJnBfXveyJiIFT4SYg4lZ97PaQbb40xtTL5+oe11hCeKvNRPrLBgKKCAPYPHeBo6BCFbhzvZIEIQIiEhi6JisC0jVGvcpLbov6Uz5RUp6cu6FWSnnfpbGbpikyy9ypkRARBKBLoRN2lFsQgCAs3H2qA8wiqfZKEyEp6boUpeV+teKZ2UvrohPEum0BBRSm9HEb2rRmfAiCbIyxptAq36SemVk4gggSWZtrCt77EJwIxxBjAACIUay1Is5mmbWmKIrZbEYou3u7s8X80cMPI4PWOu/1sywz2u7sFOPd8uhwZ1VV452iadzx8Ulk9m2tEIf9kdb62ZNnZX+Q53kiroKrJfJselnZXCnd6/WGg53FYhlCXC1Wdd0m3qKtXVEUq8X88uIcCK01RDohTu99ZIa2TUanqV3btiYryGhEFCBtTWxZgALHk5Ozpqn2d8fGGGszIrQmR8TVatU0DSLuTvZ9aENwwfvJZGJ0lqIRRFwulwC8auq6bvOiHA6HB3v7n3njM8656XR6fPzk9PT00YMPHx8/tdaOd/fu3Lnz5ufe+PznPvtn/9yf8j4+efLk4YPH33vv3W98/fdOpzMAKovhK6+8orXKsqLsF2VZej9smkab1FYgA6GmaQ+vHVVVtVqtTGY+uvfgw4/up3b/zvnoAxENBgNt7WRnlFkKIRweHo7GO9ba4Pnk/Oz09Pzp4w+BKCt6AFD2BlmW8tHkyBRFz0CnUogimdI+clH0jbVEOnBEQFv2omvnbWNt2bjWmDJKWK7mBy/cubi4UMtVf2c8n8/7PfHel2VZVVVZ9l1T1U2zPxkbjbVvUFHwkdmDRKVMlMhGXS4X799/Nx/0XrpzXcfw6OKCUPUGw8wWWmG/LA5G5W5hdrTZKV8eFEVRHL7/UXjr+9OFowfHj1/54TvX7M7Dp08/+dprT49Prh3sKEWtq5kDITJEEFIbijrG6INSmPJunfVgAQGldeLDmLu0jsKuQ/ImuEVgQPAxBo6GVQhOW+3qZtgfgPOPHr7fN8pi9K5pqzm7mmJLEX1ghyiB2tXcVUtXL5R4UaB12Tf2+mhsgr85Hr3y2ifPLs/eeXD/q995y/RHZV6gICils7xnsqVvAMhmRe3mnmPdtvPVHI31zjNYCLGw1gWfLKq1Nj0a1hahDSnVQKBSQW6v15s2Tb/fX65WINQ0bi06vQIu23Y1hqCUKssiyy1wbNtWk+r1ijt3XtgZlocHE+aAyE3bDHrlz/3cz771rbeI6OTk5O7dFxE4BF4tW+/46PoLvf4QCPMiCyHkeV7XF9WqOTk5Obq+G6MnTb1eeXlxXterLMtEJM9zXzmlVIyc2q6mrV/KMnc+iEiiLFLB07qdgQJI+a914njLPz7vK5OMt6vWWr8uIVQx1G+88errn/pEVuQv3LmNhMvVdLnk4fj63bsvDgaD5M5QKyBMOaKsLASx9b5qGtI6kQiNc3lZXlxcfPDBB7720XkSyJVxwSmjEzjoDQb9yVj3CwX+M1/+0qe/8OZXv/KVe/fuJYJDFVm/3weWXmabprGt1cagoERGAQ5Bk0oyaBQQlmS1lSJmdk3by4vM2KZpovMgkDpPbfzppsl2uvuOxVpTEsxMIppAIUKn2kq+j1PHAwRkBEZYy6+3ml90QhuU2BVRbTz4Bopso8DNXzfJNCBsmibLClgTnwlDz+fz1Bn44OBgNN4REZuXiJgoKo0mRr8R6qQFgOpKY7DtymHTeGIbAEmXbOoaym1/LPE38gPttRLygC2eSbaq57YAZYd1NosyvW3Te2MDWWALfsEa+eEWbbs5hsOhrJO4zJxIl7ZtY1iqdXdQhWSMybLMGONDq1I+QKkk7kmUWUpxRhCTWbUWJWxoCdgg4x8oKsattD2JQJQAHTkEW2/mrUrGPM8T+iSi1G1r+5zb4wZbHWiJqNtE6SpjncYwfepKc5AGudt4J0YRu14HaeJBRFg2UQIlBUIU3kjKNrO2bRCv8DR2qXHscoLdNfvglFLMXclhqjdBRJbQtqmBXtBkiRR2RiohXSCiENZtfrRFFLVu5hNCMMa4Nri2dS5YG8/OzsqytJp6Ra4HOjGXPrpqvkwXQ9oWNlM2OzjYGfSHt1+47nz0PuZ5iUAwZ986KON777wznU5fuHN7PN7dGfZxPAKgpmkya1kkcV1Kmd3d/uXlJSJ675fLZQhORBIHORiU6UnTWksIm583ER6hZnHpyVRKEyKiKooCAJiBmReL1Wq1CCH0eiWRSlndPM8zMN63vaJcLBaXl5eJlhORLMsWi1loXV2vQPD+Rx+mlrmTyaQsy9dffz3P8/litlqtFovF6cX5+dnFW2+9FYPcufPS7uTglVfufvqN137+F36mWtaXs8XpycU3v/2dX//1f+Y5AACSeu21127evGmNijFmmTk4OHBt0NZ67/OyyMsixmiMbdv28nI2mUz6/X6e57nNLi4uiqK48cKtIlMhOImAKNZq71cHe5Pd8ej27Vs+BgR1enp6OZ83oTE6Y4bGoVs2KZo0mVWMOsv9YklGhxCUoSzLQJH3XgT65cASAkvr6ujbSb9f16sXXr7rvecQB6Oh1cZmcnF2fnl5eevGjdFolCkQoxvvvRPnmxjaXqHLomzb1hRlFP307GRnMr57965vF8SxX2Zt7Y4fPSTUZVm2JY5tX0xWZNm4sP2eGQxsdVh+/Zvv28HRbH7yT37t7eP541/8l/70o0dPDg4OfVwRUSorRkwCASbWIiAoIYQYHDMhf7w34SYbkjxRSrXwumqdEEUQEJC0MVkuIMEnCj/GWBRFnhl0Ls+MtK1RFH0wShuFGlhpDQASWRPkWtkUZgPHtkEW39TKeWobG9q7B3ujfm/R+q99+7tZMSIijlA3DQAZUgCU9qBTWi+XS1SktQZC3zSkabQz6PV6s9m0qqqIEGO01q6alXNOa9tWtYikfFbj3IaqUUYXReFCK4DRea01EnmOKSErIqSuEhdr+ymIQgqIIMtMnucgnEqMFRaPnzyczae7+5MiyxE4M1aRvnfvwTe/+Z26Xbz2+t0f/2OfIZReb+C8Wi6qtnX3Hz165dWfRcRVtSAF2qjhcAiCRmfBLXwUa5CZm6ax1iZbvUmVbDlHAoGExrpQnJnXrUN4XeUKz9eupXiYN50sISqN5CHL7bVrB8ysrbk4Oyl6AxCyVg2GxWKx8Kl8AUFSdWTbLpdLMIiICSAOh8PU0kwZLYi1D/PlolBZSuASokIMkZEEAFvvltWq8u2iaTCE8aA/GAycc+PRcDgcHp+dVlXlmvb2jes7g6HNMzJU2MzFrG1bAlzMF6iVtkZrjUqtk3EqsEQfxDAaIABGhBA3+unNmk++LK1kZvbeiUTQWmvAThuTNEuyAWfMMa2uDUjYBuubQd542z+KMPojZHl8VeaStP9dqwcBMUaFEJCgLEvmLjW3Wq2isDGmNzBN06QtCrsT8nNzvcFC2/PeSXrWFw0fO7hrIg8AgAmAQsS1BHsbQgoCIcq6VRhskVgJFG/GJcGIbQC3rV5a4wa9vjjpnNY6Hbn5xm3LVdX15pwiorTu9/v9fn97Xp33ddtQtSKiIrcAQMpYa1MEH4PbbGrBMfUyBly3q9DKbOYGu77/rBQG7xM23YKJ3VLQQGE94yJd5lbkqm9qWZYdZ9t9cD3+6Qa7Qe12o+j0+wKybqgra+qboSvkAIB1R4mrtbhpzLFZhdgRad1GRnhVXqIEOK7ZLxEgASTselF0PcE69gsAklpUBJgjkWrbVoBTZKLWOxNsJktrjcpwjK2PIbSGXNoLoZtu3fU77fK2QmnnJcCuq5qxJsZg85w5BhcUkkLqFWVwjoNvvUvUVGZNL8tQq1S+EXw7m14+fVxZm187vMmA/V5vZ2eUZ+XNWzdeefHud976blnYex+897tf/e3bL714cHCwszPZ3zsYjIaaiihYFrn3vt/rM3NRZEmJOJvN8rJIPWDqut6U7iqlMmu995EDRx/ZR/bBNb5VWllZb5+VQj1jcx/DaLybZSYEHu7stG0LyITaWksAzjUx4mBgF4vFg0cPrc6MyQCoqeu6WYlwvaoybUgAIofYhhAerRapqr8oiuFwOBrulEXPmuzFWy996UumbfzDh48/fP+Ds4tT11bjvZ39ycHh0fVP/eSXf+ZnfuJf+0t//uzi/PHjJ++89/7bb7/967/6yyHywf7BZLx3cHRtd3c3RLk4O2vbNm3V4GMgov3Dg+QREzYNIZxfnF1Mzw8O9q5dO+jlPWZoW398fIICk8lkPBqISLVqmrqeT6dKKW2sCGrMfRuW01lkn+e5smYw3MmUcr41NrNGK0WkFcTgNOZl5urGZlYTU25jDJTnl4vaGEOkkKlyITd6srdn89xHZuclM+K4UJYMiXMYhb3yippaDMTKN4v56qVXXmDm6cVsfPM6AY76vd39nePjk9l0xrX5p9/9xk9/+c2br08AADAsFrO6zoejwulGmTZT+Ce++NNf//rXi/7gxo0b3/zmV1ORjYggCUsqGVYbK7x5LrayUbQxFev8Fcs68xIYADCB9SAhRk7qCwohOC9BpZRcjBEkGNSaFJDlSMzRtyGiQmFQ7H0MnkEkeM/sitwSqdZ5iVErxOB7hLJcSV29cO3gd7/Fwfu28SHGEB040plFEQAp8pxj1EZrTXlhZ/O5LiwKBObjk6fz5eJyMYeq0tayRCEsiqKua2OMEKYc2cbvaq2Xy2Xe71VVpakLeeu6bRoXPAeICsBS13soSTW8bwGAFDCH1tXONSF45hCFtaamqQ4OJru7uz/8wz9c9tWjRw8/8cqreWazLN/Z2XntxivXrl0DgKqqlssqt6PxaH8288vKISpjVa9XEMF0Ok2q3OhS26do8swHaX1MuZQsyxCFQAtEIk55sbUZv3J8yWSmaq5t1crH/CwpiJwMuWDXS1IRws6g33gX2GeZiexDFGYL7KpmtdnVCokUmdaF+bKy4wEApXJCpZRETrLBwMIgoCiA1E3DCKuqSr0po8RMm15RGqWBJSO9ctVqtUpby6Vto1LNhMmprVpvswf37pf93qDXRwVE1Ct6451J3TZt266aOjqfjLkxZG2WLpSiSBACgiBWp617OySt1q0304vpGYld2gOCSIQ2hGBwQyLyxrVt3OtmJNcuFJlZrTk2Wm+HuMYMDB2u+6MPEUmeTQSpyw9hSgqnawNSLFiUWeA4u1xMxnsdnbTVxpyIIIJSSlvTnXYr1ML1ISJXja82eA265nXJkT+3XDYg7jn6aqt2dIONNgArtafb4Iz04nbhIWJq9fxxoIrrhmmbL/0YyP0YwNx8+6ZhaFo9ZVmCpN0qEz8Rm6apm1k6bVEURW6NMV38wZJyi0YpTNnJrQFYgxgSSYHtVQwk6aW1i91CNpBgu9YmxpjwrLW2qqrEb2/Gf3tANvETbNGhadD4eR57+9o+NsHr+VIb0wDPD9T2kIqkEGXdrW4NmlM2Gn7AcGweFQRs2zZ1z0pFjkoZkdi2KRORHgMEAK2tCHJkZk7tComuqr06gAsq/Y+pEzQktjXdPhNR2zrnPBE1TQMAgCASmSU23q0rbUnRoCyyLLtx/ci1vmmWdeOmZ89Onz1RSrc+suf+cOdLn/+MybOqWV1ezi8uLh7e//5b3/mmCzwe796+c3e8s0tGJ5T85Onj7771nc985jOD0SA1QOn1ev1+v6qaRCu2bZvnedpRINVjI2K3qRPERIcopWhdRetdTKANAIpevyh6LvjgPKIK0VdVlWX20aMnIYS7d1/plwMAcM4p5fI8r6pVWfZDCJnSQZg5IkKWZXVdr1arsiwvLi4AQBvDzFmWTUZDNTG3bt368pe/7H379PjxBx98f7FYfeV3fvMbX//9l19+tSiKg729WzcPPvuZ10/Ofux3f/d3F/PV2++++957b7/z3tsIGEGuH90cj8e93kAAdsqRthYFlsvlYrHo9/siorUa9Hsxxul09sEHH+V53usVhtT169dv3bxZVdUHH3zn5OQkRFFKDcp+VhREFKPsjPaG/b5zzjV1VVXOuenZU9JGEKg/9BBXwaNWWZZhlKZeKqQYHSJwjIKgsxxEee+tMQxMSrcxEiCoDIhIYR0CKkNogvcSUIOtlw0uWsAwyJQXCQKNc1XT7u7ut54b3w5H/aZa9Ie9s9PZjZfufPnNV379H/5SdXH+Y19882a2h8QtB9BMqj086ksrLrR7hwdnZxeiaTgcpjpfWVdgre3V87mnH3imklVcmzsGANWJNAAAorBSRoHiwAAokdu2raqqLMxisUjpb5DovS/ynKMAEbAWRqVU4xxp62MkowXAudYgxxi9d40HrfJeOYjeGYS6WUnTILBSyrXOt22W99u6MqSalcusrapl0mUlwFdVlbUWCCWyD22v15tOp0rrCMgghrT4ut/vp0qp1fSixEJrLWvjDGuhklKKI3PktmlijGk3FSHS1O2UnIK6pLWI0TvxyQcRYpnlkiT/IIBSFIW1BglefPHOgwf3fvf3vkpR3n/3/cFwOJvNFtUyhN26ajJbfP3r3/ilX/rVP/4nfraXF9baVAq2szN5/72nb7371o//6B9TSjnnEbGu6+m0Xq1WqeStbetUSCEgRCktRqmIPOXFtrU3P2icP2ZFIdUB8pVamohEAgDkJl/WAUQ0EgOvqqppGmtz1IpTyY9SKWXftm2pxwAQQrBaS4zKGIXomhYAMluEKARdXjjPcyeeQ2e4fNsmaNslWEA2JRSbSv+2rvfHEyKtAI3SaUsi5nBw7dAa45zrFWW/7HnvXdtWVeVWNSiI3guQyhABU7MVozoyczvDQ12nzzRuApAKtCWGwNw15VoP4BVxA1uIZXt41drGwlYvz22Qs40i1r6vS9xt4EfyZXmehxBj15e1q6uLkY3JEo/bK3Nb5CEEQVCbbyEEReA7mLQRRP0ggEHEblc7XKf8mDm1wlJabeCXrGsN/kgfnzDY5jag44cBFSSPvvV6Fx9scOL2X2GrMcT2/7h1fAwEIOJ2b60uQcldblg2ZQREpDDTBsD41vV6Pa1syuM651wbQAhJ2rblmIoEkUWUBWaG9X71smVBEVFrHaMAJMayo+tg3YkeGQAggiQGGhFFokgUXmsS1zWVcZ0E3D45pGUIgD/4GHcbij2Xr0wzCGtk3In6N0O0bj+NnUtgREz57NSkQ+m0+DQixtiJGGRD7D3H66YfGBEjxAiiYmTPxmQgKAwIhJB65kuWFcIgwK71gFLkGi0id5uEbBI06Uu01kk4hwyIggxEQEhRhLTlEL2LRVFUy5lSytqMKJm8lOTvdmoKIYggBG6XjSD6xiGiIsozlfVzBnAuaBVYYlOfB6dK6PXycu/uDXnpJpEOEeumPT+fvv/hg3v3PsyyQtu81+sdHR0hyuOnj1577bUYiZQRAKV05ArWT9RiMetcAqEIG6WEI4egtSYlvo0xxtzajQYTSSNp55xnZ5RG0kqvZ5YwUUp7e3vW2uC6yMHaXOoIkV3dqLTXm0JtKM+t1joVBDBHEUn9irSms9PjRw/v9Xo9mxdFUWhlDnb3jg4ORcT/pD89PX306NG3vvn7SuFoNNrd3VU2e/Mzr9156S6hms0Wdese3H90/9Gjv/O3/97x00cAcHT9Vq/XMzbf39vbGQ0P9vdSYyTv2+l02usNB/3hrZsvzOfzuq45hI8+uv/+ex8opXq9fp71BqNhDILa7OzsZFnWuHo06g9H/VwrxK7X13Q6qxvXNO2yakLTxhAQVfAWkEgyNIqj1D5G4bI34ihBSUaaSAOJc64selW1zPvDGIMLAZGWrVT1ShEVZd+zeEAlrJVc1u5stgyIKs9NWS4XCx8YBN2ibt2yX+ZZYVb+crR3+Bf+yl/6J3/vl5/8g1/9xT/zs0fXhy2J7qlVvYroFtXCn4KLbrFYZDtlyolw118aQGIS2neTLonqEGIFIpuwE7aSj4jInNrfRGb2UVjQe6+V0qhdYAVolXGhMmSszUUwcBSAsixFPIt4kTayQZUe7Ji6lBOCVm3wVVNnGpVGEVTGpHpok1kgca41VrmVN8aMJ/uEGnw0SOjbpq2FCyJoq5UhJSiuaoudjEUAOESvTV9n1gUGpY0yHriuG13ks8Uibf6LiKvFUvo9QUXY7ZRnjHHOaUOuaZElyUU2dj4IUwzQVfmE1AhURNrWYWASRgQipcjEGJxre7lJexmF4IjghdvXH95/0C6bGzeOTs+eHhweDofDpnaICiDcuvXCn/1zf6ZxcH4etNaL+QpIlqv69GxqsUxtwGNEACzLcmmjUiqCVG3Ttm0nu15zlYIgaQeR55OMay92RUlszPIWQO9KLxBRgBHFELJSzJx2UdTKapM1rlku6mHliXQMkkyNiDDIJgdNAgq1UZZAkZDVmVHWV04lEkSb5AuE0PuIIKCIAKMIKkoWuPNEWpHRyhryikEUESMkqlJEyrIclL0gPJvNROTs2cl8tVBK53le5L298V4ceu99BAkxLquVq11OVhih8Un7JeuMwWasjDEhbLo7kdY6y1TwnjhrfsD1bw/jtsfc/Cl9xUbYLRuF+db7t3/dxhibucuzzDsHSJuyjMT0B5bJeG+2CAAwHnfAQCkFAqAI+Wq6Uyil1q1ct9juq0N3UBGvLmtzHbJOqHUVhbjuova83B6eT7sqpVKPta4xHakNBoKtgI+fL8fdfC+vyyc3O3zzuvHB9tDLGnVtLnsz3HodE2xTvpubJ61ijMLeWpt0Y0lcxRLatkUEAvTe+xBUiACQZ8UG2IFsGEFiSak6WvdZTfoz7uKhjhfs0FcKT9Mc0Lrt2QYjbq+ezYBsSOyUdd3Qp+tiCNg8ugkGryGiICqtUfgqtthecLiOJjdLRAQgpsXRQcl0AEC3z0BXkgBRRK1BYdL8CwMnFYKI91Fr292RdPcoKDECYHcOWdfoyrp0dLMGNvEQdQx6l9lMu6zAunbBtaEo+8poDlEQEVBQ4nqucZ2tJiBldNITtG0TQojWWmtJQWFMUQw3tcd1dTlfXAgjMyhjj45uHOzfvXnjWogcGKqquZzPFIaDvZHR8PjRPaKiKMq0zqvVYmdnh1Cqqkqh2xW6QvTe13WdQtREvtqtIvxUb5VUmVGYI4uIIlAKh8PhZLQjwnVdc2QWSfvQKYVaa2szZo4hIBIgtG3butqaHAAQVdoQKSWaY4yrahFCEIjG1RKHrQ+nJydF2VcE1trDg73gm0/8+X8pPT5120yn0/ls8f73v+faMNnbHw13fvzHvvSnJ3/yF//0L8wWqw8++PDv/t2/++H777DA9wAI6fYLL16/fj3tOndt/4AZBEgEV6uWiPKsFJEQIiq1WtY2zy6n8/l8LqTOz8+Ho9HOeBhjnE7P+70iOq+U6vf7R0eHq6o5Ozk/Pn46ny+IqCz6ut8PwtVyqq3S1viIpIyrl0qZFEFG7yRtZei9tbkyygWHilDQKh2i8swcRQGKzYmwPxrOV3Nw8ZXXX2fQq6ZtQ/AAw17fRdf4eNAfrhbLGMN8frnX7/8LP/8nv/bbv/O3//4/+Zmf+5O2vAYGjx89m9fVz/4LP/ebv/fVh48f7e0e2CJrqirLTacOQJa0Izdil9BY2660pT0/v5eryEZ7KZIa6CTym6GrHAqN91EbC4xN0wbm6eX8cj7v9QrXrlxoe6WOAkAYQsiKUhBb52KMnCpDvIsgpI2PTd2S1rppG9C2bVullAvMRG3k6cXFsCxcU+/u9rNCf+rVly5nM9KT4/Nni1Wd6dIo3cYGEJumkRhAozE2tewKISBLBK+1UYVpV3X0XiGcXVwCotK2qZ0xWZn30g6/q4uzYn/Xe4+KUCDPisQdMrMmwyyAQForREMqshcO1qiAhqUFFKVU2zbMA5GYWU1EIGytnl6cff3rX//ka6/euHHj5uGNd9565x//8j/8hT/5JyY7w9nsssjsfD631pBS8/l5Xde9vIeIq2XtHf/2b/1zRHVxPnfObVzvbDY7Pr2sqsraa07rTjCOXeYRAJAk+UfYbBd9ZdKv0NgPHms7DyIxssQYhRAURoi2sMvl0hhDgKENy/kqxsS6XZE6G9eeXo/MddOUZQnrzQYQMQZRKjkaZUzGzBrJRZfsvwt+3QfHhRAYYmr5US9XIQarjfdeAeY2S9AtcKxdiyxFUUjkJPN1zp+eng577bDftzZfreqsVyodsyzr50U9r7wTzEpSWQxdNtkYtdneRtbabk7NxyWCJCas6znMzCIRSRILxAipigxkM7DUJetDUEqlbbzUurPmhkDZYJVt1NEBg3UM35ELgQkVUNeLPrVc6PV6Ra9PqJ1zWVmk/ZGV0XVdA6Xl18Gv1InjYzBx+0iXoUMyBdGnc6WLVkoBd3OMiKlDexIhbftLSVyM/CBHBQC4UTRcsUdbt7p2wIiILN0yijGiACHGDTnEkSOnZDYiAgutlU/bY7q5HyJKCAU3jem32H6Abq81wOhiK4zRB5agAFEk08ZLtHkOZFgkbape1zWRZu76oEQRloiIgqRNlha9sAAhpAR+6No1AABIgnMkkvLNlCI5hVojVYsq04YlaE2xg6pmc1NpQyRGpLWUm7cqHtaD2e0QoFTyQWCMYk6d/Kgoek3TAKAmpTvJRUDAzGhOfpJIaNM8bG01ur0f08Sl5CAHjgqJQYQFFXVb0yH5yCTB+ZgXPVRUlqVSBp7H1lrrED0zO98ioun2nUg9bzoRa0Jd0KHDbjZ5fR5mbl0LAOzdbLk4ODhoXCAB1KgVCQAisQiAkNGgMPU5cyEorZnZgLW2a/NBIr5x7AMipgnNrRqV/TSSzoeTZ/fbtl3MVyYvQFBrOyx6xsRi1C+KYlW1TVuhNcx8fjZ79PRJURTXrl3Hbm/vXlXXq9UqzwtB1EqHLTWA915rg4jO+ZS8ICLXNrAukFEKmYFQ2AewNkbWWRZjaIPXxqACkRiCjylsFZUUhNykuURElBjrepXCidxaAdif7MMa6CMiChPQYj61Si8RZrNLa+29B/cPDg76/X7W643Gk16vFwK3bXt+Nn1y/PQPvvF1a+1kMjm8dvTmZ197/ZMvVlXTNM35+fT8bHr//oN/9hu/JYBa2cPDQyBjbFn0e1rZspfXdX14dCOxktG3ghhCGNCgaRoRf3Ly6KMPq0R43Lx+fX9/v9/vn54dv//eexeX80yb/miYl/2U1V1Ui7Is9/d3Z9OzULko4AK3agZCvcFQK5NluWsDMCskAAgupobdMUZGQaVjdEAYU3c9VFy7AGpn/1pvd7+ua+fc9Rdu1atKE0F01upHj49HuR2WvcXFsidqtz/8hZ/72d/4Z7/1d/72P/zcl37Kq3zZxpWD7779jvPxzc994fT0dFXNxpNBnuu2rgQiswBqhvUeweuwmFBtNBWACMTMXdd7AOGNBDP1Uwdum67ao20rZYyIVMuVr2MQZEWNc4RBuGmaytkSVQiBgQhRGMQzK2Wa1jdO8rzUOmsdW9SuZR9CAFLUUfh146qIl6uqndcv37z16PEzDFWO5d6kt9/XNtOfe/Vm6+HhydytVsLBaMJMu9qBWL+oVDEELxowNK0qc46tVZmCcLA76ZVlXVWm7AUgEMHA4Nsnj48Ho/7o4KDyrdZakal9Q9rYvEzpSBHJTQaBU5osUWVdDkEid/qxwMgCXqI3mhTSowcPv/fOd15+5Y7WKBE0Wuc4y8rbL7z47rvvzmY7n3r9bt2s6roqepPWt8enJ/c/up/bwoCmGCfD4Z/8+V/4+tce9ooBsAKgyG3d1idnpwywqhoEpbVmCSggQhIQAFiciLAiIlpb2jTl6fGn7fKpTcyc3gYs2DUAS+klJcLaGABkjiG43FhCIehqeoLzmTYiEnxrjFEEMUrTuLLMRdjFQMb6ELRSypA1eRsDEIpIiNHHoI1hHwQYBdgHhUoiA4sCbHwwxiitg4u5yfOyPH32hD0bhugjIfZ6vTYGxzFDZmCIrKxtgg8iJs+GxmhQ9aoCbU4upjKbIUmulAxGlky/N1RZkZeDXn8HWFaLiyTjE+nUNaRMjBEwEZwBMYFOpyhTFEKskQJLJNSilCBEBkQCSjSDTnwMdXohJNIAkJKoKeW2ic8REQkkwgYTE5EgpO1nUCEkpSanVpdJisbaUIgRlbbatN5pQwpluZwTHcXUIRUo1ZIBYhpw1CqCpBrnDbe9jVhERCeiSDbiG0RSgBvtD6a01HOM38ajYEdorVHaVoLz6pCr+4Tn87VXx+bLoCN2cIut3Wa/Og+9jic2sG/zp210CX/UQeuqtAQoA0eOQeBq3wPYouIAIM9zAEphBmzhZWZuRTRGY0yWdV00vfdgkoZDkmos1S/Juttq91gSKaWaqvXeJ2gLeDUmsiXM2lzP5qbiulsddknAtLxSOUmCpmm+g0jUmkLwOrUK2ypW7Z52gHWzkStIJ2tfsRlABoH0vAIwiNoSEqb0JaR9VZUVDBv6Z8O6ISLglRg/xuf2aN/M8vY8yhqCwRq+t22bLrKua61tjMIoGJDpSkOQrFsX/ax/3Sx9WYNXIlKKNj3k0m7ZQKS1RqA8o0F/Z293JwZunK+rdj49cc6TtqlL+GBnUi/DYrHIyuLunaMHjx5+7Su/gUh5nu8dXDs8PBwOhlleMrP3Icuy89PTtNGnxOh9SoZiMgfOuQRNtCYicM4VRbZarnJjNtPNLADoORZZJhLrkDrialw3HFbKxNB2Qcs6LS5rdWaq7c1sYa1VZHq9HjOvVqvVagUAIhpRFFIIwbXeczMYDHq9HpEmotu3b78Jn13MV6u6SrXr7x4fZ1nWNG5vb+/OCzdeufvSl774hT//L//LDx48fPbs9Nd+9TfuPfowglLK9IpisrdntS5Le/3atcBslEKlUOTi8jJ6HyRG55thq8i0rb+cLp8dnz89eTaZTEaj0c2bL8QYlcIEzgaDXlo2u3uTybgXvfM+kjJN405PzyS0TdtQ2wxGQ9f6IFyWfaX1bDq3eeYlgACC0lqFEFJ9liB5EUblo/jIw9E4xuiZe6MdYBbvBoNRnpdDS6vV3K1qcTG6aLV5+bVPLaN+dnlh+qNF8N94+9uHq3nL7ubtF5RSF5ezWzd2d4Yja7V4QUQQWkuCGQCTOhC2dK6bR77zHHxlXpKt4BASNJckZvCek50BCJGLohiMxm1dr1YLm2eRCZAkWQCQVdvW0dusiGSni0rnvaWLMcaesdYoAgigfIimyNvIi7ZZOF8Hmc8XfW0IhSDkWoXVUkKzWrrh0dHu7sHssjqZV4U2EF2uSyhyYETKjdIJ+JLW6QFMGXP2IcY4HI2WzhkyAsxRgBAIT09PZ5eXpldEhsietEpt3vI8X17OtCbvvQbKsiwlcZL8OcVsWilClYK9CGKt9a4BltTDczQavfjC7aePnn5QVcIwPb9s27ZeNTdv3twZDi8vzlwMhj1ZGoyGRVEKQ4JNKDybTznE4+Pjuq6HhplDVS2/9rWvaYA//MM/fP21l9f2DddESWKkmFMnhdA5SmttUnHgushs29xt/NHzHpMABEiwa6kISinvW4soIgcHB8PhEABCCBqTge1K/q21zrejQZmKA7TWy8VCGdqZdNkVY0yMPvkgrXVondUaRFrXIiIJuKbN87yql0mAGJzHQvplyUvOrDWkSKB1HpAQUWvrQq2VSjiDjHbeK4amcTDamc1mWV5GYmZezheltiqn5Wqa59mv/8ZvNperw/0draAscq11WZbJJIMP6SKhUwlDcvpEmjEwc55Z5tiGoMgII6pk1oFSIa8Ic4CY9u8RkY1aP22q+VzWriON0o+QetSrTZOH7qlcq5mTrCgZ26qqquWq1+tFYefczmSSxjPRGelBTg5x4yI3ru0Hk4+IqBWKtjpQp/3sgBWldCRv1whse8fOW7OgAK47zMIPHIhdOny98q6c6xX0eh4qpebP6x5T3YubS9+8/4rWWkuyNihuc5Efu+yPnaEbfAARcRzTpjtpqGT9zIgICCSjmaZTa20UiYgH37ZtE1xd12lAknbHmlwpxSkE99HHINIROWG9fbghyvN8Nls0TZPlBtYAqLtsSndHRKRwuwsOIGKmTSKfOXrmiCJGIQDHdQK5g1IuAHqlgQE4yakIkZUksRygNkZEiFOFJa6tvXT9t7vBSsbiCgJil5Ver9G1Ll4b0oZEDGmF61HdTDGh2jCxak3mxfXOAZuIkIhknfVOJL6IpK1n07gtl0vvvTHKObcusUxXwkQEMZXrd0UjuM7Ybqxhgr8xRqLO+RERcwiemUNU3RMbnWcka21mdG83h90xkfaBF7OFj2F6/ijljIwdgCpee/XWZ954ZVW3jx49fvL44fffeetiejke707GezdeuH3t2oEhrpeXJitijG1T5XkuweeZWS3ng8FA6ZSLpKqqAMAYVde11hoYAkNqv5llmTE6uCZZgaIoSCDGqJBMbrz3EbUhAwBt2wLAVUtAtdmrQIJnh057NFYVWZ5QWgziYki0d6IcFGBb1XmeB5F6uVA2S32Pbxxdv/viS7P5tGka14a0Lfp7736vaZq93YOja/uvv/bJN9/87LJaTeez9z/44HI6XVXN733td997/y1DGlDduX378Nr13fEkM2Y4npBW1XJ1/Ox0Pl8m/yEiL7/8ctoqVEQE+ezisq5ra3UChWVZHB8/KTJFRMYYW9id3UnR7x0/fVZVNUN1eXlRln1B4OB9jJoIgXqZ9t4zeI5gNSCK1kSkCFUEgci5zYEh+sjMi6bK81yrPBKacgcMaZ01s4uzFs8en+bG5EUxvnnzrQ8/ao4f/8RP/9wnvviZ3/rq11+68cqzJ89Wq7osy93d3dFoFNwCAZJVFMb0wALG7b3CNsEqCqAAIQkwbxWPIyMAtI0nk3ZT6ITnVdXWyza4QNq0rm6aJop4HzlAYTSDbp0v+yNjVB3F6gx1sYr89HLx9HJRjkZHe5PLtiXnAViQyIAqeqronc2q3mjn5MnJdFHVoJsQC9N3Ibar1e5kGLyeXy5WS7+aL4Z5OVvMd8p8ZzB4cvJMEGMUjEGib70zZQ6IMTAzp2UMqFZ1A0Y5iYpIIbLAeDw+PnHaZJktWu8AgLRObYMmk8nFfCEiKjOhca1r01OQWlW33iGqGELtUmEyENoYotI5KTue7F+/fvPg4NqtO7efPHnyS/+/v/3o0SMC5UP1Ez/5b1+/fl3EGWOWy3l/MEn+tSxL51wMnFKNRVEcHO5+97vfnk5/fGdnt23bfm/nj/+xn/i1f/rrP/vTP2OtXS1WkDQ+3b50yRKScCr8wtTeLMaY8jR2rfiU54/0iuo2f7uqdU0205rct64sy9A6kaiNavy6mcAaTCT8V60aIuoXZQhB0DvncqPTA8XMOzs7XWMwrREx7ZsERN5FrbpFmBQjKRERPBsyzKC1HY92JpOJb11T1VFwZ2cnU4ZYuPWGjOcIPoqgRMmNJcDIYJXOsszVK0SlNWWDQZZlzjXe16OdXuuq/+w//88ghs++8errn/pEU4e9vf0XX3q53+uHjJumUiQNt63Pjc4AUju1KAi2KKNIjCozfRFEdiCeFGHqtwHcbfGsCCQyM6ACVIhKuj3Ncd39648mZX4QIcQQky9K7inGWJZlWQ6aqs3z3FgbQmAGREWoQcJGpy2pfnndc+RjCGQDxdIa0LBp0S4c0yaPogF0AiGwZok+htl5a/9w7BrUXi2vj33fD/68cYqyFvXDltrpygABbsLE7U9tjs134Vquvv2nH3wbXNHCyT0TcxIXEkReU1OoUAFigo3CV/RJNwjrlonW2l6vUEqlXnyRPTNPp9MQgk8yUmOVUoJK1nKrtNz9uv+vMSYK4nMItduHMQVWuIVTE96NEJFkk/JPgx9jJGOUQhBM2EIpRBKOHTRJrVkjCIhsBPgcYc3Kdi0eEa8C9I8dH5tWWPNScSvLnhBPSltvw9/tXPOG+toM6RoSESLSVnti6eR0mCKMFGQkuR51xTKbRcWb8xFeSQx5XTq6vfA217NGgZ05g3XaXUSi9yvfdp1pGZQyRJTlepgVB2YUgheBNvhnxw/UmRpPDrQ2L9zYu33j0AdgltOT6fn5+dNHH5we3y9sdnh46F19OZ25ajyZTJp6tVgtnzx5Uvb7n/70pzetN+q67vV6iaAK0m0/j9C15PAuKo1KqQwL4EBEKKBI5XmeKLQ0vJuuY4nV9r4rzk11FULY1k1CVEqpxXyVGjIF553zxtqyLJum6fV6CcAppQSpaqJrmigyHA5Ho5F3McuyN954fbms2rY9P794++23P/zw/aJXaq13hr0//uM/vLu7H0L4y3/xX66q6uTZ2aNHj/+n/+l/+eDD7ytAbfNXXnyFjG6rOu/1bGbyrETEGzeOPMfz8/MQHABnRT4YDPr9MsZY13Xbtk+eNINBv9/LyrI0xvDF/OLiYrms8qzw3gMpEclyU9e10TsxBB/janmpyORJpSFSFr20okLaQZmZOfo2DvpDXeqzZydCKsvziCBMymQNMKCN2SDmRklwzIuqrVyr+oPZ2cV5tbr7iU/Yb37n/r0Hs/nlqy+/cvrs6c5wSIjc4apERIlwt6eqSBQAkattJ7ad8cbQdy9x2phIAELazVUB8nrv0Rgl1E3WVwBgbQ5kfZDaxaKXnU0v5lWtlBr1ysGg9/jZ6aOz6WUbi53xMvK9pyeFNaW1zWo1HO+s5ov7T5+Nrx0OtDlfLC9WtcrLNgqgJmWFcby7d3Rt//z05PT0VLA2qCWGfp7RZOfGzev7453z2fzRw8eF0UZp5xrWOjIDkNVZi5GIUmNeIWKQvMjCqgnBJzVkul9mRq2IIEqYzacnJycxBoMmhECIZa8nmOQ+6EMXiSUJkTEZIjEzR4bYGajJZFIUxXK5vHnzxv/+3/t333//fY36V/7JPwAIzAEUENHlxcUbP/TmopKH90/SbrBavxACK0PWmvly9qNf/pF+vwyh62vDzLNVt9tYCMFYFbqdZDa+plMvxeC3Ov913Sjbtt0I29fP4/OS3LX4eu1S092Z1aLSmzbxilIbCBRIV5Xg42/+5m8WReFab63eKJ6VUmVZhuDats0yo5RqqvrevXvT87Oqqsh0ncld4xNJaYwNwYcQClukwp3jk5OLxdRxyG2mSfX7fd+GP/ETfxwRHz14+OTpIwG4/sLtwDBbzIm0a2qrVIToXOOcQ2NFIgkg4mhndNY0p8+e/h//vf/Dv/XX/rf/+X/8n7Zt+/Z33vpbf+tvCfO/+b/7dz71qR969cVXjq7vF2WGJABWZ1mAdjWvZrPZ3iRPmysURbHemkkQIgsIC2BquLHpWKlE4haRAhsI1UU7qNL+LlueLA0/rVUCCF3n2BhjTO0aU3kpMxKqs7MzY+3Ozk7KtPwgrQUAiArhKvjvFsmWECu9onG9wxgAGK2VRq23EkOQpNlXyInWGn4RWZdVEwAAy4aIkq1aj4073ICezZ+2rvWPhmuCAIQkP1DHK7DZl0O2U3WwZtj+KLhwdVNbFZpKI6EBAPbBey+ccJLizcdxQ/kIcASRGJPS34cQYkBjjCIqiwIxZ5Aij0HY++i9b1rXtm0UBABjVQghSQeiitZYZZWLIdNZJwsD2hjeq9vcVspHDiGkzoeotQgBK0RMZZYkoAADRBYGIa21DnkbWtIaSBLphQipWiehOSQAEUDu6D0ERGBAhE7duT1iiKq7qI9RkorS3hdwhbSeK//ZEHvpLtTamiilYgJYAKjU+vrWK3V9bIBmQmDD4ZAZUrkDbLSJWw0s4HmX9jHYvVmEsk5qE13tUNn1lSEhBRYIhEQENYbgmsYTUVsDKCiKLMaoiF64cUDK1HXdVsuz05oZhsOdsuh94tXrIVxT2nrv29pdXs4kwuLy9L13v2N05lxQ1sTAUXh/d0xGG52VZdm27cXFRbLL/b4BAR87zoOUMsawhPW9AJFGgRhDkeeEmCSAG5Ca7r3f6wlASnF674JwWZZZlnW55sgIbKwSRgWoAGaXU60oyzJC4BhEpK4qo7Phzkhi9K798P2HN2/eHAwGbb0KqcYhM6/cvXPnzi1mXiwWJydnT58dTy/Ov/udb+/t7fXK/nA4fPNzP/TjP/Yjv/DzP3sxnT1++Oi7b799cXb++9/4g4Sa9/au5UVx+/aLNlODrDzcnzBgcsynp6fz5Wp/fwcAVquViFTVcnq5On52UVXVaDQaDoejnXEX6IeYZVleZLuT0eHhfn84qJarpnHLxYqZl8vKx+DbxtockdI+wMyS5zYwx+CB0BqtjBb2bYhZXvgoVpsmgs4Gc2ENWiE7olZTPh7ePbz5rbffe3h6cePGjbPT8729PaXUg3v3hz/3E8aYEJCT0eja4wGhJKUs/sAiTz9sUBcA0LpRTiIkNuadE6MUu1MJorW5D2xsxkI+Itn82eX8dLYIEVjihw+PF9Vq1Xgsyqjz0HhGapaLy9PzIje749GuECnz4sufaL3EVeNYTs/nXohAX84ub9x8oVpO62Z14+hIm0IZWxb9Re1F6VKX80czaZrdwWA5X6wuL2V3j0OTWV35wD7oLANmaJ0CJUE0SONabUyoa4mhXS6JiEAlX6i1DRJijKanJru7Dx4+tHmOSS4pSCLz+TxXiWkCheRcE33ItMmsRoQ8t5WvijJrXU0KGOJg1CdNi9V8NBn99E//1IN79/cPJgIBiVM6Ps/zxWLRrCrv2/F4fHFxEThmWdY0jbV6uby8+cKNwWjQ+IvoW4XS75c/9NrLeZ6H6EiB905h10cx9btOrRUQN80au44JG5wUo1/bXQG48qGbXlaIuFaaC4skqZJSigCzLGtjezqdnZycPH78uGmarn+N91kun/70p/+7//d/t3tjz0ieF3mymnluQwiZMWm3tMTq5Xk+n8+NMYzsJTJI0zSDwTB1EkGEGCRQUEotm/p8eqFye/3w2v179xTS4WGIzs9O1Cdfe/VovNe89vrx2ekHD+49fvy0PxikIqdUh1AUxbxpSCnftKNe3yhVVxUAuItz56rJXu+1N16Zn5z+pX/1z1+7cfjRR/e/9e23/k///n8wLAdf/tLn3/zhN1557dWDa7f28z1jzP61IwnnWRbaZtW0lccmNzmhyYsshlTQawMDxzY1ENBKSxQEiwiJU0BMsupOEd9BItwkBwU/zoetUcoa52zUPs65unZWZ4PBwGZZURQuhg0Jte2zNq4TQa2dOwJI6g2QskMJh3WdOROQ14aUSh40EiY3eXXqTb5mA3fWGBPx+dTmNsbC54muzV/TsUasf4R4a/t7P/a2j93k/xrS2vjaH/y1O2FaqikQUSqEcFWl8v+n60+DJduy8zBsrbX3PmNON+881Fyv6lXVG/r1PADdjcZAgDNBgqZDtENhepAdQTIUEmmFKEXYjnDItkSFaIUZZgRhyQrKYpikCZAEAQgEwWaj0Y2e3tBvrHo1D3e+N8cz7Gn5xz6ZN6teI39U3Zs38+TJs/dZ+9trfev7Zot34LGHn2km2sszhX1rDM84lYgMhHGUAkDoB2m1O957a71xztjae19XOngaJkkCAMEgZX5AnpXkXrgmITkXJLOVUgLOKoA8K1OG9AY69sgSScooi6W1PpJSSimQPPuQHw1fWSLNk7HNzgCQuUmTADyXaFw8mReWDZwdcI5veOEt87+G7yiEwOfJXrOmWpwnwF5ATmFqBWARrKlF41neqO0TEfNzk2pxjn1yOnnvnWuc4HHGs6FZ/ZeIPPuwp/HsGFgIKYABUQplbM3MuqoAQESRqUvGKiKVdVvsjWeMpSuLk9OjXRKqrmspozRpddvtdrt74fx2WdbHpydHh8dAwln+6OM7H7z/npAyy7JufynPW8Dp8fFxt9dr5el0OrXatVotpZR1Wghh6hrZSyltsL3yLKWytsZPkEsQmUgSgVRxnDTExKKqwFsVZ6GYGyznlZAOmxInhv4y50ajUTOlpPR+wuDiKN3b3b394UfW2gsXLgBA0EBSSkynY5QIAL2l1tr6yq1bN4wxx4eH07KUKN985+333v0xIq6vb3S63evXL37lp75QVVVYRcbj6d2Hj+7df/Ct3//XYdq8/trrG+tbaSs3xrXb7dXVVes5YLuiKKRUWSa99/3+SqfTCd93Oi2DAPdkMun3+51uezot69qEb72xttrpdIbjyXA4/Pjje4gT65xScZpmQsqKmYjSNLXshXRSIIMjRGs0A2omVoqRjDYWhDO1EBGSLGtNCL2VNefZOL++tVmMJ+PxeHNz++DgSNc2EpFlwy50wRAzewchFzIXiFmcnPN5GO6REBlmoQCJkBCNs1rbujK1sYDKeVMbOy2rJ892j08Hh6eDFOVgUh6cnB4Ph1WpoyhiZ0jG6zvbhXbjuk7zjiBs99LNrfPT8WhwfHB8ej8SkplVEsd5q7O03Oot1cNx2u7Ujj2IOG4fHe6+/9F9a+osy6e1Mx6VUsPhWEbx6elQTkvBcO3qFfTgjTm/sTEsy8Fw7L0nD1mnEyNGhKB1LMhVhXYuUqrTbgUTeu/YGEuS0DPjc37VoYOVHJuizvKkHI4pyPdYw95W5fT46ACd0foKCchbcV3XaTtj9kKQEOScMbYenB5bW3lvtalIeGZ3fHyYxkm32x0Oh4PBSVmWh4eHP/rRj37m66/FKSqltKutN91eS0i0DhAb+ahutytVk7ZXgWgCEBpYQ/DgZqkGa613dt7ePltiznqimXEe8BtedZgSs0SDIPLO+wA4GaqqMsZKKX/tn/+zt99568c/fm/n/LnA+PbeJ0mStlqht6YuSgBABmc5y1P0KIiM1lmc2FrneX7r1i3RrHQAAFVVjcfjuq5b3Y5zNuxkyrLs9LqHgxNkbrfb6+vrRweHArCsqz/4nd95cP/++fM7Fy9eBOarly6/9sbnfuO3fyNpRUAISELJYjIJ8zl4JgKTIEEoqL1kPU+r6cpKrxoMrbXLy6sra+vf+IVffP21z/z1v/rXL164+s677/9n/5f/M4j4L/3lv/yVT3/24s5qRC2hZDfvszemmhAgOBoOChJWKakkJbFEFMaZpgsNg8gqA0AjhIQB4DIA0Jn1YkiA/WTwAM/V95r1SErV62WT0bSua2Pt0dFR3mnjTMeUaD6+TTUp3Ph/FGgJB5cIXpAIZBgi8N4HQz8GZnCBUEYhwxcYP943XKvwz0+qOTYiawCw4B3rvZ8vk/Q8SR8b3hUAgPN+vmw2/88O/gIgQEA/I63Pn5+v600q7vni6xzzNYv0YqZkAVWEjH8AKyQa1EUCBdD8tgFmJSVCs5BzkwskrbVHQAwdiDZkLyJJSZTnSWq8s9ZWpQ63TV3XYaB5pi42Q7SA7ClcRQbw4BnY23BuIT+JyGG8gmYBSPCO2AtBhIAhqRcJqUhJUgJmFTomAE8MAVaK+SaAZidAgEDhr/PlfH5lFoHRfKI25NPn23rnaGDhOMiMutlMiPn2JBxWSjHHTERzKbwzeGSMaWrtRCH0LJwJzrl/c8geboBwhgBgnENEMat+no37c/ALeCZEEm4HSZKZrbPsnAcUSFWt4yhSkRAonNOevaVaRcLUJRDFKrXWd1oxk0hTAYxpGo1HJ3u7j8fTiSDV7S+vLPf6K8veQ1mNqqo+HR0dHRp+wNbaNM+s9ZevXm2nqQe2ui4mPk3TENOZmUJ5V0oA0NYKBBKC0YvQPkUQWjEAvJTkvQWW7J1lL6XsdVqz4YK6roPIFhFFKiQXRSvveu8dh745ZPbomZifPX4MgMY7JP7ow/fZeSIiAa1WS0WREIIESikrIqOtEHEr71w4d9F5T8grq/179+5Zaw8PD6fFuJwMv/Wtf9Pr9fr9/vrG6uUr5974zGtFrT9878PD4+PptLx//8H/+Du/CYAIIs/bed7K221mjOO41eoAeBB88eKFqqqVUsa46XTqvQem0GS6v398//7jIIQRnHGPD46m0+nJYNBqtbS2Z9wyds65vJWenp6WZZnleSi5ZlkniWLnHUVxYB1q8EkSm1pHaWJrHSdxoS07liQBeFpOjTNCqKzdOXc+OjwevPv+B6/dvEAoHYQUCHhGZq8IIGi14Fnv2+I8DHHO+1maK4TpoEDhgRkJpfW2rJ01zCCzvDUpypPBKMlaT589c8WkKKfa+yRNnXO+tlJEqysb69sX9o9P6r19sG7z3LnJZMIAKysb7TR58PHt7a21/vJSUVbHk+Kjjz6iJFdJJoTa3Nw2hqVMlpa3kKgsXDUyjn1lTVtEmmk0rZ8cHK6vry91u0kUm6ruxHGyun48HEBZTUbjtf5yL+/GQviqyoXsLnU6vY4Q4s7t2wIdGw2exQItQQBabYxxHsk5pmBjb33I7sexIgKwBr2PhRiW5bPHj11dequJvXYmiqRSggja7XYcx8aWzE4ITLNkeHwSx0oIrKuileVSyul0vLy64Zzr9/t3+f5f+At/YWVlZVIcBZUfB2Z1dZkI6roMEcMZEwmJnr1xkoS1Zq6rjtgUDsLeNhgwe0ags8URnqcvB4mK2QQIwNyHLfgsXiGiDGJ+ttYAEEyEvvGNb3z3Dz964403hBAChK50K49mrCY2xiRxHiBsFEXeOTnLfk0mk0jIuq6Dt948OE+n0ycPHgwGo9WN9bq2VmslyDkTZ/H5y+efPXt2eLRfVWWrlSVJIoX49/+j/70D/rVf+7UfvvkjGUdf/4WfU3GEUigZM4Jz3gFnrXxYTp2FWCrvPAB5JmsIOHJWANO4mH76s59b3zw3OJ0W1fRau3Pp8rk/9vO/8Lf+0/+kctN//2/8h0enp7/1L3/3r/71/1ih/NxnXnn1lcuvv3b9yuWtXmd9cHI4PB5evXJR64F3RVmN0GKSJFIhSuEdgA8ACBq4QSRZMDsM+WhgABFWewQJGNQ657Tms1VNStn4yxEKIZmrqqqyNPIOBuNRmmdFUcVZHkUJACilGnOa52HGvCb33GIamOJCAICczQ8fejWZmcEBIKBfrNcsQJMXizjMZ27nn8w3+FlD5fy9c+LOYugJMGN+K9LiSc8w2Gy6P79r/AQhbP7R89csvmt+Pjgvu3rnnMMFfy4Ay41DX0PDDw9BYn7O4TznvKXmsxhmdPWZmov3nkN7crMTknHUakXWWue4KIpwhMVL2lzGBfgyuzsblpL1DqxmBAL0wOCZpPDeIyAwU3NBHAMAO3YCHDB69kEyAubp1vCNmlGekRgEEQLNXav+qEt69sMCJf+TowDPYzWeJeRhltSdqyyeXeSZHfvZSQrBzEHSPehaCRHuqLOLtjhD4CzYnTEAGrj2fA/B/IKHfaS1zVCGcwhtOMwshFBKOecAKEtbIcIab4hIEjG7UCZOkwQAlEBjNJvwRUSaxlLKJI26vVZVG2urg+Ojp88e5nn75etX2u3uaDQK7VpVbZ49e3Y8OB0c7781Hfa6/U6nV5VodJpkKbALiiFaa0mUZZl3hdZaSiSiJM+8MyG2zu7toC5WOOdkJITAwKRxxgeRMCFEcK5sHJGJokh6D4hcBravjMLVJaLJZFJV1frK6uloePv27bW1td5S5+jo6Oj4+Pj4mASeP7+zvb29u7vvDYxGEyFEHMfBt85Y02q1suwcIi4vL33lK194+OTx7u7uxx/f3t3dbbWX+iurly9deOONV631SsXTSfl0b+/J42f37z+8ffvjcjo5PDy6ePHi8MSgxFY7V0r1ut0kzcBzUdWnJ8OqqrKsFcfxaDDUWhtjvXcH+8dlWQjJ3W671ep478PCHBCY9e7WrVtXrlyy1mpd7+/vP3v27Nmz3cl4vNxfl5Gqi7rV6VtBzKx1KQid8wC+rmsBaL0nEA6sUsp6R0J5RyhiQe7Xf+1fXL3wV9qZArDN3QtBPRxCQFjkf/jneaXOeecc25ksBZCQIc44AEiStLJgLZXalmU1GB482d+///BhlvaKotpcaidp3Fnpj8fj4fHRUq+3vrnjWZycnCCSknI6GMGWD9JrknipFd94+dq7b/1IvPTS5rkLGzstFNm3/vD7Sd6JklPv/er62vbWRtrN2Zpurz+ZTMbF1NS6017yaXt3dw9QHh4e53FG7E2tkQGtdUVRF8V0Mo5WVp2uUEXtVrrabUcKz630EXHQalfWeWOrqnDeS1IMTIBCILjG6KYuyihSACAEolJEIATqaprm7VYSO1P3WumlC9uvvnprud8VknzlhSRr7YMHD6qqGo1GQqBn6Ha7iuRwOKymxXRcTKfT9f7KeDxGho2NjQ8+fFJVVVUV02LiGmujKIyvUgLAi5CWYxeCfAhTRhshGvIoEgBgqBaGcDQD9+yC+8JsTZlt0RuR1YVw2kQnZmYIXfPWe68iqqrK1mYuTVBWZXtl/dq1a8FON1RRQvt2mCxJkuhATctai3nEICFrjY2kMkRKqaqoAm7odruXXnrp/PnzxphQT7DGjIcjLaDb7Z4MBsPhkAAVUF1VvV5v7/CgrmuRRJvndqIo+t73vnd8cpr1ut57nBGqvPfGmCSKnXMShXFsaw0y8xxL1ak1Pny099UvfP3CxcvOOUBfFAUKlaRLP3rrIwvG+jpvL21unUvz/k9/+Wt7e3u/+g9+i/mfSFH/iV/6qvT6B9/9wf/j//5fnD+3ilg7q40pjTN1WQMKKSURCiEa2RdgRElndkCwUM1rSDszsPtcmgYAvA++LI1qEnDDy1xeXt7Z2THO7u3tFUUxzyMurkHznf8cbHxyiQw3uPTexrFCFNZaSSgX0hhhTXLOxVI1ukGI1prFBMMZfpopub8A92Chejr/9DCfFrFdgFk8a5hfjFBAGLIzOKPsNOgSofEF+sQa/8La/+IHzRM5C17dIbfXVGSlsBCayxrFpvAaGREAsLd+5tPeaJZQ+FLeey8UUEgeegZGgQhIHsB5S4TMYGuNKAgRAIlBax1sW+ZpalPXURQxeGutQCKi4LEa3A+s5ySO8lZWWyMRa2ucNgBgrfYekih2zsRKeO+FICWYkKVAtl4QCWDHHInInynChTgihQh6943+6gsAJXzZhlvqgvaBwEA5YpQymmekvPeIjUPI/MqHvBfAWbdjOEIo4IZf5x80Sz7RC/M1oPbgzumcC1y0OSSdvX3ObYQZwJ5PTwAAGzyMA9NRCACwHJ4xAE0yF1B4YPSeSLpgZYLkGFBIABBIiCwQmdEDa1sLIYCQUEoRSRFZ9Aiemh5v9N46Z42pi6JIkixL4yxJrHdlWZaT0/HgKPjUjkeu3e5uby5vb6+08k6cZmVZnp4MDw8PDw4OHfDm2rpHSNO01WqFixCp5P333z93fnt7e8t7FogxCjOZMEOn3bHaTCaTOFbNXmHWIC2EsE47b4ytZzwwTmKFRCRACKFNlUQKSTrLROi9b+VpmkSTYjoZF508z5O0mI6Hw2EURZ7tUq+3urrinHv25Gm3213qLFlrHz97NhqNpkUax/F0MqrKqWcMy8DS0tKNazduXr9prR0X07qu7z949PTxo+985zsXL15cXVkbDEZJkr7+6s1Xb91wlvePDm/f/ng0Gh0cHH3w4YdVrR3w1trmytpanqZZq9Xp9FaWl5SKmfnk5Oj49KjX65u6ZuRev6uUihMlSBVFMS2q08Go3+/3er0kjeq6fvzwUZ7nQtKtmzevX7v64MGj4cng9GQ4GI8sA3sTJxkACGB2XpL0BEQSAbRx7JxUoraWlKpqoyhJ89xVg0+/8TkhE+s1Y9iDeQ53lnUCpUMzv7lwVjX2zbT03jijdaBdE0ljjPXO2Mpa7zwaxz/80Y8fPT0xGp88fnoyOF3d2vjpr/1MK++xsePDXUJf6fL08NlLly6ur28OJ+bd994flSZttXvtTivPpuNJOR2vrPbL8fBgf+/S1us/9cUv/+F3v1+UsLJ5/vho5KyIRDoeT7vdtqn13t4eIoelqNNte2/bUSKtUDJ+45VPV64+PT02pRaEkYyNcYeHhx4hzZNxKfYHRzurm8xWMK/3OkRcn55a71e6rd2jU/ZBUENY56QSzN5pS3HCHBqGggM3IaCpK2SnJKaR0OXYend6fCyJbDVJlWDnkUEKoYQytX3y6On9u/frsk7TBEGiF2+9+e5v/4vfrKpiaWl5fWUdvAul/Lquq6ra2Fx79bVbly9fDBYazrGzTXuTZU9E7Bu2yWxj7AKBr5HYbPIZwOA8EzM3kAsE+yBK3QC1wHGdsbsWiTrNgggAyCE3ETMzoPDeK6WsMYF0EUVhF1qGBmcmJCE8MACZomDCutYko/lcEkKFAEszmv8M/DV9OYpUWVfWO+89MobmPjOdEnI5nViwQqKMJRjH3sWx2txc//F775a61k6rJK6d7vV6JFSpa1drAJ+qSIAIVlQoAJCMsRbQYwyCst727kFVjHYHJ/p7P3j77r0HN15+GZH/6T/9J3u7p2/+4P6v/7NvkySU1laHgP7GK2/sHh+qdv+Nr/xCWRzt7378W9/83qvXryTdtb/+N/7T129d/tLn3rh44dzGxvpSf9l57dhaq62rjS7jRFVmOh1VrVa70+l5L5zRAAhsSQgAUoq0rpEYZkyb2TLHAM9hCZolaGdCP6Ku62d7u0KITrczzybw8/nscIUDxcjNxHmbj2CaYwY57yAL5Zd5i+xMMu6sWLPAFjx7zNdm/4nn57jvhazJHAzN0xWL4AlmObD5WwIEDBrH8DyWgpmBzwtvnx9zYWE+azY5+4jZpjMcUQgB3ABKQvbYOGEtblzCJinkGAIQjONYqSaL4JwLApiBtX32JZi5aZJBx0E3HuI47nQ62tm83XHGamtCPUiouNI1IoL3IlYoBFhvjCGSxlkgmbXaRVkCEAihIomklJCIyMHRsqg8UyQkkSRCZkPsLTtwABLZWhPyRoHeFFyqSAIQwMylYeECzqG2W0Cc8z8hYmi3nlfKF8YGFx7PGR688BHhFXMYPd9lLo5gs5sk+QLEXzwsf6JCvfhMyLzOt0Hh+B5BQJjwZzMn/EoLrMfF7xvkc3wj2d/cLGEh4VnhUgiFiMzNtcrzNIheha122ElnaRQpjKMYEY2BstSnR7tVXUsZmX6JpxRFSbedrq68dOvmy/v7+w8fPgTCYjLc23OmMsPJuNvtLS0tFUWxt7cvpQw2PlrrwWBwfHx89cqV1dX08PBQSmrlHeccAkohjdZSyjl7N9QpjDGhXTKKhfNhMivv6zhRzrJzTmvotNrW+JCDZGau9Pr6OqBvtYIyqh+Px8boqi6UUi+/fD1JksDSm0ymxhg/y7kOh8PAL1RK5Unea/c21rck0be/853v/P53bvyZl5d63Tsf3z05OKh0nSQZoPjcG68yQlXVf+6X/4SuLTPfvv3xRx999OaP3rXOCaE2trZ7vV7oVF3qdyOlpKSlpShckOl0GhJR4Zvu7++HnevyylIwqsvzVEq5sbmuSNRlfXiwNxgNHXNombTeMXMkYyVjKSOpkjTJiMg78J4J0dZaygQ8WOMFyShKhJDeaURAcqHOETrDF/utFhf1s2o48WzHwoiAUkyHQ0QcDYtOt39yePpPf/03NjZfylpLeXcl6yydv3Lptdc+5R189N67tdWuLk6P969eOPfypYtCRofHT6q66C0tV9rGsSp1fXRyhJLG41GqhJRkdbWztf2VL335+z9+f1jZqtTGOGMsemilrU6ns/v0sYjEpfMXRtPR+++8t7q67i2Oh5M8z/N2FqfxuXMXDvf3TFkJIdM4USouy6n3YLQTLVUZnaqYgCfDwebGuhRYa22k9C7IXnjrbZzmta5iJedp7zRNp2WRJDEikneGXaed6eHo/t075XD07OnjXt7utvPJ4DRPY0CfJAkzF0XRbXdu3rxZltXGxsbJycnq6sqjBw90ZQAoS3NkUjJ2tqrrOhSaKTR7I0cxOW+ICFEURZXIpNkECumdD7mJEDoa8xLggH/CNg8W0iqzvvUwuM8tZ7zwmIe+5zJhZ/GHSYBAAkl+ppg4B+tKKec4nFJTasxzRIyiyANZaz2wmlO6GfIkJUTvGwwRx/G0mkoZzX8N0VVKoavao4/juBuJyjbsQ+dclmbFeLKxuvameevuhx9211cS9mkUZ3E0OD4R7JkBCVlbZMiSdDAeMSEzxiyTLEs6veFAd/vL/79f/639d9+McnHp4rnf+u3f2N979srNW+++9YP1nZcuXr5w7+5TIHzppZf+p//Of+i5+me/9s8vX7n4eP/0/fffbOUqa7c21m8Bifc//v5f/NN/4vL59b/zX/8/T4eDz7z62he/9OlXXru5sbm2tLLUTroMxvm6mJ5IqYRQzjIABi6scR5RSBFpUwgZgBdgI5u12P0FRKSUqGvrvJszg5Mksdaenp4uLS0ppTxCQAJzdBGGybpmtsx1ZPAT1aGwkEmBFKhaAqlJhEqc43TRjHoo2vyEBsv50YmZGfwZWatZt+ar8nySLUKi+SvDUZgDGn1x2XPOgQg0OgRsNMZwAc8tvr5ZKec9wT+BrjS7E2YsLuZ5jZEDLxLnmWUiIaWfNyXObg/RWHsGB8MGTzS6joS00B/KyIgQkXTA3jExutlxVBKXY1eU2mpDUhBJ9jaK4zjJmBnBF0UxGYxaaYYkjPW1de1Oryj8xsaFpaUlrfV4PPbeIviimDrQCCLNUQgSRFKoNM28d3FCUIfMU+AhopTSsoe55w8HIBZ+Zecdex/gcyNIA9xYZ9FZDtJZRhTO1YjoHVjjIYWzUPLc1XZhVzF/LM4cntmAwvO+p7NRIyIypnaOk0R84viL3vXPWbMvwjIAIAqo0c9nv0Vkz0IgzwTmcGHf45kQMHSdUcjPMTN4BocAHjwCC2zy7UKgigSJObXxbEKqSCKi8zZOIklorQutiM7UpanD5gcR81RFEtp5nMQZSjEaTepycnIyqKrq+vWXt7dWdrZXi6qcTstaa2/5dDiYTsvhyYlHPDo8Eci9Xq/dbgPA6fHp0fHhaDhcW1uTUnovJpOi0+kYY8qyUkrUWqdZZoyp6pqIhJRlVXlnsiwzxoRTcs6laeqcc94iYZJEUkb95VWlFABaa7X1AHByclKW00hIIUQaJU5I41xlqqKqlFJJkqVpGpQVneWqqqznqqqK6TTwWk5Phq1WCxEJ8dL5S/RlRnbXrl6+detWNS2Gk/Hu7u7pYHh8dDSZTqMoOn/xQtB/eu3Vl8ry64PB6MGjJ8+e7R4cHv/ev/mWB0qT9NzO+SxrOeeSNI/juNtrb26tW2uNMePRFBFD2aWYTMtqeno6VEpVlc7z/Ht/8EMhsN3KkiTp9brdblslMSKvrq4GI3PvqSyq4ajY3zsRMsnSlgdQSiJiEifltDLWajOBxvc3hHJG8sDgA/x04BdIGo1oXjNNCRw4YCb0nrxnAsfs4liVZQnsrDbrG5t/+s/88je/9SZKI4SKsnQ6nZ6eHnc6PRL+5PTAFZMr53fOb6yhrUhgrESrk6edvB6Ojkcn/ZVlVMn+48ev3HgJrEFbtFr5tDjt9dPLV859/Oygv9q/Qri7dxBFMSLWRX3pwuWyqkaDaZzkly5cK8rSgxlNhvsnB9a5KI3a7Xan1YriVHooxuXmxs4K+PF0sra8UUwmSgoP4NgPxhNgv7W5nsRxnLcGVSWURERgrnUVRVFdFphEcRwbY44OD2Uk6qrq5C2rdSzI1FWeJXfv3Omk0ZULO+h5Ohl3uvmjR/f3jg6ZeWNjI00iz9bYOsh3TafT5eU+M9+/fzdJonfffffp05evXT2XZWIymUgpkzjb2Tk/HBfT6YTZAWDYfguSxro0yb33VVVFRAF15Xku46jWWjRgK1QcCaARTnphH4iBnPzcsvPcere4qTt7o2cP7L03tpYkQtd/eFdo8ArfLohNhsrjtJoG1n9VlSTjQOeYV3V4tgVl5qqqvLfaWSBhnEUpZhgOgs2M8U47W7vaWuvZOWdmb+WqLA8PDv7Yz//cn/gTv/R479mPf/xjZ2wrSsrhuKir7fPntNbeWtbeFFqAiIScTss8S5zliS5Ph9V46KCuon4/ojrNo42dtcuXtnu93p/6s/9JHOW//dvf/DO/8lcm09G9O7e1GSPYVlu8+tr5r3SvMXzuYG/3B99/e3BQtZMOAf/cz/70T3/l05994+Z/8Nf/5vLK+ocf3f3V//d/V9b+U6+/9o2v/9z161cdF3GCN69fAfTO2KKYKAllVcdRAiCYUYoEyWldCzxj4yPijK+C1tigyy/EmUdFURS6MlEUjcdjAMg7eZCJUEoFiZ9mV9/0rs6SDs8xtRZkSgHOUl9NkglAzAS1Q35ojkrgE0DnhRVu8TPgJ2EjmjWX0VzidbF82VQa0S+k/15Ym4U4u1hzJDT/AedaqQA0k9ycp1XCK+fEL/wEb4yZAYFmVbM5WqBGVPfMjDKcEhExz4Tsn2dEzT9h8fTYewYUQkghvfdJksg42dy+TDKSUnZ7bSllSF2U5dTW2nqT5Z1Wu4eI1hpd1xF1Okvrq2ub586dC+ewuuGkEEJQVYxGo8F4NBiPR9bUxjkhpIgTdBqlUBgHWQvL3rPz1s+qHjS/sAHYvoBW5wM9JxP4WTtucM4J48gLCcsXZsgCbH1uCOZXfrH4shiJuHGwbixa4XkBw08Gr/mvPwn/8Qu5z/lHuEDHbF73HEzHWRcnnJECn4uV1mrExgwEEYUQQqK1YUfLzB4RBKBxLjg8BvgqpQAQQiTee2Qwxjhr2TkO+W30eZqlacyMrTw9Pj4dDo5PT4+Cy1ir1el1cgTa3Fptt7v7e4e7+wfO8snx8YP794qikFImSZKmaVEUu7u7W1tbzFzXptXqKBWHXUkcIyKOx2OeeVtprZOZtvi8MWpeZSaiYloNh8Os1U6TvCnsCiWEGAwGWZaFuS6l9N4xYFi6wgZ9Op2GvGMSZ0qpRMksS7pdttaWZenZjkejQMby3qZperh/4JwLPpLLS+1epyUiAUxlNa1Kfefe7e997/tlWcYy2Tl/rt3uvnzt4uuv3rAe/tyf/dNHhye3P7779OnThw8e7+0daGdXV1fb7fbW1laetZaXl711S72OEGo8HgO7kMarquro6ChLW1evXquqKrQvkACl4ixOhMQkklsba+d3trrdpSjJykLfvv3x02cH02lhrNfWSEZfT8HpTru7++iUvTZGi3nuFj2ARwYCYZ31nnnu37owD6WIiEhiCMjOGGOtReS6rueRmYjSNK+NzYQsa7N/tH/12uUokuVk/MG776ItL2ytXz2/ExMIQJHEeZ5GkaxNXdRVr9fxCITYamcnJyfb66tb1687W7GHaTGMEuW9f/j40eXrN6M4vXfvvjPWAp4cD/r9fhwnk8lkZXl9NBqOpqe6rFUURRLB+729vXGex0JSbatK95yTcZSlHSXjYycGw5NuqxvnrbX1zXI8KMra+1IDRyqx1qZpqpSQcYKIXkTgQGDAZI5YEIHRldUVaC2JnNEEPosTcE5FERFtbW3kef7h3Tu37358/vzFn/mZr7VaLWt1XVdESISj8SDP05OTIyK6efPmtSuXhURjzHA4JBnv7e299dZbebvX7eUqIgBnrY1UWlU6pB6cc+y8F6H/1+d57pwzxnh0SsmwjjIzUsNzmIeRs+UgrCHwXEh5Yf1ajLQNlxcAggYhCQHCOyeEILIEzXKeJEmSJGhDNr3SWgdyoQPGuSYiOwBPjUk5CqTgCpwkiTFuca2c3fImVHW0szKKvHUIJBjqqpZSlWW50uoKpOsvveQBvvjFL/7yn/1z/9V//rc7rfZf+ov/k3feeeet935sj446m9v9TtcDT8oCLLeyXACCx7rUSspr164kKhLF8Ts/+naSJH/+z//5m9evSYF5nn/3D7+fZvLP/LlfiGJ5enT44N79g8O98fj47Te/dfP6zld/+sv56xevbG/+7/7X/4ef+drX/9q/9+95Loejo6XldtpK//if+pNf+vKn9w93j48H7/74o//yb/9dAwbB/uzXvvylL3zu1q2brTzd2FhhLoOOHiIgELNH8EQkSACAB/R+nibg+XKGiFIKpZS1E+dct9OilrDe9ePloq4Gg5OQDQ30JJopcc7HlIj8LE/0yVUJ5vArhAC/IHzaLJmfqAzOl7EXDsfUNA7MgU54wZzmRTOBgBfm4hyqE1CwXsfnF29cYEg0oGbhnBcP5WfvXXw8B4CYgT3AjGg2e7ucuYmjb1RVvfc4EwUOR2YAB+yAlRBCSnSNxWyoQyEiAMaxCi4+iAg+mCMFOwoOBCnrWQjBiM457SyJpNCOgCNCKGwayzjrnu8sq0jaWldVMRmNB4PBdDpN0jZglObdGzfeIBkfn0xUJKQUzFDWWgihRGtppb2yds5aY3U1nQYC7kFZlg6NUkrEEXoWMkZE56xzTkj0bJ1zzhnvgwW9AOebtl1gRhCC2MM8hckLLTzhegrAoFFyBs6ex0YLUCmU/14ESThrA1kMRvMhC+PJzKGdjRYU8z/xCOHJn207Fv6dJyMRMaRRQ46KcPZVARr2YZjGgAgYmtQCSRODvSQSMwQbUO89USMwzewQGcNdjQwInjygRUS2zmlD3DA8IHiGztq+VCTQsvdeitB66YtiSkRCyCyJuNtBROMdghfIupp4W7FHImJTS8kXdtaFUOLaRSFEUVTD4XA4HALAcDgcDSePHj1otVp53n78+HGr3c6yLDAprTGM5D2UZd1ut9vtdpqm1trhYNxqtVqtVkiqN+5egIeHh3mel2V5enq6vrmtdR1F7JmSSMZKBNqfDIbi2JSqrbVaN0IhiFhW06I8u5dDi1krS0MRRMogiMqTyejORx8+enD/4sWLrU6e521lBKLQpppMJ1VRrq2svvzyy1mcPH66e//+/aKo4jhWUdzr9Zb7vZ/56heklEWlx+PxnTt3Hj16/ON33//9ux8CACG9/tobrVYnimKttS51aDZCdteuXg2ia865OEqGk5F1Ok3jtZV+v79UlXY4HBtjPvzwdrvd7vR6K6tdIf14PH386MnB4ZG1jgQLIQ6f3DV68tGHP/76T70mBbADZx2Sb3Z6wI1gykLBYj5X57cDEQHMnR4giaOJ0bEUxmp0joiMcdYxCiApup3W8eHBWz96y9bVtYs7G8td9MZax0h6AmmaMmFZV0vLvThKnfdEuLK8hr764L33X7qws5RnpdFIkkgVZf346a6j+OLFS+fO2dFgsNTvTqZTbSrnYWlpyVozGJ4IBe0s9UiVrouyWun3gz2DipW2/vD4tLS6v7TC4ABoqbesklSqpLeylmWZIBCIRweHXsqeSmRluDbaMiJGUZQlkUBk5wmZvW3nneV+L1MqQnZG27JQAgenx8danz9/vtNrF0WxdW5Hs////MN/GMTcrbXBxp4RoiRm5jxPf/GXfuG9d9579PBjEhBFcnA6AIAkSazng4ODFaBut/3s2aPLF9et1XVt6sopEXkPkYh0aBICNs6Rkkop6xQ7b4xRQjJw2MDjwhIb6kDYhBOB85bzT8Q3P7P6WAxhc9A2i6VgrfVsvfeMHMymmFlr7djleR58h4lIa93ttbwLeq3COzDOStEUK6WUbL0xJsuSefojhKMkaTwwhIi0qYbjATvHtSEAN66R0LPb2tg4OTxZ7S/f/vDO3//VX/35X/xjN27c0Nq+/vobP/v1n/nGN75xMjg+Ojr6x//DPzo9OEparemjJ9Dr9pb7aC3oOova1aRCtq52j+7fd1UlSW2vb7fb3clkMhwVrbw3nZZ7T5+tri0B+C996Usnxwc/+MNv/rt/+S/ZyV51vB97c2F95fOvvlaPRp/77M8cn9wrqlMViesvX41iNHYSp/76jXMv33rp/Q8/vHDhyp/647/08OHD/+t/9n97/OTv3rp27We+8VOf+dzLFy9vOqOlIiSsKkvMDC4YVzPON+cz2ECAKBeHqbnsjolI62pSFsvLyzJS1mkG58Aj0VneC731Lp4Nrlsk3TdBFSDArzlGmfOc7PMBYo5C4BPUq7O3L0yveYYJnleECg/6BKv67OHZw1m+bY69Aq1qflj6hJfffL2f/xuWhPmh5pMe4Hl86VkAAsKM0NN4qXtm8gziLH9zds9gk2+crbs/oaIKM2m15mt5b4xhwsD9Ys+1MTICFUelAe+sHVdCTNMoRoI4jp0zWZImadRb2VjfPheYOsPTk/7KuidZlhVJRULUukZBSsbW2kDPJ0QiKVWr1U1b3ZX+2uZ0eFLr0hhTVVU5LXxwEgVMskxgoLI539yK3jmDTdUxYGKYgfDZBVyQjAuWZIvzoVkzAAHOENsL0GoOyMIxF8foRUC/MPURMdSwwp/mP/zkWbRwhBfmKjyPzmFGfYVFNaaz2RI8uM52QogYekJJYkBgotFUbPgZ3vvAUw6vBc+EHARp5rdS4PLOexfmiGROMQySWohorZOK4jguikIJJAGJEiAwjRJt7Wh4HOBsWZaIIs/zJM5Wlzu9TuYBNjfX9/f39/YP9/b2mHer2nQ6nX6/n7dSIUS32+XGTp6C4fRwOB4OT9fX14loMpmEGocQoqqqIM3Q6/U2t7eNMWVthBCTyaQoiizL5sCrWfxQGOeY7bwIEh5KKWOMUlJKUZa6ritr7dANAHC5vxrUj86d297eWZ9OyqPjg8HwZDA8sc5Np2VgqBwcHy33lj716mvr6+vddufWrVunp6da65OTwclg8OzZs2ePHxpjWp12t9NbXepsfvlz8qtfKWs9GRdHR8e3b9++/dHH3377hwy0tbG1s33es86zdru9AgCInCQRIjpGGSvvvXX62dO927dvC0FKqfX11ZAt82yfPXsGRMjOGJdQFkeRd3Wn0/nMq29srPcvn1+tywlI5b113gqBQmJou3XG2Uaq+ixkhe2ExeDNfZYUISIh0DpGxKqqEkpOjo+Go5GMZbfbPj093dradM5885u/d3Hn3LXXXzk9eAbWKJVzbYkIhbh7+95oOEm7S3neKooqihJJUkohrGvn+e7TvdaFc0p4kn4wHI1GEyHi05NRUd3e2dlaW1k5Oj5I09RYW9fVYMBVVWStlAicM865KE07rbaUUhvnnUMLtTUnw8G0LLRxaZw8e/T42pWrnsXxcCJByLjlnal0BaScdci0s769trxZGz0Yj548eVJNinbeAm8TFVVVRciS0Bo9HY/Pb6waotHgdK3Xi7MsjmMRi2f3773z7o/H02JjY+vChUtJkglBVW1CYQERa63jWN169ZXxYPjWm9+dVlOtK2utcSZJkktXrl84fwkERcref3BPUrm+vl5V1YcffnTt2stKxURSysj7JhM8j11RFFlrFuJPwxY9Y+I/n8g/S4vN4s/iArS4ZsECEF8MXKE6QUK6RnoWoiiytbXWihmFK9xrbqbjaK2NpAp5ZYFkjQv3Y3j7vOucZk3fnp0x2nufRLFgXJJJmqaRiH7w/o+vv3LzypUr33r0r5eWlvaOD6eHh9/61rd+87d/q9PpvPn2W48ePWq1Wls7m/1+/8L583Vd/+Kf/FNf+9rX7ty/+/777w/2T3aubCyv7rz55gcnu48J8cLFcwqrdrttrb1///5oNPrcF78wnpbnd84hwHQyQoTDo/3JeOCt02Whp1NvizhRCL1er3d6epqmcZQI7y2QmEynzAyEUkbOOfD2wsXz3tkPP3rvnXd+vLy83O/37318++/9vb/3d9/4zxvetgHGUFdhQumMh6AS8vzqIISw1gkhgmFxGAWtda/XZ+ZJOWm320mWzpHZHJwwc7Cl+STtChZWq/CMZOtIyNA2Sw1pqWlPm2PwF4LFC+yc5lNn4hk4Izh/cnVcRCqfhHSLE24+NedrtpjZ2ix84uz4s58XcQAvFLkWP2jxmBREGJpsBwtCzzA71IsbUyIKdVCmRux4ViBoLnr4OOOsR6Dm1zNvHAcshAipN+YGqThgY9khEsUMoD16a63XzK6oRjgEAkjTFLzrdDq95Q2potpUjl2WZnVthFQO2HpG0bTXauckUmhOJZIo26vry0Et3Xtbl5U2lbe11fVoPKjLotY6ViKJE6+sZ2etxcYyaAZbPTMCEgTzpSY0kABgxGBYhsHqm4gIBHhkDGR8gJmw2vPRhxYHdz5kz4UbBgR03jN7piCy6oI14eIILo74C/MNUTB7APfJVy5MsEC2IDgrdge2TnhBcAJAADTWIjIJARz0i8E7QAKBRCAwANGGQ0kEgoDYM/imd5idV0KGOeqcDabmoXgNs4V2PldDV2O4AQmo9AUyR1JaKQHZmtqUljIXxbESkXNGRCJP28xYVdXJ8cAxV5WWKt7c3L5wcee1T71a12Y4mgwGo93d3dPR6b2HD4wxm2vrvV6v1+uVlb5//yEArKysrK9vJkniPaCQw/FkMBjUdX354qWlpeWiqstah16eNM+NMYFMNh4Mg5mmcxabeivGSghU4UsZY5g9ScnMMooqo6uqEgKDDhNRjCic19NCI2JZTaUUxlilVJqmiEhCjcdPiZAZV5ZW1tbWWll+sL9bTydxliZJ0mnnK/3lSTE9v7PlPUyn04ePHx8dnezv7YZ7Nsvy9fX1c5+69dnPfGoyLqbT6enp6P0PPnj//Q9//P571vtYxTdu3lxeXm21Wt1ur6j0ZDIJ8ge8vjYcDo+Ojpj58GDg/CEyRJHq91b3D/ciJS5s7XRb7Y21/vp2f3V1pdVqgzex4LqYGpIC0KOPEyUsMpEHstYzYEirzxfC0NyA6IUQszhMUkrPLAXWNRJjpJRzrijqw6P9paXuYHRKApjdu++9/alXbr1+85XDZ0/BuACp00SyB+N4Mi7SOJYkqnEZq5i1V4mcDEdmPMgiOShGxBQrpY3zBsbDcX9pzYEoqurp011YX42iqN1tRWkCAOPxUCmllCqKiRACPCqlev3lUtdRZUej0eHpQCjZarVanfZoMiSCc1ubBHh4cGTZx0qW04kS2G63Vzc2x+NpJGQEVBRFr91ebndX2t3HT5/mUaKruq6KVp7rqmZjtdbOGOfc2tqazpPh8VHW7w/Go727+w74Bz96s9dfvvrSjdG4iOKsqsonT3Z17crKRFF8eHjQX1pylsuyFkKVRf3s2Z4gl2VZkiRh56ONIbQXLpzrdLIkSYanejotDw6O/KyXaJaUnbTbbaWUEALAUVBZbVBXWNQYZiyihQWHASCIYNJzGYfAMYJFOvXZQjO3HAFgcCHL7px7YR/onGOAOE0qXSdpmmTpvD5U17V3LmulQXCbmeu6jpXy3gcT2Hkuw1obygUSsSxLAaiQYks9TCMra1Sitl/49Oef7u22Wp1WtxdPp+2t7c2tHQO+tNV79+48+/GH2fpKr9+9eP6CL+s8bSmlbly7/uqrr/7Kn/7z3/69b/7Ob/9OL13KiB/c+eCl11+/cul8MdyfDEePHz1aWu7cuPFSHAtjy1qXBJxE8bQct1otAEBmAcJ59gSj6SSKstNiwlHEUcQiQpGpJO90lsrSDY6rR08e3r17/+79h2/+6J3N7c2iOnr9tVu/8it/stPp/Fd/+7/oL3du3Lw6npwCkKCIUDE7rSfUGAwCz0YnpA8YgEiGOIwESqlQ5lpZWWHmo6Pjbn8pz/OimgqBxjnHHEzMwkYaOCQIPICfL3ewwC1mZmc9AEhrbeg/Zw4Tgv3MNIaZYTYFG2GS54t9L6yaC0tss+b5BW1xmglPzN+yiGxo1vvzQjJ2/srFf+eZBv4E14eec3c6Q40wS5nMXA4JET03/DaYwQQM3lEIggilAABemPH++Q8KQxLH8byJ1HqH/owFQDOum3NOSkIkx44ZHIP1rqwqg3HhQDuf56nVNoogiiLjgQQJwCiSWutKG+fccHc/KL93u93goqqSGBElCGstAxhrSQATGs/ow9cnb3mkNQESgRBRlEUxdpAdst/YuVhOR8Phqa7LcjqpygmiiJSMZJOxCKDHe4/MJCVbV1nPzgFJwS5I6Ad4EcCDbCiDHmARWzxHyIPny9aL4ziXgoM5amvChAh58kCBnCc+X9gDLBz8J8zJnzhLZ4P+E4hi84lEZz2/nog8eCGQXZg2Xsw6OoVA11A0zgAfEcVxitC0K8+FOWDhJpxvW+cIPlYyTBjnXKxiAKiqKnxZQrTOKUlEpOu60YWxOly6OKJWq2+MOTw8ForLYlAP7WQ4iNJMSXn92sWbN654D6eDwWg0OT0+2dvbI3Tb2+eWep3hcFiWtZQRM9baElGr01tZXjs8PDwdDjbW1i9evLi/v3///v2tra3+ykoo2+V57o0djUZZloWmEyLyz9/RQYkndL+HHFgo2QOYKErC9EDEYP1EMzJKFCmlVFmW1vFLL12RMgo+j1VVubpSJI6Ojrz3ldFhCVleXm6323EU9fvbKyv9cPtrbYfD4d7e3v6zZ++883YUxd3OUpIk3U73Z7/xtVdfufG/7f+V4Xj8wQcfPNvf+7f/9l8XpQaAl6+/eu7cOWQ1LqfMrE3VylPHXs48IrMsS7P45Wtf3thYy7MkVUoKJuXBV+Nhzd4KdpJEFCVSKikFewSSYYi9AxSAIIApbMFmUQcbLiwFl5Jm8jOADK1tcTwuTZxGztm6rq2jOI7Go8HG6trOzlbIsBrvtYVCm0rrOM60rbrd7vDgVCA6hnnQM1UdRVGn04qEFEJVxjnGstbjYtqOyrzXb/faSolK10kSGce9PJdSdnptY+rxcJSmqQAMxrCTyaSoq/HpOIqiPM9lpGQUTcui3W4X0+nm9vnptLz/4IHxvLbcX17pnx4fPd3dz7Ks1+sJUuwInR8PhzKKvDNZErH37Va21O2Vk2mURN6YVpqMq4IAp9Opq01t3PrG9g9++L3D4+P+yvKf+XO/XEz1xYuXDg8Pf/d3fzeKotPTU6VUMZmyRyGkNm5SVtp6BmJGXZl2J2Xn01YKwtXWeM9am7W1tTxhq83S0tK1qy/9+O17UigCRBRpGp2eDL/3ve/1ev3BYJDGZJ2d28FBk9FgCHvuBZO9F7Z8i0sYzojFFLxSANATBl9LBo8EzOwdo5i/HxGVigijOI2klNrpYKxyenx0+8OPOu22ruo0UVJKmGVA6rIytUUU4W49Ojh8+PBhmqbE0Ot0tbbEAOwiqQRhEsemLqvKukrrqoqSrkC68/6HX/nCl9Dzb//Gv/zMG5+WUsZZPJ4MHUFda21Nq9XqX74okMaT4g+/9wPQ9rVbr/y3/91/4xi3t7dfvXmr2+1ubGz8ws//3J/9s539g8Hbb78Nzpq6JPTAppWnp6enaSsH529/+EEax8GKw1rtvQVH3pA26Jm6y8vDkfvhm2/9xb/4F1bXNnf3HjzZPTk+/Pj+o2d/7+//6sP7H37py1945dZrg8Ho9v37/9Hf+ptf+tKrVTF01rZS+dK1S3mWalOFwgIzA/DMrtFZZwEAxdlOOET1kOAkgUZbpCZKHxzujcfjLMsE8mg0COlwmOWnZun/gN6aHfUcTDPzIvwK/0qVpB4JvVdKAXjPVpCYi4V4ADdPVoGzznrLUkrVFEcsAJCS83XxhWlHRI3TGTcppTnkmi1XZ5IW4XQdP0ctmk++RjI/vJ6ZZrAGF+z8eEHlFWe8ex9k+pm50RcVzI3y0+xlDgDszNdydl/M9M+aCxe41kY1qS9fOauUCpt4nqW+pJSIojaGgYGokbcmVlHD7wNAz2hNLYSojcaUhZTecqVrIirr2rEnIgXCI9raI6I1loiQJAmljT05HZ6cDpM4TtI0juMoiuIoIiJFIlicMnNQBfTWhA4EZvYA1pmgQ4SIyEiAFPfWNpcIWFfV8HQwHJxUxbA2tdUlMyul4kg2+y0iJywAsBNAxOwjFQkhLEOSJHEcs7eRUgKYBDpm55xScaAlIorgDSqJrLUwqzYG+a7QPRr2A0QE0LSZhDEIEzqIHcxh3Lw2+hNDG5EI2qFExI2MSCM7BwDOQRBVAgBnPRFZPuucoAUkxoxCCEAEEFGcerZ+pjGGhCEPKqWQkojAeSMkqkh47x1bQYLRCzWjhSE69jJSwI69a3TLmm8B81QoAXoE9j6KIiEkM/uGk4ZA6JwzxksphSD2KEhZ56RUwZM7XDGtR0QEbJyxcdQCzwJqW2jD/Hh0yMyCZJq31vrZue1rn/nMrarSzvo0b0kRDceTo8OTvb39vYOjTqeztrHZ70Vp3uHJcHd/r9/v7+zsHJ0Mnjzb++jO3SiK+92eMaYsiyzL8iyRAq3VSikpVMMb885zQLHMDB7BNVyCoGCkmMFaIwmICJiaPCsSCSIBQqo4SYKZ/WRSleU0dMhLQETR6/UatOd9XVdlWT579jRJkuUVG0WR8U4plXfy/mr/6vWrdWWKyWQwGOw+29/f379/sHs6GmVZJqXrtNtf/PzrUn3+F3/u63VdP360+8Mf/fjuRx8+2ztA4gsXLqRpqkhMq6lEunXrRm+ps7W1BcBxJBER2Vf1hAg6URvAJ1HkvS2nYyZWEc7QJ4UbQUgvpXQEIIRvopZAQkIWQqBUxhjQVkrwM/2CMMm1tVGU+MI8evqs3etdEu17D3fb7Y4gbufR4d4+WSsEgpCT0lrHUSwr7xxjq9vraXc0mjApGScrK30SMs6S8cmht2ZjZaViR46r2uzu7b380kvnr1y3RLt7B5OyMM6WtlpN49FoxMyebRpHQghr/aSq0LMQoqgrZpaJBALyYEwN4J3VEqQQwgAcjwbnzu9kWXZ8fHz37p2trS2hZFmWJ4PhpCjDZel0OnknZ3Yb66uBbj5ud0+189ZW0yIGAO+jKDo9Oi6n0xvXr69sbOedflE7Xfvl/vpo+KAs6i9/5Stvvf3mb/zGPze1vXjxEnv/8MEDbeug5nVwdJym2fHRgE2SqogYHdTal1ESF9NaydjUtvI2SSNja62r5aV+pFQsVVUysAx1kMcP79XlJJaxt262rwcURITOOUIUQJ49BtpoYIAxImAIQmHlgnleg2aNX3MbFSAE6cE7Z5oQx449K6W8Ru+cpPjwaDAYnBgXRFO9RFBIqaJWEnuUwTpaJSqUsAVK9kggbG3TOC6RptNCCDE8HR0c7O3tHVTltBhPqqp66wffX9vc6C8vKyGZ8HQ86sdtXZbHk9Pz3rz79rvgsCzL4XjQ6uStfsc5U9eliGIpIyA5rSoP0OotoXFRln/88O5gdPruR2//j9/8V92k/fKVl//NH/z+1ua55ZWt9c3N46dPH969W33uxtra9TzPrfHVVA9Oxq+++vrS8vLB0X5dmzTT3lghVG9pbTIdJtmGs71/+83fW+kvG139o3/4az965w++851ve+9jSv5P/8e/9cXP32i3415n9fe//d3f/t3fi+N4ODqpylPwjN5VRZ0lORExe23rKIoEIbFnZus0oUREZ02AS54ZhSIiGSnnbNA9COSHmzdvGGOtNt770Wg0moy97VptYLZhCplFImIm770kIZCCAiYhMTCfyVJyaLeXwUicCKzVAARMcx/vsEwKIaiZbk06aX6IsO3+pO/3c0mpP4KcQ8/Td+Zp1Vke7rlmuhcei8hsjqIW0yrz7BfMioawkGuZ5ycW0WjzVwyFYMQ5KHDPcTVwJpLODZsHz46GSIgOzmRgZ9d5dp7BLRvIOaetERRY8E6oSAgKGQBtDKEL9ElEDFVAiWS8I0AmYa1nZm+roqytqQEggLBWK4uiKJYhPQ7h1ACAPc4JJRyQZjhVywBca0eIsUxX1lud/mpVjBBqZ6uyKsrJtCyn1tbee2aNzHEcx3Hiva+qCgCkImRMkihJYvbCOSMXxHKt1URiDsq99wSgZGz5LJs4y5CdjVcYwICXgRml0FqHety89Lk4XvP5M7/mCxgaZyit+eGTb1mch5+cY410Szg4CCYP81NsdgscVibwC2VE8Vxh3QNTA9mtmvlhEzVIb74bllJSMJpY8FmCWRZNCJkkScglzxNLoXPOO2bwgdhhrVdKdbvt6XRal4XWOmSVlFJpFIVz1tVkWI4rY9lDkmQMJEaD/tLyUncpkqrT6bz88svP9g68d48ePdK6ihUxuMlk0mq1slan1+tpbfb29k6GAyllVdXMnKYpAGhTYYWtrJ1l2XA49Mx53goSkVEU1dbgc5YGiMGp3XPQIfQYLOAb5IGIUglgJQWkSRxCgbXOefbeaw1CkBBSqSaC5XluvCumk7IiBDJx5JyrqiI0ZCBwv99bX1+P49g5d3p6euej2/uHB08e3T89PU3ibGlleWtr67OfffULn//84dHps2fPbt+5o7V2ztW6/MIXfyrLst3dZ2VZHOw/i+M4imQaJ+BtpKRCMRkMiUh2kJnTpB0nCgCIsKq1tiaNk6IosiRxDMDkPHjr4iQCAGbHBIjoauOCkr6H0BkTLoIznkhOiwoEJVm6IrLRaM/UuqqqbiePoqjd7hLRyeB0OJwoUioSNAXn2DE6FMZ6KRQr5YFACiHIsV/b3Fpb7utiUmvDzjPizoXzByenTx7dOzwdlMbXWi+trK6srRpjnj4dIHKk1Ag4SZJg3M7MISkrhKjrqffeWhe4gMtLS9baClBrLaNIKWGtXlrqem9PT097vd7q6rq11hqHiNbaJ08eZe1saWnp9PR4aWkpSZKlbu/c1mZVVbaudV0iolJxr78ynZQiSp/u71fadDo9rfWdO3eGg8k3fvbn7z28/xu/9RsbG2v7+4ehsPjw4cPLVy8xwr1798bTKQA47e7duXe8v7+60UNkD25alc7CUnfZ1uZoeLqy0k/SDJCrqnr7R2+e3/oCophOy5Xl9VdeeYUI11ZWy2o4W2K52VUAIp6Rmxdjy2Jceu55akgOiBi6rdEjMAABIwCjByYOzrxYewMAaZpOJ+UffucPv/2dbx+fHG1ubxujZd76/ve//0/+8T/+9Bc/PzQVeqy9DamQkBnpttoQDIilCkTJ6bT4zd/8zY9+8MOlnZ1r165JKZeX+oOT0zfffLO91Dt//nwrT2ujJ7ra3d+9cOXyg0cP9w+Ht27c2H36tKqqfq/fbmdFNY3jGIUyxhinQSGycOzbeWbAs6S010EliklpECvg7/7oh0/e/Ycb11+9efXa1lKn3+su93uerZQyiaM0zqqq8sZWVcXM1jUtXHGcokgd5nfuHb75o28/evh469z6o8d3lvqX/zd/5X/xP//L/87f+Tv/9b07919+6eX+cufk5FmSJFIJAAjJIynJ1DoIT4BnbrwSGYC9t3Or3AYDoA+GFMzswHnvgSAQQOMoZWZrbavVcs532q26rjf9hrV2WpRRLMGzlNK4Fxl+ofc5bKo/+QhcGrm7u5vnebudC4FxHIeW4LDazZsjGm8+TwhCSLDOhdZ5410YXTgr7TEzA3oGCMZWfi5M1/x3VtxZRFHzn4O81HwRnS/MyPzJb7GIiuYI8ZOL9OKTbmYXOC8DeQTPLJ9vD8ZZl5//hG8AEUkpGUK2ZoFMB44Z2DkCD40gVdMsBwDOMpEwxjpvwrUlDPiVAMhYS0qWk1LGUUhgGueFEMihRQ4JpTUemQkg5Fys97GMhRDMrhhPpqMxEUkSURRlWRYwmRKSCAUSIASR2UbiiiFoOkupmLnylrwjIeJO3zkXK9FG8Gy90dZobytn9cH+s/HgdFwO0zgiIbw1dV0xofPaMBB6EOzYNyJ2BMHXGkCE7DczswfjTGgsncMOaLL3FPz4ZuNC1jlgIJJhBobe7yZ2LYCb+aDMD7iIzGZD+Zzo6wsTY7Es2fSk8OKLz7CdbPJVFs7Kyg0LcIYjsUEYcAYlm1OauaCGaRW+R8CH8zNvdOaA5plwD+CYxfOKLfPJjLPdRXAo5ZlIRBynJyeDdltFEVnbLOTzzYxSShB1stR7z8DOmWJU6GLq/CPvud3tdjq9129dLYpiOBqdnJzURo9GIynleDws67quS0SxsbHe7faElMPBwDknpSyKgmScpqk1ZjKdIpH3blxMglZIZWoi8t4x+7l0SECgTNQoEgMhCQAgb5nZOysACSwJlCS8DxXMQKbwzjnnNWrSNRCRY69kLONIShmnCXuo63oynFRVo7GZRDEiEhV5nisVxyq6ef3lz372s1mWnQxOp9Pp3bt379y5TTICQEFKyehzn3s9y7KnT58eH51ub262Wq0H9+4NBoM4itrttnOm3+1JgZ0kSeMoyzLvnakMElVON5MhUc75uiid9SqShTYAAMYRgWOP5sxsFBg8IyM5771l70P5AoQQ9dSWZYkkEcWlC5cePz364IMPlvqbzjkE4Zwv6qqVp92l5ar0hwfHcaKMMdZ4GccqzrULGvKirKujk5M0ToqqypJ4bX3d6KW9x4+1LRHx+PjwnXffdR6QpIjTKMk2VpaR+eR0uLKyQkRKqf2DXQDy3grAOI5jqbS2TjuJ5L2PpdJSVlVlDg4DQUJr66212iilimLa63SrKLba1Fy02+2JLZyxgJBl2YWdc1prdsY6fXA4qOtaCJGmaSylNW5pedU6TrPWxvbO++9/eOPla1deunb3zu1Or/3w8YNer//w0b0fvPkDFcvPffEL773zHns21iPRo0ePzl04t76+Ojo5LoeHL127nEaXHz94UJc6T1sOpQCqrc6yrNPpleXp8elgWbQ8M6Pd3NkIeXEiQVJNy3J5pS+U1GOHBD4wt2a1EQKkxnqo6Rw7W5LOxGsWio8N2/hMZmIel2Y7dgx0BesYAsejdojYbrf7ra5kQg9KRdrZC5cvfeWnfure00dJv6uUMqaeTqfdvKWiiBEOT46zLEGCopi++96Pta4/+ujD69evv/rqq91ue2V5+b13fvzw/oOvfv2nX3nj1eF49PDhw4P93ZX1NQARt5Kbr916/85HWav38ssvl+W0rmsVyU6nMy1qratWK1KxsqxBEjNPS53ESrOhODGVdw5YJoUGSrsVF/2XX+usbtWMMo6CcEYT0gXcv3//93//9/cePy2KIkmS2lRKxkmSZFn2bPfgH/367318/9F0Mvr0G688/Pjtv/k3/trliytK4nRsN3tLT/1T1GinOibJprKmpBnTo65rAgQmrXVQn5/HzLCsCyKBxHAWn+fXHwAIEJi10eyx0+mmaZrEdV3p8XjsnFMy0rXJsiw4eRhnm21eWFHw7MH8Ir8lPB+aWGWn09FaHx8fW6uJKM3isHKHPv88zxGRbYOpA802pLuIyLngi0R+Zm4w//izb4JnUvUIZyDmbKot5CQW//RCemy+b+af1KyLn8h8zI+2eExYyH7N8yKLR4BZDgND/+Ms47KYYgmPAJL8ggKCa6xPEWfO4sGG8wwOUpM6iz06FkIobc3h8TjKllrtDACybtt7T5EKnYwKURLVWgNAuPIEGJg0IWw7Zl3XJEBEqvkIz7XRxUkZxiuJ4k6rHUVRHMcqjoQQsw4P8M4CgGvIo56ZyQEICUy69gAgiQhiipVKc4nQW16vy2lZTKpiOi0mk8mkHI/KakKKUAoppUSBQW7UgwOvZORmuuqhGVBKydy04L4w7s/NeyIk6ZmDR2EY7rAfWBysxSzmCzj+bASbKXEG+l9AZvBHP2ZTYmEEn2MQIhGJRl71OSy4cOS5DZxmcETRHLpZa4WUoTLlnHMz47AgiCGlDCKx4bgBr8zTIfNZjTN7Lgp9ztYKIbTW4d4ORIdwtlLOaKSIuirLspjp8qOKozxWla5jpRxjOTkdnR6FgrKKopWVDgLp1WWtda/X6y+vVlXlHA9Go9Fo+ODRw8HpsNPphO7LXq+X53kcSQGgkjgAr+ATNR+mOc2AmZ23zrKM4+aiAVNozJi1TTRXPtjKICgpibxzTEIyCwBg18wBCtxkbbyxWutQRlYqTtNUay1JcLDMrarBYJCoJNxQiCiRWlnebXd6vd6tW7dCWeHo5OTw8Pijjz7odLpVXQObbi9/6cpLr9y6MZ1Ov/nNbz569MRU9ZE5EgRjIoGglMo77W63q6Ko1WoZ44QQZVFrrZHYejalllISAXhm56WUdR2650ww6QqFeHh+O8FcFbWWMmIgbz0ATMZFK+8YYwGFtrafthhoNJ4KVK1Or9Nbrur6dDgYjSaaCRFZCGByDI4hjmMgXFpeTuL4rXff00WZpbGuphsbG1/6ype/+rM/W9Xm4ODo47v3nu7ugzVRmi/3lrxzwRUtTfKymi4vL3tvDw4OQv335OQkTDOjbSvNamsuXboUqo33nz7s93uBWxyIoZ1OpyzL4+NjRIzjVGtdm8p7f3JyEjp8ExVBBjhz0ZhUtbW2rOrjo0ErzVp5trG1MxgOi3ISpVGURoLw6OjgH/wP/0DbemWl/+TJo+FkuNReybJEa91O8p2dnSxVdV1mebKzsyXRHh8cALGUkTEwnU6Hg+nH9+53u2k7l9euX3Weh8PhUr93/sKOc+yYpFJlUWttpVDWeO99EiXaVErJEG8Xhsx77xdlPBcfL2TfFzdRi+tgM/TcyPMKQqdNePLDDz/81V/91YmFd956+49fOD8piyiK2t1Ou9upH5h0xscIiXCQgoTQpkiSxNb6D777nd3d3bW1tU+99vrGztZ0OpaRGgyHBwcHebt1OhqSFHmef/GLX7x75+P3f/xusry+e3gQP8ovXbm8s3mhqipjzHQ6bvKdVZFlLSVkXUzLckJpJGVMElkQCYGCtDUsJCABc63txcuXgSNt/PrWZp6JUB8w2imljo6OlpaWf+7nvvHkwcP1jdVHjx+HcHf37v3vfvcPnPW/+S9+7aUbt/7d/9lf7LSj0eEHWUbF5BjAs0usMbGMCUhKOS0tEVVV5QEilTAzACkiANDWIT7Xt7eQafkJlRARmF7spJRAcV0Za21VVU+fPs3SXCoRx7GzPssyFCSEMKZGIRchVsBzAICBwYnPAQyYYQwAkL1ej4JtMDIzG1trrYfDYVNgkjKO4yyOQ0QOBPxg8uAbulhTH1FR4OYHxNF8GcSmcXp+YqGvf7Yqn9UEYd6uKF+cvvMFlTnUT5teu9nnLFT6Xlz/FgmSL+4zzub68zuVs2M2exQCxhmADcpMzMxIC3dL6JhkYGZCQArCbrM8SvBAlGSMCdqcxpTMHMfx6WTyV//af/zVX/iZ7e3tjY2Nbq+TJEm322232yKVURyD90pE3rO2tfeADBogjmMUqJ0DAqGiIB8FIWfLjIgqSiRAcMB6svdMIEkpZaSiKInCyqoUEi/4TTXCAVrrQG5DxIDHvG38pNGzilqtXrfdhXUCRJxOp4Ph8eH+Y+90URTeVVKSVJSohADQYzAo92wJGcAZq4EJpZo5O51NewAgKRghtBYGPp9zDOC11kEPJXQqwYJM6+Ljk1iKP5EGW/z3hVD4k462oP7blCAXjxB6Hc909hoY9NxHhGf8rI7PAE0D77yGGE7AhxEkZsfeOyEEkAi3BCKKoNcqg3YBAoAHRgAZ2GwcKpIquEvWtc7yJEpiY0ySJM49VwoHACFEO8/DFfQedFUiCkEoBaB3QNBtt+u6FmiraVEbK4RioChKTDmtyziSEUaq1VoDoJ1zG8dHp8PheG9vf2/35OjoKE3Tditrt9vOuTRNe71euAGDpzgiSimlVMSsjbbWAQD6pn4DAMgOfVMMIKWYWWA0h9dCKHAGsUmPMbNj8DNLvkhFjCyFAgDvudL18eGJc67f74NSSZIknY5vtYwxuqq11t6Z0XhwOjhWSmmtPcDS0pIUYmN9eX19mV++9uUvfpYZHz99Wk0rUuL7f/idJEmuXr26tbH28kvXbt18eTqdPnny5N7Ht/M811o/efLkwcNHWuvl5eUsy5aXl9vtVrfb9d5LjElCWVXWWueNENjv963RiGhqDeCFEISiYTt4b4xxbJv13AZDaiqmRZI10SzPc+vYGFPVbjAYTEZDdjw6HUkRqSyTUSSS3HsuagskOAhZCwJE65wQwgJQFLeixNQlRdHBycnh6Wkr73Q6va2trbXV9UdPnj5++tSZmogYoaymAEARoRXOuTxvOcdFUaZpGkVRVVWhMp5l2cbGxunR8QmdaK2rYsrdzubOTlUXoRprjGl38gDamLnTaR0cFMFpbTotA5ecCDt5fnhy7JwnJfM0d86xc4Pp9NHTZ3U5WVtZ7rTTc9sbm1vrknAwGKhEdHodKeW58zuTyQQ9Wm9IoooVIltrmdiyVYnyxlV1/errrxCKcKP1ej1gunnrtUgBEnXaHcccRTLE7boyUSKlVFpbIRRKISKlnSUpHYREf4jwTXTAnxSIwDMwL4aTWSzh2ZsJwDWwaxaUmAEBrXNhefWsL125+L/8X/2Vf/vNN7/25a8a7YhkVRsgVEnc6XRoJqc373VjQpJCKfX973//7Td/ePPWrZO9AwbH7LJ2q9PpmKrc23s2mUzWttevXbt2+/btk5MTRmh1O5Wrb33qtdrpaVmqWD58uK+ErIqSnV9eWQouZ+hsnmUoRJTEzgITWmtLXQfxZ0bh2MdJFElop+rZ04PRqPjczat6elrXJTMLIe7du4cgXn311Y8++kBK0lpba6MkDoWuzc31X/r5n/7MrfPO1pevLj99+viDt7737NEv9W5edMwVay+hQmsE1147Au1ZGycRZgLX5H2DemdZRgTP4Hm+4DM3f+GZxDfMcAt775wTRFFo+C0Pnzx5stTrh47sgHF7/aW6rnvdflnr+egupgOY2TmDiCREkBoNwubsXGiwl0dHR+12O4h3p2mcpFHYPYdta13XZVkWRTEajcIZh1RKmqZJkpBq2K/OOaRmy+JnjYe+6ec6m5G8QMma/7CIhJiZ3VkJ6fkcxnNpkvnqzc/vJH7iussLOGyOtLz30MhqgBCCml5IntnszF8JROTZzb/ULBXynN4Yz4z/nAmZDD57fyh+hUIVo3eB4YNJEsUeL1/fvvvo/pvvvjPeP4aYZKw2NrZu3Hp5dXllfX19pd+/fPFSp902xsRCeMOI6IzRtQn5JA/snCVAQAhEb2NM7a0AZATHnORZOL3amrI2fjgMXy3LE6VUgGKRkCJSsVTtLGd2SAAO5rIahJKQSJE21tcWGxEQVEl3K+9tbuyQYFOXo9Hg+OhgMDgZTa33VpKIkwgQCUnK2DtjrReSnJv1CJ0NU+gGAM9+7iDpZ+6wxpg5734xIbqYAX0h5M2nzfyxOCU++cML0PyT73oB03/yE89u2oXCeshluabA1BC8AnCMoohnGtaIGHJ7wI7ZO/fcnmT+rrP9wcLkcs7hzHeMGWeNJmKuk7c44blpTJFIYK2XUiZJ5IHBc210kEQSQox0FUWRNTZN4ixVgAoAvfe6Gj19ONBaA4okz/r9lShOzm2tXTy/c+P6S0a7wWBw/9Gjhw8fAkAkJGaZIqGSOBKSCaWUBwcHJycneZ4HSgoASikQPM0ylGd5RsLgL0AqJiJvrfWAgOwd4lkjBc3anJnZe7bGUiyjKFIqCipozrliMqkARqMRAIQJH3KBTXwzuq5rKSUxBxNxnrg4jkmIVqtV12ap221tb/eXVvb29h4+fLS/v/vgwb0kiutqsrOzc/Hi+XMXduq6juPYWzcYDD764IMHDx5477XWe3v777z1bquV9fv91dVVRMzbuRIREdSlHo0GcRQJQQDeWidmHJEgV+u8DXeBt05KaYwVQo3HU+8hjlNEYa3e3z88OjrsdttxFCVxLEUmVVQ7j4IQEZwjQkaBwD7cyEQh86q1ZucZ2AMxKhJQ13Z0cHhwdFwW73c6HSmVsbVE8B5G4/G5C+dH04lnVlGknfXjcZZlgRjX6/WGw6HWOhw5JMOKuvLeX79+PY5jJG6328PhcDqdJklS1zUittvtuq6NMcvLy8+ePQvVxqOjo8lklCRxlidFUSgVVaX2UAqUIZUbp8nSUrfbztjrJ7t7cRZfuXTh0ZNHvaX2zvkdY+rd3cfOa8E0noy2d7be++CD7e3NdjsPMYQRyqpqd1seodVpj8qBB2h3l+588O4Pf/ju5UsXvvPdb/30V79qjc/zXAgBQL/1W//Kef7lX/4L3iEzWtv4toWyD36CNfpCWeaPCiwwA238R6UGGIiIXZMq1taHPcxwOPz444+n06nq5MyMACJSV6+99M3vfHspi9Igc8PsvZdSomdvHTMfHx9/6StfuXnjxo+++7319fWlleXBZKxtTVJcv3lDl9XFixezPL969eoPf/jD999/v9PpRFL91Ne/Zr1560dvCiHu3r2bZjEzJ0kUq6gqSpsbh8LWNTvnnGdGQQoAYhkjAzsPxILRVFPB7mD30Uff/u61z31BoiUVbD+ASADT5tZm0JUN0t8hg9VuZWtra2vrK2srHV9KSWjKg2J8VE0nTc9pUAJHqHXp2ao4t2MtZVROK4EURxFb660jJEQBTErGIRovXO1mJ494Jkv5AswITwQSNhGFtEiYS6G8MJlM4iy11kpJwUqgGUJ/hkYWV5n5Y/65MoqicJcbY0L9kQSImfFIHMd5nsdShoVQa13U1bQohpNxqEJmWdbttYMkDAAEnq+AJtabBbvK5isjIiO8qCvWFIkCqpo/D/AcpWwRY/kF/+9FBLb4soXrAfNLPD8faoTR/GJR6WxPMnsxBxK0D0+elRp5IV3c7H5mKejF1RkFBbRRa42I7Nl7loqsY0KWkoq67G8ud5f76a1rxtmqKryHtz54py6rqqqcsVcvXb527drFCxfObW13Wt1u3mrnrUQlwegAiZy1dV0rpVg3t7GQUoSVyTkHwMABBQuFAkBgiM4wKSYjPwjYAAgjqaIkzrJMxjKNUilVrCJmBo/MrLUFAA5HYusBLIBGFAKFEII6Kyv91eWLVVVUdVFVxenJ4bQYTiZDBpNnSSwVAVdlFfJ/xDDfCgB4mLVuEIomPwogBBKB9z60vC0Gqdmlfq4i/BOi2CfyoHPQvIDUz47ZzB9iAEAPiIgURvk5vtriERqAvVg4mB0taMiF+RYSeHMb0tAF2yRU5870Z1P6rEYfgJeYmc03KMUDM1vvjbWRlM55axv51qZpBkRtdGg6ZmDHnkLSGJEZGClOM+dcbWzo62FjVZTECRlb13WtrUHESpeShEAZCQmCIoFpFPlMjUaj0dGI68IxSxlJFcdxFiVZnqpPvfLyzWvX9g8ORsNhVddHhwe11gTU6XWjKPLGxjJmy+Px1HsrhAqddAQYEMO88SKkjUmSC2qWKBi8AwAK/YZmfnuGS+i9F+IszAUcmeUJM+dpGjYSM5DKlS6ZOcsyxqa/IRRJtbUhxJVFnaapqe1gNA55yuHwrvd+e3trOBxub291O63BYPCd7z5QSqkovXT1yvb2dt7KVzY2r1x/eTKZDE9PR4PhdDS+f+83Hz9+fHp03Mry8+fPt9vtTjdfWVvudDpxohAEM1vjPHDopwuTISLlAY0z2lhT25qc8+CAxuORdtY5lwiBiP2VVSFYSNLOIwHKiIW0zlhjBYaOY8/gQZBSUaWrUE8RQMDg2CMJlUbOOaFknJGqKmJgMXEEtS6zViZUlObZxvZGbQ2jN1YDAJGaTqbGmDiOQyVxaWnJWjsej6u6SLLWpCwQ0Rizvr4+Ho9vf/Rxmqb95V7wcxRCcKPagGVZtzrtV1579ejogJkjK09Pj6UU49E0y3IpJZIhKcAjgiCi7lIP2RfTEbE9v7P9h9//gZC4vLwMaB/cv9PtdstySkIC+92Dp3mrvX1ua1yMW90WkGAhawd7R0fDqqBYoIqiLC/rqigPGdTf/3/995fOX3j9U7c+/OBebbnVaUdxnMTxz//cL/7mb/7m8HSURmkkIomSmIjIoWvWKUKYc67nPeUw7/QP+4qzsuNimEIPwMjB6bm5u2dBARpa5zzNb61Ns+yll1768k8X7V43aB5Z5yIlRsPJtKgybWvrHGOWtQCILXvhlJSm0Hne+uxnP18VpdY6iuPhaKS9RcRERVrbo6MT67iotfOwvXXu9GQ4GAw6rfbjx48nxfjzn//86HR05+OP3vj0Z733aRznSSqRIhG18w4oEUW5pMQxO2OQMJJKCiGt9Y4JIIoVuGpw+AxiH1GtoKp1maRRXRlj3KVLl8IXDPrPboHJM5lM6roq9LQ2hVPcSpK1zbXPfPaz29sXnONYJdZ6W5pb116uiynYXDIKD8KjACGRQhdDMKcKe4N5rGZmZKAZUxeBAF9o5OLmxgEIxFYCFEje+/39/fF4iohxrABga2d7gRMSZsCZMDg9TxlfhChNEA/wyxijlIiiKBRKQpUnEHcCxnIU+CiUJEmUJiGjzsyB4BZshcqyhNlmPZYqUKOEEMA0i60ckhbIZ3Nx1lcIc0JuOPE56x/+CHX7T24scIFzdsYT+oQ8Os0eZ8dZzFg8v8bPH+FO8DMQGJ6bf1AYO57pnPlw/xAG678wnCH6ALggtkHISRRLX6tYDotJmqauMkIIEUeE0E9Xg4aWQFkVxe/9wbfq3/0dIcTayurG8vrW1tbm+nqr1ep2uyv9RvEoaeXsPDgPAOx8VdfM3KRVELkR4Tq7noA4I/4DMjj22ho9MQFYh26yLM6CUFMSxSSbNkbnHPvmPmEg54EtszdERgAiiTTrZa3e+ub2eDIoytF4eHx0cDCxOpKKhA+duuHqzceFmO0Czgg8mPkoByqlWxARXpwDZ1B3wRBp8ck5PHrh0aCxhZLi7FY5G/1AGHgBV9Hz/Pdw/MWMXZhoPCvQhy4NKaVzJkwY5xzJs2bJ+ckQEeJZyi0gCZ6ZB7wQxL1zxhic+TYyc5IkACqkCkajao5KQ1o6gDP2aKwV4qzObqyd74WkiCCG0K4Y+DqC2Zram+b00jRFpxW5VqqAEEFZ71w9PTo5Oh2O4zRdW93qttPNtdU0Teu6ruvaWn94fLS3t7eyuhpF4uTkxBjTarWyTJZlKQUBRBJFWH0cMHgiwUHSQ2ttuWEQEiKRQOZQNmW2Mwpcw1MmKQiDQx8bY2Qcee+BIfSNzyODtWdODCHIWGtRiDzPQxyYTqeIYjyezqveR0dHSZKcnp6enJwggZR0/vzOuXPb3aW+cWytC7jt+Og0XPy1jY1uZ8ka8x/cuFUV5Xg0un379u6Tp8+ePRmMTu8/fDAajc6f31nb3Oh2u6FXBpHqWlvrAXwkpJSSMELg4XjAQDKNjbWehVKqqoo4b7e7HW2t8wbACxEJqYxxgAQkiGZI3zUSLbWpvXXOaAJWMiIigYG2Ykgo59l5R0IxuCjLrNZxngmksq48eBFLW5WtVmt5OSaSRweHIZQF4+qQrgi8lLAJDHN1MpkEBsv6+npAtCoSiGitJZRz4srTp0+Louh0WnGsWq1Wv98vy2mn00EpirIUMiIpkjgL91RRFIPT473dJ2+8+kp/ZTXN2t/+g+9++rVXekvZ8fHheDwIgojdTud73/9ep9O9ePnq8XCgrZkWFSG+/9G9rfWVstZR3jVejMalipI866Vx8tK1qwKEcbi7f3T34/uv3rx1//5DUxbWlLdufsoajuP0vXfff/1T15aWs7KcCiGZmAg9oydk5DOCfZO/PYsz+PzOED+5UQTgIA/YPBrhN8+NL1koYCVpmqblUr+PgiZlodLEL6zURFRWVVVVAfsSSXZel1WaJJ/5zGeydqssyyRNtdYG2QusuI6l6nQ6zJy2cmYOdrHr6+vOOWNcURRrK+udTu9f/fa/StL06dOn3X53Mpl0Wu2wIS/LUmKiSy2iGDx4y0krdY51qVWsrHfW1FGUs7NKIhTTJBKtdgpV6b1fXl52zhVFpZQIIQ6QA1tUW8cetdZ5lgB4hyAFAaFxuq5rYrBlTQymtMhw+/YHu0+evny9R0R1rZs0Z2iGINJaRyp4/s2LaWdjFFZ89gANm+m5lQWRgj52oGZC8LlRcWgja7Wy4XA4GAw2treIqNI1yWi+jizChk8cFudhGYLsqlIqZL+iSBKRkJGblZwBwBiDQmitoaGxQLjZEDGLk3aWe7YBioV/g1JAiEcgKFJJYKiJmTnJGTxiCPrPi1cEANg58D5QW9j7oBdljZ2lEOi57yNo/q14RgvDGWU7xGWeke7nNkFz2pmUkp0DaDqI2TXFr3B8IQTCGcyK49h775yZg9nFyz2HZoKIPfqghAvg2ZEkZBcEO8OLnTWBfUVEFAmSWOqSATyCUFJrHUWRlEIpUK1k48J2HGSBBB2Y8Ydvf7cqSmD2xray/NzmVrfdufHStRtXr/WXlpZanViqNE+c8VLKIGQHs1YDIgrbNG7cqWRzkVWktU7SyHvLLI0x4/EwmM9Y49M4DizAZEYdg1kFkB0yegZw7D17YG8MBjqLlHl/qbe+fmF7Z/zw/p2jw10lE+NqRGwkyKxl5rA0IrN3LlgeOa09sFJx6PmqahPHsVQNQzmk1v2sTicEERI3OUuSJJxzJM5ACZFYAE8BxJxNtrD1WZxCTbmcEIkQGgUy5jPriXB7s2cfnAz4jIsWjmm9I5KxigDAeTO72fx8wgghgpyeB2JggYzE3PhBNXKvAEBSiJmo3tmTRIF8aT0DgDOGmfO8xcyBDlzXdZZl0+m0KrVScbgIwARMbtZVN/MkwADtnLNSCiImIsVKiog5MLc9ghOykVtjZgJ2RntrnCkBgL2wDErG3U6aZxED1cVQj+yx80KIJEuFEN7Bcr91budT2piyrIF9GMGyqpjBSOGFSFRDpGuuMIB37vGjR1VVrq6u9vt9RGTrAIBBqhiNdkiSPVprnQfvfZKkjbAtAkpSTc9sILZhuNpA7NmLqNkc1nUdJck8NCGi9Q6Rukt9QtlqdwPot+xbHWutLarxwdFRlmXW6m632+l0Op2OY/SeJ8ORlLLb7hpjTo6O8zjJ8zYAhFqnZ37985+dTCbGmMHR4Y9++MMHDx5Mp+M3f/TOUr8XS5Wm6draGiLGaSaVIIHG2LqugTDL2yeDASplHAgptNYXL14cl9p7i4jegYqjOE6roiQheJatbcJXEDFhz84oQa6uDnefeYTt7XOJSuqqVHECKMF7FEgEzkMUx0ZJIGTn0zxjD0bbcCeWthJCJCrqLHcal4XhoCiKcjQMuwuVxMPR6fnz54+PTgMSGgwGQqiqKrrdLnsEJvaMUkiJgcvYdd1utxulkVIia7c6Sz1Tl9basq4R9dJSbr2rjQ0cmFipTqel62US6vh0uH94HAl48ODBp3o38iTN8jRJZVnW1tdLq0s/evPtc5cvPnz86M5HH2+tb3fb7d2Dk/2DE2vMwelbo2Jw9+P7KmntnNt+8vj+ynovT/LR8FQb/fnPf35tefW//W/++/t3H1zY3khS1e91EpUL6R7ef9TtXpcycq7mhgEgMVCIEJHQBS03DMkvJkQShAzMPkjYzPecPOtodo4Rkb33C4xwZg70APCMobvZe++ttqa2prIOhbLWM6M3HpiDlKC1ptK1JCFVhADk8PTg6Ke+9vVgppQkSZBWduS01RKgKIqy0u1Wt66MjJQua+eYQLADKfCDdz/4lV/5lXIyffToUb+/0un1SaiqqBVSMZmAx053KcrT5eXlcVmoOAHPQsg0zZIsHxVjGUcWUHsmFU2qGjodT3R8ejI8PorjeDqdAsDyylmdiogCbIikChcojmNEEUdtIdhZAKBISkJOIsngBKI1dX9p6er1y9rWKBEUWeTxZLz79Fm7s+k9CCFRiCBC32xBEYQQoShhnQ+VhhDxnQeaCYgElIJIQogZL4KEEFVZEyAJsb9/GPhXjRihlDMysoeF1MALCCFg5cW1Roa4s7BCA83IKCFXPC/VNXXlmbSp974yFgCCw1EIYYFdMcdtTFhrGw4V3hVYF+H1MINKMOPdz3lj4X4+OyWiQNTlBSGuBqsttHnO5/f8MT/gHPbB802UMCs9nF0jgFn1JwzTc0WrkLpiZmgqFyJcgfm1DjVBCDfhjKjvg3Y8UQj6Ukp3tk0hFcdRFJEiJLLsSQpAZPCTYopYCCGkUJXRkVLeWY3c31yPpESGYOSsvX+y9+yHb/6oHI7PbW1vbWyeP3fujddev3TpSpZlSfDq8eycY+cdMxDIgH2FbMYdkAiFks6D98DgVZREMQKzNT5NY611WdeToggXQUoZBxpNFMVxqpSSkQJvvUdkwcTOAXtyjrXVpCFPOtdvvtF+unzv4w+TrEXgrTZhZNj6mk0USykiB2dWGIgICqqqMrZxcAu66mFC+pkaSLi2c/QDAKbWgeUdBiK4dHvvgzribD40405E7Hkut4pNbVrizI2R4Wy/Mtvc/AS6xvyZMNOQIqLg4EXMwTfCWktu5vUB833SLPcmhAi+7qF8z4iLaC/sBOYzttGSQELEsGUUM7G38KdQ1/Mz1f7F85zRx4LaMM0DBAEyYEi+qZl+ILJ3xgeuaiiQAIGU0nnrratNoxRYllNjHHtMsrTVaseJikTMCNbaSVFUVaXKpCrGKKRzvLW90ut0tXGTyeR0ODoejsgIIh02dSHVX1XVuJz0+0tCrEgpJZIQws2ulXMOI0cLAoFneyFBYlayCR153uEcO+JC2nIuSBacZISSQghEIUiFuzLLMillSAbneUsIMR6Pz58/z8wnJ0fGmJOTQVXeWV5eybIsy7KiKKqijON4fX1dKBm2UpU1AhkAJpNqOp0iQ9bpfvUbP/uzSqWRevvtt29/9EGn1f7e97737e/8s36/n7XyVqfd6XRW19cDXYyk4uH44eMnHuj8hcurq6ung+mDx0/SvCPjJMsTIaOqqsKeTSKIeaO382mrpXXVaXXOX3pFAMpYJklSFMWdO3cfP9tTSrW7vSTOSQrvHTbbXRdFkXGWhABCZz04LwBbacaMZVk65yaTSRynvV4vyTPvfVEUz549CynG8Xj88ccfx1G6ubkZAt3OzjnnnNZVWZZBwC8k1GWkDg4ODg8PrbVJnrTb7cFglGVJFidxlkoZpWl6cHQYx3FRV6GUbK0VJOIkebK7e3qaXLhwxdtibbktRVSWZZolURRZ70pTHhztr6wtCyl3zp/rdpeno3IyHD1+ut9rd46PBicntynCVqvdbvVOBoOyqI9OjnVWlWWZxkmSJL1e7/U3PiUwyuIoz1UWR48fP/vU6zffe+/9JKUbr1yvKs0+tN02pcN5AFn8YRb5YT4D51HibHlayMs38t6zX51z3nrL3lobun8QEZVAJdG7gLQAoKqqPMuEEJW1cRyDZ0VCIoHzN2/cWF/bLIoiyRv6rHPOw5nHhvceCL33ZVnaugYAax0Attvd4+PjNE6cc6+//vqde/fLuirLkgCVkEmUGmMePnm8vL4a4kxwRtK6JsJut3MyPPGEiIIR+/3+See4LKqP790j7y9ubCqlfvCDH1y9enVrZ7vVajXb4IZqBSFf4K0TAhUhEiN4Eui9TaKIOCTypTG193ZjY43EbIEmUZXagm+322G9SNO0qvTus/3JZDK/5rCAiubLOkAT2GGmEYQInr0xnojn+Mdam0RpMCULPLAAoXRVMi4erfmUTy4T8xeEGCXnFZOwBviZ11X4NaCWwL1tngFg6zyDlBJnGk7Oeq3LoPqKiKQkIqIgQRRFYbY1ky98h3nyqTkmkhBCyDPg2cQP15yxUipJGlw5V0Vvvu3sHF64vj/xm/sFNcs5sEMEFBTuJmYOHYzez4x7aGbF/XxqcbYwL1DqgtyXUPOhDZ0sApkIiURZ1lprZtC6FkIwkCDFzFVRxioCB0LIJIkqU7VbLQyAHTjQVmxthfdlWcYqMaOpQ4zjWAV/AqR2t5umsRJSV+aknNz73nd+/bf+JTN/6lOf+uynPrO1sdnrdDc3N1tZ4r1P40SXlRDSaG2Nj5Ty7APss84BSERlnHfOUUP8dB6waScBz+ytrlxdldMJo9ee0zRN0zSOIqVUohKlIhkhsrfeIYNnV2idZ+nm5qU8b73z5ncFceOQyiyTCAAcs9ZGCOE8IwKTAMSGQEpQ1/V4PA6ljaCKkiSNOl1AWvPNg/feE1nvTB3kKoTz3lYVIgKo0AhDRMyhs9IG4hqFxP+soyI00+GsmO8C322hFeNswMPEI5xNpAbTzyeicy4wKQ0JP+NzBPRvZvMNgJsby7NzHDLFofKKARU977s6CxYAKBBB0Nm0ZAZr57srobXNsudUVwBAEAXx3bA7IOSmLcRbRnAeGYGdDRGBmX1QKfIc1nViBhLWeRnF1rP3HoTIZIyI2jpr7WB4bK1GJhmpJEnSOE2i1ANqPZFRXFfVx3ee5Um6urHZbrfbnfWdnS3HWBRVWZaj0TDkVxy7NE3iOJDDbKnroK/jnAs5MCGk9945TyQCrx+Aq6ry1iZJQlJ471GQZyYpjTHWWSKSRGrGMoyTbD4WRJIRgYSQkkhKQq11ORm3Wu281QYAIum9dx6iOO12uzvnLhpjDvb273z0ka99Y4hkdJmah08eSykvX73i3FHWyrMsizFNkkQAt1otb93D+4+crlutVpyo66/c3Dy/U1XVp774hf39fe/997///WfPnt19+Ojd99+/efPmjRs34jh99bVPMfOjp0+08ePpeDwe9fu9OGk5z46dNXWaRGVZKiUAmAA8eyklCUoi2cp6eZr02q0sTYpqGinqrC2zs6v9parSJyeD4+FACCGDzVMciSiqqgpDnZqRmo0B6tqC9QqViIgkKiWUEkLE3vskiZaWukVRFUXR7Xan0+lSvz+dTsfTUZymd+/e7fV6gVXcbrdbrdZkMhmNBqPRZDAYFGWxtbXV7688ffb45ORkdXU1dH2laUwSW52W1poIlZJE6L2XQnY6nb3d3TRNjXVloXEtnkyKKErGo0mURmmeW6aj4+MLl69MymI6meZ529XCxO7w6HRjc+fwziPP1IlbAKqueHt7o5t1x5PB8dHw9PR4qdvTZpcIi/Ek60SvvfL6r/3j/++F8+dJRlVtqvHp8ekAmRCFIEaEpk/XEwD6cJPxme1KeHj2nr0UBAxzohgGxb8F3nCIQHN8RjOHD2IggpAQKeoi1Mq0rZkdADpntK7G4+HKUieO46IqnbGV9XGaA/CVK1cePXq0tNxfT5PRaBS6y5Mk8VUZHMbCRjdJEuNsVVRlVT/b3VdSamu/8pWfFkLduXPn5s2buweHzuPBwUEaxdubm9ZaJeNut229Px6cykg4b0gKkjiejlAASJSKdFVXhRuPx3ESWV1feumlV199lbTx3lvrHz16sraxPplMNjc3q1LncWQD+dIYCDU3ROdrRYZBA0Ndj0miI6j9/5+xP32yLbvuA7G11t77THfKOfPNU1W9GlFAASiC4ARCFEmRYkvdbUtqKdQh29ERboW/OGT7L+hv/mBHOzxIDrvlkOxQR4tSyxrYJEVRIEFwAgmgUFWo6dV79cbMfDnd6Qx7WMsf9jkn73sF2T5RUZHv5s17z7D3Gn7rt37LJ6QhSZZNNRpmnl0IFAKL5fnZ/IWrNyaTibV1lmUhiG3q7373u1/72teeCwxEENqAATshRoxaBdh6k8DSTpADQhZx1te1dQ1rbXRilstlPshEpCWVIgMIgOoMZ+iz5dWYrM+Ho/HXaZrGHhboinEsAACx/hVNf6wLGKPj2cfyYkwco8txzmnT4hYALas4mkvspkn2KFo8m/jOGOpxYBGJCE3TNFmWRdACWyYHxwgMOvUUbofSKDzvKW0jqhicwUpzHHbFxNVEuY84Y/jVx62xNhflGwARu5l07R+sIGGtx5U2IuyDLa1NfzJxgyls6cAiQqTLqnIBRpM1AR04KDQK9GK2JCJgDM6R1kZr50MsWBllSNFwbYiIWicKkJ13zrHzDoL1jog8B6OpYY+JNjq9sD6+ePOa937/7OT/+o//H/50ma0NX3zxxevXrty8efP2Cy9e2N3LlBqsT9iL915zAgCusaRUlClRSgNAxLSB2RgVaTRCCNAKkEbGmNFcNmVZlgAQjXWiEqVwMpnE5xjrkmVVG2M2t/Z+6qe/8f3v/fGTJwdKYWoSIkCRqMbAgiISgg8MxmgfROlkMhz2+FZcNnGRREIlddTppDvic++5g/HOE1EsHPd7AFpLRy3zIBZrhCLAhue6YtKvuvY96px9uBrxx4XdLj9kROw6m6LaglZKAUKEfgEgzuWEzhwQkbQDtYCZIwrXfy93YzG71IgQY8FSmH3PZJIOP45vjslZf3XxB+89onQMs3YekASmpIVCWzKwiIh4DqQMCwMwAkEM1ZQJEsteeTSUzrkYbDF7bx2kbafOYjHD5VwQnA1KqSTPlDJ722sIND09ODs5ZCARzPIiT4vJMB/lm3HJRUg7SZJlXc1ms+Vyaa1XSg0Gg0GWA0CW5T1frfEuOummaUQkSRJEamN3aMu10XpEFmZcSGmanT/lnhUCFEKI8b1zPm6HpmmMgTzPhcsszYzORUQrvnyl2NracVV98PjRbFmaJEnybLw2GQwGG1ub8ebX1i6rCgCCc0mSNFX9zjvv/NzP/czOzk7TVI1zOkvBOzT69iuvaK1vvvBClIr11n7nO9/+l//6Xw2H49Fwsra5ceHChdFoKAgvvXgjL8ZPDo4Onx4/PT4ZDofIxOyjAFJi9HJZHR0eOReKLN/Z2bLNcr44s7aOCuCb21uKjPcsHOpq3jRNJG+RUiGEYjQkrcqyHA7Gw+HYmJRdQFSp0oxgAJZ2oVTCPsxmszRN0zT1dY1ajcfjaKsjpUxrvba2RojAAsAkEDv2Hz16FMEDAGqaJkvSEMLZyYkx5urVq977NMkBebaYZVmyKJdbWxt5ntd1nec5IoQQECBN8qps8jRFVPlgmGbJSy+99Off+xNCvbmxPV1WmzvbJ6fTi5fEBSFU9+8/eP/dd3/pl74JQsVwnCSptc3h4QkEmp1OCdnZulrM8yILQbzjp0+fkoJiNHj7a1+9cePa/c8+O9o/Ke1i78LFn/mZnyESozRH1wBxxPJ5t/JqsrSatD+TsK2SOGOLLz4DGfQppTHG26bjAmFkgEQjw8xgMIRQluXW1pYxxokYY+qyGhbpfD6/feMWB/jwww9/5pvfAIA4DICZfdOISF3Xk2KIirz3jx8/ni8XChUEXiwWRZ5P57Nf+qVfeuedd377t3/zb/3tv3nx0qX9/adlOY/EBqP0crlUWZKNixACChpt6rpO03Vj1PGTp8jivU+UXh8ODWGepC/dvPGlL7y5mJ6FZV0UxWg0isHW0dHRgwcPiLTWie+afVuTEpURAU2SjkbDs6LQhhDFOaeztHFB0HRFLdAqOzk5+6M/+qPt7W0Wz8wsPk1Nnhd/7a/9tZs3b8LKIZ3p7Y13HEwnK6gYAGEbD7emPk1TADp+erK7u5tkKbN3wRtSTdNg20vWNnL1/KjVZdBHXbCinaTjTzGGcA6UUkhtjLZcLmOABSpqZgp39CnsoLL4ZbF9UroWlUgrphU51tVS0XMeCwBAh/M4KTCy1MvSWsvMeZ6jVn1bpVJGd7OZO7BjlTot3X/tWzokIl45iLQDMgEBEXpiNUAUWhIQiIO6EHsyZbyR7ZPovpSw/V4FIO3QCTgfGh1PiYRZWBhYBJX2DI31Ze02tveUSQIYz3Z351IyHNV17b2z3lVVQzq4eklEASTNM4XKIYmTAKzJAEuSJSZtC5oqzQDZWlvXDRFpjU1Vx6ej0yRbG70weTXRWiQ0Vf1n773zL3/7fwDrLl+99spLtzfW129dv7G3szvIhxsbG3maJtpoUeAj+GLmy2WSahu8RlKJgsAiKCKMfV8ekMoMOlRCBAjA7G2w4mWxX3bzTSHLEkMKUIyitWG+c+n6zoUbVbVczGbONa6xTdME38TVpbUmTaTNcrmMjtNa20ctSZIAQJSV6s1QCGG5XEaEOW7aWOOOgx0arLTWSMQizjPRebFYBAhIpA1E5Ly0DdRKqsasdEUMgoXgmcmktLK74jrrMw2llGdGZZSKc9zaKah9FVLFLKkTBos0kqZpkqzQOnGugZX8IYZfzjmlNBH1TZt9GNqnHCFwFGQSwZbe1yYYErxHpDbQkhiRBGZOVxjBfYpGkSZISKKRFBKg0kmSKWVMlscII82L6DdiuKaM9t6yiE6MMrqNmJ0HCXW5CF4WRFlW6DRBRGSXJklopovy7PRIAMgkCZFe29hUWjvrJ8PhxmS8rBtnw3K5fPr06dHhfl1WcQj3eDKZTCaZMUQ0Wy5jg2OSNHlRJCZVpKz1QswggB2lrN3+yLHPDBUgRrUwEWEWpXVjndY6SVNjUmZAVFolIDSZrKEiH4vCSmVpWhQD7106KFja/HCytoGIwTIwKlJFblpTm+Xe20dHh0dnR2eL2Xy5GI+HBJgXaZYaRbCYzaz3ZVkOh8MkSQaj4S//5V/9hV/+JVu7Dz/88OHDh48fP94/PLh85drFvQun02W5mAZfj4pUEWpFu9tb1ta2bjj4yXiAwMtF5b2/f/8+SDBGk+IsS9j75XK+XFZ14zY2ttI0HY8KIqiqajwer69vAqJJs7qunzzeP3z8gEFPJutFMRAvzExaj4ZDhqCQsiJn5qapREADBttkRqM2TdPEVbq1uVmW5SAdKKU4hEU5LxcL11SpUXVdN7Vr5lOzsZWmqbV1nqbBB0QZjgrrXCFFnqeo6PDwcG1zQyldLUqllLM+7v3Nzc3N9fVyOVss68PDfWvt2vq251A2zf7BUxCNGI6PTu99+uAn3vqJzc1No83x8fHGxkbTWGOS4JwEnhSjZlkjMYqPVcLT09PxeJhkWdPUdb2c1+V4cx0ePvrgkztvvfXaL/3yN1CZcnkm4CIrGGOfdJvnKxFh9L3vkV5qtZ9RG116JykZmycBYh/JueOIDooDBGirPS3pwlkJLo6cjbRmY0yWZUeHTzdSrYtsWAxCbZkZtbp46crh4aFOzGQyMUbZitPUOHZci04TFlfXpTHq5OTo4f4T51xWFFcvX9nd3f3kk09+8me/nhTZux/86OTwoHY2SbVSajqdVrbRSSJA3gci8tZCl9+KtQIhzQwKkwISBoH56cnJ4YEB/cpLL6JzTx/v72xuHR+dBsfL5fzmCzcuXbr0J3/y3Y8/vvNzP/X1aPwbV0uHjDgbvBOtDYgi1MzeGA1BEVCidF35ZLPI0gEqblxTFMWLL9++9/F9BYiIIOC8T0w6L5edp+4LF4CIIAQS7Xg/FogAUIAE27obdJBkb4Fjn281ra2tdy/sIapIQ3I+/gkjou7mGvdgUx959/+P5qLFliIDLKaMkbTivV8sFpubmz0KGtu5V6lX0gFOiPiM4NtKqTv6A+44WP0Rr6cNZbqiTHyQUWQ5RscAUDZ1WZbRBxudRs/atmUp5bsuPFzpDsOVOiN0yUT8TCAVaTnYl4pWus+66FCJhHYcgWoHg/RQBLQEFI/Yz5JZgdZWxxBJFPJGACCtdRC0sra+nWSDgLoYr+PC5Um+sbYVRe2rpg7BNd411p6entq6tB6rphoMhoyCQI1rYhU/Xk5sjVHGkFLa+3xQVFWVGsXM1rtyMWfmBE2WpN7bPM+3L1/cuLCrkZqmeffOR/Pp1DW2qWpD5pXbL9+4cWNnY/PmlRuX9y5kWZZlST7K8zwVkapeSgBUmkNgHz00ImitUQS0SpGY2QNwHxzHDhEOAMjW+ipUEjwinp6emkTlaZYOJqPxOhEF77z37G0k2DL74PyyKhfLZmNzTfB8IfXPKy7fz+UrraD8crmcz+cAkGWZUgpRhsNhzB9aLiNJRNGYGTrxC3yWDrgKKa3kSSArYHK3r85r+X2UtrrTtNZ+ZSnGTHe1QNEuvA6a5a7Qb6306zOE86bL+FHRrys8X959ghXtctSq7neBiBApoxWSCCOLB6EgHmK7g0ShjFgWQeiyD6URgwKAVspEYt7VxnP9t4pIjHoFAtmWnBe3sFJmOFQAVFVVMYzJGyCHpq6zLPP1MmKTGRALzuezsrY+1M4GMjrLsjQr0jTLinw83Ly4twWMy+Xy6Ojo3r37nz24lyb5eDxO03Q4mYxGo9iU0MXr2hij0ySyHSIgGv1Wb776O4PtrO9WGxniKDAXCLVWscANWuvGeqW01rppGgQBDcqY9a1tkciLo+FwaK0lxOl02jSNrdvYOk1TBkzT9Kd/+qe1Jgm8WMw4hDufHu8/evzlL395PF7L03RYFEGkLEupGxesUirP8y996UtvvvnmdDp9enwUghw9PUFx07Oj2bx69Ojxydns4sWLFy9furh3Id/estbGlTgYDEbDSd2UwTnrauQAyNY2WZaNx+PYfa+13tneHA3yyNxKsgxRJUlS1fbGtatN4+rG7u8fPnlyAEJJkjbVYoRjMnpZL1scUVGeFrVtYrt08H4ymVhrYxC2tb4hAQCYiNLUDItBPR6LyHQ69Y6PDw4WxyfzjbU8z8tyobUeDAbL5dwFn2VZXdejyXhtbe309HQ8HudZdnJypkkx87AYENH3v/99Y9Rrr95++PCz9claYxcSmt0LV7yHqmkuXblWZIODg8PZdDHIcu/97u7ujRs37tx9UJZlbhI9nrjKj4qBD82gGNoir+qyyAebGztNXR6dnjZN89/+d//dzZsvnJ3N3vngR1/40mtbu3shzB0HhcIcdV2eIXthq4n442ipz3Nhzo/zzbvCAyPUQL1JaRl9VVUpJGRRSHXTaK1B0WKx2N7eTpJUmWRRVt57pfRkOJouF48O9oVwtpgX6WaWpgFkOBwG5sY751yidFmW27s7aZrPFou1jY08zZ7cf8wgX3zrS48O9t/7s+9Cmty5cyduq9lsVlXL0WiUFflgMBgOh5YtAaZpZr2LE1OqZW2tBxYk5a29sL2bJNlLN27tbGw+fvjoa1/72snB8d7eniL6wQ++97Wv/8Ta2tof//Gf3vnk7iDJ8sFgsjaInMuoD6eUygfDPFMmzWOIgiQKFJG+d/fewf7+Ky/dBgBmCCEA8nBYeG97Sx49/ny+9NI/BWwDrnZkVHuzV5+QiACQQOiy6VZSsa5r54LCpGkcQ4i9NUmSMLL3XqNqv4UZFIUQop6w6scGn3849P5C937COYfYFpvjP2N5kZmlW0Z9I2E8ItocjVpbLtRdjMkoCEi6b/jqPUf825b4LEGkHVmnW1zOE4FzPha8I4bBzAHau+m9b5oQidgRS+jDQTjXC3gGD+AOYFj1XiuuToh0pHd0Gyl+Wscqo2codQCrDi/+s/0pGvd2y0nrwiLSbm0g0jpR2WCEOrtx/db6xvafvvPh4f6RYGaMGQ4LgybP8o0sLevl5b1Ljh0LPj15CkCzxdQ2nq0/mD4pRsPoQoxRAIBCCkkQgmOjEuSgUx3Ccn1rwzkn3lVVFThM57OqqXswqVgb7165hAC2qgGIBb7zgz+bnZ41B1NI4JU33ijy9Bd/8Rdfe/m2szY1JlFmPBwNBwOFGgWstb7xAOSs79Y1RIZfvEPtTSCIViVJMh2LZciIWLtgg2sIAUARGNIm1cVwMg4+TVMIPF1MlbrfNJW1XuL0WW0QMWKiSilrXRdtxIfePtkkSfO8UEpFQJGZy7Isy6Mk0dCVKdM0NSbJMkLE4KJvdiIiDCzco7+96ZTQYqUCISJYvcFdPbBjaEKXb0BH8AeAEAKiEAi1avjnDI/2u5jjcIwY/PW2GwkUkQQKISikLEnj4Ka+VbBf3qubXGtDpOIu7kMloihKQEIAjMwiomKLJ5LuknUGxEhiAIpUNkFEijiZBxKA4H1Tq8QgYuSqIgCScBBEbZJWfcC5RqACEZHgGp/olD1HSNIFX2R5nInKHKytibTWGiGMBtkoTyGH2lnkpp7XJwclkMqzAShSlEwm61euXrp69aq11rkwXy6eHh4jC7I4G+bzeVVVWmutE1REhqKKSmTi9ywLEOIQEAmRAJCobX5UOglBnAtaERHF5igRYBatVZZl1lofbJqZqqrQIyIaY9IkZ/EsiEoBESLt7O5Op1MEBoC6rqcnp4dP9wHApOnibFYUxWA4TJTWiCTy6ad38jS/dOmSiAjCcDhkZvABBBw0zrm6ro0xmxtr80VpEjw+PvriF14djjcW87pqmrt3777z3g//8A++xQAvvfDKxYuX19c2i6I4m82cc95aJNRam0QRoXMOAhPpxnqt9cOHVZqa7Z2tIhSpbRaLpfd+vLZhjGFB511ZzRfVzBgjIbjADx89SNPUu1CMhkmSMEhlmpY3ppQhXS2Wg8EgUTpG/6PBsJ0NlQcEjrjAZDQEoMtXLk7P5owwmUxOTo8AQGmkAIZUbauYkRqTro3WZtMZDGFtsvH08NBaOxoMHz58WBQZM5d1lQ+HSZbfufvJ5sbkyf6RoFaUapVl6WB3a/vu3bsppTeuX3e2/uTOh9PTpyKYTMa2cbayqaLlYsZOJYlJlC4GIxH87N7jK9evXri0d/eze9//4bshhDe/8tadz+5993t//uUvvYyIZDQE38dGnVs9r7H0PkhEWHzswO49Bq4wClBWTc15jNY6OGj58s6HREkIYTgYRPMbTyN+1/b2tiXxKIrIWZsV5uj4mFALwuHRwT/+h//3vd0LO9vbg0F+dnYymoy3N9ePgfM0TZJkMBisr28WwyFp1TS2qqoLFy7Uwf7O7/27ZGtzmKWffvrJhQuXRqORWyzOzs7WNzfy4WBZlRvWAYkE5iYICzAq1GmS17VN8qy2TpGZzcu9jYt7F64+PTgEnR0dn/2Tf/JPLu5dmIxHe3t7sQy9u3Phww8+fvLkyT/4B//g9su3fvYbP3thdw8Rx+MxAMyWU0qKcTY2GelUheBIgdY6S3IBIZTgGwwwSLVCLhfTPM9FxDunTWtdm6bROnnGPCK0oGOfuwIAELbPEaVl9J7LCcUag9aYmgwRF+X85OTEpLppmiRP2qgDSYGwcIuD9pSnFRLYcz/oHjZQShFF/MBWVSUia2trMQ7LkzT6POkIKPFY9SIR/UoSE9dYxIFWU8xVkEm6Nn6R8/fEF1U7TTJ2NkEvxRYjtlbygNvIqc8Y+n/KCprVowvUTb5TSrWyuc+MYeI+RGsvKiIubY/bM6BX/0PblMACXWVKVrrSune2yF+8w2XZoDZa661LN4rR1rf/8M//7n/5v377J782P52z+LNjTUSj0UglSillyZo0QcKLGxeSPPPeA6EXf3B8gErN5/NlubDWTqcLEWlZVo6V1uDZe5vrxFa1McojFkUR58/EJppgRStyzA8PnijA4XAogok2e1cvb13cS95QAFCXy4P52f/u//xfO+dC1Vy8fPnC9s7VS5evXrlyaefi3s7uaDQp0qwocpNDNPEgxOLFc1Sd6G+U1ppAee99N26ZCAVRq1bIQGnjvGVG6+o44k1Ednf2tE7+/Lt/kijK0zbw6uk+fTLQxy6rcUzEfpSiJCmMMcPhEAAQpWmasiyn02nM1JNUG2NGg2FEXyKcZq31wWE3NrFdP9Kvlig7db54nlve2HWeR69sjHEcEJEDRCBKqZaZy50y8nka0CUpsRevV/yCrrzovY/mONLaVEx1gjsviHdHv9rPk+/uJEPoR52iIABjiBw4YYHY3UiMEIMwYRVCAJaeUYCIqAjamUnUctH6YiVRAFCKgmu5d1lWKALvfZoKAEhgQWAfUMWcgZmlm2aG3vv5fDoaTbxrANHEC1KUp2si4jg4a0u7WMxOlTLFaDjMB1lRXL9y8drVi86KiMwXZV3OgybUyOw1aVe74+WxsyHLk8l4fTwZZmnR71BsG4x0XD8+BESVpnkIQWnkILGIFKEvInLet03+jjtUTLxjRR4AkkRXlWtqlxdpWddxV1blIlq2+WyZ5/nrr922wQfXlE1Zu7p2bmtrO5qdIJzotGmqcrHUWgfvQvCazWA4GOZF2dRRmQkkNE1zcnIG3Ny8frEohl9889Vf+sWfn8+nx8enj58cPHr05F/9y99lgQDypTe/NMyL0WC8vbPJHBaLBbSdzrqxfrFYNHV5cnJ0cHBgrY36F0VRPL1zZz6fn57NBGE8Hm9srIcQQuCN9dELN2+FINbaxWKxKJcispxOTZpGoVRjjA+iQJI0zYwOISzniyTVWrf63sYY531RFADgXIi5gfd+bW0cb0KaprWrA6ci0lS1SZPoiZeLKs8G6+vrp8dHs9nM21qCGgwK7/3G5nZj3Wg0KRtnGQBNmg+d83mWXb545eHdB6y9rar44CKQM5/Py8XylduvHx0cGmOSRCeJSZLEOz47O1tf35xOZ6ez2d37n1nvNtbWt9az2XJx+HTfh5siwiwoAtyrbJ5XPwDEORcdWYQPekmvXgKpP5hZteh+220HUciVsVX8YkZUxhjHWNf106dPty++GgERMloBPnz8+Ifvvbu1t+tZPKBzzjY+pGEwGAgCKHrltVedc48+e/DOO9/75i/8wvsf/Oj+/fuvvvH6MC821zdAkQ2embMsW9raMz89Prpy/drdu3cf7z/Z2Nos8vTJwwdB4OaNl4CgaZokScaD4Wx+IBIQSVyAQmOXBiZaF2kBpAwBCVRVMxwOz2aLj+98cufO3Twxw/E4K7LBcPjTP/szg0GutR4Oh3fu3Hnxhb94+9XbT4+e/L//+38xGU0ODw+P9j/78hdvA0lg670LQYpimCQZqUBE4/E4T/IQXJ4a75dIrTakUqS1ZiEAoU6bhqiXs+0jYJCu2RFxFQkDgQAIzEJ0bue7OAwYQpYUYz2O5RQAMDp1bgERtopen0h3WfRzcM9zP+sIaKnoxUBH0wABAABJREFUCwkAmQTGg6GIaCTvffw/dhKUCBAp8dE9SKctaYNHDsVoGM0uEXWCXu0PvcnrfSe30vtIeD73DZR2LKC0ZwaE1RFAzBxWSjytUmOniiYSI6E2C2k3CZ6XkGLxtEO2WkUIIhL2IEJaW+eioaQYaBJ571Hp/u6zUkLIjq21WiFC5AwBgwC2FBMJAK0sOSIoZo4l1MAACK6p0iQ36bqTwZ/9+QcAoMjE6WMiAooWVYn1uRMVEWNMXhRJkgiCEG4Pt3RiLq3t+GBDCCxSluV0MZ9O53VZz6pTIFzfXGcQkycueAIUQW+dILB4IlAKB4PcWh8FHaJebrks441KUGmtszzLNV3fWGtvrIhV+ne/+ydn//pfghOwcOWFm7eu33jhhReuX7l27fKVjbW10XjkfGNIRSSpqWtjTFPVRAQISilsa3zCzMQ9zwh8qFnY+cAc14AuBgMWVEDeutguOhwOERG8MHPfaQgd9AXn0qntfQvBx6cWsegY18QYq5+Ptlwu57PFfDqLsMdgMBiNBhEpERGlMIQQrGNmFg4hCASttSIVPSUgiAQBAVQYJ2eHgEIojBLVZYKIVoCJbjtUlFLes1IRTOUQHJEmImFUpBAgeGEQQSWr5XuBVCtx0NJJhJWKHIVIHaEggkQMwJ1WBRC5EEyaNk0jSIFD1L5i51XHMYjmpA/ROGLQEBll7aQsIoAApGNoIkjKs2hCZRJGIiQg0ESBmRA5CAATIrsAQB2drmsywlZqDBCM0rG8KahCICTyzMJgkgxQCQA9G2eLeAAgxDzVg8wAAAdwzfx0fuKZCTVqleWj0Wg0HI03XrlpdCoI8/ny+HQ6X1RFMTw8ONKoZrPF06dPJ5P17e3tPM+zrNg/PFgsFpPJJKo8hBCUghZ6Ea/jnHvB4MWzJ5C6bmImE/NpiewCRBFIksRaBwAqMUHQBVGJIq3rxlkXNrZ3hFSapsPxOoMgyLJaoMDT0/dtE2VvubZ+mCvSRlBQYaKMiBhtXF0LMzDXVZUPB2trk83NTRHZPzg4O5vduXP3+Pi4KIrRYHj10taNaxcZ3/ob/+NfW8zLR48effrpvQePH73zzne3t7cvXbyyt3chzQpQGkHBfK5GenT58nwxnc1mkcl3eHS8XN7P0mI0Gl25dt17f3Z2tpjN1tfXAaBIM/bWO2eUurC7mSS7iDidTg8PD+vZibU2TfM0H5zOpoyYJ6nJUq0SSkh3fEfnXGOrwTAXER9qYT8cDq3Fxko6HADAo/0n2ztbSZodHBwkJrfOVWWtlKqr5eFBc+nCRVhfPzrc397aHI0Gi8ViPB4ul0sineXDZV2FoERJkub1st5/tH/0eF8zbwyHRWIEiEHt7V0moul0evX6zbOT6aKp1gYDbTBPUx8sArK3Suujk9O9Sxdv3nrx7GwBLMJqY339rS++4W3F7KUJSmFc3MYYk2SRKi7soePAREMUvSS3XZGoyPRsHJCASoUgEaYKIZBAEAHkaJGICDrXoJRyQT744CMw22VZCrdsn6qqvOODw6N8fRwUBo9pmg8Go9FoUJala5xKVJqll65dygZm/+k+KsKE/uhP/rA+OMx39kb56Jd+6ZeWVYWKlDGZ0pt7W9Y3d+/eRcR8PJzP5gHp5PT0p35y640335ieTAn0eDiS8AQUMQjmmSjUOgmNMIgLgUDYO7dcrg0nG1vjtcno4aP777z3zvp4PcnM9ubF5Xyxub318iuvKC21rdY31wAZCAeDQZpdXi4X3/qd33l68GR9bUjaDAaDPDea9OMHB3/6h9/f/49Ot3cLlaAg1dYOhjlRq9cKmAahJNVePEZqV0w4xSoNLF4Qgg+RXYWAgJH7BNLNuYGOqCcQOq6FEEU5FwSUpqnr2j61R1mWFUURfFtbi+MrqGP1xbawSG5ZhWN6n96DSjraYpHQNI0xKi9SQGLmCG/qbkpdCKH1bV0IFUKANqFvK5Jx8Cp3qmAtbbmjf7WRzUpZcDUP6GOs3uzyCnmrf0NPqu8T/YhOYVvHOafgdKDaMzr4zBy7oogoSRKtTQgB4hhs740xIufsEIlQX+fa8VmGTdQhi9xkJAmhHQZJEYtmDoEZBFvdPEBUzllEKJt6gga9ns3KNMkhejYRBiEipnbfptqICHupm7oqG+w6YI1RRDQosjj3wKTJzsb27vZeZrJFVZbzRdmUJ/OT4+mxTrUEjpMtATDq03J3GFLRuCdD3ZfMQgjW2rqu7cK1rb8gSplEaU5p98qVKzduoogmIz48ODr4o+/9WX16NtrYeO3lV7a2N7705he3tja2t7aGeZEXubAMxqO6qkCYfUCRdh4VMCJ561CRAAfnYq0aow1IUqUTUJG9roOXuBqjPgkzt7WwLvxaWSFxTZ/bvtibHX8brzpaw5iYjsfj4XCYGOWcK8vSOXdycgIApFApNRoNlFJpkvRNJwIBEeW86ICMrUR+XCpE5ONAzy5tEggiLQ1RkVlF73Dl1NtkSEgwKG2oU7Ra3Sxtmb5b+ETEcaZkcKsbhLoGzGjBw4p+8vkXrdRGV7chPnM3I/2rPYUeh+u3HndJzo/dyKuQcF9CjQsY4pxbaR8eoca2VVpkRd+/h+5XczYQcbYhAiKdakyUYY4EHFUuTqpyhk8PQGmjkzTPimK4sTa8uLvHiFcu74UQmto9PT46Ojq5c3ZCRDt7F4fD4fr6OjODYJ4XDTZpXlRVFe1by7PwkCQJKuqcKER4LI6KCSKKIAqpICoySCwx4XRBlOPBaKSUjm3j3oXGee99liVpkgPAcDgeDsabm5sIEGfsNk3VVMuyrES4qpejwXgymczn87quT8/OirouRkNrmyRJrl+7itfR+1dms9n9u/fm8/nDe58s6pqILl26cvny5Zdfvvm1r711djoTxP3HBx9+9Mn7P/zhjz75SIBeefW1CzsXRmsT2zTT6bSprEmSvMgTk03G60C4WJSyXDIzoarr+uT4lJk/W97PsmJ9fT3Pktn0tGka7x0AzKczAFBKl8upa2qttbV+6r2IrG9uzOZmMplkxYC9yzKjVCEhRO3ARGsUifpSiTFFUdRVCS5kA52bONza5JMkCKLAYrE4OzkZDofDYjCfz11dWWuB8eDJ/ubaZpJkngGAbNM0TZMrMz0+zXVy4eZlApyWC+ccOT0ej4VhPB43TbOonozGY2N0qpW1tbBHxCJPLEttm7d/8utl5f7xP/p/Xr16dbksX779Yp7niFahIKk2xQ5etAYAUITAPjI0OwZYv3nbLbOibQkdXr6qOo5AEoSFRERp5ZxDAARkiUAsLBaLd9999xd++a8U48l0fuZJXb169aWXXrr3+LHznihtmrJpmhs3bhw/PUySxHv/9Oioruud7c3haDRZWzs9PU3S9MrVq83OzvT0LGrc/8Zv/mbt7M0XXzTGDMdjpclzuHzx0mJZnU7P1jfWQ1OPRoOtrY3Z2czVbjAYzGanSkfRZjTGVLbprc1yuRyNJlDbb/7ln6/mi0ePHt29e3c8Hme5+Ym339aA77//blrktbOjJK2q6stf+dJXvvrVL3zhC1/72tu//k//yWhQHD89+t73vjc9e7qxkf3s1151zkZzuJgthsUoTXXkOxEQEQ0GA8RKRATVbLbIi0JrEtTO1b1Zi5MxiIhbrJEBGKlTPEWGTiwo/lNEnI/NUuc8kCzLjE6qxoaOyJSmKcjzwoqfP3rL+bzB76n3Iqy1ThKDoAIyamXY9Oa1C8CJiHwMoZRSnY4oIkYNwxiHMbNODMeEmBk7Fc1+LfbVxmfM/UoEJivHc7Ha6m/75SsiEYXq7XUXjUnHqjv/fOdcVVUxPtWklFImUVE+qj/J7sKZiGLTSjyztq/NaGSh9kwC4LN3lnr9C5DI5UEkgtixoBTFoJZIO+91p8weGVLCiNJe4LKuoOOAo7TLQwIv6ybNjLMWgtdaq8Qoo0mpIhsI8qAoRuNBkhlRSCnOuYw928aoxlkBMcaIF994AoUCAqKJgIEZlFIIaFKT6FRrzR3ZLg4wsNZqUlVVZUlqVLDWUqpe+eJrGsk59+Tk6WdPH/2r3/wNsD4ZZC++cPP1V169fu3a1mT9yqXLOxvbZCjVxgcLAk1da1CE6KwVCSZRSulY0DJJauJgB8YgGBPG2B1IRIzACLpzyb1p6xZGK3GC52+IaEvbY8QrLd+hk2Bt2BPRZDIhIgAOIcTZdvP53DknPmiti6LI8zxJNSKaJAEAEkZE3W4fgC7u6QJZZvbOgXMuMVlc/7Hdso90n1n/yIggncDK+ebs+j3jRiCicyJvXDQiIpHReJ4YrK72yDePDM72tqxo2vUbfOWOrZ4YQjsgDLHTg4aIHisVgUd4rkH42W9fTVci2SJ2BvW/RURqg7C2AECIinoSxvmjbLczYppncX8Jt33NipQiPZmMPbf3w9lmejw/OTwERbHrIjEpgwwGo1dfvBFu3Wga+/T41PrgGzsajabT2dHBw/XNjclk3TeSJ0MiAgOIGJt+yrIlkymixBjnoyCQKGWcc46FgFxwCAoIARUQIqosK2KS4/1SKVGk0zSt6zpuqxDceDwGobKstreVUirN8iIPSqnG1lW19LY+OpL9JwfHRyfLciEiFy5eHA6HUfQuSZKnT58ul8umabI8eeP1V733QTgIWms/++yzTz7+4PHjJ9vb26PhZPfCxTdev/3221/2Pkxni0f7Bx9+/NH77/7od/79/wCAly5dubR3yVnOUpOlZjAYOe+zJK/rxjo3mYzW1tB73zSNUoaIHh88LtIihJCmadwy27u7cemKyGg0XF9fj77/5ORksZh99uD+hx/NLl25nCSpIpOmaVEUXpksy2Inh7N+kA+99+WiSpVeLuc716/tbG68+957Os9AUES21taXy+VyuQSWnc2dslzMptP1zc2PPvqE2RuTNnXFjhOdWs/AOBoP0GQLG6anZ0ah82734m7l/P17n3kOkQuY5zmy7O8frg0Heao0KVRsfUVJeuPWjd/67d8R1D//83/hzp2Py7LsCDehAzz6GkvPGJZYjlj1I71bOd8+KzkJMwdABYgkCnUUIOQQAoO1PgSOVBmljK2rrFi7+eJLN198a3Nzc7osY/+Z6ygKsavM1Q0J5CYN3scONfLOe390dFQUxcbGhjbGWht152M5+IMf/cgYA4ree/fdvCi+9vZPJEbPl4v5ctHUbnd319ZNCFKW5c7OzqMHD733eZYQoAJ0waVGBdtoEQYZ5MNEJSQ0P5v9wi//pcuXr/7R7/+Bs42t6tFw8PorL1+5sDebLUQwJvkba0NEnM/nR8eHs9mZMerrX//6Rx/8KM/zra2tt7/6pa9//evsTxTR4eHhd77znXlVvvf+D9/+yddRg0hAlOnZfDpdrK9ra61KJKrGaK29UJpnRNq7UNe11tp7H0RQESkljBGW6CyVxCoydugXAGhjuoKjSKdXWlfNsqqHg/FgMIj1Zd0JtrM8k1F//sBn4Zt4nGslJEmSpkk0bUmSmCyLLY1dfHZOrhKRyMGKr8dSd5qlvSnvf4jviThKlmW0MrzlGfezYm07VANxpa+t/1lW/vDzf776q/60+0/DDtBaW1sDAOecrZt4XXVdt1UYVNgWW1UkJyGdq2ZDRxZhZAAmwahZAKKIzr1N9HkioowmIpDAzCF2jwYRkeBFIBhjatvEnRkZm6tX1AogxW7N7hK8cKqNq1zkq9jakfcqMc7zWTgTgOFgICSoMU+zhm1ijNU+tugQkXS6RwpJoSIWaFyczAISUCMiK6VYgFji+3WSpiaxHe09TdO6qmNaoYmWVQkASqnB+mQovH1hRxMRwfT07Le+9bvT01Mu+dZL11+8+eKrt1++sLVz+crF8XCYZSla9o3XRhNpJNGEiUqINKmoVC6BIm89FsdbIbeWDiUtVXF12Xx+IcXl0C+M9rmE0ENQbTjuHZwXxFtlndgJQUQK0FpbVdV0OmXxiJgarbWOs8k73TsvIk27evF8/QMgog9WgTKJEkjjQ1yFo1d3Sgcun8NjMeRCRERFpBEDdkxHEeF2SHdb5+6LldjJW8ev66O9+E76nI14bq89s5sAoV0z5+cTscPV5tAezOOOISorWf4zG/bZr4gxZO+i+s/vz7l3VLBCgItkTSICoA6mqpW088SEMDMqMakIioRQz2euaWobBAj1aG19PFrP8sH25hoAuiDGqFRrhfzo4f07H38CQFonw+Fwe3t7MpkIc55m2XoenD+bze/fv3/58uXJeJ1M5BU0oDR0yCgSiIBSyntbFIVSylnnPSsy3gGRzvOB0Wld14GjdGIdJ2ItFovJZD0E8S6EIMKQpnmepCGEYTE4Ojqq6/ratWuxFBg56SGEs7OzKCXvD5vFbB6X1vWbN65du/LSCzebprlz587hwREAVOX05PDJ0enJ3u7F9c2tt770yptvvCz/8a+dTKef3nl4sP/0e9/73jt/9k4AzrPi4oXLo7X1yXh9MByMSDnPcTk1jUvTJEAYDodFURDp8WBYVdXJycnJ6fTyxUtZnmRZlucZojjXJKneu7AFsHXz1vXG2odP9u/dvZ8PiuUCymXmnFtb2xhk+d7Fy7OwYPYJoffWKEq0OT0++fKXv3x0cLioSmeDEA3SRAEWaRajnzzP9/YuhuCsD4vlnIDWxuv7hwf37983abK1to4Mn92742bLy7sXPAsSMvP+kydaJaN8eOfup+Px2Fs3zIu1tTV2vlzWw1FeZMnp0enPff1rjw+OPvj4T69ev3V0dEREqFVUu8xTairb834wtqrEHzqTIivM5n5tywrHut9xIkJKBWZhFgkiIAikFSISUAjBuQCEaVbAolHKTMbrzByEJaYf7ONObJomGecCkKUpZpkCVNA6FCIaTsbT02PvPV/gKFQR84ovf+kr1byqq6qqqs2dbVDqxRdfzPP833/rd2/evNk0DZFumqauKo2Y53kDvFgsRGQwGPBsFm2Ld814MlksSgpiq1qY3Wzx8ptv3rx+a7FY1M42ZTkaDy/u7myvbaSJXi6XLY3SucViMRwWRZG99dZbW1tbs9lsOBy+8eabv/ObvyWIJklOTs6215T3djhYe/X27Qd3Hl++fFGAE6NCcMaY09MpCCllhkNTWQSAR48eVVWlEkbgqMiZ54PotxEVt/WgnrMOPgQ4r6udm8ReMEspFbOO+OJ4PCbUEY+IGGds0nwu9uKV1PE5a7/qsDShNkY513BHPKdWtTL081M7I96Oqu3rOKgVM7vgTZZGHSZUJCtD2uMZR6O8ak+lQ85657Fq9KEDCfpo7zwmi53/0dN0ph+gVfA6v/iVwuVqUAgAMUWTwASY53lslY/8p+4copQqe/HMwD7ISv8aInZOj0gjAXb6tsTBeu+7mnFop1lTpOdHmWTwwcfgTBNrbbxnQo3IAhgLg+eRYhDg88AxejstHJzPs4yZnW1IwDN4z6QT8ABKgnVWnEk1JBRsYGEiYPYhgOMAwBCYABWRYtha28qSlACWi3I6O/OlNYmuyiqSxNM8AwAhVAoz0kBYDFNEtGkGMXh1dZInTdNUtjLGBOu898YoY0w6GlwYZi8MXvbW18vyT3/0g9/69u/ymb/9hRdevH799o0bP/HFr+5tbXvvNSmB0LX6AwACgyCKACodHxYzB4bAIY74EKNIRHcjFlb3zHNbqN9TiNhKyMIzYQoiRhnDuFy9Z+89UmRsBERMlE6SZGtri4h8sN57b13TNNPp9Pj4mIiSJMmyJI72U13JoV11wCHEcASIgAiYgwhEittKgNEFiOd7FoFaEK834tyCPc8g2EQCECHnuELagjsihBC0NkmSRam2fl+gMp3Q9uq4iPhFnwekmVvWKkWXEK2YUgZX2jwjHRSigCTQykk+z3voaMiyeuGwYqqwH7j2+ZxKCIWUTuKEE2EgAiQy3Q2PvQg+BPa+7a0BNqkeDVNmqGq7WCzBN8cHTzxzEGQGpZO19c319fWXX76BoACobvyDB49Ojs++++mdEMJgMNA62b144dLehSJL18YjZs/ifW21SgAhhCYqx0V5NRBRBGfThQxkMBgIqUU1d4313iMl2uRxyQElTdMonaRZgQBaJzEjFyDrHXsHKN774GU6nYvI7s7etavXl1XZNI0IW2sX8ylIAAkIPMhyW9UmUfPZ7OMPm9nsDAWyLBsNCtzZ2traSrJUIS2r8vjo9PD46A9+799pkzjnbty49frLt167/cI3fvZrJydnDx8+/uTup+/+8P0ffO9PGQBAX7p45dKVy7H3vSgGzjVCoRhmKBCCW1RlVVVKmRDC+x98OJlMRqNcG5UlRmstyHmesxdjzLIqz47P2Hv2rBDYu9ToRw/u7W7vzBdnzLyxvllVVZqmeT7I08nR8eHjJw9fe+2VP/ijP1aakHRd14Q6sidNljmuAqCQ2t7eVUo1tTPGjIZjJKgr6+pqMZ3d+eTu9d2Li6qMU9Gm0+n6xgYw1rUtioJQFYWZnk2HxXA0HKRqkBfa2kWSmbe++sXZ7//J4/2Dmy++CoBVVUW5UezmW8f0ose0RKQXbWlR3nbhxk0Ugve8Mv6u932IscTfDVxZ2d9BWIAAxVnnAy+rOikkCAdhkUAEBhSy2LqxthMBAPTWpdpk2khgZ22QICJ5nivciHqQBwcHy+VyPB5fvHB5b2/v09mneZ5HSPXJwf7ly5dsbcfjcZyYDkLeOU1qa3dnNpuNBjkieusGWQ5Ko7RiNFXV5CaZl7NhnpWL+cUrV37+Z36mrMof/OAH8+npZDQ2iMPh8OTk5Oq1y+3uRlRKpakpy9Jbx97FoHQ+nw8GxU/91E8fHBx8+uk9hfbX/tJPa6TYcVzVc8AgErz3zjfG6BDk3r0H48lVAEY10jrJ86jzki/LWZ6lTrwik6Z5f89bpyyyAgSdZ4MxxOjDnhDEOWd0G0wz82Qymc+WrSg9BCSJCotxhulzBu05c/r5Q2Obtp6XEWLMpJGMMU3TxOWilOpozs+cbozYIrIFAHEiZB+lRentCJOuXu4qJiHyjN7JKh7Qh189lNVfUv+riP51cwPOr7zzgs9jDBGK06RExDnng40QoogopXwQZtHdrWcEo40PoZ3kCKCUMpqSJAnWxQFr3QxJRAVEFLzXWgtACMLsawtKmIhIG5HojDF+YwgB4Zzj0q+P9hV55pX+1imlOEiitfhQN2WSJFqnjbVEpEBxgCRJiUiAsyxztQ8hECohjO0Nbc0ogCatUBFDnuSDtWKSj6y1DEEIvXfOeUFpaus5SJAAXhhFe+dcMRo2TTPI82GRxUmueZ4DAOQ5otR1XdU1eEuE1Zn11ud5fuXWjSs3r0PgarH44JMP/9U/+7f/t//L7SuXLkngEIJJVAjBkIlJCQi18QEoQcVsV1dLvzFWnXf/q+fW5+o2CCujtELXi6qU6hhj51qj0IlEhBBc3SwWiwiJpZkxxmRJOhgMNmg9ruemacpyUVVVYoy1FoRi/1cPXPWnobtulViA7smIq1cXeq4k4eqlrS5gjLpc3bVFQKill3VzIbETfY08cVjJZ3qHsRrbPZeTrfyTQARA4j2PfZe4ovn3+RCq/9sYd/YJ3+qx+kWrfxX/GXd0f9p9HtWeWNv8c56/wcrJE4FBYurLtco5V9cOETn4PM8mk1FZW2NSBOWC9yxNdXr37CDLssRkSZJN1jauXFx/5aVrkStW2eb+/Ycnh48+ePcHFy9defnlV2vr2LuiGHrPVVM68HmegwgSIQgqLYGtrSejcaJNwKC1phS01pC06olaa9L9WIVnDq21+IBKIYFzzmQpEJZlycz37t3b2tmOBmQ4HAp7ADDGLBYLZEGSuqwGeVFW1Tvf/4ExZm9vL0sSIioXs9mM19bWtjbWtze3XqaXvPeLstzf379z5+4nH308ny/TNN27cOnFF66+9trtv/jNnw+ApyfTh48fffDBh//+278PQLdferlpSlSkUxpnhVIGRItnlReQk2382mSjrBZnZ7OmqdIkybK0tpWIpCar61onRitz7ep1pdRisXj5ldsX9y4sl3Nr7cnp0cH+07PTo7KuiHSaZHmeK4WffPLR21/7ib3trf39/WyQEOrGOULtvTfBxN2klMqyZHf3QrDO2YCIwuKcE8E0yb/whS+A9cG6V168fbacVsFpRdPp1Jh0Z3v3+Pg4MWYwHkmQsq7S4VjptKzOrl27NhqNiqL4whe+OBiMnh7sA0Bd1y3/oZOVeu7JRS8WM5l+zX/++fZ7sH+FumRDKYWgQgggwMyEiYirqsoFb4zhAIiUJKlScUnXSqk4ZqppGkYgZZRSrm62dtcHeVGkmZWQIPjl/MmTJwZhOBwqpfI8L8vy+OjoV375V5ez+cH+/osvvqhJiQ87OzuL+fxH739w6dKlxlp+xLs7u4SIAk1dPX78+K0vfiFYB1H72jWxJy9YH4wgQliUy9l8lBe/+M2fV8L3P/nk+3/0R9dfetE5u721dXY627q+7h3HOZVxIyRJggQ+dIqP4pPEnJ6eXrl4+Y033rh7JzGp+ezew9dfveWcG62NXn/91SxLvLf5cERE0+VscDKIjwaAq6pazJeffPThnTt3Xnn9xWhYjo+Pf/f3v/Mrv/IrW1uvAhCC6gsFHICZTZz20cmC9E8tPu4eAEPEuq6rqrp3796gGEXoa5gW1lqIfgSeP1q+0IqZXTV67X6XbmZOkrTt7oiIoLJiMBgOm+aoz56jwQXVfhlqFUJwzuV5rpRywROR8DmfN1LBoo3of+7dYR9XQZeIP3dmvbN5zoL3r2Prk6Q/vRUr/Mzd7Cn58W523Cxm8SCQKK0UVrZBVFHTvPWdpKN+WuenW86ycwEgaATvPcXREwqQULfCRQAAgTkE8VEOzjtEjMO+tNaRpCaoQoh0FyAiVG2zW1+TRhEEjG3vGFWtEClOYGQOziqkIs9ZxHufGCMMiMAR5pIWrmuVcpmlHcaC1WKJAaKAuaubZTlTojRSkiQmSxNtAEAPcu+YIfiEiSCEYL0NgQNwg7ae11lmFqdTY4xzTmVap0lkmCmFRVGkeRYXknVO6+CdX7gFhxDFgYpEvfHlGyoxIsHaejwcBgjdTJjnTVXPsWgfvaJIwRERH+WCnw1T+gXTvn8lrn1myYmACCESokALt1AnL6xNm8cYQyptS8nOOYHgnDNKi4hODMVJGUkS02LXWGaOI1wivycWEWKjO7XCLpqZI85BChAxQGBmjn3bIbRXDRKHWUmUc4PzldwFHC33CwCiNel9ef8e6sYxMXMET0Vsh+CqfiAEokKkyEVd3WIruyl2QxIIMAEi6Da0aoEuiX0T1I5DoI6CCQAACs6nUKwCbOfQH66I1/RBZAgBJALahECrRoADe2FEFEAdTxUAuqkVInGPn8ffWidKg4hMZ+VgMECERBN7l6QUOGSGJsNRvHvW2saePD08A0I61JPJRCmdZ4MvvvmioiR4PD6b5pk+Ojo8OjycjNcRFRk9WR/nJldKgSIIDKRtUxuVGMLF9IyINibDuq7Pzs4EhHQGgFVTGjbMHGUgJmtriAjRIwgH8YjAzIFZEW1tbVlrDw/3r46GMWeLNyp27CuUQZ567621M+eVUmmaXrt8LcuyxWKRDhIXfFVVeZ57a5fLZZzrMhgMhkVx+8UXX7x1Sxirqjo6Orp7//6dO++dnE4Hg9Hu3sXNjcnNWz/xjZ/7qb/9n/+Nw4OjP/7jP33nnXce7T+qbQOISZK9+MLLa+N1RKUoQQAOoamsUno8XLfe1Y3XOs/zlJmTNPPeA9BobT3P08Fg4L0/ODio6xIRtzZ3trd2q6r6+M4nJydny6qWs9M0TRHhW7/7u1evX9eGgm1UgonWLoQ8TwE4URSJd57BO6eJlDHWChENCNn5bG1DiaBnkBA0OoGH+wdXrlzJhwPf+JOTs42tvcXspK4bds5ovZgtLlzYWS6qt6/fEsa6rpez+SEdnJwcj4dZCCHPc6M1cFdIin0Ycn5At++4m3rXWSGF2GoZrZbp42FSxSwgcTxu1EpsM6I44paCis83PvR2AjcAtQM5Qis632HkeZrmWaIVokoXdbW9s1mMiuODQ3YehbIkHw3Gm1c3j46O3nvnhzvr2/WyPD1+Csi3br88n89ns9nlK5ec93t7e5sbW7Zpntx/mCq6evVqrFp+9tlni8UCiIo8n9cloEqy3FX1z3zjGycnRzubGxD8cja9ee0y/cI37j18lOe5Mvqzz+6/9NJLtXXL5dIoHXGZpmmEQ1mWgR0pAIAe7hEEBtpY33ry+Omtm9eKYUYKLl7aHQ6Lup7hsqwrC0CvvvrqjRs3ENEzL8rqez9458tvvrG1tSUidV0PByNhHOWZMSkHiOl98CIqEBEoINUGZJ8f+hTAiggRRqnRiHpOJhNU2ns/ngwj5BTr4HXLx/kxxzP+aMUNtdYphEBkepUg6Xq4IrMsPtQQYnqNWmtGiPcOuladViSwW3DR64tIlmXz+TyqHa76D1mhUq0e/Z/359pHS89lDKuBZI8erb4YT37lzT+m12zlnxyH7DEHIg2A3nutiRT6Z7tGo2+AdhIqe+9js0wIvmmaEBxi5PYpJNLaGGVEBLxjCMxEwYPoBlUIgbgViDdpgt4LYa8K0xY6A2OHdffytpFfGZ8FM3PwSBRLwBwkJhZ1XWNCw+FQUGLsFW9k3LSdgYAkSYxK0CAFsbVrqkU4m3nbpGmqNAYvWZ4oMiZRRJSrRGWpQCClrLdk9NqgCsKOw7KuvPUp6Xq+jGk9AASWxJhYvPbWiQ/MvFwsssEAAoMC5xqlVJIk3tsAorXWSndmTFaLhs57Ce3qpw5/jehUfMTPLWjssg2Anmj0TBq6usDi5/TGS7oQGfpMgEOsMBJRNBDWWhFhiJIN7eitGIpBB4S2aCUhEUWWQFfW10qpxGTUcde6c2iHDyGSC16F0F9FFD31woEhTvPtXpc4LY6fnVoBK8O/Yyq1uuCJdAjnGcvq7epVw+D5XA2lE38RbmGw/uS7cPD57Og5iwMrUwHic8EVZeru3NpJZatrdfXow0rqvu0Zc+lZaQRUgoICQAgskTRIpAEkiqp3I5vEulohOltJsACQJEmWKG1SpbUXRgZr56cn06YJijSpNMuKvBiVi7Nrly8kSdq4cHo6nS/mx8cHRTGMXMA4LNJaO8qzPMsePnrU1PWly5eVxjQz3nuBEHybxcVlEzvYuZsdwtKOBvfeIwkqZdJ0e3s7BBe7kpVSVVVaa9NE96mvMWY+n2tCEUk5s42P+kwrXAhh5tnZmTIpItZ1TZaCsFKqaaosyy5d3t3cWgf6UlnWZVndf/Dg44/eO5vNjU53dnauX7/x1/7TX/2rf+UvNbaqm+bB4yePH+3/8IfvfecPvwVAAHpv+8LW1k6S5lHCLcuySDYloixLTk6OlDJ1XX/00UchhFSbwSBfm0yUImPMgwcPlsuqrKs2BPfBBm8UDQaDw/19W9fbu3sffvjheLwmjCbNdJJY60aTcXAuTRLUCjiID01jtVJJmoYQKMsUka0bJQKAZ7NFw368NhGEJEmChzQfhBCSvNjf359Nz9bHk8lo/eHDJ8vyZH1jJ80GpyfTBw8e3B6uDQaDEPzm5mZdW1ypnyhqS5B9zSmuxlWq7vlW7STKaYXZ3KccEhgEWCSwZ+aYwaQpWdvOL46k26IomqZJhhSlBJXGuCRiG1nLmGQ5OToGgLqsKIbg4Emr3a3tpq6997PZbDweF3m+tb5x68bNs6enqUm8dV/50lse8OlnT711Z2dnIbhHDx8+eviEEMGFdG0Sp2gkSfL/+kf/eGN7582vvj2fnokIpdlisbi+s/fm62/cu/fpaFjMzk42NzcvXNgNwU2X5WRtXM2qp5/dCyIuMIPE4oBRGLw7OTm6fPlKjCBjvBHHx3WjSPO7n316Nl1cuLiVZMZznMkZRloTJQC6sbVODYNPkmx6diiMW1tbeZ7HD6yq5t/9u39XVvUf/MEfvPHGLURUyjD7mLL9h4KH6FBU10eIHR1iuVwys4CKOhf7+/u7u7tEFGOh1XhGnjVNvZX7vE3TDFLbZjY/W1+fRLClKIrYLVVVVYhqFiIxHVFKOW4jkiRJZrMZIpJWYUWdSzpeV5zZl6YprhQ7VisgMeCIaGqrUNcFHK27PddfPUe2Vu21dJKb/fXziiBnfNvqN0IXRYkElhB12OOjQhGNFABjAr36JPqTb3+Ifi5qhq10Vqp2/Cc755z3zHHSkE4VoYIkKRJFzkofNadZIRB1/C0ZHYLTqH2n5WFIiXDUtY8DjpJEA1BtnVIKo7oukdZaoiCnOgcPGIGZQaFnDiFkRW6Dj51K7DwIhhCWy+VAZ3EkQZJk3nstMsgL8cEHi4z1shZuBAIRaU2CKrBLsywpEhTMTSYiqGCcD6qmDiFYssu6IpbaNjoxde1JK621USYo8r6J8LjSyfz4WBBCcD5YTQkRAWEQ6Xuw6VxqjgJAZGtmWea9U0o5gSRJoroYc0v76xfDKsyJKzkNd4zD1TUDz7YixiP4WCNmEdE9Q5ZIKWTmljvYtgKcp54KqeeFRHce6UfGpPFjnXPOBu+4qZfRTCdJotMkah135HrlfFjNH7TWHHy0+IC6j5wQESKZjEGEic6Zbdwqp7RTJZhZGY1EmtIYfJxv/vMhkopbuYRWlzDul6gxG+dHIaIwRJSm3xQBJKbsfN5Z+Ty/szdz8aH0hknrjmIf2x5Js7MISpExGgOG0E3G7HdiXB4az6u6ACCEAiCEnhkRFJBCZBBCQA2xul1VFShQiWEHHPdO1PaLlXoR6wM6j4jCFIQ1qTRNtta3onktG2ubxfHR48WifPLkzvraZppno9FkNCycX0tMYa2tlovpceW9DwJlWY5GowuXLo6KfDY9LYpie3MryljEJMp5ThKFiN57a1vJVhHRSocQnHc+tISeZbl89OSJ0qQSE0Css0VRDAYDZ+sQArO33osEAM6KPM/zEKSu6/l8niTGey/B53neR3vIggjWemmbmhtBX5YL770I5nleFEWejieTV9760hen0+nJyWnduI8+fDfOYtrc3MyK/MtvvPL1t7/yl//SX6xKd+/e/ffe/+Du3XvvvftDK5yo9NqN63u7Fwf5MISQZVmSGWvHqMxosj6fz2PTwKKqj45Ozs5ONjc3laYszfPBEBEVYJ7nUXK2KIoXb70Ql9bu5lbTNMGLEFjviHR5NhURPQRXszJap4m1NjVJ4JAmCSKmaWqUjrOfGaFIR5RlZVWlpJM0R8qIqK4XqGlze2M8nBTpIM/zk7OTb//+H69vbCvQF/curE9Gi7I0Co2m+Xy+XC5HRZskRFm7vgEobstYNFnNK2ildN7749WfFWkGz5EaEVnHPs5/JGttcAyIVVVpMyiy/LPPPntt48rR0VFTNhsba+vr66EKNniWtj3CGPNzP/dzo2KQJIllj8DTk1PHQTFlaUqIw8FgbTLJ8/znv/EX/uDb3/43P/yX21tb165evfPxJ/l4eHF358GDB9ZarWltsmZMauumWZQE2DSNDAsROdzfL0bjGzdvHhwdLKoKhVOTHj7Z/6f/9J8ul/M3Xn9VK7xwYffBgwfT2SyyJ/cfH0JHyQghiASNUBTF3t7eYjHz1hmlYxRY13VZlovFIiau88UyL8bTeYOkgjAQOQ5aawE6nS4SnV29enltbWjtkUrS0+nUs3hhZTSAxJT4rbfe+of/8L/9xje+EUk7EJ9IVFYDFlbsnukQoo7SELzHbrB1Lwy5trbW2CAiZVlOJpM+PJCuRQ/aqmWsOZyzY1fT5s60CsTOxy5OylE4BBcVv2JrZTQQ2GlrhWBjzXHVacUPNcb0LHvqCnxZlq0utd4WS6f3+FxctRpC/v882sXdZRLPLe7eWDPz6qd2sRTGQKp/WxfSAQhJm2MzCUXt29UPbH3ACv0//mH0UibiEHGEeUAfbGMr5z3z3AkIq9H2mIiU1v0cce+j1Ij0F0Wrs2hWQukAXic6Xq0KKNK6aj5n4TARoEZQFIBjuFDXdZx0E59OXbq1YphTppQCTSStVGz8xmj00QAggojzXphFuK5KRFzMT9Y3JmvrmXceEW1tiWhoUlFC2QDXN5XRZV0vynnj3bKpyroZjIZt4KtV1PCqbR2HSbfOFRjgvDNDhFEIqe02YKViBB9CFCNmz91JdjXZGHdBR5zqn9Hq/M0uIMPVPYYryFm/itowLkYV2C+Ybg3Hv0KALtZv4zN1Pma0TS0QOmIitLGUirMvKDr1uq6Xy2UIIU1jE74ASATZYqVYRDY3N4OzZ2dntAJix2+J9JMYp55f8rlmnu5f507ULUmS4LhPS/oY9/lyyfmeUl1xr/187z0K9VnjcztOpG3h7gHF5+5/f8/7r8NnJb56f9a/efXRICLDMwTQ1dPupoQhx3ZjpNgjGY3YcwXu89NAQKLIgUZUWmsMQkQEStj74AhxkJuNteHezqZzTgibppkvjubTQx9okG+k6aAsy8FgcPXSHhHNFsvjY48qPLp/Z1CMvvu974vIaDTa3dkzaZKaRCfp+vo6iuIg3jNwQEVaEzP7iK1yQETnPTOnaZplWZx71htk6FhfxiitNbCPNrn7vxMJ3lvfTWaL1lhrjSQgbbdQLGklmerDXGtra2tm8N6vrW2Mh8V4MDRZeu3SBZWYalE+2n/y9OnTP/nO3aqpR6PJzRsvvPbKrdsv3HAsy2W1f/D0/v0HH35859t/8O8EUKPe2tnZ29tb39jwjZ/ZJhKWtaEkLTTS7u62976qqgDimsZaPx6PYymfsqwo8vl8LiJFlr/2yitVVdd1ffj0+PHjx6hoNBo55xazEy+c5YM8z9N2puG4ttZa58paa40a0zRtvItFbOdccNzUS0QTUcMbt25qheW8dI1oSi5cuPav/81vf3zn0wgHiMh4OCzLxWJedhRhF++nVl22EY12VFBpx8gCrDi1fv3jyhbuzU6MtBDbCd2x6c2zY4ZyWSMAC3jv0wRns0Vd2WKYF8PB0dHJYjETEVaYpmlTl8AtkAEAZVm+/NJLC1vLZ/cyb8uqYscQWCONisH9+/d3dna++6d/+u4P3tnb2zPGfPjDH/7FX/3Vi1cuz8vlF157/XR2Gtg1dbm9udPoKph0WOTRy1hrdZKcnJxMz852t7ft/gEGr0362isv37xx7e69e7PF9OnTp0g6OP7gow9vvHSbkfYP93E08N5prXqdwn58XL/Zo4nI83w8HltrX3755Qt7W+8ePp3PygAYvCijjTGNtyL44Qcfex8YQtWUCsE27sMPPmbhS5cupWlSNzNs9Z4CABilW5ZHm75KCCEAg2BfJesfyqpdQsSo2hNjm7qutcmcc6PRSLqcMCaxz1nO/ln38ffnHz3E4qMxZmt7l4iaplImiaYEgM7OTuPoFaWUTpUCFKEIdKlWK/+cYBQ/LvaXxRONDfyr8U0fcvWnvlougf+/D1kFwJ79FX4uV2bmqI20moggKEIM5AR6Dllv6EmAgKIEFwOoVQO/6tJi6BPdP7TKnGwtUxxaTpTqJFepkgGLWOsXdbOY1865EMSQSpIEADQpiwgAidLamPOHhyDd1EhQ1CIEAqEXG5CgorACilLoXNBao6IAQZhD8ECQF+myLH3wKjFKKSBUiZGl7Z+g9xzDr3jOIGKSxHsvvqWAxkBISBfDRCRY75VSiTHEoLXWgiQAjpklSdRoNNaphvFaE7Ysh6dnJ09Pn8Y5M144MAcE3ZF0SIFqJW0VAER1jPbhrrTgxaChf3bOuUQbpVQrhfDjxFRW11L/2+dihZXwa9VcntMyBFpyhzoXqgAA4HbkOCKiEEo3q3S11RwIOXDwQSmVJG1LAUPsbYS+xD+ZTCaKnHNRuiUEVgrKsow4RNw7iAgiSqlER0GHwMwcB07AOUaL2IZuMYaRjtslQIDKO05TwyGIwtg1jETY0UulA4Cly9e7Rb7KyyQA7F9RSjtnmZkEADDA+Y6L8yta+mK8w8wsQIp6Fmof0AmAXmmpCcJAKAgMopBWoS/ozhbpc4Yittf0VdCWbEaRF6dRILCt7GAwQBYFGARAULr+BgZEQMF2EFmE5LXWWZZA8LVzITARlYt5pO4po4ssyfNNTWQ9e8/enzGXh4dPHjz4UVnWg+H4xo1bm1vbo+F6Zd2gSD7++M6ndz97/4fvHhw9FR8uXLp8/frNy5cvX7x4WWm9ubHhvK+bsqoqADbGRLJHVdWB3WQ0vHT5AiI2TXN8eBi7QGJ5BbuFRyBFURBRXdcinOdZlqVKqaZpvPfW1iGEJFmPiZkwtAKDKADsHAAAUVwRiIhZos1gWC7LSGekpZLALH48Gm5tvR4j7LIs7969++EnH7333mI8Wmuc3dzcvnZ57603b5v016qqefDw8YcffvzRJ3c+/PDj7//gzwRQKX3j+s3xeJznOXs3HORpmoREa6PqOL8VVVmWd+Zzrck3dnd3d219wsxPj4+eHOxXVb1YLFomLsFiPo1BbaSl23JZL+bOuVk+UMZkWdGEsHAuy7I0TbVWZV0LQq6TgKwVMINzjhRrrQllMBik60PxZJbpq69/sW4WJKQUVNVyOBzHGt/ly5eLohA/66wKAAALI0KctcwiPgTomtd7+wPPetxVMxVNTZt4ADpm55z3PoiPHVrL+RJIMUNdN3XjACCO5dja2mqa6vjsVBDEhyQyNzznef6P//7ff/nN19c3JuON9bqs5tVyOBwKCbBoUnVdn55MhXF+eb63t/f4wcPZ6dn/8n/199766lfeff+9D771/jvvvf/Kq69evHTFN/bj7/7ZhVsvVMvleDiYTqe2LkOQ7e3tWy/d3tzcLOtlU5d+Ptcm+U/+yn+0trb26PHjta3tz54cfut3fw90muX58fHpvKxERGkkAvYWWGKsXNc1EY3H46grmWWFtdYolQ6H0UIORsVsNrPWCpB1AZQ2JvWetU5OTk4ePXqCgERACoFhMBj89M/97H/z3/yj4XBotG4sBg7OuY3NtZdu3RpPhoEdMysEIgwRs4gIQz+O6Nmkjkj3DL0Qwvr6+mg0Oj4+FmjZF9baq1evRpYzEfVp4XPBzGrMvRqWxUMnSRKrD31zHyK+9NJL0+m8qqokadWnhDFIQDyf5BitYQS9erpMK5Uegoj005171OE/fE7t66uJ+H8oIPv85/zYd/ZBUuTW/NjPaTPslel70Cb7UbL/Gc3i/mPj4buxNjEwYGYGZmYdR3e3uuQgEIgDIALQcDjMskIPJqshfwiBV6TJO0/fEZsAGKHXahIEimTq4KWv8hDGpAERg7Sq7kTEwNGzaqORCAi99+xD35d3fj87ooYAxDA/apqDImLN7KMiqHOhKIo8GxCRBiMxaQ5MqNI0CSEowQRNYG+QUOE4HyyX88o1pJTWurE2LlzUarV7sY+6ACI78jxujiRC6AbAJ4kBAEKy1kbR/37F/tgF0E3tPD+eK1XjM+oJ7c1vU5n4HDj0H4gdp6pdKIhqZf1w14gOKzsZUSky/VKP59D1oChrbaTVRwp/RDWKYhhzHmstxBzRu5iBEZExSdxfXhiAQgiK9Go+EKuv2JXII4LYp2sR8IgZlzEGV+BAWHEV3dm27MM+DOq9CCJGOurq7lg1XrCyhfHZEsxz+xfkHJhsaQDPsPc60CtKrYrQ+YTj7kF3n9V/b+fSIA6C9zY0TbO2tsYsAAhwbjHiPo8pJUZlXEUQWgRRRCjGzSJxUri14q2LGINSKgSHCKNBUWQDgKH3XC5ra/2dT9798APOi3FRDC9dvvL6a7fe+uJrZWNns9mD+w/v33949+MPf/d3fuuFF14cj9beeOON67duioTT4yPnbTEYTMZjQOYQvHNltcjzvKqquq7jyinL8vj4eHtrQ0S6aRAYEWKtNXNAkshQHAwGALBcLnvLrLCtdEeyrzGqaZq4AWPaTESxjL6+vh4tSV3XdaiPnx495cOdnZ3oO0fDwZe++MYrr75UVRURPXry5JNPPr1z570//M7T4Xiyubl98cLlb37zJ7/xcz/pWaZn80f7Bz96/4N333/vvffuNLZRpK5cunrp8uUsy5RSu1tr08W8wLYbfblcgqKHTx7ff/QA4hQLoNFopLQ2SZIkyXA4JCJFuLGxgYLRXllrhfH09HRZVXVZxlQ/UZoV1jVnRVqWNSklAElqnAuIWhtyzjobjEma2iGqLB+MJ5OqnAVhCTyarDXORTyiaZrjo9PJKKaLbTGXmQGE4pYTZmaCZ9CUfiP0e+e5LdOuc4DIGBFBIFRgvGNrnfVhPBo1TjSlaZqLKAJlIrtOQlEUp9MzFLi4d2Fh68o2Wuvbb701zBPvPQqMBoPhcMggJ0enaZomSdIvhrKq7t+/nyi9vb394MGDxWLxm//2t6umLtJsuVgQ4K/88l/60bWbv/1P/zmwXNzdGRbF/v7jo9OTq5cvX750df/gsTbmL/z8N4+Pj/9H//FfvXn96h//8R9/8PFHt1973bEM9vYyMsvlMsvyLM3m83lRFEZTCM57f3h4uLm2nuWJ996YtKqqOJlXay0MQICxD6ZRO5sbQFjZplw2zrbDfMmopglN0wiI0cTeaYXW2unsNIDT2M5/A2QfXJIkm5ubg8EAQESCIGDHF4pPMPAzHYH9o+ljGGZumkZrfeHChUExbJzXWltr9/f3AcB7b9LUe4/qGbS+lYHomLO9uettaVsPiYamqqoIrlprtU6yrHjw4JGIxMGKKgJAFCmt1J9cCGE4HDbOImIUmOi3MXZS+D0lBc7nVrbLcaW+IP3rq6v286HVavz43PtXLXtvgruq3LlLaD1NK1q8ekcCQIQN4iRViTMc+7Bs1X2GEBLqHS20F8gi0mMnoLUOAj5YjAR5VMDiXEiNhRXAL4a20lasIhAdtyWIgBeJ0peCICKMwFFlgMOqjwfAiKWjSm2wFnwEVzmAMYZB4vowxiytTUg778UIEhpSBBhhmSj35b1dXSiIyIDCsQ8NtW5niMbymQJM8lwkis+CiATnUVGqtLclBjZIdRABp0EMQqZN8CW1HQwUu+cQQSLrqH0oJILSdXYH5xFYKaWIFGqAKKDVCpEE6YGOFfQFgOLPMSP5D0Rp8WkSrUZgkS7m+zd3hTziTmM96rucB+siXjiEoJGIFAKGOPkRUQiDSIyTAJjbywRmEAnE7ZkzMzsGImBArRBbGRdETNPUe7+YzSPCwczeRzI5aq2VilMblIiARKKkNE3jfcRlo7mXEMRa71yIAVNjK++9QBo7CRQpAmT23eOGOKmpX5wxgIN2PDDqflV0MHYMgPDZrK7/Vb8xnwuneickIkgKu1zCdACwPPs5qwF0bwmeeabcfR0CIGCXshCppnEAqJSOlhbaFbEaJsZZsbHYioJKgJxnxxIEY/LmfWywIAAKrUSfRGbebHqaJEms2aWpNlqbZK2ubDbIQnCffvJDAAjCWifDwfjl29fe/uqby0VTVbUwPj05/fjjH52eHozH4+2dHSRz/+HDphzng0Gqk/Fw0jQVO+ebJjNGioKZ00RH64rdQJGytrF0ozXFHeodW2eZGuwahphZhCEEBCBCYCEAbUjrQehabquqCj6UroydiYg4Ho9ji8zu7nYIQWtClOVyzgxKYZZlCkE4XL6498rtF6uqOjw8qq1dLMq79z549PDxZDK5ceuFjY2Noth98/Vbi+XPLxbl2dns7qef/dmffe9P/vD3GYCBrly+vrG5JYImS621gqyMJq0ikd9bp3UCAKenp0SUBW68G4/H4+FgOp+xD8NiMByPB4NBWZbNQTWfTkMIo8k4Do+qD8s8HzQ2I9TgQCkDHEhYEbimEZEkSZmBjBYRUlTZKivyANKUzbKqmHl7e9so/Vu/9Vuv3Fh7+yu3q+VSAseB8G1RIprsOE2Yuxbf7v8/Rui4W7KAzKHl4VhrQxCttUJyIRAoDWpAuXPsLI8mo9m8fvRwvyiKyLXf3NwsiuL9D360v78/3lxv6ppDKIpCRMqyFPZlWY7W11BR0zRb6xsAoJRZX9t89OTAWvutb30LAV6//crZfPYb/+Kff+MXf/Eb3/jZs9n84YPHOjEff/Dh/qPHv/Irf/n126/9+q//etM0ick2N7fPTqabO9tbW1vXb1x97/33R4PBxZ3tt7/4xXKx/N/+V//Vi1/5SllXdV3qNFdKe8fj4SRJ9HAybsolM4OEs9mpD20eTqRSkzx5+Lgpm9Oj42GeGWOiH6jL5eVL2+sba1mWLhaL2awUNsJAqEH8+vr45Zdf+vYffptai8pN01y5eLFIs6iwGNjH3izvbd2UANzxgGP5okubBbBr5zp/agAAoE3slQFSirQKDUemXoapMWYyGm+sre9e2Ov3IDyXEz4Ldq7morDCuNBlWUb97uh6RWQymdR1PZ1Oo2iQiET5nKjPlKZtmi4dQdiAgcgRZo4t+vfv37969Wo/PqU/cIUID+d6WSgdfvDcScOzLrO34KsR2HPv71/py8mI2M3+eR4QXv0KEQEIAigCEsOzjt/zefQORKJcdTTlcZSKavX0qMcRiciIQkKtVd34YB13ZbU4dQGA4gAYpbXqRjG3W7MjxEi3XxkBESMCpIQRMRYfA7QVaACIYI1SSqcJs7PeEZGXQEq5EHSSpGnKtTjvOGUvHgOiYHTVIQTuoitkiWAnACgk0i3Jrq7LpmmGoyLWcYhICEUgOB/neDCzIhKA1CSLsky14cGgCU1wFhE9O2BWK8pYRBSLeYKKAdsCVfdcYo+tola7pLurarVgD8/TiZ5ZMKthxDOA349hDkEfWWKkAgFAWImS2+V3/uH9n4pIJ7F4vtSfjf770IGZfQghSxLuRCi6cEQREQdx7OOLEXnSWjODUYo5RDFYRgghlFXTNE2aJCKCQMYYIm2MMYYQsW5cv6FCCIvFIgQXoei47+Iujncy8gfaJfSsRMtzYOHqjeo3xWqw9WOBtNV995wZgnOGgGA3c4l6oHFFRak9pc9FdbJySqtfSl265TynSa7IBG/PLVJ8T3sJKC0mhq7tfUmVPk+6YlwYWcPYlSn7e6t1EoOztvsMoalKo3WWEDBORltlWc7n88m4sME+evDJQ0FFxiR5lhUXttdfvPHNwWg4m82FYD6fP3l0/4++/ZnnsLeze+HSxZs3b7QXC1DXtbV2OCyikiIAONc452zTRGZbXYsxKklMnhdFUUQBlDShiIDG50VEIi3IDQC2FQxCpXE0GsXOgLiRY4NO7IuKXj8qdsZV1DRhWc4RcTAYKIKmLhXhpQt7nkOSJG+8drss69PT0+PT06ODR08ODoNnIDUcji9euLy7ufaNn/5JL/DkycGDh0/e+9GHP/rgo9lsEUSu37w5GAysb9bW1uJ4iWCyuLYHw7G11ntrm+bTTz/13q+NR1mSxmHnjbVR/iYfFPGObWxsZFmWJBt1bRHFuca5kGWFIBqNeZKUpVjvEZUwo0ZEqZtFlucuxAK1ytKsrktEiNDRcDgMIcSpG6vuo88W6FnppeeOVTMlHcGUAQjBh9BYG4IYlQERB2aJ02fJ2qZu3HxeHZ9MH+7vL2fLPE2d48ePHx8cHPzGb/zGMC8e3X9QBccIeZKD0nmeIKimaZpluagr0mo5W+Z5Xj18OBgOX3311flykadZpg0Jbm1u3nrlFRGp69oo2txaZ+YiN//+X/2b99/90d/6W3/7b/6N/+z3v/2t2WxWN+XBwcFXv/pVZv71X//1a9ev/5t/9a93Nrf2tvd+7/d+D7wfDAZEhEmitObgE2Myk1hvp9NpUWTWO6WTqKk2Go2qesk+FEWxv3/4b//tv33zzTdv3rzJPGNpm/1DCMaoK1cv7D9+9OjhQblsIp+1quuRHhKElBAkaKKqdqPJoDmdNbYG7ImkHLvaO5vWdkuInBtxZlZaf/5JQTcrvbdpVVWFwEVRALdIc9M0ERUzaQoAQbqqncCqWNIzi+RzOJE2xiRJIh2NSWtt0sQFH4G+PvjoCwR9RSP2NkN0z4AooJAC4tnZ2a1bscnzfHjIeTDxudrEqu3+/G+fW7urb149fuz7oXMGGIMkQIyjghE6Yk+/VZ4VPeoSGoCoVC4tTySGI0SgnqGKA0aMpN2Ibd8lkSABKGGJXYe19c51Pk9F3S/w1okAkSJSnhkQYtHw/OQBCBUjkJxLJCAq7IQYoosKnqMsZmDxwhQZe1o71yRpQlpVTRPNcVTEjg6YAqGgt+20A4UUggNkBCQAFBVjPhDxwceCpVEq1QZYEqNYxAsnSeIFRKRpbOSMW2d1boCwdpYVeuHaO0o1Gc3iYuEDz3FHRgDulO8Q+0FYSERFUdimCiF479O07VNbCYbiEuLVZ7eyJJ5ZIc+tpf8vrxMRS1BKSbfs+29kFiLiSDfq0FNjjAKFqADPiUdRuarbAhxjrxb5Q7bBxj9EEg7RxwdkVRQjz6GrupJ350JBq+ZAa60Tk6RaAoQQmtrWdR3xOaUMAGiT9rco3jStE61JIHSBYCc/iBCEkZ8JX3ClIhlrbUQECD1Ssho/RSRvVYnyuUBNVuiYn7/tErmTdC40g31RmBAAgc9JaQjPbHPopiXAaocECEo7i1sIbLBJngQIAQJGQT0AYCGibto3gQgxAggDCAkjM6IXLxAAARUIMmkESKLnPL9LKgkhEJnATABGm+BckRbMLAHE+9p7TQpYFMHQmCJRgYEZnLVnx7MPDt8ty2pnd3dzc3tjaz1P9Ve+8saXvvDqg0dPPnjv/Y8/mn//e39eFMXu7u7aaFyWpYhsbq5vb29nWeacq8sSAPI8b8kDIkppZnHOGhNlb4FIIUaRu17do80NmDkBTYQ2OPGASqMEFh8YkyQZZQNtqCzLpmmcbx7vPz48PHz77beVpjRJIkZb1zUynh6d1nW9trbGzIIYAzhjzO721oXdHSKaL0vb+EVVTqez+5/drapmvDbZ3trdWhtcvvjGz/3sTyyr+uDp8f0Hjz+9c//DDz9+9OSJIhWYd/YuTMbrg8HAmLQLCtmQ2ZhsVNWyrhpmni3mwjCcjDNFPoRU4+bmJgAMh8PhcKi1KtIcCeqyevz4iXdcNVXpGpOlgEohesfGpEAoEpLMNL6SIEonSNp5joPomPnGjRsXL16MxQ/ocwZmRBIRFiH48SalezHSGM6HaMl5icYDcqwnVFUFRgEpBnDWhRCWpSUyaVZUTTksJr/3e7/38ad3/uA7f/zgwb0Xbt/+5je/+f6P7nz7939v79YNrVQIYVjkiCgsaZqujSdJls0W88Dh+Pj4ZDpb29rUSWqMCQICNBgN4kYry/Ls7Oy3/tk/y7d3f+3Xfm17e3M0GH/00Sd//7/+3/+FX/5VItrd3d1/8ihJksFg8OEHH56cnNy8dUtE3v7KVwd5obXeuXHDN7ZY02JrNAmKJIrY2aauWKC2LkkHjQ9RQNEkqm6krus0TS5cuJDn+SuvvJZlmSJKlF4sFkdHR6NhIlcvJIkO7LMsVypVio0xZSXGmOs3LrO4uOw1qWBdohULKIXONSistZLA3jUQvELBdjIgx/0bS/CrKHj/sFqb1vErYrJxcHDw9PBkMBgQoFJqa2tra2uDQZLEoFJVVWmtoedq96aJSLiftIatqWunEAsA6MFg0CpABhdJBnfu3Pn000/Hw1FZtnWimChHrMs5OxgMjDGz2Sx2qfShj7X26OR4fX09mobevq/mr/3K6y0yc2Tr4urFf/7oXSCvqAb0Nn3V3Mt5UHV+T9s4CVqmUf8d3blF/xGhjvZ0+oRmFTl75pRIoOsZZOZ2igsLxMjOCypPRFHL2NaNIBmdxknkEpkWSIioSPWhLVF8DftmCugcW7xFLfDDwswWoJMwabXBQCRwABECZAjeNbEmHblTEEfrBBdPNTjGANB3yQqG4KCV44zEaVCAsWQWa8ox526qWimlDSkiYIDAOnYpgkRTpbWOJDMWIVJIZL1TQtZaHdk2HeNN4sMHxUEYQQgiusDMQZgBs3wIACCB2YdAzCgiaZrysxTX/v74NguJr5w/rOhsYCUi7/78x3AH+/X53IoVEa27osOzq1qj7v/Zr2TsBp4CQF/VhW58db934tj4GFfbjunFzERKay3smX1kVcc8IWrvxXZoUpQkidFxDmCc5SxVVdnZInYtxP1bFEVRFM41WiXesXBUU25JQs45k7XAWLwKrXXUyIlpaHymCqWnFsDnwiBE6a9o9Q48t0NXNt3q354PN4tQ3OrtDdLyMxg61Plzz2vFzz3zMzNb7/JBweem9hn4TUSQhUGQhRFQAbOweBFCksDn3L74kbwibSMiq4mEt857RiERj4iZSRy4+C15kkLgsqyEovY9F/kYkC+pTWaYzpdPDx/NFyfQDb/aWl/7xs/91IULl+7d/2w2m7GX+Xx+dnr89Ojo3md07dq1CxcupGm6WCwWi8Xly5dHo1Gapv25VVUFQAAUOySicejz4R54DiFoHZdHTkTWWqUo09mK8FI6GAym06nWusjzK1euIOJsNgvep2m6t3tRq+To9KhxjojOZrNE69likadpkiQo4poGgBGVUUSp2dy6pK/f+MqXvjSfz//oT//0zp33z6ZzERmMxoJqb+/CF9946a0vfMGkRVVVp6enn9y5+8knn3z24OHdTz/w3hf5aG/v4ubmJqMg4tpkgh3iGEKI8oGn0zM/nVdVleeD5XI5n88BQHzIsgyEvfdV1ZyenlZNqZQSUtrkzjLpZDweowJtUCGBRg6MqEWkKLJqOU3i+B9rnWmZIcA9p4Vih3TUV/QQ8FmCV78OVw1Lv3Sp5QqrJEsby/PlXJtkOFlrGrZBqsref3Q4X5aPvv29H/7wzvrGxnA4HAwG/8V/8T+7cv1alqW/93u/71zzV/+T//T7H7ynErNYLOq6zkdDHyTVRkTiYBLnloPBYH17p7LNfLk4m50C49bG+nx2tj4c33rpRWMMs3/9a187PZ0C4YNHj0+nZy/dvm2S7Dvf+c7Lr7w0Ho9PT47efvttY8z7P3o3L4YhhCTNv/zlrz55cuC9//JXv/r+J59MUMAHTeC939nZ9d4H7xNtCEkZE4nLeZZ77+u6RsSyrIhoOBxrrSNbKR6PHz/e211HRAJEoCcHTx/cfzQZ4WKxyPPc26aqlix+NBqEEEhAEQb28bYmSWKdZrYiLa6kVQLQ8itCCJ13QEQEgQiY9Y+mfTqIsfXVOTcYRMSJiIgAF4tFWZbj8Xg0GW9vb8dk48faNEQMIAJAgLETShAIEBVBYEHQeZGW5UIkxIgqBJlM1kUCgmhNIYQ4aIfZI2LT1ESKWZrGZlkuCAzgmQkghDBbLKLwYLTRvRQFrswAlhVpgL6IGcVL49WuXkP/zu6uCTwbYElb/numLvmcUV5lmyml2iwZARG4BTEwsr5AhAilgzSkJQ5RvJfxExGRlALEOLxTQELwXTdcK/SvtQ42dGVpr0Q5a8u60kmaZGkr503I7FlYGR0rtsxMRgX2kccTrygGW/F+KqUJ22YC6sTJWLpO0iCIyjtHhrx451xUnxdCQDREwTtRWhOhMRQVgIh8462zIqJBElLBh7jsQjtyQZgDBsXMCuKAVa+pnbgMyMwBBDiEJDHReZtUA4C1ViEF54fFyCueN8vBYNA0tQIEDojincO+8YcIAhqlGSiEQIYkQJIkg8HotS986b13f6Al+HpJwBKcSRKglh4Uo10iYlTMHFXr2s446S0jAQJHjfuVQaK0Inwa13b8gYhiOtvDMACAJEarzukGEdGoWl16QAmMiIy93CIECABACli8IhNpB6QAWYA9QSQdKmHxAIiECkGEsK3Fe+9RKWMMAMXgADwKYhBJO228eJO7jZaCoLUWlSZlkGRzMIjsce/Ye++t89Y1qhIRG1gi7YtAUAQRumHwGWlm6VS+FKEGAkFARZpAJAQWItIqIaIll+xZGR1F6USCBE9KAcYZl89I8T0X4EZrEG+XAmRhpTUJ1HU9mUxipawvFks3bENrFTgwPBtWd6aOpZ3ezSIAhEiBWRnT1BaFUpNFSUtjdGwVCsKkSAA4Zl+EzMIgJGSURkYFChlJiFQ8W+pTuHjyiTbWWgAhABTmEKcmC4AojSIS2LF4pVR8skqpLMts8CKCKFW9tI2vmxKRhgOttc6yNNpAEHLO1VX16cena2sbuR6vb25HIcajk+OyLOu6vnvnk+VyGQnLD+8/MEqrtbWsyInIM2dFUdf1YJAnSas/0sumhxCYQ5/3I6BWKkvTpmlie4GISJbdvXtXRC5dujyZTG5dv3F2dmbIJEYBkNZJ7D775M5nW1tbV65cmaxvLOcLkybj4WhHuFqWx6cnKBwF98fjcbTAIbh2PIbGy5cvvfzybREYDoc+yMOHD+/e/ez+3bvMsrW7s7W1tbNdXLn8pV/45tvLqnn69Pjxk4MPPvj4+997dzY9yvMiz/NBnm/v7qZpyoLGmNrZ5XJ58/ot53m5nNe1Lavm6OnZcDgMzgGAt40xpnF+bW1tKCPnmrQYbGxsTMbrtXXTs9lsuaiWNuJ2IEIYAIC91wrq+mxtlAAQoXJsQVgBKEAkwwCGVIDgvQ8ice4qRki+2wjeuy78jbc8rigk1BKAlA4hNE2tlAJAETw6mv3Tf/5b8zIA0NHx6WI2v/3KK3/zf/Kfv/Hmm/mgLT3P5/P/0//x/3B8Ov2f/5f/i/3Dp//9v/jnL3/xzSLLlVKLqh7m2aKqKusE2QU/GBXz5TJLqEjyJjSCTKBYPKI6Pj3aP7Dj8ThNzc7e7vbuTt00geHBw/0HDw6ICIgGxejTT+/d+fTjr3/tJyeTifPeeT4+nV+6em2ytvGn3/1jlWbXbtx875NPmQFQexuMNmle6DRxi3lukjRNrbU4HAEQCFlrsywbjUaLxSLLihCCa+zc2RCCCA/zwQs3b16/fjXLE0SldTKfLz/65JNrF9e9Z4WBUkLiAAwUvVVb6WIA1KpxXhntmjoSBqKmjw8cmJVCIOzJ8G3+LX1NKXZCxofEsQCslYoToglRAi+qqmmcUurevfv5oFhb28iyrGWJrcwecM7Ffj8GEUAi5Mi5jCURAFLEInq5XCJSkiRN0ywW5WAwyLKsaargLIsn0hFhzvNUJCRJ4n0oy1IpNZ1Oa9tcuXIlerLYFby9vaW1jvK4MbrqA6/ebfSO7dwod2DAqs+DZ7NkfLZ48VyMCSv4RIcotDWj0Im7wkpm3Kfpn//M57KWHh3p/9/Gc90bOqDieQ3YWI5URBHsiK8Hz7pzEpHa0jSNtTYrcq11Oye4zUp1/409iBhCECUCDKABkDkwCynQmkCAKA416lV8LBF4EQ5Bx95GpZqmiY30mrS3VgSNMVFzvwU2Os3x2MmIiMytzFsfviilBAIH1jrKdZJCYpFOur0damniaEvyIjHGIK01BG+rOhKHgUgIiTQChiBxDrULgViU0Vona9vbr33hi59++F4wWnxJgMycpgZVXM49QNWWkwCeqbr3YXr//9V1hW2/xXng3i+kyPBARGpHB9IKZvbMJMfnllP3vFb17Rg6jO25sAFbuaBn0gmRQKRlBa/VSqVpyj6IO2e7k7T18hgRBg8hBPbAbOMQtCLP0zQl1LGraFmVymtExMg1BBQUFAb2RDrq8znn4gkSERIJBAHgEHpxPYjNleJRDMWpXADS0VcRkNvRSbR6f/qt3QO6vbEjIuDVa29vWp+YtR2yhNg3VazsL3kWSOiPPshGpaz1/Z/gCiFhtfc2zicA6ubed7u4p0zFj+17A3FFNEdEovxLP4CGOlt3btCoDfdX8VeIzHeLzgdEEOEQvCZCAKVQqwQkiNB8doKIx099XddkdJqmG5cvKqVu3brBDGdnZ2VZHh+d/P7vf2u5XF66dOnCpYubO9s7m1t5GjMiIlLQtat3NUomojjgJRJVo97B06OjyWSitU5SjYjL5fKzz+5tbm5euHDRGKMUDsfjRMekGnZ29pIku3fv3gcffLC9vR1pmohYluXa2tpoNPDeb29vZ0kKABGDEZEk0WW5aJpmMhltbm7G8RuIpAjWxpMQggv+3v3P7nz8vpAkSaaUytJiMBq/dOvKF99842//Z39j//Do/t17j/afiA+PDx6enc2SNDUm3dzeYs9No+fz+cnx2fr6OqCYNKmqRiMpjcPhWEQ8V2W5WF9fVwono+H6+iTYZlBkCsejYX52NhMRADw9OcyyTClSCo3mg4PH1Ry8tyIFdI1WkSZIRnPXyxzB0XOufZd+9CX7tq7S2R8ACoETrRk5iHgfmLlZVPOakVIX6ul0efvVNxez2e7u7vbubj4oENGx+/C9D/83f+/v/e2/83f+zv/0L+Z58eDRQ1CoiLxz5xxZAURRWoNWLBKE5/N5kqZRL32YFzEcT9M0IWWtffr06d27dwVBq2S8vrG9uysCVVXt7e0B4ebm5r/+1x99/Ws/6Zz7u3/37z55cvAbv/nbf/2v/3Uv/MHHH43W19Y3NyAmuz6wD5SY2jaRu1ItlkWajYdD732a5ovFfGNtbIyK8LyeJJubm8vlcjwp4n6Ksg7e2xD8ZH3Nf3pPQO3sXXz7a2+maQpcC4SIKmVZISLMXqn2nhPqPM/PprPeWQ8GA601c0NEALHxvCWEISLBMzEAdlWvLmhpbU6MHxpbL5dVhOe5o+f22/zc6PU1NxJsYXuAjuG0+n/d1F4pWi5Pl8vl5ubmZDIpy4UxqqltpOiUZdk0bjgsQjcZIwYHTdMYratlmabpcr5AgZ2tbWett04pZevmnHoPiAIICPRM/22E8gSEn+VE9z/0b14NgPqjr7T/2HDtuQ/8/Ief/19gZT/8fwj7z2Dbkuw8EFtrZeZ2x5/r7/PlbVd3VzuggW42DA0IEmhSQ4WGHIgckgoOKUZIPzjUiFSMghoOh0YiJ6gYSaMRh0NgSGA4NGiYJoFGg2jvu6u6utyrelXP33f9sdtk5lr6kXvve+6rpnSi4sWte8/ZZ5vMZb71rW81dxBr/lzrKtpXbWQJNZGra5MqmG8RYV+TrkQkFNAMRVEUMYhHkqbPIgTIAsIgqCgYc2oG74RiAa5UuFpoMDxsClLfwRAoCIXPUJpx1ocz9sykDFclasUowhzkmDxI60tEhBQJhZiyaSdsJBwDBBaKzr4eQtWGKWfRRF1ua+MPAU11IQka8hCr+kIiE5elbQU/6xWPgM34SyKKdWR05CyDgp2dC76qbl3/gXPWeQve60giQ7Cq+nv2WDn0PDZqLtj81+KjoWQQttwPqTkCAKAgnWu5aMOvNr9ZXSfvXXUUWIUSwpU63EFAboQwVt7LELo9RAB8EKjTWlsvzNJAroKISZIgAXjXksCIQiQvAGCMJiLPBADGxCLCzk8nc611v9/XUVSennY6XWavFAI78RxuEjfk9SiKmL02xnsPJE5cMN/hyYa2VlWPQw1hKQMyiOaQzisNTCIeMcyCCKcOCCDhQoTrcZAAgYEBAiDMctZ8sLpV61AUzkrAwsBeFD28f1c/+N7dGtJf0opBEOpe26ArtrIq6hc3Yn7B2gbASeRsvFWL5UsjIFJfCADz2WQzPOP8hfXplUZtyHlBPqO4aY3GGOdyQjJKB6mzdic6Z53zAJAkaRTHzlWo0Lnq8ODBbDZDom63n6bpcNi/dOHij//Yx6uqunXn9jvvvHPjxtuE2Ov1hsPh2tooVDOiKBkMBkVZ7u3dX5bF7u5ulKbMPlKqskVRFNPp1LOdzk7jOC4rWubzXr9TOSckx5OT09PTOI7TLI5MZIwpS7tYLNZG452t7Rs3bpyengqCQjBGq0525dLFfr9PRGWVZ3EWVDMQ0bM1xkymcyKKomg2OUnTzmQxKws7nU7fffcmI+zs7Fy+eKHXyUxivOOqqo6PTw8e7E2n8yjOrly6mkTx008/+vQzjyVxfHx6VBTF/v7+bLr41ne/986NW57h8uVr6xtbikgTRVEkEqVpGobzIAqBTE5PDvb3Op1sPpveuXu7k2YBjipLCyxa6+Vymabpm6++PF9Me9300WsXX3z/0xd31q0rrEPPVoForZ0HBahQCaMgKDynYsAcyCznWTFISCR15lATiPM8r2wRzL4xxlZVHMePPPLIG7/9hUuXrimlFovFYrF45513rj36SBRFn/+9f/d/+6/+zv/p//w3nnnmmePTSeBjDAYDADZGGU3i/Nb2xvxkkud51u/N8qUwO+eWi2Wn243TZH19vVgsAeDk5CSO4/XhCBEHg0GSJMu8nC0X9+7du5G/OxyOhsNhv99HxNls9thjj62tbYRqaafT6ff7SaR/7wu/+2/+zW8OR2s//vs+uTYYloslONvL0jwv0zRh9pbdcDTIOmlRFL1OV2uazWY3b97c3d0OUCiSYuY8z7d31osir6rC2jSKdOOhXBRrkOjwYGJ0HCYFD8zaclGmceftt9558f1P9/vEaCtnlYb79+/PZjOjNIgNqUVDxca2dtE03DTIDtVBCpxvuG6jrnZfO+d6vZ7W2npnrR0MBsaY0to2l2sihx8Sz/3Ql0Yw+TLPi+Xm1kav1wuE+qoqtNYhiQfkfr/frqo8L6Io8t6HpyUiTT9Oty01tnXGpnGyBlR0ZKBps2qqD+0Mh2DCzvSvH4q9Vg3u6gXIymvV/rYfaZXHHzrayq6AH/r75uvooQPWP7AghVl70iCKHISL2rPCZooOgxARkPKBENzAHoQ1ZlZVFSOEQbwCELDDEL+GYCh0NnnvSREIAYtnDlMdBYMnQPagiYTCwqIweFhrjVoBsON6djiRCCFbVkqhQZA60ldKS8BbVwbyrF6yNHihtV7p0NZrAxdHVvCM4HrDitRa6+ZeNriROBYQYg/MEGY1CEDDfxLvvY50mqaWmYSchYsXrpzcv3u4mAMQqMZZUh1IMTMDAgoCrzrIh8/87HGfrat2E7YRACIq1Yw/RCQ868/9ocuv/d8W/oQVd97Clquh3upxpF6WuHrY9qyaj7NzLpQ4caUPBlQQIMhFkFq1G4DQzxdEj733NuRnOiqt1zrw/Cl0GyMINlFIWZZEOoqiKIrIhAUgCogdK62RAhbYbrd6aD0aRFaIgqQIUYRABFmwHuNd3/V2R7SXKLUex8O9OC1I0y6as83bpEMP3cb2oT9088NjXSwWg8EgCNvCyujJVQAez8Pn7Rto9W43KdBD1gnOx3yr5/ZQQLn6Cr8MYjFBHDH8PhQH28JrgLerqtKRQZKqKogojlOATlGVlV0uFrOqqtj78Xi8sbHx9FOPPfvME8vl8vj4+Pj4+PDw8Ac/uBOYf5ubmxcuXEo72Xg8jvJlFEVaG++RgAEjZu52uwF1CLt/OOwjoq+nJFUAXJalc3axWKyNN4bDtNNJ87xExIsXL165ciW0lbz00ksAELQk5/O5cy7ZPBs575wNnZWhS7osS62jyWSyt7c3my7u3LltTEQCmztby8VclpBl2c721hOPPR4lqbX+6PDk9u07x7PjxXS2LItRf2CSSCNd2N2Ir1380Isv5GW1/+D4zbfeeeutG7du3wXAfr+/ubWj9UaWpYhCgEkUD4dDZ0tBmE0mSuP+3oNev1OVbr6YivNHRwe7u7vro+zTP/fTu9vb25vjK5d3o1iBWFctnLMgYuLIey9AAsRh9nyoYftarnl1BUrDt5GGZLzqrZxzRVlaV5LW4CX0GKkoCUu3KIrbt2+D8wcHBy+88MJsNvtv/7t/9NZbb/2jf/yL/X5/Op1aa+Mkq5tVraszBxTxrtNJ49iI1okk8+UCAJIkCY8my7JI6TzPGTHoCzrn4thUziZJwkhEOaEW4Rs33kbPm5ubR73ucDi+/ubb9+7dO5mcpmna6/Vu3bp1fHRw+cLFTn/A1iVRTFoBUYgEREQZrRotfqM0sJRliSQAMJmcHBwcbG9vs4UbN27M59PT09OiKIxRRLUY9cnJibCL43i5KF5+6dX/8D/4A3Ecs6/xp7zMw7UAFMFaOg8P9u+Hn6MoCsX0brebpFFZ5SI+kLWDEWg0B+gh89u6s/Y3Ab+01pZFFUTGldHSTIEMpOpze/+h6OWHIfThpZ3jsrRra+u97qAowmgFNZuVCNzpZEVRhu3kvXfeWmtD05w0s25Ci1a320WEELqJCLIYo511WmuPZ2sxjMAFFkAJ1EUnjoiUbsKU89P3Vs1WfUfeEwo8dNdW/8rNDESomdeglG6Uu394KVMkIBFnlOq2krL6YBBRmAPDHZCCUpxwDRUACJAIMzZD6SF0wBJxIyO0aqCdsyoyhGSt5UbqsI1ZpVEaC5MpbOWJKCZjjAl6GkzMHNp1wbFHhUopQBQE55wy2jOLeKS6ABT2hjGxDtwX78kDABApx2292K7k6FpEgvQOS1UrkK0gFs450jr0hhKRJrUqhSIgzOwhUJ+x9J60iZI4VHlU85QbdxiqIaCUduxJ6cqJMrrT7d+57ZJIt2elQvEOkMEDNujp+WXTrH6G0AVXV8p+SBTVnCq3+UB4+AGQaAuUAODbRQKi5KyyWUclTQTQem4+vzjbxRxOtin2tUuUvRet2ruBbSxinQv0zTY4Dptco3beSV2HDdeIzFzaioi8CDtXVE6ArINev+9dpRQSSGErtpWHwCKWcNBgzoxSzlmlUZFhBI2a2TGzxzq01doEAorSJIK8mtsEDTghEQZBVECo6/yyuQ1nl48QhEsYAyjLgYvVxmENhkkAEgSf2+fV3ur2N9gwNYNuQFgnpFWcJqvVgfZZtEHe6r6u4eyVHlhqeinOGgJYQmMKNmVlWukxap/a6mHb72V2iKruXCY0Rq2KqqyahbAplNGosNvtZFk6mc+qqhLx8/k0CK4aEw/6Xe+9teX9O7fv37mNiEEZdTzod5J4Z2erKIqiKMoqv379jd6g/+yzz6dpenBwwAi9Xk8THB8f08rwA60jETFxGvq5mHm5LBCVc+7OnTtJkqytrS3zuda600mdc0kSAUCel8x88eLl5XKJqLyX0WitKJaTyYTZEbBRSMrkea4ICAXEp0nEzop3KJyl8TNPP9nrDaIomi8WsTYqUlcuX1ksFvPZrAvEzLs7W5cvXbDezSan1rv7d++dTE6BHbDs3XuQJNnW5s5HP/Tc5Utbj13b3d65VBTl/QcH33vp+1/+0u8B4Pb29s72hU7aZQGbezSogKq8ZFfduXlw+dKFnWuXrly6cOnSTprFaZpsba4rhS63yKUrxHMlXIWJpJXziEjKCIC1Xql6mg17D1APuWsCaG5MJa6YCkRUguCZq6qy1jrvgNlQFMdxvrSz+TwIQkVR5EXSTnLtkUeOjo7+7t/9vz797HP/l7/5N1FoulgyUuig8d4f3Lo1HI2CJJgx8d7eXi/rAMDbb7+9c+nCdD5fFPlwtFZU5WQyKYpi2OsrpYC89/7111/vdrtxHJsoColqp9NxbrLM55cuX7iye3EwGNy9eedb3/rOm93raZqaOCLShT25efNmvpz3+30VBpM4m6TxoD+YHB72xuMo0s5Vp9OTk8lxv99FlECFLMtyPpmurw9feeWV733ve4tpvr29/au/9pnLVy78zB/8A0ojGRKSUGEjouFobTo5DMw559hWjlA75wjgfS88NxgMppNSWIECRPjIRz48HPZPT/aRmJlv3bp15+6t6XTa7RnrqoCYcO3v6mjioU0HTWkuYG+qGaIYIkJUOjJ1FBslSZJloYjfOoJVc1SbF/j3vnRV2n6/jwjWlUmSlGU5mSzzvNxYHwZv3esOmLkocudcp5s2CEoYcCFFUQSpN0QMI9kRUZ/VqiQQV8N5tIzawH4NK9F7T0o95A5XLVd7Rx76efUN7b1rXeAqCtUerf3s6hc99ADaGwf14OE2camNfu0RhRGhltprKsRaa1fZhw7oIVD+A/1HtXaZmcNMG2MMKgUAqkmv28cPK+x7QQyDaJx1JbBzLsgWkVHaUKh45nnhmKMoDjcWFTkJLlMz+HaJOOcoIfECcNZxFs6q9T3tSTZeh9tCZJIk1uV+ZeqU956ERBM1HJe6AmtLrKUrSCkAIhCVxFmn0yNtkCoiaoRlhVqSkSIEJcLOcaQNs+R5KQLMDAyeWTyoetI2ICgF5EGovoIV7OQ92G+7bOAsEqqdPawod4qICirGZ9BdfcAWgzkXUJyPBtoFJtIOtXoYfJUGdG3XVWhd1OYsSvP1ABxqF3OAQsPacL5yzpmAPgYzLwxCjQKnLooijpOjk4nSUV5W/+pf//pzzz2/tjbudbN+v59lSdofIAmzY+ettQpBKSSiw8PD6XSiNBqlO9mwl3XSNIVaed4jQq1w10h6gveAGEYesQvTPAQ8ALIICjBIyIXCe6BZa/XMhrZI3TyaszCr2Xe4+kDDnTkjeDW4l1IK8QyDBABu9JxbYB7Om0hYeYLtMmjhrrY/oF1X4c6HeaAPmazGXtcHb8mmbfTWPuU2yAuv2navGB+lVBzHYaJOELUOlxlY4YjIRz7gVWVZLpd1z0ekNQBkaZYk0Xw+m8/nWbdDCOItEfS7HRMnxpg8XwBQ1klms9nb199wzs3n862trdFotL6+HjjdRVHExgS2vnOsFIpAmmYAEMdxqOe6ZvRk2P6BYZNl2XQ6DXl4yPSstUQQDJdnXxRFq6wb5NC8k42NDUS8e/fuO++8naYdRDTGJCZ5cO8+s5yenm7tXMiy7OTo2ForCEeH+178o9ce+eCLLwS/mCTJ22/d2Lt//wu/930RtI4nkRmurT/79GNPPfHoH/v0Hzk6Orl79+7h4fE7198SkSxJs142HHQvXXpyvDYc9npxHGepiROTJJHzpXh3fLTXSdJ8kdsiibOECAAFkfK8jOPYaAMkYZKg9x5RQHzIWlvjCY0+eeDUY0P5DemWNMtDKeXkrNdKR6aazvI8H4/Ha2uj8frm9vrWyenp//u/+3/9Z3/9P//QRz46nc6lqSwBQFVVeZ5DkmitDSkFGEVR6Z2IWPa7u7uVtQCQZZlSCpwNLL2g6JbqKMuyUX9wsL/f6XSyTuftd28WRdHtdre3tzc3N5ezeZBPOzk56fcGvU4XEY+PTi5dunQ8Of63//aza+NxHBsRtM4FdbQnH39ib//B/f0HIZfr9Xoba+udNBNmBahJEeo4hlu37lz4yIcvXbqErK5fv/4TP/ET7//A87YsWFye5yFaCFjPDIooSgKo770HEVuWtigBIDRLIqraS8oZs9w5lkgODg5OTk6UIiQR8CsDY8989OpGDj8TUWina98dDG+322VAW9XjL2ezGTdtxe0TD3s5fJCwHtAs7wnOwktvbG8sFjPvrXNYVcXJyYSZ19fX2UNVVnGUlmU5nc6TJGrNXMCNQwQWhImJKFLKWhsp3V5/sHpatHgfPFhVVUG6abVCBO+JflYt70M27qH/lZWctTVwq/FW/cAgyN48jCvWVhVbVn5QWnjo+DUatnqSRBRkXMKXhzYJaGqdzGytExEVGY3EtatAz15ErXLq64vStfRl1ERCiMgIjBDYNrBSPguiWZp0EHrw3jvvq6rqZV3v2QlbZ5XXRMqLaK0rz8oohWR9LQkRx1gXfx2jJ6M1IAXQjohUGOwDUX3/SQIjSVzDzUfUWjuPq/e5fRbUdPWLZ2Dx1rKuQXgE8J41aUZSOlKND+f6SQkze29XASRAhai0ptI6bYyQC1LRShmQZrBMg2n90LUhIkHVCc4UOh9ecohIgbnJoWQpAEBBf0MJnplTD+dXqQcROGvCWD2HsyML4HsWc9iqGKYriHj27Z2s+5vlbLYEAAWYGYN4/hmyHQrBlplBUVhlWA/VIe/ZmGhZFIgYx/Eyt6Xld27fu3lnP3xLp5uujYaj8WBtOOx2u2nSjYyKFOXF/O7tPWbX62dg5Oh4/3SCGilJo16vF8eGRZWVC7mjQgQiZPQi7ETQG61AGESw6R0Keg6CAkhKKQEGDF2qUKtfNB0bHsKwAyYiDxjCW2gDoDqOB1hR94AzgEFJPaS1ptIjka+qJEmUMc45IJL6bjMi4tlsorPADuBsJulDvHtc6RwCaoe9Cjc6b2er4ofVIgMO6pgD8MXN4gwOuKoqrbHul2wcdmP3Ocs6WpuqqlpbF6pIcRIZtdrAy2VZzmbT0EOXZWknTb24NF0LQIIQlkX1YO/eYDDY2ty5duUyM9y9e3c6nZ6enh482K+qajQaiWCvN/Dej/pRkiRlWXU6nePjU+fcI488siyKd9+5FdSFptPD27dv53k+Go2Cssnm5magCh0dHeV5XlWFQkQkY7T3rioKX1XIDFGUz+dKqfXRyFoXQpDd7c1Hr12bTuYn05n3/u3rb8dxPF7fyLLu8cHxMlkeHh46XwHRoNfp93skkC/mPkzQUnTt6pVHLl959pnnEdWbb74FAPPF8uU3fiCM61ubo/Fofe0xo7T71Me89zeuvzWZz9i6K5c387z0rop7naqwZVFIrxdFBhjASb6wJFRV1WQy6XY7OtYgBKDyZUWp8t4qJFII7AU52A1kIUQBCE26gQaKLEEsg70XZlJBqdFXZZkXpfc+tBhX3oWYYzhUi8VrWZYtl8t4sfjq9a9+6atf+t/+pb/8qU/+vpPTSZUXWmvxvu2RWi6X47W1ICITFkkURZP5DBXpJPUiURL7qgTk+Xw6nc7H4/FoNCIiqVy/39/d2n7kkUcQcW9vbzgcpmna7Xa1psnx0XQ6vXzpwiuvvOKsf+SRx/I8Pzg4+NjHPvbhj3zo69/6+mvf+sanPvWpRx99dLHIf/XXfy3Lsv5g0On1H3vsic3tXa11J+3Smjq4v7dYLNqNsL29HWnq9TqPP/74+vqmr7wx5uLFixBgc2WiKMnzMk07RCqvCscAohVFVVV1OqkrT70PXAKO49h7C8CI+O1vf1spCJN7RCTQdXZ3d3/6p39qOBwu8v2z7CiQhcQhoiaz6i9aaxOivXb/BiMTGWW0yVITLEOSZFpHebkkotBNGaZ3NAb//9ck63Amej6fVnYZGdA6Pjw8ns9nG+s73oljN5/Ptre35/NpWZadThpFUbjOoihCbp0kSZIkAfAM9aZgUILl8t4HKZqQ+oTft5KbsELMUur8DJPzfr39zaqVbL1g+0NrkduPt7ChNPw75lAnebhhClfwMwhB2ErEKo17X43qnPcE9ahaaSqn0mSx7QNjrE05IDnPCIEuhmFuSThvdkHlgUKIDQBlWeo4IqKWmIWIIFJVlQu8ePSIqIxOkkQDF0VRs1tChZE5Dp8FAUTvBBWLiGP21krNG+WIiJocnUF0oz0mK9gbEYUGnzCEAZoJDwH6cs6GTB6brB1XSMfhfwO856yECDkovlhrfRDbPM+LAgAihaCcAAsS1rSkTjc7eBA2T6jrtSykkEQ2TPvG57WrYmVH/f+fJdq4t7CwYPXc6u8SeQ9f/+GPr371e7+rXRhE+gzXbBLfIOvcLjNqmP7eh/q1AqG2qFHPkQ9xIwARGUXsoSgq7zk0MyqlSCtlIlCKVBwnfSDFgiCQV3B37+Sd2/eROYnN2miwNhru7mw6Xz14cLK+MVIqdb4ykVII3vvZcpbnC6VQ6+CVrYh0Oh2tI23QIAGgBw6aNYHmp86lGaHA6tptHi7WewvNcNX2Vq9uybP7X/9U7/QW8PcrinThZgatO2YuigKbjS/n84QWhWrNURMM1WginsfX2/BLKSV4Vsdspx3Ae8zUQxEYNto3WEef4XvOddjw2eDOs+pzcCTMHJkYCdhLEFa01pJAKCmEIdxBb897HyS5SYH3XhujVJYkETNH/S57YWdvvnuDmQeDQZJkFy7sPHLtSmVtWRT7Bwdlae/fu4OoojgGBuudQs3M/e5gMc/3Dg6riovCnZ4ezufzQBIPmvjz+fzk5ITZJUnivZ3NplEUWVcplRhjgt0L9LJwMwMzOo7jUC7v9/udTqfXHfT7iweHB6PR6N1330VUo/F6mqY3btwQ8Hme9/vd9WuXh8OhdeViNjudTgfDXqQ1EWkT97uZtf7Rq1eMMTqOnnryMUF4+50b0+nRZHJird3dvdjpdJ5//vHJbPrma9dv3XwbgO7eue+s7ff7RsdpFj969dra2ihOjFZKaXSuSju9Rb6MJSpLG65lNl0457I0TpJIKOSuiIiBciNNZ0a7Wz3UHGhm1gZEJAw+UcpU3okXBjEKkciYiKEYDodHk739/Zu37tx79MojP/mpn9rb23v11Vd7vf5oNJjNFtiwa3TwqoBZmgbEsSwQSZZFGVYFYFi0tbDLY489QUS+sicnJwbIGHPjxo3Nzc1g0rudfl4sbt26tb+/x676uZ/7ufFwDCKg6Pj4mEgfHZ1cunRFa/32228/8+EP/9qv/9rP/tGf397Zcd7P8+X9/QPrPRE9/vjjaZrmi0WSJI898qjROgAbBwcH/X4/IGpZ1gWAyekMQWmtl4scqd5E3tV1oaKqlNJhRgMRlFWuNIr45XJpKGY+0wjc3tplB7U/QnTOJjEFbDJAWUoRs3jvawGv9wjirEYgTfLjCWtDvVzk+bJAikLl0TnXOassNx6z+XhdjZCWj/TDX7ooZ51OusxPb945BIBLVy5WuZyenmZZtrG1zcx5XnY6nfCkSZ0B7LPZLIwrD3TRljQqIoEQJs2c1xBbLJfLJIoSEy3LokU+gj3y3rbOpgWHQlcqrjBqw3bVWiutw21tkSFo6HMIoBqT2h6/SbJDxvnwWJU2vqkN7rkxBWdeYbWmWdc+QAiCa+T2DYpIRIJAc+Wd8y78RpiVUlVRQ5rUSL+0Jl5rbZ2TBo4O5xYUWQMnI+i11lNZgACInSwWC0YBABd0jUSjoqIoUuoQKnAQWJlnjkcpDeCcRdICUFOzSWmtMdQrdd2PQ41SgFaGmT1C6HsP8LhYx96HYNpaq5ppNtxocIRHYK0FjUH0tSpzrXVVeUEorQsBWxCVFpFa4wqJ+WwDeBASMRpFvIhHEqUQgL0PYS4rjLCeRyBY30zlPUONMrPWOugXa62dc4389xk1kEL3bbNn8EyyxFHjxQPuVc/aVtQuSAWoAMMUyLCKeEWCRJMKHQFnkX0D1YgIs9OBOHVWFGsqsIFGGrpVtJaVRILOE4OCuUCscwBlIlv5sixF6uLXsiisZxVlgGo4HCVpD1BX3iEiIPuqipNuGife272D0/3D0x+8+maWmo999COdbrxYzIxKWQqlMUoQgCk8UAXTxRQZj8p8cqpCoTNJkjhOkyz1zGG91Wa0TR5qgWKUhsUlAt450hSWqLVWIyHXn5JVQKnhXXFQiTsP5hNprYlBRBgVUWMoQudBt9Oz1gdRgOYjYUQyISAACdcTQsOj9xJmO+rgKX0zcbx9TK0daM4hMAJ5tXVXRECpIJKrlfK1IBhro8CLiERhlwmRiWZ2weyslTRNkURpdM5ZV8ZxXJaUZVkSZ86y0TEAeG9JSAEJqsDrCMUsZiFA51zdPCJsl44FBQgRi6Jo72So1ERaeS/T0+MTf8AAmijJsvFg/Mi1KwBUVRWhXhb5m69f39t/0Ov0+oOB0xHH8ag/HA3HImJ01O30Nrc2ADiIdq6tjZxzk+nJfDFlZucrLUSIYa42EaVpGuqqRBTHsdY6lJlARITLovTWKRPFsVlfHweHMpvNjk8Oy7LMi0UURePxeHNzXUQWi0Wn01Ea0zRdzHONp845caiUStPOeDSYTqdvvv5Wt9sdjEaba8MPvPBcmiVlUU2n86qq8sXSOXfl8uVBf/jss88yw517d1999dV+d/C+9z331ltv/svP/Iunnnpqd2szjuMA7A0Go2ASkcXmTtgZoxeLHBFJRcLCIoQEQO3QVaVU0IgKbks8g1AQ87XWelfDfiEktd6xYxbRWgAglHeHw+H7P/ihXtqdTKdRrEX8jRtv53k+Hq8NBoMkTVErEez3+6G2SKSrqtJxVFkHpCvnLu7uTJeLw+MjEbl48WKn2z0+Pr5z576vLDPvrG+fnp6+++67RLS1tdXr9WzhEUUB+so++8zTu9s7b7359uuvv37t6mMiCEJXrl37wpe/9PYrL20/ciVJoj/683/s3v0Hv/uFLypjgEVnmWbu9/vHxye22EuTmJ3v9XqR1p/97GdHo5Gw63RTa+3W1hYzKzLDtXUdJ1m373xxfHKcJEmaZEBKUAuaWMdsc0IlIlmWKYWeYDqbfP3rX28MOARK2XgwwtZxCHMDJFv2lj0zAwoiahUB1NorAPUM69XcrLWuSin2ZyyCKIo2NjaYKY5j5/1isWjf1k4oqtk43rcYRGOjzqZUrX6dFrDTWR7F+L4Xnlobb335S19bG21fHF4MDRFxHI/H4+l02u12WVzA0wI/ICyRwDtrNvY5dCpcfBRFRDSbzQIY1rY9noU7K8jT6lnKeYH7Ni/0gVi7EqWeAQZEbZ9jfRrw8OuhrBp+GEqB2MwdWjlO6/AwOHAR9h4FABjpDFNp01YiQkZoGutAqHH/IaAMjlYUIsVxcLTUpIPOOSdMRKE9PqS/GJxxXUARAK+UIiQE8VBPZY+jSJRY67z3TBwOq7UmFBIigKqqwAlqFJHZbE6WtFICLooi3Yz8a+9PDSgKtk9H60irCNsUA89ALzk/ymb1rsZxPC9yrUz4a+CUhAxYaWqh0/c8KwJgFhciDK0JxEo9kUmU0sGpYVPuRCQUMURh4YVAxzlntKYVNpi0BWUREY+og3Qt1oW/Vc8qsgJm1JH36r5qYrW2FNV+pE0M2rX60AJrF7ZSShoyEwRKnyI+65DygHWSoBRqpdtQILDTKEx5R2BgIggAcxBB8CLMbF1Q7/PWozGRFepkWYDudacDnpm9QhUl4r31Tiqvb90/uHTpgtIdAdfJOiYiAglzUSBfGoWdLokPkxtccI15sQAAUkbrKIwWDU2UiBgwMK4XBjIzAbIIMCil3IqSVntjvfdam7bY3YJftCIZ2H6KGbgeT3S2Gtt3totTzlP02v9FrGfOhhsbxBFCXhFge3wvDrfyvy2+Lg3nI/zcnmdNgW1bMbwPHrdFR3T9ilYtTLs2fLOcamsJChAINWIT1zYqNijgRVQtGRPmH3hjjAiGufLNiTlhBwDCyOIIMY4irbWt8jt3byJiFMXKGAWqOxi+8Pyz78PnAMg5N51ODw7u3777IK9sL+uM1tcG3V6ohyBKHMdFUThfbWxsjMdjRJzP55PJ5Pjg0Hu/vr4WouEsywCgKIqQsadp6n2oBHCA9Fg8aW2M2traGI1Gd+/cOz49iSI9Gg2cc2VZTianeb7c2toqyxJKQMJerxeuLoqjBw8eHB+9qbWeTCabm5tVVSzn006SsvfL+aKqbDfr6P7gVJ9GUfTUE08Oh2OtzHQ6vXTp0nK5HI1Gzzz39HPPPZNkySvff+kHbx7v7++fHB1vbW09+djjo9FobTweD4ZJkikkzxYxyvMyiiJmcWGmKpCIKAStIyLyXoiC3huJtDNYwyAvSuOsrKxGVbDEceytT+KUiIyJT09PT05OnnjiqeVyebx/tLm1dfnyxatXr17YvlAUxZ37965ff3Myne1cvHD16iOzyRQRGyhEmDk0PgdkdHtz07GPs5SU+s53vuO9T5MEEceDYVhvOzs78/l8Op1GUcQOsiwxxjzz9JMf/OAHi3xx8+bNy5cvLxYLAIpM0u12na+uPPVUkkZ5UTz9zHPLslrMZzvXrlbWuTwHRUmSVEW5ubuWRdFkMpmcnCqj3//+952cnExOj994443rAo9cvfZObJ5+6llmOjk5WSwWaRYrpUWgKCoE0jpylqvKLZdFURTOBxxBaRP34/gDH3jxrXduGRNXlVNKOcfO8fnAQBHpJoklZ0EA2SNi8GtKxLO4Nk5qNx02fTbcyNCUZRkQnOl0SqT39vayTsdau7W7g+eJBGdFmRVTv8qgaH8I36s3dzafe+7pwTDNi3mk4j/wB3+qKnExL19/9TUWl21tdPudYNbDN7T6+r6WYlcSEKYVD7TqaQIculwu4zgOo+1WqWrB1rDUx8GVF5yPrhoXu9JeDoArgWRrDcMPddtgM1S3/b33Aamqbw4AAfhVL9veNVkxr+1XM7MiwsCCDx08tYc9V3KqHyEgNwd0zlkWpdOgB9FKwiCiLau002FmREqSmJnjONHetzhKoNGwr2dgExEpHc4BgEtbeeuwIeZXVUWKtNZOwuTv4FScYNB2YmYfRZFd2HBwDwBI1lqqhVUBlRJpkBUAanjEba7Whl8iLFJn/KE9ExEVETbgpYgQovdntGVUhESC4IVbhKx9OnA+Gg5n4NlWVcHMVLf0MrN4QGYWdAp07VqaaCecGgAJnxseADWvq15W0HQhYMP4F/EiiCxEInX85KVplqwjgNXF3awrWd2BbfsCBh7AuZX80EKtP9hEWuFdSqkgdVuDrIgt7wcAQhhERCDsvXcCLAzCIggsgRIHIEmSlNYWZQ4AWmuAsiztbL70ILKEOI7TNBYRZXQSZWxdp9cty1JEEPjduw9ee+uGsE/TNIn0xd2dYb+bpsn21nA8XlMkUaRtmVdVUZWF9aJr7N0BkPe+nC6mfBoCQSKKtAm9eFpFSARKaTTWO28dKRUQMI0aDWIatiEppcV58V7q0t5qfPxejUAgonqQY8PiV0qVhQWh1trAeVbDuTUWBlQE5oD8kFcLaoaPcOD8hSSteZ6I2MCo3ITLihQqTSHzDg9d8ExxPqDmGimNYkSFLK6eu1CTwACAUAO0Qp5BCo6JCEFhPREThMFzuCgljKSjSEc6WhaVJaPRszFJs51FUYAYPZICpZ2rhCthNhpNHQKKq3Ig8+D+LaNMb9An1ACwNups76w/+fST09k8Xyzv3r/3zW+8RFoFgbHRKEyizNjy0fHJ7du3L1++ur21G6no9PT48PDIuQci0uv1AmUljk14WIvFEhHTNBWGJElIqdJZcOy9VYp2dre3d7dDDh+iyZPTo9dff/3B/v1r164ppRiIGebF8uTkJNL6ZHL82us/mM1mP/ZjnxiOBiqMcBDK5zmCiuO4zPPD2cw3DBnnXJJmg9FQBHu93nK5PDw+ypL0Yz/6I889/8z9B3vdbrZcLr/77e+99uprR/tHg17/4u5ulmVro/Ha2mhtY9zr9U5OF0kSK5U4x6GzWJRi541BVEYQTRx774EIMZSGIOQhIU8WEGOMc16REZGQBi8Wi+FwWBTFu+++K5bHa2v7+/sb+/uxMVrrK1cuXby4Wzn/8iuv/NIv/RNt4n6/j1qRwtlsJk7iJAZFUWSLogij6Pbv753OpovFfG1tzVprlF4ul1ki3SyBNBt0ewEiitP4+PDw8PDw4z/6kWF/8MrL33v6iSdv3rx9/eCdJ598Juv0JpPJ/r0HJiJtzO54/Lf/y78JZbXx5BN5UWbdnvVc5kVRuQgp0oYti5PxYHhwfLS+vv7UU0+VxbLKl3v3Hty4cWN/78Fv/sZvxXH6gQ984Fvf+s72zvrOzla/35/PiuPJlJQ5Pj45OTxCNAJ8+dJFEUyTTkGsVKrjhBmEUQTZB2tAdNaejPV4R5GArDfbv4arQxdEEEsOVLDWzoc9HZhhRKiUCo6scjah1Dl3+fJF731pK+eqdgboqv3nRlVVzhcfVyOZ8Bv9uc997nRy8JM/9Yne+vjeW+/sPv7UG9/6wT/6R//kiceeHA77h4fS6abLRR5F0dr6KPB80zS9fv36fD4PEH04HK90nBFRzQgGAICgrhZEOOg8b6M9oTYePLNxjQlrw5TWza9eQPuSFYZH+xVB6aI9+ENvXnWr7z3gmXVeiQk46E2EQptIiNFkRZmt1jFfwU4UBt9wRvBqLxmghivqci1zoA0Gdt2qp1Eq6CqJ1MR/EQlT2X2oj8RxQkQMaKvKohsARFEExdmygPP9jJqoboPwPoyprKpKCBVpanBD1cyXlBXyHNYK5tAu2fbV+jki8iscMuecNhF7KytcmfZJBaHahlkV8EKq3VwDD4QvNQTM7KxFIiFZ/Suz896HIT/SIsnnsYT3tgAjomensJYwrmNRhQrPSGy4glTBeRj5DOJ6KN1Z+Xc1oF/9eSUf8PyeTKP9IiLQmpSi0Cwt4IXrNRZ4gUqZEG4iolI64BDOeURUmuI4Zqy8t6X1ZWWt9SaJvYSymhDWOkNIZFCLUkZFgHxhbR0RvbdlnrOVW3ePX3/j3bLM08Ts7m5fu3KxP+gOet1Od21tIwHv8mKW58v5fG6rqixLk5jMdBHRV7as8jzPT6eTEIdpraMoSaIYFRGgoYhIZXFCAiH4i6Io6DqGgnvIUtgLr4Cych6RCul+0BRcvXurZfeHtvPqD+1zwYZ7QI2qanitvl9WILTwahFfbFC6kFpCw21dXQ9hR3jvw+QJbFBPrfVDkjvttg29nOcv/CznxHYILAAAKKVCp7MxJkmyolhmWcZcB5YAQKjD8KvghCiMIFMowt6zd7X4CwAUZRnHKREW+VyAyrJ8sG+NMUAmiqKNjbXdi88/89Q1QLVcLhd5USzLV155JXxvgDnfeOP6tWtXkkivr68bY+7fvx8qhsEXBnAUAAaDQZ7n1tpIG+c5z5dpGiulSld2soHW7uj4tKzyMBNJRMqyvHDhQqOhHzFAkiRHR/lsNkuiKIqip59+en9/v9PppGkKgqfTWRoTCDnvlFJFUUVJEkVR0ON499Y7znKv1zcmJqJOt9vr9ZbLhdZ6bWPdxJGQXIgvbG/vvvjii6fHk/37e2++/kbW7R6fnty5d9e5ioy+ePHi1tZGkiSbm+smyry3pGNgLqsyRHhxHEfaoCKtYiJlK+99URbWO0FF1nvn2bFTRnvrJKpJ0t77OE4V87yYv/rqq1u7W5vb24Neb1kUSZJMZtMHDw4ms5kXLhZTZoaKBZWIoAAROeuUUQRqOV90sywM+Tk4PgqSBUTaW1fwkp3rdfqdTieUIFzlO53OlcsXT04mX/rCF4jo/S986Pbtu9vb26fTk5u3bgFAt5cZozc2tvYPH+hOt7Pdnc/nDGLiJEmSNE7EeSc8mUwMkCbMsgwPDxezuVaYRiZN00ceubq5ubmYzavKPXhw8OUvf/n69Tf6gyyEaEVe3bp5Z3//cHNzPFqn6cmU2W1srTvhvLDOozYxCwkoHUVAWmtdy3Q3lSIRUYpChG2MMcbYikMfOzM2QYtHRIRz+fOZZcAAw7P3XgQDv2I4HBbL8vT0NOzcURh172s9+dXN28YAqzt31QqFP+n3v/BBQpzNJtPZ4cbOxhsvfXu8tvEX/9Kf//a3vuO9PTrePz5BRLLWLstFt9uNtFksFlVVXbhwIY7jOI69d8zsEESksvbsShQh4jLPGSTLUmxqNNBASu251jmk5zDdNvyAoWvKeVKKvQ+cjFUf1pqzNm5rzWWoHQBAoGSgOiPYBmONuIJihKZfJABstHzOXsHun6WfDS7EtmJxKKAUhpnlCMjM0BS2uAmzwsWZSBFoQFVVVcosyM45hHqsugJwgTomKsjGBLoGNnWHltWudQ1EAYAItNcbbNNstlgsFtmwg42eXgjOtNZe2FrrrQ2Md2OifDZTXisiCQOVSRVVBcpzo/lpDCGiB8/MOrBl2XNziwTqAaJtyHV2u4jiKCr2l1rrhbVaa1s71ISBrSuRagdJGpUysLJ+V5esgDjnYqWYIY7jfidmFGd9cCMtJhFeSoFCIz4AjoKIoDDgx2EyUvtIoZ6qLgC19+JzTXBhhZzFmi0gsbremuXk270kcvYtbTi1Giis7k9fS6szs3N8NgV55TSgqYHXpbSWAeY5dOTRShpztv4JEAWsrRghjmMnNQR89+5951V30AfEKIqKooqiuk+ZjE5MZNlr9MYopCpwWnWcmY4era2hiPNVVVWLxewr3/r+crnI4mTQ725vb26sjcbjUa8/yvpD74qxAXZFVVVlWYASE6c6Ema2tixtlZcFLOYoAISRNsroOEqzrBswKq0jpQyAb6pmdXTIwqQQGokjboj29SOQetM1MRAgKBAK9SzwDJ6xbkdqohCBmmJIZw+r3bZtQBMohLyiyksr1fk2ojp70FAnFU3o/J7xRE1cyCv9QM26QiIAVO0RAJG0qiUFV6xly15tv5qaACwMlQvd+DWSjQoUlTawchlIEBQqCTeTUUCAvSCiIq3jupc2ANJVVQTSZJIkZTF3zo2GW5Wz89nB6fEDRjCkesNRJ+sOR5uxSR5//NGqcnv3H2gdra/TbLr42pe/ojTGcXz16tVAnxoOh8vlcrFY5KUty+PYGBExxmRZxoDzycSys7Z0Tk5OThSdDodDpTFQxJbLeafTGY+HoZYigkWxBICqmAP7frd7586dK5ev7WxfHK9trq9vDodDEdFJapQirZl5Nps9ODzI83xjY6M/HGRZlqYpghKEsqxms9nNW+/cu2+cs/1+v9NNp9OpiF9bW4vj5KmnnkJQ3/rmNw+Oj37iUz9x6eKutfb27dv39/beeuutb337u3Ec7+5ur2+MN9c3ut0syzKFAEDaxNPZAkQ8cxLHcWyINCmDSoCUCFhrZ4tFmqbeWiAKNcTAjUPEyWRSLssw+PxLX/qStX6xWBwcHOwfHswWi50Lu6PR2BjjLTMIgEVgVxXCmXeV1gmypDqpxGqi0WAYx3GoU1dFoZC891VVocBysTg9PQ1DGNfHa88/8+z169e/8Du//cf+xJ9YLpd37tzp9AbLouh008rawXB4eHRw4913rC1NHM0WiyiJFakyX2ZZZrRmEC16Pp9fu3J5OV845x599Nqg20MWa0vC6OT0dHI6WxuPP/WpT3U6g8cff/z7P3j58cevvfrqq1/44hffefvWxz/+I1//5rf63XR3Z0uBWpbzk9Pje/cfvP99T0dJxzpa5uJAdftjpbRSJoTyDOC8D2oPzCwI1rEx5sxNhG6vgJYhAknTtUW1r0YMaX94Z5iWUVZViKVOTk7yxVIr1e0NWhMUtrkNc5/P92Cdi+fOp3DhpZfL4srVR7vdblHOfvd3P+89p0+mV554KsuS27dvX7t6+a3rNx48OPCerbWnp6f9bu/OnTtVVQ2Hw7t373a73RBmtlECNQp+4VWWZb/fV430bX0Tzpuw1ZNbhXxWg606G34oRD3vsLmRgYWA/TRgvZz3r0QEcCaKCA/jXg/DYG2iGUCvulDkvfNWPMex0aE1ybP3vhGPwjZuExFhcexBIwKIZyKS8zqQgQvimANDIgCebYm2RfWYuWYQ++BrBYCjJCIy1tqyLBeLReDYERG7VRFwQEAVWk0JlVJkwTnnLRutfZCRJGrJLtA0jrUFR2nyfjkvZbT6w0OPpgYvxXnvldG2EhFRWjXCP7CauAMACNXxN5xBAVprEV4ul/miMAhKIxDFJgo4s0JCVQOKUut2nhNVWgUwsK4NnXuyQY0WaxqirCzCswXTOtr21f7mIXTkoVrkanTYfqT9YLuuYEXWdXXNQ1MehQCsN8z98EVUpxC1RI2IDyyoxiVTGDFUVZVxrnL2+698fzK379x8t9PrXbp0aTDsj0aD4bAvIlEUFVgREXPe6XTyqkzTFDxDXhJRZFSSJEQKTbSxc3Fr+2IgL1e2uHnn4JXX30KWTifLOkkcq8sXNrc2x8Ph2CTOOxdFGkJnbpkH4xfmLldVtawsF6Wh6vj4FBGNMYE/FH6AFvQlMoQAYCsXirCra6zdlas1OwQM6HsgcKzyvdq1He4S48M3/Nx6PG9Aw/+sPs3V59Xu0xBCr27e9m1EhCxaa+d8u2DapUJELCsDGOqrO+siWl0k59bwCqIcVJ3CtYc9qHUUuEeIAILMAoRYj7JFAB34js0RWCnTtOVyGKXH7Jyr8jw/OTkKTNKkEwMhO5lPj4/2H6A2gawzGIwuXd6NoqTX6+XLYrzWv3v3/u3bt7/xjW8cHx+naXrp0qXRaNTv9yvnZrPZhZ2dxWKhtb5//75zbmNjzSRxVbkweGmRL5gZqM4kT06OXnjhhU4nVUotlwUREWlmVxTV+vp6rzeYz5bj8ThNs83NbWYurY3jOARhURRpQ71ebzgce+Fut4uI1to8zyvriWixWO7s7GRZprVOkvj4+PjmzZsicnBw4P0bu7u7w+FQo3n6mWcef+IJEJ/bKo7j9e2t4fra7qWLL3zwxZe+9/LtO7dev/7Wa6/9YG04+tCHP7izszMa9Pv9/tbGRlmW4B0LzuZLZiAU78T7kojYgzgJ6J2OEiSez/O18cbxtCzLcjAYmJFxzuV5Pp/P5/Oljky33xusjUOebG1NbwrIgiFlrfWVVYAgkmhTeRewN1TUSTOVYVEUWRR767IsI6KiqMqy1GOlI3PpwsXd3d3FYnF4eLi5u3v79t3bt+5PJhNUBhU574fDoUniZVGMBoOs27WCbjaDwFO07vT4RBP1Ot3xxmb3Ura9vjGfTqbTKbJ474nF2Wo2nSwWi+FotLGx8c477xwfT2ez2bvvvnt4uPd3/97frkr3S//kn332s5/9U//Rnzjcf/DlL301iMndu/Pul7+WjkeDJ554qtsdT6ZLo5KDw1PnsShdVbmwZaK4ZhgrZYKkVJZlISpgYfYgrAioRkmYaQVdbjYXtJY80BLaP2lS3U5na2vLOzk6OU7TFFfKaD/UbrTGoX3PqgHRTz71zGI5mc2XN2+/vbY2evbZ52+8ffvzv/2bn/rE75vNT0bbmx8eDX7nc783nc43N7fSpMPexnGcJEnQ3yvLMqAFNT0cMQSbALXUXuB0tyBNMEwrHhERkUCIMDBp2vCr9fH16bIgC2p6yPRAw5nFBqgIBtfZFV2o8M5AHXKt3TkXw7WHFJHVmxk8aPhAgJHC/Kz621dYsQRIgMwtiHNmLkNcqIBIh8yVkQSABbwtK6VUmImmlPFekiRrj+991dK6w/lUXsKgMUQE8KFGWVWVeJlOp3Ga6dQsl8tkmSTdZGlzrZVSSthJM0rSNZOgtNbiay1T660TMXFMDUfYex8aV6MoQUTfAEjnQudWs3RFAzOcZ43uOAjiI7opB4tIWBgBu6r5MgAIqi0OhvgWUJDZWxQtsY5DCX+Zl4LKmNKQCrOoNYZVp1QYTohAFBCs0CkCoQv2zOOKBwiaFuFp15w2Zq4b1FZygNUnKDVtthY+bS+BVsnX/55N+PAiO+9QNSE2YHW7O9roLXyLMSbAW8GzhrWHTSkqLKrQ+IxIzCy+rvNqrYgoSRKj4s2N7UefeO749MR7u1iWvT5ok5ZlSdp0s45zbjY5OS1L56p+v681MXMURdapvMxDiLMscnY+yzoqifu97tb2bhgh4r1dLudVUb76+p3vvnw9iqK1tdFo2O/1umtro8Fge3M7RRT2drlcLBeL5XLpnCNh9qV4FxCXqqqm06mIWGvTNE2SJOATURQppUyklaaqtOEmtNR13zxBkTDMymuNzIxakdHszmr97YOQBqd8b+yFSkGj0bX6WOtYqpme2x5nNRxkONMlaQwRtqFhbUzq2V/yEIkC8Uyed2XJATOzOCSsK+mECsP4yIqawQBnbaIixD7SyrEEO1wUVSeLjY6JqG7QBmZmdYbmahYIcmkogKCQ2uFdFGZdhIo2ChulxIMiRUJV5ZBFk9KZQtKIWDo/nR3t798jol6vNxgMNtZHV65cWS7fX5ZlGM5448aNO/f2osPj4XDY6/WjJBmtrYWBdWWehwx/Mplsbu8+//zjYUkIQFnld+7c2d7eFhEAmkxm77777ode/IjW2ju3NEtbcp7nTz75pIgIQWELRCStKlcGAI80VjloraMkjuLURMp7n2Rpt9/zjQTGgwd7RpkSYDaZENGwP8iy7NKFi7byd+7c2c8PTBwdnRyP14ahaWBZLSNtullntDbWWmtj3n7n7Y9+7Ef+9J/5j8u8AJROp8O2unPnzpe//NXRaNTvdy9cuJB1Us9sFKECES7yijQaY2aTBVtW1gvQbDZ77bXXwKRa6+VyuT5ar7VVCbv9nvWhchKwVojiODR1KQXGxFprY1QQhDORARZkUUDCEnqZKusibQLzMjC2FYRqdcLM3W42nZ6+8eobb12/fnFn9/j4eDHP19fXj0+nFy9fipK4cm46nRCR9R6Fgajb701OTsu82N3eBpY0TQ2pypYAWWmtiaNer7ecT5eLmYhPsyiKtFGDSOsHD+5//vP/7uM/+sl//iv/DJA/+b/8D7z3t26/+8IH3s8gx8fHly5dunTh0v37d5574YluN/q9z33+r/4f//O1we4HXvyoY3nsiUfv7z/wjGvj3V63w/IGIDA7a60TNqaeuhYGSxARCCFrodBMtuprmntZ50iATR9D6+C898vlEgUiY1577bVerzcYDk9OjhAfCX9FOkMfuDEdD5kXXJmDHN6sX3/tBzrCg6Nbzuc/+iMfStZGjwO++sr3jo73dnY2j/fujC9fferZx3/tM7/R7fbYAwosl8vHHnu0KPI0TYkohF/MHOrc3vuqssyMCEGXdTKZIGKQCmxz0Nb6YO16zmxWMK9cM8G59eVKKXhIaeJ8Uhi8VIvtt3+taeSh11TOhUc/LAKDulDR5JRtPnr2SfENCHFWdEMMcqYrWW8zA7Eul2CtylE5S1R7Bb0yXRtE2oaLAACUZf0eaECy0lWrVpuIALAsSxQwJlZKlb6CmsUrghDkIerzaYKqcMJV6bQopZSEyFikqqWDZFWejZmXy2WkTRwbbPoPVlU5wh1wzgmcFVwQMdBQtFZJksyLPDJB58kH8CNUTknpQH1TYQo9grTa8ywgZCLjXc7s0jRNY8NYj98S5wPgx+ARQcc6S7RSKhCMVhd6wMbqnYDyUDcstpBJg0+AeO+91ueVD1biMGyqgbACPoeI+eGFtLIDH/pUG4y25wDNCRBR24wpjYxL+GP4SB15aAqd7c6xyAqWhuzYGWUAoKqqSBuFJJ49UZgeykTrGztlWe4dHh+fTFhcp9PZ2tocDYbD9Q3vvS0L5z0IANKiKshRGIzDzGmcAMBiWUjThQMAIcbNusPhkHh921XhyZTv3t4vy1uISMBpGu9sb+7sbI8Hw25/I+ty5ZxCKZYTX5V1euptWZbOOS/L6XwxX+Z0OgnXniTJYDDo9XrtY5IVepZXWJYhmKDWbihAEnArURevdFLX6OPK4O12f7ePe9V6rhoKWUkz4Lw5AoBATwh4NnPoj1n5VLM7VDMxQsArMu3jq7tb6qUi1vrQGLm63dr+bmjoZm00WZZVeFJBcc81WjahnhiyPkRkrBP7IHQblMxqzWQgAAwD2QEgLC2lVBTFSZI4W98cjezBI4sQsrdeOI4i72Q07vvKltVy795U6B5RRqS73e7a2tr62hPPPfc0IoUh3PP5fD6fF+XyzddfDzLr4/F4c2ObGSx7770wCIMyanNjOyD6ZZnneT6ZTDY2Nlwj3NDJugDQ6/ZD4wIZLSJFVSJgnhfGmKIonHOdTm+xyJXRy+VSWwpzdUOFmlBfvNglIpRgoPL5fI6ItvIInkVGoxEA9Ab98Cnryr39/aJcksBoNOp3e+vrm1knefHFF//kn/xTAa2xtkrieDgcFov5zY9+9L//x/+ft268/b3vvawMKdSj0Whzc3NzbT2J40RFACqNsqqqvHhSVoFGktls+tjjuzpKbr37ro4SIAVE1nsvHKcxAHhBBGBmrVSe58CCqEB0mnSXi6mJVByNBoNeVbmiyq11iiJDaGLjnSjEuNMplrljG0Wx8t4J53l+8+btWJvBYPD+978/QG7QBRYcDHs3brw1GI3XNtds5UNNOU4SmkwO9w+uPPLI1tbWfDo9OjoKsz7TODo5Op6eTtbHw52tbWDX7/eJANAzOyAMVDPv/csvv/zn/5O/cOfOrbt37/69v/f3vvm1rz397Ps//elPf+WrX/jO915637PvR1SPP35lNEh/8L3v/0d/6s/dvXP41tvvYkTa0Od/53ffef2VZ59+4sMf/vDe/hEI3Hjn3vtfeJE5PzqeECWOIZh/Y2IAI4qYA2PEB542e2oLG82GAmh8LgCEkkKSJEFErdftXtq9AIrKqlpfXw/v0Vo79q2RWT3ae53Ias6mP/Orv/K/+Qt/4ff/3M/u33nn1de+Oxz1+930xReffefG9fv39i5culy4sjfs9se90dqgn46+9+3vDboDb0tm9kgmSXJbhHONoijJYiItTNb6k9ODIPVmjDEm8p7z+RJbqUMJVyjMLFp5qaUIlcbKO2lwhSZFawW6ajO3Sp4AgEY5vR53CACoqLV0gZ+kkISFw9B5wBa0AATvPZIAIAMSND2YLBjkpJrwsH5KEkbBaCRF0IaSwiBACL62j0VRBF9rvUPCiBIv4Fm0UkpHVsA5JtTeSwCWFBFqdK6K0yRck1Kq1+sxs7VV47aJSC8Wi8LOEVFHprSVCkraAGE6TWyi48XxVrJllRcR77nyThMC16PdqdZ3jZRSXLH1NcrinRUQAfaOQ7xolBYRz14hiPhlXgUMMgAw3ltFmoFJMBRK4jimFgwgEfFaU+mqUDso8iqKIiQMrXxNN6UO3dEcZtGTCYVEIg3gRNh5D+wYubSV0hiioiiKTIpEpJC8sHPWsq0qK75YiISm6+C0AokVG46zZ4crLQKIqLRGRAHPtSaVMHsSCZgZrExtCx4u0kZE2HkiUrr2rMHhtSuk9dxtDaj1zbTaQMfcyJg0sV3YmYqUEwQEYVdVtiyQgsCvAsSiWKIOJX7vvRhSoKGqHINE2tjKLYslM1umOI4RTXE67XQRUTzSvYOju8cnTtyD08M0TfM8t2UhIlofv/rW27YsNzbWNjc3O1mapqlSqLWOoqjf73nrvAdAPD6ZaVJKY6Q0Mxf5Qmvd7Xas9VVVKUQCrHUUsizKkpCqiOcyX7z11p3vfvdVEen1O+ubm/1RbzweD3rdNO1tDPrelgQi7ObT0+l0UhTL0BYehuItTyd37j549rmnx+NxXhahOk0QqvvA3oUuGybFwlqpw4ODJM4UatD1E1yNvdrMDVmIsB18hIgAQSYQRVDrKKjLEilqOQCAuFJi9o3Y4dnxhYjQe9fW1n0t8QpVZbHhvDexuGitEAGQmzxUkChgxvN86SV0Ikvgw4VA3xjjnA2GtE6uPBARCDiGqv4TGWPyZckgjn3dcSxeQIIAJodN6wMWeJbKQmhFJ6pL+oiIVFXOWmdsG2gCKB0YtA3cbV1lAWg5m4feZwTQhIhWuJqdzk+P7gZyRafT6/Z7Rscb64NHH7kiQJujtVu3bt27c/erX/5anGTr6xvD8Xg8HidprI0ipRaLhYjM5/NFsRiPx888/0xVVcgC4LxgWdV6kFEUIyKzZFnW6XSNMVXfish0Op9Op3HaXRb5wPSBQESWy2WadJTSs0UeQMc0TTUSKUqSVGszGAyLIjfGLPP55BQZpChK77nf7yeSjEaj0E21t7d3597dL3zpiydHxx/96EcfPNgry3J9be3k5EQk0CGgdLbbH164dKWTpEICHqIounfv3uf/3ZdGg8HG2nocx6jIWmu9j9Ploqw0UbmYro0Hjz72+L179xgkiiLHjAZB2LEl0poUIlWlQwXD/qDf7ezubhuj4sQURZ4v58dHp/v3p8IYJbE2ulosGYSMVqRRafEcxam1VsBHsRZre70e+Hp3WFtqY7JuysxeUCl15dplW/mjk0MA6qbJuzdvAMBoNProxz4aRdHNO7cP9g/LsuykaZqmRV5OJ6fEMhoMDw8PrbXLxbcff+LR0bDrfZ1AbqxvXr5yZXt798MffvHo6MFnf+NL3eHwR378kzdv3owS8+GPfORX/tn/9NWvfPOxaztG/PHe3re+8e3HHnsur4oLVy9OF/al73ztH/ydvx6hffnl7/2V//Q/M8ng0Uee++Y333jmqRevPLrbG22kaQoq9oyudMXCAXpNBhWFWQSEgEihd7Lp1HJEJKgk0MABCII2GFZlmS8X3axT5YVK0+VyMV8s+v0hkXZuWY+6RoRm6hE0TTn8nlGzq6GY/l//6T/x1JNX7r59/cKTT5gIPvOrv7qzOXzh+fdHqrv/4CjP86Iqd8cXnn/huQsbV8YXrxoy1998PY5j5ypEyvNClHjvvRMAQC9KC4gpiipULnqdrlIKgjxpLfpQM7SstSFTJKPbl4CPoggU123wDcE55N8epLFlZzXKxm42NaP3VFvPXT/WqL5qpFmx4WoEbEwk8CRw9eOtQxWRIDcuyiNSWzbiJvhtI8U21G2dLnOtLN+eKodBiuexSiJqiV8hRTDGlGVZVZXWxntBUEG2hGoNWFGKbOW0JqWU9TW4VQccgEqEPTIzCSHWLBNnXbfbJY+2tCELBDi7J8Hci6/DDmNMZUtEBBQBD8Ch38IY49l571HAGKNU3RzuvVekRMQBC4Y4W3mpREQRJUkWmL/YtByGR1Nr48C57AERtTGIWJald1Ucx6QRgNmhUqRJo8LQN6AhEIYkLK35fL6KsAa2B6lzxes2uA9cPWh6j621ms4eehuHAUDQ62shT2YOkwaYfwhXrHXJ57OrVVrA2ZtFah5oG+63pyoiQXBUKWWM4XoQlgDUYJ7WGhVRI8vnuCIiFkHnoyjSCqMocp4r9kBc2Iq8cyD9fn+5VMgSJ6avtfc+jZN379w9Pj5O0kgpFbQcL1680Ek7aZqsDUdxp0sCwm5RVrPlwnsfKcqLIoqioN+RJWlR2mqZQ6NUYkgZFSkDWzvDtQ2X54vZYv7g8Pj2g/2qei2JTGyirY3NbpZ0s7SbJUkcdfprWX9YVcV0OvEVoyJiXdrl/QdH27sXs4COO++AENgLe8dRpL0wIRKGqV9WQblYLBzXw+Nb0Yp6sa3IqHLDum3/1C7L8K+1VjUtJuGBQFPBpBWORP3vyvF/KKesNU1tzVTaOKc5lHOu6XEJE2brM2kNRTtgl5mDRHiwWqGyT6SJSKtIpAjYT+DCIoYqP4iw8IqE4cr1hqUXErBwUSZSVZXkeem9N1ECANh0JbemBmv0rmZz1xavqgCq2qYZFaFi5uV8Ml9MqtImSZIk3V5/2O8Pn3v+WUL16KPXfuu3Pocog0F378Hd5XKeJIm1PgxNr6pqb2+vLGyWJDs7O6GWEvipy0XR8ls8yPHxcRiIqY2Jomg4HGqti7KcTqcP7u+tra0FHCtYCRWZ8GCLooiURkRgUUrleX56ejocDjfWt6I4ZZbpdBrHsbO8WM6qqnS+6nQ6/f6w3+8nSTIaDMuyfPvtt0Vk/8GDEHuVZd7v9994440rV658+MMfRsROpwMQNIDgX/3P/+KbX/l6viz29w+zLNFxMpvPxxvrSdqJjYoMnRzvn56srW8M33n3ljGx0gpQAKkqLRlV2MJVLk1TABz0uoiyXMyI4OTYAjIzE4ACOTo5nC6WURQlaUomIqVIG0U6zjrBhhulETBLEmutAxZBpVBFGQB4b6vKRUQkoOMoNoAkzrlur7e5uVmWZZZl9+/vvXX9TSDsjNYE2CRRv99TXrY3NmYnp2maXrly5Qevfn9je+szv/Hrn/rEj1++dAGRp9MpIv78z//8L/7iL37ta1/5j//cn/XCAPCRj3zkF3/xf0iS6OBg+YlPfOL1V167v3dHISZRGpnsc5//XQ/2Ax/8SJqORRQAfPSjH37hhef+5J/6hV//7Jf+3e9+8dKFR//y/+6vfuonfvRjP/aR3d3dr3z1uz/2oRdBVJp2nKskjK0Vz8gaCPmM9Qjn+U7QaFj4ZghYEsXdbpcEC1tlWaa0DqxEXQt6P9xks2rY32P265cmNX/9zW8/2J++7+jBs88+u7NxeTmfDfsX9Fb24GBKWj/y7POn9++enJzYAr/y5a9f3r06HI/yfB7F2jvR2oh4tqyQPIh37GxZleVyuYwiPRz0ra289zWg11jApoAFzCDCoWQZ5kgCcp7n4eJjbdoMMmAkqzoUsjquuykOhqvFlVbB1qrWf3p4xA2Jr51owOPDYc5u33usZ3tb6awTEwECCY8Jkdm3D6A1l+ENbXDTVhDOPfhGlLU9eDBtImKtA0ClVGmrZVmksRGhPM+DPw78hoB++crHcdzepdUfRMQJA6P3nsigQnZeKaWMtmXF7JVSVVVxLbOuGhbRGUkljDYiohA5CXASxcEX0gpRKYTjiMoo5cSJiGcfIgPPjhp+XniCSFpqGtbZSl392XmX53lZll4hEaVR4r1XWmNNnwwKTM30Par7QMM5O+eqqvLez+dzZnbeBr8SlKyjKJKwzdhx0z+mCfxKB+KqUzxbeGzPVpQQQEj4pZ45CC1XkFYvBH5IHHYuFmRh7z1yK0JRx9BKh1obUyASUZtgnC1jpDBDHcI2YeZIKQnymwzGxACitfYaelnfWU9EZWUBqWJLAohkxReLhRizvrsbRTqUiZ21X3/pe650UayH/cGjV69dvXIljePh+pawK8uyWM5PFnnivda6Kko/AHFeNZqlZWVLsJExCnAynTOzMVGS9gA5U8pEytrSe390enrjndPlYqER+71Ot5sladTrddM09l4rxMG4Uzq5eXtve+diJ03iOA2z2pSigJBVVcHinWOlTFk5UqbT6zFzkLhsn124OSGjaG1RLeIlAdYNUil1DsYMJICCQEE284y0SkSEyvOZwk690xGgLVID1c1WYaXIuQkk2OrjNBayXWm+IeVwo27M3oe/eRFoaq9aG0QEFUZfs/ceqI7qEFFHBqjW1Vtdw97X1WqtNQcYDOjMhpIEuxcqkYgojHGUIswVGXWmqySKVou21DbThCOHgWYodfuLMAbFC2bvnFOooiiyNt+7P3uwdw8A0qTDIB//sQ+laZqmKYMslwNmZg/LspxO5mnaubCze/3Nt21pk+T1ra2t7e3t3qCXpFEcpSIS4mhFJo5S74TZz+ZL732UpP1+nyVP09QobW15enzU7/dR6clkknY6nU4vRLpHR4dVVYVB0dZWgd+8v3/ghW/funvz5s0PfOADl689shNdWC6X1pUkcHR0OJ/PiczJ8azb7e5c2F0ul946ESmr/J2b7xpjKmfX1tZOTk663e5gMAiRnzH6x3/8xx+99ggRHR4e7e7u7Fy4cOfOnVdff31ZlFs72xevXD45nX7n218fDMe9LM7zPM36XpQ2ZtSNJ5NJpz9wVcHMzlU3b74NAAGuFhHn2DmXxokmjpNoPU201kmWKhNba4vSsnez05MQWHQ6nTiOuWRmTrNOeIjWO2HUOibREkxeYYn0IOtbW2qlsziySXR8fHx8dLC2vrYoclcWyL5cLvR4RCIofn19vL93r5PGSRJt72x++tM/93uf/x3vqkeuPZYmnaqqvvnNb/74j3/y29/+9vHhyZOPP/V3/tZ/AQC/8At/Wuvo5GTS73UuXFx/563Xfv3XfvNTn/rJ3d1LaXf4h3/up77z3e+/884JKTWZTPaP9pIkUiZ9/fXXt3cvPvHU0z+5+Ol799/9a3/tb2jSH/nQi7/0T//5Bz/wwiNXd4gcixDUOgXA4pmhmf73kLUPqDahhmYM4GKx1NqEJ6i1ns5m4YYXVeW9J13nUSse/5wja+OQNngAAP0zf+T37z04Gd45vHj5QlFWG1u7N968/juf/z0AiCJdsoXFcj5fro3Ws6j3nfvf0aCjWGuS0NptrQ07mUhrQlBoma3NvbdR3AkT6ay1ABiQ8zbwCs+4TkkVngVJ4EO5QUTyxlJhKGwR1UTyJsYiorPOn/fwM1oj2B4Ezxr+V0LUus8IG58HbYnzvKd8+F/vPYTwGVf4dOc7s6QhU6um3KCb8wn5qAr6YeHcVuhu7V3iRgxMKcUMzLV/DYMXsZ5EpDRpZi7L3DkX92JmBoLmehEUSdslEM4qUNKYFSlU5BRGFJkkFhHrXIMbEQAopECZIgr0g5DvOhYvUnNKRKQsS6WxpfepWvueENB7LyAq8HJUzc6pB2uuhMM195jP+ScictaH9AIRrbXGaYAaKpPAtCFEFsehKHw2FyvcqDAoqdPpIKJnV1VVQPtOT0+dc9oYrbXRFFRUEFEZpbWuqgKa6VLYULKICPisb3cVbX3valntR1tdiqur6DwDVETAVdZHNZbQBqlhMXpfzzlvMDNEFAxFSvbsRXwdAURaM5Cz1lfWWquUYbYgYfZWPROaEYqi0HGEWhWV1VGESlVliagEVV5ZrSKdpODczu5lAGDvwfNLP3j1y1/7+rDX7/c6GxsbnU62nC88252dnc3NTSJ97+DYhBhRai6mUbq0VSeN0cQakUVAsTGJc7YqWZlYwApAbzDu98fAUpb5wfECac53D5IkSrMYPAeVTmflt3/7C3FisiQdDof9bi/N4uFw2Ot1kiyO2Hnv0zRdzmcBegeAeIXB6ZwLzW7hrgZfpbVGrQgVIiARNHSCsAW890S1NImIMEOAJsOmDjkh0nkZiB82FrQ1zXR+PPxqgiQijfDNGaU1TGBvsdVVy44tZg9ng1bDa3XRSjPJrV2JVDdWShvBhze3mjnB2jjnglx+WZahmk/6rFUZEYN5bxkgZzsi4OihLiG0WoQNeQsAWFt6WzEzEWqN3nvnC0QRxNPJ/P79pWfRWpso6WaDYa837PXjtBPr2Bizd3fvrRvvvPnam1kvG44Guxd3rl55ZDAYJEmaJIn1EkoleZ5vbG1Op9PFIrfWjkaj/f39OIq63ayq3OHhcZwmg8EgjuO8zNfWNsJols3NzTBYupNmSqmiKJfLpQCNRqOLFy+Px+PQkJSmaVd1A/fr6PAkTowmM51PptNp4C8qpPFoPUinbmxszCbTd999N8uy27dvdzqdepDReLC7ux3MWumsIfPoE4/p2JSV7Xb7Sus33nr73/7W58rS+Gpx5/Y7LEg6uXTlCmW9bmq8r7I0zpclaooHg6IsRaQsgzZnJ0t7ztv5chrHpt/v9wb9JElAyAkPgABxMpnNZrPJ6cnpyXGSJCEpdd4yglL1sFgAMkqnUbxcLr33IMLOIwCKL/McAIbdXvrE4yaOpvMZaT2fz2ens+nxgWLqdjqJVlVV5fkiz/Pp9HRnZ+dTn/rJL3/pC/PZ8tlnn83z/Lvf/e6TTz7d6XT+m3/w93/m5z/9V//6X//bf+tvve997zs4ONBaz+czlurTn/4jL33rG//DP/4lpYff/tZ3//d/5S9m/cFnPvNfXLtyKU3TIq/u7t29fWfvN3/zM08/+/6vf+NLh4eHV65eeuLx50XgG9/47l/+83+m3+9Pp1OWigC1UWEKBKJCZBDf8rrrfxvutbU2Mrrh75v19fVOpyMis9nMRFG/32dmaCbsyb+navGQBXjI/uuceW13K+6ulYU/erA3mU1ni+lsdrq1vfaxH/nwa6+/+vnP/Zthf+21V99kqxfTZfpo7LhalkWmiIxxltM4LopCkwAgEUWIKL7XSTudrHa0rciWImEO7Aep9WIFEbVopVRAjxAxS7uqW7PUw45l5mVZOGFtqzZEDRk2rkwmbvngtMJxbv1iG7S1N4XrYSPQmhUJM8uD3yMGqIX15TzBFhERwtQCAYCAm6AAsDAGL3vO0TrnUKtgJducu+HksoBv8LNaFKMNBBvWuEKEMLwirAZpcKbgPLTSmnQ9Z1dTGN8BOtTIzqC41aXgg0BUgMRsRUSGlIhP0xgrqMrQvuDDjQYIk1vq9oLWvjvnCOpeV3YOUYcu1/YRSKPVJIRI5L2Po4itqz8CoMPap1Udth/yChwXEB/UTLQm731QdCMiUIQohGf9iW3UCyti/QE3iuM4TVPdTFgKpZmyzOfzOXhGxDgxobFXNbrtgUZdT3HRJFCDXPWqwyDNHwLEM5ghjJcmOsM426ewsgOldahYd5KKgA8rk2pfX7NzIChREVL7/nB1gN5bFlakhYC8R629oDFxBaijNEu7B6fHaRQbpay3xXIZm8h7VkhVkUcmZpGiKJlZBJxzqJTSUWUdIkQ6tqUjIgIkZdbXt/v9sULwzO/evu98rYjz9u37aTftdTrjbs9VNsuync2tfq9XlU6kTEw0z4tBv4/IKMAOhFnrWGlcFgskZC+Amr0HhjQb9PrjsiyjWDM7ES/krQcR0iYzw463bj6vyurkwd5xUSyVUtqoXq83GPQGg17WSVxVJllqvfPeah21d1sprZTOsg6EIQDWLpd5yPQUGR1HxqjQ1BaWMQGgAmyoiszsPWM9tCQ86DCiMjwjABBEkKBqiqo1R63lbddMG163KxwbrH11FcEZBTh4CwVQy6MIYZQmVWlRBFFVVUmkRUSjhnBaXIuwOC+AyjMAMgoEvyPMLOBYFAIzEGEomwACgAqtkNLi+ohA5Jid80ppQcTwDXVDCGqjmt5+BFTa1OPPQ+9YMFyh7MMMikgRCRGE6eyC4h0wszAAeMtAmBit40RE8qKcTo4A1WKR9/rDbta9duXC49eufvRjLxbL8vjk5M79e7dv3/zWN75JRJevXLty5cpoNB4Oh3GW7u3tnZycXLx8qenfxDiOy7zopKDI9HvDOI7Zi628Rm1MlGWd4XBkjOl2e/1+cXh4GO6kYz8ejYwxlecwL9V7n+d5aCbbf7DvKx9FUZxl63E8HA6dcFVVxWJRVZVzFKcwn8+XRR6nyeNPPhb8d2mL072T/cMHWZIy82AwGIyGRVkwyOb2RlW6ABjGBi9f2smy7OrFnZ/9wz+9LIq9/YPrb75988YPjg4ny2W5s32h0+uvjTfAg6YYETW5tJNVVVVxmURRFK1PJpPbd/bo3n6SJCaJQxm3KMtg1rTWCFgWS4jNYmntxDKI0bExMdVLDuYqyrJMq+BnmZTWWlkRj0yo2Fmuym6akFIG4dLWTpkvXOVtUTpX9budV1555clnnt7a2lkul1mW/b5P/sQXv/jlOL7xwgfebz2//Mr3J5PJ9tWrlbOnp9P3vf+Dn/vc58PE7rffunXl4mavN/i5P/bp27fuffWr319b2/yn/+O/GKwNL1zc3Njsf/bf/tt/dOftG++8/Qf+4B/6a3/9//D6m2+//INv/vk//xde/OBHX3v9+i//8v8koJ565smtnc0HezdBSgJkISZUyhgK0lSreHQgOhIAVFVljAluLvSfnpycZFlWlGXoxb5169bjTz5VE5fDYD44l1nJebH31cAj7A4A0K+8+v2PfPhj490RQDQ+zd94442iql78wPuiCD73O58tq9zo+Mqly9euXvnsr/3WRz72o1FKy2me9TL23jmJozgQC6itHomUZd7pjLMs895XlQ3j26TlW2Aofp0NiuGml14awbCQvoQrD/V4aSCE9lvChtfGrKARbbfC2exkaoD6cJDQaci1Yic754Ju2WpaCRDmnZzxG95rOrXWzATiH6pPyiqXqPlIHYEpDSsRYchArbXW2XClstJOuOqnQybqwwxyBhGx1jGHgqMmrR0zNeOBVVQ3qQGH7BkpdDz5Njqpc1bPTiMRUm06m6ZDpVSamrBEQrUxz/M4Nt57W1UhRgxewbMz2hARsQBRG5m1dVXnXCg+hq49EmDny7IMtUvvvVHKiVA7mQfOvRBRwLfrVRFQ8xVAqlnoPwRsaG/yKhTsnAuN/CFwD2cbRVGn0yEaMDNbV1VVZYuggKCUQpTgj0M0ZoxhbwMnRpooHVbKRu0aWPW47S/fu5Ae3vk1T65ppCXSmpyrMRhEVBrBKzgfzyEAKiJBreoIFUFIkbVllnVQxb1ePzpcWmsJODJKh4jQiYgQYAgcWyRV8KyNN3hXBaRQee8ra7XWjVWi3mDIACyOBZmdF54u8+lk7mzJDG+9804n7XY7aSjyDgaD0rO1tpukRmmtoEORZ47jDmr0ldXhAsNKAK+MIcJ69AeESYUMAM6yiQypCISdOG06AFxV/vad+3fv3TdaFcV8fW30Uz/1E+wCXTJqo9twz8LGzLKs3Zu28nme51VZVZX3NoqiYGGNUra55JV+amor5dBwDdsdTUQCD3P+2sdNRMJ+1UCvHAfPFsHZ9FtqFhu0VxGK+yGdsFWQfAvfCG2xGxvsWSllXQ04gZCIZ8bVTdMu47AeW7MpAi0cRs3sCmmK6w8taURsh9GFiw1mvN2e0kC2iChh8iwwABMpAvDsQ823LMskSYplbkyczxdOOI6SYBvTZJQXxemkPJ0cJUniHG9sbGxtjS5e2v7IRz+YL8s8z/f3D+/cu3v/3r00yxBxtL6+UAul1NraWm8wzJdlsczjKAKgIl/GSZIkSZ7nURQDQLFYko4W8zxNoZtm3slgMAzWbz6fB/wvIP2LxSJootYRZRgfITidTskQEWmj+v3+eDwW50Ol9ej4YDwcKaXm86VzdR/VaDQ6Pj6eeau1Pj7l49MTIsqyLE07SVrP1dUKHn3kYi/rz5eLowd3s173wtb42qVdEZxN8+l09vY7t09Ppi+99I28yHu9/qVLV0wS26CXq5S1FkEr0r3uEDUtl8vF6Wkcx1EcdzqdMHs3juN+vx8nBlgYPAA4xwxSlbXMnrd+Zk+96ydJEh60d07CyvTM1oZinnhBYINk82USxYwO4yhflmmchGSMiJxj8K7X7X7kIx/5lX/6Tx974vE//sf/+Le+9a2rV69+61vfunXr1ssvv7y5uamUWl9ff/PN18fjtUsXr52eTrM40iqJk87VRx6bnM6sr1780AdIeGet96lPfPzRR6+Mx+Prb9/40pd/9x/+w3/YHw7/3ee/ulxWcZQRKROpslwqDShUgysi4IEEAch7K8L1aELgkPpAU3ciJGutM2Z7e1tTzfFyzk2n06Iql0VhjCmqst3CK1ROkfMp93s9FADo7a3xvXvv7j7yFDiJB/0PfeCD/8+vfnN9PEpSfO59zy6Wsxs3buTVTEV2+/Lwj/wvfpoFHzx4oJRiKwd7x/fu7WVJqrSyZQUAChUildYzkPeslBapsFZkqCnzdU9BXcs5s02IhMhKQchHw8P23jPXAUQbS7UhESK2DWcAENCaFd925tzOikc10YqIgitvR0TX4CFiPZWNzg96a191BTBEZrVWp2+taBuNtVworPuAhJm1OusY8N4joFKKnOWA1ohHNCigiFyrtQEQio/hg0VRKKXyYum96/f7iFBWldY61NR0pJHIuUph5H3NqW+CBA8QSr0UslLnnMaIav6+94JB8xCbQKqOWqw9Y+Y1PiM4AKMjAHHOYdCSZfROTKraG15VRSXOGING+7JyzqFGFToWG2SvQT1XS3Jn9p1ColyHXyosJO9Zk7IAOiiACxJBqyTZsJ8b2vK5oeBADZm6Vuj1XCnVDqtO0zRLY2wYeEVVBvGhPM/D3kvjRCllIhXKMdiUeMqqemiztQHWaiTd/tAGhbASo7dvfmij4gqwh4ggBA3722NANwmb0hHUVUvppF1UhlT81o13f+u3v7Sxtp4mEaGgUXmex0YB6SiK8rLw3oc4wnpLRN670pZGR0opRBBCUESEHsSyB65POBBcmMOM5NgAOOd0h2LMUIiEy8pPDg5cWYlIlmUiPk2SK5cuD7IuV5adN0oZo8fjYRxFSRKFzqM4MVorJKqsJWAAcJ6VQkJtra1FREmh+MpW+WJR30k0XtzGaIwwsFUBAK3LfMgChgaFoLSHTSN2t9vtUC8YHOccCSBjUVWz2Uwp1YwPV0Yb1WpqexZhUi30XgtbEGKILWAlwDpb2IoYa43tNmgDAL9C5G/Vw6SuMLa2ri5BAoDREZ8ZKFRNh2/Y8mHWYeh8QHRtVMQgwkxhewIhBPnB2nJBHXLVJC0RCsVtIrKeGchLU0k4k+trq+S+tczCLIBASpAQFSCxWEQkrVCIGViEPYsgETKzs9YYE5BJFhoO1ySI7JSlcy5JkmVRiNjIaERxzoGUWtHx0X0grKxoFUVR3Ov1nnnqiWeeeQo8zPPlbDbLOr2iKF7+/vcQVFCCffDgYGNjg1AZE2VJ5pyfzebGJNoYZ7mXxOKkyiufdkrnKwcmSsi63d3dyrHUxA1Oslo4XjyXtsjLZafTE5Lj4+NerxdFEYMUpSWC0FGGWg9Ga1laZp0kRKV5ni+Xy6qqRmvjyeREEOI0CVnrZDbd29szxkRRVFXV6enxY48+ur42mi8WBweDyWTmPC4W88PDwziON9ZHFy98gIj+YPkjDx4cHJ9Ob9268+b1l2fzQoTG65u7OxcFlI6jKIq8d3EcZ91OFEWC4L1XAqTNbDE/nU5MpCJtgrDLYrEI9jbskbCujo73ejUtjJg56/bTNHXs0zhVZJxzgOCcTbRBkGKxiE0MAJExRESk799/cOPdO51uOuz1JxOTJMlP/8wf+uVf/uVf+IVf+IVf+IXZbPbVr3y92+11Op3xePz4449Pp9O9vf1P/NjHD48nv/3Z33jr9dcEkLD7k7//Jz/6I89989vf/OIXvvZTn/zUj//oJzfG6aKY/bNf/h+/+c1v/pd/62/sXrjyf/9//Lf37p5sbV5Msi6gMkaRYucqAhdCKxIAYhGGRsY8bAJuQNqwVpk5jmoJaO99mmVZloWF7zyvTyb94WjVNWMggohIg3vV8cZ5j9YmWgCg10aDd27c3N25MDspTg7zTjb6S3/pP3n1lZe2doZllXc62XA4eO75Z3/tN37zj376Z45P960THen5fH7t6qObm5v9Qfet6zdERCExg7XeNHBUVbo4wXbnrzLN2yCJEP2KCigiel+zfFraTYgog35Va7DCz4jIcgbjt3W91uDW2UmTw4VbEAgf0CRtwVLXnxVBVCLn6Oqt+5Rmmm5YbYioCAECku/lfOjQFkBrEA6xqkd/1CcTojGlaiRJR5GIGGNCX24UR76RlwydRPXAbOs8eKzlbbG9rnCSURQ5ZAk65lA258KIioLgRvDZwlVQfHYFImmtjDHWObtcmigJ0Um4fKUUnpVcpcqlSWop6O5ERhMRsBhjsAmOq6qCQL/1JE6AiJkr57pREkKcVgwpJNMhdxdphsIAYGhfWFke7VNgFtK1f2IPgF7q0U/naDdttL3q5+oE4EylUrTSzrmyrKhpQ0PgsLqCS4uiyBjFjdauq6y1tigKAd86Zq01NlBri7aeRUvvSYDaCGx1bzIz+GAWzxEHASU8aO89OmFmRTVtPPha770AgpDjmrHEzKSNtbaTdL7z3Zd+7Td/9yvfeOnyI08RQieOrLcqTcLdyMsFVB5BlMKiKDSQeKcjncadRb60VamplqcCCGgKAaBzVikd3L8yNTwTuEEexHtLIECKYkqow3FKtRTLsmJ5+QevuqLqZx1fVpqUtVahIMK1a1cuXtrtdjOYsLU2iiIT6SSKCdgYg1wL2Ve2cr4KDDxXVSZOYhMRkXPVfDFDVIPB4OjgfvDfnm1kksASbOPX1lCGG2WtDaoN0ggnGmNibaCeuCAi4pybTCbQFLK1IWNMEsVRlHrxbdbnV5pUWgzpoQjsDKBaWRjSsL4e+uuqycazIaRntij4BuZAJ5B2NMiqpYUGhw6VdGau0bsmvaEz8ga0NwpJvPeaVNscAEBh8GI7lGLVMK4avbpvoEnhAjikGl5dHaPW854oijShRhL2AIRaaxDyzrH3WkWKjAjHxqBS3nvrrImM9z5g/877Xqd3MjkVdohwdHRorQuPvqqc1jQcDD/x8Y8rpWfLxfe/9/2j/QfTk9OXvvNdHUePPfbYoD+czmfe+9Fordvt3rhxo9vtr6+vI6O1HoCWy0IjsDjSUaAVxnEcuCHB756eHu/t7V29mlQu3JkwK7wqy7LX63kneT5LkkQpbaFylkUwKEhtb28754qicMJ7e3uLRc712FnudbrGmMlk8uDBgycef1TEHx4eLJfLyOhLF3e1ihzL0cHhZHZ6fHw8ndg0TRnh8ccuJVmH8Edmi/L0dH5/7+C1V6/fvXf/wcFJkqX9fr8/GnY6qTIg4gnJc92i3u32RaQs86K0i+VBZJT3PvQceO+73azf7yukJIqkUbMr8srb8nCxSNM0iRKjDSEqhd4rIizLMlaaQJz1sTEAFHWixbLGRw8PD4ko2P/3ve99X/ziF4+Pj0MltyiKZ597+sknn5zNZm+88UZVVVGSnhydTqb55SuPPvLIo0VJ9+7d29n5A3/2z7yvWP73//Jf/svjvRsf/uDT3/v+d65cvfi3//Z/ORpvvPzam//qX/zqI488++D+6c7Ohbe8N0Z7VyVRBKwgzAZBIAhJEjee/myv1Vu+8mExW2uN1lmWGR1FUeS8XSwWgBTHcafTYebQCLVaZ1xNlYOY0XtdQO19Ih1fuXQVRIp8/s9/5Z+RTv/SX/zLn/zJH8dYXvr217/w5S/+4Z/5Wej2Ot0uGf3Vr3/l3dv3fvzHPvHcc895Z/cPD64895RS6gevvGZU7J2kae/4dIJoOp1eXhZe2LtaaYkakhoigqr1msNJt3EVIgbMLKRx54MAFYTsjTGe7Ww2CxEJoMIVQlJrAsIHA4cDm45C7z1zaIITrbXRsdY6GFPbRBWwQvCSQB5v7KmsdGifSTbVuj6EKNZarZWIYJCTaACe1lp57yOlvPfEHKDsLE21oTRNPcNisQD2QScQXR09tBiYePZBG419EsVE9SCm8HSjKAq+gQEEvHPOoyRJYn0ebohgLZqOQsYYLeRByrIkCSw6G2D5MAyYmaPIBCdHqOJYubLyjf6nr7WOziKJYI+iJNFaeyeh+T88RGxKWlEUOWEsyixJW9Kec80j84yoCFC4DsKUUr7tP1jBFINCknNOaaIAy2hCFOEwPOFM9tb74C/PgtS6eM3nkCelFKJBRNU4jxBptfW4gjBgXQCQZTGiKKVCNOCcq0o3my6AMCQeSZI0xc16UGPr1fisSk6NtX0IBUEWj8IEiFDPEZemXoyIznJwoiICzATgxSESCYaR49CID3vvTZyFOQGVdU8++ZQD5XxlF0WwfY69VpExsUo0EHlhSLPS+qCIS953SYlSpbXOVUoZRFE6KvOF9ZJmsQh770grFNRaV86ioLB4BAHyIMJilFZGiXOooHQ2sHl6g5EeYKKMK8r18dp4PL539y4RCOq8tHEqxkRZLy3LslgsZ9M5oIx6XWBRAZ9GstZ665Ik6na7RJTnuXiHArZyICQCtvKBQKnrcr+EoZ9txBPKCm3RTenQwRHWA+Z5zjEjInhAVFFkoki63b61NrCqqqoqvfVO5suF1qpVmAszUjHIH/iAup3xH8Kjr3kX1ADtnp0wEOpmRlCbNrTWMpyYc64pBwsROW+bCE8IQKS2TmHwsID33iOxampkoZiCglKDxBRAKBEKs4gBEbhe8MyMoR/SoHWslAJUgUDmm04xIkJuxVMUsyWixn4qZkaFRCTI1jsIwTspEbHeCanIGFKGlGYRIPLskciLsPdEwsDe1TFcKHyE0rNWBgSVNqou0KtlPq/KvJtmWolKY8wypRQpleeFt+Xp8WHlHJFWOtrd3iqKZb8/LPIKAG7dend//xAArLWXr1y9du3R/f19EPrAix8cj9d7Wcc55yPDyIvFwlp/enr64GD/ySefTNMUUQpbZVkyGo0CvAoAypBjH0FQAFHW+k6/O5vNDg+Os04ynU43NjayODk6PAmRjdYaSTbXNoe9YU2Z9Xx6ehpF0d7e3v7+/vr6ehCPLIq8LEsimE5PETFJkvEoW1vvP/rIFW2io6Oj+Xy5XC7eeO21bqffGw6yKHn2iavve+aJvLIPDo73Dvbffvvt733320EpDwQ7o/Ha2gaSrioXx7GJI++9UjpJMoWQFwujY0K/XBQiqEl1Op0gy5mmGQAwzK31ystkMqnyshawFd/pdJyroihKoriqKkJy3hodIUropAaiKOq0+UCSRMYMr1+/johZP1sul7fu3onS5OTkpNPv/dgnP3HlwpVy6fb2jz/0gWf3jw6J0ryo/ut/8N/8uT/3Z5955qnvf++bi8Xk7//Xf//3//Tv+/TP/RFmt5jPlvM8Trrj8UavO8rzcjwehxYzZzlNYld5b0tUgEqFGc1KKUIJK7MOlTDIcOrAOw805YODg7Isx+NxnCTD0SjPiyiKnK9IgfPNPBXmoCcapnRUtqQVDvpDlj+sGW2SxHS7YHljZ+tnf/ZnPvf5L/3z//lXsizzvvrRj3/sqSefT5Lu97/27S9+8asvv/zyxsbG+vr4+6++dPnKJSLqDqL50Z0ooU988keFzf07D27fvj+fz7vdjIiMUdbawNdrXR2vKFiuhoRt1NkMBAx51bk3r76tzUqtq4K30yvy8dSMKG4iszqGU0oRodbaWhcC27IsAZmIAl0glCABzyKwejTveQRFqTB7kIRd2yEVmnoCOVeRCqVJbuQVdPh2pHC2eVUx89WrV8fjYVmW1rtOJ+lmnWWR53mRJElZWjBamhnDxhgQUEgSBPHZF0XRiTrGGC4rEgj6N0Vhl7YYbvVFRGlV2MCnbq6HiEh7ds45I6YsS0M61sYJV96jdVoR4Nlo59CEKCIhSXCuJnURBe8iIlJ5Z4wRAKO1aiT7nXNRYkIrooB470WhQWWMJmFC1SB2CgACb5HOp9Grz7oOhREkhF+EAPwwTaz5SEuhaY/QziF4zzvrrGU1Pl59tbAirxQrQ/Ep9FcG9CusvdJWoVnGORcEmQK9TORshEAbikmLwzXejusJoS0x8QzoDWG8aqapnq3DkBKAYKsUCvVxwtsqW/TSvmWeLwtl0l7az6sySZKyzAN4ab1TaMQ7az0pImWi2JSEzOyFO2nsWDQhKkLE+XzunFVaRTpCEEIBgsVyDkLK6CiKbFmhIg+ijZGgKFMXpZg9migqy1IrRYGowMLeVeKtZ5OkSRLNZpOvfP2bQrC7tT0YDzbX1tMs7g16tiyOp1NgD+yyJEXEOI57w35li3C3w51ZzhdENBiMAB0zaK3ZaZbK+ZAAnENDpSEbtNlLax/lfGci183dZ+St0CAWNiYgh3JSEDcJTME4jEgKc2DZIeIqO7Stg7drUq20cmNjg5pTqoMM1Si7ikgYovLQCm/PnM6G10NrrKRBuQAARK3SVduvlhXsud1BTYKHzGCMQSRnGanR3HnPEbihWhIFfOGMrWvBqbo2i2EYXzvFgYgYAl5aPwtqcPRwu1qucIMxtPOFxduKna2qQikEVMxWRJRScRwDRlEUxXFyejq9efuutRZBjo/2dy9c3N3dfQaeqCpXWjuZzE5PT7/33W8pbcbj8b/57G+kabq1vbu7vbO+udHtZsYYZrhy5UqQ6QeANE0V4OnpqWo6+hHROSeCWkdBOCMQZ0ejtTRN79y5s7e3N5vNnnzscWapKpumSRgJM58t48TMZ0ulMWCNiHjlypWdnR1mVxbLIojq1RVtYFdNTo6ODh5kWbc/HPe0XhuPr165Yox54YUXZrPZ7dt3Z7PZ5OSwquzaxtbVy1tPPHH5Ex//kPoz/+H+/uHR8emtW7e/+9L3b914A0B1e8PRtauIpOJIKdXv95XGsuyUeREaUKy19+7tKaWSSIfckj0sipxIKzJVVZV5bozx1vX7XVeVgMzeAhqlUSkCVEWRa4mM1t55QgUgLBL69xFRaz0Y9AAozBkjotdeey0oBx0dHRk0RVGA4COPPp7ni9/+nd97/pnnl4vJX/kr/+mVK5fzfPbC+3/qT/2vfv5X/vkvfeYz//oP/6E/qFM9Gq1fuHCpLOzpyW0R6fc6mtDaKhgB5MDOBHYCYFE4NJfUiXEjHIOI7Gvdu/Cn6XR6cHCwv78/GA57vV6ICsYb60TE1rYKeav/IiIgA+GZGz2/6QBAf+mL/259fR0YL+xefvSJx7//g+tapZevXDOR+sy//u3Lly/7Qv/gpdf7neF8Ot3a0qenx8roV37wne3tzcfe9/zRO+/eun/n6cef6wy6j64/C6TefOuNnQtPoGZXVqTOvMvqybXGrjkdEkYOl9/EWogYYDCgWpEhZKcMQspEcb39iW2b3rV1H2ZWShMBNLas/Tc070RRTETCNTBT18tWSler+xxagnNjgiNEcZaIBIKMQshcCYBbiYI27A0YSWQMIHnnrbWZAhLw3nZ7nU4n9d5mWZe0yvNyMOjlec7itSb2DgAiraxwVeQBEHa2FFZKoTEmbmSrnHOhzOE52CkEBh1Hbp6L86AQVoSsQBGhqip3cHDQjbvjwRoIMduQkIlnDy7YceudUkoTBf5Tmqah/188EyCA8mLDLqq7B5oqM/NZ/Q4bD6GUKDAiglLrbq8uR1hpFalNuYAHUYxQq07WNx9VzVZpPoirB/ECiATIgEi1wnhQgDtTbGqJU4h130t9ZCIEUHCuu77GHuu1gOw8rISGbe1GIaXx2Vit0CoR4NvVxR9WKZ1Nia5R24ClEaomhLWtB9KoAzGuDQvCjVKg6iISemYd9KXar2BnTZxY70DIsWgPiJLFESHoNLZejFE93bGey7JMooSZZ4ultVaA4jiurFUi3azThZiIUKmMVOWsiKAyjF6AQJHRlCadZZEzwnKZA2JpXRzHaZwwi+NSKaUVBh6P0ZqtYyT2oNIoSbKj49Pjybwo81DC7YzWHfv7R5ObDw6r4lUAfvLxRwb97qCTjIY94GpRLbfXNrz3i+VMKQqtCcPhwFpb5gWA6ff7nssQHllrlaKQDj30Cmsg7GwA8OdD84AvAoAgsndS988Cszh3VsWrn6JS7YztwLYsisJ7H2YGaB1g/hrjD1y0VcvQhkdBiLiO6iikBNREh16kDr+YuR5uoeuBQiD1xEeEMBcytLCcNU7WGs6EQZ+l3SxtD8GZTQ6jP1CAEGqb5gFqIUNSJmSYKPT/5etPgy3ZrvNAbK21h8w8851qflWv3vwAPOABIACC8yRSEsWmW5IV7mirbTlC0T/1x0OHHHbb4bAjWrY7osMRHeFoy2072nJbY6slimJLFEmAgwAQBEg+4OHNVa/mqjueMTP33mv5x8rMk/c+0OdH1b3nnpMnz95rr/Fb3xLGxK2bRZqbNiKi3Ys6x6G5YWB1QFNKQmIQAAiAgCyQTcxKRi0IwtgWbEEAlKYfDYkgAyOS6FgRABACQJ0ZI0RN9V+h0wAAkhIvFqX3eVWul2SJ6Ma1S9b6k7OzxWJRV8vHj+4PRkMR2Ww2Vy9ffv72jddef2kxXx0cHBweHr/99tvf+aNv/P56fXDpsnPZCy++uLu7/9zzt1544aWDgwPmiIZirM3cLJdzRARGYIx1CiE44yMFZeMkn6WUhvnwxtVrB7t7RBSSzPZ2NfuVD4fLs7m1TiJkLqvralGtmGWzXo0n4L1PCRELxShZ74wxlnCzWulQ4JRStd5ot9DJ4eFgMLBZdvnS/rWrl09P5nVMp6enH9+9vz49fLRcIKL1zrvsxdtXP/fGq3/uF3766Ojk9Gz54P6j3//GNx89fCIpvvTKq6FcOOfGs6nFZqLEZlVOx9O6rjfrqq7rGMA5N8gGmvMbDoezyYg55llmrd1sNs6ZqqqOjw/VXuT5YLPZiKx1igOgq2qNl4z3mVpGY0xM0VryPo8x+kGhl/rt3/zXxrid6e4Xf+RNIrpy5Zq1/qd/7qfff+etql4eHFw5PX76/O3rt1669lf+2r/7v/if/seX9i9/8cs/uZiv7n384FOf2k0pOGN8kSOJQQkc6zphYhJigBhrQmndEEQA6ebKoJbpCITJKI9ayjJ37do1hZqcnJxsdKSNob29vcz5qqoUg6FxjUACVLDguewS9jSRmgl75cqVGzdu/Mav/3eeihee33/55VcWi7BYrO/evfva65+ty/Bf/b1/dPT0yYuvvPjiyy9NpsO/+CN/6Tvf/db169dvv3ALNicul/HEf/OP/uDoyfxzb3z56uVbMUZAruuNSCRy0NoMrT+aZhTaliAAeo2K7YH/M5sFuKUkbZgLer4dt9Mh20leBaqCOY/f0ks171LraRqu8M7CJUEN+LQVQt9ijGHla1Bzq7bZ+vZOorbJoAEtXWmHiKJHuy+rPDrd/ahZso6y3KUoMdZFUQAwB3ZZXpalfrTKKABkWZZldYx1SjAcDTTdItbGGLMs0zNZjApoC53UthoQUWonGwuDIJCh9aqkaL1ZarDODHVdF1nOLWWDVlVSCDGG0WiUZS42c9YwRuW8bTFJ7S43dkg4cmJmNARCaIgUHt+i8QDgE22OF+MDNSXbzdKiBohp28O27xKBZlBnB+7Zygy2zWJbkWu9GQAwzRI18Hx1qXv30Jtm3xvt3JdPalFfiFhrA0ob2JkeuZ3qGs2NpZYRw1qv+TPFmVnjhUwHd2sSAym1hacOUSS6AkRIskX+tTe8zdSKiMv8crXJBx6XS5/ZlNJoNLIOGwVa5MMiB8KUZDQYRAZETNLMb10tV4YohJBlmSNyzitCvI4CSh4lZJk9EBIZn5O1G6qXy6UTdM6xgMSmacNaC4mBJXM+JAw6OQcFgcm5xXpta2Mzb7PCGzd0To/YgydHf/K970EsX37x1v7u9I1PvV6F2iBphp9DtNaEEAaDgbvsl8tlSoxoBsNRSsIs2srXFy3pNS/3NWP36KPxuvd2qR1qm9JVBSVueCi6HXfO6aW1+JhSqKoqxFpaPOVgMNBXdjKpzneXoNaAs5F/iWqlpK1cdDffT+bF2LHTgfL/oSFoc/ZEtNlsfJGLCLUZqwta8YJhuLBW3GI5Qp2S104Y6J7s55u79ex+0JkiHVGwRmIppa5TEgASN9pAGIGACHSqR0ve0SgBAFCywG4ar4BEFu9z5fhtjgUAp0REIVTOZcIxMlVVFcKcGYpBNsB8UIycc2TNdDoOoX5w73EICY25//FysjP7uZ/5ia/+2Jcs0mpTrdf1w0ePnz19/ODBvd3d/feNuXRpf7Izy/N8b2/n7PRYRKZ7sxCCRQLniGC5XGovlGqA9XpNZL0XZjbOhTpV9cYYU5YlOTvMC4N0dHS0WCzzPEPEPM8BIIRABArAN9E0/CMsxmWSmkRRXcVu5Z88eVJV1ccffTQcDvPhkNBuVuuXX3phujNRzXM6P7tz584ffP2tnZ0dl+W7O3tX9ycvv3DzF37uJ+fLxePHj7/zR3/88PGjt777DqBByq4/99ygGE1GI2YuimIyGtYxGAKfZavVajAYxBgjh/v37zPH4WCQ556IdOBjWW4UG4dIRVGMJzNtwN8sF/lwpLoLEZwWhAQRldZHvHVJOMY4Ho9nsxkiVptyMMzv3buHxr30yotvfe9Pzo6eXLlyZbZz6ctf/dFrN24sV6vnbt383/zv/vZ//L/6P/yd/+Tmd773vohkmR+O8tV8MRnnRBhCqOuSEJHFGMNCiRMhi4EUBcli7xQ0UiqiFeEQQuZ8SmmxWI1Go6OjI+dcURSLxUITQpq20BwvwrZE1h4x6R8K3Hp8CAC2LsPXf/N3C1Pcu3v/o/ce/fhP/Pwffeft3/7a15eb9WJefvpTb6w39auvv/Hiyy8czw8Dm/v3H37xc18aXzuYP7r7ta//q/FkOBvvf+5zn67X+J1v/+Cbf/Dd8XjsrQ1xk2cuxu1AD2yZuqD30PwTtrSliLidu6JgHkRqZxUTESIxC3OEFjGm11TFlBIzR0DymU/MkJI9X7tERG4Mtqqwhvazb/gRFQiKySAikqLtNf/VOosxRhao61pnDql10cNGVjGGyMxgJM9zq71USsAj0mbchVMygAalrqvk7c7u3mI1r6pNURQnJyfM7KytUyyryhonIqPBIMaYe8uWyrIcD4Z7O7tlKFfrUmFkoMWCEHKbozHrcqM4jyYb13Luk7HWejJinCVrVpvSGDMxBoiqqjJIxSA3lkQ41nGzWqaUiiLTVayrKve7RMQSAYXIAgHHZIhijGRNjpBE0WMgjFsPRgQAAifoA5CV578HT+4LqLTRhHpsnSUg7XLUP4tI2yfWuSwqVyICyNjMR9naWv0fuhpH4zX2LYf6x1sr0ginIMuWiKQzPI3scRBIKpnYc+9EtgdShaQzWSmlEFIIQTMixhhn2eWFwu/0Ya2liDGe8925nShFDGgRAAxgQgMQRSRJFGBSBhBydR0PDi7t7F1enJ7MpuPRZPz+ex82fKG40Tx/AtEUgnM2pUQseZaVCNNLByKyWq1ijHXSso6zRCFGRTwNnanruhBABo9Gj04x3SGLMUZj7GQyMcZokWK5XFrjJTa2f7laOe8TAIHxCMaYKoYQagCKIQ4GA0mcjyZXvS8cLtYnzhrnsmq1HOQZpxRChBbSFGP0eTbzjgEckYYlABBCIutEBFgp0bWUsM0jJtFSyLZLkTn1UtfCHFmYkFDTLc10ClZ6NmHp/Dd9PfYa1xHROWOMAZSUUox1Xdenp6ci0knCNhtKXaUDtBG+iQea6n/U8bIsDIzc+oId5jUlgQZ0se32UF68ju+aOpLqnqtEaHW6dvcugKaCqTIpIsJorBWpRSRyMmAtNig0aMuLnfvVuf7tPUAzjULni0ROSUvTmFJTL9W3a68ZqOUCA0QgpExkph3K2TheeI5jloxDUrpBzboBazINUZFq3uVFUSBWVVV5bWTjkKrAGy6Kosiz5289BwCJebVY17G6e+e9YjjYrNbFcJQ5/8ZnXt3Z2UNDZ6eLlNLh4dHZ/MR7f/nalVFRHB4enuLhYDBQcGhmXe48IqaUHCEIo9UsZvLeJ5AYozCStWQcxxRjNFnmMl/HYNkWRVFuVptNPRqNtEwNAMAgSYjIWJNl2Wq1AkEEY20zrTilNBwV09k4pQRC85PTuq7ryMvl/PFjG2O8dHn/5ZdffuWlF390PkfEo5PTu3fvLhfHjx7e3Ww2s92dy/t7v/orP2+cK8tw5+69R48Pj4/OHj58/N1vfw+Ne+mll8aDwhd57nwZqszbOlQxMiJmg2K9Xq43m+OTE9C5z3k+mjgiyrJMY0tl+EZEPxwiQkwxprBczUmAnDVgyFrnHBCV61XklOc5ocQ6hFgZJGPQUVHW9Wg0mC/PxtNZCvHevXuvvvZCWbGx9mS+funVT//t/+X/9n/+t//XL73y6c99/s3T+dFP/uRP/vP/9tfefO5FRFyt5sJRAAkY2QkZAAZUJmWRlmTK6mkzDZm2QDJoUBgA6ro+OTqOdVht1lqWPTo6Go8nBhAMdXM1upRC534BQDsqgxsIrzBAQ/JkDebG5V/50S/HIP/g7/+z4+Nfe/6l1/57f+Uv3/v4/nvvvTeZTH7qJ356s1kB0GYd3n333VS9cmn38m/+P/+/n/38qy+++GJM5c3rt373a3/wws3XX3/90//6468NBiMRQDQK6ytj3W8t0FBP90k6uoceaEBdnk47tEXALShVWsavxji1+YDOyFHr6vWDxb4Bbj6kDR/VknU3YIxDQBEWMp1xbXEVW1pXAxijMCdmjnGDiE3vHimbdt75ZCxSVRUh+szW1ZbKXPt3AJgMGsAsczuzWVlVCFwUhUiDMPPeLxcrY4zyqGkTFiLs7u5OJqMiZCnJGYgCULS6oWbEWBM1vE7AxIDNxEBJCjlKAGiMQ4GU0rqskhNnKHFcrVbOOQ3unTNZ5hRUXtWbslyLJJZorc3znIiW62VI0VivzxRF0SBynCWiUIbAQUQCJ4MQY/RN0cZ129GYvd6kgU59Qwu90lSlNNlHYGQLKIDS8lNKL5nWvbexAU1tqH/ZHs5Gs2vYc7Oa9zYVom7ToecatrK8lV5q22S6y2JTdqT+Z2EvwLLWOteQXKgHhohVVYlCl9rswtZvbomdGqtDBMgsLCKQOCXmmBInQwgAlgwSlWUJRA8fP7V+BMhXrlye7ew/OzrRgarK/aNthiJSlqUBA4YkJgBwxqZYG+PyPDdEOgvBGJPng2FezOfz5emZUphaskQ0zIuYJLOZca6OVfISUlzPF+rYZcaxz5khhqBKr6qqwGxdlkAQxSIAIRIZciKy3mwQQGIYFjmnOs9Gw8HE+nyzWD59ergznQFEb5SSLQ8heWfyLEc0LvdZyAW0xBC91XJ56mrIuvjdtvaFTfroh0+kY9sqvzhvUDmHiaw1nTOtBDQqP1p81Nq7TsPUyoX27XNLGaWZcuaG4KpVgNT6gqy0yecFDwCky/1jW+6PMXECQXVuoJNz5Rk+//bmZHVi2S1C91n9lZE2hCYywv3XN525cB5D2b++Hq8LSUbskTJqFnB79lkwmQbTCFsl0CHkVPYRmzwlgtHCkSJymy1AnVlJoAyhZJRDoYNghjoVA23ui+u1Yi1IRHzmxpPBlcsHdV3J7mw+nz97+uSjjz5kZiGy1l6/9tzzt25lRS4iZV2RcU+fPProw7tEJvfZcDw6ODi4cu3qbDJVlaiXLctSWvZpaWN45xx6D5J0cuJ4PDo7Ozs5PXry6PFsNrl06TOIqCx0qQUXEmXM7L0lgBRFoQ5VvVFEmjKtAMp4PBIiTcKBEJKsVqv33n3n4OAgz/MkPD87fuWVl65evbper0MI9x4+ePjwYQhhvV4PR7Pr1w6uX7syGk8363Bycvreex+8+9573/3uN5vKMtpr125kxcAYB2hcVoyGM2fw4MCrsdbccFmul/Xa2to5tzObDYdFuSohcYhxsV4tFouz+dzbbDgeqaEsiiEDLJerPM8HeVFVlSQoiny9XjFLSkmAE8tgUCBgYhlOxvfuPfhP/7Nv3bp56erVyzdu3Ly0f+1v/I3/8Dd+87dNFt94443pdHp8fMyCRCYp0QowtgSUiCio7Cca8agEqmSiNnvVdW2N776RDirY2dsVkdVqZVquhlCHLpPdnSY4H4d8UqXoX624/Of+0l9++tG942fHX/2xH3/905+j8XR9fLZaLX58/8sv3L753/36b+zu7q7Plh49RMu1f/ftO/fvPHnppRc+/dlPHR0/ne5eGg6nH334YDqO3o4lGWsG1tpY1RLAWtedTBXE5XLZpcH6518HLhMRMAooBIBEQDShx9iaaCIERRxjWzRM2qNnjGs7C1o0wMWv3fJi9IM2IqIYy/YeYjPRGJiIolETCGozOvUUUyIi20yWdG0VNALJer1erTbWWuiRfFpjsty17mZijl2sXFWb2WzmnDUGJ5MJAG02m9OzxWazKophXdeT0XC9XjtnjaHhcHh4eFhk2WgwbEP8EENQikTrrECqQjCZNca0lKXAzEkECGJkJT710jhARJZFyrJMIRaZy7MBAGfWOGvKGBo2EA6Keo51UG+1qiqDWAwHqtk5NQ6lehUNR4NwVVUBEhFBi302AARokLRDERE1KGjORFtfvrBrW2MgICIxxUaBE6p7oy/slHtnrjqnp/+MlisZt9yYERABkJuaIHQ2p22waq+vkszq5Ism2EijqQblY61TJGZrA2yHSuyWCBra3i2HsLQwMm+9iDBgd55jakSlgfW0jBgkhCRVrLgBlgORJegY7BICoCFmfvXVV9ebUOSZz7PTxTwJGOettbPdnbOzs/1LB9euXfv444+/+93vXr18jaNsVmuyhoiGxQAgIQBJw55JiEVRDAaDOsUHjx+dnM3JGucyIsqzAQDkvuCYyIB11pFJzotIXdUcojc2gRgyEaWsqjzPKaUQOXLS/jjvHbMkHWKGJCxKpz7yfrHZAFBm84fzVajr3du7IVYxRl8UdZ3yohgNR5vNpqwr65qGpoohslDkGJOIEIMhghZfrtAlBh0s0dXOlBUuIbq+GoUWOyHU7FTnHsW4nf2qV263VYvLtjsdnfesz7fYfFawBBCwwgIEMDWAFDzP9QUN8wVxMyqYU1IwgJr5iEjW2gQSWwwot/AyULojVBG64CFt3S9o4R/6V6XkAOAWMNCmlkmz2lsQBcs5frWe7iVEBNZhYkREFqNOXjLGNOfPgAbgzBEbyn5EROiiqy39tWYmQDmCRCSyAJDy7wugAGmbu/ZECyMnBgK01oJhUICnAZBQJ0uk3RJ1XYOwYhNXdUloBZIwFt6//OLNOqWyLMm4+Xz5+NHdD99/B60piuL6jeemk8mnX3/tyz/ypRjjvTv33n73nT/9kz/+9V//F7s7O8/ffuH555+/dOmSUvgCgPdeSfOLQcbMojkFRDEUJV29cX08Hn//7beAMB8ogEQ4JWctDgZEBIm9tULScGdbNBYBIB8MgKgsy8yY5WoeA4/H4zrUZCkf5Na4GGMxGKzWy4ePH6UU5vO5tfbe/Wq9We3u7u7s7Fy6fPClL35hvV5vNpt7Dx4cH58cHh7f+bCajKdXrt+4ceMrP/rVz0v6q6vN+vDp0Tvvvv9bv/17KQnZTMDmg+HLr77CYIzLvTGbzcZlxhgTGZTW9fR0fvj0yFsCRmMwhJAPsslwMB4PM5sNxqOGsCPwarP2s2lZlqv5ok5xdzqLVT0qxnVdJwqSBI1JiUMVQkhoMjLm8pXn5svy7jffjr//p5Px+Mb1m5cOrp4t5p/+9BsffPABMxbFKEUkcgYNpwqABQ2SxdTED4jabA9dEKX4QbLGe88J2rIbMse6Lo2z8/kcAIbDoYJJOnvXt1PdyeryRxeCE33G3rr58up4MZ3tfu+td85Oly++/Gk6XQwOLt+4cfaf/1/+c4NkEK21V69c29+/hBEHbnB1/3r56qcffPz4xReu719+8aPvv18uE2FxfDwPIVy5cqWqKpGQKc4UmwlihlxKKcWaE3jntJ534bZ0qgZ0Oao2QlOjrl9MbY++IEXRNpz2yyOAENkOndBXMdAL+Drz2e5BU988b8XbVTNE3Ex5a9wvbnhyNYPV6aAsc0A4GOis+KSxckqpqqpK5PRsFWq5NDwgIrXWun8EBgAsUeas9Tbb312t16+++mqe57/+678xme5sNptOWVdVCSB5npOBGNi5rCzLGJJz1mW+rmtwjbYqgw4kUWJJBCUm4IRorLVcsiEnjAmSMYasF4CyjrhcFXm2rmoXklKLrddrJNmZzl588bZzLsTKOXd4+EzNhnMuz/NY1sysI8DzPBdsAE8pJTBgjJHQ6PemRw+hm0Ss24DbnVLORwQQah0O9SeYwRgCIG4qMFruUR3dtKZ3D3XWUkrq53WtWtjmq2DLoNE6eay4EzVIfUloq069WqS0vW/949claBUQoL92Mtx9ELTZAmVs6sBhKSXFeLS7ZlonT9oxg2nriQIBABkmzbM4l2VZw6mNAomBMNTBWnv12uUQYX78NHFYrqvVZuOtJWvn8+Vivdrb2/voo4+Ojo4uXbpSDAfW+Ml4dvfu3Z2dnRD56eMHCt8moixXEkIuy8oAXr16FQQjJwA4OTl7+uxxURRLWaxWq8l0igaEzO7+jiOHxvpiwMwxcAhBUAZFIQAcAiFAqMGYqqo2IYQQoIeP3J1MrbV1ZELjrSOU4XB445WXgFOKOgWVlaReRBIHYzJmXq02dQxVqDmJpg1EpIUHdasHRMRNOXKbDGMWdQCg17UHrZ9kjEHkUCckIbRty1RqZYOJyGhAmEJKKQRBRDLd7A3p88Y3XpHyxTADUVNd423+KXEN0Ggn7d1mbtSOige0kgEAPrMpApNQE1huT1Zf03ZnqjtZcn5AiogQ2hYT3fRfS+sigYjeEgBIy3eIaLp16z6It9NH9OAgIrKhBJJS0h3BFprZOJq9oIt6ued2IxrlLYJ6HEBISUrVyYbGUSMtyTmbhRBIwBhTV0o/izEqXxqT8tcYdaAhhOCcQzApRQAwlljiYlmmlNC4FKssM7dv37LWrlar5XL90fvvLJfLPBtMJpNL+5fyLP/RL39hMpnMl8vDp0/rGN979+1/+t/8o9lsNtvZe+211y5fvUpE89Vyf39fCU7BOWau69qRhcTT6fS1114bj8er1WKxWAyHBTfj5Ou6rvM8zwaFtbRcceOb6pq0Pj0i7s12FutVTLWzNCxGDCLAWZbFFAaDwZ07H+7s7IzH4xACkTk5OVmtVvfv39/d3c2yTGsXn/nUa4hYlnUd0+PHTz/84M7d+dl0OrXWI8Drr97+1Guv/OKf+3NHh8dPn53cf/hosSq/8c1vSkyAtLu/f+3aNZ09Q0QpBHJuNBgv0gJARuNJ4uDzzFqy1g6H4/F4PJpODLmTk5N85KbT6dlinlI6OjqKMc5PT3Z3d3dmu2W5EU5ogMADs7U2hATAKXFiIfIHl2+klDiGBw+fTCa7Yuw/+7Vf99Z+9rOfRUQBEka06qxDhqZNsjTz/dRbICLSBhEdB5KS9c4aj4ibzSaEMByPnHOLxSLPcx3rp8zwIUbsJaf7GkZPF/dRMa1B0V8tJUwxHS9OP//FL6Qa/+D3v7meV6PJ7o/8yI/86Fd+/Hvf/5Ozs5Nrl/Zu3r61ni/3d/eA8eG9R5IgBrjz/qHw0TvvfGBNXuSDdbVMUuYD8+jRvcFgMJ1OWYSTwoehriprLQAtl2tEk+eDuq60gBVTzZyczS7QBir7kRIuNE820VuPugIMJwFAg5Z7QxVVCXSWr3W/SJIgtGpXkWXMKbEkIB15IsCQAEGIwAAjaU+ZABhjQggpRtA+I82QGTJIIVQAVJYMANY1Y24HRQEAOvqaA0SWqtTIkiCxflkyGctKUjTEe7uTwXDITKtVvrs7GU2m169esT6r63qxWFQxAOhQ7TrLnZY1Y4x1FURwU9aaalZKMkvOYipjFEgCCcQbA+0ISQkcMvKKOjFolOlEGAClrHmzme/t7Rhvk4Bz3rkgkB4+fHh2dvLGG288f/umc+7q1Svvv//+er0cjIZEoC6Ibo1zLtUt+Ra0iLRulqUS/TsrhC1/I0oLWlRfKgqAsZDqpgGCOcuys+OKMm/Ag6aOQt3usTAnYwwCxsgA3PFfmMaDkU6lN653w80tUSdVq9Y2aFHBhdrJAU2yDgDafEZnTkRA29w0iaWfSESWLAoigDUGhagrVbdOXt+Ha7PC0lE6MUvgBIJEQkSRRSSiIeZE2A1ZaoryKUnkEKrAXKYQrfWExuj4FyAwZH1OMRkUgwyWVuXKuCz3NMgGIALMoaq98SdHp/PlIiUBoaoMmDsGdNlgXSZEJD9gAAG3Kcsnz56+9vpLwrV3aA1m1nmf6fnamU0RcVNW63U5mY3rEMpqXa/jh6eHBsxwOMzzgRadXZZnzjLAarUaZQXH5BDQEMTkyIjLwZqz5SLL8xDCyfxkNp4YJmERSLGqdnem1tKjR092dqaZ9845byxKstZJYo7BF5lzLgaOgau6zJzv3NmgXL6guWykXgq81Yq6QRfrkl3+vksCIQsjA3QsDI27gK1H0mXIiAiS0lkRgKjmabYyMSEqTZ8xNrFoOU5a7lURsYosFAGAyByZA8fOX28dMjamiJFTYnTCFSMCA3MSUhpCwZCitU3BQZqqAiAg0xa+Dc00qiQCQpASW7Kxjg27h8JhQmSbCCyAAKEOmhRR5iRovZ82cagYFyRoW48RUQeaJubEbK1NzRYYS/jJCmZntBgazk9hQWkIXGKMApLlAwQmbBPbOkKD0SDFUCGhCAN3teNWAwNEZrQYOEEzaAs0OwVoACAJAiCQtcahUhiCpFhzCoZgkGfP37qeZZma5If3P1IPdTgeZ0We++zFF66/8vKtn/rJL6Uoy83m7HTx6OG9qgxozNnxye7OvrX2ypUr3nubEcfEzMAwKsYkxqBFNNb6qgqAxnkPiCyCSNyQxJlzpI/WSgoiKXM5DnG1WoFwCpVzjtAIyLAYMPO1K9e12ev+k4fMPBgM9vb28jx//PDBZDLJ8/zhZmOtnU6nRVEUw9ErL75w5WD/7OzMGHN0dPLxxx+/8+Rxng2staPBcPb83hc++6L12X//3/1zDx48evrs8O7de3/w+9+IzIS2GI1ns9lwMJ5Od/b394fjkTBUdZliGUIoQ5w/efbBR3dnuzvj8VS9zMXirCxL57TJzIRY1WG5XPLBwcFqvlqVG6lqLVMWuRPABESU6aRjay1ZZ9CWMQiCsRkaHI38nTsf/cvfrH75l37CYEgRAQkZGQKhAHKLNDCaaRESRGNEeY2kLitxTEQ+K5hjWW6snRRFMciLdbnpEFDGKhqqiZEQ0YCRKMhIaEVEByRQLxnWOSQWGI6PT51zKQILnp7Owwb+8Fu//Yff+MMnh0/++v/kf5jl/nf+zW/lefF7v/P1V196TWK68/Ed4+nylYMffO/Dzbp6/vZLxmQnx2fL5fLatSvPnj0Ksdrdu1ZXWzURQnAuSyltNhtr/WAwUAJlooY8PbXtXdwDgfUDqeaHNiPVvUAEW8tKRAhgu1Cs/z07JYstEq3zQ/vmEHotRdLCRrvP0td0BJpE2p2N7dAhUbsYYrXZbJiTMdZa4/PMWmvRI3lVlx1YX7kkABoQmzE4KDIQmzkbQnV8+Oy5m9fXq/rZ06PhcMihzgYFSyQDWeYQxVm7Wi1OTk4QDZkMgJgDR+EQU0rWG233ZQBOqWkRcMSphao0+PQmkc+MDGwAlI4PgGyMzOytM8ZbMiml3/29r02mf/HSpQNmfuGF5+/du3d6epplmQVLREoQpQ2Y2M5viS1laErJGcsx2pYHi5mBhQGJCJMwCCIlQQZJzMIIvbEB7SZq9hGNcap/SScOoRhwxmyJTHXbtURCLUCwk6VuT/VWAYATJEzM3LVqqPHtS2Dfm1eW1v5lOywOtMBnOJ9BuRAkdY6USPe8CnEjgcyCaEUSNG380rXiEhEZk1EOyCmlUNUikmquqmqz2YSURCThKdnhcDg0CJv1Rh2Eoiictcvl8vLsMqKcnJzEGIfF4PRsoeWqzWYD5DTFWFUlCzrnIgNal2UZIpJpvkio6hQSWUVhAzly1uzuzgQIkLWlQOercIJqUy6Xyxh5MBzZzKMhERnCkAAHPhNDlgwwuswHiCmlMupUK1uWpSVHzGVZAvJyOT86epbnzbCBlBK5huyDiDLnmON6vdbvYo3vO76dS9Qd/N5Gi2ZbWvN8sVjQCozijaDLuV6I8aSHZ+1UCrZ+mIiA6SkTaVq2Y4zKTgdkOx4pjQRIGQQ1V9q7X4V4djaYWrLHWMfcSx1SjLFG7ThA51wVarkYhQNAavj2FNEFTGTa5gEgIp1ZqF8ntWNzIydMKKhDJ/pr1auztJDFvjfW3b0Cebu8Y/fXfiq6u1S3fZ1+7kKp8y9mRKVfamj99VlqJyj10Z+NOYCE0KelbNAFfaPQzwjoq9RFRopEhkNIIoX3V69eGg4GeZ5XoaxCWC6Xb3//j6sqDIej2WyWF8OrV3bzwSjzgzqmzbpaLBbHRyfzs5PZbOacQ4TpdIoIWZaxxMPDQ++9ouwRRWmSAKAKlUFSXDUikiHF0lhrDYLSAxHRZDwsy7IsS29d5NqilRRSjLu7s7IsiyI7OPgiGqrr+v79+2dnZ6PRCBGNcYOBSSkdHh4DwNHR0dOnT733r776qjFmWOSf+dTrROScE+bDw8PDw8OP3n+wqcrhcHzlyrWb1/e++Obrv/xLP7/clI8fPbl77/6jh0/e+v6fAgDZ7Pbt26PRKM9zRRXPT+aDwcBav9lUd+++NRgMdnZ2EHE0GlXVZn9/P3E4OLg9HA5SiMN8MCpGq9Vqs6nKsnz27In3eTEcgEhK4r0fFiayMLN1FGN0zogQp+Dy7M4H97/65VestaEsAcCCF0YiEQMsyCkBaMqZ29OdOmWOvUJ8CKGsK1/XkmB+emZc0zqjjqO1thsUBq0hYGZtSr+g8/sP+//+e//1Zz/72fF4zFAdPjsx1o92ivFkuLuz9+YXv/A7/+b3XnrphUsH19/5/jvaMXvn7ocHB3vFaAAguzv7tGdCSMbAcrkUxhjZGHP79m3llGv6s4icMeVmba2tqs3e3k5RZHVd6xRXRBSGFLVFc1skOmfJEPs0Bee/hmI4RBD6DmZ7krcDiNpXa1AG6pYSQpsbEebUel8EoBOr2yZ/VYeIrIlpAHXSlV2apR13bQwRQVPZZABMKdZ1XVVV7sQ6LZwpr3rDwi+JUUFmMSpLkJLLZ1kmgqPRINQphFCF2rm9WJeSmGPKnA8hKEqsqqrBYESA2iUrwESFMYYJUDDGSNYCaQfT1thji3ttvhkRCIqwNaauy2dHR5PRaDoe6eqFEEDYOUtEjx49yvOMmWezyfPPP//s6PDZs2eCiQwqb49CubtNVEwXJ06NciZns9b3Qml7XRsNex6Voo8Uk7LnI2JKgshoEAR0SA+1E9lbZGjfX9+6Xx39xydFqHPNuYcFbDsfOz9qC8MHAJGkHGFdbZHansTea6Q7it2T3R3qu1qg2/aeRcQYMs6LiOmVGjVgUEbtwHqsREOtDt/jjVEPSRCrqlrXqQpS1/V6uRIweT6oq7BZLapq4711zsznc504fnZ21mIxNdcCAEAEee6ZlUJFjPWSSv2mdV2PRgNnMyBS8a5TgKT4yI2IKCLTGLM725lNdlJK3mbL1aqqQkhxvV5XdRVCWC+XAOjzzGVZMRyEGHXQ9c7OzqYOJydH2XCQWRfrpJwsuoyr1Wo0LNSDMMYQWQVa6YKH0K/Pbs12B0VQF6ruzejs2/j+GzvZ6Alk05yBW25UQAQUwHYMYn8rGzFozD8DACdGbRBtTT2zpMREqvGbFm8R0fko0hNEaovgSOCGQwXvhxBCXccYWcv4iQeDgSASGW9sXUVhQQLnLJ2fjqIE1DEmbbTU783M6jeJaJlR2sZPYGha0Vkkaapcu1ZQjDEirDZMhAkQhNWwIdhuO9qgYut1ddX/bs3729E/p9iDwWlQpEvaMDKcK7BuN06wQfDrEvadyO765z9LpBf89z+9e6WyoCGCtQa5mTTFzGW5DqFCA97aywd7dPkghDSfzzer+Wq1XC5Xm7IuiiIfjC5fvnpwMLl583JZljHwarU6OTm5e+f9Z8+eXbp06cqVKydHh/v7+5v1EiSB9shrP4112nsEwN5nIYQkgiJlWTrnBYlZ4S5CxhUDHQcXARQeE+eLNQA0XVOWRqPZcDg8Pj5m5rKsFvOng8Egz3ND9qOPPnLOfflLXxGRuq4JTeK4XC28ddba0Wi0v7+3t7dLREB4cnKyXC7v37kbWYaDaTEaffq1229+7nVC+/ToMEa+c+fOn7711lt//AeJ2eBgOJo8d/1GteGiGBLB7Vs3QwjOW+eK9XodYzw6Oloul6FO0+k0hlBu6hASIlZVrQIPsNiJO4vFgjnmg2I6nmTFgECIxHjLDFVVGcB6UxLgwe6eNX4ThZBEoEEYcSPDbZze6eetoiaimJgIjXHGuNwXg8Fgb2c/hIBknj17piGQs5nKQychSSQyN6RXP8zidL/a2WTnxo2bu/uXYuLXP/cjcVX+q3/xG//gH/zj/+g/+p/91E/82NnZyfff+l5ZlruzyVe/+tXM+dFggChRtKRFIhBjTFEePHg4GBR5nu/tTZWBugXEiAgTWZ/Z05N5nufT6TiEYFtyTgDQ0QrtXBfuZF01URM/wcVHe062v0oDho3YkRnC9lT33nIxv60qslv08+p4+1nQemedBtHzIA2zdhs5bamYkMgANfA9VXxOyRrZ9LVAW0FwRBQkpCSRmyFry+WyLMumezw1VP5ZlqEAgwDwZDQyLgshOUNkXC1B041AskVUqFbqiUj3b+KkU5XVT4qcnHN1XZ8tFsw8E/F2DEDGUIwRwZycnFy5cnm9Xs/npwcHB/v7+5PJ5P7dj1er1Wg81T3tnNFu8VNKzjiDqkQaPhU1n7DF2uvSpe4wNLvGqLIkTdzMSM0i9wPT9iLnNKZms/B85gO2x+489PCc23dONfdloLuCbUdud092Hq3KYrfIFy6FrR3t3tVJFzODge5XaCuf0DqXxhghpdhWUwEpJW0nJGkTA8Y453aGk9WGQ3hUliXaLMa4XC69zXQZz87OFKeza/IAAQAASURBVDilMLX1RrEBUNchtv5cSqkZooWI7Qgp51xVVWVZEvpiMCiKIjKHWDfJzsRK+aNzyr33xmjvIeRZlmWF8uhoY9G6LJmlrKqzxcLPfShDMRr6gfdFvl5tSEBiArKOTBAZjUZoDLdjnfSWFA9ARNrQg4hZ5nui0tOJDRvz9uvoo/MDpGVNu7DRF4UEGw8dEaFNSDWvbGqXWxMunfropE4Qela/fycXlFJKiRmo5SNk7bNtLsvSogY7kENiYObVYikiq/U6xhgZ6jqScdZ6XQHdU9y6hqAEaaSzawUEQFpWsCbxYw20DKsaSSQQA83gdRYxsKUQa29ecwZJBAS2urd7dEcmfYLl8bwzdG5Bup3Sc6bhq6La+0f+3CnT5eqFN93Xx75/fB4VcOHI9zeoKx41laa2f8g6yrMcgJPElILO3hGRqlrl+WA0Gu1Mx4JYVWGxWBw++fjjO8plb4piOJnNbt+64fJss1wtN+tytcxy++DenQ8/Cnme7+/vE1GWuaIYArAxKGIUeyQi1tr1cqmZZiLqGj81DKuqynnLzMvVoigK54y2OjJzMRillKz1V65ccdav1+uzs7O7d+8yw6VLl4piuNls3nnnndFoFGMsimK2MwWAPM9FZD4/5ba/bTDMr17ZH49efOWlF+fz5WK5Ojk5u3vn3RjYZn46ne1MJrd/6ss/+1Nf3pTls2dHj5+c3b//+Ac/+MEHd+4g4AsvvGSM2dk/8N4DokihWsj7/PDw+MGDR5a0WdUVRZESZ1k2nU6Y2Rh89dWXx5MhEa0Xy8PDw9VqxUAuy4t8kFsTowyLvNpsOIFzWbAWBJvRqgihHRuqrYHAAoICXWTSEl1xE0LHGEMIq9WqLkOMMcS02Wxu77zAzFUdO1xpJzYiDb2N9CLAC6cbAOznPvO53/iX/+pTb3zm1U996t6dDwo/euGlF//9/+B/8PTJg2998/cu7Y3e+NTP/97v/d7e3sH+/r4ISop1rAEUm8J1FYfD6eHh4Te/+c0//+d/aW9vr67XqtXquh4OhyHUejfGGCTJC584WEeBa3LEmBDRegeEzFLH4G07qFUEqA1fzqmmc3VDBu5GKF8wlrqSANi5tIjYz5D3lWBLkWUQEYSEFba0hTIwN6zM+mhhQOrkmQ4UIm1vGhGBEEtM0kzO1ol8rtcKge0oJOeNBpHN2TaNE9HgXjkUtqjr2nmr6V/ryFhEwaTjUdu54zHFBMlYzL1NDiCVSorWXtZYa1M8v5rn1Z8xJsbaOadzdY5OjmOMe/u7HEPDpIqotGRVud5sNvuXDgaDgfd+s9kgYjPuKgY11SklwoZDvCFTYM7IQAJsBwS0Gg00gNZHAlGIb2o9zpRSRMh9QUQxRUtWKZOQJQkTNWz15xRo6/Z0avSTx6AffHfZhW53Lrj90uZTmxeQ2i0AULsFZAwZI0DSVsWp1+QhF1Mp537WFzCzdDOV+/eplCvaot8Qfenb1SdDZiShGFOMQRKKZJkvlPpkMBgdny3m8/nOzq7JBjHW1vqO9cBaH0JSCy0C1loLYBC5ZV1nBoNYb8qqqqC1PUC4WC5Xm02WZflg4JwjY5DIMeQ+026msg7Kh6IPFdGkI5VYLJlBnnOSoijAmhDCClZqvCrZxDoYQ6DZhQSbzQYQNavqjDXkrPHGIDN751NKAsQcAEABeW2XDOn/xijedjuRiXqD6vueEEnT8NElLLv0E0Az0x0JAVXtYIsLZQDtGTjv5XPTaqmGnoygMSDYPgNdHa29Ab1U48Sn1BBDp7ZMqXeVOKnT02VsqOFxgNnuVASL4ZCIqpAWi1VZVSGEOgbn3NCNjTF1w0SIoAqHkfXctXXDC8qBAQFI0IChwMmAZ0QGZmEk7QpnA4hIpnE9dekYAJKwIS0UgOLeGAQItTcTAYRT1x3MzCnELqO8Vc4iwIKELCiCOk1V+74bKyANYAtR/chzDnQU4RZFovfTmBVWDNw24L/gfm1VSO9OsAUtpJQyZ7ymjYOydAZLzXwCEHHWOkuhLs9O66IokCj3OLw0Y+bROHfOcYLFYnX3ztMfrDYCcLC/P9vZQeDV4uRgf2//0sHR0dFycRZCQJS9vYPJZOTzrCxLFs5yF8rq6NkTY5xGs957xQgaQ7EKAGCdSak+OTlKSdbr9Xg2JYOr5SqlMBgMhKOIWa+XiGYymTjn3n333fl8efny5RDC9evXraW7d++uVquqql595eUQwma1VDZUzZWklBanZ6dHxyf5ifceGSfj0aWDg1u3ntOxQk+fPl1tVt/6xltElOf5tWs39l6/9aUvvFH++Z86Ojz56KO7777/wXy+/NYffF1Z3Z679UKeDbKsILKT8U7IA1IcjgpCW5Yl1NE6scST2WQyGe3s7FR1ORwOLu3O8szO54vNupovV/OqDmU1Ho3mq9Xx8bPNehmrGowx0h3yxCgkYCwREqIRStvNJuRmkAEYcoasQZu5HBgJzNHRcZZlk+kU2tKkci31hQRa6U/nw5L+Qy27/cG7H335y1/94++99dzN2zeuXX94/9H3vve9v/7X//3f+LV/8W/+zb+e7o5+9md/5vK1/eV8GUMV6uS8SSk5Z0WgrmvnMmvt17/+9Z//+Z+/evXq6enpeDyMdUCALMuWy6VzmuVyGnaoXtYDdnZ2FmMcDoeETRYBW3pAbCgxz+GuLiiF5kv24EFNINIb1XRBz3ZH6MJKbZWvXuf8B33yWIpIYs05EzNjq6y7M68IMWERYOwNH+gb3YY+oH2oi1aWZYzNhKWuZFZVFeJisjO0NgPQ4WsoIgQUQ8WckAwAW2utLzBVKFDXdWrlg4hQtMaRmFmneHf3Y8gQgiCwCBkCQWOcM5aZUcB5V9fx6ZNnVy9fIlLCU0qJnbPJ2rqunz15WoW68JnWpAaDQQgBsMvcMPY0VwiBIqNrKlMRWrY6EW7p3nrMdaRePiQdSEIApPOzjPL4CZmeh9ScHWoVd2P6pC3+tB90fgbqBaH6hEg0xaPuI5SO5IIQdpfd9iqe97H68tZ/5sKvUVgd+u6GmVnaqdvYjo1v0gD6ia3gYTuqtJMuZlZqROfcZrMxgOPxeLNZi4g6x4rSm812J5PJk6eHKSVjbNMHHiMIdOwwJBRjbduxOdgUSY0xVpNYgOKzzFpLbe+CcbYwFjpInFCMUZvbQ2T15PTiMSUyRESj4TDGaL1jkPHQb+qNjsVh0Z7fZpJmqGo9GmSaaOTs7IzQ+swimLqu1BQNh8OyXMeUoO0xlN7gc+ntqaomay2iIG+rDxd2+Yc9eS7X0m53T4p6+wgAiMa4La6/93yb7Gy1TafQ1ClSEYYWMCDAsQ6K2NLuaUQ0ykIUQggB0TrnjLE7O1MBEpHT+WK5WNd1HZix1QB1XWc2E4hRK7aI1qnuReX+1cVRBDEza/d68zUZDZq21secgIy0SFJCkn4dp39M+hwW0NNR3LaW99e8f2SYmVv+ReWr647bDzVxevTbbqQeufOFBBv2ft5u2tZw/lBFYYwRSUoqpHlWY1CE6joiicKataRTVZX3fjDIjTGLxUI4GmMMpmpVGWtnk8F0NoxVnUAMmPv37tSbuorh6PBpTOV4PN7fv5F5H2LcbKrj40NEM1/N14v1aDTy3h8dHRVF4X1u2vGyIlKWZTOYwZvcWWNcE9AxZD6vbD0cDhuPLSvUe9hsNicnJ3WohsMCgC9d2s9zn2XZaDwcDAbjyUinaHfDXYiIGawlZwwRppSWizUikrNarplOZ/t7l7PMbTab1155+ejo6MHD+5vV/P1330kCw8F4//KlN9989c3Pf6qqwtHJYr5Ynp7O//hPvv/B++8RWQC6duPmZDIZTwprqSxL8TqROC0WZ8vF6YP7MhwW3vsYKpX5o6OTJ0+eCFDkNBmMP/3a6zduXHvzs3898645FLariZG1lqUL11snoQfV7Qy6pr6gVRS7u7ur1YoQuxhPeu07F+RE0+3wCXPT2Qv7kz/7Fyc3rj07XhwfnpXz5d0PP3r3re+dHR6/8sorn/nC504Xxw8On54uTm4/93wqA+m7CM4WC0QEodl0/ODBw81m88orrzx8+GB3b6YJkpSitaYockSqqkpZux7cf+RsxpjqujbGaG1CgwBpC4WMsjXBva/THgYFxYMiL6Cxj9Kdz+6rpt4kHOilkXtBJzUUMz1+in4hCXq4DehVkSAxh6hV9gycvg21lRKaucftFfSiSGiYWeMzTWOyGBGJqRZJmubonDAiIrRKy68dhZrDEBFlCxsUWeEVPhUBwBhjravrmFLSsTTeeyRKwBojZr31SSkp52inCnXOrY5BRSEkAoWykKTExIwIIYTlcjmdjlOssyzLfbZcLrLcWediqvPcx1rLUoY5Wus1tFU7DQDMAELMbHDrpOpesFKutGWZbXax9asanyNGg0SAMUYgYy1x4hijJbBWB3h3NlUFg9UUdEQS/X+7H/rquHumlQHuy0AnVGQRDYGIjgBHzVf0ihR6Hs/xWfQ+ojuHnYqnFkosOhnTZgyU2r9KG0ioCtAr6MmPyo8FqAqAuZvgIKQIPJcb4wGoruv1ej2dTq21x8fHiUOeOTX0Ozs7w+Hwwf1HMUY12B1eU8lbRMQai2B0zKjR6SGNGMfY+fQodQhlWRo0iKYYDrIsM+TIGq39CrJxNBgMmFmkdJbIuBhjjAlS46Nrqows2sxtypJAgCWEkPliNBo1adGkHJuYUkLI8qzYVCEyOJKiKIwx1uXL+erk6GQyHYqkzWajX0P9MMCGUK0f9qiW7AIogUTA6uwTMME2bG60jgouNnZ7O4L6XN5Ur3WO9aeLSfqOSbfRiMiNZyzqWMTISvzY037bsbaIQARbPFUEXUMt0K/Xawby3rMgM+d5sVlX1hcSQghJh36SwTrGWqnjAJxzmlE2Bk3DdiHc1uQFjFAiAAJDQoJCW7yxaeq2iACYAEiaKBZpm1hq4xZCNERWGx26OBl0fgttD07faIkgs2APvnYh4tWTKACIRoSbHB4TbHsjtguu/+qsSmx/7Tbuwg1snel+/ruRGSICAuLYbKlWwwOmwSAjlDwfpMCWnDaN5j7T+q8xxgKVdVVzjJwkARLVdZqMBuPLVwTh2dOjwydP7t+9O55NZ+OJENZ1cM4652/euA4My+Uyz/PM2ydPnjhjweBms9Ej4JwbDod6J97Swf5gsViMRiMAmM/nTV9ehnmeV+V6NCxA6OjwZFjkX/3KlzXP2gAoU5qMhpPJbDgcrtdrbfNUviHv/XK5Ksuyasg7DJGx1jqixGKdDzH+6VtvrVarg4MD1eHXr1+/cuXKF74AVVU9evTo0ZOnH77/A+9z73IwZlQUB7vXr1ze9b/8C4dHp0eHJ8+ePfvGN75hXb67u7u3tzebzWqo62pjiCSlzWb17jvfSykAsCXz8ssvf/Hzn7l27Rev37g8Go12Z3uXL182gM7CankEUokIJ4QmxAdsRpoGxoTIpul2Quj0s4J2SPl8kahp0ipXawA4OTkpq2rv4JIxbt3C3NsT2pz0C7LUf3RCZb/5zT/8QvzCT/74z8R6/V/+F//X3/6t3/ybf/Nvnp6e3n1w59U3Xv7UVz799P7d46ePpU4PPnyUuwFD0lLCoBhNJrOU5B/9w3/yla985enTJ7PZrCiKEGpCzHymlIDMkmcDY8x6vdbKMTMo38R4PNYULggZY3TLvbfQcw9VRf7QY9BptP7p1Wd0pbosxYW39CtQ/ZPWvz5ig61tlrWXO1H/yfum8SGlpJqmUcG6v9w78IIiYsggaQVEANjahi+7u0lqSRpBLDOTNeq5LhYL51yWZVmWcUyckmInU0p1jACMwCINdLf7UpwSWMx9ttls1H9ERGuMSSZFSCk52k6/0f8UilttSuetMUYEQyhrwdzZlOTZs8M8z0NI2muT5zlLDHVNFmULid26wrGlgIeeT5NlWeKqK9Bwr89cN6JtK9UUxZYdlzmmlNAwQcN/ZqgrQAhaBGADRkNSgK5a3dEObXe2r7WbxMx5hw8an0/0MtKLrUWavqf2560/132KVnG2hvbckKKL8XS7Pt0P3F3kgjSmllqsXRB1GhrTSEQiyWA7YtIYY50xJklzG8CS5/np6WlZloquaDaR+eHDhzGm4XCoq77dC26GVdd1hZCS0tdVlfcFtOkKRDbGoLqjREVRcAQgZOb1eh2iGiod5QwiYsmomdNh1VVV6d2is1ZEAhOBJcMheutW5Wo8mozH4xASchiNRuqUKAmZnpc8z8tyfvPmzetXrt79+KOUkkHIsuxrX/vaz/7cT02nY3VH+muu79Vm9T71VPONSLrh5dDzmDsZuRDFCiRCc0HVqApqX3Guj7vz9+l8mbvB7gAoOYJmuGNkQguAQOdUH6cG2YbbTIwoPbUuDCKt1+s6MjPHJCJIJltX1cgWWT4ajlyUBIk35YohYuz5i2qTGAd5LiIOnQg02TUkqLTKm0T5KgFZtp4QCDUcMi35g4gY6nJ4507BBZeoE/iLy9uGLp3YdBO6GrrUXoAE5x+qw7Ht5OTzWfD+p2DvAb0wXjX8hXtrVonZe2tMu27IiUPiKILWehFuwM3Gq0vUlTJUK1pjyTelHo+SEscYa4lFUYgka6yz4CZDY3FYZEginDJrV5vVfD4Poa7rend3N8+z4XAwmUyOj481m1XXtW7WYDwqfOG9r+swn88vX75MRFW1USfs6OhoEmM+HDx+/PgHP/jB7u7u1atXs8ynlAb5oAp1WZabzWa9XG02mxhjCFWWFXrxEEJV1cw8HA6d84eHz8bjseZTgODpw6d1Xd+6dQtQJtOxJs/Wm1VZbcqyPD4+nk2mxpjpbLJ/sHfzuWtZlgnD2WL+4MGjOx/cXZf1ZDIdjia3v/BauXnhRz7/mST04P6TBw8efPDuD1brxXA4JOHpbDws7C/83E+//NILN2/e1MziYDBwzpBJKOJdVq9PAeCs2hAEJPHeS2ziLmbkqNgNavW/Csz2tGLvtHaC4b2vYjnKizLULKIhv0KlqWn92SqZCx5FJ5N92bO/8c//yUfvff+v/tW/trM7+/Z3/vhnfuHnXWb+8Du/n2Vu7yB7cf78c7evW5w8e3K4c3l8+OysWnEMMJvtTMYz67OPPrxrvZvt7myq8uDyvt6rIdKOv6IoEAyiWSxW63X58quvQdPqL3Uo+zYmxiiieWkLbQyXUhoMBogKSzfY9j9iL4LpemcaT653tDrj13lynV1pF2JLcpGavREN8fVqRBSTbA9wkzln50yMcTweZ5mvqkoLUko6Sq3zy02LhYjOlxArgDEmo9eRls+Qg3NG0xw6NaiJg5mNUpi2KiNUtbUUQrWzc4kIqqpWEmFNSKQQ0JgQQi31ZkNFMQRJKTX5+U4mpGHoaWgPmRkIYoxkGzLbPM9DbCi1vM8BOKVknJUUDw8PJ+NhWyNg62xKCcEwJxU273NEEzlpnb0TQbV2xruUEicwWcOj0ycFaA5G6s2eQmROBEqktX0NIqYUyaD3jradrYiAKUQ00Ix67KnXlBIZBADhztGRvrPY/ty8WEQQG+/QtFNhsa0X94xH6ssVtqXzzsPrNx90n9LdFbQOvX7j7iDkPu9E1FobUmg41bo5Acwion2yXWM8ETVDwb1rLyso4IwdFQPlWlw/O1QsYJEPY4zrdXl6eup9DigpcEoJFU6HAAAKugdgEXDOVjWGqiZA75yWDrHFrat1Katqs9mkBN57Q66saw0SBBMAOmuNwRQiIp3N17r1rQ+HwNJMT2oL4oJkkHKf7e7uLpfrB/fuTKef8XmmpxLRiGBKMhpNYuTnnntucXq2WCwOZrvj8WB/fxcwHD59tjObqMLRY6XLa41RQCEzl2Wpe9qtKuA5F8FaK8LWmu4ciQi2aCFmIdQSRodnb9ZE5UR9F2ir0sxsCNXd7iSzr99bX9BgT+YRm9Rux1nfDyA7wdMBaICocZQ1PklCNMy1fsKD+4/+8Fv/8uVXX9s7uDzbnc4mU5cV1tJgMFitVikFQHzy7Onx4bPRaDTIc+995nxRDIuiAIDBaLBem+VyORwUKSUG4Zg4aZszgAhIIjCJGQiNMSk0pNN9gaemxfvcSJIOgK8GrPuT3rYCQjVYlXb0k14qz/Om0afNE3fr1kwqI6sZMdV73dbEGDvVeqHi0R7t5qgaFET9F8FglKabQJlxOSabua7Zq6nzSFTXUKUuciJrdLQBoiFSLWEhxXbyHubelGVJYJSaAQ3t7E5Xy01NGOvKErrMi+DezhSAUkp1Ge9+9AEzTyaT0XCSQsiybHLtilqusiwPj45Onh567weDUZENNqt1lmXO+MVi8ejBQ01xnZ2dhboeD4aDLD988tT7nBzleb5aLdbrMs/zLHebcqUnhTk6ZyRK7nwoq7qq2Hub+el0bJxFA/P5PEvZYJDnud9sVuV6o6vtrRkUhSXcmU7Ksqyqkpld7bIsGw8HzJwk3Xzu2uuvvVxVIdTxww/vHB4eL44fHx2fhhCK0eiF53dff/UqwI8cHh4+efIky7IYY4hVnuP89OlHYfX8rRfyPLcIkkwdVpYw+NwZ75ypNouUIiAToPe2KIokgGQIDcdaYXMIqCQIiRMZ4pgAIKTaGGNJZ+SIMSaECnEIAJvNxmVFoK1fTkQiKNIMS1UR1c2F84/O6Oif7C/+/C88e/bs//if/J2dvd1PfebTv/qrv7IzG1y7vmcsni5On7t5NdbVzu5kPBmt5tUP3vmXuZvt7V6xxqckUqe33377Z37mZwaD3DlHBoDFOSMcOSVEXC6XzuYi4fHjxzdu3CCisiw1JWbIKSELAGA7dbU7PP2cgZ6rxlT3opC+zYNeEGNaLmnp4We7w9n90H1W997UDGFUNq+WgkIa96ufTtSPVhetM9vNPqH2abaEAkJdQ7o+06khBZxy2xXf3W3zdRCYQ1mWi+WZiDDHPPcaOemovpRS4GQs1ouSjCPCxCycfOapzQyFFLplvCAEuqTee0ktsAiFRYCg6+UmJGZIKZEAoalTfPL06SuvvERkRSIIWYtRp+mpEslzIgopppSga1loi1lqpNdlme8eeO9DSqS5+hiRuXWpz21Ko6+bJlPSOXlkRZsVrCUU7MDvKADIn0Sc9LU/fKJLq//oBEndL+z6/Ft0yDkbfF4YLrhxn1zzvjyfv6WLH90X0U6uSBqGlO5d/bdojK6lru50dC7FkydPRARYrLWMsNls9vcuGWMATmOMiCaEoPT9mmXp3sgckUQLx9wOUNLKl3pmSCDcxO4ikud5XSdEVKB3WZaIEmPMMweQlou1tZaT+MyCUFDJ4YRESNQ0eAIICgI2FOSIs8l0s6mqquKWZTTWwVobQphOp8aYoijquj46OirL0hf5ZDLZrGebcikiSn+j5ZJOAjs/vlOF3WKCotqN6U43ESn3bqcxAABhq6a61e7EQNqYENvRBd2WERHAuddfkJ9W5Lp8/7ksqe6C1tNxW3TsQK6oz4sgMw8GA6hqxacLAgBWVcgHw7Lmux8/+N4P3s1yO5tNdqaT2c7UWzcajVRdT6a7dVWeHJ+RAUuGmQd5URSFJuCRASUp7Y4tcsCiqmNVbZRqUW+PAUIIBGiMSdJQxnDLkNRGUOpGN71HW0lu5Rm0rkukQFJpG+GldffVq+4Cj/6ZEhEyJNIwwmsS3ZDR+Q16P10NWri5Q93hxusyrVcNW13UGRfu3kLbIwzAiIIGmYUMIElDef1nVKAAgIQYt62UxrSskwJZlmmCVpuZJHEdQ0pGfUfv/f7+vsKw1ptl0Lr/cmmtLUbD3elsf39PBKy1hHa5XH/44fshhCzLnj17tl6vn3/++SzL0NDOzo4xpq7rqgpVVW2Wm9OjY5dn1y5fYYTc+dFotF6VihQajUYmQ2vt/sGutbaqqmfPnrFEJUK69fxzuc+qqtKticPCWmuRyNkUQl3XCnP23msAX1VViFUIoaqqo+Nn3ljr8/FgvL83u3nt6u7B/snx2Ud371RVtdqsT48ejybjKwezF1+4sTfbH89GCv7L8/yjD+/+t//sn6SUdnf3nn/+1gu3nzPG5D5OJpPMGWu9piHLcoMEpo7WWgBtzHfMsakVog2hbv0HxxwNORDQUaFtQZ/quvber8pNtVwORkPjbAun/v+HEMXzGa/+n+zTJ6dFMXr8+Olb3/uT/9P/+X9/+drlO++/fXpy8vkvfHG2Wrz7zof7V3Zdlq1Xq3v3Ht24cQNSTmis9et1effjd09P51evJufcZDJZr9fT8SSESkCqUEviLMuqUN2/9/Dq1avWm7IstdEdGpcLAVMruAC9THWrUM6RKgEAKCURmu5rtAzRzZkx7Xy9/lftKztOIIJ6AUSlhGYQ0GxbZ2ixqaAlfakePlWszWYoB1gdhNlYkrZDtWHz0QGAn+C56DRL301EbKY0qL+swySMNTHyarVCRMUNhBBYoqasQqzJIMc0Ho850dHxaUpsvPOmCJhCCIUdBkjI53r9mk8XzZ24EIJFCwLWWlEiVgTcjhMRAUzCdYoWqfCOYyjLelOV4/EwpGjFNLxeRCAUQjOrm4w1xqI1OoqO2x0ksoTWOhqMBz7PpQopbYuDLU0Ddm6HrlIINUjS0cUhBNP0cbava7IR2/Qe9GqI0lQsYMvCeP4UdFsjHfxq699sna3tpRChGTmckEgYmAUt99/Y3+7ui8gP8/n6Uto33q2V7XpCtxfvkiWsQENExQN10Lfulc5pBVnquj47WxTjKZFBoiicZwMF2xqDRTFkhrKEEEAEO+yzXpCIrMEYo6QkidXapZSstc4ZEYHEBjEIM0cESimpM2QMMsfM2xAq78iQpFjmnggpGakDxxQRG0wVASIRcNIckp5f59xqvZxMJoPBQKuEiigA0UBTmHUyvXjvlS5IzVKe59aSSGLBosjWm0rVgkoLp0TWWmuVk0IX3wASkqKFulp0bzF7+ge4J0PcudxtAV93X/M12usNpuGpaoSvi7j6kWEnBgYMKA1MKz/NzTSvTCKkbHOaROGUmLfCo/KvIZMhh4ghBOsNJ7DWJgbjirKKo/GUfGEdrMt6tXz28b0nkpgMvPLKCy+/9JK3tNmsOIXlcsGxXq/X6+UCKlltlsKc2ez4RIx3utRZ5si40XjACZBExzFx0nolhFAZZ6VF2qUeD04LZt0m/7DhOtEMtQaxEjm1FDPY1nbQWgsCKUqeOYSmS1xEEjSAAUAQQQCkJsXIIQSwzeANafuduYEpJ2utZt1IQX0ktvFu1Z1VeIkgimI8mNkgmQ5XKkwgKECAQBqnIZHmRKW5EiSNK7qyDSMzsgqD2kT1TTWf16TeLQIyIDvvyUBKqdqUbf2hYa+1NjPeETUN5tVm9WS1DqnWeZ1FUVhrx8PCmFFd17uzyWQ0ODs5EhEgu1osjXGDwWAymQ3y4dqtN9bNl4uP79y7cfM5MDjMh8gNqhLbmoy2/XhvJ5ORtXC6mJO1kiIkkzvLzIhgnUVEbz2DWGucG1SbGoSrVBtjKDEBpDrFus6sExEUmp+enjw7NtYK86NHD3d2dm9eu54VhSBJ4nW54Sghxsl4aIz1A5dlzhjzws/dvnL10ltvvRXqdP/+/W/+22/u7ezu7R3s7OxcvXxw/fq10WhkM8qyAgxwCGUVrLWZ0f4S8T4PIYTARNY7H0JtnI0x6PJmLksphcRoLKJxznmfoTWr5eb09HTvoCn3pZaMDQC69uq+LcDzxevODbBf+cqXPvjwvVu3nvt3fvWXvvf9P3n89KPxYPBrv/Zrf/itb3/lqz9668UbPjeS0mQ8vfPRNzIzspSAOKW0Wq0+/PDOiy++aK2dzsZVVQJwVW0AwDqNMqkO5bNnR9dvXBkMBikl54y6L5rSFxElJe5sTKf1ukyVtOnoNuBuIsgt2KI1akTk2kYY6RUZu4tDzxvtTCEiImx9PoXNSFu+YmZrbGdB4bxr2N1nX1emEBGx1Z/UdwWk13yDLUDEWivS5K6JiBmMQbUlzjU9aGpjjDEokmXZ/v6+M7RarWaz2WgyGQ03B5cvPXr4JAECYpmqTVwjoiEzyIfrsmJuCGq6O9HbjjGyZWBw1jGIgBhjpFWI7epqzsDEwEgghGVZVlWlI9XINOYEpSFcNcYYi5vNZjAe6V6ja8DCivLTr6YaOTXNTFt8lYggXYgpARHJABmwlrz33jpBpsYlVqsmpOpZUJAvCD30UqT9WLb709ZD6j0jci4d2z3T5Jnapg0iIiFVoG29qcNky4Xr96WxO5D6Ka1J3jp8F+4TABClS8no9PmueKfGqz34AgAhBJdxluWpnT6pX1BxhAoTsdZq9W0wGLSEQNEY5zQMEDEWdewviF2v19j0ATV6X0AdJivSRJMiUq5XPs8QiWMAhMy7VFeSQmbdar04PjodTaZoMuczYbPabPz5rmcdnMAISnGnUN+yLM9OTtTZUsutvlcXwGhmRTWM91ZrUn1N0vzK3KCere0GNTb+H3bpo34WSvelvwvSbYpuVFdo7okc9q/TVw7nrnK+t66Vk60OBABE08HmtmdBGfX4HNNNX7o0+OtZdCQRIOt9VlepGNrHT4+Ns8aKMWitz4uMCMpqfXq2+ejOg9u3buaD6bDwN55zCBxCffzs8Gx+cnoyD7GqdcTCRosY0VqbZRlZszOd+cyqo0wZMTtCCwCbquS2KbhdkBZJ8sOyvzFuSxndumFL9JOa2U2grf4XD1dPq3fPd2KQkmgurH/0oK2TGNObldRD+2k9pLuTLbQAfgggjIhEi5WGtB+QCI1pRl4i6nDnH572Nsa0hB2gG+e9j9txZE3/TePWY8P8x83IhKTwPxV155z3A2auY1gszxScZK0FkYNLu9PxZFOVm3VV16GqAhKsVqvDw8PpdCfLsr29vRs3bpycnHBMkWKK9bAYCEKbqkStqKaUQogpBeWJjZHruhSREIJ3jpoZTSAiqWG3scYYb7y1VhDFpRjjej1frZa5z5xzztnd2Y5+d6UVXC7mxq5p7RCxKIpBPkgpjUzT41mHEiA65549e3LjxrWdnelwODZgf/d3/+DBvYdZlh0fn/4//u//t6985cs3bjx37caNK1cv57kfj4fGWmsz61yqKkJfbiKzFMUghGqzqRAxhE2z14hlWSvLYIpcFANmWa1Wm81mOJromnAzqhUuyFvfXvQPfvdKlSKbZenR4zvT3eLqrUs7u6OTo6f5MP9bf+tv/fZv/U6KYTIcHJ88W5WrW59582d/5hf/+NvfPz1eTCdjAHr65NA5P5vNikLT+7W1VvEpKYn2uj9+/Ghndzoa58vFwrlMxDPzsBipKlddg9Ck+kHHkGFzXJCUIx7wHA8NiSC16Q5pnmlcIh1oDxL7C9E/PIioxwzbnBlRczHVDk1UJCyExhhL2BUa9GGtBe/1+LXUj80h1MGUqaEY1rONROrddZ3j26uZdlBgCI1vlFISQQQjLeWGN7Zcra0rRMQaQ2SyXT8YDMbDwXA4LOu6cM7Z7ORsfuX6NefcfLlY1WtepBAC5rher5qlaM0GYtNSoAfbORfryMxkDSEKAhIBMJED0BHUpGghiUEr5URUVZXPTAgxy11MogsFACFEY2IxGPacVO2goi4x2VeO2FIq9Z68mCIyFsOmyf0654hAIOkHaj5NJAk1/BTdt+uzc51TkZ8oAvSzg9Azk106DACwx93VZZs1ulW9CUKoDYgJREAgNeacGk5/Oe97Sa+xuTPYAIBEpnOVetVMZrZEiEJELDFBQkAR4m2vgEFM0KMMVb1MDeUvNDaPCIlSahzH7suW5do5QwQafncaVq9tLXJqqAcAwBofwirWIXNeuxeRRYQ1K+MzxykaAmfIeyMcL1/au3L14OjZ4e0XPm9ddu/e/Q8/frBY1s476o6HxksgBppRwlHi2eIUURaLs1gH7XzMfaaLlpLkeTPYXnPYaheZWVsdR6MBAiOKOu4IjC0dsq6NLpTRJSMGwK7vtq8oezKpI94REaGhFd36WG3COOnBN6pllI8BoN+u0b94J58Xnmxf1JbvJTIDMwPSJ9+iuw8gbR4lWOuJiJN4bxGlCrWenbKOZByCHY2LKlYmIxFJYtabIJKyrLj/8NkP3v3gT996ezqdTMbD6XS8uzPd398b7hzMLl+5WkXgCJI2y5VSGzx79nSz2TjAqgrlk6faMaDDm/M8z5zPsqzI8i7vxQZEBCW0MRugEGquqk1jUw+AoVEVGAGRxKy+uAEATqtyQ4YYQUAYtANTLhQKtwuOCDoZRZp0e5NbIgBgMg1rIzOjqHu35dA2uCUhY4ltZjyps04g2F4TSXnhkNt477xu0TtRMwCAAihIW15JImLgJBLZsnAXWhRFkVLS6AIRyRILApC1nlmDc/Q+T7E2RMYQc1wtN9CWAkaDAhEtobU2xViuV+VqKQDD4djZbGc2vXT5SlWF99577/jZ06Ojo6PjZ5cuXbp06dJwOHTOjSaTqqoOj57u7e1NJhMBWK1Wajh0xRZny6IoUpJQR+ect5lvOreEmVOU9sA25JfO5w00xZB3ORfsjHXOAXBZrgFgMBhMZuNhGughXVdL51xMsFrXMUa1QTHGTVUOh0MREYYsK4qikMTZIHvzzc++8MLzw2J0enr6/O3rAPy9t35QfXT3j/7oj07OTq9evXLp4GA2nt66dWt3MvHe1nWIsa4CW0vGWq2DGWMQJMsyY+rBcISAZVkrYFFiVM7bLpG0LssOWnruIDNTZ4d6/hk0moEBwP6n/9nf+eV/51euw7XJZDweD9bL7PHDh2dHx0dHJ6+99tqDB4+eu3XNnJ7e//67s+G1559/6dvPvi0iy+XiwYMH1597bjgcTiYjpATgAOXo6CjP89l0agy99957WW52d2cpBUAmAiQBhtVqofMf1VJ08qc2uzNv1trzKX39DtC9WG2t4pH7+Xzs5S2o1/V2/lLn8h/QYmO3dTf17Ig4XYRoNLhRST0kEHdBTOunNW8nggYy3atQ9K+DvUhLGhcNiIisAcEQEuJ2bqa2hRZFroBrYwwibMpVSkHnnY3H4/XxhkGcc6uwMcb0v2ZzZ4jYeuXSACn0GWFh0+NB6BYBGpq4JCKgqrxcKy4kL4YiEqo6xuiyzLQ+qcLUEDGmFFLDShdCIGMUIpbqWvemu5NOTKVBvWjigROHlpE1ijhmhpS0+CLYVoWQm8pCm4GA867cBbPa/7n/p26Vumxr/95UpXbCIHLuzqGlVu8LXnfqPvlD/71b96utnnf3oA6Y2nSf2ZSQ2lCXmZWR/NzN6z2zsvgiIj579ozh2DhrvRN0OnlCuuydATKmKoOmhVJKIXQYpmAsckIQowls9S2yLFuv6tFoBGh0eGtd1zEyARAZ1qhDACS9+/b3r1zef/Ozr9+6dvnSlSu3b9+++/HD+3/vvx7kWR15PBxV6zIxG25XGACoGT7lvV8sFoo68t67tukhxMjMagBCCN6bjpVDhc95a62FlgGcengvbH3T5mg0EdG5xLD+SZMKtp1P2kmT/twX1+7AXwB49JTGOTHrXn9BNXWuXvuCbYNwM30Kt6Q2F7R5t5utqVPKVisIKSWb+yRR4Q1ANrBkxSBJIEKObI01xtUpuWJ0ZTxNKc2X5eHxWVVvMmsVZ3njxrXr16/v7+6MR8PZ3gQABNJ071JZrpn5+OhZShERCXi5XM7nSx3LAcCj0UgZqrqV7Dal0/ZqaPWr6Qyx/oHSSlAzK4Sb+WxKxd6d0C7H0D+MrUbVDWro9HRPsS0AxRibOV269bjdCxEhaoZEdcUW3ZqmaamnTDpz03ycqPt1bqcuuODNGwlAWjo32QZFHZMn97pwEExZN3BeDWjVD+gi2w6cAK2Bny9OiciZ5jiMhkWTPYo1J1gu58fHh4PheGdncvXqJcRXnj59yszL5fLo6NlqtcqyjBGGw6H3vixL65zOEU5JnMt2djIRLMsSWEKK1lrrTV3XLnPA4Lz3HgHzFONytQJgIGKJgEJoWaLzxrqRV4o6Y7SoovF/ljmibFNXe6PhcDgUwePjY2tdCLVyB1rvFLFyenq22TyZTqcij0Kd9vb2Dg4OpuNpHTY//uNfffvt7/3Kr/zKZLZz7969s7OT7373O7/9O1/LXO7IeOdefenFV155Jcv97v6+z+xwWBCRIdAm0BBSqnmNtTVGlbox1hV2sTxLDKPRSLWlb2sF3aHuBK87lX2F0IoWAYD9H/2H/+Pdnf2bt25v1ut/9Pf/q+PDJ1/8/JtKa/7o8eHx/DAI3Xru5v07b3/tN/75zvTSIC9yn731p+96nzVTHSWuF3MBHg6HX/rSl7SK8Sd/+sd5nl++svfiS8+LyLe++W0iIhRjLAimFFqINCEag0IAzUy+Xh+ZASJA6Y2w7Z+xi1an/RMLImLTqwLnjpMuAmLDay9wMfOx/aE50hSlwQSklLB3HXNuivO5ZcUusYdIhAyiX7ZT4t0ru23TzSBtoGCx1kZOhLherzVoGAxyLRXN52c3blyXlBBlvlqezZfr9SZEZrCj0SgJz2YzN3TH5Zn3fr2Zy9a3a7wHkK1nEELw1m81uI7ehUYV6pdIkckgCyeO3mWa2qxDU9BRZZQ5HUDWZMKZmZyyldkIqW9yyrLU1nHEbaoqpWQaBXTO05XWR/HeQ3J1WYmItTYxp8SAQqATqUGhFhcMW6vFt+4OnH9056T9/VzV44IiawVPGwNbe9iiSYBReHv9rUDAORUs5812+6e+68kCSc4f5u6yjQHTZ7Q3E2j7cU2DnCZgSERCqIuiuHLlCpBLwmVd1RHW63VZliIpyzIksdYOBgOdnKkim6I27TYKHcEgwHg8bkGsZeJAjadoDZH1pqqqclPrzlqDRJjZDIH/xn/w17/4+c+++NKt6WT86NGjd9597+nh6Wsvv/JbX/u9opgmBIMUe8M6m4VCts6p46Wmbr1e61+tMULWe6890Toil3kLIuyKU4QJETkmAtQETP+E6tRFIO6OKkCb6GrxpJ9c//7P/R3szH/3Ajn3pRhAEWDYdQK219sWwrAlYtCIS6SfpNzmQXtO+blHe7ckIsAiwDFqka4pU642601V2yIZX5RVlbgyhrIsTzGFmp1zArip4t7eXrleWVcMRzMAqOs6Snrn/Qff+d57JHz14GBnNimKIs/9/t7O5cuXEDFGvnz5IM/zUJcPHz48evq0yydVVRVCiM1o8AZon2XZaDSiDu0qVlp8QkgcuQmlEEWgobAGaGZetQ4oGmOZmxaZdg0bxr7tLiCk9ox0O6Vp1JSSoCphBhCJTAAtaoRBJ9QIkTEsscFZyjZWVLo/oG3wTDp/CTApPVtKKGQQUFAHJCCSMDd9EEAIJMCAKCBkSCk8uiyA6tWqDKFuVI2IKLebISfaJgVkjFPiQ9RBbdgk7VJKMdbMTIDOWGkIL6Qst+V4Q5TlJsZobWIOp2dza/1kPPDe37h+pa5rJKuA/c1m8+jRo/l8DmgUjum9pjhza81wMpSYxIIzVkgMmsDBoq1SjSxgKLMuHxXG1LrLxhKnaBGIuKoq5xDIoiHjLCIa75gZiZz3Yq21thiOQp0uX7kGQFVV0enpeDozxpRlWVdhb2+vKIZlWVZVIKofPrp/cnIyGY/z3H/88R3nzSuvveJ9Np1Ol+uFz/3NmzczV9y8fiPU9W/963/1d//ufzmdTm+/9GKWuTfe+MyVK1eMo7PFcpAX4/EQxAiZsgqbsh4Oxnmex7CZzWapRTuklLCdYwZtJGBQCFgk9dgozyn/zqbYF154/unTpx988IMX33jzl37xL3zw3jt7s1ld3n/hxZd/9Md/whjzne985/e//o93xruXDq5a8L7I58vVRx999KM/9mPr9aos14PgmcE5t7e3d+3aNUCh8fjW8ze+8W9/13nMMrOzs/PCi89/fPfBoPDA0pZyOnvGgiSIRBSZs8yGoBO4sT14AIZ6HW3aGIgCRIgJmpS1HmzpumZA+ha36YgT4namvUh/SDn0DS2S1cEjW4ve6jhmlosoou1p77u6+gSiRTDN0NP2I5gZWh3a1enae8DE7JxxmZ+fLTabqgppOnBVFYwxIiwpHR8eEgERPX729Pjo9ODy5cVyfnJy9oQsWZOPi2ycWe+DBJSGlF/HN6knp8pIccqWGpoPbzPnHCQU1mHSICI6LUSVhYgYciYHACjrkOdFjEFiWi6XzrnBYOgyn3SqvLUauiX9arpKiaXt90wtEXmsArZl305dCp8TU2i6qNg7uwSu6zrLsgZaSKQBEAlAAobUgZwvPC5csL/jn3zZJ198LreKKpn4yePUmcDuaimlC4xNf8a9SfdLSgl02F9bnVTZTpAIsH+dRun3hxqpTCkxQROjGwDI8zwy5t4VgxEiRh2KkAIAlNW6ruvFYqHtgUU+1KgOAJS/t6zW3vkQAidgicyGGfV41nXtHALo1ZQIm1OMaMmRQZQUg3Xm5PToa1+7+/Dhg93dvZDk+GRxcnLiVN6AgqTzQRAAAAolTsvlcnd/z+dZVuTj0dRaqzw9YJCI8jzXe9ZciFL7pobKWKtWrO5gZ9qpfQBAAsH+yrfbqAzv0nD66+QADZDOiY1uAZ+DqG7/yqwTs7ah8Cf9M31595rWxd9GgPouxe2ZRsa2blYX9vWTx+plEpG1BpLoniGixGSMm8+X3/7D79544dVsMBhORiw1EWRVrXlN770IorFPnh0ao41BKCLkc0IQ8ruXLqcQmePR6SocHnOIzlnvjDGmyPymisPhcJjnBwc39g+uVpsyxlhVG45VVVU2JW3lW6/XYV3aTXV0dOIU8mMpy7KiyLQncVPVVdD8Zo9TBlFElBkY2uRlV6bE86nN1nVDYwwIc+ri26ZrsnHWDXhfiHCs6pAqbq7Q6CIiahgcoUXBb7FrCmM4JzntM4jYTD/TOI3IGVMTNTiBCzpHezoTN7ULaO13J7EKETHGKNILgJgDUQIgMkCJADgp6IKFiJC2mcUeFBVbkLGAlpVQRKSqS53QmlLSajGzlNUyRHN2xiLivRcEa3C2M9k/2BU0H3/88b1798pNkWXZelUm4cFgMB4PB4PRfH46nU739nd1OkXjDRvs+o7RGu+cpKi9lpoQPT09tbahT3POVTE4oobcFQQAMl8IY4ycUhoNx876zOfNRLuRtsGJiGRZ5n0uItPplJlT4Pv373/729968/Of/fCj969fe24wKJwzo2HxuTff2N+5ZIkmo9Hu7vQvVfXRyfG3vvGHb7/99pMnTw6PD99449PMPBoW169fv37l6mAwAJFQpZOT+XicJtPharVIKTmXaep0U1Xm/CTZfs1NlcOFX7tnrDf2ow/ef+edt3/V4nOvff5g/9r/6+/+Fzs7O1/40c+///77YV2tTleTfMaRIsjp8gwXq8PDQ59nMYYsc9PZGBGNcZnzH71/98mjJ4eHT4qB+wt/8Rd/7Me/+Iff/sbp4um3/ugbr738We+POIpzFKuAiM5mVYrMEYwzaGKKHNBaqkIFAMY5aYrupGGHhqSMAVHQEBgUwNjS15IRJC2KK0kXIwIzh5QMM5EVxEZ5JSYixgQAhAAiLJIEIDWnnYhaNJJBoKbCyVHrwakl02fWrhZqmVRB54g1FXoDzGwsppTIGmt9CpEhAVCb+VP8gWjCOaVkjA1lsNYiSYy1JYeIm6rK80FdR5dZEQHmFKJB8FlWlqWIzOfzs7O587kzlkHKzfpofjzaHV167mqdALkhwtCN1wNprXVkakkhBJ97FgHCGCMIMrPzNsZIiqbq0ckKQFVVLDGEZFxWlkufGUkNgi2EkFQnGhPqmoi0PSulZLyV0FkZRMSyLDlGIkuqa7jJGiVmMBZ03xlTkq5qgyh57q9duxaituYJIpFwFaNBxNZkMgoxaAApIhpQdo1RRO08uyafyszsaMslAQ30hKVlcBBI21bQLjfGCRFEWDvsUtqyD3QHD9tixHnXbeuai6YoegMrENEQMnOqg/e5MFuiGGsRJgMco1hvjNHYvnF0EAGBGVKSGBkEiQyhpJSyvFDXwQCGkKwvUhJo3+iIMpsj4mQ4SiAioowwMfJms6mqBSLqyjhnyrp0eQYAEFlzUca4uua6DkSWmWOs1T7lmRNvEQVFyKDzxe987WuA/MorLyHis7PlcrF+9OTQ+YEtsiis+Y91WUld2yzXAIwisXCoQp4Pzs4W053dCEcRxdkCGVjZdYhiSs6Sjn1EReu3eB0iRhJgilEbfVmSclCxN177VBGQWs+JDCIgMZCOnm4HMze1JFF4gYpSPO9FIXOTxtb9TUmakJe7bW1MbZfZ7XR0I2KN2kEASPr9ev6cMOpgCGMsQIJu6hRhTGys1SC1i/p0R1iwTo3ryVHyzKJAua4ePz01g6Ppfjh47ioiSgxVuVY0T72YN45+SkSo06WU6jZUdZZlm3XlvTfOGGN8GoZYAYu1pq5rBP7GN/6YmbPMD4fDK1euTCaT4XA4mo2HgwwlbarKWKyqajVfpBRWyyUkDiEIw9nZItaHxhggGY1G051dEjIgwkKOlBglxqhnJ0VRfxREUp2MQWyIT0knPyAisyRUbxIIyJAmiZmQEnNKoi0sllBitI6MJ0KrxJMo2HRitXVAEDJEgH13sInM9dQMh0MVGGNMVEIKi0q42PnE3JHbtSRS3DY8WmeQXArJe5+SSAKyqFe21rrMMiQAtN6pC+KcMwbrOhpAskgJrTUibJ3pmIxSSiyCZFWeRUQnuqrFQSQAFkAQdMYvy5VBy1bqFBARBSTFPMu0A4xBVsvj45PHIhJCMsbceu7ySy+9gognJ2d37907OTl7/Oh+CHEyGZeb9fzs9NKlS8PxKMaIQMzsvWMkZkYrIUSJHIBFIACL4GAwGgwGRKTErcY77GGBiqLIM1fXlUF0PlOcgzEuRgbA/f09a60Iah/3YrEIIbBginWSuC43b3zuzUuXL5+dnD5++KiuY1FkIpJ7Nx0P8jxPHKJUs8szO3Q/NfqpWx8+d/fu3V/+lV8+Ozu5d/9uWda/9a9/69mTw9u3bk+n06IoDq5eKgb40Yf3Dw+fDoeD4Xj0/PM3m4QLMrYMrsaYCOrHkzKn9H3uvh8GAPaf/dN//ru/97XPvvmZf/KP/5u/+lfGsZIP3v/4L/3Kp6+/ePt6iv/0//MPLdnRaKfIx6en85PTOZB5+PjZ7RdfOlsuDnZ3ptPplStX3n333RDSeDxeruZVVQ1H2T/8h3//qz/25avXryw36ze/+OblW6/Mz5YP7j0yxhDpaeGUgtoVtZDWUoyRHCKisBCAsaScqyIC7YwX7eyVBIjcHD4AYGGlXWm/XwzMzNSeFkJCY5m5qU02OrTJ/neqsDtdIgI6/k1AGi5KRIVAgdShNKjjWlNj9rcoky0veeOriW1tuRCdQ/yo3QIUAJ1h14XYmsDj9XptjKnqkBU+pYCIV69eHo1Gm6pMKT333HPPP//8/Gx179699aquQn3lyhV2cLJatJBkNMaYZrUTtrxHWgvgphHMNlgWaUgRW/9yy1WbUjKIzrkYMSZOKZGznNjYZhh2WVXnHH/NDTTFtCapboxJco7erPNa9CLSffFtbkkQTYz1arEcjexgMMpyY61hZkyRJRo2iUOsk4gYR9q52c106TZaehCK7mc1Ng0ittfT1C+AyifKTyIJzx+k7itA79H9ej4b+kNe0L++htqG1DHoVzCTHnKOmFLqipxEZMgolJ7bugYZbeBXWqNmxw+Pj3yWMfNoOMTzud7ASUScyxDRWlA6ypQSh6ZHta7rk/kZABRFUZalc1lRDJbLNQCsVitrrRK06iJkmRKaNPNk9g72mfnBo8dA1jmX5cX+pcvz5ZqTCCYSjMzOWZYmIzsYDLxzlMhPs8VqQdZEhoTAgmVdIWKWZXUot95JC6nkJFUMaChBEgRjTB2CcxlDQ23KLcFedwBZjY1w23+NAEiUhBW5dnH2QH/Xunp0qy76MFM96+cK6BcE5oLw9D4LsZliRdAaoe7jpBdhd28nIu418YUQqjKARQBijkSUO2/QpjoV+eCFF1/av3rreH387T/6zmx3ZzIaDweFc9ZnWVVVFafcOrQu1PXpyUmWZbJaNzJMFGI0znLEmCIAGpMZg+RM7nIimGajGGsSWGzK0/fvhFAhGufMbDQYT4r9/f1imE9G44OrNyQxcyyXm5SCI7NYni3OTh89eeScWywPHz46fOX113REFEdGNIjknI8xgjSzBLAlQGaOen6bZkDV+UQAW2rWFlbVBGN60p1pIhcUIIvG+hAwpaSlEegdkAvnt7+b/e3oO9b9Q92pxO5l3a6p/hGdISva7c5ajW0iitacK6axmSwgir9UZStdsVKz4J10/Vlqp+3nwK5npWN5bP3CmFKKcQUAApxlWV5keZGpBMaUVqvV3TvvW2un051PvfYSQANIQMSnT5++8847z548Gk0mu7v7052ZNY6ZsyxDa2JVc4gKYt1sqqpaWeuHw2Ge58rQrrx9nSWtQ/IuRzAI7VwNRESzXJ5VVZjNZiKoHiEA+Dy7Nh5b7zbr6smTJw8f3HvllVeKolgsFiikYPm6rg3Kk0ePjg8Pi+FwkPsozBzH4+Fmtf65n/u5LMuGw+JkfvIX/tJfWJwufvfrX3/nrXckQp4NQgoffHQnfZgsiHcGCOfLxac+9Rozs0RITUePbkGHc+i2uzvmFx52vQl/+S//eyfzsyxfvfODD4Hxtdc//cGHH27S5o3PfeYXfumnvvEH3+KYUpLTs0VRDA6PT/f39/d2drLMe2+dzQza1WKtoJT79++/9NLtLDeXLu998P6Hgas//sFbb7755o/64lNvvLy7N3vy8Nmjh0dZlhOK9x44cArGICew1jCAFasl9ii1iAEyQGisSTEhIYCRdhoMIiOK8s0gIgoSkSpRYOSUEMiQshbrFENGkIRbuABAF3pSHzHQHidNtBAyd0UBdb/KSvm9TJPC2YLrW/QuGsLGyeAQUm+WmZ4ro+gxbfnEhgYid3l3dEVks9ksl0tjMuZKP5oj3rx58+DgYLVZxxh3d3eNMacni93pTMQs12vM3L2nD8qjZ2OZJE7e++XZUkSMNYAOFHoiEcw516R1UvWLb09v38Zono9TIsCUEjYnH4iM5nG0HKAxn7R1W+dcQIlRIzdWu6hXFkTu+bvdyncr0LcydV0vFpvFYsUCw+HAWpsZso7yPDe2oKSIKK7rGvgcdVynRhNHQDENOLvpS1K0GW8b47e1JCSBFv2GzcokNfW9oeAXOVQv+GHSMgx98vj1v3K3CI3b36xD+wQzgBgiZEkNugtQ6RIEkAU5ATCRVj+k3UcFHxA5m2WZr4L3PnDaVGuFcwGAEGoJQMHIXd+AOr7kbJ55EcyHMMWmyDifz0WWx8fHWkdGlJSCCOnqEWEIiZnBEAhVZVAuEiJL1m02ZR14MBipYCQBQpOYY4zW5VoNL8syc7kypzPCfLms7n28XK8H45GWYIwxGLb4GOhFCNrS0a12Sun09JSMqWPoWTsSgSanDsyKAFUIUed/Q+qjhTQ7iNITS7oot/3jr3qD2ufxE77Xn/Vodq6R2KhGV7mpWxB3z2tnQe44+rWKSogYq7qug0GDZNEQSEIyDBI4rcvq3qPH2eygiunJycm9J082m8o5t7d7MJ2M8jzf2ZlOyRtjsny0P56llEJVpjoI1Gq2yzpIFOcNJ8gzFzhVMWTWKbgDkchZJ+ARh2ZEaFOsl2V4dvjw/ffvBwmF95PpaDQaXb9+dXeym+dja+3lnd2d/c3ulWuK5vnud7+bkt3d361CvVzOt75Iit77EAIAGUMhhDkHay1GAIA8pyzLhJMGDCLirFYAlVpsi9wlgrZwKcKaGBPY9rz3wiHkzksH2DpYnRrXfaAeCLiXBz3nfnVb3IhPfyKNYvUMaqG8CwKVIJOINN8sov3LUNd6G6rHADGFoJh3K4gi2AJSW7HslfZboUVRrkcRbRPWm9HAW53bpgLEyCGVcZ1SEkI98uPRKPN5SPH4+BCArLXCDaRvOh595Us/kmXZ2WI+n8/v3jmsqxhjtNZfvnplWAyePHu6M9u9dOnS7u5uWa5DaGZFMDeZsLKurbXW2JRSng9SYmsJyKxWq/VqM5lMZrPdew8ePnr45PO7+4kVQkNlFeoUDTlKMBjml68csMT9/f0iy0VkvV6fnZ3N56eRA6GZ7e7OZrPj05MP797Z399fLpeOXO6LcrMqcl/X9WQyMRbzYX7z1q3TkzkJ/thP/sTO3u58vfz43p0f/Mlb40FBBm7cuD7ZmUVmZnbOaY9npwq2u9zT9p/0xuzJyelf+/e+WkxmD+8+vPbCK88+/Oh7f/pH40l+Oj8hI8P98fXnrr7/7uOUXFlWs+nu/YePX3jhhaqqptPparUcjcJ3v/tdABgOhx9++P71a89lWVHX69Fo+Au/8qsfv/f2Z774xcPDw1/79X/x53/xL1z/1Gvvv/eRcUoQxzFF56wBo6Westx4n6EQIBqDAAlEkw1WEJFYhEEIgBpVKCwgMdZowBhHLbMRi4gmXzucBzOdN5adlZU/Ay3Uk1d1hoCZqW0CQDAisW/gO/3byRN2CaS21Tmm2DkfiNgRQFNvlI20s4EHw4yZ67rOc9sR8QVOdV3rBxljNG44OT2uyhrRDAYDdKaua2YmZ8vl2nqjp5dDQNrOLrTWMjb4CWYG9YqwSYZfVBMtE7qIbDYrpS0WjsN8GGLdHlrAlh1Yf4khtH9qgnsRISQwzYAXbKMu6CB3iEYZ185naL33s9kszwHR1KEZTrVYrwQSEFlHhR3keW69sdY646F1gqXNQXZuUFc77h6mBWV32TgVG5Ymeu5t7lbt9u/wgl6+cMAueJZbqfvEKxvBkC5W7h9maCk3dV+wE+DE2wHS0vRbMTM77wEghFBVm4YOl2iQZylU6n6llKKwTuNmZvXATJsf7T4FADtcl3NuNpt1DKhay9CwEhG1Q40ZjDFVDCLJGMcp1VWFJAwVAEBIVRUiAxm1euIyy5AlZm+8Vu3qurberKsyCS/Xq3UdwBggTMw286lVbRoyMbPOxVKbFEJoG/bJGKP0/GVZiqByaqj1zbJMsU2ElmxHtApNCvbiZrGIUOt9EZH0smKte80XN7SX9/rko/+nvjnvPp1bAmdp0OIqYO3bG4LHhLh1N/V+jTHeIyOqAOvVvM8BzXK1OVvOjxZny7jOR+NMZLpnQbCu44f3HujZr8qyyIubN2/cvHFjdzZN6NiIMVktWIfKJfCGynUNIuuqBIDMuhWUuc9ExCDVUUKISGAAjbLqkt85uAYsVShTrOer+tnhw7ffeX+Q5ePxWEcWjobFZDICSpYcmeIH736ws7MzGuTD4VCbWFNKwwJSClmWWWu13VJANptNXVfGmKKoiqIw5FQwVBo1PmRmRFL+dyWD1Qo8IFtjrG1Oeptq2oadjVCcT3dtNUCD26NP7uaFne0/j72woQkRCTrghz5QSHN76pD1lEBHRHdx0nHXBfVD1csPvSt9WYxRhyN1ktxehEUEGndwq/E0/inLUi9kHFabtWoD691mtS7r6uDgQJj3dievXnpRGM/Oztbrcr1eHS3PvLMnx0ePnzxSVjNmHg3Hly5dGo1GKSVmUC6JlMRar99hfrbQ2RWXL1/VFECeDSaTiY5ZNMYwQhRh5lVZLtYrb2yM8fRkjmCuXr7inBsNJ0VRKCZMldXR0ZEx7o3PvsnMj+59fHp6NB3tfHh0fLqY+9xNZrOd3ene7gFafPHlF5jh4PLBeGeWhcHO/uT46ZO/+Od+6cnTR/fv34s6c1mzP2D629rXId0P/R1RT8C+9unX3//w/Te++NWqqn7vt/7Vj3/1q6+99srZ/Pgnf/anptf33/32t4rB8Ozs7P6DO1ev3Dg+O719+3Zd16NBPp/Pp+Px8zdvz09O93f37t//eGc6G4/HiOizbL5c/tHv/1uWiMZcuXb57NrNd979IPvw8WJZ5rYwoNgpWJZrnxfAwBy9NVGSI5NSVD8+pQhovHEoQkgsLKC07K7B9kjNRohIELmh/wYBScoEQ6iFogTCwnoF08QxTdmi4xVj7W1RTnMQZtZIiFpguKpUxUMaY4A08SPdsaGGIWI7woKoORXGmMSxf6T1Ldo23E0l0sPZ1lNB9Y6IWDIooFQO6kPEUCGiJJbEKUQQscaUZWnBq51QHECd2kqiiEZw1A/vtmXWraBwy7euzpO1FkgLNy1TIjYNPvotnPLQ90bqWmvJmBgq9cbAoHcupaQF4rqu80GBxoS2jpAuDDXveU5qWRsgf2Ln7HA4TCkyczGdJA6RWSBBwLOzszpWxqAz1hjjeo8sy9RiKZq1W3z9uBADABCBwn46dw0U/HHOQJ4LaqX36Ha2+2u3wtybcNVf8x9qmKUrWglozy80Vra7ja36Ts2uJUCw+kwj1bqESltKiLgqNyGBy7MMcmBBNNY5b3J1Lsu66hacY9IxxogIUGkw7V1uvAEBLV/GGFlEEe+ITeMkImZZJiIxsoiEEMqySmUwBr33gCJJjDGKMhQ0ZVnGxMxgjSfrCDCESkScsYhYx4jWoHAEKTKXBDZV1aKPAU3LeEzCIMJc1bU24avXaL13zq0W6yzLEA0Dat9ADCyQAEIIzbANFZXMeWsNEgGyNdvJsLpTCnwXYZUA6fjB2rPc38Eu/wFbrwi6o7Hd5Z7DBC1qkJkbfAU0qFBVUBesOHCCbSQFOiNcJYGZrLUIEI1JwnUInFjv31i3KNfZeJQIAov6c5TYe29BhuORaSfMVlX1+NnRh3fvhbJEaw8O9rMsK/J8OByO8mzgzXBQMPNwOLTWluWGGUIZDIGIkIBzbuCLWAdlXTfGrcsUq9IX3mcO2Q8H0xBCiNWmSnVc33/4xLoG++G9R4YU4sNHz/LMee9jrPf+f5T9d7gl2XEfCEbEOSczr33+le1yXVXtvQMajgRAgAAl0AkiQUAiJXFEauTmozQjza7ciPpWJDVGo92lOKLEkUSI0lI0IEiCsA3bABqN9raqu7yvevXquXtvZp5zIvaPyMybrxqc/fb+0f3qvXvzZp4TJ+wvfjE3lyR20OsPhn1jzHg8ds7MzMwkmSuKwhrDzOPxeGNjgyMYY1xi9NSrO4V18wpVo06qGjQgCxIAELT8KtTSijAzqIzQ9zjUiAh1ubl9nBttINtfbQlpmwCpO5OwIS4zmkgGIpU1tqayQcIYAjY0B00rialZuPRuAZDj1H2EConBst0PYAYi45JsNM5FMEaxtqrtUtOCUBGCSIycVnyEYHQMjJrCvCCQ0pfdbjfEMDczRGuKYmKt3dy4UfpJmnTSNJ2b7S8uzCRJQtYEptFodPzYm6+/+kqe573eYGlpaWlpudcfLi8vG8T1jY2000vTLM9zAuqk3bmZeUEQrc96zrKs2+0lnY5L0yzLEDF4SdKUGcQX166tjEaj5eUdw+GQAaKI9x5ArEsBYMfO3Yi4tLyhZM4I7Cc5h6gDtWyauNTOzM2NJlsXLp0XwYXlpSh88dqldOuGSa0hmp2dnUwmzDyZTIgoSRIlRlaCKgV4VqojqpWhWqlPPWaAKp9t77jr9vX1TfB50nGln3zlq1+8dPWKS+jM2QtvvPnm0uwgn8QD+299441vbm6ORHBpqaP5lfX19dS5EydOiMjKysrVq1cPHz60Y+fSlSuXN7bWV1auGgtHjx5OEvrkf/xPgvDjH/0JEnf+/GXnLAnGGMoY+zOL9z/4cL/ff/H5754/9cZw0PPsRZAa3nMWEbHtkSCAZKCaD8H6JwNoRIilatojEgZhRcPXx6bhqFSReqs2nJ4KLVcpIg0r1p/Kj6n9kiYv0hyq5kQ1WTdELMtSgieiUPrAUc9JY0HrYKhqm9fWHq4HXHKd2NyYbKVZn4giVyzz1tpOp6MfMYDWJTEw1A1BZVlOJhNrrQBsbXkiIjQCMcYpU3ZzfdSJLxy0hMTSHn+rKqn6iKYNalSyKctS/dR2YKSXjTyFWUSQpjxkyI7H4+FwmCSJH00sVu+vmh/fAoiBOhflnCvLzfE4N9YhQpqmAcE6g8Yg2aSTzcwMojAAh9JrSDceV2GZwiNUdzvnbHu+MgD7UGuz2DTpVHps+zoQ1Vjst+Sxvqfv1QiMbGvL2uZ+NZdqPl8HBtuEChGRvjfXFLVEJUqNR1EQIakDR0R0Y+V6d9DfGo/0QOn9KEMmGlLaQOccpdMoXLuKvA+jrRt6M9kkTWsPLEvT4XAoUjnHOk9ML6Ib2u/3QciHIoSgjNhl8IjoY1WntkhlWY4mY2utNeloNMKKKJwUI4hEaCiCFN6LiKvnbQNUj+yssdaCqISkOp6IJXAMeVF475khBI9gksQwW3BgjGl62WKMIjGEILE6OAIxsU6pvZ1zoi5Ry4JWP+M0um0ayra9obWz7T/dJAMA2zRP8zW1bFRIxLe+RET7flT1N5LGHDAqzNlaY8tQiAgAxcDowJAjayKSTVMkctZ67yMIIwBZIfA6w4gsJTSbdV2aiEiMfn00Wt3YiCFICIbjsN9DxJ27d+3csVQlTUGCL7tZh4jySTkpIoeQWJckCaJnZoOuLDnnAMCeOHJIkg5CSUSzc0ssgTkwMwGWIXS7Q5GIwONJIRzPn7vIEkLpx+OtPM8Xlxbe8553xRhXVtaTJME07Xa7vV4vhCCM3vuinIjIZDKReoqJc0msGjWMkmoaY7RLBZDVWWkfq8qviszMWE+JbZ/xxmGCVqqsbUpukhnYnkdvXxBQrLU1cJtV8DSdrOrUWqvOdvAMEIhAZDrrQt2vRl00v2y+glugmubV6KWGe9IYYwwpJnh6zy0KDBGdVVAxUDKzj5El9rLUGARgi+B9AYHJGOfM4uJ8jNH7YmszL4pCRLIsAzRJlqWdzgP33XXnXUd97iPI2o2N8+cvHj9+HIkOHz66vLxTQgzB6yEggzHGsixtkqpp62Yds2iRJVacOGicTRItenR7ae/ChQtF7t18mmXZZDJRIGxRFM65zc2tLMsAsNfrz83NxxhCWSwsLHTSbl4UMcr5S+d9DDMzM1evXo1RRG4459bW1sb5BB1hDPP92SS1KyvXVKcBQOUPoIXvdVxJgJuiWWsjdNntd57+9kc//hdWrqwYI+98/DHX6xXrWydPnrx27VqSpFubuHGjzMcw3iyvydojjz1y9coFLULv27cver+2tuYsXb16defOnUmSbG1tEdGlS5fS1N159z29TlpMJh/+4IfPX7vyxok37733/vnFmWJz4sDm3u/Ytf/2+x/KQzSDuQcee5vP16+vXO1kMxzDaHMSY0yTjrWWg0eHDFrGZp2ahQgsJWCEKGDU22Ks+vC1BUyLXoIV9zixAKDRscTNEgBArKNVEWFlzKnASVUNCwCUoKGaRqZKmUB0zldVB9EmNrHWAUSGGGNEljJ4AFCEjURAhWnUsyOrXEs9X699qFTuVbnHehIfM3d7mbE4GpfGmBBLfWeeFwiGDKrjhdaQMQap8N7UHJIsldeIGqDXpSzY7oBiHQs2fcvaVxUkODSNsWFmqCd16L0qBbDef6ypVqHGIUINmGURl6XaJdp0qwEAgtlue7C9R2VZhuCLwrPk1hpE5FLIgI8xxDI1nayTKDGsMzbLsk6nA/U6+1B679fW1hqF6JzLskw5paydUpZoeoyj5+0pK0RRUmuo517fpEkbPdtWu9Vvpomr6Q9tIy0iMXKz4zBtDiAU4BDZB4OmoSSChkyGBLDCaFc3L6hzrgQqAfMeBKHT7c4uyGBmtgzB1qnNsizLEMutUaOFqR4Db5AQKUkyRMw6GHrVGInxeFyWpXYqXVtZcc7Nzc6qYjXGmWoYSLQuLcsyL7wlS2gTZ3Xfsyxj5lE+8T52e70YWURc4kSkyINzrvSFAWTmTrdzI99kEKHqMAgC1YAVRISaskENpLW2xKCxQYgFxNJ7rw9lrfU1Fx3WvniTNrB1GbfeHfDexwhNlhTrRLKzri2Qug+tf9YZsu3FxPamNx9vHbfpBaUqqtZDMurr63QFAi3iY12fbDT41GnQG9bMnA9BcRgaoGdZ14vZ2NhyNi3L0nMkCxIDs/hQWmvRWEABNGgNcgxRyKL3hbXWJZbFOdcFAF+U2ttijDl++vQrx45rKXBxYaGXdQa9fidNnbGzw0Gv04mIa1tb2p/Y7XT02JIxZShFxLCQdZM8zzL0RWEtAYsgJEkWBESgGE/KokhTl5eeOZBA1u3Nzs6SwTJ4LKoe8xhjnufaF697OhgMtOxYHWdmZimKIngWEWMRABjRUA32IyECH4P2hDWuCba64NsnvQLaIfN2YH5bi+pvqH7JW6xy89JYhWMdDdaolZpJuBqcAADCmrwHhnoGEBpENhFiEOccAlXNZy3dJQj1BEyo4PlaGQ9Bx7HrM1rnENHYJq3KIiJoAFGqzBmVIVqq0CAayXsfY4yTfNQfVCMoksTFGH0xkWgBgEBc4nqdVC9a+FgW442NdWAwzmZJp9vr7du7e9/e3eNxnpehLH2SUFmOx9e3ZmZmRqMRCOXeK0I/z/NJUQ76M0niEJF9GI/HWtyIMRrjjKG0a6mesqDpcI4ijBwhAKORBCgwWEEfJTJ3h0OJnLhsbnlHjLywa0dejItisrq2znlRluVkXHQ7/d179+T5eP3G6rUrl3/nd46bxHY66Xg8Hg77sfAtXXRz+N3sfPvgNz/YM2dOffFP/vjRtz/e6fYvXDr95Ne/8Y7Hv++OO+664/7Of/n3nyzGk9R1/+Hf+5f33Xvr/Y88tLKysrKyctfdtxugELwhml+YffXlVw4dOhCjP3X2ZL/f7w16e/fuO3j44NbW1rE3TszNDA7vOjrcsbyyen117UbW64zWN0LwaFzW6/bm5srrKxDHkJkdexbPn3+zm/VUkXW7ncXlBUTc2FzbmozTrCuAOsJeWZIFWEB8KIEjAoAYS8KEKBwlGJcJs0qTzq1o+6E3nQGp84MtvYZYC3mMUXBamDPGMRfqLTUHtVlfPTZ6QIypGLCISFHTMUaogyElvAEA5UE1xkgUvQIiSl3briWsJmKp52cpYrosS9C2MUTnXMkCAI1EqpWNMVYYycqiNEw5FVGQ1JDeGKNGG1RDPr33Ojrd+xAkNJm5oix63aytqjT7xdUYRCGpFJn3XoEzzOx9ld6r8ApRRMRqrztUjqn6FvVloel10sbsSV44Z4kIhQtfigggTvLRJB9lWVJzbVe6T92sDlXdNKrUNHSLMW5sbJRlmZgKaVHVodJUEdy6cXWCkIhI+8ahJkVru1DNOnALNVLfx/cAgmBr6oAKEdQVDairulR3P8QYDaNMCSHVPkdhBGThev6pKKi8JparUmNGvcz5+XlBiiIIkCRJp9OpEmb16AwAyPN8NBoBgKmH2xCRSzKFPKtzlqZpt9tl5qtXr7744ouJc8y8vLRzMBhkWdYb9HU4aZKkzYpJVSjBEELuy06nk2aVMMzOzt9Y22BmZ6EsyzRLKgayXHTpvPdkvE0Ta+1oNFpf24wx1hN9IAaZTCaEtjHDiEjkjIE07RSjDYPE9XQ8dbwiV+fRe28QxLkmUW2MATTAOr/S6AUb8vEscboClYdqTGWqY2x7Who9Vd7QnwLBeasKwqaNrqZi3q6IkKf1zEZ+WqnQmt1ARESisQZDiIJJkgBL5pJut3vlevnCCy/uPnL3BEF8LEMIeZGmKVgzKgpjXJLY0WhEBN1uNwFrjNFZ9bqBimi3ieVANjEx8mBuHgRZYjfMAMHaKF9ZW4+eU0Nzw5lep9vtdLwvNm5sgEREHAx6O5YWB4Oeughbo8nMsO+StCy9qYhjEABDDIjoyzwKDIbDsigSl7LYWHpDaIyL0ScuM4YU/VMR0AtA0yoU9QeFwSmnNBpjOEJZlpG99yV7jxSDS6wjFDbGGKslvyrcZZ2JhMitcL0+pCIiOtKxfZxvOvjYesFbXo0CoRptpn5aW59oorcxLsaAc+B9rEmLqsw21kyKjRVrvpHfMlGt+aFpqrXWKjUutCFl0r7JKCIVxbpyJhGpMSJCkWhqHi/nHICoTQnVZGeJ0cfoRcQYl1hjwaqCDZ7LsryxOhERJNvt9hNrEpumiel1O0iGEPNcNjbWvY83VlaEcGF2Hsjmxro06fWGeVmGMk/T1CBpI6dBmExy62g0GvlQJElS+nxrc9zppojovQ/CCqozxvgYvC/Gk6KbZgxQCrskdZZ6w8FkMrq72w8hsJfJeLw1GvuiBBZfltevXx9vbaGlwaBXlqUqRqx7ubCVya4LLJUAtI+8NOTPDzx4b5Lg5vrK66+/evjIoRAn//Hf//o/+qe/BMbEKG8cP3P14uWf+2sfZ2abJGfPnDpy5GCWJZtrm0liL1y6MD8/v+eWvYHj2fOnsyzdv3/faDIGgAvnLx07duzxd77jgYcf+D9/8//sDQf3338/AHfTbi/rrly9fmN108e8HF87ffqla1ft0TsP79y18PAjD5w6dg44zs51d+3ZdfjO2yCByfraM88+N9raFLb97ixGE0OwlkigKPO777l9Zn7h/PmrFy5cIoqpNXv27jEuefn1N2KQJMmMM2Ux0fGlaEGtF5kpwDwEFgGJ0Miurl2sBnuTNUaLuogUQlC+pTZiqTa9U4nX0nmMseEJnIbMah2bf4IOh4GiKDpJR1NiZVlah1pj7nR6W1vjJKHmgnlRMIdOJ20naZgZmK11OkS58Qb0MJCpKpvGGM0GqsNkjXZtlCLiXMZ1D6CWNfXjDBCrDHYr11pX09Qb89qxUtf1GmWk/WhbRTWDLEkStZfG2FDkNY8oQasurDTxVGuKWJs3zWADgNbpQz5RzUsWGaOI9Ho9rpoZhQyKyCQfq93VKzeTT9oZe59PYox5Mc6L8XjCilFTHIxzLk2dLhpOk1LQLKy0KLtqqlJSRYaI+sHAEQCm2483lyHa+pGIfGBTUUlFAHSJzcfcrDazMMdqHA1X3Y7CSGiZc4lirBU0RBRZFNTiy1gUJZMTjMzMEUAIAYxxiTN650qZ0+30B/0ZFRhN+JdleX31mq65Gvhev6PyOTMzd+edd9foYLx+48b6+rqqabJ2MJiZn5+f6Q+S1BpjkizVJ+2nWYyxLIoYowiORiN1AUEoTZIkS/r9/pVrq2oVtsrxYHbGWpsXRWUbQiyKotPpACGaiiSlaqcw2omJSZI4Mk2PRQwegY0hYzDGAILW2hi9NUYLvaBMIgLaUt20Nag5acQvRK/0QrEmDdY3ZKlr2Vn1C6v8FRJJCOq0tUtUjYJuvLGp2omRto3TqIwls5bRrRq2Jv0gNQmJnlZV65rOl8gsoO7yysrqf/4vf3TowEHb6bIPczt3bI0mdihFUUzKghB9UYjE1JiyLAoRa23uyzp3A85YZjZkmMFYF0ECoBEgMjFEIRICm2VJJ0MGCWHiw/rWtVCUw2F/ZjDb7Wbj0ebGeISrFEBmZmaSxFrEUVEmlkJZOkvAgQCttYAgRJ1eN/rgy0JEiqII0c/0B1mWjCdbeZEjopbnrE10g5rlYmZ1mJLEKfZUE526ISLKo246SQoYUAAkFmUJTdaKTBPZqlsWbyIREEGqyoKmGfpbu9S1BywK2228HGmXF+odlxro0shMc0GoHLLpO/XXSEJEIUyzbohYRuAatIyCiAR1Jz4DkLUxRqppY5tzwYA2SYvJGOs/KQJBI0wCBwCs7WVgCTEKCJIgCKBXKQVAne+cdlzaQQIW4ShEhIZsVcwxbXlmZkFBxhiDNc5kCZGNMY4nE4QwGY9C4NXVIIJZr2uRkqy775bdnU537cbGaDIeb03GW5uDXocDrq+tpp1sfnYeiIhcGYMh670vfc4cDUEoS2/z6P35C2fn5+fm5ubJAEP0oUhSSwZ8iCFwjOyZObAVLENU7R2jlEUwxvb72czMrDOJtZQXo9/6rU8CwC233DLKx84Z771zriiDOs5EhLUtkAajArGqgEADNmCAaqKu7XcHDz700NrG+mQyOf76sR/90R/+X375X547ebLbnz937tw3vvHk3/zrf+v2I7d/9rOfneSjRx99+LbbD4VQHh+/PslHFy5eHMz0J+sjH8tDhw6SxdFkCxFHk2I4HC7t2LG6tn5jY+sjP/LR8Xi8e+/uUyePX7l8aefS8iOPPfqtb363CMXv/u5/TVK8/8E7Xnr+2/3MHbzzrr279n37ye9EkBMnj529+Ppjjz/SW5p95/sf++bXvrtv1+G9B++ESXjt5dcuX7pgCUMob2yu7rhl6fB9R+eXZ1554dmNSbF57Mrb3/Wee+6789rKhqP0wvnzaoeEhKPXYdJN9AB1Vb4dTapYm5aRllZKGRFFCAEForoON6lLERGeRiHV4YyserNqzaxh4AhTqG9Zlmr1ddSDxiVZ1qVq2rzRbF4z4U5/LoO3iSsLbfNiZhaasuMwc5IkkcEaKyJlWXayVOqGgCbM0nvQFgFshWvNc6kipppHVHMqMYaqjgNNO3eVdUNLdRBZZfsaq9OARiVO2YxAETVVtnKayTdNJ5uGC5E1o0bWCAcGsWRcapsFqZI6PE1J1qzoSnI2vVqNACHnXLeXYZ289EXJzKPRyHu/sVHxuWtWTNNjVE3b3Aa2jbXhbIOB2ms7XU+Bt1riRh0bY9qwfgCwrdmg7XcyswgRmiZAr3R9PTKVmRUmlSTJuIw6IIVwG3xNV6Pf729sbIQQlLFazY8+b6ebAsBkMrlx48bGxsbi4mJTECei4XBGZWw4HO7etbcIXkedrK1tvPzyyxDZWtvrd2ZmZnq97uzsrEkcEWl/U56XRIRUeh+jj5F5a3MkhNZaBmVvIRIAEUfGYNVvqM9FRGVZWjJlWRqa9m3FGJlpNBlNJhO9f6AqM1FnrRQ8QBxjBWaAacPXW/VAjTarPo7JNK/MzHmel8WkqTFZS1rOppqBJbbyWE0qvTGxbYh2JTYVE+G2A6iuvFoFqYeVtY16W2sJgiEDPjiDzNEglmX5x3/8J3/wh3946OgDkcMgy0IZBmnqDEmaTYo8TVMwtLW1NZlMeknGzKPNLWvtxmTc6XQ63S5AhROw1oogIDpnyuAJIlkXQgmAQuh9ABFnDAD2sswoUbNBsZayLObFpevXz1y6lCVuZmam1+/ODgcSYuYQReYG/STLiMClSREKBIyx6qi1icsoS5JEW7QBKIToXMJEeZ5nSSqtaegigghtvV0V7JiFMWrBW5gErINumhmT6CBdfWfhgzbHMTPWtMDNFjRnsH18Wru57VzD9g1uutfbV8CabldhLTKdJhWbr2jS/0RkyYgBjFN9wnUjJLXKoO2bUYFBEc3jYlPlaDFCqzFSGdNeAK7L4m2rVz0QAkpL6gSJLJGFekRv8/62+Wt+iPXjKy2OSAyhTJxBkCRxnY4hMkVRFL64sbWFYE6fPDnO81sP3DqYne0maZJl1maTPN/Y2Dh//qz3cZxPZmfmZ+Zm9+zZ65zLshRYnLPdbjdJHHN0FWQ5JEm6tbXV7w1BgNAaDL4oJUTxUmJIozCXiBQ8x8jeB2vSvPCEwQ4SQXBJ1u321yd5URTGmI2Njc3NdV15riD2VSNFXbqZprSh1cqj61NplXvuuN9RZ9A3H/zAnzn28osvPPvS/oNHnn3+xTuO3n3b4SM/9Ks/MugOTr9xAjhmWTKcHTzzzNObWzeY4bXXXpufW4wQyeLc3Fxgv7W+BQDe+263f/366hNf+soP/OCH8pGfW1hMk4HrzM7NLn37yW/+z7/yLz7xUz/9+msnxuP8oz/5E5N8Y/+BA+sb7uql02CZehklbjLeTDp0132HhUbnT53dtfOWtz16LyULcXMrBOkNe/Fi2H9g/569Sx7HYkqUjfn9cw8kt7/08nO3HrwVE7+8fMvyrUdgDLOz8889/RRASDJXFKWIpDZl3AbR8N47Mu2DQURNxqJZSgK5aYa5ACCgksOrXwWEUvMvNy27iOh9qCLplq+mnpZLUkREpCRJiMhz1X5SVEkCEZE0TX1eWFcDlSCWwSMarfV474lsFAmhDCEECiGEiBWhFzNbm7AELUW17W59Ppu3TRuYW2dY9NG8r5yYGCOKxlTojAVCnjoE1apaHRzBDHW2AGp4ftPCxgwkpMAELQ23NVfz0veriDdW1kePKDomTCnWgrCzRpgbZHQ7dqTWGQihhDqBYZF0TE1zKmziEDFNK22rtlarlnmer66uqneiKH59aYaD6jl9247ftsHf0NjW9u+3uenbUWVUD+Fub0qzRMys3pQWCIwhRNLBcITovSewIBGE2Zcu6zBwE5c3qxM1Q2NMhaiqCWn1cSL7JEmyLFtfX1f3TlcjSZLV1VVjbFEUDJRlmTXU6fdCKIFwbm5h//79eodFMSnL8sSp03meBw7drLuwtDwYDNKkk2VZUfgkSaxzDtE5NykLRGSOxhlko5AyjsHUgOJKu0XmENlOzWH0oUlzikhZlkmWWGujsDEVyl6JBlAJA8lIRXGnYBhoGZppprM56VUFExArnHKFIdNJxnouylJ5WCqn2TlniZxz1Xh4ERGuvXO1XtOtrzYFCCqd0uKfA1bgH/uAqEMdtiVN2wITQYBZeUZq8gVz9erVe+55gKkzZiGQEAIQjcd5ag35MklsYpJOfxB6PWNMXvhukgaWXtYty9Ln5WicJ1na6XQ4oo9FEbwixIMPQpSkWQhBWGyaIQsBAocQoxjjmS9cvcrM/X6/2+kkSYLel8Xk3JVr4UIJEhdm5yxKRnLf3XfPpmmMXkHcBlFSm9iuc05hG4SQ57kGk+rxxxBQKNR8iqbm9KEpGwjURx5ahq8KybTPg1mYg+5XkiQuTQAAWDT1q2dZuX4UTagnXdOizAwoSCDCFXQCaipp4Gp8KDASECJLFGBQWv1G2ARgmhqZ1ivrwDjq81Zmu0YEUgWiwViBNepZY9uVQ/WzVjBqCYG6VKp6AAiNszVCbjq2vLKDNT1e/VCgfXwIUM0GAGEQQwa0UC0MZJQMJXAFOBOpMBUIFTJbaryqckuFMu/0eoggkX3pybgYAwHMDoedTqcowvkLl86fO5Ncu9zr9EfjcQiyY9eu4XB2aekwAK6ur127ev3kiWPHj73W7XYX5pfWbtzodrtpkiDioN+fGcyEMvQ6PYlgyZFQCCFCBIHEJGgVryQoBALGknAMnhF01oJBayJDKLyx6L3X7VicWxh0O71eT62hMaaRrsZjhhrY1zam7TMLAPbShYs7du4el+VovPWVL391x/Lyrl17Hrj/4e8+9ezy8uI9D9579cLF557/TpTSmezJb35lfe3avffe++ijjx06dODatWtEuP/QgX0H9ibObGysTSaTCxcunDlzIZ/4t73tbQbwiS996fVjb3z8E39xKffdrJdPwl/66Z/tdvs/8AMfHM7M3X7/g9996quf+vRnBj1JrV84fWp58UhgDiCHDxw4efLNr3ztc8by+97/wQcfes+Z469curBubXbx4sUksTc2rm2+eXnX3oX+XDrJc8o3+7Pp4kK/0yUfRq7YNKmDrLt86NBD0Z8+eXx1fbXX7xuhqNWOOhjV/IeE2IgdVqDLqQquTWNlESuviFEgIiLBNF9BFe/ozVFRU3KKFR159U81dRwV313Zb3XLQMcd1qVlqNVKRehQXzbLMs9RBEU41i3HIKIYryqmEWkGXet1Si6ZWacl1MZgCjmSlm+qsaMWCtXwNG92zooISDWbqamRAVSYrSRJokGfj0vvldBc8dfMzCFCFJgmh7bFi/U9VBmI2v4h1ERHqp6QOUaxxiBK6QM4awEbZ0vq7JHqmiY5V0XD6gJStQtUo2eqpwu+uY5iyKgeGFCj2v1kMmmMsZYaVUGbVi+S1I5+IyH1z9OMSHOrzIx1nk9f7JUIw0gdcRKRAOlcOaxRGm3Ht77/aLu2LCsooTFGRy+zBJG60FCr3RoiU0kpEWmGVUSyLAvBg9Ds7OzajQ2pbpDm5uYGg0GMHGMc56VWHsdjFmQRcSZRD8BayrKZEMLc3FxRFMwcQtgaT26sro/HlzY2toio0+t2O4O020lTZxOnTY9q0VAAIpNUwT22hhMob1Capr7UvCPHqB23YE1ijAGgmxAtmvqSCnhRWSzEbXarCXhuEkXl3eZWwoNqokH146kaVyUxen1MEfEiRVEgAiIqFUItbNs2Xc0hAIR6ym2TS9acZVsRSYuj7iZtrm+IHAy55g6jiBcANEmWWjJeoNNJiqJIycUYEkOx9Dc2NtEaZ1MvwoDDbt8YU3ifzmfX124MO4MoHEIgBAFE40IZCh+IqIxVk7VFgqizFG1zlFySCJkYo49hfWurSgraJOnZBMBZmkzG/dQF4NNnzi4MZyUGJYIIXCKisbY5NVujUbfbZV/6EDTeYAbvozFTQp9aL6mOxXZUoxuGiCJMZEhECRRCCJpqUlFREJlBavZLoUINm6sefG2jExHAKe88tAJ1Y7ZxEnFrNmjbKLTtgkjFWaAdx837G50v9SRTY1SKTOWmMza6ve0/VUHgdkBqZaTqSEav3yT2iKgeBLPt1axkW96YWaSaJjlV4EJkqB26ND8TWY0oASqkmlrSsiwHg0EZmpiQBSJLRQ1dFJO52WG300/TNIRgLZU+rly9fP7s2STLjHFR+OCBW289fEDTZqdOnrty5VIIQcnhut3+7OxslmbdrIPGWmujD91OB42NPgBPwEcAMSZFrhkX1SIzxxhdljBSxWMVY14WDtFac+PG9Rs3buzYveOtScdmYXW5/FvgBO3FtE9+86vve/8Hrq+NAGU4M+j0OjeuX/vlX/7lj370J3q93q//2r88ePDgxz7+I0888cUHHn04yxJLbmZmZrjnlkkxmVuY+9a3vvWhH/pg2k1ffP7ZvXv33HLbkR27dl68dG1+YfnlF177yhNfvXrtwu133nnp4vlTp06D8Pe96wPi83PnzoUQRqMJoH3gwbd1+52nn3rigx94fHnffrDzdz3w4KkTb6RZ78zpi9Z07rjj0JVLl1/67lP94dLcQmfnjj0Pv+2etY0bswuDV1545mtf/eLho0eGc8vra2tHDt5y5dKFXcsL5WS0ml9a2jWAcuvV515enBncf/e9rx9/7cb6mk0yMkYrho30M3M1D6el09qi3Ci+m0RcYHqc2nZU5z3pPwOzqUlWY4xFUaT1wC/NrnMLKYU1A0Va1xxvOtUN1NfqnHrvTeJMYYIXRhCWJElsgtZawRg4Fr6csQak6mQsiiJNbFmWSkuCtfEmohoVR430EOnj6I2RtZbqop6yJEkUoKn2bxaKiLCZPlZZzMr1qYpxXHsbOC21yFtyRTcpKe89GWtqesA6Q6MOSgwcjaEo09i3ya43HwFgawkgaSWoapwEc60puNrZqk6v+CrAemiJTVzayaaGMHKdVAsaMetOablK39k+nNV/eSpU0LIfjaau3C9mrpjYtIG0lc9XaiBBbYBirw+LFslLBJToC2GwBOVkDEDO2BgjCoFEYSUNBufUmY5E1NA8qqiwSIxR6W0AaLQ1mZmZ8z5qNaZCIIEg4tzCwsLCXF4Wo9FId6ooijzPyzKqSDtnETHJEkVPujTzZex2+/3+kKzx3guaG2trZSx37NjhXIocNXMjkcsQkrRL1fzQKdCqyTLGugNOR8JZy+vrNyaTST8bJkmSl0W74qz7CwA18f3NLRGN1wK1jdm2R623VX+FacuFcrrq6ukAaZUZXVhNoqi50q9oLB8AhBAbF7NWLygiwoptqpQVIlZdGPUg1ebOK4VErArEoqlGOlvanIxHZSChMvg06wIFY0y32/EcDWUcAWiric1CUaBwyWxtUmxtzXd7jXYqYgiUeuEQwmQyARBnXeE9+OglxBizTkIcixBQqrAnTdMyBGWJc47IGgYGnQgigsZFRCijJhIIoJzk8wuzZVkWRcGI1lqXpmVZdnv9paXF9TU7mYystWXpm1Pb4KvqM67bgY1XVO2y7ilv61DTDZ+eOJ0u0Gh3gNIXRFS1yOL0miEEFYpG1Uw9mO1Ft2ZbuVb7zaVUNppNbOKuOkVaKQS9rIa41goahUuKI0JjA7JEjy1j0fheIsINKr+Wk/Yd6pe6NDHWMgghtN2vxpa1vQcAQJwGAFJ1W7eEEGorigDb3U0Vaq7WDYisLwMDCZrGoYwsMQgzmOl9ChkofR5jdM5kWbIwP0tkS+9DiEH4/LlTPmoKM4kBCHj/LXv27dvLzC+9+Mq506cmk8J7f/T2O5aWlubmFjhJyjzvpN1upxNJQggmSZiDSRywGESIzMyKXih8aZx1hrY21pjZOpNlWaeTYsXHoWi8oMQT3CqOMUxtYlvDtP9p5+aGCwtzew4e/fyf/MlXv/rlT3ziE5Z6MzNzeV4iTS5ePvcXf/on862tpItXrp/du3dvDOX6Ol+4dHE4mD158s1jbx575fVX7rjztvmlhWur11auXz108PDs7OzXvvakgeTgwYN333P7vfffNzucuXFj47lnX3jy60/esmdnv989993nf/hHfwysNaZ35MDhZ5766ptvvtlJ3MzOzKbw4Nse/vSn/utnP/elhx++d31tct/9d+3cuVuYBrsWBfCzX/ijRx99GLLhoaP7DxzY+exzL4zzeMve/THK0cO3PffMc53ezOG7Hrl26ezFcyvnT184Ocl371w2ziU2BSEBIUPNMZAaLhdjrDGLmnptuQV1J1Nb3yE25Zrp4oYY28dAT0IUIVt5YFC3swGAti52eym2nLAQY2NRFOmit1eWZYeTqtMngjEGhIp62CJD0BleaeYksVyVC311kuvMlqoqYwxTY/4bZFs1BhjrvjzY/ooxBl/ocWRmZiMS0zSVmhgs1lNrELEBqGHLq2igrNCyYdBYQb1OS/c14tsEEJrsLYoCAZxDS3V7pkQNXtplhsZGts5Alehq7qRh/cEaggpwc4TaNsO6LzXDJzVXg5Zr1STzQwiboyrob5rm9FmMNa37nIILJQoAsMRmelKVqgEAZJBp6jGyN+SMsapCRQRkCvgT9TvBGGN8KHIvQEr4HdTeNDfPdZeG1GGx/lKz94rzHY8n3setrS1N9enSjcfjtNsZj8d5nlvjFIgqIs65Xq/XONxFked5XhRFWZbeB2Ocs6nYaK10OsQiNknJuDx48mKTFMAELq2zEdhaizEqgUKTU9Rsf1l6nf4JNWBL3d+GxqXtXbVBzW2hglZ03limxjg1vh2R1rcBeZs4iQhI1Smp3p2a/0aAqR75QDWKiGvKMfXGWq6YFalobOr7pEoWERv8NzNrUbatc5q7rU+66GQwMsgAAnTr4SNLY+OymQjl+vr65kaR5+PzF04nLmNwSZIlSeKcZhdsN0u0GwMkDrpdY8zKyoreZ5qknSQpWUrys/3BaDKJMc7NzK6trYUQEmcsUJkXSh8VQsiyLHChgxCSJAGhEJgqCg/2oUwTF3wuwsPh0CVmc22j3++6Gregp0b7DFKXEBGRdc5p6KiJ2rauaF7MTNvBJMysXpXKNgkycwyqc5A5NmhObtXgoOZxkLqiZOqerVYj+VSomhCuyUU1HpueymabmpchO/06gSZbpmtINRuRtZZq40JIzMwSRXT2JRlj5Hsl1QDA1/aosTh6S3UdY0qVUmGR6xtufn+TMlQJh+0uXfND81yVbm9tTXW1uqtArZsqDRV1rCtLdaSDREZBaZ1Op2pFB/a+GmWGaLJOGkLo7lpSY3djbX1lbSVJcTReO32m2LG089HHHmCWra0tZrh06dJLL5zrDoZpki0sLCwuLlsCS0REw2FfyAhhWeZV5zJiURRonYKwEcR7r4pIcc9FUei8kErlxm2EI1MZ2L5EzZJWga5BeeP4se88+wfHjr125513bq5vPPP88SQZfuHzT/zgD37gQz/0Z4y1W1sbc/PD73v/O2II//h//MVnnn7+sbe9473vff/KjdX3ve991tqTp08ePnzIruFn/uiPX3rllV3Le++88875maUdu3bvP3hwMpl87nNf+NY3vjk/v/h93/fuX/oXv/KDP/jBXXt2rt9YfeFrT/Q6rj9Il+b6X/7Cn3z5iT88ctvdM8NFYXzgwftG440Tx489/Ogjvf7cwuLixsbWxSvnXdo/derU8eOv//mf+NFz50/t27v7vgcfAug6m8XJeHl5NkmyU+fO9wbdyFlx8hxjubg8u7q+al0n6/T0iDibatypQb9aFCJS691oZJHK3ClESVr1AhXvmzwtqMu92CL2hBo7oopVD5WqdUViqY8Vg++mVWHOGKOJMT0SjgyKJEmq+no8Hscg1iTOuclkEoU7vW6IW0Loy6hn3UfPKOoleO+drb4oTdNmOhVVZc3pDOxKN72FzAYAiCBGUcunPQF6wRACWaOWp3rwCIGZEgdAIQSdtVx6b+qnblLf279Fjyt8T/dL6lSBQOXDGSJmpflgSwYRGSGEkBrbVgdQ29cGzaqPoBsUY7RVexG3NCZRq/oGrUAZau8q1vTQRGTq4yqtwZdNPr9fj6PWkmWe52paKnvmEuecIpwqlYc+guj8uVCPDfbeGx1CqYpSfAghSgQhYyrguXOOvWp/RhRAMAZH4zGiPPjg/Rvj4tz5i1evr/SzgbXWVf19LCEaskg0Dh45krMiIBKZI5J1NgHgJEkIncglne+pm6h5vjDaJCKyJnK01ozHYwAMIajOijE45waDQafTUXXmfSgKP9qaNODfGAKR9RzJGkIXQByhc44SM8nHibVsbVFGrJhHYtO2WTtkqYQSACbltFMPACr0tG4ZQjW1U6lkaheq7bg0G98UH9suNSJKnZ1q58ZEhMA0E2O0NwWr+j6KCCgxXqTm4rYe7tTYb/UdVahi9XWmMZAutc2paYD8FbtNHRm29bs6AAQmcghRrLVRyvkdSwMelh6sg507d5Akkf3maH1ra6ss4ubm6PLlywZTbQwjoNHWOHEWhOZmZhExz/M333xzdmY+wqbNMpcm48mE+v3UUBlDZs3CzJARiCjPcwToZNXAtLLIjTGJsd6XgOhcWvqynLBx1jmdN2CiBIfsnDUgg35XRK5dWQmhdM6ZpCrhdTodqeYpJd5PYozOWgmeJWBFWrGtI4G2l3sqlS5QW75IxtX7XmnChnF06nwAS+UPhYoFvj7+bWvaeFftLbjpzdxCfbS2iWvV1Ki7aitVSBr1WNsYjfYVPYZEpLUCIrLWlmHq8LWv2RbjtirTl5qeBuIimpVH5Ld4DM1JAQAEo5NhsMpzVQEPtF/1rNTmS6tb4oomnYUjQ1GGXq8ngJFFgiZ6QQRFIEQBNNalaZbpJdVdM1bBAJImLkQPINFPwFDpJ0kCRw7v7/f7RVFsbGysXDtT+vWi8ADY6w4O7N957z23j8b56uqN4cCNtlZWVlbOnTlrXbrrlv3zyzuWlpb6/b4hIAODfrcoAwB0s45BEGACIOBulo02t7x3/X7fEuXjsU31IE/H+7bjurZv0H7pe+z88o6DR4780We/kjj3jre/65a9+3/93/3eXXc9sDi/41tPfefv/r3/zqY0Mzf73vd//7UrFz/z2T85febEnXfePjMzfPXVl3fu3nv06NEsS2bnZzqz852ZmcO3Hv3iF59Yet/u9773+0+8efrb3/nO1775rd179n7yk5+87+57Xnv1JZE4M5zrdHshhN/85H849eYbWWp/8id+ZDS+PjMz86N/7iMSk5Nnzh49enj3/r0f2//xr33lK6NxefXahkuv7jl4AE128dJVEbl2ffV/+p/+2R13HN288/Yjt93xyisv7tix+67bjpy7eP6Vl7574MitCCGbyR5950Pf+MLXt9a2ZudmWXBzcyNLu8aY8Xh84cIFANi9e7fmvTQ2NXXKmoiEUESQty2cyLb1bLiXml/J9nQrESGz1Zo6g/ceLChNsIZfhqpEkbbUyTTTJjFUAElhUaB3t9tV9Hpas44BgEQma4wx2p3U6OLKFsXKSQIULRmkSQ/rhke1wTqaI3IwYtpxm1oHqjBPbAzpvJdQTVHcdtqnyqJ2sKplRASpQiuLZI3RnuQYY5PoZmZDNV6Kpd0+U2cUdFSfASQNjmMojFGmGeYgAmhR4ZzfwyfGOrfX/g3W1VVjjHIRUQsS0TwatNw4aYH2WoLAjW6KdaW/enYRU+tK9X2b6+i8KcWRaHqgCkwNCUbn1MyDcy4xFGIJIAimqnXoqGARQUGWIN6YhIgYlH0AGQGrRgdrrZ2fm11YSufnhxcuXb566XpZ+tHWRpIkaZpqKiIE1sSVbNcazOycE8Ysy+bnFtdunJQahtLpdMhZZs6LQhi5YqKUJnsqIkQmz4vJJDfGaEkoTZNOp0NoV1fXAKCT9YzJt/JJRJu4rORRWZZJ1zIDh1AqmQIiIFM9vqJJCZt6Anc9JUlEBI1RTFgoo3EUhX0MzAEFjDEkYIxBmaYWsA5DGzvaeFfNYcSKEqw6/o1xbdszqLNcjbSo3TVATb6k+azUpfP61EybXer5sKCy4b0vg4k+dGzW7Q0wIT0IRVHkIAwCQCKMSALVeLEQgyUTvVcEdJJkhZizZ88HGezZe7DbTcqyLCZjgzTod2eGfWPTfFKWZe5cWhTF1tZWfzirnnSaZmWZD4dD58yuXbuYufBxtLnh19gYs7G+DgD9wUBEnHPGWRBObeqGmruKg27f+1ILr1oHjT4oW8pktJUjzg77ESQxdmPt+tzsbK/XW18rNH6YnZ1N05SsUaioHpayLJuRbhxjXhaZdlfUaRsiAmRCagfA01NMzWQnptQQUeBIVc/KlCHiJlVmLbWv06jHm2LU5lu0OsGtmjXUpdu2wOAUOyGV+w4VDkLflqadsswVy1udJjRkdQo7aJNNLTvqfpWVT0YiXEFU1f3Rm6mbZ6Oenfp+ppXTimZFndR6lvtNuv1PezVHZurZwbRQ3/h2kVkphZrjUJblcDgj9bQMRIMIiEGEUElkdGAdTK0A15CSEEs1IIiAIElimYMPk2IiRNTvJnMzO7MsA4D19c2iGF3dWDn22svehz37bgFIFhaG+265867bjlxduX51df25p59aWb0+GAx2LC3PzMzMzcwlWRrWN8tJPjMz0Nb46iwb2tjY0BaQGKNDV8dN+sS69VHEQp10fOuryn7ddv9jq+sb737PO/bs2nv8ldc/+cTv/7Wf++/+4A//6MyZc8PZ3quvvH77bQeLYjIaT/Iwfs+73n1o79Ezpy8aSvfvP0Bkn3/++f37908mxck3zxDBM888j0hIkvvxw2+7z2Tm/PlVa92P//iPX7p0YTRZO3P25M6du/+b/+avffupr1+5fPHRh+9/7dWXjh07VvrRbXcdCkVn/YZfXrj1zTffcAkMhgu333nb8q59p08c/zt/9xcOHz38w3/2I8s7ds8vLM0uLDlz/5Gjt54+9cb/+iv/+6Ejty/MLfzO7//OQw/c8/4P/cDa5hrzGGQE4h575P7TJ8+fPXNeBNCasixXVlZDKNMkGQ6H3TTz7EViKHNs2mLBNHG00kg7miKioJ67Z0zlw0b2sabVpjIARwQySFVORT9IFWgajGHmzFqseIaIAOthOIZZk3AmRjFG8yKujLlNktyXfewhkS8KY5ElxIBlURjAsihBpPRVlAyGgKtDRURojCEsy1zzziEE27Meg+eYQpXSY2ZnLEhlhivUsxCKcBAiBEJjSOMkALCJE4TCF84lzlTMRhwjOifIhFDE0he5uphoK5/JWG3kigRCZEolmG1MnQgSQWX2BIBjTQat7FmIWHlphAziYzDROufQCbAYAlKwi8RGHXBFFV3RM+oO1gcYiCxUSYsqzm5sPNZJEXVA27WGxrNUDESsKhcAItZVmbMQgxEHAFzmzjkW1IF0IqKz8Dpp1tLpwDUTffRMRKEoEdGmGUaR6Imoml4HiuUn5wwzBI7CwRByKAFAIAbPYKxzqRoqIiomeSjykI9n+tnw8IF9e3avr20y82g02djYghCstYlLyhKcM2XUh02YoZv1JnmZ5yPjEhuT8TjvdboEaAhKH0ScMcZYB8aICFk72hghWWFGqYDMQMiiW4YobIgm47ExxhAbAl8EcK4oCgOISJNQppRoh3zaSUwnXRtvjSZ5r9d1xngUY4z3EYxV390557147xUUH0UH5qBNstEoN8bJtGlfEZOskAOq6tNccazUbYaRI8QpEUyMUYBZIiH5EA20fHGuvfPaJ4OqlUcxyCo2IiKOrDHGc9HOZ1QORGvEOyL6FmhBSVH0Z+s6b5w8duyZlxZnFrr94Y5dO+fm5gZz84CmDF4kppmL4quyJXDfGe99kmWTwgtpPNA10f327/3e/kO33XrrwX237Nm9a5l9KeDHeclCW5M86XSztEs2mV9c3r1798Lc3Pnz57/zne/Mzc1O8hEAG4P9fj8KztNcFJxMJoUvQ4il95M1XxRFURSDmWGadGZmB7GMROBc4otykPXUlSxjEAIkMiLZsO+992WRUooIzthJnhedBBDRwGAwTJIEwWRpx5c+S9N8PAGA4P1kMkkSBwB5UViXMkBgkXoihEBUFmJsyIfrpD4ixBgEQATIUBkDVs53RNQCZCuDKJGoqjfXLniVhJ7mV0GBXAFAmTyrammeV8VormGUKoTNWEauuY5VABJjydnUpT4GADLWRgZESJJEJBpViBZFhEWi98bYEDxKTWWPHAQFjQFjCAFYYtTpY6pYDIIxFUMVR6Da7zcGQwhl6ZtuoSBMuhSIRJaZdUATVmTaTc1HoggDRwkGTIgxRMkMoaHgA1YMqMiCREaPGouYOqPBLNbaoizRGAawSWKcVfWuAysB0dZ1cHUgrbVkHAkWZSAyUCPMdCMaXG/XJiQEAJZsZA8ihILARLRjeX68NYG54c6leR3TfvXCqWMv3xDBxcXdc3NLh/ftvvPorRcuXLh+/QYzXzp75usnvrK5ubWyupGm6V/46U888shDhmhzY5RY083Sfr9/5cqV4Uz/wIEDEIGEAIIqYWtNzkGErSUtueirHdQ12VD7zW8/80M/+MFYhmOvvd7vzp08ce7Pf+wvP/GVr374wx9gKXud7plTZy9fuXD08L4sHeTFeHNjHKMszM8aYw7sv/XVV46vdG9kae/6ylqI/sMf+oiI/L9+9f/5Qz/0Q7PzM/v373/Xu38QTHL53OmrVy7ceviW73znu50sW11dYQ67d+88e/78sePHf/Gf/hNj4Rf/2T988snnXnv97PHj/NGP3fKJn/7z994z/61vfWtm+Ib38fHHv38w7Fy+svrKKyfKMl66eGVjY+PSpcvHXn/tve/5vn237D9x4kQseHZ+0fu4uGvv5MaNEy++2EnnO9nwyO2H9++/5fTps6dOnn3pudeWlnYcPLhfp6zrziVJYurgJsbIcVpgUpwr47QlsImSVdXCNJVSOeyIqEVLsppCCDFGIEcELKiIWlYaBajyzMwQQkistdYGCTFEZysSPKmrXS6pWmD0GCdJ4sAa9QW9cAREtFgBbqDOhHE1e2FKXqA1rOqfUz7QygnT/mWCbaYCAMoyR3RENipwDaOIMcYIAIvo/8BUQhZBtNxjrWWqnsIY46wpikK/OtaiyVFlsbI9TS4RAJCmDZuIiAwCLAwaLQFwM1TAkiGq+vEbWW/itmYlm782Ua5wUF3TDk3aketNhaoGW61/pBpDXWMaiGqkvzJsSX0DzS1xrDYF6kyhsqkrv4OOfleAsBBWeCaRULtfRGQqyguT1LenRFnqEUbmEIKxFhG9j4hYFhMgzCeRmZ1Ndu6YS5OO92Fra7yxNV5f3/QhIHDp88m4sGliTN85g4hve+yRtfX1k2fO5ls+y7K11aoIyBxUpyMZAOIY0aDLOn2ywRcEGCUAADOK6PDU0EmTEH2n06lnpTEiGqQsy0bqk0VaX19fzOYRcTyZhGIihDqiO7EWpYojY4yIoA1oMca8LBTgmOd5mqY2Sdc3NjlCmmR5nvt67rtEJnIgJBABwSil+3YJgQoh9D3wLrA9w9Eciuadsv2d7Ss0+97OIrTls/3fWvCau0JL1gTztjsfTSKeu3Ll7Cunvnzyy+/+4Psfev97Y2JuXL+6tr5CKITGl0FEQEwQjJEoyQgjEBbjopjkj7/tsQOHj165cuXy5YtHD+3zhpkp7fQ2RsXp06cFqPBl4HjpyuXr16/v3Llz/cb1LKuQprOzs0RUliHEcv3G1uzsbK/XS0Na4dIYyhjKMmxubuZ5vn72BgF2u9112YDI3Os0bShBOHD0HJXKJsYgzlGisGtK07ScjNUbDp6zLIl1Vx0i+qIcDLtFkejxVQZanfVERATTEwo1gKS95jelcDTSNursAojAW5t+2hogtigD9bLGvEVzVvF5VXjSjuNGkzRs1VQf+AopG4P3RVn4wBHJdoiMQWNsDMG5FExUWWXmqFMOtSG/mp5EzAw4ddZre1TdOxERijLFqFvPdV+tHkBpAVUFQYf2VaWJFkifiJS5HrEqFDRQthpD1kKv1st+UzJYmjgnKnSPbsoMIVZ93FTz+OiiQYsKB1sTLakuAbWVs8KzkCwiOmOtUYSDl1ghxga9jp3pG7M0Hi8URRhPeDxau3Llwmg0EcHl5eXFpR1w6MA999yzsb51/uLFy5cvP/PUty9dPJemzjqan59niRDDzMyM1sTbxqIpGwCAbJ+X0F6ZJsVuU0qPvXbi1ZdeO3HsxJULF7//+7//K1/5ytbWxmNve+T1117eXL0+mUyuXV571/s++MJ3v/7Nb35j1/Ke3btuSZKs2xlubIzuuefeE6fOvPbasdFodP369YsXLv3Yj/3YA/c/guC+/MST9977QDEuv/GNr/T6yZEjB3/iYz/5Uz/1U+fPX3zxxW8fOHjLBz74nkuXLr/9Xe/4jU/+x3237On15udmF+++u//Odw/e9vj9n/3sV5Jkdjgzd+LE6bvvvvtHf/TPra5e/6+//XsxytzcXIzy4Q//mYcevP+//OZv/v7v/ME/+kf/5JEHdj7xpS8df/XU668/f+TIwdFoNDOz8PCDR0ejyb//t7/63u9//9HbbnvlxVceefQhaxLV15VPUFNJISKCMUSGpinioHq/bvtvBKIOrNWPIUMkJIgIbECIWcVRiNClJkmS6AMRoaB6T5pNFqpAHiJRifGJABm1za2ZDx1jLMqJSzpmytjOiBhDzPM8z31RFCGImEq4yzJiRhwrl1E9PiJsZMV7rxOGa60B01gepj8jRxLRZ0mSRBHiSm7kkhpPWn9++llNCmmGyZroizJ4oOrE6mQYBgjMhBWFkR48EQHBpmNUL2gaU6n4rSroqaI0SwYFhAOjiNj6EaiqMsi0LNiUDmvfSws30daAj5t8tfo3JKKZDO3gc1IXpERER4JIFSsjIhJaQoIWPKj6rxA3BD2tQkZtdEtFgKkjpddB1EZp60y1pjHGUPqiKLjIiUjxqspUNPXeIpQ63qpmcNWKZ60uIYYyhjIfj8i64bA/Pz9Tlou5LzfWt9Y3N8bjPC8LDpPEOmQ/NzeYnZ/ZsWPHlYvXX3zx5WvmsrUmz3PQji1rhMWlCSmrhZb5EJ11iXHNMUE0McZ8MkaCGOOhQ4cuXrhy5sy52bklHUJlrTXGbsVx8xEGjiK9rFMRLNG2KSuqUpnZWmuCCVWGshp41e32iWgymfQHHUQEFg7btLxUscf0N41/z8x1kRNhu+eENeOJSjnUeDJAVnRZc/EmJJNqO793+ablkW/zzltaxZCAjdYWePy7rxzZe3DInV2LOzrQM5KVwayOx5QO2eTDLO1kyezcwjifrK6vWuGtra3gJ4kF6xxaOXBwT9Jfv+P2g7t3La6srCDFwDFN0yTrvnrsxOuvv76wuJzneb/fJ6Ld+/aXZXnhwoUkSYAwz4tBf7i4uJj7UBSFS7JTp05dv7GSZZmxSYxRALMkISLnZomoKAoJMc/HCBA4XLt2zVrrUoeINk1cPXkCAUgq9G2n07l29erCsKdTYojIGtfgYhERDaEhRW957zudjvdlWZbOORFHVE8zhG3OVuMBN6dTDzeRafxnXXeRqQPd9q2ZtwGqtEDZjNBpy0mzxTVz3zaAoNR59KYiUe8yWJMwAoKNwprR0aJzDF5EbE1QYowhA8YQAYHys0KMOoMYEIlCCImxAFCWAYARDQoAA1rFbwhzIAIkEIg+eK2dKUQ1BBDBEKIYTKxVCIHR+aN1c5kxrobPIgEaYwiMQKyGq4LhKEgIAhCr+kD9sIahyho0kEdTMwhqqQcBmRnreq6+jesGtcbZanazvYyNZqjcQWustcpYZq01ZJlLNVtE1O12RaQsi6IoYpQsyzo9Z4ybX5zb3NyMUYq8PP7Gq/mk7M/Mdju9pcWBS+DOO+8kohMn3mAOG5vrzjmLwMxZpv3vcXtjaCOBUx3SlpOpqgGwjz74tuHS0snXT507d2HQ7bk0OXX+zfvuv2t+bthJ3FPf/Nbtt9852py8/uzL+STeecf91y6vgFjC5Dd+4z9cvbLy9/7e//jA/Y98/vOfP3z48Pzc8qnTJ377t39v7y37H3rooTNnznzrm0//p//wB4899tiv/dqvnj1/+mM/+ef//E/82I4dS3tv2XHq9Bs2wVuOHL3ljjsj8J/88R/ecdf9L7/84r4Dt/zon/vhGH3W6X/zG888+eSThw4dfu21Yzt2LHnvX3jhpcFg5vjxN++5556yDCdPnH38ne8FsJ/6gz/8H/6Hv3fp4sonPvEPfumXPrFj+ZaNja1vf/upJ7745Ed++M/8wIfe/dprL3X6gx27doVC1P/QKCTG6GtKFSKC7WkSREStJ21f3MZaN5nkEEKQAADdtEtERI4IhQFIEI0h4RCBEBkZp4akYn9ArDz3KvwWMg0unr0vnDMKTaMaNQXIMcYYOMaofKqOJCJB9CISIzusIxLll0JiCXV7gYkxogIOFMfFYupBejEofSUCgJm2HFb9gdYSVVBT4ggAkVocV23lRdY0BVmpFWMjfy191fLYELC18iICCAaqTsPoSxIgMoDaxcSK3gUAlgCgjewAMnWdRaY31mjDZu/qXda8580Jj/pWp95bo0BhO69j9dcW59l2OVH3a4oCaa9So7iZGSCKiKLrpE145r2IZImz1ibWAQBX8T0wM4MoZEedD2dTcom1VmpVZZ0BQpGobm4I3lprLIr4jfXraCh1mSUc9jv9QSdNs9F4fP78xY2tUYhY+lybVPbs2XP16tUXX3rWe9/tZVtbG3fccdjY5MKly1vjkUoiASrlLVMgILQN3YMhImf6LDGEsHfv3nzie72e9147m5iZREJRduto0pApfCGKh9PpQABpmlbCb0gzwg2dqYL983wSPGe9VAeuN+p7ui8KiqtlLLbqfW2ZaRvgZnfQVuXpZvu05eJPw8U0MsYtLB1u9/Lr3Z8KWPtEAAgyGAEow1NPftPfNenOz6wef+P14yf/1mNvF0zX8o2F2bnxSL7wX3//jiNH9h2+tT8/O7Njv1hYBNjcWDl7+pVxUfqCEkujrdXJaD36YpJvbmysGWPGRT7xXBTF0aNHO91+mqZqpRYWFnbv3p0l9qWXXmLmNE1Ho9H61qa1ibU2M6bf7zOC9770XlfAex9YjDF5nhMRGTTG6BCwoO9BKcsSIutUjsp7NgZi5BAH3d6VK1cO7dtDwlqVS7vTmIGI8jyXyDFa54wAFkVeJZDYMztT+/r1XldniuhmH6h5j+aJQQTRNEhTaSW5ax0l6uVjCxjaht43JYXm5+YrGsxfY1DqY97ggVhEAIkRjFWPUJ0GQ0SRwHuviEmuGPskxpjYxFoLiCwBowCgsCJVDAgBNnMaBKAKGbh+KY5WasItTaHT9lix1lrbxLV+HFPBaWpElybX6wIOt9Uftl7Q0upVpq1uIW+vT/NdaouxlX7Tv8Z6jpNsV6fNX2OMxiV6czcdYVMnWaCmDFT3PcuSGAU4GCtZlqap6fQ63W63LH1gcCUJhBeef2Z+YaHTye699x6ls45lMZlMlO1P3Yn2wW8/iGqIm7yzRtLscGb+9GuvQ/AW4Wd/7q8eP358c/PG3fcciX70+c/9cZb1L1265AhXV1YuXrsSmbc2J2Uh166+ceTwHbfsC2fOXZqZmXUu6/dnPvThd/+n3/rk+fPnjxy9c2uz3Nwozp65dPLEqR/54Y8eufXer37l+Gf++Esvv/zy+trVt739ob37dzPSjt0HZ4YLH/qzP/bY297x+c/88VY+vu+h2z//pc+ePn1+fm7pwP7DDzz0+Ozs8Mknv/HEV567+55bHn74wY997GN//+//g9OnzuzesfcX/8mv/MIv/M2f/9u/cPLY6y+/9kqnP/ipT7x7eXnfhQs3zpw5u76e/+Eff/uhR++5/x0/sOfo7hOvXDXO5pPCkSAJILBIiIFjk6kS5eRVphNEEoFqwqMettqHaASo2mNDhDZFp3BgEtD0F4oXiYgm6CAuZmEUEkRBEiBRtpLmSNT7VHUglmVeMS9qMhbY1mRFFYsYMDmLhXfOZklSRC4kOue8BBWLhl++2n4Wg0RkrDEhlCJCgGSNxEANoA2YCKvEWAuCDQDoyBnbXJkAm9GZlUi1/H1jjI9BFJYrUWtAztosy7AZmQwiwggoUUgqpg81bdUMB6wLuyhICrChWpEFZmFu9VGj9hhOt0ZEuXIqn6l9GpuXoibr+FgfZzqJXFpdVG1zToQ650DlghkkMhGRnVrc2p4bkCn50FQltdRH/XtBJBadu2MRUYuPMUhk7wwRkdQ5OUQyjiyiahNDTkQi++B5lBdFUQBiWfpJbkejUYyRWchZALAEKBGYLTnjKAJwyHXQAqCJHnrdzvz87JUrV0pXjkZbWSpliBLMeDy2SJ0kVRu5uLi4a/fu5V07NzY2xuPxaDwu8/Lq1ashhKIIzGydMdYCoCUAAGMQAefn5zudzuZoKwqjCFUSVK1zGUJZYpKleT4xSQ2prk8cVbCJIGKVdR0RmiqJr7tKV1Y2V1ZWZHuUWSdk0RijhN3CiK1hoy3ZwO3/rI5AVKh7y4mv9hClUaZKbPvWz6o2rv/SuN2a94IoU4hSsxQiAhCZySEDcNJLD9595LaHHvzs579YvupjlFEIaBNjkjDmL3zq89/Nvn74nrv7O5c/8hc/YXspQex0+gtLO4nD9etrRZGnqWPxRTnOnLWGjLVXr69euHg1RlleXlTOaQAxBk+eejPEcpRPtPdoMpkkWYd0Fq33G5cuNf2bLqE8z8eTPEkSFIkxQAxaN3fWFnmuTT/OudQlUGdxAMVaiwiTfGRBBDCEGEofY+z1ulIKOasTDEkQkYoiX19f73W6utFKeQoAIZap7VTGG7lZW6xzIXUKXBAphAh1W+j0ME53nhgqmoDmhGpWIwTf1BmlhYuQliRA61O1vDGiluqq7W4EVeWkuY+oVw1BRJCkIYZQFcSinPXcXHmcTzRSZgmAxhhLiNphw1WCHTVhD1KlDnRqvObCy7KIUZTCFOqMka5VYq1zrlRwC6Kqv2pNALBKE2g9U5VeKIpCsGrvBQBhFAEBAgQWBDSAGBlEqnQ+AoVYMkciAwAcwdkUUWk4ofZiG+I9NrW5ab+w5Rk3R6xx7JQxQIE6WjKOrXFw3W63RrNQ02xhDEoRUJilJAMJmshFkrqutRzTTtfu2787n5Tr6+sxSDftuP6g00n37dvX6aYhhPYsvvarreobh6wtOQBgz50+u7y44/k8v/uuO0Iou93k537+ZyMX3/jG10P04/HW6urq/OzcTH/40GOPPfPc8y+98OJrb75x9933Li3u+M4zz/zWf/r/zM/PX79+/ZnvvvDmGycPHDrIEQ/svzVJkkMHb/v8574sIr/xG79R5P5DH3j83vtuX9+8urQ4PHLb4cvXLgrxzj27inG+tX49xOInfuont0Zr/9u/+udPP/30mdOT979vYXl51/79B1944bn9+w/s3bv3537+rywtzJ4/f/5nfuYvvuud3/dvfu3Xf/InP/qhH/zIt7721LHjLz37zDNPfv3lD7z/ncePH3/88bc/8sgjX/3alx9/50MPPnrXhbMnLl68fNutj9968O4vfOZLjpxWkeryfOOo6qlr3C89ddNSkVbqmtI11q1zjcOhXlFV9hIQ5kawBDgyg1jBKWF9jFXHr3rubCq2fUQSiUVRWGudc3k+9t6ToyZ0gNomaTO2SzsxsrJOG+NMJZCorbzN12lNUz8VwGsvHhGVeZWd1ncys4Gp6FTLAo3+mp5D1Uk4vRlqfNNQM2P5GBsvMERGawCIeQpPJiSWiu4QCNtiikJN6MYxcowoYKzTtzWLoNkvMdRcs+1j4VtaGqcPJdQ8dbNQ2w3ntipG43ZTC/lX+WQyjRpvOoTNzzfdVbOejfwgMpkUt/feWmshgAL5iFoyQFN17ywAABnMsswkqTGm9J4RteyWZRlzAEPMUZvGY+QgRdUtj9hJEu89OcMSRSIhTiaTYZohojbyjMbjS5cu1Y0XEWJIrQne9zvdxcX5yWSysbFhbXLk1lu996PR1trmRqgNtkQtiJchhNtvPzocDsuysNbGAIjoQ0BE7WH0+WQw6CXWldGic15hW4CmJpYzNQM4191PzforBqXb7RrKNvr96ysV/qbea4gxYlB4gDAHxWhCqzJYiUcrF9XsPtYUMNQSTh21iTclxlt73Wx9o1jaxuOmN9/0m/rFIkyG9926b/mWnSuTtcfe8/jXvvDlfqebJakLPgYsCn/X3fft37Vn5Iv+cM5QGoMpuRwOuyEwcOxkPR3o2XwLkQneX7t8bTKZdLqDyWSCZKGm2s+yTOc/al1YZzYbZztZ79q1a2UZXJZ20yQyI5o0TZM0AwAtSatE+bJUs9fk7IkUVQEGqlabyWQ8NzObJXa0sYaId951V5Ikk8kk7aaanEiShICSJNnYWBuPx86YmZk96zdWL126dOzYsTvuuMNYnEwmql1rpfQ9EthQZ5H1lkKIzEqmeNOMnfpTwDoURy/Y5FrqpaMGENKWkPYBl7fE5zcpgbZcSe1KYN0fLRXdLhdFARyNMWSq3iwiSlMMIXhfqhYoS49gjEnVgiBiXgZHCpOSsgjKMeNciqhYMdBZdtoL1b4xrIPMJsRtfq91oeaf0EhyfTClnSduhZTbBXvaU9x8RXveRmyNQ9UPUouI+KZlbL6r0QxNaWgqcq1OTP2nZtA1p2sMaR+AZm3TLAkxAiBZFGEO3ktkBg6lzynrZHmejkYTSMEYs76+3u/3paKn2eZ4fc/TfdMiQ9P5+Knf+9S73vX4/gMHeoPOZ/7o93/mZ35muH/fG888vbk5/rm/+t9++YtfMsYZcidOn7m2sXHs2BtlwbPzyxcvX3v2uVdee+01RPPud9/74osvHjv2xr59+37kx368LAOi+Tf/5t++8PxLBw8e3HdgXyfLEIhD+Jt//b/97jNPvn7ihQ//0IcuXT1b+ChhK+27p5748qc//el/+A9+kUGefvrp+fnF3TvnFuYXP//Fz+/bt+/82QsvvPDsnt3zX/z8n9xx+2FEs3fPrq999SsP3Hf/F7/4lT/4/U+/+eabn//Cnxw+eOAv//RPDfqdTo873fjlr/zhl7/8pZ//+Z+f37v7jefPPvfd5x+4870A2O/3lR+cGzAQT62yhi7QIt7k2FSOUBAjV7vLCFjPiVaHrOpngSiChpw1iG2CKwRm1pkOug3WWoUfUZ0A4JpOjJldkqjRSpKs8dPzPK9y2sIS2ftCseeaqlELJyIkUIZgjEE0wt5gBZZqTgoiGkCDpMIXfRCJSj1k0wSAqwwPTv0DauEcrbUabgbPriL3ZhEBIWFkBEDyvtAH15EdiKi5xgrpCQpymtIlQ0vH1XeKzVmtnUEhAWBRmAc1Hoz6YLWLxduRAaRYMZhmJtqHHAEAFEc1rS1CU7kQ0iQgAHDUHedGJam31xQjUBgrDaKV3+rb6sxHpaOwqnBRfZPcdCk2x9KzEIiWR3QFatJOXUBARGASgKLwACAJAgCSGGKvDDQAUNeFnXPMGIRFxJBBxDS1MUZl3i99URSFc0mMkQXRsH7EkCuKMk0zxYh477MsA2RrcHZ29pVXXpmZnxsMZoYzM4jYSVIiAmeTxPV63eXlZZMYLU+wjyqlIjw/M6uMcTFGQKNutHOuDAB1AKNoEq/gZTBE4Kyx1hJaXQdLRkTG43G320mSBCITUYisv1xanN2z55Yrly+KYJp2Qhhtl4oKaGwq+rfvYSemflIbxVUrgeY9dYZGAJQmacpUOZXqbVgirYZPv+Wmr4O3WBoRCRhH5XhjY63Xy/wwK73Y1KaJTQFSxoxsZNh75+1Zr9dN3fX1DUTMrInsIAB7Fo4ARqno1te2QmDnUkKr+iF1mYgkSVKWwTmnrJ5Fnm9tbV26dClN01j1uCCDrK2tbYzG1iSj9U2Rym4ZZzvdLIRQllVSvMH3qIHvpKlaRK7A3Ygk1lQibS3FGNN+eujQgVjkmi9vdBQD6HS4fr/f7feSJBkMBsvLyy+88MKevbtmZmaUbxmAlaegXtttzlBj8NT9YvZcz9+s9aq+U1QT1P+8mWACa8QI1vjxZqObrWxytPVfdEgVa96+BdCfCkl16hVhjNVkC6mBv8DIzDoRQa9F1kaOQJi4DpEJIQTPRASGQgjWGDK2mq5FFEIoi2CdIQRmsMb0ej3Nk9WjJKMxSFTR1MXobTWPoAkyBSQSbAMyCQghUUVeXStNHRJU11u3+6at2QMtP0/tQu0wWdWQjcOkR6c5ns1aQQ3/4po9Ud1WbhGYtb0uBCKsiTaEhDEomFeaKZYIQFna0aGiwmJtgoidTmd9fV0iU4Lsw4njJyaTYmu4tW/fvizLQggA6vUq3XTTezGFGr/VD2tWQJ/Frq6OPvJn/5t771n62Mc+OtraunD+7OXLl3/5f/5f3vfe9y/v2PvoI+945pnnbNJdWx8dO3b61Nkzjz766Gc/+7mzZ87/wA/8wB133PXQQw/Nzy8a4x577O3r6+tf+tKX7r///rIIk3ExOzu3vLy8/8Ae59xz33n2+Buvf/rTv3309lsvXLjwhc9/8UN/9gNnz5568utP7N61vGfn3I/96IeKctOYtNed2bvn4KULq8eOvTE3P1xcXMzHk/f/wHtnh500Tb33u3fvOHP6/L/4F//7wf17Hnn47d1u933ve9/f/YW//du//V/63SEZ2Vi/8Fu/+R8vXDz3zne+YzTa/O4TXzaJfPTP/cTly5effuqJQW+OPfd6PS0UMjMANcnYlsTchMuZcqlJzZvSeAamnvYaQsjLiQKfjEUOXscNGWOQLAqTqab1AYAlRy0m0uYbdewbhgD1tOmm6YaIyrJsIBGIKBIBMMZoWp2SqgdtmhCRL3SoBeo5aYxBqAdHWmuzLCEiSYWZN8ebAEANqdfUeEDFVRaj954lOMqapl9oGQ8RweY8BA81hkPq+QzbXZ/KwzNImkaLUk2R1a8MwrEm09fKhd6DNRJjBKnG5TrnQCCEQGZqLGs3btqSAy2j2DzSTUFVW2VLK5CVFuj+ex4tZvWLppCF5j1ts9q+gfr3U6Lz5ltMC1SH9Uw6TYBVEGCuOH5bK8whhElRzctLOh0RsBXVPgRfIlKMYgwNBjPGGA7RWirKfDwelz5EERSTmAQAvI9bWyMi8t4LxCRxZECvb40pi8mV8fjcuXMRsNfr9Pv9wcyw1+nPzc31BzMVijHESSxijBatlktEYDTenIyLjfV1a21RRMQAAGVZks2wJoHkIJhQ1Z2OCDBNd4mIMc5ZE0K4fv269wNtAs2yLLKsrFzTyZtcD48P9bD2ZtNASNewgshsTzkhYgNS5Hp2eyMJUAFqpnksIoC6veOtInTT6yZ/C97yastGJT8EgmCsPX/+7MbGxjt/4N3fff6FXfv3rI02ktVVl3ZXrl7bu3/frr178nzMgHlRMIdiUnY6KYjEGJ01ecnjPAhaIbM5GllrCx8uX71W5F6NH6FJkqQsS6rb2bRoqDaGiKJIjHFtcytNU6Vy1YnUgiCTCkgUwzRIS5zjenBtDNUJVTRCCMGzDi0oi6LodYaqh8uyxFqYRSRJtMcFQgiDwSDrJDGGJHP79h41FpBZkdRaH7zpaMN2xFXjYLWPpEyBDdVyi0zHWqhSbTYLat3bZBB5O1CvfdLfKgDtTW+7Ee3M93aLU0WtiGh1NqtEYwxrt29ZQu3nOecQDKKJIv3+IC9ukEkHMx1njHY4dTLjvUeJpZTCSM5kaZq4zBgjEIuiCKG6PV15PRSxxaPWJJMa2zGtJNRBSNs+6qvRS/U6NFXgZsWq46DZPpj2ITUnq9KEsRpoLVInw/gt3JY4DYbZWqdxdAjBVEQwICJTgBpimqZlWXrvrU3q5ipWmq4kycoyWGOwTgMzT4xBQ3Y0Gun0+jzP5+ZmJpPJ7XccHQwGIjGEMM2e1q/GFk+P83SKSQ2973QWfuiH3vfTP/2x3/rNfxv95r/7N//u3e99///49//B8o5brt/Iv/vc8dXVfM/e5eXFpdTNvvjCa1evXP/whz/c7fSXl5dv3Fhn5q985StbW1u79+5i5hdeeGF1dXVhYaEoJzt37jh85NBTT38zdYl10MnMZz77X1fWHjl06NCth+4AOzh/5tI3v/Hlx9/x6P79txzaf+C73/72hz/y0X/0f/9ng+HCN77xzZ/92X/x/d+3tDA3e/Tw/ie+/IWD7/6+meHwf/1f/tXWZv5//Ov/45f/+T/93J/88Tsff2Scy4mTxw8d3PUDH/j+55558erVy4nN9u87iujGo+LVV19dW7++tGPRmt6pU9f6g1mDGANqm48KXKqVl7qcFOupOJXoGNtIp2hIRyAAVM9JEBFAEzkCkEB0zjFX2CybmKKYcOAUTBE8oRUhACtSMQuMt0aN/26MEQJGQpAYg7GizcnW2lCGxFiRaK3N0nQ8HiOKqrA0TT2KVv8nk9Err73WmRmIBZc4Za1UrnCFujgysSysIwlRTZR22YSy6GZZt9Mnorn5maIoimKS53liEyEcjXJrLSCUpe92u3pEK6IWIgGOMaKQ5syJCAgFkaOmEoGISKiMwViSMGW8FKIYWPM0agilLuFLHVw2rqQxxnsGlsgcGI0zJrH6dz2oRVEIGmNMNSuwpQ0bzdJWwVzPfrF18bc5w6JFLq6SH+20HyJy3bbTqGCsMGdQlgESMoZiDI36sLSNPL1W/dsGwJEylGhljJkZyFUt9yLaIYtAwMwoVbu1tdY5u7m52ewjEVlnY5DpB0U0x8bMRJhl2ebmJgARGo7A7HVUfJZl3W53Y3PrxsZ64iwzZ2l3bm6OhbrdbpIkkYEkVTOZOlsUY23IJCqdS8dFvrKycvnyRWQEY2fnFnbu3Dkc9nv9TpqmqXUSwWibPbAvSuX+5XosjFoRdRkr452kYDA0W0ZYFoVuBBoqyxLZdDup2uxBJ8MIwhXQXuNg9R66vU7V0TE1gqDkc8yM1uRloeKB2nKmtCn1KHQAkLoXRs2JKAJMGCveLwEAjSGiMCERtI2ojs6UGKN2VUwBX61X84+2A4d1SsCAycsYxbzjnd93dWVlPB6Dde/74T976vrVHYuL+ebk0tmL/X5/cXHeok3TztLs/KVrl5PMWTs3mWxOiiJN+6UfMYM1mbDpdofW2o31rfEo37lz59Ykv3D5cq9rC19oNyLUGEd9BC0IDmdnV1dXa1gSMAsg6aNba9AaLktrgJnZBxEpykBE4iNzxbWmJyiEMssSQ84Yk6Vufn4+S3SEa4gxamsDRmPIaQNGdRidjSEfjUbez66trRVFsbS0hIjRlwaJIWrU05QIGm+gZafFWlOWZVMPjTEickQkqpLojWlHxHolYturaOLGm/zplpNXBWnbYukWJGi7jzWFohtjtHUxxiiC2lCicqL0V9ZYaMpzxnAEjsCRoy8AEYAEnUvMiy+/ura2eevho71Od3FxEUiMTbKsX5Z5t2/Pnz//5LeeWlxcnJmZmV+YTRKXJLY3GBhj0JoYY2qdMUbxwd57Q0a7e8G0R6GwCIDBEAMimsRIQGNcRaMDlcNRw/9r8mEDiAiGIgejnhyQMHY6PQASmfpScUoug/U2IbdKirGeliF1VqLZi2p3qGrEQRRVjHrzUdCQiSA2VYPo1ZorarbfH+b5mMjq9Q05zTQQom3GTJETgdnZWfXtiqJQF1kHiEptQZp7q7lytjXWqF1oCib2zLmLLukaoAceeOD++448++x3+v3O+sbqvv23Dvfs+3Ay+PrXvgHM3/jaN37jNz79z3/578wtzhw8tN+aZGVl5cyZM0mSPPvss3fddRczHz582Dn3j//xP/7X//pf33vvvZ/5zGfe/vgjj7/9bb/7u/911+LOn/oLHz18ZO+Jk2+cPnnptZdenp+bufP2uy6eO9lNujdWbvyX//zb5y5c3dr0DL1vfuuZxbnl73/3vplh1h903/HOtx269ZbXXz/+Qz/y4/lo/LnPfe7EiRPveMc7FuYGX//6k0vLe2dmBt/45jff/thjd91z5+B07/rq1a0teOzt7zAGWcJHfuRHT548+eJLb7z9se975eXjvSzr9XqWqCxL1dQcNcGuk3GnSVFrbfvANG4sbm/W4LrrrXKoHSiwLMYoEHuDfjEJQcAAKeS87rYFnxc6ykoTWtparPkG51yWdVVuvPdpkuR5nmYWESeTiYh0u53xeHz9+nUAIEySJAFwZI219uzZs3M7FgaduTx4ay3XvMmIYqCirdIXAMzNzUnktdWVGON4PBYRM8HZ2dk0dbOzs85Y732v19vY2IjCzrnReCvPdfSpAzQsEjkqE4Y6VUCoYNJGMUWYNpM2GUcCFKKovX6AXOECtpWBtBGyCR008gI0QGCscc5VYBIAxbSFuk1BpJq2VMNRpTkA7R/qEzsFjjSJrhij4uWJpv9tNAvUNYhG0TcqQFrEbG0d3TaubXW8/U6AGYis2vXGaFWlRv3+mvCTmTl6lSWpw9PJpAAhQIuoPeMALXRFk0CqM5FYgdAFIrMIE5HO0EPEXqcbGUNRDgb9yFJMwnA4MNR0UUWWiIh5nnMISeasrdK6a6s3trY2YoydbjocDgeDQb87GAwGaZoqdWea+tS6rVGeJlnpI1dg4QquoQR4kRkSW/f5xxgjEGovbQjBgBQF6EDcsiwxgjFmMpmkaRZCWF1dVdC3tMAoiudt7+PGxoZORpK6INuIQbMjSkEHjUjUu9YaKQxtT7rib9nmZ0Pb4jYbfZMYNLvzlhf5wLsPHJjvza2urZ+8cGFhx7J12Znz11jEucQYMx6PT564sb65NujPdAf9tJfu27N/vLmpfiEzp2lnPMlNakV0tEvY3NzsDvou63TQJDYNISAQWlTbUzEkG9NwE3SzznURixRBiqJIkhSJ9Ig161YFkEghhKonV5OOUF1WZBoY6J7u3LlcjieTycRlJsuy9esrGzdWd+7Z3d4FEWGuaJ+899SHXq9XTEbMwTk3Ho+No/Z5bBvjZqnr67QzT5GqMXJYrzwjYgMOaV7Sitm+5xH+XrtW/antmf1pb6uSSRxVvzWLya34E6RaAeccoFUSShFBgBBjjOKlNL7Mi3D12o2V1WeNMfv3708TS4D9bjY7O5ydnT3+xsnSw8VL1za2RpeuXHbOzc3NZJ3UGEys63a7icu0ZVgiOxcAWPH1CvBSdWSti9H7EJWxwvsqkak7y1F0mGOSJOqQNU5SvZgYIzundU+x1njviWzbf1KXxdRDnHA7YUc79dXeo+ZVb/G0ztOuRUgLadC2Ne0ziNO6ajQG09Tp8Q+xRLCrq6tFUQAsKYhiej+tbGhlzTXLUPPhS8tZb36wswvDxx66/2/9zZ//vd/9T7tu3XXg8K6nv/utf/m//eoP/9jHP/CBj8zsPfjAQw/87M/8dOLM3/rbH+31XWT/6quvWpNkWTaYGcYY3/Wed6q/MhqNXnnlpb/yV/7S5csXX3315Ri9MXjf/fd/65tfe/bZpz/4Z969Z/+uY8dfeuqpr1+7uvL0d77xgx/64D13PZx0kp27ln/ur+78x//wn3zy//zkhUtb73zP+w7ecnRhdnkwY559/sl//+///Xvf9+6dO5Z+97d+622PvfOO2+/p9TqbW+u333XHc8899/IrLzz08GMzc7PXrq8Ph8My+IXFxbRjR+PJzl077rv3/t6OPQ/uvtPY7wxnFt/3vv1Pf+tZ7Y5GRELbDHxENM05185a4xwASM2G3AiHMCAQKW2JQUASgRAisyRJwhQ2x5uJ6yrasQiejC3LUtnyrLVA7H2R9TjNjE7PtaYKyACVlCsy+8Fwvih8BWX1XkQS60LptU5aFMXMzMzc3Nz6+joCbm5udns4HA7vueeeyfPPMnMFoBEfiopwhTnUdpdMPVMylBUBDDNrRgGQr127trGx5pybHc4YY8ia+cWFJElCCOPR1tLSUgih9MH0SEn5EetusqoAJ9IgAEh/zyr8xlgJsYpgBEAEGBuvC2uSm2nqC0SDwhhEGInQGmuQyBodVWnsFDeHiDpVWkR8CICYtKgiRLScFwHA1Bz3jX9GSIKkpczaoEYAkAqLAFh1vQmCEZ2NUaco9Dg1wXdznitFr/ihm/Sy5tUQBSGqD4cEwjEIohhjEUgUH9eoldYlBCFyVKLd+umrSbTOOav5TlTA+5S30AfPzAhGJEaIWI2YrIa8IUnFE4gcYhlCCehCqLhhtQbUGFFmZMZOpzMa5wAgIRZ5TmS998Z1EufYGA7x2pWrly5clFDhhDqddGZmJut1lUhWlwiFvM+NMUVehMDdrvOhtFmqZ5BjtAhtHjXvfSdxjbumC9KYfL1bHUOkJem6tWLadi6V2bPGOCXDYxBCRCEElDqER6hcXr1mvfyMCCpmlfPR2m6CqaFtXL228f7/y4QjIgP44A/cddv6+uZdC4vdQT8ypP3+mMlkbm19xMi7d+4cj9Z37FocLi8nWUpEkyIHQ8Ph/I0b54WQ2V+5chlsdu7SZWOdCPf7/aXlhU63LyKDwQDQFEVB9TivsswtkkUygFCnPbSBkYMS55aImCYucCRCSxQRggqPoRiqDCIzJ4nShzrn3Gg0IquTdqpK+ubmphFI0zTJ7DifGGdn5udMDXvgmjU6Rh+iBwBFjBRF0SSiWIKSh9Wnr55/3EJZNGtem8jK3W8vtdQlv7pX8eZt+v/pPf9f7+yf9h6pA6cG89T8soIWYpVe1SYvY4zGX1pyAwABqMG0FAK7Tm/QnwGgzVF+5cqGiHCIviyWl5dvuWXP7Xfe2+t1Vq5fvXr1ymQyuXDpGhlIU2cABVgnSe9aXM6yrN/vJ2mCNbNXjJGsAQl5WTrngAWAIosAxCBZmoxHY2stMIdQpmkKoFguDX4qR4q01RcoBK3J5EmiCrMaf1QNGMPq7BjjWgyO03wh1Onhm1ayMUCq1aGBEGyr/JJIoyiqASoADJGV2UOz50RU+twlmXPGB0aKMXAIodft2MQq3Vee52iMcU58DnUWHJv56NOmAWnf5E2yYTtpsrm5vv/ggbW1tRc/9dTDb7vvA3/2w5uT8fr62uc+97mjR+4ZbeR5nr//fR+8575719ZuFONyMBjMziwkSVKGuL6+Pj8/f+bMmUuXLn3qU586evTwgw/e3+mkBw/t++IXP/+7v/c7n/p9uHTl4oMPP3Tq9NkTJ1/91O/9zu1H71q7vkog83ML33zy6d/8rf/c7Wa/9mu/9iu//L/98//Hv5idz3/rN7+0c3E/EXzhi1/aGl+7ujJ+9rnvfPxjn/hX//uvn3zzX//3//0P/fW/8XOXr1xaW105evTw7MI8QpTIV65cuXT+nDFmfX0jRo7BzC/seerbzz/29kFvefe+PYdeevn5hx9++IEHHvjWk99WySAhBT0Yo72v1RyulFCdfRExZJuNV9gTAFhrR6NRnufdfq9hhTHGRGAESJLM2bT0wVkTvRhU+KsRwiJ4SsUlhiVyLAA5eq9FRkQkdICcJInOJFY2MSKabE1onppkmPe+283SNB0MBpPJpCw463ZyX5bBR+YkSyNyCAGtm0wmijivBbfKB6jf4L2fTCZ5nscgxlJZllmWLS7N37hxwzlnDBLgaDQa55PZ2VkNaKyhbrc77HURMUtdjL7wJSIKYGTlt2dBwBYdDtadDdNYMNZHgmu4ZgUFq9rHm/N2kxqVussyxgh15Foln4xpmPqpHvpRTwNsgqqqT62dEmuyRzgFg0zzUk3SeLqG5uZERfvp2jq3ffPt3zfvbLmG7ZwcW9uaKCdqhzD4qI0KMUauXFNqiGeaAFE5kJgZjdZSuapuVKgLAGABAWRE7WbSVcdQ5wBAM5EihiSxTh+AiLIsi8JFUbgEm4y6xnkAirXCPM8Fgw42yLKk0+kQEUQQiRyiS8z62ura5sZg0AMyo3GB5DRujlGKokBj0jTlXAWGbD1doNmUxuNUf45ZW9NR07G6m51OZ71eELXTLeULUPdIKs2VJhq5HlcQQiC7rXLdvKY7sn0r24ahTbxClcv4llHEbwEqbZOu7RevoGiJlV4KvaSEODec4S5evXJ9vLGx1JtdHg6TJPH9BK2ZSClMHACYnTUcSgKMpS/LkhBNmkjETq+rLHEbGxtn04uENrGptdYmSprjnXNJkoxGo+aYOGNGoxGH6JIUWYb94frmRuXxlKXU6SISCMLCEEIwYGpIoiuLQi2xUtV4703iELHT6eR5ji0+ZJskW/lEqkaiapcBwHsfOWg8WZblaLRZbQdyU36qs1/b0HVvzZRsd8W2VXsBakp6JAEWYcSGWWbb3r11p26SivY7YbvR/Z6i1bzaEYVU5QLXMFjFGKOwCAcBYk1fIyIKIghGgcASGcCmJFR6b9JuJ80kRACIwiurm5My7Nixo9ObO3rHcr/f9b6IwcfoJ5PJeDyeTCabG2trN05I5G4v69evLEs7nQ6JWJt1MgGAggrtuhiP8zTJOp2ejrUuixIJrU1CKKu1bJUI9KWYv263i3WhttmpxqPi2onBVvrqrenh9qFupKgx4nrMsX7Bn3rupMYFVH/VTymKVAclW8fOZYhSlqVNHDMXRTE3N4c1Rq25Z9iO9Ko2qCUhjVTo49jTJ9/8n3/l3/0Pf/enzp6/fOrUqSO37VvYvcPYTECuX1v91T/+V8PB/Mc//hdmZ4fr6+vr6+sbo63Cl1mnXwaf5/lkXJw9e3Y8nvzn//z1X/iFP//IIw+tra1O8vEjjzx09uzZ7//+97zxxrH58wv/6B/9k2eeeeqNN175O7/wf/ud3/7dH/mxj3a72bWVtbvuefDAgRc+9fvP//r/8Vt//+/+nXe/5/1/8Mef+Vt/+8dPnjr26U8/+Z7vO3pox5GFpUt/42/+1QcfePjgoUNf+Pznb2ysvPDyc7fdduTUidMCoRhtbmxs3n3Xg+vBM1rvfSiw252d37HMRSYhfeILX15e2nl99dqNG6sHbjmw7+ARlyYcorXWcyzz4CoMCjaiQG3vAagRoKoOoroVIUql332sKEaMIWZMs2Q8KrJOj1CMs1nSYWZf5AQA0UeQsizTrgCI9gBr4q25uHEm7WTqkJVliHUz3WSS79mzK01TdQ2V5cgYY5z6ZJGFR6ORCm5gZu+zLNOGcLVGzhiASqOpwBW+RAFgliBlEZhZeGFxcfHixYuj0aibpc45G8osSwGwKIpR8BcuXIhLi865srDOOZc4a61BijFa54ioKtm0lAgiGqlq+dpVXivZlqpqHQl9AzNjtfL1kJ+6IZyrQgY3lSlEVOYe3cdq7nIIepzU3VQYOBHpSBwkDBzdNvZkIyIo26r4zYGpLWzUekWVW95G2Pa9tUPb9ZweezAcGYQIkYVBQRbEERBqcKvmv6qcTfDGGELNkhoiowkYaxUp741ha8U5FwVEJIaYEVlLmmrSmXT1DVRFMUZAZEKCGoMCIjF6AHDGIGCIpUgMQRqAv04viDECApJN00SjRufcZFKAtnSMfdXPIcw+oJC11mTOpdYYwyKdTo/s5tZoxRKMx+NOp5OXnKZpXpbj8dg6FyRGrdEjxhg0orXWhjrhnyRJp9OJMUJk4Qre51T8mLMs6XYzUWaZt6CeVS9Xf8VpFi0KR2HZFlS3fOVq16Z7yggiQqbCpjAzbSs+MoC0856VGGCVaGmI1tuygdsLVSJRmDfWry/s2FEUE0YIaZqCPffaK5/91BcOHbxt1y375hcX9h/aP8k3u1k6mBmMJkXBwYokYIijQ4MCIYTMOQXxAECWdTRMCj74Qsn50jRNfQzq1IYQJDIKSGQhHI02sMI1Ww5lJ0ugQs1aqWQPnXNYloHZIBCCMRijmi4nAAxiE2fqoWRJkkRh7/14a8smzqVJ1umsr16HesoW0bTFxFprkTpJouvT6/VKY1DquA6oTa/FNaYTp3xslWJvctXYeqnmQURtXG0ZTt0BqrNif1oBsY2d1wzZNper1h/6S3hrLqRyQaDyRYwxFWXktI42RbnUT8RVmQFqHUVonDUunRQ3siKkLgNySdIhwjKicy6E8uLV6/Gyf/HVY8Nhf9euHcNBf25uJk1TJNvtzXZ7s7oeRT6ZTCYba+uXrl4L5y8PBoMkUZjKTL/fn5mZEeC5mVnFzMwM5obD4dLS0mRrvLq6OhgMBoN+CCFi9D4kiQGgEKqxmAAUI3sfYxRm0LIJs0Crl5y2zbl3mmto6Jwaf7rt2uL20LcxLs37eTuVBiISWUQD9ZT6yD6EUuqtJKzG+ypEVdVdklHW7fhSpKK/4UuXLt1z/z2TycRa630p2x2vts5pft9+KezBXr5w/t67FmKMp8+cmZtb6Hb6kPYIXerAgdlc31iYmz99+uTM7CCE4s1TJ5d2LGfdTpZlDz/86MULlz/zmc989rOf/fCHP/xvf/2fXrx03nt//I1jd99994kTJ265Zc9ttx0ZDvtl8K+++vLx429ubY7JdDrdwdr6qAzFez/wwbm9h0M099z9nSef/NZv/fbvAMjHP/5xsuaZZ/7fv/jP/tpXv/bl++6/p9O974H7H+p007237P7Zn/1LX/ji5z796d/7W3/7bxy8dd8bx493e0mvs7i5diNNuydPnZidmdu7dy+R21grRmM/HCwmLvNF6GadPM2ccdDrNWY1Rs6yKj5oZymRTCMHUPsNjf/eLvTEGLe2tnyUNE273W5ZhCRLre3Pzc0rnuzGxvq1leudJE0T20mTXneIrt/tDXu9gbUOANKkU0tP5fN57xGpmWwYY9O1Icwcg0LREaBimrA21QFKnU4nK70xJkjsdLpbPleeUkTteFejPtXyKhM2cTEvQ/DWJGVZvvHGGwsLC977oiiaSWpzc3MhxNFoZK3pDwZpmo7H48k4ZN2OK41JnAMCgEQHDxMaa7VC0Yig1ACaaoJ9rNRH86epSiKMLSUVo2giMIYAhEBI1kHNK9u2XgxCIjFO8VhUB4ixxW9+k1ckdewizUiiVvd444i3P9X2t5qVbF//Jn/rJmVx0zlsrqY/FEVwtt20Vc+NrlCGFQauKZtqqkmqYtxUrav2iTwlJm3a/Nq2p/ln84CWjDXMzMASfbDWeqlqPY1/U5YloIIbrPdek5IK47A2iez123VeqrrIiTMhlGRRBIs8j943UaF6QhrAWGu1rC+EoBhV9RpbfDnGuG633+l0tra2EFFRFsyiH0dETQoiVqoTatPXbFOs5zEwx0YVMk87Im9yqZvFgdo7IyKpcsly017X78ebflmv8/dgCRIRrM9C86VNDuD8+bMXr1wWwsy6i+b0Yn/h1RdfWJifvXX/LV/88hOdbnd9Y204Ozh651133HP39fX1xeWlhf37uh13niMBosjajfVxIHGJoCGys/0eIjljbZ3iVVcJCUMIeZ5ba+fm5mZnZzV+C0VpjAGBLMtijBC4ESTCahquMSaaqF3koF0wRpSUUkRCmCqBypNzttPrJtauXi+tnbJr1lazHpiGmGUZkqjdJkLnHMZg61mQHCJuZ+GCKtdSnSlEbLwZTSQ3LwWSK+pR9yWC4iI0kfynJqtav7+5iCky9dWwWt52hPY9grS3CMk2wdAfp/YIALB5FmBmMmjJOufQ0GiSd8sAEkQkcMwRZwbDvCwETHc4w8xdiMx89uIVX54JIYjE2dnZhdm5brc7HA77gx4HTrv9Hd1BbziUyGmWrK3eOHv29Pr6ZpYlV65cmZ+f37m8g4jm5uaGwyEInT932Zpsz55bQghJksbICCb40pgpfK1SRzEacujM+tommaqG2DjlTVkmSRI9kqurqyKx2+02+ry9xW89no02QJz6c00fQLMvTZ6l0QaKKap3gUSAI7iEBMg6h0hlWfoyEimegUVgYWFBRKyjECo6Rtjuab1V1bd/qXrJ5uP1v/QzP5U4MjYClehSmJQbayNret/41rfS1D368AMRYlFMNif5D95xZP/+g977s2cuHDv2ny5euHz8+Bs/+qM/9r73vdd7byxev3597969hw4deuWVl7wvfumXfsmmWBTF429/eHlp5tzZ009+4+mV1Y0r155e2jXsf+kzC/M706T38KN3nT7zxgsvv3Tt2rXz58/t2r107/1HPK9lHfzH/+STv/RLn/jt3/6d/iB77rnvPv7440duO9Qbui986XN79uy547Y777/n7heff+X0yUunTr+UZg4QkyxNkyGaxEfZ2NzKsjTNzNaWH87Onjh5epIHLSD2ux2ZlCGEbpppRzEiahstFwER1V1xJkHSkxoBwViCAAo2NMaEwNYmPvq1tQ0iu7i4bF0WgrlyeeX1428+9dS3vvHtVwAAAXbMmwcfuN85051ZOnDPu3bs2nft6vqB/bdaa1Xa0jTtdrOyLMvgY4xoDQMZ42KMWsKohgUhlmWZZYmIMIggrKysxBjLIFF4Mplsbm7moVjoJFgXyBENIQIFjmrktN0sZeYsy0Sk1NG2ornuePXq1SS1nU7HF7la3M3NzV6vN5mM8zzfs2ePMabf74NElybKnq/MWxSUj6Nq8SUiTRo0pTEA0VicmZVe9iYFJECaguKqWDZ1FGKMEoFBDBiGWKcuLCIAaoCJDKJOak1XSCwCLRBr4xshYlR0Vz0RvHF0qIWDrk8s11YTdRJj80T6wXa6tKXo69C2pR1u0uDNFZpz671P07R66ppSsg6LuYEhcV2f1QKrZnQiROYYA3vvBfWDNsuySe5FR1ESsY9kyKIxQF4iIqm6IbIxFgjgrDUkFXGQVL1Imi7VFJQhMCYg2anSsYbIEeksbVCsT5IkwBFErDaKei+EaIxzSRkLrHjvqukIlTKtffTUOY8clGMPkQgjQIzRACCiwn6NcfrUFh0AEESt1OtCFUXhkmluEusWiibT2UgX1wOGdUMV5AQt4MjN1rIpHyBoMhRgisZvPqV1j/ZvWrvPDRNSSzK38VXWEiKCcdjv63z7EEIM5caN1c3x5r2Pve22u++/MdpamJ2b7Xe/+93vnHrt9YunTxJRkqVscGnn4q2373O9niU3P7+YDhcC2vXNkTV2tDVRH9eaRNfEJi7GKEG63a4zNs9zndxRlqXiE8hZQ4YAyVJZhMZhZ0IAJkOAbAgIiMAGFkSwVokhkIj0hDJHlYzAUQ+RUgBk2RyisYnzxcQYpwqkTekEyKEorLXAcTKZYAyAXBRFURTOpswcQrNoTSRTgbWxyohUTA0x1pl1xCYvpQZdWi+9VCthPD2z9c/xpv26yb625GFbePkWq8zNV9/0wdYPU93FrHoPp0+KhGQFURB94M3xZCOMAcBaSFJ748Y6i/R7PZckRMQiaZplnV4MZaz5ildWt/KLV4kISSzCcGYwNzfT6/WcsSbCwuKO2bl5a0yeTxbmdwDy2uqNbrd7+vTZyWQy6A663a5zbmZmsLW1NTM7mJubizESEIdKghGp6WTSwZaj0WhmZgbqaJY5xMgxRmst1bMWQhhdvHhx587l5tnfqjbbv4FqQmj1Fw2xmgCssSON3o4MZByiASFBQkMYjSZDVR6MseN8FGPs9/ulF2ZwzjJzt9t1zoxGI/3qmrx9W/SF0/pJxVbz1jcAgD10677+ILUmAsr6Zp7n5fNPv7B6dX20tZK67O7H7tkcj+ZmeknaG84vMMiXv/ylkydPl4Wfm1sgTB544P6PfOSHn3rq25/5kz8Kody7e8/80iyi3LhxnZnzcnLP7Xf1+73xeHzu3Dln0+FwttefnV3ozC92R5OtbLT5/PMv7lje9dM//dPf/NbTTz755G/8u3+zsDz49ne+Orc4k6TyEx/7kaX5HZub67/0K7/48//tX+31utevX9+xY8cTT7zw6CMPJYn93Oc/C+wWlhaP3HE3AMzOzy3OLb/80rGLF1YT12EBRGIG7yOzjMLk5Zdf7vV6AFSWFc46Vk2tBgCoBnipodE8vKr7ytCiEQIGDIF7g7miKATdcK47Go02NjbOv/ja6bOXvvv086+8emZxIfsLf+Hjj7398V/9tV93zt1z331/6S//ZWF/7urGamHePHHqxMkzJ4693ul3ihCcc8PhcG5uloj6w57SSStAntAkqRMRH0KadmKMaZqKIAtakwhjCIGBRHhrNLl69ep4PKZOSkQOsCTPbABAIKpvo05G+P/S9Z5hllzXdejeJ1XVjZ3D9OSckDMBAiBAUgwSKUZJpEhlWTKt4Cjb8vskS/azJSvYspWDZdmSLIqkmCEAJEgQRE6DyTnPdA43VtVJ+/04dW/fAfXu9wFfT3ff0FXn7LP23muvhYX/o7U2GFo7S1EkAJBzIaVMs0444cJSbjab4X3zPHfWZlkW5PKTJEnTQr0QfV/GkIDIwcCGWd8/62PtxDgfcAlbdy0eeARHtnDtvffBwywU5J0jxqCgbTpPAnnviA2HKPZIuKEu0q9t+AF5IX6jhITvcYD6R3LvTyjaFiFL7h/P/QwsKB286cP3kRMO5OXrQbd3tFOPRAUA3kOfsgD9dNADEwwK1xwEANv7bIWckjGB7uC8c84ZY4MzifeeC4yiKE3nHIU5aBdU69i6J1pxj0It1loLYJwxigvvWafTmUCuOHZciqy4d2EuJXx4xoAxnhlNPWUdIkrTzJi8Woo45x6AXAC7pIR0zjJeFBsIHGeCcSdQZDrjPVM2RAqF0QJTOhOEIQDAeSOEIHJpmtZqNSml9Y4EMMac0f2+Q0hpVMSlKjSpwxL0xBC49yx07b0P/UFwhQQrhkbt4H3p3fSBDGEALvdORA/Oo/cBUvX9D970FAAWbD2hJ+xc2Bj5ABrWp/YGlxCRR/RQDIh6IIjiqFqraWOuX7+6edNGiXDTvr0jQzVHtO/A/mZz7fWjb+TaXLx+EXwxchhFSZIkHmW1WtdaJ0qm7dR7n+Z5nudEZLutsN3a7TYRVSqVsMF73D7QaaYUdExuvAspmdVaCME4N55UFGutObJevdOS96LYfb73V5C1ZLwTCEKpxZVlEUdK8k6eMcaCCQFXhaFF2JthRXHOgy0vEgjBJeceXaDm9DsSNEB4AAhQdV2Bs1fsLJy2ich7i8gBwkZb3+YAg2N66xLwg/flTSco3IgABp/e3+th8qP//e+Ea/0MMCyPgaxsvX9NRIBIDBnwgi/uXB9lknONRnO10Y6r4yJWjKO1RsoYmHHadTIriVlrlRIOjfJeGy0Zt9YxRrFKpIqRkRBM52m7my4ur1hrheAjQ0Pjo2MCWRKrer1arQyBt+NjUzrLh4aG2u12q9E4derU1q1bLl1aa7fbu6Pdhy4e3rxpU7lc8d5rm4dVbIxxLsyoecaYELJSqWR5F9dtmjgVQ9BAZBFxfHy8VIqbzebgJupvPdfT8uUD8hOBnsF6TouDN65/nXubzNFA0hsOO4fhk4RoIziTiBzRO+esKW5BkpRarZb3stvt+kL3dX1MpM/+DK/svScqPNjftFrCuhI//lM/cvc9dzz3ra8fPfZGKSl/7Ymvb5jewiD63f/+N7/9W/+uUi2leRcYQ8S1tebLL78I6GevXf3Up37WEz73wvMPPHj/2TOnz587c/Dg3q89+eR9d93JJCdy9ZGKEOK2+JapqalrV2f/6q8/feHClV079759/833vOW+bz/7VKnCOYseeeSdd93eue/ej/z0T3/k9ttv/973vfv0qSPv3fOOR7/rwdXGwp69Ww+9/Malc51vPf3tH/yBH1pbaY6MjB4/fpyhmxibPnbk+OLi048+/KjVOLNh67PPvzq5YWOjkR8//OLo0GgUSXDWa5KVctrNkFigEJXiclix4VYCMAdIuM5YYoyFmpAznogYOeTMepJSkodO1vHEBY9VXFlaXvvWM88TISG/fPnK098+6kNkBXjPO+/+0R/5ZK0S54aOnzz9lceePnjTvrGxSpp3b9m4vzxxIEmGv1wvXzx72jvx+c8/xhDvvvvOPE+NzYUSUsrh0TFkaveePQAYx5HgyCSr1YfK1TIhxHGcJGXG1JVr88Ck0VZbkpFCIUfGJlKbaa1BcPCktY5shIWmAHiEoCMV1PaD1WNYFgHteeSRilgudG6TJNEmE0wyYDrTJjdxFIVIkWUZ48DT0DVwRMwjGEcSmKBibCc3RsUqy6zg0jsCQhTCAzDGXeG7R0qIPHQGQ2pCnjGGTBCF8mNRkEDOiHFYX8FojcPQI1BcyOBKRowJS0FOFp3ziJZzXihmDTA9A8WfMSRwbxqDIiLyIVdbb0kXI3pFH6EnHdKv8BWoBQY3Xv8oDY/+r+G6nmqxP/vkP61tSNCR990zUAnJEsx1ZskJKYLqfTBQgzCHy0jGkgMPIEAwgUph2vVkGWPOQQDNWlulhJRSM++BddJcCBFJzhnnQTiNISJKqeI4bjvKjI5UWTvLGLPOS8mdM0wyFNw57woyFgtTUZKhtSbwYMhYgYxRMQpqvRFcEngZKW1MFEljTK+576w1znuiXgYMgYLNNRnGuDYmt05yoThkmQfw1nuhpNY6jiKtC5cb1mP2BFYsIvfeA5IQzDkjI2GMcc72516dswBge6PsxRgdoXPWkXPGRVEERYPyhrH5oi0WTkdgYQbNgwdW2DGEwI0FbmPeQw8AcMZE4PQgCO8tFcxpHqKO98QY9x44etYj8AKABw8IRA44R8bI2Nw4G/lSkhx56dXX0pdmJiciyXW3s9Zs1kZGx9caQrFb774zKiWtx79kmLPotDd5nka5094ymQohtKYoSTgXPE2r1Wpg+IVaabeTaWva7Xam8zhWcVxSSgnOBeeco7U2Epy8s9YQUJbZKIqc1WknyD6FwVCSggExax1D5ELkeYZIHJljZK0nznJvNfjlbosRWIZcSsG4c06KiAnFBPfeM4FCMCJixNAh+MLt2TmTZanznklRqw5hoUjMiEjIMDEX+k2CiJAKTU8GEHiTDIhz9Mj7tK3wCP5vAEDQq444AGCF0ScBAGCvQok3NsIGIRQrdPNDJhDMwchDIbHO+kMa6y0z8j58Wt/LH3zIDZxzqlA3LDJD6x1x5r0PciHeEee8k+blSlkx0W11z527tNx1VpBKVLVUHanXKomoVEuSJQCMMZvmWWa0EgBAjktEbq23JhUSvbcqErGKfY71oXKmU0RcbXaW1zoMsFouC6JKOQZyE2Mj5VL18qW5yanx0VExMjI8M7PRGIMESqkFkkb762sLBG56etJ7m+mcMdbNTJ4b9CxN0507txGBs8QFMsa9t4gsSVSQk/TeE/hmc01rjQTOeJ0ZxhghWuuDUwJ5CwAMkSG5ILjNCl06a20UScYYETrXny31jEkiAvDGaCInODLEoKYphGh3mt57IRhB7jxD5M45Z2zYw5yRFMwZ02w2a7UagK9UKkoIpw16Qk/kfSAS4oDgEQbllRuQ3/q5AAACwJ45c8JB/uDD9x8/crpSjm0GZ89c+pl/8rH68FCn02l18m633Wo1Tp0+sWvX9nvuvePatVnGcH5u/p577vzGN5/QaX7Hbbcxiffcc9vRN46SM/v279q0ZdP5SxeXlpY3TGyoVUfy3I2NbpibW/zhH/2Vn/rpd77l/nuqZbGyOvcLv/Avbz54y//88/94/PjJM6eOvPPtDx8/fuzXf+3XPvKJDywuX7965QpoPlKeGRuZOHvmwoXL51597dA9997BGSWR2rRxemV57fjx4w++9W1JvbJ915btB++4ePTk3Nxc3s3L5TLjXEQyTzMpBcnIOQMMvSXviXPoJ3Z9KOoH9Ab7/7cE6Htu6kyUSpVWu3v+/Ln68Mj5i5feeOONuFRZXFy+8667/+t/+6iKkj/4/T89fOTkhplJzszyUmN4fHLPnl1ffuzpu++8Pcs6aZZqbGm5bEm1u93J6RkuxVqzYXL9wAMPTk+Pd9J2p9tebTQc0UsvvnbxwtWZmY1JEjMOkrPDx46ODNURaWRkpFQqaetHR8da7W4n7UYWHQPnQUrpGZIHRsAYN7nhTBqbhzzJF9IDhYSdlDwoiheHpbUCoOu62Dtv4qik8zQ0BLXWQvJ+VmqdzrIsVhJ5MUkU0hHoXUxjjIo552H0E5xzhBi6D4wxBxBOzeK4Krp1PWUpIiyMKbQn22fXGu+8zokIvJOcC8HRkwt21yiICIiFqB0YY9ijag2WFmggjN4AvIo8PcTU9ZTlTYlL/zH4035C9qY95m40J+lvPASON6bU/R8OhnXGgm91FKoU0FuWoTIRqj6Dnwd7h7eQMowEBr4dIpdyvQTYarUAIJJcSpkkcb96F2pp3nulFLCQvUGvHGiKEXSCoM412FPD3sQQIhNSGJPneZ4kiZSSXJ/kwQmYRye4dEDOORXFnqB/lQSyPE9VXEO/PtMaGsr9ApgxeZKUOQ/jD+i9z23OOaeeDz2RC+MmyIhzHkVKykIDLORcSIVAXCAh9EuhjHFENLkpNCR7f1GoVPWzlMGOJBE5H2aWg71J78YVfatQ8epH2/5KCKIBRY9j0A4rjPzxYHgcfhpSQG1RcAotSPLa09ve9mhjudFcW6nXq+evXSFgHWf52Wh1dXlq03RgCGidSckDxGw0Gp5xQ1kcx1xE5ZLwzspIee8qpSpnkKYpETIuEZnzPtcZIrXbXa11JBJjc2tBCOGLujZyAo9QXEPsj98SEErOiRAlI00eSEppdOa9l1wAYwSMRYwEC81oEyQtAm4myzlHLpUo/D0HLzUAy7sda60xpt1ue0vBwo9zHuywoFfA7kEcLwbQM8DgjqZg7Eg31OYBbsjF1p9SPGtgtOI7Pts662Dwp8UTwPcS/jcHECzs1qC3GMILOs45aWeMCZi+CGIURGq4MUYpZUwhJJumaak8ishL1aHq8OiqbjXSrN2212YXGeXTk5NbNm5FkEZrKbnXeburh4frrTQTQimuUp1FJLhAbb3RXSFE7rwHQd6pUhkccMYq5argmKctwdiRY6cqSYkxfn1uLkvbYyO1cNkvXbg4NDQyNjK6vLgSJUqpCBGdo1glBKyxtlIuVxiKc2cvXLx44e57bt+6dVOjuexc0BwQjLFSknS7abfbLVeSTqdtrY1kXFRbrWWiMHZkjHlCxlhPL309yFtrpCx0hYqSuSPGAmfU9w96GiiJDeIhIkfkOGfeBx2oglYQtrOUSihJRELwHu4vqGPhHhU4YT2ksMFb/iZoAQDCU37h4pl777uNMbH3wG1f/fyT//zn/+PmTdNvf/vb2+3moaPHH3/8yTOnGw7gF//1xzZtnpq/Pjs9Obq0ONdsLm/dPt1ozCmUq2tzm7dvstYODZeuXLm8vLKwsDx3+I1j589dJIajo+MfeN8Hrly+9uUv//rP/+z7nHM2sy8fP3Tm3JEPfui733Lf3aMj4yhaJVXdvHGDc27rjq3L88077ry/FJ14/KtP3vn+R06fvbS0PP+xH/ih5dWlVnutsbb09kcfHh6uf/LjP3Tq5LFjxw9v2rL9yOFXa9WSFH7T5oksdYJjpJIkrhhjGIDtOueYt+tOTOHS9Bu3xdF7o8RIeBjrqJA78t7nyKhcia5eviAFvvtdjyJnUqra0NDoUJSUKvc/cO/hIye3bdkqpWzZ3Frd32l+gNMdXq2btjeMzCwvL+7fv1/FstVpAlK5nIhIcBEdPJgtL6+urCzneU7gdmzfPDW1fXV5aXl58dSpU88991wnzXfv3qOiRCjJUDmCWrWa21yCt2Dbadtao6RkDrhnyBkRgQNGIFB459JON1NZkpTBkyeXZ5mUMqT+QSE64NEwZCsEa7VaDMgbm2WZlJJzGccRUhjSDsr1WAQKLOhKAJAkSTvtSCW8s4IL5ywU9t6h9eM554XeCwB+x7AYIkLv8LPWOiBPTEqJjHkMER84cM4Zx1687tWuQl0hBLiQhYTWA3ns1SrQkXsTjKCeGOwgOBsMtf8/YfT/9/f7Jzfr8cBYjwcfoGb/F8JnxvVB6GIpsj49HzjCev6NPUtg8uufBxGllIzfMAEQKK7eewLWh9pdkxtjpBRKKa5UeCkhOAC0Wi0VlVutVrvdjuI4xJSiOOfJWiulYkwEDOYRCBlwdEGoiJCrCAU33jlHkknvveDK2Jz3/JG8K5SByHvGefgDu93uWHXMWssZ5sagFCysKiIiyvPc95i5heJGAP09rB9asUTW+6JBHISsGOMFsbC4UwwRjXGSY+CbeyLGgXPe7RaQsb9PiQrnAEToN4Wxx+r13gdjE47AkHEk8ARAjCOSQ4Bg5sDAIQXbU48h5Q4yK6H1GNrrGCJPUK7D9R4cKCQmOUIoKApuAG658y4yorPWvNJoXG81RkdHoyjavmtXkiSrS8vXLl5fXVi5cuHKrfce8M5pk6s4Sqp14sKjtuS7nRzyTGeZ954zAUjhXC+VKqEH7byvVqvEKC5V8jxHz5hAFcksyxgUvTwAEMisNcSC0Alz3uncGuMIuTEBVIGKJfZqRVrngiNjrJ12KJDnGMttaCgHAMTCqlZKMib6pPXw8N7HcVyr1aJIhkgVoBjn3HnTyx9YpVJRSoV5PVaUtfqtZMQiSqzPOYZtUvS+wyBFz0gKEYOsa3FeFlOSN1CO3hQK3gzfBnblYPhYh3S9oDT4an042P/l/i8I5J48QFhpYK1Jc5uUhpynZqMtZWQNCJC1apk7Qd4LASut1uyrh8KFdVZLweJYjTaGy6VSraoceBTSC5mbXBAqKYz3utPlPFiFgbdaxkmjuSwYZwQTM9NZlrfbbSmlcc7keaUMFy9frVbLMlLNdmNmesNYNNpqNsbHRmavzSIT8/Pzu3fvQeI3Hbh5eXn5Ur3aaJrrV6/UqrGxqbOEjMKUmIt8rVpXSmZZNj09k2XZ6vLa6mqjVEniOEYkzjHgZsalc07IyDoqkn9G4APqkv172odl/Rp5uORCCGt9mMwN2M4X4/bkvVeKhxQ99DEDTtBaR0oG0w6lRJ/ywXo6mtBrg/TvmvcekQHygUbIjdyv2dn5iYmxw2+crFZrO7aUTpw4c+utex995J2nT58+fvIYId+8eeY973nX5s2bVlZmr169Sj795tNPjQyPVYeqX3/q70dGq/t37XvmmWfmFi5cuHxpanT8gx/+EFOy3U1/49f/2y/90q967y9euDwxPr1p4/bf/q2Z2dnZQ2+88m/+7X+6/c7J7/3ed46Pl1dWZ+dmLzEwQuKZs2e//vVv3nbn7SPREJC868637Nq2V/K4XIuOHL/abq9NTY+f/OYRIUFG4oVnv31uYvj+t9z16quvXrtyXgr/8otPT4xvnJwabTbSaxdnK+WhJu8AoDU6ElJGKu+5l/RwcSi5s3ADBjdV/yj1BEGXi4gQwDlnrY4iuW37JsZYqnNj7crKWtZZW5jVm7buqpQS52F4eDiUEERA6MHYjkXGGOQ2RjQmZ2FOTKlyJakPVaXk1mnOsdnpcM6RiUajgYijo6PNZtOTnZmZ2blzB2zfEuhoSZKsNdtHjhz59N/8bamcjI5NgeTlWlXGUVQrefTDw8OZzoeZSPMcPHAhrLNATGsToQWAcrkcwFYoBHLGwzC39z7MFoSrEXSAwtAT7/FhB+NOGBxhQAwLqb3AxDc2F6g6nQ7n3DqnhKSeKLwfGOfGYEbeyxSJPGB/wDjgVAgfw6MVDAnQke3r4XgEEQoVnhP58HFC5aMPrDnnZENd84ZKBhEFK3Tq1ZOgP6mn1D8YTPsw/R+Ird9BsQxfvwl+FQk6cBp49AEcuyHshoqs7b9d2PB+YGan2MyA/YXtPQkhGF8fEeqrQjDGQm8u3IVIKcYY58Uf3vdIsNaura1FsTXetVotT6QL+8XiCvgeKSqKIuODMCNhYUKA3nslBWMCAL03wAovB8JQ0rehdymVyrI8/L5gLHAQOefgCTkGUE5E1lnB0VuX53ktibuwzriy3qHgnLEQCrlARPQe4jgWQhiT5nneB8YDt6a44+vcf2uNNha9cw6lGryVg/fohmXTXw/h1hADKqzgObAw1dXDfGExU8+T2zsqWGCDL3XDayJAL5FAwb11nEsiF1IHY+2uAwecU1M79+649eZuq91uNdJO99Dp0821xtrS8tjI6IGbDhDj3gMQ01o3m82kOmWMkzFPZMyZQo9RucI5T7PcIznnnMkbzeClraTkudUBhpbLFZOZJEms1Ulcct4SBb4aYRCfFNxaS72VBsAIudYFFU/rAtCHKqxUUbjy/VXUX/ysZ4A7CD766y1EyzRvO+fSNK/X62FCJZDAuECtdXC/yLIsy7oAIKVUojCh6m89a9c17ovtiYUOfn+rYk/QwXuPfn13DwaB7/xnH069OVwUsW79O/9gnvadT8SCqFAU1YioN/fMvF/X0cjzvFzmaZozKYKXHWcCHIJHRgyAJXElimIqajZkjCHnFhut5UZbX7rqvR8eHh4fGzHGxFJUyjF4Wy3XvLMcodFoJZKRisbGRrqdzvy1+Wq1unvPvrPnTqdpt5U16+X60Miwsem1a9eEEG976CEp5dHDR7z3a2tNZ6HTaTSbndOnz1ar1aWlpatXLzOGN998UEXce89QxBWRpinjmGfae3bxwiVHfuPGjZwphnZ1dTVNU6HGK5WKc8b3zH/7h3io3IftmWcp3jhb2ov2hXYB5xxxXWpu/ZQvSCAUOPv95SelDF3pkO8JIZAzzrlSKkn6N704Cvsyk/2ZBmutFAlgYCQNLInemhcnT5xjXt56822f/fRnP/jf/+mf/Nl/3jy9+fzFi0NDY/fefY8nUy4nw8PDMhJTEyXGIIrlBz7wvd986pudtPPSK8+MjAxv3bjh7e946MTJYyur8yZtHTt+eM+Bg5VK7cEHHz5y+PjI8MTCfCPP6PEnnpyfW/7bz/xNltuPfeyhn/jJjxrT+OLnP1Or1bZs3tnt+MsXl86dvXLo0OtJpXRX7W70XGu71mosLhzdf/OW4TFOrDO/uGp9Y9/um1rtpb/7wl9/30c/ODt/+cBNu431u3ZvGxqdPPba0ZkNY7t3jJw5fpY858JIKZ214KxzxnlDWOhSrh+EA8IE37nNCACYIA/WORk0bTxxZEAwVK/ViObn5yVS2m2NjQ4pBsF7hXMeIn5R8YLiBIIBUdAgGaAiISUncoyBNsZ7KpVKaZoiIjIKYqfOm2q1zBi0222ddZUStdoEItar1VtvvfXq1dkXXnz5wMGpHbt3nbl4HgVfW1nR3qS6C2EYU4hyOSFGhuk4juMoUaBkB/PVzBhjbZ6mGZGvVqvBxaVerxedOwBrjDFOiKK4GpbOOsW+ePRQhQjIKVAoCiXMYtxScGs19Fy9qAcZAsignsltH9wQOCAIlB7nHHJeKpeztBPKUo68d55zBM6JyBhjvQHPiUhKjohIDJEF427JgQO6HtO8D7+8D+Ab+8k3Y+Bcobc7iDYG4RENlLVhoMLMeqPRg+EYEYGKqR+iQDOj8J0g8c8GdG768aL/NSvGCAqGKSJydkO/0nvfF0xDDGK32Bvy6k3yE1UqFQDGOeZ57qGo61hrg4dQCGUUHDC5MsaF6lGROzpPPV0rcD6gWERcWF7KjJYyUkoxxhlHbTJtbZBaNdaleVav16WU6JExZtAENQHJpETZaHW1tpwLChYFAIyxer2eZVm1WvXMo+jNnfWagDrPk5HhXomLnHOefBByY4yBI2cD9xLiOOacOw9pmvZjImNMCC6ECE3GIBumZMwY41pXyuW1tTWOQgjVR+FQjI9QDwcAABa4qNclF0ywXg0j0Ik8QwAIE7mOABAdATFOhAFAAaKnYqyVEAgYAYEPKzBUBHvJCTBCJC60d5IjEToia10zyy9dmWt00nK9NjKzWaTduvMHh+rgqbG62mqsLS7OD23YwJPEeJJC1SrVPM1yR81WN9d6w9SMM975zCJXpSR0OIFiBAHOa22dM9bZbrc7Pj7RbnfzzCmlarUKeGtMYRXqnEPOABgKboxxZL33HmwAPMhKAQrYgSmWsH20s8QYAEPkAIxzGVT0sChU8IEaUbjUGGanwrG3YnTIhwuNDMU9OA8cEOM4ZoxJGaZYPKAHFwYkUywMMCCKEiEEouifxKwwtip6lwNICAHBmcKjljHW8/AYhFn/QHo2eJRgjwzQ/4MGA8vAolpn3PdSsCICwIBpW4haIWiETcEYr1RqxBC5aLe7BM7qzAuQMmJAUkmdp5wBZwwZGmMtOSa4kIpzbrwr16rW2pVud/VqaozhQJz81PiY4u1qEkeCjdarebd17epsvVKdnpoxmlabDR5xkYgNkxPLi0uXzp677767EPHCuXNRFC2vrqadTn14KIlKCwsLAKLTyUeGhs+fP7tr987VlcUjbxyuD9WG6lVjMp3lnPO27laqJc4kUKZULISIeCRZae76fJZ1K9VaFMdxHEPBLgDvvZRRyPmdc+E7jDGTpZwjeey3//o9Qe8H/Tp796Uoha+jW85YEPVgPcFqxlieW2YMANdaC25KUcVa0+l02u3mTTcf6BtsuJ4ZZREdeku4f0QCFN0MYOGuIxGIWw7ccfXKlf/1yv/5y7/4yq23bHr5xZfqQ5X3f/d3jU9MCSE63cbf//1XV1y6dduWubXVUGSu1aqdTvvLX/3S1p2bN2yYBoCdu7bv3Lt1194d3/rGt65cuXL2wuXnnn/1zKnV0ZFqHJcPHZr7z//lr/bsrpw92/6u77plx+7pu+7cnWaNZnPukz/0g6Wkduni9ZdfPLx9296dO3ffd999b3nrAwD+0oWLn//i3xnKJqeGJseH9+zZPTxcn1+4Pjt3MSmJpeW5+x+4d/+BvdPT09rmZSWsdXMXzx24aT+IJGum1mkZieGxYZtrqyVjDJxN4rLHou4VCNQhwxsk6Nywc5AhsDB1zxjrK0CWy2XvfZqmSZLUqtW1tTWdZibLAb3izAN4soiFSJP3HgHCoDJHFgrmUQm5YK1WgzHgnBO5XGdRFOW6o3WGiN7bNE2dc0AsFGOUUkIyq/tjMjbPjdV6w4YpRNi0caMQIkkSJkVSKxmyHmhpdeX4q6+pSi0ux0k5JnIOqF4bTmRcZmpiYkLJuFSqtBotRMiyLMu76GWr1QqKc0AUBjAReeA2AjnOBWMiiHOGAm3Br+DryYQQAgwAgBIiGKBmOheyIBhhn4roIQzH4XfU8MPkSu/UFEKISimSghlngZhxOqi1EZFzxpElogC/yuWk7+AZtgTSYCMJ+/im/2n7dbI+GzfMuvZD5OCSoDfvqwIl3Bi4B9/rzRIDMDAd04uhoh8CAGHwp/3XLA4AuOGtGWP9je69954QC+quc5YDIaLWOSLGcQzg0zS13sdxHERrvNWdTsdaY63F0FvHdY3pAHT6fyAMlI0DsG40GkGHO4h2BjkyYIKQACBLtRQZMvKWbK7L5bIxxnhinDun8zznnMdx0mq1rLWOOBEBkeDCuJ7NHHlC5FIgRyIKbjNhMRQgmDNEREApJQEL/kLOOZsbrXWpVKnVygEoBKE+rXWn0wnXT8qIc+4sfetb3zpw4MDo6Cigr1QqAXfSgECJHzAw7d+O/j9NT+BbAAsUMGSMIXPkAIADFHpCEJYXIBV9diJCCuJhbz7C198CwZHDgs5PDL1gQntwlqY3bR522Oh028YZj51WNzVuaGioC0Dlyu6ZDZzZ5cWLEfK1RufqtfkdOyaOnzg2OTOxceOmxx5/XDG5a8cOFceuKYEzxqCcxEJIBgGbltGkQ0ND5XJFa/utF58bHh6uVEpJJJ3x9Xq9ANaMRRHnUpZK1E1TTxaDqiahUsIYxwWPRcl7H1Z5ntvAHE3ztL/4w9VmjPeJ6YxhIGAiogeyhcQoxFGJFBuqj6wuL/ZrHsGzJGyBsD2sRc55FEvOlUDW39da6yzTYbhV64yIhGCcc1UU+cq+l2YMwB3kXIb65ZsoCv0dPbi73/T/gSN/XZF/8On/4E0PP+z3Z24s3BbV+n7a5oikSmq1oSznly5dqiSj2mrOIE/TRJatgySSiEjAu3nGuZAySnWKXHjnrQ/ZARJDqVRcLpNz6HwnM22TrS6voLOVg/t1Tnv3HiyXkguXLishM51/9bHHbrvr5ptvv3fjpokNUxMHbz4wM7PlM5/+7OXLF9/znv2PffVLL7/w4pYt24brw3FUEVIODQ3NbJpZWLheqkTbdmzL8i5y0lnqHLa7HSm5s0lclkp55wwi1qpDWmtPJoqVNlZr01hrhepUyJCJcGRkLI4LCfE4Lq2trXhvQ94VLn4/eDLGiIpl5r0PkpkF8hpg9xZLsTdJCgMq/NAT0xFCpGlaqVQYY43GKhBD5Iz5UH2P4zgocQbsZowpVcoELkidv/leExCR+MJnvnT12sXZ2aWf/McfqFar5STesW3nhTMnn3vua1Gibr7ljlK1bK3LsqyalJrtVtrpPvnkk0uL87t37x4eGz544JZTJ44xDplLb7rppgcffPj5F195+JF3eaxcu/L5Sn3o1lvu2Ll3tdVcrlfLjz5cO3P25Hc9+tHx6erjj392aLg8MTkzuXH84NR2Bsmxo0ff8fZ3l6pjc3Nz//1//Nb73vfdDz/0wBe+9PnzrdW5a3OL19c2zEw++NA9u/dsP3X67PHjx3fs2pdl3jq6cOHCU1//+9tvv/3m/bddvXR24/Z9iwuzb3nw/o2btispzpw5c/XivJAKQJIHJgo3Ytd7UI8B9qYNE7QQnHP9OX8kZEw4csZY8KSUzDNttAXPlIiViNEXTE8hhLXae8s5s05T7+g1xqAMe9lzzoOmDlfSex9FMmhoGWuDI4oqekO83xstyk7eUo++xjmvVquIMDEx0ei0wXlLJs3y1GQyUqNDwwvDY3mec8DpySnksLiy7JxDTgsLC5CTdxDHpVhF1WqVcz4yEtRifZ6bTqcTiF9pmvaLOuQ9FSKZPkyXWJNzKYI8dzGwAwScBWfuLMsFlybXLAhMMR64jYyhJQqKN85aQhBsXbq6j71CAazb7c5eu9apSCm5UFypGJiUUeycAe89yII34zkWc769bCaE3l6pGUJnEwquAPQIef29x3pyppxzGLDoXl8SN37xJnDWi57/AKm/FwUIAfrWluFtBzq5621H6NHCqKfgzEOZlrxbd4IsDisAsOSccxwIwFtPhYwTEefCWpsb55wD9A6IsaDNxgAgkkmSJM5ZIcRqsxmaknGs1rtyPd/cgLfC1x6Z8RQ+OSCaLMvzTqvTZUwopYJmBCLLTG5WVqy14DFNU8UFFygipY2xloxDQJF281BoJE9ElGfZaG00NxqRARZlaUDKtNPWMM7DpTDGcBbCK6HnyAQQMyYrlWLGGHAeKp3kPXiyxnjvpeBJHGHBjfUAEPwkVpaXm83m8y88e+DAgXq9nqapFJFSSirex3k9pjwBIGPrIIwF2z3stbG8CwpHHnxQCeGcI2ehKOaBMQREHl6JERAQIxbMRH2v4e5hQO7Ee0cODAghBAb5IgRG4IkBf+KJr41Ob95z08HcaGuJyzgp1bQBA9ICpQ6ZA1kaSirD05vEI4++s1Id/7Xf/O3xqbFytXL67Jn/8uu/ceLEicrIqEXR7naarWaz2SbrELkSslorO5MlUYTkh6qVfXt2eO/TtNPpZORgZWUl2NGWK5XhkbqMIi5waHhYiVgoRUS50d573WwDcGNMHMfOGCklY1L3Bsz7+y6k9FRgDhGwRX/Tee8ZI0QMWWulEvdK155zobWWkerbfbqewIQQIvSdFS/c98IZHHZEqVQK03MhrqY9+xBEZEj9xlYvxmKIUv29zG6gXuDA/30fe90AxYrm4/qk5CDeKiqsPbGSAL+K06ZQ21n3k+29i0dgxlgiIELOpbFw4vRpznkpUSPVcjdrXThzuoE4MTV98fwlYHJ6865IlbupFjFXXDnrZCRVFGmtvfOxVIKLEBwZY8B4pVayWb66uHDpyvWpkZE//dP//a7venTjppmTx45/41tff+uD933wwx+4dPn0C88/Nz40vtpYu/utj/7Ij/7YX//1Xz3/0ovf9Z5Hb71tX7ebHTl0tJs3W93m0HDFOP3oOx6x3p44cXLjxplu3sh0d6g+ygRyLh1BJ20PDQ3NXV8cHh5eXV1ZWlqa3jBWq1UQUQgV7GK1zkLab60/d+7c2OhECFNcoHOuWinjjT68hAXLBXozGUEYzBXaUqqfaMEA/O3v7rCoQjAMZOg8z+vDw51Oxzk7MzOTpmmtXknTYFoInHOpOKAnB9ZaH+YnaB2R042oGxHFyMjI297+UKnCd+/e0Vxbardas/MXO51WfagUJfGrr71YrQ8LKY1z1WpleXVJxXLv3t3Xq+UzZ892OjkRHxubOHjg5r237QcpN07P5ZqRF+fOXtq9e/edd7+lUqt//etnh4dKjeZKpSqrNbW0PLd999SOHbta7dU/+qM/fe973j9cG3/xuRdPnTyea3vXvQ+dOXOGgdVZ9+Zb77ztltvn52c3b9585cLFs6fObt08NTUzvW/vwWplaGp84sKF83GpXquPv+3hd1prz56/PDY6efnMmaWV1pYdB0s1qdOsXi9fRuucxUK60HHB+ju/v/HeVBohIu+8B7J+fctB7zCOosjkWmvLOWdCKhV3upnti0EDeF+8rDEmEhJ6w0HhonPOQ8kUGAohsqzLe8Y4UkoULHTfOJPOOSWZFAVDCwAipTqdVkAJxuTF6iEI9apwinPOBQkusNVqlUolAKhV6kSkU1NJSiouxSIaklXI3dpq++ihw5PTG1ZWl0KRD5Gq1WoUJURUqVQmJibCxbFWW2vztNMvioieVSUAhCMqUMjIFt0ryTgwJqXU1jjvQHIAyPM8LGUKZXbB0RKyAgb1qjjee88cegpXWzIG3tssy7O1jJARUaWUCCFipaSUgfzLgDPBUBSt90C8I3KDG3Jwj4WgDL13pH7jMoxFDZCs+1sUbmTZ92Pim7Zu/5dDWYp6/tD9NTbwrBvKaYjBSaU4n4IWfBhFDDKnRUTuPYUx5n0fyRXr0xhLCFzc8LEBGHlijBltBz6w55wTsZC6hW64cy5Jkk2bNklVyowul8sqiY1e50M470IyYIwhYBRSS8a8B0Q01koVxuYpjCABQblctrnmLOiloVLSa2+sF1xJlA7IGxv2QqhvWfDaGBLMkWe80JVOknIgYGpnY5BSSuMsIkoRFYOTQrTbbSAtwEspndMA0Ol0jDGAFMdxFMesNxYXmENiWr3/e78nrOdAv+VMhsJ2yM3CWg1tr3Dr+re4aM4yCK1uABCCSSklF74wcWKFch46RCRgiA6BAXggDNMhg4vBex/uUb+17ckqzgUDb30URWSdJabiZHF56cLlS+XRyTztcilNrs+fOX/v3ffV6/Uk6wCHSMhOu9FsrM2fvnzp4vXFZvt//80Xbrrjro/d8oFuavYd2H/3/fd95rOfu/fBCW0cchUnFc4QPEnOkTxjbGl1tV6vDg/X8zwfHqk557Zum9FZbi3lmdHaeqAsy9rd7uKlS1meqUjKOApGtCqOarWas4EoTd1uF4lqQ0N5rrvNNRXscXu7ctCXM8AszqXzRY/bew8MiGFIR4l8qGoLIZx1/QsFwb8eGZHzRXqCHpzu2cuGg1ZrjegCjbXfYScSoe4VWiKD/GBElCIYCBaTLv2zc3DPDn6nv8HXQdgA9+tNgWggpNzwskQ3vH5/64XdxznXWVHoReSVcvX8pWu//Mu/um3nPqVY3m1VS+JHf+STUSzf9raHLp4/l5Qrv/Ebv3fpxLGte29ZbTYdQlyKMpOxXmuCMeGMAwBRVH1Mq5Vu37ZlYqR+5sQpq/Vdd9+31uhEyepau41clMrVs2cuDo8Ofd/3ff+Xv/DFZ1/89syGbQdvueMHf/ATn/7b/33u4jnrutMTk5t2TJqUR6XowtVLSSLPXz27b9+e3Qe3T0yMHT9xRCk1NFbfVBk6fuw0E8I5u7S0dH3u2qaZzWnW3Ltv28rqQrvtVVSJosh7StMUsS8EwyYmJhC4c77ZbM7Pz+8/sHd1ZbVUDhuc+lT6ED+Jio5tmEC6IWLTetzuX/PwCGsmjmNCSI0JgGx1dTW0vwIdFm8slYWPl5m8XzkLN7P/doP3HQDEWx55CxdErru0cm3r5g0bt9/x+isvr66UDuy/dXLLlkMvPn/y5MlqpZbr9MBNBw/cfqvW3SNH38gudK5du5bmdnFhZbheOXr8+Cd/7OO7du2Kk8rd9zxwbW71bz/z+r//5U8eOLD3jddev3z+lNy1J65UDx07cmD/rsMnju3Zv2v/vlvIm3079j/22OMH9t96++13vuu97/njP/0TUHFjdWV4uL66uvrS8y9PjG7IOvqmA7dUo/LP/+x/uXTh4id/+BMzW5I9B++6dv7k1596esPM1q2773jha19nLNq0aZMQAtA1Ll167dCzBw7eWk6qJ04d50KA1x6Bo2eBoIskBOtVBcO2KY6rcAe89857KaVHZ4wFB4jIALrdbqifIxOcgfeekHMhmBRSqeBcUCQp3vf3fIgy1nJjTNQrvPUHrIjII8g4yjomqBjlWpcrNc65krG1zhjDWP9+E2NI3jrrGWNRJJ02RMAYU1wMDQ118qzTTQmKlRpGhPr1DO9ct9tlMZqOztr5ykozrlcc2Xq5hohZ3pVcVCqVlZWVdrtNhEKI8fHxQLwtlUrVapn1KPkAEMexd04oHjBOiKphFYOFoBNZ0GmLkSJSSvV1s5wt8gMEDETFcFkCyOAoyBM4r6QcHR2tlLhgoINUlPeCIXgfXMNzm3vvFYsZY0wWfEwhRM87VYaoTURFIwkcY6yw++7VEYmClCsLikEh3w1RONyvwXOx/5R+TaifE38n1MMeTb4P+n1PACLol/YCd6Ap+N40dbGEOOd5nrMiahAAeATGOSscKtc/QwBAPflTzxgzPY5joJQGac9+ezGorAGgtQVgdbaITcYYZDZ8DCXjVnOZMWa8A87QEetp42njsixDLsIJKCPFUAB6S44AOlkKzpMD57zzzhmKhQpTQohSCE6eehWLnjUnQvhUTIABr51lXCjOc1pXxA0UnzRNk3JJSpnneZiT8N4rpfIsL7KCoP7AALDQ/snSDmOM8WDOzQHAE4TtHEUSEZ0j8gWbu19p63Rb4ZbleR7eQkrVT0KsN8CYCyN4GjO0DMl7z6GAaAVRKbeIXOtMRcJ7G6vEkUVigksPjgmGA4yioDgrOShQQJZxDh72V6lyAAEAAElEQVRy7YCx3BEwGJua+NTPfKo6NG6cTtOceVodGTbd7PzcwrmLF65cu3rt+tyx40cuXzkL4IGrsbFJjEs/9bM/e/jk0SNH36gNjQglVXVorZnmhtI0HRmqICLjyJAxxpWUSZIEsnOn01iYv5Yk0YsvPo2AjMlbbr2zVEmcc3GsKh4mJiYynadpSgzX1tbm5pe990YbIaJqteqsrVRKSRK3Wi3o2VrDgGCb742pDuTDWElKzjlniTHOUCBaKtzYit1kjOEoEJExQeTIed7b+Njj8vbFgZ2z3gdjAwBwgQ3GeigQ1+k+CGK9T+R9MFx1xWAH573DAYKpQz9j7O36QNgPIt6DHFA+CNH64aJ/u31PrC7EpcEI470PYaFPmQ1KXYTgLHkHhCSlPHfuHAAmKmacdTrdO+65/0d+8Ae63Q6Bu/+uO4bHxuuloRdeOPS3n/tKvVxnSlh0xglrNDhiknSeaa2VilBwZBRHvNPOY8WHxjZcuXxpZa05PjY5MTXR7rSHhsdvuvm2p77+7be//Z0P3PvI62+8cPDggS1btqJAYKii5NF3vPPQoWer9Xqzsegw23PTzdNTm99448ihN16tjiY5terjyd8/9eUd2/cIKS9dv0iEQFLbXCpM83x0Yhw5rLXmbhnfldvIWlpbW81zu2lmAwMUnFtrGXBAX63XrfHOeWtNpFRzrREpZbSLE66tDt4hWZbFcYyIQsh1znFvlq635NxAsGUAEFihRBTmpo0xURJ7nxtjSkmi4nhoaCjPs8XF+X7xLFA1rLXeeMaYkDLXOqwZ52zoobGeZAb1smsAEJevXlASSwlG0fDGfbub81fSvDM2MXrpymUVJ7fcemu1Wj58+DAX6uq1i3IpQuYvXjz35JNP3Hn3fTrHY8dPPvvM+bvunTx8+Oif/8Vfbpzaum3r3uWV7k/91Ht+6Ic++Xef/9snv/Z4vV7jnHtPb3vb21548dnKQvkP/+BPDr1++H3f/Y6kJC+cv/zOt79/YWmlXK3+7M/8/NJa46tf/vLhw4d1ZsqV0f37blZcrSyu7Ni67RM/+OCtd9zKMPnSF5545B2PjIyOvOtd76lW60dfOZQkw1u3bq3PTB9+/tlOp3HPW+4vlcutdlYd27R/Pz33zAvDtWGCQO8uTB7Wt1zv6Oqfnf1yiLXWeqe1FhyEENCj4wSUoK1lkjHjiBFjYMkix6AaxTnH0JYmCPHGe88QuQhj++Fg81rrQEG1PfaxMcaBJyKTa2s9AJbLpXa77b0vlUrhI4XSVxjeCcbbBa8EABGt00qpPG2naSoi1eksWmsJPWPMOG3JA+MEEBoE9Xq10+kkSVIul9OsAwClUmnTpk29shZbXFwMMGt+flYpJSVXSpWTGMBLKeM43jgzg4ypJK5Wy6FwIpARw1xrAHCWgsGAJcdQeDAh2cqyPBJCcmaM4Uxa56wzAQEYYxCN9554QYAIqkXglclyEQnGhIxULFQUF31cG26Y8VmWBTvJLMvSNBUMhBBSCs55mPEsUskw4OmKm8IGzNTDrpBShlnC8E8bsDPnARqyQoCqUI0KZc7+fn4T9npTf7IfrH3B3x/IkgcGKgeTpHBOBPgYygk9uFbYwPsexhLIgDMG6LzlojjnAvIuUuee/+PgGUNBVCX3xhiEoExYzBNY55ylfrMyTJAFW/etW7eWSiUC1mq15heXGo3G9bn5115/rV4d3r5jK2NQLpfiqOqcS5tdzkWeZ0XHM4qc8+1upqISl8LZDBGBgTfekiciH1AyD1oiTFsrevMx3W43z3NjjORYKpWiKCLggIW3erhHQgibee8tFM59XCnVO+zdwHUOmDjgP9vPj0McCG30cBf6HACtda9CvG6zraJEcMEVZwzyLKvVKgyQwDNaT4hDQSWsK+csIltrNkJn07asknEYNGY9Xl3I8sMtY5KBpSQZZsCiUlIVicdoeHzKeXXu3Lmr1y5fu3btysXri4tLT3/9mY5OAbgDH8fVqQ3Tt9z9Vkd2dbVBRHGFCcbeOHokSRIAGBke27pte1KpllGkWcdkqeCKcw6ejHWdTuv4iZNxOd60YebAgQO7du3avm3bI488dO3atWPHT331q3//7LPP3XLb7VpbDOKWQOVa1RNJFRtjBVfOuUajFS5XlmUrK8vG2bGxcVUp5bl2PZcnKBz6sB91i0ORLFliWBhbaa19UclYt83uL2DGuBCcM07ggjByIN2FfTUAcYotGUhj/TsYIF1fOblf0hBCADKJ3FMxjxkiTXhWo9FgjAVKLu/ZSCAGtec3N5nWP3CvzdLf8j3HQ6IgAj5gihXWYY8eynrfhEAwJBbyQ86YCE9FRAb0n//Dr44M108eOvb6kdcOHz60ZdOm+9/61ne8873e0u/93u/u2XczCBTIJRcelBCi3e3GUiGhs+TBM47NtVYcs29965s377/pwIEDc9cWDh05fPFq9Z4772injUOHDt98080XL1w7ePAOAP/v/t0//uVf/pWf+dS/IGKRSnbt323caqWGp850nn3p+PjE1CPvee/2nbtGJoaRtdK8lenuXW+5Z35uqbHSZAzuvPNenfrZ2fmkUqqPDJ85eaY2VL77vjvnlq6VaqXTp85zKg3VR43VcVIOO1QpZZw1xiDwPM8QcXR0uFwul5Lo2rVryMoyEt4W0VhrbbQOlDJE5DwqFEkYQ2TeeyaK5cd6TeoQEnnhVuQD7yL0BxAxz/PZ2dkoUqEp0YfUQfimv8ZY4XDlHJEcEL/oL8UiokpkHGF2dv6+t9zdXpj91re+5XJ45eIhLuNvf+vZvft3v+d732t8euzI4TOnF+I4jqrR2ET9ez/w3VyWlhfb7/3ud//UT0xu2LThN//Hb1++dHX+6tr/+N2vNFvwG7/xs6Wyuu22W/7Fv/zDP/+fv3rk8KE8z777ne+vRNXPf/4z0xNTDz380P0PPlIulx955LuHhmrXX5q7fPnynltuHd24o14fefn55zdv3cIhunjp7Ec/8v2ra8uPP/HYzj27x8YmNkxveqQ+Wa8NS8E7Xf3qa88ncfn6taU0N/eOjU1Ob7x+nV2+vLBhZrI2PAkumt52cOzoxXazpZTQ5KXEkKBQj5HTO5wcIrkCn0LYRdZaZ73NrYgFeO8FokBjDAKCB8YxSSLMAbh3YByYKJJSicE9zAeUXYt6e8+jF3oaSJzJNE0RuBAi76ZSCs8IAMj5fmW+j6+dc3FciA0isGbW0lqH6le70Tx69GhluCpKsRDCM0Isqk39I985KyQLkujaa6MLCR/vfbVaBYA8T69du5IkSbfbNcYMD9eXV9Y2bd68devmN954Qwixb9++WqUcxIIvXbr01cce37lzp3YakaTiURTVyrXxycmkXBoeGk29V14LIZrthslNFKu1tWa5XJZS6o5WImIout1MRooxwRjLcxPHMXLmnHPgvLNeshDg1tbWBDLjnbUpchiu1IxRYasQIwCQTMZxLCTrD8eZoKFpdKhh9DG3EgWPkjMWerX90y7cI2MMuKC/v75IeqAZBvdSH8H0ewRvCr797wMAoCeAYgCyeIoPAww9bOYDs+tNaA0RrQ2AOLwF7ys0Bq43egBEj8R7lbYwiEZUjEyHozws6b4oM+uV4vpJhZJRwKdSSk9hyEhST2Kgp62Fo6OjH/rQBxBRG5ckiQPUWi8uLS8uLmpt5+dnW63mWmPF5Lper1NlSAhB1nHOc5czLq11cwtLna7mgUB942nlAbz32jmmJAEQUKBDY6/fp7WulGIhRBgg1caEsJgkEQBxjjyWnHOjc2N1KCUWlbMgO4KhQBJCp/Pe+oJgEKYai7Jof194B5zxcJX6ETZcLp3bxmozwNO5uetHDh9+6KG31iqlSqVSiuOAqDjjLFahwGNDPGZYroz0V6NzLuRCIdvmQjjyKKWSEkGquGodGivWGq3m9YWF5eXr15cvXLr++BPfsN4COA7AUJVK1S3bd3gCx8g6nxqviV28Nm+M8WQZYLVUznTqjR+eHNZarywvkwOTpdbqSrU832ilXX/1/HlgcvOmLQcO7n/rQw9s2bqpWq6srKy88cYbL7/0dw+89aG3v+M973r3ez71sz/3W7/5X3/vD/5g+7aduXXtVtc4m2baOCu45Jw78h4oKZdqXJC3jEG1Wml12uEuSMYzV0xvhGRpcAPeoPUBQZbZOueUihljzul1+FWMkSF4KpITEej80D8U+/PU3nuE4O7njXMEDAqp9NA0h8FEiPVmmQG9AyDwofvIueBShLM5KL4GNGaM6QeEfmqzHhAGsp3wXRpoQjnnvAfGmfee8XD8F78YkvxiO/c1q4AVZqMIiAQ9lncSJ4KrTreVp7rpW1/4uy8vr67s33/w2pWrf/7Hf6F4tHP33l/55X/727/zu5PTm51Fj0wlpU63q1QspapVhzNt8jxn3nFRWpy9ct/dd0+OT12+eKXVatTq5SSRn/3MX/7m7/zOr/zKL//ED//47//+H27bsnvrtpnDR87ddvu9teERxvn84oI71l1Zm//N//5723aODo3HquTPnD68a8cd73zv+197+WtHT8xt3rptamrqyNG/rJSq12eX1xr5+9/3gVdeeunFF749OTV69MTR2nD1hz7xia9+9Yud7tqW7TNpi5HnXAgmeJgiMsG1wmptPZd8fGjUGRtFUbvZEkJorZNy7Aj6hAHJhdZZODrzPDcmD7YTQijnnPPYR3VBjDFc6jwP9xSNyYWKOOdZltVrZeS80+l0slQlMTFkQjggIYVzNjM6UVE/gbfOG2OsW7e8oyJFB8YwCJ2IerUmFdaq8fYDB6+fOgqWkYOxkQlrYHwkOn3y9M0XDm7cMP31x/8+UeW2zt753R8+c+7smROnSxXcMDO9Y+eunVs3v3H0yB233/WJT/zYp//yszMblv/9T33qq1/94uc+9xef+ic//Wd/9ksPP/zw8vLsP/2nv3f6xKmRkbG773rrrt3bt23bVKmNIGIUq5mZmZmPfd+5o4fbK0tPfeu5ffv2fPBD7zN59sjbHjlx4tTXn/r7fQcPfPwTH3vmmWeSUuXZZ5/fsXP/zMYt0Uh1y+adzz33xHvec88d94595i8//ed/9qff/30fm9yxP1tZuXT+7JHXzt9++wOcxSEESxn1Pd0GtvgN7djB1KSf44ao0UdUAQmFHqMHzwUoVeSuBOtoBnumwoicAQQWSCCVe7LOm8DN7+E/7B8wRBRJCciDp2wwveq9VFG9p95wRz9ljGNVtuVGo8FiEXHisfCegKFQEnPmgDw4j2C9Y0DAWDdNV5dXOJPlasUYE6qsvlcDTNO0XC5PTk7meb60/Ir3vlKpbN68eW7uerPVqFWSKIqqtTLR5tdefV1rc9Ott8zMTBuTW6fzbj63sHDh0uVWnqIUyVCVCzk8PBpJZa3evnV7EpfiqMRFYrUTQiRJ2XqXp1lAq91uNymXinATgAjyOC6RBPTUzTPnyVvfxG6Um14CDdZagSKKIum4FTYgsFCv4rzCOSdw4W80xjhjw2RAv9qUJEnopoVN671HTowx503I1EOtYr1tN+DF279rfdg0CLn4gDnJIEq7IUD3SPf9UPumNdlv2Qz+iAqFjqJDGlhKjLEAX8AXdPEAv/rLEgbapkK8mc5S5IiMM8aMdgXWqdfyPA8NlzCx2Gq1vvKVryiltDVxVIrLpXK5mnYzLsXIyNj27Vs5Z2nWeeprX283moJJYwwH9FTETSmjUqm0stpyvZJtqORJxhE4gEVExlmYf2SIQGCtN8awRPle3zbcYks+SmKd5dAnb3G+uLKytrYyMlztJz9UWLoA44U9fP/G9S+Lc845z7nsXyXXG5kEACGZH6hNhqUVZo0DNduYfN++PYiYpqm1ZpUoSZIe9nW99igQsrDZnaMglyVUxJmMSqWkMoSskHKwxnc6nfmF5YX5C1euzp84fva11w5lPiMAycrlUm3fjoOlUozMrTVWyUOjlS4tLXtk2huPACw2nrR3pVKJI4VhneBvTYUtpqxUS8aY5eXZq1c7Dz341unp6WryveVydag+muf5wvLi628ce/HFFy+dOQeMJ6XSW97y0J133/nII4+89aEHS+WajJK4XGHGRXFJWxN4cjoPOuCGiKSUeZ4pzqx1UspKqWyDha4vrmoEiSh0BIMxlA+EvGLjcA5UGI5h8FnnTHddP+L17wWRIwozEIKxG9Zzf5f5nh8f9gwYwusMVoIHl0qx75AcCypsYXsXDEhrreSh9VnUZfs1vMANfxPGgn5beWCWufcopMistQQmiqLQsrbevCluhIKNsd4TQuGiw3xvrvOuO+8h4O9+1zunxideeuGlY0dP/sDHP5Yk8djo9EsvPz83uzAxPXn+3IlNGyeGhofOXZz1IFqNDiExKaRQLWpJEUUq9t5FQmycnuEoGHCdZvVqRcbSuDaAiWIcHRsaGh3anxw4fuyY8/quu2+K48qrr7x+373377/pluNHX6sNDX/sYz949PizQvK4VHr++eePH73y/g9+aMeuvctry3FUuXRl9u673jI9vfF//tlf/uZv/ddjx45t3779wpWr0zMb7n7LPXNL118/+tpbH3nwya99tb3azrSrJMMqUYW7peDWWuAMOFiTSx4fO3nk6qWrO7fv4sgYh0pSDUXc9cuOBXEQEZOkyjnmeaq1ds6naer7pW5GBFhwssGEXnOIM4hIZONYOW+CV/3khqlWqxGGqXvlbRJCZFlQLSiEMxExyBuF8BKCp1ByvfrFwDNg5PyZl16zVoPl4P3IyBh5wRgqKZuLaxu333HnLfc88bWv792/J4rkq6++zBjbuHHj5Uuzzzwz+7f/99KJU2fe8Z73Zam/fOnazMym0dHhUjmemtpx5uSpam3y9OmjMxvHfv8Pf+b44Yu/+z++9HM/99G3P/Lex5/8/D/+1C/u2Fn9mU/91OnThx555OHRifFvP/fM1574aqTMI+944PKlC6vtudvvPvAHf/THZy+f/Bf/6l9u3bVtanzm7JkrOtWXL17bDDPtVt5Y02fPXKlUVuNEbd1209Vrc7UWTGzbtWfP8MUzX/mbv/70zMyMt1kSSSIKsbVfIfS96ZuBGtjgWkcA8ABCKSYEASCxoIEUUjchBDnLkSkhGRJnvdEbBv19HhIjD8GIqtelcp5RIdUdqgtFN9o7KWWWpXEsCTDPcyWkznIGhWJFiBW+xzmwtuh/Bc5vtVbetnObiFTXpMAKT4Z2u+0GxAx7RyxXSlnnIpUY45KovLi4PDI0DITW+nq9vry8bK1rddqzs7NDwzVj87mF+bGJ8SSJxifGasNDId3csGHD1m3bjTFBVsB7X68N8xrftGXbymrjG889c/7s+er4qEpUptM4kt7bkoqefvrpU68d3b5x6/joxOjo6NDQSFIqKSmEEFESe+/JY6VSQ095nmbGOkfeASJrd9uMCWedlDFDgVwV6psAzoMnZ30mNTDGpAqpT4DXBb+HMSa4UjLmPZ6W995a2+12tdarq43ACOlt1EQpJZAxFOFUCEXEMKHWB/F9WNPHx31QFX4nYI5BsAXoASiIgfmQw9/YoHxT1GaMExHBDVVVRCQP3pOjICxHA0W40GEJ7dQ3M9L6p0JAAP28YuAvclIoItJaqyQWUcFoDP1ZznmWdbPMNptrQgjjbBOb+qpFwZeWVlZWVsjD5NQEIm3aNBMr0fBGSUlA3jmTOyaLWXEAH8cKuQiyAtYXBWnyPuw5RLDOWWuV5P0WDPTO3VJSEVwxxiIh825OCNZqYzkyYgxDpC5skRA9gbEuyFhz4kHmiXMxiKUAIDj0aWMYl0FPH4I6F4IHMtaHZsSbntUfQ56YHNm8eSoQOoPBQNj+AGCd8AGFc4hVLFDIOCmXqkJFzpMH4TwuLjfOnF+6Prtw5fr82XMXXnz5FW0tA8EAJaiZ6S1bNx+IIm6ttZqsobX5xiqtcOG5ZM5RSZYIGAmGDokz5wXzoDBCRKu1EkxnhifRWrMtoph7Z71JErV128yjj94rOTnnarWhUlI7d/byU9985pVXXuOSpe22TMo7DtwKnqy1Sm6bmtn++pHja+10YX5pYnIm184TKRUJqYwxaa4NWSEEx8Kr23ltcsM5M3lunJNR5HxhMBVygECnS6JYFAO5CLwfiouqqO/JkVNPtJkGpmXDkJOUMhg+hkkXxBvYVz64OYXhh4EJREfIgHmwCMD7CKmfaSMBoPce0PdLaLyna6CpsPQWUgD4vu8yGyB1QW9afP079Cbs1SNrMhGGpsIegF4atn4pegrVjDFvrS/ch8K+9845JjiwaGVtpd1ux3FcrVabnbZFWmk0F1cbqpwk1cr+m/Y///LLADQ6POw819pmWjvnXK7TNO16dA5r1SHr9FA93rt9/4njx8dHxy9evFBXpaFa/FM/94++/ew3/slP/lS5MvK+937Pxz/2/X/5V39x8tSZo8eOf+Yzf7lpy2ZAaHXSYyeOREpXq9PlSnTXnW85Ubr4H3/1txCJS/3Ci8+Mjk1IEX/qU//s8Btv/P7vfeZDH35weW32y7/7ue//6I9+8CM/8Npr337qm4/9z//zx7/4i7/4gY989KtfekzXvM2dkKCtZYVEtmOI1ttUp0ePvfGNp765vLjys5/62c0btzVba4iYZRnnPERWzrl1nogCgS8sJNefzRLK91qH1mnrXDBIQEQhYsZACKF1FikJAM1mk/N867adtaGhZqvR6XS01kqpXBeqcsEMRirlOmlYOUFbEcmh4MZYbbKIRUShD4YAINK0g1gii1978mkhRLVaVkq1W91SqZrnhjO5tLC0fOGKlMm2rTut8aWhkUqpPD06c8+dd2XpC9evX19ZWXnkkUeiqPzJT/xSzOHnfu4dT3/jm87YbZv3dNqdpYVzf/wnf3jg4K5//i/+1R23PfiNbz770ksv/e7vffqB+6d/7df+5cLi3EsvvbR5y6YXX3ptw4YNm7Zuue32W15//VVjmm95y32nTp1aXFravWd/bWjsyPFzWzZtiVhl6/Zdl85ePHXqTJrfPDIy9O1vvvLay4enNkw98va3HTh4a57ZyxcXJqa3gqxMTW5M01wxdAyl5NoWvfPBB715kPhGmYA+CaD3I9979EAbC54kQIwRI+f7v9zLrvjgG4Vvhh3FGIukCmlij23NjDVFbwhcoFJprbtph8h5H+z2PCKqMOCd6V5d2htj0jydn58fGh2xgmIug76GDbY7AMYRESErRLxQ8NHR0eZaJ4ni/mfwZEPwCYSwMDTQ7XZHRkY45+fOnWGAE5PjgYVjNVMyHhoayjMzPDRirPbeZllmcysi5b2fnJxcbbWMpyQpqzhKYpUoefH8hdsfuPWtt997+viJ3/gvv46MA7D9Bw4g+I0bN27asnloaGjD9MYkSUoqSpKykpyjXanVdOq9Z55IRnHwp0N0jDFCpnWe57nkKopYt5txjt5HVIw7uQB5fU9il4h4MYGM3nulVJ8W5r3tdrvdbtdaG1wRba6ttXEcl0olpZQQIk5UUAXr14p8X5X0RvgFvTp2HzDhQGelMLPo8Tn6y+870/EeCHvz4Hr/R/2jqCiSOU89t0ciERhLzlEYce9X14QQCMVUJvV6LoNvB70KUHhZ1XMlCu3sMAgSkjxjNVoepoEEl0opY/Jms2nyPBjSxXEMBIhknEHOyBciXkggkOXknHPeFggMEDjnmopjtR8QASDPc+coSZL+xQ/pTbjIASUvLS1Za4eHh/O8FeoiQQwdCrr3wJhh7zG48b27wYl58IZ670Pbor+XGWNSCSKy2hDRyuparVbrn9OMSylLIoojAKliwTgiJ8+co7VG6/yVy61WZ2ll7ey5iydOnj119hyBIBCMyenpma1bDyZJ2WrLHOlU57lpt5qcOQAfqwp5lFwREVFODoNngCVgHhRyB2B0LmTiEbxxItSGpVBxgpwjY90snZoYf8u991mXk+murSxbY7rt1isvvv6VLz22eceeXbt3y0gR48tLq2vtjhIRAJF1swuLRqd33X1vlhs5FyWlUp4b7wGRJZXy0upK2AvQmzdUQhoHcRyZPNVOB/9hPyBcXrj8kNNah2ER6lsaWBsQNgKGz88YYxwCwGWMOde7g+A8YVinwcqsfwP793dwSw5+f/07sD75PpA+Eefc3zjPOPj08GltL4se3PvrbzqY/9D6O4aHc4YxwYBxziG4xfd52UJwzhlbFwn33gNjBM55i4gICMAJvPXOA8ZRNDQ0pEpqdGxkcnrq1JlTQ6Mjr792eN++PRs2bbx69eozzzwzMjJicn3+7Omx0elSpeYZxpWqtTaJpHOUaees9s5du3LlD3//jybGxu6447aRoSFgplyK9uzaNruw+N0f+p4dW/aCY3v3733Xu9/98kvPbdgwsbi4qLV+4blvX716ee+em+rDamK8dO78qZMnzl++dH1mZvob3/j6WnN+48ZpyWWz2ZybnduxY/eHPvTwvffe/v4PvOtf/cI/++Lnn/yv/+03KjWOCkD5J59+/OGHHu3qbGbDhmuX57pZhwGXTHoEFJwJzHJz/MSR119/vTZSTZJkeuO0imWdDznyzuc9evT6ZHF/2wat3f7YUz+mUU6ALkhAElGe68AHBfDtdps8v+mmm7LctdudThaKZ65Uil3PWVgptba2BiG3dBRFkTEmHNPeew48ZIP9cycAA0GMa20R+eTkljTtEFCnm5VKpW63a50Tkl+8dO3o8RMzMzMT4xsd6XMnThHhww8/cuH8VUSMIvmTP/njXJb/5jOPWwObtpaNcbVaZXVNxXEpy3Sz07zpwO1f+PwrNv9v73rXuw4e3Lm6uvobv/UzlUp8+NixSqW8/8Bt97/lwfpQ9dTpo9t3bNkwuemmAwdz2zly9MRtt902N7vqMY3iodcPnZjZcHNcHb7l3k1Zu6NWxcLc4mc/84XPf+7097xv/7veeU9JjTBeMa6xvHzt/MlD23cdXFldGq3XnNGcR1p7xoCxomrrcWB7DOxJgFBJ5mxApB4AQhEybDDOpDW+FMfgyHtH6AXKRJWQmLXhJC6AWoBi3W4XezzK/nt578NZRx6FUN5YJYTzJsutUsoYa6ymHtGeBiQ6vfehHGB7nseMMSIwxuR5fvX8+XbaHdkwHlGU5RljvFQqZVnWP2l8TyO0klRYTl5DlmnrXaVUTttdT44r2rV7Z7Va/eIXvrBp67Z+HTXP8ziOkyRZWV11zgTXI+99q9mp1WrGmG7aDURFpZRQKs3azvpIJQBGCAHWI2LgIA8NDR08eHB6fOJzf/PZtVb7F3/x39xx553nz59vt9uLS/Pnzp174fmX5ubmpscntmzZMjMzLVDXYs+ZBuTlcpkLVa8Np91uIEwYQ51ummtdSlBKGWhw4Ui21oY8OPxTCBFADwRymAdrHWJhmxpwdhQlQZCziJnWhdcJjcssy5qtwsY7IJK4R/EJvcs3BeiAawej7eB5QETeF8KefUDfD/T9M4B6Ukk3pNQUkuTeP4vOdYHvOeeMyfBqAVA6F8ikFCBLKLtyxqkvqjLwCbE3shcWmDGGCe7IW6sBfAgr3bSNjHSe5SkC44je5LbdWOMqWlpejCJJ5CLJnSMhpLVWIHDOjXcAEMexiroEToo4S/P+tWKAkvHQoXfGUuFKHhwOuFKKgeuFTgx/Qrh3IcyFW5ymadrp1GuJtd0AzgAYke9VjqlnuI5EAfhCqGn16MvYR9V9iBbo+TDgzx3+r7X2XniErJMjYqlU8iRLlRoRCakCIdoRS7M8XesuzM1fn11cWG6fu3D59ddf11YjcAScHJuWQu3bezc50FqTR2tda6nZ8GvluOwctRrNWm2onMQEGhkZrRG4tVCpVLppFglJREAkALyzCI55VMi9s7nOmeComAXK8ywql7raNNsdyRlHeOPlFxcW5jbOTEeRFEJE5aReH4nLNQDmPRDjrXabRRKs1mSiSKZ5uri60FxdOXPutDEmKcWIKCJBhMYYUci4IHngyEMBNTdZUa3xXmvNmRSlhHPOiAnOGYG2NmQCYffRQGnWFm68CnoYps8oGITFHAkcebLoGUjBGATOVlFjRk8AIUMOu9BDyMqgXxiG73yEEY3wlethnRt/ubeRg7H6eqKFPQJoWHg9umbP3+LG6hf1ylpaa0SGjHnvpYzCT0O+F4r3/dE543S/2IZMcC4Ycudcu9tBER06cmjDzNhwZejALXvfOH7YUfa973v3/v37y3Gy1G698O0Xd+/bX6vXf/RHfuj6tcVr1+dMrDpZyjnjgqzLK9XEWYaoBC/fc9ed7bVW2slKcVKuVJMyXr5yqdnuPPDAA1OjW37uZ37uqW88OTMzPTI2upN2ffWxJ9Ya7RPHTm7evPnmm296+cWX3/++dx7cd9/f/N//e/HixSSKvDXVpH78yIm03dXO/+Ef/P7999//yU9+ZGFx9tSpE+/+ru++78Fbf+EX/tXNtxzctGVqama0k62ePHP83KUzzZXV8eGJdp4jQxRojZOSE/jDRw4try6NTYx66971wffUapWslQVEikVraJ3xDD3drwCpQwzhPNw4JAqClFlfbIgKvXHknLdaDU/eOyiXy+WKHB0dz63hnDeba4Fc3+129+3bd9s9d3/7qaecc3v37r1y5eqlq1dGR0f7YQSN1WkW7qkt5k4sAAgi55Ezj1luiMgYa4zl3AglnbdkfJSU4lICyNvtTpREq4vNHdv3dpr56ZPnumk+M7UpUtXnXnj5T/7oif/yn35m3549nW7r1TdeO3HieKe1NjU11U3zl185tHt3fW2t+df/9y+lYp1O69ZbD27ZsuXAwX3Dtdq1a9ffeOPY2bOnH/v7L/7xn/z+1m0760M1EbHVtaXZ+eVGs/uRD/+bThech2P/6MwD9941WquMj1T27Nn1+qHDe3btPn7s59rd1uLSdcZVVBttXrk+d30WrU/buck1inAYCyGZdRmRQxSDxYbBk5KIgHnyCAM2W1ww6p2O1HMGDBQK71HKoBlDiBwIBVfO9kbnmEC0rVZnbm6OAJrNtdGhBMA7Z4iQMRGKB6GPWYjvewgvjiAQUSreTTvlUqW/gAr2N2PWGmNsYNArFSNgkHqcmtlYGa0pqYQQMYu73RQRnS4sw3NjrbWEKKVcnVtFDYwJzjwixXEcx5E2WZq2XnjhhSQuTUxOup6sV7lcZowtLCzU6/VyuSSECJO94SOFBxF57wQya61HYIwbrRljJVUWQqRph0sWiFDtdnttbS2JSt/1Xe/+9Gc+vXXrVgDYuHFjnKjA/RqqjzSbzY98+MP47W/defvtDz1w1xuvvJB3GkSYpvnI6NjUho3lcrlarZZixTmL4kq1pqSInNUy4qVyEsUl5421OYED8s57BjwYTHgi58kTBI5uMKcLJ6tbn0b2gVEhGY+iKKjgFqw7cIEqF/72drsd/vYAtXsYLoqiKEgw+56kEPUM3ftnzA0Bv89TYTfw94kKUyYgBKQguxleJ6Tr2mjGWPCaRQ/OOW99FMncFvqsaZrmee49hKYqAAs6unEcJ1GESAHEeO+9A898YCYBQ8bAWOvJhhcJUBJ7ChGCR86DipIw+RH+LiEEFyKKZPEJgTHW6wT5kEsw56jYPtaR8GGsjAtkNlipIHiw1iqlNHjnHIIn6jF4LEDPkyCcxMYUnkJFt8s5yQVUylEku2lfGaQ4DbFX9BoEuCEEIxIG6gc5gML1PIROVwjYrncuEDFgdGBEQlntqiOj3oNzTpNcmWtmmW6stRaWlq5embt8+er5i5e7eRcACQRiUh8e2bRlv2DcOSLntdZZNzu7eKlWqXJAzrkzvpyU8jz3lsj7UFHTWnMR5AMdkU+ScqZT3pOMJyKrDZdCADPkObAgi8U476ZdIaWUkfc+TbW3rhRFa6vLupOODY8oERntEPDatdmjR45PjE9q42pCcaEyY421gKi1LpcTxiOGqJIYGQXXhMZamwse6pF9y4EoitBTlmnOubNkvSEZHH4wGFuZLPfMeyLkTAlZKpWEEB6I82DfxPubwntvQWMhhhxa+VjQZAE450owIhKCB5FBD0Tg+wIu61F9IOEJSQ45329Qfme9aqCIRYhIPSPwwSyot4p6FMwbYVwPoBewfj3pIhh8fepJJ3siKSUgC6O4zhly3nmPqIMKbAhQjINQCQBYa3VPwM97n+fGW4eI84sLV67NdoezbTu2b9i2oVwuKxFFkTxz5syrr766bduuPHPlqfLQ0FC3kwkl4jg2zq021rTWjcaqMW6t2UHk5VLsrRVCrK6uTm8YO332xNhEcv365fHxyWOvf66xlu7ctWN8ZLjZbJ44cW10bFgp9fTTTxPRk197/D/8x/+XM6j99f96y313P3D/Q2m7uzA7v3v37tXV1QAiR4fq995z58Li1fqQikp44eLZrz/z2IUL57bumPngh9//1De/JpWqDw9t2jLl3E2vfPvVWMUEggPLM1cqx1JBpZbs2bPjkbc/ZIxbnF+oV+rOW23zSMZp2pGqmHtljAGt2+yGNQU9qcV+8cJ7H8T0gfmgJk3InPFKxUSOc86ZyHNTKpW6qel0OlEpYQyGh4eVUmnWSZJ4dvZ6/q1vXrp0oVarDQ/XS6X41VdfyvMsSeKQUDvnsiwTkeKc5z3/XCISnDOtM8ZEFEVAFMkYGUMebJJCtoxScGs9ELSabXvJO+eefuz/3nrrrSVF12cXz5yb+5X/8Ff/+l995J67bmo1loeHkvHR4YceekhFcOrUKSHU3r3bjh27oGL3Yz/8I91u+8tf+fwv/Mt/vrrS/u3f/o283f33v/TL166t7N69pRQnq6uNm+6+e/bypVKpPrZh2/XLJ69cnf+1X//x73rn+/73X/zNi8+/8MH3vu37v++f/6df/clTp0ovvfDslh27jh4/gkpMzwwZa8E4RqJaqnntZi9fl5wbZ6UURB495UZLKRG4g/XSAWMsjBMDACI5H0gCxBnnnDlnFZMePDAG3hb9WiHCXB5nPLc555wrToyQs2az+ey3XwSA1w8dfvTh+6WKr81e//Lff1sJ+NrXn/jhT3xUKm4tEJGzpK3vdNJms0nkZBwh52BD0CHOgJxL2616pZznmiEPtmjAWZgKNMZIzjVHrbMB6QpfKZWZh1CX8t57BOyp5zvnrDOlUqJNBuQZ4+1OO1IlxgRjYJypVEq14fLyolNKNZtNRARPzlOsEp2ZWEVJFHfbnTzLEhXFtbrOLSIXkjEOOkvJW9Yb/g8tBsGV1Q6QsiwTSmpnJZMWKSmXgPFIJiNDI8PV4XK5rPO81WlmuTTWAjDG1fj4xLvf/e7HH/vK9330w2978K4zxzYpDnOzS6trLWD40mtvfPXJLyoFo9VSuaQmJseGh0bHxiZqtaHxkeF2ltXqSRQn5VoV0CaSgycGzJPz3oYh5NzmAhkEI+SwG3tSq8W2RHLOaa8DhOqXPWKpOBdKFW4E3vsoiprNpu/xK621a2trIVhzzpMollJyKfoEJvLr+98BhqH1dXA2kBMUuRwgYXCn8QQIUFTJrLWAIJgsBL6VQPIOQEh03nhfEKU6nU4kImMcWWKFlDx0u1m32w1Vh1CwDNwIYEgOgKH1HjgToRwkeFRKfCDCg2fgATDXHoRwznnPkkh6763xHkFxNMZIxtGjM55zJCDGmPXWg0MfKrgAjhRXoeFYKZecdpoccmatJSTOmSErpBCSmdwCCyqdwWAktp46WVoul51zThscYGqCpziOveloa7Isl1KCJ2edEIwjR1Zkus4VURiIOeed1YyBimSapuAZOZ9nmZCSnM+6qbVeCOE4CSG4jIE5RKaikvfeGJd22cJyp9tdabU6165ev3z56ukTpx2QROWIGLBadWh6am+SJKEu22y0u91ua7GNAFLyoKPBuUyiEodC2QQ55EZDz59ACma0k0Gw27hYJd57JM8RyDNyxRrmXCIwAmLIDHkHxLhEISJWyfPc6qxeLnnyEWeSy5JSHYcEbK3RjlTinD5//lKr0zWetPEemTGOoeCc4kQBOZOnURSRs8O1eqPRmL06NzY2FkdRq90ulSrW2lDtkzIiQkJ0QAI5coaMy0jlacZFaMQAMGFsqpSUXBidxVIgFxRE7NZHW2yIP0U5GLj3VueOCI2xWaYFV87noXKGouhmMMYAi5Dey3PWB1aC4wX40HIvdEYAfeHbheg9MUacc2BhPN0jInpiKICYtS7UqpEVNIbQQiJC5MHsFhkWrggYamKFnMT6kGNAUcjW1ZUDxQwKMSPBhfBAQkQAkKY+0znrydNwFsSPgooYi+Mkz3MmlQN0zknOEPzw0MQz336Rob/55puttZu2bG63Z9M0RYJWJ+2keaVa9wTeW6lwJKl0u13GcfuOzdeuXZMKEfjGjaLbTcHj8sJinpvR0boBq5I4NzBaqZPGskyccps3bGACrdNCCKWUSmJAZ4zds2/XWx+89+4773rppVdmNmy4ePb0Ky++rrU+feJcnhsZsfHpmlLikUcffPW1Fz73hb/avmOLtt3DR169eOkyE3j85LFmp9Nut269486TZ05xgj37tq7MNavJhMsZB1yaXxoZk/OLF9udzovPX63VRm46eEursWqtlooLAbajSbNSnPCwfgR6xxC5B8skeCDBJGMCIMy2QzAyAvSCkzFWSsmlQkKG6Il44eSL1tq5uaVyZaRUKkkplRIETkUiTbVSotVePXTk5UqlNLd4ZfZ/XxaMM+5AWE+ZJ+8s7N23/8iRI5nRWueAJKRwxIAoGNA6ztEbraIgS03NZrNaLRMhF9w5Z4iSJNGZlkLY3JTL1d0791w8f2V8YvrihWu/+8ePP/DAxu3bNq8sXc/ybk3w5bXVq9evD9XjjZs2KBlv2LDxgQfuzbJsbv7yhQsXhobqs7NzP/kTP3r50qVvfOMb73jHO44dO9ZoNKampr/5jW8R8pdffgVI7N674/LV043m8nve/b4NG8d+4id+sKRwy9YNv/Vff+61V17fPLPRIzz55BP/+v/5q898/jcnpzY88cQTY8Mz27buOPrqyxw5F0xKAQ6QgzU2CHuCg1SnSVI2xg4OPYUjtp8sOee8A+iZ/LDepBhBkS2F/LvfsQoPS1709tjCwgJjLE+zbTt3/MgPfeR//q+/ffjhh8vl8lprLRDAAZhzlOVmZWWl3e4+//wLd95528z0uHMegRvjut2MiAJzzDknhIqiOPQikyQpxXGr1QiyqAjc90WGEIWUaaerqpE2OoqiNd1gjGdZFlcjIUS70ylVq5x4q9NO0xxBddJupVSOyyXjne7obrc7Mjpcr9drtaG1teba2ppS6ty5c306c6VSCdzGzZs3W+uzLCuVSkqJNMvBM15oaBWpMOfcWM8YS60O5rj9cYQsy3RuoygCR9ZrzjljQViNt9vtzRs3PfLII0889tVbb715eXkxy7qabBRFG2Yq5UoVVPKVrz2v4tIP/9iPbpqZvHzpQqvZWVltvfTyK821xrXZufrw+OT0RK0eVSvxxMhQtVyeGt8wOTVRrZYY95xjwiudVlMJ5pztM04GU2HsifiHHhwWvrwuTVPOuScb2mEwQJAql8sB0PR7dtZaneWhdLFe3wKO61OxRUm1Xzzz/bBd5O1FmOac++BhbF24F67naFmU5Yi8c5YsYyHhxtAEF0IY0+kbXoT3Yow5V7y41oUDIxYdGkx1vrq6mmWagHW6XZmUstwEjRJERAJjjCiX4qTUaDQomKAAoCgQatBnD3Xi3mx/Xi6XEYlz2U1zpx1DEbQzapWytk7rTAjR7LSTUolzzK0lDqx/EvMCvAqlVuZWZmZmYiU9gtW6P5EK69pOmJQq3dZKlmX1ep0x4txxLvqcD8aY75km5ZnjnBMw653PNSIDptrtrFqtog+90LhcShgTBCwzptO2mXYL8/Ptdqeb5mcvXD5/6fpaq5unOSByFENDI1u2H0BgQiiT6zw3eZ4vL7WtXQNiUjBvdRRF6EEpxRFlIrvU7euw9+vNoSjiyJG3zkHY34hIVLD3HOVSShqYww1LAhg67xmT1nYJGBgnlMwhJ0sm14JDu92t1yYuXzjfbDaFEEO14TZka83VxeXVarXaXlgmwkarGTh8Lg+iD4IjBh1i51wcx3mazc7OlstVIHJWh4oU9To+SsVCBHTCrDGccw9krRU8cuRZWCE96FOuBVXIkA8XntNCRIwDR8bCPLlzSaSccwi80WgUmU/gYxQWJiSEZBycIwAfyvPhGsLAZEv4znpxCwv5t4GaVkha10cm6cYpywDjqEdQ629P6PUf+3WyfrWs/3X/n4PVF0RCpCBF6b1nyACLlwKAMF0b6t8UVMe878+HGeeAO84cY0wpkSRJs9FmXMaReOPI4cZqc+r8xS3bNmd5Xq8OAUpkMniO5Xmu4giAjHMTExPe+yArY0yXMymEWl1eNd5NTU1YsmuNRq0+tGF6Qmdtqw1ZV6tUjh89vGXH9o9//OOtZuev/uavACiQn3bv3rl5w/T73/89GyY3Hj985MiRI9VyhUp47Njx+97ywCd++OMygcce/+If/ckf3HPfrQ8+dP+5S2fWmp2Nm7YIudxoNF59/UiWdV944YVyubx1y+SuHTt9SlOTG5bm0mpSXZxfOHvmyFsfvQ2ZGR0Z6nbzTqO7NL9cKcdkHWOQ51mSJLwoHrEsyxAkY0J3PZM+z3y1HCkVeb/qvSfmigiLngUxIPDWOwWAyAk8YwLR5HleKifGmJMnT3MRVyqV4eHher1ariSdTsc5zYVSSnS77R07t+Z5Pjd3vZxUhoeHp6cnm42W1hmQmJ9fzDIdl2MhBHhqtVrAJEMhyPBSVMmyLjLI08x7PzY2kiQb5uYX8kyPjpbzPBWc52nOAJARl0ybTn2oHMWlI0fP/+mfPf7//upPv/e9b8+6q7Nz13RKXWuPHju1c8/+TnORbL7UWPnyl5/+iZ/4fiHxypWrw+O1LO9wzv7+iceSJGmtdU+Ks8a4DRs2Xr58+ZlnXm83mrt27n36m89PjkzZ1LdW2l/6u88tLq8SwaOPvmNserw6Up+Ynrp4/WpUrm7btWvzxaVKHJVL9Yff+o4Tb7yxWLtYK1eAHDLnvGdA5JEpsLmOUQGySqKMt1SQZy1j0DuZWPEfMgII/Q4hZL/tGE7DsNM45+SJcwHoQ71dSpllWbnK3v6OR5599tB9996NSFnejcrVoHM4MTERpgUtFEFWcInId+/eu7iyHCtRLVVarU6aZtZ6RD47O3vq1Jnp6RkiEEIFvo61lmMxqYGI3tg8z51znHEhRG4ya23a0uXhOuecex5o4zq3oR4WpPCdc1CM10J/UHZ1dTWOlVJibGyslJS7Wb68slyvDZcrlQvnz9fr9TxPs6wbpImstWmaXrhwIY5LSZKEo5ExxoNMIlGklO3moWiUGxsAimIyTO6EaxiOjYKcSL3RayqUJ4Mbhgcfl6LmmrUukwyElO1OE7kfHavfdPNurfWWrTOKwZYtm42xufZTU1NSqjPnLvzdlx6fX1r6yZ/40bGR4TxNs1b6tSeef/r5F+64ec/GLdPlcjI5Mbxly/TISK0vV9sPo4Ndhv6JGOKglDIAC6LQ/ypy6wAywhBlUbGQMgCaarWKiMCQeu6NzpL33gQZbufDKRUenHNkgdrCiTzieqejF6zDg/X7JsYYD6GexlxBAyNHHlAyBtb6crm82mgb44QURIQe+3hOSt7/k8MRaK1lKAIm01pr47TW3W43TVMIkuLAATkKEFwOD49u2rSlsbqytrKMKKw3QigCJmTk0BLjjBdvwAXGpSRU/lhu4lh20rybZUFguldHhABnjTE8VrnVPCrmwoQQjnPnnLOmUq8555xjWmvFRRj87ncJjXZ5npcTGVCmM9ZY75z35AA9eHLOFL8PFhGFTIgozXUURYH4zHhcrZSjJEbg3Wara8TC9UXraHG5deXatStXF+cWFjpd7SyhEGNjY+VktFod5ygc+TzV7XZneXHZOyAi1kPGHDmXhfqa5BFjLIqiUCgFWNfg5oUIO/aMH6wQnOy6PFh/TYbwFVYdLyTuDABwIYAhuoL/5xCd94EbJ2RkjImj0oULF8jZ/Tfd/MQTTwwNDRlnO612lMT79u2LS2UQp9bWUhSCgs0LR8bQe1RKkQPv/djYWClOMtkVjHtvpWSI4J21efhbCqGNYt7eWeeKenOhfGatJApVTMaYAyiVSj0uDhchjPSEA4qF4dB774CSJDEc+qKpvWcVHm79yBy0AwZplABAEMyUC35fH1GFGnNRpioYgQQFoO9F/V6W3gsOhR2FHxiih96oex899+NJ/xcGsdfgdwZ/hLwPxcJEbYgtxZ6HoPPX0/YzYdDe+yRJJiYSHpXKpWo36ziblytJrVKXUsZRSedWSkUE3gdXTVheXj195kyu01p1SAjVarU4inbWBQBCz4mMs81WK8/zpBzHceQ9LS+v3nRgz8riwleff/5DH/rQ5m2bz1+4cMstt4yPTf7d5z+7urSybfvWcqkGJK5fn1tYWCJLTz31xEMPvfUrX/ryzp17PvqRj//bf/eLDz78tne9/z3vVerl1558/uVnRkarcVTZvmXbhz/yg0987ckzZ05OTY+cPnPie7/ng9MbxiPBVuZXavHI/GILQa02WtcW5vbdtl/FfLI6Xq8OXzh/tbGaXj0/Nzk1Vq2WkTmhpDGWc5HpjIhUHHPOs0zHcSnNWqWkokScpxocK0UlTwaRPNmgvxquf9iS4WprrUsxE0IAIQKP47hWH7Wemp327MLs+Pjovv17lFLGWk/+lltuKZWT++67b3Z29uyZc900XVpe8ZY4l4Krq1evZlrXhmvee631lStXNm7edu999woCk2Wp83aoPqQi4Zy77fabpjdsvHDhyosvvNRqrzHGpBLgSCXCe0vgrLEcZaulO2mqHezZuXV6ciQuTe27+cC5i7O/89//4ItfOXzXwuyu7TNXLp37vo/9wI//xA+/+OILgLbVWdq89UA5ji5ePF+pTtTrdSWia9evTE6OP/jg/YgPGJ19+YufP/Tqa889O/vss8+9/V33tdtryNnI6PCVa9eOHj08P7e4efPWHXt2nDp36tTLJ2699dYf/7GPbt0yo+JkcuvIldPnTpw4FcU8VjzQw4E4MeSSW2s71peSCnJGzobwF2oDYScHDlZwb3WeAAiAAQSIxgaLEdBj4HrvpSqMHUMQBE+KM0cQuC5E1O12rdUMwHurLWOMeQfeB84vhgaQEGr/voNjYxO57iZJQoRaaynURz/64ddeO7wwvxLHZSlUtVrlXII1SZLkaSqEcgK01rOzs+VymYiUUu1uN6qUvPcFm5sxRNRae58g8PDxpYgYiBA+hAzWN+i9W1lZkZIrwcrVyoYNGwCg1eyEsFiv14kqgQ6FiOGYDONvvsfl11pHsggNgWLfb66H+NJHGKE+JLnoX9iQgjrnGA8+koVEHoDP85zIWWurtdLyciPNMhVLAl6vlkqlMUa+2+22Wq3FxWVtfKVSq1WHJiamAOCO2+86eOAWpdTC9dnW2pXllUY1Uo1W67UvnfIA3//RR/fv36m1VoINxsH1zHjAqIsGaFuDEC3IkIZL0ZfXGix9AYDVBhGDdlE4EqQUiGgpnBDrcq/FrAAL70v9z9NPoPuPEI6hN8+BiAwQe16i1hvjnJIR55LIViqVej1bXW2EhRo+JyL2GXvY01BgjHHGOBMIyBiTMgK0gaQY7IyCbkt4Sp7nc3Nzw8PD1upOliolvPdJqYS90bbQglQqzvMciFnjkZE1PreOPGltERkwZpxHT5zzLEsZZ845LjiXEqwO56uz1oAJMAUc73a7YUKSMdbtdsMpXug7WBvIlAEWF3L/4Ky1zhsIEp3Qs1FnHIhprZmIKtVR5AKIdbvdtdXuanOu3W4vLa5cvXr9yuXZldWmA2IYqag8ObEhicdLiYyS0upa01tc7bSazRUExhhL4jIAMAJyFHpMAEDO64AthEBPQoog0RIWdsAltsdAH0QGxd1nBdSm3nSqH/C5Cn91/8AAIsEEIW+2WiySDEFFUSdNuWDWGSU5YyyJS+cuXGx12oxL56HRaNTr9TiOR0aHrly9funSpVpt3DvnKPTyqHCvciSI18oVb93k+IQz+vz58/V63VvjnWE8EjdijvD3ZpntceZ64gsEyJk3BXjyCM658BzvvSVSUob91mesB3cKIQSTorXaLlcq1uaOfNhBrmfJgIihORgKWpyvpxbQ28/Q5/khAnqAdZ5ZD37d8PDe4wBmGkRLYcOygbGVfuj4zp0L64nT+i8PBBMON/rAel9YWzK+DsoJQwdmPRTEcSxVbH1RMlRKOUsjIyPkjTaZ5KZer4+OjmltwjgFZxKIIfBOp9NqtYaHh2u1GiMwxqVp2mq1KpVKs9GQMnJEQUuIoUiSkncaPTRWm3v3HdBaX79+fXJqauv2bV/84ucPvfb6t55+6uGHH9RaxzI+e+rcxQtnj7xxeN+eXSePHt29e+u2bduyLHvw7W/78KEPv/97P3r63PGNm7ZevroJ0M3PX8s1PPSeh69fW9q9a//27VuXV66/cej1PM1nJmdGq6M7tu2UEF2/+Gqa5vv233z/g/fOL15sNq/Vhmtz88v12nA5jtaWW1JKKaXz3SiSnKuA+IN3nCfrnFtYmJNSVsq1VqvFGOMcs7wTRQoZgAcG3FOh1tYXDHPOJXHMeVHyd9bmeZ6mqXG+XClFUdLpdNI0rddrOjdBXLnVbG/euZs8fOOpb4byQalUaa113/rWe2avL5w8ebLZbEaRkpEIUWvTrl2i0Z3fvHnz9u1bJcduJ6vWyhcun3rmuW/kmavU6lu27my323mmI1m5fv2aEEKohEt55fJs1qUvfP5LP/+pD71x6OWnnvqCMWbX/ptL1c1/9KdP/OAPPrB92+QLz397ZbUF4Hbt3vqVr3727LmTxnY/+n3/drg2Mr9w9eabb7XWnz9zOctbyPRv/7ff+MIX/jbX6RNf+7v9N+/7xA9/fPfePb/0S//P8PDwrp0Hbrrpphdfen5xbvnqxbnHvvzYHXfc8cOf/Dg4fOnlF0ZGa6Uyv3zq+PDQ5J3vePctd9w1P39penLk0qULr7782tDQaNbNqdNFIfcdvLVSqbz84nOCoXPce18qVcJYH+ecMYFIQJ4AeGEGiAGWIaJzBOD6Z3C/XAEDdhY21yFgIYI2OYC3VtdiBT2xIETkTAoUHouRHw904cLFNE2Xl5fPnDk3NFQh8ErIcqkcx/HGjRt37tz7xS98+fTZS6VSXJgrh4NNSipK/ZimebvVOXny9M7dO5SKw4fR1ohIZVlexCbgjDFrKcACyQu7SW8dEiilGA8KOtjudk+dOrMwv8IYs9Z3u10C5qnQHoyVKkUFo3yoXg9OzP3egZQSiAkhyLssz4s+Iy8Us5wllANyWQh9QSkUg5MphQsv55whI4YBIrfb7VarJaTspm2VVImc1pl1Brz1ZFdWlpJS1Tk3v7iMTIwMDTc77d/5H79z4sRpCTA5PvRP/vE/2r59a6O5/M/+2b9zHm65dd/oWHVxcY6xcoh3RfbZi4OhZ+p6ViT9OOvIoyfJuHOuT30I/x8sYvXXCfYExvpLhYXZnHDw9KwM+y3sLNeDRpD9y9U/wLz3IckPXnLWeyjSYmDIEaUAyawVIkLgAL6bd3uJBAQG6NBQrVqtZlkWXtwZo7W2Ba4C6y1jnPV0AokoiiLW4zIzxjiXlpxHRsAWl1ac1UsLS8hAChUUBbkUSKi1bqwtEHiyLkmiIFThkbXb7cZa21iv4shaywQLK1nrLC5XUHDvNVmLPREmCEx/xJBIhKGHKIrSNOWA3vtQPqHekOnq6uqS6UYiwHpyTnsy6APRJ6hpKCJ0xgcmaCmpvX74xPETZ3Xury4snzh/GVQMxjLGJ8bHy8Mbh8YE51Jned7N8nZmc5uma6FLbpGE4qO1MWt9nuelqBQAt+Q8z3MhOCIKxhg5IABvrXPOI+c8AHfvmZTSWh2UfkOqAwAhKEkptdYMMAzUUU9Dsn+o91cIC1CJwCN0OmlcKSdRnIPTWhPDYHmJwJ0H5yEzNinXVpptLpT1EAmltZaSnz59utFs12q1TrcVV6qMS+TMOQPoOTLvPSDvdrtIYmpibGpitNtuNJtN4x1jAhg6z5w2vTVPeZ4rJbhgDElKmXYyZ2y5VPOeERETHDkLf/L8/HyadUqyWlTsnANAwZiUnAkealX9sgQA1Ov1VnM1PFdrHceRMQaRkiTBQpwPpZS96tG6Er0vmFgsdCQRkRGE6woQvljvM4bKExFBof5InnxIcqjowK+bjPVvBN44szzwUm+W+xoINSHoDbwOFtjaGAMYXCyZ996R7+e6RfMAGTAOKKBfQ0Vw3mRZWqtVdu/aNDw8zLnIc5NlWZZl4TVVJIaHh7dt3eq9dd50uq007XS7HcEx12kYctfaAGcMlFKKASoZr64sXL961TkzNDxaq9c/87nPft/3/cDb3/72Nw69+rM/91PHjh0hciMjI9euzW7ZsjWOxLZt237mp//R09/8GgE9+/yLB7/8xTNnj3/mc3/x3IvP/eXP/5+1xuJP/OSPCjb5t1/49KULrSeeeByY/tjHP3TrLfsvX7owM7nZduGv/vzzH/7/GPvvAEnTqzwUP2/6YuXqnGemJ+c8s7M5SbvSrsKuUEQJEw3CBmRhYRtsc30NNmAbgxAXZIQkEBJIK2mlzdLmndkwOU/PTIfpHCp/6U33j7eqpndl39+v/qrurqquL7znPec5z3meDz4aVoPF2WVGU9NTNyrVxd17ti2teNfGrjzxxDNrhtYVs739Q/2l0kqYhEFYzpEMBS2EYBQpIcwkPkEN1yaWRTFKAIEGpJDAjACAkhq1IQClaLP2JVIps0gJRhRjUAo35z+UadQmSfLud987umHdj3/y3IED+2ZnpwWIJAye+MHjpVLJz2S3b9+eJEkchK4Pf/v1r61bO+p4NgAYErBlWbVaZfHGBN26fZNtM41Epd64fv16FEWZTGbP/j0T49ODQyMjIyOVeq1WrgohvLQfNOKdew4+/9zLoOns7GS1ovfu25FOsemZomX7X/36t597eeqXfuWD/+yzj2AcvfDjJ7ZvX3PnXbcfP/5mV1fX2nVDz/34yVKpdO3KtSgOLl++uGvXHsvCcVJ/9N0PfeCRB7/8l//zc7/+qx/7xMfiOLn9jtteeOGlj3/yo0qiZ595aWZmdu++HRhDNtXx4x//5Gt/8/cp19m7d28+m2k0am++/oZLvVcnX9qxY/+WPbsHhnuFCDt6Crv2br9w5no+m02iMJvPDQz0uh3FI1T/+LlnDAZTrVYRIkY7wGxmCHALRTAezDfJYRhj1CpKjEyXbdtG39mgQY1GA5DC2MzZAOccY0h4bHKmZimvFcJNn06Dxi8uLkqhKpXa008/nU67zKIEkWKxWOgoJEky0D88MjLy2rHjqZSXTqczWVdEIUKYUmKGXyzLXr9+/bHjb/UPDBFmT02M961dQ6Tw7Uw1DgERqYXneeYYheJmxNJwI8wxUkqVElEcc86F0JRSx3E455VKxXV9rXUURZVKZXBgoFIp8ebIpzK6JkIoU6g1bTcQTZIEU8QshnHSAnsYas2Wt/tEhBAlFOec2ZbUmoKhQDXrV5ORJEmiNGitE6FUy7KaYGwzZsoUpEFLgY37sus2Go2FhZWr127MzC5aluX5ztDAGiXDy5enPvGzH967b9vS8kJnV+GDj9xz8uTJNWvWhGHdACSqJdylW8Ic0ALt2oWvyR7M9qC1JqzJuTGPNoJljtS8zEAy0EImTMGqtaGOmA0Z2tPv5jsIIRBm7XJ5dVhvj+Wbk6Nb7BDdCuutGxVjgm3bBd1sjoRh2FTn4hxjzHncRiXNx1LPQwiVKhWTkCkpKWWe5yUiIIRoqTDGSkiT+iRJwrlUGmzXdhxHCBGDIoTYjqUNcYcQAOBJE6+SSmC2SuhSSiW11AoAG6k5hJBhnRGLGQVqkQgsiVJK37womjHGbJtS6vu+ZVlBFNrMMspaqwSmm/Y1USBtQsMwzmbSRtiTUsNqbcIGhBANWijJbLtWD556+seXxiYGBjdYfn79lj1cA1LatZ1KuVxvxFpGPE6AS9uyRCwopblUuiVpAUJqobXWwJgdBTGllBBWq9Vs2yaEIHVT14NijDQo0KZQ0asU19qJ12qgZfXNZc5eEwhpQSk377d2/YARYywMQw0IlLIsCxBymBXxBCnJOc9l04RaUunllbJt23293YLHcSNMpIjiOJMrSETipGzbdswlmMshJSY4CKJcR+6B++5++cVnFubmhkf6bzm8f+rGZKlcmZ6eDRqx1kwp5TteECWEIsaY41phXZAWOW/1cSVcWJalAVNKy+UAt4RqVTMjQYbdDE2Qr2kwQCnN5/NBo2TuGXPp2ydHtQCzNjjULqhWJz1GeBUTs3RuCnq9bb23/Fh/OmfSNyGrVQMfby+W2i94x3vbT9qtzJtv0dC+4qjlgWO08TDGGN/Ez2RT3gKUUhFPCLUdlxJCLGxFwoQmy/O8er1+48aNhYXF7u5u0rLqsmxqZgMYIx0dBQCdK+Q554VCYX5xcXZ2VmskRKI1wpQYTWbXdbHWjOCRocHllaVvfOPvd+/euWvP7r/8y796+umnjxy+ZfmTn77t9lsIgx898cw3vv4tIUQm3bFudKRQKGBGmW394Ac/eOiBR15+9TU/nerq6n7+n37wox8+v2/fjk9/8jc/83MfLuQGrl2d7usbvOOufevWDWbS/oPvur9eSTrzxV1b9185N44BdXZ21arxwtzM9auVt948tnbdwPmL5xmzueK5rlS90rAcsrAwl8m6tsMAVCbnJklUrwQKFCHI7NFRFDm+49u2qUaIpiaSI42NVoWSQCjGrWWoFDBKDRBjhCHr9XpvppBPpecX5np6ujZu3BjGURRF4+OTUvJYxJcuXZqcnNy7d286nVZK1Wo123JTKWt0dNS2nJmZmeWVJUopxrB7995ytfZHf/RfaCJUI6zv3rcXg05nvbm5uXQ6v37vvvVbdv393/0DZun+/n7HzlYqJdt2+wfWstzQQ+8bOvPG688++7v/5nc+7dgQRdHatVuvXJu7dGkq5cOa4cKNicvLpRnXo488+v6lpaVarTE4OOT7XqMufvsLv1vIZvr6BrTC33vs8Vq9Ojq6dm5+JpdLf+JnP2I7zvoNm2fmF777/e9973vf+5Vf+dWDe295/PvP/c3fvPGtb++1bXt5vvSZT322v6svm8o999SPtmzbsliySpUqODKfsccuvM5wtXuoK9OZv3Ht+pYd++IaHx+btG1WKS8//t2vr9mwdt8d9+47sOv0yTOWxTKZTK3aMOvE7FImWCOMjRonY8wEbkKAUoI0MRHQ7HymUYIQUlxYhHqea6ShEIK201yrAwKYEoxxFIUcx+wmmUMfOHDgrRMnSstLPT29L778vFmyPd0dxWIhSZLXj73V09M3NDTQ2dUhhKhUKjbBnudh0JRSL52qNhLLcQGw76eSRACiUZR4+ZSSQCnVgKdXZhmmGusczQohpJSmTsJN/2MWhrHkxHfcmhLtO48w5vgpIRRCOJ1O1+v1sbExKeN6tdrZ2cEY8zwPIyRFJLiSGlFKE96kdQvFVStJ5VJQRZAEIQQRwkjGN4E33SzyMMYKTB9BEEyFEAJkOz1VEjPmxLHUiDu2K4RIEk4QI4QoBVqj5aUVwRUA5lyuLJdnZ2d7egbOXbhw5LYD99xzR6U8P3Z5qlBML63cSOLItollWa7rS4GUwAA3hSHaQbwdExljGjAmGMFNZK6ZaYEGgm1qt+ciSUsOu53AtY/UPFbF9zaI1RQTeVuDpsUYagduE5Sbb0eINInzEhnCNdZKKWhJUColkdQaEa2BMYIxyfh+FCacg/EsppRqkEImGiTGRMgEacIYYxYJQ23blpTatu1MJqMV8VMpY8dOKaUYr9KbxZzzIAi01kYRjVk04YLZVvtIAYBQDJIgpW3bMtlDIrmhIgkOxpTdpixJImIxS8kgjFkcM8YUQlJKG9sUE6UVgWb2mQhuJCEs29JKO45j/pEQQgjjogbNUEsdSqng0uiZNy0yEUEYU2pprTVK4oTrJEbUHRweml8JFKaNMK5HFSNUK+LEc10LEYsxhJEiSMQRxlRKbtBZ0IAR5YJjTMGIExCMMQGps6lsGDYIZYbzp0wubtumP8gTiWzUvu4YYwPtrC5OdEunmyuOQDcZcu0R+lVGN1JKrZtDQrHgzHIkTxBlhjAXC25yl6gRpVIpQi0uVCaTwdVyNQidaq3guRjRoBHZrsMYS2LBEymEopRxnlgOk5KY2c9Kpfbssz/O+iTt26C4lsmmDWul1str18SxLlWCp57+idbaIhQznCQR55wQhDRI0WR/xnEsCWhNdNNMGmvd1PUwiZJhTBqZXANlIYQIYYhg27aDIOBxFIYhF7F5l9H9YYwBKCEE1s1xmZu9TjC6LQZbkkYJrCXvhjHCRh7MJGRKqVY507TBXo1mgZGQQGBaAfimdF9z7mH1wv/pRzt6tD+znR3qtvqcbuJgCCHOE70KSEPNqYv2bxClFtOYYGb4JzG3/UyREOL5vgaJMU2l0q2kTVOKpeRIa4IwQUAwYoxmc+m+vr7FpaX5+UUMuqu7EwGOEi41WinVlxZXLMYIIRjk6Lo1nsO0TO647XZAZPz6jVdePvbG6yfefPPkxQvjpZXapz7z8bvuuuex7z6Rzmaz+Vwul1MAH/7IR65dXXz00fsffO/7unv7n3zyR//qC/+2Vk/27T2Yzbq/8POfSmdzVy5N+pn0qdOXb7/jcKMRfv/7j23dvLFWqbz43Esb12zdu+tgLlc4/sabvb39mKgg8IhFhOCZVLqvvwNRmS7i7v6+A3tvffPYm+PXrmutiB37WZuEMp/rqCzJGzPTURB6fkpwVauF8/OLuULWtb0kEYzZSmGyyqIGE4LfrnuiFJaiSTLxfR8AeBxZhG7atIkx9u1vf9tPOZ7nvfbaKw8++O6OfOHLf/3lrq4uM0guhWY+68h3LcwvY8S7u7spI5cuXdq9e7dSKptO9XZ30VePHisW8+KpxLLR/ML0I488kk4Vj/3kJ0vLFSll/8CQV+wEEJn+nsqN6cXllb78KPHYrltv+5P//idPPf0DpGU6Uzx+4uIX/92fHzyw5lM//wgm8d//3d88+J537du7++WXX641km/9w6lbb+ssFAprRzYjrJHS3V19b755fN26jb/0S//s69/4ajqdppS+8MJPPvjoh7q6OwbWrT1waN/2HVviIDp77q1cwf34z27atXuz67p/+if/6+K5iz//878wNTXZUczMLy4MD69Pp9OiUa+sLMRIJrJ+6epSajnVN9jPo1IYVRGWgHChmM910OWVaVGdXbOub2lpZmpyBpAsduQq5QZCKJXypHSbV0KLOI45T7iIpdBSNrFHwKZNiQHAtG8pw0IICdLzPGMBhI19BAAAcM55IszWniQJ8mm7MpNSKiW6Orp6e3vIGZxOp9etWzcxeTWOww89+qjWKo5DAEi4Wl6uzMwtLS4u/tf/+l8xhkzKHRzo6+nsyBULPNEaWCNCAGRpZYVLjm1bKCk1iriItcCY+r6/srziphxKLS4FISwM44xjiG5CKZVKpVKewzlHiBgOEmPMcZxmJoqQmQEMw7BeL9er1UajYdtMSum5LiLYtH6UEWokpDWL0CQYmV2BEAKiZSmvodl8wXa7mBNSSilN2goAlDHz3zUQRGgcSUZt17ZLyyUDUmqFlNBhXG80gnq9vrCwUA8i10l1dXX19w8gwqanp4MgsB1rcKg/m4H+3m6KVaSFkEkUJYIrpLHpH7UkHlA70rUbqW3WhVFCN68xUntNqIkSA/6tDsTtxAtWMXbbxat5Bi3aFm6JyzfvFs6Zxd724lWPNsxGWoO6ZgZTKSON0pR0V0pq0AgoISTh0vdTsFQybUTVclOQzRPe9DA1qQAXMZPMSJwQQjiPhYY4CbEGpcyQBze7m5Sqo1jMZPPz8/NScmZbqNVybWeWSZJoJbXWSRhYdiaKAwc5BCBOoigWlFgAzWaooVcqpQycJqWk2KYIM0yUkesEAi3QHlRzx2oSxVqZa7s/67mpZT1XrVYZZVojgpmSXHBzujClTX6elNL0r13bzRbyCyvLPVahFjT9sx3mIOogrRGCKIpsylqJtW4n0AAgFTc/m7vCYBVhELTdHg1oilvor2lnW5aVJE0NRsuywrBBjfW41u3JWdkyGzA3Sbv1ploaKLh1c2KMdUsR0GQ5hBChddOv2vTjcJO4HUURoiQWPJXOlmr18Ykpe2Qkk3IBc6EgShIv5YezCyyObZdgTMIwZowoKREQ23JOnjz5yY88nM34QaNCCTTqZYRxJuXQvG+xMA4jz80AgOLNmYAkiaMg9FzXnC7GmEYqlrL1PW9S9FpXxGRdUgihNQMAo9vUrhu1pNRiAAAEK8llSw0bms7aLQJ76wGtgkev6gCaYUOENCbtzOxtsFZr5b7tl2gVGt3OqNpL/v8j8Wp/gtbvhNPe/gLc/qjVGTnG2BQWbbDtpz8nDMPlUnW53GCMLS4vJTzYvHmTEYK2bXtxcUG39MYwxsyiltVkIEVREIUNz3OSxK82Ap4IixJM7NhVJVxGCDk200L4rnX92uXZuelUJgeIlsrVP/0ff75zx7Z3v+s9xXzH5asXZxanfvFXfnHvgb2v/umruXwmEXzyxtSVa4vf/Pv/2dc79IMnfrRt245jb7z+0iuvHzp4iFp2GMSlUnV2Zkkp/NQPn/7Azzy0ZmRdOod37923ef3a7KFCMdd98fS1CxcuuG5aa7w4v9DV3WFRCyF09frVkQ1DmPGIV27MTRBNt2zctry8HNQaro1EXLM8JJJooVKKqrSQ7RlfmB8e8mzXKZfLxc4OSmkQxo5tJ7FgFmAEqEWpVAqR1uk1oKNSysglGunyFmyhTp84+fLLL+7bvyeTSTsW27Rp04svvpjP53/2Yx/XGM3MzGzYsCEM4uee+8n73vN+KXWj0QCAYqHj/vuHlVJvvPHGyMhQLpehhw8fVkogEL19XXPzk7bNrl69NHb1Uv/AsBDetauXt/nOlcsX0mlXK0WIB0iJJKE2MM/iPLZt9+L5id/9vT/fv2/4tjv2jQx2CNlYKS0+99xzW7ZsKa3UXIv98q/c7fv+Ez96Zvu2Xa+9fPSOO27P5rv6e0eWl8pHj77OOT906JCUyYmTbywvLhBC4unxXK6wYe3wlbHz/f09H/v4Axpkz3BXdan0pb/8ye/92484KSwguv3eB86dubRx01aayUEcnDr+2toMXbN9Q6O6XKkuR0klm7KxpRVKFJJAkq07ts4uzL569LnDh47sv/sQev6lsSuTXV0d2VTP+PikZi4AcC4ppYDBcRzfd5UCKbQpLrXWYWy2SB5FkVIqnU47lmHLatOaaYYVANtyALBtu8aqBVq9eYQQgOI8ZhYlFC8uzb/22ivT01PFXJ5Q5DhOV1fH2tG1WuswrAkh4ph3dHScOnPB4J9DQ4O33nJo3bo1YVCfnZ1tBNWZubmVUtzZ3XvpyljEI89N2ZZjWD5CKYyFZVl+KpVOp9v6qITZSZJIxRFCRk4zodi0MEIuARCXyqcs4UIp5Xme6zle2o/jGFPieF4suNY6CII4ivxUJkkS37GbYokYmRlG3ZIgF0IQCpQ6mDfTkTavS0klmwrUGmOspSIYJ1K3A6XphUmhGbMBcJLEluWYtWHARUqY1jqfz9u2fX1iSsgkly96bkoCOK5FEFZcgUSZVFYK4CAQEAJWFMQpL6WU4jzGIE3rq/1P28yt9vXCGCNMlVKAEGAESrc3SzOn2doA3haOzUGtTnFMKASAuOWBo5SiLWV5jLHSWkiJzMhny39dCBFz2dpNCEIoSbjxtRJCcR4zxgTnDDPQCCEspcTE6JfaSSIJtqOEcy5t2zYZLcHIBJQ2/IagaVjWglKQlNJk1Qg3fd9REy7AEkmhhQLtOJbr2r0DvaWlZduiCIEQslytIA0YYQk6k061BNllOu0TQoSSoHEiVRSLoBFpLbTWBBFESGg8iDDYtmU0l0yzCTRQhBEgizYJLqYZavJg1dT3b/pSYIwBkOd5mUymtDjr2C4ihuVjpJKaLHWBiQaZJIll23EYCZF4nqOb7q6OlgIhxIUEpRzCtFZaIdAYIYKoaVOgRAohBcYYI0qIGZGTBvITIrFcSyEFUpmpTCklIsS2rCRJCIC5eVCrkW00XADAGHwZfLHdtm4S5pQiLdNSDJoQwhhL4tjctyZrwRgThDBCXEhmWzzhpq5vJ3PMccu1OrFYygg7I8SojSmbmLwx0N9bKOS4bEJNjNmCS8drKkcoBaAxQchmls2sYj5HMCRxaNvUYjhOhBAKETuMGkoZb1lFMCVY8zCm1HIcTQjhSdIc59QKUYJRk4eAW1aqWmtGiBCCGz912zIsnPZqgpZFWBC2J0MV4KZYFwAoJQGhtkyM8apq3yHtfgVCihCLtPIlIwCJ0NsyMLiZqDX7kqsznlYehhCY8eS3kTth1f79jtxrdcKkVw1SYIyl0ACatADydtnWXne6NV7d/i+tYMUSDoKrbDaHmW9cuQxkIIQKgrpt20888eT69es5577rUUrDICKE2LaT8nyhJGN2FAeEMN/xlsNSO4mnxJJJnITRQH8xCivdPUXHpUKQlWrQ0dF111331KrlLVu2aa07e/Jf/OK/++o3/mpoeHRgqG/t6JoDtxy+eun8H/7Xf3vhyuXZ+cW9Bw719PTNLc48+qEHhofW//CHP+ru7j139lIuV5iZm/nlX/mFhx5+9/j0pT2jO69elRcvj+/f1ZErZNduGOnpGDj26luZdD5sNJZLK45jEYoIsZTEQnPLdsKo3j84+E//9L2zx88f2L1fcOJ6HdVy4Ke87Tu2nT5+hdmW6zv7Duz1/ezjjz/e09u/srIktZJKEdZseTNmSZFQSqUUHmMYYzO4RnCzurYdppTCmKbT6bSfCiM3DEMtpe+4cRDOz07fdscdUiTj4+PFQoFHPJ/OP/vkswihQ/sP7Ny5e/v23c8990yxmAeAJ5544tEPPaK1fPWVl1KpFO3q6FpYmO/r791xaF95eenUqTNzNxa2bt2KEVtaXLl69bznMscmL7/04osvPv/uB95/Z37o6OtvvfbK852FdN/AyIXzV377332lq4Pcfc+RWmPhyScfX1i4wZh999337tqx86WXXrp09cr73veQ4PDM089/6lM/19nRf+eddz722GNBQ2zauO3s2fOu6548cXrnrq1BI/nTP/2zkeH+d7/7XdXK8vM/efPEyaPvete7brntrm987Wvbd6x3PXr4CLnvgSNuWi+W5q5fG9u6e9eV82M9fTzdWdyyY2cYr0yPX9cgcnl3ZnrGpdbGzaMTExOuZS8uTc4+dy2V9ZZXFi9cOr7jwJGh4e5SaWV+YXLz+h2Oy7gUUpipRmTQcEOESmRCiPE818ZkxsTxZo9ANstfKWUYhnql1Kg1NADnsl4LwiBMpZAxkWhCQZIbRX0zjO27zuBQ/9ziAlLaoDjFYv6FF17IZFKua9sO6+rsKeTTjJGBgYF1o4NXr14eGRnJZDL5XK6nt79Sqa1UgqWl6Bv/8C3m4JnZG34mhxlljAEijKGEG50q3BLmQUmSMNtlNhsZGakt1arlWrlUicPQ932tVXuOz0yIUIvEcYwwIKRt267WlMH8MKaMkaZFA21W5y0collwc865iJvqg2B2JuE6Vhu8ac5XGxsQjGXTZbZpwaFAU0p182Q16TJK6DBsCIUVZma3pggrBLlcZpM9KrgCQrRCcaJqlaqRtEgSYVlOk1TRYq1aNqMM4jCSIADsNgJkaFvt4NgOwW2tIIQQrIrUujUR2e48rg7T7YDbHpIye8Bq5odsuaGbOwqvavCtxtKaMVpKhJBBts2wkuM4hIDWJI55a08CIQS1LQ0IEElijjFmzK7VGmHYANBSQBzHJhFsU44MSNmaMlEIAaUYEwCMlJJmQC+RifkOWus2lmbmDwA0xgRACiHMJpokieM4tm0nSQQaHMdxXTuKIgUo5TqMKp5IDU3Rdqm0TZly3Sjm7d0JNCghLcdSGpI4Fo5hAlAuI6UUQtTov7cpjOZYpJRSQ0exq1xaTIS0hdnJFMYGL5RKYSmlhmZtYFkWIjiVSlFCFSCpgRAWJwlSgDWWoBkihOhWwdAi2GFmvrkQghDWPi0mZRdCtHUBV6OY5rmhK2HSTNAJIVLyJEna297qF7d5Am1wyKwjzrmSkrSU58wopUDIjKwmSYIxkRgpIZWGRArD1DSHjDHWCEBDNpstV1YIplfGrm3Zssl2nTgRG7dsSRSaGJ80J1YogQFp1dQ/jcPQiNSbLIdziTEyuZTkPI5jUBqaCKi0bTvhsZIStaBBc89zzjUjcRz7ritls2PYjA++b9s2ADOFBwFCKUXIiOYTwmgSNE0m2vOeRqKrLc2gbuo43qQKwCodL9x8aTPraidJbYTs/89HO6Nq420//fv/U9bVji16Fe7efkGb/7D6f6kWM7X9MiGkAaoRIpyLerVkuUopbbtNZRNCCAAOw3h+fjGbzVNqEcKEkAA4iXk2m02lMssrKwQzpbRl2UEjJkAQRo5tU6NQrLRUgiJYXlnsyOfT6VSpFDJCw0goBevWrYvj+MaNST9jf+GL/zKI61M3FsauTRw/efqW2279yMc+efTVF3/7X/9mrVq9cPZSoVD4/G//5ssvvjR1fSaJGiBFRzGfz+deO/ry3ffcFifB68eOf/YznxkZWTt25fy16+MPvPc9C9NLTzz+rO1ai0sLxWJ+8+bNU1MT1yfGN2/evHPn7qvj5/JF7/r1KxfOXDqw+/akBpblIRBBFKeybr1eP3/x0nKpXCqFxc5uxKwwjl965ZX1m9YpLQBUzKN0KiVkwoiz+pyvui6YECIFN4urHaLjJDTckGw6Mzc319PTjRC6cunS3PRMHMfnzp1zHKdYLHZ0dBgCaLVanZ2dnZm54ftuwmPXcyiluVxu586dAIq++uLRW44cmp2aH7v0ze7OLo9lxi6/Vqs1VpYr6Wx+7+61f/LH/2lkZG2hUBgZGhq/dvX68Jl1a3uLnQ/kM9njrxz/j//XVwoZ+MIXfml4dLBUXmAUEN53Zex6FPLvf/cHCwtz5Ub5qSd+VCpHU5O13/vd/yAFpFMdC/OV2dmp4XXDly9etx0aBMHX/+7vlxdrQ4O5RqV85tTJ3/mdf71397Ytm9ZN3Jh+6vHnRoZGX3vtaHdP7rd++5dnFy+nc+zQbbvLi/XLF05s2L4nKFUgrrC0w9IFgpIoKJ1+/Y1s2uN+Qn164Mj+ibHTvT19a0ZGFhbmKz0pTNHcxHmp8MianrNnL1qOtmytQskFB2wlSQIYEcwQQkksCCHG9A9jrBBIoZUEKaXNCNLNeosQTAhBoPxMcbHEMQBIJTivV2uELBngsVIqM5JSZs4VIS05wyid9jOZlNZSI5zN5wuFAgAMDQ3V6+UgrM8v1KYmpwmx5+fnBwaGHCfVHvKq1+sJ57VaY35+udEwdRzu7OqlFot5wjm3XGr2bLMnxXFsM6sFZasoimrLy7zOGbFsx7Kp5bouQiBB1+tVxizHtsKgoQELIcrl0HG6hJCUUs4TzjmiJOLCs502z9V0jkwMNaHZFOuoNa1GKTWjRJZl8ThBCEVhZAYGDXzYTDIQ1aiZ/r4jKhkKjRCCYmYQYNu2GKORlAiwbROMIUo4IUwDj+PEtT2MkOIiigLzdoy0VFwpASjRkBjdF930bAEhmrmRbumg3gyjYCQEQEkA3XwBxhgwki344ae/MGp1MZS62btst8la61wyxgyVx9BWVntESuNORZueFbZtG7obALYYDcIojCIuBMYYacSjGJRijGJG45jbjmXZjhRJGHNz/hljWssoiZnlSAUJlzYQ4werBLQRF2hKgjGMsW7lECY/M9m52SwBIwlNvQylFKHmIjavo/mlUkJJyTBymKWFNNlrkiQaCGWGFacoo0pwzgXnknPukZRQnHOOLYZ1U9EjjjkjlIsEtTSxzHZuNNjMxbJcJxYcU8Ij7jtOR0fHytK8UkpwrpEy3n+ANaYIEWy6lZgQMwvpeSkhhVZNRIGLmCFiDPgQJQhTrREowJia4X8ArDVuHi1GGinDv6fQlLzSGksNXDadLgG0kkIjjDGhtNkCVi3OkIn+plmp384lwhhblrH1TdooSDszAwAhW+6ECBk5Ti6VRkhhzLlIuECUaEBcSI0AUxLHcZIktusghCybEkK01Nlc4er18Vyx0NnZSTCzbbtWqWTyOSGEZbF6o6qFLOSKIkkA40Kh4HgWVFGUxK5rI0QM7U23WjNGcBVhZDRaTW2GWrgUILBtOxAJAARB4DpWNpuVUoLSlmUlSWJbliFyUYotZmGMhVDtDzeNfs/zEEJSKZFw23baOQrGGJC6aYbaWonmahmGFdaANUh1E/RqJUCGJdZ8kzmpq9Ogd8BjRjsINFL6nU3Jny7A/k8QGvwfHu140s4GdIv2p5uzpVgp2W62aq0ZdaRUBLMojGMZaUQSLimz44h3FLtcx6/X69ijluVMT8+ePXu+p6fL9/1sPscYi2K+adMmi6UA5ijFxksybATptJ/P5rKF/NTkIle8u7v3u9/9m5G16+cXVuI49r3tGAMiSCjV1dO9UrFf+ub3UqncqdPnP/2pXzi0/8ALzz3z7gfu3rNn1//9B3+4f//ee++7Y//+vefPXMik/SQOCh35HbtGD936BcfT165O/MM3v5NOFbo7c93d2YMHty+XVtZt2nq4HP/Jf/njhx56aHJqwkozO+MsV5exzfYduW3NuqHnn386KAssrKsXr1FE4zjO5r2Z8gz1cpSiykq5UmsMD/W7XuZ//NlffPlL3/rsZx5yfc+ySb0+hjGRMqHUMYw71QwIyPzYhlTiOARkMGBFadNv0JBnkiQZv3Y9nfJtZs3Ozrquz5jd29s7Mzd38MDhnp6e3/u93zt69PWenu8//IH3P/qRRxYW5mQiL1w496EPPfIzP/Mzu3btuHjpPAUghXzXxfMXqtXy3l37r4xd7uvr37BhAyCWTqcxhocffjjtZ3bv3v3d7353w8bNa9f2LZarO3ZtRdQTDY4I/N6//9Xevs5adYVgKBQKjaC2Y8eOGzdu1KqNzp5up+Fcvnzx3Q98YN/eg2Nj165fu/Hqq6/+5Cdnbrt93Z/92bd6u+DIrQf37NlHGREJj8Ka71IN8ec+9xuf+OQndu3YceL42QP77lgzPPrY49/o6b310JEDY5cuJzysVarrR3c9+8xLj33nu+9+97sHRwagBNcnr1dXFm6MX5ieum5Z1i233tk/Qjt78i+8cJ3zWtwI+of6JmeXM8WcBg4Ix0l9zdqBnt789etj1dpSys8LQ99FJOGRxRxThLXrKtGkuzah4FZAVEIokyO38BWg1Er5GaQhnc2ZvCSdTluEBHEoSAItuo8RTQWkjNIEpTSVShWLRddlQibd3V0AqF5LXNddWVmZmZnUwC9evFgs5hGofD7f09PDnPTFi5MWZSMjI2PXx0TCCUUAgMy+L6ENDJhc3txYQoh6vR6WG2k/Y9ZzkiRaKyOgopSK45hSKoXCGGdTWYwxVxxjrBCymG1kvSzLWlhYnJ9fjKJooK/btpkQN+2bzDE6jkORxhjLRJJVskZCCKMC2ggDpVRrVwOlFMKYIKxbSpJSSoqbnSOT1TmODdSWWtkYY4apoFpL0AojbVEsZYJAgQTzDTXIIAiE4GbOnSqEEEmShCdSI2IMPwzkQCltTxi1e4LtKNneGkGrdjqC3o6EtcPr6hoXtxoKhNwkda6quW/W5eTm0E1rYwZALZ0w13VNHS+llEIZB+Im0UcIY36CCZEaGCFS6TCKgNgSjIBqhClCSMvmN8QYU0IYIQxAaaUl3FTr1qsSSqmkELLpAtmC68y+sJqJopTSEplzaGAhU3wb6xfLsttnz3wwIs02tOt4QnAppRmhbZ/tTCZTj0KtVMr1RBx5ji2ltAiNlTLdPslFogGpmz1ic9W4wWA0si0XtVrJSmOtlYYmpw0ApNRCKGa8mZX2PIdRGkchsXyTSCGKoQWHaK2VVFJq2pS8JEopqSXodnot2vDkqqO4mYu39NUIgDJTisbpEjVnbJGZNW7H/XZaJqUkpDkj2VzC8mbeJpum8k2/S4SQAs0wIbYVSyUUEA3AiEVpFEWMmK/XnLkRIvFcP7DsWGNEKVGytFKpVRuZbD5ohB1dXel0ulqtVGvlOGjkMnnXtWUiBwYGbszMSpXLFzsajZrgcRjFlDpBI5xfXEilPcAaA5ZCUEI451oqg6nrdh8QQCEz2GiBUtJ4L0glpdRSMstqgZSKkCb5Mkl4o9EoFAoYkGmF45ZoTvt2FUI152cpMvG5TZzXb8eTVp/kdyRJ/x/J0P/P38BP5Wftx+qqbPVv2pjWT79g9WeqFgtt9eebu11yU/xgQohNbNvPCq4SEYPSqVTKcZyZmRktIQzjOOaEsDCIKZUEs0K+o1yqLy2t1M9fVArS2czVsXGtdSaT8VMOxtRhztBA3/LysuM4YRgjwApQIvjnfv1Xg0Z09PW3HM8NgkalVnZTvtTJdx57/PrENcJoKuNnMhmt5fzS/OjGdadOnVpaWti5fdfs7Owf//F/u3rlcnm5unXrppWVkutZxXw6lsnXvvq3+ULPv/j13/rP//kP/vUXfuuuu9/1xhsvRGHdt89vWr/lvnfdPz07feLMWx/86Ptvu+eWUn3ljbde6/hmZs3IQGml0tM9ePH8Bc1XNm3aIoRYWJ7p7u6Ok4bCOpXJ2Kw4PDzcqPMvfelbH//4vQeP7J2curpmZCBfSPEkAS0AmpLrWmtAylBo2hCjycnMBJgJMlEUOTbr7u5eWSGzs7NbtmzvKHZevnIJY+jt6zVVrmvbx48f/+AHP7h7997de/e4rus4dHll/uKl84wxy7WGhoaCOHJdd3ZhnvYPrvlfX/16V0cWE/jDP/zDbC6Vzrj5fJ4LmJ9bzOUz9957b3ZwZHFsrFAoPPa97xDH6h9ek8QhU+rqxLnb7xnJF7xqtYQI9jPp2dn5cmWpWCyMXx+bmpnZ3rlNapHOuDOzk+VS/fLlsa1bdrzx+qkPf+TWbds3jU9e7ektahAXLp69cWOyp7szk0tfu3oZY7xj58HXXju1vBQQ5P3g+0/Ecfjw++8rLdWiatBZ7Mrm+3MpWa+Gi/ML506/uX37BubTzTv2YGo/fXEMiNfTv27N8JpCvuvG+FVKhx5+/6NJFD3/1HNzS6V1mwe/+rWvPPLIhwqFDkAyTgIu6sNruufmZ3IFt7t38PVjJxzbt5mHCBjTYqWFsVXBplciEw3KDM1prRCilNzcyM2u2V7wsikf2iRRYoyxBi0VKI0RioNQiMRxnCAIMMZCK6GVUsqyHJ0IhBBg4qZIHMf5fJ5ahYX56Y6OjkzarVartVrNsv1sJkspFTIBpBpBbfPmzaVaOYojWzKLsZCH5h4yk/m6hYczi6VSflKLUFPsEThvKioJLbDCBFFjhNJoCCFEHMf1Rp0xohEY7QxKaRgn0CQl3NSYNkdBAGGMgyAIgsDNpAAgSRKXUlO/hmGIEKKEGsIyxlhIw5wDrZGSsi3M01oZWkrJcJMOzxjj2rgrKiEEgDEJ0VoLTJBtOxopjIFzTinRmgOSQiZU6iThlkUItpIYpMAE+ULGCJDWTc1xE7LbicX/PixihFqYopQ3ibf6f9drQC1RtHZyqVoa963bQ2vdVNk2+3dLi8F05W4OihpWIsIgpEKECmOOiVtOpggDNMsDDcBsy3V8rjSAdjw3EXEiBbMIDxPG7ChMbMvFiArR5JIzTEBjKTQiCNMmg14jpFqirGoVqUU07a0wSAXyJoSjtcaAhJCcCyPgYo63VTKa/LKZyxr0kFk0jkLLsrQS9TDgLbmvoFbHlCilFBeUkCgMAZTZzqvVGtLaZhQALEIZY019xRZJVmtNCAUAc6cRbIMWYKSOMdJGdQ0hhFASx7bjKM0zKXd4qO/qxHKaMSEN8k2ElFhJRRSSSimNQRsROIwpJdhIYgBIpZDBIxEiWhtsUmmtKSWm1dyWdFKKa40VIKMu1N59DbUUt4Yw0M1Hc/LAAHxSKgCNMQUQWmuNABFMMTN7sqkb25UD5zwWCQfQSDFCCKMIISmExWiUhK5ns5QrhXQcq7RSJRZDWluOrZQ6e/ZsEsvOnm5C8NzcXCblFDvyGIjkcRLz7u7Oc+cvPv7DS4cP7183OpJNZzDjcSzDMJ6bm/c8TxuxfnZTG1YrhdTN2QiNNEJIK400UMbiKFBStnc4RjEghFtsLYGEgTYNPGbWlLHHgVaMNTw2rZUQpiyghvXVFJVQCDTomyIvhnffXOOkqc8nzWy6bml9tW/pd2RCP/1j85Um5jeXAKwOCO1XqlV0Lv32gs3cA++INjdT/1VDAKteo5tIHjRrAC65aDRsyzXR3vBHHcepVxvd3T2WZUdRxKXUCDFCEdLUYha2s7mCEEIq3WiESqmVlbIQie/7GFs2sxzLDoJwbn7SdZgThJ2deMeOLVeuXF23fmB6Zq6jO+vl7PHrk7br8DguFrqiJE5lfddGXZ0FmzkqidOe/76H3j89NXvs2LHpmck1a4a7OjpGhgbn5hZuufXIhfNXfud3/xAhePh9DyScfvKTn9x38ABoevz4+bnZmcG+4WolPHLolvd/4D0f+/jP/O3f/q9avRKE4Z6Dm187+uNLlwsb1q93rfRd99w7MTExsm5k8+aN3//hY9QGiPTx429u2rTt3rvf/W9+5z8ePHDkg4/ebrl4YKgjCqpnzr65ZngQIxKHUgpBiAWtOhm3hTwBSyERxYQQ3iq/hRBKyOV61fO8KEpMScA57+7qqdYqUZg4jhNHsZJw48bMv//3//HDH/7I4PDgW28de+PN1770F2+sW7du376DjTBIZTPZfG5xZfnue+6j23duO3v+1E9efCGT9dYMDQ0NDwwO9g8NDTFmLy6/WK7WL14eO9jVizE+eerM3r17T548fuHSRY3dhx566I47DxEUT09MJjF33PTy8vKFy+fCqNHf23XjxmRHT5+fznzv8e+9//0P2o5z/MTzw0NrCEUHD+2O47hcWertLcRJOD5+bXHJSaWcycnx/fv3f/gjHzt16nQ+X3zsu99/4YUzH/3og47jdnZ2HTt6/K57Djq+/8orL25Yv7NRk8tL/OWXXpBSdnV1zd6Y7u3pzxW6M6lsbOnhwd75ubm5ubkwKkVB0bbd8YnZfEefYxMN7LOf+aVcPqO1Tnnpt956a3pmvKurt3+gw7Zgzdr+qampudlFAEDSQohIJSilylwhxozu1zsqp7bDq6mDNQDGzWUWRVEYhgigXg9s6mJMkDI5XNMUz3VdI/dnmByy5TqiNLMsi1p2oxFXqhWtwLIchEg+n8VIZTJppdTVq1ey+S5MQEqZRDHDpJjLp7PpmcVZJYVCTUtKw7jXXK3uqbUpFEZ4vSmQobVq8cE558ZQyKSGhUIhSaLyypLZ56IokkikUplisWhqWfNRyOzZhJhMKwgCTbFDHHOLJ0kiW94pQRDMLcwzxrgU7ajSprlgQJQxMNNSIpZSAkOEEG6AEsBcKsfsQoABJKMYYwtjjDCDMEqlfOOaQwjRGjAGhLFoElAwT4xYKdUikVIipFuskaaIvAEV2hFwdSw2ZNtWGIX2ScMt6e12zG0/b4f7VlJ+c+bcYBi4VQpLKQHIO4Alc3uY1gwXknMTRRFjLOGKK8VsmxHKXDtsBI5nE0IaUbi0PG+7Xhwp108z20dCWBYFbGkBuVyeMRtjQhBOuGFwKyPNCgAIiNaAECGEKX0Tije4MKVU8OYZMAgWKGNM2/y2tu0kSYIAYUQAme9pI+MMYTEFWmiFpQSEMKaG41+rN5KE27ZtO45SihFKbLZSrfR1FDPZ3OzcNNFAEAaA9oALbSGpukUDMjtxG9+qNeqIEG3sREAjBBiDBKWU0lhjSrBEGlCSJBgIs0lXR2Hs2nwz+FKijKyaBiklbamoKw2ty2HAPKkRGDNZJUHrJldXqZs3gGrSwGk7C8cEGGsSttq3Vnuw0Txa77o5HtG6E5pdeANXk1XC7s18jZBECozA8dw40hQhhRGXTZcehLVlUaUF57Fv+a7LlFIaG59syaVERtiT4lJp5caNhuc75j86FgVQGAMlpNjVTRleKdVqJ86tWTOczWV8L4WQ8FKpKI5dF1oW08pA4IQQpcTNDYwAI0TyWBtlDUCEMUopQWCKMcps3cSrmmdvdWC0bZsgLBBiBCcIKSWkNLUlQJNkiQzrC2PAGIOC1csQtXgO7TO2enW3VyX81EP/FKz1U/lQC7d+u+fj6gwMVuFe7T+1vsjbPnlVtDFP3tYDNfeVEMIk7sAhiiJm+3GSgMZSyTiJEEKO7Rw9etRmjm1bhBDXdYyYCNIIY+z7frtdI6Twfd+IfpkoRBDUapUkSZaW55IkJFTv2r11bOzHf/O3f7tx/brhtWsQTlZK9dn5hVQ624jivr6B6blZzoMkie677/ZzZ08wxteOriktli9dvvChD340nc7+5V/+he/43//+Y9u2br5+/frHP/HpW2+7TwH73ve/39FR+Ou//pt//W8+n83kj9x29x/83//xxPFzn/nULw/09Hzj63+zYcOm5eXS6MbRycmp9RvWAqj+4b6uri5s2Tv37J+bXsx1RN/67re3Xt5UKi+/duzlWq36y7/y8zem5lZWVj7xiU9ooFu3b3n88W/94Ifff/f9942sGWrU6iCAAKMIg9JAwFigoxYUhjAiFAkhaEsDHGMch1F6MF3syNfrdcdxHMfjXHZ2FhEiMzMz3T29WqtKpYox6e8fWFpanp+f7+7pkYDK5eqmTZt7+npPnznX1zfwK//818bGxpZWlofXjNDP//avFYvF933gvQMDA5m0d+PGjeVSReJJzmPMZNrLBlFj7NKFKIje9cDDR4++evd9d45du1IsdJWXZjGCHTu27d29/cRbJ0+cPKMAX758OWxUG5XloZHh4Y2bCl3dP/8Lv3LrLYcqldrf/PU3Qd8Iw8SyrJWVFdDYcdyG5Pfcf9+a4YFyeWXnji3z8/PDw2u2b981OXHj+PHjhw93ZjN+rRw++MB7N2xc04gWTrx5bHZ+PErCWw7d1wgWdu3ZsX7t9tGRzUePvRQsLccr9aW52QMHtw8Mdl+8eLJWx6Ojoz2dPYuLy+XFUrVaH9i+ZWhgmOvI8pza8lK9VqlWq8dnX9+wYdPadQMIWBRX1q7rn5iYWL9+fWdX/+LC8qVLVwkhlmULIZIkxhi7lr26lEFN3gDCuElhNhdRyJtUFYrA933bZkEctHolREkQQkQ8YbYVNOom7zF9BIzBzP4opZQEy3Jt19EKOY4DWhMzyG5ZI26KWv7KyhTGoJSwbUtKkStkliqLgYgIscxwWfurmiqUMTNAlzSZBFpKLgzXRwgBCAhBxtp1YaEmhMjlclprz/M2bBjt6CxIKQ19WGPgUhjSvRBCSp5KUYQ0ogQhZNqXqVRKY6xa0/JCCAxICWFZ1tS1ySeffBIhfeLEiSNHDsmkycRqbzxSSsOO1RobXCFOkkYjdBQw18KIEEwRwlKCFJyyppCiAc98P60kMtOXcQzG097kWAokYDDTD1prpRWlTXUujDHGTfudnw6CzWxJSa01I7S9U8q3a329I0avDtzNWKx0O/CZ3LdNrzab62r6f/uNScIppXHCbdt2HC8Mw0Y9JMyyCOWc1Spxvb5SK1emp6eWl5eXSitvHb9EKRQ6urbv2Fmr1Sglnu94npfy/CBKXMtlFvE8DyHtOhbGOIoSSi3V6tSYFNBAmG26g1JKCq01aits6TZtoq0ri0BqJZUWQhB003hKN82Lmu17k0gxaqGWuCVPJKZEhKHjNCUbCoWC7To2s+qNcqqvh2JiEZq0+rlSSoZNs0CYwUDamo5sNGqLi4uMIoSQUkKBRLjZZVBKCIUQENCYYMalAAVKatt2CSIEiFYSDOvLtP8UUIqRVlJrQgkoJJQCJSUo4wiNgIAGpLXxFUAIUYSRQkoLaug+AAjptk9Us0t400KAtOkmhiutmxgMtMdm2yVZm2KF2twvw0REGAFopSQYYhkInURRBJalgWjQmJBMLquVsAju6+vNpNLZbDqfz588fSbhieulhJQIAaFUI4Q1juM4nU5LFYMSCGlCkNY6DENCimGQBJHwfbdaq7362ht+yu3s6B7duMm2XW3eDCAlR5Ro3WztWJZVDxLTKFdYK6VYy2De+EgihKQUuJUPtZKMZiFk0lnjnNsufc2SsRnTTWI+IKTbCwe1SCCoqSthEh216rKaFdfU94L/XYK1es2uTn1+eoGbi7w6VrSZXu3qpV2Drf4E9FMYm7lJTeZqIuHqzzF/1U33WA2Amk6mnGfytkc9hHCtUcum0rbNeGLmY5rWcGbKj1JMEMUENAAhVqPRYIyhZtCjUaQVAp/QJIrbJ1Mo7qcchC1i2T/z4UeljJ959um777mn0NXzD9/6jpBJoVDwvaxt1eoQjI2NSXkom/NSnr9SmqtWoueee86m6cnrk90d3e958OEP/8zHnn/++e9+9/nlpfqu3b2/8Ru/MTjSfe7C6d/9/d8AhR977HuD/aOZVOeakU133/XQ+x6+b/OGNVKqV18+8cV/9R/uufU9L770nNL17q6eME4U8ExxIJUbXKrWduzdN379XJwEXV1d9917j0j4+XNnLl+++ulP/uLG7fvnb0yVKwvPPvuj8evToyMjoKmSKmok2WwKWiWceptWHAqCBgAgctNe3QAWnV09s6dPV6p1z/d379lz4eI5oWRHV/fY2DXbZrlcQWsUBjFoPH59kgs1uzA/PLxRyNj3UsNDuXQ2iymNknhxeenJp5+g60ZH1q/fuH3X9u3bt49fu/qtf/z24cNH5ueWl0tL69ev51zOziysW7vhq9/82tDQyJYt27p7eyZvTMRRo9Eo9fX1+J5bK5cmJsceePD+Qr7jwx/6oGXT//KH/2l5edmem07nc6OjG//yy//r+Ik31q8fvnRxYmBgIO0749eWg0a8dv3o8vLS+PXJ/Xt2KyF/9KMfzczMTE7e2LRxy7/4l5/78Ic/9PQzP/RS7pp1w65nO529uMTPnr1w3/33Xb8+Uaku79m74+qVmX17989Nzy3PLR0tvSKkLmQz169fn5y6blmWlHygr6+yUvnx08/ce98DMVevv/EGJgozZFE8MDRACLVtm1IMBBZLC9lMoSuT6tA0nXZ7ejv7Nq8frPYbLXWeSN/3tURCCIqatT6ANh6RBDcRDq21ZTETPhm1FZOc8yThlgMAoFuryIDeXMpEKsbsJEkUSEDKtm0hhALQIEEqqZSTdl2XSiFEwv1CWmuNMFagStVStVrN5gqFogOg057vur5jORihOIpc105CIVRTCMOo5rjYESLSWjvMQkpu2bKpUaoF9SCoRkEQIUXMumYUaykJpRiTOEZSaiGE4zjT09NTUxP5QjaXy0FL9kwk0oBhjuMAqLZaWJIIY3mJEBJSEk0wwUIIbHAmwNVqtb+//93vvv/ChQsbNmwQiZnqamrfGRJP0GgAQBzHDAMlFmiZxCJoRIRS5mJGLMPtVUqpmwEUIYRaAwqSNhVKQQiFwFidNLVhwcyLacEYQU3/Hw0AJlRR2qTAv6Msbof+FjymtAGOVrnyrQrKN3tM8PYcTrVYtKjFvFYtb++2x6h4u2aY0fi2LEtrdO7cuXotKJfL4xPTiUDLK5XLlyYkwKc++oENGzYUOjsotWz7W6+/dfzgoSMf+ehHX3n55aWlBYSgXq9fuXLl0qUrhXzRsixCobMrn0tnisWibduW49m2Sxh2vAyXAmGmhDAkOcfxtEYaqFBaaWT8r5oNU624aEK5jLE4jhEQhJVGAJgAIkAwECpibjlMyphzjjAgRCilGpSQkhDClYyiKJVJa6wBsJS6o1hcml8gFnMsltDmhcaMtuEihJCm2rTnKKVmflBJwIR5nt/T07OyMGczWq9WlFKIgGVTghlGxnNGI4KFSBhjQmsNynXt1QklKEUJQ9CEbSRILRWQJiqGkCIYI4IxplqhJOEYEAIkpGCYEEo4jzFCzG5qm7US65trvz3QAABStudnWfM+aZmHtjmIWuswjpuTGYhI0GC2cwUKtNBaKa6UQsqINWghVSaX9bO5kCeIYMYYKO16djGXVVoIIUqlytjY2I2Z2XQmbdlUaU4JQkprpaVMfNfmPMQEMEZNxyGtMZKe5/jplOVYK8vzrp+ybRtAzS8tzy++Wq7WstmskBIhokzNhDFohDAIYTY2LBXXiDBKozgGI4ZLCOCbfWrOlQbsOI5BRhWlQDAGwBjbrsO5NEq/pnoEqTCibiqltTZpPSFGREUBKK0xAG7R8JuLUbZ0wlqLzqRluG03pH8K01qdab0jLdPvxKhu/qn9+zb6tbpiX/2PtNZaoTa+1cbkAABh3aJh3PxMo85oPlg3Rfy0iZMgMCJNNki9HmT8lG3baT/VaDS01lEUeR62LGdlpWxZFCGCCGbM1ghsygx9mTFbAUgtACOEsO/79Xodaea56WKha2Z6olgs7ty+2bIZwvjy5cue54VBnM1bnPNyacVxLNthCKGRkZFrl8a0xJyrTDp/9syFpaWl5eWV6bn5u27fsrRY+fDPfOj8uQvUsienrs8vzFNqvX7sTZ7AyeOXuju6P/iBD+3ds/vQwQNJIrq7u9ePbj766jdPvHXx3e9/aO3o+omZ85fHzo92dv7hf/0TKd3bb7v71JlzPK7ffvstZ069RcDOZgrj4xNnz57dtnV3aWUJlNJSlVcq99x9n2e5gkspNcE0jiPQxo1NCa2kFABW+yJOT093FPLYY+3rSC1WrVajIBwZGSmXywMDffPz84agZdu27/u7du1SSh19/XUj2P7KK6+tHV3XPziYJPGZM2czmczataMTkxdvv71reHjk9dePHrn1ML3z9rtqtdp3/vGfvv0P37zzzrsHB4dz2eLOHfuOvvZ6ZTleWlq+du3a3MxyUAvOnDoxvzC9edcmalvnzpz+/d//zr79Wz/+8Y+MDA7HSWPs4tlsNldt1G+/444v/M4X/+orfz09PTE0MDB622gQRx2FYhiE27ZtzKXTtq3Xjw4T7Jw7f3HLlq0bN27hsXr15VfLlcUDB/YN9o28dvSV//lnf/K5z/3q9clLnd0d1XJcD+oQREEjriwHmtOhvnVXrk6lnN49u3a/dfz1OEiy+SJBGiONCEil5mcX1q4ZDuqV115+/dz5MxPXxxcXlj/xs589cOAA4LhSWjHF3PqN6++9712cx4tL82NXro1P3BgY2OAWO4od+Wef+9EDlspmCrfdd8fl0xePHT1h2zZowYgWItZaE4vxRGHCFEIY6cjkO0KUSssIoFYJlABmW9XlxskTpxshXBm7tnfvZgVCEyJ4jIAIQFzjqampWq0muGoEgeNYjFGhODPKrpYtYkGpU8zlQUmCldQcCJZSZrJZP+0JrsqVpZXSEhBcb4Rcqo58LkjqcRxzlRBmxVxi2iyUAUBLpbnkUcgsO4rr1dqKEjqVTcdcKQmObQFXSgqppONYCmmpYo00F1IDymQyQViduDaR3pZWQkZc+L7v+z7BzHQqLYs2eyIWM0o8AJpRmsQRUqCUYI4tpSDMqtUDoYAx5KX8np6efDbHOTe7DMJYKEktK0mSp370JAF0/M03bzm8RwGKucAYI6xty9KJ4LEo5n2tNZeJZTMAIM0dHUuhlRKgpBKJcSJBYCmITdoktDJMaMqIlqZvZbg7IIQy8HuSgOMjQgjCyHRLMcEaIaGVGYk1xRABZFkWbqbi2giytxt2stnAwowx1Zqx0gBGm6MdTwkhuAWASSkRpRKk0k1vXcC4RYVHSZJEYTw9O/d33/jmxHT8/oeP3HrH7Z2FjudfPHr20sT2TWvvu/+OTNYt16quk967d+/zr72+bfd2RbTjsL7eLq0lG+hZv2FdrR6OXbmxf//etesHavXlIIiq09NS6pm5xZRfyGazjos1QKPObdsWCFWr1WotwMQitsucVCMoY8oYY7bDllcCqRGhFiIMlAiCkDKbEBZHQRzHitCw0WDMykiNkFZRJIW2LEcDiYISowBItidCjE+f56fimMdJSCyc68vGQVCvVylgHseEsURwqbVt20hDHMeKgYmeCCHKsALdiDiPYiVrjXqVYBBCxDyJeGIRC2mKbQCMhUgwxgoUYdQAIUiFjksAIQVYaE4wQRhLKRlCQiuhpEZAGZVcEKRtZtqIAjTSSGjEKMEglZISA0IaKaG0BMBIciW1klJihgG0UNKxmNaSIJwoRSkVCowJOoDCiMTcTO0QygiPIk10ImLf85IkwYhalCRCSSERwQDaINBCJogQy6bpTKq15YOfylDLkYASlfiUUWoJIRTSDJNSqRRGjUq5UV5Zwgzn83kKKIkirCQCYJhoUGnPAQDfMp1HlUunHcehBM3LhFkYgdQqUUrFcWxREsfCsV3Vch6zHRdAm+lCkKCktGwfaWXmpk1nU4hEa62lQgQryS1KkYYmVYAiwEhr21gVCSUppQhhzAzZEaSUjaCOEeecijDGmIRNk3WCEFiW5TiWTbEQCTQFtGW74GmyGjBIScxokpSIENNHNrX024jw7Ser8eDV+dmq502Gn1IKMMVNC22TNwMAwoRoqUAjrVrenU1GIADGCjRgJJViq3r6Zn5ANYlfN2d3EEIms5VSIgQIiBTccVzf9xVigJECCMPwxPEz+/bsqVXqkqtsNqu15ly6forZ9tLySrVWAY1sz6UIU9vp6uoimFHLQwgpnQSBoMxuNBoojgCAYGt+dinn2/2d3cdeeHXjurUp1788du3NN9+6cnV8x879k5OTt912eDjump2/sXH9iBJ6emEpaGge8SSQSRJ1dQzbjpfvzF+6fPlnP/ZZBPDF3/7t55577jc+//lf+7V/fsddd4ZxNDNT++pXvnbL4duklDu2b3NshpHV1903M3Wj0Wh86pP/7Hs/fGrLjl3FrnSYoGo9PvrGD7M5r96Y/dTPvi+f6d64cfPffuXvOzoLmZR/5vTFlaX5h9/zvq7OnqWF+WB5cXxsDIFymdXZ2RnUa9M3rrnMxdjiXLuWJZUAjGLBLW1miEhQqw8PDjCLhGFNY9AIcaGKxaJlWfMLs52dnYSgV4+9WgtqPT09UmitwGbO0uLKjRs3+voGwjAcGlmTTmfDOKrVK57n5TJ5hCnBdhwmk+NT+Xy2s7NHSUy//rVvfPKTn9y0cesTTzz142dfueeeeycn5v7zf/rv733vw729vWfPvAagXn7ptW1bNq1du6ZUXX7i+z8UOsllsp/8+IdTGXLyxFGbIdvBhWKmUqlcvnz52vjYxz/5qTVr1ly5dPnUW2+dOzO2bfNmvWHk29/+1uFD+yzLSnjDsTtLK/We7s7+nt5L5y8E5Uo6ne4f6OAiKZWXjxw5vGX7hsXlhXvufle1Ho6u7fzRD5+4Oja+sjwXNtTCfK2rqyvrF86dvXD92swjH/xItRI8/aMnOgt5TLRr24Do5s1bx8bGbkxObN6wbnTdhvn5+Vqjfm1ivFAsEqqvXB579EOPTE1NLC0vYaLr9aptuyMja9OpwvzcMiVBR7FrfHz82tjlPfsOQFJfKS05rhnJQTGPHccxhjoIEa0QsywEiamroij5yfMvYYC3jp8aHV3rMByLOFco6ql5I8ikW0ozUvFUOn3b7Xd0dvSCPH/x4sVt27ZRSqMoopRSikHgKIpc31eyKanFE6McqAkhWspMJkMtJwo5Y3NJktRqjShMEEA2m7XLy+W4Rlo4TZTEOYRQaxCMcw6E1etVQpDkIowalmUlYdLd3Z1JeVNTE40oBNBJGNVqVYRZyi8aRrxr2cZ/BrVGQRuNRptP1gJ1iFLKIq7QilIax9xM1CNNWrUdUUoZ2w9D6jeqnhgRjYx2IiRJ4nneQ+957/ETb+3YsV01C1Vdr9cBQAm5WJo/ffbixYuXt20Z6iymMEYYI212L0LCWPAksm1mYDCMgVKLMhQEQS7vI4RAY8fxgiAAUO05vhb4TADe1v5bXctq3bTgNW8xXaNVI25vw8l0ay5SSqlbvad3xO42AGb+jDFOOG9p9oAhqyHdpN4bOl0mlX7Xu95VawSbNm5JZTOu6+zYse1bjz21d//+OAmWFkuAcYJZPp/PpVOFjoIGAUhJybVM6o1qJpsfGBo8de7K4NBIb18xz9OEMNAYYywk/uM/+jOt9T333lroLEzeGBdCEKJn5xeVplHM0+m00th1fYxxoxEGQWRbLiEJYMylAqk4l6KZ4nLHcaTU2XyxUQ855/l8DghOpOJCMmqZq287Thxzzrnv+6BDLhLOuZDSdV2NVVCr9/d1l5bR5PVJu7enfXoTISxMWsOnSGsdhPWhoaHAjHRQq9qI6vW6TbQG6WfSslqViZZUI0RAaSm51kb2UwqFARSlJJNJSSXMfKVCmlIKRGqpQCjDrjftKmTU6aRJC5BQEoGUShFEKMUAZgIHMMYIE8dzwzDSGAEoRDAjOBFcaWRZFpeSS6kRUEq5FACAdEuIVXDQCWUUYR1JHlXKlmUlIiSEUca40hgAY+LmXM/ziPGZ0MJ1XaWkEBIhhAkLE55Ikcr4SqlKpcyIJYSYuTFt0F8AWuzsJcQgQMJ2bBCAMaiYe75jUWZgXYSQZbmOzTDSqVRaa8l5PDk53mg0fN+VEinRpLcCYEosQngbMDaXhhIrCAKHWQghBVpLybBluoCYIMUF59xzHaVUGMeKc4SpCSbmQChQjLEZ3zawdCqVEqLOw6rnOYpYhlAIrUCXJEkcM4qNoF3Tutc0bdvDLoQgjLHSbbgLTLOpPVW6GrWCVVrz71jjuDW83KZsm1Lqp/XD3pHSvSOeoKbBUcvw8Z3a+u/8KK3BqE60b36EMLMcc8sx2/Izac9Ng1TTUze2b9+6slJeWJizbddo0SmlsoW8n0lFUWwOOQii8+fPY0Rt2yWEpFIeADBLayC1Ws3zPJvZpaWl5cWVgb7Oq9cuXD4/9uCD7x25dL5aLx++9fDjP3jKS/lCNeKkioCn0k6pvDxzY1rGIDkUMkWMrfMXL3DOFZJzC4u3HL7lzKnTCOtcPnvf/XcduuVgOpN9/90fGt20bsfunZiohx564PLFi6XlxaWllY5CPgpLnMt6EH3lq9/YtW//Bz744PETpzI5a/uOzffdc7sQ+tc/96t/+5W/c226+dCRTDZVq5QxgXVrRmZnpxmhBMF3/unbcRxSWwVhtV71l5eXCTCCLcvxOee20oAwxphZVnsExIjk6YRrUBhjYw9fLpdp0WkENc9zgMBKedl2Ldd3gmojSaIkiaI48DO+l/JLlXIQBOZsGwXNbCa/ffv2N946/hd/8VdRDEdu2X73vXc16hF93wc+mMrk06muD76ve2J89s//9O+UAiW8x3/wzMaN62677baEB7t37/7hDx7fd+DIxfOnr129eOstB9esGb42fiHf6UVxrVYtv+td91y+dP3cxTP9gwM7tu/68p9/KZ/Pv+ve+5JE5XNdW7ZsefmVZzryztXLp4UQmUymr39AKe7Y5MfPPXnw4MENm9YHjYrUjSsXL9Tq5UzWn5iY6OsfXLN9GwADlnvU7vjhD7/rOM7uXfeeOnGGWFfvvvve3SPrhi5cuTEzuXn7rnvvv+va1TFKoVRerkfx4PDwa8feOPba2XTqxxtG+774xS9eHht76pmnGlH46Z/9xOzs/KlTJ9auGyrXKlEUuK69tLRSL4ey4K7bvBuol890njt3qaPYxVKp+anZU2dPDvdv4ImK49ix/SCKKKUEIyklRkjIhBEwe1gmU9iwcffx05OpdCdlrtLhyZPHT5w6v3ak/2tf+9rw8G8Ui1mdYAJIJnEU1gFJBJRRb93ajZ2dvStLpbTnWNRJeKiVZoxRSqqNeqNRI8xilm8xnxBCkNSE8UQikOl0tqenJ2zUKMWuZwshiMYmh+NKYAKEEM/zAKMwDDk08z9ECdE6EUk2lREcLVQqGOMgrDdqJaGBUppOZwYGBkdH10/Pzi/MVzxmM0qCRhAFoUi4AYTMzRqGYTrj49bUvVKKMmaimAItlUqUoMSKgiTlMN00FRFqldOiCTdCCESwUhpwMxnKZDIMM8dxKNUKAKS0LEvFQoHu6uravXN7vV7P5/OUaqm4cSGkFqOUXr16abkSXLt2bX5x0fO8JAEAiOPY9/0wDJeXl7XWjUaDMaolEUKhFp0IIY0xSAntQdHVga/5DCmEMSAEGiltZmKRRoBhVdzECACwEZHHiCuJ4eYGsPqTFUgAreGmOi1uaXjCqk6E1hrrpuQ6pbRQKLi+RygqryyJJHJdWwNs2bLFdd1GPTAnNIoiw9lKkoQxQjQ1s7oY6a6OjmImOzTY26gtBXEVY6oR9v20xfwtmzZdunJ506YN3T1dMtHVSl0IcfjW265du/G3X/96X18/Y8R3XCn02JXxzu4uTEkipOv6UkrNE4t5CBNECNI0CGMtVRglWoLQ2ONCJTFPRJIIKRKNMMKWEIoQhqgSQgZBYLtG+0oghKI49jzP992FOe66LkJIckExCYJAKq4AYYyNmqiUMpvLEEJ8z0NKg5Yp1xXptBQRABDQtm1rjCyLYgzGo8nQHLXWjLJESSllJpPBGDOLREEoQWMCYDZSpYRALrNxa9hTSdCIaCAASMmYUDAEb5NNK4zMnY8oroY1KTRuKqxLKSVjTCMUCYlthghGSEspFSgppUXtIImg2d3W9ShktoUwShVzWsuUn8eYAkKUWkopRLBprJvknkdC1CMT7onFGnGQcKmU4iCUUgkXCDFMWSqTNa1tKQA0otQWIrEZ1Vo6NtNaW8zWIDHGcZx4nuenXCFEENQ5500PtCSxXccMpSJkTDLAshwpzTxMuzK56SKPEdKglJKIYMuyLNuWlKrQ+FoqpZQR7mqvCMGVVrHWQCmllChJtFIAYNt2GIaGM14Oq5xzmTQliwkhltXMsRBCWnIppdbStDjMRtiWGGwmYZgBAGU3xVba0Fd70bVbxtCm1bce5jcGsW5Xnq1SCla/ctVK1/iduvlaa43fjqi94wWwyvbbfD6lRtFDUkqlIS0hlM2lFcJAMedxIwqrpWomk7EZLeSz69auvXjx/LnzFwEglfGjKJE80Up4nhtFEaUkl0vn81mtUa1WS2J+7dpEPlckLMEYpIo45wxFQyODG9ePVEpL3b3D/+N/funInbd89GOP3n733pePvRLz0rHX35qcupokkZ9yG7WaVtG7H7jr7MlLy4ulen25tFStVMNsppAk4nuPPb5maLgS1Hfu28kh/OgnP3Tfffc9+fTT3b3ZzmLB85z9+3YNDhfDsIuSeHS0r28gv3Z47+e/8MXNm3YNDw4eO/rmIx96/8Bg59f//i/uvvtwpYpvO/zux/7x8Q+8/+Fr1y9fvXo2jqPvfe8HO3fuSHnu9u3bPS8VRUk+n968Ze+ZC8fiOJyfn9eKMppi1AEFUnKlpLmfzQWVQoFuqROD1oCkUnEcZzIZjcCoxjXCGge1buModYhUCaIqkYFGanLyet/g4OXLFwcGBmIRT0xMuK47MDR06NCh6xPjgNHgYP9nP/vJVCbtum4mk+rq6qKZVOezT79SWWkgsCYn5p57/uKaodTEZP03f/Ojt91+cKW0GCxVb9y4sWv33qefenb/3t318srJE2cmpm7Mzk3arti1e+v0zFQ6U7j9zrv2HrzlysVL166Nb9286dKlK5lUplptnDt94fO/9UebNlu7dm3v6+k6duzY8PDgoVuOfOvb32M2+5mfefQ973moq7v/hRefm5hY6B3oP3jLkRdeeOHVoy/l8/muzn7XL7hUZLKpj3z0kVp9+dzZUy88/1rvQD9P0JEjQf/ggOdmL184paW6497bZqcnjh2b3X9w7/z8Uk9f76c/u/n1o69u2Lx1ZmExVmpkdNRxnKeefcZzrCSJkiS2LGtubu7KlcUwSO667f7Tp85PTsweOnRLeaUmRDI2dtX23ChO+ge6lEykRIQwIZRjp4wKIkJmmIgpkVBKQZPr16bOnLmQzxTGJ6cWFha6evyDBw+eOD116vSVX/jkw9lMPo5jQlJKKUJIOuPncrl/+Pa3Zufmi4X8ieOntErcQi4KGrbNJGGOw9Jpf2JiMgiCer3OJddaI6X9jN9o1JWCer3uexnf9TDGlmVVa9JAApZlLZfLbi7NeQQAhkqFqIURVqAxJVEUDA8OV62SjkEkcRQEjuNAi0fvujZjdjqdDsMw7aUXZIlRatvU9xyTpoRhaKJwFBisjuZyOcvGvpddLpUzrq1bggWcc8IswRVjTAhBKJGtWGNyNTNqYKg8xmNYa20Ut5eXl7niQghKmi/GlMhASik9j9k2S6V60um0loEW0qR0Ju3LZrMAYNRuHccxzAmlFCAYn7j2yitnQcPzzz//4IN3NqKqITujt00hIUIIXlUNr/6r1jeD8tuSs58KuOYtBBPZkjI3T9pNBIyxao6Uv208ymQGBlZczSbmPKGM2LZtxiZc1zalfBhHCIDLRClhgrJjWRhpyQUorZUgGBRoIROENUjpexaj4Hp2Jt8VRi5GNBGyXmtg21uzdljIJJfNNBo1ANUIauYL5HI5ShkhZO3IOlBNm+2rV681gqDaCPp6BxhjFLTlMAnadV3PsS3L4XEihIrDWEgihBKC1xrBzPRcFAtCiG3b2pDXzewCAUQJQtpxnETwRqORzWbN+UyShMDNEysTXhcJxth3XKNBwKhtLnEQBFolRtI1SRLHtTzPc/yUis3EqJSqOYyCMTa8RqUgiZJ0KuU5bhyESANFFCMkuKAISwCtNbWYiGKhBKhmFsyVJNCGHxAAiGaLiiCEuFZCxICRl/FEwhMeGc9Ty7IAkZhHmBBmkXKt3DxAzhEhieKIUM/zsm4KUUIp1UgxRqhFlALVHO7TGmMFEAWR4XSiVdK4XAoUJ7HgoLFlWUZNgFG7UqsxTCkzaimaUcvcXY5jhUlDCSWEYIxIyQnBUgpASipercZm8iadTqOWrFozidTK/HfLshqNBqEWl6tXCjbFldLCYpZ5bluMUCpBJ1JIrRLOLUbMDEebF2X6bqvXguFnmbBQr9cxcFO4AYCJEhiBECJJoD1+wYghdyqMcUsLo6kDbFzA2zkTFc0RWpMymuCJ2+oDP7WWV1dE0ALGVidqujmB0RzYXB0fWgkctMswveqxOrFD6G3R4GaEaZHEMcZSi5gnlmVTSjHWvb29YKWFQkmSYEbLy+VquaQkx0hGQT2V8rZsXn/85CnQ0nGsrVs3JklSDwPGWK1WC4JIcGVZFqW40Qiz2YIGGkecMogTEUSNRm0RkGjUS2nfjpPwlltvu/2uB1585Ycbtw7W6is//8sfv/v+W777vcd/5Z//2utvvKW0KBZSlDKCcS6X3TQ6um7t6LXrM08+8Wx3d78QYmhkIEwqP37+mZnZKY25n2Kj64cfefT93//eD3/xl36+v6/zheefOXPy9I3Jqfc99ODKkrVz586//frXDh+699Gf+WAQ17u6u4HBb/7mgwSppYVFiqxPfOxnv/GNr/T39m4YXbt+08ahoaEoitK+Pzg4OD4+aSq3RlB2PSud9vdsv+ulF99IgAgpMZKIGCIdBgDGLCV1EEQWw67rKyWWlhaz+RTGhDE7CAJjN+J5TsST4dGhI7fdcvS1V46++XJ3R6dre5qgRhSWKxVqW/sOHtBaf7309cuXL+/dv98ICystVkpLe/buOHHy9PbtWxcXlzs7u+ljjz3POV+YXXj51aujI6n3PXTgzddf/xe//iGE5eM//MH+g/uuXZ/45j/8wx133HHLoSONqGH7qVqSPPHsy5/+uU9s3jjwgx9+KwyDV4++IZS/cccuwqaeffbHd956pJjP2paLdIOL6A/+4J/v3L1raGiAh8GnPvlzN+anJ6ZnGnF46NCRgwcPD67fDNS55/73HD+em5sdv/XIHb6XWi7NfePvvu76nudmb0wuHjp8sFBwMFa33norIcyx3SgOz188J3S8fnRrLu8fe+3VbN7qHe7ZWF9PGdxy121bt+2wmfOxj3/i8qWLz/7kqXQm856HPjiycfQbf/U/sll7w+YN5UqpUqk4tn/7rbtefvm1js6BjRvlP/7j16dnLh655c7Boa6OfIdlWRqp937gvaX54KUX3mw0AtfxzeYnFFdaIGMhjrUZEBdCnL14ua+3+403T99//+HObs91XUYpBti4caNj27VGLJR0LUdKyYXatXv3utENf/xHf4QQpDN+GMgrYxc3bhxOpbxGo4ExwqTbZpYGGYQNx8eYSEqxlmZ5I62JlPrs2fNIUS1hbuqG1IIA1MOq7TlKKa0Q0hCFIXjgZ/xERVJyrZkQcu/evaIWzE3NnTt9OWzUHIuWKyuWZWFq2W5KCRkFYaVcPfHGG739a2TC04VsNuv7juv4HiFIKBHxRGpNGFZKYIZjzmWjbrY3RImQOhGSOW7EE9ty4yRBoCk0G5eEEKRASsmlUMrwSZu5F2XM5B9KKQpYaKURwRjHEbcoWA4zO6vJ1cx4nQmXlt206+nu7u4sptdv2uj7fqPRcN1mUEuSeO3atQ89dPtTP3xx3759QghEieJKKWWYWqszsNWRsf2kWRK10q92YaqUQgQZChnod7Yn0E+JlGKMtbFLMTEWqXaXIQkjSilhTWyDc254dEb1QAuJHcu2WRCFUvJUyiOEAeZm2oMQwgHMaCpCRtGMU+QjhDBCWgpKMWUYg3JtBlpQTCgmlBKMcYBAJJFnW4wRA1z6ntNZLGBKtJaWTTeuHxVCIKSjJASAOAn7+nrDOJpbWDQ7cTGbAaQZtZZXynNJVK1Ws6m04ziO5QKGlVKFUEQI6esbEBIinnDOheJaK8JIUKkFQeCmfKVUnAhmW4yxMAzzuXQ7KccYa40IEIwpYc0RQtOrKpVKlmfFcVzMdopYxREXQkipg0aEKSKWjTQQQgihShMh241yrSUQQrhSvu93dRavT5bcbF5pRDBRWCuptEJAgHOOAIyvD2nyeJTUEiECCiFENSYIa6mV1ABay9ZkIpdCaWW7TpIkjLIgCEx/0nEcoYRl24gSxlgqlWLM1lpLoZntSKExJabwkIoncSKlTrjxPzFfWMpEGsK4ubts26YWkbGqRzEhlDKqW4OW5sAJo4BQJpORUgJgxlgik0QqHgeUEkoxIC2lYMxhlFk2FXE0un6tSSwIY3EcxzyJeaQ1cl1XKgUYMWwLIaFlqYkRUUbpQ0sNmpCmjRW0RJVM41dhY6unMG6NGjTnsrVWiBLCTBbVZHQhZGRDMOnu6qKYT09fjaKIsQInnHNO8E1hLS25EkQ1i5abWjCmBUmarmhNbTmllLH+NCO9lDZvJ9OsXJ1sQdMPTWv9Tiyq9TLSVmD+PwxQtrIoBKq10s1MrGiKyb0NElOrxm7ekYE1eWZYI60BdMwjZqeP3H5btSFLlbqQidS6p7OLJ5HmvLOzOHNjlkvR1VEc6OulGGGkh0cGT5w4QRjLZtOplCelXFpa0VojrG3brjdi27J936U2LVdkHEqazyyXl1ZWko3rRzdt3dzZmb/zjlv/1ed/5wOPvucHT/zjL/7zT27fPRokR86ePxZGjZXl+mDf8Hf+8QkZCdthadcRMh4e6o/CxmuvvfLwww+n0u7iSv7E6Tdc1/rq1/96fGrsj//ov33q0x//8pe+ygjZvWuH79mDfQPr1qw9efytycnJ06dPH7n19n/1hV/KFQsXLl7VCLo6IJ3xfS89Pnbl+R+/sH3Lzq5ih4ZcvVq7cvHSlk0byuVyHCaT1ydnZma2bt1KKLp46Xw6QxeXS76fvu+++59+4knQQvAGYxghhLRSQoNC1LIMjBKGsdZ608YtM/NTQiRCSqE4pdh22EqlbLtsaWXxO9/71vVrlwcGBu5/110A9NKFa/fd/2A9iH/y/Iu263R2FrdsXX/x0jlAarm08t/++x//2Z/96fr161555ZWdO7fHcVivV7/85S/TxcVlxhjC+l33b7v/3nv7+nt27dxUrqw8/MD7T589tbK0jBD6tV/79UKhsDA3nyTJiZPntm/ffvjWu7//g6f6+z7GBaRS6VtuubVQ6AJCRjes/+K/+bf1crleb5y/cGnz1k2ptLN+wxop5aULl5MoAJDFnsKWrRseft+DR265o16vn37zFcS8oZGRTZs2ZVLO2XMXCoXCI488EsWNO+++xWLu8lLDdW3Pw4899p3dOw5u27bt//nLr3R3d3IVb9hAr4+Pr5SWhOLf+tY3P/ShRweH+y9dvhKcCWvVqL9vuH/dxuf+8kvFjp477rrrH771nT27d+Zzndu2rVtaWgmj+tNPPbNr1650Ouu69vi1y45rfeCDD05MXr92/ZJj+zOz49mi39GZPX/mrS17773tdvaP334MIYSRpZQgGAHGACqOQ0qIUgppum50zc//s4/+9Vf+/td/9ZObt6wPGsthpNLptAJYWpzv7PAwRUZ3AGPaaASvv/5mR0fH4NBQR6HY1ztw6fKFUqWKlHRtymMCAIszc2OXLvf2dufzaYI1AiFFYqX9MAwSKfP5QjqdLRQ6MMZBEIxu3BhFUSRVEAQk5UohCEVaa892HMfVLQq3lDLj2DZluUKxv6Mv6+dPnDjturaQcb1eWVwu53IFSnG1mvN9f2B4GARyHMeiJI6ihYUFP+V29nRZloUoJZhFUSSERwjhPG40aqlUSkgJYOzwiIx4k49PKOfctZ02noEJg5bKlwlwhFFTKFNKkyiWCfccT6umB85Ko4F92xwpQk2nESml0hxhxBhTXEhj2wlgwJXl5eXvf//79UBfv3593WhfnIRKqSRJdu7cVOzoSOKSlJLgm0rH7aJWKaWa9Je31a9aa4RvplDo7TSOVRXwzd+oliY7as3GNv+6ypx7dd8BVomzN/E8DQAghAKkMAYtRcLjsFG3LOp6NmOEJAIBANKUYqm4gQGwBoaJlkprqYU0WpSgATe1JGICyFg3SikNvQwD4jwWccIYy2QyUSjK5TIh1srK0oXzY42g5nlewiOEtFLgOE4jCAC073vlUqO7u5tZBGGMmVUsFlO+WyqVpsantEYzN2Y7OguLi/OZbKpcqmqE+/uGbMcTUjuMYaK11rlssVZrhEkYJbFQEmlFmE1tSyipEY6iCDNLCCW4zBbyvu/zONEtNrTJwMyxuK4bqESHOhai0WiUyzGmBAgGCTazHMfClFBqmb0WY1MKUC25Y3m9vb3XJxaRBiUkMEwRFkpiAhZlQghGMdGkuf+ZLpsyFBwKgDBC1GJIKyGEAk2AcB5zwRknSkofu7bNHMv2UzamOJ1OS6VqQSPrpm3Xi6LIcX2zKACjIAiURqIhhTYC9zqKA8dxuFBBEFiWg5CMksTz/OaUo24CYITYjk8iIRHCFmVSCgLaYkwj7Di21tpQAM0tx7kQWnARZ1MpzjllxKYs19mNkI7CsFxe6eooQMtUKogipZTp7LdQZoUQUlo1wsCxvVojEFw2E4e2fV5LNMG04qRWoBDGFG4m0y3xWEoRIgBo9W3fzm+00m22g+RxEARRFEFrmbfXVHslttbmzXlD8zmtnOambh+lzLZtszCjKDQIWRiG7Q9v42EmBLUXrF5lgN3+Lya6mvHV1QiWiXjtYqz9WP1p8HZc7R0vawcNADCNXQDgnAsNaTtVC8LLlyf6Btd3d3dXqqXr16+D0qBVdzG3dcsmJIVCOAiCoYH+xcVFhGHN8HCptPTKK6+Nrl+zsLA0OTWxZs0a30uVy9W5uYU0shHGSgGmYNmEUM93/Fq1PDTQ091VJESHcYAJO/bSyXWjG379c7/96KOf+cfH/8vGTet+8ze+0Ns7arPs+fOXw0AEtYDW0FU8QamFwOrv7/3sz/1iuVy+NHbJS6XSzBse6fvN3/p1QKpWL83O3vj0Zx4pV5beeuut115+JYnivs7eXCaXTuWuXRs/euyNQ7ceuHLliu+jRx45/OB773ztlZ8gAd0d/U/88PGwGkgRYKK1ltVqmTCKMX355Zc3rN+YTmcxxouLC37KKhS7BK//5Ccv3P/whzs7OyfGr3o+01rHSejYHqVUCNKUrgRFCDGqN0mSZPOZRqOhlEqSuHegd316w/zyHGYyiILtO7du2bLl5NkTleX6Q+95lFp+tuBajvtbn//8HXfeurw0AyDGJ69v2br9jjvuuHr1KqX06tWxzVu3Kglr1qxJp9M0nUO+b4+u27B//36tRL22NLpu8MYsAiTy+Ww6nX7/+9//2tHXZ2cWp6Zm1qxZ87lf/1fValmC2rVn0/PPv1gpVVHGy2bTmawdl+dK5RJGdN3WbWC5NJN98+grkxOXXn7h6XXrtvb09HV3dszMTgic3P/udz1w/92JkG+88QbG+NCtd1EitEAdxeIbR19DWI2s6z/6+gvMAc/zNm/aOTs/ffnK+dvvOjI1Pv/cT54fGhm2Lf/K5bHJ8WU3RRcWZpOYv/eh95UqK7WgPD1zY6B/eNu2HV6hE+LK4VsP3n7nfTcmbqxbuyGVKmzYuSfl02OvP5PJuhs3btQgFpau9/YX5hauO46zcePw0Ma1jcU6QujN1187c+7YPfe+C5C4+Pqrm3Yc2Lh+eHp6HhGEGQWQlCClpPF8Q1pSzIKgPj5xWSqoVBdq9TIG6bpeR0cHBujv7ycEhVGAGFVIaYzCmD/59DP79h2oNSKlll5//Y0bN2Zq1crzzz+/f//OMEqy6QwodOHMhYznzc9OKyVcz1KCaylyuTzn0rFTpZVyqbS8Zu1goasoJc9kMsrS2XyhHNQVUVpoJYTreZZlGR6BxsgsXUpILpVJOX5YjQC073m79u6jlF67OvnWW28lSbK0MO/7KdvyGfWWl5dXSrM9vV3pjJ/NZl3XtWwbM1avBdDy+EPNfqIWUjLHbmcnnHPLt6XmhitmYmuSJJS1cCYAk4sYwXchhMEqjKiHEWNEBNu2bcAnxggAhGHo+z7GKIljSolSQivttByTKpWK53mZTGbLli1HXz3red47wl8cx0kcIiwZbUplri46RcvQF2FD2DCecRoh0DdV05tAlwJkfCqx1m2gTN/MwIxtqNmDms4wsEqYsR1wjROdOUwj0aYREEKQ0lJKJTgAZhZhlFkWtR0LQCdRZFmWVNwIvzWTOa21lobEAwBtbxbAyGwwxmXB9PsEV2YK3bYcSi3H8arVaq0WzM8vBkGYxCKMKmPXxi+cH+vs7pFSch5LLhzmZPK5QkdeKjU/v6gUymRTNkFBFHLObduu1WqO4zi+F4XJpk2bENadHflcLlOrB+OTU2fOnEOEpTLpRtTwXeZ5nm35RiUuQ7MJl0KretAg1KKOSy3mptKACLMcoTTBOOYyjiNCiEJYSNHUDQliY6UleGJEgAERP51pXlEJCKFESBFypcJECkqJ1hprRG0LE+JlU9lsWoNCmmOEpeRIa8MNYoxIKeNEaKkAAJACjYFoDEgBYgSUUgnnSSQUSMaY4ziEEMtytNa+7yopCcEIoYXZuUZU6ShmbRqHCV+7djRIxPzCSswVAC6Xy7VazXFdz0uFkQiCQIKmlFoEO66npCKI+m5KSEUwYVhpoREGgQFjAljHSYJjTCl1bUckCVaKEqwJJkRzkXAutZaOa0nBTeMYEZwt5PJuKpNKUUwowo7jGLOveq0iJReCm+yCEMwcS0oZJ9yyLMAyEdy1HaWUkjDQPzQ3t1Cr1QimCmH89kwojmOKjcWi0kIAgFn0JlMxwrMAgIyGB6WrE5pVbCoj52snSVKvVpLWqGO7BMIYNx2HDAiHDf74Thlkg9Ga5mO7b2iAdgDAmBBCjTKX1k2LM621ELz1XXQ7FTPVnTlK87WVUlo30ffV/7SdVLVKrPbMY1tpAmutEBAEWDeF+o0gxs0UbfUDIySkRBpblhMlXAiVcH1jenZ2scYsFxMA0F1dnRnPLWT85YX5nq7uuYV5m5IwqGcyKebYuWx6755dgwMDQyOD1UpdCw5SWJRIHpXLSwMDA/UgxAq5rhXFKJfLD/YNRmEDFJ9bmD586EChkF9ZWdmwYevXv/qdB97z8Fe/8Wef//wXfumXP3PnXfeAtqcmF0qlUm9vf8OLMEAm6zlO7oknnvzsZ/7Zpk2bfv/3/xNg+uiH3v/kj7534cyF2285uLCw8K+/8Nt7du8r5jsuXzo/cfXa3NzchtH1Tz311O6d+6JGAzR+3/vet2bt8MriopDR1i23ZlLeylLpziN3xSEvdmRyea+8EiOsXNcVkjqOoxU6cuRILpuvrFQk571dva7HgkoS1kQFKi8/+eS1qxfTGdfcP2bczYh0Ykw550py23aXS0t6RcZxvGnTpt7e3j/70pfDJKw1att37AhlePjIvrMXT3ERlEqlH3z/8dmZZUzSJ0+cGxpe96nPfPrw4f0Ii4WFqevjV/P5/Nzc3JEjRz784Z/7vf/wm7ffeefExITjOJfGLpVKJfrpz3wMY5xP5ycnJs6cOtPb259EgcOsmZkZ0FqI5Nlnn/3v/+N/7ty5K45jIdTo6IaJies//skzHcV0KkXOnj1/+MDeZ558xvG9QwdvqTeCq2Pj3uWJ2+64e8vm7b1dnbxxW2e+oAS7PHb12tjVfLGDWaqYz4FFLYft37/T8Wytggvnz23fsrvY13f48OHZucktWzbNzk3W67VMJn302It79uwRQiwtrhy4/Y7Ojl4EVj7XffjQ7d3Dg4Djs2+9Fsfx7Oz8+MSl6ZmpgwcO5/JpjHh5fqJSqdx+5y1xWD137sztd9zW1Tc0f30CPLuQ77sydubwLUcS3pi6cSWX98N6uGXrxtmZ8crYhR17Dl67dGX9huFGFBPXKhRyzz15dNOOXZ7PuGh4nhdHCaEokaLlu2c0F2JqWR3FAgKI4gApySW3nfYEjZnHIaI1/0wI0ULUGnXbtZIkFoJn8xnfIwMDXa8fe3H33l1Xrl6jCo+MFJ5/6YICOHxkz42JyfnZOYKgEXNCHUKtlUr52eee7ejomV1cOHDowIZNm8ZnridJwmwLYZVoiTEO6o1E8lQ+rYSQUjKP1UplrXWhUJBBcvLEWxbGhVx27ciaTCbV39u3Z/fOUmn5wsXLAHhmel5JxRiLOT9//hwAbNmyRYICgEw2p6WOwhDjgglnlmXV60FrdklorcMwBIKhZUETx7Fp+eGWspHJeJTWQknGmAJNCTEKDkKITCYnpWGLYdf3QPPKSokRatlNZUJzSjHGSSIIEACEMTaduziOCSEDAwPd3ZMDAwNS1dul5M1WQhvrWjVzZAaC3g5WqXeEwuZf5U0vOWhhWtCK+uY3bSqJ1ppS3OQ6/VRpa1JYrTXB1iq+F2CMEWjDiaGUAmAN0rVsxkgr6wVCiFSAEAriCCGkpJJcYIxJs6PRFEMnhAkFoEmtESOENcIEsXTGAa3jRDQacRjVJydvALbefON4FAcYUc9LYUp6e/vn58pKArZxEEQeMxsPKCFdz02lUuOT06Oja5GUQRDYFonjkDGWy+XimIdh2NnZyUXsOJYxQlkzPIKAzi+WGLV6urOODXEcT09PxzFXIk4Xi9l8oVSrAsEXx66k51wtVbGrSyM8NTtHtHIcx3XdjJ9CWBNKNWDXdhqNxszMtOd5nEulgGCccCkBYt6aq1CKEEwwIx5WEnjQMBmpRiSOuNSxQFWENMEIIUQpTqJIKeXajhAyUjElBGEtldQCACkFwsipm+oinfZzfsYoZ1NKhEiCsL6yUteCLy6KYj6fzaYHB/t3717b39c9PzuxftOGvv4hy8m8/uaZP//zv+rs7rs6NgaK33Lbbf2Dg5Vy7eknnskUOiRoAJBKxTGnlEopDO8KMFBGEGhiKMNSEEQZRhRhJRKkkEM10sImWIOOkgbFjuVZQnGMIVfMu67tOE4mk7Fdi1KKNCCEZCLr9TpjzCjhSSUIMRCRBoAoiur1ehBG6XSaMMs0/RljGKGhoaHlUjmOYz/totYialZVGoTggGyMMKUUCFZNyzJEGAOMlJJtoWnLsgAjhG4ai5l13S51wjDMZVOO4ziWXdeax4kQwqjhk6azRdv37O2sgFWP9hE1g8A7RpW1VsrkSQiaJrBYa6ZbThWmrW8kP8rlMgBQSnzfNyCZboqn3PSK/elU7GagaD3ai/1mFMI3S7J3PExGa9u2FBowYsxgeMR13XxHTyOIMAHLYpZlEUIcx0GgHMer1WoRirTgjuf5fqpRq8zNzG7fvj2VSYtk6uH3vfetN0/Mzc2lUqmN60cpxZlsurRSdjzmRcxmGBMol8uuTSuVCsYoiiLCrFQqA4D+3b/9D/c9dMujj3zUYpkbU0u+l2fUS2I5NTnTqNaHhoYA8H/8/T/+nS/+y1/6hV+amJro6Oh4682Tbxx9a2FhaXTd4JNPPNvZlf+93/0PBw/tP3PqtH5aHnvlTdf1D+zbc+jgLVix7z72/Y509/XrExcvnDl7/uQdtx9eWV6cmZ44uO/w9NTs5PiU56Wmbox3dnbGcVyt1oOg7vv+0tLSwYOHSytlIUQ6nbYslsQiCIMoFEjVl+ZPpjOOEMJEYyklJoginCQCQDHGEiViHgVBQC1iu9abx4/v378/X8z19vdUKqUv/T9/Mbph3bPPli+OXbjttiOZdCGTLfZ0r5mZmevp663VKs8998y2nVuef/F5huXBgwc9J/2BD3zsc5/7+W9848s/ePzxmem5dMbnnJ89f35oaIhevHhx165djuNMTU7n80WszfdAN6ZmHNeamJx86qlnfM9J4qhRa/zFn//9/NxUb293eXmBQVItR/l0bs2a9fV6/eLpsYUbK/lCx9rRTcMj67GTuXTixNiVcx05N6wmQ4Prtuw5tHHTjpOn3phbuH769Nl8bi5XyEeiwefilZXytasT2VRxeMOmddu3VurLf/AHf3Dvvffs3bezXF5hjB0/ftx202+8dWp03WapRa3aGFm3PhUrHVWrtZWxsbFiMa+1fPXlox0dxZnpKc+3zp46Obp+vZ/OXDp/cn5pWerk0sXTncXO7v7BqWuXp6cXKU0nERscWr+0PHPy5Kl773xQShnFwfXxy36KIsR61+zgjQQIwaDrtVJpbtr3GU8aGDowxloB1hRrjIBQzCRWUsWOY61bOwrwzJ5duy3GorDmOs2OhQZjXSw00kIkpuHMXLuzK5fwmoXdQiEThY1Tp8Y++vFf37dv8/zCVCptl+bmevuHI249+eQL/+aLXxoazF29cjmd9jOFjjgR80uLqXTu0Uc//E/f+V73QJ9l2cWOPE2RY+dO1upVxhjSGGtCGU2l0ohSSIAizDkvFovj4+M6iLes25jNZoUSjaCOkC4UcxYmuqDXjPQNDQ1cujJWqlbmZkpbt25ldg9CenFuPpXykJJxzBejBdf1M5mM8a8AAMOvRxhTRtH/y9dbhkl2XVfDBy8UQ1cz8zAzaWbEFluyLdmKOXZMsd/YcRI75CR2EttJHFOcKJYZYosZRyMYaXime6BxmqkaiuvCoe/Hra5pKXm++tHPdPXUrVu37tln77XXXgtCx3EQxoBetUbxbHQ9on1pvk9d1ZcXQnjYEgLQ63p4QIKEJQFVXTNpIkEQxsRHCPGMtb0UhBBNugIA4PP58rbw8hXvrJaWspZlaZrSNK1cc5eiNhAraRYeO8SLvMsVamniCS0rU3jasHCZyw8gXDY+UuVBTrScq+Flt0TvV6G4Usgzdi3HYu+TlneIq70bCAlESkjuqX5BKITQdU0BoICgFEOMGXeUEgBIjIBt21JytRz6JRdlpr/tcqtQRJQASDA1CTUUpABSIUVyZnFpYTFXyE9MTC6mcpxB0/QRYsQCQc45ZxIpwlwJAS0WbU0zdI1yLoNBHwbY5i5zhevyZcMi4Q1+IaCkFJwzy7I8rMVlDmMQAcFdGwJYXV09MzePsCEV17Ugc7ihmX5/MG/lbdumjk10zXJsJmQ6l5NCzOSS+YXFSCTiN2hlLBqLhvx+MxwOV1XVRCIRzCSm1HF5JGqGY1Eg3Fx2FiEilSuFklIhBBBQlmMjhIQCSkKFoEY8qxFo+MyCbSmlTNNUSjiOJRTWCPH5fMxxfT6f5C7nDAKAEAAa8vv9SqlAICCBUoLrus5cZ3xyDAFAkJSSt7Y0dre1VVXHY9FgdXVVIGgEI35KMSGIEDI5YSwupsLBZsstFPJLGMlA0Kys6oJERWN+n59mMsJzaHCZCxTElGiaxrirIMDL/paYCI0Qzh1KsJQKQYUpxQgFND93CwjwQjo/Nb3AeAFA3NS22h/0Wa6l63pNZWUg6NN16vmkQqg4Z0gBl3FNJwgC1y5pNUMIgRJSMKoZWAFKaQCTmblkZWWlZxSGCFYKPvPcs0KUVpbHN0AIQSkIJh4xv3TnSyYZILoBlinzSilCST6TXa5OEcSYEKJRTUpJqa7rtAQ6CWXbtljW+pey5OHtCRHjkiES9eoNKaVnQQuWu4dy2XdhuSxCCCGvY6skUAogvELId5l+AJaF9cvxwcO9/H5/ObEDy1j+Mn8Lefh9eWkvg3kAY7IM5oGVfyojfN4z3hi116xVAEgpyzOkEEIMkctcjIkUQAIAFcCYAkyUUtPT04tpSzd8wUiQEDI6OhoLBZFkdbXVSwuLAErDMJRSdiEfDgcJwvls9sSJE1u3bo1FokxwCGQsGi4WbeQ3gUKWY4cC/sErw5d6z27ZvlOrb4xGw3MzM7mspQB2XIYx/twff6rn/IVvffufhr878K3v/+3U+MLjvz5W39qkFKyprgwEAqtXr5menhiduHLjLXuZdI+ffUvHxvHjJ4Gio8PjubRVU1Uvlfurn/9OcVQRj/f09IyPj1ZXVwWDwa6u9pHRoYkrs0KIPTv3EB2//tpzO7ZvCgfNgb6ZeDyBka9QKHR1rqEarmusUUpZDmhoaGttbX/wx//pOFbf5X7XdSPBSDgczubSfr+POW48SqORGua4+UJacoEIhQpB7GVg3j+khpDh8/wVWDwRK1r5bCH3xJOPz84lHYfv2rsnXhnHlATDgX17D9VW169bs6bv4vj3/v37/+8Lf7Jz955z584ceeWFmflx17VdKzc8NEZJ4CMf/sCWbdu7ulfPL6Q//ekv/8d//fOVK0Ou63LByPDQCLc5VMgwDIIxZ64Qyu8L+nVtcnJyaGh07979TU1NJ0+etB1r956u6enpZHLWoPD3vz/x2FP/OjY2+tAjj73/vvscC7715rE//vznT509WyiyAw3NXR2tnS11w0MDR44cLRZf3rRxy+533bJx687f/+5SsZifnprr7O7gSiQq480NIcFBMOQDGADLmZub371rb3t7uxRACEUpve6661yGR65McIkoMQMBevLEmzVV1dFo5OSJ43t27U5nM9ls9st/+pW3jh9znOLUxGxyboEzOTefXLVm9epVa+YXC4YWm52ajoTCNTXVFy7iudn0L879dt2G9u27ug3DWFrMVNbU+MxAXV3dxMT4/v0HlGtPTk5Xcj48PAwhOHLkhc1bNvoDWjaXNvSQJ/fEXKHppLTqkLIKOSAABMApOoVCoZQBQAkBUEpIBThzBXYBUFIJICWzi8ViNpdP1VXWIqiCIe2mG7YPDPYe2L9q8+Z2TPiUz5IyW1fZ+NnPfqSYyX3jn36Ry6aLTiFaWUt1MxAM60YmXyxU1daEIpH+oQHfEYhNzXYdjwDkcm5bVjFXmE8t1Lc0aIQWCjlJpZRqaWkpNT2XX8zl8/n29k7T5wMAOJalAKeEZPO5UNi/YcO6/sFh27UyuXRzvBpCZTbVBwIBSvR8Pi8lKBYtL3JZlhUM+j1tKs45ogQA4AE2HCgIoeu4VNO8iEwgklLqVPeaDl7ULmUkb+daecMmhJbgNF3TNE1DACqEHMeJUerz+Vyn5AOIdZzP5xGmhJCio7xdxHGc2trKMpSFAPAKbiklZ66mv1NHsVx3lpuV5RJ2uZ36f7BilyN7KXlaWQGX+ylgBU2k3Mgov/BqNYzwyl+vomIYe6mMxyM2NM3lkmoUl2Tklt1sFMewpN1MiS6lXEylHYfFKqoLVt5y3GzBSqXzEpBTp88zbmXyGYow0TWAjFCQOja3XSYVYq5ijCNElAJCKiEkBNjb2wBYdqwqubgoACTnLoVKKcWYgxCR3IUQahpxraJUXKO4kMu6IT+EgDHHKjoIIcMwmGSu43jTi67rUkR1gzKXK4I03TCDASEZAtDvCwOAstlMTVXzzl27uGsBAPL57JkzZ64Mj8TjVRhDDFVLS7NGdFPHhLiGzycF8GwkbNvmnENMbJtRwxBCuparDGLbNoEoXyy4nAeAbph6MOgnRqBYcOLxaDgc5i6zi3mlqBScEIIQSKVSLiuEQoHpmRGHOU2NDVMzk22tzfftvz3oN6PhcChghIImRsrQENUQIchiRQiLrstcJgEA8Yh59szJhoY6akQz6UWEVU1VNabEFbbj2rlchnMXSMkY40wghHy6DkqezsrQqevaCCGTUtsu6hrVNAQBwhjbhWJhcWnBzrlWWiNkz46djQ3bW9oa65uan33xzeOnzscqKyzHmZmd4pMuAAASFI5GIuGoRikQnhMT1A1N04gH0yopHccRQugYRAIhhAmmWjxR6V1MKWU6ndY1kxDiurau60Iwr2gpA8yeD5hwS2wzqmmEUsPnKyqhOGCMIUg83At6Ov2ylK5dNaWQ0rYtb8FBBSilS6l8JpOhhGCMHccxTQNRhJcNy8vJU3lllddXeZ0u40yirBsHVpgOveNnWQKmnG/B5TGCqzUSIeDtnoz/699vs399Bwa28lRXPBBQaFnNdTkoqVKc8XqhCCEhhY9SCNnMzFw4BqRKk0XN0Eg4GBxKzk2Pj2Q62nyGnxCSL+RHr4xs2ba1prJqfHzcKhQBgm+88UZzc7Ou61VVVYODgzMzM7que0Ejk06//333wvfdMzefZK6YmRrPZNKezgtC6K03TywupIIh85EnfvfmmdcH+kcWk7lEXb2hxSGE0UiCC3tsbCybW6yI+auqE+nMwr/+2zfrqhoOHz74+tG37KLT3NhSW9P03PNPf/hDf9jU1PCLn/+WEGzogV/97tknnnjQHwoWi47f70+l0gN9l89fOLthUzvC/suXL27dur2Qt8+ePrdx/aaa2qqJidFXXnm1vb2dEqO+qRVTo7NrTWdH2+Tk6MMPP3z48GGEAedseHg4Fg0jRAyNFvMFziQXruOwyqoq7wtlzBFC6JqplEJISaByheyOvdsrqxLf/+EPRkZGKqtrEtUhjPHMzExyYT4ciYWiMcnp//zqkbmZZEtT53wydfHixf7+/nQ6FY/HG+pqHnvk4fb29tdePbF2TWzLli1TU1N1dXXf/49/chynUCgcvvbQ9u1bSSRQYZpBnRLTp9vFQtF1m1rapqeS2bwVjVTe+q67/X6/VPzE8ZORSCQY9E9MTr9xbOY7//Lxz//JF5rbWuNVzZV1a1qbWzTt9IlTZ55+7lkAwHxycWpyNOIjW7Zsrq2vu+ba60evjEzMTot8AQfDTKqpiZH6+vqxsbFwvKIKGUXbrqiovHT5nHX2RENta1fnqnPnT1y5MhIOhxYWkqMTw4bu7167paGBaNRv+mXRTjU3N89MjwwMnQ+FwoVCoaa6fm62Z8qZ37lj/+c///n9e/bW1tYqiY++cswfiK5ZtS1kmhoNHj3yyitHn9uzd/fZMxduuummjrb25154eNeuVQEzwLmcnpjx+cNVqEFI4DIxPt4/NjqpaVo2nWpvby0ULL9JQgEjmbQh0DVqKgklEIIrBCHnjHPX7wubhoYAyOfzhgaV4lBBSqkCAECRzWYd1zKDFCqBFOAuAwpRCMJ+P4ZICZHKzgfM8Cc/8ZFcbiooQ9y2uLByOYtqgXAoevc9N/3P7379rlvvevP42edeOLZp61o5u2CYwYH+K1wp4tBcITs1lywya2EpY4Z8WAhCUCgc1qjuDwd0XS+ygq6XHG0BRFyqp59/7vLFgURl3cCVobrGCky6eNHGGAMEoWS2w70+hS/oS1RV+H1GNpWORqN+MwAAgBD3XR50ipbHhHAcByEipSSUllmrSkqlSnHcJMSTTtU0zcsqvFF2UEKwsFKQcRdC6DkqQgh9Ph/GFCpZKBRmZ5MEC6iEoem+YNyLX96In67rCEFTNz28DWEdAU8C2yinLIzZcFlc0bOpAYpIyQBFoDw6vhxt30EUW9ksQPjqM+8I63BZAgCUKtf/RbYFXvrmCaRdLbLVMoscruCOKKWk9P5naSTTE7B1XRcgrOu6BA7G0HOIQ7C067iu69N1IYTLGSFECiCFJNSYX0gNjAwvzC9ls0UIsG4GbFcQqgdDFZQgqRTMuY7rSoCJhgHSXO5ATIRSFCG07GaIECIEUYiUEqWhNCAA8IwiBaRQAYEAkZ5+KSFQKtd1MUZACYTQzPS067qBYMQzdGKMIeq5InreO0LTNNPvtwQXEFjcFQAyoZRwDaxrhpFfmG9sbqmoqKAEhkIhxh2NGj09F3/8458FA/5rDuxDCM/MzCZnJxjLTE2Ph4PheDxumiZjzKDU7/cbhiklpJpPNwK2k9c0nTuuQsjlwmGCc160Ci01DeGglJKnluYcy4JQMdc2dV1KEAj4WlsrI5HIUmpx774bY7FIOr2kAKtIROtraoESBsYYAYpt5tgCEMWhDaVUHGOoQOnGQLpWU1nV39+/aese27Y9VhPRqFMoSiCoRlzXBRL4zKDPREwyAFzOXAShoWmSc6KgjikFMBSOuHY+NT+TzSxCICorIjs2rm1qrm9oqKmrrfVRHSNg+DRITSVs2ykIEcIEYoA1gpVSRbtYzBchQBAAKFUmkzNN0+fzCeZ6wFIpC0CAc55bWAgEI56LhuHzIYQEY6Zp2rbd1t4CMU2nswvzi0oJbzkjBXRdV0I6jhMIh1a28imlkMmraHeZg1+qPZZ9gYRkjJfNxFzX9RJ3wzAikUgxv+QBQq7r+g0/wsAbjywnKOVsrAwqlyur5Z9QSoCQghAqCaVUUl31AQMrKjG5PCJTbg6WQbUVVdnVZMtTHikv5HdEiXc8ruZ5UCmgwIqpnZVhAyoIVEnj2WORSs+ZTiokoZTStu0oQkBBz2ovm80BLhlBx4+fvO2WWwkhC4upjRs3FgrW0NAVw+/z+/0KymI+/9prr0UikYMHD5u6b2piNuALzkzP+ny+fDa/tLC4dk2X69pzyZlIxJya5IbuO3785F133t29et3jjz8KFLv2pmvraptz+cFwiAquWptbKisrj7zyom5g3ST79u8cHe17/qXnaquqb7v11rA/vJBMd3W2IYUdx3r5hVfmZtJdneuz+UwwWMW5u2//tl27dgkhigWnuqq+sab19df/Ze3aVbU1FZIrBFFVou6xR56Ix+ObNm6Mx2NAobNnLmia4bqot/fi5csToWAkGvRdcC/n8ouxRGx0YtTnNw1Dg4gJaRumP59dioVjtu0sLWWCYT9CBEKVzed0XQdQCVVSoStaeaJr586dm1uYu9zfbxhmRWUiHkuc7+2prKxct2Gj4/LHn3zm0YefqU5U1dc2BAORYtG50HupobEpFAkN9Q9gqCoqKu68886m5vZf//o3v/71zycnJ9O57KFDhwqFHNEIl8753nPk9OlzXV0dXZ1t2Ux+PjnLOZeCmL7g5OR4dU1dJIp7enqPvfnahg1renpPX7jQ98ef/8zffm11U2NNOOKfmluIVVbvbF0FIKxIRGobqk+eeOP666/NZHJ1NdW//sV/f/vb3961+3BTc7u3eQwNDSUq47rmm5mej8UqlpbSrcT48QMP3nHrHQiB4eHhiYkJtEP3+XwnTpzYsnVTe1tnc3PLzt17ctl8/6VBKfD8wlBLS+uqNZumJ0YrEjXDw8P5bAFiMj4xXVfXAKFaWFz613/59/Nnzj766KNrN6y/9vCNtsXfPHbytvd8AIDAPRVVlpPKZtOGof3617+07bRugBMnThcK+X17DwUCgYHB3lR6cePGjSNXpkNh/86d26HSCoXC7l1bLcuxnVwgSKeml0wzkC9k/L6ARwpBECggAPAUaBwAAMUe/Uh6NRwAwLWt+rp4dU3l2NRSsZCOsAKCnGCRTc+PDo8KMbp+TRtGvK2l8eirL8ViJJWmbS2N0Ujl5UtvVcTqEGarN3aeO3/cFVq2wH/+60f/9M+/tmv/HscVzR1tQ1eGISUtna1FZqXzOc3QpYISAiiA67oKIs6FEtLLRTTTJ5SanU8iBuoaGi1bprMFJaU/FDZN0+ICI8CBIoTkFlIn33ormqi9dOFCU2NlLBqMx6P19fWGrrsO9xn+pcV0KrXkm/MRsjEajc/OJuHyYKMHfSHBK6IxR3IrW3AdW6eat5N5xFjFBV624oalcI8wxgSTcp4khEAIh4JhWFPrN7HLbOa4EGGMsWVZc3Nz3M1TDUMIAr4A1TV/MMwZ4wAQQkKhkK7rXvTnXLiuq9GSt49HuvTGGMsFN0C4XO8ux9Z3OrutDIwrY6tcdtEutxW8aF4O31d/Lu89ZSQMrGCJlRO4d7wFRCXar23bHsUNQii5kFIiT7kVQsaYofs455qOIISIYAmUAOD4iVMj4xNU15hQwUBEKYhIkQEgXCGAgFBTEAmuiG7Yluu6DEEiIZeCSyVc5SpIJRCEUAgh4w6EGGFN04nLucekQRhg4m1aAiKqeKkp7DVlMMZScC6YoVNNC3gsydLuBTAXwnOuAwBIyb3Wkusy5d0VGEkJJUCmPwCo7vP55ufnlWS5XE4BEY0lGhobAQB79uxrb2+PR8NrVq2GyhUiNzw8+Jd/9Q0EwJbNa6trKpfm59PpdN6yTF+oqrIWIBiLhghBAZ+fUuoPBIquCIfDAZ+ZyyxijeYy6YqKiuqq6kgorGskEgqEwwFNJxhDn89Ip9Ozs7M1q5sbG+IAMgB5NjNLELCEAlJgiHSKJdMRApgSXaeYEK+9rCCACnV3r3786ac7V23UNK2iokI3aNFyMMY61Yq54nwyGapIuI6l6yYBUnInaGqO5eoUKKUkBItzE7aTNzWtubFm874tbS0N1VUVFfFwJBKeX5hJVFXYRQtJizksYzN/pIK5NkUlK0TBBYbIo58TrBFEEZBCiXw+n81mKaWmaQYMw+vfYYxtu5jKZBWkvmCYM+HBzAhJx7YRQt6Ig6mb8XhUCCG4BAC4rqu48HqyOtW8JcA5R4J4wsxlNFepty0BLw5QouXzeQgxIUgCKaUkqMxtV+XUBCFEKfGot+Dtbtbl0qgML5VfWP4P78ix3vFzZfbzjhSq/H/KRAWvRbjyr29btivOCv4vm8ireeEKyLx0fISgohApAAAib5PgRwh54zQYAi4YY6y+vp7oeqFoW5alERSrSEQj4enxEYTxpb7LgUDg3NmeTVs2T05OT83OEEJ0w4BI+Xw+L9q89NJLhmF0d3dTSsfHJorFYiJR9fKLL//Lv/zT9dcf2rR5PUIqHIrm88X1GzdICBYW0q2t3cGQ8bEPfRIguXbLFua6VdUJqfjI6DBEKpVa7Kxsa25pDEeI4VMhf+jU6dPphcUtG3esWt114tjJdDrb0d1VV9f4+98/runEZYxglEgkKqtDL7744v/74z9dmFl8+tnHWlvb9u/fHwyZv/jVLxh3Vq1aFQ4laiprKxO1MzMzAKBNm7Z1dHQUisVIuOKRR5/IpNO953u/+a1/CMcidn8xlmiTgBmmRjVENWWaGgHa3ML89NSsL+BHiAxdGQ4EArFELLOUslynvqaW6FoulzFNE2No+Mz6xsbBkZHZ2dnxscnhoZFAINTS2sm5uHixJ5crrFq1uq6uwcoXoAItzW21DdVzczMbNzYnk3MzMzO1tfWXLl1CCNx33739/f2bNm/ovXhxeHhQApXNZrO5NEKA3P/Bj9bUVB098tLw8OBbx043Nlbv2rWnPVYTDEWGrgwfP/mW41qaDqdnxqRgq1Y3ECJsKzs6lqtTNQ7Lp9JS08irr71h6LS5pe7JF548dNM1rV1tQMj3vP/Dr7xwxNTCiWjFUN/lvJV/7qknia4l4qHuzrU1lXWcu/XVNcHd+62Cbfp9hw9e+5vf/va1115bvXbNjTfeuG/fPuwPzo1NLC6mO1evPXXitOPKQt4eG52piDQKps9MT01MLE5NDYdCFyAmO7bvWlxcrK2uq6pMHHvzNULQ2NhIm9ZONNrbe762pmFN95bLl/oLRXb8+Kn2ttamlmqCK9atXxUOhSLhit/97rfdqzowUfV1jeFgrU4jw1cuGbo/XlW7Z9/exeRCa1sL4/lo3gcGizfevP/s2cvnz/domhaLxQDWlhk8AGOIINB05PebAEjHYa7ragQYptbW3tzd3bllu282DecXLYotIFRddfRv/+pLjY3Njz/68Injxz72kQ9ruvXKK49VVQR1orc2r+ls3/LWW28Vj7567aFbrowlH3r4+f0Hb77rve9+8uWXL/QN1tQ2OUXHlRJoxBFcCB5NxJLZjMNcEwVcziUA3Ds5VY4sCGJyZWQsEY4aiYA/HAaaLxgLnTx1Khr2+Q0zlc7puq4Aqaqquvu97/39bx9ZtWaNFGxyfMx1Xce26mpqbdtmwYgCIhaLBkxfQ22dppO5uXkPGPfY4kKI9NKSK7g3CEkpVUB4/jbviFCEEO5RspRQSkkBAEDgKvtVQQA457bNPHEaQn0YY7/pq62t425OKm7btmU5haJdtN18gUEALMeem5uzbdtxHNd1g0G/gtIwjEAgAMCcV8sK7hJCIcAIl2x/yuWyNxmnlhsQXoMDIaQkh0B6ZiGl1sXbo/bVYA0lAAouqyJdDbtSAam8et3jgZUTOO/b8boV79gDCCYeiFh+xtuuhFAIEgAAxUTXzZxdQIgsD3kRpQCmWjpXxMTwByK5QlFBxJjgSrpMGDrViKGAZIJzJT30TkrJGJNKIQwwwJhQ1+WMudgkGEMhuM1ZIOiTUgrJNapDVFKIlcxWpYF8AoAoWJaEoExG9pqnSgmqYU9diUupLaebhBCopEf3VkpBqAQXjDHDp0NFIFeSC88Z0LIsQyuxlV3XJVirrqqOx+NKqfn5+WJTgbtFAIqmabY118/Nze3asSMejwruCCULlpvJFh/6/ePpfK6poTZREXNtp1gsRuORYLQiXtm0ddtmAEAwHEjE4z6fTwqGAYRIEQQty3KdAoQgn1uKRCIYi7fefK2rq4MgpekISgUVpgjrhiEZ9/kMz45aKcWYcF0OMMIYA4UKtmOYvu1bd7zw7AuL89lQIMhsp1AoZLKLS/MLxaKVTuV9ekQIiaUdDhoIBHK5TGp2OgUUhXLtulXX7LqmujLaUF8bDBhBv6FTopQiCEhWzC3MK1GklCKpKCamTxPc5dwNhUKEEIIxJBhDRDVoSN0wA0TTlGBKyKqqKp/PJwVwmW3lch6lXSlFiJZMjkOsL2Vyhi+k6brrWJWVlQ11ddPT0xBCy7JczgnRIFTIGyrEOpSKEOJZeQqhAEAYUYKoJwpYZk15Ulll7rkQwrZthhnGmGAshPAcG72byqOBZqx8KpXSqSonZMuY0cqHVMor8CRUCCpQtv8qr53lvOdqaQThVQX8lTkc8hwpFMAQeQLOGCLg+VSo8tr31qMCSslll0mwfGQJ30m6L/+KEBLLL4YQlj+IUkp4mDe4Gpe8RSSUVBAQjKVSGHveW2hVV6cZqpAK2sx1XTvoC0bCQWZbqKoKAVUoFoPh0E9/+tPVq9cSSkzTNH0+13VzBYsxNjU14/UuEomqeDxeWZVYWFiwCrntW7d0d7XMzEwM9Q8gihA2crl8oZBLZ4vpVM5xILHA7j3XO0IgLPbsXD2XnJoYmWhtbedubvf+2wgF/X296ezU2rWrY+FEJFyRXcxe6u2X3AZE1TXWSaWS86mdu3bl8pnzF4+3NjX+xVf/AQDw6T+6R9O0Des3Hjpw3UMPPRxO1LW1FXds3xuNhZPJWYJ1nxleWsoeP3ayvb197dq12Ww6m8+0tbVdd/01R44cufaGA5nc0q49G8/2HM8XM5VV0cqauMuzdi6fXJiriOpzczNSSkrp0mKqtaOZCVEo2u++571PP/tMwbbS+Vw6s6TrekVFLJPPmaZZXV1NiR4MR15//fUtm3f09w9JBbN5u7NrVU1NTSgQqk5Uzs8tnD9/PhqPDA4Ou9yJJWKBUGz9ho2nz5z87W9+99nPfra5uXF2diYai2BEAIIjIyM33HxjY2MjSacKuparTNTd8q477n731Pj4aLFY/Od//ufq6mrdoIwxXafNTY0LCwv5nA0A+tMv/fC2O9f88ef/KJ/Pn+853d6x6q03TjQ2t3Wv6gCQff3rf1dVW1XMZJnNwtFETV2jn/jy2Xxzc2uiuurc2R6IkWXnurrWNzXWP/7Ew1PjU6vWriHUNze/xJW8794PCQlPnzlZW1t/7tw5y3Lqapt8ZnhoYCSVyvT0Xrz1lrvCodizzz69ectGpeDCQnoumZqemaeG/t57709U1zzz5FPPPfvsNddck80U/ueh32/fuSO5ML+YTlmu/aMf/dAqsj/9sy9t3br16CsvYCJOnnjz3e9+98We3qbmuve+755kck7XKSU+gn2Biji8MnTi+Lnt28yqpqZoODa/MLWUnlq9drVt8aI9v/+aLQiz2tra+fml4YFRALx9FErFpQIYI0qxlBwASQjRNYAQPHvm1FNPPvyxT362trG7tkGbGG/XMPji//vD66+/HlBj88b2L3z+szu3vfu+D67dtXO9YRim7jOC8Y6uyPzCpIRgfHLi0qXhixcv/usPnjhwwzYGcCAS5kBZ3HWl4FDlHcuxcrp0uRREMxyX65qWA5ZCUDMNb7cuK9mYwUDOstMDQ7lc3rFFPB5NLi5dGhhsb2z0+/25XI4apnQ5pRQoJRlnthOKBSVnhUJucWkeQlgoFM+fP+tBUM8+++zefbvfFgKl1DQtHI1ijRJd45aDAJTLwVfX9cmRsWPHjum6PjEx0djY6CFSV8EkoJg35wUAWCZsOU7BcS2fYYaNkFd5QwgxpkihcFgHQQgg1EwjlbMhAN4WksvlIISzs7PJpM2EG48Jy7I8JU9D90mFgWdGiZT35YllnvvywbF3DqV8CEqPqlGeHn9HPV2O7OV0Ci7rDIEVbRF4VRT7ne2JEs3jf2lee5Ok3vE95oemabZtK6XKDVzGmOu6moY0TSOagQiRAGGAdMPnpvJ5y9WNQNEqQgVMX2B+fh4AYJq6z+ejGkaYekczDMPbPTwPbIwxIgpCJKV0XZdq2NMuUcrTGIVSAM6k4EoJBQCCEAslNU0HACgFEdUUgJwJgjBaTje9DyelkkDBklg8cBwOIVZKuK7wWNilexUABQSzHYSQzzAMXSfYs4vRNY3alptKpQAASAFIiIaJI4QQLue8vb3dNM1AwJfNZhw7HwiFMYCJRGLVqlVvnTyxe/fuRGU8vZAGADDhZgrWG68fS6XzzS31yaSampgIhwIaJpFoiCDoNz01ECkFIwjY+UxDdfX58+eXksmqyphb5BhAAVygacx1iOcLw5hhGISUzLj8hqGgp5WApZRtbW0OV28+8OvKqpbLly9alqOQ1DTN1Ix4OIRKGrHiynAvgWDb1k233bSvOlGRqIxWJmK6jgV3lHBc5hQLSw6ElFIAJAKQUEAwBIoBBV3Glc2xT6eU+oIh4jMx0QiiQEgomSsA564rXLdgGYYhhCgUCgRrUsp8vli0crFQ0EPuw6Eo1vRUNp9MJm3HVVLkcrmKWMTn83kSWUopzl3v/nQcSQghEHmwk+u6piesVR4WfpsUFpTLijOu6yJ41djHZrZSClPMGOOKo2V7JQCAUoJQ6pVzEHk2A8uZzf/RuQPlpQeWiVMrc75yGgTfztEsHwcCuHJ8soQ6e+yBt69Q73UrG5GlQ8HSW4AV6dc7sLHy4Vee7dXzkVeTQk8ckXhFqZBCCNsues1QBZDfb0ajYafopLOZmvo6U6dLC/NIAcZEdV2tZhqLS0tLqRSixDCMw4cPO47z2GOPNTY2YowHBwcXFhYikUggEJifnUsmZ2+86fqamsTM7OQDD/54Ppn2BUO79uwOagHLdinVHVstLOUQQlhTPp8vHo+FAwGlVCjs1whKLswGg37NqLQsK+kk66qbhuZGH3jgN5s3dwGAGhqbHVc0NDb6goEdu3cNjgwBTTY0x9ava0vOT7/62pF3Xf+u3bt3PfPMM/v2X9PQ0BIJx32mkc/ZnZ3dNVXVwWBw+7YdP/vZz+pq66trqpQSmUwqXhENhszm5uYrYwOBCAxFzcqa2PneM3PJsaaGesNnCu4MDw8PDIxu2bqDMVZdW9Pa3mn4zNdff3V0fMw0TcuyMFZ1dXVSykw+5zjOw48+0tTcum3bjrGxsUis4nL/wNNPHHnXzTfUNzXMzM0CAJbSqXgkGg4Ha+uqt2zZ0trR+p3vfae7u7On59xQ/+DU1OQf//EXmpoaJiamvv8fP7zzjrsqKqsmxyaFwk88/nw6nSYP/e7J9o7WubnZ4yfP5nKpP/rUJ3fu3Hp58OLw8DCFqKa+ppC3pCTxaN1br1/M5vMP/PgbTe21//Pwr2wne9utNxtE37R2Y/fmLdLKJRcmcumFYsqcGJ0GgDi2PT0zQQVOpXLjk1Or16ybm12KVUQ1wzc+OdPT0xuOVPh92vxCSuFgKFK1bsO6oaGhmurG9Wu3/fjH39d0sHXb5q5gVyplHz955ty5s7v37onEI6mF+Wx+7pnnHsJQ6Dr+6Ic/c/b8xT//yq+uv+5SLp/2BaKd7d31jS09Zy7omlnf0LRx67af/vTn+645CJlWVVmHzcD2Pdf4TS2dWRy4PHzyRE/Apy8tpWPxsBQwOZvfsKEDELI4MVFd2/L0sy/VVDdOTU2t37YjDqMvvfJQTW20a03D4sJSKovWbmgaHpnYtX+PEOLUyfMG9fsRERJIACAGEnJEgVAim03ni8BxXH/Y1Cnhbh6gIhDZ669b//LL3y4W84XsLKaGptOv/sVnWpoDgZCvvr42EQlAqIB0T548efr0mVAk1t6+cd/+Q2s27Fz44p+PjI1CGiBmwJEcUYJ0wiWj1ISccKC4BBhKn2EW85YXFSzL0k2dEOJYtoLAdt2AYRoBDTBo+oILC0uI4MbaJmroPRcuhsPhUCiEiW6aQQwwAEgKUVNVHQ6bBOPKygqiUc654DAaj1lWr6Zpa9euraioWFxIWZalG4ZBDQhhLpcDCpu6oRk6lw7nHOFSV45znkgkGhsbe3rOB4OlQA8hZExAgg0KOefFYlECoLhQAnq5hSecYdu2ZlkYY8aEZVlAOgII7ELBJMQIUcI5VwBgjE3TDAQCoVCosrISIdt2LUqoUiqXy01MTAielsoxjYDHXTM8bdnlcXeENC/kcc6FZN5QgMewAqVWo/IMi5ZDKgJvN3b0bHHLU43q7VwQT2NJrAz0b4+5b4/sQApZphh715BSyhjzhAMgAGXBbk3TstnspUuXCoVCJpOJVdZwqYQEAFGLMaoZrm1T3ZsbRelsZmFhQQHh9wW9jNZ1Xa+1J3MO567PDEqFIcAQ4qLt+IBOCSHYAIp406tSAimhEAADTUmMNcJdFwKEMVFvb6q63MZEgxhyARUEQkmlFIIQkqsbG0KIIsSARBBiDAVzgZQaJBghwbjknsue8GZsHcfx+QKO63jQmlcucs4JwY5tw2WfHObaVMO2XURQQwglEgmdGoZheA7uEMJYtKKxMQKA7/GnngeC7t6zM5fLTY2PHT97rFDM+agWj0cr4uGNGzcQDIGUSkrB2cYN68+cOhHU1wUCgaJn20UR4w4h1HYZhoBLSTXsYZaQYOxBJ5ArRV0719JcX1UZ7+05TbVIdW2taWqWZWUzGZ3ooUBwcnJ46/Y1N1/33jWrOk2D+v1+b+0UChnGJBCScZcQRHVNSQ4wgBAKKZlkLmcIQG4xn9/AGCOEHZfPLyzqAZ8CSCM6kBwpIYFAmEoIlcsty0pnc5To4XCYUOQtRk3TPP02v9/vcgUUUgBqmiYF9wjIpmkiBAhBEkpRMranGEullBQlfMtLPZVStm1DSiDF5azFSzzKPXrOuaFTLyErlXxSmobhUezT6XS5vcg5x9jw7I90j1Z79SE9jRillFoWz1JKQVCa87yaEpXqwBVwtboqPbOyiFq5Hj0GpFLesPPbnILKWdPKVVxKrUrFRomcsPIcIIQAIXW1lXn1HbEXSUpAGiiDcV4nV0FZyupkyT+XAiWVEkLkiwVT92EBLdvFGPp8vlQqpZkGpsSy7X3XHLjuuuuUUo899ljvxQuZTKa5tQUCvLCw4E1QZbJZKUQ4HHzxpef/+HOfOnDNNdlcem4+/bd/842tO5ry+WIgZAjJAMQ+vx9AWSjkgtiQTIYDIbOCLi7Ox2OhU6feGp+alsrRdPGhD//B6ROnX3r+aMgXv+uum6SUIyMjiURCN8zu1eslgO+/7z2+qPm5z3+0us6ojEXWrV09MTLwk5+O3/XuWysTdW+99dbeA3tePvryZz/76Y0bN58+ffLihZ7hgf7mxhZT9/3g+w9s2LhG95O161fVNzY0NNRlsgtNbfXTyUmH26ns4uq1XSPDA3NzNLuQ1bVge0eXVCiTXcpkcu87eG+0Iv5Xf/PX11xzTV/fQCgUSiaTL730wsHrDq5atSpkha5cueIzA6+//vrQ0JVAKNLQ0EQwDZghXyBENO1y/4BmmNx1V3d0ER9u72x94cVn88WCUmJmZq6lpUNxkZxLcaYee/TpE6dP3X7bXdFoopB3EDAJhtl0prlpDXn9WG93d/fhw4f/5Etfv+ZABwCyp6dnYWGhpqZ6/fr1/X1Dg4PDoWA8OTPb0bVKKj46OvHwYw8/9NjJO+/q3rZpu+4zvvOt74yPjbjcsZ3c/PzYhfOBNas3VFbGcrm0kM7M9HwhUwxHI68de+Ou2+8IBH2vv/maZlBfMOA6LJVKBQPhTH5EQWk7uaWlpSMvv97S0tTa3kaw+p/f/n50ZLqvb7Tn/MXmttazZ891d6+ampr0+ekdd96TSqXOnu2tr29s71yDMNE03y237BsaGDCJ/tprJwf7h1at3vDd7/7wS3/2pXvuuefv//ZvV3etHRoafPW1l8KRYCwerK+vv+mmWxKJCsEKkZgZDAYnJ6cX57NTk/Pjx04Wi8XOzu41XZumJpNVlfG50TGh8uvXr8tkF21rIRSqHL5yqamxNRggw8MX129Y9erR14OJkBACKoQBYEwAACgmLrO6u5v37NmUz6cEY4cOXWPoCPDC0GCfcHNdnXW95wd/+MN/O3Wqt7279Z67b7rxXdf4g1GoxNjw4JXh870XxyCEHV1dnZ2rX3rxhD6ysGbjlpa2jsk3z1XEgwWbSQRcIYSSACMhBMDQI0sB4OlwlpxES+WRUt7MNgDQci3HcZCiRacICDYC/oVs2lUuBnBufMzv8yE4FgyG4+GEHjDD8UhLZzuGMpao8Pl8lGKHC4yoAPTF519LJBINDU2hYCQYDHM+GvRGmSBwHKdoudliAVAYjUeklLDMMVdqaGAwnU53d6+am5sLh8MQIUyIkBJAKKVcXFwcGBi6fLl/MZ1q8Fd6I5BACkopBNh2RbHoBgKa4IpxDpFyhJCME0IYE5JxVRJ0KMl2M8Y0TYUCQYV8umYGQ/6amhoII5xZ3obtOE6xWARSAiARIgh5Dn3U5/NRSinRPf8ACCGQyruq78iQVsZWLxIriQB4Z8SXy1qRV4c9r05jSaWUZwZ89SAruCZeW9BLaMoiF1LKkydPKQDeeOONithBSqkUjDHVd+nCUjb71ltv3fCu2zCmlOqMMUyJZVkASgS81iqnmFCTeG8nhPIsQdPptCssSqBSSgqcLzj5fL4yUIOxRghWUjGhhFBAEcEVQkQnlCLqnawQAiLAOadSUkKY60KIDdMvGQAAEEI5gABATTMUxpxzrhhBgDFGEPSyNM0wstk0UwKACAAAIaS4QgiAcuaKMQBA10yAEOccgqsGzwAASrFOdU/NnDsuBErTiAKCcy4gBFIgSILBIMbEsSy7aJumKaXM5/MEawgggNDQ4JWlhVnbyu/evtXv9/f09ExNTTTV18RjES5s7jgAAJ+h6VTbuX3HhQsXNq3foBOqYQIAME0TYSwkJxoBoKRi5aHO3HERkggRx8k7DGlm4JYbD3d3dE1MzS8upTNLM5WJxK7Nezjn+WzmA/fd3NhYqelQCRdCZ2lxCQCAcUl43bNr9HZ0ASTjnFCECKa6ppSCCClQsmSWnHugJsbYZUwpgqBCGGJIpYJQKkQJd4Vnk+pdWya4NxwjpTQMI5dfmpqb5wBHYxXJZDI/PxcO+6WUhULONE3XdQFGnly4UkrTiGQSEaRTbcl2vHEKL2lGCFFCIQASKM650qi3LDRCr45MAuBJSwAICCEYEYKJIAJCCBD0CGrFYjEa8Xm5tRACIFSW11+ZLallGHllJlQugZZrntKvpSEAvJxDXU0QYXmo0XtFef0qJdXbceuVVRb4Xw+14tzgspbsiiRPrBy1llJyLgCQXmcflQxPIYQKeERVqSCCSkIAEMaUaBRBXMbqOecEYqwhl4ugLzQxNY0xDobDX//61zs6OpLJpFdvM8bq6uquu+66QqHQ19d3oafXc0i0LMtxrPe+955nnnt6amZSCDU1OdPU1HDq5PEtWzcYvpCu65bDIQaYYFkQmkYy+dz05JVcLhsJB13X3rx1c21D40svPd/S0l6ZqO/qYJlFllrKGzrftmVzKBz1BwNnzvU+9dzLNnMPXHfd9TccAKgwOWG3dnQoifoG+mPBmGRzritGxydsVmhqanDsYnVnVzFfYLYjhXBc69ChQ6lMtqGhZufebYNX+upqq7O5pp6eM93d3cfefBkhlM/nVh3Yu3Xr+ou9l4QLkdQjsdjqNUZydj4YDv3yN7/hnF977bWLi4uLi4sQwoWFhUA49Oax45ZlxWKR+oamqtHp114/cfHC+B/+4f1N9XV9fYMNDQ0AkWw+39LS0tc3YOULO7Zta21unJ6edrlT39RYXVf7P7/73bkz57PZwtf+5i8x1n2+QDabd2yRTuUUQIuLmbGJyYA/Nju7QP7iK39UKOQam2q/9MX7Gupqx0evPPDAf1JKDWrMzszbNsdIGxgYOnV6SgGwbnXVc889V1ERffetmwiAX/3K126/46aq2nhycXL9+vU1NZunpkePHTummUHdF1hMp6iOOzpanCLL29ZLRy/1XGpACI1NXAmFg0rwg/sPRiLxnvMXquuqsQYvD5xXSsWr4lV1FcTkSIGbb777/PmLFy9ejsYiExMTDQ0NR195CUI1OztbVVWzZvX6jvbuf//uNzdv3hyNmpMTw68dWdq8eStzSHf35ptvvvs/fvQ9KZQQYsfu3b/5zW/S+fmbb7lxcWF2ZPiKkvbTTz3W1todDkfyBRGMhG3brqurCQUSL730UldXV1NTy3PPvrhuzfpEIn7irTeOvfb6hk2dkRidHJt2HTFLFosFd+vWra7rQgAJVYwXMZEYSuxRBYRCimAAlWSrV9fu2b/Lb+CB/p5T547PZ+a2UMptyy4WWNjZuWvbwNDoE0/0/eS9dw6N9esGeeO1M7lMbu+u7e0tHX5fbGxy5OFHfvGRD3+8taXzO99/MFTRdGV4qrq6TkhFsEIacWyBCJUCcs4VUFJyghFnAmiUEIKgi4B0XDdAAlAgZjGfoQCUTEmloN8wuKXybjEIggUokvPTOtE0omfzWSAVW0giMMp1mCxk3jzfQxH0+TW/z4xGo0CCcChKdUMhlcnnuFQCQKxRn8/gnCuCLMetrKpJLqUqKhMCiFQmjSjCGDHuQKgghCMjI+Pj4wghhWB9UyNESkimgJCu8AcNBDCE2DT9hGiQYESJZ5cmmQqFQlPTiz0XLwfN4IZ1nVVVkUK+QAhCADDGHMexijYAQElYLFoKYgWlwx0h7EzGjSUahVCO4ziOY5oIY51SE4NSSxQhpIBgrpCKM8Zc106l0h5BxEOedINSTJa1IlFZ8Lq0ZwAAwFW3E8+JpJz4whUPhBCXAiEEl+Ucl4lfQHAXEuJtZiWysSxRbsWyWixQAkPgui6GEGEaS1QCABKVcZ1i23IZl+FQfN++fTNzT+/atUsp5TfMykQ8V7SYEBCpYtFayOaCQb+uaRiWPg5CREqlaTrEEENk6j6gBISQaNgPzGg0LpiUXFBCqE5TmfTSUgoR7Pf70tmM3+9Pp5d0nQIIhRKeJKzkDEqluLAsCyjhaYcyKQ2fXzFXCAYg0HUKAVSCeUie4AJLgAHQqM6FAwACCEomEARCSaJrTHAhhKEZGGmMMd3wLcMnAiHktZWllLl8xpOzKm+HBCJXCsYcSnSCcT5rCcZ9Pp9VsK5cuWK7ju2IooMSVVU9vRcxEu+7+6bGhiqKkWkElVKjE1eaW+ow4bZVAErpuo4hAJJHQoHVq7vPXzi/c+dOT1qWc2YaOucQYyyYA4TUKUVKIiW9jV5KYGhEAqS4aG6ubWttkQoUCpbjWJFIJBgInDlzurFuXU1tlW3luC24FAgBgj0GofIUE7jLAADeTYIQRogABQRXGFGokK6bGkEAKaprrlIQSF2jBMKC60jBDapJCVeIRECIEUaAcw4wYEIYhmEXC57ZqM3l2PS0hERAmSvmwhF/U9MGDACEUtM0zpkQnDuCUh0jAoB0bRsBCBRSFANQMsPwMFoMkWDcNM1U1pYlOwcBpMIASsbLGDKACGGkpHRcGwBENOraNsEUUaIZWjweTcViUEEpgUJQSoWuaqUCJhUAnmqg8tasAqWRRi64ErKk5yckABBDJITypgGQ58HqIbUQymWSmAffAohBiXuggOdNqRRcUTu9LbeD5ZoLyGW5Zm/Jl4kN3mctIdmqLE+DlIQQQgyAFKV+K1QKSCVLnVWpFGQuRwgBqTDRpAQQINtlQkHd9HEADaoJIbyBYqlcIFWmYCWq6sbHr1ANj44Nbdq87uirF++66+4773i33wwszi9MjI1fd93hWCScy2UiobAQYnFxERPV0tp86tSpx5964hvf+Md4RfiDH3pfc2vL7Fxy6Mr0YN9gx5q1CnEJVbQiHIwELvf1pZaSVVVVi0sZjNGpU+cQRQ0NDVPTCxcuDOczzvDorBQAIeNS3+VCoXC25/L6jduzeZkZH5cSzEzOTk1f6e3pSS1Yn/v0p+66+8N//ZWvNtc1jY5Mdq3qts9nM+n5f/2Xf7rh2huABJWJeGUiFovFksnZrtUt6zesdYXb0tJ87txpLsV1193U2dr62tGXDEPTKP3pTx/cumVje2v7xXNDGg5NTM11tHfNzS32Dw5yrgilo1dGNm/efOLUyd7e855ekt/vT6XTkVh4bGzi29/86caNHfe9776a2spAINDV0TE4NHb85BkuRWWiuq66Lh6P9g30Dw7153K5Q4cOXXvdjQih0ZGJPbv2XXfddePjYxTj2trazrbOmZnZzZu2H3vreCwaDwRCSgq/aZDVa9onJsbeeOPo6Njw6Eg/ISgSiQUCAb8vODI0JgGMRqOvHxv9u7/71NYd2x984L+L2XQoFEnOzsUS4SvD41/72tdvv+PmT37yY/39/efPn12zZs177rl3anaGSR5NBFevv673rYtPPfF0R1f73/39V8fGJh57/MmpqZmgPygED5iB2pqmK2OjgyP9BTuTzszlCtkbbrrVdgrj4+NKwY9+8FO1NW80NjYihEx/SNPI8JUBzl3b4j/8wX/e8577Wlua1q5dLZWbmk81NjYPD/crha87dPvA4NRLR14nWuBLX/7Krj1blLD2H9hx8023LiYXE4lEd2dXf//g4kJmcHCwUMiPTw5SzAAUSsFr9t9w6ODh0dHR4cHh8dGJp5547v773k+I3lDXsJBcPH2q79Dh/at3rjt7pkfXzP6+S9PTC42NrYODlzs6m9JLGUJ8nNsIAEqJAiKXzYajvubWRDY/C4HR1d3m2NnZ2dkLFy5U1VQ/8vTzAMi777n3phuu+9nPKyurKzdt2/3Y4w8PDAyMj87+4Uc+sn7t6pdffuXggd21tT6AjONv9Tz/3IWnXvhEvJIkahptIRgQRAIgIYGIQKRp2GUMAKBrGoSiYBUxJBRhDiHCUEjJOWdScM4xQhAhBYEjXQEBokRAgDRiakElkUJISAUVoJohuRAYFiV76dXXXGYr4QCoYuGIlKAqUV2dqK2qr42EY5NzM4vZVDqdlhhKIPO5LNGoq4TLWdEpYkoALkU3hJDLbM75TTffOD0+lZyff8973mP6fflshimlEQIUUBI+99xzJ8+eopA8/8IL9913lxBCM0zuCMWZULC2rqGmoi4Si8ZicU0nnDNKsV3Mm6YOFCoWbQXA/ELKdhiEkGiaplFmFwzDBwHGRBMKcs4dRwEggFJIASEYhJBSSgjRNAyA5vdDKUtkcCmFN4YJAPCwBE/6yOv06bpOCCmnaOVoq0p6FqJc7JbrciEExFdlKdAK3glc5n6VA7TXZSiryJan3xFCrssY440NzQCA5uZmJQSCkCvFGNOpFolEgsEgABITWCgUuOBCyUgkEo1G5+BUc1OTaztSSiFK+h2MMdtxqEaoqdu2KxX3+Xyu6wJFLMuqqKjUNGQ7RYQgIQRR7LpuNpvlLrOsomFojoMgAhghj1qXyWTyeQtCPD09LSUHEksgEAKIEi4UV9IgSEqJlfSoP4wxTDUIIXM9VxxYasEQIBwmVkigQQg9khksUXmEKrmIAqm441rMsYvFosdGIoS4rksINDRSLBaFZFAqwbln4ZfOpGZmpw3TV9/QQo3w8dPnNY20tbXU1yWAstOpPE2geDTi0/TqmkoMhUaRruuclzydLKsQjYXjiYrBof61a9cWiwVN0zwdLMndZUsMXN56CSFKQcYYIprkTHIBKFdKUQpCobBtF04eP1NZlQiH9YX5aQQkAIDqplJQSQjQyl6Y19QubfnMZUopw9AYEw7numZCBR3JENchxlICp2gFwyFN0wAAAAMgPU1RTxoGYQw5dyUECgJKaSAULOZzFGEpZbFo+30BW0rbsn0Q+v3+5ubmzNKSy2yXeRkYx5hgjJVUhGCCoLcWdN0saJZ38T1UEgHAZGkSHGPsuK6OShpaAAAIgJBASQ4A0KGGIPQ0wFzX9eoaQikhqOA4rmsbWlBKbw1yTSeeqcYyoAU8PuU7gC4hhOcZpdTVWquMWpWv6jtQ7fKqfMczaoWA6jv/tOIl5dZk+U3LCJlant8ssRpKTcbSCyDEEHrtUlyW6V+OHlIICSTy6hMf1bLZ7PHjJyurGxAxKmKRUCgUgI/30QABAABJREFU9IcwhhhRqlOg1OTkuIIoEAx+73vfe/nllzOZ3Kc/9elgMOw4LBDwAQDOnj2bSi9iDIXiECJTp9SggUBg777d4xOjDz/yu4MHD/T3X7bsXDgSete7Nrgu/ulPfta9sdswjEKhwIWJMV21Zm00HMlm06PDV6amppAmw+EQJca3//E7N996e3v7moGBAa7A8MiYrhvtXau3bt+OSS/EKJdNTYzPzCeXfGb0qSde/cTHP9Nc33Dy1LCGzfra6ta2eoRgKjVTV1e3sJBsbmwyTWNmZqpoZWfnpzL5Bc2H5xcXAJDpdDafz4dDMaepqbtrnePmJydH4/EEYzwWrzp4+Pq5qbTktKd3oLmpdc36TcPDI0ePHmlsbnK5k0rNh6KR97znPZOTkzNz080t9Uyw4aHR9917057d+5oaa0+cfPPyYl9DY5NpmrW1NblCwbZtSvXp6WmX2ZqGNU1LpdNf+tKXampq4tFYOp0eGxsDQEkoqaHv2LV7eHikYBXXrFnT3zdQX18fDocHh4bIU08+pmlkcHAwkYg7nEcrqnMFa2RsQqNmY2NzQ0PD6OiV5pZJlxW6Ouvvec9t73vPl6TsjYdBOgPe/4G9H7vtY5nswuJipiIRfebZJ8+dO/fxj39iw7r1jzz665m5wYMHD1bVNTU2N1TXVwVDxt5921av6Tpz6tLszMLWrVsvXuz92a9+AhAIBv0f+vAHNm5a1XPh/LneHqnc973vfZcvDfziFz+rr2vQNWN4eOS6G9f+8pe/HB29snXrlsnJmfr6xpnpybNnTjQ3NyUqEu0tIU0zbNcFkPT19U2NT2bShfvuvf+NN5+73H9qzZqGDevbCSGTE3N/9sU/+9KXvrxv377KigYh2Ym3XluYm/7M5z5RU1PzvR/8kBDUP9DHHakU3Ldvz9atW6OhaHVNRX//2c1bNnZ1dVh2bnDgyo69Bxbmks8/9/K7brnT7wu99NKRjZvWxCKVLzz/pqZDBUA2t7BqdUNzQ+WV0YGLl0/desctWIELF86vXbsWAtI3MKj7g/F43bZtW4rFoj8YqqwMTY4Pm4ZgtmpsqHv37bd1dTYtLEz29r4xfOX0Rz7y4f7+sVXdbffdu+P4md7utRsv9Q37DD8gRs6ygYsh48x1iq4LEfcF/EXLUQBpuiGYxMsPCKGCEGMMIcaESsmVUl7rjTFm27bShYRSScC9uKAURsRlLgCKA1XZUMuYg4lybQtjjAGez6QGRsYNoslC9pe/+20xkzaCQX/AjETjZsAvpFIEYIMs5TIIIc/hhEsJIbRt27btXCq9sLAQDocZY4wxpSAhlLnMm5XbtWvXhTMXxifG1qxZo5QiRBMugxC6jBlK9fT0ZLKpQCg4OTnZ3FLjKR8qpRzH8QUiXEkFQCaTQ4j4A2EuBeNCQWDZtsVSQ0MjyblUwXJ1Q1eKgbe3A4QQCgilFBIey6oUEb3MDCGEUUgpJSV/x8NTIgXLbCdN07w+L8aw7KBSfiNvM/bYJ/CqoCtQSi0zRVQ5YxNcLusySFxCQUoKHULYQEkMEQLAcRylAGPMkwfjnAMoAZSenRnGGHJJIPI47Bghn88XCYUZY7pu2rY9v7AEgGsVC7YFI6E6XSOua0MAqa5xBpYTU4Iw8GQjpPT6oQAhpOu6Z8mHIPJOkjGBkZdquB67n3PgujZCgDEmJPBcloVgGiVEEV0HSimEsde+RAh53WOiYUyIU7TBspymEEIBzzpaeS1FqaSXdfl8pue1ohGRy2W9YUMppQKCC4kQMAwNY+y6LiVYSUEorU5UGIam6SbCmoCYUsK429hYr2nELuYwVI5jC8mEYAhBTadKllJthDy6NhZCrF7VNTAwcPHixXXr1nqOhJZlmbpOCFkW6UWEUEKA4ziEIACkEkwhIiXnUhBCEECZpcXe3t41q1cHg4F0Og2ANDTNgzyBAFJeNXj2rBowpZ5xuFJQg55APMSYurYlXCGkkFASqqAGlQAQIttyMIAAAKQQWvZD9H66rgMw0Kjmuq5GqN/0YQg9NTefYdq27YvEQpFYLpMpFApTkzPctQ1DB0Dm83kIIQIQQ6SQwhBhUrKm9iyJXNfFGEuMMSVMCIlKMzTKM8XCJRo7Y0xICTkXkjFXSE0gCHTNkFBywYG86jxhFYqeoZZ3GRAE5Rae94zXplyZOZVbgdIr7JYHwK9mZkqW5Z7LQNrKzOwdidfyt/B/CEl4r1mZfr09Y4Pg7fmcKrUUr6599H+5boMVOaK3tAkiopTLci9gKqXS6XR6aQFCqFODEBQI+UOhkFLKsgtT09OFYiYWDe+/5sCV4dEzZ85VKzA7k6yoqHj+xRf6+vpWr+7u7OwEANlOsWA5Y31DkxOz23ZuWLt+VVNz7UJq+tkXnt61c49uhDs614ZC/qq6Kp9mFPOFQr4Y8Pkb6msDftMpFiTjnPNQKLSYmd23712trR1jB6ZGroyPT066jsUdc3Jypmv1GgDxr3/zG8ZEVWUFIWGlVCJRPT+/0NrS/Jd/+bcTI1cAANFY+Kabr129rvvxRx/euGlTcm4uFAjmCvmFhSSAUtOjCKFjx44V7GJLWyvnormpbXh45InHnv75T3/xR5/5xNR0rrWley45tbiQ/+8HfvH+931097238jx49eixbDa1dkN7dV29Zmojw31T09x28vmZfDgcrGvYefbs6Ww25TjFhvqqu959UyqVyWQXOOezk3OOJcOV0ebWpuPHT/l9wUg8xphj28Wa2moA5MDwQMHOnuudvfbgdZZjz80no9HIpb6BhoaGSEV8V23d2rXrF5fSFy9eOnLkSFVNJcCA1NZWd3Z2AiDn5+fnkjMHDhy46873BAKhixcufepTX6urO5GorAiHg7/81U8nJq/ce++9L7784MsvvHrp0kBdXc2a1a3V1dXZ3OLjjz++ecuagwcPPvbok5cuXdq+fWt1dXU8oWcymVhI3veJj504euS73/1uIpYI+MOBYJWmGf39g/OLSx+4//6JyfFsNjswMHS578Le/bu2bNwECR0cHE6n86+++uq2rds3btysab5nnn4uHIq+9733HjlypLamPrWUUmokm83e/4GPBv3mM88+nkjEb7jhRtMID/WN9PVdfvbZ1yoqgxOzV1avbXzu+SfXrVvX3Llp6/79f/mXf/nBD/711772kanpCcHsWDx4403XZrPZYDAoGc9kU6apzyzOR6PR+cWF+to6yXkyObuwsOAzQ47j5PNscOiKRn0d6zeEQqFTp99avWr9DTffePbkuVgseuDQgR/86PeUApc58Xh049o1tQ2xrLs0MzUWCYUPHNw7Ojg2OTPdPzhoBsKjk1MTU9M11fGt27f0nD3TNzjw6KOP2k5x8+ZNo1fGnnryue3bNv7hxz/y2utHTp8+uWr1Jr/P+cxnPrTu2Fu33/ne48fP3//BP+/srooFYnkoi3nhN6krUc7KcCZczinRMcaSi3I1VkZNPJh9ZfwtbeeE2kJiSgAAEEDGOYKScQkwVAQxJW3OkJJYIxIABSAwjYo6f2YhxaCqaqgrxMJVlZW+gHn+XK+eNZiUmBBEiQGpV7hLKYD05qgxpTQYCFFNGxoaLEujcc4JxowxirWKeFzTtG3btnV1dXHODMPw+/0LCxkEgJdmWa41eKU/FBAdnY2cuaXoCVFyYf7ixYs6oQIolwnX5aYRgAQjRbEGmMBMqFhFnFLdY4UpIUvbUhmCgldD5LI61wpZVCkhhIQgSml5Ph8A4LmReGJXZcKZlNJTAy8PnHppGYQQlWavrkbklV8KxiUFSCmlhKUJAPB2H5Xy1+eNGnDHVUohSIQQhACMsRBcKQkgFkJQSlPpLKZE00gZQ/LkZz2winPu8/mklIw5pk9HCAWDfu8jFwuubdtLS0sYK90gpqlTijmXnsSd67qapiOE0LJshOu6cPlNa2pq8vmsbRchxF6XFiqJEFQAMsY8N2spAISQS4EkgUK4QAJYMoDinGOIIIS6rmOMxfL+53W1lFKMO2qZlwwAABgBASSQUnJvaE7TSNFiiCJdNwqWA5UEQHqqchhr8Yoo0YlpmkzCVJZx5kAlA34fkEJxhhDAGFKKmZCMOVo4oAQRotRdFZIZhiEBxBht2bLl0qWLZ8+e3b59u5TcEzeGEHJe8n3yvj7DMDh3vVavJxri03WEUDZfGBsZ3bJ5k2EY6fSSd7N5s5Pgf+lOec0vDw1d3pWhUorAkgK+pukAEoixbvoYwJxzqIBhGBIo13WlXL7NFOScI8/Jx9PcohqE0LIsr3KQAiilBOMIwGAwDCWMxyItjU09vWeCwaBlFyilBEPJpZTS7/cDUPIw9u5z9HZfV+86eAm0ZFwRIoBaeed70one/YwhUlQRghHBjmWXj2M7RQihZywNkQLLY4lqmem1Emleed3Kp0EQXpkSlR/LV/IqfdM7Zrng+d/pV/nX8l/h/8X9ekc6pVZMPr5j7QMF3jFQufLlpUANUSkWLfvV2rZtWZZlWQiRQCBkGAbFWrFYzGbzmUxGAVFVVRkMBrO5dCFvPf/ci4yJgYEh15F+v//y5cv79u3bt/dAoZhLJpOEENfhPl8AAHRldIwaCkDW33+5oaHum9/8ZigYffqZF5Kz0z3nT89Njvp0zQz4CaIE0USiIp9dcHmBaKqiMmwYWiUPV1UnpqdmX3jhxanJGcdx7rnr3fX19U8++XQ+X0zOX0jOL7S3tyeTc9nMYkdry+FDh0zTfOSRh65dde3B/Qd1DW1Ys4pgEY743/8H93V1b7SyucWFhbOnzyxm5iEk08npiqrKD37kw9l8zrKs9rbOjRu233C9/l8P/NBlRUM36+uak/MTfr8/vZQKBAIXLp0PhqLNrVsOXX/4e//+bye/+z2IxOzs1OpVHa7Daxsad+/e/cJLL9bW1l5z/bUnj736wH//9uabbx4eGotGY4YZppTeeuvt84uL5y6fq61v2L9/fzgUn5qdmZqaQIj4fQHG7TNnerq6O0JF5/Tp040NzclkUilZ39S8lEqN9V48f773umtvOHr0tVtuvYNQ/W/+5u8fe/xR8p53v+cb3/gG1jDG9K/+8msdHR35YsHv97//D+7dd82u7373uydOnGiqb9iw4Rbbtn/9699s27Ytlgh94YufPX/+7JPPPnymN14RD9bUJGZn5nt7e03dd/TIK1CBzs7VI6MDQ1cGX3vt1x+6/0OJyppDB29a3bnh8qXBL33pb+saww5zN2xaf9fddyaqql9//Vhr6+rnn3tyy1YxODhSsJxsxtE133vf874XX3x5YSG9bu0Gn2H09fVFo9EPvP9DJ0+eAgCbptbU2NbXO3LsxDFMC/HKaCGby6ftQCAUjIRbO+PTs/3NDQmk3Obm5n379s2NDw4Pjl8e6L3mcKUQmc6OWiklJHBgeGhiejIaim7ZtDmXSe/ec2CoYmJ4eCSdTttWviIWGh290tLSMjI2Fo1GI+FEbW1tLBHLLy3VN9Q++vhDGIOaxvZczjryytHD195RVVnvMhAOh48ff/PZJx8PRf0tXQ1bt2+cnBw2DUo1eP0NB2+47TaItfr6+tOnToWjkWRyobm5+eLlQU3zrVq17uD+A729vR/6g+/f9/7uf/rnr4YjsWKxGAz5XIdnitbmTa111fq977kOycJDjz7z+4dPb9zcFfZpOoQKIlMzvW3VMDQAhG0XdaTDZdmbMvQthLCcIoQYKiREWSn0anyBCHmTdBAjACHjnAgOMWJKQuQpPitJEGdCaYQjYAm2VMh2JlbFYhH7tVeDFa3Q5QIo4TBKKUTQtm1NoxqhEgAJQbFYDPuCnZ2dpumPxSqYK4SSUAGHl6xLOOdcijfePHbP+99bUxMt7ZcASqU459u3b++9MIYJOXz4MOOukhIAKSGgCGk+EyBocXbi1ClDQ8ViYXxyJpXOJ6IaY2JgePhS/3BVNHL01ddvunkPJUQ4zKudhRSS8WVerZKSrwh/Vz2CCCFCSu4yxFm5f1EeeAQQEI1qSC9jWkqUtI48aM3rssFlgVaICXz7oxxql/Mw7O2pZbc7AIA39uVlUV56BwGglCoFGRMIAV0HjLmWZUGpKIVQKSgVxYRSDSoguadDywGQkgvPkxsh4DiW69qEEJ1qUkopuMtdw/QpCCjFmkaEdLyNPxqNepiZUmpqamp6ejqRSPgDvuVzx7qu53OFZHLWE+UnhNhFhwmXagghKLjiQiBMIYQeEiOUFEIgsjL9vQoKQgg9/X/OOUIAIeDJKpVGGQBCy958GOOi6xYKOS6Fxxz3gCulBGMOVEJ5nVmDAiAZdwhECoiilQdYo5RSCoESFEElhZfLQCUEZwQDqmHGHAUE1bwcQkEJlBKUYIKAUyxuXL92YGDgyEsvHD58WKfUw3QxJp7fn6aVhP4xRh4mpGkEcZnPplOplMNEZ3trOOjP5/PRcNiyLKUUphRiDKQASiGAPZogBFACjhCSUNqOjTHWqOEwFwLEuJNKZaRgoVAQQwUUx5xIRIQQnlOyUJJzSYmOsOYFAqCkVJIrDgBA2NMuEdwVQEKKNSWlYJwQks3mFzPZmsqqZDJ5sae3va2lkCtIJXSdQgwBpVIogiAAGCHPPQ9TTMpLhsvSmAj0ikCldF3DGINlapQHHmuQUEoxogRDUzd0XceYIoKZ45blHrxLV74rlBIYIKQAlB7vaiWt/v9IYpRSXAohhRJXFf68O1CpkgKXd54rYS21wjpsRfoFPcnY5TNZ5hXI0oTy1cQOlLX9vF458GA/pZSUSsFlFE0huOJUvYdUCkAF1QoMr4TQQ4wxBsC27UgkcuDAAcuRliMsu5ArFqAsSikJQQAA3W9CArmSpj+oa2R4ZBQj2t7RUShYmdlsJBZTEEZiMX8wMDU9m5xP2UWrvb0dE5rN5RzmTkxe2bBh3dZtux595Invf+8n3d0tDz5407PPPPb0U8/f/4GPrNuwKT2fpYgSBFKpOV9Abdy0vqf30ssvvfLBj/6BUuJb//jtts5V9TW1oVBo397d4WhkaWmprXPVd7/3g+qqSgjUwGD/9dcdft89d3/33/89HA6u37DJcXlja+v2rVtzqaWlpenBkdH00ryUcNXqdSKZDIZDicray5cvnj13csOGDQ1N9dTWBydG5mYyA/1jdXW1tpMPBn2RaNBx0Zne8dq6RHVdRTabpqY7NHo+m82u37ynrbPpxLm3duzYtnpt99DA4ED/UH19/eTUHIQ4l8soN++yfF1dXWWiOhyIt7S0LSbn0Tp0zf5rp+Zmq5oql1JpLvT+vmHbtld1r6upq33hxWcikaBQslgs+szAqZPnYxWVMzMzhJCmllaqmZoWyKSthx9+LBgIf/3v/+nmm29+/333P/jfPyPHj78ZDJnzi4vxeLy1tbmhu9NOpWdnp185+iLnvKOzNTk/o+tGX/+l9vZ2IfjX/uHb73rXgddeP3r8+LmurspCUbvj9hvefPONn/zkV3v37q6IRZPJhdmZ+ba2Dinw/n3X9g8N/vSXv2yuawqYkcmpxY727r/4i88tpueZ4P2DA9/89r/u3r3XLoqx0en9+w4HA7HeCwNTUzPzyeyHPvixYDBsmubLL70y0D80OzdNCHnhhZcoNZSEsWhFOrM4Ojr2T9/45ac/8x4j4O8b6H/96LEbrr+lvrbtqaef/MQn77/28K6pqeGR0T5EQSwWW5xPVVWHNm7uuPmmfY0dbYCxYj7vC4b+/TvfJ0RjjNXV16bTS1zYUgnHcfx+09C1QqGwd+/e1avX/uhHP/rMZz5z6XLPE08/fcedt2azE5u3b62qqXjqyefWrp5et3b93/zN1w5cc9s111yD4A8mJye3blljaBrnDEizt2eoImZOTc0qhlvaK6fnci6TkJqPPP70e+66s662+Y03j0eiFZruWkU+Mzt/9mxPIAQ+9anPTU7NEWo46Wwhnw/HwoFwoFDMvf7qk50da++67ZpD+3d94bPJaw5/uLGtliolAeAQCM51gjBSzLU1SqXF31FCLWP1EEJvPLA0Gc4cB1AlhVMqXgGwhc05BwhhjBHEgAKqIKZYMuYyQQhWEHry+kwKoZQvYFJdAxgJwWzGPMUszl0KKUJXZ/0457puFAoFSnUmhZTSg+C54F4/hTEWCAY7OtsbGusTiYRl5bxQZxhGsZgnCM3MTs3OTtc3Nliu5Q8GAYCcCwSJy5juD2zavPXI0fO33HrLpg3rH3nod9mcoxT0hLzj8XjAZ+bzhbq6eikl4w4BV3uCK0kh5XhaDtNvi6rgqkJYee/3soFSTEeo1GdZrqG9q1HOgz38RoKSpkYZRVs2XCpdK4/iD1c0KL0je1uCKQUAUkjm5WRAIQ9S8s7BcSwhGZIYQug4jtekQEj31AEYY6ap27ZtGD6wjNB4kJUH3sFl6v/K1qeuU9u2DbPEzjEMTcqqom01NjZSjczPz3vC6MVisaq60rZdy7Kamho0SgCAnkkfE3wxlS0UbUQ0zl0BpFrGKrwLiDUilXQ5K8EJ3s6qSnolCl6d4ZfLuCkAwLbtUDioACg6djqT9RTYA4GAUsqyCgGf4WVvJkKaTmy7qJQwDNO1XNe1NM3w+03kwkIxD4CkBFEMFcWapmFCGHMoRt58BvYavcBDxUrNZde1MaaWVWhpaTEM7c0331yzZk1VVZUHfy5njV6mrlyX+Xw+pZQnnY8QampqCQR8xaKdzaYRQsVi3jB8SikupRDCW6sIXmUKQoABAkoKLyN3OfOZ/lQq0983XFtba+iUUspsR3CBCROIce76Av6iYzkuQ4jouo4x5JxLxaWSRDOExbLZdDAYjMYjjmV7KY7ruqZP98QIGORmMIgQtm23kM0CAHRdt+yiNyBpmn5PgAQhhAmCEAKoxLLnAVp+cM4JQaREOBMYQCAVAiWxX845RApjhCDRNN3v91NKvdkLpYQn6Mo5cxzHUzMGQHqN3TKlcuUo8f8P/qTeTsMq2V2swK5Wxsl3PP92nOyds5beY6XQTDlvW3kceXV2UkkpAUYQYi9FW3naEC6LC67IAqWUQgldNwAHDnMRpl63vaKiAhETIA0ixRiTrsoXco7jWFZuMbMghME5J0TDiPp9mhAiGAxnMjmPc/n6669XVlbedNNNFRWJCxcuUEzOn7+wbcf2isqYw9Lf/Oa35ufnn3zi2StDoz//+YMDA5dfffXV+rqm/fv2/NM/fv1zf/wnB/ZfYwaM8dGR2rqEUGnG86l08itf/dPGluZnnn6xqbUNAnrjjTdVVyVc181lshCAA7t3P//Ms5Mz0y3NjflcysrnThx/M5GIB0LBYDTW29v7/z7/xXA8nknOAwh27Gz9wuc/9fAjj3w4FE0mkxcuXi4Wi5f6LscrKkcnJ7gQ0WiipbXTcdwvffEbGzc12vbSt//1n+bm5h578pGDh/Ze7uuJR4MKiIHBi3fcvnqg77Ij+M49O9du3AQA+P3vfvfGG29t3rhpamba9Pn37t2Tziw88MADZ86e2rF9VyJRNTQw+NJLz9dW1aRSmc9+9jMcAEBgZW1t74WhkyfONze3WJbdc6H3zNlT8XgkGgunU9nurrX339+RzeYzS6kXXjpy+tylcDRSEauwbGaakWzObmvvisUrZ2Zm6huayeNPPKTpJFEV1zT4L9/5Z78/qOvG1u3b161b98ijDzc3N9c3NV7s6S0UckC50Xjkjjv3Ly0thiOBnbtWS8Fy2UIuV/jABz70hx//9Pj4+Nf/4e+DgdDE1OyDP/n5nn2br4yNIqyt6t4wPDhUzE0QONzc2KSZpK2iWQJFNLyYKtRU16/qXn/mzKnFpdyT//YfVbVVH7z/9t6evrHRycuXLxaLxS/92ZcTicTDj/zPs88e+Ys//7OXXjySz+erq6v379//y1/+8trrV23Y2B2LBx597KHGlvrX3zgyPfn7rZvXnDn1lq7xVd0dO3fsO3PuzScee3zP3l2axrdvW2VZhenJvmw2/cZrr+zfd90Nh2586OHHC1ZxzZa1xfTSb379e6yChu6P1NY6jsMc0yrKZ59/2fQHn3/p+WRytrGhdWhwZGDwImPOjoM37Nhqz8/PtbZ065rfKtr5QkoqcOSV1+tqqiW34/HET3/8CKbwC1/4YKGYP3n8kv3k2eqmrnBFDED20Y9/7qH/+fXlvpFQJLZh0y7btj/5yW++9tp7163bcO99U7pP13QyNjU8PTk1k5yvTOgTExO1NeE13S0PPvi9PbuvUcrcs+fmH//n1z740b/asCVCCAUKKQKQcoiUuu4vcqfALAWE5EIKIYRirtAQgEB6ewDUkAN4wS4ghCihEgvs0QU551xIwTiXCBND1wuFguajQjDOXV3XAYZAAY2QolIEIl3XlZQKQZu5gLklorCQtDSdBIBU3GWejqJnhAyX9auEEJgQvmwM5zCGNOKR0jwCNcbYtbnjOKAUg3ggEKiqqnJd1+fzQaiKluX51WBKlILZbFYCkEotziVnECXRcJC5Ugrsuk5VVdXq1asWZpOtra26jhxlCS5QGWgpjxZeZYEor9qWy17ay9OOeCWtHoCrXYNyS8hrXGLoIYtKCOGNfHoRGWNPzdWzT7kqNiEY9/ok3s7NGAMKSikhLnU/KaUII28bAQAoIKREcLlLYhiGbXu1L2GMu64NFRCSeW8thfAoXMn5WU9Rycu6EEIAQUyJ9/E55wRBoKCnn0kpLRaLhuHzsklCCOfc0DXOLSlLKSbjrgKSc44xVEoKwRBCftNHMDQNnTkuANDbdCjFCAEhGDV0qUoZVTlhpZQS00CCu67gQgCmoAIUY6ygz294l5SL0l4oGffmwoSUQkmMcbFYtCzLcRwpuGVZXhPQE6FwXdcwDACAZVkYY6phAKVUHGGAENA0YrkCY4wAUEpAqLhrM8eJxvw+3XBcCSHECGkYCclcziGEFGEIIecupZRSrJRwHKuurqauru71119PJmcbGxs9fTLTNEOhkKdv4jg8lUpNTI75/f7urg5d14VQtlUgmEipMPbuCIAQllxCpJACUpZKFwGAUlIpQDBSQLiMUap7qvqBUGxy+tixt07e9757IKJCMQUBxJqQigmOsaZBwpTUMIZQCulABAgBGtRSudzCwhIhSAI1PT3NHO7XDAKJruu2bWNKa2vrhyemKKU2c13GgfRaqDwQCPhNE0IlJRBSUIS9CVoAAEIYQw9wxZILyUtdRa+0kC7jzIWUKiGVkJRgw9C4zwdgyenIqy6UUgAoD/Us1TZQerxApIDnSu4NDHp4ECHAu8m9h/eqqxLBXsoFIEKo/OQ7foKrM4tXc6CVWNrKf0ulQEntD0BQPiCEAAOFlIQAQKAUUAgsj0KXx3HKnwiUtMRKTDKgvFxNLP91+X0hAADIUgiXEHKsMMaYUOqtVsYYEAggRai3iDTTZ+i6jpAcGu4vFHK27QIFC8yORqOU0qmZWUo1zoWh+8Kh6PDw8Pe+9z3btkOhUCgYSyZnWzOZUDgwn8oavpBjzf/8p7/dunnn4kJuw7pNn/70p/78y19tb+u68467n3j84VtuvZ1qcO26tu07rsVGrFDMbN68fmCwb34p5TNDa7rXXOjtv9h7KbVYvW3LBh2TmfHJv/+bv46HQ0FTC/uNrrbm1OLCuTOnJQCzydlAJCYh2rRzF+cStnSGAvT1I6+8eex0U0Pd+d6emqravFU8dfrUwlLa5Xx6dqqvb+BLX/zzjvbuBx74ye13HXbdYnvb1nO9PY2NzVzATNbZtHnXhvWrz507PTs32XPxghT4jWOvAhmcnU3ffff77r33ng9+8BMnT7xpFZ2amrprDt7Q33fR7eFtLauVwKdPnpqaGKmtq84XMtMzk5FINJXLv3niWMeqVe2t7cxmR46euO+++w4c2P/0M49adn56ehoA5Djsqccf7ujoQIhevHi5rQP3DY7HwjEulVJQN0NU13//8OOaRg4cOEBqauMY44aW+qrKmrGJyf7Bka/8xV89+OCDR44c/epX/8J13ZdefHl+fr6rq4NgRTV08ODBM+fOTY5N6DoFikxNLX733/9j+/bt69atGxwcvOVdt4+MjTY2tJw9e+bFF149f+H8c8+n7ryj7VOf+pRrs6VkijE2MjpZXVMxOj6iFPzDj38m0dgxMzx8/tzPj756tLo6Nj4xt3XzvltuuWNycvyll5+trKw0TVMp1dPT8/GP/0EwGPjA/ffV1dVOTk5KyW+77ZbJ6YlCMXPomr0zU5Pzqen27qaampq+y/225Z48cWJgYGjL5nWV8RqI2L9889/uvufdzz39QmVV7ObbDgdCKF9IV1ZWDPctjY+PDwz2p3LJvYcPXXvtoXi4IZ0qvPr6a4RoU1NT/Zf6I/FIa1vzcy883tnZ3tW1XdNIdU18YWFpZvDKuq1bZyfGe3rPxOKhF196pq65+8cPfuXUibfWb1hbUxWfnJgNhyqOHH1LCG3fnutDvtYXX3rL1CsoiY6MXdq9Z+uNN9vPPvPUpqr6ueT8oUMHz557qDIRz2RSPb3n//vBN2695br1G9Y0NbYAhTAinZ3tp08c3b5t07tuvuHZZ164+ea7p6eG3/++WyAEH/zIX23a3oYoYAASQgrFIkI+HVAH2ZBSuEKxEwCgVKni9Bl+hCRnTNM0Pei3uaMhKoTnowy5K5grisJyLBsCkEtnEAKQQMuylIKG4ZPMy58YEJJQ6rqu4zjA74cQekwgr+pFGGpQE5J5E+9er8FHdQCAxwQvZzBccQ/98loJRCdKSoih5MJ13ZDf8Oyc/X6zoiKGCPYHTC4sSqllucoTxxLK5/NhDAIB39DQ0PmeiwSAxx9/8sP330kIyWazC/NzMzMzS0uLPn+oJBsKStWqWE4BAQBeWbySiuthUWrZI1IIoVagieWeqYcVlacgpZDlShdCVQaZCNGUUhJcJYJ4wR2XVMFWIHAScM6Fkh7M5snxM8Ysy0plM5FIhEvi6ZwBKOUyPZ9o2HO0VJLbtk0IKVgWXNYv8K62hzVKeVU0y7uGBCJPNQAgD0VzPMFJD92TisNy8xTCYrFYZqMTQrzES9M013Ud1/J6mEIyCDBGSHBXKsgdt5DPQ4gBRh75zLsmJaSN81wxLyiEEGqaJhhnDlOMe2Q7CDy1BaRK86q4DDAACG3GdcMXjcatQl5KIBmXwDOMgpx7KSlTSsViMcMwisUCxTjo8zucQeQ5QAuEEF2mB5W/RF0DlBDbzkNNpxqWLpdSGhpBngM6lIQihJDgbqHoatTYs2fX/Pz85csXk8kFw9A4l6apV1XVaBrxVHw7OzvD4XAxX7AsC0iFMRSSQwgRAhASKRjnkGAsl3vfAEqhSt8UAEoCDCAmBFqWhYhuu9I0MEZG38AoV4oQDRHHdZlQUilsO44LlO43NU0zNR1CKJjAFCOEPMKc7boBYhSLdrFgBwMBQohTyCsIMaZcSqLR9o6OK2NjCBLXdQGEuq4HAj4ABYTKGyvxvNchUp6zuOcp6S1/TdPy+byUUjMMhBCzHSVkJByOR8LFbCZfcqlCPr/hkfEN3a9rhLkMAECItsxwB1KV4DFP69i7/zVN03XTC2VKlXqPaFm/FwCglpd2OS0rLSsIVz4DACgDWCuTLbjsHbTy+XI0WAlWlTOz8j2jVpA9yly0lblg6VfvpaD0bwCALKHOXhUn4YpkUUqJMEKQQASFLQDkuok1TYOQIYwFkN46daVjWRZjjq7T6urqvr40s12q68WivW5dY0tL04ULF2anp2dnZzs7uh3HkVI2N7WuWbuqt7f3zWPHP/jBD1ZWxb/8Z39y1z23Dw+NnDnTo2l+jMnnP///EOQ333zDxPhMb+/FmdnJHdu3nD938uz5M6YfjY5dztsFoIjj8N6ey+s3+lpbVmEZzGWtSCR27PXXWxrqK7oqGmvrjh49umHzpvVbNg0ODlAI62qqlVISwKa2tqHRiZHxiXhFZSAQhEpm84VoVK+tbeho74qE4xMTUzMzM+s3bLBt+/SZk20dq3y6LxxPbNm+O1FZ/9prr/3spw9e7h/pGxq+/vpIsaBGr8ynl5yL54ebW+qD/uoXnz8aDodrqlsff+KJ06cuCQFaW9vf+973Iigz2cXnn39+7ZqNO/bv1zRtaTFTEa/SDWgVU7lc1tCh63DOeVVV1Qc+cP9iJh0OxeuvP6wkYYwJydavX287hXw+DwGxLeeTn/xkOp0GAK5Zv2F8fPbipYFMJscYDwbCwaAfIbR588apqalYLEYi0VA0Gl1KLY2NTlxz8AbDjH7wDz66c/fuX/3q6Vi8CgF48uTZfbv3Me709J6uzFekU7lsKpeIV2Zz6cXFBSHEP3ztmzU1da+++kp1Vd2GjVv9gejf/90/IoraO1r9ZuKG6/z/+I1v19e3fPOf/7m7q62huenjH/+X666rd3kBKHTn7R/43a+//ZW//I/Pfe6edes3NDU17dix47/+678OHzx4/x/cSzXwyisvSymHh4fD4aAQbGRkuKGhwfTBhx7+1Y4dO0Nhf1eg7dKly319A7e869ZkalQq5/FHnrj+hj3xWEKj/nCw+srIwNlzr+7Zu/Xaw7dOT+Rfefnyk8/M/eSnhV27Nu3ZfXBqZnHz7h3wwR+PDF8Bqm5qYLCxqxu4muOq22+96+jRoxXR+Pvfd28mn1lYmjh8/X7btiKxsG3bzbXtjY18YX5Jnx1dWJwF0Lnt3dcR6g9Hqyoq/Vu3tg1c7rNsRAzV2FK79Ag4c/oSUEbf5UGFYL5gx+vCS2l28OD7rzu0PpvJv3X85Ic+fH9dfdXFixefe/bp7lXt27ZvOHTtjunJqXzOKuSyvqAPQlxfW1lbU5OcSa5fu82x8Jf/9Cv33/+haDR62y3bj7z0b2fOXP6TP/0R1EA4Quub2rP5ApMSCikE9wwLbdtmLlcmpAQz4eq6zjhnwsWElPMP2xUYY6gAQtCgGlI852RIOKwR7PcbAEoumRACAsy5ZI7LLBcZWi6XE0Ikk0kuBCCEcc6lxBhyLgBG0sPkEYTEozxjuNx986KSEAIjKKWSUGKMvQE6sNzwEsL1MBiwbBvioSBQQMYY4zYFV9t8UkqoAASgIhHtbO+YGB2dGJ++9ZbbCSGWVfD5AqtWdSEgq6sSws1LBYBSYLmphygtx1BVmgwnACCvzcG5UAooJctU+pKwKiyZFBFS1tAqK+NDuKJPISWQsmQzLITjNWWkkiu2AgghLvN/S4ia8vaSkuW2t8F4ZDgPwvRO1esTebN1JU69AAAjjwKVSi16DGvXdTl3PdBR1yljzEsEvV2BUuq6rlJKCA6XrzaEUAIlFYRKEUK8jLl0w3g3Q+nTSW+833McwhBhiKTkQHCdYCkBVxwqiDAMhgJ5q4gQUFJ4GJsgxEMFdEJcxoTrEtPvui7RsKZRzllqMY1cPj4+XpeIFotWMMgAQJpmeHR8QkoyoYQQSwjTNF3bUhJ4zWSllJRK0wzHYT6/LoQwqEYgYlIxbhNKITGgAt4Qhiqp2iovsfPmEhAi3vVhjGk6uQqZSEkQwhAqL+f2BEckT6cykXCwYtMGTTcZdzLpXNHKa9SIxsIe2EkQtgoFwdnyzSYxwgghKThEWErFOAeAIoQEUIQSAJHinn5VSZ/Tg0EwNaTCABLHlUup3JrVawzTzBeLQnFIsMuZQoRSPV9g1AAIE8t1MaIUaRBgCKDrMgBQVVUV406xYCNKuJA5pwCYK6WklNjF4szMjOYPG6ZfKUiIViqTmAuARBqxnaJBNQyVwhBCBYBCiKrSIIQUouRmgRBSQri2o2saQSAaCPh1w0V5jdKyPJvkIuj3Q4SXR189zp9wXRciIKW0mU0IQVgjhCggypK2ZbAZlFiYUCnAuesJbZQ7gOWeI8ZYKgWAwqr0KnBVEv+dmZZXkKyEwdSKNmLpzveOsKLPuDLTKi3z/0VsKBcw5VzNW93exMNyRQellFJx4E1uIoggcRxmFy3T9CNElIK2bZcrRuR5UyIUCgSz+YyUXKM4OZvEEGEI/aaeSS2eT6V7e3sTiYTfF+zu7o7FYunU4uJCcnzUl1pc2rxlw+BQ36UBsXHzVgDgj370n8mZhdWrV/v9/ttvu/2pJx/9+Mf+qKGh4amnnjp3/sy/f/dbt952R2dHS01d9czMxHd/8MNNm9c1NDYHAxUL87mWJkwp1XQyOTlu6L6BgSuSw9np+ZqqWsncV15+2TC1SCSUTC7s2bs/lc5t27yz99KQJwEYiYcl42NDl1evXk2AxlxUXdUwOzvf0to6l5wJhUKV1XWhcHTThq2mGf3BD34EIXzyySdff+PU5s3rv/zlLy/MLz388Gt79/ClpaVcJnXo8P5/+9d/bGvZcOnyWcPw5TPJF186cte7b3j+hSf/3+f+aN+BvS8eebq5tfHAwXf98hf/ddMNN+7ZfWBg4MK69etsJ5dOp9eu2hCP1v78579sDgUxRt2dXZOT0wWuurrb//Irf/Wxj31g956dht9ctWrNy88f2bt37969e8+ePXv+7LmFpaVoJLF7+4bBgSEmlWn4IcRDV4ZFKNpz5lRNIk7+8BMfbW5vz2ezY+NTyYX88y8evXAxHYkObN7c+o//+GBVAqzfsGZ6enYplbzrzrsd1+rs7E5U1Hzpi1/s6uqIV4Ta29uTyWQqlWlra2lqbqhqaKipr/vX73z3C1/4glJqYWHB5zcuX75cmai9774P/NVf/0VlZeWX/vyennPnP/QH9ykuvvWtbzU2tN1yy7ahKyObN29p6+y47a57QsHYP37ja28cO1JbV5XP5x9++OFwONzS0vb73/9+w4ZN0zPjW7et239g52133X32xNnnnnvu1VffeOC/nvrWP/8JVws33nT4nrvv0qgvObf05BMv1FW1r17dfdutd05OjVy+PNzVufqrX/nbD9zfX10DFxedNWu3m74QkPaHPnJvenGpo725WCwCxiRHfX0Dx988UZmowoiePn0mnVvce2B7ojp85uyJycnZxYWlk8fPHDp0jWn6ZmZmBweH+4eG33PPveMTk+F4RTTmU1ys37Q6l873DZw8eHD/bDI5v7D44gtHdN00zEgkXlG0XJ8/euNNB0N+ooRobqnp6+vLZhYff/zR82en/vXf/mLj+q1j40P/8Pffqm+o8pu0t3fyL//qE/2XlV3MdbR3VdeRbXv2fe1r5gMPPHDTzddCQLZsaN60vjPohw6jb528+LNfvrx3/5aFbEFJZnMGAHAcB6mrVZ6HIpTdxgSTwhJCMgQJBkBBwDlHiKirXAolpQRQQgUQQhgRipGO9YybRRAGAgFqaCOjoy5nvmCQc64gtF2HIAIxchxHKGlQzZMlK9WCQHlKPN7xheDlqCTh1fEfjxTioSOcl85KSokAwAR57QbPeVZKqRSEUpmmKQSwrIJVyM3MTlVX1+i6vvwppFQMQSklhwAoCRQAZULXVU7ciiisSlI+ajnEXw27ZUJPmfJVDr7lqKqkWt4Vrj4Pl7uZK58pJzEr62+wXCB7Eo5eKPfOhBDi9/sxxg4rnbBpmoJbEHr5GVUK2LatmUHHdTHGnJU+CUKePJOXWV7dDMo/mUfoAwoC6MkZeEkzISXbUCEYUEjTNCF4uVsEl1FAr6cpBAPLTDXGHaAQBqDkyiJLztyqJHzgci48DQtCqZCcGoZHYS4Wi1LXkZQV8bibK3gdZ9PQOJce9LKwsAAVmpqaqqysgNjTvUMSCg/rIgQXi0VCCVClvhVjgjncMAxvVyZUL1qWafqllAiDQsGSSnrSCd6HopQyJjw8DGNKCEYIaZhw4QrGqKkBWEJ95LL+JyFI1zXOGcYIQEkITlTGCakUQnp0KCklW/Zx99JspYBSHELvCikISyAoAB6NCiIqhWASQC8LR4RKxsfHxh3GKxO1hh7kQkxMTG3atMHvD0PEKUISCl0zCgxKAAP+MCQUIaig9Pl8zGZCCCbBzMysUDJRVQUc2dJSk0plUwuLJtGCwTAXQlPKU9L34CWGWLFYpKbJOVeKcu4gBELhAHdcL73AmCCEIMQI4uXZUlwaNGECQkgpFS6zixbFOBIKz8/OSMa9lSuEQAAyxgjFBENYmi9RBavIOTdMHWMsBdA0DUqhVAlmk5JTaq5Yp1fbhV5Rh1AJk1YrfB7lsgwygGXJU1Du9JUP8r/jwMpn3oF+vSNpgysoaO9YzuUlXF7+7/ify8EAMcaUEkIIw9SWm6cYQjw7O0Mx8QdDhbwV9oWWlpbyDjB8UShkwDQ4dzWiz88nw5GgEKxQsIXgrutoGjU0bXh4KBgMdXd319TUFIvFt956y3aKuWw2FApNT09XVMQbmurPnTu3lMkGAr75+flt27aFA+ETJ07lM9bCwoJS6srI0G133DoyOjgzO/7IYw/9/de/7n2+zq427uKlhYLfn4uE4+ls/syZU031zXv2bssuZp5//kXusicfe1IKFo2Gc7ncctyACNID+w7OL6Rn5pJzs7N11TU2sx0rV5mIJ33a1q1b5+cXu7vWtbR1vvzyy7btzMzMpDKZ0ZHxru4Q5+irX/na+Pj4xMTsrbcc3n/N/vve+76dO/b+zdf+vqoyEY1Ujo3O1lZ3/PQnD1936MZ1GzpvurHpxRef37hpw9997YsnTp2EiD/wkx/qlPgDupT8E5+479ibb1BMLDv/2GMPNTZVNzQ0zc4mL13s6+sbCgaDhULBFwrk88WZ6XnbZtu27967d6ffHzSNYDAY7Dl/+fHHn9N1v+vy/v7L2Uzq0KFDTU0trsOrK6smJqdmZ5Mf/tiHZqbnei9e+NF/fv/JJ58kLx55Lt5zanp6pqm585Y77otFah555FWl1Pr1a7du2zAyMjIxMdZ3KVVXhwEAO3fufPPNNy/09rU0dc9MzU9NTeULp8+dOVUs5rdv3xqPJxqaWqqqavYf2Gv4tXXr1j38+99FY4Ff/fIn3/v+dw4cPHTzLbe0trZ3da1649XXOtqbBwf7Dx7cd9NN73rjzZMPPfLI628c4YA98MMfEoLC0dBccmJ6bhIAUF1Zdfvtt4+ND3PuKgX7By7d/+G7p6cnX3zhyVWd6+6//0MaDe3YZn33+z86eM165trvveeD0Bc0jFg69fvv/PO/KQX++uvv37d/+4svvjw3PXPP3fEb77wTONxxcj09J4pWqq6malVX66tvTFvc6WzrcAqO7gvv3n8gk84tLaUMXyi1lMEGOPH/8fXW4XFd5/bwpkPDMxoxs2RbtsyMsQOOHXI4aRpsCrd826bcpr2l2zSFpGmbtGFmJiexk5iZJFuSxUzDc2jD98eZGavp/X3z5Mljjc6MZs45e++111rvevcfXLNmzdatNw4MDFRVNMcjyb7uCJEZhKC8rK6tvW/HR3uvu/4GgdHk5KRtmsl4qrqifs06z+DI5MVbN44OjQ4PjUIIY9FU18C+/JKKkbHBg4eOLF28oHX+0iPH9nJObcvYunXrZZfIAX9ooH/07p/+rqGmafmKxS6NLF0cTSXic+fNwRClUnokEjMs0+PXNm5a98EH769ds+rwwWPNzc03f24zdIUW7zvZ33tm16eHZrc2xpmlKao/FEpYhiyrhk0lSWLUcigBwf8tcwFjbJk2zOVTAMAEBxA4tUBMMAgFREBwQSkFADnSmWOpAQB4/T7DtgRlCGCRqdeBXAguuIBAEIQRhNlIhc9MW5lcSogEZxyfm/I45xJBWVCSKQYEgFNqKy7VWRhkSZqJaXLcviSj4uL8s2cH0qlE0O2GQiDAKbUwhijL8XPBKUAOLGBccC4w44JDjDFnDOHcVhY5MIsxJgTg3NE4nOZCgHMAoMgJf7kvSCmFwtng/pulN3fCcy+B5zxk5yblLAt2DvwxlomuhRALYVNKsUM2OFCVMSa4RDBA0OaMAuByey0qYrFEIm0oqgdBgIlkmDrPdo10eETHdGVZVGREY8AhQADYjCGIHDjlfHcIoQDCAVWmaUoKQQTrus6ZABIghDiB7JSaPp/Ptm1CMjEZjsYEOUSIORKqJAmIiCQR0zRnXu7sR1IYY45ZENq2qrocHxWlnBCZIGyappBk0zQ54DLJ0JaKolBbkiQQiUQOHToU9PtKyoIFhUGZYKfiTMzoce7cMIqiUGpJkgohVBTFNC3TtIVQZFmmNgcASJIky6qquNIpndo255IkY8wVKBxfGgGAQ+FwrgIIgJGkqTLEKEP52IbgkEgIgkz4CM9sFGA2UTN7jbNeIgAAQgDmnmQcKRn+BmNsc8Yty7Ztm3FFdk9ORIqKPV2dnUzwgqJiSsn4xPjY6MD4xEgsEU+aYGw04g9rEAkBmUxwNBr1ut2KogkENc1dVFSQTKc8mic/L0/XLdO0IeWaLAshTNuCECiKYlLo9XolLANOY1Nphw2VVQVBZFkWAohmqoAzH1IARgg0qe0QVKZpOV8FQuhyuRRJFQzICDvlis7WiHNOiMQ5tyyLYkANS5Ikxiyb2pxzl8uFEKKcE0KMlK0QiWVsmhktPgdlnGQWCCGl0KmHznkbsoAM5WgwDgF0dhgzRElnlvnPCWomMvvMP2Yek3th7oCZAG4m/MpMuQJALpzLzbj9GVTnyOVAIM644yczbWYaturT9LSZTuuqz0aQ9PZ2CTCCiawqkqqqTriGS5O4YFNTUwG/FwLqcpPx8fFAIFRYUFhZWWVTTil1u1yR6UkhhMfj7u3tiUYjNfWVLreqKMqpthMLFrYQJPoHekZHB1cuXxMIhJavWJhIxdpPH6+pr3jxlYmFi1vzCwo5ILquEwl17D77jW9+7fDRAwcO7p/VPPuZx5/ddvWW+vpGn18rLMz75JNP7rzzzsnx0fb2UyZlsqK5XD7DsG0LX3D+1pra2vYzp0sqi0uryrBJLT36/tu7r7/umnnz5v7vb377+pvvaB739HT0448/nTuv2e31nm4/W1pa1tM7cOJk+5o1a5pmpRVN9vpcP/npD2+59cuqCm644dqG+lnlpYVPP/Xy0sXLP3fT7a+88nRVReHkaBwjt9M80+tTT5za39/ft3LZGmqDnu7O6uraRGpaUaTFS5a89/4HgpsIofymCiQRw7LDBT6JaNGpuNcTsq3YooWLW+ct/N73vmeZYvXqtXqCbrviqpUrVnd3dwcDRZduvUxRpelILJXSj5043tXd8+mne66+/rrWBfNWrFmBMb7govPJyMjIrl27iCw1z5r78UcfWQa8/fbr/vjHp5uaG6688ornnn9m3rx5l2zBTz/9ZHd3d119jc8bSKf1gqLi7dtP/+Snn9u4ac1rr7w4MjpAiLxq1Zr8wuKXXnqZ2mDvnkPvvrPdtoyXXnrV7/dtumBDTX1dUUGlZbO77747nJf/t7/9ffnSpbv37PjHPx/6wQ9+dNttN//Pr36RTMZ7uwYee2zHV/7r/GXLF0AITcvIzwvLstzfN3i6veviLRdNTY2/8PxLy1csnjVrViyaeP+Nt2Sknr9pfXNDfUGRNDE5/Oab7ximXVleVVpa+tDDP5ucmqiqLkkm9YaGphtvvP6ll16674G//e63f/WXVXi93f/zP/9z4flrERYAg8bG+mQymU5RAozCihpMoGVZqsetuJTJ6QkiQyTJ7W0d77//vs8XUJAvmUgEQ56xieHW1tZN511y4NBB3aCBgE/CuKi07FS0/eDBA41NLUXFBfsO7IeAL1g4d/u7nxI1b978FeHicnyajI5EO7t6mpubV6/e1NvX6fXmNTS27N29h1K6esXKW27+giyTeHQqnpgMBoOA07HhyWBeiHEQiycDQV80Ol1dXdnb06PrqXUb1h47vA9A0x9ILlzc/NJzD59sG7z5zm8N9URLGmtjkShUJMswJYQ5ZQgSLmxnhGOMVdUly3KapSzLILLKIRA0E8HAOQUEM8ZgppskwChD0gAAMCScc5tSGQKAYDqdNmzLmUFkpDgKF3ewieCMCigYAjDnKs3xLiIntOVyFAFD2Am74kjk9oXYmdBBRrsUjFPLNghw2p9l0A0hxMnacLlc5RVlBGpFRQWcJjJzbtYezgV1tsECZjz1GSTERW66nOn3+M898UwPhyMQ5FQ5kdWqCJIc6XDmvAyz7jFHMpvJewkxc0d+buJ2PCJO/r4TggoAMA0bAgkASQDAmJAkRZE1xm0gEAQIAGDbTFJchmU7lCGWCOfctihCJBZNCA6hk6UuEACZXsuKpgGIYcZwxAgknBmypDLGEBJOI22HDzNNEzueJ6eKM5tKL8uyaXKEiMM35OSn3IIkIOAccAGlLCmYSztycKED1zxeL+W2Iwu6XK6xyWnnzR1DobN7DofyJCwVFRWZtuG8yrIswUyXS62rq3OpSmlpqW7ETUZdLpXRTMeYdDoNAIBQcMYFALIsO1ltEEKb2pBgSZKMVAIjSQgIBdB1XTAWDAaBYJxTgBBBiDOmKApjdq68L6caI4RApjm0cNLbna+JMaI2yy2xOdDgYAKEEITnwEEW9UNHhINIICeyi4u0mU6ldJ83YJkskpw+ceLE4UPHIBQnT5589pnnE3rk6m2XlJSWLSgqArLnD396zDIZpxQgkLT1tJ4cG+EuzYOxhCRCTerkeJiG7XW5S0tLMQdIMEfgpkxQy9RNTgEydQsK5sjTqiYxBokEOQOcU4eayn51CIETp4IhxEIASqnqUp3hoEgygYhTFovFnEQ3lLXby7KMMYaIMG473SSZENFo1DaNQNCfE+9SqbTP7eE2yPogRU7uB9k9pLO1cCjzHJ08Ey3BTHAuyu2unNH5bwP+3xMlZgIjkfWJfmZOyD1mAq/cb3Mv+cwBQohMZUyWRHduFdu2AYAzgzYURU0bzOXxcwHTad2ktqqqjgPB5VbHJ6aGk/FwKM/R7wwz5XKp8UiEIBDO82oejRCuG1ZJaUEiEZdkTVVdzENbWlp8Pm8ikRgbG1u4aD4AQpZl1eu68MLzLTs1MNA3PR09fvz49dd+LhQK7T+wi/LUt//768WlxapLHhkfS5s65zAYyJucGr/zzjsqK8v/+cgD27ZdGgqFkqlIX3/XuvWrrZRVWBROxJKmqQ8O9k9Gpj1er2nR4eHx+rqmgF+uqq7Ly8s7//yNC5ctqGmofn/7288+/sI9f/nNnOZZ77/1Xiiv4LwNmz799NMzZ9o7znRpmlJWVlpQUDA6OtredjY/P7/nbPfpM+2z59Rce822RQvmjgwNV1ZW9vT2W3aisqoEYT45Ob5i+ZJXXnnl7p/9eN78RQcO7i0tKysuLvZ4tb7eM/MXzBseHn7v3Q9nzZplmInTZ04sXLjQtm2/L68gP+jxuiCQ5syZ09nRRTmjlAuOJEkNBZVjx05NTkwvWrji6JFj0Yi+e/euSy65JOAPa+pEIhHr6uyTFZxfWIAxTqf0goKC733vu0888URVVY1uGu+9987nb72FVFbVj41PlZWVffzxp/5AiW1iarEvfuHKbdsuTcSSHleeZUBDT01OmAPDQ60LFgSD+QcOHe3p6bvzS5sT8fTUZNLrK5qOmJ2nR5+Jvl5ZVd5zdmRocJJRXlNb+evf3vvxx59eedW3fvSTpdOx6bPdZ9as3tjY1EyQUlbeePTomUTSamyedfcvf3HppZfedNNNf/nzA1OR5FXXLveH8trPnE3EImvWrBodH3vjrTdvufnWSDTx+3v+NX9+1bKla5cvW3L8+NH9+45OjE/f95f3igsf/f09d+tGctHi5ceOHJucGB/qG6itbzh+6mBVVVUyFiPIt2njhSOjE1u2Xnr02Mnh0R6AzNOnO5cuXbN8xfmBoGv3ru07P3q/tLQcCMnjyocIHzlySDCQUCI2NyUZlJeU7vz4HUTImrWrT7edZSbILygmCGmKlZ9X4fF5NNXz/vsfrFmzIhqLGmk9Gp166F//qK1tXrBkXSwWq6worq4pX7dhddvpYU1TbNu2LQEghET7ze/uX7ywtbgk7+SJnVORdCoxvWvX7lg8FQx4x0eHvR5VJiiRMEuLS6qqmg4c3iVJ+Njxtvz8vLVrVlmW4dY8//Wlr91+x+eamusGh/oOHTm8fNkFjGsts6sff+SBKz/3X1MTk0jWPKEAhFBwQSl3YIZDw1PKEJAkSSKQUJGNXwcMAOTU1Lg9Hp/Pl0glhGA254wBwaEQECGEEWSUQqgahiEwgAQDBhHGEibc4pRSBDDBMCenZRIWKOOci0xJ4DnTN4QQQC4AEwI5ECTjQ+KUZ0PJHBoGIsF5ZtfLM+WBCACECMQEWUba+XuMsUgkgmWgm2kZMZGd2maS/5xzzoFAwIm/clgux5uLnJ6MHIIMSwGFgLZpCUKgNDPrSwAABAMiV7oknFgqmCGRMkESAgA2E4SBGQB0Bmj7N3+JEAIgKABg1JEUz+25CZElScFYsi0oAGBCpFIpyzQgBgxAIisCAElxGabNOaBMYBmmdAMhGo/HEBDjkxOpVMp5K4/H4zBYwkks5QwBASFCGOWKA8658QjSdR0jSVVV22aUUkmSEEIIYs4EwoQJDjHSTUNS5HQ6DQk2TQsDzDnnggOEc9mWAjmdnTCnlvPmtm0TTQNAz5wTzgUXgnPHx+OsrA780jTNNE3njkqn00TGtp2ROxljsiyHAgGZEOdIYVuUUgTlWDR25syZZErv7+8rLctHCFFOKaWa15fU04ZhYCIxxmyLUQ6A4LquO0EMCCHTNCDgCAFKqSxLTkElEggAgAEmiAjsVK1yhBASEAEoGKU0QxZywZnNBAdoRi1tbj3+N8DtjAXBBQQQYgGAE5fqjBhMiJWydF0/dPDIBx/uLy4OVdc0NDU3FOQXHT9+MqHHLr/k0gsv3KRbCQjhdIKapqm4OGPcpCZGNOjzu1R3LJ5MpyzOjcj4pKYp0akpwDhAJL+8QpMVIUQ0Eff6XGndJIQUBoICklQ8ZRppZhuqqnrcXtNKOyNCAMQ5IIhAgDgTCEEGubBtIYQD6D0eD0TIYlSWZcMwTNNUFEXXdQeOOE0jctWOtmXZTj8wLnTT0jSNU9vZq5zjLCGQVVUIxjlnjEOAhTg3h+SOdIgwjJDAmbvX2bTkjGVIONQjh/DfKPmZECz3R8EMZmsmfvp//Wom2svNNiJTNXLutZ9hyHJHUsokSYJQMMZM03bu6mQybdlwbGxCxsQf8Lq93v7+wUOHTkiSFolE1q1b53Gre/fsEZTpKdM29IStp1MJLIFQ2O0PeRhPRmKx7p6OYLDowMEjeXn5JSVFTDDdSA0M9i1cuBAh4PW6mxoaMcZFxeEzHScTiUReMLxm1dof/ehHF1ywqay8sK3t5B133hZJTD3y2CMIYY/fJwRGEpdVwqF56Oi+ZcsXpfUEn7LntDTv2bPnxMkjyxctq6ouRQC/8eZrixfMLykvmZyKHDl60u8PnT7TSZDk8/kwxiOjQ23tUjQ1UVxc6M1z1VbVx6bTv//9fevXr44l4papNzfPrqmpefnFF+rrmi/ctOijj3f29nQODU/911e+8IMffOOBv/1544Z1oUDe7k8+hRDW1lT09PTMmjXnF7/4fvfZ3nfffrOkcOlHOz9OJKMPPfTQXx944IrLr07rSQzBHV+4TZG9S5a9nUpM+PzeA/sOQAgvvPDiyYnpw0f2G4ZeWVXOGGua1exyeRJJo+10JwRyUWFFe1tnPJ5gAubllwwOj16+7eqGhrqpSHRwYKSj8/Rf/7r3mmu3rVm9Ujd10zTHx8fDwXA6qf/h9/eef+EFTQ2zTx1rJ709Q+VlNQCKzRddQJnS1zv605/845FH/rd1/twHHrh/x44dhw8PCQaaZ/lkyX3gwJHmpjnptDE8PHzrrTe7VPUb3/hmbw/49revrK9p+P73//7gg3dtPO+ibVfeODJiU8offeSpo0ePf/1rl6fT1puvvTm/dcljjz12uv1sImlipOzYsf9LX7o2vyCkKq6enp7iwpL58xfE4mY6ZRQVlra2tj5w/5/uvfdhLsDf/vY/oyMT8Xj6z3/6jdfrnpiYeP3V7SOj/aFAGJW7N6yvDuflf/ObP7nmhnWlpYU+nzecFxoeGunt6zKt9Cef7sgPhKurq2vr6zWPSmR83qaN7777dlPTrGNHT23ZsnXeiqXTg10rVqwYGx84fPhoRXmNZeu6Eb/wgo0ej3didKyj40xCj6VNvXX+nMmpyKL582c1txw5cHJsdGpwcMgw7e997wcXbtl86x2f7+vrGR4eP326DQrg9mhXXXn1oqWrurpHnn723Qf/9qtTJ9sPHjgRLKg1DEv2yoTIgGOL4/La2gOHT9Yna8rLCnZ8st8yEgX5wQf+9mhdfenWzZubm+tbZtUeP3H00P5DWJJNm3+ya3cimhgaHPJ6XAta5xNILrv0sn/98/Hv//i7o6Nj81oXBYtKes70/+iH3/3DXx654frr/vd/7yuqKwAYI3ou3Qpi4NhLdF1n8QQAnBEqkGCWTQhBGBEMLcr1dBrY3LYtt9vt7GcBBCK7/xNUAABsy1JlCQhBGc05kxDEBGPBIQRIliBlDAEgEyktdGftQRhgAhGA6Fzi4DkHkkNHObJUhlbh5yIeYEZkpCArIQGnWY3IBjMCYNvMtm2XS53WYwAK2zYhOkdnIYQ4dygZR9Q7FyGBsiGHjhNWOKVn2c+W0y9Q1p3jVKvnvvhMhJc19/zbIzcRz4Q1n6G7/nM6xjPC7kU2i4sQAiAyDUtTAcYSxthmVEISBPjUyXYE0MT4lMvrw0S2bMu2KCEEY0nT3ArBXGTq203TZEwAiJysAT1tRCMxARyzFJAkSU9bAEDOBRAYQowRBtmuRxgRxjKkT+5bcyYwIkBARgXGGGOJEIYEYkDgzLXlEBHKAWJOOyMBoQEhBIxT2yaaJoTASHKcUpRSnDVWO/sBCGE2w8zhirgjvqaMNAAAYcdKyBKJeDDgg1DYtokFsCxbIjgcDtfU1MQTqcrKStNKQCAkSRIcmKZ58uRJt9ttWLYsyxxmGEdFUUzblmVZN00ITIyApimyLDstf0zTxADmlvPc5XaIGYyxJBEHZrFsSlxuz5D7EWbLSGei8AwmA9DxwHHOkRAQYiaYYIhZdjKZLCurOP98paGhqaSkTFY0r9dLJLR73+7Kysrp6UmLpjSXS8KyYNS5CoGwn1pJj8ft8/iqqqqOHjnl9wVb5jQrqsQ5T+tm39DI0NBIJBIJeN1Qxslk0jBtj8djcp5KRQP+MA76LSPFGItGo7IiSRhjLKmqihCipk0Izg4BJAQE4tw3SsTjikuTZdmBs5xzVZY457IsU8HjqSQBDAHgwW5IZMSRKiumaYa9YUyI1+1yVHICIaXMaTTp93tVmZimSR0SH/LcRJGrPpYkydm1QZKRzhljTh195iacUQA587TPHKq5gfkZdAVnPD7z/Mx/f+bJ3NWf+dochZb7JLm/5Uj2CGGE0PT09NDIhM+bl0imAx4vEEgIODExQQipa25OpixFJoJzhWDV5SkpLkwbKYQAAkIAC2GGkVVaVtDT132y7XhpSbKwsHBiYioSmSouKbAt45VXXpo/f6GmaX6/1+VyTU6Om5ZeX18nS65oMmHbrLV1QVlZWTjs7+4je/bvS+pRrLDy8pKe7iFAMeceSYYvv/JSVVVZQUFBd3e3LEs+n6esrCwQCHj8HoTAxo0bGOP/evixWc0N/rywbdvpdBojCRMoSVJKT7l97iNHDyWNerfbHQoWXLZ5GwBg7oJFCGsdXT1GOtHc3IxAQJFd4XBhU9OsVCpVU1Xx5ttvay7QP9j59W/8144dHxWGCi+95JLt299LpYFgFAAeDHnz4p7Va1b4A76ysrKSksWj40NE1jZu3Dww0H/q1InT7d2zZ83NC4U7zxwL57fU1Ta8/fbbd31vAWPMsiiEqKqy5uzZsxMT426v/vqb75aWVNTWzJqcnoCQHDt6wmIcITR37pza2uqOjo6e3u7I5LSiKEuWLGlrO51KpUZHh4uLSzlE/3z40fr6xl//+rfbP/igqbF+cnKSbDx/i2GkI5GpgaGxvXsORaZT81oLfn73Dx9+9M/+gG/Bgqblyxa73IG2trYXX9x/8NCxFStWDA6O1DfMWr/+vGNH9n/j21+ZP3fR/fffPz059vmbV3R0nlZVtbG+KuCb7Gg/s2PnGQjAo0/8ujCvsq93PJ3ak9LtwYGJtG5BDC++ZM3nPn/TxMTEU08+vXHdunt+e8+SZSvrqmtfePkVvz9w6WVb+gdHzzt/aXlp0dGjR1tmL5KI9ukne2+55Zaly8/bv2f3q6+8sXtXW3mJq6igUFbpg//8n8GB4Uu3fPu/vr6hvr76nfffygsVVFbULl28rKioSJblPXv2L1y8MBT2h4LhpcuXSUhZu/qChSvX09jwRx9tn46O1FVXXXvN5zzuwMDAAEI0EHS53a50Uh4c6o0mprde8bWKxpoP3353anqstHZWUzJhWfr9971eWVXa0jJLcykYSx9+uMPt1ua1tBYXlR8+fPjY8fbm2UsKCwu/8Y3bNTl8/gVrfZ7iPYdOIagYOpOICyBkMZ7UrbziEs3rG5mYdCuq2+dKm7Sytkog+NY7H4xOTOSF/YOjIxU1lTa3CwrLJsbjK5etvPzSkscffaJ1dksslqiqqvv6N79TX99SWFzx9rsfSB8cv+zSa371P7958skn77//b/mlpZZlKYricrnSEUOSJMsyBOcSxLKsqqqaSqYRQkiSIJYwxkAISi3TMiRJc7vdqWgyqyEChBCCgCIH9ABuM4KJQiTIhWEZAgtMsG3bkBAgBIaZTsMQYE4p5EhRJeQkVHEB8ExD+rkeOwghwTOmKIf9ggA74hTnTrM/JLJ2IucjQQ4BgJwzKJBjPBcASJIiETmRSLjcGsbQMi0CSU4uzIIniLIpAzCbrO34ugQDCCEuMq21hRBcMISQy+XJEGMQZSZtIHJvmJtYnfUVzahs4tkOjzNnZzQjHTuLO8+1Lsn9QgjhhLznXgUhtCi1LEtRlXg8kTbA0NBwQ22J8+fShm7anANi2cINCcYSABalVJGleCIBITQpR0AwCFwulxPxijFGADsYjkOQdSchIWBOmXVwAKXCMAwLUsaE2+tyljrbZs7F4hBBBCDBACPDMhVFSqZSmECbOqVqJGWYzoQlMgFjwOFInO+Vc0M7rFUyFZdlGUGoKIpt2y5VdXomOqgxs5QCLgSDmdgL58PYlGb89ZxzyqjL5YZQ5iyThuD1uh2Z0u3SBOSUM5dMGhoajhw5rbncqVTK9EIghCRLqVSqq6trMhrr7u6uryuDUFiWpWmqQ9vIBDGa06mFw4Q5AidBCHAhGIMAQMARRAKIzPlkfGbgCBdQACQAYowhxEU2dV0IjgAG3Bl1gDPGOaXcSScAHo/H7fKbppVOp2OxiM/HGDVUWUYAFRcXQ2RKEkZY2KZeWVkZjZstC1qJjBhLMW6WFJa6vYFDB4+UFBcUhMMICElR8/ILqqojL7z8ipFKCiECXp8ko5RpRZPJyUgymUqnk2ZibBRImMxuDPi9sXh0sH8gFAqF8/IBAB7N43KrmtttM66qMmOCcw4EtC2WSKbTpo5V2WYU4kw/otzXd3gvy7YkjDnnnNsuTdMU1ev12jZDGJsQOi3hndx/0zQZo4aRdqhFl+YjhMiySoiTUiccmAUy9gCaQTYE8xlGzszgysAmPlP1y0GfmbgqN2xnQrSZBwshHOvbv3Nn/wdi+8wLsx+Gcc6dQgGRtYhRSoUAuUYXoVBYVj2dHf2McSGA2+2dmp5avXpNIFTcfra/s6v72LGjEHDTSMVjscZQo6Jgxm3b0hcvWZZX6Oo62+bx+Rqb6nbsOMAYi8RjikvzerWunq4v3XnH1ku3fLD9o6mpKcsyBwf7FUULhULDQ1Ner5dAzTY55fTUqVOl5SU+bygSTRWUhNdVrGiZ29TZ0ROdSvd2j2++6LJ4NPrJJ5988c6v+P3etB47cHDf8NConjb7+npdPpduGqtWrbrkokvra+t++4fflZSUdZ7t0lTJ1M0DB/ZiCbUummvaLBZPp9PUskHLwqUEK4ZhubxhwdPX3XB5Y231C88/+/Wvf9uyjDdee6u2rqJlTr1pT5nm2Pb3t1dXfrm+rmage+DZp59BCAz09yuSNtjfDwA7e/ZsNJJasWLZmg3rD+7da5l89+79a1dvLiutmT1r/o9/9JP2tt6NG1dfsvV8U4fNTa0V5XW7du/gnJpWMj9ctHrjRavXs3DBC7/4xc9nza5fuGhpLGJMTUdffumVBQuXIAQOHNz/uZuvGZ8arqou93iVX/7yl5WVlYsXL25qatJ1/bY7v/Doo4+XllW1tCwSArg9Xg7A+x980NjYSCRE9h0+phuJJYuXuVR1kkfr62ta589tbz9h2aYQIpwfGBwah1CsXl03PjFy9Ojh0rLiRCL29a9/9eixQ7ffevPg8FAynaqsrDzb3fnxy7vHxsY2nb+OEEmWPLFYbHRidPenO7e//yYCuLe3u76+0T979mOP7vjOXVd7fO5XXn192+VXPPPMCy8+93x946wPP9w1PLJr3XmNQ0OD77zzjtvlScT1dMDcs3v/yuWb1q7Z4PW5w+FCW7fuv//+/oGh+fMrp8Yn0mby27d/06V5gMBLlhStX79+wbL5FRVVTz7x7JpVq99669258+ZtvvhijOStF1//9LN/y8vLR4jIWN239+hHb72185M3/UF5xfLFU1NTjEKiaQTBnTs/uOKKKzkHwyP9JeVFn9t4vaaqzzz8pNvtjcUS03s/ffedD7yewA9/9FWMpV2790xOjDzyrwePHz969TVXNTc3ulT/cUE+2r5rXsuSlRvWjo1NXHrZF773nS/V1ZTbhmmapssnM2YDDhGRoCQxy0rpSQzYdCRCEAznBeKxZFNzQzIef+Otdw4d3n3ZpZunpqamp6crqqt++rNfWmm9t/usz5v361//7403fI5gyRcIvfD865rX5/Xmv/jiK1/92iP9vR9t2rjl2z98oLAyEE2mIISGoSMATVNXVdWmJrU5ArYQEMlYUmSGbMps27adgCVdNxFCqqSmUEpTVCGEADCTLSAEAIhzwCkDkIeCYd3WbU45AqZtQggxwBBC27IwxBhjSp0GLCq3MwCCMcYxd0gCp5xQZJEMOMf3QEFtxhiUMKeOX5vbpk1kCUIOMHIc5xLCABIMEaVcwkiSJEO3EQSmYQEAMhnuWU8rzHmfMw/G2DnPFncsHTzjc3dm89wOPnOYyJlOMvlGjlta/Lu7NidCwayvi3M+Y84/V9Du/CoHv4QA/+cc7axAzjuLrIRBKZUoGx8fd/6obducC4hJV1f3Bx99lB8u7e3rVjQtEAgmUwZGwLKsUNCfSqV0XQ/6/NQ2UukEYywUDFsWS+u6E2YBkPPxIMxsynEymVQUhciKaaYkSY0nUlAgi9pTkWnLshAiuq5n/SuZXoTxeNKyLADA2NiYJEmGYbjdXpdLTemGbjGBIMLIKRFwcJtDpwmUhezYicZQBOPISXwgTsQUdigNB5CZtgUBdBzKLp7RnhRFwQQlk3G3K4whMm1KOYdCMGbLWBUw0y8dzYC/zn0YDAY5gGd7uvODjW6VUMFcLl9xcZF6ElZVVSHEU8moS1MZJZzZMkGMCYSRAwuyyD6jZPFs8xlKaS6el3OGMRacOdo9zHCfHDrtlrLgIHczQIQgREAwiJDD6gCABASKLNs2g7KUnx+2bQq4ME0TQsG4rciKAAxDYFqWpEjU5oWF+VPRfs5t3bDcLqmuqsHn8SUTRjIRC4VCBMFYLO4RUNfT0elI0OdFjNm2Ydu2ompCCF3X3W43wjLg0BsOp9PJyspKj9clGO083dkb6wvnFbpcrpSux5IJyxoaGRnJy8vLy8sHABQXF3s8PrfXxSEwbYsJBjCyGBWCmTYHCBp6ikDk0lQrLWSZcAAJIU7zBk6FYdqUUgGAEz9BZKgoChBI07R0OikTIgScmppyAl+clpGEEFVVnZAahJAjEPOstZBSKhiHCGJwDkI5WTC5XJv/EznltkM5wMSzls2Zx+b+/xlmK/dMbvzO4MMAyDDrKFOKwTMhNQAAJ8ZTlmUhoG2x0dGxVCo1q2n22NjI/sOHp2MRoKiyy992pisQCAdDfsBFAgob076+vpKSAs2lpNNpytn69evnLZi989OPysoLVq1eOj6a6O7py8vLF8CanJycnJzMy8sbHh51uVTbEueddx4A5NixY5RS07BVr8cwKRdGYWGly+U50daDx+CpM+m6psKmpiaPx//pzkMIuA/s3T9v3rzCcOnZjr68vFD76WNT05ORSDQWi0GBMMBlhbUBb9hI6n6//8rLr9z56c7mxoann37m97+/554//PbJp5968KF/PPPy043NTXff/cuurl6CFUq5oql9A/1er3LiZBsSYPGSFSNDI4X54eKSsoGBgYbGFbU1VRNTo+vWr3n22Wd9nmBdZZ3HxQOhYG1tLaX01ddfxUSsWrNuaiyaTBv7d+/5ze9+G03Exscm+vpGPnfjjR0dnaUlFS41+O1vf3fthnXRifHenj6CQTI9QZlBKX/9jXc0l2/5qqX+PPfS1Qsvu3SbofPenpHGxtkBf/jRRx9fuHD+9+76pmnEdV13u9TqmspN568vr6zASMrLDxcVFUUiicbG5o4zXV/96lfb2tqPHj2aiMVPHj8RjUbJL376Y4TAli2b0/FIU0NjTXXdW2+9NTE6crZroK1t0OsHJaUFExMTzc3N5eX54bCrZfYs2zbffffd0tK8xYsXvvr6m7t3Tdx446ovf+0bw8ODTz/5xNe/9l+pVOLZZ5/u7uzesGFDcWmDqqptbadHx/pmz2lqaprVfqr7jtvXEwzeev31a66+0ecLBMMFBcUV52++7C8PPPjzu3/EbDMUCto2bW6YDQBftXKDSwtu3PSF667bcM8ffhOJT3d1nBwZ7bnowo1jY6MjowOhcOU7735SXVVbWpz3hz/em9IngICtS5ccOnxiz779BYXF09PRQwcPR6cjhg62b9/ucrkk4po/b8HxYwf7B3s8PsnlyW9r6y0rK/l0z+7ykmJZwuUVJYeO7luxYuXyNStj0Xh+Qfj99z4MuItdLs8///7wldsuv/mmz7/22mscpAzdqqou9vkCJ9tP5uW53R4yHR35099/V5BXsmXjRUMDY4f2H2tv67rxxq22Ye7ZtVvz5Ol6Ig9TiDhxK4wjIBDGcGR4YMsFq5YvmvPssw/Hp3uZTXZ/uqepqX583Fi7ZlEslkgndRyUevr7NLfLo2j/eOjBL37hzuqqiqmJ4aNHDxOiLlm+5oab//ut9x6/fNuFF2++4vs/+sXs1g2Ag2TKdBYzjCEmkEgIQC44xAgLBgjCnNsAC844pRQSDCSoWxQiZNm24ADYVDAGZAIgEgwIwZBT0ggYAJzadv/QoNfv4ZxTzgkkAADBAUJQCIEJdrvdtm0LI+UsjRKSoUBYliDGum2FwkFJVSzLIhAJLjgEEAAqqG6mIRQAcoyhE9qOEGKUQQgBF5JKIIQAQcgQZ0iWCbOpLJPsRMYhBJTZtu0EECBKLcAzZf8AAIwl26YIIdO0BBOEEAQQ4EBARywTlmUpigQycIkxB0gBaFmZGvuM9segLMsIIGfFpZRhjAGAtkURQhgRSikgTjdGB8cgAGBuB57N2IcAoAzXhCAATkGmk33OOeOOqTmnhMJsPhDgXFGURCL2xhvvFBV4n33hzTmzazxujTEYCubPnj3rRHsXZNTrctm2LcsqpQYUHAquEEn1yR632+3OS6diXp+rorK640xPNBYDAKZNQ5IkIRgU0PniNrdlTSGKDDFGksy4kFQNCUABkCTJogwgCLEEEQNMAC4cFgpjiSgyB1yVVVkmRJbGxiYIlpBEAJQwxoQ4nn3iGKWNlMk5FwxJKMPw2bYNIAdcSBg7lEbOoA0QZIJTnqnEJISkdUPCBAghY6JKGdjttOVxNEEmBBNCQE4Fk1QJQWjYNkKIUk4QZjbFSAIATE9PL140V9IUWxjQslRVCwW9ZaXFQb/XtlIuVdNkQhAnBAnBqWCSkCDilFIAuSzLAAIhmACcc4EJBJmWVtgJo8ok4hKEBRSCQyEknGl5KShzMuIghMDJUkeIA44yzVgzfjKbCSAAIViWMETI41Ityhm3U0lLVQsopbZtMkYdCs62uKq6VNVlMYsLS3PLikqczHrHr11aWqrKcjyZcrnUcCjU09Pb092VnxeGGGNZ4hwYhslsLgSXZZlRoespn99LKY3H4x6Pq7a2cXJysqysDCAhREAmCqU0Go22nzg+u3WhZdnjI+N+fwpjLKmKL+CzOKMI1DbWQgkrkhIOhwnnBCJNkpEqGLNz9A+jCGEsE0QISabiqioJIRjjlDGL2pxzr9stKRrGhNtUCIGRsG2TcsY50E0znTK4oIALWVUUReGQCyFUSXZGohACwmzRDAQEKc4GCEJnIDPhVIkAwRgjgORYapaNZWaMAYwgBOjf+DCn+uCczvifPNlMp0HmtxiYTrYcRAJiLgQi2LaYEAIhDBHWVFcymcSYuD1ejCYopfF4NFSYv2LD2l379979v39RXeDa66+HxA4F85gFOtpP11bXpRIxv8cfjU6XlZV3nOn63W/v3XD+6ra2036/d9GS2R2d/c1zGk8cPzMyPLRx48Y//+mv4+Pj1ZVVEInOrjPf+NY3Tx0/3XHmxcamardHMSzT4/EAKBFZsm2bQPLpzl1zWptfe/6jvTtP1dXWYxyASHKrwZrKpsriWr8/uH37ez/+0f+sX7/qvE0bY7GYYRgmY2dOdxUWxI8ePvab3/zq5Mm27373uy0tLU8/9czBA/u2bbv8r/f9pa6+cqj/rGlEq8oKfRdu/PD9fW63F8uiu6ejqanJG8h7/e33Xn3hxY3nbdhy8UWcWnv3HQCAYsLHJ6ORSKSkvMKj+lw+f3/fcE//0Pr1q+e0NL/61qvjk9M9vQOjQ9M2V8rKa2a3zItGp+vqDN1MfuObX9KI2nbizL8eecy2xDNPPFtWVnbXXXf95U/39g+MdnS0q5pcWVXqCalHTu1r6zjESOqfj/5jxZK1my/a1tXR29xcvXRpy+WXX1xZXfX662/WNTQ++uijt91++4JFC/2BQEVFxejo+K5dewiWS0pKPvzg7w319cuXLz929MjKFcu3brn4zbfeIj09QwsWzHrqqadWrVpTVdP4yae7i4uLd+/eOxVJzptXJymQcXP+/Lm2ZSkqqa1u7uvtnpwc37RpU15e/unO0wsXLmyZI5jgH3z0fl4odM011+YXFBfhwvkL5rXOnWNZliKppmUVFIQqq8oWLZ173nkbf9V+b8ucueXl5Wfa2j/44P0DBw7khQtWrlzV0FT/8acfX7zlwuHB3v379+eHi01Td7lcDz74YGVl1a23XvjPf75z+RU73nnv1aGB7ou3XDgyONF9ti+cX9zTOzJvzvp339lR11AcLNhYWBBMRlMeX+C8887b/fFBSVIaGxv37z84NR4pKdH6evqvvfbqkyfORKPTX/ryHVPRsePHjxAJFBcX79+/f+mSBQJCxvnylSv37dv9xhuvNja3lhSXEUIWzF/05z/+a9++Q5ddev781sVdXWcBAIaR7DrbuWLlqqamWZSlool4ZUVJf39vR2ebS/Ug6EnFU4m4iaAEuPD5XQiGAFHS6Wg8Ng64RXVdCMa47dWU+HTKo0nV1YX3/+U33V1nn3ji1VBefuuiljlzq70+dyivIJ0aIrK3pKJ076Fjq5cuLymvmZqOX3TR7H4PqqgsPnWyY3R0vH8I3Punf/zu9//9ne/ftXXrb9hjH1bNmhM1dNuixAVsK0MC2bYNnZ01JBDaAAIOHNqGQAQZYxwIjImE5KSeABBKkiQgFBwiCDGWQcYYhIhK7ISRMZMiBBkXQBAsORONbRg2N4UQAkHOgYCcCJj17siDg0Mf79hRUFTU19dXXV1tGzqlVCCBMZZl2VllHWHCWdFN03Rrsm1ZMGtVZlRYFsUICwEhRkQAmzGHuGIceDwex6bt7ImphRAkDgITQrhcrkQiBaHTLwRQSjFBTvQlAsJZthljlFkiq4rCGQYRRxEgKKsfzQi8mGkA4pxDDnLJkOA/ZIjchhjM8ITN/LeDyUTW7AVmuMQAAEiAcDj8hS/c8ut7H77yiou8Xi+1U5ZlhsMFVTXV/cNjy5ctshjFGNm2yQX1+72maQ8MDqST6fnzW1VF4lzxeFwetwIgJRIWHHj8AUnCGEAnK0tWFQ7g2GiEMWoYAkAOZdUwDIciTSaTpml63AFKKcI54ZVJUiYTxOt1l5eWKIrktJGmHJoWFQJSwSmzcudKCOGUqmGnT6hpyi6vU+Jq2SaSJM65Q8M4reswxqaZ65cAKaXMpkIIJAC1bJ0aGSUUCAQ4ya52REIIAcY5kSBCSCGZxViSJIEIYDal1GasqKhIVdV0MgWzUmYqlXIIEkI0j6YKTk3bcuI2c1d2JoU5c+mdyX8ghBwmDADHUJg5BgHOneqM/2BfGGMQcuhEanHOOXPydxCCkoSjVhpCjLAKAIpGp6empsL5IYyAw2FzDiB2UkyBohLGzMLCUp/HCzlKJXVLNymlTJIo58l0anp6Utd1PZXWXbqEEedcN02v22MzMRlLCchQVrtn3AYEm6YNIQyFQqZpUm5jjC2Lelze4uLS0fGx/Pz8CT4lhLBteyoaMSyTaLKkqarblTYNScI+l1uTiKIo0alpPZ7UFEl1uwiREQIESQRJCCDbtgQQju8BY0ypkUrpVDiUOUym4hhLhCAMBcEAIq5pGsSSZVEAABRMME45c8Rbm1LDMAzDcLaOmJzL5ccYYYwBcrouCiGwEIxluTTHsZAbjLkHyNCZn43y+szlm0mYgf/r4VwpIAhCiPFMrMzAwKDP53VS7sbGxhFCkqwmU5MIS6qijY6PbZjfIqmywYxvfOu2dRvXPfrI46lEtLGhBjBy6WUX93X1JuNsoL93Ojp1xxfvXLSk9bs/+OaRI0eWLVtypvP0ZGSsqrokEbeIBJavWHrhBReH/KHjx48vXrSgubnx8OHDX7j9DkOnZWVliirJCkrEU0KIaCRR16D4fL6Jial7/vCHkZERl8u1eMmyK6+8etu2bRiiI4dPrF6xdvXqlc889fQTjz154fmbQqFQdCopy8rg2DDGuKqy9vobbigtLfX5fK0LFtU1NHz68Y7rr7+6urr617/55axZsw4f2fvsc69fc+NFCxcs7x88rmqSpKKOjtM3ff7G+a0LC8KFLtnVcbpz+wcfbr74wo0XXFhRWRqNTG3f/s7sltmbNl6cV5APITp26ETrggW7d+9++bVX33rv1dr6qkAoaBjWx5/sCuQVty5csGvvnvb2Mx6fy+WWzztvfWwyfvrUmZ07d95zzz2vvfH6ug0XIgBee+MtidBgMK+t7SRRUVFpQd/gWYulKDc3nn9eXqD08ccfP3Wiva66YfXKpf6AV5ZwXW398WNt9Q2zurv748lYOL+4t394emL6lZdfv2TLVp/Ht3Dhwo+2f/Dh+9urqqqSsejll18ai0XI1775ZU3T2tpO1jU2aZr/zJnOK6+8+lv//f2//vWvL7304qzZdR7VG4/F8gIhQGFjYxO17P6+oXjMLi7yAgb7+voqK6vLykpPnjxw/TXXa2rgiUefPtN+asvWCzRN6ug8bejc7XYHAoHikvzhkf4zHSdXrlry5BMvXHftTfFY6sOPum+8adXHn7xfWBRIm5Hf/uZXc1uaF8xrLSwoPnjwICEkGhN9fUPXXLutorrigs3LJqcGbJqeNbuhqKiormpuOikCoSC1IcHBmppZH3zwXHfv8ZbZzY2NjfPmtcSiicKignRK7+w8a1t8YjK+aOFKl0Z9Hk9pWbGsSiZNnek4WVmZH4lOuFzgsksvFkItb2xKTQ6OTY7Nn78IALH/4JHu7m6McVPDvObm2UuXrLZpqrNz4MC+Y6+9/m5FdcGdX7pZN+InTu1btKSFM1hWWlxd27B03opPd+z7dOde3YLXLF4+OhE9fGC3xYo5tAWDlmWl455QIG/VhrXHT7cpimSbydmN9Y8+/Mb5G+bPa11JaXJ2SxVlorjIMzYhAGCy6pq/aPXf/v5Qc8uc9tPtCg5++WvffuGZx093npRkPZ1Mrtu4+qc/u1cI8LeHPrnjy7f582sZAUuWrz3d1wsV2bBsRXBJkdPxOHHq1DASAkCMuC0AErZtZiYLygHACGBBGZABAkAiMobYclYXCKAAHEAAEIQAQQwJybWtzZTNO/5qxrCqcCoM28pOcxiyjOk4lUqpqjq7peXUyZNOUZtzDIeAMeG0BE6ldFlSIYROBqyiKJTajnfECapwlAXGGJElQhSqm6ZpSorMOUcQcCacQDJZloUQOWMQY0xV1ezijRinjnYEAJIxcdZKQggmEICZBYnn3CEzdMxzqyyakSeEZhS057TCc1b9nPz6746TDKyEeCYCc1QJMaNT78ypXAjBmEgmkyhTFQhM0ySEJBKx4aH+qchUJDKdTBl+n2tqCgWDBeH8kG2xgM8/MjRcV1s9OT6MgZgcH/X5PZJEdD2RiBtTU1OVVRWKS+McKIoqIJAJzs8Laorq83tMU7dt261qhBDdSLvdLtM0Lcvy+tyyLNu2lftS6XQaIWRZlq7rmqY4Ufu2aUGIKGWmbWEJAQAwIYQQPWWATGPyjJ07++2oEMLBrw7rgBCwqYmwwjmXZWLbtiP3OFmpDk61rUzfaMdmZFqUGwYAAGGAMQMwk7WmKIqjWnJOBZA455IkK0gx0xRwISHMIMMAp1K6qrqcoDXbojZhCALH+CyAQBLKwfGswshJto2Ec+mzzjaQ06+yV/DckpxRozI/ORmbCAAAsfM+DEIMIcRQCAIhwJxzQjAhxDRtn0dmTAgAMcYEYSAQY4wDqqiKYVsDA30FeWEJE4HAYP+AIklu1SNExkOGMVZVVZZl0zQZY4hgWVVMXRcz7IYIIZtxAZht215vyLmsClEcjOuQkZkuVQAoipKXl5efnz82Mg4A1zQ3FZzIElZkyaVChXBTJ7Ikq8rk2FhsdHxsaHhWUxMUgnJOmQUALy0qDfpDhEiyLGma4miIGEmIAJfHK3iehDilNJVKS7IgEoKQyRgIwVjKlFXFodAkCDDBkgBYJrZtezweaphut9tBPIxauRFkGEYGAznTlEQgFE53SIwwRog7YWCfCaEQAAAo4LmtVG7s/yfGys0G//mQEMYAGrZT8IQhhIZhjIyMJBJxl8tl23RqaioYCp88dmJiYioYDPncnompiTfeeC2vKBRLRLGCATRnt9QtWbC04/TZ4YHRO2694+XpsaPHBssrSkN5/jNn2k53Hh8bH1m8dE5+fp5Jy/sHR852d0rYFwj4Bgb67r77Zy2zZ9fWlW86f+3cuS1btmy2DNPvz1u0aMErrz43NTXl9fi7u3slSUonaF9v+5n2jtmz5l1z7Y1//etfbUsUFZYkEolwKE+W5QcffPCVV155+J//uvbaa91u9+joqDuWqK+vxdJQKpXyeHynT3d0dHTUNdT2dPf5At5HHnvib/944PwLNn7pK3f+45//ChfJs+eW+n3BQ0eOvv7mW1WVtZjwdHRqzaq1l116+Y033vTS088sXbG8srLmySeeXrZkycm29nvv+X0qDebMnVdWVq5obkVRjh17av369duuuvLkqcP9A52WbYTDIYCU5auWP/LokzfceM2SZYt/+avfb9t2weDA6O23f2F6ZCo6FTty5ND4+PicOXOuvfZySnlZRfmhg3tu/Py3KqqrTrYdGxwcjsVijIne3v7bPt8yd9aShXNXPPTQw0Ff2Lbt8bHJljkLGO34YPuneeEimfg1t2fPrqMHDx4cGRlZNH/BwX0H45E45MDj8kxMjG/ZsiUUCqxes3p+6zzSPGeeruu24F/60r2FhcC2wKn208EPPrJtu7KqPBafDkLvxvUbhAB/+MO/KLN8br/geO+efa++8lZRcbCisriv50zHmSNer/beu289cP/T521YH52e7DjTVVNbdvDA4YC/IJFIbLxwQxWo2/7RW02NcxYtWnLkcNv27e8XlxS88MIdPb1nxyb6jx472NZ+fOvWiw8fPLRnz778cGE4P6RpSldX14YNayYnJy1mJBLxZcuWHzlypKd76KYb79z+zqc9PQOFhk1t8ac/vQABqK4FJWXBo0dOWCZbtmxFV9fBpx5/qqqqZm7Lgs2btxzcf8Iy0+n02MGDB4msFhSFo9Hpgwf3r1q1qGV285HDx3wtebFYLH7wcGVVSSBYQAianpwKBvInJyf37t332isfXHTeNsOwT7d3HT/W5nG7ly5ZcceXbkobU6NjfYuXLPC4Azs+3vP4k8831M/euHbTxiuvKCmufOjhZ/78p7/9458v3X7rFiGgRbnqwhK1EvHxPHegZVbzpzu3l1RXpBN6fkP1j3+4jnPY3zfS2NiyaNHU9PQ0Y3ZVec3oWGzv3pOx5JGpGP3zfS8WFKvvv9teWlo+EYl3nO1fvKQJQKibxiVXXP6nB/eVVfjv+eOjhaXlkkcenhzXPO5YKsWcRsUICARtziSMEAAcZBd4Z+sGAQRQCA6ZU4clOGXnnFKAQ4QAEA435sw4DgcGsl3JctZpxhh2rDwYgExeKEMcyiSTj6ooiktRS0tLDcMoKipKp9M409yNM8ZcLrWzs/P5F58HABw7cXzJwrnOjC9h4OT1YFkGCGayQCkThiHLsuAcIYIQEgJyAZxgqkQ86fEUIURsmnbWbyxJDvailAKQycJ2lmpCzhnhxb8b58UM80duTeLZXt1ZNIZy2Cs3HTu922YyW86PDtmTm7tnSBgZ276jMOYgXe4NP7ONFkJ4PB4OgNNe2vGGB4LB5ubGoeGxwvy8aLw7Pz+vb6A/GPKWlZUMDAzZtplKJ8bGRjwuLZWKh0KhcDBw8kSb16NBQTwej9/nSicTkqQwKhTV5TBPU1NTdq9ZXV2pKEog6DcMozy/3LTtRCIhy7KqqrJMJIlQSjEm6bTu8XgikQjGuKAgzJjt9/tTqZQkKSndoJSGQiFKLdM0AeO5r48kYtu2DbhtGJJKMMZOf0lCiKZplq5nSMesGRkhgBBwwtYdthIh4Ha7qU0RQgxAanNH/sskkAlqWZZt20xmlFoIMIcNxRhDCUMILctCAEMOAAdQAMGYYaQBALIsA8ABEkTCnFMHKNqcQSEgwBBm6FKYzdp15NTPXLvcpZ9x0cFnfvWZK+t8tmzEKM2mQGGMsWVSjKEkE8MwJBljBoisuN1aplRCQoIDRqllMMswC0qLqqqqOLT9Xl9nZ2dpUammemVFSSeThJBoPIZJwOP3qS6NZ0yNGABgmqbb7amoqMDj00Mjoxij7CkSqiQ7DV59bp+iaBY1ndY3GEBd1wmWbdtOJBJOIgkAjr8CAwg5FxAghAhnQHN7Y2i6dd6C5qYGapmGYUiKMh2ZfOn55zGUNmzYACGMJ2MCQa/XPT4+7veoMrQY1T2qpKquvLDH5kySJM5tQQ1GAZElmwFuU9u2ZQRUmWAMbc6c3RoDIp1OO8MKYYmgTFqYkJ0Q6XP2LKevmnMdHeiEMHaqT0C2xNWZ+nLToAM94QxP2Dme7D8u7sxbgjGGEHE2ikxwxoSiKK2trW1tp/bvPyDLsm5YE9PxsYlJRVYN056e7i8oyK9vbrS57Q+HUkZ69+7dQggu7EDAc+zI+LPPPR3y5y9Y2Mo5tyg9cerkhzs//MlPv2dz/cGHHm1ubpq/aFHAN3Rg//GhoRFF9gwO9d92yy0A8HXrNj788IM3f+62lpZ5D/39IU1TFsxrVd3a4cOHTSPmcRUBABobG6dj01//5jcu23bFo488/qu7f1lZU4sg0XWzuLjUNsxHHnlk0aIlGEtCwLKyimQyuXfv/kQyWVFZhjH+4Q9//MnOjzdsWHfFFVf84he/KCwu2b17r0XNwaHetevmzl0wxzRtl1srKqlE6I1UejoY8pRUVjz71NOd7Z3RqalQQf50dKq8qjwWmbjo4gvjMeOSSzfMa2k+depUZ2fnY0+8UVubt3zp0n37d1191bWVlZWf7n4/XJhfW10xNDghK3hua91jTzxy8803r9+wcGxiVHMrO3Z8ePmWy+744u1vv/3e737/6z179qxau8ajeRKJxODw8MFDx9pPn/zjX+6bioB7/vBtWXJ95ctf7Th95l8PPrF4/jKv1wURm5wara6uPdN55qVXX8nPz1dU7dSpNo/HE4vHvW4/KsajQ8O1tdUnT56UJTw9PQ0huGTLVrfP/dLzz/305z8nGzfeCSC44cZlP/3FtXv27JmeSj7z5M5nn9wJILjm2mWBoHt4aGDRgoXNzc3Hjh4629k5NDg1NQXKysi2Ky5qb+80dXPzlnW1deV//vN9XWc6brvl2tKS8o8/2fHU049pqrx06dJrr73unXfeNXS2+cJtwVC+YaSj02Z/37AAek1ttayyeGLCMFJl5eWco0u2brt62/W//93vunu6JibGLrrogubm5iefeP6lFz+OJsCGDbWHD3bs3PnpyCC4cNNJQtSpqYm8/BDC6C/3faen52x9feWZjhOx+GQoP3zLzbfH48nC/LKzZ0cK8sfuvfdewaUvf/mLlhV/593XNm5YGwr6EUKlxRXTUwmPN3/Fyk024/HEaFdX2yOPPvizn92d1tHYuNXTM/7Pfz60eOHim2+6o7Fh7q9/9btQIFBWFrJtOxB0BwMFYW9pRX19Ymp4dHRYUZTxycRf/vzk+qUv/PCHP1p8/mVrh+Jf+eIPFQT0FLJMiXMZQYwQMo3U6EjfyROHPXl+yzJN02qdt9g09Beee/utNz5onT/boglKrXSXxYFiGtKD/3oXSiBYGK6ZXU+Z4TYGPty1e6h/uqNrfMWqdQOjQ1iixRVVjXOKp5P09Xf3Ke6TnnB+gpqUcsaYqmmyLBuWLgR0QjsFFZxzBhjgWTsRBEIICCDnHAqAEeKcE0SYYQrKsII5dIKtBIQAIQQ4d9ASYwwhWWTrEKngDrhBCHEqcpOayKZOO5KEaVMAQEYRQIhRTgjhjBJC0mmjsqJ668Vb33///ZKSEt00nQxxxijgTEDQ09PTdvqs3zNSXZkfCnpN06SUSgDZ1AYAOTnazkJlGIZTGO9Mu0SRAUAulwcAhCCRZMmR2CQEVSnjO8EEOnmojqXXAUOEZNZ456s5BZgASTN3tyIrU+bYMoQQz1JfGVSajcWfGds4k/3i/BzZk12tQQ7Y5fbWM2Zw7vV6AQAFhfkICmZbCGFqmRBwLmwhbK9HHR1JSgTq6YTgtmBUVaRUPKbKRJVlPS1cmqKo8sL5LT19Q22nejRVJpj7faqhUwAARML5yPn5+V6vhjB0uVyZhEwoVJmkk8mhyJCEYH5BOFO6KSiEMBaLcZumqJlKxouLC6emplwuF6UAESmZ0uPxOEKIMU4kAAAgsqTrOmFMUhW336cz28F8skIM2+ZYyg8XApBRKim1OEeyTCCEtm07xRMOx2nbNqM2ozS3CkqSZFOSLX2AHGYS1CCEgjuSLrdtjpHMOaeWDbmQiYQBTJm6hCEAAmNoWLrFbIxsweykZctYdru9lAshuBACOOnp4pwpcCZQnrnu/gcFwjPRqk7SHgRO7STLmriz8pZTVQcB5LknnXwNKICTgypLqlMRkk6nZVlhzBTc8QsyhJCeTnu9XpsbmqYVFxTqqTS3M3GysqpSSpPJpN/vlyQJZKM9nNvYtm3DMADjCEAwI4WBUpoXDBUXFMfj8VQqJUnYyYNwbmbHPOCc/Fz0rtOgkDKGJAIwsjnDEgEQhkIhJAAQUJYUgnFeXl5JeXlxuGj58uVYIrqeSqRT6XTy4Yf+IWF4+SUXpONTyURUVV2ypPkCQY/bJ8nY61ExJjLWZFkBAtrUYmZaN02MIcSAEDkSiSiybDOOpczkIAhEAkAoOOeM29hRBCCGEBIkYegkx0IunHZn1LYsngXEOSjmDGecbbMNszb/z+yRZj5mbqUAAJKkUEqBgAAARCQuOOXUF/BVVdecPXsWIdI6ay5CUiK5Xzetro7Opqa6qtraWNzqOttdWlVeVFwzMtnf23u27URbcUFpWWn5O29vLyosLS4sUVQJQhyPJ0PBgr7eUYjB97/7q5GRkXkL5kvo+HNPv1NcVD45GZnfuvCVl18rKCi45pobb7n5S/FJfWRk9OjR49/85reuu37b1PSQEPFIbPiF59793T2/qa2v+dFPfvLkE0/+7mzX5osvnqgq7+7qdbs9GCLDsAKB4Oq168tLyouKihKJBGUsv6BICHHq1CkEyen2jlRSb5k3FyA8d27rlVde+87b7z3zzHOmlbz44s2+AJY0fLarR1WlooKgEbc2XbsaCOLC6qsvPP/qSy8Cwe/8yleOHDm0e98nV15xxVe/9sUv3vk1jGF+YeGZM2c2btxQWVmu63og6O3p7nvtrVcKCwvKKqpUTYrFIlPRUaKASy/b3NXV8e3vfi0UCtbXVixZ2qqqrnc/eGtqfDov3//Sq6+sWLFidkuzbTLbtmvrG999/8PZc2Y9/tgzn+7+JBpJx6KGZQqv1x30uw4f2adp7uqqujnzGjo6usJ5xdded8Xzz71aXlGyffuHdXV18+bNGh8dc7ukCzZuajt1AggmKFu5bPnI+Ojx48eXr1kOAFAkiVx6+dK8cKC8LH/d+rXLly9/7tmXPOrQ9757Fxfs2Wef7O8dKCzKT6ai//v7395www2VFdWvvvLGosULNBd6/fU3Y7Gpjs7INdddvHTR4vv/fD9G8tDgGNs258T1Bz636tqes92UWocOH9i1a9fJto7qqnpZ8tbXzRkfm/T5/MdPnG5sqjl56mgoFCgvLd2/b19jw+x//O3vl19y+Y9++JPuns62tpOBoM/vC37pi197790Puvt6VMXHOVi1aqWM5UcfffzySy956qknjhw9dPDwQc1FXG7J0C1GxVVXbauoKD9+5CgEit9XsGnTpsIC//1//cvOnXsfefSTm29pXblimaq4+pfVAgDmgW8DADrrdtbVN4XDfiHErl27IlPRF194TdZC05NTr77yzOaLLnKrHrfb193d7fV5ZFkeHh4WQpw9G6/50U0AAAA06/EdPb2n16zf8N/f+++LLzzzwmNP/OufjwWL6xcuXhJJ2h/lfQq2A7D9s0PxyMoTEACC5NLish07Pr7v7H0AfB4AAN7/7JHX+74CAABxcIF0lSIjomkLlq1NJ9jeg6ejiSfefOPFj3a8MxXV206PFFSWaV6XIEiSpGg8jRh0aVraMgzDQAQRiDCAzLIRIjBjrOAimw3NgcCZ6mnhzD0IY5DtP80YQ8Bp6XquEtCZOABGgAIuBOSccZYJR50RcoMxxhgBIQghTkC8pmmGYegZmSNbdQihE+MpSZLb7W5paQmFQrad5pxLikxtAYWwLCsYDJUU5muaKy+UL8uCphmlVHDABLcsa2IqDgFgTrPeLCHhyJfplBGPx23LSqbTqiJxbqmKbFkWRllH7QwZMbe7Fdlo8hyOdKr8coaPnO/nMywXQkjM6LmbM5EIIXRdd0CMo0LmOLP/JLcc/gxkV/SZCohzUSizIQCpVIpSD8Y4t8RrigqBgJwJwAS1EeDUMjwuzTAMj9clSZJNTSev0tQNIGhZSdGhfcdFKNg6d9bQcP/kRKykuGJ8etrr9er6Wb/fr7lUy7Li8bjP54EwUxPn8/kUWa2pqaHMjkSmJEm2LKrIGgBgKpHkwhZCTE9Pm6apyCQRi6qax+1ymRb1eDxJPQ25sCzLweUY41QqZULOKFUlzTlRDk1om6akKM5CKJFz4WcYSxAixhh3lGUABQQcIgQxENC2menIOrlMCsozxkdEhLByYAISgCRCZMnWLUop5wAhiQMuEMISsSgVEFDOGbU5ZSTbk1QIgRDJmcB4NttzZhldDnLlxgL4DzVq5jEAAAH+7VdCCJBVJiESUGTTRwVVFMmyLMCoKXRFdYlsWLFMICTEqRe2LYtSeuzYsbGJ0Yry0nAwhJFs27Zp6NmvgGpqagRAuq5rgQDGGb0TIRRLxKf6ByBWFUUxTZsxm1o2Qk47QmFZFoJYkzWLWTZlhEhCQAiwbduUWZZlOTmr1OaOqKcz27KZIABAxAQHHBBJAgAQIpuG4ZzAUCBQXlJaVFAsSZJupm3OIIR+f7C1daGE+YoVK5LRCYwghPBs98BjTzyLIFizZhVnJme2AIDISmVFrd/nwYJKMtJcmqyplHJJ8dh6mjEBMaSMQZvbmBOCZZKpN3SqaiCguZGb2SkBIUmZiF2erZCFEDrbzlw9cg6Y5pwY/+cjN5Bz/8/0owTAqaN2boBUKhWLxYpKywzdSqZ1BGkwL9x77OT8hYvD+YHxqen29r6Oru7SkUhVbanJklu3XFlbXR6PJbu7+jW3NxAq8PoDtm12dnZOx6JVNTX79h8pKy8/fKi9q7u7t2+ivLx8yeKV3d29lkkptWQsX3/9jbNmzdYU7Y033igvLT9v3aZvfu1bwYD7ws1rt1x8fiQ6/vxz737y6fbKmhu+c9c3Dx0/uvWSK1SX8sQTTzEqOAeXXnrJoUMHRkdHy8oqXKrGOXe5XNAxDQtRUVEBIQ6FQsXFxcPDo4MDo2vWrNu6deuKFSv2H9gLAJAlzKglM7mv5yw1qR5PX3n1plQs6nZ7gz5XY2PNuvUbbM5uufnGrZdctGXLlo0XnNdYX3f46K6R4cGf/OiHt93y+W3btpmmcez4kbfees3rU86e7cjLCxQW5uu6rmiuPbsP/OLuX3V0dD3/4jtf+MJ1qiZ3dXVE4tH5VVUSUEzTGh8fL68sKy4tEoA99cyTmuYuKyu77JJLXS51YLB/7dr1f//Hff6Act+f77/6ymsWLlzY2dEty6qsYK/Xs3nzhaYtJidi8xfMpgxuOn+dZZh1tRXFRXkDvX0Q8by8UDgYnDNnjs/vQcfF8y88O2t209TE5NGjR0lxsX/37k8feTj1yiuvLF+25P13ds6Z1fDBB2/ObWm99uprIIe33vblU6eORSLJWCS9deulk9Mjr73xzGWXb165esFAb09NdfFPf/Tn6bGpqqraFStWsG1zAACXP/XLok86Cgp8epoqinqi7dQF51904MChHR/vfPXVPV4vWLuu9fbbvzg03BuLxN/a/Y7XE25uaunq6po9e/aChfNOnmiXia+hrvXiLRe2tbUND069+eY9i5aWywqZv2BOIOAbHR6kPHby1JGnnn6UC2vdunV//uOfbrjxuv6B7rLywkWL5+t6qrSypL2t65WXD54+3cZArLq6/N4//8S27Xfefb3qezcm/n1U2JetbQcAANB8wrXl4ss/d8Ptzz734t1333v55RuvuvLqE8ePzWuZEw7nuRT3hZvOP3DgwObN10Q2N858B/lzVzQCoB441T906tLrLzSSqVdefOexRx4PF1V9lPfp/2s0/mTXz9eDLQbk0yODT2r/gbn+r8e7U89fVnmDLLxd3QODo9E9Hx969Y0DEII/3f9MMm0BAWSXOxKbxoosKzLCWJOVdCKlqLImyTa3EYCcCkmSORUIEigEhhBQATikzIYQ0kzCpwBCIIAZs4kscZhtkeisDY4YAgEEEGCUK8oTwCECIOdcllRH3ZNl2dmXQ0xUWU7q04qiWJYFs4Z6iBClVMrKNyKbUSmESCQS6XTapRETZcKsESbpdNrrDxcVFcmy4na7U6lpAACCGACOEIYQTk5OIgTefff92U31xcXFTkCUxSwhRCwWO3q0jVGwZPFgy5w6y+QQQgIz65wTgw0FcP7LdATnQoBzAAtCgTFEiEAIncwJMUNq/E/dwXk40I0zwZkDV6Fl2qqiYUQY5UBAIKDgGVA1w5AOIcQ8m3MBAHDi+QU4V/Se+7cD5gzDcGsuKBg1TQSEYBwBqKfSBGNObUnC8Xg0Fpl2qSqG0LJNSqmgTFXltA4BgGWlxX6fx+9z9/cbQNgSAbZlWqaJERwfGzH0ZCDg87rdCEAmBMYwnU46wdy6rjuxSsjpYSchj8czNjxSVV2hKFIqlVRkGSLs8XgSqXQkEnG5vbZtA8Z1Iy3LhHNumiaEMBQKEY9m2FbcSiuqapomQVhwcebMGTudtixL0zTLTDndqRHCTmC6JCm6bWcBscQZcepJnWVSTyecjgcuRZVktyTJDkNDLRNC6PCaECHLspLJJMYyB8KwuBCyYaYgAUjSAJQohzLRAAaaimQJM2YjwCGCji9IZDxegDNOJJLze4EZRXA5GA1mwC8InVpXx3kPgAPsxMwIdZitls28kQSxEEIAAbhQFCWZTCOELMYIcXAmIYRAaFi2qcguAMD4+HjD7Hlerx8g4fMGUim9MN8vOAKImDblAITD4d7eXgCdmAxuU6rIEhPcaTZACLEZl7IIA2PsbJBisVhvb291VY2DiZ2/66SpzeyzBDBkgguYieMSGHLAIUYAAAQAtUxIMm9omqYiKwAAxpgzaThw1tCtgkJfQ0MD4LZLUQciEVUhHo+vrKyspLggLy9v5arlMoHJRBwiPDg89ujjTyEAliycD6EQwPZ4/aFgQVlZudfjlmUkK1BCQkISAIBSy2Y2ANxp7EQZg5mxjABgCNlO1h0EgFEGAIAYYSxhLKFsaEguTTczUWQaZWa2agCdMyfMzOUXM5wMCCCAiRCCUQpFJo/Gsix/KAghnp4aPHb8VCCUT2RNU72TU9GikmKieAQcdLl9yZRxur1nOjalp3lRUf68lpbJqZhumohADsB0NO4JBImqVVbVhsPhcDj0lS9/TSCYTqQAhpvOv9DlcgGA0un0ibOnznR1lpWV1TfUjPR3SxioMrnmqqvu+s5dO3auv2jLyoqKkm1XnmfZiV27PyytrB4dHznb0x1PpiLT8XBefiqVajvd3jx71uT0lFfzJeMJqBucc1VVp6OTLpdLVVVFUTweT0NDU9vJ00VFRWvXrE+lUudt2LBwQevDj/xdnVVrpOMdbSdn1zXPnjsvnFc0OTn185///IrLrySMVFWW5oeDg8NDL730oiRJX/jCHQCA7u7um66/3u/zXHTxZklVPtz5UTIebW2dc+TowTvuuA0h6a7v/eDzt36+pKTswIETHacjiYTYuvWa555/+ciR47W11RdesEWS8cEDx3vPDn7969/0er379u9/483XUmmjsroyHk+4va4//eWPH364DyHwja/fUl1ZJcmsID9EbZFMmzYX1LDCBWrK0IdGR4KhcG9/dyQ+MWf23FmzNpq6eXDf/rfeeuuyyy6LxSfu+uG3J8bGb7/99q2btzY21v/xj3+MRqcti37ja98kN9989Y03XP3B9o8vvfTSvbs/2Xzh+cODQ9/5zl90/eWLL26Y1TD74Yf//Ma7L/X3Dfb1d1973X/feNPCYMjz6msvKYqycvWSvt4BuK+tobHu+LGTlmWUgEucWeORR/81Z3ZrWXlVZDr545/c1d838sFH2xkTF1208PTp03v3HL311ltdLhdn6caG5tGx6fPPv/DBfz7MGLv33j92dvRI2LNr18FnnvUPDg3cftvPli2tLizNt21j+/Z3piPjnNr5eeGF85ZcfNG3JQ0XFBRUV9d+61sPLF3m9ge0lasXNTU1bNmypbjo+CUXbROAnWzb3376+J69Hzc0NFz3wt/+f8DNsaPtK1at3L/vwJtvvn3/X34tBGs/daKr8+zWi7ecOnWiv6d/06ZNCxfN+Qz2yj36Fs8+9dMnW+e3zF+85EtfenDf4YFnwP8TewEAvj/3++IoCYXybrr6yo9LP1jzm/P+fw52HhcWX2enTK+mvvjKmzRNqxsbGBPMMn/5Pw8BCIrqqqOxhGlRl6YxJiCEgHEJEwIxhsiwmGUYXo8HAACFIE6adnZW5UCCODOLMM4lTBDGsURCZOvyIEYYQMBn+NC5gAgJBC3LYpwTQjjMBQY6JfRwxsIBGWPA0TRJJiTCmcIIIYwyIQTAmZiGXG61w4eZppkydL/bZduWENCBI7qu27YteGb3iSBiQFiWNWvWrFff2HnJxRerqtrV1dXU3KjrOgZACFFeXr569dKzHZ11dXWZ4rhszr4QAhOcI6hy1BfGGIJzMU5O5VoGXWWbUeaW25n7WuetIDrnFUPZJpgIoXQ67XK5HPYLzCC9/t2PnyHYWLaPSnbZzuYGISgRwnlaAEAp1XVdVVXbtl1u7CQvZOgZxg3D8HrdiVjcMk3nxAKYodwQQoIxxmyMFUIIQtCy04xZMsaEEE1TUmldluVQKCRJGUuQoijAFqZJMwWwhKiqalODc26aVqZdFWWyTKanp8tK8/1+v2kYlmFCJDRNQwJYhpmlr7DDfhGF2LaFLMJMxMSM25JxBBBCyJeXZxq2E3zvSDYYY0YFpTyRSMgSdmCKcx5txjkHkiSrqoszXVZdlFI9mYI2yNFsgFtYEEIQ5xwJAQDCkuJWtXgqKUW54LaiujyecG/ftObyGxY0DVtPJvODPkXGjBkIoUw2/oykLsYyvUrhv8nHzgX9fwZ4/v88ciUXwrH6w8yowRgDICilhCAAgEIws6mjFVJKGaIIIQ4E51w3DUVRIpEI5TbnwGYiEMybnJwCnDlpzFwIygSEzNk3OHegaZpet9vMJOJmOFoyIx4ZCpgLsHBKASilEpEYYxIhlmVJGFObypKMEEIEZ8IecjezELZtgwzhbQEhNE3jnHEODMM6Rxwyruu6JEkQAEyQbdsCcEmS0ukkkTz5+fl1jXUYw2gsIkmSpmqVFdVFRWWhYHjFyjUul2qaRkrXO073P/fSA811DdU1pYoMNY+SF8wLBAIulyYTBUHOuAkcHdmpJADOOBUzMRYAAEsZzTH3zL/tuFBmusgNZ8fO4VzHmWRn7kcIsQAQCYAw5oxBARybmiRJhmXreprIyuq1a3bu2JNIjU5MTRv99NiJdtO28sOFiqZCgHXT8npCBLkNHR4/0VlXV3Pz7Xf0dJ396KOPgsG8ivKq7p5j7ac7Kisrq+tqlyxbhRDS3C4IYTKZ9Hr9UxNRxtj8+fO/861vAcEbGxtTkYgma2+9986br73+ta/f8Yv/+dHbb70XDPtrauoURZmYmBqdjF577bV/+9MD1bPnhguKgEXD4fDx48cPHz4sSTiVSpUUFRuGcfToUU3TmpqaEomEqacXLVpUUFDw0EP/6untKywqaWiqP37s2NPPPFNTXVlbVcu50FPGf3/r24cPnYhOxFTkGuzrv+zirUMDA0Cg2c0Njzz8IGVwdCwCMPj+9+8aGhzZu3tPaVFxZ0f7/fff/9Of/OiRRx5pP3Xixhuvra+vVRRl/brzOUPDY6MYKaFg0c9/9oMH//HInNnzf/yju/ft//TFF58Ph8OyLL399jua5n74kUeWLls8Nj6WTifHxkdSqcSePbsXLVr0hS/eecMNNzz//HNz584dGx+OxsZVxQuEvGjhiuKioZMnT3m9gcGB4e7envr6+s6uM+XlJYcO7zt56mhpQUlaN6oqy9atXdM/ONDd0zl/XuuCha0ut7x06eLvfve7v/jFLxqaZ5WUlJATx/d/7qY72o53nu04W1db+eFH77oU9yc7//XgQ/e3t7cXFC9evX6J7EI/+MEPIKJ/vv/2a66+bsfOD999+42yqrI1q1a+l37n8m3zyyuDY2NuAPTc7YWha3wsUlJaBRGXFRgKB0pK8995550v/9dX77rrrhXLr0rErIa6ljfffPELd95y9y9/Hg6Hli1b1jpv8T2//9OefacL8/wYg5dfeSE/P6+uSe0d7MkvCbS1nZQUnp8fik6nEUI7dm4vLsm/7Qt3UErzQvlLl7W+9vrzu3Z/0t83VFFeXVJc9mzXC5decrVh6K+93rds6cqe3rOygitnjIHCjzv/9dCDFz/2u9wz8ufO++nnf/jCCztvuukityYJQQrC+atWrozH44GgJ5Ga7Oo+pt58xcyB9K/zvnDrB//I/bjg579KXbYfyWFLgMkpAPIyz6+bWrXt8ov7Bwf2Hzg+q66uZ2AwaRr2DuwJFbg11+HDB7vPEv69saamilOnjx45dLgov0SRSDCoLVu+5vjJ0RW/vDwzHVuQQE03qN/tBdxMUyo41i3ePH++Se1IIkkkjRomBFgwToAAAFqWReQMpiFEMQ3babRimbYkSbZFAZFSqZSiqRACDiHnQiAIMaKcqS4tlUoDBCDGAghKLWfqxJhYli2yDwBwduHLZspzpxeQyPnAFEWxdd3ZPdu2DRBGCDlNIBECgHMIIWNCAMGZjTGmpoUBFABRTgFApmEzRTDGJEliVBiG6QRv6rquaLLb7RY2TaRTIiNiAp/PF4vFIlFr374TixbOK80PpdNpZ713oo+QdK5MCRPIBRU0I0EKISAUTi9hCAEUCCEI/h+J1c5y7iDO3JKZI7GEEAgiamf4vNz07ff7c2dGZFM6uXPKgMjyH9k2PpwLDhkVhADHVM4BFBBzbmXEUACEYJxTyzIUh3fkADDgLCGUcoyk6YlpznkwmCdJ0uT4BM8GO1qMMiGYbSmaIihFAgDGYYbOoSIXiCoE51ySseZSKLNsy4IAKIoiSVJamA4mkCQpjWxCJM6AJEnhcNiydQec6emkYeqmxRBWCgoKLMolRY5EIhBCWZYpNWzbxkgyTF3XE0BwKeiDEHLGIQCmaU6OD3rdgffeeSd83ZUej4szAAEGAiUSKSFEOm24wwEhBASIMyAE1NPm0OCIJivWrEqJKJQyQiRNc0Gsud1ehIiqaKZhIoQYExwAUzd13dQ0LZ5OIVliUB6fiMgEjYylOjv6pqaNF196b6ivk9rse9+6LRiQDVt3ajkZRxCcK5LAGAsOAULOTYPxv9WxOndFritO7g7JsSNOlWu2AjIDQIUQggkAoRAQZAsnMwjMgWIAWJalaF5FUeKppGHooTwtmYo5dbx+nz+VNhYsbk2b6XQ67XJ5MMbJRBoADACKx+Oqpjn7B4wxFRzLks2oJLky4zR7n9dUVp05kxlfqktzqW7g4PgZoz4HmkG2QkUIwZgNUMZ+h1WFcWEzJiNEZAm73Q5zxihljBJCoADUsqEATu1qzkOp63rI55IIkglGgEMJUWqlUinoNEUHwCHLJdlTUlxWWFikqC6ARDAvr8Ttd3uL39/xCYA4L1zU2XFq78HDzuiqKitond+ycP5sRSUcQIARFIgDAYBABEMoAIQIZFpxYIxZtpeUc7pyKWLOGWDZAQWdfSfMptpkM/GFODecQbY5aaYalgOYsQ1AAKCqaAIS245UVlaOjE7k5+fPmlMSi6fbznRIskYZg0gMDw+1trZWVFW3t3fmF5SMjIxoLq9uMH1saucnuwJ5oWg0jkYGK6qrzp49O3/RwvHxyVRKlxWFC13TNAjwxPhUNB7RTd0YSa/fuIFznojGAm7/b3//vz/86ffeeuv1wbGSVWtXnn/Bxvfe/+D7d/33937wnenY1PD4xGWXX9Xe0dfbMyhLmEOm63owGGTMSdGjBw4d0DQNS6TzbFd5eXl3d/euT3YGw3nr1q1ZsGDB7JYF69atefudV9JGYmBg4LHHHl29fHnXWXH5Feui0VhT/axTJ08P9g2PjUz2dfec6Tqzdu16hMDmzZvzwkW79+xPpPU/3PPnP9z7++aGWRdccMnWLZsWLVzWdup0fih82+/+98yZdsuwz7R3zp+3+sorPvfeB9v7+/sbG2dVVdZ98um+ZUuXN89q2Lhp/dLFyyfHI3lhX319naa5dnz64cnTx/r6+i7denFxUenRo8cWLVqwa9enkUjkisu2LV26zOcLDA0MTIxEW1paRkem6+rm5IVKqI07u7ruv/9vk5OTK1asqKmr3rXnUz2dXrRwyXRkEgL8xS9+0e/3uiPadGz67l/+fNeeXW+88cYHH+1cuWzl7NktEOC2423k+WefNdP0bOfoffe9tWZdsKm57vwrNkDEiAQDQbfmQmOjAx6v60xHfO36otb5zZrPzTk/c+ZMJBKxDZZOp2bNbkzr8bnzZh89fCq3LC1etOK999577PGn1qxf19DQkF9QVKGXXH39FZ/u2lmQV3TffT8yDEsIfOpkx4njp2c1zyNEffPNt//nl7/rOGPNnlVAIPL5PG+++XZJSUFZWdH1118/e9b8QNDz+pvPvfbay/W19YsXLZ2emPzznx461X5m0eIFyWTC5ZYLi/JvueUWv9///e//MJVKuV3e2279yurVS10u3yWXXNHWdrzwy1fnPqHx9EeyWnnDTddOX/B+z9ne2p/c4Tz/0Qe777j9qoKC/JGh4QcffDDgC/r9foLl1WtW+Hy+mdhr7zd+8uUvfw0dueGtkp9tvfga+9pm53mPL3i2c0pA8O3vXgIeyhzMIYgmo6Zpfv7Gq/PzCyEiU4nkjl17u3r7B3p7h4QZmY5MR9rmtf63y+U6caKD1XOXpnSeHg/4wyt+eZvzJleXfdFtu7GMU3pSNygBBCKYMHTDtibiSQihZXOIgSQpEpYhAgJSbjNZVgmWKWWcCQflUMq4TTHGTnsWwLmsqlwA26KYQAGFLCuWbSOBGGNYUyHGtm0DBBGCTmarEIIQImHJTsccsUmRZIAEZRQAQCCaGVGY0YBSaY9Ls5M6yuYwZQSXTMA3FABwLpyW105geq5Bm2manPPJyUmIuN/jtWyDEOL0IXbMLqZpapLsLEtOEUAqkWyqr2qoLw3n51VVVaUik444kkE4ANi2rciAMSYYA9lNP8ZYZKIiMhQUzwRSw6x9O5NWzxiD2SDNnNI088Gz8dYz7dgg6wFyiL3cMbl9NsTnnGdiRnNAJ6TAOZkCZY4HTq8kcq4JI8g2rjZNE0nEwV6ppI4xiUSiZZUVTlgXYwxBggiCEDv5C7KkcJ4Jx3IYKUpRrhGyyPiWnM7TptMdEmPs1Pc5uqEsy9FoNINfOeQcOGuV45vJSjacMRaPx6PxpMfn5ZxjDJ1qRJfLhZFEVLkgHBqbnLBzfjgBVEWpWbSo41j72vXrVdVlmqZtOqsgsSyrsKCIMZZMJkOhgIMhdN0mhBQUFGmaBiHmjAsIdV1HAgHOxsfHy8rKbNtGCLlcbtu2bMoElCRJiidSvoA3Ek8kEqmPPvhQAI6hnBcqcHt9XV2dEDAMgGVRzoFEFFkhAAAIcE5oE9lmgrmrnLvEOaSVI05yC/O/853nnndaaWbJFYQg5DP6RToX2pH8GKUOB2kYBgAgkUqG8kIAQlmWdTMRjcfj8WQsliirKLVtOx6PQ0wMmwIEEcaWbbs9HlVVLWrr6UzKHcjmZeTuKOcrKIomSTj3NR2G1fmQmJAcBhUAECybtq0QmXNKCDFM05MXTCVMSinJ1kw4A0ZRFISQQBBj5x2EbWe4Q2e0yrLMbZpMJsNBF+fUtm1KAJJkZwjLsswpk4nEGNN1U2DNsuzpaKS3tzeZiprUisVTwyMRRVM8AY9hpOfMbVm/cZ2mel566aWTx09uvrjU6/UnktNSJsTvs4EgOTqccy6y2yFnr+XATTFDSfw/H7kBDsD/4U9AADkuDu7UcWTfjTHW1dkdzAtzBjVNO3XqlG5QIGA8lqysrhLALiwsKCkvMS2DAzY4ODgwMLT3wH5ZQYGgNxDwpXVd0dRILJpKpQIBX35+PsZSLB4fGRlNp2MAAM2lUGq53VpLS3Pr3PknTpyIxWJ6MvWjH/wwkYq/8sqLJ9uPPfTPg2UV5Z1nz26+6JKvfePLo6OjvmDgheeekVUt6PcdnJysra1nHLjdbs6pA6NjsVgymZyYmKivb7juuutefvGlsvLSz996644dH/79/vsWLFna2rrkVHvb0MjoxFTkkq1X1dXVb3//PUOfKq/yv/7Gq5dsuUaWXBabKikp+ccDT12wefmcObM0TUNYmY4migoLome6SouLqUnb29vXr11DsFxSWWimk4lkpLq69vjxo42NsyrKq5566pk7v/CVNWvW9fcNnGxrv+CCi2+97fa/3HffqVMn/vLnv69ds6y8ojgRNwb6hlrmzb3uuhskCb/60ks7duxYuXJlb093dU29qrgIwc899wznLDZdYppmQ11jc9O8JUtDQqCiopJZs61XX3u9sLAIIVxUVLR69erCovyBvv68vHxgC9umJ06c8Pl8oVBo9769AICKior62vpgIG/37t3V1bX79x2UZZnccO1Nf7jnL4yCpUvc5aWF561fM3d+y+jo2Ec7DzbPqvjgo53Pv/hyIpG88qr5sfiE260NdHX+/Ce/Xr5iTl5e/vFj7cePn77rh7djLNVUN0Ujdu6e09N2wB++4fpb3nz7vaVL13FuDY/0YEkZHRusa6yZnIj/4me/XLNmTWlZ1d/+9lhdbfOPf/AwR+DSSxddfVXLrk/35QXyBgYGOINer3/jhWvntMwe6p+Ix1ODA+MYy0WFZU2Nc7vA2f/+9nfqGyree//N7v6uRCK2YsXyVatWJRIJ09QnJ2Kmh7TMmaunGbWtB//xr89//vM5y9fY31+aXT67uKZOGewRQl+4aMuRn2R+dfW2G8cnxq67+sYzHacWLlg6NDTc2dVXWlbd1TU4PpFoyr7DQxdc3Shqo8mxvCLlk33bl69p9YMc/Mp/6bXHBQFr1i7PwS8GwNRUJBz05IVcFOoAS+F8f+u82W2dZwKKN+j1eT3i+9+/i1LdTNNrr7nqyMG9kqx4PZ6Rgf7cWVUAsEyTcRlwCCEGHECCgIQJJKpHhQJwgE1qY8Et3UayQALopqmqLkIIR5xzDjHBmNg2Q4gwxmVZUhTNNi0IMIAgEw/OQKYIiwPhtE923CdcQORsv5EQ5yKOMJYyyAAAAjPTE0YEZvvfIYhMwZyDM1kVM4zkzj+Y7SxR5+wUDggjhDhxVkIIRZZNKz02Nqa5fRBC3TScpWtyaioWixXn50sS0dwuAWQMQCbOBxNVVqiVMQahbImchDEEKOPXyO5gcwvnOXbBUZQEdT6PY1LJOe4FF7nJNGfb/8/5N4e6chBNzMiVgDNItQx/w5kTOZZZywVy3iNL7EEs58K7s0pWhnLDCBGEMEIEEQljSXAIEaFCGKbt9vlKSkpGR0dj8aTqck1OTwvBp6amQuFgMplmTEhEkmRsWZZu2gISLGMnVl6WiOPGdrAmQiiZTGYWewgd/kPXdVmRskCEA4g4B4wxgpw2QVySZYgwZxSdi9WVEGKEIMMwGGOQMQiwaZoolaKUEkXOFPcBIBHJtm0H7TlXAWMIAUknU7t27Xa5XAf27T9v41pd1517L53Wd+3aHYlEh4f6Q3l4zqx6w7YVRQEMJFPm+NhkSXGZc97i8biqKs6rhodGg8EglsjIyIgqyf5gEEOhp00BuCTh1atXhENuBTEAeN9Av0uTAaOUUq/XTwhxSv+cgjjnUqJsTZwQgnOKEOAc5rT+mWA9tyR/5p5xxEoCoRCAOUszRMDZCvx7zYeiqESS4vH4gQMHCATTkcmSYjcm0DR1hBACaHoq0j8wEoknqqqqAoHQ+ORUT2+vy+8zDIPIUiqVaqivm45GOqe6PR6Px+OxDJ1yThBEAkIIFVnmjEciEcZYIJDncnkAymjumcwFCHO3tBBCkqWcpo8BtqiJZQwgRxjYzMYCIce4lx14FqOcUYgRRkhwqKcMQiSUiYYBzi4xnUx5XG6CIYYCIuC0D6CUykQiSEqYcUkiGOOJiYnJyclkOgV5Kr8gUFZeMCeYd+BgW19/9+Ilc6trymOxGIJEluXy8vJ4JFJWWmGaJoSYc4Yy3cMyLj0OBWQUQwIykRAcZgPecvrvZ65jbhTn/p+bH3KIGWZaeYGMmRNyIDImWjijvqfjVFtFRUVVTW06pVtUmJTu23+YyC5J1gAAiqIsWDB/cnJ8cLBneHggHA7PX9ySTNdEIpOBoC+VShhpnTIeS8ZaW+auXr36739/cHh4dOGCxUVFhZHolGmlJIVpLjUULiksCqluAjAzbaOwNP+xJx4eHOiLTk8UFBdddfUNF225+IG//v3UmdPNs2p6+3sCeYHLr9oST0x09wyWlZWdOHpc6Ok5TY2j4yPT09M2Z06qIpbltGl09XT39PUIKAry86urq+fPndfe0fniKy/HYrHZs5sRdkViqZHRcZfXVdtQnEwb111/Y1lJ/dKly99486VXXn3xS1+9dnJysv30yfmtC9xu7aF/Pdwyd0FFeUk6rX/ja1+rqi7v7R74znf/q6KseHRs8NTJ8SNHDs2fP39sbKyz8+zEZOwXv/h5XWPdhx/u4IL84x8PICgfO3asr7f7qisvO3/jpu7ubsMwb7z+zh0ff7Dnk/2JRPTOO74kBDt8+PDPfvLTTz7dlUymCUFN81v6+np+f89vNm/eLBj4+ONPFi1d2T8wdPTYwaeeeCISiSAEZ8+etXbt2kh0inM+MjKSl5dfUFBw6lSbEnZ5vV5iWocOHlnQ2rpv7/4brrtxfHyyvqm5tLSUA6TrOkmnzCuuuPTQoUMA0p7e7gf+/uDLr75FsFxaUphKWuXlpYsXLzl27ASlYuGCFSPD0/v3vPOtb33Z53f//n/vWdi6/MIL13vcoVCgeHBgZPGi5cez92LxNy8qBhcBABaDW8FXAQDg4Jy/Xrbtih/84Ac9vV2HD504dKj/N11f/HbltmQyuf29U/MW1AqgDw+Pl5fpLpfrqx//+hdzv8SoqK9vPHrkxLJf3xwGAACwDXx/GwDgKADPgsVgBQCAPXV8w4bzFqUXPPjg38bGh4aG+np6+mKxaGlpCRCK4Ki/f8DjwgODvZUVtQvBbOfjrV6x0jRNFk+ECgr2HdiRlxcs/iQysnoWAGDZn277w8Lbb775dllGmksZGhyZN29eIp7q6uqR5HPz42WXbovEpwAAkVj093/4ZUFBweTbH+gXnQcA2J8fuPWDz1sWHZ8Yrs4evyv0KegDAABw8tyb/GHTvYoiyZp65kznFdsuQsQNBZk/f/WB/XttG7XOW1hfXZ13xybn4K/X3dRxoLumvspg5vT4lOr2EIQ4FEJBDPGpSERRNIxlCSqqJMsKwQSk02lNkxkVqVTK4/dBiKHgggokAKcMY0kwgAD2B8Nutzsai4FMED5hNsWYUGYLISxdBwBATeaCIYERRCLbDNFmdmb/xwTnHKNMFRAQAnDgrGrOkokBlCTJ1E3BuUMYONrKzK28s/nknIusjuNEerpcRFEUSilWZEVRgj6/gIRSqmmapmkGsIuKihRVRs5ngIgBKAQAkHOagUSOskMpRcKCXDg+FYIFpTacEZY4c8bMTakIIUpZjrQQQjiV+c6amfVXoZmwks/otw1yvvvsNjp3zMypOSdw8BkKZubkzHiJI1Yica41b45ucd5QkiQoMkn6tm1zAJ0sXMuigaAHE5lxbhiGoVucAcM0LMuyLMq4QETlXNi2bTFq20w3LCCwbtrxeNy2mbOyQggty3JqmnJiq/NHCSGKoiiKkkwbGJMsSMg0ppRl4jBkGZJPQEQcaAtsm8myTClPmwbWJEKkHGnkGO31VEYyTiaTuq4bhiFJGCHCGPN6vZs2bXrjjTe2bt3icsu2bVuWZZtpIXhLS8vE8K45s+c0NTUZZgJLCiHEprZlWaFQyDmTGGX6PTtfAUvENG2PopqmqScTpcXhpsZ6fyDU1zs8MTm2cdMaTRLcTguqA6EgCLCTts+YYRjpdCZ1xTFrI4QUVXIYQefH3LL6mZtN/Lt3MNOyJjMonAFyrsaWZxvaiKyOiRDjnFuWaVPq8fnnzW1pb++tLK+QJElPJF1uFWMMAGxtXVDdUDMdne7t7U+nk+mkfuZMp542p6amIEayTBDCzKYOlorH44qEKIWyKiEkeTweAGUBUDwej09NaXWVhBDHVWYYhhACEWJauoRly7JcHs2yLEkhAADDMIlHcj6wIsvORaSCOZyWk7Dn3DkIIUQIAABLRFCRSCQURRGCORZA51NFIhEnI5dSi1IkIGHMSiaTqipzQWWMuRCWZaTTaYRgbW1NU30ZF0ZhaYGquSuryvkOWwA7EpkUAuiWrkoq4KKpqckRi2eOx9zpdeY4RACCiInM0HMgV26KyL0wt42EM3yf4D+qcLIk2WfZNYAgZIJnGTTnzJRXlNqm4fP5xsenR4eGQgG/YbLpyNShIwfq62rSeiwQCBAEZAmH8gL+gGd0YnAqOhpPTXpcnpZ5c5gN3nvvvd7efkL2KYpWUVHh/C2v1zs1Zdi2HYlMK4qip809u/cFgyHoUJJc1DXUC1GXTqePn+r4/G13bDz/vENH95WWh9afvzylG0gF4bziX/7y95yxmz53Y1Vp6QvPP4sIFkIEAgFJknRd1zStp6dHUZSFCxf29PQEA77JyUmfxxUM+qlAdQ31lmGHggVPP/Ws5sI11aXT0amvfeO7EIjd+/av23CewNbgaE9Dc0PvYF9xScnho0eSyXQw5Dt65EB1da2m+gEA/d0Dv/rljwsLQuMTI+vXrquqLJs9e7bb7T548Oi//vn4ylXri4uL9+49eLa7T1U8Z86cyQ8Xj46Ojo2NmWbg8cefIEReu2Y9QbJMtOUrFseiU2faO/LzgsKmB/buSyUT42PjquZubz/V0tLyv3+4Z8H8Rfv3HPpox5777/tHY3ODrMCauto/3vvgVVddcPnllxuGsW/fvoKCgnC4YHhotCi/ZOGCxX5vYN+B/e++s310aCRvw8Zvfv1bW7Zckkwmf/zjn1ZXVwcCAbfbTeKxZFtbm0HT27ZdLoRgHFVXztI0zyuvvOxyE0zoRZu3+DzFf7z3/tL8xoN72tMJ68LzLwoUFMvI8/Aj/3zggQd8Af+Rw8cwxh/t3JkHzgf/j8cvTr6+a/PDyYTBGEsm4+/7PwUA3NP34s/m3Ory6IZuXn/9jRduvrDt1LFLHv4vAMCPjz/w5fxLPvrwY0db+X89fvvb3/3zX/8wzNhf7/tzypx2uVyBQOhb33x21SpzzeoNY6PRjo/Gli6qZFScOHlsYfZVbSfbFy9efOrESZdHWrN6/b79e4qLynPvqbnkeAr7/Hl5eXmLF6+amBwx7FRVbWMiGcsd4/Pn1TfN3r+/fWBwkHNQVJxX+tXP5X5bXhaurSqcCdf+zwcmqurxUgFKa+tfeumtl156a+686uNHeyAAP7zrlksuvf7Ykb25g3/24//af+jUT+/+Z2llQWlR4dDwVDicDyRIvCSpJ5nF4vEERhIhxKYmjVgelxshDAWQZQUgyDnXFJVzrkgq5xwgzphAHKYTKYAgQViChNoWQkCSCGUUcEEgwRhpHskb8k0mYlxAgggUmSpIBBCAwLZtCLkkObZ0bhoGwViSJEpZdoIRDmnvRDKCLODITFgA82xaEmMMEYgxtpntTNaSJBGMnVp3Qojb7SaSBwMoIHFyhlRVBcLigLncmplMm5ZuGBKAHELgFGQZps6YDQCAzq6Wc8s2MsUB3EaYIwgFBAgSCCHjNshNkRgywQGAECMsMuADIZTNoGcIIZwh1Jy0MORoCed88ZkQAQ4FQBAJwM8FCkDBucjtnnOwDCHkbLLFDI1pJnSbyc/lbgwhBALACbeEENkWlSQIBGKUS5KU1NOxRFx1uxKpVDweBwBRynzBkOr2WOz/Y+8vwyQ5zqxhODCxsLurGWZ6qIcZpCFpxMyWZElrW5ZJ67W8a8a1Lfsx79pre82WSSxLFjPDMDP0TDNVV3VxQtD7I6p7Rt53n7/fd12v4sdMV2ZWVlVmZMSJ+z73OTybLwyPppuaGiBUEEGuJABACCk4ABhKKcvlMkKngzqUmJzJwGcQKcMwtJgTIQYAp43MARAQAowxJBhCoABABGNMTNMOQsBCLcqFIYQQY6iEENUwqp5rqQZtjNkA6KAXUCAWi2lhKtM0pQyVUoQQpaTnVSCE2WzWtGopNRWQhkksK1nMFfRCnBAiBTIMAwBoGMbg4PGx0eHx9OicGY2xKCWEYIwUgMW8p42HpZRNjan6WocS1dSYsEzrhF88enBv/6pZ9XVRIHzLQLZpYoSUBCY1TErU6exSVfJNCCGlOIPgdRp56yQsQghjNDnFn3GjAZzC36Bq8X5GseQZ5wEAAEB1PEYpGIYhDUMI4dy5M02Ten4FVS3YAcFGLpcbGhyRQAguHScyNjJu207H9ER9Y1PoeywMT3WflEDqBU8sFuGcIduQUgrBOOeeHySStRQToEC57CmlhBR+GMaTSYyx53mWY+rcUxAEGoD6vi+lRIhAiE3TZkxQAVgosEGUkhgijCH3PC0PFgQBxUgCYAIklQzDUE/nEEJeVRZU5bJnGJYUAEOCkY5IgTAMlRJh6EEkIAQAKu03oZkJQvnp9GhNbQOBCCpAsGEZhueVLYOw0GcspIQYhJSKPjWAVBIpDJFeA2IIFZ46Hapyuap3AUGFIABIQiCAEkpSVY1rqskss+4P6l1px3+cxf7HU6zNPav9Z1bnjCAIECQTueyjjz7S2z/g2NGRsfHWadM/8fHbmxrrMxMZx3FHx8ZjsUR/32A2n80VMtGYsWjxwppEDWfgnTd3rFt77uZ3tg4ObautS3KuuntOzZgxw7RoseIVixIh1FDfsG7txoMHD46MjBQKeQCA4P7ERD4Rr2lubl+/fvbHPv7xlrbauz778e5T+4bGulcsPyudHe3pPbpo0exiAcRjluNaM2bMCFjo+35tfa3mgWhJmnQ6nZrT1dXVVSzkWhqbMunxObPmpArFHbv2JqK1Ba88p2sWF97+/bt/9B/fmTdvwR133NHe1nnvA396+vkHLr5sU3PztIlc6X0335zNZj/1qU91Tp85b/6cqy6/qra29orLLmQB27lzR0/3oSVLFvmVkl+uHD58+Nxzz9t07kWvvbzj4P6TA30TvQOnNp57Trlc/uu991900SUQI8eOIEg4D5QU27Zta+9obWqsxxAsmNv1+BOPPfX3AytWLJu+amVtsba/fyARr6mvbwxD7gcsX/DefmfP44+/KJQaHB1fMH/6gYM7P/CBq26//YMYm7/5zW9Mw26oa543Z5HnBbbpDA2OHDly7Fe/+u1111636ZzzPvSBD504ekxxMWfmrFmzZuzbt8eNxHK5HBFCDI2OUoo2b9m2atWqxx9/8uMfnbnp0gtj0Zp8YTxRQ5WC6bGJE8flT3/y4NlrOy+4YO2B/Yd8f+/hw0daWlq2bNnS1NTx37/47fHjRwFAP/jf4RcAYO0PPiQePRyGYTyePKPbCUrxrl09V1bKkUikUCi0TO5Kp7P19bW/GHn8/3LOL+/967PPPnzdDRfb0eiW7Xv3vLIvGev40pcuWrduQyFfOuecei78mOvGEnZjY/3Uu77wua/+/ve/TNXXfv8H3/7ilz+3fsOGcrEylZo8eGRfMpG84oor/JDv2r3jzddfmzGz5bLLL25qbCn/V/UY45bzO0+qE8f7V67ecOzoyX0HD7Sc8a22bdk6t2v2rBnTxv8vXx2Au579xF3gE5dGP8ilrOvoDCq5nqGJ+YsXIsVfe3PXlm3bv7P7dJ3mnNmdqVT9ZZdd9rkvffudHcfqG1oqBT/RWFsJSxhjapmUSKgQ4wEAynFdy3H8slcpepEIhBCOjxcsyxBCQA445wYxEUJACpsatbW11DRLlTJDhPMQCWhAKoQihOQKE6ZhIIlMYirmKyHlmaF1CQmihmFADHwWKijVaWNaDIREmIiqgyTWNI6wVNbACAOMEJryipk85+kCQB1nyuVyibijq9xlGJgWcS3bdmOEEM/zEIJuxPYCDwBgO6YbsRXEQSgAAK5lmya1LGuyOg+FYbU8fip4oECVzjU1pU1BnCnqiY5YTIV/lKrGKpRSAIIpKj0hWIOPf1gEn4mlpgJCU6Ey3c48/h96CJpUVjsNWM9QatWn1F7R+qpOsVKEEIZl+mGgpwShYCqVKpRLhmFocYK58xYMDvbPnD2job5WSh76PoCQMwkR8gORL5UxMfyQTUxMYGSUSpVEIgEA0unjXC6n81IIV80ci8ViEGIhhOM4YRgqJZWq+gp4nhcyv1gshiGfyJUUrCagxaSYnF7rB15FKeU4LjVNUAS6VkMP5clknQ5/UkqDwKMUGwYJQ46IRmMyGnUxxiHzDYMQhPK5vOdVqGF4Xtn3K9GIXapUECIGpkuXLt255+iSJUvq6uoCP6dhOoBISnn0+NH6hmk8ZC2NNU31cYxE1CGFYmF0eMQyTARBPBEp5sqUYBaGHELfCxzHUaKaINNhX71OwBibFq3KpgMgBJvqGzocONkfqqhLQxYAAJiU2FVKaXETIAAAUExyj87sA/q0SjAmFMIEYxiGvm2bnAVUCYgUQghIbppmoVCK1QQSCCmlaZo9PT2lYqWxuUUvACgxC4UCpkQn1pUWQYDaVQIihIKgksvl/EoAKcUYV7yASdZ7srf/5Mm6urpkKsE4BzpVjgHGGGNqmrbmzgdhyBgzHVvfUEWQF1SEECa1y2GpGtDyuWmapmmEgkMJpM7+A6WQYgHTUZlKpQKAxluaqw4FVwHniGBIQKVcodSMRJyAwzAMtSQHxNCgKPQDHgqKDAQA5xwAKQQzHVos5BpT9bpGlXM2Rd/7ByeoqRFg6r6oM2yzq88+RFMhWzlZKzD1UJ+JmPXfU+89jdImx4CpLYwxKWXFL5ZKpR3b99x403XNTe0V32/paE/UJiXnGOOxsfFT3X2W5TJDcC49z+vonCmFyoxPhKGcmMh75SOOE4tEEGfMNG1ddeT55RUrVpjYPHGie3Rk/O+PPanZnxE3LgSvlLlQqrd/6Pqbbp0+re2J5x6LJt1XX3+hps6BUD36+COjo5n+viEg7WLB++uf/pQdz1155dV6JZzJZNLptGVZ0WhUByxLpRKldGJ8Ih6PNjW1LFg4L18s7ty1Xcmgc3orAqJc8ZavWHbOho3PPP3s66/vPmuNfOSxv33q325oaqlva59eX9fxta9/447bP4wRXbVqlRLiqaf/vmbVagyw53kxx+Ymfu3VV1tbW4mBn3z6mbfe3MoZTNTU5vPMC8SGjeedt2nT1u3b4vHkQw8+cvbaNfF43A8qc+fOzWQyExMTjY31QLIXnnl2xbLFN177vt0dM1vammsTSUppa1PzY48/WZuqX79hw4svvfKJT/yrSesocSimh/btnze34+Of+GhzUz2heNfO7Zs3bz5n46aDB49cdeU1q1bOSdXWbd++/f6De2+99cbmxrad27Yf2Lvvtddeu+mmmy699PIFCxZ84xvfuPSyKw4ePEjcWLxrzoJrr7120ZKFO3dtaW5rhlT0nTxsR9zHnvjbkiWdyWT8W3f/9cb3Lbnummtb2xp9r9Tb2/vY3x/v7x9M1MTOO/+i4eHRiy++dN7CBT2nBkBPteM+8f4fnezu7uk7de7559xw4/Xh5TP1dnzt3Isn1jU1govAnXqLaZFsvnDnndcFYWHxklUf/chNc0FVf2HTeesPHzo69TDcvfz2oaGhCy86d96cDtM0pv1blQUfBJnhseN9uw6/8sazq1auW7Fk/byu5S+/9IZlWaOjo3O6ppmUBCzX1t48daoLLlhf8QptHXULF897+qknPvzxOxNGZGrv17/1mSOHTj3+xKMXXnzZgvmL1qxZM54ZLZS8vh3bBz/+yEW/+po+bGcnXLh5xRtvvf6RO37yavJdAhNf/uLdXKp77vlZ69bugdUz+n/48Idu/ymxwMtv3FtbVz+784ILzj/3a7vvrj7AFCGAQs9ThhGUS+l83jGNdCYzMjT2nUT1hPiZE0eP5BA05i3s+Nxn//WSK25rn+5OjOV4wAVUQivJh1wISYnpRqKWbUIIlefX1dYKrvygAqSCChEIAVcE4KDsiZABqRBCw8UBwzKwQTWlA2KIKKFaTcBmBCEeCpPQkDEAEFIK4Cr+kFIQQiKRiAQi4AwiZBqGhhEIIyUVgtUJm3OuIDRME7w7WYYmeSCciymkAiHUAkKcc60ANDY2Nm/eAu6XqYEYY6JU0nPYyMiIEBXDMjDGgDPLsmrq6oOwIlXVzC4SiagzKFaGYVBKfb8CoUIIcaGwTutAoJQEZ9QuqTP8hc4cSRHSPHdyZiBq6njwbpNHfIb+05ltcqgFutwNTmWXpIRVSkw1NAjOyEcA8I9Mfz3cE0IUAEoCnbCj2IAQgkkKv+d51DQ7WtsaG+uTyYTkkkt46mR/R8e01tZWLoO62gRnARCAMbZzx17bdpubWleuIH4YsFAsXry0VCxHMsVsNhuGoQ4lOo7jhwEh1a9aJckJBQBi3NPQVMoQVFlxSimVyxc5l6VSCVNL/0z9u6pUfQWBQnqiFb6v75QOA2gpDa3kCc5IDdu2yQJeV1eHEIzH44x5homFECzwCSENDQ1z5syJxaxEMlYujrtu1PdDjPHYaDoIgnK5XK6UDFJNGeuM6sUXXnzkaC9H0DJRY2NCycDENJ+p9PcMY0yG+kemt6dMQjHGjHMMYDwenwJYYEp1YjLRDNG7FAc06McYV+Vgqn1M6OrCKTiuzoiRSMCAVCYx9d3EBEEppyJghBDGuA4JewELudD9nAWhZZlShEEYEuroaEQ8mkAAK6WibsQ0qJJQm6brvjo2NlafqgUAaCsChBCfzL5xLhhjGvvqbK9p2fruNDQ05DP5WCwmpY7ZKUxwGIb5fN52HcaYadosFIZhlCplrZ0LoK7GoIZh8CCEk/UlhBJwOkcvlFKEVKUupOQQo4CxMAwhwIwJoaRSEEEMFNaan5wBSmwppGEZlMpMNuu6kcmY8aTqsuQUE4NgFnKggJJMKUENTBD0BQOQIaQDUBACBBRUQgGkNB6aikwrBIVSYNIYe6orKgSVetczfkaEElQLd6pKuXoHmtyBFJBSKVRFb/8o1ctDv1wu/+u/3tnS2l4ue7Wkbiw91tPTE/piz979hw4enzZjJjZ8O+o0NTYhTI8fHRhPF+tqUoVCAUFCKIpGo37IPE8KJSuVShAEDQ0NlUolhD7nDCE4NjYWjUZd15USQKjcaKRYLFLTOHbixE9/+p89A8dNezY02UuvHVyyZJHnBadO9a5avmr50nWvvbz71LGhc845p1KpJJKJSqWSHssQYkBEICIRNxZxY6dOnSKEGAil02nHtvfv3QORTCUc388vnL/C80q23bF79+7XXnm9v7e/a057Mllz441XNzQ0KUgP7D/y1z8+JLl4340fvfSSDS0tbX658v3v/nd9srY+lcrn8zM6pxXypfpUY319fchZPJnav++gYZlz584JA1HxwyDwNm/evHf/Ps75+2+7dcGCeZnxob///dGFCxfMmTurv7e/kJt49eWXLrrgvHlzFtimM3vmHEJQKVeMxiOOZcfj8a985Su24zzz/HNLV6wc6i+Mp4tDg/1f/ea3gnCsWCn2DZR7B05Q5Jx77sbBgaGxsUxH+4y33nqnvb29q2v2mnWrMYCvv/RmX2/vsmXLZs6Y7tjmqlUrFi9b3Nk57Z4//fkjH/8Iamppbmpu3bp179Yte3bv3V9TkwBA9vac/MMffvPd79wfBIFjm9/4+nX//cv/FLLyyN/u7+4+/sorr0Qcd+7cuVE32t7asXD+IttyC9kSPGPpvnLlyssuv3zJkiUvvfTy448/fuqnT07t+sufv/upT31q6mVNbWwik6YGXHv26lvef+mePbumdgVBUJeqmXr5tZ1/+OXwc9f88Qtjo+NnrVpz/zVfBAA8/+FvtbQ3xeNRzvk552zK5Qr33nvvf/3Xz7/61Xtfe+21Y8ePvPX26ytXLm1oSHV1zZ461br1a0rliTfeftm0SHNz09uvvbxv1/apvctWLkum4n2DPXv27jRMXFOTPHhw/8svv/z666/fdusHjn3vvqkjh85Kzfzc9f+AvQAAn/7XLxw9Ar773Z8mki2rRoza2g4BQF2y6Y7b74q6yf/40dcYD6YOFkoxJbBFkG1Ea2uzhWLJC+14zdbE6dOuXfvB3buPJhLNP/zxL/oHRoEEQjAnYoahTwihCCOELMtwXTcajxiG4QVhoVBgjJUrFYSQbduJeJyFYcR2TGoQBSvZnGBccgGk8vKFfCaXHR7L9o9k+4YyI+OjpwZH+wazw2MuMR1qCY9jSUxII8Q2qWVAigE2IDWI6ZXKknEEMAYQSCi5EIwDqUTIBONKqajjOqYFhIQK8SCEABGIKTERrNaiTxmugTPQjO/7AWeRSMS1rd5T3QbBBAE3GrEsOxKP1dSlHMumlEaiTl19HcY4n88Xy142VxgaGiqVKhQBr1zRBYDV6jAFqWlPeQdp/gohmqlzetCEkxrWEGItX/4PS9Wp4NNkYENMRTWmfoXGjoLLqZEUTirU67n2zHzTmcecef4zMd/UhD016E+hQ8ZY1WOYEIwpZ1JI6TNWLJZjsYQUVUJSMlGrgU4qlYrFYrbrlEqlo8ePQYjLnheEXCjgupFoNFZTU5OsS02bPmPJ0uWrz1pz/gUXXHr5ZTfccF0sEW9ra+mcOUNKyaUAk4BDgzz9B5eSM6kJPWASLGqgHIlEXNfVwU5MiVbm5CLUqm9SSoMQTScyDEOHxPQb9d+B5wdB4DoWxhAiBaHSdlKFQkGdoRIXhj4AQJfN+kFZ586EEJVKhRAipUgkEhDCRCLhOA5j4VTICgLQ09MThB7GeP+e3cV8zqQQIzh9WuuKZUuaGupWLFmsGAdS8ZBZ1NBEaW1vpQNFupvhSf8Z3at1Z9D9XN/9qb91WMUwDMdxotGo4zi2bZumqVcICCEglTYRqlQq5XK5XC5XKhXP93W1si4P1GEzamCDYAygEKKmNoEx5jx0LEP3UiaYUDwMff2yXPZqamoA54wFtm1alhWGoRYIBUAqJVjgu66LEOJchpyHITdN0zAsCGFhYoIxhjGVEujy2Gg0CiCshjOFEEL0D/SXy+UgCCilXISMMV1xHI1Gp4QkGBNcSUKpUtAPA6CQ/lE66MWVIAatxsgxVUpz4dTUoyGlrKb5AWRMSCmFkgoCwSWUCiNkWaZpmkAqIYRlGEIoDCDGUCoupdS4U0oJlRRSBy/pVLwK6epueNotDZzB5Trz2ZxqaLJBCCk1Mab6kQQATer9oan3nonMlFIQYp2XnDqVvqeVig8AwpjW1dV3dHSMj49rnwzLsvt6Bl995c0wUIsXL0eQCiFGhkZTqdT1115vm9Fsuth7cmCgd0SEHEoVhj7nvmPZoR9QYvp+MDY6PjI41N/fz0U4vbPj0ksv8X3v1KlTOltdKlVaW9vb29u/8+//Tkxj9ZqV77/t/Q0NqUgkduzYiRUrVm069/x8rjTQP9zW2hGNxj0vaKhvsk3HqwRQi7dxUS6WOOeDg4OJRIIQIoBqb28XUg4PD/ecOk6JvO3WGyAIHnv0oRXLF7e3tQUBMwyrXPaLxfLJk72HDp96880dr72+peLJIJRnn71szeqz/LIPkbrjjvcl4lHbtttaWkvFyrx5C1atWjOennjs0ScOHzqmAG5uaps5u2vewgUrVy1vb29PJGOWZSXrkrFYZM/eXX/84x8Xzl/AGCuVyrl8seKzm99389lrzmJhMDw45Fq2EgIAsHf3XoTIv37qX3O53NatW4UQHR0dAQudiJNqrIm4VhAEiqsVK1Yk4wnHsXp6Tm7e8vbs2TO7u4/39PREo7G33nonm5no7+9/5G9PLlmyeM2aNW9v2frkk0++8PyzjmnNmDEDQnjeueeSf//WN/7ptg8fPzr4rW9/oaMDXHLp6t//+jcrlq+JGGjFEuvVF18qrlhy+4duMWscP8wfObqfBX4QeHNmL3BMa3hk8Eff/X46U3znncHrrl/T1HI6vJTOpiORSMf06abrnDzZy6SaDq7QuyYK42V/YurIj3/iw/lcce/uXb/79SOXX372tLZ2sLe665WXtkWj4K27/rjupx88E9ys/8knh38Cbgbf2/vFP8q0StSkahtmrFge6Rs4HpRdxcqHD/adu7H2wL7u1asWXXXFpQ888IBhkp17dq4C5+gz3PvAX770pc+l06Fl1odhuG37O+efd/HU+YuF8m9+fY9hGP0D3a+//EZbW00sGW1vb1dK7di+N5Gs+/by931150Pgf28zZnXdctva++59e8vWk/Pndv3itw+aBlq/fuPrr77wmX/+hoTg1KnuqYNfGr1nU/1tEkjBOTbNeCpVKZVL6dN5y5Z98d++9J9f/sLXckX00188AOADjdM6CuUSdqlUHAghFLdtG2NKCCmVKhPZrO04hmFABW1qYYSAgqZpKq7SI2O1dfXZ7ATg0k1EZNUdAjPGnIiLEEKQsDCUUgIh/byfH5kghsGVxCY2LCtXyUTiMWxgnSVxIhEcQRgS5jEsESEYEUNBAKQSQpWK+VD5EdMVTEKFEAcIAiCh5IoxZhiWVMpyTCUEmOTaMx4gCAkkSkEuhWlRxQO/kBPc84VwnAgTsuIFENoAAIMSwzaEDIlpNNQ3IoR08Z3nS8uwCMIISoPgQq4Y+CKfL1GDMA6llIZhMaEsBwsWYIhNSgAAQkiAjckxUUGMhRb2nxTa0Et8qgSEoJoLQggjpCAAECilPfgg0EtzAABAECAEgeBiCj+BdwtpyqqOE1BKAZ33EJwgqCAE1foFJZSUqnp9dJqs+vFccM6piY4cOUIAGBkcaUzFFMISomwm99abW6XCR48ec6NxDGg+X6RGQik1MDCwbduWvv7htevPnrdwnud5QkElgFIShlxwZRimrnhwow4AMOQMEWy7OFfMrlixpKNz+tGjhzGGCBlBEFBsQAWCwDMMAgkWgYcxDjlTCkCIgzCwbCMUnFo2hDCXy/lhqG2XlVLYoIxXqVE8DDAlhBBIsZQSUQIRERIgTCXjCCGKMGChZFwpqsWYAJBSatU0ACEm2OBMWpalRIAQ8cISlwG1IIDQZzziOqZpVoolAGiyNhFPxjS2xhhDqDAC0Wiia+aMp597VUhx7jmrk4mUFB5CAkAW8lw+PwyBb1EiANUugYRQAACXAgCFIMQYAQgV41JKhAEmp2duNGkHDiEk5HTwEkKo/VghhJQiCJGUAiiJoNZcQ4YJgQm05KkASinFhWSMcS4AgghRwQHEslwuhyIUQlmWKznHAEDFTMMQkiMMOQ8BUEwynXmcyOcIIXV1dceBcB2rrqY2zccMw+BCYQK4kgbBEHDOPKVMTCjzuOczgCQEGCGiGX4YYxEKKaWCIOQBAQQjykJumsSNRlrb2iKRSMSJlEqFVKpB6RS5hPlsHlqYEMIlg1ApADweIs4LhULCjaqqixdEGv4oiBCBgEIIMcQiZDwIKYaBV8KwKqAVCgFBVfpEY0GDIoKwkswgAKgAYSklBgorBhAgoirQjEUIICW+H0IEOPeVUlJASIjW9pNKIIww0nrIVbaAXk7oh1QphQFUk/gJTWpPSAgQMYCq+owpoCDAEE2SGU7bVAAlqoXYUGEhJEIII6qUQkAZhHpBODw8CjEdTWePHz8eT9QsMh0JYCIRHx4e6R/IxOMN06bDkfSY5TjIoArKRUsXpIdHdlRKjbWpiu0uXbzk8OGj6XSah8I1wcxZs3u6TwWe57ou85lknBLiRuyOjjbHcRobGz/x8Y++8cZb6fGJVCqVm8gO9PV/8pOfqq2tefmVFxPx9vFM2nHshQvnPv/88x3t099/04fuv++RRx5+mqhoxI1BQJDChYnc+FimoaGxWC4AyW3H7e7uvvPOO8fGxp596qmW1ibLtbLjY5ZNFyxafurk8VM9xy4477yd27elR9IROzI2mkmPTbhOtFzxs/msG6s1bOvgoRP1tXXZsZG5c+fGE7FSPueaRkdLM0Ikkx43DffYseNPPPncxZdelko1XHXNDUqpXKHoxpKeL4aHRutSNQhjqRQkMFET37L9bcnFeeduWjh/YTKR+vOf7yuW/d27dvz0B99Skh85tI/zsKtrXjwen8hNRKPRmtrUrp07Fy5acsmFl3zr7rtDJufNnWma9sFDe3fvequpqeHN1zYvmj939sw5O3bsaGpMrV693LLpDdff8MjDT+zYvqtUKh0+dGDXjp2f+ddP2baza9eee373+9bmpvFs5le//OWjjz2+edvWeV3zyaLFi/78l78cORD+8IefTSTA408+tHLlyr5T3W+/uevCC9d5fmlsZHTzlndmZWacc86GkydPbNu24+w1Z09kx7uPjyWTyUQy2tHRsWTJosNHjutFp26+79u27QeVZDKJMNCZe92Ghgbuv//BC8DH9Ms333ibIOza1rKl7aViIRpzpo50oyCejKWzI6988r83/fzO/4lyFn/vg2Mf/W5f79CadXairnXHjl0nuwcvOP9SqKzf/+b38+Y3x2KxhoaGaDQajblHjx5eNfnGc87Z8KMf/2D1quWlUuGdd96aPn16yPyp03a0tT3294cOHTxSW5vKpTNPP/10/0AvgsSm9uc+9/2VK2fV1jR8fcH13zrwyP8r9lqfXffg6PeaWlo5B5+488sne8YBAKuWLdmz/4AbrXvq6ZfjdU6uWPja6q/fveNb+i1SSoQANkwhAcLIcSNPVx6cOuFvf39fqVAcGC19/8e/6JgxB1BCbcsLvFAKhKQEIBZLav6N5wUQQmoYhJCpKR9jPDI8XFdXZ1lWXioolUkNH1fzHaVSCWNKqVkqliORiOPYzAsNRCGFDrWBExNAQYwAkD5nwOeBEbrIBhBk89ls/4BdV1soFQghmCKHWIVyybIMhBAGMBaPG4QalFJCZMgoJgAA5fN4NOY4EcXFsWPHgFLpdLqtrU1y7nle1LU548QwoAJVZSkACAaB5EwxIYTjRAgJCCGScx05C8IKViSUYaVcjicSpmVAiHRdJKUUE2hZjoGNWCymT6iEBArm8/myxyiWGECCwCTN3wCTlrpCMoUQxVhpVx2lgORCiqlLOrUaBmcEqCbzFNVkCgBISj4VHoPodC6jugVOra0nF9YK6Y16rNZVorCqCqbdr3H1jRBQSgVQIWcSgNHhEbBktp6NalOpC887f8v2PS1NzdlC0TAMwzANg2CMI8lIc3NzGPJUqpZSyoVAiACDUIAs2yamoSA2TIsL7VvNlQIIqTAMx8fHknW1hJBYMkEptajFGOOhiEajCsBoNBpwBmF1rgoDARGwbdv3yqZpOqYFXGlZBUKMgHHPCwAAknFKKRB88oJLk1KOAJRKcI6lBBhBUSWzE0Is2+aMQVitu5wKSxBsCCGhVBCCMAwprj5QhCKlhNb30gEG0zT9UJVKJT0cKaX9o7BSwqKGZVkEYaVULJaAEAshFQIIq0QyMm/+TMc2CFVYUQWlEJomr6bA9FR+qoqwVVWccyqeCv6HwMRUIAeh08yhyV2nj5kKnEAICTEQIhIICDBUCGMEMSKECMB0eEYJoENN5XIBIOgQF2IEERCC2a4VCo4BZowBKAGEGOMg9CzLSmouI4IIIUoxpRgCzb6CugbWcSFnvFwsaWokr1prQ+16PnWDAACe5wkhCCJBEBiGIQTDxAr9wLIsjHHIOTapYRDOOSLYdGyv6EUikVBwghSGEAEwOp6WEARBkEgk/DCsehsISQgxDAMKAierYn2/SgvD2PL9QF/GMAwRUARDTBD3uGkZUiDOpQKAKxkEAQCIUpMx4fu+mNQ6VgoQYoLTWT85FeGaunGTdL1q40JgjM+8mwAAqRiEBEIEkYISKiWAgnq4mBJI+4duoNlvLBQ6MKyDwdFIfHxiIvDZtOmzamtr+wdGBgcH58yZs3nrjq1b98+bt6iuvt4ynZq62vr6uoOHDyRjccsywjAUjL/83PPC5+Pj44lETa6S27hpbTKZHB4YdF0bIVQul6OuozBqamoCADz8yIOJeM0vf/nr+vrG2z98x9LFSyjGoZA9PSfff/MNLKw88fSjZ61bMFHMAMguueSKRx99nDM6c8a8+trtb72x07WSNEqJaRBC2tvb2zua8/mJslcZHR21LCuVSvX29gqgisWiVClK6axZs1paGkwDT2tvHhoauummm3/x818fOtS96fxNmUwaUyORSCxdvrJUqfT2D7pONJ1Ou5bV3tqCFLBMs1IpAyVD33PsSLnsHzveffxETyV8ora29pJLLhnPZohhPvvMy2vWrOnsnLlt2xYv8FeuXhGPx48eP1pfXz+va+7F51/44H2PlEthPldpbGlta+vgShiWsXLNSsOk6bHxbD7X0NBIDKoAqGtotEznwN594+lRQk2ESG5idHpH41VXXXb44JEXn3/rg7feapLQQNbNN9+ydcuOt97eOjIytmjRonlzFyOE3nj91cULFioEDx09PL1tZhDynbv35HLZvr4BguGKpcsOH9hPXDdeV5fasNFpaEy1Ntf+060fuf/+ezKZ9PoNq85ae7ZlkkQi9sYbb4yOjG/YuHb16tX9A6fef9t11MBHDh19+KFHbTvKYYkY5uo1y44fO61QdfzIyYo3MW1aR8CCAwf21jWeziH29Z9asXLhlKv02rPPf+P1rf39vbFYIl/MNqLU1JFzF86aMWPGyd7uWbNm/eHqL//pT29s2/LQwuUrttUNTR1zwW++9Ozt3z6272BLa8Paszf29gz++Z4/Nza0tjS1pVK15527af+BXcmaeFNTY1NLC/hb9V2bzt+478DuU6cGW1pabv/wnZwzcfXlepfx1Btbt1bmzF10/kXnA0QBNmbNnf/4I3/fsWNHU1PTmpWz53YtisejJ48d7v7+vXv27uzu7bn08msqZbTq27foM0AEhkYG6lIpAcBfin+/OH6l7TrHeoZFyGbPmnH+svkAB4CQTz/3+alfATRPWQEEAEHvIhJcnbx1+Nv9gIuuhQuwYRaKFTJZXGMYhoSCGEbos1KlDABAlCilgBAIIQQxhNzzvIosRyKRdDqdqknZkUgQBH6h0NQ2LQiCSkVXSAWEEARhfnzcqMdS8uxE1nYcwRilVALgRFwAQCKRKOWzjAUIuRCjZDI+kVcQo0gszjkXgnlhoLNCQaVCiCm5oNhgXhhxXNt0CEQIqng8kcvk0iOjSkrJlUUtr1zGEJqO60KghMSUQKAC38+kswYBxWJRS0w5jmUQKhinmEghEIAmoVAqixqVko8QMgmdSI/b0QiEVAmBIYRSAQEAlEApyRXBOBlPmIRSjBvr64UsQchUyJWUggufBRCGclJhklIKERIYQowQgIhgQqjCRF95AFU17QgAnqT76DFYgeogLYHQypln3GUIQJVcIrUNoVY2h0gBJZVUQAkFMMJwEpPpkk0pgRBKKQlB1dBXAcClQphgBObMmonAyyuWLY7YdrFUYSJAWMXiTjwRicWiYxMZhIBhUJ0Oi0QiNTU1lJqJRKLk+VOTgW3ZIyMj27ZtmzZt2qIlC1OpVMBCxpjkklDKOQ99nyJsUQMpZBITAWgQahBTK+Jqz76qIC3jEEBKSLlcdG2LIgiBpARFIxElccXzhVA6Y8XDcCrnEgQh5zxQglim9h6WjOu96gxvKIQIUAAooHk5YBLIEkQwlIIxzY1CCgjGlahiI6VUGIYiZFJiJQWCQAv666yZYRhSCt/3EUKSc81hp6iKhwzDsE3DMAylfIyxUEopqaQUWrFg0qxTKYVBtUZOiXcpQoFJZAarnPrTaOx0NllCfT4AoFa9n8JnQkihBJyy8AJKK3RijJB2NUZKKSYVDBmzbRtjDCFm2qACICllbW0qmUyWfS8IGNZQCeMwDMvlMsUEQEmIoS8F55wx6FimlJJSw3FchDKGYUAglBKAoGQyaVmW53lBEAAEhZIInPZWAlLqa14qlRBClFLNwsQYA4QggCFjSiEn4oac6UuRSCQswyRIAS7K5XJv7ykAQDabTSTjOv/IGMtm0pyHpVLBxKEQghiYECKEH4lELMsKgkAIYRhWVVS5qpIHp5agvu8DUI0wSSklVkACzwssyxJKSggIwVMQCr47+6+Tp1MgGJwh9QImCfhnIiohAgCAAkgpJaqdFOp1FdB11KezmRBCoDizLJNzXbkJFASCVz00AQjL5fLgwHDfwIAQolgsSQkWLlwICSmW8sVSfuPG9QCAZ557es2aNd17jxcKhekzZvzunntGRsbGxsZ2794bj8e3bN5mWtSglmVZ8+fOKxQK5XIZQDUwMACh6pw+M5vN3nXXXTNmzJo9c1ZHRwcPg7Ex+e9f+8o377773//932++9YaH//bnoeFTkajV2Rkr5fwP3PLBL33pa6EfNDc2+J6yLBNiFauJxnFUKFmbqgOZTFNTI8Dol7/8ZaqmJuq4mfT4xZ+687mnnwEAjIyMbNuy2SQbpJS9PYdvuun9/X1D3T2nTNNsa25fv359sVweGBryyxXHtl3TMBDYuXPnwvnzFi2cbxt07549UoDBweFjx08SYmzYsGFWV1elUjnV0zs8PHz/Q3/bsOG8hx9+hBKMMRweGctO5NesW1X2KpiAY8eP1MRrDx/pzk1UlAJc8Q3nnN196ti0jtrcREYIEY8nQ+YNDY8aFlVK5UvFgYGhvz32yO0fub2ntzef80wDYUx9z6uUy+eeu/bub/7w6LHu//7lD8fTRYwi7W2zPviBTyxdurC2pumKKy67/PJL+/pPPfjg/Vdcfc2h/UffePudB+79849+/INP/PMnvvKVr8zrWrBhwwYyb+7i8bGiEviOO75w9ZWrVq5aks3kI5G44zirV531wovPDo+ODA6MnuoZyIzn33/bDVdffbXjkpOnji5eOnPGjH8dGRlpbWvcuWP/ti3HN56zDrxUHW4eeuiFm9+/KRqNylKxLlVz18u/nRqJOjs7x8dHpl6u2XjuJ4v5P/3pnoaGholC/p8evXtq17TONib8SDR+5e8/DwB4pe2c3r7hefPZ2G82L120eHBNNU524njfv3zy3266+frLr7rs+utvfPC++x955NGb33dbU1PDW2+95bjmqRN9sWjCsk/rQAyuWvyVg1/53Oe+xIS84IILXnzp+UlzILBk6aJiPnzk4ceHRzMzZ85evXp1x/RZH/rwHeWypwCrKUTbWhvm333zWeDDu3I/EdJbvmxBsTQWizVOnfy73//Iho1nb9t+8O3atwAAz5Enzi1e61qmJNJw3Hy5su/gjkXLlk4df1H9hyjAnCtMsJKAMfZy9s9TewWg0+fM45yP58uWJSDETKp8NheJuX4QCiV8L2SSIYSEkhRjJoWmKiMDG4aRncjEYrEwCFM1tX7Fc103LPsA40KhYNs2Y8y2bds2ysWirntOj41Ztk0o9SolCFDIQkKNfD6PKMEWQZbpRqMQI9/3bdtMJJO59IjhNiEEpKy69GAtdC4hQRgBDKQsFou2YfpaoVHI3MTEgf37d27bHonE4tHYkUOHx8fS8WjMibjJeCISiVADFwqFQqEggkp//2AiEcuZtmXZCGmxCSefK2hZvEKuGItYBBIRckoMGjFMxymVAz1QagIKnowwAYAqxYqeabxKYNpYSU6IgfEUrb5a9lWlZwnBwkmZIoQQAkop17YxxoRghSCBCFFCERbgXXyOKrMEIk3oV0BigAVUOkGpB3fGBEIIodP2MlU1/skyySrUOENdUwqlyOmJQRsD6xCggQDnXAGBKDKQAYAseWXDIKEIwjDYf+jgwaMnsCGvu+5aPfoHQaD9ZHTcZceOHQOnejnnCJF0On306PGGhpTtOpZlGZRSQntHeiCEJ06ciMfj8Xh8YmLCtR1CiJTK9/1IJOL7vnZ50l+YEAyhoggrpVzHQUjPN4JzYRqUIugzTihFCFUqFf1zdIAESaXhLwtDRLDruqGsFnJqgrxSSghpVGnjVVsF/S+hkBITY24gHFiexoWavA8hDMPQoobiUHtCk8mGMdbFdDo+EY1EaxNJijFGUioOAAjD0DIoQigMOUbkzLuMEMIITwWuIIBKm6AiBBSa6glTfUO+u5IDnlEip/W9pmZxeEaph1IAVYMrQiml8+EEmwBA3VGFEFJBzmWl4rmuK4QwDMPCVSshgqkGMZVKJZ8vDgwMDA/0xxOJYrHoeV6kto5LwTk3DXMK6cLJDCkhhGsCJcIIIQBlsVh0o66OdWnZiKmvqi8gY4xSWiqVGGO+H0JEdPGNH/jKgNCk+uOklCIMY7FYEATFfAFIZlIjEYs1NjYaBmltbZ2sSeRCiPHxcaFEuVymETxVK63NG7LZbHNjCiEUhqFlugD4BjU0fRAoxHk1z+varhBCSoAwllKyMNAdA1Qji0hKieDpKy/fLZA7dWvUZAPvQten77BSSipevZmIQAiUAlpGZypEOnmeqvyylsSjlIaMGwZSSvX396caG6WUu3buOXToyOyu2dFIfDyddaKxWDw+MpbVqfO//vWvvb29jc0N8Xi8oaFh8+bNd37ykzU1NfPnL3znnXdeeOGlWbNmzO6a6fnlY0dPEILndM0+evRouVKKRBzP80yTBkEAALj++uvT6fR99903Y2YnD3wh2TXXXPX1r3xl9pyZ69ev7Tm1+uMfu/+DH7nGtuLDQ/vOPfeCe/98L6V2xKktFLLEhEIwIZkImeu65XJQW1tDSP3w2Fh7e1s2PT6na1ZtMjE0NBSJOPmJXKVcLBRKjz329/XrNgJA4rFEIV7O5/Orz1q1fPmyLdu29g0MUmpKKR3b9H2vt+dkfV0NWbiwp/vk0iWLNp17/oP3P/D0s88tmL94/YazBAAEGwr406dNnzFjVrEcBIFoamoaT4+tX79xeGR089YtviebGtuGR3tWrlw5PDRs2xZGTrFUKRUrpK1hPDv2/MuvO5Y1c+Ysaibr3BQXoRDstVdenjF7Rm1dXWtra6FQiEYirhsvl/x4rPb1196sScavuPyq559+pblpWktTZ6q+bvbMJcmammSypmvOvNWrz3r22Wdvv/1DH//EHTfddNMzT79w/HDfRGbiW9/5P3UN9c88+9TixYsHB0Za2zrIH/9w/+BgpiFVc9FFK4Kw9OqrL3dOmz8wMLB738E7PvZxyzIs2yhkC6f60uWiTNW/NZ7trqkxLUft3fPOgnnLly6fvXX7axvOXVkqyZ3bds8EV+tu+Lj91u/9z33ne/fMnZ/4wYmnprrnLy/5HOpW2YmxL867/HuHngIAbKvv+2zNZz/84Q8namu6vnjJmX3ZD/2JiYkvvFmFbrZb+/DDT+3YvovL8s9//vNvgXurh1WgXyHf/fZvxtO56993BYDi7LUrERZDQ4MP3P+Xc8/btG7tectXLvvhj/7PNPChqZP3Dw0sXLIQKGTa1tK7vzq1nXPOufQ8tnvHnvP/+4ujAIyCyqoBY925ax+47y/ZieH5d9+sj4wlrSsXX9196mR3d/dZ3/nM1Bkamyzbpg0NDVNbXjUevQjcyJTsHRgYGRl0Yta/v/mNqb0x2w05Q6atbTemSLsAgOtaPkmYmS8FQgiuZCmXlxIgqGKxWOD5EEEDYYWgCiRAWBvWElhdqyEIg4qn16PxSFQIYdu2lNLzPGwY5YkJKaXrukopQlBtqlZbUItQeJWKYzsNDQ08DMvlcqlcppbJWDA+Pt7c2iKAyBcKhmEUyiVCCBCS+QGllAehYRhBUHHsCCGEUoNzjiBSSgVBKISkCEkhCtnspRde5Lpufjw7o7Mzk8ns3bN/oK9/4/r1PGQ7tm3xfd/zvEKhkEgkvEqwdev21pYUZ0UIMBAGQiissGLOYz6TGItQGsRWnEHI/bKvgKSGVSqUHMsGUiGAKCacyzAMgajOdr7v26ZlGTYEPsCGUlxMTmNYl80TonnUAFRl+zXHCEIIpOK+LxhjQcClAEogjAnGXAjDMDRtViGoLz7WC10BlAJQafCmAxsKSIEhQFBBrU6rgFIKKcj1ZwGkVc61gKpSQikBIUAYQgSUVBBBQrGUUgqgsye+BAopRIj0qlEiobiCEmLMuAg5sw3bD31dgKZVkaqTCgCUmMNDo2++/XaqNtXeNs0PKn+4548ASEJoZ2en6zjNzc1DQ0NQIdeN2rZrWZaarL4vl4uFQoFzUZNMaiqVic1CocADZlkWwdiyqF8pR6JuGPgYQUhgEIowDBFGCIOQhTpZFjIfE+L7FWybuvdqcwIlJA9CJ55IJpPVKVBWJX0RQpILJSQlBEgVBAGetEgSnOv6Dx3ZKpfLClVddAikem7WN9SyLCmlV/JoLKrr+5QShkGUEkowLcxVLpcdqwZojQyINShREEJRDV8BoLXeoABSCkEkqjrzCKgUVBLq/QBCKRWAp63ZlYQAIKWAPI3eAXi38K/+pZPmXDosAxBCgsupHJkOlHImSxW/iVCEkOd5hFJsRsOAKQXHxsYOnTjSf7IbCAAIQRg5jmNaFsJYQUUpQVhp4n+57DlWjZRAf3Mx6ZclhJCMAaIQglJyCKEOmRuGQRAOw1BTyGF1GSY9z7NtlxAiFQzD0LQtSqmnGJSSGFgpRSn1SiVkmb7vA6mF64AEACFUU1PDpABS6Z9tmmZra+vEzNnJZJJ5WTVZSYoQKlfK2g9D92eM8fj4OACgXC7bjquUIhiHYRiGYRB4hVzOSEWllI7tWIbLQq77HiUm5wzhScv2SQys/yOTZkpTwUj9QbpCc3KhdboYeQp5AwCQAhAAVe0hSEkJoJJSAgT1BQYAKAUQAgFjCgKMiZQyYMx0bEppJBJpbm6ORCKz5sypr68/cvxYbqLU1NQ0Np5VSti2aZhkTteswcHBfXv3Yora2tp+8pOfHDp0qFTxgJTLlq8aGhm2bdOyTdexspn0j370g/r6+lmdM5YuWrxz506v5NXX1gMBxkaG4vH4r3/9yyeffPLEsSMdbe2VSmntujXPP/MsIejSS6/8wz3W8y88c876C/tOjvb09K1ds7ZUqoyNTpx77sY9ew9QimOxWE1Nsr6+/sSJE+l0uq+/Z2BgKJGIHz169Oy1axYtmH/LTTd96EO3rVu37rlnntmw9hzXtt588+3lK1aOjqZ/9B8/AVDectv7Ozo63nr7nZdfeHn+/Pm2YwdeZf68rmmN9UOD/Vpm6KEHH1m6dCmX6stf+kpv7+DExESqoXlwcBgR3NPT53leGIZKIdOkjY315XKZYMsyY3t2HS6Vc3UNkdra2mQsmclksuNeuYIy44U//uGByy4+t6O9ff/+/Sd78mFlM6U0kXQTSScSTblucnx8vHP6HIKtGZ1zshP5QT5SyBXXnrXO88ufvuvzn7jjUzfccINhQsu0lixfcfnll/7TB2/L5XLPPP3krl07Dh46kslkMmOZGe0zBronhkvp7Zt3nTx+4viJw3fcccebb2z7wpe+Rg4cyDgOiCfcciUXcfAdH7k9KMPbbvvydTcsDsNKpRLOn7c0l8t+6zu3VErsiis/3tYGhob6owmAIH/0safPO3/DkWM7p3VOn93V9sjf/n7mqPHhZ3/4YROAE6e3bPnyfSPPjgwM9LW2NW3cuBEcqm7/bfYV8EPwPxtUoFIqT7387fDfwHD17yvPOCybKc/onNva0v76a+/s37930wVrPv7xjz7z5At79hw477wLdu/eTYnz1pvvTJ82s/yXp9zbqklG74Jz1oBzAACD3z19qp1f+xbeu/ahBx4/2d3/uW2PTW3f1sqWnVj49a8dkPy0sdLMz38cADAfTErpAwAAePVfvxnNpv77578OwsjD+KtPimf09uflg4AAUAIgAsAZKanV5XOtoQRCRE+K0UT8qfQfpvZ6pTKlpmFYmFIApRDCMS3f94d6TiJC4/GoYRjYIAaljHOKkM9CSinFBENkYRrIiuO4YRga2EilUlChTCZjmmapWMS2LaWsr68HAGg7Edu2LcvKZXJuKgWkymazDakUQAggVPG9SCxSrJQGhgfcSATokIBlAaCcuhqDUAgVBJKzwLHsRDyKMS3k8p4XWNRAAMdcFyFkGkalVGxtb9++bQvBxjVXX2lgA0K4ctnynTt3+n5l2bIlK5cvVUowJhgLlAARx6oU8wf37x7PDB8/egxCnKpJIQRsK9LS3MZFOD6WEYyZ1EYIMZ/5zKeWmcsV2tvb0+k0xnMty6mUPYyIQIRSWi772eyEYVjp9HhDYyIMA4gAAFq5HkOAtFYmRZhzqZ1/IFIIYKgUghggabuuEnIy3aRnIyl9HwAkAARCVevllUIwRAgZWCsOgOoSmmAslQRQMKYzUhIgpIBCEEoIlBRCAQCqjHykdK1W9XGASikhJ52OEIaKK84kVMpCQEpZLhYZE45j6WpBpRSlJoSwubk5CKWDLb3KF0JM5HO+70OIqUF938/lcm1t7RQTIQQlZl1Nneu6XuAPDgw01jeUCkXtMlRflzIMIxKJhGFoGbaG7/F4fGIiZxhGJpMJw7AmVWuaZlDxS6USZ+HwcLaluZ4xZhvUL1cUwIQgahCAMOPa2g+apqmkhAgJoWzTQoRAqaoVidWysSl8jHXgoUr54kIIqQV49V7OOYTS87xyuQwhNCnVrgaeV1ZcRVxXz6was+pry0UoJJNSAqkgVAAqCIBlmEBJHQLhYVC9njq9DBHGSFbvyGkmn45kcs4FUIQQCE/HuqZCZWrSS3Tqjf+zTW3XAc4zM2LVvVBHTRCEWCmoIFSBDwCQEHpeEI1GdeFkEARxSvWSIJlMhkACQuJ1tWEYKs4ghNFotEqowghBbJim53n6GhpRFyGkpCyVStr/ESrgxiNNTQ2ajOW6ruM4uVwuCAJFqq7bUyS2IAiKxaJ2R5Cq6t9lO7YIy75gSEJKKZeCQEQptW1bsBAqpIDwfb9UKgEAMEa+70OhQuZDQDzPk1IahhGUtXEZ55y7rosgamlp0RjRNCytSMcY830fAJcQomExmvSvnIJQEkjDMrFBgXZGmnw+z7ybp/PCOlR1Rpxv6uXUlslbhiGQCBAhBQBQKqDRF0Z0kjCnAAAQTJE7q8WPuliYM6E9WFOplBDSjUba2lt8v7amJikEX7p0iQJwaCSXyWRaWlp0TFEIMW3atEKh0NCQ6urqOtXbe/7552dzecZYGHDf93bu3Dl7zqyamkRLSxOlmPGga+7Mvv6eRCKRz+e1qsju3bsXL17c2NI4r2tmTSI2NjIMIWzvaNu+fevKlSsz47m21s6XXnhzRmeXZcZqauqEUJWKf/fdd8+bu+jhRx97/oUXbcvknPf29NTW1ra0NkWiTs+pvopX6pwx7cCBfRaBM2ZOGxgY2Lp5y8F9B44cPNw5fdrFF18yPDI+Ojq4dOlSzy+//vrr/f39M2fOvuSSy/L5vGGQoeH+sdHh1UuXUqQcyyj4XkNDw5YtW+Z2Lbj44kt/94d7amvrduzYMT6e3bxt27qz1+3Zu6uxobmhuaVcqRAMd+3aZZnReDQmpGpsbK54Ey88/3Ik4pbL5Xg8OTg83tTSYVlWPFE3e86CY8f6BgeHLcPZsuVNqTwERFt7w1lnr3Fd17ITndPn5Ar5t9/a1t8/dHDfke4TfQsXzb/xfTc+9dQzg4Ojt9xyY8XLL1gw7/jxIw/e/wDn/PHHn779A7d+9Uufk0y2t7Z1H+0Z6h9obW0dGxs7cHDvhg1n796194WXXrnlllvJJ++8fu++nYSKlta6kaG+v//97xPZ/MZNrZYNJ3LFSy65tqtr7s5dW3r7+nIT5WuuXX3Xp/+lVE73DR7q7t5vOnLGnFnTZ7f2DfTls4qap8M2/7O17iy1b5u2c8eplatmnHPu2rra+P/lYN3KxXLohx9ruPDXoy/8b8dc469bgGcvX7V8xYol99731+GRngcfeLS1tdUwrGx2Ys6cec0t7U8/88TMmdPaccuJ432Zu76+6aff+t/ONmvmvCAIjh/fv37duZU7n3M+UC2HPPGde1bFPvwvn/jEffc//LOO2//l1T/8v779O0svazza8MlP3ZQdffu73/tD6/Tpt8KP/TXz6//t4z4x698WykVM8GKhzLmMx91I1AXp6t4N8spGq7lY9CCmGGOlBEEAABB1I63tHQM9vVHHtSwrnUlHYlFCDa4kJAah1IAYIaQYswg1bMs0zXQ6Mzw8bBBTCIEJsl07EU04jgMAGhkZ0Zz0QqFgGAaBBACga996+/tra2sTyVhlzPPDwHYc0zGl9v4jWEph2w7CoFwuh0EQcVzDMAyTepVy4IdKiKjt2oYpJSAIAwAoJlCEfrHMpbjiiqtc2/S9ECrQkKq79OKLDhw48Ntf/+rmW97vuBaBFEEVjUVd26qLu6GX7+4+uGBuVxjyzW+/09XVlR4dHxudAEBGIqQulcyMZovFokmNgIWJVFJIlIinhvqHDuw9UM5XEEK5TM4yTQlluVipFAPF0cjQaH2qRgmEEYBQlylBpLQUETKp1ipjUimIFJQKAAkJRgjLyakXIAm1tZ9SRGLbthUAEEihpJRSKIUUgkgpAJTgQoEq91ZqWUkEJNAZW6UZYQBCBaVSUNP2FdSVU1IKpBBGWEKd8AJKAgkUC3mVTyIhD4WUwDEdJQAPOMcSU2UiYmACpQq8kCDqCz8RjxNsMMaUUjrpQAhhnFfKfk9PT8yNciH9MDBNEyESi8XqnQbHspOJRKlUOnLkCGOCEMJDZtt2Pp+n2PA8T0eMalO1EkjbtoMgSKfTAAAIUSwWKxby9fX1hmFQg4ReBUKopGBMMcaciEUM6gUBD0N4WqkBgcnSB4QxREjwUFcaagOikDFqUoyIklAAAREGCEqlhJKEkGqxBeamaVahGMBKKR6EGBFsER3g1N9Z4xIgJZSKUoow4DyklCIgg8BTykYKcB7aCOFJ13A0aQGOEAQK/k97TwgQRgRApRBUCkwCZajxfRVGKwQA1L4H4AzhzclzaMd5XUkHBRC4mvwC+l+EkARaBEEJwZnQbCRAiQGgobERYyzixvww4EwWi+WQhcVSaXR0lJhmyAPbtbPjZWIaJa9y6NCh+lRdXX1KSTCWGd+zZ08ikdC2q4RACDDnHGMCpM6KK9/3rYjts5CGVW8oDVPUpDbEpKAG4VyGXsiEMG1LB5Aqga+AMgxDAalZAWjSk4qFIYbAMikhpFwu19XVFYtFAKqxZw1Y4/G4bduFrNDipkopAORkFSqiiAZBYFlOTU1NTU1Na2urUhUAqlk/CFVra2ttbS0XnlAQG+Zg/9DA8EhfX39TU4MMQ864aVB1Ru4VAAAwElLCSc0LMAnL9AIGoNNpYjhFfdOWkUIpobUrdPoYAAUkk6CqL6hQlcknAUBCKMPAgvPAD7W6hx9yhJCQCkIVj0dN2yAUKCUZLze3dBw9fioajzgR2zCMwPMtyzJNUyu5pNPpzs7OUqkEIcxkMtF4XMsCxyPRzFjaMMnypQtN05w2rb2vb2D92g1f+crXbNOJRaNMmHv27HrxxWcNw5gxY07H9M58PpNOp2+44YZMJvPsU89v37597uwFLz77yvz5cy++4OITx45v27J9ZGh4+rRZzA84Cw0cDTizqMEZGx/LQIA7prUlojHhiIGB/tHBgWnTpuXz+bq62hUrVrz6yis9ELa0nKxLNWGME0NDKic2b978odtvb2/vfPaZF08cPx6JWJGozYKwUiq2t7bwkBGEA+bPnjnr1KlTr7766kc+8hHDcr/+tW/09w9esOn8wcHBa6++JjuRHx3PMMbsaCzWkCgVy1CIm953/c5du/qHA8Fx94mBQqG0dElze3t7oVipq689eOTg4FBvGHBMyVub3168aOFNN1599NiB/oFTK1evsSxnZDR9331/l1Lu2rmvc8bsrq5lnBvnnXfF8ePHH37omfaJ3Ic++FGfFz/xidsiEWv3rgO5XAkB8KUvfPnEiRPXXHXlf/7njx3bzIyPzJwxfcXKdadOHR8aGhkaGuvsnDEymob33/O93//hV2vOXmhaeOe27fF4UksTdU5v7+vrv+uuL1FiP/7E3x5++JH16zZcc92NF15+BavkfvO7/xRi4vzz15S9jGBl0zTZJdf9byDjvfZee6+9195r77X32nvt/yMt97vxN954Y2x8dGR4bGKiWC55v/zVzyqVyo9//OO1GzYODA739fXBqy9ZnMmO3PnJDzQ2pv728MOZTMZ1Irbt3nnnJ595+rm9ew65bvwv9748bZplWvTss9bNmjX70IH9fpBfvXohIt7jTz5oWuCLb/+j7uh77b32Xnuvvdfea++199r/N9uzH368LtV00aWXbNmy5cMf/vB99/+5oaFh1859m84/75FHHli5agW87w/fFdKv+OnsxGjEcZKJmvPOu+jokeNvvvk2weYrL79JqdnU0hYyf2xsbGBgoLm5+cCBE5dfuv6WW6+3XLZ5y6unerpveeB3/7/+pe+199p77b32Xnuvvdfea/9/0UZ/1rdm7TnHuk+k08MHD+0vFouRSGT79n2dM6bNnTvrlg+8nwwNpn/1m59uPHf5mrOWjQ2PVUpi89u7hofTR4+c9Crhzl09FQ985jOrR0aGXnvtWDQKGprwzDntf773za6FcxyXCUUgPM3i2phfd+tNKz/1qU+/9dbbf/3Tg90nMnf+y80Ao+Hh4TfeeINzvmrVqkULl/7hD39sqKvFGPf3DzY1tlhu7O23D27e9tjevbvvuONbra1g1aoVGBuP//2dVAqZplq2cpFhGA0NKdM033z9nXfeHv3Fzz+5fNW04ycOd3YsyefCKy//zHf+z0cuvGi9H+a/8uUvnLtp3byuzv37919x+TWGYR05crS/v79r3oLOzk4M5c9+9rMbbrxJCLhj+94jh0/U1zcopW647sq333mtuaXWdujrr70cBOH7b/xQ98mTO/dvPuusdWM9ftxOdbR0Lly4kNa4Y33d3/r2N3O5CScaIdTYsOHi+x968OVXTz3xxHcXLFh+9XW37dg5SiybmLGQAS5BxE1ofxLGA9vEIStyzuPRGggwE9y2nSAISqVSXV2dG4tYlLgR2zTs8fHxAwcOJZM1luNYllUoFUfHRjShtZjNNdTXQS47p3e4rsslY4yZtpnP57ds3lyXSi1cuDCTHvfDQCKSK5SklI7jWJaVz+cd0yoWi+Wyp+WaUrV1mUyG8UBrjyGEeBhCgBobG5PJZCXwy+UyQJAYhoQyn887rosx9vwyhFCX+0UiThj6EAClpGObjmnJMDh+9Jjveddfc+2aVatXLF02raMtHo250YjAUADllytSSiVAGIYQTxZ4T5ZkI13rJaSu8qruhVIXkQEEIYSaeyGhhFDpTUhN7Tsth6i3KqUQNBBCuio+8AJCiBuxTpw4ARFqbGzUlwIAoE2IDIPokkNQpZhAACHgggumRNWkTwgR+n4Y+mEYMsZYEDIWBL7v+z4PwiAIfN9nYSDCQPBQe6pIwZRSmliilDYCJwif5mgDADCASlQdTqZoKFJxoJACAigEkQIKCcmUhAoiBlC+6D3y8GPr169va2/mPGSMOY5z5OjJnr6BTeef19c/vHXLHsNyCEUXXHihG4u/9dZb5VLlsisuF0IhhF5+6dW9e/e6rlssFhsbGoQQWjBCCBFxXABAxfc8zwsFv/6GG1paWg4cOLBr1676+vowDJWUpXI5m812dnZqtn42mwUAaWoaC8NYLNrYUOt55XK5zBhjQkJkVPyAy2p1AA9DqACEsFwuA4jtWAQQPDw+Fq9JmqYphBCMJ5xIR0vz/p27N6xbG4u4UnHtU4QgOXbsxObNW9atW9vU1BBPuM0NNQBwrMDw8NBzTz2/aMGcxUtmKOEjYgEhgVKEOPf/7enFixdPa4sMqzsAAQAASURBVKsTvBSJRAQQzGd2pHbX7lMvvvJ21LWvv/7yhloa+LlEogYR8757n5g3b96aVfMA8JEUSimhIEAQqikpsillk3dJQCmloK4fUNW9CCHOwyk9qsnD4JkvIYTyjMLHSZ0DoBSY1AOUAABZfReqBL5hmiGHuSz78X/+7MbrLlu8ZJ6SQcDCaKxx/+H+P933TG1jx2D/yfa5sy3LPHb0KOA8Fk+EXPh+BSslOANCRVP1lFLbNAxCgRIIIdNyek71U9MwTRsBJTiPxyN19Sk36kgp9+3bV1dX19raSrF+WCAAoFKq7NmzZ+XK1WNjY0ePHHccJ+RMAmXbZggVcQ2mpK48pRhNjI2vnr9wemtLOj1q25btWo4TObj/YBAE69evq1QqACnGmG26J44dDUuFa6+6ODN6koVlahLTjh8+0r/v4IErr7gAqFApyEJuO9aRw0dHhrPnn39+uTJh2ZQJbhqRvz/6Yl1dzfkXri0UM0LBaDSRH6/8+te//sy/fdwwMEEAQgUUR1hbGEAApaYGSqnlfE8rz2mOF8Y4FJxSahgGYwzBqhyJpppJKbXtgbaBYowpJTAkhBBUFRiDAAAIMICSq2rVCARYQQAACrngDDAhBZcT+YJSKpFIaK01w7Z8BnbvOTA6moYAz5w5K5lMHjlyjDFWKOQikUjIWU1NjR+G2m9t3rx5mfTYRHacseC737u7XCy+8cYbpmmNjIzFY8mxsXGlFCEknR7tmNZy4YUXHDh06ODBE2OZbBj6pkkdixCKEcQAIB6ysfRIS1MToch1ol6pks1m589faEDc09PT2txWqnjHu0/NWzDfdV3TsXOFiV17doZh+MMffn9oaODGG2/65jf+fef27ROZ9LYt27///e/eeuutv/nN75548qlkXSrwWa6Qv/TSy7MThd/8+ncrli8PQz8ec5ctmXfFlRdv27q5p6ental5aGgkk8kcPXp87/6j3/3u3WvXrn39zTeeeeapNavOqq+vy2QmisX8wcNHLMtauXLl4UNHBvqGN2zY8JOf/Mc5mzZG4tF8ocykWa4wEYJZs6d3tNdvWH924FUeeeQRrxQ898LLM2fMnZiY2LBx7cc+cYdpGj/+zx/t2rVn/qKFmYnxkleJuLF4PFHKVSCEjIkT3Uduef91uUzur3965Lt3fyMRF3W1sXIheObJZz69pSqkIJlMNTblc0Ug/SsuvfTyy69I1NTH4nXPPPvb7/3gOydO9JHuk8cYE2+9uW327NnFgrd799bf/Oq+9evXtrdPC/xw3rzKRDb/zDPPPfbY3378Hz+777579+zfefjw/m9+66P/9tnPbtv28je+/vW1Z2+aGizu/PjF27ds/9pXv93U2DyRzbV3xN555636pvpCoXTzzTf3nOp75ZXXX3pxW2trrZZsmTdvXj5XFGHQ1m4+/dTfFZQXXjJrbHR89949XV3zNm1aPD4+jinv7u6+9NILO2dMO3L4xHg2feedl86ZO/fYsb2r16zoPjG0ZOlZH/3YeS+99DzE5XIlt3Tp0pPdpy48/5xUqrZcmWhr7xodi4yMoD/c89tP/ctdtcnE5z//2VCEmfHCP3/6My89/fJTTz1VLuR///t7TAsByM9eu3LFihXd3d1PP/3k5q1brrr2Ese0eJj91T0/T4+Vv/GNr8xb3GU79Gvf+Pqtt940t6HrsiuueP31Xa+/fopSUFMbLZTSu/eMSghS9YmBkbzlxJFEAHLGdWUQD7kKJaaU+gEDgENM80UPQogNZ3yiWKh4jAWVUrm2tlYplUzWWE7EMIww5KZp19U2CCEcy5zW0l7M5wmACiDHicRiES/we3pOcs7nds09cfx4ZixdW1uLMLFsdyQ9DgBgjBWLxfqa2pGREdMwkvEaLaQ0lh7xykUhOAAAIcy5ikQibS3t1DRy2YlcIZ/P51va2gRnI8MDkURNMhaVQLmOlctOEAAIAKxctqgRiboQqu5jx8uV4qUXX/LhD3xoxbJl06ZNS8TiGEAhWBgEY+k0h4oraRs2AAAqQAgJOcMYS132PdmkUkghoSSGU9Xgk0VGShs5CwCA0h7hAFSFOIFUEmq/tupkJjWxHjHJCSFKAc/zCaKMidxEsb2j89CRI3bZM03b9wIIMecVgrSEglZ0gkoJPKlWDQAh1IBYUggtjCNKs3EnlQKU0jpcSkGlhORKSCZDX3IRhiFjAQ/DIAjC0Oecl0pF3/f9oBIEgVbhCsMw8HwkhWBKV+9LKQGszvEYTxZkVc2NkABCCEUMahiqrq4+EolFIrGJiYxtu5RaBqEIAMF4IhafO2d2X9+AZVCMAIGgUqlQSqECpmlqmfKmpibXdV3XTSYSxWIxGYtjiMrlsuu6igsIYegHJqEIQiFExHVN00QQmobheZ4UIlVX53leIZ/XQFgIbpmGUiDQmgKoav4tpZRcQcSAFBgiQhDn3LSdIAh0zZ3SQiEQRCIRBKpl/CEPEQamZUgpMIaMB7rOHyFkGCSVqnUcu66ujjEW+B6EkBJaKRZz2Ynx8XHf7/A8LxFzJUCBCChCujq9VCph3KAkEkohjCzLsm0bIBiPxyUPLcsyDMxCxKU0IPbCqkUMZ0AToiUAkgsM3yWmOrVygPB0RwYKSCkhqHZd+T/81yeL4apyUGdun5rsz+TmKwkhQnpJgBASQlFKwyAAwPA8DwBg2zYAkvEAISylLBQKnPOOjo7WGe0Ayfr6+rbWVh6ER48eXTR7zszO6YHnhzzIZvI7du8Kw5BiVCrka5JJvVaBSDHGamrqom6kkJ8wTUt/Jc65fkgikYjkwvM8hIhlWdqbUku3B+ViNBolQAnBotFoCJWvQt/zDcMwTRMqKRmDADiOE43GIxEbYqRrJiDEVVEUiDgPJJVhGEYikTO1T/XldRzHIFQqoCQAFOpiQIwxRMq0DN/3IEaaek8prbLjJ7X3pGAIIYhUVW9i8rLrJ0yfH0L4D8rJcLJp0YqqwNhk/QFCBEAcMh9whSGCUBmE6NrGqW/+7lusUZ0EAEvFhQC6mpWx0A+4EEqr8w8ODicSicbGxjDgthsNQx9jHIvFisVipVLxfT8MQ9M0gyAQSra3t6czmVwuNzo6Oq29bdPGdffff++0aXObm1oPZvYdPXrs/PPP7+3t12WGvu+Pjg4zHoyNjX/jG99cc/ZZbe0to+Npx3GCwBMCIgyLpRIlZNmypZa5yHVtHoSFQqUSrQS+l89lZnXO6ITtqVR9ejznjtrZTJpSXPbLmJLFCxe9/OpLx48fr6lJfOmLX1i8eLFB6CUXXTi9o/2++//6gx9+b2w0G3Fdr+Q5kVgCYc5kNpttbm5uqG8qlQuJRLR3YHBoZLxteufA4Oip/qGmhubFS1fW1TffcPP7C4VCPJm45JKLKMWrV69evny5EnI0PXbPPfe88NIrup4sGo+Nj48vXDSfGmjFskW1Dc1//utjnufZRuTQoUMPPfD7XTvWbVy3/uGHHvzOt+9evHjh3d/9EUGkWMw/cN/9J3tOtk/rqGuoHxoaMm1iWcSNmKlUHQaZQ4eOVCoVjOHgUL/iKpmME0K65szbu2tbuVBuaT5tvfjHe37f1zc0mk7/9g+/+MY3v/4v//LJ7hM9u3YfXbV6zZat2z/7+c+QU72HHn7kr+Pj40eOHNl/cGtre+esGQvG0qMDA32Njc3NLQ2mabZ1tB4+esR13czE4PhYf1NDorfn+N6dOyJ27Qdu+ei8uYu9n1c/b/vO7U2tbYlY087dew3biMTNZF2yUCj09vd+6tN3uU7iwQdev2DTkopXCAPfNGh6dCxRk7RsKlDyW3f/ad4Cs72jQ0De2NLYOaszM5b2wjzGVt+R0ZCz8UwmPT583XVX3XLzre9sefXQwd3TprfaprFv37Zbbrv6v/7rvy+66KI333z9T3945ub3nz+Rqcya0+HYpFjMIBwQQyDAx0YGkwnLiSQKI5nDh/YuWLQ6VVMbVgSQtK25Q0i/9+TAwvnzZ86Ya1uRvXv3z58/Z3RoUDEZhLCuKTFzdterb7z28KMPSMh++vP/+snP/+ub3/kqNFn7tNrLr5r25S/+6+x5nT29fb/+3ccff2rzo4/tbW1vHs+UlCQYGgiKIAxt2/RDZpgxQghnHlQASKSL/xUEiNCQcduOYmQGoTQMA2Hk+SFEJAw5AMC23DAIlILlkkcIVUqNpseFUOOZDMG4NlkXhqFf8ZobmoKKv69v76IlS+pTKYJoJpMZGxxO1CQFF7Zhtre3O46DEHIcZ8G82Rihcrk8ODg4NjYWjUYty+rvHcjmJyAACOLaZCLiWH19fa2tLbFYwg+9IAgikUjcdQq5bDRZE4tEfd/ft2NXXV3Nx+748KZNm7q6upLxOEIo8Fkmm+OcQ6QopQpjhBAWgjOJENIBMwgwZ1XPE10pphQAEmhXFSGEBAqAavW7mrRdA9pzVwIItZcPBNVpDEN4eoBWSgElgVIIUa8SKCCEEJ5gGvwB6Mdiif7egc7OmUoBTDBUiFITgGpwBkKoFOBKQlQ1kA4qVYNwpYRUYgoXEjhp4yg5hBhjRDBF1MRWFCpgV2vEoP5een2sRWhVVdlcBEHg+xUoBOOBXrz6Fc/zyhqflYslxgOvElS8UsiYEIIpxjiDYVAuViwzks0UXMvlXCIJJFBQwqgbQRJGbXdaa8dg/xCByKEm1IbTtksp5ZxhCEyDpOpqhBB1tUnmBxgoxzIrlYpBEFRCKWUSmkgkKr4nWQiUSMaitTWJSrFUW1srwgBKYWBTAUlg1bvJ8zxtlIkhhErxIAQChL6PIDQJlRAQIKqgFULf9yKuK0IWCo6Qtn6CuUKe2CZQghLCALSoAaTSArMR1+ZhQBCEEIR+YBqGZZgQyCkQrIFsNBqNx+MtLS2W6XhBAAASQlCCMplM3+BwQ0NDELQSXJVVo4aZTqcPHDiQTCa9cjEIgkoFKQURIlrCFGDCJRBCKCkQQlIBVYX7p2flM+fmM+ZY3dHUmcf8wxwspYAQImQAACQ8jb0mmw6q6aLLqbpIBAFAEHLFheAQKoigaVIFgGWZGCEoFSJIwyMIYSQSQQYIJcuMj5smLRbzvu+X8oVCoUAQtiwrFlOrV68+depUpVR0HEcpQYgVhBxCaJpWOp0eGxnlLAhK+TUbNyBEcrnRkZGRSqUSj8cjThQApOORUkrTNF3XLRQKkJoIIQpRuexXKhVlIgkV0PJpSlGMovF4GIaKVz3XMUYIISmBVmHAGEOM9N+MMScRm7q8lUql7AmtLRKGoZAhBFPqtVLHrnSMyrBsAIDneVqXlTGBMQZCAiWEAhhjhJTkglBte3r6wuvVnX7k4aRXweS9kxAqKaSu6MQYE0w454QYXEghSbK2GULAeRj6FQUkxKYQDGE8VSx5ZiOESMk1sK5UPN8LmIBKwXIlgBArDo4cPCqUPHb0BABg/qKFLa1tnDGCcOgHmfEcIYRS07Isxrll0opXopQm4/G+np6aRGL71m179+yaM2v2ze+/8emnnvrMZz63cuXyxx55LB6P9/cPZtJpSmlzc3PXrNlKqbmzZ+3cszueKEYcyzIjOS6UUAigttbWhx544IrLL7n6isu/9OUv2KbV1jodKrlk0TyM4dBwTyQSO9l7oq62oaWlwfdDN2JvOv/8Z5579siREwjAndt3nH322aHP9u7eRxH+y5/v+9Rd/7zxnE0nun+rrYr27jsUS9SBgG3ZstXzw7a2tqPHj8XjUYgVY8HtH/nYOedsYAEvFAqz5iy46OLLli5beaqvd8XSJS++8hIX4W0f/MCpU91/+uuf3nfd9cm6WjcWzUxkd+/dJ4Sa3j7ddq3Vq1eMT4w6rpnLZQulomFFSqVyPOZ88Uv/VpN0TEr++ZMfKFXSTU0ta1bOnz276+Dhw88899h551/Y03NSSs45i1BzZudMzmW+MHHVlVdsWL9uYKBPCHbk0L7Gxubx7MiixQvWb9q4d9cu3/enTZs2dXObGurSYwOeVzl3/TrHMlOpWtO0sGFj07rtA++nFiAd05oPHz546mT/+HimXArPPmvjxnXrd+zY9qMffz8eT2KsqIG2bdv62N+f7+ysbWismT6tNT+RObBvz8c/+tEjR0qb33msvW3GAVDQn3f33d9++aU3f/C9++Z2pSSUM2fPHh3NlMv+2Wevffrpp8sFBiHIZNPJZNx1TEIQJRaCsqm55qy1iz74oYaRseFXXnt13ryubKb8+iuvh2ElHo9DhWbN7Hjumec/89m7+vv6wsBLjw/v37MbYvD3R5+8+OKL9+8/YFrR+vq6//iPnzQ3tXR1NWfG81/60rc/cectixZ1Hj6yr7u7O1Xf9MlPfvLFF17etXtb54y28y9Yv3BRl1/McOFDhQQHQcCogY8dOzE4uNgwOoaH01dcccX0zrYjhw/s27V/zTlr5s1d/NrLW4b6RlK1tb0DvQ899MCdX7jrF7/8Oec8DPjF8QuPd/eeONXTObNjzpzZ3z37QkJ/9NBD79Q3NPFAeZVSIl6DEAyCAEDEQi4BNqgZ+gEAAmNCCIEYhCHHhiklCLmwDBMhUvHKGONKpYIxBgBVKr4S0ojYXCnAhV4hDg2PSMEJwoQiDCAAsrGh2fPLjY2NvSd7c5mC4zgAgPpUyvM83/eTsfjJE93Lli7FhPjlku06uUzWtu14NObaDlIgEo/MnTkbYCCZzJfyQ0MjfhgYFAMhS/kcJrAmGodIYYM6dfUU44N79y5evPinP/7R2rVnTZ8+HWIkpczn81JKwVU1jA8BE0ovmjmXijNCCNaV/Gcka84c+7QiPKYEAQgU0stWUDWmro6UGnFpIXA9twkhIFQ6aAQU0bBMKeVVAiEUhCoIQikBxlQJLoSoidek0+mxsZFUKsV5CABgrGqeI6UCAIFJZVQWVnVVICZQAqEEVEAhoMU5fcYmV+dAKQ45xFjBSas4NaUnhCEECMBqVIMiDCFUUEEKHSvqJvQqvBrbgEDqiyOFkCzUV4YxxgXjnPu+H3i+Eiz02JXXlQv5EgRcKjGeziggrUi0pZCPuPGKHyhPpBoaKYVlrwIY45yn02nf94UQExMTUkqtPgoAYAhHIpHa2lrLICwIhRBuPCqEqnie5VtAKsVFLBarTSR5EGKMoQKu7ZiGmahJEoRD5lcqFaAMwSHEhpWsQQR65UoQBBgijDFQRChpmybAIAgCgiDGWAtYKAZN0w6CgClR1bwFAAEIEZBSVColhAFGAGjbTQSE4EohIZgbsbU4mBYjQAgZhDq2DYQMw1BKiTDEmHDOpVLt7e1ds2bU1NQ4jlMqpiUAjmvpyTUajRaKvgZwo6O5ciU7Z47r+V6pVNIxJCFVNe8HEEIEIaiU+AcENtXQpNnR/9j7LqWoqWOqua13z9Aay70bjSFQjdcobWdJJGKqKmxhUViTTAKgCEFMMi0Zzzk/efJkOShCigCQQRAwPzAMY3h4uLe3V3BGDBqNxEzH1r+dh4FpRDWwoIYRj8ddN1oul08dPwYIYVxIKaPRaHNzc3Nzs2VZnHPNrAjDMJ1OJ5PJiYkJneWXUgZhYNt2PB7lBJZZAANfSmkbJgsDFoQTExM6iAWABBBM4jA8lcjVfb5SqZhms+78pmm6hoOI09uXgRBKyYMgkEJpeyUtGwYhDAMGEeCcSwErFR9CrI22hBCO4xSJBwDgnFGDKiA5VyYlECntyq3OcPOcuh/qtP8m0OslwzB0GEwKqbN4J7pPbt95eMbMudGoi5Fqb2tyLEsqj1JDSqFpFGBSRkSr3mtDAsukpmlCRJMJYyJf3rdvvx+IaCS+fPnycrk8PDoyd+5cIQSTor+/f2hoiDMQi8VMy50ChfqbmKapAz9SykQsnsvlMAK5bIYa2DTN+fPnuq5rEOo4TldXl+d5hmGMjo5ec81HX3zxxZ07d0KCJ3IZy3Zd1yWEBH4JIpGfyH3mM585tP+ASeH0aW3Hjh2zjFntrZ1ChqdOdTc01tludObMzpGxLBdhPBmzI/a2bduOHDlSLpebmpp27tx5+NChbCZXKhS6urqee+65/fv3n3PuWtM0W1rihNBduw5OZHPNzc3ZXL63b2DDhg0f+tDGV199OTsxLiG45oabwtA/evhYUPE++7kvffd7P2pvbUulaseuvaq9vXXBgvnbt29//fVXn3zyye9973uXX3HVW2+909DQqCQ0DKNj+nSvnHcde9n0ZV4YDI1kDh850NTc6VpuY1NdQ0M9AH5zU+P0zrZCIUeI8fkv/ktuoiQh27V756rVSxLxms9/4YuXXnnZrFkzDh05XCmHyWRtKZ8b6u/DSKxYuXTOrOmSqw1nnyNE+NoLL42OjPX39tHJsQsAYDq2lCKVqvvN73531dVXKKW+8IUv/dtnP79kxcp9+/bNmTOXdE6f8dhjj+VzlW1b+xobjWLBo8Rubmr/4AdvHxoaoqYzb968haV5YRguXrz48OGDL734/MRE4azVS8PQP/vstomJzI9+8LOPgqqS1mD/CMVkxfLWTHq0rb3+wIFDe3dPrFw9fXQkM70zIgT74IcuL0xk9+zdXZOIQ6gIIQrI0bH+xUtnzpjVOjzWP2PGDBbCg/u224bjRlyoSCGXJ4Rkx8PtW3fEYjHmey88+5xBzPMvPL+2Nm6apuP0fOfbfz73nIUQ0JMneud3za1vqG1K1cyZNRuCcPr06R0dnZyBrjnzMDJff/3VVKqhIdU4NnKgv/94U2OTVyllM7m5cy7ChO/c9U4ul3vx+d5de7YmEpH9B3bMmTvvimuuVwHMpkvzZs05dawnHk3EI9Gu2Z28OOFXgr/c+1c3Gr3yihu++e//8fD9O37yk4/aEfPya5Z85Uuff+jBqx3TGc2mI24CCq6AREBRywhCwbivBDAopdT0PC8Sccp+yTSNIAigaWFqMC4UgIQQACVQwjTsihdgjDGhYcAxxkIqjBHGxIwQE2OoQOBXMEQI4UqlAiGipmFQSzCuL6CUMmLaFjVs24YQ5jLjrR3trY0NY5lxIPnI0IDnea7r1iSSkrOx0eGQh1E3ihBwbdP3K63NTcVyCSjh2lEpmOLSoPTAvn1nrVrzy1/+8qyzzmppbZKS6/FUx+EhQEoIgFAYVn17CCEiFEABSk0AtBY44IwjgpXSvisAACAlgBBWE1aMAQihlsWGk7kbASAGEEIgEYBKQah0RAoAqSAAchJ+af8QLqXkDAqhgsBTSkGFBJSUUsZYEHitzY19fX0Rx7Jt26BUKalzmEBrb2moJJVSUCt6YSzI5FAqhBB8Mk6mx2ukAZ9kYkouFQJtBQiUUAIqpJTQyCyEUEs+6lyHvkpy0qcZAokQIhAppXSkDQEAqWFZtlb9VkoJJTGmGCApAYKAc6ZRJpDcCz3BoZTA95gX+J5f0ibZ5190calYDoIAQ1gsFpsbGxlj5XLZ8zwWhMViEQhJKWVBKIUYGxm1HNv3/bGx0UJhRjKZVEqZ1BCMC8Ytg1Bsm6aJoIJKRB3XNU0hBAtlEHKlXSoRqEnE9CQaBpJJgU1smmalUhEIUBqWKuVJeUxgmyYRHBIohEQYa6UrnRzUyl4IIYNgpADnwqAGlMrAhEAEgUIKIAARgoZhFKWEEFJChBCEoknVU+CzUNuxa9AJEGKMSQEikVhLS0t671HLstLj2cY6q7GxmVLa0zvU2z9YW1ur4HIpJdSRJx3phEABBJWcwtZTcApOyqCfmTc8A1G9ayOcVBSD75KPmjpAvfulRiUIYcUY05qoCAgFFETKZ0r3dikl50IDIINQIKVpmtgkBAKTUA8gy7IwNphhQAgMyywWSqHgAABKKQ8DRDAToZIwn88XypVUqkGEDBEiQzaJI1E2m0vV1jspl3M+5eOECC4UClOeCloyjUsGIXRMiyOAK5gHIbBsrW7vOi6EkAcBMQnG2PP8bDYbiUS0f6gCSggRyEBzUrVUGOehgtIkIGR+JBJxHAcThCAFAFiWgRBxbEvjTgQgFFIoXqlUCCFBEFQqBduxOOee59mmoc8pQdVHAWNcHYAAxBhrOTqdXlaTwvdn3rsz0qDVl8VCeefOw1t3nKAEI8DjMbuuLnb99VfX1cSBChRUUCkFxOR9lUopKLBFKGNSSWHaru+FxWLJdaKNTYnenv5du3YVi0UEoGXSbLZ4sueU7cbWrjlLQdrT06MAZkzr9YOo43ieF3Hc+rqU51UWzp8/OjJy9OjRVCqVz0+Mp7NNTU0XbLpgYmJibGwskagRQpTLZS0Ge+DAAc2AiFgmCzwpWGtLU3/fYCJV7/llHvh1NTXxiNXX09PUUAcEd21r29Z3TAvnChNz58/3wtKquavO3tD4+ONPm4Y1MDyilDJN2tzcGIZ8YGBozqyuBV2Lnn/uuWNHT6TqGmbNmTsxkUdI5ifGOVOOE2FMNDY2lythXV394cNHr7zm2rPWrf3Tn+5paGrMF8vxZCJRl/JK5XUbN82ZNSvwvOHh4U/c+ckVK5Zdfc0VY2Mjv/3dr++6666TJ08+99xziUSt54eEkHI+V64U49E4BMKgDrVoNBpecumm2oamU909o+P9v/j51u4TJy+9ZN3Gc87K5TOMsUQ85diRxuakAqC+vnb58pUf/NBtvQN98UTk7LPP2rZ196EDB5969Il587o+//l/Gx8ftyzrkssubW+d/p1vfmvb5neijgulGh4am3pU1569AWJYrJS/+tWvDgynN23a9Lt7fvf7P/z5mhvet2TZ0h/88Ickmy20tU6/+KIF11wtDxw49MUv/viLX/zxjTdu+u+f/+Rk78nnnn0pm80KIYrF4h//+Oc5c+YsWrhs3vyuXGaccZ8a8Pvf//7xowMfnfy8dWedHXNjP/r+n9ecNe2DH7zVNM2jx/u+/Z3fxmLg6JEDlbJcsWI5hgBjLIGKuE65VFh11rLlKxaMpYe2bt285Z3N8WTS80AsEs2MFxGEWuZxIjv+6U9/5LXXX8qmx2+55eZf/+o377/lugN79wHIz1qztlKp/OxnX3zpxdfaWjtHR9Mnu0/mcjkI2L59BxUsxRNOY0PrzFnzXnrp1bLHjhzrHRmbqG9o6+lOX33DpXu3HOzpGV64cNHEhNfWUX/Vle9bv37t3r37e3t733zz7Qsu2jSezXdOp5ls7pe//lX34bGNGzb4Hqurb2UCv/j8G5VQTEyI2lQqFm+79JKbH7hvx6fv+s2KNY0Sxi678oabb7zq/vuf7GidHnJhO6apFAOSS+nY1A+Z9o8JA2lbRuBXoJJSBIZJIFAKKGoYOisBAVRcVIol242GYSg4oxQjPQgIDhQCECgAJeMmIhRhgqshc9t1eCiQUFoC2zCMgLNk1PVD1pBI+L7fd/z4mGVBCE3HtgzDRIQQzDwvFos0trYihHK5nOd5KBob6R9I1rtzFi0eHh7GGHMptu/cfu7Gc3//m9+tXbu2rq4uZP74+Li2EZycjSRGFCHEQwYQ0sk3nQXQ2QSllHZjBABwziHBVWHSMxQOlQIaqcAqkXlqAaqqjsuqirqmogsQYAWVUpqnL5RSkgsuRehJLoXkQgMypSBjDABJKOiY3h6Gge97hkGlFJRSpYCcdHRWUv8cBSFWSmEI4KS9nbZ6VPD0nCqEgJOecWpqjIZS02whwBApNLn8nWICTc7ZVZdwCSGBCAAoFZRCCSCU0jE/iXXkL2RSBgAApX2LZBkjQ0pJMcEEacIvAMqwI1IASs1oDcRYo0VAEBACYAykBEqAMGQ67jJlc+l5XugHUkrJWLFYDIKQMVEslxlj+WJB25/HEvGmlmbGAyFEqVTiIav4HgJQAsU4Z4wxxoOQcQ16DIwBLvte2asY1CIIeZ4vJReCE0xNA1lWslgsx6IRxoWEwHIjslggtkUtg3PuxJMYASBkQ10tIcgwKfOlntoxgbZtWwY1CMYEGgbGACrGKaZIQYKxFABDyLk0MOFCIYMAREPPdy2TUporBrFkDGFQ9c6W3KS4VMhVykWzNUpNDCCaOXPm3DmzFiyYRzFiSikpMaYKIO1sgCFQZ1g1v3tKfpeH49QxZ26c6ipT1PV/OAOocsLkGTGz6mGMMcMwgjCshsEwkYw7FEydhFKqSUKMMw3vgsADhOrnVwKFETAsgzMRBsywLUppEPqMCUiAdqbClDY2NubzRcl4bqIAITacqGkYmvPk2g4AIAxDPbYIxu1Y1KQ0GU8kErHR0TQmUEgGAPA8b2RkBBrEhxIiZFqWQWnZ8ybyxaHMsY6W5vraOs5DYhqUGkKIWCzmunapVJQAUEwLhcLRw0faGlJh6GODSB7q31gp+5blCKEYYxAIziWE2KuwVCoJAdYLe8uyWAj0N8QYQwQ8z5MC5vP5SCSiI69BpYwwNCmByNB+QQgDLfwLAIAAkEmviMm7hgEAOtqqt5uG7fs+57y9vf26668JQtTX1yeY51WKh44dYTwgFDEJ9bJOqdP1QFIApRRj3DAMiLFf8QzLbEzV53K57u7uZDJZLOYbGhswxg0NDddee+3W7dsGh8cuveyqUyd7+/sHHduFGOXz+YMHDzY2Nra3t69atcq27ZpEEhNEMNYJ4nK5HIvFamtrG1Ip13UrlQpCyDLM2bNnj4+lEUKHDx9GCDU0NNTX13mhDxD69Kc/9eabb9/7lz9HYy4h5NixY65jACDffGfzzOnTCuVcoiYai7uLVyzs7e21ncjRE4e8wI/HXYQMjOGaNWvnZjKPPfZYe3v70YOHErFYqrZ21aoVGOOZs2elUrXZidEDBw6MDKfnzJkvpYzGYzt37clms82tTQKoa66+OlmT2LhxI8Tg+InueDwXiTptbe2FbFYIfuHFF3WfOFYqFyjFTz/5LMbwxvfdfOrUqfr6+g0b1/3tkcc7pk2XUDY0N2QnJvbvO5iMxw8fOR5NRDkQl19+edu0jiefeObY4WM1c+bX1dVt3bIjVZ+cP79LKZXPF5RSra3Nn/3cR092Hx3PjNWn6hLJ+PBAf1fXvFRdjblg3urlK0qlwr333nvJpReNj2f/+te/UmxIyVetWvW97/2fS8+/eOHCxeDZ6mN43kUXOq79nz/5qWnZJ0+dyuVLlumMDI899vjfAUZKKfJfP3lMKbBi5Z6PfexjXfPmXH1tcf78+S+//PI3vvXtaZ3Tt2zduXDhomuvu+zZZ58xDbexsbG/r0cxWCx4Y+mh8cwoxjhVlwCl6uf96r9/MTQ0NGd2JBmPeWV/5arlu/ds+/kv7qqvq/vpz34JgfHEEzstCyxY0CiAZJK1T2vtPnnEcvjcuXMXL1o1t2vRvfffu3LFymSs8S9/fmn69Jqm5roD+/def8M1l1x63q7dmzs72t2Ic+FF63p6j1500UW5TBZCrDhrban5wD9d/58/+c3uXcf+6Z9uzefzrc11ALByWQkRDvQf2L372DkbL3z9re3XXX+HG0m8s3nvrh0HkzXHHnzgqZN9WdMdTTW2R+L1zz635dixgaXL5jc2t7gOLZcEYf6bb7994XkXf/3ur5/qHn30b89QEt2+59icJcsXLJofkwjI3k/d+Zu33xweGx6FELRPa9i8deSdLd/5+S+SixetePD+JxQSQvoAmNQgBBKAMAsFNQkhhu/7yICWhSsVBRUihHAhw9BHCFEAqUnLgQ8gdE0LYxyGAVIcQaACLiG0DWIYBgLAsUzHMFkQhhWPAgyYyo5mSqUSxYQQgqTCUAWMQQglUIZtYGIQExuWBYBkQkIIS/m8aVKCKWAhlqg05vXnC0jbGBPiGNbMpmYuBKh4LbW1+w4cGBkb/fF3v3fJJZfU1qe8SpCZyDLGNJg4I9tSdQhWSoHqBA8hREooJpimakgg4BTLVcMVeJprPBVS0mtLCCFQ2jVP88MkhADpmkQIlapqZOtcodIG1Urq0rmQCyUAF0JNGvgopSSQmpBFEOjomLZr165YLC6l4lwQQpRUCpwxlSIAgUQYCqDAGSmnf4ht/M+5Vn93KSWACigBkbb/U5OFclNngFBKAQFQUALFJzMvU/V0CAApBUOTJoM6i6GgkgpBrISEk6warhMlQHkVppTyfTYFBc40szsNBRAAAGBCMAAYokgiVj0AAIQm6xoUUApo7X79KXrikVJKKXjIvMDnIQMA+J7HQq5dE3RiRXKu4w1BEBQKBcYYZzIIvXQ6ffToURtioJD0sZTCJsSwbExxxDAAQgqITDl7vLu7qbFR1QX79++b1Tk9MKhlGYwpSqmGkBHHcizKWWBhwySUBwooFbOjzQ2NJqUWdX1WFFIggKFCUEHLxAaFGCqtkm9ZlheElukgoCQLEnGntaUREWJQQwiFIDIwMjESkiklLItyKZCusAUSQgQA4FJhDKXSmUOFMRZCVKMmmpsIq9WsCCMIAVfVOApWp4XUq3dZIQB0yhnqbg4hVJNC+RBCpYAESkkOEWG8Ct8JIQAixkKlAMZQCYYQYlISgwrFqWFIABCGCFNESBhyhaBCUCEVhEwKRSktl0pCckoxxhBjTAwspbINgyQMHgrHsn0rKBVEyBiE0KQkDLlJDQSgEtIyTKUUhoqzwKQ4PTrKWlt44FMECSEhY4Sa9S1NkOBMLhtwhiBASsXcCC97yzZuTNXX+75vYBRWvJ6Rk/l8Pp5IjI2PxWIxFjApAQVkZudM2zIAlBAqDoRjOp7P+vuHk8kk59IgOBSBaVlSQARNKRBCiAmOsPL8ACOHC2VbEQSgY9kYY9uKTLjFWCymn1ZNyvQC3w89waRSihhU27FTSjFEilIEIMZ0EtdihBBhTN9ok5hQKYIQkLymxl0SjwahGh460dJUP2fO2ZXKymTcYryigIIQV3l8UD83CP0/fP13mCTHdSWK3xsmXbmuau97usc7jAUGAOEtCZKg96RErSSKpPSolVbST9p95PJJWmllKbMSJZKit6IHCUOA8HaA8d5297T35dOFeX9EVnUPgN9LfF9hqjs7TWRkxIlzzz2XEK0UEFBKAmrGmdYxoTA42OelUkEQdHa25/OtE1OTJ0+f6u3vo4QHQfDTH//kC1/68p7d+7w+NwjDO26/7Q/+23/9xje+AQBHDh8aGx1PuS4hpLe3J+W4yHBwcLBYLFqW1VYoWIyDkoP9fQxJrGTKslbKJa318vLyvj179+7fd3H08sWLF//t3/61ra3NTVsape05TsrJZnNKib7+wc7evtm5STvD890tkfDDuL40sfTyy6+8+13v371v9xNPPFMplj7127/zqx/5KAq1ODnT391x/PDL17/hhusO7FpaWuIo/UqpUqnMzC1s3LJ9ZP2WpVJ5cWE5k8llsy033XpgambG9/2enp7l5WVCiGunKxVfStlWKLguzxdS3NLF8pLWctOGba+8dJBbtCVbCIJg3eAAISSTSUkFC8srKS8zNTl/eXyysz1mlIRXJk6ePrll+zWxJD/4/gPr1g1nU+5KsXrTTbd1tHYTtJVW3M7kW9urpeLUlYm777577MrUzMLixo2b/Iy3vLSwaWTYsizfr3ueMzk5c+nyWGdn99zsbL1aC2vVN9/7xl/+4tHLFy4uLa6yX5//4r99+MMf7h8eeurJ5zKZ3Jvvf8eb3/zmO++8++zZsx/60Id27t7JvvylPz9//uyhwy/+6+f/MZNu275t5/zs3N69e598+sn784X77ntzqVTh3LZtTwhNCK/Xwj//83+9//4b77333isTowcPHiyVKs3zPfHEU+m0Z6TZ+/bte/H5Fw6+/Pw99962a9e+v/2bf5iZnf+v//U9w8PD//APn9u2bZuQwfzSvGVjrVbbu3dvaSV4+qnnV5ZWZmZmdu/e8/WvPea4Vr1e7+npGh299Fd/9VdhGO7bd22xtASo7rvvjb29vWfPnrVt+867bnvp4DMbN2+99fbr29o6vvKVb/T19iwN9c3OTfzWx3/t8JGXgyDYtnOTH6ihwQ0/+tEj6zds/+lPfnHyxIVvfP05m8O1+/YTyr73vZ9dHpvbvaurXq8fPXp4x87NiwulfGsl354eHb3U09N35coCIelbbn/jb/3Wn/X3tfzlX/1rd2+PHwhmuYODg9/69gMIYNts9MpCNttCCPnt3/mjwcHBlkK+WFx2vXQkQqKkAjNcWrbFEDGXTSOFIAjaWnJKqSAMLcpyqZSMBdUQhoFFwLYtIhTEAqW0GUt5rohiz/NsRmMRhn5w4cwFz3VTjrthZP36detbW1tbW1vbW9vS6SxnhBNKkQgllVL1etWPwnK1EkShHwXVWg1QVWo1AKjUqtOTUzNTE2NTk3EYGUxgcwcRzVI4lkqeO6cQPvwrH3nX+967fuOGql8vlUqxUEZfsgZ+ICSq1ddjAlQDbVwdhYnj2DB9Sdytsb85SLMSCyI2FDGoATTK5rG0CU0a8kChlFJLLaUUQikhlTJF/NRadoEC1Gr+4mIpk8saIieTyQCAEEI3IKA5vpYAIIXQsDatco3cpxlsWkt46KSkUJPSUKhQJk4WV4UwEohDkCA1SX9qDVKUUjJCtAYplFpzAa/asFEBWmtN11zMGo6tqd6+KphlPpVSRL/6aArWQupGLTxCAIAzlmQ9IBYaGhROIPHraJB8ya1JDQRlLChnoR8gJUHdP/jyS1/7jy+Ulle6OtpaCm1SYqlSLpbLszOTrW1ttVpt9zU7b3/Dza2trZ5rv+edb+vs6vA8Z35+XikolUqRH+iFBSflVqvVIKxTigsLSwDKs52l4opQYDkuYRRiAoTalk0pl1LlcxmL0WY4SWvNKQcAonQ27RBCWlty6SzVWkopGUdT+MiiTFkOYyiE0BIBEcwsCgY/Sc55GAYm+U4DKrFaWhuQGACNiFIKvdosScM20x6NxD5pN42NnF7zxJTWFCBxQkk0juYgSgFqQohtU4pochSAUBMWJIQEYV2RmHBi27bWsTFHiONYo3YcFxHbO9ooxZWVpXK5zClGUcSYlcvlKLKVpRUCaIwuKE2KmmutwziCRrpMHMfEZoQQ7ti2Z1uOw2yOjBKGfjUACqVqRUjpptygEqlYKKVkFHOb1QO/WCkz0HEoM6l0KpVaWVrq6e31PM94wYhQHDt2YmF27sro2T27N3KL+qGKpSDEackV0qkMpVRJw0XJuh/MzMxpjdVqjTISx6HlpqJAeE7a931EVEpEUZRO5WSiQ7WElLbtck4J9bTWMhZKKdVYdwkhIiGDIFBCJDYxjU/juaMbOgGjVpRaSREoqUVcT6V60yk7lWrVICjlsdAaTP1WCSC01gCWNroJJQGBEaK0UkICYMq1qw5fXlnK5/MLC3OVSmVpaen8uYtSym9/+9v3ven+u26/a25uXsQqn8tNT0xu3bz+jffc9fDDD9fKpYG+XkpZoVCo1apKKbdRm7VSqXiWbdt2V3vH/Mzs9u3b5+bmpJRD/QMr5ZKpTH/w4MEoEkEQjI6NUQaFQiEI6kqLSqWyvLCYy2X6+ruXlhcK7a3c0qfPndy/d9/1N1x3ZXw611L48QM//uxn//yNb7wHJNm/f/+nPvnb73//+0PfV8rZvGXDwtzUmVPH7r//fhHFjz/5hAAMomhqev7kqfPZbKparzHUUqufP/TQnXfdwSz+4osv/vEf/cFKqfI//sdnb7nzjrn5yaeefmL/7u1equ/nD/54aWnlN3/z108eP1WtVgeH+k+ePPme973rwHV7GaevHDr0wksvLs5Ph7m8m7by7ZlMLrWyvOw4vKene2J88rkXX64HwfJK6Q033rxv357WrEdQVGtlpeT01Nw1O/c8cfb8t7/3UDqXVQqmphZSqfT8wszw+nWt+fzKysry0lxr28aRkZG6Hy/OL1mWFWJ1cWleKaG13L5j64MPjjaH0HKt/PLRwzfceNOhQydXiuX3vPcD27dvO3Hq9Pzc4j/+4z+OTVxhb37LjaXS9hd+/eGd2zZykrtw9tzMzNy2nTtc185kUu3tbRMTE9ded08+z2+4/sblxVN+vf7hX3lbR2d+pVzijv3m+9/64gsHYTo534Hr3/DEk4/X/FiB/t73v7u8stje1v2pT/1+e1t3HKm5OfGe97yvXC46jrN+/fpjxw/FsYziUCj9F//7b5Tk3//P43v2tIxenDh26OL2bW0yjithnVL94x8ffcfbdq4bWP+lL3711On5lhawbfvmm60D1+/3ayXHhemZ8f0H9t1+x03rN2wOIzk/t9w/NFiPqq0dnZu37jh48OBtt95N0A6CC1/+j1+C/iUA9PcW+rrTvh+WylXLsmbnl/7bH3z8Qx9858WLJ7/77a9eunhlcWH6//zLcz964Hfvvfv2yYn5ndt2/u6n/ldP18aeno6Jqfmevp5KjcYCMFJz88uOm+YUU5mM66bq9Xocx53dPZdGx1KpFCGkXg+q1XqtVkWaJPV4nkcI01orBYQQFUoAoBZH1ERq17YsRtz2XKlS4ZSmLMdiXKMOg6C0UlpeWJio1QjB7du3775+/0d/7UPD60f6+vra29vTuaxt25brAIIWgGa4NpRQkzRRANogDIiiABqsycryYrVa1XGklAJNjKeAEKK4VBRC1INgenZmcHDd9TfcgIzOLi4JrYQQDGkT06yFBfpqFUtzKkq+NumYJpQxSlREQFBmBsI1Exis6qiMfP1V6C2hyhr7aamEkMJAw9hoYVanWzO8UoqASik1MzPDGEt7qVqlmstkwygy6QJNnyUT+pSrOLIJUFbBCiHUTJVNYNPEnWvn2rUzbvKTNX5CIIFSozeDZuzJzKaqMUOvIsI16LB5hGazNJO2Xv1cGoq05kNp/oleoyRHREJQE5RrgbUGITVobM46r7pNbWiAxhHW3jUBlFqhBiY5o1Rqlcqk733j3d0d7VOTk+lUViocGBhyUl6pVFpcnC9XK4goYpVOp22LaRlLGVFKt+zc3pLPR5Ew4pXQD8IwDIOgUinV69WgXq/VatVyhaZTuxmzPaseRVIjZ1axUrZtVwhRqdUiKTizbduxqEU0oZQxylOu09baGgR1SsBz3CgOOLM5sdKuxwihyCgSrQhoIJQjAa2J0tKU9VSg/TBgjAEhBFAqAIJm6YCAoAli4qtCCCFr7OiSAHTjAYk16iKlETRQSk2CsIKEjiUAAIozavABogalKUOqwSLUsixQEQBh1LKYjRoYoZ7tRBqkFiKMOEGBBJX2PAsIk5HUSolQhTLWUra3tq4sLTqWrTWKKJ5dnBNCaEsbxGY5XColzcUgEEaVqVhKSSwEk5JQyi2LMKoRhJJCStuzY1BIiJKxk/JY6HNuRVIQqldKpU0bNhKL+bVa2nPdTDrWqrWjo7e313W9MAyiKELE7du3T41ffutb35LL5RYXluNI5AveyeMXTp4+bjFnZH1nV3erCGoECedePp93Ux5hFCkzmTRBEJj8iSAKKeNEyzCOarWa67qGvuWESikBCQBSyhlDBWuWWEwhojbUPSEmQ1kIYdRpRj3mOI4Z1c17B7FwXEtKmcvl6n6Fc5BSU0qUUgwR0ASaCaEImigpsWGjw22XUlqr++VyqVQqKSFNzocQ0e7d16TSLgK96667CIHWtnx3d7cfhlLK06dPHz9xuKWlBQAymUwQRF1dXZlMplhcsSxWrVY9z8vlckYPp5TavHlzpVJZXFxcWlp605vepJT65ZNP2LY9MzPDbcv3w/ml+dvvuGNgsPepp56ilGqQURxym9mefersqesO7LUsWveL7e2tlcrKpfMXolBOTMz09vUdP350oH/d7NSsZePb3n5fd0+hUir39LYNDg7mW9uKxeK5c+eUErGS/UPrbS83PjVrOc7SSjmIpM1EpVajvv7Yb338lltvu+WGG0+cOF4u1QaHhgK/3tfbXSsvgJJSRNlMqq01f+3+PceOHpK6bjvQO9B79NgrP/jBN4eGhs5dOA+InZ2dEjTn6uZb93W0tl8Zm/jlY0+sGx52PXv9+uGTp04h0zPz03EYTbtpJaJ6rdzb3T44MBKG8aVL4/e+8dbd+/Y/+OCDfhyev3SRcVosVQ4d+j6ltKu1/Vtf/famzTsdNyPisL29tWP9UNplTz/91PdmvnP21OlrrtlxB7zFdJ7u7t6HHnw4jNWe/dd++1vfyWZbDh05mspkpVSPPvq479fZ17/xH3fffffn/uFvv/Llb87P1np6em688RZq0Vw+ferUiRMnTjl26t57D4yNTT788JNSwZ5dG3Zmt7a2tl4ePcctakja5vg8M7ekFbn77jumpydHR0eHhgaCIG5v61ESrrvuxo2bq5/8xO9UqqVrr903MTHx2GMX//CP3rlx09BPH/hBvV6/Mja/dUtq65YdpVLl4oUrra2tQkgAbO/q6O+f/eiv/peJiYlcNn/X3XpyYlQrVq3We1s6bKflpz9/oKXQ9tMHHty+be+6oc2e59xy603jo1d+9MPTW7c8v3Xr5g++/9frVR2LYGF+5R/+/o8vXroSBvLfv/CdlFvu6uxdWSmHYVipi1Mnz3/+X7+wsDT54M+OfOZ/fviGGz7meHr8ytkzp08//NDjH/3VnoH+df/2hR9nMmml+djEjIJZQAaIhXy+o6ONc8451xo9L228hfp7B4IwrNVqqZRtu04+n5dSBUEQx3GtUjGKBNTE5tb0/AIAZArZMAwtQnLZtOu6fr1UyLUsLy9fHL8Sx2GsZUeh4/oDN95//1tHRtat37ihr6+v0NbqZdLIqYEJQiqlVChFMrIrqrUmppIxUqRACBiPQGIxAsC9tNaAACvLRT+O3EzaYkRKmc+35lrygAhCAE2e7+zUdKlYqdRrYRxJ0GbU0LAGPayZ6VXDjnLtZLx2Wwu/VjHK2kORV++WIAxYlSobaXYTlxhopZRSCSenhBAGfslYrfJJmBA5jSE1rtfrmUxmdHS0ra2NNEbD5lU1ZR+rcq7XbIY9aiK85iRqlPWvbYG1GZGwBlQJI/jTq8c0u5k0t2Zzma0JfNduZv+r+chVhyrAq1DgVQj4aqqs+fVVVBlBYuYh2ZiTDEY02MJQNwRAag1KSa2NdRJqDYTYnAdRpKVESn3fZz7dsnN7T39fqVQBjaVyqau3q6urbcuWEY2gNTzy8OMXzp/t6epwLEvIQCM8/fSTN9x4U0dHh7G8oq0UABgzfKHWSpioqIiMc0c1CqtRUK9UKlEUrSwtl0qltu7+OA4lKEmdciCUiii1EORytT63tMwJMm5rJIRyqYhjW0CZl85qIBpM1BG0RiW0NpO0AqUFY1yBoEjiKGbMooQkPUahJlohkAaZhZpobGJuAE20BtOIWuuGfYax/F3bYRATZxVDiyqTIUgpBaJlGKNSUoObyhBCGLcxBqm1lFJrtG0ehr5mWiiBEAkhUIPFablYKlcrFJhlWYDK933XdW3OPM9jjBGgflBbXloQsWortAMoy2KgJOMJcQgAnDIhBCbx06Tbc85Nz0ysiaNIoGI8KzWL41hLxT1OCCGgKKX5fM78CefclNmuVasmG5dSihxqftUcJJPJcIsGYey6brlcXrdu3bqhdevWrevq7InjKiHEc70jh85OTk6ulJZH1vfnW13TpLVaLZfNMcZAEylN6gBZWlwJgqheC3ItnogiafxftGSEEUI0ANJkgaSkMjCruVmWBUauusbgzdysUFALgiCUUsalUqlW84Mw4NS2LEtLpbU0QgmlrlqSIaI5gQnWm2Zp6+yolGuxVJQw23UymYxSwnGsDRvWL8wvV6tBtVJXAELE73nPuy5fvnzq9InW1lbQxPO8KIqiKEilXER0Ul4URdPT07lczhe1AiGu6y4vLxvvaN/3q9Xq1NRUJpPJ5/NA0LKcql8dHx8fvzJqWZaUcbFYTKXd0A845zt27BgfH0+lHGZjZ2dnGIa2673jXW9ZWa5Uq/7l0Yn1Gzcwh545e/J9H3o30XDh3PmlpaVz585t2oLvetd7jh079stfPup63ic+8Unby/zOf/3dF154qb3Qnc22cOYIgFdeev473/leLpe57/63PP7441rDNTt2T8/ObBjesm6wa7Cn453vuv8rX/lKsVj8wQ+/+/VvfPmeO25fKRVb8pmWQi6b8a5cuXLdtdefOHU8n8/f++a7n376qaBerdUWh9Z1fvK3f/PosdNTUxOlWuC6bnd399j4+HNPPgvE6ezuDGqlHVs3/O7vfOyuO+5oa++68657/5//9advvO/NH/zAR/OFFkRdKLTUurspIV2tnZ0dAydPnL/xpm3zs1MbRtZ5LmvNpRfnVgBgbGysZ2AQXkle2qeffYZZ9ksvvZTNtA0PD1uOrbUOgiCfz4so7mzvYIW29tHxK3fceefA8MiLBx/gzIsk2K5Vq1Vm5mZBk02btuRaMu997zuXllZefPHF0yfPj1+5dMONu6WKTHZxZ2dnc5AIY7Fx89a+gQHLtcbHJmbnl0Pfl1IuLiwV8jORABNBf+ihJ9vavN27W7fv2Kkhmpicbmtrv/a6GyYmps+ePV+v1wGjdMZ76skLn/70x7t7CpNTow899EitXrrh+v2dnZ3rh0ce+NmP3n7/my+Pn2Nc3XzLnc89e7BWD5997sjhw5cuXL40MLS+0Np+4ED/o488PzNZATj05S8/sGV766lTS7/7ex9Uqt7Z3fmVr3zuR9//xcz0YrYlHwbxVgLLS5VKaeXYicOf+Z8f/eh/ec/hw89zJ9VaKBw9duJjv/mJP/+zv33wwYlsDto729xMRG1HAfr1UCiptQwiP47j5eVli1pBEGqtGWOO4zAgGddTWod1P3EFBHA8L45jTggFJECIkP0D/ZZluS2pIAiIlBfOn028qQA2bxh5z3vfvnHj+g0bNgwOjbR29mXSuVQqhZSY+a/i+6IicI0CvUlOSB0ho8nkKRJvnEbSnFSxcBxHa80ZCeNoZWUll8sRzwsjcebchbZ8Yf2mDUAYACzOLl66dIlSKoS0bRs0KClJstCXrzudI1DdNIzGppgFkvAWrvq8vwqENW/E0DTG+zTBWBobVoW6CaEa/F5yDQpASmV86ZXQUmrDgRmGLzkdrE5sMo4YpyKO2loL01OTy8tLra2tWkp1NcmUwBGSSNReu0kTzFKN5DXznzGsX3NTa8dcw6i9aiA2X81Ab+Zaw2JZjBJCFDZQppZNOfCrDptc0JrJG9ck4q1REGMTPGESzGq2Z4O1AsXQmD2sORqszZCgetU90lyb0Im1BoApW4CIBLVUQgohBOVMIyqtOGNBHEJNccf2hNJaCyVOnDo2tG7AdV2tSCqVUlKGYVipVKRrZVOOplpF7MjhV9av32j6mPGF0loThsZNnhDiui6zbC+dIR0dxvNUihhAmXtUQodhGAZ1IUQQ1Gu1WqVSi0Kxcef1lUpleXEuneZK+CoKhFBhta4JL1Zr2UpVyci1bU45EqqEJBQZQyWEbTlRFCHhoNG2rVCEBBJFnYk8Y5JRhxSoliYeTRERqNaNJBKTg5a8KaCbsDrhrDVBaGB6RK0J4xyShQEC48B4PYqlVhoxliIUMeMuEiqUJIzWAn+xuEAoOI7jWDZq0ODcdNONly9fvjI2btssDMN8LiuljIJw+sqVaqGQclJeJu1atqRai9jmNCIqm2/xLIcwjEMhY6GENH4i5qoQQCtFCQGltVQEkFHqWFwTtJBKBKqVzamWMad2HIpMKsUIAaXTnscI0Vpzzjs62taPjABAvV4ngEZfJUFziwZBQAgDojhjMpbValWC1gixFAAQRPG64eFDh4+3t7en0ykRx6bQgHHBuHDhwtbtQ9wGkwIZRZEZjYVQWiFjFqLUUmuFCgySJEDRJCdqrYWUICVtKO0M8DWvQMMlh4AmlGrP8/ywuGXzxnNnL126dKmrqyMIIs6piAOlBV27dNQASfqOIsAIIUiJlDqKjVgycGyPIygFhZa8UhIQlpYWlCJzc3M33XLr1OTM4cNHDxw4AACLi4uZXK4eBK6byhcK9Xrdj0LHtZRSYSxXVla6uro+8IEPTV4Z+9nPflapVCiladcLgujb3/62Uirf1trZ2Vmr1Tjjvh/u378fEC+PXnSczMaNG43Hjee6bW2FQmvu4s/Or5RW5uamdu+5pqenq1JdfuyXTzFm9fb0jY5eWr9+eHh4aHZ6ne/Xent7/TBgFs/ksleuXJmcnPQy6fauzuPnLnzzW9/rXzdcaM3eesfNU+OLlXKgdYBA9+y74VOf/F2A8Nc/9pvthXxLNj81vVBcWTr40gt33X3LhfNnf/mYd921+48dO/biC8/f/7Y3771m5+XRUY1qZmZmfPTKlfGJWj3s7Oy5cOHCyIV1A31dS8tzsR8uLk7393obN4y8+PLRuh+ls5lSpYrAR7bt1Gj7fu2ajSM2UadOnrl23/5KpXLPvXecOnUuik5wSoN6bWi4e3Cwu1qtHz18vLhUHx4cLpcrLz7/fCGfnpocpxjn8/kNmzYSau3ad+3IyAj8MBkq/Xrwhv37T5w4WffjzZu2njp9Ympqanh4WKqoVFzauGGY7d5z4JFHHhkcujI/vzg0PHzxwpVTZ06+4Q1v2Llrx7p1666MTz/++OOLi4u+X4/jWOkoisBL6RMnTgytG+jq6lpYWHjxxZd+rTE0P/zwK//8z5/evWvbI488IgXEsZybnrEsy7a8Q68ccVLpTCZj2/aBAyPlcqlYWv7jP/5MOkMp1bblAmA+ny8BbWtrC8IKQPzWt15nWezcuXNCqPn5+Z/9/JXJiYtvetObLl+a+t53T4X+X939ptvGJi5u2Lz91tve+IV//+rJ06cXF4sbRoY/97kv9HQW3vPuD41fnroyPvnooy996Ut/DVQ89NDPf+VDH37i6ac+97nP/cVffO66A/s/+5m/3L5zRxzHtsUQNbdYuQLUohcvnevr63vl0AsDfb3bt+/saO/5+je++vLL5775nZ986T8evvGmfQvLlfmFFcYsUFAqlxcX5wlQSrlFmZaKEKKlJABxHDOL25wppUQUGhwQB77t8K72Ns91IZZR6M9NXfFlEIOmgN0d7W976337DlzX09/d19Pb19ObyWQcx2LMEho0cWtBWA0Co2aQUgMA5UwJYd5qxggAJKmFnMX1um7otc2nzbhJp7IsK/B9KSUo3dXRQZGcP3/WuDkrpcYnJ7q7uz3Pu3jx8vz8vFKKSkkIVbEwajARxgqTWf512JQ1ei91FUdljBheHQJr/qP51RxRykTRj2gmoIYJPk0iX0opXHMNUqnYVLdRSstEKi5lIwlgzRmxoW1XCoMgKBQK7e3ts7Oz2Wy2GTJbi2m01lpqMMDi9dgsAwhWsUsigLrKNXvtluyGaCCP+VyDY5JltUKklMZxZK5ZEzRZlFfhwqsfgaEBX4VuzUbW+FHpqznL12UrhYwQNZgqKs2GblpjIIo1spgEUGqQoHUycxm/XDSTa1ONpJUWQhCCoZC2TSgnKysrrucEIZuZmRoeXs85i2M5NzdnWY5fDUALooVlM8dygiAcu3CJUqqQAICxPKCcAAClCR9vokKEco2E2xZnlFLTc7TjeIzbjpsCACTasiytUAIQDXEstVZxVA+jahSEURRXipV73vT2lZUl0GGtUvTr9bDuh2EcirqIQogkR+IHkWUzl1lSxVLGFrU0SNSgAJIEkCSLwWjyKDTi65hEt5XWQAhtNBciENAm49bYnAGAhjUBd0Qjz2LGUQ90hECUEJl0jjEmpKSEm7dYxlEq5W7ftVegpJwwQuMwUkK88MILnuvsumb7lg0jXV1diKgUHD16NAiCu++8s1qtloqVUqkkQlGv18MomJ2ZZNyq11ndr6ZSKU4Zp4wiGlf3KA4ZYxRQC8kJpYgEwGbcYkxrBURrJVBrENIijGikSJQGIrUSkjBLxgIZsznTMllUUEoJoSIOQIPrui2ZlkKhEEWRXw+8lI2IhFHbtj3PkyoWQniepZQ2wcpsNkspjWJfg9HD2UEQbNu2jXMu4rrnZq6MTx88eDCXy83Pz+cL64MgdLiRYSnQoKSJrpt3BE2eY7JWaTDcjWTVxGEkIaE1kaDrYSiEaGtrhU1kbm6ur68n5aW1KZOlgWgFiW8bGn46FjGlqJSI41g31JaIaHEuVSykJoQ4rg0aNQIhbHR8KoqiixcvaoWDg4MXL1587rln1q1b50dhb2/3+vUbz5w5g4hxHGoZB0HQ3tnb3d2dTqdnZ2eLxaJt2yYJ1HXdbDbb0pLNZrP1MNi3b9+5c+cmJiYMb5fJpNra2hYXFzZv3qyUOnv2bL3qZzKZB3/+yMpydXhkcO+eay+PXjh+/AIocurk888888w3v/nNP/zD//b5z3/+hz/4z2KxeP7M+V/84hcW9/77f//vu3fvWTcyPLxh+PEnnzh/8UJHR8fjTz7xxGc/84n/66P59vajr5zMpAthKLRWAGT/gevjqDZ26eLOHdu0losLcxfPnUEa79yxobuj8+GfP/iOd7yTUb68vLx+eJ3WenLqyouvvNzd07dr577Ry5NtbR3bt29dWpqvVqsjwz22jWnbXl4uLS2UDx059fTTL+zad63neX4oHNu2LBkILYTw/Vpnb+fXvva1paWl7t6e/fsO/Oj7P3rgJz+/4/abMh7fs31roa199OLU8Lr1y8vF51462JZrszlvzWeujF3csXPrxMTECy8decc73zc7v5jKFRpzF+zfv39+drZQKPj1uLUtf+edt+fzuX//93/v7+s6euhIrVJin//816ampp57/tD83HJf7zoAcD3vysRER2dnT3ffwvzK8ePHOaeTU2PXXnvtLbe8c+f286+88jK3sFyqdnUy18nsvGYv/CIZta+7bvDHP/l+rbqyuLh07uylnTt3De4fHBsby6RzBFmxUkbUPT09bW1tkYjytOClbdd1SuWVVCq379r9P/zPn4DCMIxL5aVUyr3rnndMTsz8yz99/1c/endXV2dPb9vY2NkrE2MrxZXtO4Bz+/z5y3fefftzz724f++tlPNKpbJ+/ZBtO7v3bkm7hTvvvPOxRx4bG7v41rddf2XiArfg/rfd19HRtbJcueeeexgHQuWHfvU9SglCwPjF+/XaXXfu+vd//6JtfWTHtu2llWDBKba2tnb19MxML7S2u//rL/9kYKjvz//8i/sP7FVK+YHgnCuRZdk8IoZhqGLBHSuOY8vhlWpZa+2gE0Y1Y1qTa8mY1P1SaWVseQkAGAAhcNP1Nx644cCWndvb29uHB/pzmayXTinQcRjJWNTr9XK5XKv5QqpMoZtyK44lISSOJSJqhZwDJDZZop7QGAAAkR8RClIKbNRpkaAFZSYiVmsgJKWUCKP21tawb7BYLKbTaZu5WuuFucXFxcVazdSoQYokDoUCCQAyjgghgCCkhMQGIxEMNcCDbAbLNEG1Wm7l1WokJKvF8nCNoiiBNSY9cI2w3cxAzDgirublJZuIYylMpoFSSgkpTH5e85jGyocSSNK/GkYY5XLZsiytdRxFlFK5Jq7XvCS1Fo0BIK7ilcYNSljFbQYQYPNtbN7xWvhlGDVlvjUaSkqhDNWhNCIabN3cHzWslW8326QJp9a28Cqc1Vf9HNZycqbZ1yC/5j6EoFKgZZw8q8YWxTGl1IiICTHWs6ulD5uPo9kyhJBarWYkRLKhd6GUaK0jEeZzLaEI69VyKuPNz8/Pzs8M9a9fXChWyjXHcYSIy6UaQwAAztBCKsOI2Xbg+5TSeqUqhCAELMvSxKATanq4gWJmTWJZjHFCKWXUakI0ypkxz1QaHdsmlGpCJSFeLp/KAWgyNOyYkDUlOooCKUQUCq0xCIIw9KOgWimXGeLc9MTFc6cZEM4ci2qQqLRUAApQIyDlQFAr1KCFUskLAaCVWTxoRCQUlVbNsg5J6SoAQKob3r8mZmVYE4txRNRKg1IWUteyidQut4gmFBAIUULbluVadi6b6u7qUETHImJIWrI51ProKwdb0qlMJqVACyEqlXJLrsA5LRS6tu3crpQK/LBcLiPSU6fOnD179p633FculkxRrSCoS6ldz7Y9m9lMxcLo0ClFAGXSJxG1ZXObcyklt2jKdilqLYUMA9vzqFaAYFHiUG4RqrXkhlBk1DSIiKQSklIaBIHWUK9XtZZmuCOEKQmMs0wm1dHR4bpurV6MY+nYDmNxuVzmnDaysKFarR47dqynp6dYLEZRN2UYRVF/f/++ffuklOvWjdTrvoxjblHzFBIiHYhSoLVC1IyacHPydgEAabxESilKOEGmqUZTIFKDbdtSar8ednS21evBsWMnbrrx+uT1Q90goQkhlACaHiiljKU0Q2ccxxqJMQHxfd9xPC0pYY0lJ8WFhQXP81ZWVqTQjuOlUqkt23cQAo7yisXy4uKiMRyRUsYiZrZlko4rlcrJkyddm2ezWVNnzKIsk8nUapWVlRWh1aOPPprNZnO5XK1Wi/y6sHjoB5zyl196OZvN2tweuzT2pnvuu/PWuz792c/YVnbf3htvufnO06dP/+3f/v2WLVs+9OFfe/Sxx5eLK/XA94Ogo7N7x/bdR4+f7mrr9lLZ8xcv9Pb3Pv3s02Njo/Pz8x1dfQBqeMNgW0fay7iOp0vlRZunXCcdx5IA+r4vpSdF4HleFNa/9pX/OH/xFOO4a9vmlOds37rj2v03vOed73nl0MGvffU/Nmxa/+53v5dQfu70JddLD/T1PvrYw7/xsV8/cGD/T3/6n+fOnct5XhyKSjlqb2v5jy9+/uvf/l65HnW1d/ih7k6lJyanB/s6O1uzb3jDDfmsc/r06VCSF198cdvmoT/8vd+O/eLWLRstJRcnp0YvnJ9fKnPH3bJtM0qsl1ccl8/PV33f1wQZt3740weOHD1Rr9e/Af9mBk+/XvMct6en97nnXjl25OiGjevWDfW+8x3325z+8pGH7rn7Nvbgz36Rz+d7e7uz6ezy4lKhUKhWq+cvnB1Zv+73f//3n3nm9P796zNZ98Ybr29r66hV/ZGR4eXlpcmpK0tLC1prz/M4s5uD9foNw6dOnXrssV92dnZXq/XLly+fC8KZmanu7u5isehlPUT0/dr4+BgQLWSUz+fn5uZaWgq33nI7s6yBof6wFj/2yxf+6++/f25u+i/+4u96etoPXD9QKBR+9rOfveWt92zZsuXw4ZcL+c63vvXNrm0HcbB1yzX7r7v5xz9+ZHxsiqDV0z3Q2dF7/NiZDeu3InE0kuGRddVqWekwm8vNzkz+xV/8hYihf6A/qPuXL19MpzPcYkZyoTVypDV/ec/+9S+9fOyv/+prv/upDxRL9UOHT6xbt70eRN/5zrfue/P9v/HrH3n+uZd9X68fGqrWAsptFatqtY6IACqOgjAMpYxd1xWiFQBMiLZWq41PTBSXlxSAhWTHzm033nDTjp3bevp7R4bWZTMpL50ijGmEsFYVUby4OB9LJYQo5FqLxfLUlUnKORA6PVfq6ulJp9OBLxGpUgqAiChKJjlAraVSirFETMAISCkSoTdnUoiIJvU0oMGUxHEc1P2gHubzLR1tnQZwzMzMnDlzhnOLUmp8JaSOAYjQmpFkgFNKCdCmmEYTBKydg5MfNsAVQLKGXwsUtFrlt5pHWP2HCW001EtNhsaQLgRpE/0YYWlDYaqb69Qm09OEgE2chw1DRXPBxry7XC63tLQYkqYZAVxLgxkXJg2AIDUkYIgAKtSoQRk/RQQCGgiKWOrG/sSUBwdyFWUoX81jJT76a6T0zdZ+NcAiSTkUWANYE9gE2LySpCi5WUAbQLB6Ncn1a6mQEvNbAggEkyMAJPe6JogJkEiLzHMx5h4ISRzztZl95t+mQzaTCSzLimOBCDoWAKq3t3tqQiwvL2az2dnZ2bZ81/Jy0fcjAGpRoiTWA8E5D4IAEUGhtiyb8apf55xzypBoEccagFIqpNSUaq1D5VOkAJpQMG1qQj6W5WgESjjn3PwPaULgISGW61CKnHNKOSJlSBmjnFNuUcYciwClLJXNUYpKC0aYlvKaa6/dN3vgl794aHbyik1ByAQ3a0QAwjRBQpTSSmmLW8ZZghh9JEpEZBS11hpiTIKPRKPWShNERGZiYQokNnxVzHRu+rBWiiByyighqVRKa00IjeM47aarper42BhHDip2LEeEdUqZCGsyFq0tOZsSoiQhKJR0LG5bTCsRhSFKEQURRYzD0HGc/p7uy5cvXnftHvP4RBhNTU1NTExwgqi0CAMhlGNzIQRoIoUwaa5KSFBSSwFKUCBSRCi1l/KUEo5loQZAYlFm7kJGIgakBGWsZBRzzsMwRETTSVQszNrVtrnjeMkaT+lKpWJyRVzXRdRBEDhOqq+vL5VK2Q73A18Lnc1md+/e/cMfPXTXXXc4jhNGlTAMKeVhGDal92YEIGQ1kyZRfSlFyGpGs246r2rdVIA1VphJYVOlFAHqeZ5lWYEvBgb6jh07MT+3ODDYHYYRJFy7MvUSUIOpwI2mSBkhlFLLsmKpmi81ADBO6n6AiJVKTUhFATWlPT098/PzUsZRpOthwDk3KdsLCwuWZUVRxDkH5K6TAgCz2unu7pZxaO7C9/3l5eWOjg7f9/v7+6nF6/W61poyjAUzWUecUGI7XltahCKdSg8MDH3rW9/5+Mc/ftMNNz/55JP/NvWlP/iD/3brLXePXp4eHb0cB+K5Qy/U6/VqrXzzzbfOzMzFsf7pAw/e/9a3D4ysO3bsyOnz56YXplrzhba21lOnTiwsFTesH/BSJJMmt96+/9ypicmxhc72gaWllZWVld7uzt6e9lwmXS6XI7/ekkkrGedaCxs3bjx94mQUqv0HdgGC1vrZZ55MpVKziwtIrK1btx44cINtwcb1Gw6/cqhaLUWhoECXF1cKhdZrrtli2V4U+qVSiVie1jrl2v19g33d3Qiqr7M1l8kcOHDg+Ikzjz72BAC4TiqTTWXa0paWsV9n1L7txhu+9LVvBUr39/cPDfVVi+np6clMJqOU4pzPzs3MLxUHBgaUUvBC0pFeeumFX/vVX73vTW89f27se9/+zlvf8eann37i0//jTzZv3bp3976//uu/ZkO9g6dOnb/xwHUjIyMHXzostDp39uSmzZvbWwvvefc7HSdxkTh16kwYnKzV6iPr1rW3t5tqX8VicWJiIorExxqDbK1SGezvT6Wy1+zcPdi77uGHH5ZStra2Li0vEAome0wqSQgQhgBqaWlRSmnb3tNPP8csevMtN106d0E9Bu9///sffugXFzdPt7V1LC3MHTr0yic/+fHzF05OTl+xXWd4ePjtb3/XP/3TP9m2/bWvfpsw58yZ8YX5cntbX2/3+rbW7mC94/DWk8cvlYp+rqW1r6/nxjdcG8tKR3vP1776k1w2vXnT9lwun8vlWnKtRjogpUZEGcYWSy0tLPV0jXz5P349lbYfePCnLfnub3/nx56XnpleXFoo7t/fcfdtdx05eiGVKoSRjOO4XKu7jsU5RUQCKgoCRikARFG0srJybmwMEffs2fOWe+/eumnLwLrBwb6BtrbWTCZLLSa0ilUsoqhcLgdRZKY0iihjEUeyvaer0N558vhJSng6nWXcLlWqKwtzNqFa61hrgiwxIdJag5IEARUyVKiVloQiaOCU60b6ICcs0aEgMdORVIowBgCREDOz8xazOOdjV8bn5+c9z9NAgjA28y7FpjAoIWOkNDnfDeIKsOE2CkjJKqRQoLQGSszU2IRiyeClUSrVzHNcuxlw1gQizcBZg87RWqrEh0JpLZU06Y5N3W8SdkyOQwkB0AQ1J0gQUBkxh0alUenID7LZbMZLVatVlUqDVCIWiY+A1ia/RGkNoIyJqiZINCgkqLRC0BoUAtEgQZvfag1CKNL4uSYI2hAYaDxdtU6yCJsYRWlFKDbzD5u5Atiw32iyWIZZMnsqaCYsriG3Gmo7E8RSQhm4JVUjs/LqT1C6CbkIoIFia6rUETPVISJSgsakzEDDBM5qQpjQCBqbmNVcv/mKiEJI3UiuRIAoCLXWhKIWYnlxMe31XTx/wfVs23K1hMXF5cnJKaWpVjQGoMjqfmTbNrUQtCJAFIIEbbuOEIIyKqXUQLTWJhyvlLkuohUSaLrHoUatEIQIEKhGQUiokSZecaCMsS0iAgVKKaWcUmpRBhQsmzFGGLM455RZjBHDpYFmiNSxeKbQ/fb3/srCwkIY1Gu1ahiGvl+LgiD062GtGgR+FPq+70dR3FwaaK0JAUIITeQBjBFKCWqFlDCORGstY8EZIxS0ZrGSuoG6Iimk0Abjc4utlIpj4+MLCwsLC0sd7XkZa7SJlhCHUSyFFmHKSVs049pWynVHL11WUVhdXsr29WqCXiajtXYdz6W0tSWHQhEhCCFdhdZqvQYibk2nPUrjOLYoZfmciMPiylLKcyxOCWpKQMURp5QRdC0upaSgbU4tRhyLKc0anVlIGVucUWPXR5EyJARkQqyCRiCEUEaIBk4oSKEBlSmm5DjNmpJaEmTJyoghaCm0VJokKwQpY1PkwLyzSolKtUQR4zgSwqKUmpHSdd1Ca4tt80q1RlZTTJK+rFQyvimFjLLm+q0RXkcAIhRoIIZ5l40CkUIIpZUpSeJYjDOvq73j/PnzrW05blGlhSZIKFOxooRrlFJKznnczOxp0PMAwAnNpTNVP0in0whUKcXyLBa6q0tOzy4SwEwqPTs/l820aI1hGJZKJdd1hRAmcwIRbcs1VKLRRxpMZnQjnuelU97y8qLrupVKRSmVSqXS2RQiBrW6iCJFiG1xKSlIhRoW5xcIYQTwB//5/SAKGbOEUF/60lfe+c53Dq9bXyqVjh8/tnnjlrmZ+XXDg5MTsy+9dHBxaSWdznZ29SwuLTmeMzTS73k2QfzgB98/OTn99W9/+/pb9i8tjdfrVlshF6/rHB4YAm215Lxz52qh76e9lONYZ05dqZSL73jn2/L5zLbtW1PMOnXy3IMPPfHRj360tS0/OTmuYlFcXpqZmZpbWOTEfcONtwZ+rVRamVuYf/zxxzZv2rhr186WdErFSkpQkkjQLdmWeqS1UuXKykU/SLnOQw/8dHhosLXQsnXr5m1bd7jjs1W/vri80tddKHR1qqCqRcwAO1rzW9YP1ITOpu1ycSHf0iKiQiaTIkhPnzi5edPIwtPPXTp77Pbb72yOxh94/zvHx0dbW1vvufuN/+fzn2fU2rJl688f+sXQ4AgSrjRj991338DAwE9+8pObb7757MXz4+Ozt9yyv7W97fkXnkXgnFOluOu6SkK9XiWEVCrVxcVF27ZnZhcJUbt27bz22hvgT5PzrawUW1py83OLUSROnz4thMhm0+VyOdeSzedzLa35ul+t16uIenF50SR6mIzZZ595/lO/99v79+47+srhDesL//b5L4+OjnZ3d0dRxDnr6upo72gdv+IWV+oLC8uozpSKX1tcWL506XJbR+Hm226/8fqbtm3dE4YRJXxsdDrltczOLszPL6ZcWq3XHZs999zzwyP9W7bsCYNYxsELL7wchmEu1+77PlJi2y4hwCkDrjW4rgNeik1MLk/PXBkc3LJu3cijv3h8cX6hs3Xg0rkrT/OnlhdXMo7Xks0oJLEQXdiGDKJQEEIq5WJxeSmKBOe8u6P99ltuHhnZMDQ01NHRkclkHMtGSrRU9cCvlsuxFIGITUI+AJhAQChikCqqh47nZrO5crFcLlczmUwQxjahrmuXy+VypZhOpykQqYXWGilBTTRRqynsSa5UolVSr5IrEZRSMoubAizGuMusvVDDpUuXlosrlmVJoWMVGKxAtAFRhn5vcDCISiuQDfEQrFp2iTjWjdQ/wysIZYwqSPNKcE2okfHVQN5VrEkDgqyloJpQrEnGNHkvI3lp8klKrRbPbjBepsBNMraThuml+cPmeNQ8LDSYs+YVJXhFagWQwBYN0hykCQ8RjdzM/JkZ15v/NqBEgr46uw201mKNMcTabfXZXd0+xBQpajJUa37efBYAgM17SSpYvuZTa1Bg3M4UAMoG/E1KiQsAaCIw3cilMMCr8VBiAGDM0pQZJbXJfASljL7N5D+u/QQwcisthJifXUilUtMzk/19g67rzs0uzM0uMMqlQiElo4gag1BYjmA8CVcb6s6sDdY20dq2AjClrSigkd1QU0BKa42ASgKiQkQJkoBObhdACy2EEDpO2hZVo0Q4JYSY6CbjQAijxCaUmzMODAx0dPZLKSlL8ksppaiVDAMZh0LEsYkKxWEQRPV6tVar1evVKAyFiGvlShQHURAGYSiE0JpoIeM4ZggAEoimjFBKAanWUgtNqG28ToQQmjLHc1o7OqtBnM7mCLWRhH4Q206utbV1dmGZol5ZWkylUnGo6lLWatVMJq20YBQRkSJohcXlpaW5+Ww67TCqLYshUQiO3bIwN+vajFGQsZRCaCVj368Wix2Fgk0JJUSBIoTa3LIsZjG0PM+1LItiPpsBgq7FqcW5bYGKTelWy+QPEoJSUkBGMAbQoFBTJSQBZJRQAgaUaSmUjNOZFEihJZoRhhgTDyWM6t88FQlJaTKTigEAZkDr7u62bSuXyyEqIU1NC00oGFJfSmnbTrPbSKmklE3hRGMkSXpXA/uaUvK6yYe9ipaWUiolEKlSYv2G4Reef2lxcbGrO6812rYbBAHnnBIexRIpjaXUWhv2C5rp20pJoYzmfW5uLpfNSymlkjZ3PM+TUjLGMplUueoBKka5EFSDycTivu9TSjnnZvHpOJ5ZJxvAaoxkTe1dU9gxm80KIWr1ipaO7Tj5XC4MQ0IIENSJiDOybVsplctlpJSM0M0bNywsLRKtnnjil8vLxXK5uGvnNaXyyrxUFnfjWPX3D0pF+gYHLo1dCuKgpbWl0F7gFtm8YWNcFVrL226/Od+Wyucxiv16WTIiXYtr5BbPLC/lT58+++Z774mjai6XX79+fXt7e2t7S1dnx+f+/h/nZube9e73fv7znz967NhHPvK+4XUDEqO+kf6vf+Nbe67fyzg888gL6YzX0VV44xvfcs2O7d/+zje3rN/c1d5BKV9ZKk0vFIVQWpFiscgIvXD+8o0Hrv9vv/epmanZllxmYWl+bHxC89SVK1c++Yn/mXHo4pXLDnUsS2klgmrJ4bBp0+bFYpFY1mB/j0XZ0tJKR0fujttuHx4ZbM+lFxaWPvOZPz79n5OmJ/T2tbe2tv7j//mHK+MLFGm5XP6tj//mb//2b68f2XzixJl//+JX2YXxcbDYtl0727o7fv2WN5w/f/bCxTMHX7nQ0dHDKJw/N7Zjx47F+QXP86rlMqVsx6131Ot1JWPLZuNjF9ePjPR29zRHuoyXcS2npav98MuvnDhxorU1v7iyvGHDBkLBstiVibFKpeR5Tk9v99z8tF+vZzI5JWQcybvvvvvJx5+4dOFiGIh0qnDwpSP1erlUXm5rbyHIFKqfP/QIIv7sp6N/9Efv/q2P//qjjz5y9uzZv/7rv6oH/tnzF4vFchRKrVEoSKfTiKq1tcVwUYAawJqdnevq7r1wfkzEyLilpLS4Wy5XRSwtx47jmABWhSJACQHXcUvF8vzMOctmPf1to2MLnLYUOrJxEK4s1p9+8mA2nUk7+ZofgIwpSD+sC1+KWOdy+W3btvT19fT09OXz+dZ8wXVdSrkQIo5lJEV1uRpJAVLHUhqDRCm0lDKO4yiK/CgM40gqhYiuZUeiKmKlAP0g0lDz0gotgoiWa0mQfhwBJJmkAEDQWE4hgAkqKUSCSKWZQxvzZGNORdt24jjmzC6XqqB0LpdbWVnhnE9NTa2srDDGiKaGBpdXV53TWtMGzFo7x4EpkNxw9DLmkACgtIybY5NOMhaNgxEYt3qqAcGQFg2EtLqJBvn/WixihipowCODvdA4HUhpKAZEpBQQCSPEjHGMUcaSRXADYwlEjKIgigLPc7SWURRYlmWKNIJxM9eriZOwhpcCAAOr1gTclNHsmm+rDaQBdCP/AGFtJubaWzNAea39KSRRPwmvt0mQTdZt7V+J11iCwWtk+K9qT2xwbMldJcl2RuVmWDptbq8Jv9Z4sxmcilEQE0Y5ZUCMwNzUIwSptEFLCnTzExsWZRpkrVLt6uy8fOmSiKRlOYGO5+fnue0JoSjjUsUyklU/sFMW4abYtdYEldKmXBUa44ar2UQAULSh52lkEZq7M0ZzmHjAITF+cwCxyT7ERC2v0aBtapzoiUIpCQCRWsZEK4go1UJUGSOckoPPv3DTTTemspl6NZJaKY2EUKQUgFCepg5nSjgcETXRBBIUKEFpDRKUNqG9IPSjKIrjOPSDWq0mAj8M/Xq96vt+FEVRHAZBPQ6jWGoiMI7jMIwJEYRzN53Pt8ea28UgpNx101nb8u686550PpcttC6vlCuVSqW8EvlBe2dHOpvJt7dVamVQqJRyuRuEgV+tnjl12mI811IApbltpVKpcmnFZlSKyOEskgIROCNR6FNKa0qbeue2xVDFIMHhzHMdBtrlLGW3SK0CERNGOecMFHdsraVFLSFEvVpL2ZZrWdyiKLU5bBAErmOZnkYJEuSK0OJy2XEsSqmUsU6EhhjFcRAEjGJjyQeoQUkpY2FZ3KAjs7w36ytTAQkRNSjGiFlrNUZFqTVtePCpOI4RtcltVEoZUSZNFiEakZif64bKogmYmi8RgKKMSCGlirKZfEdn25kzZ9raD3CLR7GwHU8JLbSCRPyAQAAINSqLxN8NwPh32EyEYWjMxqSUiqNZ5Gez6bpf3bdvz/j4+NJiKZ32QpEgS/Oy+75fLlf7+voKhZZKpUIpAiTGvwQ05zajLOV5YejXa5V0Og2uG4UBgqaE2EmBJqJAh2EoASiniCYlS2iKQVjzUnYcx4dePjgw0Ldty8ZKpVbRpKu9p1oKU2k339K6afNWoOB5zvTc5OXLF59+9ulUylWRGu4d+fJ//MfWnTsAu/ygvHnLpon6VFif9bKqvLKUb23L51JaqFMnz19zzZZCvnNlud7Tk6n5Zd8P7rnn3uLySjabHR4c0iC6ezrjOGQOjl8Zcz2+d9/28bHZet0vl2u/+bGP9Q50Pf/ss3t2Hzh74vSV8ZmwHhbL1cnZRcfL3nrnXS8fPhQF1eGhHscDy2NvuOlAyk1HIlwpFZ97+fDM/CQw68yFsW998Ws7No/cffuBlkx6ZWkxn0qVFmZbWwpL5eKLz79QD9W5cxc62gq333Lj97751fe8434CG08cfJbCkBlmwrB+6uy5P/2z/zPY37dr9/avff2r737PO//0z/7XG266TSve3jnEvvedH97zxtv6egcWFxfr9WqluvKJT3x8bGz8W9/8fhBWpqZWbr+93bbI+fNn29u7+weG5uYWqtXqxYvn67VyT0/P008//fd//aUHU88mk4HQS0srUhSDIKjVatl8y9DQ8PDw8JkzZ+bmZrhFHMdZWlpaKS63tGTb21szmTxoPHX6/IEDB258w7WPPvroyy8eu3gxGBmx2ztyO3Zu2bhx/bmzl8bGJru6ehzb3bO7ff++A67rXnPNNb/zyb/76Eer+dbCwRcOpjKFXEs7ow5jVq0axLGUQmdSaa217fA4EmGMU5OLuZYeL93iOJ4RSHELGeWRjAytzRhVQkmpq9UQADw3J5R84bnDnHPP9krS59Syraxlk3q9jiCkEo7rZFsy+bZcX99AW2t3e1un67qWYyshfd9HpMViWUotpdRCKkDDBGgpIyHiIK7VamEYm3Qwk6yHlJqSF9UwcF13cbGYz+fiOCaIGlUkBaXcTXmRiCmzOOea6DiWDBkkWgFNTbQLEvGJwmT539R7m7klFDESdBznpZdeWl5cet/73nfkyJHp6en29nYzYQdBAIQaVskE2swnADQdpZpRuQbSWpt/lzh/6kaiYhKEIquAoxmWWstbNMc1eD00BmstrBrASzf0W1pr2rAzbR4w4YG0JoQ0HHxW5f9NRkcpFQSByQwKw9BxHKWUVqsLX91IdHoVdrmKq7uKJ0twz+oOa+OMcNVFNvc3YPdV8Ateg9JWj2NSLgAAVmOQuIYdXPNE8HWv32yyUa3SbIQQU0OHIG2wPqu8IwBIJaTWCAoIEtAmfKkMAyGEJDGhlFFqUJE0TkeqISBrZAE0b0ErWQujtkJLNpUuFovt7d25bLalpaVYqgOYgtmUoRVGYRzHjsOMYa4Ju9OGOhARUa02ePLR6Fmmfcw3AgqBAiQFrJLSnSYh11hiaoJGhJX4p5rTIWgGJsQJiAIUKikjy7LQCC4p+vVqJptCLS3mCGmc6VEBkYoiglIEAwGYVBdo5KJoQ9sQxh0r7bUAAiUUCFApYwKotGiGw6QUMg5lLOr1UEopwiiKwrpfDWO5ZUe1Uq3bDgZhzXNcz3YZdWzPBYL964YHBvvDUIZBXcaRUqRcLmtUURTIQIDWpWLFD4O9e/f6YVAslqrVarFYrFRLy6ViHIeEk4sXz7e0tKRSqVwu19vb/dGP/kp/fz8iBkFQLBar1XLo+6VSkTKM45hQFcX1xYVlyhlQ4jiOlc2mHNvxbES0GFdK5VxXSslAMqScotaSIUHEtOshKNRACIhYIBAlYtSKEgIajSsXIgWjnTKKKyGBgNZECBGLkDVySHVCr0aOaykltBaEKJBJDNHkja6mB2mNJvpJaVJntvESvfYlhTVLGmh4I5tjKp30OUIRAXy/vnHjxuXl5dnZ+d7eTuO5yhg10lIAQIqw5hTNM2q1mhUUBIHjOLZtR7EKgkWllG3bgMq2eS6XqVbr5jWiFE1KST6fr9frO3fu2rZt27lzZ6rVqok/KCEymQwBHdb9bCZDKVLqGavEbCaDiEFQR0UYI5qgCYKi4xgBhsF25XI5kiIMfcuy8vncbbd9pFot79y567nnXqjXfCklo6K8XKEW27lz5+LK/NPPPKUg7u3pyeUyCwsLP/3pz2/cc8Mdt96RyqVzhdwzz54buzSjQtHd0R2FUTbtoVaVSimXzZ84cWp2ZqpSKbe3t7d0tRTLS6ZlWltbM5mMBkkImZ+f7e/tUkoMDQ1t2ba1VFp55pmnOru7atXwS1/+yr333nnm3Ln//Rd/eX7zuWefeUZK2R6KN77l/od+8eixo6+ACrdu2zCyft2TTz5+6uSxlJWanZkfHOr70Ic/0tff86Of/OSTn/id1nxbZ7Y9le08deZKV2uqs6Pluuuum5tb6OsfeOKZZ6dn5pZLwXXXHUg5zuGXX7nlxuvyWa9erUX1itsYRbt6e1ra2t/73tHvfufBW2+9/Ytf+tcXDx587PFHt2zZBDQ9P7fECl6qr72n0Npy5MjLk2Oj/QPdP3vgAdfxrr/u+nSmdfuWK45lp/u6CdNHjhzbum1HGKsgEvsPXM+IeuXlF2dnFm+77To4mJxvenIGUDFuT01N/c7vfur48ZPf/e5jO3bu6ujqLrTlL106EwT1QqGwY+d2AHXs2JHFxWK5VCkVw+efe65SWVhanCeMdXQCs+hKaeXjv/PRlZWVc+fH0pns9NQc5/xd73v7o088+Cef+f0vfvGL3/zWXy8sLDz2yx94nletlYIo7O0eLrS2U1qllDNmVcsVy7K0lpGIKHMvXpy7cOlR0FTKRS9lE0IYtTnnlAEh2vgJeClPKaUBKaVxEFuM9/RkDHgKgmhxbpkxxi3S1dXR3d07ODTc29uby+WYzQhhUV0i0qAWrqyUiLGV1yiEQCRSSiVkFMsoDMMoCnw/CEMltB8GEnRS55Uw23Vc1yWYpP8QwibHJjvb2hmli3PzfYN9OlLVqOq6KW5ZiFQpYxcDCKQZxmpWtMFEFt6cYoxPJBqOG1EhIEXS19N77tRpGcdaypZslgJFwCgSa2gelELqRGK/OkObKWHt1G4maAoGJCVegiYMZpT+ZhkKzcw4kFIpjFFrTVizTA6upWpow9R3NZq2SmIkaflqzRY1/R8pZQ14ZzQlzdGWrDmEJth0Ro2iyHEcU6DjtYPs627N3ZpSWVgDyF71jySEl7QYfRVPoxPjDFPMGwCAXAVn/78u47Xbq2xXAcB4GDVyFV53ayBaBKkkatQaaZLL2bzwZGOMSdCoZFMJZzRwqJIC48goJ9RAdqGVge9rcXbzU2uNSgJAvV7v6uo5c+ZMPt+KjPUP9E6/dLSlJa+UUkpSQrQAEcbguYgEFVJKzaJAgUzYRiNo1AAAGoynllF9JWUTQWtDcxGiGz806jcjxSMcKGgE3aiBbdJSjXOxBqGTPq9RmdpLUspYKKKVZTNEXa1Wu0i3lFKoCAnhhGqNQksATTQhBlhjo4ZDwi4SokEpJYUE1Ei0krHSghGOhCASrVEBBVCaICWcuQ53wM1wAECiOadSCwAiBYmldiw6evn8Lx99rKONupZVj8qhCCdnZ6L4QF9fHyJajk2Jnc23xCq2bYtIEEIhIrNQRNrIEsxWr9ejKAbQ9TBI6jRzy/d9LRP9Wb610NbWBgBCxDIWtXpFSQjD0K/X6/V6qVheWFiolEr1er1arSwsLFQqpWq1CkppKWulYktLC6eoolDHwkk5nutEUVBoyeXSKUSgzNJxBKBzuYxlM6UUJQgAxphUSbAsC0FT1IQApdSiFipgjDFOKIJj2VJKi1FQOuV6WiqkIEUMyJRSlFLHcRJZJ7UAE09Ug3iUWiWnk7ELUYPJTQQTyFOJrbRqaCxBazCB0TiOpIwZY6C1VHEqk9q8devpMyc7u7sZUUbExixuvFrBZG2rRPqGCEor0FoIKYRgzCIkpoicUq2RMSuO4/JK0Q9q+XxL4Nf9ei2d9orFss0dGcWdnZ3XXLNjcXGxVqv19/cfP358fn7Wtm2TH+O6rmVZWoqWlhbbYp7n+bW6ZXPPdpQSjDGbo18POeeW6wDBwI/CODL54FLFSikv46lqVWtLgWbMEkIcO3bszJlzaS9DEB03PTM3qxR84L3vc1P240/8Yqh/wHKtSrHk8lRHgdaW/U9/+rN/8kf/v76e/kjELen2+dn5C6cvt9/YTQBRK25R3/c9zwNirRTLu3bvLC4vX7p0KZXxsrm8X61EQYiUBHFYq1WOHj3eks1oIl3wBge7V3B5YGBgaqKYbckMDg/ESh45duwb3/rGyNC6xeX5W2+91fO88YlpwHB07PLIyLqxsbP1+uLOHZtLA72FTIEx9uyzT0Wqtm/3Hs7s3/u93xORvHJh9PS5C35p2aHy4x/7gNQQB5EUYs+efUe/9o0g1G1tbW+44bqZ8XUujxCxUqkV8h3NQfLUybO79uxq72hlBD7y4Q9oFREdfu7v/2nrjg2Xx69s2LSV3XHdDcXx6SzSwfaeFscjiPXFytjCWL61a/uOjnyu5cANBxZXZqSMN23ZdvHy6Jvue3tHR6dScVCtZNOZQy+/EvtB83yWZfm+ryEeGho6ceLURz78K298032PPfZYGEZCRkpCW1sbpXR2dnZiYrytre0Nb7j5xPGTlLheyjl48MV6vd7T05/L5drac/v2X6Mk/PKxJ0ZHJzZt3FJcLj708Jlf+y8f7uvv8FLWv/7Lv/V09q9fv/7jn/jYU88+tVKsuk62uCIW5ougKecYhb6QyiWW1ppalud5mZQ4f/48AAwNDbmeEwRB4IdBEAShTwhoJRBRxMqyLM6567oOd+I4rvnlMAw92+vp6b3l5tvb29sLhXwmk7FtBygJ/CgWolasS6lBohRagzSGyGEYxpGMoiioh7EUURCGcSSiGEyCjxaW5ViWQzknhCBSRCTGQ1KCEjG3bA1YKpVLxcq+vdf+4If/eejwUdd1O7t70pWs0+YxQo2fKCNUKtXMZGwO7AST4r0aoVkQGNZACuN63N7eLoR45plnTHmKer1OLb5W/EQIQYPdFDSroSUjDkIQBEbdZdu2azuO47iWzRiznaRsLWMM17gxIXl9nyqTAAFrCC2zm9GlNkl+ADCOo8k+TSS3xkSjSUE1l7CUUsvizZXumhgbaFi9DCGEEMJxnHK5rFadMq5qNHgNEnrVr171W2zwf69iwl7FmTU/X7XIbm5NFRpcvb0Wlq092lX7GA3+1dqy1+5mGLjVy2gSRo27M5sxljPcobzqMggiSkQKEKNCRNVc00st11xs83SEEJCSMVavBfl8PgiCyA/QZdl0OptJBYHPOQcApQQARFEk4phabC1VYFpdIaAy8W+ttQYNCAqbPRXQ5INisiJZ07a4+omN7oGIQEyxRkRMFP0MwSChpCaDoRwQtSZaYSTiar3m10NpEhelihpKREREoJjY1YFZmiCi4RQVAUaYedcopZIokAhAEIkyV04QkQGCTAx3lRSNURcloEDCEBwRK8Y8bqXiWBdXqqEtUymPUWLb9tlTp0M/YNT461LLtgmjyJAhcyxbY6KUAgAhhJmwc7kcY4wQUAgEjSkdMIQgiM1NlWvVcq1CKVVKUEAv7SLQFppjRpIF1OJcCxmGvhAiCOtRFNUq1SAIIj8qFovFlbJfr5crlWq1VqlXgyCIRahBllaKHV2dZhTlnMs4ynieZVmgI2N36jhOEESpVMq2bUqJzbk21X5A2pxZjFJGAIkJcUgVm/pblKLpf1prE3yERO8lKWumFRtKfrWKA67Jtl77/r7qlSeJDZg25Cjn3DgtgiZCxJ1d7Zcve7Oz80MDfQRJJCJzZEqpEMp0VnMcM5SZs3PObdudm5vLZrOEEEBMe+l8S4v52zD0EZFzGsUil8soBalUanh4aGl5Qch467bND/78F+l0OpVyDXFVKBQ4pYhoIdbrddu24zjiFrMshqgZJ5SiFsT1bM657XqUM4S6GZYRUUoihaSUe14aKalWq1qBiPX119906dKlcrHMmW3bruekjp49PDE2vmnr5o62zkuXLvT19UWBmC7OtxVaLeLedMNNSkGtUplbWODUzqZa0l5OxkqqmHOGShbyLaXifHGlfMdtN/X29hwpFqempwfWDRFC2tvbFxbmGaNa656evkKhZWx04he//MXPf/HQdddf+8rBl8rlKJOZzre2hXG0d/+1tuv8jz/67EB/4aO/+pE4DtO5NjUZZHLWlm3D73zn248fP5nJpDzbaSu0rBscXl5Zef+H3ul41re++a2RdcMvvXBwZXFpsHdgeXn5yuVLd91+E3K7paVtZbHkB8L1Unt277vhplu/8IUv7L1mW6Yl9+jPf7R+3ZBruSdPj90K603fmLgy39620JJp279n79iFS9/6zpdbO7LvfuctS8VKpiVFLGCDrqcR3rBl1/T8wuTM9MTMxPxC6dY33FyqBV/4l3/XhPT19569eHphaamre2BqZuHxJ5/inKc9O5vJEIme2zIxe7k5kMVxPLRu4PSZM4VC4ac/efRNb3qbbaW+/vWfDw7mxsdLIyM24ySbTT//3NENI93rBgbfet+br927/xePPLmyslBoyQ4O9WaznTMz84VCYdvWHf/zs/+jr69n167tUsXFyvxf/tWvbt2+5etf//pA/3DKy7luilqwuDJ3za6tvq8vnJtkrZ5osT0vE8dxHEdaax2DlFLpOIj8IKh19nRKKf0wqPkBpdRzU1LGaS/jena9XqMUYxFGUUTQ8v1wcnLacZztW7bu3r1nYGAol8shaqS8VvMDoat+3Wi2ACAKIkopAfDroR/FURQFQSClFLEKwzAKAm7bWkoFQCljluXYVIJkzDKrZ0KBaUBChdaRFJZmluUgo7FWjpc+euLEts2b3/P+D0RSxHEcVIMwDM0gQpGYpZgpIZxMHg2pdTKLAICSCNSIgbExV4FZ2FmESNy2Y0cQRdy2wzgmFhdKS6UJQUpRaxBKEkpMjE6j0lobRgEREZAxKkEb4OLX6ohogghGFbQ2V9GAMJtTQgiyq+p4AIDjuQbGNZ0zm+aZ2CwQRBOmqgnFjN4rCmOzSSmjKCk7o5QyRbgTi2pi6gMnmKM5epIGCjEDnFKKMcabA3pD29scHAmyq1CLcWtc9f26CtZorRukE2gw/ptN8GGcnNZQeYld6ioekqBNfnXzOtWrsRaQ18C4tV9fi66UlK/aJwEfaxLsYS2OTFxUVxMmGkdbpdGwwawCJIlshBBFkghOM+78ukweMXlqUksZSiE81zUyxG4vQxmuG+6fmpyr1WqWZSFSqUUcx1EsLRuV0tjIb9AGckEStdXJFwQApjQCaIWgSdKKFBoBx+RyGvmlBEBJIgAISZIZzIQqqRGIIW0Y6hGtTTav5swWQjDKhJSOna7Wo0hBEEsFsgm8CEUGROkYFApCECgKRShAM4xuck4TgzSTzQsUiUaSWNqpZBaklBLOEVGEcRJUhxiAIKNKUqrAtaC4VAGBKlRB5FtICVeMUAQ9eu6CYzGghCATShLOhJS2ZRn9gG3biAmJa5xsEdGYolHesEmjFAnxPA9Ac84KuaxxpddgnrU2lVWNmJIgieMQEalFLddyMzYAEN1JKQWlEWkYxqh0rKSIlR/Wq35QrVbrldqlCxdPnDgBmrS1tdVqtVTabWsvCCEYJcYgnjEmYuWlXM4pIcAYEUKh0lomFhWowbzIpj+bgkWUcQ2CUIrNGoucS2UpqUysWWswuTjNbe1qCjEZOxkja3HYan8miaULpdSUZkJCKLXMD7Zt23by1PHe3l4RRpQyoQRJrlCbOEHzBTF0HmplMW4wMSWcUQsRfd9fWlpwXbu8spL2OiQoxkmuJVtcKaXTWcdxRi9dCIIg05KrVCojIyPVapUw5LalpbJt2xSUY0gzmQwhyDnzXFeLmBJCKUZRlHIdI0v1/RpGDABt246VklLanhdXq1opglwI6bk5yh0/lJlMLt/SBpJcuTLZktEf+eCH7rzt1gcfefi5557rG+xfmi/LaDqVSi0vFKtLNd/3KTAholdeOYgMO1t7VCw6OjooYhj5qDnojO/XgrAyMNiTbrHPXTpVqZV7enqUUsViMWC0o6ODUhpFUWdn544dOyM/GNmwtbQSaGldu/+mKGJSPfOjn/x0685ranWxuFx527vf8qef+R8vH3zh0NFDDzz0k117du7dt5NafGhdf8bLnD59+hcPP/KOt799aWnhz//iz67Zu/ONb3pLW2vulZeOnj5+4o5b7xgZHpBR7V3vuDfj2S8fPr440OPXqoulmtTguikElUl7f/d3f3P/W99yxz33vevdH733zpsA+a2NjtHZPvTDHzx47tS5hZml5bnl2256w5133Xjw6IuvHD/s5gpzS8vsiR/+BAAe/d5PYg2akJbWAnB87qePZlpb79p/w9Tywv/9B385MJK58Zbb1w9vasl1jk9MzcxMX7tvb29PF0Rw7JUjc3MLzY44vzj3lne8dd/1+3/4o59cc82mj3zkkxaDD33wbX19Pc88+0TK4+fOn1JK/d7vffL8+bNPP/3s9dffyBj/+7//ztvfsWdubmZgsFfq8ML5k0LAsaOH9u+9lnLwXPvw0cM7r9nmevaRI0e+//0ffuB97//gBz/c1dX15JOPP/XUs339/SMjmwi1KrXQtt1KtU4IQSSoETmzPa51nFIpQgtaS4UkjqQQKg7CIKyDIrUwqFbrjBENkhAdR1KpYP369ffd9+YtW7aknJRlWdVKPfCjII6klFIAUmZEUb7vx3EchyKKIr9akVJGUmmVWIFLKR3H8dJZpQTnDjLUiRkQpUARqZQxpRSUMpEZSonWAAQJRWCIQFCD67rnLl5gjDmeTQmxHMdALpO9QhsLtYT90g0EppuhJDBGTonJUzKgmHGERVF0/NhJI3Uyy2KtdSyVY1lam3RIBKBKCcQkzcwMOM3BQjVqCGptPCK0MCEzVM0LI4Q0q+twSgkBpByJTqYYoIBKKiAUCDJC1wi2zMqSMYtaQIFTiowQpEiAIKWMUMKaFdko5ZQm8tMEQNAk+Ekb9acRdNMEvxGuTNbBlFJNiIlF2raNTVGR1k2HLKkMw6JhjVlDEuptgESpVFN8pLQmqHXDthFwVUryuljktV9Xt9eDWfiapL9XHWrtklqvqRDw2q1JDcJV2LGRznHVhRhxXrNI0VVqmCbgbrJ9xgSkuWfzqsxXGUutNUOmlDYYur29/fLlyx0dHbGEQj7b09X9yuFDtapPKDDOjKmb1looRRs6NkKISqApNVyCaSCSvAlAARUi0agMGwyJmFGbEGjSXtCMQ4LJLdAJOSq1psS41a/RrSEisDgWSVa/bcVSxpGo1wMkRChpPNSVUoCagja9VEsCEJuer9f080brMY2qicOgkc5CKAKoBrNCCeGUkkYH0IhANKEEuWeDAr8WCAHUtqVU1WqQa3HiILRtAkrGsUaBcRQw2/LDSIMKqjWTJWd8E0zNDLOZhZB5hTVBm9kKFeXMvBoGnDXK72iD2BzLNo/VcRxOlCZoWQyRINEIkCzMtA5FGAYxpZwQIqREiqlsJlfIa60tau3fv2/vuT0/e/DB2dlZ27a1VpSiECLlpYSbUkpYlpNOp7vaO9KuBxBx5sVMUGJFIaQ91+acIRGAnHFKiIjCdMomoCkSRiinFmqwOfMcm1OqKFOoCCBlTCkhpZGUJQWszHORStFGIiSlZqGdvAhG8whAkBoJPVBCAbSSAlCDUtyhtarPUlZrW97zvNHR0c2bN2qINRBUGMeSUopN4Ugj3Gkaf3Z2NoxFoVAgyMrlMmMMqZVNZ0qlUksuY3NLKBmFgnPqOA6irtUqlNL+/v4gjsbHJkwtcABl2zYoLaJIS3RtB7S0OaeUIIDNqO25hp60OTWkILM4ARVHIRBKkVDOFFVRFBnLYupQP4y0wigShw8fHejrsW07nc4ODQ0tLyweP35848b1GzduFDLq6e0t5PLjkxM9nT0fev+Hjxw6/LHf+o2vfeVLu3fv+M73v1mv16Mo2rx5c9ZLnzl7qrO9UK3XAz8sFotBUM9k3SNHDs3Ozna0dkkpNaHjY1PTU+N333Nne3ubRihXqkqC47XML038zd/+80sHj7z/A+9q7+zKt7bt3n/tI794fG5+OfBrPV2tFy+PFUuVd7z7fUeOHJqeny75ASj9kjzc2dqZSWXjKDp79uzQ0NDvfur/ohwsxro722anx97/3g97nifiYGT9UKVW9AO8cOnS5OTU+pHhU6cOE6Rbtm19/rmXFuaXFMY/fuCBjo6Od7//7a6THRneBIeTN6ijs7e/e/DBHz8UBtGua66ZuHLqEx//eP9Q5/U3H1golWTOZV2ptFn6c8uqR3FQqXi2Z2lVWhhLr5OdnvVr77jjuz/65fr3DWxbt3kqvbRx/abjJ4/t3HmNy/nc1Gy1WrHo6ht74603zy7ObtmxfXjjhulLV/o67d7e4UsXLu3YsePd737v+PhoJpddN9y/ecuOgy8fet8HPnz42NFLly783d//9iO/eMji7OiRlzdu2rR71yZKnEqlZnPqR34tFve/5e2VSun0yTN+Xd5///1jV0YpZ/MLy3HMC/mhxYVgZMS7+dY7//O7DxKKCESYdQwQ0DqK46RGS6wBCGUcCbNsdOxUFlsJKCWkUoogVCqlMAx3bN+245qd/f39xiC4Wg9EuS7CyOQkCyHiSIZCBkEQR9KUD0tqZWittbY5JRRtbq+lrIHSRIllUti0NobYBAC1Vgq542iCCJpQggjAUSmR0AZoFqaohNaopPCbMimpFZrYSGP4VkmUxeTiNQgeJEiI0lpLZVmWlBKBWLYthDh6+GixWM5kMnEcm7InoLTFiJYCQDFCtJIAmoAG1AnWagIIM0Y37QsQgJoVpE50N5QaW1TVmOKMVFtrjVITncxwBhwyxrWWWpuxCLVCQIJIpJBaSUElYSglaiFAJ+5UhpUhhBiv88TfCwBMXTaGFAljzESTbZtzzi3HNutjADD8nNY6CAJTcc+MekHdB0okaAJaIXDLklEstLIpV1qBlpoYow9s5BtShcCRI6Nh3SecGRWUigVh1OzTlIBjE75IiYh0DeIxUFOppNu8SjWfREO01lrTtYBoDR3YZPWaq/MEdSWaPYIMTQjPSL8TnKoaQc9GIzYlfogIoEGTJGcz4VMTehV0EtBsnqgBeRDA+Pir5KkDSCk456CUVJIxJo1tGCUGPWqKSCjEWK3V8rmWcnElCn1KeRzGPGXv2b3zuedfpIwrUIxZ9SDK5S0hlOsSoaQGTSghsolKmzhVoQIkRGtUqDUq3QilJnxio+0TZhEAgIBq9ktFkpaghnjSWptwZPOWTRNJrShnJkouhBAiopwpEcsGCwcAEkwBbIGIJhuG0EQl2UCx5p2OXpUZwUxaX+OxUkq1tiyLKNCIxiifaIVSA6IiWhPgC0uLGlmsaCwglrEVSwepEAEhhDGugDELpVKEMK0lYVRrQEzETCbGmlyzFGEYN7/WdE036LEmgG58Jj+njfJTzRUUY8R2nTgMXM8mGtraWtPp9Pz8vO8HYSw9z2vr6AzDSAYG0ytCmGVZGzdv+I3eX3vuuecOHX45m3M4zQkRlUoGHqla1V9eXnYcq1qpZDKuBqDIbG65jhgc6LO55doOpxwRHcdxOettz+dTtpAR1RYjlkNtz7IsQlADamSUWpQhaoVEU9lYRqEJ8SIio8SU+TIrPTPEmRHVFKAHjRIVAmFItFKUMgoIqBgjWirX4UoEjuNt3jhy/NhJvWGEc45KEwrKDEEgLMqQURULUyAkCILxiSthGHd2dGfSuYF169Lp9NzcHCd8YXapPdficRdipIS3Zgv1IECLaa3dlJPKpMvlqrFJI4jU5oxZlFLKNCGEU8IIMMItzolWxNgDxQJRW5RRAkiJ1KiUasmm/DCQQmutJaAEUIR6tgOExXFs4gOqHnR0dCwtLXHOoyiyLKulteXM+TOjV0aXl5eHR4ZKpdKFCxeklLvv253KpkY2r/+Lv/7fTz771PTcxEqx7LqpxZXlXbt23Xnn7V/7ylfPXzjX19tPuZXP5wm1xi5d7u7rvemmW06fOL24uNja3hMK0Tu4PptvVwSZZc/MLSlNg0A98ujTsZLPH/xcqb5SaM+XK+FKsdrR2UO51Z7JnDx98tjx023thZNnL16eXHz6mVeCIHBsfu3evWeiC/19nfe/+S1nzpz2bCefz/tRvVqth2Hp05/5g3VDG4rF0uTE9MLCwuzsbFj377jjjqWFxYXFlXUjW03Z5YsXL0UxybQUduzaFglx+fJoJap3itU3+IMfeu+73/62N9575yMPPfSjH3+vpyu/cXjzhk39W0e2P/PCC4/95GFGIokAWkYiCAmgowD9oFasagpjR49brZmOgb7rNvTOnrrw2JWlmeIKSVkdPZ2HXnqpWCyePHQsjkKjGDDbddddR2z64IMP9vb0ZDdtmJ+aW1lZsVz38uXLd955e6lUIgS3bd3sOmnbdnMtBc9zFhfna/XS9PSVocG+1rbc2Njoxo2bpKBR6G/evL5cLo+Ojg729Y5eEdVqfXCwXynV1tb2xONP5fNtJ06czWTaCGMvvHh0y1bR2d1dKoe27WAkKaNaIQDTJh0dALTUCH4oCWEElEIwxVU5ota4sLC0fv3wnj17BocGKGNBECzMr0RRJCIhhIj8KEy2JMhlVqJgJOGcE0Ia0fvVksbJ2AposnZRm+U3AmhEU8sCtAbOOTKKsEp9A4JZZWKiR0kIgyYhlJzqtRLm10ibCVlNk06W6cw20tGjR49Wq3Xj+2W4Otu2hRBgFFZaNyTgq35Vr0O5v97WHJ0BVnFAQhpp1bh2QJQAAEQ01/qNhfUqkqDICCGSKsaYpIIQglSvAZxGK4aJHjrBC8Z6ByUK4+jBGKtWNefccixTIIUQQig0ZgiWyWRMCxBC0ul0OpuhSAyRMz8/n81mOee+7wOACTc3yTM0DB9A3feDUrB58+apqSnjbIqskfipV5ul2USGWlurUTM/b7JEZofVOV6uljZv5kVqrZsZi80+sBaHaSPkahJUCghhAArV6j5rr+q1zzQJtjY0f2uJrrXPGhsKq6uZs1Wuy5ArJv+0KV5GNF5jmKytGYuiKJNuQcTi0mJXV09dxSsry929fbt2bz9y9CRjTGtlIt2G7qWUiig2VFxyPUbg1UgBSToJrsJfc8lre/LajSEDgLW+ZqYZXvtyrb3BhJhq9AoLiR/FCvTrnSWJ9hJFlAHFDfkQJoZqBrw29iZXPSNEJCI28oMmYZmMBjrWCmIqgyDQigaxBE2Y7db92HaY1lppIUETNG66RIPWQJRWJMHrAGs0f2vvtFHl1Fx9YkaiTan7ZIRCISQAKIgFRrAGmwqtGCMgBWUISo+PjjqOs2/fviAVzS7MX5mccFNee2c3NN4IrbXUSoHKt+Xvve/em26+PgiCOAqCWr1er0VBWK4UQz9av2ljqVQhBLSMzRo4iiKhZHtHh9IYRYpSLkQUBFEmk3McDxnazHZd1/hUt+YzuYzLKSpKGaOEgJKSUQRgAMqkbTCCQDhiskhSDR4YMSke1YhNmv9o0tuAEiSEEQBNCGitpdIAWkRhoVDo6emZnJwcGRlRKmCcE0KY8W1WikpkjGkNtdgPgqCtraOzs1NJkFLOzs62tbWNXh5POSm/XpVSgtK+78dSZbNZy3K1GZcosZitLLBt27B3AMAsUwAFKAGbcYbIEBgFhhYlwAgnSSp6w/WaEsYYs7hFmdAgpYwjWZe+TZk0hWQpAyDGfk1KZWw4wjBsa2sDJZeWlrLZbCqVmpub6+3t7e7u3rx5s9Z6cXExn8+/613veuhB+sMf/mB4eHhhYamzvXOpuDI1O/Mrv/5r//B3f1+P43wq2z845C0uZzKZzdu2EWScc+7YlVq5vaOrt697fGYOVHTu/MVcLj8zP1erRrl8Noj8O6+5PZVJT8/OvvzKiYXF4uDAcHGlorJ646YdE1OzR4+f4rZTrvih4KlUpl6r/Ns///vmTes+8pH3VSqVXCZHgPq1II5jCswv10eGNs1MTT/66GOEkFwuNzw8dPrE6WKxmMsXnn/hkNZQr9fS6czNN92aasmulIsd3UNf+epXK3UfNC1WojfCreb12bv/upENm2zKHMeZX1gYGuorVQLXazt/doLpVE/HMKOEKCFRISMMCUiiNRLOOFcyRe3ycmV6+Uyhs2P0pUMX5hZim3UM9HUXbj0/Mfaznz25Zajbc+2xK+PQKDv0wgsvTE9PEpvXypXe1o6bbr3pBz98tLu3/fjx4+Pjo+0d+Vqt+sADD7Tk0x3tLV/+jy/+yZ/8SaE1/zd/9Wfrhgf+5E/+ZMPGkUOHXv7+978vVKxRt7Xn73vz3d/97ncB4/vf9uann3ruP7/3nZnpuQ996FcX5pamJue1xpWVlUJbZxxbTzz+bGfHkOWkRAwKMGFtklrGaOprEaKRglIKjFk6wSiKoiAiFO6+++4dO3ZorVeWi0KISqUShmEcyyCIlFIyio2rp5ESMWZpLc2I2WS5lAET+iqcpA15bQTsiM3oUzJbIZFS2w43Fg+UUCTE5JTRRGSSYJXmNNY8XTJwa0Dy6inzqqET0bwhAGBCDGbgPnn8RLlY8jyPUhoEkVE3R1FkKhOvnTaa6ihYQywArArYXzXHrCIjMGAroX4Sa1n1OtLv5sRDEneuNYciRhQfCZHU5TCu63SNKguSiZAmXgmEJMaJxqpeCa2RJTXylIjjpHILIiIKJZv6MwDgnNvcQkSglBDSks/5vn/58uXNmze3F1rjOGa2BWvgV/Pe4ziemZkhhLS3txu0ZEKchs83GzQqUSZUZUITak1W8QohrzP/QcNM0jBVayEOsy2llNZS6YbzkGFvGoWNTOJoc/IArQCobmiKmidSVxkXrSKtq0DW2p6whgRtpi+ABpoUgV6FiWseEAKCRlBaE4JSKpvyxD1fSZAaCTGWj66bWlhY6usbcF23WvPL5XJra+vgYP/09LRt2SAFKs0tBKUoY9hQ8+jG5TUIKnPJr4OB1mKp5r0koPY1kdZXNctr0arWiiACgkSQQoaBTykRIn5tWzWrowIAENIYCsx7TZsQFta8vGH86uUcGs+CRpWkpkicEKIVIKdhFEulLcK0Rt8PPBejWBKbgtJMa1PwwVT1NpnRzdIK5Oout9o4a3/SeNha68bFAgLQhvxUN1pcN4LASgEBEkeCEkDESqVCKW3r6rJcJ53JjY6Otna0u54HAKCJ0ooTYnAdp1aWtWQBCKWgAZQAQgA1SA0EQaooDFQshIyklEEQVKtVEat6vS6iuFarRXEQhmH34GCtVkPUURBqKSnoKAhaCzmLkzjytZKMEqWExWljxF7N5wAArYEQyig1d93MAeJAmyRZs9WkUpoQbeCpNnJf4IQTzk31hZHh4cOHX+nr6UXj1SelQJ0MTdo4ztF0KpvNFKSUYRgjoYhkemK6kCvcfcfd8/Pz27ZuPXLkCOesWqsxy67Vq0oDEKSEU85N2TTSKAdOKVLUjAFnlFNkgAw0R8IQmQYCwJvZv0AQELSWQhpXW0oAFAghUWub8EgI0EZWgVrESHk6m9JaW5YloogxVqlUPMfu7u4eHR3t7OzkFr18+XKhtXXz5s1Hjhw5dPTI3r17W1pyu3ftPXPmTCrl5XK5tra2E6dOfPS//M4jj/yws6f7+IlTfhAJoRzHoRbnnM7OzvlxZHtua0f73ffec+rk2UceeaSQz956511UqyCqdXa1Sxiq1iuZlvTly6NdPX3vesfbx69MHzl6yg9jUazPzi/X/fZ6vVYuz0RS5bKtjICI4h/+9Gdtee/c6WPzM5M9nX25dP7UydODQwMZLz09sdjZujI5OXviyJlt2zeVVpZRi13XbM1l0ykvs1xaXikVP/vZz5w+e6YUl9FiV+bmp3726EpNcpamlC8slJrvil8XX/vm96PAX1yc+5d//Nx1B/a/cuz0//2n/zTQ33PH3XensoOJvpIoLUSkhUKKWkslpcl3yTtca4yWV1Kut6u/n7ZklWO9/OQTZSWu3bMh9oNytXT9Tdc3jSeqldK1+/deHL28uDAHUZTJ5G68ZdflS+NzczOHD5/47P/zh4SQl19+uae3o1gstrS0/OxnP9u9Z2d/f/+73/3uQ4cOnT5zcv/+vXfccdcXvviVXC534sSxHTu3ECqDsLa4uNjX17dt27ZCvu0fPveP999//zW7tjtu6uDBU0IIIXHzph2btux68YVXkAqLO1JKwGQSMqOBTEYaJaU0OSAijkGqoaGhPXv2tORy09PTtZofhn6lUgtDnxCT7cwRkRHKOeV8FS6Yd8asGwDAiE8hAR+4djIz/0gUHo2AV+OqJKUcKdW6kXhMCNBkYCaEGKjxKqDTHB/1mpQ6+P+zGQMCI2k3OdsWt8+ePbuwsJBKpaCRyL2WL2ncxevTA6/aXne31/558wpJ09hmDZWidYIWjGreZJIbSGSuHzGheZptQq+uBWmObXaQlBjnHkgqEiZtThlRmhl2rQmRAZOT0oZwrF6vm3NprYMgyGazQRBMTk56toOY1AvCNaqdhvKMDg4OBkFgBDEGezmOs/ZO17p5GRbN3HKsZDPR3WRCGZRmMFxzxNdar9FxNaJaa/RPq4hf67X+HDrB0AacrWnzNY+ANQw+Xvt0EFdd3yRoolGCpkCM3eurPmVirGvWGuaAq30AGz6r5gmGYUg4U0pZjeJO5on39PS8+Nzz27ZtA1OsJo7AddYNDdSq5TiMtMJYhC6xG17epNmvGs3y+izO2u76KhT1/9Hb9evxXs2/WgvLzBaGoXnXXuekyvC6RmK2KtpDRNSySX0BgBHjA8FG3YSrxHkASRl709PM6o4QgkAoxKYykikaTSir1quWDY6dTl4zglobBZxeo1Bo9I/XbIi49jevaqvmXSeZuU1AlqgNCCJqEyIlTCnBGEEk1XrdLeSzhYJlu5VKZXR0dHh42HFdbYonGl4OAQGQMKVUHMuErzbspsn6oMRKpZLrkCpHSKdSQBoJFgZVKgVKCREbFlzLuFosaxnXqzWNKgrCaq0SRVGptKK1juMwDsMoipraUK1N7gvGIlk/M2YlQ3pjIUSwEQMxvLVRGGoFyYsoESmjXCmIhUq7zrqBwZWlhb6ebkJRUQIapVagkFDKCEFEKXQchAAElUYEi/G2QuvC3HxbrjXleVEU9PZ2Lywup1IpZFxKKYWSGighqFBGsdba+H+ZK3IY45RwShmCRdC2mMdti3MZRc3sp0ZX1AoBJEitAymQUMY4tTTVxHYJrdUjKbRGpCCUVEqCgnq9bluOllRL5TjOhg0b+vv7y+Xyc889ZzLcFxYWPv3pTyularXawz9/sLevJ5v1avXKzp07AaLR0dEPfuTDt9566xe+9KUdW3fYXkpKPbhuWAgxMTFh2/bA4OC5y+PcZYrihUuj5y5cKrR1rBsevPW2uy6dP6mV4Jx1k7ZMbthL55aW6mEY9XT2OE66XAmOHj/tB3Uvk14sVjzP6eoZUErNzMyJMNq39xoA+MmPf9rb296Sb0UNSK1sS5sfKMZxZaF4+PBR27bf/JZ7uzrbsy1pTtnExMSlSxenpmc+/dk/th3n29/+tpPyJiamjh47tXfPtYSgRfTQQHetXDtx4gQ0jL/OnDoVJ3oaffbShf3X7//YJ3/n7MWxgcF1R49fnFtYZKgJKIVacYqMUIkQC4mgIbFtlFoDAxLXa0TJSmmZeF61tKiy3szSrJPO2DlvfGqs+TZOTU383u99Cgj+8z//cz30hzes37ln75HDJ7773Z9t3NR/8OAr5XJx5zXbt2zZcPToQSGCqYnxM6eOjo2v7Nt3sVxadlyLUJrPt546Od3SMr1r1865uVnHtZaWFp54/HlKLMas4eHh22+5PZ2x8q22m8oWWm97+pljhKQcJ+06KSklZ1SomFCmG8YESWU9BNQKjPobUMRCRvHw8PDWzVuWl5dHL18WQqBCShEIs20XgZrRDYwvGCIS3RwEGxO8MmCrqfalRkEFV2Gvhoh5ddhqDmGUc621lAIIEsJgDVZDE7gENPzW684QWmuiMdGAX70lF2CmQKmUBgJoc2ts7PLkxLjrpsyIaQZxrbXx1pMyRkwKA8FaFsTk/a0ObK9/PdBky9bs2QgmwqtgwVUTWEOfbmJ6UiZNbR4ZWbuZOjMSlTJ6DLpKQILmnFOgoDUSgloan1ulFOOJRsqIn1bbvxEERETB4ubC0Zwq8oOa0mnXC+t+NpUOw/DV5Zuad92AlQY5cc4ppXNzc5xQWDNLNfuPiQ4kOQEAnCSLb2KzVz1EsxkY2myiJngKRahAJyhNrpZAMZEvE7wwv21ydc2+YeghrddEkQCaMdxGB0u8G3RDBgVaUzAuDiba0kBsCLjGSrd5tTpJGwTTwZTSSknUyrIsLZCaCPwq+Ud8P+zs7J6amiqXy9l8wTSsccRdt25w/NJlCVoJyQiljCICaVTyXotKm31wbewVINHeISSqtdc+R236ZyM6DgBIQEPDPmztnskxTQVl0FoRDQxBiEgpK46CtcdfA/uoXgNnms+CNiqBNh+NBgLEsFRXGZc0u5kW0pDWoLVWWoLUGizqpdPpIJpyHYtQrmSISGt+nE5rSqlUijfOa87WbDB9VWLu1fe45tbN3zV+hoAIxDSU6SZ0taFMX5WaUpqsOlHHQgqpa1W/XSGYCu6MTk9PFwqFDstCwgxlZl5oIYEQNPrvpvQWmhaAlEIioCQKKAGClAkhjBANNQVEoAqIZtxiLrhaAtKWjl6A5IkmHQRRx5FJpTJcmhAiDEPf96MgjAJfxuHaLQ4jIYRuuKMppUBppbVWSAiiVkRp1JrQZPwmhBGkQIlFFILeMDR4+fJlHcZuJiW0kEgJaMZ5E8JyTjnhYRDZtgcAUspazS/Was9OznnZTLY1f+8b3zg/v/jUU0+l3ZQQQiuMleTc1mboVTGRCABIkQK1FLcEUo2MokWIDZxRigheykGGnHPGCGEEKCDRgLSjtSeK9XJxpR6EQmkrVqGIwzC2sh5EUVDzQYNncaWIlDISOhYBY9Rm1LLYpUuXJiYmOjrbgrBer9fDMMy3tA70DU5OTrYV2gstrcyijGOpWkFKO9u7CWfnzp+fnZlxU16l7hda24vLxYcf/sXk5OSOHduGhoaKpQogrfn1TN6u+xGzXG6Lek387//9N7t3bdu2dbhaWwYqlcTLF2f+5V++oaS85dY9qay7Ug3aOzqvTM5athv4laWVku/4W7duHRkZefbpp8+cOfOHLz73id/8L1oFV6avtBZaLl4aPXny9H1vevPo6Giso3TOyrV4qWzasuHi6MXYV29729u+8MV/1zTyw6Xxifmf/uSB22+7vT2fWz/YHddWhgcHqgtxdwFaBnv3bu+DHydvwBe+8A+9vcPHjx+fX5i+cPHs3v0HPvaxX+vo6hQauOV5qRyjliXjmGjNGCeExFJoCpblGE8ppQQB0EpyIC5SBlJEUbebDm1n6/YtA5s3FcP61NQETCXn27Zt26XRy57nbdgwAgAthZabb35DS0vhySefWlxcPHFi4jd+4537r905MzvZ8f8y9p8BdhzXmTB8TlV1uGlyBAY5BwaAWaLEoEgFUsGWLFm2HNbZ1tqvvfau12s57bvrfb3rlcOuLMtaB1mWrUAlUqQCJYpiAEiCJAAiZ2AwmMHEG7u7qs75flR3354B5P3a9Oji3g7VFU49Jz1nZKjeWJibmd6z96Zf/pW7/tf/+gujo81bNk6sWTM1Nf3xj//X2dnZAy/t2yN2jwyvOn/u0mvuem2l0rtv375GY2nL1g3tzsLwaOnQq0e3bX39xMSqC+cXFhca3//+93OeglwPBsjQAwC4atbWWkvGmDUTE2NjY5OTk1EU+SoohRUyRinF2E1ddNuJzDZOZkvERCbbZgARpUKAtJQ1EGVE4VgUl+5DLo67YlelCrGjFRfZ3+I25o6i+nt9pHXNN/lVLrTcxW+ePHkyDMMcZEBGJOjelwsekXzP4H/VwLZSWP/gXx0Ig2W7UXpb4q4xwP1qXfE1QCeYclMT2i5HDrB1uVf5U1xUECIqTwCSlGmEV5I41vuuX9g9zhn/3N1yi4UDRtZaryKZuVQqXblyxTlqTaJZoCMaLb6dE52OIdo5Cjudju/7bFJNOn+v7vaZzY1sajFkVaSwYF0rjmMRhbpmh5WQIGNK426ap3Zxs4Rd1yegA9n5cOQ/ue+L3+RYzVlfinOYHdYoOpELk6M4RYvtd9jLTUXP84jSXCpgdmFh+SBaa3t7e30/vDo/V+3tk1IaJl8Ka02lUhkYGGg1mszMyHl6GhRMa/nTmckCi0KW7op5eP0pfS0gc2N0PYNucVHnQ5wnJufX5g1jZiHUiptIZyfJePty8yo5BjW2xSLolJUcRYaYyCRaKKmERCmQwRDFcWft2rWHDh5j5iSJfE8yKaO11sbzSgVHWSq7slwERsTr6ofX7Y1/5SfGZVBVCo/ZijQm3RPCM4amZqbXbdwAAttxdPny5cGB4dOnTwshemp9xNIVU3UTNUXVojuNHR81YlrDSqEgyrhMlW+tS6i0AiRxWnFIpPyoqJSwDESgFBAJRGBCKRB9JQGkU6qLr0Sc8u0SAxIwgzEm0dZaMlbrLOysE7kUeGCr446OY51ESZIkSaRN7FQgRMmWAVFbOzA0wkCWHJOrcK4PTylEVCiMMZ1EV8PQ87wk0VrbilL9gyNEJD0lEF99+aVOO141NIQo2+02EfVWqzqxLpOUfN8xzKGSgfJ8JF/JwFMgQUoMQi8sh57nBeVAeioIPD8MhOfgLAKj8mtgbAlIxHHUSeI45sgCSK1BqZCNJiIlQq11pNuhUppZW1JSthtNpdTU1NTRY6+6wiH5GnfOhJGREct0/tK56emrt9xyW6VWHhkZbrVa/+f//G1YqrRbxhh7ZWrmQx/68Weffuby1KXjx49Xa72lUtkQtpstZty4cb21rCNt4qS+1JqdX6r1VHr6Sp7seeHAmW07dl+8eH58fPzf/4df/59/+dcvHDw8PDpk2TqP/+HDB+95/d2b1m/47hPfGh8d2b5ty7P79g/0V2auXBSI83MNJPXEk9+7enV6+84dW7ZvGBisXbh47vDRQxs2btMd+dKhw5Ve/13vfceRYy+dPnXugz/67ukrC5cnz9fKyur2nhu27N4+sjg/c/99r5+bXczh152333Lw0PHFhbn/9z//weUrk7ffvvfpp5/t6e9VqrK42B4ZGVGLSewJDF0GNYLnlVgASiEBOp0Okih5ip1mECWB5wegyoG63Ghu7B/ur9baUaux2Min69XZ+XYnWqwvnT57rhSEW7ZsP3PmzJ133vna1772s599bNV4tVarzi9cnZuf8nzRbtf7BypCUKvVete73jN9ZVIIeH7/c6Ojo/13vaa+NL9zx7Y7b39NUBu5ePLsE098a92aiaszk/Pzs9954vFaT9juDG/bvOWFF/dHUbla7VEylIxSSm0NszU2i1xBYEIGC0wMlkggAxBvXLd+9fiqOI6lEH29vWwsAIjQT5IEQPhKGWMCz5MyL7zqyBMIUUiJWfpx6vZKhalIrYaOhAFSmxkKRGtdMa9cqXbaohBCGGulVFJKlCAlMoqiRScX00VQdS3YguLn5bjNWuvSI1qt1rFjx4IgkFI6o4YDHFJKIps6W6/R1+EHeGeKUAmyXnCAIm+JdNv8susox8T5wcwZJwc4jTyDsoiQinNHB48Zj2YOT4mNsek3DnwwsZAS2dXSZgmSLTJIFkyUnuea6K4HIEwD3l1IIFoiCxoRG42GSImOYGFhYWhoiJldsW0y1+mQOOkIIaI4SY1q2riuW+aRcX2FyMvtiCm0obi7Zxd6npbziuXTwGaMBjk6L8I1FClAEY6KBdHNhGvnzwpAjJjqK5Ytg+XiQQiZNS7fFHMnqQP6DslxAWIWZ5GUsr+/f25uDgAsM7HJasULFqgNCSlHV41fvDi5YcMGqRCAUDCRDfxS/9CAtaZbs08hEUjfQxcdv3xAROoR6yacuu5GgCL7vwOUaY2BwvznLG4fcnbz5XMZ01AhhJQSnay1pA0SS8BuDxSwWm7iSm+OaBmY2REyr1i/aUovODfcshxIgUjMBgCF8JTKfhVN3SyVyrfdduvzzx/oqdaYrcsRijpJpVKx1nJWarM4W9LAzBX9131PyH+la/ntCAEBRTdrBHP2CmYJKk40oECBRNZVMKvXm1evzoHAcrWKIJvNdhj6U5eneQyNTd81lboIAODQFRFZZkc6Q2wBIAzD2KQlqwFASgvAQhAzCSFdsq2DX5QRpxGmRla3KICMc7s7pUUIyPE6Yp6Z6/ofAABkoHxwCLrkDLvd3nB5vgREwBasNUnsLGTGGJez5YxqWmu2utmsC4Q4Tq1rJtFATGSMTYCsJSvISkJPeZWaF0dJqVQGKRBF/fKVQHkhs5Re2feDSqi1FqFCkAROycxsAWiVR0qR8kH50iuVegf6+wYH/HJF+r6QUno+SrlsMQhU2gyUKlYnjYXFZn2pEXcASApigcYXsaaErRWEoV+plNatXT+/uGC12bRl8yOPPCKABnr7Vq1aVW+2r1y50mq1pJQDQ8OdTifWZnx8tJPE1tIjjz62avXYgw++Y/PWrb/4S7/yV5/8myvTM3Fsm412T+/g6+659/777332me/Nzi2cuzQ9Pjq8sLBQX5rbuXPn+NjqR77y9SiKTaLPnfv+jp2bS+XqzOzS5OXpsOq/9e33j431LC0trV038fBXvzaxcRMzKyGQdclTrJOF+VmBXG8s+oGcmZ40ZvW2nbdMrFrz/HMv7Hv2WW3pttv2nDxxrOdqhWXU6rT6B4ZmZ+tHD5/d/8LTP/rhe8t98dseuuvM6bWf/F9fjltw92vuWL1q7BuPPJ50Fq1d6qupe+6+7fNf/Grel5/45Kfe9c6Hvnn5wpPf+fbGLRsvXby4ZcuWVie5NHnVUhzKQCU9E5qtIZRkFHBM1iaxxxAGnpLW8wIdRyITbVKAQEEE/SJ4+mvf2n3Pnfe88+17btoLH02f960njgTVcrPZDEM/akef//zn165ZPzw87oS88sTzzz9vqBGW0FMASNqYk6dONJvNn/7pn/72t7518eKFzZu233XXXb7vj4yMoLBnz5zvtC7t2Xvbgw9W//i//eHq1WPlSvj888//9L/5cLUmtDaBX/ryl765emwXQFkIwQIrlZLyvVKplO6vDi6l5mhSLOv1+qrRsfHxcYA03IqInBZOGVkfESklENlagyK1dwCLlLTRFR8r1NTL9jFB7PL4uuxHRRW5+AEAOCPNTBNV3IW4zDzTlcXFB2V7avfXTAgUhSNkRgiXU3b48GEHtvK75RE/XYnMALASe6345v96/KCTiwDx/x/1GjHdsvNdfEXPQME96sIdijE3yGmqAWY3clydBUSCnNaCTLOuHI6hjIM0SZI4jvNOS5IE80ZmD3Zn5jPBae1xHOesjytgQRGOONiXXwsAKwaveFWO0oqdqckWHOLLuggAECV1Q7iWAXooWNQc2GJHECe6sYaArJTIyqFgSrGGChHd+loxHJy5cdMvC812m5CUcnFxcWZmZvXq1Y5z0tk4lfKTJHHVUU2chGH55ptvfvTRR++463ZrraGkiiikZLClUkn6nud5wlMqUNJTJrFSKUda4op8AzEBMWGGqldi/bSjCsPBzGkJ7KyXVlxVhCzFE/IYRJcykiRpAVk3i1Y4fJk5T9LMvxdZdrAjkFrxUJCCmV2Igy2Me365lNJmLjklPcugtV2zdrzd3n7qxKkg9NmmVt78oUoIbW3OY3fdt7vesWzdrehSgcus9XkLjU1832ebgiQ3XZvtVqwTJrTcmphYe/DgwQ0bNly9Ojc0NAIoY50Il21JjFKQBZ2kBkXpe2xJ29gJ2EbSdI4GY4zv+8yR8/vnpln3WUpX1U0YY0AKRmILmXsZncXal0oIIVXXZOvWghQeC1ToKn8QEQnI8n5yTmkGFAIQmAjRA+nySkH5oat7Bszg3Oxp/6R1tcEkYGNA5ETrJCbLJonjOAFik2jSxhrTbDbBpgDdGJMkERG5EQdLcayN0S6kGNGyZSIybJzM9zwplQRhhcJST7VvaHBwdCzo6wcpAQWgzCLvl0kG4StAkBT2oahVyh7i0uJ8ZI3VJpBSCWROABSzttZOXbnse0ESRc/v28+WymGp3W7X6/Xe/sF6vT43N9fT19totJi5UqksNVqbNm45feYMszhx8vTH/uwvfu03fn39ps2vu/vebzz+BEp18807Ll2aPHzwYKfTIRsfOXq0VV9SSo0OjzRazZeff3HgjX1vftMbHv7il0dHR++66y4/EI994/H5xeaq1RPzi0vVWmX9+vVPfu87rWYyNDzgfFkCiBLdW+nt1JszUbJ53YawUpq+emVoZPDcxQsXL1y5/da7brpxz4YNG6avTP7UT/3UM89+/0/++39+45tfc8ste6anG7/97//Lzh03CwkbN29UClutFjP3D/YkZXHXa247duTops0b5pfmBTeVgFdeeWXt2om8J3ft3nZ56mJvX/Xf//ZvDw8Pv3DgxZ27b/SD8qXLU739w9Oz0+osTABQT6WibBxwJ+RYyUWjmxwlvpRkyQ9LiY5ReswahCUgq8G3YtPA6KFvPbN3197a+lX58x569+sffvh7D7z9tlqljNbMzc4+88xzzPLVV4+uXds/NDTQP9CLotxsLfT0lI4eOzwyMiyRL1w8//IrL73pLW/67nee3Lxxx47te4NACsnf+OajrVbnm48//dWvPPIf/uOvfvjDHzp46GUl/bmrTd+r9veVm614eHB0ZHi8WuntRKy1brbbCwsLTs8QAnzfL5VKQqggCDyB5UpIhifGV21Yt94lemAanW2lRADKTE7sEgABLQJIKQGQOYU7lHJXkouzFOkWjklsPM8jACHAiRu3DWUbUhognDMcopRBEFhipRQIlGmwpCBIz8zF2QrAUdxfoQC8HHzMpXOqjBJ7QnpCnjh9plVvVKtV9wpKdEGYu2lqpbqeoav4TQ4mnIJVXLhFa03+gbP0Bxej6uxL1945fUcXoZf9LoTI+b4R893cHV1ygdRYY6yxJASiENYaZ/cCFM42k+ZCFixngCSESCsRZoCMC241ZzNvtVqu3m2j0QiCwFMKLAkh0mrcUliTeaIL7UMAawxerzOXdexyDvri+Ss+8PLT8s8CkY1dgRTYQTqBkNKRI0CaeFJsT5ZrjgDgCekqYueF1ZnZAidJMfC/a3nNeimdqzmM6zLcIuZPEBkdFAD19fX09fUhYq1WE8KtDibAMjNCynOLiPfce++evXuD0PN9H6VcWFrsRIkQQoRYqZWb9Ua7uVSplQUACCZgqSQjsKVSuWS1NmQFoGWTJ98U8Wu+ay4fDAaANGiuoCYVe0xczz2Xn2wtK+UnliwgSKUT7XtBrg+4KjrFEUR2fq2CRc2mNuDunTOkWFw0lEMlxMy+BoRopJHKQ+aogxs3rInbrUuTFyphACiAjE0oCHytdblcNkRMLFF26f+XpQRBrgismIdyuYc3/54NoRCYJg6l8X6ASIKYiRFQgMmwUSdK4kh7YWlhYWlkZFQpf25uoRyE09NXh0ZHQYgkSUAIJFSI1hpEtJYRhU2sq3NlOO1MV0YIQCRxWrXMmpT5wglbRMyyXAARWRtClpBaEhk40QkARGxXzGSBDAKJOaOWzahxZZoYlK8dAQg2E/LZwAAACD+FXJgt4LTrJCACE6gSqBIAoSf8KgELEFTllWpSd36yBZuANcAMzCZOtLY20VrrJO4ws3GWYXcwgaXAV0EQVGrVSm9PWK1A4INwqEtwCrxEd7DBMQ5JFACIslqVQTAIhIiLs1cj3SFryZIwho1FJmaem7nq+35fT58nJWfxG9PT0/VmW2vdjjqN8+eZEaWMkoSI4lj39w+eP3cxMfHeW/YsLjQ3bdr8wNve8b3vPR+GlbPnJ/sHR2u9vb/70d+/5/Wv6e/vr1Z7kCDudMjw5IWpbz7+xAff/74H3nrf0aNHpbIDA0PvePuDT37/qdn5hcAL/vaTf/P/fORn126cUKHt7++tNzpsrbW8ZnzdQKV26tVTjVazXAuvXp3xKsLzwxtu2j15euaLn/v8a+++vVGf375129Dg4P333jc8VPPL+sUD+8qlvt/8zV/80//+V+/74R+qhP1sa+dOX/nj/+9jq8Y2IgkSUgbh+s1bxkeG2825L37+s699XfNtD71jP1xyffnzP/dvnYtj7603XLoy/eGf+rmz5y/MLi5cWVgIe/qNZHV0kZRSXseUPUVtO1wp9XpysDIAttOsz0sb1zwlQ6k4MZqMMUJ6AiGU0rajQRWcfP7AFiVHs7Frt9s/+7Pvffzxr1+60K6WYfXqPs/zTpw4sbS0YAzNzMxs27b1hht3HDn6ysGD+wcHh3btumHDhnUvH3ix1WporR977LH9z/7zRz7y0C/8ws8vLs122ub8uUtBEJw7d/YfPv13P/ZjHxRCfflLXxvsnzh14nJ//45dO2/46teeWT22pq9vFVkPwKmPHJvYhU8SUdRqW8vtdruj2zPTHV+q17/2bkfjJDNTB7NlSOvk5Du9q/juCLqcEpu70ZjZoSinbCVJAgBB6Bljcgp0KOiUy7BIdqTBLkhpWZbMfyRF1/OIhSNfIMVvMKNscP90VnonLIwxSikgCoJgamrKRS/9K2ig+IjCkl+Gpa7z0/J/rrghL8vNXGm8Ke7oK9FG/vcap5j7S7lfafk2SS6kmpb1D3Nal3dZTyIBpDxGOaTIIVoRyLrSK0IIspY4DZVzjxMkLFMxEOr/grd+MKhKG/WDLlx+h+JgXYvYwCFXy1Tg2S92YJ6rmH/jYJounJkNgc2zDZbdIXfXLre6OWNh1oouwYfrtKxLcxjHrkiRISYiF7MiEIUQnkClVCdqhWE4MjbW29sL0EAhOu329u3bXXZqb1+fiz231iaJMcZGUXT+/PmtW7dEUdTptAShMWkLi2Y5yIyUUIhSygsAFeZSVjVICAeeBDBnNu8VRsf8KS6I2yFO7TLRpHTioojqoIDbVowdF8a3OA/zL1cs1fxXAUjWEGsiUpI2bFyzuDRrdSJSejynNjARuWAoXm6XLT5lxTpdMSuKbVjRthXzP/ueEFMHs7Px11vtwbAUx3G73R4ZGTl//nx1Ys3S0lKlp0coZZnBWgBB1rhK7oLzmYwZK+F1Hpd2GgISGyZJTA4yIgpnXkz1Zsrlez7WmGGpwlQHKaUWGlE6y6qL6y8OJawUTakwd9zYQgglJAgUIq2cURjjHGYJQHBhipyxAXcTGLKkZQYQIIRSwNbJCVVmR8oHZEFIQLqO+HAsoAJTwyoCMFKaGpxniWZFUiBdllm7JPgYVHv7LBtjEZe43QZjQgYpTULWsyzK7KnA9V6pVIrjeP369caY8xcugRSuyHeUmHq9fvDgwaGhkSvTc3GilR8Q8He/99SpM2fvve8Nk5PT1WpNiqBaodmr82SiO+64c+u2HefPn3fFMBqNRl/vwAMPvP1//I//8eY33L93796DBw+SMQdfOjgwPHTTDbsee+yxkTXD/+43ft3aThxZkPKGnTfse/6lgYFB6iRvf/MDSbvz1JPfi6KkvlAfnRgdXzdWr8+vWbNGt7C5VB8ZHRgYrP79p/+ht79vamr6J37yA8KPpKwmGkbHx3/q3/x0s1l/9dWzpXKvULX6Ag/2URI1/+AP/uAPfvejCoNf/7VfU9L+2q/+29e+5t6ZS5N533/gfffPLyw9+J73PfPMC3//6c/902e/MHVl9v7779t9y15nRVPU29vSGlHOGROUBucNYadTlTQWhn1BMN5jY91QtiW0RvQAmMgo4QlBQsLmiVXnDh1iCZvhPe55b37D/S8fevm2W/Z88V9+81Of+tSLLx3YuHFzKax8/+kTb3/7XWOjq06cPDY+vmqgf/y++x4YGKwePXJo9WpT6+2bX6xPzUzddfdr3vPe0YX55he++OWf/MmfHh5e9+1vf9MLvO27tsxcnZudq2/esvPs2b8xyeKxY5fn56Ojx+ae+M7TYTiwOGcYg3K5HAQBcSI95ft+WKsgIteqIk1Nh/rC4s6duwf6epcWF5VSLntRAvu+YuZi0h5zZup3YpoFCpHGdaVpusKQVb4yZH3fs9bGceT7fsp+j25l5/O5mECOhMwCpBLgKCGEkkrljFxQiOPJL++KY5eklvlVIds2oKC6ub3B931jTCkI4jg+cuRIpVLRWgdBkJFe2nTlX3OsADTX/mqXfd/dgCnlN0gVUveZOY9gAVi+5RQFev4Z0dHRdp+Xa45pB6abOgOwKzKTDRk4MwERSYvMQB4ZSyJj6FmxZToYQlxwliG67b+IC4HZaO3UzU6nI8JSbs8ovkvaF8vFH14PtkL2Mit+cmYnvqaIEF9zn2Uw6xonLF/Tt9n5Iuu3VJqv2Hqv/cDLW1K8Ye50u/ZYAdRAdhFtrlfkg+7C8BzbmYM+DtwknRgAPF8uLCwsNRq13h4iKAXBTKtu2QwODgohiA0xSuFJKXt7K57nGZPmeE5MTLhyUpQx3mmtnVHA0SYTpYQjxhgy3TpU2G1YOmfc4RiVXJR80asIloUQaYYvgBCMzAiC2bhUA601oZMfwhqjimhGurd2a6TgJy0sveLyx9xmVjwz02qImARJiYhARmtLlbCyYd3aM2dOSSkZ2NhEiLLNDPPCJR5m8+XaQbwWgeUtKg5i1rD0PivwWUobS4iInLmkhRDtdntwcJAsLy3WRwaHjx4+YhKTkF1q1ivVKqW0DoTZilppqrzerMs/Ozc6uYQSBELhXOqMgC5THIDRpWV03wvSqDjILPsASMbYbK041XlZClRxvedAM9WiMdXrXIk0IQS7mBUBiFKmQFRK5UPeQZiKdQCQuHJEskYi5AUb8mUtPGAGoLRmAxSMpS66JCMDBwZI80pl4ZvC+GNXrDELRIRSuaRUxXICANo6g6ISUgAasOD5sTYgcG5uFgVWqmXP8+r1upQyNtpF30dRorUeHh3zPG/D+k3Hjh8xkQ6C0tq168Og/N3vfn/q8nS5XJOCe/v7QODOG248fvxoUKqi9OcXZ/r7+1F6kU5++Iff+8u//ItffvhLJb+6ZtX6c6cvjY6OHn7l4MZNa97x9jcnSdLXV4468tnnXhwaG19abAkhTWzKXnjy2MmZqSt79uy58eabPvbnH/P90sTq9bUdOxYXF8vl8M677zh77uhv/MZvrF+39fn9ByzgH/7nP+sfqO7atePwkaMXL14cGRp9+umniEwUq1Y7Wb/uprVrRhfnLo8O9n33W99cs2q9IJi8sFQL+mthz6XzpwCGXF96ZN583+t3blxX9cr/8o+f+8RffDwo1x54y9tQilOnTgohlBHCKOV5oWRudxLP90RYmzNRPWpUEjRebSQIStoPWJYgFjoREowxAfrlWpVIjw73Hdm/720Z7WoSNaN28xd/7ufarcbR40cAwGg6O3X+jjs2LywslMLK2jUbF+YbiY5uuml3opuBX330kW/81m/9u5defv6b33giCPySH/7oB3/ir//qH//sf/71gw8+uGHT9u8++cTOG3ZZohMnp0ZGttxw452zMy2lgjNnrhw7NhlUKlEnjjozUgTTM1ZrjWilQkAsl8sCMfBLUsqeSjVOOqtWrRoeGmi1G77vM1tHdYiiiAAYAB0sQ2REqaQkC0QunMQyM4quTHRSWBsthCjGHFz3wNwaBOAM2kzgeZ5AJYrWbCGK0UhF7JUDiBWIAQpiOt8zENFXnhDi4MGDbidwgEx000Kvc6yAFD8IgXX39QLReUYxgD/oQs4ikH4Qwsu7KD0BbCYQf2Bjijfn3OXqDmLM7GR5MG93L2EWQvA1fZg61QpAwcXNEFGr1Qo93xlOindOHyeuuy1dv6lwzU9u7gheyUrA+SXX+yCXhzflHXrtzEmHKXPmrnh60eBa/EBFJLqstdef6vl98lYhIiHklsXifRz8csaCPPCcmZnTZBHliSRJrNYCUkreVWPjx0+eKN4B03BMt6RUtVph5rm5q8DsBwGwq3wsgyAolUo5qHJFhNLDFlIHEpMkicNqlFGvOcjlEqbzjnX3kUoKIUwBNLtJ6Izijvgtj7ty9HtE5MpSpQWpLBGChLSwOaW0/SCvgUTZCC4zfxanrhCC2HpSJZaYuNmsj4wMzc1djaI2KpVavwqTUwhHzP4DYXRxEPOv88Ysj2xbac/Lvy+uL/e9lNJ1svNClPv7a7Xa7Ozs4PBgvV53IUtEhAyMohsHtlwurZiQxQ5x1lXKKIEtZDAu0+OYHe8ZZhxsK4lIMDcSEwlkRAlZdVqyCGgFKkAi6NrUnIWMgFBYAagLtMOImFUvYMQ0MV4AAkqAlhvr9Mgq4UpUeY6nAOk+CyEA0+yA7tszODseLK9G5vyeqUwWXreSQqGA2HWPrHKdIDAupwKUPzC+WoUlr1RuLS22my0dd+JOZCNrmBxR/tDoyPT0tNb61KlTiFgKS9SmwPOlpxqNlpTSahPH8cmTJ3t6evwgiJOOUKrRaEVRMjw8EkfWGFuvN3bs2PHSgVcm1qz6yEd+dfrqzB//8R8fOvjq3j17pMTHH//6rl27jh8//uKLL/b09IyNjYyMDhJuPH361J69N/gqBCBL6ttPPMMSd+7evWp8Ympyst6e152or1Y9e/bsxcmLSZLMTM++uP8lVPDKK69MrFq1c9f2+9701q88+s3zpy8dOXGmt7/fWnvwyPHP/tOXaoMDGzas+/A737nrppse/eqjj339+7W+fkQeHhy6/94HhvtDX+ChA4eR4K47bn38sSe+8fg3qz3ej8G/cz05sXajiZN2s9Vcqg8NDP3lX/5vDfKHf+h91trR4fFVq8YUW5IMNkoo0auGhjqdVstEJCAOejnsPdJJLujW5r7hHiVrrak+T1irma0XetIDzbbT6QxXKpC63eHQc/v7Rga+8fVHn/z+U/teuPzhn3rru9/1/l/8hV/atGH9+vUb4sieO3fhzW9+88LCwv/6i0/d94a7Z2bq/QOjcURr12w9feripo07R0fHv/bot9eu355E/LkvfKVSK62e2Fyrjum49fRTRwT2ayOl53uev3bdRqE8IgMuPFNbsqiUQsHtdsuYJEkSExsdt1tJsnB1utVu3HXnbUpgbA1IRGRfySRJpFLGGDcfs0Xa3XqNNYgoJAIgcJcUyhgjhSIiJZULlnEbvhDdKshOtSwuQguMAiFjngQEgQqzxJM04TErpouYW4m7hOZ5TNi1Qs2lVQGA5ykistYEpeqZk6cbS2lVR5TCEUJCd5vsRvCkN0Hka2xi+K9YcZgBwKbV9Nzd5IpzCAQDiy69dibjRNe3mN9fFJjB0VGDIzJYgJxwuyhjil4/V9DXIgpiRpDAgohEoS71sh3FXb8cpnQ/ZJ/zxGkpZafTcbuyO9MCc54xB+kOQcWO+gEe2/zDtUxL6poA+etemH9gV+sQU1fsivOLr5w+McOOxZeFzBm3Ah6tOJOXQ7EVnZbOhOV+WC5+vuYqRLTpVLSOww0ABBO6Mj4COm2NUsSRbrU6lUqt02orJUI/iDuRK4QaR5HnBeDMAgwm0a1GIwgCYxOJYmFhToDMuebdysWspLEQQjnIJtLgHoFYrVWYy7mew5mty3VRzqCWW9GMtoiYYjV2FB7GkPF9vxNFSOT5vovRdnQkjtZfeFIgMhESOTsbWZvzqAEsM8u4zso/iqwb097NxxfYFZkgIsEgpeO/s+PjoxcuXPCU53IHhXCQKLWqUkb55mbyitG/FuVw1zSSZdel/wRI53MWbgFdyzW5dCKyzCyEUoodh5br1U6nvXp8/NDLrwwM9elOEkelICi59pDLgmSWIAE4l7QIKWNst4V549kVI01zFyEt+cBZpxGkJdhTiekc8dfyuuWzlFwBUAGITOgEJCNSJnwoQ5+UenRtOlyWBTgpB8xdzuV0B5HgpAUDcDd4MwXeBIQ5/HKkIwoVSGGdGiNFpsxwjrwRSIhi1vyKNS6WC4j8lPRv/mMKFAEkqvQHBAbuGRzuGRwEYDDWmiTudNrt9tSlKzMzMzMzM9baaq0GiOVSRfne1atXPV/2lfqWGnU3+a3V1tqFxbn5RZBS9vb2esprYxJHiU5IeUEQBO12Z//+/b7vtU+2FpcaUspf/MVffOXlQ9954ol77rnH6s673vWOB976tjiOx8fH2p1mrd8bHRsg2pAYQMRTJ88fOnJ267bdHZ0Qy05kemp9LV7SpIfHR4LA27dv38237G2121955NGR4dHR8TVzC7PfffKpSqX/kUe+UQqrAyOjzXZjfn7Or5a377250VhavX5i8srUrt03/v3ffWbNhk3KD+Znr545Nb16eMqOV2enp6ql6o/8yAcf+do3pmeXbrltz9WFpbyP/8t//9vdO1c/pKHVsi2tb77tNqnK+w+8LD1VLpfWhDU1UC63Oh3lKwzw8olDEPir1q+fbdSNCNuorF82MjgTNcdVVdVWYTJXkUlJsAp9Q2ysYW3Kys/h19233HlyZnLy4uUdO3b1DfS/9U1vfe7Z56en22snTLPZ3LZ11+233XX58pVO27zzHe999Otf6sQLP/+LP/Htbz31/Av73vGOt7WapnfzyKrxbS88dzgsVTdu3K5NItXY6OgY2flGq/Pii6+GlX7h6SRJEHxjrdYA2hqTWGuDoGyMYbDlcpk5kFJ6wiMiTyqXgDMyMhJHEaYZUSKKIuhaTVZKmXy5puXYuLvzOT1SSs9VFwy90Bjje57WMSFx5msrKo64XGi6tDghhVIKQIDI0spczYpc/VoOs1Z8yAWE+6CUMlrnudblcnlubu7CufOVSiW3VbjIsGL2+L+u+1736F6CBGm6/spfr3tbxNTXgbnkvl4zlqG97kCsNOdc85TCTwxEhCLdPq8dgvxGxtribbtbS662MmutOcuciqIoR8CEyxrAWWth2fwpnHDN5xTuL3fmrui6a8wPy85P0d4PgF856uq+3Q9oT3Fq5c3m5e7aFYYT+L8d+SiveFzRgISpsZYAgI0lTOGXc5cws2IVRUm5XObAOvWnUirPzc31DfQ72ETGEjCQTZLE9zxgbjXrQgiQCMwgAMiFbXK+VRNzWk0BALq+HACAnJcrd+VLKXNuAt/3lVKOuiXtmbSguAWAxGgiMka7833fdzPH2dIQcW5ubuvWrY1Go9FoWGPcnZ1dbSWk7Wogy0YHAPJC3T9garkYLwXAQkgUXKvVqtUqk3F87n4YCCFYIBAIIYokqcVaovkyuXY2rkD2ULAEww9A59kl0gUZOpxtrTXGCuB2szU41E9sok4HlEzaHQ8UOLIPAIuCmS0yIoJdaXPNcJ4DfN1OIyKUaSHzrjM3m//EgpGIXU6/ACTIortya5a7RErpPKFE5K6TwG43KNi9OIuFINcDZtlaJAAQsqspIiIiMaYp9oCUlgNm5xJ18M71oQYABIOI6ee0eoq7Txd7AYCzmXmedHPYlapTviPCRMQCqL+e9R0BMqIzsewEZwdkAmBEQWxQSanK5bBc7usfGlsFzFcuTV69evXcmbNJkkTtKGkm5XK53W7XF5e279h+SpxhBIHq7IXziNiJIkQMw7DZbAvGNWvWIcqrM3NuzxJCRFGnXq9/5CMf6enp2blzJyImsXnuuecEmB/90IcW5xeCwJ+ZmenE7UuXr/T1DfQMDJ09cz6O41NnzgtZUp4KglKj0ZyfXwh8rxaW2q2l85fOv+Y1d77+vrsPvPyKIdizZ0+nnShUu3fdWC6XL16YmZ2tD494URIHgdc/NBjHCQrZ6rQHB4bPnbs0eXFmbmFxcHjE97zR4bHG7Ow//J/PfOB9bxkf7t+0afPZ85NLzWTbrt0btu7+/nPfy7t0bNXopi27K5X+ak8JpSc9tdRsVvt6iaDZbr340svqyskjIBVIC2h+7Tf/7ZlTp7/8xS+t3rqjHllWQSc2HammyW/rcssLJsKyL+aVXmp1dMkPPPY16cG+IYjS5/lWve72e46dO3lharK3Z3BsePXz7aM6gQ2btu3de/P05amZq9OzVxc3bty0bs3aaq387HPfPX1yctXqkRtu3HP58vy6dRu+//QLpXINrDe/1JIiaDabpVLp1JkZRJSeKgUlTXEQBJVKJY0cZIGCURhE1AlZy2SsMQmxttaCIURsdlrtduuWW25xaW6eFGSNEMLzFCLGcez7fmIK2j+DM0wJBCbr6I2YkYE9zxPoSigKpXzPQ2CxMLvQ29v7ysuHhkcGRsYHiHW22JerFZkkcmG5nDkjEGVawzQtg+OWFEA3rguhQM55LTByJ0khWEqHEjzPs9aeOXMmF45KKZee7XYpQ7bQpNQGxs7UxGydOM7un4tgWwQ9mEd98XLo84PwnKsZwiBS/ItF/xQRuuI27hHZ3VAIBpvff8W7L9se0qimZdaavD0rckKJnPbLdD0+LS4wdbnwBeH8lJbaceTCgNxAEKVUYV2rgFi2Y4lrOmMZeCq8jWPUpEJVx+Ilyxq57Ddx3cdYsMxOEcg3VVGEXysesWLL7LbKjcty1yRmJcCvvaQI3bK/BGn6MAB0nV+p+s3ZtBdZZnEWkSmEQACtU/LMM2fOGJOsW7fOam21BmJjEpTSJhaVlCANWcnufDDaJFYr32PSrv0p0i0EoUO2Rblmuy7UJiWOyd2RWKiayhn6cEtYKSVRIqJQwvd9t6JRCgf1SpVyQCZf10rKWq2mlOrt7evp6WVmbbXzbLo1y3mxKW1yM1txJmdPT5WHZb7+rPMlKM4mvCEOlUJBvX21RqOhgAlYShQCpO+TdSZiURyvZVOu8Lc7voTFk7sYK43eu+ZA4SBDltDsCrNmDGGpvVAjhn19PUtLC4ODg7rTJlfbRzjqFsvMrqJu9rJdOzrCygzx7itYQmS4JiQAIIU7AiQzCZCMxOCsWYLZZgH6AADWRfpy9j0zpXhL5mcKIMh8BsWqGKkK5/AUIQJYsAAgWBBT+lnkxbtIArq/gFQ02AvoIl2RFpq0AODKr7mwQtdREkgbIaDgIm+3pZTKl266ooTU1bmsp1Jh7lZELv66/ZzGiyEwCPYKO5oEaYHs2Lq1I+Nju3fvvnJ56sypMydOnFhcXNRa16rV6ctT1WrVD4OpqamhoYEoibEOCFIpHzEiC43FJZCqr68viqJm3BICBwcHt2/ffub8uTAsf/Wrj05evPSmN70RrLkyPd3f3+s4w42FsDLQbODLr7wSlksTE6tE4PcODEdREpSDZqudWOP5IQM1Wu3ent59L76wdtOaj370d//0T//0Y3/+5/e+7g3WUBJFc1fnT8ydZusnke7rrQ6PDh0/drJUrZbCWrPZLIfV06fPvfLioY3rNzzwlrd+4V8+c9ONe2pheXjNmsGy9/jXHnv/j7z76PGTFyanB1dPzCy1//jP/mpgsCfvnUtTc7Nf/9bQyCoG3Lh5U6PdBBSJJqm8sFxKkkT9ys//eKPdaOrmiRPH77375h//4IM7t6/9L//tf4Io967aAIhWeULU6omvTWwBy94AG65J0+m0lJCjQ+NJu50/78BT+/aG4fr1G9vGrFm99ld+6VdePXZFAGzdvGZ4qFytrHr18Mn+gZoQ+MwzT1dr4UMPvfuRR788NjZ21+1379+/XwgxNDRkDXiq5Ae2Uql4vmQIfeZWp647caedtFod6csoipi5Vu3trfZ7ntSm43kS0Qv8kpBQqpSFACZS0reJBq709/ePjIxaY6y1CtNSqW5BZtwwKUFUQcqBZZDSF0Io5UPqFJda63Y7QvQWF64QCSW806fOvPbu1/z5n/3vP/qvfyCEKq5egGUQAQsBQ9ak1X7ABYe7TUgKWQRhRWfZcqKvVDpA6jLAjE/cYSzP886fPz83PVer9ZCx4MgmlHKbmbVWYFp0o7sGU/8BEVinHXMW2ZAJGnBILftWEBJkSuqKo9hyAEDBxIiCBbgEnlQMwnK4lQsuJyARAQUzXydYrYuTVjw96zcWWAxLLyIkyhNZiXJ9fSVo4NRYIoRwQSoskBC01m6jdVujKcSBcYE2Mz+ujeBx7+1cHsWezwNQct6H64xOccNz3ztYgCutAs6UIYrXumm9nH//2gZf28kiI0LLLR8rToAfsP8Vv0mSJDd+LLsLFbCdc7undBXMzBJQeCqOdblcTpJkenpqeGTQ3S1qt4MgMHEMLFAzATFzZKwQwmjjeR5Z0HECKIutciE4jEDGZjMlm0iO5lN5qTlquQlzxXxmZq211lo6ZUxAzt2PiJZJCckIvicBUWUp0p7nOXuYRKk86ftezmjvLC/IK6eim1rLKkcRAYBzd3YRm6t+k85tIGOFp5Cg2WyWy2U/DGW7bR1jrhQoPc/3raVMd1oGlp2JhDN7+Qpw5pDov6IeFLsI2HkOJKDNhat7KRf7FSjP6TZxHFer1ZmZmeHhYasNEzEAsoDcriZyCtwUETo9B5enqqwQC5TajSQAIaEFKzGVLSwA2Lq/xcWDiFmeJgOASawQQqQJRoYpXWvChUOk/Be2+/ouFZ0FIwiwIBBs981dJcRciWVHNulUAkwVYpOlFjGzKBqkCZnZUyqzzLEABcAEKUcZA0kga6VrG6ZFMtCyNmSFSIRKQZiUUgqZtTjDXgXDWL5gnBx05TRYG2YUjjMMstxNRkfuAyg0m/EN68fXrbt5756TJ08eOHDg0uTUwuIiEfmlMPS9KxcuVyqVof6+KLbz8/Pz8wulsKKULwDL5bLWWqLQZNasnpiZvbpqdKyvr39oYHB4cOjlAwdKpcDBUGY7tzC/Y+cezfj8C69Ua71L9VZy4RIgE5FN4jD0jU50FIEyN9ywi5L44oWzvu/fcccdly5dOnHq+J49N6OE3Tfs+u53nuzv75tYvebrX3sc2Dz04C9rqx99+Gs37L2dLPvSB5XMTk8jw+999D+ybV46exiZZ6YulFatGerv7d+7t6enb26pfvL02bl6MrvUuuXO23p7a/CdtPcOHjoyfWXyjW+8/8M/+ROrJ9YePHx0w5atV68utKNOtVoltuoDP/EWhcBO6dJx0pr6wA+98ba9O/7hs199+Kvfqk1s7mjLGCQg+0ZWL7Xnj3cWN/oS9UyJoBSGURIvNev53D364gu33nPHQE9t/fr105MzxtDObaMzc9O7bxzfe8uOVw8fO306WTMx1m7ZyNShEyl/43vf+96P/PJv/u7v/OqNN2y5//57w7D88JcfrS/NEGOpbEbGavW6CPxa30C/tRqEAgBtYidx4jhmbbUmCzg3M6+1dTH1QRD4gSJtapUewYQAExOrKuVSq9UCRkqzv1B6wlpr2TKwQLTWKukhIoDwPCWEUF4gVdhux41m0mw2gyAIQvynf/qXNWvWbNywLerAuTOTszNzu3fvvjrTHh1fWy5VIUtcR8Q0nkB0xbcEYa0JAp+0laik9EAKkI7QVmBWMSbXZfPtAdGp567haY4humqQlIq00C85S55AlbTjU8dOVatVZgaBLo+TiQUCMxGwAMlEICSAo9VgF0FORFIgMDEQMKNI7X+YoxaENC/HyW0h82QZAWjJusxKS1pK6dx/jE45ZnbafBYR74rQKekBkiBXUiX9KxGA0JJW6GhAEaBLZkZdDNEN63EhtNbpocJVzQNYrpEvAzGphur8p+5Xp1sLAGQGIaS1mgEsGwkCJTBbYwgp1NaAI09kBgBLjCjz8Cmm1JZJGQUiFIqoQGboyofYWamggM5XbCcAYLM6V2QtM0opXbEaFz5CbgfBLkgSpJiZlhkCDSISOfK5rEhiRhCaPuh6AfsrmlTsw+zLrjWCC9aI9KWKvZ9Zahz0FAy5ukNEma89dfows0UkHQFAp9Pp7ak2GuU4jqUvDZtmp+k8d8YkUkqybjmg++DiigDcTM7GKWsbISh0dKbX1MFMYshQWvF9UV5DWutij5yjh9AQAZA1Fh3XCTABx0aDwJi6ZHLOLylYOPWiSHXrPndXvUB0eXOQ1pJy9flc3E/ejCLwdcRpDn5ZJldn2loblkvWWm1NvV63BL19PbFOvMDv6emZmZkByMj2GPKiRrn9PnNcuUewtVYpdMWssDDQAiVAykHIWW0rN5hE5OyFgOz5nkscdkpvCnNBCBl4QaUTW62t44iWUuZpH0IIt0idBT1VAwqYIQVbmVACAEFduyCDBWBHy8+WXAF5YGIWZC2ALBY7dzegoqAg4uw1bRbZVkRsRQIX1wwJIsVQOXhykz91MneHz7FgODfosumFCMzEToVkRCBkzPQ9AABkm1gXK+boJwGdnXCZ5i+VS21hIUAY0pgad5VSEoWU6LlYMScP00oc6SgCs7VWa2uz6h1OUimlwnJJSpcUJQCEkAgShEg6UQwAYU/PzXfdtWXXrvPnzhw4cODksePDw8OI2FiY19p6hlmo2lCvUF693qyUS51OJ4kisBwon4jjdtRabHC5fOTCoZ7+Pt/3lxbme3trM1emfS98x4PvPHXm3MEjR1D4vf29oGS1UjXGWNJkLBPMz88L5C0bVt12y83l0Dt48GCtLO+9+65vPf6Nn/+Zn1m3ad269eunrlzasmVb32DfmnXrS+VQqPhnf+4n99y89cDLh0EEbGQSx9Mzl1avGWKKqzX47Gf+atVYz3ve/cb5mYXHv/aNJKmXgurTzz29dsNEsxWfOnXmgQffM19v3HzbzfPzc3n/NzpJZFmVq2cvXYmipFLt05qjKFICBVglrVK+JGM8hUzAxJFuRVG0a9fO//SfbrR+71cefqxn3bZWR5PyIyEqPYNTjZYvWECwpjoQJRFG7XI5hGb6vJK19cnJTTffiAkdePHlU6dmPv2Pf/qVr/3TN7/51dUTPTt3b/jkJz81Pr5JSrV58/paT+XJ7337tltu3bF942c+85lPfOJPRkf7K9WeH3rvAy+88EJPf+/eW284cuTco195sa8/SEwspbRsiI0UnpBCCi8Myr4LnmDu7+8HkbqKiEjHSa13YHF+TqFAoFVj4ybWbEg5oiAybpH7UmljAz/QWvte4CxT5VLJkG0220Ynrx458Nz+A9VKz4svvvjA296ydu3E/W94YH5+nthvthqPfO0b09NXd+268dChoxs3bRFKcuYcyPemfPk5oamUUtLvxkgKgbLL++VWgrgmtsbBL8xDx0Ck1UtE6qZk5sQa3/cRoFoq7z90WKTajyQiFgJhmYaqpEfAQigQIk26g5TNSAhEzhiU2S1sZBcjDIKA2ZLldNvgPIzG4SofMSXQSkESSoFZoQ+llJBgrQViAvaVBwIFoGViS85N4ECeBUZiIlcCXK1wxFzDZU9EKZG0EMUtrABei3JwWdDMMuKJDAywS85SShhjiJQxRgD6vp902lGnJVJmNS2lTAOuwYIrXQJAwGRdkaQUUVFK/ZqBG4HW2oJPYaUDhVOf3TJXiM3C1JgpjhNn0UPq0kJSgd3KnQyZmQSzTrDkUjVTMtW8qmkOlboTN5t45CyFGVuXmw9FSwkCMFKaocYr2c/dpzS3L9uhLaR2Pllgmec0u41yzJfeirnT6SilrDHtdrskSswcx7Epmbxj3XNzSpQsMDmDe85ckBlxCYGWB1znnZ9WZBfdaZNNlGW7GmYhAY63LPumG2WokVwIfJ7hKBiEENa9oxDISAIBwFzP91dozzKAmB4CkVPfk8yONFgNlVv3LtkzDEMnVUZGRpRS8/Pzyvf6e/sWlhajdmdgcHBkZCTvQyJyhNVaa/dctpTb3qy1brEwWM526K5wQ8HMzgXJRasqsed57uacBcS7EIgkSfySchZBrXWpVM4rahORHwQuSUilqVGuB+wK+MKFALVlNBAF2J+RSZBLNAULbiq6u7n8PqbrxzIWiWmcu4CyudE9qTB07nsLBJBHRCNlzndEJITUZsROrDoAap1YyO/AXYdANuapmuveDhgYXcg+WmA0lEAqwVRRkhhDQlB3a0EUyCyEjhMhhEIRd7MuHdLtdiyBoELyrxAChLTWJkYbSs3Y3eknJQrfLylrrTY2anf8Urjzxps2b9ly9MiRffueO3f6bLVaXZhbVMKLOtH6rat7enqef+klAArDsNFqBcrXWpf8YGFhwRgze/WqMebkseNDoyO1Wm1paWl0bJjAghR9A/2vvnp0YHhEEwcyTHTUbreNSUyifaXYmr7enqe+861tG1e940fed+LoodBT9cWFKNG33Xbb6OrR97///Z/+x386depUrVb77lPfHejr/eVf+vlEN5955plGSw8PD2utjY7e/OZ7L146dWV65l0PvuXVw6/EbTU23FOthDffeuM/ffoLv/CzP/ezv/Bvzp2/+IWHv/KOdz70Q+9/nx8GU7NXfu6n/+jn+z/g+vDO2+4AYSc2rjt24kypVBEoG+cv7ti5vV5frC/OsjHqk3/9xaHhfuWRr3jnru3r16+35L9y4sI3v71v3/7DqjbWaWuLCBITtoGnklrlzGKj1NOvbGMEkxBYFgoej5Urj33mc23G3g3rv/bV7/zwj7x1qTm//4X9XgCvv/d1u3bf8O53P7T/2eN33H7v2fNnms3GDbt3vHLwwH33v65aDv7u7/7uo7//24eefUr6fM/9uy9cPv3cC1/t71u/Zevakyfnar1VIoNSCBaxTjwIlFRJYqJ2XQgAKaSUpEmntmIsh36SRAODfQpFOSw5tnff9yMdM9vQ861OfCmUkNIXzNDXM9BqR8Sip6f3+RcOSOU3Gq1SWL0yvbRmYuPY6KrX3HXPV776xfvve6NJIsFqaakxNXnxzjtu3bZt24sHnrPUWVyaFgKIDKTueAHsFiDlKoUxGhGJDbDwhIeICChRoMRUeOYowe2jBY4Zlw4sMhedBAAWzCnzuyWLgGQ4DMNLlyYvX54aGRkxxgihNGlrLZvUe+FEYdsmsdZaa0PWauMiQJk5SRJjDBs2bMCSJsvGGCYJaJiQ2AJLZ2YhZmZKCDMx7USnoxJARGOMY5sUEqVSYRiGYej5MgiC0A/8MBCAyvc8qZTvhX6ALn/H0aMLIREJgBGkp1yzhafcDuGEizGGdJJbwpyk0JQXKCRmyIpUIwC5bCFO46s4zYqC1PeJiJmxiBFBJ5HvkDqzqwHSW601gcGaMFAu/kBGTiEUzAxSWmutTQDAFYVjZpDCEjKRAJBSOVhprSVDQiiJKQems0sx5OwMjIipjg7WcsqEkvewRBRphRoETxKjtQa6Xkti5mUlolOGd+dqYm3IWuto6BGc5ZvyUlRd4xYxIQBKFihBsAAgNkRIlM0ByKNVHHUCIgIaAQWuEHBXAiBdm+ZJABlcxPSRuejP3H/OxKW1rlQqzOxqD/jS73Q6puImc2rhcpAIXRkfN65oAZGQUgCbk6TkkdXFhgIAgAQJAGwcQQwzcGqoW6YOMRTcytg1V2eG2AyUuAqLlF1jM1pwLAQS5Ohq2Y5e/CZrcz46Wc+np0EBDeRp1EUEnCt7SilrzdU4FlKWS2G72QyCQAghhUi5b7JaUsVgjOLEyNOVXC1Dl1VgrU2ShJnJlY0im/tGmckYw45wwVW2RUySBBGdQz+KE6UUAZQqJS/wW+12qVwGxCRJPM9LrNFks/nphpiZDRSPbOyKcZ8O1Lgx4sJpKuOry/+6d7yWb29FN+a9kdq6iucUQk3S1CJYNgqIACnMclH6qZ5RmHwImLopYVkbsixKRMpmWkaWwaKQdpCOVJqnmT3a5ZsSCuGI19LJgOjywY1FRIvLpxBhV3Q4lSbdNSSgEqk6p7W2RJhZ093s8jxPBcr3fc/3QOs4iY1lKdWNe2/Ztn37Ky8d/M53vmMJtLbMfOHMWfT8vnIViRutVhxpqFbDUjA7OytQ+r4fhmGn01mq12euTI2Pj5bL4dDI4Ozs1d/7vd8p1XrWbVhnLEJsfOUTS/KtkbRh64bm0rxC0VOtVbxb9ty457V33S1R/c8//bPFev2OO+548aUXXz189Lsj3+u0k1Onzg0PjXhSSImHD716+fLlWm/f88/uu2Hva+bm51/zmr1ve+CeLz8yO784+eYH3qo80VfxDIljJ4+Pjqz54Id/6tzkTLl3sG8oPnVucv2mnXNzc9/93neOHj2+55bb4Uw6eDfu3TsxsWqhvnT69GknwAcGBkycTF+earca27dvVZ/45OfAasAYIPnPf/xfq73rv/ylh//yYx8HqEBtyK8OJAQAtjzY73l4ZXamWg4FDp+cm/ZrlZJpCGBpdD5ZSij8BLDesUutdeP9e26+5eArhwGwXCqfPnUhiaGvb+Dy5cuXLp1fNTY2c/Vyp9MZ6K+tWT12+fKl17/+3oe/+OUHH3pbqzNrbePIq8/fuOfmtWs2n3j1MCJnLi1yMUxpbCyzFwRstbbpghdCIEpLmi0Hvopabav16OZh3/fjdkxslRJSSqu1VBIZJeLSUuPv/u4f9uy5pVTp3bX7Jq3FF7741Xvue8PQ4Ji1dPPNe+dmF2qVivL9hdm58dHRF17YPzDQ98IL+zdt2nLD7p3M/Mijn/+Xz33m6LGDlhKZhU4TERSWNKWTlRwFFyK6t1Ceh1JgwZwj8nKw+dJc5l9wpn7l7EYoRUrrlwmEMCwtyPne3t5vfOMbx0+ezukliUzu5HJ8FpQWoIa8wWzJ5fMjSnSudDYOofoqVVLdUtRadzodHcWsWQA0luqNRgMRfd8vl8Pe3t4wDHt6enp7e4UQnbjT6XTiODbGGJs4DkyllNUmMXphbr7Zbk2sWu2HQRAEQqnA88Jyua+nJyyXg0opKJcqYSkol2q1WqVSKZfLlUrFxbeVKuUc/QshQKaF9ihj1HR7g7OJpt7qrMijA5BCdpX1oqgNw9CF6fi+z8a6lLerMzOPfPUrGzauD8OwWq0GQeD5fq1Wk56XVwUWqMIgEEIIVFKkYW6uty2RQpRSWbCOg9JFzeYmN+EcywxExunnXWWXyAWrufJJUkogYwjQ5FT+ZLoIOCM5y15Kk3XWF1fiRmYVQqwzjBX8jzkayJCKZSFtYS9ngQJSOGeBgVFz154gATHjQHKOeFkg5l3m1Ev/V6SACQGBcotavj1aIoGYaJ0kiZCy2Wz29vY607UziqRYm9I5gDkaAmAEIcC5+fLBZRTA6f/l7CP5A3P60xyGOjNzbo0rmKmWzRlmxsLOl9ND5M3JYgRSapLcllmUD1A4infO/5l/TjLcmkOxzAWWkdsJdLY3CWilcD6BvEgAZk49t2cX7+xigzirf+r+mVsTU+epEEKIrKSbAICUltZ5l7F7t6jdsdYaSulazp4929/fH4Zhs9GQUjrDmKPwcImljUZjYGDAGKMCn20aS+csZEUsmPdS0XZbRFSpGRi6PYyZMRgKEjX/kON+WH7k5mTGZYxry2BZEX6lY9a1zSNmhXQz/55rJQEwk8zqUjCAiy9ZMdDde4p0ZeRqD7hxz4hUmJlB5H5RRARCISQLTGvdFgIeMjv3ykCCrNno1i86r1gWVugmjAvXy5CfdPuCECLSiYiE7/ueJ4OgJJUvpYyjtrFcqvTc8dq7N27d9tSTT774/AvNZnvmyjSDCMKg2WwoIRs6shT0D44tLCzEUdKOo7Vr11Z6ao1G46abbzx//vTEmjWeJ0fGh0dXrzp6/BQiBkHQanUYfGt16Kt2h2rVcLhv4sK5877CH3nf+xpL9e9998m777774//7Lz/253926vTpTRs31mq1diu+cOFSb0+fMWb37t2lwBvq7Y/b+u7X37tl887vP/NcT0/Y1xt84pN/qkrmTW+586O/99uvuf11fRMT586c3rJ15549t756+PxH//H3v/TIVxFwbGz1N7717QuT55588sm16zYMDg7lI1av1/fc+s7p6elnn3qqurVn1erxubm5Ay/s6x/onZ+Zfsc7H1Ajq3cKJWU5rC/OP/ato//xt/4MrB1be4NWXj0yibVQ9isDfZGJ2/UWKEUqDPqqjYXOAuJQ0FbttioQEnsIPkCfEPOXp9/+pjfddNOew68ePH2SX3N3bf++l198/lcQvKtXFz//hc9u3br5zW+6Pyz5+/bte8tb31CtVv/wj353z003WoOnT51//Fufu/mWHXOz9fri8fm5xXK5rFw+rWUmw4yuih8AMShC8DzPGmYyCEIA+VIZm2Y89Q0OrV69OkkSpy4aa4k48DyTaCRSpbDZaLz7ofdcnppW0uvrHTh26szgwKg1KINS3GhGraYAMzd7RShx8027n3n6yUuXLnztq6/OL8w+8MB91WqVyPzt3/1FEJibb95OlFidZDGUmfctc7+kW2xBje56WCjloZYopHAURIoLbBT5mnRMgMygyeoojo1mYzVZNpaZjTHGkCHq6RvYsm3Hpi07SmGVU6ZTltITaSAAirTQuBCyK8IwT7Fmx0vDhi1ba4hk2nyLWeiAg4+B5/f09Dh0UikFjlDDsU0GQSA86dCPewVrrWBwMAgAjNaAaLS2RDpJtONqs4a0SaxJOlEniZMkabSajaV6o9W8eOlSq9Wq1+vtdts1Iy1Q48lKpdLb21sul3t6ql7gl0qlarVaqVTCMAzLJcRuT+bmdCf0tdYmMwqmcSpudzRGKYXEyOApVS1XLl+aPHzoSJzQ5OTVTqfD2C0jbRgajUZaN51FoLxSqdTfP9Df3+cpVSqVKpWK53mOs8APgnxWKKU8zxNZHqiS0oXBokhBlYXUtChT3qbMygjCgXajSSAKFAAiNUhy5qiVAokz8E22ENSPWSxwiqUEWpMs31EKcj9z6XGWi4CIhlfCkRTZU451yGnbGdZndyvsps27RxjnBMzTEYp/JaA2OvBkYpNO3JYK6/Uo7iRSKqspSbIItqwN1nb3Hrf3GmMBUub97InL6my6nQ26m3dXmXRmSPfJFuhLMI/HAWBbzL3tQihb2DvzqB4LnBe5z2+1AmYVXweWm8dgBRRzVy235OX1cFAIZpFaBjPUqy25xejUVxX4AMBF/yaiTpJuF2QNy1uVty1vfI7MnFbj2DScN8pBtDAM2XClUlFK1Wq1CxcuTExMAEBaFQ0g6nSazWaSJDfcfFOr1RgcGbbWjo2NTU5OxjrxPc8Yo3xvRZPSBhegc7HfUmsu5JkF7PJRVaboFruUOfOmXmOhpRRRckZgBuBkYAFxFa/Jxpogh3QOMEmZxpguL+loRc4flo7gsqWXASZ3S8hQvttXCAAEu9zrlBAYChVXEYVQhkwXWrmoeuyu4kJXuP+QtIPmCMAEnJd5sAX1w8kTTCl8iYgts5TSAw+YoziJE2h3ksD3fN9HUCi8RrPtKdU/OPTQu9+7aeOWbz32+NTk5SiKUCitdUfrwENErjcWE5ugEuUg7MSdmZmZ6Zkrt93yE9u2rz91+likOyGERHTlypW+/hFD7Hth3GkYkxidbN26Oe5ES83mQG+fkvI7T3xramrqE//7z//kT/5b70BvszW/sHj1+Knj7/+RH7vltrsOvHgIwUOECxcuCKD6wFin05GKmY3b2Z7b9+TwmPfBn3xgZHjsyvTcK4cPPb/vwMjg0Pve/0Fr8dl9XyTwNmze1mg0xifWH3rlpTVrx/7mb/76U3/zD/MF3q9StTJ9dSYx+j3ve9+xY0ee/s4373jd6/bsveHkyRP9QwOHDr2ilpragLGLsZT+U989EPSv66uWOkncMUazAM8Laz1aW9uJQSGA7EQmjtvl6tBkc3qwpyy8ip90n8eMq0YGX/j+0wPbt52oL175xF914vg3fv0nqz3y2PHDu3fdeP78Rd8vhWF45tTpz33+nx944E0XLp5+/oXv9/UNvPji88x2cX72+09/+0M/8Y4rVyc//vVP/OzP/uboyOC5swsI0lqr0AcljDGAJCU6/h6jKTd+IiKZBBn8QHWaraGB4R07drhUNWutUlIJhYg6MWS5HJQA8PLFqYuTl7dt313r7QuC4NixY+Vy+fLly5E1E+PjzfrCyPDgH/3R//iFX/iFd73ngVdeeWnjpjU33bx9aHjQ8ySR8QOPLVrb0SZxy+FaUeUWqfseUThbusgYIFOzrVJK+ZipwjpxHEIm0kl+WEtsbJIkcRxHURRFkc3qD7p7u83ZsVoMDQ2hVEazIdFFFczWIpOLgyEi7ZalJe1Ao4mT7rJU4HkyDMNyOSyVSn6gKmEpDH3fDz1Pel4gJTqM6HmelFJid/9ARG1MEsWpuOc0ZB4RpUBVCqSUQa5/5+LSJRdZgiwczjH9OLFORBasq+Zm4sSV9YyiKOq0Gq1mq9GMknhxcT6O47m5ufPnz0dRZIwzCYHv+473PAzDcrlcLpdLpZLnecr3lYtr9jzHEpe2H0BrzW7zJtvT0/Pqq69++h/+4S1vfiBJkmpY8cOQmT3Pk9JzuwhzqhBKkM46eHXyClnjXtAYo42RUoIUDreBQGc/yGtKumkgJfp+GIa+H5T8QDlB6aojBEHgzJPOgOF5nu8HwOAq/qbRhEiu3IoEZEwpEoQQTBQnibvWCdDU/GCszSYkZ1Tm6QS2DjdnqCIPMwTIKUIwE8qY7g0y29Vclsc1KZnLsBcwWxcX1SXARERMeczIkZ0KYGbn9jJax3FcLpddl7ppQ1kQ9/KtkCG1jhAayYLznN1cs3e2t2LmGi2n38SCbrkCfmWrukvJgaKLnLAQR1ikM02yGJ3i5geF2KAVcmNF7Ne15pniTRAxd807TSC/FqUwxgRB4HoyJa1td1yHL3etLnvH4svmDSgCl9yWVvwy7whmzgEZIroIhEuXLkFmEnYpBYgYBMHmzZsByKkxg4MD0lNnz54NgsCVEFhxf9c5slBFI/fnXttFAJlne1ncZ1dereiB9CfsDjpldujlc+z6x4rekwVa4zxA0KUZkS2a3l1AlSicKbPAlZxjLL1t6owmQhYsCFkQs0ALiPnMtsgWGLv0kYiIApgEsrFplbPsr4sBKw4jOMhH1kVqWiKTaOV7Drsjs7GMSC6czGmzTpkkYKXYWpvEWinFKKTnM0MUa0+Jm265eWL16m98/bHDBw+12+1qqWxtA4OAjZ6/OsPMyhPGmMSa4eHBK5cuPvm9b7/tHW8zNro4OYmIFy9e7O2rMWkE7LTr1VrF9/y6bi/MzW7euL48MjI3M3316tXzZ8+MjYysWjX2H/7Dbx05furt73xTuVJeOrlw+OCh7z35XLvdLpfF/Pz8TTds275t69zMbBT1//XH/2rj1m3Vcih9euMb31SuJevXr406JkmSjRs3H3rx6BPffmrjxo1nzpw7cfLSho0bV60e3n3DzvnZhdmZy2vXrl1aagwNDRXhV2z0Jz/5qQ0b1m3asH5iYuL/+5M//tzn/uVvP/mJ7Tt3HjtyZNuO7Up6vpKKUCSGwrExS3rRJAYtCQkog54+Ypm02wCo0DM6YrbWQAKovPJUYnvKo9g2kOTzTiZJMrfUGNi0bs3Y0Oce/ebqTcNbd65vNe1g/6qTp47v37//jfe9de/evTffeNP/+dtPfuFz/7Jq9cjj3/7a+fPnLSb33ve6hZm5++9/Y7XSs7W/dvHSlUOHXnlx/+TOnXciS0+WtCEGDALP2CTWkRQeM/phKbPvG2sMMoPgqKnHRsd3bN8lENmQS36xVqchjBYCvwyM7U48vnrV1u07Xnr54MYtm6dnJs+cPdnuxCoOntn35B/94R+cPHp59eq+//rHvzM2NmaMef3rb3ciw5hE6wiR46gjkYFFHloLIDLR35UXbm9DFAIVMDKh1hYZiA3H2tqm49GO4ziKEgewjLXWUp4xl+usAKCUL4TwVSB8kZISCWRCFqnVnYA7cUIUAUvrCOm7W6NjukYiY43h1MsALjG+Oj6ilPJ9Pwz9MAzDMHCFBKSUmeBwblUTm5g1gyVmFrK7f2Rv6gQiImJiE9cq4SlrUosgLyd1zPdp6zgEcv8Fp7EFypOe56EQSqL0VLlWzWCfuI5IZKaMmtx5qRxjarPZbLfbnU6n3W43Go3Fet1k8St5AxwXurNg+Z5USoElM3lpZvYqM586fKTVaIae74WB4/hwL+J7oetApZQnUpxUFjKslLW1rqkgUKgUfqEQzoDECMaYJAuiSeLYGKMTY6y2WUhTBsq7feVc8EEQuKjH1LSmlIu29n2/XAmFEKUgrNVqfX195VrNVx7WRMckbqdptVpRFLGxwKxQALMAiQIZGSCt2o7ERCaXx0TZ5pcK6qKpxmFWkW9U7BSOlJ2ye2RKNEBq9HWgPTWVITF2I/sBkKQjiWA2iWZma3Ucd0qlAJGNSRA9RLTWZIkBAACUNcwZ/5xS4GLuIW1P/nclDFqJFq/xzkBhgwIAT3SjfIrM6V2nPrOzhLlMVevaKVb6u/OYsBVPIZsaHYsPzbHdspa6FZcZaRAxj5FCRGGFtTayJKUUiHEnAgChpIVunS4Hyj0hpZT5rVcCPpfKA11byLKtPQMxReMKIrpQACllPY5lRsuev5R7dyllHMfOiR+G4fT01eGRkdGRcWvtwMCAswq7mZ8HnOWW3RXBBt02Ly8lBFlViWKtC1EoxJQbrzD7y6lKUCSFd8yInJ/O6ckEABZE93LEro897a5iFTV2vA42I3JzZ7g5KBkBCZm7PPhdb7gAxrQ4FYAAQUwSBCEDgzOOEQJaRxKLDOTkslMmyBVZcokymL4JZ9bclB0wh7kILk1KKQXASSdBlEp4JrGUpjyR53lCSEd1bYyR0gMAbU25XGbmKEqMoTB0G5a01tYb8eDY8Hvf/76JdWsff/TrUkqBvNRuBmE5ZpKdWFsTdWIViXJf7dbbbrKsjx07NjAwEKjS1bm5nlrNzZlyrRYG5fn5Ra3jWqV6ZXrSJJ2J1eOvHjy0fduWNesmpq9cGRgY2Lpj+8237Ln9ztvOX5hcmGs/+eSTPb3D5UrQ318en6gxtkC0FpYmtU02b94elqudzozyoLe39uJLT1+dn4s6tH/fKzfdULEE6zdtfuyxb4yOjm3bsnn/Cy/u3bvz9Xe/9tSJE8ODve1m89DBV4WSXhjkw71QXxobH4/j+FuPfX3r7t179+4dGxs9euzVnTt3btux6x0Pvgvlqh8TQoIFRml9YJsAggw8AIFCsvRtlABZ6SsmzWwZBTIEKGXSrFF9R9VuSaZ+eukv3fM+gw8xmt7BAe6rljdvuNiuHzx1cmj1GFl46wNvfPXoC3NzVz/6O3/0zW9+SylVbyw8+rWHt2zZdP+b3miMeeSRr3/0d343arQ+9Tcf7x9RP/XTP3rl6ky5PHTpYufIkUu9tZE4wUQjCl95wrBJkiTROggqnudF7RYg+VK4CRO3O8ODIzu27yqFoTFGMKFgaxMhhCsB54IOlfIbi0uf//znd+zYVSqVbt576+Ejr/YPDgdhKUrinp6+cjlETrTulCulVqslpTTaCuEycUhIJEpQMBtGkEQ5mGC3coWQmWk/LTnChC6oyBhjLVtrY20tUx645lhYnVkFwEWvLNv8XEah4zW22kDOxOPCJIGJiLNoFURpmZmz2Ot0gSMAGWM8JTzPC8PAmYKCIAiC0N0QMfOcpumWNpP7mTKdCS8JrnpSl9QUCuRAiJBGWbmQfwQplKOXMGQlCm2NREHAQOwi2PIqbNkd0PM8F+XmeYqZUbDzdeYSP0vdpzyNX6IQSkoh0xwhYCBGKbKRyf4CAICLIHbYt9PpxLF27tH6wqKxSRRFrUaz2Wxaa+NmWzdajaV6Y6kZJZ1mvZWYuFlvNZvNZrPJzEQUR9okiTNlEUCj1QQA18NOC/VLoed5yvPQxf95GRNPGhzt5QhHuUBFKTELhc5zvnIbVRYDbcjF7mUbUqfTSqLYRbpYreM4llIGpZJXCvxSGHp+pBOw5JdCF0Xn+tnBuNDzwzD9UqLwAxWGYRAEUniQ0W0o5TvtXAgQQrlCwoRgiVjIAttZF22nvQ2c1jp0xBMo2TrtKN1c3XkZfLFuLhFRuVw2xszOzg4ODg4ODs7OzgZh2VlxjDG5AzHfGrP9tGDAWl7ZIlsOyzfIFDTkygYAQMp3h4xplKXIGI+4GIAPy0FJ7lPODxcaCOCoELrrqAi5ilgBAJiu43wsdmnxG8yIi1eUgsaMeBkKwUwAwAhSShbL2lC01a3EXgDkIt5EN2Ihb0ZRAoiMI9oNnyikEDmABQAu8MvNc+eIpKy4kxCi0+msnpjo7+9/5ZVXRkdHg9DL1Yw88mEFKuXCkYIzbfLV4WBZmhNgrLOypxnWCK7y5rXub8QuEk0BZRbLmL5p92fnHVyWlZn/VVIyAAKl7Mr5X5DF6L1uNi52aVeXTQkWGRt30XWIK6ZB/k8BmJNTSJYkCC2SIEGCJV/X3e8+G87ydknk5T201pVaNQiCZqftbGbg6oxR1igppPBACk+kfGaOANwFhJXDQAiBQNqY3p4aMhw99OpXvvDwpUuXOp1OW8dLrbbwvIQsoozjuFIK/UC2G00h1NTU1NjY+NjY6OLiYpIk/UODWmvP9y9dmrw6P1cqhcRmcHBwuG9gaWlhfHR46vKlE8dP3XjTbrZ2fPXY8PCwUN7k5fl9zx2Qyj90+JV3v/vB3TdsNTaZnprypKxV+z73+cc6kS7XStUeb2J1v9adxcV6oxVXKoOTl2ZKQbXTbJR9b2x0mFguLS3Mzc9MT0/dfvvtxpjhwZFGq0mAhvjPj/2h6/wPb/xt04m1SQDo4sXzd95+x46d286fP8/M8/PzqyfWKiutZVZCGh0DCq+vFxUmcYyIbCzoBgCAUEwGCYCF43CKjfalnDdqKuZN1UHI7G0MUKnUfCHPnDgzEnjTC/N33nLn7ffao0xLAAEAAElEQVTcffrs6e9859vNzuKNN+6u9VZjHf/BH/zZz/zMDw0ODt133xvfeP+DBw68/LGPfeLhL3zh7MljA0P9Z88dunLlyuDI4MzVufHx0SNH6sdPXdi69WYp/YWlxRJWlVIglacCIUSzuSjRWKMTC0opq6G/v2/7tp1hGHqeF0WRr4rh1YIsAEpL5ElYai7d+4Z7L1y41BP2EOgNG9YEQeCXysYYJrSmA5QA2VZ9iZmtJQRkY922Qca4NBVmtATAUgjFrBmsNQxIRrM2MVnwPM/VH7SW2+0oM7S4vHFPIYZ+phDlMAvQuvQty5w6cQQIJAKClCoCZddblJoi0rBOtAyOo9ktRCHQWut4IqzlUuj39lR8JarVqsOFUopER8Z2PY95AqOzjaWCUhQKIxMBQFJw3HTFQU6yIMA5NfOLrMusSe0PhABMNnUkWKACrSs6ViShEm2VRCnRkHXRwJZApjARIcdR6Jy5LkbdgiEBBgQCZWl/JjXLp+4zt10BI2IQBGGpVFtpQit+Tv+hOxGRIU2Rjkxs3F+X+eXQWxQlSRS32+1ms9npdFqdtta63Ww1Go12O4qiqFlvtNvtdqNpjIk6HcdwEbc7Qoh2u10qlVutVrVadeF11WrV1avJwJm/YvvxlSAiEMLzvMBXXhhKF1000C+Ucn7GHMEopQyxI5LoARCI2kULJpQkSZvbDncmcax1zMwApK0RGSe7lJ7bvMMwJBB+oASqIPSqlR4/UMBCeaKvr095XpiV5RECcnDp+74QQigZ+oGSQmtNkO7NAMJtxuVyGYDa7bYzXqJQQioQRoAkYOkpbZNO3DbUgxKEBKmQmaVCl3OXebrZWgtSMDtGP8wgyLK6lplM4IJJCTjl7SMA4u58yN1Azs8rMSuETAIoq8PtUg3cYJG1QjBkPq8crBDF3TZkkZQ5UnGbuluSZLuGGV4xMws2dXdOkWer+IL5NswI2hos0HwUu6Kw0gUtX84roFh6Z3LcCt0VkkPefPt3zixnPXVr3F2b6DT4nXRKZachFkI4ChV3ISBKKRfm50thWCmXL5w/PzIy5NJ1XUtEFm/ulrHIakNJKT2pRJYxEJTLQgjo8sJzGqBJbMg6djQgdsQ3BGy10daYRGtrXDEroylP/XOH+4h5RsVyxIMFW1qeyc7MWVqJQHAK6zJKZKdwpn/TXJycASKLCesCTevCHIoiqoDDulxo6XxwXkprAaRjvUeyZK0UAoiJrBDS8xSQS/NNzYMyq6np/pOOfVqoJIo9qQQDGQsCU0BOQOwmuQujQ23SEsNkEgQwScRWWp2EYaiUMEwLjYavxI4bd/X21r7yhYdffvnlXRu2N+POqXPnOSFD1pMiiqJ2xxJRtRpOTKwKw7JE0W62iSiUvrB88fy5kbHhXbu3tqLOvv0vzC8sSImXJy89+rWvvu7e127cvGFyatKTav3m9Zbp7OnTZ89deeWlF4NSbdOGjaMjIyeOn5ubrZvEBj4NDMQ379m1b/+LxpASlfmr8br1a+qLF0zCHaTh4fEkirVSfX19QSlsN5vVqhob3/i2t9371FPfHx9bc+LU8YGBIeUHLu45lRqajCHBKjHxqlVrXz164pnvPfWae+/t7x+8ePH4ydOXFAgAspYAJKhyWSqVGC2kR4kGZgBXmpWYUTAgIFNa5k+UwgTtXLKUlHrz5/X09FiTTF24HMftzuxie2FOEHU6nctTl86dO+eX1Oc//6VvPv7E0NDwxo1DZ86cfe1r7jl08Oi3v71///79/+E//vbu3bt7Kl6rMfuBDz10/sLJL3/tqwDi1lvvrlaheWZy564Hbth158c//reIHlnq6+lvddr1+iJT1DHtvbfcsHbNmn3P7W8tJRs3biyXy6VSxZoEwABIZ79xhp/UOyZYaz22aqxarW3fuZ2IiaxPSnnYaS1JTOOlhHKLpSuSmJEZMM+QskAE1jAwElKcRCnHXiq6pJSAGQ8kYhrTBACpvo7LAm7cRcLlqrADKHkoACOIFVT1+drj5f8shjgAkZTS0aoGfhDUglLge560OtGddgxAREEptJal7ymVP05kfAfd6FoHGzNjuHBcFYSohEhhE7NEJGZkJkTJkJIUCEzpWdkCphzYeUI+urywTFukzAjBLmYi6xGR1XCEbGvBLBQilUScmfkycvOihpieyezCJih9Vp6pnZNGFr1CGS9Ctg95lZJrcAm60z5tSaq2ZlMlFVzMrupfnCSJ0XGioziOY7KWjG03mkmStJpNBzgajUaz2Wy1WsaYTqdTbzSiKGq1Wg7YJUkSRXGj1XYpme4hSwuLQKR8v1qreL6f+gMQgsCDzJ7kTHEizVAruY3K7Qqe50nlAYCLv5Eoequ17HUZIKcbzSYAkU6MC1wDAGfHjVqd5pJxlrbTx0+zQLAUG81WgxQS0AKX/CCxRgJ6YdBX67E56BEqNbmFYX9///j4+I7tW+c6nb7e3rBUmr16NUkSVw+oVCo1m02ttfNS+b7fbrd938/DHx1MhCz83LF5utF221YOJIjSojHGMAAp5TsAUwjkd/6gtIo2IjpKkbxnmBlIQ7rSOcNJ6dpxQME5wgBAocjj6lIruHsKdzUTyPiuIMvOY+oWO4JruKbcDYsF4EXKyruSkt7Nz8zytwx65vCuCL+KkAuW7etdMJed0HWhFuVSdgcsfO7+xIVYT5vRiyCiUzPcCYRpPF+j0XDTrNPpFEO7MiREmGVydF8KitgaXGBGrrGILD+gmCWAWW1EzGjSus1GmT/L4Xtg61Y05dUITJrMQ8BxrLlwpJ3P4EJQHVYzLjfTAd/UogYu5D6P23L00zksy18wM7Yti2J0b5kypeQj7uRnSqnt/CpMhiyn/UzWAgspgJmTuIMgPV8SWWDKa0gJFiBAAFpLEkWcuNrKQeD5HdMBYsup+i1BMgBZy0QopHDC2uZcyi5cFZIkqvTUnGVda92G9qo1Ez/2Uz/R8/kvnj59mrQJlTRGAhnNxMxhUEpjclrNm25cuzC/FHeikZGRJIoXlha2b9tW7asNjw7tf+nFy9MX77vvvu3bNj/+ja8++L53PvTOd75y4ODRw0fuueeeMAwPHz5c6x34tV/7wIPvfPcjjzx+0003XLh4+uEvPLxm3fbALy3MTt24d9e73/0QoPjSl7+pO7Ru7fjli7MXz017fthu1odGhsvl0JPWMC0szEvFYSDCEh4/cejEiTO/8eu/+f2n9/39338aACs9A5Bl1yRRp1qujY+PX5y81Go1RkdHR0ZG+noHX3j+xb6BQSk8VbKGhYggCfoGPL/UibWSikxCiQFEgZKzwG4rQALKjNGk047Qk5EQl9vdTKJWq5XEHd/zqlChdjxUq377G195Yv93Tp1ZHB71RZMRhJB+s9W5PDV7x52v2bJtd1A69+T3/35krPZvfuY/funhj33oxz/0F3/+32dmFy5Pzb/tgYfGxkbK5ers/Nwb33xHudoTlJZe+7rt3/vOK9XqcOjLsfF1Fy+ZsfF1UbKwdt3AyWMH1q8b76mO+6rH98IgCBpxi9giCmYQIAHQ2YHcijVspcSlZt1aLaVnTKJQMRuTGOX7ZLTnecZYTpUxJ0DZkVsmSUJkGIxb4WTRMiGiEhLRxa9kAhGdEBJOpAJkNIBuqRBhxtLucpgI2cVpAbDINg+HLhCZyYquOHMADgDSpOhUwAHJjBlfZsoxAkghAuX5SrI1KLi3VimHJc/zCLATx4mx7XbbEqJzdbHzNTIgsHA+ZzbOyciu6plb5wACiKzT7xjBZvzdINBpfMSMUjCkJFt2+fbAK0RGFlkEqW6XUljlByGhQAssEFL1Mk8+gNQLytxVBHOHafER+V8huo4yXPY/7pCcKnQuuxC0IecgKG4qxTYDpBSgAt2wsZAi9AIoBfnvhZeHblgtAFh2ANFoDQBxHDumDFehxYEwrbXRFMexs67ZREdR1Ol0Wq1Wu92O4ra7yoV2OWNbq9VKjNbadlrtdqMZ+H6pVAIAR7lULpfd5pQmBABgGjnERBT6obOfISIRSCmFksYYkfMGZ9YI3/eFUuX+ivK9wFMoRU6MglJEnbbn+2TIkI07Ueh7zhmkyQoQzXqzWW9eunDxuWee/V+XJnv6+0YGh4ZGR5Ko3ey0HUys1WoAtGfPTWSsJ30LdmykPwzDUqnSaDQcL2tPrcZZiWshhLGW2FA2Rt08AARtEkQGIQDYWk1s0uWbsQRkiYWEQM4kkc2ZLHanG/qG6cYMIjWuADgerByzZpkBkCRJPhuL81oIAdk5xqYXOnMvwHWSNXOVoPgUythtsjVVmJXOiF5YCPn1+a2KIKyItPKbMOeBYtfEyF2D2CizqxV/RUw1RbbLfKD5OSIrayGE0EncbjQVCiTudOIwDJ1CqFC44THiWrIuzktWidQwpgCArTPD25zvY0Wzc25Y92WOz67zWaGUslKp5P1WHA4hhEt8cUfq6yTKa3rmiS9ErlAWM7PjUwQyhsiFerj5hMzEoAokRIwouvpp/goopSgKuvwQ2cRISY0lMDExKakAmawFJmfHZbbGWCFErsy6mLp09zcspUTByMxW+4HXzoJ30wAVskjoqkWxZJf2gZjtnUIAIiEQYqvVEkKUSiVfiSiJmTmsVt7z/h/+ysNfeurJ71WDIAiCRrM53+gwQbuZqpqrV69R0m+325YSqSDR8aVLlzzPj4zd9/wLU7OXt23bvHHT6jXrB9/24D2j432nT5988qmnVo2uuzg5d3VmdmFhYd2G6ksvH2LGvoHexMT3339vrVbb//zLE6tX18ry1ltvBYBOJy75lVql94V9LxodrVu3ngxJlFGzufuGLQz22JHjRKY+M/vBH33v7bffeOHCpXe8/T2lUmXD+rUA8MM/9P6lRgeeTzv/Tffd04ri8fHxV48cbLfblWq50+m88sor1WpVaz2zMKM2e/rC7FxpeIw82+o0lQqsSci4OjMoCNkF4iAwOiYfYGaQAiwIISyos7PdokNEFMcd9MoA0Gm1pF8eHRlu+2JgoPmed79vfnHuqe8/uXfPncePH7//DW/867/+yuL8wrvf887bbrvtO08+8ZGPvOu//+mfIEfr1q+ZvnL1jjvuZDCI8pVXXglLXhgOz83NXzh/dHR8/Yd/4qHPfvbRc2eb5au1rdvW9fQFS/Xm6ZNHJyYmyHpSyiAIJEqllNYxgKsyQcBpUi6DFUIaY1A5qkinNydhGJI2CBCEnkS0Fqy1KCQxGWOtzXhLba4iEyA5kSWlEJhC/iypP5MHBW7x6wgszMGHLfzksgTc9yZnEkdggdczf624cwqAAADYGongQvIZKInb1mDoK+GXl+Znobd37969slwCAJPwiVOnL1++JCQwKJGndDkLBhSYyQCFEBKtcOwvBGnxx4KRPFVLEdONzBJlHARdgzmzdXaynNl9eRyDM7ETpfEKbntSJEB27TqwHE7lhvplYC7jASoOivun07nzEcGMydB9040iYnY5mEIol5EHXCwTwgACMI3dcG2wDgICa2NS85sTtTl3gzEiLaBLQHmMjvU8BSiUUqrsh7YslxNFQjcuatmgG23dHu8ciCZ2sZE6iqKo07HWGk1xu0PaNBqNdrttjImiuNVut1qtHKs5DBcnUZIkOk6MMUmipfISrRuNhtFUq9X8UhjHMSLGcewmdr45GWPcVqqU8rzUvJG7Hd33WmulfEAMfD8xsVt6QRBorftqPf21nnWrJ3zfdxuVr7yh3n7le1rrTrujlAIQjmpobm7u4MHDiDg8MDgzMzN95eoNN+4aHBhuturtVoSCw6Dsl30/9KREIVRWShId2YcLSbGGGawAyWxdLGY+YVJUxEQEzIYBiYyL2HE7upsVmO7yyJ6UIAkhd/imk4rSXGgBKJR02z+nsxQyoCCK0/5a+25xj4cMH7jzi5CLeRkJdvHI9ZPu59RW1IUOrm0yY/kqLoruuqYczf5f5BBeA7/Sb4p89O7mhWKpeR6le5ZL0nT2TjdkAMBCdjtNrOyZ/NoVvQcZPCqeln/OA/bd32I6Z37z9J5Z2oTIDswwqxDC830sILY8RFUWsg2K9+SC85GtcS5RAjaJdvVFXFxs+pmIrWbm3GHqnKfObUqIwNYpdOlfZmFTi59bfcJTbGwniQEIlfSkU/8BUfrKU76HmFf1JmOs1tpqskSlkh8lsctLjeM4KJeEBGICpJS/mg2knn8WTFlOMRSMBQBAxjARBUHAxhogRNTWUERhELz7h97rSfXd735XWlsns3Z89dTM9Nj46lWrVp89e2ZsbGxxcbFaKzdbpSsz0z3V3nvuuffQ4SPHT5/yAk9Kb2xsbLGx+PwLk3Eczc/PT6zesGZi3amTF77zxPdLpYol2v/8S61WfXRs7N57X//cc89uWL9uYGBocXG+UqlY0q8ePPzcs/suT11du3bi2OFXf/UjP1ethk8++dTcwnyiub40d+VSODTcB0A9PdVtW9Z9+tOftvyuVWNrHPPpjTfe/E//+JlGPZqcupLDr56e0NhoYeGqEHT77bdOTU0lEj0vLJfL09PTb3jDvWqLnrz15k2vNvTJ+nQQDsbERhuII/QVMiALZEGAQkoiIIEElEIZP2QTM4sOdUP93aw1wDL0r9aXNm7bMLZu7Eq7XQqGtm+7YXLqUnwHAJbe8sCDP/+zPzXQ/7vHj73yq7/6m+vWrz11wtTe1/vJT37iQx94z49/+APbt289d+Hc17768P79J+993U0PvO1NSPzPn/2HsOStXbv1PQ/99K17Nz/95Ks7t9187sLxO9fcEgSDjWbQbie9tT5Pln0vVLIkPcd6wkSGiAUzotRWOyeEM/CwsUIIJpYgbWLJkFLKGJuQK5Bn261WJrhYACIKKQhRCildNiW4TCsCYOtQHnapW7qce7lela86pC5QKMgycoimVCoxs005yZ1MN2QTIYMcgHEx/MLN9VTBFXkGDWeBooiAbC2RRGmNff7ZF37vD3/vI7/8y6VAbt99g/T8RrNpKTY6ElYQdWvROLQghHSiExEloBDCuh9clcyM+oeZs2JsLLDr8EiTfHiZ0QjYEbcjALMlcCs/F47MzmwPAORssFKAYoESnWULhQs4SHk1M2Wre/tCQG5xeyseItuuimPAjv8i3zAK17niHl25mQ4oCaJizcr8HOUJm4ZPu4oFziPKCK4GSmbzdHkJUgJYbZmIXK1fZjakITM8YAoZkXMvq1DuJ6EQlEREH/1StVR8x9SUSMCpuSf9lgkSbR1XltPUM4aTOEkSnSTGmKQTt9vtOI6JKOokjnTNGJMjNpdD6nyjSaSjVjuKEmOMG29tKE5MJ0qiKHJsEcxsDFV6avV6s9Vq1aph4PmtpRYK7jRbvu8jOXUFpZSGybGEIKIgWJxfOPjSQSFEs9ns6ekphRVjzMUzF9wevv+55422KMCFyQNjomNtE5DA7KoJpVmiQRD0VmtBEJAFqXCwf6hWqwRBqVIp5Ruqq7HheVJ5HgnJhAwyT9PPLBmcoxEkYCZn+XQVDlKhIaRjtQVLJtFuhqcGqizXX2T4Kd3y2e1bgoGdTX0F/gYAZ00pbuRuNuYuvGumKEBqZ0LAtKnOtr5MKCG6tS8LRNDucBZlMgWHacEl2rUsLj+cUdGd5gK10noE6UsxoiM26cKmItyJosiBmFbUyTUlzBxqkOV45uu0+ywpGcB2cRc6A4w2Xcb8oiySy/nAMIvfsAV2XMxTO9lJKgRGa5ihOxbUaOc3KT6leOfi4QdKuGoASikpIeXwg6DkOc8BSqGEdDQpBOwSjJbFimV/Xf0SQ5asdjk4zAzalXpipVS1Vg5LJaN1q90maztRZI12CdSIqFCowC+VSigEAJK1ac3QRBumTqOTsCYkZu4knTJVUAISCxCOvJuJABkVChIA4Hg3AYAyxRIEAqLwXJADG5sQiyAICIDJduKop1p709ve2mg0jhw5slhfqJRDDyFU3urR0cWF2cWl+cWlxTiOrWEGGSd2qd4Mw3Dzlk2tTjNh3Wx2zu07Q7a9Zs2aVjO6cP7S/Px8oqOt27f4fthuRb7vE1Kr3Th19syFyckvfOGra9eu3bx56+zsbC0sX7wwSSj6evrb7TZiJ45mtm7Z9p533Xf24qUXXjw8EQwC27gTjQz03nLrnsHBwaHhXmuw2YpOHT//7//973/4xz+0bdu2VjPpdDr5pBocqoRlefXq3NsfeLO1NDV5vhwGs7Pz9cW5/v7+D37wvfjzI5vHd9045fftu7RwoY11DLUF4XvMLCyzBcGCUbCUhJCSsTm/vtVC0GAp9JbqD3d+xT3vX/wfipMWM6py+fz0lQ//2i+te+2tp+amDxw4/LXHvvnu9/xwubc2Mz0/sWasp1b+2lc+t3btSNyJzp6b2r59e6ybmzatWViYvP3WPVEnfuzxR5iS1RNj6yc2zC9c3bFzsxeYNWuHCKQnhlt17+jhyaV6NL8ws2nrxjVr1ijf1wn29o56skfJUrXSB0hnTh8BNB4KYCExEEIYSoQAra3vK2tZSgRCbQ1QFkngyslRlusHCkVeCTFdUMxcDIbNBE83oqsozjBTK4sylLte/GW3cWEuiOAyH1kgcOoG0tpqrQG9bvpbau5xNyzADsrzaEgIobV2KU5WGwEkkJK41VpavHjxQr1ef8eDDw6NjLGQ7ci0oyhqt4Vw3AsSC+V+szdExLTMUSpuQAghpKe6GjNSjhVW6Jq50MzemJ3gcLpdHkWLiLk9TGbVNhDRFS/y/JRmTHkpi2yuYmJOM513xTU+lH9da89/LWrVotDPQoic1yDbYikf+xUPYmbI/Djd9nWjoVGCNEzc9em4xju+eNt1AyEhSMfNJvMYHQbL5ELLpUo1eMssEQ2RYJEXpZHgdneXYpa47iIiROmsqYjd//IjDaNN3aFABK4yr6vmYC3lhB3uMMbo2EStttUUx3Ecd5xX1CEzRFxYWGi1Wu12ZJna7XaSmE6r2W7WW42mtdZhOZeO4Pt+FHWco7Onp4eI4jgul0NEaaw1xgRBWA5LjiQ9CAKyFkE6EhAlRJAF/qNCQJSqO41zPyBbdlTdOooXFxettYHnJ0YDcOorkeD7fqkShmEoFYZh6KCbHwSlMPSDkicVShH6JempIAiEp9CiJouI0lM5TFHLafSd0d2taBScG3FFl72Pi3UzDS2LD8t38VypEFlUWf6ru1vxoSIjrMnzEPKfcjd6Pi2LkU/5ou6ih+LqEd1W5ZN8xYKyhfgwWZCNmRwoLI3lK9SZozzP6+npabfbjXbLcRcDgKPw+EHrFDNrFkBajK7YXc7JWFyncD3hkLcnfxYLVChYFLrOdT5AnveNiMWxK4qaFUKpKxJhGWvailYBkMvjzmGWUgqRUwGdpUtjmhntgJBjSXQUPZlMToMcbDfKjJxbiyFjSAEGEAhEgAJyC2Xez5oWlhYX5xeiJEaUA0NDUbvdjiJjjLbGk8q9rOd5LnXsOj0sAREBZaVSqVZKQog05R/A930BIABr1VrUaH7hX/756JEjU1NT8/PzncjcftedcZLMLc6BkHPzi0tLdZSelHJmZsaY5PX3vv7Q0UPz8/M9fbVGY2n3Ddt8X50/e6nd7mzfvH1xsX740LFarYdJxkaPjg43mktxHEvhjQyOtVotYxIEQrZaaybJzJ6Pe27a7ol43Zqx0dHxE6fOnj496QWVdrN56dKF3p7q1u1be/v7oyQenRhJYk4ir7nUbDUX161btzBXL5VKD/71fe6tP/EjHx8aGluYr3fa+siRY61mJKXU2p46e+p9733vQ+99SA2HYvLAi0M7995UKV29fKGtaqLaH1sAUBYBReYSY+scSel4KAUSwjAEJdq21Z1knqfAS6KYk0QRvPDss/2714yP9l2eunj6zPRSs1XrH9q2dSeg/f3f/50bd2/TCR07fqrdjtaunWi06r/7nz71iU/85uqJzfe97t/cd/+6MID1a7cFnnf+3KEPvv/H5xemX9j3vXXr1zcbCwJqw0M9Z86evOGmm4dHx06eOLt6YsPw4ETJ61deGUAEodduN42xfqCAQAiF4PZmwQKdZ8QkcUKWDWmyYMlkGS5e4Ek/XaUKPIcnnP8JAFJmYZGyGjLn9We7Olm+zJgZnD8r+yZffpmQSz3zDE7pdDk7qTZsyaZhRWktenJFaRyRvZN+lN0bAFIYIFhmTyQCoTz3UK0tkBFs281WqVQZHxlLOrFJ9AsvHOgbHDIgpPAkCkRGw0qBEOz2oa7hChGAc9seAFg2KIVMcxK7tE8y5aMgAJBYcOgUc6SZLbEAsMwCMsJ09yCBnKa4p8RK6HAdEVu0ItuTpARmynYvIQSDq7OXy7JMCLp0y2tYrVONP0MqkAvxzE+T/T+7Fy46R9x1majNFko3/hWYGWwmiTIZl7dASgFEEhkQsoxM5LTuDiIIZ13FVNsnIYQUEgHIkrUkAJ0JVqBw5dGJSCrpikciggIEEC5gRIBEBMEghWAynBpgjJASQLh+RTe4ubhMnac23+BTdQIcNIcg8MvlwIGzLnTjruguTklrXQC7ZUJnS0uc5c2wyxttNBoOw0XtZtvliEZRpOM4jp23NI5jHcULM3NxJwIQJtGdTqfTiuqLDQHQbkVp4BpAo9GIoshlyfX09rp56XlepVJxJQ6VUrVyxfM8lFDxKoMTg8zMlpTvMYJTjFJGD7KUUJxQc2nJNS/NmCMGZgJKoo70lOd5yveU8KRSnudJ3/OlcnDNU8rzvFKpVC6Xfd+XyvN9XymplPKUEirlH3FWolQSpFnSFhHzja0LONK9LU+lJGbKKseLLNCnoABAWliTnQDDtNS3O7qJJ9l3xOQc67iMAjSbtKjyZmSpKtfZayFzqFFqq0+/wczdmV8ihKvhnh+cvS8xY5IkmmxiDTPnLPkGuh3iYiTciBWDSt2N0BIRcwEmmlhTVpsrf6382Tn0dN0KBRUXpQAURe4SEsWQhjSzQ2AXBxe7pWgdxIIMlDJjbGZIZXm3UhICSGZX9IedsqrjJF9UeT9n/cndII6MbMLzPEskhSiVy5VyWXkesLVMLiITmZFIKgWIgEDWCqm6uqRb2AyAgAoHRoYHhoeJrDFGeV4SxwyAKOvNhieVyylRSpFLGnbdiF3bp9sgnBXc2SaZodOJkiSRIC1Ya81Cfb6nWnvXe9+jk8TGUWNhXpWDQwcOlHtr1VrvUqMtpar1D7hg1r6B3jiOn3nmGULo7eknQ76szEzVPU8qCN79zrd+8AMfeOKJJ6ampqzBhWaLGdesWXN5Wly+fNnz8OLlyZIflMthGMj5ualVq1ZdODcNALffvvfWPTvLAUxdvnDh/NnAUwvz80PDARCODY4O9lfLSo0NjTz13D5CPwirTLLWOxCGYasZdzqdxMT5QA+tGvClT2SfeurJRqOzaf0Wa7nTWnjrm94cBt6WjRtUVF/s8UoLxw+3OdzdOzwlxdnWkij3xVYQKkZEtsgEyEDMAn2lEmPA2kp/nwSem70aLJv00hq22mithwcHXnz+wNHW9Fve/0P9fT133bFdIbRanXMXJpnpfe//YKM+99l/fvgtb3rd9u3bE22B+O671168cGlwYOSmPWNHXz0/MBRu3LSzUgo3b9o2O1e/OjN/5PCZntrQ6dMXp68sDg+tOnL02KYtW6UorV2zZWhw3POqCD6iDMNQKUVWE5EA35m4yRpDVlubJIkSot1uKyGttYHyDJMvlQT0PE96ipk02TQYU7vS125Duk4eOKIU6ZrsSr3USVEQRlzwFDAzpxsmu5BeqVAIT0rpdBcULEEaY4QGw87LJ5UnAUBri5km5Nahm955cyCDDpy5Ph2HitYayCqB1pDW9uGH//ni+Qu/9Vu/Bej5Xmg0O8nhki6BichkiKoIrRgRbWbqJwShEPIyFM7cJdP6Ql2pLboauTHLy+VmUcW2AExBoDPeCMCiWg8AYKxBzsUZu2CXjBaLiPIajvklxd0rTX0o/FTcWiDdsVaKSCiK0cIumG9v2TnsrFZ5RlIXY7sGEOeSHgBcMIeU0tUvQkwBvQstQlREJj3BIgADIQBR5nZkBDYWBLukWte9jgoOXIJC/mqUhtw501caOK+kMUTWOkaibA7nE9hNIZf6msfjux+tSZMNgQqD6aCDSMtHpnqIoztJR98hMwlhOWDmcrUCAHmoUqqlM0BaKzV9R3cThyp0nHQaLdBWCJEkiTGkte602s4O1263o3bskkY7nQ5p046jxcVFInJEuzqKG+1Wu9G01l5dmJ+fn486Ha21+8b3fRbYPzBACIEn/TB0RlYv8H3fDwPPGRsqQaikn9XVAV9KANCFItOW2Ca6HrdRABBYa9Iy99pqstoY3/ellFKJMAx9X7m7O/Y1IYRA5Xmeg3ogRRAEzv3k0iNck0RWCMFdIrNKMysmZHHypwqk0wcJCUmwcLScedGn/DN0cyHV8gy7bq4iLBeDK6xfDr4zQirgCnIpPYGZEZWjt3GRCing67JMM7O1zMwuj8EVinUzTWa1lYhIMHBhWeV/OUuNzDKSHSBgYhKMAFxsbfFDEYdhblAnJiRk5xkmAAEERSDrXk4WwubcIQFZsOtzCbL4NyMdyBntu4GnnJs2BTqeIYkIgFjgFRO5NGPANHoUmJHTguOWLTSjtqMQa7Vai2maJ+c2YCGEUjL0feeRD8NQoMtUzteki5gAEMLGiTEGURKABQfvUErPaAImIREYrGWmVGVmF4efGjidW5lDP5DCxYoRsHADGhsthBSBR0a3o7jW1/PAO9+hBGqtz5w63dPT14nimc5MbJml0taEYbjUaChPghFBuexLhUoGymtia+rildWrV+mEn3563+HDx1599VC1WrUB9ktRrzdOnjlBZGu1qhCyElYbjdbI8ODr776LbKfZbB49/NlqtXr44KGN68Z0yQ/8yuJCs9WsJ+1kaaHeXFp8+9ve6gsQnhgeHt62dau2cu7qgja4bs3aK1dmfCXDkl+qFIgniMJQzc7Orlu3btWqtd994sn+voEr05Nve/ub5ufnv/TFh5VBa3VTguqTiRcnfYNrk46ZThTJvphQolBSJu2G8pXxBAAnRnth4Fd6AaDZXCJjWFrIioSV/IputTwviJJOkiRrV6+Owv7f/K2P7dgx5Jdr9aV5CzgwNFzr7env7Xnp+f0/9qM/4UkxPLwWZfLlLz9erQTOZ/2RX/nVYyeO/9c//j9/8b8/9Uu/+DM6bh86cvCp732rr7fEJN785rcdPnQcpffEk88awouXptet2ez5Zd8LqtWKFF4Yhn39tZmpC1JgHHeQOEnSDO1UEyIMAh8RJUtg8KTnqGHydeQJCZYEYmqbxSw2KDOTMDMhpVEUaRSXxNT4zACCiQQqZgYChNSK4KY+ujB04Ty5DABSKt/3EIDIMDEwOgZnp4g5Y4YEDkohhxAlSRxrJpbKZ2ayLKV0iy/Vhp1kwVRASgQBDGQ94VmrtaFStX/nDXt333TryOp1rVar1jPICGRBG5uAFkIAo1uemIfiKimE8IQUQgCnFRJBIGpkUZBWhGgx13VS7h8W1lhmkyFYzk/gzK62LNaVkJGcoulJ9f9j7r/jLTmu81B0rVXVYYeT5qSJmIgZRCIRBDOYBJESRVEUKZGWZPspWI6y4rV15WvZlp9t2ZaugmVf2zIlURYlUVmWLJKgGEESJBKRCWCAyeHMzMk7dHdVrfX+WN29e58zA9LX7/q9Jn+DfXr3rq6urvDVt9b6FiKKatJaQtS472AYgD1HDABkTA3+VGBIKriAaiivVogmqAqOEVEaydt07pOG4WAEuaqFbXxubTi3KXAQQgT1EhRGkRKU6VX6f5FGWjc0mqUQwcAI9ukKV15Sep807loG+esVYSxVNtT1AZLR3FcRAwieA5BhgODL+LjC56M1pnHotM7jkWL1Vzy+zOsr14uoSrcHAGRKXxlNaVVB1pEueRmYJjJGsKlSEpTv1Bij6elbrWR6eqIkGuoaaVIWqRq41PvQiBAo8lIgwHsfnMudC84pIFObZr/fV3+3YX3keTYY9KvUCP3NzTzPs37eX18dDofZYLhyZbnX60Wasin4KIq63e7U1FSr07bWqipYFCWIgmji2HaStrWkyanQELOnyFYAAkQkG+TZIFeffeGyO4Xqby+s/nC1zIS2laarYgRrbafT6XQ6JrLtdlvV4YiolaQ121d6ghtbNS4aMmRJ0zIDYxBW0WOoEr8aMi4E7521ESKE4BGBfai3UpojVeNpRrxR4z2CgIYElH2mQcghABnjRdh7ENHf6yAyBn1e5kcSQO8L5zR3GTjnkkTXiEBonPOWVBAJBEQ7YKgMmvWWDMzIss/MQAJAQYK6cFElEENEIbCUUrEAAMaYOh4KEQmpvBMENTI2gV35jM7Xn0dPzUxgAJmFgYSFBTlIqDZpGuc+lu6KiJiFA6gdQCfysSEHwFAz7qKysWVNqhcByFRORCIg3uX1dqmU5wXwyLkAliEptt1JTWQN2CqYQxVApCgK77jwToUniUr7JxMmSXLx/JK11mgiURPVu3EAKJmLqolacWSTOIoiQRDG0svFWKWTISAaWlnfWNy3533f/QEgPHv6TJ5lYm1vOAyALnCnMxGct0QIhgMAAjObALn3C3M75qZnfAi9Xv/RR550zh04dGhz0D9wYO9tt9/y4IMPLl9ZszaObKvf768OrmTD4cfvf8rlvXvvfbW1dmZm2uXu1Klzjz/x/M6FHSxh0N+4cH4pywqRjZ2Ls195/KG1ldWN3uYrX/2aW26//c/+/P5PfOKzR47ebJCGeb5jx6IxiI3Yl40rvbkDi8999Zkf+ns/srkx/O0P/WYU4dvfce/Zcy9Gtv3P/+nP4F9Lp2NLiTUClCP14+7m5J4Tw+SCTPWhLRgxiCEuxAsyJEmSptM7dvT6eX9lFUIBrrDsP+/+vt7v9zvfmw/Wgh+6UIiJ44Udj1y6QLMTlzaWP/A9333nXW94/uSZlc2BsdGunYtpnLje8P6PfexNb713fePSQw9/4sD+XZOT05/+1Od/4sd/amJq8iMf+fDSpfNvf/ub7r33ddcfuu5jH/voA5/95Hvf8+3PH3/x6aeefcs3fMNP/uTP/PCP/pMbjt6RxO006XY6XWawJnY+zwb9s+fOrK4uE1FslE4wIqLGe1N1iXpqaBoNUUa8iFqy6hw42tuxTjlcakQp2Nf9u+5+KoFPCMKV+ajUHgu6IqmF3vmciEoZ93JVDSJSFGU6IBFRpyhlbrTXFz7kee5LT19iBqgEFZuLsYgwEJFVMQIIoOltELHVanW6rTiO8zznAMqIEFHQnVP5vKXTDGKJsRR+IUpzRElNb2wzK6iTPjX8n6Bip2g82mvU+HXJVL4gY4xGS5lSuId0siAiNKAK8s3g8C1FjWarRqQkYrmPFLx6CP1V61b/djTrbQVkW4/t39YvaMtXL18abruyuvgqOk8AICNvtPJQuflRWPl4lbZEhn7Npxivw9euPzW0DLachwb82n67ui/phzrED2uypxngNo5EsdIdqC4Y3beeJGWkBwbOiTGokS7MHAIXReELF0IosrwYFr5wEoIvnPc+GwwHg0FRFIXLsmExzPr93nCzvzEc5iG4zc3+YNDb2Ohlw74rwmDY29zoZ1mWxnFvMIgTOzMzkySJAESxVahhrbUmqmgnsjauQ+fKfl9bpQDiOC4tocye1etPBGvDbuHynJktGSXJEDFNUylT35IGiaTtNI7j1kSrFbUosmkUU2RjY6M0SaMErWm32yUMGlHII+G9SqYE1TTmVTdZjV4IpZDpKNch1PkllSKtvbJGM4mISDAGUTMZAgSRqe7UIM/EBzDUbbUDiAFDkQ2FQ0QRIMCqqHLPVkullNXDcrhZa0WCSqLoQ1XBDyX8qiefujeaKhftqE8iA4DSNiDEOOquiJo1qyyzJp+bHX7UV8fPNP4sN/P1gKoKrAJ6kFFoBN0YR+pfSNokSCKMAqFWQQMAasqFNEariEjwGp0p4KshWbVeEGYgskGZd9SnRkREQ4KYtlsikmVZbFWW2dT7auXv6wGLBCRcb+YV/UZJQtaaKEZjyEAaRRzy2FInTXrLq7/4s//25MnTPefWhv373v6OJ558+sSJk4aiQoKJotnZ2VY7GWxuriwvd7vtOI47nQkiev6F4xMTU4XnoiicHywsTl93YHGq28nz8MDnvhi8abVat9x2y2Cz198c5MP+mVMnb7jhhrWV/rmz531wRZEdO3Zseqb7yU/8xbve9e773vpNTzz2lWefecJYAIDu5IQg5kE2N/IDB4+ePHXuM5974Pu///s63aTX6xHBB379ndrGP3zL3xeRycnpQwevf+65F7qdyTvvun33ntmf//mfv+Xmuy5fWrVT+4+dfemlSbDdVpQCsMuiwZW4vSD9zbNF4VszA0avAkaRxdgmE93NYTZYWYEglmKPgnUYNgAaMBEBUhBCpPOnz7z/r3zbM5fPPvLM4EsPP7Q5kLnF62Ibz8zuYOYiG5w7d7rXX4tje+jQoUcfs+fPX5zqzE1O7Hj/+//epz7ze9/2nm/9Zz/zfzz22GNTU1ML03tvv/VN//1PPv3gF5/Zf3Bx//4DLx2/cN/bvmXXwp40Tl3hVvsrl5cub272NbsfSjCG2klaRphXm3jSFLw4indrDokxs105GABA1BGpKS0Y6a5dY9oahLBX3yMwVVo09WRkIvQ+AHNkTZIkUWQQQCRErAraCFKmxRAZ6XdLI95Nqgzz3gckkyQJFt65wMJENDItlBNKtTZhYAZjMI4tBNDcjsaial32+33NXB7FxmumMHU11b0IBAAIlTikIIIxpKFcRMYYUTV8QWEJMAoRUt5JSAIJC6p/RoUmUURMheC2r+J6IyJSf1YGGe1iPYCpySExxhiwTCB2tCQ0A++vChp0CQcAaw3zKJPalmvqvrEdVdR1viqe2HLr7deMQYdxuPwyZeK2K+vytp0kgFq3avxsFVlWf7flua5xi9EFzV8126c+ea0IuC2+L83zjaV3dN/6c43PYNSFtl5Wv9Pt5deCW1uOothqWdYKeF9SbnFsAbDVSqg2vOovpIFeGVRiMXgQkODZs1c8FwIXRZ5luXcFBylcPhxk7P2wPxAR9XXr93su+CzLNjY2hsOhUnH9fn8wGPZ6vd7qlXyYFb2BRer1ehsbG5oaCxE7nY62Q5Ik09PT3anJNE3jJInj2BqTWNuO2snUlDERCqiim7WlS4BOLAzCwYfc9fJ8aWkpeI9EhshGEXve7PciY+M06Xa7rVYLgEQkTdNOp5Wmic6lExMTU1NT+gqiNDGAwGKRNKWVpvRpviYFNLXflbLg3nkAiCKLgMwcABAj54rYJoE13YIjRJ8XRZ53ut3gfZRY9kG8qHcoszCicNkxxAsiojVBhCsdDawsA845REFmjdEGAKm4IjVM6Ivlpj8oN4EUAECZ2NTXUTIA9WoCIlWWre0zwPgeoOreZcfa3nt9409CRBJmBKk4M4DSfFkZLo3CLwAWJAgaviNNEVoVuy6zgpYwUWsIAChBJAQigFKDo0aiyMxQwnsDVFp8AKBMLpnB9PT0cNB3DhCRfVFrC1eeiPpbACgdK9GVBnQyRhAtUOGHcRyb2DgAQ5RlBfswNT/3ge/57n/zsz8LLrdELi/27t7zzFNPx2kqIlme9a2Z27E/JoqjaLC5ce70ue7k1PzizsnJySSJyfPq6nLhMgJ+4blnX3X3nffcc/fDX34IYvP6173uzJlzWVbsnF9YXJi7+cYbjh8/Psg2J2faALy66mdmp2dnZ37hl3/p0P4DK1fWvC/uv/8v3/3udwGB937H3EJ3egdhevLU2RtuuGF2dra3sTbZ3WkA0ySuX2W31V1aWmon3UcfehSAXnP36x78/Bde+7q773jFHctXNhbnFu1mZ8/0sanVl55J0RqXz7bb68NN78OxmYO82jvbc+3J+SEacZJOTNg46vV6PMjBhyhOghegyBoDlbeZY6HIuALYh5nZzoWN9Te94XU3Sn/d9Y6fvfDwww/vuW798vLKK+955aFDhzbXl5977ukbbrz+9MkTN9969I2vv/fs2VPPPvvcm99475EjR4FDu91+17e855mnH/+Pv/KrP/K3//lb3vzaF1944Xd/57P7D5gf+pEfufP21+1avIRsTp8+DULeAwex1hLZbrdN6qTivTrhxnEsUuop1DsJ2cZAjA+AsWPLxap4pM49dawHAFRbVLWFKPeugnuSpHEaxcaoPcsHH7wvyBoR4EqRr4ZftZdDzRKptUJVncBYzaIVQihNnyXOg3qrobVGJAA2Fo1JJAQbjeyJzrkkiRrDg5Th39oaQgwhBEEUZkD0Bq0xGIIQ1aroZbsRjYUaQen5y/U0xI2Lmz8cW/IriosqdzGDo0VXVcfKZVU302EE3bYs/3XJWEkl1Qt5JfJ0dYqruerDtjl0e8do1n87rNwCaJrfbrnFVcvf8mH8q+1wpzI6XvWQ0bf13beU3Gy0q17QbJ8t1b4WdNvOrl21SevS6h2RvtD6tW4fs/WVV71vzSJsO49bPlT8d1laCKpJV/2W1TgVhNkAiaZuIpAcgNAYg9ZATCSRiABihBh3W5NVRIIIGACNKCtjx8uIBGCWMJ43OoQyWzz44Id5b2PTO+dDyLNMQ0TX19dV1S3PsmGWDYfD3qA/HA6995vrG5ubmysrK1mWFcPMe29t7PIshNBqtbz3DKKgKo6jVrfjObRarVarzIVARIRmx44diFj6uXuvy+jKleXzZwcAUPhCuX0OQUUTlDtn5jiOJyYmlDBTUr/dblfm44q7VsuVtWmaxjZCQ55FECyZVpo47zW6N6JYRNKE1tbWsiyzSISCHPKhJwFjMIqSzOVEFtFq0+kttB2V1tKYX2QRQk2OziEAImuEUqPThhBYd3Sqr01IoInQhARAB4KIVHYNBU3l50bXU0y2pU9u6eGkeUH0z9Hp0Yjbcr2GDAoACoMERgAIJMCg7KOOUC8iAEEIocyXpby4ka1z0dg40m9JBWmEvPeAamAVBEEizVpcehvrPlekZiIYYTAYdLtdEcmLvDYNb2Gya0ZA76jqs4hInpnROrZJ7MkDQIY+jiNrosK79bXekVtufdd7vu3Xfu03WtY+8egjeeEnJzpAOBzkw37vwHX7vHMismNqWlyBiP3+cPOll9rtVIQDyOLO+fNnzkqAmcm5xx76SkR4x6239HvDF5/76lcee8YYs3HdnuuPHFpaWrp48dLhw9dPTHS8L5aWltbWNm644aaF+V17rtu3sLCz3W5dunTp6NGj/cFG7l2r3ckyNzk9labpA5/9zB133blyZbnTaQFAlo2EJ1566eSuXbv27N67tLT88Y99YnFh1/Ly6q//+oeOHDnyzNMv/o2/8TdxsfOGOw7t2cXLvZNPTxmJUZwX05noM16U1vEweSWe3Ywn05m5dmqHw+FwcwCoqgYMYAHJMn++99f1fh+Z+H7xm77XB/QuhKKFg8m4e3D3vltvCbb93POnWq2pr77w3MMPP/u3/s5fu/7IoUe/9BChENpjN1zfH6zNzk1dOHvuh37o7z53/Pl/9+9+ZdfOfe9857ueferpj370o4vzO0Wk2+2+5jX3LCzOWRNb0wG0ugwzg5rhdDkIwaOAjdTsFdQrC8EiQhCuV6yqXxKMiwGOfdswTlVJ4EoYv+X6cv8hXqoDABAVS0C73S5T9LAPzgcus6MoW6Noo3bvYGbCMk9fHMeIxnuvmEmDdYUR0QRNQ8SQF2VKPqi2+9rpg7CgYWYDiFUaJV3bdHhosKehKM/zJGmJCHKVRHLE26PK/2Hp7SVlzjvSEOjRAGtOr2WeNarH9ojeByidcJuTVAnREKChZyj1zq8MrkZttDiOActITMXWardRI0vjjYzmFyxND9KkW5qb1C3HqKoNCCJbhDO2dJWt/WHs59e64P/G0ZxPsezMtP0rGE3ujTord3iNu29HNleFX817NeHXlofdAklh/I28/G9hnEJo3q5+NduL2v4gV8VqV32Wcq+vy8b4zxlB9SOYGQGsiTWvqwblSqOH+ypJUbmqVUtdvRWBcd5dveZ1l2WMITJYJQxTmQ8JlVRbXXEB1WwTAA7ivFcXsRAC+wAizrkyaWZeZFnGLMNG3qpBNuz1ekVRZFm2ub5RDDONKh0MBmtr61mWFUXR7/cRsdfrRVEyOTmpT5emaWTIGBMnkXqydVptskZCmdVKpzKdwbQFdPdbzyfS2GSW492HAKKCDhEZE0cBIIoi7xlRhsNBkiTnzp/Zu3fve9/zbWhosjvh2VHpH0kikodR42uoKQBkeR5Zq7MGixAiGQMiPgRrR+REszcaYwKM9G+lgv5UJb1FxDoptQYKMEIt7wIAqr5FMgpFhIaKRxNU1WmtA0g5QzY6rxoGmp2TSoMGSOWKLGPCR+VRhmpi/VwIULq9wDZXhLqXjvjIcs1iqdzvNSCjTgReim6UxseqbgIhhNnZeRFZW1tTucot2+Dm/KlLl3qeCZIxxkQxIEZpS9WQNalAElljCTlMtVvZoP/L/+cvfOmLD6IhsFEQHmSZc2Fubi53RZKmkzPTFml9be3c2QserI1UrMDv3r17OByuraxl+bCTJjsXZ+MEFxd2pGn70UeevLS0Yci2usmePbtWV1d7vcGJl07dd999M7PTL7544iuPPYkk83NTSUz33P3Kd37TNx+67vAHP/jBwg1NHG/2BiC2OzWNQOfOXSATzc/NXbqytHPnzhCKb/vVt+uD/9RdP71v3z5mfuH5E/Pzi8eOHbt0+XyW9VZWVh557Ol3fvO32n5n8ZFz63fvnth16ObBmeeBiziyUAw6KLtioM7krqnWiaFsZr2ssMPegMgI6gwuYNCIbCGZQ5AoioIP7Iv5HbuOvOHOzz7zxHCQ3/uOt33xy4++8vBhoHxz4/If/eFHbr/99rfe+ybgcP/996dts3//vmxYFG74h3/0e3fefefCwvx//I9/vHfvgcP7DyVx+/z5C9/xHd9x+PDhOEoBCNEUjqu5DoVLJ1YpbfwElQ8vkQHQeOwgwmTHpr+XOcoxAyqvCqVXdTULGmNrZrUa/0FEFSFKsI9orCXtUswhz4bee2PIVOPZmFHaNd2BqZoiAGj4se7ndN9ViqQbMsYEEe8LRrIWrTWI0WCY65Q0tpix6jxoFiOBehhXSEJYrLUIpNPWlmbRHzGISOlXrQ2sKUeYfeUcPYpU4ko1UZNbqkJ0c70sBy2MfD6aq6yMs2VEBETjjVzewlhS+MVViL4GOdfGx3rKq3uFNmAd8qPeJzweWdmsSXPGrCH1VY1rL9OXrrXeN9HGls8vX1TdW/RXdcTiVXFPvbceFbL9mm0gaXuttld15FrbqFXtXbe9tCYo2X5BsygYJ9W2gLDa32hLCfVPrnrU3zZL3v68qEao6tAKa3pKD2Ct1Y2ID8OyKVj1jcc006URDUeVR6bSuSJCJtIChRlRoFQ0NroyiR/VjR0zszWRSOnpgzLCMaN2tmRjG9c3DUKEImBtGUNqDDCDMKjniuJA5jJSVZyXwGVkNGBRFOrQptEJg34lAOLccDgcDHs+z9fW1hTe1Yq7eZ4H7/WD1kIHVxzH+iz6OUkSa22UxIioVtFqfmsQqGgBoN/vp2k8PzcbQpjqdhYXFzmEyU7nwP59IYR2O11ZWem0WkEwTlrDvCBAz2F9da3wLrZRK05cXijb7YNHBAJBRGMs4NjtRKog36Dyn6ywQ/1ZAcAxI6JF0NwfiFgaBTVnpUgNpHTvqDeqt5fcEHUDKOU81AioholQjqOto76cvmS8i1ayNeXJSjexTPKGIConWRJcFd10Nfa62b1JNCNTtR0qk2jrVl5I09bXSy0A1MHXUtoU8zzvdrve+zzP654pjaO+de4dEZlSO1PXZXU1rvhFiQitCxwEQMLaoNdtpd/+7d/+9JNPRVG0vLqSdju7di0i4mCQfe/3/vUHv/ylx594Kk3TK1euTE1NZZ4Dw9KlCwsLcxpBDCjD4fDuO26fm5uOIgnBsfP79+393Kd+75ZbXgEcPvzhD/+jf/SPAKi3+dEP/tpv3PqKWwBgenq6cFm/33/jG79R2H/PX/urH/uLj33Xd3/gD/74D5988qmdu/YZShR4HD588MUXTzz77LO93sbC3Cw2hn+73X3uuRdE5ML5yyI4NTX1Az/wAz5k733ve03U+Y1f+zXbgzhE9KWz67ftmty9eGRz6cVJZBMcRbZNxf64d/j2vY+vwJ98/imYWLRogg8UkVhAQAyFDRQ3JlwXvEH03rthduC6fWaic+uNN/PMxEf+8tMvXbzy0ksv3H33nbt2zvd768Ohe+Grz93/F1/89//un/+9v/M3f+EXfv7MmVOvfs0rX/f6uz/4wf/8q7/6nw4evP66veaP/+D33/a2+waDwdvf/vZDhw6pkRHJBC8hcJxYXzjnHZElosABaqO1MQJBaX7d0ZItcdiWBU6hwLb+D0owC0KZfF6XASlVN73XAD8dOVxDMYNkDGo8h8oQCHuXB2bm4IWDZxcQrSWNImeWMjlpCOKdASFjETGEYIisjRDRMxhjdIoPmjssgOKgUDg2EsdpEiSEEEqNAFMDBSSJq6zeCGp90+kbnSvQGBFxrjDGaP4K0lSwOssrWyaCZcq4scVYKtaaSmf8sezUZEfu0pp0HACIymW4hl/6a6ic7crJAkDxdIBAkapRl4lbRITZi4gNVqP3q7WMwZOXgIleX84vzdp679vttojkeV4zYddajJuwrMZw27vIlta4Sh/6WhTX17ygedkWSISIodyHbnWqLS+Tkbhl+WUZEQLN0q5a+ebJupXqk03co2+5/nDVErb/uf3K5gV158EGHtLVQv0Ttxey5TVpBByVZBZuf8VbalVaOas71o9WqfoFLoNtKv5YmIMvAzialedRmwQUHdo1sEPypRFcs+MhhgrLjl5xuU8ii8TeGWPYByBM4phZnHMIaKiCkizCIYzjcgBwDkBkpC9g4iwfJblSfjpwiJMYAJJuCwBEgKiM4RGusjSUzqvAAchCXnidixSilcLoIYSizFLa6/U0G9VwOOz1er5wyrRpWtJ+v58PhsrP5Xk+7PdUE0S/7fV6ESXtdntisjM9PT01NRlC2LNrMY3j3vrGC1997nd+67/Oz8+DBFVxO3z4+ktLVwbZMLZRnCb5MPMcuu1Oq9N2ue92u+12W51ctYXjNMndAAgjU2bapspfQne2iFgLQYcQGEHxDNb8Y/WWNSsrlBY+IzXnhMhYZmmUEgJ5rmT9GUTTDGgvRkQMApWgT9k/NZK3VJUAUctMvZFqhEGryCEK1YlWsLkNqxY1EWnOADqCRJ9JCTIYDSfiOspbyrSdAiAQPKMhKEOyNFPRCN4Nh/1WK9GYDzVBNEd0c9KI4xgA1MYCpQcIoiH2IRSBAwSv1hUrLGSwYM59OHDk8H333fc7H/6vs/PzEzNTQcL8/MJLJ05trK0cOXzwiSeeeOnFF/LcLSzuKpxfXd/odiY3N4ZPr331xhuPTk9Prqxceuml46dPU6edzM5MTUxMHD169Md/4kc/9cnPrK1ceetb3hhHACCvetXdly8vD4fDycmJIuRCPk3S8+cvfuR3f1uCfOhDv3HPPXc/9dQTp0+fPXX6fKc9NTExUT1yvHJl9dKlSzceu35+51zd1I9/5cn2RPf666+//Y57hsPhRz7ykcmZ6VOnXlxeXn3HN93b6UxYsLHDqCf45OVBsntuz+GJi09/eVe3lReDqU7SjoM//1w7by3i5maRYjwlaexBinwAUZRawuDBN6ZRDsiS5cPFhdkdO3Zwak+fOPnoM4+fP3/x4C23dSfa93/iY1lv8MY3vv78haWlpcutFvzSL/+iQfe+9337xNTsJz/1MQ5rs3NTZ88sra6uHj588MrltX/zbz/4k//gB1/1qld5xyGIteR9KfvrXE6IaZpqnnn1sjfGMHuo1GCI6h6lay03txrlSLiahUJXnLF9SZ0GEZVz0rnVqQxSmqZJEhMBkqiGvve+DP0AVk8IZh9CMAbTNCUi730Vc431Brruu0rp63a/DLQBcK5ARKlSSocQEFAktFrJcJj7KsKgppR95UbWfDREFGFjDCvOMzaEgMYCCTNQlS0XqphsAF3wpHLzVHUrhAp41jWvEBWZcsNfVqaCXxUVX00TtX5PuSaNRnR5cNAIKaGRV1nprMbMoUznU/rG1fdSkVIYX5MqSy7qHl0BWRM6NJtoC/yC8aN5fVnPa7icbym2ef2Wr5pA8OWLqv9szmuj0ppA5Cq4qoRfzSlyy+O8PGzSoyY76wrUS/u1Kr+92OaDbzlKyNIIj607DCKqp/a1/Mmw0RxbWrNZ1BboVjda8zNU0Kr5aDWmUSmm+sprvWLt3vUYV/f5ZjejiuIdL6SUm8ryQq/fyHIisqrd71nhQu1RoPVsOjgSERkjzKTuWdaUaktEQVi8WGs9B2NMEQIzR8b6IFIwEKqvW1lJL6JMDKAQMoKJbRpZxIZsW0Wqqc0UagqmzEDWYPd9aXx0zrEPmktev8r6gzwv2Afv/TAb9Pt9AFZdt/5gsz3RPXT9Ee89BN7srW/0NgHNyZOnQ5UqXslsNSA4F0SEfVBZEH1rURK3Oh3VuIrVZcHaOI5rZo6sjeNYZSOJiKxpzsYlUAPEyjFOEACBqIxOFQAvDKTSfYxCKnRb93+sMz0BgL6ycuyMxkgJoZqbn0afshghimq0gZDK2BCACJMoVCtnaUASZA5jv5fKmGiR1FAuALoNbQ5hDmVqI8VbrGxrZawUKXXaBIGIWERdFcdGzfi2VqpDpT3UYqarGANFxnAIRZYnaYtJ8jwXEbSmFUUMfpBlE1Mzb7vvGx74zGdtRBtr66vra4PBYHpq8j/9p/+0f//+VpJ22535+e5mr7eyvtFqd3SpuXDhwu23v2L/dbt3THcff+wrTzz5lEH4tV/7VQmh8B4wAQNFURw9fKSVRBu9werKlSSxszum3vmud3zugU98/P7P/uDf+L4f/ZEfe/U9d//9v/8jL554frO3fOnyxampyXte/Ya11d7TTz+tHWPv3r0z07Off/Dzb/ZvPH/mbN3ae/bsOXrjDS++eGLQf3HXrl033XTTv/ulX9q5eyeIueeee+bmFiwgBAay6YaTL57u33Vgx4FbX730/KNTJmLmtStLJ0+dGpj2TTv2X4rkhfUVT9NDRkpaHEKWu66xkrn6frbIEdzC/MzO3TsJrJi4n+WXriyfOR+OHjsyOzd17ty5F587MT05tb6+evjIvnd+8ztOvnTiyKG9z371mfe89zvf9OY3gvTf//73Hzn09J//2cchganJ7vd/76tf8+p7nGdAspEVUP44CDAihgACYhVxI5NFASari7pAqdtZJ2fFOtPilvVgfDErJ31mBkSGOnn7aGpDZPWXRYSk1Wp3WlEUQfB5nkMIzjnvi3omVd0d3UBba+O45Ld0ylA156IosHQiYSJUlaAQVBmnRGBF4QFUO7SsCCJGxkTGbPYHImI1ES9L7RFqCSV49SSpBrPUTwEgxpAIk1FZZQHw1U66Eu9Rm4DOoMwCQTS/IdSuygQE1UgWYIeIhk29rZTaBCms9DtVKhUcGFmIyHPteFHxFurvJVVeFAHmKp8dlkm+iSLvAmJh0rQa3qUuETNo5Ga9xiPiysqKNkJoyFk1F90mjmke26FP2ZjjJq3mUZ9pmk2bN2oilSZ42jJ5QbVOb8GCTcw0hp8acEp4rIcDlFmtmmyNVp6uIQzRrElzYq0NxHXh0mC/thSFVxO22DIGm0XVZ7aYhuvaCo+a8Vq/bSKvLYN9+8M232D9Xlj3/rpWNvIlGDAAAKyUI/Noj1aVWZmI6mp5lZJvVFJENeEBAIRHvjQNJoJBgEHIlg2lPHEQr8xJ+QrGW2/MiiQMACRQFLkBFO9rbx7NPsTlWgjVg/vS10fAIjFXYwQJCUsjV+mSXj6ur7pw3cIcRo2piGRUHwORsZhGiEijxGWjZtNJqxLTAhEIHCQwAOs86Zxj8VKBtjzPNWuCfpXneZZlNffmnMsHuX5QL7Qsy5zL2Qfnit7apnfOOac4XvMeQuBQ7aU1zVQt9qHRA1EUJSrGG0WK24wxQGVigzhNXAiCKr4ABi0ZqDVxiNQkUM6KzOw4CKHqVCNiLQyhfwEA1vlg64kPmABJuwkKmcqyQVjiIlKZSQABIdVaGw0lAABBFGF2ih4FNZCEdd1Qpg6Eg0gN1IKoPCwhGjUHMYumulDfjyhNQQQRVU5P6UYATfkB0uTmS+A1mnJjIp9LFCUUUfBOnXo9eUOYO28jEMTVzY1d1+37lnd/6x/+/keKLG8licL72267rdfrtdDcfOONnmF9cwMR9x04CBI999UXDh86NDe7I43tvn17du9avPtVd/V7w8LxV5995sy5s9ftO7B0+eKb7n3z7l0Lly4unbtwftfi7hAG3/Ku7/jBv/3d3/COO687OH3p8qnf+NCvxiZ+7/u++fSp52wcmH232z179uyVyyvz8/POucXFxVOnTs3PL/zkP/gHf/7nf9qdaNfPOjs7n+dus9c/vnTyhRePz87OXHfwYAgBo/jJp5/ptM9YAKbIFJ6TVjez6aNn1qID0zuP3tU7+SRvrk9YmErj6cTQhLzmzhvvf+Lkp598aebgsbXCo7Ug4D23zGgA+6y/OL9jcqYLAAS4Ocj2Lux6zeveYBZe+JVf+ZXDhw/eefsd090d/+WDf/z9P/iOf/zTP728tPbvf+U/JUmyfGXlT/7kTy5cOLtn9/SrX/3q22677ed//reOHJx54xvf8up7XhtFsQCB6jOUG4gApRHNbF8ypWS56nmhpPQBtq6jzaM5d5cHgg9lbHI5O5ZazK4ogjHYaqWdbjuKIpEwGAwGvQ2N0avdJ5X30vo459QHQpOX1FuN2rBIFeZDxCiy6sSqe7WiKLz3xqBAVKsvIlIcx8bYkcfYtqOeKZtQo35YKl1bAABQAA1IqMkGrppa27mW9UJULKfCg1y/kVFrN9fmeqCV/L+xY3NBg7lR2ATlslcCjoiakTtSi3tpISV9ReCcM3VVbS0ANrbk1/WpscK1ekJ9cXONx6vBoPrfmryExlpYv4Ity3/dAnU1Rn1ve03GEWSznBrGNdufxp5rWwxjtWbjeEZOHLfxNdvqqre+Kty8xkgEqAbOdrzV/Lf5XNuaoTw0QThV6QOaK/2W+1YL/1Yb65YH+TqPl/9V5Yj9Nf7dcpQEw5aTFVsCjc6wvX2kYua2HOo0XTt3j7JplZimXMNF6wzShMUepFwqBTL2zRSK+pQAIBLqZ6nHhgAYItFYwuqM+gupS7v2w5EnUy3bKwIyagRB8F7UedwY1Tk1YBHRImAUmaiVVLGkrJ4khBVg3dJnFLYwiC/xqEI05/MQgppENY2V9z6E0Ov1JLC6vmmmUo1CGGz2lI0TEbWirnofQlCiLzJGEDW0SzV1W62EsUwwWiee0ukojuNWkupWvExgENkAgkSVKG4J8pBU8JuolC0u7S1qB1AoV3dmDlBHM8goJrGUuysKxwjI5HWHzMw1AcHCpTOCasJyqDy+RES9gUNRaOJgzbhRdiDN/y0i7BU5qu8gVuq1tQcYl449o/lEvb6IaH5+fnl5WdEbkXhf2HKfRsjMLMgsQiJgbNQfDrttfs1rX//ggw+eOnUid7m+C2ZGgTROgNWVDiJLa8tXENKp6YnEmuVLl59eOr2ycmXvnj2LC7sWFydPnDixvtE7e/bsl7788OL8wuLi/MrKyokTx48cOXL77Xc+8eRjx48/8zu/86Eo8UePHRzuxZUrqxc3+j/yo383ieCRRx795P2f++xnPj0xOfuOt39Ltzs5HA4RcXJy8r3vfe/k5MTP/uy/OHL9oboP/rf/9t+md8xOzexAMGmazs/PHz16/fnzF7yXZ5957vjx4wj7vguJAEgCx2ioyNrob987s1hc4KUXksEy+sHE5LSZmEzndl3i1gVY+PJLy1lrx4AJk9jkw+m89+fyo3q/v5j67pnpaQCODGIhc0cOfvHy6T996LG733bPp774pXd+032HDx/+/Y/8wZ69c9/8rffmLnv6K8f37jmcZ6Hd7u7YMffss09Oz3QGw43Xv/bVF84v/bOf/qWf+t//wbGjtxgTkUWNmUA0JYugL9tEUO3pm/OUjE2XjUQN155CGxN6sxxTr0D1XhxROp1OksZxHHtfbG5uZtmAlGISUPhvjGHvoCK0FGbpvgeQvfdFmaUEkyTRTUNU5moQHZyIqOKraMrIahEJXJosdflM0xSRBoOBbjpZHUsrnS0RqWRFdbg2xQJ4pCUrFBoz/Git0oxvuqktv6pjjkJVJohIkNEkXiPIyi2sPGpbxpbP+qs6Ll3bXL8SCBYJG44RdYG6rYQqpl03o2goimzt0gs0AgS1/lMTfTb/bNaqeUF96xp+NU/WvacWDbnqIr0dT2xHUeXnZkQtjlDsdmRT+fduDSxv8mfbq1FhbWyirrGvxmu4FR1uo4i2P9qWkrcD2WtVb3s9m3evh+GWk2U3vwbs21KZLRWuy6zPMG6fKxpbhavVVgHT1/kvVLuL8VuMjpqdUoi53Zi7vc7bj/H7csNBu3TDVOEDAYBtssPlQ5Xu1eOgFoBxhBq1Ds20RXXNNUKwWdUt7V+GyIyPAqiaSAc4EdUkWd1gAGroDBppjqYO2bsKRY2IYxC1kmhs7Mmu+vAAIXAoxWy997r7Vc1qJdiKYeY4hMLl3hWF18QJ4kPWH7DzyrcpaFPHCWzQzDV5ViviNrmx6tCMQNYao6FOURTZ2ETtmKyNjBnNlox1JiiRscgPAGCGwJpFRJih3qi7ag8PAM084kVRoKFyM1mln1JRD6yApr6FoDvvwNaSiExNTRWFX15b1SsFts7wZS5gQCLq9/uLi4u93gYzB8fG2CiKbJSYODHW2jjByNokjhIbRSZwEaPppslUq/XxP/+zX//gf0HEAjlOkqnJSUORig04gaUrl43BtN3Jhu7ylZU8G/T661NTE1Fk1Gc6SZK5ubk4SaIoGubF1ETXDfo+z6+77ro0TZeXV3rDzYVd0/O7pof52p13vXJqYucDDzz43HNPf9t73v2KW27+zCc/+9lPfTFNJian5gwl/SwnNGruP3Xq1Je+/GCaxgD861d+VR/5Qx/4/S899PCzzz0/N7sQ2J09e/q++75hOMzOn784PbUDES0YkOAADUamCNyZmNroDR46ceVg6m9aONJ2O7oyiA1fubR07uSLh25/zcLOAxfOXzrvh55SFp9QSLlfd+ep6QkACEWIkzRIHnda07BzemHy3PnziLC0tPSt3/KuB3Z+7v5PPPXe77pv7+zOqYm5c6eWr7tu/8ULl//Dv/+/7rzrjrm5hXYLJ7pTG53eO9/5luuvPxpFCQIhaL4gqtP2kZqmsd4rjm3W4WrzVD39y7ZhD5U8nYg0LgRhL0REtjbPt1qtdqdljBkMemtrK0WRIWJsrfqVQ0UUBfZQBskLAJaAjDnPc41XL131jW2maIAqfEwqY7z3nkuNMfTeSxUWDdWOvxJZuYogAmBZVBNaKXxk1jgaZBBANkICol7AlYtbtdpVM1ZVSonkGm2olR/VoQlY63VXRsF6DTH9xtGYeGokhCG4GnJBw2iI6nsUAlXBjMYYKF2QKzqkgl8vszzXa8OWyaJmU7YsG83zWwqpTzZ/sh1mbYdozbpR46RUxohrLDDKU4wMrOWTbiuzeTRd4gCusopvwUnXki2tjy1t+zJNXRe+5XbbKyDjZsfteGv7ja5Vhy1r//YbXavaL//IY0+kH8b/HfWoxnkYx14AW1mx0qNZo4xpK2F/1Qdv1kQvgu31kepfLEsZ1fAarN7V5PAAES1i6bstYkZTBCCiZrlSTQFgCdV+6arllwv8eMfGkbmWMdR/lOwyAKhctp6vJgooKRxCTSNNgEDIXtloqgcsAZKlUMkU03hLlsqCXJ0xRIYIY0CIAdr1E2xBq+WjGQAQZglBCq+5XNUkWhSF87mI+KK0jaqtU5XAmVncyP1UTZ9cBnqDVNqE1pgosp1Op9Vpt2c6aMp20Bspe1cUBepqWKl7eO+ZITgOIQgr3m1oD4mUTACU4qjKXMbGxq20naRxHDNzlmWKI7PhUJNUsSB7H4QNkTEGENU3RtMtJDZCRIpsSbJV2UJFgirtoqEsyzY3N70vWq0WACACInjviAgdigiDGIgAAFEMlkjdObeaFXe98pWf/uSnjh9/PkpjBFhdXZ3qTvgiDIZ57h2BTE1ML+zcPTMz87nPfR4n0sWFWefywmVpkkRRFBuLiCdeegkQ5+cXBxs9n+WJNQ8/9PhNN92UxJ08z5cuXLrp5qOvfd03P/ToI5/71J//i3/1H97/V97w87/w/05skmfyihte6Z1Ya4eDDIT6g6F2p6WlpTvuuCPLBs8992zdO+bm5o4du/Gxx59wzr31bW++7ro9H/3oR4fDYseOHZFNLl++bAEE4ggYhEPUamXOmcRmEp/juFgdHulMvemmm7JLpzZffGnv7Nz6qRf7Jy/dsfvGeNO/uLnqoo7k67tbAbLyfuyDMEeUMIMj6LNbGQ42s3ym3dq5c8eFCxfe976/e+Bg9B3vf9XqytrBgwdvufGVv/vbf/rsV5+zJr311tvWVjd3zMwDhsuXVzc2em95y1vSKDIIDAhCCMRl0mtBClj5/VVpFsf2x7hNlwuQoYz1AASS8fUMG0YcbOQgKndQEgixO9Ftt1Vvd7CysaEzb5mKFymE4J0HFOW9RLPljJZTzvJcNzqedTeT6CSiVC0RBY1ICmCM0f0T2ihK4pL6ArbWusCIyByUsRaREDyR7pK18lCRvYKgOkaMVeZUbSBAtgZV61XJLUFABCsUSs+BiierJn2qos1EQDWjmXSZ9KDpe6HMfQm1Jo2UFI00FnUiqnIoVm4VoO5jgsIiyMwoDsAEhZgAwMLVTEyVAz6CEUYpPbBZGUfEUcZJ0ZhNrIwVV6M9GrNoedT4oAmhmqBhi121/reCuWPwq3lBXex2+NU8eMtqJKLSPfWfDdCgqFdE7cTjtb3WLaRy094CN7fXeXsJW2BH/WELxLkqpNveFLiNTdzyk6sW1azb14SJ29EebHuzzUdGRJRROVvQT30Gtp+52r1HS3Z9/ThyKoEXAlRxmmP11JnKjNynGgWO1QEawEUVRXEMPZGIVPYBAagSz+vcxGNkXP2JhevrG3Vq9LR6XOsvG7ccg1z1bDBe1mi8NDzYoIZEQsx1nQFkLLeKtphmOgpcmXdZDAj7UHNvTVdLrSF6kio5h6buwEpgwhcOGjN//UPmEh8oOJPKCX0UL1gRbEiERFAp+Gw9kLXjYqXcVXq6uaq/SZ3ms3RjKJO1kKCUyh0micEIkAAYqKdjFRGpFq8ae3nv2YfNK+tZf9jv9/P+0HuuCDkUUeULDiDVBp4BICvy6w4c2Ll7x8TERD1si6IY9geCEJzvD7J+r5fluahpEAEMWmsNgXeO2RtjQpETkZRTb5X9BQAR2IdhfzAx0dH4hrwYGjKBHSIyWyOBxCAwcgAJEsDlPk1TIE0DLnO7d33DN9734onj2WDQ7XYX5hYuXLhgbVzkQ+dcu931hbt08fzpky+5fHPfvv15nou0NV1EHMcGYTAcTrQnGODSxctpFFuxm/0eAH3hc49OTHT27tu1sro2O7FrYfY64qe+8pWv/J2/8+2Le9pvWrzzSw8+tn/P0anWriuX+sNhvyggaXXjhFZW1qLIvPJV9ySJ7Q82z104DxvlKz1x4gSRvfXmWy5cWLp4/sIdt9+6c3HxzOnznVa302mdPnXCGkpDNqBOW0RckQNSAIha3fUQeoNMQHqPvjAb1tPODu99FIo2rA8vPX908Zh3xWVXWMlmpKj7mPc+sQmKOM/SinNDDzzyYHuqc/rsqQMHr2OHf/tvv+GGm4/cdMuxC5fPX1xaf909h2699RWXLz84Oz07PdV59LFHzp4/t2fP7gtLl2anZyYnpwHKZMwMjBgpH4Al/6kKLNvlT0uMsbX3X+2y+mhO9E0jlIRAFtuddqvdZubN3npRFETQ6bRExDkXHAfnuVoajTXGGEAOwalMaMlgh6IpsgoNHsI5R+OiWfVgNJWnVLklKqVTAcsMqVH9VVnhxlMjqqFwtFBpFjBdrsshUYMT5qDqYKRZw8t2ZhaN3Uc0IEEjwAAINOQZAhJgqUiJQGXCbwBAMNBY2ADAIIYq1BGqma4M+a4dt1mBIDKr+p8gEiMCjYXpKeNFRBSNULIu5MSqJVOFeldHaKT0br735lIhjdVxrA80JvGXYYNk/Gi8hasgmyYyuOrFjfMiVTKlMVgGCrPGdgvbfnuVSmKD87gWCKs/XwuzvgzY2nISK8pzC6Rrln8tEDZW57otrga/tjzIluu3PMKWnzfRbfO+W+pz1epdq52vdTu8hh9YbcKrjUfb+ad6mGypjwZ5l2XSdvilVzfUGRsWvXK0Si0aCgjAItbaeuhiZax8medtvpQt5xv3Lc8gjuxlzWfB6ii/woZLQ8PHv/Zu1H0c1N6i1b8iElDxWU3/iy97PgMAAfqr0aUGSaM+lVFDQyGMQgLVC4IUv1Gj5nW0rGpPqqTEeKhTJTVBomfK4AeAuJLuBUExFsFqiyu+lQpn17sCrEy/dfVVuLWm8USUOAIRCLJjx6Lr9dfX13u93nBYSu8ys3fMrF5tXhGbc3kIQRCefvLJRx9+uDbXKE5Vigt0oZDSMFqaUJOYmad3zE1MTOR5TihkIwAwACLCIxafRSSwGGM0E/xg2KtkGllEZTQYkFXcH4Jnz2ncRgGj6afI+OBececdR48ePXP6lHOu02ofPnz49OnTrVYrMlYkIMvpk6cKN5idnT135vTi4mJesBsU3W47z4ceAD20krTV6kCA4WAQJ3Ecx73egIhQ4Mqly3mR/dy//oXhMDcmiU06PT09v9CJE7Nr1+6VlY2Tl68gpJOTUxR1nAtEUZq2jKGzZ88OBr0sG3JzfWDI8+HFixenp2fu/+hH7//Yf5ucmZmb3dXvD62lNE0te7JxxxcFWgRAQILgXBLHaWTT2fP5xiCgxGZf3MpWzrWl8GHD9wfJFXPb5M7nV9Y311emO7aGQCEEjjwDepbOjtncwtFbj57pr+6f2/vme9/01ONftdZeunRp5sKOcxdW06Ttctoxs7C0tJQkMXB21ytvfu754zM7ugtz8532ZLczA56MiUMIDGxKgXUyaAEIpQpp3DIhNLSOsG4GqQZsqYvKjSuhnghKKFBvJYXjxCZJBMCrK5eKojC2lFYnhLwoijwnAWsj7UEKKABYHSRFhMUHLk1jaZoqV6weS7om1VHoZahICESUeweEJo6UG6vNkT7o3oXUvUld+Jk9c1DJe4R6EmyCBi43z1iqbGyZnQVBUEUaAwCMhOOEkGozkNIwCGVcJZNULa9pHHWaa/jijLCXVkYEQdQoUM/UoekfZg2hRUQ0BGAMGkUJSGLIIFI1rxltFkRsmRYyCiGi0R146X9aersjIiCNxdpsQQDbgcKWM1/PGgwVLKt/XqOE7ddvhw7Nu2Nl0Gn+Aiq50Sp8tZGWABAbXmtytWjBLTUX2TpitlSm+XnkIDK+Un79x6gbXO180xh6VRhat+FVW1LrXV+zha/aDitxHHdu6Qy6lI7O6PUNyDvyZK+ObbNPdb6CldsrT1cVGaziCerytl1TYu6RUE5JvpS1xsbjY+nB1uBNS6BAAIDU6IRgGWv4Vf6LCMCauLnyRVP5TSm1p7e/za3gtcF+XeVkzfbVUU3Vv8ij965bMR1HppHcLIxH3dJI7Kp0bFBJNd3jlsCoJjg1arUixcvzIERGRBiAgyjJhwDCwZhIAHzTc7TKgds86jMKWeq5tx6bwo1EGtXbHXXLOs1w2Q4KvaSk+fSdle+XtvGkXPWAEiGPCrEAFKJkam52R6lGFULwlRtxFTEq3qn50jmXZxmwqO3FubwoisClE1sIwTnnXF6mdy8NteLyfG1tzXvfTmMUdrkjG7auMfqYQIjY7XY19UMURXFsRYQCENnYWDQgwoCCCEhiiYJzrSQhwFarDQDDLNsxN3vPPfdcOn/eMFxcuvD6N7zh/Plzg8Fwx9RUuzu50duc6naM7WRZtnNhLrYRO2BDCGyNcc4lUYwYWTFz0zPDJCbAmb1zhw8eunTpUjHMKKKVlbg36P3V7/nrAeCuu2/75F+e/avf960o8dL53hOPPR9j+vRTz9122+2vef1bhgMuXJYX/rnnnn3wSw/Mzk3feOzYzp074UL5vBMTEyy9yU4XAu/du687kYQQBv1hvz/cuXNh5/yCJUBgiGzsgwMAYMaJDiICmUFAirpF5nHgW1OTe6eFs5XIrYDLo+Hl1dWl19/2ytjuuvDEozX8MpHVZu3ngxDj4p6FN9+4+2/9w1/8jQ/+wCvvvPvc6aXHvvIIQ/HFL33h/o8/BwIvPPvVG264af/+/Q8//FAa84/92I+urK0++uij3/HeD0y2J4SNrcTl1QpFhhDQaEIenftwG7NVGmvUrk0Nz9lrOpkCgCL6kcuRqJOVhOCyQS4ERJSksYgweyIaDnPnHDLaKLLWKGxKktg5p2Zsa61AYMY4jqlS9iKiOI51nCOiBkvXK4ExBoDjOAIA50I1lZSUmPdeGJQPU/Q2yDNmJgLNZgZqNxQQ5JG4pj6G+pmBAUORKTNn1zmOAIAIImsATAXXylsHLmMhmV05gIhGzgcizgUOoTTpohFkCcq61fcGTYQhOqOJCICUrm+ggFJBgzGGjIXy8nLaso1cRqpmG0WRMTaOohACSAi+0EkJhSJrDRkiiBB0p6lwEQAIQBCQRePB6rADDgGACQwanbFZGESCipJrALkmWVI/hkqBnPga665UJoD6A1wNBzTAcdVt1UQyXhqDaCR+ObOOyin/oye2BxZsAZGjWwsBqkGFazdKqEVKBdQbEKDiQnCUIKVyrB7H7npHGgV8AEDJW8gYtKpXKdFo5YaGe7NlRpc1zjdPbgU05fJcdkgBQCEglaMMNdu6vf2bmHV0wTY1EGmIfmlr1HGFANuWwm3H1hch9cgcO6jUEhihqKti9y2NA1XHqP9lCeqKtAXCyth2tDyUYy79B8f/hcr/TPGWKbFL+dR1Zpsm0m3uK+p9iIFRz2++0Fq3c8u3iCUib77rpltI48qx4cON3KBbBldzC0G1IGqTkqw8T0r8ShRVpLhyZrVqD6KqEqGEsWCj+hFq6x6Nx/HU9SmbpWL9K/TZwGS11knJoJlRFP/VI8eM9sRKImjs/Wp1tZYAAJExNjJbCijJCI1tbMA7ZAiNpFccxHt1NSvfAgsKhhD6/X6e52m7xcwhyDDL1HLqWBFbHYgArnAZ5yEEXaa9L0r7A+tbAAGgyEZRFCetKIk7nc76+lqSJEQQJ7bT6aRJcvPtr3jqiSfbndbGZu/C0sWDR6/PB8PI2F6v12q3r5vqrK+vdSYnmCX3Lo4tUVvYJ0lkrc0zRyQAvGN66pY3vvbxrzxy7IbrZ2dnkxQGvd7KyoqNZMfs5Lu/7V39rA+Iadc89vDTb7vvG3bM7JqZXktN68YbTas9GYJYa513cRy/5jWvWVicPXXqxLFjNxTFyBj4wAMP5LlL03QwyDQdU5q2B/317tSk9373vr1o9v91BGIQIGQEsGRSDN5DoaI2aCUkfmPW9W9Izd44x/UzlK2mRFdWV9/0Te+cm5v74v33v6/4sN7vs7v/lkFKADY4u+kb3/CXzz3y6JkX5g7tE2fnZhdPvHhyY3Nldm7yZ37mn7Zbk1/84peefeZ5xCiKJlZXV4fD5Te96Y1F5tZX1m+/7a522hExCMSOiShAqNSzpGQxgAMzUQSgS+xYKJbyNFxuXxEaI5yI1McosolzDlHBk1EldGOMCIcQDJJASBJjIxOCy7KsLK7MOQ8i0m11oygZDHoAYG3snMuHWdqKNRhEGpOUOofpSR2lrowuYQRDZEUkgCMD6sPEgUQQggcAx4GZCSNjjOcAAN6zZ0CjDxWsMRZtURRoIiAM6ivlAgAECCJCQkS2lbSAwLucLHrxzOw8A0BkbAghtpaIgvMAAGjUm6qfDcUHrlJnlI9DAppwg5kAXBHAWGOMMAQJEkSAOagPnAcoN6K1+a92L1WDhhoLVNdHmdtmChdAFgkjUelyiTJxFCVJokwYktgo0uS+7XbbRHai0zVRbJB0P1Aq8RoiAUaOTVwErz5kxpgQXESRY2dtHILT3sWAUWR0SieyzD6OUwBmIIGAYFzwtRG5Nh+XD6hJmQAkBEKLWxAGomLxaiYfQ2DSWMAAQEUEhBACbLlS/20KmNVfbYFfYzOtoAgLeUSB0p+GpBLSIgwGBSSAEIFR4pEFEUaCCJplsgxuVSO1gJK/Uq+dojHwFd2iaE9EGBkJ9LlBhYXGNkWiKuOVkbr2SyqxqQCiAd76aE3ohogKvoCBgbGx1DQbSqpQD/2jcU0zwBnrGWMEowkJsGKJrq5nBgBVjNioetjg58ZqjqOcWsr+QoUYiEiBThNz6L+V0ZxxG6c7hoOro8Y0WBng9BrhMb3c7WRkjSS0DqqqMIb/Xja0haoo8i1wBCqmn4jq8BGR0r+hLmTknNrEzVC+mnpKGRtfMCanAqOZnxFRGjFDzd9e9Wg+V7Pdthwlo1bC6zHnhC2P3Pys/1pNnga0pQH/Hzq2P2z9jGU0K4SxmpSfuXKiH/0MUJ3etod8UfMyqZxnKse2oCYgzZdQ+qgxQ7kiiCCqbQeNZrIpf2sj6nQ6rSSNIhNHUT4Yar9z7LxnTSWkGvohBO8L771zwTnnCxdC8KFwzg17/c2NPiJmWXbp0iUxAuzOnj057A/W19ZuOnZscnJyc9Bf21g9ceq0jWMgpIgef+KRj/zu7w8Gxf/re77/FTffef78pZ279tx48yuKwl++stLpTkzPzuTD/oMPfuHkiROLi/P/4fTP6dN/V/d7mUyWZROTkzt37jx97vTk5KQxUe6KyNi03bIiIQCDEJBBqslPAQJgg4jes5jOsuOvbgxxKt03tRsJNpfPXbdrYeXMi379ytzMBCyNXhcAMkp3x3R3cfbm7l2yOMnWuIIOHjhMBA89fLE7MfHfP/oX73//+xd3zS2vrG6sF3HUbrWKicn07NmLLRvfduvtSRwT2RBEF/4QgokjIlNNX1zS1lhSEc35p+pPupth5eGbex3nXBQlxpjCZcJIBNaSBrqEwM5lCICINqIkSY0xWT4cDgchBJVCFUHnckRMkiSEMBisI0ocx9ql2u22jQhRQggCI7ctX7i6ikFPA1gig8TMnj0iBgk+BOccABDGAGTqOB1FGSLOFcxMYK0hFkACJMM+MEIUGbI2CHjnhMUQhBCsQc+IgNagcwWSEIEv8iAhgHBgQMx9iAyyLyfywvsoSgAlywcoHMSTIQBWUSA0BMyCYBBEfGCNnwwBynFSvgYGFp8kSZ47YR+U6hDgADYiEAwiIMFGUbWdYmS2hABask5PiIQiFOphXI7RkPXz/sZ63aQs3lWxUSISRUmSJEncsnGEpWsUW2s1mh0AoihCssYYS0Y1LKIo0lgETYsRQKIo0uVBATFAmYcAERnEWhsEoyhyziVJwo0IRGZGQ9YYIQNKXjYyMwqCCEeWoLKb1IurKN1VHkZdWxgRGNS4LOMHABhjYVvCR6zCkaqiGpYvKFOIijBwwUAkFACRNOtAABRVdQsAIqxZpisFKWpucpBFShat4mtYfAAkIdCAWeSK4qJKZwAlBBS9X5CAOFKoMjCq6MgoX7JNQgJcL2MsmudO2U1BMI1hHoBrDkkB9JYVF6rFvgRV41CjgptIypYisiCR1e4h6hhUchekmV7rArUHAoCIb66yo76xjZWEaoyLCIuvgQ42KLfRWqY4hoiDV+g2ugtLxemG7W4Vo1UWUTOxNutQd6d6hOE4+TR6OgHRxNJ1Nyin4rFy6j7ZDEmpH6dJ/IiUzFzVn8eoGdMwOpZ2+UqqCsbBRF1D3dQ1MWv1XgQR+Sq5qqGu25aTW/9s8K1jGKVR5lWx+LXO143wvwZ7QeN1X6ViJXd2tQj6MlnfaCZRAy1cveaNdkNAIpUpM2JFxFDj/TZbeFs5gQMzB+HaMRpYyUXwIcTtltanNZrjdBtjr1Ka6L0YANh7Qiyc29zYCME7lwsEdsXq8orzxerq6rPPPr10+WK320Zrhlm2trzxrm/69j/6/T+9+aZbX/3q1yJHnfYQwcZxnOUhaaX9QU8I+pvrV66s/PiP//j9H/s4nC5vOzc3t7bRk0RCCJubmxMTU2Tt2vq6MSaX3CSxBTIgApai2IKhEDw7ACYMYBglAKIVAY4mhiZ9ob9pJ1oH5w9MdTspFt6HjbX1xCajNhRAgmFwu/ceuv+LX9p1y/UYkl//4Md/8Rd/cmHX/GOPf+GVd99+7xvu+/hffuJ93/md3/iN7yDoLM7tdgXmw2zQz9eX126/9RXtdke4HDxEhhnQmmrzJABlqofGq7/KyJHSuKBDC2oOViQobBIRa4kZnCssWkPoQ2EtkUBwvtVutVotZt7YWA8hENkoSoJn7wJSmWXCuRCCN8YkkWIvr/ycvlQXfA38tWVG05kgABIiCPng6xAoBlCzTPCiaRulwpEApPgmsjaEYAABpPCeQdASAIcgBk1WDAAgjmNBkeCUv+l0WuLFUmSMkeBMbACSrMiFEISIyGUuSaNKTFk6BMEzgxRFqcisIrGg9IM1arYyhpzzEMrNHyPp1kYb35L1wRGRkCHB3IVqRQFmbyPyLkviNHMFkKjwLFchfqxLmoCImKBCrNW0XkZSio0IkK2NKsMEYfDWRC6wiITAWZ7nRaEDUlk2a60K2Ojt1KRYSkHSCF2VHavSE/Leax4S8QERfeGstSayOr+naYqo9uVRVKaIUFRqjxmLBhBMGWRQy8YiGETkymu+psFI/SMQ1A4mlaRxCBqZJYhoKhJNCAOz1GsPjnCGKWkMlbOGqvmI1El3CzMChGICBATDyEHNK0DAYiCQcMXkVKNPS1b3DqGmwSMII6OUobalwzEgs6/MowgkBiBIyaKhALGAYImu9Cjz3Okeu0zipXSyr1WmmuKiTXneKg5vTDqkWjxqg5Qgbp2lEcGHUOtXaflqlMYKhpZG2DJ/Qx1ujHUbl62i0BQRoF7q1G7XAEM4Yhpq92RUWlBEfyiVJYuIhIWZGcVaDOyqOlcLuYBUKldNxxutlQoUQ6OFq9+GGmPVqKsJv5rXl2eYsRbsxTJjThPoVHcRRAzjCJKrQ8usoXmN1dg1ld8RKsdVQ6VPaulg0bhgZCvTh6r/BITyYqwd4bfa3UbHtb9pNKM+BIzM/dvBylXK2Y5RGmf+BxRP/r91NO9Yg2PYDisbjUxV5GnFkpqXr/WWokavu5w9AACksfnkphjHmNF8vAQIABAExflR4TKChmqhggrllxcA15YKIgJBm6SzC23tXIAIEq47goBcDAZzO3dGrc4zTz1ZFIUBMz89f93efc6FEydOJEmysTrQFFVqZNS9ehJFy4PhpYtLn//cA0tLDS7KmHa7HXNirPXebw76KvPhQnDOtSa6ln0OxoKJhFQyRAAFhNQR3/vcWAvGDNmRsTGlFzZXpgl3zi64K+cEA44LA1prCnGdhWnopo9/5Zlk/56li6u33jD3wV/9tWeeu/h9P3jf+z/wXZ/5zKO/+zuffcvbjnYnphI7JYztNDl79vSx649et3/vjcdu9I47nU4IZUCsGlkRcTvMQhzb92/5iplVQUoJST0ZAiMaRIMImnGi1UpEJARnDDlX5Hne7bTi2Pb7m3mem0rgDhHJYAi6fSXNPGgtqXBXCAFAvPeuyEIIQXz9+sslOdSVp3q3zcyGrAAQmgCCzAgGAYkY0Sh4AwBECqxpHyCKCBFJMIqSVmocu0ASRREyRFEUfOkgHEIA9gBQeC4Kz44hIT3p2A0GPc9BLZgiIl6IQL2dsiwja5g5dy4EXWEpBKc0pLW21KTAMi7aIJX5N71XG67qoEq1ZiZJgmiCsDCWUQtEefDGxh651WlrrDKMPDxG0wEASBBEFAQdnqJdlIWUHRUUX4AIItrKa4mM4RBc8MoHWFvy53meK1mltiQV/jAq62qsPulwOIyixBjMC0cESdIi4qLwa2sXfe4nJ7uL8wt79uy5dOnS2bNnW63W2tpaZKyICFSWlLryiIhoDQJIFY828mPTucBQRAYIrf5bzXSK1SwRgbElHNEeSFTqMSIRkRAiWSGskJ80eIUqwhQAFI2VeWYQqqzqwqUVEAFEuNQWISJGQdA0TwQBRTlPYPAiom6YZJXOqiEOQBnhoqySfg4KYBCBGdQkKAACXlWzoeSKAjMKBBZCkgpWVVntSEQIICj3xoyssbfCHhA0SalwXtp7CYBLQU40AGBxJA4M1yYn6vmdmRlBBEVASs07YhbNPB0E9V8JIQgKsEUqrVpSA74R77h9XqJmaMW4Mat+y1AZ16Bhstdf6TzGZdavsd9KRaDWzzU6uW0tbD57Da3qC5qfrwK/SnWX0SJXY7XmT7RZWEZcVw3sELG210PDPwwrfLzlpiISAoiM2dnrUQZQeUtpITVJVvpTNaBG7SA1fjQrv2VB2dJK5R1GSXivyhX9Dx1XN2j+LzjqvlGbaKSRM7QJy5oX6zVJktRyXM3L6l7R9LkcLw+bZ2p6op45m7BJRGwUqY8ylolTrQbv11ZyEYEKckklEjbKsFfu58uXF0LwIXAILBJHETNHQEQkyAHEGDJx+467X3P90Zu+8tgjjz38yPmz5y5fvvybH/zQ7r170k57ZXljanLO2oiIyJpicxiEW62WVj6O4z/6oz/6uZ/7OfgXZQufOnP60IHDiOiCv7i0tNHvdScn0BhBCMK5KyxOthAMUSRcpkcE9oQCIs75uNMqOEDRx8QC+8H6pmN35dL6+U2/q4MtYwJwVgzrN8pSZJIv7DlwYvUcpfEnP/Pp5546d+TIruPPXfjev/7N73jH25aXl2dmZphhY3343LMvckF3v/LVxuINN9zw7NPP3HnnnVGU6BvxngmN806zU3MluKB+FwBQdf1Qv/gtM4gOfu+5ZDWEQghJq61xBnmeJ3FLRLx31pIxxrnCGjM3O9PpdDTEwxgkYAQsXC6ls4iViiSX0spT5LkDAANYOxKqlzjXajEAMCI1qFyDABCZS95bGFAAWDCKojixReGiOKFKcZgiywGstT4UhkEcuyJkeZa5YmOw2R/2+v1hkbnhoOj1BoPBwHMo8kGvt7G8spYP8+DcYDDIBsPhcNDf3BSCOLV5Xgb0KJdmENCSc+wAYqKCG/50MGrxatNnAgQAsFAmlWVQCRjyVYw4VecBwKBN03aaptPT08zc7bajKJqammBmFd/T8azQTQ2txhhDkbWxWgatpSiKbETWxFSlYEMwSCQggdlEMQEYK2AskQNDBkzunZTqhVgEpghVbjZtd1QC0QB67wmtQGCgJI02etkXH/z8+XMXb7r5hlfd/eq0FSNAmranZqcmp7ovvnD805/+7HXXXTc1M50VzrFguQkBFiH2W5Y61higUe4ED41lrDLnlVkEdOIYW7ZpBBrqn6AWqeydAYVfzQMRbbQV8BERIDJYNUCrKLkxkUFLZFMTERGqFGOlCSKEjFIGy5cVAAQVDnBV/bWDVxSIIZEyFINYyn4dShK6UrriBgkEolwWMoEBESQE9QThAEDAVQyeEGqwTTmDQxAWYLVoEqogAQKSMCCRMABK4CDjYAIah/4ZKgbClKwNgxAIixCIsJBm8YPAoEnpq7eGAKE0OldWv63H1sVejWlbliuofelICc5RrK4ICLNnNsYAlI9DstX7quaAagUSRBTBygiIXDU4ANQX49X2tHpUVzbcw6ujqWgPAAr6qZHAqllIfb4Jv4hICfUKWlXKqFQLXDQMcwJqY9WjvldZ2jVIKyLaArbGiLLxQ/cao8/XPLa31fYz//OA7H/RUb+sZnuqfzKUGyosU09WPo56DZGB0oeh3DPXKAqqF1eHlME4M8oyAu7l9aVKOddvFxr4rM533MDiCIDqJVzKGJjyWxDhoP1Tv5UqigE8izFGmNGQQQPCgAYQvS66SIIgQcSHCKDVmXz9vW/bNb/nU5/8xMrK2i23vCLLspdeOH7Pq1/vCnr62ecXd+5WN5WsyHfu3Lm6utput2+/7bb1leWZmZm6hc9fOP/a174+ieIHv/ylLMumpqZyV5goYpG03SqCtwBecxkzC6BBA+KEQ4htRDE67wDZtGwqxVxKB2Z2xpdP3zi7d3q4YtxGkeUmImyMAEd+anGWO/bk6Qutmc4dt95x2y0bly5e3rNv58c/dv/ZCyeSVuutb/vmX/4/f+rf/cqv+EXYu3ePMHe77e5E++CRA4uLi1mRT3S6mq8eoNzN19yVvOxeoTn4KwMT1swKIbVanVNnzmuU7LPPPn3f2946Pz8bggH0yu5MTU1MTEz0+/3NzU2pdpM2MmBsCCqjSkrMaw4KnU2MQe89C5SOQVymXBVAgIDWGhDvuc7kDayxd6TZvhJrIxtrH0JjUELuXRSlQcQXxWZ/KCLDPDtz5tzKykoI4eL5CytLy+sra2cvnL+0slwA1OFSBFbhhQAT+MRGs7OzkbUSuJ2kZE2apnt2LXrxDBLZJIqSVqtdZHmeZwaFIhs8CJAXtpYEyVqbpqnGJDN7Y6LAbExkk5QDxIntb6wicOEdAICQ+lH6UGjrxTYZDIchCBjKsgKNuXBpyTmXF8OxDStSpZFsVRSnnBdGkT7q6xyqYGyanphO0zSO406nY4xBksnJyVarFcexsTaJ4+7ERKfdFiACjKKo3W5PTc6srq6qe02e5wDQbrcRDNk4IjMs8ojIFeHSpcsc4J3v/JY9e3YzS565Vqu9Z3HPnp27f/mXf8kaA8C9/jBOk9w7AAhRJBI0mQawCITSvFjNF0SkeWSxSqYEoCwsEIn2Co0gwZollZIGBFF/Ye38o0NqXbNtsVDl7FalOa8BGWjAGpgq4KEihMCQkKjqNFkiKvO96BHrVi9So62iXqjFb/UxyzVan658UixtRMwIUl3BaAiVEtEoSgJCEQCDImVCGTUlBA4IUIbQYlAmBQQMWbXNCSCMlDqQgwfG2nF4JJNUJaHXDlSLLBidcCuCUH3LVKgdgUFEzYxaT0FGlJpXAxAAbmgQbiWQGthoK3cilTPcCF5Utj+o5EWa1yOSV/dzojofEglwGFvtRp0tNI19Ixbhqriz+jxmN7zq9c2vGIFhzGMPDGiASNNoiw3AV9ewdv9qEhiNh0Xd3zZ/pbpTgevJ1owxH4hIY0GsesRxjIjAEkRzVJdzrylX7G1P1+DSXuYYveJrFCJfhzFxfD/w8tf+P37UoLbusSJjfFV9GdSQt+pxiKDi+PUB42NhC9ICuCbZV7Nutfew1qrmxhBHOrpQxW3UlRzd1Fiq2S9s+CwiEpELAVXbXEDDDXUi9SFYawOzjSjPXBwZEjl8002Lizsnp2Y+8fH7Dx04+LrXvPbCxUubodg5vyAiKJAk0UZvExFbSSzMcRzv3r37n//Tf/Zf4T/rIxw8dOiJJ56IjJ2fn58DOHvhPBlqt9tB2ETWi7etluFAxARAgiaEULicDLgi67baU0nSjk3L+D2T8S1z07MySHaaaHgFrMl7KJ5CEDKjxs0j6U51XEQ33n7LU6dP7d2/czjsX3/ToX/0U//kkccefvd7vudd73r1qZMvTk3umJvZsWt+p8/87/3e7950041f+tKXfuRHftzGkWj0KQNhmaZUgDUYVq61ebnaUborISJiHKXMfH7p0rmz51dXNxFxcnJyamrm/PkLu3fv7Pf7NgJEnJ6eNgaXl5fzPBcRa2MAFghePJeaWJoEFJnZOQdQ+72WPkNSmSuCQGARdUsHCcBxnFRGJSKygswMIbgQQpYXq6v9jX6v3x/2+v3VlSsra6trK6sra6uXly6dPntmbWMIUIaeBYDE4HR3utXq2NbkoesXo1bqOKRpmmfeeXIFR0mMwNlwo9OKQ3DeuRjN5ub63l07Z3ZMnjt7cnZ2JkrS1ZX1ixcvzs8vGMT5+XlL3M+GxkRpq9UbDhBldX0j67vVDd9qtSYnJ0VIDXZrqxuXL1zWlaIVm9kd0wwMgGsbvc3NzV2L8zOdSREJgc+fuzg1NdVutwd50etdnJyaCuJbnTSKdoQQpqenB4OBd+wF0qTjPbsiMJcK11LGfAVmBhQikuDV5cVQ1O/3N9d6IQSAy8qWAgCBlGJBICOOAgABEfADH/jAzTffjAguL7IssxGdO3fuqSef6U5OxjZSq/yePXt27dxz4NDBJG4V3k1P7UBSFoYmpmZ27dqdDYabvQ0ABCFDEREREllLAsYgsDCXOooaSy3IQRhYPdhG3Fg5gzWcdivZpxIQSLl2kk56pcNYNYFp8CmCkYBN2XK9CBE1kJuADBoRIiRENAKlXVjLQU3hRyhsyIhIQHYg6FlENKqR+1agQdhUPISyLKV0eG0bFUAl8MgiIqowMqEAKRkMZBCFUAyAEKkDnBocycDIFFuauUe2rRpEBhr5MJn6kVFVMnRhKGf4slgilUfXf2tXfQ5OHf60NAJlkKixywcAzZgqpZMaVUo3Iup6jMJG3/r45CMAlexw5VClmANL+KJTR7mIVZZqABAoaQZ9pagEdOkHyYopiUhYRgIZiNCA5io5U7XNmD6WXl3dq6TBtgDHxnJbbgG2laCXgeJmBhZAsoYbwRAByvhQoOpxEIgUflVAU8q0sABlmjUstWkaIhEw2kLUSy82HOYQSx2yGt7VR3AZIqKA56Cq8eWLtqOXPg77Rixds6hxMmyUzr4E/ttWpK8HTo1X9f/X+AsAKkl6AKjb5qoVqzGWSBCpdl3G1C8Irt5bRhgOx8mt5mXbX6KIWGsbrx7r7koG6jDx+rciIqUfmD7GGCNLVeBUdaUOPCKyAp4FgJG9EFkBLDwbkO7s3Hf8lb+yZ8+ej/33P798+fKXv/Dg9NTCRm94+fLy+fPn+3nx4omX7rvvvp0Li7/5W7+5c3bu8vKl+dmFuv6EdjAYdFptY8zyykqvtzE1M93ptlzwhXMEYjvWemAiACRGdAgY29SatEPkQ5d8i4c7U7xpurULNk3vIgwuu/6KH/ZBSv/aZqzK5K75NV88+8gjB269kSx+4hMfv+++t/+Dn/z5177x3puO3fD93/+ep59+fHKq84e//zuvvPN187PTqxub7/qWdy4vX37rW9969OhR51xqksqVCkqJLOF6u7PlvWJDpXDLoa9NJ/GLFy+ePn16dWPTkJ2dncmyIorM5GRXX5WNqNNpdTrtLB+srfWkUuhmZubReq92QBVBrqG3YnbvA1TR6ZGNDRHayohmSCrBuizP+/213uZgbXNjdXV16fKltbW1ky+9eO7chaWlK04AqklRhVYEYG56csfs/O49LZvE3nEQ1izrwTGC8QE286zorwFAUSyzmMmZnUzRMIckjjaG7tTps8zOgCRkAhc333zjkSMHvRvu3r2z3e1cmVphhh07Zga9/vzC7MREK4SwudlvdzvW0rDIs+ef7/c3Xzpx/vY7bpyfn2X2AOA9nzl34dSpUwIWQO649eZdu3YW3sVxfGV19fLlywcO7O9OtOM4dkU4derUzp07k05y/tzFjd76dfv324iGw6FuFObm5k6cOrO52Z+b33n2zMX+sNjcGIbAcdo2UczMAbx4xxIA2JIRCN4XBpCiAGyYKE7K1GAWiSUYYwgkjiJE9N6nadxqtfI81yDkT9z/yaWLl2d2TM3PzhHhwuIckn3gi1/Yf+DgyZMnjx278d7Xv2HPvn2tOAFDaZqi7eiq0JloCWOUxJPTOy5dOW6TJCv8pz//ADO32y1rbRzHsY3ixFprI0JjosoTHzV80lprTEREQuW8JqLr5paVQGqGrDTfVW7mImPi0RBA07UBEDTgUY1XakEKnR/1ICKVhFA9S6p2NSxMIILCgEwG0aKw3shgzKiCHYAcEJFMzdKVSAVZmL2GaEZIQYgxiAhyEBJBAkRhFoAAwiCkBkGhkjvZNqhhZJ81VEa6lC3TRGNqqSCyQhJRJFT+r/oVoaFKjngE7xCMkBgwjSut5nJACGR08JEglFrygggc2Shoal8OIkgoSIaQQvACYzGYmn8QITCIBBBkZJIydlMDh0MJgCrY1KAKqO4ZUmX4KakdLIFLbQqA8d9KefHY6rWtYbcub/V6twWHVReUl9XnNVYXERX1iwgQggdEFBav/mpNHENjRtIRzquoR6n0I3SCRRiRtU2msFHhUUylMUZEWdKSAqm7hW6/UUBVeFS/T8OKgYTASKnXLFXgPGJD56/2I6wrU48sPahMa/b/B/zV/5KjbvOrrsVYWZnqr6JG8qXmS2S1bmzDXs03u+V8/WabCA/JNHtsDaqwcTTLoVIFEsskBHWPYmSEVhR7L1GKw2ERxcY5hyjAyM4bwte95S3zs3P//ld+pdVqLV++MhgWFCdLly8XIktLSx/72Mf+t5/4sf379p05c+oVN95aFAWslTftdjoQeDAYXL582bl8stvNBsON1bXcFytrq8YYGxVsCVm8CIfAoXAxmbaNDbso9N3SpcO7Z+5cWNgZ9bPLZ8NgtRhuYnDWQJFxbGMOAjauH7Izt/jo04+lC4t7Dx977tTJ937Ht3/zt777wx/5vaSVfvmRh//rb//hj/3497/7277prd9477//pf/81eeeveHYzUUxCCHcccddyAQsYEqB4DqITCcptRkhaljQ2M4MsczDgOpuL6jYSxehJ554ojfIjhw5ChcuFEUBwCHkK6sbRMASAXprMW1FG5trWTZQEQGNMgMwIkhoNShDKpF3IkQ0zExkiCwAJWnpUR6ZSDw65/rZ8NKlK2vr6yvraxcuXLhy5cqpU6eWlpZOnDwbKoyla+mexfmpqelbFvcGQGtjBX9ZNsjzYaudpFF8eWV5ozdw6xuXLl25+dZbX//GNz377HMf/YuP7d9/8NTp84GFJZTC1CZpzdiCkQGzQXHlygYwEERkIQAHZiAsQjG3MNvutosiL4qs1W1lLvPshvnAxsAhLC8vJ63UGMzzfNDPXjpx/uj1B7rtCWAExpdOnpiZmZ2fX3jh+MmJ7tSg17MROZ9n+cDYiYl22y4sZPkgijEfDorCAzMZWFlZXt9YnZjodLotH4o0TScnu0WRXVhaGgwGadLqbQ5OnzkvQIBxmk56oSwLabuV9zZNZEPhwCAHBgT2xAggbNAKgg+YpmmrleTDrL+5RgLA0umQQHDO2Sjp9XPnnDGYtjrBF/d/6lMCwYAIMIJ8x/vef/3RGyemJt/xjm/ZvWdPZK2NooluF4m8c8EFRVZCZnp27vLK6qXVVY8oApQkJ8+ee/yJx5FAA2tBBEpfkwBACCIgBGwACNCiJRupeTRNU83g1mq1oiiKotKup3/aOFVfNyKKE4tE1iAaQoEoMuoDoYG3xkRpFEvIkyRR19QoikIIIZRuqszBRhEigjABobClSEQATWQtGQjBEQmQCS4gsEETKPJMhiIkYV8oyxNCgQBIikwEPCCK0la69lS+fiSAHgU0FxWAoMRxygxEBFwIe4ORATC6tSGjI5kI1GatAzxUoVWBWZhJAIJn9gBkYMQ06WBn9qguEwEqqdWS46ovCxCawrl6vUEryMZEqv5GBNbGRECATR4OSQgtkBi0aIDI6vUA+ltDZHVRgtJNhgyhIFqiwnsANXQiGENCjoM1JKVGRhjZTUbogkvUUVVeABjBOw+mJIHKWbFhIYIG3DEq3CajuLB65ZORpa+BZkbCDluBDjRW2fpPGeUUkTK2MUgIY9kVy2yVjdWxjmltVomZoyhqtVrD4VBEvAuIKFhGuHIlo6pmfSH03htTSh0iIgt7zzjGPEpNK2pDaRIhVP2WynFBSAwAI5NIQ9GKKvuy1JGzypLU8Kv5CLZhfG8isxqx1b+CaxxNVHqta77+YwtO3fLV17rF1/ZX21LCyxf4MhdX28+rs2tf6/if8qsbhWLUnRwAqfRRjiMEgXYrDiJxHDvvWYlnBmQ5etsrfvwn/rff/q3feeTzD+c+rG5udtupTVtHjh4+f+FCkiTf933f9+Tjj3Va7c9//vP1HfNhEUXRsWPHVtdXlpaWYhvFcZT1emfPnnrDW948Oztr3ZkXFxYW0BjN90QRxTaykBnx3RYfum7fPTccyi+eWH7pOA/WIxJgDwIcME5bGABp5HMHAD2UwkZ/+qdffsf73vN3f+iH/vBP/uD4qbNfePDMww9/eWZm5vIVWFndeParx2+6+bZf/pX/8OlPPfDxv7j/L/77p9/yljdcf/BoKEI7bWmA+va32xjMAUqROgTgUp6x2j8REYcyUXyapi7wiRMnhrm74467rly5kuc5SxgMN/M8T5Ko01lQM+Lq6moIwXsXRQkzgJQrGSIqxapViKNYCUxAsSYSEc0qv7y6MhwOl6+sXrx48cK5iydPnnriiSeWNzekckhP42jnzp2diYnb77y93W4HQRc8ADCzy32/37+8sl44xwxF4ZjZGFpbvXzLLTfFk+nGZv/S5Sud1kTuAzPkucvznKwJgDaKXV4QRgAgCDZO2Sb9XmaMQaT7vumbvvTApzfXVgMDGgSgOLZJEhlDAsGHIssya4nIBotxbJ3PiSiKTGTs5uamL/IsHxw+sPvw4cP9fn8wGAyH/SRJZmamfJnWF5MkBQCRQARxbF2Re++jOAIM1tq1td6+ffskhDS27XZrY7MPANba1dXVqamJEEKeFWmaRnHrS19+BCAhmzBbD2TjhMgEBGp1kAt1WRJAQiQTGUJBsCbK8zy4gmwkg0wCt1vdIssY2HtOknSj17tp174oNg9++cHF+YWVldVDhw7ecOymKDYQ/MLi3MGDB55/8fixG2+46cZbOp0OAKStVpIkauRForkdO5TmnJiYMMY8++yz6mo2GAzW1td3zM5PTEzu3X9dRKY70U6SJDI2TVNrjcIp0HhDF1QP0HsvRHmeK3uhXj7OudzlzMM8z4sid855H/r9fr/fz7IMCDyrhjJTGcEnAGAwsta2Wq1Op5OQFZE4jtvttgI4jYuOooQIVMCw0+kkSQIANo7iODZxlCSJiESEcSs1NjbGTKTGQ8TJpKRTOVpBsBF6N7SKSIiAwIkgB4OEBgIHQEHWyJLSvd2AeFG5O6NKeN5DEKIQplopcsh8sNaKKxCNMVFRFMKBXUBEA8iBmdAAOg4kEDhYJBISCRGVYVZJlHrvdZ8W20jQKNgia1WzE6CGX6QaL6aiG3X+YAgQ0EPBzB4dNBySAIAaxq965tGvQmULq1dWIgIhslFkrPImQGiQ0JAlQ9ZExpI1msBHr+EA6l1X655TIz6a0DaVeAWRQQxgIFITI0rl1VLOuo21ROGV8Bh80Fmy2rDqZwKSKkEGBC694kBqgALXBgfYNNw0bG/MXKctav6wdioK40WpwXEwGOiHWixeXbPEB8fBajLZSiNeZ/X6dfgQQL3BtqgQsQTRvM2gps46dZJq2CJjwNEWmCpSGQCwjCdVelL546v7MBV53uwb41Bs7E+sAlmaZ5orWg2PXgZCfc3jZX71MpisvnuzAl+zwO3lfJ01+Z85rkblXvU6/frrKhOh9C4VtdejOg0gC0YYiQiLJ6TAHj3vPXzkb/7tv/VHO/7oiw98cf+Bg1ErhchgZPfv33/27Okbjh47c+rEC8893yw/6w/STrq0tLSythqCn5qafPKpJ1/96lf92q/9l4997GMXLlywP/2d3/zgFx7ob260W6kgI3juDwwE8MV0t7XfLF589JMby5fbcSQiwmQ5RoAgQQcvIcbpSPfr/i9/fj3P5hbggc9+7q5XvuLM6XOf/fxDuxbhn/3M/3X3K/d/5/ve9rP/6iO79/zeG9/4xh/+ez9x5Mht/+HErw8H8LrXvqnbnllfWRPSALJxV8oqeGFLM6O6ZAgjjkz7AAAoSGjQFkXRnZw6fPjwj/3E/37kyJHrj97w2KOPtttpbOz03OSlyxejKNIfcgBCG0VYhX+CuBDHMQBqRJ6uakXOzrlLly8WRXblysrS0tLzz7109uzZhx56qJ+PUg3sWty1sHvP/s71URzrwOv3+wBQBD/I/OrmlSzL1jY2Btkwzx0CIaj2OgNQK20BABkRhMnpKUAIIUQm6UxObQ6HMzOznTRJoxiERUKe59ouxhj2DohcCBQnm5v9wwf2pGm6vroSJSmKtwZyB0ECiwfkMgDFkhtkUUQuhH426LQi3S4Os56An9kxNTc3C4CDQS8EXl9f7/c3jxw71O10l1c3EWBycnLQ63vvGQRQ1PgQ2LEH9taTJEnU7qQbGxszc5Nq6tK57MqVKzMzU51OR2PXVlZWoiiO4gkP5DyBNWwQLXrvozQyHvyQQFhKRRfRtNyCQZknCb4/KDj4yYkuACRxi0rlTJsV+eT0AmEkgIaiPC86ExOIsHzl4qHJyZ07d567cPGmmw+lrY5ilyzLWL1sWJDQBW+MIWNsFD3/wgsqBPqHv/f7d9/1yjfc+8bhYPBs2kltVBRFf3OQDXJLJkkya0nNkdptEpuYpBVr8to4UdJLYVwcxwqPtBMmarA2td0NrbW1eqoCQe+dc46DY+Y8z51zwUu/P+AAeZ5rLGeWZUVRDAbZpQsX19fX19fXl5eXPXgABAgCpV4UlXFBxGAFcG5y6sCx2xauv7tozbNtd2Z2eF9MT3UTQ3FkrMXYWGskjuLEmMiINWIBCMQSGAKDZAxFCBE4QyRBxFpBL0rfuezS5dOReDRlrtIQgkofi/g6Js0QBA6a18l7F8cxAgdVj2MAgDSx3ueaBUWQgwjXkCv4ktlCASBmr/ikdrtWTQtQv30WY0wdMAoN4wVXUYewbcZX4289GYmAqBCHzwMUaiYOIJo2G1m8cJWmCcCQRaqdnLYTJNUiHTXT0SCiJtrSKVH7iXo11Gt8bW4ry1EJIUAgRKnV+cHSyJDd0EtTmdkStGqKq/LZR489xoH5puBFuR2oKC7V6q5c2RDAIKqIdDkxN5AlIQIzirg8N8ZwCBqY1u10ATiJ48Dc3xxovhoJTETGkAQOzGiNiDjnrLUgGCqcVy8ZDCKCDBLK6EcBjYttuNkBlIkY9PPYCgJjl13rTyxd6Jrso8C4l9LocwOKNftAZO0W++//gqNJ6TVX1i0VuCoa224f/Jr3av75f/sZv94fjvXPr5PVYxWHU+MWACCCMQgCRSEBAgoO2UcGJubmvut7vrvb7T7+xFMOuNfvD/IMjXnu6acjxN7GxunTpycnJ6FXFm6M2bv3OiBZ39zwvrhw/vwr77zrg7/6X85fvPBv/83PAoC9+OinJzYvt7LcOhzmvTwbJujTyBiQlKMnPvuVubm56YnJiBDAcgACE0Vm6IcmNmjZc1jNB/XDdBdnl06emJrq/Mmf/PmuvYv33ff2f/1vf9Ea83/84+95/eve+Mm//CIRdLuTH/6dz/zOb3/GILz2NUff/W23HDl0fT7IWkkbRCPVR9232Uwjpl1bbYwXHyX2Kn0CGKy1eZ7feeedN9xw/R//8R//9D/5Z3Pz8+K82oBOnT7Rbnd1RIgIIkU2pkriXGmtEMLG+qBw2aVLF1dXV8+cXjp58uTTzzz+0snztRLR7sXdBw8eNMbGUdvGaW/QZ+Zhng1WNgZ51h8MvPeDwcAYU/gCgBiAkFgEDSHZdtrOcwcoU9PTHCCEELyPIrUuoXPOGAOmDADZtWtX8L4ossJl3uUsnjCGKjq39GMNYpN0aeny8ccf1GYRHyJrWD2pQVMZChlQSgaAiqKMKmq1ksvuimfX7bazbEAEcZwMs0wEv/zQV177mttFZDDsT05OImG320VEr555AZwvdG1wvhBJmf30zNSVK2vDbLAzmTcWI2uJqCiKwhUrKyvGmHa3A2hefOmrc4sLROm5s0smnYySeNgfQByn7RZIsGCh1DtXYXkIACISRZEVU4hTDz8GNkjttDXMCp1JW63WxYsXFQb1+0MJfOrkmedfOH7XnXd4lz366FfaaXr06NHuxEzSSgFAZfQ095HOjHmeW2t37NjxwgsvrKysLCwshBBW1paNMdcfPtLpdH7zt35zYWHB5UVRFHUqcedcZbwGYwxXOk/eMRpSL8A8z0MQldJQEqvdbrfTVpzYNI5arVa33TZR0m21TRy14oQiaifttJMmUaS2xSgy7XYbycZxEtlE2bui8LWsKzN4XzjnhsPhYDDwvnAsIeRCTqmHfJghI7OsD1yRu6eefPKLX37ith2vMLN2uXDDSxeBkGg5FIVB1RnnyGBs0KAI+3ZsDer2j2KjiU+NNZJaSqMYDFlrVaSXiDrkzj315eHKhc3NjU6nk8Z2YmIiy7J2ux0ZAgBrbZIkURIrGNVhGEWRSj210rQGoMbGVfKoks+wSBTZ6jOjNQbYS5kM23EodTZoxAqpd5eO4MqZmImsSEBrEJFotNiMvE+QKhf+yosEQEGVABIIkjUoYAiAA0gMXHtQiJTJ4FVOVkKdKKCcxSp9r62yFKLOVY1E1DoxGjO2uld+cAjGAqI1BjWPB5F6M0XW1rSupQgNlYa5Kq8AGPWLI3WgJzRAQMrmQfU/g5VnWunyXj4WMFApZ041NyYCUmYjKB9KSs16QZDAnn1kIucc++A5xDaKInvqpRcvXbrUbrevv/76XTt3RrFdXdlYX1/v9/s2iogIEELhrLUWSXwgMlKZKRHL/OgiIkSlFZcUJEGVMEM0xgVrz22lNq/hUbcFItfr0XamqnwRgEijPFT1C+Jxt6QaYQdbBppUG4GvcfyPElRNau2q16vfROmGjlu+uur124iQq/nn/Q9VEsb7/PbKX+viq1Xv67lbsyy1R5aOawys/pPCjIhJFKtVMDFRCGFY5K2pzrd++3vakxPPH3/xzJkzV65cSZJkamLyq888e/z48enp6WbdRISMyfM8z1yStoBlY2Oj3+/f/7GPE+DrXvc6+/SXPrF756620LCXI3ALJSbkIo+scbnMzs+l7W7S6bqiQM8RGQQZDodE5NlloQiJTWZm4Hx5P9uxr733dQvze86cOfNbv/Vb3/Vd3/Pud77nj/7bH8zPzTz3wlf+xb/8z+969x2333HLrl27/uLPPnHhwkXPm8du2N/pJsPNbGpiptfrkQWDiAQ1kY2lEV7dj8uwF4Qy9wThKCim3svWjl8cOEmSH/7hH37ooYcuXry4vLx86sWXbr755o2N3sry2p7d+4TN1OSsD4XSBr3exvr6+oULFy5cuHD61Nn19fUHvviFzFVplgF2TE5Mz3Rfc88rpqdndu3as742+NxnP6/Bt9bGly4tf/XkcWujEAIL19roNkkBoJ2k1kT94YA1thNQGIaZb7XaKnSUqZBuFIXgZmambGQKlxuD4gM71YsKRZHl2YCAXZEbY0PwloznAJrqhPWp0UZx0urkbsgitVhjnFhtHuccBLZIIqVvuIigNWgNGhoMBp1OS31NtDN57wUgTdNOp5XnOSCnaZxlmbZ5UFlRIkS21npXqOmtEUJcCueGIJFNEHB5bXVmbjaO443N/nA4mJpdyPNCp83hcAhRBMze+zSJ2OdQ8uQgdWAUQhQZAAaDITjVJM+yLE3TUj/JALJkWTY52VVhYkFqdzthXeIo3TE9/fQzTyZJcuDAgV4/L1wIwelKmWWZQhktJ4rMhQvnLl1ZarVaPhRRZAT4v3/8z9bXV++6+5UH9+/PXZa00sAslqUKxYBKddBYRGOGw6F2jyiJVaUQAOIoDezU5kJEXsJyb1XWGT045wb9/vrmGoegClSAgIIBAgIgIBEFZo3orP1JDRpDUbvdnl2Yn5qa0tTkaitvtVpJEiVJK04jNGiMSeK2d66TxEncMsYsLMy8+d57v/jIs70sX5iYbHlrTCwogKwh3OyDQIjIWEsIEEJYLwpEMTpthVrxir2wc3kIgUCABSQYkENzrRv23bBz50Jwhcv6XOShcBPdqTzPB5nLs1K5MXeFGpi89yurV0IIyk+zD0mSTEx0oygSEVSRA0NpnNg4iow1ka3lJExk1cwXmRLJAbIRw8SGKt24Cm7EUWosKkOlHm8kDdGNBqsEUEoqVDkf0VbBekSk8iDCyMDCrB5jLJ555D+uisTMV3GuEBH156v+HEGrIF6TwjYvFpGgCIc9bAUHpHxbACFhhVZCCGGUPMqA0fOaZ11hKVRu57VorQYooEWLFgxYtABsbUwohso2JgOg+nNoalRR/yuIJR1RJd4tgRsiAhgCBLFEcRSRx8gaEHn0oYdXV64Mh8Pnn3l69+7dN910y5GjR2dmJsXzlStX1tc3TWQdB/Yhsra0VOg6XTr3lPtz4KDtyFwJjqhUFCOPt1gTKjUsuRUeoSYwaYqMKWcrALW9VRCBK2w3KpNqHdE60YKoV4sB9EUgIhu5MklGGRr/MmjpfwxfjNVk1IXQuTGJExFR7b0mlmqizy0Yq/6gVYWyD49Ewr4uLPm1ngvH1XbwZS/edtXXYYJk3RCAaMIuBAAQ8aFUMBBLRgSDxusikonyIksmW29/59v5z/7imaeeFO+mZndcWLp4+vRpQ0jWXFlZqYsPIM8/f7zd7WiawSiKXjj+wqvvedXe3XuPXX99ZIxd3DEx3FiOIDZERQjGko2iKGr1+5utpJuk7Xa76z0nSeI598JJElkLhXeUpuv94Q233IKTXfhKeb+olU7tmHn3u9/9l3/5KSH8zOce2FjPdu/e/eEPf+gDf+V9//AfvqfV6rzzXe+4+RW379+z/0//9M/OnT6zd/ce5hDHNndZnEbMgah889UQaL7ysd4A49uUmh6T0jczIBnn3LFjx6ampr7y+JNPPPHE048/sby8fPbs2Xe9652bm/0LF84tLS2dPn36hRdeOH/+/Feff3EkTg+wa/fcvn37Dh8+uG//QhK3PnX/Aysrazt2TH3n+9+HiEnc/vwDDy+tXD5ydF/wEkXR5StX0qQjliyYwE4A1CCBhCIYGAqXe69ZYowhg6AOv9b7gsi2WlEIwSBs9ja6na4+kUr/53luAFtxgoZMpPqTwsEBEItENnLez83PF4QiyAxexMQRaN4S0k0/GIPBlT4WquYaQqgqEAxFzFXONUPixDnXbk/kxVCF440xw2FO1irHo1KQgTWfCcRxnPWdxi4ZYzReQZ2FS78NoBquzU3O6ENlWeZZLwvAEMepEwwMgGhtnGdFjCrFCUiE6uTOgohFURS+xEx6RjMNaBhECM4Y3Nhc37179+zsqTNnzszMzLZarfXVtbNnz+7etYhgPvfZz7/6ta/f2Byqb36dj0jZL3WK39hYP3369MTEhL6FNE0NmMjSkaPXx600z/M4TcgYH4IaIVhj3QA0cNY7JGEGIWsYQp4Pc1eK47usX3ZaZAFBQrQYRQmBSRknp6d24Z44tswsEADEGFubpAh0y4Gkxh6UbJhD5WeDaHJXgCuKjULdawaDwd69uxHxkUcfmZuf3+wP80EOIAY8oqGoXRT53/rBH3zdva9/7OKliRAcJH0XKKLAUOasZGQBYjQAhFbEsLFCaNHWWmIKgCiOhTkyhCIEKOx91oeJaMjn3SDfszjXTXfFZDqttJVEURS1u9NAxjnnnGMATcFrI/LeKx+JKKEISihqGDIieB80oFWz9kKVx10JXee9z3PdlUng+rxmZdU1Ww21UkryShRFGhJRkotk0JrERjaJ9bMBRGtiYymyo3+JjLEaSGGtQSQAITIqkYaI1lpjsVIZM1X80FZpb1Ehh+qkplwrJzrCEFzQGS+MqY825z2o6H9jDAECggVEQls7q1moJ8bahVmD0xgZGQMEZAngRUozLiAyOCnAVT5kekeSkYCH1rB+FkTEBkZBRDQGoGHqMmQAhcQigSE11BpAE0cW7blzZy6dP9dptZlsjOby+Ysfe+nkU3v2zczuaLVaE9NTeebiNEFEV6FY0/CzEhxhZU2Kg0RGyQ1kKOcKBBgplgmVlu/gvT7j6EkBAJUNqQIjx4mNEXApgWWlXbfFeF0lpdiy9ItAQLAwmuR1Zmgal+vl71qAo67Rdj6ogrvln7V1SKocMPVNtW4iwkEKl131RluAV/NPJWJ1tte9bp2w9VrlbP/qqjCRx0XUcNszbj+aPoj1v3A1iq5kmoO64hA0nD51FgUAD14HGyKKsBAZY3OXJ2nyTe98B/vwR7/3+5uraxfPnottlLZbG4Ph/Pwc9MvK+CAEsrnRS5JWf9ALvjhw3cFuu2UMJrFlH6zLiTANgU1EMbEPniXOA7dm5tvdVpQm3vsUrctysSQIq8VmlMSSxBPz86Zn77jvrcfPnq0fPnfFCy+88C//5c+uLG/sOrAnc3559Yp3g3e+682I+MxTT3CAz3/6sz/wA39jZnrxyHVHhutu5+J1zN7EMQIMh1k7iRFR7fV1ljiRUt+26k1cmQ9Gzap7Qo2yJyKNWUMyiIaB9uzZs7hz965duz7/mU8/+OAXvPd/8Ie/98//1b+BaipKYjhw4MC7vvUdyyuXL1y48N3f/d3M/KEPfej4S6ff/13v3bt3rrfZ/4ONKxeWN647MBs4U6eEEyeORwhRZBC5N+yt9FajdJLVNmHKzRkYyos8jlNmdkUwJmJN3Iuln4CyJrqgMrMO6lYriSIjwXtXGIKiyAAgiqJc1xXFVSCEhlWGmHhh1871obmycjFpT3o/dN4BCIei3oYYY1i8sZQm8XCY53lukdh579mamB0nncR7X6eaNlEMaLzjVqttCAZZnrTSTqvNgRCNtbFIyLIMyQoUQBhEPHNsjSAZo6wlcijzhTGzNbGXvgAMsuGuZGer3b24tExkEAxzANtCsLVUNatDNoHKU1VkKAF4EfXTLlMLIwEiOhfWNzdUHz8ENzHZ3dgUH9z8/OyZM2fW1tZWVlff/g1vv/vuuz7/wGenp6e/8OCDTzzx1PVHb8guXSJAFtF8jnmep2kKwMNh//SpU3Ecq5ttlg3i2DI45/GRRx96w7337tgxnbvC+TwAQ6kNX9qYgJRTYSpQO7B6kiU2ISLnXB3bpdmKjDEQgIk1DxoIMLOaVokIUXxWWEsooLsoIgrOFUVhyWicbwjBmCiKImMi9YYkEw2Hw+7ExPTMzDDLReT22+/KXLZoIiLbbaXZYJOI0skdZ86cGeSbURoNli8MCueseDDiRR2+iUgIRJCFBITU3duovh2Wln9RPyPMh0NEjDUlEYMxBGh6/UF7rn3i6VMf/vVfvfHYUWHuttI0ThBxcnqm3W6rhFCr1VJZ13Y7Vd84XYesjTXWsp22iUYae6ZKo2mtjW1Ejew3+oGZfRWIo6RaURR13h5dfpxzerKGaCEElxe5K3zhXPDsQxAuCse5C84X3vnCFd4F5733lghFHY9EBENw6gWgrylJkii2hCZOolbajpIobsdY5Wxoev6VtAdaRG1IrNPqIWIcW7Vf1pwcwFWWZxIQcQRYid8iIqqIbnP5rzTJBACstQSMQIhARlWxCFGYR+bdSnZEGIGoFEVjDlzuOUY0ieCYww0iYlHpPEGpp64VlcAazxuEJXCUxIPe8OLF8xK4t7kuIr3N9ShKup3OA5/7zIc//OH3fvt3vPUb3mZtXDinMK58PNaEByXwqo16FFmsRFLKmhAhSWQTqIywapwlojJnaBXpWj+1EEZkGNWnEKvHrIVbsQTA1X9G96pbo/qztI1W+BC3iOsLiUCQMuNhk3atPmwlwypTqtSf63faPNTjXyrbNwCoU02J+UKjtiXsQBiHj9fivQBA2bLa1qGTMJYhyXzVXzVrOF7UVVk6QSz9FLccY7Cs2Sww1m9Lz8ttx5aGQhFAxkp5URBEnLG2hmJlKwnnGJLEDgaDdtp+xzd+Q7658ZHf+d2ZiW6cplfW1pMk8Q2QaOPIBc7zvENpt9sdDnrD4RCFJye7zOy9tyZqSXDGigsOIkqSuHCeTDQ3tyNttZzPUedbsRjHbGQibqXTnen5Xcu9nlD2j3/uX3/xsZOfmP2m6mVHs3NzxNGLJ86Es/LOb33X808/++u/8RdPPfXVhcW5M2dOzc7MTU3O/rW/+lOvfe2RG47d+rrXvqndmirckIiLYpgkSd3bRFCA1VMCUX0OUDGp1KoTGpNlKI3iKIp0AHjv8zzf7PX7w5VLly5dunTlheMvHT9+/MEvPcQAxw4f1CSP/c31v/pd375nzx4i+9JLL01MdBDx9rvu+KP/D13/HW/ZdZwHolW11trpxJtv345ooJEJgACRmElRIikxUxSTSMnUPD9bY8tBznoz4/l5LDnKtp5nLI35PL+RbGWJkihTpCVTDCBBgggkSKRGoxud++Z7T9p7r1D1/lj7nL6gPefH32XjhhP2XqtW1Vdffd9nfu/MmctLS4vMXNkqALhgAXi4v2eMoaZAt4qE2V5Zv7J8aJV9QKTJZCKAAQR14p0zyphE13WtCNOiJT5orS2WLHEwJ2rxB0FyISiN3jtCjQBR/zMtciJNpJklsCBImqRKGcEQBAHAOZfoxAcAUnFXGVJZkkZ/Y6OVaO2bvgJICNSkiVEzdmahpSJnY1ZAE+o0TcUHYVSoyrLUWofg19YOjcfjxfk5dn5cOmYeDAZKKck4T7OqdhKESCtltBZmJsKqrEGIQay1WiVVVcUKCQCUwuFwqHXS7/fPnbsEgMEzMNd1LSoBZtAJokoSE+wQGh14BhEi4ilXg4xhLxCmMkNTrU4AUEpNJpMkSZ955pm6rgX8zadu/aEf+qFDK2tFkd1xxx3f+863jx058cU//bObTp1ClKqq4qzrjKxTluW5c+dig4OmA//GmF672+12f/7n/3EA+bf/x7+94447XfAhjsvO/O8aEFsIYlYNShGB4gAcXBQ+nZ0TEdEDAGBpnBIVQdSlBEVN0zagUo01sbD1LoZnk6be2uCsMYZQMUvpLE+qWNNrrVErRprUFQDkRU5K3XDkhsuXL4/HoxCcBvHixzubqHE8Hi8sLcPoOSIOwgIqRNNDEQJAEkACBAUUjTWbmrKh8zQRUQgVqBCCZ0m1iccJkyndBHXSX1xZXF4JIXAIe8MRhEFdl5MXX2TmyJDY3d0NHIxRIQTmEEMyw6yvdN2zT0AIqN/v93q9VquVZVmepMn0ked5u92O2RsoDQDTDmyqNaVpmqZpZhKM6FRiWt1ec9/9VDR/SmaI9wIRE5PJ1Bh49g/2nkCcc+x8TC9mmoXeNyldZPvFVI+ZS1t5drF4m8rZCACUZTnLGkVEqEnIFGCSJL1exxjTkJwOHJkUPd2nTVVNIIyKYNrDalI1mtL2aWr6/n1M8+tNw2lao5SK5xZFikeUHhaGwFF9H5XBAxbv8cHMIkH4+lFqVAIQJXAjkyECeAQNVQyQMc2LqqquXbs23+tfHU04hCTJQhCtZTKZbG1tHTly5NSpU0VR7O8PY5rj6xq1irlX89KRwYQYkyoRESUKrrdEQEVpxu+faT2Y5dB0omH2C9T4K113/m2OoemFIiKMDtTTyxuV5Ihmox0NpoWIs8s7e/V4hE3nLZq4EVfX7O0dzLanF7qREQ7CcdI3HhIHhYXj7Gv8QNJY28V71GiSB2ZgZBAJPPMG+O+mR/jfU+SarRxuaIvIIt7VRKQNORsa0flZxwpgdtDMHF1ja3r21N+XYsbvHFAHnJGA/jtfo+gMAAgdeJKp+4XG6wDt7LOICCgtIsgBoSFaYCN0FfU8hYjAWwDQOglBMKHxqEyVDq5Svdb7P/SjO3t7//VP/1SnOku0GOMP1DkuBCKVZdloNOr1OnPz83U1QYG6duOxPXZsTq8dWxuNB7aqdGIGgz0LsLC6nOd5t991ISQ6IwUiIc8ynRjKEjYSEvXi1fMXtzbT+e49D9x7+4Ovht9pXm/z2q6rZHt7d2dv86Of+PC9990n1v+dv7VQ1cNf/ne/9cbX32aMOfvSpQcePlzW1b/7lc/8+n/8wRCQ0CCjUWgUKoV15JsjIU/JNEANNZIoBI5OOIho0tyzVKUdl+O9q5uDwd7GxsbLFy6eO3fuxTNnz527EFGy3CSHDh267bbb0zQdj8fWQa/Xvfvuuz/8sQ8R0fbG1ubm+ubmRtHKAG2SUgCobMnMaZ4EhAABAifaRKaLTjJm1iTjcvji2Uv33HVnnrQq63f3xwzKOZsmCRkdQCQ4UmC0sdaSgEggHYHfKMcaACVIUEohkTAzCCCYePsZMEZX0AiKUGVZrpQOgW1pBVQc72FhEFEqDSDdPB2NLXhnTJvFNqRXIVKAyCJgtPLeKtKAKs4ROg4BODMauCEhsXhrLWI7SxKNVDsGFKVx7dCStZWzVpNJtE5NtrOzlyRJrz2vECEIcgOhiwD7QEnqfSki3W7Xe5YQiiwXEedqBFhaXGy320SU583YrDYq4l0xjJJSzgZNKIHjwQ/SzBaACBIpJATkYJXSiKgQgwj7oLVGiYP9lGXZs89+D0De874P3nXX3d1uvxpX3uvXvOY133nyic2N9UcfffRd73tvf763uTlCBSH4cjBut9vOVufOnSuKQgKzDzrBosgHe/tnz55dWVnJi/TMmdPtXvfokSNRBIQk6qmCDyLNlBUCRj1JFTgEvh5M46yATNV9iQgBhQFQCQsSowgipkYJY/DXFVVQIqlCx2Zu7b3WOhpgB0ERIEUirFPNIN57hoCAVVVqrZ1zR48fW11eicy/l869bL2DJPHedjo9rfVwXHY7BOjFl05nrBMOHFVHBQGxMdCNTmkAwOwjEwsAgoBnVoqEgSiq5ShkMUpERKXZZDRwKk3bfVKGGZI05+DQYJJnXQWkVMxuj8sJEWkEG1kiUT4G6RiXY2chEuYOBFMcV9VwVEWuGDNXk3I0Gg2HQ8+hQSCEgwQEEQiACCIIkdCJABjb4iKQKNPtdjudTlEU3W43TVNtjFImz3MilaYpNf+mGTKXZ2mSJMCiNLbbbZNlOnil1FyxGPvXAAASZqm51iq2VMhorTUHAQATdcO9j/pnAsGHEP/NXmKiFr+GEJzz8XgOIbIHnffB125S71tb17VFhAj1xXSwrutowGeMCeziJpqpUicmAwClGxJbNPLSaRKvZKyHhTHNTGIyrbXB+OdEWjXXwejYJiaiSLyPE7shBK2SylUxR4xrBhv9TD8d59QRKNna2smLNoPu9PqXL19cbvVYUICSJD185FivP9+fn6tsDYjOe60NkULBwCxTm3kgRAmMIsAc9TlQOOqwwcF0ioiicWdji4RTdiMSCYfQEPenOJWb/toBWCjC+QDQuPpGq/hYejETxYsxrQYR405RSsXBjuh72GCf0+RsZuoV02XSsyS52f5NWh6BvGnSEZGJwKwiV4cZiRQqL6wAfWBBDDPrhSniJTFJQ0CMjSSJnzoagzao/HVRcZ8kSThg8nMQZnau6QLTlHUNsVmOFGNXwyiLyOIUmWb2kQYnwkqpAM1rTWdRGaZjMvEvfDNeCg3cOv0aJAhwNJZVjRYdQvjvpNfheo73ivwyuBDNluMgMGKcRJjiEcg89fMO3pEghqCIvLeoSVh0v3jfRz68ubfz+GNfz3JNJrMHxMmQSSti4STL9oaD4WS4MNfr9Xrsw97uDiitQUGa5zo1SLTUKpI8m5/vK6OZ2RDaYNM8Y2bHLqBU1Zh0fvHSpRdefjnttRek016Y83zdaPbQ8qFbb7319Eunr169vLlxbWdj/Z/801/61E/+6Mc//ok0019/5M/KsvzJT/2la1e3v/Ho47/3mV8ukjkVY5CEZuSQ2RgTgsRKw3svglpTq2gDYZYV1trgZWdvcO3atY2tzQsXr1y6dOmZZ545febsTBBw5dDyyvKhh99wbHd3X0RQiNl7gXo82dveb7eLhYUFBqmqSiSMx6PxeHT58uWbbzlJSgBD4zqs0YsXgsh+BQAOwADT3pzs7+8LQFG0nAvOcQDRaQKAzKxIS/DW+STVAGCtzUwWWxsgAqAQFbNHkEjAct4xM6GYyG0GSZKEJSBiaes0SXk60RlCdJNFICStmoF9IgBuFVmmg1QT5wtNoqaedOw9TCWIlVJMetZ2aUha7JSiCIdGuQT2AZVWylTDwdxCvyzH3W57Z7eu67pVdBD0pJyYpB8jRAhBk1JKxewWQEXDtaqqdGJaaXs6/UTU2D5AZKAP9vbb3Z5WmgTK8QSISAGDCCoiEhSJCu9NqGkiHkyfK7ZoACCmORwCIRFp51yu08lkXNnq7rvvfsvbfmB1dRWErK263XaR5a1W67777vvV//Afep3u49/65g+/+11Jkkwmk067rZSy1l66dCmmLFFCIjj79Pe+e/H8hTRNh+PRiy+dvnr16tE068/NjcuSHWutD2zv66C9CCpF0AyIzaQpp+X4Kx9NxG+Q+9hmuj43F4VVoXGfbdoESimjruNzQCgueGkcI+L9jaje8vLy+vr6008/LcEvLy8rpYJI7Vy328uybDAYTCbVcppCPXb1yHIuqhBUnlm9ohkRIf3II1TOOYrTdqQUoudAqONpJAABJGL3gSEIVgGToq2SRiE2hIAoxhhvXdQRiIlUXJYH+iDXQ3as+ONo28F+B5EibaIOX2zqtdqducXFBgXQFPMbhaATNSlHnV5Pgo88qsBsvQchIaSAcS81XLEQ3HhcO8sM+/v7zrLjUE5qEYliCsws4qNJ5dSQAJrgPW3nZUleFFlRFEVRRAmbXqdVxG+1W2maA4AiU+T5Qr+HiApJG1LxvmqttS6KgrQqipZOTNQVM0oXeTsa1YcQfLDiAyhKlEatNJLjEKyzwUPg0tbdVteLFx9G5SRY59izCzY4EtgbDnztbPDiw6Qufe1KW00mZT0cBReG4yF7nlSTclzuD/cHg2GWZQYohLCwsJBlWZJnW1ub8aPFrzpRSZJEJeFup1NXzpg4Tq4ijKRUM5USsw1miPlfWVZpkk+8Ldq9nb3nrd9o5/l4fIWI5ufnT918a9Fujcdj7ziEUFUVEQFgCD6uBJ62+WKnFRviPxMoRI/T4YDIeffORRk5EIgBEAAUUqQOEKFSOqYaDVpP2EjfTc9sIoqErwOeYSCR90kAABqjHztHQDHENS8ijacnMYJFREQFKNPsfJp+ESDjTBZu2jsmIuSG3k6gosXTLClscE4AZo5ODyKiE+Wnasaz5AlREZELFgCigjMorSFEB7AQQrT6jSivNpq1iRE+Bpmpq9tUDw2BiFDIBxejA0VDW+H4eyTRRAK4iYEQ835EFPGI6NmzBA6CBNO7F52RRURIN9ZisziATQzl64dBFLCL7+hANjK7XzCVBTgYn+EA2IYoHgGEcNroFBHEGYwbAAiEA4BGjQKkKAByYCG/tHbox3/iJ3d2ttbXr3qW7e292QvF0wQU+mB7vd7i4rz3ttVq7e/vW8cbmzu6GS8CXZZlkqcLS4sMUjrvMeR5UU+s895658Vb7158+Xy+vNhenL+wvXuo1co9LC6tnbrl1NRiEq5dWb/p+A0XXnzp6Orac995+qlvfeud73j43IUzn/rUp+6881ats7oenTt76fKlde89i0/yJNSMCjgwoUZlIEiEEIQhTYtYZYYQhsPx1s7OSy+du3LlytNPf+/LX3s00iQV0sLy0vLy8t33vIoEbPAcwFpbVXY42jx37pxlf8ctd5RllRiT57mXHUao6joIk1bO+STPIpEzilXOKGXWWecc8tTUHcSGxn2dmUXrcVkZBE2qdj6wXF6/QqZFWotnL17YC4OtHKPkSe5dIKUSnYYQhBUwMAuRcuVESJJEI0JwpWeljFHISoFKlDIqb2W7u0PHsnr4UFokWWba7fZ0PTFwAMDADqBBU+Kxzxw96vTs/IZG26YxqJ+Vvzib3hIREZ0knlkQOAQRmUwmSyuLDA03eX9/f66/oLQSaAbQUVFd14QHkrkAzJxkCQBMJhMiEvbOuSh+FrkyvXYHALIsAyEffAzZpRVvrSgDTJ5qlRildJBwcCoaY9GEPMPnlVJNJ4whSostLi5euXpJKfzQhz509913m8wwc5ok3W6ukQhBa7rhhhucc4eOHPrmN7/54MMPgDBIE9afe+65brebZhkA1HV95erVl86cqa1dXlry3nthD/CtJ5/KW935+YUL3/nu8vKyDc2oeXyj03gx42TEivkVwD4c4E3zAVvZgzFCpr4Os3p0CqAhB1BapWmKAiEEF7wLnqRpksYBglkIAIDxeKyUWlhYCM6maZpkNJpM4vdjw2x/f19rDYTjvUF65Mi+dxpMBC1mpXMMgvEz1Na22+0gPJlMgBqZ2cjKFsKoORVAAJuymkkzalJGggck0iASrK9BaWzKBIqhvEGnQsMxmOFe8ZcCcxAOMvU7ApTQzNgSkffONw6NnCjtOITaaaLgHHCgGgM7W1VENNjZ01oHYZYo90UJGmutMSoawzEICydJgqiASISU1iI4M6NERABWGiVcnxejxndSNJkgXgLM1O3j72xuDT3vlWVpvUOgyWQS94X3LgJyAaIOJAPMRvlYg2YAAI6FSJG25+fnW6281WpprVOTdHrdxfmFdrdjlNaJkcBZkRNgu9tpF51Wp2AfsiK3VZ0WSafbVwnlabYSvAQODApJpypPCpVQXbnKVcEGGyw7DhCqcTWcDEOQSJLb39/f3d2t6/qmm2664Ybj4/HYKBVCGI1GKGCtTdMUEceDoRBWpY29Vxc8CViO9msTZyO8J0mSPf6tJ0ejSVEULnDezkMIu7u7rTy7evXq7mD7r/y/f7rVal++dpWIWu08QmtKqSIpIhcWGjg2PkKYuaGQEFNgxwEa9wIArVS73d6rKkRMja7rOqbsBxqL15uwABD/ob5fIk6Yr49B4JRvgI3imgASAzB7BYoYZ6yGmOIAxP8jBDCaGshHmBhAfCwwSKlY6HgRRPSzyCAUTcC8MIQmLMjUuOnglm+iCmBsAkLUIJ7GmdmGmpY98XUQSMc8cJYRAsjsP6+fI/H6KEJERqQoDsSgSGlFPgQRJqRo8aOmPkUEaJJkKk4yHVkQ0YqAqDGIkoAChIQKAcBznFZpGBo866H+N8SyZotNZ2xnX2O8YrmuBgJTcTtiiXyveCEiVB6mxgkgM3GrhngOAFUIhGJAAQci8izKwLGbTv7Yhz/+//sPvzIYDLqdziyGR5s+Zm61WjfedFPRyra2tq6ub06GIyS9tz/U33zmGTJ000031+KNp80L57r9OS/eBu92toBwUlXziwvLq8ub1652jqzd9dDDebdnk8KkJoTw+S/8+cbm7jvhZHy9W2687dOf/rWiMKdO3ehr9/LZl3f39/eHez/2oQ+dPHnif/1ffv7d737L7u7+b/3W1+65ZzFeAsfBaCQwQMp5NiYxpDudTmVtNa5eunzx/Nlzz51+4Qtf+NOrG1vxShw7dvzB+x+II92ldZPJZHd3P4Zj732WFSwwHI1a3c7c4tL29naWZdbaGDdni1WmLfY0TbvdbvSXtNYiYiPYSBSsQ4REG9LoONTOCkCSaiHUJr165VoEij1CHZiAjFHWs9ammT3UiEghCHsPwhIimAcIkiSJZmx3irwosjxhDsCSpqkwW1tV3TTNTL/fRZTF1QWVpLb2SkmWJYiY5JlEzmyT0cemtVjnPHsssjQ1wTU5LDNqImaHTeJY4ZTs770PoQFbnHMmUXH6L14i53zt3M7e7jE5GsupTrt7fvPCcDwpWio1qfWslACAZ84TFdgDJAe3d8RQW93O9vo176YIDQAALCwsTCbVeFQCOK10khoAhmBJZ2SUswFQgMV7TwKADEjQ5DEIyDEPMMY452w9MdoopXSiiqKYTCaXrl548xvf+LrXva4/39daBwjGmF6vQxEJYdnf3zu0tvrGt7z5iSe+tbG7vru90+v14t1/6aWXtNZ5UVRVtb6+/tJLLw0n4/n5+U7RGpZVOy+0SYj0lctXR5OSlHEcGAmxyQVn6dXBYgum5ekUxBJEjAChTHPl2cpEamAtAOBwnTA7e57mhUQkJl61nbGq8cA8HU1bIACQZVlZlnFALzVaKeVZ2kUxGo1cCEPntNZbW1sKMFtcsZNxgaSUIqGpf+0BlmtUMBKJMwo6MUtLS6NJNRqN0jyXRh+rcQSfzoGBiIwqt5y1TJrUg2Heatd15bxrtfLYYfs+oi4AGDLfF2Qh5mKKwPMU94qzHTyTajuYznphZlZaceA0TbwFETE6HY9KgaCUcc6bNJEgxjTythGYYRDvXASfbPBGGc+BA7MIAMVjLzZ3GNmQIgUcQCBoUrEnqLVCLgMwCUYJ1gASzXOSPE8A8qKFWqVpziLBe6JGlDXStqBp+AoASGAk0SqZZXhh2lVsqiwJlXV7Vy4/++zzu4NdpUyn09rc3CaisixdcApVkAAAR9bWrly5xuAJdLSojwMtrbzV78/3ep1Op1cUWZJkypBRSZonaZJHmkeSJFmWTSaT/vyc935nf+S9ffnipcWlFSJDOkElnbZJkqSVF91uN0/SqqpQKxE0qU7TlAC9t8ysNCqlhDEE6Xf6T33n6T/9s0dWV9eY2TA76xHN2sqRra2tj3zoo29961tsXQ6H+61Wiwgnk0mUcfHBDnjfWhtlYyKVPMrt2hDNFhgAZrOx8R+utpevXDpx7Hgk5EUgOc9bRKCU0ZqMSY1RShnSqKLZlE5IgSajNTW2VEREFLHM2apTSpk0McaYzOhERbJ2HAchcUTEzisV/agikBPRbeVdTQTxtcCDRAEfInbRvUCiszJjo5fmnY8jC7P1EJMTIiUAHAISBesEIDHGOQdKcRAIYQrkgOfGCZMhzGDt0HDiiEjX1gIgTec9iYjFNyT22GaNyvCMjKCTBnWmqXlD00ZEnB24s58ikmDUGA+zHC4OS8b+bPOhphT4mPnEC96kUwAKQBA0qTihIlPWcpPONfj4jMovswv1ClZf/CpAKIiEQCxxzguiQvNMNamZ7kIEEEYQIseCngGEtBCC85AqeM1DD19dv/K7v/Nb5K/Db1VVkVFplmV5Zq0dDPfa7fb8/Pz29u7aypJzTr/1xz9a+/p733v2pZcv3nLbrcbk+7YCApMkQoiKbJpUrdYz166ePXv2jrvvkaw1dnz7nfe+eOaFPDPffuKL/+Xzj7xz4SPx9Vqd/oMPP0REm5vro/HgrrvvE60/84df688tmjR5z/vfdvTo0W899uSnfuqtzz33gtbaBWvSLEkSo3SaZiA0mVQ7u/uPP/n0i2fOfPHPvvjM6dMEYLQ5derU2pHjKFTZejSaXLh8zZaVyVIfRCllTFLXZZJkeVF4720ISyurgnD+wsUkzQRpXJVat2h6zkUCRwziVV0ppb733LO33nGrVmZ/fx8AtCE7lsmkJoQsy4jIe1/ZWgDa3U6e5+OqPn/+4i2nTgbnauf2BkMPnCmVgLjgG7lUYKUoz7Pa2TxtAzBAbki1290sywaDPUCem+9ZWxulFMUeZZK2clsNsixLkkamK849RX7GLOtK09RUtqq8RBE0pCRJHAfx3jmnCUirGWLEzK0iRcTaeqNMCEEkEBEizGavIk8l5qMzpvD29p4IRgOZoiiMMVVV5UUbFTnnaKpoHStIX79C+iVJkt3d3eMnb4hPHjdqWZaLcwsSIE5IdPKCCPb390MIgKINeWbwXrcKRCSKMj3Xk49YQcY0TCmFJDGz1ZrSJNne3Wy3O3/xk/+vG06cICKtDBEapfI8JwEQG6UXNZmiKG6++ebP/9nnEPDy5atzcwsK9XMvPK+17nT7V65cO3PmzO5gP8uy+YUlRLQuaG0CQmAKLFnRyvKW95ymuTAGhsARDYypEjI38yLMHFcCoigVxwN0vM4Hc6+YMokIHaB6NGhQPHQPVLdNGHU8CVXkJ4UQKm8jYBkJ+lrrsizzPGfmqqoie4OZy7qUiSjUtbNKKWE2SaqUGuzusfWHlpb2gw/BCSUioomkmed6RRIWkyxrLYOsrKzMLSxdvnx5XJZKKYboSRDjM0Ijcko1k1cmK1qT3Y3K1iwc2UUUKcANtywmUEBEdkrwiq/eVKtEDMwIzbWOxwqiMhoABEFp5b33wSulhAOpKHUuvuHJSZalZVmKoCKNqISBSHnPABRbilmR1t6RIhu8RnDeI2kyOgg7DswBOfo+EhKAoOOgUAkgooKpbwkQscQiO5KfG4K9EPnIAlcaSVnnvDCyQAgOkUNQIKCIOTAzksQaAwKL1DzVCJAwRQuJpmpbqkhMlrb7iwtZVhDBseM3WmuzLPPep2kamf4nThxbX9+sqgmiiuIGYZq5eM8xfRlPquGo8uxc7a2vEdVoNIqHpfc+zfOo9nLrzbeOx6Pf/O3fVVEOF5CI5np9AGznxdbWDgH2er0kSXqL/W632+v18rSpzYqiaLVaaZK12+35/sJzz5/WJmchZgKAVp772iaYrl/aOLZ24qYTp4bD/TRLADjPUxe8tVVkqGtUjKDTzDOHIN5b5wJPhdCstUQkIZRlWde1SDOjOxzux458VVXRg66urABzEB+crZ0PLnh2wbFnz945D05KtswhuBA4DkyIcy66VsxQMSLSiRIS0irOI2cmIyICNMZoMkqpRJlpJ/H60CtqTHVKhgwZ1BibyHESM+rTxXlM1fRYGULAA0IS8RGsQ600Xp9Rtd4xUvANSX+6kQEaQWKUWNMSNoR9EQDw3qaJjgwuiptegsK4mBkAJARptLuVQmRbe+GAeoY2YTMaxTGIMb/CthxAWDwpFY9UnFqtz/521jtuYuIUL5z9tMnbmsECmpE0ptXXbMIUZ2/m4BvDWbtWmm44I4GoRhdJNRKW0QqVhKL0SLzyAUlUTO9QE7kQKq6VIaMNZfTaN73hxTPPfumrX53dFJPomGhnWXZtc6OqJri5OR6MJ5PJtY0NpZReu/vOVqt14/33v/TSSw8//GCe56Bofn5+bn6eiLTWaZHH09oFdsEHQR94Mh7/QPm2uqze9gM/dO3qZfj55vWO33jziZtv/sLnP/fUd1+6555bX33/wxcuXgWBv/N3f+nd77rnA+//kb397TTTb3/7D544cTIwFEVhkvZkXF9b37h8+fLZF8997Wtff/Lb3wEArfStN99236tfE8UwJpPJxI5Gw0m8giZN0AiSSZOo74Bap4gUAguSrUPR7lRV5VxIkixKn0c2TGjMWzwiEipl0CoHAG9/+9ulYSZKRBNCCONhXAGRYxHq2gFAu11oTd6F9fXN40du9NbmrWLv4uV+f84zZ1na1pqR2u0iSVUQn2ctUKRRRdkhhWRMioimUpXz29tbRVEICgeAwGUYx3cYh9wQ0XsPHHxd9VpFlkyR4canKNZ8cbyOGyZv3NXAdV1HljpzAJFOuycM3vu8yEVkOBzG6mK2jZVS1lZR+kvrxLkSADzDaDTqzXUlcAghipU3LDHMYWrWYa1tddqjcWWMiVCQc84Ys7OzY60NwsPh0FpLRgM3mUQkLcVy+fLli3kxD3E8mxSkaZIkk0lFpFSzZ14xHRMPY2ttTEkX5vvb29uj8eDdP/Lue19zX6toq0gKViovMoCYFTEpYM/GaFfbqposLi4C0Oryyunnnj98+Ogzz3wXUKVp+pWvfKUsSy+8vLyMRHXtVGLiFGEAXFhasdYqnXzryScauj2H2A2ZbexpSSkA4n1DtI+KUzHmRtbU9WrveqWGCEqkGa/DhtV3HTyb4WRNzA1hOBxGwapZzIrH9sHQHJG2iAE3h5N3iTZBeLYpxuMxIK8tLZ4/s3HoNnLOKUOv1JmcRjGIzG6OSfnW1tbakWO9Xm9/ODRp2qSVHP12VHQGI6Jx5c1St9ufu3z2uVavpzQFW4sLgCoOKMzi44GrBwf/cf2nsz7MgR9FqaGDV7UB151DAUacVHWn0/E+DvbrOMmhTWq9U8YQgBVg5rquTZaWZWmM8SEYY0blJELjQEhI8RAQZqA4E698YEUIQJWzAKCJIv9EGGP7UOlETxetIrDO+eixQ6imnhYqMtUosqFF4twN6SjcrrQmAAjMQUQgqtFGhDjmFQiESrRKrY8lkdNaT6qyLMsu9EblRAGOa4ukdgbDzKSMkuqktlVkOgE0w3ssSCQYIG8lOqRFUcwvLkUAI4SQZGkMSgxStNuvfvW9CwsLidIxc9VktNY7O3tve8ePzPcXQgjO1RNbiUgIjpmD83VdD7d2w/qWtX44HH73O98rbX3i2MnTZ88XeRsRnZ1028X66WtHTxz/3Bc+/0/++T/L83RuvtfrdZVSrW4rSZI8NXmeS2AkbbJUJ+mMcBZRumh7qrU2SsflV6RZXhRZliwtLYUQ4oQs6WagJMuyWcE5w5tjWoXT3jczsw8sDegYuXfWWmttcN4FL4FRgQs+Dj2IiK1q50IkPTnnIIpvTpPFqqpEhOG6ftsM5onQUfzHjBBGBKTAmAZ/iu1Uo5rNkKYpW+dFrG3UsOu6JtKCivR1CunsVZiZo3EfIbB4DnKglRlbqwDA4oUxsDM6BeQotzvTsYshCJVmiQLRChUQKBaJA/AUi5H40hL9ZYJGIZDgrCEiQudsliSzHS0cAEBCEw8jAXr2/mfXSqaaFDEAHIiignEO4/8h/ZpFhoixMYSYfkWCoFKoNCkQUoAS06+oHgwMwAQBIU8zzaQUilGIWGFVFUW7my+trr7lbW/77Oc+dzDwuhCGw+Hq6ioj7O3tIOJoPFBk0sxkWaafvXBhb2/vxNFj+fzC57/8yGAwCL6ZaULENE3n5ubm5+fn5/tZkptUF71Ou9PpdjqdTmdpYfHGG07mef7sz78UX+9jP/FTgvz+D33UOWdtZa3d3xv/6I999GuP/FmnbdK0JbLjvV9ZXZ6bXx3s1/uD0SNf//Mvf+nRr3z1UQQgxNtuvu2eu++NsP/O5o7d3U21YZjOtigV35tnQWV0krnglTbeeaUTUiqe+sZwOakHgyEiRkn6WZIhyEW7xQg6SRikKieeHUNYXFx0rgag/f39hQWdJAnzUACKHEw827SyHgSg026l2gDA9vborls7qE3NQFotL86pJGUXWq2WY++8V1qENBIqrQgUAksAJ8GWI++dDbUypEgJiXceWCCwSVRqEkHDzBJCnqaGVNZJM2XAhWjYGxmHcaYJYg0gCECMVNkadSOy5b2HqeYhi8wO6Zj0xPF1ra/3+Js9yRxT1dFoFOHc3d3dTq+dZqlI0IkZ7Q2i4qVKtNJERMYYX9eIGAlGMWYppWrrJqUVgTTJbdhExLIs4w1CFO+tNmSMyrJsMK6SJIGyds6RUSAUnSQPSOw0u3HqFdM88jz33m9sbpy84eS7fuSHDx8+lGQposqSNE1TADRaG2N8qMq6TrO8tHYyqW1lE6Xn5npFUgDQV77+9TTvLC7N7+4NnnnmuTTP5uYWaueq0urEACAIcpCJqxYX5t/4xjd+9rOfvf3Ou6x3f/Kf/+TkqVMRWTmw/wFmZnhN4PazwHcwfLzyTyByxWbRH7GxH44tcmOMfwUgBLPMbDYTF59HoUKAuq6jzXYUiosoCBHZ4JMkyXRia0+KmNmksQ3K7Pza8gJ/7TsoTZoYfIhHFM9CWDORJEpr671CnEwmly9fJqIkMaQwvgvkEDuPgqRQUJtBZS0W84vLcRQAAJRSwVttTINpTiNj4NCYQiBOmyzX5YiIFDRDDK+YqJ9V2BGBa5yTvU+zhJ03Si+vLT333HOdTmd9c2NlZWW4u3/48OEzZ86sHFrd2dtDkbleHzEOrWLscAlAVLXw3k8DOnkOHMR7n8TcFJFBoPG9AaUUKCVNjzj2uoGDECEACgQJ06k6RTB987Fej87yMeEVQlBaELEhqsTGPSKRIZWmxjknzUTeNDGbtSMRYuZQW6tMMiorARpXlWdGbWrnkiRnCDYwKq1NChD/FjBeNwHPLEhAZL1XZJzzYr0xZrA/il4Kea77c3MvvnCmKNo1NUYORZ6eP3/hHe/44bvuuisClixR3ZDjcW4UTpE2QSDn3NXL14AUMzvbrF7LlbVluygWFxdR+G3v/REAQJQAUlWTZqbSuoijhxCE2To33N+faXxUk9JaG9d8dLsXkZj5WWtdXS0tzsfNGRd50WmMMaJkSZZl8fuZSUyiiixVmuJ3Gl0TbYig1+s1GZ4xnVYed6NSSqskTIXlau9CaLi2xphIvULVBNt4qAd7nRo4S/6+Lw7ArLlGwsHGkpnZs2AdW68hDEaT5q+gQTRJoK5rL01lGH9tls+FEGISR1oZRRGxQ0VZVngf+nO9oih2d3e9h35/PmJdVTWpKltVk6p2LF6RietYKRUBK01GfGSRQS3gOaDAQSv62MfUWvuxlwYaYESsyypCElM0a2rfCTKbOZtdh1k6NUukYhl8MK42P5KGPguRSzflsGLTiwQgFIhAh5CEKPjGzguwchjRRmEUpCAoCIFYRKCuoGJEZKOUzsQOdhKzuLy0sjp3730PvutH3gdT322jE8+1MWZra0skxColTdN2u0gSImL94U98IkmScjzhCP4CeO+rSVlVlXOunpSRNL2zO9zdvTCZjLb2dweDPe+cq+rh/qjVajnnfh7+WXy9f/xP/3mapisrK/O9/trhQ4cPH55fLA6la9s7G19/5M//4A/+4LFvnvvgjz7wK7/yf62uHDVJ++f/yb9HhBtOHL/rrrudDdbayvlzF15cXFzkAEppTSqODkdfNZPmzBw4xAHJWIDWdZ2aJJ40ABCCAMBkMimrsQ++3S5qWyEKURTXFGaPJEmSaKN00OxDq9X65qOPveY194rIzs7OyspKnNABgOXFdqfdTrQxxkQibLfbbrVafGXryOGVhfk+KbM+HCd5AgC+rhBxMNhlBIYANTNCCMIgwYu11lpvlGbnWbzW1Gq1iGKPUmmj2NskSQjEB+50OnmeOWfbrXwynCRGtVuFQrLB4VSyq9nnws45AHKeax8i/92gRlASBIiUAmaIeVKMX3meY8O+VLPd7r0nAu9tkiQxY4iiP1E2PSKINIVllVI+BO9t5K46Ee/Czs5Ot9vVebPbYzczNkGYRRiJtPV1nufD4RAIlVK9Xq/b713d2BmNRsCgTaJMWk9q7wIq5b3XoOIZI5GpMN1dSqmlpaXLl14GUh/8wAdffe89nVZbKYzJRKfVnZ5/4r1lYQJ0zimNLGCMcRyyIl87cvjCpcvHjp184YXTm9sLItLp9pi5LMtYUnsORNjMXQPa2l3bWL/77rvH5eTw4cNHT5yInCGemmzMyrJZUqWm5WnstUUENF5zOsC1l+sj2a9wZYYp3ysiWDQd+Y6ROt7TGFVjHyQ02h8CU4GG2IXUWu/s7DCATgwLVs4nWkeKQ0yIO/3+7u52u3MIFKCw0hhC0Oa6r8sstAk0o9mIaIy2we/u7iZJohPjqhqVbsIZCaEWCLGEL624QKSM9yGO/bIwkY5+HrNew+zIkSlV9vvy1O8D9prYOiUSRNHguAVmzTVCfPnll3/iE598y1ve8uSTT/7k/T/52c9+9lOf/Mnf/f3f+0t/6S99/RuP3v/ggzffdNMv/et/c/jwYYZQ1/VrX/vaixcvbm5tMbNArPzi/E2jLC9T6wiM9GSeTslN5zFxqqQatxc0GRGID1FmFYQRNbOH6KcoBKER1xIkBOAgKNyomBKHEBSRUooDl2UdRRzUVKaOp5L3ASTPsugi0FSqQWJ+5h0HZkLtQ9BaO++VUuPxeFaYWe8ijtuwdpidDVZ8PBEjLSGKPE0mk9XV1fib8bIT6uF4dOLkjbfeecfE2rKumjFYQqGm0VPFKZ8I7YDa3t/WRaG1FsE8yjJrslK32sXK4pL3PkKnWinnfdw+s5UQD/7AjgTwup2jyFS8IP4aCokE9uKDDV4AGYJHAeubPRiJYrNR1hBdE5yz1laea+a90TiqucUip3kpCN5xoq8310REIRljUChuVVQUu5NIOu5TUKBMojWR0RGuU0ql2mitjUkjMwFRiDQRRDBG68QYUspA40UoBNks/4jsERAJIVhrmf14XGpNk8mkKIrbbrnVB+tcjQfcU6ZrRpwLsV0bgpttMSLyLERkrR2PxxG52N/fj3Epsuicc2VVWVdxgCh/olBHmEMpVVVVVVVK4XhcWluFRgPPizT8fTVtvy4uLnrvAfHQoUN7e3vD4bi5fVNR4gbzUw2o+UptjusywrGSmT1meRi+so85WxKzTnH8nSTREr09BBABkAODCKDWUYuVWILMlD6YCCFworQiY7E5OhNl6uC394dz7eT2O141i0t17WxVFZ32wtz8/nBvob8wrsaaYGFhvipLH2o9mYzW14fLy8tZknvniKjQRb/fjfswpvw2NAsUEV1UbPM+WBecFx8qZ6GhfsFNp26xdT0cjC+dv/IffuX/On7y+E986hNa08UL1/7t//c3EODQoeT0C9eKoliYO/boo1+7844bFpcOXb2y9dTT3wVQvc5cr1MIUNHqWOsQ0UfvGqW11tY7ERYQbVJxjgME1VQwUd8RALTWIkFr0obG43Gk28UzBpCVQpHgvd/a3o5D7ESkNBZF8bVHv/PWt/1Au9Pb3h0fPX600+kM9iedAm656dRct9Od6169trWwkB87dmxlZSnLk+Fw2O91QvCoaHt7SyRwqCNyn6VpVVVKgZAKzMYYG7xnq8mo1KRaW1V1231EFAgkkBpFoCSwTnSWKgBRrEC8VmjrkpRkuUlUAsDGaB98zOtnjSSKZsJaA2BZloRafKBUs3NAFIMjAuZ5HpGSdt6OW4uIpjC5ZFkGU+TZWquzhhiuALa2tpZXl6y17XaRZZns7e/u7mZZVjplbTPPiEDW2pjeRZM7rXVZ1XmWwJQKJtQQMpJEjybjKGte13WU0iWtFCnPwWgD6BCV0krYgTiIp6k2Io6IvOckSdPUXL504dX3veZNb3rTscNrSWqC81mWoYI0TSOMjI1fAkXif3DeBzuLs5cuXXGBTZJNyrpdtNY3tpIkwfEkz3NEaelUROIQXHAOY3tMJKZivV4vHu0xhsaJsNm2l2nzQmvtXC0iscc3OyNnyRM3ItcacZaF4IxqE6dT8cDM0ewEiuc7IjI3ejw0LSVjhg2gEBCwibnMnGWZC0GRiYmCRP4uogC4ENIsK6vxkcMF2JJtrXU3HGh6TiOdEpEAHAWLnHNl7ZRSRVEwSHzbDKCiWhhACEErRBGllHNUBsnztlIqTVPngECJBOeCUnp2jCEiIkTmXNMBiSKKhIAYQlBAEVuMRNxZihYvezykMXYAmY1SQJhq5Vz95FOP/9iP/djCwtzy8vIHPvC+W26++WPZR06ePLlyaLk3P7e3vbO+ceXGkycEzHcf/9bHPvaxNE0ff+KJV73qVZXzIKIArbUISIjAYpT2wRKRsITgIwrinVNaAzARsgtlOSGiiEGSpnI8jthJ8CFNjbUVERidhCCKCBiTJAshgBAyiwSlFYBM8zYmrRu5BAJm9s4h4qVLV9rt9uLiYsyDPTMROeeAMEoCsnAIHPMw5xxqJYRCaINXWlnvQaSsqizLEIEDKDIcmCjWZlMxJwQhRNLGGCZSIJWzJJznqXN1dKtEBYPB6OZbbyet6qoSAFYIgIIQAmtSMh104yBK0+bWpufAzMASpkJNtQ3aYN7KBuMBSXQzQ02KQWpnY8HZLJJGYxVx5o1yUJiAKAquGp0Ie53oVLUgACkAosBNn5qnVZCXZpdF7B+nBudxe2qdxNkOAIje587XCArlFcCVBBYIM4haRJpWMU9/AXk6Yyg+SGAHWO97P0u2mCEy8AA4eoo0gqJROEMIIKbv6jqhCjk2WEUkbhwiJIGd3f31jS2lUQlq8wo9amOMMQqAQnBEOgINUYsYEVs6iWdBTAAAwHkvIvGns8Qi0vAFQiRUAEBd140SDQCznxJjmuBfVVWEJMuyjsbE8e6LSO1skqWpd3Vdc4CyKmvvMNrKWcu2+VtsKGUNcJ6mabzyUT/SOZemaYzGMSWIyUCWZSZLZ+siUXo25UpEOk2iPY5C0lolqVY67fSXGZMQgjIU3EQAFChgQcIEAVgweOWRFGgtXjg1KWrGBGtxDk1/aWEmiKFQG5NG8mVEQHum02rlztmtrY21tVX92De/+fwLL7z+da87duzY5z73ubm5uTe96U0vvPDCbbfdtrm5mSTJ5uZmf25hbW11b2+QZYkgOVfnaWGMVsokSVKEMIFRfL0HHnjIW2eUUkg//qGP/e7v/84f/sEf/fhPfGJhcfUjH/1ganA0HDzyyCMf/NAHAqNOimeeffbULZqFBFSWtAGVMsnCwgKzKKVcCLGcDSG40HBoZk16ZXQILs5mBd/4lBGBtcEYFQ9RgaC1EgkAHJviy8vLaWqKVr68vJznuTakK2q1cwGIZ2q3m2pDaZow82gCK6vL/X4XlSIFeZ5123m31fbWXb50qd/v563MehkMd1rtLLpfaFIaRRUmUpvRaC8AgipLrfV1aYWg3869r65dvXr48FrRatVlySyJ0qioqmyv35mbW33zW964traa52krz4ui0GT+6S/8ok6xazqtdn7q1Km68iJMZJhZgMBzVTulE/FBIUpwEEKSFwahGtcMHNlkMRO1thmXm1UMB7/OcG+lVJLoqopu35IkyQTKXqe7tz9ERO9tmqaTyWT2h91uN0b55gwAaLVaiOiajVcF5m63W9clETkOrXaHQWiq4RSCoEq890BkjGEGRTpR2ZgbnUwkStO00+ns7myEkHzkox+/6+470zRF4eC51+shSpKZWRcGgZk5OAfAWqlRVcaEqSzHjz76zd/49d/JiiIwpUBlbcfjMek6hKB0HEvc7nQ6RTvPsiwKpsfmhbU26lNYa3u93sbGRswjIwx2EAObZUsxZMTVO9ODOFiQzco4mTbaDjbUYmLXsMEOZHgRXI99BJwafUQ0YpqBwQyGOfgSqEhRTAFDfIYYs3Z3dwEDsCNhEmZUQURNY4kcUNDQWmdpmiSJrWprrefrbgHXKXoCQBwl/BGVC4g6J5MEL762guJDPNJeYdUK8IqMarYg43MSzd75dQ7c7K+uZ2zX8UhhFuf4xhtvfPnlly9fvmy0Xr92rdfrXblypdPpbGxsxNr62rVrRhkRIaW896P9QZ7n1WjkXCBUQVx89Ubr+IDogLyyF+y9zfN8MpksLyzmRbq/N9zZ3fI2tFqtxKi6mjjUrTy/duXSaDQ6ceLEaFCdPXu21Wrt7u8T0R13vIqBNSlEXVVVURR1XQsEY8zO5gYAZanpdrt5nv/0T/80EdnaP/b4tz7/+c8fOXKEnSejm0z0ABCrpjamABALJDzgQqOn9qwHr2eYugHGS+ob4EQhB6OJiWzwKjGtVms8Hs/NLVjntDEhuCTVTZmhSEQ8B60SQmRgpacCgUYNxiPHIQgrrQKISlScTCemufk5pRQghuBmJ6WEmIiAIh2zbohtIUSJWueNzrs0sg8AQUBEXKgBgNkBAAEkSVI7RwqEkcUjaUQBigdEs8CYm2SRmwaLqq2P0qMcmmzDZC32jfMbTXmLADBLOOLSmBGQAJidB4VGTZnb1BQMGmHGHJhh2wcSuAPAXjPcF6VQo3mKsHgCxexnoUZExAcfrHMWaoEQ1XybAeMQgnM2/meYumzN2AshBFvXRERRj4yBFLKAc9aYRGtlTBKz3ybL0RiTnlneE3VbItonEpIkSVIdJVfjO9c6IUVFnuV5niSJEIoPcQAlgGjUEcpqbgdqZva1i6VdhGDjqq7rOkmM98F7F+1eiVRdV8yRlkDMwfvgnLUhiHD8Tl3byWQiAkTonB8Oh4zga4sgu3t7jHD28sbb3/3RQydu9YJktNJKa1JgmisPgUC0Sk0gYGYEpbXR2iSJQNrOMp/A0tGb9+D5abyVLEt8bScIvlFhVPv7+yahe+65J8sSXY7Kn/krf60uyy984Quve+h1dV0//s3HT58+/bVHHnXOPfTah69cucJ85vWvf+1v/tbvvPOH346gHvnaV26/9Y5ep/2Nbzx2ww03zM3N3ToVnmDmK1eu5Gmap0lKyfve895//kv/6tKlq4lJX/3q++Z6He/t/mC4sbFl0oyFjh07nCTZ7s4YQDvHSQIiQkYzNqoJxhhBIK1QhNk3+TVC7apc58YYZ20MJoDirENKRDgvWp1OazQaAsjyyqJRGlF6nZZSiFpprYxSc3O9JEmSlLzBJDMIEAGhbrd7+PDhvEh1YgSA2Q8Gg1a3c+3atcsXd285dUOaGWC/s7m5srLiOIzLUilMUmXSlvdeCxIwIxZ5FrwMJ+M8b2U6FYHdqhpPRr1i7vLLZ9/1rnfc/OH3nTt37qtf/sra2hGtEgBo5WmnW4xGg/e954c/8MH3TSbjSFqoqmpze/ddH/jh0bCajPYg+HI0ViZLdBIEImKs0zwAWhciJbKVpUMEgdC4oQnEAfKYVBFRVdu6rpXRs29K5NuIJFpHb0ER6XQ6G9u7VVVh1LIHbLVa6xtbzjlmBDBpmnrPs6xiPB7P94uY3pFALKSieuTW7lia4Rqf5FncsZcvXx6OSkBydQ2UIgH7AIHrus6yghBCqIFZKa0UKtJVVY1He298w5te97rXLS8vRtQhMqySJIltAm0oOK+IgnWKyPvg2MUeqFL67NmzX/nKI1//+jdaRSdWdZX1zJYZwDYaRQCQpHr96pW81W61Wqurq0eOHFFInVZbBIjU7u7u8vJymqYNd6GulYpY91RzCCEy6KNmBwAak3pvYepHO0sRiGiWs4gIQDwvLU3VycOBmUdsvKpkFuSdsxGgmpHoG0mI5pSl6c29TjNCajirJMQIMQpneTIY7Cda6bkulxM0AbVigjCzgUOQRntaCYKNMrAU0SkEQI6fKApxN60fQAnxlGJFlQ/9NI/iIFmeyAERDTiQLhzMPuM7lylKMUtDG3wRG2ogIsYUcNbHjPdFRDSSIijS9OyLZ3xdtbodAM3sjdFBAhJKCMPhUETilGhk5FdVtbS0BEBJkowmpbUWgEAaxZb4DiMMFj274mghAiulIPDZM6c/8dGPPPjgA2VZFUX++f/8J//ml/71v/8/P91qtf7dv/uV4f7gf/q5fzAej//m3/6bf/kv/uW/87d+djQaoaJr1659+tP/4cjxI66qiChLknI8zvN0NBrUAK977cNF0bp6+fILL7wwHo/rslxbWxOBd7z9B8+fe/n8xQsLCwt1XQM1jBdCFARmRgKjlXNT70WRqbRhzEliwzQuwetDamqqeI6IhhRMs14GJEIXvCD05/sXLlyYIwFkFp9l2c7OjjEKawACrVSoQiRsIihodAiJfShHYxQxpIQDIgbrU61D8L1+TykdvAALCxhtQgjeuyRJvLAwN8UGTPcaAQdhaFZ0w4oFhKaRhN4FpZSJSEng2nlUSkBQkSEtAhGiijcxzsQkjTIwkVYuMAUhIkUYfANgeO+cqxRqmA5lRx+IpvSg6zRQhTgtXlgRgYj3QQ7YcQJAIAVAgNTsmrg9pzWMOdBKm4UIRASZEUN9bOVHCdb4U2YO7EREGFFeMeIzy61n9eEMvYs5GQF4b0UwItMRx6rrMgQBYM/ggz0wpuBLG0ZlGcIocpGrehLJFZPJpK6rEIL3djwu67r0nr2rNRIB1nVdliWipHlGgLWz8/25JEsJVBA2Oo1ZnRdOTB4lJ2MjAhHTNM2yjJmzPAEhpVGrRBsyOnW+zkwGwKQTk6g4NCCMpMDZoA0JozZEqH2wiUra7TaCdJZXJsORs37txpP5yuiv/r1/9Lb3/+TGKIgxJldJkohrtEJscKhYERnQEFjnqsjzlmn3e52TNxxq57TYy+dSXpjevrxItna2rbVpnh8+csh573y5O9g3CQ0GA61JF+3uV7/61eXl1cNHj+5s7wmJInP0+PEYg4j0+vrmPXffu7u7PxyOd3f25+fmdrf3dnd377nr7pdeOnfy5MmzZ89OXw4Gg8EjjzzSLrL3vvs9g929rMjvf82DF85fURg2NrcQCdjdfffdl65eBjSeSScpoErSItKMKltr3ffBJUkSm2tKqcrWM1ChISVAI5tkXRX5dCwhTdJWq5Xn6XA4bnUKAMmLdD7vA7BIaHeKNDVZljn2LH48nnS73SzLqnq0ubkRl2dRZEqpM2c23/LWdkRKESBrFUW38N6PRiNEWD20nGg1HOxPytGyOWQ5jO2k1c5Aq73hDgCkQAieNNZ1Pb+4et9rXnflytVvPfHU0vxSZqh3ZG2u33nNq2/9n/+Xv3/8+NFvP/Hk6e999/DKUvAchJWmqpq86q7b1g6vPPfc9wC5KDLn6qxVLK/M33jqpm899u3Tz71ECMFbIAPIHFihAQBUpqoqGzyg5hBcHRDFVTVoiBRCrTXLdaA+niI4pWTqmOSbRq5TRAiQnc+zLE66GWMmk0mkYyul6rrWuuNcVNhQMuX77+zs9DppE4BY4m7PjIlnGzPX1STe1sj9jLw9BFDaiDIhBLA1oAEWhRCcM4RAJklMkuj93a3DR4688+1vf9Wr7oiwnVJGKVQq0aYB81i4HE+yJI9khejbTgBa6/39/e9893u/9mu/xgJrq0fq2kbzJVtXM/LHDFtCRFTaOTeZTJ555pnvffe7i0tLt9568+LyUhRAiqnbYDCYm5sTkZm65jRPwukT8sHW4YEWeXO2KaVCED7Af4qP662QA29pJsEwe5WIbcTcKw7Dx1RslrU055FICAGIotxRdLBv3kyijTF1We7ubrPYo4dXdvd20/aaKAWKvHUU5Sem4pbxOS3XiEgNZUSJSJgiT7OPDw0oAYKAJplYT0na6c/tbG7kRYpTE5LZVzkABx48cg484XVkcfYPOIAjzvCD6RNGG9Nm3CTKQY0HQ1CUpilptb+/r40RUmtra8vLy8E6Zajf7W1tbS0sLEAcebY2ssUjiDh7Y81tndL1kiQhFGstICvEwWBfIX7nqSe73fbVK5cBgq0nt9x842sffuDxxx8/ddMNk8kkVQrELy/NLy70SevFxXkiJgGttbWWGZJEDwZ7r77n7ne+8529XkeYQwibm5uf/exn//W/+cX/9R/+I+dcnhcf+OD7fvZv/u1+v8/MSNfHb6MeR2zciIjWOvZxtE5kprR8wMs5GlDO1tvsIl8/rRGCYJwzqOt6bm7+3LlzMqXB9bvtM2dOj4ZvaBXt4XgEoLQmEY5PKSKJ0iIyHA7jwp59BQDvfbvTahd5EODQyDHWdRUrHIBon3ydEykiCOCci6acjSsJAszsZaKwvjToXQghMUYpEhHrPCHPOvsiEoIoRZEtFzeI9c4oE1l9RDSj4njvtSZmgKnPwewVI1oUHYXipQuR3gKMqAQEGRkg/hYRxpzPWhdrsFiwHVzJADBrg15f6nSQinAdM4MDyszxR9EZSRpuA8Yd6oGVMmhQRQeLwAFEI3lhE6aYbuzqKtKkZrIUURns4N6MEU/RdalnAAjBNw1QIt+0pJBnhh/AElwMDAyCIgzCPrjgo5AEexYECBhbk957x8IBZpw83zilCouXqf+EDWE0KkUmzAxhEEKImn/OuTinj4hVVY3H43hc1XUdQpgMRy+dPX3DkaOHlpfrSaWzNH/6u7c/9Jab7rzXdJd6/Y6jBAwCgKtDcB5QnPeokUG0KO89ssgApK7mR8al5cJccfbKlRNL+WunC6PyTmtNWjPz9s7OwsLCyZtP3Ojd3v5OXZdFkek77rzrxTMvtDu9w0ePPPXEtwX5wde+7vnnn73nnnsvXLhw7dq117/2Dffe95onn3zihuM3XL54pZ7UN990S7fdy5M8M1m32z8YJc+de4kh7A0Hw2oCBq2EvNUdT0ZFpqNAs7Xh5Yvn73/wgWtXd7/x2FOTyaRo9ZwNcWAkHjkzvSJBsd4CNE10Zo7MmFghKIJEpVrrVquo61obytNMKayd7fe7RHow3FtYmkdFk7JMEp3kWVnXmjBLEo1w5eqlU6eO7+1theCYAyCYNKmd9Qx5K1OGynLMAHMLfWsr50I8yhYW+ibRk8mk0ypEWIgc+P3R7j333HP8hpPtdnux311emjt0ePXP//zLr77n/te+/k1PPPHUz/y1v7G2ulyWdV2FuV6r380vXXgp+MHm5mWtZLy/R0lqnW/3W2mSPvz61957312j0QiFna+E3ZVLF9v9/qiqS1v6YMtquLa2ur6xa52lqTplURT7g5GIGKUw+EyZLEnKaqBNLlpbC7PpvJhv1bUNIeikiRTMDAhlaWNilCUmZsBEJABRxqauyzwtKuva7baAJErbYGNLTpMOQWL91AAVcl18uRmrFCYiBBXtBERkTpvJZNLrzmPU13CCpjCpdp4IONFUWQghtFqt8f52WdK73/Oee+66c2VlhdkjStEqIjyukDiwCEp0YyLtXO29Vwonk7rdbltrz507//u///tnXjq3tHRoNBlfuXZVKwMAPgQEir2SRtWARWldjkcmzURkMhqi0tqYrY31Z0J4sN1WSrWKllEGkYxJpsFx6kPSHGCNhjtOhW2cc9b66CAWZXZmKVqkOh0sXhEVwPWgj1Mdo4j8z2rWEIIQqMTEkyMiXu1223sfE8TmEAVCiEw+JSjeuoAc+ROIGIWner3e5vqGMfr4sSPXLgznjBkCRzV/EREgEZDpR+TgNZJwmN3lwCyCSmlgj4iNX+P04GABFgwMoCnNihgQQwjKGDxQmsOBB76Sdz/7T2nglKj7dT3FNLqRf5yBfNyw772mRGtdTcqdre3l5eVev9MQGzgsLi6WVZUVhfhQpAUAMfPi4uL6+uatt95u0qyua6Jozxrl+KNFekxHkIgmZZWmudZYVRUCaySF1Ov1NtfXva0316+df3mEwJkxuztb5WR006kTw9HucLRrrX3HD731j//o9z/973/5//61X1vf2PobP/s3Hnjgwbqq4j0nAGerG04c/7EPfVBrPR4Po2veoeWlv/hTn/rVX/3Vrz/ylR965zuGg/Hq6uonf+LH/+N/+o077rhjXI0Rm2GRpucoJAIxR98fjeMtZGZCjaCi9TWLxKM+sDRYZzS2mqb70TlGiSCi9SEIlnW9MDdnrQMWAiRsVIUfe+yxN77pLUopAUYWRYqFURpcrSzLalLGtAYFhNloXVurte73+8654FlrrbVh5xOdBBc0aeFIckX2QZij8AfF8Xz5/jUTH8wcDdSVphCCSbRvOidERkcnHImFUFN6CSK54AMHhVoIHQeNRHGwYDrbQUTW+lmC9YoXRUDCEDgSBA+IAMY9EBU+EUChILJgAIagjBaEIAzSINMxyQnh+nx3fJWZGY7nqTF8Q4e6ro0cmBFj11JIOOpBRiQs/i2DsACzAKMABO9ZRKGeWXRfT7sZkW0AIYGZbyNNhV1ikFfQpH2IGAVpEQmAkAUYEJO4hMg0WjFKKYAoeAEmdrRA4utqUkGYgGZOryDxxqmDl5qi2+8r2R1N1ojX69tIM5TpIPDsNzUSNs0KxT5cePnlRx/56pXzF286doPnMKjrRGlbVd57TFGQWCAIA5BSCjBorT1REGZGBmWMJjKSELXbXhWmNTcBDFkCsBPvms4ydJZEXO0DyKX1q72lbpalSWZ6c20i0Jubm4cOHdrZ2dnYvLZ66BApOHvunE7M008/rbWen58XkZdfPtdut9/1rh/Z29ubjMf333//xtVro9Ho1KlT4t2RI0dmq6Tf6831+2VVbW1vLy8tBRGW4JxrLXQuXrQ286fPnPm9z/zJ4ePHNzcHrXZ7OB6kqfE89CG25yUSmWcHeVyIceohhJBlOU4peMaYNE2bmIxxewsqlWUJMwexJkkWFha01pPgvAfvPXOYVFWa9nywAPL000+329na6tL58+dFIE3T8XgIDQyGkT4PJEF4NB5fu3YFANYOr6Kizc11bWh+vv/DP/qjebf9n//wM5/85Cc73bkQPGGw1QgJjt1wZDIZvXz+pcFgb3Fhbm9v13tJTFa5ajjab/eKo0cP13XZbbeyLKmD1N6mPs1bxbPPP7O0NNfO8m899vUnnnj82vqV+x944KOf+GRSdPd2Ry+/eC7VClHivG1zzkekpwECfTUZvuMtP/TCs+qZpzeaUwOCMTrWP5EOXFcNTTJMle6NSUKAyLRr8AP2RZql6rqpCyICcGQTx358CM5am+YNtNBttWPQUUpF/4cwswaCRp8pz3MO0Om2R6NRu2iJCIGIBNJJcKUu2jpVk8lEYX9uvuer0fqlK6++777Xv+61N508QcTMPklNlmVKoQgSkQRWSmlNdV27YIkoOBvYM2Cv17106dI3vvHNP/jsHxPq+fnF3d095z1ho7y8urKyvnFNggciAAFBEA4eUGlnLQjPLSwy82AwUDrb3xt+/nN/0ul1V1dXYcqCinv+IEV9FjEPFutRACL+aKZ9P82Gpxz/qa8tNlyuBpjkKbD0Ckxr+oiV/bQ+gd3dXZ66es/Ohhm3zweLiFrrVJtoseA5IIoBPdjdtW4y1++UT54HF5yI1zENaF4X6boEooggKpAwi4ARmUOAIAIo1EgmcEAQ0AxU2lqMKtqtqqpEuqhMCKLw+9/k7Op938eE/2bscZawwnT4cfZWZ8OJcclRVhBRWZbAErlTZV3v7O32er2l5eVRWW1vbK6url69ejXJsmiCmef5iRMnsLFbmI1KxS3Q3CBByPPWjGaXkA7srLXz8/N7O9vWVe95948sLS09/fTTv//7vz0e7k9Gg0Sre+65a39/t9PpdDqd+fn5a+vX6rpeW1sFAGNMOakQFaLKs9aj33zyb/3sX19c7G9t7XS7bY4AgKuNMT/+4z/+i7/4i7fcftva2lpVlW9961sff+Kpvb29dq8dK36lVJzva8gGVaWnNqbNm6dZo3zW7VWAYXoBr+OR0zqqUX6R4IjI1z4xWXB+tqSTLD20vPLoo4+euOHGkzfdOBqNVCPbRyISIb3oQtYkx1qxD877eNB411Ak42GZJomaemeFEBQpIDTGWGsRSFDiOOoBowmMuvDxazzOJbBJExQgQDJmhvQ3bXSIiK4URRExQp3oyAqPUw7e+5nXYSxHZUqKne3l62sSEUSuexdNs6Vod0NIPDXlimEhZrTWhcgDe8Vihut55GxJN+IvgHwAYp/du4PPIDKtJQGYG+YTRP5AVANhjhZM2CDbSNMdzSDM3MiisgdAUSTMoKKSCDbUOwQBCIik4iWUIDxF/ni2B2NsjIbCcU1GOwdExaUVkcYMCpsJ3+kujtbADACVt7OSfrZyWHxqMkEGRoaAQkCNKwCwxNn8mNhFYf0gEgUzLTMhmbwlInkrufPee2+/664//oM/eOwrX1tbWx0M9rSC+YXueLKXFHMRtmeGJvkXRwjMgKiZJFAgQtIqBBqWdR0C60SS1shdZ/fuD0cEqBN9aGmxrCdu4v78C5+/5d67Dh1aeuHsC9ZW+qYbbzBGec+zjq+1ETaoYvtGKVVORgCwsXmNmVHBiy+dztPs/KXz3vtROdJ4PWhq1A8/8HBlrVJKgIBEoFY65HkeQrBOQsC/9Td/dnFl6ZnvfTFW9kF4PBkAhCwpJtUk7vwQQpZlMl3occwhxhFrrTAbrfI8hwgtCCep1jpiDLUxiiFwYCIIEECB5wABBcEY423lnCvL8sYbb7z51I3j8b6th2VZ9vuglIqS93Nzc3VdJqn+6Z/+xL33vnrtyOrRI+mxYyceeOhbH/nIj/Vb6dkXXjh69PBtt99y4tTJq+vX5uZ6ly+eV8lmgIDistTMzfVd8Ah2YXGxqn2v3xcYbm/ttjs9z2F/ODz78kvdXjEYj0yWMpAPPisKMgmTWjl0eGFhwSC187YBlep0b3f30oUL7d6iq2oC9sFdW78yHjODQLBKawCM6WkQbhUdu3ml1+tohQ1YCA2TpumoIspUBTRmWjGo5UXKzK6ugNuurmPYTRLqdjsc53IBFKImRRBwGhQmZWVMYoyx3hGp2OIhiAgNhBCqqpJOJ4pQiEhRFKPxoNfrFWmhk2Q4HAtQURSD0VgpMkmWGIWkFxaOEOnzL74Amn/s4z9+282nFuZ7CgUAtFFpaqK8NZGOLweAZVnHFMRaCxyS1Nhy8tg3v/Obv/Hbm7vbK8tHdnf2h4OJ8wGAEInFLy0tPfzahx77xqOj0aisq7qu40i7SFNkIxpjTF60kfTe7j4pzNJWXbsLFy69ePrM6qGV+f6ctx6nkXyaiABzo5wZnFdKicShJJplBtzADPFIewXHNj5PCCE6VuF0ehEOsHFxSksPHLTWLoQ40xQTL3/A8FHkuiZCJK/E+14Hnt1E5kaTZjwe9vtrsL8H3gVAphRnAxnYaD/HD+mDU0o1s6VN8S0hBIWx20SxLweNR5Ggotpa6pperzeNp1HJDBqJ4QNtrxnZ4CAG1lwZohmDaXaxEDHiirMD7EBapiQEZu52u3s7O8vLyy+ePX3hwoWFpaWi3Tp37lxZVWtrR46sHc7TzCgdl/2VK1eY+ciRo2fOvpRnLWNMiFbw6rr7W5AAAsI+9pJmBwwCZll25swZrfU3v/nNP/zDzyzMzQn78XBYFMXpM2fuufe+Z777vVars7Z25CtfeQRB7WzvLa8cQlB15XWaIccpzvSO2171ne88tbV9VTwnSTPbe+zYsbIsW632Jz758d/87d/8K3/lZ7TWaZq+//3v/bmf+7n7H3o4STLvvTHK6NQ5J8LOuSQvAmAcTxZGRSYGBWkMXqDJgYUQY4gAIh0zj8jbjssJAmvUoGE0HKZJ0m11kVGBEsQo13fkyJHPf/7zP/EXfjIxae0dgKBCBLTBDifj2rtUp8yMSjvmxCSVq5YW5nWaVVWVGR04bme58PLLMR+dm5s3aXL16jVjzMLiIghGYjj7yP+bdU4hjqfNUFeaEhCHg+G3vvWthx56qDfXr2srzBDPZmYNsLe/f/n8+RtvvHF/b280GS8uLuok8c5HKazUJKPR6ImnnnzooYeSJCnLMs2z2SAeTm21YrpFCBIYiAFwlkIJRUIoA4BDgAPqViIhoqgRKZOpvy19H7Q23XYEOCvGvPc8pU5SYwGOiCriwzE5RBQGQSJpUOhIM0VFKkDseFCk/URyAc9waBYRbj5CxK5140Eega5pLBJQCqCRoYkwaWQTkqJoCU5EUU044mMIwBKARWmDAiE4FlBKCTRwtdZKKV3X9WA4LIoiz3PS6uAUCAAqnVgXgngCBSTUsE6RtIriMCIScTsAIUJB9Awu+Mjqd94xc1U7Zu50Ou//8Ef3dvbOvfhCmhqQ+tDy3NXhtl445EIQkzKSAKDSgj6waEoBlQ8uiEcJClkZLYEZmAFcEG3SWTpUl1YpcQ5vuPHkS+d2b7jpxt5ibzDanXcd0pJqrctyvLtbdbtdAAjBGWN6vTyEkOd5TI9EpKqqad6K3rNSqqoqRIw6udVkNHs9o/Tu7m4QWVhY8N4nSSQOx1khZYy57Y5XEQGS+BBYfPQIYhYAqJ1FJEHpdrvW2rn5eQYJwRVpgVF3D0BE0jQVCN66WN8DBkfWPgABAABJREFUYmJ0XU2qymdZFlhEJM/TF154odtt54mx5cS5Okk0MytEMtp732oVADwc7iOxtTbNzI9/4qPtTvbqe+/+O3//p2pb3XL7bfe++nUAoLQV4Lry27v77V6xu7cVXBEHlS9durC+frXf7xmlVpaW+4tLe6Oht1VVj3a2NupqPHLVuXMvD4fD/cGutZG26VvttNXRKyuHilan0/VFq72xvhNQucqrRA/360uXLoTXvLpIkzzPg3MklKXF6sphk7aqsTfGDIf7nU5nVO4ppUBoRp6w1lL0ZScK3mdGA4Qk0SBi64gbo1IGUSaTSZqmWifxINSEcaZBa80gaZoG71t5O9E0HA6VUsCota5tSQRaa8AKAJTGurYGo2JQQFRlWSJiu91tSkMkrZWICGGapgiYJsm4KiOhanl5ebi/jyiD/QGSEGBqMMmy3b0t9ry7cQWIXv/WN9//mntuOH6EAJGCRkyzjIjiQhX2HBwiOu9l6nHhaksESuvLly9/9Utf/uKXvpgl+cLCysbGFintg9XR9VwAlR4MBs8998z6xtUkSZytEElrFZWoBERCEJLBYG/j2jUAaHW7Sql+rycSqqpqHVppzEyi8OaBklSm2QQAcAhxJmg2EDoLrGE6SBUbvvDKmBvx3Xj4heumHK+g4nrhGegVQiBSsy5JE6+n2hYyA5JVoqjpAbAPsVkLgs45lSRbO7uHF24EO05INFHkQCOiUGMzFx9EFG10gzAdoKMhYojOJJFFJxhHvJoDEQkoSYueyVIRcb4mrcTL7HihAwo9fICHdzCdOvhxcHqSTcmIWqYMrdm4qFKKlAoiqOjKxjozj4ejb3/725/6H/4HEQk9+U+/8es333LbO9/+jrmF+ceffGLtyJFWq/Wd7z7tnJubm9u4tn7jTTeDIudCYAZQUThAKUWCqAhBeQ7eR+IEIEtA1mSeP/3CZDK56667er0esN/e3j5//kKSJDs7eyJirQ9BFleWL167PNee29zcvJ3ufOCBBwaDUd5uxQ975szp4XD/X/2bXwJoBveMMkT44Q9/+L3vfW9l6+NHjx07dPjxb37jDW9402A0uuPO2z/64x//0n/94pHjJ2jqrzobbohiYLHtIiLK6Bh1YVoPxFvEzKSuT0DH8gymLs7UyHloZWg4GBtj+gvzzExGayDvfZJkREhUffnPv/T2d75DBXCBY2EwHA7LslTQoDXMjISVs4uLi3mee2+11o5DTGfSNG2327/wj/63D37wg4ffeCROCIlIYkzpfRCHiCw+0Sbm4RGZYYBoK40CMHUmSJKkqqrf/u3fPnz4cLfbBRYAUUZHgAgFT59+8XOf+8//8B/+wxDCp//Pf/8zP/Mzy6vt+kASb60dD0cKKYSQJElwXmsd4tgjTxlbU24cRpra1PwH4qDMgX0bU5TA7LwP7Fp5MR334aj+FS+Oivs93iK8nuFdu3YtTdN2u0ukp2zS65D5bLNMKzRlFHoOMdTE/mZ8y3GIB+S6/TZAs+liJR9LNZgqUHBggZlUYVMBRvQEkAEBiRCUFyaZMeqatcccOGrENEAdCYiznhCU0tig/k1n0zmfpsTM4/E4NsFiMZkmSZomSimRwJ6BlAIzbYYGBBSg+BGBI5wHGFPHaFaPQKQAMAQBJNQKWVSixrbSht7z3vf/4j//Z8G6/f39uU7+3fMXukdv8wGVSgAhgIASio6uzjGIiww2wRAEQQTCpK5d8Dox9sBs+3yvX9qSNF5b3/DMg+FwVI5a3da4mnjxWZ7qve29L3/5y+9+33s7nc63vvVE9De01t5/7311XX/3u989cuTI0urKZDIZl5Ner+fqaErNs2q735sXaMz/5hcXujxnjBmNRgQIjBq1YwWkSWvQ7IIj0YZMYNdqtcaTCTO4gGgyY7TzZX+uSyDnXr7U6rRLW2Y6weCj7aaQKm0JJOy9MhRdC31gCAASstQgiSZNRJPJBBG7vY5WUNvSJKBN4/2XJMn+YLudmbXDSydvOPbyy2fTIv3Jn/okoiqKIoSwuXffpYsvV7a+cvm0cy4zXLRznRWsgoBNM5yf78c5wU6nxa6sh0Te//qv/t9izMNveOOJkye/+9j3/rf/6ecOH1356b/+DxaWl/I0W1lafOnMxeBdVTKRZaaLFy+vHl7zDN6zBNBG195RkNRQppVC2dvfERFhFMHTL768vrm7uJQakzobtE7UFOEIIShEAPQcKmej+RoIkDApAfDMPlq3t7JCofK15TRkSTopva29yQxpZPYmS+M2Ewmxdoq5lK+rIkmLNItHnQ1ekK13iBCCUwoRxDlHQHEaRZOq6zovkih343ytlDI60yYVCNZWAqEuqyxJUVghVJPR2spKp11dCtcmk9FwNHjTG9962x2vYmbP4fbbb83zlIPVxiiloxo7CgQWCQzS1IwSPDAzCzNrAmvd49/+9n/89V+3zs8vrOzu7Fd7QyAVOO52iXR262xZls899xwAB4aIU89SImZud9qDwf6r731gPB4//dRT4+E2iAx2t0jr5eXlspxED5YZvBTFl0kpBOQQItEUEYJzoJSE4EMgxOAaLRWFxMzAgojxxsW0j6fGAzPInRu9A2GcWXDwDJP3vpmg9AJKKQUNqb8BRKNcZ3TCYba110lEIkFr4xkDW6UIIel05ze39294VQo8GY83sb0UC2MvoAJTHOOKvREBRoLIlmUJ3imlFALDlKrFAQTDTBkSQCkcj8d+odedWxNW7L02prJVbq6bSc8aOrNm7sGsdFrgNR0NaUbqIF5YTYRTIvzsSQCAUbIkCcJZu3Vp/WoV3Hyvf/89987N969evbrUX/joh370q49+Q2lcWVvZ2t06esMx7y2zr6pqbm4uMrFq70Q4TQwiWcvMgYFTbSpnSSkCNEnmvWURUpjqLE0Ngr5w/sqdt99x1x132ao+cuj4I1995H/8Kz9jrb104eLm5vqhQ4cOHTokQAtLy1s7O91ud2lp6dq1a/1+l1XY2Nj4kfe8fWlpqSxL9iEEJ8zIwYu/snH1mRdfuPXUzYjwhoce/Nm/+bfvvuPOvNNl9j/wA2998luPi3dASmttnUOtEFXU8SEiYUSlgJrENAiTQhdc7BNHt00QiJYYwhgnVyKeGmUgjCJr6zzPt3YGgCrLW/u7e/OLC845rRMARob5ud75l89+6xuPvuGNb9zZ21eafG0Hu3tGJ8CRaSCKqHa23+vlSeq9FWgEA5hBEBGpU7Qfuvc1hU60VhNfzy0vaEEl0i0KLx4QCcW54LwQEXjO08yzV0oBBxHxHJI8CSCVLQ8fOfRz/5+/v7S0BMipUkHYoSitUBBJ3/aquywwpqa32D914w2GYt8tKIUsLMhlPXntQw8YhY4DAGBMUk3inMtV4q1TWgVmJCAiCYGBpsMowRgjHJBIhDkEpXUIITFqNBoNBgMikrafm5tb31rv9/vMAqCCawoJ9iHV6aVLly5euXjvvfcSUZrm19Y3O51Ot7cQpTo4MCkNIdLNEIIn0hCVDlF75zeuXltaXcbIdRBgJKV1pN5Co38RKyNkz0QEyNZVaZbVdf3scy/cdvMtBBhi2iQNyI/GOOcMae8tIiqlmRmBPHogZEaNmJk0ITUaT1CRQGi2rfBBPyDSJAAcDo49kVKECN47bVSv19ve29U6CXUVkiTTbSLyUQMFKIQ47tR0b8Uz0gxzRBIAFqJp5gsAze1rHkwIDEhhOBwurxx+zf0P/5c//c/WWqPzajwkYyAoxUSKgvaMQEIcQsAgCIhKg9JIJMQEosh6EDREobJ2FqyEfZrmnt3W1hZq2t7Z1KkKIeyP9lqtotfvaqVUURSXLl26/fbbI6x1+vTpo0ePxoLy13/91z/+8Y8fPnb08ccff+HF05/85Cf3dnafe+659fX1Bx988PDhwy+88AI7/yq4Lb5eWdcxb82yLBr9CqN3LIIhhKizbIyJfG1EyPNcmZxQG00BvHivtM5SMzffq+syLRIOjh3HBjMypImeVGMJrBVaF9IkV0QIYoxqd/KYjkzK0vt6Uu4HdquH7nzxxdOkcK7fzdM8S4ssyxaWu0ePLh05fqQ31y02Mx7ZCxfOI2Kv17PWvequ21cPLUwm4yPHDrva9juZc/W1vX2WoBSOBoM9k6MiERmNh5lJjh4+NNfr/85v/fapV91JRHXttEpuu+Wk1npvb280HiuCTqs1GO6tLB+q6zpJEsTQ7XaVThDrubm5S+ev5srEseeFxfnBYIAohw8f2t/ZDUGYYXXlUHQljyDiYH9YVVUUuiTSihQwuvEkPrmIQAjOuTzNACRJdeRnRFKF1olSCjFYa8kkSFTXpSIOwXlvtE6EkJmdc8ooAmDxSqfa0LTnBTEKs0T5S4htYnZOay2BBanJC9kpMrGwLmuLqBAwBCeBZxbmWZbFBMJ5Ox4Pjx2/8R3veOeJ4yetdx/+8Iee+PZTly5djMWS1oqZmykbAaUMB6eUEs/MTACCQKSY+cqly//1z//869/4+tLSoeFosrc/5GkZqeK8YTQ5hkazM8/yqppE/MkYE92WiOiWW27pdDpVNbl84fzVjXUAfu3rX/fGN75xZ2fw4osvfvvb386yLDZAnQtxMJ5e2SmLj0RpRIy9DAK03hGi50CIQEhAgnG0hCObhQ4w62d9xnhYwrT52JTRMbLEbIdZRKLwNETD6UjMn4JGzjnhprB2zkVVJI06QBAFguSsa7c72zu7SZIs3X7KlgMo5kIIpDQceDSYwfXJuNitavqAAiKEAKJjlBMSRiZhYQjAgJXDlik6na4PIyQoWjnX/vsSLDiAIH7fS8+uySxjwwPuvDN04eBDAYYQQDhPszMvvby/v9/v97/0pS8dP3liaWXZltVLL565fPFSXdfz8/OISI1Yh4xGg6WFeUDUUY/AJOtb69W4uunUyaq03vu93d3+3FwABoDxaE8nBqN6tkhd17feeusv//KvEOCl8xf6/f7KysqRwzf8i3/xr0fl6Otf//pkUn3ve8+mWXHzTTf3+3PPPffcr/7qr07G44WFBUAhpP393de//vVra2ujwTCiCEWeuqpGjRa8tTawjMeTXruzsjD/5//1i+/90Acr5uWVxY997GP/6l/9q5tvvpUbTTiJINYMYRWRiIKEA7N7/+0jXlik62NrUSAt2Fqb2SiJLYpib2+vrutYise6wtd2ZXHhice+ubKycusdd46G44297YY0rZs7W9d1u9tptVrNELQIKWKWSAjzIWRZlutkb3snhBDbXc65QVnv7e10em0f7JUrV24+dWuSd+Ln2t/fA4Ak0b6qgXBhaWl9ZyspklarFerwqtvvKG2N8TwWAaM8hzxJgWF5ZeUdR35EwI8G+91ud1KOjrdPBgTvyiLPifTaoUMxJ6NAXpgEdJqMrE2ShB0rpUDA6CnVzJiI2RhjiFRpS1JGJABLkujAoAg00mh/kCaq3++ffenlhcW5GLcRyTlnyESAiZTSOpmfn3/++WfZu7zTL8uyVRRLSyuxVHbOaaVYPDQWwI4aaAoiya8sy6eefPLuV9999IYbJpMJEsUfXd9xjTBDI98fc/RoQoWIzz///K2nbk6StK5rjORdEc8MMuNRmNjaUlPpWOdDkmTIcunCBTepbrz5ZuucEE1ZdIqZSaG3nnSD2M0ecaUxB++x1WqRVlPDRzHGtFot732a5cxBgCNqyyCIFNMvlegQQkTrgafxAZr/wStxRIDo5BGV2wgV3XzLbX/2xS+4yhXzqhrvK6VQNYYiCBIkxPkoiU8iDeU8miwAQu1DYEmUmgwns01krRXli3YrBOe43tnZW1ieL8v68NFDSUqbG+t6bm7uB3/wB5M8A4Djx4/XdX3y5Mn19fXS1mT0Rz7+sd78XNy9WZZtbm7mrSJvFSsrK9vb2ydOnNjd3X3xxRdn6Vc8eiNlMm7I2A2J5fgUiuSqqowxxujhaCwSxpOheMl6nVABkc6yrCgyZyeUNDWxFyFhInLWp1pZ54xJTZbkeWqt29vbywvjQ7nQn1teXp5fWrz9ztt+93d/+6HXPvwTn/jkr/7qf/zd3/r9tdVDk0kV2Jmk5UsZDofb29t5aljkpptuRBIInKbp/v5wPBxNxmPCOktbX3vkkcn+tvf+DW/9odW1lcX5+Xa73W638zxXRnvvr127xgjXNta7/d7u7q7WenV19erCQl05082UMu12e3djQylVTuqqanpVo9Fgd3c70aYoWq12O8nSxZXl7Z0dnSRBwLOcv3S5mtRxStxau7WxnihdZGldZIogz/NWyw2HFxA1IjrvBAhUEl19AACIKmfj2LlSqpo0C2J2UIUQrLWITU086+UDQLQ1s5WL8s3GGGWM9z6wi3POSWr0AYtDBjHGDMpRT/dIqyChqiwCaZVEHtWMiiSAde2C9VHs3lq/uLzU7fb39gaXL135wAd+9J5X35ckqTapG9u9vb0H73/N5YsvF2nmnEMJBEKgvHVRSkeYnXNaU+0dAGujdvb3vvOd7/z6f/wNAVmaXxkMRs57JKU1OO8BkLExCIqK2IjAwnV9fYA5DjZHuPvZZ5+NKoLe+3hQ1XV9+fJlrbPxeJznuTGmrCwimix13s/WtkxHcuJ3HMYumCeCRGnUigC9sNHaC3MIIKCJACgwBx8iB3+WYfArSfeA15VdY7vTS0BEmUrbA0AITUIT6ayITYyIvQMQjnN8CBgH5mOilpAmkv3dPfBurtPeritjVFM4SqRVRT49CLIAxCTlYLLT9H8aSYsmrnF874FREwB4AJ2kaZ650TguAwPqYM40S14P0vDhQDqLB7j/B/OzcMB1YPY7MRAbo+O4ezkYbVy+evLGEysrK3/tp//qL/zCL6wdObyxsTHeG+xv7SRKxwimE5On+f7+/vHjNwB7ADaaNjfXX33PXavLq3/8x59dXl45emSt1+48+Z1vd3utsqqOHl7Z3tslAUTyrspMuriwsL6+fu6ll++55x4OUFXV+pWN586c8WzvuP3WVtH5ypcfqVz90IMPb6xvvfTyS9949DEAeOChB4OPxnB5Xdn93b1yPEESrfVeXZKAF/bEJk1qWydp7qBeXF750pe+dPd9964cOzwZju6844777rt/a2vLZGmkKCnVxIEwE3ySRqLl+7LV5nA6mPQKIaDWjbjADJXUphE6X1hYOHv2bK/X896qqZd8muYh8Nrakc985jN/YW6x1e4OBqNutxtCEBZERUqnWnX6PW2M8z5iKwoVYhygJSEkUkW7NRwOAzskUgpF4Vy3/1u/8Z+OHj38nve86wt//LnxcPSGN//Q2LpWUYyGg3/xT//Zp/7CT7RarT/64z/8wId+dDAcfv7zn//ET/5Ev9//oz/6g7l+/+GHH37+2ecur1+75Z7bL168yCW/9c1vvXDl8pmzL91444m1QytZlnjvT59+/uKVy/fefVc5HFy9ut7r9Xr9/rVrm9EBWQlcunA+63RRUZG1optZmhiD2jkH7Ft5WjlbDgdFUbTzbFJbQypLEuvr4LnX64TaaoVlWS4vL8eOsCYySlnPSilhQcFIQ4wXvMjz4Hw0bjp+/LhSiptiJ5gkcY61MWdfPM3MN91yMzOngJxoRCxa2U033RQbpiEEAph5lHEzPsmpVl7AOZclufc+Ds4YrQeDwX33vDpuUtI6OCdTFxD2jrQC5hCC1okxJnhLiBAwUUmwrt/tnd0f/NFn/uDv/dw/UJoCN1mUMCtCCd6oJrXimY3BtKWmtY4VVpHlQfhQnldVlaW5Ugoh1M5So4zISmuYiZowMzIzx5lTmKZZs0cTOg6s9/iGlIDzrrJ29fBanmXlcDS3eJjr2jmrVBJsiNUsMwdmVBSJJrOgFA5o38RwFOfS4oPZX714ERTddPstnlXeTmtX1r7OkmIyHpGk2jnXarW2dnf6/f7CwkK73XbOra2tRdL9Qw89FEPSfffdd9c9d8cJmjvvvLOalFEH/K677rrnnnvg977vUzWPqNoiU25gCJJlaZrmly9fbrVaIfi5ubkQEICTomhlaaLnvLALPkvV1tZmX4EItotWXU1AA2EoovGwVkUrz1pJVuQnDt985Oja+s76I1/987/6M3/vVXfeMSnLJE+Gw/XhaLKztxWC29pY35pfSvJse3u73S4EuNfrdbtdnWTW2s3tLe/KRx95dHF+oSjar33964D9pLLdXntpfu6ZC+cWFha2Nzbb7WI8HG1vby/MLUUtgOB5aXVldXX1hhtu+NznPtddXLx8+XK3P7+xtUk6JUr29/cFeHV1udPpEFG324+ob57n8alCABGpbL21vT2pK6VxOBiHEI4cOTLf6dlJmaZpJ7RMlm1vbQizd5ym6Xg8jqwjIhRBoxMbBIg8h5ptohMgVVXWhQadCiFQ0wBSIkEgADX2LLMDLFL0aCrikqZpcK62pffRuSiOaTOzR0zourddkwqEEHywWqsQGudNIs1BACBRGoWTJFGAvrbOuUiHGo3LRaHvPvPcW978th/9yMd63QVrXaThF0X24pnTN5x828mTJ7a2dowxKCAgIbimzQdBAgDw/v4wOiI///zzf/Inf3L6zOluex5Bbe8OldEuBAislOp0u96HcjxWxjRlD0FUMBeJglvX5f5pOqvoXDRlESCcW1y8fPnyE489DkCLKytzc3N7e3tZ3pr9SSzBZ4ATTufF4hHYjIyYxrMIAMZVqZTSRiNi9EtGRNQqvEJk9RWkKEQkup584HXWbUN4ioffjJuOBxQcZ/weRAogDXs2NO+VmQEhNcmFs2dDZVfn57c3K2HPoCIrtlknjYoYQkSVZtz369oEzUuToAAwARIyNpz58aTaL5NDC+1up3/+2vm5dqGUik6esxTzYAy5ngMcABQPXpmD35nZqnzfn2iAuizzPCciYGHvu/1ef2E+S9ML58/feOqmBx544Btf+0amzfLy8trKKiJWk/LkyZPXrly9+aZblNLig9bq2tUr73//+374h3/4+Wefeeyxb37sIx++6aabPvMHv/e61732e9/59l/+S38xy7L/8S/99Bve/OavfeVr//Jf/ssTx44757/7nad/4Rf+6alTp06ePPl3/+7fNYna3t785V/+dy+++OInP/lJQfj0pz/9/vd/4Gf/1t8gou9973v/9v/43x968CER2Vjf3NrauvmWU4PdndgK994bUoxgg2eEbr+bG/3FLz8aRxonVWmMqUaTPG0tLSxevHix1e2UVYXTcVqYQqfff0lf+Z8AMDujDl726Y5wJBzTrNjE0FrHYcY43hhvRPyptfbGEzf+5q//1pve/OZDhw4NRsO4KbyA8251dTmO6XCjeEdRkwUCoyKWAKDm5uZ2dna89ybNRaRyDhFvv/WW0XB/cW7+/nvvPXP2LLEoRbW3CwsLN994sl20br3tli/8aToaje5/zWse+/qjF86eu/kHf7Df71++cLH95reura392Zf/6wNveKB7262f/t8/ffftdy7Ozf/hd/9gfq59w9EjnVZ749rV+1/3uq9942utVD/4mvu/9F++2Ol23/i2tz72xGPtonj3j7zrW19/bDKZ3P+61z37wvO33X57XdekYP3K5fPnLtx0001ra2ujyfipJ5689757Tr/w3MrKysLiokDYWr82Kcd5r3f16uVX3Xb70vzC2YvnY7/C1p6mIn/e+zxJObirV68g4vLa4TzP2YdqUuIcK5DReAgAnV5XIZk0GeztZq22UjgcDeI0FSIGH5RCz66V5XfccYdJze7+oMhyBSqEkGrj2OVJysxAwiIwFW3OssworL0T5nardWx1bTweC6LnoI3RRFprw772YLRh5iRJXOCI5SNiFuVtSYnzi4uL0Q9aGU1EmkiYo9QfEYiwNqaqKm0MTIvMGKPiWp1a2NHFS+evXtu45bY7290OeDEm1UqiOi4LKlKxPhQIsa0J/w+PWUk2W9si0niHAgdh0qrT6ZTjiRJe6HVHgz3stxgZBQkxGiuAyCtLzmk3ADDKLuaJtgeaj+V49J73v3dxeeG3fud3evNdnehWUfiBdzaUo3pjY5ceeeSRp5566syZM7u7u7/7+7+3tbNdO/uFP/0vZ86cQcSnnnrq0UcfPXf+5W8//Z3d3d2oRrG3t6eMBkLvfXRcmb1elhWIjQHm7CCJiVrcpaPR6Nq1a6PRSJFxzhsdR42w3clIgfd2UpbWVqSk3cnarWKu31UaO502qeBDeenyORBHwJPR8LWvf+gf//z//Hf//l//1E99/KGHX712ZHlvd+P0i9974cXvnDn7zL333bG00s0Ls3po6diRo4lRRZaE4LY2rhHBaDQalxNBSPKs3S46nVa7lXfaxWBv/+rFy4O9/dPPP1uXJSnMkjTR5tDK6qHllWPHjmmlxpOKdDIeT8bj8Ysvvrg/GAzGIxHZ3d1tt9uHDx8+cuTYXH8+eB4NJ/u7excvX9rZ39WoJsNRPSldVZejsUnU6urakUNrqytLtirj9huPx8aYvcHo0uWrO3v7LkjtnU4TQM7z/PiJE6trh+q6TrMkCvQrMs3B3wy4KInqMBzKqqqdBSQA0Ya8cGmrSTWJifxslUvDq230xKMkY1nWDRs08ofYizAAR1pACM4YlaUaRJSiOAhtElXXZSTteu/x/0/Xn8fJel1nofBae3inemvs6rn7zOfoaJZsy7PlIbYzE0ISJ4aEhED4LpB74XcvcLlwgUsI8BEgkJDkg8whIXNIAMe2HMezo8myJEuWdHR05j49d83vtKd1/9hVdVpOvvrpd3TU6q7qemu/ez/rWc96HuQe3DDGGEMCi0g+EI1zGYRxq71weNgb58Vf+6H/5QMf/CZAOZ5kYZREUSQl7yy0GYOqnJw9cyqbjDgya5SxylhFYI1VRZEpUymjZRiMJuOPPfaJn/iPP3Xptdfa7e5okhnnCLFSWvCAM2GtWV5cXFlZBiDOGaCz4ICDQwLmVd5E04A27wNpPRgNAknkWgud02fOLC0tRUnt3N0X777vvk6no7SOk8Tfw1OFslc+MXRA/i/kNXezfxyQcdb/Y8n5b3NAlpwl571/5nXLnwYZ0xrRAViyxk09fYBNZ4KA7DSG2zkHiNzbBFhAC+gQLJBDmP4FZt8KROAQkaOfCQAA4kCNOCiGPT5zLpq/CQAHMB31R0bs9VHH3kL9a94CANAsmREFLyyxKKnVG0eHvck485rpP/2uv4b6gmPIbG5Jg69/2JkT9x3oyRjnnCF3zo2zDAA6nc7R0ZG1ttNdEEJkWWbIJWltdXW13++nadJZ7BRFwTkPpNzf3weAlZUVY7XV+uyZM9euXFZl/sH3fx2ACwRXZXH+7HlVaiQZsmhlYfX97//6rRtbzlmO7IknnviH//D/vHjPhX/4f//9ly+/kKQBD+yv/OovBCH/wb/6A73h4cbm2sMPP0hgT58+0WymV6689uij7/qRH/lnTzz5eBDKk6dOPPnkk5/97Gefee7Zp7/89MuvvHLlypVXXrp047Xr2ze3D7b2dm/c/uKnPv+Jj//R6vJavdlYP7GpnBahGI3HV69ebTRa2aSQMiTCMAy9WeXxLu0M9ExXJs10e/4r3qEAZ2Gj8x/30hFrrY8IzPO80Wjk+USIacUiZegcMCaUMkSIwMos/6mf/OntrZ0oiKem2WS7SwtREmtrHBBy5me8wDqwIJAhgdKaCd5oN/J8YpX2fq1SSqurdqvVPzwqx1kSRb3DQ10VgRAOCBgtLXSHRz0A6Ha7ZZmDNSuL3SqbKF22O01rlKqKWj3pdDq6KOtx0m42qzKPwuDUiY0iGzOkWhpPslGtFj90/wMvfeUFRnDh9NnRcJjE4cmTJ/M85wjWqFHvKOH8wsmT2WQkJAtDWU+Trz7/nFNVFIiXX3rR6mplcanb7T755OMILhLiuWeeaaS1k5sbV69dufTyS93Fhc3NzeF4fObMGSKq11LfbfAS0kuXLuWTSSiD1157LUxCZ7QqyyAIXnvttclouL+/1+/3OedPPP6Fw4P9y5cvjUajTqtZZBOl1P7+/p88/sWd3e2nn3663++/8sorTz/5VL2WVFX5la88d/v2rdGwX4uj/b2d7du3bt26oaoqiiJrrQyDyWTy6quv5uOJqZSr9PVXXwPnuGQkADlMJqPd7du6UvUgQmv6/aMsy/zdJ4Rw2gTISRlTqSSKF9rN8WSoVNlopAypKstQSCmY4FhLIsGRAzXTmuA40xwj5xKAGTM1pkZwqipObazde8+F4XhoAEUUZUpduXLN17Q+GsQZq6qKo2BMTJs/fwp1/Zl/5z640qHgAROcGEkelJOMWbu8sDDsHTEGXKCPtGLECJglvCNvBe7A++gSESmlqkojogjusF/33HPPo4++s9vthJKnSVIVZTHJlpeW+of9a1euD/aP2MmTJxuNxnA4/MpXvlJV1dbWVhzHrVbLx8V488Ynn3xyZ2cHAF588cWvfvWr169fd8597nOfe/LJJz/zmc88/vjj89d78cUXYdbOiOMYZk4eURSFYegh7cLCgp2Z2BKR1QrJITkpGQAltUiEIq4FO7tbn/nsF4tiUhWFsWWej/7tv/tXv/DzP0NWnTqxWW/ESS2oVH7ltZdffun5jY21v/ZDP/jgG+5bXu5evOtMt5NWKivLyd7+bSILznAEj+4RwWnDGBuPs729g7wsBuOR1jqOQ6dNIMT66mq3syiEMFY5Z/r9o0gGv//f/tuHvuu7Pvvpz8Rx3G63m81mkiTamkajEYZhkiTOObKwt7O7t7dnjLGWvLV0u90+efLkuXPntm7vAUCz2QSAMAgOdg92tm4PBgMECiRHcMvdxXa7bYzrNNsLC4tRksa15E2PPPLGN73p/R/4wCTPrt64PhwOEckrLfzmaDwPzDgg+G3MEACKvKzyvACi0WjkmzBS8qIoiFFRllVVlbr0H5mbWat7j+CpWHuewwjWOUNgvbOaDwiTkjebTUfeYJPKspwNt6IxpiiKOSHknGEcOGfkDAB4qcfR0dGlS5ceectbH333e1bXNkaTTIqg0Wj5dMU0TdM06XY7VVWe2NwIZWCNstaSdTjNxlCcM0SyVl+69PJP/MRPfPSjH200Gu1Wu9cfSBHkRUUA8943Y1xKWa/XAcjnhEwdDHHqxzEraDxbNHWjds4prdJmc3193Vv+eDVkURTzgUcvF4NjIiRvUDc9TmZNNN/3mdum+Mvuf9DXTDQLITDuTvSePyM9qvDn35yt9PfX9KENzYJEgplVkifh/IdFs0QRM8tX97/tHWRj3fwVAXDQO1po1vNhH9BbS9s/Y/Oacl6vg1lfg5O8f5SdHeqmUoyJQhtFLAoTci6UUpXVn/7x4yTN1zyO84J/+jFfz+54nh055DwIgkorLsXOwT4hLiws9Mb9w6Oj2zvbRPToe96zu78fx/GJEyfyPPfaxMODA8752dNnyrIEAM6x3+8Pev2zZ8+eP3s+iiKGeNf5C4f7h298+A2hDC+9/Mr73/f+vZ1dACjLPEmi166+9l9+9Zcv3n3h/LnTe4fbyhYf/8RHf+mXf3l5eZkBu3HjBgAQ2IODg36//2/+3b/+0R/9kdOnT3/zN3/zzvZup71w6dLlH/ln//xf/+t//U/+yT/+u3//7/69v/f3/tE/+kf/4B/8g//j7/zv/+ff/fv/2w//8E/8h//Q7XYPDw/f+ta3tlqtLMuSJLl27drTTz/t91u//r1rqPf7nk2uvc5B7c/kDOaX1C9sHxHm16RPtZJSjkYjIgrDsCgKAAjD0K92RORM1JJ0f/9wOByvLC39p5/5mf29nVAGiFiv11uthl/M8+cEAF+3TyPGAQghSevKmvkNQggiDJIkGfT6grFWo1kUhX9fRFaEQbfbPTo6iuO41qgPh8MwDBc7C9l4Yoyp1+vj8dgYE4YhIKqyioKwWU+9/r3VahVZjuRqtdrh0REA1Ov127e2itEkTdPDvX1rbS2Oh/2+bw3dunXrTz77+SSMoigqVeWcaTQaJzbXVZ4JIQ5299KkVubFxuqKMXp3+7bVZtg/EkIAuIsXL1y7cnU8HNVqtdXVdSECIQLnIJQROm/zwobDYRQE3e7CzZs3y7LsdDpGVUTu6rUry8uLC+3m7Vtb4/Ho8PDw1KkTN27cKIqiniZFPmk0Go1GY29vT3JxuLfrczO3t7eTJLn62mvWGMHZE3/yRSR46qknG426QPb5z3/WjyJJKb/85S/nk0xyMRqNtNa/9Eu/lI0n024a0Rc//wXG2NNfelJK/qk/+uTgqAdk+/2jIAiEEF957vnf+o3fONrb/+1f/42d27ejKPJMf57nly5d2rpx/aknH0/j6NWXX/r4H350b/v27/3ub/eOjhhBGEwTzWfl+pTO55yT1a00rsdhURSWnEUGyCy5qqquXLn86quventtj0mYV3ke24X+zP1h/p9+rU53J3Kcc6s0R8YRWo0kG/YEmw5pkXM+/ODOpkd3mLbpnozgz31zbPKxLMtf/dVf+bF/+S9OnNhM60lai8FRlRcH+/v1ej1tNMRDDz0EAKfOnlFKyXDKBt9///3ebm5jY2MymbzjHe/Y3993RMsrKx7qHhwcAMBgNKyqan11bf56v//7v/+3/tbfarfbRVGUpYqihHPpvTGjKJJckHVectRutUbDIYZIRHEi03oMjOJEWq0Yk6+89PLf/OG/sblx6uf+88+f2jzlqDpzeklI0MpaVxXlJBD8kTc9vLjUpGZUFEWu9PXr19v19Mb1K7/8iz/7PX/pw+9473uuXL8Rx3G3201qQVUVAWdKKSTXbNY5581m89Tp0+6KUmrEeYBAtTR+6olnPv/Zzy2tra6urzQajbW1lU6nMxqNXrv0ahLFaZoWRbG7u+tPzf6gr7UOw7hVb7SbLRmnrXqjVqtFSZKkjX6/P8lGV65c2Vhb4YAcIQqkMaqqqtOnVxcWFtrttuC8U6+P+0et9qKqiuFwmKa1W7du9fv9KIrane53fveHENEx0NZW2jAUnHOOTAYCfOaGnzB3DAJJjJNljpxo1MdZMR6Ok2ZrZblbFWPOTFpP2vVYChDI8rwMRoU1JMNIFpjUwnq9XovDKIqYFO1GE8FVVdXuNEUorLW1Wry4uOicybIsSmoAwebG+t7BMEmSilySJFKGSRIHPCiKChGTtM6YQ4FhKIVgtXrEMOgudNY3Vrd3D1udhe/8zu9cWloZT/JS6YVON4iTIIqYEGmapPXaYrcdxyGQDQKxstTd3zuM49g6ba0jZzlDravDw96TTz752B99QnAZRVFRFEobjtI6x6QEAKUUlxw5d2VliQI/CTO7La214BAArTOcCw+PPErhQQDKAmNpvb6wsFCqqizLNE397iCEtNZyLouiIIbegkRKWarq+ImFswxsKeXxvcDfJmyayDENrpnBRCaEAG3n7M78L0TkrQ2mSntvquic9xfiyL37vB91nO8RNDObYPS6WDqObOYWjpbclBch0NogolFVq7kMOztxICEz3tkakfueLQA4r72jO9uZb4ne+c/Zye6cNwMgn3YMZTUqSstFvdUGYs6C0kYwNhd/0EzuBq+3YP0arIB/qvM4/9mv2XAZY9Ya5xwTvDI67bQOBr2jo6Mwjt/7/g8k7UbaaAzH4+WNlcuXLxeqqjcbVaXH4yytN597/gWl1NLS0pe+/Mz58+fjOJ5MJlk+JqK/8Bf+QlEUrtlc31j92Mf/8OEHH3DO/pN/+n//xE/+1Dvf+fZPfPITh0f7m5ubgrNPfOITH/rQh975rnf/0i/94l/+vh/45//8X6ZJvdcfWcC9/cN6vQnAtrd3m832o4++93Of++zuzt4b3/Cmj/7hY295y1sajfDtb39nVWZnzpxaWlysqopZNMaA4JPJBIkE4eiwt72zc/78eWttwAOr7PPPfuWee+6bTCZcyrncPo5jrSwC96B/vvCOX3acKWP8v6YEmCcvmWBcAqIxRgrmiDiXQcyybByGstVq0cxjU0qutTYOwjAa58XVq9eDIEjTFMD9xL//9/+fv/k33/TmNzLGijxjyDkCOOst8ogIBWdA1lqBTEtpyDWazSipDYfDzsoSIRhygFhL06IoeoNBvdkwzimlIiI/Tpckyd7urh9Z3dnZqSrdaLS2dnYReKvZMdoVRVVPEk83cMA4ijwMqtVq24NDbW1nYSGvykJVtVrNF5D1ZuNo0Afr2s3WZJJN8uLcXRcu3nvPV559rtlsXnjDAwacJhtHCQMqstwZW683gchZixxbrdZgMFjqLmitgUhZkyTJcDjMsqzWblVK6Upzzvf394MgaLUXfMtICNHr9ZaXl0+cPImcJVFYTDJnbBAE+7t7aaMeRVFVKcHRWru5edI5CKPQGDMajZJaPQqkc8abnphZAuNkMllotmtx4owtsnFVZILBic2Nj33sY0dHR/VGCwAEY1vXb7z5DQ8HkbTWrm2sal1Zo2LOezt7Rwd7p86c/OITn9ve2wZw+Wi4/vDDW3v7ACCQndzc/Mwn/+iv/9UfvL118/Of+fT3ft/3SckrVVRV9Es//3P/7Ef+6Y/84//8zre+eXNt7cf+1b/6n3/4kZdeeumVV1559N3vHk6yIAgcTLvkjHNnrFfohzIYD3thEAjJsiwLZARM3HXh7n5vv91uNloghLBk1tfX4zg2VnHOAO4EZ30N6oKZuvH4w++ZAmFUFFVVLbY6SHqx3cy2d8BUgBzAD+NwRJhPHc0gFzpC5MgYU5XW1gBn2t4pHcfjYV6M3vDII8pU3EprbVpPzl84f/bs2Weeeebxz31OfOELXzh16tRB7+jkyZNhGE4mk6IowjA0Sjvn1tfXfZNiZWUFEN/3vvdJITykPXv2bJZlRCQYn7/eX/pLf+mYygSttVVV4aybMB9ycbPkOwBwZEbD4Wg4XFpbDAPRaqf1WnT67KkHHrjv/Pm7PvqHH0EwB/u73/AN37m+vrq9vbu8tsKJyNLe3g6x8jd/7dfOnz33bd/x3QvtbqvT3dq64Sm+Xn9YVDrLskDytbXVstAloQzEYncR0K2tbjQbrZs3b25tba2vLzSbzXa7rbUuJtnhwVFeFvVmevPm9bIofCWdZZkMpRCilqbdpcWFxa4DqMVJVert7W1rrSpUWQ2Hg4E/jKMo4pzHcby+vh5HQRzH3cWUoRuOxwBue2vn9q3tLB93m+04lEaVSRT2R5Olha4hGwgpRRjHcb8/6GlVFIUMA8d4GNfq9QYgz/O8tbj+xjc+/NRTzzMRO+MgkHG9XqvVoALnII6jLMsmk8ny8nKtFjEwzXRjdXW1kQTj8VG70Ww2ycHRYDiu1dIoCmTAknrcaraSJKmMrrfqjICcO9o/0tYiZ62FVhyHXMSMYxjFYVBfWlqK42uNRqNXZa1WKwwpSWIOAoABMSFEq5USuG63K0KRJEk9bS4vLzabzdX1kydPnAmC4Pb2rgyjxe4Sk0EQBFEULSy0G7W02Urb7SaRUSp32mysrW/dvBVGsihyRJIBn+TZK6+88rM/97MMxfnzZxe7y5NJduvWbczKSldIkpG1xol5zAhAnudpPYFjwiiwBNOsNGat8SM5ROShGCCGUbSxsZEVuR+5V0p5RYs/zPK8RER/L4jZIPccPeCsa0PT6TM7B0bH/zLHWDAjtABAMH5cbo8z33zfVYNjqYsAwBF91eVhludpcCZFnTNwfjDK348WCB35WD0/Ho/ABJMWTBAEnInD/f3FxdMQcKcqwQJAB3DnBgeYBxsDEflAd5yXmwQcEXD6A246pwkE6IwNhcg1aWJpq4PItbZeIeRbWlNnhNll/P9H0sy/cpzJw2N+E8evm3POt1yJLDLGQnn15o3heLS+vv6t3/7nh8Ohn/8P42htY72oSu/kHCeJV9Hled7qtPM8907xX/nKV4IwfumlFx+8/6GDg4PtnZ2VlRUCSurR4lL7x//Dvzt1euNdj77jE5/8eK/XO3/+fKPR6PUH1lCSpABslOXdpZV2o/Uff/Inz505t7+/r5R69J2PvvrqK5ZMs1kHgMPDw6WlJZh6bhFjcPXq1fe9993f8i3fcnh4KFA454xzyIGcS8P4xuUre4d7J0+fLssyjqL9/cPHHnvsoTe8cTgem6oSgfQg1Ad+AICfy/NbsbbGr4rjGBf9p/X6KsIPpjAmEdE5YAz92HKVZ9Zan3nqf2fPinEpAeDmjS3vajCZjBhjd104//nPfaZRT+5/8AEEqYydSvUJUTD/STprBePWGi65ddTstGtpetgbXJDScZxMJspRrdVIG01ldJgmIgoned5ZWXWqdETNbufm7S3kot3pXLl6XTvbaLcqpcqyZFKEYZzl+eLGRpjEg8GoVqu3mp1KK2NMkiSHh4fWWh5IzmVZqjRtOAda2zCJhZRZViRJAgBKqUyV73j0XeUg+8xnPtM9tdFcWhiMRoSYNpqHvSMug1q9vr+1zRhjgiVJMhqNgiCo1Wqj8biNK1KGRKSUrjFmyYkwuPbalc2NtZ2dHUCeNhueXzSFbtSb52qpDxMb5n1E9EL4M0tn2wtL4/G4KCpr7f0PPGStduUIALS2dSGiKBkMBg88+AYhggHvTyYTr/De39+/cOHC+9//vigIgyDIsqzbWVzodvr9fqvTNtrcffddv/6Lv/K5z372Xe9/nyHnG/SrMnDOSS4mo/Hu3vaZc+dEIM+fP/8zP/3TS0srJy5cmORFHEVpmkghdFmd2dx84otfIOfOnDlzcHBw6szJv/ZDP9hI06XF7mgwbLUbK6tLeZ6fPHXi5Uuv+ePSzTSsx/dPAMcYSoSyKJYXu7cPD9uthTRNJ4Oj5cVFB1CqiglMonqjXnc+G/zYUDa8ntb1sMQXFX96VwmEHBz18knmmo0iz9rNjsonpErgAULgB4+8+MvfGNNbxuFswhtRcK0sQ3G8+ZgkSRSLoiiiON48uVkpdXv71u7urnNucXHx9F3nWJ7njz/++Pb29q1btwDgE5/4xE//9E//8R//8ec///nHHnvsk5/85JUrV1588cVPfOITL7zwwlNPPfXiiy/eunXr0qVL/hzyUeTz1zt37ly9Xp8T3b6gp9kMvO/sVlU1HA6dc1EUNZvNV1555S//wF987I/+58WLd7Xa9VooOXMnTm7Um+lR/5Axl+WDbqdhrT082s+yMaExTu3u3ZYBX1hYqKpiNBkf7B6MR0V/MKo3O2EYa+UWu6vtzmJZGKNdGMowklVV3bp1i4jiOPYkbb1eJ6LRaLS/v8+ZONg/unr1WhRFw+EwiqL19fXl5WVv8JGmaVVVUoa7u3tePsI57/V6URStr661mx1E7LbaoQzyPLeWfH/q5vUbBwd71hBwJhgCularIaVMa3XBAyJblGNEsprG+Ug7MxwOEdHP38W1WqPVPHnqzNmz51dX1lvNThQnnEkhhNaV1noymXSXl4EhcAbKFr0BMkHIZBiEUTTO8l5/KISI4zCKAimFlDxOQs55q9Xy3YRaLY6iQAQ8SaJarRbHsRAsSSLfUZVSJEkURn47lUKIKI5rtZrnohuNtNNphZFsNpvG6rgWx7UIBcpI8oDLSDLJZSTrrUaj0WCMaWtWV1erqirycnfv4NbWdq1Wr9friOi7t+1Gvd1odhc6SRw6o8kZcG7r9k0iFwRSlSVnICS7ffvW7/7eb//cz/8sALzlLY+cP3+WcXDORVEQhAKRccGcs8jAGO3VxtPbj0lw6CwIEZJDJgIv5kdEIaQ/nADBIYC1aaNx8vSpSqtp6qVDawiBq8oURTUaTXyhNu/xearcT+NzzhGYqrSzBIRlURltjbZeqmXNHb2U/6Bp1jr0HSKlFLGpWgsFB868bAsYI0Sv+JpXdc45dCSZd6ABdATWoSMOOP8KozscG+ecAydCJIjDyG9DgQw5E962rdFoZFkWRwJMBdYIhmQdIgJZBK+hv0PCMzZ9CTom3P6arY0RgJsqjRygMlQ5qKUNGURknamUX/BVVXneHf8s4RdjdwYjjtdyx2NMPZKYAzg85oDvd948z4MguHbt2vb2dr1el6Hc3d/940998kvPPH3j1s1aPW026x6/OkBH4AhG40mz3fHmSMY5IqedLZTOyypKar3B8MTJ0w7sXXdfKKr82ee//LkvfPbU6dMXL959/caNtN5stjrf+s3ftry8euPGLQDGUD799JeeeeaZ7/mL3/Pa1de2tm850KfPnrpx64ohFacxgFlaWyx0TmhFKBw6Q+bMmbO/8Zu//cyXnwvCuKqKssy1qZQuAZwD++zzX37Xu98Zxom1JHhw+fLlJK35vVfKqSnlcen9PFLMzuKt5mj+DlvA0EsYvb2O38YBwDcxpJRE3ubA5nnJmPA9AX+1lTXKGkS8fft2v9+v1WpMMq85OXXq1MnNjY9+5H/8z9//byrPmmlNMuQInPm16gCmuZCce7dhEyTJe9//dV958YVrN29N8lJbYkJW1hXa7B31NGBWqRu3t+00UJKjDG5t7/RG4yBOXn3talGqIE5u3d4eZXkYxsrR3lGPkIdRsn9wUFVVXK9dvXYDGZdhfP3GrVKpZqtz9do1MxtkNkg8CEtji0onSeocWAdZUREX73j3ewzg4WHPG/EQQnuhMylybe365sbu/p42Zj5JU6vVFxeX+/0h51IGIQECckKmjRM88Fi/2Wzu7e35S91oNQ97R/OcqDiuDYdDB5SmaZb51E4WxzWGotcbCCEQOedSWzPJMh5ILsVkkmdZUVVVkiRaGyCsJamPgarXm8gF53wymfh+se/9GWOWlpbe/973PfXUU88880wYhp4mBHSOjAx4WeWc8ze96U0LC53TZ069/a1v/d3f+a3t27fTpKYrlUSx02bY762trFy/eq2qis3N9Vu3bkRR9MaH37C/u9vpdI56B0mSTCaTPM8XFhb6/T7M4rz8FuHvYiJLZBFRMBZwZlXVrNesNlopjtjv9ba3t29vb41Go/5R78rVy1tbN2/evF7qQtnq5s2b4/F4Xs2ORqPDw8M8z/v9fp7nkgtwdFzj79uODGl/+7bfKwaDQZrEJp9QVUg2dySeO5NNI8nnu5ObDk5xYqiUwmPFKmNMBJGXy9+6dcsY0+/3X3311cc+8t9v3LwWhpJ1u923vOUtjUaj2+0aYx555JEPf/jDKysr3W630WiMx2MP1i5evJjEMRENh8Pbt28///zz/X5/Lgaav54fyjtep04305m+xJe5/oaMpvFq4zDk3cXWo+9++0svvhqGaE3R6bSCOKzVIiYhGw+TOHjkkUe6C0tRLUFEazUiHR4eElFST42xayvrq6trpdIOsF5rDPuj3nBoiTeb7ZWVleFkDIwVRZHENSmlKitV5tlkLHy8tAxWV1fjON7a2uouLUkp00bjypUrt2/fzqtShIG2ZjAeJUniaepGoyGlzPOcCK9du7a3t5dlWZrUer1ePs47zVar1UqShAtst5s+p0IIUVYFMre/v18UxWg06fV6kotmp7m03G110iiOoySujPaCuV6v1zs87Pf7v/Vbv/VTP/VTP/qjP/rE448LJsMwloLFcdxI661Wy5+XZM2b3va2e9/yZiFEkvjRB+6cA62nWiTB/C/PGCOyQSCiNCaynHMZBv4T4Ryl5H4fiaKIZsGOHj0zxoBBUouk5MboIBD1Rq3VbrSbjXqr7qMh/PMAgJCs2Ww2m02/VuvNRpwkYRiPx9nHP/HJG7e2GBMLC4thGIZBFASBlDJNk06n02w1Go2Uc54XmV+pBwcHo/FAShmEIismTz75+D/70X/x+ONP3HPPXR/+8Hff98C9UsovfvHzu7s7SqlaLSaysyzF6fnvpV0+pAFgjgymc8ngTRncNBMN/CyhlJsnT3gxjZ8a8XGNc63AHD8dh0E01yvMXMLnOpv5XTCfi3QzKyY45kvu6xm/Ifrj57jY6zgcOf608y4bnz2O3318FtftX9qH1llrwTmrDEcRych30stCWUtCiP39XSLbObE2GQxCITkca04dcyXw/oZ/JsPvTXcApq7fRMQIrHXIhSZmgKf1Zre7CMA4l9bQfETUi9n84XdcR3+8YJ2/u+nwwEycNOW6Zm1cf4X9FSiKAoiSOC6K4sEHH/zVX/kvr7766qlTpz/wgQ987/d+7/d93/e9853v7HQ6BwcHX/jCFxaXV4qiMMakzcakyGu1GhBpbRhjgPzlly6NJ/mnPvOZ577ywmtXr93cvg3ACOG551/4pV/85X/9Y/927/DgHY+++5N//ClE/PEf/w/f/1d+4OkvPfPE408il0dHR+fOnfs3//bHFhaXfuAHfuD29m3OZXd5CRgbDAbf9E3f9NM/+59Pnjz5qU9/+tTp06WqkDFjyTFstTv/6t/8mxdf+qoIg7TZqNdrSZLEcfjkU4//2q//17vvf6AyGpBbgqeefHpzc9PPGTDBfWHAZvJ5eH2Q8/EPbv6Yr7f59fRaRv8RCBH4gsF/s39O35f3JYT/2TzPer1eGMlKFaPRqLvcPX36pHVGV+Xmxtr27Vu/8su//NXnnws4a9ZSzgDIISIH8hUIYywIAmKY5/n6xub3fM/3EFGeF81myxIwLn/ob/zNRmdhUlbf/4N/9cyFc1leMCmU0XE9/Zbv+PasKuMk/e4Pf09/PJFx8vXf/C1VqYejybve/aiMk6N+b2lpZWV9Y++o12wvbJw6dfP2Fuf8wTc8fNgbAMCb3/b28STf2Tu494EHa2kjiJL7Hnjw+RdeHAzHMohubN0ajbPtvX2ehDyU7e5CVWpGjAiVo1vbO/uHR+vrm2fvuvjqa1dkEPUGgxOnThPC/Q8+dGvrdlkpB8iDsN5qOgtZlhFCUk9H40wGUakMQ0HAOu1uXpUvXXp1a2d7PMrSRn2U5drY1fWN6zdvHRwcTCYTpdTGic3Ll1/L83I4HALyetpUSiHyhcWloipRcEvImYzjeJxnrYXO/uFhb9APwsgYs7y8ur9/SERhnIxGI3LIGBuNRm945E2PPPLIk08+6bRZXlrq9/vGOeNcLU3Tev3w8LAWx/kkY4x9y5/71kaz+eUvf1lrDQyjKOp0Wvlk4gdatTULCwu9Qd8594u/+AtJkjz44IPbOztxkpw4eTrLsnrauHHzZmU049zjPzjGW88XrTHm9taWAJbWaqNB3xhVr9eGw2FZlsYYP9J3dHQ0Go2MMZbo6Ojo6OgIEYuisNb2er3JZJJlmf86TX2qjZ8mZoyBdYHkVV586amnNzc3GWOlqmTA242aKSZWVYxAG2PJEHnLndmdgkDHJpkAsSgqYPw4+3XY70kps7zIq/LgsPf444/3+kMp5Ylz56aGI3fdczdjbGV9zcsYT548CQBra2s+z4Ex1uv1wjD0gYlCCCllkiRlWYZhaLUh6/ixkW9fFfm9flaeTsVeknE/WuxBABcBF8I5d+7cqV7/MEnCNz3yMBBEAeST/MTJ9e5iR2u9sbF25cWXv+5971ZKHRwcEbDltdXLL72S1BNPrkVR8qWnv/zil//XRmfh7/xf/wdHCGScJHWjIc/LGzdudBqtNE2r0ggharWaECKOokajLgSripwzNhwOD/fCwWjcanVEuH14eAgCT51548LCYlVVp06fRmLjP/hou932FUNV6Waz5bRDxMXFxeXlZSx1GEdVpcfj8dbWlqOpU0i/34+CYGlp6cyZM3EcorNBIKQMFzpta22/3+eCRnlW2mpSFcpAvdlwzhWF8gYz3c7CY73el556em1tQ5dKFQrMaNpCsnY0GIZhOMkqYNxaCzwcZ3mYdsg4Q1ZwCc6RF8ZmyCULosDawivH/WnnyPpUBuv0FASAc84KyQEAOQPOOOfM528SAYDW2loKgiCOY4FsPB5rrS1MAQRyJriUQcAlA0ZhFDEhisp22u0gCJO08W1//jtObJ4h4JXSXMhUykaj0W63W61Wp90KQ7m/tyMlL/OsKDIgW1UVFwET/JVXXvr0Z/74y19+ptVqvPvd71paWaoqxTh0Oq2lleWDvcNARt1uF8A653zVDmABOSEA59pawqljs0cDnhYiAB8ZMlXJMATnFpaX8jzf399nQgDAaDSqJfX50cWOtdrn3RlrrXfkcpaIyGuh5uwLIvr1MBU3IDPWWDJz8maOt7ywjxG4Y6fj9BScvilv6AXeCIQhgk9em/YcYfbPtIuKSEIIH8EJjrhPlyMCQmONn7tmxBC9O6mN4/jq1avI3PrGytXxoLmMBsHOcc8xSunPOLr9t5HnrmZoicD7g1lrMQgssbzQEIikUT/Y32s268oZv/UDgNFOSu6X3+teaHaJ2LHZva9BDHMCzGMCf22NMULwiEtEREfKKCeCRqP14z/+49/94e+5ePFiHEZhGALhlctXf+/3fs9aGwSBcQSc1Wq1Xm9w/wMPAUMuRaX1+Xvu/ZVf/dV6sxlK2TsaLC4u/tEnP/XQG978Ez/1s4jskbc9WhTFv/vx/7i42L3rnvt+9F/+f0+fPn379u1nn332wQcfXFlffeyxj8swXF7b/Kmf/s9pLV5e2/yd3/uDUpUbJ859/LFPv/3tb0fBf/M3fu/lS5c2VjeACa0tAKADmUSr62t/7+/93e/49m9/8yOPNBqpUuXzzz77u7/7u9/xnd+5sNgdZXmz3XnllVeeePpLb37zm7MskzJgPloUwbsuR3EQhGLuvzi/dMebNV9zYRlj8/8zB7UAs3lYxMrovCqTJM2yotFuaWM8Pjs86iujySHnfPPkxomNDV1VQM5aKxgstNpFkX3kv//B5VdefvhNj5w6fdYAaeuKohAcwjAkR1bpQEogl5VFq91JGg1gXGtdaZO2WsIBIoBgwBkQVlUFBA6xu7wchqEHcOsbm3meM8T7H37YM6xLS8vGGG3MPffdy4C0UqfOnTt/973WubiWfPO3/DnvI//N3/ItWtvxePzN3/bnjNIE9HVf/8FerxfXG9/3/X9FmyoIYwDYP+p947d/e7u7WJZlLU7LvFheWfv27/qQtrZU6u3vfMfOzu3XXrv64MNvXFldG2ZZZ3HpDY+8+ebWbVWZt77tHUmt3s+yIIgYYydOnNjb3vFCQ+fcJJ8sLCw8+NAbXnzxRba78773va/IMpRiZ39vbWN97db6Zz/zue7S2rvf/e677rr42Cc++Su/+qtvetOb3vqG+xut9suvXl7d2OSc39y6/WBRpKlkgg9Hk4ODo/Pnz3cXlz/3+S+kaeOhNz50/q6LH/3oR4uy8uI8B8Q57xd5KIO777v345/6pK1Uu9F86pkvMSHzsuykjbMX7vri579QCyKGKIRYWlt9x7vf89//8KPf8I3fTERMina7fXB0dOrMmbiWcCHSdnM0Gimlbty4yaWMa8m1a9fCOFlb3+gPhucvrvR6vbIso7jmLSrny+/4+mw22w8//DDFaSIHSmtwVK/X2826JbLkpAxPnDgBzipjRSBLZR588EFfzrXbbcbYqVOnkHnN7poXkMAsQcvTlsaqei396pefe/mlF++/eI92pspyzvlyuzk82G/FCyxm6NPRGXPwujIYZsYTlkCTG08ypVQY3YFDBwcHQSSHk7FzLklrZ8+efeChB8sy3z3YPdzfR+TCQyXfkitVpbX2h6tR0xyhdrvtKVBEPHPmjN/p3vOe95Rl6a11rbVzdcicSOSzbJBASjaznwjDUAhmnJ7Pf5FDGQZEZnt/a3Gp/d0f/qAqcymg3Ur7/SOwzhhTlvnG5ubK2ur+0SEi5kUhZbi7uz0cDmtJfWlxOcueqrUbkrPt7e0kCpyD4WDcbjdbrUYrqa8sdRcWFp579gUkCc6RdZPJxDknGNRarUgKBBvH8dLSEgPeXlhcWlp65bWX8qo8PDraWF9/3/vel43zCxcuALooig4PDzdPFD4zsTqstra2siyzQFJKLoI4jtfW1rJ83O12r1+56oy5ffuWFOHtm7fAGkQMgogIyaG1rtFqLq+u3Go1g6SGnKuqYlXFOXO22N3ZGQwG4CgOo3ajWWaTQMhOu50kSS1OwkBwjmmaHgwmPo7z2We+BFHz7IOPTCoLAJzJvCqBsyAICCEMQ++q7KwNIikjWU20jATP+Iw1YYyhDAQi+qwS4FNj60opOFYTI1IUB8goDGWjkY7zgguK49gjDCEEQyYD7px1zjlkSdqqp639/aOvvvTqqZNnz567wFgwHk08T+NHZmppsry0OBz2B/3KOZNPxp7ByiajySQfDMdXrl/76Z/5jwj0hjc+fP7ChbSeaGvCMJxkWb3eDEP5tne8VZX65o0tIYXRCnHmhOIRz1zgcscZ1eHUYhIAnBBy+ndr20uLSZIgYtpoCCGSKFpcXOwdDXw3eT4pMzux5uwPAr6uO+ZvK285O2+EHZfavN4Sbx6mBmxm6kez0DT/odCMSTqOS4gIcBpqfey3uqPj8a/uTX2MMT47jzHmwIVSWkvGWs65thacI7BJGGb5iAlaXGi+cmWMleJC2jlGnG0+fxp6HSMc/b9niNDzZDMvTQIxKZWLeK3ZunHjRrvd5tz5RgPcMaZiX8N1Hcdhc43X1yCwOTg4zilyzsm6IAis1sBAMqmqSoZBU3R+7Mf+7alTJ86ePR9F0Xg8/tSnP3XxrotprVGWZZLU8jzvdruvXr4spLxw8WJelv4DOnXmjFIqCKKo1gSi0+fOT8pyaWWdc94fTxhgc6GrDCEXyphnnn22WW88+PDDuqpEILMiN+Px2trG0dHR/r5dXlr96kuviFAsL6/c3Lr9yX/yTwHgnofesLaxaQzZUjHgjIN2tsiNlPxt73r08pWrv/f7v4cIaZredeFClKRveMtbOt0llmdBFL788qWFhQWtNRcCECujGWPWGL8a6/W6bzvMqQWawa/jV/JrPtmv4TWdM3zGinlKzDewhsPh6sY6IkopsyxTSjWbDSJYXFxMkpjQKask40IyrTWAE0KcPXNma2vr8tVr995338V77ztx8mSr0TTGVEXFpRDEBePI0YIdj8c+Ogk5s0TGkbNWCqGUduA4cpqNIYtQDCfj+YixP7aM9XGcTmnt3+xknMlAEBFDckYrpYJAGEeIaKwFS0EYtYVUxjAhLZEMwqW1tUqVaZJqHfoaYHl9lQfS25QopQIZraxtMMGdI601R1zbOOHITKOfkOelOnnqTD8bI2ISRkVRcGRTE1Tgq6urFsg3IoMgyKvy9Nkzq+sbJAPGoNaof9O3fmtWKW3p3gceXN3YbHe6xpha2vjA13/j1u7+iRObpbF33Xsvv3pzPJl0F5ff/4Gv7w1HtUazyMu3v+udgFgp9c5H3/P8V55N4jRO0iAI3vrWt165fmOhu3T6zLmyLDmKQEbjbDIeDb/+G76JSYFcrm9s7B8c1Vv1vKje+s53fOKjH/u13/jN/+WH/npe5Xv7hw7hgQceEowrsFyG9VZ7nE129nYv3H0ROKu0vr2zN8nzr3v/B//bH/zBxYsXb9y+vX941FrovHz5tc3TZyzQ7v7embPn0ZpjNeR0iJ4zxoSclNVwOAqbQbvZuLl1WxsVS26tQc4mg0mthsYYVRZcBkrbMAyRprGYYRhO++/OevQShqEQkogIp4YMzrkkjqsi+8yn//jEiROFKmq12t7uAUfcXF360pW9zom7rXVIDBgBIwbM/qkWigPiAERUGWusA7zjw9XudFbW1tIsLVXFOYuS2tbWlkPnrZ3q9bqw1o7HYy5FWZa1Wk1KmU8yIvKeaYxAcF7lBZMCEXWlpgICbQTjQSyNMRzutHXIWMYYzU4gv7y8AgwAjDFShtbqeWtAW4NIXGAQ8iDgp05vvvjM0+124+KF88uL7SIrW816vdVcXFk+OOpv7+ydPX9uZWn1youXl7vL40m+u79XlCbLitp6sLd7c2WpC+AckXV6d+tWMemXHIm6nrerFEVRtLCwMBr3akmUZ2OOLJtMGCNrafPEiQsXLuRZSQgY0ac/+5lKFf3BYNjro0Xw9qGI1ppGo1EV1Wg08hoy42yllSbHGNvd3d3b30mShLHAOZBSLi50Nzc3B4dHi4uL/tJpS3meJ1W4tbXtyTAhAkLWbLaqrAqCIAyCVquVpqmuykYjPTzcP3v2/Pb27f393U6n4+Ms/bHKOQ/DcKImaWtBNhadc4zxOI650XEcZ9N1TIas3y7RTRldf0GIrCPrnGEinCkfHaALI1nkiA673a42Zm/vwGMFf7Z5z4soilrtprImrYe1WlyZMqpFiGidFqEM4kCEASlXSxrbO0dPPflMnDS0YUf9SZZlQRB1Oi0PvFZXlhv1tCon1pST0UBKqaqCiK5fv379+vWvvPDCE09/qdJqdXX1gYfu73RaURRVSvFAMs7jtKasOXvhvOBBURx0uu2jfg8A0FkiBIZA4BwhF5W2DhjI0M3xCRADRCDrgQ4QIC4sLgVRqFQJnDHG8mISRSsbJ04886VnNzc3nSGywCTeaXtNdeceZ0ybnl+DGPyx7dHAXIuDM5+qOao4hiTgDrTyX0EABGKEiLOwC2KMsWlEro8tAoApZ+axjwPgUjLLvF6US+EBJ5GX/jiOIIQgbTU5AOACEb15LOXFuNVM9XC3EQTl1L9eALE5qJohv6/BYH5igAEAefN7P3FJ4NMwlbYOsCgNBkGz2ylVNVPt4LxR6P1ovNSdMQR2ZxYSjmUJfA0smCLXmTntHAf762mMBWTOuTAMyJo8K8MwfNMb3+zIXHntmnMuCIJ3vO1dWmttnbaWqcoBWWfDMHziyT9pdTpTcYyzpdKIrKw0MCQLjgwyVpQKAJAzZIyAIYIjcsCStBGEcV5WAZfKEBGTYaCdTeqp1pqQWgsdLkVVFlESv+HtbyMi50AZjQAokKzTxkWCMy4IaJxltXr9DW9+q0OIooCMFbX6cy+8WGkHnPV6g0987OOba+vWWusconM+VpmR4EGW51JKn6Lh5Q1zzPo1SOv4n9b6qJwA7rTX2bwSIyIpwqrUCysLs6wIl2WZ1npxcQGRz6c9philKqWUPJDaauecUqrdXVhgbG93+8UXX1w/sfnggw+fPnW2VqtxKXJVWWfIGADwGw4it0ShlM45DsxYwwVnyMm6SAba2fmJM020ZKIyNhCBZ+mEkEDkZ3KlRAsOEBw5BGQysEBEVvpkMy60UsYYEQhDDtxUBAbIJlUhkJlSM8EtZyrLQiassT4rlhCsqnwwM0phtOJTk0iOBEjQH46JIyLLJoVgzAElUWy1RQRk4K07fZAtQ1YaK6LQOLDGATJCltQbWptAhKsr64RsNMmiQNbqjYutTqWrUZZHce2BBx/UWrNGTTBelKooikajldab2llDJMPoLW99O3KpdFkoffrMOa3t+slT2lnSFhDq9TpHbDQa6yfO5Eqfu+ees/deNIDoAJHV682v/+Zv8e420iXGuJUVfteFe71i0ji7fmLz8qVXz1+8+wd/6K9bZM125x//k/+HEN/45recu+tCu90+ffb8MMvf8/4PALBc6R/55/+CEHxl60WtAA7xmLYdIVdmOCnbdRvHMRcsz/OoUbt24+bp06erqur3+0dHR0ZVq+sbXATOwYmNdU92KqUmk8ne3t7ScjcIgnq93uv18qw8ceJE2qgXReHN+kNZe+5Lzzzz9Jfuvffeosg1GQA2Ho9Pbqx+4fkr4KyuKssFEWdMMgFkYO7E42M0/a5PwH0/kbXT+T21s3377IWzcRwDQyJXFMXR4KhWi8uyjKJIKSWuX7/+xS9+8cLFu65fv765uRlFkVGaMfaWt7wly7JPfOzjDzzwwGg0Onfu3P7RYZIkXkmtlGq32/66x0E4j9z2BzNwNjcfYjMPcWttKESSJONsUJTZrIRiRKRshUhpo/bGNz78xGc/ec/Fs2TViy985eSJU/V6TQgRxlGpqlu722vrm5xLXalKyjAMG+1Op9M1SlflBMHs7m2tra15i/nlpQVl82w8UboIw5ADL/OMCd5sNvNisLV185E3Pwjo6vXaa69eigJx4sTGvtaIHAXe98D9R/1eEEWdTifkohgXq0vLV65eBusGo0G/3y+KIkmS4f7e0dGRCIPl1ZVGu6WrXmexG4ahFGFaq6vKKqVu3LjRXugWRTYaTYIgMciQCz+vsLKyUq83D/lemqZauzzPOGBVVNkwu37ltQcfvDdOQm0qIdlg0LuvXt84sSmlXFpZ9gfMXJA09W6famWY1lp4J3chiqpUKvIoDWd9GUBHPrva75E+iTwKEQlmpupCiCovxuNxs9kslK6qKowjz965qRCHpOTD4WDzxGoch5Os9C3/eWgPETHB80L/4UcfS2udpB71B7mjQ0RcWk5brc7C4kK3s9DptMiZfv9IlUVVFZPx8Ojo6Nlnn/3kJz/ZbreRie7iYndp8cyZM3EaC8FYIOKgRui8h5BzUK/XR8PJrdu360ldSulMhQCOCEEAm4KYoiispShKVJEzwa3VfsoeETkTRATkFpeXRcDjOHY4FWYlSfLVr351eXn5u77ruz7ykY8sLixxzpGzO+4yx+YQp0v9mHW+P7TmbuzHGR3OuTbKH2yeVKOZ/QTY6bfN+TAf7jmzrDzmYUEADAlmbUjPNc1eyz8hn4XlTZtHOKWpOEejtOToV0UYR6osBGNBFAEypcpGPYZej1sCIi450uuaAogIgPPwDXx9A2sKlaaz2v4VfTiuY0JmRampVksbYDxcQ+fscSgwrxDmuHT+/MehKs2kpXPqaxpUPLv+bOb87Fu6RGS0ZZwB4w6oLBUipY0m50iEk7xARDvTSHEpEbGqquXl5bwsETEvizAMjXEOiHEOwICB0oYzFIH0U4pcBkWRxXHNahOGNXKmMlaIABhzxhCBsQTOWVvCtGB1psiDINCVNsYBQ+ccZzIIgzzPheAcUVnjnEMOjLH+cFir1cqqtABG6e7S8h99+tO/8Au/BIAyih66735rLXGmnZVS4ixEdD5pW5bltBKe5Rwc6yfin768iIizDUFKKaV0zsz4Xe6c845fSZJEUeLZJsZYFEVu+j1CqdI5x5hwzqDgxDDPiygOvM/zeDz2na+kVs/z/KP/8yNxHF+4eM/65sapM6eTJAlrdV0pQjTGOEMcwGenErkgiLTTzlgOaIwxbjpc7DEf55zjlASdKzKJyCH6xCxvVwzArbVIROS4YHY6eGMRUAaBQyB0aJkF55wNgsAYTd4g3hpjjJBCMGHs1K2ec68cZ5xzZZRfz1wKh4DEOWPonAHHGLNgCZH53FUhjNHTcWwmAiGsNUTWkFOlQmRMMELGuCgrzRgrtU9dY1LKShunDZfSOctFkOUlsEoIQdoPa2vnXKEqYwwygYjOGGYZoZ0eF4IhYpXnKLghx4l8AoUxDrjlyByRNZZLWVUKCI0xXITGOu2MtToOk4YItTYeJznGQcitvZ3O4hIhZlUV1xuMQGvNuFxcWlHKLK2uaW0jJAZICHEt8R5y+PoMsenWR2QNZUWZttqIU79+zjnjEohxJutpM601VldXrVbAOBCzBIgYx7HfS8Mw7HQ6XGAURb5hlcTpfFUAQKPR2N3e/qVf+Pnz589PJuMgkowxLoVSqt5ZNLqwxhBzyHxsmyOa7VFgifgMJjKH4LQhIZV5nRYLnOv3+/3B0craKpdBnMZ0RFVVWavrtcZ4PBSc84sXLyqj19fX19fXe72ev0UZgdPGD2ZvbW15f78sy86fPz8ej/M8f//73//ZT326qqqlpaVzcMq/3KVLl+I41s6GYbi5uen3Muec1jrLMu2Ic/SKZl90FlXpB9+KInv18iuLSwt333txYaG9eWJ9cumy0WowGLz369537sLFV2+8NhqPFxYW4jhhjEdRfHDYK4rCOTcej/d2tpbXlhF0VWZpozaZjHuHO0ZljFOz02zVW0VRcc4DGXDJ7rvvvne8601feurJsqgazfqv//qvffjDH37krY+UZTkej4sqH42GeVXcvr3TbS996nOf+9gffnzr+s5999+DiLU4iaIolOHi4uK1mzfysrh183YshbYGGF69epWI6mkahWkUJZIHy8vLniRbXl7Os8oyRsxUnO3s7Gzv7i8sLMRBXAsSJZMo5JGQzOkkrKe1GhH5xmKWZbVG/dqNq9v7O53WgnMuTdMgjuO44nxEZMABAAZB0Gg1dw5H3n3OOQeMeXGiNQoxFUJkxiiljDFzEZ5fhVJKj88IQAjmnAmCIBSyXq8XZckYg5mYqdFo9IcDa7XW1Gq1AB1jwDgikhBMW8uFkE56xDwc5H/yJ08sdFZVRf3epNVcLEpdS5OkVgvDME1Tn6KaZ2Mk0qos8slrl1597LHH9vYOlhcXD3uDg6Oj03ed7ywu3Ni6NZoM4zgmRpEUwBlYJ4SIokhrXa83u0uLg17fn+CMMTdvxiFnTNiq8tMeVU6Cc+vn6x15/ojInTh9WkqpTGWMAQ7GmDiOtdarq6vb29uLncX19fXxcFKr1ZAQ3OuEWZ7KNsY653AWXsQ5B2BeWDbnvea9nvlXYEbt+EMCAHxBYp1180EbhlOZgjHzZ3BzcywCB9M4szlLREDoXXB9Ow8JafpshI5zLkMBZH2PeLrSZhFGQGYw7NXaJ6AshVeMce6dmcDHezhExuYeOlPYNzNihWNji873UokQATnjQvBQ5MXIUBzVa4CAXDijrSXOBefcOePX5FzffRwWzL9Cf2q83J+4ftn7joMfMmCMOQsOiEtubCWlNMZyGfhYAh/EWZXKG3MYrb1jrnWaFAVBIKIwzzMeSERshI08zwmRHDHOHDLGGUNggM7ZQIbEYZIVcZJo6xgTjiDPS99GMNo6AESmrUNCJJRSWqMRkfHQWCBCZ5yUkiEzBKZSxLgFRABkyDkjZIAYxonWhCDB8kAIIlpbPXHq5JnhZCylNFXJGGMcBDIickB+zTkLURT5dCC/kDzpOMtJfx3jdbx/7RlWv26FEByZmQ5RTtetlHIwGABAvV6fzwIjYqmKWq2mTOUXNrk7grMgjowzvivKpQDkRamsMUEQnD1zSlXm2rVrz33l+Xa7vby8uLG+vry8XG+0anGtUUsBwDDQzhKzxhhkGIYhGKu1rsWxBfJBWN4gxsF0CoeIGAdLjs/8PK31t4Yj5z1eORA4sgjEGbOWGDIAsLNkiZBLMys/mOBOE0cecHRExjif1hpGkVUKEa2z1tokrWmtjbY+l9AS+fEChOmUrgeL5MiSZYwhB6214Exr7bM3kCEXyIBpawC50poJiQR8FqFriUQQlqpiNCXjwzgiImMVIrcOkDOylhwCMUBmfNQjAGPC6AqRaeMYoCMUPplXGUS0gEwIYrzSihHjDLVxCAyQOSJygIiOoSOu/cIlbxEHpaoarc473vnoza3txdUVB6iV0UrFcay1Uco5xlReMOTIwCrNpCAiZZ3HMNNRnuNFHDFiPGm0ZBgYDapU3W43qadVVZw9f84aajRaQJbIUhIhcsEjpRSRbbfbdmafZq3lAr3jehAE1tCMx+Vpmo6G/f/0Mz/TrKeIEEVRUeVM8DAM9/b2zixtBpyZSol624JDZBbBOMfmG9zrflfwOpOiKIw7/nW2sbHxrkff8T8+8j8+8PUfTJspY6wosr29nRe/8lyn0xb33nvvAw884IOT+/3++fPnq6Isy5IYRrXkQx/6kLKm2+022i2HMBwO6/W6b1M+++yzfh/0cjb/iKJoMplcvnolDMONjQ3GGM0Gnmu1WhjGiKhKLXjAGCsKIyUPIzkZDaI4AIA4Dk+fO7u5vlpk+SsvvXj2W89vbm5eefXKU0898aXnvhxEiTHWI9mVtZUwEHmenzlz7t//xH84d3L1537+P4/Hw7vvvjsIZSAkR86J397fO1rul1oBgNa6Xk+5wKXlxTNnzjRqycHBwbNf/vK5Mxeee/YFf+7++q//2j/+p//4HY++q9Vq1ZJGGMooSpIwJqKFdocju337dpZlURBVqmCMpUnt1KlTRqnu4vLhfp9zfrh/YJS11iqlrl+91js8PH/+LiYFMZ7UU+24VsY5V2+kQkhlXKlNEMV5VipjSoeNNNYq7/eP0noiJV9a6vKAM87rrToCKV0GgcyKvLJBURRREKgAxhyzQe/sA2/83u//y7/5O/9je3tbq5zI1RsNqw0KGUv0z+ZhAec8L8p5C9w5hwSCcZ8l6sMfWMiz0djH79TrNQ/OskkRdAJrLQXgyKRp4rRqNBqMTWXpxmrGGDmIwlpVmj/8yGPDwSRNu5XWnFyvP07rzSiKgiBqNBrddgcAnLVINsuzyWTyxS9+8fHHn+Scd1eWJ1lxdevmxYt3t7oLIorceHzUH0ZF5choXfm9fjwegnXtdpsIvSMGk8JRIRAZ8zUtAWMBZwWbMkDkHKKvTnx+MRBQZ3HRB0d6exELNk1Ta601FMdxWZaf/vSnG41GEEmlFBFYa4GBpw+JCBkTQiijrbUIdKzDCABQlkoIJmVIdCe5xRPD/pzwzxPIkDFWFIUmywHnfBgRMWRzSaXneJDA+DkA9HNtgAQ0M4Dwh6aUIkkSpVSe54ILLwNwznHB/dksg4A5DOOoGUWjSTYejkIhK22AycFo1N2oAWkwCpAjIgOmnUFEQiRwCAi+gJ01XoHuiOXnwUTkA/yIkXN+PsM5GmW5pW4YpUDotLFuSuxZa6e5SrMOo+fLCO74Jsy/7skteH2rkc0GHnEWuGmMETzwwSCcSd+y9+lMXiNhyTEhrKHSWMkEMDRaAVAYSEsOjKvVallZICID9HyDEEI7C0BATkppleZMaGfBQZIkczms01rIgCFWVeVj2IhIK8OYYAzRWkeAAOSIC4YoELEy/mDmRltrnQgl8RmgJ+KMWeWRuqwqFUWRNSajYlIQctDWMCER0BIA41Mu0CEAMUZe8uVnbowxfrf3FMjX0F3HsZdfT/OlaK31Zt/GEKIFYpzz4XBojErqidEuDAQTQAA+5giRAwK56flKRMroMAx1pTxm1tYil1YpzrkjzCYFclav15vtllKq3+9v3bwNAEzw5cXlpc5Cq92ud1qNRsMfpYxxKQUKyZJEWxMwZj23x+bZ85bBtJ/OkXl/SmecCAIHzhAwycgBWI2IjKGxFoEJhuDIOssEA0AOoFTpfZW5EFMVASBYhwxnecykdMUIAB1DAI5VVRChENwYgzNSnDHGZ2StVyNNOXIgz+dZ6zXT4MGfz95GRAfEhCQiINDWsRmZp62WUngcbMk5B85ZzjnQlNT0UWZcCm0s55yc89uOv4844wAkUBijASCQoTGGAAB8pYdT5p4IgDsEY10oUDtnreacOwRwxBlDv3iAbZzYPHPmTJ7nxlkDjgjCINLKMAIhhK8PHTnOmMdefrPSWkuGcy0tzbVfXHIWMIGVMkEQCQIRybIsEZl2xJkHHs45JyRT2mgoEBkR+KacX+rGGC6m25S/N/0hmKb1/b2dn/nJn7BVVa8l2irnHBM8KwtlTJaPA8mSOKiMTjhX2nLh+fy58b1/zzQrMzkTXFfVvKSZQTR+8uTpb//z3/5ff/03b964FcSRCESjkYogzIqqzZh4/PHH77nnnvF43Ov1Tp48ORmNjTHLy8tlqWQQhWlgrF1cXHZES8ur1lqGtL6+Ph0iOH1yOtg8az52Frtrmxt33XO3l7f7upRxWZWlMa5Wk4yJ0WgiRAAAyBnnUK/XB4PDyXD43HPPv//973/rO961v7c7meT9o0G/3xeC/fZv/cZv/+Zvbe+q/+sf/69VpZEJJlhZTQaHe91m88TqutaaUfXQW9967dqN++57IEqS/Z29WLaS5e4k543GUqPZimpRoaogFBzh4OAgmxRMBvu7B2Wmm+nS5SuvXjh/PkrEyc01rfLhcKiMyXv758+ercVJnpce3iIjcA4Rx5OJMSaJgr2dnb29vSStg5BKqSovlpeXl5dXb25cF4J1FlaZY3meK1NVpjLGMQylCIIguH5tSynVane44/VmKyt200ZSahOEgJqNhkc3blxrt9tHvf3hcJC0Wtu7O4xAItbS0DlTq9XCiV4KUnL9gwMXdZo3bt984umnWgudGzduRIKVTlujqgoP9ntgc0EVkDXGyCBCJjxoYCKwsxr3zgbh3auFcAilKpDh3t5emqb1el1r1ev1yqoKowSsCaRYWlxgQEQWGXGBPqAmDGsI4ec+87kXX7h8/ux9h0cTzp0xrtJ6lE3SNOGcNxqNNE0DyciZMAz7/d4X/+SJVy5dXlxdU1pv7+5cfvXy5pnTjeUuhmF9YeFoMORBIMOQ80SVJRfIARu11NccHlt471MAsFM+SQAhMHCuBFNxoHpSGx7sAzEASY6QCedce7EbJ8kkK6Tkw+EwTVPSJJlkgWA4FSFFUUJEaI0xlRBBXEs8lCFEIZBxJCIOXHDh+18zZ0s5QxWCobBkGRO+gwMAnAkAUJVGxCAKK22UUkggGILgRNYYM1U+GRJCcOABDxw6coQAAoUvwIyywJAcMQaCcW2UsSYMJWOASFLyOA4RkXMmpZxMJro0QghrVZrUVFmBs6dPbt5198WvvvBKvzdkPJRBPJ5UQRAAlkQZspq11jfbtHOEgIJpYwQwJCRCh15HN+UMCBwScG9AMfVP54DIkTljwzhxOau0rKVd4NyRdo4AGAokAOuIMQRkjDNjLQJxwckhkWWMgXMM0c3cNO4UmMddzTy0dTgNGyDHBTIirUpg6D9NZ4EcIuOGLAAgIDHGgDsAZx0TEpAsOQvEGKuMJgfIpsl0vrHOmSRywFlRFD6O0GflOG3uuK95FO4cIGPInXWGnENw5Hxy9rxtOuuLTWOyjLUOHBOMcczzKpLCFxJEBFNzYMcEN86Cj+EkQmJVqUIZOObjljljAoE5IkRmtY7DxBqqSu3d3aQQzjnBhTIKGBJN9QbaKJgNOYIjNuN3fT9EG8M4I0BjSTDmnJVSjsYDX64MBxPjnGAccJpFStZyLvnMpE1rzYicsYwJRGbBMiG1cYILZS2XnAsExqz1UQ4MGVteXvGocTKZjAfDSpX+o0/TNIqCJEmSKPaWN0mSJEniiU8RyCAIfMMUkAlEAssBkCznHBCkFMYY4HdGYTxatU5wJufdWEPOO5oTJQCQQOgXAFknpfSmwdZa58wUoVo7nwm15IAYQ/RDPohT/7xpuYuIiMYqzrmx1gExJrXWIvDwjnHO4ZhFCJ9bSfkKBCyBFxmCr6K1nRmVkWOOOWeEEDAjyL0XrrNmth3x6XQ0zexp2FSZjYjkiJxhREIIa5R/y4wxdBhw4TV2DALn3JQGQvT4zxhTWVsxhYgAyMmPjiCbWWcxIIdTnYBknIDIAToKuLgDvMgiQ8bktHbmTDvHhPTDyNY4hhxm09+MISJDBOsAuJgVfcC5pFn15m95AACyiIjkuq2mtea5p5/65V/+5TRJWo16lo/DMCRyFtDrUcoyD8FsrC7s5hNbFYwxgRyNnyGawkQkBCDLgCFDZBad9Tq2Y673IJLdvd7OzsGJE2cOjsZ5ua+tNVbVarEM0sGgEF6B//GPf7zdbp86derJJ5/MsuzChQv3P/AQEVVK2VmWrcePtSSa62QZ4x5gypkKd3l5GRGNMUEQzPT1TusqiiKGZK1lygyHw1AGM78lrrWOw6jT6jDAJ5544h3veu/q6vr+reuvfPWlb/62P4+Im2vrJ06cunlj6+jgKE3TtY11Hsh2uz0aDr/4hS/cd/+DQRDUG/Gb3vyW2ztbRNRsNg/3jm5u7Sa1+s724V0XHM28MYNAhGHIhVDGGu2yrFhYWHz8T74UinhpcWV3/8buzu0oCOr1erPZ3N/dM0pPJpPrV68JGdabKRDbPzx0zm1sbCytrT7/wgv3NBrNel0EUa1Wc1qRNdtbNxljRTkpqyIs+HgwbDbrhO7E6RO3rt+KgoAsMICV1aXd3d3t7e18lEVxTNZoVZZV6QxntkzjZH19vV6vn1jfqMVxKGSz3gJjbanyPJdhMB6PrbW9o8FwlAE55Mwh+/hjjxFG9aTGHPNWzgIV55yciJPIU/HeZ1ybqeuBZw68BxuhM9aSQ+ccD7iUHAAYg3nejpSSS5HleVVVWT5Oa60kiY1RACyKIlUZH/E76A+fPvryKy9fve/uB7LcWGuNdlwG3lpTGxWGYRyHjKN1OolCsuz5559/9dVXG+1OUZb7hwf7h0ePvOsdURTFaQ24sM6h4BawrHQSCa2NEJG12jnyLhy+u62Umt8bMKulwJFzBsAppZRSwLnWGgBFEJKtZBzmZaUMIVIchtYahKKqqsEoD8OQZjaV1rgwCqQMRBpY47S1fsP1ux44EkIEUejlNUKIJArLsnREQoi6bPptNwinG4HVypILhJRhwACLqiyKKo5lGteVLn2fzRnLpfC+LdYSIjLynWJmjOFIzCMJ5xCnCZVe+S6tAAC/zr2hfJIk1lqfqou84QEiAFRVBZxJKW/dunVr67YUtXqzEYXy5JnTw/EkShKx0Jxk/XCppaVEy9A568OYvU/FNJCGoe/QIAKh98P3nUIA8GHdSADEHGlEcM5ZQm1oobHQXV21VgkRHZcfecjCPZqZpbbT1PKDzUvL15WYMNXQ+LKecw4zlwohhLfenxoLHXP6UNaHPglE9NFIgJwItNZS8tJzpQwsOM6lAwKiqtLkEIEDMJ/GCcfMGP0Cm7tklaWSUvoUUaU0Y+AIGBMOSFvjP1OBnsMjhwAAZpaO4H/DPM/9gevFfcY4X95wJghIKyMDYYkAwWiLiJbAWscYN45CzgHQWjXHpnMM5ID4dNYBgyDQs6TnqqqmjjOzD2Le4Z0TsTNaFzkXiNOMV2OMEMw6YCiUUZyjQCGEIHTWOHAIAMZUYRgyFhqjEASBDWRkrUWBiJgmqdaaIZ8NrkwR9tygPwiCUArGmNVGymlMpC7KnaNDf8RUlbZWMyYYAyJ0zggRSMmFCIisd6ycD4HhTPNKAEEoyYGQnCG3ziAXnDMi8NudcyCkdMfcgL31kqejfRtRSum3Vj6dIUcmPDsFUkrO5BzeebDgLygyJjivyAghjHOIXEqO6BibxjcFAZ9rCfyKstZGMvTXHwB8fIUFQuT+slnnGA99RAcisjjKxpO0FkItRIeGDAduwaJD/yeTjBGzYP2f6NAhcEAHjKwlRlwExNDZqdYTGIYzraq/l1nAfOuDMU7EMJBsNvSNUwME5gknAOB82gjW1nDw86qcMeasnt3X6PEPObTk9SNOIHCGzlku5FyWwIAYY8YqKQPnwDnHCBxaBl6DYdAvIeCETjDBOTIWxnEIzr726quf+8ynPv7xj99910XvbSml1MY4BGuMBZQyGAwG1lTNWnxjUNRmlAQid9aC4ODl08whCiTyKlx/tuZ5qco7zcAHHn3v1u2d3/yN35pkeavTTRuRdU5IBkCW3PUb18RkOPrqV17odDr+DBZCXL9+/W1ve5vgvCgKZMwDqfkzegbPc5icc0RujJEzeO79LatKB0HggaLWmsA6sGVVWTdaXV31m0hZlgzQGAfEXnrpFUTeSJuTrEDLj/Z7r7zyktZVwOXq0rpWBCTSNB0M+ltbW0KIyWRCDl9+6fLDb3hzI23uHezuH2xFcbi7u7uxsiYYDPpHCwuLC8vLe71DZw0S6LKy1kZR4oAMuSRN98ZjLoVSxpJDjqqq/GhbNp6ovEDjakHUabaWFxfqjSSrqqheE3EYRPFgNHbAc6UNY199+eUsG2+2mq1aFDAKI2w26+1OvdVK640wDLnS+aB3eDQcKF0qXQZSOkfIpLWm1agtLy2oemN5bVlwXF9f42G4vNitBfiFL3xu+9Z2p9Ox2jntnKFxb1SL4sVuNy9ONBtt7WLgrsjdYJwD59bakPN2d7HSiI58V8iSi8JgeXnZVKN6UuNTsVcwyyEgzqdq7ulWOxMtsZkNlZ+T8h6qxhjnrAwDxliWZePxOIlTLlBrK5CZ0smWlExUpb19c2s0ylv1hrXWb45coBBsko2Gw/Ds6Y1ms56mtSgKAhk30trTTz7x8stfXV1dLVQVBOHRUe/BBx8UcZhnZUOGg/EoiiKGwmhXq8fGWWBoyXl1lCkVADQajfPnzyuldnb2rgwuA2foyC8/InIOAPHq1atBEIE1GyfObK6feuKJP3HOBDwsNTkia3VZGim5tlAUBWOiyA3diQbi1jEpgNAxBpVW/mzwivhZmTGVXnkTar9pmjxLotgof6fgZDIBcPVajRDLSSbDMJTy7PnzRVE8/fTTrVbHNxG4ZODIgbPTNhwwxrI89y1IxhgSkNJeB82PZfXc0ZMBKWMBIGS8LCtEyvq5ECJK4nLmoKG0FpwTQlGWUgRlMY6iSGktAjkYDD7/+c83mklVFb4sBuO1X8wxh44x4DiVa6BDIJobTyAgA0/QwRSrkYOpEyuCb9vlZbVSjzuL3YNbr7VaiXHOh84AI+e84TwYi/O5aek5RWuklHBnePV1kYVuZoXgnOMclU+/Ecwo7Xc2Y4yaZhJwYwyTwjnnmUg3XSrWH6hKk1KWc4iigHPuiMqyEiJwxDkTSqncVHdan1qHYWitM8Y6ZMo6U5SICIwbAsG5DIJJUYahRMCyLPwdBERaa0UkhJCBYMiqqpJBoJTSzkoZIGOMC2ttXlZCcgTGGJ92eZADAecMCKyxQSit0Y6InJ36KcyMJf0q5YIjZzIMS6U454Ixax0y7i1LYDYxKqX0Qq+p3ckxjOtm0e9zFELkAMg5V1WV1rrdbj/99AtnzpwhdFxAlmVCCOlZDWIAoIxmWeFpNc6lc8ZTFL731O+P4jj2RYKUUpfae+VYN5XSK6WKogjDwGrNFReMc45a61qjDuAAyBjf60cAkjKYgWNCZDRLNeWME1Fe5kII0OBXV5ZbS6h0yVBwgUDMOi1FyBibTCbOGGdsIKfNPjK2qirn/LZgAYAj88DU20cbp4mRh1/GOADgTB7n2KwxQRgyRG2Vb4b6uigMYy9k8Kwtf71pMxzLeGAzYSsTXPKACQ4ADkDOqg4hhG+3BUGgy8ojDAYcGHEUXDJnCBiBQyaQo0AOHIX/v0xwcMCFYIjGWs4YISF4zZz0km4AULPJGGCzaWs/AQbMIXpXMOcsF9zaylWlf1NOOSa4U5YDSMkAwJmKARMMOee+AQoAwMDT5cxriomcs0IEAGiMjkIuhPCfKUqJCBaICS5laIyxnpi0d6AkcHDalWU+Go1u3759+dKlj33sY5vr6w8//EarjXPOOMuYQLJSCjAGHfgZYa11o9GodgdAmjHurRgJ2dTp61iF7/uQWutIcOecMnfglwijl557sjq1joK/+tqlc3ddRMSqquJabB0IGQqlVJIkURTt7+/funVrcXHx0UcfdXPz6PlAFoDntBhOeX45KwvCMAQwd34bIo9SfUHgI4mICBlFUeCcGY1GjWYKKJQy5CgIIiDs98aTcfkT//Gn3/XoB5aW1q5Eyc7OznA4zLKiqozWBoVM4ySOQyJa7C4RsZXl9T/+5Gd+93f+2xefvPRff+Pfvvktb7y5dQORklDk2eiwdyDi2FrdaqetdnN3b7vVWSIAYlgUxXA8Qc63treTKFpc7O7t74zGY2tto9ECh6bS4HBwNNi6cXM4OIwTXu8svPfr3n327FlloZk2V1bWVzZOLm2cuP/++5VSzz/z5d2tG0ktPDjcH40GAM6R2dvbWWh3Fhba3W7XAp0+cbqdtjbWNtvt9tJC9/qtm7dvbfUOD412f+Wv/mDAWBiGxHkSR+P9vRdffHFhYbHVau3XGpxLVbmqUqPhGIH1jgZ5XpbKDsd6NBkrZQCY0U5wSUTOkRfeCiGSIIkCcM4VRdFobARBMJlM6vWaP6Imk0kURT5sx9crMMvD4px7T3zfiyTQaZpGSTwej6qqkFIaU3mDgEYtHYwmiFzKUClzeNDb3+8VRRXIyLtpIJlanKgqM7oSCGSNUqXRFZK1Vi+tLk2y8bPPPhPHcb3eiJ199dLlhx56SBljKuWDR+Mg9MqV8XB4/713x3F87cpVbapGvVWUmSryWq129uxZKeVwOOx2u1fgsm/GE9HU18s5YAwAVFkC42Wpbt26ESdhEqWlUvUkKYyJWWitdtYB8rTedA4sOaVUpXzQtcsyn/6pibkoCnA2zOtZ1aqq/P3iBc6IPI7jPM+dc/kk48h80cI5WmsHWiPnSAR57qejOecMIB9PgDMRSFf6Sh3CMBSCW+vIOkReVZWdufQ55wgdYwyBOOfk7niz+btSCOELFeFDDThWWjHGfDnub1U2M8SPwjjPjAik5Kysckvm1Wu3gsZmyh0yzoFbuCMSAkszRwgAAEbeiJNmUZBACNYBMkDkfr6PiHAqESFgOC5y14y9rm4eHzkFbzgFcn6fwlAKIZwlwOmxinjHFQyOc2bWwkx76rshXpMah9HR0dHO7S0mZNqo53luSg2IjYWOL1iFEFNr2OnrciGElKFSajzO/JnHucgLLyhhZVkVSrNp/A4FnPlrCAAouHNOazs/nrMsy7JsngsiZGi0dc54NbqnM50lZy0BjseTyuggCJzFkhROmT9yTls7HSG31gqc/iWKIgCoSuUcRFEoRAAwHTrOs1wI4Q/L+TAyzKRyQkpELIoiiiLGmGdJGWPWTWPgOedWm/knPmvl3BkisTNHOmttVVXd7tJ4OCQibbQjprXRWpfEiIgjm9sswTTzNPfr13+a/vecTCZSyl6vF8fxfFZxelUJfKmvtfY2XeDINzQWFtoL3abW+ujoyM91+rXhR2eazaZ3YS2yzBiztrY2HA6Hw7439vMNBEQM4mjeBPAFlRBKa43A67WaYKiqggil5KpQM7rL68Sdc1P/AZia8tQcGprNypCbtheEEGyW9+rfXVEURC4MQ2NsFNWLokBE56xROgxDIFfmFZ/ZwftKeGoShuicM7Occg8g/LbgZ89hKqiqkiQRQmTj3P8sEXl21k9gzAsYr5LUWs8ouunZzRgLw1Cp0pc5XARs5kTPZmPdQSAQETljwJGzqYDYkeebjLOCcS4ZWeeABOPIGQAoa/h0pAOZly1wIOuQg+QBE+jL1/m2IATjXHpKj3NujGKMOTLeztBvdM45Z8EhOAecc8EDQnDGKqPHw9Fhr7e3s0tEKyvLb3zjG6ui0FqTF6bORKte7sYY+velqiqtxUbtorPkDAgkQi64sXPDHT9t7uecSAgBwKz3wp89VlY3vjwccLm53FpyRJcvX77r4kVk0lliwFWlxfd+7/f6hlSe5xbo/Pnz1tper6dUKQTzLj7aGDcbofe/q1LKOb/47ozWA4C1FIYh2MpbXDKCUqsoSXzjUoRBZXRVVUK0JllJZL0KYXs7j6JkaWnVKnrt1StVvvKxj3xscXE5jmrttpRhTYpYcNXr9RjDbqctZaiV5SIsqnxtfeUbPxj1e0dKlQAuTcJWoxZKRCRAyovRaHCYRKKRpj6wWWuFiLVaLYqihcXu9avXopr8+m/84Nvf/tbPfPaPDg4OSlUJIbrd7mQ4WVtbK4YHSYSG6ywf7O3tjYbZ/++n/9P3/8Bfe9/XfcN7P/hNcRwngXjsI//9J3/yVz703e9vx13n3NH+USDk3/7bf1vy4EvPPHP3gw87x374b/ztYJYrHHD26pXXnv3K87WkPhqNiiI/nEyCIKisLbM8kbw01BtM0kZHBElcbzVaLRHFUS1d29gslG4vLO0dZlEsW03oDyZgyVkHFkIZaaWdMUTWExShlJPJpJ6m/m7xDTWPmAeDQXdptZx5XAkhgJHSGqf+UhQEgd9ZqqoKwzBNa1KKwajvb3Xf0pJSHh0cqLLiyDjyfn94eHAkZcy5YFIAccaUECyKwsqYKAolZ+RMWRaNRmNtbXV1bfHJJ28YYx5++GEA9vSXnxkMBoEq6822tcYLHRgKgaJeq4FzjAnOeakqRKrV09FkiIKfOX9OWVNqVZZlWc5MYsnjSc+OMN+/EUEAAPs7O0IGa+tLglEEcaZNmsQcmdZ87lwQigCRh7O+jAcZjDEkZ6zylbrfsPyOEIeJVx1JKQMROueiKAp46MgQkZTca+18re9dMSQXSqkgSiptbVmurK2NRiMv5pRcBEI6Z6w23v2YAQKQ4Nxvo9PSCKy1lpwVjIOfTIQ7KX6MMQRsNttaV4yj1lUtTowxQkhH4Pt0CCzgAXAwlprNelFUcRQxDtqqIG72jg6K8TiFqbDdIQPfa/S+PDPh6RxgzSzLplsBefYLwA/w87kRK2KhDQgZxbF2s5RcL2LxxrbEgKZsljGOMe1PKau1P4Hg9cQMHLNdndsfeFgshHjxha9+8Bu+4S9971/209ZlWY4nw8lkUmm7t7e3v7+fZZmxGgD8pCCiK8vK8zrgGxNaG+24FJ7s9/WkUgqIEVitp9yntRaAJUkieDAeZUEUmmIav6aUqpSJosiRLYqCGEYy4FwAQVkYIVkURbUkrcqe4NJoR84IIYyxcSCFEL57zphgjBGhJeKMB1xq7Q07QMqwqjTnYRCEzrl+v//www8Ph8OtW7eSJMnzrN1uF0UBAHlRzH2AC1WJTDRqaRAEZVnGcewXj7dODYIAgMBNu0huZrBijIJpuxn8CV0UxfJyC5wjQmsJkQSXyMBZEpyzqUkh42IakMVRSMmrSnuPCKUUF4FAVKqMk4RzHoahda5SSvBpY116g1NrGCATEh1prYMwOjjqccmarXqSpqVSDgB931mIoqp0r9dqNIUQMoxu71wXQZimteFkPM6zjY0NM3LersJXNbVaLcuy0WjU7XbLQnk4OBgMiEhIpioTxUEoQiJSk4nHKwymAGK6RTAWBgKRPPXob1IiUsqDbzfXe0Rx6F/XYz6Pxmq1ms/982mPSZKkaeqQ+oOel7dOpYqIiMg4OksOHJcsFMGdhiOLPKQuy8LT83EtShv1OYHCOfepoF41O4VrKKaFt0CfkcA59wIyoshHcHpY5uYBIeg4577wENzbloGPhWUMOUNVlVyysshNZpModkB5WTHhUb6Tfm7JoSNjtXNgJRe+mWqcnu+WM7xBiH4y2+NF5pxDRh6RI6I1fgTQaK2lDI21RGiByFjgLOAiEOKu8+em97JS/m71uF8p5ZugZIxf0r7aGI/HSbJAWiNYsAYQCYE8TU9+EhmOP4iIcWat820H/1jorsCMq2o2mzdv3pJClKVxYNMkXV1ZF4899lgURT5fk0nhF6JHS81mczLJpZRe/eNXTBiIOI79J+f1WwCQQ8+/Xpqmc97bL8HPfe5zH/rQh6zSDAWbuRAZ67dLMMaVpXIWsknJUOztlePhKD53tlFfePXS5cFgEMd1znlV6TCMGcM8G2b56OjoaGVxxQGTUjtj7VRqBkVR9Ho9IZkxuiiKZrNeryXtdmtH7EgpZRhaa8eD4dd98OtUpV+7cnkymURxkLbq9z5438LyUqvTXVpdzYtqOM76g9GtW7eLUuVKj4pCOQucNRcWFxaXOQpTKaNdr9cPBH/15RdfeuHF++/d/J7v+YsX77knL0sEvvzww0kYbW/t3Lq9RQ4DLg8ODquiZByFEAHi/s7u1ta2FKLVaEkpN1fXi6riMrDaqDw7e+bCeFQeHQ72D3pJrbF30M9K94U/eeqTn/zMH/zBH1hiL1+6VSmqp+1avTHKS1+alGWplE7iECuUktdSGQhK6rUy6wdBQOSyLOt2O76M7g0H3aXVMAyrMve9bSGmljnWWiRHs6D0GcEJMuD1ej2M5GAw4DN/nZdfvvzBDxS1NNFaZ1khpfdWYdaBp9acc4GUiEhWb90+kAEqVe3t3L7n7rvWVpav37jWbi94W5c0TR98+KFJnt24dRsYdpeWwE0toIgoSVOllN9cOMeiKJaXl8NA7O3tLSwsCCFardbhYW96x8Kf8bDWkjFBHAuO4/E4EAScARNVNpn6z5V+9Eyq0nA2TSwG68CLgxCdM9PRLeusNQEXyDk6CsIo4GKUTUiZWpyYShltIhEoi2EcVFXhS15dKSllIGRZltZSmqaMsTLLOa85Y+q1mrY2jmszGoaYH/w31lorZTAlvmZDh+RBj5tpdLxPE7sT3zHtVHIwWnEpjKqCICIHxllE7n+WzwlCLtKaFshSFjl0xMJCCbTKKGW4IhTOETEEhkSWMwTfAgFLwAC/9noTwozsApgTqwwYWQAcFyVKWWs0vWjJ/6JzhYN/O36vZIiMCa01EQgUfnx1/j3zl8OZz7ObJZf7Lejo6Oiv/tAP1Wq1ra0tP7PMGEtqkTHGAauqKo7jKIq8jRMC93NnfOZh4bvniEwpFUaR34iMMa4wFikIBWMBYzAcDn2Mh7Ok8hycA+AABDPXMhaGTutsMAApgRAYyyEn54C8R7+z1opAAgATgX9pz5QcKSUCgTBtb3l6w2NNb3DNZiGJ/k+ffFpVxaVLlwDg6Oio1+sFQTAajZIkqaqKC7GwsNBut5MkkVFYVdX2ra2XXnrp3Llzxhhjpxb53nWF5qNdx2Cuh8U4a7p51MKFYEFkyQdEonPOR8v7I4MxprSWUjLme6OolGGMeYfS1dXVGdLlfmatKIowDOM4xmMWTdOTksA5F/ApuPF9IpnzMIjr9XqelYDOvwV/NTyrkSTJmTNn9vYOOp3Oic1TN29dN9oh8EG/1+l0zp8/Z63t9/sFVM5C72jQarVPnTo9GAz2Dvbr9RQEJ+sq6/JiFASBf+YwCOZcIKDzMj4H4LEIcm6dIwIpg5AF5DVPWjPGEI0j4EJKgrIs86JkjDUaDefcaDwpy3IwHLXb7VqaHhwezlhhZqwbT4acT9vK02FhmkJ/fzsEQcCRjbOxM9Y4y5Gtbax/6elnW62Ov4z+l/fbi296lmXpUSAiOudVU9OQwNniB7/+idDPbXjHFaU1Q5wBI3TGOiCyjgler6VJWuv3j4AhOOuAJqMhIQjGZRgppTz8glnXhew8bJucA+M0uKmejYiiKCrL0moXJWGR5SIQZ8+cAUYHe/sVWMkD7Uzv8IiLgCFyIcty6Msk65x//pIQAEbAxuOx34d9zcA5J0RjfH8DENG4qQv0rVu37r5w79rFEwiGkyESzjkUpLRGEJ7D85iLAQKi85eJMW3VJC/n+1KruwTIyzyz1koedNqtyXDkP2sRMKu0QMR+v6+19jnkRVFoZ6uqEkIsLi7u7u7nee4j/9I0XV9fN0b5iOU4jqMo8cjuFKz418tGY4+6nHPGqF/6pV9YWFg8c/b88889lzZbaZpOJhNL0+bIJMuSOLTaIAFZiIMYEX7nd37nh//mP/hz3/iOerqIAEEghGDGGIYwGA3DiK+tLihV5nluyEnJ0THBo6OdfqPWWl3eqNdbAkOjzGAwGA6Hw35/PBwjB0Ios7zbWainaShlvV5HQqUUl+zy1csP7D905vy50ureaDzMsuZCZ1SWjU4n0yaoL33rd/zl5dUlGTX3j8ZKUzYa/+S///F/8P/8s9OnNkLO+7tbv/bLv/aNH3yfKtTRUa8/GAFAFEqOUEyKw8PDWq0mRNhqdKIg9FREOR4XVbmwsLC3vZuN8/7hoNc/3Ns92Ds4LIrixpXXuJSf/cKPPPiGey+//PKZc6cr7fqDcZblZ8+eve+BB9udpW/6c0svvHDpV37lv5w4dY4JYY3hnEeBsJYYOa0LwUBKTk4hWckwDKVXjDrngGEQBP6zbi+0R8O+CKQxRoaC4I4Vu3XTM0xK6cjGcTwc9aWUtTTu94bjcWatTZJkdbm7t7+7jMsyjKIounrlFhNDcgDAtLbIBIIgwjBKxpPxyY3NkxubgFQV5dHRURKFb37kLWmSIKIy5gNf/w3AMElrn//i4z/4A9//Fz78Ia21cdZqxZEFQk5PGme1c+1O69SpE+TM5cuXs2zc7XZ1WcVx6CdxvBpyqkv1MAWhXq+PfAbqqF+WzJnCW1P5IxJnD2MsAANAYBKcm2EL5607ffYPcuFbm0QEzgIXXk5LRgMXgQiVVgyZCKS12kdnEhFYAM4k435yqsoLIcR4OEqSxJEJw1BKfjTZ83pVP1rjjxlEtNoYZwGAB5KRm7pxIgZBANNZGwYAFvTxnpEQQjsTClnqAqxBh84iIoooRIbOGWcsAycYs8bVk5ozlgsaTUZpo/7wvWeeuLxz6m5kjAHj1pHzI45Ezt6x90I2k37NrL9m1v9e7gUM3Mz4ngCAcz7KM0O80WyD1sjZlCnzz+FpS0SYWekoraMwtFZPJ9H+LGQ9/36YaST8gXrXXXdlWfYLP/dzIghOnz7NBSLi7sHuPMPUK+U5Mi6DKVPlLGNcCDkHYR4JVZWO47iWxMZZa1NEDGTomaH1leWqqobDIXDhmSRjnKeNfaaTMQbi0PclGRNhGJJ1eZ6TtZwjMWGNM8owIUyWAedApJUSQYRSMoaezDPWslkDERHDWmKMIWPjOPbNl2m2R1W02+1+f8gY87PqgfAyHVzohkS0sLCwfmKz1Wr5qjt9T3Tt2rX//j/+wDcEfNHl25FE5GZuFGwm5kPOvHjf4+pARsPRRAjR6XS0slwgCp9j5vtuKKTknKNxzpFD4pxzIRwaa2273UEkFJxpdnBwYIxqNptFnlVV5UcXfY6yp/TIOu/PiYhJGHmiOorDXu8wjsNudwmRiqIyRk05NsbyvDhifW+WGwRBvzfcifdkKLgIgLHu0lKplCUqqqooiqN+P4qiZrs9mUwcYRDG1g04k7VaGsfRYDAwxiDjzlhLJvA6+VnLUojQagPOyTAwxjkCyUMCa6wlmDVqHRoDUqKQMQFo47gIZACgda1Wa3cWiKiqqmo0abUXojgejiaOUMqAzVKeZEDOuVo9JiLjZqOw3jrZr38pyVqlNUeUYUTWrqytp81rwIQ3l7aEWk/bl0U13SiYCPxnbYwFx8JIZtnYWBfHEfOiFGChDKqqsggijBDRVMoCMWQECMCIAJBLKcCRMno4mhwNhnEUSCkZBsiYs7bX7zPE1VabcTnOsywv5+MgSN4g0SEjcmgcMWB+EQGAkGE9iLJxrrSxBKosDw6PoiRqtjqVLsu8CqMkrZusKJx11imllOTCOWfJCREwxuzUYIUnSWQtOefysuRCWOe8QtSBc9p69ExEgZBhGB4cHJx5MAgZs1UFIedSGiLniCHhTPIF4BuRiIjOS0eNO+771WwvAhE42ru9s7a2kYZxORrFnAsheofDVy9dEnfffben9JvNpl9MhqamKZ7f8q3Jqqq8ELvXOyzLsixL78gqhBgMBnP49Wu/9mtlWeZ5zhjb3t5613ve+21//ts5DwQPjaYnn3x6OOwLEdTrzaPewJMunAvGQIig3Y7AQrPZ/KZvfCeQyDPtLLRajU6nY7VGIbSpjg730rRx8tQJ55wMOJHtdpe+8pVbuqqODg4Gg4HWutPpXLlyJYz44lK71WpWKkeBtTQ0Gst8kkvQlZI88FNRiNhqtSyZSZ6dPnXmh//W/7a+sbp3cGiMG4wmIkg2T104cfouxl1VaYAgjtPhcHjixMZHPvKRd7zrndlw+F//y6++821ve+GFlz/8fcnJE+e7SxUAkFOqrHp0eOLUhRe+8gqhPNjeG/R7B0f7hwd7/cODm7e3iPG/87//i5iDFBBF4fr6+u5BjzHWrteV0ffef/9Cdyl6OOn3j456g81TJ6MkJoS777nv1deu39q+9NVXXo5qtVKVUspKKy4QgIxRyJHIcQGce9cfcGSnc/jgZMDVjH3NsmxhccE3JZlAPpN2BoFwxs5cUow/P/w55CmPxcVFxsTR4UApc+LERpHlSin+/9L138G6Zdl9GLbW2nuf+KWb7325u1+H6ekwOUAESAwGwwCSkE0VS7IlkZaLtMiyySKrIJu2WKJEyzRVokxDkpkkB5KimbNkghrMDIDJwMx0z/T0dO5++d1345dO2nuv5T/W+b53Byx9hRq8fu/ec853zj57r/1bv+CSuq7J2uFw2DZdmuZ5noeIIuBsvlgsBsM97/03v/ntpqmC77a3NxNnnHPPPf3MjaduPPnkzb2DXWstEIYQ/rP//C+8+oNXmDl1iU3cdDpXuFgkZll2enq8tbUVQkgTe/Xq5aPDR9balmtcS/CwL0DWELE6z81mM2ZG6zg05BxwsNQ7XyOAjz5xWZpm1iaExrN0XcciwAwiaZZmWTavG6XQGmvXCNO6USXW+q7rfAeIDNLF4Jz1TROZQQSMg0jeM6xSeZIsS/NsNj0HpMVsDgg2SZiZowfmVYwQijCgAVF7UwHoHWj6fl9ffWmK0urlR9TLBucgBEAka7kLgBaIgOMqdQmswRADmYSZCXgyGZyen/6h/80f3bv01Ne/+ZeEAxKzqOmzYQMExhLAylhIVgasuMo7WhdFK4AKEYX6ahidc83Se8HBcASPbVTVrqyPVFjznFb7claCiYhwFKSe5SYXIgsVFVB8VAtT5bP+6PU3X3jpJZ3EWIIxZjKZKC1s3eAA6LOhQghZnnRdo66SiMZaCrETkTQzITbCCMipSwUh+N7MgiVaZ/IiEwbjDFEmghppEKO41DZ1l6Q9PaXH7RgB2YJFEo6gMkybOBEJ0tPskAUAYvRp5jiCQHQmWX/xXvPReWUU6EYCURCHADCZTNac3cS6ENQ3FJj51q1bP3zjRzqBG4M3n3jyE5/4xO/9vb/3137t19TCXltUv6m6xVWsk/QqcrDWqivVcrkEoJ3dfRFRCVZUsxWy+uBijEmSImKEXoyl+sHt7e2zs5P5fD47O3/mmZuf+MQnLl0+UDI7rPh8ugx57zkwc2zbLgR/enRyfHL08MHh8ckRIlZV88EHH9T1UpWPuvqouOH27du6h6zrejScPDp6GCUAwLvvvqdt4q7r3nzjbUQcDAaDwUCbWdPzu3fv3gcA58z9ew/JwGw2y7JMe+Q6E3ZdlyepwmxFUYgIx5BkaQxcd+060IKIILJJnIQYgaP3YCBPUpM49mE6nar1//b2NjNXVXV6eloUxXK5PD093draUp7W1atXx+OxYlfVsgED1ia4lolC/2SbprFEev9tkvguAtCgHJ2cnY4GIwaOkYGAIwuKQRM4AINNLAD66EHApUlVN4AGAGaL5enxiUttmQ+AME/70pyZkdCZVCtdrQ0BAGJfjyZp4gAUQtPpMc9z69xisXh0cupsGjyjcdaJjnAtlbpO8VFUMTKiUTRuNlukaZrmWQjB2iRGf/jouA3tZDS6ceM6Mxpj0BhhdC5pmibLChSOMRowxjlduZxzSovyPjKA7i4QsSiKKCwies7EOe99jHFYDhaLGQFmjrpm4YxzzgXPjmy8MMExCMpq4ouM1nS+WVTV+geG400gU2TZGw8eHt69t7G1k2XZm/fve+93dnY+9vLL9m//nb+lkun5fN61YTwedzHokEqSZDLZZObJZKLpyFmWlWWugX03b950LlVSJPwXrZ7vj//JP6FLUdu2g0ExGIzaLp4cT3/4+lt/+S//5bZbfu5zv1UYNyZb80XlvQdS0h+cHJ9ubUzSFBJjp8uzUT7J0nKxqGazhbVUe28AiiJTJWqe5w6TV3/4yi/+4l/89Kc/+X/9v/yfva8n48HGZhkhNH45GBX37r5fLU+RfJbZcmBrPxvmk3KQ5EVa13XXNBD55ORksjFYzmd5mg3LwVNPPf30U08xx6bzVezyJD15dCJoRcQCb2xsZWW+s73Xhnh0evbf//Kv/vTPfL7cKb7xzV//5Ec+dv3JD73y6pvvfnD46Oj4zv279+/ens/nv/6NVz78wnPf/t4bLkErBMxXrl/OssQSpulw3jQf+9gL0XPb1ojYCQ0nW23bTuvWWnvv8Gi8vSuURLRt5LQomcwPfvTGP/z7/8gHeeV7rw82ttI8aXzTdjUEXC4Xyza0XUSI2M62Jy5JTWYHaerqRTQWlZar4tbguzzPHxw+vPHkjVVl1qujdd+Jq3zoJEka38hKjNM2TZJaACiKIr2cPXzw6MrVS4t55Zxxzh0fHw9HZVmUAkgG67YJHkSgAg8A3EXvPZEdj7cePXp4/+Gjn/2Zn/nMZz51sL+/v79LZIHk7Oys7Tqb2ueff+7Gk9d/8b/+r7IsK8oMUYjA+1ZpanVdt96PNkbVcqG7Q4GIJBqbQcZwWHNl+kgQUHREWC2XIiJ7j5Z8YC0U1Hs5II0mk84HRuNbb8syhMBtV44nqUvIGodQt01aDpgZgLMsQ8RJvhmjKLKt4x9XunQQmld9zEOM0jQN5qh3AyQWkxEAwGIJBkHUt94NymI+m6FBixiCT2zSea9sG+NsVEqc7XM/AUiYkcjavoAAiTZxStSSCG3bAjkwhgWALAjoAIDEQRcBQRgMOhYBYTDkWUBguViURQKxI1iFJyIIIsdoycbo6QLtXTQGrS8a+u4v9rabhMAaT0QA7AOiiWCDUDEcAfRrrdbWMYh2lrV04D5+u99gMqtyBrGH3gTwMRsGVvbOCjbokI4xXr58WYlcxhgtMVWUvu7arH43ioAxCBwTZ9XmWxiYIwpql4EIoY9QiwCQOIOGRISDBwDUEp4jcERB39RCiGi6xltjQ9dq246QAnsS7JUYEo2lMnchhMCtscZin8IEIEmWhoBBAiI6a6w1zMyBNcAmxphliTHUBi8SjSGWvuUXg9eZ2RjTtF5E7Io2NxoNhpMhrrR4EPnv/f2/++KLLz799NOvv/76uhWFQMxM5vG9VTDSGNReZ5IkURgNKW18NBqdnJwRUm/Vjyb6QAaE0NoEkATA9Swi1ENp5dE0zcHB3sHBwVe/+tXFcm7J0MoiRx9QkiQi4sjF6JUD1FStMTgaDra3JsYYFuWnd95HvS1pmlbzhVutvkR079692WyR52mSjZIkybPy7t27m5uD7e3t6XS6XC6nZzP1yNDH1HXee58VeVWdB+Esy9p5DbGXmlV1DQDLxUxvaZrWGrOdpg6AkWApslwutQgGFiAsspysSaxrurrqwnhjdOOJ688888xkvJllme+NOQiUVrgSSehN+OEPf/jqq692bW2d06xA9qwbUSWhJklCQs65tmlUwdrVHTBChL2drbv3bo+K0lg0ZOuutmgZhYO3jqy1QYLvvCCTUNe0BMgAi8UiRv/TP/Vb2+AfPXh4//Dh9PjcWhujBqD1PMsYI6iXoQSt2kVEU2V5ZZ6c53ma5mVZ1nUdQiC0gr2WomvrLMuWy6WIxCDGmN6bPkbt1VZVlWflaDRSMtZ4PG7aChGjhHffv/XDH/3o0qUr6tBrjDs8PIQYe++bPhKtx+iJzMb21o0bN9IsrevaWBRksoaZhaMxxiQ2xsgcnbNNVadpenZ6Chx2tzbvnx4djHe7rmO2YDCxNopK4EkQmEVAjCGlT6BxVVU/LtAoybd2X3/tR3/yT/yJn/3Zn/2jf/SPGmNi6JjT4FuQaH/hF35BScQAYMgtl0v1G9TnenJypi9bVVVd19X18vz8/MGDe/P58uDgoCyHv/qrv2qM+ffhD+rp/pP/+M8eXNqPMV6/fn1zc/Pylas/ev3tP/Wn/sOm6Z577hkiiZGLomQQ7ShvbG7dZUbT594MBi7GOBqM29Y3viPjBoORih2Ksnx4eFSkRVkO8zxvl92TT95ou+X9+/eF8P6De7rpcYnZ3N7d2N5KU0fAiPDg8EGW5X/+z/+5Ihnu7x7ce3D/weERCvu2qxYLgjAeT177/vd3NvecsYml4XCY2+Iv/82/cuPatZvXn2g9M3Nsqtn54oP3Hrz7/vtJVr5/6/6NJ57+Y3/8F0aDwdUbT989PDPG/KP/03/qGQAgzXBrayNL05vP3jw+nX7oQ894FgeWfSdG2gjVsu3Ol4AEy079YphDCMG63KQFd40XEbDex6Ztj0/OFosqdD5JkujDd7/zg09/5jMf/eSn7t1/YK0djCaXrqTLjrcuXy3HW23ri8xhN+NuZqFm3yhLL0tS6NnB4L2PIF3XNW3vXKBdG+soiuhkt25B6lZ7TXlWRk6apm3ri6Kcz5ZFntdNI4RReFnXRWGns5lzCfde5ERkAUm35syA4B8+fHT9+vVPf/qTL7344UuXDghwNl+qhMomLk3TYjio6/rFl178E3/sj//pP/MfDQYDZtYLQ0QicM6pH4qI+NVWpq5rBDMYjRbzGsEgoho39DAAsrWEK+o6pilHYN8CWWBGawEIYmSWyALWNa2n1HWNd2kGzky2d4zB+XyeloXHWJbDKIFjJGNAJB8ODg8PlR4xnozbtm2aphwNtf8yyRLfdk3XGoNplllFEy0bY86n52iMG5Tee+CohlJ155M0b+tlAEySrOlq9R2IMUSBrChYJHJwqY0gIuJsaoyxlkggsk8SW5Zl7PNhKAapqmY2ned5ub+/Pz0/PT8/B2dBIlinGuoYAxoSEI4hSdPN7e22rbPEAcfZ6SnuTrSHQs4IQ4zRIKyCjeii0mcdA4m96nQFPnKPixgkROkYmsCJcZCmvDJnhh//xD7msrf71+ofgKAvTbTeW9V/F8JzZKV968+84oyv/0l/Ug94gd67vtJI2GftcJ8ZBYbM6tejnkexJBQQZiQDq/hNdV9TIh4hSK9Vj4BiCQmZgYkUu+y5KUIoPkRRJRUwqz2ViyF0bQOIZIj6mNcaABLrdDdvLUkU71syJEJqTsurTBVa2boiAK+Uj9AzIDXdTxAxdfa55547Pj4GgMlkcnx8nOd527a2966E9a3To8XePcvEGIlMkqSz2azrfFEMjo5ONGlRzUuJyJBhDIiP7cRwZV2hjLSyzOu6Di1+85vfVIkuGVaO42KxUJAyTVNrrWrlzs/PEZEAiejmzZtp5k5PjxFRnVRjb8RlCaQcFGvjEmttlqcPHjwgou3d3SRLjbE7u1sqODAWbz795KOHR23bFkVBK9sOZq7rejAYrG/maDRKkuT89MzHgAI6I1lrx8NhYI7e1/USUQbDUp1OVT3Kq2gBa22aOq0tiOjs7OzVV1+1JkmytMjTuml065ilaWROkwSJBmVZN03wfv/g4PatW9a5ohgMh6ap6mU1F2ZrjDV9Q4OJNG/AmsSQOzs765p2NBjGzieJZeaqWihWKqG3kNBYCUEhAURJDDHD6XTx5PUbn/3sp8uyFJHDw8Ojo6PFYnF+PpvP51o5WUvMoOzJw+Oj1Lrdg10JkZwlASFRtmC9XD58dOwI7969nSf5/uVLaZLfe3AfWI5PD5umuXHj2vXrV3d29kII1bI5PDzsuq5pmrart7a2sizb3t7+9V//9d3d3Z3tvZOTk+Vyubk16dqQFXkxKEMITz/99OXLV3d2dm7cuLGzuTUajYJvQR06IlRVtawrY8zXv/XNf/pP/ykADIZDY8zWZDKfL80FjX/btotFpS4QIvDDH/7AII3L/M7JSWKpCpHIigCwyjWxfznIoE4WIABC1vjw2KXL2HRzc/usOn733Xefe+65Kwf7b7311uZkkmaOmUNX2V/+8pfLsnz55ZdPTk7u3r1/48aNyWTy7rvvas7MlStXVGiqr99oNEiShAhWag76zKc/65w7/+cP9Hz/+z/1f/ziF//lL/wHv/AH/8Af/Pmf//kv/PbfAWD3965cu765WC6sk/lykWUZIrWNt2nivfehE4HZYnbl6sH29rb3MYZgLRoLVVVbk1y6dGU+nwNwmrpHD4+cSa1xrQnz+XSxWGxsbQ7KUbNcIJhq2dy99/BgtP1//8W/ZNIkydKtre3BeLyzvXd8eDyfL7vm7vnszBgznU5PT0+7NlTU1LPqjdO3f/tP/64bV69Pz85PH51NZ4thNnrtldf/0sl/eXZ28s1vfOO5p55GSv72P/ylOsLLLz/XdnJ4fpjl5e37Z9771CWz2Wzz4PJwOEQIdV3VzTJCVzddjFKxJC5jVZABEqEYAwhk1YKIfRuJUMA2rXdWc/ckdSZ1WWybD9189v0P3jvY2hkkWZGkn/70Jze3dzxTUuR5ngMAoG0ibh7sZKPNalmXqUNv2kUIXaQEu64DYJFoVgqdPM+b6ZyZZ7NZEE7S1Dn72O3wx4nMuoHWKSxE07TtcFR2bfDexwBN0yiJZD6fT2fLuq43JrtkUiIjwt6HqF6Rui6SRBHP8ZnnnnvppZcGo8Hb77z36OhoZ3t7Y2MC0Df8NzY2ytFwf393d3vnxu/6nV/9xtdeffXVJHWAPcodu5gYu5zPB0VmiChNj4+PnXMiQCLj0WQxq0BdAlFz6AIgSggCUUXjLKLZMmAcMrok1Y4PoxGA8cbmomqiANnEpXnXdePxhnE2Rq+EUJclgiwIzjqytmuak/NTMDgejWOM82reNE3XdRrdbcUQUb1cQi+PsvViniQJMnvfIYgEHwQI0aVp2zRA6EM7GA7aFlik8S0gCWFEMWUWQ2DDg9Gwi51WwwAQmVlCWRZlka382tpyVCKargskNBmlbphwBEopG5TUVNblXddRJAMY2kY4CgoYGmxsTrY2l/Pz9z5472c+/4WdJ641i3m+FeOFrqaoi8Sq04gEGoKplRcJAIJafSFqB03koqcJUIhYdzxM89Fo7H1wro+BAngsGlJxgNq9E1ggndHZ0WPSPYIBgKCW8NKz+PUsrZL0iTxHRBRkgD4lCS7qEi5kFvVXiAQMALISDiAirbbRghIR1G8cEABFDGLoHVxBRIQDMFpjGLRuQ1BNIDARCURgUQklM7PmAjBFYNO72wcQIURSv3QUNKjWuyKSqE2GSOdbYiSDDIIExvXx0ojgjGvbVgB7D/0Q1Hfe9n5+MXBEQoeP7ViZeTgc6vY1y7Ku9X0OPWhfuad9rW6aizESYmTWnIP5fC4iw+Hw4cPDJ59+ijkwg+aaGDUbIFqjjBfuv/olSV3XkDjNa2rbNh8O0jRVlnSSWGNMmeV9ALkxebbbtq1vWgBoqsXu9pXQ1XW9jL521qa9OhVBpOvaGLyKQ/VZTyaDJEkEYlMvg2cAqBaLMs+Buamq4bCM0QOwMs+MQWvNeLwTYzw/PwfgNE2bemaoHA3TwC56bwwSGeccxybGkKWpoayqKt822cp13Fq7FoJ0XRejB4Asy4x1Vb2YzWaRQQh3t7bfef+91LogjBzVuTCCdHVDzjoyg/Foc2NDy6BrV69ubW/IcWyqOkmscw6s6bqurX1RFCisbvUgsW6Wm1ubwoF7bW8klBBD4gxHr4M/9gQvIDKIEoK3SBsbG7/0S7/0ta997d/8t37/vXv3VH7XtnXX1kmS5HkmEons9tYGABgreZo9/8KHOcTAoV5Wi2rZ1o0gjIoiTVMOcXNrcn46HRb5YDCabIyOHj746Ec+pBJyEXnixlPLZX10dBR927ZtCKVz5plnngGAg4ODZ28+9Ru/8RvDMk/dLq3qbAD23jsyRw8Pjw8fjcfjH37/1dFoMhgMzs7OdC17HPzKTM4+++yz3/3e91ySJEn28OhYcYde4mPg8uXLYOzp0XG1WJblQGL0oZ0M8tAsDSEEsdYyGmYxKGGtK0LA3j9PAMQap6WwfmxWHly5enz3R//sn//zf/wP/t7v/fnfc3Bp9/jR0Rtv3FGUziZJ8uabbz7zzDNJknz3u9+9du2amkDu7u5+8MEHv/N3/twv/dIvffKTn5xOp+fn50mShNDt7e0tl8vt7V2OcnR08olPfGJ9vr/6V/6bX/vqr3zi45968613Nje3P//53/7Gj952Lj05OVHf5/Oz2dPP7LRt6zk65xTJEIHlcllVCyEUAWZBisZgCKFtu7Zt5/O5seXZ2TTL8iuXb2xsbM1mt4xxp6en0+n83/g3fv+gSJLcXb58vSiK1GRt00jo3n7/g29969uf+9znlllXFpN0mIxHG8Oz4x+9+XZW5FtbWzFKlpRtc0Rk/4d//v/72te+/sNXvr+1tfP+rQeXLu3ubI191UynZ9W8Wiyatlv+xE98qg7SRn5wcj/Ji/my9j4QGY+GsiIyTmcLgYgYs2KIBMSYWsOi1QwgUZJlaJHRQggMIoTj8WbV1FnS72idc2XujDESaTQZb2+OXEJf/9pX48svFWkGAM6leTn0Vc0gdVs550L0TKlA7JrakMZeRWtJOiFDWZb5rrMrd1AigpWHU9u2aiphrQUM3nuXGOn6YAVeuSyuZ88kSdqua5omTfL5fJ6lpTHOOWcSBwBVVaU2KYpCxCCZtm0QEUldUSTG4Nm3jQeA8Xh869atELrtzUlVTTY2NsjYnd1t9eNpmur27dv379//yle+srG10auyL3j0A0CWFcdHJ9vb23lWvvHm67u7+6PRKARO0/y9t2+DIAJpQSDCwAgWRXpLJO+90bV7taioyEu/BcS4ubl5+erwB6+9LqAkJMmSBFGCbwkhyRIkWFvp1HXtjBGlNDU1IgqCtZas8d57712Wu8Q0Fba+IaLY1QIYJGR51rbtcDJUTyDvvTDaxFVtJ8xAYlIb6wYeK5wxLfI0T8haBkE0Bgkt6rrb1TU2QlbIABKIASBofN00HRlXZKVxtKwW9x41BCYfFFVXDcYjjLScz0XYlkVoapPa7d0dHz0jnJ4e+9DsbI3vC2NklmhW9vTGGBHlgPfVWN+9RVw1BRUHQ629ANeiORFCQApAVRddWmxMtqazM2PKdSmw/qzxV1o5ShiL2j6GC56rOgECPK4OoXfM59576ULMOfw40AUXHK3Wf6OEVF6Zd+jxuM9Qhz5Y6QKKJsIEEjX9RxRSogu1hn4pRkRA5thLq0AIAXtjFFCNhWVW5yER0TGJRBR1C2RBCWp6o5gZBIAJCdWpn1ZWTDpoLfUOtKop02EP0INhkftSldd5ACvbbkTsWu2lPi5VV8I0XBe4vUQfAIRiZB94OBxWZ2fOOe9ZG/EigmiMsUhyEWXUI6iESztWqkQjojTJgmdro1ZjRGQtxVUYgLaM8zy3SG3bHh4epqkrynQw2KrqRQhhOBw653zbiXCWuRACUae/WFWVdRTZp9Z2MQ7LtPFd6JrON+Ug974zxiDx9s6GPly9FYiYuST6djqdYmJR4mJ2rnZr3rfMxiCFrrV91EGM0WdZgobatm19Z9B2wWdZJqi7EZ11664L6h3okoxiDMKLRXXjxo1mWQmhRepipwljjpxnr5718/lya2vr6OhouVwWRcHMPnbiuWkaNKQVv/ceDRk0XfBkjbqgM3O1bNLMZWkBICC0VqSun2k/LBGttcvl8ujoEAB+x+/8Ql3XJycnRHR4eGitFca267TPTtABsDGmXi6LLCuy7I033rh77/a1a9cmk8md6dnp6elgMLBkMDXStJubk+VipqO3bpYh+PF47+HDh1evXj0+efTWm+/MZos8z4ui8L6tqurBw3tEVNXznZ3dS5f3333n/clkor4tiOicMcZ0bacd3rPzkwcPHjx8+PD49KQoh75pve82N7dGo1HTNCKyd+kgz/O9vb3z83NjnDFOOYWOjHMmTVJmLsrs2hM3zk9OZ+czAJhOp5sbw3o+9W3jkmHkGEXU35+kp+VKr/I2yl8VMiqQ0o9z6aUr135jsXjh5ReLLK3rajQsl4vzP/kn/5hwuH3njt3f34dVw/tzn/tteZ52XfeRj3xkZ2dnsVgQ0VNPPXV8fPzkk0/u7u62bfvWW29VVaPr39bOdtO1cKFx8JVf/bWtra0kSb70lS+fnk2ffPrmF7/0K9evPyEiTdOScXWzZACyVoe4Zz9dTNFAOSz2DnYnk5HvYppkQm3VLNu2GY/HG5vbQKYcTHyA05NF0/ThNpub26PhZp4NptPz6WLqp/6f/bP/IXHZH/p3/kBZjikxYoxLvi/gzk8Wh/eP7t27VzfVgwf3ROQHr/3o6OjEuaRr4+npdFm349HmxmRnZ+dgNNz4+CeunJ2d7V+6VnXh69/+7mg4eXi8GIwmJ6eH6XB4upgHlIREKEw2RsxcN12e55YcCRiD5Kj1HTM7BJsmmhwQPVtrbZImeYaBQ+iMs54jks1kqNryzJg0TRGCAQyteAm+a0PlP/rJTzRdXbVVZFb4M3AshwVzcM7ZKJ5xMMgpSWNAh8wIYq1J0zy1s8UCUVxiY/RkegNrY0wMkiTJ2dnZ/s42WSPcR0s5m4QQgCNpcoj0arXlcpkXqTFGic/n5+cbE5skSd15Z3NC+/DBo/F4HAIjUOxaEUYBIhIW3YYyAhpKrHvz7beU4tN29bKpr1y/8uToZtW0r73++quvvnr7zgfvvffOeDy+dGn/Y5/4eBe9TZwxpqm71GUGbZ4W07NzS+7+3fs/+MH3P/OZT125fJk5PHz46NHhvbOzKSACUVzvT6w1FoNvtUjyVSvOAJElG9k7Y9u2yvPCswgLsDy4dz8blM6SjwFYfFtzbOv5cjIelmV5cnbKhAHEICBRjOAMqVzA+46I2uCV9QkcLWHrW0FxmUtMolPhzs7W+fn5+Wyxub3pyFZV5ZxDR4QmS00kaOsO0URl6BNCjEBo0oSMIZs0oQkhgAEDaNCEEMhSkmc2SRghciQBRjyfzWySWecaH7rZNAYGQhRBgqpZUuKSMo1NLIfDGiQs5smg2Nrd6WJwhooi++CtN0Diwf7enXuNQyAGRNDqwRKFoP1cLS9W9PVVwbGuiy5AZL1OlJkjoZhk2XpTpqPJxuHhYZ7n0jt7PF6hjbFKgzXGpC5R6CiEkBi6WDOtqwSFW0S3oWTQWEGKAo4Ee37sBaPqlUXtv3oc7v+P1lrYiz+DYgBAuW6rf0VrLSiEJtp5RLXS/lcLNWZOXCYiUVSoTiICBATgu2CdAUQRFgFEAsSouc4ABu2qhGUSSK2LgfUSBQRILnw7QICotq6khY5nZmds7MPisEgLpZkfHx9bm66qxl7nP5vOV3Xn43JWWWsg0MVIxqp5r0RAxDTL5vP5cDiCrABBRJOmhrkPCydSDa/e87iuetM0LYpifj71TetdYq0qT4WIhDGEMJ6MReT09NRaDY9SE02fZQnmSYTYdc3p2UmMhTGYZVmZF+enp4vFwlrLEoqiGA6HMZqmqclmDKwuJ4vlzFpbB+9jKIvMNzUR5eoJt1yQ8GAw0ETjEGPXdSErAChN8yTJtGGqgE2aplqRN02DQsIQWknTrK6XaZpbIJNmFg0YgsiMgNwb56KhGFgQdcIlMg5NvaybpnHGRmGTpCTEQbrQMQka4CghhsSmw+G4rtv5okI6qZsGDQGh77w1LrDYxPouCEOe2s57H3g6Wzz9zLAcjIxLIosIQ2Qi2/kIaFSiR6aPRQIB52yM7aKuIsj23u5kMjo6OmIUl1hCE0IwjvI8N4it9yF09bTenGzsH+weHx9/45tfG4/HOztb1pL37XBYnp4eL5fzPC8n480Qwvn5+XA4Wlbz4XC4u7v7ox/9yFpK0/SDD95LkmyxWCAKM5+enmo8UVVVaZrc+uC9rq3rus6LlJmNwcb3PlPan6nqBSI6Z/M0GwyLJ+EmWTMZjdWZcj6f6yOLUUIIqcuyrOhhASDrCCKjUNv6k5PbnuOgHKbO7uzs/sRP/iTEkOdJDA2HDhIQiARAYpgjI6Cl3upQUFtGYIiVQ7r6sMDOzg4gNk3ju7qrF6++8t1/+9/+N3/v7/md48FwtlzYra2tGzduaL7Y5cuXQwiDweCZZ55BxM997nNJkr388stqL6tN38uXL6dpevfOvY9+5OZ8ufgHf/+ffPlLv/an4X+n59vfO/AckqwEhqrprl97AjioNU6MfjjaUbWz0mOttW1Xn52dCcPdu3ef/9DTw+FQHRdFoCjyu/duL5cLa601GUdz6eC6s5kwpEl++PDoxhOX/s7f/vuXLj358U98NMBSREbD7WbZfe87rx8dHb3+9o+Ozk82tib/z//2b377q9/94Q8+SBL4d//A76+q2c/9np976unnbn/wwZf/5RcH5Wi2aBbzqhxuLBbNW+/eefbZklu2WenyfDo9+8LP/d433nh799qTzbLe278SCWKSDzc2CTgE7xRsRMzzkkPPjWCI482twaBAlvv37+5d3rPWQoAYhZLUGCOOLbgQOmJkYUIw1qyWhCjIPkYC2wW/s71Z5tnDh/efuPnSrFoeHh9NNrfyPK98G4ViRGPRZWm37CT61Jqao7UE7Oq2L6eKolDlhDFmNOoj/1RSNBqNHh0e7W5tWmt98Nba5WKZ5TkiqmVXvw4ao7Vyz6xkPjw+XC6XO9v7IXDXho2NzV/91a9Oz+fOpbHzLnWqjtHsCy/AzBHEWZekpm29hkDH6G/fvn1+fv7000996Utf+pVf+ZXlcjmZjMuyfP75FwC4KIrpdGrTBAB9F0ejkbpBau4HkTXkgg8h8MnxWdvVhw+PZrNZ13WIjhlAWJFhIInqQsbBGKPrXuyErTibBt/iCtKw1gYyp+dn8d7dmy99ZDwef+c738mylARcnhDgYjatl5VN3KAoFDlQS25rLQpIZAbIXMLMoWuMcYPBYLlczmbnV69eVbRsXs2feuYpkXj79t3pfBZjyAYpQu+yY0CDHUEi7+3vH96/qy7OABLbtjLUchCAJM8QpWkah+CcZRBm8L7PWm66ruv8crksCkiMrZsutJ1zqXNOBFHAOBIjVVUNihFDx1liabC9s0nWhMBd16RWifWytTmav/Lu7nNkJXYiCsD0XBZkACQBRrW5gsd1hi6xvdGEjiJAJFbGmCBaVzeBgcrRsOnadTGkaKT+59qKXZEbazWjpUdAZSUWwR7o/LGKilecv4sg2cWPXMi6vvgD2Ich9mm+67/sfUO0yETGtdwc+x4fACRJhjE0dccQ12APACoAJiJq3IGImmWJqN1L6X07ECKvDThwfV5EjOyZe46mSK8XU22dVqjoeuhLKSzWWtJUBmb9LWNM9CHLsuF4oHxtdZe4yHNSFryIqOnXha8AK+JdX4rRKkU7MovIYDCoqmo42rUrEY9OFwhkjKEVFCgSEFYuMADee80DUNKn9qFSl8TIIh0RnZ1OXWLG47H3rffeGtM0zfbm1qpTRojYNI2zUJb5dDpXJEaVQ5aoqbvF/LAsy9FodD6bxdh7p6nPUdu1aZpiBm3bhoAa/WKtnc3PfWj1tjBzlhbMXPVaNiYi5Shrl3Y2m62fUQ9JAncxkPd5njd1Fw2G1qvsQx+ERTJkXUYAEKI6+INOxSJS11WR5zFGDkIWnEkQMYZIRGrmrDacjBCjNr4MIiZZhggxsoTIIF0ThGtEQ86ezaZE1trEe18UheIpWeaYlfHZ03kRUSWf1tqumw/K0aMHj6qqOjs+cZnb297d2tnRUCPftqfn59ViEZmtsdbaLrRcxSRJhqPR008/dT6bWsIr164+vH/4/q0PijRbVpXvonE2SZIudEmS3Lx5MwR/fHy0WCyW1RyEHjw41FiwNRradY3akg1G5dPP3nzle98PISQuY6QkITWDtDZJ0zT6tuu67e0trVKion1VpTYIalYymUxCYO89II6Ho+PTk8Fg0HZ+YAr1LiVriqIg67TXXBTFaDTyvi02LKHE0GH0hAh9WrluJx/7+xCtevTwY/uWtm3LPAfEtm4Siw+PDv/Cf/bnrl298uDOndGzzzpE++Uvf/kLX/jCycnJK6+88nM/93OLxeK99z7w3g+Hw6eeeurw8EghX1V4ERECbW1uTcZbb7311j/8R//kgw9uG+vW57NpRhycS8HYh48euVTV18GzB2RjsChyFYHPFnObEBG0bQ0ISZIgQZq50LD33jg8PjvL8zTNzGhj8uDw0XAwefjgZLGoDnYP9vb2RqMRotve3n/nrQ+++91XZ83J3Xv3pqcNiv1//aW/ce/+sUf4Hb/rpx6dzC7tXb5++blResAmWltMNp2Krh8dn442NsHYuvFMNNnefueDD5576cWiGAwnO6PJcLY4/tnf83sOHxx+7Vu/fhD45nMfevOHr2VJmkQToUst2qInVBblcF4tkyIjAoo4GEzycnDlypUP3nu/GBVpni6X8zwtIntE18SALM4SkCTWalVujTHGaiAJEhOBMdg0lXFbW7tbx8fH443J3sHed773ymxRbe6nZOxiWWcpWGsFsSgKfYsMSGJsH2zhXJaldVevnZDyPN/c3KyqKmNbFEUUOTs7U6PwyKQrq9qDtTGsFzlrLYguS84Ys1gu9T1J07RploPR+N69B2++8falS1cBDZENXZc617aNosRJagQJfTDGsUhapMvlEgKnmWs7RAP37t07OTk5ODjQRbFp6tPTU+fM6enpfDm79sSNwWBQLRvuQ/1wUAynZ+co4IzN0/KtN94SkTzPEAmRNBEPVnM0EUURiREMdl0XQgDENE19U3EIATQfwzYhChJIBBGXppSkH9y6g3QbQDY3N7c2xnWzuHPnztbWxmg0aJom+s4mLkky23Vt2xoUm1oy0Ee/RSWZmfl8/pGXXhyOyu9973ssnbWWIP7Gt7/x4ZdeHI3LzteDcuicO3l0EpECcFN3XdNaMG3dXL985fDefSLiGIEIyHIXyDlypq5r7doTUowcYySBrvUYyTnXNTFGKJJhaDiKN9a5NIkxhi4qGEmAbQgud11d+6a7srdvCRf1vKkWiCaxJrUWJNbz2eZkBKenRpAAEdigVbK5UQ9oZASDmpOrbcY+fejHJPH9RhCBkJBVEmlr75mTIh9A4NXyLIp+9cs84LqdB31qnhr4PKZvr9ErLZtQrdIQYhBDvQQSLsBd/VWhCKimUlZl0OPzgmbIECggt67AsFfIA4CYlRuIxv8Fz5HFWksMzJ0gEtkogKSkECTRbiYQUQRhZAICAAZWY1OkPoyZVQWiqjciEWJmBIMEOveKMAgQ9n7fff2HEGP0PghwnudEoMFEWZKORiNrTFVVuggR0XQ6bVQfp6k+0i/AvErFWLd91yVg/x6pbwhZEZV+6iVLlmVt2wdroiEig4Bpmgr3XWAy9Jhgx8gSAIC9j0giyAxJknVdGJaDuq6L3CFikiSDwcBY1PIIEa01RBQ4ag20WCxclnLwHIEZCK3SmdWpIUmcc7YsB13wJ2dnMUhRlJ4jAdrUEODGeDNJklt3bret39vbOzs74xjHo5E1Sdv0QAMgV8tTjRXquq6uVXjUZlly6dJ+13VqcD+fz5umdc45l4pIap1F6OoqdIGShEOcjIbaPU9dn8Kp2CQiaimMBslSjHEwGk6nU2vJWMMQAUE9TnWnZ63VkJ+uCyFwjGLJqJgUgJFM0zQuSYxB72OaJoM81QJxe3v75OSoLLdWao8owms8WDFcRCHNXvRxVA6Hg3K5XJi8WCzOnn3mmbppjk/OWaRtmsjsTALQRR9sYtu2FcLEucPjo6LMRpMJi7zy/dckxsFo1NWdTZPlotootkeTdFFVTdP94Ic/nM2nzrk79++Nx+OtrR2XNW0TrEuAgCW0waMhsjZEv7+1e3J2dnR6gsZ0MXQ+JklmbBIii4RxOWRLQGRcEoS7GCLzsqnbqiGiQVEakynlJrWmXizJasBDYYxl37aNHw4GbVsDEZHxPqpfxnQ6/do3vv1zxeiTTz2fWGzbOslDDITGqL0PUj+HICKCZey1lkgoF6wplvPqZ3/m8z/46k9/+Yv/4h/+/b97sLN5/erlb33za53vHAJYY5944okkSd57771f/MVf/PjHP765uf3o0ffv3bv39NNPP/fccw8fPvzSl770Mz/zM88//7z3Ps3yohh8cPvOP/0n//wv/uJf/PhHP7l/cOniJKt7u6qubz799Pe///2PfORlMFg3S2tJ7WUH45G+P871gRK7u/vTk/dPj89Gw41rV298+xvf2d7a9T6UxbCpw8ZkZ2NjqyyHiObSwZX79x79f//OP3jttR9Op4u27Zqm+1t/679HAx/+yM3dg33uTGrMyx/5VDF4E50NnkzqElc8enQaPJsE0KRd8C4tzs7Olsvlk089NZst0rx84ZnnkJLz6TIpyqQsR1tjY0xaDi5dufL22++98+79P/gH/30EiCCJ6mgspRb7abVtyNBwPFKdTpFlW1tbxtnT09PXXvv+Cy8+r5NdlJBkCSBkNuEQOPgsT5nZkDhLSszPs4w5+tg5Y23iiqKYz+fvv1/vHewDQJqmm1tbt259dWNnDwHy1DEHIupCFKA8z9sQjEEk0ZaNsLFJws2y75Ig9RAmubZdjibj8/Opb1vd6Rq0zOzIJWnKMTL0fNWe7uNsCEGAzk5PjbXOuaqqj45Otnb2QewX/8evPPXUM76LxmZdFwBQzRcUpTdI2qdnwMAxhDAaFLr3MsZsbW0RkW5c1pBAWQwjeyJ7/96jfDgajQfaKmXum7YavB3CY2mSmtT7tpUgAGyc6npCv313LraNnqimFlEAWdnVMbLRjL8YgAVsEqMAIRgAXfSsOTo9jr4tBrn6HWvqQ5IkGkSjKvpiMPDeazZwkqZE5H2XZUnnm83xQVFkykBn5s3NyeH9e03TJEnSNbUlRJKubgBAgI0maYi89dZbIMIxAKASglyaKdHJIvnY4xNOSTmE2ipBNDEKogEmxYtWHmjqJQssITIPhrn3vmm7J65ey6xp66rrGi0Zm7oqkgEQzefz8XAH2gpiA5HIJeqNgcykHUA0AmDAgDyutxARNAdtXe4IEABHNsat2PrWBw5obFaop4OsCq/H3TpAuIC1MDMhqBGdJVFu+JoLiCuSIhAysy786/LrYpm13rCu/76vDldkL0OmjxMAWTlc9MioiIhEXK1bIsIcYjRgCDi2batok7pRkCD05g5BRHnxaIyByEhI+HiXrBffdq0Cz3pV1lhEbNs2cU40M0+ERZdkQII0S9q2FQZACT7azO0Mt0xqJXiWMBqNRqNRWzdt2yLS1tZGVVVNV0cffAiReXF+rh5pPgZGzrJE7f7VeEK/bM8HMkREQogCaIgjW2uFUFiA0FiTSFZVlXVmd3cbQay1qUtERED0svVJxSiIajIigIygqScBEdVvrOu6NHXWpRy9igrbtvPeKyYHHJh5Op0Oh0M0fVKQI9N0HpdaXhfGonOpc33E9WKxsC5NXNZyG0LY3NhYLpfBt8PxGIXmy0WSJBqEUJalyv+1elOzMZYQY3Q23d3dOz09Nabnv7Vtq/aBIYTZbKbxMMzctkpmDwCWiMoyD4EHg2KxWHZdpz0fPXKPR0Y14unxXb2AJElE4mqrKWvo160sqYqiODo6AgBjnLMmBlkslnnRHxxDryPWTfVsNmvbdnt7++233xwOh9pEVm54WMVmqxpAWyJN04BIDCGEkKcFM6PQnTt3mLltW4VXexU8KyQMIqjfKITw+htvhdCVWdn4psxKIWzahhmKsmja2lmNyo07Owcf/dhH3nvvvfv374tg27aGbAiNWsSRJuABd10g0wdl5nkuTHXdWusUmxQR56wCqM6Q3r3InCRJ1TZFkasvneIOs9ksSbLRxsSa5Ozs7OTszHuf57lzrm1bQCN90xCNMVmWO+eeeermyelx9M32ZMw+NE2XlqlxxJGJHCF2LEBAaBUL03toCC5yWOu2GY23X/rwC3/sj/yhFz/0TGibk6NjDvHZp29KZGOM/dCHnyNrPvaxj/31v/438zxPkuy5555/8smbdb1s23Z/f/d3/I4vGJs0bTscjeum+wf/8B//6T/9H7388su/+3f/vCHLF3TdANB1DTO3bc0hTs/Oy7yAGELbJFZC17rMBR/TNG26ljmG2GVpMj+fg8DsfLE8ryGa0XCS5yVz2E+Sw0fzv/v3/vmbb74NQKfTc0T8r/7rv3p8PD842N7c3BSO1uWf/PQnz6fTvZ2r1iTzsJyeHxdpFqK01aKe1Ds7O3laHNzYiz6Uw3I0GSbp+Iknnt7cHDHzo0ePlk29WFQxwms/fOu733/t0qWDaTXbv7J3enr8+Z/+vG/grTff+8IXfvqFF5//7m98B6wRSwkIBg2mwzYGL5ASiogl473fGm8lSZLn+Ve+8pVnn33WkHNWXGK7rnNKT+EIINY5g0ZEkiQTEbWb1zk6dRkRIUPbtpuTSZJa5uB9q9zAjc3hvTsfjMdjctYiWXKRIC9GRNYaYGbnjHdEYgNYQUitQ0RnE2sSZ9PRcDKbLQjN3t6e9+H8/Dx1mfZZCC1Hza4yuvIJc+qS0HXGkKAsl8vEZczMjPcfPrp85ebmxu63v/U9FstiBGWxWBTFwLM2JYR7pbpHstaaEDxCTBxqYcYxFEW+vb3FIDZx7bIns+vFILgYQpIXAARCMUaD1NaVMehj59Lec8gYJ0GY2UfvnGvqAGRWLSS1R2IAACIggwxllk7DkbADAWuNTj3kMPqQOOtJRHVAAi5JWt8MJ0ORaK1NLEXfqRzYJg67DnreT6LxzBZJkEyet22bOFMWWdUIIt6/f/e9997e3NyczWYqaWibZnNzU5hjjEWenx6fZFmWjF3btohRuOuCN4acSXzbAhhAFAYgIZA0dULimR0lYAgRgw86nyZJ0nofmDWeJXoVcBnmaJAA2BnrEsOsISFhlOV7V3fyNGvrZZJbnIExJJGzLEvTHJhqz1tbJWCbcAs2Z0ISNkRCYIxljroB7FleAKv8AOnz31ZeDCjIgA5IBDQ5IE3zk+lxA6NsOAERiYEBojAaBwBkTIzRGl2WmjRN1RA4qiLBIAMze0REg4TUV0Uq5YurxiiydT17S5eNx3wmAUN2vQrqVK7LoXZ+EUjNePW3QvRExDEI9/UcIxhjoo9AgJaIuXCZj0wxGmO6LqgVEEfO0jRGZGZj0RkLhMIYY5TH1ZfozbQIKkaz1kqfPonWGBL2oUPQuE8OITAAcyBAjjHLiq2tDWuTNE/auhPkIh/3u7Km7rq2aeqz8+M8z30XqqZezOZN12eVBs9dDERgE9fWTZYVaZqPRiMVpBvrNOBPEIWMD4EIENAYwyACTITW2tS60Wi0WCwMyGRjiCiJNVGCMYYQmSXGeH52rp4LCLj2qfLRM0QUAgBrKcaWEaPQqz94pVosIPiXPv7xjY1xXdccvRLqEdEZGzofYhvaTh9W1/oY4+7ublnmdb3UnY+WL27lGDco8xDC/Xt3kixFgfdvfTAejgAgTd3161dDCF3XNK13znVNo3gzIpZ5QUREVjgYpHpZZVmWuiwKV1VT1/V0OrXWPvnkk3meP3jwgFlN+Y33kUjadiEiy+WSeyOxRsvodc297mgbY4jAOROCxOi1UDMra7p1kLZCaJPJpCiy4XDgve9dzaypm84YY12qjinAkZmzIk+dFYllmTPzcrl0zq3d1IxB79s1kExEbeuNCYKChGhINzQYQ6fkCgNZlnZtqJvG9jn0RudGFGyrNnPZeDCuqkVbdwYNCi1miytXrhwcHLz66qt5nkoMw7Lg4EPX1ovlIC9S6xLjFtM5gsnzXCOniAhIRKBq6idvXD/YPVhW80FeLKo2TVNjXNu2WtTXdecSY60NMQrStRvXHz162HVdmRXYp+cJMwMZlyZlObDWTqfzrMjTqkLEcpCrFVmapq0PZVlyCAgQIwcM1ianj44t+FGZVkzsMWUhgaA+08yGkMFEJRUYisLOJeoMtzafPpouujj5I//bPzJyfHZ0KEKI+MwzzwyHZdXUaMh+97vfTdN0NBjneTmbLbS7PJmMivRK47utra29vb3IUJaDh4dHf+bP/Cdf/NKvfP7zn7fW1m3nnCDiKvMEYCWm0wDvu3fvnJweAcCymosIEqghNRDWyyUgZ1nSVPVnP/MTX/7SL1ubpEm5t33pleY156rlskaLb37lq3/tr/2tsrQvvvTSfLHIsuLJZ569+Rz51ldV1XletkskO1ssR5NtACBMxqMN4jgcDtkHk5jLly8nWWoc+hiRIkvoOoos3vu6ru/duzedLkOUt995L0b5Lb/lpwTj9s7EIO3u7l65fPUf/8N/8kv/4ou/7/f9vgf37t+6czsrcmOtBWTxjGCcndfLNM8kskS2SKPJRlEUg3Jw6+6dsizLsjTGQBAELPISlVu4Mn60SIC03r5rw/DChhjquh5fv56kdjAY1HWlL+Tzzz17/+HR91/53sc/+YkiL9rARJYjGGMYwBhCxDR1lJQVd0VRhqadT2dn0/O2XpyenJyfn5/PlnfvP9C0rzIf9CvQGgBwCXOwNlFbZ4leMf+maZS317ad7+LR0UmWFSHwv/ziL+/vXeraoNSKrmtsmomIX7nwAQCSRPYCbFCUXQtRAvBgME7T1HsNgFNDS1n/L5AlY0Wk9R2HPrxF70wb2jWzrW3bYTnK87wLfjLZmE+XIhKjf8wFV+a3EEcAu+IigawU1xqqKJGjy3LfdleuXBGE2/duZ3mepo4MlnnOoWNruq4zzkLojxxjXHNBvG/XgIruyQQhhGCJlOBSlmWUgJjNZ7PLly8f3n9wenpqkZpqsb25qa8MoRhj8jxdThdJkvXGgWp/HyiEznqbFSlDDNHnSa6A63BYGuMAOAlJG1pnTDkeMoP3bdN0WnUMhgUH8b7NsiJJbOjavd3tjcmwqqo873VnfUcvsvcegGaz2ZPPjqGpSFrEAhFFAjMnJl0BS2IU0PjxDyqbHBkACPpEIhAAFkBWR4m2CxFMMdmAFY9HuOdy9W5YFxSLfY8RgUEgct8fBBTu19cfO/v650WYufG9LZwuafqvCjk0TXOR0mStTdNUY91j9HpDvPdk+t81qwRovaokSaxTzzwWpFFeElHXBd/F+Xy+rKskSYoiMzZP0xSAQ+fbtq2aFkkAues6zV5UjyjtQ3Vd19SdrkMgZBGQRG0LjEVjbE6pVo1lNtClVDlb0Yc0dUWZjcfDy1cu5XnaNA2zPkrlJaH2/vrOIYCwml9ERIxRrLVHh6df//rXy2JQVVWa5iKCmpeFkGVZhCgigBSZUXQpEcZ++52kdmM8PDmbIiLH2AafpqkPflQOXnjh+Tt37ty+fXtYDvRZq9W2SLBIIYSmqfIiO9g/GI1Gv//3//79gz0CfOON17/zne9s72xWi2UIIXWmaZquadu2JenVALByInz48OHBwV4IUSSuwqd7yWfXddagiIzHY2utIEw2N7SjyiHWda3FN2LQO5mm6aAsu67LEmeMCSwrOmDfBEyyNMuyxWLx5JNPXr58ua7r119/fblcbmxsrJyQf6w/vp7evfdJkhFRXdfMXOpZsizLshj9dDrVin/N4buI3aqMVzdaKoQCgMVioRUJIuvaoo14PXVk70O7XC63trZu3bp148aNNefPWksEiL1MXpePddk6m82MMUli8zxPkh4LBABNflSmoC5GRMQs2oRlZgL0bZ/47L3XmLgsy/Ta0tQ5Z/Z2dk9PT4+I0jRN02w8Hh8fnSZJwghJkugX7KXoxmjzdDmv2tYn1rYS1yWjxN45QSmM3vv79+8/ePAAgHd2dhQoNcbpACCiujqy1hLZ09PTGPsmAzOvgV7tOYDqERidc6999xUI3c7WxjfeeXjt+WsAwBwQEwEAjggGSOBxI9L4GFNryVoAr7NK3TbzuuvSeHh8f1hk80WLiM7ScrkUJO87+/ZbbyCa6fk8xpimOQAsprO6rjnGKGE43hDBa9dvXLly7S/85/+389n8Z3/2Z5fLGgDUwn+5XNIFksTp0bG1dlktLOG9O3d++P0fDIfD+WJ66dKlLMvULbPrWh1ABwd7zz/3oc3J4OT46Gtf+9pf+X/8t4jw6U9/4ujoRJCyLC3ywU/8a59KkmS+XAjSsqp1vQGgNE0now1rrU3cTtNsbm7WbUPWEOD58VEIoWtr6qiqKo2Y1BHsvc/zdLlcnJ0enZ2djccb77x9S0QODw8///kvZGVWDLKd3Y0HDx48e/P5qu3+xn/3t5575rkkyR4eHoFQlmU+hKapbOIAqOu6IiuNMaFrKSXf1qPxIC/SELvXf/Tac889p4Nb3yJFfQ2R+t3FGJVDvXpjzXoV0feNEMuyPDo6CrFLkoTVKLVpjDFPP/30wweP3n777eeeey4dFJ7JZY6IDOh+k4nIkVNiio5mDnHRNdBb/6WDwSBxxcnJ6fnpVJ3uRYIxpvGdiKRpujif4oox45ybz+fry1sul43vkjS3Lr13/8FsNrt29YY6rEQQAIhtu6aR6bdDAY49Ed4goSEQaoMfj8fOuaZp5bHIv19B+bHHAYpglhVlOTw9P1FuprWWAYyzRDYGr3xbzYajFTf8AgisidTKHCIwhERAJMwrM1g2xsYYfNOAofGwLMejW2+/gXk+KgeA0jRN6gwAuMSQsYq06wXX9XI+nzKzEt200mIRpJhmDhH39vY///kXv/ilL2ZZZsTVdX316tWqqk5OTpIkaZpOBK1xla9Ho9FyWdd1TbQi2xkDRAAMZIBjWZbkLBEN0rIL3hiTOLeqTKTtmuC562rDEAOkSZ44Ez2lmQMWiTFzSZ7a4GNbV/u7e+rHmFrHITpjESCGYEATAlIw5uTkRM1Fo+/IsohYY1BAWB/WOlKasafeX2R94WNIfCU8RLWzEkDENgYfJctLEBaJoLWfUsxYvZp0pUYikt5sjHobMCTqbat6wj4RGYMAgEIxMABqM9o6CsLrBJh1/UREmneuCe66vmq51rZtjKjzjLZ+WKLW2VruAAAIeg5EFKJeISRZ2rS1MYajtF0d2VtHLB0ZTtNU2Gt1jsQcO7Vi4eBTZwdFTiDGGA7eEJV5hgIcfYyxXyCNAYDBYLCxsdF3oIIgIrDolGKtHY1G2gg7Pnl0enZ47dqVn/3Cz2xujfRfu651zvGqQSyCUdZFLQqg9pKyLDOY1HU9KIeIqPTk86Pz/f19IFrlWpHii04z+ZAQ0TmT57nnSM6uKw9nSN+Ruq4B+JmnnxIODx48WJfCDl3kYNJ0c3MyGQ9ns2n0oa2rk+Oj4Du1/trf20sSuzPZZAnT6RQ1+TQEZdFBn25EaZoulvPz8/PxeMwsg2GBiCcnJwBQFIXKvZumSdPEWqNFfdc0ar7gvXcucc7FRYWqDCZ7cHDQdV3TVNZaa5O28VqqGmfV3GE6neo8eXJy8vDhQ2YeDocXNw/rImw9rnQIxehD6AM8ZjNvjJnPp3W91KlDb452JHWUyoXmuH4LfY+m0+nu7q61Vr+FTrPGGGBRUqB26Jqm0fJLpVRag4tI27ZZlqy5Jer0qxdPBDF61R6uW1vWEWLaNE2WJ23b6rrmXMrMIpxl+cHB5nK5PDw8NMZocPViubDWHh0dqbQZgKq2I5ckBoyzx8cnXdfpHbNpMl8u1e9U509nrIiEzs/n88PDo53d3fPp/MGDh0BWBJ2zTdNY56CXyCAzLxYLTdEuiuF0OtcCTssgQssCiCZJMoWHkiSt67oshonL9F1DY0IIBlFXT2YG5P0rB4i4vbnVte/G0CWc9WuT9kdAWXQEq/VdCJHE4uPyywcuyuHTz06Sbp8kglDXdcE3MXofOHC0ly5dIqIrV64MB2MiGg/GwpxlGcQQAW2WzubLn//X/+cI5vq1J25cf2I2WyhJM8aoyGrs2vVMe3Z21naNpkm0bfvGG29sbm5u72yen5/fv3fvKWO2tjeJaFnN0zT9qZ/6KeZQLZf7B5eWy+XLH32RmVsf0Fhh6EJoui7MZ4lLuxistZPNkXPOkOslURG6rgvMGpx3687tra2t5Xzxwe1by/liuZg989yzxtksSza2t9zClWXpfeucGY1GwsV8Pn/99TesTRDp6tWrN28++cGdD1hskiRJkl27cePv/p1/TDYrynHXhQcPDhkkMmsABRBGwcBRO2Va5UwmE7Ut+cY3vjEej8fjcQhBTfzUYkS5R7JKDevLrAsk4ovbHTLGGCrLkkzeLBe6WhhDy2Y5GI0/+rGX/7u//jcPrhwcjIeee5r5KnxViw2h1QcA8jxv66hBUoVQWZZJhsVg4MM97eV7703itP3HPmjwS4wxSZLT6XS82U/9EllEsiy7efPm2dnZ7Vv31Ji367okSThGa622gdYg1m8CJ5iZQFnYovC+XrxbVRKwIiJE7qdX/UVjDDNH6ZPstGrUKfj8/JxBnEvOplPii04BBKu7AavsW+30IzkRDwiGIIRAaFAdNWK8desWWTva3gkSmqaZbAx9zUVRzKZnHAXQ6LymeMn6yVrrlGdgjLHOMXNkH2McDod1Xes1WGun0+nnP/czd+7eCiGMRiMA6lNEmCGCIZdYbkKXZblOChJjb2mFEEIoMxd8CwHR9um/zNE5xxLbtkmsE45NvbCJkxjL4WA4yHtsCeLu1u50euacGw3KwWDAElbByf0gNMZ0de/GtLu3d35yaq3J9nar5YLyXVXOO2N8YGuN9JwtxpXhKoD8GOKoCJX+GWCt7xOJYBJjTBPCIEkBMcaYOReEWcSonsra0Pn1ANZmNgIg64Lx2BJsPcb6lGigsAqYIiKOMB5vOKeJwmE9tPQH1uVyjFFPui7LVn1wJCIf+h05rnSRut/U4UcGY/RN14bQta0450ajEfN5t2yXy4X3XZYnlowWiMo40XGCiEWZA0o5KLquYxbrTLWs09Tl+aaWXHVdR4E87w2WdQlPnGFWsqgoZer+/fsKlrRdnRflW2+9M5stfttv+ylVZcYYjcUQZYUxawnSA4GApBQfbQhoGTEej5+/ek1Erl279uqrr86XSyICFO+9sykROWettRJZV/0kEe99WZbvTN9zaeI5xhjJGARuO/+d7/769ubOYjFDxCSxTdMZg21Th9CJxBC6a9eeD2FPZUC/9mu/MpvN8jy/+fSTeZotFgtLoLF462ctq1BIXSnLsgzRq2vg2dnZ9s5m0zSKx2j/AQn0sYYQfIxt2/JK71kUhTGmLMvjkzMdFYvF4uzsrGkaRIlREHrUs+s6hz09DgD29/fPz8/1fdd2P6+yGdaI13rjLSs63fo/1xtFFX7qNuBi0aYnXSO1MfbsFK0p5/P5Gg/T0Kf+FUDSaEgtyLa2thaLxeXLl0ejsSKOIYQsS3tLwtUgN304Y8+21CG6XM4RxTlnbM/u0jusYP/e3t5iXj18+FBVepcuXVIL7rZt67pumubq1atEuFxWi8VcE5zIurZtI/qmaWKMqrV69OhR3XotIvUWqe4hSZLhcLi9vfnw4cPpdNp13lor2GtEtBMSY3TSm/rqnV/LkPXm6HIjqywp/cmtrS3vg96fVfXJBjEywyptFhEWi8WHP/zhNE3JANdV6JoKY+6MmN7JL6p2ByIIRBBiQnIxBkOP58DBePTOB3ff/96vbift/tYwzwdlWZZFmmSuyAd5Utj7d+42vjs5O710cGV/b+/u7du//C/+5Xg8LrLy45/5VBPiL3/py5cuXd2YbDdVe34+y4qBILSNb9t2Wc2ttY8e3F8Lz0+OjxTtaJtKQN5/973p7CzE7qMf++i/9+/9r0IIv/yVL+/s7k4mk49+4uNBOHK8c/fu2Wzedn56fj4oR8Mkb+o6z0s0sLW3HyVsbe4I4Qr3ghil9T5JktF4MrK2q6v9/f0nnnhitlxsjMYn2KtskizVZ1C1TZZli8VMb7RLEwYZDAcaS6d8w+3tbQCoqurms0+eTecvvPSRKPjX/tJf+dgnPxu6NkSIDHleisQgkcgG5hgiAWrkKAk45wZFWWTZw4cPf/SjH/2u3/O79ch5nrOITu4qfNWN53qRWBcc6zIFV1jddHr+9FM3Q2w+ePe9nZ0dnRpGo1HruzTLfv73/c++9CtfcWmyuXsAKMDRoGMQY5FrZgmqYTTGhMDWWnYuhqAnms/ng9Fmnufquaplli4wzP1EDZGJ6OzsbFG3KolqmiZ1STkcRDHb2zvHx6f37z/MikEbIlrnWYisMU73f1qa2N4uNdLKrFxYGFgbKM45ncHXu0Z9tfqdHCGalbkAyGr3ZogsQv/65Xke2q6q6rzsLRx91yGqM7n+Yu+3BIBrLrZWdTESCIcQV0iA2CQJTWOpf8MsUlVV48kA1bjF++VyORpvrBd+732apqXmQuLj9aDnWZMbDfO79x5895XvbW1tiYD3YTKZ3Ll398033i6LAQCdn59funRpe2vn9ddfTyk3pk815rVSDAAMAgAlicoqgUEAiDDGiABFkbVtm2eZS0aJsRub40FedDG0VS2EqXVd13VtZy2lzuZZ4mw6GQ289yDsNDUly5SOg4h9jgJAlmV37txxlp5+6onjxTw5MA1SCMFYNAZjfJzKTKLGN4+rLv3/WpLxBSm2iDq5IxGRtU3nN4ty++pVh53GH2oajwgLBzKAJNot7IstQAHREXWxpmdBYUGygKQiPfUNjlGYw9nZmbW0LtTWk7JyrnEFsq3fRy1x8jxXbKwsyzTJmNkat15QtRQoigIAsjzVppVzDg1pO+nyFRUksY4Z59w6YqgoRpoMoyCu7lvWjO/9vYM1BVt9RBdVHTxPz+fKfdZVdrlcKkKgK1ma5s4lbdtm6UAiTEYH86n/q3/5b2RZBsj6ZHXfEqV/0YjI2MRYlBiKMkMwImJMOhwOWUCJ7cx8/+HDcjhsfJNliQ6SfoUjYgQkBMQuhqquNLFnWVeb3H8EGVgAYp7mzEHjeru6ij6CwWE52Ng8KIrirbfefOetty9d3j/Y333vvfesMZcODowx56dnc0DoLR04eg8AMQYA8Rzb4HWuMIAxxizLjo+PvffOmVu3bmmnJYRQ13Wapgigm8wYY+BoDKUu1zk5z/Ou89pM3NzctGmyWCwEgIxRMEYE9VBd8AyiuEOapkqEr6oqhGAMapMuRm+Mo5WnyRq70hGrTqdrLpf2v2hlZqGXd3EJuPiHdR2msT9d1ynqplOlFkY6gRtnOUTvfWRAxGqxTF2yu73XNT5KHxZelmXb1hfoHPqxaZrOZufMQST2UCv3Mgha9esV1NQRSwZyU9ZV+y9/6YtJkmgRORgMbj71TFmWs/l54vLJZPLOex/kRR6jzGfzJEmSJGXA49NTIqrbdjSaOOfOVnR41TEA9ILTqqrm87lzibXWRwAAaxKQwNwOBwMimM/n6pYVIzMiGQdCHGPwQfdI5LSTa6qqCiwx8vlsRkTkLETm2IcOpc5BH/ADIpLn+aNHj+7evbs5ngABgGjlnaZrk8K+59g/ZmIiACS+EN2RpqmQ+/Xv/vD//V/+2ZeevjIYjJjD7s5mmif37z986umb9tKlS+fz2cbW5oeef/7S/uXQtK9971Vn7GAwOjk8+Tv/+B/98I03r16/ef/wUZEWdRMmaNBQWzfzxdQ5d3Z2crFtJCJRfGKTLMn29y69+/7bP/O5n/7sZz979frVJEm++tWvVtUiz5LLly+//faby+Vyd3f7y1/+8sHu3mA8+eEPf/Txj18ZjEaT7R0tw+u2sSadV8vBaFgONXe9yItiVdtSCIHLfDgZk7NaNTdNo067dbO0iWXk0IXJZHT3brO7vdlUtW7cmfno0cn9ew8mk83j42NrbRe78cY4K4rZYnH9+o1/+UtfArBonHV09/7DyWRMiJ6jMaYLXoQje2sSRNUF8WBY6Gbi9ddf/6mf+im9FSqoCTHalbMOEWkdubJO7g2mV0X3BQ28QJZlg2Fx//6p997avq7P8xzQzGbzre2Nn/qtv+Ub3/z2Z39yPJyURIRkBKK1thPRF5uIOIrOmKygJgAAGOe0QnLOJVkKRBJDZC1KoopSAUDDaNPRxBhTd61uFl2adgEIbdfNY4yJozXqvv52ImKsXbf/eGUaDqvNn0JHbkV8FpHHO3Vj1puSyDHEuNqr96yddf8CVhiGrmTLulakC/sBaXCVdaNTms56tGo2gZoC6I2NEfS8zjVNE4WbrpPQApFL7PbmBgEnLuOceeUkrmWcrlLMTM7qkszMddPoefUHNje2iXAlHU/ffPPNZz/03Lgc3Lp1SwX2H3zwQZ7nVdWIoFal83ZWFmVgVJpZjB1zcJYAuCwVpe+IrLUEyCK5cykA53kpAByj6dCAkIEsLQRi1waOvmmryWTkyNX1MkkSBFLESI2FdDEwYIgo+FCW+Ruv/SCEcGlv7/6tswwldq0+GoPWGFoVV4+NvqCngT22y1pDXwgA1INGxhj9xXnVZZNyNN6YHX6gz9FZ22tsV4DcGhter0PrQbVeNgQej0BeScb0IACcZwnRYyxh/YppJSEX+kQXR5fO6aurBV1sdK3St1hPV9d1nueasOm9H29MRuPhbDo3lhSdTZIkz8ssSwC0phHvffBRsRlEVO5RXK0B3h8rdKEFUFVVZJy+U2smZa+D67xuP4hoTTMIIRAZbabfvPls27aa1VPXS1bOpelRAURkARH2XWWtTZM8BA5h9d7F+PDhw/F4PJ3PdVmNK0naukTQg2gRIyJVtXBJEmNUZxDnTBe8JbXvzxAFCdq2TlJ39erlwWBQ5PlyuWzbxjk3m5/X7843Nyd5nh4eHp2cHPUaFwKt+WKMomruXs3T12Tafq3rejga7O3tpalj7neeZpU5k6Zp6DolFVlrh+UIV6mRehDdXGkNnaSZiHRdp+rm9fSlJRfAGh3BLMv0HWdm5qDPyFrL/GOi2nXhomiT3jStwOIqkkhLav119fTR9aIHX1e4gw7R4+Nj3d1pVa3/pL02PVHbtsC6DwwhhIcPH6Zpurm5iYh5lovI9vZm0zTMTmtBPcJ616dFRgghy7KqXuhOhoiUZ6abk49//OPvvvvu6elpnue+iwrk66XWdR1j/PrXv67ffTQarV49rOuKyIbAzI0iiFevXmXmyWSysbFxeHio+XUhhPPz867rnDMxxiJLnXNVVWVpobWjS9M0TXd2rxHRe++9M5lMlB4zHA5jjOfTueIOIrImeGVZFqMQkYoSyrJcLBZd11HPrAU1JIscMfYdrSRNX331B88///y1D10C9tZg27YIkkgEIDLQOx9yFAIE8r5lhCwtLhpPuCQNjNef/NBv+cmffu76dvCeOcTQAkleDL79rd+w+aBsoh8Mh3me13UNQZVfUubFt771rfv3Hz755M2qZTKO0LnMNU3XhZajN8b4pm2WVQgBRv35GAIAj8aDyWT0zrtv/y//F//WF77wBeZ4+/btjY2Nk5Oj3d3doihu3/6gbpur168tFosXXnhpPB5X88XxydmTzzyrkxoRMfL1ywdVU29ubpLeRwRNwtIoOeZAAE3XMsiyrmzihMSlVneWi8XCOWetnS8XQxkA8GAwqJeVUptByDmX52XTdEmSnJ+fz2az3d3d27dvv/zRjyyWy6/8yq9t7B8gWCR84omrl69dffDgDiKStQZCs+istYlL2qp1TskDrizL999/j4iGE0V6eyl75twa2gGAJElkRWyiFZtyrZUAAAWBHZkQjMqDy7JcQdBsjCXjRLhtm4OD/aeeeuJrv/orv/VnfntyqY+bccYYYyQgAanVdVmWzBxCKMvScwzMRVGoF59OQEmSdD6iDwCMLMqXnM/nZ2dnqs7VCUJ7l0mSkke0pul8F9iJ6NKSJIkAtF03GAzWKuUeuxKJK2YDRMYVx5OIwmqWWU92620fkRo/EIJh9oFjv70zGLnnNzCI55imCSJam3gfAQ2gUc8o5t7/CxEF+0nKWssifToPAgcPSEAG0XLnwVprEksoiIPtDTImcogxjrcm29vby+VyuZyv2SdayYlIlmWMYK3NNMUMQETa4JVDXhRF0zSGXNO1iJgk6WKxfHD7XlVVaZq++sr30zRXXjAzdG1HwBCDMZgPB/1tQbaJKcu8GBTlQPtQNk3zGH2auhB9luaA4rsAhoyz1lKa2CRxzNJ1sSyy6IljiL4TCNaQcERAZwyzSOQkSZ2xi9m8LAY68zpnRJh92N3enH7vnRELM2u9Ejk6Z6MEuPBB7H0WVpnbv5mRj4hMaFZcDTRm0bboJllZHLXt5uYmCouIb/t1SE06eiABtChXKeLaARUEgftcbFn3HXRNJAI1gVvjqfjYGxOUOLzu6WgRtu596BKrW3ljjHE2zTPd9JuVHYCIOJaiKIisLvN5Xk6n80ePHulz0ePnea6vHjOnaa6oyfo6dTukZ49hFU63wk7yPM/SInDUK9G5YQ0VG5cAaaRq4BC1d4OI3ncrPlBrrY0cOh9Z2Cb67Dq1LEZEBtEKgCN0XU8eijFqwlGSWJHoEmMsIjnv/WBQ6tSqc5RCtMzoY6jbpmrq8XhcVYuo/CztiTMbpNRZg1Ckyf5zz2xtbbR1d3Jy8uD+vaqqNsaTtm5C117ev9Z2dQDYGA/joFCjh8Bora2qpR5njQpr/bG2op3P51euXiaCrmuyLEuzwWKx6MMkEOu6JkKyRtmBBimEIDoYooJPadO04/H47OysHI2J6M79B5cvX9aKtm29tYIEk63N5Wyuw2m5XMqKTLzeZ2kZZK3KjXm9YdAHGlaJ4FrMxVWSkg4JtWbVM67hjBCCcyt1NhGziPB8Pu95IBdI/XoF6+0lIitLMk3T8/PzpmkuX7789ttvj4wRkbZuzk5PXWq1bQqrxnrX+aZpsqy//q7rCO3GxoYWuFrKOJsCwA++/0NNF4hBOx7YdbW1RGSLIum6bjgce44icj5f5HmOiGdn08jsEtOnBZBO/lIMhnfv3r1//74GTy0WM+fc9uZkMBjEGE9OTgJz3XZ5OTTGNE1XFEXXhrZtzSnqyqUwZJZlVdUoXF3XNRhKkizGaAxZxNZ7Y5zL0tg0PshkMmmapm3roih8CNYapURbWywWC2AIIYRY7exs1fWyLHJrqV3O8s1djyAhMkZCCwQoDNCTfYhIQsQM+ceWcmqjTLb2P/WZz27n0rU1Kbovsru73Nm+ZAFob29vMBx2MaDvbC/7Nz/60Ztvv/3OtWs3TucLIprPZ1LgyJiqXjLE8WhU18ujo8OVR85qkgW5cuXy2dnZu+8++uhHPvqZz3y6qpaLxaIoCgVOh8OhMZgPysZ377//ftd16k1y6dKl5557fmt3J0mSs/PzPM9FJEltHsrFYqHKCGV90sqSGABS6yLz1taWmqMAwGw2c86BjT0OUddNU+lzquuaOerwaqr20aOj3d3d3/j1V9I0RZQkcUECEF6+fPWrX/tmkuUbG1vWJl2zvHr1+vb29q0776GhGPtdCyNWVZWYRCRmWanBKT/80euf/OSneMU61wKcV/sSnR/XW3Od5bWvBxcCfrUusUgq2SCyOhevicNAwRij0PHLL79sXf7OO+88+dSHBR4D2Igo3HONLwJOa1QmSQ0a2r98SWcB7b/ojImIBHR8fJwkSYw9PJAkiVaBzjnPIoKLRSWC6ia8Zm6laVpVlV6b7uFWhWMv40dCY0yUfiXRWWMNacCFjeNqBBuTuBSsbn30sLq/WeNtagWpi9miW8CK7romHOlX4HX5pTNZj4r0HjyMkBWjpukOLl9aLBbtmQehtm0Hw3K5XLZte/lgbzQahaA0FFyDFrpfRGsAYDqd6lPTuxpjLNJsf3//vffe0+6AtbYL4f333y+yXKdvTas8OzsriiJGttZ6H/OyJKLBsFDTozR1DLEo83KQ61UnCaFAkiXOWcdGhIX7HMGmbkIILrG6xUTE1Nll1042xjFG9Zsh1MoDERGQl8tlmjodn9izgBGIvG+3NzfC4aElTJwLIRjjhMF7T9asAg1/0+fHGGAAoB3IGKOgWVvHJ1kaRZjcxub2Lc39ZVbutlxsu6z6wuvFDH6884h9cOLjznIPRmpLMXYobG2+rpm0KlpbxsOq4bhGMbVLtSZEapG3bropaUYdPXzotLPvXKqTUpqm6t5ubYErw4vgOc+UWueMMUXe8yh4lUqJiN7HPFuHApl1nSEiiI+d4nkVJ6dH1hV6/cj06xNBCF2a9p0jFnTOZFnhY0BERmDWwwiCWEtO4yTRpGkqgkokcs6pcNKmiTa2lKK0vrYQWEQSY80qeKdpmvF4LKsEAkQJoXOWjFVKE08mk+FweHh4ePjgoYgMBiMAqOvaWPStLBYLRMwyE0JIkuTy5ctN06wVgmVZWjK6iGg/t23b+XzRtm2RZmRQmfLn56ej0chYVI223ue6rsfjESLG6NfjRPe9hlQC5Znj/v6+tfbRyWlZluv5Su9tVVVNW2kYkWYZnZ2d6csSY+y6zvuWqCdx0gUzpvUOXLcHvS5nlb1Lq8T3NcS7pj0pxd57v+68y4ouVpblYDA4PDzUtztNUy2V1ouL917z3XX51/Z0WZbKzWJmrZx0/NOKoa8kufVeJa5s6vQIWZaNx+MHDx4oTUV1lzpurcXhcGhXOgYd1SGE1nc6UceVbpSMiSEmw2QNRty7dy+EMBoMdQMTQrh06VJRFNVioT1W6cHOmOf5YDB48ODQe88sRHR6etp1XVFk2soXka7za3HMGjus614mCIC6Ts1ms7quVWVprTXUs5yZOc+zpmnKvEREJDsej09PTwmwSF3XNknowCUhBDBqhkwizIQIFoDJGh/9+tHrJ03zZX3uyI4n22XaFaEgFGsphHD33iNEY2fzpSz4fLHc398fFokjk6bp7HT2yvdf3d67dDxb1G0bxbg0Vci0KIo0MzHGuq5Yotpfr8+3MRnevXv7J3/LT37kIy8988xzxhg1R2EJgDyfz3cP9hHx3t17bdu6NCHjjE1ckkUGBgKh2XLh0qQLnpmbrgZDnqMEn1qncieL1PnO9rVI8N6PJ5Pj4+N+gOrWkEDb/2maJklyeHgYY9S2Y78nM6bruq5ZvvnmmxsbG43vikFZd/UnPvGJtuu+/+prk/HG0fF3r1y+vpyfp6kTgLquXYKMEEXAkBV0mYlBJpNJ4lyWpN/97neuXLmSZVkXVZ4jSLQ2ZFv3NUIIaqzFwH2CLwgA0EoVrwORzGPyoKpCehSaUE2dY4whxiwvXnzxxW/+xiu3bt26eu3JPE85emuMAOoOL4YwyAs9uxp/8Iq6OBgMNEuOmVl6LW6WJ1VV1YvOe09k9eXM89wkJs9TZKnbNkZjrT07OyPqy7vYM7R6M1VYofTr/wV4XAg553zTJWlCRG3b9r4yiOuvr7eLAEKn4fagcdqLxWK96dSNeGId+wApiIj01NSepg29kA7javG2aQrA3reIxloLQi4xGuewXsaaJqRpTkR37t3Ny4yI0jS1lqqquvfwwWKxsJYGgwGEaIxlxuVy6bI0hECR1HNF1+a2bcnZGONisfjGN75RjoZa9oUQovej0cggee9TzUixqLUjMwCLM0QovmuIxkQaJxi70DLnKGyIEmcQIXQBhbqm1VukyBJETpwlhDRJTQzreV/74HqPY/SoZFthiYgszthmtbFZbxWAua7r8bCEGIgBBdSlycfgyMFqgoOVxOHHaiP9L+pdwAwI9+axkZltYiDS+WIWhYpysFxUWmAhCyJGZZVrHwyEiCzaGKNBIuibzuuSGrGXTKDAalXTCDZBBJTHP6nYgC54ihWtYQNdafS92NnZefTokY4usqbzHmPQRUUdIvQt1pdiuVw6k/FKaatfPXg2hD4EEbEWrU1WMzIySxTu7WbI+MgSIiISmrbreQiRL8DAKIQUI4jwuj0EK0AF1kgJgk2c/gpH0f5jlmWqvdWjZVkSQuAYrbFqIZEkjogsORFJkmw4HPYGp0iykuJLiKHtwND+/r4I37t3T7+KXgpaLSk6bQ85p46nEkLvMpoYSwhEwCFub25NZ2f37t7OszLP89l0GkJIrSOBruvWBY2a1yu/e2tjw6xmxbquDw8Psyxb87I3NjbOz8+r+TJEv1wuB4NiuXR7+zvqHKuPVafNruuGw+Fy6d1Km6mFDsLjxIWyKBRK6bpOgKq6lUWtQjnutykmMJBNyrI8OTmx1m5ubh4dHeV5rtvao6MjFQPqOJQLiOzF4YeIOjM0vkuShH1Yz3tqmaFwjpbmClWulg8tIGh/f3+5XO7t7S2Xy6OjI2PQGBKJL7740tHR0dHRUQgSmZUHqfqA0WhwcnK0t7dnrQ2hW70TfYG4crQOzrkYBYC8j0mSAeDR0QkAhFA3TYdoQoje10QEIG3rRdBabtuecIKoi7KIAIIR7hFlWa0LxhgfIxFtbm4yswrqy+EAq6peVkR0//7Duq5D2w2Hw6IoEpcF4TSF+XyJaEDIdzFJEmutpi3PZud6n/XdRMSd3a17Dx6EtvUe1tiBiMTYMXOel84560xcBn3lrfozK6+uWhZFYY3tugDIaZEePrhHwLvbm+eh6bpOAPOBYUENfSVAzZoTgCg+TdPQdmmaAtT60J1LuU5cNuw5lzEaZ+q2IbQvvPCSIWen02kUrtu2bprFxua1S9cGg9GXf/lXd7Z3Q4zMjELGmKJICGlQloNJARDPz8/PTh4hEgDLhU3w5csHf+gP/a+vX78eY2QOdb3UOV0g6j3SKU8r1izL2i6s2+pd1wWOukUTQiQNNSZ9LdeY/NrnAwGSNF3vKpqm2dqYjMdj9b1ERPU18D42TZU62zStsg7TzD06OxkMBif16WBULusmzzMAYJCnnr75yvd+MJ3OQVye513XhNBtbIz7MUpBoogoz8lodWGMGY+HR0dHd+7c+fRnP9OG3r2diHB1zbBiKa07HbgKUdFBuX4TVu9FTx3TfPsVw0NCCGmZrZc9RqjruijHP/ETP3H7ztGtW7cuXdov8iTG3jclyzIiTNPUOdc1S1AKKgc1B1/3YtYLp778bd0QoLW25abruqFGeKSWiGLwLk1CvTJ6QXtxIbxY+K+XCngcDiPMbBhDCCqjk1XT5yJ6AY8BMF0WDTPziiKmcKDesb4VskJHuhW4pVsZWBF3WHotTPD+hRde+Pa3v71YVD25xCRd1z0uUAIDgDpZg4hu+5aLKnIYDAoO8caNG0RQVVW96G+m3gelLLRtqxoobcXWda27seeee+7h0aMkSULAJEk++vLLr732mkHKskw98xDNaifKiOqd6xBxNpspbdw6EyLE6JGECL3v+gEkoiOz3x9Df8/1hXLGCsK6o6F3SSKr8VOMfTisQoQ9EgPr2UoAqK7rwWADgDl0QE7PQmgu2sGv0A4EoX+153hxdAFKD1WJsEjruWMcb24Bs7WJOvqICBIS0Vri+rjYEoALFKiLg239RvzYz/fkJLMemesqP66sxXQYKGFFQdCzszNe7SXWR1Mmlr6q+itZltV1fe3atcVseX5+zmystVFHmuv1/IgIoH9GAOAIQIz0+Mr7cS4oFzKzYVV46beMKyOD3/SWrf/wm1466tU2Pfagu/81xwhWRMw0TTWKql42uq9W/EktKohouVyORqO6rq21SZ61bTscDjY2Ng4PHzFz5hysuI8xcpIks9lMRDY3N7umsUQ+tM4577tBloYQEtsnxg4GA5Ae+IkxBuj9DpW82LYtIK8pUH5FijLGnJ2dKWIxmUxOT0/1iW9vbzd5OZ2dt21dlikRffDBBzqtKX/LObe/vz+bTefzuSJAZHENHBrS28gKseh0sVwu06yoqkq1t6D0bSJVX85ms43xcH3zlduEiMvlUruHWjzBiluybnRoZ/nx0rACtNZPdl0y6oODCzyz9ZA2K8/6pmmKotjd3b18+fIHH7y3WCyMMdrC06tViyKdzRaLxUp/rRWeGGMARScrRFTLU93eaymWJElRFCpcgBX7TXqiG/eJk4hmRd6Hx7vr/nutSk/BFU93bUCvrN+zszMA2NraUkxUNZtZln34wx8eFqUxpq7r2XLx6NEja+1iUU2nU46AiAozrxFrJbBaa0VQ67yL7wJeAG4BQKdohSqrZe2c03Hie7GU8RydzazDzjc9xBP9ZJAfH7coERA5go/eGONUi8MIBlNjNX/NS2B+nMGYWHfednaUaqrHGipezKssKzyLTdLce7+xMSCydd2ez6aHx0eROSvyLgDAMkYfus7aJC/KzZ3N7c3R+fTk3nxqTY/NjMej9fn+8B/+w1mWnJycIKJxNkpQNjGAUduqLMu0Y2VtomYqsqbZWhOFPUdjyFjDzF3To/Tr2gsBgvdFUQTvObItjDomiIjWKNZaDpGcVR6fjwHVJop5MBg8eviQEIFFHciOTo7Lsjw9n44m46ptbjzxZFN3X//mt/M8Pz9bIshiPut8k+Vp3Vbee5cbfdiImFhXVdXm5pZLjCC8+oPvf/jFF8EYAuAL0+v6LbKuF3Gtd+QX7SH6BQzYGCIwzIxE1tq1HyYRGWejCCMgghBGliRJQuSqXmzvTF5+8YVf+9o3naVnbj4x874sUt82Wo5ou32Nx/KKeqL9BURkic6gRPRtu5wvdLrUPouCZHmeN77pu2nG1tzFzksQm1h9M+HHlysAWLcj5QLAQEQSYwgBkeyKm78m4lxcgQDAAJo+m2XF8I0xhE4pfQScWCciuFKuGeNiFOZGf32NHRIwWWschdbv7+8Oh8PZ+Yyd01leEIygsUnTen09sizL8xxC0MHZBl/XlcscCZxPp6NhGUKYLdVUs0BrIMa19lsXMOWuFnmifQTraDIaEJGPDhGPjo6eeuqpt998qygK3/i6rhWBU9c05xwUUC2WMcatjQ1dGnWWtNQTj6y1IjF4j2TTNLuwlj/GSPo+AiCH2LNBBZQqgGiEA3MfHS1E0Ad9rKatlST77Oxsb/8mSPDemxSBSBDIWV4F/hlBEQAiEdY2IMi6IOiZ99j7ZgjoBNnXH9R49oKTjS0AEUJGol4VQavDr52TmAiAUURATatQkB6bKrEIWdvjbqJCTH31LuxqeoCqV/XrG7FS+/ZyChFReVr/8vYFnwMgZr2rXqHVoihiXCwWizzPZjMQZDRADIiCBmOMjExoGQTVZgUREYgMS+RVkSogel+AHm/TV48yghaUK2nwuuq68LgfI47rv1fLmM3NTSKq6kXXdVG4tKWyy1GzZQI3Tafj3xiHGAFi6O1XEMioSZL3Ude50HYt0nI2K8tyczxZLBbMUTtNRAQizjnhGH1XZGnb1tqnM4BkbVmWbd0sq/m9+3e2N7fUdbNazgeDgYiw7/08u66zlrquWydeI6LRN50IESebG4hIgNopExGF3HzweVkWZVZ3bVmWIXY6Re/t7TFz0zTn5+cA8N5777/wwocRsdMjq17nQvKP6kkR0SVZn2xDkaGHFbXjrGvno0fHMUoIPJstAMAY1XE751LtGOhK5X1Uz0JEAkAfoxoSiyCE3v0EwWi+gqJcyskDoBi5hzUvjAp9yl0XjHGDweCNN94YDAZXrlwZj8f37t3b29s7OTnZ3tm0jljAOhJkJHv9+vUQgioJjCP2UQAYhBWNIzGmBztXjA4py+FiUWkIVVGkXdeFEFcDzRhj1CEZABHIqZRN4rqy1JmkXrmR0YrRqNfQNM3e9l7XddYkxpgXX3xxsVhkWVYtlloVGWMePDqs63olVqC6aSMDYB+U7sgsl8u6WTJzklhrbdtpqHGo6npZzXtfWYDgg5azZuWQJ4JE9B/86/+Jvix/+q//SasSjX5asFq56u4XCR4+fFgv5rvb22/cfVt7ayKCAv/xE5f7I9ydMTKSEIIlwyuT3tXLaALA5LW7E/ywglS3l18cjobXnrjxyU98OgrYrusGg4EGTRDRydHx22+/fXBwkGVZM6tQIHNJsDwejw4OLj/55I1hmVU/mh4+vM8SDBmWeD49g63+fFW1OD/v9D4Coj5OLVetc48ePULsuWk61a5r6tCbFLBzRvAxiQlX1ML1XENEKGAVuhfRmbRpmuFwaLGXcoTAo1RT/0RbyM4mXdfN5/PxeKySybt376pf1GA0UgPi6zduvH/79muvvf7Ch15CSKpqESfjxJFzOJs1Xde4bCgCiJQktmvasizzPBsMhnfu3AnCw8kYEeOKdLm+Zp3Z6cJnvTnGFeEXLnbrZOVAYQ0KoAAmSeKyHiDxbCxYa396/9/RH/ulO/+fruv29jc+9alPfetb39oYD5IkiVGtjR9bcPHqwvo6zJifvvFHANUjR/UAAQAASURBVAA8wAMQgLj1paqqUpckSQIsWvkNBoPxeGyMsbd/Qk8XzqAEEPlqCKHITRcD95baCAB/9g/9N/A/8fnzf+uPI6KyQ3gFZ65X0Is/uZp0ABSxYOU9ABBojmEIgY1FFJEexmjb1ibGe88x4tpKrd8DYU+zB5AYB4MCoicqhYXVSpE1ii5aayEEgzQYlZAkw3LgUisEeZ45Z0jg7Ozs+OjIWjLGKWSiJbLe6qIojLWqg6vrWtso1toHDx7o3gCJ6rpeLBZ7e3uXLl06Ozvb3dk9PDzUSreLYbmouYvz+ZyEtra2Yozz+dwY45z1Euu6zso0SRwzE6EWbVmWKVPEWksrxEifHax0giKPBYNKbFLfcuwfgQCyWkE6mz1e7MmdnpykzgBh9B1kDAjGuNgXWL+J4PVjj0/6/Gxa88NEBERAxIAR9RgT4wXKJAMgJZ4jGoDYF0n4YxwvWPUN17XRupaiFYfmYo2y/hv9rAcbXAAV1hsAtZBYiz/W1QwaihfUlLBCwgDAGKMPKESfZgmDdvt7OQgRGOMMORFhBnxczjEYIHmMHeoV4QXkWEQAHputrAfzxWv7TXsVvAD+Mce1m4x2fxzZEEKelTFGv1LYISKRda73qdI5KgYGAGeduRC/wSvpAPduHWYwGITgFSROkoQQQwht03Vdp1QkYIkxNHUYDAoCnM7OerYAUlEUBwcHp6enIXCSJGCsIlv6jZg5TZxSvnQY614rxqgqZqX1W2t1ndbHYYzpOnLOWGuT1O7u7uo162hfYzlt2+Z5XteNMcaSUQYcomozIcQmH5TubM7qsJOmaZqqz8J4PK6XlV6Mc+7o6EildvP5fHt7WwV30+lUm54Xsa71VBZCWM+QsKInQh/i3m+6dDSud6QiP5ZYuh7MRDSdTpMkefDggdLgLl8+eP755w8PD7Vbsr29fXp6GmPMsixJYHdvW+3c+njvFTNPr9A6G2PsYuecQ5S48sRXD1t9BOthiYgguC6zdPfSf1+D67tNKyMuXvEXZWU8q2u67k5FZLFcvP7660Q0Go0smRDC0dERIp6fnytMtVgskPreFyLqLOo7r8t6URS60up4BrW37Gpdbddvvd5VRPxTv+/P/aaZ6s/+u/+F/uE//dv/hy6EEELi0vVyMHDlZz71aWPMZJhXy/lIIiL+mScv/9gRrvTY03941Igw4uN5BgCe/M6vP/njZ7yWf14X3Lfffef69es2ywoAQhaLVObFrfc/+O4r333hQy9VbbuYVzZJpI1NXW1vbvh2cfjg7qklkPipT3w8hPDo0SMkuHbtGrwBq4EFRTFoutZHlqCLq7ZJaT6fLxYVkQWhGMQYY6yVttNenvcegI0xQQKLcHhcfiXGXpwErbU+BrIGvG+aZjAsQuhYQpJYIkIWHe66zMzncx3cIKCey1mSOmNjCMCysbFxfHKys7t1Njv71L/2WWvdV3/t61tbWyo5WS7nJ0cPtiYlcHf46F7btrZNtLTXMVcO8iS1zPFf/I+/9PnP/ywihvj/Z+8/oy25qrNReM651qqww0l9Ore61WolJCEQEllkMNgk22SRX0AYkUwUkpCEMgiwTc4GDIicbDDwgo0BY5LICBRaoXM4eceqWmHeH7Oq9j6tlvyO+4077h3f8BoMcbp27dpVq1aY4ZnPw4irdIJ5deKASqwMVxMVq0+rDEUIgR0q1ErLjoWAWusoigqbee8fMvMsAIB09EYfe8zzAQAWwa6B008/7Te/+sVx27esW9MuBoNIq9q/H8/ubRz+GdypJQuP3KYhj//dOZcNhxxCu9WO4/i45jn57Uee/MQzXv/EM+Ct//QKK0J4iIh4+Ys/cufL1u38c9519adeUZV8A9R80OItrrZZpck0kyRCpA1Y55wzSkdV5LUsnA4MFZIaFKFSnHtmRqWVUrKs6NgAcAg+iSJgjuO42+nHcaxNZJ0rqfNZ+CmKOJ6BWgAEsd1uiwZUq9UyxkiqEQDiKAohCFFNvf0PBwPSGCdGBsm6dWvXrl17xx13dLtd6y0gr6ys/OIXv2gkqSQxp6amDs134zj2Rd5oNChBrUw2GA77fWRK0xgCF0UBqkwh1d5/XrhWq1U4a71TSiFUEeLK+BglO5Qu41HlAk4BEZg8lJS0YiZCldpjBu9DkqRzc3OKgmmn1uUQOGBQGjlwgDHRwrphkF8YNw4YqxUA9ei9hoCEjGgdAKFqNKy1USzF9grYMZehJ6zcTQBA9gTsXCngKPpazBzCqHRDjqixEJHQuvqK7KruGar0J+qNUHBvtbMeQpA6zTIvySV5CgfQpCTdw+ydt0BIgCEEiQ6C/A6o6lIsppEUEiikUMuElFaXoNRKwwsqx6M8ZYxEqk5awRglx+hJAQDAe07TJiqdZzlpQ2S8Z0UKUTEHQT3KTu8ZgIGEhRgIKyswOI8M3jpkyIq8DM/HoZGm1trgg8RNN23YxBCEI0BrrQAxcDNJ+50uG2c0+cIGVzhfxCbKh9mg17355huTJJFceQgQQjAkNAKxONJcAcxVpRckKTOpxZZO0FoPer1hnnc6nXa7LbI/ne7yYOAmmq04MYuLi3X2jVAbE1tbTE5O9vuDEBhBZVlmlCaiPMt6vZ51fmpqykSmnw3TNCWtOp2uhOSr4sdicnKKqJtlQ2YW/0rKD6UIILdOJIMajYbRqi5LFO0KpZRWRngBa0UHKcMEKKtNYbWFLWEL+ZdY4cwo5lzFKKQRVZqm1tqFhYUdO3aIvpBAPGdnZ6XTnHO7du9eMzu7Zesxk9NTFQq+IlPEYK0PIUQmUUp5XzB7awtjdB1xl5BYCIEDKKUCBleRR67y6gMyQ1nRpAJWWmSBHQeWqpZeryf9tn//fkkXahXt33dwcqodRVHabAyHQwZa6fT6g4yIBsO88uJGPcPMLnhmnpya0lr7YImoyJ2A+ay1hNoH72yoI9zMGEKoUflHbRc9862XXfdGqIw5QaQ0m835+bnDhw5MTh4TuktpnFxx2j3u6gpXrk0uXsodKhM3ATwA3Pp6vquTAeAJT/7L+5xxH6oL34zWkTY2zxEoy7K5ubmVbmfY6xPypo1rN6xfMzXd8iHPskG/35da6NPueeqDH/zgc855Zn1R5tKCXlxcXF5e5sq0l7yvdVZ+Tvx1eXMyjsWnQcT67fJY8QhUFlUYozMgrQRkQ0Tsg1BL93q9yJTcuI20yQEHg4EY4wAQRbEEhweDQbPVWFlZkpfqnNu+ffttt93229/+Pk2bRVFopUKR9fu9JNGAvDg/N8z6iYkikyRxA5EkJddsNn/z21/t2LFjZs0aQBVFkdaRLHB1xKv2WrDiFpJPVVVjwmOxXwCpa4t0xdsLhLV1vzpIdGTbvrJj27ZtJ5988g2//71AWV2lNkhVnSAApHMPvpuLxIuP7Pf7wbpmszk5OfmAk8+/m5Pf9Lz30kjMhC/+yIvv7v6q+SOR3lCVd1URGq49FR6LimmtqUKqAZewEa4oagAAKjcxjWKxxrTWqBSMk6hVbqi1VikCAiIArIvLUBAPzCyQiEYaQ3CkIHinFDL7JIni2IjPzcxS+lDL6skrjuO40SirHCThKwPytttu6/V6Ja4ZQN6+FJAPh8OlpSWp0oqqiop2uy3sIaeccoo4J0kURyoqCscB4zgp1y6lhsNhv98Xm2wwGEh+v9fr1dKrtQVWb+GICIDjPU9EpSATYo3jRMSZmZmlpSVE2LR5QzEcyityXL0d8IBhXFsIACQYWf69OjpWxaFGYlCM2BsMjYnaE5MuBA5YSuSOrnaUsGg9L2rwB1Z57drlHX/jla1WTjesxFUl7CFQa9lEax9J/ivXL40PZmZ2lcKB3MZwOBwO8yK3tnDBMwpNMBCCAi5jA+NxbqWwjiqNikNgRGyGiAJqr6dD/TdUQbu6Z8YdFRxrWmuR3K4eXwOA1hEIGgkVB5C7lcqkekW1Y2I1gqqU5JH8M4QgGfY6LiWMo41GY3Z2ds2aNRMTE+IOZfkQIChAUgIM5hBciTcS4EuvJ9NBCBckmlizW1HFXS5bpkgiTkxI6aIX4F2r1ZIB0O12FxcXV1ZWBPM0GAyoItkSn00SlEVRyDLrnFtaWup2+gcOHLjppptuu+22wWAgi4ZMFkF8Q5V1EXNhcnJSbEQaQ24IHHBhYWHPnj0CY5I1Vn5r/DUJ9qgoCtnm6nFbB4ck+lB/UTyBej2sT5Y/ZNGQ68j7Wl5enpubkwHpnFtZWdm0aZMYr+12e3Z2Vl6TUH/Vgz9wKeMtiTaRGeVKex4RkyRpt9uyO48b/eORBVkJVUWqV08fkARFFZ+WxUqeTpLg9XUEf7aysiJlldIPeqxkvlqyRtW+XClgaq1l3ZM3KzWeclq928pdKaXe+JQrx1eSq7948ave81JY3eIklZ+Wh5Lr58NhrDVodcV9zhw/+bJ9i0d8vX5lcKeWbxvw2tvGj3zmmh/tvPVmLWsTMDfSxmAw+NnPfqa1Thqp9T5KODJJFEWd7vL3v/9dWZqn2jMPetCDth27devWrcYYUReuL7rjhOONMYqMtbbb7S4tLxw4tD+EMDlRyA0655zzSZJ6H6AyS2VuaIXA3pACIhccAERK81jurIyHEQGiD0Fp7YZDGVC9Xm96ciqqsALe+zRNB4NB0kgqOw+yYdFIU1GfEAqDXq/Xnmovdzr3ecD9lNbX//pXQh8XQlhZWl6/aeOh3bvWrruX9/ni4mKn09HbtC28jE6ZkIcOHfj973/7hCf9pSwfqMrw23isVdU07gDi3RKVnjFLbqJqqhR/IKVUcD6OkyJzzrmJdpuI8jx/5DEvGX+F/3Ho00jqYWufVR8J1t3znvfcc8ctO2++5R4nnSB2W6tZrlbGGHf7feqTv/bbtzbT1n3PuFdkfGP54ePDKI6idrt972NfXR9MdvxqpbcScttoTvK++68ac2Pu+iUffQlVlHfS85e+8IPy0Vs/8yoqlRZh3Lau95hqB6ozZeVurbVGcfdD8N5rJq21tUW5GlZbo2ooG0ZlcYwlN4TEe5gZCIbDfhzHIBWCSnvv0TtmjpN0OBySAvC+xOkopZTy3kmJYlEorfVg2FNkELEkNtOaAWSJh4pQ1LkiK3y325Vl1AhfTlyaVq1WK1iHCFJmlaZpURQ2L4TnxhYuMjEACTBCyFMQYTgcyrZexgaEOwP8eE/CaoYhsdpVldqGOqVbCi1LxEOYS9E7jtO4PTmRDwtERCZnQ5o2b731VgW4dfPmXyz3JhUoQF8KZaKUJjIwAmJgKIFdXAOwajggIkJg4ccRFQIsAzzU7w/jqTRNU5ktJBWLpWoHMTNjEFnb8ruIgRlRSfakHoEhsJCPVMJRvp5TfozNgavgClRpNayy/6pkPbUKUVUGFinDzKjYeienyUboKplRAIBS8YMQiVly/VLzj9XYUxJjlIgAMiETcFUcWs8cBAQEBpCLwMjSWjXXql0wrM694qi32bq86BQV+aQXXYTS2VNIREYbKLd5S9oIlVoYS5ZBSTplSncpMDEopWyWI5BSJlIafCiGWQghVKnAwWCgFYnJled5YBebiAjWrFkTRVG314mTSEIUiOidM8YwcMBgEpPZDBRxCMEDkbbOAiAKg64IMGuqS0xkxyGtArNAuzrd5SjSk602AAjXmlYlAl2M0jq6Kd2iFbZarTiOtNZZls/NzZEyrcmJ7mCIiqQIdN3aDaLNVRSFK+yaNWsQQXT2JIhARIQqiVOpZJQjSmkE4iAY8NJCCiEUhZVXUK97Mg6d9RxAG42IwYcKszgCjQjFuvyPGRCo2+klaVx7VlVhlhjQMBwObrnl5tnZWe9dr9dL03Rubs5aKypJcRxbm3vvtSkV8AQXleVDraRElwDAGBWCGwxKlh/nHCBI2W49d3xFV1Q7NjDmMslYVXrkAztfAEAIpf6SsPBIgCoyibOhyJ2MospPA6W0HJEBludFmQgqCsQRT4cLEEfGe86yLDEGy4QyVx2+qibs2i9d6lyI4ziN0ks/+cbLnn+tHL/0nGuv+tJF1tqQCzzD3XLLTcUgX1xc3HR8JBBAaRfs3IWgTJxcfqBrPdf5xytnkgtXnAsWAMdDX7dunzkxAT/E2ZOXk0a691exHN+0ZZ0Wqzw47wq7bs2sOBDOFUkSdzodATNmWbZ+3fr7P+ABxx9//OzMrJgvvX7fFsWtt976kIc8pP4l8emNjtvt9szMzJZjNp148glZlgUPf/zjH0+55z2TNC0NeeA0TUIIzJ60YvC5LUCktZJRtYX3Xir56x6UBdRXVPLITBVxHABMTEwIZK/f7yOBUmp6crIoMkBAgJrA0Dl3+NBcbKKsKBYX5+9979Pn5ub/eMONmzZt8T4kcaQ19VY6AGF2ZhqYV1aWXGFDCHEcdzqdNbPTjSSJoujnP//5GWfeNwB65wRTLPW8UPlPY7EusdyJ2QvGpQJagkA9eMT96L23Wpkiy1C0VqpxXLcfLXxerLQoTn4w/6WHzT5Vjh/bPfEO+MP97nfWD/79uzfffPPJxx/PVTEgM0dRlFVX2B//GzNrAlLgnAvrf0SHyveoSenV9NbZzH9AJhjwnKGfN/9juv/w8nUgAI9W7TpaIOHM2vaCmoulxBXJ1jiioITVBWtciZHJnQMERqjKpFS99aZpTFqjIuXNsMittUIxFZwDRNAKx64va0Or1QDvGHwIQemoCmMMtdbAEhYTWlpiDkph4fJYxUIV02y0ZQWXkpnaZxXje3l5EarcASoyxkSREb4iVOScY+97vZ4CtNbGJpaOStMUCiu7Xb83BOLg2YNfWVr63e9/b6IoeCuEc8EHrSNFRsL4ZTFHFVGrrQpxZwOUUldyhyOzA8Q4UEoxlqkuds4hsTGm1+nHOiIFEEBH0a23HGTwM9OT/sBCDIqUGthAWocSWQcBEYBVOQx4HPqAjIyBAIEJKAQpACR0IRhRUic1yAswBlQELg+hhMwLv0yZmGOGSkOttPtg5GrXvQ0AwBBCoKqcXlXqezhWU1af7CuWeRqxOZD37D2rSDGiyHOJaoGORkpzvtJ4rkc7M+vIgC8VYCVXgojiW5aewGh4KyhhcyV4ro5u4Z3KGOvGY/FLuY16etZWZn2y/K00Mnipu5TAXqiSejhGP6u19iVXPon1WV+KmbMsU0oCw64oipgi771WRFTWx4kXKiGfKIplIjjnrPVExF5opd2GDevWrV+7d+/eW265Zc2aNRKVr9nhQ5X4ll1ZmDgkylXbxyEEQgIKHFApxQG9L7SOUWrvQzBRKqXHw6EmFOGEfqjASboikS+KntExKXCFZeYsGyql4jhpNBqkTLAOiefn5xtJo9FoGK2N1svLPUmS9Ps9ABQnEACc9bVfbSsa+hACEzrnDSNqRQw2eAxBOJnrGVo7A4glnR5VOrZ1gG381cOYWWytbbVaSlO/3+/1ErGwoyiaXzgsWVGtTZblKysdiS8oMisrXQCYmZnZuXPnhg0bmCGpdMaCh7wYKjJGB9HL8p5rcuBWa6LegrXWznobRkqsShmiMmCGVAbt6jVadD+jKPLe8kh9JMiY1NqIFKPMqWazKZGCOI6TpOG9d84ZE8nrS5IEkZzzdQGWMabZSEINKbMWtQo2UOnnlKFrcfxqe13a/n17Vjq9oiiiKDnhhB2XfeqNlz63tMDYB6N0Y3rC+YKR1qxb311c7vf7RkMaq/oKgBgYrfNIjkhduK939eZWtckBqVU79R9PuwetHJjdsJHjQocQ6ZEZNz3T1oXzjICKUNHKysrtt95x4gk7kiRB0nk+ZALvQ+Hcnz36z4/Zsm0wGPzxxptK8dQkRgZSqtPt1lc8sO8gEU1NTfV7PSQiBdYX27ZtO3bbcb/85S/7/f7MzIxzLts7nJialJ2s1xumaToc9lsTTc9OKeXyIoRgSDF4UhDY1QulWL7V3myIaGZqmn0IAZQypMzC0kqz1er3+21xUACnJ6cWF+elHMYojciIWAzzdtpYc8KJ//HjH555nzNmZmZ+8MOfTE+vCYyA4CmgAuccMEw0mqnRK0vLcdI0xgyLvNVqxUmSNBu79+zJLW/atAVRoUEGCMEzsELy3gOz0oqIGBkFQ8+sSfsAyKhVxAxK0TDPiAAVAQTng0IgBeADsielMBAHFyeGCK219avzHLwPqpTCpN/xf56OZ8tH/WGXQ/GIRz7sK1/84t79+zudzjEb12VZVnhHZoTYGQ6zhYWFzevXEoWiKLyP6s+SJMHAWkX1ydqQUqrdmhyijkyDw8gy01rbitKmXk9lF7nkBR+oT7vkoy+RHDR7Dt4DlZWYgR2gEsBcqFA45dok2yQKRJRyWwCCc0EyE0qZcl9xlhFzH4y1ChSTUYCh0mBBQg8lZBSYrc2VUoDiZjMAO+eiKCKgcroiBuBWq4EIiJw2ExtERwU6/Z747sKHxIyusC5YpVQUa+ccMmutI0l9giq8IyJQrJQStJPW2ud5llupJ1CAPvg8zzVRpFUACOyGw0JrDQqiNFaRAgIC48EnjaYPThIlzUajKHLvbRkWQszzYbX4aiA0SguZhSxw7EMcGSJyzivQzhZC7hBCQGIEUkphIAgMPlBE3jqFEJsIwA3ywaZ1a+2PbmsHteiCMZENAQiJCJgCC9g8SOUjlPQQlRnNENiDsEMDKEXOeUZ0gQMENFE3t57Siem1B+/Y2U6n8iLTscbAQBgQAnCkxJ5TRCjreK3RqbXoPpUILcceFQmQWQn9kgtaG0Oj0mlZl+tEs1LKlpuo0jrKi0KbWEo5GYmBEaCMcmHp+BsdM3MQYz4wEYbA3npiMUDdaH/1oaKs8qKZJRNBuHWQSnPKIytEIBSAjCCxiJRzToJaQbwPTQDgvFNKo6bMFhI2MIhESni0iaRIkBUZABD94DrgV1tgpSmpKfgybqqMtoWP4xgCIFE2HIqbGkLAgILEEyMvyzIPwxK4ozUFyLJMkJdFVkTGAGCeF0oba21gHg5sI+HFxcUoitatXT81Ob1z587C5kmSBAzsPaHOB8NWo/W7X/9u7uBcq9USTjIFZS2zUBRJMi4Ep3WU50NmbDQSkIg4BmO0t47BO+eKIotUJCETZhZFbdk+0jRNkiiKM1EsbTab7IUs3q6srCil46QxMzUzHOT7du9Nmo0Du/db6733U1MTaSPK89y74JybmGx7FxYWVuIoHdr+cNhvNFIxQJ1zUWRc8OxDlMTs2XPw1sltiHUr4aJms9nv9OssW+0dee8BykAdVnUePjixQoSv7pe/uv7EE09cv349EeR53mgkYsIaY5aWlrxjMnT40PybnvXOkRUwgCff++Qn3/t/AcD7vnF5lhUhhM5KD0BCLeqVT7oc7tSefeFfIJaTl4gA6FNXff2cC55w3TXfGD/tnAsehwifufrbd75CdcIjgSpII+N11/z70c55HJACZiQlqzrq+DNXfO2oF7z6s+cPe2Xiy9sQmyQAswppmiJSkiQTLc/MgMGQCiGc+9gL5Iuf+8n7zn7Q/QPQzMyaffv27dmzx0Qju0qjDuycL5yzQSHbwnlYWl4w2q1dM0JbE+kigNQG+RBwTOQxz20ragDY+ogxpgD2ZCam1xhrm43o5Ef2b/x3DwCvePx7tTKaANm7ZqO969adBw8e3Lp5U5qmnX4PMOT50HlOm41dd+zZdcc+CUcjcV4Uhc0QcTgc/vGPf3osPFR+7JJLL1GkfPAMMDkxCQArvUVg/tu/fd3GLZu3HXvsrl27mhNtwcE55/J8CAAePBMCUW4tBqxnOyn12M3PO+oL+M7eT2dZRoiNpCmujDL6WPvAY09+4ONPXnXmTxc+W5KUWgmn48+/MBhMDR649SUAcOZTng8AS/8JN998cxQ3n7St+rkN8LRTziv/noMLz/nHt3/5vDiKuoP+5FS72WyekTzhjBPgSSecN/5b39r7ISlaUqAYg9YGkR+z6X8d9RF+OHcdAERaBRDZKI0cUDITSik0BAhIoUIZm92nyRd/Y79ZhtZQsj0mhFCrnmtNnZXB9NTkYx7zmFtuuWXu0KEz73P6/PycLJr92f9ozj8cAHbQ43c86vH71DfbE60BeDP/0PrGpqamiGHdunVz/utr1ZMBQB96qAeIdvxG67zRaOCBe9Yn82qvvXb3a5gLAFz6sXPrAICvoPo1xIEqIRpYLbgBpa5UmW5I0xRIW2tbKkEU7qtSpsOLBBBqqLKNpVx1VROAKFgkFA8PmJkgMLNzAJCmqc1L5Yo4TbvdLjNPT0+L6vPMxMTBgweNjifb7aIo0jRWShkyJOlJjQzg2BEAc4hIEREwOvbCaiGlmuXOpyiEEFwgoqhkG0dELIoiIDSb7S1btvRWerGJVla6O3fu7Pf7rdaE9RYA8twye2s9kY5joxRZS9baVz3mLdJjH/uvt0tUgyWSwqCVcH8AM2itm81mvz9gB4YMIzBTUfgQ/HmPLK9w7dfeXFlOLDYwIuT5sN1swdwiuYAI7z5hff1az7vlIAN74FqIB0MgIAB+17EzRx3zAPDy2+a8aHQgWe8KprQ1MRzmrl0SIQbvUCsAiQR4jRQE9ViqGZo7jzoeA27zGKYNKh4gXzEqyZYmaRfnnMRsQgDnhCKHiqKI4jInAmPVM4Yi6UasOOpkK9VaM41Gbx2m8s7WYdryvVQBjzpeJXBsy4GFTYMQGGpAW7Ur6xAC+OCBMXDAQI6Zuc7JylattSZQ1ovcofFVrRKWNHLae691lGeFUkorUxQFAClFWmNhLTCXVcNa10hTay1pY4yxtpT6IaK8yCXOBCBVqoF9AICiKBnPxUP23gPQYJitpak8z+fm5tasWbNly5bt27fPHTokGppaa++YmXu93lOe8hQBVzGxtTbWhpmt9fXKgDVXahUVkzywDzYET4BKo8SkDZWYLXkXNUU7M1ub+2CZS/ksqHRB1qxZA4DGxFrr7du2bdm4GQCkMwgQILTa6WAwyHLHzKRYkd68eRsHBB2E55mIZDAEkJAn1USgwOSD1VRm6KiiNfaFr2P5WMGC64QvVLSFiFiKr1VcAaLy8tOf/rQostnZ2XXrZpMkWV5ZXFxcNDqOIgCgVbbXERPwCZe862uXOOdkkRZ06VHP/MzV/3rj8CfAwr+vTpt4EAAcYXsBwHXXfPuP/R/f1c8BwFVvvZZo5GDD0X7tumu+fSC50ZgIUTiXdHt+411d8MJnvc1vmVdKoVJSgS5oIu99nKbWWhQiKoAQHASGpfKLT37SE6wLpCNjzHe+851f/vqXmzdvqS/LIXAIFiwZpQjzrCCi+fl5o3Gi3ahPC8EpqDJXOCqkAYBxot36iNNqbmnlm//7q6l3p52044EPuT9AiRvTROidM0o5a2+++WaqxAqIqN1uB6CicJ1O9yc/+8mO7SeEEFa6ywL1tTYDAEAG5pp4ItJxCEGoRHq9fqPVQFAvevGLth+/4wc/+NHi4uLxxx+fFQUApGl66NAhJDTGBOvSKLYuJ4CyjkYpZr4r2wsAHrvlOf9+4AvZsC9x1PHw+xHtAWue9Z3uB5i50+ls3rzxtn9vAEB7+QFHnPbUk1/5uT++764uAgALCwt5LmQTqdJHKfwCgD/f8tJv7/swEQIhI5DCR69/4V1d8KFrz/nRwqeMMc4FYEAgQasicYmBZgJAV5Vc1U0EviTYgLAK+QEAwvvX767kw2x6cnLnjTelaTrosqrQZuOX2uwfz7vHyygBAACDs1Jt7mHsl4tb761qQt/RzYxafRuIOJ52vOxFHwaAKz55XgiBISgyWIXfZaTV3yKqIA4o2RgQrMYw66uKN49oUkLWvtZXGiMVE6qO8dsLzLIDAnCn05HMUU0cShpzmxEpKTluNpuusAhMyD4rIkVZr3fv007jALvuuKMRx6DQGAOevbcMgUE5YAZPxgjLoHcBgBgJQEneyXsn5heBOOIYgh9UmlRa69xZ6x0jpElTdNyNjrSKAcAHsNY3GokLHit9jMLSC+//miNe2ose9Ab548P/eW0IQdLggpBjz9Y6kSgoikJpSYfxyx956fgV3viXJTr1LZ98rffOAzOHTqeTJBMQ3AWnHXPEL77/hA3yx3m3HAIoEYAM/J7jZuGu2/uOW3vuLYcNESIMhv2A1JqcKLIMJBMBnss0PStF4AKXop+eFLngiUeor/IVj+lw19szV4mJJCrRb4pIgXLWRToKNpgkLooBESMqY8haq5XyzhmthQgeuUSM+eARSRi0ra9k9QgZQCnD7IlB5Cvkvz4EAK6yn+j9KssMgtD9AQBA8AhAqKC85+AxBPYKVBB4HmLwJRu+IUVKMQIENqSQgQNjlU8Ur88oDQG8LQVz2KFCo4yBABpVsEFTbLRxzhGYKEr6w57YqAowBEfM7KxCJA4KMDGR5BMl7oWYIlR0fb5EZxIpie0lUWLzQrraWg8AWlMUpZ1Or9lMkyRZWlpaWVmZmZnZuHFjp9MRcgFBUg4GfWvz+9znPlo42alcFpwN8l5gNdabRVoHkdmH4AM7SdvF2uT5UEhEtdaiJCFoLfH0vPeBXaiw1aqqBhDnzRiT5xaAnPUhBEYDAEaVeWelVBzHkodFxChKnHO5y7mqSHXBU0lcB4S6KAopAkNQDL6GZMRxrKpiDO99msYhBK1LMF+NfJcmvR24/DozA4Qoiubn5ycn243GermgMabVasVxvLS0JI7E3UxAAHj1X17+9195s/zEa59y1d2ceXL6wBu6P3bOMR3dRAOAf7/tG4887gl3c5HtfNa//PbTiPiEU599N6dtzE7+p+++VzCXeZ4//yHn3c3Jb732WpngddEGEGZZJnuHtaVRHtgF695//ufllBe9+CWoIvYOkNasW7dx48bBYHD15y+48BnXAMAFz7zqiuveqBGdc4EhjmNUcPOfbvSF3Ti7rv7pkiaHZW8JTKPeJpIiktECRRgpisnQD37485Vdt35k4eCznvfsB514jnxaci22Wq1eZ+XLX/nyaSedVGR5EsWGlNcmbUwUzi8td5tpc9++fVrrYZ6F4BAxSZrMjFhq7UmzzmpjgDkAN9JWr9d94AMf/KhHPcYGf+DAASE0y11pLSVJMswHWmsi7b1HUM4GPcYOfze9DwCP3Pj0L8y/3xiTZYM/2/Kco9rU0h577Mu+t+tDe/r9zZs3Q370c756ywefecrL7+bn3nru57+/55ONVuOBU0+9m9Met/nc7x78GOoSb3v3j4CICjFIZkSSBQhUmQ8VRziqyKx6x4ACxVRIITAgIKpb2zfu6J4MAKf5s3+Qf5YdxHGsEDudjgzTtJECgFLqhsGnT208565uiTb/uISMFEMA+s3K++699S675fKPn1vz2WBV3QkARHT5J142nnwEgIuf//6rP/1KZmYIwB5gJDQEq8HRVehFLBbQhmw3R4yAKJSZR8HF+xBEzKZk6QxV2QsxVeRJgACI4qyobrc/u3Y9VKlGWbWdc96HKNJaUQju0KEDzSSdbDZ6vQ5aPTU1u3FmrXNuP+xOSDGxJgQgAEZEaz0pNEkKAIiBWEovQAMSakaMNHmyZTSONCkAhKIoEAIDU9AIKo4i8oV3OOjliYnjqFFoFgu41ZzQWg+HudKaFBa5tS6Yu11ezz37jR/9r38g1CGE4MlECgIH7/q9oZR3UdAM4aUPv+CurvCW5//dJZ98DQcEoJWV5Yl1a6+7+JK7+UUx5oAZgAKHV9w6994da+/m/Hp2D4c5Kd1sTYB3SinrHRIrZVyw4CuWQ6mULcfJKE0DY4AYGS31ZeUcqbZeXFxM0wRRrJ8BgpJdsJ8NG41Gng/LeojgENnagnmknxgqgWdmJmWUQtHpVsqU/PxCm46jkFWdmHMVbS+PgVG890kkujQSI2FEdK6MG/mKgACrFFVttFWPVoaQlVK+grgBgNBeuDEcUon/81CXFIhf7j2PyUX7LBuG4AI7qRMcDvIAnESx8A74Utk6OFcIu1UIAT2I1QNQ+TkMAOC9E+NDek+X/O+sKaIxx6/b7WaDQbPZnJ6e7vV6wOScm5iY+MMf/vD1r/8LQFi7bo1S6vDhwy7PUUUsgjDeARIpFbwnpSQFL47bccdt98EWRRGC27huvQgvcglcKztQiNAko8rMcWJkItRvWcyvKIp27dq3Z8+e4Nlau7jSMcbEWnW7fSK9devWosiiSIsc4Zln3SfLsl179h48eHBmZtZam1eM3FDCKym4EqAcRdHc4f0mTuSW8sHQB5cmLaVK0iUR45JCFhCJDucYAqEKHISWiEruusAc1qyZfcxjHlMUxeTkZKORLC4uSglho9FAHHY7/Xqu/cPXL/v5z39+7rnnbty48bJLL7numjJF+Jq/vvJ937h8fIf6+69cYoyR2u1er/eKJ14sx6+++moAYMLrrnp4ffI5Fz1Ja42gpPbpkVeW5tdzL35KYKeUSuJGr9e77uqvyfFvf/u71ua1+XXe25/DHJTSAol+199+Qo4/7yGveM27X1RYXxRFbX699r0vvfe97tntdm+99da/e2XJK3nROdde/dnzVcl3z977KIkbjYYA7bnCgUgctL7te9/nvp6DlL5lWZbnORAVY8iwNE0XFubTNHWB+93eRDoJAN66JIrrc6468biLbtnFTD7AlceMsgGytNUDQFrSUP3ArNNtx99jhXD9Gaf/7KfXj8wvDwyIxqj9+/fLYhZFkXW5UibVqTEmK6xUdSKWekGkm1mWFU6wqJaHOVTIMyQtDh8prZRhxtPvecbu3XtWeh2haQFhXCwKKfsaDodFlhMgqaisYqhIU8Z93O/t/awMyjyzRVE88cQXyPGn3/O8g/mvx8N93/jTh3fefGO/3922bdu2HVsfsuF5dbcmaRRFZtz8+tovr3rmc579ze/+26137Nm6bUd9/Es7P0zAP/r2v88f2v/Oay9flz+i/IAwTUehon/b/0lm8N4DARE9ZlN5V4/Z8KLvzX0aGDGMtskfLV4HJeYXHzJTWj9nzzznx4ufRWQADhAASlBICEFpU4lBookj1qPb1lUzytjCh1JXYPRbSdKww76JVCBav359q9W67ZbOuvVrlDLW2ruxvQBgubNii+zQ3oM/+fFPNUTP/8u7pFGFMpRSImlquxkqW+qSj75E/njL//qQnH/hc95z1T+9XIysOuIdKhTw2G4HzMwE46kHgDHCtFopgQgqKHH1/yEECM4jMYeARMCEBLmzACCqkQDAjMbEURQF8DrWkYoibaQaKx8OgrdTrSbbXCO0jDm0d0+apmfe8/Sbbrqp3+s5pYA5ePA+5IVzyHHazIqcmY2wWgMiovViVpoQAgNVe1YIAYShERFlASJSjAyMpDAfZiXsBlWaxswIqCReFQIP86LT6b7iUW8cfwtXf/XNiHjBX15RHzmwf57KIm2fJElktPdW0DACTHzlYy8ev8J7vnf5Kx+9ysCy3psQAHFpZXn9tng85vk3N+0PwB8+aUQ/+IETN7zs5gNQFTwy48tvXThiqLxvRxkhf/FNh4UNHAALFwJj0mrLgmWtJV1a5IQYPBjSzMABkFTwTiYaVsOgDhIQkTKanWOAwMEFrwkROAT38Ic/7PDhg8vLnRK3y2WmUhJV9fKNlQyzd2XNRx1iQS1SrYHZE2mA4JzsiCTVW1ipLJfxiQDBsSbjvecQVOWTIIGoOGhdKgwItWZsxELysYmoUr8hKX8OAUc6ZFCNfBQ0hTgaSqlEipMCOPYBvI5MrYAJFcmF2EMCuxbWNu890do1M1OLiwvWujKizCEfFqTUxvUbbrvtNhNHzrkoSpiRjPZCmFmJyZCkqkuC3JJSp85dyjogbB1yhV6vE8exJep2uxKtyfM8Towt/IYNG4499lgiGg56ExNtIaRgBsGAc1V8oKpVToaB0tRsprOzM0VRiD5EXgxrKgSJctXxdaVUkZd6yZFJhMFBVgOxjPM8n5mZMcYwEhEtLi5HUUQciLQIAIQQrM1nZ2cZQm/Y896fdNJJW7Zs9QHEEPfei0YfVPwRcRwHdoi44/jttW/AVZVVVSw50o+q70fTSBKmzupKvlXssJ07dwLA9PT0xETLOac0pmnaaDSEEKSed7qKTzaSBADf+aU3v+6pZZA7APGYXvNr/voo8C8A+Mw13/z7r102fs13fuWys846i4iAqXAjrhkA+NQVX5Y/3vGVy5j5ms+/+YJnXPmOr1y2ecsWGkukbN22PS+GRsfaUJ7nV1z3xovPKfHv6zasr9+gtLSV3nLrziiK1qydHT+TtJaF1BjjQnDOy3ijstS0kE9VUdSXGuZ5UXHxA4A2BpCdHQdv5Y1Gwxjj82JiYiKmGACczWenJs/56Puve3FpEV51wraj9hWzM1qvOqKhQM4BJ9ZuOHDj7wdFvn4s3alDCEkUDQaD66+/fnpqEhH7vU6j1WyYpGDO87zX680vzDeSlrXeBe8sqMDeBxkthHo874eI1lmtYw+8srKs4+Sf//kb8/OH21NthnDSySeLIrW1No5jQQAIIbAsdlSJfB2RUPMVOZYM0O/u/txjtpZkY+vWrTtwYF995hPucS4cjRrtweuelw3eX7J0AgDAB77x8kc/+jFF4T724U/89TlPH4/hPfX4cwHgr1/x0te++6+SRuNLP778qWdd8q2d71+3fiOtjjQyo1KR905p+t6Bjz964wvrfkDUisajFBKPUQDwX0ufe9B0ef/iewUok2QlSImY2QdGAnbsQI2krKASZg5ehB6IGUkZwNF4ZaDp2dm5g4fY2nvf+96ttCGzFwAmlh5Vn/bxf39jq6nOfuBZkTZriifJwYnuXxzAzwmHyoueMrK9blr+mI5ipVS/l526pnzMK1/6iUs+WnJh1JNQ3pH3o6LrSz92ruQfoapvCsxCPKOU4goCXO9hUCkPjvA3JKZssNZCpTUGFTzCey+RQiDC1bKDLPttIM8eSOWZiMag956UZgRnXWuylZjEOaeBGknEPmDwE6324tyhKE733Hbrmpm1XaVuXrwxgO/1eqAAA3rvXcDcutyHQItZryfhHwgMQKCMoM2ACYABtdwNEAISBA+lTDVJNINDAA4QKU3oreMQGq1UqToiggDMAW3h+/2RKXTpFy4Mzsmed9kXLrz06VfL8YufeuUl110kVoq1/UYSK03OOaXwiCz9333rzVobYHr/v78NgM57ZJnBvOZ/vfuiT7wWAJeWltYvTtfnv3LngRACEL7sxj2I6v0nbaoHPFdlfDhWsSWttr1grKgeQXnAQeGT1gQglPy9ZXxLkzbMHhVylbwLAYhI48jKry2wUdJnLDDmnMuLfO/efWef/eCqts60220h5YIqry0aslI84ZwDLvOMsoIDAOqxTPfq0nrvffAQQrDeSdSnNP/HTqtjw2LqSQmtUB+FUAoCKqWiKKkes4ppSaEcoyGlolVM9IgikCK5RzKkS5OUMEBABRAwBAdjyASiytAEJQTuYrIEb4W6bzgcktFKqV5vMBgMVjqdG264Qao+K/kXQFSEnqlSWOdRIFNLTlOr2o+SnshtIVuaUkoUqbOiqIolo1HxoLWIWNgs0lpY3YlIKS08otIVy8vLslrK3GdmH1yaxp1Op9PpTE1NyQZfh8aFlq/eNeQPzwqlAJVZtmcJNIYSKsfOORMnjUaj2+1GkY616feHRCTF0UVRIBqG4MGHEObn50MABhA0ISJ6a2WVK2xGRCETu9b6MioZc5UWlz+iSEt5QV0oo7XO89xCaYeJ+SgcaeK919ZDURS9Xm9mZkprbSI1NTW1srKSpmkcjWIE1tpNmzbNzc0dd9xxJ5xwwngoSOKg8H/QhBWsbjLUZRm31mutr7zugjefs4pT/vV/XQIbPvS9d7Qnmvv2Ldf1wnJXwUMRCu8VEo5/tLS0dPLJJ2/atKk+UotlwZ14WNI0lREu2C8a4+TjSgx3mI8iLoVzMjzk5KIoSOHlzy2579/8yddMTk5qgGGeKcSsn0GEALCyuNRqb4Qsu/xXN1xyn1PvpqMo+CNgSSYGFWtLemr9+k5vZe2ELsaiRbrb701u2jzsdg4cOjgzM5PnQwUoVBE6TfPC7d27FwE9ByAUxgCBQCqlBBQcxtZZ54MxCZF2eYYqMjpeXFwOAWZmZkih1toHK8tcNsi6K93FxQVmTpNoOBxywHww9MF67x0HAHhsZWL+6pe/oQrbLURwtfll82Lnzp2bN93vbjpFWqPRWLt2bV655Vrrs+53v9/9/k8QYHJy2rnwnf1feOymp49/5e9e9VVYgqeedf/nXfqQ177xtWmjNb+0CBWq2HufmCR31hiTFcPxkS0r2vhOh4whAJFCrMiR5DgiYMA6hxdYOKcIlPdeAWiExERqzE3xPhidKKOVMgkZBtNsTGxdOV4+vbn5W+5gnllnQxInvU63P+jGcRwpTWMBxe/f8QEf3MzMbJIkSRR39DcmBmUAeSM/c497q1RFSPvT/Aeywk1FiUJi5p/e8dEHHFsyrF7+4o9c+rFzQ1VjX8cSan9uPDYpR4ioVgYkgSaxoB7D+EIp25uqtPmIyESRcwUAkClJmJQiKKMLZQADlNJamAuCmKTIUg5WCnIZYyiKrPWKPQMqZbrdvpk0xpjCWVkEnXNGq0jpRhRj6obdThRFRTbAigaaEH0I1gMj5ZnNsyJKmyEEAApWskAmAAIqhZoREEsJjiBxHanrFA4treI4BsLcWqMUBA9QOGu5JOQUVDgbo6y1jDA+zBh0s90M1jkOUdK46LoLrzqntMCcwJbZe2+RQ5LKus+SJBp7HeBsECJsAHj1+1/6rvPKUKX1DqNocXHELnj+TbsyG5SJURE4wCNMuTrkjiU7kPzrfceNEpHn3b488msJgbCf2yRtAXMQ6IygzsthI6RsQMDVPioDZxT+rCeRPO8RnC8hxHv37P/whz6GqGZnZ0855bSvfvWrWpkzzjhDa/273/3OWvvgsx/U6/V+8fOfb9y0gYh6g1IpVdbuGrKTJInWWoZQ/QiyWQJAkHpGRfXOWhfcAUDN04GIkTay1zIzKhjHuTvnxPoUi4eIFFKkIxGqw7LeU3CxZRxOxDFDALEUoyhy3nsORBqRxY4U2zTPLDPbohDrM4SwsLDw8Ec8tN1s/Ms3vn6ve93rtNNO++53v3vowIHHPf6J+/bt27nz5hNOOGHYH8RxPMhEb0eF4ErOrdLgLjsfEUPwdciQgSSE4FxBqAGISAPYkmlPlfgtMXCx4ucbDHvGGFcUYu1JbFjMmjiOJyYmGo2GGLgrKyvD4TBSmlSJhmy1WoPBQPr84ME7ZmdnhQY2VPRU8lshhDhq1ixoBw/un5qaWrt2rZgXWZYNh3meD7vdrm23Y6PZeVZ6zZrpfn/Y7RZaU7OZCssrBoiiaOgKRMXgnS/iKLXWBmG0QVJGilULVCZKIgGGO1dUFmShtU6SqC6SgKqCBKCsqFVKESIANJvNUCo+lSH/2nrLsuzmm2+O43hisjU3NxdFJooM4mhqhODSNJbi0zzPO51O/ZFSyvu7JfIGAIB3fu0tcZrkq4yYvE61R7FywaGBKz5//sXPeNudv/7SR7/+kk/+rdaaxzDqZHSaxME6IpJccP3RxNTUn266ae/+/Y874WlyhJkBUUeR996NhSEK53R1G2JRhRC6KyubN29uNhtLS0sr3e7U1JRwDlePLNB4H0WRtzaJIjKjsEUURd1uNzWR8yVvPhEBqqLI1iQx5ENn89f87Hd/f//Txx/wNXtX/n7LZPlcyMEOoc4GAlgLUaQDQntianlloXn8Jh6PTe7evXvrlmOstbfcctPJxx0v1yiKIjCmUbSwsLjc7SZJM7MFglIlD6oqVxkIgDiOuUIkxwGcAwATR1ESsw+u53q9gXXZlq2bRdxKYqedTufw4UMr8/P3uNdp7Xa7GBQye7UhUKuMyMFgIHDFVqs9Pz+/b98+eEr5UQjh1p07H7YJ7r7dUHzNFXY8pHnW/e8Xx/G/fvtb7dnJH/3wxwG0tfb6iesvetK1d/76P132o1vg29b5W2656cEV5ygp8MEG6wKRyCGPvsCeeaS9XR4TuqtKR6K8SOnjBkSB0wIpMkobUp68Qs3eteK0YUYOTRI3GDSCGg5z64rewC31/NaZ0vz69nf+7Q+//nm/s7Bj+3HT7ZbLBg+8371rtu6xm2GpcgAAa3NE/PXBd5+x4VXyqfee3ejFWmsjZeqSsaIo/vbtT/iHN3yjvlQdu6p2o1BTV4eK12d0qSgCqOIEirj0bGpsKYBYpSPwXHjZ2W8AgP913/L2oBr/7/nOFaSVUso6W1anO/eJt3zpzm/wuRc/JThXFNYYkybNYWE/ceGnXvb3537gNR8eP+1NH3k5BP+wY58KxwI87M6Xgcs+8AKp92IPwfu/f81n7nzOsy96CnDwgMDgOAAigL3uik8f5XIA57zl+V5rQsU+FCGADwoQAua5VUhJStV2jiEEYnzbC0tf7Q2fflMURZ2VfpxEznlnudftj11YajEl2oTOuRBcCE4Q5fVJzCzidyzimKtJaxqt5lJnpf4nMqvIIKD3XgAOL7v54AdO3AAA7z9hw3m3HOQ7CTWOt7+5dV6WwlH4ClURuGGiimQVRO7D+1xCrdZZlJsKQWvlgxvn5ccKJMpV7pvB14YOABCRShvHr9vQ7fa3bdt2zrOe3ev2v/vdf3v4wx956qn3vOSyS/bu2v20ZzxzZXHpF9dfv3nzMQFgw1iCu74UIgpPVZ1XokoYp3ocL/c/dqSEFslxGgnAo+iZIGKAUeJGUA2IatyJB0Zk8t4rIilL0cZopaxzRmskCgFCcLUpRkSFs1prDggYhAFLLiiPk6bNYX/gnGu1Wrt373nQA88+5dSTb7z5plPucdpTn/aMfm/4v7/33Yc85CF79+6dmzsEAGInGWOKItOaoigSRrTxihusQJ+1AybRGgAACFFFlia7hrUWqbSeJVlZZzYElCLoGdF00toIfTEArKysNBoNcZ+EFYwYrBPFAmo2m6oqVk2T5uHDh8VNUkqtrKwIqZ7Ai+N2DAC7d++emJiYmprq9/u9Xk9ggmLkrV279tChQ/Pz81GUTExMCMfe/Pz8SSefeNZZ9/7Rj340MdlemF/03ivSzaZZXl42sQFgBq8NZflAKQUYjNa9Xq/shKjkfYXAcZykaSqXFRnK2qDnkmnOSThwPIUqXScgNqmpbDabkmdMklQ+MsYkSbyysmLtaIP33rfb7V6vJ2Gw+fn5+qM6Uivt6s9fEMexJJRtrZsE4O9U+yUeYGlHsqdStBuu+Pwb6nF40dNGptjlz/+Hqz53/ri/5Jzz3mrU0zOTk5OTu3btqj9SSrXb7fHNVAah2P3jzqf33ihVf6QqFZkkSU446cRer/ezn/08yzIiffE/vf6K570DAC5/7tvf8pnzmX2WZULi3TLN+oJimWRFDlKdiQCEqKjb7c4SQKSttazV+TftASRPoHTkkXCMykshObcKhK41IIAx8cTExNRku92M//LM18lHn/7BtVrU3Zc7K+KMCoBdplBhbeEcISGiVlEIHIARQCl0AZTWsuh4P3rZTAjeK629hyiKG41mZ3nFhZCmqevldVC92+0uLi41m81Wq1UUxVRrKvhglHHeAgCh9nZVRrmVNssAY2E1qY3rN4zegbW+GNFsnHPRQx/60LMX5g+ffq97NSbSdRvWD4f9frfTarWstY00HVRn3v/+97/ttjt+9MOfnXT6qYsrXSBtrTu478A5v3vcSafdY/sxW779la9dd9WP6iufAI/7wdynvve9773g/iVKhpkZ2BjDAERkx/qhhM+P7UTMwRgtleGkRuaIoVJD0ANEFJECrVWcmOA8Oz/sZ2xDPsiXF5Z/u/yv95p6OgCcDI943adeaKL44MHDRacHGG044ZRHPK8EqN10484sK6YmZ+OoaXTcmooA2Hk7PvoBQBnd6/fFmfa2iIzRNBpGwa1CLMIYW6AstVlWrLqaUoh4xUs++pZ/fKmsg+Nzexw3IAgGE8WuyIfDYdJsyPrrhQYwhDzPAzEiAioZh08/7S61jF752It/+vMnUUWlq7U+woCo26eu+PJzLn5SNhiIb/2RC64DgCNsLwB460ved85Fj7+rnwMA9oCeI00FB/JHD91/5qovn3PBXymVes+omH247urP39UFr3vLJ5/9lufFSaIQUZHShoiGriORFZQgA4P3vtFowDiAgqkoCmLIcsnmuPFPAwIAy2BDCJJ5FDH1eOzNGqVZURRF1vo4NiYeeYqBsd1etTKG4FAZIrCF02T8GBanbhVIT47je7ePqiA/uGMWAF6xa7mk3AxMRL3MzqQJpMlwOFTGVBZMGQTyDBi8NppEtIQIsXzRFUJuFGVmZioJCyy7QEQISikcFkNQ8P0f/GBxeaXdbm87bvvb3/mOBz34wWvXrSuK4u3vfMeO7dtPPvXkftbXxoyH1krbAikwi262ryTevfeepUKNOLCr6liZ2bPXWsuexMw+jKreiIgJGco1k4i8LxnIysmiABVZF5jZBdZIRBpIBQZgIEDrJcZKPoD3jgOWcXUMCMjgrHeFL1CGXaWoYb1VSpGi7qDL3jvvsmKYNtN3vefdj33sY2bXrr/us59bXOn0e73cFl/52lc3b96cNJqeAZmdcwwedeysNUZDCLqyO30lfegrLWfSijkURdZqtZwLWiuJ0EjmTs6Jo6h22Ooweb2DSi4lSkrpd6NKdYFhnvWHgxBCHMeNJAUAKQ5I42gwyEKAycnJKIoGg14IYXJi2jv2nrt5P3jggM6GorATE2l3pTMcDqcm28bodrutiAaDQWSMSqJ169ZlWREZtXHDOg5uw/pNWutBNuz3h0TrhsPuKadu/c7/Ppz1Tbs51Wg1mb1J4unp6Z233czMJk6gFNihELzWGEUlKrwoCmZAJFAwGOYza9ZaF1Y6S3Ecu+BDCI1Ws9PpECEDk1a2MsGlf4RFXNieEcG5YmJiYnJycnl50VQStFEUKUVFls/OrInjsWK4vGCtlwfLzH5mZuZVTx4VO4ewih5IkSlypw0BACM476Ue8OrPX8CrsQRcJSgAyoJ9DuGip14DAFd9+U0i8fqW616fJo3zKzxZgNKBGa0uwEjc63V3794lQk/SnLe+UtuslpTSrD8ikaKUclIBwkzKIEBwxaZNm+55+qkIKk3TTZs27d+/X8WrNrIQHAEgMynSWp//1FHhp/UOEQXk550PjKBoy7atK72uUippJNecfX8AeP0fb4uS1DpL4BHg7zZPjK7ugdSqn1vzzf/s3/fkUHAzbR7au9edtLX+iLgsF4KF+SXhMxgWudLaB8idX17uLC93GMjzOFN5yfArKKhmszned+A9KuWd3XjMMXGaolJpowXBR5FG5CjSw2F/OBxa69KkSaihoq6RPRh4JIs2/r7lUynuiOP4red+bPS2Cgvj75W5s7wykvALfL/JZz5iy7lQaWbVJ7ba7W/86zen1kx6BudKrfJPnv/16978baF0AoTv3faRfNNv66988StfPvPM+47flXe1l0zjQ1k8g8iMpkGapnEcT01Mttvtidbohc3MrMnzot/LBp3B3r0Hb7n59j/8/k//+1vf+/a3vvu1r/7L17729fe+66N/vOFPe3ft+dY3vlN/68Cu3UtLK3Gcrt12XHvd5r973ihiNzWzpj0xpVRpWLcaTSIK1kGZ8hrdPFTwF5CFb6xzKoBt2UpzvCjkZGv9OIpOeuDKcz8GADXKXr4lf1zxklX4/TpVX/9Tkno8lqn0FVG7Xo1kvHP7zMX/DADBOWPMJy++7pOXffGuzvz0Ff8MwKUdcxft9R946XVXffNufu4tr/iEdN1lr/6na15/3V2ddt01XwUAgICgANRdnVY2pqJw3lrvfd7peRe0ib3jopC0Y8TMURQpsyp9HCWx0hHpSOsoSRrtdntiYuKSL1wmn771eVenaRpFkShRtlqtJEkE0zo+s1QlMBpFURTpJBmBMIgojuP5ubnRL2oDPshaf5ePsjri+/Lb5o444b3bpqB66aTVQqeXtCan12/gkh6ixCPLshBCcMEPsqEoZvIYHLAiWLe1lJ6IENSRMEQ0ceQD5IXbdcceZfRgMLjp5p179+xfu37j4tLKrl27Du7b12g09h3YT7RKoGk8+sWjZLrgnGSI1oJ9IwXiut9UpdaApazTKDgkA7vezyRvUgeNyoROFEmcg0mRiVRkdGTkv2Q0aYVa+QABCBQBaQ/sAnhgQAUlF42El0DEt4jAe1sUWWGzoR0qjb1+Z27u0KZNG26+eecfb7p5/cbNe/fu37V7t7Mhy7Ibb7wxTVPh/5RgVVEUIXgJD8jkHVE5VEZwnQaquea5qvqUpUPqK+Wf8shHpHHr7qKxAovakZOCCUnDdTqd4XAYQhj0h97zcJgfOnTo8OHDReEkgriwsNTtdiXkViVnqdvty0ASq2V5eXkwGAgzhYzJ4XAoMoLT05PW5f1BVxE0Gsn69etvvuVPs+uSxzz2/r+/4fosH+zfv3d5eTkfDJ2zW7duXbt2bV5kABDHUR3M06WesiLSRMo7JtR5nvf7fVELkPSWuBP1AijGhxQ/OudmZmaUUkK4WtNetNvtNE25kgzy3otWz8zMTAhBNNCkXfS8v9+wYYNc9jkPeWV9/Krrzpd0ZH3k/KddLu9O3qnYXgBw4TOuCWOVUlDpOTKz9d56572/qDJivK9mThjpeAKA1tH42nXpOdcS0XA48N7e9773veiZo1CZWNhHQAumpqaSJDkiXAdjdQwyT10IeZ6LDHx3pXPo0CEJKo/7/5c/9500JgI7fjVmZhQop7/yue+48nnXBuZmM92/fy8o+McXvVpOe8cpxzF7jaQQ375thKy45PBA3jWsbo1Wq7A+Mo0oaT72wW+ojy8udPSDHnj2mWeeceMf/mC0MXHsbZHZQinDgQd5lhV5FEWy5EiNFom/GwICECAhw6qwigImgKC1QRX1er12o7luw0YAyPNc8BNZxfEjb5FGlUEl/1u9GdcXvfDpf3fNF18n+8Ebn/r2+vgXf/GeP3/cnw0GI2DgdVf/6E0feNaWYzaJPXHPpESU33fmOV/b89ZxfP2+ffv++evfPeO+91nqDT0DWPuB88pEkrDMAcPk5GTaaNUvPI7jU04bIe/+bMu5PzjwKURCrQDgIbPPrT9at2ZdCLL1li1Spjvoez/I83xpceWU0x8tx7/ytX9eWloCoEOH5obLPQAGYgCemVkTaU0EjKB0EiWtRmty9JhX/NvfvPs5LoDznI+NLQAAJufCcNDz3p/32LcBwBL+QJId4/NB5m273a6Rp/faMCKY0Ki9G/W/rKGgdFbksoC++/wjyffqVk8JmSrjtte1n3tN6dkwAEBZ3+5Ya80wYsuUDufVYhEA8NqPnhtF+vTTT7tjz+79e/a/97x/kuMfft0/nXPpX4+bv+e+9dlCxwdAyPSZq75cf+S9Hy9fBYCXvfPFJo6szRHCRGtkmV31iZdMpCmD54BE9MpnvLvsnDjCMcTAG9794tyHleWuDzZ4e93VpfX2qSuve86lzwsBxjPpz770BeVFtP7kxWXPfOayTzz7qpcAECrNhotsCBy0KWudsJLm4KI4wsT3nhXSeC3PuNHMCC4E8KwVlSW6ELRS49DDVzzmkg/9xzUIgQhf8IBXwhgdHjJEUQR2tEDXOjYkCkIAqzjWqm/JWoiIAQIAvOL2OQAIgO+vImHvO3b6FbuWEVkbMyj8oHDN1kS3O58kCSAWNpcyPQAAUhQYoMQJMZYJ7uCsmKQAEHwwxmRFHscxkc5zKwuIkCzEUVIUbtDPZtat7Q+KpZWO90GbeJgV8wsr6cRMXgSp2SClKkMK6v1YOGyJEBAYGaGimkACRhAMOpa9I9IKMFbCxoRM6DgAQwDxLymIUQIMzEoppTQI+1flggp/PZAQUBMiIkicEUEISxhQIXMQEmMSAuZqvnDAUFF2yHdCYELFHOLYaK2949x6DyyMNsropNFArTzw1JqZ3FmlFXBwLnjnYm0Q0XtXY9rEbnDOCYsKKSAFSpWkoIJYCt4DBqUUMItSkFhpxhjnCwnYjNvTdbgxjBXtAwauKNLEDasiLgpJI6LSKJKs1nsitLntDTIi0obSpMnMvUHGELSKfPDBemvzZtqYnp4OIeRZIQm+DRs2NBqNgwf3T05Oiv3R73eTJG43G4fn57KMG40WMh0+tK/b2/ugs+9x7Pb1x5+wrdsZ7t67xy1Z1KgjlabNqTWzzBzr6NZbd8pm12i0rPVaGw4EjMzWWh/HqfSelGqGEAQp75yTcJTEd5VSqIgAJiYmlhYWqoBQiKIIIFRWRQAgKZOaaLVnpmaybHjgwIHTThvRYgPA8x/5OnjkOOAF3v6lNyulhsNhAL7mCxdeUJXsvPGpl8Gd2tWfv+CIzAkQYflmg1Jm3OG65OlHgX9BuSnglZ+/4M2VVXdUoNh7v3U1+GDZrkK4er+wsHBEBA5KvwiYgyDYhFvEDoc//vGPC+u999PT04iQZQOt9SWfet3lzy2paC959tvhTu2Kz10o94kMlz3nHXLwoqddduEnX9uabKRp/OavfPbKvyjlla/ZseXOV0ijuHBBco873jGSfZz9/vXyx9+/cYQ/+fJ/fbDIvZ6Zmm7EiWQfjFLW6CzLlPJR3CRUwYPS2rsSHSKYD++94EWQuKzdraFmiOydTtLD8/PT02sAYDgcLi3OTUwmiGxtDqrEgcZxWhS5MNMgImAgHil34p0QJBc87Uga33MueOTzX/B8Zl5cXPz6bz/w5Hu9TI6/9WWfvXPX/PuuD8zOzo7vu9/+9nc2bl5bWCuBq3Fr7/KnvQsAzrnXKwEg7Bxd5OyzH7Ju7fr/WvnigyZLVODDNo5Mrrp9f88nh1kxGAwGg8FpD/wLOfied3+g3+1CCEBAWj/99NKU3nXb7UqpVmtqcmJ6zcy6LMu0Vmls0jjx3iP7/fsPTE5O+wB5Zl/37me+81Wfky9+8FVHwRK94z8/KgEAIrrwKeUYmu49jOiPADDu6zxsy7kPe/a5AAD9Iy+yEn39CD/jHrMvG32cwoljs/vNH34RrdYpGydcHW9XfeoVVcFXACSRRiEix652rWo/Rv524Yg8eom4j+NYKXXtNy554xPK4HaUpmos9fbhNx0FkgUA113zrQ/972vHM3gvuuZ53nvZ6ojQjw2Di17wkfJb/3ZpVrgP/8v55z7xbe/50utn185IBYA0YzRobDTtyko+PTV5wQf/5pq/KXsgFBmYdDwJjRXIw2bZ377//H84r1yDlDLO2eAZ44gLC8GLOo0iYzQJeyqM8YsCgDExoCNE9pIIONISKn0lFNlEj4hKaRG3ede3L33148ql9q4IwIgoNhGMwXi99wxagvN8p0mKq2GNzFw/NyIi4MvvWHjfsWvqT4lIKTPIB2iS6dk1C7tu5IoBDiuuJs9ADEZr711uC+FyE7oHCcdKRETA1FmWCYYMKk4sBJIE3PrNm5IkMXG0bt26YnJGrNipqal162ehLGEuaSbqyFl9J1wSj0Gpil2ZQYKAqnemkQXMLHgdZpaaGq6rTGry1RGLBNXFJXVAqCwMJSmbBQAIwAgYgEEQpVwxAlbDSX4LsIzK1bdRT6gw9k8BcW7evJmZA4QtWzY5FwqXN5vNtBEjovcWKqnZEERRCqVeUrwvMVNKSvZKXaAOa0m/OdF3slYCZnEcJ0nCzGi5DnBCBaere2N1dGNUwFQHDokIq161RQgkFK+S2Swjo0XuOAijpBfPM02aEAXvE9keJYrmbDBRGUnSOhJiyyiKANhaC8gz01NFUQyzAnw46cTjBvmh408+6Z6nb51buGPN9Jbt27bOLcx3+j3vqdPpJI3W1NRMu9HcunXb7t27+v3+tm3b5ubmBoPh7Jp1zoUkaRDRYNAzxmR5PzLEgMwlCtYYI+6oFDGEEJIkmZhq9/t9MbC01s6NekdQksKSL2A7uc7S0tL8/DxsgLtqb//Sm40xa9dOdzqdrMjzPL/ys+e/+VlHN5uu/Oz5d96L5fYkGuI5OOeu+MIFFz/9mqNeAQCu/PxFRCAFAdd8+aIL7oLo9c0ff4VSJk1T68O4wae1tnnuKyKVuo3PIKiWIx2ZpJEKPK5eKO78CEe0yz71Rk+gFBIRri5HaLVa1//kJ0/4y3PWzUzf1dcB4NL9PUYgHXF1k+MW2J3b9b/67cpyV/dWejf8/o9//P0NSql+v+8KF8eprBSM4IJH0T1FYgm3g2gjxN57ljV9NcTJxCkz5f2hawelFAGuXbfGRHowGAjMEBGV0cpEngd1YJ8rRkFJ8VrrmO/y1gHg8s+8YssxW/bs2fNzhbOz69rt9g/2fv5hW55x1JN/PP/J1sTE/e5zn/HX8NWv/usZ9zljkAdrC60j54pXf/SF73rxx+/qF//uX99w7LHHFoWzhfv2no897pgXHfW0cy56GCgVxw3nnHfueQ8s97aJiam1a9ezD1Gk10yPXuRUq93PhuxDpPT+ffvXrVs3HPaMakAc9ftdgem0Wo3BYLCwtHgEHuuI9vb//KRWyjlnlHarwZKydDLzLfnnT4iP3kvS9mbXNalRFC6O489+82XPevwH7ubkiz/0Ynn5zHzBB15wzcs+cVdnvvnDL6rzC9baKE6IoA52yjlVNsf7crsqQ6T1RZRSUquvlAK1alJpc4SDdpftiIiaxAx6vU6j0QAiH9xzL33Cpy5bLWr2qNJS+dA3Lmg2UwVoi9FPGw0+d+BsrGjtzPSq+yBSRKvGsUDFQ0Bt5g4dHt1VkdVfIa0JlCuyonBEWuL2iBKeWVUzS0TBsRDLBgaA8NZnlfbohZ+7NDYKAZg9s+IykwOkIARGxHd/5y2veuxb7qajEEKpvlA/DQeZp9ZarSJYXUQiViYilgKIEgkr6+NQrV4BiYEYiMgWqOO42WgPez29aZPjwNZ574nAe3SBEVGFMj8OShFTHKcSYW00osrWiYUUQLbPep9WWoQCVRQ1rbUhOK1LDLjWtGHjTLvdJCLriuFwqLXx3os2DCmFNXlpCESQ5xaAAbiSYwiAq94FjFPbA4AYoEGSgKr+VDD6Yhkzs0KFAYNjYiIkIo0oZYWoRPyuimLVhWOlYAOXYTgu86GlyUWokBlBeEAqQwWAS6pVCwCipgUYSrOeEUJACIXLlcJer5+mKSExe0DMi0KK1m2WM7M2ZYkDUkl1CxBkZ40irY3Wmpyz3jvvQ5ZlaRQx+G63a4yJFAlcjCseATiqEQ9ApRh8VTJajfZqK+XK3+DASimFxOISkNYQvHNOGZ0XhRQ6hBAmJibiRnNpadEY3en12+2253Bo7vDGjRuz3AZmpXWvP/TBNptNZm42m0poJoDWTM8szi0OB4sI/Xabn/Tksy+/7AOtRlub9oYN68Kh0O12m81mb9DP83xlcWlycvLkk09eWlpKk2jj+g379u1HAKO0zQfW+yQ2RiOC664sKBM3W9PBg3dc5A4wJEkiIhkhhOnp6WbaWFpakhxlkRXG6KIookjned7tdmUmArBzbnl5eWJiIkmS1z3tHXczqQHgDRXv1/9JO6pZduHT7o4o/ygXecb/0flXvvC9Rz3+xqdccdTjdYzq//dWq27fuV34lMvhKQAFnPiAHXd1DgBctmlU7Xg3Vlfdur3MxIn+zKc/XQwHBw/sm51Zm2e21LggbQxZ66HU9C1hpFrrPC/JVKAC6ERjQHJA8t4jIQCEEKIoccVg/fr1vf6C9QVosDZnhOEwj6JGqKpGAQMHlsxC4MDMb3rqf9Ozlzx79Koedfx/86gPnn0+AMDtsPP20cF/uuxHd3X+Udtr/6KKWLbv7rTrrvrBUY+/82+OXvh25Yv+6b//bQtg4a0vO3pEp25vOPv5AAAPPMpHZx/3WpgDNwcnxPe++4tsSc6BAI868y8fdeZ/f19XvPTuSFnH25VjcL3/2+2a577nrj766Os+9X9yhXMueNwDHvxAY0YjViplAngGr3VEhN77933z4pc//ihz/qVPuObD/3K+iU2jOcJIRZoAKI+jRiNNjO4PRgr0CgmRAxy5T/OdvDHSOnhPpBC1D5aZoaqWjyOttfaevS9wbK5l2QBQIROhkjTNqgsq8BAwiISP5GuAOQhJpkzh93738lc8ZhXb6j/861v+9i/eIn+Xyayx6JdSCgNW0x+J4YjHQEQKo8ccb7yaKqI0BpHywmWFa09OQAhQER2VkUjwWkdVFpu1JiYEXwlorsYCA0CapqpKIDabTaG2EsC7c67RTEVkmkjJMgXIgT2HYIwaDoNENEVnUCI4IUhNHzCDUlhh+OR3S5EGiUIdAVWBMWb/Ebii+m/9R40JU0qlaVK6H8xlEgoUMCAGlDsY62aoiitFUKs0xINn55GIxxF4WJZfq0qOqYZqeS8IzuC9VZqGvYwInSuSJEHkEFy9ztePQJXGkfeurnEWE0/yaEpHcRzLgyiltCIJIwkZfSZFHi53pdgr1e9Oru+9B1qFua7/PgLlgxUnCKFyzkmiE0toMiRJUhE6aGEbds5NTU2LHTwYDGSYTU3NTE9Px3Es1ZFYCdG2Wi25K+e9Vjo2Smmemz+QpMq6zhlnbb/vfU84dGCukdLU1Mym9Rtu7HRWVlbiNI2ihBh6vU6axrOzM8A8zPrMYWlpYWpqhsEz2Ehrb4cH9+957OMeNehnP/np72bWrOv3+865JI3EnAIAoSjPsqzZbB4+eFCIPIiQmCRvKMWhMlMEbBfH8cO2351r/T/t/zvtvW/6+CuvfbH+j3/7PkA4dtvWwWCgmw2BmxBinhd5ngMgBggI3gfxY2Md+QpfVweQ69ZutrqDYRxFngGYkiQJGqJIYwbNVioAw8FgIMDDccwmyASDYK296Bn/8P9Kj/xP+//j9sLLn1ZSfDA3m6NiY6UUKUAoozMhBCCO4/iw+flnPv2J2enp4O3z/3zkG537xLd96t8uVnp87w/WWmMUMxc2WxVdI+YjaN6kMjOEEFYF2ENuwRgm5BAAkQOD5+CBIpGR8MYY6xmYX//x173jhe8EgLc964oLv3hFcAwiRMKr1C7LMIykpYQgTaZYRVwpvFYf/P7VwqLunIuieBxTX97eGFtPPiyc0hqc0VqKPt97UimL+8pbDmNZ7kvvPn7Nq2+dh7L6su6lVQuFzPoAwKRc4ImJCQF4aa0JuN/vt1oNRJCya+RKCIEhiCSL98CQmEjgyeWqVVkJirSzPviSh10i7oI3knMqYRyyNldKMVOr1ep0OlprSV8iUMUWTpW1uopqH0Z2g9gEq2hTQkUWIC6rJARFfJ3lOoIlpxLXZQwpUgEYUWnm4AERvaCwDVVgfyaW9dYzs5dbBAgBvPeAASqGdAws1GuBQ8lWHByiCoElvSLBxRBCCIzBa6Wy4SCNjLWWFAnUhJRQ/YAWPv3gGXA4HKZxog3luYDArJAUMjNW2K/aqOLgPUKkjQ+BiPr9Png3PT0t+eJaqHe8S4mIuRRylUeup05dzQAAAlJhhuADK1ZKyfkCImMA6wMBE5HngIBJFBdFMT8/L/EzAMgKqxRFSXJobmHdunVpq+nYOe9NFPWHQ62VApUVuVLa6DhNU++G24/d1GwkedZvTrT/6qmPeNPr//HMM46VrPeJJx6/78DB3No8z11etFuNw4cOaK03rF23dmYavEvT5uzsup07dzJ47wZx3Ni757b73+/11//yN3fsum1yao1MQDGOtVbee1HG3Ld/n3MujhJgLGzBHEysBX+ZpqnkrL0vqWXHEff/0/6/37TW+i/+4s+TJPnFz/9LIpzWBa01M6KSsm3FhAhCp1nqeaFWIQRnbRTHPtjxhHS7Pdmemj546BB4NpHqdJaXFg7HEWqjyxLZ4L0P3vskEV7EknMvOF+uRf/T/qf9P9A+fskXAeCcCx+LiI10VIEBGIQvVCBEkVbNRvvFj34zWED8JCK22+2v/tc1Wusn3q8sWrE2d2OUE84VAIwQAFgc6/ojFRm3GsvClT0klU2jM5PEO4uoQ2BSCpADK64sQgHOKyQiNX59qCITYqZc8/QRchYRAZCojDEgAJKG4I1JSIH3XjKPH/z+1QLlkbs679EXjt2qDyHAWOXptfc+5RU3HWAMXvI+45MVGQCR4d3HrwGAd+2Y/dvbFurUpDz1u7aOcu6ISIgA6L23nhutJiCSwt5woADb7XYIARCtKxAxprKAXymjFMkqVNfuCBJFQB7SOYq0uHbtdrvTXUHE2j4bcx2h3vOkGLbVanW7Xa2j4JnRB4QQAmqlAG3whpQHxjBSOoKKLK1KhJXorjruhTWFGLAQCkioBhGZiRRoVSZPQRRmsEwWyn8VEdIqe1pwZyGEgKV4QBkTIha/InhLpMUKH7N3S+0aqQwV61MsUSIAZOuKOImyLANk7zwgeF9yTtYoe0TUWhfOir61UJjWRnxRFEK/570vlV6UKgpbFIGZI6MEqGStnZ+fXzM7naap1KtyRWRTRwqPCJHW//UVPRgijpe6i21dozlpJE1dArzk/rXWRWFDJUjgnDNGi7mTZZlA3IgoBBfHcZFlzWZTKW2Ulgj0+o2zSXvrxEQLKOv1V844a8cTn/zwG/94aHJyHSBqrU8+8YT+MMuyzFtnbd7rdwfD7s23LKZpanScJBGi37xpXTYsnB8q7R7xqPudctq263/9kx07tiGEiXYTIWTZ0BjtXaGUWlyY66z0pKR3YPutVmvdunXNZkMZEl8ihDA3NydcrK1Wy5h47979cCdK9vd/8zLveTgcbtu27YEPfODVV1996j3vpZQaDIZFUeS2SJKknv511wm2r34d4kXU7ysAyPiRGYSIgBXrNUDZ857r4t8y0MthWOSxjnQUDXpdIgIInZWVU045Zf369b/+9a+VUgyQ57n3vGPHDiHx379/f7PZHPQGRVEEKEmPXaVaAVXUpppnGIC1jgQqhxzKbHvlmHFVigsAQMpbJ04GE7pgAShNUwM0GAwCEjNHUaQRbvj9b1/00ldRtPkjn//22tMfUKStqdm1jgMA6tgAIRFEpNKkqaLIe/ehD5e5Ef7dg7/zqU+987KLTzrupE6n49llvrj2Ve8rp2UIes+eXVu3bWHmwOwBSSmP4ijzwOaeWVfriGAmUKFo16ko8l5ShqOXfeDwoY2bNhFRCHkj0ewBXBFFOi+KVnOqsKxI1mKvCQnYhRApjQwYmDQ554w5Sk37VZ9/nUzpLMsajaTRSJ1zt92+8/K3XHrzjTfefvvtWzZvvX33nu9++383Wq3O8vzZD3/w8SfumJycSNLIuaIossmJ9sc+/KHpmck9u/a98uUv33XH3h/+6GeTa9ZapuWVrg8cFAbnXb9YNzu7cctGzz54u27N7O9++wdSsNxd9N7HyQQiAvt162a7g+H8/KJBDQB54aIkjiJtXQGMaZrOzs52O53lxcUk0hC4lcSxonaaNJNkZnJi86YNE63GPe95z4mJ9tzcoWGRE5pjj9sRmcYf/vTHPM+tzQe9zmDQQ4R9Bw+cddZZWZG/5S1vdwAPffhjfn/Djc1WouOo088O7z90+tmPak2un1taSZKIuNj5p98fs2FyeeHwKSedtOu2G5/yV3+xZePMrbfc+JCHPLg7GN62a++WY47bu+/AFZe9/QH3P/2ep544O906dtsxhw4dOHRo7rjjjjNAN9/0p9/+6tet1sRwONywadPmYzZNzkyTVhIeSJOJ229b+NR1XzrhhJNt8L4SJoNKjEKIDEIl4Dhe2dRsNp1zAGhMnOW5DZzEjdzaEIJRWr6Y57mOjCylqHH9xnUvuN8r6pHw0nc9+6EPfdDKysp5Dx8ZCi+45unOhTRufOSNo0zui9723DzLPn3pKh6K667+zrv+5RITjYBxWkXeW6GVEl3Vj7yp/ErFjckqsA+riqhLHx0AAN5y7j9e8/Hzer2e894G987XjSi+ggckNb5bIBMHR4DM42oR4L1FQvBOaVPORRZJb9tuNZi9c9ZECgmdHaH+r37axRd87ooQgonUeFkryJYbAiKGwBf89eUA8M5/uUxsFIDw2seX+I+/ecSFH/qPqwGASL3wQa+rv37Bx18JjN77yemZ8ctycB48GAUYPnj8MWO/50UCcPREq0sBxrnvX33HoiKS1BqS8gGStAVIZLQqVKQ0MzNqDp6IiINnBwgg1oDgxgRhNkaLWtflMXNgj4SA7LydmphcXl6GchcPWpPU8Htf0k7GcZy2mnme6zjCobLBK60A0QUHqCig9Z6UssGTUgEZgI2uzUEl4tkSkZIwmMTVmINSBEo77wmViQwj2cAcABGpLGomQCBSoEghCddLCEHKKzGwQvTA3nNtDDEwaQTvQwgBWAaJiP9AmY7wkqHmEEpNRiBmzPNcbFbvvUYIwXMQ4rYSzCevRlXUjOORQkAmRQyhyG1RFEqhMWLTRN6X2U/2gZQC4KiScuIySUo+ABFyCAgMCIuLi5OTk1NTU4uLi1hJHyqloNQ20GFE50YAgFiDRCkERgQiCsxImMRpzZvPzEq2/wpuKGZvCIxEnllHhpmBCUmUVElrpRRaawMDKeO91zpxHnJnu/3F/fsOAkAjjTdvWt/vLtz7zG2T7ZR5RVFmot4jHnP6t7/z9/fb8FhSaZZleZGhtxGBbqZEjYlW6r2PogQA82GxtLSwvLSQRGlkms129K1vf+X9H7xs45bm0tLetbMTkW6msY7NZJYZx0FBA7UadHvsbTONW63W1MSk1jpNm0kSDQaDKIoGg8HCwsK+A/sbjUaSJERqmBWt1gh+VLfFxY6sxouLyyoy6zZumJ+fbzQaubWI2EhbiJjnQ3kRMOYfqkrPDSqqIIkl1zFdsb81IQBYz1FkUJVhdQYADIG9xrJOwlnLPrSbLTJqkA3JaDHip2dm/3TjzTtvvX1mZiqE4J0L3qdJ0mwkS0sLnU4vSpPF5RXkoLRyWY6ERCjMc46dxMe9Y2NMaYM5F5wFZvbl+iDkSiGExcXFRqMh9VtElA0Hk5OTwYY8zxUhAitCbwsmzYSKEFFba7MAQGme00w7gf6S0p4hH2ZLpE1CzVhFPV/EUWTzXOFweqJ9eN8+gJLc69Gn7JhpTp515v1//5vfRlGkEx3G/PZGI9UnnrAjjuMoMqX5z8zOmzhC0EopVAEIOVQgBiImhlpeBAGAxncRpfX+PbtBYXtiAoAPH9wPBEglwgZBodLSHeKARlHU7w7YleumUiovVu0i0ojI2YBKSdXVykqn2WxorbMiX+mtEIG1dqLZdtbneQ6Iznvp8fn5+Xa7SaCMMa9//et/89tfPeNpT3/IQx726U9+bv/+g7Mbj7GFJaLcFyEQIgwGg7Vr16Zp2hv0nHO79+3df+ig0qjQNtJWcL4obBQr60IAygqrYqXINFpxZgviIAQtihpFnilEZI9MaRTZ4SBO4u5ydu8HPmB2eqqzsnRg33IjSfr9/m133Do1NRWnrf/4jx9+5V++ff8z7z05OQkYpicnHvbwh5555hlZkf/61792zl1y8et/+evf/fM3v9eamNIYtRJjrQUi7xwElxoNPrB34EMjbfX0YpYPJAlirVVKe0DvfRzHWVbcdNMtAKCUaTbb3W5XVkCZUUOXx0kCAEWR1eQoIYTYJIgYacPM+TCPo7jOxZRjYQzLMtqtq9KKeomMosha64Rq1bHXHqpSGu+9qLsA4WAwSJtNqFbeun3o1UcC4F73sZdYaxXqYN3z3vK0f3pLaTx97PyjoMGefeHj7nWfe07hiHdNlpLcZo3mpCJTFCMSk5c8/uh4zCTSRNFnf3Dpsx5WRpsueOH773zaCy57TgAVVsOnRDHXBQceYFwSFElYGZl9cI6QmJgJdWQKa5nLyA1hIFLnf+r8tz23hMRe88yL4U7t4i9fwczCk35pVUz+uide+vf/crH3nhS869uXvPpxJUj/pWOG7Oh2EMWwiaLoqi9dfNFTSyTc++5xzJ1PftXOfaK/PH7wPcfN3vlMAHj1HYuCu68YbEJ/ONwcp8BSmRuUUt4F1ApREVhUEMpqQwAARasI6mA1K6OvlEYBwHvf6/XWTM9s3759157d1bYSpP4jjuMsy5IkyfMcFEVRNBwOG41GlhXOOW0MIjrvlcCbiLS42gBQRWLGwkur7E5cXbtNRAjIzJ6BgXUUS0hLTpDSSEIEJcqvPPZ1RkRd1dDU4KcSTo+wiu9wrHlvEcuaTYmw1mG4sihhLDgnzKi+4k0dD93VnYkVOERCb9JpIQStoxBCTSHLzJXSEimjgxe1cpDYrTFKqwiRg7ciENRsNnu9nhSpSXq35lWpu7dOSsoGUbdQyUpype8kx8fxZPWlAEYdy8zs6zilUyouw3tai2EMAFpFRiPFCRFkw761+fd/8IMnP+XVUYyDLPchG+bzp55+3KMfe9aPf/jLbdtO1zqKlI60GRT28OKhZrOZpjESx7EhUMiwedNGhrwRR/1+/5vf+ueLL3nu2Q+/R17MWd9L4qSVNjudZedclJjY6DRNnXPQaKxfv35ycloptbK03Gw2iWhhYWE4HBZFIbj7drutlMpzS+SJaP/+g/VTX/mZN7752dde+8U3YwXL6/f7ADA1NXX40Dwzo1JENBwOEdFE5SIPI2l2lsiWdFRd60pl+UipROmcg1BygjjnoMx0B++95M58KeUucpaU55nLXABWSAI6BO82blxfFIV1eRonnoA5Xr9+HbPvdpZXVrqgKE5i4kBEaRLJGHbe5y4AlohGa+1gMEjjEl1Qm+9qjEM0iqJTTz314MGDYuf0er2TTjrprLPO+t53vueDrSCezN4xKvEf4jhWhnweTKPd6fU2bjEQLDEjByQgYO+9LYoo1r6wBrARqeHigdO2jGL8Dzz1xH6G119//fT0tLW2KIXFyjYcDvWzn3VOkiQ7b7l5z+7dodH0wIDknOPqfSBiKEN8o920VEqvqlLqK67fsFb0m2ZnZxfm5qI4VsDDXt8VxezsbLPRWFxa6XW6sYmIgb3Pi0Ji6UWWkYmQVpGX/t0/X/jaJ1191edfV/eyDzZJIkSU2mnhXVxcWZ5ds2lpaQmUiuM4z3oSkg0IS0tLSRLFJgohnH766SecuGNiYmL+0NJ//fQnJ5x4ggThdRK7PNNRrJDQGBVHwyKP06SzsiBcdhPNFvmsv9IF3SRtBv3MrWHrpSieoigpiiJSWgECczuOoSiSdttpXDM54Yp8z+47th+zZXZmRkMpRN0fDhqN9I7du7TWSpmdO293AYrC3evUk1d6fWttnJhNG9YfPHjwwIED97vfWdOTEwcOHS6K4rGP+7PHP/6x573ydXs7ixs3b9iz95BJJlRRpEpZJKVU4XK2RTEcTLYbcayGWU9rnWVFNiyMjiITax399re/7XR6JWjDh+WljlYRouKAWmvSqigKARbkeSHrWpZljVazDPx6L6w25fJ3p9WfqxL3ehEct8nKPjdaKQXWee9DKVnvCmfjOM5t4ZwFAOctwpHgwiPaR378diJQmhQoBGT2z7/yqZ9881FEhwDg2Rc8niFY641ZJf6a6KjVavX7fUKdxOblf/e89732LushPvtvb0ZExhBF5jPfu/jZjz56Vc7r3//yIs/i9rRj8GPxquBtAFUygY2ZZYCGBZRPDIpCYKhqqokItfHWsUhSqP+mTy764mX1Roh3YikEIqU0rjaVjrzCP75SkRBc8USr1V1Z7myYnzh4dHMKAIBFTAuB8dW3zb1rLNB1RHv1HSMFSUAGCEpHRe7S2TY0WkVuVWUNiIw0IAEzAcFqJBmONfmnq8R0oTKPhMRhubPSnpxIkqTf7ydJJAkUqIiR5Wo2y31Rcm1LfAgBFJEbq8z1leIvV2HFOotBiIjEUHqmAUeUocBISEBKlEmJCBg8jKwoEvtmjL2idleCyMxX9lB9QghesmlS3MijykexVwCAAQKzbIQlKywxeG/Ze+GmICIpxQgBw+qfqG+jNrxcRSxX+XJNGZkl4hBK+Jf3XusjQX6yeYeSeRsB2DMPsgwRW61WmqbCgwpjFtJ4ArG+Wg38qlz3CmFWhWqwUqCqb/uog7z66EgKAxiDTsrDEgAip0mbwesIdpy4FqkIXBCR83kULf/VUx7+gfddNNE8JstyIjIqMkYBgFhIxhiFuVIqjhSyzW1/7/4/rt0Qf+iTr3zAg+7h+LC3jY0bZmYnN2b9qNVuNBoNa3NmZoT9+/cDUJIkoibeaDQWl5eWlhb6/b4QqWgdCQOIIH9CCC4EHNs6G43G275wkbUWBH1ItLi87JybmpravWff5PSUc56ItIpCCNbl9XQoipKVTZgs6hS/TCjrfclJhii+dHAOkWS8Bx9kUnjvJR8cSrI3FRAUsgshBnTMLs8GmQMAVLrbWZTM+L5dd0iYZtftt5YRaxnQAnYgUhJrANp+/PFp2mQmRZAXRRonTjnrHSkKvsxLclWfURSFtXZ2drbRaJS5ZqWSJNm3b9/s7KyvwK1M6H1gYAIgokYjOfbYYw/NHV7IV1qtZHl5qdUwmCYcgqFYsQbQFlxilM0Lo7UxtHho3/2O33S/HesASrnkfq/Yvf/w9JqZLMsQ2RZ2HFwbR1o340Rgn8E7ZCAApbX3AUmIgojGBJLLIR5CWf9+Jya0LMsW5uYAce7AfgAACADB+4CoiGhiYqLT7Q+Hw2azubK4gqVCU0pEveFgKk4Ka8eTj4PB4NqvvFEcU0KNWGKEvfcAamZmZjgcCp+FjiMgajQaeZ7PblgPAB6Ymefm5tasmU6iWKpFVla6wPTTn/7sxj/tOuu+ZwxtQMSiyIuisAytRtNbq0xU+EwRuTwLw2GLMF9YWttubN64eb7vOsOs3WhFJi48JEmiyBCRty5KDCFwAGI/M91Wwf7xhj94z/e512nPfMpf54PBwX1773HSCUkUE4RhNtXv94fD4fbt2zdt2jzI7GCQIfl9Bw/EcTw9vWZ5Zf6mm26C4G+56YZDB/Y9+tGPPPG4bQcPz/d6K/c987R//NDfffITn9l+7PFJc/KjH//sH375s5OKQul4YmKiFUHDkAaf2UKrkjzJufzQ/IJSZpDlP/vZL5rN6VazzQzOBkSanp4GZll50jjpd7oL8/MyCa31yGWqRSGVXMw+EFFSqYKIt1HjBmoKlnoHKrFHY+wSWDIDKe9zAHBVmrIemiGEKIrSNH3N448S2hlvL3nwG+DBd3/KqH3mmqPQ2X/izf9NPekR7VmP+j8q237Hee876vHrrjh6heZ1Fx79/P8b7aqnXXpXH73uyf99BfiVX3gjlDO9hMjsO7jf+eJdP/3cqx/wzCNOfsUt+7EkBlWliiPCq2+bA4A7G2G17VXvjsxARIO8QErXrd/o7DBOtNCowohWUegeyvFTJxnrKNf4nh0qNUaoNn4AuPnmm4VwruZ5Fi9I4CwygK21ohtos7ymd6k9ae+9UHTWJFWq4iuvz5Q/ZCMf2/4RaJwxAbAyHQFRxNd9CBCCIuLVy2kdczrCEOExmE61LI9wZiU8t6yEJa2JGUNwMBbZqq8fKjbz+mpUVVPVHhRWbGTe+zwv0ijmCtAj8nZq7NnrwIO3DlCHwobYwFgISuK4zDwcDolIgjpZlhERgPCBrWJ/lLvCMeBOffPyXiRyVp8sw6NeTOpur78iTJOBOQQvAsw1IKx6CqFXE25LSqLk8OF9j3nsyZu3totikTloTYFdUSycdNLxF1/8oqsu/9hDzv6zQb+wwXrvgUo7prOy1FlRjVTv2X0zc/dRj3nAU5/1xFNPW5+0Q5bvR4qNigC41+v5oum9D6HX6XSybEBaOeeMjvfs2eNckCBulmXGqDRNrS3HvwxmeTVZloXVMT95WKWUdVbe+969e621ExMTy8vLGzZskKECTJJSpFLOxNYCi4K/lP5MkkSAg6R1jZisTd56NjGCuDdyXGsdEB27311/PSgG70DT7Lp1ACB6g1KB12q1lFJxHJ98+skyJJTWSimZs8rItqMnJ9s2d5MTE7bw//iRj0k9h7XWW+sAVKUZUE9/yacLNhER9+3bd8cdd8iPlvE5op///OdxnArM0lWwUSijZWbv3r29QV8b3UiTbm+hsIP2RMN7S0TBIQCgIcYAwavgjeOTjlu/Y9p8/j1vezCU2sQHDs95YGIPEKI4QsQwhlppNBp60O2mrWYrbWjEJNKOwzAbxmkjjHbQ4DgwBCJFROSBK9/hzgq7C4cPn3HWWZOTE0VRGKWR2BAO+t0bb/xTu9GUOey9bybNIk2ty733M1PTRLSwsGR0kjYbEvmQNjU1Za31nqempmzhAaDX78zOzgBAr9fdumVzv9tbXFpat25DkqZAGKdJCLrX601NnSAOWaPR6HQ6G9dvyLLsRz/60fr16//4hz99/av/fOYZ91xZ6ugojkxEgTeu39DrD13uoPBa637hdOHdsO9XOsdPrdk0vYaKIp2aun2xuzB/q0mMF00e5kgrbwtNAM6yh25neeP0ZDMy9zvzrBc861mNRoM5rF+77rZbbzl+69Zbbr6x3+luO/YYSd7rONqzb/8f/vDH4TDXKpqZnd1+7HFps7H1mC2dpTW337bTe79x/YbO0uJvfvnLBz/4wcdt27J7z55dt9/eiPQ5T/2rbmd47HEnPPzshx5e7uQeOt3ezbfcumf37v7y4WIqBvCNKA7OMyMzRCZxLiwuLM8dnp84fl1RZMAgricE61yBiMKga6294YYb1kxNR9osDZaF+kg0yOI4hooaAKsidq6kgeodqIbUwJgdVr9TVTHcCqY1TlNgCh4QVJGXcz53BRP+t7bX/7T/J9qbn37tmz5yXh1dSGKTrSzbPJuZnHjuFz+z6fSzMyKLiKiACYEE1s9cor8F0AUAr75trjQgYLT/lVByYiTRsqQ4Tm3hXcCJqTWHD+1iZu8cKNS6duUJGEH0dBAZAx4tzS0rL1U47trUICIhWxYeCqGqwhFWzJR0X6SdCyGAeMYlfSizJFzEzKp/AsbtIUYOwMiIyIQMQIyyMiqlpEgNmIA0S0Wk2DdyckmQRvIAACC9UlsbMCYkXGMoseJckOeu+0EjBQ6kqyQdMHAoed+CQyLAsQBPiZJCqdxERGud0KtKPUTdyQIJkO02SZIyscvBeidONQfhaSv5Y6Ww0TmnNHrvvZPKAKgNKSIVQiCAwWAgxKF1fGXMoBxZYFCFo+pRVK8n8re8IxHUgkq/iO8UGqityXpgKKUAyncasKxQ4ZLSVk4wzHDDDX940lOfMDmDneUOqQAQgEPhbG4PP+4vzvrA+z6hkGKTAloJGVtb+JC322lnZeX6n//q9Rf81WP//Mxjj51m7GXZfL/fJwWuaCRNVRTFD3/4w80b7pHnuTYkhmOcJMaYbmfRGCOxLjGGnHN5bhGV1iOL1lprfdBRLH1YP6z1bpANCTAycQjBRMYVOYKampwp8pwrZmARk5XKA3l3HoJ1hYp03EiGvYH0W57n5eAjAinZ09o5J0A0RhQOFynIgYAIwI4ZvY6j3/z8p+/7xw9OTLUAHRF44FarBVyKOkANEkW01pJWiCihkxCCMnpoC0Qsigw4sAsU+ORN2x958HHvf/s/nH7v++WDLNKxVjrLhiEEFWlxb2rIiq/kI9M0Fc0bOSIxsDRNBViJyAikqgGvtR4Oh4G9VuTZaQODfqeRUqOph/kQiwKZFCSKVGaLNCHIO8dtmFnD3a9+5P1p0anfAitSiP1h3xhTuJxIpdEo8ZIN+/oJT3jCb37zm1t23qQAsyxDrdrt9uLyStJohhAgMJPM5bJHqPThRun58c1VPD8pbJFc4YGF+UYaD4fDtWvXykzWSL1eTzzOIP4oQ7vRlJhKlg3HJ4xUXHY6HUItK+bi4qKkHTudzsLCklKmKIqFhYXFxUVJNZrIMHO322000jiOvWcpqv/VL65/59s/uGHdxNatx9qCo1iD0paDCzYUGWKJg42VUtaHYZbm7l7HHTdBSRxwrjvvFVEIJb8fs82GaWQIGSBA8OxDq928xxmnzzSb0xMT27du3b5t29zhw9///n+sWTN9+qmnTbTbtshuvfmWXbt2zczMINKWzccg4oEDczf88cZt245ttCY2H7Ol3+/3e4Obdt4aiuwnP/nJafc4+bjt23xhb/j9b7du3ZoP+hR4pj21bcPW+fnFtWvXbt2+fbnX90hLK8vr16Q7p6N25JY6K8srKxCQgDBgNizSNN2/f//+/QenpmaYIYqik046gYjyPG8kyhjjvY1iTUTGKGNMEsWIOFKEhHJQFkUhhatQ+cf1hle53YhjaQsYc2FhlLwG772tJrycJzGJw4cPT05Oiun2P+3/rea919oAE6KInEBeZO1Ww/f3KA4QALUWQvYjwhKrLaIjwxVH/S0i3R/0XJiMG23JbptEBGrKRRkAyvhaNbaO2FnFFmk0Gq5SIaTVy2ir1ZIQi6C+5Hi964vIXY0+ZELxmMWUGw/fSjqmjhPIPRCW8bDxMV+xoQIABADEmiuBmUR7mJHBlz1GiAj+SEqLsYjRKO7lvWf24/bHmBnKQrbqS8orhQTeh8BB/N47v4XqybAOaNW/OF7wKNYMM3vvciiLBJ1zcVTaAXJybX6VFLhVOEosvRBAkXhf5Z2EEAaDwfT0dJIkKysrEhgbsyzLhK8cqcvoKhuuHBL1vdU3fwQ0sH6i6jQS05BI7NRQosqgLGIgImFQCSEoBVprH9yp9zyOcCgGFiEzhUTRYLCw7dhNr3vDCy85/5MPechfALK1hbWsFMVp1OsdXlzc/YWvvu0+913HMJfn+7J8RRtALEhFBEzom2mcRHGj0TImlteqDTFABf8AIqCxklWR0irLe2vhc4ZaMqF+5PqfLoTgXNxIAFC0JiEEsVZHPcxUu1tYKTt3u10MEMexTJB+vy8qk/Jb0sl1voLHeHTLfgZ0NkRaQxx1ep2tOzY1W1GcRr/41a+/+NUvT81MW2s7nU6cJkVRRGlSFMUwy5IkWel1e4O+bAGdbq83HBijs3zAzm/fduxvrv/lG//2TbPrZ8VdYR9AFJy0YWQbvBRqOOckcCBYl/FQbhRFRVE0m03BvYmDVJdSSUiBCKz12iiA4K1P0uT2225RGrZs3vD7xUEC3rsCTeQL22o3QtFd11Trtf3t9745SUWajNV1RSoULoo1e09ISmEUjd6RUkovLM6d9YD7vuENb3jt6187OTO9srKS53mr1bK+tHeVUgDoK4x9OcoDh0rdYhz7FTebv/r5z8dGvgcIJ550QpZlzChmk5TMIASJhEXapHESm6jf7TabzfHJk2VDa13hAgB4lzNzURREYJTev2/fPU4+cfPmzb/89fVkokYrLHc7QnhtlM6dFfNLdKC89yHQzMzMqaduXzM5HTx0ix4ak7mCTMSRXup2CLRygQCaqOcXV07dsT2Km/ncvB8uDr1PkQubLQ8GzjCRIw2R0eA9MQOGYLPjj9u+ZnIiuGLY66WKfvnzn73tbdcUw2J6evrkk0++/mfX/+73fzhhx7GnnHLKxESrcGHt+o133HFHkiSnnnb6wkK3cGHzlq2333b7D/7zhwhh+9atwWbB5QcOHPrG179x1pn3Hg6HGzase8QjHw2e/vC7P524fUeaJOtmJv2g6wbLqNWatj5mbbppzb2ed85fff6LX/n8l75qgCIVxXE8Pz90zueZ7fcHi4uL6zccky93ZtZMNZpJmibeD+Q9ioOFiP1+X69d75yTaimoFEUEWypLufjBSOi8P2IPHm+jDWm0YZRLvmR2vPfWMzOmEWmtI6VDCNY5fTSl7ff94O0//uH3H/GohxLRnl17vfc7jjt29669u3cdSNMmu1AURaPRICJnQwhhce7gddd8S757zgV/jkCk2AM/8QlP/slPf9EfujzzIVgVa0BmQo2EDJHB7sLcM5765H5noddZbKap0ToxkTHKupx9CMFlWaZMtO2YrUvLnZ07b1vp9g4cOISkdRTnznYHQ0Rzv/s/cH5x4eabb0IVbVh/zNJiD5X2jkFBs5V2ez1GCkBAihGBkDQSkfMAjIQQ8hxCiJIoMqrdTm2eAQTAoKOIVBw1GojKByATMbMCds7VYQYAMEYpQmRgnydRrImJg3OFVJWaSIUQjFIAILaI1ua593v1nV/fcDgExHwwnG63IRvEinrWU8X+Krz2gAGABe2BZUho9PZJIBwwWiqQJcgDAKCVyXNPOm5NTPWH+Qz7ICAvGU6lUTAy9RCxplmvbSOoBLV0JZstG/n09DQRHThwQEYFlgxe2pfU85qZZZmmqspPcMdljKRK/8kJ9U4vzyZ/BGRgJiYILORqDIgBEKniHCFExUClGalQMqolHSozVnrSDECVwrQkyOSWxqePmF8wlhysezhAmVIBCJXlE8QkrW0p2RyrL1YqSeAlCwyVqpUayV+OMnoS1rKFLVyZouIS/clUY/u5vDGoKCE8Bykj894jsjLkrIOKo0uyuuLm5bnVY2EYHAcfV6+gXmfqF1F7fbw6bLYqKHCnUV0becxVrJQkuED1zYNnpcLy8tIDH3TGiSdty/JD2ogsGRMyh6CVLdzBRz36nv+4Y7bIe6Cc9x4xQgRv3cG5nR/9+IUnn9bsdm8LfhhppVAhS7VsDkEjwuRke2FhYeMGV3aXosAo+2NAcCEgYp7bCnJHCKhq/jmgYZElSSLVIcpUMqnVOJEpYPPCcSiKAhD7/X6r1YLKYSaiJIkF+yU+CRE59rWXAgB22Ndab966hQMcOnRIAOm1jRtC8J4RWWlJgAAzsgsl9rDE47u9e3effNpx//LNb9tgTzzllEf++aMPHz58+PDh+9z/TNE7/6//+q9HP/rRRVH86U9/2nbsMc1mU4y8qclSbjyKNbNfMz3z/Kc93Q1C0bcQQqqjdML0+0MP7DkUzpo4IqYaYACrzXGxyeokTxRFzCzk8VCWfwnALABAkiSDYT+ODSIqpKLbscVgZqpl9863lcrZ+ZAb1STnIio2T6ZLN/9arRw0sGrncj63UnwAIYljpVSR/1+U/We0bVl2FgjOOdda2x13/b3Pv/AuIzIiIyODVKaUiVRKOVQqEDCwrWKMptXQCKimAaHqEl1NI6hBSUjQFNSg6G4VqEAqCmGERKc8mSkpfURmho8X5sUz911/j9lmmTn7x9p73/NeiB99RowY911zzt5rL/PNb37zm2fsUqJI//Q/+6ff/M3f/LWXvsEAdV3XTZOmBOgBCDmEIEAYy5x7YiOuu3ZrIVqGXyIymEyAJRbTESEgI6jxyspoZTIYDJqmQd3q6DUpCb4uy9l0Wi4WZVUPBoNidGaJGUcKyfTBZfSbIaLjo6P777/fend4cry5cy7qw5RSkTrWWo/H4+PjYwKITGOS6OFwhIgI6nh6hMowcGy+oRSChEQZDjIZFCkAVvVGWpwc3/DHpxqIIJhEB2HralSkDFlbI7BCCXWjCO6/fOn8+rpWSFmysbqGwI31f+QP/ZHFYvHlL3/lxRe/NhwOH3zggUVZ/tqv/kaWZUVRfMd3fMezzz63KOu3336nss3x3vTt6z9/9er9ly5eee/Gu29fv765MlEi09PZMM/eePPt1OiT49NHHn3i2WefX1nZ+OVf/EXXVMNB/oGnPlA25fmL57JBoaU5OTreeOYDzz/7wX/wD/7B3uY5hVQUxdHR0Ww6jasrYqw0TS9evDibHltXD/JERLz3g8FAa31SVXEHjBFSxN/ofei6hcTSmCgC46Uarn564FLJCSwlC/p9TUQACERCYGdDgDbTFEKImRf8TzjAiUhSFM654bCg2JsHQGnUmkIICtv0KDN771nuai5kdOK9R1QQbJZlWZYdHh/kxdh7AyRePBECowgrlQBRvFOtNQKQgHONAK2trUjg+Xy+vr6+urqapvnOzk5VlqPZ4js/9an9w8OXX31ta2tra/tcWgwuX7o6XpnUdfniiy/+zM/+y43VHWXAJPl8Pj/eu762udM4tg45iCAyCHsWJQCKtIbgQWvw3gsnoCImEGFSEPeOQpE2aVlX3lulTC9jigdn0zQAipkVklKqbVrRKYTiORoF5nGxLDM3S2cY9sZdrrGDfAVOTzA4Bcp6QdXzJV0zHBTEzmXjd6O6cClt1D5QBGFm5wLScGUNylJkzTufZRl7JkIQwdbQotckSaRJlliftny1J3giTqrrOhYzxqSD6npFL/9ynNJRKB3P9c6BNiGi0O3j8eA3nb4k/powd8+lxTQd8pAgEn85qtakQ0sRTi0DhR5GtF8I9DTPPTO/f0UJmnMu4jARIepjJNcXCseQqQcrvFRqcNeDJgnh7KFHKVSPTnrOoKtp8HHo0jSl3uEMoWkao/Ty7y+NBhBpQgnBA7D2OoTW/TVe1Xw+H4/HRVHEFgWy1NR1aSq2Z2d/2dDhsMi6wdIIL0V6uDxJ2stjiUAhli8wM4AQkdDZs4gvIkoT/fUXv/Tn/+L3F7lufBVNkUUYAAEJwZfl7fMXn/jBH/xDf+2v/r1PfvLbFiUrUlmufvXXfu2n//kPP/HBrd29l7JEm0SJ90opARHxSikGCVwVA7NYlEmSVlWllAFC52zMkgu2XlwROi/hXYnUY38WR6TSNM1yVZ10qcnQO7cROecmk0l0LYmzuhdIRZAd995+ZOIfVlUFABvrm1E1FX8agxatNTM0TdVV4kkIHmIJFyrv7cWLF0crOTPv7u1+67d9Egx9+cUXH3n08ctXLw2HQwKMmpaNrfWnnnpqMpmsrE0+/OEPxyellJnP5yi0Mho3vkHE/Tu377/6wOvfeP3aK9cAIDjnrY+NX5k4zTPnmhBIax1JO15yP5ZOrzkajc6dOzebzXZ3d6Fr5R6hahxnIvKemX0UIXjPeR7tssLG+qq42xowILngVsfJdH/3ww9vrEJzeHRnMzNBqFna4VBAESRGRbFFsI0601SA914/8uij1rmvvvCCAFjnoveSDZ5UW5umkAIwdFMhMttGaaWUtZa5Xfztmvci7BVRWU6NMQBSDLK0yIMIiyzKMg6WQhVCgMDArImQRTGMi8FiNh8Oz+BXPCRcaCuunbVJkkynJzCeAMBgMFhUpbU2LwprbVVV+WCwKGeI0bYxiATV1cTG8uamaXb39773e7/3M7/1+d29vWI49J6b6fz+C5c2V7c++6u/ft+FS8js6xokVPUiyxIVEEUtmgaUQs+K4fj27n2Xr3ATXvjSl5/54NPnd7bG+SDValhkN268d+PGjeFw6Jy/cePmW2+9ZXRqPd/a3UuSZHt7e2t7gIjvXn/7tz//eSC6evXqgw8/+ttf+Eo+GKKz33jl5clkooxhZ09nc2IeD0eLyubzpqJmOp3+4r//9GhlKzB//BMfOz04+PH//r+/fv3dyerK8cHxZG2UZgZ986Xf+mxSTJ5/9plvvPLm5s554FYbwcx1XRuTxjieg0OUqlqsTtbn86lAMEb1Isp+B++1Jtw5W1pr2zlgktpZWUovxr0gakTC3aXscRk457Isj6dCfENmRqU7cQlqIM+cpelyd/D/5mf+/N/443/vn/z2j0eFplC7uffbjUJMtKmtCyFkoLTW3tfW1XcFBl3ePFYUJkkivg06QVBQFBmttLBPkxwEAvvBIC+nIBK8583NTWH75BMf2Nra2t7eNsYcHh5OT06qqvru7/hU7ewHP/gMM9+4eTvLssnaqtEJEVVVVQzyJx+578MffPydd97JB8WlK/cZk37jpdf+n//DP9nYuFgGYKHaBwJiCbHy1zOD94AIzIjKOTccZo2zxujQ+Ut57wUcIhJS7J5JRCLtSkmSxDVNkhoiAu6O9tbrSCNiVVUxxaa1DuyQRPOyOwZrrYMXQAxeAPViUQ42d8A2GLzWSSAFgFGhDFGx1Hc9isc29ExVy4RB16U7Arv2kghFJDA4kcF4AiEgizEqBJeYFBEZQgBRIkiCgMwMAkStU1SEAstghVvzTEbENE2jyKE9zzrHxd7CoKsd831vRwCIHuIdsEBZ8gWVs/6+CABAaBLq2mOfwUERIYAQJHoHwZIBhIhEAA1LHEy7QESIqPE+cDAq3isLC3CPn1o45VzLbjKz+MAS6lbo1nZtAmxVya3FEZJznogCO0WmTxS2mjZkROyMK88yxWHJjLdH5z26ineEOjp1+/j795xhpGKDwkxErHeksJfJi2As2dNaL6oG1WJ9fd0zHxwcJCIAEMvn45BGYqblZrxnbhPi3HmItDlrY6KjWz8BeiC4DHMBBQmtbTNoESJH5Ku1AmYAUahFRBiSRFf18eMfuGJSXtSNVqhQC6j2ZhXVTdO4w09822PbF4z3jaGMyNzZffsP//Fnnvvo5en8jtaECN47jdG2DQQUIQUvytjBSAsAB3A2pJkJHGIJC6ICJOgKW4kU8xmoBQCVpLbb1T0H7jT4/RJWS33c2+pppOl8trWzDaSwq6NqXCCiiNlZhBA5ci2dPjJGGtbad999t+8bET8u7t6ZSdlbpZRSFIJDJB+hSggAcHBw8PJrX7ty/4WYUhuuji/tH01PZg8+/FDTNIu6MsYAqSB449buyXR+cHL61vX3yrqK58jp8fS5Z5/7rS9/aTabMQcF+Oprb1eni/ObFwCVZ67qWimtFFofQs2oIBYiZFnWY8qmaSKVoLUejUZpms5ms+hwVNe1AGujvAshhChk6rUHwXOaZLaZKSAAqMsySxI5PDFMDXqj0NeLkQ4PTDLefU81tVLaim6WOEgtpHUCCMroAAEIZamJCKDo9a3NNE0vXrn8la9+RWvtOHhhpQ0LGJNi0zav7cOCuI94aXeTeyKGdjcEUMoAgG2a1fU1IATClZWVpmkWVdkHRv0D1qRIIDHJyXwWlnye6rpGjCaLKLH+oolNQmRldVVEYklInudxkjV1K8hIkmQymdy6NSuyLISQJEmWZceHh6+9fvOv/fCff+qpp//NL/2SSRNvXZpnztaDLB3lOTAbo0WChOC9T4rcl3L9zu26LpXRCCuuvVFVFMN0qJ944onV8WRYDG5dv/HWG6/7YJ1zpbUK1WOPPVbXtVaZybKxQJaHxWIxnVXGGATe2rl488ad3/j1z45Xv9FYKwg2+Mba0Xh8eHTE4jRQE8I4yxhwOquI9Orq6ub2eUENhA8/+lB5erSbJx/92EevvfEms8yn87WNte3t9XPnt195+eXBcOXyhYvXrt0sikIkaK2bWrTWhLqPm5l5MBh43yRJEthFVjme63VdY8djxS0vhg6h7WTcmoRh3Oa6yse4+cZZEYOq+Ffc+ZL3MwQRO42qCwwqaWOg7vwLzt7bFftH/tmfvXLlSpIUcfI4F7TWzp1JQ5RCJCBpLyCEQKhhuasPA4Bopb1HgWASBcLB2zRNa9sobYjINrZtnCPsvafEDIfDxKjjg8MsT87vXDo6PjTGbG5u7u3txVU9HA6NMQcHBy985Qt5NkiSJBkNwDfa0PrautarEHilMNLMdjaG83K2up4qlXzvd35yY7L6N//WTzhIlBoAqsRktReGIKB0YmIMKlF5g2fMRNttOcZCLFprDu13evwRv0iSRGtFSNEYASDEwN05l6ZpXxBERO9nqrTWHEm52NiGeT4vVy8kQEDCIQRB3arqAQAZoE0mxl44uERK3cM93PNBImJMsmgaz7i6vglA0RYu7glBOrG5YETJRBQbU/fPHTpM0B8MzBzZTWaOXpFnfkWR2+nzYkuu3BFaaa29bfqZvGzr2pcNEZFSui+BjG8gd5dhAkBsFt5d3jJD3B5Oy+AAEXv7UGaOkKtdVnAmaeo3W5G2J6ME371V+3Es0VV/WWp571NYpotCZ7Dpve/7GPSUEnRFnV0qh4Pzy8iso2Q4OjxpHVvGt6jIe69UIFIhiDYKUTnXGH1m4hU6g8bIOCZJAh1n1pep9rtKf/1xI5KuTrN/fNENx3dNEUJXBRl/Sku1sRGldR0LWES8eGamODeIjE4FQ2PLtTV98eKEfUlESpFrvPdcFAWzD85lqfFutnN+6wd+4Hv+0d//xWee/jbx/NIrr/y3/93/xSTT2XSmdGSeA2ObE2dh71ipBEAmkwEiRBcJZg6BSZ2lXOPwx2Xdj0A7k5fUgfFm3/+UY3CF0irlz507d3p6qpQajsf9oC2/p3SzOeKqiLHiu2VZlphoLKL7FF6WZTGAiRVysX07MyCyc06RAcDIepRl6a2fns51kuTZ4H/9Vz9vfvXXrbWLxSJJkmg+ZYy5ffv2cDL+D7/4/w0hlGW5WCwuXbr83lvv/eZvfIZUq4Nq5vWDVx985A8+MVxdraqKmRGldk4bDQoZxDY2y7Io+owRWmRSETFJkul0mqbpZDJpt4LWrB+IaLFYZBnFO9Jax8R9ZIviDJzPZ2srl6BxGBgUKaVAfEF8+M7rK/50ZVgcLqZexC8BrISUZ88MSgGicsHJklOTiOjT2XRCkyRLAwhjLNckYMGu9Sl33TCARSI/iSh3N0BdeuqKA6MhDkGTAuEkzxhgdnJy+b6rlav29vaU0NpkxbmmrmvXWEKsyzki+sZKCMsJ7CzLRaRxARGZIRYpKKXu3LkzmUx2d3fLuppMJlmWVYv68PBwkOUaETkAe99Yo1T0ufbeK0RN6m/+2I8899xzx6fTa2+/df+DDyc6scGLBJ0o6ytBHowH0dhCKfWN119HlMc/8uxHvumjmTY/9uM/YfOhs7h+7vyNm7cpyM7GOjO/8o1XTvcPq6ppXDMZjbLhaD4rX3z5GwSUUJoVudbaByFlFmWdpsLiebZItHn9zbfOnz+vE3N4fIRaaa0PDw9RK3TCwAqIAyiTBQ77R6e7dw4BeDQZjjfW/sD3f9/KIDs8Prh06cLt27cPj07iOZolqVaqSIrdW3ckQJJkCimEcHh4eG5nCxHruo6bUV3XhDgaFr6xeZE65+I6iXSC96I7a+Dlbi35oEiSpKpb7soFS0oBYFcr1L764006c+Q+gxN/vnQUtb8PQl1SBomQQfSS/8h8Pl9dX/Heowoi0tRufWU1TVMOTiOZzofTew+CoMB7di4kiUa11MCkY2EAxDmXpgkQKIV1XSdZCgqiEQ5IaJqGtEmSxHu3v78/KLKPPP/hyxcvDEeD1dVJWTU3b93Is+LCuXPvvXtdaaWJ1ldXz507N1ssEFRd1wtfa5Jgs+OD6WS4mmfJ5trqxvooy9MXv/6Cd0zOPnR186/+pf/j73z+66+8/i4k+bxy9XxuRmNnHSgF2NbHUczASXwiQSsCIoFWpqNQIQKLxDRiLEBqHwEHARZSBAxdHkehio07KNaZGBUtB+nu/jbdyU3UfpY6nU7vNwa8l+AAEgCgXr3VEl0iIMvY6+x9WsHX8ve5RySAgorqxq2NVwFAa900TZJkIQQGEcTO+hyRUCniEFVTKAwMZyLufsb20y8iOZFWLOV9MOasGzTcXTwkS9zY8vEWj2qlFBmDreVNLFdsI0+t4mggYrz79oIV8tJInrFKMSfe4gYBkBZetR8HLBJ84HaTjcqa90W53BvMnvVJRGAJ7Lgz6YgxTw9SW5QTLAvFSoBICQRuz3siEoiKnw4k3s0ewfvSx3EzEQghhFYLLKiUQtJxi+AlRwzpk5jUJlP6K4w+opPJZG1tbT6fx2HHzueTmWtrRcR3un6M1aDe19YmXbOpKFTtPb17ENOTYdAFJ6Grhuv0cEydNW5vwKaUQlRNc/Tsc4+srlLdzJCESJtE375148qVCQJprQS88wulpt/27R/+8b/1r43m2eLkW3/v4w8+uO3ckdIBCSQWdoSgjRYRQ4Yh1KVXlAyHK4GBQYDQ+/ZsDd1lxP0QEbte77H5OotEIlm6pYeIGMOq5RkiImmaAkfDet7c3IxinvF4PJ/PB6OJMkaLZeaYzW9rbLmd5DGBKPHaXDtioe1P0ErynXMadVnNtdbWNlmWra2tlWW1WCyEpQv1kUh7B//+Fz791DMf/IVf/MWt7XNJkqiR0ttaKZVok+c5EeGHUCuFiEWRiYhGCkE80yM/8JhzbjQalWVptM51SgEnk1XSSgQEBRlFxFkXN/yok4lIsZ+9iDidTgeDwXQ6RcSyLCOOdM4R6dgwwNoYQpD31ntGpCTm3L0AwGKx2Lg4BiFh9BIMEWHA0Lz75qvjCxMLbBUR6eDOjLs1ACgkpUCEEE2a2LDUaA5JR88Va62KmSBUCERKCSjvqzYNwW0dcgghtm7oF2bH37YvIgrex8VWV1WcB03TPPjII0dHR5btysq4nLeee6fHh3meKaUI0dk6L0bAYuuzrFMMXpMkaZomFqoooqIoIlM+GAxmi7kxpiiKg71D6eq0icQYk6ZplmXGaNdYNmlVVRsbG9/y8W/WiXnj2luDQQ6BmRgRy8WCUOKDa5ytfT0vS5Xlf/C//JOX7rtabG0MVsavf+3rp84WayNl+fjw+PzOOQg8m82a6bw8nSVKNc4FwGlZDUbD4Xg05PF8Pq+dreZTAioGQ61NkqVHx8eJ1t5ahU2apQdHhzppCzTyolhZWdk/Oky1Cd4TQDYY+hBApGnc3v6uIqUOj9Sv/8bB4f7Oxurx0f7R3j4qPZ+fes+DwSDPp0cHhyZNQCft2tCaiLI8oa4na5IXaZpWtQUJSik0BjsaIB4iIQStMa6cuMxIk4ezENPaChURETvPIrEKut/dItcVozFaKlK7JzITESKFioQQhGJhLRFFrx12blnAGJzXZOLOHrFCnHXBS/8pjBCEFekA6LtMEy2xXwQk0Ip4fFOniQYJSlGSIACQgA1BKZ0kaTwVZrPZMFMbGxvPPPmBDz711FNPPW4SfXi4b63Psqyal03TOOeuXbt2/vy5lZUVZt7a2Dw4PN7f359NT46Pjx55+P4nnnhienJ8586dm7feTVP9+JOPf+z3PH/97eu37+xXpb9ybvXK93/nq2+++7nPvxgo+/zxqUZyRN45QAQRIOW9Z2HnSBMyC4JmASJU0eWBowlMF8IuKWAQEUEUIBJpJEFSgoiSJKZ73DERhvF5wdIrhoOE7SGaD4dlWRMg+IZtrUeTpcYUfaTeyfv+E4rne2AZxNMFW6FJ5TwVbUbJmBRYAjN2bcJjz9l+BkIvVFpiNaAl7dqwsCzLiFn7C+v5kva6l3wcpJeWBh9hHHeQpU97ua4MEO7yUFiy+wKQLkMES+RcvPt2xySBcGYS1rWqO7t4WiK6aElD2fN20OE5YwwSQIg4jIgIgSm0QYZ0qVVa0q7pzo6B8EynFVNL0BIz/QSgPguxvH4RgdRZ4MSBRSQadelOPNfGDIqk6/ciAlpr74LX3hjtfAMAkZWJw17X9enpaSyTipqWeA2Rt4jSEQCIgbHvrNjjQDUdYoaObo/HWZ8zjU8N8Qxl8pIMDluNYzsaIQRFRhhD4FSnxyfTJ59aH4zQcgAE772iZFFaQmO9TxLt2GkFZX105fK5//x7P3JwcLx7+60/9qlvG4/UzC58cIlKWJAZxqP1a9eujcfD8WTQNHWa5YCcpmlX8MAAQKqlPxGR6C75LDNDV8ISZwx1fxnvMarx+j/pH2sfbIQQolf+2trae++9VzVudXW1K1VpZywA5Hkeu3YSRVuZdkLGAyXqhvuI2hgjLNKlO5xz8/k8+gWmSV43ZT4YbG9uXXv97e/6ru+afHCVvf8vvvv7iSgq1fr5KSLCbK0FJ6RoUc0V0e7xsTBaH6rGArSil6ZsgvNvX3uHhJRSwBCdVhigUKkyui6rrryv7QzWA4PYTkBEYvN1RGQJIhKjsog0+vXb1tkEEJHFYkFJEnEbhDiqwXtvUgPivVsADObVfNHU2qS4/BQ0eCdAEqFLTCr3PyUi/fa1dxDxzu294BkC5HkefPv446UQUaysEWjbpDB7wG7PRV7unVKMijRdPT06Fu9NmpjUeO+n0/rc9iYR3bpxCztiuaoW6+vrb1+71jTVZLLa4/fpdLY87QCgqqo0TQGoruuqqseToedQFPl4PL55+1ae50Zr31gSGI1GJyfHk5UVY4zzjUggMFXTTC5cnM1PB3lhrfXsCGQ0GEpgxmBMCo4TxnI2BwCdmWlTzWz18e/4z7JRNrf18aL0jTucl7PGpYGlDpurK5OsKMs5Kg3anNSNLgqd5M5ZK5wKiMBkOPZBWEhEmuCmi3maDZTHWAYswAJo6xIBh6istY7DyeksTU2RZs7WAjwarQwGAwCyzvogAIqS1IfwlRdfeeHFV4Yp/J7nng2uCSFUtQUAa+3+wZEiKPeqpBiRSZk5WtgjYlEUMSme5AV32V3pcxNLeZMoQ+4xWZIkKlHBNiJSVZUyut0tRLTWtqMq75L9AMCSETa1ycG29N17T6RiWouZmb2QQkVsJc/TwIxIcjemP9zdPXfhfFVVpJMsLeK20l+/Ugq6rJMiYJHGBUHFSAj3VACQJhVth7IsAXakAALH01yBIIpSpDQCyHQ6fei+x5987NGH7ruSGPOVL37l9u7NC5cvhhAWi8WNd9/b3zskRG+bz372M3fu3Pkv/sAfePTRRzc3zongb/3W7wyHeZGbEEKa5oj43PPP37h5/Sf+zk/8qT/1px579NHxcAKC12+8d+fw4JGHtm/cWvvs579e5Caw10Z74ej+FHsuiTAABR9iFOSF01TBEqAhAeyZqJ5o6Xozx87RLNFrXVRQCglRnLNKxwOevQ9Kn4XOaZoiUtQfCanBeDKfTxEF8tQ2lVnBUkKXFolOVd3GIneLu7GVovf47N5fAAAAF8R5JmVAG++9MamtrVEaER1Kq74XlNg0As4yj7E3gDBzEEK0jdNG6bu7pqSpEZG0yKmum6ZRSinVioQQUbVKWy8d1RC/UK2tqyKi0PL+oU9DgBCARDtVbvFmTx7eZS7VTrxohQQiAgopWgz0wAtauilQhxRR4pkapWMCAEgEof19BBSBuI9LpL4YFbZJ5L5N+3LwA10+MdJmSoX4IUSUwJnQM35H5Cz/hXeZJ7fFmj3GjUy2UoiI3joAoM4NQURiN0wbvFLKEIUQrHdAXcJRxHoXzZzTNI0YK8/z3ukgPoK4wGNJez9h+iwwdlol7FJmURIAS/nlmNjqx4Q5aptCjDr6jS722WQvyqAAeO8Tle0f3BlPzhvD3iMHIm1CgNPpglSKwXl2ABCCc3a6Njn/Hd/9sR/9kZ+sK3n80StEHsWlRnnriPSgWHnn7cMXX3jru77n9/pQYyymCXZQ6MAQghMJgMIAgqxNtAWO/ZoY2uaV7Zj353c/x+L93hNBtTsDUaxFjQ/09HRaVfXq6up77713eno6Go1iVUqse40gL3hOTBpXhDY6Qpl+LuV5HkJItA7eG6U0kQutxDDiwLIsW7QdbJ7ntq61Tk6OTv/Pf+GvrK2tzBfT0+MTInJNE2V20O/zikAEYqJOBEIUNsS+FwSCQBqUAs8gcv7ixTzPmaWrI4Yo/ovvpLt+lNiRAtSZ0lVVFVE+xqINTey8+CAKFSjpGGulCQRFKNqPI8r58+fLxUwrgVHuudKpMUoZTfVpuTEa1K6clzNlaF7OyJwRB7Ut82LkgldKE9HJ6Wz5XLPW6jRNNzY2Njc3CQARm6qOBcmI0FP01HkEEEHUHMSnBW0sdbalPvTQQ4eHh8jinHvwgfusbUird957a2VlBTvJl0KMKa1hkUf329lspowmJEUkSwmjOKbWV7xkrRsBuDFmbW2taZrV8SQ6iEToOhqNoOOcAaB3TYzgl5nFi7fu4s65o+NZsA4CgI+Q3wGCC362mE9W1gLS/mI+rUsCCiw39vY8ACJWTfXI9gMXzu8cHx7dfO9dgzgaDxZl7UE8SpKkx6cnayurdV0nSQKAJ7MpKcXMi7pEwDRN6qZOtHbeKSAC9D5kWW4XMwKMFbZZlilAZm6sNYOBEDbeeUC2XilVZMXm6kq1mF5/b3cyHvimjuK23b2DC+e28+FoUdbMHLy7vbf77EefZ+a6rNZXVo1JnLUxvdg0DQc3HmVEpMgIiPMxNNQhCHRphbjHGWO4rjwHzZimKVBLJHDX4Rg6JNTHoH0yiJdSDP1WiBERdNtFEAbPiJgkSXcAyPI0BVCalNYaGfu9IOpv+uhWRBCISHvvPYflkL3fi1q2gb1AGA+GAJIZPZ+VJk1NkiGBiFhrwUfNO4YQ3nrrrclgUJXzxfT0zTff/NznPvvgIw9rZYq0yNL05W+85JxLsuT++x946aWXXn3l9cuX73/44Yd/6M//Rdss5ovT8XDQOG9trQxtbW1+6ru+6803rx3dOcqyJMvTVKnN1dH+6XQ40E9+4MFvvHzj5sE8GhQgUhRwC6OiqDQSAS0iEFrO5ExgtVRYCj0T03a2wVj8qERUR9aQAkSKxX39hrU8VkRkrVNdWFUUxfHxMSCPtjarapFK6D+8G1iISny8Ozl19/jf+8LOYhQRy6YhNRls7TBD8Ky1JiRmBiTSBIDMIQo1FLWO9v3ZEzeomFES4b5uKyYX4sJHraKokZlFPC2JXaiznIjhrw8hUqzxIuM19EO0fIMtUaG621963fNE7vomLNU5Lv3Id7oOWPLQj8ZdiHflH+OvBR8nOUec1r9npySXvsClJ1T65RnDIVItJ3RmjNQ9F+pq65ZvpL+2uBWrzrFPpBVoA4DSCSLqJEmSJEiU5Lf7SYQ7cUOI4BgAsHMRixt7fHZxj8KlQume38JlZqK7tvi33FkhRNX28iD0g6yUiklRa23PvfW/QBS7W5EIEylhPD482lxf8d4F56EFKHByPGdpm+xIm7gEkerxD1wZDMWWsL46Zu8UUgisVKJp0FTqH/6D/89f/K9+CIGapjFGMwdmryKiCA5QQJg76ZWc2Wid+Zy119nVGPYj0MPNZQTW+gYr5UPIsozZA8CdG3eYeTgcnp6cFKNJf0ouM8p1XUciLV5DvIz4OKI4OIK5eJHxYI26vX5eNU0bHtd1DQAK1agYj0erzttBPr68cyV4b4wJsZZLgaByrgkhZHkijNbVIGQSpZSaz+fiJU1yIg2AkYvyQaytWXzVNArBcYg75HxeikgMt/qJjV32uSzLaEsUV3oIYTQaaa2Bw3Q61bGXcdMQAaBWSlV1mWdFliXW1nmeK6WOjo6YfT7Jq/mpzreAGZlTrTbHa252RxGVi1nw3vkzawmllPOND0t1Zkt7gvden9vaHgwGhhTGZKTWAGitTbPkbLuJS5eEERVA7OYkIKRIWGDJqcta++61a48+/mjc0b724osf/NAzCnGQFyQt4eyc874119na2UZFaZHrxWJlbUMZ/e7NG0tXb6IrmlLKOZvneVGszhfTaV1fuHB+b2/v6OiIiGIeN8syhQRKKYKoiDEq6kgSY8zxyeHF8xcAQKxvFnNg8dZduHjlZDbNR4VOs+P5NF8ZmSwNtcuSVKMGZK0NgWLmw+lJA4BGF0W+d2cXxCqUNKFQWxFXuqryznPwtdOATdNgwBDCeHW1so0LXiFy8AzsgtfGWGezJGVnnTC4VngYQgDhpqmH41Vr67p2a2trMZ6r69qDTyj1HJyTk+O5Uepg/zRPi6qyVV0O88wofePW7tpKvX94+MgHHj9/6fKFi5s+lFGKa62t6/rWrVvnLl6NIIODIyKQ6OVTM7NtfJ5hBKlxTcYYiLoGL/GZxlmRJEk1X6jYj6jb7Lpj44zu7hd2XMDMrDQKIwdWOoJ4JUDMHO1kpNVQ391pO2qoEx0nNHsPXbQXIV08Go0xJk2qcgbR0QBA6K7zL8o7YqJzNC6AQGkcDHPrnEhIEh2cd8ETaUS8evWq1vro4PDzn//89OQU2DdNVdfNF377dx588KEsyV9/7U1nLREVRaG1fviRxx54+JEXX/jGb37ms7/9+c+nBldXRo8+9mCSmSxLVYKXNi9OJpMXv/LCm69cS7TZ3FyfzU/H6+PDg6PhIB0N/XiUv3vjtkrWgEUURoAlzAwoIlqp2CQxHj8hBHU3TBURiiWH7Qq/28ZTJG7wiBhP9M5WnkMArTXqs7Fqd1iFiBhEtDFHpycisr29eVgtkpZTiQRJt+MLAUKUYkCrDOuGfRmFxPhS7urKl+f59HROVzcuXLhQHtwgNEZFR4BokwXRvabTObXIMx49zBCZjDZA76pi+wnsnBsM83lZRxUtxC6fWRbT65EnA0SlNRFpY9p+iEjQdZmMbRmlrUNDgHhR/bC3o93fTsuGLWfbheMjgB6EidBSrNLiacSYUI/fR+FotxELZbg9nVsoppeqJrHt3I1EFDjW9kpPgMXl6Ttn+f5xBBAQMV00FeFUzCKprqlfd1ORjcaWRfCt5C4m93xLRLXPehkuYFdMgG2qGYmiWFEiAAKIur2YTmz9RWPtxT2wqT9Q+8trb6QrHeClcq4eFsBZ08lW9WWMRrzLuRSxhe8hBI06hBB8WwbufVu1vagDgXgn3kFZNiGwgCMKwbNSSpBn84ONjUsf+9hT//7nv7a5scbu0FkmrZCTIj//v/3LfzeZrG9vb1bNLUIvDATae5umw42NoYgAtY5viBLbIEf7D4R4hW0WlbklIGPT+tCtL35f1864XTdNY2snIqggz/OoVc+KApij3je2/VEKezYxSxJFFDrwGmOSyEdaa9tWy8ztZq5UcJ666tTGOed8ZJ3bU4DjxkOCgJAggLVeRBpb+dbwNiCqEJxu/aGyJDHOBdv4plkopZSixWKBQsyCYEREkJSiEF1uoE0aklCko1nY2ibqNXtkz8x1XT/77LO7u7uHh4dxMiwWi6IotjbWm6apqqoqG9QKAJqmyfM0y5I0S0LD8QhmDsfHh5pka200R5sbKpvSk94c5uROpgdH4EQLCkFVn2m/QClSKk+UZ6EYBy5tC6k2+hd+6RdF5M033yRULkR/ERBEwFYqQbr1yyFD3nsJTIr6yh2JKYDudXp6Cl3UUvkKAJq69N7ng3w2P/XeL2bz2IgwhBCkpZENJrbxg0EBhEcHh/27xVUay4xDCFmWIaqmdszc9hwUTtK0KLLpYh6t9gPb4WgkIkG4V6GKSJHlg0GhFSpt6rp2daOQtre3Z4uqmpWD4fDk9HQ8GHoO89OTreHAM7MiAYqXevvOnWKQW2+TVFfVgmgjMWo+q1zTLKoSAPI8tT4E5xNSo2IQQkDUxwcHJkmU0UA0LxfWWRQA4UQb5KAIUjQSIDPGswvsFXCRZk1dxmsO3jfeH5+cBA6aTO3tIM0RMQhw47JUxfagRZLr6KZs7eHhYV3X+/v7H37+Ix//+DdVrgHgxWKxubWBwjdu3HnqGTdaWUOtCFvzxrhRGmMaZ733w+EQuU3q3VU0FNiLGGPybFDZJvYbUUovl5VBy5We1c70dkpxCrVZA9SxkiVy4kqbGApba+O+qhTd1RJXKWt9LqQ0OueEIThOtGnzmz6ys/FoAudcbOWGy+Cg25L6aM+kKTA7Z4EkK3IfrEDI8wwkJEly8eLFPCtGo9Wb716/ffNmOV8AAIvL87QYTq69/e47165PJpO1lVWlaffO/oXLl27t7X/xq19zzh8fnRpNTzzx+KUrV46OT3/lVz/9Ld/y8c2NjVdffu1DTz/z3HPPPfHwB44ODj/96U/f2n3v2vW3n/rQh0Rl4F1qKM2MTpOFswCAJCgozI69bxI0KnZYRq2IgENQimNjZQAAVNGMtF3eyCJIhEohcOz0TNgtB0LNEgWakKZZb9y1NN5Ka9CGghdm1oZm0xKCnwyyOwclAmi6K/sJAILcauRbCgUAgAAFAZeqHu55oQAhqiQ9XUxVUgzGk+Nbbw9HK8458aITpTUFYWYmgZiCBKAO4dzLgSG2dd3LMXpd11WZzudz6GrE4pk6mUzKsqyqKoSgtI7RfF+x29Z86iWFPmJrmbq0O7V38btVdy5TTT1DCZ3mrEc20vmsaq1R2sQYAEDgENk+kHDGlmH7bNkz6Ug7RW0Id+35SJn+g5YxUAzweqgHAKRpGZ+JSPSfBIAoG12Ca9Ip/ZFU58rRjaeA0lpHTAYdQ4aIELwL0TbWZFnuXNM0nOe5dz4a0SnVWtJR5+HX1wZ1TwGXN5ZeVNoPo1IKdQsOYjjRHsZEItI0DYIiwgiyiSgEDyAxukM0iNE0SyGikITg8iQPIdjaMQN2sj9hr5RicWmSBM/vXb8jHOF+0DqmklmkGYzhA0/d9+/+9dfyPPHea51Y54fFePdW9cN/5T/87L/804jOuUYbHYIgUcQ9a+srIbggPT2JUQBOqFTXtfouIMvd1Iqmyl2uOSz1zIUuZxUxFhEYlYQQbF1Hk1sQSZIWhkavrKj8SdOUvVdKOWt7A5E44BHRxiBZdy6DrrE95dY77zvvtTG2rpRSQZiQREQJEYL1HgILidJmlKbOW+cgvq21liix1gNQ1202OUsgAgAqBFQm8d47DkophgCCWmlb186GIhsE5gBtB4u4powxMS3mvT8+PlZKraysHB0dbWxsZFm2v7/PCCLAAdI09cLM3iTGe1+kWVMujo5Otre3m6ZZXZ0cHx0w89bayuzQAnOi9Dg1GcDejV1d1SQJBPB1ZZbSd6SM95aZY9G2u1vTTAT60ScefeihR1ZWV1/4xtfz4WA+nxtjgmcU8cLOe0IkUgEEfUiUtsEGL4RKRIJjItJLIsH33nkXAqcmuXPnzub6GkisIsTBZMDITeUkYGxGMZ3PdGKsD4nJlNB0Ok1S3TTN1traXRu0Um4xU1mWJTqCd5Nmx9PTlZUVpbCqF2sbq7F+YbK2eri3XxQFALjgdRDPoEwCIISiCIV9mqZ7u7e+/vWv5/ng4GiWZ4lrKjDJYtGExt+5cdsj2kW1uT0IxKQVO0KUxXxx+72bRZJC8CiCiqx3wNzUzlnvg1hrAVVmMp0lTdMEZ4ui0El6cNA0Te2cB0JNBKgkBIUE4hBEIWiyxiTBLVYnk7ICEEmS5HR6qpRGkOn0pGmcZy8Agb0i5TgEbyWYlWGuAOaLKTu7MhkxB8uByLSe797eun2jqRar6xvsG23QGAVA7AGRKufRaGAHwK6xmgx6yFSKKEF8CBLlSiIyGAzquh7CSHxAFhYhrcjgrCpR5XXVDJXpkxEiIsJE6Dk0zoqITlphJnWO4T3ngZ06+HS2yHITQgBCQYicRGJSXPZH4TBemQBAWZaDPCdEpSL1HZwNSmlb13k2sBKC84iKu9J98WcUmogAhiAIwI23ggDIZDQHG9hF+wxrrTGKgzt34cLt23fq+WI2s7du7iqkNDPGGHR0MptNp9N8uH58Mj8+uX31/kuj9W0rdDyfbp7bGWbF7u29W7du7R0cvPza29/2n33irz37/Je/9Plrr7+7vr762c9+bpjnw7TI88E3f+Ljr157Y8Hu1ddfu3jh/oSy0TDJEnTgiFBAiFRwVhtlELMsIaLaN4gIEkRClg04AIooIh8sgACJaB27c8ZFHoNLpYA5UBTbeUs6CSEQKRFgIec5STT0uA0AANLMlGWZ6CSwQ1QovH/rJvtqc1y8fuMkQVUG0LrzDScRBBbG+HyjCUI8OlkYRCHBUkIZWz1T5EgQgjekTsrKaz0crVZV0561RosAB4ddnwTo8rKIuOz8HmE9KQQEAhVhPWHsPOiAcDZbQDy0FIUgJklYJEnTummiZEsgRApHG92dg0hE0pXlAkR95JnQXkTamxTuZnT8Ue/53uu7760ZZB+YvVIKiTiE6EjH3iGLMEeqKRZFxiYfcX0hCyIjIIdgDHnnSQFA22QzvpRSbcs9Fk0q9nhk30Y+BChdrhYAJDhEHasso9i8p9PO+GxAYVFKG0OdUNoVo7a/E4g457RR1lqtqY15CNm7wWBwdHQ0HIx8kkRdV5oak+i4LRhjKFZZIikNzNw433pnkFLtE8TgvFKEyMsD2I59i8zAGO2ZjUFmT6CgXftEiEaJAClCk6dIEkL8COVcgyQCTiCQEmFNaGxoENVsfpokSZIq21SDdMwBmD2QMDNGE2ChgzsnviGTJ54XGHkK8CJN4PnVB7ccACgbIHgXFKWJHv3Sv/31VMHDD12t6iMACl5Ik/cuISCNSUJVtSiKghka77VKFCUgYJLEORepV9taM2gW1kq3zaGXoH0QIa3LJd7FORec996TbiFsXVcgHILf2lgHkI211WGRI4pjdiEws7XeWi8SggigkELHjj0LR8NhBCCFHJi9tUqpLEkwRe/DYrEwaUJEeVG0zQaFlUmCALQdTiUyuBCCShQQKqVc8D4wkhLAxroYAyrSzrall05YBB2CoGZhkyh23PgGOkNQEBX3eUUGDAmycFBauSBGqxACMEsIG2trh4eHAPTWW+9Ea/EoJVzMplme7t3Zr60NIMxsFCqTWttoTXW1yLLkD/z+793d3X3hhReKfOXw8DC4MB5Owu5tQi2+GSSaKjsv52Ol57MZCCmVLHP9IiHJcu99ZpLpdKoVpUtNh0iBvnr1KhE45wHAVrWhWO6LgZ1SipSCrsodQgCMzqsSi3UjxsQl3cNTTz0lInXd7N66efXypQ996NlZuYgQWxAUGWeDSnRZlkI4Ho9nMmWWqq5iBoeZJ8PRGfZCNFpjUcRVF4kNkTAcjE9PT3d3d733SaqVUqbrhGCMYbaz2cwLD8ejajZdnYy9d0WRnZ6evvDCV9547ZU0TZumic5AImKyVClVluX2zk4+nOxN51mRKkM+iPecjYrTw8Pbt+5sbGyQ0pWCJEkR1d7eHgokiobDYWXdcDhylQvOo0Bd15PJxMTumUdHmTHee0NKqWBUChLyZKAVAHth75p6MhoqDMW4EJG6adbHI++988E1NftAIAyiAIR9YG/QjMdDdo1JtFKY6ti/nQejwdramvIeEUejyeHh4XvvvTdYGVNbIOOVMokBW9VmGLTW5bwRYKVQaw0czzY4PDy8s7+XmIxIW7vIsqxqmuB9TH4zB+dcEAwhJImC1n+Llm0n+i2yDeLfR4lDrPeOBeQxtGUJwgmi99Yj5EVscrBEXCmjtS7LMtcKUbxrMwJaK2OSLAvt3EComwpRAIjBO+eiHLh/xSoxACgXVeTdPAfUGIKw8wRgFCllwPu6rm/d2n3p4DA0NRHkaaZM0tjm5HQ2n8+JKE+NSfKmacqF1xne2t2djMaJyU/rmVJme3Pnrbev/Ydf+ZUXX/zq/+6P/pHHH37itVdfffv1t3b3b1aL+bd87OMAcOPWHivc2NhiwIsXzjk2b727m2fGuoZFoUmCs6SUt1WWtZ3OnXPKEKI0TaOUMbpQSvlWiAmwpMklosDes1MCscSVVCdZ74raYkIthBDCXSWiABBVPRFJtMWtEnxTb4yH85MT9uGerK7EpkOIBITC0JcCICoBAIg4rNuSljTpIgrIe29ZHFM+GJZlGVvwtoicmVR0L8C2QOKs1vKuCsTYvI/DUq0TkTGJZx9aI58AIkop65zWOjqyxlr9HhqKSET2/RyOhEQ86fGejGpEPMtJwA633cuB9Ylg5sCRTm4rKHuRjW6tRgQECBAw5h9bEgvadCQorUAFZkZqybB7SDheckntWZNlSmn5T7irBiVq7fipQ5mRJpFw1teViJqmMYmSrss1BzDGxJVqbd1TU7GjS5qmgb1JUq1JI+VFZoyxto525H3bKBDV868xhOvnMLZ6O9U/ILgbyAJAYy0CUwejASiSZJ37F1VVlee5VkqkVyyh1lopYPEAqJQSxiRJQnDj8RgAgIWQQBhJ5vOSY7EqAggpMi99fTGfNZsj4xqMD4JIBWaWZnU9/+DTQAl7CC7w2mj11s3D/8ff+Nc/8l//51mGZbMAwJhvBQDPrBTmeX5a26aJ3dnBSxBBrXVVNVprYXDex5qbeNORoG3JTgSlVBy7xWIBd79ERBC00rHbaZ5n0PXOApT19fXICWVZuqjqNE11Wy/vZ7OZ0pQkSZu/E8I2cUwSQrR0Ho1Gv/NbnwHAnfMXL168NC8XfTYfVasXAgCUVhQBwAhtx+QQuLeWjBBCKdXZD56ZEyGiCMcwJvY1QaUMorWeiCBA4KAUMQtzQMTADhQxBGZvAyRJEmfJrVu3rLWoWhoMeu9S7xlhUVbee6PaDFsIHgWy1Mznzfd93x8K7L/wxd8uioyIytkCAAZ5WpcVAGgCLY6bRWiaZGDKuM15DkvJhJg1IsCyLIko0WbZTlxE9Gg4nIzGjz/8iAZKtFksFt43aVYAUhBWGHcAIEWCioEJgAj6HiDve+Qowq+98opO0jeuXdve3g4hbGxs5HkejacBKM/zqiojZbWxsVHN5hLC+vp60zSLxcL7uyw3USTqZ50LroqJ57aZAClg9onJvPeLxSJPs6qq8sysrg22t7cjnk2SJKoOmfnwcP/27ZsPP/jAYv4ys9daZVlmg99YXUFE59yd3d3Lk8loNGrDTQQR0UhHR0fWWlS0qCsAsNY2VY0C5WyuRoOyLLe2tphBnDgbs7dhPp+vrq5urK3aujo+PUUQ2zS5MZNhOsizYCsSDh5XJyuDvCAF1gUibYxxQRrrvPezsmqsD0EWVVk5hwBaaRFJkgSDt40lDjIsau/quk5SczqdTiaTyXglsXWaZ6ezxel8BohNU22tr4UQQpBnnnn63XffXXF2ZX0NAKKYqO/XppQ6Pj6ez+dpkUc3FK1bEW7czgTBey+ivfdaszEmnto9p9Xum4IoEJuQCJ1JW7ovVKtC6j0jmAXENZYIh8OhdaVt3HiwfjYJiOraFsVQaWLmKL8RFCCxwTEKqPaDGlszQ5Km1nkRyvIlNh4BJDpK67KsiTSIsG9z1KqDj5rIxxJ34KIoHEJdl8zsnKvq2nsfGLwLTTlXgFma7u7eeffGe+cvbpuVbD5d7N28M5+XW+sbVy/f9/TTTy/K6Q/9pb/6/d/znQOd/Mff+PXx6vD7vu97J5NVpUxTyzdeefnRhx/6wONPuNrNm3Dl8sXre4ehcmmeNj5EqCSdKlxrbdm17uQQjykR79viFyJmBpF29+qoL+z4IiKMkaLzjTHGGM3MEhhRUVdD049V1N52524s96PZbDYcDuXkOL45CgNi3GBRAOEuwHG2fpfKM6FTU/W7T7vHAgBiEJ5MJlzXGilEeTUyx0uQWCMl0Bl99fCi/ydi9KOPLvxaOqmR6pq3GGMY21YzWZZFV8bY9pFR+j5X3QUjAChQ0CZ3gbraAmjhJsQEeZ+J62WO7WpCCiG049IZs7kQYsZweYhUbGATpWVRyBGl9Cwssvxo7vnD5ZFcWiuEiP2ipiXJZr/iYCkR34M26eTesegqRkfRyMIFG3eezOQIzJ2fbfzYXqKglIoxVxRix+9gTNQROtc413CseyBh9gKCsNRGsw0Q2ntsr5mZ3udlsjQOLBzJFYpNtaLmTiTUtkqSxAerDdmmytIVpRPrahEPEhTFFJECVIDIEsB7o9E7NsYoTWVT6wzyPF1UXpuCmxC4Js6QBqcnsJiHbUxb2R9DdGsKbFfXBjsXVhpXmwLRa8TBl7/8OSR49LH7SIOvok5DBWZEzZ0mjgMgRosZFGnVUaSU6bRuiBi4zQZKVHRgiyGYWax1zpFS90yPqL0RRp0kiBgEAKmtDBVkH6y1DGCMMUolWhOSCzzI87qurbW1C8YYVEprIgCNJD7EPXM0GHzpC1/4sR/7W9/zPd/zo/+3//sXv/jFze2tEEJZlhGyExF3mYe4EqOKiUDVriEiFuAQSKNRWqhVygNAZLXbTqQgsXspAItgV0xgYhYPQTEAoRIM8QMAQClV24YUalLWNYZULHQtijz2zmEIRmtooKqq+WKmtY7SF02qrmsOnGWpMUYn+PDDD7/zzjuf/vSnx+NxmuYR9ZZlmWeJuEZhAPaK5XTvNoH3jrMkEYFAoXHLAAuJkABRmyRJFlW5nCC23us8z7fP7RTF6wwt7Z7nuQgDautqCYG0YQ6glFLKWhfPaVhqDbtcTP7SSy+xs9pkSaIPDw6Pjo4mk8kHPvjYZLK6KEvselPEDXFvb2/nA08Sy97xrUGWOxsW01lVlv27ucbOneXoG0sGtXLBh+BPDg42Nzcnk0mkIojo9PRUTXTMfxtj6roWQiBRAtHFRGn1iU98YjKZvPv2tePjY+99kmRKqdlstra+SUTW2iRNjw4PwTlz7lySJFg7rTUhTo9PGSDLCheqxbQsshxZkiSZheCc29nZWdSNRmhQkiQ5XRxPBhOlVMS5Fy+c29pcd001GgxQQpEm4O0gX0k1ZloD++GwEAnGpGVtBckFPjw+0ma0NhmeTOcigDhprI/NpxBxVi64sQY5Tcztm7fJQJrqTLKV9Q3nfRAGoOPjY1E0GY7yJNVKnTt3jpkXi0V0wH/v+vXNrXWFrctX3HO5a1tBRIPBAFEZY5xnRHQ25IMs/lpVVYxZDHMnk8miqoKwkruOh7jjC8fj+QyW9btD5GyYOSo/mBkoTgw1n89JcapMTELF12A4BJYQgiBnWVZVC5agNRljABmQk8QYY8KiJo2gCEgAgjEqu1sMoVSMs6mubZbkAORdsDGoUkpr3SuqG2cTRcK8qKooMpuezhikKArmyphEoYbAigiAvHenhye2rHa2tlfG49vv3SAOdTN3zeKJpz7wD//eT37jxRc+8+lf/eATT61trhbZSFGaFcXmDn7b+XN37tyuqmo4GByf3rl8cefCzd2j6rZnAQBjjJvNIVgs8qqq2s7QSkWppfceKeTZwAaLS6Rjz3YQkQASIXV+6HFr69dg7AnWSfRUCGdMoepdSQMjUXAOlbbW5tkKsFcozF4pAo7+r63eCxHp7uLH5fOg//4ycoonr1JECpqmyYocuN1wlUKG1vI9PkAAhiUnEXmfzXdLxketPmIkaaATVhNRbJKju1ZFZxqmCBCwBT3YMV4todjimHuhjyyJkKizmIqDz8xd9UAcn/Y3mb3uHFjOnhS0qKgft2WOCpcqCVorkK6ZxD1DHf8Zf9QHPMu8ZvyAZaIujliUY0aTrRgk9xMpajm8tzGBmGWZUq2SPY5PVPDGu4vS6RACGIhwLYZtzJ5II3WV75FT6epgYvS1fBfc1R136ukz4/73x/xnSXBpOz8Ji/c2z/P4V01TT8bDL37+s0Tw5JNPDocZ4wCCZwSNiZAS1iDkQ42KqtKFABK4yDLrqu3trRvv7ZWLQKRDAEQBxMkEDg+mDzxyDoSQ+s4IFILLi2RjY400sUhi8mqhfv1Xf2c8gfsfPOd9jShEwOwEgDBy/xD/c87VtUWle3+7+KaxDlEpVdchy5VzLiZtG9tErVW/r95T+di+iEKQSLUqpYrBYLEoR6MRqK6NLICIRK8vDj5NUxafZZkmJQgEeGd/b2drOwBopby3sbg4tkt55plnnnzywUceeujf/Py/2t7e9iKpMbarO15m2bFbrVprrmvEMyViBPq9xmt53+gfeowtoz7YGJ3ng5OTaWKSuJAJNRAw+wjLWEKqU1s3IsH64L0fDAZVVQGpfgWpzpbSGMMC3nsXLHSez977oli9cePGG2+8trOzw8xEypgUgILzqdHEwZblaGCUK+vpwVaeGQreO2FQSlE4ewrMZ10iGmfzPC/rs7pIrbX+D7/yy5cuXdq/tRdAGvYMQoACoDUphcYok6YuBETg6OIjZwP0/iWBqJK8cM5FW+u1tfXT09OVydpgMJjOZtwVEZhEWdsMsnz31s1BlkdOuGkao1OFS75fLJqUMknV1M45AnHzeZqmwJxl2Xw+n81mWZaFIPOj01RnsXNObF5RNrUiQsSiKEgBokRQf3JysrOzc+3tG2mSWdssFrOLl67E2XDx4kWTF3du32pTy5FNrP3h/oFAbLYHmlSRZgjQlJWIeOHT+axIi8ViQUTAYtCICEjg4JyVupqNBsX5c1sYrDhQ0mxsTIaJmoyHoywzWhGwUoqBpvPZoqrnZdWkSmlyLtAoE5EQBNMEoLCNDyDnNyfT6fSTn/yWcxfOg8EXX/rGK6+8srG1fXw6q201n5uL5y9M57Pj6bFmGCUZcFAERtPh/kGaptPFrK7r1CSIaIxxSjF7wWhsFHzf+gPRWp/neb82lFKIYJsQxGutrbU7G5vlrZshMKqWnY7LrO1x4zyou7MwdIbDlk8FIrLexTaRIjIuiiJJw5I7MHcl5XUZu3elkY7ywQoyKlAasyxlEJMmGMl2BZPRiMPykUkAGIRFcD4r0ySHWN8eKRV1F0C01uo0OT05AeZ8MJAQkiwviqJpKpOlqTbltPR1U6SZQGgWc425Y37hS19cnaxsrq4sFgscZuzcO2++cbh3a1IMP/r8NzWL+cpoMhyMPvjss8VoCKSmJ8fhS+Fo787m6tpoNHlrdy/PzGJ2PFy/gKirujGDAfikKFIiUJqYBYQpdoNb6ieDQMwc8xpErVY9hAAoWrf9tpmFRIhQCSpq80fG6DzPkcR7nyyJEiLfTBQ/UVBaKDMaGyAIwQvKPQch9aL7/8Sr3UnPLCtajx0WH6maqqpSY6K5JcaaVgiiYhYOAClmJERCLCI824JQBIRQ9XAqcHTmVFGRjYixXZ1WajgcNtY65yQK7JBU2xFvOaV1NhOgLShAlqVS3KU71aREpOvOF6GLBxHrPHbqQ6N01GwRtDnDqNmQ2DWo+0gRiZZg3a1BX74a+fjYCBI60RvcvQP3X7fXs7R24jdDbCTQoSvqam5CCCIhcPA+tB8ErQm7tS0lZoxBEqWjPq1FdSZp20dGgAodcI+N4BQS+6AQWDh4iy3jRhFudtqEiJwQAEif8XDQ1n/EzScWW9xb3Hf2qGLpX3/7EIJ4EuWcL4rihRe++lf+8l/40f/mL3z60//mM5/9zd/6rTeAABiCdC3lWSOqLMsuX71ve+uyc8HVlUmNbRZra2uf/Y9fPtyzO5dX6ukpG58YWltP3njz7Y988/l2NiNGQjOEYIwZjodlU6aah8O1N1+e/9t/d/OP/7FHR6vGumMiYnGAQBj1FYQsAJRlBRAlWStst94BKK0S59za2lpZlsy8urpalmWSpD7YmIePi7Qfq7qu1TKCUYq76k4G0aQQVYRZk9EYujp0RGTvGx+01qQpBA8iSZoQs06Sw/39Dzz++MHeXuCADAjAziOBtw4Bjw4O61ouX74IKNoQAzWNY++lt8cDiN6i0YgqPsFWBExtb/s+tFgOOZYfbvxO69KnVJ7nABRCsGKpLV9QqJB0rNWFLEmrcrGxuvaR5z8MQrdv337rrbfSdMDYgq3pdBo4oDAQNs4KQ5ZlDMF7D53pnff+6tWrZVneuXMny7L5vKxrC0jHx8ej/Jx4qyFMioGq9weaMbjA3ijlBIjUcqc7Tcp6SZIsCBsyi6pUnTkZANRlqVdXV13dxPZqIoIahQQAPDtUxBi894E5BB8gAIjutBGq89VcFkmHEJiRSDeNA8FY+DYajYp8yAx1bSPL4nxTFIVr7MHBQbK9EzeONE2bsloWobDz2mhAzLIspGitj/3eMU2NMc6VSZKMx+P9o1NAzPN8pnXTNCEkm5ubb19/F4IQAlEeQsjTJLK1VVVtbW01TTMar0VYHb16m6YZj8c+hJPDwyRJBIFDMFqXi8Xu7i4CVq6Zz+ftVhE4VmImSTKfz6fHU6N0arLa1SIc2E2nzWg0SJKhBDnYv+2r05XhYGdjdWd9dZiZXFOmcXNtDTlEcBMAE5LV0bBxYWU28yzzWWm9i1IGYCzL0hpM03RRlh947oPPPvX4ZGONjP7Ak4+dnp7+1u984esvv3p0eHK4d7i2tra+vl47e3h4OB6Pa99EB2Rr7cHBwXTeXLxwIc8HdVMy+zRN4nNP01QrZa2fzxYhtAlsZs7zgWfXc+AxuCTStqnX1tbuHOy7skLEZY0XsvR9PLiLuaNSQUR0LEukM74BO8ddRIjAjq0bjYb9Gw7zIk3TxllNyiHOZjPvbQyG+lRORz9AnJmYaFSkl1YCAoYgQgCkjo+PEXF1dW1RVUpngoCgVEQ1iMaYNEmQELUypEMIwbm4M5ZlrTU13hOEIjOGODNmkIwAZGUyePSBKyeHRwpJi2tmx4bcYnY4HwymWb4+WlVIjz3y6Ec+/k1bWzvJuW1ASHeT+x64PyF8581rVx64//7LFzbXR5nWwTYWgiLFPoSmqUmKIlNKLepKJCiFgJgoZZT23oM6k0DFO41opcXC3aYWQoj4Jc55AYx0mnW11jpN2xz9XQtZcYQvsVRqsVhsbaQgwQdLyfLvdpJ4bgf6/68XdvL2xrtxVgCqTjjCMeGIrcMzdvAL+ttcBkltaV7nrxinhOo8U6TLuzVNEx2Dowtt1AlBB2iICLqdMH5ITzDcHWT+LpH62QtERLz3scsyAGhqfRyQwNoGl/J9vfarg19n8Kj/3L6SS7oERa+tWb6M+P34FXVBzpK6i3poDgCR6o5Xos/6yZwVY0Zz8xiPdUemRN8BEVGdNFOWXCHjPmOM4cDRIypJ9P3331835dHRQasoSo13oWkaY9IYzC/P3n5gufOJEIk5WFlWJy4HdWHJ3QZaFzEVxYtEWFf22Wc+9ON/528//NDf+ev/7Z9/9/p33tk9OD4+ns6Oo4s6iLKNzMvqzu7+zVv7/+EX/y0IPfjgo+PJhab2eV4c7MH0xJ6/kkZRIDNfvnT/rZt7HEgp471Vuu2qzmKVAZMoa+1wJUXI3nrjLW/h4qWdNIOycqgwhPjgWvMXZljMq9XxxHHom37Gys1Yi6eUGgwGUZYXy6oUt/qt+ASbpomTZzAYLE8J1VqHYGCINhPxoDk+Po5aojzPoTvERcQ5myRpniYI1Nh6MhrfuHXz+ec+8jf/1o/90A/90Je+9KUrV67Eh6sQvvKVL/3gD/7pj3/zN9VV9alv/7ZPffunXnnlFZ0mK5O1mZ8H51Ap33ayVyEEkijeF2c96rM2UPGb9/C4fWAJd7eOiMghTdPj49MQHKGO/J9zTgEppRpbA7BwUEo99vgjcYiu3nf5S1/60s7OTqufgzYR3wcwpKhpGk0qateUpjwxcdrv7+9HD7m+qtRaWwyoOTkaZunJwR1V3R4ZrXwNgVkQCY3RhSr6p8DMWZaRVtPpVBtDd9sr5mmmpWnW1jfZsVE6JqdEQtXUWVYoRYgS2EXrPI1EirgzX44HXlj2ZwIwOgncdmgWFBEMzkZCZUkxIIvFAkmikD8mBwHA+wAAd2nTfKDE1FWdDgsO4jloZZxz4lySJM7ZlZWVLMvq+g50XTVCCIPBYDweA7BSSVOVRJO4kmNzw+FwWC6ODg4Ozl+4wuy9dwDcNJVOkrW1tVu7eyCUaCMiWpO1Pji/e+u2ThJBFIDFolobTxJthsMhIla2staOilFqksWsdM4VeTEYxBbgOJ+eGk1FlhR5WiRqNMiGudqcDDMirYDYa4I0zUIIjOAAAXiUZwQsqAbGWOeiUSQAZjoPIRGRq1fue+qpp8a53rv+1ur62rkLF7YuXfz8Zz4z3d/7wBNPjUarjXVV8HPX6GF+Ui2IQDiwD5F6FJGDvUPf2NgrOk1VfARxC1vM5m+88cYoL4o0Q4GqqZVSQTxqpQQa77z3PlDMMQ2HhYK2hG350O0Xj4jA0kYpXQkYkfJ8Fgn168GYuBcAi5RLOWgiqKqFMjqu//g0dapJqVjgrbSOrQy9Z+sb0hoJPYfl5CO3RzhooxbzOTOvraxMp9M8Hznvoy4KOoZcKaUInXOzxXwyGudJXi5qaDkAz8425TwfDlONqeLN7TWlsMgypfzO/eebppnPjVKKlTjnSChDGBTpQw899PAjDw0HRVKkQAyIg52tJ4zZWJmExuZZAggP3X+1qX55bWUbGYMoIUn0oG4WUHKaJYZURDe2sQw1oREkBSlRex731AhFxr+nxzoz98hzGGNAxSMTVEc5LFdEt/s4YTSdEdGxJjrNDAg714QkKE1AKmq5EJEgHkJwz+seYoY7RmeZoYk/9Y7TYhC9viJ8BxFBRmzFPwgAfPZuS58RAyKvu45ALYaQANja8zoORmuIqvA0M8Y03vXIbBnx8FKSUTgC8jYZeYbA8AyiRZa2/Sn7rvWhkERWR+KVCDMKQ4g4767cIixRZ/2gnT04CAIgEATaIifs44z3vUREAakugdVCN5BlnCcd9dVD1X4EtAGtE8I2ORtC0IZiw4yzxkTs2yezZObHZ55bPpo1RMFiWS7qqkoSs729nabpyclJXUXpoVl+9MszBLtUGnZZ19AlOuF9mBtatTEKBEQMQiAQGwA4DkhIrLx3zz//0f/9n/4L5y79nQ8+fXG8xgKpSc5164UQVAjQuMCc/OUf+f2vv3rrX/wv//43f+WXn3/ueUMZIbz+5vXHPvQ4kLaeB+Phlfse/rmf+7c/+Od+X1KkALEfG4qwgEXiEIK1HjC3ll76+juK4PKVS6SiV7lC6EsuFCLVlb329rtPP/VoC0EQBAFBvHexOQcLkCIlqs/bSiui5H40Irhn5rvpZ0JFCKBANU0jAMaYiOSYeW1t7Yuf/y0AeOSRR7XWw+FwOq1RzJ07t9nLeDy8cXx0cHh4/31XXnvl5V/6pV/Y3tz+8pe+8Phjj3/ta189t7UDIv/kH/9PTz/15A/8qf/yl37p33/607/0oQ89e/7SxV/4N//umeeeizo2YMYOOnd1OEhEzrseVHVzJsRKDup8Uvq1hoia2pkc77fPbHoOIkJIsXYDuwKR+Wz61BOPR4blcH9vMBhcvnRhd++OMili20u3i7iwlZF1+4DSNBwOx4NCRN588y3vvQjOZgtt0tgbpaqqc+dzCM4YtX/ryB28c98KIYdYtIuATdO4pU1wkOeV887arEhra6MHR//TDzzxGP3h3/e93/6xj3//d39PDshVgywKcVgMuDOS6SIkinFPxFvSab/w7kQSMxO2AWVwPs9zUEqnSYTDzgUACp1tt2plEBz930TEOZclZ81PyvmCWgt+zLKi72MIiHVTRnZHRCJiE0Eiba3NsiIOa9wvYpQ/HA5FRHzQpIL3+/uzLEusd1HqxMxbW1tJkpSzMmZrkiSx3kUvsevXb4zH46pqAmCaZwBgjIlqKuecAhwNhokxRqm1lXFRZEWRjcdDUri+vpokOjWGOCBIkajxYKAIslTnRhMwCsQGhew8SAAXfF2BZ1eV4hwxp0oVeZalRhGkiU5Tc/Xypc31tdPDw8XpaYo0Lgp09vT4aJDlH3zyyY99/ONrW5v7xye/+ptfcCFE36NowR8Hajwe7+7uvvryK4O8iLOZOnF9keVG6+vXr7Og1rq2TZJnyxnDCE2IonGuVQR9eeLyKYtLr3v+GddVRMntozwzYGxVeovZ/J4DZmUyevWll1OTGGNOTk7SNI0rPEmSyBUzw2JRzqaLqrGeuWmaECIaW2J0hKKNjdYahFl8XqTBu/7dvIutq8FzKOu6auoIX6y1kRwtiiLRanZy7Kr5INOTQp1fG10+v7o+TO6/sH7f+fUHLm5e2ly5sr12YX18bmO8Psh2ViY7q+OLWxvDTK1OBnliCNg3NQgDMijUG2s7588/99yz57d3UoOPPHTf1voqsjWdKq5aLLDr/Rf7yMYQUGsd656ieo87c/PQOUx6x3EElk8s7nqTO+cApDMn9N7b5QHvz9S4gpzn4XA0nU6ZPVAAiGV3MfGHfc+x9vxY2l/e//Xy/+MXnoMQCVLjPCkD0vaWFRFhxtCyRMIgfK/UqX8rIupJmp4Gw86TIlY+xs0qipn6vlXLtxwjgeWD4Qy5dq9eLBVf3vs44GHp1RJOgNIVafa/5pwzRsFSTtB3bbzhblzVP01ZMh/vz6dl2/f3v7rE8RkFqDvL/vjqCb/lx6E787P4cVEEFo0i+2o76mzzevjVU2jx1yJJEK9tfX19sVjs7u5ev369LOvxeKUohrgEeZfvOs4oWRLkxa3pd9Ez3f2irvVh9xBRBKNnqbSSO/BO7r9v+x//o38ynR0tyhtl885s9sbJycuz2RvT09en01fL5g3P7yBdv3yFv+f3Pf4P/+Ff+6m//+e+8tXPz2a7Tz/96AtffWmxqBWlMWG6trb29lswnZaEbS+j/hCMfiKzaZmlo/mseeP168Jw7twmi2NmYVTKgBBwMMYoMHXtvG81XjGC6g/TLgscq51axBBB7fLkjyPmuz7L9wxOCKGqKucbRHSuqesaQKy1R4d7P/uzP/eTP/l3j4+PV1bGb7zxxurq5Gtfe+GZDz79Xd/5qfuuXv3u7/7u+fx0sZhtbqz94e///j/xJ//YX//Rv379vXf+/k/+ven05Fd+5dNf/OLnb+/eEg55mhHC3/2Jn/hnP/0//8iP/Ndf/eIXo063KIq6rqPfnoicnJycnJxI5xkWT9i4EqOba7/h3LMqe1jWww8RidZokWGNg9ZL30hgOp1aa69du/bLv/zLSqmLFy+iQGaSqK/AJQF6xF6RG4rtf+KxvrW1NRgMokt+POuZuRgOy7L03oJC7/3q6mqs37Q+AOnucCRtlvSpwXvbALL33jWNUur27dv9T2+8e12/9eUXBqMRi3rkwpV3bt1ISDNxIBDBJEnKugkhGJMQQe1sbDNBXbPbdn77M9Fu4EBaq3ZVICIqrSeTSbzJKCT03sc+34t6NkiKOMRVVRV6KEs9cQHAW8vOg0i06UySJE2yPM8na2tZltV1LSKIytkwGE3iMBVFMcwL9iF09TjWNRoNLjEB0Vc97hdpZuJpFFFaPzP6J3R0dOS91zHyExFm7xgI413oVGdZFtgpjKUnmCitEOuyHBR5lppECUmYDPPzm+ujQc7sowOA994ohYrY+7qpEdoKhqaqAwMJaqEQgkIVPCujlVKBeXt7m1DdvrO3tb6xvrEJAHVZQ6LTNL145XI6KIrx+OqDD711/ea3fPOHXVMmSg82N09Oj613VVNfvf/B6+/tbm5ufuELXzx//juaphllg2jY00/i4+PY9jEF6AG3q5tykA6o6+PU7Y+Upqk9PDXdMohWBcu7AHYxNwDE9iz93ipxzwpBGRUBmTFamLMsk963AgAAiiLzrlYKlVKaVFzSRBSCIGlAEsCqbqyTLDNCINJ2ctX5EqNjtA9eOCAqQAkhHoQMwOyDC845NxoPyIMmRMDO/tuEINYttNan0+NBnq2OhkVCk9SsjfKL2+srw3R9MhlPinjZ05OZ9zjON6rGMgxEkFiUUpONdY1SV7NykScnaWFQr67EDVINB4Px6PDkcGtzwxTNRz70zC/+2m+PNy9pUrX3qIzW7TlNRN765QOJu022E9OQCCAqa61RGgAVaQTy3hOKNsZ7xwhEqFTrcokkSaKTJFmGqog4GAwiBIq71fb29v7RIQBvXr1clQs9FFQUOn4TEVkEQYiUtBQXwBKea+kdbBsPLONyEopl4VVjRRnQWgTZCyNoowNztLyXIHHNYpe5iKs7Rg4AwEFAhPCsQwN00VckEQhRkRZuOXLGJRatKx7CqPHqASu3m7v3vvPcYWamzjRBRIBDm+vtRVHCPlakIpJAlHNxiGcJNk3To7oIsJAEodWfNY2NdxQRcNxFuZOiA8ee9zaiqyhs7/TpbeeZZQwKhEEYpNVl892S/P5PeqwGLTEjsdItaud7SBTBkDHKWhvEA0A8t+L3eyGH1hoJWXyiEgCItDHhtBjYzfWtGzeuN41LkiR2nm3XqSHv434bYi1q3Irj9cTCCO/sMuxYhqqInS1+AEKtlXG+YW6IyDeWQDnLF849+u9+/jf/6B+9/ns+vnY6P0aFShnnglYGkDk4EbFgnS1P/W6Rr/3+P/ShDzz5d370R/7u6ZH6wue/enTwrecuTZqmUQq3d9YA4dbu3vmrV1VAFue8JiJFCaGxTahrbyg7Prz1m7/51StXhqNxzqFWUbAZQBAjmzgY54cHt4UhSRLPIclS52yXmgxdn8poZssc/eQQo2kwxlR/xPrc95+4ixfs9YL93B4Oh1VVBXYg4Zs//k23b9/8X37mnyLKz/zMP//bf/vH/uyf/XN/5s/8mfuuXP3ql778yU9+8p//zE//hR/6P41XVv7wH/6DTz75ZAjy5S/9zu/9vZ/40R/9vz768IOvvfbqM099sKoqRPwTf+JPPProwy+88MJHP/rRWKI3ycaNc/fddx8Rvfnmm8z82OOPENFbb71FlCAqRLp9+47qunk++OCD1tb7+/tt5QECaUVECgkYrbW+C6L29/erxuZF4dxZMW/LtiIaY6bTqdZaIR3uH6TGvPLSSytrG1rrg4ODo9OTCxevEFH0+IhGGwCxmyJ572cnp1qTTrJ33nnn5PhYa+1s4ABK6yzLomOD91YPB144Kwaysno6P10p0t5FpXcDaPdn7zQRAnlng7PTo8NkiVyfnp7oFAQbywESwoRQIYoAAZIxi7oJoe2tGxewBJd0Cf5IYyZJ4pfLnrWONvhaUzzbYpILETyHEELbT4q7FI9SAKC10mmCiE3TeHuWfPTWNVWdTYbHx8dJMYhCq9F4eN+VK7FtSNyAmrKqy6rMyzRNy7KMewERaU3WcpIkxui41BvvjTGx0UqSpYht6NDiA1ASWAEqZQBAKaWQ5vN5beuBjOOvIaGVYIOvqsYYo7TShrz3OklDCIjifHC+nkwmIME5Zu/GWZqnSaIIWFKtIvFTZEld1bGqXwAa2yTalGV9eno6Hq84FxaLBZAGAA/MjUOltrZ2Lt933/lLF5O82FxbB5a11QmDHJ4ePfDAA+/euMNeXn71tapxiNiUzf0PXBUJTcPxYTVNs3P+3MHJ/PRkIQLxxO0ZghgiO+cQwXtvuzZwSvWeDOi9R1AAQWuNaJVSWZa0e0GMzruKM+lY4v5NAECwjRS9j36AWimFnd99XHgx1FneWyEWjgUmIm+d1kmGYBtnTBERdprmzMCBvJf5bEGJ0lpBAK21ojP4FR+otOUj0oqoRJqy8t4PR0MRmc1m6+vrqEg41I2r69p5Z9mmndM3IYyLPIEwypIHLp+/sr2eGthYm4iE2H1vsLEiAvNZ7Tyj1lVVjbIi9l5PJNjFzC2GYVzXx0dQl8poTcYgZINidX21auY2wFNPPPoLv/wfObjFfF4MJ2XTaJ2inJWwSdv+ueUzqOuB2ANfVKS1Ds5yCDpNI0hTSpVNrQBMlp2ROdA6UwBA4LMgKkKWuLfHquNgQ1lbbdRkPNp3VaHprHwOgQUJW2MvvusIOHvhElklXX5QREAASeskqWqv9DDd2i4XdZYoAPCubQza9R+iGFj34wB3dzKgzh+Lux7M8UaIiLTpuBCO6EotBQP90DGzMi2S6EFeh1rOJnNPg4mI7iq82g2Xue8uwMzCoV8+PZsFvxsLGAPx/kZwiQaDjuOJqYDl70RQ1ZMi3YNrI0/sLJH7Ys/l9+zfR5b40R6KRXIiJhZU19MpZk6VUph0NctLurcY/QPEOr56Ml5N07yqaq31fL4gorkqz527cHh0ZF2NcNZUo0OHfjn2Xn7JUtvH/hO7eXV2R9A1+c2yrKprZkZCQkBQwdHly5c//Utf+Mjv+b48HThfM4NRiYiABCKE2GQeA6Gz9s6MFw8+fP4nfvIv/+W/+JP/8XOnL33jzUtXnyM6dK5ZWR0oBd/4+hvPPf84kcbo4y5obZPnaBs+PZnn2fj46FXv4eKlrdWVgQ9HSEyEzrExOrBlJsJs9/Zhv+K898yhfxyyRATGhs399OiHvS3Qbdf+Xf4c/UNJ07Sua2Zfl+XOzrZ3DTuLBLdu3TDGjMfDtbW17/zOT6Vp+gM/8CeZva3q0XjQ2OoHf/D/sLq68rnPfU4ptVgs8jx/4okndndvPfLII7PZdDab7e7eUiBI8PRTHzTGjEeDz37mMxCCrevDw8NoBFMURexZVNf15uZmURSns0UUtD388MPMfHJykiTJaDR6883XIwMCHSsMAN66NE3bxcaslEJUaZKXZYlIkZ0KwS0WC0DOKPHOf+u3fuu5c9t1Xa+url5/563j4+O9Owenp6cPP/zocx/5yK/82m9WTS2CdV0bY0ajUWw3SYAsITgn0qbFNzc3Dw8P5/P5YDCw3i8Wi9XVVUQ0iQKQ2vlslBeT9eZgZhmEfaIVAgMChDPiQJMC4OlsmqapJIkmvXL+fP/TYV6Qb0rCsL65urOzNbMzImAQILTeRWUctK2yDLRqwTbNEWsMbVXxXfKvdg5Ya2Pu5ty5neGwiA0NptOpdP2Ymdl7JkOoyHNozY3SJMmy/r2SJJlOp9EaNISQ52lgf/v2zdXV1SzLrHPD8UhE9vf34xbT+6pF/jzO4/jN5b2mrusYSZdlmef5opw1TRX7HgTv8yxLkgS1Cs5Hr44AYNIECIVQaROYA7PJUtQqT9LY/7ssS5GglNJEaaKLPC2Kgp0fFsXqyjjRJk0SrYgQ8zzPssx6zgdDUWQ5gEJG9hzyPB8Oh3F15fnAe3YuEOrg5cKFSxcvXDXZYHzh0tPf8omHn31utH1usLK59dAj57bOPfHI4/dfvvrum2/94//hH/3UT/zU1776wquvvrq/v2+MqapKRPI8L8s6zwfRcpYAm8ZFGE1EjCCErnanR8dPPnkpSXQs5IxUpQ8WOsc8Igq+1Y4ojXmeTmcn0vUDQTyrLV/GT3B3tgg7nhYApIO/MdqLXy/zZwBQFDnqM1mAtbZ2FogElXMBJHYMEag9iGYrdtHE7DPpZe9WQE3KECoEYO99agywj4uwJSSAqqqqqub0dIrYpjDibp4k2igapAkF0cIPXr58aXt7a3Vyfn1NgwyTJCMqtC4SowUSwkGaDNN8dTg2CjJNvlqkJKPUJBLQNobFNJanczeducaaQT5YGSNAbvT5rc1hlknwWZI2TRM17+1eHDhWEhEoBd0BjyAIDBKEPYcY5DAz6baQCjq+XWsdm5pprRHbMy+y68uCSwAQQsfBszAQGa21ZoaDgwNEGY6ycjYFDgGkd4FHREEUQu4Myu85Kc/w3tLx0H2WElJBcNFYJ7C2vmmyXJEBaC0Yl28hvkkPaGAJdcXfAUWoFSqNSgshI7jAnu9SSrSwVWJbNRERQKau9BUBqGveFH+JxQOebX3SWUt08JcQEYQRBEGEAwQmAeQAwbcoDQKLj//d8/WyjKwfouVEDN/96lOc0qVKsSsgiJfn+/7Z7+u6fdcj7j4IhSV4ApRw1tymB6Axwdp/ev8cUVGUlPXDAizsA7BEio6ZJ5NJlmVt7Zui2WI+LxfamJWVFRCKp0Ac+WVa7p550r+Wc7v3fD/6r4mIUmISFAjONbFzK0DQGgHYOX7wvmf+2f/86zffm6dmTUGKQiSILJoIJEgAdsheNCmtQtMcTufXdi7h3/jbf1Yp+I1f++2mNETE0qyvr4YAr7+yy27onYTglEZjlFKKSFvLt28eCevj49PAcOnyVpabECy1rHxbrJAmg6aiN1+/uba2WpaL2A0p4g/pUkB4RhIDdoWj7fgwQ/dEGIShtZBYfr7xmTZVnSWpJnrwwQcvX7ykAKN52PTkdDIezaanwburVy6//NI3Ll266JwVCGmaOudGoxEAPPnkE//d3/qxd966Np6MLl66MF/Mymqxvr5+cnLyUz/1UyKSJEndVIk2165d++pXv/rJT34iTU1epCL8xmuvfe1rL2qtsizd3b39xS9+wXs3LDKjcLGYVdUCUbSm4+PDV199mbs+kkRklLZ1E5xP0xSAlEkHg1GSZPlgKAhN08TSnCTRTVNZa/MsK7Lc1k1RFMw8Ho2ODw73bu9urm8458aTYVVVDz/88FNPPXXlypU7t3cjVIjjPMiH1LlRRCf2xXzOISgyRqfnz1+4//4Hzp8/H0KoqnL3zi0QD+gXdeVJTc5dYlOATgPHthptiHV25mi0ZTXO8u3Vtcvnds5vbGZLR1Jdl3T10fuzSW6K5Px9FwOAKBLCIBK9iY1JnQuaWj+YODoxzxJZdFAqSc/UWhyCiBcJElyaJXVdDYeFSdRgkHN0PgwSuSXulODShexBuKoqXEqdGqXL+bwuqyxLjFHe+7W1tYO9/cVicXx8DEtalizLnHN1WWVZprWODGR/zPfbRA+/RCDLEgCIfgfxcFJKNWW1sbKR5XnkY6y1+wcH0omRmYURGvaBQHVmGYv5PKZBsyxj8eNhMSpyQ4qEjSYEKGfzPEvEO+fcIMuHgwEAGGNq64hUmmdAWBRFNsjSPJlMonnqZHNzM8/zJM1Xxqsf//i3PPbYE9vb2088/uRTT35wsLkJK6vnrl4t6+raV7/6+rU3r1y59MB9V3xdTcbjp5/6oPccjelcVJQjWevnZVk1jQ+SprmAHB0dOdfaPRBRpL562iC2uYgtGqJZJS+pVZxziMIc4gHfn399iNbulEtG530kFwFW3EaNMVmS9tF5d1pAuFu2FRf56fFxXdfRISzuSr3QJCYKQRmtDHjRWRaNCc4vhRr9ma2UglanYgAxhFA19Xw+DyFMJpP5oiqrJsmK2P+OiAgEgLM0MVpJcN7Zxx566OH7r26tTYpEGcKVolDCeZbkWZJoRSiakIRD07B3wXlCSRDBNq4qTw4P5ifHYOtUGOoKrNVIkGVJkSulxkWxOhleOreVp1mcnGCMCNbO9qrzZcDRH1ot5CKKEx4RnQsC4DhEM9YgHLooMj7xNE0VmXiExw6qy6ea6qxx4uaulJqfTgF4VOTe1how7vvx3O0fPXf1RO9/LSOwZXwWzxBj0tPZDJQer6ydnJxY7/p5FUJAFe/I0ZLwZfm1/B2lVBTJ9aCzqwKTfrjef8z3X4dO0XUGNbpP7OOH5RvxXSvrfobD3Tp97gKM/o6WocbyLZxB0u79pZPJ9zfYTwDqKp+4q7foPy6isWXIFe4ukFq+zjhcyysXO2uuHtjhsqcaQGSv+3/2fwIdWMTWTj3TXXPAuL1UVXVyMh0MBqurqz3bJ52w6Z6YbflrkVan2HsT9jOhbw7LzCyBCIg4FkTHTKgLFjX5EAKrwPDKN94jGLAoRAzA0dgzvr9WShhDEBafZoqlWix2H3p0/X/9V3/pZ3/2jddefWcwGFX1YjzJv+d77v/5/+21t968MyhWlDLOWR+sUhrENI26fevINqoqHSCsb4wFvUCIfmRKqSBtI59FqX71V794+dJ9cWL3LvPL3EEU5OESGfb+6HR5Ri1/p9/u4kk9Ggxmp6dNU4EIABweHQyHw7Iso53bwcHBZDLxztVtk+U4JvQrv/Ir3/7t355lmbX2/vvv39vbK4rCe/9P/+k//fEf/7ve+6Io5vN5mqb/5uf/9Q//8A9/7Ju+iZmvXLz0+OOPf+hDH7p69WqkJ4qi2NnZSdO0KIqiKID5hRde+I1f+7Xr168Dc57nremGtfH/zBw/NE6bq1evPvHEExcvXlxfX2eOGS0Tg/Ysy0JwMaLeWt+4dfO9L3/5i5/73OcuX7l44cKF/Tt7p6enRZY415yenKRGE1FqkjiX5vP56elpnIpVVRVFsba29vjjj3/4wx/e3d1tmsZau1gsptNpURRpmh4c7Im4jY2VIL5y/Ma7u2/e3K88t67NqFj8cgk5EY3Gg/GwMAoTIYOgl56dShQ98PTjT3/io4987LlPfte3O4DJxhpoUzXWJBkiIstwOAwhaNU6FjZNYxvfTxREvEvHGmxeFFHdHDvVmESlaTqbzaLCriiKXmcX9whrLWNbmKqMdrzE5Isngvl8zt6z90aRt40x6s6d23t7e8fTU+s5vkPcREajUZyFVVUNh0Pd9RmkMxkmA7P4MB63qbHz53diibUy2nvv2UfM0W/Eu/t7EX4RIBAyiOWARsc9K1YLe2+zIs2Hg8FgsLa2Nh4NFIGwL7JcvNMKbVUGb1dGQ0JRiPF5C4IyOrY4iLYxSZKsrK2OJ5MQQlmWo9EAkM9f2FlZGZPw9PR4nGVQls3Nm7C/BxCGo0SlsH1+/cp9l9JMTWcn8aaICJVpvKuaOibRRYRZ5mXZWJ+maZYWN2/ePDw8jEME1LrbDwaDEMJoZeKcixbGMVBQXRMPAEyStE/rZHlqlO7dU6PAWAhRqz4J1U+3tgMdszEm5qDjILP3ib63Emr5Fduu37x58+DggIiicsJ7TwqSRJPCuq4BQCeJd06lqQKllCqPjlajvuruTQoRQTCW0IOIkNR1yQzWhxAkylkiKNGJiUW7IlIURZYlIbjVUVFkem11NMyTRCmFUi3mWZJCAHZMAJlJEq20JmOUUVoQOIDRdGd395Wvf+OdN69Vi5k468uFq6rgHQCDQpMmaZqmqbl66eIjDz+0Mh76YON9QRdFIAoBtr733UlsjNHG9CCDmYMX773WWgSNSeIKSJIs+l/H0y4+7iVHt7upSlBp2rpWhhDYhzzJ2XsWXwxy9EwokWOnVt7UhuDwPm9SRIzdPAUBCON/8Z9tnRcRA2qT1tYDUj4YNM62E4M99CUdhIoAO4PsKHSLPmKx5gaUFlrqkA0QRW7xfluTJIRok9OqdIk0UnQ9h8DAHiUgCzuPLCQgvqWyIHCwrrdI10gaCQJDYBBWHUsnEkQCs3eureaOtsBy9wve52+0DArvwVuwBPiW3yGyR3E5xD2wP7bfDxlx6dW/J3R6eWYOwRGBQiCQQV6sjCc9Ulz+wx4W3HPBcZF676PghACbqjZar4wns8UUEGM0W9f16enxycnJeDweDofee8K2yebyzd41ebpX51B67yvOZESltUYW9o4lKE0QK7GCF5HAjQ9N2UyTLPnyV14OIRVAIFEKhdALI0oIDigojVrr4JEDIZrAzdHpO889//Bf+q8+8S9+5l8IawBIMn7k0fuDh/fePSQ9sJ4RRWutKHcN1aV65+0j5qyxAgDjSaENCUAQLwDWO23S4HGQb1x74+i1V04TM5ROquF9QCStjdZGpJ37IsAs3DG4CpH6SCCyzmfc8z17HQKQIeXqZmtjs6oq51yeZU1VF2m+mM6KNFPQWtPt7+9naXp8fJym6bwsHbetnWfl4qMf/xhq5V04f+7CzRu3bt28rUzyyOOPrW1ulI2dTCbvvPOOc+6hhx7y3k8mk6985StN0zjfjCfDcztb589tX7x4/sKFc6urk+GwSLReGY831tYee+ThZ595ZnN9DZhToyV4o2h9dSU1ejIarq1MqsU8Qmsi/cLXXnz19ddu3bp1586dHoPmeY4AHIJGIoA8TefT2Wg02tvbW1lZ2d/ff/DBBx966EGFeOHChaqq4rE1GBbGKG8bhQDclpjUZbm5tu6cc755992333jjjY2NjStXrnjvZ7PZ8eGhRH8T9iKN0SgiZJKNS/d/86e+h5I8CERCF1jUstsRIiIye63QKNQEy+zX6+++Qf/j/+sfvXP9LaBw9cGrAhCEgVBrbZTWpBNjfGMjKRpXO6GOwKuvVF8uWV/f2alOT21TUaJjTLCxscEcJDZ46TKAaZo5G+LGEdmUuq6n8/lwMs7yQf9ucd+sFgvnnLV2NptFH45z587FGba6uioiR0dHMf0XryrLsv7OpetZFPXa2KnzYiEkKFhbW+sKdqhpmiuXru7s7FRVFSt1j06O333vutLGOddyMyJBGEmPVibGmJh9jxnuuGFZW8eTUjiwd4oiaebX11ZXV8ZZlkbOqY8dtdanJ7NbN25ce/2NV1999Wtf+9qb114no3Yu7OR5vrm5Phjkmxtrz3/kw+e3Nl97+YXFwa49Obzx9qsH198k9Fcfu//Kg5dZaqNxPjvxVVXO55PRZDJZ3djcGg7GzgWtkyTNTZo4z1XVgOD6+npd1wfHR8vEgLV2NBoxcwTKpLU2xnurlIqiBKVU9I/pI+OYDucuEdOHaKq3suxm4bJ2IYQQN+sYFWF3FsZkVncwnE3iwWBYpMV8VjoXgpcQpI+/Yx1AlK8xe1IUqwKdc2DMdDq9+4w7CxCt9cYk8drSNA3C3vuyLNM0T5IkBDFJFu8iL9I0TRKtskTnWaJI8szkhowiBZJoVWSZtZagVQUBslIowAKBCIwxnoMPQkTr6+sR7h+fHLL4JNXt2mHWJhkM8ixNh8Ph6mS8ub42GY2VUhCNoY3qJ0wPmEREkOu67gmYfs1r1Wbh47ztkRYARClG0zREKk77+Dttvq97xZR93LBajaZIWZbDIueqMq3RK2ikCL6X2Z33v3Ap67eMACL0F5EgLAieQ5pnRKQ1IbXv2T3cVrHQgxF4n21B/8XyL/Rsq3R5uvf/zl3bpUDMoAGABI7o03sfty/uoF//V/2M6rHREo971o8I31dZec8Q9b/T/5V0wo/lhxs/gjuBl/S9fbC1i4xZhbgu+qW9jLDff/vLeqM4GXDJM0y6ZGv/VxHr96sJO3OyZV62rmvn3Hg8DtYixa58ohR673d3d51zm5ubLWl9t8vXvdNj+dEgYmft1r9AUBgilpeuyRIzk4rUnQGlSRnUaj6fPv3005/5zFePT0JRjIN4hkAUBakKSPpprJRBVAiKCAXL2h38yR/4/T/7c++8+vI7RbZOJI8/8YAw/M5vvWhrSswA28w4cNDlQl5+6e16oSTE7Eqq2qJFJq2UIceBdI44+u3ffg0hFabIb/VJ3kj8989UloxClgenh7+wBLL74eqfTtM0m5ubSZI0ZZ2aJLrtnz9//uTkNO6TdV0vFouDg4PhcPjOO+8URVGWZRyKk5OTCxcuzOfzqqrqut7Y2Lh+/frXv/51ALjv6v3O+tPT08lk8nM/93NlWT7//PPD4XA+nzOHuq7LspzNZovFIgobomnZ2trazrmt1bXJzs7O1ub6eDxeX107d+5cnmaDvBiPx6urq3meTyaTtbW1GPnHu44Jmb29vaZpWsoAIJaLioTArqpKArizd/uNN16LgpkvfuHzJyfHzz///Hd+53fubG3NTo+9t1rT4d5+FIjH6Rcn82AwKMt5zKqJyNHRQVVVm5ubH/rQh+KVxID25OQYg91cnwBIEzidrOWTzcFw0q9c6F174lMA8uzIaFIqSXR0Vup/+tP/75+mg6P9f/0LP394Z7eu69hqXqwnQGetJuWt89a5poEuvtFaR8c2iHIavEt5urKyMtncfPKppx555JE0TU9Pj5NEO9+YRMXOFczc1A67GkMASLNsNBqtrEzyIhuPxzo982qKQxOCr6qyKDIRyUyytbGxtrYWidP4VA4ODuI9R7Y51iRKVyyWZVkEZ96xUiZ2FRgMBvHTlTkrFLLW3rpx887ublEUMSgUkRu3dpMsi1ceJ4RJUp0mi6o0xgyHw6apqqo6nU3LuhKRuq45eK26QiQk9v6xhx6+sLM9zLOmLm1dsrexZmR2On3xKy985YtfvvbGtRs3bl2/fv3GrVvvvvfe62++sX1u+8mnnxiOchYH6FbPbz7+2IO3brw9O7iZk0uVg7Coq2PQHnJMB4krT99+5aXjg5MMtQY83N1LkkyZJFK1ZVkS6jwfTBdzREyS5MKFC5GAjWRkTOQNh8Po9ZfmWfT76TfW2KIYuuJnAIiB/mAwAD4TO2utA3NjbVsRt/SKkhqF1D/Z9hRhDiFUVcVdt2C+O4M+HA6VUlFr2NdDEYACdK7x3qapEWBmp5QqZ7OqqqJwwSRnK2H5QuKOH9stR4QRaSRGWCwW3nN0McDOeSgxJiqlsizN8xTFB+8SjdqQtKcghiAg5JkFUadd0huCc0FIkVYqMUiUZDkosBxK2wihC752VrozjyFcuXjhwoUL1trt7W27WOgkCdGYt0u59lDmLqRLZ43P4/2GzsnTGBN3sUhYxgCmV5ksn75nY6UIFZFWqNqjTgIDSFWVKysrMF8oJIXUIpV79v0lZityXb/rq//9CBRIa9v4IDgej+d37iw9KOmUPe3tIKjoOhlvXHW1+t05pBDvAlhnpGDnmBNCiCCjT4JHXhZYJHBPd7EPyMI+BOvYBxIIzgNLvHcCjCPgnIuTUCSQQLTE60+I/izswcQ93+9/Gu/4/0fXf4dZdlVn4vBaO5x4Y+Xqrk7q3EqtLAFCIgiJjMFEJzA4MDMOMx6P0zgb/wacDSaPDcZgTBjABkxGIAFCOcfOuSvedNJO6/tj33urGvu7Tz/9VN1bdeqcffZZe+13vet9x+ndhitav+PjZXhjQdBHKjby6PRzeyNHaiNGBRv2pW4DnWDj6fnaNAP0OwrOubNADhkOlSkYY+Nek3GOiKNuAzdqw0TEmdkpcNbzltzIqNdY1et3GAcucPyLOCTd/ecyE+M5M049/aZdKQUMmZBEqJQhJzgLODB05GsyziLDkJzgIoxrKePhU08Njh/tBFE64tA5ZAGBABCInHFunSNgjpDAOlJAZVEsTc3R373vZe96xwerfhgn4cKW2VoK37n9rsXz3UDW/B5HCFFVZjAwx48X55d6MqwBQhhHltACMi69XDs5iOPm6TOdv/2rjx689DnWMOecn1rDm4iCoQBiCPyCf96L3RESbJxLDtAS/Aj2jMjRETqKo2hmetoq7eXWnHOc8y2bN6+urlrr4jh+5zvf+a53vassyyiKzpw5874PvP9v3v23eVFs2br1gQceesELbrn00ku/8Y1vMMaSJDl+/OT7P/jBJ598+q1vfevq6uqDDzw0MzNjnf38Fz53ww03dLvdP/3TP7366muCIJCMgx2K96qq6HXXwkD0umtZr5v3e2U+WFteUmUOzggGjVqysGlu86a5Rj2dn5up15JWs75n986yLLTWntRJDsMgZij8GsQZI+cEgtMGCZr1xsTExC233HLppZeGYTg9Pf26176u3WppVXKBjUbDo1+IKAQjcDIQxmofpgeDQZ7nZVnGURSHkX9VVfX444+fP3/eWttutxljgmMx6EkODJ11FTEEEYGM03pT8ACGtrZuY/HRIYDgucorU1VOOTJD2TYAALj08kvEy171am1cXpSLi4vGOR/FOSEi11pzLqUES+CrbOAnpVsn64zpt/61srI0Pz+31lmx1mzaPPfUU2u1Wq3Vas1Mza6tdOI4BCRDzpKTUkqOYRj7ECzCALXqDwYbWcDIWJqm3OpBb5DU6lEQVFVpra2qUim1trbGOXcOWq1WGEpdVoZsFCXAWV5mcS2uVOHrXA4h6/e01jIKnHNZltUbNSmGES3LsnZrUqkSAJjga52O1jYMAoGs11nrZ4OZmTlyCBbIOcustbYsS8mFoaqfZc65IIzjODZaB0EQxxIAhnonzunKXXLJnunJiVoSka28+3iWlzumZ46fONXpZk88c4RzaaxljIswMJWKCYvVtd/67T997Y/ftnXr1iOHnjl59FBvdWVqdibL+k8//eT0XHt6fiJfW1lbPttfO57WYq3cZC3+2pe+dHwxe9lrfmLH3j3NdstqgwSSM62rUlGlqc6YVVopJTnOzMx0Vs8Cw1KVjLE4jq3SRBSEEhG9Mkgcx0yKIs+iKHBowzDURhVFYa3liGEkUZHkCOhdU9G3SfuV3udJ4/VguEIwBgystUwIRPKmsDAi9SMikK/xMsHWAzED8BxJZZzRWkqpitKvQ4EIOQrwrUPS6qKXtCYuvfTSpeWzNDdXSxvrB/HHx2FzDYchdcw5KIoiiSJvWysCwR0opZppwigBVaI1UvIoYLU0lGAmmmkUBM4ZZ5D7WhgwIZCAWWsdOb+vQkQpMMsGSiMKrrW2drDWHSTN+uyWeQM0PGeLQgQoA1YN5QmEZDLgWVaEjWlvi4eI1jiI/KrprLWEww5DjsKXIoY4xNCr1lpnwRdtJTfGILFQSiLDORdsKKGOCJ7b4zGLjfluEAqfzrmRdpQlB0wSUaOeQn/F6ZLLRAEZ5wTjjCPAcEXH/4AcwdOBAAEAAElEQVRI+dePZADj973SunPEhKwsiDD1dP8yL4JQekdRwYdiE4wxRyhG3CZ2Ia0TRtpUnjo/THkQPHWMRhJibORCPT5b7z84BPAIxjR2RATrrHM+e/A3dzRtfA3Y+c7gcVLloyIfiUHghjodjiAl2MD02gg70YhcO+ZRrcfxYVq23j1qRy2N42H3f3dMkBrvxcc/sBEpGSNbfrryUYMz26DrYa31hO/xqTprEbnP+cZP9/D4XIxvgT9fANdsNgFg1FLNtNYy4FKEvV4vTdN6vd7vZYjo5Uh+ZJL8yOtHkLDx11pbRBRMBoEQyJwjY5WUQwaklNIYO5qcJokiJDhzqmtNA4ghQ+dAjqo31mnG+VhvxUs1EzgLVVaeu+l51//Sf/ni9+986EUvuXpufuaFt1z3r1/44dNPntm0sFeINSLDGLOGityQg7WVMgqaAOCtJ60ZdhiEQVwpmYSbbv/Gd7UWUVwvqwHn4PuXtR2aZY2D58YR9uatPmayUXHAOcfIe6nRxpjJAS0AA5ycnCyKzD/mhCBEMBjkIojOLS56tO3z//avk5OTQRitrK7FSfrOd/0ZAn70o/+U54Pvf/+uD3zgfYefOfLe93/wxuc+7+lDh7/9ne8ubN72m7/1O295y1ve//73X37w0le96lX/5e3/5ed+/ucff+yJu374g23bFgLJpeSMsSzLIiQhkIEloiIzcqglq7UpSpUz3jCWtMFs0DFWGaO9OFEgw2ZzMomb27ZsXe70ur2Bn59jNpG1djAYNBoNXRZxEkrOL7roolo9abVazeblF198cVVkkgtjdFEqIXWapmVZkrHkXL1eb6S11W6nFifbd160tLgsBBMM83wQBIFSztsrR3HgLDzxxOMTExNpLc4HvVAE+/fttUbVa0l+vN+ctmQ0D2GQZbU0NmVOZJ1Do9cDqb9xQRgY0iFGFumBhx587Y8NP836A/Glr3537979pQ46/RwRSlX5cCYCLhCFcErrIBDaWQLwxWOwjgisdcilRy/Ww4RRaRyuLleLZ87Ua0kQhUEcJXFNKzvo9kPJyzKXkqt8eIpxEFpj6vX6yvJqkETIeRSva/YDQ8FEgFBpa0otIhbK4HznXFxLS61qcZJGsZRybWWl3Z4CdEAuSVPrXGV0RJF/YrUygQgckAy41jovS2UNOiqKnKxhMgRHgnPBeFEUXErrC1JMaK06S4uA4BgGLLJ5JRAZomMAAAIwywtrbRjGUsYAIhyKtqMjcEQMcWW5A7q66forEbHb7Z4+eXx+fnZ203yU1A5ec/1n/u0Pv/qVu+bmmmcXV5XzxoNABLOtKOBs08L05z7/lV/5bz937ZVXHTt86NiRo2u97mte91ql1H0PPDjZCNqtKJKWgWX5GlV47MiRVnvLxfsPvvOd/98v//Zv1icaaZoyS1HAESgME0RhtePInKmMc81a3VQ9znk2KH0XiUYCcK16Q1Uqy4rl1c7za2lZZkIIgcxwpkwFKKwlrfXU1BSRTdM4DLlSZRQl1mjGha83OjKMAzm/fqM3jvGBAxljHLUzDDkABaGAgfOhAQCqqoqT9U6OUbh1eZ47EA5AoAAkyZkzDhyCA2M8/mRNPthzyWX7Dly8sra20lnbtm3rRlbicFGxFhwCsLIsm60aIHrnbLRGcNTOShkyi6QdIgWC28rV0jROZBRgla/VG/VaGjNAcI5xEDwwrnJEztDQZ8n5JhppTCWRBYxZDsY5yXgahcqaTfMzMzNTp46fHJRGYuyEkFwA48iZlOFaZyUO03qrTlwIGTIZ2DxDIYjQkAtHbQcOkZiTwIc6B2Q5lxvpmL4RjDEGxAQXQjDnFJBliI4x8svd2MbYWB4I3EAhIHK+RhmFNXLGWpJpBMjyvKjXpsApDhVR7BAJmWWA/oj/WRFw/PUQERlruxMgIKEDBEJyjojLrDAyTAHAGMUFM+QYciBEZ4cTC1gwQjTHh7VAxH4U2hnedCBgwhISWRTcATgiNuJijTXDtDfkZtxD/tY65wwiMoYgEBw6IPSTm9ABElGWF9ZqAAqkV0xA8DwddAQWmZcyWC//0Zh7yoGQCMjhsF1qfNpjZHdMS18fSes4Mo7gnHWWyDopQjdShYJRe4pz3vxEGOdVKJ0xdqQ6sS4KM1rXHYDTlrgMENE6x7iQIdNaW3LIGRmQ3nWRESIQjBE1Dg4RhgK5vizgSXVmpAEZx2GZDyYnJwGAC6mNJSQuuDZaiMA6UpVJ4lqelVVVyYATkWffoqNxGje+mx5x55wTeQdTYowxzpRSwVB6Q3HONVkA4DLUVjPGyIEFjciAIRAAE0VlOEufevLY8webGIYIEAhcXevU63URCATh5cfYsJcXHBGhEALLMmvVpz/6D7/0Mz/97h/cs33Llp1XXXHJF7/ww6/8653PvfGqgMeV7iBiVdnDh04hBMeOnRdBagm4QMYYMnBkAhGVpW42th96XP3ub//TddfdWJo+kZNMKmUcAgL31qXjWa21TpJE6VIIDo6U0cCYNSbgwXC/xBkiC7i01vINul+MMauNlMxUZRzHWVn4oJ3U0kLp9sTUiVOnjbOl0sj4ZZcffODBh3/39/7o4YcfvvLgtUEQvvtv388527p12w3PugkAr73mOW9605sJ3OWXXQ0Ax0+c/cmffsvePfs+/olPveIVL5ubnY/D+l/9zd8EkgDd6VMnjKUrrzo4MTFhjVlZXlpZOVlLG1HYnpyYQ6SlpTP1Fk1Mxo88/MD2bRcdPf7kxQd2Ts82uKA0TaQMorh+7w+fXDzfbbe3BNFMq9U6e/YskVcVEUxwra2vXWit9x/Ym0SRMWZlec1bNFprhWBpFHvWf1FVQZgEMlLKFEXhrNWqDDhzxh5++hnGmBTCOVOv15M0TWu15eVlLoTROgjEc59z/ZkzZ1ZWly4+sEcIEYZhFEVkLDMgtalxLnRR9dao6jIBSpdATITr0g2cI4AgY5kXtoyClSobf/rDO+4Qx06dW+4MbrjuemLoCMYlfM9ntx63IGIEKLgUggNaHOLV1hiyVm74e41GXakqTVPgPMuyRqMxPT09yLPeWjdJkpWVNSYEF5wJDtYBUVmWURCTgyAKjXYATIh1OM1HIgeMjC3zaiJNlTVJEuuysmkgZciYGAwG3iiecx4EgjFmaFhhUUq1JhtFVdaStrZGax1wbq3t9/t+zye5iIOwKArGmOS8KAoAlhW5lCFZxwn6q2vIQMiQ85AYJ3A+1nC0TpdIuhaFhOiMNtYkaSKAnKGsKhmjLVu2oRXnTx4/duzY4qljM9MTaZp2B/1TD5xd6/bvuveBRqvdmoiUsWk9GXRzSxBwIAurnZIDmLKKBD7+8CP8wN40iZZXl2uNtFVvBM3GD7733ff9yz9de9WBq645MDvfCkJsT21u1eIXveQn0lS87s1vfflLXvAvn/8KA8c4AFkp5aCngJizIDgCAIGVXPjeCC6FD6NemICIiqJgIlg5s8SENIVNBFdKWWcZd14lj4gQKYoipapaPT13fs3LsFnnvMabdZoxhhzIeZ6op1YMm3q8FTciMqQwDIAcMiIL2plog2r2eBqUZWmt3bJt++HDRziisoZKrSsFjoyxSOAcDFZXL7nqyv0HLrEA3W7XOqe1ucDACoGAmBhW350nL5JFgVwIctYvP0SIBEVZgklCzngtTQIeSMGZRcYn200vmw7gBOPOaUTUSgFjZEaUdgLOhRDkjE7qNZdbCVhkA6VUUq89/PCDxpizS8thUoMkTSenIOAA1lUFIBaqgiqP4kCGIghEPYl7/crrPviJp5n2eAYy5rQRLCBHBOuFJERfh+TjRd2Tdjl6/O+ClAhHSDgRbeR++bVZiEApxZAAmHGESZTn+XQQAiMwFUoAhn5RB0QghhsEHmHDawzwAMCPGA0hoLGGOCAKBE4ogzABB5Izi9wBInKHJAE544xLxsRIa3Y9a2EbmyiHbJghD4+AGCIw9KKsw0Ud1qXpxggQjHoGya3z1mkDy0orE4Yhclv1SueAMQDOyBgvqjQsG43OwW5QpqARnQs39AkOgbkNrPONWePG+e/z4PEFAgytDobpNfO/NTyIEEIb55xPEYmt9wQQ52J85DGmgohC8A3jBuMzF0P/3KFtMx/5Tno4x6ghp5BGaCKN3MOstcggCOVg0I/jEITwwB45EiEHGCq39fv9mZkZNrQn4c45qx3nHEcukGM8DC40uPN0SX+SQRB4u7DxfRxdoNjg7DRKty0YYHt273/i8UNleU1aT7PBaj2tJUnt6JGT+y/eNyh7UgrGvBqOFQwdETLmMcEs715z7WVXXAHve99H/793/Pn111/LxP/9ylee/Nm3Lh+4YrKs+gjcaLuynIVB+9TJpYWtE0NBEnDWahmIstRJOFtl6Qff+6lNs1uQB2D9PsdKKcMkdIRFmZEDIsuFtFY3G43V1WXkLEkSQJBSOgBraZ0CZSznzCrNOS/LdaM2o6t6Wmu3m4D29OnTmzctzFw0d999983NzRpj0nrtgQfvE0IUVWkdGUtpo/mvX/xyuz0hkFkDl15yOSJqa579rJuUUkVRXnnNtX56aK2TWuPZNz631x0sbN7ykhe/Ynqq1Z5IfvyWF+7eNRtGiDxMkvrTTx352te/NTe7NUncO//infV6+g8f/H8//MHDtVpzfnPzD/74Fyem6//62W//2q/95bvf82vPv+U6Z3txwnyClSatI4d7v/E/3l0UhQOWRNHOHdsOHz2utAlDkWcFAjlnx+oE4CjPM1/d9uJWjLFOp+cFiutJnCRJFCUrKyuc84mJCV8SteCfIBrRNe3y8nIYhn6ahaFM03RpaYkLvPTiSyYnJ7qdTpYXgyyTUla9Tsx5IqjsrDCnnTHEiEtJdIENo1JK6yqU0mnHJFvtdPbs3Dn+9EMf+KDYtv2iKIpkEDWa0gH0BgPJZVVVjEkppXVDUyQiIueEEFVZcc5RcMaQDBFAo9GAEf41Ozv39NNPT01N7tu/vyiybm/oOZDneZZlURQVVeU7o4MgMFp7KKXVaCmjizKP47jIB+PzE0IkSdIb5L5AOzUzGXDhe3wiGTgEGYW91QFpXVVVWZaehee0MZXywcVLmAghvBQ3IvpW0ihO/d3yjP4wiKUIvVMN40NjHGV0t9sjC1EUqdJaBGCi0lWIPAm4sPzM2qomAIB2o6G0thxKrRmgI6NMUWQFOp4rY5yrt9o+WGinOedBKJI4NBbazUYtrq12e5ZcNyutA87AOGiErJ6k7ST4wR13MVts3jybxvz+H37vW1/90tzsQrfbPXtaf/LwQ1//5kPPf96+i/ZuvvSyOIrlwhScWzF//74P/Jf//tbt/+0nFA8GVRaEYZIkK52+c64oCh9M41h69RSH6yxOIYKqqrTy3lA4NTNBDskhZzIMZT/PnIM4DscRME3TsiyGDRlMEAxbchhDR6irUoiAc+mcs1oRgq89EhEHJEDrnHNGSgmjznnnnOW8qqxknlg0fHnKwvz8/KMPP6yUklGQ5z3kzBjlgEQgtdbb9+xZ2LrFr0y1egIj2H98kGHWAs5YC4BVqQEQEIijweGSE4kIDKHgURSAqaQUcSQYOLQmjVMmJDlOREEUAoAlEzBAxoRlxpggDJVSwEMiKCtjAQmwyEpyvCwrGYUra8v1VrOq9MpqZ//ll04sLLA0NUTOlqxyDJ0MkEt27tyZPM+4IOuqIGTUs1qXcdJ0qgKH3kkNyDFAZzWiZIxba/xK75dJa/XGHMs5B8AZY5wBcnKOYJS5DBd1BAvELxwrNnRnQsaQgCldxXHsO8zB6izrQzINQKMkyg2/gAuFtze8LjSkW38xxgA4MK4RldK1OAEccseYF75G5LguZDpq5yAAsEA44hiOL5lzzvmozEeEjNBXaofVQkceLnIONlCgYIzVcQGI6C5ArRCRC+bIMkfGGGP99QKBhZGwqrUWNuhZ+DRrPMhj8hYYD3kxuHBAnAUg5i+HaL2eYEd2QzASdOQcGXJHhrMhGsRGFzIeJRl4AtywMosjnt9/zGzGqfI4i6IR/Qs2ZNLjNGhcSMVRzXfjnxjeF+OkCHq9fhBEE5NtIBfFobV2SKoji4hFUXDOpRBFngNIRCTnCBzjfOPsHU6e0fnDhSo2ROsyY7DBQHrDwF9AsHOItbT1ndu/sbry0lY7kFJUumo1p+5bfLTVXl7YMl9W/bIaJFHsHDEmGTDrnDMkJNdV3pxwv/w/fuGnf+oDz7rhhy9+8Utf+WM3/r/P3PH97x3ae8nVUtQZhmVZOAeXXHrJU08ejmIkB4xxpUtP8A9lqxZv++xn7vnUp79x/XXPyzKDyBANkQOC73z7mwB46RUHBTEhGJdcMXfnd29/w5veePjokbW11VajBUTOkmTSCa4rFUYSEZ0z5CwwmJ6aGI9YI03SNE3icGVlefP83Lv/9m9aE+33vOc9H/7whzfPz0spnzn0zLve9ef33X//jh0X9fuZdbCwsIUxZpX2M9WXDvr9rp8Meb8XhmGpVRzHTtti0A+lMChuvPHmw4cfvuzyud/632+M6xlB7hxjvH6rvozJ3t+9+/995KPv2rM/Mq73q7/2qt/+jae/+u/f/4eP/eX8ZtcrDr3qNdd+/66d+y+eSGuDTvd0LyuBGKBUdnHrRbte8tJb/vLP//G665+liYSQU1NTZ86eZwwCKRARQTjnVGWMMXEcWyKP1AJyAC/QyXyGqqzTg4xzfucPvh8Ewa5du4IgUEoxLpVSzhkaqSX4RoQwDNM0rcpSKXVy9eSBAwespcXFpTNnzvzgBz948UtexljLx89qkGdnzwbOhWFQ6owJAcC8dbV/GWc5l1Yb4oEx7umnn37N6183/nTrwlbmTR6yrMiyot1q47Dq75kQ67s355zvn+Ib9F08TLtRounpp5/ud7vHjx8/deoUItabTU/H9lmOJ7xbclmW+d/yfoteg8qLfIYbVMT8BkuVpeRCMt7pdMJIAhFjrCxVnudpmmZZBkOTOBuGoSfZ8VGro8c/qkrBcBUn5yCKkqrSxhguBZNCiMA58D19URQlSRLHoXOgtTl9+jTnPJCSeWtwZILzRiB0rxs6feuN17zuthuff/XFVa/niuLsubO2ypMoqNfrkgftdnvHtq21WK4srjDG2u22ZydILuamZ2q1JM8GuiryXldlBUcmGEcE6yAWUhtX5UWn07nqigM7d+48ePDKn3nzz/7Kr/yKlDIS/LFHngYB81sbAHDs+NLaWnn4yInFpTOXXLrllucd+KWff+2BHZtuvfnZB/bvKYqBx6VG3JEh591H0lqt5lUV/OBIKatKEyEwUSkzOzOHyK11DplzIGXo9Wn8QZy13gw1z/MgCGjkXmKGfoIQhvGYNcI5F5wxDgxRjE3iiMhYhgRgGTmvbKm1toaMcf3B+k7Ovy+lBM7diLbisQoA6Kz15ubmdu7cyRjz7mYecx4ycze+2FgnCSutjHOAXFkdxlFST/zGhaMQwgc1FwjOBBI54CyK4iitKaW1cdpaHkjf5FGUJQA4YMoY4qJQujQOwjhIGjxukAiJy7JUyyurUkSDflGV5uSZMyur3XPnl44fPV7mxWCtq1bX9CDnQVBvNTud3plTp9M4zrNer78GZCUXYN24DQIAGCBHEIIHgjtat4Qbr50b4ZNxZjZcIMlH13W6OgCMfKXXV2I2EnN3zgnJ/Gzp9vtEFhgiOEbjTOj/7wtHr/ExN74DwxYKRiMPnCKvpAiBi9Fazjay7AEYjQpn48Y3HLHR3Qa933FSxZExgqFgxAZMy9p1eXGfOY2J+W4kvOTDnR3JLI0F5RGRc8Y4ODKIJEe2DX6yeXqvLx2wDa1qPn76n9mY1W0cDfiPbZijVZBGtDDcQHQbH2dMEhqf7bg50R+Kb/AO+o8vvLAxGX9ES2g0Yn6Ex+qAP5LijychIvoOrcFgwAgWNm8uigJpeJJhGPp9kY8VPub7P+d7bN2IG7fxBaMOzTFHbTyqsJ5HXiDttjHr2jDPCZl0FhbPrzkQzpFPpw8evPILn/+a1aGzPAxirSvOubXknAOygM4aAnSD/PyV1178vOdvfevb3nHi1LmfevNblIGPfvQz589rKaat4c4Ck9BoNJ95+ugP7rxXIlSllVJaS47CWm3Lffec+fX//t5n3/DcqiRGnHNJRGEU3HPP3X/9l3/9uS98IQplWQw4wkMP3nfi6JFPfvLjH/rAB/74D//o0FNPDS0OURAREniJUa01GRuG8qGHHrjjO98e37KyyIu8X1Xlww898OpXv3rTprlQBq/78dcCQFnmQRDMz83/8Z/88eHDhycmprgMgyAkYEoNa+7WWq+F5MhyzglcGIbGakTUWgE4bZS1OooiXanFpTM33nRFmGRLq08urT3ZzQ4trzwm5eA5N12uDWzfObPaPbKy8lRUG7z45ddUCubmokKd7fePM9l57s0Hu73Fqswq1bcuN67v3KAsuoK56cnmYNA7fPiZhx68P+v362nMkKy1Hvnz0ywIImvIGvKL+zhW+MfN2fUQ59WLvPOhhyEQsdFoeFmlVqu1sLAwOzvrH/ler+dRyS1btjWbTUf00EOPPP74k7V605Az5MBZXRUBY55kaMkwERChMRdoAmtry7LkIgAuCHkvzy6//PL1T7UWRaWjJAHkXPCLdu0+cuRILakrawI2lgMY6jUYcgBQGT1+1KUQyFilFYxSpn53IIIAEQadTrvdnN00G4bhYJD53KtUCgBGfVhBkeVZPwvl0DisUoYxtlEswPe7DrkFgi0vLrVaDY+KG2Pa7Xaa1ouiAOd0paIg9MUv55RzLo1jAOd13sZRRmmd5zljzDfeI7JeP1OVYVyudLplWTpFzbRNRMCw0nqt07OWojDOBmuhkJxxgYINim2b51984w2TjZgYZoNiMgq+decDzYQlaSAYEjlGbmZyamZ6+tBTj2qtIxnVkiiOwzzPoc86vc7a2prg0dJiP+RQaMgc5AQMGQIpC1KGJARxssDnN2+XYW1tUM7su/RNP/tzX/jnfw4i1C7oFboVpdawc2eXmu1GVKsvbJ2+7QWv3rZ971OHn/rkxz9S37aTBZGvA46jVZ7n9ST10olBNFQMUj4V8X7YYWC6mZRhGCdFWZ07txiFm4I0RIdKDRckIDssWIBn+45WC8Y4C5zVnvnirAO/Ufa0H+eAIWcSiTEAJnzFCmFkGmPJIvqOQbuxblgWqlZr9Ho98B1PRgFjVam5wEqZZjPdun0b0HANJrJCCEAyzvi0ez1SMySHjAkAprVlTAARB3TWhGFshJaMk3Me0yZGGASVrcIwSJJGaTQjiGsRItbr9SiKBnkeSUaMG4sikATMDtc5VlpUpVpbW1tbXS37WZHnc5OTeVVlvTIrSk3uc//2dctg9569V1999fTsdKPdmtsyP1VvtJpTrfoKWZqdnJjdnE5MtB599PHlxU4cx4wJrQ159VHJrLPAsNSllBFDDMQwOQA3lLnywDsD3Kji6ZzljAOQL8U66+/AemXHv9jIrxoBgcAvlkkS9Xo9KWU8Ow3OItIoUxhSwofucrROHhjl2evxiI9LQh52HS6ZgI4kF8aRJQYogAswZrTQMkRgDJFJIrJWAwxpVY5wnJeMElDr3HpGMhwBLyThCIiQwGt6cV8ydeRFv4gIOBAC+oY+v1p7NXFcZ/cjDjV+peTImXOuqipEzphwzmhrjXNIxEdal+PscD3jtOtFWGJD8Ilo/MXGvBkQ0QFoaz1C7OUih8kiQ0tu1CExlOh0znkx3I3JJYwwabiQULVxnVgHkwDAO9KOemPpQrVYfzk+AGz8ARraB3kOIONcLi8vImK73T5y9Gi9ngIRISEiAxSMO2vzLPOWdODQmyECgDPr4hGwoZfT+xbjSGzZjkRJhrdGcMY5ASBnDC6YzBdcpkNkAXL2yCPPXP+cHUIEjNuyGszPb55obvvUP3/tLW/7sZW148gFkfVuEFxYzoSzgMCVztJk4jWvf8XXv/med73rb3/9f/72T/306z/2sX/59jfvf8ObXoQwKIoVbcA6J0VSFuQsqMIhcCmSJNy0tiJ/63/9zcUHrur1HGeC85CsFUIcPvzMz//8237mZ34qqYX1NLz1hbfs27fv1a98xe/8zu9smp93Rh+4eN91N1zX73aCKM7znHMZSq7KEpECweq12nfv/O6f/dk7d+/enT0+vFIp2OZNc0TWqqqWxuRMnhczM1M33ficPM8lFwj8Oc96rjK6qipwEIZRVSrOWBAKZ7QxOk1joW1Z5ih5PUmVMgRYT2pBIKIo6fU6g0GOGupxqrUREgiMs1qGiGAcAZGVjEkBHBVHp0Fp3d29Z27TJkhquqp6gUSiYvv2+SPPnHvWNc9xRhnXtS4HFqTxbNY39957t9bZK1/xMh4mn/nMZ6I4nWpPdPq9KJRlkSFwf4O0GzYyc8EJQCt94QYPgQARAhmpSlkHjDFtnDaOaVsUhTEqiqI8L8MwDIKIMVGWXsGOCSG0JUMQpTWlbas92e2u4RBvcsYYTmjKwqiCnGZSWLduSz98hDkDCJQ13GiL1gDs2r33xMPDT40lMTExtW3bliPPHGm3m5OTk/fff//UxHQ2yH2X7HAHAISInmLCGBs61fi9lO+CGaVfjHNTahkHMo77/f6u9CLBAyLyz7My1bjZuyxLX8NSSjUaDSL0dJyNT47/Q+A0IEZBqLXudrtxEPHRfvfQoUNlWYqhMITlcpgUe1aTtxtjo9oEIhLDolSAHBhXSjU4j6IIuSjLstPpGGPBwbDLVIilleUzZ860Wq3JycnFxWVyJmSJyQfzjfot111TrZw7eaaYnJycmJp83vVXzUzUj5w6c/rcCqAz1gERZzjRqqdJhH53aJ3gjJxzRq+tLidxrdVMQwFS8KyyYYCRjLqDImKcOSOYAEEOjYzkmTOnut3u9MICTM1cfcNzPv8vnyICRF7k5VyjPTk5efzQkWYzvuyaa/Ki+sIXv9LL/7XSxZlOZ//CTrCuyKtG03fjc611t9edn5kdeYrLMWAwHHbCXncQxUmtkSpdfu9735uabEkZWjMMwWP9syCQHkKYnp48dWbJWSuD0FgXhqFGhwBGG5+OMcbAgQPH2HjaACIKlJacb40GdAIYcC6lsNZIxkcUKwCAerPRbrezIgcmOeeWsCgHzjmOIoqiWq1RlZpzqKqKEAFcnCT1ZrMoijSIfyT+ikACZwCUFQXnEohZpbmQzDmjNSmKaymXAq0rigFjLSFCBo4xSMIkENxWGWPx1NQUOayUsSSVsmHSMMiOHD129vyK0na1Nzh7brWo1Fq3o1W1MDc9NzW5aWFb3u3lZVkpc+jkySStO2sff+zwY48+c9lll119wzVPPHk4q8q1fnb//Y/d++gTzU3brQyCJJ2enlw+v4IEjAlyKIRUZJhAQi8Y6jk3diPc4nf042XVgBOAFlAw5CAQ0FesAH6Ek3RBZ5nXlynyigturSVAKeXS0hLnfOuWzau9bjzrf9QR/get1dFB/P//8dP1nMDTzpADUBQExNA4Ai7IoReNRESBDJAQ2caV3qc1gGzjJfiLGmc846RhDGj5bz0S5tnc/n0c9R5KKZ1nAGxo2iVwiEOTOH8xzhmthxLknmY3ynUAEd3YcnEDeDOGZNhwSNahGtxQWRuj1Ou/i+Cc8wM1dgkzxtAG9V1n7HpYpiGis3EZGJ8nbMi0NqZiOPKy9OCWHwrcIFh94SBfIB5GG1h0/k0/+MvLy4gYx7GqqkDKSikksG44l4zWvnzh0ykcmUqNKXpuWCYfTnLfZoAjxSJ/5mMIfPwiIrxQ93JjoklERVHs23/poafPD3ooZGhMj6Eoy/zlL3/5FQf/586du6+9/pJCnUamKq2klEjOKM1lYJ1lCNoNrrvhwLXXT33607fv2nnVS1/68m9+66t/+If/dNNNN+3bN1tUR2UIyhoRhEBMcG40s4YL1uSw+d1/80/PPLNyzdVXOAvWkjWGCYyT6Ny5s9dec43g2Fnr7tu7+5Uvf+kXv/jF93/wfVsWNnVWu+12e/Hsufvvv/+yiy+zylvRgHMuioKqzKMwOnnyxE/9xJt+9i0/02wn//L4nf5KG43a9EQ7y/vPfs4Nh55+0pnb4ihY63aKMpucnBJCTE9P53mOnNXr9X4/AwApRFVVD95/N4B79g3P/sEPfuDAXXnFwbVO56GHDm3bdtGJE8f8zXnNa36827WPPHK/4MJZK0PodJe08U2sXIqoVZ+pcvzqV76xeQEclVKwsnJGZY06v+W2HYIXHMAgEunp6elf+2/vIRVu2lK75PLtnDkp4tu/dc/3bn/6ju88c9dd39+58wAX4U++8Q1//e73fPgDH9538WV+/+M5kUQ0GORxEIZBXFb5cG8wUpISQjAmiNb7gscTmI3YhIyxLMviOBVCHDp06MyZM/Pz8xMTE9ba2dlZVVZnTp+bnZ1tT032O/24Vi9KxcI6GGO1QhSIKDhzxo0bHsdkBvA0TeeEDAqlA8sIaH5+84mHO/7T82cXGRcyCOM4rc3Ozu/YvpMcOktjBA9GRBD/KPpKIgB4AhYwBM42zm/OJR+JM3HGfBuCf54Hg0EUBGEYArGyUF6La1yo8l/7EuTGx8mHTsE4OIcEi+fOZ/2Bf/yqqvIB1Cg19NYFFIz7woG/DYINyxOI6AESj6j5eCF4UOSVq4xzpCqttY6D0AcyIipLlZVVqzlBRFZpo0oEp7P+Vfv2YL+3eOxIU/J2HEAxwCo7eGDPwf17dizMLcxOgNVVlgmgehLuuWi7F18lZ5BAMC6Rb5qenZuanJmcuOTAtiBwu3ZMNFMWMzUdYzNwrYiadd5uyEYznGhGzlSrS+dOHDsG3S6b33Tz81/cW6N2mmYDd/jQSmd15ewJtXpm+fDTJ7/7vcc+8Kk7P/HFuxe1XCkReMIw9GyuSqtSDZW4PS5CXpAW0AO5VVVpbQeDgXHEmAjDqFTm0KEjYRgiMGWd4IEQwhjnVc69y1MoZKtZn5qa8OxjItLaAjEHEERREEVcSkIExpkQDqBUKi9Ulpfe26coKmtts9lMkiRN02YtjQMpEALJ0w3p13CNcQ4AfJ9EEIVZkcdxOjMzZ5zzIvvLq6teCs6RXVhYKMuy0+9tPAIAIFJVVYCs2+0651gQCGRgrK1UwNCRraoSjAk540iDbgeUasZJHHAOOgDDnAJjGDhtnSGx1tdGNM529b9+694v3n7/v33n/s9/656v/+Cxx44vLRZI4eTM9n3J7Gad1Eycsmab1ydke7o2s8XEjYzFNml1Nb/roaf+66/+5t9/6FOP3X/szq/f9+1vfi+VzQcfeODB+++LQxmFIVjr5/nQ2NHbBwEoZ70PKYwqv16uzC/Pw/UGGQyTLUBEtqEMTQQbl8yNyxgScGRs1NdGCIyxSAZnzy+WZTnRbFVlzoaa2+ifLALwukQbt54M1uuTDBwDhxte/oeFEAEXDJBz1Mo6YFGzZUaEKg7oufYebh2nUL4E4FXmvWCX/4KNlMBwpPXla4ieWkDGkrGOrKPhJpDAIQMuGOPIEADJWG2NNlYbq/3POEtGW19eNJXigBy4M4asZaNoLhkXyHyJ8UcGczz9hnpOyAH5UPp/OPg4lu/3KiteAcsnTD5JYigQuDVk9PD2jUrwxhg1vFKljTGOzCjd9HL2dpx9Di9n9K3XkR9vd3FD8XGs2jq8g468DJh3x/MolBjZW+GFZlOMMU+6U5WuKt1IE1XmzhlAJ6X0AB7n3HvseqKIHWnaMca8wtNI9Qo88YWIgBhnEkc+S2yDPAdtkMOF9VYP/+/C+jg6x1Sa1u+848msHwey5sAy7sqqPz2b/M3fvPaNr/vQQ/d1G+lWo5EcWnKEIaFUSoWhtE4XxdrMLL7xJ2+VAXz5S9/82te/ceklV+kKvvqVB4iljnNjIAyDqiqIkBzPBkbwWj3Z8q2vPv2RD33t+uufX1aVcSSESNOYI5A1grNOZ1Vrba2OwmDT3JwjA+QEZ+1m/b677/n1X/ufe3ft9lfQrKeNWk0Idv78WQCqpfGxY89cecWlQrCVpbXxhX739m89c+ipXq+3urzyj//40Xvvvacs869+9d/7/W69kebF4KFHHji/eHZ1eeXOO+/wCfTq6vJg0PujP/iD//1bv/W9H9zx+3/wu//40Y88+OD9O7Zv/eQ/f2LP7p1/8sd/eOcd3/3C5z/HGbzh9a999JGHH7jv3j/54z8yCpzLObOSo8Dwjm8+9M4/+vCvvP33/v5D32nUGefaKs2Bq6po1KM9exYAK2stGRz0ejOTM8951rW/8ev/+NlPf41BXVdCisZjD5/8p3+8+wPv/78HDhzoD7qrK0ub5md/+zf+1w3PfvZaZ8WHBR/xnIWhbH1ZgiNrLTkEJpBLYENFT/+ge120H9kR+XkSx2kcx6urq4g4MzNTrzesdUJIRCaCoNPrVVpPTc8iF/1eNhgMhBBQ5kpXQ1cS8NkRB84JLqB0+pijlWIEcRwzgDMnTo4/PX/ujCiK4vDhI1EQ1hrNrdu3E9B4O+KcQyaEEN7H18L6JmkjyPYj+1urNYCNaqm1NooixsGZ4f7SC9NHyIqiiAT3Wx/BuDHGKK2Mji6kS/tHS0pZlqVxNgzDtJE4howxhkIpE8UxIgPngiDodDremKlaqWQQexlPnyau+4u54QPpiTtShoQICJW2pdLOghAiCUNfwcnyXFsTp2kYxqtry0kUqTJDoJ3bFqresi6yiWY61WqeOnumP+jPxNH2zXPNZvPQ0TPHjxydbMSRwHY93Tw/ffboYdCWAyLZSIhmvR5Kbq3VRbltYXO3u2asbseR0RYlcM6jKJABc1TNzUxPtJpgTRyGRtne8lqjPnHgssuSBmtG8OMvuvSyg3v37dkWCXvnXT88dvp0c7IxqfLa5GYIaqVdc4w7cgDOrz2DwcD3lhZFMTfX9jHUm2p5t13OuTEukKEMo7iW5qdOpmmKXCBnYIYqzEZpAPCJrFIlYxDH4fatWzprAykFACsrLcIAkZSxUkpHLsuVN/f0YvUMA0+CllL7GNpsNo0xhAjEyrLkAjkKX2Naj6eCK6XAWWCYFbkxeuvWrY1Gq1SKCIXg3rQxz/NGq02GGGM7dux47JHH1ucSkLOOgEyRMSEGg8xYajRapdKhlH6aKaecG7HLrANHkkmrbWVdaU2frC5yY9E9ejgEo5RaXVnLFT1x6FhW6pnZzZolstZopKkljkwMBoPV08vRKgaMTp7vpEGkrekNSmXdam+w2l+VICZqTU40M7Vt50UHXvi8lxw+cmxqatuRc6fb3Z5spI8//ng/VyySSqkoiaWU1urxpt9YQi6JaNzA6LMNB25c8BqZBwxZPxvIP8OB9f+Tu8DlBhGHJmCcI0cEbowLwqDIK2spCQK0fY7Axi13DEc1xwuwnAsWvg1p2fhPj5MzwQAMFFXFGvHU1BRRNeJ7Den2XDCGyLn0+qvjKDdOGsaICF0oLu+vYrhID5EVopH4qh+oESMQjFGScx8knHM4RokYjEBiM2JQDY0RGYBx1mnjb8R/vMZxQENYl8xYH/kNJUIYpyDrJDZrjBvix87xkVsUACDz7QVDhXQPXPkFxgE5ZxDX0xoAcG6943IjMDb+dZ+TjdMaHEl/0Uja1w+skMI5xxkfqXnhaGMz/J9zrivDGGOc53leq9XAkZ9OdqRr78fWI231en1lZWX8F8fHYYzRBhNJj3t520TcwPqHkZHGeBoAAed8vAPfOMIIYK0JwmTxfHnkmeWZTbEPegz1ID9/083XX3vtt17zY7/3yU/96rNv2pfn5yrds0iMS0SnVEXWCWlLvficGy/btfOrtVrtu9/9fr3WvOGGF/zB77/3Za98bqu51VkgdEEQVcpMTc2cPbMscPLkqbO/+PN/fN01t5WlZowJAefOnjl18vhFF+1I0nnnXGdlFZxx1rAwmJiYQMCvf+WrzVr9S//2pd/9g98zgNdd9yxryXtH/vCHPzBWvfzlL+usLH/zm19HsKGUXgtzfE/f85733HHHHZ/45Cf+7XNfuP273/mrv/qrP/7Td5w8efKxxx7Lsmz//v3/8Pf/95prrkPEY0dPvPOd7zx15mQggo997KN79+wqssELX3TLtm1bZmZm7rjjrS9+8YtvvfXWyy67rF6vx3FMtGvv3j21Ws3rpf3iz//cqdMPHT1yvzHOORMEye7de7dvOZj1ZKP+GcczxhhjQvAICQDV7j1bnSsl4+N5vnnzlvm5u5v1OaRYihQwnGjNv/CWKy4+cLCz1pNciChcXV2dnp7+nd/6jZe9/JVzB2dX17pSCmuGYitCBEqVw6jonAeMAcDv8PzE43zY3T/GlfyEGXEJZK/X27Rp0+rqalUprXWr1fLZVaPReOaZZxCxXq/PzMwgxySMwGju7eKFNMZFTOqRgR67YOfFrNVIyAKxvLa6c9vufpYB1P1nu3bsEsilMi7Puw888MCpU6cA0NNuho8ugFLKS8MjW2+i9oaXzlnBuNlQLtRaiyAwVRHKoKwGExMtT03t9/vNZvPUqVNBHBFYY5VjMedcaxvEISPwC0xZFOxHxEuslZIHQaKMrbQWQiyurpw/c7bZankdW+ccABsMck8e11o7MuMA53yn9Ih13ul0BkXOpKhK5e9cnucAmOdlkVfO2Uaj0Wq1giCwzg2K3AI2m01jlDU6bNaQQywbSRoWfRdEIQjezzPrXBIFYJUAPj/Vrir1cCTOnu8mIQNbTLUbThWqKqXgRmnJhBXScgGOyiwLpGSMnT/dmZ+qcym9BWwipDGVYHjRwtZGUleFcsRMoVZPLzYmZxcu2f1ffu3nb//cP/fOPzpYoUA0p6Ynrrh679WtTaf/76duf/jQ8y6ZI4uMiagWrfVXI4F+415VFWdSCrm0tHTxxbs8UiKE6Ha73mHGB1PGmDVDkEwp7dGpztqytZahYDhkNXph1SQNsmywZ++Bw0dPDAaVc+gcrCyvWTLDlmBgxphKmyAIAIkx4RwyQkfGKhVFEQcQQpRlKcPQWpsmEWLkHGnNNkwDvrq6ah0A54iYZ/nFl10yOz/nC4hCsLKqSlUZZ5ngXk6z1+tPT0xOT82ODyIEU8oQAUoZyiDPMyIK4qg0AwPoyFlHnPN6rc7AIdiVtbVsbXXy8kvLyiplkiQ5efzE+aVlBScc3BeBlgCX7j1w6uTpojSbtmy14FEolxV6tbumrZNBpDVmylqtlzorURT0Bv3SaAMwMzm3adOkVQpM1emsSC7ve+jB65/1nB27drOwefTLX7IGl86et+BmNm/JstI5o7UmRrVaUvVKKSUjxrnXWUYhJGeBqRRwxjmX0q+LnAiJXBAIjuT55YyBCLxikPN3fyTFth6Sxouf5/mJICKGwgJjjCpNxtbS2FaF5yIwKRG4dcCYZ4kh8w2lG4uP5PngSETjpxvBU878t44cBaF0pCtjZRhTVSJDIguAHJlXaAAA5wxwBshww6o8XrYRL8BmxkW0MTZTmSoMQ8/K5iMvI78JIaI4Do23y5QMAclZIr/Gg7NOIGNAhogxpiuDnqXIGCKZytTq9YmJieWVxSzLPINiLIjKOScDzrlhsZg5RwYACBz6TaDwBgbIObfGEJBE30tERJYBSM6rSiEAHxnGMcYcWDN09iTOuLVWiMBYa51hYlhk8QXEUSFyWIq1I6UuIlJKeUtfN/JrH+OL4CgOI6/RMy7cCCGcdYKPci8Cjsy49bILQ+EsRVHERt6s9XodiPyAFFUppXTOOufCINZ5rrWu1+tKa0Ac3inPTxhWYIeNO35++v28FwD3JzzG9tgGS7SNSywRMMY590CIsUSB4JUmcvK+Bx677sYbnGWSS611qToT0+1f/tWfefNP/eUbX/fXH/q//+vWl+xHfjovlxCNEBIAELkjnWUrmzcd+PlfeMP/+OX33HTTLVXpjGZCxJ/59B2vf9MbZzYt9PtZGsTOmiCOVtcGYGe+8JnPcUwABIB1pH5w1/fe8ua3bJp7zeOPP/6vX/zC9u3bzy+e9SMvGZ9oNabb7b/483ch4m0vuu2+u++954EHf/4Xf+GySw/WarXvf/+uX3j7L/7X//r2RqMmkN17912f/3+fe8UrXu7R8fEj/OY3v/nGG2/8yZ/+6Rfd+vx9Bw6srq7s27fvV3/1V5588onPfvazH/rQBwMpa2mdiG6+6cZWs37jTc/953/++M6Lti6eOysDsWfXzqLM82zw0pe8eGJiYnlpMQqDbNAvi9xaHYZhVeb9ohRCtNuTb33r2/7Hr7+WnBBC5MXalq0Tkrca9c2lWvz0pz8rmQx4UhbdMAq0rrZdtMA4ARrGQDtFzM1tnju3BGfPLBa55gkQ2CAUN954YxynZuAWF8899NBDL3jBLf1+/9JLDlx+2SVnz55N0voQu0IYV9istUQOGAPnuBdA4TIIAl8wsdaNd3R8g/OYjxt5nk9PT/sHttlsZll2fmlJSjk/Px+nqej0syyL22kQhVbrer0OWilVli52XOpSxSETUhpTGXKcNiQwgIah42gYPHrkyd/8tV8v1Tqnud6sDR/CIsuiqakdO3aM4+aw+VyGQRBUWiEi49xTTGCDeg2ADYL1ciHn3GgFiIxDmqaMsSov4lpqjPEu5ejIWptEsUBBjrjgQog8zwMuAiErrTam8EyK8a7OO2IVReG1JDqdTrvdPn9+aXl5Oa7XtdZpmsZxnGVZlmWNZkpkfSdjWZaCMSGEn53GDFs4GRPGGCAGwJeWVpQyggXeEocLLKt8cXmJALiUxlkYyinZpdWeRYeM8UBGUWKda7VaDKnT61oEZc10u7l31/bzZx+KA54mIbc1ztCoMuCCIVSq4IzVkqTMC8dFEASXHNifJMfPHz/nlAMLSkFWZFPTrampSWNMt9eLghgATp04USmzsDAnLr7oZW/4sWv3TqydPdTPV4PAfPeOr1/1rJt4vXnomUPz09Bo1E6dXBJcGl1JhsY4LoLeIMsGBTkWBEFhKhixa7XWDBA4G+lHMGNMvRH5AG0MazabURD6nUoYiLK0eZ77PaiHM4UEwXHf7l1f/tq36/XJTi+35LSzASAhE1xyLpNwozUeouBkUAjmT2BtbS2OY0SMoghGUbXT7Y+nQafX27d/f6lNc2W1NdFOG7V6vQ7ggiDS2ihVVEr5gpxftHxqWJZlrVYbH6QsCkCQXEoRCo6UOSIKZOggY1x6tN8q54zigqms+5pbb3F5/9z5MydPnWq2pwbLS4NOBwEsIIJ0ANded+3LX/qyO+743ve/f1drcirrD8IoHWRF3s+61SBkial0FEVpHAuGyEychFwGg6xAKcMwLirFgKxyczNbsm5n/65td//g3lMnzz51/Ixo1Hkgb735VgrDf//yvye1hpdT8JBtEATOGAc2iGJnLReSRq15Xl7fad8PIWEDAIOIgAJxCPOwUfPgOAyNmDYw/q0gEHlRaa2ZFOCAAQIyABYJPlhd5khDeUrnQTAvPHpB4896Braeiv3oR8MnHQkALRAgF4EETSgEY74WRqM6qSMia8xGXtf4NW7v9cc0oyKgF/Lxa3aSJEP3jlEE4yMveZ8rEJEjQ5o5TcgZAI6wLouI1rqNMJtv7BCCE5EqK++U54fXu2P5VcEYw2FoUe/P2Yw8Oh0M8wlfsBsnDeNp7HNWr2IIAJ6bYTVasoRDdUPnXKWrIAhgqIaxTs/amFJvFFL3KOmPXP6P4HaMsTAM8zzfOCXsyOp3XM1kGxyrhBCqMh5RiKKo0WhUVTU52YYRJOm7zKqqiqLI2WFZY2pqqlar+S2it1sd/4kNlAbt39zIafuRaTBWKRsGNy7G4+ybaYaAoiNH7LLLrv3m1+/8yZ+5st6s9XudMAwc2E7v3LNvuvgX3n7zN77y6C+87V2/+/uvec3rb2pPNpZWTmjUkqO1Jooiq9UgW73ppkvnNjOtBtaGypgrrrr+//yfD87M7b3u+uc+/cRhwQRZQ4DIklOn8m98496bbn5RVWGZ9R959P4vf+nfrr32WsllVenX3/66N73xjYuLF3tVASJqNpvLa8sf+cg/vubHX6fKigj2HLj4wCUXv+qVr56YmHjpy2797d/69bRWK6s85PKWF7xg10UXSSmVMRtv9+ryyuT09Mzc3OLZ5Xq9njZqKysrcZI897nPve666/bs2XP3D39oJy0A5EW2c9f2n3vbWy679JJ+b806I4gPsr4ftzAMy7JExKqqwjAUghkzpN+12+0sy8qybLcmtyzs6vdUUhNaDfKiC04ZCzt3LwSBQOBVNYiiqCiKOImCQPiS8iAv4zhFpK1bF4hgebmjlYuakjEM4yBpTiljtTZCiHa7rZQKAkiS9LbbbnvnO991yeVXDQa5cWDJPf7II5s3L+zZe5HVoJRC53C0s/Izxz+M3kyPDTdu65s3zyHzDJwsy1qtlhdK9CKrHqBZWlqK49ivVlEQGq1BorFKIZNxHXjgaAjrCiG8cP8oyrEwDLMiq0V1Bnz/gQOPP/X4Rc1t/lNrrfDxqNFoxHEs4iiKY/+gjqeylDIvC8YYbgiX/sHz8YLshpjriHNujQWAPB+EYUDkOGd5nlmjnbNCcL/7sWAlMAYI1mWDXhCFQrCqsnhB2YKIgVbGKhtFEZPMkgulIKKVlRUZy6qqut1uHMfZoIgoRM4Iwe+oiBzn6P1GPEsMALIi7/X7XEjGnI8IVVUBcjds1acwDIMR59S3p0ZJpJQGIillFMe986uDPKslEe9KzmS/3z9z9tSTTz5ea9Svvvbaoio4wXS7WY8hCQLSSjDXbjZWVpasdYGUIIbillEUMUBtjWXterO5Mr+wuLiMBqSUcRwTWceMYSwzVZDGSRhzxO7yubu/+53rQuKtoD7bnJk/AAxPHz08N79pamr6zGJ/plmf2Lz57Nmz58+tbduxNZWhKXNivKp0p9MBhqWqojgu8r6U0m9/h9t0C4wgy7J+vz8YDJrtKWNMrVZbWznn3YfQ0UhKjXHOvZiFMaas+s4oRCBwi4uLg4FqtKYCzkMArTVytOSMo0BG1vmGNRSBBGcZ50ywoqp8+cYBBEEwGAySJA7DUOlyeen8eBLMzs0wHpw5t3z8xMm5TfONRkOZoVuqADSWOKd6PSjK3FrrjA2SgHPe7XbFhTbSwBgyYowjApDzt1sri8IJEQiGCUfuzMrpEz/+0hf+zMtvSZl++uknjxw/Vo+b7cmZHz7w0Mlzi/HEpAyCsr/WOX/8d37vt5Ig3nfgoAPUhP2iNI601u20jYhFWUrmOGgJzFXZ8XPP7Ny8YyppP378yMLU7PmscIjTs3Mnjx5++8+8bc/Cjvf+5buvuvp6kU7f/cSDUS1OG/XMjPvqLZFFJ6zSnCEB55wLJjgxjswOSzQOHPnHjUZC4X7V9MkNY4zQeZlKxtZtBGFDIXL41IH1U9St9aMoIsaNVv74ulKNWh2qkiExWNf8RPTqq0M0ywcfv5nxrHmPe+EFtnT+F315ERDJEILgMgpNNswICRmMvUMZEsEo+Vmn9YxTio3vjBEdZRQAMC/mjCikdL7UyJkjckY55zgy8MsyopcnZRwA0VrinBsa2roTWKs1ORQiUEobZaWUulJMIDm3srQsAx6HUVVVZV74M/QUSSaYtRaIHIAxOkmiqqrStKaMy7KMMeGcm5qaIqLOSsdaC15kBJlzjiFTWqHvQwJutC6KYuu2hdZEs9/vnzt3VmsTBbFzzmpHRB4h4ygkl0SWiBw5skOK+jh3ISIA5xdCv/bQiIDvLVx9r7q/TXxk4mS18Ri5T4a8VAS5IXF++OsAxlptTF6V3UF/gW3ytvFjFQ8RSEKwToeRzItMmSqKA22qKI7KsuRcKlP5p1ty6ZM8APAW9eN1Z5xSryuqjFBbv0sxzvs5IsNhn+Zo2RJuUEy3J2+/43uPPHL4BS/cWZU5gSVijox25976iy/77u333XzTle/448/ee++hN//cKw9edcDQsnUdUJlSijFZVsXcQvgb//tn/8d/+/A1Vz3HGMdEdMWV1/36//q97dt2x3GqrRYcm62plZXi5MnVokCO/ThJ73/g+5/69CdvvvnmbrdbFgUAvOJlL/3nT3z8Z37qp/I8rzXrzrkoqV115XW3vOi2TqdTFSXn3Pa6Vx68/P3v+7vXvPY1f/1Xf1avp0srS5wzZbIc2abZucpW1jrGL6gp+1WPIzLGyqpARBnw2bnpTZs2WacZAyl5q94AAK31ls2zccjJmSgKPGRujGEMwlCurKxwjgKhzAZra2vbt2/XBNbaBx94YN++fUQUhrHgsa6YaKQKsziqIUSN+sThpxedAxlwiwbBra52FpIF6wZJkiiNS4unt22vF1U5Oz+zdXvQGxSWJEBZVVWapmCGz3h7cuKG+TnJA6VUHMdScgD0tAHBWJlnb37b2ySyT3/mnzvLy9dcf0273S4LZZRiiJyzNE17vR5jzDnLGHoFxI05hp9FfnL6fKvf72fZABgfDAatVss5R4zCJGSSMYBut8uijmjUOIfCgQgTw4KsGiA5B5rxDZ6OQ1diHQiZZ9ns7GwtTW//xjcves2Lh58isHGyxRGSJNk8v8kbHcCIehWG4Xjr4GuOfh/jd1fiQnPZEU1yKFNUS9MwDMssL4vCJxZ+b2SMNmqo3uGb6cARHym7bFgvMQxDGYUOoVAVE3yQ51mWeXZakiSNRuP0ieN+ND3xy+dM/uH04SaMIx/jiNCNKBR+uZIyVMoAsLJUQRDaoa2vRSRjzGq3AwwNubVeBxBWVlaWl5cZwlNHjrWnZtvtSWPMqRMnHn/k0SSpLSwsVEUhGEegWiRnphvOKMag0WgcuHhfr9fL89xYYowpo8tCWUM++4mERKL2zMTmbQubtm2enJlGxKIopqZnp+fn57dsbU/PhFEQh2EU8kcevO/Ln//X808dzgrbL01vLXvkscObtux2RnAWXnX5VQzY0vllIQIZxc5CURSOUFlTVtrvO338bTQaHhXw5wAAwVBu3pZV4YwG64hcq9VaOn/OORdF0XhhdiNRbI/21+t1gmGbSVEUi8tLK2triBinCeccufDbC+eAMVEZ2+v1iqqsqsp7R3oVlrW1tV6v1+12V1dX19bWjjzzzMY4QgCdXq/b78zOz07OTAMbNmRZa71Yl9+lNZtNL7jgnKsnqbcS33gcGOKeQ3iVcx7HMVU6iRLOBWfCOSeFALCNWJ5++nG9cu6q/dtedMPBGy7fc3D3lpuuvnj7TO26A9t+8lUv/IWffM2v/9LP/eIbXw2qaNWTWhJzpFqcNGt1csap0lZlgIRWS0TB3KCzfMt117/9zT/x2pfc8sIrrm4JNt1oDDqrzxx9YsfmbRP15gP33KPK8tk3PietJ51Bp9NdPXz00Mkzp5N22wKNcgvnH0COKBhzxoxTKD5y+guCQIhgTL0fIz0eGtxI1vGPAF0o+zRem7lAKaUj4/u6vW4TMDYYDOJQQlX5TdfQCQgQaUwa+E90m9iod2f87XryB8ABue/ZBADGhQyNAxxhGzAiYA1TTABfVfSv8TbXD8L4I7+bGm9zPZzjeR5+efYn6REvHJHNyTlnbCAkB0QAo3RRZGRdUWa9fqeqCkQSklmrnbM+SAohuK9vcc6RSSmnp6cXFhbm5+drtdq4hdCjWeTMRKu5b9++Xbt27dq1a/vWrX53LqXcunWrb0kegkmOtFeTrnK/y/XeDwiciPzWfGZmZv/+/a1W00tHehyLHPob7UbaV+M76x+ZMS7oD8s2qK3CSOAeR9JfbKSz6n9lTAIb1UbXtcTEyKJ+4ztlWcZxLMJw3K5oRsr4Sqk8z6uqWl1dJaJBnvkHdp0CYa3Z4Bvr8zB/Lf4+ug0tBXYkcuvbLMYQ73jiwQgDds45ZCud7sz0xDe+ct9gECCLRkCgKqrlZhvf8X9+7Rvfuv+lL77lxLHs1a/6oz/9k48+8tAq2E31dE+7tS8JdiTB5rygn/iJn/jox/729LmTURI7C4Ty4MGrgyDxUpqOSBlaXcueeOJ4FDeZwNW1889/4XOvveaqwWBABL5E2x/0br755p9981vyPOecOwTG2Fvf+tY4jvOq9HNMSrm2tnb11Ve++NZbL9q5o8izIJC1Wq3ZbE622mury8ePHI0ubFnz1QxLLo7jo0ePnj11Ok1TZ2wURWk6pGWvrq7edddd3W73K//+76EMgkD4do0/+7M/e/TRR31vhO+Rt9bW6/Unn3zyIx/5iF8viqL4i7/4C0/qFTxsNWfKwhjjBA+Kouh2+k8/dfiLX/zS7Ow0gAtDiciWFrvWIGfSaOesXDzfD6MaEUUJ37vvosOH+51OzxesojDprPX8XatK/eCDD959991PPPHEt7/97Xe84x07d+4ksHrUCSuEuOmmGz///z73yU9+IpLia//+745Mf9Dt9XplXlRV1Wq1pJRRFPkpOo6WYwlMGLEGxzh6mqYzMzMekXXO7d27dyzWmmVZIGSzkWSDXmVJsdDwkAWx708SG6zbAMCYIcZ24uTJ5zznWcbaH9z7w/GnWmsmhJBSJonfefA9e3YvLS9GUYTOl+rM+EnzEYozKXhgR92Fzjmj9cY/6Wd8lWftZiOOQ2uH6hplmTurceSvzBhjnrziKOBCa+2cDQSnDUwyQ67SypJVRtWbDQ/ge1EJpZQUISKClGZD38140x9F/qFCf6q1Ws1fiyVnreUcoyjywiFBLQ2i0D+xcRL6QJllGUPx3JtvvvzgpXv373nhbbc9+6abb7j+2c97wXMLB71ShVFNFRUDdMY20hoCT5IkiqIkjNqt1vzsXLfbLcuSiJI0PX26U2krowgYAmMyDJFzLkUYykgEaRA557gUhkypikGv325P1mqN6ZlNSa3Z6+dlUSml4zhK41j3VSoaU5PbBz3+8EPHt227nIeTSz1FLJiYnMn7OWPCAIGQEAQkpbaWoShLNciLqtSexMAY86r3iDSuI3u3Nd9Ts7y8VEuiWhJ77HAjmlIUhU/KGWNKqdZkW6lSqdKnNYwxVRTnzp0fDAbGGKuNMxYcIVJRZIxcFAV+Rg6XRqL5+fmFhYXO8jIhrq0snz118sobrr/5Bc8fT4OiKAhso9HYvHmzUhURESKXUgSBZ6v4kB3Hcb3e9EeWUjoHVbU+M5EDjGr/43AsfU2nKFzlAzoxzuuNxpEjR8Ca1eXzHNREM04kxcJtXZhspSxhZQOriRBna8GV+3fNNeNWLDdNNndt3bJt08zsRGPfRds3T09ONeqtJKoFIuuvqSovKL/h6oMTkZivRa+86cbUmgNbF55zxZXv+s3f/69vfcvpY8988Wuff8NbfmLL3m1nFk9ycC9/2YsPXnZZURRxnI5zDiLigSQEBOacA4aOkQOyQIac74zxyw+OAK5xijNKiYbhxnmBLPL//hP11LHuAAA4Z6TkDJCFQVEUURCAqtBZwS6QeAAAdORTQ690AkN1CRypLcDGbGB8Z0bnhoTMAheB9HQi37lGG1jq4xgzjqHjbMA3kYyP70YNcV591y/nUghnrZcSdNo4bQTj4MgrIyRx6Jyxyg66AwaoilKbKkmSRrO2feuWA/v3XHLxgR0Xbd+2fWHP7p2TE62iyBhj4BwZ8q4vWut8kMVhNNme2LJ5YfvWbb6Bg0ZMc2MMF0wKHkjhMQZn1NrKUhqHggGQJWusVuAsQwKyUgiODAkYImfMc7DiOO71esaY5eUlIcTCwkIYht5TxA8Lw+Ea4Ea9oogoOeMISL5BlRgQ0lC/bzzC4xsBXipZiDROOP4n+RlsUPTYWMrRTjm01mnr9OTkZKfTAWBJUtPaInLBAwJGRLOzs7v37tm5e9f+iw9MTk9t3rJpbm7GWq2sMlYpXVaqULo0pB1a4IQCxp1r4+zKZ3LgaNhyS16OmPkzpw1yZX74gKEIZBCGjIExas/eSz72j/c+8VAvjSe1Mc5ZxonAZcXy5dds/oeP//LnvvD1qcnZm2961ne/dfR1r/o//+3nP/gvH3/yu9/sHnk6OXu6dep4cNddJ7QJ6s1WGIYoODrSpZIiZIwBZ8CZkCHw4M/+/N0MpQzwoYfueflLX9Js1MqisNo8/MgjvX7fWhuE8pWvfMXS0qJfGVut1vzmTcqaMAyPHz/+gQ98QGsFSI1a+qY3vD7gwmkVBuLI4Wdu/9a3z5w589V//9qPv/q1nU4nEOtgfxBIY3W9XnvkkUde+uKXgCNP+6mntUBIsq7RaH34w3//yh/7sVe84hVv+4WfC6LQj5tV+oMfeP89d/2QA4J1SRjpsmIExpiJiYmyKOIoQoB6rbZv9x6jHSIDLpK03uv1hGBhJM8vnfvDP/6Tf/zHfzp54rRjFgRVRsswXV4elCUTIkQIAtE8d6afD6wxJq2xvfsXAGEkwZVPT08/8sgjuqx8BZyAdXu9icnJAwcOvO1tbzt8+BmfCTiwaZp++L3v/ck3vu4f/uHv4zj8wAff94lPfPzO73x7ZnJicqp9+szJZ55+8pGHH1xaPDcYDDjno+4BGqsHB0HojT69ArzfpDWbzVCKOAyyfk+VhdLVk089cX7x3OTk5Pz8fBiGjSQiZ/LKKhBxe8pJ6QgBgADsxt5HxoawkS42b986yLONenSEIIIgiOJgotlSZRUEcuvWrdpoR5YLFFwSY0oPO9SAHPNylyPGgH/CN2KejDGjFQIwxiYmWojkrLZOe8muLOu3Wi0ky2io28EAAiEZY0orXSkPbIyPJoTIVR4KmSQJIpIPLqMN2crKSpQk7faU31p5KM7DA/53hWDkW1IZ81qvXm3fkvOppHMuywpVls5iGgY+uAC4KIrWet1+NpBxIkNB6J0+mLWaS+ChONvt7kjTvKp80J+d3xynSZTUkLMir+I4bk8013r91dVOkiQTExPzC61DR47OzM36QUfOjdFypDzerDecFHlZBJwt50UYB1JKrezi4vKjjz760L0P7t+546Id27Zu3To1uzlX5v67H9w8W7v7nntvfsHN89sWjFWiVtODIm0ejqM6whrnXAS8coaQIaK2pqjKIAj6ed85h4BKKcYwjuNet6tV2a41fF6lyyofZGuqt2VbWq/Xt2/dXK/Fuio5R6UUD5Bz7tWaCV2plSFXq9UARWX09PT02lpBRMA5E6zb7UJVTW3e3Gi0lpeXAyk5Rp3eKqIgUwEgaFOQBcRk507GGAhRdLutmZlrb7i21WguLq8XHycmJhZXVphAC8Q4N0NemmGMO3T+QfKopwwEoXPGATDOebaBQObzCY5gjfZ8pyGlhmwSyMJabRTnLFe61mo/8Mijr7z+YDsUZV7FoWjV0tKYRhJtnp9KBaYCi0FH1ppzE639O3f2V1Ym5+IQsR4nAjCUYT2pE3LBoNSqIru6dGau1pisxUIXWGRbNm3btWV+dseuG5//wm1bt3zrq1//yhf/dbY9eeDS3WXVP3HkqQN7dpiyf+jkIeEFUZUOk4Rz7r0o/IMACEEotFVJEHAunWVmrFOKKGXg1nv3HBstnAyANnjkDaMA+YR2Y9BgQjBkIITwzAnOuCf0lGU5Pxv5RlLGGEPmkBEw5wwHopG853gVR/Syh/9BAmBj/oVs6NQOzCEglx6oRnDEkJyn3vtDoXXg3FBjAkYehf4SfJjyGbmPrYwx62ytVivLcm1trV6rKaWmp6ebzWYxyI4dOxYF0m+gd+7cyTk+9fgTlVFSSt9eHsmgLLKLdmyRkTRGVVUBYBkTUvA4Dr0/CYIPSuC0YZwZY1ZXV9vtNgCkaTo1NbW6uipEgIhBEHS7a85Y74kERPW0tnv37tXVzrZt2yQXHpj3OKT/liGKIPDKrlJKA04pxThaa5EgjuN+v++3JVlWWGtVZYJoI77IxxISMIR/fK48zLqG7M8NJKpxNuYz1yjypYN1fTX3H+7jGHbCUV88jmSWvPXI5OSkEIJxXlQljBhsiOi7sgAgjuOZmZkwifM8N9VIJYTIo+PjO0tEYiQG7u8aIgJeANE555zWbtSYP04lxzA/Y0TWCSnKnCIZff5z373ksldzVjMmDwJeqEoK3h2cfN4tl33sn3/zJ9/0f6665tJGY9M1V+w4+szib3z93c4BE4AIFoAIwMCeS67o9HsMOQNwFlBYrR0X4BwUqorjdO++i7UuYwAAt7B53psacy7vv/+BRqPRajadNps2bVpaWWaMGWNkGESce2R3dn7ujT/xJr+KSca3bdvCRmovH/voP37gfe9vRrXrrrx6586dZZZPTE6uL50M4jgs8sGX/u3f9u/Zq8tKcmHckAjlx6RerwNAWSoGYnWl4+u1URTt3rnbo8J+2H3Mcc4lSVJVlQcpoygyxmRZ1mi1iGyr1dLWcs77WX/Lli1/+VfvlKx9+tTyZz//OecMATIMzp3tLi329k7NlqUqCzx6+Bw5wRgLQty2fZO1Q8qjcy6J0o9//Cv/87+fn5vf2e13r7zySo6sqqrJyakXvOAFH/rQh6WUURTkRRUEfNvu3Qvz0/fdf89H/+FDb3rj63/nd//3/Q/c9xv/67empqa2b9/uQRD///LyMud8enq60Wj4WRTHcZ4XHuIaN23UajUi6vf7SZL4hGHt5ImiKC655JLKqGPHT14xszA/PbV07HyhrQIRRWl/UaWSCS4srpuYAYAyVgYRICPAOK0PinUrFwCwQEKbquzk/U63Ua+FUnjZLV+kIYcohiQway3hyJXW2mFjUZk32pPTU7OwOjxiq9FYW1txZABdkiQ+fPcGfa11GodZxv021AcI0saQYYBkrUf2ZDgycgeA0R6dSSERlDFeSyIIgjwvGhNtAnjyySedc0EQFYPCBxFPwETEoijq9dS/qUduOUtLSx718ei91wADazEYLg9JGPpuxH6/V6/Xo0aNMbBWG4IkSRknMgVxyjinOEIFM5tnDx15yjOrTp486W0HOaEMAmPM4uJikiS1OLn4ksu+f+cPduzcOTfbtGDBGAJQVoFzAKzMy5Axy0RW9FZWljbNba636mudzgMPP5zEtZe+/FUTrYa1Vov4saNHiXCQ9b/+ufte/6bXzm8/kNmcEQrLlcMgSVkQAuO60r4jVYYBEvgo1p6cWl5eHeRZFEaMMa3LNE2dzf2GUnKRpunWrVvDJF3rDHZctDOO41CKTfMztVochTzLskJp3z81rj8KIaqqSGttAEjrtV5mKmVlGGmleCAtx4XNm/Ks6K2ugDEYxoxDq9UIAmG1McYkUZRlmS/qT83MzcxMNdutoiyzLDtz7vR4GjRb9Ynp6bvvu7+obGuiXamCRgJm1lKlrb8EH9OdI/91HMdLZxY3phTGGMbHLX7OOROHIQcq8h6PY00AggvOc6cG2j389NGFGw6WJcxMTnz/zu8xwXfv37N1dprzUOVFLUrIuDRODuzb/8WvfTeO2/2sAsatpqqsCuXWer0oitJ6SoIR0WW797TDqBWIgqwz1f4De+64+74rr77qK1988G//6i8NlC956YsWpqdOnT3XiKUquxzmbVWSkY047QmBAGEYKmssOULmgDhjpa38JtsONWHWqdZKKSFDGHKox75hQOB8SgeAsK7aRUTENuRfiF5ygfhIk8kLwydJkg16kiNYY4wisoQXSFx65YV1oGu9InlBBjbOBgCAgBEbyuUQkQNkTIz2e+BdRAnAWfLdcMC87QxbPyASY8gYHzdAjVMB55yUYtP8/KFDh6QQ1tp+vz8/Mxtw0Tcmz/NA1AXnqsjzfs8n6IIxgQI4AGOWzGAwULqyTilbhGEYxQFnMo0bjLFjR08JwZ0h8p2fviKMLOv1nTaaKAzDepKeOXmq0QjIOVWU9XqdMdBVyYB8q3wYyGa9lkThuTNnV1dXVVWBdVZpGYTOWMecT5c5oCoUY8wnm6iAiKQQURwYY86fP++cI6Q0TXuDLiIay3wOPX5aPYbNuRRC+JvrHwqv+D9+4QYphzzPo1boOdcAwAhQcBw2MBkict6QW4pxQu8LjoGUPr33Ebvdbp85f67RbBpjkiQBDkVVxXFsrXVGMcbCJIZsEARBo9GoSu3TspGNL/n7PRgMvLaTn5NKKb86xmFEQ2WBYW3U25CP0QHYwGMmImV0LUl1rrSDA/uu+dhHvvGiWy57zvN2dvrHiLSUHNEgLzv9Yzffuvvjn/2fb3jtn2/ZPL9n55Vbt7UWtmx3zGbFwBhDyKModpYVRVWWJUMeB7EQvFBFHMdZURBREEVeaZysEhkwJhCB7FAV5Wd/9m1VVRijg5DVG+nps6e82k6apnlVEoB1LhJ8fn4WESuj4yjMBgOnDQuCQITz85sZwM4dFx0/fuLw6aO9Tm/zlo38Aat1FQRRu9Hsd3se8TXGRDLI89yvv298w5tuuP5Z27dvz4vsIx/5+7xUQgRCiL//+7/3UBDRUNnBOYfI4zhF4Ea7WMboME3q2lRcuCiWaS3udFYZmxIi0FoZ01NCbd4+cf0NVxljuGRSJFI2jx5b3L13jhxTJX/mqZNkGRKoKpuZmmQMer0Bo5rPihjAxz72sd/87T9qtVprnU4gpG+oOnfunL+PvtmuKApHxlo7OTn5kpfe9r3v3Xnxgf333XvfX/7Vn7/1rW+99JLLpyfaxPimTZu4EFVVdbv95eXlxcVFIqrVarVaLYriIAjSNPHH9EvD/fffPzc312q1qqqwVm/dvMkY4/2O5+bmhBCB5IhoDVYGSUYVQWQtCPD9NhtzrLIsIxYCQJIkI52w0ZJETHAiztjU1ESz2Ww3mgevuAyQABwiWKcFSD4Um1Fu6G2LgESAjDEZJf1elmcnRkoW4B/UKIo9pzsQApGc0dZqEQQ+px532SBnzoLWmoFrJY1BkTFAITZwv4hwJPfMmYjjuJ8N2pMTSa1GCJVRaZyc1efCMPZ5axDIMOJFUfjBciMbuKqqkiTpDwaHDh2anJw0ZnHgMmOp019zzrEwZIw5JADnr9EZu9btyDBoTU6EUeKcazRqiGidipKYdHHgsks3cX768UfatfoLb71teWWt0+msdjvLqyt79+znYRCFISIN+vmx4yenJibDNFnt6jPnzran6owJYxyT3FkjGBNBoCptyVpjBoNBoz0xs2kzIq+BmLd4+uzS488cTes1IURl1A+//4Pf/73fnkzTT/3Dx64+dnrz5Ze4iAlASSwv1LFjJ++978HNuy7OV5ZLVfR7vaQWBkIS8LXVbr05A8AY+nUZjC0DzipD1lpHZn7T7KCfL55fKkvjnEjrzbW1tXoaZnk/jpjgQb1ez5aWibxUo0qTqF5Pzi/aEU3Q1Otpt5Nx7ipVhUFADK11nIlarXbwyiullDIMAECGQVmWVVEmSdJqNIsybzabrVZrevaMcdTprVX5oFmrb5pfGM+Cc0uLU9NzaVovKt3v96MkMcZqratKC2Ra60AwC2iBSqXjKFKljqOAo9g43TkI5ZRDv/wPlxAH1pFNkjjTCkWIiKWxAeLmrbs//Y3br73skqnJZGW5u7q03Go3SJuJ1mRntesdfoy1Uc3t3X3RJ/7lc85qJALC7lqvVDqvjNHqXKdTL+phTawund129WUxcFupSIrDR5656daX3PzCWz79mc9+8pOf3LJlSy1Nnnfzsx0VJ088nZcrL33pq8J6evLceY3hcl5oZZE5L3rEWGwZGm255FVVTkxPteqNs4uLCBSGobXkHASB0HpIWPacKhyRYGAoCQbObSg2ASAjvDCRcs4SWQZE4Dx3XgiRJHFR5UwykEybyjptiSFHJIcAjAkcQV/D42xQS4f/pOzoP/WeRcx5Fr8jX6An3+4I/qwYwIj3Y7wt3Tpdwx9qBNv4txxjXBs1GAy8rFRRFIzzSqkoipZWV+r1elVVoQy0UlwKKeXp06f9bAl54Pd4pVYMMY3iJIxlJIwJzi+fK/JqYmLCasjzgsA6Y5DAOxFFUaR15a/3kUce0c5aa3ftuOjgwYPHjp3w+FDAxdK5pcXFxT0790zPzQ4GgyeeeKKz0qmKst/PBoNBI21EUeRV7DnnwEaUdiGVKoQQAWPGqDIvHrz/gSuuupIBP3LsyJHDR+dm5hFZUWYe3vBCM4iBG7VbcmTAh40F42qjMcY7nNqRUj+DoQmYR798ndFnPNpZZsiSEyNDSTPK3NahLy/Q6lllnB06dMiCbU1OPP7k03FSY8D9IPhaj7GK83QwGOzbt69erz/88MNCCArJGO0syIAnyQR6eoS1rVaLMXb+/Hlr9WR7qtNbS6I0CIJer1dkuQe/faaFbggujhFQ/wUgWmuDgFdFKbl0xhLnl196+f/473/5hS+/Z2ZublCc4pxbImcVMNvpH3vOjXt+cPd7/+HDX/rwB76EKOr1emete9Ge/bVGy2hXqdJZEkJEYWyM4VxWVRUEQaXLIIj8digIAqvNELZwWFVKcGlMzpnprK7IQIA1JblHH3200+3ykcaH5zdnWWaA7rzzzrVet9FoBIL9zV//9d/93fu4EEqp1772tZfs2nv1VVedOnHypltuLsuSi/VHuKqqKAikkEEQKF2tra3JgAPKIAieeuSpq666qszyMAxvuukmY0y9UXvqqadOnjy5f//+fr+/7aIdVuk8z+M4juPY84sExygIB4OBLqtQyCAIGu2WV0IoCzU9tenM+RVHYVE6z2khU8ahS5OWrgRjiTNJIKYPP73EXtIOI9ddFffd1zt/Lr/8in0Mo6o65Bw89cSx5z7/QJIGiyeyWsre8573z8/t+PE3vH5mato5MsZ869vf+dVf/e8X7drb72VEOBgMpJRgUUrJGPR72b59+3fsuOjqq685dOTw29/+9r/487+66qqriqL0QC8BtFqtqakprfXq6ur58+ePHz++uLjUarW2bt0yOTnp+WGdTqder1eV7vf79Xq92+3WajXfea61JrC1Wi0dOFVVIRkUnKywIBzTyBBGXvXD+AaMCIUIECiSQZEPcIOuFjESm6enLzt4aV5mZ86fW15bvvyqg29/+8+9773vn5+ZZRggFwKxN+g6Mpxxaw15iBWl0Y4xXq+38jIbH9E458iVpWHc1Wo1AOd5AFygc0YIUaohvzIIwlq9vra0LJGlcVJVFWmjqCC5nn4xwiiMrXFSBFEc9nq9Vqs5OTlxdmmx1GqqPSlC7oyRHJM0yrI+wZTWzloreOAV/gTjZJ1gGEXR8vLq0WMnrrvu+nNnl0DIXl5UpRFBJARZMoEMAEGGQSAjRJ71+mvdbtRqLa2u9fMiZNpZjaSrVXXD1Ve0k5op8qCW9ge9Rhzu379/ZWVlaXXFgdWmiiIRhpIBcs61tt2saLVaB6/e//SRo9sv2pbEAYB1ZAMhwBouQSIH4qvnzyuHSa11+OQppak3KFe73azQK6vHC6VqtbTf7b/5Z17fzcqzp07/3K/80v0P3HPg2VdtumhLVZV5qYuBakTNLVu2KXKKbJwmvbWOM9G2HTuWlnvZYACYgsUgiJAUkQsEIuogEL1eb9eO7WEoV84NFs+cHWTmyaeODgxnApHVGGvn+SCKWlKIJExKy4UQSRokSRgIFgchEXLGACAKpdFZMShbzYlKGesEEMZxumXLFmMMIRRV1s8zYDyu13JdLvfXMlXEoUxdFMbCgj1z7qyIYkCujCuy9bohIpZlORgMZJikSRMAdFmYynFAo7TkaByEXDoUShmBFASRqhzABX1AzjkErrVhftMvUFkjo5DIOCAGCASmrIQQWjvXiJE3vnn3wzs238aMYuS2LWxO44aDIOeFQIYCCVWlO5s3N298ztUPPvrEJZdel2U2jepBYIH6QSjjJAgCVpZrVx/Yc/XFF7tKD6oCedBd65gyP3DZ5ctnT5LNz5082my3fnj3HTIOZC346L984Mrrb/jkJz//Z3/3/uue+7J+6YhzFoTAgQPjDIkzh0BE3DGsnOA8kgE5rstKypAJobVmTBhrgyBwhoAzREY0BJy01mHoyeBAgMZZyYU30Fl/7lBwTgwoCKVWjoCAAeMQRHKtuyYChq1Uax2HiXIMgROpIdMLOJCF/5BybUzCAMB5ej5DRkhEApnnDgkCqyxwyFWZRAEROPAbMDQEwjkuGAevo+i01pbG6ysxxgAZAWmjHRmj9cREa2qmrcpqMOgZpzmXFsiS072etTbrD2pJWmR9EtwYs7BlkwgCsraz1FWV8R12zhnGxOlTZ0UYaF2dO38Wga0u9TjwLMtqtQYicca8FbGUHED6Yp8QIuSh1vro0aMLCwucgVIVY8wam8b1oiwfffjRF8zOCeTocGF+wSqb9/MkGjY8McFLVXmCixACiRmloyD06EggpAChVLm2uMo5X1lcm5maBQBrtdcJS+LQWhGHETkvLsaMMQjkLDnSnHOEofm6b4C11g5rnUDgrGCs0gaRAGh5dQkYKe/zi1iqyvdy+nNTRnstCa01OCRvXkmMAdfaBIEwVWGtjqJAyiAMEuu0CJhzpiqytQ5FUaRUpYw6cfLk1NRUlg1qtZTICcGJg7VG6TIIAiYZcLDOMs42b92sVGWVqTXrTtsoCcNw8lRVADjGOAf0U50RAw/wOiJHDEc7AUdOaSGENYoxVlYqjutpsue3fv39f/63Pzs5Pdvrn2fMIfiyven2TixsnfuN337lq3/8uQ/ce/jcuUEczTz2+IlHHz3UbLa1dVx6lRMElIVWKIAJLoBZaxmiEIKsk1KC82qx4tjRc8qwgItA8COHjn7zm9+cnpq47rrrHnrkwXa7zcBZZ+r19O67j9xww3UMKYijiempMIl9M8fxk6cfffKJm2++udPpTE1NPO9Fzyfnrtl8ze//7u+dWzwnN7QVW2uF4JxBFAcyFEqXxihj9Mz05Ne++tVbb711ot08euxE1u9prTm6fbt3feYzn7nsDy4Tgq12VqIgTht1MhQEgVFWopSCyTS+87u3D7LezOwUMVztrB09duLq655FYJaX1de+dvcrXv3cmRlWVZmUIZCMw6kH7vseXjFz3fVXnD619MxTyyurSydPVnv37r3/9KNXXbX/ju8+tW3rVUXu/u49n73q6gNf/er3d+/ds3Pnrn/62Jd37rx8fmbhN37jN7/57dufe/NNjImHH3nsnz7xye279lqHwFFwKXhQqSIUgiMjY6MgzvO83mgQ4L333L9/38VPPPHEFVdcIRk3I4arKiuNCgAn25MzUzODweCee+4JguDEsRNPP/l0o9XcunWrcy4M48npmSgOpZRhkoow8tWDKIp0WQ16vSSuVaWuIWS97lQ9NizUplDcAXKzQTDcIHlfWgZkdMXIbVTFd+BEEkaPP/rYo08+aoG279hprX3JS17y/ve9/+KLL65K3c9K4+zJ00ekHDrMaWuEkNoYj0amacoEjo9prd26fXsg8Pjxw2malmWZ1JM8Hwy5BQhEhMB9g48QotFqnj99NgpCgQwJer1eY6I9Pr8yL4IodIjW2jLLz507d/EllziELVu2PPL4Y549sG3btvPnz/o+BiGEUrkHS62zjUbNlyN9pWxxcXFtbW1xcXGt1+Ui6mWZLqyvVbEgqLQGAb6BSeVF1h9MTU012y3BA6u0Zub86RM/9cbX79q2NQBweZZ3uzKqMQStinNLi81mc1aKSqlC5fHQlROkDC1gqfTi8kpldK/ITp4+u33rAkMnGGpjAikVWS4lA6E0lRqqvjqztHLm7Lluvyg1WRi6rmSd/sLMVFaarCx27t9bi+XEuVO50tYQoLDGLC4un19a7mdFmDSVtlGaOFM9/NCju3bt8uviRKt17tz5PC/rqQCAOA4ZAyDaunVhYfMmwUAp9eTjT/Gwtby0NrXVTDaaSikmOGOgTYUgGHKtjDGGyAkJRmnBuC6rNGmEYdhdW7vt1hf2ev2vfe1biGFzYq7K8jNnzpw9e3Z5ebXdboqIG3IzM7NBGG7ZsqUs8zKvsn7Xuhqg45wDZx5SZkL6TsxhNuAlHI3RrrIgkjAp8spYDY44x1AGlhw5o8rCOceTBJHIWW+2vDEDY4wZS9ZZrTWMxCfB9waS42TBObJMymBQ6Pb8li/feeeP3fa86ZBKpcuyjKKoUqaWpAjgdxRWF1EavfS2m0+f+uS3b/9SI5kyiojIcTJOa2fb7fpsM7zm4r1oKmMUEQHi/KaZz3/u0/fdd8/By/dLZg9ccvGNN944vWkqmWxiyCngEECWD0IR0/AMuQWyBGMHLeccMZQ86Kx2ZZhsmtu8tLzq23utJeRgjHFEZVkiMQIWDFdZQwSB4Bewvhw5dF6DbcNQIedcSmm1QpSCCUem0koI0ct6wGh+fraqimRUGeRem4AREf0owDVKwn6k8uj/OhAwcETMOAw4B3DW2jip+WYaGuXNhoAIDBljiQk5fNMYwqG61bCyzBiR4wKdBmt1o1GbmJggCysrK0sryzjq3XYEWmtwhEShDKwxjIFzbmZ2usrLMyfPkyGP7kgpdZ6XeVV1+86ZKEyHWBTwdnvSOaeUcgwAQCm1d+/eTqezurqaJInWejAYhGHojTIF5+Nu66rUSZT2ut3zZxejJATnlFKTk5PbtzdOnDhBIwGzsS4MWeB8yHnVetjFyRmz2nVWuzIMwAI6AhqKfUdRFASBL9sNB5yGTeWMyF2gxY84ElsmjyRasgC+5CTDYDAYHDx48PTp048++rhvBBsSAUcaFr5Rf9jdSWysXOW/4Jx7LLLebPR7Ax/LnLGerxk4t7a2GiWxMero0aO+F9ubiuJ6u65DRCkDj7dZa8MwEEI0m02fBZKxNLLIE0KQIQAQjNOonk7D1B+84QNDJAfODAc5kFJrmp/dfff3v/W7v/neP/ijX9iydX+3f9ZSSaayzDnn1tZOS9m+/PKLrr3m2XkWPvLwicce/zjncp3fiAw4A2AoHACUarjcAIG390CyQoiyVJcfvPLfv/L1n3jTT9aSuCzzvXv27N51EWOi2axv2br9K1/9stEOiNVqtbvvvvu2217SajX6ebFv3z5EXpa5c3DjjTf9yTve8axn3xgEUbfbF8icc0EYb71oZ6/X2+jXZwjAuCQJZCQduvPL532NWGl7+PDhb37z2694xSviOI6iCDir15vPHDn6nve+9wUvuvXZNz4rTmvOuRPHT+3ds6e31nn/+z9w6aWXPuv6G778pS9pZe+5+76du/ceOXrkb//uPc+98abLr7jaWvvRf/jU3ffd++l/uf2Sy7c7UlW+ajU7d/ax27/58PFj5dqKfvzJQ2dP99tT85/8xDf37j314P2Htm+79JGHT/3yL/1hnmmE1ub5rZzD3/7Nx8tSoY3mZrf0ev3bXnRrp9N5xx//SVpvzMxuftGLbj12/HQ/K+IgcI7Ksgil4JyRsYzTkK+GiAyctUEo0iRBRGsVApCzwAUXSERGWwACkEEgfVrCGGtNtKWUzzzzDDmM4iAMw1pa9zWEsizTNDXGoKNASGPMRLsJZWWMcYwzmURpvequpgTWXaCcxTkvnFXGIBA6r128ERtD8Z077iqq7NKDB5J6AsRMZQIRHrz08s0zc0KIrKwsmTTlP/zhPVYrACbDgHG/neBVVThnEBFGa2WtVkNGzlnfTe3TLF+IzPOcDQ3FlJTSg95xHNebjVJV9SRFAl6pjcITSZJkRc48zxpoYmLixMljW7dvabbbaZpqraTg9Xra6YQw6ie31sZxLIQgQD8dtdacC0S2eG6x1WgZPdRFrErtvKEHMmchDIUiYIBREOi87CyvLJbFxKbZvNdVRT49NXXrG964e/t2ieBUVWR5pRUyiGo17sK81z1z/rzRToRBEEaVNmEYImeDPAPGA4KpqanWRHtx6Xxv0C9UFXAWhokmIi6qUjca6dpyb2UlO3L8zHKnbxmAEKUGAJTAOLI4DpNafGRx6cmnHr/kwJ5DJ06Uea9irnQmjCPV7THnzpw5+/Cjj3Wy/tTkTJQmVVXV0+jUqVNFXnEulC6VKoGc9+mz1hnjAFiapvPzs0WRCWRVpY8dO33Rnma9XvfQd1QPnXNeqDYJYwDwmiNKZ0EQOFU558CRQMYBVVm2m/UrLr98z85dd9394Mlzy5u2bjnyzFOMSSnDY2srAPb/x9d/h9uWXXeB6BhjhhV2PPHmVLlUQapSlWQlKzmBQzvbDd00uG0w7z0aMND+CA+aaDBg/Az9tTHxtZtnNwZjbH82BmzLsiW5JJWkUuV46+Z78k4rzTDG+2Pufe6VoXv/UV/VqXP33XutNecc4zd+IR/0Dnf2H3rooZfefns0GvXKMgm7fOcAINNm/3Bire31endrRDjC0WQ2my3GG/3pfIGoy8FgMZ0GblTKnIoBfRBW1hgS5x0rpY2SejG5sx9FB6iUUgKCqEDI+6iUBkBJ+S0gymitlbGWvTO90oF+4/rNc08+tHbq1I3btwbrG/3hCElCjFYbF1ptdLuYnj259kN/8vveeuvmjVu7s6NF0gF0oev1+xuba4Oi6Cnibq7L3rDfcyi70wopzOujLCtIxaP9276bDUbnvbTOxdDBUGenzpwVIGOzqtovewPPvvORFeaBmQWQWEArjZGdc9P5TESyrFiJH70kTSOz1RmsFHCEbIwWid6zMUYpWlGYldaa+c4FT5XHUmLsA2mFjAKQZdnewQEgnzix9UbdqCRaFMCVHwEg342u/1+9cFmk3ckFOv57Y4xlv+d98D6y6yKRUshIiEJEkUOad6SZmiaV6jBGTO2cC07pRMqWJLVBoa7zHCJZiCFqY1hwf+/AOQfMmjCz2WIxS+lkN27cWMxm6+ONruu01gSQKowkyLLKosZUWyR4bGNjo67miDidzcqyTNke0+n03LlzSfB/TKVKzBWlVAzinBuPxzs7O6fPntJaA3Lb1adPnQ3h5NHRNM0x0y1TSinUMaZES3VMhU4VUlK5J35tqkVyY5VSTdPgykkBgBmUIMbkEs6c0LVULGulQrfkO6e34mOPCSQOEYC2t09qetUo7dizCCJQEkUAKr30IUJZssEgcqaNcy6EUNgMAOq6HvYHEKO11ocY2bvoQsiYeTAYBF7O2kRkbWP92rVrpSljKpUUEVIIwTdN+uTp8SCi3NhUbQ8GAw6xrZuEiCIsGYGImEBuXkoF7qQtMbPrAmXJdEASxe3xR9/3if/4ye949i/9/X/wF9755IXhyCO1XrrIoGkgsbx+ZfbSi6/98i9/8uf+z187ffaBzc3TwXOEpOnGmEIqWRDRaiOM7FNL4LIsk7h0e8nz/NOf/vQzzzzzTb//93vvfYhE5F2czRZWZ/1ykKz+i6J3dDT9lV/51f/xf/w+73kxXSBSCH5jvDmbzn/mZ3/2O77ru77241+jjQ3Ol2WJSr/48ivz+Xxe3eFavPzKax/9mo8c7U+e/cKXnnzq3Z/+zDO/75u/5cEHHvid3/3c5taJf/Pz/65uu0uXLtm8Jwi/+Mu/+gN/9I/fd9/D3/Kt3/pjf//vP/HuJy9fvvx9f+T7/ubf+JvTo8lzL7/0v/y1v/ZV73nvz/3czz3y+OM/9MP/8yc/8+m33n77q977vqwov+H3fePewUGZ9x64//G/9Of/sQ9CBA89cPH06bMxyPlzT02PFj/5k/96a3v79Jl7BWF6WP37n//kbOJFZLxWaGVQmuFwhJIHH9/xwBNE5DqOUbqm3dnZUUY/8ug7WOjwaHrz5k0RsTYDQO9DluVdUw+Ha+O10WIxQx0M2f39XeH4wfe/75O/88mzp08hMOGS5igghAiIyigAQInGKiBkoCwvI4igQmUEQVC98MJLWWa2traUUuvjEUTOjU2UcYPUIwPzyuisY7Ll4NTZi69ff2VoMvrKPratq+T3zgBNgl3vQgQa5/X6xlY5OIsq29g8ubezv7u7L8Fvb25tbW00dW2tPn3u7COPPvDoo++YHS0uX7n2uWc/D+ABFJFhWNEvVuUXEc3mkzI3TdMMh0Mi8j4yc7J4ICIiLdLGGJXSgoBIm5ubt65db73zrovCx5ZFaTuYzWbnL16cTqe+a33blYOyrmsnO7mxZVHEGI1W4/Ho2rVrw9EpkXh4eDhfzJM9lawEX6kdvH379traWtu2WlsRaJtG45KFsKhbFIHI1loOcX406RZt5xsRWUyOrr3xxh/6zm+/ePaMr6q2awpjyrLMgDGUoZreuHaTOI77A61yUjCfHy3atmld03RFP7dFXtdN13UbG1shvjSvm/mizqxGRFJILELkIs8b9+qbl9sOmGVRN5cuXnz84UfKPCNGiSHP85s7N9eGRWnN/Ojo1OkTRFvKqvHGJhprTLaYTozNH33nu37pc//m5H2WmcuiPxgUjz32zoPJkYCJ0RMlU3JOwvWtzSLLMueapqlHvTKEMJ1O+/0iyRSYOcvMsRSlbVujLDPP5/OlVy0HpUhr3dS1InJd1zV121Suq06d3v7u7/n23/ydZ377t5+57/77FovKmrzrOlCQnoTrV6/t7N4+7PVmh4dKK3jXI+zDbNpU80We5wd7+0WWZ3eJqG/duj1a3xqOxgcHB4PBaDabKUV5YWtfeReAvdJoldHIitgQu1Bb08usArhTUiilAFWUKCtCroSoswyQSGmb6671Si8z9YxSIYpS+e2jmSP77vd/aLJz/cWXX3j66afRkOcILhCBeE9IoZ33M/vIg6cffegCgWrqdjqdHk6ms8XCte3F7Y3xoF8qDQCgyDU1cjRG9Uf9zc3NyeHB4f7tL33+mVNnNotT64ScKcM+7B5Oe6O1zseqrrW1XROINIMAKec6VIaQuhCVsXXbtWFCQoxgyLDIbDbr9fvHvCgiAo4xRlQMQMnF5ziDDxFBOMao7yKOxBiTUlhb0/o2wS1AqMgc7O4By3g49DccgaCwICCq41rqKyJn76rnloXXfxn7SCgCiBhBRMQz59r4sIxvY2ZGCjEAskLg4LXNePU6Lm7gjgM+pFDqGL33PoZQ2j77YJWWyIToug4jVItFlmW+62IMHEIyRWMf0x6VKglhTt5CtigWi0XkJVya6CCJ7fSud73r6pXLt27dSi56yWa967qLFy9aa/f39xeLRapx8zyfz+ciYowViMyYBDFFsVxxIpLnudbV8ZXp9Xree4Wq6zqRO+TxYzcsay2spodx5d7HK6fv9JAnbaPclQIehQmWub1AiEqFEDSCpqUtS/r6VVUppa5fv37hwgUiSglvceUUqFYpk6kiTMwn33a6sOnKJHk/CKRQbTiO3tOkmKy1S+W7VkTU1K3W+sSJE6+//vrdSRW4cjbRWuOx94pSySIHEdu6sdpkxnTMzGyUJqLgOd0+RGRZGoAdrwVELHtaGGP0RCrPc4jgHb/3qY97f/Df/bd/5f0f3v7Gb/7QyXNrw/HAdXzrxvzFL1/9xV/6xPVr4cSJzfd98CPzeSAiUISiACMIEqIgEEhSpxHqVBmnUCkUlsiAICLvfPyJP/En/9R99z3wyMMPVlUFICqnXq/31ltv/dN/8s+/+sMfG4/Hu7u7h4dHf+pP/9D6+vrv/33flOc5gkKSl1585W//7R998IGHv/M7vuenfvKnPvKRj/R7vYOD6ac//emf/ul/dfr02V//9d8EWE+X7s/98F/4y3/xL7351utXb1w/ffZMFvhv/cjfeeJd7/r0Z363NxgWvf4nf+dT3/cDP/jIw49evvJ2VS3uv//Botd78MFHf+jP/M8AEVE//vgTf/Ev/RVE+vBXf+z23sGP/N0fe/TRd5TD0aOPv+szz3zu3PmLw+Gw7PeeePeTt27tCFNT1Y889AGt1WJRXTh36cyZk3lh5/P5oJ/37hslPxTvg9Xrh3vXynJQloX3TWy9VkW1cL0clcrevnztzJnTw+Foc3NzfbzW6xdN0/jATeeyvL9/MPln/+Knt0+eYgCrKPhgjDrY3+/lJoQWJH7+85+9eOHi8899WRv19/7u333XE+9ESMAwAgBHn0aBKX2VGfKs3+v1Diezfr/PkZM9ijEUo/R6A5F4cHBkrT46ONBaGWNym/nWyXl7cvse0ApIMVPV+u3xZiDtBaG7kykEANF3EbUKJECBY24Lvhv9Iqs3T22dPH1i7+CobqKIyctBM9snxQxdlunf+M1Pbl0+cfb8ua2trXsu3PeuJ5/6um/4+kXV3Lx56+qVm29evpJM8+68I8TRaLBYzJU1WVl4junwprtC5VCrumuzLLfWopALrTJZVbeZ0sk54vjdjDEnT54MIWRZ1lSLuq63T233er2bO7f39nfW10ZEajar1tdG08lhryjT1tm2rdY6JlMfgGTDOJ/Pj46mxpiUQsji8rxUoBa39r2Yfr8voQEBay0J7N64Ndk/pLWyruu3Xnv1e77t286fPNEtprFuJLLKDCikPMtUPgvtrYND3zS3rz174cI96+NRlus8Lxiq6bwSk+WDgTU5i0wmk8T4O1obl2VpjMlV3jpf9gazunrx1Veqti6LUYjuaz7w/rNnToW2ns8mvvOa0M3mpwbFyXEvy7LXn/1yn544e+kM5qpu2vmiJk0B8frtvSvXbm2O+8H5ZlGVZamM3jp5oqoaQD8cDkN0wC7LB9ZaRcb7qJQC0d77pmmGvaHWVuklWumci7E7ce5E27aDtUF/UHKQjc31naP5cNjXFI0x0XsEyLRBgVF/cLA/6xd5CN3+4d7m1tm2reeTg/5o2HVd27g8L21mESW03XA4vPDEu7U1n//8s6PBoGvanVu3b9zc3725Mzp1goi6prF3KTDmi7Y/lH6vp3Xetq1Win3rIyjgTAkSIUWDQSEpgJvX3uQIRTlkZoh3AqxEIiAgKK1RKQ2onfNZAUAqoo4chVCTSgYIipVECJEn8/ata7eys+vbZ8+P1/oxBm1VjDEE3++VMUYgDL5ThiEEZuUC+yaAb7lZ6OB7vbJfZINBv6mqsiyJSOoqyURu7dye1Y3NdIt0tLPnqmqot5gls9mrr73+f/yrn3nwkcenrSv6g3nToCIf2Oik/0cWIFIEChCBdNnvtXUnDJEBQMqyLIrCuSRfDhmYBDAhYvQ+pWInrptEUAaPAYPjaxU4oiIXll27UipGT6IBoJtXMfrRYMBuTwMCM6jUg2EENkTwf20w8V+88NjPK7G/ASCR+IVWBHAEnQRjyAoBVkGKaQgrK89YZlbKMAejtABDmnEBFEUhQZJxA5E+ffrkwcFBPauIaLFYbG1slHl2/fr1oiiOjo5OnTp18sRpv/CZyRbBESnnAgCkljc09XQ6ffjhhzc2Np555hlEXIaqOUdKKeak+Em1wuHhYdLhJnOEyByZkyowcmutBUTSmMInZrPZ+vp6UggdVzbJAYc55HlmrU5GOuGuJKWE9imljNIxhjToJKLGdWW/F71LLkpJ9y0iSS2LSAqASEsaucsy/0ApNFotVZZKEVFZlnVdz6ez8XC0Md7w3mskAE6GckbpCOjbjpHzvEzzxCLLOUSJnCBtozQQMbPWFpay3KXCo2marCyyzCYifxKJnzhxgnn5CdLkkWSpXgwhcBCttUKCCIQqsUQAQLwLzh8rIpk50RCFQCTiXRnesHLWAGBjMogq+NB13fpwPfj5p5/5T8Hz01+1FaP/y3/p33YBWAAYSODB++8/f+q9l85lLvjZtLJZP/gohIgovJSGoDCmPxGAIaZStczytm2N0Z49EWqtBWF9ff1bv/Vbf/zHf+zdTzxhrXVt9+yzX/ipn/qp//ybv/6T/9tPfdd3fdfP/MzPfP5zX/johz/+h/6HP/yd3/7dH/zg+7W2169f/ZEf/TtraxsPPPjwV71n64/94A9mOvuq97zn1VdfPTg4eOKJd546cfof/X/+0R/7lr+cllZXd9/+Xd/5Pd/zPadOn2WBLC9dCL/1yd8eDMeEOF/UDz/8yEc//rWf/cwz5y9eKssyhLCoGmvzJ59+T5aZrvPT6fSr3v+hEMJ0vrB58cijjyegezpbnDh5em1j03svgnme113d7w1NsPNFG0Lo94ZvX7l29fpba+vDU6dODQaDwvbbtg0xGJMFJ0dHs35/xMyEtum6pl4MBoNq0cxmsy8++6Xt7evrG8MQ/FNPPfXhD321955jKPM8K4rbt16qFzPgbe9DkeVFbl5+5cUf/ME/+uD997zx+qtNtfiOb/+2P/A933v27Nk/9af+1Fuvv/HwAw/OZrM8z2MIoAERFCkAEIQVysNnzpzZ2TtIruCRGYmQNEhs2zbLzKDs3XPvRWCZz+dd1ypEEmyaRrT0Nkd164Ip53V3YjTYPHfP0e5bAwPuLncJY4wwMgIDLOq2Pxwz3DnXGI22vdGN20eBpdqZLWbzo6NZrsJoPEZEL34ymTz/ysvpOTx54vQ7Hnnk3LlzNs/W1zYvv3Wt67rhcDiZTI7f0fsOAEJ09957aSW2Wvrjee+1tkvCxMqKGkRAkclsWzdlXgiic3eYa9H5fr9/cHCQFUVigly8eLGqKudao0gjCYhVGgC2traKIjNGRfZJ7Xz8t2utk19RagqVUmXR19YyaIigtW477rrOJj6DgLX2yvUbSqAs+kbrw4O97Y3xqMhq31XCeWmD8yIMCAGxNxo/8s53vf7yK9Xlq/+/X/rEB568r5/bEye3bF7mRdl0rm1bJO19FJHBYHR0ODnYmDbOC+FgwFrrWb3rI+8fHiijmcPFc2fHo8Fkf/fyW69dOHdGG1BKZVrViwWicGeI9TO/9TsSnu5tDI+m07xXbm9vHczm8649ms6aukt4eBrBDAYDY8zlyzfyPN/YWH/r7bdTpEFd12WZI6imaQaDUlvDCIC4sbERZGndm1xkh8Nhli1rsqLspRMlmeDnWaY1ZVkWOqcQLl08aTOzubXe6/XIZhsba731Udd1R3t7qLPJwSFYrZQa9co8zw8Pj6bz6draGjBbrTOdAUNW9upF5Zvm6PZOXmTwjatTGpWIsA+9zGQqPzo8KPOMgPPCGG0IRYIXYAQSkExhAI6xzmxx4eId+aQxxoUYIyOwcw6EOURjTNL5V22TaeO9B5HCZl3XFVkWgDzYt29PhoMiQmZYh+BFKR99bk2MESIrZQQlfQtmyW3hyc8mEwWyvjbqD0ZH08mXX3iemUOI73znOzc2NhbO3/voY2cfuP+ZZ5751X//S/eePqOUWkzmm0hKAAB2bt56+8r1B564eGuym2XZwnWYHLwViYi2dl7VTesGZY9QrDVd17Gg1so5hwoGw7ExqguVsibhBMygADQSCyfEKx3kRASgbaZF0jB6+UpHOwCk/DKlFPPSKwiI2roZDofc3URgYCaFyMmK7Cu0Dv/V13Gdt+rZkGNibKcqLI1flMmWMbqMEDgyEMdgSR1nRtJKnXfX26YfI4sg0rE6zyqNAiJSzebFpUu5sfMwwcx2XWeMIqK2bY3tcQQGKMvygQceKMvy8PDw+RdfKMvShXD69Omj6WR+ZSEiWZYliCvFpFprE9dqPp8nupXWut/vLxaLxWKRSBdpo2uapsjzuPJB9aHLi0Gqj5NJGAAkCA1XOXSpbLrbiOd4gpb6zIRDt21rc5Nqr6Sw01q3dZVSQJLjdIxxXi1SlYyIQEunZVmxwZYIXKqcEJMCP5kBhRDG4/HVq1d7RUkr+DKdXks8LLLRWiIfc7/SrWmaZjQctnW9dWKkjMnzPAMCDHmZkUZkadsWFcUozPzSSy/dH+5LdcBxLZ7MyUMIHGOWZdF7IUphjl3XoYAxhl2XKH2IKILHCNnx40FEX2FqB0xEzB6FtaZ+z774yqeMaf763/7j737yvu2TfYHIoNsmXnn7+he/+Pov/cJvv/zy6w8/PBiNy7pqtM5jjIBClBBfEUESEJEoDCBGaQaQEK2hEEJm015amNTDkNne3qbtE9/93d/91JNPnjt37ub1G5999rOPPvT4133sG376p3/6r/6Nv3pi89TTT7+3bduPfvjjzz333M///M9HiGVWfuRDH5nMZ23dKqW+6un3TQ+Prl+7ce70uXsv3bNYLK5fvTYYDY+/ZJ6X3/T13zjqD6qu1lZrY3Kth4NxakU6xz5yUZRkrLV53XRd12ltQ+TFvO465XwsewMfIyAKUtM5heCdl8mMGSaz+cnTaE0WfOx8hCR00BhqHgxGdV3fc+95beLB4e3nnvuitfaee+4fDdeU1Tqzk8MDrVVR2LNnz968eZu5VxaZiFT1vGmaD7z/g3mRkQreu7ffvhLjJ45293Z2doRoMBzf3j28dPGcsBsUVikMoePQfvlLz/Yz81Xvee/73vv0pXsu1PP6X/7zfzEejn74h394d3c3ZUAzc1dVgEuTeWXu+N2H4K0m3zY6sym4NiXNF0VR13VhM0KNivM8P7G1qZSaTmaCBihunto40jqICkC1l5P3PvjS4XUGd3fSHQOF4CmSALjgbVbIXeWXKKv/6b/8twdH0xMnTmxsbBikg53rD9y73RusCSogAaNMVvb6w7pubu0c7Ox9itkTKeaIqAVVlmWbm1vHQ548z9u2OX36ZKKLysp4Om1zWd5PS1drrawhozXqoii6RdvWXVj1XsefbzKZdQeH47VhWpMMvLa2VrfVzVudtdZmGhGPJl2msl6vSCMHTWrYH0hkY61SCpiBWRiPDqcIKs/KpnOJVyFIBGR0Jm0TnDM29YHEQW5cvVGMepuDgfceQujmc/E+uk4TRN8FBmOVtplrGlc1Wa+/ffrM1u397NUbouxgbc2xhLZBrYDFB+73rTGm3y+Lsjw83F9UdYjctG2WHfUG/SwzItJ07XA4LGwvgnz+2WcfePDex59++sF3PNi6bmNzDQPfvHoFYrx17fpkd6YQL7/y2kE1efjpJ87dc3Fa5Qfz2WjrJJm3nPNa6yw3vV6PSLIsSw4uN27cOHnq/IkTJ3Zu3iiKbDQqRFwIYTGv63px6vFHXBNSBojnkM6Vuq7Tw+q9FyDXeZvF5J6sFIYQjLVd14XgXHRJpZy+S4xxPBr1h4NTp8+urW089PCj0fNisTg8PGzbFonevPI2xGiLoiiK6N3a+qBX6izLECurjelriHy3/cjnP/O7jzz++Gg0YK8JeHvcD12tEDT42HqlSRsDoGKUqq4soTUGSUd2HO6gXywxhIBAejVmCyEoAVDUMyY6b43lGAFFSATBcfQAerjmbP/VG5OTZ94Z2nmE+XxxMOyVoa6USKatc0xaW209ewDsOh8io1JZv0QyXgS0Hm5ueO+bqv3il7587tyFm7d373/0XRcfe+e5e+/d3Nz+5Z/7N8Ty+luXz77zQd0vATAEzsv+onU2y4Q5a21d1yzLTHFjjA8sEhMVuq7rzjljiiUYECMi5r08HTxGq4S+oFaIqEgZpY+ho0Q5T+fl3UP/yAyIyizN0wMnMblSpE1eLhaLQa8fupY4kiwLIkTUSMyR/m+5X5RqLbjzSyKCSDH6VGTHyKK0sbn3yWBilcm9mjCmtioNH5fVBKqUs5QQoxCCSAzBpV+LEkMISqH3HXK0Vic/QW2o6Pc0kjKUyEYhhPlkPjucSuQYY5YZkcgSkASAve8YuXFN3su70GUmXzSLvcO92Ww2m82Koki4e1VVxpg0jkxrJ4GdIQTnI5Fu2xYURZETp05VVRVF8izzMXqOKXAmMdtE5NiCJ033RO5sjzHGBFonypoxfaVMcpEQCRwikdbaMoMIGmMBQrJ+5QggSboOqVhBjYmfpJRCUrjKO0pakyTO7/f7i9m8l+VN12mzLHyXG7UsE4gyY5xI23VpbJ3GuHmez2bTCxcukDAHF8QLeGV0VhQhBFtkUThR64wxp06dunLlyqJulFKYWF/JM1bIasvLOi/vmnZvbw8R+0UenQeJJBC8T4I1rXQ6LI5RUgCQEEUEFKRc+RhDbqlu67XR5vMvfOqjH7//L//V7z9z1nT+iGUmghyxHOVnLp55zwcvfuf3fuhTn3r5H/z9/+PF3/3CxfOPlf01QASFgJEIIJKAEGiB5JUXMmOBQJNWig4Pj+rF/O23304sCAJK0CwAaKJnv/Ds57/wubQUXn7tpedf+bJG+9D9DzHDjRs3RqORiJy9cP7ivfekgjKE0Jc+R1SAVVWNhyMfnNVqbTjaWt8oiuJwOrlTfllz/crV8xfP9Uyv8y54VkrVdUtEQMrmeeIjzubz5ORijCFCEUJQIEQEWZbHVMjGSFoFH1DpKJxilLXWXeuUMpntK2UBgDkqqxjZh8Zm6p57L5xpttO2/8JLrx0dHW1urp87d26yf5DlOF8cXr/hg2OttLVZnuevvvq6MRlLbJoqSbEH/ZEic+LE6a2t7c7HebUoZ7O6a69eu9p1HaGO4r/vf/gjH/rQh97zxLsffPBBFHnuc1/6iZ/4icl89thjjylUF89fTEhp03Vd1zVNN53P6rpuuy6RCH3bZVYbpba3N1vXda1Homo+za01SmNeJF5NXS+2trbyPBeRGELjW9bB5OjaOiqtsrJTJh+uj05frK+8PDB3codEGaCY6Idd61Gpu5wQoXVRX7rnqa+5/77t7ZNt20bX7dx8c63nL7/+xcgShbNi0HQ7Pi4Yyea9oih6RZH2uKpqqrp2zh8cHMB4+Y7euxBdnucsPs9zRaaLXV3Xxiy5EVmWJfmMiFhrIUJd1y74pm2VUv0iv7vbSx1w13pGjsIKlVIqJakpYzSpruuS+UfKbJ7P59evXy/LUinVNBXixpJr6VxKXSyK3rxahMg+CBnQqAFZax26oABZuCiKftlHges3bj74dR+Z++bpdz/13qef4iTqJrA266pFM6s2NzfLskcsbbVY39i698GHlC3293Y75swUe3t7Tee0ydLWjIjT6dw5NxqvMwgpQ1pNZ9XO3t5gMNjc3BwP1yaTmdbUNc3h0f7BwfDwaHf/aH80Wgvu4nw+rRez0hpTltcP3rh19da9l86qnk1mdPOqPpjOnnvh5Weff/7k2bNN12ZFoTWJsISYQKw0bTHGkFIxesRCa9JaN00Tous6z5GVUo899tjvfu5LrUuCI3N4eHjm5BoqURrbti17MV3wvFhyfRL/N50B6X6lmPOu61of5tVia/v0ZDpVSEWv3DI66Zu890dHB3t7e3VdRxBm3tnfSweqXhGxj1MmAQCi27157ZUv7zLHr/vaj28MylaHejHVSBC9MsYgMIg2SqKJ0QthREFF62t32sElcpAqj2WmjRARBA8SiSAGl6hpzjmlFSMA6o7MkYd/+8v/YRb44Utnj27fKq1/cNDPTNAgnqPWBpXufAQgIARi1AoNGdI+Sue7RVczQlEUzDCbzZ57/vmm6T7xiU9IYR9+/NGPf8M3vPfJJ996+eXX3nh1OXETqKrmzctX1y8+5r0PIslMKDJorRCWotosy+aLBQKM10d5nmdZeRxfCIratkVUIQSl0fsozFpnESLEmI5YWVpaL98NkeAuTmg63ZegiNExRm0UIqXizzmXjQx0LTATEiOCJFaN+OCP/cPwKyCHY8HdnZ8cT4WEMMZotPGeQ2TKNSrrfW0AcBXqjahSSnrS2R3fvnTKHtdkMSYPd+1ci6AQMbCf1zOtbF5YIjJWIaJABMQsM0TkOY6LYl5XADCdHV27erUoetZqZU1kTj76qJUQKlAA0HTtEhQ0uulaF0NS7KaiJGWYruhQCgC2t7ePjo5SFxpByOjFYnH69OlUY1VVdePGjYceeiiVLEnwm86GpmmSN+ndFWf6d+ec1jr9pWl78SurdyQ8XpWIyhjVNF0IoWv9avQG6UxKe6PvfDIBFxGOHGMElhCCMaZt2yS1Ga+NDg4Ohv1+lmWtc9qsEkIja1zWi4lhcqyFPL7FqYujlQc9InVdV/YLrXUIUVZh8CGEtukSjy39crJ3iSEk920Q6Ze9qmr2d3aN1nmee9daaw2R8y7NfOMqf+z4GTv+mrCq4L33RhEzb26ML19+4aMfe/RH/u73D8fzvaPXlXEiwgxa5bGGeaWN7q9vnf7eP/BN3/RN3/1bv/7CP/7Jf72zu+j1+wyRJFIyWmFlFCIaZAKw129cu379CgAQqccff/yJD7zvO77tW0+dPjEcDofD4aDXT0+dNop9sNZ6H1Ikg/d+PqsODw8PDyfT6XR/f382m33xi188PDoEAIGIoAREgUJABRQhbo02Llw41zZVXhS7u9MTJ04cf/FekUn00Qeda7GWg0Rmo7SPwWohoqZa9Ps9kEgKfOeU0cAcY1CK0jGdODztMjl3WbaWvV6MPsHnkUMIod8fW5OLRGttPZ9mRtlMTacHbbvZdT7LsgsXLp3YPl+3zvl6f/d2jF6EQ2wPjzqrSgCoqqi1Ho+HABCjj9FLF4wxR0fXd3d3C2Mnk4nJsude/CICCfDv/8Zvfurpd7/z8Xfdd889J0+eXBuNkeDyq5f/w6/86t/4W3/ziSfeqYz+7U/8VkriGm+sr6+va2v6vWFvODh7+kxRFFE4ufi2bZtnWTOfVXXbz3PwcTqdloMhc2zqLgXrLRaLLDNJ0WJNNhwOX/vSc+9BGZQFNkwgLKKL/qKuqRjpvAzujg+XzkoG0RoJlVLK6Oxu5WPTOn3jev3lF37r9q0D77tc0zseOPX0E6dZqGo7BQJAABpVhgA+RjeZLqZzZhZI0XO0RLNXr6tXroC40ai3sbmeluVsNkttVlxZ20Nk9iGh5bPpLDlw+uFwb3/P2m17l3Q9s0VTTbXWnn3XdVFiv99f1FVd1ybL6nqhlLJWN02V5zlBKqSiHi4ponmep6umtV0sagBKewREVkpFZtbQui7GZTSkVtrkWW846LwDopMnT1c33n77zbeq+TxfHwlEa41z3Ww2XRK0gbIsq+YLHwWV2jhxEhQdHuxkWdZ0LjLkWvsoPkrjuqPZdDBem8/nDETGoiKdgWJpK+GBtip37Z4ZwwOPP/Tudz98tL+/mM5333jrpoerX379vR/84BNPf3TSzAdrw6/79u+8evmNZz7xWy+89CIzl1l+MJ3s3t4r18aUF2B1K77sF8oodiGz2iryoRPBxbwmo8uyjDFW1Xxrc8v5lkhjjNPJYjwc9Xq9sxeys7f2376xo5QqywIADg4Ozp8+2Tatd9G7YGzmOfaUDSFglgMAaux817qOETxHRCSjXfBN61Bls6qKIBxDaBZEdDQ9zPOy3++fOHWy7PcODyeubYbjUdM0/UF+49pNx4GUUkidvwNcKWDwDYTmv//e7x0NelfefjMzepjbtm0U8rjfB6WUttPpFDhCDCQERGAQ5G4vKyXBk9Xeh9IqAOy6VmsFwAyBxRuTKbTAkhlFqDUSCIjOfTE89ei7P3/98Deee3mg42Nnt85sn85tHrqFJi0QhZfRioEjGJQQInoXQ4gAZAFYogvMEkPo3Hg8PnWqt3v71rWrb4/WR8Ph0Ob68Q88pce2jt3IDMDhwdEsK8qmdcqaDGTpSx/FqEyR1G2TDBq0UiG4lcdESMcwADrnrNXphCaiGBwtGcECiAwCIMn7njmlbIFOHkHHu4ZO1iTFcDjc2z3URgfh6GOuTaoS1rMM9m8Te6IsSmRQCKIgKkUrVeMduv3xSfx7fpIOxQhMq0wCa20X5qiysjeQo4pXgWYrhIWTpHHp/qBW/gKC0S3THpcI3Ep/hIiLdoEaUaECFSGixgiBdIYaBDkKZ4X17AXZxzCZzdY2N9LwSwBCjCbP5nXVNE3TNFmRB45N16KCzrejtSEQ9oeDnd39IrdktBAG4RMnTojI0dFR0e+tr68XZXlrdw+QAFJIIm+d2O4N+i7Eoldunzxx4tTJza2tFHE9mc+SYDwET6i6zic22AoP0513aabZui5dgcTuSmV013UmzwCIfUjll9c0mS1gJeF0waeixLEXEZPpIKFpGoUYoxhFSilB8V1ApZ1zxmQvvvjyfRcunT17FkE55zQRezbGaNJRlm1MwpnSDeUYcTWCVEolpWqqJo2lCEvtKgAhCiny3nsfnHOf/exnY4xJRh1CkKRJZgSEGCMKzSfzrutymzGzazuFFJ1XVid9qIgQiLWZiATnkylJ+gDJgCKFHhKI1SbL8uAnSLt/4f/953v92WR61RqFlMXolUJlIIRYZsM83+pac/3qFdeV991/6U//0P/jR/72T8yms7wsBBlJGaOstUf7h88//wKCuveeez/+0Y88/Z5333PPPWtraydOnBgOhyliKkHOwCzCRCQS02MstJT7EBFIWiPUdZ33vltiNk3TtU1THR1N60VVzebzeXWwt394uN81TdM0BwcHNy/f2Nra2j24E/LxG7/9GwiorDp78ULnXWZym2chOkHoOIQomlATnNhat4YsWZ1ZiAyQJVyTiARVkmsu25UIbVtz8JnVhMpqJZGcROawNuotqqk2dPLEZtd1eZ4hsFEas0IghOCszfr9vg+F7+o02uuXZa/X2987ilFCcPP53ng49N4fHBzc3r2dLKoSVv6uhx9773ufvu/BB/7kqf/XPffdu7Gxtrm5rTX1+0MCrOeL11566Tf+82/87M/+7Itffv6jH/1oBOkPBilktleUnXfVrJrP50qpKOK9X9tYL8vSWru9vb01Xj+5ufHAPZeqpvPeHx5OvPedC23bfem55669fblt2wcffPD+hx4EAJsX0XnXhWHRs0LDLEPvba4jCJNuHFI2ULZPfId9X7fOkuYQWEApDUB34f7QuaC/9KUv1J3Tyvj5rJLwO3uvndr6QL/Q7CuTW2MSA5SjiCJDJgshaJ3sdgIjERHeNc7M8rxrkq/EMlmsaZpUdQlj6tuOJwjp+SOtmMFktsgL771Sd0an3vuy7OvMEmsiNV5bb1tXN02SDyhjo3dpC06kLmbuj3pJpBNCGjIGrRUhLYNakSLHKIwimHosrcEFRNRa1TGU/R4pFQhIqa2trZfeenVvZzfGSASI4HzLCKfOnFZKhcaJAl7lYbkQtDXj9bWDnVu7e3sCNFvUymQMMp9XZb+3tXni6Oho5/ZeXti6arPCChChjiHevHGraevz589ub477PZtb2lq7ZER1iw6imU7qpx978tEnnyi3xlBoGJVPxQ9/zUc/8u9/4Rcoz4GRQK2vr9/cm0+bdnNjiwFQq5Sne2yKmOBrbYzWptcvFosDpbdXRBwSxqPJLIKkljddydFoLSentZ7P51pTEsM3TcMMMYoIpPmC915Az6rFsmN2nXMBQVdVnWV5SskRiWVRJn0Wr2y4q7ZJne5wPD515pw1vbqLOlMvvfIKAMa7YRJxZ7fX/uB3fWuRZYv5dG3Q77qGiEBiryyy3Mxn1fpWL4ZC2HcBBAQ4GEobyl2vlA0XIzOmp8s5B4hCmIJKGBgBGBQhEwFovT896m1tzwP1e8PiVLneM9duX592amyEWIwmRHQhsUmYFESJbVsjRlLgW+99m5VFkQ0yyhd6UQ0GjJAV+X1nT59Y38TI86PDl15+4el3P3nm/DnHAYhC4LcuX7t48Z7UQjgOreuU0gASQjBERZa3IQKw1oRomFkbc1yLaE1CkniWCUsIMWriwGw0EilgZubAkjKjiABBMfPdWFXCMtMdT6uVBYgwYc+LujqVZaAUBweZYWZjshBCYvEvLT3/C/RreTbzXTKdhIet8idFIEZmF0jlRX9wdPuKIokkHAVIayQAcM6lwMR05CePqLjyiEdE53yKRLTWxhiRJNWLnjwRheh6vZ5SeHR0tLW1pa1RSvWHg+tXrw0Gg8FgsL65cfXNK3me93o9FwMZPRgNQwh5WZw6c1pbQ1oBwIULF1rver1ekDAcrd17LxVlRlptbG2eOHEiFZqj0ShxuRaLBSJqY4Q5MhtrCXUClvr9cmtrK90mvuvipwULRGp1oRKomf5JIsl3Nwjj6noek+qS1hJikkZS03SJBpfw7PScJ0YapHBPCcxsrUVEIl0U+XFADSL2+/2maQ4nR71er6s7pRLtBI9NuWRlBqFWxmZa67gaZydXekQ8e/Zsgujynk26AWtNFzoO6aG1AFSWpYjs7u6mRiJNG1GAiAjJtc57zyECgF4pGRHVylIAYJnWsAz/RsKEyaUhe3oCmZkQvPfD/uC3PvO7P/Uv/qdzF+x0fkXpgIQIyhhyXWCB8fBMW+Wf+q3XfvZnfu0Xf/HV9P6PvuMRgSwzCgUGvV4Xumc+8xnh+IEPvv/v/9jfeeThx+69997RoL9KP2PvfdfUIiKwHJRD5GQjkkqcIMwMAmCNiTFyFGMMogKAJMsYjUYAjGrZThCRazudBKrOhxBiDNGFxrVt23W+e+0TS973T//0T8/n89lsVlV1YA6Bm6ap6zqNlRf1/CjP2ma+u3NjZ+e6IsWwCvUCuAuhOS4XIgBQiqBlb8gKxCLLI4NSR5/73Gd9bIw2PkSFCsBFCRtr663rkLjrurbxNiuqxfTzz34eQClSzP7Jdz25u7uftpT77ruvyOx4PN7Y2Nzc3Dx79sza2mg0Gq2trQ37ozTO0taEEFAriIyI165de/H5Fz7zO5/65Cc+OZtOT2xuffyjH0v+wEbrIs/rul4bj69dv37p3KWT2ydee+21wDEtz66qr799+aUvP68UZpkdra+NRuNer9fPCiwLrW1W9B575JFFXccY9/b3D6eT6XRa13Vdt2VWDsdrvmkNKXaNFmmaLgZRqszK9RutG8Cd4aP3XhttrDl7+vwzn/3821dunTp5h46slNb9oT/RKzc2x9vbD2cK7jl3YpiHV156dtQ3mSWjA0JndCaegHWIIAIxaT4Aj73s7mypEAHF+c4YY5bJXwIAHIGZgcVqM+3mzrlU8jOAMSa4qDNb9nttWxt7pwtn5l7ZNyY7PNxHUIP+MK2xXq9XFFlqmghQK0xEVAWYaRO1XhZMBEEYFAFDEqml/WLZNcrSj0dCh0gJBpgtFqc2NusYT509W5Y93/h5VTVdp7UGQgSlSbzv5vO2n/WccxZVv1fUdb22tjba2Hz9lZfn1aJpcdAfueBv7eyub24eTaZdDCe3t0mbwKJNxoBZ2asWjbaZC/XNW9fPnTl14Z7TW2sjjt4oIAJg6WLIdU6WfuEXfv4//sf/sHFyc7gxPHv/xXvuv7Q+Hj34yDtefePNvb293d3dz37qmS+9+rYLkbTpfFfmaRjPInQ8cRDBEPiYs5w2wciApJXNXNNOp9OmDiLS6/XSMRA4DAajQWEWi5kIa0nVS0z7W9M03nttTdMG733bdZKyHRrv6s67KEAuMDN3TROZjck06aT6jNHX80Ua2Cljm64Fle1Pj7ZObJ+9eKmX5dE3x4/B048/+t73Pm0IZtMjiT7Lsvl8ulgsjo4OH3jggeQ32DVVW09RQllkkaGLUTho9RUVAKIKIULgoCWtjSgMqDkqgkyAoiAAKIIA4tkDhrRRMiALNZUf5mXdqZsH9dnh0GYlQwQQbdI4L+3+goilKWrfFjrvFbbsF71ez9chy7LBaL3p2sPJ4vatW9euXbvnvnttYV98+YX7LlxYO7lpbSZCB9P6Sy++WpT9eddk/TJ0kpxTvGs0UYyxKEzuTeCIkbVR1uiyLBUZEUlaxWS/uSR4RSYirXS6ZSIMaeyoNd6Vo6y0unvoTwoFmJEZl4eZMKdiYDAYTCYzay2Met41phy14TjgGVD+K74Tx6CXiCTj5dX9SDeFmFmARJhRsY+odJH3bne+LJYJOcJBlKJVjCMDJylAMnk9ns2lmYhG1Tk/GBTOOQE1HA83tzerqhqNRlmREdGps6edc5ubmxE4Rrlwz6XhcDwYDFrnz549PxysC7P3XgCS+6hwMEZtbm8JYpPyhouMrNHGhBCI9GA09KE7mk5EhADruk5XNWmM8jxXWreuC85ra4Rj3TZdQO991dS9Xi9VG4RagACVAAqQgAhACiDnVRI2AwumcCfSVgFh9EEQowADERIgKgKttSgJIUQBBkwE/BCiUknjkDZROub85XludEYKcpsxQ+cDKs0gPvgy6yWeSdHrV1UjgpnRaVfHY11njLCyqwjMtNpwfAw2y9IusbGxsbu73+vnqc4LIRD5yNFYCyjClHzztdISl7aohGhzjQJN1bZtF2OMPqCIUooAWVhEkqhCKR1jTIFXIcUVgKCwUhQjG6OPdy1jjO9Cr5ffvP3m7//mpz74oYeq+rpAVKAkBiTgqKwZWDuaHWQ//qM//y//5Sfvv//cVz31bmMsR/IOOh8Gw1Hn20996ndI4Z/7M3/267/+6x586N6yzBVa733o/Kyp0yA4CC+nomFpA6aRsszESHGV8qQ1MQhLBBKjtAi7zllr29YvC1xYMtjiKkc8ge1p7Gsyned5iSWRFpLXPvF8Wlvf8I3fYIxxLiAvq9KlnYqI974Lzipzc+fWH/wD/+1gOKyrqnOOV84pMbBzzgXvfUwSkBBc9CHV3M537GNWFMAp6tR89CMfatuaeRk0YhQHCedOnyejlBKlVFEMAEkhhcDD4ZiI+v28P+ilSDqrdZZlqbtLglYR1poEYghBGAXA5tm8rjjK0e7krTcuf+pTn/q5n/u5K29fBpA//Af+u65url27FiUWRR4jv/Hqa8PhcH193TWt0frym6+fv3SRUOaTo5Nbm/PFwnuvFZ09fepocqiUUoCvv/LK/v7+9vaJrvOI2B+OR2vjvOyP19dDCLPZ4vDwsO06RHUE1Vtvvnnp3nt7eS/GuWLOlSFGiYhgzpy778bLnz3e+gwp54L3sd8f7u8f3r51oMwda1wgrf/7P/gtRZFtnhwPez1LaBSHxdHnPvMfS7NWZIbSdipBIgLlAEppw+zlLs3R3VuuaxqgZTo6rKK7k3wmPTpp+Ync0Qmnnyc1dbWYebqD3Tnn/GQyViRAjfMn89Jm+QuffUYps3dwuDHeMNoko1cfllqesuwX/UIpxbzskkWEJaRTpAseALTWrgsikUSIMHhvs8Q5w9lifv32rZr95plTUWR/b69qm+eef2FzfVQURTWfBe8ItUJaLBZlkREpbQwRBA4ikYjue/CB115+ZV4tit5gb2+fposYI2hzc2efFKxvbs3n86I3DBFms/lwOCStbdk7cea0Mrr1ziAT6IQIzKv5p174QlM7iHDixInPfenz5y6d/fqNUTPbeP327dlifuGee33ga9duvOMdj86CfealN4e9/tUbR8NLZ63WLsn9XKgWjSKjlKrbNu3FImJ0RqhDiForZrZFPpvNb97a297efvPqzRhj13XjtWJtba1aHIlI1zltfdd1zjkAUkqhCGmlTRZqr5TJbQEABJhptaibuq5jjKSlqipNkHbqtm31xoZSajo9cs4xw2g0EJHJbLpoQhTePzwseiUaXc3vlF9PPPFOpdTh4SEALGaTpmn29va01o8//s6ua6uqKvOsaxcI3O8VvXIwmc1zbQQwbm3cqb1ShCBzin4DRAYgbQB0iAikBJUIIyIDAscQPQRPCHU1T0CuICDZlunKzuGTl9YYiIMHicYQM5MwEyqlDRnQQhD7ZTEcr3n2V9++Fl10IR5OpgwUoxweHiJiXVVAsr659tnf/dz7P/rBjVEfdf7qW6984tOff+f7vsYSdl03nc5EJMTovde6D2kMB3HQLyXElA2XZUZrK4zYoQseWY5Hb4CotTGKjsMu0mAxHZAqodeIMca7s1aPa/RUV8FSfIoxxizLZtOFiKxvrHnXZkoREzNn2gg7Fj5G149br7vBsN8zf0wv5qUxDyIygoBGMtF5NhhBgDDt60jKkIoKO+8A+JgCZbQ5PszSK2Ew6c0nk8np06dDCOmRRsTNzc24eqUqZGNri5ljCHuTeV3XbdvWiypFlKYBVtnLs6KXYmSVUoEjM1dV1XW+XuwhiyR4YHXdjDEcWVuDAj6GBPwDYV3XyT47BNCGEjzDzL1ej4V9DIGjXmaKpxM3HlO+FKkElUQQdsfC1VWs50pveDypPMYI08VJPSeufCVk+QJjMmaeTCbGmJD7EEKKckqQWNd1PgRUqigKH0PyZb37wUhbd0qHRER1bBqnU2yAms2PYox5nk+n043NsVJKa0IFddM0XadNwyJKmbZtu26Zs5Sacw7BAQJAt2hjjAQoImrloXL85EQXVg/wUuIAy0n3MpAy+YMkoo9zod8brK2Xzz7763/5r/6lchCOppPM2MjBWtO0QVGe5Zu7N/0f/4Effv3F7mNf/XVN0wAgiTAGowFQfudT/3FzY/N//Yf/4EMf+tD5c5eUUfPFUdM00Vcp7yitKUQ0x7bAKz3msSN/ulxBOCWLJASRlw58WkSSZQYS4AqLUgSkk0cMoAgjI0vS1C+flrsO4qqpwzwopSwuDfqPV0eeZ32RLMtGo+Ha2mhtbS3hr0vHE1h+QkY4trElWM6XMZEtAFMfxcwAiEphyg9VuVIYYkeUgElgcYJobe59TPVV13mttUBwrtXaeu9JMMZlbdc0jbVZcocGZCLwkiizL7zx1ptf+tKXf/If/1Qq8s6dOXfv/e/YWhsHpgi4sbkNwEW/DwBbgs45ZTJDdLrsJ+ej06fOPvel5++5dB8RDfp9Y0y/36/rmpmtthfOXSCg7c2to6Ojo6Pp8HQZfZhPjy5ffvvq9Wsbm9s2y0gZBvJBIktq/IqiEKI8M6Oy384rF8Tmo+HWObi+vAtNXY9Ha8ooYwVYu9D6uwYyLnitoZtPJkUhFNroQy9Tvlk6jxuThbB0q0vxryFGRI2Y1N1fqedd7dxI0O/3h8MhkY6xS3zSumrTOCBRI1MRttoBMSmwiJYan+M3E0KtjCJDRGmC+fzzz8+qxWA4zLLMOadNnmWZ862IIKq0iSStcnqIkxHG8Vrtus5aw0u1V0wDykQ6Fa0AYt02N3Zvz2NXs//iF7/4uWeeOX/y5P/2T/934e7rPvZhEbFKO+cGvR4XIJEDR0TpD3ut60L05y+cG/X7ly7e+7nPfX5W7WTlYDpf9MrB4dH8zNk+IM4X1bXrN33gvCyC86QaIj2dVS++/MY9F8+dP7WZFzYErzUyMyjqj4Y7k2ut44NrVzJtLubljStXIXS98dAFP9zYnswXb771djEY7ezsZUpLhHo2H/b6MUYGQdI+ymQyK4rCGANdnUz8Dg8mSpmUv4uIKZnYGDOdzA/2b2T9cVquS/JQlHnd9Iv+ZDLb2T/QxjAAghIJCCpGASAENRqNMm0WswlpzdHH4BQBMHddJ5oI8djQ1ftuPp+Doq7rbJEfTSdKqdlsFmPcXl8vemVT1VV9xz3laDY/PJoaY2az2a2b14no3vvuizFOF/PQLWcreTFAlieffGJnZ7dpK88y2lgfjO9Q7xPyn8oRRAaiEIIyFrR1DIgKJY0hRTGBRPIREI0IBUccMPrS6q5rxJjDec2ko0ejDYE+3ryCMDNxJBRNaGaz6uat/Vu7t6bz2UMPPLy+cQJNWdXtzq3b81l1dHAQJDz44IMotHNzp5q1G5Egqs996SWdjwSQCDRqH8JgOJpO52mIZjQoZWIMRFj0e8wxRMchRgkMopTCGADQkEqcEpAl5QgJAFApw5JEWCAJq1FERKTgbsVxapbS5Dp9OyAtAEGYjG66FgD6gwJ4SfZPtamkWZiir4C7VhUYrpwO7uwVQgAAmM4PiCDJmC0K0NLVwdaxxRRWoBQxeO91ZokobcECMc3gAsck/gdFyfo/HYEiYq2tmsYoRASlyDnXJVwQgUGi9ym/ZT6f7+/sTqdzay0jFDbz4JL3PTPPqkVRNFlm0nm0DOpJXwohcEw2p1Hi0vIAQBvtQqDllkiucYJQDvpt5wd5ttwqAQRV64LJOMsyz+IjI1CIjLQskbXW0XMUjoHTEaiUAkLhZcCTIAiIIOASf4TEZgcAFs7LnFmWAlIREEZMbrksICKolfbeZ1lWFIVzLkSxNvPeozIMwBABYF4tyrIcDAaL2bywGQCmpJA09kWSFbYqpFQIwWRLtFVnut6pU/l1sL+/tbUBWgaDHipKRUnKhieMbd3VRZ0Cnuu6RpEYoyFLKxfcxNBPfwsv6VOSQC+8qxoTkWRRm+rv1PkfazUQxVp9NLn95NMnH37shI9TUqI0RUedD1lWZnp7NrF/5k/8aFOtv/d99wfviGhv/9aVa6+1DjILDPAP/+Ff+eZv+rbtrTOuk2oxZwTvnVIqBkrPaVEUsvI8wrsClEjd6UCOby5zICJEhYjsl11E0zQEyCAhJEUFBGFIdnbJZYBRrcLRcWkNw+qusOfjgjhhk4jo/XI0TETOOZFY1/XR/oFVOnEHjVXMTKDkjlBm2RSl2tdYhSyeoyGVkkK898YoHwMBIqom1sIIyForEWGIgByCS/wWY5XrAijNHLQBY8xisSiKwujMmBwxqTu567rDw6PpdHL79s3LV6+88OIr//Sf/fPVGBTPXbh3PF5P3LjJoi7L3sF80SuKltssy/Ym87IswdrxYBgEmkWVTPvmdVNX1f0PPnTz9s6Zc6d95+aLGlDleblY1JNpNRz0tLZN1XaNM0pnxo5Ga1dv3iizfDwehxCqagFAoK3zEQCcD9r2quZWb4DBtV1bZ1Z3c8zHW/s7N47vgrFZYFFkFvWibisR9HdmDOAC6xAW1lDXzHqF1grTHVLKzKYLYQpRCDVHCCEQOkbNwSUldgLAkIjlTsFE6o4mLs/zGKPwUiydHoUEhhVFAXfoIEujPCIqiqI6Orrz+VywpYrCAFTV1Qce/ODm9sZnP/+5Xn/gusBI3nuCZFpjV7UC9Pv9LMv6/Vwp7LogEo/ZaWmGmAhbWuvAjAI2MwDovQdFQFQO+h7ElHnTNGfOnl8f9w1FUoaZiywLrivzwjlX122McWNtTETGmV6vqLuOhDa2NheLymbFrZ3dtY2tqp2aLKLIjVu76+trbYg26x1NFqd7/f6wbJpmf2+HRbWe9w4mwmFj1D+5vtYFRoQgPFgf6p0shKYY9m7e3Hsg+DZy7bxqW1Pkh4eTz3/puZ29g14XX3v1zUF/FLrAPgLQklhASkKsqqbX6znXaq27ru26bjKZGZMtORJEXddorUmZtu1A6cTSRcSkMlNKlWVZ5MXlK9f39vY2NrfTntK27WptKxGECIQSnNMgIIFD55qGyWuCtqkIt4pM93o9F8Ibl99I9Uoa/hIJEQ0Gg5PbJ5RSEtl3XXB3ntPru4eL2YQAo+9Obm+fOrktInV9pAmstdPZkT15ommr8XgsIs51a2tjW/bX1jev37yzEoAZWIA0KuIQgHFeNRxB5TmDpCqSETQSKAAgVAQcQ3CAUlXz/nhECoQkL4q9o/3JdJ7liIE1oaJkjrO0v2KEqq739/ffunzjytVrZOz58+eFcW9nv+rcvFqEEMfjtV6vN53PUKuqbiPIfF71+qPdvaNf/8Rn3vGup7rgbVHOF4uqqrJ8OUwUJECJwkQQowex/V6vbtoUZiBRtDF5ZpLOGZbhgEvuplp6Piw7b7XComKMye78WK0Gq0FSOulxiRgiJC6zprpuFJmyzFl4hV5jjFERKg1R4PdUWr+36jquvpZbPAMhiLCwSEgUt6zI57PZKB8Jx8ShhpWTk3MuGYgfIzqJtJ7AIUaGu06OECNpSg/5sdVZCkCz1iJQjPHWrVtN1dZ1zVG2t7cb10HCHZAUaaVUkZc+uNlsltiTkX1Zlgk/WoIcmRVeYlG0kuB13qcOkEPAlf0hAMTIShlEXGaAruoGWpWc6eoBL8u7u4G99D4Jfzq2p17+/qoK4ZUlRAL88jwPwSfJqlIkQgySdsJ099MSTkrJpNmMMaJWxx8pnc2BI2nNIMoaEkgU3vRpExtMRFwISiSBZyEEUJSQ0RjjaDQCEedc9EFp7UNX9Moyz4US+0mnPOPhcHh4eJjneW5tjLGtOuccpTIlxGMAVe6SzWq9DEI9BlmPr7ZSKvmBpa4vhCCCxmSX37r8h3/g/YNxDHGulHRdg6QVGea8a8of+3v/+2c+ffsjH/6QD/WzX/h85+Drv+Hdf+SP/cCFSydPndq2mb508V7C6f7hXNPY2rUYbW8wVtZoZbrOS4jT6WT/cNI01Xw+Pzw8XCwWXdfVdcL7ugRoheiNtuO1UVmWWlNZ9suyHPWHZVnmNltbW0t1Q2Yy0okYwwAghGnGAhE4RpJlnpgQCtHda4wAJXII0ZBZLvlkTLOSRKQd+LgwTUTPBCojgCwvNYoICiChQpEQBdik5MDOJS+bpmny3Cadh6IsSlCk2rZTirLcCLJSKs/KGKPSOBrpKAjAIbZEWisMPlazo/39vf2D24eHh2+8/taXv/zCSy+9fO3aNYbIgFoV58/fOxqOGaFtWx94b/8QtdJaF2V/bzK/vfe8ppTtIT50iNgvS6V0Ytc0iwoRUwCPUfrKtbdF6dOnT7vW101HpAfDtfF4DMxFXsfgEJXWcvP6jdwWubH7B7uwhJ+MUga0Ksr+ZDxwvgPDaa1FEW0V1cyCXpdnHnoXXF7ehWIwFFbzqm7bmhGI0GR3qO1EpHul8exY2hDrECgf9LrWhxAG2ycQsal9FJAQgFAQaEkrgYSUAgDIV3Bs2fuinydS9hJXYk4TK1zlsolIIiciotKYRLVpkeR5LmV514nJMcaqqn30iDSdTlHB5vY2M4/HY0SsFs141MuyzHkhoizLjo4OTpw+wcyDYf8Yb48sEaKkDN3oiSj5WCpYjkEBSGJM8betd0BYDIaISimVFflbB0ezqkJUEn3onDEGRLIsE8TAkYPXuR7QSI4mqXueTKdN1z751FO3bu+RsQeHkwhCAk3rzp49O53ODg4n5aA/GGDngsptdG5Rt0qpXq+3aGIdocyzEILKsgHl29vbTAdXb+594Kvf+7Fv/PrRqDi5ubE4PHQuzKtGEB59/DHP6uA//Pb2yQtG6XpRW2t9jGQzIQyOJ0dTrUvvPWps2nY+nxMpoy0zhODLXpYqrWRS56NK5Nnj9rEoCgDmyGnWE0IAMMfQApGCCKFzdV0H562BGARiiN6BxOCjQm2tzbKsbcPBwdHe3i3SuLG57jpvrJrP5yjh3LlzhNnt2/uLg0mMMc+yanfv+DGoHIsuOt/lNn/goYeq2ayez4osq+azuqnW18fK6IObhwLw1pW3EeXhRx44mMzni6PJ5PArDnylCCkGUUBAVNc1SyitBYkoHgiTMY8HQJFMGyAKRJRlaKwuMu87TZgPinrSTadH50cbofIMIEDK6MgelRJhQXaxK4b5Q4/f/8iTjy2mtQSpqmo+q9DaIsvLvGy6duPE1nh97drNa03XlnnZRQ9Kv3X5tf/027/z0a/9dhvc4Xx69epV0+sJKdLWNbOiWNcUm3ae9s24tKYkjaSNIUp8Rw2Ix8tNaSUCsOTSSOCY4gSOd2GlSERCCCJfIVNIrN4VTgzMjKSEBJB2D/YFYW04urqYryECKgQWiSQJgbqDeB2/IIE0snK9EYIV6X7pfA8BgJgZRVoXrMkh8QhZwKgYY3BeAEUkxIBKwXKac8cMLG1nLHckeIhISnnvSesQWAQ1kda6rZv93T1SGgCm03mWZa713kcl1DYdKkJSK3Gl6doWQcfImc2XA+zIKKBQszBHBgQicsEZYwDQx5Cr5YJazW2RQbRd0t6T9Hi5/eplldy6rmld13UJsVheMlQCgAoBJIrcSfNFRFJ11yqltDKKlBKIMQpgCEEbFRMvSpFW5IIXFG11iCGJUhM4hFoBQJRo0CBi2yZ+CGitg3Bi7rvgrc7yvOyatmmawWAwm0wQKQq7GHglfUijY1SotUYSkwQDq0RR731d11pbQAWK7Mp5e2Nz21jVuEZECK3WOjd5bvL19fUYY0K/2AsAYOS2ba02y8pAJCGXgJycy0IIsrLCIKMTcEhKCwAwJHu8JDRhBiSzs7Pz8CMXlGmaagLijOkj6BhwbXz63/3rF/6//+IzX/91H9vf3/3il1/4/j/24W/99g+fv7ixPi5Yus5VMYadoyscMpLNQe+e4XAcvD46nL711uXrt268/tobb7999ctf/vKLL74cxSOuTsmveKVZOgOkjAhWsDTPI1ACooHOnDpz/vz59a318Xg8HA5Go9FoNFrfGPf7/TzPB4NBLy+01kWWZ1lmbW6MscbeXX5tjDcS7Od9RythSirclwytZQjpXq83KAoOYbW3y52+AoREJJV1ipZ6u/Q857lFbRCRUDPzaAQiEgMm7gERheAj+xCC78KkmTdN41w3n08PJkeLxWxn99bO7YOdG4dX3r7+2WefEfAAnVYUIiCoR97x6Mc//vHxaN0FePWNtw4ns9miJa08gwvRZEuO3dLbBdEFjtFZrW3WF4mzxjN33k/6/X7qLQ/mFTNrUiovdw4n12/vGmPyPGcfhv1R67iwpm19wsLr+YySQ/hw+MJLrw7WxxFwMMi1tq1z2qpck28WSg+JYwih6OWNa0P0QFh5Uro4vgt7k3l0EQDKnlUKmqYxdIeYj4o0IBujsyzTipwLXdek2ogUcJQgTKgUGQAUBpZAlHwLl/GlwvyVPou8sbne6xXD4bBt6zS5YObkOB8CJ0AltVbpTSTEiAJp1Kg13zXAVoaOQebBYLCoq863o9HadD7p9/tK689++bkPvv89IrhYzNfW1pZ7feRk/Qd3NUOQuOQhhBjyPPccQhCd5YFjCEFrq5QChCgsgCDoQ2jbWiE09WJ93H/HQ/dbq7vpIs9M3XTMnPXLwDCrFmWWE2Jkv74xzvO8rt3Zs2dRG2Pzl1994823rywCGwQWmFX1weRIacsCddOWvb7zAUgpYxfTWVn2UBWLLj738huXLpyB4CeHU2YKHIHw9Jmtr/+mb/jQRz9clBa8d4v605/61Ge/+OWiV/b7/ddffZtIoaK6bgWgLEvSijsWERDZ3d1b3z5tcsvMqFWMUhQFoKRcvLQyAej6tdsxpNmcMsZU1Xy9vwbA3ntDqm7bwWBw9uzZ/YOjLMtQq+WxHZMJ3HJWWFXzsixjcE1VSQTfea1lNBrV83pv7yAIW2vyMgs+AsBkMumdPpllpSJTV93BwUHqw3Kl4K5ti7VtuoCoDufV7f2jnrUR6eD2bRbXde1wPNjd3Z9MZqPBeDxe295c2z3YffnVN/qD8Xx+lwWL1lmmhdE5RwqNySCyUWQ0+WU2ESMl4hczc+MBtGk7T1r1Rr1k9JC2MJPZeeNkydGB5J+OhEgQQ4zRR4i2sHkxGI/W6oX3jSuK3o0btw5ncxd4sVgQ4VNPPfXQY4985nOfefbZZ0HTiTNngdVvfvKZsrfW+HBwcLCzdzsdGD7N1om8d8qSMSZTmgBi9EotfW4zjYg6RlnSmQGs0ulAlYiCiWsiIHFpBLpqhZlBa1SK7lYci0iyWvXeCwIChhgpjctEDg4OOMTRcDi9fnWDSGJgEQUUgGOIaQByXHgxpBkXSOQ7x44ArxAsQ0okxKU8DRGxDaxJA3P0nYve6JyIJDISoVYahI+Ha6thHCIGH5b2MaSca9O2Y61JdmWaCBFJK6XU7u5u0zRK6cicGcshFkUhgqH1jEAAgb1WJgSXZQWiOOeSUy+h8sEl69R+v49LybNPfV3TNN53Ke6MSCtlkq+HMaZq6gRfOecixmpRa6OUUr4NITrvYiLpW5sppKRYopXNbIz8e3CdVFxmWQYACMicaOhLYI85ola08u5KHk7HSOFSSoLLnlkptST3JhdG4PR4J514brMQOK5s6IuiMFkWYhQRrQ1zdDEwgtYaiVKVE1kApOs6ZVOeRNTaEOo8tyCBiHplT5BDdIvFYjQeICiiJU/LxeB5mSkpMSbFiTFGmI+pw3AXwU7kDu3pGMxDRPbcBa+1Vgr1KqUqnTjW2moxJ4Lz59cYKpCQZVnbtIp0rzz59uXZ//Qn/tHHPvK+//zrv/HY49s/+3N/8T3vu4/x0Lv93cOZQFAUonCW5azBalvNq8/97q/+9m+/+Eu/+CtvX70qwACU2/L06bPveuLd1trjVbBkuSSZyF2sSuaQGQUAHMEYo8kwc8oDmBzNdvcP9/d3p9NpgLRBreibQAKsgE5vnjx//vz29nYqy6y1T93/Pel3/tlP/pP+aJjnWV4Ww2Hf2hxYkqcJIoqA1ro36DdNe/36jfQkpIupSUFccQcJmTn9J8SY/G4AIAkMA8fgufWemefzmQ+d68JsNk80u6Ojw6qqZrP5jRs33rp87ebOTVhazib5hxCYTPW3Nk89/MCjpGKWkw+NIrNY1MzsutDvDyezSlB1PgApiawMIaKPgQFZGBV1bpk6mmeZMEYEBK3LzLVdZjOV5YSYKu+mql0IQCoikbFCdDidEerD2c0vvfCi1vrU9lavX2ivms6ZXu/23v5wvOZj0CZbzKaogo/zXq/n2m4ymcQYFUD0HgCqpl1jYUBB6gTa+o5l0mxvvxytRx/aTrzvlLF3+37FGLXNCuccodGks2GmASa7t5t6Ebou75XWapaohYAF04wgelJKBDgIEqCCr5T3syHUBFZDpk3TVs63xigfEh627Ke7rpscHPb7fREEQObIIIIghLbs3SkPjfbRKbJKqRixrmtE0dYkS4X0DQ4ns+3N9bTRoHCWmRC9IfQuGKPU0vdFiaAxxntX9HPvHQCtsuoEUQJ7ozQILeq233cA2DaNEiAJ4zz/oT//Z09tbbJvI3chkFboQZqq1tZAZO+90RmiON9kuXYORKAosr2Dg7X14Xd+97f/5//867d3DhTBUVWbydHWxqaeHB1OZ8pm3vvBaJhr3XXRMV6+fTuzajE5AEJ2Xdc4rU05XHvg5DlG2L2199orr2+MBoPBoOu620fTt99+a2Njo7h4763dne1TJ5VVu/t7DDCrFpe00QiWcOY7FnCuVbYIgMYWbeeHo1EIjjkSIoEi0opsXfl+b206b7TKBVBpIsK2bQprvIsSuSz6IR6BImU0QDL10GVZHB3Ol2cDYXCMqNjz5PCo8XqxaIHxaG+qjen3+7lRHEUieHbOOQIsisIYqrv25s5etah7/dJa3Xb1qiEEAKirrmq6LLNS9L7w8htrvVJCW8+O1teG442N5GgsERQo17jZZH7t8o3N8dbBdPH2lR340OpZAkXEjKAMJXTB17Nc6+Gwv7t3YDKbao7EJFMKFCkIwAjGmNi20WY2yyFEo/KA9qBqO8GuqYeFJlAhMKqUfCwxhGGvr7UWZZRSo77ujG7bTmfa5CZ07drmsGv97/7u77719uWD2SERXbz34vl77nnz+uE/+F//xYOPPHVj5wYzMxlm8a1T2sbIIkuujM00c0ySRgBOJsbMHDlGgSzL267T2oqIJsXRI4rSKCFygosULsnsRHoVsZy4xXfKLyREQkRjc9LB+0hEwXuQmGd9rlrwUKhSi/JNzVgiYgQIhEgkaVKZkCKQRNRlAJbED1txlVLtQORjBKLIPkY2SCzYMQ3Xt4AUERmktq7ysgCSIIFA+ShExCnPhzCEYEgxRwCG5LMagrZGEJIGSBQrjek3JWBdL5gFkdLIEkC01tF5CZ5JNAEDM0qUQJo63yKCtoo5xrAksBOR8342r3q9HikzLIs0rDfGJOpSjDEGWU27pKrnidKKKMaYGDlyDF2QO+GVKs+LBCY555Ap7WbWmmO1WmIRpdJZG9O2LYSQZRnEyMJJLCYMQIiAhhSvHoy7x4vJUwZRSQgCopSKIdIqaj0u/V2JfdBIIiIhkggpiiBNUznfA2Qh7X1ISggREcDAkUAEycegSYUgHIL3EVi01rdv7AUnRISKtre3vPdVs7AmV3oV68kchRm4863WBEAxitUaEZkiAiith2vDru66rjPKpsILAFJ4OQADYOicUsqk8gVUnmqaEERjjHE+m2mtgTE4H6H74AefGA61dwfGmOhZa42SIa/9/M/9u7KA3/zEZ37w//nxP/qD/82Jk/pw8lpkj8iEwsJaoQITIvZ7p1780tE3f+Mfix6UGjz00Dueeu95FOEoEdC72Hbcdm2iKBmltSbvXJZliBEiK00R0n3hRQjMnBkLAEQaEYuiIGNLY3Pm8XhdELSm43EhM6OAdL7M8kG/rOeL0Lrbk5vz6ezu8uuv/5W/Pu+qACzAAEJACMs1JyDJwfXjH/3aT33qM7WrBcgqKyIEmJvMd2E0GkymE220EHZd8/D9DxDHajoRke1TJ77wwhcZuGeKwNBEF0E0EAMT6LTqId0VQENme/vkoNd/6p1PhxDy3IrECMGa0vvIoITRh8652Mwq7zuJCxEZr2/ozLbezRazpquzXu69V6S8lxhZGY0AyXwfIgsiGc0iSKC0iSGEyDbPQwgMopUOErq2E4k2NzF5ohgdRPLhiEhF53vj8XQ6vTmf6qbq9XoKYbp30G+6EwzDze3kQBl954P32uRlbzxen9VdXnSUZ0DSVK3vGJVunbfW5HdpG7NymDoZacV7Id8B3zUqFNSkTd9a37mu9f2BGfR6H//QB6689dr0YK8oM8AljA8CEiMQKa3TNsQMHAIZUvou+AsxRJeMfRPpvmmaoshEJBEPE5UhFWHGmGRLk2DqwCwxZnfZnacsQvY+y7Isy6bTaZ7bYZHPZrPBYNA09WhzI4V4pE6UiLJUli1HEjrJ6xCWWmijVHL4jQICwILeewYhFO89aHPr1q2HHnjgsXe+69b1G/dcutA18/e950OnT2yy64LrNGGIHgStVoHFO5+CCNI3RWHvfa/XO5zO1tbHpsz3dg9Q6fsffODm7c9oTZrZGIOKSJlZVePBkVIqCaNEiMH3hqMr165sbYxnddsu5kbZXCkmdc/991dtcziZvvHGG+7kSbflyNqs1/vgV3/46OhoPp9ffuPNjdOX5o2L3t1z6cLP/KufX1sbXrhwQWvtmqN05jVdm5fDTJvQpDQ6QpLUditlOAKR7tp4eDg9eSaoXGdZZjPddZ0lSbcs4ZdN3WWZYWZldPQBgVmCc84WeWTW1iTIs6lqXawpYwWI2yCkmqqehU4bE0LZuSbLDDNUs3nbVWV/OJ/PTWaJiH0A4bvRr7aLO3tH/eFAk8oMqsaXxpw8c0mk7UL0XauV2j5xelF3n//clwaDXgSZ39xvXJjN7/D3Q3RdF0knQroQ6kgKkDNtQgikDSiidOp41kYxMyjVLCoCXBv0I3sNmc1saDtXV5Op6oIUvRLY+dAJgKJSRIn4lQkRhBDmi1lwQUKs27Czd9sxZEWOAnmZVY2/ceNGxw60uv/hh0yv9zP/5N9OagdakaHgUTRZMgZABNu2JqU63yKZUtu29q1ver3eMasSlvZHAABqGaMNSMkIQhRg4kcDAFFSjwknk4yVJOpu5WMi/AJhWoOui1ohC8coEiIwdo0zWvvOwRKCUkKYxFKpuCKBuILAIgAIMAikK3PXPxGAGYCFtJHUmzE3niHLIMs9R0DQZpXOxpGCqBSes1Je44plD4DMrDQRafFcVdVw2M+yQkghSdf6PM+7zjWdU1qDc3rpzo/L6aii5KOzRJgwXRtYMWEQV2ZXyVIn/cv6+jpLiDGmUI3FYpH85Z1zIqmgQWbOi2O5NyGC1lkaTaZYy4ScWZsDwDFt67h6o5U/SLrFfJxpmJzPkpnnElbBdFXljtfMHRUCr2y6jqE1REx7L6+8so4rQljhl5qUkKQtbjjsG3P+uS+9sLa2gSjMrLURkbRU06OUumhgAQFaWuOScz4vsnR/UyBvOjuTyi+RDpf9s1qS6xNPLgkICVP0QHKXIERQSZMHuDQIFFaglDLM7F3USmljmraiFfMdkpDIiNX6rcuvPf2+xwdD2/kOImtt286vj9bfePngx/7eryqE/+Wv/aE/9Ec+Bnp/Or/OsiClU8o4gCJi50WpkmPxf/7sL/Z6g0ce/aquDYHj0XSqUCOoRH1TqFMhSJjOSimKQimlQFSmjNXAknKxkgrBKAsACHR8bKVL5znGGL1Kj58noigY2q6fFZunNyREMxj60G2ub2yM1rrujs7sA+97387B4WBt2LpOICokiCxxqU5QRt++tXvffQ8w0yuvvHL6zNl0wUUwNL4oirZuTp0+y8hNW49Go/OnT/mqUmfPGmMYZDAcnj17tu1qIO1iXDR1Pa+rqkoOgmlPEFIiUSmTZVnXdcwcfJw088iu7PeC62IUk+nUWjDrELTW2HaLwXiglAmBr169emt3b9Y0xubHGx1phUDJ3ST92URfizEaXNmq370ElpxVtGURQkgxSgwSYkjx74zEgGC1VUUQbmIwihiknkwiktUUXNA2b7taY0rQadNId5TnSlFwfvP0GREJUdDYxgd1FxXeat10HXPggCJRQAV/51wLLmoCmUyma6OxQGzbtpdlw+HwzJkze7dupAaRMIU2oFKKAWJIFF29nBCzAN2VzyeilSVaGv0JIwghKudcnudpyXnvF4uFtVk6p5c6W0SFyESB7hRzLrDNs861k7299fX1E6dPzefT06dP37hxLW0ciVGbJmhEVDU1rAJrj2WViRSc2uI8Kzhpdjmmxam1tha7zgNL3u+nyDZaCvT89tbmY4+8gwhcaH1oiVliINIhMilLEJlZa82Rm6bJjCZUKtNlWQKQZR6Px7NFNRqNnnzy0eeffwEJdnYOmLlX5t613rWqLKpF03kHZMbj8e7+QdV2ejIlon4xiC6itvNF9au/9p8+9OEPBuHDyVGmSBl1OJ9ubW3udP7jH/uaC/fcO63cL/77X33w4UeP9m4Vdm1tXH7mM59dW9tEomRRyxFISa/Xi8577zFfYvVp1RW9/Gh/fmt3Z3P9DBIpa3CplBLvPfRzq7JFvSuUuRCu3bj+/ve9M8/zwxCy1ZC3apv1rU1E7LquyPLBYFDX9fpgC8CnDTqtn3THp4dHQIICzWJRjQaj0RCVOjw83FjfDq6r69rQV8yzgcmaXvDixZNkTQis0bUTFOe6am19NBiug8pmsxmA4ibOFvOIREq/dfUO9T7Lsrqr05nqu2CTmCdIWRQxBIUkyTqVCAWAhYhMkQff1bNZaFsiav2sieHs1sbXf8vv286FY4dKg3hjVNd1wMEHZmZGSCx+CdzGNmH4ypAtLPvo2YfOISoBCoyt65568r2PPf6uF1559a//6I88/b6vnTuHiEm6nioqZhBKFhI6ceTTkw+RPTMpQ6TSdCYd+cuSIimFVl+fiFAhYiov0o//K7aoy19WEGPo9wbW2ugr5jTNWUJllGXOtWVmu7pJbC/GFDsOAIIkAKnpFr6rSEoFxDFpWu4oIsl7r0mBIIMAoQ8soPOyH2LFEFVumQFICQIqffwHlzDA6nU8mokrF1BjzJKA72OeFyISAgPQ4eEkt5nwnRxJocRupqRaWFZmshxxpqsXvM+sdc61TZNlmSLa39u7eeNGVdfWWsDlGDRNALXWmS0S+JH0JQDg3FKgHdklm9X0LVamGE362FprRBChu6/e76mKjstBrZcsTCICgdQU3c24SO+fVt+xuFWtzCnuLsjuKmq/grCBiEsgjWFz68SifqY/GCWQz2acpr1KgVKrvCBUSiMDMIfA0WbZoqrWrAWBg4MDZhbkpNLtlUpQtNY6jVkFmqpOV5vUMjw7cmQBZmg671wgYhHJrRVAkbikyClLpAKzc05AFGLrW1QqcMSAgBA5hiYAis3waHL74qWv15qqJljKQbTRBjj7lV/+FUT4q3/ru7/3D35166+7doLstdEMMUYHqAHYx6Co6BUbL71446d/+tefePwDi3nHIoBsrRVWAGAQO9eACi64tdEYIGsW1Xw2W8xnXde5pZ0hEyTnFxVFEFAAASjXBZE2ymZZ1h8MsixLhTsiKoVaG2UNC8aMxkUfSDQhIAEaEZ5Ws/F4fLyEY/RdU2eF7bouKRNFlg7HCMow7O8fKmXyrJjNFxtdF0IwJvPeKaua0KLBRbPIywIAyiyPPoQQBAUi3tq9PVxfQ6tdIwSx1+slQ9fpdCqMRFpZIyIcHSkscuM6H3xUalkfK1ukuhoUrg5ubJoGQLTRWVmcPHm6bV2IUYDmVU1KkdGCEkJI1nbCgoRKGQaJITCgxAAAxzKCZIuBIARJs0kIkNTKKXMMI2qbpdPK5jmvzEFS9U+oktPebDYzxqDE7e1tH8NsMe0ZzVF0Bhy7TGNo6nINm6YqBsVi0XYspiwyvDN8bOs6BA8oiAo4cHSda4//b/Cd3tnZISJtqCiKW7dutYvFK6+8cv3K1WPrXqUUrvh0d3VRaZK9OqHvepVliYhEy6Mi5c52XVfkvbQnpvGzXpqjfkWtCgA+3qWj1KrrOlS0sbV5dHB44sQJa/M0+iWjp4vF0cF+lp1K21aq5LS26U6kFspaC1CnMvk4ly24qE2GqFzrmYVIM3cEiAIEoAkVgjVqMZs+9eS7tre368WBBIfCRACIdVUJQp4lSCFqnTNK13UKYmqLy8zO6yZ03drams2L2by6ePGi9/7q1asEChHLopxMDpmBQwRAHwVirJtOK1UWAwEBMkyarBJBABqMhi+88EJeZM32+s61a88994W8zH7fN31zt2je8773Z1sn//Sf/TNb440vfOELl06diCJrw/Vnn33pwQceHo1GRFoRam0XdZuEuABgrVUa27ZOuF0IgbRikTfeejMv+i74ni0x2YsoYubMZiEEISUiqcNIt89T6LoueYnZ3FprncfAUetMQIwxIrWwgDbMwhyMVZE5LwrvfTOfA9Hu7T3XtXlR+nk90zPgqAlNnsFdIurppGKG6MQ5V80qipG7hsALeIDwaG+4N62tchzZe+8O5nlRdMHf3rsFeFf6KQGSiEQREmZYYQbGmNh1NKIQogu+sJkItKEti0JCjK2r50dvv/F6keXGmI3R8P1PfuT0Wv/qy8/l6+V4YDG2WilmXdV1FLR5lhe9GFwMshqpIwt79nmZhaqr2jZ437aVkPUsTzz9xJNPPzVbVP/gx//hxsYpJkUKJYSu65z3lowQJjsfpSlwzFAzQp7byE4gWpUxUZIgIREBHR+uy28tAiARQctx3QLL2mJ5xDIzhMB3o1/MLBC7rmMOiQHWK/Kk1ENE7rq6rotyENpaBOMqKmVZGQgi3fnPO9d/BSwd/1AkWZZQ4gaIMAkiLXV8ymiJ6EU0YhQ49rWS3xNzducvEhGhVeUUQpjP54PBoGu8tXY6PURQIYTFYkGkXYgGltU2rCC0EOOdMvErvcqOd8KlFZb3aTPMskwbs8TvSe76MDCZHma2SK1g27ZJQXyMDdDK7DB1er1eL+HoyZc8oW5plSUVBazq42PmE+GyQDm+nuk/jws1XLnUHl+oY5Q0nei/pwKDVdqBUnfqPIKlbl1rffv2bRHc2to6fp/Uv6FBYUAESWAmobBEYQRGQZ3ZJSZB5JxTRgPhsdhWSI6vORGNRqOm6VJPm+5yQr9EhEFQUYJRowgLc1iy0IQRlsMMVlqh1rHriqKouza51HIUhqA1AoUofvvkCCUSaRHp2rC2dubq5Z2f+Ilf+3N/9hv/wB/62sZdD3GqdVSoQ3CggrHEnoFQo2XOmAef+Z1nCIDB+BCIiKPEGIsiDyF0bsnzI6IvfuELIJxnxfve/1W9Xm9zfW1jYyMvrNXqOI8ERapF45xrW1fXbde6tnXz+byu6/l8fvPm9YPD/SAOQQRiCl8kJC281Rtvr29ODg/H62sxRlB00p06vteJnMMhGmMEQSUEcUWkBtKbJzYFoegX4/F4tQpEa4qJAiuirOpca4wa9EujMCo0SmutRqORALRtm6/sC5Y9hs5SXcWChCQYCVV6/pP+VIRNlhOBi0EpJEIQatu2aauk+XCdA0RSpij1YDR+7dXXlbbKWvnKhz+pA6LE4yaEls4aHgBIISyrLpFlWNlSxB1XPqPLsHnEVbeDiR6gtEo/ERGOKnAk0QrV4WRmrNJ50YVoMD35Ic8UxqBA5tWi8GPMs66pIPJ63x7fhaTEFBERD4DJ8OfO/207zRIyW/R6vWo2v3z58mMPP+zadm9vbzzqp2PVB5/bHFlCCKS1QlmlVqW2CY4dDgEAQGlt017jWboQAcB7L7zqZmI0Wm9ubJBaxtKlbWgFfopWdz59EEZFZdk3xpRddzg58r5b31wbDAZLMibqREFN6uiiKPKV4Xu67kuNDDMzR5EgrLWJkZVSgrg8fZtAoFCgbdszp054771r27o6e3Lrfe99T3BtjF4TxQgx+qZeOBeGo5E2qnNe2aypF8lmzPvQdd3GxlbTNESQF9aHzlq9ubmZ5/m73/3u/f394LzW1Lb1xtr4YH8SOqdtOSh686ZtqrZXFOyBLR5OFrXVubFoqaoq1GisqqbTW9fe1gquXd351z/7j9fWNuaTebaxCTq/78mn/uSfKb/jm/+ben9x/oGHK3+wtbHxa7/ya9///d8/Xcw9i9Y6xoYlKG2Ojo4effjiYDCoFsn7NDkyB0T6tm//zk9+6lN1265na8cdc9N0eV4KUut8jLy2tpZWQgoJSWBh09SQEKYmHQ8AQIqMtTZE0TpjZg7sAycCslbK9oZE1DmnSMcYgbk+PNJ55oDFO7jr2AiBo49CKFEAVV7kXpGvq7IoI7s3L19PD2rTNEZZIqrbhowW5HsffvTOs77M4kXmCJBMKTktNmBRBD7G9OSgMKV4ENe5rimtzRDXBn2OEYP79f/wK/ec2ah2b557/1MhgEV0rrN5JqTrzi2zrYCVNhaVj6GLIWHmZVmi0tbaarFwzqGhd73riUv333fm7Pm3r1//hV/8tcfe/7UHVR1ZXAjHycHMnD4nEjIHa3ukIB3JdwB5Wh63y4oZ0v0hgBQlwgAQRZATKkeIeLdxJbAIwN2Zj+k4zKwui2IvztPOldif3kc0puu6sr8BMc0oCYQAEUAYAgKsYh8RjgEVAQBaGWIcF2FLNoJSKqnVONlRaYXKmKxQvo5dl+LMRcSQAgE8DpW8q6TAVerAkiyFrLW+devW7du3QVHXeqWUcyHRkwkT3E7MgqQICUgzhxjd8ZG//ISy5KXDcf8mqJVZdqFA1loXfOJ2Eyzt09Lm0+v1mBlJ1tZHzNx1XbopIpJlWdrlkkIoRk459Eqptm2IVNoP0w4GK2nnMTpFuORF4mpceOwpcHctBasK7O7fPK7e4Ngs6q5fWJ1Ykuq/RDULHH3nEv1Da132egcHR2nVoyApk4o+pdTSwy0KxxA4Wm0Mofd+0dRkNADkeZ6667Isk81YOShlNWqMMW5sbEzns8nsKPDS8oCU0srEjgNHQCBSEpIOlNMJyoKu8wisNDAH8S1R531kBEDlo/iuFolWEzK2XYMKtk8OREQp49vG6CF7+9lnvrh1Av7ID3yL9zvO7SI6wOUEkCMzC2kDQM6FQW99fxd+/Mf/zeOPPy1AiBJBTJaL91XbaE2k7ZJ1ZPO//aN/79KlSxvr6xsba8aY3Ng8z43VRpExxliFCATJ2AWIwHsGgBBC27apmHDOtW0dAqcESBd80zVd04a67aoFBuAYZ/M5AEwX86q6ozSyRX7r9o3F5ToIez5GNAQBCSizReOay5ffFJErN6+OxsP+oCciqJLNE2itg+9c1WAMsWuF8tSTtc4Ne/3dwwPv/Wg8blxHsFTXpVE7InkfE/CMqBiQtFk+S9YAQNc12mhjrA+hc87HsCqJpOu6s+fP5HmubbZ3cHgwnZGxgMDCqP//hP1ptG3ZdRYIzjlXs5vT3fa10SsUEQ71smXJslp3YGPIJBMySQw2XdFXFiNHjYQEqsvM6hIKBmQWpmAAVVkYCmy6cmIbYyNb7gTuJCRLCknRvojXv9ucZu+9mjln/Vj7nHvl/FHnh8bTi/vOPWfvtdea85tfYyxaQ5aINMYYY0x5B+IogTU2i9jiI61jRMdubRtjio2tguo2YkMBnHcxhuLxISKhZKe2UxY11hMBC1hvhhiBKrJWVTjDZtPjMSiKIibRFPJmYOutd3VNhlfnF9uT8zpOC4G+DmAGAFARm1KaTaavfu3lruvKw1mUMrsZXHkwEEgBcowAsre3F0IYhm4ymajqZnNhUL4z/SIiUS2ezuX6ltYqpSQCTdMA0mazKSfHDgNjZr0Ee4QUJ5PJ4eHhb3z2s2DIOYdIn/vs56/dvDaf7f3Gl75otrzjqqqcc4XaX1dVufSTySRxRERrxod/hN8JmTXnbKw35ELYFPVTDlJ7Bzk/enD//t07v/d3/c6jw32JK4sUhk45WoTS6Q59733tK5dTCiGW1RNjDCE4d9Y0zaSp2rbt+tSFYAiGYajr6sUXX/yVf/fL1tDBYs9bd7h/cP/+/fNl30xmm75D5RQGa20OOrB0ywzKXdW2dWUEJWsIfRg2Q0h/5k/+vsPp7LO/9qvv+/AnIMUUz13l969f+xt/82/8o7//w//s//vj+zceI6KvvPxVVWiaFgGrqiZYL5fL+XQSYjDGWGuGoWuaxpB1thrCowenZy++651fe/21TRgSc4wRoLLWDv0GEeu6LsM7Zp5O5yUdcj6fN00T49YkAoWZCW3YZvuVAwdAvfdNU/d9H7vO1rUIG2OEAVSNMc46AHRtaw2lWLaei0PWextTMsawikESEAEwvhpykpSOr18LoV/1g7WVWmd9M6unQxpc7a5cu3mxLhGstSkLM5fUsPHNjYUtHtD4CgCUpa5rzaltW+VkEK1B5Pzwzv233nhVefWup5/45De/t62t5J6VrXcFXrUsIYSikXTGMmjMqfZV4gygSYNyLlyQ4+NjU7Xzvdnh8ZGp65TYV14AjbOxGwDAWqptrYgpsSJYbzUVBYlKyqpaWUegClwY0CVeqoAhxfClVBgwDqqgjCsvI0/l+ILC1gKI8QLDRjBDHyctDMNgrVUQY9wQBiD0vlbmIfT7zgBIzlF9M26RiKKEUhjcF3XAZQxsVyXABcJUdiVmwJK9zaCK4OuKIwJZVd3tEpffsAwfAUBBiShn9t5r2WGA67quqoqIYhbvkcjmLM55ACRCLYOrraukXvpgWybZhdIQL72IzK6fxkuauyI5zDmrKfb3cO3alaZpyr04OTkpP7ONepzuWnNmVoWu68oH2AVU45aTV2rKsqGNkNUlHAsuoVnjZd+qGmXrvoE7keP2a25Z9rg7GC4XZLuLXIAB3foElcZpsViU1KkdQJhzLFNyKMgKABISkICGFKumLpAeOdeHgYhEuNiGbRUJF4PO09PTIsEbK/4tKgYAxZPMWS8iRX1ZkJJi0guYARGNIJAxRoFCzE3jVFUUrXFaBM0ILLC3qAE5Dn2xHE5R/8kP//g//pG/ULWbk/O7rsre+RhjebIQTUl5B0CiGmn6uc/dOj+F+sXFchkFoRs2tU6ZZTafDF0PQM42wzD4SfXKK2+89NLL9+7defTgYUmYVdV2Ui+ms8l8MpvN5tPJ8dHe0dHRZDKZzWZ7e3uTSWOtnc1m03ZSNXXTzA6O9p2xQOiMgaJ1U4DERAYiA9HYqSqmlH7k//HL5WL+3//G3zg/P1cEQViul13X930X+rBcnp+cnHZDf3Z25mz1tVdfmbTVa6+9supWBMSgAmrQsDKCWEAD3CA2129I5k2/NoZSSkZhWG32Dw6cc6EbAMCQs9Y751kV0pgHKqDlrpWT8fDwMHJ2dUXWcBZmHoYBUdu2TSkgAlmzv78fM7/+1mu33rw9mS+QKIkAjThuGaPnnEMIvm7KZBwAisjXeUegIrkM63BLiyzLKfR9AeF2T9OORlmsjlQ1dRceeyEEB4Y5E1HbToc0IJm2mqQQ62qWFfqQVBXQDEPIgEOfus26UfPmq18C+NB2sxNAAuXCTL0MfZV91j77zNteeukljnEymZCCRXr88cdLpbJTzaiIKJAlAZ5Pp2dnjwiprqr1eoWgddVcektBVFdVAoBYZrrbBhexTAnruiIizkKAu8oXtnvKZSwtxXT89NV1tym6jeVmfXR0FB4FRCw201VVGeNULlKMcpZJO2UeN7J1F4ZhoIoKG0xEyjFMaFRH/JwAq8rFvsuhX0wmm/XyxpXj//I//1NPP/WExAEz2+IQZpykVHaDvt+cn0M7nQFiW/lCliyf6uTho4OjQ2aNWaqm9eq8t8MQm6Z57rm3o+qv/sqvrGg1m7STpnn7256OIT86O0th04c0n7TeezAEAN40zpJNHDbLbrNpGzObTd754rPve9+7v+vjH3/05p1u2T35/HOZ4/L8/PDqVajaFz7xbX/y6vVv/JYP/o9/7x9ATAbgKy99zTaVgvZ9X9f18uzkfNJWvmIete68zfddLtcMAM6gMcycUvHjsKW9iDEqjr6RwzBI5qaqill2SpwiHx0dXeaX9P2AYBQhpCiKOsRmMjHGqyoQee9BSssrOWQQLaRRQlSWyWTiDaVhtVsGzqOsIyEUuUDOQpZSZmONde2D+/f2j4/b2TyG5OtWxNjKOWPaSf1Lv/CL/8vv3C71rcAemEF0exqJteXxEAUuQRm0nbZMJpOhj2eny/W661Ydx7Q/36/dPhm/tz/PHJwnFAUgRVRU7y2AYFSOeR3XBQZmZslMZLx1AaKygChaPDk/qd584x3veTcU4CczM3ddmE3n6xBiyNujcUR7Cnrf9/182jhrNSeV7Cuf4eLovVwujDw2GK9rAcl2h+tYAAkCCiAhkbWX0S9ApJzZuzrGs3LTgbA8L82s7fuNIQTClJI6VdQsQmQEFEspBhdoyvhFLu08uwoMRougDKQCbJAIKaSYuHJVvU7ReYeGxqgWUWEmAlVGNIAjzZyBAQwYGlJUEO+9ooz+GkSuNqqak1hLTdP2fR9DLD0yEOxQ/N3V26FEiCi6K2UUkVjKIkFrbZm5qCrr6KS1GzyqFquEDDAeGKWuEoYYsmgehsHZqrwJESmBiGiWXWFXyqPtcJDKNHdXxOo2UEgvVSfbElBSvsBNy0FycQsufVnY1meXb9MORSt/QWRC6AGgaRoWLnPb6XQKAGBGAwVAROsAsYQNMCgRkTGIIqqaeG9vb4gh5jSZTYdhmEwmBmwckqru7+9zYmMMGULE2Ww2DEOMkZnNSNpRVWXQAp4hEBirCoKkoIgoCIBoyaiiSB7vlwCriEJI0ZAt0U8F901p7StwHkLYkAFQWSxmv/yZf//7fuA7H3uyXa7f8JURNTkpoRNhRCi+VkiYGaxrYvQ//i8/c3z0RN8HBWZJs9ksRa3bpht6ABU1KeaUZL3u/9YP/i1ArKfTtqqNMd7blNLqtWUcAguDCEACSJfdwbZZnPr8c88fHh1dvXLl+OrR3nwxmU325ou6babtZDqdLuZzQlN737ZtXdcEaI2v/cXgqG6b6f4cccwNMtaOpi8AoAAGNANauHf30V/6S//XtmpLpHQIYblZr9frk5OT0G/O7z/qV+s3vvbKvTt3DBEBNFXd933l/fLktJlOjHer1Rp24ybMqmiMQ6Kccw5ZIZCzKQVjjBZjQIR+GFarjXPOOCphwU1bxRhms1kWPV+tHp48mi7mmaV0SggoklNKAMSSSxUrkq0dJc8EmGOyHpKIMcgqUtK6igaTBZF93cQYxxY1jUscvbEjT5Ezjz7JrGKtNdYrgPdVCKE/O08c22a63pw2tl3sXemGTchsKicI5KooZRSqPqyWt1652OnIjBLwYvG2pYGWl2+n9oknnvj85z9/fHDgvV+t1oeHh/P5HBEJkAr6BmCtDYmZuWrq5fL8D/3hP/i1r7z8C7/wcx/51g8T0ad/7udhul09W/xs9xiX3aScByU5dT5vYFuxhpRL2TS2aM7xZRsLkcVi8Sg+BESyzpDdYvh2S5LAxWJRtp4Y40svvWQtPf30k2XzMtvIlB05jIiysKpmiESWABHEGASRtqkS5M16+fj1K//xb/tfz9tmeX6a+o3FmDSFPjhnjLEcQsmlGoYBAOZ7+zHm8/PTEoPYtrWzuDw/my/2Fs2EFQfJ1qAqW4NVVT311FMnjx587aWvzGdN6Lvau5s3jx577Fj47WfL8zfeePPW7YcGoGkoErWVPzvrnnvyyjPvehuH/v3vf+/h0f7Nx64t797+p//iX378t/6283t3q71Z4wkkgfXQD8fPPfdbj6984bNf+PSnf+4D73r3z336Z05X6+OjYxUhkMViYRCqyhdmqzGuqVsgQ9aiNQLw1u3bQwyu8nVdV945VxX35N1hBgAHBwdvvvnm009dr6oqDsHMFymlouuxlyJ4FbQIo6wzBVQvG2vVNIWlR0LeVzEMbdt2XQdEYb0CSyljU7nLIG0fNrY2IimzGDCqklNEA8xxvph/8yc//lM/9mOAsHflmrU+RQ0xOW8VcbpYXBz5AipokDJZMAwGRksz5wDRORclZxXnXGVdHAJaK8jMwsyz6eLs5GSz3DiDgtVXX33jzbee/OZ3PZulq9CCYkqxahrmYFAndRMwrdfdehiM8wZJWRjGsQKgkMVHZydXH3/sI5/8+JXrV0CSN/b3/Cf/yd/+4R978oX3nJw+yqKZuWQtKzCqUWAisMY6S5PJJIZei4dwSmCdcLLgRFBFFEgkFQU7osIlcjoziLAp2djbF0BhdmLOFxd8Op2nlFbL/tGjszG7DaXYaZYnerPZIGQiSYXfVvy9QAFQthi/XiJ0AsDXQ2C7wwaVhTk5a0WRRRS14HCT2exU2ICJMTKSHdUIWnSIZmdPqgrCquq8Y2aWXKbcInLlyg1rraBsNpu2ddPJ3HvfdcPJg4cxRoQxlbx0ZbvKJuVcejnYDjRxR4FFzMw5Z2/dls5SRqg0slIyq6CCqOpqdT6dtkRUVVXpFZXUGFN7H2OsfEPbTMaQkzHGEDHzLjNtVwuWAq5Ue6aI7S+TvbY1MWxBLNwOHHcgVpljFkeV8g93bli4jU66uB2q5bfvZiDOudJbnp+fI5rH9w/KZS9/v5tsIGL5YS2OqWX7dYZDHIYBt/ZLOhqMXbB5ELFEW+76t1Kw7mpQZi4ICFxqLXTUhELhEmlOxiCR3d5NIgJmtsYBYAiDt1aIlqen73/vlb15C3oqwpWrhtDfufvaRz/2kT48QhpULYJRBVW2xotIzmKMURAE69z+W2+s/+k//en3vuc7Yh7QGmfQGMNWU0rGGiBSEQCqqzbn/NyL76qqqkwSC6GtrnkyX1TWFN87Y8FbtZZUBMkqCwB0XZ9z6mP+ytde+7e//OuchtExa3vrkWhLdzMA2tbt4cHB0088OZvNvu/b/otyK//8/+YvKgIRTiYTAHHWFtZ1VVVIZIyzlT88PFytVt5VtfdVVYGOmKtF2tub0978eL7PfaDMX/nylyezKVkzxICGSm3w8N79KGK9K4vWeAeKMWdDTkS890MeAAqtBV3l1+u1IrBIGW6UsZhzLucYYgzDMJlNQ0p3799nxRQDkh3DHBBBwTnnXKWqBcqPOc1ms77viaj2FQC0dQUAfd/zRZy5VS32cGMpYswYGL9Dv0TEW5c4p5S8qxh0p+Tr+177fggBgMBAlm4Yhg4jg84Wdt0NiEgExtghhoS41/jlGy/x+QOY7fY3q2kAY9rJFMYwsEvGEwD21q1bx8fH3pj5bPaoOilEvPPz88qSb+vdo+Kss9523eqP/4k/9vGPfrTfdCz85/7cn/vCF77w6Z/7+d07ljShpmmsteVhQETOCgDDMHRdX7aYqqpUIMbojEWFwt3TbWTY7t2qpv21X/lVIouukpwk5+XpGbCUFFUCjFwkFSZniVnKmRFyqtqGOeScC4QDACml0t0bQ5HZlK3K6aSuh83GOKqNfXC6+e7v/I5v+cD7Icfl6QODuOzWFrhpa0MVEagwCzX1pB82Za6aEtd166zxrgophhDqpgoploeNc6prP8QcQj+fH6TlEkmfe+45jmnoN1XVpDwM/XI2m1y5evTCc4994ze+I4SwOl/fv3OXmVViRfAn/8APHJJ95atfPluewuZ0fVdef+vuN7/vG9/9rnfcuvXVeX94sDjWPqAaMD6m4BeLj3/7R3/4R/7hjaeePZzN0dDp6SMBa6wXEVTtNqumafoYikq86zpjTMqiAD/5U/9aFWaLBRB671Eh59FsZrdlV86fPnoEoiAKAJzFWluyn7coAjEroSkPmDcm0RiBrKpDDHVd7+J1Iecsan0FIs18rsqcY9/3uyMBAELcxCx13abEmXNV175qJ5W/cePa2enJt338E9/28U/+5b/yV07Ozg8ODoiMaBQVQMN8kVwUYwZ0AIREanb8HjaWSEf0CY0Tkb4PqoqsRHazWoF1i8OjL730laPFPgJ0WcBOPvsbL338Q++9sVeJZgPgrZOcAYuXkhDRwcFBSul8tcqRY5YYIxqyljZdzMIf+8THP/Jd34GV79br2tj7d+99+ye/7bOv3v/iq29OF3spJUAqegiLgAg5swLkzG0z6fvejkJ0LvWItVZZ1JAqEKEqgvAYGEVU4nKZ1VhrrUUAkXF7SghEZIhYgeiiLXvrzfvr9ToMaTKZKQCLOG9FNKXkyUym0yF0qlkkAyizqpGsoklo/HVbm1AwO2BJQUWE4AJPAiiEseycE2EWdjTmR6OhAhzGGFmz9U3OufJWszBKXdciUOBtY4yK5iyReyIigzFGNGCt7fseUVnydDqdzhchhBS4cnY6a+/eXRKgIzNkLpbowzCUqsY6F0IAUWuNMRRySoG99zmN6dfW2iGmbgi7kVzhaRTfcGNIgWJkgDGZJ2dbsiPHSaJAM5klZs4li4BE1FpSRJHRkrLoGa0t6bSy+6ZjjSiKRFujr0LnEESMmHaNaNM0u7Ky0J9LC1rySEpxU4BtwZHcVh7zUngVZi0zF1WEQYuIRHa9Xvd9P5tNuq5DYUuWhVHUkVFRYMiS4dLEszyApUqr67rsw+VSKIMyWG9zzsUgqoQTWDKcMtVFBUWWyBrbxzDWu5k1qyCYUQNboEowI12aS0B1+QC7b+q9l6wKdH62Oji4Xo7gssxOzx++413P+JpD7gtUBGOPYVgBijWBIRZGUxuz//M/9/MsBskqUpaMQMUXCgliFm88MxcAztcuS0pdJCLjiGNmzYSjoXfBkgG0NOeamQFRtKqqnMUYa6zf258cHd8gKpFfZZQMta9KcjwiimjXdSgKAK+/dXt/sbd7hD/98z+37rqvvfxVBDVoRLmM5BQUoQRPkUBxijHbPyCAIIABk4EJCCE7wKevPfH0009nkchc/NiGGDOzMaauawHtY0jC625jjQOAEDNak3N23g/DAChEtOk6QhRV773xDsYgDUSLTT3JOU+dE8DVZtNOp5UCEAoUA7wIACgXdIVqMVNVF6MhrLyLMSJBOU1SSsa72I2SWBZVVeMsM1tEZva+SSkJiAobY1REgVnU+0JeEuO8sSYn9r6ua+z7XhVzymBADBlyavD0/KQLZn61B6PkoCSdiLJC6E7vNO7i0JlVjZnNBRjJsiQVVLgU+kjW3rp1a71eS4znZ2chhC9+8Yvf8fGPfNu3fdu//okfm+8fEFkAUEHWzMpA9JWvfOUf/tAPnS+XCPiTP/mTk8nEXDKeKHPrsjjquk4plFTzUpPduPHY7du3i1WEjK+x3Rk5dF/fI5eCHYCGrs+QYozWmoJVDEPsNgOgbNs1wyNdCcrGXVqosqGUIqz8oewloEyKkFKK3dHe4vXXXtuo/Bd/+k+9710vkuSz0weTppEUD/bm3rrNZpVSUczlMMS68m0zZYEQ+vPz1fXr172vYwrFnzolKhtNzlFECXV/MQsheFetVti2beX8xz/x0X/3mX978uD+YbVomsoZkNjlAXxbN4v2yt78HW9/ChHDsLl5fPjUtWN4dPrM0eGv3n1tOjk+u3vn3/7cz3/fH/0TRwez/Xr/dNOd3r9DSq21gOQnLSh888e+5W//3b/99/5fP3S6Xj757FNsrII1rhqGSASr1fmNG9f2FvsnKS4W+1VdJ9a+7xHBeBeGvI1yk9IBqyrQmGNTxgclHq5tWxm1VyiipWuv69qgSSkVN8iSs27MRT6xq6usQtYws/EW/bg8YPQQCU1tBey1m9cuVikVZUpEVHKmaSoi2qyWyjKfzP78f/lnv+d7f/vebO/kwSNCu+7XdV0bD8PQFxS2vJi5rppuGFTAuRGl72NvLYkySzYG0SAQKUAegnOOVRPn89X6zr27VdMmVWctGGMn0y+88tpnfv1Lv/M7PgwQEBKCiIqwKrMIOOeryte1d87FwKwIAH0YzlZnzrkrN25+04c+iJM2DBtXO9H8la985fpTL377Jz7+C5/5y1evXUPEPsSS2dy0k5xzU7dd16UYJXkgIPKKaKwd9dIiiIqgpjjvqwiD916BmZnGtBDYDvq5HEuIVGpi4eI0cYFUvXnrbtu2zjUhpBCTqsYYEdUYXx7eYei8hdqP8dIqsrXxunjtuFmwtU7Q7eN9ubbe/bPdvK/AaaWMmEwWMasBVIs5xFLi55x3/DZmxl2Fp0pknHNZUt/33vu6tovFAlG7bpNzRoG6bh88eGDJFHeJskuoiLU2ZUbEnJO1Nmfu43jIlcYjbzMEAUAQaQv0lpEfABjjShxIGSGmVKgtuEsu38FRl2eLOWdmyTmPCsetIUXp3auq2mw2F9/0UpR4GX3GGMsmWfa63S66k27s+ue8zfEs73YJKhv9z2Tr/lU+3q51YWZDVGJLTk5Ozs/PDw4ONpuNiBgz7hJFREU0am9hG0xpAG1VDcOgqnVdhzDsKrPdhly2EWbu+n5vb69t2wKhiUjf96CEmHeWK9bWzpkkY7R5zpHIjB6+AEVur6rFImuHeXASRHSuGobh7c8+aaxkUUOes9Z1XTlgGQoDUIsf+yXP57KtsXLTTk5P9B/80I+//bl3dEMkZyCzEoFAST0WgQhS2o5yF3agYKGElgtLROidbO8FCyA6IIugIpyBBJQFUCUKYMwCiloMdQURl7IpiFqBZyaTSd+Fd7/nnZV1L730pd3HfvJtz7Z1c+PGjX6zMcYQYAFBjTHO13Vd9zEcHR0dHh7/xE/8xBOPP6XFvdJag3By9qhqJ97b/el8MWlDH5UTqiWCLEgg5KvWTWLOxjjr7Lxt7ty5V0/qElDRtlMk6rouC1fATdvuUM+4JdqXs6As8pzzZrMJIUiKkqKrauY8xGicD91GckIsY+ZxGTNgOVnW67Wqln9b1zUpIGLMo5ncVtfCJY+hLNSCNTjvdg8IggHQEELl62GIMUbn650iENFwSbFFI6CV86LZGLM6W3HOAJJSj3XNKe/Na7s6ffDw7rVJuyux6qoCa2IGBGiqFgD64cJ4wrnK3r17FxExy3Qyu379+nq9Pj05N+RiHPsYQiJrisoXif7NT38KQGazvfVm+df/+79+9do1e2mcab3vY3B+LMlSSgXEn7attXbWTmbtJOuFNw+QlLEpbCWsgBfFXOnDNquuELo59RkUVO/fubs8PWuaJnM05Mi6IjSt67rbbDim2nmGBACb1dpb743VzKpaWTekQCXt05AjCJv1nUcn3/+f/d5v+eAHnrh5c31+1i03s8nEgkaAOASxvFwuiSgMIXQrBfbeE9JiNj/NvEld5XzT1ut1ttaTNSoAhnIMmZNBI0Te+cP9xboLk6buhiCZc8rOuel0GmMMKXqnKjmnQIkINCtlZbKGU7xx5YpTvvfmm9cP9p65ev3WvXt3Hpx8/BMfjXH1Uz/+L55/13tuPPXM3c2Zs/Dw3j3fTltJtvJm7+D93/FtD89PBw7qmy7o6fl56tmgSZn7YTOdTheL/ft37xweHu7t7wOAIl2/eb1uGtFgnE0p9b2ASI7CAikykS39v/dusZh3601d1w8fPjzcP9zNGsoRRWDDkAw5ULKW0FhXe0QsUlRjKaWsRFKyLGjrsmgxSyqyPo6RLikwyNmJd1nEWo9oiEzfbxDMF7/45Xk7ufn4Uz/2P/1LQDfZ2wvD4J3LHFFM5czl3G4DxhirgsXLSNUCSkqp8Q2QOueUKEs5+QwYyqLGmOl88cprr5+entqqBjJRBImsq6d7N/7HH/nRF59724tPXcsx1g40S2WrRJolRM6WrUEySIjCmZ1zbdsqaTf0qtoNfZ2DgIY4tH7y2c9+1k6On3v+WbAUhi7H7IwBhMoZVFHOSthUtR17fVLVrDmn7QyxZFCoQQQstu3FHQdRiyEhoPfOGGTOxf3SGAOqMQylblDl4dK+sFjs55w3684YI6BgSEREmCV579vZdBg6ztFZSCForUllh6rr9gWlGCm1kcqIlZZzZNtlGQBVFNBC4hEgFN7NtsrZz8xCowmnSAaklC76NFUlBSIa0lBgnjLRSBoBYD7fI2IRzika45pJu16vOUUiykqFFOycQxprlxACA3jnQIs7FZVkvpii9zUzF+5IIbexqqsqRGXOImY7TMzMOeUIICWfbbVaLZfLEELlm508s1Q5dV0TUZnRF/+XrMiJYXyaRARymdGV8OMyNd4ugxACKTiLwmUmBbtJZfHcSSkVzqtuJ4zlv5Z/Xv43FyYckY7ptyNVN8fknDN4IYoqUwtRXswX1hnnbU4RUUUyopYBmaMdeX9E1ZBAURHBWtN1XFUVAcYQq6YOIfR9vzxbZUlEtBn6nPPVo+Nu1S3Pzoio8k1KwzDE+XxeSjRjLnQbhdEoKRMB2nGH2Z7u20E5AWhxf1VrrbF447FDayQkFbVkoDDKsqSxI9Dx+wKM6hxWAQIEh9T+xhdu/8Zv3PvG931DzAhAhB7QAImyIqnZTquVRJgFSIAJCQ1kScZRUUQW/rUSKgAqGFszM5E6azIkUYUSRYIkoCCAJRcVQMWIsnP1ENn6NqU0nx8QaCZWQbI+X+p/vvTlr1w5PPLGrzYnCCYOw/Xr10H01q1bTdO4ysfMnGmxuHr37klVzYwxzFpVbj5r3/ne952eLx88uNelFM/Pva1iSoqUc/a2IiJggMzMwik23ibhK9evzfb3ch61F/0wzBZTBvXmYLlZDzFOJpN11xXAmFU4c2IuqcrDMKxWK+ccABtjYuqzsBImHnLOltB7bx2llJTVOVeRVdWcOIYytbeg5RFQGKPWC2ysKUfnHKEzhrquc85573aAaGk4CzRDRDmHzWZjKx/W67adVpXpum6z7pSVvFNVDSkqGJWkCiHcunWL/AGQEtk8hGpK5/fv6KZXN93dBW/sZhjIGoTCyMDLrvekYI0xN27cuHnlWlVVb925LcylEJ5Op8UfVVRkK2RT5rpumHm1Wlrr2mn74P4jEdlxv6y1q9VqOp3u9A7F9Ku81Wq5yTlX7QQRQ4iwJd5u/bfRGIOXsud2TIKmaYZNZ6tWNCti13WFOjaErmxbta92fVUprglpGIZiA1bucV3XCmKJmJO1DlR/7Zc/++2f/MgHvvEDH3jv+5y1Jw/uGxVDkJMgYU7jhxeBtq37QaqqMQZFdLVc15WfzWaqeuvWrfne4sqVK103SNGyIzLzyclJVVVtM4ksKQyNrwY/NFiVq/G+973v3u23PvfZX08h0qSZT2dNWzEoc0IxYBwazEPvCR3S8uHDx2fzawdHP/tzP98eHM/ncwM6rezy/gMC0qY2BJWnlAaLc415k/q6ct/1278nSPo//3d/jVx9cHQcYxiiNJM2xkFQhpD6EK0JIhJjFoGDoyvz+bxudbqY7i+mFoq9J9R1jYZiSqXPJjJt3ZydnfnaO+eLhrQc3swMwJUbVfQj+ddgjAMVg1vvQw7GWWUhN+50dV2fn58Cs3GOM/vKc98dHh/slkHOGYkM2rZqlYpzL3s0zlU5SRrC8dG11WYT+9hMJs4Z633mNAz99asXEFpKyTFba6OOIq/iDmWakXHCMbIAEBAZ732ZYtRt8/DkkUEbOTOzMzamsOFeGAABAABJREFUGCVP3aTdu/5XfvDv/jf/1f/qicOZ5M46l1JiLh5ROYTe24rIIGKIfR8GRAVUAowxDsOAzuVhU1Xu9OHJ8vx82HRPPH/8x//4H/ubP/g33/7Ci5l13fW28sjZE+YwlGO3+HUV5+WROr1tXTBHFURrysOaAheAQTSjEhHmEppOqKp9DkS2rmtmXi47kZLlOr76bgAAERAQAEGDAGDIld9eVdVyuXSoe9NJJ9kYk0URcaynheHrAwp380cAIMASQ6RY/qyEoAJCZb6y8wvTguiwSs5ZTPHm5IKY6iW4C7ZYWvkuhBYNppRUR1F6gUXq2hHZvu+7bogx1nVbiq0R3xUxxmy6dc5ZaTQQKgI62cqjykZkdg5rxYGWqIR57CpFIiIyhHaz6YttY4H2h2HImUNORqkQJUsRXDCnkaSy/V5lJwwhxBgLzCZbNy8RARlhsFLl8pgOPtrl7+CrcnFCCLrVMJox3XUsp+CS165eslUr1VtxiioY27jZDkM5GrZ8j8xcuDu5XOoC8sHOKYPG9+/7fjdz9N6HfiiXvUARiFjwcoDRUaVMTsrvKpt/+RhEBCDFPTTnjDgKTkspXo6SLcuNih7Cex+HMFaEwpzj4dHc2FK+I6Flzgps7fjzJUtwW8aUi0OEHsBxan74//NPjo+eYKV+GAqggmBAUUQICAmZBRXkkvVaqbaZ2VqPyOXDCxKCEhU30cisxqAysAopWWsAtaTi7tYDAgGBKhljRDSLGOdyziCK1mw2vYAafwH2Z4E3br01m0ynk0WMcRjC2em5c66uGgTiDH0fphMAoKppgYwanzlKksPJ9OjaDXTVa2+80XWDqjpjc44x8/ve9x4QffXVV7U4mLCs+y7GeOXa8ZNPPN0N4eGDR1kFEc/Pzz/0oQ8dX72SY/rFz/zSYjY/Xy1BdNSflmeWEImEAAidr8cJFVnOSRAMUc7Je0+g//PnXRBCP+jWc5RG//ayJdKWm19IZqAsKYXSHrCINb4b+uVyiUjlBI8xuqoq51MWGIY4maCIbDYbHgYgQlEgVERJLDlbMgA2hwieLWns+8VicVzZ+yf3yXlDFraDhJRC5S2SjTGmHJxz08lFpmKOyT7+2JM3b970hA8fPjw9PZ81NTOHENq2LXjvTsYJCCA0DJGIyhhive6McSIXNq+qqIrOVpw1xlDarzgEoEJjhgJ6ERGUWA8qjbVeeocLxGIcx24pmWO7lvL5+fnh4WHd1Jnjbr9YrVa61e/knI03O0C+3KEU4mwydWiC8MO7d0Tkz/zpP/rBD3xgPlmEzbrvO4lBVNvZVHIahiHEQETWmcbUxlkdgEGHYchx8N6ySgpRRHxlN+vlqaWqbkXG0UlpOkGUJRNq01aPTpY55xBijMPR0ZEz1hEuz8/ysKmMs2itovPOOOQksdt4aGrn96YTDzD19a985t9+5bWv7c8Xk8PDRydn637YPz4iPMmS6tn+q/Klx1/8hhw59oNf7E0rK5yhnf723/27n3n7i3/7b/+dN269WTvDWYeuTymWkYT3tYg4V/UhLZdrAOhj8FVbNfXiYJ9Sb60FjbtNJOYkAiVveLlc7rv9USqSZblcmjG0dVwGuzOp4FtN24hA4gyE1lLB6FGwqirvLTOjsd66sLWouX79wkIwxmgrV+RRkqTQnxEkhV6NK67wMY5zuqp2qkIEzpkHD+7t3oTTgLhXbkoh6wAQAaA1IMIqfd8rGlfVhbE70hZjBAABNgZjH9EBoBjnzlbra/vzt27f+1ef+sx/9Fs/dtDUnMKYRqUwDGnIUQQQTcgZEcxoxmWEFIEsGN70FrAiKzGlbqiMwywf+8hHP/frn/vyS1+9ceNGTslZrwgxxklTp5Qka9Emg7UppaLrMWhVLyZxxFTEZ0UyYQAJkZm7rlNgVWWkLb1SzpdrRPS+AkDOF8/dDpyOOVlLClA4Q45c3w+EkGMA5b3F9DzEhihIiRtEAhhbcB3RDy6SvS1yAwX5whJLUwRp5QdRRYuaURUzq/MVhOxdHUIAJefc0JXxHF+u7WALJHAaZ9wiJVqRlYUAtZCcsp6vlzHGk5OzppkgmhhzcXJqmgaNKdMKRMxZJAkQiSoQFMuxsrOXjSilTATOORAtywkAsJwrDEIZiAQRiGzl9/b3iSgLnC2XArnUDda7nDMgKCAZm1JCIhbIrJJHi1ePhtAaa5KwiCqhMWSgeP0jAKbE1voYB0lx4h1aUx6iXb27m0WWDbDAV5dLyd38EXZZcMXIdBtQMSJGxhTRjKpWVUUEs9nk8PDw7t27bduWmeau7BsrBoLik0pEIGrJFOU1iPJWa2VxrAhFJGcpgQTe18UPzKkru32MMaU0mUzCELcYnuxEF6paGmwYw6/UOYMIZQe2ZcZBVNgLvkJAuPnYccqdaERUlhLCBXopKAYAQA0gCEREdLbZdHB0+ORnfumtH/3RX/zmb/zu1dCRQ4YMWDTFgGjKvymmIKPllQCiKT5YiAbRWOsFSSQXnWPKopK9IV8hoSk8PDKE1sU4GOfLPLTwUhWyASSifkiF0VEAe8kZJG82K0W5TJv2dY0Ch8fH1rnT03Pnk61qZcmiltCCaZvpph9YoG6nUTSu1pPJJKt84csv/fynf7ZZLI4PDuu6DrEHhCCyt7dft9PXb73R5YwKjkzdNK2lCeL1G4+hse106tcb5Oyc68MABF3oOaaqrUOKAlD5mkEVUZiBQAGENaUc+pCzpJSBTI7Je4+gxZNCMifmqqpG1bCAMdSHmFIKIRlnR64kkqgOaRTN5JxJlWOazKY5xb7riKBpmr5bF3jIOfeOF184P1t9+ctfvnHjBlzKLuOcm6ruN12MS04ZyABoWa6KpCkDFyG63WxWUE08pMrhXHkuAVfL/dncOQfb+0CVVVZCdZZYJaYhh4shg6+sPTw8zDnfu3d3uVyWnmNscFerg+OjLFI4s4AEANZ7GZPIjBkjq/EyaTeE5L0vnWsISRUJMcZYt42IqGhBsMeyVFWlhKhfyObjpTV0uaUrD62KGGs5xj72k/mkqry11iLlmPq+967ucLSeyzkbsmW4IAyI6JxTlpzSvbduf+TDH/7Yxz72/Nufi0M4e/hAOKUhGAJnbMoROA/D4LxNKXXduq4rgNHn5sqVK7Efbt95w5JhyQDQNM3Jyclyubw2mRnnz5YrQCOs0+nUW5Ni8L5uqmZ/sedDNGYzm81yTLfeeONgb//q1asn925761ABWCpQY4gF2/nUNTUHqzn94i/923/1//yhF595+js/+Yl73eZnP/e5G8++PQ5pWG+IaL63mE5qQd6cn+7fuDl0EfoO2pqMieuNb9vnnnv2m7/pvb/8mV/aP74KCohweLQ/nU/6mJCsEri66kNeb/oiJyHHSMQi1tmqaVCQlW3lC+xkjAmhV4Tlcrl3sFcWTM55GKIzVkSqypbkr5giYPE1NQSowMxSVU5ZdGs5pCpN04xdvoHM0Vpy1gzGtPWFm0llXVtX1nplCSH0MUDOiUeoGVUJbdnHC9lzOm98U73+0hu/7w//wYstFbWq/PL8rJzlmhkAOGtBfRAoFxAmZ0fGVmNGQkqp+P5b64hgCJ3zPolMZ/MuhP3jx//xj//k0f7iez75Yc2RVL1mi+rIaNaYR5dLKqHTqBaByATGvOkNkiaGxj64c/dLn/uN7/leikM4Pjz+z//Un/7f/zf/9f1793xV3X7wYFhtwFiAMcD6/R/8YB+GYRjqtink+hzHSRxq0TgrAANC8X/fGkCIavnPlLlEfKqIOOcLLH151Fu+NQAgGipe0ma0hy6cBkS8f+8uSNybTl4621QiwALIBHQJlRlfcEmtBgAM49wICMvxucNjAFQAHIIUwNvaQiBCxCSMw6CKJdlmJ+PYbRplr0jbOKYYYykLYsxIHEJcb/q+DyGE/b3D5fl529ZZtCSh5Zw5JxFZbzrnXDFsLExEFC0kxd13ASjOfzB+ZhRry+6HRJZBmVlUC+SWIo/u0DC2nSklsoSIpUGn2pS/3PG6gHQ7xBRQjCwlX6Q8euO3hgsacnnzck3okn1XwQPM1kKskN9L00Vb+0e6lCapo5nFqHMvtWYhn5UfGIZhb28vpXRycvL6669PJrNCqeHRKN/gVgtijEEYS7GRXCiFtOBL5+a977quFHYlAjKkaIwp7e58Pi+80vKe1tqCGBUsoMynYCvSTCnhiIxCQcisJURiTs65rusMUVX5zXppDEraVBUcHs1TPgVgJBDNoIDExUi8lNojF3FMyQBm9W6xPq9+5B/9DEHbhzFoblzbow4Xd5bCiFSWuWzVssxMNKpZBaXQFhHJWiMlO4lZYPScK4CfiAAUb7bxORId7cOts6Wy3PSbaTvJHI2zq826nU6K7q28BMB4h0TNdPbo7BQNsQgR1nW9XC67zYmrq7qdpJSAMGZmgk0cymzqbe98F2RIOUQWRUPWSwizxfz0/PzN23ems0kfBmspqSTWa9euVs0kxthOJyHFkFIYsQclop7zyclJ20wQTSgsLsQsLKIigsaJQMjMWRSwD7GyjrMkKXykwvLchkiqel9lla7rSqjQdobI1ngkjUMqRhXGGBQYQu8dTWftYzevHxzslWV/9+5dY9zR0ZG1fj7bu3r1atd1r7zyStxsqqpSRSIyZIZhCOsOrC3NlbFbHqExoJpjwsryelMv4tyIoczn97/y1dfk/NTuzSJfoFGICjhKT8ga59wFswoAQOzZ2dlqtQqbzhijGEOKiAaArHVN0zrnDEWEkUQCo7uMZhEQsbaY430d5XbSTuu6BZBChB81t+Rq3wwhGGNQNIdYkC0d88WwYJKy9WUuL91y55umMYBN06w3yxSDbZthGIZhIGuSMJKScUCohKBQbok3llOqnS+iEk7ZWwcib75x60//yT/+/ve+z5JJfbc+X6KoQcwAypI1pxxFMhIu190wdHXjQg6GXTNtzk+HxJmcLfMXMthUvu9CMXh8+eWXH3viSe9rYy1VvkTNF2rhcH5aNbOmadbrjYhMJrOjoyNleeqpp55/8vHu/FFtpHI08SbnPHSbej5/5zc8m/rOoeZh8+Fv+cBh095989bDMPSbodsMs/kEESXzq6++uh/DU9/wYr86a5eTxKQITe3BOkPAXe+a6nu/57ubyv/jf/qj1lFk8UTeO0P28PA4DOuyjQKA9941TXEqPz8/P1q0VVUBi4CgNfP5/HwdMnOhA8/n85zz/n4rCUJIjXe7fdxYE2O0xnLKMUYBccYxczluiUhQRFkEDDpr7Xq5SiGW1jxsNtX+ApjrS8nrdV2Xy5hTzoVYU/R6KSBi01QhJABppi2rtM3EWkTAb3jf+46Oj+HSYhIRQLS+MsaJJAAKIVlrS/FfVVWKGmOs2oYUauf7GETZKFhDQ+gRlIg4Z2ttTMGTBob9w8f/zj/4kZvXr3/wXc9wd5r7lSNsfMWM/RCsQc4BlQ1ZVDDMKJRZN6fn3cmZqx0And9/BElfeenl545vBnQHh/t/9s/+2f/hf/gbVV1/6EOPMahmjTnPF9N2MnnzzTe/+spXygGJiCklQ9YAKpR5E2CJeSgMMEQe25sLpScnZhJX1dZijJHINo1HxJQu8nqBQFWF02jCx2IsKnAMuarqtm2G9dqS2Z8v9OHIJi5u++Ma2Dpy6Q4GLYk0OPpgIKCO4ZBQomoUUVWtohCWECQEAqScRRiyZslS+0pEEGm3He9GXeVDVtZp5pSz89YAhpCcG5g5pbRarVSxqVtlNWSHPgCL2R6K5UruRlrGGJTRloIAtYiyiQrKTkQgkDkbi95XWUaiOmdVRVERLvAMbDab2XwymUyKjKCuXdu2m35jrW2byZhDnHOhmXlfM2tIsQwQVBHJgOYypiku7+W6qSmBAqN3TPlDKbZEpGA/ZZSjW373uNlvSy7czk9xmxe53XWxfCREnE6nk8nEObder6uqmk6n1tqzs7PDw0Pr6G1ve/r8/PThwxNrrQADlvxiANTiu1E+lYg4Rw8f3i8AQIk445QmTZNYEKlp2rZtFZWZz9erg4ODJHr1xs35fNr3vQGsqmq97nLOSZihWL9tMwCAQTFnKVZwBf0S1bLys0rVTmJKANq2tSq/9vJXvuu7Pjqd1aKRnCKyAatS9BPbQ0dHba6CgNoCxB7sX//JH3/9H/3QL3zwW75rtYnGYEyhfAZQRSIEYc6ADhRFpfDGEItBHVlLKTEYYOExbR7GlggAVJFzCfwx3hDHVDC8EAYiKveXyKIaKpEPiqAipLayfR6cMYaIYxiGr4vKjTGjKAOy5v39vdvrt0pSYtb81FNPTKfzIcXT5SrksL+/OFmuyBogQG8Sy3K5row3iJnFeccCImDIFUoJILHo6XIJWW5evz6dzgqPaLPpNpuNr+uc8xADqyTO58uVdV4AhctYcuuiZwgUEI2xCEisomNeLXVhAICq9sVipq7rGCOiAWOz6GbTdd3QTFprbOScBUQxK9AoJSJVRtF+GKaTyfVr1+bz6WzSODdy/29evxZjMoBp6BHN/mJmrb1582ZiHobh9GztnCNrrfXJCyJyGmAMhN0WYUazJGXYv3rcNJbPbr/66r/XR2e+qfamjTFqrIFtAYZYuPOCSFz05u6C4yEg9vT0dNq2bks1sDBqfErPFIeBhS2JNU6BRJVTImtBxBqbc7TWXS6/mqYpJIxS8ZV9ofAGisyhyEBs5Ut7CtsZOUCZBV8obgAAtaQiFmwcAGU6nZ6eBOakzH0YZvPJ/Qd3r1+5SkRDH8v5yqBZZVY7IgwhLBZ7EsVZ+7WvfPVjH/nI9/3u3/3iC9+Qc84hlpBkb6w1pqrc0PXO2+Vy2XVrYwwaMsaoQl23Ink7hDcI4upmf39/s15tNhtL6LwREeHUb9aHR1f7mFS4HzpLpq7rzWY1hFgn9XVjrQUl58zx8XHOmSTH1XlK6WAybStqG99U/l4WUH704P7N4yMT+Xg+f/pbn/SST5bnJ195eXm6fKZqybhuiGhMO59Ya19++avHV64714D3FpCGGl3lyDOr5jR//LHv+K7v/NlP/+JXv3YbLM2njd9Cd5V1OURBj0h1O4ksTesLfmDt3DibMlpnWSFlIOsOj4+EExrTTCYx57ptVmddjMN8Ps85IrYp5LaGGIeyPbV1k6U0c2KMSzmjQ0em00RoSsRpSFFAcwhN0/i61szlxu+WQTWCqUEYFEljAhEmtGTaukGknPuiPC/9XwjhvS++61M/+1N/9H/xh+Fk+y4Gh2EAHIcpzgAAoTXG+mIY7Y1Vq6lPSFCUXNPpdL2GmALn0VcaCQGIs5JFVkQltH6yuPF/+as/+Nf+T3/hsaO2MRBW54LZW0NEwzB4A8hqDXryOQXlDL2c3b1/5eaV2h3Auu/PN9O6ufX66wdvu3dz/+D89OzGtav/u7/4Fz7/xS+dnJw4X/d9v1ptYs6333rri1/8YtXUgFTOUWstcQnYVtgiGcWQwI66yHHYlEfQeoyEKlw9BKOKiQvWdVF9xZgQ0VtXUEwqkvFtPB+X+K0UrSVNPakgGhkt90uTCFuG/fYvtu9e/i+DkhIDkEJBXACLC79FJEFIrGAsyNahCsA5l4VRpUT1lTlLKUML6FIYPySaVTwQOctZlst1Hl9st64iBQBSZBQ1I7RpG2tiylAsvEYn2DHKokzPmbmqqpE+pXKpaJMy6wwhWevLR1JlQCMCOUmKhRNmi8ZwB+p0XVdm+t7XulUywiV0yhhUUTKWDIiCqmZQUgA1osys1hCzAqi11W7cVrgyBRjYeU3TVi8JF8GOoy3L7gYxc+F7lX9bSGOFglIWz9nZmTGGyBweHB/s7R8eHt669dZisZCtfxht7RULGretwMB7z1lL5mZKyZVppkLTNJPZlDmjAiJOmxYRh2FQlKJ24oL2WQMMqmWmXBh45S5AVVWckbOyJCKoqoqZM2frjEEjKdd1Dap9vznYm6S8/PBH3jNp7NlqAExkUTkZY0qzUUCH0S8FFNCAgqjfmz358sv9n/hj/+073vmB1bJLopKY7DaGgYt6FEVIAZGwgA6lwN0R+4ZhEBwdKHfY7VacQs5VIhJCMlse4ehHuAUgyhOlpfwyYIwZQqhrLyJqCECyymazwUvPsICKaNO23ntjqGrrOAzWWlaJnG88ebOdzO4+uB8T9zGUNRA5I2Lla0lZijmNSlVVSGCtf/jwRJUBqLgCGWOadnL1+nVVKYETy+WKFdfrDkjLHF9VkeCNN944Pj4+ODgqbMvValWuT0xsfPS+hsL8BkN2NGi11gqL8+OgDNEYsoVB6Fw1W1gASDySjrz3BjCFgIgxZlWtnY0pPba/uHLlaL1evvXWo6py5QTx3osAIoGSQXuH7xX0MoRQiJ6Rs0MXYxRmY21xq9td2Lha1QeLg6PH4pCcscuHD9cPvgR+Nlm0+5OZQrLe9v1F9JNqoRwyWWPRFkRw918Nkn36ycf39/fLtnP79u17b73pvZ1Op13XEdoQgkGDpKU5LjwNyUJAwhlAlLNeKr+WZw8n03cXbDWmVKiUBKggMSZjfYE3mZmzGGdDSGbLs/HGD8MwhuaOi0hSCKic49C2LbOyaj2dhNBb70MIZg2Vo6HbtO0UVMkaAM2SFYVBQk7W2s1qPa0mTuC7PvHR3/Uf/cePXX9sve5ijCo5pdQ0k5wjIMYcBXS92cA2XqM8QgYMx7zZrNu2LUpM5kRoXd2YISJFRYkhkwHnjEqOoYt9mEwmiEjWIJmj4yu3791PQ0A0jXM58bBe9WE4ODiwtlHl47rCfoUCSCAok8nEGCN9ePTW3X/3mV/fU3XHZ1f2F41z8+nkYG/x2muvv/2F5wGdqeoQQn/v/pPPPj+vpjzE2XS+GdYp1srZzZwxPqXkQqjb6Q/8wA/86D//0V//7Oempq0MDSkaZ1IGVbXOiuLQxwymackYR6NLSqVpAAVrnaCPERTNbN489viTnMNydaZoBNRVfu9wYVDjEKrKI2KIfQmAYlbvqhACWVVU68hWtuv7ApKJSCF9K4ISxsTOeeaMoO5Sl5CTsqakgIXV5xynTKJEhpSYGYjIGrLInAr96+WXX0qr82efeWZ1crGaXOVh3ZF1wNm7CtAsVxtWADSSuRAatK5FxFXVMMRhszLGkLEplZYAQUEFnfMMGYWd8UNMbTVLXfeDf++H//Qf+T1XJ17JSUosoilyH5LByliPxioZ8oMMJoXVvbu3X2+b2lY8efLK1W/91m9diz959GD68HhxdHR2cjqbzd7+zNN/8yf/1ad+5memi4P1+QoAFkfHNx67WejkYQjWkgWMORNgO53mnAXKWWtZUVkVCC0aa0PXE5GKcM6EpmwmOWdRttY668vBsLtQzzzz7Onp6f3795umMWhFOUeuaheAw3plqLCFhBBzv3GSh5ixqlSyQUQwoMqKIrnwmxW4iJIQoPxuUt2Z4Jejl0uMLKMYIuMSs68mYKoSSUSEKaXa+xwZjSiAcaWeEDTgrC+H2XK9aqraOJ9EY86Zoa0ro+R9IxUU8qIxghcqAUVB7z0r8BYEyqKgqGjIGBGJOZX9d8sXLNl3KqCS1VqrCv0QRMDXFQCUlDMFtcbnnJlBBEJIuM2jpJIHvIWvxiHAtmhF1BD6rVEFExGoxiEbM9pxpZTAEAApwRACoin+olVVFaq4iBgkLYHWAqBoqHh5F+IglnJq56OBCgSYi2hgK14ukGEIIcdU+vBSxhUL2V/7lV9/7WuvLfb3KufL7StfYVvxbz+GwRKTNZnMhiEQGRF1zg/DYIzVFK01BnEoMh1OqDqftM20iRznk2k5d2MIs/kixli8DGIOaEYrh+LCjeCICK1RkMiCaMFA5DRtaiZDYPq+q5yzVkTTe9//BOvSkCggKm3VaEBgCkGFEFjYGJOZY4ajg6ce3j/6r/8P/32I1vl6iAyAlW8AoKjzsND4S34VM6KxxiQRZciZmdkZT84WWNTXVVmoI49ZAS0WvBRAvbfbYasiosExdsluuXoAgEjFn8sKcWRrSUSSgrG+z/HrHNW9F2JXVwX+8L5Sha7rrXOnm82nf/GXQsyI+M53v9dXzWYIANvnKCsIUmWY2VmfOOaQiagLg3POuooMdN26rutnnn7KWApdb4yLITMXp22bcjCGUCEOvUH4xMc/tre3Z0afZC5wrzEmxGRNvemHz/7650C4rqvdSFrGbFMnjClC30fAVGKFSitVvuOsnfR9TyDOkgoWLkEMwoDFV9Jamk3a/dkMSVmEDCCiMIQ+VlXNURNrAnrjzVsppVXXgyEF6MOQcipPjgYVSw4RALrN+uj6tdlib7PZrFbnnJJzdrp3lGMWDu3sKEZIIWq+ILKXVsF6UwQrdd1eRpdIwE6nk5zz/Ycnh4eHj998bN423rnJpOn7PnOctpOkgGClQt2a8YzGWuQKFL8DtwGg9t6RKZ3Quu+Mo826T5zruo45AUARFimAcTbn7JzZWfj0wwbBXD4GiLBtmxBC09SlXDSGJr5pmgpAZCvAfvjw4bVr3lo7xB7G/A3a9naAoo8enLz4wjd87MPf0tbNZr2Wkh+8beWNMVmkdHtF3QNAO6Zq3/cpIBokoq7v2rYNIaAhQ876um2ZCE4e3c8pTOrq/p3bAHDl+NoQQ1tXZB0QMeCNGzde+9prfd8fH19tqxqtuXf/fuS8f3TQtq2TXPXr8/t3Yh80p6aZqOqdO3fW9x99+Zc/+8Hnnjt87m2SegCZ1tWdt25NruHJyVk1rZtpY2tDSMN6o3uHD+7eQ2umR4eTpl4n5hTJuszsvXd7i/d95FuWpyf/4l/8k2977rtIgBRi6BUA0aSUuq5r28XpulfEnLMhzjkLAFpnQLMgAAkSq3RhSKKz2TTl4FxVIl2Ld2VKqfJOJFtrM6eTs5Mh5L39fRRVVWcpKaeUMqcy7Wr8JMboauuqJm/6rMJ9biujwLPZhUJks+4VoSBfsJ00wY78gRhj9JOGiEKKlkwcegX80Mc/1q3WAFsFpbIqw5ZWHGME67R4X6l67wt9zXvPrN77MEQoGP7IvwAiRDBIZfCnrDAMgwPadKv92eGvvfTKP/uxf/P7/4PvmjeL1dk9iRkjY2KI4mrjDWkWQMnrvhGzfPjo3lfpxXe8W++fLOr22v7RF27dm02mb7z++nOTad02Q9dP2uZP/PE/1jTNa7fevPktT9y5c491LFaE2RtblF/L09UTTzzBzKenp3Vdk6HMCgQ7+dtms7FjkklJ0uUdUFHMwH7TiAoAjo6Onn322b//9/9+8U9WNUSkJWBmlBPi6enp9avXIL7miOq6XeekLGAtCRbTAQRTIpjh0qs86bBlbsGW4i0iQEhoFCiLhsTgCWzFWQsorqgiYr0r0pzLjX55TyKq6zrE6L0fYiitNhE1BT8rlHOBMvIrhwEiOjJEVHYSHeOGvIgkzubr7fVL/OWWXyXlzzt+ld0yukqhlrfWhjsa0w55IqKu66azeSH6tG1bPPN2bhrbAU2pydha37ZtjENKKebEzN7XMUYiosKsYC7RvYhaVRUUSSmX9NWRBFZaLGZmwlII7tSLqEAj/XxM7y48Te9927bO2NFNhkZBN6s+8djjXdeV9JsQAtmtdpi5YFQ4yv0EgDLnGFNhE+4M9MvyOz8/L7mx3bDx3q9Wq/Pzc7XgnANDqCYnMc6VnbwgW5tNV2TsuOVUqQCgqLJCEdAWla6NaQBGQGMtzab+5Vc++5/+ng8+/tRis3lDlFQJBYxFBRAVBbDGcRYW9nUzBDZ2fnx49cED93/8b//uT/3Er7z/G791MwRQ47wXAWY2jhBotxqJSFhLxUxExVN3R33zTc3MzvsC1o4rtmw+PEo6djy8sup2jOed8qwscuYECjuU0ZQkXDLGWTQXR2eMsalqROXMiHBwcPDyyy9PJpO+742xYRhcXccY+zDs4M+xbt6CiyJM5MpYVlXJOAXKKVqgrhueeOKJqqpC6MlAzpFsMwwDWRtjKMh3CAHATeoGagCQzaYDELMN4CLywhopV64tlehO9FrKbmutCIQwxJAJLRrKWWAnKdyWsNagJcOcmLnxLscEYHb4rkFc970hMMYIjPueCopCjFEznp2vH6278/Vma6qixYg0rNeAhoja+bzv+24zGGuBhQDPT09PHjwAooPDw8r51Wo1rFfPv/giKeyGfpcKmJ3OaZRnXi6/DFr7xhu3mqYRoK4bUj+ErUi4zP67bh1EDFUsqtvAyBBIdeSXzqaz0PXQju+4v78PIMwJDbGklFLZMY3BYoVXucZaYpUUmZwBKJGUmlKy3paArd3n60LXx15QkyQim3McBgYqkU6ptL+bjhxhSJlFcky+qWaTaRzCpKokZQIkhHe++OLbn34bKp+cnOCo0CEAMQaJYMvSjSGE2lfDMKAiolku1yJ5MZtUTSMyIuplCllgz5xzTjKbT6bT+f37d4WDgt67+2C96o6uHO/t7Q0x5RCTppJlVuzyFosqizRNA4Tr9dp7P2nqwyuH5+enGnjStF1Ktx/cCym9+/3f9PCNky987fV3Pfvk40czlVw5c/P6jfr46mq1Kg1Ka6uo/PDBPUZUY/EeUu3F2mq2sISA0LZNDsGKQlV//Ds+8ef/4n/1b37mZ5GzAXXWMkJSyTGjcDlCVDUJO0tayNogRGaX28DMe4t50zQ5B1Wt63pvby9nFtDZ3kLSsgCZKSVCappmGM7OTh6CiGsakcyoSmCNSVlKPpX3PuWYUnJVhWgAE+LXIbQA0DQTRVj3nSUbY5Q+kHUlaqauaxGBjkvXaIwZhu6xx26k3D399DNvvvnW9V35VVZ8Qf4BujBAziGkpqpAVbOWwYer/GQy69YbSRkVlMU6ZwzlnEtEKQILsEE1hlAUrQWQTUqLw6s/+alf2G/8t3/r++bVLOeNhlArkajNSKAGSVBtAitoukznAU668zfuTdo9x9oYlxJPF3vL5dm1xQRQUgrz+fT7f+D3/+S/+tef/+KXXnrpSynmazdvli1sMmuNIYNgDd587Pq3f/u3/6X/21+21iph5gwshMgxgfm6qdOOlD1WP1Qo3lQ8OHZX6cd//McPDw/39vaYOQsiFXvxQkxFYS3AoXPx8PCoX2+0nQuDsx5pHJMBCsBuwxiLJAD4emtWgi1RDEdorHxUyqzGVeAcXMo0FB2HaAwKQLAtxXFLNXPO5WEwqlmEtpYcDKgAOXOJcquqpiA0ZTaKo1ZgjEcUERUp4/LyN2ZrlFU4FbgNfAQgAAJQAHLOlqquOHjFmMu/xQvndzTGEhkARjIpszFmMpkAkCrmXB69YiMCxtlimLbrD1VVQFOKRFTKNS3whogoxJhijMxoDHrvS9JTqaVsZclYGQQANLM1phTfpUIqX0cUUmaFkXS7WwYCmoWLmsGWoHEq9G1i5iycODdNc3p6utjfg0v1NIwiREQkZvbWAegQB1Hx3qUUy9Feaovl+pw1l+C49Wb57vf8FrL+M5/5d4899hgKAoMxJoZgrUVFb30ZiKOqtUZBDRlRIARFhWIuNyYOIecydWHARFZOTs5+5+/+uKtiGGxdXUVSZlaOqmwMiOQQs/PeIgrWk+k+8+KLnz/93/6F/+5XfvWND3zzt52cLws5XkGKdpXH2G/B3csqKIlAZi6ZHzHGwp/bDH2MsVT5AGCQVCSXt8KLfPoiiSxrsmRoAo7T+TLcBxYDIMrOOkQsW2Wp6UXz5Ud4uVw2x/Xuvsz3FgdHh91myKwsuaoaRaOSSmgPKBIaKUUej6PkbQMwNksphdFzWEQyt3VT9ltOmcgUBU/pCmKMh0eHy+VSlR2Z3bYjKDHG2ntjTJZoyFZNe+vWrYf37l1/7Ik+JkSjgCxMpCwiMYcQSyew1SAUW7XSDXLOGdEMITlbDJMFAJxBIoCcqJziSERgjAFBFhYAASVrU5QY5f7Joz6yKK43G2NMsQLgJCAKqEUPp5lBhHMG5vt37/q2BWOqqjp59Khtmq7rbjz+OBGdPTopFbNzbsf9KpXtzn0mxny5/FpvNjYltpan81nO2Vpnra2bJqV0586db/rmb/qDf+gHhIyhKqQ4nU4Rseu6STvruo7IFPqCQYIfHd/x6rXjrutIQUWnTZtSAE5ZmFUEIeaMOSlSH0NOsmsThyEUa5nytF98vvUSAPLQeT/1vva1sdY2bbUzoRBh54whMuTeePW1GONi1kjOtXPKmmLUlN/xznc9eeOJoQsSQ/mNqlxVfkdZWK1WVVUVDVTpWSvnAWpjzHq9XC6XJycPF4v53t6eiJyfr/b29nLOm81mGAZbqBKums/3QggpxIenD1NKh8dHXdednS0VYTadG2OeeeYZVX306PTO/XvW+sl02sfAzKHrzWy6OD5+7r3v+Y1f+MXhwVmCeP/hw9/yW78XEvzoL/z7xyx86eVXbx6/d9LW05BUuOu6Z9/5DrVQgvAa45fDEPru8OqV9fL8cOglT4f1yhpPVQWZRSR0GxuDmU7f803v/+JXX4ppICICtc4y4HnXAYBk9m5stogI6MK6Jua42qwL9snbrJviuFb5Zj6f37n7sDyuXPzuxvsoaEk5G2eRoB86V3kVGFJilmkzzTEMOSeJQESWNGeHGGM4ODi4vJUMMagq5zxK2b0vELwhdM6FnJAsM1vnrKPr155aLGa/9LO/9vu///sEvm6QLZqtJWMQhJxzOToAIrSAWFUVdwyqBimFWIg4BpC37pRmzIwHZjFkvMUcIxiMwr5tOIUEND+8/s9+7N+0Vf2Bd759huSEDAtmtCip32REkYxRuuVKQrRzvfO5Lze+amp755Vbe8fXgGW9XkdNVVMfHBys+y6n5Iz5Hb/9e5944okPf/jD9+7ff/Dg0fn5uff+S1/50unJQ0AERWYG0UnTbtY9GlKkEu7BzJKyEjLLrg+zZC/O9VF/qpc3BQC4evVqAWZGDKO0xSjFK8YiAkAhdD56+PDJt7mcM5hizpx+kxDn62uviz/s/lxwACQqhRiDoiEgyYCQWcTkHFEJQNRYEUFjELbdwCWjrB3NVERGL8C6BqKYEyLKlnVRzqq6rkPoSzMqIkhYTogkjFsEYseagq9X8F0G3sqvK6F+pSzeVSEjkrGNXTLbEI4cwnw+L9O98m5lU9pVybiNzCyrLmdRVesv8LOyc2oRCqgSWZExe62Uj7vLUj55NlxufQkv2hnxwFYevjvyYYu97WBOyWyMAdEdaljskVJKfd8fHx/fvn1btzYWu0KZL8kejTFVVRUkcveRttgVTafTwq12zr3wwgvW2kenp3VdF6uWtq1iCHVdI2KfBufcbDZbLpdFWVmgoDLfBIQyOWERAEBBQ5aZFXS+mP7qr336L//Vv/ihD314093erObdGlOOVeUmjVNlMlhVxjZORLLw0OlXXj/56Z/61F//q//T3v7ine/85kdn5wiExhI6VQXCnHPJmNoFvpS7Q4gqaIwpBiLlNsUYDYyF+Cj1MHa3SL6uysHfhH3qbpK7/RmprOPt7S41yQ5FvvzElfzNsmJDCDnz8fHx65tbdV2XIsA4WyC0MssSEUEgoiL0Ji285xGqg60FunPOWJxMmrPz05NTARCDSmhjxr7viSyA9n1/9erVg/29vt+UUVh5PItxvTPGGBMzgGLdTs7PNuRc5GyMSTnDlgOQUlLN45myjYTe7RjMrJmbpur7vmmKGecOWhuEk6/qxXTmjMkcC6mpdPtYRH7MKfNq3a83fQLwVcM8YvDDMOTIYC2kQtksieUGRExdc0rl0YgxzheLbr0ua7jruoKO7yiV5WWM2Wr8RxGhMRfaR0S0OQm1lsiKZCIKkQtQPJ1O5/P54uAArAtDKgk9OefDw30iC3BQ+WaEOuKF0rJpqqp2LMlaX4YjZ6tz4x0YquraGOfqajqd7hENQxyPPWYi27ZtWZ2XP983ffAbU0ptM7WuYIZZRKqmKt1bwaL6vldVyNCt1stHD5uqlpgTac/56aefOt47PNw/iEMAyc65NIQYeyJsKhdCGIY+xpjj4AyGlACgcAatc4qAhpp2ulmfKSGDLjdr5SQixckmix4fH5PCw4cPkaBpZwoGgSaT2TAML33py29//rlr166JCBmbc0aVMuAPOaiy82ZxcC32AwLs7e3deOLJ5sUXXnjhhX/w9/7O3dfe+JYPfcu1azf/+T/7sVOAq7U3zfT1N25dO5zN5nuYhXNiZiDsuq5pnW/8vG2U8/L8dP/4Shi6602TyTy4c3vv6Go1mXhjh6FDYh7w2fe95/uM+ZlP/Rtr7Wp1jgLG2iHlkNUbdCiTpgKC3cwFCNEaVX3llVcOjq42TVMufgHKU85kbBaeTCYHB3urZSREIiuqi/29xDyZNMZZq1i1Tc652H2t1msUGIbBgC3DRx4J3SCIaRiOHn/i8hk+dAOoAiEYQiSEopEVa9wwDJuhL4seSQtn/OGjB4CwPF/ffevBzRvv2L2PyDiyFGZrPSikyKpaN9O+60Tk2rVrCvDw4UmOiUWJqHRvCCMDo/S4qiqiiTN5K4LrOEyalgWGDM3etc/82hedwAvXj64QHjRTcrq/2KtshWBEM4KZuLZtW3D2fLOcufbuG7dvv/zaM8c3KjQB4OTBQ0WoKtcUyY8xzOnFd3yDtTakTGTv3LkTQvju/J1EdHp6en5+/sUvfvGf/MMfeuaFF6azeUjRGp+Ei2ESEUkai5JCvgk8wuO4jVtGRFVOcrFrhBzIUR9772oE3YqStIS31k0FgJHz4mgBd29bRxKFnM05w9cVvL/5tetfC8e5/CWPyAVdlG2GkjB5D01rHOR19raQwIyOlQkWFzFVVC3FISCanGV3FOWcS+4hMJQcSdkdYyIcgmRh1kzMKrjVZJUjT0F3nArZhlPyNgY7plS8pC6XgJeLj/EEBUwpLJfLyWRiyOUk1pExhhMT2UJuUcWcxXubUiK0KshZlbQUUZaKlz0BQKHFFEOfnRl1wU4KzmatMYAcU1X7Umbp1o5rOzCFnfwCFYVLwQdMRUhIiUeDWSo0/3RR0qFBX1c75rgiFOmAq/xif4/QcBYEUgHACzlq+aVlllIOpyxsnHWVL73ZdDoFgBCCaB5C2txZLX92M6ScI588HDmbkvJ8Pi8DKSAgJUfucs0hOQOiABAhKZGSqippEZ4D6Je//LXf8dt/z81r7/xbP/ivfu1XfunNWw9+4zdeVYXnX7i2fzCta3/96rXZbIbqOOvp+dmv/PJn33zrEQu8810f6Dvueq2baQwZlMiQFOM9AC0VyjaqSFWLHiMJAxmyI9mxDARH3JQMeQIYDWIsAiCkMkYaA3C+7mG59NRcNC27WwnFt3A71UL6uh9bLBbL5VL1Rtu2MQbZGggUK+DValOBUQVmKemZxYxdZHwWyBiyBCBKYgiZJaV0cHBgHd29ezel1Lbt3t6eKg9DB0BhkDt37pExOSdErOu667qcE1AZtmLOkUGttQlVRDij9RWSN8YIs3MubUkRhSqXYgJQMoSKOY9S4pjFGMOsOQ3W+y5Ea0yZaNd1PfQbR+PY1HnTtNX58nQxncUYTVXFshkqxJyGvsuM9x896nMso3yA8mxmZSmUOwDIIU8WEwBgSTFGzgkQwmbjqooAlNkQPfnEE5Jy6PqmqQAKTHbZBrVA8LoFm83l8sb7eiQ4D31ARCY1xqSUhhS7oe/73niPwsZ4RQihB5BSJz148Iho6WxFBry9YPwtl2fOmWEY2q20ZzKdzhcL7z2Dtu20VOVkTdnKrbUCqgxkDSooAqcL2GNvb6+YtMaUhFnBAOq2E80x5qwiCE1Vg2DKAUink4kyH8wP3vbUk48/dlNYYwikBKIxDixJVYgcc44xrFarotAuzZy1Fqwr49uyedV1LdysHpyHEFRlbzbf25/fv//w6OhgOp0+evSosq445xav/w3q2fnpZrUahsEY8+xzdjqdDsPw4MGDpmoXi0XbttPpdNX1IuLIDCL7e3v7+/vd0Avw5Nq1//D3ft+vffpnbl6/eev2/R/6xz+iABvWT//Sr2yeurr3wRcN883r1//5z3xW6ta0fjZvBeX4+DgbyBxI1dYr8I6T2GkzK16gMAdv6+SG0BlrDednnnv7a6+/+upXv2xQvaEoSkR93x/sYw9qrQUD3nvnbEyJVEr/uuNtIBrnHCdkVkQjopy1aZq6bbw7HIZ+vemJ7OGV47PVYJy1lnJMbVsDoQgQUdM0/TAMQ8hB2+nEeBNSzAJkgVIGkfl8fhljqOoaESPnsqA5JSzpbkSTyWTdd1VTL/b2WLO19v79uylHN5sZY1555bVP3Ni+C471ZEqBczbUgupmsxGB2WzmnJs1DRKV7HAAWK03ROT9mCKHu9RCBEQtYh9QQIM5y5ASoFExyOb2/dWnf+nXTq4fPmndtaZe+EpvPjafTNfrTkRUcG86X667INE39dteeG5eTa4fHXFIxYVARB49eDifT69evWqMkZxsVRsAImTC9fr8sevXlsvlm3duI9Lx4dHzb3/uYx/56H/4O/6DH/uJH//UT3+qWczf/a731m3z1lt3NnHTNE1R8HVdV9fNzj9zh4Lw1qtp9ILcbvHl/E45CI+nqTEkqpJZQEH17OzsylM11NXQbWw9TwAqZQz4da/d4bFDd37Tn8kQi6CIIhCYkhMZUwLTTvYPKJ2hqDHIW2aSXHLV34krZTsUAxh1iKXmKFseIBRgg4i895I5hEBbks3XlQtKv+njwTawslwu3Gq0d8VN+U+FibALSy1lSoyx6NFGa3jnS9m2Xq9LLggi7ljwnL8OV9sVdqpqra2oKjdLRIoBChREjYWZK2+JrKqUadQOCBnLLxyJbrsI1xEnU/XeJ+EdTXB7EWA3frLmwrK1fLXNZlPSL5bL5d7B/v7+/pu33iq5jcYYhYtsynKJFEf3VOfcfD7f29vbvnkehiHnXLIHrKOTk5Nr128eV5Pbb91p6jbnnIZQlm7Oue8DbaMnU0o7zMyMdmiwtTnZMgsJEVER9hYHr9+6/5/9rj8CFF1dXzl+/Nm3fZCZu80QIyDKF/79lx4+PHHova+9rx9/8huOjlxI6fRso0BV5VJURJM4a0bnnGypGLzV49PW+likrBCkESHLRaywXq8LEDUmbY9dQPkbg5eGtruOaHdHdswwEVEFIsILDxQoiEvZOC4/dznn5XJ5enraVJX3rq4bRLx27dpyucxZcs4Yo6rGGBVAR9vN0pqKc4aIFDIAqooC5Jwfu/nE1atXHzy8F0Koq6qqqiLxY+biAFrgK5FROpZi3q0B5yrvax5Ba6mrNhGXCnq5XgGa09NTXzVaVK7bErN8nh2eVB7nsS+KLAaq2qYhlB8uRnpJ2Fs6P1l+wwvPEqEx2PebMS5MhFWzSow5pJiFQk6u8sxAhCNhUcqjEQENAELOy+WygJUAAGWEGlP5GKvT0xuPP+69Pz85tdaq8m+idsHW6mULY2dEc5lbNQyDLRtBufGmaZypy9NCRPfv33/2+efPN2tDFFKctC0AFGnoYjHr+97Y7Zm2fRUQ3jmTOQ7DwMyHh8fkbEoppMgqjXeiKszFxzVxVkLOKQypdh6t6bsL3SYaTJJFES0hSAnbBoCCIqgqiThXHx0fn91/yCkbpLtvvek+8L73vfPdV44P1+dLACBW1ewMmcrmqFXly7UIIRR+iKrEGAkQFVarVcEbjTF1XXfdZrbYa6eTN157nQyVKq2u6zffvF1CG9G6PqamqVxdISL1vfee6xoAlsvlvXv3mLlt24P9PVA0BlkZCdu2FtD7D+4eHh7O59N79+689datG49df3o623v2+Y/WzRc//4V//+WX3jiTJ+YTw/rWg+67P/L4ZHHgvb92eDxrMQzpqbc9M5s1tq2y8bODPZxMh5yiGmZ79979K3i9rSfQTgAVyICzaZOhWztCmCze/6Fvfnjv9X6j1laErvGVQVDYYq2ANIahsoVibWMqX4NS7Zu2qsmYtDvhlCILWZ+TMKuvm5xoue6QKrJGJFvbokKIvXHW2UpZ69qTxel0ulxuSgST9x6ySM6ICigHh3tVdVHTl6bBCsSUXVUZ5zjGDEqIYKjAAEQ0DMk4CsPw+OM3WY9Xq9X52fJSIcBkELPyeIpncFXfD0S2qSd12xhjVpu+zA6qqkojqbnUfLDDZVmSMbYEk8acrHPWO1FYD2FqbFtN0Jh7Jw8PkY4W81devnW1ah5+7ivECqq1b1brzlqXiY6vX3nfRz6kfZjuH734/HOfufVmrS+os/0ybDabg4MDS87Xrm3blIKItG07aeoUBuFcedfW1VtvvWWtTWF48sknn37yiT/0B/7AJz/5yZ/+1Kd+9l//9PTo8Oj4al17RKTt3lRWu0ECHDEVvBThfLktK4IGUbXGDCECgDFjWhkWI1ai8+UaAMAharLWShKDCIgA44YgqqCj5hFGj4ntroRj7h3ABVqmqoBj059Eu5hMVa1P17r1pSQg1RLjB4oEiIpSWF8CKjLmC7GCqqAhVlEEBU0pGmOcq5g5xGwNNk0Th8EYQ2SL57NqCUFGIlOQfth+9J2gLKVkrS8+vSLCWZlUFbowlH8YQ7bWVlWBLcEYg9YOMQEIELIAszJr34dC3y5jRGEA3f5GVdjSihFMyQVIKRWTNGNM+fnt2a/Fza5s+mhNOab1N81rcJylFvaqqvZ9b4zx3pcKJuVESFTiGkW16CFAUs4Iuq1v1CCJjmUoEKKh5flI2yh1obVWuAAqpsgvAGAEV7aWaaXk0u1Aloudh7Mp55SllFOSBAU1a123KSUiizhiaWCInAVh4x2pCAICUQnXlCzFrwsBUDOPSszpfN51+Rve/c3MubDWooCqJ1s5ZxTClSuztz/3jtAPhdIXEzNDyBxZDFFM2VinqpzFeFh1G1+5UhsDYC4mdmO5BAjknBsDUUCrqioMsLquJYyxbCJiip7XWhChbcpk6ewAUXB8MHcEjF19NmKZuiuXx7PcGGPtReIQAFjjm6a5ffv2k48/rirn58tCFCGiGPNsNouZd9UebImhIgJEZVNV4G1hIIjaTmrriFPOMblJWzp2Y4z3ThVLMLyIrNfrmzeueevyMKiKAHjvjbHDMBTnGiJKMSqQdf7OnTuf//znZ7M9MAVQRADKOceURNUal2MyBkGRFVgBkUQUAMHaspKrtokspb0QEWMwJf7Ahz5w/fhws1nVlQMzus0ZcrEwH1Vx6/NXFrsSlrnqZDIBgBzysFwBOXJOmI1zlgxDVgRhLiobzvno6tWj/b2zs7MQ+tJ3wW7yvt1KERFJRXOOEQCcJbzUYqUU7GQyYWYl7LvgvU+BU2IRuHLlSjubrVYr66tSyXLWlBLZsVKu69pav9lszCWPgOLs9ejRoyvXr5VvyCVklLD0MdPZbGsZTEOKzjlQJWcnlc85E2I7u0is7IbBGAPGADMSlX4BAMiQcy7nyGy89xap7zfOoAr/oe//gx//yLdOW786OVNm51wWoSLrEO373te+PAOFC186VFX11o8mIsYUreVo+KFU1+3e3sHdu7cD9DnnvcWiruvDw8PSjcUY5/NpCfIThGvXrq3Oz1577bWc8+c///nnn3/++eef996nmPu+L1i0r6ucBD08evSg25wj4vUrx23TMDMNwe0fLUP+8Z/+6YkDJeUsmeDeyfJsub7aNLNpu5g0Q+i6TX9wfASI3ZD3XXN8/WZSjTEo0enp+aYfbty4oZv1dP8IqwqMI2f7vvdNjXHYOz78Ld/9237x0z/34P5pO5m23uzvzay1iGzJJM4pJQCPiNbYMhFvmma1CV3Xyd68VPF1XROZrosI1hi2la+obPcacxb0xtmUOHEGZG+dq3zf9wasSAZAwbxYzJZrUxx00TgQrmo/rGQyaS4v013IhvGVpJyGAZ1D4eIJqQghp27YWGsBdX9/f7k8my2m+/v7t27durwlGWPI5JyZjIkxgup6vT45Odk/PNhsNn0MzDLEUOCKYjlTTqySa2mMScJEFEKobNWt1tPZzFX2vFt76+bzKcaUUFXEgUvg+ohvv/HkVbSHde0QJCRjnAKth6GZT59/1zuqxZSMzXG4euUgfe2rztmCL4rInTt3AKCdThDx+NrVUgQcHBxUVXV6eqqqICPrdj6fDkP38OFDALh6fOUPfP/3f+e3fedP/vRPffpTP/vsi98QQgJDlff7+/slYq+kYrHKjnhUmuB8afhYekEdNUoXo6syolMW9L7497QHeyn2ylkBGcQi6Wi1D/9/Xzt0p3hL6GjZX+KGjZBxvl4OofKeMytCiRHDS1O/3flBOxe0kpOGF6jbZURh96FiTrS11+JLhvIiklJwlS/ooGztuMruDFskTLfErDJZK9ewQFlFQO29Fx3Vhffu3WMuhuzWGFOqvTIZcLbKORekfIvtje0ybunY5RcNoSsT5BBCXbW7K+BHUCqXf5gzb+cvI9Fkh7KUr7C7UHabArlNOMCiSBhRz5ScHxlaO/TFGZtS0sIQIvTen5+fP//88w8ePCjXQbcEFyjBCajee8nF5dWUqqt82WIntgMziGzOw2q1YdZlv97ClqNCc0zFIEJrPFEIYQcZ5pxLnj0RFWoREZSLJgDFVDllIcpdF0uRZiuTE3NJTkewxsYc8umqmIpJCiEnX9XGOV83KbHZ1kbOucjZe8+cd4h4wbqKL6ABJEdZRgikfP5yK7uuY1DnnDUWEYuZpY6e47hDTcoPl9VLW5eT3d8TUSG6FbyQiABGiLeqqjLh3T1cV65ceXW9TCnNZrPJpB2GsFwurfGHh4dvvnk7BC78MxzNlXC3KooBSuYEIL6yxcK9ruv9/f1Hjx4tl8udgLFMCfq+n80WxpjNZjOZLhDxypUru+KDRwd/MsaAKdllaIxLWURktVpBYmNMl0LbTMuVLkdqucKsklWEL7q4cqFc3TBzSjKbe0RE4bICV6vztz/95NWrx5mzr2xx4PemLgsbYiQAS4YaP8SV974bAhahCCAz97kv46lhvYESjiSSY7S2bpqmGzpCMiV9QeTg4CCldH5+3rZtqSWKKEdEduXXZWnFDo/f3SNEtEha6m2z9duo2sZa6109ncxTzMoR0cScCIwqKkMJCcg5p5CdsZd9v4oep3hVp8SCBGhSFmNsytK0U1V0rupj4CzOVoQk26gUQBNiri/BHqWvKlURb7PeRAQAy2M8Bn4ph27zxuuv/Zk/9cd/22/5Lsgp9Z0FFMQUQrEQFJGcGRGVxVrHCpvVegxBQwMIXbcp+16MoaqqEPvz8/PyYMd1nM33Fvt7b7z2+t3791PKe3uL5XK5Xq8nk8Y5t9lsQghAOJlMNMbpfLFY7C+XS4Pp9VdfmTT1E088gQTGkvUuDJEikHWiag12w+axGzeeuHmzJtqcn+0dXoXKf/R7vtdWkz/yB/7Iputa73qBsy4huTSk/b3Je979wj2Gu3duO09HV6/Mp7PzR+dJbj32tqeoAlE13tfT5nx5AtbW05lzFrxrZnvGdiEEy8nlZnH15se/47t/9Rc+89btO1b5YDFJSkSmDGF3XnMpJe9cWUnDMJS5Q9kx0dgswhlEwHoPACrILCly3UyCVP3qUdNURTOolkII1lqDxMzCJZwrkYGRp789WQG1bdvLW0mZd+B24gPbPsNXlXUGzs+qtinVlUBmzW+++sq3f/dvsdbeffPNi9MeBUByjtZ6FUVD02YyX0x/+lOfKorUi2qAqOAfiIjWMCg5awiziPe+7zfGOACazfe89zlHQ9hUFpAZmBGn06k1uhqyPZhRU3NKm9STsLcuhPUbb929+eST73v/e6bz6YYHzZ1PVetMg2BzbH21EZ3OF2fLVUhxPp+//HJQ0itXrsxms6effrpum5iGBw8ePHx4v60b7723rtusVucrsqUJhOfe/rYnnnzs8ccf/6G///9+5rkXkjCRSzEi4nq9Lge22SbDxJBZFBG9uWiiChhGxcNJ0JTwZE6F3Yyos/n07PwkhH42qTkPiGqdLyjVSF0fu2oDoCh5BAsuvT9cGPErAHC+yPwmImVkNJPFwaMYQQUra12xvKlG1Gf7k4ioUgweR86y3UYC7JAkBFMQIb00RC4/XParsq0Pw2CcK5BMwR5wS343xomAMW5X8xV4eDdoS7uUbtWLQSSMqklj3FYvicZQGQGXPU1HNwFWBFAxzopqimE8hrdnvzUegULqnXMpB2vt6GIqnIW9MXnMZPQpJTK4615UNXMuk9CmaVR1vV4XPCkJG2PoEte7qn1KCQlBYcyyNEAEYRjqulZg6yjELKCOXFVVy/PVMAyLxeKtt95ydTWkWLhoOlqkMgIV2WnK4rxHJGMsAKzXGwAoUv+cc2bph+BdlRMvNxswNomWEin2w/7+IqvEYUABECZDqKOiggypaijJpAhESsYIKysQ2cl8Mgwdc3LkbEVFeo8WQTXGAAApQFvVhC5nQrQhpOKj7ketX2IFAipu+4hoLGVOpWY1ZDmPhQgVRTYRJS5tjNmakuScC8mvZEHGEJxzvvI5l9HeRRdRDiMAsEgxxYEZEUvcePmNZW2nFK1xUlK6VVVRRNOWJ757xIpAbbVahxAQAZHatjXkZrPZkPLt27dr43XLzwOAHUd+S2MnVZDM3prVqjs+PkYFTrnofpgvxq/l0ejDsOtt5vN5eQALWWM3ReXMVVU5hJTGjCznnG9bIjLkVJGMGUJIORvj4FLQFhjKKY2nAzNam3P23omIZrbOZea6csMwSEqTaaMgzAnGyzV2F6BaVVVI0ZELkYEFCbz3oBRjJOeYU+XqlNJyuQRrDVou6CPnEMJ0Om3rpu97AAHON2/edIS3br25a2JHxPqye3VRp3EkgslkMgwDGciXXMGMMXR+fl6yeAFguV4ZY+7fv98NfV23RDSdzqfNFIDaZkpkva9T4lJLlqk20dfhaSJSNfWl4KqxkKet22/OeUhx98CXTfmiDDcmhIvwk10DUXa0kfqAKNvsOUnZKhqksFn/vt/7n37nt38ScordRllU2BqDADENTdNUVZVSLHSusv1dvXq1xFPWdV0qg6ZpNptNzjlzXK1Wonk2n3jvEWkymdRVu7d3cP36TWY9Ozs/PT2fz+eHh4dt25a99eDgYDqdNpO27/vSnZTV88UvfvHWrVtx6JumsWR85fq+5xgqa7y31sCjB3de+tJvfPELn7v12qub1TkAQtt+y3d8x1/7a385M9SNbVu73vTDEA1R601lMG662bSNQ+CYUNAAnp6cSMx7s/nx8fFsMUPU6aL13uQUQAFUAI0SxjjkYQirJSRup/OPfs93f/RjH3GGWucI1VnDKQunnBLv7Am2fUx52hGRtqbqJV6+rL8sHDmDIbQOgPYODiezxbobImc0VBh1OWf9/xH238G2pdl9GLbWl3Y48eYX+/XrNI1JGMwAMwA4g8EgkgRN0aSLlCUGkxKDTcrlUlFW0SyWXRQlkUXLKpI2zCCqWKIlyiIFigLpYrDMAIAAhpgZTOyenu7X3S+/m0/ae39pLf+x9j7vNkCXT0313HfDCXt/YX2/9QspG1TO9pwbMxi4S51trQbOdV1eJTDi8EgpcSZlLQ8+TzFGOY3FGEPyYjkNzFrrhw8fjmazq5OBh+Q433U7OzsHh3vWWm1tEodnhMwECglYQhpYDYlrwyopRioEDFpJjj0AjMpKAXZdozQcn5zce/ze+arpCB+eXy4CRaNbJizs0jemLn/ip37yR3/jj0/3dlBxYbQGLg2+dPP69b2ddrMGovF4LEtGVY1EuP7TP/2X/9T/8U8JfIKDB6aowD7yke+azsbr9frk5CR0HhGj9w/fv99umh/7wo/87t/ze+99+63KFXVRMnMMQQ08JJmA8v4VoFz87YVSDDFGJB6yK3o7eKOURoTcoynEyRrIMRirxOwAtepD169Q8AeQ4F/36CUcz3+/v9TMjMpYB8yFc84YALC22D7bdvW/WkvlnGOMohAavq9krciD0rCvh7A3oJdDs6xLk8kEADL3FBPhYGwRGoEopCgHAPmRXLemabYDeFvBC/VCvr99XfkdGUtN0wi0Jm9MD95gAqfhIIyQ4/IWiN2CdrLGyg4Ng/BNGO5mcJzHgdyGiHIKXS6XfIVPsy1G5amuwFFK6id5S9PpVA6iMaWevKtUzlmo3FLbbdcKGUhyYeWCSA/O+ygvtL10ciqWS02ZlVIZ0LlSgiDbtpUzWL/mA28v5hbvbJoGNYDq0Vwizpm2m0XTtl3wMUYfupBTIm581x8Cjdo2Z8SCN8aEaKwrtbaZAZTS1kjpcxWMlOEnC7u1lgji4OUh64PAQpvNZsuzVEOjHwerwq7rvPeJMiKK6G+7x22LexkJ8gxCUJa1S0qTlFIMKcVeYSpIBF/BnGVgWFs8evQohNA0zbbzu7OzI80yGc8KUZTCcgTVWmujAEAIT3ILDg8PU0riOx9jnk6ngpMNgK4ILYvtB+Ehv0GG4nZzFwXolg7VzwgmAPApyl3brgMppRSj/FMPYK0pChS/ZURtJCYnSoNeKVWPaskMzTknopCivCsQYCglozRkKqw5PNiri7KwRiEXRYGIcoXl4GStUUoBImgN1kmndbNeW2MkLHgymSwWC631zs6ODAx5A/I827sgEDgzb/3A0pVESNn5ksw6GZGR8i//8i//wi/8ggSstm0ropt20ypGxVCWJaJGBmesrFBXC6YYszHOd7Jc5LIshe7QhUSgGDUow4QIWlujjN4i7XKHjDFKP0e/Qori0oFaF0VpjCXq11yFxmkHxAiwujh/8fbt3/wTP64hLy8v9JAKItu5URhD1zZrZ+3hwb5UxHIt1uv1crmUTUiwUNnkcs77+/vW2sVicXZ2lnO6uLg8Ozsry/LOnTv1eHq5XDdt2/ru5Ox0tVnL4Abi8Xicc65H49nOfLYz76dcjl/7+q/ef/Be226Yc/SdQgCmttlYxEKp5Lvl+dlqcZmyR8NgDLQtOPfx7/7ov/U7f2J50QJRWZYaDRJbjUiBYqsoLy4vxTWx67rY+TfffPP9998/OTk5PT29WC5SCnVVhLbp1utm3SBiVRfGGGStwFLTpM0GOO9du/bqay8jxUlVTKoScyqMKYx2xqjhfKa1LpyzWmvoJ21p3bBAsO9iWRa2N0hUnY8hUVWPb9y8VdZVFJGO0WmYWimllKLoWGWRAhqcb1ISAVC4IqfVbkARRFI2TOC+06S1uINKFRhjBMTpdHp6enp1JgD3QjOl1M1bt3Zmc+lixBibtktEmThlUqgVagKkrWC4N8ZGRkiUhS7DzJvNJoSk0RilEWgyqkLoPvm93/NH/sgf/cJP/vij1dmzdfts3WwYOuYIBIj1eDSeTillv1p3yyUHn5vWr1a1Nc7q1XpBSJH60irn3LaeiP78n/1zP/QDP/SDP/iDn/vc5+bTmShd2raVfa6qqqZZG6tC7L72q1/5pV/6JSJ6/PjxcrH4qd/4m773059+8uhx6FrICXLSwLHzGtA3LWSqXIHEGkErTCFuL1W7aZCYM9VFaZWWLojiPtVbKWO1TZHatuWcKXutNSMwSmdNI6LkDl3dDODXPQj62DsQ73sexIbAiYG1sWUFRAaBUo4+IPWtQIHO5H8i9weFSmv5p5RdDEAsdr+shy3UWWu0likj+41smf0Zj0jahUa7nDj4pEAr6O0upWSRVYVS1qikZtqa+mwpYvJhe0ZUBoW9I51UIbIHS+MmU8zUoxq9Gz6zVJDbTQiHDqkM+JwzMaehFJMNMmf2PiqtEdF7T5kVaibIiaQvtvWAkMqp8d3AV1OIqDQyEA4OiFs4EABSIqUMZWDCbQc2xsgERtuiKM7Pz+d7u9V4FEKytmCllXVobCSOxISKqDd2TikpbQG10tbYwroyEwjgAqCIIDHIjFZax5SMtUXljNMxS1yBzjnHnEEpRuxCCCkpY0IOiRMBZMaY0UeOGRNRyKGNm0iRgENMMXEmE6NerdtN04VIIbKERGmjCIiZlEIJSvfep0QAjDikdWmUooSImIRwZrouxJi1tjHmEPojihyQBCLKmWNPN+o3YKOd0Y5RM+pEEBMhalYatGGlCRWhYqVZaSnsuk56pooIpNxJTJE4MYRMPuWYKTNIBaOvbJ11WR0cHGitLxaLzIBat94DUoidBn7t5ZdevPvCweGeMbppNlIiO236OGalt2HqALC3szsZjaU2kkKtruu+PEpEBAp1TrwdOUoBcWbOqFjmnVwZ06e1wnavv1ql9W27/p9Ka9Ra45XCl3Lu36ezRVEgs1XaKK0QDSrF1G3Wk8loNKr6gFQx4LVGWYPaElFRFKUzpSuAcgp+VJXidFkW1hqFQJl6DDulFFOyA6NLDflRcuY5OjoSmEYIKiEEWYq3BfrVdW/4URbH0KvJBCEE472vRpOco3G21JaZR6NxVVXrttnP2dgKmVerVYq5dI4oo+kn7RU49PnC3ffjGWNOhICoQCER5WEd0X2exvMouu1FB3je896uPmqgnoQYhkPhc7lTzrlbrZDCD37vp4725s1yWVhFOQIgEhuETD1mdnFxprUdjUZb0nHbtqKwY4aiKABYruN6vR6NRsvlUrA9eS0ph6uyIIKdnb0Qwnp5/vTJ8eHR/nQ6Fau6i4uLURgV9aiqqtOcr1+/7ox+7733RlVBRN/+9redc7dfeGF7FqyqKvrOWF2NxhySUbBZLd995+2DG2Fv70C168Nr1/7A7/nd7/7yF5/duzzanxdGpxC1wTs3b15yoSZTLopV102Dv3brFhlVzsYXq2U5nylnlVarVQtgdnb21HgKyDlHVEL1TbHzCZOrq5xiub/zoz/2Y1U9/em/8jdUAuQ+adhqDchSncMg5mdCZMg5lc5ihJzz06dPW98BgHCNiZkBtXGXl5dmVN9+8c5777ydgVMIAGS03vIhQghdx0LDTcGDwsKawlixfrlKRXLOdZsu5wzEFAIoBYhFH0CRQCtARMAYo3M2hiCw82azaZrm6n6fUhqPxwg2Z2qaRg6pAk0opZj6I5Sob/qjpBrAnGG9sLbomjZnNFrlnDfNyjnNkD3H3d3dH/+NP3m4u/fo3fcC6FbbJ+vNi7N6bG2I0Tp7drH4mZ/5meTT7Vs3bt++uXe4o0eVdo5HVouxS9cR910twVBPT8+1tn/wD/7Bg4MDkdG1besK88orr9y8efPg4IA4ffjDH/7FX/zle/fuMeGHPvQh4nxxejYdTcej0f/sN//Ur3zxizeuX0fmFCIPtBKrTWZar9eyokXvKT2X5BTG+rYLbeeqGlHKDh5SWoC4T1Nu1puuWasRSRicMSbHKD45DImAtx5aV8/lzFsD53+9QxgzEDNoZ4oSMjHlkEJGlVUmop6CeyXE8OpjC9by0EpGeP5rV9cNwbGkkpb/XpyeWlsYWzCwbDZyx1NOUvfIzNWD3lAp1bWtyHK30JTUKNvTsPxaVZVy4wS2tNbu7OwgYtM03nsyvR08M8MV9y95n4V1g57Jtr4RIAQGm9ngvdY6h2iGPBLR5dEV7ZggKLKhyqKtjBUtc4zRfFB2J79MRDH3YlLvfY5JKAeuLLrQ9o1FRK315eVlCOHatWvf+tabh4eHcnwVMY18LYbGPPRArpLJaOB4ycfZbDY55zzkghtjUgqyoWx/Uysl/9ye2wUqlQ7voIpIAlYysNYKADkmJkTx01E2hBgD5yz3CAqrUFHokrVFzpQJtS6Y+3sqcTHGGFT9+Bmup5XG9ABx9Rcw5sTMVvcBCVVVSYO75zMBED4fn6RQA/oQgFn1yh7qj6cxbt3deGijQ8++l4TK3tNBLIilC3F1rRuNRkVRnJyceO+F+mklrEkzorZG7+7uMsCTJ8/C8bGxTsaYMSamIC0FrbFpmpdevCuja7VaSfmVc06x755vYUgpoZrVioistbFrma/IbbYTsL+/LGDqtmwwQ5NjWwzgIP/cdj+2Ym0iUkDO1ahYAyKiscXF5fn1o2tG6bpwKSVUzKhTSowArGhofThjvAegPJuOm6bBwoUUAXov4hhzzoKIIzAopXIICbkoihRD6rrDa0dVVYlELw/+dvJ1GrBhGAoiyiCXUSkTY07p6rYGiNgD77PZJDOIs64creqyijG6osfGJ9OxMXqz6RRIPSSOEIIifsBlvygKbe1yeSlE+xg9aKW1RoU8NINzzgqQhtR3NfTpmJnz82djBiJGzgKzyZGRmZEAEYioLApomzu3br/0wu3QNJCiUpBTQkKlMGfKnIvSylI7Ho+FIlCUFgAAyWqrlPLeW6NjSApUjEmYQDFGserJOVeVFSwdlTZGK61v3r51/FQfnzxtmmaxsArQOWeVXq1W2qCEZh4/e5pSqqpKxPDKqm996xsx+hdeeHE0GiHb0LUKKHZ+NJspbRGxdnY+rgpL2jHoAjSePX7cnlz+9h/5vnnlEAiROdC8mh3s6lCNZ7eum3F17c7t7/mBzxCgKsou+svVMjE8eP/+rC4QvC26gsEWKnNio5Q2SFkBAhNwhhxSQ6Ye/YYf/uHlYvNX/vrfGE/3ndWcowLWAvzkRClrrcQiWVJJAEEpyJzatp1MRs4ZoiwCpZQo5FxYc3p6WtVutruzPFsAUYZsmZVWMWetjSuqEHzbrlJmZRxJbYdaBvRitd4OA+KsFGhtYgigQWuTY5RFLQ7ZUMTEwDEmRKXqMaL23k+mz2UcAOpg96DxqWvjer1WoI3TJE5gCjNwyklCnTX09itKKZQxif2OiIjIIgVgRITIOSUfc0rhox/5LqfNV371a6+/8vLD42dZ21C5B+cXr4yr3flIKVaclbXXr9/UgKO6nE6n0+k0S/Q3gNPGoU7ECiBGj6jn8/lm3ezt7b3xxhshdJ/97A/WRRmjR2Sj8PatGy+98lJKqWnWd+7cubxcfvOb37z74svz+RyIz85PX3755fV6+cLtmy/eeUEOc23bzmazpulQw3Q6b7rWajOdTpfLZde09gpSqEBrgKqoERUIj34oRgEADRrV24F27aZS4l7htDbJR1BACFcNKH59kfTrH0PZJOdHRagiMWoLA6NLvAOtViH57QlqePIPWGZs0XTsTT4VEEmyYc5xu7gDQFEUnHtP3UHV2PfBheMoPTKNijPlmHJMRVHQUM2klCRGZrvtyXoIw1lFdDw8kHvk+227sVaa3lZ2ZW2AuKdnIYFGEcP1DLycmQisNUQEzHp4fiaOMWrjmNlVZdu2oC2mZI1KDOpKuQMDKrMlyEfqM8uttZkSEACqmElrLeGPBGiUYgBU2oc4Ho2G5lqoqiqEwNT7cBZFcXGxmM/n4mohJZ33fjKZZKaYE+Vsit69BfpOIkvqX1FYESJkYDQ651zXtY/BJz+v5iGETduKa3xmDnJQG3qRcsFFE5pzphyNydYW2AsREmKfFwoAoBVBYsysiSkxg7VOYNoQvUJAxKIsgFUmrRQA6xT7XrNkL/Kg8ABGYmCGzvfaWERUGnKOmbIxxrBWSsXOI+KzJ49/+Ed+ZHd/742vf320s5eTrLmMiEprYgQCRiD5DMgGdWbizMRobEHMgJoYEVUIwUI/7DNBShmAciZts8oKAJ15bmAx3HEWXd2DB49Go4nWVqRsOWdjMGdKicqyrOtSRrtMmJzzZDJp1iulkVJGYOuM6NO3zcGiqIgo5VhVVfCxcILPMUB2VSWCNqUUU2LIiHICGkK9+klO0s3s60sgZTRib+nCRMASrMrMCrG3PhFmdj+kdd+FV0w5pxRDVZR7u/N2sxFbZuqjLAABtTY4OMUAkHXauBGjqkflYtk4o1neICrnHI+QsGvWDQAgK2CuqkoBdj7s7R+UZamUcs61bStEke154CoXYnsXACDnzMRaWYXa2isWbkxGqqi2bY0rILNWWmvtYyysKcsSldhf9atMVRWN74wxJLaZvYbFbZ9xNBpJP4hBWWtDioJP9IaBpgCAlJLUUnKNYOtjy0y94/zzRZmZtdGIuPXU4d4lW+WcDWJh3YdefmlSlV27ZgqAWiMHoQlb5ZTJOV9cXBirdnfnMUbUKqUgFr1d18hIEji9KApbuLIsAeDZs6fr9SZG1IaVqohTznhycjIej51zXdfdvHkbEZ89edg0zfWja1VV1UXZdZ2noLQ1Dnf2dp2xXddxjjlnH/x4PH7w4MFqtXrxxZf29vaMUs65GLq2bWfjmbU2dV2zuIgcMqfx7NC5+qM/8P3/wX/wv72piir53C2YgkWDOZ09Pb7+0aNPf+b7Nik8uTg+OX58cPsO5a4cj67t70HKt27fBh+AqCMIKaACZZRGjYwtEQw6rNVmRUqPWJty+tGPvH7j8KBDBxpz7rXuSiljle37Al5ra50GoC6Kj7bf2Zk9ffasqiqlVEKYTWeLxRkiErFzThsjdZJRSmmTB2cmY23bha7rKIO1RU5kXRlD27aMSiHq9kpHWw6dILlysgQM5I8cY1mNZOQYZ4goZzo8uIaIjx49EiHxdjDlzOt142wVumiN6rouiaGR6QPUtu0YHKgA/RvAnhCjEXIMRmGibE2BQCnTeDTZ3d0ZT2a+695/+Mgac7neZKtPNpuXd+dnbXvhsJ6NNHAIJAWcnG5p8CKzxsickkOtvOjZ2dl8tmO0/cxnPvNLv/Qv/+pf/av/6//NH56Ox1rrw8PDo6MD2eNlCXvppZc++clPLi5XiHh8fLxeroL3p8+O9/YOPvbRj/7sz/6Dm3demIzHvuukmFitViGEsu4Hv3MuXzn2nJ2cjKdTMSvX2hIRZ2LOGQkRxYCAExtjKCYgJiLUSESskMVxgBVAFgum/x+0r+erEIAG6N3yGUEKsS4GsBoQNfS+GESESumhTNyOiu2usy3Itj0+FGbbkFaUKAKAGvqGPBiGCVVi+E6GwQ4Nh3VG1h/Z76WSaNtebT5AL3rbBBDXU7k78uedb5xzRVEIHKsG3yattcwO5t7Stl+ssfc9RkQmOZez9x4QtNa5DySW8KhcVVXXbnpwWjOCYmYrTrPSste6P6IMJv44yFqZWWKbtzDDFuAh6hGvEILvuq3fsnSgmPpLVJbl/fv3r127duPGjdPTU9sb/KqUUlGVMcZ20wg7bQt7b6NynHPSoZbpAACZSaA+rbVcRqlipXB8TqMeHI56arZSwFmENTJUlFKZIlIvy5CjU8oRERSA1iYn0RuydQqxJ8PlRAxCa2NbGFuWXYwGtSgntqYe0Puu9QVlysEq3XWtFKNAoJTZNmplPPQmbQgIqIVUJD1cMXUrinjFsIAQlDVKKd+0MLjT8RAtIGjIwDRSObHPXilFWrkrqrWqKnKOVVVcXGRj3Pn5uQCurrBI3HWdshKgx0ZjjGLN4CQEM4TOOdf5tS1KpdR4PI4pSO2yxXgAIPhGevV9X29wYiMiAG20TkMgJl0x91dai64jUfbeS6sBBq9BvIL+DpNaCUwKQ+SRbElOG4VsFTIDZV4uly+8cMtaa3IOMVmrQ85E2ThLEYAz5wx9shY751CpnHlnNm02XWYQUngibppWG1vXZQghxcwxgbUpRCIS17rNZiUfpCxLYcsVRSHAttwmYwwMNFopQwEANA1v/gofBlFZW6QhgVU+vnBiHj9+XBQFcxbCUFHYELqtMF4pKEtnjPK+vcr9slaLynr4tT6tpT9TOk2cfGg736BipcWw5Pk+hwPVVB4a0V5ZJVNKkEnARgDwbdc17Wuvvnz72o3gO87RaIX90ATQIB0c1GgLC9iLJdu2Zc51XY7HtZJgHESllLW267rFxZIzeB/LshqPp1rrHNPlxdnp6fH5xWlVlV3XGWNllT84OHCuWC7Wi8WqWTWrxVpYO3JBpK6v67ppmtFodOv6DQ0oLmsP3nv38uxUIywvF5nIe39+uVwsFqvl8vz4yfL44fLk0fr8HHKCvZ0VhZ/7J//o9N47T+6/qygjxPlsXJeG/ebpe28vTh7Xis8fvXfx7nfi8mLx9OHFw3cpdWAUGAQka3VRWFDovQ9NA8BVVSijUQMAFaZwSgMTcLz98t1/79/7o4hMKaYYFDAq1kYZo63VCFRXxc5suru7O5/Px+N6MhnJ6vzk6SPuyc1RDBhFxwADgHzrhduge/6yVjYnFjG5dA8xg9hVi8hOrtvVYVBVhbEakAc2ANdl0Z/st8KxQWDfrDfjehxjPjk5+wDugjolAsYYsxgPyhYopArhoGw3J3l1qcmIKMeQY8gxCWoLAForguxjN5lOb92+PZ5Mv/3WO4+eHGtl337n/UdPnoKxXJgL33alvUReprDOKTIpbYDRKrtuNiFFNioysVbKmhD7pNiqcDmG9XL1znfettpwph/67Ofefus7f/Ev/kWl1Cc/8d0v3r1TVgXnBEBN07z7/nuTyejTn/60ZBi/+849RJR+1maz+Ymf+AmgFNpGAysF2vTBG8aYZr158ujxZrVpN23ons/iH/r853fmc991fQ0B6Ix1prDaKUAgijEDYOxijkGjkJYg5edZN1dLoquH8l//YARGosE5fPv9kLLRFoAACZgzU0w9S1VpQMWonncltg81KIG2va0QAsWe0Yw9fS1zjkpBSkEIBtKq8977tqWckVUIqWu6PPg90uDDLKsZDLRouIKl4WCftgW99CCGEm5iytn0pPU4lPjK2r4TJ9wgdcU6n3sqZF+uUa8mo+11SySuKFt/JpTWJDMLZrZdh4UpuB3esupKK4cAGVUiZlSZAZQWjyXQJgOGTNoVgBqV8SF13hPRYrFYLpdisTGfz0vr1ovl0dERDwADarVpm7ZtQwhCwI8UM2RhwMCVQlkpMEYZo4jSaDTabDbie+zbNoUgmQY5xhQCEFmtrdZAxDkrAKMUbv3PpOyOKYfIKSOzBoRMSAhZcdKcNGatWDMZYAOgRLKnUDNjCCllTpQRszGAmCUbMIZMfeYWMCP1zm39atM0jTRSlsvldDr9zPd/6qMf+/CHP/zhsixlYUQJDE0ZhnKfh953zlmy+HwMXfACm4QYY0oMkIl8CITACkNOXQymcGh0pJwIGDVqi6avPqWhJfY92+lzfn5eluX+/r6AlCcnJ2KOkHNer9fOGaRshlg5ylnOhGLHw5mk6j09Pf3Qhz40n0w55eRDs1orZaztHXnKuup8IKLNZrNYLJqmQdA7O7viQ54HbQeLzec2jAtgO6Tl4GeMMVYNw1IpBRrQoJL/yYzTvbzAGGMUkEHljJUfWWvLsnTOvXD7ttNGISoCzqRBI6KCvoMpf8792+hnk4xho9BqJR9fiast8M7OjtYaFKPi0G6MMQcHB03TLBaLIeDVSHmz1buoK14hV9YEHPJhldZ2u1zIltQLEkNIskxIgZVjFFOl7VhhFoIgQibVJ4f0aqOri6a2jhDE29d7L51Eg0rcaOQECQCSlLytiGnw5tGD/Ece0ncXc7nhIlqlVMi9f4Yz6ubhkdFMMWjs7SUlI0zWsqIsiajZtIKvhhC8b6Vo3Ww2UnJKERBTKMvyxo1rFxdnMcaiKLTW4lMv/VrROAjqaIwJIRVF9eKLL3Wdf/L46cOHDx89eXx+fn5xdul9rFy1v3egrbl27dqtOy9475umKctyf2d3f2e3LMtHjx5dXFwAklYo6Q2znZ1XX/uQtcXybOXX0bkSCKEe3fzIR3/5G1/76pvfeuutNy8vz3P0KbaHu9PjRw++/qUvP3tw//zxw+Wz44fvvHXvjW88euc7b3/rW0/uv3fy4L3TJw+JonbKTSZuMhmNxsiYfMyACTgybJquaRqtLMXAzWb59MnXvvwrk/HIOi31aGGdtRYAY4whdM7ZorRGQ2F15YrRaKQVuNJdu3Z0eLg/nUyKwhInn3xKiZmstTEEUUdOJpPtqZeZc0LfZSKwttBGxa6RmZCZgWGxWFxcLLbDYL1uUkp915sYAHwKaFTirKwVDoicpGWAGWMUaOdKilc67Yxd1yGA961zJsQIrIqi8ClmTopBAAMelNIDXfv5po7IV5U7VVXuHR7s7e3lnB8/fmwKZwq3XK8fPXlaVCPlisBqw3DSNuedX4XESltrlUZADjmAVgygrcmCsBvdBr/atJvNRtiHB0f7l4uLb775TQAIIXz2s5+9/977/+yf/bOqqnqvPqCc88nJiXPu8PDwIx/5yHw+v7i4ePr06WwyZeaubVMKt65f+w//xJ84efo05wyZIJPIFOSQYK1o4OFqvfvg/qOmabbbP4AamoBpO2G11svNMsROISndU3Cg749IvJpG1AxA+K/naT2/M/2P6GpGd06srQNQBAquGlUQbYdBjw8xb0t2vhJ3uC1Ztr8z/El/5JMbTfKiShVF4cpSbrcwKATgsVeO3R9YD4fBDEOej2ADW8GaHDDk1WXJds5Za72P1Eej5jxo9rZCMHlC+WKryoxDGK48v9xBYdsIVR97kbiJkhFpzHa/3y6GW5WA7u0SlMQXyjlkWz5uL2zucxUzaJWB5/P5jRu3CleORqOyLLeeokVRLNYruWjMjFoYKT1nyxjTNI3sL5FyyCkDEyrtCp/ypvObzseYY8yTyUS2QCKiDFuWd+8LiCiCQUY0zhFASBQzI+qB4Y5b0WhfBaJMYZ2TjASt0CBo0XAjYtM0IQSFTiu5MqrXgGhkZgVQuYoBvPfr9VrcheQWy8EGABaLRdc1r7zy8u0XbuYcY/RKI3Puuq4o+qACY64oH1WfT7VdWACgbdvMZAsnI2E7zNKQOiqjawsfbpESuftEpK0Rr9Tt9PnGN77RNE1VVbPZLKXUNI0MZqGUbYcTDXZfxhimhIi+bZUyROR9fOHO7du3by8WC+mP5Sz5VGit9b5NIYrtlNgiKqV8aJeXlznnuqgE27taJGxnIiKKlU3MCVWfdCn3ToZfhj59PPGAyyrOFBly6Yy1uq4KYxUiR4nDYa6KsqoqGux/hRxilY4xAiXOkbn3BoNBhs+qrxFDCKA0EWmEwmjh+LftBhWAUtx18/392y/cWLfNer2eTCaCBMtHFvRLCpVh1H3ACAIGzyZZi9IVgXlP38o5n5+fA0BRFFVVWWOkiKmqSpTb22NcklSUnDllRPQxgPqA0rKoqhCzkJoBiCkhkEIuXWFQadAaNIIGVl0bcmKrjQLUqJBBgeJMVzPjUHGIHWo5AmWDJhFkQKWtskYh15WdjgzFRiuinKx1ibmLIXFv/xO6eHp86ly5v38YUrxcLhB1XY9Xq03XdZnpYnFpiz6GeLlaPH32pKrLyajOKVaFq8pyf//azs6B1eWzJ0/X6zUzdV3rvWeAi8ulLarv/dT3K6MTky17J5LaFk+ePHn48GE9HhWjqijLLobz8/Ou63zXHT97FryvynK5Xrz77r0njx6cnz5DRYnis7Pz04tmZ/eF3d3b5WQPpnsw3nnpN/3W//Av/KUzjYcv3smcc47TuqwLnX03stYSFKjZx/XlYnOxaC6XU+eWT5/lzXo6sqFbs2/AtxAy1FO3d2CmO6Cc0gWD0UVZ1mM3GrmipOD/xf/0T/6rv/FflIa1YgQqigpRK8ac2PuIyPOdsdL5wYN3EWmzXgIlANCGR5PaGK0VASeAVNeVtQYoUYpOO045hVhVFfa9Y8wZfZdWq8YHIgTvW11oUKyNjZmr8ZwYk3+ufDSokDQQKtBMxDnawqgCInWUPGQyqBSg1Pop+sl03DZdtwnBPz+IzKb73abjnAunY/JFVWamxECKuui1gpyi0qiMijmhVnLqNcY5V1auMKgUAwMlgMxQulKjDl37/v337j94P1PKlKy1y2aTKKdMxIqs86Q2SQd0nVgWQ1LkEXNRuXo0Ol8sfevHVU05MuWyrpTRBMoW5aZtlDWvvPZyF7unx08yU+u77/309z148OAb3/jmycnJarW6uLxMKTJTXVZFUTx69Mh33cmz07Ozs/F4fHp6slotq7pUGl9++e5rr78WQzDGxOg55RhjSjml3HWdNNF6whEAADx8+Dj4pAyiYsHnRF1YWFs6kzjFHIqqSCnA2RNXoNWZKTEzoM4501V+qdRSA2L9AahK2qysthpJVAqAOCfJ+CjKMaBJCo0rkYElUK3t+pGQn2fNMJE1hom0UsBMOStxTRxaPEMFhjlzzEygxI0ppCgGXd5HaQ8Rc6KYc7S2139tV8zh6Ax2sAfTWmcmbXskSawXBWoasFUKIVAGrWxZ1gAqRqEo6ZzZaNc2frlYAyuttQjgAUAEDgqQUmbO0ofMOQMro11KJDo7rXXmlCgyKGJEZfqKDbXkZsqiHYMHJoVQOAsAUkMwQkzEhApNZsyMTRcIwA+7Zhd8otwFn5liok3TLTfNpmt9igTICtvgpU3mKndy8my5XO4fHlwuFyLQEXEfsOq6IJ5SAMoYh9oEYp+pyxBYrZq0bPx6460rARQTUgZjnE9ZGTeqJ7JZOFuGRLaoMmNmiJmUsUrblLnzkRiVtjFRJO5iYqW1LWLGzNiGCBqKukSDrDAxRGLtLCFlyFoclWM2xglzX2pozCC7EnFiyKjBlYUrxekUlLaojGCcXQjKmtG4slYH7xHIWs1ARVEoZZggURbvsxBCSqS19t4jaiJABquNRmW1cA8oURaZJwFnUX4AxAHRZDEBhkyctEFmdlWpbB+Yq4zeNvIAIBFfLlcx03gyU1qnlN5//32NqAFN760qbC24du0aMwuv1yjtjEkhGmVTiLdv3845Nr5JTOu2q8fTFKmqqpTSaFwXpVhdKAbVtl0IYXF+URVF8qFZb4zuO8tKKTEH6cc29JiL1EOyJkhp5pxjhJiTSJgTk7VWabBOl7Yvt6yBuioUE6dIMSEDEfm245yTD4iYhGmF24ABRkjGAgAZYwhBDPxEsdh1XdM0gv5GyhohBi++SIli2lyC96PZbDItLhen5+enGfoCVKb2QBdRgoxaWzhr6UoR7KzVqIySZSnjB/sAxGyapnFlWVWVrBTDpeHSlkqpduO1MaJo5ZzKsvTc2zQAPz8XPt8pjRFXJB64inIk0loX1ikxqggREXNO6/V6d3dXxpbWmoi11rKpy2OLltvCGjYpJYJEkQJlhc5p9dILt0a1gxxzisxMlAUXRUTg/jQwqifaGjlAzGYzecNCmvM+ioonpWS1MUauI63WS6UUKowxihPB7du3Y4yPnz66uAyFq8QIR46bbPjWrRe+/vWvMmd7ZGdlSURVOSK2IUc0mlFZ58T2cLlcVq4QOcxqvRZC1eXleV2H5WrdhPg9n/r0Rz71fWBrKMegNCdGV+7+5E9++I2vXnzrK6MQM2yOZvtj53bHtdPGate1YdlsEsV6Z8e4USIImZaXF88eFWD1aLx77datcjTzzZmzpZ3M9NjgxYVsD6DQNxvNZMrycz/4A//yF3951aytLSLwdFwr7rk3IQRtVClGIQgMmShZbTQkYhan6RACQ9ZG+dDu7M6KqoqZU0qcKVNMSU2n02ePnyhrcoLlsqGE2tmcculszjln0EZ4EWa5WV+NIEzEzGysBcl/1OhjBwCz2QwIZdMKKaAWeIystdGnnZ292fi57xeisUYTcsoZ+6g+F3IwzqYQQgoalRxflDY0SKvk0Fla06+ACikFURX5pvWhs9YKFpVSOr88jz7WVYXEftPomGvr2pw7gi6lLnDFpJUCBT55RM05xxgrgKIoyqryyw76/ixerpa60ZPJxDn38MljV5WHe7v37t178cUXl+v16fn5/uH+fD5PKe3v7yPi8fHpvXv3UkpvvvnmdgrMZrOnTx9fXFwYbV9//fX/8e/97J0XX7TWxpgyKzlFC5s5xjgqn/PkqqqyVhNGpVTKzJC7pq2rgkQ350xs/Hw+b5pGussxsEIDqBQCIX5Q7qSEzbZdepi3yschmGb4Ply56b6LXGuwhbEKQgQiZmWtBVBAnCErpWAgg/YdigE7xz7gFonIiJJ38JTGvqlHKfitBC+DKOUEe9AAsK26+AqHfds4oIH9vcWWJISgp5FJCPTwO9v/ypLtbOm9jyEjojEkaJbkt2xBke1f0eAiCwNBFiVsfHh++dTi2ZFzDkQpFc71u7UeGF39+VkkUEb3yYMMOWdCkJfohZDGhKGHtYUPc2JBUC4u3XhUpRRwy74dDF8ul4v9/X1jTNd1tqhkaIXgmTIpLe4lMae2bbuQAHVmICJnHABTiFqjm4jcQTBUTokohl4rECNolVIyTvJ/GBQgZmW0oudeD0x9fWOMES6jbAFa5+3dR6VSzoK1F8YA6pyZMluntyMnpWQACBUQs+oNO6QfBwCdj9LF0wYndsRMMcacoZA+mlaTyeTydAEASsJAcwSrjFVKF10U5rSAOln4bQCQY2IEo7TEw8DAPhSkGYetUIp+eSdKKeG6OedAKc4ZrzgnO1u+/fbbe3t7k8lkMpkgkITg7e/vxyjRvcoYo5QpiqIqR0SkGCD33ishJWN6qaxSSiD58WiWUlZoqqoA5M1yRYCUQehfcmYYjUaFLS8X59ZqAASFSrH0AXHw9yRmqzRaS0RVWWltCCAlWq1WMaeyLBUagYuMtQJ8GqMZMg50g0REMQnpCjIaYxKlui5T9ADACKoH4FkriyhtZYXIkqfHYuQB3LZt6apEnDDHlIzWztguUGKqSlcdHlgsELFt28VyGTM7V242GylAmdnaggdLEblB/Q0dShilVMwRUQOD916Av6sVmNlsNgSAaJum4RCA87jodRASljSZTtdtJ1BtztlZm3K2ZWGspd4H7wpbS2un0FrbdK1QJYxRMcZMcUubQARjtCy8MsNhANsRtY/PYY+cxJ9CTq5ZKSicTUQYgZInSocHezhAzcycUgTgyrmiKGJMpMCWhUxIIkIgMY6rqspqI0SQsiw3m7YJsY2NtbauxwCAoFLsn3MTN3VdC/Goruu2bVer1fn5udhzIAAiz+fzmzdvnpycFEUxKiutcXd3t0vN8tlTVHz79u3pePTO22+HkKqi3j84uFyca63Hk1FdVlZj6HzoYoJwdPPGKx/5UIuBEo2wzpcXF5vNrC7syHz/b/9t//Dxw9PFZb0JR9dhbzz50vlbPJ62To/3praoNFbGFj7FEmBnPl+uVssUQavgIRFPdzttjPenu/vteL5TzicQwqZpGKAoLGgNXXh6dnZyeY71rK7K3b05Ue5T+IgUk1IqpoyIh0dHIESZGKrxaDwei0Wc1uNxVQuHYDweh8RESfIKxd5W6+LCufVqHXwOkSFDVqSN7bpotIGcXema1enObi0ize0wIGBdaFDKalOUpe8aICAP3nuDSmzPbeECZWUMEKPSZV2J6Hr7JAwqAwUfi7IEDX1eR8gGUaEBozOAAdBKI2NGRSIFZ0opBSUmVYSkJfcjdn5U15v1ejabhc6jVin3ti6yuxdlXRjr101LOSnFWhFAzKiBASi2ber8bG8XElAWxCUTEYUccqIQETRluLhcEiNQPj8/TymdnJ/deemuMe74+FQZTcSuLGRM3r9//+zsbDyZhOTFVlF6Jaenp9P57EOvvf59n/zUP/gf/0FKCUClFFGb4KMxYKxu205u6PZaIWKm2Labsiw0qFIpMsAxaECttVYOGHan8+W6AdKEZaQC0GrIOSeFKKPm+ZW/YqzKffF1hV0rzGgGRiHeo1h3tW1b7o6hLIk6IqrrUUhihN3vT8yMBFab7UlXSpDtmbBH5Vkc+3vN49Zh6GqzY1vrwECPNaZvmG6JPtJrkAf13piGiGSCbH+BmbHPS00D3DskVvmQcxZD5qdPn8rBT96JHlx4cLD0lPV9q7TfcsKYmXJv5cXMnKUEpKudLK1rBgAEAmAAbSwq1XZeKDIZOEieKSiC/tnUUKjlPmUrX+2RGaOFTJJzbrqWmUUxqpTyvt3WiEqpO3fufOc73ynrMSKmFAFI/M84PZeLtj6KZFCr5w4aREnI9UJgkk+6bZAxcxJYLkZQqJXVqPpyGZCIhPGnB3p+HnLlt+0ePTjNbhUPaaASygYRU5CvlVIZesdarXVM1LWhsM4oLZ+0QMg5KtH9ZwghKqWUgrZtAWA8mjrnQk5iHNg0jdYHavAwksursM+ESEnmizgycM/KHxxv+up5C0MQK4WuqmSqIqKIABRwCsEZHa92DIxpNvn46cm169evX79+P3Qppbfffvvo6ChntYWExV6xKIr1eo3GwfZ8ksPu7ryu665rmHmxWMj2mnOaTEfGmBA996lJqEDnSM4Z8TCXiRBjJMoqAQCQeO/pXsAUvNfaFsYJLy1nVsb1pwuxAFQoRH7vvTEuxohIZVk5bZhzylnMjbqY0GhrTdtstNFd7ApriDLQcHlzZkBjrEgbE5NGsQgGa91m3Rp0KUVUOlNARNQGWGau0qh393Zzzvfff2hsZfTIWSycg2Gd355/iEiaj2VZMmNhC/DP70IIATD3p6PQ6SvRukypT70ty9JqswXMmRmRxZdZxq4cKWQSysX13ouXLV1VmQNEykIpCCEo1efHEREq3vIuZa0R1Q8NMiU1GDpfGUP2OSUCKFOI0QOl6aSuSjcui+lobIY8LKHZ4uAOYq1BhNh1y+ViuVx43zFTzr18Y71ZCsdTVsDbt2/P5/Plcvn48eOu687OzlarlZhZe+/FLdoYc/fu3bt3785mM6k5pF9gbdFsumvXbjDB5eXyvffeS4kePnnctn4+3wk+bTat1nZUT5bLZdM0T548ubi4EE/n4+PjJ0+eLBaLEMJ4PLbaLC7OFuvL0/Nn4BttjSHyIQARfOi1H/it/3PaPUyuJGWq0llFyprRbEYKs4J6PAKF8/n82sEhEBrjpuPZ7s4+gooxh9CJVuvi7Pz+22+HxRK0GU3H1qj1eu03m+Vi8fM///Onp6fO6IO9PY1oNMIVCJNizzsWbYGc2mVtBVCnp6fAyrkyxki5X4l4oMOrQaN3eHhtvbgIXWsAAaBgYO8rV1JiSJmCV0w7OzM0ug3PqwGJTW2adVFabbBpmlFZ1WUpHX3tNCPFHOTO7t24VZej77z1zvvvvAfq+VjPjEY7QI2ofdflFFL0Bmlq3d5onEJkZmucJPbqIV1HGYGIREzXQywasGvbqqru3H4hdN4ZC8SS7SXDHhEzcNN1aHWT8zrGLnEklREJFSpDkZaXC8yyRCs0kjfS26xvWdIyq+XknXPGwddUafv0yenp2eL42amPsW27p0+fVlUlHV5EXK/XXde9+eabRHR0cAgABwcHL7/88vJiiaycLRC0HG1TJAAlPJUrBVMvAgWiFAPmhDkZlFU7hxCAYXd3LyUCVWS0zEAEWil1xcpri6NfqcDgg68itdggjSQG4qFAQ1ZorFNFwQpRK8rbVODnTcDtS+ThsUW/no+dQU4li5twZXAgToUQhDslVzjnLGHYMm63b1vAoS0HQxpPMIAlUtXJC8nXQrSSP1GDgzkO8UTyI/k423pue4De2sCqgVu2/bxXy8Q8xIqoq7kjzKDVVexW/mprNK3FshJx+3mvomvbjyPvHAcX+20pIwWKuENtixV55fPzcwkelcNYfyRWuF3hhXaWc44xi32yGhz2icj7tqqqGDrv/bZslask2l5jzGw2m81mVVECQNM0goukIaoSrgCN8hA5nnzz+Y0YXNrlsgwSQhSniV8zUOVtlGW5HXUyQ2VLEsvulPLlxTJn1soWrkqJRqORDLnZbLbZrFJKR0dHxCzTWe67XEyB0/oLKx6TA0qnBsvJ7SeigXe4vftqULYppX7NLBaw4NmzZyI4gz6W24h4fzwey8gRjG08qaU4tq4P7owxiuWHXB9xSZRRNB6P02DBKm9ysViklBB16BrnnLT2ZEYAP++DGWOsLVIkawvU5vLy0rlSY5+vsO10AQANN0JrzZwLZ0TN4H2bcxalFINKmeUU3XWdLczguS02hGC0LVwJjCnmROBT1FqvN0vJnZQCpmk6IGw2GwVojEmhHwxWGwO8WS6ePHmSiJWyiFqjFtXnr2n3bUt8YXZeZeDFIVRDKVWWpRmcZuWxPc71h0J5FkSWwnNvb08wZ2EzCMFTGQTsqZrblWX7jNWoZubz8/P5fL67OyfaNnp7UqfM1pSSbOGAJAqmAUijLT1fbkbTtG3bWmuFA6EVIBAS+3UzqapxVaYUQui8b1MKpTOTUeUKQ5x81zAl3zXRt0b1cqdxXXabzdnx8aSuR1UBlKzGnOOTJ4+896PRaD6fy/ELEeu61lrXo6ppN977k5OT87PLuhpPp9PxeHxycnJ+fn65WLRdN5nPQKnDa0fL1Qq0Kke1HbIRpV4ZjSY7O3tVNYoxe+93d3en02lZlpPZdDyd66JkrZi50Pr04aOH9+7Ftr04fQrdxjCxj2ArIJz96I9+4ff9vrUr33v61CjcmYyXy+XxyVkXUkyUCS6X66dPnz5+/Hi9Xu/u7qEy9Wi6f/1oPJ8VVRlzmO1Mr18/quvy61/71ctnTyBTUY/G9UgTXF5cPHj/fumKg72dUVUoDTF679sYPOVEnJg5x5RSFO2C9965MjNtNpvVauV96PmMzFK/Xlyctd0mDy6LKaUQ0s2bN1//yEcgR0zepcDt5dyosFlR9jKQUg5HB/tlNTo+PX8+iEO2ztSj4uLi9OT4UV3asrKb9aXvVhlDJM+G0Sggqky5M91981vf/saXvzqeza7OE1l9JqNxTkEDG8XZt3uTann68PTxvZ2qhJQklC9FQkTO/d5MQNutjohyiFVRamWXl6vXX33txo0bq9VaawOMFLLBKw7OCjNC0mbh46JrNzEmVgSaUQFAav3F8WnsYtd1qJR2lpm1UuJULpE1stz7EKxzz46PldZf/spXHj1+CqC+9KWv/N2/+/d+5Vd+lTI0rf/6N75xdn7Z+nB+uRhNxqfnZ2+//fbu7u7e3l7TNDmlk+Pje2+/s7u7G0LMmb331hbGOJnIKdFVO2ZKCTKJtzUiMpNGo5RBo9DpxeLipVdeXa02JycLGO8hFpyzZlk6+j1DSDPb2utqKQYAigGJMSNmRPmaeCBywdaMwBgjMRKyB2cfhHIqtDwcNGvPGSRDlYCDLwkMld/2aLc1i1aDT89Qt/QxjsjAmVKMKcarii0pKfSVWBVZOSUAtN8SROVESEnibOD5NyX4D1TvhgW8tcCVfbRXCMYolYp86u2n+EBxOXCG1OCrypk4kySKI2IaPJZ42xsdijC5VoNQC8SoDxFTCsaoLXa4LRYFARLRlbyZ4FPwCVCDdCoUurLITGJVjaB35nshBBGRCR95W/vK0SIP6UxpKArFRUIUc1rrwlirNGSKMYtMwVoLmZw2N27cePHFF2/cuHF4eFiXlQKUMAMavD+cc5wyp6wBFfeqL2mrQRZreA3Mcp1FnS1vVYaElPKAjApEKhTFE1UpY/qgHs6Jc5L9SK6JnJ+bplPKlHUFiNue7MnJyaZrx+Px0EQzV7ZLYs4aEIkVgx4iRuRg0atDGOSDKO5XsO3Oq7XmlCn2Tp6mT4HrHyGkuhq3jX/8+LEx5vr16wBQFMX9+/clEElC5eT6j0ajmDwh536Skhwjg49EIPQhGizT1WAmt30b680ypYDIqK3Wuus6kdb1kx2NcN1CiCGErTLj9PQ0DR7CSKwBrdIGRfaECplyDL4FjhqjUUlj1BJDoQA455iM0r5pQ0jdevPaq69LALT3LXP2yW+6JjHZstLOolauKBjJFsaWyhpVFYU1pnRWI4/KQgFjTtGH5eJiuTh9dvzQOvHGJ2erEDoA0tqOq9HA2WABDhEx5AQIm67ddO22Pt7eYMmoYMh68Kt//tMc+0NMVRVFUSiGFL3UaGKLDACr1QqNHY1G7XpVlqU22HRdoe3Ozk6IcbVaXS2/Dg8PT87PjnZ35/P5syePETEmT5yQ+4wneK5h1CEEpcZaaxr69DLCts9mUJVlSUCIyFpxTiFGhejbjoj2d3cKYzj1Lg/W2mI403jf5piMMVVVZIox5JR9CoBaWad3dg+YyYcGWDFDPSp9p7uuu3btmhzOcs7Lxerp06eIOJ1NmHk8HrdtKw7Co9Ho6OiIiJ89eyafhYiOjq5Px+O6rh/cf39n5ziEDuAgxE4pPDk+nc4mZVmOp/PTZ8daF10buu5EW723syvRLpFySin5cPz0yTSF9WK9mpxfzs/Go3lGNfJTZUtar9Xr3/WTv/vf/oW/87djDlZrRNw7PMBSJcwx5rIsrXXL5ZKULcZjW5en52e7h0ez+cQ4a4w5OznVWjtrb968fnp6HKO3thhPJmY6fcG53/xbfurar37tyfnZxfmxBgxdo51DVMYozllrXK8aGJZ8bQ0BUIYQkvd+Pr8VY3TWOFes12vvPYHOWSKjDMNz7sXt27ff+vo3D8bjG3t7lukb775xsHvzbN2BAaKMQ1vKuQ+c5Bj6jRMJU4g5psLYlPK4miilYgy7O/tWF0DYrtvlYjnf3e1CuOplJcUT5+i0Ql04A25SbM5Pfs9v+ylm/m/+3t8f7R0BcGIApVNKhTMhJgAednOllM4hWmubpnHWrtfrs7Oz7/n4dz99+pQziWOhtbYoiggppQRaEUPLvErJF0VECIRFZo29JUH0gVJOPuTUKwq9xOFx/2EZpVeCRHR5eXnt2rWLi8XXvva1GzduLlfrN9986x/+43+ire1889f+8l/74R/+wq1btxCxaTut9a1btw4ODrquE8Wu1vrFuy9cLjZlNV4s11JUyMbfdUFpyFdChwSkQUZixkwhk9PYNqGe1SEEbVU5Kh8+fPjs6al64eNcjHL0unAhZGJWCER9hpSY1uJQ32yf/4OQGMu3EICFN4YIClMmZc10Pjs5vWetVWiEFbSlZG2LJ4ReG7Q9TG4PewCA4tHPIKDOUFByvlJCsUD+Qk5RKMbk8iMcekNSiKSUQte5sjTGSM3KzN77nJKUKkTE1BdV2wOqHqI+ACCLvB+gruvoRQwRZdVSg0mjGiIXtzDYFgOToooGpSQP1a4UnQycUlDKeE9EVFhxgactZ4i9l8oAhGCllHhDID735VIDNtZvjVdMZeOQaSiXYrsNI6LIA69fuzmZTOq6Xq/XIQRO2Wittc45bhu+RUFD91bJTlaWZVH0h7QtcLJ9uS1I8/D+/Qx8dHQ0quuU0mKxMMZsd7NtXbKtaOUTyXYmQ8Wgiilt4U+kLHRsqQMQe4irv1+Ixpi6rmPIWiciitEzC2Mz2sLJr43HY2a+//7DZrP5xCc+bgsnIndEJCYAVVXVdDrt1u/sHEwS9zZmWmtxE9XqOSsRrhh1mj7fU12toZVS0sbtQXHKW+gkxnjVU0oiPsuyPD4+vnHjxtHR0fHx8eX5qQDkWutEEQf7N2utOFcBAHIG6EkUMub7oTVQD/XAmMTBsCeltLOzY63lHJVSRWFX60YSnCQVjEE0hn3T3PuA2i0X6xhjWY/a1qPq+905Z6CEpEGh08YZNarKEH2KAQAUwyCjZGBcrZdl6Tbr5c7BfuGM+JxplWKMqQtMOqXcdhcMeTKZaA1Kg2ziRlkmfPTo8XSyywmq8ai0YK0eH44ms2k5nhpnvv31r753/HA83m27KLIVzdssDdgeLfqKZSjlhXcLQ9NFHGiNMahYqZ7RdHVLMkVhxTOTmZXqme9ignV6ejoaTZu2RaWOj48Lo0ejkWQhx+jX66XWttciDQ+ByphZpl9RFELpk1HiQ5JeLwAQ95gKMyM+99CXSEt5hBDQKCHDKm1Ra06JUj49Od2bjA4PD43G5bKxSKhAa0Qm3zYpJYbsjMo5ArJvNut1o6xy2oWYEdi3DSK2m3VZj3Z2d5aLddesq6qKvu1C8D7u7u4yc1G64+Pj5XI5n89lPu/t7akh/W06nSiFx8fHdV137Wa9XiulDo6ur9ere++9e/v2bR/DtcPrz46fKGucLdzMaq1j59tuE3MqCptzbpqmQO19dFVJMUXKSunNYlXVvApnlSmmozEq0y7XriqBtYIML7386qc/vXzrW/Pd2bcfXbqT8+nhTBemWTfG2rosGYGVPTk7dX48mc/evXfvRb4LAEVdiZp1cX4xGo2q3T2ffNc1SkFJ5Jz79A9//mOf/NQbb7/1q1//2htvfntUXa9dkXNEytZpmXVOUL0c5/NdrXX0ues6ZpTY8vmsIqJ+9dEm5CDaVcWgEbUpUqK9vd1PffIT73/1mwc3D37qC1/44lfm//2//PnJ7NrFpqvLklc55xwjOVtvh0EOGQsTiXLIigwmTR7Ol4ud+ZFVymm3N90DJUK2FLrQo8TKKP18rFuNIfiqdKFtyxKNhvPj4z/wb/4v/u3f8uNPHj9K3ea//0f/dPfG3Y6AlWbFGsAoDZkTJbAWUSOJa5ExziIqo9TpxfntF+/s7++/8847s/nuuJ6EFFerjUSO5MRdTinnS05+XHiAyEygFaK12HabyWTilC5MIU4u3vtGN6QUKBS8pxqVxqhEeblepUTGOGLY2z+4XKzOzi7Ozy/3do/+0l/4S6B0NZ5/41vffvLsVBmrrLt+42ZRVk+ePrt1++ambY6Pjz/xiU/8rt/1O//j//TPvnh3XhRF66PEijtnckquKD8gNdXO55xiHo0qIrAASkEKftU0vutee+1VUNxuAqDevX3Xaxu7yKojROhJuM+BLhy4LH3hRXK2v7ICsWKpfLRiICAGBUopilEAA9905XgcYyQCoY9IAbEtniQYjiA8L7mGftPQryS6Yl4jLIXCavEckqVJ+mLAgEoSAHta6rZphUp576uqImN81w0ic6kjs9JordZK5cyJcyYxDGMFsq6C5H1Lv0maUPLfpmuNMSknVBKU2ddqNMTsMGRUCMwieWEgpYE4sbiOAeoeEICccwyxMNr09Qdgz9Bn4jwa1zFGQgBkZAKgnJM0QJgZEUQblFLSVzKUtswQeWMhhEi5MDoDR8qM2sfsu6i1jjHV1fjJkycvvfTSfDJdL5YKKCOFkOu63sJLg2SMcte4umZxMR36kkJxGVrtGIdgKNmY79x9+caNa+u2efr0adu2KQbgbG2Rh7zwwlik531SuGIXIhv/tg0qPwptKyiDtKu246cvNYANKrAqJ94sV4hYls4alZQty5KAt4UsZ6rK0hpzcbGIOUnZ13WdQpOYJKsHBvicBzxV3kwGlhYtXrn1cMUIBhUygOhYCaHvDmXSgIOtOxEn4cBtZ1VdjxbxUmttyDw7fmL0Ddlqm6YBQMn8kauUUhIlgdLAzJABAOqiVAxy5UWQp5SKISkNWiMQQSZAhaBi8jlGyQfRzsUYW9/xlqf4XOfIUht7H2Rinp6ebiFemUeUY4oRgNoQve+0NqPRKPlUGFsUBTNt+7aImDOVhSbKVltn+c1vfd1ZrTWG0O3s7DhXZlJFUc52d4wxABSiR8TpZH7t6IbRejKe7UznZVlbXdrCeL9pu6Yuq0C08A2jvn/vva5925beFdpCBYzaIFEm6k8IONhDFkWxGnB3Qlnh+sema63S29NXhviB8ovYdF03m6EM/drZ7eAQB9HlcqWN8yEUhR2VVUqJgVFS+VLKkTSqdGU1Xa1Wk8mkLMuTZ8cS6BtCkLilorDiSSPDTpxR+h7/AJzGGK8aTxBnToTWopZfQCIkUJu2e/XO7WuH+0Qpx1BWxfMxzUlpEKAixpBzzDkXhRU41LDy3jPEs7PLoigQ0vHxU0Q9n8/EBow45RzbdtN1vq7r69evL5dLyTWrqurW7dtd161Wq/F4PJlMiKiqKu/9znwqvdSqKu7evfsrX/pi0zTSoCxcpRUsFqu6rJTSu7u7z479et0AlKISKqoRAFBM6+Cr8WjvYF+hTk2HNr/3zlsPHjz48Hd/t3Y2pzCZziETVNXuy3ff+9qXzperuq4nk5nTrigLY2zTtkopIArJv/r6x1a+ne/szufzt7/znWvXr5dlGTtfWjedToX6tru7u3t4BMDexxCCs66aTD756c/cvn3z1VdfffToQbtcu8LUVbFYb5y1OeeqmsYYNaDIIVJK0g6XeVS4arnZxBjLsmx9IiKxUoSBEpSIFqvltRvX3/yVf/kbPv3JGtOrN4++/8Mf/RffetONdjKn3lo6QV08L7+0Usl765y2mJMvikKjcsaOymo6q9FolhA+RmGYOVuyZkAEvJLwQKQ1phSNRkppMho/g3j7xkEBHjcXX/jMJ0bV+L/6H362nO6rUWlVwTEUCqiPvQKjUaECaztxKGB2zj179uzk5ESscY6u3Xjw4EHnO0E1UkpVUWdm42wbumXwS+A9tGhNYmJKSLRp1z1pjKEuqqbr1HS+WCwJ2FVFSNFfdlprHNg8APD3//7f/72/9/fu7Ow1TcOIjGrv2u0Y4/LyEjHS6fmoqpVSGfDx46ez2eTk5CTn/NKLd09PT19//fUf+tzn/sXP/9Lu3mHXNATKOZcSmaHftL1WbdsSEVpwriRGgozIVWkU4d7LdwtruhDXIUExwslOS4aAIBMYMVEVDSPDB895212ct0lwVxhLDKx4EEmCNBa5KKrRdAYDTdhax8zOum11hQP1Z1tFCbBEg6c8pewVi3kjD1aQcCUUSAhwoigYWErPrWK3UBMzU84yzkej0euvv75are59+9tQlttPl1JK8stEwCwgj7wQXLHRzzmXZSm4juw927VLaw34a1uig9PZ4ON/hfZL1NNuhyqQIUd0vUddWZYaVR5SI0Wi0QYvQ9cY42OIMSIzQG9JLfuKMECkhqDBL1QpZa0ShabsglsSjGBwwqa6vLy8uLjY398/Pj7uB63iEELXNc65sq5y6oGoYjSSBb8sC9nDxuP67OzEOSPWplVV1XUt66pcn6Ionj59enFxIXnh28xBAJC7mWJvuiZvBq6YTskWGELQri8pYOixxhiLwm6P/durbbRyzvmmRdTOuboutdZEqSxcSn16n1wxpVTwAZAXi0XOsWl9SklrIwkEErmIRbWtKaXElFwBqYS2BW6/4g0F4lU0TsZt755KJOa9MEBlEj5xdQqLoIEGU7e6rn1bPXnyRHDWMDT+ZPrA0KlXw8uJdoeZaXhmY4zSEGM0amCnAYaYOt/EmJWGsiydM86ZtlsZ4d0Os0nAnS3I4ttudXFRjCanT5+VVeWqUrECxU4rU5SFsdt20HRnJ3Q+es/MKQeloK7r2WzHhzAeH0zG47J0o6qYjselc4hsClcUBYOKMSUCImjbdrNZrVYrrdG3bYw5hbxePXny8HEKOca8Wi18ao1RX/rSl0Hp3/2H/kiI+Stf/OKtuy8t10sARrCUiPt1GLcULqFIhpxgwKF/DX1wsVggsRqIX1sq2HZRNBJHz9j75RP0RbqAyQCgNBhQWtuiKHxojdJKEv6YJRkQ+Tletdlsrl+/XpfFarXIKY1HIzbQdp0MOOEtaqO2RxCZ8wKMi/cd56vcNGKlM9GmiwDgXKlsoYhvv/ASMxqjMkXrtHNGIQqYtFxe7kxnQJxy1EYtLi4BoCzLttl470FhjHF3d7cuXOJsjAohLBYX7WZdVPXFxXnOeTabW6OK6bgajd57737OcTSqmHPOUdqRstq6wownNarDrusePnw4Go2qsj47u9idj2/dfOHR4weHh4dC80o+hNillFxR7B8dKqvuv/ceM8cYrdFgAAhSiNqZEGLX+rocpeA1g2ZUSO+/+3bhyus370wn0+C9M3qBylv3zXtvd+Oj3RinxYQzR8oCde7u79nJdLlezvf3u67brNe3br7AzOenF4BkjQGgndl8XI8Wi0sRPM929pwrAQCQIMeD60cHt2+vT49//ud+7v79+wLUIaLt88KMwV5z3nXLtm2n00mMua6ctdZ3sW07haVS/UBCRCZ2zjHqqqp8aCtnv+e7P4lWjUbV22+99dKLd79y7/5FjqUdoTGz2QyZyyvZUwBUV+PYtVqpyGk6q2pnd2f71lrjbMwpEGREZXTatMbamJMxJtMHrPMzZFE/E7DVJoQEgOenZ5BTbWFxcXFnv/53fsdv+ep37n3xG9+Y7h0CobHWaW3RkFGJCAiA2TkjZoBNt2nW64vF5Sc/+cnM9OD+o5SSRpVjUspYq733GpGMaZq8Jo4KMyAz5hxjbA3g2eWF/9a3vv/aF5TSBKrpWp1ThkxEi0XnYyBKrixEFLKzs+NjQMTlcjnd2X3w+JEkwWVWbRdMUWdWMUNZj3b3DmJKoNWz05Oc040bN84uTu/evQuKX7x751/83M8RixVkf67VGhE0XVk1ELVSEpaiAdmH7ArMOZblKHQtMrpq0nA3f/WjutpbN+yqKsQArIEzsEi+kYmlFEMCYMjSVgbeeqhefT1x4geFgAgobTEllUoPmWmFgNtmHAypEkocdXJmRsq9fXwPtIQotQK4nl2ujCBhjFpxpkRUWGuMWaw2vmnsYNe8pUlINZj6RPacMnHOxElMkkBWUiTBb2IIwOCcK4paGjre+xg9MIeQldYKTEpJ9HryDgXdkRftQ9iukGWZmYm0VdJP3J6bZVRbbYwrQujqupIWUlWNlyB6eO1MCQAKWKLxyrJcLpdE5KSlZRRkrnRhjMGQjHGyT8uiVFi77fDSwEsjIqVMVVUhk/exKHrIcLXaiGlRTMlaMxqNzs7ODg73bty8dnp6GmM0Ugkp1NZoZbc9YvnUQpe2rhBBwFBt9AmV0j0/PT2V13rnnXcQcTqdOleKjZZzBaesEJ024ifcNE1R2BC8/ElKQbQOWqPYMoeciqKATCklHBhaVxEpKSulfE+JYozWqMl4LJE1iDpTAmQtiZLOMbNCVZZlCh4Qm6aLIRVFlRNDBqv0ZrMRnZZSSuk+u4VTrqsyUgZAEVkzc0zPpWlSbOFwF2TLTykh5dA2Sqm2a4uiQFQalG87rT9gwJkoATEzGWMky3w6na6Xl865pmmm06kkymgNREkpgBw5ZQTIlJQCpQxRUgBWae+9VaYjD4wGrQZsmo1SWNcjbRAidV2jtfW+7bpG1HWj0UgB5pyMs/0JByBnSikpwER5cbm6decOMY7HY2stI4QuGGeAOFEWAw5RD5SuqKtiXJWIOJ6NRVlJRJPp7nq93qyasixzjF2bzp6dxuTb0J6enYnjcRdTs+k2bROaZnf/oG1bSdRVyKHtxvWoLMtJVY9n069+62sA9O/+sT/2W3/77wI1/r/9xf8roIkxWGu7ptVFpZ0Wbaxwv7C3MjaI2K43gCrFXLiyX3CGMtgYAxmY2aesrLO2t44blj3V+19rWxhjEmVKSes+TX13Pm261AW/XqzPF5cfevXlnLNvO611URTEtN5slFJXUxql4FitFhSTMcY5FzjKaU/ONEopH6Mxpqqq7eFPGs+TcQFXQjyGpU0bV4BxRtvj07Nu41MIm4uzz//AJ5VSRH2QQkgJkRF5Op0w0Ga9qarq8vJSKbW7u3t+fnpycrK3dyDk08VikSlbY9q2VQrFwchavXPzmmjBLi8vUsplUxeFnUxG0lO/f//+dEaSlHx6diwpuUopSSfYbDY5ZmEry355fHx85/YtuQdaj3zXPHny5PBwf3d3f71er5eXWmNIsY2hsk47I+c5a230vl9kFYauWS6Xyadu05TO7B4dQmX3PvLhl++/941vveXs3BrXdR1YBNSlK8uyXKxXhVJdyiGmT3zqkyHyu+++e3R05L3POW6aZjwa3b9//+TkRCmsXGmtBcLDF8Yc/MXicjQaodEAm7qqfvxHfvQXfuEXHj1+3yAkn7z3k/m0LEtOmRWmlFab5bY7AKCMsVK4o7Fbyi0P7B8puJXWy649eOH2v/raN5ob1z3rt7757el0dn56TkRMSSmFTJJ3Jo+yLJmpqorcdbuzcubQL04mVT2rZl2OMYSMqMW4LkZWWFVls15Rb+PZP5g5ULZKGzSIkBmu79/++Z/7xS98/LX9vb1N2y3Om5euzW9d/97f8JlP/vNf+uJi1RbVOMa8btqQAyaypiLmTJRjsqU2xsx3dr7ypS+98sorR0dHv/SLX5QdFIaWh3OOUupCUBrPms1Sa107IrpYX3btalxW02py7969Vz7+8Zu3r3c+MkJIUSZISJGIJIzMe392dnb9+vUQAnGSFti1a9fevff+aGJ9FxE1og4xHB0dTWbz9bo5PT1N0d+//973fu/3jsdj2czeeuvNR48egIKcOkDKKSvjmBUAd11XD0DOdt8VhCPEHKNX2kzHVaGtUjCfz4MZdwZv3PnIcYDRfG+zWaFxTEkbIxqx7fMMSsbhO9ty6+pjaFCySNlZuj/cdO22hcTMCKS1Nrbfh+AKh2zobjz3TMpDPJSAGUr1PgV6sHioywKu4GRqi5fkPGBRQl5BhWor+zLOpZTeeuMN7Zx1jiGnlGVjUcZQ6knlUnsJdzZuNqBVNR4b7TabDQ6676vAhryrGKMeXivnXBSFcy7lQKSkSyglxdUSUypF+T5znkwmKXQC+chm30+64TLKddNg5YpJq5GIhF4tk1QPXKur4yHnTMMzbLE6ObHnIYNcKSUdouVyKZ2Nsiwpg4iZRExXlmVsWt80rp6o5yStIB5Om82mKGvmHiMMIazXa0G5EFEaDpJXWFWVXDERuyCiGWKgch/PrOTKiB7wef8RP2BUKW+sKKxSfeW93Ti3/xQRCVFmzsYYrVUIQaFGRB+81lopZOaiKGKMXdu6svI+W2UTkXMutF1ZlrPpuPNxXNTMDMSTySRGb1DFATWRj7DtDm2Rzq5trXMxxqIonFYxRoacQqjqQqMBIO8DIqeUr36ulJIzFgCs05vNRqSLzH0It6AhzJyJeg5TWTJzzrGua5mhm82m67rRaBRCqOv69OQ8JZpMJqPRyDqdUhSEcrVpjTFlWVhrKSZmbrvNer0WvCqkKI21EAIA5pxTiM65ejTZm8+0K4gxxqgAx+ORvJPd0UgK4slsWrpivd44Y9oQu65ZNZt1s7q4uEiJfBdbH46fPIOYADQwOVdWdeFKx5zlYypt67oeT6fGmND52WweO2+dMcDOGd9240mdu/TVb37tJ/+Nf+OP/fH//asf+tg/+Z9+7v/8n/zp97/19cObd5i9RlXXI6Q+CpYH+aq6kp1KRMC990Q9qpRSW+MJRJScVtBKao+r6lSWyG1ZrWT45uG406w2T58+HU12BPA83NvnTKUrQNsuBgHGpPC6yhpRSo1Go7Ozk/V67bvu4OAgZ2DKmaDtOhA6lzJMiINbhB4oq4CUEmt4vmXmnBOxMyMg9fW33nr27ESz2pnPH773EH7gU9qoStmwbqXDqJSCTEVhQ+cVsAKuCkdEx8dPhStalq6qinWzGYZOkbvQee/KqizLxeX5+emZnOdmO3Ot1ags9/f3V5vu9PTUOfPRj3740aMnD+6/t394EGOcTqfet3IOdsaWzn7n/XdefPHFVbPJOYkL+c5sWhjbtOvpdDrbmQu7RYKeLpaLg929kHIgzjmMTAEZYuc5ppy5LGpWDABMUUNCRRz9Zr3YvX6wWq4mo6raP7z37NnNlw4ip0k9KUflst2wUZ4SAbdtq1xRl9XD9+/renzt1s3F5eV0Og1BM+flanXtxnUievzgYdRdVZSbslq54vTyQlmnAKfzWWJxtDc/+IM/+Eu/TA+/+OXNZhN8UkoVRdGlRrotwh9CxBQiRSu7ZozZapb6oz/zcQ9WZ6aQkzV6FfN4d/cf/6uvdJt4GdIiJlBabG+KwjbtBvC5iscwJiSGPJ7YXQ13x/aTH//MrZ290e7u1x48+nu/8Av1taNF9A5F0a+899ppSilfcaQTuRwjssaUmTJPRrNvvvvNX33j3Z/87PceHaW6LBbNOit7hKX5no/9zb/9M++1a2PGr7762nq5CaS67BHQWV1Vldx3RDDOvvvuu6+++qrkmVZlmVLKMWvnACGJL5TSi27d1qNIedVuOh+cLULM3kaJBGXtfKYupLDaNL4DAB8DM6FW3sdEK22L6XQuk67tmtKaF2/feuc7bwGAcYVvPLAqigqVOjk7ffTo4eXi3G/Wn/v8Z3d2dgRl+dKXvvShD726szMDilVV+CCtdlZK6CawaZ/Xu0qB8Fuloaa13pnUk6okn6ezOWn71XsP5y994ZImjY9EC7CWU9au5MwKtwl8WzHjB8T8v672gg8Y10i5Rj3duK5rUL0Fl2xIcpLmK4J8Nchfcs4KNDBQykwEQ33gvTfOyjoDQxC10IyYOTOL/bds3sZqAM5MCg0ozJQ4Jc99BJD4OoLROXmwEpVuBMgTfxBEpJSl9+ecG08nuL8n77BpGlQshgs980bEbiRiN3Cmp9s7V+JAds45az0k32ltjOk98YeuZe9iz5yZqqK0tkBBglOS4QH03LifBjPYHk3JFELStmfU9UCLczS0oq52UgBJaeCQcybJZBOlIQ5UfSIyiFJ+7e7uym7K9BxQfP7BrcUhy4uZcg81JWkfM3OMWeKGNpuNcNtln5KPXFqXc2YG+aK/ccYAkED11lpjVdd1RFkjAgvPCQBYayTakvSB+uRBA4DbsxMNko5tZ3MoNGMIQWetGAmJiKqizDkDZa1UCpGBnTNAuXIWCCmzCEJTStPpNJ4vvfdGo3YuhJBiAERWWJXF0P8BAMwASmGMyWgTQ4eUk++sMbFrlVLOYkpgrCmcjW1ABZWzMYXMUBZXTAOYxEU8UySinON8PhV/L8mYEczSFoVzTmssS2etLMAivCWRr45GtbQ7Y4yTyazrmqdPn67WC0RIKQOrSHE+n4oOrLx+6EN7795FWZZF4VChHOGqqiYiraxSSitwzgHqrusSQ+lcMjbGCEDNpokxNptVytx13Xq9Xq3WZTH2PnL2ABmsln2cFRrjrHGH165ZW1ijnLGKIeUYfMyUMiMoY6zyPnLG1ntrnVIKlZzxoGma3d35l7/8Kxr0X/rpv/Ljv+N3Xnj4o3/iP/vSF7/0kRdfffze+yqZlIJxRrB1RM0QCPp6q0fTlemJCqgoxc1qWdWlLFDbcogRAVEOJ/lKhEa/tYmJi8Q2OV1K7VUV5fpisVqtlHFVNbp9+3bTrr33RVGMRmNcreRgUdd1SonilZ3SGGPMer0OOcl6FGLwMVhXyuRJKRVVsV06B+Zdr1hhna/0JCD4VE3myhRvv3f/5Pi8qidWG0QcTafT6VSjajdrozgH8enJYlSUUpDASlkglFJVVe3v7/cL6BDYLtUoDVZnIth5+ODxtWuHiThwePzkYeeb0WQupfRoNLp79+7e3t6DRw9v3ryeUgCgo6MjrfXp8Yn3/ujoCBGtKXLOBwcHi+XFg/ceHO7tF0VxeXlZFMXNmzdPT4+Pj4+NK27dfGF5eTmajrrgLanaFgS5aTasDgpXxpQBWCnwvhPF+3J1/uzRQ9Sq2t2DyXjnxbsvf+zjb7753sHtWyHG2JGrSrEJraqqGE8Xm67ZbGY7u+umSTmXZVn2cq20jutvv/mdZ08fd5vm9o0biNg2m2a9Go8qMDZ4v16u6nEVO59CHk1Gd26/8Au/+K84U1kUYrxpjMHn3kh9vB3iSBgVKaXauk0XGGFopvT7LhFpbTPnwGE0mtr9o288/Oq43smoC6vJeyDWWrdtu1wunw9ig1rp6aieW3Tr5Us3ru9PJzF1l8uLTdjUk7pNwaBeL1fQLze9hWNxxcSktEaWVAEPFGCnwrWDF/+f/8M/uHnt4GOv3OacTAEx5rbpbs/r/+6//KtmOvvrf+tv/T/+m//2Ux/55LrtFiG3OTcxtiFUVRV8Aua6rp8+ffryyy+/+uqrX/mlX3KH13HwlJITvA9tytzkHLVCo1XWqFTiVBfFeDILuo0MWBTn603nQ2Ft2qzlwKOUKl0ByOeXi9lsKmCD8J+IaD6fA5DWOocsk4mI3r93DwyCbyZ7Oz/6wz81GlchhLfeeotzfO211+7cuaOU+jt/529vNmtnHIPuAskLEZG1VzoXKWmDPoUYfUbc2ZkBpNVqdffWS7qe/n9+9WvV7Y/avVsnTYayAKWRgUFR5qGlONzy/7+1l1DEhgoMGSTEBBCY2Shd1DUw9/QjVESUYsShdSWTl6+EP+IVN6NtBQNboljO8ifOOUpRaqYt9rBF0YAZmBKQ1rosS3XFn0m6ikLYGLRpvEWz5Nck4xJA9TTkwT50QDj0lWryeZZ2SqksS+h9EPLQmmRjlTHamOemjNt0ZNX7jQ1nm0St7yhl1xdSiaA/3GZgjRoNc6QERD5qkylz27WoLackH01+WT5jGtxKcVDkqT5wsLeTlXrravgdImqFsupKE+Dhw4diQ+pDu21rpMElW+i/zFQVhbGqazJRMqbctnV4kD1KkbcFL2WEmSFuXNqLW+xTLrXo/K+W6T1oqvu3obXWGmOM4lpnNCoJ/huMcqxxREnOWl3XFEWhFG4b3/Q8yYrFyQKImfPe3t7+4cHycv3euw9zziW6FLwGNqii7ybTUUyJyCul6roOoQPUIXQatNaYQyROCDpBcKagFDiSNUopk3OkTArZKOtKyxmA8nQy9rFDVpkASPEVFpDIzwEJADabjczxyWTy3nvv5X4WZAB49OCBTJDNYnHvYgHIytqdnZ3JeIaIb7zxxmw2ldjfl19+WWurNRKng4MDooxglFK2tEqpqiiELmZ6cWvhfSc7vlzhnHPwyRizXFysNusUqfGdhEjGkGXB0YPHYYgZEUej0WQ6Cx6mMwVIrETCErXWoGQEcogxEvM6FEWhBtTQOcfDEJVJ6lwdQiCOzpmcgnKFRf2lL/+r3//7/8C/8wf/yIsf/vCX7l38nj/879tq7/s++2Pv/srPOaUpZ4VWASYC5szA8pxG94Q5HKI1BISu61qKVK31tvmotVbKxMHJj6/QT6U6M+PxWCkljtLyjmVuG2MODg5QW+bsQ9t1XWHd6vJigYsthtY0jWBuz5/QKtTQdK3W2iqdB4mvXBTvo5jYbme1NCi3gZREBPgc/XJVrbV5dnx6drG8fvOGtQVnapaLlNL+zo5RyBoxg9WKFYYQtLUx+pyzMYo5G2OVKmJUzrnlcinSUKsdMlpbaK0BglIKiUPbUSTftDu7s9VqcX52eevWrfHB/tPjk6fHZ8aY2XQn9Zm+eTKqH9x/bzqdjsej05Nn8/n85q3rKdLTp8fr9Vr2/rqub9269fj9B4vFYjyptdYXy4vEyVXlfD5vm81sNhH/FUTuWr/MXNe1p+RzKseT2AYFlHNady1xQq1ijnGzuXj4eP/aNbAO5tO92y/w2/fR4CY0k/EcBUpUijIvl8vGp8IW7aY5OT+f7ewlFykSEa1WC1eVR0dHk3H9/r13Hz9+PJlMNpvNslnfvPMCpOhcWVVV13Va29FsBoh7e3t37979xS++4UYjrTVkAuYQgrLq+Yn/edCp7tqwf+SIiFHDAGfAQIPNwNZadnwZ/fyFF/W9h5eNV0pBToW2GpUxJuVcVNV2GEQL47qe15VarD7+XZ+4WC/+zD/86wmgA3j1ox9tEP1yA8pCysaYkELhTM48ruqrZAjVG1OxAmatkLhpmp1xtWroT//Z//xP/ft/9NW71wylwpJJzcGto09/7EPwwguf/N6Pf+aTH/+Tf/xP3rj5wsFs+uDkvFCFZkhdW7lqtVm7qnx4//75hz50/ejaV4aWa05i1djn/YE2CXWbc0BGa7KC9WI9OZoYZx8/fPSqNYsYj5drV9VdF5QyIYTgEwAQo6tcCGk2mxtt16sNMFJm68x8ZybuN5wRAI1G37WokX334suv3L590xrz7MnT5cXleDK6du3w8PDw8vLy9ddf/7Ef+/H/9z/9Zzvzw8WiBVUiKmNszs9PbACABn3sRqNqMh0Rc87ZjarXPvbdhav/4S98lfc+uvPyDzxrsq5KMg5QYc494V7YXWJYKv/eVl+iEfs1tRcIwaCn6G5VQ4ohhihbLBBpa0IIWgEzq2HpyM+lYX1lsO2LIWqler8LUCzbKhEZa4VsFFMyWm39ogVcESOu5FtXVbKLMLPUDLJPD9sJSaAvKM4xIz93pRfABkBJoscWvkLQWmsYqG1MLMFw6rltAihlJHeyKKqc81BdaUEiBbBhQpKpxKiNQ8WJcs5ZXO+FIs3M2UfuQlUVDLBcb8qyRGSfEkEGQoKsFCqjlTHOccxZay1m2iAtwsGbQA1+sDyUGkTktEGDKeXY9V0YnxgAjZW4T5K+VUppNKq891U5RMAllipq2/cAAKUUUe8hwoPzNvb0L+Y+jI4AQPYIpUwISamAg++ubFhVVeQcQ+6pb4wcc9bWDuUaMzMgKt0z+YTItd0jiYgQkBGQt5WlfBZpIpvCodGc+5Y3Iop9a9+jFDFqDoA435lqBTuz2Wp3eXm5RMWXl2c+tNPpON73KRVMqSzLzWbDJIw0yNI3ZFaorDFKmRhJIVtr29BqwGa9Go/rZrFad5ulVeQbIAQkYAWl3d89AMXW2Kvl18svveicG41GqNV6vayqKnrfbpo7t19omubBgweJ8v7+/ke+67teffXVx48ff/5zn9vb2xM//ZTSarkBAFeYrusuLs5jTClSUVTL5aUrTErJ+46JiahrGqWUb1uZgFKPat13J4ezjRKLIq0xxC6EwISESqFhAG3RlQWlrJTqWm9MT5w11jIzYGZtEQGBESUCUCWCTdNBBgRIKY0KR5RT8M45VqisappGShRmhkwhrY0xQNlaNxlPfvXLXwIFf+Wv/OXf8PkvTA5v/vK3Hv+v/nf/sZnf3bt2cHxxEbqGYzfa2W/bJic21gWKRNkVLuWg+vmutdbMNPSje1Z0aBrtPuD5LOuTBFzKGebqEmi6riMAgt7STQ1n99lslnOObXBV2XQeGRRTSmnVtHIi7FnYxlw1bBTeokyktut2JW4MOMS0XjciEg4pOefECUNujxRwssBFer4TWFO0Pn/7O+/W0/l0Ol+t15UrzrvWatyZTykFqyCEZLRmZuF+8RBBKGWv0A6kh73ZbGKMdT1WSjGCeMkO1bFTyrRtG3KKMVZVJYjrfD6fjGe2LBeXK6313t7earU6ONw7OTl5+vSJkAAQYTQahejH4zqE4L3IW5JQT1ar1WQ6quuaFT9+/Liu6729PR+65XI1Gk3Oz0/n0zGjUqARsQ3tcrkoyjozM2Vj9HQ6VRZ9CKv1ZqSLoqju37v3WlXBZPbCh17d/KN/bIza2uLFGEfjiQ95k6IuSuvK6WzH1ONN2242m7Isr127lpmttWeXF4pJLKzquq7rsipcCF01nty/f3+xWN25+4JWBkIEa+vpbDaebNZrXZYKMOVAWTxBeooGIqcURAUJAG3bMqHWlran5y0jJyZblLGLoDllCBY/9n2f/MV/9s8no8lsNJ3PRuenz5Qy1tqrUQrz3dlIm0KpN9759ms3bzTrTQP4wiuvNJy+/O03PvvZL9y5ffe//a//u7oYH1470gyKIYVkqoqueFnVhVEKtdZAiRljFwtbhq4bTWZR45//S3/53/wdv/m7Xrq9PxvNxpP1evX3f+ZvfeaHfvjgox//vf/uH/j0Rz725/6z/8vP/uN/8qGPfPxsTcsmWG1S9M5Yisko9ejRo4997OM3bt58/Pjp/v5+23iJTBCtHFqNxi270OXY5bjxXaTsUw4+tT7MDvefXi6/9I1vmjsvna/WBNx2rfeegJvOx/OYUhqNJkVRbf0MmVkoGjkFSmhslXNUGiilO6++fHSw/+677/7cP/+nwHTzxq3v+Z7veeXVl63VdT0OIRwe7cOgrTOoEkBKiVJWxfNZ3Plmf3/3xo3rTbsG4Pnu7KMf+0QH5u/87D+ubn7Xzdc/+6yDqJUyGrUiH9EayBmAIee+kfbr5Y2//oHP+44MgNDnciMP1Rjz1gWUcyLQiAqHUDwczAXgqqbyCgQiD8EzcGg+pZRgsHcnIqN0Ssl3XmltC+ecU6PKDMa5Em7IA9VseNdYlgURhRQBgAYzz67r5Ndk3ffeC7iutWbCbbG4XTN5YPkI5iTqY6F8ybGBmXNmrU3KgZkReqMvGA7fAvGiYjkFSXcPEVFh8iFnZqVySvIj6D36ZYP0iCjiGGnObilxsgvoD7rX0iC8lTsiioHtFlCWZXulc22tXa0beXtFYWVHsNZuNhv51MzMhMwseHzO0KxXaWCdEyeJpjbGhNAHBCGiuJAA9P1HGGjy8k+8EoJpBm9SGChfajBOk3YjDChsL5u1enuXJUZ6W/aJHjOEnmWhuMfGnHPbpL8cIgEzZ+fcaFQpBSkFzmpvb/f8/LxQ5Ww6ib7TGgujy9LlLMwhQuScCZF81zpltVFt02ijqrKGlLq2u+zaqqisKq4d7CPCrcNrRemUov2jw/lk6qoy+XCxXDy6/+B8cTmfTA+vX9vehZs3b0KfJEZG6ei91lryYauqstZqaxCxKArR8gsYudlsVqvlZtOkSEKq7nwTYyiKUsyoiSjlIChgTqCUAuxd5XDImxnq1wwAQvkSYU1PEyTUtkDUMSUilnDGnDMOFM+QolIaewMOZQqxhh7cQBARtfeNBs2KC2dy8N53dWV39mdvvfEG2OL27TuFq2RiIiri7Jxr2vV0Omna1ZtvfuP3/v7f94f+0B+6df2GV9U37p3+4T/+p2Fyo5gfLduurs3F+XFpVde1BDnllJnEKpiVQeyPB3xFISNDVPhtW/rvdrJ7L0bKhoiY8WprEgBM6z0zo3ay6ADClkuBiDHGxneTyUxmZs65ruvxeIxarVarcliPtk/nnJPYdgIWUwafso+BQa1Wm+l8N2yNBCFrrVMKMXpEFOhVGa2vIBZam1I7RKW1Xa1WDKA1rlaLu7dvziajQqNvvFEKkUPwWmtk0AjK2hBCWZZd1wm0M6xNpixtijnnYK2ti1rNdNu2bevruq7rOsaoUGXArHi9WTZNU1T1+++/f/eVlxny+cXFbDbTWp+entZ1PZ/Pj4+fzufzxeJiZ2dHKS074rNn/vT0ZHc239/fvzw7f/r06c7ubGdntuna6XQaY3z8+HFh7N7engJ89uzJZrOpq8KgUsQQc2l0ZU2Xg9UGmBRA7JIyihGaFGy7hmVxeX4yf+HOax/72OHRUdNsqtlY2hPj0UiTslXFQG0IoPDk/KyaTF9+9RWjbNu2IREoXG3WDLBarVJK46rOPlx07Xq9vv/wga3quy++QkRnZ2ez6U7gWM/nzx48uLi4mM1mqJQsplKwElHTruc705xYKuAYcgyJqLcIz8zGqpyzYmLOmYmZrTah8xbYp+hBzfZnn/rcp7/2K7+yfvjs0UNSgON63Lbd1ejPaVke33/wztMnP/aFz48P9n7kt/6mz/223/J/+D/9SQb6j/7T/+T9Bw8vThd/5s/86b/6f/8vQxcNKk5ZM2DM9ZWG2uOHbyOwAsyQNRgAONg91KiY9Xgyi8H+9H/9t3/H53/4xz73fbOxne6OjTFvfPmXqeuOXv7Q6z/0/T/9yl/4DX/zb/5Hf+4/v3bnY75LmbJVqBQmgslk8t69e7du3b527drj+w/ls8tGxcxakoiIl51npYnRp5QSlUVFCCnncjS+t169efbeh26+GNqQgLsuxJSNs1qZpuuOjq6NRqPHjx8vl+vpdEpEFxcXzrk7d15YN7Hr2uQ7bZiit6V59vjR+9/59o1bNz//uR96+eWXDw4O+nZViJvV+uL89OzsDHpjW5ciUWJtre7FE/3j5ZfvlmVxfnFcVcUnPvr64bWbz867v/sz/6/ie354/MJHLpKLQGBVBnYKcVyHEJQ1FPzWQ/LX1EAA8OurMURkREG/cDAC7Y0nelyEZE4N3wYUPeWVvk/OGRAhZ+Pcr/F3lYFqjSWiNDgGZWDomwh9fo4URpRSQCiKIqWYUqDB8QsHYlNfjhitlArJx95qXzOwVlYpo7XdGsOKLwETamW10oyslBLZtdKgNACr7dOKDcRquZa3vQWiiMR1Ig3Vz5ZxopQySqk+NjdD5MzMqBGVSomM0YA6xGytUsYxahqMRRT2nTXqXfgRuG+jXKH/Yx7s77d3Sr5QSkmGplx7+X/hyEvDhLdn77bVGkejUQaWie/Xa631eDy+XK37aE+iGCPic9OTzWbjysoHb7QjIgneoN7+A7Teti97rD0EX5ZOKUUIrHAbqZJSQsXEyP3Z/nlWuvBTrCkAtg2f54ZbavDsRURgNMZEYoC+2M3Bp5SkemdirfRmuTLGMFNK8e6LLzpnGBIMkdIaIcROekRlNd0sL3GwPq+qymkDyNbavZ2pbwNz3pnNF4uL4LtrRwcv3H6xrNy4GkvF6H1b2LIsXaZY1oVG1bQb33Y7s8nOR74LtVovVxeLy+0tOzt55pzLW8M2740xlHLOWc4Jgsu2vgshXF5eXpyf7+3vj8fjonDj8URh39g1xlBKQFxXFQCsN5uyLL3vtg1iSTjVyuactbLMzBjVc9thLait1hZR55zRaBAdvbU5MwEDodZKMj1tUQhf0NoipZSYdIgKmRMTUVWNElPXBsUKVO46X1k1no60zu9/541nnH/n//LfulylX/3qN0dVYa1qW2+MAmbv485s/sY3vz6ZT/+Lv/7XPv/5L+Scmy6etfmP/ok/37m9and/k0Ll8HJxmsNmVmnP3tWVYRs6b1FZWxL2auheuACSAtevpc/B+CtOhyEE7iMo+uVIbFOHecU9dwyV0qjQaKS+jA2+RYZyVOsYvfdKgU+xHNXSVDauz7V9fgYFAIB6PGLmHNNms5nsHTRNQ+Lbq1C8ZASq0Vp33iNiUdSCyyFqTokpXxXAK6MXy2a9akbT/cIaY3XbtuO6vrw4vzg7vzOZG6WYs9ZGKtD1ciEIgRyYhkTPbIyochAAxqN6sVj0oYQIRVEg6rquEfHw8FCCEQmUpL74tgOAy8tLpfRms3ny9JF85Koqp9Mx0b73fjwen52d7e/v+9AWpX39u167d8+cPHlysL+zv7/79juny+UlUTq4dqR7lA4NKsHe5vN5jnG5XEbnZjiR9ej/S9l/h9mSZfWB6Fpr7x322PTmeldVt3xb2oMENEItGoQAIf/05JGBh0Azn8yg0QxC8zSSZmQYSSMDCI2QQ4MECBqjxhRtqrqrury53qTPPD4itllr/tgn894G8WZe/HG//DLPjcwTJ2LvtdbPhcjBFFBKBVfv7OyU7Vaapkg0rWZdXFCAoJQY01tccMGTVj4woK9FfOVIGdPtpGlqsnR9c2Nrb/f27dtN4zqdTp7n3W4/SaZvvfVGaOrd+/cX291utzueTERkdXkFtOn1FkyWplmmtcYAYGtj0sPBiJTyISRZiqCss5GRk5pMEYxH006vH7mcsWGNvY6EEOmWzCCkwHlmhsCawNo6L4va8+17t8fjIzbynX/huy6fu/Qd3/Gndw8PAkj+EPhYjUfveubJj334j37bt3xLq9NWiQGAL117c3GxD6Qef/zxjfVTP/LPfuixRy+/8MKLRVl678vCDA/29qcPkov+m+/4EwhMhN5778Nrr732hRdePKjHCZh2Wi4tL1w5feFXfuVXBzt3PvKRd5/eWFrqL7QS887rr+7s7a5deXTlsUf+yJ/5k2tra3/0O/7C5avP3N3eEUisbYAMInnm3d1dpRQgzWaz6PWv5wgLMgOTGrvpxDULGoXQBs/OW+VWz53mMn/55VcdmCaIZ6i8m9UNM9eNcxycc2tra7bx9WwCAGXZjuXX8vLy8vLy7edfTNJ+w55IBRTv/YWLFy5duJgkJlEmJlCNx+OyyKP1wLvf/eziwjIACqOzligHxaTQ2SY8FLkt4O/cvf/II5efeOrpLG/f2h781I9/qvvMh+n0YweScyBUBiAgkrUV6QRJcQgIGLz//zXuggdF2HG9hYzzaFEEeLi0ijVMUqYAFIIAUswjDvxlqY6IqLSmJAnHpuf8sK7tGBaH42RcOAmrlrkxCgAorZlZvPfeRsEjzDEpCCF4H9dNV5YlB67rRiRO68B5q5Spm8pWtYjEUO34m41JnfdxlBVRGImDnSAiQjgvOCLlvIrqtuOPgK1FY9I0tbYh0ojzhR4emvlFdDK2Q3EKhWoOyIbjmPAQAgOIWK11VCuTACjSSAAMAQM8sFcNx2rHxrnk2Nh23uuLnEwcnfPRJL2qqiTJbPBsrTaEZLIsYed9sHmez2azdlmUZXl0NDRpbrJsouaReb6xaV5qUiEOwViSJGEftZMahDzDsX87MUNd11rrVquIW74xSgTT1ABATD8zRokPSiMD8LEPFkaolzAEjlHHkVrX1M47n6VKRASiLkyQJRqjBBdQzW8/rSIBjkUCIimFKkninKOuZ8aYqp6FEErKAEDYe2/repIaned5FKJ2u+0k0Z1WmibG1dVTzzwdi0VEVde1s3XUChVF1m63YxVelmVZtoloOhrH3qOuawIMoWiaxrp6e/v+/v7+cDh0zp09e3ZlZS0WUsPhcDodn9z44/E47vcuBBHRRBDNSrTm45T3JEnysgCAbre7vLwc3cVFGACPLdNZICRJKsd5iybRkRoYAhujnA0o1NRzBUbTNEojAJwEd8YRqTAqhc41jXdKofceUBCjzzABCh/DpnHKE52asiwD7+Pr45+NAkrYABAEbVSv3RoO9u5u7QD67/hzf/qD7//gO9fu/NMf+tfWOk2NMSZPzGw66fU6s8q//uor3/u93/2t3/a7+ovLe/uDor10NPV//q/+7f1aFeunjma1UliwzEbDejaVlgaAqprO0bw5mYTqeqbNfPSAiFrFp8/HuyvWHuEh1/uThygW+tFd5eQzUkrp+XoXOEmSsiyaahqEETHRRilqnAXk+LxFqwilVAhOg4q49ZctdgBEOjhuKpsl+Xg2zbKMg4f5bDaL1p2RTRK3KGZGJK2TpnazWdXulPIQYDRzs2lVM0OZZpkm7xsMPB3P3vvkY8uLS4Tzpe7w8DDRxigNAPHSRA5s1D+naepcMMYMRsNWq1M19bSaNU3T7XZDkCTJiPxkMjk6HG5ubrbKTl3XqE1RtIbDobWzTrvdzCoiOrW+3u12EfHW3TuTyShaAsY07na7PRoNOp2e1sraJs8zIjo4OEDE8XB069atRx999PDwMEp4RMTbpqqqjY2Nssxv37ypdJLkeUwDHI0mi4uWiAJIDAdcXl42xhwcHKpSLS93wDvgAILd5dXF5aXxwSFozQpJKw5skiQAXjh/npXaHx7t7e3YxlZVdfr0WUSMMpyqqjY3Nva3t7rdriCNqypvtTz7Tq9P2uzu7p4+dzaE0DRNpk0CydvXb9y5dx8UtIpWXrZAaUSXJInSmn2YTKs0S9IsEZLGh8b6PDUxcoBIV01NyggEDmCMqWeTsiydeNDm1r37s6b+hk9+4tlnn7148cLa8lJmkh89vX775s1P/+Knn/vVz5zcBjdef+0P/v5v+fpv/Hpq6Sk3djLpdDp/8rv+7I/92I/dvHv/e777u0+vr6SKfucnv/nxx56dVTZLzf0bb7zr0ctf/7XfdHKSDz5+BlnYB2tt2e586LFLB1/9lfe2t66/fe3WrVu3b99699NPHcL0xo1re9s3n3ni6rkzZ5eWlspe72A02h4eXrWzU489+olv/uRfu3f3+/7a//fq0++6szMIgB7IhqCTZG9nm1DlaRabZWAOHNh7YEwSw9rMnFTWNkhN8EphpvVgcHTxPU9Vmf7822+ubl7enYyHdWODnzW1MaaqK0RZXFzsttuzyWR3f98HywgBJN69T1x9/Pnnv5BmprENs5jUrK0uF1n+xhuv37h5jV1QSktgrXWkeD/++OMrK2trG6s/8RM/NRvPylarbhyE2tV1URZn1y+fXKvB4dbXfPXHVtfOYNL70f/wy4Ot0fnf/oeGoCdUsKikXQTrADBIACKZ85EARSlQDCL4IKwaTix3fwPpfr42sQgCC4MQiMfoOxHX4iBMBpAIE2AMIZCKsZJzUjaeqByYAVgpEmQgOf6t4oM1xszbT4A0Teuq4rldvhbB2roYIRJCKMqWQhQIWuuUEmcDe65mVqISk1Q1iUpQIeC4yOSmqGwlzPEkIEgyNzWUwNHAAxGnw2HWaQc/t8e0TR0w6DRVynhmCYyovHUACD6A1kBaPIviGC/t/LEgiUEbjYhVNUNErRAjaEvC4inoSNnyc0d+VBFlcE4ABUVrAyzeW0IMrlGoy7IIIaBSNvJ1OMx1CQCzuk6SBKJI0MwFiUVaEGrv/cLC0uFwYIPvtlvRi1UBA7DSCILMMh2PbKvVabXH4zEBc4A0y5y1ACB1bVodpdRk1mijFNFco0yslGEk5yEvstr56NQVnM+SNEszbSgvWlpTAGT2ItJb7ORpWlXV4PBoOh0bY4KAIBLpSMlvF63g/Ww20Voze51kqCHTJoQQ2GWJER+apvGoWq2Wc8BeNBEBsbD3XFUjlRjPPk9zpQkJ8yIxCbU7hTaUZVlqktFo4Bq7vHiKmRUie56MJiEMEVWv2y7LPElWsyzrdLqtVisWtN1ud2VlBQK322UAmc1myqhWq9U0djabBY/j8XQ6qfYPB7NqMp1OXV3FGj1ifyzc7fc4wP7B0Z2727GoLYpC6wdzEEUmMYqIUpETuBZOvF1IU2RaH/ucAUCEU+PMPjEq3lqE9BDeDcE5TRQjMZ1zShlmUMp4z8z+mA4lah7DwLFRCuKDc9Z7APEelU4QVcRDvLfHlguglCFhEdFKpYny3gkHUEYpZWuXJIltqiJLszIhVDeuveHDBAj+0vd9x4c+9EGg9D/8+5/7h3//h9P2aqe7yMCumZlE9Tvpm6+9BMD/8kd/+Cu+4r11M9vdvp+1V/Yn8pf/5r94dZfbp86OrFVpIq7uZMXU+URTlqa2qklpAmUIZ35WTesk1RG4s9aiUoDYeBdCUISR6GmMkcBzv1kAmIeZGmstKYVEAuT8QzHEUUgIx5G0QPNeJ9ahs9lMtArMhJIkSW0brTUpiGRJPNYtykPrqjFmMBhEi5e6nrngYW5kLkRWa62UjsJNOG5hRYQDRA4Boe50HvgPZVnmeAwuaJVkSeI9J2Sq0WR/dy/+asdcVbMkSYzSJ1hsBK29961WKwqUtE5ms1lkaNa1ret6aWmp2+0Oh+PJZHLmzJnpdJqYrK7rwWDU7nXLeZVKTeNiMV7X9XA4HI1GS0tLwD6yGkej0fnz5w8ODkREExCwQqmtXVtZ6hT53bu3m6a5fPny/uGBiEwmk1arFUGNXq8Xh8DGpMYYrUkYOcB4Mmq325FQ5Tkwc5rnhVLIYIuyaRoOQbzf29tLVzaT/tJHvuq3/Jsf+eGqqTtlXysNJJpMgurevXtpWdTeHQ1G6+ubrW4nutXt7+8nSVJk+WhQLS4sb9+7rxDSNLXOaa237m+TSfoLS4eHh5HOzGnivd3a2bt15+7S0lrjJYI1ja2KNNFaIypbN71O13sLkAfP4/G01WqF4J1rKAEQCiAg6Jwr85aIRBnHY088/q2/99uuPvH44spSbDH3hkd5mj7x7JMf/uiH3vOe9/z0T3zsoaIeb96+cWfrVuVWlldXWcKvfu65g/2jd73nPa5p3nzr9e17NwZHe5fOnxU/q4dH6Oz3fscf/cC7Hl0o1Vs35uco0B6NjlKdlqR4fEBBVrtmbeHi0xdPJ0nyzDPPLG1sAKIfDu7dvX10dFDk+eLyoknSpMiPJpPD0VF3Z6e9vvlH/vgf3r5391/86I+fu/z4zb2jRoF1MptV3mZNM02SxAWuG6s05VFsDyoICKAFGVsbihIIUVGapkd37qxdOLc9Hf3U858+89gHRzPrARtrrfPVbGqS1Fq7tLS0tbUlIrPZbDgcZnninDs6HNy5c2dpaYlQTadTbYxIKIpid3f3zq3rAALAABiCBaB+v7+wsPiRj3zk/Pnz/YVFpemRK4++8IUvFcy2HmZ5uXbqdK/TMg8VTH/iO/40mfT5l975z//+xxff+3UXnr2y70OTFlYI0owRSRsJHgEEIsueYR4sDYLzHMD/Cv74G445+YsFYsMYp2IY4x+JWUhpQLTWAYNOMDICT4YxdBxhKxLjIr/Map+OExvxOFH7xErgYbwgThceEHVZjNJam/GoahoHIf6JQojiWfwJpELA6FxgF3OkMAQGiAMkCiEEz2gojtzKfg+PfRZmkynpCB3OOftKHwfeeQ8gIAzHFDcReRicPWE4AUCSzvlhcvym4tcijJEiBwCB41UAEZOkLCHaXfuYLk8c7aCA6JhGhlrruq6TJIlUaE3EHMQGRFRkAGL8g7K2TlODiNbVMR3bKPK2JkDvvSGVmYSI8jzvtNpHR8NW2TvcO0zT1GgNWkdINy/SqN71M+85GNbee6MzFKims9lEJIQIHvlgfSDnpbE2Dg8jHq2UWuh0NcLK4kJdFrfv3DJZ6hs3OtwCnRSdzsj5SHVC4eC4aYZaJ9WsQWCtCUkZozNjEDExqlXmcZJEOsZYiVKdJEmY/dHRkVGytLy4t7cTmSfGmCxPU5OcPrWeakOAiLi5ucnMWpuIisSBVpGlsVj0noPn27dvs7OHe7tNXb92dDSejkej0e7+/ng8Hg5Hh4eHzgkSra6u6jRp5QVqpRFUYgiYFBoyciwrLsuy2+3P/2b6MsQfH0ppFAiKEkCOJq+ESmkMXkhBdOk7BrsfMspGCOJJ1BxLI2QOqAgEGEQBoCI1p2jGp1YQVWAXKV/qgdtcvPFPUkoBCL1jZoeICkk0Ko1EBoSZPQdRoGzj80JJiLxJRsQ00SK+20nq6uj2rXdC4I997D3f8Mnf9r73P9vptH7u5z/93d/1P4JKzl56fDJh19Q6M4lBTfLWGy//7m/5tu/8rj+7uLo8GAwYJG0vHFT03/3Nf/DZtw5Xrzy5Pxt7hYoUAYTG1rMqNUkTffW08Y5DCGXe8t7XdX1CXuS5VvrLvPGYec5fPf52rNWMMXBsyPJlOkUifXL1p9NpEK9BTgbRSik0ho9NpZ2r+/1+8DYC5HFiHOmiJ2eMYZHGqBAcaUVaWWsF5vZCASSwi3OvyCet6zoEB0BpmmZ5QoS1fcByraZ1ZjJMdFakednSVA4HswsXLrz+2ssHezvnFtYjkTwaEJ9oO+VY3nkiqo+lT1mWs8m0qprlpUXmMB4NFZJr6jfffNMYk2dlt9ttdVFEBoNB46xWyekzZ06f2YyzsYODg+lk0jQNoa4mVVVVdV2TgvFkGKzTCz1uUp1n/W632+2WZ4u7d2+PRqNur83Mg8Go0++EELSe0/RCCDvbe2maENF0WmWJEZGyLCeTydHRURw0xvcym82qyUxrzcEdHR2VWWatnU4mSZKurq9lrdJ7L8xkCEAmk0l/cWk6m6g02Vxbb/X6s1ltTDaZTNrtNgDcv39/fXWFmbfvb+V5zt7lee6ca5rmwqWLB4NhVVUraxs+2PX1VSX80pde+dVf/dWFpeUkL/20ikP1YBsqEqUUKRUX66JIXd1gpgFAH0dICQQEIEKtdDWdDQYD55pnz53+8Ec/9N73v7/VaSfaDA4OsywjBUWWoXBdzwY+nD179g//8T92chv0l5Zu3bqV5zkRON8opc6dO1VV08loMh2Nm9nwsQsXDg73rt14++LGqStr7T/5h//ghdNLKLNQP3CvyIpkLV0lAQSIhJKqqYltmScaZbB7d3K0u3n2nDl39uzlc2e9B2fBe7EuhLDa6y9wCAx+NtMLy3/2e/+b/XuHz/3a55Y31nendYsUScrOt/JiMJookxBAYK59QCCN2jlnUs1A24OjzUKL0q1WxznfXVxKOgtffOMdgAQI67pu6rqqGhHJizLWXp1O5+Bw74033ogCeADo959a29woWi3rHQvruM66ZnhYA8jq5ubG2trq6urS0lKr1WrlZVmWUd3svd/e3h0Ox++8fZsA8lSdP/t4mmd1gBe/8HkQC98yv1Y37+7/yx/7aUhXL37iD3Oru1fZUJSsDKAGUt55rbQgYQQCA4MgCAlyQAAA+bK0p2OrVfj13zneLeTBtwAkWp0C6MQ01jJqICMiqBSSYt9IpEocP+knQp+IjUWazglShsfe+nMIgBmJ5JjVmiRJZER46+Jcn4gAQSMpQPFBAeo0cdYfN4wCzELEggDIsTRCAlSMKEgxCA+Q5iUfEJLWOlGaIqfe1k2eJbPZjB3rLCVECZ4RtVaOPZBQLNKURhIWYQgx/TtSMgQlSAABVCTH1CXSKjK6ACHKBYEBkYL3LnCSJEonAGBd0Km2nllYJ6l4X1mbGKJjWj3D3Ml9XskJsmNMtCJiBgIgIGttjFEVECTxjtmy1tokkbUCIpykRhiqajatq3avO5vVJMDOg3Wz8SRNU4py6ehfQxJCEEUN29yY2lbCmBAWWRoBMm2IRYwxSZLE7JBj3pLz3qPQYeV37tz8pm/9lqeeeeq5537l/tZdWzcf+5ZvPjocvvilLwGqEILKUiLgEJRBFt8uVDOz4/F0cDSE4FGTBBer3qLbS9N0ZXV1YbEfhBcXF8Hz6vLiwsICgBzsbz/yia/Nitw2XkSuXbtR1/UTVx9HxDu3bnlvq+m4draxfjqd2cZPpqPRaDg4OphOx1tbW75xQCZNMxG0dY0Kz549kyjTarVQm25naWV5cx7VgxJCsN6hECASYhAfXEDCqKQDAGYHyEhBoZBCInx4I4bjmbRS2rkQ0BEhEmqlgYG9R0CFJAjM4dhJg5VSjbdaa03RhVgiQBx594CEJIEZBGSugAkKJbAAxAHbiZyOY1RFLFA8n0TFOxQgFAEJEgg0MkHA4DlNTFVVzGJMChC8A50Y5hCcT9M0T81bb760BVNQ8Ef++Mc/8MFnrj7+aJH33nj17nd+9w++8GuvrZ++pFVezQIHT8IL3d5gf/fu1r0f+B/+xjd84+/wGHb3ttEkSd4buewv/8//6IvXd1cvXdmf7INJI/EgVwpAnG2yLGU7IaMb57znREV/GSSl5GQdi1aBMYtCHsSlHyOq8yO2Vd776EsQ2VAPlkERHZF1Y+bmq2ou2IbouTy1DQAYk1prm6ap65pwztxiZqMSVPQw+khKKa3TPDs6OjJpcvLrBR7k20cjvmNWQdRszyf2zrmHp3PehTRNEWU0HhA5IpwNJ1qp5YXF4XDoeEUnSWgkeBenMvGJPWFQxtj5KHtUSk2n0+Fw2Gp1Imi4uLgIgq1WazqtFhcXY283mUyn02mn1+30ukeHw1a7AIDHH398c3OzmjXPPffc66+/PpyMyeheu5NonWVJr2y/c+2t/Z3d1rmCvR1Vlda0u70VRYXOBq31aDRaP7XOHJhxNpspxCxJn3rqqeFweM+60WjkPQKAFhoMBqdObc5msxjX4Jm11jH+DESiE/FqlvXaLciS0awaTiZntdZI3llClZdFrD6Z/b37d3t1U7Y67L0EFpFWqzUajba2tjqtVkxg8J53d3cXFha899euXRNSC4vLaZrOBpOtu/dOXTiXF6kIOh9ypYSkbiqTlCyeiIQQAEOYiy4VzHOfsiwbTWuttTYJC+7v7+/duP3Ye579yg9/6NTp0wvLS6jwzq1btWu892W7WFlZWVlZ6na7wTN7P7OOBL7qq74K3prfBt1ud2/vYHg0KsvCOSseur3Os88+/eIXXiqyZH1l+cza5n/5+V/Qiq5cOPedf/B391Ky48PUSPkQgaxod0Lj62oG7NvtEklKl07HEwVevN3fvseAr7/5xsb581ceu5qvLAECE7FSAcCLMKBShKTAuc7pjb/2/d/3Pd/1Pa/cvL6Ul4czZ4MXwLpiY8zMWp0o70AxCmIQJiLrPQBbUjVgU1cr/aXRZLZx9gLn5S+/8MVud8UyR+WRAGVZYZsqeNdut0ej0RuvvQqkRGRtbe3KlSvnzp0TCfv7+2Weo1I+BAA5ffb85SuX+v0uALfK3HsXAh8cHO7aHRGJwXkAsL6+6axMxuOveP/7nK0kuBee/6wX+prf8Yn3vPfZk2v1L//Vz1z52CfV0qXtqasb1p1uIO2CkEk5BNDGCxAgkMIgwowCgixzy5gTmvyXDcD+n8zD8MtnV03TECXQ7hBqnEccEtK8sT5uN+f9NR+XXHA8HsNfB3eedPbH/yUqo/2xgX5s1TSBc76qrK0qQCPiODAeO0hBLDGOTRPIaIAHOZJReh0p96DUiedZNZ3pxGitIZHJuEEW1ElqMiSKMkNjjHcuwoVCCMiIBMIA6nhONh/4yTGZmogYJCodASCAkBwP+Wi+GfBDAc+oFTMgokITQgRjyVqrSYkE7+dla2SoAIsyWnxgZqUMkcgxHw44MDMQIs9d+wEAAsTKIEuzuq5DkLxs7R8eLSwtr6ys7G3vxAkcCpMwW5f3c8+MQk0zS9NUKdnZ2r3wvvdePH9h+869LNXtIk2yFABs8MKsNAqEKCZVSIlWOmqKASioy5cf/fxnPvv8C58lAgLWpF58/rPTaZWQunnnRjUcb164AADsAynYOL3S7/cTlfV6vfWVdUQklFarSJIky7IsLwPIYDA4ONqv65oUDvePOq2WItnaurN173ZwM+/90WgIAV0QEnjjlZcnk0mrzK2trbVOwAfUKlXKoIA2lJisXCnX1zcB0XsGQK0SRGxspZQiwJgOBUB1bQEYKcRaSmsNKNbOTcWJkH206AU6DjxwzsVkoVhFndzqkcJ1cg9EbXF8TSyyY0cRd+GHnz6tNeEDja1SSo7bmKg7ZWYGBp5niIOaW76dlCAA6GyIURyxIow/JSIWf0wvA2ARkuNOSbxrREKWptY1qdGgglZCCdc8uXvnNUL/Vb/1PR/9qmeffvbyqTOLALC3P/hn/+zf/qO/95PK5Bcuv2s8amoOCkED93vt115+canb//f/+t8+88wzg/FB5SyjzvL+0CZ/6X/6B1+6edQ7fXlvOsE0jcNjZUixArHW1i2tE0hm3lvriTQjRB3YXMaOD19VeOiCC345Dx4AQghJYk5kocaYaI15shzpdrttrcXj6Bhrmwj/V7NJ/K1xpfPexxlJoo1WSim2wce6rfoyv2xiZmttVVWkFQM0TZMkSZJloOZBp8YYYzQ3c+URznNzfQgQxOuHrHuBWSnqLXRv3b21t5fZpurkZano8GAvLlsSjRAVaU3WcggCkQwxl7xClpfMoBRYa41JkyQDDvfv3jl37lw9mw6H495CvyxzhTAYHjrnGhfKslxcXFRKDQaDe/fuaZHDsiiKLC/b7/3g+y5evfyZ5z57/fr1osrKIgtNk+X5U489/vqbrx0dHRRFVjeVbYpnn3323LlzP/czPzcaDZRSo9GomkyzhZ6EoAhWllYGg0G0sV1fX6/q6WwyjqRUBXj//n2l1PLqChEp5izLnHHee6N0khgAODg4WJpOy7I8/fjVr/zar75741a/2wvAQEhEpOfAigAeHu5PptXi4rJOEvZhYWFxZ2fn4ODgcH+/aZos0RH4H4+nxpg0zbOyqKpqd3d3sd8lgu1bN69du0ZKB2HSKpaw3VbJHIQACKsmGrYpIm2SZDad7e/vd7tdx+PD3Z07b73ZX1569NFHv+1bv/XUqVMbK8u1ra33CKAUtbMyhJAkycHe/uDwYGVlZXV5ERE1mRDclSuXrr01jHdBWbZfeeGzVRVlRyHNiqZpiNT5C2dTbQyp+/e3f/mXfzUE/p3f+A2nNlcGW3cM6eF4GvgBkP3iK9cWep1euwAJh4Oj1MQIjnY9nRStUoBCkCWd3n7jzTtvvnX16WcuPPYIlSUlmkR7DhDmE/XZbFZkSfuJK3/1B77vL/zp79o9HKo0Qc/jmU3SshbQxE3tCpP54DRqIba2NpkhNAfVbOq7aZoJqf3B6Oqp06/cvvdLb7x46rH33h2ND4eHSVoEhph0mxZFp9MZDAYXL18JIaytr+d5fnBw8Au/+IuNrb7yKz/WS3tEFLysra+dO3fOOff222/fvXv7cG8PIABqECZtVldX+/1+WZZryyuryytHe/sXzm9u7d65ceMdjfin/vSfOX/pcY/65TffePLU/Fo98ok/MobsYOobrVWWVggKDRnF1oEygDD3mxBBRpD4xCFTZG0hyHwqj/Cg5HrYAuz/yeG9b7wkaZ6WHT8dM7NjVNpEzkM4KYCIwpz7BXDiXvGwFQWJgACyQBCOkEEAoDjHFQlpaqIeCBFd41EZIi3SoNYAij0DqugcJiJz63RhmFc8TPO4a45vHERQgEOAIJQoQnGuISIJXFWVpii+UYQaQRFEJSGyF0KNIEGAXYynPIZtEFABAghLTDQHAFQUZG66zfOaTGJZGfMqDClNJoTghaNbFXLcwgFis4ugiQAI4qAiAGmFgMzz6jTWWALgwzxuJcohhQWRvA9EFDsukxgCVKhYXNMEpVJAMGk+qYJJy7WV1aP9vaqaAAZSQCzQ1MP9w7xViqJUZXZqFajMpPW4ARfarTzRoIwIN9aH2lkf5g4gIQQCrCbT8XAk1oIwKcUhAOLy6nK/7CeJ7vc67SLvL/T6/S4Z3Wq3y05XGFZX15UyJBDdO4E5BN/UM+dcU7ujo6PhcDgeT0ej0XA0GQ6Pqno6m83G41G33d26d/fSpXPnL5w6c3r94HD33r17ewf7d27eE6TMlJHusrS4iCjdblcnZZq3hTWiDjY454xRdTP1Lnhx3rsky2o/YyBjjHf+mB6jnQtxPSSAWT1TiqJnr9YGgbz3hFopjSjee8Z5hEAEqJmjPuBhLAxAEOhB6BezMAvG1FWRIBwCx02fjvO85/DZ3F1h3qKEEDgwEUgIwgGPqWDCQoQhSHROYZbgBRQCEHMQYkJw3IgIYkwfA2andOZ9tCBWCrWABRFCkRDSRGtUzKHMVROaO7ffYK4R4U9/5yfe895HNjYXy1aitRmPpp/73Fv/7ff8PQiwefYJhGQwbAAAAitD7XZ2/Z3Xv/13/a7v/M7v7Pe7B4NdZnYupJ2Fw9r8lf/5n3zm9a2VS48c1Q1mZRz1xLfpbSU6pEaBhSAch1UhiLVWY2QXzJcUFEBQiDCXYR8bBzLznBtwAj4qE5hPBECz2exhK0pE1FVViYhSxhijtXLOzhtNAGZO0jQwEFBeFkCSZVn0XI59UlVVccL0YNVUZLIUEWd11eq0jz9HZGbvPZGOaRUn/mwnVXNc3bTW8HD5KISIVy5fePGlV9ZX127fvD44OuRM+aZyrjnxdFWEcceKzmFZmsZqUmstx2UpHDvcAOu1tbWoti3Ldj2rxpPpcDjMijLP87KdKKVu37whCJubp4HDdDI63N+2vtFZbtKk3e1/1W/9yieffPIXf/bnhoPDfrvVLvLZbJYlaVqkrXbp2E+n453drYX+0tLS0mQyWugvEe0PhkftTgEASqnJZOKcu3/3/srKSqvV6vf74+HAWpunaZ6bum46nQ4BWu/hWMc0Go3Yh1ar1TSNqqqtO7cvLfTAOn+sIlNaG2MOjwY6S4Hw4ODg3IWLRdlKshaQmsxmWZYNBoPV5ZUiMQcHB/V4PJvWWWoAIE1TFzwi5lmZ5ZDnebe/aPL0zjuvD8dTIp3nyganlPIunIA+ANDUbjKt4p0nx6EC48n0+Rdeetf73/eJb/zk6dOn292OUZqIqqZi9gohsCSJFoE8L0xmskQ719y5dUOcPX36NKJYa5Psge5dGID1zvbB+YunAUACR/cQjAOSJLXW37u7U2TF/e1d++iFrL1QVU0V7Ntv3Gr33xVP8j1/5Qc++sF3PXLhzKn15bWFfqJtt90RkXa7PR6PlTKRytPLi7pqXv7s53bu3jl3+crKmU3Vbic6Cegjo6ZIDbOn2Wj12Sf+zv/6t77tW759bambUXJndmQSTEnZ2mmlXT1LTBY8hxBUYpAkCI9DM3Y+U4aUKZZWkqWV519/ZQwKTCYwRdJwzO8RwW6n12538zz33h8ODl555ZXJcABISysrZ8+eU0oXRbm8vLq9ve+9/eVf+SUIFpSGaMQgComuXHn09OnT3vvxeBzFKGlmvLfv3Hj7Qx/+wLf/vm9fXlgk0/rC6zd/6B/+c0jSr/vLH4/X6n6T1yZxqcY8j3giC4gLShsRRK3CbArx8QWgOW1rXoXNk7XnO8CDodf/3eiLAeZttIgIIAs6H4BMmuejgz1SFF8Qj+M9Rk4WsuPyaL6e/LoijOiBv/zJmuMfCpaO5YXSyloLQhxAKUOkPQQACt7rY4dhRAwRL420CTVveb33yIKKkAVCQEIFGMkfeVE458Q6J5ZQe2D2PrpPMwhyZHc8yBGKBrCx9pK5uhwR1cnbj+8lbnsEHOChAHMhApbAMbTShyBzG0yfZQkEERGTJEFc4CjLQBbRmhhBa0JU0b4oBDFGaaV9sDiPgqQsy5qmAZEiz4nIORcxkURpUAzMh4eHZVkKqqpqgvM7Ozuz0RFqBYpWTm1OpxPXuPd96APW8tvvXM+SomkqQmTvbQjXr73d1KOj3dtAx4UmqaTV6i8stbJkYWGpLMvF/kKR5WWed9ut2Dq22+1WqzWZVa1WK9FqNplU1bjTbgFwbavxbNpMR+NJff/u3aPDcQzw3t3dvXP3xmwyBgkgAkCABEKo9cbGRp5lxpiyzBNtNtc3EVX/if7ScvfChUtLy53lpYXV1ZUo8HLOHx4ejMfDg/3t0fhoMjq8u3X/4GB089brO1u7IQBhgmCWlpba7U6r1ermuQvIAN4DC0Bg50LMOw8haANEynsrItrEdJYkZmiKBEKtlBKcP1bxBiAiUhA95ZVSD9uuzh+KAKQedsyKe7GIMGkdgp9DgiwAqJQGiCnM835GgULSSEIKvJ/LaREBcU6gPJkDHft8kQhGd+1jkqUwh1jIhRBiFASiwpi8SaCRJHjXVMZoo4Botn3rzeBrQPjt3/iBr/wt73388c0k8VoxgHMW3nn77o/80E996qffyvLFxcVzw0GF2BCG4Opet+1tde2d69/3V/7yN3/jNydJcjQ6UkpVzncXN45s8n1/8+9//q3tpYtXpyxBae9EGW0Uee+D88SSG51niRs48D768TEHZsZoNxM8IhILiwAqOGbLxcUnxsDP5cPH/K74REfDVe99HEU9qJWU0sA+MSkJNE1jPRAHQu09TyeV1gaEJpORJgOEkSoRY2WjI4hr7DErYn6EY7OQeHbrPWK0XSEA4ADBCyHEUFU/z7UgpSLSjADy8HSOiKytW0X7zOmNt156kZK0KLQxGjQeHR0xM0YzN2ebplZKgYg6ptbGnG/bNHHWmqapUqbdbkvgViu9fvNGr9fr9Xq7u7sx6NoYZW2NzjkOdVMtLi6eP3sGSV564fNPrl+9/PjjYPSd23eODvYeffRqv9trl8X923duvvP24eAIEYuiOBodbe3sdFotpdTR/sHOvZ24ux8eHhLR/v7+wkJvaWkJgAE4TdOzZ8/u7u76pinLstXqONdYa6vKdTqdra3thYV+p9MBANdYRNxYWx8eHg2PBqqPLeGmqng6oyzxAkmSaaQQWOW63eu64OPVHo1GSZpxXW+ePlNbO5lM1tc34x9DRO12O5pf1HWdZKlSqt9brOpaEBBRJykIzF1YRCQEW9UqMSHIeDw1JjGkUCKao5znPM/TLDsa7Eyr2ZNPv+ujX/M1p8+ca/W61trGWedsvMh17YgIJAAwiCiCajoOzocQEm12tu61iqzf748nM62+7DYF0Pv7B2maiYj3gUjHAHlxNtPZrcndmzfvPHv1sb/9d/7+26+/SYG3trZGo9FrN975B399Ln50BD/93Bc+9dwXDIAB+G/+1O95+upV8MFy4ICT0Sh64iUmJYV5muzfuXdwb1tlycVHrpx99JG014a8cE1ltHDwlBfgXe89T/3gv/yh//cnf/fSwmpvY+WgcS41KhTDSRVyPZxMgwBpzYGRMNXae10zIJmD4ejqY0/vOvdTz33m1Omru4Phva1tAOWDiECSmKausyy7fv36/Xu3AQSQgIiyIs9z1MYGtp6r2pJSwDI4OoTAAATBr6ytnj59OkkSo1Ot9XRSzWYzW8+27t7rPfv03v7+qJn+xb/0F5eWlobj6U996rlP/fSnIV3tf/ibOxunTi54nZcBySQJoHIsgGiAdAK2bjgEtnDsaC8AKMIw10LxA56XAEQaRKTDx9f/3x6RPg8kIFrr2tZCKi9aI+91mkVPAcC5VSkfHxIRk7i+S8RxIlELABEYRERp5YMXQZH4Yi2CzBHEIaWMc9HyhRNU1toQxHtWxHMqVuxZjwu/46xGFAiiDM4JO8ISQJCQgFAZAsR5rJlrhDlJU+uCc86kSaRhBGGTJgTYNA1DiOfViqJ5LCpgZkagCEEKEMfryIFDopWIAAdSQIDheCFOyCAqCQEBkBEZCUEBhuBtxVprpdEHSwRJokNwDOCFSQgAUTRpIkaGgCgs3gewtlaohZWIOI1IUtc1Q0BEo3Sv3QrepiZJ0yRLknOn170PqCgwTKqZC3Yyc0Gg3emdPrXRLfPnfuVXy7KlTTod7lOy1O21kiQBT4sLvSSlskjf++7f32oXeVYaY7yPCd8UWW5KqSxJnbN1XftgZ7PJdDa7tXWjmtnxYDybTAcHg739nf39/cD1sQAFEFDpxPvQ7iy2Wp1ut2t08tiVJ3SilEZBdC4wg9LaB8t+brrhvdc6CQwm05NqOr4z/dIrLx/s7S4t9K9cuXTx0vmzZzfPnF0/fXZhaeW01leCTDhMrK1Hk9loMm7q2dHhcDKcHuyP7t4+2rp3+Cu//GtNDYGBFG2sn0NKi1a/VXaAlGOHGARYwCNJcOIZTJo755yz2ihtNDM7rkKILioQ8cE58oCa5p4jD81BiOJoJkoo5rSf4zpMaY2giEQYWYSBgiADEWIINnZScSbGc6bdsS/JHCwEEEAgCSIQE7cAQZFRAcQF79kpjzGNjCUAE5EKHr1zyigglBC8d4rAEKZJ3srSd6693riBgHzVV1/66Fc+e/WJC6tr/cD1tN5G3RbuHuzaH/83//lHf/TTSsGZs49MJmo4akA0IXs73dxcfuv1LyHKj/yLH/nwhz66v78/PBporb0o01ncnsJf+oEffPH63uqVx3enU0gSQZWZND5BsdLIkgTBsnOuafJUswcJMWR9rmuZt22CzAHpGNNHjL0NxVG2zEfjv+44caZ9uLxxzunYQsWJJDKcgLXMnGXZwdFwOBwu9BaR52wMTWo+7SAgotQk6B8qugOPRqPhcBiHZHGlCyE454xOlVaIGAKH4A2ZEELEPSMsGltA85Bnf5Jqg0opefTy+ZXe0mAwyBLIDJzdWDJZopSCMOd8xHZERGLVFWu7aG0iItY7ERkOx8ysjR6MhhcuXKiq6s6dO0VRKNLe+2Zsq6rqdvsosrywqIy69vabSqHWdPvurUC8eerMYr83m0yPDvbTNM2L9P0feN/GxtqLL31BfMyPdPfu3Gk9cpmIZrOJUqbbbVtbv/b6K0WRCYhzbjA4VEqVK608L1HQe68R62bWbrf39mqT6CRJYkDkqVObsb+M07JYR0cvxKZpyjwFDlB2vuLDH/ovP/GfrG10qgM7rVVVN8aknU5HR7lDCLdv315ZW/PeTyaTqC5OkmQymXjvjaY0TSP7/mBwhIrKTlsQWEApc+vu9ngyAwAJbDRppaum2ds93FjtmTSLcdJlWd6/v11ePm+9X9849Xt+z9X+0np0oJhOp9GmUmujDWmkGIibURLvZeeayWhMANEd2zm5e/fu/v6+tb4sS4CleBtICIB4/dpN13jHvt3JvA+KVVVbX1chgfvbOwKIoE6dOfdvfvJnMqWXFxdsPXn4Ofhd3/QNKLy6uNAu0n6Zrva70+kYg09NgoxKqem0aqxzPiRJoknleWGM7nQ6d65fv3nrxuWrV1fPnS66bagmWmvXNJSACnThve/+Jz/8T3/gv//+V958Z1hXFZJk2drSxtSyUkhpa/fgwCQKJQCIIE0bWwFr0q4sPvf22zfqoysLj27fvR0ETZI6azHGqihlrR8cHQEok6UiwTNwXVdCcTFVymidrKys3b9zNwRYWV0+c/bUxsZGq9WKVfvgaLS7u9vv9y9dvlBmudYUufyPPHrlxu17//v/8U+2b9yDtLv5sU92zj51GJLt5gEnlE0WKRGBGQKDkA02iBCAWAtGnQgMj6U+xx6qcOzs9evrKvxNvv8blqoo4kZB0s56ULpod4AZBWKC7wMa1vERqREn+vlf9yM8XjpPJmEnXfvJmhi8NE3DARCCUyBejEmJ/DHVA2MMxpygfLzsAgCCAhZmJkACDCLgPceVGCDLskiFjPiLc8E51+62nHMhsCDHLL8AFK068Nj+9AT6ERGQGJ+BJMIiNM/3DUZr5xxIUGhIEaHMBxwMiohZYkgLg6AgsCgikyQgQYJoYzh4a10sUDw7YUiy1DFrrdMkqWZNnqaI2Gq1smwlyzKlVFO7OC0jo+f8dxuaphGBo2nV7B3qNCnK9rSuZtO6rqqlzVOt9qJKswuPrOV5Pjw6Wrl0+Q+/96MvvvBiu7/wno9nh4Ojw8ODoiiVKGNMmmpgWyfLk7Gb7Y3quj44ONje3o6S8/17d6GeATBEkpMwRLAbCeYdPp45c6a7uLB2ahOAjSatNXDw1pHSjBCCBAaU46iiOggJM3vPSZq6YOOdLBJtRFAhueBtEJUoYDp96uzG2maSJIOj8c/851+4des6S62UfMUHr77/A0+dP7964fx6r9daWFjoL7SFJ4EXgIP3kuhuNeXR0DW1HB4M793fu37j/vbO4UsvvvHW2/tIqQ9+YXFxdXW1LEvCxCsRVhLYkAIyIhg8k0KdGiUCgZkZSRAE5GQejIHDw8Sj+FaYA4ECYGEUOMYrOaZXhROB7In3m4hopChehnmKFQcfx8PxnDFQNYL4HgCAEACEkVTEuKxzjgiQFKIoRSJKRVNi74hIJKCEPNftDtp6ev/erdlkigBf+/H3v+d9jz397JmVtSLN2brpbLqHSi30V+/eGvzKp3/5H/yd/8AeHnvkmar2k4kXIWNMcFbAnzt76tWXP/91H/+q7/3e7z1z/sLO3jaHkGaZZ047i/u1/t7v/ztv3qmXzz16NKnTvFVLUFqz84QogbUiFBBhthY5AMxpbTFyjIgIKPZRSZJE50g4htRi+fTQLEk9LIDA6IWmVIQd4/z45KcU2QMhBK1UXddK4crSQhxWA0DUEvb7fQQkojRNjTHRiRQRszxnH6qqgoeMLkbDobV2a2unLMvpeJbleVa2iAIyAnNRtOYfITlFBAStbiv+rqZpQEGAAPxgGwjBl2XqnMs0rC8vtfNs1gwI/crS+t17t7e2759fW5jMZnCc2/VwdRnvRYFAigya2WymNbVavclkok3iA9+5e+/06dNZlu3v79e2SbTpdbrBuzRN93d3VKIWugtZmZW91t2t201TFWk2GU194HJ1pbW4MBsN94cHpy+fWzm9du/WzdvXbgwOjzKdjIejdrurYrycgbX1lY9+9KNf+MLz21vb586czpI0TdPxcHSwt88Mxpj+Yt8f2ThZDMFF2DSWv/G9iEiv16nr2iRqVgURydK0mk4ODvaW26XJ8izLvHeUKhFpbAMAVVVlhQohDIfD8xcf8Sx3795ttVqtVoeZp9NppHGkaZplqYi0W93xeJxl2cLSYu1qrTVoAyY5f/nRd27e4js7mpAwKGHvWaXGBaxr39jmYP9od+9w0pl94MPvX19fBSAfsJrV46rWiQEiEbC2CURZ3vWNjV0sIJMQEU1G49FgYBSJlIjIx41ITEzPj8svpdTq5ua1a9dms0neyWOzFW/3PM9J6ObN2wSglWqYn3rqmelsfP2d1xfz5Pu+6ztO7qXf9/VfaRtv0gSBxTsSz97lRiOA9346aRCx1+vNans0nhhjyrJc2Vjrdzrr5vTe4d4rX3zhcG/7wuULnYW+KtvWswZSHkDpC7/lQ//gyR++cevmtXdu3L59++VX3viZT/3CwbSaQVKDWV7dYGY/m3nfOJDhtOJWS7fbb+xtf+qVN8py5WAyHY6mAMg8t5uMsNnh/oEPFgCc9fMgHpUoY/Ki5R0DQKffS9MUADVBahQ7OzjY39ve6na7i4uLG2vrF86dybIsftBFkcUbo1V2Ogu0PU7P/vY/TO3FCWbvzFBSEx6aiqNJtDCg0wLMwIHBBwYWkdjRztMdEQAJgQRYYtAQ4jwUKJZnPFfIw7FF+3/1iPXbvKaKJQQKiKAiluhDAYiCSEFYHgQ74slidxL8fEKEEBEUUUTBiyIjjFolsY0n1PFGs9bFu652U3E1JTkQWeuJSLwHIpA5E6quawAGAgKKOIIII2kUBgYMbKuKkiRJtMnSXq93dHQ0m80aa7O89N4rpRF10zidmPlsQBvHTApccAoUAJMCZxskQgXRQkkr9D4AM5GWIBxYKRXzNLMkQZEizcKx1kxrlaQmeNvMKpEALNbVwQZgFy+8TtOmacos11qLl8ykqtAKhQCBfZIVpNWsqQMzoUoyM6lmdV03lV1bX7cN7x7seu+Xlpfrum63u0BodN5Z7BV5q9Prdzu9Tn8BlJ7M6nHV6DRLyw4qDSrBvNAmZeZr77z16sFel+EuL5a+N9i31vdtWopHsGCH1rMjxp954TMgSFphQsYYlSybzkaygOsXeLnXWWqXhVEpopHg66quZk1oQNzO9r3J6PDwYPf27evADMjAMZCKgODKI5fysjSZ1ooksPiAoLywcDS4FxAHIlE3Siq62HtKhFQgREHw3s1mDCIcIE3Lc2evnDl9SWuytj46PPh7f/unbTM1Rn3kI+9/5t1Xz19cOX2mt7hcGFOTtjbsgwmdPpDWpy8WT+FZDhc802jY7O8Nd3cnN2/ev3lj6+0377z4hZeFgSVZWd4s8s7S0qomA6SYvUgI1gEIUoAHPriCMLeOitKxB1tnDEtAJYgAKjK0hMH5EPlePlildAhOKSUhAPA8XwEJY3E3r1OFRUgpCQBIzAGJkAQRFChrLZEWnvOLgnNKKUFKEs0cDJmqqoiI2QL71Ogs1UrB/sHWnZs3QmBA+MTveOx9X/Hk1avnlld6Jgk+VFW1NT3iIu932qf395tf+NQr/9MP/Ag0dPniuxDS6aTxgnmaCVIQaS90Gzt99eUvfO+f/+4/9Pt+r0mT7d19IkqUZpbW4ua1nen3fP/f3Z5A/+y5mQ9JmgdUhIiASpNzTezoFGnNDrwbHh0s5DmGOg68HYuIBA5ynGIS05DweJ+K23SSzJOs57XT8VIXQVg+dqePDmcnn5GI6GPqmEQDqth4RWeE2WyWplmoqzRJi6II4m3dGFLT6VQlxlvXzCqtdd08mKdNRmPnXJHlZV7E35cnqfe+aVyRl0mSzSbTpmmGw2GWZdbVzGxSs7e7X9d1t9u98sjloixOztYqyqqaQuBGKDPk7QzBW1cPBlVBUk0rBBWx6hNgIM4G8KH83RACKRNdUieTkdLp6mp3PB4XRRHdsKIXLfswm80icqqNSpN0Mh1P63G7V3Y6HQ5uNh6Fxg0Oh7tlASAqTbv9jhef9doXF561dfPGq69VVYWyWFXTLCuq+R9jonTRWjsajSL0u7SwzMz7+/vT6bhdRotk0VoLzukyg8HAOR9NEZMkca5h5sV+X0Smk4o5jA4Pyl4HTOK8H00mi51WVVVZOzdAVd2UZamUjiEnd+7c6fYXyrJMkuTo6ChN03a7vbOzM99UJBDRYDBYWF4qWuXB4Ojs2dOr62sqzUCblfMXvvF3frPRxWc//zlkToxSEPKsTPNcgA4PDrIs++qPf+3Gqc1Tp1dDcE0TBqNJYsq4L8aW/ISTF4LTWtfNLNGZiBwcHBwdHKZpWnbaIDAej0PwCwuLaZoyQ5ZlD+x3lfT63RdeeGFnb3cz32iahkzCwkSklMyGs5e++MK5U6eFrUb34pc+t7m88Ff+/J97zxOP9Qv9xrXje302NIjNaITKELBC6JZFZDIrRc4G63Va5GlZ5O0yVq5kdKvf3b6/hYhZanbu3BkdHZ49d25hcyNbXCZSoAW8BUK91L289u7L73s3BAfT2TtvXf+xf/sfJ42aevq7/+yfEuoEcbW/QJNJzRySpCL6zMtfum6HOj8/PDhkfhAADAAiged1qgBS7E+Cd2iMq+vZrGq1WorM3t7eaDSKuSVbW/fu3L1pdPL0008vLCwg4nB4dHgo3vt42RERCcqiA5Qmyxee/rpvvV2Rp3LsAEyCSUEPIRdBBMULBwJkH6KNLIAACT7EMoqmP3OMTwQBHy6xMMbkHntxncyffvMjZm8zzLVdEAQ9i1JmTpyXuGziCZIC8xgciY/PnE3FrI2iuXCSjJnH8x0ThPmEC+WaBkiD96g0JTmHAIwgyN4yzTFTVIqIIvUbRNi5SDglpUiIFDS+5sBpkfV6vf2Dg4WiN51OrbVKaxGJgc0iUlU1EWmdBhfdcHyapnH9jNMLZwPRPCEx+ECIkaphjNGkghfPEjjSxnzNHhoL7EBr0JqUObasQAWolEpS0263ldFKmbjQl+12CMGYBACapmlm1Wg8nk2m7FhEyjKUvV6a98tWu+y0dWKKvOz0F4qiMEnS6nTzVhkve5ZlJsmUMsokgKq2znoJDLPaNp6HejbWdWOhGlVH48mkbqbON9YzsyLoZOnzL38JTN4nbLBwwEAtpVSUWxGJFtzYeEoJBQhOfBAfJIiEBjjVcIDSWN1TWSsxCXDe1e1lfarf6rSLPFVpihqCbWYQmFDczA6ODna37g+O9q9df/OlFz4LCYK1QARe2ovLGxsbZZ5qTYkuY46tcw4BnXPOOSAQx0gCRAoxN0mSZLaq2XtRKoTAQWzjQoBWsfyB95+Jg9Kd7f2//Td/VBnrQ/N1X//su959+fzFtbOnV9IsyTIMXE/ro8CN9xa16fSK5bXeZbfwwQ9f4mBGAzce+v298c2b929cv/v857/00ksvWQuERqfZ2TPnWq0WIiZJYr1zjUPSwOi8i/tdJHc/vLVnJqmdVYgiqGguPIyPUjjmdseZKzDHpOM8TaNLAoiIMBEFEIxqC0IbPAnEaTFgQARldAhxqBbVjvMjeFFa1XXdKvPG1UVuptVoZ3f74HBPPDz62PLX/aGvffbdj6ytF4vLeZpz3QxtuD8eNDpJi6JvVO/+3dGnfvZn/rcf/GnwcOHKs5nujgcVACRpSVw7Xznr+v3um6+/pBT883/2Tz72oQ9W03o0nGmdcBDHWPRW3r47/FN/8a+74lRnfWNczTygEoyNGRIToUkUCBECB2eUEmdTBd554ICI8EDcMJ9Miwgfe/XRsXVfxNli6FYsP47F0A8kn/Fqx1eefEaxQNLecxT0WutHo5Hr9+KWPBqNgGbdfs9oU9d1bSuj9KRuiMhW3nsv0cxmOjs543A4ruuaHQcbhKQoWkYl7IV9E7zf2dr+tV99rtPpjQaHqJSEgEqphBKTKaW27207a5959rGHFmQ/HY21Qlc3Ndmjo0OVYX+hbCVZ20TtkiilWBhx7v0T/a8fvEOlRSRyG+MYoKpdXddxKbHWdjod50LTOCJaWFio6/ru3bvLS4veOiJy3s3G2FRVppMvPv/CQq+/uLiMwgRcTSejvWl3aaEMQZN69Opjw/3DH/6hfy4i5y+em81mZYmsaG9vLwJqrVbrxo0bJ4Wp9355eVlE9vf3e73e6vrarK72dwdFUQBQ9Mg4DryDqqqOjo4UYlEUEngyHLV73cnREOp6YWX1wqWLw/3ddrfTNI1tGEmxF2dtbpJuv2eSrN1ra5VE09f9/f3D/XGs2dM0zbJkcXHxkUev2uAb59fW1kTEMwuLRgQfyqWVT/yOrz882nvuuefajR/X0FlY3Nk7WF1dXT+1ebGkHdEAAQAASURBVObC5bRsV76eVDMi4Dlh4GQIEpiZUIxJIHBVVSZRCqmazo6OjiJ7Tyk1Hk+9t55DWZaR0GA9Ez1YSibVME1KcPVoNDpNpwL7pgpxt0mUaSaT62+/3W8Vg937h3t7/+0f+70f/fD7l/sLbKvx0T7AI/EkJgFSWhnynjVpg2BnFTBrrUkrIGmCnR3uApBRBgCKNLl57VqRZ6fOnJ5Op9Nqdn98b7S9t7u1m5at0+fPn7pwrre0CIm2QCYvtE50ogEctNSl9z3xR9rtv/D/+e9/7//rj7/7/e/72V/69K/8wn/Z2b6Tgax11rFoDcEP2CvTtRLGkykxs3g1f8uxFEOBMLdXDCAIgEqCtDqdXqfbNM3h4SEpqOsZiNi6CeKfuPrEmTOn19bW6rqeTqa7O9vD4Wg2m8XiI02TsizLzuLS6SuWpltTcOVSJWjaeRAmozU+qP8IgEU8yzxIG+aVjxAJ8DGji+AhKgg+lJ/9YASFAHTiiyO/sQL7zWoyZBFDAOBZVGJAQIEECIhqbgh8LPwmouh+GLzX85xmy15IIwEqJA4hmhg56xAx0WmiEwnCXkDIKO2Px3ZIKpJbJFCseoVEKaWJQsBYDVNqEFEYmFlQmOe4pA8ymVaRra919KoUQgRCpVACKCQQmE2mZZGZJJlOp652iU6ZOXg+XrIxOA4hAGMACcGz9+wlEBBRorXWWiHled7ptlJtAoSyLLMsU8r4ECaTibV+NqudjYR7CSC1k8DAiiQo0gmYvGiV7azodDq93oJOsiQt4t3rhJM0ay8sJGk+q+1sVimdMJLzvgpyWNtqXHnv62ps7cFkOqsaV1s3HE9rawMDQ4xgN6QNEwkQaqN0xsyUaiJAYQuhXD03m9Uq67D3QiCCHKdRLIGYACZ+SgISIS2MsLEG4EpIvNuZWMUWvPeuQRZCsXWTaEoSbVB6nWJtaWmp01lqt9cXNzYuP/n4u7NuJ020beojrdz46Oho9+De7Tu3bl9/8YXnv/D5z4NYBAQQo7OLFy/3+gtCqijbjl3tavYBJYCA0iawFR/SJCHxHDwAkAIfrBPwTYOgvPc61e/7io8ggq1nr7x4/2d/8iesqzc3ul/z8Y9eurLxyGOn1jc3ECfdHnqp62o8mg6QBRiTpChbycJicfqsef8HH7XNlcHw/ZNxs70zuX1z7/o7W2+8fuP1V1/2HkQynZTnz5zPigwEWkUROTwg2NT1Q08QeOs0ESELSHDMAdM0RaW890obHwIAooB37B0rUApU8MIBBOe4IxFxfOAFCMm6kBijlBKYh16gi1JNjDQmAOAQ2mUnkvRVQndu3jgY3RdmNPDbvu7pd7/3qy+dWz19ejEvCLBp/LRuDo8GE9KJMXm/f9rZ7Npbe88991/+8f/2HwHg/Nmrad5taj8YjdIkCcH74Ji9MarTyl9//ZVv/ZZv+pN/8k9cvHBhf3/f1ZZ0Al5IZ62Flddu7v+x7/l+7K13ltf3x+MsLRQpmbsZI3MIzBj9+wSV0gg2IQLhVBtxQebh7sTMyDJnYkSYleYuXTj37+AQgiIK3us01VqflF8SfxSJniHwl0ephhB09HKNympjVBwFVVW1vr6eZVlettM8C7W3Vd1qlyLSzKo0Tdm7eMYQQv3Qp97MKu/c4f7B0cFhWZb9fl+T8koR0dHB4dtvXVtaWkqSrK7rlaWF7d3dhYWFmGjkOSwtr15/851Op4Sr87Nt39+ajMeGcDarE1Nu7+5efPRcp9XKTZqIPxqM6NxpmNv8fJmNfizLRCTEkBCiJEms9cPh0KRZUbSn02lZltHK0jm3tLQEHKI24dSpUyEEozUzk1aDwREKXLxwQXyYTCb9fn9wuA8kWbvsd0oUZu9ZiVbJV3zgA1rRL/7iLw4Oh9a7PM+Xlhb7/f7pM6euXbv2S//l0ysrK51Oz3s/GAyyPKlns6IoTDK3b2m1WqPBUV3XZZ4D0Gw2m06nRKiU6nQ6UZCcZVm81wm422lV40m+unr+0sUv7G+126WIVMZVtWu1WotLK1m7RGP29g8PDw+LvOW9n06nSZIsLi7OZhMAUEo1TWPSZO/woNPrlu22QIhputqoOWbUVEW7/W3f8s1Zon/thS8mSZEkycbZ08srK3VdD4YTO5mAIgRljLbsRUQQiMhzCNYrpUJgVCgSEMDWzXQ63dnZGQwGWZa1Wq3pdOqc63Q6nbJotYqyLIm093UI1QlIrrUyRoHInTt3Hnviqp3VRbvFDCSQoLpx/Z2tOzddkb/78Su/+3v+1KXTK5kmPzny3neKB75fZdHWSWJdACDk4JsaWbx4x1acAoAiT5vGOeeA5wZRNoTnP/fZTq9//vz58+cvrq9ueu9bWVbX9WQ6HW5tJcTtxcVEmzCdecPEBskiCuT5dDx4/eUXb7z91tKjj3zD7/jtH/vAB770/BfefOmlV198HqaTtY3VKVIDMJlNSZEETnTimLVS3guzl2isEFUsQiLiQ1BZ4r3f2dlhDqtryyLh/v37AHD58uWNzbWFhYXpdPL666/fvn17MpmEEE6dOtXpdMuy7PW6a2trvV6P0jLvn7pVZbw/8iplEZNmEl0B+SHToOCFI+4YqeYIwEIx7weP2fTHdkG/sXp6uLo6fgEex5/9pjMwJED/8PkEIYRgdAocVKRWKYDjrv3h3xJbzDjTit+JY3+R6BYGRMQhHNtGzKWOcMy1iqoupZRvGp0mXoQEmBkCi4AnARRSGCqXtjtJkgwPB4CY5nk9m2GWdDqdIDwaDkmp/f39PM/zxDjnhAMjNNNGRLRSwQvUtSNk5zmEVKcISimdaGyapr+wGOFUpQwR8dxeFkyaRK/R+HastbMgbhqYnTI6dU0QK4hpmiZZadrp4monzUutDQCkWdHu9skkdXCCJEgsqBKjyCil0jQLDIPaDY8mk+pQALzArL4xmVY2eAQVHQ2QtFIq/mlJkiiljEk9llAo09ZlyynrUBkgDCHGU5OLTo+I0YnVhqAIMTijKABK4CDYBBYhIABBYCBSQMIAaCgca1qPy/njD9QUAMCBKRWjdZT+lKLihaqbeseGgzuTZryF3trJREKTGOi2zNmzqxfPba6vdE+vr21cvPzYM19dlgbB2mrUTEe7O/evv/3WtXfe+eIXv/hrn/kMQJTx4umLF1aXV5RIK0uVMnU1RcQYQagUBmFjjCQqCDIDoqSZqSvrnHMeCLKVlStra4+mhupm/FM/+YWDf/EfAeGxx1c+/NFnH7169vTZ5bXVzbKLWlxjp66Z1dVgOtklBUmSEFG7l/YWsnMX1r/iAxd9ratajvamu7uT+zujN9+4+cLzX3zpS/c0ASB5D2dOn+t2++lDnk2ayDfOZAkh+eBj7z2bTFCpPMmQKFHacUBGnapYOQkzaU2kURCEo8UXIaKaO09lacoBnA0KkVmUojRPFAFyyFITgq/rWdNMb9x4wXtPKD7IN3zyYxcvf+TSlY2NU/1ePyWyJDPb7FW1nc0mqAxS0utsmqTnnHrhczd+/uef/z//3fMAcPHyUyiZ91BPHCJqAiQGDt7blZWl1155uWkmP/D9/8M3fdMnlcKdnS0B0kniA6okK3qrv/alG3/uL/6NxQvPqO7ixNZZlpHWiMoLA3BC5BXNmaKBFSEgKqDg6+l41Cpz4WhmOLeTiOSrGFbmbQAAoAfpq7EQEubo9+SmUzgeHcixp/3JUvXlKIdoAGFmbShqk6IabmlpyTe1UurVV1/dOLXZydsnyGWamcl0RDpJ0xQCz90cTj51ra9fvz6dVgsLC9ffvnb18Setq51tDvf379+512m1RcTWjUaytQs2GDLec1U11XS6vF52FpZGgwe5oTffuVZVVVPNqqqBIIDY6Rd1NbXTKicowhNXL54rtGHv5ia0REQEyCLivI/oLAA454JzzKC1Vgjj0dB73+20Y2JrnufD4VBEiqLIinIOljm/v3+4vLyYUNbvd5tZU1VT51zZLgCgdrU5TLr93qnNM1mpADU4NxwPSKuyLGO4weHhvk5U0zRZlm1sbFy9evWlL77ULdqXLl3stFoiQQwxO21MYAfA/X7XNfXu7m4IoSzL27dvl2W5sbEe68g8LyejwcHBgSblvV9Nl6vpRAKDFySqmmY4HGqtZ7VdWVnburODpHEyAq3TrPDe60S1u60I+Y0Gh7HmDuxQR9+vcRA+e35B8AQFY0CCqgKtuB7311a+7du+zWTlrb2jS49cLYrCBT+umoAkgMG7MM+9w6JVIiTeVepYBwIiBGi0HhwejUaD7e3dNE273b7Wmki12+3+wkJRZlEzwUDTqlJKP6wQefrZZxYXVp565snZ1FZV3Wp3x4Ox1klqdF1Vd65dl+A+/lt+27d+w8e7Gc0O99JupyxKp8PDk966gupoMpvVVTV1ttIQOu201+uwYAiBWHJQwVXATIaVwsa7LE9EzPDo8PVZZUyy0F9K03SKozRLlMbJeDh64yBN07zoJlmp81bWLovSZN0Stna279558tl33dzaCv1uxWF5YfkDH/rgV33sK7du3Hjpl3/p05/+9IHYzspmaLw2ZjYah2CFCRWC+JhZx8xxnBvXQWVMqKvgqGy30szkeaoJmnr67DPv6vV62zvbP/+LPx83LGP0pUuXlpdX2+12v9vvdDoiEsvugCorzGrR6W7ZsbVl2fLIqMhzeAhTBPYWggCqqFcGCHEPPB51zVcPAEDg+B8FH/wb96//P4//CjmMEXwQYwyIV9HQIQr2j02/Too5emgkpuZwYWTC4hwgRQYSUkBqris6oWXAcQEHAGQMBFFAwizMKk4EUWLZgUXmvW9cXXRbIQTnvM7SWV254EVC9NxXCieTkVbYbrdFRLxLWwUhSghK6aZJtcmVTqZ1VRTFcDwp8lyRzpMsSbKmaeraCjtUhKiSJMlaLUhbRb9MkgRIodImybK8rbKESSPpJrD1YgMrk7Y6XWUSrbUIWgbn/cCF2xPbOGdZ6qZmEOeCiHjHITABhhBQaa11lMpHop3R7aTUidJ5mmg1z+VEEhEJXgIgGYMC1nsfpAo8cw5CQKWcC1E3LQgYcwicAzX3LAOxudZMXuWaFJMCUSSAIqA4aukUQ3j4BkDg40mqoInaAwEUBgjBiwgJCFHMFheUJElIq7TINUI31rZaS/A3prO3nt8ZD98G3/D+Dmh44qnHnnr88rkzq5fPn9545NJj7/6aLBFDYXi0e7B77+atGzfeufbGG28+//zzW3duAjCifvSRy5ubmwQYw9bqpvGOWLRCBSghBPBxr5VWmU6rKoCramudEnBnz184f/ESANR1/Q///qe1hsD1Rz783ve894knHj27ttHvdBYXF0hwMp7sBrbeez+bICpjjAuSqNTk+cbZ5Mzlwofy49+wOR69azSuj/bHW1tHd+/s3761885b1159fQDfPL904+FRq+jYyhVFYUiXWQcRFStBIEDnvATOsoxQrHPBNlqhRrC2JtLMSAoSUsyMhADkvFOA0WW9KPOmmjW20poO93Z2d7ebZqqNBwQG+OCHz338Ex/b2FzY2FhaWu52u2VeaJDK+XHd3G+qmSEDElBBWfTTbFG4vXXfvfLyrf/0n/7L88+/DozPvueD1cxNZo1IhahSpQEkyZKmqfIsRdRffOGzzzz9xA/89e9/7JGL0+l4b3+QZgWLC8hJ0UmLpZ/9pZe++6//4OnH3jsDkqYBkDRJnGdRACEAApBEby4F6EW01rXzRSeDI69QjFFK5+PZmIjmqFpMDIuFmCJAVCoaQXsAiIQBJIq+Sw93hkTkjgncdHyc/FQppeM9qjTG4EV1vHDev39/Y3PtzJkzk9l0sbMAAOPxOM9zRBTCqqnjBxnxo5MzVlUVnA/WzcYTEJhOJklmxuPx4d6+MZrZo5CzNjHGOSfONXVtnUOWVqczm0ytb27dfBAUs31nS2ty3oHImfPnl1dXKttMRtPCpMPh4d7hIQMKPXirkeMSuWyRDRdN7XDe5ppWK7HWxujDsmxnWRJpv71ebzabEVFMk/COs6zo9hacC1mWpzqdTCZ5kS/2F44OD5Wi4ehwYWGBvXdVnZflYn+ps7BEIDdv3pxMpoeHRzrR586dMUZNJk0IYXFx8eqjV7fubWmt0zTd3d1tt3PQEYQWrRNErKezLMu63e7w6MgYMxgNnHMQ/YSOA7yapinTvCiz8WToQamtrfP9xaX19cXlpbqauqrxAauqKstyOByunT0VELsL/bq2R0dH3W43z/O1tbXZZJQkyeqFs1FYlBZ5muSiaWdvt9vt9nqdrMwheAgMIOAtpUbqmYgsLS1xVrL4yWRCSdoE9gCZSetp5T2naUxBEQ7OWmsSpbUej8fsQ5bkk9H41VdfJYJutx93O2NMp9NptdtE1NQuKkRMmka15v7+fgln4if78quvPfN00VTVweH+e94/tE00mPVg0sHg8PnPfFYB/O5v+uRiO9m9/c5Cu0RUo0mVFOXR6EEp/7/+3R987bVrRHB6c/nq44+865knVKIm1SRNSmOSopU3VT2ZTE4eldhsaJ30Oh0OICwHBweBHYTQ2Bg/76yrssSkaZGkZW95PS/L1bWF2d7BrTt3v/D5F5M0H4yG6e4uG13Xdqm/MJpMFk+t/84/9Iee+OAH/8bf/V+2d7f93OZOlhaWx5O6sRUpxewj/sgciFR8nINrdJIFCM45a61IqOsqK/J721uvvPLa5csXP/bRrwSUuq4j5ht9VYwykRcVl36V5pPRELutfievfN4g2qYBMlprCQ/LBuXYfo/xeNB14rX1UH0kIIAnUBFERv4D8vuD04nAf23o9V+bhMU/AyVCinFcL6wIQILIAypGfChOzhBrsvjUHzMm3fEMTE4qtvhi730ccEaSYiR8Ouc6ZWsyGhM+yLJjH7wLqEiOJUFK6zTVJk2TjIAwNUkQBoB2u13V9XzLF3HOTSaTomxPmkaYk6SoZk2W9bxJs7zMS0zLYnVJ5WVB2oQQtEqKdrvb7SZpHvF3VKSzQnQK2gCg8+wFWNC6MPW+YbYs1jNoYwnrxtmtSW0b4GOuCQiCUkYDaQAUTIEIU4WImKJCjG58EpyIBAgSoxSRBcTFvdRxCkrHBOogItHZn1zwAckz28ABAbT2HEQE9NwyA5gFWZFhEmCJkT4mUd42eWKGgwksRGYCAURnEITIG0GJejoEJcgEGA3WAQU4jl0JFQGAMMZ/rIQ5+K20A7DeaUICJATX1NSoJEl10VOlXl4xmhSFWoPfHh3d/Myrzc9/xu1vAfHKcv8jH3jXuc3lZ5+4fO70Yx955F1f/0kTvMzGo73dezeuv3X39q03X3/jc5//zM1r1713aytr585dKMtWFt3gvNeanLd5kjrnvPcKkRSIIRaHiFVj06RlG1bUe++7Px68VYru3t761V/6McTKGPltv/1Dz777yrmzSxunVlttow0jusZOmmaq0QrU08lQaSKnmRmVSvPkVLc4e2bpadwgzqcz30z5aFj71+ZP0eNPLd6+cfeN198KAfRxIHKe561Wp8yLVqdrlHZeRUe3VkurxqeppKCiE5hSAMiNq+Me2jTNzvbedDrVWgd2ipgZkhSeeurq+z/43vPnNjvd7My5lX4vWVjKtQmobOCZs1PnDvf3ZwASQiCBNC2MKtutRQZzuF+98ereL//yL/zYv/olRLW2fvHJxz8cGKZjBjBJgs41rqnzrLDWprpcXFx44Qufh+B+4K9//+/4xG8rs/zo6NDaut3q2sCeKW8tKNP5oX/9M3/7H//Ypfd85SAoStMAQtGHDAFRiKLkgkEYA8a0UzieiJNIVDha18TujpmjBDJEvj3APCA8hrSGualHXEyqqooeDifspxNCXnxB7PoeXv10URREypg0RYWIs8kortdEFC99mqYxmMg6a61l8WVZqsYppRSS4y8z2w1evGciZa3Li/LWrVvLq0vW1gf7u2trG6PhWEKYTWvnLACBUk3TBOa6toolMakEeFg8TgLeho3NU5cfvVxV1XA4tN4lSaJAtcrOcDAeT6ZFP+e5xc+cfBpdfZ2zMZHDH8/GvDhvbXB+abGPiKPxpGlMU1udpEqpotWZzWagdLvVWl9fr+u60+mk2lx7563B4UGv1x8cHU4GR1lmRCOijIZHxqgiSw73q+H+oTG3RPD8qTMGVFmW97fvT6dTQTaZUaDi9RyPpkU6sdaVZWmMMrn23k8H46XFUhFBYNfMQyrH43F0y5xOZzEkgIh6vR4RHezuDIdNli1bW88mlR2Mk05adtocXJm1R6NZPZ2VRW9c1VVV9ZeXI2zRa7djBQaBe71erKQjN3kwGKRJs7K5vrGxoYw2Roe6VoUBdhCcraukMKh1mlKn33v77r3lohBgIBSFVeMAm5gmGW81kYBMTV07C03TjMfjejozZKytbVVvbKyRMWmanqhPIBo6G02oqsbJeIqIe3sHX/rSl85emDum3t896Ny85a2bTAf37+0VxaTT6dR17evq5c9/9ud+9he+7gMf6rU7YEdLi4t1XR8eDGYObt5/7Ysvfunrvvrd8SQf/8TX/v4/sGCMKbI0SfV0OmZx7SIvklwYyZjKWU8gOvEhEItGxcLig0qU9y7LMgYCUs41SdlhBvGy2FnMEuOcIyV2MlbBjw3evb/15vXricmd825cjYfjhhBp0u70UKn92XQwm6xePPeX/7vv+8KXXg4IQPjZzzz32utvAJi11c1pPZ3NZsjHiYIYd1IPlIQQEEWhiHd5mg6Hh/V0GpwsLC0tLC+trK/2+712u+1tjYgRah8ORlrrVquV57lMQHumFIbDg35n7f7OBEkblIYxeFYPs+YBkATEypxQTwCAQnwyoEIGAQSOIBlIdFgiODb6elBvPfz1b3LMX3BiFS0gwIg6lk1JqgE51lr4ULbayf/F4yDqOVzoAxGl2iBLXdc61c479j4xRpOydaMyTI2aWhvxRyJCYRQGDs5bCYGUMtooo4kIiJQmY0wQr7WOS7AiIwjMQsqgSp0PjkNDaUjSmXf99opjbrW7i3kJpEyaKWUEKE3zxjrUBkn3+32dJkhaEATV0dHAeR4JDxikIUHwLHXdVId1Y2eCsdo4Rl2VIkKdJJ5ZEJAgALIgqETnqULlvQOARCkAsN7xMcExhCDsIK68gpWrRMQoiisnoTBGs7aofdAM4IJEKzWUaGgrhOK9AzKRn4hyXEPHMmieiQMoEryFwARKgREQsS7RBgKYLEcGBYphroqNvxhiIGtkFApHx/a55vc46BA4TtIIhRSiIAp5EcGovGUGAo+MSgkzaATCRrwnQbFsBVCQQ7BN2S6zXidHLB5/1jsbmtmnXt6pfuUN949+PMv0M49ffuKRi+fPbj756IULZ64+/szVpgZgd7C7de/Ozd2dnRvvXHvppZdefvnVGzeuE6nz588v9nvtTkmEmrLaNonW3lutlHNeaeVs4ABJknjPztfONQZUp9N+93vfr3UynY6f+5W7P/7vPkcYTp1Z/vCH3/XY1XMXLqwsLHX6iytJ4n2YVPVQabZuhki2dkqxbSoiAlTBcV6UrZ7uLedvH5df3/OXvpadDEfNeFTPZs3gaDQaTYbD8XAwGR1O9g+Hwcqs9vv7B4cHU2ehcZBoCAESBYoACNIMOt28220vLZetdvn0s5dWV5cXeu3llX6vX2oDnXbW6Zcmgcj4ZwnA1ofR0XCklAS2CqWpXZ4XIUiv1S2ylrW6qpJXXh589rOvf/oXn3/ttXtJmj726NMqSZ31s3pSFj1mr7XWTEWWVESdVqvI8s9+/nPW19/5XX/mk5/8xLmzp5uqHg4GIGh0zkxA6dLi2mAk3/+3fug/P/elJz/yid3JlJV470gpRSTsiAji9AoQISEU1iFyEyIDIYRgCDQhKOKGI4tGOLqnCTPHut+7eRuGiGQiszxagVAU2YQ4YItLGZE7jqI+GbE/KJZC0Ig0dzo4biu1No31eZ4DQByhA9CDKRfzbDYjZeJD+7CLKwC88Pzzy8vLFy5cGA9HWZErRU1Vj0aDlZUVQ6pV5OfPX3DO1XUtjE3TMEPTNJNq5h3rxBgF3j/gXJ9a31zbXE+LfDgcs7MRFPeNZQrdVmta1YeD0Zn1RWDHPoTg5qXlMYIW1wWtNbM452KCusmySGWo6zrNsrIsWWA0mrTb1O129/f3tdbLy8utdnc8Gi0vL+at8oVf7TcN5AW0Wp9SWoK3LjhjzO7+YHd/0Ov115ZXdnd3h0eDxcXlVqt14ey5dru1tXM/L7OybPvGjocjdt/wjd/wifi+rPs/nOO80HmRR8GwCzKbzQRhZWUlEqvTJF9f/y5jfrIo8rjvktbsrdIaSWb1dH/ra+AGfOmzcVj47MOfwpnN53r9DjPvbG1vbJ6OYEq705lMJouLi977hekU1HG8rg+sOVG6rmedpGOt1YnBpmZmtk4p1czqNMtUt3f6zKkbt+8422iTNU2DiGlqOPimCUvLfQIZjUd5kjMgsty/t3Xr1i1EHAwGRDoyvaz1uTKIql22kUgCTCYz7y0zZ0laVdXK6hIR1dO6mT4AH/u9pcOD4Ww2C775iR//T+2yUBq3t7eH+weHO9unN8+8c/36y6+8dvX8xmg4fe3NV3/tM5/7heffAoD1heLrvnp+kqtXHxFng7feN+PxFBG0SSvrMIB3rNPUOQfaGK3FegJ0rsnTLITQVLVJE+8tkI7PmojEHHvPPGkqjcTBQT2pq+r6jXeYVKfVPZx653kGzXg680r5IDdu3S6KIs9TZ+v9wfDS2Ysf/vCHh9NJUWZf8f73fvYzn/93/+4/bO/cixBQp9OJVmRzMhMpRAEE9s77+UO3v78PIlolu7v7O9vbgAziH3nssfNnz8agoVOnTqVJFkuTGOVeCBBAUS60bJO5SaAs2Dms42c1QHt+sTgwBAWiiLwIApAAI6DAnHcvcgJGyrEjkAAACyAC/4Zi68GU6jceHLn+MKeJEZ8kdgdhBkUGhEgIWeZWEErhcUChinLLwCrm9/iQmsR7X01nSZLkaYaIWdnx3sfCQCeUl20XQkGpUsqkSZYV0+mUmfOOVmT6y3kQDMJN04zHdXDBUGpAm8R4rbTWqJVHRG1IGQQNpDKTtkwihJ00UzpJsiIpWizIpBjQBbCCLDhh9sS2ZiC6c3cwqSvnnE5Sjom3OnUc5s7+QKhIlAmik/mEfl5oKqUkTkCFkbRKTGD2gUlREAgCwJE/xy569JNChCDso989KRGBmBcDaEhHVFFQBGDOtiaCwBR1FQKIQrGQFgYBkjCfkcVAwOBCCJjoyF05AZ1FGBkISQFZZ5NUOxtQJ843zAwgx60yAB8rMEQAokcJAAjwQ0TDWH0zg0TdK/I88wSZGTiQ0iAAREICAYQDKAKGAJJoBGAXbJZndV0Tgi6yKoSJ9ajU2HlmTlSaLZ/qb5zPCKSp9urJTz/3yuAnf6GZHF4+tfoV73rq8auXrly+sLm2fvX9Z55VIC5MhoPB4f7d27fv3r557e133nn7zf/8sz+FoJTKnnzyqaLIU5MwCHIQUIlOmX1gJtLMPk1N3cwUSQhJ3dSKWqdPP3n+/LO+aQTcp/7zy//qX/4MEHf78LGPvfupZy6fO7u8vrHQ62X9tgaQup4B29pPna+QvNLi3MgjVs3ByUNl/Y0kyRdX9NpGS5mu+GUAEiZmANG2CRIoMDY1By9ESV1ZAIUoGFhrZPGguMhSoYAoRZmS4hC80oIUrJuGYFHqJhwFkOmkVmSqqok+7QoUOzY60zppL7S0yoM3R4P6pS/cefvte//xJ3/p2tszRfrCucefevqSiIRgm2kDAEbrpq6TJLHVTGvKs7y7tPjqK6+MxqM/8Pv/wLf+7m+58uglH+qjw31kITDBizKGVdHpb7xxa/cH/tb//ubtowvPfHh3YsVoTdHHH4JrUmMAOYTAAQA1CikEhhBCEEYiQQGFWM+mSilXN845QVYQjSSMCHCYx72IBK2jUJcEJBZeWZY5O48L8t7DcU3knHuYb/rrmK+IqJUyItg4G0LIsoJDHAXT3IrNex/EmNRzwOOQH2ZuaiuBVZaFEB6O+O61W0v9HpEOwWtSg+HhndduwbxroitXrrD3HCxCYJYsNdb6oHCh044GIcqYLH1gPHH2wjkBuH/vjg9hY329aRqtJS17vU7XKNnbPkJKvAADMXjPc6IcIQUf6IEb2QNNlog01iUphdBMptPxZNbrLZRl6Yvs4GCv11totQut6Wg42B8c3X7tIgAD9E/+nsnka+IXH/rq4XQ6GQ+H1tr93Z1rN+4AewQ4OjqqatvpdBYWFq/fvPH229ceufqIan7nr9twEvPtACDu39VVY31gwDTJou7SWr+0shqCPPnUXwWA8fi3p+mnnHNKITMjicoSdnb/6Bt/s90MAG7f+2C397OU5O1Od29r26T5xqlNZq5ts7O3y8yD8ejtt3cyZTbXN9rt9nA8mk3H7V7b+UZrbTSBQQokYgAg1RkYBc5trK70uu3BuNG5ZiFkL86i0taGajpLlG5GM0x4Omlee/FLu3sHtbPW2rLVeuOtd/r9fp63W0XZabe9903tatvMZlW8X711WtTde7fWNxbTNP3CF17bORh825Pzt3PzlXcgzbTR4N32jTvgGwABwpXV5fW1M6Gq6mb4t/7+P754ZvW5518ggE/81nf91e/+o+fPnVnpL75xZ36SZjaqZzNSYEhliWYGEWDGhkPT2BQghJAqzQBaIQQGpVzwiMqkhpmZxRBzYAysjDZFplKtjEGR4Hzwwfm6tr5xblqNRSknqUe5vbUj7bYoTaS27t0HgM3NzTxLdGp29vaDSF3X08mk0+m8+13vunj+0sHR4e3bdz772c/evXcHgJGo2+0iqsPDQ9IFM2iTBOfLvFVN6+vv3AQ01gZhTJKWSSjRdPfWvTdff51QMcL6+vrVq1fX19cXe/319fXNjXVRatpY3cnauhgcHr2+OzS6XVcjUCbaJ8YjJpkIqDB/aCQAgASAB9MOARGgKE1jiTb3xy5fD1aYMP+a4NfVZMeNYDRrFZQggiAEAoIChMgYnHDAxJQA6d7OPhqjRPJWO8yN7HUEB2HeYrHOckMKEUMkqzvPIcwmVbvTbZy10yloA4khk3tAlRasjFW6slixTtOUdeKFmqTjUWNqkrxYTrpJksW0006nIwBKaRt8UFj7wIFi5SkS2UihjtaXQs3QMbMLXpFhZhGMUIUIEqYCwglxUZII6EQLABCDQgbkQAoRyKN4QADxIMD+BGyNhAQiAkEBcP4BqBq5lsfli5oXbccXXFwARM8eEeesLwLPgeaqCAQAQMUC7JgAAghDtPckIkIEFcFeBkQVRBigcdaFQFoFz/AQBUVkPrJiYCIkM7eM9gG1yYI/BGRmQVTAeHI/ICgBlnCSnBB9TCh+ITAfrzIIoKCOAGtAEaB5/ItADEAnEEEfxxMEgUFCqkhckxKAoHAgJJ0QC0erRQasnWVPM5BMq7RdLK4sLJ47x87aWfV/fu7av/6lV/JUXTy3+cQj5x89f+qJy6c3lzqbFxfPnz+v5MP1dDI4OPwLf/57bt65+/obb73x5ls/+Z/+o2drlLly5Uqv12u3iyDgrAdFEfg2SimNIqIQETx7cd4HbxHlzNmL5y6cJ6OsrZ9/fu8//cS/Q3DLy92nn7xy9fFL586fWVvvl2XeX15ttyxQFbh2fibBW/dAAyfgZnWNiBwO4yeOqCL3CJFQoTHGkE4KINQAmKb5dNLoOe83ssvRu6OYV1g13rkmSXQzqUJwUTBIhpxzWIUkySSEzCREJjGFSVsICftkVvHN65PrN+68/ebdn/iJnxuPbGB1+tylx59e9J6FaVY1IpIYpSElQG9tkadaU1bmiPjC5z9DAL/n23/PN37z73zyycdR4Xgy8sEqUEQQ5RpZ2be69R9+4Qv/4//yj/K1S90rT+7WlckSz8whGJqrclg8cAwmBQYU4QAiAUBQKWM0sW0KZe4eHRRlLj40TbO4vFC7mh0Di1JagLx4IiJD1jaICKABAFmCBGaOy1GiNT9UYBmjnOfoSQEA8+SAh54TjaBc8CLixcURVxymeYEIPlprq6rRWmdGx8EaEZVl2TSNtZaIHo7cXl9fn0wm02mVpuny4tLiUv/JJx8PIdS13d3Zv3bt2ptvvY6IIiHatQFAmbfTNJVILkCp6vsnZ7t9+3YIodUqRGQyGqdpqrXB4I8Odsoir2ZNXdeEEbtFicxMkaiUgWNeiBwLnehYWxUJYd1u17nA7ENwWZoown6/2+12J1X95JOPp0V++7VD+E2OX/257ie+fSVYlyb69Vdeff7zn0uNLrIMgiWi/f394v8i70/DLbuq81B4jDHnXM1uTn9ONad6SVWlqlKHOkBIQkLCgMHgYIIBN9gG39ix0zrJY4frOFwnvt/98iXOjWM7ibvYBozBYDCd6Iw6BEJCbUlVJVXfnb7Z3WrmnGPcH3PtfXZVSSR5vn/fN3+cZ5+111577bnmWnPMd7zjfWv1fdfsXVxeuDL2GrRO791a/sw6n9breZ4HPVxENDoOsVdozIwocZw4tgCotRZAyF7tqAAA27c/4nwtL5kA62mtPjpmrYU8b9YbqCjSpnbw4Ll6Y2lhURCC4WutVqvFCZHy3vZ6LpZEGFF08GNhZ+NG3O20im636OYlAyi9cP6ijgwjEtH6ihLrzp4+M9IYWV5af/KJp+I4UTqqjdajKHbC1jpbdtdXWrY47ZxrddoX5ha6WS+OYxTIu73FiwvW9u688zYv/Ph3nlFRffBz0sYoKO1cSajj5ngETimsXIwK653XJlER/e0TT/7mv/inu3ZObhpvJiYCa8FtFIVYa+M0VVr7IDROxMzWOgap1WrOOaN1qZwhKllyV1YKLn0jwoHWlFGRCKMiCjMEkTGkY2VL6eWrQKi07uT5ap4vrK1BFC2vrgMRM9fr9SgyJ0+enN2yNU2dLX3F2URtS8/M7c762GhzzxvvvuOO1589e3pubu47jz924sRxABodnWh387CQYO/q9frq6urSwrw2dWdFBUHR3Ga+rNWS0ZExJPAinU77G1/7KgAgUL1ef81NN93+2tduv3pP5l2s7GsPXnWhdXxlPYtqjTLUYG88FgLyjoKVf88AgLlknIW9+rDV5dT5oXwiDKlR9I8/2HugHRYiLxFkACCiKEqywsYmBlCvuf2OC4vzufOlE9aU57msZ2AtiAAoQARmiEIiRMW12sTE5kZ9BBSlaT1OEh0ncZLoKFrvdjwSk2IhnaZF6YQwilMiand7ngmjWgngCURplMSBZgFGWFzriTCAcygWhQFqccMWpTHa2ZDsMyJarNNapUkq4BMBEyY0X3lKAiNC5JEyX+TsKEpKzxoBkYSRhaHyumbPwv0iGMGNaCTIwAZHxD46dcmSWvphtPQxKulngQedz9JPGSOycMg2btQfEAGgFyYQAFXF5ciMSCDCAITBzNmJteyRDNCVeiIU1EC9OOmHYwxEhBVGVV17GBpXAoJXVG1cXllb5aDxknC+Gl393xgWCexLwiRNYk0gwuwtEbHvrx8QPIAPBbnAkdGxVgrJGEWAJYMrbFa6KBod2z6WxibSqt1Z+9w3vvfp9ldGarR/z9Y7b73xwDW7tk6PbxobaW5pjmzacfWhm+68N2u3W//8X/yzuQvnX3zxxWee/v7jjz9++twZAr13/76Zmc3N8bGiKK21CsF6D8wgGNYLWisBXxQ2SRKUyKh4145Ne7YfIhQQtzy/9smnH5qfPy8K9u/bcvC6PXuu2rpldmzTlrGJyfFaGo3W1MV+hyRmmrUDsay8c2W4vzwXzktQBS2BMXgrKeO9L4okiDNWlSt2A6oJszwRdXImItSqipW91NNxrVKtEqW0sOp1baflV9e6586cfenlc08/dfT73z9LhOKja/ffpHbUrIOiKPIeBn0oZo61cZZjY2KtEKN6vd5qrT9/+FnH5S/94i+++b77Dh06SETtXrcoSwEPgELkRZGJzejYxXX7x5/65Mc+/429r7lztcSuIBpl2RpjFIK1FlAirawXQfBhVLAXEiItIuLRlVaBrmlD7H1ZEHuj9WijmZUFsyckBAxLOQAWRSBgIhWcAAas9yiKgpBTsHccDEtjjLX5YO1Elzp2IKIuioKxIoghYhCeEBHnXJqmSqkgRleWpc0zEymjKnJ0QKoDL29wRGv92lrrwvkLADB/cV6EN2+ZGR8fbTZHt2/ffvfdd9fqSafTWVycX1lZu3B+7qWXX+5mvW7WBWCFyovDIc/tvNtjduKsENpejohZ3q0lcaQpj+MjLx0fBFjVU4MrrY7wcBm+YwevtSGlFDunCJrjo91ud3VlaXRsQimcm7/Y7XbHJqfOnzvz5CPTw/f8m99DRPSVT24o8jcnx0EEtL7ptlumN286evTIsSNHvHWzW7Y2jRkZGWm329NjHx4+SCmf/sLffPHv/Mgfb1wAIq0xjuPmSC3Pc8J3xRHEl6Rzga1L6kkQpyDE1NS7RWfw7pve1pk5cCBfXHz0C5+vRwqNLp3v9aw20fT0NCp95tzZ7UZNppO9dssksYhwmuZ5PjY2Ym1x4fz5+khzatOUjlSaRI49Ks0gRVFoFUWJAUHvPBFw1qsn8WSzfuHcBciL0tOZl09obdq9TGvas3sXszv64pF6veFZz88v1EfHmiNj3YXV8xcXEaXT6SwsLJVZKdZVeCRpUMEoi8H7ifGptRUfR3UvHEc1J0MSgszCzhYWxEtkmCgicKVrRHGv3TUIJlbHTh/7P//3j7zlntevzp/orC87TbEx9fqG8ISOm1Zwud27OL9Y2lycX19ZvmH//u2bp7JeJ45jEanXkm63G9R3sWpDrEnrK56mhygyShlFERF5lwd5zFqjCVnWLd1qu7fYc0utrhmZ7GZZXhRj46OtTmuk0dRav3zieKPRqNfrmzdvJpQobpY2D7mYF198cWx8YefOnZs3b96+fftNN9/Y6XSee+7wZz7z2TSpR1GtdC6O6yJy+vRpIOWsRYy990mki7IQsJ1uDkEidQN3ojRN0zR97NvfPXvuwj1vvnfHVXuXLy7x2I7RZp3XVlD8QMGrGnIehuAHAWSRjbtycFNd8voyx6G+eioMADO8fB4dOg5WsyxWmCQglmUekTD4dtYD0pO7rz5fuNX5JaAoqY+OzdSSJK2ljTitKTIeIIrrYxNTjeaI9+IFIpNEUcIIhffWOWb2wrlgJ17LC+uR8rJgi0IkQEXXKqWQJoRAPDpxEBA5KFm8ZwSg2CQE7MQpHXnPCAxiazERUjMdDQI0IA4YfZH32qskLL7sloUtcmetAkjiWJFmMaWn0S1bIxW1MqeNJkTrnFIKg8kQAAMLAsol2YrwAq/oxiti4gqk7F/9IRm2wYoUAAEIAjmWSICHJHtAsKovxBDZIgLSJbE09BMx1Slt5Bf6bcBzYa5idwaQUMVRDTbkQfg1OPSlJlSXheyvPHwQACrN4NBdISdulBKQNInGGnWjwNvSO9RaR1HCvko7AUBQEg6f1wqRBYHFOhB2IgqwdEUURb1epwBOY7Nr99VKXQMsF9qt//iJB8V+ed81u26+7pr9V2/fNTu9eaw+FpmRkZGJybFdu7bdettNxY+/e319/eLFiy+9dPzFI0ceeeTbRx9+lEjv2bNnYmzSxIF4TL1ej7BUCsrS15JUa22UZmQtzMwgggITjenRayauPXid44Idvvj86hc+94B1GYqd2TR24w0Ht22fvmPH60K3dFcmklQZ7ZIUolg5VzrnjFEsvigyJA/A3js2LODLsoyiRCtwzpeOAY0yVXaYiKIkWDwnpIwwEUXCZEuxlntdLHrx0lLn7Jkzi4urZ8/MPf3U4fPnlrUyhNGOXbsOXfu6OK2Xpc3zspu10jQl9Fprgdh778SVZd6o19PYgPcvvXy01W7t23vNr//Gv3zdHa/bsWObiVS3tV5mOaLSGAEYx4ykTH00o8ajz5/49X/3+5KMXPP6u1s9q3WCgIAgSCpQEIMyqiAQAioSCRGLOC8kBGAibUsPrkxqiRIveWZA2JYQiiI5HAyJkAiYwVqbRrGIhLhrUNATwqFWq1UBXf1pZ1gbDAbKDENNe+8DOBxUr2JtQvyLiMNHR6xk8UO2iP2G7kWrtVGrGLTyozi21k5OTi4uLhw7dgwAFBnP/uCBg1u2bGk0a/V6bXp604FrD73pTfd5L6219V6v126vd3udC2fPD462srzYlx4ChcqLT4xZXVmOFI6NjCiA5aUl5grtC/qrg583/NAZPr04TYqiYOfjOO52u3meNxqNIu/VkrSb9VZXlgU4UgRQhV/v+kB8+vSpE8e7O3fufNdPNf/6TyuA9xO/M/feD41hWaJS2/fsnt408/o3vOHFwy88/th3RpqNbKmoxRvuTgBQn/iqW8cdu3d85Ru/+JY3/W61lTCOE2YIQk2v+HxZb63qeNo5Z11JqDW4eqOx3q3eTdMUrO31evV63WUdAPHsRxo1IL2ytJDWm9PTk91OS9g1R0daq2shtx0wTmPM7t27xycmALnZbK611uM4LrzzwgqJUnRFr7SeIhOlMShaPXv+mSefWF7vZKxb3eLw959ZWFozsd6+fZaLoizzRx555HWvez2LmZufm2R96uycD6G5eFCqOTouDqLaiDGxZR+W7yGmRPbeiTD0ehmDEGm2Q9EAM2EYuOQ8OxYBlSbGC5g4Rm9VHHuAtFbr5cX6WjvVEUXaIS51NkDCJ184cfbi3PzCyuLywpPPHCGAfZsbr7/t1l6RVyl9Zutcq93WOkKtIqVzWyKLEw6SpJ69ElWWBfUd/Qg1M+g4JcDS2Wa9FicJGz2/3rXdTuldcOEIejDMPL+4EJtoZGQkuEpUeV6AoGdtjGk2m+fPn19dXd29e2cURahocnL6h37oh7SOPv2pv8rzUoAB6cTJl5cXFwFlcnpifa3HHvKym8TR7t17du3ePj4+GsdxGPntXnb+3MXvfPvRXtYDwJOnTjSfGNm6Y+fEWONse60olCElKNbaYeswCPTrASbRNxT6QQz6V3vrB7G+QlPAsCGVHCZgEa2NzS0zHbrp9sWFi6ucvvb+dyeNEY/aMzrnHAMAWMelFQ9gHSx0s7MLXQEqrO90FovSISIjevGEyrEPbHdGAGLAhLGq8GRWwAAqWGgIgUZgAGSFjApEgVAppXivjc5tmUapAY/Zss/anlVhHTsb/IWJfb0WbRkdnZkcG202psZGN01ONhu1WhzV0lQAVtvZ80dP/NWXvpGMz0xPbm17zr01WrFU/pnBJhrAEygE9JcHNlWnAlyOe1VbfqC502XXgkW0oMBQrFwtXEMaASVEJ/1ASUSIlPTDL6JQlS/CrxpeY2V+MAR0iTj2jPrSn1Bd9/CZV/sJg59/ZRg6vAVFxLvIqHocJcYYJagQwWitkZGJy+AcE2oOiADZlZ5AqhoHUsaYNE4EoVuUcRwje/EleLYC3isA1I3pfTdsU4qK3toD3zn8l1/66uRoctv1195w9a5rd++YmhwdqSeIxASTm7Zumd1642tuKsuyvd45d/bC6ZNnnn/+8LPPPv/4Y9+2vhwZaR44cCCtxSMjI2XhtI68dSEvGaqYIx1ba9mj0SZ3HW1qnnF8tPG6267WWou3zhdz5xZPvHT0jg9WPfD3f/7fzmwa27V7y/TMyMhobXpyotZo1JIoqSe1JCVDCgWUpHHMyBFaTamwJ4NRpFzgnaMqy5IZA1fbltLrtbsd2+0Vi3Nri0urK0vrx4+ff+6Zi8YYW4pS0aaZ2cmJ/Zum0pDQzPMcUOWZ5HmplEqTOrJPIlWWBQI10jqZ+vr66rEjh63NEfhnP/jBe+6559B1B0dGR0ubd7ot6XjwjhCiKHIWCitxYzSqj51aXP+LL3/hY3/91W37bpSovp47pCRRUa/XU0YpQvGOmYFU4BcqJOfZO8eIKF4pUiiutOIx0ko8RIY4y9ZXlsfGEutLFhRBBRh8k5lZIelIKzDAnvsmQhAYYCKBCQ0AQTl84/5iHh6WlwkWBuo9JkmCiB6cQjVwYBwbG9NaZ1mvLEtBpZQyxmhDpXci0mjW8zxXpIhoeXl56AtEBGxRImKWFWVp01qDCLZv37W0tNTp9b710IPOFlQZJ6m9e/eNjU2MjIyMjIxM12aualx1w6HrB0d717veFRS5lFJ5UTBzr9sGYGDnynJ5dX3QBczVAhr7+trYd8aqChPCG6Eo2nsAcc4ao4iSXrudlcXk5PSm5lRZuNb6mh6aip74zrev3rfXaMo7bRJ+04/wNz5fBbdF1otr6crKakju1OrNm2+/bXb3zqe//9TKxfk0TXt9OwCkvyyzZLQ5csfrXv/i4RdOn/n3O3f8k7j+uVbbjiX1NE1b7Q4z1+p/0+u+AwAE/gLhx8Nna7WaQsRImahmS88IJokHpze/NF+bmgSS3ObjzXo77xmlW2urE1PT9ThyrmRbFKWdmZps1GpBW2uk0Txz5szY2Fi9liwvLDabdSBExMLaTq83PjHWTBu2sFmWRZFvtbudItu8eXNzYnx9ff3I88+NTkzOL7W8Sl944chVu/aWZR4rbYBKlloSRVHU7Tkg7ZijqMamLuJNpLx13ovRqXOe2VrvQyGJtdZonZhYwCtNcZpkWcbMwSwlNGstobAXwLCuZ6+QBb0XYxSLW2mtaRN//VsPbZoYnWpO9Vpr661sfnmp1e7t2HpHOMi//g//1RjTs4UCePPtN775njsO7t2jwbdba1FkSlfqKAKPzbGRPC8c2263LQhpnCCBdRYRgcALi/g8zxl8XEsjo8uyRO+QvTEGCKM0AUX1xnJ2fjHP86mZpLAuK4usLJg5SRIktd5u1et1TardbtfrdSSdpmmv1wsJ6GazjohFYdvtbrPZPH/2Qlqv3XHHHUmSeMfGmLm5uU6nk+/Y/uSTTy4vLpCK6416pJM9e3ZNjI+jULvd7XR6cRxPTU1NTm668/V3vvc97zlz5syZU6dJ6ZX11svHjt/2utfnOm69cMaVEcZRX99rML/5yilIqiLHQI2XIWR6eKa8JF+EQRv68iDgyiisSmiioAB5EvEVrSekwJRGlbbaxaOPH4bGNltvvDhXWlkpLWeFzfM8sE6tFxFRJgIkUARBWRGV1rGKaxIif/FRlChmrTUDWOcqpYxgVoeoKAqn50VEyENVB8qAQAxAwA4JBZGZa0oZm3NrqS7rr7/u6vE4Hh+pj4006vV6vZbUk6SWmloax0ZrQgLWhMJOvCOSwjveEt96/a133rrzz//qa98/cXRs29XzmRUhEawAoUBIFxIQQL4yzoAfGH/0gaCwGwNcApsNPjWIe7CyWBg68qAW9bLEX/A7oODMBEB9fDgkjod2rpKe4YCEJNVoEQTn+Yp0YmWNUKmW/I+i9cF59n8OQiU2BNU6QQRElFaR0oYIxIvzCgSExbMQioAODGcEEGbrWLxGRWG8IwIISRj00Iwjxw4FQCnUmpnBgdKQamXzNiultd68ddf2Xbu7effp091vfPdvy2771hsP3HLDtYeu2rZz89goEHjrywzBj4/VZyb233zjwbe99Z48L+bn519+6cSJ06cefvjhk8dPXLgwt33bztnZ2XpSM5FWSEqZrMgLm6MyURJZW2qKnC1d4aIoIbS2zI1RCmRianJLvGXQP7t23VYUxZEX289+/3Srvb68uOzYpXHi2EZGTW+aSqJobLKpSSlD9Vpaq9cRwDNTrKy1ZemKvGy3szwrl5dXFhaWup0q8yMAsak5LwQ0Ozt78427gtScLT2QQiDLFsAyMyPbkpVSRiEieueiSIO40WZjdXX1+089R0AC8qM/+s433/em/dfu2zG7NbjSra8sgJAy2jlRKkXEPCt1Uhsbn1ktzV9//Zn/+CefzE1y1S13rXdzKb3GGAWs90kSO/ZAihCBWbxTpAyRc1wzGoxCFFsKsk8ik9QbKopYlNY0NZoWcz3prKczTWApShdpUwKAQIgfJLhgMgeXp8AlCMkQ11cYDXGUtXawAtJae28rk03nVF+PsBr1RDqUEzLz9ebuavNZeMfNv1C9noRvHv69oCfWc53IR1lZRFH02h0/OTjKjR9493EQALjq36ErbZBWL8pieXn5Tz765ff/6j0f/62/Hb5zPvTRH07S6Hf+2Wf/h/fYyuqqiPzcW//1lW998lsfVUqRUlAV4DhmWZ67+8o9ASAZ+QIRKaIQjQVVJxFhFmNMrVYbGRmxLJ1OJ4qiJDbdtTeFD7L6zOJ8qhCKoti1a1dZPTiq8KvdWvPeT0xMgKD1zrrCRNHmLbN33zN69vjpY4cPD05AmG32IzYDADh/9svbZ7cp/RnnqmqIpaUlpc3IyEiWZbX632RZlmfFIMRCRAAGz4WzxhjnytOn7x8c+XsPbv3eg2sABHBvSPxfvfuhKBqvJWneWxsdGQUEK+7Uyy+bNB6dGFdKGaWSyBRZb7w5pgVrcdIcG11cXspsuWPHdoO0vrI6NjGZNhoAUm+OXlhemFtYatTqgTMXKb1tduvJ0wuJTjQZC3miI2AR71tr6865Xq8HqBCMACNhkVutI21UnmUaiUgrY5iwKAogNHGiQKwtkjh2zsZxXAajAjUsFqwACMSBCBgKTNswAznn2LExcXN86q8f+Mri3PxUrXbu/Jnz83OrhSWA3/2tnw7HUGR6tnj3W976Iz/85k1jST2ltaWLa92OJo1kRGRlvd1qtZxzgemYpmkSx7VaLSxuRLwIFqUtvY+SRCdJNy8WVtvdblcDJFqNNhtJkoDkzDA9tcm9eHqt3RpxLityrXWRWxCfpulqa70WJ4UuKE663S4RtVqtyfGJIH42vzDXy7JAe2KuOJutTpuItm/f/sADD+zcufPgwYPT09O1Wu0DH/jA4cOH//BP/rjdWiJU33tiHgCw0kfl6667Po5P1+v1r3/96wcPHrzpphtGm40TJ07plp4/N7c8v5hM7UqMShz2XAkCYOKhDg+SF2GmvDTteAX9a3jblXjMD2jVDAp9VhkjUEXsJ9LWekJAFa12swsXLzamNpWiKEqtZyJDcUxESGSggmEEoXQOALVSDOK8dyxKaxFGViBSsieHMsh7KWIBQuJQRyesSPUV+lVYvIU0aMibsXMEiCxJpLKlC7fv3/6/vfdnZ1KfcmmAQ3ECQaiuysR1wXoABvEeUTyLMCMysFfi2vqazZs+8ss/9Z///Atf+c7hsT3XrmQOSXO/I0NYyiFThz+oVy/LTr7inpfAQlcEbYOq+EE+0YmgCJEMcoKMQBKcqCQUoxJRVSov0j/DV76+ob+lzwXbIIpccZb/k4HXlV9x+UYQwaDVZK21RoMJDxMWRs+uH3f2FSLFs4iEokpkoRBnIzCH5YAPkv+WgT0QadZOxHvrELwiYpFeYckpULV4pLlnYleR9xZ63T/4xBe4bN104Jrr9+289cYDW6fHxmqRkGRFz2ZrcWTiOLr22v0HDx4srP25n/uZhYWlM2fOnD599tmnnj5x4sTLL79MRDMzMzMzM/V6nREEhSFUQmgkqyIUX5okYuvIaO99Ly+GOiFGjCbGJ9UE7Y4iABxwtQHEukLEt9a6zpVxEj337JlWq7V9+3ZUUJa5MjpU4BGaWm2yWZtMt11ljAn+xbasGD5lWXouez2HlGsyqAhFWJxUYvFeaxIhFE4aiStdOyuOHnlewAHYbVu3/fzP/czNN9+8f//+mZmZWq2W97p5Xma9FaWUVsY6RkYQxRwhmWR0yqL57ovnPv65r3/riaNb915PtUY7L0kZ5x0geO/RgAMgrYiInRVmo0kjOpuDc2XBSZIYUrGhWlofHW1GRpXWezAoPjLKaQnokYhorT0DewieyETEAoEHH0V6MIAHKUUAsNaGgnStNfTtipVSADa4cXjv67XaMFHee6+73S6VdFP9nlcb4vce/IVvvPBfmTk2OgR6r5YmO/4rkv9+7q1zgFpFf/LRLwHAZbEXAPzBr3/x/b/6ql833E6dPfcKNyoAALz3jb/+U7965113v9Z7H5zqF8+9/tWOk7fe3px8IHBQrPcminqdbpqmiFKWhY5MUZaGlICsLC5MbZrp9UUPFFIaJ+KhtbL+/YUndawnJiYAbg/vnj91ysTJ1u3bxsYnbVkQkYnjrJc5x3tvufVS9tiPD17d+YbfBgAuP5H7cnx0lABrtXpR5ISABFneE2ajN+C3tbW1JImY2Zd2tNGMR+K1tR/UaS+fvGvP9gdba+tJFBdZHsUGvZ2eGI9qaZykQBgbZSPz0tFjTy4ub9++fefuXXmvS4Szs1u1UsTQWVsXgbReF6T61NTWnVf7LMMk3bxl+1V7r1leWKwlcVpLmNmzgJBSplarrawvj4+PK6WcFxB0DOzBiw/eOUkSI6KzlhlsXgBhFMUhkLLW6ooOwlFkoCdEUNhy6Df1OSriFYIIeGsxZfE2TB55wUpoembXI888TwA1Eye6sXvHJMHGUuOuWw796Dvedt2Ba5zNllfm1pd7iKBMlJdge2We50JIyUgjijbV68EVAACc9wCg0sh766zPwUEUZwgl+6JdOi86ThAE4zjzHrxtr7VzDyWaXq9njOl2u3nhQNkoSmId54V1XoRUVpTO+vX1FiIZE2Uz+cTEuLXLeVYWRSEIcwvzkYmtta1WS2u9urJ27YH9+/bt+/jHPz41NXXnnXfu2bOnXmvs3XfNR3/jXy0uBqg1b62tr6+vX7hwcX19XSsDgtNTMwcPHvzqV7/68Y//2U984P1bNs8anTzx5DPf++5jt9+/advM+MkXzyeT01kQYbqkBR1OZPEbEdgrTe0bUyAyXMq5fLW2IU8QMBYBlP62fpILSBDBubzRbML6GjQa4rBEJQpRKQ9gmUEqMB+rcLwywQUQwCA+JUDoSQmRMPmA3wUCrHdkDLMD70ySls56W4I2qEIogQgMQMiC4ir5WRBihLJIfPsDb7tr+4gUK+c9CIMLDA+oasOVIkJC7y0RijAjBz5qBMTICUGxulAfU7/8gR9Zb3cfP7sYj2wuwEJFWyKFIkKCJBVRauPi4DBJq9+qTqj2ZrgC6IJLgqFLrp1zDoADta/P5EIkAL9x7wy1vlpEiPZYkAURFKLH4VPCjbEh4hFChSwKSN8DSkQGmekN8bD/9XYJPwwCHIsIqJQSZA8SRDcYBUNBn1ZeGKU/gwpjkNkFFAQhDg8lhSjIiEhCAOCdkNKgQMArQvCCCpDF+wKAYm0QSTwhgnUtAlBJvO/G25wt1lz5l9964c+//Pjs5snbbzywf9fs3l2bt4xt1ZrBdpbWVkXAGEOEm7fO7N6zw3v/d979jvW11tzc3Llz506ePPnSkZeOHj164cKFer05NTU1MTUDRLXGiCAbY7yweAzFc8NdyOCAQNBZ8K7IQihNmqwtnHNaa888Mjaa5bk2tOuqq6y1zWZzQIoAIe8lywoEAkRjlGXfzTPvfRzHgUEVvkgpdB6iSDFAaW2cmNRE3lujlPPl6urqmVOnRZhAb986+4H3v+fag/sPHTq4aWZmZnIKAJilm2UrKytKGWbRuhawHkIBIW3SpD6Rc/TCmeW/+MIXv/LQ45OzO686dDODLkuXks7LopbEpS8pgrCKBgYURuBEQS0yhMJKG4rraa1WqwlWq5QoirQmEGI03W7e6fSKLAOtnXOOPSrT7WREZHTwgQUWFz4VFMK0VojoXImIgckTYqwQeg6uQrfbJdKemb2HvvD9xr0koJ1zyAIbdWav0N504Oe/+eJ/M8YopW7b+ZM/YM9/+/f+6AO/+iZFajgDell7/6+96cqY7BXbRz/8Bz/g3T/9rYc//dD/XrrbI3zV7xo0pZR4ZmaltHMuSRLnHLOP47goSmOMRur1eiMjI2w3njtIsra8du70OaMpTdPp6ck0ivdc9eSJ4zcDwJHnDuy65ulWY02raGlleXx8HIG0TsAQlPbVzwUAQOh9zeSvkigONiC1Wi0UTaRpigJ5ng9CXCIi0iK2Vqt574My+w9uJ87evXv2IQbpdDvjeiSOaGVhziPVGvVmY+Tkyy9t3rz14LXXnh85PzYxNT097diPTk54EFfk586c6/V6jbHRWrPRbnU6SyuNTVtUUgdSzZktd971xs/99V8zMwnX6ymL7/S6cZogYpZlI2OjcRz3ej0TxxDqPnq5NlpEgs15URSIGghBqCxLEUEVDDs4iWMAarfbZVk2Rpr5wvpGXwWXNWAAjwwAHkQUVLUkiKQUoeheWUzM7PDeKuFUqxNnTtBQQu0j//wXGpG5cO50lnUZwaOqNxpZ6S/MLx9+8di5c+dGx8a67d70ppmJsfGklsYmUkYTYJQYRdTLMu+cIJfWLi8vM1LpLJAmgV63PV6vXbV961iz5pww6lPnF4+eOJvUat1uT1REDMFNwZCK43hpcWVm05RSptfLe52LSqnFxeV6vT4+PnnqzOmVtfU0Tdmj0VGWFUeOHCOiY8eOpbVk9+7dr3nNjfPz8ysrK9u2bbPl2rGXjm7duhkR2+32wYMHCVSj0Th27NiFCxcXFhefffbZEydO3HTTTW9/+9ufemrLn3/sz2+47qY3vOHut/3wW85fvHjipWPjE1ePxLie91jFl3C/PIKiS9KR/1+34SBg+AUICyCAwhC9ISKosIMXFyWxdwUIFN47ioQBEJz0caJwzp4hZAmxX4AZXgqKCCoF3jFr0Eik2RYgCCQAxLZQUeQByqIABB3Hzjvpc8VDRScBVMoSQiCUJEl38dwbDuybnajb1Qs1KZGECJQyzJWrJCI7VyqlQJiUDmoQ2Le8JBYiqCvM1xfTMfXh973j0V/7T6Pjm5ihrEJXRkEI9poIcmlR6iCHeBmtZKNXr+C8Dicfr/gXg9R91W0IEvwuRXRf8FdEcIPXAUjkQbz3HAo0sB/VDaF0l7y4hD7vA5GcAEV4iBgYEtkcfuH/8ti6tCEigHLskcihlJ4FwGhSihDRiogAEYVKB2bPzpNAnEQIKBxspoLIL4CIBzCkHDsFAEKeWRvlACqKKjBVXSogPiRsvXeg1Fq7rU0qqrb5qusJuOy1P/+3T/5l++uzU41brt978Opt+6/aObtpaxIZbzNb9rrddruzrgmTKJqeHNu8ZdN1N1wHIt1ud32ttTA3d/7cxbNnz79w5Nhzh589f+5MkkRpms7Ozk5MTGhllNHDnUBEOkJBFpbSWSKltRYW0ipggbGp5XkPtWLAoiwAMCuscxyp2JYOEYhU4IASgWdnFFrkWmIYGIWjSLN12qjACA/JNfH27NmzSwsLAfcFhNfedvvb3vKWa/fv37Fjx+zmLUm9ltZqzjn2fnV1lZkBMFCbfOlDjUeel8okFEU6quUev//ihYefeO7zX310YsfVh26/t2e987YoCkJFCPU0LV2hiZ2wdUyAtShBlkatkSYRehcZNdqoBwVH0ibPcway3nXzjJl7mW13Mu/tyIgu84zSGmrDpXW2DAwf9o6dD6uOwD+21oasC/UV80M+LSxbvPftdnsQTdVqtbJ0zldF7mVZDpvpIaJWRKQ3RvxxeHLL1ORjDz+4vrawbevmQbB177Uffvj4H/V6G8oi3zn53yOTHD5y9OGHH/1G86vHf6V/twcC6aXh19/7rfcURVGv17vd9vAa+md+4+0STPcILPuP/+YDr3hHvf9f3gfMgAJKgXcf/7ffCtt/7K7/A+B5rXWZb2B601u+FXgh3vvW0pvDxrWF+5rjX9Fa1xuNtda6JoWKAMR6H8rcOlnPJHGSJAsLC7V+7eH58+e3b9k5OjqqNGqtu91scXE58JpDy7Ki18treaGU7vWykbFJJMOkQG9QlwZN608792ODf8vy3bb483qtaUgprYmoKDJERMKQy6h2y4syL7SmcAk1mat2Pnr89B0AcGDvE7WJiauuu4HqjZcffXh9af7YyYrqdPL8XTMzX0OSXtFOophQ2BWr853W0kpzZPTi2TPt5vr41GStkepGWrZb586eVkpt3bV7anJ8zpW9Iu+ePV+WbnxyU9nKokYTVAQR3nTXvWtrrW9+81vCrtttT89sTZKol2X1ZupFiLQA5XkRaePKEkhFkS7L0mqIY5OXhY6MLVmCvjUqECfeE2qlscgtKrOwtMzMtbQBvLrRcQoBWBtyJULwixDI8xI11kGFUnvvPVLS7fVAyonR+vkLJ3/kTXd/4Eff0e3bDnVXTq8UBaLRcZTnICo5daHz+NPPP/jY985cvOirLFgF9TCAAhh+LX1XQu7X6fHAHwdAAfz4O99yw8H9SkVFwd/63nPHzi9MzOzM2QNkjr1Rxnunta430shEnW7mY7FelhcXTRyxp1q9vnXrtqnJmZW1lbReZ+sRFZEO3MdGo/bpT3/6gx/84HXXXffkk0/GJtq/95rR0fGXj710/tyFO+644ztPf/vs6XOHDh04ffr0+Pj47OzWWqO2adOmT37yk9/45tfzPL/jDa/fe/W+Y8eO/e7v/c7BA4fuuff+eHI8T+Nrd2369okFU6/7IYgFUAEzeA+acEjWTypePA1KHfsJxLAdQOTVJk/puytW3zCIBliwWrn33Y0EAFFpBQAVVSKoRrkgDNlXeAIIaBP2XQVD3rJPH2dEJcjB5Q3FCwuzACFIqCwkIfTOQqAeEYp3w7xzEAIkERcuPqG2zrGXKIoirTSyAYecC0Ys5EqHKMDIIEpRYC4SBVtfJNz4yQoibxlBUgV5e2Hn9O6fe8/b/ttnvj628+qWYyAPAlCtk5m9Q6ThhF0w9w39LyLYf+5LxdbayOu9Yvgll6pvyxCFxXvPwdwaBEVY2CscLOURcUCVY+9DdXlFJRZBQlVhctWFQYQgBgRBzZ7IWQsgSRwXzEEvN8y3EEDQ/xH49YocOIAhPbmB4gaGmgLlEfLSC4MlJO+RPSOU1jODUqiVckWukOq1mnUl5CUp1KRACECYGfrpV8tBhNajiEJgJ4jKVabomgFIAMTrKmmsRCGIV0oRWxQUbz2LJjW782qjqLT5d15a+tzDzxDBa2++6fYbDly7Z+vs9Fg6FidSoMtsLy98zoJkIiDRkd66beu27bM33wyEutVea3e7q0urFy9evHDhwsLi3MmTJ48fP37syFEn7v1v+EehE8pOlkQRIERJokmLIIICIoXiOLjmSBQleZ5HccTE3vtYx+KEXdDWEWddZIIIsNMajNFRnLDzAsROenm+vLi8tLwI4BDDEkoR0t33vPHaH7t2x44de/bsmtk0NTY2WqvVsCJQcavV6uY5CkAokiMFQAqjSlHZOx2pZHREVK1dqO89f+6h7z7z+HNHxjZt3XvL7ZnlwlqFyoLScQ2QRTjSNNIYLctcxxEiGmMSAmSfRnESmzA3qD5DqZdlmeXS2bwssrwoiqJ0bMjEcdzutEcajebE9Gq37a0daY51eoWE6gdEEQYEFPHeDowdETHI0Qco2lobYLDh8MB7Xy26iJg5y7LhYUxEmpmH5npAEkTs9XrhuA++9N/uvmZDPSHcqKG9dvdPA8BrtsFP3gfHh1IOH/+tr//UR94yXIDzi//ufdZ6RBUu+/C988e/8YXw4qd//W1a65/7Nz/yh//y81feYiaKbJ6Tjth7EPxH/+E9v/2PPxXeStM6uO7wziISx3FeFgDQnPhae2WDKQWE7W7HOadMnziK6J0LvRZoWHEcD849iiInbmVlJYqiUPI5Pj6e1GrDX8de8rw0JjYmbrU6pExjbLzTu+SUWu0/nBgfRZaa+dy5c+cmNv396lTxJxA/z+zJoSNnrQ3opXNuAFK2293NmwERu91uvV5HRcy8ZeorROS4GSLxqMitLRzbrbNfu3C++r1pLW426931VlnmSmlj0npSR2WStDY1NbW0spYkycjISNnptFbXkAWFjz/7zPL83PSWrdv27AGAkyfOhJpk0BF4ASRAuummmw8ffvH4iXNvvPP1J05fSNIIAJxwnNai0jGDLX2eF7V6UjpBZBMpRLGuKL2NdSoiXFXWIGkd5kJmBl8RULIsI5UML4IRWNh7r6RCSggRHYMBQlQgjoRExDEwUK1Wn5u7+Nqbb/6lX/yFMcXPv1gdxJZlnDYLj4BJad1zR0783h/+93VXekyi+lSsDAB476N+oWJZliTC7JA5CB4HfD8EwaE4IArSxOzEl3/+ua98/8VjNxy67qlnnn/h+Nn6yKbCIijF7IqitGBFBLEsyzI2ptFouNIvLa2wk8XF5SL3qKgovImTmc1b8jwn0s65KIrStN5ur1vru93uyZMn9+3bNzs7e/LkydXV1dnZ7c1m88GHHk3T+s033/LYY9/2Xnbu3PnpT3/65ptvjpJ0enr6Qx/60AMPPPDotx+x1r7p3ntF5Nr9ex959NH/9Du/fe/b3n3g9ns2jaQNo9bLnh7mfnnuR1cb8zReCsJceZP+4HZJkugVJtt+8CfUPz4F5FdrA5ZRgsRruDU55BnDBy5niEMlZDDwIkOoOHEQlvMYdBYEAUkCDIPIAjiw/R4ck8NkDAAsAoEUItjuZE5I60iJcgAKtdYY0GsiAu+GNWwv/50IRKgRvJQE4LqL99127cPfefxCt52kzVycBwcUF9YpowCR/UaZ1UbOMdQc9vOJ1YOMEBEHYfSVycdhaGqAog2iJkQk2kCtBpw8BgykJ0Vh3mTh8F0K0SEq6QMAg4P3L3H/MIP4TwKO2I+2f9B4+J9tga/HCAJAWK0PgNB69l68l9yWBIxSFSIQGc/M3gILsNcKRTBWJEbhZUHe0JgX6iv0hy4VIhDBPnAoHoPJJgbBFQIRpEpkAwCAIDgNAoIF3ZzcMbF1T6vVeflC9/Hvf1q57t49m15/87UHdm/buXl6enQ6ErbWljbzNittVpZlEMTTqOI4qtXS2S1brrv+YOAU9nq99dZqt5MtLCyUZ6pznxgbW1icO3Xq1NzSsggERDmKkonxqbRey7JuvV6PYh3UqphZa72c96qQmrHTbudFoRVmRa+1tm7ZIoAAqKqOQprNsQPXHnrbW++bGGvu3r1706bNExMTab05MTGBitI0FfG9Xs971+l0rLVB3jYgus57TcLMSrSgdkxRlJhIIzARrK21nz/64tPPH19qQTqx5a433u901O611lqdFAjQONGCEEUaidE77208PkZEqEmhGEJkT4iJ0SjA4hEoK8pWp2c9F9ZnedHNcut9FEVJEiEjcwmKtEl27N333IPf2LNre6/XAwjKcIJ93dAwFEJEFV4McK/gyxziPyKCodSX856ZpV//Nzx0EVHzpeB2OCIzt9vtspwshyg4WZYFwPl/2K4kh3mRPtudkej9v3bvx//tN4d3+O8f/VJ48dO//rbB60ETJwBKfJDkx2F7YBFh74cTrkE7TpERRhnSA0RFxACCkUEMYGkwrKycZtFog4Hl3W+1Wq10BYNHBSMjzbm5OVTUWq2I+TPbHp+e2TI5MxOqheM4Xeu0t+3Y7sErfQkUXBQ26Ocmmqanp0+d+L+27/nng/MPlzCJozRN86KX9Qql1OCJ1Ol0nHO1WpKXRZ7ncapIayQqbF6HelqLlUIwisVZW6RDRZHi86WFdqNWR510OxmAjU3CnrO88CvLab2pAPOsmxfFwsKC1jqJ4057vXA2K3vHjx+Nao00TScnJkFr2+54AKOVEje2a9fdd9999KUT189e1e12T529wOKcc2VZDso6+vF+SUSkAFC8dwKewTNJUJEiQkIUIRbL7NIk6bS7U9OTZ8/2yrKMkg31M2Ln2QP17akZmBm1dl6YOVaReC7K3DpGhYV3BftGYyTWMeLG6F1ZFafziyudl85ffOix7x0/dcGJ1Oubcse93DPnIbRC9KutVUJljAkVVCJVGg4BBKlnmTDWRN5LWXoBz4ikdK058fRLp58+dgpANZszvRK9z5KaKm3pCltpkYuUeZ4h2dIxs/OMRGutTquTpY06yHEhYCmtcwjQECyKYr21FsVpr8gF8MUXjuzetefOO+/+i7/4iwtz87Ozq2maenZf/epXp6Ymdl+156mnnrrrrrsOHbr+k3/5qXe96+9smtnsyb/m1lvyPP/e9743MTk+OTl55tTJN77xjQcO3vjFrz04Pbt71/V37FwqD59dUWZIbo4dEgiisAMcSkpe2frz3Q9ug/n+kol2wFiCUCwXAi8FAIBUvYkmiRU4MKALcb6SCKUrJ+/wv2wIWAgIVxnE4e+s8lx9lChEV0KALByKMMOnBYApOA+IQgBkH5uoLIrRsfGnXnz+qRdP3HtoKu+txbpSciEATeC91X1pBgDgUAc6PKeDNZG2ttA60krl5frmevLeN7/2X/2Xz8/su8HlzARMhAq9LckQEglDoIcPYLBQanDJdQiBDiLy5Y/4DWF5qGoScbheFYGZJcBmIXjyHIbrpcqmVQBHqCkkRkGqiA0JNqBN6V9YqBR7WYSFQBH26xuRDCkAV5khiFRaj+Gj/6uR/YA0GL69Gh4hVgp+DEKCVTWJAJdMRCAKEIwxCGwdK9yADKmqBqkOhlgFeKG2noIiGoASGfQsIwuA7wN5UDHogKHiSACAMqosS6UojSJvS+vLRhSpJN4yNclcrq4t/9Fff4/dwzu3bLn5umuvu2bPNTtmxutjjVpTcWbLjJ1lFsslZwGtzK0tRMREShs9Pjm2dXZ27/593/zzY+GU/s3/+VFrs6IoOp18fa3d6+VZlq2trXe73SzLer1eu93O86wsSwButVrNZjM8wI0xZKI0SpQxRqmkVhsbGYmSZGJsLG3UxkdG00baSBv1kWatVtMIkTFpFFv2gUxSlpkruddaseyDB6IAIQCBDjURpHQl/u7ZexfX6xSNOolWe/bixYsvv3T07OmTtaS+bWrTzCj1PK5na04pzGxNEyU10BGqlFmKIm82muwLEsmyXCnl2UWxIRYg7b3v9MpgpUPaXJyfB6CitMHIJDREZFeKYBzrWjqG3Lvmuptay4vdpTmjdZZ1WUQrRCJkZPaBACpSxUjUr+RTCo0xgVwfdCGg/8gMIZdSir2vkOOhrKALBovDQVmIXWq12ulTbUQchrtERF8aVbxi+8Cv3k9EfihQC4WaRFSl1AkB8MqKyNCujL0AgEARMbOn0BtD9KzwUBgWa61ULVDRpSKzgx+IfbkXUiYw6Ygoz0pEDMjHYOcojrMsQw1xLUJFtUY9L4uk31ubts6ONMecl6wo03qDgaanp711TBjXNkS/7nxL51Mfo7mFpfGRURNxp5tlQ+fPzIQCAt1u6VwZ19I0Tdvt7sBLM44S59haa4xSCqNYa00kJor1yMiIiO90OqMjI81ms7O2HJw6q25HSqK43cmZodXp1OtNnaiiKLXW9cbY5s2bjTFz5y8URdHttnfs2BHHsS162/bvY61aztbTZKw5wV66qysUxSZOABi0ApZdV1+1Z89ucXzzdQeff/55oxSw63W69XpTm7iT5ahIREgBKQRkzw4AggELAJMKKtlehJidiCeBsixBZHJycmlpqSjyON7I3hKBd8GwhRBUkB52jr0rXaRrkfGuykGgorKwU1Nbvvbgw1snJ2+78UDdbA0H+ZtvPf7Fb3wrA+oBMOjx8RnKynZWOCFlYvYlKcVAriyREiQqrO9PIwEXqRKRqKLgngZ9F0RAZPCdzMbpSKxNWXKrnQFFAKrX6VSh2yA9hIq963a7IdrzzimlvSsXFhZ7vUwbMzbeDIaSQUk5jHBFpt6oHz9x4oUXjtx3373Hjr50+PDhO173+nq9DsAjI2Nf+tKX3v72t7darQsXLuzfv5/+Rn/2rz/zv/383xubnDh16tStt946vzD3wAMPvO997920ZfPv/v5/+fH3/uQHf/InOrlXZTY7MXr0zDxdsrKq1I9D8mhwo8Gl2MCVGNjlINkrkr0GHwcAAEQVUu2I/S8LrCP2BACEaVoDFE0c8pSD0wkA2GWHHbxbCcYCSD8Ck0DG78uqi0gf2QqqGxXcjAACLEgQNKCEGQlZDJEAl853mMe37vzjT37+NXs/PDky6fP2QKSXiEKxqrwi81UoCEkwMyoDikqbx1HNdRfecOPVb779+keOnGtOT61aX7AnZUgZQgRAD5778c0GZs+XGJgMI2GXbamirCvRxwpHq/BBqdwD0AeysYgAo4Dul0aCgPeeFQmi+LD6B0AgAMGBZMMrXuhLEDUg2pDm39j58h571WzjpW34Y0ORJw6tCYiRq6IBJBABIhGFJIiKwCGS1to7IYUaERAGFbDYL0kZSK4wMgFhpYFTfTn14TdGoMoWoDqBan9EqeoBOUDKWgiZy8I6oxnApBM7923RWnfb61/+9nOf/+pD4zV94KotN+zdefWuLTu2bh4dmaQgx2utOOtcDooQ2NqiLHNj4m5nZXh2rqcJpwYAZrfEiCogpCBVxAAAnq333rkyJKBHR8c7nY6IMLsAhCOq4JkYzjzQMomAxTnLpc1LVzjv80zWKp0gFsGgsyDgY6N8cCTjcP+R90I6skxCdaWjOE0UJe2effn4ueePHDn8wpFup3Xt1bvuvOOOnbNbiajXyzPH59ZbC2vds3NLq+3e/PLZVubqjXEdN9K0nveCNCmXpYPS1UfStbWOKy0z53keSgRWVhZLZ+MkDfKrfStFL8CGdBzXoihKarEFxyVCBDfe/vqHPvcpgo0VXegBZsaQLtQmYD3hRrbWMkMURQFd8t5572FoxRoKHa58MELF/VJKhsZwSKxorY0xSlHpL7mXhkOTvz36X73DZ599tt3u/mnrj8PG1y7fCwAclISHbwznMIqkci8RIvIiH/yNtxodax21Or2P/eYX4NWb914pIkTxTkCGyweUUvbSG16AfLB9vnQ7e/BeCIUIEVgRAKD3PhRxYMgMWauUitMvFb23AYDi9wD86cjIyOrKepqmzbFx72QALa6tt5O0XvZckiQ6iry3ayvd5kiKijTR+/7Bzk/836cBYNuBgz/9Cz9/5uUTh595VjXqI8aM5BsUOu9cmtQQ0YtLkiTSpiydGeJBBzzTe48KoyhSIKnRz7/8+h1bHrBlXmNRSoFSY82xMwV3ZOPI8xeXreOe9dfsv/bqgze02+1enkVNUkpNjI2njXre7dVryY7ts8y+MTUBcTzdnYY4gSiaJgEVg2UASGsRGSO+rLR5lGrObrvvzfd//tOf2TIzftXObZESV9qAyvZ6eVGWcZo6ZkBECslFQVSISrwMFU6JMAtUIypJorLsaE3GqMWFOe82LnEURdbmGNI/BEgEWrHzVC3dXenKQDApcqdIr6/lcW3yjz7zuT/7zKf/6LeqVOzHvvGttD5u4nRUm6xXtNo9CpxoVQlyOucAxCSJLUvPPoggAECVQMDgKkfAwuJFHAEqpFAgB4zGmKLXdVAancRJHVDZMg9JNEICAe8ZABSRKBNKQMrSATNprUy6urKSF7bRqLXb7VqzXqthu9ubm58DAOusNqaX582RiW9885sHDhx673vf97u/+zunz57xVT4FVtdWTp06tWfPVc888+ydd911//0/9MADD/zpxz7+4Q//XK1WuzB/8R3vesdffOzPPv7xP/+pn/nZN977po9/4mNp3HQWfuznGrN7b43B26FbG4kBpcqhBA2ngKyEWTto0/ezc9Cf6IIwOr8aFBY685JnUBX3AAqAQ0QAXc1ZSIJeFFtxKqkDWQQrZIFUlctBFAjQdj+MuwQOGsqZUpVxFISBq03fK2mY7jb8D21M5CgALChOhJA8ggXljFkq5EsPff/vvvl23+ukJtgvWhCDWpXeDT2gCAYAjVAgdXnPSinrWIkh9ppdjPnb7r7u0e99L5qcjDC2QF4QmbzzoCqAPGDkAMDModw7/JxX6ezQj9V/w+8A9HHkKpvCGFjbIgigiBAAPCvA4LodIgZmRmERsWUpiCDk2DFLyKUOh+mIFa0+vEZSEoAiRLbMwCA8qJurfpFAYO6HE3zFierVEpQyNElu1F5s/LwBPxOqLiHlmQEkABqoABQBoRfWQgCgQhJaBIAEBEDLUDcKgEcCBBToR5GsEFVQJ4FgxekBKvQUQUJ8G4JcZtCkFJArrSZM4tj6EkQ0KnCl82WjnoxctYd9YYviyFLnsRcfU95v37pp757t+67euW/X7JZG1EziWpo4n7EvvBNn2VkmGi40gqyTKSQgzN2aMUYkJMjUgC0eBpVC5dkbMlyyBu2AlUKsMmvWCgVsQ2tyvgyzv1IIQNYWAKBM7ITJaAYCCFUoUJRORRGLAIh1rIxhD0JUS2slk1I1gWR9jU8cP//CkeOf+eznTl88+ZqbD77+tQfuuO3+W67bNzU+2qgZFQEjOIJuCR6hKCHLYWnNzS2vnzw//8zhEy+fWZhb6dSbUxNTMx6UMTS/tN5ttXNbBlJ87nNgFiITxSHiFGFC1Ci1ZpImUWIipZQysTK6XXQzR+tFPtkcQ1Q+7wRIT8Qzi2XPXhSSAJZlHphI1joiUgoZwYNYG2AdrdTG6M3yMsA9gzXoMPolhFprXQ5Z4wGAc64osmazSUT37v97g+1aq+Ecn3NOUby8vNxojIQtx39FPgbf+Ilfuy+wAwZ7Dr5y8AIRQ/LxQ//HO51z4v0H/ve3xXH8Rx/57CveY/1bGgDAGDN8fxKRYz+cIAkpsHCql9R5EgWYfZC+DS2o/Bd5LwBpcRy3Wq24v5Aoy3JsbGx0+8TcwnxrtTWa/MRQh+hWqzU6OirirSvAs4BXmDB7m2dlX4XlE//+9Pv+ybaJnbuuPXiw02rX6/XPfnyjw+v1ui0zREySRBCcc7b0zvlBIUue5845ESUsedHTSj3/4m0AcObiD41NPGFZSMVQ+PnVdilq/szdgyPvuvZ652VsYnLbjh3x5k3gHHgPIpxlhLI0v7DaWrd51u12Rpv19vqyQrLWsiiIo/HpycbMNMQ1sgwg4Etk7vR6UZIaFaPCgzccOvr0M3MX5jdPTcSKCmdX5hdlpc0QI6rCeWH24AYzkYigoFT4K1cMEhEijcCCkmUFMIhgUVhnWQ/VLojSYd2GCMwegcB5UKhI2JaQxIKhnB29F0SlTJKV+cSmnanZGBfNqR2F5VY7Z84V6nraDLJboa7LFSVqxc6zLUkZBgmU7cADD9KjKIEjzEikSYuwY88iQASIvig2jc9owaW1dSTMy8xEygsTQkj9h+lhIHw8WMkEKFuZOMuysiyjNCmcjeNYR1GWZaB0qCoiUN1u1qiN/fEf/fcP//zPfehDH3rhxcOISKjW1lq1tP7wIw+/590/xsxnzpy55pqrvvVwnPU6L7zwwq5dO//gv/7ej733vXff/cYHH/zWI48++rrX3bH/wLVHXjhaN83WwnxzZ2/L5NjJtY3ilaCIVEU5V67b/leZOpclHHEAcYXJsp/pqb67cvRDQCLKnBMgIF1lpRT1w/UKq9ogGw25BVJfRMwDBCAkxJBBN5RDcqqqVsNLWIaIIepmHDqlQOAlxSDA5DV1rJ/cvPPPPvu1264/sG/TWNFeCBwH65wJypyX98DGU0gEENF5ARSjIvYOPLts/TV7t/7YW97wyW8+l85e0ytZyDELhUIBxOHYC4b59UOh1ZXZDbiUAbZxKQe+6SIorFiEKt2vAIAFmieKiPOleKos3RwAeC9AVThBhAOCnWwAbRtf6kFCNatIvzhCBEScc0JGqrVLJVZ32Wev/Amv1gYh9cZ6afDBSryjYvP1z7BfqgaCihDBC6sh8IwFB57BMrygQBYAqio0qzGGwgOSyyCFDgAVKIYq9JX3gkhKoSA49sooRPHeVrO1Z2FEBd46hyyITiWN6bHGxKx4Zm+/e/jsVx9+Qvnua/bu2rN9054927ZunpiaHBtpTCTYN2MvNtbeiMo5TwRRFOW2VKBQK2QsvSMBD14jld4ZUtaWZemstVV2QkOe9xBRKSPiQkcVZYYoWiuoEmqsdVQhF6QEBlpUnkg5YCLtBUnFCjWZxJgkL/yF1dbaeufkiSOHn3/pob/9zvnzcxTXfukf/cPXvuG2vftHJkehGUNDQQR9CRUE60A8lA4cQ5LApk16euvkda+ZvOv+AxeW4NkXF5565tiDj3xnz549iElZ+F5ulTECUFov7LQmAmH2UawJsFFvpFFMKIYwjkwQphFfOrDC7JhRKCtzX9oIMaTbGMAJAhCoaoEXUnmD2zAgXiKCWEFiwzFS+Bf73E3vLhFzQcTLYbFrzR1dOVkUxcrKyu1v+leD7V89/LtyKfHr/oO/+LdH/ijP88mpGQAYVD7++b/9+k985H72l+QHQ7Y1zwsRIYA//ehXw1taa+8FLs1yXtn+9N986f2/en9IqEeR/u1//pmNMR5SjcOS3SKhj8LzaLC96peKS1fZc4d+dM4GLX6jdaNeZyfSP/2J5ofK/K9iUxtvTqysrg6fVRLFRVE88/T3d+3a9fi3RgHUj7wvLlzuvcTEttzork/8+3Pv/GBNQMampv/yDzcOcvtdc0892m3WY+99UWZJWg+Vq91ud6yfvTQmDtVJoUCVhuTgS4/NuG5qI93CO1Obn79n8Nb7/uk1oPaDiGuvKkDf6gCAUhqIKK2BoqmdyeTk+PlzZ5576qlYQZpENRMTaRPXVRQt2bLTao1NzSidmEYDTAyFBS513ERD7Eoabd5z/92f+8vPjjXqhFRYmyaJShpra2tZliWNkbywApWDikIdqtRJghIXYbXaDeRUFGalNECBoHvdQrzHofCLAwdDqHqCigV2AkBAZeGw2VCRCSU5aLQTIQQ00eparz00qFbXSgBQYkgEhFrtQpmEgdlbADBKW+8VIOhInAeEQBTsy1gFX14Q8OEUHACQSJWEABBEoBj0/quuPnr8xPm1NgBaZwEFEEOpGlJYVA/ENUlp7RFQKS5LimNw7BkCYaLZHGm32xfOnYWKV0MAaIxhoF7W+fznP//mN9+3adOmubk5RNN/Gsj58+e3b9/27HNP3XXXXffdf88XPv/5Rx59cPeen7z/LW/59Kc+9eN/97033XLLU08+cd2N191408GXXnzB2+LF556e3HdjIzV+eUPQBFExswghKgEv4CGAMNXbwxHVFRysK2KzS2Gp8M+wpm6fqANIwlzleUPAq3sFW9FAKXvFoiDA+v3MAA+OAAN0LRgYiWDlfFllH0OuMtD4qkgNYWhqr+ZNEc2KQVhBgPIIGEUIKnUMpbUA5GXXRXHc3PrXX374V37qvsQktiijKHK+pCDlepnZCFbVmggQCp10RMzscxfHsdUqd0UNeve94aa/efhZcaUhzeKCFxxRJcMBEoQNoF8VOZTUviTMUiKXAnvhHCoAINx2glhhO6R0xYMZRC0CikghYVA7Y1ZEIW9KRAYRCIWRAQXQewcgFa0rFChUp9HHq6o4DxhAKyKNEBlUhLzxeA6XCBDDSmf45wyOdvmoGvyucJGpfyAA6levIuAA7wTCYG0ZdNGEULz3BJqIQYIok1R6CUICgBQwUAQHG/hlCNCrB7uvgkcUQQ9VkB2ocP3ZRyOQAIkAKXTMIl7YawriIgwqGEyg1pGIeGuBCBG88yjoyhyFAMDE0fTslpktU4gyn/eOPne6/chzidZbpif2bJ+9aufW2U1j2zdPjdU25KPSsTGbZ+xt6UoONcnsUQAVIRIKlLbUkXHeMbKOtUlMnpdRpL23cWxCUk9rxczOe621iBcRx9V1YgYWpABtImuFSkfMbKK0PpYwRYXDpbWuleTU8cUTpxdOnpn/3pPPrq2stufnpOzee9/rPvrvfu3ATQcntoAl6OVwqgVpF8YMNBQ0I6gnIALsYb0DJYAV8CWUAIWIU8gIzSl4wxtnbrl95t77rn/yey8+9NDjI83pXbv2LC4vWVuAYJxoTagVxIkxhIooTeNIaeeteAb2vpIXJltwXuTMXJZFjH58fHzt3ImaUhKM74WUUoRK9Tn4QXtCa93PKZsQpDKzZ7bWQp84FMokvfdBRRIGQUgYP95rHjLuDq2+vPudt/4y3Lqx5esv/F5kTFmKtfarz//Omw/9Uth+z/6fvWf/zwJcUvn4/l+9V5EaXlP2s3tSwU5Dt9Lv/+pfvdp9BQAf/Og7/uTX/ya8/vhvfe3KHc52P7fT3yj+klUgAGBfmWP4vg23uyBiZUFUMeNC8rvZbDrnrPXLy8uKDOm/Fveu8EGSd3dbAACjQ+pojYmHjp9wWac7MT119OndYePnP+Hue2fR7WZSa4CHe34Y//aLVQTwuT8JDkQbC5T3/cqei0eLpbW1OJoywWebNIOAIhUNWe54lxdlYR1bMMbAUFR35MjNcATgawsAMDCpBID3/cp+AXSlM0rrsSnodRRHnfVVW3QiYxh8o1FDrbE5uu3qfY798sUL3dXVTtGZGBvfuW378traytJSa20VQvVzvV5a32q19uzdS4Rlnme2bMbp5LbZA9cfOHLi1Npqm7xNibrW5qVPavUAIiIi98NYQmRfSVMqpVBpYPEOhCuZyKIooiRxjvO8JB0Pp7k5rDQVECgkUEo5ARCbJJF1pWMbVh7ee2ctgKc4RlBKG+uG9CrJCDulTB9CV14whDaR0qESHhHZeQEhEN4wTmGCirYSuDhDE02fY8QCQEurq88cfqG0HgGJEDV6thICLxnCBvrQBbODIERpDDsHWoNInpVJGrXb7ZC3hDCheg+o2YOzRZqmx0+c+L3f/723//DbpqenmZlQO8daxd/+zrd/5O3vGB8fP3z48JZts1tmZy+enztz+tzuXVcB84kTJ66//vrz8wtf/OKXP/i+D+zbt/fokZda7dW5+XMUTw2XswQ5TQAKmaPw9N6o5pPhdJZgPwU2jD+9QnvVGTTMvKofMQQpIBIWBrABA1ImyFMAB2I+IIsgo4R5t0owVe7LfQfDAIcgkoQ5DULEFYg9apD1rsZnBQUNn1Q4aJV3xooC4hElik2nsFObdn314e+8+bUHb9k75YoVxVaBOFcqZbBPeA+gSEDjBtgKhGe/hySue8dCoAmztYXdm3a+5213/+mXvj26dfdK5sSz0pEEarwAIurKQjjUUYWQYvA4DTANEoUiUYEgmLIRCCKSKCSNYTqpKOXSL/0Ja3rvq7VHpEK+U0hEa40k3gJpZYSciEOPjIE4L1KRI18tPxgWHuiRiJQCIjWguofvHWiPDTp+OHEISAHeGs6ucZ+LCcO83/5YRNm4y8IqCbwLrHqAMBwEw3kQOWbNIqhAkAW9CJCEp0EoWAwnREFRCTgEc56DRFgoeOwPPxZVFe1KqA7t5z0FADQRIzCD1iTirbXGmNAVvl/zjoihzBCJ2DMp1FoL+NI7CiBuOjLZmNy006B3Yt3R8+tPPHu0szq/bcvE9FjjXdsq4aEXTi9OjI4062MqpURvUL7YluytJgTlHFtQypjEFWWc1IrSlSxKG+s9kEHEkkGElDYMgBRheM4KgSICItTK6IAAZYWzIN3CLc6trq5n5+eWz88vv3D09PFTF9tdV/poYnpzUp9onZ17+4/+6I/92Nuuv2UqaUAnhyPn8sVW0e1ZX5SRs7unmjum6vFIXFOQ9aTdK9fX8lbp13udzDqINGuiJGqMj0rOURTVYnVg78j+Pbffcfut3/nuM08/8/z0+HTa2FxmJYhNYs1SGgREUQgA7F3B3qOQY4aA/ogURUHMvtdNlEw260tjI3Mv583REe/Bc6hYRSIKqsiBRB/CqWD1SCYKBK/BeN4YpcyBXD64vy7jTWkg8T/goQnwN8/8x9REbB2yGNK5LR547j/90HW//Io7f/Ajb0VQUlnb95tnraler6+trWmtmfknPnL/n//mK4RTl7VYmw/95jv+4CN/84rv/uyv3vmbv/7PxDutNV8ikg7MrAgqVtDgLLwPNQGkNbugrwjOuYHmMjNHcZznuY6U1rp4dX1TNF8Ark+OjTZnZ+M0eW5u463zZy9u2rSp18tJKSJ6y3vMVz71Cv3747+0A9Bs2XXNLW9444mjL3R7JTNHVrIs6+WlqA3YZqm9Pj49tbzWHRkZEa+LEq66/tjxZ/e+2rm99+9vB2SwzmAELGA9CIJWjbEJzrMsy8rSF4yJTl1ZKp3uOvSaXbuvfvq7jy1fPA+Ex146wsw61r1WZ9nL5PRMq9XRtdqeXbvzXlaPUygLKiyqGNL6rfe+cfu+qz/76c8++JWHZ6enz7ay3HqttfXMzhORIs0g1loA8t4Zo8QDexukzYRDysNHWjH7NE2RZX1lVYEaVj6LUm27USgxpOCG6phJsjLXkbLC4hiBEx2xcmWw8SYiQ8NKoo4tIVhxFe8FUQMEYXEvHoiqMIMqZalA1agGBsilcXxwcu1fVgFAYNKFgLOWiISQHYMXICOBUxMe5uzDvYx9jxcARGEEBUjCKCyuzDE2aRSvrKyAB1BKGAANg7DzhFTk1kSp1njq7LmZLVuv3nf1S0dfilUsQujl6LHjBw/tf/bZZ5vN0fHmxEWZf+qpZ2dnt73p/rd842tfitLoNTfc/JUvf7Xb7h06cPDFI0eXVua6ZSb1y5ZlolB5diyBcKtEBLxHBSKimBDRoQdEBQpROVtCZED85eV4svH30pSlhwoVoz6NDAGAqaoPEmHQhEy9PCOtBYXZISphwWoWRMFgkBwSZwggpCORSiAk8DtFkIX7chVwSWYIkb0nrUQEGLASL0JPXKWxvEetgMhbT1oDEHgPaEPa1Cm1lBW12av+7IuP7Nr1E/W05LKlyJMwkWGEMGuH/BQAkwSJbQDwiAiiSCnPHFjaSsSISG/lLa+79uHHvj3XXWmmk53coggp9D6QmFXA7RERSYegBKBEYEFGIQITAnYGhqAW1q9mQJRIaUJRgFQJtJNRRER9OqYICGpEYxADb1bC/aGQlEJEUEZ5BgDWSD4spr0nAgDFCAOmLSL6kIhEBEQCYPbA4kU0oSECFvCMrATBA0I/QdjnsW/gWEFkBkSH1HE/NAu4n1SxV0gVE4B4QAZUmhUAOHGMQGgUIXpLiAJovSAQofLCCEICA59HgwLMDiPUCqAAEM1KUA1EgFGjBD0g7wG0YMTMBE4PNEFIVKTEeYVEfXZ2uM2r8gZkhYhaAYCAik0SHgQAoBQxVNkYBEWESEIVzcYbUqKU90GbWBQI+lIRKaPrk1Ozm7c4W7CUA0YdAPzW739mamJ8fGxkvFnfPDMxMT6aJPFIozlSS9NIR1qbBIk50sTO1WLfHB3zFIEKQlaeSCMicwXpeREQ8oAg6Dx38yLLy6zMVtda691svdWbX1y5uLC4sNZe7fZWurljaqYjo83J7ddsASFBfO6ZZ3aP0u/87m/cfusOU4MLXTj1gnTXW1mWgVZG48zo6FSqUsg7a6svnFjlPD9/5vxaq7u02nr51JmXTp5abXfixgiaKGo04mZzZsvMNfv3bdk2u33njulNjdfcQNcduOn5F/d++YFHLsxdmJna6r1C9N6K0cp5i4qFnXOOUDsPIhhF2rJf7+bOlpx3J1MleevZBx9ZPXdmbGK0LHNlIvYKBb1nIip6WbCYFqLCeUQEpVkE+yWJIuKcs9ZCX37Ae48AcRQ5a8M6Z/jxyMz6lrE3ww9s77jhH/7gHYbbn/zml6/c+N8+8pkrN/7PtP/yaz/og3/0Ww8DwJkXLt9+idDXUFtfehMAjG3+hvRbeJZFxlQrA2ab52ma5nm+vr6uzMcnJiaytbcMH+TMxf979849ZVkuLHasK9vrrVarVW8ez9r3AsDklu+uLplGY2R5edlE0bWHrs2y7Oa7Fp58aGb4ID/yk+NZUdbSOtQbN99z3zXXXtusNS/MX8i7eV70EDFNk61bk8/8Wf7jPzdy7VM/a62Nonj37t0jYxOFt57htnsmAOQT//H0Zb/xx//eJl9mwJ7SFDD4i0tpnSpFG0VpWo+j1IfwmHStnnVa6Muk1rzuppsOg5w7d7Ye1UQkW+4lSdLxrdL5yZkt4jkr8pW19dW1lbHR8UZSl7LI8zwdG53dv/dnP/yzWMD/+//1n665+db18wsSpN+VEWHnWGsNjIJeG/BsgT2RIiTnvEjFGGV2wq5RSyFAslE0rN/Jzoo48cyew9wrYsF7pzSI8oCR1t6Ds945p40Oirt9g7OqqT5xQUQUkIiIOJbAi6zcXi5dvvPQ3yEiYx8FGqA+oYkAGoNKeWYvTJHioFyqFIgAc6jV18YQUZl1yERQaVENvjcQSSTLspMnT2ZZBoAIJBIISzoUGgAwePBezp29cOhQb/v27S8dPUpEWV406vWjx44cOnTguuuue+Hwi0mSREm6MHdxZWVlcnISlHrkwYd37jmwZ9c18/MLV+3eHRldOLvWaqk0Hw6/jDHiGVFQsTCKDz7LLA6EQ+4GlFYi4p1XCkAp4CpF3PdJvLxdliMb6k7VBztIAXIgYlNQahQUMAq0EkJGVkACSqFAwK6IyIsDL6QVM7IrAQgJNSh2JbBopbyACmzyIFujFQlUpbjAwkG2JjKkGILTn2cQY4wQOraeAUgRkbNWk1JKsbfWeo9IOlLJ+DMnX/jWUy++++4D3aV1g8Ts2Fohdemjto/EAIsAAjESCPlK5AIQQSF0uyszE42fefdbfvU/fXxyz1gmLKLKLFeRIWWYWTyTAkBy7BDjUAlfJfERKxEz8f0MHgCARgJgQkJgBaRAgrIOihB7FEaWfsgbeHAD26iQSpb+EA3pvFBFI0qCTkXQYq2+a7D0V4AOqju44qIpoj5qitD3BX+11k8u97GwIVy2f1obPau19CPoKkUeLCwJAUEjkRcIoCBjbDQzB28gY5QiEs8KkYTFQxzFVrwIaaMViMtsbNAPqCxAHr1CUoYEiYQAlUZSVD06PAIAxCYKkv4CTIooGMCwD+dOiINFYRVQi6BAEJUUIqUUEAn4IBRARCTg2ZKQiXS/qB8UkCYVSLSWGXVEEOl4o1d37ruRnc+FL6zkpy4cz4susEdUStxIGk+MN41RWuskSRq1FMqeMaY5MWYdK6XCPVKWpXNMRM5xN8uttb2s6ORFLy/WWu3SegZca3VMWhfQjfpoVJsZTWfG4mQHxagi8NBptWPEsydPvvDs9//hP/3lt7/j1pFRmF+F0yfXFgu92iqk8Jsmpxp1Hfl89fTx5458v869JsrM2MQ1u67ePDF95LljLxx7qZsVdVJsovZqyxGWnd7F02dPHn7ha5//okqibTtmD15/8I47Xv+aW2669VB9754f+u4Ti1/5yjc94MT4FCL2ShtpKp3XpJXWoRTKO9crw53sFYjY/NTpU4e/+WVQMjM+AswAVJYlmgg8hJJVIvDeg+qL4vTrfMMIr4wdmaNoQ8FHglKg91DxrC5B3EXkfywk8f9jbW3uTaObvo6KiFANVSJ47xuNhvcS3PqiKMqybH11jejT1tog6KCUmpqaWllbHhsb01F9bm6ulta73e7ExJRSD6611pmni6K4ePHixMSE877Xy52z1tr73+WKTu/ChQuzO3Zu3jLbzsrRsTFABEHQ0ciO3eBkdnoanISHset0ROS9fx+x0bjxzrtBa/AAzrH38ehYmOG8de/5pe0AoE0EhNxpZd1er9PVkXFcGq0FLBBpHevIuDwnD8QCSJTGYEtgb/NupAhEAaEaHb/2uhuyTtZaXKzFCTD28jJv98bIQLutE+dWV0ip0Ua9vbbsot7YxGSiIu72KEpqI9Mf+oUPG2P+6lNf2D5S97adocqsFQStFJIwO0YvAFh5O4pAMPVDRCYBAnEiWmsnjEaXUnK5UZ3AzpFCFSVRmqRpakiJs4SolCrK0nvvBEA0E4A2zpbaGKiyKpczkwavw83TnzAGRY4hA0UCvn+qdNlHhlu/EhAAABWSQkBh8ShCSEToPEZRRKStLbxzwODKEohUlIr0+b2BqoQIAOHRzMzt9XUABtIhWU+KhriMKjyd11ZX1tfXm80mIDKA0ip4cTzyyCPveMc7rrrqqscffzwkv55++un777/v0KFDzz9z+Ny5C1EUNVJ11e7dB/Zf+9Rzx5xz6AHNULzLzokHpcHlAAgsiY4QNCrqlnmY3yrxefHeM2li55FMlQnr29Rc2aqpsZ8NG55kURBBkZAPxYrgEawCp4kNsZKQbiIB8RzGBgkAkUFEVxSkNaKAOGEBBhLQpCKlBAkRCRC1qTJdAIzaWpsVhdIatXbWOiWKNACbSInz4EsQiVApZRyzWG9QiXj2qFCRIYVAJKW3o1u3/fdPff7Wa7dubY6WvXVNWlECAOJdMAnwSEEICNGTMFWFtCBYEfyrAl7vkyiy3db1e3fc/ZoDT5y8MDa5c720kVF9hjoQUZC9NIiCliEk/RSJqoYxMVUZ1mqEolSi+wH3wnCQPthfjaiQIhuAhJfcLCSCA5LG4DpeyeugwcXtb5H+37AhIESXR+EVV68fqkrwWCSoiPAW2NNwFacoFFAbZ4feuz7KFLLlGhSxCKDSRAkqYC9KB0EIpcE5J56bkUFEB0IKXdEzURopUsKkNLDzFoAg0UrYp0lcekeoiMioGhH5MtNKE4OqQEgJD3JCQERdUQ2wLxMlRKi1HmDgA95LgM2VUswOkYyKQsmeiDCTUsq5ElgC+UETBRxUISqFKEgIURwFXbFADva8gX6FPJfRRtfriFPhnLwXbwsuipXM+h4rQ01Jnz52xhX5tx979Ife+vZ2L2MG6xyIGGNEwiJWx0mSJIkTLq0TJB1vMiMRKjM14QjAKM3MhS3jOC0LhyCFy3vOp2n63FNPbJka+dOP/edr9jfnW/DCEbfcLVa6drW9Wq/Xd22bkax88aknj333Qbx4op6v75gZcbGONm/98tPPPvad7y+vdTdv2146W1jvyiJSYBBsURpnrefxWEeRyubnPvtH3/vL//ifb7/nnne++933/NC9b3/j9A2H3vvxT33xqWeP7Ny5n8RlvayWNArnnCuFLJEIQZb7ztp6Sj5WfOHciWPffrg+Mx2La9QTlLTbyayzUnpQ5JwNihW+75HDVfofsE+rt85Z52qXSrIDQGmt1lr3XbcHJLDQ/v8u/IJ+3VBYdlhrg4eAc845FyRb4jheW1trNBpZltVqtbIs2+32zMxMp9PRWgdrUhGcmJjodnrj4+MXL15ExNHxsXAoY8zk5OTyykq73U6SpNFoLC8uddZbeZ6L8ysrK1ZglCfAWfau0+kYY9JmE1Cxy8gYLi2amL2jOAYP7U6mlKo1GoyKFRSdbhRpEdRxDCLt9fUaC7CopFZXOu92AcCzjYUx0kHMTGkNcSSeyyJnZ2OfiEhuu0SQZXmSRpR7ZG9Gxw7deOOj3/zb+aXFtF6b2TQ7PrWpXRS7rt7r2Jferq8sl93W1MRYYlRrbRl0ZJmSxlitVos3b3r33333dx58bG5xbSzR4lgZ3e5mqJV4ZzTpKO501xFRGMR74BwgyJwIIAUbsrReFyAdR9OTE0WxEX5Njk76tABFHsULl64Uz+g5z0vvfRylhshaZ1m01pbdYDXvhipN2DkMSRTYAJzoVfzjscp+Xpk1pit3BgAQIaXCocIcE16HJ2ZZ2Fo9VbWazYtg/ODLEvrpiZB/6Id3LILMAKSJgJmBHaBiZq0jVxYAoHXEQciDzNpq65q9uycmx1eWVpWORCRJavMLC+fOnbvpppuOHz++urpeS+unTp3qdrtXXXXN88+9qIzx3j/3/At7916zZXbzUy++zM6BiBviyTlbgNIADEpS4ZEk6i4vFEXBRKOTM8pE63nuguaTosBhBRDAirgM+Ko0oFdooTohCEtJpYcJDKiV8h5FDIJCJABC8QSAHrQCZgBRpIMhgiYFzikCTaCViiOlQcQ7grLbWg8PSwFfsfYUIWItTUZqCWjlhEqtrJOSvVGKvScC9gIiioidZw5ClwyAqBSBECKAc+JYfL0+0l2pf+XR7//0O+4ElZM457zCCt9hBKhsqwZDC4ICRT9A7YOshCheg21q/3ff+san/z9/EKtZQ8hIjkWswyr2AhJmAhBUqCrinECVjQXGIZlcFABi1actYh8IHBq2G5dpsJof3nLlRhHpx1GXX+Iq2kBkCez1S8TAmKvSx2rGeiUBb4LAW2MBGpSvVhUAssEH66POWNEzFYIQeA+CCgIJ2gOwQUJfIgCiFhZCiwyxQtIaCo7jGDUBOhXVEoUkGKpelFLWS4QKoVRKWWtREbIHBsteKRUncSC3QGUVjxoACEkrCKlRESIg0tDnPQsRV75mVEmmkICQIEtV2opKKRAqnEVQJtKeOZTkY4ilhAkJNQJAFGkU8NY55wSFUJtIlYXV8cZsjsoQihMpCwsASqEQsieUSCURimhUTrjtTTq1wyBefb2PxmfrTQ8eUBvwLrelQkn7l88yl84GuKZjPZWoNeR5mWjDWS9cisJ2QYjBeS9KqWe+//hdd9z6Mz/99pFROHbanV3qruWw2s4c2z3bNsfIx5584pnHHo24c2DTSLnEk2ljNDZxmrz08tHvPvHsltldGEWd3non6wmSjpQwd7pdJ6x0RMIJ1sTlmvT+XbuB1IWXj//aL/zCnuuu/cV//Mt33X/Pr/3SDz/wrbnf/p0/nN25O62NzC+tAEBRZAIuiiFJEsdUlvnsZO3EC88ce+yR0ZkJznutdisiJMSgEm4SU5ZlmqauKI3WeZ67XoZaIWIIyAaZNOdcHMehxBD6jKcQq4lIURRh5JfFJSoTl4dfz2UPbts89d1HHvziZz97zz1v1GmS53nNpKHyrnA2KMkqMlrrCxfmnn/++T1XXfM7Z387fPzO9fvDjOrZK1JTU1MAtLq6Gkj3RMQc1DKUiNRqNUTVbreZuVarCWNhSyH8s3/ddyL6yA+ntbjX64hIrdYgom67NT05kRq4cPHCna+94R/+0s/XI+p11yFIMAMXRWGLvFargfiyLEOgWgmrdt5R3eRBwtUHEVey3pMiDVEY7nmeC7N3wWNGsqwbFiJlmTtXZllmjFlfX0/T1LkSEAVYRyrkK7dv364Uem97vd7q6mqn09myZUtskqXO8tLSSpDM8K5sd3v2lJvavClN662VlTIv9uzfBwAExL08zNkREniB0hoPRAioKDZU5roeZ90WBYdVbRr1ps2LTrsVG1UfGUlqNWAGWyIwiMSRZmYgpbQWcaCUiHelVRpraQLibdbrttuxiaPYaFCm3qyPj5LGRmMkSWv15shqd35+ft4516iljSg6cfwl15tutzsCtH331Vt27BKVZtbVvJucnX3nO9/5L3/tX9U2z5qyLJz01lfIJCDEpUtGRtMoZZBarQEAmpQxKlyIgYJwu9t96qmnN01tZmaMNgKd9aW1osgYvAcGduAcIIEwAOooVeSIJNEGnO3lPW2igHDgZaEVbiw9AfuU4UtUDKqdYMP9kIYTH6+Ef1WTgAiIdwONY8C+WaHSwqy0juO0KArmqhamss8aiC9UlXECQuFQqAKgwEAaAIDZlT1lYiJtrQVmJEJST3z/yX0Hrt67f9+Tjz8deE6F9Y3m+FceeODQoUNve9vb/sNv/wfUCWT+9Okz11xzda3R7HW7cdoQgNzL1JZN4B15idCYIaWYRhJ3igwEwLsG4vrxY/t2TF57YH+v4Ie++3QHG6MzW9ueS+eD2FBV4hYW36iHdRZetQ0kmvq68Bxgj4q/H2S/AJlANCIhCoFTiOydeIsYaa3BW/EcKRUpneqaIRRX5J3VTmuFbc8oGknUtdOjE82kXq8HOosH6fbKVrszv7q+tHIuc0hxXSUj9dGp0Tht9bLcSZTEKNZZKxjKREyVU0MiCKXmzABkFEWqU/Do1l0f+/LDt91y4y3bZvLFc5HSQOg5FM4hQoDuIGRzw5AjAS/SJ8cxSPVQIi6L1tL+bbPvvOe1n3zo+frWq9azApTWCMzigYFEgIVFgUJAXwVbYTRXmq4EGPRdFSIiEWAQdh6UF8ilXMYBslvhuH3lrY19hEQCRauKsSrXQKnuGelv70uWVFAVClQstIEYV9gjRKV4iXsBhGhVHCAFcDVgtx6BJECmFNYmG64HQZsDkQmBFDIEGqBBUIAGxYKNtIlRg3hS2ntLpKMoKtjGWhNZAK7FkYjXSrGwBtQgkY7FewUKgBQZL16hF/C1SHvgsrR94U3wQATghIlJLDJCZIxA5apGRIaU996z56oPBCqiixdhRDFxVHpXwSqgWBwKl84qpTQpFFQoRBqAGSCIQVjrmVmT0sqAsPXsmUBrN+RS4AB5Q9KF2YstLXuK4zj0gxUhZVZbnSQyTJg57lqfO2uLwnof9AiNwtK7gZuW7vtGA4Bn9s4n9RozW3BICJ4NaFs4IDQaLxw/8sH3vP1Nb711fg2+88LFUkxp1crK2szEWDMyK0eeOPH8sxdPn7v1wL7J5sTLT30bOnOdRHs9Pn/+3PMvHhmbmmnlndz5QjzH4r3PbQEAURoRe+/YGNPtdrvdbpYVSZJ4AXZux57tF06/9Csf/ADoxu/94R/88DvfePD/+hf/5Nf//apq1sfG271epLR4NJBojHple2q81l258Px3HpzaPOnyrOh22PHiymqsTRzHOo7CI73oZcYYEJ+mqXMsVAUVfkgFZlC/0mq1oK9aMEg+Kq211pExw4gAvGLyMfT1xMREo153Io1Gw2V2dXW1ZzNjzOjoKABoFTFzHMczMzONRmPw2TDhefFJnHjvjdHec9BZgb4P60DzzVorUoYJODw/NKnSbSCo1hfcdcboSlLWliLeaOp119MI3v7Db63X0rK3rpTy3gFAQPbCrRvSuv2HAl42c/Z1XzYEdTYQi2ABlCS9Xi98r7V2dHQ0yzIA2Lx5c6+XM3OSJGtra1NTM0RUlDZN01A8fPHiXBRFmzZtmZqaCg4Py0tLJ156GViUUhcuXNi0dcvU1ISJksgoJJ4cHTnTPud6XR1FRVZorUPxKiNCAWVekFaRiaHXATKgFZRFAJzzbjeKEzI60nqiVsvbLZvnQUWGCFyR+yKL601CYu8Cd0NFkVKqKDJx3ghjHDcb9QsXLpimCRThqDly3U03PffUU3le7pyaqdVq27dvZ4GXXnppHWVipLllYnLL5k3tZnO13V5bWdJR1BybqY2OAiKkyS2vu/W++9944sKcyfS69bOzs0Sa0BTOF6XznpNao9frEZFCAQDnbOFsbovSWXHCztnCISKzG/ZQ77bbAkCGVGRIR8hcj6NanDBzlNS857ybe++8t0TE7L1nRLgM5sX+SgUCEoDovQfvMVSsDC3xL8uzbBzhVWr3RCSgVsOjCElACIXZChtot9eZYXJsXClVFHNa63JYm0CwWtYLkzIcnuyDCk3vUSkA5Z3z4gCQtC6LQmlti/LY0ZfLsrRlrk2NPZNSQT7za1/7xnve8+4feutbH/jyl9J644knnrjxxhtvufm2hx58OESdiwsLk2NNiBMQr7ig7vrgF7lOJ45jRK4TuYunfuMffPC2G/dEBsmk73/nm//rx7/w2PMnkqktDsm70C9KUECcQmJ5BczwB/QhCg8KJ/t9wSFfLVUBv0JQiKhRmC0BCCkAEW81QpzoVGkjPls9315fTsnt27Pt0Otv37Z1ampidKKZNAynKlhgVRX+XqBwPney3OpdWFk/c3Hp8LFTR18+0vEYNycmpjZ1Cls6p0iziC1LpbVWihlBJJh5SChtBRAWJ+iQ1OiWT/zNt3b/5A+PxE1xeSWSvfFj+8lDpsq2HPu4GIaaSHYCBMC+0Aq0795/x01feOh7WLSTKC0Z0AOhIJIDz8CVHhiofnFDVfTASMSXGBWEyk0BVICCHhkHSmeh4qPKGA6DXsOita9C4+M+N1+RuvJyB4ZWgK+qm66vO9r/OF8WeA1aX3lEMCjtYZWIVEJVPw6X1wZemvNACEpp9OhFKZVorYGVQhLSGlMEQjKRcg5IwGhIm5FGAlGRiQAcMgZ3GfDeKB1p0kRiGZS2oLLcghYQdrYAwtgYx/3sIQILKGFn2YN4EFuwUhvQu1LKCQ/NcRVRzHkfHhw6Lz0IeObAVAvQgHNJkoSrQwhxHCuFKKQUB+KBUZEVKUvP4tiDZkSFzDKQPOhaBgBDSpO2thAErRNQKvOc2UJEcm8FyAkoVADAWreLIi9LQWBCFuVtGQTGERWScmXJeRlwkxAsEkmv6BqjnAgJGYqKXonCtttbWbzw4Z/5yVtuv+bUkjuxsGJVc25x1VvevXlz+9xLnXzxtqsmf+mHfubi6YXPfvovjj5/OFubm50YiaO4kxdPPHN4ZHKy8NwtOuu9Vlyv6chY7z0LkRZh74RIry6vFWVJROPjo/V603ub57kturMzk/HslrLrf+ED73/DvXf/+9//b3/w7/75H/7Ft5588choo86emBUw91pttt1u3nr+bx/YvWU6y7K1tRXxEsexc4606eZZkiRJEjGzNsY5FxkD3oKiUBNMRJ4r9/JBdr7dbl8mNVoUxSCnbK29TGCr+ufp1jduHHnTi/67ylSa+poUIioipZRHV6vVEpVa54ItT7vdnpycBMJAUx0cbtfu3SsrK6trq3nRA4BOp+O9L21REQ+hioMIURFGRiOitw4Rk8h4L728NHrj7DWiIlRIwILI7H2slSFZaLV/5R98+Nabru91W86X1E91B+fBMMqHRSUuC7+CMUi4H0grsto5F6CvilFUFAAwOjJirW13W2NjY61Wi4iMjlqtlnNuamoCkaIoWl1djaKo0+1t27Ytz/N2e73ZbEZR9Nhjj0VRdM3e/Rcvzh9/6eXRRpPFJklSZL3W6ooyFMdx0e1obKTNaHpmdGHxwvSmGQYGQlWL8+UOs0RR5LjwmTdGFc7GUapNCsCRVp1OzwsnSQISyMuSjDa5yNlbV5R9EUTvuh1RkZBSSgEhBM8NgLIsQSvyXqfJ9PT04sJSYcuR0XETm5HZ2Zn5+fXllbkL53B+PkpSIJocaRTdTm99bWSkfvr4yxjHtcZIt1csXDi3vDTfGBuf3LwtTZqzh/b+8q/84j/9R//4qq2bFju2lbP1ggrydjcvLYNaW1lfX19HRMcWAIS5YmqL9DEnIiQAipINkY/m6Ghar1FkHAEgc5k14wjEAzAq6fS6hXfKpMzk2FckFu/LVzLACayX4LRCRAOZosvTK5e3S+CcK+akvqwXBjnZMDsDBqkyBHEWECJl8rwH1RIWhpJEfXY/ClTTIYmEnhHvHAALEgIBYuDxEAUqCQHQkSPHms06oHbOIWr20utl9cboM889u//g/te85qaHH36o1+3B/8Paf8fbll3lgegYY865wo4nn3NzqLq3clKVSqEkISEQScJEC0wwjYnm2bQT2G67X9vNa5tum3Y/gzHtgI0JNgaEACGQUHApUSqlKlWON9+Tz9lphRnG6D/m2vucW1XC9vu99dOvdO4+Z6+99lozjPGNb3wfwNWr148dPQpcY1Baw6UXnr/t9JnTR0/2ux2od99y09LB9xnu9VdOKrZ7l1/83/7GX/z6N9823tsAH8KEj3Vbf/MH3/0z//xXHruyl/eOTPw0BhBNkcWEfIOA/AxTiUlOg/YdxCVTYSY8UPISDyg49dWO8TIjExIiCCtjdAhBK+xmLS7Hg40LWOy85Z7z933NG++99dTKfCtVShEz+8AjZg+OmTmqMQUWAMqJEqTFpfatR1fqW5fHbzy3Nyyfff6lT37+iS8885m0f7TbPcpJVvgqtkcH7wA0gEIV2fIcCT+KiQQnpV1YPfXw5z/7DQ/e/bX3nxtsXGglJNiYxMG0iNb412CjeRGhHZ6OLSH0HNI0cczVYOPs6k3f/y1f9wv/6Y97p29nIQErgIwUYvRERD4upA2iAgBxMUdsmPfSkCwbDrzg1AEToRlmQAFA3TiWJUpc4AHfa4aENRP0ENF+KsMiNI0qJMYLs2kj4OMZCHEmu/qVDgQAhCbeYiUzs0oChMZKHGONe4amkSA1LcveEfuEyCiVa9IQECRLUq0wVT5VhEiiEkVOG3ZWSCVMuTEqJRFXmwg2p4kP9oXnvrA430u12tsdtDrLCyurtfc+hCxLKlt7j1EBkzFaQyBw8J59CAxUsNWGGCESUWb3Klovx6eNiDxVbKlHI5OmidaeWYJtbqzAuC60QkRUgFhYpTDRqTGRSutIYnqGxmgAFFvb4LMsg+mquT2xROR9pSB2gbDjGoSMUsDBOxsraDYEFzg3ejiudvf3d0YjNGlUx7C2iriXMQa1Eh+iXgnE9gLnq6oCgDTPiMjVPlhnFLUM+v3tn/zLP3T7PSfX9/jq7mho6frGOlFydGn5mS8+MnriT//Oj37nLUfT/UuP/d6/+7VLL7/c76crK30lkOj0c3/6pf7cqjFpUZdVqMFQURc55UQKlJIAWqfjYri1vbG4uDTXXxQRIhQJPtikpZGlKkpWQevkTW9+6yc/+ukHz9/+f/ziz7dtUVx7fvXsrV5nonQ5LEI1TqV8+vOfalOgUImvcqO9Bu98CDIejxOtxIe6KJMkqapKKcUiSpmimODUXT6O+VhwdM5FPbBXlO9brZZzLqJlzIz2kEQDYhN+iQ+P7n7YZCkBx3GDiNWkwDSJlTulVN5v7w0H8bdpmpZlube31+12r127NjvhsWPHjhw54oOt6zq65VSljfIY1tq6qiaTyWAw8MGHEGpbY6PEAvV+HSff4eSZhcWL9xYB5/pztfdpmmysX/vh7//ud779q8piYquxJsUcYtHHu7ooCqMolvliJuG9f4USdLweiJ2fWhtjYjgf49zBYBCDs1i7jA4DWZYBgDDGnKaqqgYB1kk8w+7uLiJGhGx1dfXs2bPW2v3dvW63u7K4VBRFWRTtdq6UksDj4ajb7Q7H47ouF5YWe522iNiqJNIcnKrFGOXq2taldzUz13VZ2hoRlUb0LMwEzALleMSksixTJhHvKUmJdXyati5TkwTviZRGRVqBoHiPpNJOL/WZrYrYn2NarU6nszfYz1sdowl0cu6225/43Ocm+8O6Hla2LmuXt9Ll/vz6+vXr14Mg6yzPOl0RWlxcbGc6FOMEYH93u93Lz95+09/8Wz/5j3/250YFXd+rrm8NawAE0iaxzgPpGKxEKE6MYueN0kojBGZmG7wgxls6e16dhXkfpGAArVFRUdgiiDBX4zFYCyFgu9dRJlCNBGK9Ngm/Sv67WdemyXezqcxYgHEWyEHP1VfCwF5xzP5GIDROfzSV+RKPgoCEpLy33rmqFKQ43g7vQ9OKKEbWVEQdYktXEJGo+yAiwEElaZQ3o9iMo9RkUu7vDzEGZEKxdS0yTj72sY+dOnXyW771m3/9P/waKvP888+/4Q1vOHXy9OUrl9p5xsxGJaePn8i7rWvbW/fdf8ssapKqXunOXXvpqa9/6PVvvf+WwdblPOvs7+x2ujm4Yqmlvuvdb//T/+3fLyycqHwIHOuvgaJqNt5Qsf2vHiTAECDqfk2rJYygjVYIIBR1XxUgEakASZp4Wy31OmCr9ZefWM7Vd73zgTfdff7sWqejrOHCFXu+qANwDFbjs9WINPVNJwHxognDcGwBtTZzOl1ezm87es87Hrz72cv7H/7UF//Lo09x2pk/crJUurQOFAFigKh/gURAiBQAGVhYKzOc1EdOnfv1P/joudPHj/UX3WQ7RtciAaEJlOPWGwhESImP0A4JgUTDyaidIMxeka6Gm+944I5HvvTUk1u7lM4prWr23gtqDUTCQQiBm/ZbjswoiTVNT1NF2VhkiMCTSBzzs8pgI1iqXjvfuGFs4+G3IAooVExMKPzqdyIfojHOjmjexMzcXNVrESvjpcUtyTHStN8iXvN0XAkgx3ZlBhBhT8YgAbpao3RS3c5SrVCDcAjtVkuhaPBZaoJjQK+0IuEkS4fD0WhQJK0WGLPYn2MfEKWuJqOt6z/wnd90x+23LMx3r1/b+ujHP/P4My/1lteYdFHVWZbVda3IACAyR+KWZ/FBPAiDBABrZyJeFIswpBWHCBn6w5boggBK1c5V1s6SOg4g7AGI2WskUohA2iijGEC0Ju99kiSIGLzzkzJ4D1GkflLDfJNEXd7eBwCcKgBrQlQKAJFFkxij6qrUWhNqH+rRaFQ6v761XQPa0vtpBQwoEYSqDnZUKqWUplQbFHDeEpEwKaOHE1vXtStst5NX4/1Kqp/+iR+59ZajVzbqi1s765Pw8uWtTndegXzi4x8eXXjmPXefzqR48fEvfeSD77v8zAvHjh6NNYN2e/7ly1s+SJ63amcdB1BEoBOtU51Y6zWZILC9vVsX9YnjxwmVd14bJSJ1XZFGjSTAAIpAVUV5tbxyy/lbifBv/fgPAeqF07c9/qefueXBhxaW1xTAcrf9/ONP7F146chiB1jQszGGa6+UUoq8B+ZQlpPYhBcVVgGo9taHoA/xWGZwJiJqrWPAenhEN7XaEIL3qjnPdOmL9EAAWFxYqLxzwbPnmNJEooCt636/722s9EuSJK6wzrl2u11V1fXr1wn13OJB3vzMM8+sra2ROoCjkGRxaX6u14/XF+UAYlQUCytVVfnai0hd10V9QwP8yWPHLl+9/E9/9p9cuHDhF37xFzrt1mgymO/m7/iqt7Rbyd72jlYYJf8B2fmaAFqtVmp0aFKNRvcMEQ5vxrHwZIwhwOADoCiN8S/3B4M0y7RSzrmyLOfn54tqEjHD0WiklOr22iC0s7OT5zkRNYq3BLWttNadTidN02vXrk0mZQApJtVoNMqTlJmz1BRFwSGMxsMjx46mxvTb7Wvr1ztZroyxRV1PqqXlZZOk4Fw1LuuyyrIsVN5aa1Q235tTSQoI4GvvnASvlHa2CgxpkoAwEnEIyKKzNriaCJQxaK1wIA0QHAii0s32DkSoBUMxHLZarTjCdrY3WydOgA8cUER2d7Y7nVaeUq8/55wr6zJvt4hAEFyQYH2i0/HeINi6N79gi7LX60xC2e2073rgrrmF/pe+/PjCkZtbOaaonbjKO93uaK07aTI3N1fVoajq8aR2EjyLIlO5AoJTSSvNTKfbPewdPvY8ntRcV4AKTApJF0wL2j1YSLq9Xq5heOXl0d61ltaFG5FOYSoufAOmxYxTkhk3+8ABWXiq6dDMKj6kTT8bM42qNb0yv4nqXRAi8HaDrZeICAk2/AAEwIY8IYKxq7H5sziT45zEBkeIGhOIINikJaRi9N8IcQExh7qsoVF6pEbXStg5n2XtzfX1Rx999P4H7rv9zruefvqZJ7/85bvvvvuOO+64eOllSlLK0v2iuPuue5++sLGY0Lve9oarH2/yKEMqeDfYvPrVb/525EKn2Scfffnv/f1/+Be/99vf+953h3py7tTS6SPzW4PttDVfBIFQqVSLD4gQtTzg0B24UYei2UHjvYNpEAASIk0dyaAiAG7QIGIRhyJaKQykkbpGI2N95eUw2vzL73nHW153y7H5THNVja564UCCCKQUgIrohIo+QiyR/x4J+BjN0wmElACLq71zASc5pQ+cXbnzzDd829c+8J//8KOf+sJj+eLJhbml/apmE1hYKy3C6AIKKNKABEgheI2QdeZfurD+sS89971ffQ8U+wg+NnOGwAo1gopCZAEEsOnda3IAUIDoQ9AqCcFFZWD0Rb9bf+vXvumRn/v1lVtWRnXphIFSDkJIzFHWX1CCAAhGpfdGnVUOpRDxnos0BffYcTnlfsUV8pUU+wCN5MeMmBHdVuOGERiiXoLnIBJr+q/OVRgRKJYR41wSoSYcVCDiaouUEJE0OBxClC2NyTgDgEYOpJPALtJYE5UYnfpQ1s4iEiliH7sCA4pHRqPNsfnuaGtzc3tDI584fuzI8oJzrpW1jSA7C6ZOM+VZctMabmzf3O+8571f3+l0Pvjw5597+XKnO1cWAxhv/b//xx++63y/riAAnFlevu/8N//6+z76J599WvdXVZIJaa2AfQAQFEEQCSgoookFgnjno388sQCHEFgE0HOEXREOdYZGUJCjYotImC4bMp3OSJoRBQWBQgi1F4HghlYppSqLiqKFvAQJEqQO/oC0CoPCAgAQGmMcWxTPCMGD+GAI8zQRQnKOhJRwS9PY1kb1QwAWFFEC5FiUQh+C0VqZiLyjc14hSZQeVVSWjlEHBpUlWxuXlzP/N//Hnzhx+ujFreKla/tjLxtbe/1e107Gn/wvDx9d6r/unjsK2v/8s092q+tAcuzoWu0qTUbr1NbywoVLmCdBc1nXNvj5fr+qKhGpJl6RJsTNzW1r7ZHVo0prZiaNHDwq0oTGJNbauqxSY0IIdV0rQF/WrVbnzvP3V7YGpcfV5NkP/wGkSX9ubr7X39vZ7eWtlHTUP0qNdo7Lsm5lSbvblRCsq6ytbF2SMs451FHWmCKhPlbVZhsKIkb0y1o70/06zGxmInhVntOEXwsLc3v7Q7BggweWJEmsta1Wq+JQ13VwrJSaTCbe+xAYEeu67nR6rbzzwssv7Y/Gs88bj8cXL17s9TvGmCbu1npnZ+fzG5u9Xk9Ejhw5Ei2lut0mIDPGZFkmIlmWzdM8mYPi6K233HTl6sXFpXmllIC84YH7X3r+me//vu9cWV3Y2d7QKBJC5JAlaeK997WNSKD3Pt6guNGKsHNudl7mKfN62gWtlPKOYwcAIhaTiVIqTdOiiO5XSkR6vV7sHR2PRkSUZdl4PGa27XY7Bl7OuclkUhRFt9fZ3Fxvt7t53g4haCSTqDxNkiQR4XbeSk1y5dKlJEmyJC3Gk6Iqu52+ThMQAedcbfd2djOTiA7C3Ol0FOB4PO4vtyB4SBJix8577+YXFkZFWYyGvbkFmLojc+0QUZm0LifMbBIFrgaVgDbA7Jk1kgjqvGUn41hbzFqtvveIOBoMjUmzLL/l/G3j3R32Nk1MZWvnAyhkkbKodZoE4WCdRZemuSAsrKTee6gq0QKEnbn5v/QjP7w/+NeXr49Toy1oa73WiSgC5KIal9cnzpN1DKxAmTTPWaQzv2TSpNXKvEDtw97owB5gaFO9sJblbczbmLR0kquk7UV7gcToBGrcHcL6NVSUJ6kPTZ49Y1o0xzQIiAvfLGtplrxDP7wmGCAH9OHX5qxMN7BXAT/cCLYDRCVtRUoh0OFOw1l9Z3Yl0+bc1/yowwfhVEYoSpBCLPAJMkPe7n7sox/t9/tnzpx56oknkLKtzZ2lhQUANRqXJslHk/HJBL/pXW976C1v6rbw6sFJRVy10s9PHVtKCAbW/cpvfuDY+df/+u9+7HUPvv62m7qdDN784F3v+9gT7fmVcjIBxGCdIgx/tp4TzBj3B1+MlJLYKKcUomJBRFBKK0Uk4GvrXZ2QSF0Zyuc7aRhc27vy0jd/zdu+6W3vPbVoyO7BaDMEn5AWjNt5g6wgCgmgHAhgNj80AZ8gIgkHEARREEWwQhjUWZrefiT72z/87Y88fvnX3v+xFy4+u3rzrTtlEVcSQtSktVJlUWmtUenYuDksqrmjZ/7D+z740O2nb15aLgfXTYK2dkmWAqMgSuAAAkKAEoVCQaSJxBiURLiMhKPEdnCT3TvOrH7NG+7+1NMX8yPHJ1UdIVAOYkhBY4XOPCVy0WuNlshzn7HpXzHeZlG/vKpSH2fQLDKb3UNE4qk+PjfS7nT4zCIy9U9s7jkJBBBE1KRiYWE21Gc1y4PJJZ5MpkMIDCEEQshI2mlixxM73gUIS/MLRYDasY7hHWkAr5XOIVx67DNvf8PrXve6d2SpuXbtyuNPPLm0egzEImsK1Vxb/spPfOcHP/Slz3328ycWuz/2A9+1vAxA8OXnVp9+5kXVdcVg56/+2Pfdfmv/Tx+5+Oijj07K0d133fbWhx58zze8/fGXr+1VLFoHQUKlNcbWGWQJJFFvJhqNI8WKukTFtBn8pzUEkENbDzSWlxGJFyGQWG5FEEFUirwAsHhmBSgkCoCI0qwV2DnPwkHrRCstwBICK2F38AQZUAhJqcoHRoirBBOwRiVYBWHv1DSOUIA+iA8SBIm0MelwPFJKmTRXAVhA6SR4GwSN1s2Ykcgc4RBJu9W4n6u/99N//ejK4pWN7Wubw90CKoZu3rp+7crTj33p1tPHlua6C51ElaOXL11uD6/UYwsAGjSwJDq9vjXcG41bK0uTasTCi4uLzAxCZVEaMnm7vb6+vru9edO5c1qD91WkxnoOmcnQGG+drWprbaJ1q9seDAakjQ92OBxuFNshBKXhxNqyMWZ7e9ONtsZ2MN+et1pig7kXKMdFWVulYhQFCJymxkRZEQDUilAhyiyxP5y0xCAkjv9XoF8x31ZKJUkSDtWj46+amEQhtVsZINflWKEQcFkW8U9t8BpVCCFr5UVREKho1BhDEIEbtFyVUqPRaDgcRlAcACLgRkSTstBaX756JXqQbm9vp2nKDGVZAlCe57EIiIjwzuZsly5dSDR94AMfOH/+/PkzZ9fXr52/5aY3vuFBFDYKicVD9ONgjVRbV9d1kiQ6ai4pMlqhQFmWImCMkSmnH0WC84189ux+EeZ5PhmNq7pWhpLEWGuNMW3dIqLRaBSVKdI0TTMTA9CyLFdW1sbjsTB7W48nRbvdVkjlpAAAY9Tu9qaIZN3e5vpGliULCwve2aqqgOTUqVPbW9vdfi9JkklZeO+98GSvOHLkiDFmYWGBBHa2t+u67gK0WhoAq/E4yxIQrxINtYwG+8YoWztSJpSFytuIUBUFESWtDJATyJxz3tautkkqSmmJSxoqH3yovASOeZlJjVG0sbERQHq9JWTRRre7vc1rF5lTG1iACls65rquffyIJHPi0navu7AGpi1A41HR6rfLQZVnnQcfetuZ3/3o409/uDu3dnVnYJJEkaqCq2yF7DqtdtckJQVjMtSZyfIqhNFkApNyb2sATNBdgoXTs0G1cM/XKUo9kEPlglgfIOJHiks3JU45zwFjf63wtCnr0KGm66DIlNXb7MfNHgEAsZQwNaA7CIb+e46pE8nBC7GgGClNCjA2rDM1omHxcwFgGpRgLBLFuX2ABM9cSG/YR6cSSA0FCHF6ErLW5SoBpa5cu3brrbeaPHele/HFl5fmVx943VueeOKxY0eOb2+vp/ldX/v1b2Tv6rI4OC2GEMrbz52YyzW7Yn8wubSzf+qWBzbHkxeu7d11yyoHf+vpY9Xgo3OrJ1Ii0dpxYARgD9hIBsyu9nCRVV71ikYlEHXBFQARhFhJc9amioQxM0mmSAe7MNe7/MLj953ofe9Pfd+5s8colFzv+HqiEJSOXjBBICpEEAKTeEAGUIxTKamoIEUIkWF0wOSO7XQBhFKt2dW+RpPk77j36O3nv+f3Pvb4b/zBw92jZzKTT1wJpFik8F7nuWdHEBSB9YxK1wyQ9n/zDx/+a9/3zUnapjDJ83YQds6lifYERIoP1esOORGBQpLo60AYgpAiDEUvse/56gc++ulH8uVVBIUkioUCG2WCRHY/sAgjKJkS2wEYSYEIQABREXNRFD9WTUfLLKxCfI2hLiIMggAzUdZDAZMEkCjDT0iASg4nLc0PJBFCjjwnZgCJtciYHseSaDPmEREwBmBIAFqhuOBdhJoNcdv5zeefPLHaP3lsbTi2Tz37RVk4mvaWgnAIgTT2Wu1qPKz2Lv/zv/sjX/3gbWSAAZw//5lHj/+n3//Y/OqJoHBSTo50uksKOgH2Ll78uz/yt9IU/uiTz+r28rOXNrK8vXn14rd/+zfceffS7/7RE//XL/36iRPnFMEffPw3firI133jm971jrf+k3/5q6fO3eU9a0LvQkSvEQNGwhohAaNAkibxbjQRvxBM6Y8RCwgyMwiIqCAhxjKqTFekhhGhACF6sgkKSrSIJoWktNZRH5hDcBEqJ0StDkfYIhAVV6DxS4hRBAKLQGAAxUoT6MDMQoIGUIME723lqrM3nd7Z2RmOhpF1AyCzqlQIwSgdooGHoEHQEBRWP/h93zW/uPT85et7e+VgbCfWpXl7d3v9mc8/cs8dZ1cX5w3SztULvHvVDDf6di9lAaURmADKwm5s75EyWuFwNMxMO1V6ZIsky5ROFdHWzs7GxvrxM6cZGUhqV9V1PR6PO50OADsXa1ncaWV5nhbFOM0zYwx58Z5TTWmaGg1VPb52dafTzhd6XY8i5FVCtbd15cqy9ixJkqRpWhXFaDQilDxPlVIo4J0TQlSNbuqsd3CW1DWdfNNy/6GngAigiCRqBSn12p2PqdFp2t/Y2HBVjYjAsrCwwOx94FanrZjquq6qSmsdLUKVIutdg3Ye2g+8b5oNCSkxKbOPnjOxBaDpugeMvZDMTKSNMUTaex/rrPYQN208GVrvEeWZZ56qqmI8Kk+dWHGupuCDt4CskDh4pZS1Nuqmaq3ZuzjnRSRKA8dbMxMhKCeFUhpbeZqm8WbFsM9ay1MHzLhSRFP3yH4z07bbGHspMrG6GtViIjzmnLO2FpH9/f3FxcU0TauqCiEsLMy1Wq00S1xNSZLEtzjnnn36GUJV2pqIWp3esWPHMMt4Uly/ernX6SeJRkTvHAC3Wh3SqtlflerOzYUQsiTtdLreegleygJJK0BS6MrSuirLkiRNK+uYA4egbD1d6hiFiaAsbZ4mQBjqemdnxxjVbXesDxNbYVnuj0fDojTWBQZt0tLaNGt15xfW1tZarVZZlnP9heXVNQfaM5S26ve74iHvdcAk7Y6+9947/8N/fN+R0y3dahWsJrU1AowcSXW7pZcqQOVAIUiG7W7n5CnTbqXtOZ20Vd7nGaAKMOKcnRIgUSZ+ARSmhGpXIIcsVZ35xdIkZT1JhGKj76uJX9Ot4QD1hCaUeQ2E7P+vx2EJUhYIIUgkV0SiOgAcKDXgrB2SRWgG2BAR82twqg6t4wDIsbml+WKi6tojms89+oX5ucWzZ84/+/SzL7/04pHl473u3NHjp7q9+ZrdfW98W6u7OBzsJHk2O20QHhejhbV+K1EKsCjssHQ16kr0fmlrHzRBv91OkIMtFejKh4aA/xVu4GEE5fA/CQCECKPcPAOwAlQIEnzUaMm0qYuyo7Fl8PJzX/ye93zNu99861pXTcabHCyK05p01A7n6JrNEFlRszseq2fIAIQIMS4XBI7ksHjfDvg4zGK1UoQCXIy2Bv3e8l/4pjfdfPrE//EvfoNbc/2lxf3SM4JOMy9MykAsKxlVeG+Ajp4698FPfear3vzgQzf3/agMNRtj0lTFbZKRaOpPyziLRGMgAgBAIkTKc0DgREM13L7rzOnv/7Z3/ds/+kLr2E1jVyXGCEhwVsAIgES5NaBD8NXB6i+CTAchfAyiEA/kVem12lRlKs0lh6ZJs7sghAa+ESQtN9hnQZxZcUZJFB6d7UYs0JhXShPsRhl8mF0PIQohBucCQIJCwpnGarDjir1/9Ld/4vX33dROgT18/qkrP/MvfmU42dZJP9FGK5HJwG5f+qWf/Z+/+u782ou7Tzz9AgDcc/cd73zL+c3d8cOffTxbWNJGdVLSAfY3r737G79u6Wj3537+Vz7+hWfzudXFpaO+Lm86s/rWN936ucd3/7//6lfO3f0m65XR5t43ftXvffAj977+9bedO7U2nwdfKpUJB2NM7RkQmOIdJQ2CYEREI8UETxAIMAiLoBevUXviEFBDTKviUwtEGiiCoKEJkRABwHM4WK+mTzO+S2sC0kG89zzT1pGpO3s8siwLIVTOJzptRO+4ccfUiIBR4RsFJDBLrMQDCEKSqlQnw8GuMcpoEuap5nvT5hGvh5kVKaMVeTsYbv8P3/3N528+c/na9Z298d5+Yb3keX710ktXX37hjXff2e1QOdx5+fp2T3Ffq+sb63lbiXgtGgBGkwmqbG88pCSxzmVJggzrV6/XwJ1el1BvbmxsX78+v7KUZYlSqiyLqi5DCGmWFEXBzK089yEQYKIN+2CrmgBcbZF0liWgwHs/LqrBzjYKdzpLErWXvfXCyEprTSZk2CijZlkKIN7VVVWlaZplWeCALKBFphYIcYuRqQn3TI7V34hvzaZP/PvY/3jw+oz7pQg63c6dt976wgvPeVuPx2Pn3N5w4El5kE7aDiEIAiEGEGstaTPd4egw+GyMsdZG8kEUhiGltSIffDQGjguAUolzDpFYsKwtgkNEKcpXrAbbOzsC4L1/7LHHrly/QgBlNamqotVLbeOzLVGS3nqLiEqhczUBpmnK4ouiYA5aqxhIzcIvpZQIe2sRUWutjEZFhBhCiH0cVVUxSGxnINSCGPV/UaDT7iDiYG/fufHCwoL3sdESsywbDofOuSTJRqNRK8uH+wOllCbc2dlaWVnx3ttRXRVlkuiyLF947kVrbavTfuH5587dcn40Gkahm3ZoS+AsS7e3N+uyCJ6XlpZooV8W4wAyt7iAiva2dyI4t+/3llaPUJy4mRLnCQWYjdZK595bRNQqMRpJQbSdEkIFShMKoul1dra2O91WKzFHT52a7O1c39o+fvKmrNUCXx3bPXvlypVjx4+TMd3e3OLyau3s2tqa7nWASMYDJANKjXf2FZm5XitRtLO5YwLoxTkw+g0P3nvX7aezfu4L2bg+qDEZFyUUFSQtSNqwtNq6dQVUlrXn8lYPTTYaTyRJSiBrPUyQw0GWIFFPSACCYxBgISIXHBglwgNXLaYpzM/DoJiV/qhZ1m+guc6Ws9gO/4pqyyyVmX0oABy0JU7DqK+MhsVZEA79DAAcZX4O+u4FGBkEOES+eRMCxlBAEGUqpT/NodWsiBPZx4cqNZF0hiJxD2Zs/PJIJG6sKIGVSR9//KmqrJXOut3uy5cuzi8uYGoqMqun79go8oc/+/K1Ky8eP5aradu69Vxbn7Vb1tWtNEpVkXVBp8lgOFQKxYdE6UwZTSDBBfFo0kgulMBfqTwLAOrV8Zk0rKUgjAJKgQJGYRBKFRXFpJ8m18ohT8Z/98e+63V33aTLnb3tTWOMAgqslBLwDJENHp9PbEcTEtQAAmCjysOUcxMfJRCoA19tPMAgkSgABArMnOWJLQd+Mn7bncfP/q9/5Z/929/64kuXF8+c36nKylVAsZ1YheCSTHvvCGlzt6DFE7/8/o/c+ZPv7ZhcBa+UKqpCJUoJcPBNODQNsiPSGStOFC1zgtNaW1tpQ5qE7O5XP3j7+z/yqCtHqTGVrVKTBGCY2gDEmtINWvcAcWvHKfcuxk7NgBGgiLtx/PefGTFHPmO8wBjsIXHgWHjiQ9W1V7w7WqciCnATzMUgS0IjgTt9+gA846oBCCrSBALOLXRao80rZ+bNP/7Hf/fuc+29Hagr6aXy5776+Hz/R//WP/g/Oc0rFxZbrcvPPvfz/5+//qa78t/6o+d++T/8xsL8kthi9eN/+rd/6q8+8Pp7/vjjH+8uHRkVttOfEw1Fvf32t73r33/gCw8/ffXO+9+8N5z4RF2+fOVHv/u7QeA//Kf3Hz97h4gTqXwwnKgre9VLl7buvuvILaePvLxXC2jEII0SGUViJgEQas3T8ATDVDNWkJADIGJckQypqTQuAxAzEmkhgcYI6qBEnoDi6QFNDqYRG9MvAWSghBSjiSKGzjmtD9qVDCEJMiIElhAEAswARwggDCDM4okAo65JoATJCUhIlUkUbWxuGpMiiASPAOzFkCJUShEAatRaG65H5d61d77l9cdOnriyvbO9M9ra2d/bHy8trVy/dOHyi8/dfdstnVayvn51OBnnWW91qVNdfMrbqk41YCDURVEF4dqXNUANwVVgTGpUmvdSp6Wsy6tXLhajYX9hcWl+ITjPzhNQXdZzc3NFUYzLQiul8pYXr4lQhAQ6Wb63t5fnuWAg4eDQO7u9tdVpd1aW5gBAK1O7IMEjiLUWVITGA3vnbW2MyfOc2vlkMomhtTHkvYfACDIDmCLQNctS4itN+W56MDOIRCoUTslhh+dJE3518gwkeOsefP3rxdePfOoTsXPeGA0AdV1rpbRRlbMqUd77qCmndQIAWuvZQqa1TpKkrEoWIYYkTQILcwBAFo7MT0SKzPcIxR4sGNM2tNkrtQ1awaOPPjKZlItz8zv7ew899NDJU8cH2+tKkUby3uZ5Hm/HzA0AAK21SZLUdd00dd+416KIIkLE4DwAoKJYu43g3OHmACKKO3q0NPfB1XXNzMaYpaWVEEJZVVmWIapo+xCzhPn5eUU66unHa6vqsqoqZl5amI9T5ezZsyIyNzd36crlK1euLK+ubm9vI2Ke53VVdTqdPM32d3fLSdFq560sL5211o9Go1aaRfAJAEII5XiogFAZ8F6Ey7ISCa1WS5C9q4JVREmqjUiwdel909hsTAoAVWnzPNcqYUDyIU3y40eOKqXYewi8XxQrx06tnjizvLq2tz8omAPAi5cuzHU7S/MLOztbJss7/V6WJKhof3dvc3MzVfnS4gpYBy29dvxEb2Hxc0+8uD0hVn3od/onb8rnFrHVV3lX5W0rNJjUViUjJ27iATIIsU6nAJW6ATKK4z1EL2QkRBMXrACISieaGJSB2qlMzfKSZnGfHoehr9eSnWy2HJka5vz3Fh2/wtEgMTLFPBAZgAAZpjIAU64SylSRURAQNIDExuQG2Wl2xIZU3fwXBUEjxv1MAPwU0SAAFVk/hGbj+pZJEq2T0Wgigry/01lYYJVmCyf/0c//6mBrZ3z9hb//v/zYbXBmekPQ1Q6A0jT1fkQUnWdA6SQSQDNNCqiuXV9rCF6RluhzF/XYb6TbzxCvV+/0iAjCQUQAFKIiJGSFYLT2PmSa2r2Wn+z0jfsbP/aDx9d6dng9hCo1zaqXmsS6CrVi9hoVHCipMzT3EACVNJAYNI0Nr3pGzXuQEDEAew5EoIwOziegch2q7cvH+0f/9o999//9W3/y4Ucenz9908iBZQjsEZQAWu/JGOfE+bC4cuILT3/2v3zxmW98wy12sKWcM0oTovOOpqoQMWxSsXUytjkpAQ4E6ILHSJ8QUiCuGJ5cPv5Df/6bfvZf/+b8zXeQJKW3CIpICAJHOVVsFC5mg1YkjoFGBF9EomZ+7Kmaats2I+mVRuk31iIP/8AIHMQGL3LDn7064xdpgqpG8oow2jVPxzNPv/iB65dMkRVnbS8lnuzldu9n/+4/uv0sfPzjT/7+H37iwoVLp07Mf+/3fs+bX3/0+9775/7Pf/P+c7fdsXnhmb/059/9NQ+d+MQnnvtnv/jL9zz4VkRpKXj043/83IX1s+fWet1WXdf7wyJt5bULN918ugrut//wI0fP3L43LIXUeLB/+23nb7/j5qeffPHLz7x07q43lMVQGwIAJlR558rG1pvuP3Jsqfe5F55dPb3oRgOljGgFQMCzUc3U6KRwnINRjEMjsWnGWOywiWq4ALGd2bDEuc+IjX4zNEEvCmFUG0EhICRAQWRkAIyNKkSgAIRABMgkh59CQhhAq1wBUAgkqAAxgHLOce0FAqlpoRpFJCBwnphozQ4Arqp73a53LAiRrqaVYvEkChGRWRvlXF2Oh2+496777r3HBbi+vlvWfjwp+/O9K5df3rh04cF770s1XHz5JVS0uLikTdpbmDvavuvSc1+y4NhZHztIEEgpIRSgWMhipJYyWxsbm5ubwGFtdbWVd4xWPC1GdTodENrfGxIRgiprp5RSJjFahxA2t7ZQQBntvXWOg2A5KUB4bmGeAff395Mky/McGZ1zpMgzA3AIEjnok8lEa52med4BXzdOQbE4pgCBmgpDDItvgH5ftcpxY4Ew7a+/kRkmh2VXNVI5GUGYO3ni2Lmbb/7N3/ytu+69pxRmBEISEWstilhvRYShkZJ/xaybTEqloqkrs7B3IQgQaRRh9tLA0kKkfWBpmkEIok8FglLK2QOl8gfuv/ell166tn5dKcPeEcCzzz573z239nLDiuraSvBBfGySjd+diAjil5Q0TQkghMDitdGzomZk27m6ZmbSKpPWTAYMp+yEEIIIS2hGXvDK26CUabrHg0Q5tYWFhf39/ajkXhQNe6aqqm632807ly9d6XQ6aZbEgNq5GhHLsux2+y+99FIIvLS0pLSen1s4f/6W0vnNzc2iqMpJsXH9al1WmUmqqq6sK8qaFS4sr5BS5WAEIiiQmHQ4Gownk+Xl1fF4VNZVu91WCkPA4XBYlZNWK8vzNjMCadRJjuw9CXMIQZEg6HYn946rqjKaCHh7czNrtfyoyPK2NnTzrbd37+8wA5I+vrK2NxpyqDOt6/HgS1/60mB3p9XrmzQZDAa9+YV77r3f5J3xeHxlZ3NpcTEBWN8bqf6R2x44l6+cr9OFPQvBpKXn/cKOHFcD631NpNFJ8F6btKH6xh5AlnBIXFGIJIBQZBeL+BAcACIkBpAUsATROvWHKvFNt9VrMrcOzY8ZkiRNv96fKdfebJzqNX95CHeDWfELEQm0RIWP5hMBJQCAUNwDBQRQool0DMjiIn6I2skIMNOumxLtp9Odoi0yzvwTZSoKTiKiVOqsVUkGRHXtgKioi2ExoixbafVHtTJzR0+dOH/9xU6W9GHqh4HBt9OsHBbeBa2ckFMKjdKutojYaLUpEzx4UJ5ZSDggOEDV4HGvdcsPoe4HeLmwQhHWKArjhqY0sUIiI4Rusn/tzNq5v/Ken5jTlR1eo1BrnSAiBysiqDUg+iBK68A4E1UiAYAAEABihSudjQQ+eFaHK7nTCAyCkCChQu2t0xgFaJzWSTVZbye9v/zd72xn4Xc/+ujS6Tv2vbBKPQdBzcyWgzYpoBuMhmunzvz8r77/nrv/zslOp967mqWpr4JOksAHZU4SAvAK0CNH3DIIGyUEHEJQygBL8D5JdKiGD91z6s13nn706hbNHRUxTEDoSRhQR2wEDuC9+PVn8XozWuBQPkOAMzK+wA3m8Te+pXllNpVYxPuoPUs05ZMFEAFpiP9N84c0xlOHiGUiHIVHYxQIImpKCIly+nHKRpuphSS99MznfvFn/sbdp+CDH7n41//uz80dP5v3jr3wxMYn/s4//4Wf+5nhqGx1OwmGM/P6+7/lnetb8O//4/vvuuteDVLaChQsHTlWezEGgMV7X5Zlu9221t509vxnP/+lGLDWgds62bp08Rve/M2K4POPP7O0cqR2rE0HoruCE0pb23v7mmGh2y5KWwdUJmMAFBQBFJrqoYGAB5jqnGFDNIyydvCqffrw1Jht5BQhyobYHsshhIgxh0MRZiESJFIQZVB4drdR37B2tbI0KiIH5wEISIRQQDEn4BPmwA0aKRokRcmNmet2rA/eceR2j4tJ1tK1c0QU93oREQjMQYiRuKyGc/P9Uzed06Z37er+5m4xGo/zVnLhxRe2Nq698YH70PDFS1eyTgtBtdrdueX50WT0wstX+qdv5Z0X9wdb7SQlFGaftOczlRpkBEGUcTHe2N0aD4eEsji/1Gl1EdHXU0VPwXa7ff36BiqdpKlOUp2kzCxIoqgox/vjvbW14wGBybDAZDwajYojR45VRek5ZK22t46dBxEFKIhEogmC9XXwiOicHZcYQNIs04kK7GN44J0TEN8IDh/I3MefY9qvprFI83ABgCUiTT74qLV2+DE14VeeZkS63+1sb2288cH7/l8//mOT3e33/8EH7nrggdJaMSZJ09KVVV3lWbusq5jBKIUHrbTTwYSIhMTCcQshRA6gNAUOFDtFIutLEVDMEJogMZK0Dgs+/eRf/aubG9t/46d+KrB94HX3/NAP/sW6HE8m5cp8d3e0O9nfI6K6Lh1bdiLE872FNE2BMEmSqi5EhJRKksQ55EOrbVx6DJHH5volMJGKlJz4jJ1zIXiltEJg3+icaa2rqsrzPMoiiEhUo4hiZhGHY+ayLPM8H4/HStPe/u7Ro0edc97bdru9v7tXVVWn09OJ0QxVXR9bWd7Y3mlfusIInV631Wrt7eyurR7d3dkSHxBxd3dXm7Q91yvHkyRJJpOJ0VSWdVlOFpeXsiwryyJN07p2g8EgtsVqhXmeEoD3vrLeC3daGRKZJJHgIHjv/WQ8ztstDuC9T0wafFhYWNjf3U2ydqYonV8AQilqnZm6sirLTPCTkd/e31+Znz9/2+0SeDgebWxsvP71ry+Kam9nd/nI0V6/X9Z2XBZL/UXRrVPn7rHmWJmsPrc+2qknm1tDMcYHYMeYtIBi9TlQZCcIiPMiQFrLjRiFyDTnIAGWyBZWJgUBDt4YRZ7FehBhIG48Hw+zYW4YnxBpJnGBi+1JN6I1ccV8RS3y/+eD5SAUOxiAkX82Q8JiWjyVJBUQkCBCSA5QEU5/fwiZwGj0BxCaOCPurzE5JWFkFiIKwZskcZ6ZQCeJSAi27s31gq0XFxe//NLlMbdCSmPHhymhvqh8HYKwIHjhNDNRbUgBaTJxkLPziOi9jzB5vHzVrNE3ujW9xjHb2oWFlUKFhCIIpJAIBINtp1RsX7njxMIPfPs70snW+oUX5zopEwVmEAJgrZUPjeDftE2PsCnOxsAigAiiafABZJBokgQQeVEHTLvmWQFAA2P7oKBZK7XWjKyBXb3XysIPf8fXJKR++yOfmz9z905VKW1q8YBGa+VEFClQgdJ2bXof/MTnf/Bd96R5i0LQSgWAadVpNg6aBjgA8ALKJMEVSZKIj0VmSZLE+8BczHXSb/uGN3/+F367nZwoywCo4jDBCKFFi8XpOQ8CXQQV4S0hEkQRBYjTBVDhVJ71VbEXHMrmb3yFBEOMkrCBbUQTTXVbZu2Lh2qqBALAIWDwEcQlFNXYUzbs8phdEDIJeO87CW5dePpb3/W2d77lpuee3/vp/+lnbrn3zS7Na8YTtxzjcvAP/9E/bXdar7vn3isXnn3v2x84ugL/7nc+uzuWxbX2uCwDss7z4WhPG2UdjAqb50opjC5nmLQe+dyXl5dW67pWypTFeCHTD9x52+4IHn70sbnFc5Vj0Uq4KZtqbcqyRAStdV0HESPog61BYWxzPojscTaq8dV38vDkPRgA03hLbqRs34A4vqKbWoinuaXgAQE8yqLO/kqTIhDPnBuFJEG8CyxAmhAMRU9GFmRmDUKuAhc0EhOAJmZWhK0sRUXGKO9ZpalzLtHGc13bEkCCrwO7m87fnbXnn3rh8mBQo6JWp7uzfX2ws/Xg/XcZjdeuXmm1sl63n7U7nV73hZee//KXvhBGg9Pz6VrWbvfniv29VmKUMsH5wA7YWxvanR6Q02myurzoagtAcUoiIog459qdnnOuqqrgXKc3V1nvGdrt3IVAQps7261uVyUKSININRmPRsPV1bUk0QzBUBLLXIEdCiGis460istIVVWolU5T79zIeUBKkkSTZqQowehDIKUj+zE+zSjIdcOyfCODBQFiGU1r7Q91XcSn34RfgZ13LlXka/u5z3767rtu/8s/9sPVZPzkMy92F5fJ6EFdVNVEa+2Cj0qkoKDXyRCCOA/TkCnL295bZYitKFLMzKIQFQcmjHSEqHTC0uhyATX+faBJEaJzB56UH/2jj4ng7efveva5J9/60BvHw71LFy+uvOF13vsYMymENNG+rEGCq+3uzlaSJLH8Z9JEa01KsbVAVB2yunSBY50REY3WdVlqrVEgzbNozxXNU5VJYplSxJdlQZqCeFRQ2ZI0aq2stSCEiEmiT506UVV2OBzG2qVzLpp2Hz265lzNzCJ4/fr1JEk6va4g7O3vLc4vDEZDuXJtcXnVWt9fmI/Pst1u27Lq9+evX7lqTHry1Om81SptDUaAJc8Sdj42GWxv7nS7XaVUlmWxbj03NxfF37yHuq6zTgIJjEfjvZ2Nhfl+XOCGk0m301tcWa4qa50lrbTWztntzc3JaLy6nNbj8WB3J4AEpNW1o6NivDsaLC4vtdeOIB0PZZFkXQTuHTlmsq6tZWlh+Zlnnrpy6eJNt93VP3K0iwiqNddfXlo+8dhle2F49dnL25y16gAKQQBRJeIFBIMwQJQkImHpL60g4ng8Zg5wOPQhg8oAoQQHSPEswGRIZa0Olrt76xviK8gy5yYIqCLkyazUId8hRpxS3aeZKDcbxUF+HzV7YIYu3UhkbmbXrJo2fdchl4lXIWRTmksjsD+bnxj3pVgGnZJaAeAglwaWABKDRVQiYkySZnlRFFonzjkQJq2VRucBxKBG4BDqQqUJiyCKNhCCMDMSCYh3NWFYmu9sbl393r/0o/d91ds/9n+9b+HkUReYdObDwSLforybd9b3dkuQFJVCnSZagvPWdfKOBNFJMhntcwjATuI1c/zWEvXmecoTxqmhuEJCiI8fmn0fOW7gCg0wAijrnEqMQpjrmP3Lz953euUnvuvd8zIZTHYQfOVQU0Olj8tIQ3XjWIghESFphPIRI1gqjBAtPqeyrtOviRi79gBgBmCggAECDwqwwYgAGUGACDBFgGKoM/jBb3lnXbnff+TZ/vHze74GUiyeGY1JQl0DqtLK/NrNv/G+P3nolqP3nlqsh5uaRBiFWSsE4GnPY9OrRgJMikW0yoNnLSAYAmIQBq2CrWCydc+5la96/a0fffzl+aVThYfKSpIkAI6BEZUEiHJpEUCOEUBD/wIhpZhDXGBBItiFII01JJIIUgjBc9PnEXd2ESGN3ntQsbFL+eCDSJQPFBGIZpzTZs44FyK+JzHDEGRs2ky0UuiCQlHIhMzBCqASVkjMDCFoTcI8l6er/XRnp/z2P/e1nMFvf+ij5++9d271SOEElTIK9LzKQrd21iQmofCGN927O4SPf/Lzq8dvLmrPQCptjfb35tvq/JmVl65OruyMb1lJJYRWkuZZenlv/6WNvSMnz1rPoNEArPbT5bn84t7w4vb+bQtaAda+QAXEID6At4YwCABq0on3LB4NpU4sStQOJCEMzAFIRHRTXG0iqul9OoBJiCh4AYjtqMI+RC8L9swgiCiIIUwJ7wCCEIGJaZcYNUMagFCJgPdWKRXgML0ZhL2IQAhIIl4AwZDyzmudeM+p0iDEIJ5FG9RC7VZG0VVLGBBI0Ghiiia2BoVSUN65VpIYBbYstgb7WdKa6y9e2dgbDAajsiYAWw5Gu+sPPXBnqmT92tVOnvZ7neWV5e3B5NOPfu6pp57qGZDxzic/9wU/3Hz3O9/S7c1zXZKQZxZxjm3W61sWAEoSxex1YiKbHBC990VVISJKo5ceXEi1gcASnMIsSZPxeOzKam35ZJa2yrJEIOfr3lxPGZiaGXIIgQBJaxQS7wHI2WCM8QigNAByCKQN+1CMJ5UqtNYqeiVziClyJCY1Rojek1IhBEUERFHN9GA7IAoSIi/gNbHPZueoiomvq+AtSHjxxedeeumFYzed+a7v/PODzR20fjIcAUCitYQwHo8nkzKaKngGApIDQB3qukatoh9CYJ45qzTRelREgSAzcBUb70WIChnOyqHssNPq7u3sriwuMfDq8tJgf+/Tn/jk5vqGdzV728qSEJy3dZakWqtuu9PtdphDXdfb29tRhAKjtFiaJMlBJ12WZbH/0xjjnHN17eraex+cj3JfMK3szhhgsSszloGNMd1uN7LEkiSJ3aplWW5tbUU5nPn5eWPMysqKUo2nZHw9SZK5ubn9/f3a2TzPgbDT6XT6vSg/sb+/j4jb29tbW1svvPDCcDg8ceLEqVOn0jTd3Ni4fPnyeDQqy7IcT0bjwZSpxlonWZZF8Y4kSdbX14fD4cbGhrWWGTY2Nnxt+922IrDWBs86STvtblHV6+ubdV1HpQxkyfN8f39/PB73et00MZPReHFufr7bqavx0uLCXKdtx+NiMBoPBirNVK9PaZtB748nTz773HPPv7C6utput/e2d669dHFjY1sEJpP66aefe/7C1cvr27rVAZUqkwQB8SIhTPcAAFICwoCAynpXWy9AqAyZg+dFSY5KozaYtiDNVJK3Wu1euxuc37969djake/41m/m4QB8AGwagLXWr2gzOViYplWAVySp/+3Ha06kG8b5oWP2q9nHfaXPRRREARIgIYy6LR7BiwQUh4jeO+fqOL3jmFTY6LADKgkEQJi2REShaEOx2B1CQFQQmDRmaZJqQsTveO+3r62tTa6sK9BRVuawZmNdVq2sffHi+nBShyBL/f6ZowvaD8q9ayePLBpSgXFjZ08oIa2892wdKQXAQRqTCTmcskdSGB/i5DVlWURsLMXikacZBE/Bjtev3HNy6cf/wnv6pkY3YF8TaaWUC69xzw8ds6pi8+FTY0WG1yw4HliDE0TV2ilPfRZDBDj4SPbWgKN6ZNz+D/2Fb3rrfefG2xe6La2QNYgGwRBMosjoAFAFxGzu/R/+9NBr1kmY2rHPQvYoVS9IxAQRkZJIzZr+M+YBwWeJYTfupvBt73oTjjeTYMXaNNGBHWlFRMiiieJbtCYAVkjAIYrzRPsrbCpaHPP4qdYGBHbCrEA0KRMp1s4SB0Ug7Nk7AtEiyELQaEjOMBtsrKWRpuN5thU0UwxEiWBwBjkj7CSmpRDqop/qpU6rn+r5PDu+NH/zsbWbTxy586ZTD9556723nF3Kzbvf8eZ7bl985vnqkceeOXHzzYCYaZUqErYcfB0YhCaj3dWl7snjR166cPGly9fJdEQk02iHu08/9uhf/bEfXliAD338k1lvwTLHfvOA8MKla/tlIJ2IICo9HI9OHltZmIeXL1+jpCUC1tqZNgRO6dICEJAAOE0NM1vvEFEIvbD33joXIq2O0DcOWgRI8QcBYkEkHRiq2pWVtT54ltqHynlWyorUztfM8X82sGtsSUMVgmXxgE6g8mFc1VbCpCyr2lkXJkVlrQWg2LN/eLUJwQkz4fQBEaEAgUIBQiREAlSokiRRSOyD9zbSqgAYhUUCCaMIEiMwSBBmjaAV5okZ7g/GuwPn4YuPPfXU8y9f2d4blcVoPBjubr/+vnsM4vr1q1mq1tbWVo4ee/nylff9zm+98PQTxtdXnn/m4qOftsUYCD/0kY8qk6RZW1CTNiKNNLC11nuvAD2DZ54ZfiNilmVpmoqIt44DIKm6rqNkevzK165cWFpcyZJ8PB4j4nC4z+x78z1Q5MXHArkxatalGAnZiiiE5nFHPlIjiOZ97IW0ztXWB2Ggadmk4VOSNma2mNONlcfZiwdiK1+J+1WXZafV6s91bj1yZlgOi2JcjYZ33nvX6+6/1zLsTCZoQ2bS2tdeAEFVpV9YmndhywFQeoAxOOcYAUhDEIXGB1ZKY/TW45j0TQF/VKQUs8SyQWSARc3d2dk8u7yVXrz68rvf9bW5SZ547sWVhcVQW2AnYJVmsEEpVInyvvmGSqlYvrRVrUnl7Zb3HpmzJJ1xv2rnooaqrZ1WhoNoZRrSn62VUqSVMUYpZZnxkIR6FIxAxLqu8zyPWmqRjB9RqzRNowZJWU6YOcuyyWQSdWWTJBmPx5G2H+fJtWvXjqwdzfO81+tNZThIRJIkufnmmy9dvLi5ubm2vGKy9NSpUyvBb25uk1LdTmd318aOmCNHjohI7Cfd3d1tt9vGmFarNTe3MBgMvLftvFUXZSdvraysbGxspGlqfeh0OjpwXbnJcFRNinI8AQn9fjeIpO2Wk7C+cW13b29ndztN0/783O7m1rETx5VJXeCqqi5urB85ciRptynNbrn3ziNHjhTDgUrU8dOnk7Q3Kiqd5yg03+v3ej3atatHjl3dHzNH7WwApSLmLoQ3CEQpZT0DgFCTax8MU0IFyIEFQSlDEKqqKqw7f/7cPffcdceppcGLn4W66K/0BrubsV8V5JXyd7MRLyIAr1GX/G84+CsRv/6rx40fR9PXZi++ZqXuxpqDCAhH+zBEpbUWCd57EEGdNLAcoUIjISQmca5OksS5oJOMmUnrlGBteenChaf/xk/91C233fUnn34eiqAsiJJcJ84dCL4ojVoluzuTva3i1E15quUb3nrP//IP/vezp0/ec36VlIwq/tSjX+4uHakcNTr9zDGaiJBUhPQQEYAjSKgw9ujHTCuChATICoGdJ9LM1gXf0ajrqof+x9/7nrUO7GzswJE5ozMELR4NmQCH4cbDQVWDKsV2whmFGUBIXhEr0xRCg1jHbM4VlSCmCNlhMh8jcAhZnrlibNJQVbtZlv7o937Tiz/78+t7m735o5PSCpALtSYTgkeNla1XTp76k899/q1vefDtty/7wfUIwglET6AbxIEIYHrBDTFfsGnMIA5AnOTZaLBz7siJ7/76t//Ww8/OHTnryNcClbWkEwmMGBljUViIvbekwHmXpkZCEACtCJDjvouCgMzCBJwqgsAoopUBIiaMRTcfrJaAjICoAL0IBJbAjqPIfkNAjm3XEj1P4ZD0q0Qyk2gQRdLN016W9bNWC9hdMzetLbpsLlCSAOXRP4cdgRBwos2er+86f7adwWcffTxwWpalD8JBI6IHKwBImOfZ/vqVd775gfkOPPXEi2tHzyIZ9uHF5758bLn7v//9v/7Wh07+3oee+cJjjy8fvRkIXQh5O/cATzz3wtLRY5W3oIgJh+Vkee2EBLh+ZaPdmkOTUCCtFLP3QSrLlQ06azuA7f09gTAa70sojNLBAgIoBgIkpQSV9956p5QKSsV8GwDiRo6I3gVmCSHSi2NDYWBmClw7B8wwKyOKCIK3LtLtGSTKGcRTKR+YGZwASGoMMYTgNFLwN1CxichzUEg+OtoLSDNBQQB8CKrRICEWFkEizSzMgFFJAQA0KlSIGBCnOLykWl/f3Ni5eg10HiDdHtYq9a0sNWz3r13+mjfd30/N1vZ6u9NbXVsKiJ/43GOf+eRnzqzM2d3tC59/BEIBxoC3WpnA9sWXL95zx+3bm1tsWZAAkAN4z3ESQmBSKnhJEhMVoMiYmE/GI07qiIQppQaDPdJJv98vyzLRRkSstXNzc8gCgZHFGM1TeXoiUqjSNK29CxEjnNp1xHmkE+OmGlhN2gwKhGYUKRGJ1xAfzQE97sbio0gjvBXhTD6EUMIs/Nrb2vKd7Gu/9p1LZ04A8e7G+rgsuA5333f3B/7wQ52F+cK6KPhFwTOGpJVXpTdJBoAmTWakXRGp6zpP0tKxl0BTmssUCpBmCAAAQfObmdnCNCeeXR5DGI32/vx7v6OcTIaD8eLc4vb6Vr/bi5VgIWy1sqK23vvYsxALf3EUTiaTuq5jQP0KoCJN0+FwyMxamThDlFKbm5vtdlsnhogUklDTREpT7AoAjDE7Ozvz8/MhhGi8FV0RvPfOucXFxd3d3atXr58/fx4RI9lzd3f31KlTRVFE284ofhb19Nvt9v7+fm9+YXd7J8/zbrdbl5UyOtpHRnOxOHVfevnlU2fP9Pv92trJZJJl2XgyKYpibS2N2Ozc3EKv1yvL0jm8cuVKu91dWFioqsp7r1GX40nayufm5sajIu9lMeRvt1qJ0pPJpLey1Op1iuFwbmFheXGxKMY7O1utVidNdPBy9eLFqqquXbp05OixU2dvIq1dmj7/9FNZnq+urnYWFzq9bq/X864EIB8ga7esExApikIj2eDrosjz3AcQL6gatfeG7ctCjd5pY9ApTWnvcBAOiBh8QEQSCJNCpcnJkyfuvOOOpaWF7c313/vAZ5752H8GYmYPU5E3olkb7MFJZhkt3Hi8Jo71FY4oH/UVQ7dXD7bZR7ziXa91kihbFaG1w4wxRIwUGWBmYC8golQIYXl5eTweOxc4+MQYUmxtpXXGIKKpdjbL2iJCQrYul48fvXDhxXd/0zd++3d+J1P+8tX17MQJQRaUypak9KxxEBWYLEs7C1/48rP3nX9jqAdf+9Z7+//4b585eWJtMQvAm4Pis0883T1xx864hMwQSggckQ4IElWogGIXGCAwIoQQiCQq3RAqBSCEBERTrzxCTghbwNXWpZ/+Oz9+tEc82cpz5b2zwYuIVqnzdewSnz61w3f1kKchzrRNCYUCvML4aHa3D912oBmJNSrIy40tBJHpnGQps28lqq53V7r6p370L/y1n/mXrd5SIHQsAgzigaByNie9M5y0Vk/9yvs+dO9N39fSLRTvg9VEU7Fckqg2IoICUwHdaRfFlEGXaIUKauDg68wO3/1VD/7hw18yXIzLyioiZUIIBEICShMiaIXOcZIY732eGe+9RsAg2NiBRjk5D55xCsdB9B6EQFo1whwCSbsbF58gAoghSO3dYFxhE2hD43jzlecOIpKI0dTS0MuSxW57LmubUGeE/TwriNiQCcS2jLVyEbbWgVFutHf7udPFEJ548vnltdNV7UgZCSwsitBLkIAZyf7O+q03nQglbFy5NNm9VIy3Ty73f+wvfc9DD56fm4Pf/ePn/8Uv/9riyfOls2SDMSZvd7a2Jp/7wpePnLt3e29gslQs7A+Luf6CIthY363qMKwqF0QYnAsSOIjs7Q2WF1eEYHNrT4AmVWkUT+pCQqJRK4kxixfCIByCd84rYzRRiC3N6AkgiIgXUI0isfbihcWHWJn1MTflg7bQiKxEyzEABGUgEjxFHHujtAADC2lDioITMgkoNuYgOczzPMrSsg8SI2oFGrXWmiPXGU0IgVEkctaVYpFgHaEQERBI8M5ZZggCIogseZasr69funwJQFF/EXRWe3ZVkRgsdzbfeP89qyuL1y6/bFJz6uxNZV393vt/v7D+yEJv9/JL2098CdiBArAWEGxgBHzhwsXz58970qPxBEjH0IoAjdKz6u1sqcSpiTMAJkkS01GlVFUXrVYLAKqqOnLkSDOliWL5K8YdPDX5jbqeKISoxEvcxBs2WAixZjKZFCpJYiwVvPPea2PUoZA6XkwMARFxdvbDH3RojYIZkeYVk0VpPeV+TYpa3P7W9V5bJ8sLC6tr4AJYfsvb3vqFxx6/vrOn00wI2UuWmsAQapumefCAqPlQPEcoc/2+rWujyXs3ba+NJJfpkjdrruGotEeIEoSFA+ENiEXl7Ombz/bm55jD+tVrK8tHHv53v/ru93xdEMg6nWI4RNRpis65JDHOOcWolAYhIkrT1Fq7s7PT6XSi39HwYGi2iFSMQqKWPZdFq9WKNo48DeM0KSAFAEVREFGe5zMz8hhxF0XRafdikNRqteq6dK4+enTNezscDuOzTJIkFjr7/f5gMIi1YVvVBNjqdOrKdrvdNE13dnZO33R2Z2crk2x1dfXKlSsmzZaWljq9ubm5Oc9hMimdc3Vdb+/tt9vtVqtlOmY4GGdZNjffK4qiKMaXL1/u97v9fn80mnjvu91uHYuqIRR1VVXVYH+UJIlWajIal+Vkvtdvt9uBnS0K7/18fy7Pc+KwtDi/s7NnC9nZ2bvpppva7XanN3fh0uWnvvz43OLC3NzczadPDcbD55996vSZs/25pf3xBNhmSV5W1dziIliuy8pbV1X2yNqxq3UyqoPzLKgECWKKJlEFe1qCRAqNqBAdpg7PRq1SKIGZYW5x6eTxo8uLixcuXvzAB/9AxqOFvmq300L8aG8nMtZj3+sr1CUAOQpsHTrtV9w8Dr3+2gxyPMS1fMW7vkIEFrtM4tnk0CRofntIYGw2WWCWikR0QdgjYuwhFwki4b777lm/tvHlxx/r5F1F3Oomrd7i7r7f3R8Boso7LKwUoJcTp07u7W4J+J/8yZ+cW1ja2K++9MyFZLk/wEoRmk7HHlJjrweD7f3B0umzv/xb73/X2249u9YqBntve+h2V1lh51XrP77/d3WvV0tARQLE3hutAwB7BxRp+FHbFqOsEwAoYyCSsoGasJiBQZSwJkwS7WzVz7OdFx7/2Z/4njtWU1teQ3DkPQmQElRkg9dkprUzQADGw48g6kYe6LQBAEMsACl6tRlU1GW44Qk1vCWYOSJM+wdjvmudZQiKRDiQuGqnvvPEmZ/+we/+R7/0HxdvunvPsndllrYtgKaEHZPSeWfluRce+/Bnvvyt73xdtXctTRP0cfwQR34fSCSY0WzMRKmIhrZBgSsJoozOlfLVYG3u2A9+x9f9k3/7W2u33bUxqU2qvQ+ZMew8EAbxWlAkBOvzLGNXp4jsXZbnCglRNEXmPQuSMSY1Gm1Ik8QYM1MwimZNpACVItKCgMp4H6x3AuTKOq7qzE07b6yqhIZR0DyOmHhPQVBiZvbO1xWw5eCcrzHLnauDEwh+CvmIQbBF1W21Th9fvra+e+naxvyxWwg9c4gTTpFCUoEZFfWy9NTKwmh3snv5qe/42gfuuv/+W87dZDK4fB3+ze88/P4Pfuz8na8bWqu1Vl6MUp20denyeqiorhVTtw6UmLyusdPuVxXs7Y9HhVOTSeU5WjESKNJqtDdZmV8pJvDihesgpq54CDYwB1GJIsXirHNeABhNXNuInChgx4Gd98IQ2HFoZzkoij+TgBcmgaiZAhTV7Zu+e4ptRvHuTdXVZ4FIohUzJ4lGgCBgtE5MgiAJkrUHRm3OM4ufornQYATsG0oDC1HtPTMhoSQsSqE2SntSQt5bG2qO+yhpjRRQFJG19fbWFowmsHI07y1aS8yQ6WTn8uXX3Xb65MmV7b1N1njy7NnRxP7hhz5eV3y8m37pEx+B/S1AJkUgQUwibgJAicn3ymJ3NFldW6uvrYdxqciIFxW5giyzlhqZKhJEcIdQI6LR2jmJVAcU8Na18lyYi/Ewz3MgURpbWS4s3tsIUxljFFHkwosEjdoYA1N2kEjDS0WKOiAqTdOaxde1R0zTNP4ZTv2zhVkRRbxZmPXUZfEV3C8R0cYAgHMOmPHQb4P3Tfh1y6035XnyzJNPPPHkY/OryydPnT5+/KTpLS4vL87NzV1YX8+77aq0RmsRH9h7SQRUqzMnosKhRYxQR11B7z0CCjALU+OsQpHaHLli8W7O4FY4aOY8iMCOHTt2/MTRf/lLv/TAAw+cPXFmZ3PjB77v+z736BdW1tq9bsKYQHDBB0KMjksRA4syd/GfLoRoxXh43a3rOhK8oqxtVPUQkaqq4oWholarFctYEfLNsoyIxuNxv983xhRFESFKa238FjPLp263OxqN5ubmyrK01vZ6vaqqIkgGALGmube31+/3mdk5Nz8/X5W2mIwvX7iYttIrV64wc5IkaZb1ez3vfVlXzNzudZEozbIsTfe2d6qqWlxctN5dvnzZuuVWqzUYjI4fP87MaZoS6Z2dnRiujQfjhYUFZdKFhcV2q1tOKmbO8jTVqrbleDJUSkng3d3d1dUjIlKOBpPJpN1ur62tdLtbk2qilLq6/vTi0kqetze2NsvJuNfrrZw6gdZur6+3O3OdTsfbSilFlgeDQX9xCXWrrq+FEIqioqQtCEliRtbTtFsqFiIjNyIGGRwiXbrJUaYqDwAAUhZeK61Mnmd5kl67cvXxRx4BQ3mvbbptsttlNQZDwKTIxN0yzjdF+vBz/29Euf7sP/uzoa+ZkPfsJLPO8//a0URg2OyCcdVsrkeAAAWQ4kxRWhNRcNXK8hK7SqAGSQFlfX2D1wGg1VlcCyCAbMvKTsqbTp7YWr9KCj74B39w6vTpAvS1ncmTL1w8efOdlkyapteKDUhaMww7W1rsL80NioHpLf2r3/jAT/zAt83PL9fsJctLT7/5/o9+8BOfnz95z05hwRh2ViG5ulQKIQgggaIoSYRxaUOIwngIaqZ2GplfCiABTch1MVnoZoNLz/zIe7/xnpuW68EVrb2AS5UyCOx8XBD5IJy74XnhQUvEa1ScXyv2OhAHOXweaITfGuoViUTVORIIgpGZG9gSgAFEYru7/rZ7b37qHQ/+3p8+n68eFzZsHSiFSpFWdeFGlVs9fe7f/Oc/vP++O493F+xoMyUdVQNiJgoNtilTqK1ZKuPkAGCKN4CBg8+yxNn9t9x785/cvPb0+pXO4pG6KhLSGFgjasLIfUyMMsZ479M8QUSjWkqRiCRaa60VNvJyWidGE9cuNUqRiZRcgMaFKe4iDF5AgQTnrA+BOfpsHwzyAPIqmZEbZlDwzKaxJXbOaQVEEEKwtqoDGm7qlYFZgJVWxWT8uvOnjYFLV66ygM7yopooIhGHgEEAhDxgUdaL/U6G0E6z/+nv/L3+8d7Qw+WNwYf/yyPv/+BnBrU5ff6+q4NKlOQiuzvbiwREMBwOh8Nxv5aa0NmQOzvYGybGAMN4VFaWR2U9qmsiLYwKkItxSmFtqbe9A49/+bn+6Xv2x8WEncpz7xyRqEbCTAkiOBcHT9RMjvyQaeSkRrWDaaPcwSD0Hg/ZNkt0MZp617yimKWU0poI2FuXJAkJBOezPMmSFNgDy+GVaTAYKKWsq2JpDEFN5QV8nhgi5Ea8B5UihUiIiTaSAgppTYkoIUHSAORdAOeyPL16+cpkOIasTWnLCzGgVuiHe7edOXbHLadHe1uj0fCOO+7c2Rv99m+9r9XqzuXplz7xYdhbV0azD8IcFauADHDFQgHojz760Te94c11XbvASsVYQiQwYCN7HqlEMQaNcToSKqWMUVFZ0xiTJDoCUUVRtNKMmU1i6rqOkuy1LdMsa5htIvFOMrN31rEQkQCw96CIsNnxrbXMEmODiHjJlEIXiTGzrO8Vm8Wr9w481GWPMbY+dDT704Nve2OW67oYX7969fLFS098/guf++Qj7/jqd63cfPP9b3jwDz/+sd7cnK9t26Q1BSdQOp+x6s6tnjp/15ULF6DbnM76MBiNu902lSUHp7WKAq3TMGu6uIiE0JgkMFtskH5RSidpPru4p556xhjzpSeeuv3ue0yn88/+4T/4xX/2c6kOC4sLinw1Dk44y3KEECOn5isZ0lrHnKplTF3XUaNr9gcmTfaHgzRNe3P9yWTCluMjieCWiPjaWmqgQS8+4lh1XVtrY6dhu91uzomM1DwY732e57WzLvhut1tVVRT8iO9ttVrMPBwOY4jGzJpUURSPP/74+fPnlUIiMCa94467nnzyyRCkKKpeb25uoZemaZrno/GoLMvhcJgmyeLK8nhUKJPOtzoLCwvXrl3TWh85ckQkbG1tbWxsjMfjhYUFrZOFhaV+f76u68lksrOzd+bMmaiqOhmOEGU0Hhw7dqwsi/3RCBVdvHRJmDG4ubnOkSPH0tSU9trlK1ezdDs26tx1zzFmf/HixXoyMYjVuLh++creoLjtzrsSrXa2ttvtrlJafECNxihr7WhcuM48M0xsnWV5ZT2qqSxRIzVODV5BB8MXgeVQIx4midiaBQKo61evgq+TfkcIS2cra3sY0lY+9hZIoZIIlWmdxgLxKyaDTH3oDr0WB8afqZNwwxlu6C5+BeKFh15sLh5e/Vlw8BaJ1KLD2vryir+UQ+548RWWoGKirZhUDTAZ1+7r3v513/jN72FQ/+r//vdPPv4kiAOlgenoqWMvXnyGwP/e+37n3G03jaz32nzwIx8x7Tmt9aQstSGVJd4cUAi6i/2s24IUlxbvefzKxX/wS7//5ofu63fy4XD88U989oXLW2u3vmFYe8qIERMiQ+SsSwyHEHxQTZVUAFCJJiINUWqSsKF8g1BsekUiwISw3ensX33xGx44941vOq/8LmmPwRvSdQghhJZJRzwkrcpykhjzqodFItMqbdODR1P4kIndQSjfcO3pFQbVU9dqAgEl2AwPabTyRYKgEOkQgiDptGUnk8hgJLA67P/5b3jbhz79JSzHiU4YNTF6CZ5Fp4mD4JOkzpZ+4wMP//T3v0erEbEDCBhxwJhuQ8RCD0ZUhJVQABAcB6WUCCkF1lpUsNzrfP+3fc3f/+f/aa3Xs94Flrqu8zwzpKI3iTa5oqY40mplMB2iidLGGGrIcxwFEFUri/czNjLGz41hPyJKiHmSNLEpobU2qKkoHQIIcIjKFioCynEEiwhERU0AJK2UYkAvjKQ49mJM1SnCVNUdUJE227u7y2sPiIKXLl1VWWI5eKAAoECzeEBkRjBmNB6farU7eQoMe0P1gd9//E+ffu6TX/xyzer0qdv9xF7YHAQQAEmpqHcGp84sk4HReC94G4Jb399nkOVWT5xNhDMNKCRMIiigWQiFjDbjnY17bjl2fAU+/blre/vlQpbYScWoXO2BCHwdJfCImAhYBJjZAzCDUkQKoj25xPLT1OvsEL4gHECEG5ZkrA43MqfCHCBWNhvgx9dVHUIcuFVlhZmUsiKj0hJBt9U+nFEkWW6UzvOcUFA1+y8KBFvnWaoUNoo1zEoT1OV4NIhiJ0orMkSgQ3AuiCCkrbyrujsbG9sbW1Bac+SE6Nz6kKqkGu4e6eo33H3O16WvylvP3SyMf/zRh5VO19r68U99BHa2SKM4D0gCHhBAK2APOvXgAZUXfviRPyWkW265VTgoIg5BbnBDBaU0M1trw5TGNOVJBw6u3erGvTtGTswBQCAwBM4SLRCUUhxClqZx6Y7UfuecNIwXr4wGINJaoBGE9957ayNR26SJ9y7yt5g5S9MYGIhIjP9gWotsgodD7K7AHJVgRYSUmgVzzRYg0/Cr1c/JKN3Nb+62bj53vtgffeyjD3/sIx99oCy3traWFha993meMoKAdsxgspp1cHTzHffffOt98KnmjIsnbi/rYmdvD6QFRlxgAAQPQASRfj9b9VCJNkopDLHeDCF4ZYyXA3Tud//gg7/z+78/v3Lk1379P//ar/2WovQX//W/RV9967d8/Vve+ECetw2JrUcgPmK2s22PmREp3h0iimDVDAmJntZFUYzHY5rih3FBifVd730sOGZZluYZTKU7FhcXAaKHt0TSfexnFG7C4SzLiqqOgXbk4jFzXdczk0ciSpKkqqyI7OzstDstErhy5crS8vL6+rre24/jzDkHgeu6XllZ0Vq3e13nXFGW8V3Xr19fXFiuqmo0Gi0sLMR95eWXX97b20tTs7q6evz48cuXL+/tDba3tyPM1ust1PXWxcuXTpw4sbOzU4yHJ08eb7fS7c3NnZ2d5dXVkydOj4oSORST0ZVLF1++eKWuy4WFhbe85W3Ouc9+9rPziwvr6+udVntubu7Kpcv7u7sE0s5be3u7l15+6fTpk0uL885KbetUOoCslFLGJEnqTJIbmnBR1w5JTU1ppoBoBD5FJEI7zKAiDecQ+uUsgLD3dTUGREpTL8wsZBLk0EpbngBEtDFsa6T4sF4jLzmcSjb7x0Fd/r/jeHXq8+ofXn38GbDZK04e/28abFEjTI4xSQHSmiPpHqjTac0tzgGxsP3+H/wfHnzooQDmoXe855/+s1/4zOc+G5DqWq5vrX/Pj//NH/qB7z519OjE2jpJfuN3P/yHH/vM6tk79sYjlWbD0Shtdx994sU3n74zXsPckaNb+9sNXjt3ZNO5f/UfP0iExiSra8dP3n6yYkwIGChiwK4uU6O9L6y1WqXeQe1sXbvKe/YsFIRikzxitA8mQRBFoFEISQOraryW47e/68Gc9101yJTESCr2j8W8yLk6zczhuHx68FRVPNZrCKABrQ4bRR0qO/Oh2OuVaBniYSFDAmQSYODgrSaD2tSVTbI2soQQtKJyuHls9aa//iPf9b/+819dO3vn0EbBffAQSBMJjKty8djpj3zqC9/4hnseOLvsRtcBmAQFMcrWMAjcGA5OL4UjCuU9K60ZQYMgBj/ZuvPs6tsfvPv567u9Vl+0wk6LmdGzSgwDAWFqEkRBVCKBALSmuNmICLNgwzJmAJg5YUQrNp46CYXglE4YwQcfI8IA4rwPAoEbq8NIl4uObbM85PBIZhDSRkgJkgvBRKQHlTGmYAjCKE3TpACyABKVdbWwuuwAdoZj0MYxeyT2ohFDQCIqrcvTfDIpfNu2WvDop1/+ru/9wZNvesswSWnhCKrs6YvbaZqLJgBGazvtVu2k3+8bDYPRRClV2Vo0CIBJFAkX5RgBOlmKwcdF2wXQIplW+4Pdr/7Ob0wM/Onnv5z0lye1Kyur2p3GK2nKXGVhdh7igFUKIAASx4aKZsOTWE9sxhdPW0YEgUh8EJBYBYsPngg5BDwQWIeGoacM0axkFJBMQAohIIt2nuWQUZtSoHWv27FVyeKFETAo0gFqz4FZFChB9MIaFTVdawYUexQJnpgVIpESQOecq+rRYATDMcyvpZ35SQBCtNXQhOItb3hQi9va2jh6/IRS5o//+I+r8Wiplz/2x+8HO9ZGB2+RlAQLBomIXZhbXDBGO18eP7pWVWUra21tbSmdiC0i80xEAJiFlUYAiCpRIQRQpLVGiHKDBAB1Xff7fe89i4+uM5EXzsxFUUSBAm20iMQ6VawhxlqW9ywiUWQKtWJmP7UMavT2vBetjTEh+BjwzRaZ+M/IuAeAA9ayHHDZYcoGi9FzZDrdkJnPdL9IE3gnznrnTKfbypa+/j3f8OlPffbpJ5/auHotIaVJhRA8kejM1yRJr4LWpALLuLp2YnbG297+baOyKKp6MBmnmbFVzbVLyCCKsFcgwbvJcCTsfVWGunJV4YsxeAvI4K2r+ZBzCATKtdG7W/tACSgTvPvCE88rcPT7H3ndXffM58nEsmUBUsDR0h1BROmoFKxj9c0YY5Ta3d5e7DenTdN0Mpm0Wq3hcGiMAWPK/f2ZNsT07nvxIYQwHA57vd6sCK2UcsE75xiiGihpravSxts6Go1MmkVsTKSpTMdYezAYxCqnMWZzcztWJ3tz/RBCWZZlWc7NzYngpZcvtLqdLMustahU3u6ORqPJxvbS0lK7rQFgd3vPWhdbcJUy3nOr1aqq6ty5c4PBYDQaKWU2N7eTJGvlvdFo5Ko6svhJq8C8vrGR5hkprsqJt/X2+oZOzJHVtbTdTlptk6aQJUdOnBzs7ezv72+ubzzz3PMAkLc7W1s7WZbN9xfOnr15f3fv2rVrrSzpJWlCaIvJYGfbWr+wuGjSVvBWObuwOHf2ptNPfmHgHYDW3VZvNJk4F0AhABLHORblQ0EAhD0AIOE0Nz7cITJtE1Qk0aouBDAGtUKGJEvTdntLKc+CFMss0vhdHjJBwylPaBY5RaOPg402Loiv2AFfReQ6vMHcEIR9xT9rznAo8lMQiY9I3ISJzadj40E0/dYAIBQtSKI1HinN3qokamqETqfnQg2iAZTWqWMcB/iTLzz3zFCd+ar37k8qQUquXdPH739hr/3C9vX94ej3PvSJLz17YfnIzfsT5wmcH7na5ka/tFnA6eaTC0nY1iEEVOCtJ6KFtdMKqayLjcGYVK2zVGsdBDiARwTkuq6JTJam3vs0U1meVLXrCvrAw3FRe2dS4zkIAlL0HARC5MCUqFzT1rNP/8O/9gMn5xM3Wk+MYhZAUorAM7AEQkFUBMJWRB1mycO02y46c8y8NVkYGKKoBcQ6GnNEd2JlJ/orHuLhETcSvCF6Oc0GBqIoAEBBYImtbYyIhIqYOTU02b/2lrtOvevBWx5+8kp39eykLIwhF4TYMwREtN5l7cXf/sB/uf0nvs/oXHFgCOyZjEKIEZg6kOPHpjORRCB2/WqS2NaOQYQVQU72O975xp//d7/Tbx+deEFDAByU11rDVOsHZ/haHG2CElimNI8DDgApVEqQbfDTjoWGQRysBaVq70mRZR6OJrULAsBIwuIlRPYSESPcOE2az8UoqOa99xpEk0pMFZwgWOfYpEjas2igMNUvFSKRkGVZ5WFrf+KF9seTyocQBJzUdV24krSCrYEa7d11rh8Y9j0u3Hzn2qmbuKi2rAQKOmtXzmt0xIyVN6lIVS315hBhMCwDgmgA8AQAEJikqCwSLC/OkTyvjYj1WqdoPXIdhrtvePD+3SH8/ocenl89Uzgmbbxn8ALOYZoKs0m0Y4+iiHQIQtjAqPFmShxVOBP3CzEAfMaxAAEAAElEQVQGg4iLKyWMB90k05snAqQMTFet5mkaDY3KrgcAUJqBOEQ9fByMJsoccC32x5PUJJWtJQSTKK0SQAjMmCQRAgnMWiekyTJTYC/gAYRUAEmSFIIXbnxntdYbm9c317dA56a3wNqQdwZCVey+/p5bFufaG5dfXl1dnevP/8nDn7x6+cpKN3v2kx+GegII3gcAJcyAoBStri0jxQ2Z6joJSJY5RdIm1WkCRdG4M0vQSiNAWZaJwbIsY3VLJCryh9jTHbePGdudiLRWiUmUUkVRRuxDKRX1pISFEBOlIXDMG611eZ7Hu9GM+ymuprW21qV5bqsaWJIkKcsygmHx9kbp0yh6gECESqQxkTtcZ4uo0Eya9dXJ+fSBYYgQvckyAIEkUYv5G9/60Gc++cjWxubCwuKktqBV8GIZVWtJTNtiOrSVTlvjcPB518duYql0xmJv5AmpZTIEbVqtTBOAhAyktcrEDBIMskFkW4IERcLeHtZcBYBjd77J1UWaaO+9DyIirTTJiD//9GMvrg8fvO0oTvaTNCcl3vpo5xZCUJE0j03FMMpira2tubI5rfc+KnW12+3JZJIkyerqal1Wk8mEiKy18f762pbjSdZulWWZTqFL7z0pmsGYvU43lh0jrpgkiXfeWrswN58kSZZlW1tbkUWRZVlRFFE3P8Z/kXQvqOND2tnZ6ffn77///guXL0UINM9zEVleXm76NRQNh8P5+flOpxOLmIhqNBrlebq7u0tEgd1oNCKidrt94cKFleU1Irp2bb3T6fTn50fjMSjK2tnOzhYGXxNevnTx2rUrZ8/eXNc1k9ofjefnF03tsk4v68+vSrjlLtm+dnlzfcP6IEgM+PiXn1hdW1lYWt7e3i4q63Z20jQPVbW7sVU7672fX15ptbtAYIxqdzpe9sqq5kyDIo3aegtAeCNOCSIgASkqCwMAgxwy5QUACTPV0ihdgYkWFkZQwIiiCSAEneYSgMXDtEn78Fia9kQ23LK4IiDiq2bEDcefgWa98pguqa8Ktv5bT/AaH9eEYg0MpowJIaR5zszO1ydPnW6326PRPoABMC9d3TFH9v/g45/9nT/6zPKp265cHhaOQalWvva+P/n8v//V96VGSKv2wtrqqdsrCwJoUgPBZspwCKbVnn2sB9QaldKCTMoEL+PCQmAh8d6XvoARRpzAmDTqGwshsQIQk2BV17Ecb0waZZCZeTQpNZJw0EYHZhRGwARVpmD95We+75vffu/NK3a0niph55lZGxXVz6aRkAAwsgBio2ACAFNrJkRg9tONyjdyg8gADbwSBAAJG49zAJLAjAd8UxBhRK2IpOnUB6EZokMkrABBmJFkBp02iG3Q4nIZfPc3ve3Tj/0bLbaTJI5DJLE6Fk2YKrNy4sQXnnrsE198+l33n+CiUARKKeusStLAkYMTC38H/ZhKGh15BcjYqOMBMAFIqO84feTt99/+yLNbvcWjRV2RpjRN49Y1HUsw1f6IBbDI8JjuAdPJIACNVBsEmspwMELwnog4CCo9qWtShpGG41ENDZA2pcGgiEQQ9NUDOIAEwNr7wolWyigvzleeKy9eYy2IIXhUIthUl4Ibj0aaFAts7Q2uXJ/oeTMsyiBiJEGtWCn23Enz2llrrU5AZe0aVenEMZokC6zYQ5Ik4sfdPNE6Ebb1eLyytMwCe5My7fYtB++YiCrnsm73+UtXKYHzN58qfu+PumtHE0lcLZ0k3bn84p/7lm88c27h9z/4xa2tnaMnbrf1KKC00mzx6PJwd997X9nS26C0BozaERT1C2KujtPaMhA1qO20ia9B4kVerWVzGEinQ6R7RETUITgkE4ey4LRTkhmVObzx74xGwELCqTZakzFGa50aY5QyKqruqsp6BkhSTUK7wwlvbII2xqRDP8m0SbQJtdOahrv769c2wrhMV45hmlsPJKy9PbLQuf3cqb2t9SxrLS6tfvaLX3zqiSfPHl198kO/A67USkdVKdDU7naXluYmxT4gpmkyHo9jr+KkqEbjygckpavadXpzo8Ggtk3HYpJo56Lk6fTra6WUir55aZoqpYkIccabFMRG+LRRa5tKQvgpxy6iIbULeZ5b6+u61okJIXAj2tWQ8KJo1IyMBAAx7HPOKaL482EaX7NBYzTdOJgCcXdrOGfT3Wd2HKBfoZgAKqUNu1CX47wtYFIz3zt24vh4PEZK8lZv4n3N2mE7QNs6zVp5wF63FylczXmEPQcX2An6ymmtK+9bRMjCnn1wEdsXAXZitDJKAxIiG6PICLVJ/MHV52de31Nw723n6qp6+cIlVGY0GKytLBy9/Q1/+vzW2ZtOJGkHAYkcOEGFWmsKXiGFEBw7a23E/UajkbW2kzWnvXbt2okTJ1qtVtQFCSEURWGtNWmS6IaGb61t53mk72XT7DnquHrvCVCRytMsRniBnQbyrtYmJaJuuxM3+8h/nLHKiKjVag0Gg16v55xzwdd13e2319fX0zTtdDq7u7sPP/wwGb2yshK87O8NT5xK9wb7ke9fj+uYSV9bv25UopQRkWvXrsWAjJk5QJ61s7Q1KYuTp85UlSWtllZWEJG0OnnimCCUk7Gw39i4Vk8mS0tLD930tsFg8OKLL64cPdbp9ltZ7pwrRpNWpwNaAcnSzeeXbjoHVXX1woUQwm2333nl8sW5+f5td9z59JNP1XXNXEYpjV6vV5aT6vpV1GYh64QQ9vf3QxCT5wWIrX1UrHUh0qindGmA6LETpY9iX5vIodhrNlQbL9GoaEhsNKIIMEgIzsZtI3gPEFCYpv0srzzPDQcdEN4PFSKnacp/KxtsdoGz+svhGfhap8Kp9NRUf/xVfK94cANdxNclOBf7B0UEOPT7fQh+rtMGIEg7//gXf12tPhrS/tLZe7eHZWmD0hmpZFIUS0vHjhw5piQojaWzASRrtyvnFWokyTRGufTZ5y7Ot40mb51zjoy2wYuF4JgIOJXEVwEhNFZJxMyVs4BakACYrCgMCgh98N6nJksUChF18klR1LYGYE2SJAlw0OB5XJ472n/XW+4Auy3eeQ9pnnlvgzACskKPAUAQmESxxHqiinr12MCOQSTipg1OIBRgFgoIAVBsqY7mIcysRBRG5QsGZIl5PkiI7osRp4h7p5AAMIKKcCWEuNcBIGAAEa0TEbHD9ZuPnXjvu9/+nz786MLKaQoqeNSC/VaX2WsJhszJc3f+zh99/L7b/sKCaXs7JgyJUUTIAqCUgI8Nb9BYdkZTPgSOzj0cvaUQFTAQOyj33vbA7V987kMQnGJIKJmEyrPHprs8lkIO5QMMQEjTXkvhQKAYQII457zw1DxKEBEIWRBVIoKBBdBMSkcqbXe71aQM0lgpzNRWZwlV89+DgY6VDxB8AK5dmBR2PlMe9ajyQ1tWAX1tmYGZCYQQJdeuKHSkaIrmQCBGVKx1aiQCDCw2EIuGOgQXAJAFwRM4IQgGgygtvprMZ8n6yy+n3c7J1ZXaFqk2nuD6/qgAAUGSnASDKEnbT714dW8EN59aMfVoTvVCIXNJAm64vXflB777f17fgX/6i7/cPXt2t5pYZNK6GA/ZeQBIEi02KE3RvQcgCCAIK4pyIoIw0/oAbkRYDuHi0ZePIhf2lWle/DfPyKMCU9MINUs/FJGJ7RQqKlEdLJs6yxFRk8q0YedLa31RAhdaodagEIXRC/gQSHGLcDgoStgTpb23iTYEEJwzSBycdhz2J5Dm6dx8xUpCyBCqvZ2vf89b2U3qurzjjruevXT9U4989syR5Scf+TjYQqMHQQ6B0vT0mePFZN+5SavTrb2z3rngJ5OJUmo8HI3HowCYKD3YW1+en0vzXBCjYnaUanLOReFSRPTMcUlXWgUv3Gg8s0IkiQ2T6IXBuyhokCRZUVRJomN4BAAheAAB9sDKmAO2d2NyD009MYRApJxzpDB6beqpYDJPNVdnfY6xsUemPaqHNx3hRhYiquI1WMNsdszCL5UlbD0gklaKkkAg3oKrsjTJs2ww8S6wztpKsonNQLVBkQtcW8/MIRwqOSM6Di6wiBLQLEoZNK1MtPauFmWCSCQT+AAQOEmA0IgELhmAE0X+UPh1cd+lKKddWttwedfmraR0aYfbvW73matPP3Fh+4FzSxwcO0dEIBi750JgF5tQECNqdbAWAwDA1tZWWZanT59O0zQWiZMkUUqVZVk6j4hlWYYQWmnmvSejiShG01EaJIrdW2tbrVbUvo9cPK01oTBg1PeKNcGIbKVpGglh4/E4lqiLovAc9P/D2n+HW3ad9eH4+75rrV1OP7ff6RrNjDTqki3JlkG2MQbTMaYkIQklCQkpJEC+X0LIN42SUBIIkEAwEFroEGNsYxtcZFvCVi+W1aUZjWbm9nLKLqu87++Pdc6dOyPZkOf5bT3P1b1zztlnn31WecunaD26eHF3d3d5eXl7e7vXn9VTx8NDhw7lzYa1tiiKlZWV5eXliPLr9/ve+8HOcH19PYQwNzfXarXSNAXgwWAQQhgOh0UVy3XoPQPSocMHUMDZqtNqS12Od3dQ5I477jhy4gQ0GjAcllU1GhZlMarK8sL5FefcoUOHOr12/NSkoNlsHrz6ODhXleWBI0ddVXdnZo1O1tbWivG4rKoQwtbWjpAcODInInVRNJudY0eP8oOPKaVcacEYZycARrkMOMUEAoQiLBIEQoxGLksUUCJ6F1ExckRwx9QwT4wSt766CojeW1SAQjRNFmmfd+ReZrO3YUzmA8AVw+MLV7xEwp6Xw+X/ftm8moZin+9k/BocvWn099pvTAQc4vROUuNd2WhmAjw327/9jjseeODp5sLhxrHrLwz92c1hmuQw9ZXPs4y0LmzdyrNKvM7y4JxSKkfVaGQc6sQo2ndnACBPNHtrEPNm06OYoNEQe++cA6I0T7xMHH+Y2Xv2IbCoIBgEBcQFYfQURCFBwkpr74Mm7LSboZEBAAE6XxPSUq+9/sLjf+M73znTJhmMMmPESXAepl1CJgwihKJAEBVO9dajeiEKI6JGhRMzZ5z0E/kSci5296IHKAAQaaVQTVw1gwRkCKiM1klg8N4rPZVsRZl45kyD8j15sEknGBgRvPdKYUqsefwld1z35x+/r5WiFaMw4eCUwqSRG8Sqqhqt1rDc+uSDT3z9l9we2Guw3tUQhEwWZD9tbSoDG+MkiHKaHFn7E9ahuFBtH14+8sbbTn/wU4/PL1+9PRwHw7xXPUPZK00BxNoxosRylIgIMAHEnFALYfQGAlAi5EWQkYxxzC4E6wJQEgCJVJI1MoY68BWQlyvyetkLMhBR0AM6xuB94WoIWR1gazBer8dBZ8IwaRIhUuBUgtZJOS4MtZVMPLg5gE40i3CwANwwmkAQcWVju7DQ6TYV2OBYAlRFkeRZqIqlbnb2sQd+8Ad/8PmVix/54IeNhv5cv/LwyvomZakXRlQQxIq0+vOffOChs+erG29Y+save9tv/sp7lk7fOfZ2/YXHf/XX/+u1J5Nf+F+fWh3A3OJsYZkFwIc0bURsSVWxUsrXNs0atQ+gBAjBX+YAuIc5ndyQfX/G2thlRfLLGriTdGKCJdpbSCaiOrGmKc7aKCkSQkCtAI7EZ1kXhBkExmF86YwCdQhQeZFgVCJAXgKwZaMgSVFnLEwqtbZGJGB2wWkGCgACen6xCoGFMqJ6Z/u2G69dmOmcefGZY4ePDIrife9978GF+Y1zL8LahTRVvq5Y5MS1147LQsClmSnLMWrDQTa3N70L3U6HhbRKezN5CKGo6jxJt3Z22+12kujaeaUwzZvBuUkxKgY9OFnYmVlrM/E1QSYyzAGRENFog4jOuXa7PS29xyglxOfH3mJZlo1m2zlXWRfLkM65qLsf304pnSQJwqV4CwCIiEMIIezRWvfisMmMeBXJem9mTEbFvof8nvAEeCaluK69AKdaa6MAAcWNRtXubqLbpZWQmEpMGZQGjUBFuauUoj3w5PQ9nHMixCCKdHAOlQgH9g6EKRo8EoTADCEuMYSEqAlFIIhK9l+hSppZQoCmrLhm1c7bFGDkQks1X14b3PfoszecPJzoRl0NFRKpSKJhAFHGKMSpi0Kk7F7qi3daLRF55eWX+7OzzWYz6mPFh1zwWus8z40xu1vbzJwZHUmOaZruQediNL3Xh5bAsV04qU8qRQRFMdKaQvBaZ1H5ot1uj0YjACCtOr3u7u5uXdd5s9Nut5955pl2u51mjRBCmje1SnYGu5WtrY1dVyzLenNzczgcpqnp9XqHjhwZDodnz56V4cB6F/XuR0VZFEV0/h4MRrNz8wKgElNZWw5HSnhn9eKZl1584oknjhw5AgBrFy40Wq3W3FwmlHf6mxcugNDi/GxVVUbhzvbm7Oys56CU0sYAIKRZluZQ10nWCM4duOrE4sEj5y+cM8ZUpb2wcjHat3U7fZ2kw3G5tbXRbLRXd4dD51SaQWClFFLcQGW6FrFMME8CeIUV3uTQWgtoL4LgSSnUCghJKQi1MezK0WB9pdvv7+7sABFIwKlgzH7Pxyj3fKWk2KuPLxR7TVTvLy2m0zH/6iBr+oS/du8SLi24n/fCSHlbpnmjkeXFcHdxbj7RBiVce+01DzzwbOl9ORyNLZk0HXtrEDlU3X63325R6TozvbIulKCA7zS6tpIk1QC1oWBC0CD7re4Ns2dg8BwYtUYRRR7QawVKxcQWhJkIo38yo2LBIKESKUOIVo9aK/ahKMs0TbXWSRodIxIQQRat0lwn4/Wzb7nt5OtPHw7lFgExW61JmKIuOAAgKhEkmdgZR4qiIpi2bFSslEpgnGj2KAaYVLOibSP7+DVEAUlScfkOWqGK4BshhihmbXSqmS0gqgkxUytBJkBRIj4iw2DPNhvj6kWkyde129m6avbYu770zvd+8nO9AydcCM5RnhoEQe/bWcOLzC0e+PNPPXjLDaePzrSD3dVKlMYqMGnFHHuLEJU5RUQiGzgKOyAEESVAqAiYhZldVWzcdcvJxz/37M54mzEJzEAYJlUWxGnTGmLZDChWwngyxmP/C5z1EnGzniH6EwGAiLc2MDBSADUcDFWW+soX3jsXgrAwI5Gadrv2th+4ctAjAiEQAJEmCKq27APVDlDlQZTzToiJKEWtlCCpyqP3rBEW57r+yfWGIhIMgbUCktAg2d3caPa7rVbr3CvPD0ZwaKnVbyqqbQ6pGJTgl2dmznz2L7/zG976d7764K+/p/pwURA7bcgybO+OUGcqsj9ZmFlUiuni+z587/f+47f9k+9650yvcfbc2vLsoS/90e+8+abFv/joSz/7i7+7cOrm3coHRQAGAG2NiKlOkdkGG1KToa16WTaubeQ5SmDBfQnkfp2CS7NZAF+VgF0x3/du4d5PAGAPiKgIACVIJIvFr0CCu/TqvV4nqVjhj26gKABkCBPnGQhAGQLtfBXJTxOGnPcAmCZ5XRVJZorzK9BsYZYFUlj7uhjNd5u33Hjt1vr5Tqc1s7D427/9O8uz3XJ9dfPxh8lo56pmp93stlUiqVBRFQgURLtRUdcVIjWbWWKyoqqHg1KnSRBWqEbj2mjaGQzTNOl2e1mWivMKFEhM2lFEdFxp47SAoDSK54ixmzZnJwM/zZu1C0Q+ypsjqrosFFKc/xB3cI1a50VV15UT8oiIpCNyP0kSZ21MDOLy7pwDYG0MizAEFAVTSXaYrvbMLHCZdXrcMiYBNNF+STCIYLX4W11VWmuV5gmC6ASVAh8ghI211bMvvXjg6ptQp1VQBSvT6DlWtq4Eqd/v7MmKxsP6YF0QRaR1qrKqAq0YgTQSqgnrUmsdgiRJEvsdtbMApBSioAO/v+9krU3b/VFRbezsplmTdNJoNpFwUNnm7IEHnnzprXcNbznQduNNYUZUSilmzxxIQVmWw+Gw1WpFDuP+j+29j3r0z7/44q233jozMxNbwu12GwC2trbYh93d3UTpfr9fORt3prIs0zyLLcj4QWI0xhPTqBAbxkUZtVWJp9KsWdbAqUhup9PZ3d1dWVmJ0qmxuZmmaRQG29zcFJGsdmVZDsejTqejdDIejwmx2WwiojEmNs5XV1e73W4MHBFxfX09TdOFhQWl1Msvvzw/P1+WZaPR0FpfXFsZjdSBhflQV+devLh68cLB5aXBYOfRRx+dmZtzIbRarW6nPzszs7GxgYhra2vO+1tuuaWqR889/Uy/3+/PzV44f17ppNlpg1Ce5zpNVZpB5Sijg0ePWWsJtUozkyAq2tzYWDzYsmW1s7m1uztW6XKmlEP01ieJlqmmZWyyg4TIeQK4VPS6okce7Q+BWUACgJqoPoaEqJEpuzOCwW4239gNzpiMeTLK9wrO09VMEKOk3r4a2BWR01/BW4wx4ud7SlxT5dXX/4WPvSdfEcNdesfL/pVMopVCgNBuNwHAWjszMwuEiUktaZ0kgW2iaabdM0RMPoRaaVXZUiQWBlVVl8QGfBBfK4250imi2qen1c5SF7TjCOfjhLRIYERjCFFJCEYbH/dwZiYWwehokqBok1XB+dp6YAIMAuOyqr0TkSRJWnmWJSmy19okBOtba1/1bW/Nwsi5GiUy0SBYlgBoUAApGnPzZUof+8NfEQEgltgkUBIgCCMSKaOUAtI61wygUGs94R9JsOBdCNYHG5lW0yw2ABCAJvEkjIgMIiQIFHtyIACgImtgT81BKV3XZUMbAQI7etPN137sL59IyYYASao5WAOUJInzXmtj0sy05//i3oe/451vgXoIwiQkgVFPdgWalkURVUT7RzsniZMjNgWBALzOtPXlTGfmrXfd/LO/8b7FEzc465TRrzn2JtUSkQlaCONHBo5uMggMwPEOoEJERnABGAQI6+BrkFBWtfVCyDi1Q5pKVcG087I3hvcFGSyeyZDn4JkTpUUhKELSgYWR2BgAYMRAoAI6AdHJK6vrRi0fO7gg7rPEQStSSVKNdpf6zbOPPfj//MD3X3vrkX/+Pf9RKnrmpfU33zn/VW+/+3//6X1XXf86KwTIZ596+MarDvzjv/euF58tfvw//9htt7/pucFGb3amqGBU2GarX7pKAjsbUJsQYO7wiV/9vfdef/3Cl73lxn/w977J15AlYDR8+J5nf/BHfvrAiVu2aglpZGoHZXJgAmDnCkQgAR0s1Ls7F1/IZg4qk3qiwBxZWfun97Qcfjn2Cy7Fu3/d5SLWEUQuCeARxn7A5aLlOCkDs3AcvbEPKhHZz6hIBIEUILOPitfkgxcblElDbW3wGqnY2QHnOseWKpWE2nYSM1jdfsPdb5O6YGuvu+H0p+6/f2tj8+jC7EsP3QtiIbBJ9dzSYlGNhsNdIiqLCpMkDsAsy0tnbeBiYytmVnXlAcSDjykWix+OR0Vpjx451MzbdTlmrvdgu/GmqagB5r3W2gcOIUxIVBiRAwRTpYIQQrfbjcKfKOycE5Q0TZ3zsdnVbnU7nc5OGNjgiQin+zhOxdhEJAZkERFORBonVsJKqb1F4FLwB1ea3ckUKblXKtt7iPfUGNJ2xxdDrksWBC06S0HAl9XW9obKklrCyAdsd4AzJ3pYWwBpd3oR5LSf0l1b9gIgLCEg+CBs0LAYxyCAQQJzJLtRCAGRCAhFAJBARVk2vb/yYa1BqOqisiWTCIU0QwQel0Xh1dg1nr8wvv7AbLPdroqSQRROurNVXe1ub0e9ruFwmKdm/1kjZ+HAgQNB+J57Pn733XcvLCw45yM31RgDSjPz7NxcURTxyxiPx2VZNoVxSlulicIxxS05Fi2dc9baLMuivOrOzk7EPGqtx+NxxJlZa2M0luf5+vo6w3h2djaSIgkwgPT7/WPHjiVZuru7u7G5nef50aNHH3744W6n0+12h+NB9Nl9+eWXq6qKuLEoMDYcDpvNZrPZfOnMWe99bUO/352fmTWJ2trc3F5feea5p9vNRp5ljUbDVvXq+QuAtLW62e3urFy82Go1Tp06hQoee+yxBx78zEyvZ8t6a201PZNWzh+9+oS3bnc4Onz0qk6SCoIkhnRGdaWVJqHlQ4e1EmuttQyBU5PEQqBSxtkyIFGiPEcHwH3WyBizB5nurxNW4P4RzMyCAEhAfrKQIWpSJAFCGO1uQqISQoXAwQnQHk11f0Y+WZNivvJaQMj4MFyqGewPfRi+UNi17+xw2cL6V7/kNS5gb35GduCkThEZbSZJJneAou2jlHWYnVuaP3UdB0JPSrBB2GtkJjAzY6K896lKrK0bzYRZvHUNnQRgg9Jrtgy4Tp6qIAnvE8YTts4aEm2MrUUQPWimSFkI4r3WRsQIAoIHAkBhDsyAgkq4rdMayDnHgoHFIzhAZubAo+3tbpbNtBsgPBru3nnbTUcW+tptMnullLM20RTEJknihdCjBiIPAiRIQoIsEAJAbFEDkSZSSNqQQoi63QmphIGCgLW29LA1hJ2irMoCkFEkS6jfafZbrWaO5Cv2pTgrwoaUTMiQCsUoEYBAKBwVUREQlEwkIhAh4p5ZAXpvjdIBgUjbsliYW7zj1tOfefpM0l0IQCqQ0drXVhkdxA7KMu/M3/fI595w0/HXn1pyA++sTbNm7azS+zfgmN8TAAghI4hEXDwBTuTR67oSZYBHN19/7Obrjp/d3M56M5X3SggFJrxHnPoCyYRJIAgASBJFLJkFIyOVAzOAZ3DOB+EAopRx3tdlXdU2zRpVWdngiRLvAyDGcspEuwuv1GGZ4CgRAYQUkkIrAYLzKMFoneog3guyFiBkkThvEdhDmnTnXnjlotI3XXvimK9H7TwveGBtuTw/t3nu+be87tpv+bIjn3oylIOqk8984lMPvO2NX/lNX/f2ex947KkHPtLozSC7r3njbd/7z7/dAvzYf/+VuaPHKwiSmbSjBxWUlVs6PLtZ1KqVBwZngUAVle8eOvEDP/pLL1/4G2+4+dbZbmPl4vY9n3noV/7wvXNHry+ViZZAwAFIQj1S0GBmICZFxjGPd+by8nv++bd/+M8fefrMmp7tjMJEC4qn6wBP5ZinOcTlZTCYmLBh1KKWKRwUIZJwcZ8/x8TIS2JEAnui9sy8P/xCARFSKMwRIS5ACkFNvyyUIEgg3gkCcgBCTeicKJOICCgiQhIPwzEsLjilQghGq9Fg9+prjh8+uLB+/qWjx46tr28++JcPt9P0sY9+EKiiBNqNXBnjvdM62dnZGY8L0CaLHqvBxR3B21qjEWYRIq3YWTKJEhYBW5d5s1kU1VOPPzE7v3z08KHEOWttVFWNkRAieO+MSRqNRg2Xwtn4wUMIPgQiGg6H0mjERZKZccqujeep67qqqixtaFJEREIxdJAp9D7Psoi9iTWdJNHRbzeaVBNSbGgGjkT8aQFSYH+ABdPY4FJ5bP+WtIf9Ov/scwcOLmGWSu2K8bDBojKDiN1u9/jVJzdr4yVBnXuXOFF1CFmim82WCIRwGWjXeialA070bEySxJKGDywS1J5ZFVEIE5LnVHxVWJgQfNjXfBRut1uJySrrwqRX6U2SDEejwdj1F47d//iLt1+VHes3TBpCXYbAIQgqkhqttbP9vjCnxoyrMs8vqbnmeT4cDiO18ODBg88995zWOknSWIVqtVreOiLa2NhwzjWbTWtt1K8Hwojpi/itWAlL01RC1JqnnZ2dqCgWm4Dx7aLwRPRkjLwMk2bx+8iyzAWOpMiJqxSHsizPnz8/HI8WFxcV0fnz52Px85VXXlleXm43O7Zy3u6Ox+PxeFxV1dLSkvd+a2srzTJEJKWiHfhoNOj3u61mc3X14nPPPn1wef47//53vXL+5Xs/8Ulg6XdnWq32cDjsdvpHjh0tqvHq6uq96/fefOstX/u1X/uJj99z9qWX3va2t21tbBIqZfSoLA4sLvV6M0UxStM0CDc6bWdrhWTSzFaWEHd3d7TWebPpOShllpYO7X76CWoeUkEBkq+rPeG3CL0nBTGxIYIvgJKXveQfcTKaSXvvNTIGX43HSZY7ZyPmK05DuhzaBfvrw/tir9hDeXXr8P8vx+SyLz9wSiWfWt5cFqjtuxKaFj9i3qqEAwA5awOw1gQA0Wg2z5rUaB+96sQL29LJW1pMOwe2pdFKSLEygYJjSRuZh5Bok6mMAFH7fqfZpNBSaSdRrVTnZPZkV4/NdMYs49puD4aYmMoxKlRKCRAiAyFLbOcxACOKgAiCKEUAFBA4YPCJ0gwUrGORxJiK2XtvSJW23t0Jpt8Z7GzPXHdDkqp6VGhjRETrxHqrE1M5j5SgCAIFxiCaMQmUMwqYhLROlFJkRNALOyc+yLisytoOhjvbg+H2zmBnZ7C9vb0zrs/vlDtFGecshKCVLM70lud7J48snT5x7OSxA1lTXDHwvtIsCMIT8yKIHokErJBACGNsiTJRJEOM2l0KIpsyUkFBo33T7dfd85n7895c7bwCdM6RIhapvVNGV05as8t/+qFPXLX8rp5pSPASnFYYixRRPQclhn3AuEcpIACgaJqLwghKG9SmGu3kvewrv/QNP/Zzv7482yfem0hKgAQYBIQxAExiV4lSUwAILOBExrW13nEA0ioA1i7EUqXzpVKqKGtGGFa7iEqIOAQIU3PoK4f6frYvxicgIiqytgQSlSQUhAhMloICBBIEngqRM4LnUDqftDof/Ogn/9nfeusNp0+97Y03f+SBTxy4+tRuPT772GdPHZz/kR/67vEA/s2/+Tcz88uznbnffd8Hv+Yrbr/jtvmf+OEffOq5FwOqxbnZ229aLC38+5/+w8+e2Vi6+sSwGrdm51UOwyGgbrYaLQ+0trU+Oz9HjfzsuQvBSytNZg5f899/9Q9/qfplXxY664a8e+Da29aKKjirEiMhgAREQoUUIT46Cc7Ot9or55/7F//+733tV9x0dO74P/r+f7ewOFsyhwnXNMbzEbUUK/ER0BaiZznu3TrcQ2TEGxrrYdEHFAEYp+IUE26dcNztcUIUFyK1Hz9ILIpFK0pSY4O3U3FbEWKIwrdCogRAKwQHwbkYXuyZH0DwrqpBacobHlAEQTxwceP1tw921putXJv0z/7kvYv93tnnnoBylww38mRhYaaunQ9ha2enqh1oY5KsKktSCgFE0Fsh0MyMoACZA4AxHAIheQ5K59YyklaN7ubGxng8PnXi6tQ57x1PYyPNE4SWUkoI95BhENdJCSISoUHxORH1VRXjTqejjPY+xIeIqCzLNM1jVFd7N9FaA5iAs73P89xaG5PDyRtFjMM+DTAkZGZhjsalcvlOFjuY8cxEU8+96UPT8Ovsy+Xu7uKRg61ev5lnggzeK6X6vXmEZGdYS3e+FuW14YBIlGWZMHpnmRnwEmqksBbIQPBJkjKzt3XWaBpN1vrJ1iusiGI2xjxhBkx9//AKkfK0kbQ7TVt6rVIntQ82TzUAlnUg06C89fL6i2c3yyOLc77YBXDAYJS2ElDRzMxMI0u3tnZjV9EFu3daY8zCwoK1ln3otNrW2sHObrvbSRITFW+BUBmdZOns/FzMPMZloYyO+3UEeEU0vSJT146D6/f74/Go1Wr5IBEQVlWV0RoAosG2MSb2Q7vd7sbWdqfTibSOyrrBYCfGlIEhhLC+ud3r9RYWlp544snZ2dng/dbmpnduOBy22+12s7V6cXV9fb3RaJgkWZhfZIE0yw8dPpK3muw8KMUoIuHAgeWtzbXz42JcDGdmZ09cezoYdfya02mj/dxTT7/4zHO7uwMKYoCeefKzlbONdoTEnVu5sGrICMN7/+RPe71eXdenT58GgLNnXmy32yur64ePuWazWXmfZGkQpDxzzuVJ0mp1qqqofN1qtTfWi9WVzdmF+Yu+joUQQkQhIYgMHREBQQQFMWOQS82LK8tGOKFFwsTSAwDRmExxPR5s+6JMVWKyRGjXW0s6IdLOudgZ238aESFFShH78HlCrs+rgD99vkxbBXGLuZxsv6dXvv+FE6x03NQZRKKWYgwAA3EsDJGQpsTzRD+FYS8oFBENAhqTIE4UMQiYFFTaanS99YhAhPOLhzegajaaxEoDB4Las/XejiwjW6hDsCpIiqqBSabV/FxPKmuMzDWz5ZZe7DXn+q3NJ7bjNR/McatGV0nwDFoxBE2Kmb0EFo4q0gD2kpo8IYhSQCJiDATvDSlmQOBmbpRSypB1+dbWliLjHI9dLbtDx7xRlDUSKl37kGpV1pXWWlSiFSlKkBJSiWp12qkrHEraLhi2Sj8e+dFoVAw3B7uj7e2d9e3B7nC8trlZVLb0VqskydI8baRpmpnW3IF0MeIFAYSRmdn7zcqde/j8n9371OlTR7/4jhtuOnWgRdYPN4idoAiC0mg9p8oE71OtnLcIShBiaSk6S05lxAgAlAQiVgqrYutgv3vT1YefWNtMe8sigsABhGP5ARWSmLTxuTPnPvO5s195x0lbDlLi4JwoxaCUUiTA7ElYtJ6wAiMkGJmm2zIAaZ14x1qCFLvXH5358rtv+dhnLzRmDwhbpRPvwQOT4hCCsNLaOC+oDCo9rmorMRC0tbWMZJ23diosiZNtJgjCBG8GRDEoBOapKqaIIuJpvx2j0lUs1UxBTvEX5wOphEGCDQrAW7u9sXHk6FXeMQdQgBGWRoCoVOH9fLt77nObDz3+7Ne+7Ybv+Y6vaZvyyRfPHO7PvuHNb/uGr/uqZgd+6D//DmRNbjTWXZ0tH/yRX/zNH/6Bf3L6WPPaq24UAhvghXPwEz//65956uXF46dfvLCSpsroxi/+7/tCFVr95bNnzn/TN72r28n+9AN/ujPauPuLb3vlwvr5l89BI89mem88dXppbvYDH38wnz+yXhYWgRRZXwOiIiPeIyovXhAgKGOaRVG1241brj1WbcviQiNJBYPXSEGYJ3S5gAq9D8CaiCLUFYRRkXgkpYA4SCwha3QgzBpjYqNgz4QUlQADBCSSwERKnFc48e/iSP5ELXpfARtxtpHvbKwOqlHabPRnZrdHdYguxlwCoUJCBkAEJzgBTRAICwGiiHWCzKMhtdtJmgfUylAoxscOzM62aHdj7eTJk/c9/NjW7qjti+rMs4Bhtt9vNZLgfZbkG5tbtuZG3rESAJCU4RCABQUJVGSTTCt6AQWAIATWSsemhVEKESBvVHX1zHPPzs/NdFvtsiyD8wQUvGdmSikEjwgq0RF4LYGVIUYQBKXUuAQbrMmMDdYG6wK7wAwBUbTWrVZrPB7Xda11kjdS770d2YhPUIkKwSMoARiNx0RkjPFBoiFndOmGia0ihBAgxCoSgkQ950vLv0LNnhUREmI05963Jek9QPodd9xRjkdMFEJAIpUmwAhZsnBgWWf5xs7W3EJrMLaQZ0GYJRARMrIgka72Yb9CxLgyxjqbiCh1KRcSEQnMNGFzEBEAxeAdpoWC/VufMSY1yWhnTKBiFEmknAvDUZk2mkxq7PjZMyu3XD3fTHLxFSAIQlmUwLbXa492h+PxeHZmrvAFodo7dUQqtFqt1dXVqqpOnDjRarXKutrc3Jybm4+Pbm1tRX+hCKuP8GHmYIwBwJgoAIC11hiTt5ux7UhELISI0fA7tiCjKhgzR72uVqvFgKurq3meHz58eGcwZOad3YG1ttFotVqt7d1hjAK77c5wOMyy7Pz58xErlqdZt9vb2Njc3d09cuTIcDQCgDTNNzc3k0SbLA3OcV0Vo5ExZmd3ixBfeu7Za6655uR113Znusw8ru3M3PwXvWV5ttf/0J99sNtsWe9EpNFuDUcjBtnc3B4Oh/Pz83neXFlf68/NhiJ89KMfPXr0aJZlzWYbEc89//zC8tLmxva1N14fRFVV1e50y+FQYVAaR2WZN1mZfHc4CqhrV3IA1Eb8RNzr1cFNlP+WyyHtlw7EuN8JUlQ6IAiusuArqkZQDNk7xESb1HtGVDHp4dcyn5d9yquwP3J69RV9nocmKStc6rbE3WhSnPv8dTTEKHQuMpmgLCDAQRECCEQkHBBKEAQSCFEUI7YhgETYaGPFgQtFUeXNplIm1amHeoIpfH79/PPPOI9QDCFLdZ6njUaz1Wk0G91mO81UjjoBUt4rEYOepO420qWZ7ORC9+hyv9VUe+HXqeX+i+vDzaFPicaunnZymbTiAEVZRVBdzC689yEwRKYeYmDWWislznsRRK0QhYPPSC3MzlSVLUFCwOGo6Ha7H/3LB7/+7uuuPXCVHY48QqOXMch4XCqT2NLWTgbFEHlw/sUXzp67sGnpws7gxYtrVgQCap208maz2U4aTZ3MzB5d7uLEcRIRITD7EIJ3IQQWtkF44j6psCFa8n63NQ+v7Oz8l3f/7htuuvob3nH3ieXlerDJ4oxCDkGr1IEnrax3RidRew6FJ0boQoQAQl7AEBISC4uwJt9tJnfedsNHfv39BzuLAQCj6AAikLaejRIkmj1w/AMfvf/Wk0cW23033sxSU3HkJETglwAKS9CkOCBghPlP8pYIn3Y2EFEjTYp6bNLsrXfd+pGHnk0VllYCC2gTOAgBo5aAo8oxiGcbUDmWmm01GlrrGCTJGszIaEDFjqKwEONEMeGKDjpemgKvOS8uyzwmqZRWzEwxgAxOAoP3VVUp1QiIsVwRXbeEGQC3h8X8qdO/8nvvv/bkiVMnlv/19//T3SI0GslyDzYH8NO/8MEPfeqhmauu2aycEOb9+edWX/nb//gH/uE3fdXJw0tVXTz14vnf/pOPqs7B2SMnzq5sqzwrnbNi/vTPPmZ02swatXe//8d/fPPpa2zNo1FhK6s15XnOzLauvvu7vu3k0bSC5p/e80C6sFR7H1jIaBHkibcxCxGSBjHeWqPTMrCz0O3j+Uc2rPc6TdxgBJpiXxUBfG1R66gyEcWGIxCPtBIWIkRA4QDIgGAIJTBIAIgkD0JlxFnUKMwCoJMklGU7zRoayVtmVnlzp6itXO5vNt45/5l7bnjT7VdffeuTzz33/Oce6R47NXYejPIsoJAlKqsQIRJilG2Y1GZYCAL4AMx5s82gXRShsMXNN944Gm4vLM1vD4ePPPJIt5Geu+8ewBowNJvNZiNbW1tzdrw7LE2WV86zMGotzAgongUgQEhS7byXEEyaMlJwjrRGIu8dIprEuNpyXYExZDQjXLh4cdQezfb602GGikh81B00kYkYm4xKKR9Eax0lJFCpWPhot9sadVEU/X4/QowmZkEkZVnqxBBRorX1XFcVEGpjpggZiK0nEUFBpWDPg3IiESoTa/CYluxvg14xEZhZhPc/aq2dQu+Dz7otII1aBYLS1kqlCULvqiPf8Df+xovvfs9OFca2zJJ2VZZGaWNM7R1wSNOUL3fWE2ZQGhFZQvR+CVMsTqy9TXBtAADAELWYJ7saAOzXwdRIqUmYmdkH59O0nWaNjc2LQhOLpU539vEnXnjbrScb3YbwkIMLwY12d7LcVFWxtrGKkAyLcWnHRJQmk9NGNYrxeOy9P3r0aKfTKYoCAdiHCGknon6/n2fNwWAgzErpZrMZQmAORBODuRgFV6VttVpVVeiJO0FQShljoixFWZYmSaIcX1TOrWsXgiDi4cOHvffPPfdcs93p9/smyZIkGQxGWusTJ05EobKNjQ2llOpTu9kiIqVwZeXC1tbWeDzudjtPP/v0wsJCSzeHw91Dhw5E0cXBeGyt1Up5V3/6vsfXVlZnW61jb3/bbL+3tr7eaDTyRmqtTfL0xttuOXT0yMMPPPzg/Q8kSTIoyjzNRsW415/Ns+ZwOPTehyAhSHQNX11dXVpaSk2iEwMAa2trSqmXXnrp+IlrK+dWz19o5BlA0JpmZ2YoyW0oWNNgPEgajTLUgCAoQK92On6N44r1HRlIPBDG/QSEwVdQWJFxM+Wh8UkdJLhGo1G7sBd4XTkN5MrtIcZDlz/tNXQoPt8h+8UCPj/MC199FcKxj4QCCiADlShlOVQCQCBCk/7sZCrEeoKAEAdAY0xmrLUHFhfyPBUJKKEohvMLszffdn3oH8lnl+ZmOp1WM2+kaZpmKSkNpMFoyDRoAEOgETKCRgh9CQspzeXU1JK11aff91K8yEMHZkZVvTXQyrRWS94o6qKqRGkAXTsGSmrnU6PKokZETUqjVhqJyHNgQescS1BKaUXMQQIgKRA0RKaRa01FVfpgx2WFkP2n//lH3/Wt35QaNR4NdnbOj8ejoih3d4bj0agYV4NxeWBx6SPve9/ho8fmrjpVcXP5qmuVwkRphRqFAkMQDoDWWUASDN7ynggQIgaCABgEBCXqxIVJ3k3igklax07ddmZ19Ud/9n9/67u+9k2vu46qNV8Ncp2H4MTogIiGPCOBILJCAWGSGJ4oBtIIRCgc9eogcKhtefTwwdluWwkjKjIKRBwHRUhaOe9EIM+au9vr99z/+Du/7E42o8qOlWmgQFyeJ6r+LEIhqvlHqSeeyF5MyCgCEkIwRvlqfHBh8R1vufN9H3to7sCJ0uO4LkAR20Ba25oZyImzgV0NQMqKK10NQEBUVhYRifSlqpUiFc2hX1M35XJ700uZzOeZAYggwhPTz5hyI07M+2AvI4opBiKDR/BZ56mVnX/9X3/9e//eNx873E87aljBEw/v/sbv/el9jz47f+ym3bLQRjvAQRlm5o+H0ezP/PpHxJcs3rSbc4evLT1t7OwmWepJYuM+7+cpGhe8T9S6rT7ymUe6rbaT/JP3PESaeu3mYGv1q+9+47HZlEq49dSJP3zPn/cXD4wYAiETQlDxAoEAgMVbQAT2aZZtW/yj9z+0svWGn37377QPHdspK9HRjEiYEGwgnSKqgAIKIZDROZP3wowMCDoQCoWoTOddvL+9djtwPSoLVCkKKzIo4gmEvbBtJWmTeePMy1DtogZbhc7xk4lpjotLxsc9rH78d372tusPGAWDEv7s4w//xM//ard7tPAACn0IQrS3IgZhQBbyQAKixVYJcV0ModNjk3vPuVauGJ0+fnR+tlfsep127rnnnk6C5cYrUI/mF2YazQwQnMDa1k6WtpqdrkeEykZpuBCYtBYtcYmw3hESmZQZtCadpHVdgULSpLUCFCCOvEKFWsSR0buDQbPZbOZ5XVZ7yNpEaY3EzE5cHLqxxeqt09o0G43xeDwajaLtXoBQu9p7C8BR/zyEUBZjQiCtsixjZsEAAC5MEMb7MvZLyreRbxe7nxMQxj6W6xXzJRaM4iNX4EziTJpC71strmtUSgTH41FR2bm5JSAFKDe9/pbbHj7/G+/52Pyp65zWzrmZXt8Y42oLqArrKnsp/IrZjNKaiLzIntvRfljARIEpfrbI/p1aFV8xdfWkgxuimlO70RkW442d3SRvp0keQDTQzu5oZ3u82DAEaOs6y3W708wyU5VjG3yr2a6qqt3u1ra8dJGIEQLfaDQi7N0YMxwO67pmgNXV1QMHDgAAB0BEpbX3XjA6NqJSKkpBxHirGFeRe1jXtQgkSWpd0Frv7u4uLS1N25R5WZbOuVarNT8fdUNCs9mMEmItRBFZXV1VSuV5czgcDkZFWZZHjhybm5vb2tpaW1tDxE6n41xtra3rOk1zZXQUm1haWrpwcWVjY0MhLSwsJEnirdvd3X7x+ecHg8GXvOXu9YsXPvGJT7z+9a9f3Vg9cuSIt60LKyvtdrvT6XRm+re98c7lw0fu/eSnXjn7SqsRjDFFUeDUJT0aBgyqOqqXlWVZjMadTiddzENt8153sL3z3LNPHz9+Imk18zRZX73YaDQU1anii+tbq5s7SpnajpEUi1daB1uhSuCvOq4og0UxbpEAoqPRIIgjJQ2U8fb5DK0tx6YzU+1WexDgCNXcT0K5IiB7dQaPU9zYF469Jo9OEa97tbTP382MRbg9QD9GvEbsQqYAbWVyk4ylDgEYJ+A4EiDgSetBmIQQyYuFgEbndjDOTDIFC0plq5lDM9/ypXdf4EwaYGtABG8DIzoAYSAn4gMonWiAFBpNaCroKbVo1IyCXhKFPi5VJW+84Uij17HqqfWnX1pZ2SokafX6gNoyRqZzklBZFBI4BKeQop4IIurEAKJKjAHN7ENwKISAyCE2mTz7RBNkKSLamrPe3Lmt1X/5wz/bajazLCnrot/vG1K9dqeZttLe7Nxc0mg1T7/+LkRKe4vsvIgHZM/oAZCDCApFXXrGqGGDBIGBJYJkZdLoRcBInRVgJyGaL9C4cpIZbPQbaeu/vPt31za/6l1fflui0I0G2pAgOQkS2EQkmEQo+fS7lPjtsrAEQCQNCoihKsa91ty1J6767NmNVnOGVCIkLLFuEl2zqLCut3jwffc8cOttNxydbRIGYdGovIBAEEERFBBkQAkIE/g/xyrolD3HzEDEzgOJVMMvfcMtn7rvoWIwtKZFJhlVpffe+8ozOQ5gkAWdBwAOxECKdBIDRpxyyqZjGHm6Fl9ZP34tYvJl8+I1XwUAkYk8RQ5oreNwmxQG9nQZCAXQo8qXjjxxfuVb/9kP3f2G24wxz7109syZ1XzuUPPA8R0PoJPK1qyBEjOoHEm2dOo2o6lwYxvcwLkgJEYzYQABpaLBt7OWQZgA0jxPGjZAEEpbfUJWSmk0zKQ0AMC582smbTBEbqCGMMWrCnIIkR0E7ExqNgZb/YOHfvf9H3v3r/5+89gJyXLHAoQgjMYACyitQAUfDBlnHRGwByJFAqSJnU8VGaUr8cV4lGudESK47VeeA3SzCwvjENWOlfNep9p728+z0erFreH2D37PPzp97dV5M33i+ef/03/9ec7mmqa7d9t/6b/+6KkD8PhDz+/s7Jy8/sa/9c23iWr9+3/7EwduuXN1vAtqj+JDABBciNkdMINzijQFC2Wpl5fFJOBYMVfj3WuOvW5j/eLy4vzm1vDc2VdmGvzKY/cDj3vdg6TVytoqB0STmbxRWRckCulKCAFCiIREZgZCpU2wAbwzSQaAzCHJU+vrJFcheOscIICZMKhQCRKgVts7O3pOz8zNDga7EcopEz2IiaPJpPxhJrB6mrrRxIBpT7YeACJ2qN1u195ZF/Zw/dazMUYQQghK6biP7EV7whJCCOwRMWIWFSmcuh7xPnmw/YOfeTKZpg/tgyPTNPx66oHHD111tL3U5hAyTDqzM2DSyMPKWlm/3y9GYwDYc5KOn5OZy6ICvCSpFVOzSYAVQmoSUrF8EREtLCCxrIf7qMtIhIhBeD/FAwCyJFWI1lZEEHW8Xjm/iipBoiRLfV157w8vLMzMzBhTuZKTLNVarK0FrFYTUF6z2fTeG6X3R3eDwYCZjxw5Ei8gakmMx+OFhcXg/AP3P3TgwIFDh9T8/Lxzzk4DL0RUShMpIgIh73hPQ7XRzAhxZ3e3kbciMqOuXZZlw+Gw0VDRwzHPcxd4d3d3YWHhwoULHGR+bsEGJtJ5nldVFSMG0oaZ67qsqsqY+La4sbG2tLTUbrcvrFysbEmesiwpy/Gzzz7d7fYRhIMHYVvVm2vr9973ybqsrr766gNLy1U5fvShBzfX11qtVj0qlg8tN/J8NNjt9nt1cNuD3Xa/985v+uYLL59/6P4HLly40FKN3dGw2WyS0UrpwWDgnGs0Glonw+E4NcnW1o4ySVTumJ+fn52ZGe1stnvtlfX1+bmlCyurTUbTpGERPJq80QqjoFTGjgNbbXQQhkvOKq+9fL/2n0gYaSMcgIM2WA633WOfAbsJiABU1zWg4iCEKmJR6bWUdf46la19x/+d9j1crt2FiFPfHGIIEwIBgJCAMAoYgCZSExWgKsBaxkhAjPUxutSTBxZGNMKBvQBRnmXC3gtubQ/GmGqmwbDY8GF3hxRJalRqtIkhD0X+pHYeOEBtQTwEDWQg19BpA2UgPAG1xaPRgxOtXuvA7QduOHb1udHDT730wAOPD0blzMKBRrOdZWlZls284Vwd9b5FGJVCIsuBmSmgJkJEhVpd4kBIcDZCfRKVsCEEF0Jodxd6vYXIs2poSJKkkWYoAkY7Bl/UrbxRllWa5yAc/aEDI0VWXUQt84QOdmmtFBCRaAsdOGo5xGqRoACCoAIidOyEpAoAQMqk191x1++8/0Nluflt73wrcYmh8jYgaa0Me6uABCGgBmSMjF3hCRBaQCmFCCF4QIXCrWZ2zfFj9z38TK+3VHnhICpJHHuxtdbaedbalCyl6b3nY/d/z996my3GigMiK0TmqBWAgMLip8FedGgAjq1viRYRkSLMSkTcqJ+mX/e2N/3kL79/+ZrbRrYelhXEVF4nVfAsiEpHpTIBEFQi6ANrRbyX6MfBJhCVjV9jbL86Rf4rj8CEFG/OZDeyFiACynB/cBZbe0GgBEcasoXFzvzig2d3AUhwdvmWq+rA2+NamYxYCSkRH9gnSSuI2yiHIsGDICKhFkFG4YipCh5IOe+URqTIaPCF94nWgJkLnkB2R3Wad97/sfu/6u1fopT6lfd8UM0tDRx4obhlafQsAUFBCKAIEoDAjktQPEJozi0ePXJic1xUzoeJyIDiukp04q3VBO20oXQyKsbO18podoCAHCwG79x4WFW6leda99PG1itnUtn95i/74iwx/+cDfw75gbQ1W0sQEleUvWY2On/mhiPzP/KDP3TkULK+A0rDu77kxFLnX3zX9//k3MH23l0/PAf/9B/99F988GPZwlw12v6lP/rt9WEBhC5UCB5B4YQNIArBewHQEggZFQKxK7c3oN3RebMOkACGsrzxxFVzrWRlq8oarU9/4JONJH35mQdAh4WFhdqOM9X0LtQBKEmHZRVxTkrrYANCtE8A5gAcgCCQBqOVSZTS3vsgnCjTylrO166uATHLG+DBWs+uFgGFShnyKGfPvdxstRrtdjkah+A5BKN18D4SKoWkdnVudJIkkbQYG1kRixLRQSHPlVKaklFZRIKaYnCujnrgUaA1dhIjmTHiSiRcaqfEfDvmezAtku09+lqdR56+apLR7D3E3k0ipw9/8C+Onzxx0xtff/Tqq9145/xL55eOHstn+8HX7Xb/lhuvef0tN65xcGESgXkmIu2DCJEy2d4ZEXGC9hJBmIQsn2dnnfjaEhGqqWMlodmnBk6kqqoSCACcaFNVtrIuyXIi8t6ysxwsKctcOV8BSZomth6V5Xh7p5jtz7Tb3eDZWpvnmTbkislpY5hsjOl0OnVdR2Zi7O+ur69HWNjGxsbFixcPHjx4+vTpdrtd27Ku61jMs9YyM6GOkvcT+3THZVkqMlono9Go2ZxoMkVvTqVUmqarq6tJlseYDAAOHToUQnjhzFmt9aFDh0ajkXPBWqtJx/pZmBqwx0rbeDw2xhhNpFQIMh6PQwh1XTsXjh8/vru989JLL2mke++9d3dnp9frfe6Jz1prW+1MJaYsS0J84fnnszRZXF5aWljMkjRp5sdbvScff2I4LG9+3W21dVs7u+OqimyRze2dZt5g9rHbzQHqulZIZV01Ws0Ak8wAA5rckCFAHIyLJM3SvGXr8OLZC0XJmCgUsWVNScocvHNIWuDzYLw+zyHIAgTTTUexiAARuFBDQigaXLiwsgYARilnvTEm9uavYD7+tcpaf9WBl29Cr9mdueKzyV7lObqPAAAhAIIEBZIEzpFDCIlICYyiJNrMXBn5ESKQisLNqt/vxWFc2Trrdl1du7JMm80GpkqDFhDPVW13q6oeD3w98rYO3ooPRml2VdfgNQfmqplG6GbJwZmZGY37kigk0Abm5/X13eX2ETh26uTdd7/p+Rdevv+hxx//3NMmyQ8fPpokGdUqWptT7AkLUnSYripbO6211kZEJDhm1lrb4HWSKMTK+VSbui6V0nUt0drIs1OGVO3bVpqJKUvXSAyigNKoFBKgAp2Y2LufSMTFWtFUmmSvGInTvJNFEBVOqBIQKfyokPbxw4moKOs0TTd2i6uuu/lPPnJfp5V949vvqIdrpA2wx+BTooi8ASCeBA4Qg2S6xJylwEAkIgG8O7g4E2zJzLWHytYqBAJG4cp6Iq3FM3Nr8cgHPv7pu246fse1y26wSeymY4cQhYhYOCKiZCJNEA+OiviIYK3NEvLWohdNozfecu1N13z2+Y0V6MyCKJZAqD2A0gkgBRCiifZbvGRFNCE/yT4+1z5c4xUDEACA/+ppctlrY2g+7TxGy7lJLeFVeRiiAmCt01oq533FxnTmCY2zdr20QTxlmasdEpEyEUhZVpVWijkAAoMCEUQtJAwMRkOoQWtwkS/iJDAlDWbfbDfzLKsdhyJo0gIYBEPa+sf/6kdtsPnCkVppV5WUZRxCFJpH4bzRsl478HEoMQgY7RnKAMXuIKBmpZCEvSfCjLSxYSZLq53NrZefBsHu0lK33dsajkUbAcoSclVxeL5zzakbPvHAoxnRynOPvfWO277vn3zH4YPADr7szW/6Rz/wUyppWsRMG52mYXtzuUk//R+/P0H4hf/xBx+67y83Nld/9Af/2Zvf8oZv/5Z3/fGffGzvTv7KL/3BX3zsL29+2zvHwe7Wg+/65z+QdtqNq67aKQpKEx/zBIh4WgQWpZRCLeCVBGYPDKbRDEgC0EyT4dbw9PFbqvHg8OHDL7300s7mmnaFPf/ygWMLWYLb29teiJHSNHVBAlYiYtLEkKq9IiIIHIW4MDFB2KSanZfg0BAqb7R02rlztTBiliKieC8geWackiA+hMAoWmuVJp975qnjR6/q9rrFcDgejaKufXR1DBD2/gSAsiyJVNxDYycnSj5FEShErKoqz3MfCmau6zryH40xgoGZg7Ok9V5heDo+MQKplFJCFKwDEbxc6Ovy9uKkN4IoABThCfufPFlz+735l8+cg8z0Gq3nP/vUCy+8sHzu4h1fdFfabwD5a48fPHZg5sKZ1WZnvi4TrQmArHe1dV6gqu2+E5IyCkWi9saeAOZ0TspeI2ZiJwvAgDRR7ietNe3bMgPz9u6uACSp7vfmh6PSJI3aOqU1AhMzuPEXv+XGToMBCqV5e2fLuard69o1ayuHLCSolUqS5BJLCyCEMDMz0+l0yvGYmWNIw963Go2s0fTeb25uJ8aUZfmZz3xmZWXl5MmTM7O9WEXbq/+JiPc+z5veM5GOULAYdDvnoiBFlJ/YEwNrt9u1861WazgY5VnDcVhbX1tcXFxbW9MmbbVaaaqNMVVloyn8eDxW0f2qGGVZVhWjXe8ajQYCZKlBRFfbLMuqojx39uVUm/F4/OSTT45Go6qyZVnnrbZzDk0nYe42W3majHcHD93/YNZsHD5yRDezpUMHT1930/GTJx598PHd0XBuafG2O2//3BNP7O7uapMW41Hw40Yzsz6E4RiFlFLDUZHneTGuRkWVZRnIUKxH0p3SmjzTiZubnU/TfFTK6ubg7Mur+VWLs93+0Lrah1jCn4p7X3l8geYgR+sXmVQvopVaAAnMwNjt9Ec7u8E5EfHsIsMD8TJC8nT4TTeG18D4X+JlfOGK1+UNxy/wxL2DXvXESBYTANYAGWIDQJCaqAqxIirsNSr3+CgICMTsESFYJ+znZ2aVoeBClqWj0VAVAyiGAunZl18YD4vdnZ3R7sBbZ63F4BVYrSBR2mgCaxf7PZ/QS7u7ncMHOku9DcCcu3nzUvi1u1YVXhXauAzaGRxYhFa7Obd4+vpbT59f23rk0ac/9OGPCZsjh481Gt2yLMFHyJ1H1AIuSVLU6JxzNiiNRmuRIMLNPK2sR6UUoNbUTBPrgkMIiigx7KPQlhS74/lut5MqJoUodfBA4ENgZu89YRJESAAn2NhJG2UivRjp+4JEEUYHwnHpm+BcRFii4YawQgIQb32eZM46rZKyDEdO3/7rf/zxmfbcW24/7YoVCHWqiYNHIEAC3HOLmsBXI06LRSLfioiA2dliod/ttfJhMa4xtyxSVYnWSapDHaraDsrtLM8bAmlv8Xfe87Frvvc7O2kjVFtakFCz7FeGiqulAFPEpkywJBg1SSDaACsEWw877e43vOPuf/2TvzLX6qMQswOtQgiMGrXCEEgCsggpHRuihEgqhs6XwC77RupljfVp8/E1Z8WkL/mqGSFTa1cFU+yXii0bAIzLvgBC1FtHREBjPUvQOtGicOwsoAcCYEbSggwKgTDUTqEWQlbiiVQAJAFhFvDRk0wAbE3GcG2BMQCCECkjPrSarU43z/PUOa5t6a2P+U7S7Zlup5MkO7ZijRQ0OwdKAaPSmhEFWWkxmNrKIRqOyoXi8zQJ3o9tQEVCnhDJ2oY2MCpXnn707i993Ru+7qtYySfue+SzTz/bWzq27SqTpIax2Fm/60uu+wff8eU7F849eP8DX//WW37w+79DETzx4Lmrr+q/6ZaF73zXV//sr/zeoRtu3d4ZzebZ2Zee+5Vf/clOAn//H/7YA/c/cvRL3lRX8h/+yy/8n9e/4eThI3Zrbe+2//wv/NrJt3zVS8UwEGCezhw/VTnrvVbaBE2kPQcPiBD9lwSVUkhBodPix8Mh5C2VtyFJnR1Xo/LYweW5Xns03swazY9+9Pdm0uTFJ54AxSBskiYjXTj3SmduqXLe1pVJTfThFBalUIQdByBEwiTVIuJs2UiTNMlcbRu5SlMTpMqNNgqUyoxJUYAAvbUra6Msz/K8MxgOQwiBg8qzM+fPLdTzrSzXJpmUAACcc2RIKYUsJJCYRMFE6hyIYnFLa11bm2ZZbW2WZVVd+xAAWGuytgpBkTJaa+cC+xBF6lHQs8g+66Fp3fnSDhW3g73a2OXTIiqF782py6D3gDxZc8+eeyVJtB2XGyurG2tri3MLobL3feKTN95xy9zB5qHF7jve9oaHfvVPPPtGlgGA5+ADB8DC2rK+hPjjEGKT1TtH+2leV1zT5IqRgXmCWhVUZIypy30gLaVHRemCb7ebS0tLFx99sipr08iZGUMAX853stMnDrTzotgeaLSIYK1vmlQpE7wkOiFN2pgQgjaXQtQIkNdaR2ZE9EmMNApm3t7ejo6NIrK4uLi6ulqW5dz8zPHjx6MfUdSaF8Y0Tb3nCB0Tid5EOi7Bw+Ewxt1VVUWj7th4FiQRaTabRDQsxvEd5+fnI2qyKAoAUMrERiROxISo2WzG8xhjot9tVVVaawRV13WWNYbD4Y51L7zwAhF993d/95kzZ377t3/74MGD2zsDUdTttWsXtGbSSU400+sj4vbaxrmXzw+H4wMHD6eZuXjx4oEDB1rtZlWVZ8+e9d7PN/LhcFhUtt1oirCt62azKSSlrZO8wRIqWxtjRqNCgEy3n7W7/X6/KIpEN5laPiQnTt+84lOFWilOla4YnXNfoOr1+QZx5AFGXLoAMHAUwTFp05m2V97kvhxsK1RpI61rO60bX+b/MN1drvQLgv3J+l8HcT/9b2/WfUHsF+xNvSifiHFCTIq9oAFSpXIiJGpKGIh44XC5pyQDCJAIQ+y4ETSbzZnZXgheGWL242HRLEcXXnj2o89+bKUMhrJGo6WQUCTLGo0sMeiDd8CSaNJZQJE0bWqVX1zbbYC0Em0UdFqX3vSVVzafP7/xxJkLQ9SN+YXu8vLSwQWVQIZw5MjM8qG77nzTXQ8+8Ng999z74pndY0euauR5XdcUjYeVYggkqJQR8N57ZlQaUaCoq8RkQSRLjXW2lTfGWAsKW6ydZULvPWlNRg+LMk+aASE1GgBAESOgRqgBEZUAROl1gQiti1/E1FU3xPZBtAQhEBbgIDJBn+ypUhERoI86TJKoxHomQrZw5OQtP/vLf3DsyL88vtj3I8tsI8M/AKAwIUfI7AQezx4QRRR7IYXeOmQBb1t5o99rvzIaeQMusHN1kiqq0NfsOcwuLxZ1tTnYWejNPfy5R+975IWveOMxqIcheJ0ARH0CmXjTT+aAiED0vkSIH40iI1yJt7EF6YutW65ZfvMdpz/97IV8/lCobYx+jNbMiIBKTbyGgCg4B8xg9kFHRBCjBgR571+7RD1N9yf6RnvPmfY04l97ryVFwXtGZOYAca+cgHWmjRyQiSC7xJBMRBITkVIIIhEthZMCpIBCCaySBJwgAxiE4IFQGBgJTWykCEAw2riqSrJmcCHU1uSZc3Wa6GBrV6uqKD2zMDIwCnkOXkQrPSwqSBQ7B6SRiEAD+66hunbVYFsZ3W3PjQmK2qMisV5ssXXu+azZztpzlskKI/tOktbra2q0/cu/9DN3v2FBKxAF3/rOL/+N3/n4z//aH/SOnxxWLsuy3ao+1G9mHoYXzhycaf+r7/vul19e+57v+/fnn/nc3/2Or/+B/+dfvPHWm37O/pr2vpuaiy987u/9nW+++cb5X373Bx544Ilr3vrVa/Ug7yza1W1maCRpuXkp/IK8Uyu0Bi0HACydJzCMikF55wE8TP1wZe8HsECoqzF4i915SBIfQiNNipVz19725qIc9mb6L585i8G58QBGG0dPHuVQDUbjcWlbs3NE5KqaEAg4SKAgjr1SBhiJIE3TwHUITiPkRmeJygw1TKIUIaL1oXY1ELKH2heKKDNJniZLczNFVbvaZmla1TWlxlkLwisXL7Q73blePzhHRGmaaqWM0cVolGfNqDYQezhE5EKg6VEWhXNOax1hYbFQQkRlWSulSE86Wkop8J6ZgSdjNRZchJk0AQD7iX8PT21P92bQqybL58ccyxT7deLkqdW1C8vzC51G6+qTJ5955tlhUTa67XMvnm02enl38eTVBw8tzjx+ZrMzM1vXrrYOjEJKirKWfc56oLT3gaIUjCYGYbvn9AcsNMmjmInIT+mangMi6mg2vt+0knTeaFzcuDAzPzcYjje2tnSSM4tJdUK4vbt51zvuXOwndvflPAFXujRN67Ie7AyaeTM1iQL0zhljVKIZLxX99gqSRmtm3tzczPM8zxohhGpcjHYHALC5uRlNHg8ePIiIaZpGFFSWZUqpyIusKptlaV3XLnillCD5YMu6QkVGJRdWLs7OziqlyroiIhe8Toz3TERodAyhZmZmtrZ3WaTT6UVfSGut1kyEzCFJJnYH3ku8mCRJgnOB2Zg0UUkMB8vanTt3riwr1No69/BjjwHATbfe+txzzxljPMrq6roCbDayuV53eXFhZzAKSI1WC5R+4bnnOUAMOln8wtziDTfccPPNtzz//PPnXnklbzSrqhJm5pCiHo3LPM9JgXWh9nWaplRWqtVtttres63C+ur6TH8OkJ585vknX3il0V1eSLLNV84zgBcUrYlIogLcvrEYQR+T/g281jjmIADACkABRvayUO26ndni6htHTz7Q7LTn8mRjdSUG1gIQN+P9qveT+QO89zvzXlceYWIohAAT/vY0FryyZRk3DZkytl4j9tr3x6VpeenlMGVPsSHluVIYcjLAoavQUlJ5T0nubGAANVGzUMKCFPVyoC6L61/3+izLxmXRbmXWVcFXiitlh8udBmivVTMKyMUeT10WTIFQMGDp6kaWjurabmwA962Bqh6xCpujrJ1dWheefXnjpZXN8xujlXF14YmzpVB/Zu7o8auuPnliYSknA4sL8I533HznHTc+cP+jf/on70+T5qFDR0JAJAWBFSnPFgC00SDoHQcrWZooVNFTNQSfGC3MeZIKuOF45NijSZRWgoKIDOBDCKKYMUooKaXishiC06RERHiSxTEzEkwxrhiTu6hcpRUG7wAg4lNDtFcBAAmK4rASFGEO3ntBBYBcO9A0v3zit//oQ//vP/x6YzKuax1ZtwAoAWO/Ewijeo4CZhZSQhhxHkqpIC7XNN/vPLO+ns/PKs9BxHorPhw5cMxk+ZnVC0Gs1npjZ3f+6HXv/t9/csu1/2Apb7rxrmEW8UgKgEIIEI2zJs66DDBJ9/dmSggBhTDCxULVNvadX/6Gex54d3t+wSgcWWd0IiLivdYIAiwsIBoxSRMR8SgU9VwRgJQXFgb2QU1NykX2mFFRYGUKZ7nkZx9VhS7jf+3lUcwMU3gyRp0kRJjI2k3OL1O1PARg9AjAIShhCKSJgNgHLxjxNwpCANJE5KAmIuAACEECIIJOJAgEJm0wsHc1aeOsR9GoM88ekENdCvDQ1aA1AxIlhBHgI7mChtaaeWQDRA1nzylA6v3a44/1ZvTpq5c3d7fOPfJs+9DJJO14EAKf6fq//eIPP//0C//xP/3a8jW37DhWpHh3JKOd3/ifP3LL6c5jDw7PnDnT7sjtd9z03X/3LRsbL//uRx/rLV7dQAO7xUJvTnl47J4P/+Z7P7i9A+/6ym9bft0bbv2K69/zoXv/zneEzmyv1U7KcgwgGY2+6Ru+4pkz/JO/9FuH737jxXJbIWFpD3Z6DYRRXSSznb0p3O12hQOBoCIGjH6PIXhFCOABAYKLMyWwi7qLwQUJIUHySuksrQMrCq4qjx47uLw4UxW7AeSRBx9qpfrcQ/e3+3kjSyvLg92BTlJhtMFLCKgj5CPmO6quqlanp71GCqQpM1oCpIluJCYz2tZVlmXWOyISDILgPCfaEKJSqhwNG42WUqasq9q5RjMfFAUoQiI0pvbuwtrq8vxCcD5JEhEhQPbB1qVSKknzuMtH0SjvvQ9BaZ1lWYzMYoiWpikAMHM8Q1xnokYBogrOgeA07gdCIMLYfMfLdxCZwr+uzFgQ91m8vOrYA3x85dd81Wcff/TYsYPzB5fml+Ybndba1tbG1s7DDz+6tbXzRV/85pludmxp8dEnz4VuLzAoo0EbBm2SbFTtaz5OIZx7DZrJAsFIajobAYi05yv7TTzVp7h0eYneGgxK50mZ9fV171mnShuVpgm6cUOF+U6ipY4KF672dTkGoFajba11zlkfIoRcUPQ+wt0US66rsizLMiKrbF2UZTkajbTWudIiMhyN8jyPNj6xeBZl8VdWVnZ3hgcOHDp06FCeN/M8R0Va6zRNy7Ksqip+i61WK8rmRmqkMWZnZ6ffn93a2kqyHBHzPCeiLMsAIArlRx3zWLaJ0KXYtQSAsiwjjGxviMSof3V19cmnnmm1WidPnnrjG9944MCBD/zZn62uri4sLh44ePDFF19cW11N01QrvbM7bDQaz790Rmu9BLyxtemFG83mysXzV111tVLK1ZXWlCRJkqQLi4uAODc399JLL128cKEoin6vV5YlAKSNXERSRUqpNG9OusxInU5HE1DSCEn3o5/52IfufXj+xOtcI6msHVmbtjvRYwjwNToUVxyvyiEAOEy6LkIwEWGVcc2N+avqE/X4zKNOB1RxComfhtevNh3aO/9eD3F/X//VFaxpOyZuD69Rx33tCsHl1z79bQLnwonyOIGwBky0UsIJShuxIoW+lBCQBFhFlVAkQCLhAAqVIhB99bFjSmG0vKiqKjgbqnGaz+QYoCjYkBdURgMqRk/CIKxQoUYFxnMAxDqEtZ2dAYRhptHQhS3q5/nMpK8Fnzu7sVnWQ4+Osk6/bwRrFz5z/yOfuu+Bw8eO3HjTNYeOHmg2VadLb/+y22697eZP3fPpD3/gz/tzCwsLS9FUjlCzeGYOgbVJ6rouK5vlCRGKBAQBJg5MihRBp51bF0rvGSauHQGxqG2qSNiHkCESs7BgaevkMuYsM8vE1g4gMEeAllIKUIkPzodo1iviRShEGXsGluCC10SakHEiaUZKhxAUKevZtGce+Oyjf/ngo29/wzVFuesRAIEnwce0VIARB48iwuIFVIRnMTMjZwnN9tpl+XIOwCDWuzxLKaXK+fXdtbKudKqtrZpJKjrZGPu/+ORj3/7ON7uqZHER7iuASZLtjWGUGBJMCqgkwCxAKEhAAEwAgMB2uHrr6aN/55ve8Zvvv7e9fHUK2gkrEKWJCEQpBVpUorXWEb7JEiYVQJHYriUCgL0S8ucd2K81WV49HfY/TSQ6FU5p/BG/N2l4xjQmgHgBJFIgE5E/ISEUUglzdExRIuCsJa1EAgIiiXgE0mIdoNJKi3MaANEwKCdBEYhw4JCAzLVzCJ7JOFA1qNoxEXGwLU12uLl69kz70KG8NYOigscEQNnt0fq5H/5X/+Tuu67NWjCu4IknL/6rH/4paWOj3bHF8ObTB2+/Lt98KcDWunZsLLRa5sJTD//ir/zcdac7/+s3P/If/u3PgM6hWPue7/+H//y7/+bf/IYv//0/uzcJrAHA+sVeZ7C5+o3f+q5rT8780+//hf51d+rOzMBKbc3G2njpSAdQMm3WVi98+Ztff+gQ/rdf+ii0Z0OifTme6XTPPPPCN/7tr0xTePzJJ9sz83u3evfss4dvuHVYlQHJoRBS8KITDdG8lAOwkIpaxAGCA0hpOoqSZrPZaXOSjQeFK0fX3Hi9ptDstFdWLm6sXTR+DPVw6aqry2psXfBBUJngxTkbMWQQKduMRJjmuUhIMwVBkoSAQ5ImjTwXkRCC0mZcFkmWKwQDhIqMCiEECFj7IoRQluMkyfqtThXc7niUmsRziHr5Etg5NyjG/XZnsL2dKlXXdaTQRUWu2HQiorj/KqWqKaw5Np3quo5brYjEonhswk534Ym5BUx/Il4a4Xujev/28VptkCtgV5cduBd+bW2vXVh9ZWahqTaw05mZO7i8eNWRM+fOzS4sXjh/fjTcPbB86rqTx3//vfdEdyQm9IHzRlZu7zjeV2OY1AMQEYmiM4ARCQLAE8I9MO4p3ka97IkW1KS9ug+vszMcoXC3Nzsqq5fPnYsl8byVa1IYXAN9Egq2xM4HkCxpZKpRjMau9onWjIyJ8SipIriMjgYmTVutFgAUVaWMSdN0c3PTu9BsNmMdaDQeGWMWFxejxZCI5Hkey5Jpmh45fOyivvjUU0+dP39+OC4aeXNubm5+fr7RaHR7nUajsbOzE4JttVp1XY9GoxhLVVXlnDt/8WK3293e3u50OswwGhUmSaICmbW1lyT2FGrvkCVGYGtra1rrXq+nkDiwUiYGZFrrjY2NJ598cmtzZ3lhsaqq4XC4sLh45513VlX16fs/c9MNN546de2Dn/7MeDwsiqK01drWdpoaI7565Xyn09Ja9/v9zbX17Y3NhYUFAHjs0UeFcWZm7o433Nnrdx966KFWu7WwuAgAg93ddq8X78ZoNFxYXDTGjIvR8vycSSiwLce7ad5Nk+4LK/aJcyOZXaiaWeE9pimPy7qumc3+HAAR+bVCl1cv68giE+hIfAYAQJo2nauHrFqHT5putnPmMdndYhYiHS3t9icAl86Ml97i8vArtinjSL6Uml/28og6+6uu9lXHJF2aXjntldSYGQEVgQreBN8g1UaVAoydB0RAJQCACoQQlaBvNrLxcPuaa08uH1iU4L0XIs0SOXMizmoJCUlAISTPPkKFBFhQALwhg4jOsTHKJIqJveBQ4NzOUO1Avy13wYQ59fSFwdi5YbAVgw21KO1R8obOMT9//sLnnn2eCG6/8/Zbbr2h0057s+orv+ZN119/3T0fv+/h+z5z1alrkyRxHCISIGIs0izztqqtN5qUMt461JhqbSUQQbfVrmvnB8PaByTFgoBoXXAsihSSATR1XQZGFhXRHlGANH4dMeRiZokejVHHKMonKGIJMSkME5s8DCTMDJqCcG0dsugkYxBnKyLSojhIpnFm+cDDjz/1Ra87pXVG5H0QnhSEMGBUxA00KZ8hsCAFmAB1gSUoDnmaAIAg7WxvHz5ycHa2/9RTT9XVNiBOQCrKOA5O+NDxE7/yux94w+tfd2Kux9X6xOxRJpiVaZsV9uvSicTcemKhG8cvAiu2drT6RbeffM+ffyxPKIQc2BMBKUCEgBQQtTJEBMEzs7Uu1r9FJm6SeypHccDuzYVLu8uVDcdLM+iK6TB5LUa9LMGIfRFRgMhxg5uiyuK5CEBrZLE2KGWYRQA0UeBYgEDgAEQcsWJkxAYkQSsUUCN6AuBA1nfzJrGgomFdCLBA5V3VznKo/YUnn1UkgUz7wKGkuzCqLQA0Uwnb668/eeyd/+Lvfuzj9378gRc7ncXC1q2Mdzae/uX/9iN33Tp/5oXhcBXarfY77lru/vgP/ZMf+plOt31xZ+NA9xQ5WLtwDtrNLDWp6b/4zEPf9T1/861vnv+DP3j6P/zQzx3/ki9DMjmon/2Z33rD7TfcceeNX3LXG+976MXZQ9eAgnaLxsOVb/yGr7n300995iN/cfzN79gudmeaWb1TGEg0gK9dy2Rnnnn26//tPxjuwh++989m5g+VO+WB2f7auReyJv6db/uWZ88Mfv+3/uDaO960d+ff9s43f+T//J/eTXfNLR/cLivrvCItIgECBA9KRYKNoAAEACZkBA4+VINB1u8liWZNZWAFvtNIR+Oddn/uhRdeMKHefPqzB08c04Y2t7eLslZppgAtu+BqUIpIO3aClGaZUqqua2SXaF37Ok0aqTIKFHuHqCxzQGI0tmZFwCxSV1opg2CMrhzrNNFai/cusNIqTTQGGlceGawEEkjybHc4yLKs3esOtneyNAVArdFam2VUV0Wj0aqqajTYJaIkzWJCbowRQhZot9uxEQkAzKCU8hyzDjLGWOsj2AMQaFIGflUu8VcdiCjMe0HYlRGYTE2Hfu/3fueq48e6/U6r2xlXRaawadKrT54E01p6/oVXXnklbS9nEMrBJgcnlAhDmuWD4UiA9lWhYW+WElFs6yIikQGAMKl2Tmpgsfqw/yWT0te+S9za2Wk0Gssz8+sba5bFpKkNEitGK2dXv/jUkZNXHWC7miW5r+qyqDSg+MAhpM289q7RzE2aiIhzzrsrnZhGo1EsSo2HQ+ccBxmPx9EOMkmSLMtMkjJzrJNFZFhE1iNRq9XKsqwoKhB87LHHBgMbApw6dXhhYe51r79tbm6uqiY0y1gVi+81Nzd3/uLq+vp6vz9TFAWRdt5rrcuyjIixeExUdAVERGs9Ozsbe8yx+aiTNJbBXnzxxcFgEELo9Xpnz55VSfLggw+ur6+fPHXq8OHDL5556UMf+lC33UHE2dl57y92Ol0XXLPdFgl1XY7HpTEqel+mSbK2utrv9xdmZ3Z3h4cPH6yKcaPVzPP8/vvvv/aa09dddx2IPPzwwzGrOHrsmHOu0WrOLcwXw2FhXaOTb4/dYq/37LnBj//y+z715Pm6ObsyGJNSSZ5BmnLlMTESHO5jtr76eHVWARC96yLva6JVQ8JVbVFrZqxVpttzrNsgoDA4D6Q0M8c0aO8kU/G51xYmvjRbXuuhV0ddX+iF04z+CxTGBJADTwwihA2gQgEJTaVbkNQQrCgBEaVAZA9/gMIA4ZqTV9dlBcDzM7MhhGbeHO6MtzY2D84sdxppcfYi5qga7WaWAcWWFSMIERlQiMgiRKSRJXgWKAPXo5oAV3c37jo0Cb/Wq+BEvEpAAYfK+zrKlQWQRiNvtjqOw4MPPvKZz3zmjjtvu/nmG5eXmieu6S8d+Krb77j1T97z/otrF48dOxbZ4HVdx1xTJSZYV5XWJCrRRoQtB2W0D0woqdIZ6eAcw8QWGhX5ENDomMKGIFG+2PmA7KeLTAwRKI6MSN1jwNhAiyY4XoQIUDBE72FFiAoVAUvwolVChpwLEf/ggtTBZ1nDCoHQzmhU13VOWJYlJbnIRHaTLke0TgL9yWIXeQYiwcdoI4Rw7Nix4Wh3NBporQl1ACEQAlA6weADOzFGd5ff8+H7vu/vvo1hh4CjE3Wshe/Ngj0lehCahETTK7mkaMyWi+GJQ8e+5Wve9mvve6R14GRVuQAgIQihAxAk52tCZGedc14AZEre3INgybQ0sn/QTp5zRex12aP7CwBXjH/EqSeETJ+Plx6aQiIRPIsiMjo4jyoB9ihELAqIFAoFBEFE761WGpVmW2ZaZUmjrmt2Ns+0Zrv54otcjIFU48DBpNkYl8Vsrz1ef8WUo//8g99z8sSxlc2tX/jfv39usN3MWtaFVmJWz51969/++m/4yuV7P1HbYtzswIFO+/lHPvk/fu7/e93N87/xWx/77z//S7YyjUbjJ37q380sL7uqJO8z5tlGCwJs7+4krSyIh7pWfvSNX//lL58pf+j7/79jb/rKTV+VrlhozjWuuu7xJ56664033nTttZ+897NKgcl1o5GCS1Vj9qd+4X/M3njzVlkEIkAFIgDoPWggOx72jh4+dfXRl557Yfvll297yw3nV889f/9jx6858jO/+GsqgV/8X7/bOn6NTS5JEPzwv/3Xb3/LZ3/vvR9+5Mn7l09eNw7gCUt2SISpZu+BVJzRCRHECeG9rytAPHLs6Ja346KUYBdmes1GmioeDHZeOXsmA4FiqLEbgwnHQYmESHLCSFCInj8GCKuqSI1BYe/tTK9rFCTGKKbAUtQ2bXQG47EXRUS2ds0sRVIGIXgbgssT4zgQobA4axXqXCdJAohYVDV7jrAcrdTq+tqxQ4ca7ZavrSISmXQSRaQsy2azWTlblmXcZCFuBCBa62I4mqoYJszsnAuCcjlieJLoyF9NnL9sjuz7c//rXh2BTcKvRqs5Ozc3v7Rs8iRti3VuuL3VavdJZ8vXnNzaXH/4/vtPHL/6bW9+40Mvb0J7hpI0CGxsb6FJlNL7zxgbZMYYQYVEznqlJ1ooPEVZAkwKZZPSQMwa4RL5eW9eVtZu7QzHhU3SvLY1pXkIoSzLLDVHD8y1M1JlZCaAUkp8SBu58t5aqxODoMqiFkKNtP9jt9tt631RVXma1XVdV9a7EOF4O8OBydIGQlEUQKg0tlqtXq/H4kMI7XZ7OByee/m8MebYsWNbWzsvnTnbbnfn5tJGo9Hq9JShcy+/0uv1YsDUaDS898zcbreLohiPxwsLCyGEzc0t732n24+pvEpM/LBKoffe2rAHjMMwkXQjolhNLcvx6urFjY2tNE0bjYa11nuPpLbW10X4/vs/MzM345wjwPnZmW6n08zylZWVQ4cOjcpiZXV1Z3cXAYxR43FJBMWoXFhYWF7MdZY30sx5Pxzurm+sltV4Zmbm5htvWFqYv3Bh5fnnnm212q1W66qrrlpZWZmfn8/zfDAa9vt9ZrABa2zmzYVzO/Sh+576+GNnaeaIA80+iuBZ8AhOSIUgEimo8prCQvuG7RUt9DiyIFrLCQAQaR0dIK1DoLR58KrxK08ROiIghXGTeLXwxGR0fX6Zlr0nTzP+uP/936l/7R9sctn/aPorIyKJRqiAg9GpKGDgXOl+mg/rOiBNCx0Tk+c8T0ajnetOX9Prtp2r80YqIppUORihCxrYVUW3MXfq2JExph41aQUAWhCQAwQA0KKIiEEAmIQYNYKKtXdlaH9+UqGrYwsNBIwKlSUiUsbVta1LJPICM50WAz74wBP3furBO+543R133ra4lF7/ugNLh//Bvffc9xd//pH5haV+v69BOLBAAMd5nrOX4XBYomu2UqWVtRUl2tvaQNJO0xBCHctLwaMxPlgR421NIAohBFcH0UhxDO01ruL3qI0J0SIxit8DhCgNJF5rrQAjYitwCN4LAvvQSLPggnW11loBOedEKdKZC5jqbDiyrYU8ybQvnUkTxxGbJCQsiMTRwxRkoi3HGA1MpwcRGFLdbnd2dnb14krtrNZERnNgpVWCmkGs9YpQayq9nT949fs+9ukvfeM1Nx/v+WJbqyA+TCIr3At6JuIXgMQT7mPkYSGIMEoMcAxxGG6/7vSxX//jT4KrUbiqHbMHAk8qICmO2HkfBXRgrxKMANNq4jTYksno3UuV943yz9es3/sdJzz3KwExe+844aNO4GAckAQTkBAVUpwPhGSEOtqkiUbhwFhL2K1cmmTiahM4Q9paWR2W5dzhQzqjUO0MV87802991503n1rfGfzYu393czBeWDiyce75u07O/PgP/buji8rWoE4uzLW+5e9+/4/PHL5us3JpmoL1i+3W5jqsrF3I2qlJZP38s29/65vedMuhD7z3yR/+1z934i1fZgNsb29+zw//0sLiomp0laLxxu5ibyF4eOnchaTV8Ggvnnvy2//2Nxw+kP3Pd79fLx+2aVLUJRvaLgemlT7yuacCw7FDh+tqVIZho99ggCOHr/nAR5988N7Hj7z5S1ZHBeps5ANkSaObFgWwr8c7a2950+tn+/qD738CRltPffoverP5f/ih7/7qr3lj7eA//+QfffjeZ+ZPnrqwO9q7x3NN866vvPUtX3zDx+579D/+1P9oL50eWJ82GhXXEmw0ZA9CwMyKQIQEIHjwXmfJ7OysH493d1+Rsjx1+saqHjU6rYtnX4ZgV19+cfnqo3VdjEdD573W5L0NwkIIGoWEIUxmAUurkQmHPEnThAAlSXL2LEiAVAW7tbW9vb4FDKA0BAfCJlHdZt5u5lqT0lQWVbvZ9CKpSSpbe+eVSbvNNjAYUo5DZZ3KU1/4lY2N2f4Me+e9I2ACjLqstrKI2Gg0kizd3tqJSaD3fjwYLy8vp9pEX5noglOWJdDEusa5iWo3MwMzTNDAsn8GvKq1El49BaJX2P7Q7fIpM61+KZPqNN3d2nXi806LiHZ3dsbDYulojqhOX3fDiy9dxLz7trfe+Ylf+L1ub2k0rmoplE68YGIu0zHf29gmCmG1I0faKGMM0VQsan+5a1/OhNOAbHLxScrWbm/vIiKg11mKpGJn19t6Z/O8+AOKMNTWsTNpEsgahcoQAKBWWie185qUtc5bt3fabrc7Go3ifY8FpKWlpc3NzaIoHIeo4zU/P1/ZGgAiTE8TxbBPRJRS3W7XOamqKs+bOzsDRWY0LOYWlpqtvCzL9fX1Y8eORFRZLJgVRZFlWV3XEV+/sLAwGo3G43GMzWNMsBcfxJR3r9gWu9FpmgLLaDRa39xYWVlZXj4YHSR7vV5ZlswcfFi9cHFhYeEjf/4Xg8Hwjjvv9N7Pzs7O9vrnz583WZrnea/Xa9hGVRbeew7c6XRcbUej0QpLo5lZa0FRniXD3c3Vi+f46pMhBOe895YZzpw5MzMzQ0Ttdrvf7xNRZevzF9fLKuS9JWoun93mP3jv+97/yce7R24YSMqCoBgjSVAnIj5YO8ERf75jOnKuqBox0EQ3ZKoTxAASPBApJAEi0/KSADMZ0KR5Gsfvx37hvoP3Bf1XXML+Tf01jy9Q03qtYw93GV2LL0GHECgWMVDEIIhC54OG0DCa6kKB9qhifUAppZDqoiTA66+71hhtqypLDbCMx2Wapo2GK8a7+XhXNWeMxobRpUdFKIGJPQAwThBsIsLiFRIiKlCCShBZuHJe7ZOoDVGREZEZnLdoyHsQa4m0JhQABWKt1dr0On2l9ec+98xnP/vZL777zltvu2lmDr70K+665rrTf/AHf/TCC8+dOnFyOBzmacrIdWmTJGm1WmVZDobjZivLG00v3nuPIgmpVGnnfQBAxNKWlGhUMaDiyN1x3otOQgiv4bkJLqojxnsc4Uw+MCNYH8A7ChMTDi8BEROlbV2niHlCBMLsCV1Vjkq74m3YKuz2c4/827//71IFpQTLPuI0SBgAouyFAEJ08kMkiXYFk+uJjlIIPBoMw9oaM2dJykpERFAQtQuMiEmSaBAkBoGgdXdh+ffe99FT/+xbDRXeDlJtQpTqZaG9kR/JIRMoiUznBQICAgMwglJI6KvDcwuvv/H0p59ZVb1+VDwCoBCBPxKRZJd0iSdL8V4f468xyK+cO5c3Lj7fsX/6YCRKgHDMvoUnllwiioC9JSZD1CY/XL2wub7SbDeKuko7/e7CIRe8d3UjTUbnV//+t3zj4SMHfuwn/lOr1xmuX3z3f/lPd9/aMQEKhu7i9/7TH/wRNdyYz/SP/dvvyxB+49c/DKF4x9vvuvGqhS95/c33PXlhZnHJ1wUE22u2vYNz59dAL5CS3eee/Pb/+C/tCP7f7/uhw3e9Y9OlNTiaXaAg5wdl0utaCaGql+eXrIfNnTHolBQ7u/GOL/uijVX4rd/64/lDN+wUI8hU4EBZ4kdwcW29rKDVaIpzzpeHjx1ot9u2lg98+L7eVTcOrQsKFaBzodlrttpwcWVYFaV3F288/U7v4OMf/dA3vuurvvQrvva226/O2/DI4xd+6mff/fSLw8Xj12xWld2nKfUjP/HrX/Glbzh9+vg3f+3tWfZ93/v//ezita8bhCiNQcA+NnwnvvGBMXgtnJDMzMxkWeZ2BkZppbDbTJrNlAieeOxhI8GPdvrLx8paxhIM4GA80knKAFqpIMwgyKyQJAh7m6Stbq8VnNVGIRCQ8Sg7o2Jza8Ckur3+yVtPKZN47xtZPt7dGY92wNuN4fZwY/XgsUOddns0GikB1BBtZFnEKDKIdQjAnOW59z7Js6IsmTf63a61ttdqsg8R7aNNaoPn4Hq93nAwKssyIczzPIRw8eLFXrvT7/ejRkEMBoKg9+w97+3FMglKYqYQ947/y0lxee5x+fYxDb9c4NtufX2n1djYXC0Hhda0ODujdPL0448ePHqis3zg8PH0kUefDW5kiHZH483NDcwylWakTVVdEp6I3XxSKvZZ46wOIUjkhyuFoCZQ5sl1CCLKVMV/T0x2cvGR+BMUoACyDwEcVwAJMqLceuP1qZLRzmZDs1IIGBzUAIoIkyTlQFVRJyZFRJ0a1cD1qezqxuZ2t9OqqmptbS0WHp944okjR440m83d0RAA9mBexphGM2PxGjURheBjrbIsy6rysS4VQqicbbVaRLrXnanMYGNj4+DBg61Wx9oqRtYRmAKK4jm1Ns1mU4CstTDB9iHiJGY3RtV1jaibzSZNBLXRWru9uXPx4sUkM51+b2Fhbm5urtVqPfroo66uoqWdMqquCpMmhw8cePaZp4no3ntXe71enuch+BBCmiQgIi5JlBbDtqqNMVtbW2VZyoYsH1hstRrdboeFm83GxfPnFCAzHD58eGFh4fFHHs+ybGlpaTQaraysVFUFhIxZb/HI2bX6kUeefeS5iw997sW5q26+sFtRlikFHKIeOmmtnCA4jH3V17aH+wIgXyQEhyACGqZqvRPSpKAwI2tXBdCJ5xHSRHpATcUeJyOTQJhluo1N0v0r3zTGwfyFa2N7iJbPd8GXXzzAfl7YNIeKOGQEQA7AHgUIBDk0koYCmfDaUE1QlAABwpvuukuTqsuq2+qYJEmSJLq8W+/qut4d7XbmnDGqDD5JcvZBgZAoJBGCQICspx0gjFzSKOmJKMi8/9MYTRq0ByQODLqua2bM0oYIOluDoCCwsLUWwIpPes02ovqTP/jQ5x598YveetfxkwtXn+p/1z/8jns++vFPfvyTJ68+hUIoEMGgANxo5YOxK6oatA7AatqWitKItatBUe19wuiFWQESOe+dsBOw1oYQZB/SCAFEhJ0nQKXUhIoIABHSYXIirSBoA1op52qwFSLsbm4gBzfeddXYkBglrVY+P9s+dnRurtue7/ZPHfnaG44tVMNtCay04hAiNBABQFiQASOcdcLhIJFoGLVnDB+xvXmeD+ptY5SACuK0whAcQqKVhmC9d6IMIoW6mF9a/NTDn/rLR55/++sOeztk9gE8Il7Sf8PohgDRfIgQ4m6AcglGSUQIKhR1u6+vv/rYPY8805udISIEExCBBBDJIwIooBApvHvnn06NS4P/r0Rn7qP5fv45MMXO7P05wdFcWgli+1aDoIT48bz4LGmkXK4//8TX3f36b3jH31ic7Q9Ld9+jz737D/+ie+C4TxqqtsULz7/9dacPXgX/U9evPP3Ib//mb7z+2vzjH35mff3sF7/l7huO9u+8au6j7/2z3//gX9QOvuXbvn9ru67XX+r3u1/9NQtHFxfuf+JFX4/yRGW5aXXaVQ2bW7Z1uF1Vo+5y59oTzUfuPwO1x9SUtXcqECEA6nY6tqOuaUBRNfKu97C2WWTZoc3Nzdfdcur40fzhT1/cOLtz1dWtrbJkD1opZlZpUqMaOSBQCmF3e+3YdYfbeb56YfOj9z60cN3tG1x4oUwlbHd7vUZiYFyMjDHWuUOHl7WSH/7hH1g4eKwK8Oyz4z/8kz/7/d/8/d61189ddWTHD7wyQJckCP703md++48/9M6vuPt7/9nfftMdN77hztuevrBDeRNZxAWTNIJDEvLiFQbHTmMgCZ7twvzcaDQaDMchyKGFfitVeZ6tXTjvq3J77cLMTN+7uipLrUzt6jTNffSYwIksNAJoJK0lN3nDgBanNKZJSklWluHM6rZPm0s33L44O2d0qlFXzoEQaaX7S7mtxVcHNeysX1g7f3awsj3f6yQkti6MSkBAfGB0DZNqrXdGI+e80ia2j6xzZV3nWUZEeTNxLgBAUZXtRndja7uqqgPLB1955RUAiL5DsT21B+lWymitg4slI07TdFL7iEboE9bNJXz95eN6X5JPcmX/ES+NfLxcUQhh2jf8oi/6ImX0cDhM07TbaGxtb1RVlWcqIbrw8kt5o5l2Z0+dOvrs+e1rjh/9zDMr7XanCgGjh7a9FH5F3EMkjnKEcmokAQGundMiWhtE9BwIIQigkCAoiMhPBBS9/xKZQSWkFUoAVEJqIr8ZDdoVKJI8SQlqayvUyjMniQHBqF8R1c9DCAHYuUvGlHmel0XtvS+Koq7rLMu01sPhEPX/j7X/Drctu+oD0THGDCvsvE8+N99bOahKKklIQigRBMgCG7AxNk5A+xk/v3bgGX9++OF+z6HtduCZZBsbGtwmNBJYJCEJoYBQKZRCSZXTzeHck3daYYYx+o+1z7nnVpVof/299UfVPvucu3ZYc8055m/8gmrSCVqtliA0ukWtdVOiIWK32y2K0ntf13W3OwSAvb2dBsESEaUwsk/TdDwZXbp06a677trZ2VtYGIjg8vLq9u5uMasWFxdFYDqd1rU380Qhlef5oUdo06U1JnFlNRtPiGh7e7u5ohvXb7Y67eHicprZLMte85rXNMk/Fy9e3N/f9zE0YhBjjKtDu93uDvr7+/v749HG5s177ro7yzJX7vQ7Xer1EbGYTbe2tuq6bkYeM0dmH8PNmzeXlpbquhoMhoA8nU739vauX73aOI09++yzvX6/LGuVtEG3dL74wk33S7/5x49+9VJn9Uxr+ex2GcFmHAMiAQtpE3wgZIheGfsnbx3gyMx+O4RLAkQwF9cfCVKUwEETSQSlkhhZ56m1ifFcVCWiNLTKWyecu/uiMB/eSIdY7G2rzsvaKEdWp6M33/8ZJezweCXdTSFyQ5met/9AFJER6VuVAzgEwYYTwxyj4/D6179uMOhVru622yH6lm2jgFHa+RoJBJhAUq0SzehC4QqlDLDYRhdHiHwY8CWRAwBprUFQRFARkeF46wZplkdCUUqlitrt9ng8KauZNanWOngBAKWwYXc5X4GIMN599p7xePyrv/prr/+6173lrW8dLKo//V3feOrUqd/4tfcvDJbbra5zLkAQiVbZNE2rym3c2MzarW6r3Qi4s9R6jLM6ACsicjEWZSndtlLKBe85BvbMGEIAISICIESFgCAxSTKJQREYIlACwMLs2fvxLPjgillwJXAUDkphK7N3nzi2ujhYXxku93vDXtbt5J1u1s1tRiFVbFFxdK7cF/aNkWHTsZ1rYLGZrgSEFB7yr4CEhRQjACgmXVZBKVVVhbamCrGR1iMDInLkoigMRWMM2iRPk9l4d2cyy5dO/dZHP/Ome9c7SRpdicKgFB2QpRjmXOBbQ/Sw6hLgubM0xehJoSZeX1pw0ykBK5QwN8MCQGZoAn8ay6KXa0zmaGLjefJKAcqRKurlg/prA2Bzs8rmhwMI+ABSIIXICAo0AieoNKH3dSdNU+HR1av/9v/zo9/61tMtBdUMEg1veGgtaS385C/++sqZOxVpoGgAqhFc/epj//wnfuKBc9k/+oc//8EPfnC6f/Of/Kt/8hf//DtPL3Z++G/90NmT+AN/699VenjP6+89//Tnnnr+wnfSO5cG/fHOzrHjJ6pyqjRkmR7tA3tKbbK/u/vGNzyYJbC9vZMurvooHoIg+OABlRdQxrjIamHQ7eeTKeztTo/dM7xw4Zk3fevrUwNf+MpT+ck7ShCPgo2GXYIFEUBrIEbv61IjDLrdvE2PP/Wcn9VRJRwqYxMiclV538m1vAW7O3vamiQzvV4HBKcl/NHvPPqhj3/ujz/40fzMAyff8i2F8Ha1T6lmFKVvtaGStVMnztz5vl9936kT/R/8wT9/17mTjz39iUG3F1zwZKJnhRqRKEIjH8kUBXE+1IuLw1qZqnLR+fXlNcJokuSpZ5/R4t1kb+nY8mS0NZlNEbHd6ydZurWzJzF40UBgDQqz0djJ0lAUmUlTYwNgQDMZuSsXr55+4LX5wvq0dJcv3Rjt7vnCt/vDOvg0TxZWlk2iq9JPkTvDlVOd/mhz4/yzT549tR4ZtcYYQmoMY1QaUjTddntrZ6eVtUpXK2WE9Gg8tosLUaT2LstaC0uLN27eDCwrKysbGxsbN673e926rgVBrNVau9rVdb28vLyzs+N9rKrKBVBKAVAIgRv5/OHtJVGAhA/4pkeWiaMdPBDCIwbvhzxgOKi9Xla9zdenLFW7ezcRpdVq+eista2sFUJYWV58/vyFD//e73zDO79xOFw9c3L9jvXrf/ToV9L0RJpY08rGVXWE8ADKUAgBgRvDCwSF1BQWxDEGiESGBUXQSRAAFIOAMQoKESAJidzqEpI2IiyRtdJIJsSYtTMU1uJ8jNEHEoxzVgdBhDzJQUDR3H1RqYazDBCj0beWQKvNzmgco6yvr29tbfngbZYwAsSYJIkyOsbYtGxNYvN2i5lDFZpvuekHr6+vb2/vj0YjpZQIa4RBr9Xt5QBcViUzX7hw4fLly3uj0Xvf+94bGxvdbvfYsePT6RQAyrIeDhfLoo4xFkWhldnc2HIuIOILz784GAwWFoezclqXVVFMI/uqqrK8nSRJt9+zJk3TfH1t9cSJEwy0sLz09ne9c/zbvzeazNrd1mR/1MgFZrNZXddCaK1d6i09+eST+/uj9fV1kyadfu/atatJkhhrSakQY95upamt69LVtXdVktitmzfzJN8N21s721mrRSyz6ThLO9Oy8CG6yO1WF3R2bZo9+tj5933kcy7pL977+ppx3wc2TbYmASBqE6IAKgmilJ2Le+FAUnXg+HV0WzzvP75i8gYwPA/aIwAE0Ayu6V5EhcistAYyTH4w6E7H48m0YtLqiCOdMCCqw44kIkaOSHR4sxzeSLH5AEc9KeDlO55DF6bDJw+qt4YGzjDPGYSj//CANaAQD7xbAQFV6Z2NQSulvBuQnGx1dmaFsi0ObBS6MLv/gfuW15aYgyt8q9ViZOcr56wmkhgUglW2HE/9aD/TnUwhmUR0liRpqJ0IJ8BRWFvDzBxrra13kQFVE5wVOISgjn5GUswsLICiFYWqbKdpu5XXlStr1+wBBdBaG5gF0YeAiLN6pDSvLCw8/uWvfv7LT3/v937fPXd2XvfGOxYGf/3Xf/XXr2xcP37iZFlNCdF7D1F6eVeR2dzdm83K5V7PaFLA1sBiJ5tWtQMTo69dWdel0bqcVVlws6pKtbHaACCCMSYBIIisCIKrXVlWbiqhklhHNwPxCdLx4WBpuXts9czy0mDQa/c77X43b+VJt50bDZYIIQA0u48gsYyuiiKFNHpsViAQWePczaiZRxuWqhLFzR9xtEozszYUhaMQGxuiubqxp4x2rqoFmRQCkaAhgwACQWkYLi5Ni9m4nJbexdqxtu3lU1965rFnLt58y70roS6osZe9LZuHEJrmCAPA3I1s3kNsfGUDEZWh5Fh0srZijTGIMCpkZhAA0vPwpTlseDAQ8ZCkdbTAuoVPEQjAPBJ+/tTtOHZTtzXdjFu3CgoIAykBIUMhOFBKGkoycIxMBNZaTQIsCpRWupVYNtRWYeelp//1j/3dd7117fHHtz76ic9tXLlx99qx7/veb/+eb7//Dz62cHFrt5XnumvbfZhNJutn1r/1m9/wH//jB3/zQ59609vec+Hi889e2ACGXrf9Td/5pz70qWe++rkv3Pn1794ajUrhCrBgUJRQVCGAcy5t2bwLkxtSjSYda3frIkt7oMB50SZvdXO1N+EYGRASBdEL6jqwbqV5H2ZTqCdlR1G9s/maO86FCJ/84mN6cTAOXowSVMJsiUQkzzIUiOCsJV9Wx46drAS+8sKL+bE1IEABjiwYPZery8tKwc39sU5zduOFYf/ylfrbv/kH1LG70uW149/4p2qRbeeDQNCJQqUwRH8LB9l1VWQYPPDap587Hx3kWqOvlTD7QMZEYC+1UoqjC0KE2qpkNhstry71FnrXdyfeVQrYJiprZdPSX7++kRSjpUx3O9loX2KMKtHOVVEYUURrAEiMVeyMEmWIY52lRmuttY2gr++UZVT3ft3bjc6e/vKTYXunsdIF25pOp6DRW5xsXEo67fX1dZsm40kZQTprJ8+0OjuXXujaBJBQccRQ1bUorYxJUtPpdKaTUhmNgIxASTKazWYAGqTtnY8xyfKuTSeTyfH1YxtXL439bHFhufZBKeVjZI6z2UxrndoshJlSygo654SUMQaBmBnpIJ7L6OCjVocJY3MtFxERmcO143ZIF4ARqZGwiAgC4m2ogjpoPp4+eTxrZ2VdNFTubrerAFWaJt4vDHovvHjh2aefec3ruhi9CeV9Z47HVmvGknSy0d42HUmL884BAOmEQIl4wIiHBZ/CphE5t25qOi8oiIREjCyCcx/DwzfvHFmrtHK1s9ZmaaoQRZiI0sRYbRoWCyjSog9oPQyADXeKmVnmeZwhHPnYqJIkuXbtmnDHGEOESZJ4H1qt1ng6UUHleV7X9er6mog08FhTdTXxQUVRKGWaiKGGCpZlWafb7vd7MUajiIiKotjf39/bH33hC19sciTvvff+JEmY+cUXX1wYLjWPL168ONodXbly7caN/SJAruDbv/1d08mMhZVS7U5urS7LMjJVVbW8tNDv9weDwcLCwkMPPfTcc89t3Ly5tLT0utc/srO3W0zLhlcIAE0nuwmOHAwG991334ULF2/evGmMGQ6Hw+GwgWGHS8OqKKzVIlHrFsfIHKuqrgAMau99rRg1pcpYq72vBUDl3Vq3qtB65uL+7z/6xS9d2M9Wz1U1l3WjTNOJTYA5xiCNz/g8J64R+gHpefA5y3xH//Lt8qtSr5p6ril4kEHmZOGD7B5hxCxr1WsnE9lPWq3JZKKtASHm2xGdA6M8OLJ9+ROOV3Ynb7+3bn+Pr+zI3C6Ok9ubPIiNlbpCRcgoIhwjilBVda3GWVAIVivnq7XVxfsfuHtnZ8eQafI3tdYiookaw8DZbJam6c5kIjEsL/e2r+56qMoy7k1mxBGEAYA5BI6CaDUZY1qtDjJW3jfzhjHW+1vufQ0gR6AAUThqUkQISKK0WHEhOh9DEFRKESmtmZk5MAMgiw/9TtcF9Sv/239957ve/sY33Hf3A8O//v/4G+973weee/aFO8+dq6eFMBilva+zJOm287Is67rWKgkhKqJE6VJqDYpAYlURQGKSBDETWEwtCkB0ZVm5qi5jDN5H5zRGTbg07Jw6s7K2urg4aPd7rUGv08+zhTxJNSZGG40oHmPg6EhqX42RRITj3DtRgBQCJ68w2n3lhb6tqX3giI2IEplRkBKj0/0KLt3YAUxjjJGUCx5BJ9oURY0oShEpKKpyPCsK5xXFFPW08trkqtV98eKN19+5qpQ5CJq8dWUOHvDRZ47uvw8fi0hibWaTINx4f6NSRBiZGxEpKEVMggIscwL/ocvRK+/KV3uMXyMd8ijTeM7bRxLkeTDUwT2okUgrQBYOITJwkxrK5F1K/vLF5370h/7cu9+29ru/98Lf+nv/YHjyznbW/q1f+UCSd/7q//ANX//6+7/yax/vde/odFObwNWLV/7x//vHzl+a/MxP/uwD7/iOS7vTSkzpYTKF177uQdbJv/rJnz32ujfuT2dJkimFgSgiVCEEEUNWQjyxttxvw/O7u4SCAsYklec6wv0P3DG9/tze1cXV1RNlHUdV6TgCEQnWVbG81M0z2NqokSUGB9Pp6bX16Shcv7mXr9+1G+smvJwIEtIS5dTascTA7t6esokrZq2k5QQub+0n/U4VawYxpBKlirI8vraMBDe3d0RpZcgYGu+S7h2/95G3Xp1MN6vaAQOgIoNgmQMjmyNgf0SIqELEVqsjBJNppYwVQWV0BCXAjSJHpyaJ0RXTVC9UVbXaPRGRbmxsQAzLy4MsS/I8f/7CFRLe27ze1XFvb6esCzI6hODDLEaBCEhgEqtINEArzxpNRpa1snYvotncndbUuuveB0Z748uPfgbEUG8R2SmtXRBtNdczrsuF1aXKuwuPfRZscvqRR4xt7exPOlnn3AMPbVx4cWeyv9DJAXzeSlmwckElJkuS6CBwjHPLZBARUJS3WrPp7Orlq0C61e0tLywiytmzZzdv3hhNxksrazd39rJWbowJzk0mk8TaEBwA2ESzhMBijGLmECN7r61tVn+lyYc5R/ZovfUKpspR7aA6CEMjuFUJ3Zo6DpSPeb67tysSO50OkY7ORwCioJQ5dfe9iysnP/bJP/7yF76YZEvHlvtnjw9rm4xqX7jpueWFm7vF4RlJDGml0EgURdFa6ysPkSM1MbGKOYBoQjbEIiIHHUgWEB0OgJODQ1v2kcVro1tZIhLL6Tj4sp9nKjjiIDEgRwEJDESoAA+ACRCAKKy1SbVF4CblujkaImqr1SrLMoRQlkUIoXECszohouCZI+zv7h0/ftymdjabAYv3/saNjU6nc+LEiStXrjTdZU0KAY3VjX+u0qhQF0Vs2HydTufJJ5+sKoeITz7xrPc+cCzLcOrUeqfTWV5cMsZoTevrq+vr6zdu3LhxfU9r3Wq1IrsQnPMxzbMorCjp9/v93rDdbq+tLGmiqqqOn1j3IVy7dq0oploTAGdZAhGYOYJ4jpPJhJm3t7ezLDt2bH1hYeHq1as3b24cO3YsTdPrVy+387wqirqulUJjjCIwJjWJNcaMNnc6/U6WZagALQmLzZRKWmpx7dKuvP9DT3368ctZby1bOeuEED2RCRBBpHEP1zoJEAAAG2YMgczdRuYh4nREezHfNBPNaTyvpLc3CBVyU0k0P2Iz3ACBKQqwzjsrZ2V8JSgqfSTUAsJHXe+b6D9CZpF5g/vlrdDb663bnMAA4Gha6svW4NuOl7Uv6VC+pvDIK4oINzITFj6gFRilNGGujIZorBlPpkrTgw/enxhtSAFwkhrm2ARYAVFd10DoBUJwaPTuaF8vutKVBfuJIySllUJmRNSGgMjHUFWBi7A/8t57EsjaGSmIEpPkFlI4m0zzvA0CwiKIjWjZBx98IACrjVa29s4FbkI/FBHSnNJjUUGImdatheEf/cEnLl64/O73vGt1zf6Fv/Kn/+B3P/aZT3z23Jk7JGAd6iRLXagXeu3Nauam016WEWkAEK377WRS1qTZCmqG/d2drSuXlUgVfZqmnU52qtddOLm4sjBYGuZL/fagkw067SzVrSRRChXNp0jmgOJiDL5yVWxUUUAoBEwN+oIgNK9XCAngIMz75Zf0VQqyOXYbmRCbroOgKFEIosiMxtX1jb322bvHQCSsUSFQjIIASlEknMxm06oGQGsyEYkogFC6AhCv3NiMYEBAzyuhlxtqv+r7mS8DSABIYJCR2YuKgBhAlMIw9wdocGAUlhii0kro0EMf8aB38sqXYAREpCO6yHnR1gzzeQbm/M48PF1sQG8BBJz7CccoIiH4SKiIEDFGP/+AGIwy7OpqPH7jPfd8x7e94dHPbv2tv/aj93/7n44GYqhPvfEtT1w8X7tv6OQYJBbVbHHYTi0g+jN3nPvZX/zd/M6HtkJFGcUZKiUC7q577vqdT311tB+7J9px5q02xJLlRhTs1xUbQwBSFWfOLFqErb2bOk2mddnqL37qscevbvqHX9f/xf/yP//sL/3u5x/9eO/YuaX14xt+FhG7Wbfe2z612O0aGO/uBA8OOF9bWhwubm1sj7dmrZWEYy0StDFce2vtZG92eunBVMMLl6/rrF3t755YW50V8NLljQJ6CgUU+KpKMYl7xfpwAAx7032d5zydkQLHMSCP3ayi4DCCIhXQEgJgHZjUbUojq2KOtDurVldXWeDpFy4k3cWCwYFwDGQUs4EYSURclZoQ632bmLTVvnHj5nh/okgW+r0kyZjl0ksv+nKapKbbznd2t2KMDCKAde1NkmkBF7wY51kUIikdhLM8T/JeIfb6bsWmf/aOO146f6W4eBk6C5DmrEgnCVqjow9VeWJt7dzpY9Ny/NDrHlwcDn7n9z749Gc+t/rAQ0ur69s7N+van7rvgRe/+vjU+bZVyIgSUm18iApFE0RmFNGkUCj4kKRZiKJtevzMuf39/bosR/t7iVHJ0sJgea1w4erWfn9xuZhNIMbEajEYQlCaMEoIFRFYrZ2rrE20Ju+91g1Yi9YmRVFo1M2ahfMV7WvgCIcHghy2fG4HF26VX2U5Qxbv3HaxmWWtJscQFFVl2bZJq93O8/YLz72welLtjza/8uXPj0FVoIzN146fGfbbh2dc6OekjBVb+2rmZ6FyBlTgyA3LRBMiEERFpJQKzJGBOQiKEM/twMNReI5BvDF22OuF6IPzdVW0EqMJ8ixNjJqz/uRgLb/9gzexA0qpuq7UEc0dM0+nU+99nmV7e3uNFVtD6VXKEFFV14PBoNfviIhzzhgTnG+QMKXUYLCwsbHZeOwWszJJ7WAwOHPmlM3SyWSSGtvpdCaTmTGmqHaHw6H3sSiKVt4BABf85uZmWZZnz57Ns9xa20ozEbl06UqMUQD29ndPnTsdo63qabuT29QUReFcpXU7SU3eSququnz58sLyQqvVct6fPHmyqqpOpzMZTUMI0UVjTLMNKoqiAXsmk0mn00HELMu2trYAYHl5sdvtbm5uZFk2nZaDwVJRFN67Vqulla6Korc4QBKllNJ2Vobh4nqeL8wg++AfPfO+j35phOvZ+r0zz429cQTR86wVnvs30pzS1FyWhtAG8xXxNjOIw0dwpD33coBBQOhoqdSYagoQilBTGznReWeJQzn1ex40KE1H3IDhFmuy8f2aP3mrIXjkz74W9tG0bF79d3/CIYdGTXPJSfM0EamoNBwpQwFijB2jrYiGABw6rext7/iG4UKnrIvIgeM8DiGEYIzKW6nW+sbGtSRJfIy+dCGEYjLutDKOihIVUUtkQ4olBObEWvCKDaY2kxCBRaEws2cfQgjBwYFpdtpuudonJmkEMXOo8oA2R8BIKk0MYvCeI0SBRiUUkcF7b7QOZeWZj6+ujHa2//N//vnv/b4/e8+5xW9/77sWu4Pf+c3fvv/e+5RjxKANSvQnFnqurjMMsSqrqijLMsYoPjpfkvKD9QcefO3Z155duP+e+9M0TVu23cm6eZalyqpIUmnxlqSuZiRO/NgX3jOQMogkAEEikGgiY4QApbGdnDcJGl0DHVyUeSH833FJj6S8RSBFDeUWCQGQQ9QCVzf3azG9JHPT0iRaAbgqaksMGFkUkraJUooZEIxAiBKQWBnSWXL95ta4qAfWYvRy5EX/u9QeqJhFgQJQRVHUvmoby6G6JfEhYg7BeQCDSC+bNW9xWejlv5r/FgH5YK5t3tJheiAC8MtNkgiJmREFUUhQIYGI1johXfOcqd0IohGROEbvl/L8pS9+9s//nX8NCP/2p//zsbe8YxpsiLVSsFfPKDdeoKgrpZSrynuPryiI506feun6zgc++IcnXvP1+/WkZZT3tTakDInHT3zycwvr58bO19H3AVxVDgd9RtgZjW2WAwvUfmXYsQZGxViMEqV9jFW07/vdP/jbf/Xb3/6O1z3wmtc99sXnf+sjn/roY48v3HX/qI5SO66LpcGqJtje3Y0Ak9n0+MljSYqTyYR9lNjoVZFQCDABs3Vz69zp4yLw/IVLncFStbuz0B1WJeyPStNfDMhRYqK1FQu7k8V+ryr52o2boE0MyAyiGcp9MCixSb/xOWMoZrUr83YrBJWm+eGVosDG+OLyhTe+8W9f26y+/Ik/WvmGd+/WlU4TZg6+JiQWQRCroN9N3Gyv3e4NBgtbo7Isa+CQasrzfDabbd+4Vk1GvcQqRVpr571N7LQuVWIFQRttCbUBQ2QBOIhIyLO2x2Rzr5x6de+ddz7/3DPV1k73+GqISNaysp6UExatANCJeuLZSztXX3z82ee+6V3vJJWt3fuaPGntbWyurK5euXnpwsbO8TvuffGJL+W2VdVlZlVgViBMkFilFDodkDSEIErNpmXeShGxrCsGybIsRm/y9NqNm1mn+8hb3u4Ynnn22cV213Dpiqn3HjFxLhRFAQFEYoxN+o42RmtNjVG+NPaBKHVdvpzL+7XB8qYRj0QHZoa32S0xH0RuF0VhjGq3Wsyc2Gx/PCqKanV9XRntnLNZds8992xt7ldVdeqOs+96T/rM5Y3tST2bVpev36jG+wDvbM6zf/Ninre0aadKWauAtI8SrQmiHYsgB4nRB4iKRQJDbBoyCkEEhEAE7a3PRuJNqtLUhFg2auSWtcfWVqIrUswREaiZTzSRakCWZv2PzBx8o2sIISitZ+Px4WmV0Q36tbO7lbfyxoI1TRMACIGVUv1+P8bYkO4btaOITKfTpaWlEMK1K1ddVTeWkiF6xJQImANyJOHpeNLtdr33IYRBt7e9vW3SLLHZeDrpdDrK6IYvv7m5uby8qHTHWo2gzp49HUJoEKwYvVKotW7ycYfDIYK6cuXa6dNn19fXAWBlZWl3d9cYs7O3PZ2NV5bXTp8+7Sq/u7ubtBLnXOUdIlZV0W63U6vLsjQKraZutzsd70v0vq47nY5I1Fp3u+3R/n6/39V64KvaFYVSNFzqCSqljKBdXV8P1H/mqvutj33hiUu7LrnDZp2pqyISImplUCDOA6EbPR8AR0ZWSoGa02oADoJ7FAkzzNsdChtwpUmF+1rU+5cffDA8iBmRSAhdpCQZUtcVuxXaTqgqDXCUeh+ZEQRZhA4LrKMK3Fc55Padigi94k/nZOfbnkM8xBKaszSLffOzHHgTNDWNbqKURZRS2IT81VW73VlNei/Ott7+tm9ZXlqYlaNyVgBL8G46nfT7XW1tkqWzohiNJsaYYjaJIq1Wq5iMByDIsZ6VOutYQ2iNiDCjIUJroa4lRBQXo2/KjhAcAlptw5HK8trOTr/b1SQI2NyVBy0tQGxcYIWZjVZK2Rij54MN4UE8UgQBRb6aWICVdv/Xf+lX3/Md733wvtPvePdr00z97q9/4MT62t7uTl1NNQjFGKsiWeydXF1YPtkbtlcW+p1uu7W8NNBGFofd5cWFvZ3dXGV1XQsFlkrChIvYGKzWwdcSDwqp+SUQiUSkFGDwINwAlzwvm6SByUEgNt2xg5gEeEXp/7JxeCSnYV5nzPd1TXNZqHFLQ6Uv39iCpOWjUtqGEISQyGDjfYgSOAqgmrO1BIBYWBMJcpKl+9OdOgKQ4giNJ+rRt3G01fjyEQvESCxsGKwxVVURaW0SVUcyJirGA94hAFjMkFQVHeNB1SUIB1aQ863VbWc/UKgcjO8DDOzgO2dGQsFbaS2ESAANfxdVoytiIDLG6KhCREVkSGnUiEJCEFnHON3f/ZZ3v+lNX7f0h5+79uXz1++8/42joowinU5204+Pn17TCVy4tIlArijOrp82EOyw/8nf+Gi6uFaDqjxnhpFjt9XqdPTTz218+uOfu+Mt33a1HrPWXjh6v9QfYoStrZ3EthRjqKvFpUEd4Mb2jqRZHXzpw/qdD/6X9/3+ZDL5S9/1LfefHHznt9z1ljfe+Uu/8eF/+7/+3tq5hyBCFFlc6pKF7fF+2uvVZbV2vBc1jNwIxBljuGI02tUhI63Qwmx29u4zO+Pw5SeeXlu/Y0/bTitzM5hs7y8v3rEfvIAoayEqCDLo95Dj5StXe4snL7zwgnPQWcjzs6szN0PSVkT5sJq2X/j8Z//dL/20Ivu3/trf791x3+G1Wmkt7l558Z43vube+078zoceg7V1B6wSVdUzkxitAQTyLB90crd1zYJLLLb7g05v4dLGhRDi8ZXhQq+dJOnGlRu+GMVqEo2fFhw42MSUTbwPoKtDqGY6yxEMhxgFulma5i2r7HbJ0xofuPs1N69erV56SrWT8UubmLXTds+TxfZQWxuj6w6HN5+7DFnHHrsPFHzow4/BePdt3/GedpJ88Fd+Obf5wsKx7b2trVF55s4HLj7z1eVuCwiJawA0KGgpiuIylr6KQbQ1SMARbKobXperakuorQ2zYlY5JyhJunT8JPl6vHEptUmet0WEATq93mxWFEXBDEmSVKULITRKSAJ2ztV1DcwA+uC2OOzUA3yNZQRRgDQgQhM5LXL0z9rtfL4+Xb9+9fTp0+1Op5xMlVJ5nhtjGuOrvGUABIA7eQsIO63Uanj++Wez/mraGS60F4qlRfjS/IxEarSzMxrfhOhACxBAp63TTpL1tUm0VUhKFFqtjTGBwTF4jhEic2PDzXhEgUWhSlSaExqjJbIo6iRd8U4JK4Ks3QriBBXRyzEVRGzc5LXWWuuimM5ms/yguyIiaZru7u7OZjMiApEkSba3t621ed5uZIBJkjSpnCKcpuloNGIWY9T+3hgAlFLFrLDW9vv9eRJ2jEiCJM5Vly/vhxC8964uhsNh5RghLCwsNM6rzLyystLtdtM0bWau6WycJvmJE8dGo73r16+eOntKaas1hRBIq6qqOMKZM6c2NzeVUkliyrLc3Nx81zd/0wP33f+Zz32WUF+8eNF7v7CwkNlsY2ODIimFttF3ONc0RieTSdMP1VqX5SzG6H3tPQ0Gg9XVZWbu9XpWaeGotAnass2SrK/z4dWb5ReevvjHX7pyYcdJe93rpAocqdn70jzZ+QiJHkm9LO563tEQaebo+XaBiA6Kj7kg8WuWXNS4JRwUOgwAoOjWNRcBgRJMnvaS7gLPdqudG4BR306Zx/kyA4haRAhRvraf6stqL3g1Kth/z3E0qugoIUaAm6Tf6EPgIEppUqQUCCdKga9+4M9+n2R54StCNFZVFaZpigdeJyISY8yyrCxn2hrxoSpnlKKb7S8P16y1M8e1n2hsbCOYjOaa2obIUAhB51ZYBKibtSvHlb8tFEKn2c5oNNOmlSQoYK1FwhB5HuaDqBorMxBA5OZHQmaODKSUD0EbAwC+rkhrAhj0hu//tfePvu2b3/aWh97y1tfYyC88+cQj9z8ybNtuZhcH7VaW5gm1tHRTTFTQHEk8SCjrUodADsrRdYbEakIIIIEjaDyIkUWICEoRMwsSEikAYQzBSYhGER027xrRQFPvkuZDu405LYMQEeQ2Y8L/k4srAiQxRuJ55Rdj1GmrivLFJ5/GrF04LyDMrEmjQokhAmtrAKCZ3AEAGaIIoBCR9z5TFB2S0lEAIxD9SW/gVd/SwXeCm/uTvDNgQTL6UFitFBqtE2MQkhCCQuM5NtvUGOb6WDgs7w7dVm+nux1Wq3w0qPegt0KN1Zzc2k+JCEcADSEEOODKoNYKiRpl/EGuUTvLLz7zxW/9/h8wBB/6yCez7nIUIYztNImzkY7Ft3/LOy9dhY9/6vHTpx++fvm5bst2W8nzl/c/9NFPZYOz46oibTRpV5YLvb4AfPWZl3R/OK6qxjXEKAUAg37X17BxcwtJiWBZlsN+Dwgub2zqdicAVjGyw/U7X/PhR5/8vQ9+5Pu//a3vfvsbHn7ovh/6/m995qW9z37l/Or6yd3ZbDDoBYRrO5tpt+2jV4ZEQx18E3dFoEJkEiLBYn+3ffzYyurKhauX9146v7R2jjm0MtjZ83FWKAKMjAYr71gDtPL+sDedTcb7s5XlTCf59s7+Hff2B92EUAjUrJweH/af+/0P/t0f/bvf9KbV//CfPgbT0T/9hz8CX/3j5hpdevqxeOWFn//oh7ZH8M9/4qeX73hwr5xGiMpgP201ivs0te1WfvHCM0l0iTHDxQUf4s3NHRBqp2mvnWZpa2trKzMKW8lSv3f10nkF2PBqQgRlDIhX7QxEfF1n2iaKUmMTm0/ruDOKd977uuDh+lPPgsJYTUFQqmk5G4HtAGhsd2ya7I+LU2/6hqWVddtux+hDUVTF6PmrG6nB9okzLz3+1NLrHlxcOr5x4fl+Pjx9572bV88jKU2KQEIIwgykEIU5RmENxkcmjYxk0gQ4GmOsoqIosizb2Ng6f/nK8vGTyiY3N65deOJJjH6wtKxI68SGEJwLSZIoUmVRz2Yz7z0IQvRA1ORpkLa3IiIOZ4AjN8jLseSG+XeEP3D0D4wx8/Lr3LlzNtExOFCgNFrRRKDTdDwe20SDQl/XNjGtfsfPghttv/Gh+2bYfu7S7qhid8T3Im2tdfpGnzCCzFRHXxazmUSY7e/BZAoxAASIHoy2WYKKQFlKjLU2SZJEISoVjiyZJ9odkagktGwqQuPxOLWZBE/AxWTsXHXwmedJ3o3PmKY5SVsZe7Cvuy1JYDQaiURldENRd1XNzK1Wp4nHjjEiUZIkWlmB2OBqIcQQgkIdXCSi5eXVcGOjmJWKdH+xf++997ZaGUtAREOWebvVWa1rv7e733gmiYhNMufC6mrv8uXLeZ4DwGQyWV1dZe9arczaJEnN2XOnW61Wf9BFRMS00dtvbW2du/Pu++67ryrDxfPnr1y5dNdddywvL968eSMEt7u98/yzz3nvbaJj9Ndv7GitV1aWiqLoDfogsZoVxmjv6xhjVdl2u9W0ApMkybKkLIqqKrrd7ng8fuqJr546darfG7BuBdXHdOnFMX/xs5c/+blnb+xWeX8Zh8NJiJ49GQvOK5NyEKa5+xEcpEs1k7IiEIlNxI2QADOAgCKow8FMjYwHLQwRBI2NSfArV5QDrAJg3qCGJkJUpMnCkRiBIERxYAadYb2dzem/R9YMIkIQIAEkmJdTQILhoKR45e30yr7My97YkWLwVY9bvz8qIWue0VpTiHiQEhEBSEARIYshTFCW+t0dH8rZzFp90BlXTThV84BByroq6wqAQ/BpYphdBnVx8+JHP/KxaVHO9sYQQtMPAmZQYBeHjsTmrcXhaqs1SFvD7sKq6fSTNDl6g2hSKu+WZVmOZlpJzqk1CRI1aqA4X8gbsxJpApIVYgAGFC+M1sQYJYqy2awqKyjSND1x/Pijn/hMNa7/1Le98Y1vffhND51d1SqHMqVapEKFzlXsK1f4CIFEFAhH3+yjmlhrnSgOUaHWokWxIIRGPa1EEAJEMIgCLIyNhY1SCjTw3BTv8CrP7WebvWjjaDKvySIA4MH38LVxr9uOiFGUxMMZRmmddZ7f2P7Ss892jj2wV9WeQ9bKGWJ0FWqVGB0lcETT2IEIIJA1WoCRY5Jn4INRiCCkTLw9ootkXm5+rQOBlSCCEqNGlfvysy8lg6VZ8E2fVWFDBeRq5mZQAlCIoqyJzA0t4Ba+dfsInu/ZD0AvdYSdrw60YBLnthhNk37OoUNEAGMMIoXgsXGtJArClQuBMEQRiMxBmIElQZXnrXaWPnz/nRtXxo999vHjZx6Wmodpdv3a+fH2+V/4qf/vqWX41z/5caa+0dlsf7/fb9sMXri4sTN2g2OtaeE1EEVx4+nx1ROVh0cfezIdDoKhWEUDpEWBl0G7W1Xx5s4OZessGF0YDAYcYXtvSjqfsYfMRoH9OmTLp5OF4//tYy/9ws/82r/5qR/7zu9823u/5W2//8GPnjtxpp6Wa2urkeDK7rbq5hwJERWBpQQ9aUeJYGRIdJKDTG+++Fe/+zs7PfjUb34Vlldr71bXltotOH9pz7RaSWZ5VjbIYiGlXeok7bQYj9zmfvuBVozq6eeef/jhN37/d77nX/74zx575K0DRc995CN/4Qe+66/9tXf9wSev/NS/+XcL951dXofZV+cX7of/8ru+6z3/ptOjf/BPf667fpIJ85SWV5ZiXRk0RJTmmQ9hNh4VRTEgXbpo89bebFZ7ydI0S3W3kxdF8cxTT/P+1nI377ZTIgquTpIssKTaTKsaSKKv0zQDF9i7NGl12oOZ4LWtcTI8OXNw/guPJ6unIPbqjUtAADECavDOtlsqb+ms9eCbHwZsTWaVTCYx+lBXjKDXVoDkTQ+/vtjff/TDH64dL62eeu6lZ+8+tWTyzqwatzNlEIghxqhRGaNSSEvvI0EztXrvqYnVIXTBC4J33vTarXZWVpMsSVtZatM0o1ZdudLNOIjSOkmSYjbytbdp6l2AyKBMI2EXQAAljMLxYJTj4bb81vLxigDGw1kEX2HxUtXFvPwaT/ZhAp1Ox2rT9N2MMePZNM0sIu7dvPHVr35FUUqzUSjD3WePu0u7OmZ5npcSOd6yiiicNwKoBRGURdDpcKmrQXFg9sFqo0miK1FCMZtE4SrE0vuyqCAGCp4ZwAV4+7ubs114+mlQoJKkkTEOh8O0ixqwKCfL7XZuDYGjA/ERHGzFGsCwmbijdw0CVBRFOk+0g1arBcCTySTP8+YfxhiTJDkk4DeYIxHVtU9S45yvqip4zhOTZa2NjY2yrKbTaQih2bBOJpNWK2tIOa1W68aNGzt7+0tLS42jmAvgnAsx9nq9uq4BuHktYxIAsFmqkarK5Xm+uLgIAFVVZVlWVZVzDgiXlpZu3ry5vb0doywsLCwvLRSz2XQ63Xlq501f/5Z+v9+8/wsXLk2n02Fv2KAjnU6n9tXNm5sL/cHy8rL3nplbrVbzzZTlrCimgL00TdrtPE1Ta+3SwrDVaimTetW5uhl+832/99xWuVlS0l5vHT83q6vCO7IaODIB2LQRADEI0Xyt4gbZmu+bRUSa7jALQ/CAqKwx3XzOHA8BeN6yRKJXGj++4jgaVMTCACBaKQBmiGiNBAksnqGqPQgaa46iX3Pm15zdwiAiBMJ8GML9ynrrZSyxl72bl3WpXvVoqDJHsoYA5i1ICCFoiAhkNamo8ODbMxJ9VSYE5WSsW1kIoaGONQir1hqAvIvCaG1aFJVSBqBWSBxCmhojsRrt3nz+CUAFRE3TTSM2EKPbGAOyU/r6Sy+AykHloBJYWu0urw5X1+DN39i8w3aa+MBInRAcxNrF6GJhTZokCZJACCLSRCgiKo0kSMysUZFGEXB1aQS0ojqEJMlcdMFFLbw0GD7+pScg+O/4tq8fdlv7N69GnlHiMFTK6Bjq1GpUQEIoERi0sjFGDlEDSmQkYRLhKDAfcIiIhHxQkGCT8sgAwoiKhA8CezQgNDXcYYGBSCLh1pVFbtAxODJd/neCnVrrEKUhPyBpb7JnL533qG2e2RgNGUEWH5NUMTNEp5UWROZAHJMkQ9AxRqu0ABqly/3pwlIntRBCIKWhIcu/muLyVYclCYvSmLZ3xvHx514ya/e4UPnIBKoOJUCEwzWDABQG7+enI2pcFfH2XiceGG00Q1gjHKwyc05ns0GFyEGYBBjnJmSIChGDZ5NYBC31jEg4VqA1HgxIjhFYUJFCUIYypPHW9dfdf/eJldanP/Vl5eIgsefPPz0a3Xzz1z38w//i7z/yQParv/6Fn//F//3kA19XezZad9rtysMXnnjOqTSACMTo2SQtEOl2+pWD3UkZtQoQmq6r4wjVLE/TWIVyWi4tdJpvrT9cKB1cubqhe8ej1mVVJzaJIr4OKuCx0w8Ohov/5F/+zJve/LaFbj9Bij6A9wsLC5MSLl+/XktCSD4CMxitZTJSBFw6MsJBer3W1rUX3/WON+9O4Fff9/srp87uT/bedPdpm8D+ZOyZvTSmIGit3t3bXT2+2Gq3r1+5Dj5WjofHT/zho59777e98bvf8227N2aPP/H8YGHxh7/vf3rPex965qXR3/mRH7vnre/cGW3+43/1z370wbc3V+1v/I3v3rrh/8m//Llnzl9dP3WODZlEI0QGa9EgUl2VqKksppF9Gf2w11cmnezPBMHHkFmTWbO9P/FVGSZjr+wYnAAYY2L0EpFJSWQiTLJcKxLP7SxtdztVCNsVQtY3pnf+yeeg1cFOfseZ+29unBjvbgl7hdQdLFSScJJ3ltaub+8Xbk8EVORqNjVWdYe9WSyrWbX35NNf99pHvusH/odHP/WJnd2thZW1/aJYXD92/tktUqZlsGEnz8PmEYGQI5AydV2326nzdVVVdVl1Wm0R9N4xyGy0M0xWzpw4Zlz15GzWX1xypVeUmJREJEZRykCiAbDT7U9GI2AGbZHn4K4IkFIHTIuX71VeeRAR+2ZqeBX0q9Vqzcuv4XB47drV6XSytrZmDIz3xsaYKIIoxXRy9eqVui6j+ErEJvnSsFM/eWV3NDMC/VayN7uFfikdRUEUB4jBqRjjdFKSkCKTpumk8khirRXQZiFXhBmpFikEg5F19IbUtLylo1w5eQpRpsXMVTXHuPHS+Y2yghAgVRd3X9p58/Gz9yxHRZHjgafZLVUOHtjuO+em02mj2D88muKGEKfT6XQ8SdP0MCG4Sfhpt9tNR8y7aEyilc1zQEVlXXV7fWProqxD4G43T5IkMZYAUanpdDr2E2st8HRna1vpRGvtY0REX5cKoaFb9Xo9AJ7NZojYvLQxijkcP74+Go2Yg0g0xlhrq9ofNjeVUrPZLFSlc251bY2Izp8/H0K4efPm1atXu93+nXfeqUDVdb27v09Erq5PnTrlq7KYTabT6eLiIqIUxTSxdnFhIcsykVgUhdaqKmb9fl8pJQzt7uDpK5Mf/9e/bFcfkO5Sq50FTPZ9GVDAGgYBQhCBWJPKOUYk4ugbFgzBHIZsJnNmBhSRKBxVlllrIog2mpiMVSEEV9UQAgDBQdrB1wjkbkAyIMGG6zx3ICYVotOaABlCAAZiqX3tpgVlGcTitlOIGKNJU+2jAFAzLx4Yuc0zSeftTDwi+G80dK+OcB1dEee3lkQ4UmkJSMNPbPwxjwr1tdY6BAuaABExBqeVTbSByIlWhtnPJmbQS7PMx2BMIuKAoSwray0AZFlWlxWHmBg79QxRrDESxNfVwqCvrIoCECNpwzEyKsZIpIUDkAJANChYA3sICq6Nxzevjp9JD8uv3evX8sGgnXeCqNmMGy9iF7mYTNM01Uozs9E2ON94N0hkJGQRiUAinSSNdRWCT7SJIsAKPQChq+r15YUvP/YF4vLP/Zlvyo8tb994QXPsW4MCFghYlKLIrBqRXdMfFUABSwo4kmJRIBIbKQMCgoA6sMVqwCGcXzQ+YNqRzDOX8EBZC7FpV5OQNCIOABFqlOsoh9GNt5c7cOTxkedJmBmbaF1hnWa7Ffzhp7/U6y/U5UwTiyKTpFF7EgZFiKiUUWSQhCAIIgAJq5TQe5/axMVw7uRxqwV8BCGRCPPhPn/po++kGbdyoGhBFFHRC5Ntf/6JJ8dlHIIup07naQhRGSOkOEbVXDacG5U3RwwBQYzWzvmG0NZs1RARYgCt2HsyqrlPRUBrbVTj8ijtdlsrZZMkhlDVtVYKSGIQAKgjC6mq9GS0tcqFGdR1c3JQQkoBikIRQEKVJjSabr3p4bekGp756tM7Lz39YnRvf8fD3/Hev/raR046D//h5x/7Vz/5c8v3PzIOsU/oal5ZXpvV8Plnn7eLS+Oq0tqQ98jRpllr0B9VcHljIx2ernwlhAyy58ftM+vtdnu2P3b7k+QEOqkhse1+b39STCbFYDEf+wqVcpFRQIRJq+uTUV+bitPpDJRusWgkCyKtduaqanunaC2uB+eff/FiOYvLy0uQSgEzpGCiDFuD7YsXvvk73/nQ67L3/c7F7evFnad7072bS4untIUbu/vQaosxAUsSEO8SHRaHXZvCxtY+9LolQrKy8pmnnvhvH/yjH/xzb/uRv/tnqwJSA6YDn35y9Df+3v+rf/ruCdps5fhzW1cPB8Z/+MVPvP93P5x3lk7dcV8AEYoSaxTWRmNEFz0qSDPNex6C94g27xDa/d1NAMiypNtrE8pLL7wAEqySejbZ2aua8QYsxpoqRGQhRRhZoUryLE0zssnI+f1gF9dO7W5WMHXq7Kqz9OzWxOiFpXMnR3s7jNEOh+ObW+Wsgiq4im2alpNRErjY3Tt7311JmrKTTq8lIf7xZz577uSJb3/Pe7/0xc/fvPLS7tZ2YqA7XIqzfReYWJTGsqoEMMbYANTee2U1IjYtglanHQJHaXr9daKCiqXU42ee+BIA1iEQ6sYqr/FTRUQiVkpVZQ1AZJrbY+5ZreaWdfM5fj7/q3k7RSmlby0iAAAxCio1ZzywiITE3rLG5eAPQoe8z/PWrCyBVKMKTNPUEEURpXFh2H/kjY/sbI8vX78ZQvHgPQ+UrvMP/slPZEsrIyeD1ROHZ7QKgnAIPs2yEJg9E1qJMUosyyoigcHCRcBgPDFSZCekCB0xovfEfNSrafnkaYl+ED2HmFoNgROlJToBD6OTg/6CUsa5MOe1vWKZ9N6n1iBi49F1dPZssgu3NjeaNpxzzpik+ZaMMa1WK03Tpit0CI+VZX3lyg3nXK87PExvnM1mq6urrVbHucAuOueuX7nR7/fX1tbKsg6Rx+OxIKVpmuf5dDoVkW63Oxj0GkHl7u7u+Zd2zpw5s7yw2EgFe72esnMAkpvkchHPkYhilKqqIIR2uz0ajRBxe29XRPI8P3v2bJ63y7KUIEVRXL16dWVlpdtra62zTqehfCVJ4kMYDAa9bldrIqIkybIsJaJWlnnv9/b2dvb2T5/Rp8+e/YEf+IFf+8iXAiRRVFUXIQTKu8AkMQIiaAUCMThExRKQaB7sLtAMUPY+KgRCYQZClVjSWggVknMOABQiERljPAB4Fu/x9uD2244DO+9bhQ3SXNB7cA8oBGahKMV4BFXJVeklpK3s6EWPMbJERALApt+hlYpwq2T///uBR5T8zXGItTA3ThYKIgOy1rqxC9ZaxxAMqdlof3j6JGlkD4FjUxBaa53z3W6XmedyE1LYWBszaI3eucyatZXlq1euKmuFuUEHgQMjAXslqkH/ABFJAxAEL75Cc0s29cJjj+perz1YPH76zOLi8v5oYoyJUZhhNisbozsgTZqb2GYkJEIR0YiWDIeIChEoxABCShkRZPEkMBvtnzx+4iuPP0UYvvcvfGtr9djo2sWWMQkwCWBkz1Fr4ugVEiMxxpfLjKDpXM9/pMMR8Yqd6DyAGpokQTokzHITkAi3TEzgoDWAt0uTbruUX2Ob24glTVMGMaq0c/7i3jMXri8ef00pOqMYCQSVThMSBokCRESazLzsa94fo45gjUHmUEzXF7udzEyrcFBLvkr1f7RdLgfiYkRhEdTp1gR//5NfUp3eLNRJllbOK22ZI6CARFGKIyhFMQRShkNoWrAg4OpaadMUXk3sLDMDCLGkaVbX5eLKEiI650Ltmr+JMY7HY6N12N+3xhhrvfcsggC1c6CNc96FQAjeh8aYcJ6IDCiBCYCFRUSQQGK5v3X3HSemM7h85cV/+j//o9e98S3n7kQf4atPbv+7n/nFz3/1wokHXr9dR6HoSUBJbzAcT6vrm7til4BMFIkcZ1WJGtIcvIPZtFo8lk1ngbTSxoSqXFld6PXS65ev8/4ohBDJk8IkSWazIkyrRJs4K8CQiCDpxrzEEERkY6zWMJs5FnShxjzr9XrTUVmOy95SZrPs2vNf3NzaPXNieeXMquLx6iALISZucvXZx//Oz/7q9i781H/6xf6Zu4PnGNxwocMEW/vjtDNsxFIgkibJ/vbmwv1nKYGdaYA0KyCOg186c/Zf/OS/r6rpN77jzZnV4/HkY59+7Od+7XfW73goYFZ7Jz6snjhzODw+8OE/OnX3a1kpX3uFHNgBsNIaABu3BGHmEH1VAqFnSFqdybSczkqtdZol7XabAC+dfz43FICPH1t78fLlEGMIngARWTVOA8yadG6tiNg0raKMPausE8TMtq/DwmJ7YZD3e5NxSUJjH2ZsROu2tmVZLp06WyobYuCqCiFwWSd5funSpTibQpYNV5bX1lYHd3R3tjcf/cIX3vqmr/u0m21sXNodFSeXV6/u76aKmoHEzIAqyzIpg4uc2URpCd6JxFarFQOPq6ki6PU729f3lgeddied7m7eOP/iytrxclaFEJhDjNhonxDFGKO1DiGgarpqTSEQQCQGaWwOm716s0Y3GuF5QOTtELW11ocw77ccbJYOf8shzNe8p5587s47z/UGC8654eIyIpbTWYwxb2UuRK31mRPHzt7fX3/p4he+9DiGSL7k8eb3/eXvrNH+b7/+kcMzjm/utgYLOZlydxKqqt0f1nWdJknwPkuTwjEzAoJ3gihKoSETmSPFIKykaVkmh2d75tIl5NjKs9TYmY/B1b1WWyFam77pbW/nFGYuAqFWGg46j3AgLjvo1MBBro6Fg7quwV187YgoyzICnE6nDQ2WUCsy1qZKGaJojJlMZhsbV5n59OnTw+His88+W5ZlWZbeeyK6//4Hjh9f7/Q6Mfq9vZ2V5TUJtLu7W5Zea91qdxCxMVufVSVLSKxut4ZlURDRoN999tlnX3rpQrfbHwwWjKIQOU3TJpRcKRNC3YyuRCcAUHJtrZ3OSkV+NNlfXFxsOHPWppPJRKswnRYb168fP378tQ89aK1tjDDY1UopIvC+buJUnXNpmiZJwhwlhqooNjc2RqMRoqyuH1epfu1D9xy/45HrN3Y+/MXLD7/5HTM3m1bV88+fp6RFpk2k2VXR10k7iSxRmo104+3LLExEKtExxvlAY07TlAEEWAAaKCI2qjGjgdCDAxfkyOr3iiZgBCA8tDw9dAqQuWSMyCACxpqiF18DMERhiUdrbpmLDW85ciOi0K2I91fePEeOoyXAK9fCOR7QvFf4WsRtkUPfijlFCdCgIkRkQUUaiQAJVIyQK1VOZ1mSktGxcBxFGJUyTWc5OM9BojhEDCE4H0Eb1AoUOee6pruyunD1ygWljAsOQEDCnK9AMod5AERQYgRgxIikJIwO32k7zqjEspo+eePqYPX42qkzrU7fk2RpazKbMfN0OiOAdidHxMDeaiMSY3DGGJCGsyXKUITIMu9XxZKNVr6qfVmsLa586YtPtTrt73nPWzurtHfz8qK1VouIJ4whCikdWBAxKhBSgSgqbPq4KPro9bi94AIAEJzztA7kIBFA4DDHk29vGcxd4xGA581tvpVx0PxZPFCtvuqhoNkQswixSiMkH3v0KzpdaLW6UtWgKEAIwFYRMYpQhIgowEEkAgZEVKSUIi2SJZY5JOjvu+tEqMd0wEZ/2TiaZxBho1aZNzWwkb8gec+m3fvC5689dXG3e+bOkS8jIBkNAlYnIZbcJNkhMyllFLs6sbaJGQ4xIFEMXhsTQgjBN+TgJnUtyzJjTO1CURRVVeEBcgwASqmyrCOIVR51LSG6GBQgKIpuBMYqY2IMQYlSCIlxZcGSADORoblJW2TmGCXvtpZXlwIWP/7P/oG26dYY/vCPr73/tz/0sd/++PC+B489+Nqd6ZRJC2IJZbbQyVqtULMrQnfQHYcQBY2xjCFv2U4bdvbYTWcKSZgpEmHkqjh2fAkN7E7H0GubdjIb7R9bGfbzZOvyddjaUrHBRIkUee9JGxROE+LJdLGXLi/CZz73kkmVi1W7m7fyzvb2nmzs5XfZ0tegki8/+cIDdy39j3/lu37sH//LhTvvqet6euG5X/gvP3/PueSnf+ETNyfj03edjlWoRsXy4oK2cO3mJikLkRWzBwBCCHGwuPbSdfjyi9ey9bUJ+JokMJx85I3//r99+Od++2M60c1wfeCt7wwRiiIstHscSzlitXPs9DkfmwxuAYUJmiAcAwgQNh/Nxdl45osZxECJMe1uMNaxMIfE6OXlpZ2dG7GcFvvbw1bWeBgRYhRRh3JyEYXKWN0MAyblyTqkfm95e28fSKvEjna3S18mKp1MCtRGt9tppkdFCe0EE1UWRd7te++8IjIpkmJfJYNl9m7Q6tSzae2r7nAwnuz//ic+/o43vZE4PPX5Ty11815voRptt3ITgqBWEoQQjdISQ4iuKKtOO2sos94FZtBaR1ejxmNLg2PHjj36mceAA85LUGeUUoRKIQMSgTEKQLQmRN2UWaJRgRJBImIGbCBkayKzSWwIAREPjVr4yO3aWBwjIjX6aA7xSPghHKiM4fSpO5Ikn41noCg6ca5M06yoi7Kso/DC0iIaCyLHTp9WZF66eGN9qfVt73z997337TrvP//Uc/Do/HT3nFi5eH3bZtkda2t5Yl944YV2ku5dvtLut/ZujLPVsxK1VwAxeAawoIxGAAYW5oCAAsHdct9mrTVqleWMVLvQanVqluA9T6vf+dBTp77jkRP9gaBCjIfzVIxRYmxwwhhjYGnkjbPZrHUA+zWF6u7ubpYniFiVFSLmedZQoA8JznM1UIzLy8t1XV+8eLHV6qyuru5s71prrbV5np84cSJNrcxJJTSbzZqupXOhruv9/f2DiZ4Eod/v7+7urqysGGOKomgcVu+8884LFy4kNls/tjocDpuGaaO7NMawYGO1X1XVtCwG3V6726nrWmurtTY6GY1GIYzTNFVKLS4uLi8uKqUmk9He3p5JE6XQklJKicTBYJBl2Ww2y/M8hHD16pXJZFLOZlVVJUnS7/cBuPEfAa6OL/bf+aa7P/bpJ/YunY8tm7c7r3/4wS98+SkKGowddnuo+5s3N8Eaa1PnncQABxHXjS1BA4kBEXAEIuYoIoelSbPENRAxKxUb2vLXgKCkMYyAeFAo3aL6AOI87pWZGFSMs/09cCUoVHBbxCRLbDISGAQEiOYuJQcj51YRBkecN/+voGKvEIsRzLmbcpDR17yiArLa2IMvjYGNsRIiMWigelo0pLrmW/J1IESjDQA0aaHeBQZRRplEc4y1c0aTYOTYH/TaAJFQgGtQViHFGIEDAEQRBEWosXlMIiAgB5a2AAAwvfgMJK3e8VNZq7N39aJ4l7S6ncFCu7+QGYPGjMfjunYxxk4rSdM0+gAg1poQglKgDM2zXK3mEHx0IpImmkNI07TyzoAsLq3+wR98OtP2z3zzG7ldbu5srHUyCQFJlNEheMJbVexcKAsIERFvY8HLPEDnlibj4Pm57gHntPp5XCiS3J7hc3CJBAAUAB/2+I5cz1d/3LwvhboZmY4x7y0+fW3/o596bP3OR4rKMTODF2SlUhCRyIiIpESiSGz4UaBIIRLMV4joRg/ddWp9ZejqXTVPxHp1UfBh1XU4nCJzFNR5f6/ED3zo01l/LQBFjKg1CiIge2e0atLd2nk2nZVAlDbpwkKRIxFxXessa1B/jvHEiRMXL150zgXny8l0PoIJgRTSvEqRyKF0KkkUgHMeKgdKkdIMEZjJWiKK3oFEY5N6WkNZpUkyqQCIondC1CAyiUlDKFtp1mrlZXRPPP7El5+49oHf/9TVjd320olTb3v3fulvTgub5eKisWpWjRhclmV7Wzuzyayrklh7QGW08fVsfbXfyuCll0aIFiIrJAS0qGbVdH3lPp3A5t4IEgNKfCjvPrnWbcP+7h4O+4ml1JGPXgMhexGRGDvd7pUbV//yX/kOQPjkZz49WFnaL/aPn1jNc9q+uQnGWq1Hbto5fvyXf+OD737nW77ne96ulP/i8xcHg4V3v/3HH3lk5f2/8+xP/NufPvn2b9kaT5e7iyrv9VbP7Mzg+s4+pikoiuyVSYuiSocLH/zYH73/fe/rDxY6C2tBU2pSTVYSc/bhN6RJu/LOGGQJk2mV6CRJNQff7K0Oj1mIhhBQFJH3njUKUAC0SU6ki6KISDFKKMskS42h1mBhpwIRNMhrS0MiNR2NYzVV7BDjpUtXlEnJqiYrN4QoAoawlWYo0blKkKoIozqy7gnb6toV6A3uuO/uqzubs/HIYwDSHH3eG7Crq52d4cn1SVXk+SAxdjaZaFIhlMvri0VRjCf77MNg0K9CFZ3c2N5cGi6IdxeuXDt3x91PfeHz40ndNa06bmWAEYGUAmbnnNFZCBxcba3VmjhGrWzSzgEK72tllAQXXTkd7d64cnlhabFZ3BuuUTPHxjmQDCGEBh4CABFszLcRhTkQaWYw1sYYD0lBfBBA1Mzkr1gQUDVYXfQh3uZGOS+/vvSlr5w9e7quK601LjdEJpOmee2ruvKTyaRPFkTAZqunzuTtXuW51YpY71uj3v6Gew/Lr7/wp7/hX/zrfz/d4b/557/nja//uu/5ru8gJf/3H/z+7/qedz/53Et/+0f/l5U7Htz3oY4MWjGwhACoCBSjAgzCsfnMzcHMOs9JGQ4RBF3NWilmKWau2twvplVi0gDYeDoBgAKMcd4xJAJmQUAiQgF9JMtIk4ox1nXdbmUSuaqqGKPWlpmVMsaYZjoLgauqZmbvfYyx2+1eunSpqlyapvv7u5UrlaGNzRsnTpzIbLa/vz+dTjc3NxtpZKfTMcZMp1NmjsIcQ5IkRVFm1miERKugaHdrO8/b1uRFWf/xo5956KEH7zh7bmVlRUS2t7bLsrx27dp0WjBzmmfD4TBGv7O5tby8KhLb7XbpvAVst7sAkCSJVYaZUanZbGatXVxcnFUzAEi1CcG1221EfO6555555pnBoN/r9cb7+3me53ne7XaH/d5sNkuSfNjvG6U1srHunW9+4BsfefKlnWJrFl+8cu2Oc3e/8xveev3S9RdevOiTZHlpfTwpXAyuKkERKQUg3ABYzao5V6HfFtHAIBIbohUAADdQGCFoBV4AQPCWy/yrHge9osa0oYkWbejCiCQYPRd7wJ5AEDHcFn46hwea5fXoCvqK409WNP5JTgCvtrC/XM6JAA2ZWUQImtisRnnGqnF2jZwAzaZTDoGIQoiatLXo6jJBW1UVEflQK4WoyDmPhoN3RV20KJfgQ6z6vRZAUAiESgSAQYFqeEMMSoBigwnRnBUFzJqOkCOJQarRhSegt9hdOVXvbYw2b25dv5J2FxePnWh1e60sLwGZ42QySxKT5Qkz+xC00c5VRJokFUCFqDTqWMUYgFkp44MIUh2i0bS8eux3P/zJ1dXVt73u5LTy+1z2bUoROQYEoIb1xYAAJKSYFGuRAMgEzHjEHRCIX6EQPPzKeQ5voRxUbXSk/OJ5rnnDzyMAaKKg+EhCyNfCvW5Vh0iMIDrZ9eZ3Pv6Ybg29YGQgogigtGXAJlVzrpMnDSQkqvEvjYGjCDPnOuxcfu4v/9B3t1LtXFBiRJrOJKDcesVD22HChuHeyAgaFFrHtP/YFy9/9cUri2cfmoSKEAkwSCQQRGn4OnV0oQy5sdH54DmGkGVZUbu81Vo5deLipStwsEc9//zzKkl8VWilQROQZhBmAUQGhBgBkZRCpaJzpLW2NoQAMTKiUlogQvBCYsgAgOLY77TruJgoSjUiY3vQK8vSBZ8lxntPCL1uJ8/gwsXpD/7FH+3f9w26c+rYa+7yiDdnk6iMJHnNoBRaRSxhdXHYyvD83h6UgYS0KEFUgLEoT967bC2Mx+M0yQ0qDV5AtfJU5dmxlWVFMJ0WOstEooRqZXnRBdiblZgY52qpZhjrGIul4RBMEhxldYDzl7/1W77ppSvTP/j4p+565C07OzdXVo+RgZ3xLnXTmZs6dK3lxZeee+qXf+MPf+gvf+Of/f5v+m4PyoCL8OsfeupH//m/Wfq6t40j1EptTKb52qn/9QN//LO//KErm3uQJHuzSdpuiSgSAGs7eXbi9FlgqYJEYaFmfyrBw7Tc0wp3dmetLFFMkX0j1TdWyW3py+RCtIoiM5AiZQKAE6x98L7e39/VhOAL4aAAW52BTVo7G9shuH6uhr12nuc3btywEDlWSW6ttUAKgJghcIwiCKS11poUISKCMTrNipGsrJza36nBdKDXvrSzGeuobYe9oFKcY1FOeDQBz8FDWceVbj4bTyFEAoFQF9N950qIdbvXubm3EwBccMYkN29s5qmti9Kurd77wGuf/fLnBqdWTdqa1aVSFKInrTEyABNKp9Oq67JJNHR1SMhaa6tyAmIAgEMsprPnnntu7dhpV4syOiGlFDGIUigh+uDFEClwZYWNGIeQ9BxDaVxFlVHM0abGe6+NjjEqQyIHEPsR/oJAJN10lQ+QbLptLzcvv97/vg+87a1fX1YzZHnT17/lzJlT42mhDNnUWJtakzfMAC4rypXz5ebG9cVh69rVG10Xl/u3Ju67Ti4Mk3D10otn19q63MPp7ute/8D3fOtbrN/6uvuO/+Bf+O6f/8/vX3z4EScsMQoBRGAIItRMivoAQZkf2tQu+GoMgXuttnMuEnlfB+EHH3rgnnvu8tW0IW00tWcDXAGK1tr72lrbmEoYpbMs41udKPDeZ1kGAA0EVZZlA5hlaZZlWVPP4oGnYlOr7e3tLSwsiMjVq9eRgJmPHz8+GAyUUmVZJknSarWWlpZ2t/caqllRFE0R5oL33ldV1VhzNWyzGON0Ol0cDna2R51Ob3d3/5lnnvvUJz//8MP3NNjYwdaWmDnJ0rqut7c3r1279tJLFwaDQZInzYs2WBoiTkfTTqfT4GRKYZIkRV2M9/a1wgcffDDLssuXL3/0ox9dW1u7fv16kiRLS0vj8bhpK2xtbQ0Gg3a73e/3H3jgNWk7A83nzq3/nf/bn/9nP/2rZUXHltcuXb0CQA/ee/fiwvDRLzy+tLJ4Yn3phRdeSNsdH4WPdNyQiKyNMc7XQMLQqOTUXEMFt+yAABr7E63rUAJAI5x8RQdwbm3P85KoCd5mFEBkQWky6wyKdwUUYxLHMTBAkqa3TkGN+zYSkfCBSPPgNrh1e4jcEm++Qv72Shzith9f1QlT5uq7Wy8HCCCIyMISY0TUjaMrizBrUjFwK01HVc0hZlkW4/5RkIMIkYSUqlzZPO/Kqq4dM1dVZRNNBN1uFwDquhYiiRxBkNTc31ORcJi7ecjcMUShjkdDAiQQABqK1Xj80tPJ+sk86yudFNPdyy/Mku5geW190B/WwfsavI88rY1RxiQhOmNMY0wBgjEGRWKIYogcOUkzQXB1CLHimtM0Xzt28hd++TeH/R98w52nrj/5FZthKqCNVqg4eBBBFkBpWFLzmrURczacLTng2B/8l5oif+48RYJwxMj+TwAyG2zs5XkMr8S6jjKumgdRApCuXWitnnjsyZu/+QefvuM1b5o5BqTIwggCGAPHGK0xIQbnvQBgw3UTQpHG8MJqA65c6qWvvf9c9DMRAYkHdderDLyjDe65LwSRMu29Qv/WRz7THqxUgVlQaeVDIEPsvTWGvQ8lg9XROdDKCGad7nBhYTKZFDdmIrKxscHMjeUhANg8d841mCszS3BCzYYWY3QQgQwpQe9rY4xSJJFRiTaJIEcfBaJSIAIawdWOJeadbDAYktY9le2VzpBio6zVebu1tzeqivHyQi83EIJdvPv1Z1/z5otbeyM/C+RNtxXrGL0YYxBYK5Rqesd9J42B/dGEkhxEASARpVqN62J96Y7cwngyY9IRIQoTgAJ0o/Gw3XUONndHvYWhsSpU5eKwrw3sjYt8OBQNsRz/p5/9ny4/f+Ef/vUfGt73sK9g4/mXfu5X/svxk+rv/6Nfa60fj9pMinJpeUW34MZ+iZkNRjzL1Mnquft+5r/+xvWbF7/j275hkLb2JrPf+vCnPvCHjx578A3bJccQwSgXOdHJc9e3jULbHVahHg7aQkisNZnA3qapB4zBCwqCQGRfuzRNy1kZ6xKBldGxjlprBECtiQiBtL1FnzVpUhe1F1RKaa1r9qNZMSl97YJzlXeV0UrFigCL2ezcubu80M7urtaUJbqVmsl4dv3qdcVOi0ewSBpQhRhijKCAtEZEjOKcyxLtQ8jS9rQKJluIJp+Ndmm4IAarsiBM2LGxqceolYqujFtb3ZVVZgAftm7eUEgk2Gm3Ku/2b94EBZRo5lBVVcVxMpqkSNVof6zU6TNnL1y+1rIZqlS0TfLe3va43bY+RIOERE0Z2oAvVVVprZVOpuOJC95ae3D7U1U5RIWojNWT6T5oww1BWakYo3MOFDW6NwCIc/hZHQG3oGF9NWE5zX8bKLqB0145aRARAh5FyOZTR4zzC7a/N7lw4fKg0/nqVx9fWVlbWz2GCdYu9BaG3vv5fMrw1a985fjpU4unTuxt39i8sfP4l5/sDRfXztyi3q/1B0aK7/sr77nvrt7Gxetc7b3tLQ/naZjubwyteeiOs1BXGGodgUEDEwk1kavMEVErpTkemWUElVYIrIwiAmHcH+9kaVLUo3ZnoA0CRoGITRJZZKHbZqUYY2N/mhi7u7vbOeAWNwVQE3odQmhcLZqogcCRYf4dRWHSand3d39/v0ndRpTxeFS50oV6/djaiZPH8zxDgubf1nW9u7vbbneqsk7TtNfrjcfjoihsaojAWl0bhQTtTss5N5vNlpZWdvfHMUpVuk67F6JbXVV7e6NOp7O4uNx8kKaVWdaVtXZlZcU5t7m5vbm5OSvL5rdXLl+bzWadTqedtauq2rh5M03NyZPH0zR1rlpeXtYKrdKZTXxVt1qtbrdrtaqKIk/TlZWVuq673a7EMDfzRJxVPktb7Csy5bnTnbtOdZ764wvZ8tk8b0eEpy88vzAYPPTA3bNqeur02mTUyTrLN3f2i+lElFLGNihOFFFGxxib/fG8l8FCRKQQDnNssGmgKEUUUo4xQoiv0oIUPW8sIcvcfJWVcNM+bMxdWAAVlNUEQm0VeCZGoCOQ52GnRkSkcdgnlMiHbdDbKrBXHF+DEwZwdG0/Ure9Co0M8aD2PPiDOR4lyIKaEBAFNCpA7Cbp5ckucEi00VqzZ02E1s5ZnyJJkszKaZIkSdKyOq8iRxe81DFK8JBn3ePHT81Kp01WuRCYRbgqphA8iwMRAATQqkGX5OUIj1YqVKVKWlYhJ1hvXKxV2j5xLu8ujotpPZLrIXCUXm9AWV5VlW+gHq0JCSGCxCAsCKrRhAMlNq+CzOpKKa0NpCZDBF/OtLH93vLP/fyvrP79v7J48mR57UIrN020vTIkiAoYWQAYgJka5AXlgHp/0G1spidsSIiATAyHxHYAAJjnEcrcofBlZZY0JP0506vpPB+oxPFIIf6y8TAnkxHWdd1ZWLw5qv9///lXVs7cuzubBUYi6xs/VhYEBSLiXAQJEaOwiCdEzQmBIkVEoJL02kvP/8j3vmOxY0Z745ZWEg9TGahpQX6tEXjwIQlM+vSzm1986tLCmdfsVZVn0saS9iyBFLtqqkSxMDjsDYZU1Z12Xkfe3dkZTyY2Seq6lrmwi0EBMDfeilob5xywaI3Wau8dAuapBkEfHAmnqc7zzBgDLAxRoQ7sgdEmes7iqILKs34729m4un3z2h1338O177bz4LzWuqiqnZ3tLMuhBgUeBbiud3e3s43Lo5q5ZX2A6GqOMVGpQVRkVHRQFCdXlkHBxu4uah1CYACNojRUs/Fyv0sA1ze3xaYliCMyGKPz4wuXFlv94OH85atolJfg62qxP4wBzl+9AWniMRLycgve8M1nFn/+X33h8a+2s943v+3H77qn9wu//PiHPv7lYw+9vlLaMSXd1eevwpOX9szi0lh80GkZXeHrpTsf/t0/Ov8bH/hinqSld+3l5fW7v25SC2kKBDEGHQE1tRY7CCBsLOYstQKQyBKdiKtLR0TBR0HgIErYIMUqGK3bvQERgIgSpZRihMi1SDTKVGV5OBhC7aoQA6PWys2K8XR3VhYxUjPYNSkR0aRYWCPZtO0FC1+n1iCEYb9bV9Vkf4STkSsmlaUQgoAIIRmtFAGBcKOy4hACoUHMZrPYOrmwOx4BxDQ3nsQTioMkz+oQk3aO4uqihsl+0cp1ktz3mocun39xurPbag3HO9uxLGFaQmZZ26qora1q56Coq6IC77GVX3zxvNbq2HLv+B13bm5f6SepkAJUyugoLCgCxCAuBkTUxiQ2ATStlkljHI+2E9JEqqx8jFEEtUnKwllrXeWzLLPGSpO2LQhCwtjEJMYojbkKIiitScSHGhGjBKVV5KCMYolIyMKCTAR0BN8yRtW1b+JQD32Pb12j4Obl18UrV9t5a7Y47PUXPvv5L1y8em3t+NprXveapaXV3Z3Jc889V0yKYlpduXr9wQcf/MZhX2vShgbDpes3ts7dc+7wjBb5G9/+xu/9i+9VVEKsNMSTJ5e04v/4H372h3/4R9ZXBgCehJmZtAkMkQNhVOApBI4xAAHeWjJ7MItFrVH3hguROcnTLFvgWA+6a5cuvnj9em/ldJ+IkAD9oV0ziMihLXgjYDTaNJu55mgit+u6brdaITjnQl27fr9vjEmzVrvd1lpXVdVUZg2i1ul00jS9ceNGVTlmRlSj0Wg6nbbb7aqqAMBa3Wq1Op3O5sZWu93e39/P89x730BZWZYR0dpau9XqIGJV1r1er9Xq7I+n7XZeVh0AiGyiDdZqIorRd7t9a3VzvVqdNnNwDk+dOiWCk8mk0+s1EJ1S6vjx4zFGFCEFp04dV0olSba+vhaj5xgXB8MG+OkOer1e11qTp2mapv1+v4EAm4LJGDMcLh4/eTLN8+uXLytDKyum09Zveu1djz+3uekKLt1oMm1l6ee/8pW7z91NBLPZ9J4777h6c2SMUcY2gY+gSJNpNhOgKFYRDqphDhEVIM4HIh7RzItIAxkGnifyvmyxESQAfmUfqBGsN/GnGgO4CUg4SMGh+giP8HDnEUIAFq01EnLjqvWKNfUWS+v/0iGHvt63Tt6UCLcOEragjCKUEIQBGgt3JARDGJF9MfO1CxbTNKliXRYlESQ6DSEkSYIKCFEi+Nq38s5sWns/SxILgEVRdfudxeXV8to11GgpybVGRb6VaUMUZTKZzCZFgxk2nHOZU+jmR3A1KhPrMtYARmetTg1x+tLT+tjZ7sJqBS5WsxuXL86Gk4WVlTRNp9Oirn2ikxCjTYwxlr0HEaUUB+8jWJsYM98pBecJKfqAirz3RqcTz//7Bz70N//Sd1J3uDvaWuykzdYaGoIx3Cp0oFGXHzIIj9bJeEvGyMSNowRjQ91oCi6mw1OJIAk0reFDFv6c8kdNMtXRS9mMjUNuDeO8HmJAjpR2FgrOf+l9v71XYW+xE+uaEQWBSQUBcWyMYpZpXSprQjy03cfIQsBaRBGLK1Ks3/DQ3VyMMqUauolSKgi/rA+OzZYVqNnZNEUuC7IoVukHP/aRpL/sOIIia7QPjtkBRGHptdupsitrq08//1ysZlKHzdGocWHR1gQJwKBNk8brFaK2mpklska2mdVE1lqtQGN++M0o1dakaJ6cHZVGgIYCmDZwglKK0hTbQMKpgcoqyZIsTdvIRYxakwse2BtEdpWGoLUWBJPpvGVtpjKFM/EQfAycay1+XIzKJEkGvbwUv9hrE8H2/og1iSZkCiFSBMUw6LRrB5du3lSdTlBGmYisiEC324PBgAH2ZjUaDRi1gcXV5TLA9mimrAFkUuonfvpXf/Rvft83f+vr3vFNr+MAroRf+OVP/dv/+L6z979+s/ZeXH/92Pt/7yP/9dd/PW93VbtbBU/GgAcwyX6IraUz6ycfSJUJEia+GrsaEKN3OlVaY7+VawSgYK0lTLz3PoBCdL5iAZuYhsGhrQKlQwgZ6cwk7KPWCg1aa6PzhDoIS4yISFoJQLvTORwkFy5fCUIuAoKJoQKMYA0oDRwI5sZ5DNKEJtu0PZ5VaGzgsNDvDTqda1c3gncW+Pix1RiksLasPBIaY0RiCEEY8ywzoNjV7eEw6EQlKrG529iAVEdiH0VrzUqiREo1MnNVys4OKJ1lCVl78fxLiVV3P3DvC8+c550RKAOtlmqlyihFGgRXF5a24mZZVKCUQggADLEI4eSxE5cvPNtv9Y1NOfjEGu+CZwbCqq6bVFwOMcaIhFpbY9RsqpQyzNjpDq9cuYLKhsBVVTWIQJ7nSZI08jtjVJYkiNgs6wRitQWgKAEBmINRmjkIoMSgSM911czMrJVCdZvxRMPKZ2ZmAQ5G6cTeahUS0bz8et0jj4QQpt6XZbncyqZF+dKLF/d2xx/8rT9oddpa6+2dndF0cscdd7x08VL7sc+fvevUGq5/5atXFRqLt1o8katBN0mVDnXDPJXllZWdvb33/cbv/pk/+9cW1o7nw7wMDmzqBRq1XL/b7mfywJ1nicV7Pyuqw7OlW08sdtub22PgdckXrm9XrSRJtZoU5VrXDhcXAgTfDEESQGAAIZwn/fF8rp+OJ4PBYDgcymEBJtFonSYJIJIygNDP22VZKm2bXJcmTtt7Px1PRpN9H4OPodgf7ezs5Xk7BK6K+t6777Ha+LqKMZrEEsFotNfr9YjI2rRhjFlr67pGIWD0tUtt4qqy3+/7LCnLclJMWEKMsjDsa4XT6Zi18qFWKslbqVWUWh0YOt0WC+7v76NW7VZ+6tSJF188Hxm8d8aYxtkVSYwxebu9v7srjJrMZDRNU9vO81RbAgUKfaidrwTidDqt65q0iTFwCEsLw6WF5VanTUqjMlrr5ZVFF8qiHOfdpbd+w8PPPn/jQ4++sNZZuTwqt/cKlfSefPHC4rA7qevV1dWllbVJfaUsFTMICBKKJhEJwSujoTG/d16nSisCEJyTnQABOMamemaOWhtLGoF9HeAwSf7WmhNBBFiQ5sx4BMUiDASCEFmx02EM9RhQgFQjArLJrbHOgAhIAloZ0CIiEJlozppssDE5zE5pyPIHCy8cgluvxgSa11jSwM63mkHz5XveekSB2Ag0GECBGIg5aQKOMWoiQo0oRqGEWmmbWaPAS4Q878LOSGuasccIJrHG2Nq7EAKhrmvvvdNWdXr5aLIb2We2Vbm6zZ08z3c2by6tHyurGYJSSpE24qLWujdc6A0XnHN1UY9HI5DALEBHjT9IIgMAKiWR66qwaVJpH64+N57ttZaO22xQhbC/66f17Njxk4OFfjGdTUbjbq9dVZW1VgkgEkZh5sbYRRGlWsUYRakoQlZLZI4xyKzTbX32i0/dc8e5737ng9fHk7TmFEEpEuDYiDO4WeyJkeZXgY/CUczYuHg0337jqzH/9hmRJSKCAmRoJgkgaBxab31egLlfqEYRBmgcdxSJCKIQNLWXcARs3BYg+uiYDJM12eJvfvDR3/vEE6t3v36/5AA6yjwPILBiCT56QWFlat/sEZXWSWSOIhxclph+qvavPvNXv/Odp5Y7xfYFowgRIwtjbJK5Gq6byHz/AkJI1rO3SoXowGBElXQWP/v81U988YnFOx6eVC6wV5olhEQrBOy0W6lWBLi7cWOp1YoSKFWdVkeAmo6JtTkAMYcmUKFp0xORmv+/sUZCfEWS/cH2J4JucG0xiohQxCtAjgEwEhKw1xoV1HmeIoom6VpDgM5JvzOMwgiinOyW16cCac+sHBsuL/VlXK8Y5ZyziW4n6tJTX/yp/+Vf3Nyrfvwf/VgaZov9HjJs7+6rbjYW56JvqUyHLIz82spSYLgx3i8RxQWOSMzAAUxMB/mug1mkEyfXrbV73XT19MlSwd6sPra8KjrtnD37mWde/H/+i59519vfnKfZZDL7wG/93uZesXD3PZt1QUkmIRaRVbs/HC57X3sWReBmE1RktJHItQ67YaIjESEo1krY16uDdpJlKKwEEmO1JhEpnO90MqQ0Ok+trta6kX/7UIsIixAmKKykcbwLhIa9A5DIXhCURsAElQ7Muzt7sLzcXJeaSYBAUeTYaCk4BEBAZYQiQwNPcErU7/a8yNXNTQ6sLS0sLFit9javV9NRy5JNTTEtFxcXJ7NpQ9EhZQEjadQiEIM1BBBriWCy4CKUNQz6TEhsBRSlMcRaKcW+TJwPpDhJyGjv68L7heXjAXBlfe3G/oQ6ed7JbZZMy6KsqoAS9oNzpekkSwvDnZ0d4NDpdru9nkpz1eohGasTqWbGaB9iDFEUGasVYF3XeZqFGKxWIVah9M65SiFAMivC1va43xtKZGvtdDrtdHvK0Hi8X1WVJhSJWWKdc63Eeu8FUaEwR+GACGnSROg2EzkCzLdSLA1pJCIqYyzcfkhkErDG1uVk2F2+de/IwZz7937kf/zDj39sOFgsq5kmVVXVl7/4+IUXLy0Ml9v5Qpq3F4YmCFy5cm3Q7aU2WVlfz/Lp7s7mzu7+UTxNKdRITz317IP3v94YQwStdj6bzpDyouC1hLJcVcFTmse6AoKslflQLg1Wl/sdrkuFhge3vJqq68/7snOsM3zh/BPf9pf+hqfMz8ronHeur4vcKA4FIiIgi0SOeDDpHi6oSqmG2mWtrQ/Krxjj3t5ejFFpGwI3HPk8zxuApCHaA0BjcxpjXFpaQlTMbnVl7fLly3Vdz6ZFXderq6vGKBEZT0dE7bqud3Z2er0BojSyxwbjbUAmImp8ItI0VcaOx+Mky0+cOHbp4rW6Lhvnt7yVhmBbrRYRaUPGGA5+b29veWVlZWVpNJ1lWWZILS6ON7d387yVpknT9MzyJjSGvYudTmcwGCBKK02UoqKo2t2O977d6dx9993MrFF3er0sy621qTV1WU0mE5ukx06v2ySrqgq9q0KxsLgIHBb62Tvf/JpPfvrxWE2szosgQhqTZHM0gRCriHfdNaiqygWvtCZjQKsQ+ECMyKAUxNjAFfPmowA2xdTtLsBNNmWaZ8wcixrUERppQ7QnJCECiI1OUJAamQYyomQaZLwHW1eBwEcBQCR6mfGEHDo/NP7n8urU+4Me5av8Al79F7de4mt1iOaMpdueCUqImlu44XozSAyIhMAQagQOdYg+EoAPzloLLBwha6UAQKQRlSZgY8q6QgJAMUaHEJxzRDTo9UCknM2891qndV2HwMroPM0mYdaAtWmaokbnnPc+lLeQQpyXMqgQQowg5KuSAFRq/WhzVlad03do2yaNrppev3YpOL+ysgpp2BvtJ1niQsiMbcgQWmttjY+BIzf1D6kD1YQijdTQW1dWj//WB//wntMnzp26e+/FJ1Z6JganNTEEZD4wMXlFUX7bF0oHhLB5RxEAUKgxiyOhg4blvKKaR4A2Fu0AzQMUQCAkAES+xbcDz8GiYgYW1sqWrkYiUDaIag2O/+4nvvRTv/D+0w+95eberBIERYIQEYEQpKn0mJssSREgTUoJI4ISCUTknNO5tX769tffJ/VEiyjAGCKRIqLGB5HkoFt9MBRdDDYxKEFrHSIwaafyD33i8+2FZSalrLYKtKbEaGMSQjEiEAMIGII8s1rnDRF47hwBOBdwgW7cjJrBTICNqhRI5gDpEYXsfJolQECUiI2vPAIiYMNkFNDKMAsCc/BkECEarbMknXIlRBrQpun/Qdp/B9uWpfdh2BfWWjucdPN9+b1+HaenJ2MwAIghiECAJMAIkjZpWZT+EC0VXaL5h6vMKpVdLle5SpLtcokUZZYcSFq0RFKExSARIDEYDAczwOTccabT6xduvifuvVf4Pv+x9rnvdk8gSt7V3fX6vHP33Weftdf61u/7BXBGNRGirfHB0RtnS92/Ut+4uhEhbI1Ki1htVM7x17702b/67/3PP/Eh+C/+3ptb48nqYLqzsdN28OjorBgNvVHjnG+8GW5CpHI4WUU4ni7K0SayTZoc2yYEqAd2Aw6XMG1kuyiixjvPPfcvf+fzFgxXG4OiVjatmBtPP7NYzf6f/80/15RC0v0r15+4vjFvfemTD6muHA1KETFICRPHSISOXVEUYMBaa4lBkqSEqKUzpStUBSSG4FNKxjKTYYUgqXKUYiuqlo0xJBJTTKpKWdOQs0MSIAIRMnPX+UyjUFTU3Mgm1BDjmmsLAABh1QAZchYJY+hQyRpLRF3sNEawedaBpmm2N7aBjQDashS/nAwHyS8fvf3meOCmRycFFKGT0XBSWOPcqFmuVm2HTESUYgTxgFxPJudLmmxste2CStoa2hCjOLsKIcYAjAYUY5g/fAPm5zCeFMYQQ0haWHt6Pi25htG4HA5XXaPO1ONx0PlgMoGuA2JXujaFwWBw+r1XZTIOIFjW4829LpwP6vHx6cPasmUXUmg7z86qaJbWEVFKkYisNWVZLmZzU5RN052cnA0Go5RS0zQZbVmtVqpaliUbbJpGU7CMIJiCJEEkQNS87dEI3rfOOWZitvkGxpDKsgxJYZ13dFkCYYzRJIagbVaVK6r6MVaFtPbwGI7sz//cJ9/3/AuHBwcPHjww7H7sox8/O53/nf/X/3vVyh/45E8vlp0md3V3bzh0e1tbAGzZ3H3qqmI05eMlh00d1fz7/97/6h/+w18b2M0kvnY8n3UWx761hbHjUd3GzmgQCyklJimIjs9O23CVwWvoJCYorvbX1626WdyabJiwLKTd2dppUCg5lTRALFLH2vXTrYJI5mIjZA/o7FkfA1tzdnY2n8+vrutOFZQEkqAoCufcbDbLS1FRFNkcfw0YCiIa43Z3d4+OTqbT6cGjw8Vi0bbteGOyd2XfOBuiV9Wzs+lisRqPN0ajyWKxOD8/r6rB1taWIT4/P6+qKsbYdd1qtRpNxmVdddN5WZYAMJvNiGi1Wllri6IAFERsmiZnOxBVBqmaTMqyPD8/H40G3scgaWNrqwsp706LwuVGcG5E6g7O5/OqKowxzpnxsB7UI2NMjKmqBoadLa1lHo/HiHR4eFhad/3qtbqqRhuTvatXtnf22tYzMVHRzlYDdFSWT9698su//LN/7ze/s0i4Au1SlCi2GEAB02X7vTfemE6nQJzvuSGrmkCE2EhMSKQKoPKYuZz9PqXXl8EFP5ExScxp82jL1eqxZ31eBlWTKqSsqUQGTYKSpXuIypi61RmkFkBAU25hX479Lq3rdyoion1L9AcWTD9qjf99H4+bVt9nTYU9DT/vEB4bXqiCiOg6nsKiCV2LKrkDjgxd7JazGTIURRVjbNvWGZu7277tNPU9XMumLMvxeAxIVVWVdZ0SWhFETkly4lOKPoZgLRPhxsaGiMzP54+vkoCIUDDFjtmhQpQEQMayqVz07fze69X124Yoxhja9v5sTgC72ztssQ1tVdedhry/DG0IiwWiIuVlHDnbDIgoKDKnlCQJMyO7f/RPf/N/+Zf+7OTarenZO1uDUbecV66Q6FNKiMqgogGYQGkNb2UkldbBmoTatyAJEJUAQBOavl3Za28BtC9mHieH9FE8tPZfAIAkAQWRCZGJjBcBBLLcaUTDScCQHdT7v/473/4//F//3rVnP3wwa7wpYkqCkY1JMagyggJq/tX594EmSIiIpIkIkg9bW1uH91/5S7/887f3JvPjN4fWBFE2FiVJCkIMAJTyjkYVVEkF1TpOsUMkVWagQb3x4junn//ad7Zvf2iZtDRsGRHRFM7awhLGzlfOujyWEJPGlBKCAggzEyCAYDZIUVhXWpo1W6goqqjyXnEJZteSx5uod0sWCEA0776IicgapvVGxBDnfRQzp5gEkgBYY4AH33v9wXM/ff2TP/ahv/NPPvfRT/xc8Cvpli99+Qt/8U/9sT/7p9//qU8/+pv/5//swx//qTePDst6c+nhjQen0W0BgEhyjhvpoHBb1240Cg8OT3FyRUIiZiGcR6mu3v4bf/8z8/l85/oNIRODgq0/88VvhJW/evWqCigkxyIiXFRP3H1aFZ0rV13rQxyWRV1BUhHpXcqYoa4qIkLilJSRGBUVSBUNoVLeM6SuKctSyGS2FooG0YhCQCjSi3JT9MFnyICYgqTMUsLs0wWYRGL0zITZEg/0kteKmsIwPMZdPvDcs2fT82XTtJJUSaJK7ATR5IkmAluLktplW9/aVKBm1VVFnUKztzFUvzw+eIchWcYYY3Zabtq2qiomQhWQXqfCtjCFWXqZdTwqqvb0HXnj5eP7DlyxeeepyXjrLJqyGg3QnBzcf98Hbl3d++CXv/YyaWcBY7NITbM73jg9mZO1XtSWwzam5XSxsbXdrpp2tkClycY2pHRyfnjrQz/WaVosu+liefXGrde//OYz17ZOHlhi55s2RRjWwxBjkshsRMSYbMhHTGitbYgmo/FqtcqMoLZtRROboixs14lPCZFIWULM3bPsi64pikZiq6q5k2hMbwaWUsq7lN58VQHWL16aR5GZASn61hgz3pikS38ruDaeYEM3b15fzKdd1z311FNlUSOad+49Kqr6+PTk/jsPT8/PvG/3dzfHw4GkAF2oRuOPfOh9+1d3AD1A3+VZtV1Z1sgDa0Zr04EESUAZlAVhMCz0NIJEy5RShBTLuj46Ojg6O797dTOugiseN0H2drcnFQ9LM67d6aOH9WArrpak4Jv5oI6UPKMkkH42xT5fG6H377xQIvTIx/rIpIS6rpfL5XK5nEwmueoqiuLCuiPGOJ1Oh8MhMr300ktEZjKZnByfDofDqqpmsxkC5ceDCDPNKwcZee+Pj483NqQsy9ff/N54PM78s83NTQBo23a1Wh0eHnZdNz85rapqc3MTEY+Pj4fDYUw+l2UxxlwOliU3TcNEGxsbJycnbfBVOTKbpfcp+5lZawGkaZocW9l2K0ScTqc3blyzjrsY/Gw6mUxEcTAYbmxsHh0dDqrq/r17w/FkMpmEtosxbmxu3n3qaWR7fHw8qoYqWhc1OVrO5jpvdq/c/KU//JO//uU3zs5kY1idtgGd8ykpUFGWJ2fnQGidCzGkrs0bo75bdHHPVVNKbLI8vmfBX/gFZ9BRZB1sR2Rt8diCHQBEifK6oAoXmdkEmgQUJFnDCKmdn4FFCH3NpyJoHm9D8qNy+cA1H/9ibDwmfsEP9xv4IccPo2b/iCOTZvJvpLW+BlAAmAEJYLVaDUTzE75adc45RE4xZmApBwwoABHN5/Ou6/J+LqXULFfZ2EyTALL3nsnmDIAYw3A4DL7NiaWLxWI6ndd1ncND+/sgSRGTJkMsKQAyJAQSJDWEERNI27z9ur12a7B5pRFUQ/feeIVJtra3Hx0dkkHjysy5FoSqcCEEQRDRHAHAgKlvYiUyxntPgKPh5u995VsffP7ZX/7kC8uTR4VXZwpAJKIYOtJ1e1EVIEFOJ3ys6Ca9CBfIvhLa/4FyktD3eZcSISKv6zZdKwwFkZFIEEhJVSFLLwGIQAlDijGhsq2H21HsP/n13/1P/stfu/7sx2YBOuKIEFiZOWpEw2s3jL4lTYBIee8XLBtJiRCSeA5LXZ397E98BP2ydhY05g8lKTnnuiQAtA7aFkJMhFmu5AorXsi64AXUffaLXylHu3Vdpy4xMxoW0LyWaJKNzQ3QpFGj7zCfTvurIkAUXWc1AqrQBX8R+qCmddz2uyDe9xI0L8ufL0zvKM+TCklAKPpgkFGVAZE4pYiIqkLIqAmJh5P9b3zzpV/4yPU//Ut/+I17x1/+2m+NBuX2ZPhX/p0//8f/+Mdf+678Z/+3//uzP/YT01WIVF65NYoGzlYRSxPahtmq6MKv7NUr/8NnvnF4eghUqKAoKFKQhEBQDH/7i1/brN0Tt291vhEBtOV4+wpuQRc9ozprfIih81U1iCmRoveemYuMpiPUhW1DZAMAbIyJAimpqBCiMWhEBSKogqzlPgiKKBr1YuT1t1cBMcWQSZ8X9y03TNDYCwu6vJwRkCLrGgXtBdTQN3xj29pLbajNYTFwm6IbXgIS+a5rFkuMYq1V0qjhbDptlqfOJCuL5uzehgmgyZRpu+bm9KC26qMfj4aOUmu6+XyORIvFAjQxQYLeLjGlNB5sNEnq8YZz7vjVr0PysCAAOpudbn70E2W9Vzjjz2Z6/Gjw5JM7Izcs8PDe609/4EPii/bs3LtuNW+cc2hd47v9mzeOT0+SIhk72d5DTfNl1y7mYb70G1tU2bbrDk/Pbu1sgimWq07ZdCEJcFHY0EVceyjm/2bzFB9CbkeGEF5//XXnnKouFgtELIqi63pvqYyEXWQP5lWJgbP9J65tELLOUdeSxiz0ztbueRW7HG/onBMBHzrDOBlPBqNhaLuLv42yVj5Oz2cqFKNU5QCQl00zmy4++7nPrdrlx3/8ExuTyfn8pO0W52fHu5uVywJXCTdu7p/NTkE9wGD9QAKRQXAx2aoq8k5LRAQhgCDmUjExcEjeIBHiYr5CMgeHx7f3t1xVt4vpupYDJUTDy2ZV1cXR4YObd59ha8R3MXZVWRpnJS77ZVWEAIEwpaQiRJRERMQ5lw0pLgMhfWGrKiKj0cg5x8zj8UZmmQAAIhvjAMgYV9eAiCcnZ9Pp1FrrvX/rrXvPPPNUPmcW9C2Xy6qqTk9PDw8Pn3rqma2tnbOzM2PMjes3ETGmkL/OK1eusDWZDXP16tVHh0equpgvVXUwGGxtbS2Ws+VyyYzj8QgRZ7NZDng5PDx0RXHjxo0QwjsPDsuyHo5Gi2XjiqooXUzBEZaFZebCVW3bVmUZJaU2DAaDqhwYV9T18Pq124as9357c0NVo0hRlGY03hhv1vVwa2ePBuVsOm0Wi7qum+Wym8Xh5kgU77/xnX/9mW8/evvVzd3nlk1bGLdYeXQW0AYAZWYiEQViAI4+sUFIgtkgQSISZH6JK2y6RKtHxMsmFKqaUiqMBYDON8Y+rsLzHhxpPfHkdUEVVJFQJVomDK1Oj8CvcnDfukVyqfzqES8QEc1WJXpJv3apUry8ovyIVuN6wL/LsOD7/irjXD2R/+LXZQ08o1547iMiZw8dhew3zMwSvTPk2877jABhWTq2Jg9d55z3PnYBRDUJI4kII49GY+cKaxwAxShIYK2NQRaz+TrqQFxRGGtj8sbZojBE1Ib20qWDaCLDMQQAhCiADhT8qgVqAMlYjuplfoJFMRpurcIyCbz91neTxq3J5sn5dIAmVziFsdEnBRUEAVRRRiJkYEQBVRXtpzYf4527T/9X/+DXnn36+t2bT529+u0b20MfloXhrusQVda8e8UewSK9uKtrslf/AXpHUAAhlVyuQdZ5QP9eSYKIvRkarMsFQiGNqKCEZFA0pUQaEXv7CGFL5cQMrz44jX/3v/4X/+IzX772/E+ctuJBlamTgAxRIiIaZNALyzdGyP0LREZBpCQEaq3bHVXzR6//2T/y07d2x3H5yEhMEgtrAVSYQ4yMDKBADCqEoKgMJIiQhBSQOQhwNXnnvPnit165fvuZeRcsAoEyIVDf2xUBv1oyIQDml3Nwaz8gVVSEmPoNbG+hdInACGu5gyogKPxgzPhio3u5PkPNt75Puw8huNKqppSSAquqxCSamFlBU8TJ9u6nPvXZP/7jL3ziA1f++r//5+/dfxshXr95a2Or/Porq//kP/+7W9eevD+LM9/pePubb8HR8dEimlExEEDfeuvqNvh6Z+f/8rf/bjGoB3u3FgFEEhcOAFOIxtrxpJ4UtpmfsyFL5GPSHDjOBBpWzZSZS8ekkG+Xjz43lI0lBQghWGIECSH4qETkyEIe3qqiEUhzBheACiqhYcoCf8nIEwHk26uixnJKiXpGLCbF7FZ5ISMBAFLpCznC4PPCn+92hs1FY7IEhh+XXza1IAE0bRaGKapBLCsDSqiISsa9w9OD5TxVi7tbKRXzrgRDyRGNYLZcnk5Keumt7969tZVS6oKvq2E2ZejNkEVVBY1RBVQIbbO7v106gri0pQsNGlfHdjk/fLjz/mte/HJ2Otza+PJnP/vl+QnUk+u3nsTZyeLBYfvwBPZvwHhruLXDVdmpzOZLW1Rd8IV1zrrFfFYUZZgt7GACxF2MbN1stQKzN9rcAl2V1Wi2PCvL0hgXuzalYBw3XWus9SFUZSki3vuubQdlZa0NbeecKwq7sTFGzAAlIlLlXFUUAMBMIglAL4yKVDXGrigKMtZ7n6IQIagaZuNs8DFTLFISIiKly+a3IIKqzpjszBJCaMNjjke4MJ74/Oe/+IEXPhRj2tnZASJke3hy+mv/9J88/dRzt+/efvDgwcOH9+7cvhX8Kkk3HNUgAkkKZwji6cl8HzbzeerSqaok9T5oXUcBZg6SBFKUiEw+hKRgiEA5D/Cu64Z1eT6bHx6e7m8NuXjcHG1jagKydKtV2zx84LsG0ZIxw1E9ntR91kEfYXUp6SX3bqzNuUBwSfV2ceTNr837hhhzIZyJX7kEzh3J6XTahTZzh4+OjqqyLoqiqqqiqIwxdV2fT88ePXpkTHYcdHfu3Hn48OFoNMrgZFEUIYQrV65Mp1NrGRFPTk5SSsPhmIiMMU3TZQ/6qqoODg5i8vn1vGfNzdC6rslGVV0ul6o4HA6dK11Rdl3IBb4lawylFPI+6c0333zq7l3nnDVUFHa8MWG29XCMbF1RbW5uL5czEZlMJoaQidmayfZOALEpjUajVjWErhqNTVLnHFp7vR78uT99hzfe97//m//N4MqTSU3LyaeUSS2AkFQhJWAG5osummaHrYx1Met6H3y5PSGXvJRyzFauaOHdfUNgkBgh5goPc0oCgAAKokFrDcbV9AiaORighKIpu5n+QPwJ342EvPc9jxk/P8gC43/Ugf3qA/AYMFACxb5jLgxAoMzIhCgCSSQlTdI1bb5p0YeLe1INKhD13jfLFgBs3oYzZ4+Vs7Oz7d0dIhoOh866PJhFkgAgmhBSH7ueyvxAjMdjQ/b8/Jwvke02t7eXy7nvOrIsUUkRCVOKKtla00Lyhhj8Yvbma1t3n63LEZDpuuW9N79n7j6zMRquulYExoNhSskaI4Cgon1fBhDAKIqqiiKhM9i2rbWWXTHa3P7v/sWn/8N/91dHW3vzxUlVcUjegAioIKka1XQRe3D5u/u+Jm/OAMnSLoXsl4+gIoAASry2GEQFAM5NYQGIuS8KSqAqgEqqiETMXA5qLYZH8/T5z3zrb/2df9zhePfpj562bSBWBGPYSgoaERGVICnkVb0v0BEVWDGl6AwhK5EZj4e1djHOf+HjH6gpdZIQ0VhOwQsoG0dkQBMoKWou3jKSxspsOPqAZLzKcLz92U//dht5uxyu/LSwEKKI9zlOm5kzWZLJch78ogpKBMSUfWmTAiFhj7IJ9Hfv4gF5L6b1w473bmYu+GG5GAaIMWZHJWZGNqoYVXIcBQjEGAX4yq0n/+b/4/8j/86fe+H9N59//10AOD5v/tm/+vbf/rv/2GxeI1tNlw8DaL2989f++v8WQhjfuNkFUWMAsQutNaYJsvf08wBw3qQMpYiISgDQoOJj0MqUZZliAEDUpMgiSqygagunSZBZkyJykmgt576savZXMW3bMoExJpsVq+ZhJYwknEnZhGtHl6igMSEqEXGOqBcVTYxKwKpKbC54qAaBcw6Z5JKLABWVVVOWh6DllBIikKpKJFRGBRMZtbzE+d4wLVo1iJZaRuG+/ZRSiKrCTGZE0a1WOLu1xdHh2XQ+qoaFdRMnb0wPjHbQLdquxHU0SNd1zGwgw5hEvQehiUEQi7IsT06OwIpiC0IxMBBr8FVVSBNT6Arm0d6uH9Bs3pCsBiVujtyyuj25cvO0iQkhSXSDKgHGGBgRCI6OD8ejiXHODWqbUkJwRTGbngGAgO5du3b+1ivA5JxDprOzk7qoi6KIGnNJIL37Ookx1rk8vxVFkSR0nRBAWRRsezCLa8w2VePx+GKcG2N812YJHTOLavaVuKg0Yox96p5qZjYzc9u2F01g770xRmLY2pwYY7zv+BKsICL9/3z96y9/4QvfKF31yU9+UlG293YPT89GG5OT85PvvPLi1ng8HFVlRc4Odq/uVcNB1CRdNhPqtiZbF2dkFVQgRiAgY5OqT+KKIoGQpQjYdF6xTICKVlFikMFgUJWGxM8XzZWd7ej9uiMKOzv7y9MDpDgejg/mM+kCWxfXBVZKCQDzvcq+z7LWJOTnPLdXDg4Ojo+Pr1+/fnGR8/k8JKmqikURMfPil82qrmsyjIihbZJKcmM2xAABAABJREFUrn7uP3xnf3+/LMvbt+4cHBwx84/92I+NRqMM5GxvbwNAXde5EXl0dLS/v58ribZtp9PpaDR6+PDharXa3NxktuPxRtu2hSsPHh3Olitr7fnpaUrJlsX29jYxzOdzRJ3NZk89cTeDot77sipz03oy2Uy66oJHoNFoNJ/PNe9HNVPTDWK8ffv2YFCJxLIcMvP5+fmTTz790Y9+9Nq1ayDyrz/zqZdf/FZVOAI1xBubmzfv3Nne3UkCKXjVVFaODSoAFy6lFL0v3YBR/PzUSksSm0UnAGSspA4Kx8pkbYxRY8yrDIgiEipoEsoqfuof1zxyUQEoU236C9dexM5JNaZoL/PuAbiy4kFTgrRGkvozoCiWliEs2qP7oME6jilALxO7HEID2XnkcU2WFZjrgPqLBeNdC8wPXGzeVZMJ/KCmzOUDe1IRXIBkggAKDEgKBO+NYs01tDGmckWKMfrg2242m4HAcDgkwq7rUkpsDSJmIB0IFdHH6L0/Pz+fz+d7e3u4zo8HxKYJZAwbG2NEkPxTbdsZY6bnnplH4/Fi8Zhs14Z2a3cnhHDy8CGgAWaQiCCGjQAkH+pJmQTadoFcnL7+0ujm3Wqy3bXRluX0/AwAtrY2Hx0ez2bnm5ubKQXnnIbQQwIieYNYAgZQJuO9Z8YYfQxdXddf+vp3vvDVF37hg08dzc8KMil6IlCkkCuhnu8HSBn9EuzFgAqP07WTZro4ZGJSjzjmhRIl+2wgKANAAFTBtP4eiQ1mB0K2xhhko0CCrvH4xtHqO9/97q/9+m+//PbR9afe78AcLRcJ0TkjyYNEiF3pbFIAIYMMSiLQ15sADEygxnBhWVIwBitrVkcP/thPf/j9N7e65amzjCIg6gySLVZBmZAEAZOg0QvvewVUSilZW3jvy8Hmm8eL3/7itzZ37wTv66JU0mhVVRNoiDEFLyIqkqLPOYxFURjukaeUu9iSI0LwAsSC9TKTsa/1rqkf/zlC+GLQXrRj8s+iEq4rNsq+GBJRVUKUGG1ZABOGKBoJCRSYTdKUkU0FNdVkQfy/+y9/7Sc//sKgtqvV6lsvvvLG24dPve+DwOXh+awqjXZ+FVebT9xkcvNlF0Q0Rutc8D4hoLVnbQghuXKgIcedibEuSecMM6OzZQJEpJgSAhtGESHAKMjGphgcGiUmBURMIIZdJrBme09XlZBEVZNGyA1cAgAQCRYNKihSVFFFxd7YLWnuxyRSZIIcUg+K2VkKJBGitcRIKYUYIpJmH3FSyD7zjMRMmkIUjyCMoBILhsKgSjeq3KB8vGW9Vi0JFSGRBEYBFMyuX5w0gQJ5mfPq5MqksthqaDdK1e58Y7hjpE3tIrXz4aje2ticzc4FNGnugKNKTvU1zAxKolCNNleNBJXz5QxSJxa5LJEktmLqemd3f/rWfYl6MjsZmBmBj9QWQ3M2O3KDkniYWMER1xarwgcBQWMMaFwu52Rp0SyHjJPNjXY2Ozp4VO1OrDW+6xbz6c3d3Xsvf3Xk7Px85aI1hgHEpwSEOZUyQxiI6FwhorOT4739Kxub42a5Wq1Wzhki6JplSuqcY+dyHFA22gwhAFxAmJCNzSUGawxzj4oBZEYsEFHXddY+zqq+OJjRMrl6UJalSBLQdvXYmw1o7Xr/rW++GEK4e/fub37qt0zhVm0zXS6uX7/etv6te2/XTz/9/Aeen54cn56f3Lx9kwaVhpQ6FdGN0YYPj5udKiH6FiSlFLLuoGma4WAAKdRFGULqQlLSJJIIGU3wjR1WzNw0frpcrXxw/Lg8HA7Gxw/fctbYQhYnp9I1VTUKXYpdS1obYzQA5kClnPa47sg+vh7VlNJgMCiKIq1hv+xTFUKIaxrNxsbGYDTMkrHs+DUcDu/du9d13fXr1weD0Xy2uvfOPSKzXC5v3LhR1/X5+emjR49yQ+3o6AgARqMREU2n07qu27bd2NioXKWq1hlmvnLlSl4vm6Y5PT1NKQ2Hw8VikddCsgYRve+KojCGYozL5TLbwaeUsn2Otfbo9KSuhtvjiQqoYja4T9lb6VLalK6Fn1lu6ZwZDodRkhmOfuzjn5ieHXfNqirK4Xgy3Jhcu369HI6TStQYY0QmJtclMShIYNA0TfPNb7344jd+77k71x9oUfqkKksfoDAgkrTvsifmzKWXEIA5w5BMpEny1eQviIB0nSV8+YLzfzMmkWeqiy+xrEstCokx+JR8AEVgBREyVpKklKSZwuIMWEPXgQCzExGVhJfMFIx517ajX8Z6iO6xBvMHAma/z+OHgG3w3u6kqkKywKbvdymCoBBQypWJioTOS0rSNoXlK1f3huPR9GyaecoSUx60+b8Xnyj/r7V2uVzm1uTFPWfbu5Y752LoRDQrd4iYSDKwWpbV5QtcLpfDYX376afvvX1fvCdFAkgpIJIgLs7OgdAUhUbAgudvvLr1vg+MylHjV9LMH06n0/OT8XijHtTBtyYrVDWRrpMvQbLlDSL56AHFGE5JQaDx3dbm7j/+Z7/x0afvDnauL+f3x0UROm/YpJSybDZTlEBJAJB6aBFBAAg1G/P29a4giaIqA/SolyggsAKkhESG2CE5IMtsmBwyxZRUdRXSfL6czc5PprPTs9n5Inzr5Te/8PWXW60mV27fePZjJ4uFcBJDhBhTF9uGSYzh2HSAXBSFQSsikoNKFQDFIBkkBCmYyNjxaIAo59ODn/mxn6mpbcUTYUrBrGczRI5JHa6THoAEKD88CkrAKohkuKi+8LsvdVSVbFvfsTWaxCAKAiGTo7wpzWaHkERCXKWkqvmTWmPKsuybhnlrfwmfvngofuDu4t0I2cWAzzBd/0BlkiIRMRriKBIzIttvmC+a8nIh6JcWMXE1ufHM73zlu8vFdDgcjjav3Hzu5iJECJ1zZoQVWXM+X8y9T9EzFYisIFEFCNf5qsSV8z4RkWAEUElBfWdKVxVllCRqkygSIyikSECQhMikGIE4izUJCThb/Kc+VzSnZcQEooYZLsRD2JPkIYGAQk9uAwUSlRSiIiIKIxETgoCKJM3OHgAATISgKba+RZCyMAAgvk0pqIKz1hm2ZAm1KFBtdCY7kSOTOAJJZKmry8fzTK1TJkaN7LDnj5MgqGBUJARKy1M/O9u/vm/Ut50nJt92m4PrGJbN4mw1O61Ki9jL9tdtZQQmTZzpPa5wbGzbRAA3HG4slq+BHUszB4mgvn7imQ//1B+Uouja4IrKDId3b26enrw93tpEBiH13nfYBlmswOippy0ENAY5hegMqkFQds6R4VXXmcJi5ZrVyjqzMRikEAfjETmbPKWUbF1SyklXKKrW2twQ7LfcCijKxo4HQ01SFEXbrhgpPxEpxaxGIqLMVcmFQaZ2EFFm0+Yt8cXt7SdeQt+FGPOGFlJKPsbLb7NsJHpXlwZx3rSuLN7zEPVvPTo9GQ7Hk61tIvrWt7+9d/XKs8++7/n3v//evfsvfefFl19+xTDsbm6MN0ZbuztgmVQMcDXcu3Yjvv7q/QuwAlGryrLREJbEm6Ldaj7b3d01QI5N9GmxWBUbGx0GwVKTsiqiNqsuJf3eW29f2d++ujm8uLj9/f2Th284gyF2qV3EZs5bO6oBIRWlEYmgiRlVlfJaLsmu8y9z2y4L6HwMXfAXd8WVVbaiyLlDriyo55dg13UAUBTFdDqNkpCpLOvZbHZwcDAcDg8Pj69fvz7e3FiuVotmNR6Ph3WVAcZHjx6lKNtbOw8e3m/bNoZ0eHC0s7W9Wq2adnXt2rU86bS+e/To0WS8Udf1bLmKQbJEm9Yha/ltZVk2TZNLLmbuupBSiqkRhVzAqcBgMOi6rmmWRVk3DZ6fnqhzdT189OhRVfQ2s9aa4XAwqMvj4+OqWe0T1VsbzzzzzOc+85lim5jxxo0b7CwyoaIjssTEKCLOsLFWNSKwqeuf+umfeuaFn/gbf/d/eOnTr+7sPf3G4SNXGJ+pS4pKlHs1IAkQgRnW+4PkAxBK15rBoK9ypBehXRQ9KGqQEvT/2xdel7yDowQESgho2CBGHyAkIJCUwFUQzsnPYXkO1kH0QCAaAQiJs2j/8mpxsU0HgF4tu64CLxae9YX96OTHH5Cr+p5X8i+6sPDEdbO159Bm3Zis+TGo1lqOEmOw1kISVEgxOWOv7O5Vd8dvv/n2a6+9VhXOOEc50DSD4caK77z3McZqUANA13Vd1xlrnXOr1aooyzwZdV0XQigLCwB5qyd9ChMDwHz+WPk4Go+NMbP5+eam2drZPD48zHLSnG0NiuScQEopASQHLmI6fet7e089j8Czg3dGmzt/4EMvXLlxc/fqtf/q7//XO/tXokRQQSIVBUuq6lPA3JoTZQBN0Rj2PhKZyhWP7r3xG5//0q/+0k/Nzx/WMThbggRI0RAykmRuODIgi0JEQDQoKcNiBFljEXLXLKaMcQMzERlkNLYwziWxYErvYRVgtYLO6/l0/uaDBw9Pzg7Pzx/cf3hweDpbNV1mz5miGm8Nn/zYpKiXK3//7JwtEQGBEroY4hM3b2xujM/Oznb3rrReXnnlNVeaAKFwLChE4IwzyqiAbJmgYBw5M5se/4GPvv/Zu9dSc8yQQNUQA2hC1sxJ6W3OgHInE1g0KiFiTqtyQMXZNPzeV16cbF0NkphRYsjAMCD0ISBMAFDaYW6XpJTys5Z363nwx5SyS0v2h2NmTHrxUGQ+y+Vn5/Jov0gSy+6S1JeI/duynwUQpJiE+k3CwJimjUA9kTzGQJgpCgmTJukE7GrVTMbb25NdUVQBnxIgJBVjTGUcucIYd75oGkwqayPRKLlaEhEgTarIJCmARmBhQOvszsaEVFQhJCFkyULM3NoDUNEMSSAAQbrQUAMAJaWMq/cB7ahRJM/bmOUqikiJcsJHkphAgfK0LgkQEJGNSSm78AAjq6JQYqYUYoyhYLKEBrBE9e3SSBgUdlwXBhNhdCYWqAWqgUTZckdFIaEKGpDgyQusmTsGPWbgV63XlFveMUaRqBEHxUBSMIyDstIkhWNmJu/Ho6pZzRbnJwalXS4Wi8F0vtiYbIWQiFhk3aNIWhSFD8HYsls1k51tDAyhLu7+JMTWWTuebO7fuBXMYLH0URQMU1W99MYbAxP2treqYgBUKPFioVy6yXijUUJTJEEDyGx8u0rtHJDZbYKkAMKEKlLUhfhOu7DqGiIzGE9mbz9yRakxoSa2VhVRoWmazNkoqqptWwJMKVVVlRP2VHU8HnddlyR0XetMUVjTNJ2IVFVVFHnB7XJNZooir6QX2w9VIOK8rZWoqmqMsdZmLhAbuuwxZIxRFcO9BVLTNJe9kB6HDv34j//4wcHR8dHp4fHRCx/68Pn5+Ruvv0Vsicz29vbW5qRbzhHTJz7xiShpdX5alAPrHCQZDEYCl1jSitev3/wP/oP/RZRgLBoDR8eHd27fYgybo8p73zTNxtVKgFMCyoRE1eFwvFrR2enp2w8e7m4+c3G2oh4AcVW6MJ9DakN7XhVmisoGiXLmXxYsr6nUlwRu1prZbPbOO+9sbGxcvXoVAGC9FocQjDGqmi0iM+urx11UZ7NZhhCGw+Hp6Wlma+3v7y8WC1V1OVMWIANLq9XqzTff3NjY2NjY8F1o2zafrXAlIubKzDnnnDs7O9vZ2RlNxvP5nIiYrWHXNKdElOlfIYSiLJi5bVdENBlPyrLM+dnWWmvtcDQ6ny9CCD5EBAqhOz8/Z8YLosBisTDGDYfjrguqOp/PGSE6Zy3v7WydTM8Xi9l4d/vatWu3b99m5p2dncnmBhluQ5tEshlEURRobArJp84ZIFJKCRgKkxzH89OTst4zhlaSgBCIIT2eavX7ShBEXLPktWebrkk6eCnUBfFxJOL3H7klgUzGGALM2xHfNWwcu2Kow/ZgDt0KTJ4ZVUHeex3rZebyNv3yWvI/Gvr6wV3L7ztQIc+/F+8nkIKJVSBGa6kwlgERlRhjjJZoMhzdXy43xpOVpHv370+n093dHdQUQsgFxnpL2s+JIYTFYmGt3djYWCwW+1eu7OzvPXp0qKqiMUZAghBC9h1VBGYm6hXUOR/i0vVSSqlrw8nJCVuzvbd98ugYQA1Z7U2eIyJqJrsEP9nYnK58e/Jo/9bd1PrYLN55/XuHjx654cgYM18sBoOhNU5Vgcl733dfkAjBCAJgzAJPW0hMXdddv3H7H/3z3/j4j33wiau3Fw9eMwUZImds8p2Pno1R4qQxSUJEhF4EE3r8GxGJTcXMCmy5ZlMqYpQUkjQ+zE6Xs9Xs9GxxeHL+8HD21v2Hb719cHQybTsPwMXWDrjSlVU1vrFxpRagoBoFIuA8SVp4hUTOktF1vREs4Xx27hfzGOM7TQtoN4YDkWgtOofGOUTMqQYWbUrJOSepKywsDt/6uT/x5wcGUhPporMIAECPR7CSQsqNdgVQYiDN6cJB0mBy5dOf/87B6WLj5rXYNLkHhprhMbzoV/biFcQMqOsl/sraXqdPB1LVEEIGAzI2zMxEkGk0P/oZuSjlL7+yJoRgDosEJrYmS56hnw0u2JYCCIIioKIESZP0yKai5ObxesOWrBJVNdvq/tFxylMMEKACrC2UEbMFCRqyxg0KO66rwhokBVEQCSKISqjMyEiUvQlzeDkCSForoxUIKCkSYPY2gp47mEDyzkoUkgoCCCoSqAoTmsJCijEGUrCGRSSJ5xAtKhMniQwIKN53KQVWcYYrY0fDcliWFoUnA0jBkVROswkVo0eJViL1Fs45cm2dvw6al8J8MEQVBYDoBREY+/YyM+e+cgrRt521hSWrGHLmhnPu/PSICM/PT6/s74Lp/amt5a7pnHMACbknjSCS937ldW+0qQnBQ3X1ZlI/GQ+feOIJZp43vl02ACAWsCxjWxdb26uY2oUPIKbamC9npkwlEBvnk5Suil1sl40r+bmPfvydhw+a1mtKgJiQ3GgEGu/evnP28Di2HsmwLYFNjMIEZVks2sa4QkQzeToHMqpqVZSQxK4HfNu2ZemqqipKa4yZTRdZwNg0TTYAY+O2traapsn71X5CpL6QvjzfAmDWNmZXxczNvdx8S6EbDmpjTOc9EfnWX07fAdW+cvrQhz70xS9+ue3CctnMpovDg+OXXnnZ2mJ//+rR0cn1a9dCs3rqySeef/75jfFAQEMIKakrivH2RuP1ou25aOI7D4+v37517ca+K/kP/fzPPrj/0Hyc//O/+Z/ubFffPTpShdK5xmNVmLIsh3aYui5ELasx2PrRyfTB0Rlcu5LPZgcDtC6JJAmOZTE/TZCiRoidkipKiMFC36K9wFR0nX+ZQe8sKpzNZn79wXt+HIAri7quMxUUcjVqTM4Ryoir9z5r8l995bX79+8DG3Y2T1Lj8TiEIKobW1uWDAIWRXF+fp7J+7u7u03TEGKurqy1e3t7TdOEmKqyXi4bIp+paVnvmou/mJKxdjzeEBF2xbLtcsh8SjIYDETg7OxsNJTd/SuFK5umK8vy/PzUez8YDJyxs9msLspmsWyWy9DFYVkQkTP88P7bw+HQ1QNAqUq3artV2z35xJ3nnnsuICpKWdVgCmi7btXEALldaJkoJ80hSOhAw+ZmZQoCIjCsQQC5F9Wr9rVF3q33u+F34UMiYnKl9Vie9kNLlvdO8Jr6zGUMjKSggoJFoSqMCUMzP3gHJEJESIR9PnPvwHnpCjT/9ouFRy/taX508fRvOnJhl09C3//Xefm5+MiqgqAWjAGS4AVS6aqqdCiaxekC2q46BT18dLCYnS+iHB8eAaCqoIpmFw/mpfcA4perrutEdTgaZQOUmFLbdd774XDYrl6v6pqIfOeLbFDUt36ysx1lqLwsyxAezwtN0wyH9Wg06nwjMajh3Sv7R4cnMa03gCFmM4bEmrqua1qHOHvru87w7v6tZKqvfeH3iskmD4ZPve+FJsli2dTlIMUIIEVRxZRSiiFGS8gErQ9ClMAQEhmKrY+A4opf/8zn/sqf+yU1w1V7PnISxAMIOeuTSPDIDDkDEpWZmQ1SQa4CdkGwS9pGbQMcHTbT6ez49PTg5PzhwfG9+wcPj05mq06BVNQMxmVducHexuYNRSA0SU0S8JqWmuZNm0BBCTMjQhQJmXLfTAHJGkNEBhMiJAmAqjFWlUsGynJoSKQH4ZQQDBlGQGtUk62K1ez0x5+98dGnriS/UE2ABn8Q1IrIeWXXnJ+aaZSiSIJo7p23v/E7X5ts7beNt2R98sR8MeqzgT9Az9/qGeHZSBJQNYkIA0EmGTHHtd5FREKKqqqaYkyMlMFDIsq5mf3zonTx51wBZ+HuZdbl2gVAM16bUoo9tyb37ERR1w4dWeCMkGtNhUDAAKxJEAxByDwHQFQ1qiqISZ1hBc11eK7DFBRAQDJoYQiACa2BwuDAcYyBqKfLImabEQLtOYQ5EzFpQkQmAoKYPKAiI+q6UgRGwLiWOiEiAbBSrolEABFJUFWADVvSlKLvEOLAYMEJY1soFk5LZtAIGBF1UJVlYR2p4WAwSuoYFVRQxRCgCoBoEgURjIJrxIES9BU7gso60rS/76BKSASJkIRYRBCAmEVQU0JVEKnrGg1DCimqELN1J2fnzObk5OT6zTtYFBsbG0TUtV5VU9SosUSLCCEEJAtspqt5IGNShGa5iJ1YllZWr74xLIuNjQ2K0a+WwNpZHl5/IkBECQf3H0AX6hsbo1u3tRiBLZsQEThEkSDQdbvXbp4en2XfXwEl5hCSLSv1q8NHR2cvf+/Zj30oKXRBY0LDZV3yfDEr6sqLdG1bVVUuvArn6rqWkM5OT+/evh1jlBQy09HHSAarqqrKwfHxsfYtSwkhKFDWGTjn8jOQaRtZROmKIg91Nj3nyvuu6zrnyosn6+JLyMyi7GMVVSB/k48XhjVw9alPfWq5bIytYoxf/vKXjTFPPnF3UNXRd8dHBw/uTerK3bh9Y2dvGzCIapek61qLisSD0fBirT06m3/92y9Ndrc//JM/UU0mP/+Lf+Tw4YOzRfvs+95nKvvG2/cG462yqFyKgbVrF+20m9RDUzofwmC8eXh6dP/gFK6tr76oXVEjdFVR3ry2f3LwsFnMR/Vo5ecgIgLOOYjhIhUuH7n8dM5mq4i2bc/Pzy9XnWsNf+nKIqOUzOy9B4DVapXpVsPh8Ojo6OzszFrbdV2Msa7rRdNmW1tmrutB13UiFGNcrhZ5GRORvI986623bt26FTr/4MGDvf3dbp1F1bbtcrk8O5vWdX1yNq2qKode53Wx9U3XdYRYluVisfDe723vhBAMmxDC/YcPdra3i2owm50Xri7LejQadV0zHA4PDh85Y0ejkW+7oiia1WI6nW5vjgCga1fDYR26tixLArV1vbt3ZXt/31YV1AMbQydJYkBVZFOUtQgQceO7JMmUDKIpRrZFs5y99cbrqimpIFNhq64NZFhS7/HVbzp/yOY4By8o9d5s66VlXQldFq5+/yF6QaRPWfSsQsYlHy2GtDqHk8OqKrrGI1nR7gec4fKV/D4grgts6d/4zu/7qe97NeN/oNTHUyoIKCQCQBVL5JQZVWIiwNIVSSIr+JiQzGI1nc1mnkxRFF3niSiFkDcVItJ1TV3XFimEkEEsJiqKIm8bnHMbo3GGSxgUUDQDzkQZZo8xZAQ3v/nyZxWRDLuORqOz82MfEFU3t7fPjs80JjaUkjBjShHIgUq7mAHiaDQ6feet47PZv/2X/8rZ88//+qc+Y6tqNj0bbOzMFytnCgJmYySpRAWAwtiUgjFmXBYHpzNXliKSVJ3jxje7+3u/8alP/9zHP3J3Yz8cr6J4RJtUxDMXzrkSDWd/0Jg0JG19Wvk0m58/Ojl/dDI9PF++ff/+G/cezRex84pkyuHYuDqB4a07ezfGZDhEiSpd1yxipASiMYbOMAEhIilr9uRXzU1AZIOm968AyCmZonVpC+MktBiVDTtXlGUhkIgiMZLkTSHleCskBomE4Ng8fPTOX/oLPz8xsZ3NDOX6ndYTqZBSggRK2cIzjyuBlC9IRILoYHvn6194/f50tXn1plETfWvIyJpYmb/Kiw56j12JrpGw3urMUC+qBCJapwJnT+cLb0nJPn5EF14dFw/sex6oNTzwWHfcgwGojJSbmESU9PsLzUxXQEDq7zggAAkoKxBI6M0dGRQMJkAIUULIVk8JALPLTO9BogrUUx0AlYEsIauk4BmUCZh75hkyqWJaW52RkkBCRCUVFRA1RDl1ChAQFCSb6CZnSXviV1SJkAKooCaHBCBM/cZGYiBIXAJJZI0Dx0WNtQGNvmZ2llzhABU1onYgSWOfMZ9hRFSBBIwGEJA1QUqiaxUJiGTiRI5vffdkJZJdbEQkqYCipKACmnM2BFGldHZQ1aSECinFwlWKdrFsRXE2m1Wnp5Pd3aqqvG9VonMOlEiJDKOoiBCAsRbLMoCQRmBG68pBvb2xU5AxmpZN23S+robLbi6Miy5ChIoZzAA3xtXG3jJCO1/VO0Mmm3uy4fy02tmZr5rWNz5Fdr3fqUVW1cFgEOcLUH3lG99648FbH3z+7sqmFz/zL6u9LWMMs0ENcGlByREgEFJRlhkMyzJG71tVrVxZliUobW1t5dX55OQsxuiKynvftq2qAnNuC+QVfDKZ+NCX3TksBBFjTM65jN3kG37xJTjnysKtmsZaiyqrpr38FeEF+vXaa699/OOfsK6eTCarbqWqxpjXXnnp6tWrV3Z3UuzGk40rV3cB1XediJT1CGsLmlKMe3tbZ3Ccz/ONF1+79dRT33v7na9++9UnnnjinbP24KR97cHpj33gmUj89Zdfi8QhJASglGKKwadYauf9bLmyrh5t7D88nF5cX1GNXDnkJpVcFEPz6OEDCZFcoVEtO8s2tmDQILyLqZ3vTtYMVlWVSxy45AGV662yLDPBKBdMVVVl7FFVT09Pz87OxuPxzs7OcDjMcFeejABgNBrkBW86nZ6dnaqqMza/koGuDPJ3XRc6/8wzz0wmk6ZpiqKIMRZlJSLGuNFoFJKmpM7RYrEAws3NzXE5zttQEUltOxwOZ4sVIm5sDNu2HQxGu7v7glLFyvu0Ws6dLauybNu2LitIwsZG9QjQLlfbGxPvIzXNZFi1TXN2fDAeDq7s7Kr3VJUf+8RPrOaL+2+8WdYlWjMxVhXZWqhKbBogrAZ19O1yNrNlUYxHkKQuBx/4wIfkt+5VlTufzzwQs01+vd/CnKnYg+GwBr8u9/UykJ8jXt6tSgToudLfF80DeaLpDQJwjbYJgEiypEMT224KqUO0IEKMSR+nZV/GtC6g48urxWXo6/ddbP0wNhhcfMyL39m/iLA2g1mLLhUZCKMQE+ftPSkTAiozo4JFY4kANPpAtcuNAxURiVVV5a1CXdfe+6KoUoiEaJgzVxRBY/BJIq6l/nlkglKvvSJU7a3F8rIXQjCXLGqZueualNKAi+3NraZpQhAR2d7dPTk6StEbYlBhNmRdiMGVDhWCX9W2Wpyd/N6//I3nPvDhkWNN6ezggKlgMr04SAwiWGub1q+aZV2XIcUQQmHLzATXFIQJQBigqOrPffXbd3755zw+2B6PI6ACpUiLGBfTMG+68/nq0en04aOTo7Ppo4OTo5Oz+aJRduQKNM6UVTF5amPbEpEiJ5WQYgxppWnZLKJkDxRCREAKSQw6MOARgZRQeO2pDwhMgEDEQBBRgRENswUDAIWzComdHW8Ooo+IrBBFRElTSJbRoEkCBoyXQIYkJcuo3eLJ6zsfee4J8DPLymxC0kzRJ5BsDpFZR5rTsRCEBFVRkgKoINvR0Tz+9pe+Zce7XiREX7BTSLmG6Ye3iiIAEAGg9q2pvsmJyohEqDEkRSICBFIhIs5dQgAAzn7aqtkmRFU1XWDTPbNR8zjvzfSzvIbyZ9GeQ7V+FoiIofcNRwQGjBmsehxxzvmKBWN2cyMFUVHNLm3OAElKMSkyKYOa3ltbRYG0x7SAEPu8AQVRFcNcuaIoHKsgSD8RaTaMzFsTBGIAEEGkPACQtO/roWabLkEFIAFQRIUUifJ2KzAmssmAGkqGhDVZYmfZopIEJimYrQFUUQnee4vkSmMNpdSSgGpSVcYsu8+wVLZ1IM3Z2NrbpiDCOucDs9Zd1s7DIu+avhRJ8tdFKCAEJKBApIKKlEBb39WD0lqrSSxSjHFjeyNFWKz8bLkSUWZOIbZN40PDSIgMyEw5UVUNUkxJvFcV41zTtqDq0Eib4qJDK4vk67puV6GNUBYjkQDzBlAaSBCNLsRvZEWG+qZjWyBi17YwKI3jtuvIOmediBiLofNMaImPHj0skG5/4ANvvfXGxs52F+PW9u5gZ3e+mg2rMqWkMY2GwxCCitBaGC4QyrLMs2VdFavVSkUGg6qsqpRSSoENgqIxph4OZrNZ13VFUaR1pzInXaqqXLgoMecwgLx9TSqSVGN22lO85L6GiCFGAAghdjGIQLz0LVles/Sv7V/55je/GZNubGywswbB+/iBF57/yEc+Mp9PHx3cf/a5p65fvwqorqpi16kkiIoKjDwaFWfrM85W7WzZXLnz1N//x/90c2vvwYNHqPjt7/2Df/cv/NlHx8f/8nNfmly5PZ0vA6Kyscba4WDVejKGGc9nC2NpdUkAL8BVPTo+uD+pjSU5Orjvm3ZQjAxZCZJSIkQVUe13aRekIgAoiqKu65OTk6IoUkqHh4d7m+uPbW2ui8u6ymQIeExDppx8vrW1NR6PETFXwdlS/Lnnntvb21utFhlOzEq0oiiSj6paFEWu0rJaJMbYNE1Ok+y6Lsf2lRWfnp4a47o2qKJIApC9vT0y3LZt13XD4TBPZJPJBBGHg6IoitVqRUTb29tHR0dd7O7cuVNVZm9vv1l1b7/9drLJWtuFJvdMjTFE5uTkxFi6dnUvpQQgzWxxcP/BeGPz6u27YCy7YtmdEpmyrFKKp8cn48kmg4WkyBhiIx6cc8PJZgjet52zw7Pj6Ze/8NWdvb2lCJKSSAqhcJUP7fr5F11z2HMVckFp10uvfH+Vo5ck6/CDDr3U0csFRH6VSdPqrDk9AKKu6xRSSmCYcm7Pe872/TXW9zccVR9jeD/sYv6Ntdqlv+o7MRfLYX9SFABxaAgzmVhQyBlrAFKIQqBIspb6N01DbLquEwBjGALkGgsAfOuNzXRawTWtJ+8QjDHNcpWXImdsYmGEJImIBTS7B1vLOfQ3u9NdNloTicYYQPHeA3FV1qvmnNmywdF4uDg/74l0BOK7cjBQFQXFpCGu9rb3X//O159+8vYv/+Gf/dxXv3XadocP7j3x9HMrH1W8pGSMiW07KOyzzzz54ovfJq4z4oExKXFZlmF1zgShTVf3rv3z3/itX/jkT1HQ3/vGy60Wj06mjw5OHx4d3z84ni3bgAzGoSnJFsPBxvDa3qarElLn48qHJgSvGpvArAApStJsHACsEsk6AJAQCA3mypdMzo0GJFExOWwoL+bMIkIIzthsIuqIS1sU1kYJ1tm6cqNBfXJ46lNEMoVlNJASQhJJggJlYZE0SQQAVjm9/+af+NVf2BrYxfHMWtPFgBm8QRQghgRZQyAKOd0PJXvo5WoMqTLDnRe//dZ3Xrt387mPLVcdkRHsSZZ6aWzjOpgm73gkM7RAQEBAUZGIGDH/XkQSAMzPm6j25H1EzBEAqqqMkOBdTHxdY9MZJ8s/kH87EWlPAFdVBCXVvrYzSH392zMXAEAQCIEAstXsxS9KqsrsEPu+LyCCZY0JEymSUi9vy5VVpj6kBKgCqsxkiS1jrm3y7knXJjh5esqCI+qJFBlylPyPAUYRJEEVRkUVRAEQgeiIrQFDaEkNiUFlFEyeQQgCQiwYy4IJReOKAFSEmWlAzBxjQBRrFVGjBCIESCn2HCMEQQTVhIAKkhQQNDuJXQAN+fKZGdc+O5cfYWSCBDFFQUgpWc73H1T6dI22XVVVaYxJKVg2jTTj0WixWDStXyxbQN7d3V35FDqfUkS2qpJEgAVRjYACEgIygEgU6boAzoGodTSsXdM0CNL5JqMJvuskhmp7p1kurMWrTz0foh4cHXPhrCsACUUBVENnKhckqKHcUgGTsZJMmfDg22Jj4/D4gK0p66r1cYAaQDSlLgZUctbm3lRea/J8iMybm5ur1er4+Hhne3O1WoxHowujxJxBxETZ2qksS5X+Z/OPZ5N2Y4zk1nkMWVOpa51+xoYLWzJzjg28vFiklIIkAGRjBB97rsJl6v03v/X1W3ee+OTPfHJ7a/fVV1/99ne+uTHehBRnZ6dIMD092d/fr+t6NpuBRGOMAdKghbHA4h4z72E42vzug/tP3Xhi4+qtg8PFQga2MKsu/Uf/x79DrjC7V87abjwYG4CEJommJECaxEcNwALkuHrsnxFENzY33/jOcmeyBSnUZblcLcbbV1CUkI0xoVVeE0gvRmRePtu2rev68PDw7Ows078utm3O5e1XHyPQtm02yMicsCyKHA6HBwcHi8UiL05EdOfOnevXr87n08zZyt9f7kVGHzLclRFO59x8Pm+aplmubt26lS0AXGHv378/CHE0Gk0XSz+bZlZ+VRVN0yBTXdeCopR9MmU4GOQi7+TkRASMMSHJ888/LyjT6RRBQwi7u7vOuTfe/J6IaEzGmHbVishkMpnNzof1QFW9b6vCAEdM8f5b90xR79y4Zap6OJ4sZ9PQ+fF4NDSGXJFiQoCYWuPYlqUm9U0LRK6oQBnUSgBLDgDW0WYY2y4H7vZzcZ4ZAUBVLjfB18z6i9Lk+0uf9Z79B5Q1mUFMGf5HJAYFjMBGoyzPF4/ehNJqSNlaGkAu5qP3nufdtZdmvlqSH8kp/sH6x/X1/6gQaFwTYQAgT6O6vj+0BgycZQ5eVTUmIDLGdCkAgoiQJQZU6JnRPgbv2+GgFJEUAmYhnzGz6cpaW1jbqFpj0NqUUtM0IrEorLFcVSUzx6TGIFnTtC0i9d0NFCRkzjLPd23aUkoKqSiK4GPwzcZ4Ml8usNOiNF3hfNsxoEg0XLTTczcYAoBPySD5xUnN/OqLX31hVO/vjvVscbJcreYn5WDiY8vkKsbj5emf+9N/8f7DB1+YntT1MEhiFOFki/Lem2+8/4krVWnPz/1gMFp2/hsvv/qTT+78tT/5pz/wy//TuUfnaldWw2tPD5AzlCEiMWmMEkHbdhGidEo+iVdhZkHu22drKjUConV570TWiQioAKNAAuoZVoDExhTGMAFJIpWqKACF0RhjeB1DKurH5QBBuvmymU5ZTeWcjwmEQuuNMaBQlqV6IQJD3Dadc1WKy5vb1cfed6tZTK21RISS1mPMAoCioObYblLss5UIwGRKDxC5+rihz3z5pSvXbrdNMMYpQJJ4wWKi9aiDNd8EmVTV5M+f85T6M0tu2eV2JGV/XEIm7v9CFbMJPgIARkBaq2HyP+nd603+Q94PW2tzk1NEaI14M/dZA4h9t5UIGHoghzUXjEYAEAQ0IXKOtpQkiCIgLWiK6IMEUQUiJKCc1NRDcaJAZACBWQtnnLGgJJm0notIQCKTKWaokVVJJVt3aUoK0UCyqg7VgCIkK2INlBYsA5MQJpHkDBlDhEoiIAk1QUpZ1GWyk5+oxBYJbGFTCuwycOI1BQVFjXG9bDFxbieCRlQiQuhtpfoGOGRlgWoWN1yqffWi1MVLanEkAxAZTde1IsKAKoLAqqAaRWKQaAyus9xTkFDWxcn5LIGu2hbyliN0quqYECEXGSmJMUQEKskYy8ZSQcErCAC7GLyrDGpbuBhjDL4jJcIovt3Z2wu+a0JXbO5Gw2ytdF4kEsFwMGy9VwDApEYCeGMKFUSU0HVVVVlD2iZXupXl8ebYjiZvvPbavFnt3dhpHp35s7PJ1sigxhhD15HhGEMGqjIUUhgmxtn5cjabDeqyLArnXAghdikPwq7rQMNFqz1FFZGiLJl5NBqFEJKI957IILL0aldjjPNRWt8CQFlVpITYY8QX34JI6mIgos6HqEBo4rsXuL50+p/9xT+XBA4P3jk7Pbpz59YzT9761re+8+JL3/naV7/yF/+tv/DjP/7jL337OyD+zp1bEpOzdnOrNGUBiGBoc3MMcD+fp6oqFfr2S68/9ewHZ80rbz1649bulZvXb53uTWfLVSji5t6mIw5dPDo7Oz46LaqSDYTQsWEgDCkW5lIkeFEMNjZiSl3X1QWPJ8Pjw4NbTzyTa1IRh+tV8wK3gHX5ZYw5PT2VdShmVVVhDasZYxA5T3z5x733RVFcVLXT6TRbf4lI9k29c+fOzs5OF0NRFPn90gdFFc65w4cHXdflbk4WkWXV5O72zmAwmM/n+/v7nW/zj2xubs9XDQKrxq5rnDPOuSgpxmhLKyIS487Oju867/1y0QyHw6KoUkrbuzuqqSjLZ5555sr+tS7E4WB0enpaD6s3Xv/eKycnRWmruowxrhZOVc/PZ6PRwHfirXfKXdfBcv7wwTubV6+bwXC8sXF2crw9Gc5ms+F45GMqqxEYdmWtGruuIzKuqEMMvmtcVe7sXdneudJ+7y03stiAhAhA6/4CAPS74LVYaF18rGfli+/lPXWX/j6stDOHOEu4LuJ/FQA0OQlwcgCVA4CokbI1Yk8w03cFp/yQnuP/fwflJ+7SK3K5jrng8ij2Dv95HWWAksiqUgICNNTjr9ZaBo4AUSSCBohZcJYhWGLwUVJKFSRWMsxd04Jo9CFXGCEE42xRlYPBwDk3rAeaYgrBMhkENDaEUFdFSqlwZrVahE5MVaXoC1eumsd+gBcIHyJGQFKJMY4GdUrKjDs7W6tVe35ygmREBA1H3+akFJ8iplTU1ZtvvDbc3OTRxtZo+MILzz88WxzPTrf29yWmZdtcvXr13r17v/fFL+xsbUtSiQk1DSy+8caLf/gP/oE7N6997nO/W5b1wcHBE08+89//y9/6Q3/9r/yZ//B//cpbp7eu35mtOp9iTJL1n7H/xjFJYiLNWCIzIEjIcguF3tYlD4NMJSRCk0LqU0FJkEhjBCIA7k1xAS2bgsmAGFBjmNAQEaHBXlUXAaBrVymlytnI/ezrkH1MfUAv8ng8Xk2X8/mcSzaMjHDwzpt/6s/8gc0SyIcQY76GfjCqABAoaQ55RAFgRMy9JcqLNDHa6pU3jj73tVduPPmBqJRiVBRG6BuVvfrlvQytxwO1x6sQ6RJQrQmRe0N8RdGePQAZxdVeFILIed9yAVdzD1ORAmiMeSRnJxRZYy0CquJFHEhSJAVKmNWdSJi92wCBH0sFVPvEdCRFVkRRDkkA4ip0561vo6aUCDkFVUAlAVUQgrX8mgBVwQCWiA6FUsdEzhJS0pQjrjvSpMmzRlJxBJaRCAiBMFmUytrKoCVEIQIhihaFUFADQkJWS4yoIElECNEQoEERD4ZQJEpkYGMREFPwbE1KSSSqquF+3WHEpGqMSTHqOrw5xkiWEFiTKCEzq/bpNyJr5hc8nrz6FTDKZbMeECXKFiIsIpZNZg0Fn0IS71sRiUBpLRdQ1cI6356GEJbLBhHb1q/hTGDGGKNxhUjIutqUEhuzXC7FsyEbFGG12hxPrt++GrvZoBpOz+dBSbhouq4llBQnk9GqXRpXRFFmNJsbSFoPBqBJJCkTiDemGo/Hp0fT8XgsGh2jtZRCGNUloexdudKtGkD+2Cc+Pm1ns+n52f17UFeqqfPBMisRAHRdV9cDY0wK0TIPh8Pjw6P5+RQB2radjMbL5dKYvsOQl/iuDdkPoW1bRMrCxrzK97sIRGNc13XMmOuE/GRl0rb3vrQloOAF7SZ/CSKI6H0QER+iqppLVpRwUX598EPvs4UTEWfLu088kYL8+Mc+/PKrrwHidHo2m2FdFb/32S996Xe+NBoMn3326Q9+6IVh4UCSqNIlyXrqFk8++fTf+D/97eHTb442d8aTzWXTfeeVl+uibsH7ZQj3w3y+JDRt8KqioSOW5bKph+OqGqzaIJeLR1tRXRZFgQAhgQJ3y5mkjq0TJJOne1RUcGxUtY8C7dMGmNka44hMSrpatRfmsCGJswUxpyhElDU9IXSz2fl0Op1MNsmYs+ksxtiFWImydWQNMGnQ5XKZzS2TD6HtQtuNRqPhcKiq/beF4FPMKta6rHIAUU5E3tvdTwrT6RQAFstZPRgYYCAtyqLOfK+oCFhVg/l8mdeNja3N0WiUQz/393frug5JfUin59Ot7e2Qwv613Ru3r40nlSvotZdfmUxGs7NzVGmWq2YVVosOYhq5Uh12XdOlONzaOjk62DeGTHHlyrXl9FhTPDs5LQaDRRNGW1uYEiLastIEQNYyg8EY/fH5fNYs66pYRA8JVBmZ4EJrmgQAkFgzL54ZAJTWKu7sPZmEegbX4+NSDaS4VqG/B1LK22XRmGE2xMhsEalGMz08AE2sklLMrCmRCCn2DZfLXDJCXYcc9Y5fPeXlsftrpkn3C9T68t5Tt0mvkALondYxh1BmywsFABCCy/L7BIC5i5ArU1QpyThNNTOn5JgRgNmipBgjkRpjG4AOhZEBxHsfkzfsmIyqJhU0rKjtauXYFNaeHh+XdT0YDJbNKru4+hjW072QioRYlqXvOgZlNMRojAEpKHNaCCR4vcSe9DEUZeE9xrCm3YggWoBokJpmRURFXXatVwAmkxsETCZIiILgUxD52hc+/0d/9U/Wm6Pvfe+lR+edt9Vk74qSNWVx1oR/9q8+fXVvPyN5JRKxOX74vT/5B5//mT/0wr/47NffeOfB1b2rZenI1i+9+PJ33zn4qZ/5hV/7t//KH/m3nprGFRITAaMCIKFh5ZRS3+MyJqXURR9TTsnWfk3S1PvPI/UMagBk6D+1giYBzOOZDYHGaKwOrNXYFWyzUQZbE2NE1hhDdpLN8D0bbqNaZ4UTSICgzpj9Wzd9iGdn08PjU0yxKJ2oGiZKzf5m9aHn77Cukm8skZINyWdBI2aj9GxNjJmNJIy9wDAJKBugogX+11/5TrF11St3PhoLiIp9Kuq6+te1KK6PIFeiHgAE7FOfkwiSCiTokR8BBMrgcX4wcyGeOVWaa78+p1T1oohDZpRsaGswpgQIReU4UggppUjGpJRCapfzhXXoEwYl1eQsEwACG+YYpIvRWBtTYoQYBREQSUQSGwVa+bTqQhfDsmmbrmO2IgIpomEQICXpY5NYBIhQUyqNLU2qGUoINcrIWYgrlmgIUZOk4CwNB+wYNHS1Y8LEhIwJNJEqygJADJgsMGQEYiTNMKqqptwWVhRiQOxrfUVVzZa3eVITACCGFP3Fgq0KiD0dlHJ8CyIg9mAYcUxCpNSzYjTPNwI5Gao3GC/LcrloMuNFc7LIJcsDQiUkECUFwyZ2PrtIqrZ1XcfkHNvhcDgoB13Xte2qsjUqLKdTk3Q1m29t7ShAkMRsUwopClkjIJoikiUici7GyLYY1UPUFJRAlYB806KEpglsEE258FCUA2NWAGDKIqiUriyLuk3BOm4bv7W1M58vte2IKLHrVh0NYVIXHP1wVOeCsxgOKEaJcWNz9+zkGGIAjbWl1199tXlwjyR0q2QRBdE414ZQ1QPnrMRUFMXx4cGje29evXKtKO1suhoOh8jEYABRJVhrQ4wxe+oyhaZjsqqalY/5CWfm4FNRFABUWOfVSwznpycACMZCFC4KIgQURM4eYxffQlTJWZBd11mirP29tCStqfeL1ewXf/oXvfe7OzsEtJqv7ty59f4PvP+te29/9evfeOftt8viyrXd/eD9/fv3X3311YOH93/6Zz+5c3VPAOjSGc9OT4bbNye3n6iG48Vi5eq6abooYbZaMHPovCZAMEm9AgyGxaCi0vH7n3ny/qPTw2nn2Cb/WLl2vvRX9q6974Mf/eYXfueJO7fQ+Navzc1UU4prwEvzzkBALuxqMhiQWwzZOmu15vSnlITlguKTdXWz2UxEdnd7leJwOExJiZa51bharRBxZ2cHAHLUz2QyIaL5fG6tzfSytm0nk0nju8PDw/FgmJOIjo6OEHG5XA4GgxDCsmmXy+VgOHDOiWr2UM0Z6cYYIjTGFEUxn89Xq1Vd10SULfJv3ry5Wq26kJ555rmQ4v6VK5ubm6tuJSIS/fPPP88Eb7/xerdaWsvD4RCARNTZui5t7l167zcnGzs7W87YrusKAwcHB83i9Nmnn04S7HgC5JJStiNPUYkIBCSlKOKq+mw2fe21V8b1k7MmFM51GoDIB0/IiAhEl4uV92Jal9AUeXdcCVzCWuCHHJpE1zmNiGuBmCBRWM5OwZoUPaQAbKKk3vjo3UXexflx3Rt9z+s/DIT7AVf1GE7oCy/sqTMX5Yu+CwPr7wxkgT1CQlCUVFhHIqgJkghwSqkwrCpJo6qugveMQdOyWY0GY2MtI0uMQFSWtSCoRmtt6OJFiB4ZNs7mKNIcHp+vKncSvfc+JmYmFUZMIRCgZRIRZht6vdX6kgG7riusy33PrPzNvOk1uQcGg4H3XpOklGDdvV0jymANBYgHb73+ROk++PStV/7Zb5U7N/x8Pppstj5oTNf2r8XoMUXqltZytwoffvbuz/7Ex5az08997vNXrt01bKypTk8XTz3z3Ge/+PU/+Uu/uPXM06tmaYxJmoDRIokqAzKzFUMKQVLF3Gpsp1MksFyEFEEyieiStUH/Ha3Li/dwBJliTAYxSQAJlbOEaoiJKKacm5Qol9qSmFlIk0hhrWpqQ1MVZVXbzc0tMfzo4NAYl3vOGT+yCNOTwz/6yQ/vbNbQHoMKAaWUMwAy3wuxB3A4+wswWZWoCtkb2Udxo9H37h399ue/eOf9n1isvC2tRJ/bQ0nFEPX+7P1OXClTqgDg8d7moleAoLR2acmWD7QeAyDZNiLbyCMA4TohihUZUBgIUROIBCGiKIJANhcNuecwtItlK0BsI4dIFKOkeec94mg87GJCRJDkV20m9zeLhYggKmLfoYwKIYootim2PoYUQSnT5B0bgcAqAIqgSYKIAIhRsISkcci0Uw8KigXH7bo2HFTbQWlKg2xQBTF1hqE0aCuI3ZwgkSqp5Nj7dS/Pr59jyngh9FjqhVj7sfsGXFAoNNdMjwXU/O4gtcszz3tfB4B3a/kvH1m2n61B8zkz2SCGAABP7PZvm56e5aWksKUlIxQX80UCFZHlcnl2dvbrv/Gbf/xXfvn89MwYU1UDVUXVrm0L67quYbZENBzWTdMA9hBaDB1dQj1TSmyha5tMd3kIAKhbm5PJeNu3bev9spVl16nqeDxummYM+vTTz957617Z+EVoiRkRz05OgVhEQKQY1qHzBtAaA5JGheu6TlAra8rKvvrKK4t5e+vm9a2dTUNJkkCMw0EVvOHEKQUEuAg5zV/H2dnJJz7xiT/6S7/0t/7W35qMxvu7e1GSj4FAs5WmiORAZwBarVomKyr5DmPPIHdN09rCZUfP5XJZD8qu6zJRhEwZKTcoKGf8IGjuj+VD1mEkqqop+RAuD4PH3K+f+ImffOfhw9C289ns6v6V5WKxWMz2r17/wAvPve/5p3/3c5//5te/8dbbSwC6fuPGO++88+0XXy6G5U//zCfHe3uX+TqnR8dP33z27t07r71zUI9356ulcyaEUAxG7XJVWBfiKnTL/f19NGXwbaHx2Sdu1YUbFVce/d63bL0RL2mS2y6eabjx7EffuvfoKy++tFx2f+THf1HQdMFbS2gYmDRF0CxouRCWIaz7g7RW2l9eXI0xbDLBMUuuUQGyPjGT3FG1MLYJ3fT0rB7Vg8Ego5HHx8cXDP1cUXnvp9OpiFRVVdf1dDot6mpra8sg7ezsjMfj+Xw+GY3LspzP5+PxeLaYM2OmiD24f39nZ2dzaxJjRDSqmivl6XReFMX169sAsFwuiczt209sbGzUdV0Phzs7Oz6GxWJRVVVMcXNzkxlj2125cuXpp5/+9te+VVUVGVaEtuvmy0VVjhZNLFbMjPvODQaDrm03d/egHt65+8Rbr/v7Dx8ACJ+db1+5gWQE0RaFSsqJZVRURjyIbI4HT9699eK5i+cduYKR2hSRWOVx2/fiWFM78PIUcrlB/K5i6N90iEhv4J0pEKCqUFsqFePRERKCgiKmlPp3/YDq673H47K9n+bk3/wz7/4s/XkAeybMu11V12ZgSoBKePkZgfX9STGRIUVAopzvLaAppS4mFW5WXabJZ/6yqIpq9k7LXnHni+MYAjvLhZnPlzkJlMkM6mFZFBJzCUjARjB2oolQCWPbWWuJkJlBUQUQ2TmzWj0WRSOAZaMSs995puqvVqu6KPPUhohEWFVV14XkOzZGVUMMbEiSKEKKWA8HX/3sZ+/euq3u7MNPX//aq/eXRbFd22tXr52ezGaL1eaoXpw+eN+T2x/9wPv+9W9/4ac/9iHC6vO/+yWCCsH6LnXt0pS2qutP/fbn/tgf+5U/+qt/9jOf+ezVG7cxRiDt7dQBSKMCErIlTJo0xcLa6FMXEyj2/6DkzL7H30GPiknv5bRmqSsoOMpNGyoRSDRFwYRkC2d8F5ouVEVJZEQhhoSIhXVdu1o18+39HRAZDIf3H95facwYMCIaS0kCAqOq0+YTH34OYtO1jYHcm0NUzGYTmQh0aSQqkqqyqqggaLTlyHP9qc9/ev/KDVCxnOufZG0RJRIZFREEyj5WwJlrL3rx+EDunPZITK/p435UrouJHP9oEJUyiwxUU09Lt6wAvSqwfyOIokHLmpIqAvU6AIAEJGjZOhG/XJxZaKNyl2AZ/NnyKDOaQwjdqste/CFKAhUFRtKUGImIfAxZuwqEqGAMStTYNUQM4lkTSGBIJWnhtLZYMNYWRoVz7EvuCpS6YKOLsGxLxxWzSsKgTIAMBKKdRBDGHE1LBIzU3xNVvUCULuaudeMV3j2BPJ7NdH1cfvFHEkz/zfPMxXERQ2etBaVspL63t/fkE08NBoOjr/Zv+6t/9a/13ZiYlstlUum6zpZFjPH8/BwRf+WP/sp8PifAg4ODs+l527anp6er1Uoknp0cb+/urZqFLQpmJMMZIQohFM4hYn5mogJRz6AtmKBrGFPbLiVCij74DtlZBASdbG2evnH25htvF0XZnZ21bgmMxWQsEs7PT7a390ZVqUzM7IAWp+d3r18Pvlucnk8mIzeoVNWirBbz2Pg333x944PvH47q0htDeD49qwhVwdqCrfEh9qaehSusO57PB4PBzs4WETBjSpK5XCF0gKgCTdMORhaAZrNFbimuVqu1B55HxCwlbppVWVaiEVCyJTuoXnyhmeCkKVZV1TWrDKasvz5AhJQSoVFVzTkJl77Kvvz66te/SUSjQTWfzuuy1hivXLnadks06py7fefGoC5W08WXvvJVr/vFsJqeLJfL5vzkbDyegH08RIJvx8PBjetXvv7yq8PxZulM1FhVxbJpqrLo5se7m5Mnbz/nXLnq5M3X37iyvTF99FCG1e27z7zw7JNff+m7bjS6ONv5rHFjW5WTn/z5X7nzzHPGFjeefOH8/Gw4rI2lEALm9ePxQM+uhH07KVO+rLU5xenitC7Htly6dymlVbvMIEFKidmG6BG1bduz2dmdO3d6hWNKiJht64dVfXJysrGxsbW1NZ1OZ7PZ5uYmMx+dnmxvby+ms5deeul973sfrJX/+eTZb/D4+Hg4HN66dSu/ruusoclkExGd0xjjG2+84b333pdlmVWQy+WyWCwAaHt3Z3d3NxMsvPfRt6PBcHNzs67rZdvUdV2WtYicn5/fun3Tx2iMRUTnXNd1jNS1zf17967fvA2Dwc7OTrNclKVDY2Pni4Fj5ma5JGBbuBA6Zw1VAxDav7Lz/DNPffPTr20MNx61bQixn5nwB5Qtl6cqyI0M1cvlF7yHjPIjD+qZzhmHRwAiSRZiWJxDszAl55uIWY2TQR/4ITtLVej3SI8DjvCyWP9H43Dv9te5+OiqivTeDetjXE2yKFezryYDGUTVpJoQDa6FdSkzZESAjQ9RmBnYez9gE2Nk5AwvlWUVQjbzBEFYzGaIiEyVqSRpSinFSFXVV/PAWd8miICcFIyzKaYMzhm2zNz5d+lxAKAoCtVEZLOxTcaPM5sH1umZKclwOCRqF74TEU0JyeTWc1k4IOfbDlROHt5/fn//V//EH7n74lv/31//dOHw/c8/V1HhV28/c/eJz739yhM3XxgV7EgHg9Fv/c6XP/OFb29cvdu1sXfQsRCjb4O88+D4mfc/+9/+2j+69dTd0GBKCRgAhLHXczEzIqgIAjhjg1CMqsCisu4PZ6IeKD6GMN9dMQMAQPRcuBC6kg0zSwqWgBAsUwyeDddUSJSUPAFY5ui7RbMaDeoXXngeDD94dPDqW29W9TAAeR9KBmcopmSIR1V59vDNP/iR913fG4bpWw41Azy5FU59qcZ9/3s9hvuLJEakkHxdDV98++QrL35v59pTbRJrOYSQ7XaJKEjqQZq+mMpVFyHloEyhns8OF8DthTXxujHZb16yxz6k3jF//UxTHqv9lWemMQKR7YJnW1jDXrTxwacYk0bAWRt8nBOk1DSFk6A4X6xOGxEEYs7Zk4RERIAKOccwd4gBCAQ1OPWkFIMnUNBkEFDjiGlcVYXBipkBnDGFQUPeQCwoVQwaF5hit5izs1aK2HlnaVSN1AdkcCbL3UhEgBR6VxpQTaKaTc4BmQyAPLaZvaio8rd2MXJ0PbnBuszCSwMs/+GiJ/X9O9UfOtX8oCPrvTKvQEWrqvrLf/kv37hxQxOEEP7xV7+U37a7u6uqZ2dnzXJ17do1Muy99ymmlO7evVu4ajwcWmtBdLFYLFbLtm3ffPPNe/cfHh69BaDO2dPTk9FkgwhaH6y1MeSExJRNR/Mn7YWNvq0qAcuoUUSWbUBJzpYKVFemjarMXFWo1K1WUNdEhM5470HVFAUz+xhCCMSAkoyhB/ffubKzvbu5wc5GH21hVvNlCGFjZ8s5MxzWIXSFRSaApm0xVMaBakyRDUcfDHMKMSpcv3b9U7/1r/77f/7fPfvMcyJy//79wWg8mUxy2nLhiix+VNUsmMj25nmZjskXRdG2LTMXhQXQGGNZliGEtm3zVy4pZRI+IiqqrJ0QYN3AQ8Q8bSJwBoMuo1+I68jt2Wylql/78jcGdfmNr33TEFy7dvUTP/Hxbdp++63Duhr+wi/83Ox0urWzffupZ1966aX/9h/8w29/+9vNcvXs+w7e/4EPXJyxWS6a5fyJW1f17BCvXC/YjutRBEVO09OjAtqf+YmfGQ/q5aL77usPx6VLi9XWpHri2p745bXt0ddTl7y7ONv5vN3dnBzOl0NX7N9+lhhOZ/MYw9CCairLQdPIhQwHLq36mcDovS+ss2ywV64+HsF9mzyXrSnFGDUJiFZF2TRNVVVt2x4dHe3sbBGZ8WCsqszcpYaILHHXdQ9ms4cPH969e7eqKuvs1u5O13Wrrt3c3MxP9c2bNzOwOZ1OB4NBNaiPT092dnZSSkXXZu/BsnDBJ8O91f7p6el4PEbkoigG9Wg0pCtXroQQqrK+cf2WD+3J2dnbb7+d8ZLNzc2cXVUV7tGjR5PxeHt7d2dnx4fQswGcOTk56Vp7+9Z1RYwxPnrw8JWXXh7t7O+MxrPZ+RiH9XCQvaZAsdwYa5IYY1WUGtV3vhgMREVXK3YDa2B3Z6y+MTxyyIyCbEJKAOsJWnv7xqzkyfNyv7wRgmjSXpP4Iw5c84Uvzz7Yk8LWntqISGpid/LgTVBx1iy9B43GlOvAO+h7f/r41+XRj73bu1yaHy/4XutZD7/P2evSeXqtUD5nhhOgby5+n2ozIwRrqXxfBCiDWLSMmVTbE9LyOCRGIM4GWIiooF3XqepgMMjI6KptyrpSwdViiUq9BUfOElEF0Dz2mNkQheABNEnMSzzlbntSBjREqpoJpKpwgST1HzcGVY0aVSMal3cdRVEkH7LE5OI2lqVrWxd9BERgFFViK2QBOUm8fv3Wp3/zN28+9QRReP7ZW1386a+9/L2vfOF3DQ1Gk61XX3pZlI+n3eHx608888KbD45/+0vf2bzxdELW7GDMBAAhhJ39a5//wu/9T/7UL964sZOCz7p9EAERYEZEwygaY0pkbIHUxVZECFBSyEVhPy0oPS6zHw8wvRBIgChI4ugtysAWBRlIySCDiG9bIsoGDMwoIqvlfFBWlcPnnn7alcV0uXrtu98DU2A9OVo1yiZGTTYJ4KBwTIQppnbxcz/1ISsLleAsS0pRFFEYCFIGktaXugZMBUFJOKEgsK1Wgp/+4tehmLRR2WqQxISSomgitpYJ+0CqbHGfW969X3sPR68JkOutEQgQgSD0Tqz5KWOAnE6T9TXZtgAiJVVVENZeDUeoREklGU6SVotu0bTzxnchJgVRzGQoZ9UIBGUwBZAFisawFwUkKgqUBACqSWI0oAWRBo8SGJLFVDkqGN1QGUJpqGSpLNcFM3QkSbqAEAmESA0kSV58hyLOkDFmY1JmS0zLpigq0YgIlk3hXO4go6IhBu59NUREFbV/ZlNKoD3F5b3l1MWf8d0+NT9wD3Z5QrsYjb9P7P89R3ZNcrbMDqLf/e53/+P/+D/9+Mc/3q667e1tgL38tu997w1jzGg02tzcRkRXFhsbloiyzwKh8d77rgFNZVkOx2MgunPnzsc+/on/zV//jwDEWLp99SYae3h4SGv3kaIoYggxRsMOEZksIrbzqTVoCgKNIYSiKJdNQmPZlatV61Ooh4M2SopgDJfjcdc1gJhHVlFV7XI5nZ9v7e7MlwtVnZ2d7e3tToYjWxS2dCkFBGFQi/jcU091KW1tbyJpXRSpWZ4cPCqGQ21mPgZMWg0HIQRNqhILa40xxvDtGzfHw1HbrXxIUdLJydGjgwfXrt6oqqoLsawHAHB6euq7eIFQ5A1nUQ5C6ERiVRWN74JPzjljXNO0KaUcV5pSROoj7TfGoxQiAOgl7ldKSVIfux5iyDPn5a+yL7/eeuvhKy+//M2vff2nfvITg7r48hc//8lP/tRHPvqh/f19a/nsbDo9O5nPFh/5yIcHV/Y3NscGaTmbf/1rXzk4OPBdLOCJfJ7C8vz8dHdne+/O1e2Nary5v1qt2uh9u7q5v/2Jj7xva2MQ22Z2diRxNaoL8Ksn79wx5Fe+c4Q7m4PD2WMF1ptv3791/UpZjVdh2XpvDeWwLeLUdV1ovWMn0Em6GOVrIo5ICKHrOnQQQihMWZblhfIRHx+PNy7Z+D73Vmaz2XA4xD60EZbL5fb2dkZMcjfz4cOHg8Hg7t27OXposVjEGJfL5dbWVg75VtXNzc2MbKlq13VVVQ2Hw2w2IQhN02RQdzgcAcA777wzHo83Njays0hK6YknnkDE3HLOiPG161dGk0lZDxBxY2NDVU9OTq5du2aZ969eeenb33nn4YP8aYjIFO6tt96abIw3N0cppcViMazL8cbo8PCwmmztbG0npBijKZwstFutDh4dXrnmq3oYkiZry8G4SJwN7tkOtAuI9MyTtzZre3I2tW6cqR6wzn6G91RL724v9pP6+njPO98zPV1UYJcnnQvkLCvsDMqA5OHJI2Doug5E15yVdTX+fRNcPkPWuspaLkd0oU38ffUFsM+SQ1C9MDrEHwiiXHwQ6JdVWF8f5t7NuqF6Ic9MKQESIgoIsQmScvMxx2cxG2OM912MsTYDKcvldJ49wC5MwpxzGZrK5jSGWEBAkjMGYiRGRJIopNC2rTGGyRCRY5PdUi6uPO/SunaVrRddVeZZKW+7s0Qo0xarqhoMBtMwo1zAqQplF1MkY2eLJQB+97U3Bxv7J7PmfOl/9uf+0HffeMdwKRqIYGtv/yvffs0wbY6WD47PJ7s3Yq/ubhXSYLyRUjo+Ph1tbH7ui7/3Z37lZz72sQ99+avf3djeR6Qs1VBBACUkkcygAmAyrrASfEhEpCi4dkZBhMd+vxdchUwVVCUF0FztpM2NyagqMAkokiAkNcQpJlegZTubnw8G1TPPP7dqFr5pfLf87ptvJTLKLgGez1dRlAF9lxwDAIWQBgOzODv6g5/4wK29SVg8MCgimAANkfS+D7kZSooq9LgUzh7RxOBjKsc7bx+vvv7S90a7txm4bVtX1nkasewys8cgPRb8Zv48KgJkReSlh0Lzv0lRsx6mD5mXHlfFnO+VWwsEoCrZCJWQCZhiSl1KMcQ2hsWqAeJl55s2i/5ZkSB3URGZwVikjkQ61lhgqiD4dlFkJpOCASCIgOIYB4ZGpcNSHKkjsgilY8ZQMKKqIw/Js3oXIbYtSHR5WANYg9ZaZnZ2BOuwo5xwJYLO/f8Y+9NYybIkPRAzs7Pcxfe3v9gjcl8qKytr7arq6r2bmzAcckhBoEgRo5HImZEEDCDM/JE0mD/iCBAGIiFAgIYcUoLI6elpiktz64VsVld3dVVXVWZV7ntGZCwv4u2+3eUsZvpx3D08Mquauj8yXzz3d939+rl2zD777PvyVIRrSsQgjiyUpP4Bok8G8MngkgSIGQLHJdPxYYKFKzlDEnz0SI+mWuXTIWWdF7/+6Hq0/OMjT/qhbdvkOyzLmf3/9r/9O0SpGwx//298Mz3tP/7r/+l4PL5+4+qwP5jNZk8/+8zu7i4RjUajixcu7+7udrvdPM+NJgCYTqfn5+c2z8bT+WQyIVp8otC6qqq0sUqhQFTKyJLPk66Dc46s9u1cGYLCHh0+uHrlYqHVZDbnNorSqTnNzNpaq40PrVIm+FYpspmxWnNRFGVnXlcJqigG3Xk975aF46CjatpmYzianJ+Oj0+3t7fnrsm0Ca61RefOgwcWgJ1DljzPY/RJXL1bdJp6LoGznunmBaKMJ2fGmLIsr1y54py7c+fOeDzudrvT6bQoijzPO50OSA0AKWdIXCNtaDabXLt27cqVK2T0P/tn/6zX2/feTyYTkAhAzLygCgAowNlkmly9nXMPp1/SpNSaBOZ6lWvtUrPr7/79X+3obHfvcjV3s8l0Mgt7e/tN07z22mshuG7RTW9uOp3qIjNG/fwv/NxsPL5y5cpsNrtzcP/6Mv36/Gc/c+f8wc7V3eefunY8bvY2ulMlx6dVnJ3+7M/9yX5hfD2LTehktpvrw8Pjl154Ljd6Opm0zN3O4OrF/cPj91fvr2nkw49uP//MDdcGbYyQgBcFgogaKTO2rSIsZQARMa2bBCQgYlEUs8kUAEir9Y6sMSbpv3Di6wOn+ytJeTHzoNcPIRCgMfZsPHHOIWKSouh2iyRRMa3mAJDk7IuiqOs6xjidTp1zInLhwoV5U28OR4kg6ZyDgEVRpJJlY2NjNpvdPbhXFMV4PI4xbm1tIWIQns6qbrfvQzg6PRmNRqCIAUYbG+9+8H5WFltbW+fn58Ph8P79+8PhUClzfn5eZFlRFE888YRz7oO3389zI4LGmMnEp517Mp0pKTNjOARtpZNnqLVWOoYWyACgc25nZycZFnXLLgOBCCglwiHGDD0qAFK72xsXtwcPZtMpBJaQlDfXRbZwjeyVcrL14LK+8uBTudEnHnrkNwv9rAXZXYAMoWYHszMgCq5CFFQqyfCyPCL9sH5OTJ5c8vCfn3jOTwyIS27y2qkWcwRr+eRCS2n9bSNCEtdedSkRWAFr0UoSz1o0EseY6u/gI2pVluXZrGYBgcVMQ1VVWZa3bdvr9TqdTtu2C8hWRIJw2lkFFhbUBKiItBptDgnEaBKATBHHmBS2yRjDmpB8cERJKwrWd4fUr8+yrHEtABpjFpxIvbRkiLEssxh17VptNGq9iC9K2cy0rkGVG5vP65ntbnz7298bO9RlV3f6k9dfV1knCESoyRQRMevvzOf13dNal0PHEoITJFLALOPpBERnRdeLtM4fHBw8/8zzv/mvvz/YuiRJqByBOYBASIuLpPXRATggJ9KEAKgwuSwsnJ/WWYFJ5x1ARMFCs4EAAamwNjMWWJhZiSRxbiIC59rp1HSKp29cE2AV29P7d87OzmonO1efrDz42La+CdFZkyNIlIAcOEqe9yG0Z4cf/cx/+MsZNJ6dIhVjVGlkkUEkIib9/YfrRwEBgGdJ9geobCX5t3/4mgdbKOPaoG2eSjtliEEUacREI3vkxgGAtJQW1PvFClcCEOUR+4kEoKa/1Mampc0LGn+ys4aIMmuqqmnmdVs3jgEDYOsDkAIh0tYotdTDS6aD6H0bfOwQG4roZll7Ooi+W1qrQbMUCgdlbslGbglDrzCaonAIwWEiZgCLRN/UilApVAhGo9HK2JIIEu9WK5Rlgy/LspRIJUoCcvLpWjQ9WFFSDE1vMEUBtZQDEEjm2YgIRhGotMsuaCrL50SRlJimG+dhWKBV5vKpDOzH5mT/zuPTMSrLsrTxpzXsfXzxxZcuXrwYPK8TbHZ29ra3d2P0x8enMcZ/8c//1e3bt6uqcsGl8LiztXXjxo3Lly6NRqPBYNDr9Trd7jPPf0ZrzRydc7PZLJlJa2OTlmnkpeOZxCRUFqMfdLqtmweIMOhobuYnd4uyzEV1OqOp86ENWZZrYfZBZbmAbpsq13nbNo0PZqDdbObGYz3o9/vDKBI4dspi1tTet7OacmNd7d744ev1+aS+Xl2+cc1aSyK+aY8P7nSNPW9cp7AxRFILIKBpGmOMRmLmqqr6/a5zTmvdtnUSBt7b2wOghRaV9yCUdsnkT6i1TjyiqqqI9KUr14Coqd3W5o5zQWstnEQXFFHSSmSSRAvRIpIXOSLCkkYbw3KIEh+hRaWDmVeq95cJsK7cbN5MxsdPPHH9xRdffPrpp4ebw9lscn5yjogXLlw4PRu3dUXagM5Nlj325BOdTm88mb/7Xy5Mhx5//PL0zfeqs+NhxxDZC9vDO/X83uz03/8Tv1Aa8nVlyCirx+fzk6P7ly7s93vleHKmFEmMRaYvXdx95bUPH641MlXt0k7g2jkDAbAxpq7HWg+QERmZVrlXYk4Sh5DSr7Is796+k3jK6yvYObcww1rMOAgR5Xle1zUzJ9HUbrfb7Xa995cuXZpMJrPZrGmak5OTsiyzzJRlORqNkvdLur4bGxubm5u3bt2aTqfb29u9Xi/NSyYTydQbQsQ8z8fjseeYZVlC1DhCsvcGoMaF0WiEqHZ2dobDYafTeeedd7TW5+fnzz777L1795qmccEbY/b290Vka2trNptZa5VSypRXrly5fPny3bt3vfe9bt/mcPvO3aLItoa9UbdLqEMIlqWazdvJOOsP2AelqOx2puNJE5rtje0E1ilDwAwIApLlObAkgl3ZsY9d3Xnl/QOlstxY4NBGRqSF/MJPDjHradmnY8p60vNjD1k8DUQwgiSzvXZ8DONTkxOg8a0TZIUW8MfaFgMsTVESULwa0g4hfKooXb7hT3UNFgczKLVo4UeOMSYsjX5CX1VEBBbgV0ofNaBB0kRKJAkdee8LLJAwBQgfIiiKIQikksClosq5VikaDAbseD6dpdTfex9a13qntQakEAISpAbZ9va2MVZpmxiHzrm29SZLjYNFtyUJuiqllX54/VMdkoyJtLKpJimKIroFTyLG2LZtnuezs/Msyzqdzmw6hSXXQWkTY4zKA6FzLWZ5VVW5zbxrx+e3x/P6q1/76bzo3Tk8LTrD4AkMRHCIlOdGh9i0nhFRqcgQI6M2wLHX6374wc2f++lvSORcK/YoUUABgUrimVrryEBaU4xN3bbOERBg8uRe/2oFFg5XqTUMSYMBAUkiCXTKYjTsZyAKpFdadi3GNrp2Mj69evlCrzt46/UfWXcs7Dudzgs39rd3P3PnePytl9/PB7saaeZdJ7OkVPQ86HYKy7lWlshPxz/zpeefuDxqzu9qjgBaGEGTD2EFJ6zeI61WnJAhiDEoEJ2Xh3P+/e+/Odjc94FRUXL601p75lVfKYm8PLxvHu2kI6hVAhqXLXRETLgfyaJXLgDzpiFlUCtAHTg2jZvOq7ptlDHnk3HrgtaWkSIDkdJaJwsjYs9uJjEoTM3uGKMvM5OT5OIKX5Gqrm9lueko8ApixygLjGGWKVQKnW+BJwhsSLEJOjNa6xAEgNSgn7Ala63WhMBZ8jxWi1UnIpQZpa0i8iExDVTgmJlCJApJnhUxRmYRYEQhQmRa2ZInXBzXrtwqAqzw+MXPkKBWWuVkKz7DosZbJmHr8WQVDT7xG1wD+/+YzGz1hPSiHBf0iUQFq6rKtWGdV5Rm+gBsNC7G+MQTTzz22GNt2yaQeDKZxOhDCB988EHiDm5ubn7py1/O81wEAShN/GxubrbBO584T7GqKiSIMTofy06ulFKkMMOmqkSBzXTz4buvvfcKAACa53/5T21cvFYHadt2azg8O83b4BAgU7qtagFBjb5qAAg0YeROUSqkKgaI4tih1QC6zOjjjz+uz8Y7Fy7VdXt8fLy9s9ErDEVfjccQAwmwD9oabVXdNDEEUhQCm8wG5zu9TsJijDFxqYQQY7TWrMjc6Rus69o5NxwOk9h90zTn41NErKpqONz48MOb0+l8OBydnp6mqXaOUWQharNqpKTrv+LTw2J042FGvnq51Xe6eGqMQkoNh8Ner/fme2/95//Ff/bcC5/56OOP9uqt4agvEtu21drev3+/N+vu7e9DiQyYlR3sdB58dHt1xsevX6jb+Xt3Hjx19crxNMzPj2/ffOdXfv7r2pj5vEZWR+eTyWTy8e2bSsPGqDOdnRCJ1pkFG73vFcW1y/sP1xAgRzo/G+9u9TJbiA8IqIzCqFO4Wi1K5uRhRzFGTIuSlERO6U6n111fmmVZtnUDACnlqqp5GmwUkZQCt62v67qp27ZtN4zt9XrT6XQwGABAUqWbTufvf/Rht9tNbtne+8PDQ0Tc2tpK+ETqGNbNQmo1uU/OZrP5fB5jDMJKqSLL5/O5D8zMs1nV7/eLTi+E0LaNc+7DDz9K8EZZlukzXrhwYTgcwhLhS7VOAt601qFuTk5Ozs/PmbnsdFBRv98/Pz9v29ZmOyEyolJklFJHhw8uXrsCisaz6c6FCyorlVpAg/PJtHWh6JRZbwOAJfjZZNIdbaIgBCm65Zdeeuaf/9vv5QY7YKtZDQIcH/LWV5yqRXhadx8iCpEtKQWSyJurgJXaK+ux5hNhKEW6sFDcQmbvY91MzyC2BJmPERQBAIeF3zljUgcXWGviKASjVVU1RJSq5FQNJ+BzPRSuI1rCDMt4KowcIyoiRN82AKCQjNbORwRkCYQEpEUEhBExidcLIiABxwW9FwSBs2T+F53JM4VklWVm4SiEkTlgaGNgkAgcQsgAAFiEk34KAMfo0zsNIbSuFhBjjIiwxE5ZphEeZazJ8tb7Dz/6eLS12e8PFegyEwk+hogGBSRGT5SRAllKta2O5JQamsYaqudzq7SEGEEEhGNgZqtyIex0OlVVdbvd2XwCLoJSVmetdwBolW09F2UmKPPJyXBnp7cx6A5k8t6H0+k4ggleRJTzdQjBWsPMvq4QlRYVQKJEpXTjvAVSEnOt7t6+p8l87YsvHZ2MM6U9R4gEhEleN3JyqEaOMbSNEsgKE5mq2qEyiCIQQViEiYAImaMCRCBCtDrTSllURpOSEKv5pJ611fi+qzMdR91sa9B57oWL1y/vbfQ6P/vi9tZwsLkxKGymFILBVvXzovPPv/mDrf3LSvdDCKRN1smBY24Ao+9Ze3h6+Kf/0jdUfY7RQ1J+VcZHQUVJq3B93HFhjIyYWJVKKQ4AOv/D774zdXqIBoQRFSIKJwUzSvw/5AS4xkX4XMaKtQ0+kTUVwILaj8SAjKJEJCnUaGUDcwyh9tG7EACndTOvq9bHtq6tsUplpigREaJnDipGZGdQgNscQjfXnYJyjUajVdIrCiVCBBu9np/wx3XzmT0znU4NBkUCHDqZJQDAKIo6aAgUSJTIIpTuPN0pKAn8wmLqFpCT67NIRFIhBCJMiuXEgSNonUxyYnJUigAAFEUYwChaTAwsJN94wc5cINQLPlwKBwCAi+pzwd5cIInLyJYC1yfynk/8AMt9KhXhsjY0R8sqKEWYlajEKgStl6YJ8E6oHgilfSfhUmk8QKmHG7+PzHXd6XREmcjgXBCRINC0LsYaFeWmrKqqLIoQQtu2m5ubnbJElgWoI6SUSfMcsJQR0JoS6N8p8+AdaaMIgH3VjL333dyeTu/rDCVgdPXr//LXXvzTf3506cmj80pivT3q3Ts6K4rO+aRWAty04n3bi2WnDCDRhZODB9vb253ByDlHCntlUc3m5+cTo8wTn/3cfDLtlRmR/vjjj5954vrB/XvVZJxxMEZpDUg0n8+V1kRkjEqdsdls8tj1q7u729+8ezvP86qucUGfWDRtg+ci74ToptN52pJOT0+VUkW3E0IY6e2jw8PXX3/T2uzo6Kgsy7PTsWsXXFIAJKIYgi0K1zTdbjfLMqVUYHZr+tXMgKhCZNLJBorXkzNYya62zu1e3Lp+9fJ7b73+M1/90mOPX2/bptvt7l/Ync/nJ6dHRVEcHh7fuXNncnL+hS9/5bIuGCnLLKCs6+izq25c2+/0Bu98dP+9dz8Gk33xpc9YjcG1EOKHH976/iuvFt3e9vbo8qWdTrcITWWtretKyFgJAHF/Z/PhqgU1ns3ffn88GQ+uXNztdwcKVGymk9PTzgvXmMPK9SWBokkQ1SWvchYR2d7e/vjjj6fTab6mDTufz1EgTZAmaK2u6wSApTzJ2tw5p0gnaZAkZM/MTdP0+31mNsZkZdY0zcHBQVmWOzs7KcdKU4rW2rOzsxhjr+zQkpqX7q7r16/nef7ehx8cHh6GELa2tvLCOOe2trbOzs7uHjz4zGc+g7iQzk9jJkkK+dVXX33ppZfu3bu3d2G/0+mk+/Pjjz/e3d1NP9t+P3VFm6aJjEl5//h4cj6enZ6et1WdGUtEbdt2A9fzWX844Bh9XZtOx+bZfDoTkSzLJvM5aWWyunFe55kxup5NiqIHSOzai3vDQSknwbNrS2sqzz4us6/1Ak5EVkQrZkjSUIskhtcLPljiUn88Jp+MHjgKNw4gkvbt7Ay4JbRKKfYCwkLIzIzy42YxIYWtVQGdSiLvfUK/HqlKH6XZigjHCIlqSoQo0bsvf+krTz/z1Juvv/G9H3xXoQEAkEdgBmZetH7SmZFSOayFFIgGsVoZNBqJiHSaWRCIElmhE2lD9AQROCkagUhRFMyMwMH7pmkSkpqiRt00iCqEIAjJ+UqR9i50+4N/78/9xdv3DsaT+YPD49npWXdj1LGZ1hyCA5AsK2azWaKs0loXKkV5IkqEjITMJ56+tTbV+mmStyg6aVcYjUZnR6eImLj5giDslQLmoJU6vHP74o0nu2VH6uYv/vt//uU33n7r3R88/dyXxmcTk+nVPaKVSUrIwiFJ+CIikpwdH37185+79e671bz97Gc/87f/9n/3+JNPqyTVgMpzSNknBA4A9XwemnZrd8fk2cHhETEBRwEmYEI2mgwhoRirUTi2bVPNXVPXbRu8R/H93Fy8uHXt2qVLe49f3BvtbvQ3BmW/Y434TKNVoBGQIwcX2wpI3DyYIf70V176V7/7HQ2QE6lOzgwQo9FaQdSK6rOjF5557NqFDZIzQABQDISoBFmWIxu8EuJc3k/CCACksPGhKPv3J+47r7w12NkH0pJMWggBk3aEgCRcixP1U0SYUTjl/MgcV8MZAETAsPAdYg4hDY0CKDLKBZ7OZz5wE33V1NP5XBBAUbIxtsA5ewySWc3MGrgodWFUN8sNxa4tcsU5sVWQacw15pqskuCbyDzoyrj1k8yNtMuyQIoRWEKwBhFRkq0koRJCIdFrXElEBDFapRlijimcCiECqaSiAYthRVAIkHwahLVSLMLChjAFB0oD0iywpGwmU4Eld/XHA/CfAObxJxPnV6CXrM0Ppfi88mZdj37rKNrqb+PCtpzSnbUu45l+v8y3gIgmk4lrg9GLgnb1TOccwUKcZXHDwsIUMqGtrnWpTptMJleuXOl2u1tbW8PhsFP2AEBrfXJyorV2MWhjU8xMBBtjzJIDDXU9z0vlW4cch93iVLwRcT5YnTuIb73+8vViZIuBc81w0HNA00mlFDazBryH6OXszClVdjuolYjc+uD90WikFGmtj6bT45s3gdTOhcvPPPnUH9357r0ffB869okvvqgIZpMxKZmcnSpmAIrRJ0/GlNzUTVUWttMt6np+967rdrt1Xbdt61xyalnMOTVNy8zakFLKWkz5Q9M0bfApkRgMh+fnY2vtcLDRth6RAUhYAGXBc9LatW3S1DRKpyjkvX/I/cIFxswLiZxHKIAPdb+adnb33i1DIcT2F37hZ3u9oiw1Yjw/Pzt6cHjl0uWy021bn2XZN7/5rTffeP/5L35+e3/vs194KcvLmx/f2oYr6TzTyUm33zs7vIsh9rKsO9oebIx8DJnJX/7+az/44RuPP/X0Y08/WZa5Fs/BK6W8bxFFKSAJwmHUK1bvL8uyqjqfzZpqNg91AGFtytsfvf6lJ3cyowU9I3PkVQ3By+6vUkqiHB8f9/v9brdbFA/PCQBGae/9fD5PLIHpdJpluUisqirNmgJQGklN+fJkMlFKdTodZj49PQWA7e1txsUmlODfjY2NRV0CkJ6PiLO6SmzodGt1u917D+5vb2/nebm/P2rb9vT0tHXjXq+X5/nOzk7Z7bdtu7d3QSmNiN77e/fujcdjANnY2Lh9+/bVq1d7vd5gMLh3cLCzs0NEzjmFcn5+Pj0bHxwcpIvWNoFDtNZaQ7du3d4cbXTLTt262rUD2wnRHdy9t7G1Xc+rc3W2bfPR1q5vw9lkqrW+cOFC4AjJGVMpZbSPDAohEhm1t937E7/803/z177TLfebJkYfCU2iIK6S8ESy4SVJc1XJJW/Y+Ohg43qcSvHn03lY27bADKgBkazKbZFHdz45X6D+ACARREgRBwb14zH81tUxRmC0C509SPizc82nn7wImsyYbKmEkgC3MAPz88995sknnnj8xmPRux+8/F2RqJRiRgFeSOIsD1x6JCcYI70tA0iAiakQQmCtWTSBMEIQ8Czz2FbehSxnIFoUW4sGB5G21gpzNZ+zIDNH5igsHI01be1QICl+WVtmeddH6vS2Ni48/thnsvuHx0cPDg7e/lGn3+11ihh942oBqqrKWrveH44gIXiN2phMpFlJDWlrYJmcpUsUgivLvK5bpZTKNHMgTSG0NjOKIIZIZAzQoDM4fXA8nvks72T2Vka6UxTsAxEpMpzMsJEYKSJoqygACbgY8jI7Orz30y+9eGVv75//2j+c1s3OhYu1d6QVc0BElqAVOtck5oGEmGkjpZqcnjXeFWVZdvPFBht9aJown7V1xa4GX8e26hb0xOX9G89d3t0aXNjZ2t/bGHVNv1cWmcFEwxcWDigzAgjOs4BP3zMzCYAGBcguWE2Dbpedz7MsuEYBaDBahCPnBX348bt/5c/+ZZupZtxaRAAUVPLQkiqtN46JRJESgTQJkH6rs6h7L7/51v2T8cbVC65p1YIfAIFQAJARJS5EE5SWpC+ROPgCSQ0Ooiy/YkYAxJgkOCzZ4Jg5gqY2+KPTs5PxOMYIINqAit4gFxo6ue4VWa51aOvMYFko59pMozUhNPNRv0MSc0sGkVAyk7hYoIm0AiGJwoR166Z5rvMCnYtZZkQ4YCCQyMIgPhlmkyJInk4pcUnOBKxRy8JsbAEoJ0SKIyCjLLohwACRAzAsOrrCkCClkAh2SlgDUEIBU53GyYh8QQ9I38YngatPH5/uJ66Hjk88J1Xs6fcrpaEUHJIjcLq7ExCVGqmrXYOW+g60lLQwxoCmVA69+OKL3/nD7yuliNT69ExZlkoTAIQ2AALqBaRGSqXGWUrHXdsaY46OHgyH/dlscnh4eHJyAoCTyZS0IlIGSVg0KQ4xON/tdtMsdp7nifBQlAZms9DMN0aDD7X13ACRFwZU7cEDFgwhAooxoanmJ4cHIBrzTLRWptPtdsdHh9ApxPPk+BiYsd+v5vNqPC763XK4UU3H0+n4ey9/DxDh0sXBsNze2rCKFMF0co4SyiIDYOaotYosywKDq6rq9soQwuGDB9Zaa21Vt0VRzOc1LNOvLDdt23BSnkcGBDIJ0ANETB5BG5vbIjKdzkMI0XskI9yuUM/k1pT2OG1VVti2btbXgyKDGJBI02KeaZ2D/pD7FYITUPfv3f7C51+4dHlvfH6i9YAgvnXzJhHduPEYMxPBF7/0+XpS//63v/dvv/mtJsSXX3+dtKlnza8s069qPt7d24To+kX2+LUrs1YkRGvMR+9/9Pbbb//yL//i/sULKrcnJ8faKvECgtGztVZQJIa2nZo1U6S6mn3muecGg75VsT07+/jWR1U7PT2bXrzwQqew8+Y0N9S6BUBKRKl12DRNt+xMZ5OEV6XPvJ51pk4lIqZWYFKVjNF3Op3T09NutzseT73321s7s2reNO329vbp6amIbG5upvV37969tM1vbm5mWYaIWZa1bZvgqHTyhBM0TeO9T27q1lqT2fPzc2a4ffv2aDTa2dk5OT2tqmpnZy/LMpPVWtubN2+9//77e3t7jz322PHx8c7Ozv7+XuKipeyQiK5du9btdmd11e12CVghdfPy7OTEe19VjSJdFEWvOyiKog3xbFp1u92eD5PpTGsyZX56fPT+u++M5/MnnnkWEEFRr99PpdV4PM7LAnUQoPl0muV53u36pkGwJNF27Jc+//z133//BzePKesWed64RyRtFzeACMQoS44UE8GazhY8mnWlum39C/okGBYCkNHWIqLRmBusz8+byRkQOOckhtRESgElroyGHo2bMcZer5dn5cnJiTEWlnps8BOO9RZAmt4BEKXNY9evXrlyhYjOz09vPHbt61//+re+9S1tTHSBOek7JDm0ZQhO8/4rMzsQBaQX7rkUgRmEESIQKBJmz9ELRKSEiqQiWEJ0MeRlQajTeA4AGGMa15rMNq5dNByVatvWGJtGoLUy01nzrW99W3X7WXe4e/HKY8985trli/c//uCjt94Y7GyXZa91tVGqaav15qOEiIipwEjfTtM0RVGgVkmWEBFTgVjXdbq2WuvBYHB6eAg2J61d3SZGowLRREDYVtWF3QsMRhp3eHAw6I0wukxZicEqUkrPqwaUIk1NbBURt0IAPkZrrUL9nW9/d+/S9fc++vjzn3tuc2sQgiPSIUQAQKLkoYvAlnC4szmr5mdnbd/o6fS4bRsOLjQtB98vi+v7uzeeeWxva+PC7tbmsNgadXul6eVoDWD0HCvCgHAe6hBjVICCarExs2RaC2Cq97RGZgABIuME67o+Pz/f7W4F541SSCIBOEbSNBuffuULzz1140LTnMGC/0cABMhp5JJkQb0STPnDwxtBEBjJ5r3Tir71/Tc29y8672PkPM/Eu2WjjBWiQlKIiOIYkUgEUSDNFiFyYkQSJ1GVkMYRQEQJqCiF0mhV007cfN5F1xvpCJQZBAllpnuZRTePrikMW2KbSwxtt2DIXAxtkVldYJ61mVHC7aIzYIiZYxQksNr4GEAgs8QctCFFYAwly0etCZEwmb4AAhGn3GiNnJcsIUMIAKQAk083A5AIRyHSaf+LCycDUUoBUfQhGQkoFAwiyCRAmiJilIXoLi9QKJKHg7A/MSD8O49PdwzTsYK4YIk8rej8SR1ppUew4pAlBlKadl5RA9P5097f1C4VRY8//vh81v7gBz/o9frr1PsQAtJCUzCdPMQ1VmCKxcxpFhJREPG73/3uv/iXv/3PfvN3Ll285mIoyrLf7wfmBw8eJOO71WjaAgIPURnN3g96xeHd2y9+9vOQdULFIAHQgBjYvRiRtNHReyAV2YNCrbTWujmfKKWN0c+/9OIbb725ubm5sbMtMRLH3JqKuD4/HW1s5RvDstNj5sYF52dFpjtlhjH0OhlMzvJhB0BC8GqJR4bolaJ+v2uNybLMaJ1atCnYzufzGGV1eUMIZVkmXa4QQpZl1tgkEWqM8SHOJpOmcdG3qDKJgVQmIkSKJTCzUgpiIGuZuSxLrfV0Om3rxgUP5eI6t20rMaAxsMxP1I9VvfcxnI+nWxe3PvvCsx+8/86rr5z99Dd+ajQYoEhuraubCDIYDJRSz3/2hQfH42+/8sPNnV0E88arb3aKzuqMCvGJJ550jr79/TcLa04nM6Opdu3x8fGXv/zF69cu1G07Pju3mlCAlHHVvMzLCEIKYowxuDQ2nI6nnrhutZnVlVE4HU+V7WxvdNCPN4c9wqiQXXTK6LRko7DEmIhQxpi2bRNrKl3N9azTuQWXmYgSdyqt+/F4nBZ6t987PT2t2yZJ/Z6cn+VlUbs2TFkpNaurrCx804qIAlVm5dHR0dtvvJ1l2c7OjjEmiXi1bZsKhW63q6xJjO22bWezWb/fL4qiqqq6rsui6HW7Dx48yLJsPJ52yp7Oss9//vMicnZ2Nlget2/ffvDg4Kmnnrpw6fLR0VHZ6eR5fnJycuvWrScfv8EhTs7HR0dHdd167wPEFAdB6dOT+d17DzZHg6Pj0+zCliCcnp5evHx5NBrxsuYDbZWxzrk05pbnBUAUQmOU9yHzbEy+2BWUbI66oxKonfT7m3cnDpVeKWHxgrOa+nmBQ0wI2MqUhplpja6Yvo5P15efLCgRUSlCZOZmVoERmU3BuyIvnOfIDAQQo48OhRIVd3mStWDKzMyDYW86GzdVneV5EidDTkDOmhWXEABEz4CISMCMhAKgtdna2up0esF5EZnP571u+dwzT//+t77pfUtkFsW6CClEWDTUaNVTEgESENaQKaWQk9EeRpAgqZmAnqgJ7AGYlGNhIMA0X0NlmWdFJpF94zVqtCpwTOSPKBhdyPM8OG+t9a2LRYwxNnW1s7Vd9Hpb+5fmTfzonfc++uGPXvji5y4/9sz+5Wuvv/bKwf0Hexd2UKLmLIaH4qtGJy1BFUJggdR6yLKsapuF4WmMaZ6XlsdsNtNal71hVVUCAGQAlVJIBI1vOkU5n50U9omT0+nU5KNuAST1+Ul/Y6eJ0Cm707PTXNsAPK3nRb8bnCcA7wVIjUabr73+VrcoOxt7r7/53le//MKl3ZFIYGFri7pxRZGLRGSaTsaumt88PXH11JJ0Sv3C1YvXdy9uD3q7eztbm4Nht+wUprDGakRhgsAxxDDnuXMxErBS6NGnUoEomWMsJC4RUCIAxmTJLCIIIqC9oM07r3zrB6IBLfnGI2gOTGgRuNTq+OTB1//0n+kYcdOmsFn0AUAEIjITypIZn/RJAESQBJPEA7IgBSYynR+88t7r79+9+NSGF4+AbdtaQpSYpCBAAJby05FR6SUzSUChaEUQxbsKgRFBYVTJ2whFiTcQcgFLynSR+mKzXMA3TQMYQbwIEyBlYpUm5KqaZblG4LJkQwZYW00rsIqFktwSgwiCtgvPShFJ6heNd0gUOGmHISKisYmhD8l0QGGMUdZs7DXh4uKISkZqIJDGNgUYEBQwEYoACgVhZkFFwACoQmRFREoBR4kCiDFGjw9nMYgeCq0t7tDFl/FjYtEnwtR6jrX6pyx5XT/pT9bPtgJRcKGAA0nPhYgSO2I9J1v7WxmPx4oMACCq+XwuIkdHR3lerKdfh8eH6/zah18EoUJSRBIiACjCtm1zo8enZ88990wCh9IrzmazTqdTNw0AOOeMUp2iUGSaeVO7OiuLGCWKM7kqs/69o7sCn3vy8z/z7h99BzcGEiMMtgd7l0/mTQF6kHfmVVOWObA3vX6WZd47jmEw6l68fOH2vZvHh/cGvWGR5VvbG8cnJ2W37HfLZx5/cjabfe9b38w2Nnv94WjYywmgnc9dde/WBwBOUenb1mjdzfM2tCyIYDj6oii8c0WRpZRre2vXu8gMMYpOLFsREfGtA2MgjcpqK8sv0QXPro0xZmWuSIvVzgVBw5FtpqOPwMIxaq1NliUcsSxLACGiolM2Z2cP9xwEINKGUtvxE7AC0RJq+uqXvvDUY1d2t0YX9na6vWJ396XMaohydnwmQ2mqtrcx1MZM5y0QXrp+Nf7ghyHCg4Mj30Y7KFdnnE2r4Nz21mg0KGf3qtDMVWaZw40bV7vd3nx2LgAKoiZ0dVXPq05RxMgiHAXr1vkYJFbQX74/DA8O783bJsuynd4ws8WsnnXLomN1rqmetRoXlOEFlOocAOQ2Sxn62dlZWZZ5nq/K9HQkm9KUwiNiytIAFlJGIjKdToOP0+k8z/PuoA8AdV2XZXlwcJDn+XA4BAA7GHa73ddff/3u3btPP/30Cy+8oLXO8/x8en737t2yLEMIg8FARN5///3NzU2lTEoNk3Ju4vLP5/PxeIyIvf4QERHUk08+mZXlgwcPut1uYgJOp9ONjZHWent7O6nhX7lyZTKZhBCuXbtW17XWymS5RJ7P52nstq6a2awCgH6/f/9wjKTndWutOj0bA8je/tbB/bvzutq7dEVE2rrNTGHLDtnMt81sNjPG2NKwd9bm2hYQKNQNEaEiRNMp7de/9OLLbx+MvdOk/FrogVUDMnVYYgwBlVKJgpggX63tepjAJW9jlZAtGpBryzTLSwZ08waiB3GkldGqns0pTxSrpDAkIKC1DvLw5I8ciCkbHg6H9+tDIoptA4ifmFhcvS4t+2urB1ID7vjwSBMqjVtbI++HV69deemlz7388svGGhHgh1rl6Y8YQCPywkycEFkMKQIMzIIYCbywwsRI4QASkUSACZyPAAmBQ0IlIsEFiYGs1VpzCD4ZGjN77xXibDYr8wIAsswaqySGPLf9blmfntyP1OmPtrd3I/Orb7wFrn7pSy997Ru/eOfWe699/482twdEJI+OgHrvEZmIQCSVLlVVuRgSYQ4RE+KViImpUU5E1ubVeKKLTvCNiBS2mFfTfr9vM6pr31bTJ64/dvPO3bsHd/7C//R/Zsrht77zcj7aaWZx0C1FYNr4i9vb81DP63kBdntjNG4dSzRFobM8N+ad999TEB6/cvmNN9+xtpyOz9q2Pbs7y60e9DuPbw23B1f3tj63vTEYDorRsOzluoOSkygCEY6h4TDnKgQOCU1gDorIGoNGJHLkqBQBUVKpTsoF6YJorTl6EECUGAUVIZGPmJejD+6d/svf/t3LV5+qgrN5xh4QVIxstDT1+Mbl7eeeuCjNeWHJuwqTww8mwnsCsEgW1mcPawBcCj3kRe9k5v7NH768c/VxY8u2aTlyltnIAUCIAVEUgKIFuNXVOnDDwVtrSdi1NRErwn6pFbJC0MRaYRLLUoIWSWNQHACDkhhcAxJ6GQJwjCGEYIzVWif5hs1uHxQYo0PrWWKW2Rgjc9RKc4ioUJFikBgiEQkAL8lGCIACIXCeZQmrSH5vSCQCDMn8kZGFkiZfugjJW1MYRBQRAsuj1HgEiBwpMRYIlSAvFP5RW9O2njkiKhEA0ogLoQ1eSsikcnGJTy/1/H7CsQpQn+42/tgny8qOJnX9iJYrakFWTkdqPn4CMJM1vsGKCrZM7CTPMwBUpL2PWZYlzswngPyyLFd3JS5jb1IyW5y2dUTEBABw84P3v/GNb3zpS1/6nd/9Pb2SKRaZz+dV06ybxCS6TlKj1FojCgEyu5zM/XsHujsqnni+N+iJUl4X8yjQtPPGDy/1g/d5WXQ2BixSlvnkyGfWKIL57Pyzn3l+NpnUk9nkfHzv9scXLl+8fOVCkeUIsrO9cf2px+d1tbXZ39oc7fY6tz98+/7dj07vH5SjgdXgIgGza2phBqW1przT9d7nuXXOiQ9VVc1ms+FwuBCkUCb1dlPDKoQgIFprIEj2TQmSTKG+LEtjDAiKzJuqGm3uVlUVo1daC1CMsSg63vterwcAiSNbVdX67qa1DoGNMakET1Sl1aNr6Jdvv/DSS8Ne8f47b760/wIhHh4cXr16dTjc+M53vmNM8bR9RhdSVdW9w4OiUww2Rt7Fydm8kw32Nh/OKmZFV+dlfxA3N7offHTc7eSenVaocu3aioCF0RIF5whZaeh2y6ZptM6a4IMgA1n1sGI4PTnIijIvSII7OTstsxxjgNgMOiX4RhEAxxBjmnxO20CWZaF1aYdI63I0GiUG/frq5LgwWATBuqlCCMnLDggn40lZlpsbW0R6NpudT88HgwERnJwcPfvs00dHRwtvLB9Go9Hly5cvX76ceh/Hx8fn5+cb2xsxxoRmMUOWZY899kRd19ba+XyejLQ7nU7KCJMGmHMuNZW2trYODw+PTk/bth0MBjs7O2dnZyGEV155ZTQadYqMma9dv7G7u2usdc4ld3BmFpKEsgJAr9cTXkCdm5ubvQenbevv3rvvfF/jgJQMhp26rp2PWVH2RltZtwvWQEStqK7nRHR+fj6UjgsePFMbSbQxhnRiw0pRZhe2B8NCSdaZRHGuXVOyTKNB6R8IIhKZBYCFtGKQEEK320kMufUo82Pj1+rnPM9DAM81IBVF0c1x3tQgDEmyjZbSI/xIffmpM0ZmbJpmPp8v2p1pCGUhnroIyOuUDuGY1FxTocrMVVWNdvfatg3OcfTz+bQo7ZNPPvmDl3/AzASpYyhLcyRY1PTr7wIWH5mIGEUrEhAGVEQ+ughISsfIIuDZE+oYhSXEKGnXJqLoQ9u2UaR1vnFeIymgGKLS5IIvOnmU4FzN4o3C0bAHEGM9nzRO1GneHYxGOxHiy//2DwaX97780gubvzj4t7/5G8PNkdEPUXGN1LoWUcDoBHQlpQmdLaY3siwTBB9D49osy/IsCyEj0kqj0lqi01bN5/PSFqPhZgBftTON5vTwwdVL169f2hkU4cKGBeUoHEvMXNTaZ0ZnF4Zbu5cuv/zWq1zVpoDHLu6++u77qIhyPZ1PimJDoj89Prqyv/Nb//Qff+3LX+lvdy/tb+5t9gZdszHqF0nVxhAAMEQRH/xEONYxAAdmVkiGlFEKlOLFlO7yycyCkRQhEHJSek94bSAiUhy5BUzMWRSWNNHKZD11f+vf/J7KhiGqGJsQQqZKAQTm0qp333rjP/iP/tzIhjA5F4WUVC6AEDgx5UkIBDiNIgou3BQZAYQVMxCTfveDjz8+POvuPTaeVsYYa1Xg4COjsJJAwAFAkAyCBo7+TLHTIP28zI3yWJeZygwoqAgioWiIhEDCwgLIPjpliJLwIYLSIFEgRgDo5uVqLGbVQTNoxUcU0oQ+9bi1icxKa2HmpMuXtvwIMUhmbQghMpe5oiiiOCStYIaIQqRIgMgohcBIhLySaVneLIlLGoNLgBHigh/HwCjpvofIrIVIoUm9ShEJ0SBE0JzYpooCpBZjTN24tcpqQSODR0oneJQN9uMiyqPRJv0zBbdV1rUKZQkqhqWm8aodmShc9Ogs5GoYHJeDkKvMDzHFw6hIF0Xn1q1b3/72tzc2Nkirtn4IYCMiINtMCywimBJNqWbzgZnT1L/RJklI/tW/+le/8IWXPr57/4/+9//FcDSoW+e973Q6Ozs7Bw8etG3bLbreNWdnY2tzY7IQQlEUjEm8SYzG2WyycWmvngXOBDPFGlmrTBsFajaejEajBtqr166dnZxrkMevX4m+tQSxbQGxUFpn+d2zm5PxOUK88fhjLUeTl+18duPKpZOTE8++n2cG4nf+0a9f/9xnKIa6moMCrXOjjGJWSI45Cnvh/qBrjSUiq02ifacBu7bxetEbEQDwvtXagnDb+Db4VM2mJDXLMlBgcmOM8S66GMrB0EUnEgEikUHSabfNsizPbdu2SRlxPpvho+T6LMvKLF8JsK8vGLUaVe2X2a2bH5zk5tq1Kwkceuqpp6qqOjsbd8oBoZ43vqMza/Pd3d033nz3vbffzYvhcLgxm81jeLh95kXGzuVlfuXS/ptv3hnP5rrTdSytawg1IUYJwGQUVm27MRimz+BjdDEQaRRItJXFu+rYj+/eGW7tCCpEqOupNJNRRgSeQCkGBlBIpFRc2jXm1o6ns1RSJLJ86pWsf+wQAkdJkw7ee1JpVognk0nV1FrbBL3ikhp5fn6eBOs/+uijTqfT6/UuXrwIkafTKTMfHBww8/b2tjFmZ2fHFjbLsoSozed1yr6TcGVd18Ph0Dl3fHxMRDs7OzHGg4ODLMvqqs3z3GR5jLHTKS9cuDCZTG7dukVEe3t70+mEiLrd7tHJyc7O3snJye7eXu3aeHw8HA6VUcenJ++++fbx8XHqZE8mk8a1ioy1tizLpmmiWKW1Fzg8OlYK8zzf3CjPzs7Mndujre3uCMEaQMo7XaNsW8+BkBkyY7QyKIREAhG1AQBrTNdCbCaoPUcRYVmWbYsaLkUcXJuFXAqmR+bUF14BXYkb8cf3H5umcS6AiLKmyHRG7YOzIyAKMYoEBAVpXjqN3Iussb7WEB1EEen3u9vb26+++qpzLl1tgR+frmmiwKyVijFyDEhKIUbvXfA6UFVV47Hp9XqTyeTyhf0bV67c/PguKo1IvAABBRGXskKIaThNKADUAmNBnZWB2GiiGDNlCaRi9jGyUnOGinAOCjMLpIFQaw2I3nujyGaZCT60bYzRKh0Cp3ouRFHGBAaTKQZxwcfoe4V95pmn3nrzJmgNbVO3wXmvMzu6fr2tZ7/1T3/ja7/4jV/5c3/h3/zWv8zCGjkyBqM1i6SSLs1X9vv9EELj3WKHWI5WeO8JMCkDIUuWmaZpUBsEaJpmc3Pk51VW5CDWz+euGuvMZkpmZ/dGWxt/7X/x594/9L/zze8+/ezjV6889ju/++1ZNS0J883hxZ3Nm++9UdoyKmOMar3XBr2rxyenT1y9/Df+j//5Rq8YlZmSRnGjoBVfSwjihatEmWKGiDphq4KY+tKCGJkfen0yAuBC0ASABBUBxhAR0RoDuNB1IySRRIOLiEioXWSlTdnf/r1X3v2t3//+padeqFpvcuVcQFQCYjWEevLM9d3PP3edYm1QIggJSeLDw0OgRejH7PBp1xckF9W3vvO9Tp7nFDV5jE4LsGtyrZAjSdAIWlNubGZtTgIRc5PF6LVqlEbKY6ZCDB4lKIhKhFAowT/IEUQZjOIUkSbikKxyCYDSXK1EVlpHEKWUQnLOJXSZEBEICEQkLKNryjwSSzzhNmnyLi0YToiCylJyRkQsAHFBgyJJ3bFFCYcsEZZNwgUylKJClDWzRRZBJIWUARqFwNG39bypq3rW7w1tWRpVeEEGzUnnDBmYk3nZegj6RFfo/5/j07vp6vfLeIMP4XyAlfpjalely7V69ZWaMSzr0oQgrB5N+RkzxxiqqmIWEDebHf3Df/iPup2+995NJm7NvDVldYiQjELWP2k6qraxxvzRD37w+Rdf/Ft/6//29NNPD0aD/+1/9r87OD79G//1//WZ5z6ThP201r5tRB6mjyl6C2EbPKJIcN1BYSCeHt0dXXyif/HS5OjUqDIGVpkOIYCS8WzaH/URMYbQ75bEcVB02vmciAzCdD595fuvQN2ANtA0J3fuIuJzzz/jfDOfjLc3BlcuXairdn9r9K9/45+MrlzREqrJ2bDb4dC23imNiIaZE6cyeXIwc6/X00ip1+RcaFzLEabTqTZklU3gvfdtiIt8vmkaACiKIgNgkFzleVYSgJNEEeY8L+aTMSnDzISS8ookHpamuGazmdI6Pop+aQJmTl/NKud++Gj66fHrl3Z3NnqdPEY/2hhk2ty9e9cYo4357Ode3Ll4cV7VVRusteLDwZ27FKXX6fTKrjf+zTff/AX4xcUZiat60lHd/b2db/zU5//gu6/dPJnbvNuKR0IXvNYkITrvi6z0PoAiJmx8GyWCkGJYbwZ95aXnjTG3H4xFaYO+n9FwVD5zYXtvNECuQwg2swkptFpH741SzGytLoosRq8MReaqqbMiX4dYhJMDIdvMKE2pJ2XzHEjpEHu9HjPP53NSBIDieDAa1PMKlqYuInJ8fDjqD5RCZdXO/k4CKpumcc6Bg9lsdnh4aIzJsgIRkzFRGs733p+cnGxvbIYQ7t2+U5bloD/qdDp3mrvj6YQTqyPPb968mWRXRaRp6kuXLmVZ5pu2LLtKaUUakTY3t7RWUTgwDPqjs7Oxd4u7V1szn0+zoiNI52cn/cFAKVW3DvRQK5yM54cPTvudvtbatfVkfGKKPLMDUIoFxvN5NZte7l3o94axDRwDCQIJiOHIpBRI2NvsPX55+/sPpgpLiR60IaLIERhIKREmRGYBBCTEhSB1YB9NZtu2FVpo7iytYB7RoUjszvVl6nwrPoC1ebdndeTqgcyOwOrgAxCBMDESMCsVIcLC8w4R1HpmpZBiDHVd5XlWFMV8WgELsDBEo3QIUTii1gAg0SORRAYIKAQSjbarDP749PzixX3nfJmVZdntFb3RqPMrv/Dz/8+/+/dy25l7DyBARjjQgnmGvArITAL5kfBJaPPgEssMQTpaut0yUsHATZDaN6JhCqFf9CkzwihREJiIGGBe121oGSTPMq312ckpAiijWu+LPG9dLIqy7A4a5+u6zgu1NRoB3S+6m/X5MUCMk3FEUdw3hSn3dv/gd3/vpa9/5ed/5U/95j/5Jw/jAkhgIaWQI6KkqanIPsVw5uTlJ1rrEJxIdM51Oh2rRISLTt64VjyIiM108K1EUAEQojU4n5xvbG0CwPj87NKFje1uNquUjM97On74zmvGis10Ozl//ukndrd6VseXP3rAtps1SY+ArVbVeD66uodS9ahuJw8UMSFL9JqMAkTQpBAwKMCASpINACAILTWvACkmvz9AVGleTgAEEIkBAia7HZbgiUghIQiwMCGSCLNS1ruIqElnJ5Pq13/nW5vXnnReCMDXTVb2QkTSZJHP7t35S3/mK5uZak8riwYkkqKlVVV6TYqIiCwAKHGB4AIAMihq29Df3P7u67d++KPXrz/1TPQnWoFRRMigXJFbhayRCRhBEOcKhUCUFgJmYJGIIYEgaAkkRiShxGNfKIoRIGskjYSIhKitXm3PgSMgiIiPIUWVKBEIowTExRVbtcwIEURo2dCVhVSeMMcogIgutD3TbdpqOOoDKcGAkO5PAQCgxUA0JtcKfEiNT/fN6hZe5M0rDVTCtvUaWAV3eueBsLuwt/nEjc2s3Lt79/ad+3eycteUGwIZM6IRxIWcBzzaTJSlPGFKgxa9QkkaKA+Lw0/g9KvAJUufFVkbaUREpdZlvSguzaoRVIwxtaFZAiyxsZSZ8VLDcnV5k9CMc24+nweOMUYEsjaXSBujrSzLiFSSuly9txCShBglFnKCIZbtSwwhWG3uHz34G//1/+U/+Wv/606/AwDT8VnVOB8awERGD8eHh6gIUXJjF/MOACKLmREfAiBnliS4jiLfziaTw63haPLBx6roA4DV0ApXwUOIp/Pz/e2d2WQcwQ/KMkY3HA6VYBQej6e20+nu7wXnJyeno41RVVUiQloV3Q5p3dbNxZ2tBzdvfvj97372Sy/d/ugdg+J9CyiJLRfDgnNHpLNCp7S3qioJMq+arY3tPM/TfHfbBqMsACAKakXC4oMLoW7mudXMTMBaWVCESBCldc7VbWKMAEdSyIFBIkfo9XrGmCKzADSdTSezafr6svwhF8tqsNaG4LSmGKNIXKd4NE2zSL/qauabplGAwgpQRE5Ojubz2hhz8crl/rAHQsra4XD4wdvvtlX7sz/zDaFsOmt+9KMfXbl88eHrWW2tQUWasLTYK4wlnDfOmjyw11rH6Ikwz3NhBaQichCOifgsQoBpqisdhmh7c+ODjw9R49Z2/wvPPyHTo63SawWurqy13tfK6NWeHVIBIZJS4LIsT07OVpMjq9N6743VsCC4LKB1WYqvpNHfdLPNZrOy2033xnw+z7J8Op0my63j4+MEfuR5HkK4e/fuaDRaiUt1Oh2iBDMv+sFJVxcRd3Z2kmYgEZ2dnZXdfnob29vbs1k1GAzqth2NBp1ON4Fz0+lURPb29lzTDIfDg4MDz9HmWX80bH176do1cL6ezctu53R8nmaP27ZV1oQQbF70ep35fL65NTw+Pu4W+fbm0Ie2bdtq3pgsi21rCS0htA0UHWOy3b0LsW1OTo87RZ5bq4nQZN63EMnYDJQCgEv7m5cubH7v7lFuujYYt6odU8HFgmmeUViEJQrIgs2hAJd5zCPaOYtqeKlx+okwJ8xFp9Q280EcO+3mMD1bjQ1AanoKyWLvAgAGSZMWn6TBnpwedTodrQlVCrtRkwrRGWXAGBd86gRKDKjIgkYUa3XrmizLkNlq6HVsbOa2kzdVffOjj29R7JbZvbu3Ycm1X76WgjSPhYiQRMFIBAFUC4iogtaEOngvElubT5is1v3RRnV2PgkcYsOgRWlSKiQKPmCM0RgdY/QhzOfzpAfknEttXmstRyBDddt0YnA+zupmo9/tjUaQ9c1wxyHF6SnECBKr8Zic3dze4E1++ff+8OmXXvy5X/yTq2sVEYAkciAiFFaoGImAOCmr8YKM0rYtEWRZxkFijLSk92ZZ1syDyazWWDVzBeCattu1wTWaQESaxu1s7x4e3H/l5Vdb3PipL7ywu7P59rvfNZ3NyK2bn4uf7e5c/ejO/fm87mdDBDGKfFtf2Nt774P3v/zcVanHo9wi+iQ7SIqYY0QFKIRMSZ4AAJZzi6vNcrE+HnH3ebhGIKEX6aGkx4uYNCCMgsieAL33HhTpHOzwX/z27928f759ZQ8YLKFCDM57pkxRjLP9zd6Lzz3G7ZRQQFHkACEoVPAQ3MLly7KwaFQRIhEFFmRO0zlvvPmjzzx3o8yJo1cKFToEyQxKrEACSkSIGgEhmS8IpHGXh/cFIKACJSp9qkVKs7jlkrHj6kZba5at/wYeBXUeuWSPDtDgkuW9ekJ6L4n+kWae+CFyJD/pDIBA8IiVNSJG5pVbQ4qt7Fxfw/T+rVvv/uhnfurzv/BzvzQcdfKehVzO7/SOx/X333jw/t0HprdPtmxj7Thk2q5TSz/xuVZvLBGk4FOIxfpmkabm05tJ6H4qzuFTHhurj7a+3SwajiyJQ5kSrCRwGmOcTidlWXrvEyqTALCyLLMsI61cG7Os8O2i+ZvY+omElI79/b2y7ADIdDJJb6x1LqVx3ocYI4e4s7175cqVP/yj7x0dPQDg1tX7Fy5UVQXCCZIIIWyNNpo2eY4leo9SSjGyD0EZXeQ5gg+ts1Z1cl1Pjnev7kGWNVVlMHdVTWUGwmD10fEphbA9GrbOzyfjpx57HEI8PTrLirzodFx0oqi/taGtIUCLUBZdlqAJ29bvbW3W08k//Xt/94kXPjM+O55Nz3q93LkGAZRSLoYkuA0MiNTtdEL0RZbXdd3Mm16vl+QCUtcFAGKMhAxAbdtam6etKY3rLeUkQCMFxqZqU7AwxihNdV2zb0llSpnMFkkKVEQSHrlKxNdXi1LKuSaJuqdForVdX0uL9Ovw4PDerdsXLu4+du3qq6++Ojk/CxK2t7e3d3cvXd7r9TNCPW/qN9987fd+91vvvfde0d1kIQYaDbvd3kNF0ysXLtos97M5CiJ6pWLb1qDIMye6gdY6euYFLqKAFzooKRIJgskenq1p2rZuc2VskTfTafAOQ9tW88itzil6QEVJ0AEQjTHR+7ZtM5PSWIw+hOASqWt9IIUlAmhETHdL0jhNIx7p6zHGIGLCq+Z1PZtONze3kq3RaDSqZ/Myy1OKllyiiMg5d3p6SkS9Xi+xu6qqSkKsSXsiOXAvTCFDTEPF+/v7rY/j8bhbdibnY9Lm9u3b27u7yQuyKIoLFy5kWfb+++/3er297Z3ecNDt9o5OTzqdTlmWr7/5+mAw6PUH9+7de+utt6y1irFt2/SKmxvbgmRsPj+ZBhc2B5uTk/HmoLe1sXFydjoajchQmecfv//BfFpdvPaYzjtkdT2eFJkt8ww4KJ17F5rqvOiUWmlYzOdBWRafefaZ//H3Py5LMw3iF8AQAqplxoMLm+mHs0QIQJyE4OFh+rUKwYzACLRGNFl9X/3BgIhc65k5ipuPx1DNwaRpqmUYxdWo448na6RZ9un5FK/g9vb2eDxNt0ci/DKwCC4kMDWRMlGiD61SlGnTMaptZxza6GFksF/o91//4ffbWQAVAZBYRAhMiAIRAJNVMS4RAZTFBD2kpABBAarWS56r1NTyERkFNbkY68YZayGExrer+9kYY5RJN3nKb9q2TdZs2prAofVeARBHS6hIaWWBMdMZUlb0t8uL11zWjwHAdmFyCqGBpmLx9byxKldbF95+5c3sy19cXatKggIss8I1LWm12nUS6IUoisClgWKlAUDbNGRAACCERbfj2pn3vtvrWktNVRVZhgiz2aSu6/3LXX0+mc5cZmh7d++je6dXr+/cv3dP26zygTlevbT9uZeev3s0fuujO8NyU0UNGABAk2mkvnt6BGWGrfUxaCKMIBAJgJEFhYEZUC04fISJI7Q81jOwT6QR6TOSKEYiYSFhWun3GhGRyByE0VNehmDzwe4f/ujW3/+Nb11+7ktBFAeJGElRZowRyhQe3b77jV/+0vZWx03vawWiUACU0hJllfmtQ79EtEBEBJXCNDx0787Bg1uvX7pwyTdj0JAGDK1WkUPkqBESmWxZWJNSFBaV7GIbWI2mwlp2tUCOUlqwnL1cPbr6Q/hESvSp/Gz99wnaWb+q6XVXCzjGmKQWU2ZDj456fJoA+omdbP1paT9DxIziyfuvhuMP/tO/8JXHLvYf3PzNXrV52kxv33x3f3s06m7/wmefzox662DaMJPGzBgOcf2Eqw+4SqpWr5v+ueziPaRnJWQoEeeTyDAsWT4AkPRsV4nv0moTFRIiEGpjFi28NJcALPPpLDFnVgoIiJgZK5EzY4ssfyjoRZi0wYIXhdo5H2MsisI5V9f1urS4sUo4Otf0yiJJzmaZQcTZbJaSDKN0Xdd/5S/95ShBQP7KX/mf//wv/Gy3201zNtZa53yWZd1uNyQ/gWXbN1GNV+ozSsRa46LXtnNyfH8wunDj6cc//OEbMd/UojiINmXyFzk9PtwddC2H4XDQze3du3eLfsYgvWFpczuejgej4ZXHbxzcvRcRJlXdyaxv/OagH5r21/723wYlbT2bnZ9k1rraKaUIwdg8xgiRicA5j8jGGF+1KWdNXamkmpEEm5brKlXC1DSNc15rnRkbY0StlVIISmsd24UmSEpe03cNiBxjnucJZ0nLIwQWkUR6SZTr9dUlgsyQ5FG8jyH4tUeX3K+dre2iyIpMn56evvbqD//En/ylz33+xdPT08OTo5u3PiiPe1lZANLRyWGn3/ulP/ErdePfePPdXq+H4C5f3FmdcdgfACrT78F8fu3K/sd3D+Xde0VpZk2bWtCJLqTVQukkxhjigqspDMyyfnf0uqODe69mxkqIx2fHZ8cnIxv6va61imNMuou05BmkW9oYg5iEOqXb7U5m07SyE8ksHWmZzmaz9HNqyadaM5HGViVImvLY3d2dzeYpfZ5MJhop3SdJYyIFykuXLqXLnf42zUgmzczhcCirqcw8H4/Hp0fHV65cKYri4OBAmSy99Hw+39rZ3draWgW+dOZ+v7+/v19V1dHRkYvB2sw17cnJycUrl5975tk3X3/jyccer+u6nldt26ZYukDmFbVtnExmDECgCp1XjZuNZ0WR9QfDB0f389z61s3PJwi60+1v5DlpU9isqSqr9cHBA2buDQbKGNKGvUMxQpE0gC06ZVZaNY9OE2AETnxiwCiCi12LkpYdrMXodCDhp5Ul4lINfzXp88ijiwO1Bo4OJBAskHZK5PZ0xoeA2Gq8ae0gAuZbt25duXJ9OByen46zvAyh0VqLYAitNpZBhKMAGwWdfumaua+mBLDdLa5dfbzUtquL/f1Lr1l85Z03+v1hVKoJsWlbCBKS/wsshCRFlACu+R4lCQlM6seAKKDQKAm+atuMslF/VJSFC/cJJEZRqPf3L2qtp9OxMYZDmj8nImIQIq01KqVm87mPrJTSBFYpjWS1AYnR+7pqbd7Zu3LjC/k1p/vVbHp6eH98er86O46n92ByOjsZdzdHGmxvY+dH3/4u/Kn/zeKbMgaR6tYlBIJ5Se9brixYkoJXGyEzG2201ozgfUxLnRFmVWUUefakVaffOzw5vg5PF0Xnm9/69s9/46uPP/XY/g2aVO7w9MyWnRDUZD7tD3Zu3Xnwu9/5EWNe5mWvv3F8fkhKNY1TSrXRn83nW1kewkwBCnNmTYxBIUZYrLe0eS5Xw5qywHIdpiUCawnQIlZCpLVlwwggRAAIiiMDoMnyynM+2Dg8b/7er/7GE8+9VAm6trakQtsqzdzOQCjPcaOrvvaF5307VRAVYnyoevpjjrU8LO1wiybUm6++0s8I3cSmiY2Y3C2Nd43RepWfKEIBhQC8xFo+kXvRcrL4x12KT76rTyem6w+t53CP3lu0QnfW05fVb5i5ruuVDvtKuXcdiFq9w/UMb3VagOVtvszDzo/vzw/e/8t/4vM76vTeaz+wRd650bfz86w6NpVTCmq7vbvR+/Yb729ceroNra9bbe0nEs3Vtw+PJpTrmdk6sC2ySD7iktyWtp5k/qvVQlMQSbSyyXkMlsS4pqlWQlNp804bvDGmLMs0wpVEpAAkDQmlPWX1zDSwb7QSiStenYh0u931bDUJ0MACHcfGuxXWoJRm5hCi1vprX/talmVVW49GmyC0tCB/+KlPT859dDHGvCiZwQcOwQmhMUaRQkBhiZGzzJLiDcKTgw+GV56DzR7XDROBYIxxa2u7ruYbw83hqD87ZQB89fXXiGgz2/Yh5Ln9pV/6haOT06Pj07Ztt7e3DeLJ6RGXvQs7276a/6P/4VfBt489/3QzPhmfn46GXQ4p/jxc54iYGdXtloiydJNbALGTySRdwETDX32PibdaFEUIIUb23mdFnhwF2raN8WGxoZVOQkJAGgXzPE/+V4n4NZ/PU99GmHWWZVm2uqVSkiAiiMnU6xEOOq9kV2ezye7ejb3trcOje08/+9Tehf2U1/f7/cPDQ+cPnnr2mb39C0Xeu37tye3t/dOT8+vXr4QQ6rY5OTlZnfHXf+0ffv3rXx0Mu8Nhn4ry2vXLO2/cOaujQojMNs9q12ptCDURBRAXkz32Q+y3KB62Tj+8dbdpo9IdFgGgk/Oz3f3+1tYGKWAfRIQSk0GASHlfc/DAwgRE1DT18fHx1tbWsD9AlLLM68nDi0JEnU4n9RmJIAQnS1+ctP0nNJiIiqKs6ybJgyFLltmELSVkuJrPsyzz6BMMxml2uigSzStpfZ2cnDjnBoNBQpKTbH16J2VZtj7O53NjTErSF3IvxhRFcXJykmXZ2dkZRL5y5cr5+XkSqkhDxR9//LG15nOf+1xoXafT2dravnXrVlPXMUbnAqFOqN7e3t75Bx9Nz6edzGa28JEFIRJYbQCZObi29q6p5lN1djra2wPGvNMJ9XzYH3S7JQcXRZ2fH3c6XS3iJOY5oFaP37iyNei0dSRZ5FL0sI4mUEkSYk3JkxcCE0S0UkZNHoKICAjJRJaXPuiPLFPvPAsiaoWKxFWz5WxYRGFABKaky/RIVvewF7nYHphBIKYmSAhBaRtjBCIXvVIKlbA4hWAsuKaR6GsXewqfuH756oWdF556qlMW0Yez0/PGh73N3s6gfzw5a4Q8aFAaBFAAQSECc4RFw3X1QZIWK4GQIIGQtnnrPACQ0kASRZ2N50eHJ633udVa69rVRVForVNVLSxEFIUFwbWhbdvZbI5EQYAZjKFkzJoZg0VGIN1uiVoJUOvcq2+9S/0Lu7v7vQvXy+392eTk6E4/To759kezo7ONnd121qB+6AwxfnC6ubcrRByDQVpJUqbLqGmhxO1axyoSUfQ+xljmORFNZjPnAhF436JjAHYQOjZz0Qli1cxPx+cnp+e9/sa77920Zb+zsfGH3/8R00BZE5F7vf55Td//7e9ip5cVHWF5cHKARDEGZdDo7J033zyfzC7tlOymqAiEOMSU9qZtGtI3sZghhCgPt9XlFp6K4PSFfHL7p+QQiJgcqGUhhMpKoQITQzS2E6P6+7/667bsRRCI81yR+GggdjQS8ka/HB/f+8aXntsfWKhPiT2BjZGtMT4Egk9VBctXJ6JEqHLeD4fD23fvvP322ztb2zEEZbT3XhPFyKF11phFG2u5X8rCizCVN6IIE/NhkU8gL3Pnhy/3aWxpPaNaf3T95x+bga3qpRWItX4LyxLPXmXqq1+uvzotfQ8/8X5WLxdjJEBY9hwQ8aP33/rFZy9gdff+wUebHdspioPv/9BkeScfRG/m03g4O333/kl/sFnXNaEYRd55eGiC/MjaWCGR6x88lRkJ4pK1AyUpZ+Ci6Rs5Moti1oyICQUIrnWuTdEGUiYk0u/3i8x6QqVUnudpIm75oiLCSlFR5E1VZcbEGDlGhQIEBKyNMpq0Ll3durb1bXRt65xLmOK6qEFTzRenRRGAlLRpQ4PBIEYWEc8LIK1t28a3iVCfrPNwqYPdes8gw2FfROq6JjRE2hjjOXrfhhiVUtYY79tcg2rZSH0+OZtubm1f2jz60YdKWQHulAM/n+WGJpPJ+x/ebKb1hQsX+qMdH9rjk9NOp9M0fj6vNRkdo9StyUxTzy/t7Y76g4Pbt//gH/0GFGZ06WKnMB+8eWvYL6qqsjqpTdkFqsLB+zZT2lrbtu10Orlx9XqMcT6Zl2WJQk3TJHu0JKgGQhyhbby1OQKH4BAxyUx47zmCiHgfmdnHgIrS72XRjFbMDALJ5DHNSyqlOAZamRM8VP7GJDwhjMH7GITWVOURluhXt9/TxmRlcePxJw/u371z7yArCkScjGdPPPWkzQsAUEodHx9kWUfEG4tf/srnSdMffec7w9HV1Rm//a3fPz85Lkr7uS987qWf+uqw1x8N+/dODsgUSafRWitJ70ZRdIsiYLFviwJ6RPzm7Xc/9IKagQHK/uDewf1N09KT24gClJasaK3TJWAfjNbKKueadG8nsKrb7XbzrKqq1WkTESH1YkMIxihmDjEAwHw+BwBr81TNhBA63WSD3TKzNSZ56lVVdf/+/dRX7na7tWtDCN1uFwCaebXSFXMuNE0zGo3Sm0n6bCvgPRHComBZlqu6UEQmk4n3vuj0EozJzBLjrVu3dnd3mXk6nQ6GQ6XU9sYmmYXm2c2bN+/evau11p1OVVUMYIzJ87xt4nQ6LUidnJwMet1ic1BV9Xg81QZsrwwxVk1dVVV3ONrd3cZ80acH53SW9ajfNLXJs7atB4MBMhBRpojZK6ZLl/d/9qtf/L//97+tNi4BR/yEehavVcap2iBMiM2CpA8Aj1p0A0CSXYGlDv56XFYIIQSFpCHOJyfALYgViAgiQvyT6/XVkbI60mY+m7/3zjvaWiLFLDF40gTAwL6Tad/M2Yce4hOPXdrf3nzu+rXtYd9Ev7e9icxtCJqLg7Px9PzBZDze3dh4cDoXoiALQA8x/X9ZqaOCh+t5mYEBAVCIAqQBCBCU0dqoELl2Pss63lVaMQB0u90l7BcVqlXdhkvBRu9jFCSFIqKIODARxODaupmpCWkbghuOBrk2h6enp/cOadjX1myMets3nqxO+q3O6pvvnd47+tov/bxdm78rRtuhjeohnrHsyQCJCClK3XZYGhApXHxlPsY8z4uOfnDnEAS1Lubzuc1U62OZw2AwuH98GjkMh8P5vCad/+DlV/euXTO2dGKbNjDHTr8/qUNv61Ltg2u501EUZFrNsrKQEBFQk2GfMFYiYCCKkuo3wkWjh1GAVvLxKEk+7d+5Qpab8fIfSAiUOEi4EGEKaGyRd379X/yr2x+9v3X52Sb6jvISg7Zqo9/r9yxJK23r+OxrLzym3JRdiwuDQpUo6eslwaexKEJMVRMqeuWVV1JFBwBJrTuRstvgLeoYIywASYhJK4tIaY1L8ZTVInmEafQpztMn3sD6z5+GwfDR7u0nSvnVX613IdehJlkKK3zib2WZgqwSoPU/f5jxIAo/PFuqohWZyfhkWxfdsisM1pYnpzPHNG6V3do+dfnhdErdAoRQmEgpEKCHGNsqDV1naK1/nE+8jdWn4xDzPE+FeowxuQa3bcutzGazGIO1VpMqy7IoCu89KRiO+hA5NVuyzIhI29Z5XgpimtxPr5V2ihCCiLRtKxJxzWs1EZGdbzNbBsVKYSItxRiVehiEnXM208yLUhcBUBEKhOhigHTyLMuAQ3o5IkpwNi0FYLMsa70bDAbWmhCCc0EpwsSFJEDUgAoRnfcQfTBKUShMNtLm43dfe+bLvwjXLx29f0vvDJtxMIUdbvQDNO50muvi7gfvXLp+tTscdLs7McYYa9e0ysLuaKSRup2isHss4a3Xf/TGN7+VjUahnl29uHf34/eMBgAoy8K3rXCSjlNIEjyzBKUyRAneX9zf/4//k7/+d/72f7fQakyu5LzooqQWWbqMiJi8L40xWusQo/deK6uU5raNMbqkn0c0n88hNRG1TsE25TNN06zCcnpmCGHFfyEiYUWoq7aCP0b3q2X86Pbd4eYmOj+btz7Awf2jXr8TmI+PT4YbW4lge+HCBVQaCAaD3vnZ8Xh8Nj4/ufH4Eyv466mnntna2GpD/a1v/UG3N9q5eH1na/TuR3cFwCo9m01KbUWENIUkFRGEKA0dM6IipKLIVu8vL8qzZiqEgqjzjptNmtaXZWmtVPM2Uzb4NkoQEY1kjDFaxRiBUZMZDAbj8TixuBK6u363cxKFB27bOkafIpTWOilyzWZVVVVpVOT4wWGWZUoZ33hTmjwvj4+PR6ONS5e64/G4ruv5vAYFSUYFADJrRYQEk6VdSjjSEk8KFLIck1GA29vbH9+5l/bXPM81qsb5xB7jCINuL7TO1c1oNOr1ek3TmDx78sknp7PZwcFBOufGxsbZ2dnt23d6vd50Ok1+Ytba4XCYrI0OD48TQWdWzXvDTtEpp/P5xkY/xjir5oSyNdo6n4zfe++9vavXR1muSgPG8HxGWVZPz1Vuu1s7zXiqAjjXRuLOxhCUQhcwuFxhVKRJvIAIw7IkXI+sIAIrX2sRWGRdar3oTCUvr1nSrgf9EAJqowBBAkbPTQUKSRiEWXitWSSPuOgBrPC49Oo2y9q6AkBtM2YWFqWUsnkMTWEwSMNNvFCYF597/sqFvf3dzZ3NYal0aUgLtq52MTjv/+yf//cuPfHk7aPTf/U7/+b/9H/4G9f2L75zcAyACJTQvqQhSYjM9EkeWtLjWKgMLUhyzGwya6z1vgWBtm0AxGoFAVIjOzMWLboQYoxZZlMqn/J7aINEJqHonJdYZJaM1kiEUnYKH2rAqIhNqB/bv15u7L5986YoeHB22usWZrTTK7ubly/f+aPv3T+tNjYf8na/+Pmv/N6//I1LVy66xoWw0GggIklOlRxiFPYxs9Z7TwKyMvcVGQz7J6dnqQJJd1mK6XVdA2JwLcTQ7w+bxhVFJwDu71+4Pth68937D47PX3jumYOTkwdH56hLQwa11M0cFerMIiISQQhPP/7EycFR06c+JtPoVES5KAiymJsm4aQHmXZakEdyBbXg4SVtyYc7LibWHibrQSULIdrUzmcBAaPKbu873/v+26/98LkbF+dxNtSA2BpkEkIemxqVhKMHh19/8dmLm3kMFYeotPGCSNrHSIRJYvfTR+J+pQVTFMWdO3du3rw52BiFIKAoxsU2j6SUFhYBkshxsYaVAkg4R9DKLG+1hxpU65DVw5vjj1V7Wc9F1n+52mw+/f5XGdt6zpSyjbQ8AGBVZK7yHlhDwnCNYgWPpkfpJICQdlAR8d5fvfHU3fGda489hnBSoyeAw8Mz3dmkcivajXcn/PrhzOWbom2IolUWmGXlr738RJ+Gu1YP8fIeXiy/9FYjp/mF1Bz03vPSmyuBK1sbm1mWGWNiTGpzaLX2vtVIjkMC+JVSmhQiNk21yHgIUrpcz6cSPS7kKkhrO5/ORFMiMypFMZGNgJOOt1Kq9U5pgrUPEmNENknmhEFi9FpbRIw+IGgCJK1CCApQKVW19coumpmFOcFggOC9r+t5gtaSYJnWGkGY2YcYostzmxUdH9lg7h2Xpd7tZme3P9i99NTRvTthPtGYC48PHrztjo9gPgOTAaizgw8vPv5UNtjojDYRaXtnT1ytIneMaWeT129+8Narr4Jg/+Lu5Nbtp5594ujw4PjkwaDTAQnOOVKKNDEIaRWDY+ZedzDodPM8G0+q6NX/5//9/3r/vXeHw5FwyPN8Oh3HKNZa74MxxmjNMVJmEoyaLHBCCJEBQQUR39TMjCTIkhDlBLMhkXMus4XNrdY65V6klYgoQa21UsgclrwYYOY8K51ziaGOj3LQaQWFvfvhxxsbw3/8z39rcn5849rVByenWxujn/v5n3nu2et5noOi+/fvT6fz4WjT2ByEMpO9/fbbvbLzxBNPlN3eCSxyumvXrvzwhz9sXWXy7Lvf+6OfG2w/9eSNH77x3tmsRsRO0Y3MpBUzO+cb7xhAK8WLBjnjWrsKALKyaO8f2qwEwuRL1euWArFNckQhKjKRQSSkezKBgWnKYMU03Nvb+8Q9lj55CKFtm6TYUVWVc95amwh6qaeb/mpra0tEkr5wunM6nY73/vz8nIg2NzerqvLsE4IFAJubm/P5XGud9s66rsfjceLgp3wOERd2qiyp95xamU3TWJuXZdl6N5lMmtoBQLfb7fV6InJ+fg4A7vzs9ddfJ6WyIt/f35/P5ymcHR8enZ+fW2tdXNi1Nk1j82JnZ+fdtz/QCgHU4eFxf9ApymGMUrXNoN9ZIMzBN01VloXRdPOjD/b2L3b6QyDdVo0gVG1Dus6Loj6bIoExBphBXLc7ePbJG73sD2ZKFEJgTuQvSKVhjGmhsUBKyCh1OkPQab53yVBZrzVxqX/DMeq1dFlr7ZkRpVfmcn4Mxw9sZsU7kTSltm6Tx0t+1ScPJGrrSpmF6QQiqqS6ImAVQWwubgx+/osvPH55b6df9sqMiHvdjhI2SKFxDmLT1J//0lcuPX4DdrYuX7jwv3r88Xdfe/Pv/Q//5Pru9VsPTgMgQNLYYVKESW9HVkyklAgqEEBaOAkKM2otQr5uvGuAAyACakJ0ISBQ0phOebbSumkardUiRIpoZevYzmdNlpssU65p89Eo2dghx7atbV76UJfd4ZW97Y+Pj4t+f3d7YxJdxCIyExrO0TP2n33hg9df/YAi/MyfT9fK6Ozpz7747huv7GxtIj6CRK525TxfzHwZY6p6JiJFUWSKzs5OFKnBoHd6eu6btuiWiOKbRueIAMbqqp5tbO0717Rt7Zwztjw6PBlPzoJvsyyr6oZ0HgUzrSP7NO2utY6Rkbkoi/HBvaMHh/lnrrj5uOxq8T7d+1FSRqsQGCRA0jZPkinL97xYb/Jj0gjEZZBIYiC46LiKCCAzAAuPBltvvfPeb/7mv9q/cDlKS8iKQKTVAEgqBhdcnRVFDvVXPveMRX8+nxZ5zgKIOtkoJOvv9Su5fmitY2AyWkTeeOMNUBRjBFJJjTX9t/UNERmtQEghEgIqSmIrhKRIpdWyinir9OXTX6L8OAAM1lKfTyBYPyldwyWLd/1iriClVRaeEBdaevAlGOATQBfAApiRtdnDVYhARKN0Wv+Jy9/vbxS5/tHdg+ujzmaHhJ0abU0hP53IvfH42Ck13BNTOB+0NZEDLoRzH0ns4CfkmusvnXjWq6RWlhy7FQcfEVfhPeEiVVVprUIIzWLrTewf0JpilBCCMtpq03q3+GjGIKL3vq7rlUteeqHIvm0FAPI8b9vWWlsURQzsvdfWuOBiZES9/v6XjR0TfUiv5Zqm9dEY410Kv0pr7epGKWX0wu4lvQEklQg2WZHfu3ev0ynKslyl11luWu/btg1pZtOaGGNGuQgSka+rMqOP3n+t6G889eIz7/z2v4642czuw+l9SLTuwKAtAFfzaRV4VtXVbH5o80FmY9sc3Lo1/ugDUKpz6SKQnp2dP/Hs41km77zx4cZmX4JHJFHCIoTiXZtlWYgSoxRFsfC2YXnr7TdGGwOlEECYZTobJ4H+xcVckova1q9WXWrgJv2OpBKVvlltTNqsRQQQhYFApbZjklpt21ZwYeaIaw6b6fDeO3ceg+il+2Tin61W1yL9+vDjB+9+8HHVtF988dk20sHhWa8/KMr+0cl4MOAbN24Ez/PptFv2+qPR2dn4tXfefP3VH2bG3nj8+sUrlwGG6Tw/9VNfvnb98mw2QavPZ/PX3nzt8tWnr13eH791E5NxBwsAAUjjk4oxExFLRESIkhcG+GHzcWPYKzJVWAzMp2eHV/cGg14JwWmtGVSSF0+XL40nxKWXe6fTEYlJIWKdi5oO51xRFKk01FrXbePjwk9Ua3t2Nl5FjTRc6lxIwFjSrE//PTk5ERFGGA6HRMlbIGua5v79w42NDRGYzarz6eTJJ59cQdPp1k23cQoiiWuZhgA2NjZCCHlugbLENuh2u7NpFWO8e/fu7u5uv9+v2oaILl68WDX12dnZcDjs9/u3b31c1zUI1VWrTOaqJjWpow/WmK3R4ORkXBgdGI4Pj3r9QlkKITjnhv2hiGTacIhtXQ+GG6RMWzednlBeWEU2tKgUMwBilmVkFJQ2+FZpAo7bm70yo4pZoRiFXoSUZhYCYpbE3QRFafyPFIAsBrOVUsySRorW9QazLHPOiXMqz9fRykWYBiaIvp0BRw4OQgQUBQiAEQBkgRwsEaaHmubL4I5AJkZJgBMRAbIC5Mi5Ub6pnn7s8Z/7+pd2hiW08+AbZSjLiR0DihJDznzui1+88fTTbQxZ23LbUnfwv/yP/uo//sf/tFdgaWDqA0uadqIYvTEKJGilU6FMiLIgyYmIqAT4kQIWAEEk4QjMAAwIzDG52BVFKbIQXUyjVYEjEKZpEq2zPM/bNiqkZKdbVZXEUNqMGWKMxqroPUHYHOR/8Ju/Gwyp0UZuiyp4ZoDMtk1kldnR1uALXxp/9N7qWn304cdXLl54540fBWYgiFFspkWEY2DmLMvTJpEGshJwy8xVNRcRW2jnfHRCgFlmDak2+CzLAVgpVVhzcO/2pYvXel07r852969/+w9+cD5vLj924ctf/coPf/juZOacJ2WLhl2ITZYpBhFUwkSKXctAtqqaEFmRRGAGx8KKFIIBUQKYhgwROAmRIEkyVhRZkwIGSDl62vlS5bZ8DqKCEILWgCySbLEZ+4PRh7du/uN/8v/d399AqIwIsWQm8xFiiKQot9ne/sXo2p3Bxt7OXl03uc15LcNJevYpDqT9fz1JAiERCMEXeef09PT111/f2d+r6xrQg4giJBRtCMwiezBGU1rEIBKXmQQ/lDxIH22l8AnLXOcTI4er+2uVjqSnfTpde/hBluFRls3EVXRdPQRraVmqu9IGn5D+FHjdQv6eV+hROla5UaKKwnKPTP9Mg1MpjDQcKd8QsS+fHsJRC2RMZhiRyeqsawdly+S9t5pAYgQGxBDiQ/qdSDqPIrX84Iv5hlTGi8j6R0/rxFqzulzpbYcQADCEZMbFqSmplEIkrQ1EWap8s1amritFWmkTI6fhXJtpZq7m0yLvSOQsy9LNlTKAGGNRdqfTaVmWLAvCeIiIQFU9S2/JGKO1aZqHxnrIyMxCyaocVvAVQOKIL/oMSimWkIJtyiYXPZwsC0EI9Wi00e/3RGII7L1PKWZqgqe3SqS9d6SBvat8kxVW4vzS7uDeuz988Qs//dN/+pe/9U//Ubm/0d99PrbBRZCsrzu9st9roidgnk22TT4/Or51ejY7OQXvst1LnW63aurm/PT641fzzH/43uv9fic6DxydbzqdsvUNECqjlxQINiYDAKXUhzff/5v/zX9zPhn/l3/wXz07HBqTKaXmcY4sImxtFmP0vk1t3JUWbsqxeKkn4r0PMaqllc6CAyCAhL1+HxUBYd02DIKKhFOtIsyBeQG3p8N7r7XNcsPMITpjlQ8PdbUEls1HRr25u2nOTj+8dZdQZpPJdDp/5unPjIb92Wze7Q6qqr11+57S5Yc3D955593v/P533n7j9aeefOLB0eGtX/v1vwb/VTrPYLMPOmb5pcHO3vnp2Q9efu3unZu5xtjWZXfklTIKfQxp/0Bc7Cu4HGFQGsO69S/GK/vbhw9Oy04+6trHr+6XqlXCmMzIyKRRglQ6eO85Blz5W4VFc3dFtFqPILPZTESIHtIO0hJsW7+5uTmZTMqynM/nwiBLPngqssfjMQCMx+M8z51zzNF7n2Jc+joNqVTbbWxs9EfDO3fubG1tpalJZk6SAd77brc7mUyapkmFRdu28/m81+sRUT2bV1WVJlmStNilS5estbPZ7PGnnmxad3R0pIxO1dJ0Ok16BOl2TTGzaZpUk9WzWrzXAMCiSc3G1fR8trE3alvfODebVTax7by/9/Gdq9dvaGMndb1ojZHpDTcDe+8iaCSi0+PjcthVuQ0hGCvV5JwkWIOGqZpXjASE7COZTBsjEjEZswhzjEwERNYahofV/yqKrUpGiZGyLOG0qy+LmUlpDoLRUWghRmO1S0SxBdEqQgIuSK+2DXl0qusTW4gsWjNJFxYDSNeajUGhxCGJLYwgWG1aH10bOMhoa5NFPTg63e2PRACVBu+efvG5v/bX/8P/89/8Ozs7l+qjcy+MqAklCouQUSrEgEnvc9HdeqgEa60NPiaRSQEAWIx+QAw6L4EbjriUBBdmRiJEbJomZe3M7NoQQhCJgQVFFGlmjgKzqukpo5TxLg661mhC8TtP3yCC6fnYDomj5LbwngGNLkxmkLodvbbdfvjGmxcvfOO5z33+9e9/Z7SzmxTLV19TXdept5JSZ++9zTQRheCt1SEEQ8pBzK22xqY822orjBJiZjW3bVNPr1y9eHZ2trk1uP1gluf5jRs3Qgj37h8Oti4EjE1oi06uxEoMPqR7WeU2c1WlTdYEFqUFSJAFQOtEq2JABkjeYWn6ViXKeVoGn8Y2YCmvAGtjd0SaV8WYIQWq8X442Lh9594/+Af/YDDqiwTgSEiGpJ03tig2NkchMDOPT88O7t35i3/+PwAAEZbUEUQE4VVXfD2tWa7Sh79PRfwPXnk5kYiJ0gwAKCIkSqDFApIJLFEYFyy1lTcl4sPUZ/US68XnCqZaT7Y+cXHWMWlavO7iT1LfYJG1KCXycC//xOeSJa8gFVrpr1b0l1UhukrIVknbJ86WYvgKcMI11FxI1Wx0MaS8JALP4lClCxwA2INSpDUk5yildAhsl0PEq8ueNqMVGWh1pBpYhJfUqIdoIq+k/Jf5Ii2thBBj2zaJ5U2ESlFACTFABK118D49M8aQmcx7R4RF3hmPxzYr6rpGpY3JnHPeR2uz6XSKSrV1bbLCufDRR7eUQiLa3d3f2NpUWfn2Ox8kkUsi9QkCLi7JglEYAMKCc0zpDaQ5Yo2EgDEEWZaGWZal5uOStxPati3LfMVFQ0QBtplRAVrvXF0pUAZ0rpXNCucdYlNY2yF+9Q+/+dWv/ezP/U/+zO/+xv8oO1ubm7sZFoHK2sWjB8fMobDUzuf3xzM4nwAoQNW9dFlbczY+k9A8+5mnMczfe/tH/Y5VZM7P55qU0rr1Dhf6RNE5X+bFcHe3zAvf1pk1CqDb63z44YcIUhQFIs5m89lsppVdiPj7RWM3dYrTvpxgPO9i27Yp69dLGd606UsMQAoAUuhL225at0VRpq87laPr3K88zxHVqsaTJei7Cj6L9EsATk5OFIiLkRBAwJrid3/3927duvX1r35VqfLNN988Ozv7wz985fe/873X3nr3uRuP72xdYKHXfvjmL/zyz8IfLM44mZ60rip7G/X0bDDofeELn3v9tffG40m3UwCKa2vRmfd+Op9bm4UQSJkQQvCOiMq8UEiwJt1bj4+ef/Lx6d72ZDLZ2LySQRPmk37nuriqY/Oq9qSQgIikbuqk2JHY/WmFIWJyX7F5tl7zJZQl3X0p81VKeR8TIjWZTFIzOO1ntWtJkc6sqyoOQUT6/X5d16enp1mWpX4lgsrzXJHhKNrqEMJsNiuKotvtDnv9xJrXmpqmSRT7lF7s7+9/+OGHdbX4+ofD4fn5udY6L/LNzdH5+eTg4GAwGOSFHY/HnU5nNps554bD4eWrV9K6mZyP5/P5++9/mBC7LMuiX/gEI1IIi2kjADBI6Ys/PDzuDLvGaGEkUNGHdl5tbGzl2ty/fXe4s9PrpMlTQtJAUSsF4jh6MsZaW1XVsFNEBgDsFbYwUGny0zbPc1E6sLDBEANg0rlZRlHhGAOAWKXnC8fTR8i5aX+QEEApm2WkHuFKE1HVNDmyBphMx4DCPiyiYUIzFhyvdYHE9MOPcZNcRl1JDyOiFlEASku/2yU/FxDnnLJGHFBUmdE++tlsXvmjBlRne8/0hiYzwAzd4k//2T/zt/4ff6fbMXQUF/C0AAFKZEVa0nDncgwyRUUCBBYXHQKhIuEIANoaEYmuAsAYYxKwHg6Habuy1saH5BiIAkALCnBq5StFAKxIExCg1iYPPmoVfeuN56JXBsWFNZuDzZkXiCFGp7VSJo8QJ7OpEf/Yk089vDyd7od3DvYvbIPKWBQQ+8Se5AXGnMiUqTpPVzPdRMzMyHmW+6oBJGZWhrS2HCHXxjVtx+bGZm0zH/avALdXr1348M7xrMWT4+mPfu8Ho92LTVN1i+LZxx47PDs/ePAgumhtTsIheEJjM33h2rXpye3K+c2y07ozu4hrEZBBAqZe78KuGgAQ4CEhaU1hFABTRrtcgyCIhKDShyIDEZiBRHg0Gt25ffdXf/W/39wcAQEReOeAqJN3H3/y0uH9O64+b5soRM6561euXr58qWoqoMUOj5g0XhGSSMoa6LVA5ZfsRUQERZPJ5IMPPhgOhxES74QRUeH/j68/i7UtPdIDsYj4/38NezzzOXfKe3O8mUmyWMUiWcUiqZqsbllqGC1AgB8asqA24LYNuz0I7X5ow4D8ZsCDIBuG2/3QBvqh3eVuqVUSVSqp1KqJVcUii2QyM5lz3pt3PuOe1/APEX6Itfc5mUlpPyRO7nvO2muv9a/4I774vi9QOk+TTW1NANCNliDabL2EAsgbPI/WgsSriBRcyck+kw5urtXVk9y8udlIYF3AXIXTZN2Y2zyGn/mmmz4OrbU1m9xFj/OZbHjT1+ON9bx0PpGbU40xkgVFloMAsEASAu3IJiYxlhKIABnJkFO1rNbVdLr6Kf1+73LXWPMTAMD79Pl0EBE3Y2T0ne6LQzLGsAQyGFPT1mkj8yIi5misSSkkjgDchjZGb4ybzOaIJEAuL3xMAIjGLqt2aLLt3YPlajUcbp2end1+7tZf+at/bXd3d3d3d2trZzAcHx+f/tZ/9Q96/WGMyWC8mnylpF1LVq23MMbIRAwoiTmkqA1cYbmcdahOfs7pnUgJQggCaqwQX3rphZOTk/l86VzGbJLIfL5AZ8A6QLtYNdDr53mvDtwTqBazYd4vbfb7v/fPv/3rv/mr/+5ff/OtNx795A1gAzgGsgABMAVKIBFcSfu75XArAmJeTE+e2tx86Yt3w+rirR/86WinR2jqagGSyGbWusQxQUocUbrmidaEBuWnP/3pX//rf/3VV1/9T/9f/+/t8ZamlXVd9/t9TrC5s6bzQYWUGFGKovAxpCgpMTmncH6IkYisM1nuVisBEGDuj0YA0DTNYrEAAEmpPxwyM1FXTnTY9nqxxBgBotrqxhgB2LnL9IY5dunXfH7hkKKwARCAHAHQXEyX9x88efb0t/+bf/CP//Jf/rezLLt37/4Xv/ALv/aX/u333nnn7OS4Xi1+49e/9Su//I3m76+PKD5x6PfLJIAGx/u7X/45B29/fDYPTy4q53IvUFWVWY+8RUQyYKADANW/Z3N+L925FUJ9tDM+3B75dglttAgQY9azftlaZ0MIIFFDmzGGjI0xImCM0ftW5Rv4aSAdABRftdY2TWuMcXm2Wq1UUqurkIistU3dZllWLZYb+zUNWk3TNE3T7/cBIO+VWZYt5isRKYpitVpp5z7Pcx10gIgvvPCCvr+1tZVlhTFmPp+nlM7OzvQBHg6H2tzMsuzx48eruprP5wcHR0TU7/f39/enk3lVVbdu3ZpOpyywf3gwHo+JqFqu7t+/v1wub968qc1Q51y/3w+hqzg5xN3d3aePnjEAGmeFq1U7m1c2c7PZYmc0VMx2MZuXvd7jRw8jyguvvgrAYDPg2NQ1GXHGgiRAHOzuNr4WRmMM+6apl73cLl3W6xnMcjHWB6l96+tWUuq0j4JEpD7Xm8AKV4rjTahlZrBWwe2ruRcAdExV5JyihAZYhLAzNgUUQiX4oygl+TJ8Xz3IlWNeXQxiEPtlUTezn//i67mhat4aFCJLsi6BQrTWNVVzdLj93M3nMuucscAAhBD8jTs3v/XNr/2rP/x+vxyFigUlCWvLIKVIajwuAmsLz+4rIxAYtAYRIwgIuzwzxiyTV/OAyGBsUdft9tZQcVYfI4AkiQAQQvTeSwcfk08+N3ld+15ZxhhFdGgIW2tBCBH7o4ErXBB2RHs7Wz7Ex4+fZlKQyQaDoUiKvl6my8uyd/O5x++9c+3WjRuvfuHpvQ/3tkebORAbBJeM1azLOZc4IHYWz65wIiKSRDj6WJhSsfys3yuLvMyLqqkvTk+ebQ2rpl7Mzoej8tmDs+mi2j24FkHQEBl48vDR47MzJGMp93VDZCWF1DZHR0dFaX/6yUcpfQsAiAyhVbwcUZBYOhJql+aA2u1+muN0dfP+3PuiFgM+eOts8HFra+vDDz74rd/6ra2tLRKIKaQEAmRsFlne++B9BG8ARbB0w9nF5Eu//hsAaK2NyQNoYWCUkkhymc18GsXBTXFsjHnzzTettTbPOAQRIdKxoZrc6A8oANYYzem6HI4YhXTE/cbIfvMdP49OXaakn+5FbpKnq0/QJs1aK+w616urSLOsTUrlSqNwcxBau05sfh+vMLqUGSNrXeEmWaQrCsqrH7T5c0TMnekQNJHEZJw1hhyZUDe69aYqiggwEjeENqG31iguoh+kKBciqgxfz2qD7em5wRVwboN+ba6knrPeyhg9AHf2BMDWUoycUmDuGn96hBgDkQ0hocnKste2AZGMNbkVEWz9CtCtKj+dV5PJ5OTkZLVaJabecOvR41NjzNbW1o3rt+7fv2+ts9Zt6P+fu1agm6MQGmOQDADomL4uBREgIgK21uplzLJM1qgPGeNDowICHXZ8dnah2IEFvH37loB9+OwZWsyLoo2hrWrr7KJa9DLDVZUX7mh39IPv/9nNO7e/8Uu/fH7nzrNHJ2cnVVU1Wd4v+kVKbdYv0bpIzqfULpatX7z8+osFxpMnHx9/8sHh0bZIqOsVJxoM+olltVpRZhRlj21LgARoCTNLq+V8NOz//b/39548efz9v/j+L/7CL1aV19SHma113ntmrxAUom4X2iOWPCu999ARkCwAaHl55SEFAFmzLCprbfA+KwrFU0BtDj8HA2/qCn00FHm5+gx26ddXf+5Va+1Xv/pVa+0bP/rRD77/QwAYjbdfePGVMi+Y4ZMHz1588cX+YAfQtCFOZotnJ8fL+fl/+L/8nxpz+XlFUWxtjSbT80/uP7z7yhd7R8PBwd4rTXr4bH48qSF14+fVWSTP87b1nFLmXAjeEiISXKFLWJCi7K+qOs/zYdlrwjKzmTFGJIUQEMU5DL5jn9R1TYDOuaaqici5fDp9xpCYGVRCvn4p6ui9dy4XkapqBoORgkNaClycT5RKX5bl9vZ4Wa1EUp477/3WeGs6nQfumP6L+cqYRucOtW3o9XrOYNu2RKQmrt57k0KeO+Z479698XhsjFksVprh9fv9LAtN0zx8dGytfeHFF2/dvlnXbdu2Fxdng8Hg5OSkaZprN270R32TuTxzh9cOdw/2qsWq3+8bpP39/fff/zDGWBQ9EWmqtm2Dtiw5xCzLau8DQIpssyxECCCfPHg6GA3R5OSy+WLlyIxHbrVagW/KYX82PR+b3NohMGVZJhxSjMgJQjBFUfR6yo0w1uzvjss8m8+nZf9gVtW2Z7KyaFI0Lk8QgGWd6Og8YwDEKIyIhJjSJYNVN0O9L2Y9lfbqIhYRA2QNQfTVfApASRAEpes1gQCr4dHGT38d4i+DUbdLXeZeOhJbDKR6elEA3L19OyOMlkQwSQoJDBEiMYtBJmBoW+KUGwvGAhKIgLGD4fhXv/nNf/mvvr+3vbVqp0EAARhEsPPA5KvGE0KAJKCoCzKDCAMhGINELsvyfq9tgjWIEEK9Ksuybf3aMVgQMQYdM2IR0YdgrGGOeiWdNbpVKBC1ganqus6dNcaMRqOTi4tbg5ErCk6BqEgpVBUWrli2/t6jZ/Dqz+mJut4YACcX04O9/cdv/wR3xro5CQgnn0HmnGsbT0QhJEQhA3qSIpKStLEVEWsdI2sq4Ipcyaz1qkJC39bHT59t7Yz//C/+HMtDk2dVjJJZDsFat1oF72uLBpCMwRjBIOauIJDZ+Vk1O83Ar+an/Z39ZiEJxJARYRIQXOf8wILAP8Nh67N+B/CZ1AQ5RU/GAFISGIy33vzp27/9D//b/b1dAMicjT65zCWWENO8rvq9AiBLnLK8qNrm2tGNF55/KfgUIyMZI6IrHzuuGUqH2F5++uYEFHtomubNN98cjkfee1VRMAggKt7Z5RwKRIEaT6DyyFiAOkkBK/B3tbz5TKnzqSvyORr+1UpJ1hwvWM+9obXnSGcis24dXk3IPtWvZDTkzNqe9+qHbpp9uuGpW55OeVeS6IYVqqnS1cN2KJqAcACO0fsE0kjiUEmKxJhTQWgYyVDhHBkBYMpcIZgn6HIsPRltoNv1vKDNmxv+3NU7dfX3cW1kcHmVNFCAaJ8ErUVrQEAEmFFHoyoHqzcYIdJ4O4tJiCwgTGfzXtF/9OTxdDpj5vmyqqpKScM2c3me/2f/+X/RLOedNAQAQHq9/t27dxXAk/Uk7+5ULSKvR1IydevwEs40wpxS8qE1xpjMElFd15qW6a2fz+dlbyAC2k26d++e9143siyz8/lyd/8gBIGQirys6zovC8KISXFTAzGCr4lk4NyTjz9slou9G0c3v3D36DWaTpYXZ2er1aptOSFxjC6H0SB/8dadvoHl5PzxJx+Gtrp2tN82lTEOfUTglILLM2pRRLyPFi1lkEIc9kuDslzMhmX+4N7xarX6i7/4CwsEa0i+aRo1VwcgzVW0RRajAJCgNL5Vu5aLi4vgU9EjYzNrSTV8VVXVVUXGDfqj6JOgeqgm63KlKAwGAy1INHm4in5dhX4U2alWq6uPXpd+vfzCrcViMepnt28/f/Po8LXXXhuPto1xy+VqtayFzHw625otXdl79OjJ6emP9nf3dna2rh9tj3cGjx/e34I9Pc67b7813tkue4N7H90/eXbxpS9++frt5/cP9567eePtj560PtWpk7doGigdEbubGY4C3jeb8+v3+/Ol/84/+V3v/d2Xbn/za19q6lnbROybLMvYSJSoe25XTbJsFItEdHR0VDUrrWmsvbQ709FXmzARUlRXsI188saNG9ba5XIZOCkBU01oFbTTFvJq1SFedV1XVVUUBQCGkEIT87UoTAWPIQZEzPP89u3bal7/la98tW3bs7Oz+XyuSd6dO3eWy+Xx8fHOzo7qHz/55BMieumll/RPbt++fffua23wg+HwwYMH1w6OQggfffTRD37wA42Ddd1671NkZlY72cxY34YsLwWR8iIwtAhJZNmGs+l8Z3t4enZxtLOFmaXMCUmvLNu6evb4EVC+W+5ClhGWECCFhogaX2MI2XAQOYXIpYTdnfHu3tbs0XHE0appDYPN1gEL0VgSIQBm7Gp02NB719V/F+ZE1BXCrNXpnwHAEDElJoHoV3x2CmREoujwIm0fdIgAgtBm1NHP3GbWG7BSxpII51nGMXz7a1/e296KbWMNsmBKYI1lZkiMCJETEU4n56vlwm5tFb4F54AIRCgvf/6LXxggFNaQgeTbBAhJl5ZlZkACEADSbEBzL0FjbEaIkZNIBGYvgpJ8jGAsQIqRB8OxdC3Z2IFMl8EREJEMoECv1xORGEKWOR1tVlXLLLNkMe/lxhiLsLc1/rlX7/74/ulguP/06dNV02qtlpLPAIRoezgYlJcPyLJNg+df/ujNt375136lt72rg01ZFPbosI2NhYpusUjonIsR0LjcusCtciB8CimFPHeYkjFmazQ6Pj29dmu4s7NzMT1f+jjYKQ63byz9MiHlxlrCGNqSbOJgjQ1pmTnsZaauKsNSgCkNTWW+VSLERjgBgTCSMUq117RW0SZBAFHeFazziU+th8/gKPq+MRg55L0+Ofvd7373X/7Lf/Hc9esxRmewaRqbZSlxTOKc65XKxbaqijh5dvrtv/atPM8XiwUiIhAiq+5kvV0CAADhZ9b2+tykKIq3fvTDbqayoW6+IXR/dRnQlVMlibDbiQV0+SNeosKfaiN+5uO6aPm5KXVXT4auGOXrjVaOlN53ANj4VOGV1yZFozUl31gra3Msu37hup+Ia3q+4nyIuNkX+LLbfqlVjClpPOfNjKAUDQIBkCMiawwKoUHMqABAi8rHChKTCLe+Vkc4WCd/mrjg2vtmsy/of7VntDmHzVfTvXZziTYe3YDs685a1hgXEzd1JDKZKwFoMBiDUFlQCGFyMRGRVV1NZ6vz6aRarCaz2dnZxe7uLqKxzpVlH2y+tTtGxLqpItDrP/cLg17f1w3HFGM0iP1+H4B9G7LcAvMV2k7HUgBAZonCHDiEYASJjCbyLGKMKbI+EfrkUwox+ZQCc1SaaVVVAmQtuSxv23axWPz8z//8ZDJREGF3d/fevXuDwehwd2cyW0ROfUsiYi0KuZjEoSEUDlXZG1iGanL8w8cfD3d3bj3/wng8HPUPcd12Dxy2RsOL02eL08dPjh/Xi9n+9pYpholDmTtOVGalSGpjiEGIAK0NIXCU4NuyyMoy5xSsgbff+fH/7u/8RwTwJ3/yJwAwuZiNd3ZByBgD0omTsqwzjOD1yIGQPBHlWVFV1aA/qrBSiwNj3KbVjmsWHRHpjJ4YQpbnbdvqnM1NM70DUNfeWZothBCUM+eca688+0VRdDH34vhJnufvvvXmw3v3Q4wvvnL3lbuvxMBv/fSd/nD88NGTs4tTuYcpxJs3rm3vbVfNohwWX/nyqw8e3MtM2lof8dat2+RsXbV7eweffPjJ797/Z9/+tW+99KWvHh4eWjIEAimF2Loi1we4zPI8z5erRZZlzpD3vriCzlmb3f/k44tHp25n5y/+8E9jvfz2V19HkyX2CQQMcwjMbJCUKmiQ6roma9q2LW3ZG/Sn8xkzaFtwc9gNySByAu481jXxqlZ1jHG5WOnFKgd9leA65yKnIsufPXumYgrFMMuiT0TMwCzMEQCQ02LWZoXb2trS6q317SZmDQYD7/17772nXbaUknWOjHFZlphHoxEitm19drbY2toKIbz33jvj8Xhn76Aoio8//jgvi+Vqde3mjd3dXfXUODw8fPLkmWL+zjmNLcmHhgwwWGuPbtz8+NGTJLL0bQQBAAPw/kcPbxzumusHblAuYltw6YhFEkiqq2VVLXcRAS2kIMzGWhAux4N2UYUQ0FB/NGLPjx9+cn5y7JxrYiQin2JbVzbLN/UBIirFSrV/sp6/wcyqUtZrCCK0tvuDTxfi60UMzjmRKvoWogcAMjaKB9bjsjYfQZt6mob9jNZS+sw7HRHH2VTDnTvPFUXWzCcZibCk2AiyI0MOY4oskTJKIZyeP+sd7YW2dlkBZQ+SgKGXnrtzuN0/nkwyY5bQKMWeCRFRUjf9TdbjhgAQ0ZCxAkTGSGJgAENojCvyTKJfBWNtDI06CICAtQ4RU/QhBCRMIL6pdbeIMeYu86YNviEykaPDzBoESYl9067ioO+AM+GBtU5FJEjlYOijcoog+mbYK1JTVdPJ5soEKooSALLpZPniiy+++cM/K4riSs6s+6XO1+qSapcpwM4oKXM5I6WUBDh6QSLQSSCmS3qSD4Oy52Mb54s0O19U1c612wktpNaA3xsXq+XCGgJpMRM0IlRtl2mUWZBkHDV5LdXx4FqvnrWUZSwkka0Qkmgm2OVeYBgBRTQr11UAV5IPuNLe2qQanNJoMFg09e98559/8MEH164dpZQKlwVONqPIbIwjSikFgxjalp3L82yxWFy7vv/Sy8/X1YIMmE4Coj5woF5imn8rOgKfLg94PWD7pz/9qcYNAEDqnEXhioRE1kud9EgdwU2JZTp3+9J2dXP8z6RZm6fs34CK/UxOmKYdZj3vT2OOueJzcfWSXj0UJ0hRPiPL36S/6yHuNqWkfNxNCa29Ht8RRjtHQdwQxQht2SMUkyIRIQshMeioeAkpCTAga2piTCemxiu56eaztLbZnOFVVA/XQ89kTVPTVBLXlK/NLwOAcyUIosVeb+CjlqPG++jbUFWL2Wxxfn4+W8yn06kCxgnB5ZlB2x9sDUd7MUZjLBrHDNWqruuk3p5lv1fXtW+eVKvFsNc/Ozvj4L/+y780GPS9b+o6lHn+6cjJZAiEEggyIhpAo4zbLoV0LsY4HI9dZk9OnhljtIcTY5Q1F9llRQitfuudnZ2UEpIkDiJS1/V4PObAQMFgKrICwbZ+5QOPBv1Q+YBoyCB4blcSY2Ht3Wvj2Wp2/4d/bMj1isGw1zdoEbEN/vFyaQmtwYE1450dAgZOBMQMEkESCAoRpBSQwPsmeM5t3uv1d8djZ0m8D+3qqz/3C3/rb/57WZZ98N4HhwfXiKhpmhi0rypt2zADUUI0VuedMBIRJCjLsm7DolplriyKQhGcxWLR7/cVFBSOOlwyhJAEquUcyPqmyctcE3RtLGqWFkLYpF9EpPYWajvyGf2fbEZuXzu6EWOMLCGE/YMDY8z5+fnFdH7v3j1B2t072Nrfv7i4KMssL7Onj++/8/4H/8f//X/0l771tZMnj95588fPr494cXa+tbMtKd259dxWf+vHP/rJH/zBH6AbLEKvV2QPz07FlQojgSABuMxaZ3Ct7XSf5lwvF9UnDx7BeOz6g96LL71/78FXvvA8EKnoNHBjDGaYK6xX13VmHVE3kLGu6+l0qm622p2cX/nmmtjqDqcjS7sZrnm+t7c3m82apsmyrK1q4+zW1pY67HnvDw4O5vOl/nldtcLzLMti5JRSr9eLMWb6iRz0HKy1Om4IEZumSSnt7u5qoNHsO8bYej+ZTIbD4d7eXlVVMcbt7W1jXErpxo0bHR+/KADoxq2bz46PP/zww7ZqdnZ2VPNYVRUzO5eH1qvsedn6jk7RwmQ6jQBV23pAogwAEgeC+Nb7Hx/dOKo9D0q7qivhaJhijPtH1yxSbBtDhM6iKcG3sa2JU94vBDAh+GqZ5VuvvPTizRvX/uDhIywMS7LOIVljTEhJJElKdAUMF2ZgjpzAWB1au9kFiagsyxQjIBqitMb8r4Z+733pmCSCb8BS9A0Z0imiSozpdpSfpW67PIHLbQnXRlxgjGGA27dvA6fkAxsIKSIigdbXEmMEQyEEI+7i/Hx0djbcPQJyoEZTMe5eP/y13/i1/+y//k5v52jhWy+C6EAgcdJG0WfPBA0aYoaobXGbgZGUxLdRomSZ9dUKYtvfHiGiMdYjxhh0J04SWc2+jQmtZ+EQOqukFCIjJ46I2LaNLQwAtG1blJF9Xc0nq8Vyd/dGbm3dROGobYm2aR+/9zHEUAwubVe3Do6ayTMo+/P54oU7N3Q+PUQRkhCiIyEiQN1NVS1lrcO2bYXQWdsVmmUhKL5eKp4xGI2apvnk4UOXWQTOLeyMBrGpbh4efnz/0UGPYwrCgMgg7fZ2hiwpBMbYpsaAYQq2SXlmnSn2+gZjLaF1hCJijRUh0N2x2zDXLRYAwM+iTWuWumwwm6vb8HA0fu+D97/zz36HRY6OjqJvi6JQKTEzG2MFmZAkJWeMJUoCkmQxm3/zl/57ubN1bNVfW6nxiAaAAZEvh8ODnsAmZdGVaK19+913JpPJ1s62K/KmafCKMPPqa5MJiYhSNbrjgMi63QmfK2P+dWnWp1bmFTxMK0wNU5vMw65n7yBiWZZEl19kk89dzfP0fHjtm6VblFzxjt+oC/Uj1BAnpRRjYk7GWGM62yDN85xxm+KZmSOnoCBYioYJAFG3B8aUGEmFp4SGEIURUMAa5V93M2E3a0CrQTXS3DTgNvcIr8xDQ0QRSEnhEJNlueruuzo8QYxc1e1sMXl2fDKbLdq2PTu9WK1qEbHWEVFRllk2KEvjinxZrVJKZa8HQnXbxsjOYtuuVnWtg4BZC9Qss3nGITqyi1XbH43r5UJvkHMuJq9Rc3Mrae2CuVERbChuKUURMUR5nq9Wq7TodKy6eXkfAUBvemoqANCcs67rJ08ficj29nbbtHlepsQJ0tnZhbHZcNSfTGdkxFhsGm8MEdrlqs4chlaxdr+cnHKMe71er9dPIcblJHVnSgPDim0qSuLcWt7LIGzRUEzCAAk0l/XO5YQwHA7KMm+rWZmZex/d/81f/eZ4PJwv67d++va1a9cYKMuyxMGQU89VHcG8Md/S2130SkQyRunJKcRgyCGJuocs5kthUCPnpmmyIo9tALJZllnbGT4rA7dtW03Brz6z3nuVKq+1vfEzRVeXfn1w/4m2q0bjQdU+yYr+t//Sl37y1rtvv/tuAvibf/OXDo+O7t+//+ZPfnhGcnr29O/+J3/nK7/wxbPjY4lhNNraHNEZtCBNaivvr10/COn1P/j97/7e7/3+7Ze/XPayGKM4IWdZECPnWYEoVbVEY9oQ+nkmIinKxjS2rqpHjx7Z3sgbqJr69ou3xSJgBIM+eTIiib33wExE6tRgjEFhRLHWWkt1XYuk0Mariae16zGlvdIY07atb5qsKHUWwWw+BcA8zxWlTG0LhvIsY+ZVXdd1OxyM5/O5NVlZ9pVGpvaYMcY8z1MKAjLe2RaRPHfGmOVszsyDYR+F55P5xemZEvMXi1XVNoP+KMvyFKMwX5yfG2P0i0wuZgcHB8I4GIwA4JNPPhltbQ/Go2s3b27v7DR1ba396KN79+8/KHMl/RnBuFjOUpa1sWXk1rdkM8pdKwImS4lBjIZpi+bZ+eLp6aRf5laKoRvlxhKAJGiWTX8Y2mra7+UAJEyImclIQhN8SxYFwZD2rOL21sAQtSk555goy2yKYgjCunCUJIQoliRGyjMA5E4hxGSMMENMrnAIkBlKIJCAPle7E1GUaC2legncgEMwzCkgXDUQZ0DRXqcG/s8cBNBAR3tn/SsRtOS0yN8eDhyQN445aPYgIMwcGYCyFJOFjJBC3aZlnZY19BvICwCRGLBffPVbv/Sf/tffGffykwmCoDPOJ69ol0gCRkJhYQBBVPFWSsBkLCIKIYQWwPlVSyDM0RoKCMaQMSZFn1IkImdsEpYI1mYhBObg8ky8F0lFP4tNN3fIIPno83LonJOYfOMlpSyzh0d7o5Pm+MkTdO7g2k30CQDrqlk+egSI5XjHV1fg4awIAtv7u08+ev/2i3f6hzeq2fnWoAwMmFSqhj4FYy0GtLkTSbVvXeYgBUkREBkSAjrr2joED3kuPZcnhp3t7aZdSawzbLe3evUkPX347iBzWZz38yxErut6d3c3pVVVVYW1PrYoCROCJDScUms9Gw6r1UoQRdAhcQxEAAQCnFgQkLThKwnUfGLNhYJuDIgqdWxKiSxt9tTesL9aVf/sX/6LH/7ojfF4XJZ5CAEEY2JjnRoHizAIqD8QEHEIhsgCHO0f3X351RASgrEquEBBxBgDWSQiSUkwkQCRSzFqtSnd7i7W2lVTv/HGG6PRiJk5BCICQE6f6ih1EO86swHo0C/ZjBVHXP/7Z3MsTkBkkHjT1Lty1E9lTprPaG9x01yTNf1LhI2xAJ2I7DMJIl6B2fSqMnNK3e5e5D1CS2AIiKgbMtbWjU5xEJEQvDEGkIssRxJDzrp1108ttVPQzv7mg3LrDJrAavMBiaPNMn2+iqyIrFWuSowVehdkcdYyd9SXEEJKOlogJVa3yMBrv/KUNk1SdK6L9p0bH2oyitNZdXZ2NpvN2iZUtX/8+GlVNaenpzs7O1vj7RBCnudbewcbKy91Nqt9u1xUbRNFZL6YioD3fj5fxqbRqAfGGGNc5pJAlmXOulW78omRJHKKMdjMCiRhVlNrhMvGUdN4zB2hzQyufCMilqxKPpums56KMQFA27Z5kaUkKQonSCkBYoitMah2mE3TEEFeuOPj41dfuTsYjH70wzeILBEZQ+hsVmTL5bzIbeIQWp8bpzSQLLMiwoAhMSJpF2i1qggoz3Ob25RSCLFf9NVHEICLfqHLT+0SmTCkKIlEMCQAcm2K1maQ2BVIGJaLi51x//jZ4//t/+Z//T//D/4nh4f7x2fvruqltbbxsSiKqvYpJbIuhNC2FQDkec6QgAQNlHkPEdsmAEAvL1JKztlNkdC2bZ7nbRsASJAESdcMsBCIIQBJWZaxQNvWKm2PkX3rYT22msiquRWi4qYmXclDLtGv7/3oLQNAAL1eube3U9XhBz9+uz8YvnDnJUE6fnx8enqaUrj70stlbn/9W1//lW987eT4yfHjR8hJJ6t3d71ajcfDg4M9H1Kv17v7+t2Q8HxS7R/sPZ4sytxW7PN83DYhhLC7sxPZr1YrsllKaTJbZEq4WWN3p2cTf3LRe3G/Stzb2b1x69ZisWDmJJGZUcQaF1Njuvl3Qdd3Ct4Y45xbrVZVVY3H427Q5vo1mUzUX0c9P1SrqGQvjTWERkSWy+V4PF6tVumKRU2McT6f53k+nc51QpEeWSNISkkNJngSRcQAWktKKdNneHd3tyiKR48erVYr5ZDVbauhSt0lVNSqMNjDhw97vYFz7oVr13yMr772GiDqXxHRfD7f29sbDoccU13Xi+ksz/N+v1/XNa5JGIFl/9oR/eSnTUoAhkX7AsjEksKDRyfP3zjMXK+pqoJkUA6stc2qQhZMAVILxiIYMIYjG5exhJjaKGwNGZuYY+urwmXR5k2shSQlI1EkMRJIumzuMIvgGsaPMcZEa6KuMhQgsaB01sJqaXzVqQgSEVni0KxAAtpMmgAgBFfHt1xR7/+bX91oog4DqevaAuZ5jiQc04aSQoxCaMmEqF6+FsXYKKFqltOJHW5l/T5YAoOQuTsv3tnp29g21LkDCAExMEhS8AOACawgGWMYkEVIgQTlKhERILIwC0KKyatFLQFGYcX8mUH3j+hDjAmkq2LBdJzrpvFlmYvIfLkYjkcpJY6SWSciiUNRZINhb2t8fVGtTp8+Otg5AoDHHz2BLMvLEhGSv3yKy+Eo1mOSBaS4qpud3f2Hzx5xUUQREWSWGJNBMoY4SFPVkUNCXfCCSJYoqdLNOEDDrEMmEoiQNRRI2AdftytfWOnvDIfDsaQKY8QUtwYZQd36uswtc4vS5s5kxngfWZiISII1uJivyGYhTIuiSCkwYzcsyHRbPqxbciFFbf0TkbbAnLMxxrZti6JIKYKh0WDYBP/uu+/983/xL1JKR0dHaT2DT8sqlqT7riVqQ3DG2DxXbm+R5ZOz829/+9tl0Vc+qLo6AagFtkjqRsGrIyCnpJi3MQaJtJfnivzDd945n1zs7++3MaBmNl0j7LPo6WfWuXwOXmVmbTHB2nB10zJTTwpcK/Dhc4aImwwM1xbeijZtki1F5VWDiZ/raW5grcsDMpZl7r2/uLhAxNl8MjmfEoFKDfTcVJ9ujNnZ2Q6d3pMSd8OP9bAaq2XtN7YhhKF0TERY8+VFxHvf6/UA1IXFkibEgCwsIIZIfRmMcSEEBeNSEkLr8jyEgGAyl8WYnCsMOUEAFpeZ4JOzUFXVfL5crVaz2WI2nZ+en61dJKko+y7vJ7HbuwfD8Y5ewKwYMPN8sRJZikgbQ/BJIM3myxgjRAZBMAZEEK0xhlyR57leB2OsiNIhhFMAAAbMrOkSpZQyh0Sg8z+v3kqzdoQJIVkiH2Pbtlqtaohj6QQECnPSWtYKQiBiAJmApJv/WBQZkvR6vabxIovhcLharfIyG4+HZF3dNoWzMUZMkLtMffn1gzJjtW1HBvK8YGZLRrt4iJiEGVJIniyRxZQgpChXnOSYxbjMWtcGnxlTNw0BMAtwyjMbm6ZX2Dy3pyePf+3X/lKvnz96/GAyOQeAfr+fpKpWjeb9zlgiUsKrwtgbl426anXv1qWbfKCCADAEddWhlJIWM5E5NQ3HlGXWOVcUmTbNrbMhYAhRU1iiS8NwXOsrlV0QY/zZrvcJrBAhy6zykwePP3jweH9n9+tf++Xd3f26bmPrTcSyl28P+obki6+/1ivK2eS83y9Hg95/989/76vrIz5+8mi0PWqjdr15MNq7eevWs7OffvDBe9Wq6RUYmhiWSzRZv9cDgOgTMxgRAhDAwOlqNXV8soTeDiQDdXP71Vdyct//k9//d37liwTGgLFCYdWokVoHFyf2Tdu2tT6cRVEcHx83TZPnuRKz9FUUPWWI6uNaln0AmE6nCs+2bavzHFJKs9lMMee8148xDAYDRFzMV0VRHByV5+fnddsw8/Z4K8uy2WxWlmWeu36/b61liWvovo4xLubLGGMtjXNuvLOr9H9OMS8couxt76lV2EsvvfTo0aPJZDLeGlprDw+urVarBw8efPXrXx+NRucXF5q3bY/Gi+ns4ODg4ODg3kf3ld8mIlnZY6SwXDInFWA0jY/ChETGpSuRloDu3bv35dee3xmW/e0BAzW1t1nBzHW9yqqlbYYGnMkLADLWxrYRMsbkubUiBhBGW6OXXnpp+bsfY7+rjJm5DYETkzXa3UNE1QCCMUQU1/ERLHGMsFY7Kp4va2LH5zccRARJ9WoBwqRT2VGHDQIAIJjuvZ+9Vf1rX4jIMVpD1nXm+wSiVhGIqKCC4iWICALG4tnpcX97a7B3kMUWXIZIsJq9/NILX//617/zr/6kN9hrlz5wsMZw4jX9ujtbRCQywkaUW4MImIARmKMEYIYYgD0YAeh073phXWY6QnfnFMUgnEIMMUhES1QUPZ1kUppeYSjGaMlo6uB9U4qURZZ8y23dKzLY3Xny5FGZF1mZe+/JYvABsytRwzohxzYDly0Wi4P93YecjDHQDTkGJejwWqScZZmxGQAgCsdun04pQQhEltcGS4ComiOFHAa9Ymdn5/XXv/jkybNVXW/0MdPpdFMdlWVpjEk+9Hq9vMiapok+6kqz1trctrG1xmyIZQAbHqCOv7r0f/feW5PpYY0xJnNCWBbDyOntd9770+/92cnJyfb2uCiKGFoAMIQKhxtCiZw7KykmTmWeSWIiyF2uAzGLfv/5l17yMaIxCJCYXZ7HGAUBzSW3TP8rgAJgndM5J9ZaIQwhvPHGG71eL208Udf34jPJDfys9z/zv8ZYuOJ0rz9T1x+UzZmktYHW5r+4dpegK4J5WbPgZW0tsf6Uy3nem26drDWAvBYt6giXfr/vMjMYjL1vh+MBgGjWBaxTpbsjrFYrax0za/MRAJXEF4V10LOAoBDwxgYCALHxNaeUZRkYEBBCdM5F71EHASHFGJkTEREaABYyTe2JyFoMMSm4BgCIRMblJtPkjATbto2hnS8X8+lsMrl49uzYe1/XddN4Zu73hkVRZMVga7uPiKpzDwkAjQ+JWVi4rusQUtu2Sr5e1TUASExAgNYBi3G5bjoAIMwxpS4FREwp6fIVhqhZqUVjTIzBGsI810udOZdS/AyvzlobOcbIzrgYY4geUKztbOIRMUXR2Ri49heVT6tc67bJ8pyIzs/PRAZZbgHg0aNHInLj+i1mBpK6rkUgs44ZiixvReeFuxCSCFprAwuRYo16bMyyIsZYN6uN6GEZKln3xNUupyzKpmm8D2VZRsa2baqmG5mQZRmK7O5s55mFiONh7+03fvzzX/rS3ZdfTCmJ8HQ6taRkr3bQ31LFT2i9Ju0ijF1fIyXApDlTSlcln2uagUFEjkkH5/F6UJ6aRxRFkWVWUVIlD4QQmEESmCsivxCCc0bzCmX0f6arc2m7al0efWARAMqy7OTi/PHTZ0Xea5rZo0ePbt24tprVDz5+/9d+9ZdB0uOHn9SrioOfnp2+9NJL8PvdEbd3d37y9k+uXb+5d3CYQE7Pz37v9/54voplf4sou31t7/6z80kVDGaj0TCEEEI0SBwTGjLG+BQlXVbhH99/nA12msbvHxxe2zt4/NFb145u5Hku0lhrY90WRc/HVushXVXD4XAtpxNjTF3XzKzed5vDlmUZQqvuHZrhImLfdiz77e1tQ3axWGhDN4TQ7/cToNI/F4sFoX3y5IlxWZ7nw+Hw9PT07OxsNBopTptSUAYDEbnMAIABspaYWclhbdsSmaqqyrK01qq0eDKZWGtns5kOu3DOqaHr/fv3r1+/fnJ2fu+jj548eXZwdFgU5XK5HPb64/H4g/c+fPjwoRYTjoxzrvZB42Oe54vlsuj1er2etVlgZKXEOwcxcGJrXYzx4mL6hRfvtK3PTYGIkHi5WGST6XDvIMscS+pmQDlrqQ8UIXpAQbBABqKE0FpDLsunvhZGELTWeg7amkkiKCwsQGisxc8IGxGd62RQ+Gl192cALEQEjhxTqCtglsRgzHo4FYPq29belVePA59/rVs2GwdOYwxEJkAdJG0Iu+cJgZkFk7EEYlJKBsEY14a2beqwWshijvk2iADScHv867/xq//oX/3J/mi8qM4jc0jBOacjJtYbKgJQ0vYVoMoXwRgSYInA3G25xliSxLiBUhBRS2Hn3Hyx0q1COxoMUlWVyUtjXb83nC9nIYT+YLBcLovM5XkeY1AZLEEOKE29Cqv08OFjqGMcjfr90hjc3989Pj4dbW9dXnCXFYNRvTgFdGdnZ7cOXgKgEFstsq0xRC4kbfpba63LLZIOAk/AGEJwuaqyebNJxxhTaEc3Djl5NS00xoTQvv/+h3/xF3/xyiuv5GVJZBMmZ4w2fRQU0cjIzLPZrG1bFEwp6eOp4SymaK0VSFeRG7jU09HVg6gY2WTOWjuZTd99/73vf//7T58+Pbh2dHB0PcQ2Rlbq8XK5YGY91aOjg00A4Zi896lKC0EAWCyW3/72t8uyrNvWonKanZI+9WQ2UI2erXVOZdQKnKeUBuPR+++/f3p+dnR0tKwro7Mhr+RGV4GufwPo1Z3eWq5Fa7HeJm3SWjyuhy1uMqRNsrUB6TelqazFrXhF/Xd1p9+chqrJ0tp2dZPJAYAO9lgul6++ehfWVE4AUKsgXDtp4VpiqRZ+G444dNrnLu1DEYmbfkLXCG69Z+m2eeEuAGoJjYiOLFpIkVNMURicMSZDREO5K0tEkzTxEa4qP5suJpNJ07Tn55N79++3bZotFsN+fzweDgYD68qdYmwzF31crlat56ZdGWOysoirtgnehzSdzhXgVLIvAknygBaJXJGLSBBCA8Koxjm8nompMj2+YvrapcjaGBARIQVQWcSRARaJSe0DPxPudLnmuePAzjkbg75jrTUGFGIgIhFWRbOGFNTpcKCTthsiZ4uss7CJhiXFGO/cueNsLiLLxWI8HltninxQVY265OsQa02p9Z5q62lj1aHLT9aWv2vPEVbArJvn4b3OtfS+cy0IrS/LkgCN8O72Vq/IfFtvjUcEsfXN/+3//H8pily7VVVVJY7GGEcuhaCdFrRm8zDqhdLP1cV2VTtyiQJ2z4gaSdAGhQ0xqEgDABBJJC3m87YNnZgMP/VgFkWhki/NJT5jbhLj2nbVWOz3y1mMBjMiaL0fDbdXdfvoybPCZc/duM7sCflwf/uv/Fv/1ot3bqbkX37p+R9+/8//2e9855vf+JXNEYfDocvz3mAwGAx6vdHHHz96dnIKmIcE/dH2/u5+1fqLi5Pt3SNQOCoxMiAxCPgUGQSvkB2mj55uvfDKsp7cvnMdCU5PT/f2HQAn5MCNM+J9Q44EKPoWEVVp1LZtr9dT5hasB6ZeXZ1aVWdZoXVwSFE7ss65PCvaxsdYKdNZRBDNfL5sgjfGIBhDzuXZblmIoFpObG9vz+fz2WI+HA7Pz8+zLNve3lYrV9/GosyQqGnbfr/vE7MAsCznU2WPLZfL/qCMMSpzU5G88XiMiMvlstfrNbWfTCYvvPDC1tbWwdFRZEHETz6+d/L02f7+vo7r1kc3AbZ1s1FlrzNLUNA+MgokAIreA6TMWmehjbWAaUIQ8cOy9D6WJVAMvm0mZ6fbB9fcMAMAIIGYlFjBScgRJIYUIO8fHR0hJ4MCIkldB1xmIqQYwSAkVv8rMICftpNOIQIROZvUPIIviSywsShdv0TEEToEX9UAIhxxjXMh6XJXrs9n/wo+87pq/dohAYAk4Qr3JQkIqCt3RKTE3OVhKbnMEQElfvLg3s2bN6FdAo9AhOsKGb7whS9QNwCH0SAkSSkgIOrXUY66iGZZRAbQAIpBZGFAXE9iZkgpMoMk7bO7TFX6QkSr1UpJviLaCGjKsmwbz8xVU5d5kWVZiNEQFf2B3nciAuAQWzbWCPtmWQ5HB3u7FxfT1jc721vzxUy10w/u399cp4vpwiY0RR+2dhZPHsOrz+/sbQffZnlP1yoikkWVbOpMbuGYQnSZSXyZAIl0Lqa6GnM3aJomxdbXs6dPn26Ph4PBoFcMr127VpbleHu7bUPV1PrAZtY601lIG2uapmmqmpn7/YFCa1o+KVnKe58SighDZJGOeQ8GEAiJkLKiMMYkTERU1/XDTx6+89P3Prr38XQ6H47Hu/uHMcnJ2Xm1XGS57Rd5v9+/9dzt7e3tl19++fZzz/X7vadPn3rv1bev7djEUtd1iFHJryFy23rmgCR5nmvMlXU7G9aFdYhtllt1t4rCeZm3vv7Jmz8eDvttW1tLIoxECisR0eefhc+u6k+nZR2rbM2dX493w00M3DyD+lJXp6tp69Xuz+YdRNS+j7AkTaZTgisGWkRkjSmyfNMW1PNBQ8Ph8P3332/b1jmnaiEics6ojzUiWB0ujuicS0mBB+L19D1NarWCZVFn2RQ7hBOTiMszayWEiELGGBFg5tWy0qshItaSRUI0eZ4VxqGxCGa1Wk1nVUppsVjN5vPTk5OLyaRpmqpqUhLnnCG7t3sDrXnOmDzLmqaxlhCRA1eN7+W9yHVksNYmkYvJYrVYNr5FxCQg0gCzcU7Dm+sNQkio7J8UQVCSABKSbBJcuAJV6t9qHqBJgdarElOClBUutK3EjjCnpYVSXDZLgkFgY8IO3bDdpvU6hTClLmaKSOLOukxXiDHGWasU5BAi1/XR0bW2bUBSjNLvDeuqXcQVM/f7/dVqNd7ZRUTnjLofl2WpwUqjveoHt7a2EmBIiQgdWWOMAClTCBGFMEFoQud2LkjGOOe0fem9D5rKR+9Fki3KQa/XrOajQb+09gd/8f2/8x/+r15++eXlahY4JRDd9FPoknXtMC6XS2MzbTim9chRXeSLZRWFtebR5c4hJh8SQFEURLqzsCEjIsF77TyKSNO0utuGoJVS5yup3QF9ZZltmqiPmP7yVRIUb6j3IYbp7MLZso3h9s1bzLxcVvuHB9dv3mjq1aDXOzt9+sabb/69/9Pf3d0ZnZ4ep9jG6E9PT+/eveuvsEaczb77p3+2f3D0GzfvLBfVhx9+bIyJKVXLeV4WN6/tHV679fTxH2QiCaEKbdu2aI01JggnYbKGr06pdXkSLnrZcGt4fHzctq3Neza3iYMxJvimyDMFqICTdnl5veZ0Me3t7WlCfdX3yxij4U81jyJSFIX+mj60dV2roddoNJpO58x8eHj4+PHja0c36rpeVqvxePzo0RMdOrQWHjoiunnzpnSmODHLMmCJgQUCAHjvmblt252dnS5Fc24wGITY9nq94XCYUtJ5RxqntIO+tbUVY3zvvfeee+654XjMzMfPTl58+aU8z3/wgx88fvjk+vXrx09PlCGoxaLyHhTJM84NBoOtra2zScVghAwiQpQYo0br2WI1mS7vHO3GxCZzdb2y1o4FqtUq+sZxn8ETFYLgG59nFg0nHxGJnAWO1XLOKaS2gcRs1OMKiChhh+6gss3XT+PlVrGep/upN/81L5FU5M4m9vUCEIlT4qiKMcM6XVml+ACgrqf/xlfX6VabJFVEgaQQY8d0SZyQJYTonDPGee9TaFEAhJlxPB5NJpOLJw+G29sgANasFjNrsqOjIwBYLZcCiZmMy1JojLFyCbsiAIkggIAhrZw0sdMJKRoMkRAAiVxiH0JwWa4QmuLhPgSNIN5755yPQSFVATLO9qjXBl/XtXNDLQ/KvAciBqTIXL8sFovgDO3sbong6ZMnT58+Hm9vNU1d9HuD0WhzhcreoJ03QJnJ+ylGg7B/cPDeu+9uZ7neMmOtkHASVJd5RJDOzyVKN+Av+JSgw1GIKM/L0FYi4si4fl9Dc1nuXbt2eHJy4r1fLRb94Xg+nwuCJnkaJRUwhnU0dC5DRC0lv/Od79y4cWNvb280Gg2HwyzLiiy73ISk28JjjM1yeTa5OL84ffr06QcffHB8ctLvD/v9/nh723t/cnbetu3e3t4v/OJXDw/3rx9d29oe9Xq92Hrv/dNnJ5I4L1xRlCFEANzbPdRugnMuK3LvfVGWMYRqudJxZE3bjWHV89+AcLrOlaUaQnCZGwwG3/3ud588fbq3t1f71oABgBiC7aaU/Mz1+ylZiVwpHqADipKiJpvKU2t6ucLo2vx8FY3Y5GFXf05rqy3sRhxqo5B0kKLyUPHKgCBZNyv1sIm5qqq33nrra1/7GqwzcmNM07QA3HWivdcjpKh+6yjqj4eWOVk0gHKJCRkkgU4BgRB8sFlmjE2JU+K1vQtlZUFEitOISIxxuVwmgbryJ2en1bI+Oz9/9ODxdD7r9QaHh4d68LIYFfmQGZzLCa2QjnSydeOZoV22LHE2XYQQ2jbEGNvWI6KowX1WqEECIaUQjMsREYSRKFQNILK1be07dSazdTaGQNaiSdF7shahs7SIIaQYjbWyltHqtpViAgCOCUVcnhdZxtxR5T6DrKSUUBjWm53eNVZbBCARISRmITIIXZGGJIBsDIYYqqoStNY6AYqBl8tVryiczdu2PT8/J6L+oGSRLMsWi4U1TvcdZXmmtRWtglg6rVhpT7ieASpX5mZuigFdjURU5Hld1wo8O5e3beuMYebt8dbWaCQp6hL6+OOP/+7/4e/+7X//bxFxfzSqqtVwOBoMRgDobB7jHAA4xM3i17px01gMIajIXTXDilvHGIUly7JwqVDZ1CQJsJsrAwASMKXUtq0W8mp8+NkkmFl5FDr/RvOEzb9eol+aCXvvk/CDB49CjNvb26um7kkaj4er2cWP3nzzf/Ef/I9+5Ztfj9Xq/Oz4yZMn3/nOP75z67mbN2+SvTwiJxI2y2WzXDQnJ6cXF9PFbDbe3t/f31pWbZmZn7v76vGz6fd+9PbW9evzlHyKReaSSEjCxESun/U2R4N+sVhMvvGrvwiUnj47JZPduHFDFcihy9UiojhDRb+nfUZjTL/fn81mzlhcm+NlWaaDhvSlV5mIQopJWP1OTk5OjDGZyzVDmkwm1mZV1YBQnpXTyVwHo9Z1fXp+MRyOr127pgtRl854PGbmZ8+eaYqtNrtIwIljZBEpiz5aXC3ratXopq8U/l6vlwy19ToAAQAASURBVGXZ8fFxWZbGWhZZLBZbW1vb29vL5XI2XQyHw1dffUWTvBdeeMFlZV3Xt55//nD/4A/+4I9+93d/92Dv0HuvYy5clsWUfAhkTK/Xa0M4Pb1omiZJIso0TTFEzIkZBOjk9Lxu/Kpph72RiAhInucp+rRarhZzkxeuNwJABOPynJlZVKRLwAmQhsPB/vaWjr8icYAIQuojCtiR7QXRmi79VzvyJEx5tuE24afVUvC5bMzoVOy2heXCGRTu5PG64tbb//r3BQGBfiZheZ0UXjWDkJRKBBEJvpHEAkJkhbWVJkWZ+8RKparr2tksONvvFR+/+045HB3s7MGgJyIffvQ+5rsOQFPnKBw5OJelELFzBGAAR2QYDQiBEBlgRgJgRBQGTgYxqZCNWf28m6bZ3duy1obQKm9DM3iNXzr9w1gUMYmhaRoRJemz4vx2PS8lhCBZGvXK43krKaF16lqyujizdq+u62Y+O7pxfXNNsiwzg3Ge0ezJxwlgPp8PBgNQHB42BbcDiFdjKKyF1sysrt/cAX4dbKG3Nc/ylFKRZcP+4OnjJ6PBWCSNRqODg4P3PvjAOYdoil7O0I2iSikpvRqM0RoppTitLshAjPGHP/zhbDHX8qnf7w8GvaIorM0AQBIrfXOxWp6fnhlnyzLX5sitO7cBSO0QQwivvPLK66998fr166PRqN/vT6fTqq7Ozp9K6jawUX8gkjWN5LkVweWqjXE1Go2KAiazeVEUTeNFxCApbOC9Z+Gm9rm7JEVpONYdPYEkkH5RvPvuu3/2ve9plaWll80cB0ZEJGJ1bf3sKv4ZidfmIzaQv+ZVGxRc/9Ag6dq4fMrWvyAiBjHGGEOI3q+p312fxa2zq9RZXpHOomFmESbSYXWXWA52Hkhxe3v78eOnknh/d69pGmccIaFA7jLvvSVX5AUKxRgJDRhm5pQ4pWQdOZsJIAjFGNN6FSGiQUyKcQFam3EUZ3NXFLrRMqA+JlW1aP1kOp2eXpyfn5+fnZ63bRsjWJP18tLm2Xhrf+fguiF3ecIpZVmOgmiMy/LpdHp8emyca9vWh4abBqiDSVTpluV5jBGJnHM+tBIZknF5L0lKQR0TSRht0Y8xAot1eWxbRINkYhu1pEshonEcGSSQtVGnXGg/QW9MDEgE3KlJYogIMhyOnHNNoyA36n2/3IiZJbFIIFG8Uy0yO+9QtafeNHzzPN9E43XXMp8tqswZsqim4praZlnetu3u7k7i4NW3zAehZK01CEqwtog+BDBW99mNP61mYyDCzFlZtCHoUtlk5GltPjLzXqOQ9x6Ai8wx82i0PRwOJaW2bUB4tliQdafTyX/72/9kd2/7zgu3ESXL52enFwDQBg8AbdsCdWOgWUT9eXRf0rjUNI01XbtTE6Omaax1zjmr7FUEMsBJL4s4m1lrkaRtwmq1CiEwJyALaKy1Sq5fDykBAFCJyYYZtcaMN/+65n4hEKGNACLgYzREs9ns+z/4/s2j63du38gNFQ5efOHOoFfOm/r283f6/f4v/dI33nvvvXt/9N27d1/+yvqI77zz3rWDay+/+tp4MOrl/evXnptM5w8fPz6fTC4mZ/c+ev8Xfv5rv/ntX5rMpvdPJsBqNyydEk0Xceuh2GwDpr81HG8NHz17CmTV4s6ShKZFARQw1tSrSlmNKSX9/lqrjbZHAPD+hx8URbGzs3P1oijpVReEFg0hhK2trbIsfRustZPJRFdMnueZK7z3jF1rfGtry+WF0uQB4PT09PDwEACUpHV4eKifrstI1AqViJkVUdvZ2VGJpa6JwWAwmZ7v7Ozs7+/Xde1DUERts78WeW+5XD548GC1Wo23d8uy3N7Zt9a+/cYbf/zHfyyCzz33XApMRMzQtm3TtsoX3uTaR0dHw969WTU1xgDgWmZvRLhfDh8+PX707NnR7mhZrTKLzlJP4mq12hkOc0O+qV3ZB06Ahihj8BYz5qgtFcppPB4aQgk+MxazPAiGEGIIIILr8UGgeYAh771IAiRgtlmGiDGGTei/WjR8BgmzhMTJVwtoW+PA++Cc86ljfa1fIgC4mSqDnzvO57y/AQRRmP1gUDhDMQbvfULp9XpoTPRJku+ViCQowMxt3ZQF8JKHg15G+NYPf3i3N77xxdd6vd7kYnZycRwBBll+vpoIGaQOYEAwLEr8wg42SABKO4CEgJJCSl6iZ1S9giCRc6Zt/Xw+vwFHm3i6ga83qjEUaHxblqUYFBE01nudDxmJCNGEEHUUQWobQpienefDEQdW06Z8ODw/P3/5lVdzTp/GWigxU5blZc8DzibTrfFwY6ClZbTWeYZ0I0/67VhEVcMEJsuy2PrN789mM0vSNE2oU1l2fCx9CjQULhYLpWBsbW1lWWYz9/TpU30KQuu1TSYis9lMfV6ISFU1B+WB975t29lsdnFxFmPswBeWJFyWpcnctRvXE4ivq8F4JCJVVYmgFnJ7e3t3X3613+8vZovT07MQwpMnT8bj8d27r+R5Puj3tagjgfl8Ph5vL5fLoug5587PL4iWKYVev1CddWbdYDAYDAa3bt16/Pjx+fm5Klg17G7aeXrpdnZ2Pvzww3/6O7+jZssJRGK0mUPsKP/204zVz7w2Kdcmtd38r8Jdmp3DekOVNfFFrvDhFACA9bA1tybBWGt1moL2bja5nb7TQRcGiCxLBCHrKMUuz47rmbkAoBn4G2/86NVXX91s9sqXYOY8z5XGpx+q3hEiQgYMoiGHiJyQOYUQiIzKN8gaY63TuhcMM8UYY4LVaqVDRCaT6fHpyXQ6ffLsGYdEeba1tTXe3h5s7Q4ZrXWWnG/1jhhhCCkpPlSWBaKZTufL5SqEEAN736JBWdd4Wdldk7ZtUxJE9G2r7oZtXQMBGiNIwXs0RlJKISjQlVICEWN1DAYiIseIxohg8l57i7QOmMbaFKNxTgEwBcg1ryUiDgEdSYq8zl1SSkpflk+jX8AiIhx0/JFRDmIIAcTmed7U9SYLURbyZuVoT7RtWwGbUwkAqY0pxhi9/ubFxSTGkJeZPpJqaaYrKssyvmR3gO6Ddj3Tk5mRJYSQlYUq9HXLBoCNbxauRfEGUK3UkXAwGGxvbysfg4ENUvCNyYv/69//fwAwgggwIf3yL//y2fHp9aNbVdU4l0eWzOoXIlmzP2HtagYK8RJmJtNrq8mAxhZF3NdZqRBZ5hRjZIlt28bI69FbLiam9TDHlNJV5ZhijVrJ61zOq+kXbpSPWVaEKITGWEzCiMIx/bW/+tf2d3afPrz/yccf/Cf/8X/8P/irfy3FJnC6cXgjz8q8eKOqWyZz/+GjzRHfe/ent567E5r6J2/8+ODg4OVX7h49f+vV11565713h6PBu+988MG7P7l155WX71x/8933pRjm1gpRZGrqerA1kJRALrcBhPTaqy83bXv/wUOLY+dcbgBimwGBGGNltZiLgIKBirK2bZuid5Ya31prt7e39c1+v1+vfVfLfi/GaJ0duI5HogBp0zQgaIxR6kZdt0RUrRoAUGgthMS8HIyGdV3rgJf+cPjoyZN+v3/7+edDCKu6Tj4hIuCG64pFUZpuBnNKKaKh2WJZFAUiqYxRrVaJyIeAiJkzy+W8qhodJnXz1nXrch38cnFx8cEHH0+n069+9asvPP/87//BH+3t7dVtE0LIXCHrTVpXDxEJYlut6npFQDFGoStiJWtCYgB6enwuXzTGZoFTTlYdJoETp8BtjQjADMYCAJAViUiWcqcuqXlmLaSMsCAbCUBMu1yiMUCEkqxxzKyjnGOM4j1YAkKb53oaSHTpe7ge4gYAIJ+CcA1KYXC+WoCwAiGJY+e02kkftaJZe1Gu5fpX4xFCZ9yARJySADtjHaGH9NrdL2TOpHpZLZb9QWlNljg0TeO9HwzHmXU14nw+T4GFoW/6oWmNyGI6efzRxzdeedkOhqPR6Hf+2R9t2tsEmBKDcZ2Fd0f0x5AENUaLWGtiTNaAB5boAUFAyTQ6FrfbFLV4ErEiyRiTGk1orNpWhRCMQWbW0doinOUuBn9+fn7nzh1NU1JKwuyszcnWqypFocKGFJumKYu8bZaTi4s7z7+waqrLrZ1j7goC6PWHC4Cmadz+PgiiNaFpwZAxhrT76CwAhzYgojMGmMjQp/jXxmgrLTPWGcjz3AITRWttlmXj8fi9994DgIuz0+Vyvr9/OBwOnx4fL5dsbdZp1FuvwVE1BP1+X0QQyRgz2hrfu3dPmxqqkdT625huyERRFIwQUwrer6qKUNSGpz8cGLRZlqUob7311ne/+708zw9296fzuffx6OigKIp3f/rOwcFB9N5au7+/v7O1XRTFw08e9nq94/KYiBDM/sHu4dH+cDi01toi07QoNNXDhw+bVQWJGVjLNr0azjkh7PV6Tdt+78///Pvf/74SltvYMQc2WZq1FrtGGur7Cl1oHNeKbiNd7DYSEBbJrIsxsjK9LssM5JQIoOlMTaNuigpu5Xlu85yuaB4VStG9RyPJpnlKwAhgDIpgAuDIApJlWSsBUepqpV6XsfWKeS/ns/sff/Sr3/4WxxBjWOdkvMFovfeqdlSKNxElJcwBL1Yr51zmirxwxjgglMQMslrW3td1XS+Xy9PTi5PjsydPns1mM1Vbk83H43G/379x84Ver4/GhBAa3xqG5XKRoXMuT5FFJISkCvQQ2qZqrtAWCNQ4t/PRMMo1jd1fNQCgZQauLXLIWtVldrTUDeFPE2hmazrPJ2NI/WgkAhGxBrp13gxrTXQKwTiXQtDydfNMkTEcAl4pL5m5KHJNaq+EOwN4aXXbBK9AgK4uxdGttczROTefz5Xrwh2eyQAQQmJpjHFtW5dlbp3zKu7THNEYlfKllIoiUyNxa03bNqPRGJDVGYONZnjRWosI3jfGGJvb6fQCEa11IokIQuhcRVJKzjkABmARsMZaNGVZAtH5+bkgDMaj8/PzssyL4eji/PT5F14eDAYxeiURnZ5NUmCVejCAIfW57Fi/aKhbITq2InZhMy8LIt2guSx7mjJ2oD4jgpH1whiNRkrcrOvWGCOCxliGLn0MIajs73LnMiYlUWhNdzRNLTbPbLdlNL4CIAQ73tpOwNPpVEDe+OGPRoPhajF7dvzo5Zfv+jZdTC52dvdigj/60+/90Z9+D5HIOR8uE7r9/f1bN6+H0JaZ2d/fjaGRWcMAr3/xtddff/VrX/nFf/Y7/+Kjjz7cObz90vM3f/L+A9Pfmk8rl/W89xbBIiV7iVJ88xu/1Nve/ujxfWFjMreo69u3r/UKE2eBhGMIiGgMaV9Gw1xRFNaUOqghxqjMpw3FYfO1lcK8XC5V+60E1TzPDVk1+mrbtq7blJIhF2McjUYpJUWYNu3FLMvaEA4PD3Usow5m6ff7WZYpp7IbK6HKROdCCIii4sr5fC5knHNN3QyGvaqqDg4OQIUhkkaj0Wi0pfH6ww8/3Ns/FJG333wzK4qvfOWr3/zmN7/3ve89evRIMTN9DPRJUI0rrBusQFR6LstyWq3QoCBwSNIpOBI4TADPjk9Pzi+O9rfyIqvbqleM2rYlgGdPHpv+YLx7QIMeSBKklBJwMobQGGMBQqiqZW6wcMaElBBXyxVcGYAlonIl8d4zJAAhJKJL2dSmCdLt+qKnhl1jYf3KrS0zaQ0oqIUISJSEYU1oh+4B+1T99zNe3cclvOx4AgIMe/3MWCBqmsYapG2SZOq6TSn4tnVZllKq63pyNrt586ZzmU/cI+SYlpOLeD6117b2Dg+fPXuKADF6izaKrLE9Kylq9xZU0dbVUiKSnKEYW0mhkykAE1kWFGHrbErN48ePv/RzrxtjFovauZyvfDttKFhrk0REBJLECREQSJ9wWSuo9VUaO+iXksJisRgXPRHp9XrLxUx7bXVdpysXXMcxZXl2dP3GseB0Oj26dh3yIiWx1rYxtG3bL/pFkTNyjNLZ/MSokZ2IhLn2bYxcOqdLMSNDZKy1wzKfTJ7p83hwcKAjs9Scz1r77Nkz69xgMJhMZlVV9Xo9Zt7b2wshqCGFLu+6bjQLobUyTh83kSQi3itvz0wXc0AsyzIvirwo1o0jtNaiUFEUjx89feutt16886IBdM7u7+5qwjGbTD6593G1XGlit1qthr3+0dGRogM3b96cz+d37969e/fuw4cPijJTVNtamkwm5+enk8lk1B+88MILRVlskF1EXC6XVducnJz86Mc/nk6ng8HAWuvXzmSIiGuiiaynLm6gLVhPlFMUYVPKawInIkTKtJMNC/bq40BreaN6HGqytWk5bUzO9JgbhyRYj9/h9biwrMwBoGkqERHqAA8AMAbVplLXGwgFDkVR/Nmf/Mnrr7+uZDSFWGA9XXeNw3VJZwiKQDhjgRCRbJb3Q0ghhMWyms3ms8VienHx5NmzBw8epeBBAAjRFNba8Xjr+ni7yxebNbUOqWpiSm1KKaZkDKaILXBdrZbL5Wa9G2NiaIEIgNbQBW3+m5IAXCq3ZCPx6d5QE8FO+iPy+WlnnWiUrygwpCNXrJ1y1xFskyhs2BF4pXGsx4khWOeir3Ftsea9V4vmqx/KzIRKbyUi4pa9j0SU57nidlmWtW2tf6VUGU3UrM0AsPGx1+sBaiPFOJfrjauqyjmX57m1JoSk7L2iKFarGte0qtlsNhwO2yakK4ATrDW5mvcr8LkG6buXAha6dLXjn2eZIxdCAGbjLDk7nc0EQIDm9aoO0TZhMutI2JDY9ooEwTCQNQBJG/rGmBCCzRx82m+FiMjZJLxYLHSaQlrbT6isBwCctc65tq0BKMtysxaQQddMDCKCpmNfWEvdOKP1S1txuikr5BauEOUBoEu/9kc9Mm61alazUy9sAYxx08mpb9rVYvbc9ef+/v/9/3nn9s1rh7tf/vIXr127dnY+e/joWIS/+tWvHOxvw9vrpezo9vPPaVj0Ydl6SUkWy+Uo7g539nZ3Rq++9uJPfvL2qm2thHY5GfcHkHy99IPh0AJAaq275MhnRW8yXZyez5HytvVlmfUK68PKEENkH9sooZf3FYhS/FyJXEh2OCy0xwcAIl2rXl/q9ZBlmRLepWsy5iKyXC4BoCh61mZ7ewfz+RyEqqrKe2Wv1zs9Pb9KLYwxGsSmaYosGw0Gy+USRKbTqd5yXanOOSRRfKsoinUWzJtqEgB8Gw8PD0MILstms5n+eVkUIYSqqvr9/vRiMt7eKopsd3f3/v37qtwkosFwTEQxcr/fn82XPgYS2oTLGIJ1WQztYj5NAhIJADOX+dBmxkmUFCXL+vPFcjJbTqbz2ODR/g4n6Pd7TdMwmb3BmDIHKQEaQHDOgZBwAk4gAs5u72xZgySh3+uJGA3zzFFSMjq7k1D9RCFFMMY5I4Q6Krtzt98EFxYSQBJcs6UuQ0nwDL5eTACSIBARb2y+hTQFAxFBQAHU43/utREAcxJEVB96MggA1hDHFNp2sVhEH8reTD3JUupIxJulpSVjDD4hZVnWLJexqa07LMp+CkFJv1E8A1lyNrMhBEKzbocaQBQWRSNIhCWm6EEYWADZkCEykgSRRBDQaDMlpmRdbtbAeOSUEgtADEEdREXQaC0O2tgy0YfVYjno9XWkcGybFHzpLLD4tvVtLPq9rZ3t2dlJPtpeLad1Xee9Sz/AlBJCQnSD4RAA2tZnZa8YjJu6UjJTWZbBhzx3AhJTcNQ5t8G6vItJh29wSolTEkmYeGfrIHeZMmqZeT6fD/ql942O4RKRs7OTPM9vXr9+enraNNVrr921NptMJvo0DQYDfWq0/rlE+63ptiwWALLGtG3bhCanEhF393fcWmPVbfnK8mkjEVmia4eHeZb1er0UfVN7Zi7KbDgox6O+OzrUjaFtWxTwbb1cVsz8+NHDGONv/Vf/X2ZuU/OVn//Ka6+9dn5+fv360dbWlrX05S9/uT/uM/FsuVgsFpPJ5Pz8fDmbn5+ft9GHFIui2N3bicyt9865GEMHAF8ZRK3zQWHdi5ErjUURYS2EUFFdRQ4kxqimX0RojL26t+GV2dW6tWx62ZtnTXfljmi/ZmTKmgHWwWbaG1G9C6s/foyx00K6rHBZId4bY733y6p68+23/8bf+BvtmvWsVRMzF0WhXarhaEvvaQjJGDOfVW3wTVU/fvq0ruuHDx7fv//JWkCMIEBZVhRDO8qA2WZFEl4t68BUL+q2acqyNOR89EVRhCT1cqlJIQBUoanrFlkASFIEdEQEyCKyEVtLx0DtAg9oCEOtGNdevrgB5uXqaCmtHq/8oV5SUIXP59MvQhFUf8ErrzWuBZtGlUIw6/TFWMuctKjQs1V/Fvq02621llAAIDM2xqj5U920yn+IyecuUwR6sZhlues67Ot6piiKqmqNxSzLZosFGIDEeZ63betDsg6QwddNUeTj4VixNCKqqko3r8Vi4ZwTSEYXNVzOd9pIp7UK0onUqoQzxqhI0JEBAF2KIXaoivdt1Tb6xWeLOQCQcWidSSklmc+Xw+GwV/ZD3SYQCyAiy2plM0dXdAlapEUOiAYARSCGRERBTShtnqI0TcMMi2qFiEWht1WYk3FFSLFpvfdeR0kS2TzPlTBQFBl33MTL+6kKvJSSYjq09gdeb0lr1/tvfeMrIOb49AyNKYri3icPPnn4LHKYto0Be3xy8uDJg08++eTOnVuPnz41xlxcTB88PrbWJjRkLvG0pyfH/79/8N/85m/+5o0bN6pqNZlN93b2s6xYzOdF0XO90S9+5eePT57OlvPC5rujXq+kfn+vqn1vOPB1lUhsfpnFo8jk/GJ2MbFZMewVfukJObNUtW0vs0RkwKjsUyOycmn1h6qqNjDARm6qLyV+6WreUBl06egKU+xdc/MYeDAYXFxc6ABOZtYlktYzj+fzua6qfr+f5zmCGQ6H+qHKTQFktflRJyciWi6XRDToD2KMxqD3/vT0dDwea+4FAES0WZEAMBgMVotl0SufPXtG1n700Ufj8dbNmzfffe+DGGPT+MFg0PpLpm0IQYeXaV9/a2trfjLLi6LxQUQMmpSSAIqggImA80UtRIPRqG7bfJCtmrp62lx/7pZwrM/Pyp1DKPqqoIYEidkgAgqmCADXj/ZO7i2z3gB8AhAIETLrNhArChor0p2bbiebALSJR5tMtPuntalj94oh8mo1vwCAmIQQWLomHQJsmBnwecuKz7w2lSXp4krWZglgezzMcttOAZHqtul2ejQhhLpp8qLIs5LQDseDVd3M5sv9g13wwTjn67qazwqG4XD89OnTDACAHVgPIiJxTTcUIPVyBUXbUEiYgYUjhAgQARiNyfNcEAybBKnMnLEyXy50FsJyuVS53LKqi6LwEKqqyrOsqmrjzCZ0oiEOQaf+qYFcpmgoinDMrBv1ykVVbW1Gw1qrlWXjY290ObEEUZzJGdkHBpvFEEMEMnkT584gq07bQEoJHVhrJbExxhUupVTXVVmWxqoUTpxzYkxdr/b399u2DcEaY5IXa2304eHDh4PBQFk4w+Hw8dMnL774omLSh4eHk8kkz0sROT4+zrKs1+vpg5PneYxJu+T6pACA9rGV77i9vY2IzuWI0vgWrqwuXCtCtra2ENEYMxqNnDNVtfTel2VumUznsMSSJKZkjMmsEWZOMuiV+tQ3TfPNb/wygxhjgPCTTz4hAufccNjPssxkriiKP/zDP7x///6mb6h7m8uzDPNODGU6a9yrEVnWDOh11gWbh+VqOpVSNz9OeaKb4+txzHrAHyjjfq0pw/Wo7A2Epu8oiUd/R5tQ2pXbbJMd755D27YArMILxUW898IIQtYYAGSWtokptf3+8NHD+4dHN/rDYVPVZb/nnFMP9LpuBdBad3Z6EcJ0Pl9Op9Pz07Onx8dPn5xegX5MSlz2t9XXV/WGxhgfUkwMAH61MMYwwGJZc/RkXNPGUC00Grg8Z4bUtO2yho6lQCKAhpA6uw1OQEaAaO38IgBwpX4jYBRt43bBCro8DM0ajDfdb+qyoU8h+leeqc9zT9UeBdLP+jVaM//WGGFnIKwbvF0P/EbEPM9D8D/zQ3Ul6P1VJgNcsSNOKaUUtFmqg+mNzVIUAAohBp9YQopcFAUCGUvMbG2GiFXV5LkjguVyFX1cLOZ7B/sKcscYnctkw1RbfwUFlmQzu3Mt39avoMuP1iIepdBUVQUio/4IEeu2DTGQISRaLpeSWJclh2htNhoM67rOjPU+Rk52jfJqGExRiCimuPnczvMqsZ7PBp/bqPdg7UyROrsWUuRez1m6DgapFptFANhau1gsFBWG9fjc6H3sOs6XQPLVW7Pmfhk+OT7+wqt39w4Oqqoa9N2Xf+716zdub2/t/fZv/5P33/vw2sH117/w2te+/pUH9z7+0U/eWMyrybJmgDfeej/Lis0R56sgsfn+939yMVt98UuvL08vfvd3f99ae+fOnbIYDoBc2f/FX/zF7//wzSbUt2/seME2tsXAtH7ad+RTgmRgnSAuJ6cl8iu3b5I1y/nq7msvXD/aS6kmtIFj1UTrDMBldqULVAHwq/Vu49sklxXJZtiC0v2ISPc2RKzrOssya7P5fH58fDwej22exRhv3bo1nU5Hoz4zL1ZLTb/UWmlrayultFwuh8NhjHG6mC6Xy6IoAKDT5a5nBGl3MoQwGgxXq9VqtcqyzJEZjLeyslitVhrslNffK0tjDGFn3ri7uzuZzZ3D1Wp168b1qvEnJyd6wJjmmpEDgAAbY7Qi1pwmt25na/uTk2lKqt9QQEQQKKagsef47Hy5as/xfGc8rOq2V5ZEOJ1OXVnaoryxewjeo81lbQePRIAGJObWEMjO9uhC+Pz8lPJRyoyENgJYa9RcVIRBEKwzZt0cXO8xXXARNYdPGoxEhEAycwmC5pkt0UTfgsXIrJWNwDpqAGIXwWgDG/ybXpv8D1TDDgcHB0SkVh2TyUSY7jyfF0WxWq2m09lwPCr7PTQUYkwMz87PB+PRsCxs087OJx9/8O7Oqy8jmOdfev7HHz7tEwCws5n28gRg46OiuAsisUCMscitcdkyNJAiAEoKVRXRWBArIK0woPi2rduOAuhj4JScc8HHrtiIkYwxZJmZBVVJHpktwaYrYTMHIChMIIQ86BfzKqWUcoKiKNRmvRiMptPpzt7u5grFyJZEyJCxYHJp2zawcTmsvW2995nJmJkEjUGFbMgaBunsfDpqCLRtqy6m3vsytyGEzHYW0svlcjQeYDeP1huD29vb0+n0tdduHB4eHp+evvfee9Y2RVGUZcnMp6enZVnu7u4qCQwRnDN57nrDgXNOEJxzIXhEzPOCiFBARHpWRXnq/A7WGmBAoqpaWmtj9E1TbY9Ht27dOD09Z46OHEgi1CSWs9xqfHCZ81EISQsbm5m6rfK8VIIBEWhj1Dk3GI9YYr/fb70nY8ZbW5tSzTkXovcxCmJktutsSeMydUaD3e6oVq24ls3LmmW/ycP0543HmCajshb94NpEigxY6uaLAohA0t3LoGSWitHo4uJCW8awzix1johdWyIrskXAjkzgBGCEMSVBEDAAaAApxehMBkJ15RFdnhe9/vijjx9869u/XhTjGKiqYoxt7SfT6XRyMb13717TNM+ePANE6IaO50lgMNplQYOUhEPry0EZY1wsWoC23+97X6Hp1PtEVBSWmZ0xvgkgCEJBfyADMYWqBSC1Nt20/4SUV8SbfVDJ1us9+KqjbJe8fhqg6oCczcTuqwMKPp1Kda+Oir6uAZBoE4CMsv2u5E36m1frUgBI616BdE1kYQ4qWwmhVgdm+HSGR0RqP9s0XgQYGACyzAFASsEYBGEA3hT5usZiZw/RMQuNgzYGImRmg5qpAKERhhgZjekPRsv5RV6Wo9H49PTUWmeM7ZRwURQAQwThxMxEJoSQoBtwpBuulh+yZjRqL7tqG13eZVk23quJcdErGaGp6xi9cw4St3U1GI6sNQalV2TAkqJXNrHy3CVxaD2DGDAEpMTBEEJo2RhDSIJW9ZsdTSjElEKnm1aPmBSNMbCe0aQAsLXWGFsUhXN5SimERkTOzs68b4AZrrCW+8MxEWxgl6uMGriKfj179uxg/3Byflavljefu/mlL746my/7pXvh+edeeenFd999ZzwarFaLT+4/+OM/+dP7j54AAIIV4B+98fbTp8/+Pfif6XHOzud1Xf/5D39y7dq1v/pX/4ox5r0PHvTy4vj47IMPPnzh5Re/8au/euOFF3YPrj9+evZ7//L3Z/PaWONZej0rEqNAE5ab83t2762bzz9/MBqgxezakaxO/GqmPa66arMsN4YI+OqoPpFuioV2WxV41Ppvc1hlS2gSplCWMYZTJ4TM83w+X+Z5PhqN5vN5SAEAjo+Pz8/Pe72Bdn82mTV0c7VCnuc6MlKTMBEZDodaqVdVpWaqzKy5cwpRRFSqs7+zDQCnp6e9Xk87p6PRqNfrcUpt2yIYIqrr2nsvSN77siybpsnz8uHDh0hdJWGM0Z2grZsN58MYg2RQcGtri8ByEiBLZHxsnHHMgJQ1PuS2fPfDj1978dbtr3/ROiNELJJb1yuyFLxIYt+IBWNzRELnJKJwQhSwdn9//9rR4YPJiW+boijqxIAGi1x1SYEZQHRFojVEwBLX8P5na8GrFSGtGyXd/bIGQwqLKRCBoEp6NjDX+ucuel6++fnXpxyJEkFnpX1wcCAixpjBYHAxm55NLm7efi4rcuPsYrVMiUUg7/XmF0shnJyf94fD4QvPZ0WeWbr/8UdfOL8oD6/dun2TAbZH4+PZMsU2AhqTJR3fjQbEACHq2G9m4RRD8hIgRQDR8cxrb2sGgMa3mUMWDj4qzIMpEhECpdRR0eGSyqDbgeAaR9Rssmma3qAPwDGllFpgVzhL5JFEZYZlWU4uZizWabtz/bLWRpaQxBQFGAtAZHKX58CcEtgsMyCSGEgkspiNpvqycSYira/bNrgsy4vCOaOsR48oUQAAWHQgz87OztnZWdu2T58+tVnetu0777zz8OHDg6OjoiiYQcsSZr59+/aLL7748OFD/X19usfj8Wh7q65rl2dEVBQ6ieVyaRmAyGzJkCNLxhjTtj6lpI2Pfr/ftu3BwUFZlg8ePBiNRr5uTJ4DiSA6ZwAg+JCYq/ncGAOQBFnUR5cwSeQkzOxyW9e1tRQ4JQ6j8bjX7/f7fW2sbC6s9x4tqdprQzxfc27sJqPaYHUAsLnRChLglXGNeMVbRF8bsAHWfDj9X74iuZJOm9Ldtclkgoibnoj+mgaizQdJZ/cgRCSsWFoitMofy4oiRbEmi5FDSGUxnM8XvvWPHr335k9+euP6cz99+4MHDx7cf/gg+gjSNeyAjM2yvNy21mp3j6MIQtum3rC/nM2dc9b1UhRhQlSYkIGsMTZGRkQSaFZVx50SQec4BGAGayEEso6ZUUg39TXiLh0XHs1mv9hct6tBCYDUtOsyOuFlNgagnvWfemFH5yKRy/R3E4xwY4WIKmfizV+h+mjAJeVL1q4TnRJJjYIQVTaEKLjuHZdl2TbVBlu6PHuixICIQW1LnTXGtN7r3gQAIB3AA4gpBc11iGxd1yKcUip6ZWTQtMkYAxzbtrUmJ0cxxqaONs+CT5krAPjifJrneZ6Vq2qhMNhm8dAVYxoRYeGUUlVVxhgVPypSpSwxhZSWbafc9963bdA2a9M0vV6PhEuXWWvJwKjo9coypeDrxjlTFD3vG1w72yGiUnRijHVdO5vr85JlBXTehJI4SeI2eF7b7islTEEvay1QZ2inzHpZN+JtlpVlqQOLsBOQxrVN69U1ZAG4LMusU/p/ysmPN7ars1kraVL28uvXb+Yuf/fdd5umPdi/fjzcPtzbvnV4+MGH7/87f+UvF1knsESwgA6EXZY9OjmFdeX8x3/8gxjjl7/8Cz7hR/ePv/a1r5X988y45XSW/PSXfuUAECFxMR692OsTfOu3/9E/bWIqM4qcQIxFJLg8xf/+b7w+X9R1PKnrZnER4nIizVG+sy0EZS/3vmaJnJigmyVnbZd6w5p6TNYBXdLlNl+bOyvIvK5r3wa9SQqYbVCo1WoVY5zNl0VRDAaDfr+/WKwUqyQiH5LJXdu2INgr+l2vJ8uUy59Sms1muuz0xKbTqRbHvV4vs0rDxzzPVWlgjPHeA4lqzlerlbM2z/O6atXnbbVaZUVZVZX+axvS9va2D5xlWdOGGCPipbyge6RTQoGYpCgKBnbGiECMUZuPSIZFQAwYBID5fLFa1bnpZ9aEEJ0lRJzNZjeICNCHCCaiRVpTg4EZkRFtZux8MQ22t2GSSoqeU5bnHBMgARE4a6xhjISkxv3d6hS4pLAiiogBMcYQIFxx3zUMqa1gNgUQQMLL9EvXekIBBkEEhkRwpWt59bXedTaXiJDatkUAdd81FtGalNKHH3xw8+bNndGQiIJPCURAsjxnXC6XVUhxsVoKUpaXvV55//jpBx989HPP3fnbf/tv/Rf/5W/de3jv+v7tB6fHiJR00ohsvDAQEbmDDw2ipKYCYCRUc0UgBO5sybIsM8QAGGMcjIbteSNrxX6M0RidED/BzrXcAIAwCkqW5cRChOqjod6YiVuWWOZmOOpvu57GNYMiMREAWYuITbjMEmyetW3rYwBHYBywhMitj8pag6Tb2trFQACRtEdm1oMWOp/u9X6gHiurxdTa0hkAk+q6zoYDzT9SSkm46JWz2WI4HDLD3bt3p/P5fK5T7Y33UQGwN954Y7GYqWRSEwW3Hqet9YxykLGzz2UCRARr0AAmkRRCjJHIqEkYM6uq6+zi9PDwEA00viZjfIqOHCE1PjIzJA6cGIQ5iWBW9ryPbdsGFgQkg5LSYrEoy9LmmUaV5XJZ1StGCRwVJdGET9UoinUpm0qJ8HE9CEg3DwLgzaiitePuBqLQlaCMH1iLZM3aVGJzKBEB5I0GyKytKsyVKtx7z9C5TaYrY+/SehQgSjLGGKLu1gNlyvpQGQlQCKFuqrpuj49PF/PVZDbz3r/91jtNUxM5EfyH//AfAxkQAUOjrQMwBEC+jcwSYwSxoWUEYBYScoUTDNPZwlnHSDF0PQ0A4siIAoljbEESICYAJCVEOo5RApMhIZTEiEYSY4d0J0AGQhAW7OyONadllo4ScDnAe0PJ7ZipzAygf96Ft27YJP5MkF3/ljTcwMZoUBuahOqMo/WBAKR10YNrcOvqz7QxuxcBEXW40PdB5OLs/L333nv99Vd6vV7T1Fd9xfXMr2SWCKYzHkdE52xKqUMcXefl9uzZs7LMf/jjN/7z//z/Y21eVU1TNflgtElekQQJVeKWlT1JIYSwWq1yZ5gTp7rfL+tqnlLY2dmZTqfWdlR6Xe26Mo0xuk9p+aFzivWEO4RVIDTdwKLYeWhRFO73+xLTYjET5uFo7Cxl1g3KniTO8kHrQ91Uybccw6BXEBEzBGYSCCFoj8h7z4IAwDHB+sroxVTAPqVU9gcaG/vD0eZx6O4CcwIhMspA1bw8pei9T9IZF4uOh7zSfYkxIokxJGsd3tXbhBvjiZ9+9BgBfv6Ld3/y5jvGSmibEMI3v/Erd+++0M/d1v/w3w0hbO3skDXT2atN0/jAs/myaaXx1VW+TX+4k1J6dnLe7/cfPzk++6f/3Nd+b3f7cHe7KM21a9eUPhlXlc3s1nhQFNTMFhINISSfsrw05tKg62CL9rdHiENBYMFYL3tWDcq9QenWOJIxpigKTby0EalRzLku9/rMI6KQWNM0igpuos+VUI7ruSK8u7ureXpKaTAYMPNqtdJ3dC6VCrMBQHNtZR1qmrXxMrEqiyLKsuz8/HzYH2iUbJpmUBZCqBMeM+eUvOKcg3UTQZNuDQo7Ozu6vRknk8lkb/+ormtVY7WtjzFm6kkbwkbFbdV7FgAROXhDGXAiRFagBUmQAOzb7374xddf3Br1BIGcjZwWiwXZbDmZrbampj+wnCMTdKWqABgw1OsV/VF/tljQ7oBjILKMIkRlWYQQICVABCJDxhClKEKfqiA3uL22H5ATGuOMlSswFQBY4owAUgBLHS9DY58AAyCQSn8Vzv83kb+6QpkBhYgAxcdmZIxBEGFjbYjcBHnv44tfqv3ublb0yvPJRQihKPsilbFZG+d15d9//8Mb167fODwQwszYi9OTeHFx88UX/9Xv/YtvfvuvHp9+cvPw5sPjUyEjwojK+mQQZBERFd4axKCyKWFENUpI0bgicdczYk4A5uTk7MbN61owIJq27dDNjftAjGxtJ49jZOd6mlnmee5jqKpmOEyJBQUGRTbsZXEycwPILNV1TVnuSvZt8qsqNO3mOs1mEwDA3JItgQHQIHAKETrroHajIOnijjCiIXSEpmoWIuycg5Cgk16nqqqGZaG3lZwNISlRMsa4WCxms5nLM0Q8ODjw3ovw22+/PZ3PdXS9Rm2149InXa/Gplu30Rdba7PMbZRTIqIdRBJInIwxopRNMikllSqLSK/XWywWy+USSWfUoCLckqLaqCYASxg5AYAw1G1jyCERGGIRFCBrKJFGHhVEKwEZ1qlM6gyNuhF+m2dcC7Z0ZfCidPrHdc8L0enkGcSU0kYzpJYiur0prThd8UzatBGRZIPxqEWCrqIN7RURmVWfFbV3ySwaOhREJJNpdq4wibHZatk2bVCXtfPz82cnxw8ePJxOJgAGAIEcMGdFORj1AaCu236/L4w+JgBYVl5EdyBKiQ3lACCMWV6mlIShWa7AIiSOwhJaMAY09DGTMb5p1IdDPZxSDMACgszJGMvMHCORWQt3mMhu8C0i4vX4AWHklADx0vYSscNuYYPEd3UmEX1mmBmA+by2Z/NBn4o26/8iouhsMeh0QrDxmNCW6JVNSq7yYrUw0+JGRLo1z4YooZnP5yklTkHXxtWYOZlMNo4nhmxcBeecNrJ5bZXsnMsLpRpDjP69d9757X/yTyKTcz3vPTnnvZf1ODgCQ0i2oLpq2qoGQ9baum58A0Q0GpWLxUoxJO8jIip5QyEf3ewUqwvBb/pRKaW0nimEiJmx2lh11qbU6dNjirPJaQr1/u7eoNze3d5qm8bXVVsvPjl+vFos2tRmtvjWt/5Snuff+/6f7+zsKJdU+Yur1crs7XbOHZE1mzIGAclwQgA0VM/n+gtKHNcnxjmnTouIklICgizLlV+PiOp2q/MDACDLMkQBlBgS0eUySCkRgKZ06z+8dMe9RL+YLHL60VvvGQJmyAG+/a0vLeazP/6j/+7Jkyd/+9//H3/x538hpPhn3//zGJpf+cZX/9Fvf2cwHhnKF6vl2ekFHHdHPJ8usyxLvErMb/3kzd/4jd9oTXN2ctLvmVde/5IxBDF0BMgYB73s5Zef/8M//m7PjoQBRGJoN/wSAGhWF3meu8xy4rOT08Xk4udfONR/atuaUwRgjqlLNQBtl0iJUvmUDPQZ6AsAQJCTZC4H7ErDEP2GHICIIUQAmM+Wxpi8l7dti2h6vXK+XFhrbeZEpCizEEJOuXOu9b71nqVra24IreomrBfd2VynwI6GW01badMhz/PJfKYCE5e72A2lkhhb55wIGpcl5izL0VhOcHpybnOLiOPx9s7Ozsf3HvR6vdZHa22v12/btq4bALDWIBESMaes18uyTAnfhC5x1NDCkgDAWCMpOds7nsyfnU9v3joskeu6LXOXUjJGlvNFM5+XiFT2JDBgAWRjBEIhYEYoh300CnoxGeHE1uWtTywJRIzBPCsEoSv3JQIgi7oEgpbUwlHHQuZZjqhMEMEr6qHkW26XgC2whZTEWEBRewoQUvYXgUXW/h1cwdQuX4bW4iMk5gBAxtoY5e5Lz++MB4Yrn3jRxGTLYKBOBqxLwAKxaepef2xcYYwZ9gbnF4s/+KMfff3rX3d5hkQhBAtiAX70h3/8+he+9OM//8MvfeUbp8ePbl679ujZuYgVSBZNFOjwLREATjE4A0ACbABJwICs/SlAbJZBikpjW6zqyJIVvbYNSvBMkfW6GeNEYlqPsxVJMXpIsShzg5RlWQzRe58Yre2liNEvt0pDMWDitqmFDGa5tCHNKkCM9WX6hSn0+4OYkqCBLAdCCd4iA0oU1k5BSGwMZjb3KSAKEfrWb0g5IvLCCy98+NE9RBNDyHMHAErK9N5bY+bLxXDY9yHIqj44OCJrnMt1hilazMpsi7aapmmabhyNtXY06IUQGu91IZHFmAISdNJXFkPEMalZEwr8/yn702jbsuwsDJxzrrV2e7rbvzbiRZsRGRFkn6mUslFKqQZkoQLR2IBGFRgwQyr8Aze4hosfVaOq7DEwlOnGKEzRGGzsMQRCYCRcBqEkQalMZZ+RGX28eC9ef/vT7W6tNWf9mPuce19EJML7z7vv3nP22Wfv1cz5zW9+X7Jy8xU0ZFF053ROp2RdRyJUjeUrly8vFovRaCTMMUhcadPA2uup61SELLEOpUdmLZKIRAAB6WKwadJWdb2cy3gYvL/99u17t+8Oi4FBBGP0tS4xxp7ZItkkUXTNGIsIZwwKZECIEoUFSRhY2VppmnZdp4nfuTK6iMhaEIcMMAdSP63Q5/fWmBCicw6FhJHAICAKiXAI/XOnnqhhQwhkyLpeWG6xrKuqOjk5OTg4mJ4u3nj9RlV3feIDBCDW5aPxlcCRyMZV4lR3IXJEdFXtAUB4VUtFI0EAokFU21+D6NtlX58iAdWqCR0g6AuUtSux74kGEUTLERCdRgaAyD225FgjGwQA0zehIQKgFi4BgBkAexXydVEMRG2VAfChnQIJOcoZ0KWoGPb6FKLKhQASezUfERFjZKWtKj3ZS3o5ZSThCADG9WKqSMbZpC9PiwCJsTYyqzwVIIHuxxqKxYjGMDOCIBJIJDTRc/DBkHlHuzeSAQksjIiBAyD6nnffK30QUd02LDFGXy/nw/Lxn/nd/96rr7785vW7LOScQUqioG9bdE580ODFR7aJE5YYYxACNoISmZeLqt9QjHnw4MFwOEzTdLlcAjIZsMZqi4xnLyEimRhD1XZEZFSTBSD4Ns9z9r5tG0UcNjY2JpOJdQjAHKMlvHP39luvfYfFf/qHfuh9T35gMpns7Ox88IMf3t7e3dzY/kf/6Jf/2f/vVy5fvux91KFrLG1sTmLnGUNkQTBt23ZdcElaLRfWJjZJlEq07mqPMRoEQ8AxxtBZcknq5vM2z9KiKFSDJsaYpNZa8l0kAmcSYTHWhtglNo18hh+lCRHZqqqsJWudJpzrvybJCgoLgAJSOEMSdzeHn/7BT1zY29zb2WIOy2oqwIBxOCwv7u7B++KtW3fqal4UeeA2+nDh4u46/BpvbMYYm7pyLliDi+kscY4M7+5tPf7Eo21bZ2UugQHBt7Fumt3tjSw1ELluGqWrnz+KzA0GBYJ476vpSTU/Vl0f5de3DUtkfVTrjI1WwhDQG6qbd+cl63woxB5yL4qibToAUEVjjZwQ+sQ9yzIAms1mZI02kmjCrSVhjWfTNGUWZlYPvh6wxb4HTaE17/1sNgOA8WSo+1Ce56PRiCUAYtd1o9GormvtZFzRbM950VPfkTEYDPb396uqyothWZZJyovFQpvCerkv6LVpyuGg6XxeZAZM6xuiBMDYxPi2QUMAQMLGWAIGTGbzqml9zLPIXoTqup5MNhFgdnqcjwYAgEYA+gyMnAOJbe0Xi1mSuoYZkIhIAIxxIIGDYGozl1mDUVD1Bw0SrTj12GNCYJEQxRmLJMAsZwnoahDnWTutAWHFbNUSaCAVRUIGAAYx5974bu2JVQ+LkmmMAgaEZr5YRJEucNu2SZIta3/o4WA6e9zvKRusqqrNHcusapPGmgwJXnrttaefflIEnEkO798HolD7//zP/Cd/6a/81a/9xj//xI/9+IN7967uXbrz4BDBRglEmXEusAhhDN446nwDHAEMkEE0Yg1wBEMoELwHRAcEALdu3eq6D7dto04G1tpaarUQ6ZcYY0SECIicbusxMCWkCWVVN957MLZt26zIh3mynM4pqw4PD9JhSWUMIYAEA7R/7/76Xlmktm264AMXIAyCHCJwtNYKMPXe8AJAPioTHEUiEsQY0zQNwccgi8UiTZIQRS+7aZrUUZ7nEru6XcYgIrhcLgeD0enpbDQZNk1zeHiY5/mFy5fefvvttlFCcZ+m21UspVVIsgYRp9NpnzcnyfkZp0HMmsMB66b9lWwPq/ABc1EUFy5cWCwWytMy5IwhXVJW4BDr+ZXM279begIWEQGjc1SWw67rrr/1RtvVN2681XXd1u6OtdYljogcQYS4uoz+zKsL1obNqFbTAKDLN610BJRWEUWUCapd24r0K+4lDzs5EvUEfL0PtOp2RPXJIRO8j4GtMyTWGodAQXijHPoQQmAGs39wsFzWi8Xy9t27N9966/DwWMtzKCQChtI0H2ZZQUTqDuQD101kBCLWyhohshAAC2IU5Rj0jYEADwHbcq5CveIGaLT12/TPnB0P40a/7cvXse/6FulJ5Hxv7OoyRAgIHqozorYjkAr8yopXAIjKjl+VJs/Cr4eucw1riQCwCOm87l1xJcQYtcjIff8ECSII4OqZuiSJ7L3vhqPJ0089rvtXiK36VK8/zTmnrSdRetWSHiBn1nRFdZHatk0M3Xzrxh/7oz/3/PPPf/TDH3n11bf2Ll7YPzi2meMoYI2EAEQorI490QciIkAOLTCCJWZoqso4RwYXiwqAQwiHBwfOucRZ732SpYoDAUBoPMdoem1sbuvGez8YDIokKVwy2Nh0idEt+PT09JWXbwIwIoCEj3/kI3/k9/+ex5+4dvnypUcevbK1tRVCcDYVAWuSssxffPFFZ5wl00lQcFfbpeuqOTo9cS4NHENgZSilaVo1XWA2zq6ar3vWrFBQRgQA5Lntuq5tqrwosyxtmjqEoFCWMSaGM4HWPM8JLSI6eyYEkRdp23jEfobSyg1iNSJWxUdhTwASY2D4/I98bmdzXC9nN2/eXCxmlx+5+uUvfznN8sAQIzZ1fO31G3kxBjBVVReD0bI6w9PeunHDGvPs+56O7Pfv3a271pBsbg2ff+F9xkaOVVMZEczy3DkEcsNRube3e/fe4cXd3S4GvZVr4EPtOIJXbhMW+aDrgjBaa4OvQwjMgawBwigQBaKPRH0bi2C/+uhsP8+Js9ZqMdG6h5w4UW04vZdzh+4czGwM4kp6e73iG2PX7A1rDfdGwjmtPBbm87k+G61RKjG/qbu6atPMxRg9B233QDTLps3ygpEYoYthuVyWxdBai6RqXn5jeyvLstPTU0ScTCaA9vT0tPNxOBwqEYqZsyzVC1YRDbIqXVEcLxpjMHr2bePSTG+p75dCBDBv377/wvufGBdpmWUirD1QxtXx5GTr0qWwWEjibJ6gsSwgwgiQWlM6x11rSickgcW4pG0r8B5yaxLLhJ69ZrUYAxGY6B9eB7kn2ksEPvNDPR9+sbXTqgFCEANGQCIIIKhBIgP0EZgAqFgSvFctwJBFxBA7ZjUEZyKXFeVrdx78+pe+8qMffIYjWMIiswQwnU6DjxLRd7FpWm01yjJb1xIiTzYmL798/fOfawQsR7h1/cbt7333zZdf/sL/9m/+1l/9q3/s//wLX/wX/+ITn/nRkwd3r128evPePUdJwy1JKaA+Q4yGYhv7O6/9uQisGAEAxIhJwhDzclgvT30Xh8NhCL6qKqttWs7U9QzRZFmiNrfQ1ytBVjkoIhljOcblcpn13UBtkiSLk5MqZEmWchPQNNI10C0iOUNnyc+dl17JL+xu7u2cnBxDkujeUFUVnml7MpFBFINirRGIMTJaFyOr5CmLHB4eqkyrGKiqRTRkh0UURhFr+t6i4XCcFTkAaLNwORoy88HBARE9/uQT+/v7k8mGiHDw1lKIMS/LPreJHDofoy+KIRqnVTleSSvBChPSuX+e1R5jZFbdNWAfs6x44omnXvru9wgtYK+qBasGQO2q0XMmSdY0LUPDzKrnjoiIRkC0s917X2T5rVtv37l767Of/ezu3uZyuQRgQGGWGDs0hhl816BSQERAhGNgFkAWiIBIAqDmDXFt1E2x8wCQWici0bcA0PcQM/PK00kD8RX/mpWcLiISgyEXQrTW+raz1qZ5kaa5MRijhBirRdPU4caNN+49eHBwcPCdF7+3Wn4JANDYrJykLhEEXapQqAuxOZ1q8W4d/wGQ4EqVAaIg9EpdrFKkZyvqSoHljJm+/hkRhb+v+di54981OHvHOvCO4fGOV4LGWw8vILQqIovyTYUVX1+VF7i/fjXewp7H+RAFWwhElIQHq3o0AABZImLR4C+QsQaMiJCGy0QAQChoiXtjTRRh31Ymsczx8SeubW5unE4PmYPC5uacYnnbNoZI2xZk1ToQ+ziMRUQ9N0PXfvv1V/7L/8t/8bGPfezRK1f/wl/882TSv/v3/+cLF6/euf8gLYbEJGQie2m74XgYO1+1DYBjAQC0iQk+our9A0jk4H2SuuPDI5CQJmmS2CzLmvmybdvBYFAtl75aFqNxYm05KNI0HRQlc1gsFt63d+5cvwcMIFcvXn3iiSee+/Effuqpp3Yv7o5Go9SasiwvXti11oTYed+enhx3XbAuFYE8G56eLn75l3/5scceAwBmVssg3YjRmq2tra4Lp9NpUQxOp3Pnkq7rsjwRER+Clqd0YcmyLIbOd11eFGqwMZ/PXZLFyA/2D4LilIjWWl0ZykGuaV6ep9ADJWdP3q/8tYgISXzs9MLWg7APv1JHEFgYPv2JDyympyf79+p6ceXqpTxPX/neS1ceufYv/rd/fnK8DBHu7h988zsvTiaTcUT1H/zSV74Kq4BvMBgI88nJlIDzvLx/9w7H+sd//DPlwCWpOTo6HLTt3sXLSFQv51XdjgbDxx55tGvjYFRWTac1bmjPrp6ZhTlGNtYtl3MismmyXGgHTS+n4ZzT5UaDJ71rSdonrCqwW1Vnnioa7jBz3VQiok63IGitVWdrdSlvm8V8Ps8HpbZjpGm6rJuiKBCx67rFYlEURVVVevcVuvPeTyaTqqrattVF3zmnjRt1XYvIYDBomkZ7JNWeL0mSwaA/pwJ4Wl9QYKypOxHRb6TfQrm929vbIYSDw5OiKKqjk/l8PhyO+4jKe2ttURT1sjLWCMve9lZijAHy3luXhiiqvStgQCCKIAIJ3bp9bzFvcNckSbZcnBZpMp9PfZTRhomdt6kNgCzBoAUhZjaESWp3NycZ0SxGQBRC7joAA8hpngJA7G2ChIAJmACNIVY0BVfqw8YahL6ZjHp3sBjPINwgoW1biACOkBX3D4TqS7E+WNTA+vsszToHNP0k6vsHQwRA83f/p3/0A8/9F8VwtGy60WB4ZZK/+fobn/7Ih6xN03Lcxq5umyRzXR2tJTJo0+Rbr9x8+/b9i+ORccns+Pgv/jd/4dXXricWfukXf6kJ8ef/3H/5ve9840Mf/Pj9e7cevXj5rXuHid3qmg5cgYkFiV3XCYd+p1VdRxIgYGYwiJT25RpCMPbo5HgwvBLjGWawkm7qvUG0G0ZHu7XWWjQrsWkR6do2TdMYrfc+S4tLe9uHy85C5j1zHeJyAdFbY0I4S6KKnQuXr1zePznc2B7u7e09OLyLKFzXJj1joQBACIKEzBg5iIjKPOpHG0vELto+nk4MZenK9w2EYzRJYk1S1Yud4e79+/edM4PBAAw55/b39z/xiU/MF9VwOFTkOLFm9YlhPp8fHh4+9dRTCv4xc9tWsBJSXwOcGsErKK5/lVVngI4E75X/K3t7e3du3X7w4MFgMNI7FkInK86lrFi6dd2iimsw1129DjsIDCIWZcYcvO/evP767/k9P/PhD3/wq9/4+mAw0DQPDZVl2fronBER5iCC1lrlXQlEwl5dIkYmIiIIIUovkuRU4EZWjPjzW/s6xNSAex0sxshZlusEzNICUCU+QRhPpvPF4mA2m92+ffvg4Oi1V98AIEALiMBxtLkTg5CzBowqRcXAS9975BljQteStSoCrDn9Op7o8SRQWb71BZ5Tgn8H0KVQ5Yr2DtDL5bzn/P23HP9Ob1lT4L8PQobnALDzCFnfKbluFz13tX2lWN8LD8WR8DCFCwDknPIRrDAzUbq2MevT6rt071jJdNH6KSOqdApGCJPJpGkaZSqTkRC7UJ11z6iqn4isWUeIGPsGWM1bZblcjoeDv/8//v2PffTDRZlsXbwIIJ/+zA/97f/hfyjLfG9vJ0RofZQQk2TgNqwBCc4miQUgclYYvffBGGNMaFFEulDnWRG61iEIYgxdBO5ERqNRmWW7u7so4oydnRzXdV3NTu5Np2WZN1X9Iz/6uUuXLjz99JOTyeTqI5cvX77MHCaTyWAw0A42jkFEqtmp974os0VVVYvlZHMD0dSNv3Llyje/8eJsOXs0eWytla381NliUddNORywSJIkgeNgWExP5wDo67osyywv5/O54lIxBBFRa2Z9xMoRijFyDIBkVl6lRZ7rIqzxAPciavEdo1EfHEsQRmccPEy9h7XqffB8aXf4wWff/9gjV+fTE2K/vXVlYzLuQvv+97/fGIeULabdP/2VX3n76ISMefvBAQBsboyC59miWodf1jpraHZyOijz9z/zdJFbRPOBDzx/YXd758LO8cEBkZUQuy5Ym4xGqXOpCHRdqKsWiFCl1VfhF5EViUSGDe/s7BjCGKMGGdyLBAKiQTROaxNRQKKxTkTUPFsYYuAY+R39CJGDc24wGGjMa63lKGu1mx4DMzLaHC0XfVOJ9977zrleuk2lVsqy1DVoOp3iipxBRLryqrCFBrxqjHDv3r00TRUMA4DON1FkUTVp5hh7p6C8KKqqqlSBrFdq0XKqV3eIpmlUChwAsiy7fPly13XKeGtb1TXutc2iMBEgibFIAEIUfItkV7U5QjIoAAjGZdPl0aJqQ0S9D1mWJTaJvh0PBxubmwBABpEAQNayzhLDMDNl6rrEUhesS31oQEI6GGqxlZkNoAgbiMqJ9QGFjOb5SMgcBIEBJSqKGwEMAVg6G8QmtCAMyCBRWNUjQbXtEVca94iqer9aXt+5yEqfhp9tzQDcNN1oOF7Oj198463PfvwjcjxLkuTjH/3Yl770pUXTbm6MbSntfNq03nsPoEEhJ5YSgvsPDi5tb3cc27bd3Ny8etUfHZ2MN7fu3Ln3N/7KX/oTf/pPv/Str33gIx/fv3fn0tblgzmYJIlAEqJxFNsWJADaNSiAaJAIMICgIQpda4ztfIQYDw6OtrY2cNXmto4MYlQ7yIgo6pqn6ywzxNgbx3Zdawy5xHrfhdgV5WCS8b37Ry7JkqSoaw9VhGqRXRgsz21hOzs7KLC9uWWo297efMCeJYIE5/IQmxjBOQdA3rcALsbIwgpaGyRAadvWJkmSuqrpRBgiM1EI4DECJGmaLptaQ4rxeFxVC5e5ra0tNEYkLpfz0Xj88iuviKAxJkkyRIzCHLwxpgveJebCxd2yLKfTadd1aZqGUIOaZa56HrWjXlFqs1LDWsdSihIlaRZjNMYRUVkO2/Z2lml5BUUZhD1Go+9F4wwAcATN9JTHJiI6IJk7MvLPf+0Lf+7/+md+8id/cjwev/HGG/fv39/Y3unHohAyG+VcQQQOBg0hMqkoOiiYFVgNq/omNVyxF7hvjCdmjoKABhADa0DGGlC6JDGW0lQXVSGy3vtmsZienByfnpyeTm/duXP37v3TkxNQvy40Nkm2dh9J03S5rJVW0XbR++DAAIcQIrMYY5EQATnGEKJJM8W6+vYxAFw7T8BK5u48WZ3ORV3rAxEEQQBhpZu1fgmu3/bw/P3fE5W9G/x+9wvesU2e/9PDL+XVVSnI19PJJAZGIyCAAESrDkoB1bgXARD1tFXra1x1HcEaSxORGMEYwN5CSiQSUQgd9lVjWTn0MvUcR86cY4nGWUSlHECelz60q9f3R5GnVdVwb+x4JquhISQiWjJt2/78z//8Cy+88ODBAxT/5d/4kkncm2++icDBtxK8oQQ4DAfDGCP7EKLP8yxLlVeNIYQsSXsuU0Jpmmb5nogk1pZlCRzSNAWOIYTpyQkivvritzruJsXwueff/+STH83z9KmnnppMRlubm1mWXL16dWdnaz6fHx4dlEW6XHaL+emtt9/smibLMg00syQty5yD75pqMho4Y+u2S6xr6+a3vvKVdZsqCmjvS9N1KhhxcnJCaLvgs8wZYzY2Ng4PD0VkuVxC1Sjg0rZtUZaj0YiImqbhEBeLRQgdkAGOZFNlchs1SnGOjAkhNCvpUH1OfT/yKtIOwav3uohYa4yzxp6pW5NZFR8HGbzw7PsuXdypl1NnLLrEGPPWW2++//lnf+qnfurNN9966/rto/0jQjcoytO6NoSMcHI6i9JzkvSYLuZdWxuQLHUnJyff+Pqrf/JP/hElwnd1OxyOvQ8AlFrbtm2SZUC2LIcnhyczt0zzzKaJ9/7KWTBnjTHRB0JbFEWaXPQxaC25a0OSpc5QjOK7oMMXEZXSAQD6oWs91fPqO4p4aT1FX9x1nTD0krjMeV62bXtycjIcDofDoQqJdV2HhMycppk2P3rvwRIAaBcVr+yutTw8Go20+FiWpXZVKADbdd10OrXWLpdL1b0EgMWiXXuxYW/I1WZZ1q5EMZSnP5/PvY/W2o2NDWapm8Pr168PR5OyLK1N1HxJI/EkSULniUyaulB1g8Hg3tEU0fXrmoj2bKu6JCIaZ1pvH+wfLx+/XGYZrvo1sqJcLBbL+TTFUbSJI4cGDGAQBgFDkDky3EoMwuy7Bgw5NHmSeC0Ni0ESkMjCFoHQRhZHxBAICIUNSIog4q0BwsAhQlQlqbOlJI2V8TUIAEdQ5mkfcvXa9yAED5m1vcdhlHgrHCMDCAAaQzHGqm4E4G/+/V/c2dl74toTi6rbo/TDH/7wP/6Vf/ZDn/7U7u5OdHkdsZrXwIEhgvhhWbLAa29e/8gHn9+5sFf5ejqdG+NmDYQIk61tBvnb/91f/6N/6he+9bWvvPCRTzw4ujvcePpg2pkkjwREoK1uSlHD1dIvfbsVRBHjHHNInGu92d/ff+aZJ/M8r6plW9dEpINBPfJ0ZJ737Guapq7rxO0oaKorb+waiZEgXtguXnr51QwvVE1F6Mxo7KFtY5DkbF0AQhFJU+eb5XIxg8R434JERDHGSJQYY5K4GBVtIkPOORe9aAjYT9sYgUNZlhJjCJ4MqMFIDByFx+OxUlXatt3c2owxFkUv28O9j29R17XGOtbSmuekfX8hhCRJLBn9zWg0mi0WOt/XMJimv2swQ6cnr3SMFKIeDEZ5nt+9e1f9x4wxWrLTm3aOUEWBo7UWwXRdp9wU6StKMUntwcH9g4MHf/Wv/PmPfewjo9FoY2PjD//hn/sn/+Sf7B8dghCDiHCapk1TaYVIVyREJANGzJq3upKWQI0C29aHUIsgke26EAOTs4TovXcuJUN5XhprtcfIez9fVNVyeTq7d3RweHx6cvvW3Vt3butmYFw22dyYbOwOJzsA6pMbmqYJnpt5TURN3TqXxOhtkrTLCoyqYlpd3pW4os+ibVuOkVQH33uIPdsJRHo8V2fcKkVi/D4RGICs9GX64AA1Afvtj/dEvNYlZjgX6Dz0cQ+HWd+vNHn+v8aa9RvPB/FwRiRdnVy/9UocZH0ejbTOB154TodSRAAUnRJrHRFpZgJqzq3m1QDWGiITghfgVc8AJ1kauTXG+AAAnKZn/IEkSeq6LYpirerOK4MpVDUAlvF4/Pf+3t/7Uz//Jx+5fPlHfvhTe3t7L3zwA8NhiYDCsSyKyOBMSYhFmkuIiLkzKwFb29MQOUKapuUgFxEJvuu6xXz62stvtG0lIBe3L1y9evmzn/nkZDR+7LHHLl26dPHSXp6rvzuiSnMZPDk5cYZvXH+dEULolsvpeDw+PNon4I3xKMuyUBagnLKua7uGEJjZty0B7ezsvPXWW7/6q//0Qy98aLGoijKN6n8T2k7FLKwxxrAgBL9cmbjneQ4A5GzXxoio99w5d3p6qiuqxGBtQla9IHsiqXOu67x6qa3zeE3wsixTqOw8uT6EoMoMAGIeFmbTow+/nnjs6oXdTY5dU1dlWuzu7pLBrqveeOONb3zja1kxGU02u8gximeJwiLaxgWCxHIWfrWtf+aJ912+dPHBndshdD/6o5977rlnLRGCITIGLQMhuzt3H7z66svPf+B3ZHn51vWb3/72dx4cHA1Gw62trfHm+Moz/dnu379PRBzE+zaxFHx3aW83z4tqcUIr71gMXIdWVArKWOM0NocQFMa3IXAInojOprUqQHad6kFoZK2FLFXuadqOrNnb29OdrG3bJEvTPKvr+vbt26PRRHWDZrOZXsZkMtGlU9flLMtU6MsYkyTJYrHQS23btizLoigUIVN8yCUOEZ3LVQESgapFdXJysrWzXdetMzZxfZdTCGEwGDiXhhAOD4+6rsvyUmmDIqKfqwGlcip9DBatgs91vSQgQDTWxCi4qvGBpuUiLIRgXrt+48PPPx2HKUTuus4QbeSbi/ns/p27T2xsMsfgW2ssmcQSAgICPfbI5UcvX3zwoB5kI990gjIYDULoGKMlAiEARiIrRoA1r7cSvAJawhYhNWwkCHeJAeKIwpbwPHdi18W7yxOInQMXdTXDPhlm7UUCgggkqM2E8F7HqvgI6/xav74PvkyK4676G3//H/6+f+8nL27uZGXTRl9x/Gv/4z984enHP/nJT6aNzwdjrtkV8dLlHR8DC/zmV77245//zGgySg5SrOraBwGog7g8v/rY43fu3vzv/vL/+0/+x//Ja6987yd+93/wG998a3P72vHMA6lar/SdUOcW6P7aRIQQyUqMAAQmOTk8jlGgV6xl3XqTJCHyi8UiSRLV8lWlFV0RNAjTdC3GyBwQpfNNwe2oiDtDGLoudF25eQmcSy6Mm+CrcHbf9g/vb2xszPZPdwbm5o03B1sTH2rAyBKIQH1FvfeIBoQAGRglIrOEwFmW6k7U+o4IgWMIHlFUyTNIHA7ypvLaPhnZj8fj1Lqjo6OublzmACDP0qqqOMTNyYZyzFXDBSQisAFzcnh0+fJlgdg0TZ5mJ83p4eG+robWmXXUJSAhdo5M6Lq1egsBSJQ2eI4yHo9D4F/91V+tl01R9M0uzjmNM5gZgBApimeOzvYK1xoqGWNEEEEid7/xG1//7Gd/6P/1X/3fP/LBj8QYy7JMkuTqtcuf/tTn/tZ//3c2NsaWiCV43xZlJpGZGcEA9112Ij1gCQBgLIhERkASQY4sYFiYyOR5AUCwklqtqmZZV4tFM53NTk9n0+n0xo0bN2++DWIUVQXEohxcvvp4lhYhBBEkZ30Xl3WlJSNrLTN2IRBRFwIQCUKSpd57m2WK2TDHM465CDB7ZjCGkLhre3YXIYCs9O0QegKm2poygMV3xCL6Vw1HVgHPOmbifwde1/k46bwgvfJ9Vy845zh+ZtIowGv7IHn3dvjuCCyqzGl/WlhDSCznAq9VL9dDJ+yjOxZgNH28FaMXYWOs0c4norquXJpYa9Yi+1mREVHXtMYigmERQksGQIiMTYz1vuXQRvYAxqWJ9OYHuXNnGVTTdHTO61AP7m++lufQGDOfz3/wB35wZ3tza3dne3u7zHKJgCBllleNz5OUjDNoAIAcE0GWZUliFREUkaqpp7OTt964p/CbRfj0pz/9geefuHLldz927drW1sZoMMzzfHd3t1osnHPGUNc1LB4ROfJ0OtU4ZjKZRPZkIHXOE4eumZ6ExFg7GATfRQ55mpRlqbtbmqaz5aLtvDEu+LCYzX/pH/7i7bdvDYcTXMXE+nA1nSGgJEkESfFgTRGTJKnretnUaVKsTQihlwKRLEnR5Oei814URutCiOpHJLjCREMI3semafpRN+pveIjcNNNeugXk3B4EcF544pFLF5u6SgjT1NVNNX37dHt7O03T0+nxiy++ON7Ye+PNt197/a2j6alH6FU0GJxLgmd+uNCTl/lwWD6guLG58bO/72eODu9NT/frep5l2ROPPTmZbM9n9c3rb7/0vdfuPTh66qmnxsPJtWvX0Lj5fP5rv/ZrbRs+/f/403qqr3zlK1mWjYeTNHUJYYj+/nBwYXdTF0e9jBj5Hbr268L5OvGVlRphPxlXFlrrVLsoCmEgouPp6Xg8ttYeHh4qub4shs65w+MjY8xwOFRhCACYTqfj8bipO50zvPLd03RcUTft0lI5MREpy3LtTrq/v09Eo9HIZalqA52cnKit5GAw2Nzc7IJHxOhDT9xb0QOVNWIMaKEzTdMkzZ1z3kcdVVpOhVX6HqMfDAYvPPf87f0vOmN8F4xxq/1DghfjSEJgELLJrdt3p7NFszUYlTljkBjn0xlSUi8X05OTbDhK8wQQJEbUaq9vOC4tLMNilgxMKR0LwqK2LGTQOSNBYoyJQ0coEQwBcciT1BhJnLGGHGGRMEfGyHlmLRmEIJHpXBR1eYjfbeYggSJJv96SqmhBj1Wocg71DFB4j0OLj7pgEpkYvSo8CXPjQ5IOXr1z78//9b/5+U9+/Kd/7POPv//5mA/8l77+1deuf+216xdHxZ/6D39uZ7IVjmHv4mRet49c3bx1+3jZNVlwaIyK+0UAtIbJLOvqwsWLxw+O/sZf/su/66d/76d/8JNf/OYbzjmiCNjL/QGzICpUbgB75hwIcNRMK8mz0DZElqGtqmo0zBXR0XHb+VZHgq4I6zG2zsa0OpbnuTH9VnR6elyWeZmZ4YDC/H4753Jz0xZ5FZrR9vbF4cb6Xl26eomIrj1y4fXvfBUODyfPPBJ8A0ZZR30LYe+QaC0gS1SPL9VcbXQC+q7J8hJRjMEsyxEFLXaNj5KqQFfdVb7t6rYKIVy7dq2ua4M4nIwX00VVVTvbQ2bOsqwnVSCH0LcxWmvzPPdNq7uj8luVzWmcU1R7LQZWZmmMUYPdVU0HmcHlDgAePHhw8+bNR69e45UuvN5PpdIjorW2C633nrDWhXvNq2OGBG2SpH/tr/2ln/qpn97Z2akXSxGJMR4dnr7x+lvXr1/vZ1ns0IAx1LZt6jIREQaya04PAVkJ3AU+b89sjEmSlEyqy1dVd3XdLpbLw8PDw8PD/f3DN2+8BYHBGIgCCC7PL119LEnyfkWKAABoTQRkpBgFuxiFy3IQV4ZpK8CvVx4PIbRt2wdeKtqn31PbkftMxwCLNmuf91cBgBWi9JBHD6/6HM9vPOuNbR3unAVD9FAA9O7j34J7vftl55EqOEel/23fvvq98EPUtYewOlmxu9bzTgPWVRjKa4ciawkR1d1AdwTonaZCVuSrQnaP0SqjIM2cflxiMyKK0TNLahIRMUR5OdDyjgirfv16WOqRZZkqeJu1kTaiWd1zDb989Pkgr5ul90OEnnWDLAgwGY3LPJBx3scsyY3B6FtnbNvWL7343a5rfAwR4uc/9yPvf+rRq1d/+tFHr25vb08m47IsJ+OhPmtkSVLbNM2D+2+naVpXAYDJ9E4PRV6WeWYTR4BkKXRtWeah8zFGRUaISGnTi8XCp6na94UQDg8PJ1ubeW4Xi2r3wqXFovqn//SfjsaDPMuZJUQObcfMBgkBbJYh2a7rGET31uVyacioch7VRNYtlst1A2OSJD74VWjRb6PqKKNPOYR+2bErap1ZKSTr4zg/Ppk5SXOknjTyjtF7Fn45AsJobeJ9l+S5y9K6rtvQXr50dbSxScZmefnYU0/VQi9dfw1oJXoagYDgXPGxLPOXX/mexOWzzz3+kz/x+eEkL8srl/b2QlQTlMARp9P5669fn80Wb9+5bYy5+si1D3/4w48+9piIfOKTH18ul+uzfe23vtq0ggBFYfe2No2lG2+8/r6nH5+MBovoCXTjIkSjN0J7PjVeWeeycG4J0ENDMc2/1TC7bVs0tl4ujDGLxQLRjEYjY8zR0REiKtV9Op0imkzbFb3Ps7KumvMKFGt8UgXulaSl6TszK0cPVPAiBOdc07THx8dbW1tZlkEEAdF6BDMrcyusumG1sjAshgDQxeC9L4pSb5Tm+tPpNM9L5aiplD8R5XkqIt4DIo5GIwSNEZ0mHH3DM6j9dmyaJkuTtlkeHU+ffOxy50PqwBE55+rGN00zLMpFXds8N9aFECwAIpJzF7aKRy+Wlw5OY+EXTQfAZZoSijFoqXWKs2EkiMZYh8KhSt3SOYOIqKg7M5tgcCXjCRFMry3Rr3rLg7CcJsAgYtG1okDB2mvobMHuKWFny//Zc0fEnqWykiFY/z4KN23I01Ge4L/4za/O2/qHP/OpN27d9QBZNnCJuTWb/r1f+id/8g//wXS01dYLm+VbexdfunX86mtvfOD5Z49PDpmDtTQaOLLGOEvWnszmjQ/f/e53/9u/8v956rmPWrCLeaWdgAYpiIAxKEhiuBcOVXFqMs7FEAgpBkYwSZrUzbJpuo3JSGIMnSfA6IMwO5O23IhEXTvW4LYuu5oAMPNisSgGahTdMYfN7Y3JKGePd+/ceeLyD95fVPdOT4qtzao+o967zMamKSxVx0cAMB5vPLhzA3oOu6Boy4uPMaqwZ2+IIkKOGIglBB+SxCJw27RoyLpCd3Rrbdc1TV0zc1W1qbOPPXqtaRoOXmJAcqHtUmc/+fGPAdD169cBBYW7prXWigChGGPUpaBtW20YRAFnbNd1IQTqOhGx1lokYwy6RCSSASLDUTdCE2MU4bblwWBgLW1tbRVFoWGQ0g+89yLRmER7q1UiNYazrVcDzRhj2zZPP/WEs8X/+s9+bbGYVVWlm2KSJFevXlV7O0SMLKl1bdsAGR9YxDCzr1uRlYUfiEtyWcUoKho5m81OTu4fn8xPT09v3bp18+2bPWcLCAh3di9eunTN2gQMEZ4VvHr0SICsZeam6fqV0FoiQyyWCJidMcaY09NTNfgLwTdVJTE+xI4//yMCqdkNn6FA50UiiEDbA9buVSgqSdKHZOfXYdFnKXImEIPvZLWvX3kWSJ3jtq9Dn57m3/+3l6fWgh0RoTZtKPlJQ4IYaEWH0h2UmTkG41Tp0ChVGvvZpMM7roMbzXMA+ryvx7c4kjEgEEPQBJiM0bcwi8KAxhhEKPM+nSCi1KVtaMn0nj/6S2MMAiviqPwWY1xoWzJASM4ZBIggqTUQWZA0zlDM5vweFzsfQTS2BoC4/r6q/YsqgNZHe5pprLsrNoeTIkuqyMF3b1+/vljMI0QEuLJ3+cMf/uCP/uinnTNXrlza2Nh47InHfNcNh+Xm5mbbtjH6GGPommpRi0ieZos2tm0r7Ktlu7e3V1WVI8ycZWYCyRKH1mQuaYNvmrqql2VWjAZDfYhd13GIkSVEhs6nLkmyfJRlAJBlGYPs7V0clCN6pPg7f+v/+5/9p382y9L5TB2TvBpU+BDJ2c43AMCAzrm6aoWx9e1isZhMJmma1m0YloN1g8KayGWIWKJyr9u2VXPCEIKIQURjiFkARFvuZOXEykzxYVPtM/Hb1MYYCc+CJUMrHv7p8eHTTz9ZVYuu64qsFMG6WVpnm6bJsuzwcPr2ndtdcG+8dZ2AGEBADBkEihBIzuRGYgwc23KQPf3U410zO9gXDvHCzs7Ozk5VNVma371z/8tf/urpdD4cjC5cvrSzt7u7t33pyuV/9a/+1SuvvzYej8fj8fpsf+gP//tt286mi2oxm56cTmenr7zyitdAEnFZVwZQBI05cxS31hpr27adz+ej0UhEmqYRiXmeVytGv04hladPkkTFeUFE/YJCCFXV6B6mEhXD4bDruvF4LIK8MvNWQpimjOsFoixLtVNQ4EHfBSvybNM0qtrVtq02TioDTPlheZ53sdMa4mKx0Jhad9A+C9fgDMQ5d//+fRFJ0lzTdO3uXC8oWuvsusZ7XxSFQO/Lq5N8rbwjK4KxiAiC2m+fzKvTWWU2XJYm3nd1XWf5kIPcu3O3mEwgsm8q63K0NnadQUhdO8nbx3ZdR1xnbIwZFS50rSUW7iwzgSAEpXSQiHHBEEDs/YOJSMnNZ2v0GqRaD6pm1lRzQoqy9hs683wEZBC1enhn2fEdifI6edWL0YyXEA2ayFR3vmq7YTn819948UvfeBEAiqycNi00vDPZeunmvS985Vs/8qkfSEdZXsenntv42T/0RzA085P9ohxW88oaIYTxuNzYGCu6cHh4aMj+9E//zCvX7wVgK2KMsUiRBDiskxYCYe0VE4tE0QdYpdQsYkXA2Lqusywbjybz2bSqFsphajmsEVyN19dYkTHapOLzPEmSXCMzxduLwTBxZrmcP/3Eper0wfS0yVyWELbnTIe6NozL0i9Ol7dugEkggvcRbEpoFUTSqrqxSIQxejV6hxiNdkWwcc7oNV+69Ki1vYkCGOSuK8sCJB4dHW1tjC9evHhwcIAok8lExXhQoO26+3fvEVlmVolRa+3JyVFZlo8++niMcnJycnp6urm5WVWVMgfatkVD2vCrE1OhayIQAPVo8t4H35uu0kp8EgDyPE1T532vlK0fp423/YAEAYDgz6ah91HvQFmWt2/d/+N/4ucFBIB/+DOfee65Z59++unRaJQkiQ+t94EBvY9tUMsRAkIAMtblqUFcsb4Q6rpbLpeHh4fT6fT0dHb9+vXDgwNAArLAcXt3bzjZ2tu9yMxEtg3eGlfXNYORIMu2WafgRKL4ARHleVmWJQA1TZW4nlfUtJXeop5m1PreXwflXFwF8HBdDwVk5TgB73WsJldfQXs3mPSO36y1SR96wTtEKFaMK3h3ae8cj+rdv1mnIqwWTCoewQFEgOz6LUrbICLUDtmz0JNFBISQULWO9WKc65UztbF93Yi6hg91O1AZPHVL16YEY8kagyRt2xKBiDLiY2pNEOh8Q2izPBFG4aD5g15enqQSvfYplYPcIMXOuyw5nZ70w1tEQBDRGnseZRCREIOyEc5uGSGuRnVcGTDgSoxK29qq5Xw2P/7Kb37pkatXn3nmmc//yKcvXbyytb1RZvn29uZ4MiyKPMuStqsr1WMCqpfz+02lyu9N0yBCnme+65q2ZmaXuK3R5nw+VaQjdgwAlkxWZovF4uTocJAXnqMjw8KBObRtCGG8MZlMJsu6KricTCa9zBOScupDCFpo7nyTZdlHPv2p/+P/6ef+0z/zn33ggx9tFnVkPxmNZosqTQsfogffdsEYZzLT1Dov8hhj0zQhxNZH5YEpgKLbkFLDjTEqkEskGnsp0K7DjJlF4ro2tQ4DHh6iqPCNNuG9+zV9+LW3sxs6XxSDySSplw0A1nVd2KJpmm998zsns0ooffX1VzsJiBRVBa6XMreGznopfbsUCR/5wPNPP/7oxqS8cunC4eExS5jNZs45Qbh+460bN2+NNibL5fxnfuzHLl2+AIi2KJwzEWJVVeetf7c3Nqy1eJW872II8/n86MH9xWIxGQzSNDek2nfkuwhk07w334hB6taDIbRGehtgOl98VDoXEdVVQ0RFXnrv265Ti19rkzxH3eE2NzebuptOp+VwUFXVclk757o26G63ai7rdOIp0V4bGxV+sNbOZjMVCieiJM8kxMPDQwBMV8pb1trNzc3lcqlqFEmSMMNoNAHgpmkU2GPPSZa00hJR17ZatWTmo+NT55wApWma56VuLetQRkGRtm7EOLXioF671ejao4Qj0W4RMoIkYJsuok2KciTQgqEoHELUMtB8Pi9GY0qSGCMv50kxAAzFkK7s5q9fv9nGpkAGwO70QZ5moWsNR8uMJGgQURgIESEAGIPU4/JGxQIQmHs7XnVTOxdeQeOXi3phbMHeqI2RgIDEc07bWnQkOGOTrPXM3uNYzYG+rh85IiJaI57mdZukZTko6mVz0tRaqzw4Pc1M8su/9oXD6eLRS3tJkiRp+Z1XrkO3uLw7qZattZagSR1uboxGw2JZV0Wajcfjpo5bWxf/5Ze/ayllJJGIZIyQBwRmAdWqFiVRighEAGEgw4DCEQGCZ2B8++at9z31pOdYNXXgKAIhBGFK0zRK3+0RQpemTgRAIMtKjcP8yn4qSRJyNgR2QBuj8eHBcTYc3bl/t+Zk3kx3tvcSd6YWaG2S26Q5eABNRXnR1H42rQBdjMIMXQghsHMKpqKxtqlqADEWvW/QuKbtBmVe1/WVi5cmk0mSZOr6EGLHXescqd5KljhC2X9wb2trK02SNHFd2yTObm5MHjx4kKYZGZMl7vT0xBjz/mee3d3dnc2nN29eb5rmqaee0uwClb1uDPa2j3NrLSKIRGvUcYVQIPogkdV7MAZYlQ+iISRExdKyrNCNkwhFNNNddy1ZJIgxEBMAaIim2Hbmis9/7idYAnOcbAy09UkgpnnSemeda7roktIlPUeHmRBM0zSzxUld1ycnJ3fu3N0/PHz7xg0QAVR7RDMejy9ffsxzZEGbJkWancymVeMRMYQmTdO69k0bB04nECOaoMXR0Dnn0j4xC1VVoaAIHy2PvffcdYAIzAACSP0nokGBdclwHeXQwxGUekyf/2XvOr1S3evbALUZGUGXFwSSs6BNzmaoCADKiqq/+lBZS1GeDybwTKGez09eRNSgCwh7uE4rf4gikYxR3pIirwBgnIvCggy9HRNI7MkzZIkjMyi6q8VDEWAQ0K2WiACkbRtETNMEEbXSZK2lPnZkYU6d9b61LnHOxCjqCBdCF3xbljkladvW1hjhgAAskciWeQZAHEMIPBkNtPMOESl1iXVEtFwuiZBDAKJBWdR1vbeza5C6trUWY4xJaoXRnLO7JSIDDwnw9s9o9XAZxFpLKESwRn2stS+88P6/9Tf++oULFx575FHt5QLAEHy1WA6GhUjw3WJZee87EQkhbIw3vLdN0wTwRDAoSuXeRMPIEkNcTmedD8p4S4wNHJbLZZnni6qumjZJM+MSQkCBPEuTxA2Hw6IohJAEhptjEXA2bZomS3NrTNs0Ufw66EnTFLoOvL9588a1a48Qge9aRJnPp8YmiGIsDagg6spiWLcNiFTLZZplxpjlslLytyo9MXNepKBGEF1EMNpw03WdaitqxqWTLPYm7kpr5HXc9o6NhojKcrimRaUuM+dq39Gvio/e+5OTxqVJkmSJTVUsfjZbDMeD48PD2bI+PFnsHx6nZDoR50z0IUlT34YQvTknCvzZz3zKAjfVklAmg+G9O3fLsqyqxWIRJpPNk+PFv/xXX0xc3vl4cHT8xvU3H3n8USABxIsXLz7//PvrujXG3X6xP9tjjz02nU7V2cp7PxyWFnZCCGCorVuQSGS0KHAGpSB67xeLxebWBBHbrovxDFnt70KaanFQ+V7aOLaGGTW4VlT25OQkz0rnnErbK1qWJrkml5q5qndv13WKQ1ZVtbm5qVhXURQiUrVNCEGLjxrktW2nNWPv/WBQLpfL8XisvEJc0VmyLMmyrOuC9964JIRQ1/X29vairtq2LctBXdej0ahtW2OTwWBQVc16nVI4pN+c0CRpStTSSoYEhAHEoF1ZW2DfpQQkYOdV65mmi7pIInF0FIaDZD5fElngrm3bIk1Jtby8RytgqCyMtDOQZWJtCFJYR1IlBpDYggBAFB9YW+wtCwkgCSEBColEEVJn6H6p1Xb/8+s+Rx/ZOoKIpCsirgmHhL2gDgsq2eK9qbvn5gavmBnrQiQJsvgAzkIITPb4eAZEAGisjSEgJV6EbPHFr32DgC1AAEoBEPi//nP/+ZXHn5wd7ge+hxYfvXa57ZZt1+TF4MKFC52H2vNbN28LDn0IRJY5+K5BYyRGNRZXnrJy7oUZnDPGABAQSWTmAMYdHR4vl7XyFRCxi14AiajpWmNQM0Jm7gWien5SZI7WEgAMR/2a2FS1L8rhcHhyOt/dvJqlo+Ojpc3S61/7yuVnnzu3LgTC5PRoH9pqvH0ldFHa4PJERIBFGAQlRh4UuYh43xljRDjEYFPXNkHV6lWTZTmb3zh+W0RckuR57ttWmB48eMDvf0aBhMuXL+d5rvtZ13WPPPLI3t7e5cuXX3rp5RjCbDa7dOnS008/PZ6MXnnllbt37z7+xJMa4kyn0+3tbVXLUzhc0yFlhY7H47qqtBVmPQCsc8wcvC7fRvXSQlA5+zUtjN+Bu/QLK/YQu4iE4BUqCCF20tV1HWKX5S5Nt4xFJInMTdOYJHVpaZM0eJ4dLrz3h8dHb9+8fffB/Tt37qiYOAgDuXIw2N67bNPEkdNJGmNsIxvjfNdh4IPFKTOfHN5N89wYFwILUFEMjHFVVTGLc6Zr/Gw2Gw6Hy2XV1h1DRCH2LQABBzBmFeozkDWWtH2F46qhL/aBlM4U5IdUrPi3YWSdTbN3/OIdANXZC9etP+dBr/PY27uha5F3t1Cufq/PCGUld6ccL32s65gDEbX5GZhJZ81KVQsRjVVlHT2lZotGERfFC40xZEAYI/vEZgJRGAGZI6++phhjnctiFObgnI2RvW/JQJYlSCLg8yLtmjYELwKDQakBmmbOwIFDBBICdGgICVnS1KaTsYb7iOiMdcNSRLI8qaoOEfMibarakcOHaW3rihDRSpSChaXvSFBJgc53iVUVZTLGtHX9O154zjnjjDFWrBFDrN2Cw1FuDLgkZeYuNtYRImZ5QkREsrOzY4x5++0bbdtOJpO6rjXIVt35EMLx8XGWZdkkc8aOXJIl6WgyJiKbJGWezqslCZCzxpBui77xxmBsmxA5SbK2bpIkSaxtmkZbJrU2tVzWZVlWy+aXf/mXbly/mdy+++zzL9RNF6JUVY2IWqwzIG29NMYNilwjBCTSWkGIPWfaGJWPjn3tqA3MHDgyswJhAKAFKN331+NTY491nfddE6LPLkIIYB7yP4wx2vVPzHx6ephl2e7uBa2az49OO++Lopgt69t3jghALat81xFA19YWKSvy2J1FNh/7yEf3795u6/rGW7fnx6eA8eTkxDnzwz/y2aZp/udf/KWDg9lkvEMuK8ryey+/8sxz7790+SIAmKLI0/Ro/yjLivXZLl7YvfboVS0Dt217cnJ0enhUVVUIgWwC3IPASn1AIkLy3rMElxjtK0QUbSmfzafr03rvu7YXiU7TVAizsmhbnySZCCpxSusXzjkybrFY6AJlrZ1Op8PBuKoq1ZRn5rWxo97o8XisktnOObUY0hBbRBaLRWqTEKLKT4QQQgiz5WJzc3PZ1IPRUCnDWvdkhhgDImpBU8X+j05Pd3Z2uq47PjkdDoeKxpGxWrJUdNRaawzySjy2a7x2vDNEJdkCG6TeuE6V1QRREFkMojuZ1U3gALaNXDqTZMXh8WkUYOarV6+eVhWoPRwaIHUqtLsXH0X8cpmlVbVIsjwCAIj2uyGSEAYkZiABZDQGEYSAI0cUAhIQQVGHEuTeVuihdUSd6QENY0QyFEMfOK4iMH3V+Zjs3dPg3aVJPYwxUesgiQMWQQp1BzaBEDBJow+GXOAIwMBcFKOETNu2gywv0vTw8PZbdw9/6MMvJNlgsLn9/o9+hLKkDn1ofnp8IGiOZ4vTtrH5tmc2FkmNlVgd6EhhL4O9miwwA1lBIOhVqsFzkmRd3Syq5XhcApmsGKDplsslITpyTVNp2CGrxpwsS5PERY9E5Kxt23a5qEfjDWNc8HPDsLdzYbh5KRntnfg029sIvmZr7rz+Ovx4f08SS8bC4YM7gFJkWVUtgANi6n0HzI6ss46l7dUlAPT7GiIQNMZJ3/bhAChGGY82AAANiUia5NZAnuSpTRaLhTUYYzCGBoNBWZY/8AMfZ+amqZbLufddnufvf/6jFy5c6Lru13/917e2tp5//nlAeu2119SxG4CNQbWQUoIxrkjWMYTVEknrURQ6zVmFiDgwsKxrduv5a0yPfCuzXOO5rmucS60xkWW9mGplJyhN2BoiYA55nitlE9Gg4Be/+CUWmp7OX33tTQBgYbI2L4vNrQtpmqZpEkF0GQk+IqNwjLEfj0iWAbOssNZm2cA5hxcuAUAMPUm0bdrD/UMdw7PTafARRE6bYyCCIABRwKCxRJaRRAQFkIxARDDAEkJct+f1c0kUIxFE5P7H9S3t//7QLDrfdShqRPjO+aUFy35mfr8Ybs3eRJQYYBUKw3mtB0PA0tP/oQ/DNOwG1bxQ3I1g9XWIQwBrjFHjEyEiEU6cU1BTie7AjAAoYhABRVjIAKFFEg2zANglxtgshAAx+qZDNIgi0RsQsgaAGQUQjCFEtJa8bwkNEcbQEVGeJczROdt1rZa9NjYm88XU2RSQCY3R/SPLEDFboaQovU+usKRp6n2bJY4QYwyGTJ6nXVMniROIEjV4wvOaHSLaNKDkONb9EQBQgCMLMyEKETlnDTKzRUqs8963be2S4vR0iojBdxqLGOuSxHrvI7P3/uKFy1W9WCwWwriolsa4k+lp13VRwJE5Pp3qsyvLno7snJtMNrMsK8vSOdeFQABpnjOzjwEMFWUpzJ33DMIxVE3tnLNJujg9bes2yzxEqLqu7QPKntXnOWZlZlO7O9j+x//4H3sff/M3v/zHf/7nBYCArl17oihSEVguWkMYvHfGiJLrwOk8nU5nRTGo67rrOi+CKNZaQwSRjUVESiAJIbSrBjhmds4A9NLH3BsDooaMOmjPl8idscF7a40xlqx1zjyser9Cere2tgBgMpksFtViOptsbY7HYyQKwmRsU7UXtkqXFjZxUYRBiqKo2+7GjdtNdcaUB4B/9Mv/BGMYj8rvfve7e7tbezsb3/rmb33iEx979rlnfMQQ5d6DByzJxauPdp1tmu6b3/hWjLFIM5FoTRJCOC9Pj4gKRxmD4/FwWObbkzGobmr0zqA+Xc1Z9e4sl0syvVuRc64L/uTkRNXti9We3nWdmgX1LSEAbduK4PHxcZ7nOheUhNt1HVJvScTMIri9vX10eDKZTDROQkTFLZVIEVZuj2snIkRMVi2KGxsbp0cnyvNVxXxEjJ6Xy2WSJPv7+2aVsSltX/sGNL9XcSMAqOvaGKNaYqpVQURVVY1GE/2r9gYrHKLySETQtg2rkAyDCBNY0A5sNNoSwsAcEU365lu3Fsu2yGI6SmySNF3b+khkv/3tb//AZz61cfkyxKiCpyEESwBiOSIzc/B5lrbRg7HQczViEAZGMShAIhI5AqgHrQEURiakFSW2f+LyzvwWfMNIa3JxRBRhbYJToXWUvm7Cgozn3OLOn+rh0yrsxwAQmRBROEgUADJJEjvliJD4oGNSzR5jjMu6qgQQTT2fn8wXDrO//Df/9vXrnx0P0heef/rCeFK3Cy8MAJPBoGk68uHtu/cimDRLpBWWgGj7vR8sCAOQCLBKsLIAiTFG81M0ZFwiRM6ZrnV379/f2nqfMaZtmyRJEZEjhRCSJFvnBjrwNOwWp5URs1wu9/f3sywbTcaENgKONre3Lz1SU7E/nWM2LIphjqZtzzZWA35+sti/eQOEJ6PBzdsHYEAkknark7ZNYF031hpjTIys2lRN20UGY1wMYoz57ndfBDA2SZxLjLNFUTiLG8MiTfIQwmCw5X23WMyPj4/TNB2Px0pkLMtSE9ONjQ1mfvnll6uq+tCHPrSxMf7mN79ZNz5Jks3NzePjYyKq6zrPS806FPRVGsDJyQmtjjXKosulDrMQvELaaxibV46xPc6xCsvWBDsA6HzUPtM1ZxkAYgwuMSH4Bw8ebG5N9i5cCCEEBiL3yquvnU6XG5PtS1cfcTYVxThJRJAhLutuWVfM7NIkTVJB6DpGNGmWait7mlhEHI83siw7PDzUi5zPlvP5PEuSKOKrGgAACYTRJBIjkEEBAQYkBBBmkSAciQxLFEFjLADEcGbF9lD5D1lp5ecnDqqmscI7WvV7z+7idx3fD/paf5xGvWfCYKsoYU2iOHuNvm0Nkq0pYudRNDhrRVwDouuT6EjQNXm98mvFDZC7rnPWCano/Mo+IYJCpCJiDBpjlW7VQx26BhkiZ4hQBJhjjD5JnF5RlhUa6qVpboxJMwsAio9ubm4qDBNjLLMMgLz3iXVaewmdV0UhSxQVFSPKk5SZXZaLxCxLktT52ImID35NP1rf3iRJqrYhIuqlZyLaPsyTlX0CiCTGcvRtVavFlqza9q01aZr6DofD4XK5FJG6ruumres6TdMsy0/n866us7I0xlRtlblstDFKTKJlJfWrQMRkFU3q9yJt4QyerK2bpRIkqiVnWaa7JyJaay3ZrumqRc/sbJrGolVWj3NO40btazErC+btnc18c+fxZ59533PPvv76G6+88to/+MVf+uaLXwegzdHO1uaOb9quqbVvV9kaTdumacIclNuHiCtlsY6I0iIPIXRtF0Jg6eUUOMZI/VjSyQi6N1i7bvI7/xRcYlRhRMFyrYmdnwV9+HV//0GRlcOiHOQFsFTzReMbQDOajEPk4XB46eKVJ554smmaZTVTt0tj7YNnj5ioqj18sz/d9Vs3N8cTJjObTr/16psW4Bf+wz/wU7/rx3b2du/vHz755NOLRfDRknHDcXZ0tP/Ka693wQ+KUkSefPzxEPh//dV//LmPPdtf1Z27eZEmWVYO8tnpcV3XZV60bZsmzjkHHHRJ1TBIRHzsAvsizVUEVU0ziGgwGIgI1/1FEhoNs8jZ2Wx2eHhclmWMQVdVlVRVMClNUxb03mdZofq5GjlpALeyCZI0dWt6pkJfslJ8VeUwvfunp6ejcqgh2uHhYZJk1pLqR5xMT7MsGwwG+hSVnq8juOeZI3XeHx4e5lmapqkAIuJ8fmqMAYzHx8ddF7a3t7e3t2OMTVPJyuEORCQY4/o4FYAAmFmd1UgYVdQERAKDs2kI1YOj482tPTG2C94CpnlW5AM09PWvf/O5D8TNS5eEdcEUZiR0Bw+OYxfGg9GiXibWBiJZ5borZhOhIQtAAmIIgAF7BX1eJd6A55Pjh+yEfN0hIwqgBBBAFATGXm3OQM8LVv7wqhDZr93vRLzesR+sKhe6naCxjkMkQo7eomGBGAKQBZAYA6HWJASJJEo0FCM7yv6XX/83COGZl7/3cz/3+ze3J9JUoe2a4KfTKWN25+4+out8BCBBCLELoQPQfF0jRYkgJBHRibUAoIQjBEMKzokAx+Pj46ptgDAKC0IU9iFqiszM6q1GBhWyRUQgIUKOYE3S+u7g4MilmXFJHRjFDLb2XnzxZrFzzZMDY6IRt7Gzvi2jFE/u7UO92NjdFvCL2TFgDDGiCCHFiCF6LWvGyG0bEuuIbNdxUQ4ESLt9Y4Akyb33AFjXLdTt4nQGwHcxkrREhAKd903TbO1sE0FdL99++21EvH///mw2K8vy4ODg/v6Da9euXb16uaqqL335JWutVmAfHB7cunVrPB7rHO/ZuCK6jlukNM2898DCQNpgaI2FngbUdY1f042990W+LkQGItCWAm2J48hannMuERFrAABC9LxSEmdWpfKACM6lXRsWi2oy2UR0wvDkk0+/dePtLC0ic90skWwQbtoWgFxqJbIPzMyUIAt2IWRJpl0CgJTlKQi3TfXSt78DwmidiICaxhjbLJdAhGSMtcIcIxgCBuLoBZEAyRpk8TGAkCUK3Bk0jBJjByBIhohi8ABnMc0a5tJWR50h60Cp/wP0LKJ3zCv9V9dA1FkmpNJmgu8NPCOivnS1WAggrLs41/GZUD+1+ywLkc4ryCNoAsfMAKuwTIAIVSZNe5UA1F8NCPrYS5dHAVEDTQkxzTOzClYAwDnnyHah03pC13kWseo7hpinmfddCJEArTVIQqIqqUAExriVfi86Y0UYWDRuIEOJoeA7hWyzLCdAIkRrstTFGNPEpoaAOUsS4FhkWfQhRzBIVVUtZtPp4vTBgwef+dxn0UAInSUDwCxizoH+SWKDWBFBoHU9fZ1+EFHinIop9DEEKbgox8fHl69c9OoeZgwRFcXg5OSEjAUga5PheKMLYGw2mgzKYZGlziY2sQkQOHPmvWFT23WdaurEzofQ6VTt2gYA6rrW4k/nNSaLGsHkeW6M07itSItROSICIrRk1+wUBgkhMAqirdsOBA1ZEalPT6y1H/2hH/joJz8OjP/Rf/QnXnn5jW9+89tf+PV//c+/8C+fe98H0Ni79x+AUYXO2lgDQl3nFWy21urG0edsISbGikMAAO4Vp7M8975FRJEowmu9XADu2g7WzW3n9pfFYrEijWiv9Bn6Fb3vw6+Do5OdTSLG8WRULZZVtWh8JwiLulZZqe3tbUS8c/tWmaULcwLAxXBQJCZE4TPmPRiQ/cMHR4f7DPL8M8/8+I9+5pknL89msyh86869ELrd3d0vfPE3h6PR5tbk+vUbFy7sDgfjB3H/8ccfv3btWgj+3p2767P9V//1/5OI3vfss//BH/qDg3yA2Ny8eXNnZ4coFYkAhKj2bdpVZEPgarnUHkZYpVDeezIocoaKDAaDtvVt23YxLBaLnZ2dLMtmJ6dgSLlcMUaRvilGFANDoxTmuq4RjPYqEiGAARBF7Iqi0Ehr3RwRVVGMNFSab2xssNeIP04mkxjF+1aUi5Y4zRu00FlVlYJbCgOYxCq2ubGxsVzMsyy7e+++cmucc0U53NzcRDR1XWuLw2prjJq1W8TBYAAAEDV1c6yNucrzBQYwwAiGrDVs3LJpl4vGDxJK03q5SBPnWPZ2Lz39/me/8eK3n83z4c5FCNFpycDHZdUqy81aGwEkRo1x+vVR578AABljxFAU7djB1fDFNbqwXlXPH76p1ayRUFt1NFUxfL79EUAerjnKOcEeWG8MeG7h7hd30rpnvxyLEKIhgxwdWt/XTtikaWyXlohFWEsegoBGXELghmX20hu3/6d/+L/8/t/3e0bDvBgUdRO8AJJ97cZNmw5MknoPuPq+/U6Gq7IpK83MYpKoLyawkcgCgNYiMiTZwb37y2WdZdlyuVzWtd5Mg0TAKo5ApLuxIWsk9myG0HZlWbrONU0TA483N5ZVg0W8sHc1ee1AIiBStWwRKEvOiv5DBy/dfBMQyuGgrito63RSCHfBMzMjifa6x4B5nknfdG1EJEsLH4NNE181igobY9izdTZ00SS5cOeMo4jWJEdHR4iysbHJzNPp/LOf/fTx8embb77OzIPBQDu9dal96aWXtHKxWFT5MGFm9twLt8ao49xaqyRiAI6A0XeJsUE4cVYfawx8jnhBIXCWaZMjr8oHSukgBFjp4ysKImvgRATXwIyiICs2blD1ppOTqZ7He58XZZZlBwdHTzy1NV9UIhLZG+plXQ1adDgkK9hLpSeGmqaJMRJQ0zShbZFIQrBJwgzMgcgykCUTvDdWtaM4dA1AD3KIyh0hsnD0HYBGG8gcLRlGAAFj7RkKSO+g15/9j3rtyvXsWtGzeqolrXWtzsde/aoLgAD0b429zihZfa6GintxDND35BAiRhBhBok2SbifwmfqE4go0O+XMSqPs5dfih3nZWbIRfbakWUA86yHijnEyJFDREMEGCHmeWosMgcBdonVJ9K2bZ5lXQhkMEkdSV+MRgQRJqI07entkT0COmeVvQk9YGY02nPORfbaeqwDZlCW3vtBUcYosfPOugCSGAoxWmMYMUsSAN7fP7x9+3bjGwC5dvValmXPPP3U5Ucv7+zsfOfFFx8cHiSJDSGgiKqQr29vjDG1rus6QLFk4krhkplFk7oYmYPmJBopdsHnzEVRpGkauy7GiGQXy3o8Gl28dDnGmCQZWWuMS9MUCA1S29ZJagFEpySw6mDZEEKzrIRwOZvrrVBIQnqP+aDVoaIoNvPckkVDptcns8ycusS6lGM0jkRijD2RQJELmzgiApQYo7bWATGh4eA7Ds1BBYRZVlx69JFLV678yO/6iV/4hV/4ym99/ff9gT+0vbtnjGkjR+7QUBTpuha07cpaAAhBm+RsXS+tTdA4ikJEWeKstc6lAFDXPTLKHPoNBUVElL16fiMDgBC8rhv6S3WOXv81y5IV9wvoaDqFMRzdPITIWZalWgn23azugMyims/qZdU2aZYNRpPlch5jXC5m1tpRfrZwd74jAAL55Ec/8EOf/MT21uTk8HB7MkABDl3bVKcnh1cvX/BdXdfJtWvXhsPhdDovi2wymVCRXry08+TTTxzf6M/2mU//8KVLlw6OjzgCA0XBv/V3/vs//sf+6GQ8CqF3b9eJSoChC13jMSJGtGABmTkIITkL/JCRxXJZp0kOACZKalP24Xh+CCxkjfetMmasMxJi1zUnJ1NnU08+z/MYJHgmArVZ9KEltHXNWtEHwLbtEHEyGbRtG2Psop8tF3rHte9UYjSGEB0AlGVWVXIyOxUE55ziuqPRaOVLLyzSqeWwc8b2uoi7u7t1Xe9sb4cQ2EpVLdI8Ozk9siYxxmRlxszkbAjBc2zbNktsAkBgLThgIbCRAQSRjCFiZpWrQWsFohApNZ8Z6qbNrANMhxubInjzxp2n3vfcpZ2Ld2/euZYOE5eiSFtVx7PZdDF3WRpEQmQGdI4CRwBgVZAQMYRkEFkiqGsQkKJWaAFUEFUM9Vw37BfTs52gaaoIAkAEaBB8ZENJZBIElEgoq44eAiAF11cL9EOFyLOqhBYpwDDH3i2378/qyzECEJEicO8jSRB9i2gjMIKRtSoZSuzaBqBpm0E+/uZ33iD6ld/3e39msDuaLo9jdIfHs4PT5WCyHQJiiOgQiET7A1AAGM4Rh7k3EgBhho6TNPVd5AiefZ6XddeGNiS5vb9/uLO3G2PEEJkgsdR5Sc7VwQ1Zl1gWRt85Q1VVBQHvw2xZjTa3Epsapp3JLgRYnBxP9i4naNs2LBaL9b16+9WXTl9/FRAGk/HB/VuQEAG2nq1NrKW6bl2WxCh25WoPZELwBDydnbRdeOLppxY4PZ0eM7OW4CUiIHKIKMAi1lDXdZuTElG6Now3RltbW9/41rc5ymRzS6GsPE+bppEYQ+iFDRezpbYYN03jyMUuMoMxzjnjvW8aDyBkLXMkEmutZ2+MibFrmsZah2SyLF8ul9Ylzibz+VwAiQyhFZHlcpm5zFmHiBKjCMYgYMBaKxSZGQjJmhCCKrXoUtu2rTFWRIicD2EyGY3HQ0RFFFgBdZskkcEkKQgl/ebdS+OGEDjE0HWLttU4EphhzWdClBhBIHR9uV9EEDBGBlTZIR2uJGu4WGtV2k+IvdtiBAHCsOqziRJhzSyEPpxa9bqcpSi8dkFYJzEsawaViCrZAmg5UnpQWjSdUy5p3+goawsLWaPiygYTBtKm6AiitogIAGRQG/6VNi6IDAYIV60PUTczQgSIiACGY4QQgzNWpfyNcewDchQBsyJmGaI0sV2rwi6BDJEhkzgSiGCY2Rmj38oQIQAagNR63yTOqY9IjIHQpokLIXS+cc4Z6IE4a9PEpYACDNq4BgCIGH3I0jTG6IC49ZlxjqygkGCRldHHQZqSS0IIHnF6cPDGjdcIwBljrf34xz/6yU988Mk//HvLsrxy9fJoNBoOh3lRZllRFMVf+Iv/7ds3b46KnUiOmSP7gOe2OWTh3oOYMRpCIht8F0MvwR/ZAwBaRAbuTUQxMg9H5WQy1txGswuInOSZBhbIQmRjjG3rg0gInXJMF4uFAsC6BDnnhNmHQEBa3t2cbCRJQtYQobrCMLMIoDUk0MXAK1N5TU/a0EqMFqziIAAQfISeQsoa1wqI1oKRhYiNIQY0zhnnOt808wbJuphmk/LKtcsni+NL167xsmExIYQ0yWKMgaNBB2haH3tFe4NdFwRNFPStxqCGyCKatm2V748IlkxE8d4jgjW98ogiL0QEvn8IaeoGRQbrdhbEUTlYP6LRsOjDr1njdzYmTOTywiLt7u7u398PEMcbk7QcgHXHJ6dvvf3WYl7ZO/dO5vOrly/de/vu1SsXtGVvfcaf/JFP3rx58+qli7/zJ3/SILz03e+QkReef2ZFSWmuPfbI6en3jg8PL126BEREBpGSJLlwYRfYD3e3f8cHnv/CjV6CaDQafeQjH/EcFas8PDx+9fX7gcWHiNBv0iG0xhgkQwR54mJZAoBApJXIdQgBtQEE1jclZQ4KHSWJbZrOWiIwgVW7XHzb1V0zGo3rut7e3oxR2i5oUq7WB6enpyF2SZKkRdp5rOvaOdd1rdKEVRiG6ExUQrlcs9msKIrI0ZFlhIODA5smRVEGDgbNcDhEoOVyiUDjjfHRwREaDF1Is4SjNG3d1K2xdHx4tLOzIwLz+dyHkOf5dDodDAZZWsxmM0BSzRIt0wzyAkkEsK7rvkVbi1zq98qMPfcchBkIrUtrwar2Vd36mA1HG6FrgUyZl3dvH/zGb/zm1s5ktLnVNh0Imihf/62v/vI/+1UNEwNHbWVnZomMhtaAEwGiwAr4UcJTH13JivYRORpjQozsPRHJuRxiPj2k3m0aCYxBYWbp9euYgQEY8Pv2POqh0wN6KslaTOidPlzv+K9+xBnTRUh0oxICpcsjg5AAVY0flJtf/9ZLhtwf/AP/h+WyPZ5WX/vmywAZC+muKowM0lu1MANKv+wJiSCzQIxZmkfPEjuIuoMCotF7EQM7lyLibDbL89z1gj1RK+kxRkQTAi+bNuEY23o0HBoyxiUxROtoumg2O7Ymj5S9/Mqb8+u34dHHL+xuG2O+98pLEM9u+J0bb9giDZ4A4PjwSCWFVPTOe7GWOu8T5wAohM5Y0r0+tamQtF23nM1D7PQhSmRClMhaCdJiRz4oFOIdDIrxxuTChd3Dw8OyLD/80Q+eTk8UJ26aCgDWlBERUUJJXdd5nj94cLCuWbSt13q6psVmZTkfgwB4MsAisfVZnrStz7OBDsnBYNR1YTGvVpqrICJK+wCACP2iv66CxZXIEzNrs2SS4Oq2IxFW9aKuc317mroQgrFRX1DX9bJpQZTHw13XaR4Qve/FGYBBx7NAj4mKCmP23qxwxjl/6JCHi+nr4z1++f3V5M+/+Ozn78PZYo5GbRx7ckEPXK1DUjjPSibSP/XTec3cWiFevTm8sdLrjmH0HdrEGWpikBXLKnA0qFXG3gBoJd1njKOu66yhIiutTUh6hXFxvdo7c2Bm66wxpusaH2KaprSS2EUQY40B6IIAQJLaddETGWzq3HDIEkCoKLOu8ToAlFQeY1QUFhTMi2JMr6HFHIQ5TVO2hpCGZRZCKLIkSRJVb2+aBoLfv393djr13u/t7Vy9evWZpz7wc3/oZy9e2osxPPXUE5ONkfKKsiwxxnjfNU0bRayBGH1dLSyCRWo7bxytR/7qMTH0tkiMJIQGER04jhJiqOvaOrK211wk0z93Q7SxsTEYDIiMork6y7RkhojL2Vx/qXUeZm6qmpkVOECCPMtWuKmUZVnkpZb1NetQf6og7LtW2dTY4flDv0IQJoMMxsdo1rq9q9VDmTyKjuv8kigSGRARpOuiiZ4RrDU+dhAllfzlV18SEGMMWdc2S2tc1bRoCI3liEEbxleoNiISWR8Drnhy8Zw5BCKKQNt671uBmOeZc07d2ADRhxbgbKYqA3vdn4QPKzB4356hXyYrWkZDZrK9fbpsTDHKAE2au8Hozt37B0fTl9+8q2e+ef+YvvodC/D4tZ0nHrt6ce/C+oxPPfHoZFRsbUzu3L5xenTkQ1sUxVe//rWLFy9ube38jhcenc7qf/PFr9+7/+CZ9z8nwq+/+t3nnnuWfXj5e9+7fGHDDIqN8QRgX8+mPUFdF0Sw68J4PP6pn/phpXogSGRl6hGAsAQymGauaWmxWMxmsL297b1oVF6WpXEEq6rrvJqvs0/VI3FJ0lZN1H4RhKws5svF8ck0yxNSprGPXde0rV8sZ0BWCBGMIDa+EZJFvShwkKo8RNc0TVOWZYzeGKrrZRda7jhN09xk2o3iObS+E0Jld02n043RRuhCDEJEMchitnAmSTKX2LTzTV4UG5NJXbWdb7K8ODmdTiYTQBwOx1on1a9ZlFkMUi0rdeAaDAbMDAxZXnrvGTS9o8iChHCWJRvEPpMVQTCu9lGMCQCUpKlLI+B02QjhK6+/dml54VFrBxtbR0dH/+ZffuHgcH82m6VZBmQMkjEmCIOQrEoVOqsJVgR77XpcLfR9IxUCAFsyHYtNcg6BIFI8IzA2J/sIPgpHkQDQW1VDX9pY871WTK/3ZgVrIQxRlK6HiIAsAKqs9p5vec9jpXNx9jlr2v98WZf58Le+8e3r168/88wzHOArX/8Omq3I0JPwetlbAVl9CVTBIhLpe1GTJJHIbdX2zAzCXp8V8c6dO5tbz+zt7XTBj4cjFOmalr04a3wIzKCweRv8xsY4SYvIAM4NJ6Nl1Yn3iyZ85/W3i42Lp2+efvdbb7prT/rAr3zhi/mTjz325JPHy/n6O47zHOdm+9Klrm2krdxoKMIEWumMztq48txgZgNK1mEi6mLnnPO+VU9VgRgUuAEL0CvMAXCSuDRNAzfe+/F4eP/BvZs3b37qU586ONy/fv2Nvb29GP3x8bHGQ8rK124bZgbkk9l82dRpkVfLpixLJBtCsDYxCgUhGmMssXWkao3OOYumDfHk5CSGdjZbHB0dHR8fHxw8AOZHH30UUayhtmudc7ACQXW1hVUrTBRYFxFMby/TB23MbNCmLtHXK59BuQRJkkgM88W0WjSAFgTU6hTIoLJaEA3SOshb/4Bnten+6b9jHJ69bLXa91DTQ688+8tDig0Pj/ezouE5Fa6Hz3OGWknvmtirvsOKGn9+9+pfp9+IEJGMmDXsx8zBe2MNIMQYgcUYjCISIhKVw2Hbtm3TGaI07TU2UcAAhRgFQEgIEIE0NIkQnUlStUYO0nZeRJIkAQwcGYSdMQwIwsBAhMYAEAMgWlKIBwAAOYPeMLGuayKbFzkKCLLvIlliBo6QZ6Vm3SISO4+Iqr2iR2QGEmE2Bq2j1GXWJCbPEfHk6CB0fjHlt2/czPN0NBptbW9s7+z+2I99entzcuHC3vb29mQyybIkSRIyoEvZ/v6DJEl8EJa067oQus3N7bph771LUk1LmAMZiCGQfWhrDyEQWkR0aapUUn06xhIqW0hYOBpDCRoMLD5ijMhxOZvD3p5vmunxsWani7oyxkiIAJBlmaLsMcYYvIiUw8FgMND5oplM2zZqFhRCEIEoKgsnwszhzPSQENWDRFh0dK5HZYRojCE0zBwkrgMvjbfWUSZrC/kKu1UymU3SrusAoOuEQXJjgejmzZsColHUaDSqq4aQOu8lMrLxQVukMQqTsLDo+gbn7CN5ZSoIQrLKzfRiiAjYcmQRNOQQz9qDvY/qnqdRO6E9P5HrpuvDrwdHpzYpEktdU7997yDPS2b+zndfJQQvQGQiR+UsikiWutyZ2Wx5+fLlp59+ms/tlNfffC1NU46D/f0HxweHzrnxaKOuPDNwxL29iyDHXeeHw3Fow7JZap2oLPNvf/sbOzuDD33oA9mwPL/E3Lt3bzjZUBWJjY2tD3zgQ/uHx48+2qaJEdDGh4gkwYcQgiMTQkcEbds2TcMIg8FAqaz6SPTIsl4qYrGYZ1nWdb1+BESOwihmOls4l9rCCHBT9zbmaZoOh1nXdU0XdIaHEDKX6YMpisKiadtWuzNC6LTsUhRFXhZqv63Dcd1gkqV5jDF6vnxhMJ1OAUAQu7obDAYcmJmbqp22s8ViMZnULCF43tnd2tvbU43WwWCwWFRJkly6dAkANAKzJrHWjsaDLMtOj09ijC5NjLNaANVxDOIFnHKzhFE79cAaEOl8NEkxmy8py6bL5Xe+98ru5tZgPHzrrbdC3eV5PlsuvviVr3zmcz86Go1+8ytfTpydTCaL5ZIBiSis2MrGGDUV6VfnVZIMAGZFmBXEPqNHBMCu60ySsgCHyLFO5QxSvTAprx8uyZnIYslwDIQSQTR+gnUfFgYQ+n6h1GoOr3SuEQXU2O63t/j9Psc5jemVGuWibrOsPDidH375qwAWsUTjFMUAQAKSqFkpr2owvfsKIOmOEH1Ikqy1nQAgGYmBQSLAYDS5dfPmtceujgaDZVNleaoKkU2I8/lyOp0WxaAoiqrpYt0Ym+RZ0gU4PDmYTLaWTbhx624yHDTYtYdxGZzbveyS3Ddt9vjjmztbbQyjyXj9dY4e3N0oUoOwv78P1sXVBO+rACG4vnvfr/JSSJLUOROEUmtXEFFAXH03gigMiAZIOB4dHUWQsigSZ6+/9WaWZY8++ujBwUEI3cbGhrrU46pt6sqVKwBweHhYlsMoPF82ZFzb+Chc5gMf2Yg1lCRJkmSZ9IZIsFzWIQSO8fDw8PD46OTodFk1X/vqV/VGMzAhAvAL738uyzKNF7MsUwllAM0gzkIQxUsVVtE1V3pmPhtjve/arkfgiKht29PT0+FwnGWFCmpbMn2zhQAaIyvXZ5VUCcBwTqcKHg6tZFU0f/dg/t83Wt8dlq2oV+c+Ar/fydd349242hmSfS4Cw1VfISvyAWfvZWZA1AYRXrXuA7MYgwS+7RLrrLVd8ApGGmMylxARMsQYkTFKXH+WQXKWhNGHzpokSS37oHTOPE8BgCWanhdorCVGWLdNGEDlTlm7bryg8XhsqSfv2sTZGI3FtvFFnoW2K9IshJDlaapELmvath3mhe7WgJyldj6ftm11eDQ/ODiYV/OL2xdeeOGFRx95ZDwon3jiieGo3NnZSdP0iSeeaJp6WU3TtLe6WlbTk9Nee31za7K9s9m2dZIkVVV538UY79y5k+Xjqjq2NonRZ2lPWWlitJSeN1+OMeIKBgaAnm5o+t0HYnCJkUgSIkfPYAnEIMUQTk9Pb775pgIfzBJjnC0XxphhUaqlRFEU29vbxpgsTQCRe75Xz8JM09Q527btuh/u/Pg5P4RkZdQjK8MlWIXy+lfFmJUfLOeOdZ8yIpLmSMLrgdS2repHIHOSOEumnc9feenlYV7qdTZtZ23CMVgrEcRYG/zaC4t1jp/nb0mvltx/hCEn6hFDFoRb9Zc0qM0WzOC9X+smxRitdT60HFVGBHR50YNoJVg/nVez6RtyDqIWFeQWFEBjM4fYtI0IWICmbgzT7/z8D3X1/MHdu7vbk/UZP/mJjx8fn56ensbIw+EoSZIiH7s0vXP30LphU/udnb0rV65876VXFotZ5LCzNemaxa23p5tbwxvX33zi8UfGF8+Ko/PZ6Z/9s/+3H/+dP/yzP/uzHPtewnBOud9zJERrDYrUdQXGsMThaBBCWNTV1tZWjLHpWs2hZRWAabLW1PXu9rYu9MPhMEYGiM2yGw0HIXCMMsizk5OT+fxka2tLwxddXsssZ+bZcpbneexikRY0somxVVXHGMvRoKqqk5OTvb29NE+m80WWZSJIxjXtoqrqS5cupWm6XC4Hg4Elc7C/bwxOJqO2bYvhQG2IykGp12yMSdN0Pp+naaJirbPZTETyPPfeb25uNk2jyrQbk62yKIL3o+GQmRezZVEMyBhGCMKj8diSC71lldG09KFVWBuahMrBeFa1tQ+U4tF0cXq6SDJ3eno6yIqT+aKqF7t7F3/xl/5hnqRp4pIkmS8WxiWWSPMtYzFAMMYwyDrwAjy3r6gvG5xtMwYIAJK0YJDIkhgpMR69+TK8bzUO2jkBBGFAEwQARCX0AflhInBfCoTvc6wnfIwdIG5sbOzs7Lz+2pvf7/XveWBvTLk+qRLOQNRTgKhqOmNcmhZdKwIJUSKCjKSmeeuWzvXaJOoSLoIsKOK9L4oUDEHnxVqwlgCcA+8bIPTet93yrbdvPPvss6NyQICz2aJufYwCQkDWmCR03WxRzxa1iJyeLOTt/Xnldy5fxXQ0GGwsl2jzsuuiBynGo3JctiRNW6Xs19+Ju6a8MF4sT08P7iZlHr0nImOVewQAbC2JsDbG67ew1sYeI+G2q7uuEYkikYwjwcgREFUW3VrbhbYoisyZqp4tF/Pd7S3td8mybDqdlmUpIojG2mT3wsZ8WbVtm2R503bWWhaczRYuzTLnijRnBKXEgtD9ew9C4Dv37lZVdXoy+9a3vhXV0FrxRZAiG2VF7lR5gf3p6TFaE5h15/AUgFCb9UDOjEH1B9/66IOql8XIfXMqADBL5CjBGGyapqqqjc2xdswQQZYl6lpDxjCDqj8AAJ5zzuqrEiGsCFsrMKlXaflt0oP1Dqe1wPcKyvRTdLL3bYZrfFoinzvJu2Mseegj1PaxNwzE9cvWKQ2vJCjXsAERRu8j9oiZ1mqzLAMUAVHaDDMb22siIKtnK1tCmybrXZkIEYxBFRC1zEwGrCWInBgLhkKIxiCRUWKKiJBR6F0LRhGAEQ2GmBiHK7Y1AlrCxCZd16UuE4S1iIBqEJRlHqMfjEc+tPmgMAY5mCzLCKQYDxNnmsaEtltMT/f390+ODhHCJ37g4+9/6plHLl+6evXqzu7W7u5uURTj8ZhANMyyibt/fz9yc3J64Lu6qc14PA4gRZ6liamaumnqkxMZDodN0wFQXbdJkgwGoxjE2vTq1UettYNB6X07nmwul8usHHRdp7G+HlmWxSDM/PBKi2gscgwRJDJERgJD6AxZMhKjIwRWZyQzGAz1Ll11jojm87kSmo+OjpbLZVEUEtk559LMJolzlpx1AMwcI+SDQdd1QsQS+4GHpM+GWWXIeqxVBHjlgoer5qcVyY+NIQ5AiGDOqtvMrBOQmQ3SOo7vV6EYCFG7qUTAJpmvurfeeuvSpUtZlkX23vvE5Y7Q18E5J7GXFDbGgJAaHwBQ8Lwe9lqcVbCNUgvaIQkMHLnPlJz3bZomXefbtoUVgpQkaWSuW+8cWucAMZxLbOJaeAKEBIEMhMC6rVmbCDMzWGO7rhMQQDSG0LdXL2x//kc+M8zTm2+9fnp8OD3aX59xOp3PZvOq7gBIyO0fzW/f+c7du3c3NydPPnnvX33hS5cuXTk8PBgO8qZevPCB57M8QYTdna2idNZE5gDdmTDG5csX/9gf/f33Hxy8/vrr73v6mbbpBoPBjRt1XdciLktTCWKtZQ7MYozi/YaIyLobN24sqyZN03I0THNBxGbFLY4xOpfmea6sLJskdV2X5UClh7uuI8BlUw/L0WAw6G81iIg0TRNCSJNcV5Asy9q6vnv37vbWruoV3b9/PwQfhDU8yoxZLBaq71VV1e7e3ngcT09Pq6qy1rZt2zWts/bO4eF4MCyGA9X0UnHXLMtms1mSJA/298sib7pGIrs06Xzb1K3qC6RpmmXZbDFX5X3SvrwYLbm8SBLr0NC8rgDMeLxRlsPTeUcqhnmuG8lYG/vCnVhrA0OIMF0sl8smEzsaDKOgcanL02JQxiNm5s2N7cieYmxDILJrhTMl92hVV6Uu4OE8frVYx5U6IoF2lK8M+GIMhcXl6dGTV88q2ndv1QlAxwEogcAIREixF2ilXonoYc/H75fBr7xvrUCsqurg4ADe63jPt6+qKu/5DlLRxshA5ABlWTWEBYshSxAFVu2aINL75/XnJ92JWdO9tt2YbCdJ6tLEdx6YASIDhICZy1rB09ni0asXb9+929StIxt9sCbJcyNCddfN7h1UjWo+c14Wy2VNJrVZefnxx2+/9ua//x//geCKf/APfgUn+WRvp1rU1XKxuTupIIzHg+wcquFDO94YT+dvA7GKCCDJ2nVU6aW6jyIJM4NRz3vPzKpzU1UVew+g5nfQx0BECIIkAOBjyFNnbVI37XQ639nZs4lbLCpjXJrmVdPu7uwxSNM0ddfmSQ5EzkEUtAlmjLPZMiybg+60aZqDg6N79+699tobAhCjSnMSABh0gyJPstx3wfuIiFVTN+0cAJDAIIQYmCFJsqaqVE1GK6r6aPis8xE099UxcP5nRAS1zQZjLbVtfXx8vLk14ehFokXKkhQAkEUiA4MYAuY1EIXK0o+95N16juCaI/X9B+S7Uaj+Ze85PNezTx7+LwCsCJrnMYn1x+HD/cKIvT3D+r/nLwwfPvROMgsa03vjSu+3a4xh0ZbV3q3FGEQ0IXTWGZFIRC4xIL0km7VuTT8igwjGWHRkrCVwEDkggLGkRC7tc8+yXIGQLCuYQ+/HFnlQDBWh1BZRAEgSZx0lLtftP01TLaCnNh0P8hi9SzPmONkYowBLaCSGavad73wHUQzR449fu3Lp6ic//qGLFy9vbW1cubR3YW/He88cxuOxS+xyuWya5uS4AwAJMYIMh0Nn8e2b17Ms00b15XJZ18vJZBPRpEmeuEwdTYaD8WAw2Nm+sHYhZGZjXFoUH/7QB/7e3/27P/hDn0qSxBFSlp3XlIoxKkfepYlmF8xMQsZg4hwCS/AAHEMs0qzMiyzLrKXj4+PdC3sXL15omtasnpoCkMq81MGg/bnRh5PpqXFpCAFJnHPanmyMUYKm7gu6VmjhPsRgAIXPBnmMUUE7rfcpar6OwGDdC7VyJsCVZpuKk2uYpbUsDf2zLFO2vk1s1bYgMjudfve73927cLVqQ922hMZzz50Igdu604/TYeycE4wKGa5nBJ9p3Ju26ZBIJMKq+0RlkGOMTbPWD+uPtvEhhBCirivBM5xrBI68Cr8uXLjQtu3h8ZF+W4OkFCtrMYQOEQ0gkZjoL2yOP/fJTxSGbr7xOoEUWfnEE4/Bq/0Zb98+vHPv3sbWDgvcunV3djqLXeya9u6919+8/jYCPP/884899mheZnt7uz/xE58ty7JpquGgLIosTSEyt9VZB9YHP/jBJMmOT6b/+l//6yeffBKpN+TRGMsYQ6iuDhy6KILCkLi0CzFN83IweuX1N7a3t58YDL0P3vs16jcYDLsuqKBr13UOoMzz5XyWZ0VibFU11iRZ4nxTjybjMs8Wi4VOfv1Q60jbrziELC0u7GXVcklE86bZ3Jh47xW5TqxjH4blIIQ4HI26rgMG33Yb48mwHFRVNRoM3cZm0zRXrl5dLhbHKhRpDItY5+bLeZqmPvrJ5qSpazJmsVjkIFpOnc1m1pnbd29ZmwyHw82N7S4yI82ruizLNM99jFGkrbvA2LVd601eDk/mxwgQYwAwKlmKRISWiXtHXRFrzGw5r5tmUMCyqkeDkTG26wIj6KZO1i3rOs2cpsBkTBdYBJ1L1ixFa+25COPc3rBe04ERCYBVeIwEIkdrLZFNiJdV9cjTj67f2AA4RxIikAAKEMXoe/RglZ8AwLnwi854watjtZsabRgGoK4NXTuD9zreHXu94zjHqVm9BQSNlRgEAYKgyTgaNFYYRQQtiAhwFFZ1/tgrlp3nU7OA75aLRZcEY0zMcxGUSCAxinQhgE2Oj0+eeOKJ7e0LXRfM0CVFMZ/7xXI5nc6Wy2UIDMoZEljOm2y8DWgpyW+/eevH/8gf/x0f/dSbd+7hqBQI41GZEB63S0JOLR7//1n7z2DLsuw8EFtrbXPctc/ne+krKyvLtW80GugG2AQtyAEGJCjRjSROhEKhPxOaCMXMD5EyIQ2lP2KIGoUU0szEhBQjcYJD0A9IgPADoNHsQld3l7fpzctnrzn3mL33Wvqxz73vZVU1SEXo/MmX15x7zD57r/Wtb33f4ZO93lnxMS3sopnv37+tbOJDCwAhRBpp9IZSzAyBFSJA50Mc5xyttVaaiFzdwNL2JH7GuwCBo+SIVloEBZUAta2fTGeLqlbe53kvhNA6tmnhGRvnk3RANrimlQDT08nB4VHt/Icf3f6d3/ldAEBQAmK0dd4R6rwoYu+691xVFQjWjZ8vThEISAt7QM0ACiWEVmmFoBR1mYNzjmKHiDwTfKzm5fNIDwAYY5ghhCAsSikUkBCKLBsPhlmWMXNd1z60NjEATAqRRIQkOlxJbH05Gz5IRKR4qQfxiXjoE8PyMwOvc6PxE8/CchXhsyDvvBxeFDSG5c/FyJLiAhM/v3zKloeEQgDYHYp0D0MMyvisgRIiskLivdY6MRo4iIjSFELwwcXVPUJ7BIQkCIikILAxUTLeISqjiBFRQi9PlwfAUXc+Nm613htrUpMyxyBbjDJJkoiI1R37HiDJ0wIAoiqvcy6KdyWJieWULEuEvVJqsSh9OdVp2sssASFKWVUq0SeHh9//7kcisLW5/tWvfnXYK/7cn/pj169fXxuPt7c3jUms1cYki8U8iF/bGN+9e7dTbUSVGpuZvK7rwWDwdP+xMbo8nSqSRFGRJm3rlTbC0NvsJTb13kf9YSBMksSYJEaxUXhoPp8nianrBSL+4i/+ojHJv/yVX3njrbeUUtqmw+HZI6zIEFEss8RbhBxln1VkYRmt66oZDvpW0enk+J1331pfX//617+2tbVVO9e4kJCGID5IaNsY/LUuIKL3Tikz6A+BeTheCyKeQ6T3VFW1qI6Db6fTaa/XixoW6VLsIxZzfONJn3XCIoDGbsyvei1jLNVxuaIm6jka1gpujy5/XUYEgopIqcAeor0ER4ot3bt3f39/f3Pn0ul0UrVStyFN87pxSZKVZSUIpIwABOcAkUgLISiCFSosArISvVttBBh7bzkEhsBEyrUu6jCsPjSfz2KBtG4cV81KqiVurVuaDhFRHC7MDIQgEmW+jTEIbJRh75BBBHa3Nr1r5/PQ1G4w7F26dMn5swniX7/+xsf3H2nEGzdfmEwmh0+PNobrQKrX63vfVFX1zjtvPXp071t//KdeeOGq0qCN9Ew2Ho+8b4ILypA6J4wxmZ5ak4zGIxGZTqcbGxudy2HUmxZRWknAPE+cqsuyLOsmz3NwrugN+sN2J9Da+kbroKy992G03K1NiqqeaJO5tk6yXETq1iVZXrctAAyH/el0bkgx+/v378YiYLzTeZ4sBUJ8RHpFuGkrYwwAA+gIa3nnbJIsFgulFLJoraNPdlmWRVFEi4O8yFaJxf7+fpIkRVHEwVSWZSTO53l+cnqKiEWvN51O1zc2FotFWc76/X6/3yeiPM8Hg9HhwXHjOjC3PxhHRyMGLBdNAEyz4u79u1WLSZILnBAqWKZ9RHEejfAGcIDGuSQrNGkgRYiCnjkA6OFwOBj0J5MTRKxjJVcCRr1WVAhCRJFdFzOYyP6BT20xexESBBZgYgTUCICwdNwjrJ0rxpsHk2prWYX2AERkNLVLTSDBaPW4fIyjf3dXdvzsYs3ykM4Sd3iWYvxvDLn+DVuUCUAmpZlROnK9lu4pFkAGFuCAwgLckU8kdkICAggKCLaLynnO816aqrpuhTnig4xkkuLp/tFi0Tx/49a9e3dPJmVdNyfHs8PD49A0QARkkUiIMEkAFdq8dRIOp3/23/v3X3jli2WLXvTnvvD5w6Ojx/fvXb18JVU4n010rl++dm3x+MnqVKy1d+7dBRBNAMsAJeKaMWskIscutvzEaLt1dcyLYu4b5X+WraZRHR7jXXa+AeGyasbjsUXeu3j1S1/+QlEUs7JCFpPoRe1OJ9Ny/hBQOeeeHDx95823JvPZ48f7y3tNWdrTWiMqRGwbT2g9h6pqYnsmdvUmABAARaQCC6mEmUFCEK9Ix7sdswWllNafRE9XeXYERWJSjud0fbq0WEAgIAfnXDRmiRihWppnIKCE2LFPy4rfuYG3hJe62GsZCa3Qox8VbH06OIMuw/mMj8EnipjnuiCJKAiDfEZUtwK9BITiYSliATqj6ku0nYYlSgHnHi4iMkbFJlBESRLDDLGTzFrtXLBWxzgvBn6AaLSKkhMAHdM5Xsk0TWP8sQJFRARQmDm1OkkSo7T3lBjgiCaKeOeUQmEA7AwhACAv8ixJ27YdDQZ1vaiqajE9/uCDD2Ll88aNG3sXL0hg5xrvWxTp93s7m3si4ad+4seuXL58+fLFLMuSxGRZFoM/V7eI7Jrywb0nm5tboBCJjo4O2YcsSU9PT9u23VhbE5GyLI9PDgeDPinVNtV4PI61vKxXIFDsHFyNN+ecIM1mJUAZEa/VoGqaRoQnkxMA+tmf/TPf/OY3Hz569Pa77775xtt37t9b3buDg4NYEkHspJg7YAkCAhhCRTAeDd96643LexdfffXVmzdvfvGLX/z6T3yNtJ6dHGZpEcnKAFBVlUisMnHs9zw5OcmyLFrLhBBQUdQMjyL+emnbFc+6LMu2bZk5Ymm9rBf1LFc3l9nH2CP+3Hkgip61DF/lJ+cn8DgdxYHBS/PWWJHMcwvW3ntwP7AoZbI0r12dZqm1Kde19xxC0Mp2uqHWIoBzTnxLxuBqCTufCImQ6sYSkSYU37lHaADQ2oYg5yWTgCIMAeIZiEg/syziivt1eHhYN3VsEjZKO+cYnCbF3hlCQ6ysunRx97lr13Nr5lV17717u7u7W3tXpo178uSs+Pj44EgAxhvbSHo6Kx2769evj4fFB++/c/vByZ//U9+6fOXS4f6Tn/z6V2/dfM5oAAnGmJPDwyRJtCaRoPXZLPDhhx/ubF9Y39yKsY4xBhWYxCpjAosPwRjbtqH2NaJoa0xiRWReNrU7ZdHj8fbjJ0fvvv/BnXv3Xn/9zf/H3/7ZuNtZ7YcbOwDiXUMEjx89SpJk0B+0rq7rWlub93uxZ6o/Gs5mMyDlfSsiiNI0VVT+YA5KqapaJIldzCtjVJomEfa0VoOELLUMUjeLPOuR0W3bNnVtjVaEiTUEUuSZc+709HQ+X8R4K5Ka8zyPKUtdNVbbyckky7IsySaTaZLYLE0jIUxrjU2rrb1y/bnTyZQZtE3v3Xtg7enTg0MAGI3Wdvf2ZpX7p7/8q01LLAZAhxBhGrPkEgJRLI0R6k5ZWCMF51slCUG9mDeLKskTXnoMKG1ZPEDn4heefSRkSeP9zLAGUcVoAjBgXEklCOggAohOOAhpSnS+9mB2tLX8FgOA0hAYhQWJu0VdC/vYUBmQgBnJCPtYilRKee+IzniOkacLHe8AoHPdhk88z+c+/8myaXdqcD7I61pmAFZudCg+RCQDwCKiMiYwSggq0cIVcCPgkEi4S/4UdPpMEEO0wBJYRICIQUArRBDXOuYiL1xV/+av//Y3vvkNEPPOe+82dQWsAAC0jR0MxmYeUZlUyFSNh7L9d/7G//j68y+XdfCVM1mOCna2N4yoxXw+WlsbrQ8U+tTX3/vut+HrfzKee69fTE4WOvZMcddg1TRuRcRpmoYA6rpOE+NbxzZRSjErABAffOMRFTNobb13sQgSBdSYmUiHwP/iX/zK3t6F55+7phS+8eb7w+GwatrDpwe37965c+fOyXRGAJHfF2tmRCrLhlprAXLOtS5Udd0ZNpyPZgQQSAhlab4e1esRQIJb3mBiZlIEAK3rULrgXMT5rElx2R8eUYeobRaXH/YheM+yGioMCMiCiNFBfBWyEIFIMEYJdF3r4Vyfx/nBtoy0lv85t66sTu3TwVYksJ9nXC1PbnkdlBIfW7SYlBIBYYZzlRroqPGIqKAzCEStFTMH5qjI2mESRBKCSLS5oODaWCy0WrVtsKYzBASAuHYY0y0r0ZVBK5QIOTOSgiyxgNwbDgK7wBxYjDWIEAIbbTRSjLQAIIJY3aSkYuMXZ1nWNI1eyj1Ej87GeSJKjSajg/NZlkmaKo0atXNNnuchhMVi0cyn+3c+qBbzCIO9+rnPXb989a/9939+Y2O93y9u3bplE11VZec4FxwENlrXdZ0kyc7mlojMZjPv/Xw+Oz097fVypYxSaLN8e3fbmKRpGlfVxJBaoxRtro+yLDNWpWmqlHIhlGVZVRXaomaPVp/MprZu4uh6/OTRYrGI6w4i9gfDODBi8DSfzyPLXmtV1zUiNY0bjEbj8frNmze/8KUvKTJ/82/+zdXwWJSld241iZFSRJTlSZqmwGKTRBFcurj3t/7W/+LGjetpmmZ5DtaGxaJuG6WtZ3HBIaLWJu/1QwhACkhaH4r+IM0L731Z1QRorYUA3rvgPCL61jkIEcFKkqSfF35pxBfdgerWn06nMJ1Gqcu6riNIZqyK6vABBBBsklRVBRxiqWdFtqnrOomCw3Ge18p7r6jLDliYlJIViKsVCN29c58Bg3DjHRBFEoUAIRGgigmYLFmJSIQmAYAADKRwKcG5elZX8dMZBQFURDGiNzGdy20iPB/BO2CJx3S2xMDS8zHGXvHv7jgEmNkoRQRN65+/dvknf/InCGR6Mr3/6N6bH9xjndSMt+/emU7mKwpZ650A7B88eXrwpFujsO31Ny7srv/cz//pl1+65X3b3rh848Zz1moFspjNhXB2Uo5Gowu72yISmrM+ylu3br3/3gc3b704nZ0qhSLS7/fT1MY1z3uPmDD7xXwuEmIoXdbV4dHpo8dPx2vbhyezH7zx9ndf/z4DEtnVbv+v/9l/9ZWvfGVtfbS1vp5mdvfy80hSl6VO00EmIpLkKCJlWSGiySRJkhDcfD5HIqMVoQ7sjEkW1Tzv99h5bVWW523b2tTMJnObJrEyrZTKisJq64XzPI9JWAghTW1VVd53OcTm5qYxSVWV3nNZzhCx1+thVxCh8XgcM4PhcBhC8EGa+UIE0jTVNnceAteCpmpqFdo79x7+yq/9K0S1u7t7/fqNR/snT/YPD45nCIlAADSKTJDY+K0RkVkEYwLvwShAIaLJ6czYbG0tKw8OADgwt7WcngbPwZKJKHbs2EKWTq/oU9unwaTlAkmATEKAHU8n6rOKCAIyhwDkTQJyBqSXAIYlNYa5BYXeBdRWQlCkmEOHcZBi9ppMNO2ObXf8rNwuPBtUwTP890+ZEf3oE/nUDle9C0sOncCSVYkAgFoJQ/duVxRlQABU9CmI0CRJPuy3LlR1pZOEA3BVAhKQKqta2SzUi9/9rd8FRJ1nKumLCIcAXgAwSdMmBDBWhIRRpfnP/9V/f31772RW6mwQQAUBhcQcdra2m8YdTY+H/TTR8P3f/10+uL86hraq27pBRiLjBVZwJi2FdkIIJJAkCREao0MIzjfRdz6a1sf98LLWhogiTKhi93kMmh8+fPzw4WOBoEgJd2AmAyCQtXmR9WKQE0JoG+85NC3XTYOIzCDCACqKky7v4PJyA4A8U9R9djszV4iC6cDety7P0ywfhhBOT6ZJkuDS6jGuGcYYkTMDwbDMirVSClBIEKWu6zhHxcw7Zvxd1t6Ri+mPHE64Ct3g3ID8NL4V/6COnizMS/HeOJi1AmYgEueUNiEEbUz8GCl1HkVARAYgrZhZIjdvqQ6D2DUExIBSKdV4D8zWWlnqcVhrUSRq3kbPTQRWpACZA5OCxGaBnVG6aSoR0UmqFHphhaKTRILzoc2yrOiP9h8/sanp9woOQABZNoj+ONZ0HohpmoQQ2AettdKYGBslrwUCCadpghLDA9BaDdZGi8WCCBeLxWQ6q+ry4ODgypVLqbGfe/Hm51/980liNtY2L125OBqN6ro2Vl24cKEsy3lVBu8UyaKcjsfjDG05m4uE4bB/8GS/LufW2lhKa9s6TW0AQWStLTNXddNTZm1tLbFpliSRA66ssVZ730IsmGi9vrmBUU+BO0JhXS6aelGWVWylimXr6XRa19VisSiKAkCOj48AIE3TpqnTdDgYDIqix8wmybTWRKRJcUel7bYsy87fa2H2zHUtvnXiHZIUaXp4+PSll24V6+vNZFI3dTOdRGZeJIGs2ntXw3Kl2B4/0/lqtI6IYvtLbB9G6joZQ+hMtRAxCn8SkWBnlxm8d841TTOdTqfTKSmIgk0iEmtNo9Eo3v3xeAwATdMsFovVM0iEkR8VjxkAYngah6shBaggydy8fOutdy5s77YuCJDWGEDmi5JQd/KT0nGKmGM/TZdaLc/6k6yDszlmRd4941vSZ1CDV5V9RCE8X5q0SbKMm1BFGWWkKE0hLKwJffAQYDzsvfzyy2W1+O53v3vn7mNETNL0B+98IPBBVyRd73YzHvT6RXbj+nPMvpfnw+GAmatq+o1vfu3KlUtZbtaGm3u7F9q2npycHp+evP/+h3fv3B8O1y5cuPDyyy9ubGwkebo6vr3di/+f//ffm5WLtm23traiRhczl2WZpGaxWORFCoSgQJERCbfv3nYuHBxMTk4XRxNft+I5GQx2mzZU7Vlj17dff+cPXn+HAAC4l6c//c1vvvLqSxI8EUUVyuB8YL++toEEKVqBkKZpACrLeVEUs2lprGZBARKgIDgYj4ioaqui19faBhFrU1Q1AGSJPXx6SEpFcK6uF9pqz8EkFlFMYn3V1E01nU4XVTkajIxWrm2KopiVcyIy1sRiNilaNg0VQNS2vg0eGr813nr73fe++9rro+Hag8dPjo5PARPU5s7DJ/ceHjIwgCawRqeNZ0LtgwNAbWyUYIgJMSklCDZJYqs/C+5evJrqZnrwhBmD45ipmMQqhRzFJ0VAiOEMBzgLX/AZ/S3EzkCui1TOrYskwNh9joi0QqUwRIkCczYMvvr1r/z+t19D5YWDNantF1XViDCLGMRWPGnL3iFS4AAoIp5ie/BnrcHnwqxIEQvPPk6feHY+xd+PJaNzL3cyLx2zOSJkAMAUNQ5YACma9BBHwmYQfkbViVcXhcXNy4lr7WCQFUXbOpZAScLOAzOQJqJ0lMcyn0eJpTVuK51YEfEAOsl0VtStQ5v8zJ/+2bWN7aPT2XB9p/ZeB0mTgtCmqSLRp9PZeNAfZOa91/9gfvcDPTgr+gNAPa+ssYhkjfIhUHRIR1wVl1ECkjjn0zShzvRQDQaD2eks6jBj54d4JquGBCAookCEVKyzSCyOKNQMAiwueNeG1oW2ncuKeMtL4Q4ADBG6VCvoa9nwdw7VFwZZtsB+Og2Ir7JHYAVdwFQUhUI5OTyK2Fj8ZIy9oEOzFADECRqgK3KJiO68X52I5HkeL1GEZ0Qk+s90eDCpz0wJVkfUsak6jvwyT0CU1ThEPGPonwF+AgB4VpULQFHUFwMHMppBWITOfIUBl4cUy/EiMRqjSHERFMGIDgop0IaMUYAdZR5igs9CBN4HIlAEzCF4HhS5CAIYrW3b1pogT7PgXZr0ERGQhNmHoIi00RxCXkSJr8XO1oYXjyzWKhQNIN45ZXRwLsRu99Z571OrtUIQTpKkyEwUsSqyBIQJxDl3fPj05Hh29NiVZXnp0sVbN5/bWt+4cGF7e3v7uRvX0jT13u3s7JzOTou0CBDm8zmTOzg40lplWcauRaVc02yvbVlrnz59yuy98HxRolYBhBEch/39g8FgUBTFaDzu9/teWCkdKUqxiCYADbNNc++cYtW0iIjW9pRSCKqpu1pe8Iwg/X7fWhsYokStVmqj37dJAgCj0Sh2kw3XhpHVbkwCgQE6vV8G8t4LaCLiZzy1oN/vx9BZI7mutTdQFCs3RmlkZmttVZZFUXjvUREDClIcV510rYiIaJMgaR8ChECqA5aC99F5zDsXQ9JVfOacA6LEmFWUv8J3Y2Nr45r4oklskqV5nl+8eBGJqsXC+eb09LTTFWtdJPPE6vNwOMzSLFZR4yOApCISNi3naZpaa9u2NYlhx62vy7KyJn/9B2/+g3/wD2+9/IXSBQBiEKVUlmWLum0XC5skwflVTh7Pd1XxhLPFouOwnk+KzsKyzgU1dDPRJ/Il0oi41ARBPIdWkFJ6+dB2MZowx8QHlIrmdn/yZ34mScz7H3309jvvA4Ax2jPM6lqREgii8IXnn4PDbo9f/uKrinDc7w16RSwAB5St7TUk/91//e2f+da3fGiaphoMBoDZcNTv9QZHh6eE+v69x3du3/v6N76+e3EPoGugLYriz/25f+cf/MNf+vN//s/HqrP3vtcbxLfufny7KIpekTVN1dR1FA06Op6O1tZR9ydzd/ej29976x2FOQsJnqFfab6llcqy9PjoYFr5f/orv/NPf+W3EASAEXBnY+PWrVsffPDerVu3LuxsvXDzOZGwvbneX9+xeRmCW98eIGKWpPP5PLhGMinLuYDr9cdN05CxRZo1jSMTVWdwtL4Rp/I0szZJnWtXI7Jc1Ig4GAwBAI5QAMZr62VZOh+Ujs5WFILXWrNIYEnzQieF1sZm1Lattsn+0+N//s9/9f7jxwJKABlIa+MDkkqtTrSxvg3OQ+uDgArMCCbJbNM0XVCEBAjKaMc+hACEZdNu7V169XNfvvPhDwCIFBJETeXEGA0CyCEyw2LD7o/K5vHZ2KeDKFAAOWpkIeMydiMAkBBczLQ4+qKcbT/2E9/4wld+7P3333/77bcePHzctg6EimIAwbumSZRqQrP8xYBEzBSLjFobeHb7zKP6/9uGDMIskRuzlJmNrH+NALGkFZYaGQYA4qJ3Pmciaxkhsqxa7yAAaqUQQ9MAkvNeRIkgCDpmbY0LgUwiQlHWOS2KWVnrXu/ajReL/nBe1aRN64KQblxbJL2iGJ6eHCwm5aCXF4be/+H3n/7wh6pI/fSsCbRpGqUT53yvlwVkCGGVBK/mZUXUtq2mzgs10qhFZLFYMAc8F1yupuAQfIfxiPjAEDwhsbBzAUEFDtIx83QsK8XyeLwqsLRkjy6Fyxw1TpRRMv2sj6GbIrvfX0mTrLZOOpWZYgjSNM2jR4+M6vCtpmliQhzLjjEzjvcxnn5UUYqDJyb6bRuUUs6FVeFMRITQJLaLdagTmcRP5QRnGckyPPoERhsvIkB0Zo7SfSIisQII5xRiQwiwzI5Ia/Yel4XUGDeHcwLccYu1SBGJvYex6xBQazLMXimrNSGitVoE67pO05SZFRGzz7KEiBRRCM6Q8sEF743V1ihtMhQUYUSJTIlIyxORGGMGAI1gizyu6OLaJE1Tm4igAuUUxXBWJCgkIkrTtG4WhlRR5BEFOT09OTk+PDk+9K5+6dZLvSJ7+aXnX7p1czjsX3/u6mDQHwx6WiljTF0vtNbT6WmSpk/2HzTOVVXF7Hu9webm5tVLl4+OTtq2bVuPGBDp0aPHSqnFYjEYDdPUGHZ51vOhXRut9/v9S5evRnHHEKJLG3NktHmOfCCttSLDzFmWtXVtdIKITd0yNzE1RcTFom6aKuYtxmjm6Bbfpmma50WeF9jZmBIioFZx7DVNQ7KKmwGVYWYBdM4BUHBnhaN4uxERBAwpY8wSpGGFookIxUSzcaWY2VqTkAohWN2BSbR0L+ClmIiIdK0SRKt6YgwEm6YVkVg9jMFlbJOM8xgQsffOOc+stY3jzTnXtmyMibLDrmmSJMl62WA0Yu9DCAowulyISNM0sQFOKRUxS7U05Yz0/OPj4zzPAeDo6Mh7P8gGo+HawcHxv/pXvz7oj6qq8YLOOVSmqppF3SKLNkYCr+D88zPVuSaY84/gj1ws/shFEOOT26Vtz9ZV9NkHESUCLag4BEUqCL946yVlzOP9g7feed9oRUZXVaNNEju8OMD2xtqXv/R5+NVuN+N+4V0z7PckOGDPwoh4987t0+M8y7KHD++Phy+nRt+9/cFHdz760pe+srW1lSTJw8cHe7sXnz59ev/+4wcP9zX8ZNzbwcHRyy+/Ol7b6PV6dV0zc1ZEXd1GRDY3N2/fvv3yKy9qa+q6BlTaUNEboA6kcVYdPny8b1SP0YSAxp6hKeVClIKyrkByUpgkSZKatm4AuGmaB4flg999zSp797e/iyAELQD/zE/9dH/Uv7C9UdXl3t5e1H3Z2toS0NbavL8OyMxciHCAp0dHg8FoYzA4PDiezWbj8fpKJ9cQ9oxqqgqAiWi4tL81xlwejqpyUVUVaENE43wMAC74FcVYa101rqrD7Q8+fPJkfz5bHJ6cvvvu+17E2h4zkDLOBecDoWbmKgR0LTIKEaBSaJXSrQtN0yCiUNT8pIjnxBk8yfLZwZNXvvXTV66/+PjRXZNmvX6q0TgXgAgRhD1LWMlUISqIOkYk52OI1eL0qVcYgKJvYkyIcelFIyIkohQASXhWwKhcLJIkeemlF1988ebx6cn+8fSNt967+9EdFdXimayx2lrftgCklu5siMr75twByLlDeob19aMeqn/rLYZTABEbW/6IoAJUSin2jKiJlHAQAEUqnJ0dwhn3CwCBvdgiQ6HYbKuM0qRUYmsCZgYmH7zSphUGRC9CxsTSAgAws6tq0OalVz7HaGvn0r4BVqhIOkmeUJbl4f7Ta3t7yrV/+Fu/Mbv3sSpMmB8Dns3dp6en4HxqU+cckzAIRiVxABe8wohIofdhvDHqekp6GXKoy8ViXuKZ1BAuU9VVAznIWeeBZhFEHTqqdfSQDs/0HsI5MVIWAIiCI/F1AY9Lpvoq9V/dUOrwyE80ZESQHwIzA0etmaIonGuQxRhTNqUPToNdiVcBEHPnLhdXo/NOCd631to0zUWC46CsiS1gRb8AYGOMLGWN4tU4o6h9YlvGQ2f/BcCVM+Ont3hNCIUl9m5EfAEE2HsVsbfEhtARcVxoAYA0LotKAQBIEwcHAIoIgUEAJCCAImT2WlPsMQzBiYRor6lAtCJrjAhprUIIGkkbzT4QSGINovi2JY0gpA0ZmwGABC8S8wjiAChBk4rQoLU6ODccDZxzeaKFUWutMYlXWxvTVLVr3PHs+OHD+2U539xYH4/He3t7l1+5eXH3p65fvXrp8gVr7XjYb5pmd2enLEvnmxDc8dF+0e8VlM8X016vFySMikyRES6tsgFwPl88fryfJMmirIqi6PV6ea9PRP1+HxHzrGczq63i4CO/k5QJTZMXFEJoWycikV1EADZJgoBCYN+2TSsq1HX9eDLRWrdtM5/P59ViPB5rbWJMb63Ni4K0IoSs18t7wyxPov1oZKADQGBuWw8A0HjoBE8YQSFiJ9gBoJQiZZM0rRb16osA4ConEgARYngNHIN2RFFaGa1DU2tSWZIC+2iCFASiYDj7gIhBJPIImZ1SilkiF75xXoQ1dQMpPgtRZshzIBCKGtpKsYj3vnEOmL33rg2OQ6/Xa70DgCRJUJRvAxpwzlmtQQSc7yRYAyMpo3Syti7OYZZB28ZgMITgmvbw6UFE6Yp+79GjR0Q0HA72Ll+6dOUKED388O50Mg9O3n3rXU0WgJqm1do6xrKcamVb7ziEJEkiB7cLvODZx1I6VOqZF0hWyd/yxT9qBVkmrkhLMuXqLbVCvwi7B9Io7YMj1MgyGo5OT09//dc/al1NSC5I8A1A7JGMgwCePj364Q9/uNqjFx4Mx3XrmPn+vcfHJ4f9flHXiy994fO7O1sc3MHh/mxy1DTNjevXhsNektqvfe1r3//hu9Wi3dzcns8qk+iV7mpZVgC0tbUlIl64bVvn3Oc//3mFxAEGg9HJycnv/e63X3zxxeFwfDI5FeYkz8u6fP6lF/aPv/f4+HBj7fLRaSlKn1e9B9CBCYIYY1rngoRZWWttvfdGWWOz1OraNVk6SK0GDm2z+NXf+QOFGKSFWLCAgABro9HlvYvXrl9ZH4/X1kd1vTAmaV34jd/4TWvtN77xjSLv//Iv/zKSLBZRA9ZfuXJlc2vdNbXWFELY39/f3d1tmiZJkrW1NWutc25rc7Oq6/uPjtI8MSYJoZ7P59P57Pjw5OGjJ+++/9HpbNYFMEAMqCj1AUWw8a1WCYJiEcCYZIAy2jsHAAIQO4eJooKcgAhqLSFEwk3Xc5QkX/jyjynbJ5MHAcGuOywW2BCRkHi5uBIRc0DET8RenzkQEREwijLFtCxGHhTzwRCV5Zh9VP05pw7ctu3p5EQkEIaiN9je2tja2pp++YuT46ODR0/efPvt0DrnG2avlGraZry2nqbp0dGRO3fPPzP2+sS7/1ahWFe++SxdsfgPxbZHFc8OhGKEGh/y5TMdI654+gQI8TMgACE458QY0EslApYgDITGWNK2KRegCLxHm5o8dXUFSDrRiBi8cNNmm+sbm1tPjycuiLFJXTbe+6ToBxGjaXtzgxenWJff/b3fKe/fUZZCOQfXXH7x+bMzCZzmOXtvTBJ8E3PoFUG1w0t8iKhGzItgyTKJBqa87DAV6ehfzAGgK+FF06el3Wd3zUO3yHW3QzpMS5ZXO0jHrpMlzY7OxXnnxti/YaPuDJkBkIx2bQjolSKtoguZRNmUWOuP5xVLS/G3Yt6/TI4lcqUB0LngxQNAXbWDYWcoFMsxQl3b45Id8tm58moZOP/fZ0bdCh77BB9l9clla+oKX++CGK2X6AXFc+mEoIhAhAiWQpcSP0NE1lokqKtGKdXv59zZGKCrndIoEjopL4TAXmtKEmNMjkvt+DiVaU2Nq5MkUSYa0VoACK1jD1prq6NBLYA1g0EvhNC27Xw+PzmdnR6fnJ6eZll2/fpVYL71ws3Nzc0LF/7C+tqo3+9fuXIpTdNIFQL2iLDMyf3Dxw+stXWzSFM7Xl9jhKPTU2PM6WzWNI0/OCKyzofItcmL3u7eRWttlmU2ze1gAM6B0eAFYvdA20Lk64TgvQ9tFUEvIsqS1AUvwj5wRGiqphGRpirL2TzWrO/eu3Pjxg1SajjqX7xyOTr2aK0B0IcQ+ZRGxfEDTe2M6Zxt471WSse/jeloWKvS2wqU6jIExCjTcPYEhxBVZ0MIOrFaRblphxJQwLvGKLWxscHsY7wOLEmahhDqqkLEGLLDObcfZo4nFYJD1LDEfSP4JAKR7KiU0nRWX4vjMI66xKIXVkZH63pYGsFFLrzrNLG7R8xoAwColKuqo6OjODKTJInNpNbaoigODg6MMfWiuri7d/HyJSCcT6dvvP59pVRbuYt7l3/vv/vOt3//O8+/+Oq0rLMkPy0rBmWMAUFCVEoH5yN3eQUGwxID+2TkdYapf4rM8Gyr2SfeWnU6y4o/sNyKoljJrjIhKEXsvQIYDfvsQ12Vs8kkgGRp0bg6zkcxfldIwbvMmhDchx9+DMuI6e69xwiqDf7p08P9pweRtrA5so8e7VutNeHh/pO93QuXrlwcDHKWtm7mL730Iun8N37zd9IkJ2WytAdL9biLe5fruj4+PTLG2CwdDodIutfruaatqlIhXr16fWtrBxEFaH1tU2tdt+HXfvOXdi49Z9McQLGISWzTMpizjgNUKMEbY0OIUzkplYTAANoFgK63Cdu2WVQtARLZvLcDEKwGUiiBRYI15vDw6cnpRz98+0OWViEGCQQkQElelIvF99/62LMnIAa22r5/++Gtmzc/vvvkv/nH/+yML/XsZIwAWqsb158jrd5++51zryPH2goSC2TJgEgDYdt4RHAuKFIiCKh9QCQFzESKg0O03jPplAMJgtGGmYNvcQkiIyIag6hEvDAcP3z81T/xszduvexFZ/kQUDGC95zZJHB074t+0UiEsmq4wM9I0FdD+WyM4rKABASrfpClbKq2NrBrRQA1ac3nmhZn0xMH3LZ1ntqj4wMvxiZplpnBlb1rl/ZefuVWVTdC6tGTh865PBt8+/e/exJzCX1WcUb4xEGu/ns2Wfyop+iZ1yXAOcvwlfGR8LnPIMKSF4iRBy0SgofYXiD8rNNRdMaVrvmfNDK6xQKsMXkSQILzBo1SyOyNsjox7BmITGJ9CMomAMCNY++0TaGIZIhFkuYR4S+KIgC6phalCeULL73w9IM3fucf/0NoF5RZDjVwM7qwo/jskEg4sKNEl22pY6M1gucQWzJlqRuU57lzrq7ryH5FxLZto4KALDUSl7wiJFBBArM7Y8V3+lEhJoExiImhvJypigSI6nAIIEKEZ7PiMgBa/vmj7iDBEgPD1X0XVFoH70BQWYMSWueYGJfc2KgYvuT5dk7bq7AmvhJLMFFx0dpUa42AdV233kWkUGITdDwIohCgE2z8BPRF2N3/Z7tAPjGtr1YIXtLgZClaev4rXbIU+/zZp3kWZfe1qNiDFsujRKStUUjBt1aTUlFUCRC7QJO9y/NU5xkzozB7hyJpknaC9wJaq9QaYwywEAFhBMy0tXoxm4Oifp6BIoZgjNaklVJWWUSkNLXWAnM5m4r3zrcH+/uvHTzspb3d3Z29K7tfvvLyxnhtc3MzTdOil+1d2FlbW7NaOeeMUcwsEJwrvVucnkyDlzzPdWJ1opVVkQMUjiXt9WazGRAVgw3SapgkeVYAwKDfT5IEhFRqumc/eEAU9lyXIoLiCFQ9mydJgqSAHTC7OiYhvCjni8ViOp3OJ51koFKaASJbnJnXNtZ3drbjLdjY2lwsFvP53FqLMGMXsixznkMIqJVQFEmBeLMUdDUvrc2qFhZ1jkKIKaryvoN/ouxZvFPOucT7+LCvxpRSquNpqa5g7TkIs0IgouCdEF7eu2iUAudivDWdzqLEEkoIHToMIkKgFIIxy76x2OYsvmOgeq+MZQZiZakrLK5Kn0s/U2RmIVGg4qOUGBuxNAAgYLIWANq2rcoqpkBtXT948CA2nO3u7s5mMwCgJBn2+0Ynt2/fntPUaH1he3ttYwO0rufzjz7+kEXa0G5ubg93RkU6uHP7HiKyD1rbqnGJSeeTab1otNZaa9e0sjT7ihxoxHOF3R/RlXV+W65xq5zwM7aYd306aAMA1OqsQxgAxPMgS65evToaDB/vP/n4zj2FKCJVXQkAKSMizgUCJSKEumkdACCcMXVee/2t2P1FQP3eoFmUz13e3t4cTU9Oj/OUhF9+5cUvf+nzBwf7wj5PUs+kDVy+fPH555/76KPbSZLMF+VwuRB846d/2rfVP/ilX/ov/8v/Z5Zlea9/7dq1CxcuDEeDNLXaWqOQUMdrZKyazGaLuvnmN38KALQ1pBQYpYRsopx/hk5EpGL+F5dS5gCgtLHetUgaUAgxKAUiiOS982WDBGVwSAjACpG5MrqnlFIaE2MEQpeTCE5mk16+lqZptK2waeLaxeb21uVr14fDvjHmO//6O+vr45gtKdVpiDNz07jG+7fevy0Ame2bxLqmJa20tjHR8Y69943nEJpIrxEBVDowgLCxiXMBYpQWglJpCAEQOBZ0aCWsYgEj55bZN6CtJrJpMRgMnkwWX/nxn2wCTOaVKBtC0JiwAR/aWPhhEEDhKFnCwEuT108HW6tLvRrEsnwdBQBI4kISFx4EQSClEJQLbdO4ti3hQrcHZhYMeZ4DewBIrF4sylYpZp9rq5TK8hQRb71wo6ndX/pLf/l//b8cf3z7/n/+n/8X333tDJdl6cKs7gjOk5PwfJE/HvmPqPicX8Ij3VKefWf1tyB07DrQ2iAJOw/LKATBCFCn9AXLPrp4JMGhUaA0CDgXopuYFxZGpTQoIqWEu1oTIvgQwDljE5PYpmr643VGqqrKJlRVlWNfVwtjc2us876tajTF1toGNIsLVy/sP7krbdNf39hcW3947/bq6K02XkLjBbSK1T1tuj5ZY0y0pC3SzFjV1mdyxMbY+/fvaxV1myhOXDG9iV0RBFE7QIIEkZVEwhnTgs6calRniy4EANh5JJzHepZU1k/ZFJ4Dw+RT9+Vsk3N4J4IKoQaGpZdlAImdAdGTDmOKvzpOWNJfnHNEikg5DiycJKkIJknCzCGw5xArqufm8dWtXo577F5Vy3OHc0rfHceLAIEAJRYt4/lEEGslPMHMKMIgaZpg56wVUp0AMpEK3iOi0bFoGERi3z0iAqGyRp+78gBAUfOSmRFEERiljdLMzIFTa621RZZ579kH1zaJtVqT+CAsbVX3+nkyGmito0rCsJ+2rg6OiaQuTx8/fjyZTKw2a+Ph7u7uxQs7V69cWltbu3Tp0ng8IgUbG2shuOFocHx8XBSFtVa8Ozo6SqwuyzJNU5ua+XTWH/b7Re6CP5mUx5NTQJUXqXd8sT8MiDsXL6VpevHqNRDMiwJWzBNmcJ5DK8DinLAHjE4VsJItRJEgXpGcHB2WZUmIzaKKuhUo4IPL0nwyPd0YrxOhMbYoCtI6NrYTUdXUbXDNohoMBnt7ezGIjwoLdV1Hbj4AgCLxgRGyLItSGsYYpXTkj3etGkSfjgaUUiHEUddVxgECGUNE7pz5MiIKQ+s5UQag8+BBVAjCzKF1Gxc3+4MiIlWa0IfQyzNEzFMrIm3bgu0SDCJCUN77JdALgR0RGVJKKUyVb10IASPSRsporUj5pZK3is9olObSGpghsaFtp5MTIsrzvFxUs9nk5GQyGg201vfu3In9nv1+fzQa1nUNIOPxKMvyo6OjBw8eECAAXLlybbSxAd4/fvjw8f6+1lqAd3Z2BDnNe8PR+unT07/39/7ezZsvzCvngVzr6yCN80maRhG1iL2pyN7zPragxddju+L5J/fTE8gKLYu34PwUtNoYSaKyi6KO/nUOqhj38y780qiU8Pp4tHdhx2hC347yzAA4EaOgCUykues5Ao0UlZ8EiYXbcDbBOdBpYsSH9bWRYtjdGHzly68EX4e2LYp+Wy3ee+f9cjoxRg8GvSztr29unRwfbm9f/tqPfXE6nczm1enJYrhSfFKgR6Mf/9rXvv1733n9e2+kafnG9972HLJetrY2uHL90rA/GBXD9fWNoh9NpkAbu7nRI5P1R8PheFx7z2Q9i83OuF8SvCCRUsDR9zkSMsS7BolWJCFSJCIcGEl1lEllAFgEgwBS4oP4INDyAh0zIzAgsjBQWi6a+aJSZLXWythpefrKpQtZoatycvHS7uHhcx/evoOKvfddA5eQgBAqVMooC4h142pXEyjxzFwBRBRc+8CktVY6CnEhAAQmRAbwbYukYdl814legoq4iiCiViIoLCBR8hNBBEhQUQjhycd3fuYv/OKla9fnbWN9YnRiUCuB4B0S0YpDIwxIzAzStf7HlRHgTM6Rl+AHRJnzDv9ADkwaBUSQkBBACFEheWFEaBrHzs+rBXLgc5SX1jci4puWiGLBa3Ojk6hV0PXiTafTcrrQWv/6r/y3X/7K12bT2nkSOvMPBT2wiQHvg2ti6Ald1hIAAEgBh1iDlRCAaNnbyCJCKIgQOCBEqhzHbxFC7OwTQex4EgDL2phSCgiCeA5AIZCwoApsEK1wzJZEwCMKIUoswjICIXCgQAxgUfnAoEkAUBEANiEAYpQQ6ETHGNGmAdi3LWk9n883tncg+EGvAKtoaSEYQjDKAONkWl1/7taX/sS3vvfr/wS4skW+sTZ89PA+ylnqLJoNKQoCABwYFSGT914rVEhNWyoio6mpKmBWiArRKj2fz0UwMMR4K8I8iAogyo1qAfAdVqgAOuH0JfgPq2kOgYSB8AxilLgAAYoIdXFzh56uZj0iFBGOF7W7eStFW+oc0SOI3HX+IQIaYwyparFQSBA8KkFQsDTOQkRjDLPEyg4iiqBSplufhLSyjWuVUiIQ6cYAXRUGOnOzjtDGzDEiJyIhkLYFQ119lQUQPciqhX55RlEvTdg3yqRJamNdb/loBETUBEoppQwicgjOeyFABIrVDEL2IdEalQogzjVJmvjARCp0XH4xWhFhCF3VNbY/Gq21Qq1Qo2maRhOtsBYJbLRi1xqlhDAvesCiCHujgfdtYixLYB/quj4+OX346G7VlKNhcePa9fX19b1b13Z3/8SF3e1eXmxvbxujiGhrY71t2/X19fl8/vjxY6tlXtenR60mQg7Tk+M8z7e2th4/foyKNrY2D46OeoMho+RZMUjTjd1UEPKsKHo5ktJakzGACMwg0ZEzoGt800Bg771znau6tdb74L0jUpP5LIZHMQhj5kU1b+oo9Kr7xWA0GuVpkeZZWc6Gw/Elddko69kBkFLIzI1r67YRQhGxSZLYvF4W45BZUCV5NhiPVuAxIHrnENRisbh/575SOBgMYlNeJLBbk2hNqFRVVYIQG2tCCEGYtNLGMDOh9o6TJAEi0riCWiFOrEjAQRC1SauqikTByN9FxLW1kU5MkGBAtFHcOCQFAE1Vk1bGaGZWiG3bOmYVjQdDRzoiAt+07DtR5cW8XKlUOABrdZIkalnDBpZ2sSCio+OjSDsGAN+20+m0KAq9udnWdb/I7925c3y4v7Oz0+sVRVFMJicmTUDBxYu7zPy9731vPl8AwO7u7s2bN4mobdu3fvD9oiicc7086/f7xtjh2kiQbZofPXn6/dffuvfg4fXnBrNyLjZRaYptIJu03qE23jsiCMGFEGLNvrtuEetCXCp+nanuwXJti+tgN1d1Sx+BMEW1rnMZeUwykYiFE61ZPJ2rzD5/ebf71Uzb4aDXy5PJ6XGi1dr6KM/Mj33llTsPHj54cqIAggQA1SktUWRiEBEyy3lWO5OqG6dBDg6e3rp+/StffsUQT+ZlvxjkeVpOJ/PZZDQs1tbG0+n09u3bQGq0to4ULl6/fOuF53/tN3+7yEarvb337nsv3Hrx0uWrP/2tP/brv/bbly8P1jc2rbVtcFVT/+vv/OFsNjVCIjgaj7d3L2xub2zubGf5oBiObZKsbazfe3ScDAauas9nBoAmkj/i2rlsj+dlvr66dhgDi9XVl46qgrEKd0ZwgSBIsQYAxEopCUyMMfUpy/KLX/z81vaYxTnXWG1effXVeVU/fHzPJDY4hhjTAbIwsm6C6zCD6MwrgF3oo0SQVCosnh0gaqWj/68II+g4ZuDctjxytTz4WEcCABIfSBODKGOaRbm+e/HP/twvfO2nflpnqYTAgi4EAgUsSLFNrNshYxdkEZ+v/jyjtoqIEZcWxvh3/AwtW7cYJAQfJcLj1oHVSsXkj87po2xtbZmlyqLW2i/LNMwsPkTkfDgcDgYDa23bVL/9W7+Z5GNFGuCcmAImeTEU1wbXiqbWOe+9hGCsctFRygAzy+rpin7eggCBZeUbG3m4hMCCIhARBxJh7BzG48ExgBABagwNg2Jk5uCEQ8cGi/pWIPFiLJmUWkAgMHsfMRUCQoTAjIrizUUBICRNEZSSVQ92B7cBoiikpq6LXiZoIp7BzBKC1paEWCgret/41k/f//j7V3ZGH33w4e2PPzTGgDvXpqCIkCAwe9bGAqGIKB2jYo73Ik2TsoyexEWWZWVZPXr0kGIRvBt7caJ5Bnz6zBzx3347T/bqzvoT6emnd36WHMR/4zjmleJ07HtSqmvmj1FILOFBJyCnvPdRAjSKKMHKoDeELEsCiKsbQBO/0i96WZaF1hEsfZ0RkyRpG0YEzwFBKauVNb5pGZFM14foXK11EqvTkVWptRIIAvEeekNIBkMLAYJCjG0Enb8KAhGliYm+7FopqwyHIKQNIRBqwDzpM7OlpA1OKwUAWZY53yzDPo6MH4nL6hJl3Fgf14sqMVop0zRVr5f71mVZVlXVxsY6ovjWCXA5m1RVebD/OISwt3fhpZdeunrlyoULWxd2N7XB1CTXrl1FRGs7E4UQQlWX1lrnq6Pjw9PJ4ebm5mCYH54cElFms6Pjk4sXL3rhRVM7DuONda21TfMLe8naaAyEmpTp9YEUkIIQIsKHWnU3Os7VzM45qeoQAgq0rtFa11UpgpPTU631/v5+dBAxWieDwXQ6bZqm3+uNRwMA6PUGiU295xgSMch4PI7Vsc58JYS6DcYYk3Tl5qZ2bes1yVmzZ/AAYEh57w0pMiY2DGZJDgC9Xm9zfb2qqqoqEdVsNnvw4IHWutfriYgySRSU19ZoUrK0lyYiAOIAiY3cAKyqan9/H17uRj0ze/aRerhYLADEt04TKEsgwXNQShGBMQpImqrx3scqZAihaeskTeMMHAUsnXMRjdYam6aJbk4hBGhaIOzlKZFWKvIsAAXKsoxmx9ba2Wx2dHDQ6/UGg/7du3eTJMmy7PrVaxd3dwHg6dOn77zzzmAwGPR60RW0yPI8T4ti11r7/kcffvj+u2maDgaDV155xblQ1/UPf/jDra2tXq8HAI8ePaiqajgcb29vD9c3mnrxvddfPz4+uX7t1snpdLqYN84HgeDZWAriGAQEQ/AogiSKMMYFn56UPl3AgW4Jw+X7uCxACYAE7zu8/NmGZWU7AQ5B1orOc2C+8fWvdnNQXqRpar33wbssUWU5H62vJUXxymg42tz/+OMHk7JWSkJwWmsBQFJBfAiCihp/ljcHYSQM7NeHg+F40DS1aB4O+2ujten0tGmq8fpoa3t7Np8+eHAPFfSHAyDSJoG63dxc/9wrr3zvD9/e7Xd7++D9j1mo1+t9dPfe7f2nt/efRj7zzoWdwWCwNt7a3twl4eA9Eh0fH9+9f6dqGx+QbLp7+eZgMMDHJ9bawLiYzc6urFbiJRbpoqCtAMk5FlZnC7wsT8Tr+6lZ/VyxI1ak4uIQWEgzg1Uq+CAin//85ze3BiJV21RKq6atjM6+8sUvTCZHi7pUyjgXAKLym4gEYxLXkcZjO/1K3yj2XnlAQlJIwhFVhhUQHT8Ey/xeIcb+RASIf8lKgktr5X1AY4yyIbQvfvGLL/7YV2tCqKqVvB4Lehe01cLxGVex/CjnrgAvR+MnLpCLLGajZKmMH4H3UIeIJYSlnEEMqmIBBYCTxMSiw2pXxpi4jMUiFzvnvVfKEFKgLjtZtuFgkiTjtY0AWYD3zTnIE1hYsGk9OyZUAjpJ80ikANTamCJPvfd1vWDx4vxSJZVBAlB8aEIIAmiBBIUFGQSlqxnqZUsddpk3BIHAwaFJtbbErfMoAApEsFsaEDtWPoMgqRgQhFADEBCxsAuerGFhCUGIIAQBJKWW4WzsVQsgqFAhEpGKLYWLxaKu2sG4LyEAaha2ChVg29ZKKWmbna0Lf+kv/1VZHP3g+99DpMTYNrTnrxWSRE8QiA0cBCGIIRXYBRdGoxGKSIiTOFmrQ1DQdfZ9tgzvH72dLwV+5naeinHuW+cZBbGqLHCOmX72SWB4NhIUkY50mFguS63UfD7Li5RdXNvOR4oce/ARISoMnPHSkJ13RGQ01VW5MV5DDuJDtVj0B4M4nkmhc5VzrLQRZhQAZozmUIAIoElFDlBqjVLKOQ+KYmsOS5saa7UFRlIYezQExVoLLKQAQbF44Wi2iAJBk1YJGaM1UmgFEUmow7qYrVKklQmdjU/btKlNFCptNAATIhFQaonANY3WylrLzP3xUGn0jsf5SBE5RSE09ezk0FWT6cnh/pOXX3lx98L21auff+761aIoLl7cJYJ+UWxvb4nIYjGvqkYkLBbVZNqiQCyxOddk6+uj0fDk6NBqdXx8CKSff+Hm0dGJ1np9Y8cYs7G5HVUniChJ04jsAQDER8A5VPGuiiIErUEr8AG8B0QOoalq732zqLxz1bycTCYXr1yu6/ro6GhjY0Mrs7mxFR3kiqIw1m6sb/rgcKmM4L13wSOpqqlXQzRNcte21aJJ0zSIeM9aI4KKxeLYc+B9G2t2IqIIbWIVggueAK3SEEChIsT4dWZJsiLNcxIajUZbWzux0SHKLkxPT/cfP/bMVmubpv1+f21tQ5B1USgXIEhV16ngRx98/C//1a/+5T/+t+Lw9t57DiJMS88lpYW9I5UqIETSRiHioqmxrURQmySEbuRH2zokcM4Je62QVrOT9/0ij4lKktpYf+fgm6peVOXx0QkSbG5u5nlezqZJkiiEi7sXEqOfPn3KHPb29vYu7EYdgzfffPN0cjwej7e3NiJzLk0Ho7VxlmWTyeStt99u2qrX6125cmU4HMY1zvum3++fnp6enJwcHOyvra298MLz0eXsD/7gD5IkG2+s7+3tvfLKq8dH5S/90j+6eOGaAIXYfybcNA1wQALwIiLRG/cTK/tqellK3jwzBWEnmQLLxG+1EnZwACqgc7QWVCo4D8zKaARomyrRZ9PjX/+r/70u/GraNk0tRVc2rVGrJE2LIveBX33p5cQW33v9B6QJINbLQGvdFW2Igj8L6CKgRwDHk+nx8fGl3c08z5T42WwSS+DXrl9p2zZN05/4iZ8QhP3Dg8aF08l8Z+fi9s4GKv3he2fGVW++8e77H9xe31p/7vnn/9bf/I/6/f50On37zTc/+vD2m2+9G6fe3NDe3oWd3Qto9Mb2lrFp64NnRESrjbU2tKFeVHDOmDKWwYGIQ6zy0tkbuBSjOjeDI6IIAa50uf/IjRQ7jwDee6stomyur2kKznlEJEHnvTWYpPqP/8wf+7Vf//XFIkqYgA9ekWZh59pnVgoUOOdvqKMlQvDLcjVRlIxHJYwdGeYMw4udVoSCUSwqVmxAQIAQOUnyajJ95ZvfvPXyqy0iC6aKAMg5vzbeKPoD544x0KrZfmmhALHQE4tBf0RpnJlns1ldt4hRnGZVWDlXzhABAGOMUspavfJSPTeouiQjpn3UWXpFGLwTVY9UGKXQOx9CEJLWO3dO4lL3+qg0oGYCEAoCEiAEIbKgLSDULXovgqk1xDr40Ar72IkTfz9EZmtwwMjAIGGJqpBEJYQQAFVnA6AsaRtERY2oEFbqA6vntmMdMTAwooowKuks920NhHrpOyYcdJqISIjtFVrHfUJU3e5oubi8mLEGynVdXygKD4qUIkq0NURARCZN2qrylDx+evKP/ov/83B92Dpu2tKeazUVL058tEL0ImfFZBIJopRK06RtGu991Npp2/bk5OSPCJ4+MTCeDaE+Gwz7zHz0j0bOPvvdrp08Xm0AUJ36CTN0fnaRWe9jWSAuLSutr5gYxGQg8sBCiNlEBGhZa900lUJKtJrNZr1e7p1TgCDCzveKIrZyJamtFq3WNgpoAQCBdJiu7mzglVLONUSktPLeAYACVARKWe5a3YJRhgwioLIUW1CVSiTy1QBESBmKxgaefWy1UYQaqWNJa22MES11VWdZ1ssL37bMbAGINLPXRElilSJKbZYlVVV57yfHT+7evV07X9h0a31jb3dnd3fnS59/sd/vXb16dXtn0xg1HA5DcGujYZIk3rcCoWmag8PHIJEwQMfHx62ro5SoMcYk2jlTVovJYr61d0FEiqJQ2qIy12+sp1kReaWktW/bruRqDXgPpEEEQgARNAaC1LN527ZBuK2bqqkj0SrKtgHLqD8QZu+9AhyNRoi4ubnZ6/WMMQgUewnj/uezWUxsWtfEnDASE4nig85KmQjadbZvhlAUEYQQyrLt5jGlCDGK3EaStEhwTSuahNlJbJtFYGmFiQhJx19nZpKgdNd1SEsht05hlf10Ol8sFicnk+Pjqff+8aMnT548bRpXN83JyckPfvCDL736xdWod74BVABMhFVVikiSGKVxcnLy5htvXb6y9eM/9uVIaCuKLAiLc4xogZLUhuCi2Fv0SooKOB3cBXByctK27Ww+NcZMJpODg4PhcLi1taWUyoss9iVora9evdo0zYMHD05OTkIIL7744nhjwzfN5OT0tddei6yvzc1NpRT7sLGxEdGs+w8fPHr0SCnV7/VevPxCPIDJZBK8tG27v38QZe63tja2d3dBpKmqb3/72/1+fzQaFUV/PB7rxPaH4/t3D//pv/jlV1/+8tHpjEmBoGvbpmkAokOAA6GICpxXBJQltxSW9Rx8NgxAFO8FuroXLc2IBACstSGWY87RZkQEQtBJYq3RSgb9UTk5Wb27t7fVhV+ni9KJ6+c5SAjTsLE2evz06XoIedE/OjjcGK998dVXf/DGW8BsTc4AwTlSGlE4sFZnJ5Aa64WJAwBMJ5NHDx5l+oLBTstke3unVwyURq2pNxgOBoPo3zwcjfr9ojfoZWnvT/2JP/7mH3Z729jYnpXT09PpjZvP7168MBj2F4vF1378q9ak3/3uH1qTVVX10cfv3ntw99d/8w+kqwnBxuZwa/vieL0QwUHRA7LzMD+vnqO0XQrxdDjRWSP3Z8zealmwiMvbZ0Rg0mHdIgBExMgoEKP1NCvqep4r07ZNnhluvCFi106nNUP48pe+9O3f/w4HFkCFFNgbbZz3SuvgOfL/ROi8hcrKL6irc7HyMY3vWMiAoJYBJXXx0vLrDIKkgVAkcPA2yxgQGD//hS9fee5mTehFAndVwiQvlE4RUlDgQ62VBjkbjogIy4LjeTBsVauNC1gMjPKcVo54EalSSz9dXNKH1VK2O0Zp55uoY0xBRLKUHVdKRSGDqMSkumAOQAAVeWGFWLdtlhdnOyG9qJ2rPQQXhEAplths4VGREHkAJoOIATCAI9JBnKAsZfMQDEMsXAMA8FIvRhQSInrXAAkgAyIAg9ggmsGAoHjPrYtF5K4BFFXUZ12WsyFWL4Fg2R6hlbEdjYDZN61ObGSGRhIYiyABAShQEDqmnWcWBma2OncuMINzrUYt4EIlSmlVqDTPZvNjQdsfb4FgmlqRxjXs2J+73h3pO4RgjUFUVVUZq3wbQGR9fRyca5rGWm2Matt2Oq2m02kMK/GZps7P3v4tA7V425aH1NEXl11CP7LV47M2Pv9Pt0dCCBQdY5jZh7ZrZuxMQaN9QoR9o8N7rKp35cvYHSgiofUEyirjxac2kwCu8UbZXtpLTP7B7Y+ZIUuLuo0ZMAqL1SquwKApckaN1iLStjUpShLjHSfaJEnStm2WpcG1AJLnWTzfACEe6kqDPo5DgFinVqiURSTA1NhqsUhs1rU6huC9X1TztbW1wbDXtq0CSVOTGGtNNF3x8/n06PjIWHX37u2iyF669cLmxugrn395a/vnL+zs5VmyvbHZutoY0+/3Njc35/N5kiQAHNfypi1n8xPnHGInlBAD1sF4hFpdXr/qnEsSYxLLzAFkPB5H4mmSpiJCWgMZXjSgDSEBc1s3Ns+BmbSGEIBU8C4qq1VV5ZoWWaqqcs55Yd+0tWvjePDer6+v56ktiiy1Sa/XI4EQxAtzEEVaGEjhfD6PzLlYzuu6+5UBAARK07Rq6qqtT49ONjbWiUgpjIIaWZ6IBEMagEIQgA6TZh9WkRMAR3QYAGJg3UXRXeMJAUCsCRijlFK+beO01zRVxA5ERIIPIdjEDHpFnqcuqOHaxm/92q/9wl/8i6+89LmHDx674Jn5xZdfSs9PdwBZap1zyGBIMXt2vm6qK1cu/8K/+3MvvXxzc23twu42AJycTLRJmmZKxly+eg3aFjkEFsDgXCjbtigK79sHT57s7+8vFnW/39dah+B80+7u7u5ub00mk7Za1HW9tbV1+fkb2tp7d+788PXvJUmSJMl4PB4Oh1rTw3t3njx5MhyO817hXaM0GmNHo9Gg1weA119/fbFYWKvXx+Mr164eHR3NJlNg8Rwmk8nJ8cQYMxoNdnd3IxR67/btRTVHxI3NtSLvG2OyrCiKwthkcnT6d//uf5raPIAyWa+paueDkOr8erv4F2L8FIuJ52pH3Sp2nv0iZwGZENES4JAlSoIi4jtT1GeQE6VUADBGgwRSlGo9urB5bm7zXfjFiLOqres2TviT2TxJzOOnB8YkzJxnPRcd3wA5BCQiFAyBCJAF5SwcCXWpARggIzg9nrw5nWyv9Z5/7ur16zcODw+fPn0iglFBeDqZMXNvMBiNRv1h75133iLSz7/w8sVL22/+YdfT672/cvna8eT4yaPHX/jiK6PR0PvWXL0igi+99JIxWWCum/liMV/UzRtvvHH//v3T09MPP7jzj//ZLwd4vz/c2rn0/MHRTCGeA7+iuJwX71EpYQYRUmc6irLseohTPoOQRGq7kq7B4UfN8gAAHDySEmEi8sxpYmyihX2/l1fzmSajlELApqnqtsr7vS9+6fOvvfY9o63zDoGcd9DJo58JRZ5D3UhplSQJIrRtJFf587+OiLDszJdIce8UqkgAgDohJSCllGJAXy6+9fO/cOnKc23r08GwbNrEpLOyJMDB0Nq852dTH1yapqsKczz7AF0nIT/bJ78cpmd9OtG/Mk49sUQYY6/4yfMuLqvvRpmi8ye1BH5ltdKsHo/VKxEeA4KmaVKKWk1nF8ezKKXIphwMWB2fmYCo0iwEx6iEPSgVRwIKsfcgIEQgITAGif2ZnfwVnNXLohga6SRRGjWRIDRNG5hQJSgEgKugHhFjOROjjDtDdxWRhJmREQkIQRsh9N774E2WgjZBONY2l81Q4fxFXsWvDBjEV02j0zxCj1prjRQCI7FS1AW/2s5rP1zbBh29Rz0gh3A2rAmUNloZinaHSNK00LYtAeZ5prUuyzLe+ejydnx8HPW9iNSPUgn9Udt5BPTf6l1ZRmCfirr+jfDY2fkBcBAiM1sa+TkvnS10lzl4s7RKjFQwWA4wRFTLhJOXPpiu8UmSzqezIk+Pjo7qptFao9V/77/++4pUjAZAyCRpUy8iJQhRjM1WQzoElySJUopBekVBSrm2TazVSFGJK8878a0o4sDMzjlksb1CATYcjElsZuNyTgIIYEjpomeVrhdV0evFFEibZbMkeBI4ero/OTkiwDSz4/H4+vWrV65cGQz6165fGY0GvV6+u7sLKFHvCgK3bQ1Y9Pv9x48fn5weRC3yLMtEJM3zLEkcu83RZu1qq/RwvG5MkuU9773SmNhMaYQYpBvToVkiJta2CSQIV7UiJVWNWgMLspTHJ0LYtu1kMgkhTKfTqlrEy15VFbEURZGmaZ7m2UamlLLWJnkW23TYtyIigb33vmlDEM8SS58R18myDFEt+X9KpJOzQsQlEVAJWaUi9tMiYpbl3nuR4L1XqvMzjZfUubaLiRFJKzyrbXUiJlFtofMmEgghGKVcCNNpqQ1lNnOuiT2Gbd3E0aW1RgLvfeDALAAKmBeLeu/CpeeuPz8ab8bptGnb89qWaZrG/4qQ1tqYrCxnL7/86n/yn/xvN9ZHIbimKr13bdMkSVYURbG7ByYBCY/u3z8+2l/U1eHhYTxgrXWe59sX9m7cuJGmEe2ux+Px8cHho0eP2rYdj8fj8Tg2/H7/+9+PxLWbN2/GJ8g59/Dhw3jio9GISFlrNzfW1tfXEfHg4OC7f/hacD5JkqtXr2ZZQrqjkfR6vXv37k3ns6IojDFxh4vF4r333jPG+NBGp9HRaDQcjAGAGR49euwdf/jxvf/67/+DF1763KJpF40XpYKwVspa3TjvnYfAghSf4h81Y/DS5wPOpno8B4k9M9VgpKBoFYVzn5lriKwxSglwWy+ma4P11VtP799ZSTcZRHbs47wyrRwvHGnwPlKmjuGsOykYQBJBgEGiil6m4AwP+vEvvXT/7r1+URRZduXy5fVxfzGZzCbzOx/fvnPnTpKld+/erevFzoWt7d3t48lJf1Asqnn/dHj50m6SpEbJYHsI0IVf0+kpomirX7jx/LXLV6azE2UUIwfPymDVTBExTcyot81AN64/17ZtkiSHB6f/q//N/65y8I/+2a/+7f/939m99kLZOLTn6h2IRCogQ1ztODKizq1n5yXSBXk53a9CGYCortmFnrhkPiEikmFmhdGJXaPC2WSSF7ppGvaNslQu6izt5amdl9P5ZDoYjF558dbb77xrtAlBgjCgAogI51mEsbr+McsEicwkFS2lcGkt8omNoGtY7/r08Kz5KwhBCJAXH9y+09LvXblxc7y5lfX6OMqizr6AGgzXT6tjg+BcRWjPhx3PGqU8A9Kef70LrWL3HxFFfhsE52OvaEfJxyWfdLUane98jDvvGrBXVyQeTGRvLb1Xich5r1XCDMwQzmciAr3+wKu6nM9BAIiQotKsBwk6sSEIew+koug+KBWbpZE5BO6oViyBlzMqUie/FPk4zjNqEABFqBKMwZWIiFcEQAIcOsH1LsQ3q7MT6YjOMYyK9qPD0cgFV7vWtw6YgZgUKdSAKCQSu3OYYx+TLNUyBXVVVSbL4/WJnDmlUGtDy41ZTDogPx9sX6hO7g97fQgLdw60imsbamLvfGi1qNQmdV3laVrkeVPVEjwK9Hs9pbEsy8nkFLvyVifJ+P/r1o2fZ/SjP42iLZOQc7V1eVaVR5YP4tldP3tPAAgQlwr0IUmS+w8e7u5s713YWlSMaKuq0mRERDjCXQgCIIQAvOSZRcQ2/q2UEkFrUwVORLI8cc49ePCgahaXLl4RTfP5fG19UwSZpdcbVlWV53lEhhAhSYxSGAWfTNqbTCZpf5j1irZqUSizWVWVHjnPCmYOngXYWhsL4q1340GfQ2idCwBFnmZZ4Zo2S3MSUASGlELKsqypqxQBxJ08PQKA+w/uLtrFzes31tfXr1za2/3ml3Z2tna3d2IJKS/SCLkRUVWVs9ns9Pggz3N2uixLgeC9t5mdPJ4gorZ2+8KFOGCcC1mRZ0l6IdEopIxWSNokaAyq2HIvShkJHq1FQGgaaDwQgffgAyhFQTgEhdQsFvNZuVgsYuFpOp0G4UhIird71B9Gy+ciywU42ibGCcdFm87ATd3EvpwQQnwOTZoZAA4dLIdLcVFEIYKVkZQsSQ7xu54DAGxv79R1HXXW2rYlIuGAIMIBKZI5JITOsxkUKESJXhMAIl6EtdYsHEIwZLQ1ROQ9owii+LaW4JRJQnAibIwWYQZufauUcsHh0tRBBFwIadO2LmxsbrrA1aLWWqOiOBpXgz3PepJDU9XsPBEpZR49evJn//TPAtCd2/d7eTboF9qaVKUBQl01TX385MmTu3fvJgZGw75R+sUXbm5f2AEA77mqquDl5PCoqh6EEPb29n74+veHo/5zN65FhZGmE9Sgazeeq+v68PDweHIa09JLly6N1jecc8fHx0mS7O5u9Hq9uly8/c57R0dHSZIMBqOdre3AzlrbNI1f1HXd3rv/IHIbrl27trm5SagPDg4ePXo0Ho/ruo6yq03TbG9vK6XSJP3oo4+ePHk6GAwv7l393vf+SSte0NS+9SLKJqGugZ0yWurWOwcCRHECh/P4BQks46oowyfwyQUuQuK8lN0+ywMZEIIordQ5dpcxRitKtELwg1G/SPXbb35v9e5777yhz74fwChrNTFz61oEYA8EoKjzy4zahRtrw/FogOA319YuX9orsqRtW/jNbo9ffPXlCxtrIQTX1Kml0+Mj19SDYbG///ji5T0iOj09LctZliezxeyFF26ur20+fvwwbMpzzz3nvb99+6Mr186m78AtItRV+fjRgyuXd1FgPp8ro0FRXTYhBK2tr7FGFNTGmDzPg+PNzc0LuyklOUPyt/8Pfyc+aedj0ogw4xLGiMV1xPMlvuV8jSua9LM1xxVC9kzsRYhdQiyBiSiwa5qmLMvWByWBFDdVCwHyrNfr9eIABZbd3V3v+f0P3idlCcgFhmejGena2jpwK1YSiAhAnHMcXFSlgC6U4U5OUGgZKAkiCsXlJL7WmfKC89NZOd7YKIrCkAmtOzw8LAZ9bZIsS5OifzKdbY5SY4wwiYiAEC5bPJcFmFUZ8fwxx1c60hB1Bx/rj7z0novAwPKKPsMHOh9N4rlLTUuNtJgjRsAgNk4u9ZfFOxet5J85JO96vV6rdO1aQAwCgOiZkRCMzvtF27bVfA6KBCU2f0UxvhhcASIqrQDj0wsAqM6U0BER0RKSYy8SFBkyCIDCDCGQUSTomOK9YyFABUIR0FqF/VFJQmvlOPg4RJcGfwDgvVeiABkUQVfjBhRUSilA79kLsyBp43y7vBSBmQWCNQmz9yEU/R4RaZu2jo1KdnYuvP/oA8mzT1yrDh1xofVOgrPaWGsGg4HpKP+BmUejUVEUi2p+fHy8urlE6kfBT6u57LPf/qztEx8WiZXN1WNIn/iwnD2wn72784UBra0IJyZ57Xt/OPzpbwJCCN4Y49tQ1zUArBb71WKMZ/irhyUSaW3Stq1GsNaElq0l7znP07/wF3/u7fc/+Cf//J+PBsPTSZmaFIWSJMszFW95fDSYMbLuFOm18RgRlXBidEdwFE4zi4hN02hFxiQiAUmsTQZFGnnxRnXqUFmWqV7BzoOIa+pycnL/7j0iQJIXXnhhMOi98uJzOzvbm9sbw0EvTdPr169bq61WsaTStq3RZAzWVb3/5HC0Nj4+OVZKGatPJ8ez2SxNU9J6OBwOx6PZbJb1ijzJ8zyPLH5YSo9674uiiPmAoEJjBImMghAgMJKG1ru2hcDG2mo+a5pmNpuJiPc8m00khMWiTNOMmWO36Xg47A0GKupWKZUkiTEm0ua89ygdcyuOkAh6xYNZOTQgkW/byH6jpeBTCCHqrVtrtdZ1v/u+AAEAAElEQVTOBVjmeCtsXikFhLHvO89zRBWC6zAzOBsOuKRbWGs9O1jJtgEhIgb2PloctrPZzBjT7w+IqK5bY4zWNBwO2rat61rEyTKMC6HTlWmDN6SEsJflqIyxBQAtFot3332/3x+jotPpDAAiDWA1vMuyNIntDfroOcrV3rx567XXXvut3/6NTNs0s/2isJpCcNPptK7rS5cu7e3tbW1v/NQ3f+Lixd3ZbOK9//jjj733Fy7spWk6OZ0ppYbDYZqma2tr3vtyMXvw4MFisWi9HwwGm5ub8/kiwrSXL19O03QymX300Ufffe01YR6Nx4PeIM/zcr549OjRoD+8fO3qjRvPzxbz/UdPFnWllLKIrg0HRweIanNzs98fJolJ0/Thw4dt2+Z5Ph6PjTFRoaMoit3d3dPT03v37mllifTNmzd3Ll95ev/p//Hv/J+++OpXp1Xjg5AyddOYxNb1IqLMIAGX6w7HNB1WVO/lIrt8uj8xhcQ8GYSgu/3dzBMXJvY+BCZ1Lv8UNqQW5aSty62Nq2+/+f2/8T/4a6s3X7z1wjL8YtGAEkKaZ/28qKqq3+9vbWwePH3y+PFDDbg+GmtFiPKFL7+a5Pb44DDPEktyenw0HA5Xe0ysvXbtWnDtydHB7OSk18u3Nrbzfs/VjZCY1DDyzRdv7V288OGHH6ZpNhyOmqaBIPuPnmRZVi+a1157DeD55fzqrYbZZP7OW28Au93d3a2tDUAioKJfEJEgRrMgAVXX9eP9p7PZrF40jx4/ffjk+J0P77z04q3Zokm1Toqzi9LWEftFireBRSkIIUDUk0bqoto4lcfAAmHJhxGAMwfNZWBHAGEZpCIHJtIBAmpk9sYqZkcg3rEmBQgnJydbW1trw+Hx8fH6eOiFd3e227a9ffe+UkqREgFeIiLx5yPTC6KnG3elkOCj0Bd0sRczICGisETdcK20Dx5JxXoLEnWGe+wB1c71a6boD9a3atc2rlV1DYq8CBndz4sguHv5yntvJIhIDF6EiFhYIChFEQwiIlzisdiJUC15Zhy467pEFOwoDyIxFe7oEewwVs2Yo5NJbNuNrRPPLp24emDi3ysZzKh2GK1viIgCGJPUTSuC552LIMum5dzXtUkMIIa2FUEIQRxTZstFpZTSaea9V5oCB2ABjRCVcpABQBmSwAog+EDR7DaaZnIQRMBIxjLLWhIDRIKHkIFePliUWM3moDS0DGRAKJIVASC6syEis2evKck4uPl8XjVVv99n5533gCikQwgiTEp1lEUFgcGF4JmNtdGSgHSMR/2yPhsrvGiTrA0eRYa94WJeJcr0shxidwIyn1PvA0IgbH2rFKY2CXWb9XtE1NZVCKGu69FoVDcLFq+1bppGqeiF0j0fn46xZOWO8lnbKopd3WjplFf5s4I2Wn5LBYnCLICd5Api9IZYLoxwRo2KvMiofS+rZ1kr40MbgthEuaaumkYERTD2rxF1Siha22jzt9wbrKpIjasJUGldLibjweDxkwfj8fAv/qVfvHzlwoXLe7/37d//7d/99pUrz+PCRzHqpnFqmXRICFqp1CbMHpEMWRFBEaswy5K2bUf9nLRu2irVNBr2iAhJ2HsiylMLAE1TEXNd1/Ny+u7Dh+zD5Yu7iPDctetfePXmi3/jL4/H4+3tzTzPszzJez0BRhRj1PHxMXCpKJuXVXTvmU6nRGStJaLBqF9VZZYlSZ7leZ6Vxc7urjHGuUA2yYvecLwZ6wYCwEB5b4CIxtpVSIxEQITegwAGL23rva/mJQDUiyaEUJeLuq4JMeJYIGIELamiP9je3CQi732M53TUzEeKyodxuihn00hRiKrlMcdu21ZrjVkWJ2tC5LpeTowoAErrtmkQkTkAig+OJUynU2ZO03Q2mzFzLHUxMymMhkzBxdYYYBFClaeFd61OEqu7IqYmLMvSGFO7miEsA0XFgY0xtsgXi0XTNDqxI7sGAKiUAJgkCSFogLZ1zELUSZsyUJqbGFMuFnViUoWEilyQk6Pjt9/+vT/4znd/67d+58WXX5rOZlVVK2UEcTIrtTlLSBrXVk3dtq1FRURpZtM0nU0nAtw0zaKaH+zvjwa9NDFGa5WnWiEHF5ybz+fvv//+ZHLy4osvrq+vx+J727aLpvbea7GTw6PT2XRtba1Q5L1P817j2uFwCKQWVTOdTquqyrJse3t7d3fvx762Oa8W9+/cBUWGTJYXR0cnj5/sP3r8tN8v+sVgOB7sXbriXHNwcPD06HA8GL3w0svCMJmezsrFwXE1GAxMmjFSG1jZpOj3N/PUOffkyZN7Dx4ZY8brm8PhWGvtWt+U1e//wXcq35SLela1olPPYNNEWdM0VWRKAGPbegD2LoAIECF3lBw5j2adI8M8ywOj1fRCMQ0GCIEJNRmLqPy5fq+maZT4xNDm7la1mF3c2/krf/kXH/2ge3c86C+5X8IKBAAms0nTNHmS9vKCFFy8sHvj6hVf19Vi3stSpbCZnzYVWE0HT598+/dv7128cP3GmVvck4PjYb9Hwk3jNtY319aHbfB125Cm3qB/ejrNsuLkZKK1TZPeu+98DKInk8liNt+9cPXO7UeMNJ3MV3tLEnt8crC9s7WxsbG3t7e7u7uaxw/2D+uqmZezx0/2H+0/OXh69OjRk3v37u3v73/00W0WyvvrFy5fNyZnbpxz2p5JQOV5HkJo6prbNqKQ56bpuICcrQTsuZvXEVEU4Jnj27MrDK0EbYk0s0OlQMhmqdLa1UERNI2zRdI0TZqnMZM4PT09OTlmlmrRjIcjuEwf37sngIQ6ku7PrzcCAhKQtCwFt7K855yLHsX8DFwkURfOBxcb8cS3AARagQBp3RsPN3Z2dy5dpjQ1Wa9cLG7fvn358tUkKxzzZDLVSP0MMp1mRW8+P7DQKptE5Cu2OmJnXrYalMLMIp1NHp7T+urUX5ddiiyyok9FsCqSLSJuT8t2yPMrbsTMqOPXn9mQxXcjcpkkSXSAiXbjCmNf2DO1p6pahKYFAFKKFBljnWcOIQaQsXdSRIgwRHF5CcAMJIgk7JmBhYmQurY4imeFSnEIIMJAJBAiBrNUB1UW08xw4DS19QIRkWzKAYARlJbgAVmhCeKZAyhUWgfngCDPc9LEnccICkZXY0xsiloFZgSI0sFtCKQUR3Hd7pq7siyrRZnlZGzOzKB0PEFmbppONTu2lShAAND2LFSNMa4g5GnWT/Oj8mAVIRHR2tpa0zSAnGXZ7du3ETHeQZHYHvUZMdbqnv6oCOzTGy/FvuPvRgB4NQDiQ3F+h+cZ6KtJM56vLPsbYiIjIX4mhMCtq1968QUAqKqKg0QUhJZi33GfMRSQZXkXAEKQlXhV8F5rIqWtNb/xO7/7F37+T/3cz/3c+vraYjG/cfOF/8t/+nf/2l//Hx0cz4ajtab2ImhM7lyTpDb6NWWJNUYRUmxOFPZt26bGGi2WFKLoBEf9EQRWKvL0pQ7t3Y9vl2WJEnZ2di5fvPj8rRtb2xu7u7t7e3uDQa4Qh8NhYuza2rht26atRGRelm0zS4v05OQkBK+UinUURIyr7ObmZgw619bWIj6UJEma97pW0DQFZg5MOgkRDjSqM95UCpwDpcE5CB6IgMWXi7peANDJySSqzNR1XU7nEMnmAuvr6/PZ7MmTJ4g4Go22t7f7/f7ze8+H4JXRWhtACK0TBGCJRu/RfzbOG/1+//ws4ZyLYFVd12GxyLIs3ikyJurULN17Oo5XRMLit1azUJ7naql7HhMApVTb+lhfI6WWzTbBWt22rfMtIrqm1UgioW0FNRrSrXeRMxyF7JumVUr3+wkANE2jtQ5eMMquoqpbTlDypDg6eXL09ODWy6947+dlXVdV07qoPfH48X4I7vDw+J//8j978OCB0Um/P5zNyiSxRMoFCSEURYF09nAdHh4WRRGcL9lrrcvFRClljVKkIHhrzXA81prEOxS22jx5/Ojhwwff/Kmf1FpfuXa5nM1n5fz4+LhtW2MSZcx4vK6UKop+dOxRSh0dHT149DD2Pi8Wi73dSzdu3ACA4+Pj2Wz+9OmBEDVNc/fOfQAYjUbjcVo17ubNm9evX/fe13X98OHDqmqKov/BRx8/efIkTa0wmSwtst7G5tZiUTdN1VR109ZF3ptMTxdl9fTp0yRJNjbWdnd3o+Hs8cmkrmsktT7emJfNP/xH/2RjvLtoWgFynnWaMAdX112urpTSCE2XJoKIAjxPefjEBHUGki23VU+0UmpJRgJUigGBQZsO6ojb2nCQWegVaa+wr3//23//v/p/feMnf/zv/+DN+O7JyclqBT0z5Snbumzro9kpATx39XKWJAaBuYHG72yva5DAvq3ry3sXrUl/77V3fvje4/9gySf7b/7xvwCAb371izubG7OyYZywQiLUWp9Myv5gnNmkqqpLl59bzMvXXnvt3p39Dz/88J133rt779jVzf37968///yrL3wp7k0b+PrXf/L6jRta6/7atlTVD15/49vf/vZbb77z8ccfP368f3x86EJ7/fr1JC+ytOj1esWV4uZzL8zrpnZo+6Npzae143ld+TNgtmnbCMoAEUb/YJEoRB6ZISvR7FUMgJFtR3CuzQAAokLYsvlAKOJkiAhoBESCQ9LT6bxXpG01z7KialpEYuTjk8PJ6Sy1iW+dIORFapn6g9HpbD6ZlhwAqeP3SVc1UefGB8Zm+DTLJArIhgCxoI3LsYIKpduDBmIgjTp4ZkJu6+lJ6K1vPDrYb1qfpL20KKpF09bu+Zu3sn6fkObz+WyWDDeKnYuXy8d1YaRqXV3XiGJTC4CeOdYsVjYaiBAlfeN/V8KV58exnOEOZ40OXSZBK1QDkZ69yiQRW8Hl4nr+6wCRykUUQzHC5f+gbc71JRB472CxiKwfSFIGjigSs/eikYPzDgmVsahUcA4EWYIAA4LShIgcHIdgdBJdcSUEYdGJjS5PSAZBoXAH+UEQ8cbo0SBvy6psm43NtXLeLCoPoLs6GCGwBAmgMHoIhBCAKC3SNM/0knhdliUABudERYPOaH0dVdCEvWhDHCvCCoRBgAm4KuektEkyDl6QQgjjwcDoJITSamu0sdogUAAJIZyX60JE1JiRNVbXdZ1lWV3XiKiVEpG6WTDzYDCYzWbOB6MMBw8AiPozY6/z23mg6+whWpZvovcUwNKSfBW0cec6xEArw4AIYHc9v4AcGIliHxOLF2FBolUQBl1g3ZXPkbRRvq32LlzY3t70bRuf+bbtQNOoLx9XaLX0GkfEtvVxVIelZTILtOy/++Yf1q79D/+D/+mf/tM/k6XpcDgwNpbF6+vXr7/91q8Mb67V3g2GY4GQJsZ7lyXpoFcE3wZXC6FJM6SQZTakKks76QFm3n/89P79u9sbmweH+1euXHnu2rXx5Z0/9yd+ajweXtjZ2tzcHA761tpoCGMSXRTZ6ekpM7N308lRVK5SSvX6+WDQOzg+AoBer6+UGvb6IQRBNZuV01lZVVWSGK11EBSR0Wg0Wut7zyKsrY08KtIaCJU2AADCEAQ6G+ZQlYvICqjrullUVVU1TZNYO5/OjDFFUYzyfK03yPPcGENKee9R0Sufe2VeLcqynM5mhw/v3Xl4b21tVNc1Oz/eWF8fjXujIbBosiDQtg0iKq3qpo0DZqUNoZQCgXK+EJE0T7s8SilgjkVkEVlmceB9J20fla6UpvPxOgAgdx3WgNLr5SJRuaKNJtbOuah/qQAjtwQRlUJjEm4YAJhBax3YOeeN6bIIm1sRUWRAlNbKGJOlhEoBc+Pa49N5VYdZ2f7Lf/kbH3/88cd3bu8/fuICz2YzIiLUTVulSV70sqtXrh+dnjBCkmfCKMFLCD60aZqef6zGwxEAKI1WxcYGRwjRn7RIbAg4m03att4YrzVNc/fenRdffOFn/uQfv3btmg/h8f5BkWZFfzgYrXnvm8YV/d7B06OjoyPEoyzLBoOBD3Lt+o3nbtwsy9JxODg4YMSD4+MPP/yQiNbGG7sXLxPR9taFG8+/6L1/8uTJ06dPsywrq+b09PTBgwf9fn+0tlEURW8w+olv/NTx8fF8PmXHP3jjrZvP3ZQTuXv3/unp8d6FC1tbG1nR29zems1KZj+bzT6+fVdrffHixfl8Pq8qEir6Q2sWj/cP/9E//W+ff+GVybwhZTQqIppOJ413RCA+GGWjrXenNtIxGUTOdTLBsv1xFdzH8RPhGM8BZKk6ICJRfIIorr++rvU51aQsTwwGa/D173/nP/u//d//wi/8PNAZSrK/f3CuTolAnXY2hiCCIIQf3rlnCIDh5rWdLCXAoBGbRZmlufeuKIprlzYfPT1c7cMmadvUdx8+ee/Dj/a2N7a2NlHB7u4uA7hAvf745Oj45GTK4YPJ6fR7f/jGV7/ytUF/PXh4+ODJ9vb23fuP3v/w9qsv/E/i3r70hc9/8YufoyQB58G3aK219l/96m8eHR1vbmxfuVzcuvUiEDfeecd13cCiEpEQ5m1Ah4q8NzYVEVTqXHgJoW07OEspEZEoIUOfFSss1wARgSUX749YV2CJ96BJEUUUJElSVRWIs0YFz8FHgUQISxAoL1KlVGBMVCKC1iTAC6U0Q4wIo9LWM02wSpso6Hp6eiohdK2Rq1AxrlOilhAU8lLEwYPf3NrdvnK5v7beIjw5OLx07bq16Q9+8MPRcK3o55P5JBv0hsOh1kpbC0RZ3nNpkqeY9Yq6ruu6qus6iBhjkDCEEPkZceb9BC4Yh2w8TVpKWSrCjmm3zCpi9vlprv35/+IZ7AEQIV/mVSIrS6IGpamrWiQdJIhIJPHETVm7vr4uTT2dTkErpVQI4pk5OECKxwAAHVkESZEmhR5D8E4kGi0BiANQzntgAG2UtUQEKMy+04gAEaAugGcADnmWAwdFUuSJa31/kLHUdR1A6c692BpEiY2WlBhmIKONMc61PrTRhGQ6mcTh2SGy0R+Wl8TzKFYnIIQgorVhDtVijiKaVGgdA2WZaUPjnFOqNcbkNgntrCzLGLlmWdYKnbvg0la1zkxVLsDx5to6Szg6OurlWQghzWy8tvv7+5o6e2DmqIrkf5TwxCrGgk8FYWfY2DluFp4rVnbnKF303h1iR8pcwlpRGjVmBaucSiTy7SKFHhGjhqrWKklMW5ej8SC1SdlUbdsYFSFYZOZIo4lgSZIkEehCxLpuY6NZZA7Foich/sIv/MJf++t/ZWd7w7kGJMxm89n86WQyqxufJen6eNxPU2SE0CKRD22qDaJYgzYrAtvUaJAgEqrF9N69O4tFZa1ZH413dna+9dM/cWHn3x0Oh8aYy3u7165d4+CMMaPhwPv26Ogoz9P5dDqbnYyHw/lsNl9M4sHHTtXeYJjY1DMzQNm08amOPiWzskqSrK5drz9sGjcer/f7/YOD/Tzv9Xq9EMLp6fT4+BgR0zT1HIzSghD7QIlIJMynpXON1jZKQ7VVvWrviIT3LMsu7l4QEa1tfFEpFVvbNKkQQpLnZGg4HlxNrwFAU1UosFgsFotFVVUf3v44y7IovF4UxWg0staaLNPaIlHbNE3TxPArbpH4JSLz+RyWfERYalbFwiVIlxbGslrszqvrOt5QWCL38cWmadr2OMuyeNYhuGiFGceAMoRASZau/DfbthVGmxgJAAoQlGdIksxaOyvLNE3TrH9yciqC0+nTp/uHDx48ePL04O7du8fHx4eHh4qMtbZt3Wh9bWv7YlmWw8Fa27Zt64dq1DSuWjSLtgSITi0EiFmWDYeJiDRNfb5GNhj22qqeTCZvfPweAAiA1XDt2lXX1G8/fHJpb6eXFxrpd3//v/vSl770H/3H//H1565aq4fj0fHpVCklhFXTnh6f1G2T57mx6d7e3qVLl5VSx8fHs9lsOp3VdfPo0cM2+NFoNBgMI4r54z/+4+W8EpHpdHp6eprmxZOnB/fu3VtfXx+Px1tbW0bp7e3tzc3NKB3ywQcfpGm6tbV1cHBwcnKilLp48XLe7xVFsbOzO5lMTo+ODw+P33zz7RdeeCEqsoYQLl++srGxUdYVKNUbjKuqASCdpN/57msOxDORscwUQIBZKWUQnGuAlCAgKuwmeUQiDvyJNev8BLWamuIGAMACRAq66QUVKcAgTEoBou73+LwWAQeG5t233/2f/8/+w//hv/dXXFPVizP59yTPltwvgijU3enAEjCDBFkbFHubG73UJBpB3OzkmPrZxsZoUTeEIc/UKy8/v7a5AXe7PdbBMcDHjx4jwLyuPn7wYFa2vV5xYWtTa310+MvVvHRtGPRyZk60+c53X+v1erdeenkwGgOpP/Nn/syN56/D8vh3Lmw29SJLLSAAAXheW1v71re+9fvf/teTycw7rls3rSYmtRzQpknd+pi9ec8OpG29AydegJnduYuyqrNEW98YGXTxFoFI4PD/Je2/giXLsutAcO+jrnDtT6vQWmSkzqzKRAkABRAEQDYJEKCGUYHsJo09ZjNmI3oUrc16rL9m+MWZz6bNoKebTYICaIIgFAuFklkpIzMjQ0e8eNqfa7/iqD0fx93jZVZxZnrmfmS+8Ofuz/3ec8/ZZ62113p+yqfXhr6wWnzumk09p4NCSHnviTyRF5HgUtXqkdMThspaw1WESEJFVpdBXSu5cOTLUsuIkZcrK2uDfu4ByLlpIjNwmOVEEwJMbU5DPc6jNOGcO2dKXQQTDWAMgIFHInJE3nngghGUQCijM1cuXrhxA6No4/TZ7nDUbi8utJfe/trXut1uVuTVSr3ZXKhWq8gYgDfOMymstVoTIVNKpXFkvc/LYjKZBG9DNpXVA+dTGndehJ0sqtxMSw4/5qDZy//jBwbC9flzjDFuGpoeJCgwt6tgHGwIhzlR0jkiJjg5IZQChsY7bSwQBbMJDBayggGDKXnP0AN6ZMhmpANDJiJfFuA9UzFyBhBstiyTjPy08OCEiNyj94hMcEa+yCbVRBXWMnDOQbNVHQzzPHMYSTJE5LmSqISzxlsPQnlrjTGWIuMct9aj55FyzgfCLMBjELbvpZdcCaGmru7eAYCQqjTOG1tkE2Ci0eQoY601CCG41NoCoCfrdWmtjVTMmHDWiRPbD8G5MSbigiuFEXIlh8eDJEm4FM12Sxel1vroqEOAzjsCQhRE5B0h8M81G37hMn++S3FaIf1IXsLnNPX0fFBNX3UCJaVZ6BAwoiAKBCACcg6QOOdCBJQFxLQoRETOGJOKk3NEFiDgYhRJRdZU4iSkOKTpdE01xpRlGZb/E9/iuX8KAu/1eq3Wwve++4Ojw/2yyL23i4vterNVrdRPnTqdRvGw300uXGTgkySx1sRJ1WojBOt0Op/e/8z7QGbZG9cv3rp582d++iubm5urqysMcW1trdVsM4Dj4+N2u1XmxXDQDfY3x93DJImklMPxIE4iHgnt9DjPUIqkWhNCpIylUZxUavPTHvjlSq0quPLOMamACLgEYzfPngdTkrHtRhORpJTdbjcbjRvVWsA7nfcmz6z3xpbe+/F4TESVuMIY6KIAgGazKWpVpWJrrRRRsKLgAj04Y622BQSHFGclcO89MCaVLIosBFFXatWAowsm4ziu1WphxnDOGWNCiE2wO0/TNEkqwS6kWq2SdYxz4MwaUxSF85Yj54xZa4uylFIqpYqiICIphHcu5DeF6YIxQTOPA2NMFEW6NFmWhcos2G5FiQp0JHKIoyQ0ngepeDk2tbRmyTvCIIxTUeodpGkVPRrvIhUjF0VRjCfFo8c7nU7n6Ojo7t37R0dHe7sH1jomBeMyUKVrm2enCCLw425fCRls9yeTSSzjKJa6tFKpppLaFJxJAEBkZVmG9MFqGp8MgegeHTLAa1cv/s/+87+3vLQQx+qH7/7ghz/84bVr137iJ34i4EBnzpxBT+2FZr1ee7z9uNPp9AYjoaRUcZykuS6brYW0Vj08POz0ulGaPrr/yBgTHGsdQZRUbr74orV2OBwOBoNer7e4sMwYe/z4cZqmi8srW6fPCCFWVlYWF5ZHo1GWZbc/+kRJvr6+3ul0j4+Pa/X68soaIlpHSVqN4hQR8zz/4299++bNm+12ezQZp7Xq2ubG2sbW9Nbjkjz0h+PRJC90ubi4mCQJ41GSpIdH3f/D//6/XFk+ddTpJbUmMGGyvGTWh2AbQs6Z9+AJmeDeewpqmS823H1+djpRgcHnFn0PMM+WZQDknUlrVSbEScNK502znravXvkrf/EvIviHjx4M+x2AaRLxqdOnp+VXrdYYDgdBzeLdbMtIkI0mrt2KVUXnI8GIJMZxTAiIZJ2O4rSa1kpj5+WXsY4QBKL1NMgNAUguu6PJYDQBmBZRCHD2/LmFhYUnjx4/fPhwbW2lXq+Px/1f/uX/5NXXXmHc/8v/tjubfJ2zGvJib+/gyZOnSqaMx2tra1euXHn6bHd7e4dHohEvWG8AZVmW5GCSjbudnvY2K72G7VPnrxljyrw42Y8QFJ1aa29NKLPIe5wnjZyY4k+gkdMe4i9cpC/gYYjorAUmkElgVK+nWuujoyE4zZHFSiSVivMmiVSspDdem0KUZK03xhntuKycOnWqezzc2T/kXIS2t7nJQvj7HNE5i0w451SUBPgnyzIplbGarAVEZJxwGlgJnIP3njPGhS+LDz+8/eygE1Uqt17RrYXFkesvt5bOnT5z5eKlcZ5Za61DziUXAnzuyVhHznvG0LgQHGQdUTWtVKvVbJyNx+Mwac72Es/JxzlYhTO11rSrSEwjknAmn59yB2FQe08/cpLnsp75PRDmx/kuNtDG89IEGSMCP61En18aa5011pF3jqwjEXKNvCeiQDYhY94TTj0dAIC894wz5ikEW4k48gxMnnvvkCHnnAs0M3QssKOzblOPnEnOR8P+YrPqrVZKOmetLYyFpBYRt85y4tySB8GTJCFkkyyLVVyUWWlN7FwQzQghWq3WZJLlviBHRjsmCRhDBGRT5sXMAEWY2oDRaDAY9Qd5YSvVRhxz61xaqTDGuIyYtpwjCqZ1IVSsjVFKmRPZFVoXgiMScWQEMBqNOOdCCIApg5PnubFGCeWc8+RnmBz9x+ayL9wvJ2Gw+cXG552JJ/tJp4UmBHP65+29QUo/Y59nHRiISOTmQGZ4hJ18IYOg2AZyUaQ4Q2NKhhTHSuceAJSSQSoUXh5FUVC3BPvQMJhDq0EYh9b4xcXFf/pP/2mWj6txfPXalXPnzq2uri8sLoftQSVVt1645m3mjO6MOtvbTwBAcnbmzJmb1y7/5Fff3NhcO316q1qtVtKk0WiE4AchRK/Xq1QqRTnRWnMOBwd7lUqFCbTOV6rVbrfrc7feWvdjGmV5mqZRFG0uLFaa9SBUj6M0oD6h4oQ4Ck7xAexnyPpHRzovlJSBYx2Px5JhHMdFUZRFJsS0atHGCI5CBcNCqFeq3vtGtZGmaXDBAICiKJSIiIKPP2OMcSHIe8a5iCoxuKB9l1w5Z4jQOeMczS9yHMfgyRlLRDwW1tpsNDbeLS8sWrKMsdW1NaM14pQXLooiz/PBYPD06VOdFwBQqdcajUboGzh5I4T+x9BSgFOnCQq31WxOsNY+93gLf4LxKfMLAErGMAtNR2BSiEoqhEoYihpjlUrFAzEmkDMkQODO+V6vVxS60+kcHh13u/1P73729OnT/mCEiFIqpZSScXt5dTSaGO8YY7mxZVn2R+MwrcVxzD0Rhsh7Vq1WZSAQOMxaarAs8vnAds5pU0jJtX4O9v/MN34qn2TXr1/9lb/wS8Nhn3F49bWXiXyz2eRJ2tnZf3DvXue4V61UDrs9EPzMuYv1Rst4V2b5KJuISOV5fufOndXV1WazCYDd4/6pU6eyrAh7kv393fF4vLq6urO7DQBLS0vtdhuBK6Wq1epoNBpPJgcHB865hYUFo93x8bEQol6vN+rVICtst9sqirIsOzg4WFxcvHXr1mAwCOTDysqKc67b7T5+/ERwHs6JUipN062tLefc0dGRB4oZlzIaDsb9/iBNq//yN//1Ub934fxWpzsuSs0EEJG1zjgdV9KQUweeee8QOBCQN0B+bpRzkl350fmK5lg6cvDe0TR/xXlPQIAYpYmUsjSm1AXM6MflhYXbH33v//qP/89bm+vv/fAdjn55efE+TC9TWZbTvx3zaILcE5EnoLAOeQQgJh48flZT59rNJrnS6HySl8NxFgmJzGIEtphU4ufxfLGUmTGOCWDMegIA7ygSsZIcnE0TVRbZ6uLC8urizes3fu5P//SDe3fTNL167bKUUqa0c/BwPBkCbIZ3W1teGo2GlTgxRXmwu9frjgrtltc2x/n43/7e75y/cKlz1B2O+mVZWofj8TiNK0SuKLTzHmWS1JvOeesBGTf6eVFa6BIRiXxwvQ+ODJ7m4YgzCCeASTMv+XCJgL5Ycj2/VBgYwEALOxFHQsr+8DjvHQCEvjLPkHmyr718q5pWCiqCApRz7ksvJHPOTSZ5s9na3t3nXE4/CBCQC9JjRPTkA1lmtAtJgIggpQTwCIyAwfSTM0AEYug9gQcHBAgoy95wrz8BwMfvfgrIVb3RWlr42k//9OapU1unt9JqtUC03g2GI8m8BCpLI6UEsFN7DvLIwVpLCFLKVqvlphGO4QixQgBhq41TMw+GjAGfq8jn9VnQ4gDgnJrEmbXdyRM7/2cQjoU/ELgG5733IbIaAhcfEvRCxRY8HmdXB5JKWoay23vOKY5jo502OSIi50JKZ8m6MhANyKYf1NN0o+PBOufJe5SSMQHInHOWCBkiMvIhH53xkDJEnnNUSpmCsuFANapcUBKLop8xxa0lLkRhSgQulALC0mjkkklVGA2MKSXjOHZkkUNptDEuSRLOpDZEQfjFBGOMCa4LAwBIwBlz3kgpwTsGqMtyNOwLbfJsnKR1XRZCRYhYrdS6Zbcsi7x3fNg5SpJEW4MCP+fZKFUcx4IzQigLrZ3lnGlr88koiiJjTW/QQwitkYockacQd0UzS64fRYi/MKk9R/WfV1pTqSKcqOBn3OLUa2Oqe509n06Q2oyBc1NiSEoZUpiNLaWIiAhZ0HaEMQbOmUiwKJbBMUEIkee54kKbAgkBPaB33mszXaSFEAwFkQsbBsZCuQ9ElESyLPMrly8KwSQXaSWpVqtKxZU0LsuSvJuMB+998P5Xv/T66VObm+sb58+fbTcbSZIsLS21Wq0kSbjiocB12mitx8N+mBMEn1YMpSmYwLXNtVAoVCoVrfXC0oqUUluz3l5QcXxSG46MgfeAAqw1hUak0WiUl0Xo1kQCzrlANh4OiaiXT3dQjLGsKPtEQgjvzFiPms0mY6xerzbrDUIIvB4g51x6b8M1ct4wxpKkEli5cH0ZRxEJBpCXpStDRgUAeAngtAueewDgnZVcerRSSERUFVWWpUBmreWMAcB4NOJCMMRRrx+keGmUqpqabrQArTWj0UjrYjToD3vdarUaLNHDN1VKcSAin0YKAPr9HiKqJJZShvggRB/HsdE2z3OlVFnoaVkGHAgFl0II68h7bxxY6xmDJEkqtbTKOQACYVmW40k+HA4OjzvZaNzpdR89enDv3r3xOCvLsihNkiRCRVEUVRotrXWhbZFrNy6llNkkF0IAWs65jGKrTZwkoUMcBc+LjAEkSeTJFpMMEWOlnGNl6Z11kYyLItveeZqm6crq8kKrHcdqYbE1v8V+/W//rbWVFeesKcoiy+4+uBvHcZIkzrkzp8+tra1dvHzVGCeQHXSOjnujYVbevXuHyJ3a2mo0mlLK8xcuLq+sjsdjznm/PxxOBkJF+/uH2hT1er3ZXhCMc84vXLhQFIWU8uDgoN8bLi8vB6VXklRWV1bCzeicY0h5XgrOHz16xBh7+eWXiSjgys1m0xjz8OHDwD8SUbPZnEwmxpiXX37ZGlPkZRzH1pnhaPRsZy8EGVWr1Vqt9vjJ9tbWqVdfe+O99z74L/9P/9XVy7e29zpMJE5bsCAjZXQZHHc5lwjcIzLGPXrGCFCQoy+A9fMi7Ass5PwJoe+KEXDOAT1nGFqa4zjySNqUJw2qtCnObJ169dVXyjK/dOmSEmhsDvAs/Hbv8HAWuZ0k2lQmeWmcRQREDoBSCGPLCHA4yWrVpJYmQL5Wb49HA+BccjYe9pvN5lL9ufGEMYahcI6QAQZol3xpnbXeg/7qV7969fKFMh+kSkQxL4txUWbISEqxsNCMJAev2436/N28MwvtJnJx6twZRPbu+7d39w7HedZaaF+8fOkH77y7trZGDjiTk2xSr9fDwilVnGvtkGln87KY3qsnVwKGQMA4J5j72LJpgTWtcmdeIIgwi95E5M/RXTohy/+RfyLnxHmlUtGmyMcjJjlOX8cBAMl99MnHX//qV5rNZpkXwXogitA6InSmyCuVVAnp/Rea7acrQagZjbaILGz6syxzRsM0rzPkVLBpa1gQBCLiNLHLCyE4otY2UrKwWg86B+P+f/dP7oKKAPEn/9yfffnNL6X1xjibtJpVAJHneSSlcUZKZq0l9OC9A8+55Ix7D0pFAaWHqZrVGWOdc6WZ6lvnK2KY4r0DY/T0ZwoBO9yYoGieasi+UH5p6wUyB4Edh9C1571nXDAOHkGg8AA4Tc0zyCKlqoAiuHKEI4qioig6Rx0iX6lU8rIsjRZCMRviiRkiFnoCnkQswv5YKeW9I+uAAAQyCAGLjHPuPAWhJHhAxr0Nkn8IJREAgAVPjgiVEuNRJ41YpZIAUhKrrNTAMM/LZnPJeZblpVSSGJbGAIWWdRFOndUmiqJABhlrZaRAUJ7nzlgPDkCic2FnEAyKghWIsxY89fvdpeXlNFKT4bBSa3EuR4P+0cF+qaEs84p0g+7ecG93fatVTMqiyE7eH9VaBQACKKKtC3GcWpet1kKe58fHx6Ee4ow7Z4WQ1s62BzAtuGdZtPM2lvmNQrNhDHzqgDpHvHB23QOSGnzmfABvZnv9KUjGpq3Iz32oOQNCMf9riCBVhFHsnLPecWRCSSRignMGxhjBGZTAhQAA610UReC8lHIqp515fdGs1VobHdAUrXVZlqH1lc9SHDhn3jtNJnJKax0s0eNYMQZ/+k//qV/6c7+4urrSbDSEYAx8EDOVZQng+oNOfzgsioIxtrKyAhwIcXF5GRE5l3EcC8WXN1biOEZEGYxyhJgKDJwDKcEYEMIVhTbW6jKSkpzv9/vgPGNsPB4jYlFmcZQa40ajkVIqm4zKsgwkAJciSZLQkddaaUZRxBjz3gomA6LjgWIVEQJjrCg0IJVlBgAhFBwRo5iH2ss5xzkKIbQzOtNSSsQgklMcvLWkSY/H2eyM8alXfpwSORVFoap21grOmZSIGCRcIYjCGOO917rsdrtpmoapPvSwNxq1zc1N732AZofD4fb2diisQ+ncbDZnla5USlnvkBgEj1ZrORcqjoI6Lcj+rA9ZNGgdiijhTFSUBGCmLIuieLZ7NBiMtre3H9x/tL397ODoOM/zvCwYcKF4WollFFUbsdI6sV5bo4336LS2ACCjxHsSChExigBx2tJBzkspi6Lw3kohkiRKIqm1frr9aDgcbq6vxnH86PH9oig2NrbSNK1UKpMJ+7Vv/PV6vToeD2/cvLa6urqysvTH/+IojP+jzuGw3xvn43qlevbC2Wa7nWUZYyzLsvF4vLu7//jx006ns7iwpJQqtT579uyX3npbF3mn0znu9IyzR52uUipYskVRAsCOj49XVlYAIMvHSZIM+4Moimq12pMnT4aD8eLi4tLSUtDJ1Wo15yhEm3e73Rs3bqyurhaF9t6vra147/M8Pzw8fPjwoRCCC8U5r9Vqq6urW1tbYSDled7r9Q4PD7Nxdnh46L1vtJrWGsbYzZs30zQNbQQHB4eLC8uPHz/9O3/371++fKPbH2hDsRIITFvjNCOiWCVaGwRumWfEnHNGawBiLLjufK7N6yTHMkcK5rMWQ+amXeFoyXMgQo4YUu89cCaEEELNS7rP7tz+X/8v/uGp05uTcV/3JlyAEM8JmeNuf7o+CYRGmmbjiWJYOk9BTkvkAQzQ3tHh2dPrDmycJAwxSSqIJBAEJ1vm2YkCUgaREmdE4L2Oo9hbBI/Iubd+b+8gjmQjVVdeutGsVQ8O9ziTjMs4qTabC+jcaDA8OnoC8Mr0XDhbFHlFCIirK+trW/3RMDdCxhcuXbn74Ml33/khY2J/fyeOY2v1YFCISBERAeNcWldmRbGwfso4Sw7QP//aXHFXaoZ8que1UxstxkL7GPLgKWUsADDOvHOztQEBBZtiMA6e18UYrFGJCJgAhlElVgnPehMwWXCCIWJhweBS5UX54P7D65evOOeBfEBcpWIekHFEx1rtxuHhgDEJTDHGtB5DAGICGkcUdm/kfDaeRHFKMs6zEREyIX1pGOfeeY7MeQ8giEIatANyUjHOXZRyKTGBpD8aUZEBV42V9fOXLkshjo+PRZoil0opb82wP1iKWFqtegdCSeMLQI8eEVAwpUvrnMcA5XrPGEviNCYyxvCCh51oqKi890SAwInxucUDTe0qKNCIiIjAT477cCyvbICnEDaDM4pqvkB6oOBTHwhOKZwB2ct9iRGPnoshrLXOWKVUOZkURenJg3OIRiruvWNAACgUdw5Cl1+Y8cEDFwo9eXKeiBwhoZsaZEAoObwPowKJofPkrGcciREjLzkvXRnHkdZaMhSCpSry5EqL585d8CAHw6zUzoXMUU7giCE4Y8Bj8NMKwgLrHQiWGx1FUVVWJpOJNab0ngtkwBHRI3gizqWxngEyjrEShwd7eVkucb7ktXFW8qjXOTLaM/QqKvce3wHUxpvxaBDFMWMnjfFyGanSWW1tJGOlVK/XU0o4guPewIX4dgBHCIxb52Z1F0dPof9yFoxIbIrGegKPnLPnknnwFDZCDLxDLkLpDARSibCzDLSR0Y5C+cWZMSVDL4SIhGRShOY1zgTnnJwzziVRFPYkiGStR0QRR9pajsilJOeEUuQcMM85i+M4NOLpIgsBPgAAnEkhnXPOBxkCd9bPZPtQFNmJ2dl7D9Z7IaTzxDm3VjMu4iQZTcbIXKvVqlYrN69diyTPsqzQuR4XAXytVqt5njMmGo3GSqUaDFQXFxdDeadnQXsOiAkulRJKhcRDmM0A4EwxHiNiFEV6Mh6Px0WhjSkno1GwI9ZFGchTRHRGF54QMdg71Rr1BaWUjANjK6UMeUSMsWDyxDhY7Yy1QZVhPSFj3lGAZ9I0zrIMGTEA5yyhKo1hjKXVKhHleZ4kqZQyz3PnXJipAjZeESLYa8VxLIQwxoThgYjj0WjKuUpZlmVZFEFyUWodXhu6O6XkRNI5o5Sw1pVlCZxZAj0alWUZhPZJkly7di3I/Md5RkRZlu0dHkRRBAyjSHIlTWGAifX19aIoBZdANC5KRIyTCo9lGsWMMSaEKczxca/XG3Q6nd2d/cfbT/f29g8ODrJJQYRxWknTlFA020syz721HmCcGzMcaK0rtaqSURTFACUQCI5EBI7AA+NMlxrIEQFnDDwIzq21QM47wyXqYrK7s12pVH75z/+ZJEm6x0d7ezs/842vrqysDIbjGzduhFpHKTXJRp3DozzPRqPht799F+BSuIUvXr7Q7RxXW7V6tdbp9h4+fFgURb1el1JOJpOlxZUrV6+Gybksy52dnW63W+wWz3aehmAGxliel8uLS4vtJe99FCVd6o7HY8F5kHkJMUqSpN/vD0bDZmtBRRXGWH84+uze/dOnT6+srOxvb3PO681Ga6GNnO3s7R4eHjrnkrgSbp+lpaVXXn09zLRZluVlQQhPn213Oh2lVLBXzctifXP9/MXzxlgVRwcHB6PRKDhWPHzwoFqrN5vtNaH+6f/9v//g449feuk1081VxIm4dc4RmtIYpwNqXhQFMqakZAhccGQExLyfiYqJ5tD4rBDzBHNjVTbfIjIChugRvXfWETBA5IBUFjaupJWqyvLn4nqC8s//0i9Osl5v0OOIRVFI9Vxie/X6jemcGykRbqrj0VCJyHrnPTryAMyDN9bv7h8sNCuVSBIR5+icby+2OMKz7adFkc3fsd2q73WHHBRxThiafj1H4ayOVfLe7Y8eP3rwtbff3Ns7zCeF8zDKdHcw+Te/9e9uXLuWRvyT2x999untP/+L0/JrMBjIKCqKstYClTb6o3Gpbb1Vy4ryhRdeODru/t4f/t5ys50XBUfGY2lMqa0DJnypPVkm01yXUkpwmZAnfL8qlRzRljrQXuRpjnxB6CoBmqNlPhjjTnfq4VLNTu6PoJTTqsJaEQnvTZGNALxg6IiYlN4aArTGKSXuPni8urhUSdLecbfQJQA58lwpT6jiOiJwzo0jDoiMR1GlLIdB6IOMEdCs3cyxmWKaqdhb67QFzr1zjEvvPGdimnTDCJF5snmegTczOT9jzcXXv/KTN269fPHSNeBi9+CAuEjjxCGXImLojbEP954t1VW1WkeBwDzjAN4L5IpH1WrFkSNyARecgxYMpZKJUirAA1OVjPWWPGeSiJzzISXQe2eMtcaHqdN7b4yx1jtnLp2dnudPP70TZnCtdVkYrXXY5oZHtNbW+uCiVJalyYvBxIBsNE5dOSn4Q0StdZmXKCPvPYQ4RQj2ItNaUCmVjUZcKTfLfQtlJc7sPwGQMeG9pVDyTRWBDIiAg3chyNl5zoUQaEyRTcp8Uo1FkU/Qu2az6QkFY6pW8dY9fPK01V5tNtvW++7gOHhPOGOAgHORRklp9byflCECJ+sdIqo4kpHyzsyDyadMbsjNIAjQoNb68PBAe1peXa82GrrM4pQX2SBVOJ4cdw6egkBrbZzGQM8jz5+fK2ulUkSQZVkcx3Gser2e1SVyAYHe+gIGHLzMkAVXaABw4DyFpwEXMhThjDEWNg/kkZgQwiEy4ECkpBSCAbCyzBljUgpjbFqJQzlurY0rqWLovQ2LOgOQMjB00hiIY1XmhfdeCW60QQCplJKCI2itmWeAQEYjYqNWN7b0zsCsji/zLKRcl9b4mfV52Ig754IPp59Zkc2FQcFbCihMyMiYmOSZ1roosnarVhR5rZb2esdsunGCKIqSasU511pcWJZSiqhWqyEicg5CgDFG6yhJZBRZa+Na1RkDDPf395eWlpSQ+XBARM7Y4XBY5nmaplmWDYfD0JMYdheCI3hndVmWubW2KGStVgvO2EFszjmXkZJSciY559aGkpkTOa1tkGQhCC5QSEknpkHvfch7QcQkjQITCgB5WcZxHIwPnHMh4zXc8pxLIiTy4VUBNYzjWMqprlzrIjQdh+I71IIBggp9iKHwCvdmFEWhOgyfBACMKdNavSxLxlij0QjFBBH1+/16vR4+bRzHCwsLWmtg6JwbjsfOOuMoH48AD+v1Zn9wHKlkYWlJydh4NxpN9g/3xuPs6dOnH35w++79+8PBOPyJSqWWVCtCVhoLdQDM83I4zp33IiuBkdVGRooIpIqQcfKgtS2MjYScQYMh69aaUhNZa60QHDxZp/e2D7y3q2vLtUqsJAeAv/yrv3LmzKnNzc2l5YVmvW6MCR4ox71uWZZHnf2PP/mw3W6/8sorq2tLg8Gg0azVG9VP96d34re+9a1wnpO4cvny5S+9uTYYDJIkAYD9/f2yLPf29j7++OPxeLy4uNhut0ej0fnz5y9fvhx8+QeDQbfbXVxcfvbsWZBtBfri6OioUqmsra0FGcDe3t765lq93lhZSQ4PD4UQy8vL3vt+v59lWafT2draIqLBYLC6unrx4sWyLPOszLLs+PjYWnt4ePjs2bNmsxnHsQeaTCbr6+tXrlwJO/ZQ5ymlDg8Pn+3uBlKSMZbn+ZkzZy5fusS4YKg+vP3x//Ef/aNbt17JC8OEBEfamFybKIqkEqSnkbhypnHknIddjJ82kJ+cwE403f84/TcRIaEHIkYztYUP8v2gO9Ra40yvBAB/72//7StXLglGQvCwMzHGAOThtx9+cHu6Pk2yrNVqtdvtUTbR1ngAQEHec2RAYD2MJuOVpbbxZjDqcgaIOJxwBoScxVEy//RvvPLi+x/ffbK77xwwFAAohCQi9KzQZS2paGN/9/f+8Pd+9/fbC81ms9k57h/0eoEqUwgC4cWbZ+fvVqlUjHPew2g4Ge4cP3r4uNPpO2LVeiNN0/F4GPKOp6aIwK21nogHXIKxAFBnpUXBTVnO31YHFadSJtehb9zPqL5QQ9GJpQVh6p8VrkmYiwCApq5aP5K0iAjeMPB5lrsyZ4iIHrzz1oS1OeSncoAyLzghE1KS995JocZ5zoXK81wp4bwBkJ6stiQkAAhHHhDBe8YkTCP2rPc+LyaI6KfGqgqIuFDOGoYCwCN4Jrj35J1uLi9fvXattbiU1uuVemt1fbPaWIzTyigv94cZZ7I7Ljc2FiuVmvMUwrSziX7/hx8sNyJtwYPzZLnkkgsgzlFxQBlLT1PZB00jtB0iBjsc5yhUSGVZ5nmutR6Ps+CSEPheAghf6wsyIUT46n/1N8LP/+1v/LPwCPyY5gc4cV0AADh4xITiOI7jyeT5RoQxbLfbwSihKDJD3ttp8zbMoOYpuYVT8gsRp+b103dgjoghC41vQVk37dIgQECGzDsHKpJSGJ21qiknlgjbqsbe2F63mxc6SlJPTnF1cHAExvd6vShJhVJJnJRWIyJx9EVRelOYqvcO6LnAVjDOZ23/GHKT+PRXSNOUstDbR85raxgTUsWH208O1jdrjXqlGhlnOEExyRPK7t35JKmkVpdKRnme12rP7+K8LIAzROa9RyQuGRGNJuMyz4Fx8h7QT6E/4KECRQAk7xEcnqgIEWfWweABZBSRR2stOVAiwhBt5G0SK8mCLbUGJiMlJQ+t/sZbSKJoPnuC90KIAESqmR8EEZnSIgJHVq1UiqJwVkvBExUBZ96bSHEpVLjxoyiqVqtEVK3WioKnSWR1ERZ+xlgInsOZzUR4MNBeYV6e+ZL4maodheDe+9IYThhLFQY/IiePoRpoNBqL7WaQ9IzHYyl5tVoNWR3dTqdzeBgAoY2NjVqrJYUYDYfj8bDT6YzH41OnTlWrVZ/r2z98v1ar5ZNJnudpnCBiURS2brz3SMCRMcF96JxCjpzHaVqtN+TsCP2DURRJEcGslgoMu52myHvgLEliAMjzCXnHOZdKzY1JnXMi3CDOT+sqhuSRMcaBSyat9YFCDWKDIF/DWbB0qD+CtawxZVnm4ZQGIBym6Zk0t3VI0zTAz+FaBFPloDEK1Vie5yF9iMjHUoAUoUEyjuNmo1GWZef4OE1TgQycn5Q5AFjnqtVqu50IrqIkLcsymxSj0dgYfPTo4e4ffrtea27v7nzwwYc7OzucSeNss9mOkkqjlXiy1loEXpQmNNw6ZxmXyAQ5C4AEPk4q3nvOmFIqdzl4MFZzKSb5mDEG6CMltC4RocgnRN5au9fr1CrR8vLSL//Sn6k3qnme37x5/fr1q5xzU+ZHR4fHx53hqOesRsS1tbVTp04tiaUsy06fPr26uuqM3dl+9vDhw16vx3jIfJxaoH/ta18DgNFotLOzMxoPHjw8/Oijj4J6HYgtLy+fPn36K1/5Stghf/bZZ91ut91uf/DBB3u7u+vr69VqFQB2d3fb7fbi4mIoee/evXvu3LnTp0+Px+PRaFSr1arV6mDQe/zw0WAwsNaGXE5r7bVr19547fU8zyeTyWg0Gg7HsUo6h8f37t2zzoV2ovF4fPbs2UuXLnHOy7Lc2dsdj8dRFA2Hw7t37xLR6dOnl5eXtTabm1ubp05FUXR4eDgcDoP69/GTp/v7+1ubZ9/94fsewGg3Gk4ilUyyCWM89FKEch85c94FOeBc3MI5h1mzxXSC+rzPM+LndKgnlxoiAueZ4Cg4EXnGACCQ3R4cOA+zXf/f/0//U/R03Dve29ubZ+LNV6tXX311+sRutxusZTjnzFshlHXBcdIFImGcFeO8iAWB9wxdHMcHBweMoNlsnvTLXllsXL6wBQBP9vYJOQA48t45xgUj9MiMsRETPOJH3dFuZwCAcZS2W41YsNdefbFeUcutyvzdjjtdj2x5Za3Q/rd++9/KqLq6sQkoilxHUXT58uUPPvigKEvOOU3JFw4EQcdjrOVScCHKYgzE4YSvQVmWCKCCeaD3BDgvtsLCZoNJGCKEjkjGpgaon4e7Tirywso3BcekdM5lQbjAmHMmqIq5VNZrztBZWFpqt1otZ6z1BCCZiIOPmnVkPQolKbRteyRyRoOKY13miJwI5+o0Igphq5VaLew+O0fHAOCsQcZDD4AQHACE5KWW1Ur9xRdfuXDlKnERV+uFIWOhN5qMxsWT7Z1efxDg4gW3yLjwzqBiw9Hk3t37931O0zEVXOCRHEA4L0BTpmn683y1nY1WgGlkAIXOEZSCcS4hEIozSfWMf+RTG7MTlHyjUfMe/Alfsfn2Okhw5veMcw5D0iKQsTakv4XDGDMaDYvJJGTrMiFMUagkOXlBrbUqjsPKcXLTg7O2AMaYdZ7BfBjM7kxEN/syYLVIY2vQO7fQrKFjOhulcWwdFaVlEUaVWrc/mPRGstoweWm5LIsiqaVxnAQvDy8EcPDel2XpgaLZhwzrE826/Lx1OItsAgAgIE8Y7GERAp1E3taazSKbOKMrlcRmBVldk3jw+Gne2V9aqvd7I6GUlNEJjw7gnCOXWmuuRFj8vPeTwQCDTT9jjEmake+ICIQwS8UC78P0QgTEObLgrk5CCPLTtsFQ5jrvET1nXCBjDBhjUnDJhZKCMeG9l3wKDhVFoYsy5JyasohVEoTYwHyaROEMOG2iSDpHqGQSxaF10XkDwEMYS7WaCqGMKcMYOz4+Pjg4QKe3trZ0QUIpo4uIR6EUo5nZfagbwtYfTjbYzq4IYxioNGu1c04wcM4HdCeKE+coLANKqVqtHkXRYNDLsqzb2Wm0mksLi9VG3ZY6SZLtJ0/T4+NmvfHJnU8noyEwRIK7dz5Loqjb7QohyLnV5ZVoNXJmCv2G8oVLEUjDMLknldR7z0QEkoFzXuuALQVf1rAGCKWAyM36asNe1M9+GwTagfILmA3Noim89wJZGJlzFJCIiqKI0iRAU5zzyWQSytYoipSKA5TFOS/zIjjIz09vOLEB+grPCX6tId2vKIpQhwWNdihng96Lz9wEw+AP2a9EFFodsyyrVCoB7AHOwDofCncCrWFcTh68+/HTp0+fbe8eHBwNRkOG4vi4a4yTUVStVpeX1uM4zkutrfWeQm8jIBWl5pxnk5xzTsg4nwonOOdaFwas4MgQ+4NuEsVREidRIytygyCUGPYHHz+8d7C//8Ybr127frEoihtXr73+xiuNRm1psW1MmWXZgwcPnDff+pNvMoaXL1y8dOlS2A+YUg8GA0Ta29t7ur3T6/UWFxejKKqmlaWlpS9/+ctCCED/5MmT955NG2h+4zd+o9PphDJrMplcuXLlzJkzQeGXZ+VkMqlUKvfu3dve3gaAarWqlHr27NnCwsLa6mrAHW/fvt1qtc6dOxfU98Ft1RhzdHR0eHg4GAzCqC6KbHl5+aWXXgqs5Wg06vV6RVE8fvz48ePH/X6/UqkkSeW99947e/bsm2++WZQlY2wwGDx+/LgsyydPnnz66afW2lNnTjvnHj58eOHChS9/+cthGBwfHxdZAQDD8Wh3d1cpBQCRVMPhcGVl5Se+8rWdnYP/1X/xX5w7c1FrByjD0pkV2lrP+PM2fCEEgg/fK9RJ8+ndAXF4vrOfM2BwIlcwHOGfszEPjEBwTow7T0RkbCkVZ87neQa16USaqOg73/nO6trSjRs3AuYnpbwLx+G3Dx48mJZfhS7H47GKhLU2iqJJURJMW7U9AEcYjMsnz/Yun90SgiIOsYoZsaRaSavVLHseE0RQLCxUl0fNR7v7xMB7BE+cCc4kki+zYmNto91o7u3t5eWQS+6B0lrNOjex5XjYW18+dfXqVT2cvtvi4rJx1OkOn27vfnj7Uy7i02cvMCGliNY3N86cOVWvV8ejESICBGk5MMasm7b/RyoRQiaVWjku2edV2LosjTGACCEee940dFJBT0CzViwKjmjhZ0B47mnwfJ2ewgFEQirwDqwG8M5bAJKCa+NtkQeBSCVVr7/2ajnOpwA+m5bhcaScp0JDhatarTIcF4wLZMJby4Ri1nrvkWOQ13jvATlnwnlTq9WEEKPJGDgAMPAeBQdHSGCtJfDcCyHEs6fP/sn/5R8DitULF9fWt9rLK564iOMkraKQpzc2Sms6nY6QknNRr6WVpBKnCXi2vLwxGAxgbo6GgJKQpoLo56OWiOBzcCD5eepLwLocTTNl7azMAgBHpGenkf1o+TUYjE7WWCffnzFG3s/LvqmpzwzEKk9AngywLMsizwERyMskQaV0UYg4CneXI88A52YWftY+CQABGsVgY+bIC+QBeqbnpZuU0joCYFESO+cAaGFhocy7ESPO+WA8WVha3X62T7LCnR0MJiCVNR6QIfhIyfzoiC+0hRDeWJQs7Oytt+BcwMkROQID5IjAABlgWMlKWxDzjDhnzE+FccySs7pkgM5pJWNyWjBfFuNh/1iSrzarn3z4A5TMOxfk5Eyok6dVqDggHCHWSBflYDDiMnZGCy6ts5wxB9MzQwDI5neBh6lFBTjnAhZHQIBgHHEObGZ4CABcIOcKnSeGDryMFccIAKw3SCil9N46Z7z3cay4QKNdHElvOZLjHBAcAHB0aCmWEhLOOMRpjFgJuJoSkotECCj1RGs97ncOD4+Ouj3FGedsY2PjZ3/qq4vLy7dv344kt9YkcUUIURg9r7EQUSkVqhCaafADDTQvyIJkinNOxHVepJUqQLAXj40x+XjSrNeXlxcBAGWEiORqxpg0it9/970P3n3v9Lmza8sriyvLq8uL1vvO4X4SKXSpUCqSfDgcAsDprVPe+5BzLKVMq7WwlQ97RQhILedh2DujCRg5j94hIouSKbaMyK2db+s9eRRcxVHwZDa6AAClZPh2QZU/v6n1zPShKIqiKOI49n6KRheFJnIBmwxP897XarU8z0NdMh4POeeBr5eSG6ONoTRNnzdLGxO2E1PMjLFIqTzLJt4baxExSEgD84jIAYCxaRChMY7IjUajJElCcra1tnSkoiQs1R5hMsmkUNbZSpx8+MEn//Jf/9ujTv/4uJckiYri6VgFv7C0AjBNl7LejSZj731pXFlqDxQ6EkK4eJwo55yzTkVKa11kRZIkSoZ+IAfk4oh1O3tH3eN8PDlz/tzm2vo4H7/26s2/9Xf+6rXLV+JYcc4fP3nY7/ZGw87R0dMHd+nixYvNZvON115BhCzL3v/g3cGwd//B3e9973tBs7W2tnZqc2tlZWV5ZU0IAZ6Ojo4ePnxYqVQODg7u3buXpFGz2YTZyv+1r30tSZJOp/Mnf/InSqn19fXHjx+H558+fTqO4719unjp/I0bNwIg9N577506darVamWTSUChXnzxxTzPt7e39/b2Dg8P00oloJKtVuv8hQthVjfGDPp9732vN3j48OH29nar1Wo2m73e4Pz586+99kaYx/b29nZ3d4UQR0dHtz/+OBR/iPjo0aPNzc23336bMZam6Xg8/uTOp8FY5P79+3t7ewsLCwzY48dPV9aWb926FYZ9iEJaXFopCv3H3/yTXJdRUj086kmVOPJpUjVuhGitd+QxePwiInmy1obcNkB0bmruCQA+kFvP++t/PMMyX4AYY+SAHHgg5J78NH2jzHMl8fyZzVl9Besbq3EKWpfHx8edTmdnZyfLMoApv7e8vDy3XRWDwaDZqq+vLj/b3eeAHoIxAwgZgdPGU388HkxyKZIkiYFJoXgS1wiQTlA/Al2rlqwuNIIRgiGQUiFwJbm1tlJLhFL90ag/GRtAAUwpMRiOvZ689aVXr1271qhF7XZ7f1Z+DccFIP/2d77/73/vjzyqxeWacb5Zr7ZaLc75qVOnvvGNb/z2b/1WXhTOWUue0DMWKCRmXVmr1bgQhS4JwZ8wQPcIiMg4Awce/LxgwHlC3CwFHec+CGEKY7N9PQu66x93qXjgGynY44ZCzXvPOfNAiMQQbt24ORwOmQPkzHvPUBiXKyW1tQRojEnSxsrK0nD00LvpWlWWhjPhvQ0NzzNzBEZE5MxkMvFAo+NjkaZhDQxYnSeSSllrgTFrHQBLG61S2/2Hj/fvPQAVVZdW4mrt7MVLG1tbly6eT2rV4Xi0f3AUx0mn061XxPqpM4BcW1saQ96xYDEXjGanBkvzYEp/YphOka3PHyxkck9LmmDSAQDEZl5Z4X8cAE4OqnntBSdAx2CEEThPhmzGZDmOHMgzIeI47sLkczePJzCGxTFjwpSliCOhlJ+5jjnnuJDW2jiOw/adMYb8hBUZAXgPzhNjhEhAiCxArQGN8ERcRdZazjGJpNaFFIJcKYQAsuNJ3mwvAVeT0gITnCdEQN7a4ah5aktb44qSpQkiTmE9P/NVn1pMhd0F995r+9wQYcqT+s9hsYxN9eNeW+8Mgidbjovxd771B195/ZXdp7uPPv1wZW3RFhPOBQK33rkTdoGTycQ5n6RV74AABoMBeAJAwaV1RslYG80ZD2GjM2+IcIEYoWfBgsvRXETFOeeAXKD33lqDgFJKzhljLCQpSs4DD+K9BU9S8bIsiTEpFefonOPIQFCaxOis4gIAOK8GaCqKIsF4WBqtNkKy8Xg8GAxiqTqdw1o9XVtb2VhdWF5ePnfuXKvVqtVqwUt9cXnVe/+/fPddzoVSCgG11troeVJ7qLroRGvIfDCEacF7HzzfA2UJ4KvValhawtOCOA8ZK4uCOwJPjWbTad2qt5aWltZXVg8PD58+fWqMySejjY2NYJ1A7fZgMIgiaYy5dOFyrVYDxsg5jGNwDqwPVcK0uzS45zjrdPi0OPswWJYFzvxEpmjozKpjOqi0nrN+Qd4Ucg+Pj4+VUpVKZU4meu+nTsvAA4hCsxgfAAyoFec8y7LgzcE5DzxUeC3nXAjBCBDRGJNlWSjOQvEa2jBDHaCkDO8QfJXDEbIfnHOcswC8BaCOMSZEMq8pp8AqmHC9iKEudJYX1aowxnS7/YdPHg+G40qllqbV7nEv/KEwhPI8Dz03iJwJHoDzKAIPTGvtrGVCWGsF59raSMrSl9YURutsMt5++khFotfrndpYX15ZAG++8dNff+HFW2dOnXbkh4PecDQa9LtJxB/c/wQAXnr51tUrF4h8HMeT4ejevXuTybgsi+9973vHx8ftdrvVbgiu0jT9s3/mzwXD1bv37rz/3odvvvnmw8ePOp0OAzx79uzm5maWZY1G4/XXX3fehGJ9PgOMx+M4jn/iJ34iiqJut1ur1W7dujUcDt9999333nvv13/91zc3NzudThiiGxsbk8mk2+0WeX5wcBD8TYio0Wi88sor1lpkjHN+9+5dxthoNHrvvfcODw+Xl5erlUq9Xl9aWnrjjTdeffVVAOj1evv7+wAwHA6fPXt2eHgYkMjj4+PFxcVXX301iqLAFPf7/UajwRj76KOPer1erVarNeoBtLtx40YQgVntHz58WK1Wvfd37tyZTCb1ep2IGAqP7B/85//w0oWr40nuPCgeoZ9aADryVpcELGYy3MjOGu89TRlGxhgDAuccOwFrze9rer6QTY+TZIgQIjgJOOeAPDFkjBMC436x2eYn5uF/9Zv/otGuSimiKFpeXr506ZJS6o+fTrtTO53OtPyy3i6trtQqSZ7njUajPxxxxr2zyIT33nlCgFzDw2fPtFnIy7RaSTky3R8AwEmgQoAvx8P1duvtV67/4INPAcAbhsgs+lKX3urBaCBlpJ0F5IUpHTpGBEBZNs7zCQP9zW/98aXNG+Hdnu0fHnX6h0f9cxeuPts7HE2ySbYTMqTjSjoc9h8+eRzFqTaOyHJAQs5QeOCMMQ1YrdZ5vUnbHS6kO7Gch4qHM+7IwonJFABoeoVO1LkB4gaimcPQNPeRkKYR6dPuCEQkxKnPAw99esSQIQQ/tSklAQT1el1n+WQysdamaRUQw93OOZ9kOWPCWhMnUihptQtp2WQIpAy5gETkQj9AkPQiH4/HrYWmrlWCUqjQGhkj8gDMOA8EjgC4AOfLvPBAXDJZqRbaFPmoMMXRYdV5s7K+duHixbWN9bTe6B8PGNDRcb/ZWgWSepapwxhnRJo8ec8wlJfz0fm8hQSm1coUuZ3T6tNGEggSVHA+uOx8jrgMFgbw+ePzZS7DqcE7w5l4kqYBRyKAoEHASye8rBCx2WwKnCp80XHBhbYG2XPzAg/k6LkaAEOxPGu78NMQUAeEzvvgGIcAPmicAIAzAojiyFsTXLOL8YB7XUvipJLmZhKnldKx8XAokhrHEAeEAGit3djYGGZ5aUsllXWGCYacoSNrtfWQJKmQkbXWk0MEHhQz5Jw3MLWl9Z5CJyEQkQieZNbGShXl2Jq8zMc7e9uXzp/qdfa+/dv/qtqug7MBPkHBnbYBk5+eXxZKJonoh90+emIQQEEA4B4YMkmhekaEaTsjBWM6cOACDYl8uhIDRVJxBmVZemuSSCZJxBlDJCEUeQTGyXkE4kFOCZ4cVZKYwHMmAEmTR6Bmo54oKYDCXg4AEEVRFEeHz3Z2djkDIcSZrc20Ep89s3Hhwpeb9drS0tLa+mqapo1GI45jKblzjgjzPEdgtVrt3oOHgiMXnDHmrHdAoffQOTc3Z7YzFnvOwXE+NXclIq29tTbsy4J5aRCVs2nGjtjf36/VakR0fHQwmUxMUVYqlaBNOXf+zPUbV+cuJ6ECqFar4/GwWk3Dhfjw9kdLS0srKytJkrA8E0J4AhFFQKSt8eFsOTc9+YgCRZGX2swrQvLecj61FgsVz5w8DeKqOZEXnhYc4Eaj0bzzIJyKUPFEQhZ5HrqwvfdSSiJmjLEuJCqyUMYBQOhtDAhiURSTySTItsi58PUDWlapVILxPREppTxRr99vNputdjvc9VlWWGvDf9MUEdE5H6xqyrKQcVSpVBljRVFo4zgHoSIiOux0ACDPSw9UrdZllACwt95664033/KE3/rWt+7dezAcDvM8V5Ha3d1pLy6vrC5prXvdQefwSGt9dHTc7/fzfLK1tXXq9GawXZBSlkWBcdyopoiIlbh+dv369ev1eu3M1qm0Ene7neFkOOj2GJpnT++j4C/efCGtVRn4XJfZaLS9vW113u0cfPvb3yais6fONRpNb31rofULv/CLURT1er1Hjx6ORuNatbGzs/vZZ3c4FxcunH/rrbe73eMXX7iV53lwkfjggw/W19c3Nzd3dnaklFJEANMZ7+joaDQaBcT04cOHL7744vr6epgTXn/99RdeeOHg4OC9997LJkW32221WgsLC5zzVqu1sb5++fLlPM+llPfu3QOAo05nZ2fn4OBAKVWv1/f39xnj16/feOEFniTJeDTc3t5eXl4+Pj6+c+fOwcHB+fPnm83m/v7++vr6pYuXr1y+SkTdbve73/3uyy9XrHMPHjwoy5Jzvrq6SkRZll29ejWMpfF4/ODBg+XFJavNxx9/3Ol01te3qtXq/u7e4uLiqVNbURRprbMsz4rys88elM6oOB1loyRJOZelziuVCrelnmhEFEJO9QOzO3Q6VTnPhZh5GjyXl8zWrx8fjzb9maEL4bSBfJ9OdRAr4Z2pJOreZx9DezqR/vwv/ByX7Ojo6N69e8PhqFarHR93YRbfzOaUHCIzxgBVEFEg8zT1nkBE5wmRI5In3x/b4eRgocFPb2wuthcEqvIEqgQAyOMoJSHSixfOCVX5o+/8gDHmAbXWDAGAJBfOW8YYjySAtFozJMnFux98ery383d//W8uLS3ArJPyW9/6wf2HD+8/fHr23EUZVwtt6o1GrdYwnpT39+7d+853vlNLa9574IwHXpbQ2yn/dHh42I4ajWYznxRMPBeoVZO0zHVRFDDNb6HgoRUkKYTIGX+OeZwoAYJRRWiEnBNPn1uqEcE7FFIpCUBAFKIbpZQ04y+8c85RHMexipyjwIUbWwohTFEyRKPLySRnPG436oedfqhMuBABSkBkgFNpGiIDcEzGrsy0ts1m0wMWRcGrajIcyig2xgIwEBycD9woI/DWOWa9dcDQFhNw/vHHk8Ol5SdPnvzUz/6p81eutdrLG2vrk8kkm8DqVvuXfu1v//P/5p/UF9qj3hF5E6A/ZAzIew84DfGYOjHNKyWcOwV//jSGQs2flBrNSq5QgX1eQ/b8Hjjx7OdM/PSGmZdujhgD56HUWkgG4jnjHCb31dXVXrfbHwyMn9pZAYD10zy4QCqF7piws5/Ky/z88xBEEWcMvbdBeMyYg6kPKAEE/MY63ahWjC339/fXl1qTrOAybbQWicfjQQZSEfAoTrNyFAZVPp7ESRJFUb1VL/NsPBkgYhRJIRJEGmcFY2hs6d3U3MST4wKRgjrRAwAwZIRAjIjAExFxxqIkZojaOO/NwcF2NZGTQe/b3/pDTITgOMlG3jopo+Fw7LxPq881l845KZXVpt87DhOTI48eGRORjGygZXHajoIYkrvCFAachzxmkJIrLrxzRJRIQUSVel0IJjgiknWGEXAGnkBJDpI7bxgjZJw4E5IhYiWuxnFsrU3TtN/vSsmzyXD38OCo00kjQQy31jdu3HrhS6/fOnPmTLvdTOOk1W42GrU4jjlgIIl0acuyTCOF6Kw2nPMojiRLu92ujdTy4oJAZoxhANZPAw2D+MnNNMIwa9aZgy44k/wDBP3CNMUhTdNQstC070855waDwe7u7tHRUciKSBtxmLi73a4nGzr4Qo9ecH9ljAUJMyIuLCzkeRl0VJ1OJyyfaVJtNBoYjLYZ187O6VFE1NomcQoAIReoWk2dm9p9hc8ZhFNBFxWoRjbzuwpMn1JKa62UCrRgIBYD+SgZtzOuMCxseqYtw2nC7HMZ1rSc8n7etuy9j6IoEHnh0wagMci5ACCs+kqpbrcbooe01mVpAv8YPKUYY8PhqFqtCiEmee4LTR6CQb9zLs9z5ygohzyQ0e7+o4eh2ms2m8urK2vrm+1m4y/+pV+RUu7tHjx8+BAR//AP/0NpzZtvfllKef78eU/Y7XYrlUqtUu10Ov/u3/27YpK9+fabv/+7/355bfXnfuZnA9fZ7XZ1UXogUxZxorrdPSmXbly/TAhhAnnw4MF4PJ5ko4eP7n/44YfVamVlZaVaSyeTSbvd/pVf+RVELCb6vffeq1Qq58+ff/Tk8e7ubpqmi4tLKyurR0cdY8ylS5eNMf3+4J3vv/Pmm2/GcdztdrMsi6Lo1q1b/X7/nXfe2d3dDbA9wrVwCwdWMVyIlZWVyWTywQcfBPuJjY2NSqWyvr6+trZWrzXDyZlMJk+ePPHeD4fD+/fvh2I9jAGp1JUrV27evGmMGQ6Hjx49Cr5rDx8+7HQ6tWql0Wjs7e01Go3r16+/8soriHh8fHzv3r21tTXn3EcffRRcbU+fPr2zs7OwtHD58uVwNx0fH9++ffvq1asA8PTp0+FwWKvVlpaW9vb24jhutVrr6+tCyH6/3+l0Tp8+peJoe3u71+vVavXF5dXf/h9/1wPrD4fOIxM8y7JSa2IUdJBhh0ZEUkoX0GLvkfEwdLXWASv13ocl5LmKZra0fHHdASA21dp654LABYjIaWsYZz6W7NHDuz//cz8D35s+/8mTJ93+MWNscXGxXq8HFPA+TDOyn6Nfnny/369Xqka7SqVSKfKsMH7+aRAQwBNwjsToYOBG+ZNqtK8YH/aztBLPXfb3jifNemPQ7QqVTErtgTxZYMSYB/SVSqK1RueBCR6ge6XAGkRs1auOxMNHzxiXy7N3+/ize5NMVxuL3/rOD4yFzdOnkuSISZGmaVFk3tgZ5sFtWTIpGGPWOM4FME5ASkhyLooiXTjjnnMr43GWRLFSSmc5cA6cB/bXe4/gEcl7AoDgpH5S2zQ7WDgf05JrVo2BtSAVMIFM6CIPnflccOu9c8SYcLPPwDkn672bRrcyxjhO94vkveTAE4zSuic87BwzlADMWS1F4rwngmDLGUiqELnIo3g8HstIjUZDnWWVapsrZbSeAkmEyKYVmPWGAwbrOEcE5HicOA/ZYJgd93/7X/7r197qnDp38drlF5I4RqgD4k9+4xfe/f53Ht35YZpWyskoZPyFvw7TyoMDsRC9iBhipUJBNld3zQYvThPmp9jYtDCaUb2z5/0obfm5I1i1hG9G06S/2TZleqWCWhxOEGppmhpjBsc9KaWQHIkFNS4iop8qiMNiYL0LJpMB6hBC+BnZ5xE5oDVGCC6RG2M9ciaYMyaEE3Ip5m10RZZ7YwbDkVIqYWmUprmhUVaCjIRU1jvrXWCmyyw7Pj5W1apHryIRpZESwpjSWr28vExHx0EaKBUz1jvnOANEEdzPBOPamgDdScXA02ScR0oxpCLPo0guLi4gGU520uu/+wf/vrLURGfLMifnvAPrNAquVHRyrkHEsizLcgwsgLgMvEeGgKCdZtNIDAxrc5aNqrWajFVZlpJxTh4JnKM0Uoxxq6FSqThniQgZxZFkoXHYWRUJhigjjkSMMaWqjDGGpJQqyzzP8+Hx/r2Dg0lZVuM4iqKLFy++dOPK6trbS8vtWqW6dfpUJFWUxJUkDcKgQbdnrY0kj5XgyHRRdrvdxcXFeq2trWEMQg8gR7Dg+72elFG/PzDGoJBhmxA2afOKJIwKNwt0Cpc1oDv4nHKddoEopdBDaOOabzwQQCnVrDdajSYAJEliijK8YaPRYByyLKtWqyEyKE3TEIlDNFsYAKIoCjJn773Vxlo7KPvDweDw8FAqtbK8vLK6GkYyY1wpJdBKwYvCKC6ybJyNvFKKIzHwHFEbjQDO2NzbKIo4EuPCFCURSc6dc6YoAw7BOSdwknHBhUBGRM46DY4hcc6BETLiiM65XJdEFMdTORfO2gLSKAYi56ko8jiOoygJa15wbynLUggZNLuMISKXUmpty9LU600hsiiKnKOyNN6Tta5aTYioKMrxeJwVxc7eHmNCSlmtVg+OOoHr/Pjjjx88eBBH6YULF+I4XlpdabcXr918QSmV5fnt27f7veHZc8mHH350dHSUJMnq6mp7ockY+xt/869xzrvd7mA8+q3f/hc/8RNv37p1bWdnp9D9s6c3/s7f+rVBr18a/Yu/8KcI4PBgJ0Qevfbaa+dOb46zSatR16bc29vrDbrHx51+v3/v3n1r7enTpwXjncOj5cWln/3Gz9Tr9d3d3e9+97svvfTS1nrj9u3bk0lWq1QvX7wymow//fQz59xCa9FY+/DB4ydPnvz8z//8qVOn9vb2jNHNZqPVaAyHg3fffffo6GgymUgpQxrPqVOnXn/9dUTM8/z3/5+74RbudQfvvvfOcDgMdTZ53NzcfP21N2u1mjEm5DXVqo3xKPvkk0+01u12ezKZHBwcXLp48fr165VKpd/vD0dj730UxZNJ9vTp01DiLy+vHB8fc87X1tYuXryolDo+Pn769Omly1eKoni6/SwQ0OfOX+j1B0mi24sLYUfR7XaPe90XNm5Vq9Xbt29nWXbhwvn19fXQFB8yuQM3vb29ffPmzYWFhZ2dncFgiIjnz5/f2dlhjGlTBGL00aMnv/mb/+rq5euldlJyR4BIAfFlHKTkRVFIJcJoBCIizzhnGKZ6BCJL0+QGZAycn2PbNFPf02zdZzMHZnLOoQeaVnhFUTAGwJEx8E43FtpPjndefvHmvPxaXl4ERkGyeefOHe/9G2+8MZ9mr1699hweCAqbSCnvPWOCoGBMcMZN4JWQI5LzBB6QgTHQK0sOwAAGk+chR3/4rR8URaF1oKW4B0DmEaleS0fD3mSoYbo4a1tmOFNZM4A890vt1qPtZ7VWc3lj+m7f/OPvVOutrVPnNrfOZmWZ58XR0dHS0tLq2jI4m2VTlCzMUxyQEXjnvPNCkUBWFAVmWVGQlFKqeP493Xhczoyzp6ShMRg8ooIL1EkOLQAtJ+HHGa02x3lmmjBkgkeV1FOZF3nQClnCIDd2ziEyAJ8mKedcG0uz+V0IARR0shFq7cAACO9smkRpHGV5QPWl96SUKo2eTf1BboVToRpn1tpms0n11vFR12sNTITPAB4QpuREwGlCpwEikLfOlEwoBAeKky12nj56tr1tJuXFS5drtVqR27XFtT/z53/1H//XH0RpUmYTR57IgwMEeRKFAmIwrbdOCsJmv/rccz5fTf3IJuP/mwM/H080/xiMMe+xUqlEUSSS5ORLtNa9bhcQk0rCOQ/GCgCAbNrDNYcQEKfqujlKN5eIWWu5EN477z3jihh655gQ3pRxreq9T6qJt1YpZS0HYHlhQSSpjEoHu3tHgIJJQVwgeRScnAUAJiVjbDKZTLJRrVlN07RRrQUJUTD+llJa78uyTNJqHMehEd0ZE/C5JIrDDg4RGcNateqNVVKZIq9VGoJTq1nzNn/3u38StxvgrTGlt44DF0J4BAxdXSfFkd4XRc4IiQiE9M4B41IqN4tkEYKB87GQHnyapLFSw/5wYbEVS2XLIqzWlSTJsiJNY84gMPIzh1tfq9UAEiIXx3EkuC6K0Wg0GQ6fPHpcqaSD8TiJxJe//OWzp16s15tbWxsLC0v1erVSqSRpxBWTkgdhUJ7n5Ox4PNRaVdO00awxxhDJGasiReRWVpYmk9x73x/2yrKUUhCRt56IlpaWGo3G06fbnPNKrTbKMqViYwx4F3Zc831XQEbn423eP+Vnwcxh8JRlychHsfTez/zY0HuXJEmr1SrLsizLyWQSian/UFEUyChImgIyNBwOrdWDwWBjYyPAOURUlsY4FyRlZVkOh8PJKAtSHsbYwcHB/v5+q9UK+4QoiqSapuNJyZMkyvNcKk4gg+AGZgmqwQ4m5A+GUT0f7XOzibDchFclSTIVeEmeZZmKgzm+j6JIRhEiWuvDiYKZPYe11pJP02oQfoWzV5ZlLFVZluFbp2kaHgyOA0KIoMqPoijwU0HPTojdbjcvS/B+nGXD4dB7/73v/WCcTba2tlZXV0MV8vWv/dQ3fvpnEXGcZ3/wB3+U1uqLi+z73/++dW5hYSF4UG1vPwWg9fU1rfV77717cHDwl//yX24vNLa3t6u1ZGm5ferUxvHx8fd/8O07n97VufYOvXNra2uvv/7qrVs3pZS1Wm00Gt2+fZsjPH788PbHH3lvlVKtViNNq8aWrVbrJ3/y62maDofDhw8fraysVKvVnZ29Tz/9jDF29ep17/3du/eEkGmaKhXfvXu3NPr111+XUo5GI23M5ubm5cuXD4/29w92Dw8PsixrtuqH+wcbGxvXrt7Y2NhAxK2trU6ns7e3572/e/fuRx99xBhTcCvcwpVK5a233gpTx2Qy2X660263lVLvvvvuZDLx3ler1cFgsL6+/tZbb4WdZ57nT548WV1dPTw8fOedd6y1jWaLMZZlWavVWltbq9friDgajR48eHDr1q08zx8+fBg2G2trazs7OwHvXFxcRMTJZLK3t/elL30p/HB0dNRsNq9cuTIYDPI8r9frgWYlotu3b3/1q19dWVnZ3t4Ot9uZM2estQcHB0dHR1obRBgM+r1eb2195Y033uj2BkzKnYPO+7c/fPHW66NJX0bxsDvU1tXr9cDscc6VEtaZKEryPEfOp+oZ72ku5g4Lh5+SGGzWxhv0YaFxMtyDYfc7fZX3wJh1DuyU7ZGCEdk0Vk8fP/hLv/LLf/3X/srB/20aKzQYDC5fvnx0dNTv92/evEn0uWn2hz/84Yx8BFRKSRkhMcYsYwwBPTnrpl0D3jlExhC9Bw7i3JlNnY129w8QPtfq1hkWQoABaFQaRekUOWNzIhj1y7deu7m2usIBP/nk05WVlRdenKY+FUU2HA6llEsry5Va48mTJzdn5dfZ85ekStsLS1lZum633W6fPn1qY2NjNOj94KMPv/vOdxuVqi5KREzjBACMLTnQ1FWNvLeaIzAEJoQ/CamEgBgIqwLjgBZZaNnD2dI+/9n/iLh+WnNwTt4jCzYH4d04IjogoaQeFwA+0GgeGJ8qwqaFcNgmMgJkTEnunQn19fS7pGlWaEY+jaPllaXtp/s+eMSBBRNKDX/Ch3daSPkih1qNM5mXudcapuQkmw4fCAZXQTgf7M2I0AMjcAUKcHkGgLkrJr2qIfbOd7/Z6xxcvXFrY3WlN8oWV9bBkzbGT09MMBoAQvpcqEyAgE6OCDqBfj0/nuurvsjw/v93EAXOnOYrwfzQZb6xsqqYGAwGwMBai2IqK8bZ5mbuCoOIgvE5AOa5n0ujUPDQbDY9rwQQxG2CG2eRS865M4aITFkCY5Zw1Bu2lja9RxCSyxiZQM50oacoKnkP3pNDRBlHeT7hPFWRsE4ncSV8mDCvheZKxlgYQkklOLZrYOjBQ2jYtI4DMo6cweLiIjJP4KppvPfsCRQTEdd0qZ2zSIw4egTnnNWa5u0mAACQTyZSSiQkYJ5xEtJbW+YFV1GtWiVCb7WKpHMmlYoxprhsrKxZpyVRtV4FT0VRVJKoUasgojVaCBGrCJGMLZ0u8+ExInx6914sGeOwsbbebrdfuHnpL/z5n19YaJ8/fz6kXDcbNQQecNuiyJRSnDPv/DjLq9VqopJqUg1+K8GWSevCWlsUubNWSumcSZKKMTbPcy74ysoKMUREnRehJbYsy42NDWvtaDSyREnEPRDRtM5mM0/wKY51wgZsDrojYsg5pul+DefdBnP1gncQipjgnkAxaWfjNCGGWhfIOQFwKYExoZT1vtZoZYVG5EedI2ttq9WK02ScZaUxnPNC66QSX1u/OplM8jxvNJuh1AvmFFEUAQ3CdCqlXFxcrFZTa0rGmGEmYL3huwegtygK8IiIRZ4rpSKlnHNKSkT0IQzHeyByzoUGNyFEqfNQGwEAE2KcZWFwBh1LqLoCg884I+OMMcZarXWSJEDoHRVk4jhmyFScAGKapinAcDjMirJalVlRTpX71uWj8dHR0fFxr9vvPXu6Xa3Xzp89115c4FI1qtW/8Ku/EmwUPvrk42I4fnFx+cmT7dFoVJZlpVJ56aWX+oPB/sFBFMeKqNfrvfPOO8sri7/wC7+glAgq9fPnTmmtnS1+8L3v3759O9Sj65sb169fv/TK66+99IYQYjIunjx5srOzc9zrfnj7o/v37y0uLi4vLzebLevdytrKpSuXPNl+vz8ajYbD4fLy8oMHDx4+uh/uU8HV9vZTIQQSNmpVFUe9Xi+OF1966SWt9Wg0QvKbm+uD0XA8Hk4mk06nc9zrFkXRarVqterp06ev37jCALUuvPej0Wg0HuRZee/evT/+4z9O03QymSwuLl64cOH1118HgA9/fzpNjUajbr/37NkzXZS1Wq3ZbA6Hw2q1+pWvfCUM48PDw/39/YWFhe3t7Xv37kkpG43G4uLiweHRwsJie2ExAIqHh4d5ni8vL3e73R/84AdJkoTyKJi4njlzBhgS0cHBwWAwuHnzJgA8ePDAWpskSb3Z+PSzO9POVsF7g7619mBv/6233lpcXNzZ2Tk6Omq1Wq+//sZkkoWQxxBdkGXZ/v7+iy+++MILLwyHQ8YYZyzEjO7t7T16/HRn7/D/8Rv/PQIbjSZxnOalRs6Yf26PEk6+Jzs35mQoiCh04CLysAD5qfMq+kCczBp6p5nXP4oLICLnVJYyqRqtBUcuWJkNZSyXF5rD7t5f/6t/aX1j+WCW6ri0stzr9R49enRwcJAkSegIhpk07Mtf/vJz9Cts2uZEPoWFBVFFkfdelyUAkEcEEIDD4fD0xvq5s2d6xwePtx/P32RlqTYZl+D0aDRA4AROIly/fu7KhXPXLl1M48Ra26hW6vX6qY0VY0ylkmRZ1hv0K41mpu2nd+7+5r/4rW+89D8P79brj+OEJuV2UEUQee/d++++c/7smaXFdgRMcqEqsj8ceO+FnLYNIwQCzCF4wbAsC+/sSdd7FkWMMVvqaTo2EefcOQ2IcLIH78et7uF/AOCsDVcunDtgGKx0BEfOgZzh6B2ycFkhJHwTwUwVHqY2TxYJ5kKK8OFDmrVzFlDVKqn3lglJnpFnzjvGnzcuTUdEqOx4NJlMxpOJKwqVVq21vjQYeriCU++0tJx+ESaAPDGO3hOSFRwAkKE3xWRUGmOMI59UK0LAytKCZQIAJuNRsMqfvpejzzeKeCD2BeOJKdY1L8Jm0Nf/pKrrcxjbF67FjzwTEYnAWj/zuJsexhhEqtVqcRxP8slgMHDO+WkXxXPDvTnrxGfYWPgVY8wZG/6wJeKIyBlZAs5DJh0Z7ThrtxYYY0gUXCIBGHiMWsvE5WiSCRUBMkIwxpB3hIhSBDDVaA2cK1WdZDnnPCxgZVk6R8HjwE2hF6615siklM55zj0AmFIjn3JhnHPwPogzokgVRbaxtry5sfa9b/0BgPPWmLIghEAbATgiYsgIvEqe3yA4c98IwK33WElrABDOQCw4j6qJFIiEBEJy9K5WqWjDiVxFRUSuGqtgl1qUGZlyf/9oNBpxgUkUbZ3auHH9UqNR+/t/728ab6WUFy6cI6J6vR5LBRy8taEzTttyMBgEXAcY06aoVqucyaAfChclZNgxxhiH8XhYr9e1NmkSZ1kW0AjybDQaCSWZFKG7ql6vMyaKrGw0295TlmVLqw0HUOoCuZizfvPyfd5/epJzDKoanAkcw8ALmYyIz8FUyViWZZPJZE5Qcs6nJaP3oXu32WwOBoPj4+O5KCrgQO1223sPDMuyNNYYZ733Qgqpot5gEFa1hfbCOM8UF3ElzccT73273V5fX+90OlmWHRzsHR+LMJxkpBhjIS4wFJGIwd3Dn/yOWmvGWL1eD4AczExYgujKOcdn39FaS4iB5RdCOEdTUzEhgupICIXI86KIooiAeUeBKwx9CeGcjEajw8PDJEmGw+F4PH706FGWZQdHh0sLi5untkxpuVTLqyur62svvviiMea73/3uP//Nf/E3/sbfWFtbe/z4sZSSy+jKlSve+3v37h0f96y1wcLq/oMHv/qrv3r27NnQ3McFXr58+cHDe48ePbhz587Ozk4gfFut1rVr1y5dmpYvh4eHnU4nn2TOuc7h0b//vT/Q2pw6dWphYYExfPPNN772ta8GH/YHDx6GFtrbt2+PJ8OgeJNSvvfeD621IT8qipI7d+5cvXp1a/P04cGB1hoZR8SiyA4P94+Pex9++H4SxYuLi8bZdru9tra2vLwsI+W9z7KJEEKb4v3337975zMhWMBQm8321SvXFxYWwn0R8CchxJMnT3Z3dyN4MQzabrd7+uyZCxcuIIHW+sMPP3TOLS0tffrpp0+ePKlUKvV6HQAeP37caDRee+21er0+mUzu379vjF1eXt7d3X369Gme50Hldu/evZWVlbffftt7XxRFMBE9f/78o0ePnmw/Da2j1tpHjx6trq622+1AjA6HwwcPHrzxxhuI2O/3AyXdajQPDg7yPPfeG2NCj+3Ozs7m5sa5c+cAIOx51tfXoyjqdDofffTR8fExQ6rX65zz5ZW11199vTca/2//d/+ovbBkvdPaSpVy7YIjZmD2gzArjqIsz4UQpiyBi9ke6Ysry/PHZz5KiOisIQqI0wn1PQFZA0qZogAka8ETcCEWGvW7dz/9B//Zr7/+xss//OEP2Exc/+1vf7tSqbz22muhmziO4/39/aPbU9f73//935+WXwRYlsZaKxhHRGMMQEAypr3TMxcGx4FbVx538qVWbXmpHkeLrVYE96ff58LG8v7eoatElaSaTQpAP86G18+fWWjVh91OLpW1Po3iMsv3d3aRUZHF3rutrY1Rrn/zv/tnH33y6Ob1G/Ozc+/+wxdeuBVAskolJXCC+YXVxWa1crhjGmkK5D2iUkIwwRhE1UQpJUXMhQIAltZYGkN37KyL4/T5ym2dRwuekHNG4Mmzmfs5MDyhsw5Ls5+XWdOLxAJ4dKL24iJk9xKHdrs57B2ANSJCct6TF3zaGg1TqovChGV9gcissxxpNmtP/ZO895wLnNHY2lghpPUOpj5kc1uH0K0ZmkHBZiWLIkChyxKcAwDwDijYNmCgvBnjwbLclwUI9MYnlUpYBgAYAUopm0mlubC4uLIqIzEu84q1oOTyhYuH9z/kkXRGBxng1HLE+1m5Gn6YNzmeOI1frGd/LCT2/+74sRXYjz0C+fijnRNRFGVZNuyPiWg0GTEhoijS1tDUqf/zHD8RITjyHFlYLRhjDogJ4a1DxjA4JzFOAN45QGRJXK3XPVBR5KmSRDbLMsiK2pmLa1tn9vcOx1nBuCIE5wwQBUOaKewkOZcSJFeRKEqulMqzUilFhEGIE6Yq8igjxZg11hJj3rosyyIZI+JUucgBEZlgTDDOWVnmzXr1yqXL9z/7KD86TOoVZ/SshiDvHQMQnDNkBGT153pojHP1apUzkZeullTSWFlreZLEsZIIACARhWBJHEvJleRa62pU8WQno+F4PO4PutbaRqO2uLh49syZn/z62xuba61WI4rk1qnNer3qwTljkTOaWWXmeW6J5ZMMiAgp2NOvb60jYhzH1rnxaMQYG/aGpc6xwCDoLsuSCJ1zaZpGSSUrdL3Z1kXRaC4wLhhXcZKExsBIJe0W51JkWR5F2Gg2gz56ZXlZl5o4V1xY8qFfL2yQwqZIzBo45gp0gLBts4zxadjGTP9AM7Vo6Pr0s1Cj4GbkvU+SJARCBH5kSqESAUBRFEKI4MIQSrF+vw8M660mRwiPE1FW5JVKJaL4+PjYHOx6IPAUp4mIBGNsMOxFUZRU4qQSD4fD/f394XC4trbWaDR6vV6aVKvV6sLCAiIWRV6v14VkoYpFRM6ZBCG40sYwzp334bMppQCRAFQUIaPQC1mWJXIZAmqKQsdJJU1TINJaZ1lRr9fLQgNApVINMWKc43A4LMtOUFKfOnXq008/zctCStlut5eWlhqtdqPVttYurKyWef7xp58d7R+99OorV69e7fV6AVj6s3/ul158+VUp5aef3dvb2yuKIsBdFy9e/NKXvnTqVBmMpnq93tmzp0fD/p9865vvv//+eDyu16vNZntlZUUw+erLr/38z/2CUmp7e/vZs6exirx13/32nzx9+jTo8KSU3W5nsb3wn/zZX5yM88PDIynl9evX4npt5+mjx48fO+fSNOl0jh4/fhQK1iRx2hSMsZduvRDHKtywnMsXXriR5/nT7cfdbrfX6xntGo1GWZaHhwfLyytvvPF6QBx3dneds2VZHB0dPXj06OzZs4hgrW2325cuXTp7+gxjkGVZt9tVKo7j+N133x2NRtbaUEh1Op0bN27cuHHjP/wPh9Ox6h1j7M6dOw8ePACAWq3WarWG41G92Xhz40tRFO3s7Hz/+9+/fv3GuQsXDg4O3vmjPwKAVqtVqVT29vaazWa9Xm82m8aYP/iDPyCiGzduHB4ehu/uvW82m48ePRJCnD17ljEmubh///7B3v6tmy/s7Ow8vP/AGLO0tLSxtp6NJ865Isu991mWHR4e9vv9t99+u1arTSaTwIknSZIkcZ7nP/zhD4PGK7RWXLt27Rvf+IbWejIeJkny+PFj58F7/+1vf/fJk+0r11887g6sZwDTsATGGJB35BmGNAUEIo7MMY5TzofDNJmNCIOydQaPsfAinHIgjH+BopliY4hgHQAhF2Sst2WtmjhdCHAv33qh3z2+cfPaJ/BZeOHlS1efbj8+Ojoqy/L27dvj8bharQKcDr996623nqNfoa3UGTscj4qiYMB8SDEOLtuI4IkhI3LBeuGw161Uo8WF+uLi4rz8Wltory8uEmGtVltsL3jv9w52T62vbm2uT7JiZ2d3ffNUe2FlMsl2dp6lSWwc9fvDifZ/9K1vf3Ln0bnz5wGef6SvfOWrQohGuwVAWT7udY6c1UrwsshWFpc4Y5wLi7SxsRFJZZ3hHBljZWGdc1pbVxbC6lqtkmdzNQYAABljPDHG8ASzOJd6TJOzT67egVeYuReGwxuLnDPGeBJLGRFAkMcqpZB5AA+ecOZiwAARuQfPCKe1OZsKyEJoCcPn3DPjnEAbQ955xtTa+uqTJ3vee2TTHSoEq0s2rY8JwDsCxsE57z0Twpc5UzE4751hXDEUwBmGhgJGyICIFtbX2kvtp0+f5r0eMAEeQEiI+NLq1tnLl2utZrVR5yJhXI61XWwsXr/+wuG920rGuTZAhM4TEc5gLZy5ef1HiqLw+P+EqusLwO+PRb9+FByenh967oc5/5WUcnd3Vx90xMIiE1P+zgVDc3ius4YZ1jVFO6YxVDiHPQLB6RGRIRFwzkNAO+Occ1mWloDiOPb52A2GwHDr1LlhURbWoFBCyuAVwwgYIA+7Ke9DQJYhPxwOg99SohJE1NoyxvK8BEAgxhiGXaNz3lrLkQUxgVKCiGIlAbyzTiWxlFJyISU/f/Zc7+jwj3/nd2rt1mTUX2g3u70BMT6l0oL7gCudMSdPcBC3RlISUTWtRUpFghMR45hEKpIckSQXzhqti6ePtvv9PoBv1OunTm1ev3ahmlbOnDm1sbFRrdfW11cZY3GiULAsyzhHa3VZ5sZpa4xUqlqpTCajfndQa1QRo2q1Krny4JI47vX7gDiZTMJmI6z01pS1tELgnDdpWgkC7YC4BAinXq+jJ20Ko10g/qSKkRFjLE4TIQQ5H0VJUehKRXImp5cV0RhD7DmaNd8Tf6EIC8X63FrW2anhQuiU9J4Hc8ii0CpKAx0ZIDpETJIkvJsxJk3TEEodpMpJkhhjwloe1pKgucnLIhuN0zSNq7WiKAKwNO9S5Miq9Vo+ySZ5ZkodRZFgLKBKADBN0/PT8PILFy6Uhel2u5PJJECGSilktLKyUq/Xw+ePoiiO0rn1xhzKwlnEKqBnjOV5jogMp4UvInKhOOfkfaRi8tDr9oOPwP7hESJabYLxRKiitra2AOD8+fPAEBEPDg6+//3vSym/8rWvCaUWFxeFUJeuXAsQcrfbvX37dpB7e+8vXbq0urpaFEUASKy1gbMbjUaPHz8+Ojra3t5eXV29dOlSKOx+7df+Wiipnz17NhgMTp8+PRqNvvWtbw+H/VarpZT45JNPwoD/+te/zgUGZdLq2hpIefRsz2jNOVNSfPDhe977wWjIACvVujPWGHPhwoVWqyWEYBycc53OoTHm8PAw9BguLCxZaxuNxtbW1tbW1vLycqQSIcTBwYEQ4uBgv9vtlkUhhOj2erO3ko1WS0pZluVgMLDW5Vk56PX3D3abzaZSUa87WFwoXnnllcDTHRwcPHjw4O2333bOPXnyBKA6nwk7nc7p06fPnz9PRN1u93d/93d/6Zd+qdlsPnjw4OnTp0mSvPHGG61WO0DCb775JhEdHR19/7vfu3Hjxvnz5/f397///e/HcbyxsSGE2N7eXl9f55wHavuzzz4bj8df/epXn+3uPH361BnLOd/a2vroo4/SNF1eXkbEICZ7//33v/KVr7Tb7f39/WA20Wg0rLUhduLw8DAQ5fV6bX19/fXXXw+ixuPj448//nh/f79SqXQ6nffefafVap09e7bRaCHy+/cfeqAsKxgTgk3vfSkjrYsgSyX0SKCtkVJ656WU1pjny8pzXTcyZNPlnghOrCnz7t35M3GqD4OQoOOtZQIRxMbqyr37t//l//DP33z9xTv371RPpLc9efKkvdAqimJxcfFrX/vaeDzWWn//yWA+zX4ukziOU4O6KLQHEJxbbwEgiqI4mqbQM+Shvc0SHnQHB8e9s1urX37t5fmbrK6uOufG4zGBnuQdAFASFtr1S5cuffzZ3X/+b/7N5unzHmRaqRVF0et2Hj18urWxenjczUtPvPJ4u4Nuf/5uz549i6IoxFVKhRsba2SN1WXufSVJX37xxYePH1VaDY9QFAWA58jIW46AkgshSkBErFeqrsxGk/z5N+UCPTldAhHMeJbg/zRf22HmOsvnirzZaQrP51PjQQOGrPUhpqDSrHpnvDVcME8lInJg3nsG6JxjDJCRlFwqHjqMgkpJCGFKrbWWUnnvnfFSSgtgnU9Subi4uH8wKAsDwChkJZ6sQjwCwtQDgHFwjkvJkwpjzEOoP6aEn2cI5D1N/WOPB/1X3v7yL/zSLzMRM66G4yIvrLa2Wm822y0W8dJZzmWpPQhFqDY3zwNJxmRACDmBn5PlgX7Ek0E98OMoXAazT/r/4fi8PJ88/ujLfrT2ev74zPli7p8JAIyxhYWFsYwR0Uw9ilCgCNAInACiZ1+BhBDO2PBgUJ0759g85Od5X4xwpAOUIqUE5N77wWAAnG9dvJwbu3twHEcpUBEWV86RnANAjx55yIE2Rgpg5BzVaq2yNGVWlmUJwJKkIpA7IKMNESIXWheIyDkGOMSj995zQMG494SMKyWIkQd36eJ5wfGf/Te/AYjFJPPGDgYDyYWfdZ6S82Grx4LD1uxYXV2TUjKgWiWVhEhOCY6IxmoGdjQ4fvLkEZK7fPnS2bOnv/rVl9fX19vtZqvVWmi1leAMUClVb1S1MWVZHh0d9YdTP/RgAdVutxFYopKkUhGMJc1Ku7agnbalZcDHg7El27e93mDQi/u1Wm0wGFUqFaxyIlxb3SCiPM+dJcZYkiSFLr33cRRlQYekZRonkYwIdWD4AxWS6xIIoiRSsR+PxrGMK5VKmk6ISEqZlQUiI09FMQ3PCPX3lHGbqcHCIEFGUnG00jkHHNgsXhb9zA1oFpCFDBFRKaWUKssyzL+tVmswGMDUpsQzxobDIee83W7X6/XRaITIAVhZGmNcs15ljJVlmY/GU1GLYJFUZVnGKgLvdVEWWRZHUT2tGGNGoxERLS8vi3l8kPGBj3OWlpeXiUjKaGUFg7NrnKhOpxMuTYiUIY/1ej3wj4yx0BwQTiPM2j+DUZlH5pyLk6Qsy/F4QjR+8uTJcDhu1OrPnj2by4lCOdtqtTqd7urq+tHR0fvvf/j6G28sLi6GQrPRWrh6/WaoPieTyZPtp+EjbWxsXLt27fTZM+3FhXCvHR4eHh0dFbrcO9j/+OOPlVL1am1lZaVWq43H4/Pnz1+4cOErX/nKZDLJ80mjUd9YWzs6Onq8txfHajzsI8Hjxw9brdbVq5ejSFYqFWNLyXhwvgiV3KjUZZbfuf2x1lYpBcTqtcres53WYqvRaCwuthdabS7VaDDsdI+tKfu94zt37gRlVVFktUZza2vr5s1biMhQPHz4kKFwlvY6B6PRqN8fJEnCpQgCspWVVe+stbY/GCJip3P88OHjzvHx1LLf+1u3blWrFcHE6dNnjo+Px+PR4uJisEl79OiRtbZWq509e/bw8DBN09OnT2+/OzVc//DDD3/u534uiqI7dz4LPWqvvvpavz8oirLZbG1sbOZ5vre39zu/8ztf//rX2+32s2fPjo6OnHPnL17Q1nz08W0p5akzpxljw/7gu9/97osvvnj27NmyLPv9vjFmfX3de//973+fcx5JlTaaiPjJJ58AwM/+7M92u93d3d1arfbSSy8FrHcymQwGg0B5h/idt99++/Lly6HC7vV6H374QZ7nFy5cCG7+tVptc2OjVquladputVYXl8bj8Xg8/uD9D7e3D+5+dt8DQ8aDU6P3YQNmYCbLmXMa3nvnpg7JNE3KnhJZPoAjOBUUee/BzaL8TniAAcwhl7DLIjI2MGDe+6VW8979z/7U175RjaNn209ObWyU+XOv783Nzf6g+/u///s3b968evXqcDj8Ao7wfM7t9/vD4TDg2wyYcw4BCMAYoySfOoMHn0wkzpVzBIAPn+4f7f+7f1D734Q3uf3JZ0vLC7GUUSSTJDJlwdGNh/13332nKN3ZM+e//e4dA0AAgjPnfMz4091DTzxKaihjY60xXzQLiOOkXq99eufjV1+5hc48vPvZxurKP/zP/u6De/f/yl/7q+3FVmGNZIhKhVdFSmitAZgn5p0NNhTshA67Wq06bbLRCBgLCiHOuXWaZiXwbBmfnnKa5SyGrkhAAO8duCkUGcoOayFS1VpFcsxHY7KWCw7gAJEDOucDtGkcoEdwITQNGJs2ujvyHshaa70TQniPjJEgMEZbB2srC892j6wJANhU609EU5+nmaYeOAcga2271eIcyywfDEaMhYrZA0MABuQAGDAGZfaHf/Aforj6wkuvtpfX2oYMobW+0DZJIu1yZsx4OEIZ6dL6Slyrt4ALxhh4YiiIrEBhyCFOOcgfWwz96PE5Gvc/8sj/D281RywAAIAbY5hQJ9EvY8xCs6VENBgMgILYjsJCAmyqqoYTrS5KqSiKMjM1j3HOMSGQwFnLGPfWgiWMYsa5I69ULCUHRME554IxNhmO44XlWmuxp7UQKoQ5EjnGmCWPiN5571wsFVZT55xSAhh6hOB0Rc4JoUrjBqMx57wsDTLBGCKDeQtbADYYY85qFSnvPQOoNhpptaJ1sbmx0axWvv1HfwjgatW0yIaR4GSNJ6etC94fkos0iur1erNRO3n+N1aWuEDJhS4yNEU2HNx78oTAnTlzenV19frVF/7Sr/xivV49f/58q92MItlqtY6OO0opJOh3O5zzUqNHQ0RaF0vLrZBU02q1gotVwGPG47G3dqKd9xNEHI1G9Xo9QCxpmpIgJePCaCmj5eXEe2+N9w52d/eXlhaCgAkARqPRaDJuNpvj8bgsy3a7HVrqpOLBKdtp571nUsQMrXdWayHE4vJSrBIisk4nSVSWRjJ0AJwJcJahAACjjcepInYqv3NOSpkkCRfTvAHOJAkqioLs1I6VIyPvTKm9FOBirlhQ3KtZfHVw1Qpeo1JyIirLMoTusVlOonPU6/XG43E1SXu9HgBwZDJS3jptNUfWnUxCwVcURRRFwSo2G4+Xl5eVUv1+/+joKJBcRGS0q9frjUZjMpns7u4aY5RSjGGz2UQkZLS1tRW00oF1lSJ6+PDh7du3X3755cWFBRVFiwsLhDgZj1UUhW3GcDjsdDpCKOPd/v4+IDYazUqlUq83k6TinHvplZePDg77w8E3v/nNcxfOv/3lt57t7mxsbKSVytbW1vUbN4Kc98GDB8f9XihPL1y4sLKysrSyfOHSRWNMSAPc3t4eDAZ/8id/Ykq9vrmxvLhUbzYkF2fOnLl6+QoR7ezsDAaDUGHfvn07SH+q1WqSRGma7uzsjEajtbWVYBMwHA7r9Xocx6EZUykVJ4oDJ3LGuNFoWJYGEd9774NLly4F26pGvSWlPLW5Ph6PPQBl2YMHD4qiGI+z5eXlxeWloiguXbqUJMnR0cG9ew8a9VYSV+7dvVeWZZpWut2ulPL06TOrq2tLS8vB02Q0GQfM79GjR+PhsFKp1OsN7/3a2sZrr702nkw450VRfPbZZ0VRZFn25PHjbrfLOVar1TRNVlZWNjY2XnrppfC0nZ1pCuTx8fH8Fl5ZWXnvvffa7fbm5lav10vT9Ojo6Jvf/OZP/dRPRVH08OHD4+PjSqVy8+bNfr8/Ho9Dx2Lwx//oo4++9KUvbW1tHR4e7u3tKSFffvnlPM/feeedoDhst9vj8fjJkyftdvvKlSuhRTGO4/X19SCMC+bDnU4HAIJHxquvvrq5uRn0rMaYg4OD0Wh0fHz87rvvDgaDVqu1sbG+sLCglGo0Gqurq9babDL56KOPWq3WpUuXVBJXGEopL16+0u2Nfue3/8fN9VNTeQCxsjRC+NAqrrUOblDGGKFkkRWMK1eW0/CZWSQ0UYjIDbrtmaH6iR04zY7n5RqC844IGUNi+P9i77+DLMuu8050bXP89SZveluZVVm+ql21b3hPEKAIEABFCpQeZWaoidFQhi+kmdGENJRmRGr0Ro4yFEWKXhTJB5JAgyCBZqO9KV+VVVnpvbn+nHvcNu+PdTO7SHEiFBPPzIvoHQhEdZqT555z9tlrr/Wt3+dYRqWc31hb+ul/+A9/8Ae+b2N9pdOpb25vLq88uAIv4F3ALdBzzz2HszWTyWAnO45bt271wy9GiZBJHIdJEh0e7gMoxgylJGitlRJCpWmqATjrl7CUlKAJoRwI6z7Ey3796n0DwDLgzPzU3OykbfJqqZzzXKX0xMjw01eeuHn3XqSAcCsRwAymUk205oyliWQ0zWY8X71HKrc9V3R7jZYfp3JzY0fE0VA5L8PgI88/PTpWKXrsR7/6lX/zc/9h7uzZmGg/Ck3biePYYpJRorXmiqRScq5Nk0P43uoSxyGl1PDsNE6FVoZhJFGEwCpC1DFNDWMxbGDUSjGCxHkqhQCi+xkaSYBRkACEWZ5NqaJJAkliWy5ooTX2ckuDc4RVUeBaghR6cGDADzq+7zNuUsriOBZaEUIJZ5owTLklYY9SkUpiO1axmDvYb2kgfbY56eNJMATEfblMY2CEMSZE0u0GSS+g3NCKUEKxQw9JsKDBJEyZXtrufu2Xf/XOzYUPfOTj5dogMA6cJ1LVt/ZSv1s/3LdMl1hOaYTovGW4NmhFQRNQUlPKzESKo7jnT2FJ/B+GUwTFYQAAfZndUbsDIaRf+f3TfuW9cVTxPE5IQv+zAfSFeQCUSP3Hfoui/SUBbpiSEc55HEZhGHLTEEpSIJT1EXx91L2iKtVaEYNbUiQUiJaKaGCESykJM7SShmmmUlgGNwxGCAGlOQGiIej0IJHFselQ8bDXS8KIGwZRCpfYJAwpJZbpGBmWxgkh2nMdw2CKQD6f1UKHfqgIUMKl1mkqkzDi3KRaESAyTAjRJucapNbSMLmWiluWYXApJRAwTdMxeLVQreZz199+feXujUzG6XYOHdNIkoAA2DwzNDQAAKbJc5ms7ZiM9cvWx9eqvrmENskT48OlWnbw3PRf+AtfHp8YQ/ZBPpPlnDqO02w2O80GMxnnlIJuNZqUUtN2GWMm40HYKxQKuUIhjmNIRBin8f4haqp6vch1XSCs1fHjXpjP5wEgk8mg1xB2fTLGKINyJs8Y60UJBsqObWttAFDUUaE8vJgv2Jady2SRtYiE+iRJMNRL0oQQBlFkmmbWyyQiNQzGGNOgUqlTJYRIOCcATEhNOFGKEqIpEOBUSJ0qha7PhGqTUKmFlDJKtNaaEcoJF0IwIEKkrufKNDGI1mlksSwjoKRoNZsjw8PdVpsxRgAYpaFMMbfBGKvXmwDYsSOSJEnTNOO6iJktFXK2yRHa1Gi1GCXcNLXWUS9VoJlhJGlKCLEchxByUK9blhUEAanXMy62EsLu7i5uIRzH6XRbUS9ERxPL5KBlLwi0JqbJ2+2269q+3wMAy7JyuRznbHiopmTKKES9oF4/iHthlMREQxhHURQZhlGt1AYHh7EEmXUz7W633e7evH7L9bJPPvlkHMfdICxXBnKlcm1gqNsLVlbXF5eXiNKaEpWKwZHhU6dOF8qV8kANi7Ora2u7eweul128dnV1dZVzXiwWBwdqWS9jGeYnPvZxx7SYaSwt3ovDXurYD+4u7+3sDA+NViqVcqHsWq7WemRkTGtdqZQQsl8qVQ4O9haXlrrdgXw+n8sVBgYGpSZ+L8RQuFlvtFqNbDZfLOYHBgYrA4NaaCCqNjDCOTc4b7Zau7u7zU7bsiwU5xDCvGyuUCoHQYDRbafTWV5eLhQKlNIoigq5fD6bu3DhAqYMsb2x3W7FaXL//n3OeTabbTZbruteunRpfHxca431yvX1dQVycen+6uoq1p0JIVub62fOnJmeej6OY5Gkh4eH+/v7aZwe7O+vrq76QYDzNJPJtDrtsfGxu7CBU3hqchzNIoNuVyTJXrvNGLt4/nzP96NeL5fJoAS+3Wxtbm5++tOf9jxvfX19af2BaZonpmfqB4dpnABAxvWiKBJCHBzsnzhxYmxsdGlpaX9/z3Xdxx571HEc3/eFSDN9aDO7ceP68PDwlStXODeOy81IXVlaWrl27VqaxtVq1TTNbrc7fWL645/8OCEkTdOdnZ23333n2aefyWaze3v7nU6nUipfvvQIBX1wcJDKpNvtxmFSb7bCMI2jKJ8pxHEqNaRSpUqC4u1uYNu2UNDvbCMQdLqEUgIKWL+5kaDjlkyAoE8r0UdVLy360uqjMogE0JwzKeURN4DYti21YoTksk4S+ZZBAdIzZ05WalXH5bu73oxjXrp0eesf9hV4e3t7e/s7OKM3NjaeeeaZcrl8A+7jd6enp/vhV6okBWi0W3EcJlp4Xsa03UajAQBaa0QbE0Kk1Az6QM1jKNnDmExOwaAwMTpUqw6YjMtUhFo2Go3xsckoSjjnly9eunrnfiBklCRUa9uwEcQDoLQQnNNarXZ8tHfffXdicnpgsLb8YLFZb1Sy7t721sX5ufNnTqqg7drs05/+6C/+4i8nQUBtw/O8RCDnVxCKFnNcUxYlKWYdjg+bxDHjnHPODEMKIaUknGPi8Whdf4/ypaSEfjisiGKaKEJA93X6/R5Ayk2gmnBKGYBIDUIwJco4w8ZXw2BEEQAQMh4YGJifny8WsoHfubd4XwodJUn/jzJKtE5TaZpMKWUwDpQkQnKuDZMB7UNHEKvRV5Shga6UoCQzDa21iHo8n+Wcl0bHOp1O2O2hkBA00VoBaJCQxDFFlbZhLV19l3NzaGLC8bJuoeDHabfTEn63fdjI5kuzp87EgR90HcvxgJtBEAAA4VwJcdwo+ifGn1oWJIQclSP/ZN7r4Wv+Xz7+hC7yeEgpgXD1x5pDAQBQkBv2EjebwVwL9pziXMWupWNuJDsywtNHqCetNVFag5ZSUUqVVtSy0jS1HNu2bSRHp2lKNJiGEUNkV2tertiLQiklNwwlUCmI+DeitbIsixtUShGn0qS8E/iZjGtZVqfXYYyFvUjrFAgTSnLe55ULkWCVNxUxHLleMtLP4HJKhmrVQj7rWZZtsTvvvnnrzVctk/e6jbFa1XXMXGbStm3LdADAMk2tZbvdDtr1Bw8emAabnBw/vlZ/9svfl8vlJiYmhoaraRJyTrExKomifLYQhqHSnBs0k3Ut28A3KV6BbDbred7W1lZ+eFiCPjg4wCuJpdsgCFzXjaKIcxO125ZlDZQrpmk2m03btlvthtYagzzLslBYbVkW4ybWWYIgEEIyxigFXBGRhI4VN2SmSymVAkKY51lJkhSLZUppFPUZgbZpEQb1ej2KEiyNffgjH/pXP/OvT5w44Xl2GEduId9pd5UQtm13/MCgjFKaJAlqdLXWQI6aIlX/Zc0oY0CSNPYsM4nD7c317c1113UmJyefeOrJM2fORIGPhQUhhOU6QRDgtnh8fLzX60VRD8uLqB3GVBZC8NM0NW27Uqlgacx23YHBQdz01+t1FMNJKYeHh/HxxquHOrPx8fG9vT3XdV3XjeO4HhwiLI1Sur6+jqEqbtW0lrbt7O/vY/oQNawG4816o66UZVmjw2O2bUdRVC6X7969e/v2bYTvX7582XJsIUQxnx+q1SYnJ4MgUFpsbm7WW81e17c9N5PJzM7OFovFD05OiCMnicXFxW63u7Ozc+/ePc65aVkTExOFQoExdunSpQ996ENJkuzt7a2vro2OjlINf/RHf4R/faBWkVIeHh4ODw6Oj46GvRiQHs65bdutVguh8Eop3/cXFxcZI7lcDjNtzWbT8zzL8fYO9kulkuu6SOTa2dnZ2tqqVg8sy4qCXq1WK5VK3W43n8+HYUg4GxgYODw8RGfP7e3t3f09zP/Zto3tiqVSCQ2darWabbm+79+/fx9RIPimeuSRR6ZmpmdnZ1Htt7W1LYQIw3BhYQEXWQy+h4aGxsfHBwYG8FFZXl6OwwgJI/fu3eu2O4wxbAAcHRsZHh5WWidJUq/Xd3Z2fN/f2Ng4nsKHh4cYbY+MDBuG0el0kiRpNpuHh4enT5/WWm9sbAJAtVotlUoPHjxgjLmui2SvdrutlMJGS8yoIZTftu1Op4MJ5oODg0bzcGlp6dFHHn/00Ud3d3dx9n3oQx/yfb/T6Sws3Lt7965SKpvNDg0Nlcvl2dmTZ86ckTLFW7+8vFwbqgkh8LSz2ewjjzyitT44OMCk/s7OThAE+7s75y5emD01J6XUAjzH89u9L37xi//q3/3CyOQJrQQhxLZczFInSQKUKSn78KOj9RFQsXXUy3zE+NSUgCZ9AwZCMLV05EmvBG6ThBCEUdu2pdJREluWKWTa6ca1amnxwd2/+eP/7dlzpw/r+/s7m/fv31dKua5bgir+ocuXLydphGYqe3t7vV4P/btw7OzsHHc+Um7wvYN9ANAAmUyGm/Zhow4PW1FqoJSBklr1xTIA8CeqTvMnp0Gmg5ViIedxg7ZbXSFEaaCSSNX12xOTJzKl4QM/fffmXcvKUGCgNFBicEoIidJob2+vVKocH+38xQuzs7P1w8Y77751ZvpEKeepsP2ZT33MYrQXdN2MNzd34m/9rb/x4//DT166eFpJFXR9wzAs2xRCSK0khTCKm71QMuOPLdKEyURoTRhjilItJLLX3vsB+nAAQUAhtouApgT6xj9Ka0I5pZQQxplJLWbanHNOdJqKmHNq2pZWEnW4QghkjWgA27a73e7e/jZoGQRBHKWEsWPhCABIKcIw5AQwfYqrV6lUIMTa2sCwmoImqFp97zTZEWeBsCRJcHnD93gSC60k8lfxt0EqRQho0NxkXnbpwf17775z8sqTEydOWrl8msrd3f3tza1i2R+cnPJsu16vj5ZzYydObtx513W8MI4JpVqlhPwfSrmOz+yhk+xX1h/6oYfCr4d/508c6j0ePj3+9f88wYanwpmZosGn0pgI6d9SSpMkSXyfmYblWIZhaKkBZCqFYZmEENzLGoahFUmShJvGsSMYZyxJkr4+oN98itJL7nkeoARbStu2tdKEkFwul8lkwjD0A18ISahGhRYAk1JqmQKlvu9rkFnPs/OFTrflum4+X4zj1HIdbDfD2igjlGglkhQAKANCiZSib1mNLw5GTdMkWuU9u1Yp6biXMczG7ube2r2L5+ZMqh3XNBmN4zCJw92dVcaY7/uObXueMzc3V6nM/PAPf//o8HCxmN9f6F+rj3/8g51OJ5/PB0HXNDkhZHd313EcLBrio4VAbc55kiTIzBRC7O5u47Ta3d1GA2OEURFCDg4OMpkMLqKW5eC+WSmVKum3W9w0Gu1WsVgEAIwzTNt2PC+O4263S1PJGJMytW2TMYcQYhgW+jv1ej0Exx8rtDqdDhKkUZ9eqQwIIYRIKKVYoDRtixCG5nGWYX/5y18ulyp/9Ed/tLCwcOPW7ThVmUz2zKn5nu8TTaRWIfauJ4IQwjih6GymlBQpSGUZNmXADVPpNEmSKOpVSoXTp+dPnTp16dKlfCmfJAk1uOnYQRhorWVPY2Mj3ggppWnahmFg1EU5D4KAU7qxsXHixIkkSVDpHATBwMAAxlIm9mYKEQRBtVz2fT8OQ1DKsSzcJ2Mo7Pt+LpNtN1txGLVaLSRErK+vA0Ahl3dsx7Is3/frB4dxmEgpHcdRQlIgYyOjnHOZpugtePXq1aXFRcdxRkdHZ0+ePHfuzPz8yTRN9/cPOSNpEt26dWt7Z49zXi5XTp486XnO+XNnuGmY3ABKdnZ2XNehoN5647V2uz06Oqq1rpTLFmdT42OXLl1AXdr6+rrtmPl8fnNz8+bNm/lsDotQYRj67c78/DyqBjc3NyuVyrkLlw4ODlAZbDA2PDyYSLF7sBvHYbNZx0babNYrlwcPDw8ZY9w0Pc9DmG2r2en5gd/porw9l8vNz893u93bt2/jIxSlSdvv9nq9TLuF1uwYhQwNDdVqNQSDaa2VhDRN00S2mnu7u7uYPO52u4zxK1euPPvss+hd1u12t7e3lVL3F+5tbW0dNur4cuCce97Yc889hxxOpdStW7cKhUIURdvb2wjiMgxDCVmpVKampsrlchRFjuOsrizv7e2lQmw+eLC5uZkkSaFQCMOQxZHnecfv0Gq1euvWLQzTkfKPxqOmad65c3dubm5oaBBD8Nu3b3e73ZMnT+7u7rTbbUJosVisVquMsWq1WiwWPQ/5sctXr1795Cc/WSwWMbIsl8tnTp+L43hra+vWrVubm5txHKOD0OTk5NNPP/3ss89il8Zbb73VbreFEAsLC72eTwiZmBifnJyI06TX6zmOs7+/r5Tqdrsba+svvPDCmTNntNZhGGmp/E5bEQjDcHV19cH9Ra3I/MkzQ0NDEqRt2w0/0oC1KsIYS9OUm+gfSDjn2kCWvcZMwbG6l9K+mxyhfdkMpew4L4CxFzkyFjNNExhNkkhKDVorTjKeQ0AoGQOokZGh3d0dJePJsdHT58+IONZaX4VbeKiDw707d+40Go2xsbHh4eE/sWDl8/mj4iM34zRhhIIWjLJUSqIVPzKEBwAKRIOmgFtA8nAX28NBwPT0xP7uJmXadrgSqeXYkKZRkoJhnD95rtEO3vjDlzc3dwlQrQg1jDiJGCFKgdApUJYk8e7BwfHRgjC89+D+3vZOuZhzbB60m5/71EfGhgb9TouAo5TIlSsf/cgHf/TB0te++c3KwFAxmyOUMgqWZQnNNM/EgUo6vmE7xkMnjGJSKWWaJCAlHFE0yXtGIv3b0P94lGitKfTVYJpqTTQhXCtFOSeUaaIoZYwxokEIYZkWEKG1Ooq81fEtB4BWp72yvtbz25ZhEqqV0p5jpWmCYVaSJIQYUspECi0kt21CRK/nZ6id8TzHs8NIAFAEx753OzF4l4IyRjjvtrsDgwNCiMHB4cO9fXJUoJTHmScl8a5TopO4Z5l5WiysLD1glv3xz3x2bGysMTHeaDQ0UMOxCWetVmdycHT+zIWNO9cMw+iFITe46HuT/+n9jH9qDuy/ZPyphcujPOt7X3+4WPbwX5RSAnAKhGrg/D3FHwXium6aqCSMKCWmacooJZxw01BHHpS07zhB8MWEN10ppdF5vc89p1prbprC9/PlMqZzlFKWZWmtyREvCmUZlFJka6H0p08FBECfA6006lJRrYLnyRgL/FAIiUkO7CYjhCgtKDXwrWFZFiNUa2Iy5nluGPi1anlmcpwmvUwp0z7cW757daiY0bEfpuH68u7IyND4+Hi+ODxYu5LP5wcHaybjuWJhdHhwb28vn89jS93xtUrTsFjMOo4VRf3+OMxsdVotRCdgrHB4eIjf6gZBHy5lGJTyKIrCMEQqErrvYXoAybGVSsWyHEIIKq9x03x4eDg8PIxWIUopz/N6vR4KZYaHh3F3isqkY7IiAASBjwmwMAzxAUCculIwMzNzzE6LoigIfHyEbNtWoPFNTY5Ib8+/8Nxzzz/barZ93z9sNN95++qv/eqvVgcG0ySm3OCEglToDkYIVaAoEM4N03IYY4xwIAqU5NQarFX/8l/+v2U9lzHmOE4cx2iNjH+rVqtprXd39zGcwo1Zt9vFoPOY62sYhsn5wMDA5uam4ziZXA6vAwDs7+8TQkSSYOSqtS4Wi4Zh7OzshGGIbU/1eh3FapRSJ5NFkVO1Wo3jGH1d6vU63m5U4Zw/fx5FhFEU7e7uXrt2jTFWqVQYISdPnhwbG8vn8yMjI4hKZ4zdunXr1p07Y2NjnueVSoWRkbHpySm/F4RhWG+0TG40Dg+uXftWo9GYnp7OFQrlcjkOe0rB6VMnwzC2XcfvdDudzsjIyN7e3sIrC9wy0cdpc31j19xFqIEScnl5GQDOnz/vOA4+DK7rjo2NMdPY29vDqKXVanWarVwuNzd/ijGWz+czmQw2NEiZ4mXf29vb2NhI07TTaj3xxBP5XHG4NuiHPRScHRwcYGarWCxid/y9xfsUyPd9/5/Bbs1ut+u6LqLU9vf3TdPsBr7jOIEf9nq9ixcvzs7O9no93DLV63XDMDnnCwsLGxsbOLVRnHfq1KmTJ08C7Wcud3Z2CCHLy8tLS0uIMM1ms7u7u/Pz82fPnn3ssceEENvb2wt37mJN886dO9vb24QQ17GVUqurq9PT09PT0ygqRf6WEAKg32y0tLRUqVQODg4GayMXLlzAR6LRaCwvLyNn5MGDRdSljYyMnDt3rl6vj46Ozs3NhWGUJAmKwz7xiU8AwMHBgdZ6bm5udnYWM5dYHkUTwzAMT58+/YEPfAD9PZH1tbu7m8lk9/f3Hzx4kMlkzpw5g528uVwml8v4vr+8vLy9vd1oNT/60Y+iPSV628/OnOj1ektLS7dv315aWh4fHx8ZHsrn8xnITM3MnDtzNo5SJcCybXVEpCOUJgma1h9ZDPXDKZCUYrWBMAbyPSn9cWFEH1E5+/XKPsiyv8ocE2SEVthcyU0jl/EY17lM9t6d6z/1v/yD/+ov/6XNjZX19dW9/R0/6KysrCRJUjjKftVqNc/zpJTdbrfVam1vb/u+D3ACv9vr9Y66qY/8KQGY7bqu6yZCvvdGYJQRIoQCAApcvpem+JPLpJdxqtWKiAIhEkpAKaWZ4eYrbrawvXf4m//Pr3/z239EDM+23CiWWqdaA7dMDTKJEsa5aVpKvbecX795XWvBAEpuZuH2tU984NmRWmVnY80yqUgLABooGRkZ+nM//JUbt27FGkzmCKU0SCmUYgCMRULGUhmEJQ9hjY6RBIxQ4PThhRwnzNGlOBJ0KwVKSd2PepRSClDJDqlIARSlXBHFLUoU6fV80+KWYVNG0jQGUEdaY60U0YIj0AiITKNYSYG0aM45Y0yhN5EESilhDPWklqG04nESKa2LxWK83wD9UE/sEQtDKwHYEqAkcN4LYwDoHR4mSaJ0AppJzQA0EEIJVUfEMgradp2o5wM3gLH6wf7mxsbEzIn87NwMM+I4rrc7tpOhSkhFK7VhoIYCIJQIkTCDSyEA1XJ/XIb1p47+Jf3PvnIU7dLjcJf88Z/TivznR0WX7v88yOsnJ2SqlXg4MFRKZb2MwawwiiRoKZWUknAmpNSkX8fFgiMeBPu8cD4nIlVKKqVBCM36wkDgHKcW1h3QtcMyTABI0xSjNziS7R89VGhqRJWQBBQlBAM+13LbjbZt21426/d6cZrgqqlSpZUmBChnBJgQKW7IiNZEK5DaMh1Ie8MD+cnRmgpbUad5443bB5trjz96fmpirJDP5Dy3WCnmC7lSuZwrFpQScRh6npPGSblaWV9dM00z6gVhGKJgqH8NQWmZdlphEvU4z2Gvk+d55XK51Wq1223P87BPDc1wytUqFqeCIEiSxLIMIQjas8DRbgd7+5VS9XpdKUB0ar1exzAFS2ZREmIM1/G7lNLh0ZEgCBRoIVNCCFCqNWD6Dd+Gtu0mSQIgTNPM54uEkGw+H4chJrqCIOj1egKtiDGmp4QwqtJUa92P4ahOZUKI7nY7lWp5dGwECJ2YmPiX/+JfVCs1LWUsldKaUm4wrqhQWqNZGAAYlHHGsOU+49obO5sT48PDw8NaiijqNTtNzH8Ui0XDYEiCAIBSqQQAURT5vo8Kp529Xdu2K6Uiimy63a5t2+Vy2XVdRLb6vl8plfxOp9PpDA4O1n0f4wwA2NvZzeVyQ7VB3/dFkmKicaBS3d/fdxwXS1q2aaVC1A8P/U53ZGTEtR2MPuM4vn79euPwMJvNmqY5NDT0yKVLjz3ySKfTwSfZNM0HDx7cuXMnn89j3Hz50Ueeef7ZRx65hIgyQsjaytJv/dZvzZ065ThOtTZ4cu5Es90aGRpmjN29e/fw8LBdr9eGBqMoXrhz0/MyxXLZc5xUiHfeejOXyw0NDvSiEJTwfb9SKiCDCoPpXC5DFFGpwD4YznkQBIvLK1NTU6VSSSqoDQ5nMhnOCGIytNYbGxvY/ZokCSJMCWEnT85ns9k4jg8PD4FyALq6uo7CuGanTSn94Ic+NDY+GQQBtp1NnZhtN1sbm9trK6v37t2LkxAAbMt9/PHH5+bmbNtGWyRK6dbWVq8XvvHGm1tbW5gexlre2bNnL126dO7cuSAIkGW6v7+vtX7w4AGakGIauJDLT01NTU9OIc3hxo0bCMs9ODi4e/dus9koFAqu7ezu7oyNjV68eOHSpYtYkrtz5w4+24uLiwsLC4lIS6USEJWK+Dj8unLlytLS0tbWVrFQ6XQ66+vrQRCMjo6OjIwwxtrtNsbipmkGQfDNb35zamrq/Pnz9Xo9DHuu6166dNH3/f39vd3dXeSrZTIZbEB55plnkG7v+74QYnFxMQzDKIquXbu2ubmZpuns7Ozo6CiAzmS8iYkJRMLev38/m81+7GMfcxyn1wviOB4fH9/e3sY4e3Nz8/rVa8VicXx8HN8ML7zwwgsvvGCa5trq6htvvmk6xsc/+cn9/f39vcOh2sjW1hanHBglhIRhSDS3LEuBlkqCRlshrR4CCTHGJNFSSopoSjQNxrLeH1uMNKZYAACIAqKUUkLiUqs4p5ZJiU6TXqQtwimpVctLD+57nnX+7GnbtAiBUqnYbre3j0y1/+N//PXnn38BE2n5fP7EiRNKqd/92T6ma3FxkfzST74MAD/8dz4qZMIIlSq9eO685TjLy6v7hweMMS0VAUkAOOWcm0pCKoUEDVQrTdCs8PXSS3/qivt/biz9eP+azPyj/5MZlP9vHvb98f+h8f+W+/X+Tf8vH+9fq/fH++P/r8f7U/j/UmPq6gjnRqvVWlhY0Fr3er1CoXBwq2869MW/evE4+5VYnAohapVyLuMp0O12k4ImGgilxVyxVCxqIRuNRgxSKAkae9fJe8Y774/3x/vj/fH+eH+8P94f7w+ApcUHuUJ+aGjoE5/4BFDaabWCIPjOrR387tWrV/vhFwUphKwWihOjI2kctjo+BcUpRdCXiVAjxsvF0t7+IQFFQGpFCNFACQH6VOOFV0vf+f/Vh3x/vD/eH++P98f74/3x/vi/yDh1a6rVat1/sNhoNE6dml9dXe10OuVy+fgHJicn++HX5PBQPp8zDYNTyjh3DI72ugSgmC96ntdsNkuFsmU5I8ODjVbzsF0XWmkNVBPshHyq/lzWtcfHagOVYhJHYRjev7cSCZAABEwKxLbtQqnU7Xbb3cCyrDhNpFKGYUiQIAG0RGxat9v5RfhDPKtPtp8tZjOeYxuEcKpOnpg+Mzt9avZELpcxTTNKYiFEsVgsl6tDo5Mvv/rOX/or/+3UqXnBiTSshNndmNQ7UgIPun7kd34J/jUe9gn/RwxkV8q+661hGKlC2nXfuAY7zKHv0wNESgBQkmgC1OBKJKAVt2xCuaZMiMR22NRorbG7HnQPGaQAIIRI09gwLJNxYLTX6xmGkSTJ5csXi7k8N6hlGO12+3D/0HVdx3M6nQ5a2KaJllKC0qkUhsE0ZWGUhLFg3F5d22VGXmouhAB9xB474shRSpWU3DBEIpBP4WXcoN3qc1m1Bg2EMLRWUDoFIJRQoEQhtRUYUOJlMkHHf+F7vzB7+uKrb77t9xKT8ZGRoZOnpqtZ8vP/7O+tL75rcq6EoGCkgO5XfUIH0kulkOQIZKeUAq2w41f3rc0VpVQf8YUppYwhLECxox/Dj/ML8CLeryuNjxzbnhwbIasjC2REGyilKANCiBJSUUMSe/78o0ECPwl/E3/+e4f+Z8/zDMvuBoGUKowjlOaEcQTopXokp0NNGfar9k9JEWzFV0qJNNVaF4pFx3HiNOGc421N44QQgvBrRFMiOiERaR9ZLCUlWgiRhhEAgBTlgQGUmnluBkW+hmHII99AbNNBMSKaGTOti1k3a3PX0CJozs9Nfv4zH5saGkiTXhRFA4MDbb9NCAGq2+025zyXy+GVSaKUUlrI5uI49oMOgshNs09/2NnZQQkXvNSXf8lf2MJOAt/3EX2stQ6CoFDIoSAJSTa5XK7VaqFLklLq4OAgiiLLdUqlUrvdxpkVx7HnZtG7N5PJoIucUoCOT8iLRzvnKIqCoIv/GcdxPpvFLw4MDCB+Hc/NsBxsxUfyaq/Xw26AKIqy2awQAtsJDcOgnKE1k23bvu87joONgQhRFio95qDathlFEec0DONMJre5sf3X/7u/6biZbi9MlaLc1lpzQhE9oCkRKmWMMQVKSgrEYCTjelvb61/6wvd/z2c/hW13KNfFJxl1b3EcdrtdLSUhJBECe/vb7TYhJJvNEkKiKDI5P2qHNJMkyeVyjFBKaaPR8DyvVCpxzn3f7/V6uUwWtaEoW97c3Nzb2TFNU2vJOUfE5cDAADbZMcaazebVq1exd2F4eBj7LQqFAnaaYyvSK6+8gvyLTCZz8uRJ9HKuVquEaM4543zpwYPFxUVumUqpXC6X8zLYUoDqx0yptLexsbq66ne62DdnWdbKylK1Wh0oVxSBaqkaizQKen7YC4KAcmbbdir14uJisVwq5guJSMfGxnAe7e/vl0ol07B3d3d7UVgplQulUq1WC8JQCNXxu4v37icibXX8TqfzsY99zLbtVquDDwPnvOsHANBut2/evI2TaGNz87HHH/nIhz4kpWy1Wnj9m81mnKZCiJWl5ZWVFa31zs6O67pf+tKXhoeHoiiK4xgAkiRpt9tB0MMmzSRJGo2GEOLUqVMf/vCHq9VaFEVJkoRhmKaxlKLRaKB7t23baBv//AvPjo2NJUkSRZGUaRiGaZru7R2EvRhndzabRUn+Jz/5SRREpmnabDZN00TTqnanube352Uz+/v7+/v7n/jEJ55//nlCiGWY7XYb3ZbgVl/0/Yuf/zcDAwOjo6Mn504PDw8f9yDX6/W33npre3v7ox/9SJIk29vbQRCMj49XKhV8Xe/v76dp6vt+o9FYWFh4/vnnr1y5gppOxKMgxHV3dxex+1rrgYGBfD6PxuRoQiWl3NjYaDQaJ06c8H3/lVdeCYJgeHgYG2KObU8Nw0Bt2enTp8+ePYvqewBodzvYq9usN+7fu5vJZcEgQsqBUvXc2Qu//Iu/+tf+5k+MT803uqHhZFMBSujAD/srAtVaa8NgqFxnjMW9GACQ08QJxacd4TWoyQYAcmThrLWWSoHWQBn20lOiLcsIe361VGJUDdcKf/d//DuPPPJI0G0rJXJZx2BcaRn0wlartbK2Ojs7OzUxuba29uDBUj6fP3/+PLYVj46Oot8XHBlyb29u9cOv2RMzWqTY6hjHaS6bOT03u7t30Gp3bNvOOG7cC7HBmxCitdRacQKaMAUEV3FClN8L79xbuXNvhQIwAoQANywtQAExHcfzPJGqJO4rYSmlpmVJlYICQpUUErQAJQm8R70frpRMSrXWUiSEkna7TTjzsplydYACyYJO0zQMfKWElmmpkDt5alZQ6thuK5GKsihJEyHiWCilgL3XBMcMI41jSFMglHCOQlQ0cjoehBCgRBMNqr8ykyO7KCUlkD7cXAMokKDScnlAJLFIE9e2wl6ccdxQhY6Xw/edY1natKjB4ySmlPpBZ2ZmxnOcQqGQ9bKtVgvfelLrVqulJHheVmmFjHXDpGkScWpQCtms12z1CHcY41IkaB+EnbKI7qWMHesNtdau69q2lctm19c2pJQESUX4MJK+fl+r90D/AAAyAaLSsFcu5E/Ozr34zW9NTEwNDQ0BY6lWtuvgM60VSEU4NaVOCCFSCHRhkkIwbvQ7OQgBAMYNKQV2MAilKONEw7G3PHavAAB2yx8HHA9XtE3TxBAEm+ePopP3zI/x1wnVSFhRmgmRijQ2Te/4IJQbHb+rOl1NiGFZpmkyxpAbCUfQVzgy/YSHei+01gQYauTTNOWsb5iotcbY6xiM7vs+fhH/Hw+OnwtPWKSx1ppyrtJ0aHQUF+YkSVBhjXeNaMY4SCmVkoyhK6O2LNMgtJDxQEauAVH74LknH/nBL36va9E0DBiHbM49ONgLk9DzPE2wZ4eiWtmyrNHRmhay2+mUivlcPhOGIXZiNptNbMs67jnAkSRRu92sVCpKiW63m81mkSpZKhWQV+S6brfbbbfb6E+cpim+oG3bth0HAVRCiDRNp6enpdBoJqi1brVajDHOTdRTY2+glBKF/AMDFcdxtNbT09OEkKjX297exr6wbrfb6/UYY24mZ5omAt+xeQ2NcZBxj6dXLBa11rbrhGEISkdRhA1iGOc5jtdsNrvdLjZYHBwc5HIZ13XTVERRRMBwXQ8R8LblECE1ZVESa6I1Jb04AkoM26CUpiLlhHDGKdFRFE5OTg4PDwOA41itVksRyGazGKbEcYw2OIwxx3XR1S5O0yiKpqamfN8/PDyklBZyOVyW8vk8XpDt7e1cJosgAPQXbzQaURRdvXo1jZPh4WEMglFGPTYy4jiOEAne2YWFhQcPHiAv7ZFHHmGM4WqdHo2VlZV33323XK5qrcfHxznn586dw6U6jmPDMK5du7awsJDNZm3bHBoaqlQqhULh45/6JE4E0zT3d3ZffvnlGzduIO9+dHS02WxOT09bhnn82Lcb9YPdvf2dXc/z6vv1MAwxMqtWq5TSarUaxhFRut5qIti9227t7u5GUTQ/P08IEUJdOH92//BgZWVlbW3N9/3a0ODw8IjtuufPngbK/V6wvrm9v7MbJvHdW7fXt7azrpcrFiYnpq489eTIyMijjz6O+NN79+/v7m0vLi5ubGy8/vrr+Xy+Wq2Oj4+fmJuzbXtyfOJDH/oQY+zBgwf37t1rtVpRFP7mb/7mysrKiRMnKpXK0NDQ448/MT4+/vzzz6OW/+7du9vb2+vr69eu3bh27Vqz2ZyfPzk9PVWpVMbHx+fm5srlMu4HXnrpJWwpuHv3bqFQsCzj7t27g4ODjzzyiGFYhXwpk8kkSbK6uup53vLycpqm9+/f39zcBICBgYHTp08XCoWnnr5SLJeBQKNev3btWhiGW1tbS0tLr7/6WhRFFy9eHB9/D933t//23240Gg8Wl7/1rd9//PEnzp07t7a2hpHTmTNnzp07J0SKSn9CyOrq6re//e0gCL7yla9cunQJO22DIHjuuee63e7KysrKysqtW7c6nc7ExARCvE6ePPnoo4/iO7zZbF67dg13CG+++SY2uxiGMTExgTyaD37wg91uNwzDJElu3rz51FNPnT17dmdnBwDw2Y7jeHV1FYkbtm0zgxcKBdM0Jycnx0aHDcuUVHV9f3N14/DwcH19XQORUodhmChq2RnHsdNEJkliGEYqYiGE1kgA1Vpry7bTND1a9/qvdCEE7m/RRosc4b4ZY4RSKaWmNJfLCZEwog1Gc66dz2UeLN39Wz/+X334Ix/c39kNw2Dh7u2pqYmzp890un1S2uzJOdwO9Xq9Tqfj+373ftc0zThOHn/88dNnzoDWD155F8+kWq32wy/bMA+aDdeyOac6TTTQcrHUaLQUKIOybrd7cHAgtCr2cp7ncEYwWyKVBMJAgwQFWnPKtZa2aUopgZBYKJViNzuRUjbbXUKYVBpSaTp2uVQ9bBxokEBBK0lBRr2O1g+5IAF43AAtNUCqwbbtIOgFftjpdtEKyqSWbTg2Y1Ev7LY7hsEsywBiKMq4yVMFnY4fxTSKJQFF/1iPpqKca8a0UkIrjIiP2KoUgOiHOvgIYUDlUUzT504RvGXIFjINIIQbVIk47Pk5j7uWifhEJaTrelLqXhQiw42A1kI6GXdrYzMOo0qlEgShYRiU0zRN0zThnHPLxDeX1lpp0el0hJBxEnlZNjI82Iv341QpJY5dQKWScBTKEMIACOWcECLTVAhRLpfCKDAsg0qW9mKk9wIhAOwYtqX7/yBAIOj51HKuX3v76ec/8OTjj42Oj62tbuQrBU1USjS3LaBMAgCnRFBNFKMsFQkBoqXSGhjlRAPtM4X7eSyGPvMck1vACMXgEgBAaUKVaRhKKQ2aYlD7x8ETjJM0TSkjUqWWZWnZ74TCHSRudjGTwS2bMaY0SWUq4sh28scHwSWn2WyatltgHFvqOOdCyYdjPXKEvVCAmTmWJAnSvBg3jkNGAOCcawLI+uOcEw1KKcMwsMUaM16YcSGEME6iKGKEAtGEyHyp2O+UtCzDMPb3DpAUoJQiSlNNFCGUMsb6VFjPMk1KqE7KObd9sPXclYuf/8xHDZr6Hd+0uALI5nOa0aJdQUR7EASW6ZgGM5iplEqiXhRFe3u7y8sPytUKUN5qtXDZllISxvxeb2dvD+AcXoTyQDWTybRazZJdyTgZ0zRx1Ww2m71eDxjtxVGvF2SyGaJ0vX44MDAgpWWaphBCS5V1PWRMCK2iKGLUwPcdBqlKqSDoaq2DQNq2HYbhxsZGt9s9c+aMyUyDGoTqq++8g4wrIQSyG6SU2WxWStloHHqel6bC8zzGGDoTo/0lAh3a7fbh4eHs7GwSxdgMeMwnE0IgCZYxls/mtra2hJJDQ0OEkChKKKWFQimMRbcbMMbCKOG2ichiJDBZlqW1VKAp55i+NU2TEWow0mo0Hn/isuNa0DeEJVnXJUS3Oq0kiUzOLcvKZTKdTicUsucHhBDHczudTrfdzmazGdd1HCsOI5HExXy+0WhgAOQ5NtFw49r1MAzHx8cxLzUyNDwxNt5oNJD+RQjZ2ti4cePG4OCg67r5fHZycnJkZGRmZoYxFgQBIhu+9a1vtVqt4eFhzvnc3Fwul3vsscey2Wwc97OAi4uLr7zyClJFpqamxsfHJycnz507ZzpOGkVKqf3Dw9/+jd/0PM+27YGBgcnJSSnlhz7ysUKpBEJgtmZra+uXfumXcrmc67rnzp0rF0vVanVubg4nIDJRl5ZW7ty5QyktVsrIhvBce+bEZWSUZLPZJOq9/fb9xXt3HccZGRkbGxtjhnH61ElC2O7urpvxXCfz+ptvLD9YyuRyg8PDlYHaxNiYUPLkzDShPE2SuwsLCwv3T56a833/uy+/ctioDwwMnDx5slQomqb5yKOXrjz5uFJq6cHKrVu32u3OuXPnXn7pj1ZWVnK53KVLly5fuoje9n/+R37EtOwwDK9evbq8vHLq1Hyn03nttddardbk5OTk5OTU1JRlWbOzs8899wySb1999ZWdnZ1nn3323r17N27cYIyNT4xOTU+USiXbtqvV6on5eVDi0Ucf/frXv765uTk3d+r3v/Xi3t4eIWRsbAyBW67rXrx0Ht9FGLdxzlut1ksvvbS8vGxZ1tTUVD6X67Y746Nj8189FcdxtxPcvHnTgos4hbe3dl3XnZ2dPXPmTL1e39ra3NraxIcfSfQnT566fPmRQqGAGax6vX79+nXHcdfW1l977bWFhbujo6PDw8MjIyOmxR9/4tHnX3gW59fq6uqtm3dOnz7d6XTeeecdznmlUrlw4UKtVjs8PLxw4YIGicDkd6++bRr2Cy+8EARBuVzG0B/fqLdv397Y2Lh586aUcnR0dGBgAABOnTp1+fJlQkgqRafTefDgQRiGBnXv3bpV7zSAkKHqYJqKd96+6phut9s1TZubThRFsU6U0obJCNHHpQbD4EoJKaXJOUIljl/dmAvQWgIWf7SCo1qKlFJhqoWQIAgMgxGie0lPC1Ep5QgorXW31VZCnpieGR0adBzLsqxgp7e1vaWU2t7ZsyyLM3bu3AXLMo5tTFutVtQLd7e2FxYWAPqrUqNR73c+/uLv/UTY813LJqCSVAZRmKSy3fXXt7YKhXIUJb2o55hepVoCJTXIrZ1tSajQQChVmlBKKRCpUpMbSZpwxlOpGGUKLTy0VgCmYYPSqZTFTD6bzYZJ3PHbiYgoBUYhTWKqoZixKqXy3/nLv4rn99P/2/dYhgmU4BaZUVUrFy9dOHf+3JnBwcFKsVYo5GQat7ody7ETzf+Xn/5n1xdXugnUJmcFd27fXwXmxokALRmQX/iJf4GH/fL/9Oc5NwFAJAloTQglfYz/MSdXASF9b2tFqAadxFproFyDBkoZYwSUlFJTA6hyst5gNad77aC1z4ngRMVx2m8aJYQQZtt2IuIoipQSp06dymZcIYQSstvtSqlNk5u2pZSM0ySOE9fJcGokcRzHodQqjkNuWH4YmZbnZkv7jWT/sNPH3ysglGoMv/rJub4xOyFERJHlOdl8tt1u5vNFmQrfD9JYgJRHcaTGSPIo9qCaag0SOIMEZh976gd+6C+UBgYPGvUwiVMKslf/3f/wT9ZvvM4sS0YhpQZnBDNbjm0LKdM4BUq0VIRRRqgmYHIjThOD8TiNGaVY62GMqVQqojlhqZSMEGYYx7h5QhhmYv7Vf//beFp/4e992jbtVKYGMwA0Y/yY/4RJdQoEjYMUaCmlbbtJqsuDE2ax9hOf/DE8yH/9s/9TLpchjLa6HSk0YxxNNtF+++HiI+beEpHiwaWUWHykQGSScNO0LKtYKhmGkUqB4ZdpmlEvDIIAsdRozIKRE05p3JMxQpMkEXHkZTKu6+KlaDQaoPsFRwBQCpRSEnD3piiAZfCsazKtMyZVYXduaugv/vkvz89NxH6r1To0Xa/VaZdKFaUUFrhB0zRJsEqItlecQpIk5XKREBYlwjTNvb09BIUfHBwYhpHPZy3LWnitgNdq5OxGsZTvFwcJPzg4wA8yNFSLoohwrNdzwzAOdvcqlUqz2SyVSpwb3W4Xq10AYBhGlCZCCMt0sOaC6UDkAyHhfWhoyPOyrVYLE8COaS0sLABRhBDXdbFFH4M2DLUJIcVyWWudphLDXOw8B4B8Po91Uvzgx7hXXPixtx/6TEUVBEEmk6GUBmEPeUhxHLuu67lZwswgCP/vf+NvSgWp1onSAFSBZgRNuAEokaCJ0hSIQSinLAy6c7PTly5dqJaLjz/+SCbrIsI3DMNuEHDOkyhCT72g6xcKBTRMRGRXKsXu9o5hGJQCfkApZaFQGBkZMdHimvBOp3Pv3r1ut4uQM6xSjY2NmaaZ9TxEIayvrzcaDa11JuMCwL1794QQAwMDuVwO0xWYskI6QyaTuXv37v3792dmZlw3MzExUS6XHcfBnCjycuM4/va3v43GNWgO6GWzOOOw5ovcivv37w9UKoyxiYmJ6elpwzByuZxSClFerVbrt3/zP1FKPdspFApnzpxxXbdSGwKtRZI0m03TsVdXV1988UXDMDK57ODg4KOPXrZt2/M807aVEL1eD4D+9m//9rUbN+bm5rLZ/Pnz56vVqlAym822W93N7a319fXR0THXdTc3N33fv3jhspPxpNR+EFiWFYvU93tBELz66qulcvmz3/NpTWB5eTkMw1KxMjw83Gg0G41GPp+3bbter9+/f/873/7Dv/JX/sq5c+fu379/cFh3HAdjdETJM8YwYfzKK69sb29/6UtfQqy8EMLzXEzfIi44iiLXdcMouH379sjIyLPPPosX/+yFc0BpfXd3aWkpCEKslSMUd3Fx8ROf+MSJEycODw/r9bpt27hzwJI0XvwgCBqNxtra2sc//vHz58+HYbi3t8eZ6XneH/1Gn5oZZt7d2dkZGBjA0vaTTz5ZLBYR19LpdG7fvi2lmpycvHv37vXr103TfOyxx6rVKsbNnU7HNA1E/H/zm9+cO3niySef3N7ePjw8rFQqpVIpTSRyg+/evYvb7E6nU6/X5+fnL1++7AedNE3z+TwhJPBDBE8gVgMTn/Pz86hewLel1np5ebnT6czOzmLcdm/xPqW0Vqs5rlXOF3OFvGLacTNpL1laWv7+z3+5VB2ud3uaO8BMP4jJkRM8FkmQtIflRSEEp4aUUghFCEG2OZZZARRjLFVaa02UJMdWg3gFtQZugJaMgkzDYi7T7RxeOHPm3/3bf8m4Xl9di5PQNo1Wq+V53nMvPA8AcRw7biZJkju3bw8N1WzbXl9fX1tbq1Qqc3NzuJ9kjP2nn7mDf2H8kaCfbFpeXrZMbtcGKaWGQUkcIW7RNExKaSKFBB3L2PM8UDKMAgXIq6e6j2IFISUAJCKl1FAaCJCHeVqcMcexivlCHKeNg0MARQ1uWUaU9AjVcSxck104c2agUEjC7vFv9UMcBYQQg/EkjRqN1ltvvcUZsQwTJOt228V81jRNxrlru4Mjw1976ZWZU+eUAr/bS2JhugBJCiKWD3tuU4J1X9KnKwkpBDH48RKoCUqXKCFEKgGMAaVaiD43i3J0UgcA0AoYy+WyYRgKv4N5wWa7nXWzlFIAJoSgVKdpqkFblhUECeY58EExDINSzTnDukm/SgWACcwkSTDLgss5pZCkkW3bpnlkFZVKxqiSKLEijDEJCmN/Qgg1zVQKbvGB4YEoTHpRqLUmDDQwIAT6VgygQJMj3JxWAJwDEJ5xF9995z952Y986jOj45OHnZbBGffY+OTU+q23PM+LKTEpjcLAdWxCSBLGmhLPsTUlREEYx4wQBcAI2JaphbQty6BMytQyDc65pEqBNLkltVJCKtDM4JiWUEoTwrCwiCPjOURT2zHSWJimIaXmjFPLxHcWGgYYtmVxA7mypmFFsTTwITl+lohO0ijsRoZhGSaNU6FJn3VJaL+YeFwJxUAQlysAYMAJoUopSFNtmsdeFlpr3E0e/zCWR+kRxVcIwSjVSnFqWI7Z6/oyTWzH6fV6SRKVSqUgSAFAguYGx1cGVvYpI5wzRjgF7RjcpGATZahkZKTyX//Fr5YLTpqECiTljDBq2u76+rrjOCKRyOYRcZJGoWEYUohut+tmXdM0pSZKik6nYxiW62aEEK1Wp1AooOPyw8XHbqsrkmRsbAzdRVzXJUQjObDX6zGTY+EvjmPXsl3XxUdUa53LZbGMgis050aj2RKqheXFbDaL9CDLsS3LOjw83Nnb5bQuhMCj1Wq1y489ivywev3g+s2bjmUBgOu6U1NTSql2u40r5cTEhOM4nbaVpilRemBgQBHY29tDS+ByuRjHcRj2KKXoV5vPZB3T8oOOZVnUMJQwfL9jmmYhlxdClEvVXq/nuq4Q0jTtIIijMNGEMMtO455t21IIICBlqjWlhEklGRBuWLSPVlalUkkpobUKw9C2DEagE/hJkiiRMIOBkiZnIokZhV7Q9VxbFnIGp1EYGKY5f2oO1wO8jLdu3frDd96p1Wo5L5PP54eHRwuFwkc//GEgpBcEiKj1O51bN27Ytu04TqVSYYwVCoWzZ8/2ej0hEnQn3NraIoRYliWEWF1dfffdd5H5lMvlstnsU0899fTTT0dRRDRwzqVMf+u3vo6piFwu5zjO2NjEpz/9aYTxYsyxeO/ea6+9NjAwkM1mS6XS+fPnX3juuQ994APH06TZbP7Kr/yK67pISz9//rxpmj/0575qmmYY9DDCvnnn7nf/1b+enJx0XbtUKj3zzDNnzsyfu3AWw2gpZafVfunb39ne3ZmamjJNc2RkZHh4+Pu///s+//nP40MSp2m32/2N3/iNwcHByclpy7KefepJAKCUFvKZ5eXlN15/ZXt723W9z37ue5NYZB2bgx4dHpidmehFUafV8Hs927TCoPf6a6+srKz8wJe+8sQTjyO0vVgsXLnyxOXLl7rd7htvvrmwsBDHiWmaf/AHfxDH8Q/+4A+eOHGi02kj8+xTn/pkFEWIsQ2CYGdnB+PXJI2effbZ0bFhDHc8z7t4ETFa+wsLd3K5XKVS+vrXv/5P/+k//ft//+8/fuVJrKTn8/n5+fmnn346juO1tbX7C/c2NjYMyywWi9lsdnBwcHR0tFAoEGCYDFtdXY2j6NaN26+99trbb7+dzeXm5+cr8CxO4e/7vu8TSsZxvLayev36dVQdvfHGG3fu3Dl16tT58+er1YFOp4P/xhO4fv363bt3f+RHfsR13aWlB5VKZWJi4q/9tb/W6bYw2o7j+OrVq67rMmpkMpkrV64888wzmKaN43h/f7/Vaq2srLz2+ivool0qldDXa+bE1OjYcBILSmmSRmtrawSYYRibm5toYDU6Ojo0NLSzs4PP8+DwkOM4cRK++eabVMHo+Egr6G5tbQ1VBsulappKrbWS0N+oAuDCgbIojFCPNSFKqVSmqLHRR+HXQxkHwI0i1SyOY9DSMAyliRRptlimjLWbdSnTcrFIQDxy6fJXf/gHc/nM+Pjw6TPzUa/HCBweHm5sbcZx3G53X3n1VdRCTE6MtVqt4cGhc2fPYKwZhuH29vb+/j66AuA4ffp0fyFf3dqulYoT41OgRBzHQgjbdBSBiYkJqdRBo24wQ0rZbjdzWY8AM5kdSnFMPFcqJf01CaSSpmFKJU3LkEJoKTVoKUFrdVg/CMOQaN32EwCtCQUtx0bGT8xMFTKeRVkS+Fy+Z4pkWZaSkEoFQG3btgxGlUjj5LXvvp7P5mamWbFY9P1eqtLh8WHDtccmRiUAUK4JABDLcpSQIASxbMd5z38GALBQopSglGqMRR4eWsMxfBV1SPg/rYESRQCkBqmBUiAqX6xQzlQsPc+FFEDqSqWiUhWGISP8OIw4Xt5QK9On8RLCOZNSiFRi9iqOY5kqzswgCBgjtm2nacwZIwQohSROuOESotO0n/tRCqt2fesFUEofPVuEEBlHQRBESZj6fqZYkVLqRIIEw3Fwn40S/veKfQS7WpXUEbPt2995yQ/CD37yY7XRsTRVrs1HhoZBEcuwI7/LqCpkHAWEUYMBw2edaKKBOJZ1hCbXrmV3k27GdQ3OheBpmhJOGSdEUaUFATAtDpoKJfvsWaUIp+whrZ7JGaU8SRLXtQHAshjnnCgtpdSUZRybUp4kkdbAEFgvpZIyTSL3IUcspZQWshcE3BC27TIgqZSYuPoTExLjKhSvwEOIZEqpMk2MzDBKO46Y4YjUipoh0ncNU7iHQQEWPmyFQkFKGYWhZTntdpsxg1KqlfJ9HyGunFMGVAFQAMMwDAIGkVxJz6Yqjv7M575UyrtJ7AsbmMlMxy6WSnmpORBMNriuTRTx08RxHLy/bjZTKBTiOH7wYBl3YIRoxnAXYRmG0e120TkOYBqvwPT0tGVZ+/v7URSNjg23Wq0kidEsyzCMKIqQ5hyGId4FVF8hS933fTTQdV3XMEytdSJUoVAYHR3FyqxSShNA/T7nnGiSyWTQPg9L9sVi0bKsra2NmZkZTmm3293Y2Njf3z+eR8jzzGaznJlYr4njOJECWflSypWVlWNQp+tmpJTIK8dI4nh/TAjZ2tpijBVLFQxT0KPCsqxabXBja1MAwRo35UwmKT4iFIhBmVIKpAIKcRzbthnHIZ6eVOnh4T4a1xqGgdK6XCbb7XZB6/Hx8YODA0SDYqS4vrZmGAamsjBCfe6555558qlOp4PPVaPR+q3f+q1KpWJZVjabHR8ft20bM0AI9JdSLiwsvPzyy4VCwXXdTMbNZDLFYvH06dP4AODiNDExgVVy0zRbrRZa3IyOjlqGyRjLZDMvvPACcl+Rgru4uHjnzp2TJ0/iR5iamuKcT0xMAABuC/f29nBdn5iYQC58pVL58pe/jM0Bvu+vra0xxr7+9a+Xy+WZmZlCoTAzMzM9P3/58uVOp6OUwDRMs9lstltzc3Oe52Wz2ZHR0Ww2e1A/bLfbOO92dnYWFxcHBgYHBgYopblcbmBg4HOf+5zv+2kcM6o6jYPV1dVWpz0+Pj5ULc1MjOcKhe3tXQJyb3fr1ddfa7VampLBwcEzZ8/NnThpGEZtYMhynYsXL96/f1+k6dra2iuvvPLSSy9hUwIWTGdmZp588knTtABgeXn5wYMHnU4nCIJXX33l7t27uVzu1KlT09PTY2NjlFLHcXDG+UFnZ2cHY4tvfOMbhmG4rjsyMnLq1CnP8z7ykY/k83m0Ovipn/opjFoePHjwxhtvOI5zau4klpgHBwenJiYBQBMIguDNN9/EG33z5s1bN+9YloXRrVYqSZLPfvazf/bP/lk/COr1+sLL/ZfY66+/vnD/XqVSKeTyzz//PFo2Xbly5dSpU91ud3Fx8dd+7dc/9rGPXbx4EeMqy7I++MEPPv/88yg0Wl9fxyonIcT17HPnzp07dw6rh57n7e0erK2t7e/vh2H4zjvvHENch4aGfN9/9NFHsQnGcZzt7e0bN27Ytp2m6dbmTq/X0yDHxsZcJ+P7/uDg4PT0NBoqvPLKK7lc7vu+7/uklLv7e41GI5fPPPXUUypJ6vX6/ZWlZquzn92TAqanp3f2m1ISw+KK8ihOoyiyLItzZNxTjHqVUiJJgBBQCqQEykFrfVTl0FoDKK21BqKUAA2EanRxBSBAaRzHCqRhcoMZxWJxeXnhqz/0lS/+wPd3WgeE85XFxVu3bnRabc/zqrWBzc3NSrX2+c9/HpMmgd/Z2NhYW115+umnlQbs88Ak9MN06+vXrx9xvwCE0r0oTKKYU8hms5TwSKb5fD5JUwVKy0SBTpXEuMF1MpHfQS8ixoiUoJVmjEihOaWpiAG0kIlWigC1TEeotNNtVUrls2dP51xHE4iiiBjcNM1cLgNay0QEcQhJaqiHLJmBCZVQymzbFkmqpOaMaik6QefrX//6Zz5tuq5rm6bjOlLKjGUVijkNYJpmvdUJUmYYBqEGphkfTsWBlHGaaK1VksRCMMoo5/gDWDA6XoShH8xpoIRwph86BmFMK2Xn88ygjVY953CllBSJSYllmYIp23ODTgCE9DMivC9oTdOUG1RqBZQo0DJNGSOUUgWKM26appYAAK7rSpnKJO2FPdO2pFIUQGtpcOq4lugEWkvODSk1gCaU4soBSoOS1DSO8qtAGGRzHslmbcv12z6zTC0hlQLdV0BpUKofRWvCgEmhgTJDExHGVrG4duPaxtyMYdpgWJmi55kuaGozI+UGk6EUijIzBWmaNhp3EkJEqlAcjReKU2ZbBmeMKE2UtDjjBFtN+sIm0zIMw6J/CoO4PzKuTSmnGRcAd+rSMIw4jCzTAuh3CJoGY8wAQrQmFmUZhzHb++MHcRkjJ0/OhmHcbHQt25ZRz7VtdRScAQDRQIGgsScu0v3iowAsowMhpmkWCgXCKEKfMbxGC5SjmF5hJhxNcoQQnFBOaC9O8OtRL3BsCxNvmDAjQlBKUikswwAlpJRaEwVANDi26XAwdRwF7b/4537g3KkTSdhmJm13W9jrt7K0KuJkeGQwiqIw6CqRhL2YcdLqtjzPK5ervShcWV2v1WrTM7OEkE677ro2puuy2RIhZHNz0zCMYj57eHStDJP5QafZqu/s7ABRpVKpUMhhfqhWq5mOhbr1oaGhNIrRyhf3x6ZpJnGstS4UCrZtK6XL5XI2m3cch5umaVlSCEqpAh0EQT6fT5JECIVilyAICKG9KNRhj3PuOB4hRMp0ZnZ2eHQUK2K+77ebzcHBQSFEo9HQOoBNZRp2r9cDACmlm81oraWUmUwGQ5xWvYFyJQDodgJKaS6XwcUyiiI03qaUFoslTAfatttqdpeWVnL5vGKkG/awvCJVis+2BoNxE/8cAeK4togj13WVllpLz/PCwN/YXM9ms6ZpEEJ2trcsw4zj2GJsa319bGwcTcoxTWgyvr6+fu2ddwkhlUrF97uGYczPz1uWpaRE3Pz3fM+nMT2ZpqlS4u233zw8PMS+QhTNTE6OX7x4XgiB/bOtVuvFF180TbNUKhWLxeHh4VKpdObMGQxJsVw+MjKyubnZarWmJiZR+rO3tzc4OGiaJrXI8OBQPluwTavVaslUYHHz2rVrAwMDw8ODUsrBwUHbLlMK6I0dBN2NjbXbt2/2er35+flMJpckyejoaKFU8rLZra2tXq/XDYL9w0O5s+P7/tjYmGEY1dqg6zmrKyt6eXlxcZFSWiwWi8Ui57xWq01NTeE62utF29u7W1tbWDEfHh5GG6LZ2VnbNkEIxlipkL964/re7s7hwf7oyJjjWIzog73difHRwaHPoph6eXl5e2tzoFReXFr59YVfs12nWCiPToyPjtZA609+8pPYPrmxsfHaG69TzjJ5782333rzzbe63e6Z+dOTk5OcM8uyvvCFLxBCOp0OXudnn312bGzsa1/7GirTa8MDWFDLFws/+qM/SintdDp379598cUXP/GJTwCot99+++DgYGZm5uTJk6ZpdvwAZXYAEPXC1157rVAoPP3007cWb+VyuSRJyuXyRz70YUrp3sH+0NAQpwZaMP3Wb/7myZMnn3766V6vt7a2ZpqmbVkACU5hSunExMTu7u7B/u6Nm9emp048++yz6NqEEvjTp8/Ecby+vn7r1i2sIQ4Pj46Pjw8N1ebn52dnZ0ulku93t7a29g926/W653mvvvrq7u7u9PR0uVwulQtY3//gBz9omiZGnDdvXZ+bm5uYOIFSNt/3K5XK9PR0o9HodDpKi2arbtv2gwcPdnd3n3rqqdOnT8ORR8jQ0FCj0dje3j44OPjOy99utVrlctnzvImRkXMXzj///PNC6oKXlwJ+7md/8e6DP8gVhxKphUwZY1KIOI6lxJoDww3z8YpPKNUAhDIAoEfhF2Os796rpUyEBMIoAUqkTDWhhDEhEgUaktjKuVKlBPTayvLO5iY3YH1lhXN65coVAJBSRFF87969KImrA2Wl6f5BwzLMubk5zqhhGNgR2Ww279+/n8/ngyAAGMUTe/rpp99Tumdy2Uwmmxomp5RS2D3Y1woSFSZSUaAojXIch1EjSgMhhAYNWkstGaWUMqWklMrgVipSDcA5R99K0DRNYtOyT5+aHxkZ8TxHpqlSKp/Pcsvs+r00lUQDA0opTRIBIj4+JdezISRpKqWUKJRWMmHMzOedIOj+/u//vu/7ly9eHM2OGoZhcnpq7mS1kG13AsMtqiSSQlGuMI6BhwelaRgyyyKGoY+aw/u3CnN4AA9lRIjWihBGOVESNAHCqAatpfAKect1RZqmcZJQYXGplEqkwtIMqsLV0QCAfD7PGDEMQ6qUMQZEu64bdHuUUy1lmqSYLBGJBA2maYZhmirpOE4ipJASIFGaiqSXcS2ZxL1eJIEqTUArDayfsaMU0JeGEALMzGTCXi+bz/i+77d8EImUChQwzkUSSylBvOf0B0RpLQkztJQyVRqIjiLTs6+/+/bMzHTGNqLm7t7mKoHUYpR5WZM7lBGhdSKUlH0fPSFSy7Y5Z0T0q+xhGOYzWSlTwzRsm2NAg62/hDBNCWbyAagQQiqF5byHIyfbto/LlKCBU6alynmZ/hZHJIQw03RN08ZLTQizTJdYGeW8l0mN4zifz0qpLcsyrDiKIkaIYoxqkPo9Y1NCCPZc6L4LmJZSagnY5QpK4dmGQQ/NCjFQS5JEKZVzsshBAHTuM03QWgvp2k6UhI5r27YtRMJYri/wkhLjVAxDOSGKSMYZUcIybIsbBiUmgCHTXvfwz/3A5x+7fNbvHlKqk1QmQgRhpBRUCyWRpns7u34vKJfLjUYjSaPh6rDf65mmfXBwoAmMj41Jper1Rj6fi+PYdsw4UYhjQGNK1MMeX6uVlZVms4npilwuxzkFAFS+h2HYCfo5sE6nwwlFjYtSanBwsFKp4KXm3HAcRwiRyWS4aQMhYa93eHBA+9tKjQkzwzB6vS6+f3FzgknEJElkKorFIoCFeTK8s9lstlou66P22E6nc3BwoBW0Wq1+K3u7JUTCOa/X66Zp1mq1UqmE0ZhSKop7mJ9rtTqu60qhJ0YnNKH7+4dxpAghnNkry6s/93M/70dhppCPk4QxpglorVOhGO8XnZM41FrbTtazrajXLeS9UiFbzGUtk6dxNDExsX+wZxgGNwwtdS6bz2a8TCbTbbVfeeWVF198cWCg5rpuoVCoVquYGaKMYeV7d3fn5Zdf/sY3vuE4Tm1gIF8ouK6H/jm4xUe3n16v12g0LMvChpKrV69iCooQMjAwMDQ0dP78ebyq2PX5O7/zO2EYFgoFz/Pm5+dHRkZqtRp6AHPKstns2tra0tLSxsYG1g0Nw8DCdKVSkVLmCvk0TYeHh6MoevDgAV55NKLBrkCcAtls9u23337rrbcAKLbEUkorlcro6Cg1DJAyTdOlpaW333771VdfxZzQ7OxMPp9/5plnTNcFKYGQdrP59a9/fW1tzfO8XC539uzZiYmp8+fPl4eHscs76XSazea3v/0H3/nOdzKuUyrkz58/Wy6XP/jBF5jtqBgREMnm5vo777xj2u7g4ODo+Njp06cHa084jpcmcqBSnTsxvbm5ubax9Tu/9Zvnzl/82Mc+Vt/brbeaeF++9zOfNm3L5MaJmSnHsuM43t7e+bf/9t986EMfev7553d2dprNZi6X45x/4Qtf6Ha7W1tbY2NjQRAQRt956+1mu/VDP/RDAwMDezu7zWaTUvrEE0+cP38e80ymabqui2mhbDb7/Ac+ODg4iPKpoOt//vOfxzJlHMcvvfQS1vEppdls9rEnHi8Wi6Ojo7ZtFwqFy5cv7+zsNBqN9fX1+/fvJ0mSyWZdeASn8KOPPup4bhAEWol6vb6/v+/7/r179958880gCHK53Pz86ZGREc75s88++8lPfpJS2u0Gb731xuLiYqVSqdfrr732GiGAoSFjrNvtzs3NjY+P93q9/f39TqcTR+kHPvCBbDabJAmGj8VSPk3TVqt17969jY2N3d3darU6MjIyNDQ0Pz+PjT74htzY2IiiaHV1FRsUTNOcmZmZmZmJomhsbOzHfuzHcO/UOKy/9dYbGxsbAyNDS4sPdrd2y6UBwzQVoJd2qqlhmqZWCve65Mi1GWtNhBlaKa0UZUxJBVpr5FIcVTOklKA1AKGE9BvRCCOUEE01Ac+xU4PYjkUpKJCf+9xna4PVra2Nt995ff7kqRMnThwc7DuOUyqVnn322Uarub+/X6/X19fXPcftdDr5XLbdbg8ODT/xxBNI4VFKHR4efmdlF+/Rt7/97b70/kd+4tnnnnoqn80mSSxToUQSR70oji0vU293by8+AMqUUlMTEwUnIxLZ6rS3Dw8Egu8pwTweJUQrxdDtUkkC2jCMUr4yOjo6ODhouQ5uGUEqQjRnJI5jyoxYpGmaiigMmk1Dy0rG++Ln/zGe38/8qy+gilNImclkELkEUnHQnFG/081nvKeffvrK01cmZ8ZGRsfrrfB//ef//ndevm6WRzZ29oGbtmELITinpsn/yV/8STzsV3/6x0ScyCQBIKZlgYQkjiljhBCpFQAw06CUStBUA9EUGyhAS8A12uSgBTAyOFBLkqSxvwdpXBzIF7OcyphqUEqQh/hVSRIdS8UdxxoZGTE5DcPQ5AYA4LLR77DTGuN3XI2wX4xz7joZqVUURcB4Lxa5fBU02z1sBZHQ1IjDBICAUqABtATCqME1UKIp5zSJO24ug/sDSBLsdCS0L4o6ehAZIeQotce1IgCokGMqic4+88zjjz/iN/fv3Xr95rvfGRupyRA4oYSmhCoMj3C2UMq01iJVAIBlNSx8pGmKYBWlFOFMqhR0X8NLOSOEUUpReu9Y9rF88se/8s/whH7y537UoIZhGyJOOOeOYyVJYhoGRmmUgmU5nFPGDC2FUsq23SgUQZRIZv/Ix/46HuTH/u3fKZVK1OCpUH4vSpKEEZ2mqSaMUtafvYweh1zkCESC0wblXDKKKwNDjuN0uq00TZnBtdaEGWEYmqZtGybeaGy5sExOlDaYqUSiqXI80zCMTuA7drZVbyoFWA7TWhKqUpXiH8UUpg1W3nVU1Burlup7yz/w/Z/56EeeJjKiTEc9H3Nm7XbbsizUgqDlIuecmQbWCEzGDw4OAKBQLrmWHccxYwalYDomRlpSyt3dXc/zSuUCpTSKoq2bE/iRB2bvo6LIdV0KhFCIoihNUy/Tzy35vt9utzOZjGmalmVZrkMpbTSalmVhQ2IuW8BSo+/7IkkIIZowIQSWLHEuSK0Mw4jCBBlgnHPEHQEACvOxnzEVMWIOMGR3bQd9tRljBmVCiDgJ8fRQid/ttpVSnU7Hch3OTBEL23aFFrlcDnmB2C0IimhF8vnC/kHz977xzeXllTgRjXbn6rVrg8NDhUIhDMNuLyCM4sNpmqaWIkkjy7IAtG2YYc8Pup0nHr10+uTcyPCg5zmDtdr09LRhmr7vC6WDMM5nsoNDAxtrq0zrgWq51+ulQh3pVPTCwsL9+/exsOh53uDgYC6XGx4bk0mC/QHNZvPNN99qtru2bVNKn37yiTRNTW5MT0/jMxklMQr5Dw8Pu72g2+0Wc3lEb+BWGyOtXq+HNz1NU8uylpaWfu3Xfm1qaiqbzQ7VBp988kmtNabDsT0iDMPXX3+9Xq9blpXL5U7NzRcKhVKpZFnWQf1we3vb8zzTNL/1rW91Oh0vm61Wq2fOnBkdHXVtM01Tw7LiMBRCPHjw4Dd/87ex7DI2NjYxMWZZViGXJ4yB1iJNO373zTfffOWVV8bGxrLZ7Ozs7OlTZzAEx7eflHJ3f+fXf/3XBwYGUE507ty5QqGgtWKGBUpIIbTWr7/++jdefHFifNzLZGZn5yYnJ3O5nOW6WghCaRhHQRD87u/+bqvZmZiY4pyfOnWqVqtRzpRSaSJTKa5du37z5s3d3d1GqxUE4ac//elPf/rTrVaLEGaYJgCtt/pW5W+/+06z2RSpMgyjUChcuXJlaGQYHc17vV4v6D548MCyLErpyy+/vLu7Ozg8lMvlpqenp6amUJ+Qy2QBYGtra3V1FQPrl156aWNjY3Jy8vTp0/gxa7Uact02Nze3t7f39vaGhoa01q+/+hoAnDlzZmJiolgu4TYP8+71ev3N3wlwCp96HrCwbltGpVSsVCqUckwfYiIjjtIwDKemplzXXVlZRfvtwcFBAEiSuNFoHB4eopAAP/WTTz45MzPjZTNhGGKPaqfTSdN0b2/v1VdfDYKgWq2eO39mcHBwcnIST0lK2e12v/3tb29ubmJm8d69e7u7u+Pj4wgJQ4VorxumaYpND+1O84tf/GImk9ne3kZAVbFYrDcbyMxLEhGF6Usvv/YP/9d/UiiPdIIEqEm5gQ+2jCPTtvvO1EfKHCn7ptqg+t7EWHbsF1u0BqCMMZkKDRL5lP1XvRDZfIZSRYnybL6zvfb6d/9o7sQkY4SASpIEQK+vr29vb+PkwiaJ6emZ6elpSil2tTebTSlSFHI8ePAACJmamrr9nf5K++znK/3w66s/8ewLTz9dyOUajTqnzDJYmvS01gLY1t7+g7WNRGsAqJbKhoScl0m1Wt3ZMLgdigQXaq0UAcIZwTfpqVOnPM/h3KyWBlDvEoY9qUEIAUoByF6nvXuwb9mZbrcrtLIYLXoWVyLqdP6bv/RLeH6/9B++GoZBs9O2LAsIk1Kapi1TYTGqhJBxzDi9ePH8mTPzJ2Yn507Nu9nKf/yd7/w3f/enh2bPr+8dFss13V87wQ/9f/fX/nc87I/847+qUpFEUR8uITShFANnTPIRziilwKjJeBwmjJFUpKAl1YYSAjglFnc82zbNoNWN2y1gZHRswDWElhFR2jAMzsgxEFJriaakAMA5nZmZASUIISJJsVSMClkAUEqlaYp5ICxOKQmMMcMyMSADAL+X2K47NDzlh+nt+2tOJt+LUpWmoJESpzQBQphWAJoSSglNVRJn8tkwDDOuHQSBSCSlFHSfjAoAGvN/jDDKhQBKOHqWMs6lSJ/8+Cc8h3/rN36+VnFcOzE4kzGlhHMDYhm6loUxHOfcOJK6U8KxEc/zvD55AaNbKYVWuC2mlGKLA+qBcIWTqUDRGGPsr35/Pwr/l//pr6OinFLQSnmeZ1lGP3oDQiggU4AQkoSR321bppMvFkfGpzPZ4snSR/Egf+OX/meTG8QwpVZ+L06S2GBaKSUEaIKiAQL0vX4RBe8lRHEyp2maRtHg4CijNIx7cRwzg0spE6GQZWUYhhZaSinThBBiGoxqMIlBqJaQ2I6pQGZyuXYj6HZ8y3IAqJQpIZpxkDKN0gQ3ABblLrddCiXPFn7zIx+48pnPfMhkSS/sIuUt47qe522ub1iWNVAbwt6iMAwVAaxG7e7uckIrlUqj0ajVapxzIZNKeaDZqq+vr58+e5Zovbi0VKlUDg4OiqX84eHh/v6+3fsgfuQXPsvxeWOMJVHMDdZut33fNy0rjmPsbcSGgyiKbNs2bKtaHVBK5XI50FQd8bcwKFdCMMZS2VeJua4bhuHh4aFpWyj2Qm2c67pKqSiKODNTEXNmapD4b6UU6pYsywKlUbYFAKEf2LadyboIL0UwYSbjak2azXqz3c3lcmmUAoCmBED5vp8kiUxTzrllOsViuVSo/NRP/2//4Zd+9czZ8wDUdjPU5FGaUEqTJOLcbHdboCkQJYVWWsg0sU0upbx39+5TT1/52Ec+PDk+mvHcfMYrFHP5bC5NUz8IJWjTcvP5fLlcTpL47ddfqx/uGoSMjY9UKzWc3ZVKBcVbuNGilO7u7uJ67LquZVm1Wi2TyXDTyWQySN9o1g/W19ffeO11lMcVi8WJqUn8h2VZiRSMMREnd+7c2d/fx8s1NzfX7Xb39vYwh5GmKaqLGo1Gf6WRilJar9cPDw8pZ5ubm51OZ3h4eH5+vt1uo1QuiVIUYE1OTjqeWywWr1y5kh0cBOyqD0OMlm7evPnKyy+dPHkSua/z8/OGbce9CFdxxlgch9/97neb9ca5c+cMwxgZGakNDeICj6wWSmnUi19//fXBwcFaraa1LpVK5WoJI1EUA5imefv27bW11bnZWcdxTMuqVCqu67bbbbywaSoA4I033shms6Ojo1LKiYmJXC53JLft259LKa9ev762tjY7e9KyrHJlYHZ2ttPpNBqNRAhCiOd57Xb7xW/8/uLi4ujE5NnzZ4YGRyzXmZqaKhaLnU6n2Wy+9tobYxOjlfLAG2+/vrW5k8tnTp+aLxdL3DRQTeh5nuXYKysrr7/++tmzZ8vl8v379/d39wYGBgYGBqrVKgBggyRq5tbX11999dVPfepThUIBHaxRiHasa4yOilkHBwfrmxtPP/10oVDY399njJVKpRvf6lczTj6nhRBb2xsyFWHgK6Xm5+dnZmY7nU6cJrZtE2C9Xq9er1NKt7a233nnHcxGu65z4cKF+fn5Wq2mlPJ9v9vtrq2t4ax/7Y3XsXZcrVYrlQpuvAkhCLO4u3D7O9/5zle/+tWTJ09iaTubzeZyOZS71ev1VqtFKS2VSkKInZ2dSqVy9uxZ23CAkHarRQg5ONzDptGVlZWbN28ahlEZqI6NjZ2Ynpmfn6e2BYRfe/fGI489Mz1zZnPnUAEHynB9iXohIRqAHvdFIWCZHMm4CSEMkKn+Xs1Ha0IpJRoIIQrzK5RjuYyAUjoZH61tbqz8+5/9maeefPzmtXdsyyCEJEnMOb9y5QriDLFVbm1tzTStWq22vt73dC8UChnXcz2nvxGVMk3ThZf7mKPP/oW5fvHR4iwViZTCtowkjAQx0jTlphF0gyiMpdYmNaVK+0UfRlqtDgVIRUSBaKJBS0qJYfBCrui6LmMkn88LJZvNpkHNTqfTbrY0AaGg221TACkFB62IsuyMl80ppTKO6TDNZJqz3ysYEUIQGA0AGnBLRJRSiZYqSTmjhNG1jfXh0aFeL9KKmKZ54cKZi2fn7m1s571is15H5WOUxg9rq6MgBA2EGchqogwYY7h+41/t66YZBUYpdjMqAooApUA4Nw3bsxkjcRimcQyUZTJO1vNk1CIKsB/ec9yMlwt6XSRHG4aFs1EpwTmPwxiDLWzCh2NAPAC2bERRgrJlRZWUIupJVNFqAo7jJGm6srKSLw0US/koUZ7ndOs9IFRroJQSSpTSGFlqJbQUoBWmRjqdjpYCKFMqAWKA1gCMEKKlBNAEGIAymSkFKABgnHHOc/nzTzw3PFgezLv/6Rf++Wi5FvY6Xi4X9mJKdckr9Xo9yghGVJj36uvYOM/lCkopy3Iw9ZqmqWU5VEm81FJqQoAxpiRYlsOo8DxPK6G1Zuy9cjAA1AZKSZI4jkMI0Ur2ej2/G4ZhCKC0kNjrXhsYGBkdKhaL05MT5XK1Uq2VB2rdbvzSb2zhQRihpmm6mWycpn4vxl6ZKAoo5SjzT9MUEKFC6THVAmUEUsq+YsA0fd9njAmZAADmJAI/JIRopWWSgtIEgFMGAERpqVRKwXXsUq7Y9ZsyVUmYJFFomQYBRYjWRCsllSKUcsdkGOQRKTiXtmXEYefypdMf/NCzQsadZj2MfMMwSqXS4UEDNEVigpfJ5YoFavBuPchms61Wi3JWLJc8xz042COcVAerBwcHjXbjsNGQaWoYxu72tmOZfqfFKdgmz2eyOS/z+COPfus3IrxW2FKQptL3fUJIY7cBAJZlFQrFXq/nOE6xWAzDMJPJuNkMlhEDP0xicbBfxwcb6++YxTRNs9PtGoaVJAl2yRFCbNvO5LJKqTSNGcNOZOy+VEqLMAw8jw4MVLrdIEklpSSXy2AaW6YiTWPaRyPqVKX1el1rzTkfGBgIwrDj9zg3uWlnMoQQ4mYzm5vrnudlcx7l2TRNO60u5zyTz9meu7K6+tqbbzz/gRfCOAWgSSplmupUE04Mw5JCF/Mlg1upiEFTygCkyuUyayur/+Hnf+nZZ59ORKpAc86kSOI49pPYMLxMKZsrFPP5fCrU9s7OjetXi9nM+ctP3Lx29cbthXxuq5DNGYbRarU6nQ7maTDyKJVKpVLp8PCw0+lorQ8PD3d2dk6dPlcsFrWUhUKBEHLq1Kmzp89gTUoIsbSy/I1vfGN4eDiTyZTL5RMnThRy+cceedRwHZBSCIGx19ra2urqqmmap06dsiwLGyNqtVqapiJJMa2CgvexsTHHcSzLWl1dHR8fn5iYiuN4c3NzcnpqeHj4+vXr3DQKhUK3271x48bu7u78/Dwqsaanpy9duDA+OtpsNrWWmUxmf39/eXmZaDozM9Pr9XK5XLVcee6ZZ4+Zt91utxeFa2trQ6Mjo6OjSinP80hRP37lsXq9ubu/Z9u2JuD3gnq9XqvVPC+TxonnuGfmT9umFXS6aSK8rFpeXjYMs9vtXrhwAfMQmEY9PDzEKmG73WXMuHfvntZ6aGjIMAzKealUunLlqXPnLiilDg4OgKhOt7W4uPTmm28ODQ15npfN55577vkz86cP6oftVnd1YzWJw9pgdWVp8XqnQymtVqvPPHklk3UDPzw9Nzc+PEo5293e+eY3Xvzc5z534uLM7v7e3t6e67qjwyNYVRRClMvlfDZHKV1bW3vzzTefe+65S5cuBUGAlfqRkZGLFy+GYdhut6WUGxsbi4uL3/3udy3L+tSnPjU9Pd1utjKZzOTkZLfbnavP4cfc2trC7b0Lj+EUzniO1OrZmWcpkFartbm5abve6vraH/7hH2JNcLA2bFlWPp8fGRl55pmnP/WpT0op6/X6d7/73XfffRcBqlEUeZ43NDQ0OTkZhmG3252amIyiSCi5trb267/+65/97Gc/+tGP9nq9brc7PDw8NFzDk79///7CwsLNmzc5567r5vP5U6dOPfnkk47jgOoDmYcHh3Z2djbXN5aXVpE0Ozk5OT0zmc1mPc+bmJj4yEc+4jjOwWHjnXffeu2N1ysD1ShMGq3ut/7gZQWk14viOGUGp4TGYWQ6pmmaURgSiukropQGrXA1BykpZX1tMiF91Vd/a020VhrlyArZn1JrbXCepkkxn9va2Dx76tQjly5Nj42N1CoGo8hT3draajVaGHVJKTHfzDlv1hth0Cvk8kpBt+1rTRbu35uenj579izW6BdefoD3KAzDfvhVLJcK2QxoiYmETMY1eDZOkly+eNDqDA8O7+zua9COaQzWqmHg15uilMumUkRCRonAZSubzWINOE1j3/eZwblhra9thmGYzbiUM5EqAKqUyOXyBOTOzg43Asq51rrX6dTyXsbhWr3XAN9PEkoVJrFhWIbjRFFimiYFpSkTSZREcWNlfXJ66tTcSb8TmG4wOFB57snHrt35xVK+2hS+YiyOQ6H/WMBLDUMl76nBjkvFWmtABgF2EUqFmbxYxEAp5RxSbRiG7TgadBRFcS+ARIBSpmmC0kpKgzGtlW3bSqlutwtEUUox7U+IVkoZBhdCEGCpiBnpO65g4IULPD3Kw+Fv4ReV7EeimoCmQCRxbTONI8+22n7DcjixLB3FoAHeizIVoVRrAhqAGyIKrXxBUOpmCnEcJ3GMErf+toC+V2gTKrTtLNXATCMKeyMTk6brUdOdO3v5xPyFuLvjeVlumdSgnACqv5MkoYQb3DD4H1OsU0pRWI1dMJjecJiBmT9uGshZcByHGpz1MbIYkKWG9R4zIknDwPd3tjcKhYLjOLVaZWRkZGJsrFAolEqFcrlcKpUcxzEMblsWUTJN01hImYbceKifUakUrYEYNRhNEkmBKQXcNFAmL6VUUiOzSimFsSw8VEQmRwh7/KJt2yi+QSkbIQzLjowxThnjRGsipQyCwPHsJEmUBNfJ1A/rFACoxh5p7KxVAuVfzDAMDiSfz2VMSmU8Mzvy2c9+pFB0N1YX4yg4d+5Mp9NZXV0lSlNKRRozxpaWlizXMQwDnUPu3Lnjui4jQCkgqvHGzWtxHGcyXqPZ9NsdJSRKjibGxjnng8NDmH08bpUAgIWFBUKI52UzmYyU6YkTJ8IwxGKB67pYGwLTTIMgSpM0kX63d9xthPBJfYTXQgoaal3z+Xwcx9jjmc1m4yQRIjFNjio7w+jnRxkj2WzWsqzt7W3sJsPcCee82+1ahokScqyJHG/SACAIAsNyjr7IpJT1eosQnYr43v31ycnJWq2GdkyYTI2iKEzCgVqtE3SlUIRxICxNJCEkjGLMfwtBkcDJmYnvhMP9gytPPFYolK5evS6UTJRORJpzHNsxDcby+fzK8nIUx4TQ7e3tVqtpO+bZUyc7jjkwMHB6/uRgrZqEYZqm+/v7q6ura2trCIZFNNfZs2cnJyfRdgkAbt68tba+srOzk3Hd9fX1bNZrtVpn5k9jkFEoFM6fPz85OYmbK3xv/N7v/V6n08HbOjk5OTExcf78+cefeiryfdxLhGF48+ZNzE0CQLlYOnv2bLFYBIDR0VH8ohDi2rVr169fz2bzhJDx8fHBwcFLly498cQTWzvb+/v7t27dWlhYePfddzc2NsbHx9GhqNlsYhBMKaCN0sHBweK9BwsLC5OTk4ODg3EcpmmKDBG8ZVKrlZWVd95559atW7Ztnz17tpQv5HK5sbEJfCyZZXWbzbt37969e1dKWS1XLl686DjWxMTEYHVAa51IYWXc2zduLiwsrK2tEUIuXbo0MzMzMTExOTmZz+d7vZ5S0Gq1MONy//79NE0np6cvXry4sHA/CILZ2dlqtSq1chznwoULs7Oz/UybaWyur6N30Llz5y9dON/rhZOTE7u71u72VrvdXl1eahweTkxNPf74lbkT02EYe54XzM6dPn2aELK8vHznzh1EWJVKpWw2e+bc2VqtNjExYTCOBfTV1dUwDFEP984777iuOz8/X61Wh4eHT548OT4+/sQTT2BWb2lp6fr162ma3l+498Ybb5RKpZGRkcnJyRMnTijQJ0+ezGazaZr+3s+t9d/+Si0tL7344osUCPa9Wpbl+/6FCxeeeOKJUqkUR+k777xzeHh46dKldru9ubmJvRrf+73f22630YdjeXlZSvnOO+8AwMzMzGc+85nz588TQpjB4zi+cOFCo9G4d+/eysrK22+/3ev1aoNV7PMYHBz88Ic//D3f8z2GYfR6vcXFxVu3bs3MzKRpeufWbVw1EHEihMCJifP3jTfe2Nra+spXvuI4DjZgjk9MfebTnzVMsxcEtiV+9ud+8Sf/wU/Nnzx3794aM20hBFHATRM0ZZw7Lgl7Pak16H4mpZ/6YkxJ9XAmDB6yOVFKgVbQ33r3CzJpGucymXa79ZUvffHv/Y9/O417aZLs7+6sra1ha0Umk8GezWq16vu+aZrNZjOO4zAML1++XK1WKeVRFCnQ09PT3W57a2trfX19Z2cH4ATeo4ODg37x8X/451+8cPpkzw+CThd3P0IIoQGYubK2vry5YRhmmiYj1cpQsZBEMTG5k81xw1zZ2Nze3ZGIG7Cdc+cuoP2IZVlCSimVw20hBAFlWCYBhtaKRMtOq3V4eJgvFnOFkmvZfrflEGlRVfDsH/7Sz+D5/eov/4jBWbvdTqWIwth07ChKlFJJGIHS2CKQyWfHR4cvn7946tSpM5cu58oDv/eHL3/1r/53ucrcfjcxLEeBJpwBwM//9X+Kh/0r/+JvhX4QxzFFOFkfjooFOEr7uHkFhDDGqMHTJEEGuYol59ywzCAKQKQQo+hKDtTKGZsncdPmhBksCALbtHDl0ForLdI0NU0upbQsa2CgolIhpSTQZ32hBBtzLWj4gG9JrEyjBgKlx6lQwHiciHyuFEsyMDK5vrXb7vSUgrgXAUYMlKi+jxXXIEEKAAWgmGHk81nXdff395MoAsIAgGiqsShOCAGllCKUaoS6247l2NpyP/y5L42NTxY8Y3fl+i//s3/w2MXZMOq6rqOlIoQKSRhjUqL2iyKOjxyxGfEiYExJCOGUmZQopUxuAMWcGURRBIxSUL1er91uWZaVRLFQ8sd+sP8YbERfGxkcwi1ptVrNZjOu6zq2rZRijAAAErellEIkFLtcKQfKDDPzez+/iQf5iV/4+4ZhdUNfEwqcJUJxStM0dTNZrAFprZHaiuePwrI+TeMoDUYp5cwkhCgiC4UC1gsCP2SMJVEqpcSQ2uQUF480jYHRJInLhVI+l+00W2EYWibXRGHQLzWGDlTECQCxLdPl1DaA6mh8qPjnf/gLpZy7sXp/dGS402l1u93x8clutwtSmKbZbrVwM207zu7edi6XKxaLd+7cwQxZEASTk+NSytXVlSRJTp6aNbgVRdHQ4CAjNJfLMYOjpaMUSim1ubl5542+HWxx/A4GtZZl5YsFzM2gJMg0TU2I7/sYsWGTJorl8aIJkQBmQJWq1+ulUimTySDLBrsdsQs9SRIs9RoGsx2r0+6izDEMQ6UAq29RFB0eNoaGhsIwbLVaqJvptluIV8X/xBPGxcx1XXzlYQxNOfMcu+u3ZZKmaRqL1DAM27aVhDSVaSozmczW9s5P/aN/kiqtFQglKTMYY2GSIjwT03j4MjSZGQSBazu+7w8P1XzfT6PQch1uWIRRLdJiPhv1ep1OJ5fJlCoVzGS4nl3IZjgjSiaOZRSLec4ZIeTEiROEEMzpYkNDkiQvv/zy/v7+yMhINpsdHh7O5fKouMJIMY7jjbX127dv+76PyzmKuqrVamWgiqZM4+PjzXoDw980TcvVSrPZfPPNN2u1Gm5+UHbDGGs2m0pIxphlOWEY/u7vfq1QKCB81fHcarWKMW6a9nPVBwcHX/va14aGhsZGhovFIpafGq32wcEB8veDIPjGN76RJMmjjz46MjR84cIFJIkYhiniGBtX2+327/zO78QirlarSA7zshlKqVcsg5RgGjqK79y68Ru/8RvVatXzvGq19tRTTzmOY7ouJCkcdcndvXX7F37hF6amplzXHhkfe/75591stnFwUCgU8BXKGPvWH377xRdfnJ2djeN4fn7+8ccfRxlxuVqNogiAep7XaDSuX78eJTGldGBgYGJiAiUTIyMjWEB3XXd/d++VV14BoEB1sVA+c+6sZVlSSnSO8jvdXhRKqe7dW1hYuMdNc2hkNJ8rTkxMaEow8eP7frPdevvttxEN//bbb1+9epUQcvr0aWxtSZIE9wxIJLl+/XoURZ/65Gf29vY2NzcZY0ifxz15HPXQ3Ewptbq+trm5+YUvfKHVau3t7THG9m5WcEbMPp2gNisIAtwELi8vf/nLXy4Wi32RKDUopY1GA3Nyd+/eTdN0aGhobHJ0cHAQRVeMUFQRrK2t3b17d35+nlJ6584djLnn5+dLpZLSBInKnHMganl5+Vd+5Vd+9Ed/9PHHH19aWsK9FuJGhRC+7+/t7CIAGTsMwbQT1wABAABJREFUHn300Ree/6CUEqEnqYi73S72BT948ODGjRuJSKuV2vj4+KOPPtbq9D77vX9Gaq6Jub1bF5LEqWaUK9CEgG1ZqBbt9wj3ZfWA0CiClIk+SerIQhD6BoyYAaGUK6VASMY5o5DL2J5tXnn88r//2Z+xTNJs7Kdx6Pd6cZw2GoeZTAb1po8//jiW9fGlt7Gxgbq35eXlRqORCJnL98f0zCQAfP3nlvEvD55r9sOvv/svvjBSq6gkRS5iu9UtFothKqjp3rv/YHlzg1FCtBofqjmUNhuH5dpgLp+XhB20GmurGwq00NQyrUuXHhFC7O3tUUq5YXqOywmP41jJlJtGxsspAkEQACiqtO3aBHgs0iSMQCQ2TWulnKnVF76vL9L6f/zjTziWEYVJpxMkErQG1+OWZVmWo6UCpbq9btuX3/uZD3z4hQ/MzMxmSgXbyzWa3f/+J//x1779jpGt+UmKch/G+S/8jb6U+0f/9x9PwkhrDUqnSUKPyO9KKUX6jgQAAJQQSglnSiksERNFGGNAaRoFICSIFBg3OBuoFByDEOmDTimnAGAwjrt2QshRs4UOw8B13fHx8SjwCSGU6L5Su+9FLfEc0DQQp2I/T3I0lFKEcqBmmihi2LXRyd3DRr3VBc2DThc0QXFh3zWacCCKaKXSGDgHUKAlyBQAqGnjR8TvI/4e4OhLhGsFAJoalmIWz1c+/PFPzp85XXbpH/3OzzV3HhTzXpLEBuOEUEpMblrIuAelpRYUGDOoSGQqE4Nxbhq2aQkl0zgxDUMlscmo1oRzGiZxvX6YpinjZGxsbHp6slIsFYvFSqVSHSgvvlPA+/XpH67ZlitVapmOkIkSUso0DGOlxEMzh+KlZijDBM2oWakO/co/X8SD/A+//I/cjLe9t90JfCeboYZJNaWUGpaN4RfgBXrIJlk/BGLtT1XGtCJaa9Mx/l9c/WecZdlZH4yutPM+++RYdSp3V3VXh8lBoyyNEibZCBACAcYYvxiuse99wbw2Bhsn8OvX9rWx8SVbYElIaJRG0kQ0OU9Pz3TuCl05nXzOzivcD8+pluz6ML/unpnT++y911r/53n+AWogzvmgPwJ1pBBCo4xQsB8jSikheRjHjLGs62GEwsHIcW0hUgWbAcEYUSkllpgSojPNZNizDML9Ssn9+//HT1dLTq97yKOQ80TXTcbYaBQwRoq5vGmat9bXu93uyZMnTVMPgmB/f39lZaXRaMzNzb32xquH+weVWvXee+4uVypIiUzWwwpRSpEca+YNwzAsM01TjAjs1FtXZuBrfuyTmWw2ixAiuqaEALLtaDQCH6C9g4PJyUmgl8ZxGoYhtLXgKVCKgRYGA7JMJnN0dARYVjvO6IT7ppuGUgrMGtrtdpIkum7eBtOu62JMYYOjlIIpWq/Xy2Y8jNVw6BOCMpns7cUBGsDRKMjn867rSsnDOIkCP+NYmqZpmub7YRzHXEohVBQljGqGYeRyhT/64z/92qPfrFXrXApEMKbamAaquKFbcN5LKS3doFQDphRGKI5Dx7QQHU+oNYpHg4GtaxpjEPlnGAalOE1jyshdd5zxXEfylCuepsLNZFzXvXbtmuM4pVIJNu6pqSlIT0IIgXH/ysrqrVu3gDpTqVSq1aptWoVC4fas/Ojo6OLFi5ubm8DHOnHiRKVSGQ2GlUoljuMkSfLFAujy+v2+7/uQDwPaNBhTAtitVCobG+utVsv3fdu2y9WKUgpydeBAymazvV5vZWVFKUUxMk2zWCy22+1coQgNRegrXLx48fnnn5+dna1VqktLS0dHRy+99FK5UCwWi57nnT9/3svlRJrGPAauDELo6vVrTz311Lk77oJh6OnTp3WNIqUgyYAQxjm/efPmo48+unRy0bbtWq12/vx5QhlCKBwOJUZA53jttde+/OUvLy8vwxD2vvvuQ4TChBq8NjRN29jY+NznPuflctlsdnJy6qGHHnJdl9k2ogQppeIYa9q1S5e+/OUvg+AAMhmLXs4wTaEk1XUpOCy0L3zhC5ZllcvlbDb77ofe6zhgkiK2drZ394+CMB4Nh3ffcw8h5OqNq2mUlqol07SDYEQIC+Oo2+5IpAjC27s7lNLv+77vM00T7CQg9Ono6CgKk36/v76+DusuDMNMJvORj3zEsc3brWVMSbfbNU2z2+3eunUriiI3uB+W8Kn3SRguO44DHnLAu4/j+NKlS61Wq16bKBQKJ0+ehCgF0MTcunXroLUPLbGJiYmVGzfTNK3Vas1mE8Q93W633W7Di7qzszMcDheXTt95553QTvaDITjIQCwsmIft7OwQQsBU9syZMyA4A2bCjRs39vf3z529Y2Nj48UXX0zTdGp6cmJi4sSJE5DbrWka1djRYXtlZbU/9D//+S998cuPnFw8f3jUk0objiLOBSKMagwhJMXY4g4UG+MtWylooyAhpZTHvYbvtsEUhjGRQlISpiuliEIZ1/UcGyPu2aZl0V/6xb9zYmG6WPAYwcVyJZPJCpECy2hnZyeXy3W73fX1dWiGVatV0zSz2Wwmk2GMGZYdJ8loNLpy9dK5c+cqlcojvz92vX//J6tj+PWv//DTpVyGIeS5GURIEnNFKDXM/cPuhXcuIUq44DqRJ2ZmVBIf7O7VJyfcXLY/8EdxeHTYToRQiCqkziyfM00z8EM4xnRdJ4pgjMNgRBjVNTNKE6WUplFbN4QSlOgxT5HkhKc5i+Ydo5LPvOeh34Tr+/ZXf1EpQRAlhKSCJwnHhARxJKWKgzBJEkXwD//wDy0tLVGFKGOFenV6doZg7evf/s7P/+pvVhtL250+MRwwtvrzfzzufv3Uv/slkaaUMSSkSBJMqJLjZzB+KjDtoxQhkOiNARmG3zAshEBRjKRCSriZTMbRSnnX0GQcDgnBcRxjhYIggPaP67qYKEIp59y2jGKxGPkjzjklCGMchxF0SoIgoBqDIcLteggd08I45/DmCIkQZVLgRGLCDNsrckV6vVFr7xBjoiDCkTBoaBGECZIIKZAO6I5ZqVSAUtrp9DjnkisEjhNKEYQxJUJxihnmgmAiUaq5LmGO3x/c8+GP/sD3fVgONh/76v8seo5rO6ngGFGw7DN0HWFMCaEakVxFSciIRhgWKWe6lsYJYTQOo+Gwj0QSx6GmGeVycWZmptmcaDQaE5ONiYkJ27Zd1+U8kVKalvG53xtXCZ/4dEFKhLHiXOo6S9M0igONGZo+TsKGSl0IwRhVSgFxMopSKcjjX+jBh/zW5/+9YZlRGg1G/RQrLpGS1DTHaly44UJJUGum48yKcXIlHMBjEI0IY8y0dMdx0jQ1TdMfjtqtFhzVFGFAaY5jUUK45P3hUKQpwbRcrGiYDId9wzJSHiJKICCIx1xJ7hhmxtJ1ih2qPIt+/GPvO3NmLpfRfb8zMTEhU97p9MC2KpfLbW9tFAqFw/0DiHZpTNSAJa2UGo1G5XLZcd2JRiNKIiWkZuijQT8V3DJMhJAQyrbtTCYzGAyO2i3LsihhURRNT0+/8O3xrPb7PlWEE2s4HDKNCKUgG7tcLiulBoOBEAIhAp0hKGSz2SxwNOM4bLfbGGOAp47jQCsXgCwcVBKNcS0I8SBu3PO8wWAEKK3dbtu2nXGz8Cy63S6MPsMwVFJirBwnw3kSBBGlGNx6hUgNwwBBFmGUEBSGsRSpZ2WAf+ll83Gc+r5fLJYwomkqesPB7s7+577whWs3bmiaESWxpuuxiGG/tmxTCqWOA90NXVcS8zjRdZ0SQikWKWca1QiNgjDjWIxiRjDFyLbter2+urr6/PPPfuzjH/mJH/8xhaTi6R13nFMEj0ZBFKdwHPb7fYgM0nX97bffnpycXFoam2KDcWW73QaOHZCgL7zxZqVSAUuzqakpEMdRSpM0hpN1fX39T//0T2+7jZ8/dweIi5vNJuBawzA6nc7TTz4VhiEhpFgslsvVcrmczWZyuZxhmmmSxGmytrb2wgsvEEIMwwLXALCQLZTLKE1Ao/3aa69dunQpCIJ8sXTmzJlarRZFUT6b63a7Ozs7oHK4fv068NuWl5crlcrm5qbv+5VKJU3TqanJZrMZJSlw2BEhwCncWF89OjwYn2FerjI5OWy3+/1+GMbgbVEsFldXVw8ODorFoq7rpqlXalUpke/7wPFnjLmuu7a29tJLL91xxx2ZTCabzc7NzVnZLFIKCZUKDjvqO++88+STT05NTTWbTde1T5w4Aa4QQgjAwUqp3c2tv/iLvzi1vDw1NZUvFsrlcs7LQrkOXMY0Fb7vP/qtb3qeN79w0tDtXLFQyOZ0y+x0Ousba0mURkl4cHBkmvrp02fyxWLo+04mY2ja0Pd3dvYmJyd3d3effvrpKIrK5fLS0lKlUmG6ZlkWqNYQQru7uxsbG5AI+dprr8GKO3ny5NzcHHAHlVKGYXz1D8a8opn7/FKpdOHChaN2C+wqms2mSDmA++Fw2Ol0er3ejRs3ZmZm3v/+9x8cHCCEJiYmMCUghoii6PDwcH9/v9vuwPKEN2F7ezsMQ7CYQQj5oxCaxNevX9/a3iiXy4uLi5VKxbKs5vQ0ojQNAghwvHXr1gMPPAC5Dv1+H6bD4JgPFQhoC3Z2dt648OYP//APz83NjUajdrtdLJQnp6e/89fPf/ijH7/rrgf39tphJDTDOWr1MGWU0jiO4bRD/6thJPwWTrdjr2z5XeAFqn+NKAUO8IpgBvDLsU2RxASLciFz/313/vY//6d7e7euXnnn3Llz+Vzh1q1b+/v7pVLJce1CoVAul2GKBVQi4Ff0+/3Tp09LKVvtDhgmR1FIKQ3D8PlH2nBt7tzGse1qmmiM6pREUaSbpm6ZQZgO+4MbqyscSSyJQhBRg6I4xVQjVPP9cDAa7rc6kEGtlCoVS0tLS4eHh2EQwRI1jmNhdF2PkhipRDf0MAzTVMYYaZrWH/WxUlghz9Kwko6pmey7dufFrMd5ojNDSgnD3CBKkBJRFCmN8TQBlUEQBNOTzXN33pEt5RWWGc+5844z9y4tvXHtlmbl4yRmuvU9hqmIECIQEmGIMEGEALq6nfanjjuWx1BMIkoxIRRhzqXix17/GCONokQYpsn5eK0GQZCmCSHE1I1SqZTL5aBTTQghDFNKleT9fv/2gBkOISgdNE3DdBx9gyC4l1IAAeODX0lCSJKmOtUwQkRJwVOsJKMUSQHTazROckQIISSVwkgqqZTChCkuDcOK06S/PxiHw6cp4hzRcZmoIBReEoGkSTQuE2bq4bCPdT6zePL1x785O5G9Z3kmX6yoOOIxT4TUNKwxoiRHgmBGJU8w1izD0HVHcp5KTrHsdVsUYcxoIZs7d2ZxbrZZb9RqtVoul3McizGGsSJgByWTbvdIIZGmKep993kFQWAYBkKYMYIxNkzNsvO3yVgQL58kSRD4IKFK09j3Q8dxNGYiVIYPSZKEMFooFJhOj/pdyzCUpEJI6CXAtBQ607dnbbchF+AwBNEFmIL1ADDGEEKMMQSud0IwpmkatSzLzThKyCAK3Yzd7w0poUmSKEoJo5xzqhlCyTjhFDND1w2qm4w4OnF0ouP0b3zs/fmcfuH1F8vlDEWofXhoWfZw6FOipWl61DpoHR74/jCfy83MTgXDkUh5vVLVNM113Wwhv7u7u7q6GkdhoVCAqVwcx/l8ljH98PCQEEI1FhwcFErFB08+aJpmvzc45uKMb/rBwQEorQghmFIsBMTwgUkKcKeEUFCpA5sKho9AzwJYADkn5NgQHCEEPhdRFIHrbxiGlmXFcQot3jQV0DDL5XKu64ZBTI696S3LghkKbKic8yhKIEg7DENCEs/zkgTCN03btpmujUajfD4fBaEQKJvN81QOBr5lOoblHrZ67Vb32Wefe+qpp9bXN2ZmZz0vl/DUJDhJU9OwuUylEIPewHGcOI6klBHGASIIIdd20iQKk1QhiRByLZMammVrSiY7+wfbWxszzalsxuu0D+68886f+dmf6LRbQQhmqP3N3VuU0onJmZnpOSDRw5gbtoIoitbX13d2djVNm5ychIS+arVaLpcHg4HrurZtf+ADHzg8PASer2maL7/88t7eXr1eN0xdKTU/Pz8xMfGrv/qrUPcKIRjVbt68+eTTT0FHOZPJLC4u5vP5T3/600qpJEniOFYKP/vssy+99MLp06dN05yZmVk4eWJxcfHcXXelYSiEgjTD73znO5AhaGhsbm4OspzPnz+vaRqmrNfr7e3tPffccxnHBd+E9773va7rttttOJl6vR4U5ODQRggplQppmrZarTRNp6en4d8ahmYaehAE6yurXMnFk0uFQmE4HHqeVyqZcMoaluk4Dpfi4OAgSuJsNpMr5IMgeuutt06fPg0Kx8np6Xq9fuLECYCt0LnZ2dm5duPGwslF27YB2dxxxx21Wg2M5SzLABr71tYW2DHoOnMcZ2pm5u/94i/2er0wjmDP6fV6a2trlUpF0zRGiJfL6br+0IPv6g8HwcjnOsdE7W1t9wbd2dnZkycWKCKWa4/6w+6gRzDtHh2urq7uHewjiU+fWQYIMllv/ORP/iTMZzudzhtvvDE3N9ecnnrssccIIbOzs6VS6cEHH4Qq/UMf+hCIfAeDwZe//OX5+fmHHnroxo0bvV4PoSYs4dOnTyul7rrrrhsrNw8ODt5+++1HHnnkow9/BCKG8vl8pVKhlN59991BEPR6vXa7vbGx8cYbb0RJDOT3O++88+67746iiBEax/Hq6ura2prrumEYgjphcnLStu18rgieC9PT04NhbzQatVqtV155ZX5+vlAo7O/vQ/0wNzd37tw5IC2cOHFiY2Pj6OgItBGNRuPhhx8Gc/IgCBYWFs7dcb7f729tbe3t7V24cMEfhcvnzn3rW08TovX6Q4UJYVRIZFlWnHIOwS1SgrGq+m54rjze2CEbBrhfCB/rIr+bbSMlJoQwRjETQogk9X1fiuTUibnrNy/+3JlP1xvV6ena2bOnR8N+rzcAytpg2E/S+NatW2tra+9973vf9a53gf2NZVkgeQYctrFxC0Q2hWLOMh3D1BDKwTN6+OEPjbtf//YPf6JSzBEldWY4mQzVjJ2D1ub23s5BK1GKMiZ4wpCcn5vyLIcRpjDaPzjaPdhXCCOMuZIIkXKlcu7M+Xa7zePkGFUQSjTOeZpECU8IoYQxsDPBSnLOoyRVQqg0JjxZmChNlLMWxfe/+1/C9V19+TejKKCYEULiNMEYBxCLkXJKtCCODg9bD73n3R/68MMTU5OEUd01LcuyDIdz+md//qV/8m/+faYyv9+PENaIof2P4+7XZ/7vX2aURlGEkgRRClALfBaklIpzzBillKcpoVRiiRBhmEiJJOcQxa1EipiG4oQZumXonqtP1PJJMCBY6IxihYCJAgkDgKh0U5NSCp6kaRqOhhhj6H7xJGWMhXGUJMn3sqaAIgPQDfqcMIsM/MiyHCmRwFgSTWG9UKkfHrT3dg4RpkghRCiiFL4SQUgKhIkSQiCsmGEUSvl+v091TSQijiKkMJIKQ9sPdB+IKaUMSgQSXCTv+dhHa835L33xL1W/vXT25Cd/+GM3Lr9Dk1jDWLN1TIRBSZomSsiEp2EwStKUYEUYzXnZfLFQLVcqtfJEvVGpVQu5fC6fZQyB6yxQMaBRHMcxaBillK7rwL/9xl/04Xn9yM9Piv/1B/rbg8FgOOqnaToYDAzDAK5JyjkmqFQsG4aRzeSe/OIIPuS3Pv/vrYyr6XQUDAMep0IKyRDCIh3T724PxYSSQB6CHxjowi8QwVJhXdeTOMxms1LKJEkIwq29PaQUs22dMsuy8rlcFIVCCKqRwSiglFJEoOASIDKlBKbMmCuDEUcjFpNFz2Qq/v6Pf3B2qmoZhDI1GHTfefvt11974777HjhxYtFxnEzG0TRKCS4UCpZlO45D6Rg6g3DJybga00HvBrp3uM/5Qs62HN/3b9y44XqZ0WDIpZiengasY5qmEOqJL41Ng973Q9ZgMNB10zA03x8CJOr1epA9Cr1GmOkcl5702EQ+At0JACmma5xz09SBmgp31bKs5NjXCmPQvRpQAOgGg0Yj2LqiY9O126N5jLGh6d1u9+DgwDTNZnMaOpcY4ziOXdfmXFKKTduC+HPTsAe9gW27GNPBYECJtrK29uILLz/66KNTUzNQwXcH/SAIKGNBEBwP7aniQilhmmachIB+sEKEEMeyEUKWoUvINsDC94eXLl9OY/QLP//pu++8a21txdC0O+44NzExoZkGw7hYKR8e7mMy9iXWiNbt9J977jlwTQO50sTEBBioASpKkmRnZ+fVl1+J4xgGi+fOnDVNE3ozCCGQ30KKXKfTyWQy5XI5l8+ura3t7u4uLS1BFXHy5Mk0Tf0ghNDGNE0ZoW+//TYYPgVBUKlUFhdP+b4fBCN4hSilEqmXX34ZqIRSomq1CmOsIIqUEEgKSulgMPja174GgYyYslOnThVrNSRlPPIhedM0zVar9Zd/+ZeTU004jcB1HRHCo7DdbgNb9PXXX3/55ZcbjYZhGA888MBdd92BkEIEoZQjQ0eEoTR9/LHHL1265GRc13UnJ6dOnzmjhIiSpFIqwaJ1XXd/f//NN98EJ2TP8xYXF0GLDQoAQghhrNNqPfvss4PRUAhRKpWWlpZc18MYVyolYNdBDumTTz7Z63Usy6rVaktLS6VCWdM007aRriGlkJJ+f3DhwoWtjU1QliwtLWUyGcMy6/UJrGkolVLKfrf/4ssvdjodRJTnZudPzE02mqlITNOGrrkfheEouLm6euXKtfpE48zp5VRwQojnea7rcilh6r23t3dwcBBFUavVUgqXy+X7Hrj/dnq9bbn4OCvz6vVrnU4nFz8ASzh7cu+9732vpmkUk6OjI8MwDg4Oev0OgLYLFy4As61arQIFPp/PAwttFPj7+/uXLl26++67QQC7s7XdaDSmpqY8z8MY33aFHY1GR0dH7Vb3/Pnzd999dxzHKY9LpRLUYDCS3tjY2NragtwqSqllWc1mc2pqCirnNE13d3cvX7586tSpwWBw5cqVfr+fzWar9VqtVgMjjEwmY+jWGxfefvgjn5g7ccYP0lGQ+EGccfNROrZnArGXPxrd1pAR9d022LjLRcaRNrDPw1ELO5hQEhOGMdYNk2AkU55xTUZQ5+jgn//mr99z97ndnXXDoLpBJyfquWyhXq/ftt3ZP9g9OjoCgSckU3U6nUqlMj8/D/EVjXoDEYIISfxhEETXrl1Zfy0DF5Y/uTGGX3/45V/KZV3XshljR+2eQuSZF16MhZJEw0xL0wQpqTG5MDuXz+WoosPh8NL1axRTiZTCWEihELEsa+nkqTRNiUJgZYaA9S2loWmYEiGgna8IxUhI13U7vb4S3GSYiWRpulEvuDIe3fvQ2B/1tcd/pVQqSSHSNAHbhTRNpUJCqG5/GEVRrT5x7wMPVus1xGiunJ+dn7FslxHdMLzLl6/9vX/w62/c2LWLjd4gxIbxP/6vMffrb/+HX8EYp2nK4xi6ROiYiAcGZuhY4wYnJsZUCaSUIgwSkRWlWEpECLEsQyZRc6I8NVHRKNcITuMI4BeQzYG4ijGO0whjbFsG5xwJ3u/3GcVSSkYoxjiIQhiRwL4Jq2vc8pISiAWEkDhOBVdSSsOwMNE4ohxT0/a6Pf/ooCMVQYgggsG2EiuphECKKKUkRkimiJJKvUY0QggZdAej0QhxiTBGiiAhEeIEa1IphAjCyMzYE3Nz7/3ww1Ozi1fevvDFP/jPH/jggw/ee8fe5hpJU4bkMBoImcg0oQSVy+VKpVKrVarVajbnFYvFbDar67ptm7e/SBzHaRpHcaCU1AiNeWrphmYaigt4mznnGJNbt25RSicnJx/7yzEamLlznxDS7/dhWyeE+L6vaVo+n+/3+5pO8/k8ICeMsW4YsP4RIpKL9Ter8CG/+bnftTKeYWrtbgsbLEpSIVmacoJwkiTg2w6NRhhBwhKFwRZINMYCVUiAUCKTyYCxu8609fV12Fxsw/Q8L46AuYIQQr3BUNM0iqkcmzKPZx8YEUPXiFSeqWdtVnA0Gfff99A9H/3wQ4WszRhi2ngGihFLkgRMUzFWQehLLpRSrVabaRoXqRApEKjLlQokLSKETNMMwxgEp9CXggZeGPqQ/wqNB2DfZ7PZXK5w8VnnNvzinCNEOE/k2AqEQp/PcZzhcAhHNfgiJkniOBnw5QJQBTpi0zQ5xNIjCZo4EIpCPxjaWozpumaO+yL9DgggLMuSkudyBc4TSjV2nOfd6/XCMPTcDIgE2+22rpsYY8dxdM0AK0ilVCaTwZRwLsdM2M29W7duraytb2/vrq+vDwajQrGYzeZFOmaKUI0FQdAf9qBhBs5zQgikBMR0IqywHCtLdra2+0EAe7xrUMe1ms3Gg++6/7577q9XK81mU/JkY2NjNBoNBoPecBAEvm3bc3MztUYdPKvKuVKapp1OB0xiMca2ba+srOzt7QP123VdaIyN3zqkkiRBUj399NM3btwAHhW4mHLOc7lcJpOBWt92rL29vb29vXa7bZpmqVQC3nc2l4da3HVdnqQ7Ozt7e3vAvy4Wi7Vao9/vM0YqlQpEoGqGfvHixf39fYSQphmTk5MIoSiKpmZmGGNECs/zfN9vtVow7/Zyedu2e73e5uZmvVoDDDc/Pw8m72EcwfsAop9nnnlm6eQJXddd11taWoKMVECTCKF+v3u4u5vPZ6Mo6vV6kEvGdOPcuXOul/F9Hzz2tra2vvSlLzmOA7GV58+fLxaLuusihJAQiBAZx1euXPnOd74DO+rs7Oy5c+egLYF0DUkpOUcIra3d+sIXvpDLecAXvPvuuyuViqbryNBQFCFK4yDotnt/+Md/pOt6vV7PZL2zZ89WyxXXdRFlCGMVx2ma9gb9Rx55RNMMy7Js0zp9+vTk5BRjRMu4iHOkaSiOe73e17/+9X6/Pzk5SSmdnZubnZ5zvIwU8uDoyDCsmzevb2xsHRztO06mXq9OT8+atm2bJtU0mM5vb2/HcVqtVtc3bl25cqXVatmWOzc3NzU1tbCwYFhmuVz+/H96a4w5KleXl5ejKHrrzQudTmdhYeHMmTOFYu62yZzv+1EUbW9vv/jiix/+8IfPnTu3sbEhpaw16gihTCYDfbj9/f3RYDgYDICCeerUqQceeABUMgBrwiA+ODgAMsOrr73c6/XAXRYCr6BHCFhndXV1ZWVlenq62Wzu7e1dvnwZSI2FQqHX60EUKRRmYRzBpPVjH/uYUsq03cef+M4P/s1PLi3esXvQQZiFYUo1A7K3YV86Vu2MZ4u34dftIeOx0P+7skc4mMaDDkwIITxOmGkgnjbq1a3N1e//+Mc+9z//1DTwoNcWIkZY3NpY8wfBqVOnDg8Pd3d3MVHlcnl6ejqbze7t7d0+QcDk7OrVq7VabfHEyf39/TgOAeNyzt96cjyKC8znx/Drc4/9mmXocOmrG9s3V9aEkBzhSmPCj+J2p4sIQjx96F33uZa7ubm9trYmhFJISYQIJhhjLkU2mz2xsIgRCkc+EI8wxkIpQoip6wmPoyghGgNQolOGsUoSriS3dZo12Fw1X8s7hCen7vktuL5XHvvlfDbnmFYUB1ANp2nKJZJShlEchrGbyTLDXDqzvHTuTKlSZgbL5gqlUpUSI/Sj//ZHf/4v/sMf5OtzPT+JpPizf/L/g4/9iX/5d2HelyQJmOEijEGgCy1KsJjyfV8pSRghhBGBESISSy5TrJBmMNjfTVNnSDYnStOTFZ74BEuDMmgj3aYNAYQSimOMpUiTJPEce39/X4pUo0w3dYRQFMW34ReUBcdcZgYNAMD4vu9LgZRSGtU100ok4og6XnF7Z380TIRASmFEGKIII6TSBCmEsaYgjJoijJFhmYrgaDjUbTeJY8QVUgrc6WXKhUwZYwIjJeXk4ump2ZPMdO5/4MH56ebNiy+uXb0QD1uujhql7GSjXKoWsvlso16vlsowYAI3VKizpeKgZwHsCKpPpcb2BIxQpmsi5ZiSYORTSvv9fhRFvh9CutzU1JQjx46pSw8OILPvtr8zeAoHwajX63meZxjGyspKvljAGJfL5YODg3w+TwjZ3txq3RyrfP/1V/6jorrrWP1hL1Z86AeU2dD9ArUwLB5YluSYCHh77IiOB5SpANMywRirlsuAQra3t3WqUUoNw2CMSQHJjyiO4yThlDKMx/AdXn4hhOTC0Ggxk2EqbVa8cNB6+P0P/MAnPlAuZMKgDya0fhikCa9W6+12N0midrsdx2HGc6WUtm1XKzWqMTk2NNEwxrpuuK4rFSaE6Jal+Lj9roSEfc0wDIRkFEUwy+OcQ/+/1+thjMPd8/BNMzPXwAcyn897rqMdHwDwF0FfAcRfYFcN5KRjyryHMU44CFH5becIIH7JY48VGEMAtQVQphApxhh2eYyVECqKAhhxapoGBOQgCCQXmqY5TkYpFSdcSlkoFNNUmIadJEmaCinlysrK4eHRxsbGzt7BwcHByA8xZfBoTNNMkgQjCjopxgil1LZNwzI1TUuSqH/UliKlFDS1EiHU7bZty8pkMt1u9+6776xUKhP1BsJqZWVFSl6vV0vlgmU6jKCZmZmM4xJCbMeKoghhnKbpQevo2rVrcRx7uWypVMraGd/3a7WapmlwjFmWNRwO93f3QPcOgtO3334bFOjw9ZvNJhCbYCYOFLpvf/vbIIMvFAqLi4szMzOc81w+C09HStnvDR577LGhP/I8z7btEydOQGSNadjomNHYG/SfffbZjY2NWq2mMzo/Pz81NaXrulcsIIyRUIjSzbW1v/qrv9IMI5/PF7PezMwM1Vi1WvVyBXXcntzc3HzttddAkdpsNk+dOoUVGgwGmqFjSk3TdF13f3f72rVrnPMoimqVarPZ3N7eBbt/znmn05mZmXr68cf/+I//8Ny5c1EUnVhcevjhh7d2dt944436RMPzvFK1srCw4BSLCGOkVDwY8ERQSm/evPmlL33pzJkzYMG6uLiYy+WglSiECIKAMQbduJMnT4Jf6NLSUjabjaJISnD5kYyxvb29F154oTFRK5VKmqbNz8/bTgYT5o8Go8CHjnW33Xn88cfr9XqhUHBtZ2ZmxnYzjuumaZrEsUi5ptFeb/Ctbz1arVbhcyYmJlzXhbEGnAsJT3VmvPr6a5cuX11eXi4WS7lctlAoCiRXV9Y63TYlrDk91et0n3vh+ZWVlcXFxcnJyamZOdAOl8tljPHQD955551XXnnlM5/5DMb45ZdfVgenYQl/+CfqYRArpZI02t7eVkrduHHjjTfe+OQnP/me97wHoDOULtBASpJke3v7rbfe6g36hmGA+cXdd94F3SyEUBAE6+vrV65cgfHlW2+9tbm5OTc3tzB/EvyADMMwTI1zfnR0FEXRa6+9trS0dOrUKYhxlFKCfAQp0u12x+EKkT8ajQ4ODrLZ7IMPPgg2b4ZhEMw6nc7BwUGhUNjb29ve2/vDP/zsNx9/ulKZTDghVB8FEUIEKiLYise9iSQBChge91Pk7TkjZew2GhtPHhFCGCOFDdOMoxAxhjBBUniuY5mMx8G5s4t/8N//a3Oy2j7ai+IRojibcSQfC32AlwYaF2jT3H///YzpoBYCLXMmk4nDQKP02rVrSZJEUdBqtYr4YXhGMvfaGH79ydf/Ycax0lQMRqPVtc3DTg/2nlPLZ/woXltbRwQhwU+fWsSIXr9+XUnFCEulIIQIKTDCEqlGo9GoTwIJhiiEFeKcG5YlhMBKISzjhN82PVc81TSNEEak4HHgaur0dL3smcloeO5d4+7XS4/+YrlctAxDiDQOIyFElMSEsDhNpURcyDhO+4PR2bvuOLF8qtqoTzablUqF6Q5jOsPshdff/oFP/e1cdS5RmtCM//hL/24Mv37jp5llU43xJIWLJ4QIzg3TlFKmSaJBEl8UEdOEITJTVGEiRIIo0nWNMRb4ITP0TMYZ9ToP3nuuXHCSdEQQ0gnlSQrzIDjRx5MsopRSukY1TQuGg8PDwyQMpJTmOP+YwwxFgosYQnEcSykpHZPnAMYlSSK4cl03iVLCNEGJZrpeoXL16upomEiBEGJI1zSNcs5VHCKqY4nBd0OiFCmFCKpUq5ppSKGGw2E4CoUQBGMlpJISEwQGaVoup7DOJZuemq1Wq+979wNT9aImR3cuNosuKXq2aVHNJFTTJOc8lSAbJhTBpTLGgBMNG5ZpmvDnMCqSUgZBNBoNQGwF7wN4tEJkjRTIdd0XvjUWHzz0N7S9vT3IgcEYwzEMTZ04DsGpcn9/v1Aq2rYN9K9yuWqa5sHe7u3u1+984/9LTRtL1R/2YsElwWmC05TDEA10c7dVqEDkBygJaxtwOUJIYQT/C+e8mM+DnVW73R72BsC+StM0l/UQQu32kVIKYyallFJgrCDICCukUUoxyVh6xtRtTSVB++MfePcPfN8HdSp73YMkDUUqoyRGCitM8tlcknBCkGmaMFnz3Izl2KZpmo6NwT8pSTDGCBGBxi+JlBLSq5IkAQc7hJBhGDyNLcvSdV0pkaYCZApAW774nbGPQ/3MtmmacRzv7+8zgrPZrG3bxWIREgABZY5GI+Bmgf8WzAdd1/X9kBDCpQADGl3XCSHAFieEwLsNtxp6KscG+uNidDQaCZFCmy0IAiFUkiSW5UB9LKWkmDCm+75v2bbjuJRqSuLDdqt10NrY2t5Y27h647riahj4BjNM25ZI6YYlkAIOWRiGQRAQhYRMTd3IZDKmofUG3TRNbddSQuoIEykope3O0dXLl6amm3Nzcw888ACPk8vXrv7A931ibm4OE+V5XqGQg7WZJPFo5AdBkMlkHn/8scD3S+WybVknTp5sNBpSStOxfd9PUk4wHnR7L7zwAnhsOo4zNzdXr9eff/75t9+6+IlPfKJUKkGJ/MorrwwGg+3tbc/zHn744TAMX3zxRQBPmqYtLCwcJ1Yp6GdgjI+Ojp5//vlKtQwzyqWlJUM3GWOp4PCGA4r95je/mc8WPM9DCD300EOZrAePJooighTnfGtr6ytf+crs/Fwmk8lksvPz87lczslmEcZpEFCKg5H/xFNPPvvss2fPns/lcpVKZWlpyfM83TAQY4jzJI6TJHnx+Re+/JVHms1mvlhcXl4+e/aszggMTxFCBBOE8fWr1z/72c/m83kuxdzM7OnTS71Ou1IqzszM+GEkpRwG/pXLV7d3dwzDmJqamp6bLRQK+wcHu7u7lUrFMAzLsIvFopTy4OAAktdh5gj+9VNTU0BpyOfzGOP9/f1OpwPLvF6vc87X1taWlk67rouxyhYKaRTdunXr8GgfKo3Z2VnKzJ2dnWIxb7tOmqae51m2s3bzJpg8WYaZy+WcjAdRicViUUqezXiMsfX1ddDzQhmTz+fX1tYIIZOTk7CJZTIZKeVhq723v08xi5KwVKpwngwGo2qjnrGdmKf1er3f7w8Ho9393a2NrWeff+4Hf/AHT51Z3tnccTKZbDabyXqGZnZ67V6n3+33tt/Mwu3tsOfuvvvuc+fO6brONC2J416vd3R0BITOw8PDF154YXt7+/z584uLi/V63fO8RqOhaRqXYjQagevbxz/6sWKx+Pbbb4PQoVgsTk1NwawTStB2u32wf/Taa68tLy9///d//2DYGwwGlFLThHxbDlPI4XAYhmGn0wnDsFGffP/73w+vQZyEYH5x69YtsP66cu0qqDIbjcbMzIzv+/XGxNVrN87ecc/c/OkoljHHoyBJU5gFxbePGISQlIinKTpmcQPCQcc/8JLfbn2pY0kNGLkjSkQcU9OUQiCZlIrZ7tHBT37qR37rn/0T08BvvfX6zu7m7t624zjNiUnwNisWi2A+Al2Gq1cvT0xMAAP17bffXl5eNk1zZ2tbpnzhxFwul+t0OsPhEGN16dmxpWVm+sYYfn3j1d9Rgm9u79y8sToYBRgjz8vki+VSpbrfaq+srmOsNEZ0jSJF/MCnCCuksl42iqIo4bDhVqvVRn1SSuk6jkjSYORHUUTg9E1ThQQmjBBCNBZFkaVrQgisiBJpxqSNYm665OoqTUP/jnf/Dlzf43/5k5VKpVapRnGAhJSSh2GIMU24TBIehlEQhppmuLnsqXNnZuYXwAunUKophLPZfGcY//a/+70/+vxfVZsLgyT9L7/yX8fw61/8nGNZCmORplxKBAHpnBPGKNHG3SalkJRIY0gJpDDFBiFEEKmwVIKjOEbMYIaey3n93uG7773DtYhCKaMISwwKf+hz3BYNEIIwxgQrpRSPo16vFwwHSimF1bgeShKlEEyjEULgcEaO9XfpsV04ZCcQhHXDSpTEzKSme+3GukgJpYZCTGGkW7oQgo+GRNeVGKtqEVOUUpHGtucBNDRNk3Ph+z5KJRDwpZREp1IqTDVKdImIjBPE06XFxeXzZ++569Tf/bFP5EweDA5THiJGE57iY646ABdCCMYKTkqIWhqNRr7vDwaDfr+vmYaS2MtlNc1QSuSzOcYYyHmAt4gxDYIAUnMvPz+ehZ24rw0OW9AeyOfzEBuCEAK1ALCwpZRBMNJ1PYoiQg3P88JgdOUFF/7L//tb/xlpRrfV7fTaXiGPMO33fUQozML48Q98C3gE0MqG3/5v6xb0DYwQkJi1Wq211fWJiYkwDD3PM0w9jmMwQ1ACQhQEiG4UEhqhBtN0jLOukTGZSkYP3H36kz/0iVzGiJORqWsSSdu0uVRxHIdxbGhaNps1DAMoFAgEuVJijFPBlVKKjFUCSTx2DxYKKSE5F7dfG/iFTlkSRwghISXTCKO6ptOxSxYhT3y+B/fq/AeTcT6PEOVi6cqVK0A8At+sIAhyuVyj0UAIAem+1ToEbgeQ4tM0zWQ9eCKAzKDTA1v27RYOMJ+GwyH0HkCQpZSCmWaaprZtR1ESx7FlOoQQqGtN087nimtra4rgw8PW6urq5UtXNre3DvYOJVKFXNFxXZFK3TR0ZhBG4yQZDkeYUUqpEDwMQ6wEkiqTcRjFSEjbMQ8PD6SURGPDXvfWzRue6+Tz+RMnF372Mz+1dOokIUQpQTFpddqtw6MoiTkfA8TBYFAul3WD6aZdKpWgoS5TjiiiGBNCbt68efHixVKlpmlaPl+49957kZA6026P423b/uu//uvf//3fbzabH/vYxygjMJFxXRdj3Gq1drZ3wzBcW7u1t7c3OTl58uTJ+fn5crl848aNOI6r1TIIm6amprrd7u7ubhgFlFIQEbfaneFwWKlUwBu5Xq/7fgiyLMuyoiDM5XJ7B/uglqWUMkYWTpzwR6NerxfHKawC0zSvXr26tra2sLAAx+ry8nKapgBkGWPAJ3n++efjOJ6dnsYY12oVSPu5rS5SSgVB8Nxzz0EMZZIk1Wr15MmThmHomYyKkjCOTV1HSL78/PMXLlzwPE83LfAKB87lcOgHUUQp7Xa7r7322ssvv9ycmpienp6bnjt16hTIQWzPQ0rFQWDY9s7m5osvvthqtZrNpmnqZ86cAeRquQ6hFCGaRFGSJM8888z6+gZk45w+fbpcLmqalikUEKVIJEjKOEif/s5fb2ysG4bhuu7Zs2cnGjUoFJmup1EKOODFl19aX99QSmWzmcXFxbmZWUDYuq4jQniScM6vX78Onl6u69ZqNTB4s23bdh2dGVESMqZvbW28+eZbfhAoKSvV6vT0dKFQcF3PLeYQM1Ac9bpdLsRbb771xFNPDgYDL5+7/577p+emZ6dmC/X65/6ft2AJV5cP+v3+uXN3dDqdt956CwhJp06d0nXddh1KKXSsB4PBxYsXn3322V/4hV9oTk8NBoPN9a1MJlOr1YADEwQBSFNBxLC1tTU/P/+hhz8MOzZjzLHsNE3BG3Znd+uZZ54Bi+ZGo1EsFicnJ4EppZRiptlrtS6/cwWwPuf8+s1rGOPJyTGgMQwjTpMgCDCiSZKsra0xpj1w/7v+5H/8xW/98385u3C63QuFxHGqIC42DENg1MKMCGMqhVLif7Ftvw3FpDpOtTnexjHGGjOUwmmaEo1hQngcIyQxFs16dWv75t//Oz/3D37p/7AsjTJlmkYUB4ZhJDF/9plnJicbCwsLURQdHR21220YXkMrgVK6v38IW6VhGFk3A319yHXd3tl855nxOGXunt4Yfn31lX8ThuG3H/trhBGjLOH83Q/cVyiXOt3+hYvv9IcjhDHBCimpFGKUEYRmZmYwxrdu3Uq5gG/pOM7S4mno7HHOUSokQqZhc8XTMGQaIVQTQkAqMEV4NBo4lsujUEPpdLXQLGYcKpQUp+/7bbi+R//ix6SUJxbmPM9Lo7F2XUopEEaK9HrDKIoUVo6byZcrE1PNqeZMvljKFwuVWsNwMlzSrzz69M/9o3/oFSY7fvw/fusL8LGf+Zc/zwgVamyDyzlXYNFGCMZj9pVSiscxkhIxjDBDkiIpkU4QFgjAGVdeoUAoUjK+/44l26RhNKBIaVSHbvy4yCME+LwIScMwpEgRQusrNw3D8Ad9Silh4/FWkiQYE3Hs/oUQEUIohGAXO/b/pJxLwzDSONEMXVEtlkogY++gk8TIMDMKkSQVmqVhrJLhACFMiaGUQmNSk0SCu4U87FZSytHIT5IEKwIsM4QQ0jSEEOKSaQbRtcQPUMoRkgizux+659d+8Sc//t67UNpVIiS6IZS83RYCzW2v1+v3u+AjBa0X0BkxxrLZLGG65biYUiTBdzTBGCOphJKjwTBKYseyE54SRJlO3/nOuFDOz13P5XIwfc5ms+Dal8lkdF2PogRcPek4ODKxbCMKkzRV+XzeH/SvvjIuB//VV/+tm69Eo3h1dTWTy1JDTxLpjwI740LSw22wBYsToBg0L29PpW8/UyE4Y4wgVCqVQOG1cWsTzEJ1XReSI4Q0jSJE0vExpqTkmCiKMMNEJ6jgulmLxmHv/Kn5n/jUDzYq+TgcVSsFwzIFUpRohIxfRSk51bTxtCWMKdUwxv1hjxAilIrDMBXK0o1UCmBYg1//WGgtJGYUmBAAXnmScs4Tnmoau/1lNZ1SSp/+4hjUfuhHvdtKzzROtra2bt26BQ+x0WgIIW7cuIExBivITCaTz2fhQFJKgbkDWEuALQVCCGa7uq5D+AyozV3XRQhFUTQYDDDG2WxmNAoAfsEq4KlkTGNMD8OQEs3zvJ2dvYsX397a2YP56dbW1uWrV5YWx3o3hAhgPmCMcc6lUO12O1fIw1hfKck0ooQUPDE1JkUajnwuUog8mp+fb05NNOsTaRy1WoeGqTUaDcYIY3RqaqpYKLiZjOV5Mo7TNI15vLG2ce36FdOwgWhVrlV933cchxAiROq6nufa+3uH7XZbCGGaFnRSr125CjYfhmEAPQt6A3Ec7+7uajqzbfuNN97QNK1SqRBCTiycrNfre3sHAJug9ej7/jvvvHN4eNho1MD9HPBTsVjEGpVpiiDT8K2L6+vrYLg6MTExPT3NuQSrizRNDU0nhFy/eePmzZuwssrlYqFQGAwGpVIpk8lC3zdN01u3bkHjxDRNIPQcHh7atl0qlaIocjIZO5O5fuXK6uqqZRhKqWq1XKlUut0uEKiBIuY4zubmJtAMhsPh3NxcNpv96le/KjHKZQu6aTRq9dnZWVvXiGEgITi0yaPwscceC8NwojkNk9m5uTmMcRzHI3+glMrYmTiOX3nllf/yX/7Lj//4j0NW5v3335/NZink10mJCEqD4ODg4Mtf/nIQR81ms1KunT59ulqtMtNETEcIoTRFQty8ef3P/uzPwE2g3qiePnWmMdFESiklMCWIkGA0UpI/8sgjm5ubs7OztmFPz84uLi5ato1MG2EExooqih999NE333yz2Wzqut5sNovF4vz8vOk4cP7LJEmS5K233vrc5z43OzubzWYbjcby2TMTExOYEATrPeE8TQ+Pjr7whS9AmToxMVGpVIqVsufldMOIo+jg8PDW2q2Do8MTJ05EUbT+Rh5W3PL7xHGnecwAga7MV77ylV/9x7925513Qt8aRtv9fn8wGPhhsL+//52nnlFKVSoVjPH8/PyHP/zhQqGAGeNxjDFeX1+/efPmyaXFOI5feOGF4XDYnJgsl8u2bU9OTpqWDiJlTdMGg8Frr73WbDbPnj0L/dT5+fnZ2VnJVRyPGfpxGkGTstvtBkHwwAMPUI3t7OwYuqVpWjab9bxsrzv6sU/91GAYIGb2hgkznJEfI4Qow3EcKwHUaiqFQIgRQrD6boQMJIuMIRf5X7hfaszHJ0gRRSgmRKYp1ojOKCPSc0y/1/ral7+ARPrm6y//zM/+lJ2xwSkGY0oIieMwSRKwnNje3oZeA+QOaZqGMcUY93o9sCKCvCbGSL0+MTs7/a3/Oc7BO/3uZAy//t3n/s7Vq9fTFGGEMCbNZvP00iJB8qjdfePCW4lUjDEkhZRSo5gL2ahWFxYWWq3WlevXCSYKY4VJoVBoTDR5kopUGIZhaTqmREmcyhQB3wUpSimmDBOEpUqSRGeaQUka9MuucefJKU0mcRCcOabef+vzP5mkESP41KlTjOIkiSnGSOEwSZXEUcwRVt1uO+UyXyrNzJ6o1ybq9Xpzppkvl0PJ3FxhZWXrx3/m5zbbQ06tz/72X8HH/sRvfAYpjJDCx54LMAkmlCqllBCYakopxDnWNIUEZQwJTUqpsEQK6GIEKTwzN9frdTKu8f4H7yQqSnkERvZCCAgehg1XIkUI4TxhjCElbt68aTCqkBBxCt0v2OYAfiml4OhCCv4EApHGZA4pJaIMwKvEaBQmpuNabnH3sDPoR5SYijLJJTE1ppHE9wlCkiuCKCJKSo6EQEqanpPNZvv9oWmaSZKClxKgT0o0oQjFRBNSN7VB0HVq9XNn725Oz2uu5w/b7zu/+GPf/14tPopHnVSKURjwOAFbv36/f1v5Amc/lFBwmoIf8XA4JExPBQ/9AGN8dHTgOE7Oc5mhE4XCJGaYDPyR4oorvnFhAp7X4gNdWC3Q0IZxlaFpUJ9BLdXtdrPZLKW01+tIjHTNJYQ4lnbheKD2W1/6bTdfKTj5w8NWkMRBEiNER35oOia0eeSxUBmaNPDP8RJFSCnFMGGMcSV0XRdpCgCrUCgYmun7/uqNmwjjTC6n6zqhmHNuGBrnEilMKSUYKSU0ijWCDcIMhit5N/G750/N/YNf/vlmo+gPe7pGEVFcIkwZwQxjjIniPEmSsSxASoSRFscJpVQgJURCCCGKhGFEEA7jKJfLxXGcpmIsc2MMSYUIJkhRSqEGpVRjOrR4OeecECyFAAbSo39+APfqE58uAVoCtzld16FHNRwOMcaQRmdZVq/XIwTt7OwoJcDPs1Ao1GoNz/MUHvvewcxLCDEKAtu2DWaMRVu23ev1ALAqpYQQKY+lQADTOee6biBENGb0eoN+f3D1yvVLly7t7x9evb56OyjJNE3KGCwfhBAXCbweYJDBOdeorlENgoERxkjJNI3TOGy3Dq9eemdyojEz3dze3jQYvffee3/oh3+wNtHIZrOe54Fjaq/XS9IoTROE0Buvvt7qdhrVmm6ZExMTS6eXDM0glKBEBEEAQOHrX//6YDCo1WrlcqlarWW9DCUMMEoUJaVSaTgcrq2twQ2M49iywBAogqB0xlilWga/SrARJ4Tohjkc+leuXGk0GjCyaTab0FZM07TTajcaDaXE0dHRo48+WigU8oVcJpO54/yduq5bjm1aFoi+BJedTufxxx/vdDrwHe+6665qtWrYNtI0BEOANG6321/96ld93y8VyqZpnlo+PT09res6y2YR50gIxHkYho8/+eTbb79NCGk0Gnfeeef09DSl1CsWEZZIqdj3lVKPffNb29vbjFDTNB988EHDMG7evDk7O5vJepTSQrmECel2Ou1OZzQKNEP33IxS6uo7l1zXBV9fz/OypVL38LA3GER+xBhzM7amae+8847jOBMTE+12G6QYQGGEtxccxq9du/LXf/3XDz74oOd5umksLCzA3QMPYahpDw9bzzzzzNTMHBioNhoNYPhB5ixs4OEofOo7f62UmJ2dxRg3m81apcQYC4JgNBpRTKjGGNO/8+yzR0dH07MzpmnmCvkT8wtA4R2NRmmcQIP5rbfeeuedd86ePdtoNBhjU1NTumUF/a4QIkxieNxKqaeeegoCraVAlUqlVCmD616SJHE6dmbZ2ty5du3a+fPnmaFn7IyXz4Gb7rNfDeAmrHa/GEXRHXfc9YH3f8jzPMwoIYRQura6Cqz5CxffeuaZZzRNO3nypOXYtm3fdddd2WyWYQ2WJIQm3XvvvVLK119//fr165OTkxPNyfn5edgewfRHpLzdbr/yyiue5/3oj/0IIQSCEGzbBkXUYDAYDoeDwQDk6lgRQsipU6dqtdrO3jaYt6VpmiRJt9sd+qOdnZ04SjHGYRiePr28tbn3mb/98/MnTnd6vh8poahCRChp6EwIwZMYIYQEEkIoiRHGlMJ2Lb4Ls/B4BAl7OzrOkYPKk2pGmiSIgJQ7ZgzNTDZWbl7+s//++5/5qR9PRv1Bv91ut4RMr1y5sr2zU69PgF4ERrHq2E0amiadTmdnZwe41CAS7/b7Usrl5eWj1qE/Cqamm28+Po7Wvedj5hh+/dSvvwdjBEBxenp2+dRpjWCp+NbO3psXLxKqcykQkkgpjWApVTGfP3Xq1Gg0evvttxGhqRQKkbvvuYdiFoahbdo6Y0BJi8KEc571XEpJwlOEUAyaI4wQQkpIJLmBeC1rn2gUKI8oQkv3//Zt+KWQ8IejbDbTnJrQdY0nKSFUKSzFmGYE4pqRH2XzxbOnz59YWixVikjXc9UJN1eKwuS//tGf/u5//8NSde7/+ZU/HMOv/+vT4N2FNYYQUkJgShljaZIQSjHGoH1DikiZEk2TnGPJCCFCpggJhDFSKJ/Pu67Tbu2/96H7qgXX73cow2D7CeOq21J5iZSmUYSQptM4jN56603PtTXKgpEvhCAUM00jhERRPGYF4nHjwfd9TTPguQKqG7dYMSKEYER1xxqMwoNWrzox2+kEaYoQ0xDBhBGNMR6GBCHEkZRScI6UxBpVaYIQKtTKhBDOZb/fV1xgxhRADaoz0yEIx/2hUsknPv2jM4uLtlXBmqG7Xhr1zbQ7V9Szqi+jnpAoXyyYpj4YDIrFYj6fZxoByvZYCez7kI9xW0xAKe0PffDnTNOUYiWE8Dy33W4TQsA/Bu7baDS6dXESntfJ+zuFQgHWvO/7+Xxe13XJOVBKoesGTgdRFJXLxUKhFPjRwB/5/nD/6gx8yG987jcsr5x3834Y9/1hnIo05eA4AMQg6HjdxlswI7vdRrpt8QXriigkJMcYFwoFz81EUXTt2nXGmKbrmUwGYYUQklxgjAmBzpnUGdIpMSh1DN2zGObB/Ez9n/7aP5xamAy7h5RighCXUmGSirFJIPRRCJJxHAqhhBAE60LImKdJkuimjhXSCBsNhkEQORlXKQUlL3wLgsYRitD7GQNKQuG/AUGqrutJEgshNMYe+/zYD/AjP5ajxynpGFMhpZKSaRqjFHSI/X5/NBr1ej2EkGUZjLF2u/3666/ncrlms6lpGmEUgLht267jBeEoiBJCSDjywVD0dqQmHHIA9RwnEyWJa7n90ZBz2e8NLl58Z2Vl7fDwcDjwh8OhrpteNsel8NysUGOJohAiDIMkSTTGXNcGdA69zCgIGSG9TncU+JcuvT3RqDmOYxv6xz7+0TvOnW1ONoq5bLfb7fW7nCe9TtdybMt1FEahHzQaNcPUCCGFQl7X9X5/AGYWcM2tdvvll16qVque5eiUnT57rlAqRVEYRZHjWEqpNE7eeeedC6+/UalUGNNrtVqjMUkpNmwL4Kbv+/l8ttfrPf300zArzGazp5dPQZ8SSISCSy+X7feHt27dgqVEKT1x4kSv12u1WvV6PQpCXdcnJuq+7wPZDmh2SqnNzc0wjmq1GkLIsqypqRnosd0eBGOMYaoIRXyxWFxePmV7XhIEQggk8Wg00gz96Ojoa1/7WrVaLRaLlNI777zT8zzDcRBCKk0TzhljGxsbjz76qGma5UpR07QTJ07kcrk0ikulEk8EY8TIZMLh4IknnhgOh4ZhuFkPbMaElOVymTEdmruI0ldfePHm9euMMQiWrlQqcZrmcjnXcqWUUnGE0MWLF8H8M5PJTE1NNRqNNE7Az6jf78N1Xrly6fr161CzTc/OzM/Pw00DYMcYyxcKUqjV1dV2q5tKYRhGo9HQdX1vb0/XWaFQAGGpbZqrq6vD4TCMY0hFLFeK4cgHYrXv+7quZ7P5Vqt12GqB1ADajVEUlUolz/PA9C7jZgbDwa21dYCJpmlOTU25rts63C+VSpppwLQdY7yxsbG6uhpGkaYZzWYT/GzjOJ6ammKMcSkIIVGYXL58GRqrYOdWqdRa3c6TX+zBEv6Bn260jtoHBweZTHZ3d/eJp57MZrOnT58GQ9Ryteq6bhRFjOn9fv+5F57f39//qZ/6KdM0V1ZWDg4OCvnSxMQE1C1KqU6nA6ueS3HhwoVSqfSpT30KiAc8GVs/dDqdOAmHw+HNmzehTgODj3q9bhhGrVaD+jaNOVRlhqWvr6+vr69DU3N6erparbqum83nLDcbDoftdrvXHf7mP/tXj377yXJtQmLmR4JLggkLopASRAjhSUwIQQIppTgXiBCCvsv6GiMw9N0qGgDubZUVTyUilGmaUFwphaSyDM3S2LDXevqJr/mDNlFxzvPiMBQizeSypVIp5RJoGKA0Ak8viIsghBwcHJw6dSoIwt3d3XK57LruCL6sYczNze3v71+/fh21x9bKuYXdMfz6hX/xcBonWElKyemlU/V6XUh0a2vz1uZWEEWQqC1ESgghUuZcO+Nmq9Vqp9+7tbkhFBZI5vOlhYWF0cCXQtiGFYYhJM8nMRdCGDqTUowCnxCiW6YQwjgmQBApUOw3CpmTkxVNhIKn5x/6t3B9T37pM2maJjwVIq3VasVinkC8rlRxEBJCgCo0CqJUKoTQzNTc/PyJbKncnJ/XM57t5lw3843Hv/Ozv/IPG9On/tXfG3O/fvKf/vQxJU+h26MaOp7PQWtBIYUoQ5wjTJCQGCElBKIUxTHSTENnXtbpdY/e++57pyYqceAzTLAimqYhJOMkhLEO+LNKyXVdT5LEzdidVvvmzeuOZSghkVRpHBNCqKaFYagUhu5gysdzrl6vR6mm6yyNE3Ahj9NEKcwlwhhbjr2+tVGu1n7ob33qpVcvvnN5xfIKAqlEJEgKlEosMOZIST4mjXGOCEFYIiVtz8EY+6MREgJhRjVdCEEIkwojniBEmotnp+fms5XC1MJJKS1JKGJUo6GLBg+enpyyuCHjKOVcCMPUNIOFYZimKfgPwSueJEkYhmEcCyH2D3Zd14WigVE9SZJisQjZXhjjkT+Iomhhdq7f74Oe1HZdx3EuPTembdkTb1NKPc8D+he4fSKE9vb2gBK+s7MDpHtT1yul6mg0QkQJpYIo7Nw8AR/ya3/4q+XmXJLwVrut244QihCapikXIopDShjGWGIkpYyS+Lu10dgreVzcEEIo0SilMF5nmFiWUa/XlVLvvP2W7bpjFwAuMYZutwINo5LcMnUd46xrFTIm5kGtnPkn//hX5uaaaTwE/nsqlJQSQsoBg6qxDoBEUcQIkVLyVBJCJB4XcEIIHkN4PIEzlRwLwjWdMkxgxAwtKADBEB9K6ZgNZppGkiSYUZ2yJ77QgW/6nh+0AWsCSTkRXKcMM+oPhiCkYIxRQuACBoNB56g1HA7hRo3CUSaToRrrtHvg9UUILRTy5XIFJiBA2jBN2/O8IAg0Znied9TpDofD0dC/ubrWbff29vfX1zfW19cRpq7rZjIZkHZCPaMIFgkfDPoA3UzDMAxN13XXdobDoRCCEYIQioKYEMQIP7EwXyjkms1mq324ubmZzWaq1UqjXtc0Cto0x3F0nUVBoDDWNO3WrVtXr16Nk9C2bcdxTs7PR1GEEIb2KggsDtut/Z1dhBAjFGjUb775pqYZuVyOEFKv14vFYhRFQD2G2StF+OrVq/3RcGqmqet6uVy+8+67eZIA0Q0CDCilL7300pUrVxzHyTju8vLy1Mw0xtjJFZAQSRQBvfLKlSs3btwghECImWOZkElACInTxHU9TdM2NzcPDg46nY5lGZZlAYnbsqxMJqOUsiwrVywMe/3W4RHYZWma5mTcg4ODNBWNRiMY+ZqmTc3OJmHYbrcHgwHMly3LarfbrVarPtFAUkRJDAlLveEAkoJc1zUNe2dn59FHH3Vd13O8fCE7PT2NCFlcXka6joRQSSyEWF9f/5M/+uNisQgZ8IuLizD0pJaFpERCIEY6e3uf+9zngiAApvPp06cXFhYUxqbjgGJdRFG/33/qiSdu3LgB1rInTpxYXFx0bYfoehKMGGO9QT+Tybz00ku/93u/NzM1W6vVpqam7rzzzmKxSBjNZDKIUsQYSpIkSp9++umbN2/CQPnk4kK9WouSUNf1YrGIwbRCoOeff/6NN96A5Pj5+XlNp7quT01MGrZF8Hjc8corr7z08qvgjjExMbF48mS+UGAUE8cBB3MVRWEYfvlLfwVGIbZtnz9/vtFoZLKeYduIUaQIEiIOw42NjaefflpKCUlHDz74YLFSQ4YGdwAJoXxfCPHIV77CO/fAEp45t3/u3B2O4wADJAxDzvn6xualS5c450tLS/Pz84eto+3t3WKxOD097Xke+Ovu7e2t3boVhnEURVyK8+fP33XXXaZpml4GKYWU2tvZ2d7etm3bMsw333xz/dZmFEWzs7MLCwuObcKLVCgUgmA0HA7BdnViYqLT6Wxvb2ez+Xy2UCwWdVOTkjuOgwhN40QKtHLz5srKjR/5kR/BFF27doOn8vSZ5dEwfv8Hvk8hLeFSIMyVEpgwzej1xlr4JIqBmaOkxOp7ubkIYwx9L+DV4GN2Muyc4z1WESEIIooyJeLYsjOWYQ+63Y988KF/9du/KuWoc7hbLOU9J29ZVhj5lNK9/cOtnV3P87rdbqlUqtVqW1tbYB1848YNMPhtNCYzmczq6urExMTUxOTW1paQKRS9ruu++VQMV0hLV8fw66d//T0Mo4l6bWZ6WimV8bL9wei5l1+SCGNK4ABSSlCCHMaq5UqpVBFCXL12LeApZowLjhT5pV/+5c5R59WXXi4VSrqu94cDIQSjOqVUilRKAcovaDYgIUejkRCCIaXicKaaO39i2kRc8Pg29f7JL/1MFAVxwsPI1zRterpZLBZNQ0uiWHGhMRbHsR9EXKJYpGEQZ13vzPK5E8tn7VzOyeUy+VLWK6xu7v2/f/O3X7+88vu/8UX42J/5rZ/jMM1BSnKOpEQKIaywphFCCKOYUaZriJAoijSiCyF4EumGzlMhpfQcL4mDOBp95OH3TE9XGZE8SZWQaaTCODEsgzEyJqkpTinWNE0KrpTKZJz9nd3NrVtwUMVxLCW3TQtjTAhDCMUJR9/ld5N2u63rOpJKyDSNYjh+GNUJIYiSbr/345/+8Y98/BOuV/zXv/Mfn3zs2cL0zCDweZromibiFEVIcqEkx1IhSpQQ4+WKpWVbtmO2D/cRIogQJAkiDKUC6frJ5VO15lS1MSsU2djZmpie87J1ommIEQ0Huuh8/MHTVT1wEPf90HYcJ2MfHu0DF75Wq9m23e12fd8HoSIihHPONNLr9cDfxTId13XBMAIaTkkaxXFcyOZarVYuVwiCAFMaBEFvfQme18SZrSAISqVSqVTa398H8XatVgNDcOhsj7FIklRK1b29PUxloVximnHpmTF//1f/2z8qNmZShLb3dk3b1Qw9ibimaZjiwWBACZNS+lHIGEME3xZAgBxBHtvJUEqRIoQQDPw8IT3PrdVqCKtr167l83mgiGGFEUI6Zb4/MgxDY0SjzDGYTpFnMcfEjo5+7f/zy3ecXwpGfS4iIVQqBGN6Krih6eI4b0oc+6kKIRQXMDUA8Qo7DqdSXBJCLMtRSvlheBssEgqBGxI6cED8Ak6hlFKIVNO0NE1gCkM0liTJi18N4f99/9/MwF86ZiUKjqUCDtkxiUpJIeBibNtGCiOsZCo6/W6v14HGX7vd1jSIcFGcc8/zBqNRMVd0vIxOdYGU4HI4HAqher3ehQsXX3jhhV5/KCWilGa9XKlSBje4VAqZcqKxyPcBXUGTUtd1XdMQkjxJFRKKizRNHduEqVAhm6vX64E/PH3q5Lvf/YDjOI5rg5YKoOdoNAAHhJdffnk4HEIMg+d5p5eXwEZIHodPBMPh008/3e32TNP0PG9ubm52dnYwGHieZ5pmMPKBxfzmm2+2Wh1Y18B3TJKk2WyCU9rk5KSXL+xsbgxGfahPwN3m0qVLuq6DT8rExERlYkJEETARRcqllP3h4Fvf+pZlOfl83nGc5eXlXC6n6zrSNHRsyxyMhk888cRgMFBKZbK5u+66CzBWoVBIkiRNY9CjvPjiixsbG5TSSqXSaDSm52Z1yrIZD2MSBL5pmsQyL7z66muvvaFpms60kydPLi4uYoxvG74QQohC29vbr77xOhjqVqvV5bNnLl26dOX6tcXFRcDK83MnECFIIrCQJYS8887Fv/qrvyqUig888IDjOIyxZrOZzWY1pgW+DzxRivHBwcG3HnsCmme6rs/NTBVLJWQYKEkGvd5tMcc3vvnN1dXVxcVFXdenp6eBns8Yk8fycELISy+8+O1vf3thYS6TydQa9bvvvptSallWGvMwDB3HieP46Ojod3/3d8vVyuzsrGEYH/zgB6uNJjIMFIZI11EUpTxmhH7zm9947Y3XFxcXTccuFotz8ycmZ2YQIUiIOAiEEFKkTzzxxHeeenp5eblYrtbr9eWzZzzPw7aLpERJgjCWQhweHn7xS1+wLKtarmQymaWlJUjwpEyLfB82GU3Tnn/xheeff/708tlsIZ/JZObm5krlMvQCZJqm6Zgc/I1vfOPWrbX5+flcNguA0i2XP/efrsIS/uHP1KRS3/rWty5fuvSud70LWiFLp5bBXD5JksFgePnqVXCrGg79fD4/MzNz/vx5hZGXzSKM4zi+dOVqu92en59HCL1z+RIITYrF4sTEhFJqfXUlDONao55xs1tbW1euXrJN66677oKQB9s2XdeFstn3/Y2NDd8P4f7v7u0ZpvaJT3zMy2WHwyGPleu6aZIcHOxRSglBG1vb/ihEhLz48pv//j/+/szUyTBOkjQdBoFm2VLhJEkMw1JK3YZfsBuj/+0H/+9/cpt0DzhMKMw0GyGpa0gq7hoZLLHk4j3vuuu3//k/mpoqicQ/OjoY9eN+fxDHUZqmu/v7p5aXg9HosNUyDANapFAULS8vr66u7u/vN5vTw+FwNBqlaTxZnyxXioeHh3t7e9PT051Ou7PagIt56G9kx/DrZ3/9PbPNiUa14jgZgVSn33/70pVEKokwFP1KylzGRWlaq5Yn6g1K6fXr1/daLYVQihDVNZ6IH/nkJ2Uqb62u6UyXUoKNbxJzSqk/GsRx5GRcxljMU0opwySbzRqGmXPtrGVQEZo80FGiSXnuPePu12N/+dNCcJ7wKA5Ho1GpXJ6YmDAt3dQNKVKGCVao0+snnCuKB/2RbVinlpYXTp+pT087uZzpZnK5UizJ7/3xZ3/7P/znz/6bx+Fjf/o3f5Yr8FkYu0LIlI+5elIiShAhTNc000AER4kglCIlFBeuYysuhp2u69kf/+iHqtV8Eg0R5pxzJaTrepabG0RhmHLHcXRGCCGUYL/XS+IYCWmZ+s7u7v7RvpfLDkK/3e+ZpkGVPNjfjeO0dXTEmMGjCElFdQNJJTg3dH2i3uCch35g2SZFmCnMOSc64UI89N73KER2do9ag+jmrV1muAKpRKSIc53pKEI8EZInSEpE6Th8VCNKCUKwl3W73S54zCKBmW7ymJ+54/zJ82cMx41SNPLj/cMDN1fQ9Fy+UCpUixTFFup/4r3n5guks7PW7w+VUuVyMYqC9fV1OI0KhYLjOHt7e+CqDPKfQqGwu7sLpskQPBeGoe/7zYmJKIo6ndbR0ZEQanJyEmZbmWx2Z2dnsDH2sJlc3gSycLFYDMNwb28PhCRgKwXqIfB4NAxDZ4ZpmlhHCiGM6bOPjEuNX/kPf3966WymUNg/Otw7OHJdN0kEpVRhFUWRFCqOYzBSAWuJ28QvoIVBs/q7AAhhhFSSJMBExkRtbW15npdGMefc0EzAYYBXGEaMIFvDnq25JrZ18nM/86l3PXiv4OFg2DU0ihSBBYwoUXycc3DbuAFacXD4wQZ9W8kIFyOlpJQppYRQCKE0jcVxWIKUY1smSilPOMjgoSVGKY3iEHpmXAhCyJtPjmmq7/kBK4oieHxKIoURIxQi1ZVSlBGEkFQKkm0QlnGUKiQY0QxLZwwcqOOjo6NhEAwHfhynQihDN2fn59KYD0fB5XeuvPnWhcFghBC6eWMlSRKIrgOXL3BXBgE5QlIoKXhKGbNMUwhByfjRMI0mUcx5ksa+YWqSCylFNuM0GrVqteo61uuvvz4zNb2wsGBZVqFQKFdKg8Gg1+vk83nwP4NwpP39fTiQ4C4dHh5evHixWq06juNYBuTYIEIg0xuw+Orq6nPPPZfN5iHpcnJyEqykRqORZVnwaaPR6KWXXkJSQYQL5PMMh8NCqQgI0vO8g4ODjY0N8FuHNokQotfrVatV+I7NZjNJojAMR6MARrSEkMuXL6+srFSrVaBejT1aCUFKCs4lwkqpmzdvfutb38rlckmSLC4u3nXXXZ7nwpsM+RnZbDYR/NuPfnPYH3iOO/BH99xzz8mlU5ppKs4RQuAd3e12n3rqqWvXrk1NTVmOPTs726jVwfQhk8lgivL5PLGsW9evd/o9sCrMZrOGbvm+D7dd0zTLsjTPk76/srICJMJMJlMoFCzLWltbA/2BUiqTyYRhuLe9Bzo70zSrtbKUcm1trVarZbPZJEmq9TpMEvb29kAn6zhOuVx+9dVXgyCYmZoihGSz2VqtRgi5cePGzs7O8vIyYySbze7s7DzzzDP1akPXdcLo6dOnS/X69vr64eFhNptVGOfzeU0zXn31VYZJsVg0DMOyjUKhQCkGBTciLAxDJ+M+/fTTlNJTp05JKV3XnZudBp5lFIZxKoBusbO3e/HixUKhUG9MCiEmJiYcx4mjwPd9MF6BWJQrV64Mh8OZmRmllG3bMIodDAbtTgeCq6Hfv7a6ClmiQohsNms7ThgE3W43iqLRaACT65s3b66/PT7aP/bJbDaXC8PwYH83CkIuha7rhUKJMXb58uV8oZDLFQqFAkKYMba9uwtB2pDC2W63R0GQy+VyhaLrusDND6MEjFj7/X4U+mfPnu12uyAQmZiYAC4ptHvB0nk0CjRNGwV+oVA4d+5cuVy2TKdQKGCFO532zZXr9YlGmsYrKyu31rez2SwjdLLZyGQyxWLett1ctuAH8S/+0j/6/Je+OjV5cuiPIp6mXGRy+cHQl1Kapg3CIIyx4uPMku9pXnyX9QX7J6Db8Xk3jjAhSmGECMLYsohSyiC6RqjB6A9834c/9ePf3+3unJyfRghdu3zTNK1yudRqtdKUB1FYKhSz+RzYIE9PT6+uru4fHp44cQLmjJ1O5/Tp0wqj/f09yWW+kDNNs9frdY5aMzMzbz6VwDM6cW8wDlf56Ife47luEsUHB0exkG++c1kghCiVQoIRPEWyWihM1muWYYRhKIWMgoAiJBFimKRJijG9euWKRnUlRCKTIAgwJVC/Vqold3Y6FSmcFphRwzBMDcopamiajEdEMcMwuB/rx5pBqCMB2yKFpVAHewcI4WKxUCoWLcuO/YAxYhgGIiQWKWW42+3c2lgrNRqZfO6o2zFd9847CrZlnFo6yW4nISIkMcKYKCGUEBxjSojESKNMCCHBUUAIHnKepkTXNNNUGKVhaup65I80Rj74wXfPz82YOvUHPUIUoVijLBGJptFc3kWhZitVKBSybiaJI6xQ7Lq7W5uUEKVUmiQPPfSeYrn09rUrE0pKxbOO05z4/n5/WCqVFMJJkkiJep1uFEVxGPU6nY2NDaWUmxNS8mAw1Ma4XdiW9YXPf45QnWr24unzzUZ9rz3ABGGuMKG6rksukyC+beiPCLT2NCFTnkQYUQhGuPrOFc00ORcIoVSog4OjTD5FmK2s3vJ9XwqMSBBFUbFcyGa9nGlHEfcDEadJJutqmpamsWmaZ8+e1XW91WqNRqMoimD7a7Va8NIfhzQjMKODKjaXywFNJ47jbDYLDuZgUMQ5n5qaurQxvvBsNgs6f1jwnuft7+9blgVngK7rwFEAlRaSGBMSy0RK3u8PERpT75VIPdftD3pKqVwuxznXNCaEVEgppSD+SDcNjHEYR+w4dEgdm6+O3xwpheCEEI0ySikmilAkFaeI5nI53/d1ymDGB0BNSqmkRFjappm1qWMgiuKf/NSn3/XgvQTLVMpsNocQSqNY05gQgiKMNQ2OZ1AtHLesxoPI27+FDQV+4H6maUqpBv8lXD/nXEoB70scx0gi8J0HgSSAOcoYRkgbM8bG+8LR0VGxVNrf31dKVSu1IPQTdbxnIWQzi3OuG2aSpFEUAs4jzEii2DBNJWkSK8ty5xYKmWzeH/oX37q0tbP96CNfLxaLCJFWq7OzvWvalpTIMIxz5+4CqlaappSiOE6lUqalx2ESBCPGiGPbqZQEYSUkQZgqJYUQMu0PwqOD/Xqjaul0d3sTIzk1NfXe9zw4Pzfree7c3MyP/K0fWFlZOThoZzKukHx/f3dnZ2drawsE/41GLY7jra0t13XhPSSEVCoVGDhCl8U2zV6vd+HCBdd1Pc+LoqjZbOZKpUaj8f73v1/TjNFotL+/3+/333rrLd/3z58/D8jmxNmzFc6npqYYoRDMrJR65ZVX3nnnnXK1YprmxMQEhL3cd9991DRBTQkTw5s3b964cQPMVKWU4JedzWahZLdcd3l5uVAogLQzk8kEQXDx4kXbtm3TkFKatjM9Pb20tLR87tzB7u7m5uYdd9yBMb5y5fIjjzwyPz/vOI7jOJBI89GPflRywTkfjUap4Ovr65ubm+BThaSq1WqFQuGhhx766Ec/miQJ1ZjjOBSTmzdvPvHEE7ZtZ7IuTAxd161NNIDmn0YRRvTFF1+EYCVCyPT09OTkpOu6CwsLxDBUkmDLQkL4vd6tW7deffVVz/M8z1tYWMhms/V6/eTysoKZLI/Bs+b69etCiKmpqTCOwYSlWq1OTU0JIRhjiLFGo7G2tnbz5k2gNAHdCuwPXNcNgpEQolAonD59Oggi8BqNoigcDNI0bTQaTiYDzvtePu+67uuvvBqGYbPZLFeK09PT7fbRwsJCtVodBVGj0SCG/vDDDx8dHW1vb+fzeRAAJUnSOWrV63XTtOI4dhxnZmoa+FLtVkvT9V6vp5Qa9LuZTAZMyKSUluPUJxqjmzcvX76slAI2WBj2KKVzc3OYMSREFEWUkAvd3jsX34ZIosmpJsRAFYvFWq1GCFJKYUo7nc768Rl34cKFk4uLtm0Xcnm7MaEZOoSDQRbQ+toaF6uZTKZUKlcqFZj/QkmWCpnNZnf399fW1l565VUhxNzc3Lve9a5aPQOR9oSQJA43NzdnZmZardalS5cuXbrkOJbrupVKxfM8yILEmIZhOPRHzz33HKO6bbkbGxvPP/+8YznZrDc9O6PrercbLywszM6cAA7ZYDB44uUn7rrrruXTZ/cPDzdu7XzhS3851TzlBwEmRNN0rGHwJMpkMkAdGU8bvsfr6/bwEbbv7x5/gMxu/wIsi5TAjBCiwjDUKRkm4XRzYn9z4+Of+PDkRLXb2QQRjOflGNO2t3dggfd6vUwm0+v1pqenwzBcX1/XNK1cLsdxDFlepmkeHO4naco5z+dy4BMOUPXw8PB25mOapuPu19ee+2e2YUZRfGt9861rKxKhFCFFmEJESW5STcPoxPR0qZhP04RSmnGc3mCgWdb65tba9pbEmFLtnrvv05keBYHnZgzDYJpBKUWUWJZhaJqUQikFQwchhAaDSCGRlBoShkpMEVMemAqdf9+/guv7yp//uEZoFMRpnAghhv7AcuxqtWLb9lRzQqRcCaGUGAZ+GEUY0zhMCKEzJ042Z+eaC7PT8wu2lTGsbCcU//Y//tf3Lf80fOxP/ManEaNU02ANUIQppTxN4fmNx4YIISEQwogSrOuGplsaq5Xy99x9ZzGb0TAK/ZGQCaU0jANCEWYEIRmnCcLMMAxKCcVEpbzX6Q56HSB7Lp4+lSTJk089lSsWwjiSSlFKTcctFAqmYdXrdYlUqVpJE8GlsG0biDWXL1+emZlZWlp65JFHXn3xhelyFfGUMcaV1A0jETLlynRyISeDkPtxEiWxazuJH/FQpFEKok56TJ0hDHOeyCTUbCtNEjeT4ZxHI59ophQKUU13rGqj0WhO3trYOthrVRtNy86lXH3oYx8pl7Keoe4+XS+yrgpbSZJQipMoBvWWUqrZbLbb7W63Syn1vBxEVRxHCgqIWCZIFgqF7e1twzBs215dXYUzzzRNSAcrFArtbnd2dvbVx8agZ/ldXfCihN6PZVlKjZePECIIAiEERA1yzpOYI0qIQQlBe9sH2xfr8CH/r9/9ubP3vmev17m1te15OcuyJCLD4VA3jdvCbBCFjIP/vkcjg8g4N0kJKaVgFI/d7aWE1BfDMPa2dxhjPAHCPpNSaoQySk1Gi1mXqVgjqWPIX/jbP/mhD76HINnt90EVq4RMwW8GKSklRuO0bxgXIoQIHZdu+NgxHx3z6KWUSRoZhqEkjuOYUgacBkIIAK+xZQY424lxcg4ku4PPmenYpqYrgoUQLx7Lpt73w5n+aGgwDWPMKOFxxJhOCEmliONYN0zOOSGMEKIwhQtzvQwjVEokpYyjhBDWarXW1m595atff/TRR6enZ6vVasq5bdulUpkQknCp62Ycx0iMe0WU0iQOOeeFQsE0dYIoZZhzrhHCOR8MBpubmwSrbMawHWs4HL7vfe+7//57p6YmNcY4T8LARwilaSx5ommabZt7e3v5fBFTDYweTNO8dOmS7w+llGD6IIR49jvfMU2zWqkbhnHmzBnQfAGaFzItlEqDXu/111+HLZVzns1mgdVaqVRyuZyU0nZd1/P2dnagFWFZVjaTYYxdu3YNhi8Y40qlVKvXEUI8TXkiEEK6rvf7/eeee24wGFCN5fP5U6dONZtNIYRmmkjTVBgihAaDwWOPfavb7ZZKFdd1wbEdIeS6LiwHeD8vXbrUbrcxxrZtNxoNy7L29vagIQfFQzaf73fbCCFYpzCafOOtC+srq/Ozc9BCXjy1hKg2Gg673e7Ozo6haeVyeX117dVXX50/sQDY9OzZs47nIV1HCInRiOoMSdnv9f78z/88TOLZ2VnLshYWFmanZjXDQIYhfZ9oGkIoTZIXXnjhG9/4xpkzZ8DWYXl5Wdd1s1BAnCPOkVKC8729vS9+/oumaeZyuVwud2LpxFjvaRgqiqAgHwwGf/rHf8w5BzbC0tLSzMyMnc2CHx5SCnGOEHrl5Ze//e1vT09P5/P5arnouu7s7KyTySDNgGAiJGUcho8++iiUGY7jVOu1+dmFEydOCCE6nY6u62kaH+7vf/GLX4jjeGJiolqfWFpaOrV8mpkmYgylKdI0GQSEaes3bz76za9LKfNetlQqzZ88MTk5ORoGxXKJ6jpSiieJEOK111577bXXIGi12WyePHkyly8SywSPcoSJiuOjo6PPfvazcRxXq1XP85aXl+dnF6SUluMixpDiMJ5+6qmnnnnmGQhtnJubO3nypFcsfu6/rcES/tTfnVEI7e/vf/ZP/0RKOTMzUywWXS8zMTFRqzV021ZcQthaFEVH7c7XvvY1y7IajYbl2HfcccfUiUWUpoORv729vbuzXywWe4N+t9v1PK9SqSydXNRtW6WpVJxS1mkdbm9vd7vdtVvrH//4x7PZbK/X41LBvmSaZm84BEqAPxhu3roVRRHViWUZ99xzz9zcnJKUENI+armuC8at+UJpfW3zz//88//1D/94amppMAw10xz5vkAYE4IQ0XUdaN/gcE7+F8QFdvbfpd7jYwQGtSshRCKkpCQgb2JUilTXdYZRwfO2d9f/0+/87t/8oY8fHW0SzDut1mRjolSsDYcjTEmn1ZZS5jJefzSAo2cwGMRpkiRJEEcQNZbNZg3TBManQqJ1eARYf3V1dbLeSJLkRz70L8bw5jv/fAy//uqJ/xMjlCbi1ubm/lHXynjZcuX66i0wW9IRuuPMMpPS0JimUaWUqVtUYwLjG2urq1vbTDeSVH3gAx+YnmimaYoVwpQQzLgCMMNFmiCEwPELgz0PB8UEJQhhkRiIGzySQV/n6V0fHA8fv/Y/f4IoJLkI/QghFMZRKhLQIpXKhXKxpDMNmEMJGHjHPAiianPy3e//QLlWjbhoNKYK1QnNyf/FF7+ex/fBx/7M7/xd6BDcZvYwPD6Q0LEdiACxG8GabmoE25ahE2Vq5MMfeK/JmEhiSGzUdaawCpPYtFgqOIj5Qz9IkiQJo2KxePbM6dnZ2Wq1msvlmtNTb7zxxsMPf/Rd7343pXQwGPhhpBnWUbvV7fTjOFYYKaUUJrqucymUUo1Gg1I6MTGhadr29nbsBw7VKFYIoURw3TDSVKQCNacXOqP4qD+ShHKhJBeDdhelGCGKhCCaBqYDqeAIISk54omb92zb0jQtCILBYChSiQlTXBLLkkmMCEGGjsK0OLPgZYr7rc77P/yhE/NzGZMsTedm8oku+zu7W3Mz0xjjXq9Hx9HLGHxHS6USYzr0XTY2NprN5v7+PmStABgFRyhKaZIkkLgMJSnG2LIsLqXruk8dJ0B/5JM2GCjD3AEIQIQw4DGw4+xnSqmSWErk5FxEUZwmnYP2+usl+JBf/8+/PLFwCjv2MAh2dw8Nw0CEQa9LCKHruu/7/nBEdJ3p2u0SCipCgF9AxyEEa4zomkkZZlS3HdM07GzGabfbURAyxoBXSykVKXcsu+A4GpWOpggO/85nfvRjH3lfHA4H/Z5CSGKsJEaIMIIQQkpwitFg5INy6rYXBtPGJgugtUEIGaYJMIsxJmSKEMIIMiUJDATjOGaM3gasSI2BHfAd4RjTNC1KE2i6wI1987ExVeL+v2FwznXN1ChGSoJ/LKWapmlJyglhUiDLcnTTUkpxqTDGURRduXzthRde2N/fVwonUbx3cKiUak5OjY1IkEJo7EZBCEuFIIoAYjBNU0kJHmQYoTiOfH+olCIImaYejPxyuVyplmrlWqHgHR3t+P4AGO4TjUaapktLJ6cnmyBxSHmslDJ14+jo6PXXXx/6I9tyqa7dc889wIICbJokieM4BwcHnVZLKTU7M++6ruu6169ff/nll8FDy3Gc83ec5ZzXajXLcQa9Hmzl+/v7r776aj6fB1vFU8vLQKq1LAvuqmaafq937do13/dB+zk52aCUbm9vZzIZQzPjOJ6ensaE9LrdKIqEkvDab2xsrKysQEweuJtijCEPAExQpZRbW1uPPPIIiKoKhcKdd94JbqLMtuHFQ5wHQfCd73wHrFg0TVtcXCwUCsNhH6b/sOKcbPbo8OBo/wBeWs3Qe72eH8aQpUMIsQzDMIy9nd0kSUCxnsvlisXiysrKxYsXp6amHMcxTX353LlgOFRKUV3z/XEsTzAMnnvuuePeDKnX604mA8JkoGmCguGNN97Y3Nycn5+HSmxhYcFxnDiIoUEbx7Fu6VEUfeUrXwG+Eef87Nmz5XJZCaGUGgwG0GOmlD722GM3b95cOHmSUjo1NbW4uOgCTIzjKAwJkrpprq+u/smf/MnpM+dyuZxpmo1GY3Z2VikFYbLAS37n4qWVlZXl5WVIdJ2cbBiaJkQK3mx+GDuOY7vOCy+88Morr0Ao9dTUFEBYaukqSWTKCSExT33f/8bXv0kpLZZLhmEASGKZDJDlwcUjSZL9g6MvfvmvJhu1qakprNDS0lKuWERS8jSFVNAgCJDEFy5cONzbbzabusGK5fKJEyeoaSLo4R0rJ/b39198YlyyLt7TKRSLjUZDijQKQqA5Ml3DGF+7duPa9euzs/OFQiGTyeSKhWKh1Ov1RqPRytrq3t7eYDCYnp2fmpqSCOu6TjAbjUb7hwdQ7sZx3O/2LMt66KGHcnmPJ+lg0CsUCgihUeAD6On3+xcuvo0QShMxPT1dLlcyuWy5XKYI2Y6bxsHh4f61G9eFENPT08Oh/87blx3Lnp5pNhqNfD7vevlep//pz/zsM8+8VKnPjKKUCymQ4kIlSYIxaLdJEARIKiUlxd+dTowL5u9hfY3/5PgH4zE0g8YY0ymllGCsU1LKZrY2V9946RnHYetr17vtI0PTy+VyrzdwHe/g6CiJOVJie3u7VqtCLKZpmojgKIpgpmfbdhiGX37kkXvuueeBB+/TdT2fzcG60HVdplxKeeWF8WjlvT+QHf+qkM8yooGdT63hE90YJalOVIykRujd5+5wLbN7dBiMhsV8LooDkaSGaYOxN3xDqcbMQSALJ0kieIwZBbNvCJbBjELm9hiEjsexSgqVIomEQFKy77lxRCnIQk5FwhgzTR0lajQKYe1pmlatlokguq7HSQLND4WRa1lYikG/a3tZzpNhv1cwM3NTE92t8cdqFCdJmsYpwYwQgpRKRMoYE5xD8iNBSiiBkdSZzgh2bcuxNIOpSjGfdQyKFceEYRLHfNhr+5Gfcs40lApeLpemanUv61brtZm5uWazmc17426NQFTXe8M+R8iAUCAkdJ2lImrUqsV8zjAMTRt7IGGMRZICHNR1/WD1VrfVdl1XozRRicKIEMQMHSz2OU+ZRov5bBCnktA4Va1BCxGGsEBCIEoIo4hgNc6/UvDmwbPu9/txHIs0RZghhDBjMk4M20l4wihNKVeSl4pZZuiDbq/f7/OAkpmyl8vgREw3p7Y3b2UyWSDRd1qtJElqtZqXyZi63m63oyjSNC0O/d3tzUwmU69UTdMs5LxWqzWm8RKSz+dhyAIGrfC4wzAejQKExqz5bn8opYyiZDAKBoNBo9Ho9/txKpiOKdODKAJUcdRuIYQmJpqVWg1RxTlv1ibXXx973CVhoFOWSum6rqn3pZCMKqAnquO4bgsOiQTSNsd2X1JKgoiSkmAsMSaEKoSFUmnMXdtIE4FFJGybYmbpVrfTsk3L8zyRxswyKZYUcyZTRsinfvRvvfuh+7vtA0pUHIeW7SZJghQRgnOFFBKSp4RigLAIIZiIcc55KjDGURhjjDEhaZqSNKWUSowSwRnBSZJAlqgQEnxfYXEBb0wpRSijDAuhuAAJJKMUaGRMKRXzVAiuaRpC8e0ykRCS8pgLLNPUsizD1BzH1TRDIqIU5qlotXpXX3u72+33e4ODg4PrN1e6nT5lWNMIpdSx7Znp2SiK4jiVEgRqkWVZGtU1yoVQtmFjRQhFGKEkDpFUnCiEFE+CbrdNGbYsUwp5eLjPMDp39oGz55aL+ZJl6bX6BzVGxo4zI99xHCHUE49/+80335ybm8tlC/V6fWFhwbEzH/rgw9DnS2W6t7f3+OOPCyGq1Sq0iMrFYrlYnG42Oef93hAqgTRN77/3ASGEk7F1Xe91B2+++SZY/IeRX6/XTywtua574uRJKQSoODnnL7744rVr1+r1Opz9p06dsizr7nvvRVIeN9Pl7u7u9evXpZQZx4PxGSRduq4rlAS7FvBE4JwzXXddd+j7R0dHo0GvXC5zLhlj09PT09PTv/RLvxTHsZIYypiVlZXnn39+aWlJKg7mAqZpfuL7vx9RitIU0hHCMHzppVd2dnZMUy+VStVqtVKp1Ov10+fPozjp9/umbSGEXnrltVdffRWUaycXFiYnJ0EAgRDinHf6nf2j/d39/VSIze3tarVaKOb29nZBdjNZbzBMvHwBG4Zr+UtLS4eHh+12W9MoYyRJop2dnUqtUSgUoNWEGTt9+jQ9NqgDx+aVlRXFledmcoW84zhu1lVK/eAP/9Dh4WEcx66XAYP1tZUVGHUFQWCblmPZ73//+++88852t2uaZibrpYJfv37t6Ohodnomk8nwJMlSrdGY/Kmf+umDo6OtrS0n41r93nN//tnz589PTEzoppHL5Zhh5PP5hZPzw6GfpqnCKAxDniSdTqtSa+imrRmBYRgJT2dnZwFwALtmOBz6vn/jxo1cLpfzXE3THMcpFoqf/NG/1e/3eSoxxrbrEEJ2VlZWV1dnZ2dhkRaLxWqt/DOf+cn2UUsIkUTxsD+IouDGjRuu6zYaDYRINpu1Mt59Gu20Wv1+H5DxaDAgo9GtzU0QhIZhqDCq1msIHcIS9oNAN4xerzca9ofD4ezsvFAok8lQSk8vn7VsdzAYHLSOuFSYsjhKLMcWCs3MzM3Pz1++dvX6tetvvvkm0416vX7H+btOnjwJEQUIodFohDHudruDft8fDbr93q1ba9BLLpfLnucBG+R973kvNDhardaFNy/kCvkHHnig3+/3Ol2peC7nnT97Jo5jIRTF7OyZ01EQHuztX716dWdn56c+87ODfvDEk0+dWDzb6YWaboooQUoipBjTEcFUY1EQqzRFmCCl1DGzSCmFiULfQzRC30O3v61/vI3L8LHHkGc7+Zy3tnb1//yVX/I8o3W0q+tscrLBiMY594NAKsw5L5fLlqnfddddr7/++n//gz/4mZ/5mbNnz2KMxvEGCJWqFWLbk5OTTz75ZOgHu9s7xuKiZVkrKyulUum+9743HQ6vvHAN/v63Lr4zhl9xGKUkEUKFkY+x4klEBI6CUEOoVinbltFqtW6s3FycmcnmMqgrdF0TIpVSSS7I2KUdSSmDKIrDEOpdLgVSCnKGdEqllHGcjnf2NGUEAzoeS/OURFyaTFc8vX3jmEZUJOI4QRhjShAiUsYSo16vly/lt3Z2iEYKmSw/TrdwHAdHYRRFhGLXdZMkOjzY0/ojIen01GR3a3zf/eEIpSnCGBE2DhdCKCUEKSUwTqVEaJzDLRmzNJbLWIaGTIMsnpwK417n4CiJQ9dy8/n8zMxkoVxoTk3mcl6xXMpknGI2RwhhpqGwTKVIBe8PuoZhaFRHSvAk0giilEQRl1ISjJjCPPZNZsSBz0nIGDMMg2Hsi0QlMaN6PBzmHNOz6mkU+1FomY4kKIqC2/dcCcEI7vV61UqxMxiNwhEPI4QZohRer9s8oTEtUQHfSUG8T5qmuULB932kSBqnhBpSSoykEClCcjQaWI6VK5Ujifwo1KmzvXNocGmRXt6z5ufnj47aR0dHUE3CgCaOY2hQAe4sFAqmadZqNaSIUkrTDUAVYCp7dHTUarXSNC2Xy3BJpVIpSZLvXT+jwNeZ4eWyBFHTtpTCrpfVKHMyLiOUEALpRpTSazeud3uDvj8qVAq1Ws0yHYTG8MtxnMD3U67tHh4ybBBK0jRNOMd0bC7PGBMKhWEoONd0HahRQCmDewiDJHIcyy2lYoxBEo5GmUZxFKaVQj6JwtQfuK5DsDJ1TUdJxtF+4sd+6L57zve6LSRjhCXATYaJkMqBHpJIDNcOwwDmnAghCMcETz96bANmaAbwuuI4jnmqaRrVqKZp1NAsy5JSQf1HKeU8/Z5yENSOCiJEQYWepqmuG5ZliiAUSOHvrRcl9jI5AOuGYXHO+/3+wO/1Or1uf7C/e7C5tXPhwsUXX3jJNG3HyTQmJhqNyfxc2TC0lIcYIynVyPf9YQBnP2NE13WMpOd50tBs24Zgyk631W21tnc28/l8LufxNLzvvnt/7Md+sNGoeS6YZAaOZXe6rTiOd/c2crn/P13/HWfZdd8HgifdfO/L+b3KuToHoIFGIAJBACRAUpQMUiRFRduSZXtmd3attcbrldeeHXksW2NpbI/kkSxLpkSKSSCJBpFz6IhGp6ruqq6uXO9VvZxuOmH/OK+a0Oxn6y+gUXj93n33nvM73xjxvFar1bR0Q0bFOo5j6tpDDz3w4IMPBkFAQ+44zsLCwrlz54aGRizHjMQjs7OzY2NjX/3qV+/2f0MI1+7cefvtt5PJpGEYjh31fV/elrID8caN6wAAxpgMLk+lUqOjo7FYrLy1dfXqVUVR4vF4GIYTExPxZPL+++8/evSovNSyDfMnP/mJTOgAgD/00EPxbHZ4dHRoaAgiBAQCAHTb7VdeeUWeTyKx6OzsrMz8PHz0KBCCcY4JEZyvrKzs7e42m01V1VOpVLvdln0SjuN4boAxjqbTxWLxkUce6XQ6lm1I3/vi4uLa2prMg5DeQMNxvvSlL1FKhWCtVsuyrPfff//HP/7x6OhoLBKNxmNTU1O6ZT7y9NOPMAY4F2EIAWg2Gn/0R3+k63o+n89ms8Njw7lcrpAvyRzdIAi2tjcqlcr6+vqFCxdiTsS27YmJqYMHD8op8Og99wCEQOABhALXffnll9946x2ZcDY5OTk2Nmaa5mNPPCEolfJiqCh7e3uvvPRyPB7XTSOVSs0dnOOcxxLxkclJIARgDDDOOe90Om+++SYAYGpqarg0NDc3JwVt41NTAAA/8DXbbrfb165du/rxlWazOTUxEY/Hh4aGJiYmpmZnwyAACCqqKoS4fv36xsYGY2xycvLIkSO6ZY3PzABVB0EAKBWcl7e3Xn/99UarY5pmIpF49NFH86ViLpeDikI9r9Vq7e7uVqvVvb29559/3rbtibGRVCp1+PBhRVH8wE+lUoqiAyEAgoAQaRL64IMPGGO5XE56PDFE4+PjBElNL/P8PoTw8uXLt27dwlg5ePDg6PCIrusjIyOKrg+SJjhvtVqLi4s7Ozu6rhuWOTc3Nz4+fvcRfuiRRwAAgtKdnZ2XXn4VwdfiicTkxESxNFwoFOYPHQQAdNrdSqWysbUpF5yhoZFYLBaw4N57733yM0+3Wq1Or1+pVHZ2dvL5/O7u7kcffRSNRpPJZCaTiUajEIBer5PP57PZtDxOrK+vr62t2bZ9/PhxzgFjTFGUVCr1mSc/3Wq1drY3t7e3V1fuMBZmc2nbcTjnhUJhZGTMMvR4PNntthVFabTajLH/9lffEgC4fZ8DFNIwYDQIQ0IGPadyiQMYI4ik3XUAcQ16+cT/iXaU6zbf5x8BAHIOIwoSAFimHnih33cJAJ99+kmMgR/03F6Ha9qLr/5kZ2fny1/5aj6f13XLsaOYQE3TRsZGxycnPvjgAyHE9vZWv9+fn58vlUq7tWo+nx8aGnr00Udb9VoQBBcvXhwbG8vlcmEYfvjmm71eD4CMfFd93xuQj9/+8X+nKIrr9yHEEKGu63GBLl2+BhE6fPiIqqoLCwv1Vnt6ZHi0mOt12pyDIGRENxqdzuKdO5AoARVPP/V0IVcAAIS+zxhDhEjUGmOsQMg5p1wABDFEQggMgYIJgARwgQDHkAK3HbRrMUWcfGig/Xr9+78ShGG10QjCEGNNXuJ+v+/2/HQ2qmoKxnB+ekZXtWazLoRglAZB4ERix+45mS4UOISUA9NJxhL5Pid3rkXky371n/08YBRAhHUDQkh9X6Z/AYxBEACEAAa6aWKMBePZeDzm6AuLl7/whSfnZsYK+Vw+ky3mC/F4IpVIYoIM2wSAA8CkpB8AwHyXMYZVBasqowEmhPrh9SvXTdN88cxL//xf/M6nPvVo3/U8P/Q8DyMgOEMQE0ICGiKE5DYgVRoIkUgkst+LB3q9nqroiGAqo044EAC4rn/k2ElINKgZ65uVpTubIQPApwBgRMjg5oNkwK4yBiAHCAAa5IoF09S73a7nBf2+S/s+VHUICCSI+V1oGal8Sbcjmm5nCqVEOh+JxBzdKsbUew/EHNJdv309l45DDqNOpFKpxGIxOTkZhmGaJt5vvZRvwPd9GTVJFE2y5nLiabfbqqq222038KPRqGEYGGNN0zDGF18dmDBOPg0VpGimpmKVAYYBRgrBAAoEdUWVhkSkKIAxxpjn+fVOs7xb6Xa7mkBrl9PyRf7j9/8VxRZ2IgEQ5a09AYEfehwgrKgyKh0AEAyybTnnHOKBUEAym4qiBIGPEGaCq4ouuUXT0AhEBKNCLkN97/rHH40NlUxdC7w+ANw09FQioqvwKz/3xfvuPe72267XtkxdV5QgCGgYCg44B4qmYowB4JAgzrmgnIVUzluSXhxkRgC5pgggZWL7IbEaUQghQgCpBpNqy7tAt5whCFHDMBQcCsAIggghyRRzDoiKKeWqqmqa9tp3BrGrj/1sSipMd2v13d3m1es33nrrrW6n7/b7XIDx0THLicgCSt8LNU3zPU82bKiqGjKPEBKxo/L7pZQqBEEIGAu9ft91exLmBABoijo6NjxcymezSVVV1zdWKaWxWDQSiUQitqHrIyMjtm2rRJE6D3mVyuXtvWpFOjxS8cTU1Iw02cl7LBaLWZHIXrm8t7cHASYKQoRAJBYWFgzDkIG9oyPjVizWKJcppZ4b1Ov1IAj6/f7y8vLY2NjE2GQQBKZtRSKRtbU75XJ5fWtTpiJFo1FdV/f29vLZrDxRFItFr+f3er1sLh2GISLYisf7zWatVpNmAtnSs7Ky3Gw2ZeBCNBofGRkZbA9iAI4hhHYq5RdffDEajaqqGo3HT5w4IZEVDAWlNAioaZq9Xu+dd97Z2NjQdT0aiQ8NDU1MT4VhKHOMIRSMMSsW215bu337thQpJxIJqTMbGxmR8eLJZNJJJv1Op16vuq4rqX/bjiyvrGxtbaUyadu0JNLGOadBQAjxvD7GWNE113Vfefm1QQgWhGPjI4lEwu+7uq73ejKAA4RhuLy8/Dd/8zejo6OJRMI09WPHjuUKBQAhwFj4vhCw1+s12+0XX3yx2WxKsdrMzMzQ0JBpmopmgTAEBPAwZELcunXrz/7sz+bm5nTT0DTt4PyBkZER3XG8Vuv8+fNzc3OpbA5w/vprr/7gBz8Ym5hIJpNDI8OHDh1KZ7NAVYN2u1KpZFLp7e3tv/rmN/P5vB2JJNMpGehqx+OAEAAh8DwAAOD8zTff/OCDDw4cOCQLSY8cOWKbBgCA7v/I5+7dd99dvHXz2LFjlmUlk8mhoSFZBNfpdHy3JxgPaMg5//M///PFxcVTp+9PpVLzcwdlzxJR9zNmEWK+33e73//+93d3d4u5vGVZB48cHh8fhwgBVQUIgTAAQvS7vcXFxe9/9wf5fD6RSEUikUOHDqTTacM0ASEAQACA3+/vVavvvDAAL3D8YiKdOnnyZCweD3w/9PxWt0MgCqi0e4NOp3Pnztra2lo0HpfZKGtrG5OT4w88eD+EkIacMdb3fElY93o9RsXa2trOzk69Xk/Eo2EYxuPxkydPmrYlIJAdjqaudTqdnZ2dXC7XrDfOnTsHAEilUplMRh4GhBCWYRCCIISdfndlZcU0rXg83m21K5U9y3EKhUK722u13F/7+/+g16GC6BSRkMMgoAOPERCCcYxxv+vezfoaQAwQCM4h4D/1OQoBhED7Ucng7vglj9aca4aKMWaBHzGi9Xrl6ccf/jf/y7+o19YwZFMTk/F4vNZo3rx58/r166Xi8O5u7fr165bpPPL4Y4cOHZAWK8ZYrVbrdDqxSETTtE6n/eqrr/q+f/jw4ZGhYcuxd3fL3//+90+evHdkZAQpRAhx6/0B5jV6z/749fJ7v9PtdhGBvu+7XkAIabd765vbwyNjim40mq3bt2/7jI8U84VkRMUYIyIgQqq2vVe7trQMCaEUPPnUUyPF4X6/z8IQSJkbwRhLEEZwzpkAAEEoAOBczqiUc4wUCDjhDNN+2Kkjr/XEM38o39/bz//9Tq8bMuEzzpjoez7nXDC+u9saHU2rGvF63ZmJiVQyHgRBEHicMUVRAMRYITMHDiYyaQ6AbsUpMGodH/kn5Mt+4198AwAAMZISacqYoigCQQihqmtBECAoAzCpqShpx6ntbf73/93f+41/8MuOoykKVhUdQAwGWRVMcCoExwACAAFAnFMABEao1W53O50w9Gu1BiGksl0uFYdf+MmL/9P/53956KGH3DDs9twgCExNZZwyyqWfn+1HTAkBvMCXUaWe58nkHkYFAgMZDVYVmQHjB3R0fMKJxQ0nvrFdvfDRVUW1Qy6ATwHCgzEo5EDmfnEOIIcKFixMpZKEoE6nAyEOw9Dvu7KQUIQhwDxeyMXSuVq7m8kVM/lSNJlJxNOWZqZt9ODRwtSQ0d5bF0FPxaqmqPI9RyIRSeL0ej2J3zSbTbLff2BZFlaI5wZIIbqiuoGPAQzDUFG0kIeRSMwwNEJUIRjGClbQG9/tDqaBL8fveg+l/V6GLwghAICMUQIxhCAIQjmVMs51S+90OpX1rZsfDLJb/+KV31+vdJxsTo84uzu1Tq/b7XcIIQLicNBZCuW0GgQh51zq8CRSixBSFIUxijEGCBFCOAMQcAUTBSPH0HPpRNxxNldvX/zg7bGRsQPz06alG4be7TQe+9R9Tz/xmBA8CD0IBeeUUcpDiiGSCgYIhaKpkGAmWBAERCDBuHQSyO9dMlwykjcIfISQfIyl9l/KThEaBMfLZYhSigEE+ynP/b6nqioNuRyVVFXVdFMOB9I95NOw3epcf3sAgF1c/ct6vb6+vg4RcT3qRBO5TMbzPIJViXzISRohxBmTEEsYhpwyykM5LnLO0X7lvIKQqqFOu0lpkM9kVU3Z3t4UQgyXhj7/hWdSqQRCcGx01I5Y7WYLYsAp63uubVrVavWFF16IRGLSon/gwIF0Og0A0DQFIcI55SHf2t545eXXbMeUjsWDBw/KbsrBF0eIqpFKpVKpVCREatt2GLB4PB6x7bshwDK55+zZs67rAg5VVZ2enRkfH+90WkEQBIzK2c627dXVlZ2dnajjxONxyQ5XK7Xbt28XijkIYaFUlCZ8mexPKZWBsOtrdzY3N+XvRyKxdDq9t7cnhFCJ4nme4zi5Usl3+/KUhTFWNE1V1ZWVlWvXrmVSCSGE40RPnDihWBagFCAU9Puy9oMB8cILL7RarUQiQQjKZDKjo6OO48iObQmdtlqtCxcu7GxtDST2MzOxWAwAEI060oYshFAN69bNmyurdzDGCiZSa9VqtTCEMnmBUqqZBoRw9c667FeOxWK6oWKML1+8NDw8bJqmECKVymia1u/319bWZEFFNOpEo9Ht7e0bN25MTEwYhmFZTjqdVnU9DMNGoyFJWIn6X7x4EXKYiMUVnUSj0XyxeBdKDxnVNE1XNd/33337bYnBhGFom1Y+n4cYNRqN3WqVc55Mp1566SUAwPHjxwkhqVQqk0orus48r+e6zXYLABCPxxljN27ckI1PlmVFIpFkOt3rdFqtVqPRkg6MeDzeaTWvX78+NzcnnRaEEMdx9vb2Gq2mFJ9pmiYDCNvN1vDwMEGgvL3jRCOWZdVqtfX1dS8MbNtOp7LpdHphYeHKlSsnT56Uy9fs7KwTsRDGPAhbrZaqqq7rYlVZXl6+9NFHI2OjMl5kYmxc9ttSSn03IKpCEOaAXb96o1qvjY2NYUISiUSxWPzWH6/KR/iBp5WAUSGEYRiU0kp59/z58/V6XdHUTCaTyWRSqczw6KicMnVdbzQajUarWq0mk/F6o3rxwketVgsRZXx8fGhoKB6PE6zKNLuQ+pyylZWV1dXV2dnZVqddrddkrGMqEZfZGYwxUzeciOW6bq/duXr16pUrV6amph566KFWq0VpyDlPJpOMsZAzr+dKb000GnX9UNH099+/8I//h38yM3Vkt9YOAQoFAABBCENGOecEYc45DRjnXHoe5WFGQAA4h+hvha/KNXyAlgFwN84aQKhqmgAMAG7phqUYe7s7/+jv/+LwcGqklP70E5/68P0Pd3d3h0fHDhw4IBXwlhnt992dyl4kEmm3m3IxAQBIzO+B++9PJpMIQQDAuQ/PyjNhrVabnZ+BEAoBK5VKz3OHh4d3rg56Oa9VvrtPPvo+Qqjf7wnBOAuRokQdJ+pY+XSm3XcXby0BADgA0XgsnozzIOj3XQABl9lIEECEIBDy3UjIUaZvCwjkfAoHYhooBESQy5YbQggRgmAVAYgBUxjuBr12bdCIBADgHESchBuEYa8fsBAper/bb7VaVIBmuxd1bABIo90OQs+xbM/zO6223JbsiHN76ZYb+JF4PJ0bZsBo9H7KaQqIBjMhQJQxAaAgBClI6mAEBGEQiCBQTNMwDFNTrGzmF7/2lVwhS722EDx0+2HINEWllIbUw1AQgsq7tdvLq41Go9PrQCR0VUtEY5qqZlLJqGFAjGLTE5ioMqvQ8zwBoKaqge+7foAxhJgACISs/d6nvRShUErdwGccMD8UAAlBBRCKqmAsI9qhJAoxBL7XjyUystgRQgiYwJpGCIFQUMrBXcIbQgAREoBD2Ov1HMcihIQhY4xhVWUhh4IDjBBGft/dK1e6bj+TycWikWqtZltRQ7P9kHd7Xq9LNFXXDY1T2u12ZY/yws1FmbbabDYRJLFYjDJh2aamm0EQQEQs0yEqQxhDALCmWzLVRjcpCzEiiCAhAGNUCEA+kT9iO4MG6Lvcn9ivxA79sO92w4AxHoYBg0gQQlRNY10OBCwMDd38YNAEp1sG5fWQ0a3btzHS4H5yGOOMhQwrBEJIgwAhhBAEADLGMUKyBhQAAeGgHAEAAIVgNFRVhYtQCAShggB7/eUXnnrisX/wy//7j374g3Mfvjs3O53JpJ95+rH7Th7FhMvv3fd9ABANuUoIQfITDXhGFnAAka7rWADf973AVxRFNw2JgyqKYuia3FCFEH7fxRhLx2Kv27VtGwjou55MLJM1ICHnmqZhiPzAdywbABB1TAGQqjv9vre6vrO+vl4p7/U9t93uShf9Vz/z2/Ja3Vi8E4/Hi8UJRVMBRkEQeKGnmRpgIKR+s96SIylCSFc1TpnAHAqgKyoDWADWajVXV1erlV1CSCweQUAUipmvfuXLk5PjuoYdx7YdMwzDfrfTbLbdfs8wjL1y5dy5O45pGbaFAE+kUo5lGGbxZ3/uZzw3kF+Woijnzn3Y6fUzmQynoljMDw+PFodGfvVX/67vu3KabLRbL73yWhj6qVRKVdXZ2dm0nlaIlkykOefNZtPzPELIO++8Y1nW6OiooWmmaabSCYTQk08+Kb8LOQO9885bAaO5XE4u5Y7jIISmp6cnJyf73a4QQlXVzc1NhMH4xKhlWbqup5OprY3Nd955R1rbCCHHThy3bTuVygwPj/q+v88L06WlpWq1almWlJx32y2JHzuOwzlHhNjx+PT0tGEYNPB0XVdV3XXdtbW1vb29VColJYlDQ0MRx/nZn/2ZIAjki1NK33vvvUqlkkwmEUKS00wkEp959lkZ2imRgEa1+q1vfavf78fjcdu25+fnh0ZGJiYmpudmAUIAABYELKTb29s/OXPGNE3DNkZHR8fHx2OxWC6Xm5ychAjRMIRINJtNTTMWF29pmmYYBqVcTn6zs7OSSjNNXVEUGTu5vLw8MjIiI7tlA6ZspqKSZFeUycnJmwsL5b0daY9wHGd3d9dynHypBCAMXVcxDOp5iVRq+fbta9euSUb41vKSlLKNjo4ahqGq6mefenpxcXG3XFFVVTCeiMU7e3ue5yUSiaGhIc/zJEsrhOh0Oru7uzIuQWqbCoVCoVAEnAOiijDEEIRh+Oqrr2qaJtMxZEBGNpuFEAJNBWEoT0rnLpx/7bXX0skkxvjhhx+UyTiTs7MiDGu1Wtftd3ttAEC1Wj179qzs/+l2u4amyMq1ZDIpqQMrHpslBBPCgQgCKiCsN1vRaHR3t4oxTiczqq5BAVRdmZxiysZ6rd4MOVvf2g4+kTu6sbUtO5QCGvZ6fd20nnjyKc655Thra2sff/yxH7Lp2dlqtb6+ueW6rkzMHh0fo4GfUwtPPZX1PK/Z7tTr9TfeeGN6evqZZ54pl8tbm+uqqqZSqWPHjhw+ON/uduPJRCQW3Vhbl7X329vbq3duHzlyRMFmeWuLMZZOpZ5+6slHH/lUvV7vtFutZuP69euqqh48fGBnu0IpbTSa0rruum46m4/FkufOXUAAu32PKFrfDxiAEAqMkKCCcy4gopQCIADgYBAlIfa3NgHATwnHn8q89tEvAQBECMhca8gFFxgACES/13Es7R/+5t+PRNSPLr1/Z2XFNE3Lcq5du2bbdrGY7/XcmzcuYkVRNKPZbi0s3Oh2u/fee690ag8NDQ0Vi51O58UXXxoaGpqfPxCLxZrNxsWLFy9e/CiTySCEisUiQHhrawuAwfh1zz337AdPvPb/YCxEBOq6Xi7vEqIyKizH0VRrs1w5f/ljGa9678nDQ6l4r9UMA66oeihAuVq/vnybAWCZ0Z//+Z9XsFKv1yO2jTH2gv1MbYSQvEACMyAwFAQhyAUhJOQcYYVThgCzFOA39tYXrjz39T+V7++b/+ELlHKi6gJjoWiAKNs7ZYThobnZbrPRrFZNXYk4RuD1et2ubZuxSFTTtFgsFtBws7yjO86TTz8TS2WJFmv7wK3PyJf9xr/8ZYSQAAAKRDnjQCi6BhCiPBRhCDAGoa/qBgSglEmtL378x3/w737p174GYNjv1jnnCJF2u9NptsIw6HRb7WYjnogKKhRiqqq6W69mc2nHsgGnlZ2yYRgy7si2bdcL/u3v/8Gbb71jOhHLdprNtj/A9r2BygdyAIBMxZRv1Q18IQQQSFoNBGUQYgAAJJBzDgBSFMV1/bHxcaxq2dLw1Rt3rlxZVK14QIGuqqqq9vtd6gVAYCTBEoQUjIVgYegjDIrFgq6rzWZ7d2cHQESIRoMQCAEJxppOEQIQpkoj99x7OgDEicQTsXTMgIfHIvMjERTUWtVNr9+Xi/LGxoashk0mk7YVgRBKwb5mGoloTGJ1GGOiDLKpMMaqOgiSuZuxLndZiTb9zZ+uy4vw5X80KxlBqRiTBkDGBlZEAIDUmEsgRzdUz/chRhhjFZO3v9eWL/LClb/44NL1RH4k4Hxney+RiLW7Hc553wsIUSXWJX8zoFTTtCAIMcaIyNIhcde0LEVgQRAYpgY4UwmyFLWUTWVika8/96V7jh/td2rV3Z3V1ZViIVcoZDnzKQvoIMgeCcZVVUUAyDR7DBETnENZNsWEELZl3e32kfQiAjAMQwGFzCKRvOSgkhlCebdwJtsbAwGBggkHQv5f+5daqVar5a3yxtbOylp5a6d848aN3d3dRDxpmmYkFpctxY8fHiSzvH79L8MwbFRrQeghBCT3qiiKpuhCiEH4KhS+73c67aWlpVq1GovFhoaKkUhEUfDJe45PTU1JY2C1UqYsxBAwHjqOhSCYmBgbHi4xHpqa7vs+BIqiaK1W48KFC5RSoiDbtmUgKkLIsCz5vWRzOc91d3Z2KntVwzBUoiQSib29vXJ5t5DN+b6fSMSSySRWlW63W6lUwtDve34QeAhAXdfloCM1W7Ztl8vl7e1txpihaZZlBUFw8+bNVDIjIycikcjIyEilUrl643o+n7csC2MciUQuXrx448a1RCIRj0YnJiZGR0c9z1Mw6ff7nU7HcRzf92u1mvTwIoSi0ajl2EtLS2tra1ImH4vFpDBfJrpJhExCiWfOnJGwmeM48wcPxmKxAYMvWBiGqm4CjNdv35ZF1wAAWbe1trEhzWJBEKRSqWQyKS1s8hQqPU9LS0syo0jTNChELpczbNvv9/l+k6yqqtV6/Y033kimUxLVKxQKuUxWUVWAcdDtUkEBAKZlXfn4429/6zuTk5PyMk7PTEaj0agdBYSAfTXnxsbG97//fcaYvIzT05OxWMwwDMuy9k1XBKrq1urqd7/73UqlYllWrlCYmZkZHR0tFovQNIHvS3qOB8FHH330ne99T+pKi8Xi5OSk1HcTTQOUAkXpN5svvvjinTt3VFXN5vPFYnF6ejoSiejR6E/jpoNgbXX1u9/9rqZpTjQSjUYPHjxYKBRM2waKAgCgvZ5cgs6ePfujH/1oYmw8nU5nMrmZmRnbNp1YDCAk0zE8z0MIvfPOO6+++urBgwedaEQm31qWBVVVBIHf61NKPa/farW++c1vxmKxiYkJ0zRHxscAALFoIpFMdjsdmYlIKXV7ve9+968ZY1NTU9lsNlvIj46OGqZJObNtG5m28H3Aea/rvvvuuxcvfuQ4Tr5ULObyxeGhiGUTTRVCNFutfq/Xd927YP9K/TsQQogJ5/zZZ5+dnJyEEAo4cHDLNDUI4Xa5sr6+vrGx4bruhKRui4WJiQmp3u65HqW02Wzu7u5altXr9a5fvdZo1DKZjBAim06PjI2lsxkAAMZKEHiC8W6vvbW1NTIy0qzV3n77bVVRhoaGpJUVQlgqlTjn7XYbIVSt7h44eFhRFKn4iEQiRNWZ4Mu317703NfGR2e9AAYUdoIg5D9tyBZCsJDKlZNzLjmRffQLCiHAvqsP7VfKSvRr8IcyjnF//CIK5kGQScT39sr/5P/y3x+eGzMNdP99J4RgEGJN0yBGnU7H911C1H7Xfe31N2OJ5Il7TqZSKYyx7Kd/47XXY7HYk088cfLkyXQ6vb29LVs7oRAHDx+ybVuWLxmGUSgNKYpy64MBsuBHPh6MX//lr39VUXGpVGq1Ws1WxzRtTDQackC07XLlyo0bHAAGwMOnT0Y0EvR7CtEBxB3X29mrLa1vIEUJQ/HsM8+ODI14/b5gXNFUxqgQAiEMpRYXAgQVIQQEHCEIGBdChJwrqh6GjHq9iKGorF9fu/3pz/6efH9/9HtPQIhbzZ7AuBuwZ7/0M5FUigGBOLt2/uLi5SsjhRTAlIWeZZrjo2PJZFwIwQK2ubO9Vd45/dinZuYOGtGUE80urm7Z8AH5sr/8r/6u5ByhgABBgCDRFIAgQCjodwEAhCiWbtDQz6di1dVbz3/vv80fmGq2dputGiEoYkdbrQ6llNJgd7c8OlzK5QqtRvvm4tLw6CghxA08TIimK0wICGHEtn3f11UDCPjv//0ffnzlmhNNhIw3u71oNAoA6Ha7nFNN01gQ9no9iAZRn4wxCGT9H5KSW0VREAKUUoARQAM7OoYonc1k88VENn/r9va7b33gpEcEVHzfRQiFvs+DAACCCWGMA8ExkgwpF4BhCJnvA4gAQhARAICgDHAOCUGKqkYjSFUJsSZm5tL5kmVHE/GcrYn5IevgRMIEbQT6UIC7zmfJf2GMESK6rgMZaSsERggTAgAUQsjsKMlhITiogpbZYBLkAAgJxhgPv/Mfl+T39eiXU3Kjkupm+YcSgpYr/l2LnxDCd13NMBDBHAgowAfPDxjMt1b/5i+/9+Op+WMUgF7XRwRKl4AfDoqlFUUJGb1LrvF9A+DdqYt9ooeRAappGoZAwxBzNlrKH5qZzicjywtX/8X/838sjg1t3bnFGXXdDmUBYxRjQinFSCH7bCZCwKehRLD2LxrCGGMApQxcURSv70otoHST3N1TpauRECSECFxP0zTZ5CiEwKrCgrDRbrUbTZmmcfbs2XQ6s7S0dO7D804kYUczlhPDsuyBAwghE9x1XUbFFx74DXmtvvP2H1qWpaoq9QOMpL2D1+v1dqcJIdQVBSKhYDQzO5HLpG3btG17b69yY+GaECIWi50+fTqRSGiqkc1mx6amqNvDELU7rTAMZf/3m6+9fuXq5UQiEYlExsbG7r33ZBBQSVLfjXB7//33l5dWZDx6rlgYGRnxvEDTFFUd5NlGo9HFGze2Nnd835e0mq7rum56nodVJRp1CFElt37mzBnZfJxIJKanp2XqlaYpQgiZRVetVm/evCkBpFQikUwmq/U6Y0zXTV3XORAHDhxAuh72eoHnSk0eQmh1ZeW1116TQFc8Hj916pS8Azudjry1EonE7u6urFbTNE1mxWUL2cXFxb1yRcocbds+cuSIpuuMUunqBwAQTa1UKq+88kokEpHu4Fw6J/uLiKqyMKSUapFIc2/v8uXL0j1jWdb07JRlWV7fT6VS8mGRmjCpxJfzXzqZHBoaarVaGGMZGQoAIKpKKd3Y2Gi2W7IxKRaL2aZVq9XkYM4Ak4+A67qyYFhQpmlaLJa4cOHC7u7uyMgIAMAwjIOHD2umKXMT7ooRt7a2/vMf/VEymUwmk6qqzszMzMzMEIKkZ1AavS3LYoydOXOm1mhNTk7KYLZCLiMhannuMgxjfX3zz//8zyempvL5fCwWkz3NcL/CD2PseZ5g4dmzZ8+duzA5OelEo5FI5MChg5ZlIc3otxr9bk/ViOCQc/7KK68ghCRzKtlM+RDJKApdVf0wrFQq125cn56cknEwmUwml897risLvImqYIxl0NrGxtbY2FjENIQQsj26Wq3KNHkIYSQWi8fjm5ub0makKMrdI1av19vb25OOkGQyaVlWyOjzP/phqVRKpDLRaDSfyRYKJYAQgKjb6bi+16jVN7e3Fq7f2NrZzufzdjQyNjwSTyVvvCXzk8Hnf2l4gEWtrqYyGUKIHAtKpZLMVHOiEdkXns/npbByZ2fn/Pnzumo8+OCDO5VypVKRIYtTU1MAgL29PcMwOA13dnYikYgfuAvXrvf7/a994xe63W6z0Y7FI3eWb4dhMDc3J3O2K5XKzvamZVlSPyDTlRHEEAF5c6qaHoZhrdYAAGiG4XkeUbXv/+CHv/+Hfzw5eWi32gmo4IQENLxbAoYQ8l1PcE4wAfvbwQDZktKaT1gdf+p5FELup1hRhBACMFVVEcYYAQNDjcCIab768o8zcevy5XPdbvvQgTk/ZP2+F1B/eXm51+scP37SsSJByK7dWKjX69FotFgqyLbfzc1NieyGYfjII4/IvgRVVS9fvHRnfU1V1cnJyb3dqmw7QAiZ7kAEpRVWBuSjqhGE0M7ODg05QsTt+5ls0lf55nZldX1N7nixiKkSBUKg6zqCxA9DvM8QCcYRxIyxXqfDOVeJQoOQ0lByOmDgwAKQDC4W5wALWeQ96CGHBAsEMVBUooD9H900As/XddXzKRNgfXsnxnm718aC31i6OZTPRWwDILZX7SUSiWQySWnQbrcbe3XP91OplOBAt+xkMqloVrPVsWODl5VfmhBCcA4EBALSECm6QhkDiABO5boccax2o/mph09rmrJb2cFYAC56nf7uVmV4eNhOxFvtBobZer2pKFrEiR05dlQIIFMZXc+jLi2Uip7nMSGYEJ7vm7qpqurt27fHJnDP9QQm29vbCCFNUySpBCFEGHAupGhdDmGUUgAYVhUJZvi+rxo6pVQhihAwCALDlClQoa4q6XQSKIphGAEFYYiCIBBhKPvXGGMQIgAxZxxhwlgIACIKIYT4ng84F5wChLCKhUAIqlRwQgiT3TIhdbs93bB931ch8hno+5TyfsJRLd2QzRhyO7ftCIQQYSxrhpGmhZxzLgLO5fooH2nDMDRNU4hGCAEISTuPdKX5vt/r9eQ+JH9k3e9deEyORHILlEObXJ3lL0vUxHV9Vdc09af3EsRY03VCkO+xerOhaRrGkBBEOcAY+34oAUi5gsskGLgfbQo+kUOxj+aqUAAFY4wRhkBBeOH69U0df+aRh/pu123UatU9w9Dk1oIx4Zwbqtbr9RhCsshRNXQZtS+BEEFZwAKxH1gvhUpQALmvqKqKMJSCegAAVrFPQ7fr+r7PKL29vAwBLu9WGrX60MhwxHZ00zhy6LBhma1Gc3pyamenzELarLf2dmth0A99tdcJZIa1ohm+70v89e61IoD1O3UXIEUdOGMsw5ydGnUcCyG0snyr1WqoCj40PzU1NYEQzKSTo6Oj7Xaz3qiGYVirNnq9bjIWUTB/+cc/8P0wl8t0u91o1Dl06Iiikscff/z+++8PggAiYZr6letXz77/odybI5HIkSPHotHoww898sDph6RjAxKlWq2+8cYbQjDT1Gdmp5LJJCZQxl816i0591BK33zz9ZGRkWyhWK/XhYCFQm5kauo3fvM33V5PHhIIIWfOnLl9+3Ymk4rH47J6ORqNPv744wCAMAyFDAajdGNjgzERBIETjWxsbKyuruq6rinE87yZmZlILHb4+PEDBw7ICgEhRBAEb7311rVr19LpdDwen5ycnDl8WMJpstpBbgzNTlPXdZlabhhGNBpttVrlmzd930+lUnKwLgyVhoaGvvKVr/R6vX6/r2maitWXXnqpUqkUCgUhxPT09NTMTDQafeSppyQqIyiFKl5bWfnmX/xlLBazLCuXy83NzSWTydm5udn5eQkFiSAAALz77rtXr16VaFk+nx8fH7cjkbGxMaAqssqQBYGUTvuuG4lEVEOV4WEIoVwuR1QVcBF6HoR4bGxsAAYbRjQa7fV6Ozs71Wq1WCzK04vjOKlU6h//438s3R6apkEIy+Xyiy++YNt2qVRKJBK5XM51Xdd1S6USUfVyuQwh7HQ65e1NmZEmszCsSGRubu63f/u3G62WjErWNK1Sqdy5c0fmL0glViIZP3r06MjIWLvdBgipqtrv92u12s5OJZtN66oWhF4qmQEAjI2Nra+v37lzp9frjY2NSaSnUCgkk0nOeeB5iUwmm832PffGjRsY41gs5vs+ISQMQ8k/eoEvHRIAgPX1zQsXLpi6lstkJERNCJmdn+eUUkplg3AikXj55ZdN04QQypskny/admRkZAxh6Llup9ctl8vl3crm5uba6sb8oYO5XIH69PbtVUVRJicnsaZCCKXVcWZm5tbtZYl3vvzaq8lksqB8Vj7CtVqNhjyfK0bjcdlkYNu2pmnXr1+X15aoyt/5O38nkUhIbXG/37cs69SpU74b7O3ttVoteVkIIVeuXPE879SpU8ViXiVKaagg9UWH5g80m81+p9vrtK9/fDkajxYLhQ8+/LDRaDiOoyhKNBrFCGiaFo8nZSAFQkhVtEqlsry8XK/X44mkXPH8MNzb2xsaGSWKdvX6AoC457pIUTgN5VlLzlJSJogQklW4n+QWAQDgb7sd/08/8kXYYDekFCEV436nmylm19Zu/s4f/EG+kL7x8QXO6amT94RhuHDzxvXr10fGhmOxWCRi37p1a+H64tzsgfHJiYnJcQDA8vLytWvXTpw4IeM8SqWS67qVSuXatWvVajWTzaqKIhPmOp2OjBU0DKPRaHgDLz44cuTIYPwyVNX3fUVRkUr6bnjPqVOWE79xc5kJ0Oz2DFVzAz8Zi0dsRxFh4LthIFXOsN/vQQAYZ4ZhpVKpfq9f2Slbut7p9yCExWJRVTWMMWCcCs44QAgBLmQfMEYIS3GcQmzV1hAnITdN/e4lMx3TMDQkukRVEUdHjh2du/dkYbiQdiKv//CHf/p7/+tIbsajfcO2wCCiCaiqns1mGee1TlsOK4gQRFSpSxt8EwBAhCDGAEvcUnAEOIDM9zTLDoIAQoExIYT0ex5WsOHoAIJ2t02Iyn1vfGrS8/p31u9ks1mVsWqztXRntZAv5XJ5TVVNx6rX67FYrNvvbK6ueV4/l8sBAU3LDoOw77kyJD1kPPAp5EJwxhH0ghCigUgw5IyFviTggtDlQo72HCmICiql9IyHIgAYy/o/XzAa+i7nPBKJpLJZBgQTQnrloAy9DAXnAkIsBBOcMwAAF0AwCBVV1Xw3wKoOAabUFxgJCLiAthWLxeN7jQZjTDN0Lwz6/T7W+qqqN9od1SzmYgb3GxwCTFQ5KYYh7bue7/uQYAlf+5QCiImqKZoqTzy6ruP92nnZSgEh7na7criUgDzn9K7WHgCgEAQAAoBgpOxbAvldtpHsk6p4kPAOOQfSsAM+EYdsmJqEr6LRaKPVRghhDCkNZCgDxhhjLLng/38P8EBMwGTePuAMCAwZEypWOAfFfLGYSezsVK5dvXH71k1CwLETx3b3tjFWAeAQgNDzOWVWxPC9ACsqwCgSjTLGKKWCAQwhFIhRGopQMrCyRU4IgSGQba+U0katrmlao1lrtlpDpZLMTJocnygUCls722t31kNKw8CLRO3dys7m9lY8GotEIulU8utf++ozn/3c+fMXb9y4Ua01dncb22urjLFcoXj04EFVVbvd7t1P2m9XHMfudLo7jXo8auVyuS8/99lSqQSEkJoq13VD36vVau1Oy4lFMIDnPviwsrsTi0U0TU0nk/c/9ACgvNfp5LPpzY3tO7eX0ul0KhGr1fZW11Zy2QLn3DAMwzCdqD08MmpZdhiGqqJHIpGA0jfeegsBoOu6pJxy+RxC/MknH3dd17INxqjfd8998AGEKJPJqIpiGMbw2FjgupqubGxsVCtlJ2LlCqXr16+7Fy7kcgXZQpPNpg3T/PznP9/v9123J08Ci4uLb771umwOdRxnamoqHo+Pj4/PHz1KPTcIAl3XK5VKu91sNJhtWolEwnfdjTt3dnd3bduW3+D4+Hgsk3nkscceeewxQki32+WcVzY3f/CDHzDGhoeHAQBTU1OTk5NIQblcTgJdUduRvTTNZnNtbU3Gkk1MTNy8ebPVaqXTacMw5ORhOLHPPvOM77pSuyYB0ffee08SmohAy7IKhUKxWPyt3/qtTqcjb2lFUba3t1966aWxsTE5Ohw+fNhxnM985jOPPfaYRHllZMCrr766sLBw5NhROTBJ2dnXvv51HvoIYwEB53xlZeWb3/xmIZtLpVKRSGRmZiaVykxOTk4eOgR8n1MKAKCc37hx46OPPnIcRzP04eHhsZFReVOVhocFYxIBTSRiTzzxhBBCbl3tdntlZcVxnIMHDx4+pnq+zyh1XffKR5dXV1evXP6YUnry5MlDhw5phm4YxvCofE0BIGy3Wq7vnT1/jlMWjTljwyMKnkYI5fP58akpiSlCTGq12sdXrnQ7LceyozFnenp6eHj4wIEDR44ckbBrrVYjhDRqtT/70z8tFosSGnz08cfz+fzpBx44/elPA98HIQ2CwHXd73znOwsLCzMzM4lUcmpq6tixY8Vi8We/PA4YE5QxxgDgMn9kcXFxZmYmmUzG4/EjR47k8/m//xu/ATDmvs8Yc12XA/Hyq69cvHjx6NGjcqQbH5+cmz946t77N7Z3Go3GxvomBujG9cV/92//7QMPPnj4xLFT998/Ojoa1c1sOl0cGZVn0XK5vLS0VLk6eIR/79/9r8lkcnx8fHZ2tlAoEYLS6fSJEyfkGlupVK5fv16v1hRMyuXy1atXO51ONBotFAql0rCqqplMZnp6Wjpder3exx9/fPPmQjIZZyGlLNAVtVIpVyqV4eFhXdNisUg2ndrc2fS6naFSodfrxWMRz/N0TYnHRyU10ev3r1675rouQljTtHgyYRjGzk7Ftm0m4N5ezff9VMb9+Oz5V19/Y2zyQKvl0xAjogbUlwu7/FyUUhmyKk9cEEpwi0MZ2SwEgvjusPW3ZzNBCJHltljVJZprmDoNfQz4/fed+PD9N91O89HHHtnZ2L5161az043FYrVaTTMMhaiKEoyNjV29enWvVk2lEq7rIoQS0dhbr78RcpbNZrkQsmD0gQcftCwLEfzWG2+WK5WnnnxyampKMc2w33/hhRf2qrsOGJNvaX31zmD8CsMwEomEYdjYq+aLY5bp3Fq6fWNxYbNcAQC5gQ8ASMYTvu+GNAgDDwhECOl7XlOGQQMIBPNct5jLxaMxDIA8SXRbbcsa8EqQCw5CCDCBSCUKEAxBQUMWMMqEqHW7brsh+i3DbZ28e82QgBBrhqVBUquUv/jFzx967CGAAAhpY2vL9wNDU0IOHNOSjxAAwLbNbrvt+YHvufW9qqQkOBSGbYF9TT8HQMiAewilYREiSGmIDcMPAwShohCCMCFEJYgoyPP6jmNhVYlFIrqu27bNWChj1mqN5uzsLIKk2WmX93bjkSiCoNls6rruu14iFk8kxoIgoJQyFnLBQ9+Tif8ICMZDhWBMyH5Uty4fJACExDzuZhQJABACAgIAoRDA8zxCVCa477sIYAKJZEl8r6876Ww2vbHdwNgIex6QbkrGZJUNABwhJDDmLIQQCoGFgKqqaoZGiBoEASKEh4HiRGgIzKiTzKQBIa2O7/u+oIJ4fcXzhK133LDrUYQVTFTqB6ZlMcbl/R2GoW6ZMo/eNE2iaLZtc84VVaVhiDGWkQEyd0oKAiDEUgGG94sI5egGQHh37hnQf3TANkqMSgJgYL9UVSb7AwaQQuTzhj7xBBqqwSgVjHMWZrPZcrmMABJCyCtM90tb5WGLEBIydjfo65OzIAAAif3aUIg5Y0RTOAOqpkQcy23Vup3WXqU9MTUOIeQcQMgBFyz0LcM0dC30fCdi9/p9zoSuKAAAhRBdUQXjggouqOu6ge9Vd/coCyEHrVYTY5xOp2W57Pj4eCKRWFu/Ey4v7+zsKIqSiMWFEDdu3LBte2pqynXdRCJmmub6+nq9Witv72ialkymEUKmaT5w/72PfupBGXYghNit1ra3t+WnjsSid/bX7n//7/5n6al2HFtR8cbGWnW3tr66RAhx+61UKiOE0IiSjMfy2ZSsI6xWq4qiIBmkB8Du+kZ5txKJxKRCKJ/Pm1En7PevXL/2/vvvx+PxSCSSzeTn5+c7nY5sTJNkdDKd7rbbqqr6rttutyVPXd7dlY+bpivy6zZNy/eDxcXFWCwWiyVGRkZisRgTfGJiYnJyUiLQiqbJqqLd3V2pg/Z9//y5czIhRRJ/mqaNjo7+fP5rfbfL2eD1f/zjH3tuEIlEFE2dnJycnZ1Np9PP/szPACFASD3P0zXt2tWr169fN01TdjyEYfjx+fOqrstphnM+NTVFFOXrX/+6VAtJUHNpaeknL51JpVLxeNx13fn5eZmAEEsmjhw5wvZvuY+ufHzz5k3Zo5zNZjVN67R7uq5Ho1EJnOi2zcIwmUxubm52Oh2Iwfj4eLfb7fV6tunc1QAYhpHP5x9//PHl5WXf96Xq3Pf9Xqcj2VgAgLwxTpw4MT097fqeRJc7nc7qyp1utzs+OhyGoRVxSqXS2NjYb/3Wb4WeL+vYCSE7O+Uf/ehH6XRalqgePXq0UCqdOHHiwYcekj1Xsk38pZde+uCDD9LptKnrqVRqamribkm5JHwTicTa2torr7xyfXFBKtyPHz8ei8WefPLJbrcr10/f9Zjg58+ff+eddyamZmTv09zcXDwe/8znvwB8HzAWeH0Ioed577///k9+8vLc3FxpeNg0zeJQaXJy8td/4zcAQbTbwwRK9eTLL798c+nWwfkDsVgsk8kMDQ098MADD3/qU71uV65FAsLd3d1XX3/Nsqx8Pq+rWi6XK5RKv/7rvx6GYbVa1U0DY+z7frVaXVhYmJiYijoRznk6nYwlk0999rOPffrTnU4vDH3bjri+3253byxez2bz2WwaIWIYRiQSe/ChT9176v5arUYp9fzw4+s3MMbRaLRYGiqWhg4cPNSoNYdGxu69975Kde/S5Ytf/NJXfvWXv/a7v/u7zXZLQl+MsWQyefjw4VeuluUj/M/+2T+rVqv1ev3DDz+s1+u/+qu/HIlENjc35aPhOM7DDz+8u7srH/+xsbF2u12r1c6dO/f88z/6p//0n07NzfY6HSkRsyzr2LFjJ04cY4ztVXZ1Q+00WxsbGwjhXq+na9qtW7e21rcOHD7Q7/TtqJ3PFwESmUxO1bQrV66sra0FQWiaZiqVmpiYrNUa5XI5EolduXLN933HceYOHBgaGlrf3DBMO6BCAIyRwkGo6prX7VNKddOQ0CnGmAahQAKKgadbbmqDSWsQMwEA+ES26v7sdXfx5pRqusE5D3w3m4xvbS795q/+Cka8vrd79MiB9fXV99/7oNls+wF1YlEv8NfPnUUAxyNRjNC9p072XffixYv1ev3w4cP333+gWq1+fO3q/Pz89MzMlStXAAC+74+Pj+vRyNfHx9eXlv/qL/9ybGxseHi42WxOTEw88sgjL/7FoMzYNM3B+EWIQsMw8P1kIv70009qpv36e+9dv3mLqApAEHCQTsbTmSQBjDLfdXuaasUSKTdoUMohABgKFvpBv+P7cSQEZ0IlajqVkpg8AEBVVUXBYRh2u+2u6zIe+m6fMRZPpmTj/dDQ0VQiPp7PrH10sccGl4oxwagIKFV1lQWsWdsFodcP+6ai+UEPARD6HgEcEAQ4k4Nwq91YXVur1+vZdM4xjNDtIwCIrmIMP/FlMKwoiGDGqRACAC5bXygLAUBy9IGMKtCs9zrxaERXCYZQxUTei/V6k3NmGBZjAgEovdCpRIyGPAiCeDSuYoJVJZPJ9Nz+1k5ZU0gul7tx9YZp2pqiAMru3hCMc8ECeVSVg4UQQooKFUXmCAAABATwroRQBsYhhGhAARdMhJodtXSLU6GrGsZ0bDS3Wa65va6iaqHnC8QBxgJQABBGhFIKOMOKIlOC/CCIq7GRsVHX7W+srQGEsW5yhgAQ9VrDjFgIo3a7WavVoskUYyETlEMYhLjZ9NSRCOQ9wHjAmBxZdE2zCdE1U1VVmRvJGPP6bkh9ySIxxmjIJWYjcVABBFGwrioyIwoILj2PjLK731cYMEIgQjBkVABBMBYQqLp2V1wJuYD7WS9EI2EYElUhBFH60/jWpJ3oN7oKBJT6jh2pKZhgKMFEDgRAggmKMWJs0O6iSlANQqn5J4QwABAAGIkw8BXD4AIChIQQAiDGw36/rWp5K+74vXa1Xvn8F5+JRCLbO5sqIgIKyLDneaqmQII554auA4gYY1gAGoabOxWv3wMcAMFTqRRjIWQsGY1EI/G1dX7u3Lled8jQ9FwuZ+iq5/ZKhWKpUPR9XwKKKysrH374odSMG4Zx/MhR6geRSOTTn/60dJAZhrG9vf3DH74MAIhGo5lMZmxsrFAoOLHo1PS4DApxHOfO1UFk9srtWxDC2dnZRCJOaXD44CEohExecF333NkLa2trGGPLsmQWNgPi0NEjs+E851TBOOTh0uLShUuXJN7uOE40Hpcdl6Xi8Ne/9g3Zm+55Xr1e/+Y3v8kYS8Ri2Wx2aGiIIAQhPDA3J5PEwzDsdDqvvPza6OjoxMSEbqi6rpdKhXgynS8OPfLYpyVoalnWytLKiy+/lM/nwzCMOZGTJ0/GYrG56ZkD8wc4pRwCoqqdTpsJvrG1uVerGpqeyVDZT5rJZDBSdEN3HAtj/PRnn5HXVmabLd64efbs2XQ6LRuEDh8+rCjagUNHDh45BoSQN3O3263s1dbW7liWFYvFxsfHe73e5uambqjSMCGR6dJQ4Stf+YrcS4QQqqKfv3CpUatnclkFE13Xx8fHFUU5dvjY5NjkoCkECsuy3n7v3evXr+fzecMwMuncoUOHdF0/dvz4sftOAc4BQtR1Pc/70Y9eqOyUk8lkNBo9dOjQ8PCwqqqzhw9PT08jjGVSf6VSWVxc3N7eliDW3NxcIpGIxWK5fB4MEAXIOe+2O/V6/fKVa7FYLMuBaTTlI2zZBgOi1mzIQeSZz39eKv1lSdH25ubFixfz+ax0hIyPj5u2+ZlPP/bQA/dLmZdMonnllVd03ZT+DNu2k/nC/Hw4NDKm6zplga7rGCntVvfF914aHh6WzUWJVFrTtPHxyUKhVC6X9/b2Qt9dWb6FEOp2u7L/EQEoUbdHH3301KlTnucxIAzDgAhVq7tLS7czmUw6mQrDUDP0aDJ5+sGHJqZnOu02QsgPabvbq+5WCCH5fF7XND9wzUg0g/E9J05W6zXZWqgZeiwR73Q6hJBcIY9UAigFEBpdVVPJ++++o2mGrqjDY6NDQ0OEkOzQcBYSgAQIWBi4CGt91//gw3MYw2giWSqVDh08nEilW61WTtMbrabrupfPnZNOglQml06n5+bmpqenhRCGaQIhPvPZJ7/y9a/95Cc/ef3NN4IgOH/+/MLCAiHk6aefnp+fB2CQbek4ViwW8f3i4QMHd3Z23K5LfXrt42tXr17VTEPmps7MzBw9fqLVapmmGY/HpTV4ZWV5p7Lth165XD579iyEMBaJZzKZqampSMR2XdeyrMNHj0/OTAc+XbxxrVZvWHZkaESJxhKxaDIajwoBDNsETPi+f++9pw4cOHjr1jLnvFQq7ezs+GEoIEREPXr8ZLfVXli87vv+nTsfc4F7vfCP/vjPCLEazR7nkItAtxRMcd93EQCKonIqEIAIDITR8mYdACoAIIQB5CENAYQYEkYFEAIRKfwCHCBKOcQKhJj6VNNw6PsEMwLoA6fvXV253et3ms3m7Tu3s6X81IE5RDTLcQzL1FXNNmxNJS++cKbb601PT8/PHxRCyPKxxx9//Gvf+IUrV6688vLL+Xy+1+3KVq5EIiF9Bg8++GC/093Z3PI8787y7Xw+D8CE/I6q1eq+9ktV67Xq1tbWF3/mZ8bHR2+urJ+7cMEwtV4/IIRQzkzT6LY7jqnIWB0BFELUnusxABSIqOCZeDwRjdim2uu5YRC6Xh9wVq/X6/W65/eLxWImkzIMbWpqJJPJJBKxeDwuJ2KZim7atgyaN33/wv4pXFGU0PMxUhBCEAHOKYBMJQgwure3hwhQFEUjqN1tYYX4YdBqNK/fWMzlU4cPH1YgCYMg9L2Q+o5Kem4vencAxoO2Zs4ZQAIjTEPfME3mhZpuKIoSun3HslQFA87zhWwiEfN9X1GIqiqu6wa+n0wm6/UqY8yyLEl1N+sNhJXA90XILMuSja1+6AkhGo0G5zydSilE63d7GEPABYACY8wBY4zD/Y5nycpJGIlDmXXOxL5ZXZ5ohRBYUbEQKkFY1WjIXT+kITcUDQGOEUjE7cDrQqRjiDkhSIFURp+j/fBfJgODBjFgQRDcunkTAIE0wgMKIRYACM4ppb7r6qZtGUYYBnJZRAhQxoCqhwxipAqII05M0xVCiKIoRFGAEGHAer1esP/T7/dlHoTExoBAUtYmyRH56eTnkjSifK4+CR3LpVxiXfIj4P2KSYmFIIwG8xwAcsvEigoA/+TMbZsWZFzXlLbnNWp1Qghnoe/7AhDGmXzxfUAbgE/Uh939SwcPvACapviMqprBqOBBGMmmAZYh8gRRr99ujY+PpzPJzfVNQ9MVBLvdtvzssp5FCFGr1TAi8pUTiUQuk65XUbfT2d2r1vd2AQCFoVI+m4tGo7GoMz05hTGWWeeLi4svvvhisViUJKBsnRsZGZmdnZVVRRDCdqP5ve99jwqeSCRs256bm4tGo/l8/ss//5UgCHzXUxSl1+v92Z/9med5uVwOAD47O5tMxu9eq8OHD2qaxhj71rf+kgaB7ECcnJycn5/nnN9///2nTp1yXZcxZhjGjRs3zl44L38nn8+fPHncMp3xycmZuTmJMchuq1dffRUA4DiOZVlDQ0MIoV6v57rus5/7nLwTZDPam2++aZrm2NiYhIImJyd1w5gYnyqXy51OB0GiaZrvh6+99pplWbLBJpvNYkLypeIv/dIvyTQBQ9UghK+//nqlUkmn05qmpXPZUqkUS8Tve/BBgLHwPE6Z53nLy8tbW1uWZdm2nc5m4vF4EHi2bUsHhjRAZLPZxx9/XKZRyErNd999t1KpyNqZRCIxMTFhWdZnPvtZQAMuq3wZ293dvXbtGlEQ51z6BGWYcCaTkZpCQggX0At8CbhyLAzLlNp2TVEcx5EommWZ9Xp9dnZWJorFYjFNNYQQ7733XrvdLpSKktzJZrPJZPIXf+VXwr7L9+N2Pc/73ve+12635+bmCCG5XO7QoUP5fH5kYgJwznxfnpEuXLjw4zNnSqWS4ziyV9s0zbn5+blDhwBCwvcBAGEYvvfee++88046k4zH48Vi0bKsaCQ+PjkpGKOUYgiRpjX39mzb3traklFtt27dsra2ZE+zvEOGxsa6zeb29vbm5varr74aj8dLpdJQux2Px6PxuOk4gCDAGMBKe28vk8lIE5nsiRoaGpIc8dTUlO/7nteHEIZ+UKvV6vX6n/3pf5mcnDx+/PjUzLSu6xKYJIbOKUWa1tjbq1Z3L1++FLGj8Xi8UCgMjfixWCKTzwNFAWEIhAh9f2Nt9fXXX5c0tGFq9957bzKRnpmZmVMI0DTAufB9IcStW7e+/e1vFwoFKQx64PRpiSchovGQSUuQ63svv/LalWtXJyYmpH82mUyWSqXHP/NkNB7vdbvlcvn8+QvVWrNUKskjBBMCIPKZpz4rGYN+v3/h0sW33nk7k8u6rru7uyt7b+Lx+Fe/+lUAgOd5J0+ebDQaa2trt27d+tVf/dV//uvfkY+wVJhhjKfGp3K53Obmpu/7J0+ePH36dLvX7fV6u7u7P/zhD7/+jV/I5XK3b9++ceNGLpdLJBJzc3N7e3u9Xk/X9ZmZGcMwAi9cW1v79re//Yu/+IsPP/xgtVrd3Ny0LAtCODN3wNRVRVFqtdrGxgZCqFqvObGov7MdBEE6nWYB63a7UqLeanZKw6MA8Gq9ZtuRZrO5ubZq6Nb6+nq+WEgmcrfXNq8vLBZLE92ezyCCQIShYBwQQiAXnHNOOQAAChFSur9BIADAfvwEAADJf4YQygguuF8iIrFMQanAWFGQH3iRiL2xtvpzzz5bKuTef/+difHRZCoxd2AO2hZgHBACBASIAACAAICFTz/95LVr127eXKrVarIxPZlM7u3tKbo2PDyMMS6Xy67rTk9P27YNIKzX6xvr691We2hoqFgsQghrtdrHH3887Ezsj8jOT8evRDIZi8eHRkcRUS5+dDmgwDZ0AUIIMAJh4PntZp17qlPMCwF9Cjuu1+q0IQAEQ0bB2Oiwrin1epVzrijaaLGUSsYVDNPZ7MTkeCKRUBTF0jXdUAkhlAaEEECw4CwIAiF4v9cMgiCq6vSnlxJYhqkgtV3rYgCZACsry/NbW+1+b/X26kcffWQYhh8GWAii6gBimWI6MT5aGh6KxWL9Vq/abN6+fSdeHI5lShhj8FNtMeCcSy4PIDn0MACAaZp+yAhCCsKMBpCrEducnp4UgtfrtWazOTY6qiqYhuDWrUWw7/2ORCKeF0CIVUUxdL3b6rTbbc3UW61WNB6JRh0WJqvVaqNRbzU7tUbdsiw5QIShB5BQFAUhKMTAIsv3s86hAAQij3FKqapCIQQCUMEkoAztJ5dwzgXkntcXWHBOGQsVwQTjioL9gCOCMUTSFCStBpRSwRgcGPqEoiiBRyGEhmlqmgowaDZa1Pcg1ggmAIhOq82oAFy4/X6cCygEAIBSGjLKuTCdiJNQOfMFp0EQSAdWGIa+F/b7fTlOSRpRMi+ScNQV3bAsxpgM1JZZ3RjjUEojGZO6zk/yfXcHIwUTAAATnHOu6zrZT8+SOjlJ3NDAQ0SlXIRhiD5xLzmWjpFQMVGI1uw0CSGNTh9jLMTAHXPXR3LXLHJ3vAMIiQEOCTkQEEMskAAMIqiohHMAEOIQIaQahqVB+MRjj9f2qneWb6dTiWq3HYvYXr8fhoHcPjHG5a3tpdVblmUZhqEpSjY5qhKFJuNjYyN75YqqqrFkYmFhYWlpKZ1OS4fBgQMHwjAcHh7+tV/7Ndd1hRC2bff7/ZdffjkWiymKIrtc5Ezw3M9/RTK8Mvnz1Vdf7fV6pm0RQoZLxenpaU1Tnn32c5K2AAAQQn7wgx8AcEpegXq9Pjc357ru5z73OQR4v9/nHKRSqbNnz165ciWZSMvqmFOnTkGCx6cmSyPDUgKFMd7d3X399delq1FSe3JI+vznPy/z5SuVSrVa3dra0jSt1WrNTE3J2VRKnVqt1traWhAECKFUKiXneEXXxiYnJGIUjTp7lQoUYmtjQ66DpmlWq1VJ5chRXpaQHj16VIJYhBAr4nz00UdbO9vZbJZznsvl5mZmEUKnT59WDIP5vhACEVwuly9cuOS6roJJIpGQCQvy4C65clmGPTk5Ka+5hAAbjYacJOLxqMwaLZVKpml+8YtfxARKltwwjGvXrr3zzjsT41OaplmWNTk5mUwnxsdHx2enAWOAMUBI2O+fOXNmZWm5UCgghEZGRubmDqRSGUIIGla8Xq/X6zEhms2mjNPsdbrQttPpNOBi6eYthFAiGZOGD1kK/uyzz8q0M4xxMplcW1s7f/789OSkFIxblpXLZebnZ+fn533fDxmTPOnm5uZLL70kxx1K6YEDB4aGhx99/PFHP/1p7rtyJdE07aWXXjlz5szk5KTjOCMjIxJIe/TRR4VghBAJXl68ePHb3/623KtKpdLIyEg8Hv/Upz6FiAo4l4p707bPnTv3N3/zN7Ozs6ZpyhFQ/hpUFJk0G/p+EAQfvv/+N7/5zfn5+Wg0mkzGT506lUpl8kPDLAznDhyU1Ort23fq9Xqj1Uomk/V6fWRkZHZ+Lh6Pf/HnngMh9ftduca6gf9f/+t/2dvbm5ycVFV1dHhkbm7u+NGjJ44fly1JQeARTfW98L/81z+TBknbjmSz2dHx8cOHjx49cU+/05KQHoC47/qvvPr68PDwxMSUoVsIi0TSuf+BB9L5fL1eP3fhYiwWe+SRR6TqtN9zvcBvtzvJTNrt+8srKwCAK1eufOMb3zh44gTr96UDSQjx4OkH6vV6ba8aBMG5D89eunQpnc3Iu2tqaurQoUOGYRSLxaMnT/YazS88+/mLLw0EG++++65kM/OZ/NTUVDQRP3XqlKxg10wjHo/ncrlCobC9vd1qtcrl8p07d957771EIpHJpGzbHhsbm56eDn0aiUQAQl6//8gjj/T7/WazWS6X3333XTkgTk1NTYyNydgaGTUXBIEb+J1O58b1xepe3bZtWS8mQ1UghHfurEKMOIWZTCaXy1BKa7WaEPDmzaWXX38LAwUIxKggusIYk/EjAgixHyTBwpD9LX39/qa+v2gjBDnnHPDBwg6EEAIhyIUQXGia7vuuQFAIHotGW7Xtz3/+mXvuu/eVV8+0Wo1ms2mauoMxQJj5oecFQcgope1Ww+u7CIF6tRp4/ujwSLvd3i1XyruVS5cuDQ8Py6Ktg3PzixBdu3bt1KlTEcdJJZMz09ML165vbGzcvn272+0eOnTo6aefvv7u4C0vLi7uS+9ty2+G8wcO5AulcxcvN9tdBZNWp4uwSimFABCMDU3XVaXXdSHGjIN+p9Pp9jkAhBCC0Re/8PnDhw8mUxnTtlKpNBRCRRAhZEQGxcksDAULOQ87nS6AnFKKEMDKQBCtKIqmEWhouVIeXAnuDkmu64ZhQDnjAty5c+fO8m2ia6ZuzMzMveB+K+SCM6HqGsCYaJoShpGIres6xgqEyPO8WqMuPdgY430pEYAQS70XwJALKtOVZDI7EwBDoUAgKGc0mJ2empqcUFU1Ho9nsqluuyPTFHd3d4vFohSWbW9v9/uebduytVBXtGanZRiGqpJGq06p0e10GGPRWMw0bNu2d6t1Kb4xDENALqcuxrjcBWUSjxw4FEXRhS53NQCAvIkxxhAKhIHAhDGKEBYgABBCAj3Ps6IxlSBDUdy+p1mm3wnRfuW7jA8A+3OGBFRkymIymTQMvet2XddnFAAApK+k22gGQWCYUVPXBOPdbteKxDFWgIC9vldrtIXJ+p06DV15keWVxEiRAYYyUJvvd1MijBzHEVRQSgfBCp4n90u5qcjIRLBfcfjJ8WuQbsU5hFBVNalQgbIhCw30bZIcESzEOAwo8EOPfAL9SqUjlq25rosgKZVKm9vbEmKEHN5F1P7Wu92f/8RAaj/ADgGEjAqiIs44F0zTVM65gCgM4U6lenik9NkvfcFMx2i/m0wmKQ1/8L3vjI+PRaNRgvDx48ez2Wyn0zl58uTRo8f6/b68DmfOnCmXyyPDpWQyWcoXZo8d6zcbUhPTaDSazWYmk6nVajdu3BgbG5MgirR6UUqnp6flrSv1N5cuXRJCyOyGZDI5Oj7e63Rk9E7fc+VHeOedd2TuQBAEyWSyNDTU63YPHDhw+b3BtYpEIouLi+122zAMlSDTNKWRLZfLKYoidZ/xeLxer19fXMjlcvJ7yeVysVis02mdPn26VquFYdhsNldWVra2tgAAYRjmcjnDMGQsu2EYlUplY2NDdjxLdARCeN999508eVKOTaZpbm5unjlzhnIg1/fDhw+buppKpR77zGe8blfOxIqivP322wsLN7PZrAxTDVxPLvfxeFzajhRdO3bsWK6QF0JItVOj0bhw4YLnedJvWCwWB5v0F78IIRRscDPfuHHj0qVLtm3HYjFN02QmAiFkbm5OSjNlj+TExIRkS+WdubGxsbe3NzU1ZZiaFLiopjk9PZ3L5XwvlCSmpmlXrlwpl8uzs4NYu2w2G41Gv/CFL7jdngRf5WnkjTfeuH37trxEpmlOz85KakNmn0rAjzH2wQcfQAizubSiKDLlq1FvlUqlbD7PKUWEAITa9XqhULh69aqMeI3H45xT13Xj8aRlWaoQYRjGEwlN0x599FGpG5Eyr4319bW1NUVRMBRSmp3L5++///6DBw/2+335ZZXL5RdffHF8fDydTgohisViLJU6ceLE8ePH2+22XNAAAKurq1ImJTdsOSaeOnXqxIkTe3t7A3+cqlYqlXfffXdsbMwwDM756OhoMpl8/NOfvueee8Iw7Pf7lmUYhnH16tXLly8fOHBAWppGR0dzuVyr1aKc+74vk/FrtdqVK1copTNT0ypBgItUKmVHo1/64s9U67VOqy2p4Var1ajVms1mLpezbRshoOhaNB5/7LHH6vV6q9WSNR7rq6tS1jY2NpbJ5ILAo5QjBIaGhpaWbi/cWMoXC6OjowLBXrefLxamZ2cQwTdv3nzz7bcIwtF4bHp6emJ6KpPPHdZ1jFUaho1G4+DBg71eb+3WrcuXL1+6dCmVSk1NTcm0DgCAbdvPPffcz/3czwkhXN9bW1t77733stmsYRgrKyu1Wk0lSj6fB8CUj/BXv/rVRqOhKEq31f32t7+9tHL793//9zudzsLCQrvdzufzMi6uNDzU6XRkfRBjrN1uLy3dfPfddyUOurmxVavVMMaO48j84Xa7iTF+5JFHWq2WPO288cYbuq5/4QvPSt8fYyyWTAwPD6eSGSkMqFarnWaHUiorgLP5XKVSabUaEMJabU8uQafuO91qu8/9/C/quuP7vqZpPqUAI0YpQpgLzoUAXMjlFwKAB2nYn+jW/qTaSwiwr/sVXI5oUDAGMRaCGabm9XuxqAEYNXXt2LEjimM9++zn/viP/6jXbz/66KNoa6fvugDjTru3trbRbLYPH5iPx+OaSnRV297e3trakq5h6XnaXN945ZVX4tGYaVuHDh2ybbtRrd26dWtt5U6hUDh8+PDk5GSj0VhdXT1//jylFIDJwZaUSu1L7ykvloZtJ+56NJJI7tWbIQACYsE5ADxhmZNjo7ahCMYQwgyivUb9yo1FypiuaaEfTIyNfumLz4zMzTG3H9AwDEPf9byeG404fo/JagsAQEh9jCFREKWcEKQoGCEEFQzwfo4t9QX5KezBw8D1ehLBketsKpEECqY6vdhsdgKwVa5AyJyYIxECQyGUcseJmqbZb3U9LzAN2zRsDv+WH1UIAfepOCAQpxQRxIQAECiICMadqG1ryt72xtf/zufi8ej2zqZhGHvbjVQiadsmhPjQoUMSj6nVGp1OL5PJeJ7XqDcty0IYptNp3/f7Xl9G1bU6ba/vlvKlnnBbrRbY9/dBpCCMoQAYIoggxETXTMGh4BACzEUYhiHkQsUECMQF1xXIgABokPnOgJDtRkwILqSRFiIobMvMpJLt3g5CIBJzWo02AAADDAGABMmRKPQ8TdelNrzb7co+jcD1kABcMMEBoxwAAAQNXQ9BDRFXcz3eqGuGrauGraod11vbKrf0UEM+5OEnUS6MiJzt5AYmZxohBBCYUaFgKDcMRVFCxpgQOiGaYUhGUu6O8nXu/hiGIceju0J4OR75vh/QAQUZhiENAsaYzJFnAgvBgPjplx6LW8MjeUYDqCqUBel0yt/apoKHlMu/FCEkRy/5zYL/Hw+z/DU5yALKCEI08JGm2XbEczsUYKzZmmUDogCIiG4cuu8UcPu6ihj1OecYIrff/cmLF+LxpAAAY5JOp/PZXKvVevCBB1zXNTUVQA6x8vpPXmy328ViUTJf952+3/f9crlsWObVq1cBABMTE47j1Go1xtjExJhMw1cUpdvt7uxsNZtt6fq2bbuys+O6bjyZkH+CEGrWazLjSoY/aZq2ubEh7wEAqPykyWRSOs91XdcUXCqVEolUp9OR9ITMy4hFE8vLy+fOnUMIeV5f07T7Tt9fKBQUrDpOFAAksU9N00zT3Nra+tGPfiSDxWOx2PT0tONER0fHh4dHZf+3rLV58+23l5eXJZc3NDQ0m81Oz81FYjEhICFE2vReffXVtbW10dFRQkgskZC02mOPP/7YU5/12m0FYc75+fPn33vvPdu2E4nE8PDw6OioZhoIIUl6SixKMD4yMtJsNhVFkTzm+vr6tWvX0smUvMEkWnPixIn5+Xnpz5BVV2+//bY0OsjXl63JBw/OS/2AfLTr9frZs2dXV1fjiaicCHu9nkSkVEWXjwMhJB6L7Wxvr6ysQAhj0WgqmdytVBqNRiaZkk1TjuMgRA4fPjwzMyNpXNM0BWNXLl+u1+uStJLDH0Ho8888o6qq7GcMgqC+V/2rv/62lNlhjI8ePToyMgIBPv3QQ6cfeggwFvq+BKvfe+fdVqdtWZbjOIVCYXJyWlXVQ8eOAUJAGHq9nhx3zp8/r6oqFCydTIV+sFuuZLP5XCYLAOh2u9F4PBGLb65v7FV2a7U9iY8OXB2RSDyRAEL0ej3LcXRdv3379o3FRUJILBaTYKF0uco2TM/z5CfNZrPr6+sIoVgsFo1GOec0CEzTTKaTSZgSQQhNY3Jy0vX9drfbbLcNw8CKYhhGp9dLp9PDw8MSlY8mElCAtY31q1evet1OIhmXw6uuG2OjwyomAEIAEBDC7fWWlpakdscwjGMnTqTT6tDQyNjEFEBIUB6Goarra3fuvPHm2y+/8hqltFDIRSKx8fHRVDpbLA33+95OZffchYvxZCKdzva6/d1qfWpm7lOPPk4pZWH4wdmz5y5cGhmbYNQ7d/4iFEDqBWUGRL/fn52dnZyc3NraajQa29vb9Xr98Uc/dey++7xWq93rbm7sqKp6/6n7pienGo1Gs96oV2u+53GFXbp0KQIelI/w2NjY6OhoGIYYK+NTkysrK51Op9vtbm1tffTRR7u7u+OTEwcOHJicnJQOx7tUu20enZqYFAJWdnZ3d3eXl5e3t7cjkYgsOS2VSsPDoxywg4cPYYwBFxNjY9Vqdbdar9frS0tL8uA0OzvrOI6qqoZhQYgz+ZxcS1utVrfbzWQyAKCPPvqomC9hrCzfvqPp1o2F2yFnI6VSea9BOWMcEE1FkISMAgQZY4wGEA48VXd1OHeXZvn0AYmCwcGJekDrC84BwgpivgsNAjg3dTWViC+vLP4P/+g3JifGwlbjwIEDzz333B/97/8xk0lNTk7v7dWGx8aKhaFkMr27Uz5/7lwhm0unEtFo9KEHHtjY2KjVaivLy57nHT569MHTpy3HaTebL7/6KoaoUCjYtn3q5D2paLzRai4uLt64uTg2Nvbwww9Pzky32+07O4N3fc99pwaxqy+88/8aGhpqtdpWNBZNZP7l//yvGUCYaJxzwIPhQnZmfFjDEHCh6Vaj0/3w0kf9gJqmRQMfUTo7PfG//eHvzx+cFxgHLMAQtZstW9eSiWS311V1Tca0EIIYY5qmEEJarZZ0CXme1+m73W6XUlrZ3I4a1vrCsHx/P/nuL/X6nu9Somi3Vtd/9uvPfePX/26r38UcfefPv/m9//rX+aRTq3eiUYWoCqfhcKk0NTE+NFwSQmyubd/ZWItms09+4Wemjhy7dG2ZVefky379//0rUCaDKwQhGFJfloCGnoeQYmmqoeJMLLK3vf6f/uD37r//gOe2ms2maZoKRpzzbDYvE97j8fjublXO75zzWrWOCZKsEOUhAIAQJPm4RCxeyBZ2diq/+Zv/UNEMwXEIeBDSIAiUQTQaRAhpuinxc4QQRELuc4qihAGThnMAgNSE0cCjlEKCECatbu/IwUOWqWOMx8YnnVjm/OWFl986q1qxTtcVocAYY4AZk7ykIoQIPA9jzDkVQigKTqUTOxvrgHMrHnddDyOFUwgxgBACBSNs6JYdSaRT+WIiU4glUnHHLqas+w4VpoYjbn0bw1DZz7KHEHI2yMcS+15ImdciGwYxlIIqgjEWEpPbpykl8qcoirR3nfnzTfl9PfvLI/KzS0Lt7kgn3XlwP8oZAUAICUOfMSagAiGEUJx9wZUvcvJzzv/4O//61krVjmd8wYhu7JQrPmV+MCgFl0SkfH2+n/U1mAgJgRBSShFCg7rW0FeJQogaj8fTiWSrWX/6icemRwtRFBqEbm6tnrzn2OF77+2Ud3Y27+iaoqsaALLm9o7vhxBCXTOGRoYHGiOFKArmNDBN0wvo5ubmxsZGGIaapo2NjUXjsU6nI9mi2l51ZGQkDMPt7e3Lly/LcTObzR4+fFhmbJqmKZtAZY/bmTNnKpWKE43EYrEHH3ywWCx6/R4hRN5a8jq//fbby8vLkUhEZ5+W1+qZL8ekoqjf72MoCCErK6tvvPFGLpcbGhqKxWLJZNIyHely9TwPY9hqtSBGjLF3336v2+0eO3YMAJBIJOLxuETpXNftdrsIIdm8+95770khC2OsUChMTU3IK99oNGTMmyQQL1++XCgUHCeq63osFiOEbKzdqdfrslJtbGJidXV1eXlZNgk6jjM/MxtLJiU1L83hjLFut/vyyy9vlXcymUw8mZBSDAUTx3FUw6C+L+et1fW1lZUVgvDd7XBra6vZbA4NDcnTQjQalfewpNFlIpfrui+++OL4+KisERwaGpIYIcQ48DyiIN/3McbLy8s/+MEP0um0bUUksDEyMoIwAJoGgkAIEfg+Qujs2bMXL160DVNG/8/NzVmWoygDOFkmEkNCrl6+fPPmTTk4ZrPZVColgyoQQpQGGONEKuX2ep1+Tya6SbCNc/7ST15JJpNRx5HVMfF4XCUYQsiBkD0Kqqq6rv/666/vVCqyiEZGWqRSKc/zMuk0YFT+5muvvXb9+kKxWCSEDA8PT01NxVMp2SQNeAgIYb5frVa/9a1vSYgrnU6XSqXx8XEjGgWEACYA5zLtz/O8559/fnFxcWpqCmM8NjZ28OBBRVH0VGqQgA8A9zxK6fe+853Lly/Pzc2YpjlcGjp89Ihu2sgwAACAsdB15Vfz7W9/e2FhYXh4WIYpHDlyxLZtgKBgPOj3DFP3PK/b621ubkkkXgiRTmdHRkYIIVBRAGMhpTzkAsGAhj/+8Y83t7YmJiZKpWFd12WElTzApFIpCYLKs5kXBsVCiQOxs7NTbzVvLi4NDQ2dfvABRVE4ZXLJkmx4u93u9nuLi4uLNxZkzLIc5WX2vdQxCEp7vd7W1lan1ZAn5A8++KC8W9U0bWpqKp/PS01hPB4nqgoIof3+d/7TTfkIP/p3kp1OZ2NjIwio4zjZbFY+a4SQWq3W7XZrjfri4uL169effPLJ0dHR69ev12q1ycnJUiFv27aq6gihvb09mYcgl+X33nvPsqyHH3642+9cu3YNADA5OdlutjKplBcEErUSQuzt7cmCrGq1+tnPPiPbKSilslBBHpiFgLVajSAFQFit1tqd3j//F/+q0/EB0ryQUw7dkAoAdF2HGAkhfNdjjCGAGWNIFmzLI/2+53FATQyK5wWEEIiB/1FAjgmRxBHgXPBAJ2hstHTz5rU3X//JAw/eS90mURUgwJWL5//kT/7zyMjY6Og4gAhCqCrmxPg4YJwG4fLtW1evXE+mM499+tOpVGplZeXSpUt37tw5efKkrNOQALBuGgvXbwgITt93f2l4KBKP3b59+4033rAsS+6Savuo/I4i45uD8etf/9FXdV3vdruKYVqRSL3dWbq9xjgAkBMsjh6czyYcxGm/7zWanVqjs1OtA4Qpo6amgdA/ceTgb/3f/68HjxyMpzN+6PmuRxTkdXoYwlgidVfSBACXHVthGEKM1tbWdF1PJpN+yCS1QYNAR+TDVwaowzs//vVOv+97DGHl5vLtr/ziN778937ZiEYra9v/xx/+b+++/MpwocBYSFkAAOA0jEej4+OjiXjMcZztrcpb77w9Njf3a//wHw/NzJ29skDLs/Jlf/F/+nsCYg4YhwAAASBHGEMIMULM90xFSUZsg4hs3PlP/+HfjY6ka/Xy3t5eLpcL/UAKGqTMUAYuy0M5IcR1fYnzmaZuRxxd1xkLFUXhVCiKYqjGxsbGz//8V4dGxgjW682GF4QQI9k/KmPGFEULgoDLpmfqM8Y4ZYqihCHzfR8jhXImByYok+EhEAC0e/256ZlCPqsrajyZ1u3obt39i7/+AcNGyAAPOQQYCUQpHcA8ADLGBKUAAwQgADyeiArBHcfp9Xq1RhMJxHwOAAMIQV1VdSsSS1nRRCKTiaby8XgiFomW0pG58diB8SShTSJ8DKTxcCCixxh7QSBJQ7mtyowlIURIfYwxwepdlRveT6yWjxAhhAMRhuFLf7Etv6/HvpKWCxzgQo5od9WUd8Ewvh/NB5HgnEOgcM4xFB/sj1+Pfy3/X//yB//0n/3bxz7zhT7zOq6312iElFPK74JtQgyi7cEniiw45xL24JxjhUiACHNKILAsJxKJGbppmeZzX/oioW4c+yZhm+vLv/wrv4gwOn/uwzvLC4m4c+LYcVVVe+2e4ziU8pAzhajtdvtHP/qR7/v5Qg4hMD87PTs72+r0ZFan3OSEEC+8eEaugxDCmZmZEydO9Drdfr/PGOv1epSHnPO9yu7CwkKxWNR1XeYsj46Oy61XTloAgICGzz///G55R/Lm8/PzBw4ckKdVCGEQBC99vyc/+0rlz+UZznGcEyePmabJqOj3+6HvSz2AqqqGZd24cUMq3wkh2Ww2loj3er1Woy2zRaTk1jCMvb09SdlLGMNJJrv1+srKigzHUlW1VCrJ7O9sNn0X5rQsa2tr69atW9JjYRjG+Pg4AIAGQSKRqNfrGONisXj9+vVGq9XpdCzDGBsbM3RraWlJjhpQgGw2OzIxAThrt9tUyEg5rihKuVx+/vnnJf8i+dBsNgsxikSjgAsZFsUYW1xcXFpakm1Fsg7I8zypfZYEmaqqO5XtcrncbDYhhOnkIIajXC5LkTjjYSKRkFBlv98Pw1BwKKnbcrl89drHUhTl+/7Y2JicxQkh1A+EEDLw/eJHH3/wwQcjIyNyEjp69KhkAwFCQAg5vnQ6nR/+8If1et2yrKhjT0xMHD56BEIoM0IHegaFMMbOnz+/tbWViidkSaJhGFsbm4ZhyOOHbhpCiGg0qqpqo9HqdDphGCYSiZWVlZs3bx4/fpwxpqtKPp+XCasA4U6nAyGUhY8LCwsSmEQIEELke5bJsZIIU3QtHo/fuL7YbreHh4dlgEU2m9V1Xeaku64LMdJ1HQG4vLxcLpczmczdWEvbtqEQnuc1GrW757Qr127cvHlTWgFs25at3oSQbq8tz7FCCM7AhQsXZC+ThhFCaHR0NJ5K+p5XazaklQEhAiHc3Nxst9vT09N9z7VNhzIWjUZd31tdXb1z506z3ZFO3kgksrW11el0ZL/t5ORkKpWSQ2o0GjUjUcB53/Pq9WZlb3dkZGRxcfHdd9/N5/PJeKJUKiXTKTnzyUCAIAh0Vbt169b777//8MMP5/P5a9euVXZ2ksnk5OS4LGuS51jXdXuuzxi7ffv2xYsXn3766QceeqjbbruuK7sfXv7LQfDEkcehrCEBCMpwuzAMp6amUqkUAEAewCqVyu7uLiEkEolcuXJleXl5YWHB7XlTU1PT09MnT57M5XJSgy9jONrtdrvbCYIgCLx2u12pVGq1mq4aUkEoCzdlbqI8h/d6vVarAyGsVCo3b94UQqRSqUIpr+t6KpVxHEdVdIRQIpG8eWvl0PETs3NHt3d2qVAQJj5ljHNCCCKYUhp4IQBAMC5TxKWBDEAoD8PgE8nYUADGGEBQcD44DACAFYX5LiAqApwAnk3Ht3fu/N1vfOMP/vDfKhbqt+uqQggmAEHW6b704stnzpxxotGxsTGFGOlc9tjhIwAjxtjOzs7KnTUJkYyMjMi4YNM0K5VKq9VyHKdYLKqG7nZ7Syu3qR9Uqnuqqp4+fXpychJjvLi4+OGHH8bZoH1n7jQbbDyF4tDq6iqlzAu7ph0lRGWcydGSUi4ggETptLq1em1jvdwLOIQYIUQAiTmRanXv8ccff/jRR5aXb4WMJtNpI2LX6/VKpZLP52/dukUIkU8pxrBer8uMMScaiUQipmlDiG3bQAh1u31T020rAkBHvispPmCMKaoOGAiCwHIilHPJbQkBFUXRDdJqBd1uVzCqYNhut+KxKBBwr1Y17cjBw4dqjbrdalqW1RpgfgBCyIUgWGGCMkahqiAEGWNACFVVOQ0Q4N12+/5jB01T39jYuLN6a3JystfreX1XUZQgCKSTRVVVaWgaEFIASANgEASNVlM+XWEYYkjCMMQA93p9x44GQeDSUN40QRhCLDd4hParD8W+7ltRFCqAFDXLd84pU1WVU44wgAIAziFGuqKGYej33WjGYX5AbGgoRFdI2/OJalIGGOUyxwEN0rOYYAwIAREWjMvMOk0z5PKHMeYcAAIx1jjkgnO/3+8qbUgUpaVHkzmJA4WMtzpe3+d5x+EBZ0HIGEMIyrftOI6yv/bJwUuqW+R0pes6wSr4hKYe79fR3zUNSd2A/On1erJ22jJMSayI/R57ecWkJU3+qxCCYBVjhTGGoQDA3X8ZOj87KVgY+K5u6m5IGWOcD0hGeZYSYvA93oWyGR/8oP22RwEQpwEGgmDieYGA3WgkMT4x1e15hPmmyWOO8fQzzyLLKq+vJtKJ2dnPtWq7i7duXr96bWp8inOOsTI1NWWlbNM0n3vuuZAGrttzHIcG3re//W2ASCQSkaXF0uH11FNPSSxH6r7feOON5VtLmUxG07R0On3y3hOU0mQ8EYlEZDOVaZrNZvO1116T3YIQQsdxhoeHmeBf/OLn3V5fEnmRSOTs2bNra2syUsFxHACy8kr9wi/8glzQEULlcllRlNU764Zh5DIZzrlEFKr1eiQSaTabm5ubkvrvey6lNJPKypO65EMrlcrt27fb7bYU48/NzckTy+EjR8K7SSsYLy0tvf3225ZlyFCiAwcOQAjT6XSxWJQ4k67rvV7vpZde6rbbiUTCNM3h4eFUKjU3N8cB6HQ6GA5E7r1e7/Lly3Nzc6lEUtf1WqWyurqqm4amaVTwVCqVzGQ0Tfv617+OEKKUyhvy0qVLNxYXhoeHOWWmaY6Pj2ez2fn5+cOHD0vQQlGUdrv9/PPP1+v1dDodjUZlvWAiFs/lcvKeEYwDADY2NhYWFoIgiEajqXQCDIStWjKZhAixcEB2dzqdRCJRqVRk9XWv15P00OjoKAaDz2JHIrOzs9lsVj4mMsD97NmzjUZjeHhY13VD0yTG841f+iUZasppyBgrl8uvvvrqtWvXZPvN8PDwQ498KppMfvqppwClXq8va6cBANeuXVteXnYcp9/v3//AadM0E4lEJpORoSGapqmWJZ/BW7duqaqaSsSlDM7zPEXTo9GofFQxxolE4tatW8vLywiBVColM2k5547jJJNJSqkXSvc02tzcrFQqsvFGtozLtRQAwIGAEEJNbzab6+vrt2/flpfOtm3P8zRFiUSjeaPA92HvQqHQbrdbrZa0+3Q6nSAIut1uKp1wHEcuCArRJicnV1ZWant7hKB4PF7Z2231u61WSwCUz+c1zaCUOradK+T9gFImKrvVW60Vx7F7vV6j0WCMZQv5oZHRXq/XbDYZY8eOHYtEIvJRunr16ubmZjabpZSePX+hXq+nMplMJpPKZIvF4ubmpm3bjz/+eLfb7bY7i4uL139w4957733qqad6vV61WhVCtAXIZDJf+MIXOp3Ozs5OpVJZWlqqVCobG2umaUaj0XvvvVeKPlXdjMVio6OjJ06cYIytr67euXPn6tWr9Xo9n8/b4LR8hCV6bdu2E430+/3jx49L6qBWq62vr29tbck0waGhIdkF9MQTT5w+fbpcLmNINjY2/vqv/zoIgtOnT6+vr9+8eXNkZESe2QAAnPNutzs/Pz81NQUhVIm2tLS0vHxrfHzc87ytrS1l/8eyrFQqJdsk8/l8u90GANQa1ffee29+fv5zn3t2b2+vslttNDv/7a++JQD0PA8iAjmkVMZ/YUopFIMFmTEG7u6DjA3W6H2C4q5sF/DByRwgxCQ7yTmjlOgmC33bNqGgGAMI+PjYKKMBCbEZi7F+r1Gv27qhGMZnv/zcI489+tZbb7/x+lvlverU1NTW1hYXIplMHjt2bGR0XK6KZ86cqdVqkOBsKp3OZefm5hrt1kcXLy0u3Roulg4fO3ry2PGA0eeff/7q1asLCwuWZR05cuTLX/7yy385YHXef//9wfilaLof0kKhMDo66oV0ZW0dAYAQppwBCP2Q7+zVdzbW96ptJGvDAQAcMkYl6dNzu57nNRqNDz74IBqPxaMx3dTWV9f29vZUVU8kUvJ8o6pqLJaQchAhRDzKiaL5vg8YiEVjPc/rdruW9tPUe0VRvDCU6C7nQKbQcgQZY5wxBRMEIA2CiG3FoxHGWDoZO3bsWC6bXVvfaHU6Hbf/J3/ylz/3dVqant0u71hgSL5sGIYYKQELAOSAyPgDBoTQFNVQCBccA1Gp7p04foQG3vb29sjwWL/rynOh3PMkXoIQ8n2X0mAwNgkxmEqJKhjHENGANRstw7AIIRBQynnX7VsRRyIriqJwADjgcvtnjFEaShAOY0xpEAah/E/SUSI4lMJexhhjHCEEuCCYIAWIMKCUCsZDHmiImKpIRiO9oCk4J4TQMADS1ScAoxRhDBCEAkAkmBAgoBKj2i3vAIVoukFdHwCZLAqFAAAj33cVr59UMGBUUxVN01qdbpA0iGIy0VOJZpmOFGMJIXRVlZ9OPqvy/A0hlHpwghSyr6NHQHieJ3lV2aUtf//uUeYuECVpMj8MgiAwNF0ieRIqYIwhDELqD/4WzRRCsCDc13INfoiCi8X8g6fv73fbhoIxHPSwSpn//gQG7v7rXWHBXR+AoigspIwBgqEIOYBA0zVLtx557NM0CKrN1tzE0FOPHXc0gLHodeqr5a0Txw8rhARet1gs+r4PBDAt0zGdIPAWby5gjOWliERtoioYw0NHjjQaLQih9O1fu3ZNURSiKp7nRSKRRCIhtfbxaEy+Qyk9brVamVRaVrlJIfmtW7d2draEEEEQSAffysqyXI41RfF9F0LoWEYiFms1GrLpSdk3fgIADE3T9z0Qpm13Op3by3c2NjY2Nzej0ejY2JjlOAihw4cPy1ncC3xd1z/++ON33nmnkBtI1g4dOiQVu1967jm/15MLKELozTffvHDhwtTUlKIo+Xz+8OHDCKGZmZmZ2VkahlK93mq1/vN//pMwDGOxSDabHRkZOXL0qKqqzz33nKyg5hwoiiKF+el0WiIoxWIxGomfOHFCduohhLr93vrq2sLCQiqTjsfj8VQymUx2ms29vb1B6AmA2VSaCj47O5vL5RqNBkJIwrQ/+tGPZGCHlOqPjIwkk8mvfOUrlFIWhJIartfrr7/+ajQalYSUzCYtFou/8Au/IKlqyYUtLy+/9NJLxWLRtu1oJD42NpbL5UpDQ6XxEbmjhEHAOS+Xyy+88EI2m3VMy3Gcubk5AIBlWbFEHEIICAGMCc6lX7XRaEQiEUVR2t3u1s6O67pDQ0Nev4+AsCwrGo0+++yzn/vc57rdrlxvCSFXP/ro9ddfz+VypqZblnXgwKF0Ov3cc88NGq4gFBAsLi7+7u/+7ujo6PDw6MjIiFTOZQqFx0ulwU7muwih3d3qn/7pn3LO8/m8YVnHjx+fnJwsDg09NzEh0y/DIPADt9/v/5f/408opSMjIxjj8cnpY8eOHT169MSpU4BSgLGgdHd399KlSz/+8Y8nx8cTqZRpW+Pj4+OjYxMTExPT0xICEGHIGFtaWvr2X/2V5NFM05yfn5dvb2xmBggBwpCyoNfr9Xq9Sx9dWFpasixLFvvMzs6OjA5NTk2xIPA8T0Co6lpAw4VbS9eu3shkMhDi4eHhyclJwzDmDx7s9/uIKIioPde7vrAoL/i773/Q73uqrj322GPFoWHf9wHCHEAB0dyBgyNj45zzrZ1ys9HutHtLt89CCKVLcWxsLBKJ6KpGCLFs2/e8Eyfu2dnZuXzp493d8vsfvgchNDQ9Go1OTk5GIpFYLPbwww8/88wzhmH4rru8vHzr1uKtW7cSiUStVrtxYzEej09MTUm41Pf90dHRmZkZmd53+dXBkicjdtvt9vrmRrvdlmaCnZ0dOU3KM8/m5uaNa9fX19efeOKJ48ePR2wnMRv3/VBesaWlpY2NjX6/3+/3f/KTn6iqmkwmxybGp6enjxw5ImuXwjB0e9709LS0nlBK6/XmwsJCr9dLJpOTk5PZfM5xnHQyMTI2qmumH7iMhffcc6LVatVqe+1uZ3l5GaP1jy59HI0muz1XURS362GiQMDl4xP4oSQfgBBwv/kN7KtyuYS49skQCCFjVFE0AbkQAjCGFIUjLOExwzAYoypmnHqWoh47evD82Q/9oJsvZEdHR+PxBMAYUMpd10ylnvzcMw88+tjKyuo777zz0dVrPKTDw8OMCVXBkUgkFk08cP9px3EAgq+98mokFi0Visl06oH7T99zzz00CCln7779TjQee/iB09FotNFoXL169f133tY0DYABC3fwwNyAfPyLM7/dbDWKhVK+WCjvVm4s3rq5tIyIGtAwFotFHXunvMVDBgHAGChE0zTD98PA71uG0XP7v/53v/7UE08k4tF+v2/b9oCSM/RWq7W5viF5X0lnyOlH3gGmadoRp9d1Pc9LJpOKrrndXr/duf1RUr6/N37097rdXuDzkILVzc3f+w9/MHvfPV7gwz79g3/zb94689Lc9DilnqYrErefmBifmZrodvo3bix8fH1xo9KLxPXf/p3fmTpy7IevvDlhD/qwfuFf/hpGihACYMAAgxhDDBilGAhb1UHo5uOOgsJ/8n/7R8ePHgipn0zGLXOAzxNCGAtlRKrnebquSpRVoi9hyCjlGON+v///Jeu/wyzLyvtQeK21czg516lwKnaFznESE5iBgREMMGSQJSFLGGMFI1vW/e5nW/KVruznykp8loMky0gCBIxIA0zOoWemc07VXTmenHZe4fvjrW7wc88f89TUU33q1N57rfW+v/cXCEGqqkNhHgSBbcXCMPyzP/vq2bPnk8mk5wZMiCiKAhpKsowx0TTNcTw484AnB7OSKIogew4CqgXnYBi2Q0VCiHOay+UGBgYKubylW7liKRTSG++c/vFLb2RLlW7HCSMmK4oQgoUMCSHJMgtDSVYEYggh7jnpQk5RlO3trUQ6hYnU6fdEwBEmiAiECJIIllQ7nh4aHiuPjNrJjGEYliZPDhU/8NCBkbQQwc56Bt4xuW3WgEAVexuOhiFIxOgdDzP46/DPuGrdIXIJIU7+ZCem4K7HLXSbj6UoCowgAV/p9/uqqsoKuUOWZ1SoqiqogLHmK99rwJvMvTfyQvxf/9u3X3jl3V179rgcrVW3w4hxvsOp55wDg5PftsBACPHbEN0ddhqlwtRUhQhZUvs+/finP3Pk0ME333xzeHAwdFrvvXt23/Rw3NSXlm/+6Ec//Nf/6l8SBa9evaLJiizhKAhlWTY188aNGy+9+ppt24Zp5nK5w0cO6roe+h7GGCECNFjY9RzHsWJ2PB7fvXs3hCXLsqzKyh0u4LUbVy9cuGAZJkzHRkdHQVgnSRIcGxA69tprry0sLBBCSoVcLpfbtWtXIpEwTRt6X3jqnv7uTu6Qj5+3LMuyrD179uSLxTs16I6yVZKuXr36zDPPQGBfIpHYvXePbdswRO62AeeWOp3Oa6+9Zpom0KjT6fTY2Jiu64wxwA8YY7Ztb2xsXLp0qVgsgnKtWCwCUtJut5vNJqWhECIWi9Xr9U6nUy6XBYsIIYODw0YsVt3YgIIJ3XZv31jfCoJgfHz8jt3D+ura5uamYZmxWEy3zFgsdvz48dXVVXCTrwwNVyoVMOe0LAvCr0B+u7CwsLa2dkf2lc/nwXVZ13WFSIwx+Plqo+q6Lpw3EOY9Pz+fzWZhZBaPx+PxeLvTDG6/CJZjsVi73T537txAuQi6tlwuly0UaBB0u11wOQJXi6d+8uNbNxcnd00RQmKx2JEjR3RdVyQZ6TrCGAlB+33O+enTp1966SUYpA4PDhzYt1/Vd2In7iB8kqaur61tbGwEQSAo03UdIRIEweBACdZRLpdL57Jrq6uu625sbCwuLu/evXtqakrX9eeffx4hND4+jhAyDG1oaEiW1SAIYPqmaJppmr7vX7t2DSh6wIstFHOe57EwAnWFpmkCS5IkwRyqUCgAaF0sFqvVahAEBCHf9yVFiSXignFIpQQiFCGkUC73221VltvtNiDBkMh05dq1fr8PJU4Y+RAnAG66nHMIP3Yc5/Tp0+lUFv6Ear1WHhzOFQuMMVXXuu2epmkQ4Rf44dDQ0MjIKOWsXq9HUWRZ1ujIMEwGllfXNjc3wdL25MmTZ86cSaVSU1NTCKF0Og1WWOlUFvC8kNGLFy9eu3H9E5/4hOd5P37qRyCY1XXdMCw4FBDiTFDbtn3XI4ScPXv2oYceAuUW/EC/25VlWdMU13WBRFit1ldWVja2tuBSP/jgg2NTU5HnRVGk6/q3/+Lqznb3AFMU5YUXXvACP5FIAPcO4jWBf5lIJJCiBN3e/Pw8QqhYLK6srFy4cKHRaCUSiWKxWKlUWq0W8B1hc+73+88892wqlXr/+x9pt9sbGxue5w0ODIHnLTR77LZs3/f9paWlU2dO33vvvXv37m02m416y7R02zaz2TSclYqm21bi5Onz9z3w0NjYjB9RjqR2p0dkDWMcUU4pZQIRQjhlPKJQRaH/XREFrzvzCsSBrYuFEFiSGGNEVhBCWHBTV1noDJbzizcv/9oXf+ULv/QLgoVchLXatuM4iqIMjgwDo07RdUQUEQTYMBHn7VrzyuXLp0+fXl1adp0e5iKfLw4PD6cyGaBeeJ4Xi8XeeecdQsjhw4chrKlWq9XrdUWTr127ls1mK5UKaPxXL+w4LB5+RNlBv5hg5aEBXdPDMOj1eisrK5IkgblZFLJWp8sZEVgQLCImRiuDpmlfvHheIYqiKMhDu3fvnpmZqW5vSpLSbXWJIpumubS4MjRcnpubC0N/fX19dXUZNMaKosTjNhylq6vLUcTy+bxAjCAei8VSsfitszvnbsQokSQJ4bbTHZ2aEIqyvrKezmU31tevXLmSy2cEjRQJm5omy7KdiJdKBUSI4zitTo8TZXb3eCKd3260E41Oo9Ubv5P6SAjCHCGBENkZGkqSoigKRlEQZuMxp9+7/97DH3j/w+lUDIotwJ+CIACjGih6bNsOYIaFsOP5jEWKoqmaFkUUE4kyKnEB4/BMVvP9MJXJfvGLX/qjP/qj48ePVyoVjSiapkqhzBgTHLFohyMFxxgTnMiSjGSMMfh9UkrDMFIkVQiBCeaca4pKKUWU8TDkYdjrtKMgqLeaEce16lbCsmQhhGBE/ml0N0ICIRlhzASXFUkwjlTV9/1EIrFrcooJvlrdFpwjQiSyk/WGMJYk4rr9RqOWzGYVVddkRTKMvuf3nKCnM5lFMGWQiaQoCpYw9CjwTRgKwOdXFIVyxpEIfJ9zDkQxWK6qrMB3KKWSAjXBzmPAKRNC6LouEJNlwsJIlQmUaulk3Pd9IhBoF4QQHKNerycTEnaCTqeHUBreJJVIjqZLdx879I1/+N7cvv2aRBQiUbIzr7yDdQEshxCiPwudIQTwZBRFAkkco4gJx3cm5/ZN797T9/2tas3QNIl6X/uff/OZj75/cnTkL/7iq7/wiz9PFOXy6RNXLlyQMSFYjAwN79q1i4XRxMREZXyMMUY5kyRpaWnp9ddfz2bT6XRaV40DBw5AbswTTzwBuzBMsf/hG9/0PC+fzxuGMTQ0NDY2xjmfHJ8YHx0DGA+meC+//LJlWcl4PBaLFUql6elpTdMef/xxSqnv+wTxVquladrx48cvX746OjqaSCRisRiQ5eH18Sc+CWQ7XdePHz9+48aNQqGgqupweXhqakom8uTYZO4XCr7vE4J0Xfdd78yp0yGNCoWChOV4PA4ph3v37r1TaqfT6cXFxVarlc/nwbMN5qdRFAE0WK1WY7FYMpk8e/ZsKpVKp9O5XM6yDFVVoyCgYbixtnZrft62zXg83u93+/0upWxkZARGV7KmIca2trZa7cabb24CigBz0kKhQDlzXZcoMhyfMzMzQwPlKIoWFxdB43ny5Mnd+/bCkbZ//34Zk2NHjh47chQhxBnjnDcajR9+7/vgT5ZMxfft22daI7G4lchMIU1DlLrdrmmazWYT3DSKxWIqlZqdnQWrjkKxjCQkoggwWs93MtlUt9Nvt7r5fN7QrXZrvlarpVKpRCIRBUE6ndY047EPfqjXc7zARwgBI/Dy5csLN28NDQ1hjGVZnpyctFKpu++99+jRo8BSCH2XELK8vPwP//APMB6y48mpqanR0dHywFB5qIIQEmGIZXlrff2HP/zh6ZMnwGV0ZmYmiMJ4PD44MjI1NXXvvVG73SaEgNH58vJyv9tLZzPj46N+FDIv0DQtk8vB+kUYgyHtysoKcO+Gh4cpC1988cW7j949d+Bg2O9xznXTpGEIB/PS0pKqqgMDA5qmmboet214gF3f1zQNsBzQ3qqqOjs7C5MvVdfT2ewd4Rscup1OB2apVszWEwlV03r9Pnh693qOZVnJVObWwlKn15cUdX1jQ9H1gLLNrSpjTBDca3cxxtvb1c2t7V7POXHqNBJEUpWPfexjldHRdrPpeH6z2cQYQ5Ogm/baxhYi8qEjx3zfv3Tl2vLyYqfT+Xf/7t+NVSpBEHie6zgOR2hoqFwo5DbX1wghRw8fvHnz5vkzZ4EoPDAwcOSuY4wxXVdhLAC96LVr1xBCvV7vnXfegRhKVVWBZlQoFMrl8u69OsK41+06jjM/P99sNtP1OihtMcYI7YElLEmS7/v33HMPRyKRSIBlxunTpz/60Y/qut5oNG7N3wTPPAhxB0l+uVyG5Vmr1V5//dWhoZGZmRnDMECLGgTBxMTY1tYWsOg2NjYajcb8/K1YLBa3Y5lMBmwXgAgohJienr7//vt7vR4Mhc+cPRVFERZ8YGDAiplzc3tShikZxuLiMkJYIkoYeAzRO4dFRDnnCJ4rvJP28lOF486oUQh0+zs7bF0B3xacRURCGGOCsBAQ0c1kmUDa4b333a3rqmXYfa9PWq3xyUGEUKNWW19ZB814JpPRdV1W9WQ6lcxm73nowaN33xUF4fba6urS8sLCwq1b89W332o0GkNDQw8++KBt6vfefWxje+vWwvyVq5dyudzs7OzE5Fir1aJR1Gg0VpaXIcIcoZ3y6+LFizvo12tX/ysEPFEmOp3uzYWlequFiSQwYUwQBFICXioWUol4NpfuNHqXrl4yVEPTpcB3/uMf/l/333svjQLH8XRd7/ccSZL80E8kY4lYHKEd0uu1a9cwxqBqAcZ6vdnodruaZsBDiRDa2tiuz1fg8730k96705cAAQAASURBVC/5jktDfG1+4TO/8suf/IXPa6bl+/7Stfl/+aUvDWezMmKaLiWTCV3XZ2dncwN51/Vvzd86cfJsdnBkfGr3+UuX7n34feXJXX/yF3/1W5/6I3jbn/+DX5WArUUIExRJCEsSRshUFTniIwP5+Uun/uQ///4v/9JnA78PkRrQ/Wi6qu5kkyucU1VV+67DGBO3/aMQQhJRYf7IOVVVXdOUKGKA6HDObSveqNdfffXVt95665mnn+t7HkNooFQoFQcYY4qm33mwQBSEduJ0ECQiK4qCIiGI0E3D8zwJE05DTVFM01xcXOy7jmlaP/8Lv3DPfe/p+fwP/tP/b2W7w5AkZFlwHAQBQggxhpC0A5sJigUSgqkyyefzbr/vBT5FKIoo4gSmh5HgWCKSItOQ6bHU3O6DA4NDphVLJ1OpuHn/0ZnZYRX5DWDZIw4lF0UIwXwQ3eaxwTVUFIUJjgg2NB1YXFD9cMqAXg3zR8GYomlv/XCHAnjP4za4AdHQxxjveBIyjiWCuPACX5UVRVOxQD2nbxiWqqqGplc3t+bn58PGzn706Gez6cLg66+eeuSxjz34yIeZrNf63Vq743nBnVUNTn2Ae7HbZml3xqAA0dnxOA0jhUgM4cc/8bm5vfvcbvvapfOFTNZvbXW2rr/v/qOTI8NR6N51z7Ew8l575eWjhw9Wt7YljDLp5PbmlqBMURSOd/J/gijs9/tbW1uKInHObTNmWdbKygpQc8IwzOfzwPHc2trqdDrA6kgkEisrK/F43DA0SBdIpVIgvoN5AdgKWLGY7/uvvPIKeFVomlbMZ0dGRmq1WrfbbTRavu/n8/lUKhVF0fGXdpqx2YNN27bBZr3da1erVWhqk7GkZVmrq6umaRq2peu6rquJRKLX6125cqXb76mqKhOlVCqpqirLsmVZlNIwDIEl8/bbb9+6dUtV1VgsNjQ0NDo6ihBSVRWwE/gakvhWV1ehFBsaKo+Pj+uqqqqqYprdRkOSMDAZ3nnnnWq1Dq38xMTEzMwMgNOUUkZ/ajH15utvqLo2NTU1NDTkR+GlS5cymQxjzNT0QqFQKpVu3boFmJCia5lMxjCMeDx+8/oN4MzBpgSzG5jQwbAbap3vfve78WSyVCrB2Tw+Pn4HJoQCGqC+r33ta/l8XjdUSHopl8sIId0wkKSKMARU49q1aydPnoS5czadPnDgAMBIumljVYl8n3OuKNLCwsLCzVuQpQjzHc55tVqFSRDnPBm3k6lUFIaAl3Q6nXgyHYbh3/7t3w4NDeXzeUmSMqnU7OwsGLeyKBS3dcRb1e0f/vCHUD3ruj40NDQ8XNFM03ecMAw9xyWypKpyyOhLL75y7do1sAiBc9cwDMO24fQDCxjKwpdffvnaxavDw8MciXQ6feTIkVgsplgWQkhEEbpNu7x25cqf/umfjo6ODg0N6aZ59OjRkZERpGmIEOT7URgCHnz69Om/+qu/OnjwIORFTk5OApoF96XZbjWbTVWVFxcXX3/zjUwqPTRSiVl2qTwwNzMbUU6jSCCytrnxxptvCiEsy5JUZXZ21rZjvu/riqppmqJojLHtWuPUqVMjo5Wxyui5c2defvHFYrE4NzcHzikCS5xzeCSgcjpz5tSFCxdGR0eHyuVb8zfPnTvned745MT4+Lgdj0NYp2UYsVgMIwkkHQsLC4ePHZVleWHhZq1WA/EKDI7W1tYwxpZlMcay2WwQBGfPnlVV9cMf/rAsy0CeBj4+6HD7/X63211dXa1Wq5Z3NyzhibtcaH44ErCTgAZiY2ND1/XNzc1b8zc9z7uTOgV2xJRSwJ77/b7neZ1Or1AoRFF04sSJer1eLBbL5dLIyIgdj0GzRAiJIibLcnVr+/Tp01NTU6lUanV1FWwNkskk6FQkRYb6j3OuSHKzWb989Yrv+7/4S7/S7Xsf+einzp6/ksuXHNenHCEiCUxc10dYQjti9kgwLoT4WYr9HT40+hmHICEEEiDGijBBQnCiKIJLGGPL0Dy3WxnKLy5c/+iH3//VP/mjVrOmKdLlq1eB5JpJpYrFYrfbxRiHYVitViVJSmVyqqoOlIcSqaQVj8mKijBCjMOT2ahWF5eW1tfWVtfW5m/c0A1D07Tx8fF0Og0cREqpoeuVSgXCxFzXPXv2rLsxCZ/26Pu1nfLrzZv/vdfrOY7X77n5UunpZ57r9l3OuUBYlmTBIgmjYi4/PDwMsWvXr91aXF1OJRPtdvuJjzz2W1/5NcQpQaLZbEuKrGtmKpXSNY3S0At8XVfBpa3X6QZBkEwmu91uvV4fHR3VTcMwjM3NzfX19VKpZFkxGrL5Ezv5QE8/+Yuu68uSeWH+5t985xv777prdXVdEvz8Oyf/P7/126PFjOt0cplkIhmzzdjM7KwRt2uN5pmTZxZXt+597/ubPe+td099/gu/vN7s/tXfffOb//FZeNvP/YdfhmBBjBHHCBHBONM1XSJI4zhl673a2j9886+PHJ4NfCcMQ8657/vA+AboK5PJ9Pp9qDmiKHJ8X9c1RVE0TTd0K4oijCWoo4LAo5RrmgZzekmSTE03TbPT6TTq9bPnztVqjQuXL126eJlzrmgqxlhWFRhfQiau53lg3q7rphBCxVLIKJIIFxQzrMtSqZBtNZoPPPLe+x94oFweypeKViK5urb9z778O2++e56Ydsg5Y4IxRrAcRRHiHCYXsiwThMPAQ6GfL5cRF67vSZruOA7zqUwkIROBESdCYKJrlqzqg0PjI+OTyVQmkUjELfPInrGHDpVw2IKlyyDMgDMQtQGh/s7YbgdkAp96hIUQqirDtY1ZFrvNpQ2CQJGIpMivfX+n/HrvJ5Ig70rE4jsTzCgKfR8RkkrE1zY33nr9jXQum0mmNNPYt3d/rlDotVo0jCRJ+sm3a/Am2YnlWr0tq7H/50/+m50u9yliitJ2nUazLQQGGeUdFqcQgnIBkCE0V+y2Ibgmq0D7TWUHHn3848OVSm1r9frF8yPlQRL1RovGe+89tP/AXsQ5kjhC4uzbbx04diRoNdvNRhT6L7/4EqchYyyTyUzPzo6NTbiuiyWy4zaCsaaojWrt1VdfjaLITsTT6TRYKne7XUBGwawLXEOXl5eBNT88PJxOp6H2KuazQMkCH/l2u722tgJSQdM0BwYG6/W6aZrJZNL3fc/zwJt0eXl5a3EKrtXQ5HKlUoG5JNhbA/GRUlqr1V5++WXXdbPZbDKZ3DU7Y5qmokgwieOcK4qmquqLL7544sQJAGlGRkYOHToEM2jpdla6aZrLy8tPPvkkjOcymczU1FS5XAZOQr/fb7Vatm1LWNRqtePHj+/wiGOxocrQxMQEY0zVNKfnCiE4pVC+HD9+HDjjA6VB4P3AhBrUSZppdLtdkIDJspywY8PDw4LxTqdTHCgBUqvruuu6m5uboCybnp7OZDKlUqlSqXS6LVVVYRCjKEoslfJ6vZs3b/ZdV5Ik8GVNJpMLCwuqqiaTSfiluXwe/K6q1SpQWAxTu3Tp0vXr1ycnJ20rzjkfGxsD/wJJUVjEMMaIcULIrVu3vv71r2cL+Xw+L4S4++67h0ZGQt9XFWnHi4FSUGN997vfFUIAwWN8fDyZTAqM4dAVQoCh6Nra2srKCtC3BwcGbNuu1+vJZNK2Tdd1McZwAG9sbLTbbbCThfClzc1NQ9NTqZTr+kEUDg2VOUaNestxHHjGQIHYbDbPnTsH2lvDMJLJZKqQ7dTrQd93HAe2fVXXXNe9ev16pVJJJpO9Xs82zXyp5PX7jLF+v++6rmYYUIWcO3cOdPEYY0VRwEC12Wz2ej1KeTKZlFXFMIwzZ84ALVLXdU3T0tkUpbTnOFEQUI76nW7EGQsjLCuqJHd6/Xq93my3ut1uIp1aXFz88Y9//JWvfOXuu+/mEYejV5ZlSdHS6fTa2lq/3280agBMIIS2t2uu637hC1+AteM4ThB4oG6Bs7ZRq7n9Htzoar126tSpXq/3hS984ejRozChFgzFYrGe04c0Ns55p9fb3t6G5CtN04IgOHr06OjoqG3bqqpyhCFJvdfrAeB34p23l5eXQUQ8PDxcKpXi8TgQDzDGP/jrBVjCI4c6MzMz7XYbrD41Tcvn88PDw8lkUggB1HjP8zqdzvr6+tLS0vT09K5du7a3t1udtmEYIJTxXS8MQ9CdRFG0tbVVr9drtZqu648++ihQBq1YnDFm6gZsJoqi1GrboASs1+uco1QqNTW9y7KsYrGYSCQ8x3Vd17SNra2tfKH84stvfO7zvzQ8MlVvtDnCHBGOBOUiCCKBiBBYUaQoDBEXt5nI6A4xF2MMEwrYtbHgiEgEy0xwxKmiylCiYaRomsZoKMm8mIuvLt/4sz/5T0cP7qeRJxMyMjS8cyl6Xdfxz128wDlNp9Pg9tdutxFCjuNZMVuW1GQySSSUTKcSsbhuGljVkOBIICQR5Hv1ZqPVaq2vr29tbcEt67TaoeuBL2MmkymXy4ODg6vnd7hVOHXujuReLC2trK+vH7v7Xi5wu9eTJQX0BIJFtqUNl8sDpUIUhCJiSxuLC6tLMpExxgShUiGfjMUVmfi+KzDRTTNwgyiKCMZRFLiuCwhQGHZUWQOiDzgBOo4jqwoQBUAKFI8nFV27U9VapokFOX/55j/7F/88kc2tbW1ub29LjDWrdQlivOWE67rZXBryMXqeu765tbK2VRgY6rn+08+/RBTtuRdfX9iqqsadyEcQDuxglZgQIhEmOKXUskyZMhaF+/bvyeezpq5x5lOKwKQK6KuwQdfrdSJJlmXJsqJpuhWPS5LEqFB1LYyYrKgE4SAIoigiRNZ1ssMfUhVFkqngfc+VJGlqamp2bk4zrKvXrt7/ngcqlQrgB51eFxbMHV6UhInneYwJVVWxhDAWfuhpmoYF5pz7rnf50oU/+MPfP/LAg51mwwtcd8ujQTg8UOp3X8+n037fBVK54AhjjGWZAxDFGOfCMG2PsiAISoViTpFX1jYw5WhHFCi4hAVGmIgoCmOJFEJICMY5dV1XlZUgjDw/FJ6zU7JEAUJIJhiEyvAr7nACgA3NEWaMQSaB5zFd13VVhYZGwgRjLBjXNOVnlY/NekPTNILwk08+GbftUqkkSdLk5ORwpRI4jmEYIwODIY08x7VidrvZfPP113KZrG1Zuq4jtPM4VYaHM5mcoloPveeeZ185WZ6Yqfd7uqKqikKZoJTfYZ7deTZ+truC6Z4qy0gISZI01RipjAlJpgx1u13TNBGNQtfpd4Lvf/d7zPGmp8aC0HEDjzGBBO52+4zxRDz1qU99ikUBcAcxxq+++urly5eLxSITPJvNPvq+9zvdXrFYBEK0pO6IB//iL/6iWCxaluW67sTExJ49e+Lx+KOPPtrtdu/QKJPJ5NWrV5977rl0Mm6aJiSTAAFucnJS3LaWDUP67rvvgldWJpMZHx+HsL9CofDUYhv+3mKxKEnSM88802g08vm8aZrFYnHv3r3Qo3/mM58BPwtd1zv93t///d+rqgwxz8VicWZmLgiChx566J577oFcSNM0e73e97//fSizLMsCS8zx8fEvfelLtVrtjlnJpUuX1tfXi8UiVDCSJNmmzjl/+OGHIeQ4iiLbti9fvry1tZXL5QzdEkIUcjkQQsLRoqpqPJY8ffr097///eHhYUDRcsVCUSnmcrliqYQkCQmBuAgc57VXXr18+XKhVATi/O7du4HPPj4+fuzYsX6/D7yoK1eurKwubW5u5vN5RVEqlQrEAMzOzmJJ6vf74ADe6/VOnz4NBkigyrxT5YyMjECDQSQ0MTEBrTDwlwkhGxsb9Xo9lUppmuH7fsKOJbLZYrH45S9/uec68IaWZa0uL7/95luJZAyATEhmHB4Z+cpXvoIQajab6+vr9Xr9e9/7nqrrYHy6f//+sbExy7Lm9uyZm5tjjEmyjITY3tx84YUXOOeGoYEHOvhklsvlodFRcdtRDyZcTq+vqqpp2oODg2Ehx5BIp9MgSnBdFwaFUGJubW0BjL1nzx7KQhZGxcIAIoSFYRiGRjIhtra2trbm5+cBWy0VCnDp7HjcjsfBSkBQigmB0TAYng0PD3POQVkyNDQE/nyqoTv9PkKoVqutra1RxnK5XK5YAOJdEETPvfDszRvzlImDBw4MlAd3TU4ZsVhxoGSaJlFkRVFgPAfyiDdefeO73/1uJpO56667Dh86ur29LYTQNO3YsWPABYyiqNvtg8aQUvr6669fv3593749cN2SyaSu65VKpZjPCcYixgzDOHr06MLCgu/7YOtw+vRpwdDDDz+s6hqY3CqKMjIysn//fqjga7XaO++8Y9t2FEWnTp2an5/XTQs0tiAh7Pf7x44du+uuuwgh/X5/fn7+jTfe+NVf/VUhBBRGCO0I14aHh2HcMTo62mq1wjBcW1t79913Z2Zm9u/fD0JygOXS6fS+ffuAn4cxXlpaQghxzguFQjKeAEcrqKdzuRzwtnu9XqfTiaLo8uXL7W4vHo/nszkhRCaT6Xa78Xi8XC4DkNZudy9durS2trZv375er3f58mWn5+bz+ZHR4YHBIcHJj37y45BSPwyFwEiSZUJc3+MI67ruB0wIvoMX/NRgVdypvX6Ke/3v2zVCSFFVzkFSxhVZwRhrmhaz1MXlhX/9m7+5e/fuU6dPCEZzmVSn3qzVarliIZFIFIoDn/zkJxmLarUa/KJGrRYEQTaTHyiWqpvVZqPBMLt89QqMCzDGQ0NDtm1blhWLWdlCITswMDk7izBGjAlKQz9oNZr1arXdbtfr9ZWVlZs3b46nPg4f8uzZszvo11/+4DePv3smFrfGxiebnfathSVZlhmluiKbhjY8UDR0WcbYMk3fR++ePhMihDHRNEWXiW2of/j7/37PnrmIBl3X0w1LVw3Oeeg6lFJZVRRFIViWFSJLakQDLHbIzp1OB7yMBUaWZUEgcdxKvvvcDq7413/8iNMP3veRj/zSr/8LOR7rBYEuKc3NzStvn/qT//SfZmdGfdcp5jNTk5PDQyMCo0vz10+dvVCvtiZm9qw3e5dvLAwOT7Q9f6PVpUT/+u99C972c3/wKzLCgnGMESIYq0QQLChLx2MqFyjy3vfgsf/r935HkfxmswokQQjcJUQWO2YtShBGlmURWdV1HayVJEWFxiKiHIR1ABtQFsLMQtFUFlFw3DYMQ8aEEJJMZy+eP3//gw9NT09TzjjnXuDDU0UIAS2koqhBEGiKLssyi0IiSwGnGCMSCV2WM3FrcfHWX/yP//aeh97r0yikESGyhPW//bsf/Nb/8bvF0clat8s5UKwwY0wiShRFGGKtueCMIc5s22Y0RAgFIeWUEk4kSaJICAkjlUiyjImaL5U0LT46uStfKGmmlYwlZ8fyD+zLacThUeR5HmeRoiiqrBBChNix8gKSNbqdFME5IoQIyoArLcsyoyHMTULPlxXCGDtz5owkSd72brhfj/98CWPc7/c7nY7T64PlkmHonU7HtiwO4JUkJRMJRVVX19cuXLhg6Vo6kYzHkxdPxnbe5HPFMGK6bv7k+Td+6Vd/+6EPPt7n0Xar1XX9IKS+H95RACAEzjES+imfQEiSpKoKQYhF1LJsy06WKxOTe48MjYy88+qzUuSW0umoW1+48s7Fk8fvOXLkA+97JIz61+avf/yTn3j/xz566tVXLp0/NzszRbAIPCcWi01MTICXPeUcjFKz2Wyv19ve2NQ0DQRrUzPT4HEFxxs02WBS8Oqrr44MDqmqShR5fHx8ZGSk0+losiJJkh+4YRgahrGysvLyyy/OzMwADTwWi01PT8NfChcc5HsLCwtPPfXU9K5Z5uxMLp74XH5zcxMGnfDAAx3kypUrIMlMpVKgfnd8z3EciJ8HUfDq6vqNGzcqlQrQCdLpdHlwsFGvQ2QNcIozmQz0MOVyGYZ0tm3H43HwUA3DUNf1XDpTLBaB+qNqMtTxhmFwzC9dunTx4kVZli0zNjY2dv36ddd1IekW6jBo7RAijuPoiso5l1Tl7bff3tzcBKpsKpWam57RNE3CBFDtIAiwRKIoeuWVV8BaYnh4WFGUqakpVZNhElGv1+GH4UbcvHlTluV4MhlF0eDg4I7jlKbxKIIHhlO6tbX1ta99Tdf1dDoNLfXEzJRgDKsqopRFO9KTy5cvn3znJJzBsVhs79692WzWdV1JkqA6ge7FcZwzp067Xh9jnEqlLMtqNpu2bcMgLIqiTD7HGev0euAbAhw7xtj169cty4rH4+C1W6lUOKVQXYF5i6qqvV7vlddfk2V5anwC/tX4+LgZjyMhRBiBiywhJIjCH/7wh2fPnt+1axfGeGpqav/+/WCBBmokuEScc993n3322V6nD9DUrl27JndNqapKFAXtEM8RQchxnOeff77RaIwMDXMksvn89PS0bduyoiDEPM/DSAK+x5UrV771re/s27cPZiZTk9Pj4+MCo2q12m63M/kc7DCdTodxbhhGyCjmYmN7e/7a9bPnL87s2vXpT38aXCoYYslkEpxZYEAcuB6nrNvtb1W333zzze9973t//ud/fu+993b7br/fx7fzNgBO5pz3er1ms9nrdcBGrlqt/rNf/VXLslqNumAsVyjE4/H1zXX44UajARQ6SZLX19ffeOONtbW1f/Hrv/nYhz5U294Gfz7P80C/0uv1XNfd3K6CqwtCCMyMPvCBD0xMTEgShs7cdV1wKgk83/d9yCav2I/DEk5PrUHjlMvler1eJpPRNK3RaKytrZVKpVardeXKlbGxMWgnoigCcnMymbRiNowpNzc3r127NjExMTE23ul0IDaqVCqZpglQsec7YUAZE8vLyzCRqFarx44dGx8fBZtlqGA0Tev2HfBAPn/+vNv3CCGaoY5PTLWa3Q9+5KMTo3PVRhdjhRMihPB8H8uKLMuuB15fEcJ4x07i9nQC37YWu8MaAfRLYCI4RhKRZUJpoEgyQkSWVCGEpsrJuLG8evXC6XfSaatV23T63WatHtNtSmm1UccY79m7X9f1RrPGGJMkPDY2RhCuVqv9vptMp068c1LTdTNmxxLxfD6/vb0NhCK370RRJMsE/GXi8XgiGVMUJZlMqqqqaBpSFESp0+1all3f3n7h2ztqsF13Ozvo19rqxrEjh3qev761ubm5LREkKE3HYkPlkkQE1F6KjMLQP336CkdIwhIiQtfVdrv3K7/88wcPHtQ0bX7+ejyTArOu0I8UTFKpDLpNi+t0OqDE6XRawMK+desWJE5wJLrdriRJWKBkKoHQzuf77D/5hdHxySMPPNDw3IWlxZHxicpg+ebli2+98UqpkBaCFUv5gUIxmUp3+71Gp3trcalWa2Qy+U7PuXT9emlwKuBkvdaRrRjnP9XVY4EwwQgjSZIjFiGGFUKwJLt9x47bTt+rVIZ83+0GnYgycCO0YwkAbDHGnAuMscV5QCOEUBiGnCPDsARGkiQFUYgwl2WVshBxJMkYYVlRlJBGuq5rCU0IoasaJFixEHIwOeJMURS/5zPBNUUNaQT0Q5hJkZ1SgDG2E3qtqXIURZJMNF3hnA4ND77wwgsdpz81M10slWMxUyL66EgJi5DRkAiMhECISBIRQnBBgdpECGGcYUIE477vSwQFriupKuJCCCYgNksgxAXnXJUJLDnX6/lBQjMtIitBxJwgkhVBMDF1Q1FtLDinlBBMiBruTO6wpiiyLHuhF4SBpVucc4qYQGJ9baXVapmmqasyxjiZTObzecfpT45PbG1t3THs6na7vV7PNE1d1cycAdGQTr/32tmzQAIFXUk8HveDYHSkUhkeiUKfR5Qo8sWTLXiTd955xzTNfQf2HztyYGpsJHSdgDOMsSrJEfkpyx7fjtbGP4OBcc41RVZlOQgCTTcM0+aIOF6gqYZgbH1l5b6j+xSB2l0Ec5BOsz0/P6+o+D0P3P/AQ++9cfHS1nZtZveelcWbjEaGoWUyGeAUFotFKIZiiVQQBEDsoJRCBguP6NraGqUUSEic83w+jxBqt9v33HMPjyj4dBBCtjc2oWoJw1AgBjhQJpM5fPiw53kwyIZKi3MErDvgvBNC8vn8Y489FoVs6drORbhw4QK4DXU6HWjT19fXt7e3oXCRZVnTtFQqtba2xjGyLAuQDGBx1etN0zRXV1eht87lcttbW2EYDg8Pm6YJH1KW5UuXLs3Pzy8tLRmGkcvlpqen4WcmJyehLiQCBUHwwx/+cGtrK5NNwRDQsizVUAcGBkB2YOgWQiiRSGxtbYHRq6Zp3W53Y2NDURTDsEzTRAglk0mGxOzsbD6fD8NQVdVcLudH4eLiIqhEOeeGYWSzWYzxgw8+WK/XodwBc9EzZ6+CYzWwuaFKbrVaEFsJm7/v+2traxsbG/l8PpVIQPlbKpdLpdJv/dZvQTAzzE9XlpZeeumlXC4Xj8ejkI2Ojg4ODh48ePDggQOcMSKpgkc04p1u69vfehK8wQYGBqB6Gx4cuu+++zARCKEgCMIwXF1dvXbtGmDzxWKxOFCqVCqpXC4Fukjfl1W1Xq1SSpeWlkAKOjw83Ot0oJiwEwnEdtKdwXW90+lUq1UYP/m+D6x2Q9Ph3mmaZsXs97znPffddz+wUWOxWBiGKysr1Wp1YGDANE14XNPptGFoDz/8cOD5W1tbyWTajsdc171161az2RwYGBAYx2KxuG1blvXQQw9Ft0UJQRT1+/1arXHz5o1SqWTHY4EXWjF7aGjo8LG7ZuZ2dzv9ntOPoqhar/lhEATh2yfeWVtdD2lo6ubkrsndu/dMTIwzhDTGFEVJZbNjoxP33Hd/p9NZXF5uNBovvPBCs1UvlUpzc3NDQ0PZbDafyWr5gm1aUcQ6nc699977+OOPB0Gwubl55tyF73//+wMDA/fccw+kmpqmCfX01NSUrquwlDY3N3u9Xq/Xe+YnT//oRz8cGhp64KEHJyYmyuUBjEkmk5EkGWCSVqt16NChtbU1IqtOr3fx4sWnn37add14PL5///6hoSEQC+/du/eOv1oYhhcvXtR13ff9a9eunD171jAMWA6Kohiazjnfu3fv5OTktdtxzgsLC4lEolAoAKuy2WwCpbhSqXS73Wq1WiqVVldXL168CKM3AOEajQb4roEcZ25uDkTKYRguLCx4nnfixImdOWZlJJfJ6popyzKorTnn169f9zyv0Whsb29fu3at3++DKf/I6BhCyPf9Y8eOaYq+vr4uybJmGP/Pf/5zhCTXDxVFCyPOGfJDHyrdwI9EFO0A1T87rvqZl7gd+0iAIMJ/ul/TICIquHmTiAYSJoamra4ufOrjH89mMomYFjd1zgI2Fjk9lzFWmZhcX18/d+4cQkjTNMYjVVUDz3ccJwxDVdUZY0eOHIonUhsbG7Km9ru9jbX1TCaTTCanRscty3LcXrvdppSurq5eu9I1DC2ZTKdSCT8KOecw5N09MwsegfA6eOTIDvr1xf/vezLFQqZQbDQa6ytrCcsoZHLZdApj4bidfD6nKhJjUaPR2dxsMSzV2x0maDqdrNWaf/c//8sjDz7YqNdb7bbjOwOD5Xg8jgUhAoOXFRdU1XVZlh3H6ff7yXhcUZQoCjDGvU633W7HYjHo1cBP9cpbcfh841OL6xsbswf3ZQvF1946btr27j2zne2t//5//8fLZ04NDw+Njo5iJMcScSr4ufMXV1ZWPC/KZAvXF9cfePTDVLG/85MXZCMWIQkh8vf/7n/C237+P/yyBBUzxrIsy5pCCIlcX1dwKZNaW7n+P/7rHz304L1OvyuEwFjA1AwGalxQgmXAADgSvu9HUUQpj6KIIAyyvjD0JUkhBFHKdV0H9swdwiDnHPMdUpFpaHHLPnXq1Pve9+i+gwd6vR7COAyjO6f+nZkREIOAqSpJEouoqimYCyRYLpNYX1//4z/+z+NTk+cvXIglk/FYMpHI3Jxf/M1/9W99lOiHqOv0NdsMo4gxJkuYUioijqhAgii6jgULQz8Rt12nzzlnQYgQJkTBsoIkwgSWFFkx9UKxGHI+vXtPKl2UFLNYGBrKx/aPWcMFDYe+rkoyoQQjAkHiiDCOIh4Zmhb6Xq/Xk1WZMYYFjsfjYEawcPPmuXNnbds2ND2Xy01MTCCChWAYS0KIn/zDDm1LTp5eW1srl8vgwzQ3OwvtF0IInKBBD/HCiy/mcrlMJqvrWjaTSaeTEQuf+sZOKX/3+yRFkU3burW0+R//439r9mmkWY4QYcS6ntNudSVFJkQOKaWUYmknVpJTRik1NC1mmb7vq6quaqZhJZCk2MnMA+/9YNzU/vuf/d8P3nsknkwkLSWqr1cK2UceeChfSEuGsOOWZsVWVxZL2bxsGMh1mtUthBhn0QvPPbOxsZZNZxRFiScTu2bmMrmsruuYonazxRiTFNkwjNdee+3q1aupVMq09IGBgXvvvRfUCYAkodvk5Z/86Me1Wg2gnaGR4UOHDkGHA5cIvsZY/OhHP7p1azGTyaTT6XK5vHfvXiEEFgjwlR9/d4ds13KeajQawO6anJ6YmZlRVbXf7zfbbUIIxOB0u92nnnrK8zzg8eRyOaCXArsIhFSyTFqt1g9+8AOgqsiyPDY2duDAgShikiRRznzf11WFENJoNH7wgx8gROB4Gx0dHRoow4bgOI7j9mKxWL/fffrpp4GWlEgkhoeHp6amOOeWFYMtG6genU7nlVdeAQeHZCI9OTk5MjJKFGJZFsKYM+aHgWEYruu++vIrS0tLwLmZmZkZGhoiAhmGQRBmgjPGrHis2+2+/PLLsEeZpjk1NVEqFLrdriLJpml6we300ihoNps3btyo1WqdVntwcHBqaqpUKnEkLMsC2+EgYpZlNet1OKoxxplMKp/Pu667vr6eTqcVRSFI4pwODY1QGrZaHUppEIWAJTz77LO7JqcymUwYhiMjI+MTEwhjJGMwA+Ocg2vGSy+9Uq1Wx8bGCCFwU2KJhKJpSJYRpaHvA0fnpZde2traAi5vPp+fGB1LpVJY1xFCiHJBKaUhIeTkuydeeuklcD1NJBKHDh0qlIpCCFmWkSRFvg8ig9XV1ddeew2eRkjKmp6ehlAmTVG5YE7fVTRVluULly8B5wkGdkODI6DoRAgZhhFFEeVCUZR2q3vl6qXt7e18oaCrxuDwUDweP3PmjCA4lUyDfN4wjFanjbE0ODigqnqj3dhc2zx74azr+I9/5EO+F66tra2vr09PT8eTCTDEbjabsizHLBtoXrdu3fre9773occee+yxx1ZWVra2tsC8HsQZnhtsbm723J6qqpubm0KI69ev//CHP/z93//9qampRqNRq9WALyhhDHk7uq5vbW1BQe/6/sbGxs1bNz7x8U/FE3a71QWrIBCIyLIM5uliZz/Utre3T506debMmbm5uX/6T/8pwPCyLG9vbzuOY9t2GNJ+v99uN2VZNgxjdXUV+tLJyckDBw5QSovF4vf/6hYs4Xs/kgC6Z6NRu379OmMM4GowrXQcZ3h4eIfVLkS3211ZWRkeHu73+5cvXwYbhXw+D8oGSZEB+rojTbhx40a92XjogQc9z1lfXYO63DCMdDYH21G73ZYkDF0KpXRzc9vzvM997nMwvcEYK6p58er1+x9633Blot8PKUVE1sIwjChXFIUh4fu+QEQwhhCWbtti31E43kG/7vTM4n+nhcGQBXGuqLKECRa0PJBfXLz65S/+yq99+YuFfDoIXZifIi4kSTJNG9ir3W57bW2tXq8XCgWZIEppNputVqsY43K5XK1WNdVIJtMDAwMAGG9sbFiWUavVwJoRKJi6rjMera6stzvNTqfDGAMqCKW00+n0lsfhY6vFKzvl15nVb2zWazeXFi+cvcAiemBuLp9OI8x7vY5p6kTCYC5qWTHfR0trGzdXlnVds22zXm/9r7/88yMHDrCIxRKxvtcPaUQI0VWDR8x1XV3XMBGJVEpRFNu2HcdBnPd6PUnCqqp6jtvtdh3HyeVyNAwjxkrl4gvf2vEfOvZeJgQLWBRPp7wg4oIKGl2/cP6Ff/j25uLC+MSEYRimnZBV7eLVawtLi0gQWVaW1+qz+w7sPXb/M6++ffbGgpkqhZQxxr7x7/4a3vZzv/cFCWNJksBygCiSKsmCcVMhKVtPJ9T/8tU/nJ2bbLe6jLGf9ZQSYsc7HlDuO68oYp7ngUqRyBhkt9DsgjZEkqQgCDgSEiacc8EhToAKTlOJ2NnTZz72xCf27NlDBfKDgPPbGdU/g8cghITgCCEhkK7rLKJYCE1TJYLS6eTKytLff/3vRiqVmzdvIoRd168329XN6nMvHf/Ji2eNZLHrObKuMUEjRhGLZFkhgiiSGgY0CkPEKaKhpCks8KHVwJggQiRZZ4ILTmRD00xdt0zZ0HKl0vDwLkWzRyqT+YS+b8yuFEwDU1lEEqGqJgVuIElyFDKOiaxKqqz0Oq0XnntONrRcLlPMFcGkB8JkdF333D6way9cuHDy1CkIr7Asa+nCTqPw2KcyYPkBZWiz0Wi32+l0Gv53YGAA+sLrN24EQYAQTqVSuWxGM9Qgcl/87o57xQc/mTEso9VqvPH2yeNvXHrxjdPpkfF+xEPBep7vuQGEqCia1uv14BYDYqEoiqYocMQahkUkw46lfEZT6fyHH/9Ep1n7s9/77V/50he8iBbScdTayhrK7K7pyZnxmT1T2JDQzkaAkO8jGnm9Trfb5iykNPTdPosoZZEkK27gv3viVDqdjul24Pnlcvnw4cNMcM/zoAMOQs8wjPn5+evXr4OxUDKZ3LVrVzadAX4ogQzyMDRta3Nz8/Tp04ODgzDam5qaKhaLjtMzDCOKdrLnZFk+ffr0+fPnC7k8QDvd2o73xOOfSPm+TwjhnCu6fObMmddee2337t2SosRisUwmBzY/QIKBukrX9fX19XfeeQdKIl3Xx8bGyuUSUIaBzd3r9QqFwsbGxrlzF4rFIiI4FotNjI2mUilo8be2qvBIdDqd5595FgpuWZbzhezo6Ggmk4IpP+ANkPXxwgsvxONJQAdLpdLs7CxjzDDNwPeFEFEUEax2Op3vP/V98GWVJGlktDIxMUFvh/1FUYQFgqL229/+drfRSqfTqq6Njo4eOnpElmVEMEKIRZRzrhva1StXvv2Nb5bL5Xg8rmnavgP7RycnA6eHENIUtdvtNptNIL1xzp9/8YUoivL5fDab3XfgULlcxlC7qCr3fSBudzqdJ598sl6vJxKJUqEI9Cagw+q6TrkwYjHq+xcvXmzU6lCmQL6N53kCc4jUhOfB87x6vQmjLkVRcrmcqqobW1vdbrdSqcCYCTIDOp1Op9MJgsAwNdM0DVVbXV0FcpthWLFYzLKMWCxGwwjWKbqt/N3Y2oT8HCgjwPhUUlUky5DhKBhzXbfb7T799NMbGxuFXD6VTiZT6d379hYKBSJJYRBQSgmW4VY2Go0rV67Y8ZhpmpYV0zWzUCrG7RiWCLDKgiCMGOv3+7VGfWVlZXNz07bjQojBwcH77rvPjsfB5h6EHXcCjlzXPXHiRBRF29vb8WQin89PTEzs3r0bmMcgAgPZYOj7sizfunXr7Nmz4EFfLpdnZmbGxyZTqRRRSDKZrNfrQAmo1WqAJR8/fvzNN9/UNG1qasoyjGQyCTRKw4rZtq3rqhCi1WrBiIoQcunSpatXryaTSWhFpqenIdVbUbRkMknIDpy5tbUVRRGk/bzyyisQClSpVAYGBhJ2wrbtRDoB6LWmaa7rQv9fLpcvXLjQ6XR6i6OwhEcO9dQdR6EYnPqaptVqtYsXLz788MN79uy5A2tB62KaZqvVajQaGONGo9Fut8FoqV6vP/ahn5ubm/M8LwxDSVKgOwVln4TJwsJNz3MWby3Fk4lcrhCPx4FKqCgS4PqyLAdBdOPGjXK5jAVfXVu+dvVGebDy7e/+8H99/R+GR6b6biCQLGHJcd0giAghHCPOuUAQq7Uj4YKJNtC8JFmGq/qzs0ixIyljkiwLLAkhZEI4p5jRmK11u80v/cov/vznPr25seJ5jue5M7unZ2dn240dLTljzNB1xpgsE0in1XXdd/twX5rN5vLyYqFQkiV1eXl1dnYWsnwIIYxF2WwW8JHNzc2hoSGIagCIIZmKh2G4uLhYLpd935+fn6fVHVLNzL3BzvBxanLcsMzt7W0a0WwylUqlek6/Ua+WyyWEEA1CQlAYRp2oq6h2q9WSETE0vV5vPXDf4cmJiUwm4zoOjLeVMGy26jSMbCMWBSFCwjTNuBW/du1arVbLZrN2zIT9IggCQ9NlWY2ibrPZzufzne3Nt955+455iaqqy6tLnGCiKiHltmmm06mgMNDcrhXSOU1WFUnxHGdrcXV7s+r2fFk3AsqRquSHhi/N3zx344odL/UdR1I1/P9i592uaQTnXBAmELftOEJhqVTIZFIy2cmxIdJP6X6EyNCJAtbFb7ulwxeqqoITIMyDOOcsohxjwbnne5RSgZEgCmhkCCFMcMQF51bEdroiShmlVJJkJrjgmBCCieB3LH2RJISQsMw5khRZJpJtmRiL7Vr1wfc+ZNm27/uGYUqqEkuk5vbtbzc7F2+sRuHbMQmDFI4jpigKJwgjrGu674dRFCKCsSQLFimKkstlMUKtVst3PIwQY0wgoSiaQMhxHEEwoVGuIDRFVXWdUkqI7AVM022Zue1aLfC7Z86eVoiczWbjsWS5XM7nhwjicVP//Oc/H0QhEImqW9vvHH/bNE1NVyzLyufzmUwGIsmSySS0falUaulCCPeo2apLRAElM2Ps5vx8vV6HSVOpVALXO0mSZmZmgiBQNE2SpF6n84//+I9MUBu9H97EsqyQhvF4/IknnrD04l/+7bdj5cEgZIppapz5vi8rBAmMBZMJYYwpiqYoqhBCIMKxjCRVkhTFtBAiRBGB6wvBEI/6naYei2Wz+UigbnUDtzrVm1snjr/ddzu/+MVf+ORnP65ZFmLMa3e+/51/JJx9/ImPYoFqtVqhkNP0FI+oZVlwbEQh63a7qiwXirlkMrm+tQb4Fjyi+Xz+Dr8KwvIgSLFer/u+DygpIAqqqiZi8UqlAnAImCmsrKxwzsHiIYqigYEBRVEmJyehAwY098oO2ogWl5cQQoqigDfp5OQkoF+6rufz+UKpBLPFTCbluq6iSJZlVqvVMPQHBopg4AkA59WrV2GXTCaTCCHICuz1eqOjo77vU8YkSbpy7SpQxBhjlmED0NJoND712c+EYej7LnDwa43GhcsXEolEOpEExrqmafF48gMfeAzcZSG0GNgtYLYJA7VCPoUx/shHPtJutyEXD2aji4uLxWLRMkyQ/mSy2W6n88QTT4iQ9vt9wzJN01xZWXn11VcnJibAfmnXrl26oc3s3v17v/d7nucJwTjnApPT77577dq1gYEBScJQsoyNjVkxmzH26zPTzWZzbW0DzBE2NzfPnDoF8lUQG+7fvx8h9JnPfEZXNdgZlpeX/+Zv/sY0zYmJiUQiUR4aHhkZsSzrwJEjiFJoCaBu+Po3v9FqtXK5nG3bU1NTc3vndF0fqlSGKhUEwSwICSE2trYuXrx46dIlsJs6cOAAkMyy+TxCyPd2mh+zbeOq0u271Wod2NPz87dkmVQqFVmSKaWKRBRNLeRz99x918ryqqaosVhMkWSwTYGRHGMMJtSapn3605+GAosQwjmSVXV7q/bSKy9PTU1ls1lZVoEfE2d8bGISAmcd1zWt2Nsn3u13urpl6poBwLYfBtlsFvAYhkQ+Vzxz5szFixfrzWar0zlz5gxCqFAogIEZcHMTicTP/dzPgTFEvV4/c+ZMv9tjEd2obi4sLKiKPjQ0pMpyIhbrIQQZX/v374e9/cSJE1/84hf/7Kv/5ZFHHllbW3nrrbeSySRIRkqlEjQeDz/8MMxMOefr6+svvvji1PR0LJHY3q6trq5GUQCMSeh/OOeDg4PT09PgYjU/P//Vr371n//zfz4zM7O5uXnt2hW4FIwxcJ4DL4nDhw+DlvnKlSvr6+sIoU984hMYYyh9QHkKTIxarZZOpyVJ6i3uLGHfd0dGRlRV7fe7qVQKChTg3YNLRa1WgzSwVColhBgZGRkdHVVVVZKkiYmJZDKpalqjXp+fn/ccd3tza2VlZXt7W2CUyWQ0zYB9BiG0Z88eRPCRI8fCMGw0WufPn9c0bWRkpNNpbW1thX4A+uvBgVLgB5zzZCL9yPsfff2N43//9W+Oj+9qNHqcKExQGYuQcYYEFxwLiWCZcYEQJuR24XXbcoJzfkcmz38mI04AToElxpEkY4wxQpxzqityKpViofebv/mbleGyOz3BOWWMdnvtwPNjsdiVK1eAEwlxEaaVKtjxm7du1JuNofJgPJk2DK3f75fK5SAIbDueSGe63e6NizcMwyiXy0EYaKYB0hPMxeLiYiKRyGazgE1altVqdkA1lUqljhw5cieGOJFI7JRfr778YqvXV7GUTsRKxaJm6K1Wq9VuDw2VZZlgiQD+yQTpOwGcCqHnSwhxyry+oyiKqqpbW1sZOa2oasKOLS2trPvrhULh3Llzc3NzYPkIFoh9pytJUi6XI4TcuHbdMAzg2LZaLcMyd2Vnzi7tPENmLF4eHH73zKn8QFmXpXwqY9v26dWthRtLD9x9mAjUaXU3trbXN7Y4kaNQKKbW88JiZbzacV59+zQhesgowoT5PrltMLtTdCFOGeMCS5IkK5IsyTSKZJms3lr8/Kd+Lp/PUxoKxDDZGQXCLQf0CwGLnHEQj8Dtl2UZjkAsBA1DsKuAeSXQEv0wVFWVCgY/xhgTGKmaiqDKEUJSlcD1OOcCM0qpLKmCYIEF4xzfzrHCt5NbEEJYIoLgwPMy6dyxY3dzLqx4TBAiybLnRbVaLQxooZBHCEkIqxIRquoFbhSGGGGiYN/3Q99HSEYA1coSyD+REL7nIYwFZ4hgRTMiRiWhYIxd10WCy7Lc63cMhnTN6ulSTZHc4WypmDElzngajkDBmG3bkoyvXrqczaQEjxBCsqLFEnEWUSAmU0p1rO7k4/Z3zgDQ2AO1+c7dunz5ciad27dvH1BQDx48KG771HPOn3vuuU6nk8/nY/G4bdvjk5PQuHz48ceD0Hvjxzu37M0338zms4xFdjyVSMbmdk8TwX3fFYqECLhgqJwhSqmmqBTTnawkSVZVVZZVgbGkyERRBY1836c05Cyikbe4MD8+Puo4nm7bmqI/9cwz7drSod0HHvngIx/8wPs100KUbq6sfueb//DNv/tbCeFkIrb/4L7TZ855viPLZHCg/OD994Epw565uZBSdtt1/eLFi5ubm1DTW5Y1OjrKOR8dHZ2amgKtliRJ29vb//idJ6HqMgzj4MGDhUIBCEOFUvFOoJPjOM8++2wURbFYzLbt3bt3x1OpdqMRj8cPHToED7CiKFdOV+Favf3224qiHDlyJJlKOU43nU4D1gKeF9u12uuvv76wsDAyMgIhxzMzMyMjI0KI6enpIIgAOdva2nrjjdeDIMjlcrDed+3a5TjO6OhoqVSWJCmkEcb44sXzb7/9NviyFvMlyARECOVyOSFEFAWcc8uyNjc3FxcXOefZVDqVSgF2BUGBYLsFPdL8/PzCwgLnPBaLJRIJwzBct+84HrA0oO6RFHlpaaler7fbbVVWwOag1+txztPptGwqhmFohi7bdsTZ7OwsFKzJZJJSur62xqIol8tRSoVghmEomp7NZuHuIMSBNxOG4dLly6lUCshnoFwLKQV3UM/zwOw+DMM33nhjfHwUIdQVCIYXAwMDX/7yl7vdLhC9Dctut9tvvPEGKA0RQplMBkhIv/Ebv+E4Djy6GGM3cN94441OszMyMiIpiqIoY2NjIEI8dPRo4Lqw7ciyvLy8/K1vfQvKO1khYN0+ODg4PFRpt9uCsVqtBmjH008/D6JyhNDU1NTc3BzB5q7du3dNTcOol1LqeO7Vq1dv3LgB1urZbPbAgQNWPG7LMkgUI8YURcMS6nb7ldHxtbWN1bWNmBXPFbKcoYiFiXjK8fpBSLGsbFa3252Obdqtdntt5ZJm6KZpfuQjH0mn0xwj3/ebzebGxkYul7vrrrtgtkUp3d7evnHjBuBSs7Ozhw8fhmlgt9vVNC2dTr///e9vt9vLy8uSjCmly0vzFy5cUGVZVdV9+/aB5zDGGP7q++6777vf/a5u2hBKfe7cOci8n5iYyGQyk5OT4ItmWla304GyZm5uznGcWq124cKF69evB4EHQmAQOlQqFVAfI4SCILAsa3Z2ttvtLiwsVKvVt956Cyy4gE8GSRLgKGFZlud5ANbeuHFjY2NjdXX1+vXrExMThUIBJtflcplzrmlapVJZPr1DdR0ZGdne3t61a1e1unXz5k3gckFPBa0OxnhwcBCSGKCA7vf7d911FzgBNRoN+BmwRPY8L5vNUkpd37tw4QLGkiRJIyMj73nPe3RdlWUZZCLF4sD4+PjGxsbNmzcxFpAbAWqhgYGBfL6YTqenxqYlzbj0P75GERIcc4z8kNrxeBRQOEYBNpYkCcQOPAT2M7mjggK47v89INoZTSKEMGZRJKmSRCTbSpQK2StXz//Bv//32Wxmc32NizAIfLAp6Xa7uWxh165dW1tbnufVarWNjQ3HcUzTvO899xBCAs+nlPZ6IXBku91uELCpqaler1epVGB8ubraOnHiBABmMt4JKOt2u41GwzCMer1u27ZuJIH7DoxJeG1tbe0MH18+80enzpzljFAuRkbHHKd35syZfC49PTXh9LqaImuKihDCktRou+cvXhGIaLpCiCgVs//yN/7F0SOHEnai0+9FUZAvFqLA396updNZVdFW1lYYY7Abwpj/1q1bURSBQMkP3Ewm4zlup9NJpVL9fpcJfuWNHbXaz/2TokAMyRLnXCaKjpC3ufWH//bfbiwt5DIpROSt6rbrhH5AiWp03NBhqM9FpjxUa3cXNrZ1K+kHXDVioR9IkvT3v/s38Laf+91fRAjY1kRWFEVXFAkHjlcuZhvrS3/0n37v85//mO/1XD+AfhRjoUgyzClgzoIQkhWCMVZkTdw27YTJCA2o4Bw6Y8rZTyfWGEMnBwcAkKYxxgkzfuLEic98/nPHjh3rdPu+HyAshYwqigIMpCiKONtxoEAIKVjBGAtOVVVFgjeb9d/4jd8YHh7cvWd2oFwGOFQISVJkTdZ/8pNXfvmf/XauNOZQ1ux1GMK6pRMIN2UcIUSwGkUREhQhgTjVNDVwXMOyOOeBHyBEkMBIVs1YzPVcrCqC07Fd0yOju2TVKhaGRoYGyhltKC2X47hSSnEeAhc7ioLA8xq12rPPPkcwGhgoplKpsfFJSJ3SNE1VlCiKKA0B9n/ppZfK5TK4EoCZjeM4P/nOzlby2KdTkiQtLS0tLi6CrzocaSCE7vf76+vruq5TxjKZTBBFjuNYlkkIUlTplR8E8CbTh7vtbltRJCuWNIzMn/zF/zxzfbFHsUu5qhu+H0JNwzlHgiCEoohRzmwrZtgxgQiRFUXTGGME0SAIGJWSyeTczOz3/+YvP/jxj8zNzel23G9Vn/67/5EzpJndc6PjI3sPzu6ambp+7epLzz83WC5burG+unbi1Ltf+hdfOnzkkO+7ioQNRatubZ09fSaVSUtEsWxjeHg4lUoEQQCYFnR4YMR68+bNUqEI0AUEHTabbUJIFDJg64C2KAxDSP81TXNqehfsaIwxz/PgQZVl+cSJEwsLC5BAYhjGoUOHbNv+/jd3eHLv+7ABBc25c+fAIwB09WPjlVQqBTEGgMEwIWRZXlhYeOaZZ8bGxlKplGna5XI5k0nBEX7r1i04v5PJ5NNPPx2GIYDwg4ODs7v3mKYZBB5wKx3HURSNUvqjH/0IuFCWZZVKhWKxODAwQAjRVBljHLgBpVSW5QsXLrzyyiulUgkE/2CMHjGmW1bk++x2xPuJt0+88sor5eGhRCJhmuaBAwcGymXOGDF0xDn1/CAIZFn+yU9+cvHixaGhoZhpWZZ17NixdDqNNRVpGvK8wPcJIbIsnztz6tlnn02lEqlUKpVIHjlyJJ5MUUoB44RdRXC+uLj40ksvAffOtu3BwWGgeMMpAk+aZVkLN2+9+uqrULQVi8U9e/aUSiVFUYiqIkojGmKMZd2obm6++eabkJmbyWRKpTIEmBBCBMZABNQMQzA2Pz8/Pz8PgtZsNjs4OIgQ6vf7hUIBOjdJkoCz0ul0uu22EEI1VPDplWU5k84BDq1pWrZYFFFUb1Q7nc4OPGaaCpEuXbzAOc9l867rqqo6OjpqJeKB5zEmIBELTNJ7vd6zzz9fLBYzmZzv+5XK2NTMFJJVJHjkB47vGaq+sr569dIVjkUmmS4MFMMgCqJQURRJVQzVkDVZkxU/CtfW1iAZ+sKFC91uV5JlcFEC8y1VUaCw0DQNY3z+/Pler3fs2DG31z937pzjONlsVtE1EJByzuOWPTIyAgd5FEXnz58XAs/NzdVqtcXFRZiPDw4Pl8tlx/G63W7EwlgsJmGiadrm5ubbb789MzMzOzt78eLFlZWVwcHhYrEIhKputwt2/PF43PMc13UJIe+++64sy3fffXe1Wl1aWgJ/FsuywM633W7DUrozVQfX+yeeeELTtHa7DQhKJpMBXKpWq62srEAel+/7fuBms9mpqan3vve9cMr86G9WYQk/9MkMYwy2kXq9Tint9XrgHVgoFEZHR9PptKZpcL7AubywsABRVNevX+90OlD8JZPJVCoB7A4Ah0Cre+PGjTNnzhw7diwWiy0vLy8uLmOMIVdwJ8eMCEmCEBQSBMHi4uLFi5c/9KEP7d976LXX3nj05x4fnZzZrjYdP9LtZEQ5FiiKGDylgnGMMeMCIYT5Dtxwp9iC3hu+BovvO6iYEAJxRHSNs0jTNAmJmG3ls8nLl868/MKzu6bGF+evURq2mg3OeTqTSSQSsUQ8iiLolGzLRpLkdrswq8UYX7h4DhCsZDKZzaYVRQl9Bj5KcAbZiQQSzO33V1ZWQJsPTW+1Wo3H44VCIZNMpdNpx3EMw+j22tvb2435nezpYx/UdjChpYVb48MV005euHSJUnry9GkhkOM4vu/HbTv0fXiwFEmltMcRJ1iKxWLbteq//I3fePzDj21vb1arVc55p99RFEWWSSqVwFzYplEqFru9HkyXYQg9ODgIhqLNZpNIGNa253m9Xi+ZTKbSKYR2jCdCRhHBoedyznnITYRvXbx48q23Du7fzZAgihRRrqo6ZWHfZyEnEZLMRKLWdhc2qooe8yMuqXoYhqAc/OlLCIQBsiRCMEoxSBRVSQoDP5NOMhoyHt0mPxLAumCGAuJHQogkY3i44cyGXVUIocmaJMtBGAkkTNMMKY2CQFZVoErs0OeRAPkYcKLJTkhWiDEJaUSw4IJzJPBtviHgXrcfOI4w11UNIbG5ufnRjz6ez2cjGgBiBKd1SCPmi0gNC8XcwX17by5vE1VTFAUJRCmXMOKcG6rKOaIRxxhLiooQZ5GIx+OpkZEwDKtb20iCJoNgWeKcE1kWXBimBdqWeEIEvtdqtRJ6qi3T1SvnL6s0k07GE4nh8dGYZRKCM9nURz/yeBj6WDAiy06/f+LECdh9dE0bGBiA6dXIyMjP//zPg1AZjO/PnTtn2/YdDxtA7AEH6vf7thmLx+Occ3CLJoQMDw+rqooJCYKgWq+3Wq3lZUeW5Uw+g9CO39vExATGqOd046k0p2oybjcbtUJl0q+1iUCACkBviolgVGAs8tmcoqlhEHEhCYElJFMeEiQIknquhzh64ZmnkSz5vt9zHTUWx7K0Xdsq7xo1DG1paWlldeEH3/MVSTJMjUa86tQnpme+9Bu/ZtgG41G311MljXMEabuhH+gGdH50ZWUFdjroTcF3J5vNNptN13VBtAFJeQgRgmXOOSYY5P3VanVxcbFWq4EdOcYYRpAw7RJCwDIcGBgA+gh0w+CqsKMwQsh1XQCnBwYGYOEDGzcIgvX1dRhiwtOeymQANHrkkUfAl4hS2m63TVOHgxxKkFarde3aNXjaY7FYuVyemJhwPe/dd9/NZtNw5WOx2MDAIOf8fe97Hwi1JEkyTV3TNJguJeJ2EASpeArUkVNTU9PT051OB1YQpfT06dOtTiedTsMBMDk5aRjG/v37d+3axTECLz1FUV584YXNzc3y0CBCyDLM2dlZzbKe+PjHIaCaCASPwQsvvLC6sQ4XJxaLHTp0KBaLHTh8eHp6utmsx+NxgrBlWe+ePHXp0qWRkRFd1+NxmxAyMjIyNjY2OjrqeR4MR8KQXrly5Y//+I937dqVzWYlSZqbmwPT9qldu5x+t9vtGoaBMb5+/fqpU6cGBwdlWdZ0tVQqDQ4Nm6b5xGc+g4RAlDJKJUVrN5vf+ta3ut1uoVQC0tuRI0cMw5javXtqzx7EWLTD1JFOnz79jW9849ChQ9ls1vf9I0eOjI6OmqaZyWSAj9HvdxVd63Q6r7/++ubG9h1ZHxBYU6lUNpvFiuJ0OuCSrxvm6vJKp93VDD2TSiOCW40G5ygejyuahoVottu5dI7I8uHDRwkhnU4vXyilM5nt7dpmdZtS2u858NRhjAcGB2u1Wq3RePOdt48dO3b/Qw/Wa03YB1zXdQMvCIJMJlOtVoHY7nqeaZrtdvvGjRv79u279957JULgOkMSwNGjR7e2ttbX1xUiTU9PV6vVXq83f+VWtVrdu3fvPffcg7kAgRf8kz179jSb7VarBW0JWMz/+OmnZ2ZmisWB3bt3J1JZTdNCP/B9P51Of+ADH2i327VaDeqAs2fPwlorFoszMzPj4+Pw4aMoAG9kGCCCP1+j0bh16xYAwACIAmEAzLfgdDhw4ADYzy4tLZ05c8ayrLGxMVmWYZoPTRds8oyxWn37tddeO3v27NjYGMb43LlzEjoES3hhYQHiMgF+hnG8YRi9Xu/ChQu+77uue+3aNdd1M5lMLpcDSXIikXAcb9euXdCqwSefn79eqVT27NnT6/XW19d935ckqVgsPvDAA3dMWScmJjqdzsLCQhiGtm0PDQ0dOnIQ7oisKkKISqVyzz339bqO5/pvv32SceR7ocBE0Y0wDDGRg4gKIQhAGTvVlUARxaqMbieRwEZxh+2zM3P8GQxMEKxomqwqNEJCMM3QTUu9cvnCZz/z6UplhNIwlUqoqjo0WG40GlyIjY0Ns90+fPQIHN+tZhPcBsCjX5bl3bt33zGbvXr1MufI1K0HHnggkUjIqrp461a9Xod0Zl3XY7FYqVSC5nBrawuoscvLy0tLS+BO0mo3Hnvsscb8TyuRnfKr024amuE4Xjwev3TpEhMIITQ6PqbrOkYilUq5jqOoquf71XpdIKIqSr1WqwwU8vmspimJRCKfyQdB4C65QRAoihmPx92ev7m5SRRZkQnYOwnOdU2hLHQ9FovF0pkkeLglEol9B/bruk4pjaIAoeqdY4AjoeoKgpxGITZXVkxdFQSpqsqxbCWSnhPwCLuO53IJmVbPp9Vun8hmxJCqW2EQIYQ5Z5L8MxUYxggcPglGEkYIMcZimoYwn5ubyWRSCCFYn4ZhKBIhhIB3l6apjDHHde8o76DDlhAWSKgyoYKHLOQRl2WZYNz3+lwIVVU4YlEYqkgF1T2At7DeLDOmKApCRJblIIxkWZaIgjiDJmPn8cISwhgjDv9PQxowYZj60UOH9+/ZS8OQcYwxlghGWIRhxDnXNUOR5LhtjY8Nv3PqXLEypkZSGAQIyUiWFUWjlGGMOUYCI8oYwUJw7ofRraVF5nmqoSOCOedEVrnvR0TCElFVFSHMIu67fV2zer1eKhkPIzE+MTVx16RM2zKRQh4+/fxzruvs3jXV73ZK+dLc3FwQetu1GkJRqTTQ6bQJIYlUPGLh+vp6PB6HWVsyGYfr0Gq1Tp4+paqqgd57p/wKgmBwcHBoaAgcgAghb7359rlz58oDA7ZtZ7PZvXv3aqrqOM7gYHl0tGJZluM4gojr7+wQmm7cuKFp6kA5TwQ3DPXQwX1/+t//59DYlEokLAhiXFJVQkgEWRaEIiRkFSPOGI1kRRJMCEQFFx3H6W1uHbjvoaHBgTdffpaoSqfTGRweKpTLNy7UfRY0uq3rCzdz6fTq2uJAqTBcHtB0tdvt7d67+yMf/7iasBHiiFNVVcNeX8PYVrTsfWkvDDjB8Xi802p873vfk2U5mUxyzvfv3z84OOi6bqlUGhwcDLwQMIxOp/P1r3+TEJKIp3K53ODg4MSEjQQ5sP/Q3OwexhjsCKdOnfrRj35UKg8MDQ0ZhnHgwIFYJt+r12dnZ6enp+E5V1W1Wq1+7WtfGx/4AlyrnusU1QEhxK7ZmZmZGbAckyRpeWXxa1/7GhBrgPhvmrokSdl0MpWIcc6jiPkhff755595ZmNkZERRlOHh4aNHj1JKNzY2oOPq9Xqu7509f873wxMnTqRSiaGhIUgl6ve7rusqipZOpwkCpZXSbrcDz19cXEwkY5lMxtKtKIpgNgfSSMaYZVkCY47QxsYGGLQODAw4jtNqtTRZg43F1HTdMgkhw8ODlIa9TjuVSsVilhBsY2XFdV1LN6CyhDCZSqWSzKQ9zwPv9TD0l5frYDQvBPM8r5DLI4xHR0cBukMIua5fKpXa7fb29nYymcQYRxGzLAu4WV/84hdhVwELrmazub25Baw7jKUwDPPF4ghCYKcO4rg7XvDtdhv0zrIsF0ulZDz2yU9+stVqBUEAbj6tRmOh0wFzeUmSut3unj17EEJHjhw5cuRIs9mEAaVtmsuLi2+//fbAwMBAsRQxmk4ni7adz2Q/8qEPA9qqGUbo+47vnTx58tatW1NTU0B9q1Qq2Wx23759Bw8ejqKIyDKLIi8Imu3u3/3d1yuVSjqbMTR9aGQ4jXAild5/IA3d6aUrV5557jmojMcmxlOZrOM4axubuVwuXywVSgPZbPZgrbawsLC5sd3pdE6dOgUNJ2BFiURCkTVFUzXdTKYy2WzWNPVWqwXoTqfd3tjYAEP/qakpMKS1bRsxns1mR0ZG4vF4FEVgbCtjEkbBC889X61WBwcHk8lkOp1mgsfj8VgsUSqVQkpt265Wq6+//roX+IjgtbW106dPb29vFwqFfXv2JpNJCD1Lp7O7d+8FXQLQ5JeXl6enp+fn5yGN3jTNWMza0c0EQTqdhucKaiBY3cAYBuAEaBgwFUEIDQ0NDQ0NLSwsbGxsnD9/HiG0d+/eqakpjHEymTQt3ff9fCGbz+cbjcbi4iIhZGxsbLm5c8S9+uqriUTi4MGD0O5SSu94B05MTHS7XRBnKIry9ttvA4AKhL9MLi/Lcq6QB7xNCDEzN1ur1VZXV4GFBigsBFSUygMhjRgWQ8PDM7FZy7KCIHjxxRfrzUa/2+v3+0tLSxGjIyMj6XRa182xyujWZuMv/8dfDw4M93pOSDlWFC5EGEYyJhhjThnnHDGOCZGIzGTEmcCEYAkJIShjO9R7SWIsugNJoNuTR0n6aUCcopB43KY04CI8euyQ5/eiwI+bBiHYtqyhoSGJyH3XcV2HUxYEwcWLF6F7zOVycJEppY16yzJjmZks5LlRSmtbdS6EEGJtZeXVV1+1bbtYzGcymeHhYYzxwsJCp9ORJAk8nFutlu+4CCHHccDosd3qIpSED3ny5Mmd8qtcGuj1XVkxDE33PI8gJBCCc1EIAV044zyKOOecIy6E4EgASXB9fT2dTna6PYRQOp1WFOk2eyNTrQokIctKdrtdzjnEkDmeC+0XeAzCbYYABMYYQ+zONZUQJoTQMBJCWIapRmGtupXNpm3bdPzADz2OiWrFQ7fVDqlkGl6EN5vtgCOiagjh0A0QIQgjVdMo/amLOiYEY8wZQ5goio6xoCFVFIWG0fDoSLFQoEEIv5EJDlUgEPCbzSYhBFArYJ8AcHWHHY8E4pwTWSKyhBBSNQ049Qgh0zQ5Y8B5wghFQdhptXVd1yXNcZwwYtB7aYpKJIUGvkwkgX8qshWMIyIwF0IgVZHDMBRUGhureL6jqHZMs0PPC4Ig8HxVVSVVDQJfSDybSU1PjSNBZYI4jQghCOPbBlER51xgSVYUGgVcYCwrCCEQEjpOr9Pp+V4gBCeGwTknEqGUYkF0XZeJFAU+EpCNiNY3NxUnKKfUeNwWEZ+e2tXtdzEWlUrF63vnz59PJGOSosQTiWQqnUolW60WJqLRaFy9fAWITbFYbHR0RNO0KGKjo6PloUHG2LNPduB+QWQeNIhjY2PgMHn48OG9e/cGvo8QSiQSa2trjuOk02nGeRCFlUpFluU7XD2EkOd5lmWqqup7HhbK7rlde2ZnnV4/cn2kIUPTo4iGnKmG7vu+oiueF4DSh3EhCaxpBmN8c2V1YHTskQ88XsoVWRhm0zkWebfZEvWIho7X1c3hWq36xhuvxwzd1o0tLAVR+L4PfuBjn/y0bFuMhZIsIUm2UpmN5dWFK1ezyYQQDEmkPDKMJaKZxmc/+1kwoQa1/HPPPQcVQBAEumrMzMyAegsgQyQI1EMXL15cXl7OZrOwbI8cOUIIGR8f//Vf//WQRnd6x1efe45znstnABID2CYWi/3ar/3aM99z4FqVSqVLly5tbW3l83kZkzAMBwYGwMTrd37nd6CrA7nAqVOnABImhKRSqVKp5Pr00UcfbTRqd9isoCkrl8u2bYNnxOj42Pr6+sbG1oMPPmhZBljzJ5PJM2fOvPTSS8PDFdu2C7ns5ORkuVwuFAqPPvpoFEVcUM45YqjVan3nO98RQti2nU6np6enx8fHGWNHjx696557Qt8HcuHS0tKTTz6pyRqY9e/atWtm9xzGeGp6empmBjEGpxHG+NVXXz1z5sxgaSCfzw8ODu7fv9+yrMnJyYgz4EuBDePx48cvXbgwPj4uSdg0zUQsDpQ1YI9B3xyLxc6dO/Otb30LLO+z2fz09PTwyEgul4OCDACDRCKxvb194sSJbrdbKBRSqVQyGQc229G770aMUUoZp5zzm7cWvvGNb4DtRT6bgwQqjDFEzcDEGfQTV65cuXTlyo48olCAkgv4qclkEla9omm5XA5kGdevX0+lUqoqg3O9aZoAkfY6nVgigWVpYmIil8vdUSgLITY3N1vNzsTEBCFyEPhYECsWj8eTv/mVf7m1WWWC26YV0mh5ZbXdbYd+KDAaGRnJF4uIkCEkfN8/e/ZsKpU5cuRIoVAAklzfdW8uLBBZyhcLtxYXUonkQw891G632+028K4OHDhw+PBhRDAhBCY7QeCBZHJlZQUJQQgBhOy1114LgmB8fPyuu+4SlEmS5Pt+u91uNBqmaU5NTYHKPp/P53K5brd76dKllZWVY3ff9YEPfKDfd2H812w2Y7HYhz70IcfzoTOH2dPS0tLCzVuO49xzzz3w871eDzBC0zQffPBBz/PAB06SJACJ2+1moVBQFGVubg7EhmEYgjQBXCHgnwdBcOHCBUVRoNzZs2cP6HBjsdj4+PjRo0d939/Y2NjY2ABLtvX19a3tjXg8DuTLTCYzMjICNh/Lp3aW8Ic//OHjx4+vrKzMzc0tLCxcv35dluV8Pl+pVGBWwxiDQPpcLocQ0jRteXk5CIJisdjr9a5evUoIAV8xGD5IssQ537t3ryRJrVbLcZyNjY0z585+/vOfH5sY73X6MNwMwxCo3pubm+BFd/nqlZMnTzLG0uns1OTMqZMXNre3JnftbnY3uSAyJkJQWZYBlRSYUEoZZYJSoUhICEDCBGNoB4PB6Db1Hv9M0ja/ncAdcYoo5ozmMlmCxcrK4pe/9M8+9viHr1w+P7NrcnhoqN/r1Wu1ra0tTdURQkwwEDHAQIBSWqvVVFUFqcrDDz+s63rEQ1i2QohMJrO9vb21uakoyp49e5aXly9fvowQSqVSYRgePXr0wIEDwOgAM15BmW3bgN7B0O/OK5PJ7JRfO1HHAm9Wt7wwUGQSUu66biGVigIP6gZFUd3QJbKEEIZqs1wu25bph0GtUTeNeDwez0jpbrcds+xarXbz5gKYi8iyHIvFWq1WPJnIahqsc0BQwb4I7yCOBBHC2U9LWk2SI85URWm1WhJjnuvcvHFloJSXZdn32rJsqgpZr/e2On0jnYuI2m70A44xURAjRCKCwJQRhTT6WeUjIYRRhrhAMg7DUJJ2iPMwZZBlAl8zxjgSAY0oC2lAodveYc0LoUqyoDsYGLpNA8eyZJqmwEiWCcZYkgxCCMFw8mFJUYGgp6mKHovFbRtjrMgyvAcIoeFZv/OCC6WqKoRWE0IEpQqRY8nE0OBgIZ/HYIvKmNPvMx5JkhQFsq6ZsiQrEjZsY7QySBBl1CdYKFgWksw5h8EEQggjwsIISzJCXIShHwawMneuQBgquomwBN+RJUlgtLa2NjMzF4/HdUVmYYQx7nb6IiYnk0mn26GYV0ZHCEEyYqZhXLt68x+//e1cLhNLxPOFwdnZWYSQZRsggL/rnrsppUCy3K5Vl1dXDMMghGAswaYAr927d8Myy+VyjLGNjQ1gaGmapmpaPB4nGEOihW3bdiyWyWQ4Zaqq0p+56YcPHhKIv/PO8RMnTszO7FFj6WNHDj3zyjuMaP2mE0+ld5TLAquqTnmEJdkLI11TFd3Y3m7RxiJCysOf+tT+o0dN0+62e7zbTmdz3U5jdWXF1LXBYmHpymmEOJFxMVNKp9PU99LpNKXs8NG7PvmZz8p2TAhOZD1CVEYES2q+WHr+x09v6aplG4PDQ0HobWysRQGNoigMw1wul04moyiKx5Nra2vVaj0Wi5UHhlrtLgA8gnFV0WVVgfSSRCqZ7HU5EgKjXC7nh0Gr06aU2rYtMRkqNkqpIHj+5q31rU3btsvlksC40WoBJf2n607T4BxaXV2VkDQyMiLLVQCDGWLQxGuasrKysrGxsbS0JEkSZP50Op2I4Xg8DuCTqsqqqm5sbGSz2e3t7VqtNjY2FovFtrdrQRBNTU1FURQFPkJIUZTlpWWZKMeO3AWU+WIxPzAwcOnSpeXlZXAKhJRlADs/97nPgQYZoI6bN2++9fbbIOSUJKlSqQDB5Stf+QqPeBRF4Di6ubn+yiuvQIWqaRrUZBjjz372sx/+8IdZGMEnEUJ8/etfX1tb23/oICEkZlqzs7PpQvbxxx9/38MPCyGCwOv3+xGjb7z1pqlb2WwWSwQhNDo6qhnGgQMHIGIlCAJF0WzbXllefvPNNwuFAmAntm0n02nLsj7zmc/cMTfp97tBEIDnPgRuRlE0MzOzZ+++3x0bh/g5Xdcdx9nc3Lx+/frGxtbAwAAwjY4cOaIlk+//8Iff/+ijvudBUA+Ula+++uqBAwfA2mPfvn2FfMGKxe9+4EFEKaIUyTKLfITQD37wA7A4z+fz8Xj84MGDsqZWKhWiKDQIZE0LXFeW5a3N6kuvvPrs8y+kkhnD0qenZnbNTAvGDdNGpD5/42Zte7tULleGKsl0pt/pq4ZaazQSqeTkrilZU03TnNk91+s6pm232+1XnnoKTBOKxWK+WACfuVajnU5nU6lMp9O57777PM8DKeva2tpbb70FHcXMzAwWJJ/Lwf0CdSGQ/4B802q1EEIbGxsbq2twtI2PjwOPCixD8/m8btv9dnttba3RaG1sbPm+f/PmzdX19UKhMDAwYFlWOptpt9v5bG5m1zR03bVa7dq1axjjdrtdrzcvXbrked7Y2FhxoJRIJNLZjOd5iURicHCQUppKpWSZXLp06ebNm7quQ7FYr9cnJiZgwULQS6/XA7MxkMjcuHHj2Wef/exnPwubABi6KooCYgtAE+PxeDqT7HQ6J0+eBPjzyJEjEBSG0E75lc1md+/ebZomAKI/93M/t7293e12z58/TymFYTrGGJgDjLFerzc9PR0EwerqqmGZlLNrVy6D90QxX5icnMzns6lMWpIkaJ9gmraytNxptfvtTq3Rqtfr9XodKOqg/KWUxhLx9zxwv27atm0LgaOI/uM//oQiFEQMYYlg6TaPHk5SjrhgNCQEESJRGmKMwR4cSdLOkBGQDllGmHPGsNgxPoTti1KKsMRYlEzEKA0NRSVYfPCxDwxVhuJxrdNsNur1Wn17e7Pq+77vBYyxbC4zODgQs03LsgiRVVWFiEZZUer1OkCbFy+d39ragoLJMmPpdNqybYyxYZqJZDKesMHY7+zZsxBgsLq6euHCBVVVx8bGTNMEvt3q6mqj0VAUBaHbtqaTk7f1gFjigm1sbd1aWyPgnqcQRSJB4LEo4pSapum6nucF9UZLkRRZlsMQYcSHh4cnd03U69W1tY1ut+sHrqIoy4tLFy5cYEz0+33Q6YAWncgSlCkwWoaxMXSEMCnwwzCZTiGkwIdyXbfT7zFBOY3iun7x/Pkrly4f27c39H1N1THRW9X6Rq0VSLquWz0n8JiQNEvGUhAEMkEI4Tup6OKnRR3iXCBBIO9RlmWMBUJcwoSzyLIMCBHy/L6s6ojgKPRhUPizMldFUfhtBR+8JzgBYowFlrBEJIJ+qnwMwyCMOOUIoWw6TWR5eWF5c3PT932MJUnRjr/5Vjoe6/V6URC2o4gLrGkaFQLfdrXgEZVkjASSMEYYURYSbEgSjnzP0CTgz0kSljABG1LfDQzD6HX7YchNQ/25Rx/+0UuvJQtDgRcJvCMhYYxzzjHCgnNEMMYEERljqdftd7Y2zGzasixZ0yilsipxziVMBOeyoliW7rr9fq8jBEqlUkEUxlNZgZwf/uipgWLBMHUqeL6UHykX263W+Pj4v/rtfx2GvqLqHEnr6+svvPB8IZ9NpVKSJBUKhZGRETh4CCFgXqdpWjab/9lG4eDBg0AbkiTp3XfffeqppyqVSqlYzuVyIyMjmqZ5rjs7OwvJZVA9nDhxYmV1tVKpIFSCN1EUpd6oTU5Ojo6OOo5nJ4tHm+Ff/d2Tew/fzerNMPQZwkRWgFRBGZIllXHsB1HfcXfN7N41ty+VKUiq1nSDEGsMK1o8mcmXV5eXtm4u+q7LAndidPAzn/zk95/8+qF9R2KGqSsqo2LX7Mz7Hn2/mU5HXsAJVnSVYJkLLiGeKJY+9olPVrfWd02MC8QiHs3PzyNBYrGY67qe51nlsuu6d911F8wOOOfxWPLkyZM/+MEPCoVCJpXWTePo0aNA6xkdHZ2bmwNReiwW297e/upXvwpBAolEYu/evYCf33///ffee68QIgxDTVOuXr367W9/G8hzBnofXCs4VObm5lzXNVTD87y//uu/1HXdsixd10cqQ0ePHsUY53K5z33uc1EUNZvNcrm8tbX1yiuvXbh0pVwuG4ZRKBSOHDmkaRogWHf4xYqinL946cknnwRpWCoR37dvH2RKIkSiKALLVt93r1y5cvXq1c3NzYmxsUwmE4/HCSErKysAlSGEksmkbdtwnIyNjcHDAxvL9vZ2vV43DEPGMpjMgVP/2NgYyF8AtGg2m81mk3Nk2zZENkH/c//991erVSxLQghLNxzHYZsRyBh932csSiQS4Cxw9epVIUQsER8cHCwUCowxhLimaUB9C4LIsqxOp5PJZBqNRqfTKRaLhmE063Xf903dgGFTv9+HUnVmZqbRaGxsbNi2nc/ngyDYWl8HsQUYBMBMJIqiXs9ZXl6WJGl8fHxlZQVyNfL5PPBO8vk8IWT//v2VSgVqkVKppKpqrVqt1WpgDCHLcsRoZmDAazc/9rGPdbtdcLeybbvV7awsr7XajdnZWaBd67qezWYLpeJv/et/44cBDaK+54ResLC07DmOH4YIIc3QK2MTIY3eOP7W5vbW4YOHDh05rGlKv98PaFRt1KG/lSSp0WhIknTkyJFut9tut8+eP3f9O9cfeeSRY8eO8YRoNpvQbp0/fx4w7ytXriQSCVAXEkLOnDlz/vz52bnphx9+GAi4MP8F3AISvmHjBA0K53xzc7NSqRw7dkyW5TAMIRDadd1EIoFvt5eGYUxPT3uet7i4ePXq1eJA6bHHHlMkGZ5w4FyCcKTVagH/qdVqbWxsXLtxvVqtjo6OfuhDH4pZtuu6jDHHcSBPEwbr4BqDMT5+/DhCyDCMVCq1Z88eQI6hGoOeYXNzs1ar2ba9sLBw7dq1RCKBEAL1MXBdMplMNpfu9/u7d+/GGK+uriKEer3e6urqnaP98uXLg4ODkBUGhiDlcnlubu6O+xccvm+99RZ0epCTUSgV88WSFo+NT08fPXoUAC3Pcc+dO2cYGmR4r6+vA08OYzwwWOZhhBCKR6zdboMGs9vt/uAHPzBt49Of/nQsFguiMIoix3FUVfe98NTZs4Zi9fuOEEJRFdf3BceKplJKCcKYYC5JoPSHZwDh28ZPQiCMd/67U7RgfHvsCG0MkWU4PU1Nd922EjMEp6am9lpNr9/Xdb3VbiiKAsJYp++6nrO0tHD8+PF9+/Ylk0lZVpvNZhiGICkVtwMGZ2dnQbV98+bNixcvwtbxoQ99yLZt13U1XXFdV1GUu+++u9/t+b5fLBYVRbl69eqzzz4rKANXkfvuu29ubo4QsnT2Jnz8VCq1U341221Vt+vNJvzdQcSSMR1j7HlezDKJprmuq+qas10PaKSqJsaYI6Sqar1epTzI5XKVsbFarZGLFTARiiJ96jOfBndskI67vsMYE2LHKwscBCAlihCiGVYYUlnVdSJz+lPEIuQslctiLLLxGO175985OVIqS0JCTOi6vbrZrbYcocd7blivNT2GOZFYxDhnmqJyzn625PrfXlwghJEQnFIhYYwJQkg3VKfXSibiuirTaCelMQwigndqLHbbRwewOuiS78AGUGlxzjFGAgvMEQujiPsIIXGbH2ZZ1vbm1pNPPvkP3/jW+vo6xpJpWZ1eP1colMuDIaWyrIY0khWZUooJppSqkiy4CHwXypGIhYmY0eu0vX5PsAhhbllWOpGE0yibTbuu6zgOYiL0XBaFyVgSCSWTjhPMBKeqIrthKCIqJEkhO1xsxBgSBN1+iDOZzNDwoOc51WqVhiGRVRZRSZJ1XQ8ZjWiocNV1XdN0c/mi5ztBEGiGqRlE1ayt6nYiHsuX8pahbW1tCYH9oCURhTJqmDKWVFVVh4aGYEME686FhYUdpQwic3N7II0HNMAIZeF2nT9/HrKTHcfZt2/f1NQUTMNN02RUnD59OpNOQ02ZzWZt2wYXH0VVNzc375Rfx48fT6YSskwMwxgdHcWKffLdU3v27BGIEUWiUIki0CIQTZEpZ33HGxoc/PXf+qfl4fFIyG7Al9fWG+2arimaYQnPyZdHzOtXEVIiL9IxIoF//713DWbsv/zLvxkdHh0froSRLyT54tVrRDVGKhXF1EMvkjVFkghnjEhyfqDcd7p+FFIaSlhMTU3RiFPK8/kiY+y5F16CuY+maYD9YIx3794NET3gEiRJ0vMvvQjqbsYY+EpgWYqnkr/9f/xOv9+HUsO27VNnz6yurk5MTCCEZFm2LCuVSpVK5S9/+dfq9brjOCtX0Z29W1VV07RzuZydiKuG/ou//E8ppWHoU0ozmdStxcVLly4pimJoimEYc3N7wpByjj74wQ/e/+B7weoJIRRF7Kmnfuw4PdiP8vn84OCwZdkA0YNYHexMf/Sjn7TbbRC4lUqlyclJ2xrutFq7Jifb7Ta4jqVSqWq1+uLLLwshAD+YnJzct28fEyKdzb53eNj3fcEYPE4nT55cXV2tVCqrK+uDg4OEkKGhofJg6T333ksI8TzP9/1kMtloNH781FNRFEHYy/Dw8Oj4uK7rxXKxWC4SsRM1sbi4+Jd/9d9nZ2eBLl0s5mdmZhhjD7z//Q+850EgA9mxWBj5Tz/99Pb29szMDGzilmUZhjYwNDRQqSDGfMdBhOiWtba4+Kd/+qfj4+P5fF7CZGRkZO/e3bKmxWKxqampTq8Lh4qmaU//+CenT5+empqqVCrFYnFoaMiKx3ft2bNrbnfY6yFJhrXw6quvnjhxYteuXalUKpFISHsInKnJTKYCN5Uxznmj3nrr+Dvb29vZbDadTo+NVzRNAxF4oVQulMq+78PU2/dos916592TkOaeyWQQlmRZXVm/ee3GdRqyXCFr6lYilVR1U0iyLMsDwyOWYcQSCcT5hUuXLN0KKb25ePPmzZtgejJSqcTi8YgG3V43m83KiprLj5qmqWnarYUFx3F6vc7SwvKJEycYY6VSqVKpAHkcSmpItwRL+snJyXq93mn3Fpduvfzyy4QQMMKF8ACQiAKJBxSIhmEErocQqteb7777bqPRiMViIyMjvh+CIwD4SmTzeQt030GwsLQYj8dpGL3++uuLi4tQEEP4tGVZCKGJiTHbjoNIZWFhYWFpsd1u9zrdS5cuhWE4OTkZj9sAXEGMo2VZMzMzd911VxiGt27dWlhYAAnz+vo6DFuBzWJZFoxWQdwNFX+tVjt//vzIyMiRI0eiKOp1HYwJ4ILZbHZ9fZ0xVigUFtCOp1S9Xq9ubWGMH3r4Yc75nWiZVqslhCgWi5ubm5IkpVKpjY2NF1988YknnpicmUGKjBBBnCFJslMpO50uUdqo1SRFDn2vVqtRSl977TV4t1KplMlkAC4tWnZlbNQ0TU4ZxqLVal2/fp1T1mo0L125vL6+mUql5nbvvXZ1/tnnn52dObC6sU1kdUespukR4xImjFIhmKCUUYGh0iIYCQYjrJ2q687AUWAkCMdckghGiDNGJEnX9SCkkiRRFsUt++q1S//+//w/CRZ//7f/S5alZCI2Nja2Z88ewTEmJBa344lYKZ+bHBvf2tqqbW1jWbpy5Uqt1ojH46BMmpiYSKVSEHlXGR4ZHalElMNoVQjhum61Wj177jRCKBaLDQ8Pxywbrj8h5N577z169CjsXcePH782f8NOxH9W4eQ4zo7xxJ997Rfr7d7Gdk1AiBJCEkJHD+9O2jZs1pSyIGKbteblGwuyrGqEsNB95OH7/83vfGW4MhRFkWZYsqwKygxTI4QgxBkTwBFhLIJQT0p3gmKgwwaSWjyWFGTH5wk8Hd798Y7n0/t/vkAUggXSBdq+tfjnv/8HYaset2xfiFY/vL6wzc1kjyi3tqtM0nQz7keUhRRRLmikyIrAiKI7f6z45n/4W/jq87/7BQGlmYJMUxdCSIKPD5fnr5z7w9/9Nz//2Sei0KU8CimPGEWCaZoGHK8dphfnGGNNVoAPAZ8c4DH4mTtaSIKREAIxLstyIhZfX1//nd/+nQsXLszO7rYsK/RCrMiqbtTbrV6vH0SRwKTX7wPTHPSGPKKMR7qqqapqWybndHtzfW5memJiYnpqKpvNmqZpWaZhW8Vi3jR1mL4rRKGU+m4Qi8XXN+p/9bffeO3E+Y4nuGKFnCAsBY4jSTKUXywMEZGJoiBOMRb5bAZh4bp9znm/5wmBkcAYy4JzLMtEkWRV4QIVSuU9ew5ksvlsvrBn19D7D42ntQgxF6MIE/GTn/zo/Pnzc3NzqXQ+n88PD5UVVeWYqIrGopBzrqmy7/uvvPLK5cuXR0ZG8vm8JEmTk5NAB0EI9fv9d17YuXN77ulnMhnQ7mqaBirFWCzW6/XWVjdOnTqla1oqlRoaGpIkyXdc0zQN27JsW9O0H39rh3o/Mrvpe4Gmq5qmTE/PXrmxfN+jH7//kQ/Xuv1uEESUR1RETDCBZFUTQiBEXC/Q7cRHnvh0abBiJrN2POtTtlnfarVapm7oBItu57XnfrKxPP/rX/wno+VUY3PeQF7C1puN7ne+9e18Nrv/4MHC4ECn29c07f9P13+H2Xmd96HoWuvrdfc6s6dXDDoIgCTAKlpUpeXYsmzJsuPEdnxlx7aSJ8dxcpPjOM3nHqfHzrHjOG6SJYumOilR7CRYQXQQwPQ+s3v9+vrWOn+8A0T3nufOX3goaLD3V9b7vr/3VxYWjhxaOJwtFcI4klVJwAjhmLmD6tYGi3yn38tlUpRSx4va7bbneY7jQAYZpP7Nzc0lEonIDw7W4iAMtEzf99955x3wvQTNEZBA4UEFpQKQk95///1bt24d2J0kEqDOg4cWY2ya5l//z224VpH8qm3bpmmPjo7eww8IIUHgFYvFOI729vaeffZZVVXr1T1JkubnF27duvXQQw+NT05GUQwcHSiTy8vLtdq+IAhAoMnlCqurq4Z1ANfLslzMF2RZ3tnZAdACJFqKoizeui0IQr5wYCc9NDSEEGo2m5SxMAyBq5RKpZrN5s2bNxVFAeP7hGUNDw8DlxRgdVXRu91uNput1+vPfP3pkZERcBlMJpMTk5OcMVjogIKSMdZ3HIAPbdvmlEuSZCeT3Xa70aw5juN5niiK6XQSksRADA7Er3QmE7OoVqs1Go1arQakHMhmaDbbsIMIgkAzjEQi4Q4G4AwUhqGpG6Zp6rparVYP4DfO4CtjjAeDAaNxv9/f29ubnJw0TbPVam1ubpbyBUVRGCZ3lQEhZLxAb2qaZq/Xu/DWmxBq7vv+2NjYyPQ0wiIP/MgPYsQlIjCMEEJvvn2h3exMz854jmvaVi6TzeZzMeVC0kKu2+u1282O6zvuwBs4jhvSwcAF7vbe3l673f6Jn/iJkydPElEEthY8YIqiuK4vCNj3fcs2GGNLS0t3Fhfr9frnf+Zn5ubmwKYSqA7ghdvudBhjnVYXZGiNRgNc3D7xiU+cP38echFA4gBIEnSKmqb1B91arQYahcuXL3/84x9/8skna7Ua+FPCFrjVaomYVCoVCIgDCyFZljc2NpLJ5Pz8PGSXQScaBEEcx1FMe72eSARgj0mSVKvVNjc3Oedf+MIXNE3rdruCIN2TSvSdQb/fn56carfbGxsb1WrVdQeQnXr8+HHLsjRNA94q0AQbjQawAPf395eXl/f29kA2ODc3Z9t2KpWSZTmbzQIlP47jTqfT7/fBIHNxcdHzPMs2dF2fnJy8lwPx5jddeIV/6lcPNWq1zc3NTC6HMYYERniqwS2v3W6D2whMMqZpvvzyy5zzj378E1bChgfv8uXL0FiABA2IhhxiGxACt7Bbt2792I/9WKUyCrw6HjNBwKD/6HQ6nudxjLa3d+v1uiQqf/pnX37xlbey+SE/YliQHNfzIirLKudcEkkQBJjFjLE4Yge0eoI5xwhjdNd3id01vj9oxfDB3+SUIkIUVRVEmWCuSULSVpeXb157/93pidEo9AQRLy8vdzqd+fl5SVT29/c31tctyxoqFhRFOXCy9T3DMBAi96wM4Hb/yI/8iCzLvu9SSqG9g3I/GAwcx6nV94Mg6PV6g8GAx0wQhHPnzsECGjoE13XhoYUIkNeeOdBH3Gl+7QD9Wl5Z44KERIHSWCJEwLxSzotEEEWx02npuhlzhAh2PY8hJgBFUxQlIpTyhVJ5yBn0GSIMYSxJUUxljOOYhpRRSjGllFIwfaYBBbkKOJVjLHhuoGuxmbABX9E0jXCE0B58Koo5QSimVBKkQc9z/YgIcj+KmSit7NZjLdGPyV5vgGRdFBSGCUaEc44YFSWBI3Zw5/4fP5wzjEVBFEUVa7ri+77AsSgKQehOTIzputoNXUEQMGearLA4hgOF3+XXK4oCnn4RpUDSF+5mGCOECD7YTt6zhpNlxTRN3w/+6x/8Qbc/uP/Bc3u71YgyzAkNAuKHrh+ouq5g5PthEIaMMVlToX4wToGtn0wmrly7IWD02Z/6sfn5Ocuyc5lsIpGwbTuZSmiaJopk4DqSpDCGeIwkSdHTJue8VMz+zGd/8sqtRSdyHRqIshFGVNK0OPAxJgfNKeMoZpxjhlitVrMM3dC1er2OGEcxxD8SLEmMsTgMOUYwjqyvr2MiWqnU9s7+1pBNsprAfUVknEVnzpw5fvw4Y0iSVVgYKapqp9L9/p5EBE1Rma5HEb3/zNnzD55zHAcw3rW1tee/9/1sNqvqmiAICE3D/crn891uF2it0DqIoggs1GIp/6Of+iTmyDRNjIVGo/H+4hJjzLCtXD7//5VveuoUaGBhPfGdZ59FiPR7juM4NGaYwC1mCGERk4hGCDFNlVkU/vnv/e6Zp358dGoukx/KlcrlfM7QVc454UhPJA6dvK/XbQmyjBiVMMOUuQMnmbB+5md+5mtP/9XA6Yxp4zFjTt+9cunyoDc4c/aslU4KmowQ4mFMZC2bLzz/7HcWb93IZ9OyLGdypdOnT0MLDhARPHJxHL/88ssvv/zy/fffDyarQInTNO3xJz5ECAE8TBTFF1544c0335yYmFAUZbQyksvlYBED9pJ+GOi6vru7+81vftN41yiXyxjjVCp19vSZe9fqp3/6p33fV1X96tWrv//7v59IJDKZjKqqMzNTlmURggqFwk/8xE+srKxYlrWysvLd555bWFh49nvfMwyjUCgVy6W5mVnYkR07diyOD8MyCIKJXn31VY5RsVhMp9Ojo6OwgINIaVhNQpoHEsjmzvZeraooysjISLvbh1S1KIpEURbF0DAM1/URIsViMY5jyMBOJ5PAWtM0DWY5yKdCmKma/MQTT+zs7IBLfrlcrlWroGYC+WEURYVCoXHr1l/+5V/CLCsJwuHDh+f1eU1XRs1RmLKCIFBsu7q5+Z//83+VJKkyNFypVMbGxtLZLEIIYrYPZnTGsKK88dJLzzzzDeDG5XK5E/edMGJN1uRyolwqFTDG4HIUBNF77z378quvzM/Pp9PpqampRCIFOTyKomRyWfDR9QKfUnrt2rXLcQx5CYcPH+Y8TqVShqGZpi4IUrPZlBSZiAIhZHd3N5vPy7IsSFK30RgMXCIKiHHX9wjC6WzGMIyJyekVtqrpZiqZwQJxXH+wsXX16rVWt62IUiKdMDUzk8/QmE9MzyRTWccLdF2F3cXy8rKkKLv7+5cvX7506RKIWKempmRZFkWRMZTL5SzLkhR5fGLqiR958vbt24iTdqt759atK1euGIZRLpeHKhXECedYUbThisEYA4QpDOjm5mar1RoMBouLi6+//jrYuubzRVVVMcauOyCEFAvlqckZ4H48+sjjy6sr6xtbm5ubr776qjtwisUiTBGqqnb7jqrqdjINtLkw9Cujo4PBwPG8vb29xcXFvb09Qsjw8HC5XIa+B1z0FhYWwPKq3++/9dZbGxsbmUzmtddeAwcvURRBpCkJBHqaxx57zDAM1x24rru2tgafbXl5uVar6boOrkOSpGia1mw2EUJHjhw5fvw4ISK0YnNzc5XKqO/7O3v7g8EgjiMooEEQyKIkiiJAblEU+b7/jW98I51OP/nkk5IkIXTQfq2vrsK+OAhDSZLK5XK1WoVEpl6vB6gbWLzCGxdF0fHjx5eWlq5fvz42NuZ53qVLl2CTGEURGJsdPnw4lUrZNkjUURzHc3Nz87NznPF2s3Hjxo2bN29hjNPp5MTERCqT1nU9k8t2+73Z+bmHHnv8gw9ufe+lH8zP31ettmVFdYIQCaKtmYBWQFcqYoKxgAWEEOIMIYaQQNAPJe/9P2o54YwjjBEWEUc0Yoz5qiqbpr60fPvzn/ns4cOHEaeyiBFiRw4fcT0XJJ+MMcb56tralSuXTFOHWW5+fgH4FYIgUMoopRDu2Wq1FEVZWVnqdDoIC2CcWygUgPlQzBdKpRI01r7vr6+vA7Q0GAxWVlYopSMjI3DBwS8aoYP26zd+4x8coF//4N98pO+HQcyIKLAwVAT8+EMPJE19Z3vTtCwiyf2B03e8re39ZtchRMxYlttrf/TDj/3z3/4nkzOTg8BTZI1jchDfGwX9fl/VzX6/HwQekDlM04z8CMSunHMw90skkoIgUH6QSA319Tt3p/An/86QF/iSICZkrbm69V9+7//c2lhpdTvdQaglinc2mj5WfCIEDBNRIqLgOS6KKcZcJAfrfI4O1mqI8y//zl3065//HCYSJoQIsWIoYRjamjZSKty++s4Pnnv61PH5bruFBRJxhggGQeyByeFdWjr0YY7jcBqLdyOG4EeWJYyxKAgQ1A7/URCEpcXl3/3d300n0oPBgHPsui7GAkMIC4JPI4QQx0iRNT8KwXIChKIC5pRSSRBu3l785V/4O+fPP2gn9GwqBcmGUGAIRn4QYMLBsESRZMtKoJgJWFheXg7DIF8e+cM/+9p//G9/XJg45IWYxtztu5JICCGc4zAMEcNEEBBCjFNDERVFJgS1Wi0WI0lSkSDSiAmiErOIEyzKIuI4m8+Zdnq4Mjo6OT0zXqkkyMxwYmokq4iRRLgiye1uhyMiq1q/33/95Zc73VahWEwm04VcPpVKQRnTNaXdbkO8XRiGu7u7GxsbmqYJkpjP569dMOB+HXlwQCm1bXtkZATiBK5cuXLt2rV8Pp9MJrPZ7HB5yLIsSpksywLCYRiGMUUYd3rdC88dKF5nT3WSydTISAVWY//tj//iH/32v3/wkY9t7u54EUWixLAQRDFDGKgSsGtGXGBEcpyQGNaxk2eHK6MT09OTUzMUcz+IFCI39rb/5L/8u7//85/Jqa7X3jRFLnDmBqGu62HoXbz0Psfk1KnTpma6A8/zw0K5fOT4sXJlKJVOIAGh0AvdXuD0u50WYjHn3DTt27dv37lzByqEqqrAkNvf3weTRjin0uk057xareaLBTiIYfMCIEG/3x8MBpxzUzc2NjY45+BwrWhqNpu1bRuW1J1OB0JLkslkdW//4qsyXKvxw3vFYnFoqAK/DRi4giAkEtbi4uKNG9cqlQosdCqVCmNscXHx/vvvP4hIuisg/+Y3v+l5HpDzUqnU4cOHNcPwXVfVtCAMwK5dUZRXX37l61//+vz8/EF3cuLE8PAwiE4QQkEQuK6bzmTW19b+8A//MJ1Owyx+6tSp0dFR2EypqgxvJaVUkaR2u/3mm29CN2aa5vTU7OTkpKrJkKwAZQy80H7wgx9kMpmZmRkQfBy0gIwNBgNQ2FmGYdt2rVa7evUqsGihiSyXy4CZUUo7rbaqqqZpep5389YNsAAVBCGTyVQqFaCkDAYuPLcIIc3UlpaWtra2RkZGVEkWRVFT1EqlwhiK43hjaxPQLDhq3nnvvWazWS6XVVm0LGt2dpYxBu0aQG5wUHS73aeffhr4dsViWZblialJWZZd1+UYA8aWy+Wa7dazz36vVquB8jGdTj/2+OOVyqgb+JyyVqdT3dsLKRUwVjRtf38fY1yr1VbXVmRJyRdyP/rUp0RZYohEUdzrdaAbQAjVajWEECABMOKvra3puv4rv/IrcNR7nueHAbzpiqLEEQ3DMAoCSLluNpvNZrNar/+jf/SPMrms5w445yASjMLYtm3w0YA+ANzYd3f3r1y58tRTT330ox9ljHa7XQjZhMdm4DrAvhJFEXPU7/e3t7dXV1cffPDBT33qU64fdLtdWZR6vV6/34U2EQpnHMfb29vQTn3729/OZDJf+MIXLMsC+1OAxMCEFqIbAYcGOTwoS5566qlsNg/PWK/XCwIPYn97vR7YT4RhuLS0BBfKtpOjo6Og+AYwVRQPnuRms9nv96MoarZb9Xq93W4Ctm3bdtJOQCuZyWTgo7re4ObNm8lkMpFIvPK1DrzCoflupVIplUpYEADeTqVSpmkCUrC0tBTHcaVSgSMXILGRkRFN07wgbDabnPNyuRzHMXQqFy9e3NzcLJVKJ08eD8NwY2MDkuJ0VYPJudtuq6qqqUa9Xt+t7u7v73f7PV3Xs9ns3KGFdCoryNJ/+k//+X/73/7ZxPRRx436jhczjogc0ggeksDz4zjEB/R6jhBCDCGMiSTxH4rT5vdszBnDd+1Yf9gXU5QIZvHU+MiNm5e+9TdfffjB+1968TlFlizLyGQy2XxOFEVn4IENryQLIsGDweDSpUu+73/oQz/COYfOSdMMWZbhysAughAUx3EQ0n6/32q1tre3bdt++OGHLVMHxj18QlmWu90u5xxUMgBqNptNCH+bnp6+9hJgrOinfvXwAfrluB5WFRaElEYCQqCGcBzHsizdMMKYIYSwQLr9PkOIIATgred5mxsbqWyKi8R1QhozzphESBj5hBBExH6/TylNJtNBEIQhNW1LkiTMkGEYcIJEMY85FgUZWmAiClz8X32uhERJs2LEiSgXR0dPnDv3B1/7+i/+nc/ed+bcb//Ov295VDBMhkUs8MDxEKWIUySKnMQx5wwxhAmCZer/T8fMY8RFRmlMQyxxSqmqJTDmp06dgqlCVVVBEmKCYs54xGBEhpMOIcQZBg2qomhEQ77vB2GgqqqlGIwxSiPKWUiDkFIERDdRUWWZY8QxChhVLYMz7ARho9lSVZUhFMVUVVWgH3LODcOIOSMIa5qGGI3juLa//5//w7976pMf5zymcSiKQhCEjDHH9xBCnFI38GFbIUkCQch3g9WNjX6nt7u9PVwpK4o0MjqMEJIkaeAFcczBbEISRISIgAkjEPBAOMJO3/E8l/kuwhgRKYoiEnNMRMYYZ4yIEuc8jqnrutl80XXd3qC/tbc/kpngRPn6t75dyhi5VEISiaab2XweOLaf+tSnWBz5YaBp2trqxp/8j/8BmmdFkXRdzyRTNAh91x0droBZpSiKpmleu3AAgt65cwekG8DQ55wfPXr05MmTQJMXBKG2X3333XfBAElX9EqlkspmXM9Lp9MIVeGXJJNJRVNv3blDCEmnU47nMYRYjDKZXH8wCBjzIyZJEkMcIYZxjHgkIEypTwQll7K7A/fyq88vpnKb43P9Bx4YnZvR7BRFuFgZe+CRxyKEaRw3Gg27nAP5qu/7WEAPP3x+e3Pnrddfy2fyk5PThq732u133np7sjG5cHgeI4polLCNjY3NwHfyxVwmk42DGPKMYa+dyWQURXrnnbcymYwkCSGNdFMbHR0VRXFra+vO0u1rN65Df6Np2uTk5L12CrRUYRgurSyvr69X6zXTNMfHxyVJarXbBGNN0yzLCsMQpvx+v49Q5uDsDqllJbqtdhhT8LONGTNME2g65XJ5MBjIdxNOGWOzs/P9vgP1zzBtXTdoFDz00EPtdhugu2w22263L168CP9WEIWZTGaoXCGEnDv/8OEjx+C2qpqsKMqFt94E3qvjOIVC4dixYzSKCoXCv/gX/6Lb7YqyhBCSZXl1dfVrX/1rcLCMoiiTSiwsLBiGQQj52Mc+BmnElFJn4G1ubtoJE1h0lFKEkKIo4IB/5cqVS5cuZbPZQqEAcxTlFCwuGWMCPvgBZylgQUG0qOu6uq7LsiwJImNM19UoCnzfr1arcEmBT40QyuVyiVTC6fcRIpIkccIzmcz6+vrNmzct3Uin0+Pj471BnyDBtO2pmZmD+sMYQ2hkZKTT6ezs7WKO0ul0IpUxDCP0XfBohb8lCEIilXz40Ud2d3cppZvbW6Ojo81mkzGmaJooirquu763vLo2Nz//E5/+NBDbHceJoujOnaVnvvFthng+WyiWSyIREMGiorp+ADmMCKEw9FdX1xVFijmq71VvfHB7MBgEQTA2NpbNpu9t8QrFHJip5kqlVq125cqVTrcliuL7Fy9vbW0hgiG0MZ/PMxpD0itgnxyjRqOxs7fnuq7lB61W65133gFzKaCv2VYSqKK2bcccFQoFxtjGxgZCiCF++fLll19+eTAYnDp1auHIYUWWbNEuFotg2gJexOBX3Kw3er3e+ubW97//fcYYjHP5fB7Yh5IkgPRyaGhI1/WzZ8/evHnzypUriiStrq4uLy+Xy+XR8XF4NhRFAVMGyB4Fjs3q6ipIZK5fv379+nVFUYaGSqlUClw/2u22ZVnQlEN+65Ur10BUAYal+/v7sqwCf6DRaPR6vUQiMTo6evToUUpDQRBA+/nUU0+Vh4YGvT4wsWBWTCUz7Xa7Vm3ce4XB3OvChQvJdPrDH/4wgAVgyy4IQi6Xc113e3vbMIx0Og2r7eXlZVEUFUU7d+4cmJ8lk0lgjN1/5uzxo8cGg0Gv022329evXouiyHVdCBrP5nOjlZGg3+8NBoqqQGC5oiiUxe12N47jarV6/fr1L/35X8AeI0aSbhquH0SUU8oMQ3UcCGuRMI/jOMZYAHI5FgTO2T2+9Q9VcE4E4R4lH6gRCGw4ETMMrdttK4J88viJOI5GR0c31tdarca1a9cUVZdl+eFHH0mmU4jHURRxxBRNfeiRh1utVq1RN02zWq/t7OyA/EUSlUqlYlo6pIrJssxjlE6lxkZHDy8s7OzsDPr9MPBAgSFJEtQpWZYBRUsmk4ePHoHdBURttjrte07gr7766gH69bd/66FEJltvtoiIMY0PT09mU4aEuaZpDCPGSRTz7sB7/8o1xrFIBE0QbF09cmjq//y93y2PDPUG/Wa7H4aRRARCMMhTw5iCUwPGGMy9GDtoY2GLTCNGCOEYiUQQJDGOKBGFmKDv/Y9N+Hwf+dkhUZYwxohxg0hXr13ebdY+9tRTNz9YOXbi3NDwkfYgChELIioSQdd1d9CLY4ox5yjmkB7DMNhkIPS/0K/P/rOfQUhAAiESNkwlDqNyIceDwZMfOv+vf/sfJy3ZcZwoCinmlFJZlOHuQnWRJEkSlTiOEWOCJGEeRyw+cJ1gYFdBAxoJmGNBIAgFUcQiJqnqxsbGL/3iL2ezWVlWRVHu9waEEEQwEBHgD5QhECWA/54sy7Igdrqtf/jFf/DAA/dHnh+GPuU0ZhFm4DInIMQopaIowKuIMW7Uq/v7tU6zFYZhMplcODSXSOe2au3/+sdf/u5zF/Kj061eXxRlv9cVRQlUP4whDP5kPGZRKEokmUwwxgRB7HUHnhcRUWIMIU6JJBFJoIGfLhaL5Uoilc4PjY4MD89W8vMjmbC7EbsNS5ctw0jYtqJqumkwxngUt9rNXC6DCHf6PqhcGWOJhGUYxsri0uLi4tjYmCRJDKPx8fHpmZl6rfbCXR7DR38yCUkpzz77bKlU0jQNYiIWFhYQ2FT2B5ubm0EQ2LadSKQMw3CcviCJRBAuPHdg/fVjny/3ncGbb77VaDSK5fLzL775x3/2zROnH97Y3+dEEBTFp3HEEZRnQcQS8PY4IURknHAsICQiLDo9X9KMw/edOHrm/mRhWJUVlfvErZ2dSfeqy7cuv2fquiwrCKEoDhinpmIgRLY3t3e297AgmrZtJJKmpWuyNFwpf+TDH27W995+60KhkE9nU4IgCISIRICoYEKIZVn1evXGjRv1et1xHEmRp6enwRQe9iOWlSgWixDJcuvWLfCYsW17bm4Ozn1d1wGogClzZ2fnL//yL23bhto2OTm5sLDg+74sSve4Xx/5cRsh9ML3X7i9dLtUGpIVZWRkZGpqqljIYYwx5ggh2LZ7nvfcc8+tr29CcU2n08eOnUgkk1HoAzQLqjTG2O7u7vPPPw97RtM05w7Nj49OdO561gMNXzdUWZYvX768vb2NEILtydjYWLfdEQQBLggWCDBjOp3O/u4ewB6aphGCNEUBehYIOYExQyltNpvr6+vgd5NOp3Vdr1QqgJbFcQxcQ8dxut0uIeR733t2eHQkm8pijOfn5/P5vOM4hmEgQjzHAev8TqfzzDPPSJJUqVRymaxpmvl8NpFOcxZDYUAYI4a63fYzz3zDMLRcrkAISSaTx44dQ6ra3N/JZLMxpQLClFJRkrY2N5//3g+KxaJpW4yx4eFh8DHHgoAJCaMQMQ5WcFtbW1/76l+Nj49nMhnglk1OTmqGgQQBxXEcc0FVWRDFcXzp0qUXX34pl8sZpgmLlXJluFmrDzy3VW8MPJcx5jiO64WCINTrddjYPv744wuHjjiOI4jY932ACQEERQgRQihDgiCAEca77749PDz8kY98JIoiSRYopWCHC3wXoF6wGAmCgAXS7/fv3LmDEPrExz6eTqcDz4NnAyR4vV4viCJN01xvsL+/D6/h9vb2xsbGY49+aH5+HqpvvdmCewqUDEIIZHgAd6febCwvLz/88MOPP/54t9t1XRe6Q0CCdVVrNpuAzlarVQDYFhcXRSL88i//sq6rrVYL5mpwGRAEYTAYdFotCNv2PG9ze3t3d9cwjM985jOSJAGeCqMC6BVc1zUMC7pwx3HC0Hccp9/vg0YEEuGgUcjn847jdbvdfr/LOd/b20MIOY4H86QgCIAHm7alaZogYICf4YMpirK2snrr1i0YhwRBKJfLtm2bpvnmtw4iBX/s745LkrS3t7e1swO2IysrK/V6PZ/P3+OTgfEYEL/gNRwMBhsbW2Acs7Gxsb29DRqIRCIBFLp+vwurN3iDXNe9cu3qK6+88vM/97fn5+c9xwGGLjjMRVHEEI4oy+cLF9+79OGPfmRqeqHWcrGkU8YFQXJcXxCkOI491xUI5pxjzmMaAhWEUQZm64hzIor3zKoYY4gxIoosjtHdtkw6WE/FkkjKxdzS0s3f+7f/+ld+5RdDt49RLAgYbtDefm1ra8swjLGxMYTQ9s5mu93WNAUhVC6Xoyju9XoIIUCqtre3ESeNRuP2nQ8+9rGPFQqFer2uSCrA3tls2vdD33eBirW1tQV/AA5rr9c7fPgwuKxJkgQmi1EUtdvtN77ROWgiM9cP0C+GSLfbRwgJkBvOI0WRgRclCWqv69y+s9T3gpgjAYsYH8gATduq1etEFjRDz+UyccxDzwcjzSAIDdUmgsDiOI5jIog0jjEWGGOCQBAWOMKCJEqSxDFCjGNBkIiIBYLoPbMIxHns+xFCCDEci3Ribv6ofR/HqFqrxYgJkiSKnIhEkCjmKI4j6I9ZxGRVDiMfcYQwIgQzztEPubli+ACcs5jTgNqGlrHUi7feO/Zrf1fXNTdw/CgkBHMaSQKJolCWZYwJY0wWRMwRjyORkDhmgecwGkcxhTcqCHxAvBljkkhC6hKEsUA0Rbcs288WRoZGas2WLHGOAxBWYE4EUY4okyQBZmUgFTHGWMw4jb0wGhudeOed927cuJFLpTFGmqJijDHh0JwNBgNDV+M46na7vV4XNmu6ocZxnEqlTFMXFLXv9CXCpkeHEOMkFmRJimgkqAoNQow4wSLiAQ9RLMuKJAd+aKcssMNtdbpYFBCKWBgiRIgssohyfhA+D/kkQRCIouSEyEjmFmbyMuv7wUAm5Op777/w/efLpaFkJq3rej6fTyZtQcCqpimqmkylKKXZbDYMQ98P/YjKqso5z2ez6XS2Vq3HMbt3v1zH5wz7XlgqDrmOS8PYtu1MKhv6ETAtMBEnp2YAaAmCoNGsvf32m5ZlqaqK0BH4JURAmqZ87GMfjTkSRDVi2h//ydcwDwXOGq1ebmiYEBwOXIwxwRwjgdIIem6GYt8PwDScYNGSVVPD1TtX//ytVz/9s7+QzOZmJ4ZnpucqqTg3nZa5s/jBTUaQLMsEEYwV33cRIiMjQ5VKOQiiVqdNqed23GSxMFkZRnFgW8ajjzysKMre/v5X//qvpiYmHafPGBsdHZ2YmJJlOZlMP/LIY4wxqDeMsZWVld3d3dp+XdO0OGKZVNodOOOjYyPDFUoplMxbNz/Y2tqqVCpg2AF1WpGVUqH4G7/263CYyrKaSqXeffu9nZ2dXC6D0AhcK8MwBoPeRz/x0Q+FjzmOBw4L7Xb7q1/96ujoqCYr0NlPTU1psva5n/pcEARQsCVF6XR63/nOtyC1BvKAjx07IcvCyMjYL/7i34vDKIoiSRIUXVu+s/hH/+OPQUqWSCROnTp17NixMAxPHj9x9PAReJJlVWk0Gt/89rc45+l0UlXVUqE8OjoqEoGG0aFDh4IgoAwmZmzqxuLi4rPfex6CXJJJe3pycmxsbO7I4aFS0XEcx3MZY4ah7e3tNNqtdDotEEkQBMw5ED583//IRz7SaDQkQZQkSRJIvbq/srYKloxwLhuGJqnSE08+AYswL3BlVVpd31D3qyD1j6IwDEMrkTYM6/HHnqjV9wkWZVnWdb3V7Hiet7O7hRlmjHmeZxhGMmnn8/mPfOTDGxsbkJiEMR4Meu12W9ZUWEvB0tNOmKom/9oXfwPWQxjjfD7v+N7txWUwMsAC8XyazmVN05w/dmx6YcF1XdfxdnZ23nrnXeeVV0aGK8l0SlJUHASiIA6PFmRZVhQtl8ttbGy89tprA9fvOYPr169Xq1VFUUBSresqLM5UVYXmFWxg77//zNbWFrQdH3zwwc7OzsDpUUqPHz9eLBbh+hi6lcvlKpWKapqPPfLo+vo6eBzs7O1BN8Y5z2azED+6v78viuLoyDhwwsIwXFtbg8K5tLS0vLwMVhFjY2PpQsH3/V6vp1oWBFRDxFar1Wo2m5vrG2tra5cvX47jeHZ2FiKru0HIGKMs0nV9ZmZqaGiIIFyv17vdruc5tz+48fzzzwc0GB4ePnLkCEy/mq4MVw7Dnh1jXCgXCDndrDV5HDc7nRs3bnT7fcgSBUthQRAcz5Ukae7QPPxHXder1erOzk7MURDRW7duUUrz+Xy13kin07IiB40gkUjMzMzck21Wq9Wtra1KZcg0zU6n88Z77+q6DvGdkiCKolyv103TfvTRx+M4UlU1jPy1tbXBYPDEE0+8iT6AV3i/1pAFESNhcnzcdV1Vkw8fObSxuUkpXd9cC8Ow0Wh9+MMfHhkbD8OQhhGljNIwDOmRIwuGacaUmqaez+f39/ffffdd8AEA5ebIyIhlGcCHFgThyNGFBx846/Sc6t4eDaOXXnqp0+kMDw+btpXO5ienZgRJajV7z3zzOwxJMSWCoHh+SCTRdV1GOdjcS6KAGaYsZDEjWITCLUgCuxu7x+OYcU6wSDiB8sMYRwhLiow5YpSqsqJIgiwLcewGXouggPPg7Quvnb7vhDNwOI8lSUKIDQ+VhodK9Xqz1+0GQVDbr9ebtcFg0Ol0QAucz+dHKyO2beu6bmg6pfTY0cMP3H9mZWWF0Rhj/M6VtwE5TibtibHJYjEP+2jQ5oM3zcbGmud56XSy221HfjQYDLa3t4FGcsBpQQgh9OQTTx6gX7/xf/xYu9/jnHMW5WxzemosmbJEkcQxojFvNrqXr9/kmDBEZEHkjMoIFXLpidHSP/lnv3X8+HEsIIZIq9VSJVXXdUpjUZHjOOYI0SgSRZFxDHuKe9IJxhhIzKCoAHIoCELoB8//5Q58vsc/m4X9fRTFGAucc0FCiXTmG9/+3k9+5m+PjZ/Y3GmKuirKEg2j0HVRRAVNiyOKKMWieA+u5JhhjP/yf7+Lfv3vn8dExILI4tgy5HzKKOUT7731yne+9fSHHn+k3a4jhDBB7sARRaLrZhzHUPZCzw/DkCBotgJY91JKgygkBMOXQpyDe7UoEklSOOftVmdrZ/f9i5ef/vo3BCJSygaOZ9s2x6jX6xGCgKUhKyJCSNM0RdaAvkMIkWU1iqLl1SUJkVIhV6/XJUQKhUKjWR8ZGdFVjdIwpmGv1ymXy4oqw67KSthzc3O6rhdLpeJQudXuSpK0uLL3//r1f21kK30axIxx8DCLSMwZRzFjDCNBEsRw0BseHVI0ZX1rM46ZqhmIizSkGAtDlbIsS51+r+8MECZnHzin6gbl4vz8QrlYGMkq0yUhZyFNFf3BoLtfl0VJkhU38HXT0nX1uWe/vb+/Pzk1UygUBEE4dOiQoiiu6yrygXYMZF9Xrlx59dVXx8fHWf+ADP7pnx/p9/ucc1VVoygSBQEh5HvBl770pVQ6mUgkJFnOZDKHDh3inHf7vSDwaBTouiqJ4svfPnjcrfKNVCqVyWYpRzMzh+8sbX7m0z87NX+s7QYb1WZAecg5ESTHccLA464n64YgCFEUM8RFQY5CX1GkOIxVWZdluVhIL2/t/Ozf+/XTD55zurXjc5Uz87lb779+7fK73VabRjyO44RtSpKEBYKREPg+gJoIIcyRKIq6omYyqfGpSSLgoaEhUBeKIvE8r1bbB/j6pZde2dzcBOZmqVQaHR2FqgYlGSEEs/LS0tK3v/3tcrkMr/fhw4fH5+fDXm91dXVjYwOopuDn7jgO4GrAZUwm0xhjyGlmjEad03Ct7v8QBd/Ie94WCBHXdVdXV/v9vqUbsiwXi0XDMHZ2dmCToigKJtwwjL7jQd4Z7GhSqZRp2ktLSwfQPY0RQnNzMzBt1+v1gefCQG9Z1tra2tra2vDwMHxBwzCK5RKcG47jDAY9zrlIJHCF/f3f//2hoaGhoSFZVcBCSVVVGoLCmlJKMeaEkOXF21sbm5VKBXb6kDPjed7b7727v79vGraiKJlUamJiQpblTqejyhLQ8AG5v3HjxsuvvkIIKZfLqVRqbm6uMjrKDwgNHGMcuD5CaHd3/3vf+16z2ZycnDR0q1Qqzc3NaZomahoiBFGKMA4cx3XdN157fX9/P5NPwwJuYWEhCLx2u520E47jAFQJs/KND26+8sorhXIJruSZM2dGR0fhLIJ2E4KK96r7f/on/zPmaGFhIZlKGXZidGwcno27kiteq9WAjwIhJZOTk3Nzc5lcLpfL1RrNIAjiiAKgBZsKQgjYYgFo2mo1HnzwQfCMhQLT7XbBSr7dblNKS6WSZVmEEBqHu7u7i4uLYNNl2zbBIjiIAuANUKKmaZqmgVMXIeSDDz5wHOfTn/40ZIWZplmtVuH/BUte4KrDcbGzs7O+vr6/v//AAw+cOHEC3KpBEgh+IqDsMwxje3vbdd2VlRXOue/7pmned999hmWChW+1Wt3f3RNF8UBPDUy+fqdara6trXW73c997nNTU1NAn4Dfn0wmXdd1eg7GuN1uDwaDIIqgCV5bW1tcXHz00UfPP/yI7/s7Ozvwr7TbbXCSA/Y9gKyDwQAuSL/ff+Lxx4aHh+F/kiQJbhmlFCQj1Wp1c3MTsDpJkizLGhkZm5ychA2XbZuMsTDyoyjy3MB13be/c7AxyB+q+Y6vaUqpXFBVlWGGELITCcPUCRbiON7a2hkMBsVieXt7e3lxybbtRCKhacrY2BgQTFVVBS6a7/tQpldWVuDQrlb3YJupqiomXBAEAQntZqvVagVBsLe9oxr6+ubGbq1OI/ZP/uk/Vw17bHxyfGym2e7FRCGCGNCYEMJi5Ps+AI0sYpxzxGN+9wdyDg7gIcYQQgSLGGOGEcZYkMQoDFEcyaomIixgjhjXNbGQtz+4feV//tEfPvnkj2xtrg9XSjymAO4SQiwrkc/nNc2glHaabUVXZVUCKKTT6aytrXmed/b0GZC1gjg0nU4bhtFutxOJBKUUsvgw5rVard/tbW9vDw8PP/roo5QyoPRRSiEFUpIFjLEmGc1mE3E+cBzovW69eWBr+viPZw/QL1kgLKYMIYJIFMeU8W7PUVWZUrS9s1erNjEWIs4RYhGNEIoxQuDLDCrrkAaCpKRSKUu3XNejlBJJFEWRxjG4sDDGCMEMY0EgcRwLBBGMaXjQwTAWA4YY+qH4Q/HYcAIyyilFnGFBEOM4pBHjNBaIoCsqYywMAlE+CEaI8V0K3t3bhhBicYwwxz/0XxDjPAy4zBFngqDIithpN4eKheFymccUg4cbw2DN4LsHicWEkCD0EUIMoTAMEUaaocFRqDNNELAkSZKkCKIEgn+E+J3FpRdeeOHVV1+9cuVGQNFIZSgMIo6JJCr1eh2RgzShWKXJRAKWCyGOAi+UJElVdSCcSZI0Nz2DOUKM6rpOfR9hnslktra2GI1EUSwWcoVCYWhoCBOUzeXKQ0WMcTJpz83NpTJpPwyTCYsQUijkPvnJJ7/y9HfTldGQx57jc85FdND4YkGQiMQ4RYrY7vcSgm0lbEmU45gP+r5iahgTNwzShWy6mK+3mv2BE9JIJaLAREoppazWavNeJyxpCuamqmZS6Xa7KelqMVPEguB53rmHznda7ZghIAMBeVnTNNdxut2uqqq2bbfbbdM0H3roIcbY9p2D2wWUc1A7RlGUSiZlWY4ZPXf+wX6/L8uyrCjJZBJ07IQQVVEcGjKGFFlD6ACN1zSF87jba5eGKo1mjRD2yKMP7u63i4X0zTu3vYgJiirrhigwzdLllMUYKxRKiGNQlVNKRYIZZZIgm6ZpaLKdShIWtqo7/qBJWB7H8dTUxFilSINQEqTV1dXXXnvV930rYeu6oeuqqso0jICvFkXBXrfthk6ulLdt+9VXX1VVGdTagiCMj08C1vWJT3wCoCxJkkBp/8YbbySTSfCvh9m62+3m8/lPfepTsJ6ADm/5xg3XdYeHh4vFYqvVgoCamzdvvv/++9AqmaYJXHJN044cO7KwMI8x/srdpf/TTz/d7/dHR0dBAHj27Nk45oqinD17lnMehxFMI2tra88//zzIBi3LWjg8L0mSruvzhw4hQkLPu3vXGu+88w7UUcPQTpw4Ictyr9cDmqOoyEEQgPMIrHvARNQPg2PHjg0Gg0ajwTkfGhpSFCWKIlmSbcOkCv3pn/xMd9CHnbtt2XFEu17H933YTUdRRAiCfOu96n6r0wbzw8nJSUGWCCFnz54dDAbQpsRh1G43wU8ylUphjCVJEUVRVdWJqenp2TnP82BtJEnCtStXqo066EkFQcgkU8MTE+Pjyi/8wt8BDwKEiKZpCLOr1y5vbW2Vy2WAD8fHxy3bePxDj+7v76+srU5NTSWTdr/fjaJobW1tZLgCfSEEGCCEjh49urCw0Hc8hBDG2LKs1bWN3d1dMKTgnAchHRsdLQ9Vfv2L/yCM4rW1tdtLi4YX9PoDWFsDR9iyEuPj47CvBPv43f39oUrFcZxvfOMbfWegaVoqkVRVlVI2GAwg6z2VSo2Pj+u6qqrq/v4+HNS9Xu/KlSu9Xg8eoV6vB5YisGvTdX1sbGxsavbkifv29/cNU/M879YH1yGBx7btiYkJoDYDH1/TtAcffFA1jDNnzmxvb4Mf23vvvbezsyPLcqFQAIu71dVVQEGAcVUsFh966KHt7W2Msed5Fy5cWFpaAiLj9PT0zMyMLMt7e3sQQUYIefDBByF8emdnp1qtbl685DgOPPwTE1OmaYahL4oiozSZTGqGAa3VxsZGGIbtVtdzg1u3bgFlqlKpTE1NZTIZ13WL5TKM2Z1OB/zYoG2C9Mnt7e1WqwVMgHs+nJIkJSw7Ydn5fF7StF6rtbm5CU65N27cuH79uiAI4+PjlmVZlsU5397eBsEybBibzSbk1lcqlTD0q9Xq1auX5bvBd5qmBUGAkA6vcKlUgtq0vLpsGMYDDzzAOPV9v7pXhWdeEkRVVpr1hiLJMzNTi4uL+/u7ELbT6/WOHj166tQpw9Bd1xVFE1aKMzMzvUFficJMLn/nzh3H6du2XS6WfN9HhCfTqXyxAGrBKKZnzz24V60tLa5sb29vbtc4IoKkMI4RwRGLIahAUuQopqF/wOgFvhfjHBOMGEeMIUIQJwghCLgDcwXYN0ZRJMkyDXkcx7Ik0ihEnNmJ5Ae3b3z4iSc+9alPmRk7l0vHcRgFPmPM9/1Wq7W+ucWuM03Ry+Xy+Ph4MpkUJMIYgy68MjQMEgoQ3CwuLt7zw7obKoBM2zIMI5GwpqamfNdzHKdarTabTcOwPvjgg2q1SgjJZtOyLOfymWw2K8hSKpvBjA+PjULPjVAb7lGj3Thov2rNmiRKlCEB4cCPCZZsKznw+rVqY2N7hzPCEMeIYIGwmMlExIwCmyGRSCWTyVanubi01O32Tc2IoiibzWJRsCyrWCpJoggCGXhYvbuZGJxzgSDEOSaYIIGySMCirinoh36AbsVjghASBFGSRMxRHMeeF3COFUWWCAaYjcYH/h/AygLuKr+reUQA9dz9wVhAsiRIAmOUo5jTaGn19ud/8m8Vijnf92FMwRiLghyziHAROCIYY4wEYBwf/FbOYV8+cJwgCGq12s72LkMYOAc7OzuQe5pKZR64/4F2r99udUIaIxSHASWEhDQCFfGg7zIa+2GgygoQWbrdriQqUUwdx+GMSoLIeUwQCsNAJgIhRJbl0dGKSASOYkNTaRx9/bvPH50f45gdP3F4YWGBMfriiz/o9LpDQ0Oyqs/OzhcL2cpQXlKIQHjs0ziKZEmOWMgpxYqIMadxKMuyJAlRHGGMU4mk67oII8YpxqphGYIoOoGPZJEhjgQSRLEgCEEUD3pOVx9YeW1mbl6hrT/773+gi9JwsWDadmVqPFvIU84wRvlcsVwscXTQBz/zzDM3b96cmZlJJhLZbHZ+fh4KZzqdHh4elmV5+85B8vrv/M7vHDt2DDhDMzMzqVSq2+0yxiDCiHMuShKsxsC60zTNbC59330n8Q+pLk6fPh0EQcwpQuT6javNZn9+dvLipadZde/Ioem+F3ZdXzOtZqvFI6oqQhRw6jsIC4xG7W7Htu12q40YVyVVkwQfBbJuVErp7dXbo8O56vb6G/Xb+YSiqRKKqalbR48emZ6ZuHLlyrXr1/f2dlVZ0TRNkWVZkTiTwihIJO2TJ0/Ozs76vi9Jwubm5t7eHgT25fN5eEcYY1ALYa/aarUuXrwIm0QIk4DAXUjVBTYGCLJee+211157DaRSsExJJpPg2wkiatgdXLly5fr16zMzM4qiaJqGUAGu1Re+8AXQ8sDGYX19/Y033gRKh6Zp2VT62PHjiNKpqalf//VfvxdPiTBbWVl57vs/GB8fRwhJknT06NGJqalCofCFX/mVwUEIj2AnEtcvX/nzP//zUqmUSqXsVBIsT8FK4/CpU0GvRymlLIZEvBdffPHatWuQilipVI4dOipksoyxubk5htE92s36+vqzzz4Lii1FUYaHhw8dmovjeHp6eu7wYX8wgJYFY7xXq/7gBz+AgB1KaaFQKI+P8yiyLGtnZweUH5zjbrcLFu2maQIa5/u+oujg/9RoNERRTKfThWyO+T7QmMBFKYpiOCIgI+jWrVvw4S3LSCQSsqRMTk1lcllFURij6C6L7s0332SMpVKpZDo1NTUFnHEkEDuZRgh5nscQRwhtbW01Gg1RUnRdt1PpTrfvh1Gv11NV1QtozPBgMFhbWwNk4hOf+MRDDz3U7fZVVe10Ont7e8BtGhkZ2draIoRMTU31nUGr1YKQgKGhyvnz5xOJBBy8nueBUSeYtIGAHVxJdV1vNpue5x09enR4eDiTyRBC+v3+/v4+3d4GDy1BxGEYDg0NjYyMgH/666+/Pj4+/sgjjwDeAKRs0BX6vg+L18nJyVKp5Pt+s9l88cUXJUn60Ic+lM1mQZsFe5+7zNGEoij33XffiRMnPM9rt9v1en1vby+RSMzPz6uqCjN5t9sFRzRCiGEYhw8fJoSAffkbb7why/JP//RnLMuCMPWtrS1IAdI0Ddw1YZEN4PTFixe///3vnz19+iMf+UjfccBuF569OI6npqZc171y5Qq4ecHMA5hco9E4d+6cqqr9bg+YZ77vA7h448YNRVE8zxsaGup2u5cvX2aMhWE4Pz//6KOPxndjggH8K5fLvd7g+vXryaTted7q6ircaN/3RVE8fvz4veMun8/D2zo2NlKtVsHl/+L778ZxrIiSomiKolQqFT+knHPT1E/dd6JcLkuS5Dr+8vIyDCG3bt1ijBmGBS5Isiz3+j3DMDjnY2Nj9XoVvAkHg0G5XB4dHU1lMlEQpPN5RGnMuW0nC/mS4wZf/spfIUwcz1NMPWbEd1xBkMIoUoWDnIl77GqOOL4XP8gY55wzhjEG9ORgSwbYGOMUSjBicRSwmNqWtrp2577jx5566hNLS3f8G27CNoaGhhRJzOVypXKZxTHHpN/v9zp9eP7jOF5dX+l2u4lEQhCEXCYryzLoDvP5PAg4oPFttVp37tw5f/58IpX0PG9zc1NV1VQiKYpiqVQKw3AwGIBNrqqqW1sbvu8vL63euP7B6dNny+Vyu93udDqCIOi6fq/9KpULB8vHX/2XP9L3QiLKNKIJ07zvxHHO4/evvt/ruwQRhhgiEuRPY45ExBWM52enCpnk3//irz7xxOOUxUEUO55LQ1qv172B9/7ly61WK1/MzUxPS4RABAc4EQdBAKMMYIwMIxTziFHCMRIwpfT5Lx1YZX7op7OEEIKkOI4xEolIsIisROqP/vuf/v3f+M0jhx+4ev2WmkhyguOYM8ZYEBIigN0DZ+weLw+6ry//q7+AX/vZ//fnEcJIJLquptNGzlauXL7wf/2nf/f5n/lMr9tGCAHviMdIELCmSDCXi6IYRDFjrNPptFqtra2d7e3t7Y3N7e1tmDJbzaau67KiYVFQFCWOo2w22+12KaUIEc55r9uPOYJDBJYIQRCEfqQoitPrJjNpWRBjxDHGIT1gNUEZlkUpigLLMDBGmiRTGoJpYcgQQUiV0Ec/+uTRY4eHh8vlclkQcKfTmZyaGDiO53myrOi6Xq3WsWj84LWLf/gnXzHSw/vNLiQQIEQQQpRFCDKYOJJlmYaBqWuO0w99v1gcctygPxhkSkOCLCm6hgimlDoDt1gcHqlM9B1/dHS8VB7OJ4UPnRwZyUhBp4poiDkXZZlo8tLaqmVZiqiAwqgyPAzYyV2o4MBKDc56y7Kg8CuK8s5LB7vjcx8hvhdyzuFcvn3rFuhKoOpMTExgAWGMgSAcU845Ny0dDp316weu96ce9ZPJpBe4rVZLIIqVSOu6vb/f+srffPvf/Zf/6+TpB659cKs4NNLt91q7u1iWculcIpGgDFHGfS/MZjJ721umYSiKlE0nNU1e29z8tX/4j13Xfez8Wb/fuH3tQjqhlgp5TRGLhYJtm4IgxJztbu/s7VW73e7Ozo7nuJ7nQYzsuXPnPvShD4Ec3bIsxpjrOxhjzMnq6urzzz8PsixCiG3blUoFHPxAJA8Oc7Isg3/30NAQqM8ga7nf70uSRCmFR8g0Td/3v/zlLycSiZGREYy5ruunz56lYbi+vrmzswOLkuHh4fWbZbhWD/4Ig0XP0NCQomn1anV5eRXqn6IouXQGuNLwywGbKRaLREDVarXveIPBADYvYDAGfw2I8JlMBuT6nuc1m80gCCClgFJaq9XW1tZmZmYMw4jjeO7QPPhowMzmuq4siwghTVRv3Ljh+z4kTwNomkgkHN+jlPb7/U6no2mKqqqFXA5CNXRdj+863aTT6VardePGDT9w4cprmjY7O4sQMjVdUdWIMoSQ67ogeKzVagQh2GeNjIyYiQTCGDGKEIqCQBCEwPeuXr166dKlXC5XLJREUbQSNjhEAJvzbumSBEG4cePGV778lccee6xYLoE5aiaf73Y7nHNZEB3HoZQBm/utd94ZGhrKFfKSpIDMEOANxvnOzk6nP9B1XVE1grDrBwghx3EIFoeGhhinnMeqql66dKlYLP8wh7pYLEKbu1etwvODMU5l0uVy2TLM9fX11dXVU6dOtdvtnZ0dOKVBSA9Lf8ByKGWZTMY0dShL6XRaUZR2u721tQX6fDBEAN6Y67r9fj+Xy4GcsNVq1et1uK3Xrl0D6/CxsbFEIgHd2z15BBgpQQ4SQKp37ty5du0aWDTf20+BylgURQjwBg1Bs9nEGN+6ebPb7cJGHmhkUM6DKC6XyxB/3mm2lpeXIdfotddeu337tm6Zc3NzqVQK8GZCSBxHtm1DXmcQBPV6vd1u27Y9GAyuXLlSr9chYAr4cCB67XQ6uq7ncjnY/NRqtV6vVyqVdF1fXV1dWloCX4yRkZF78ccwW2qaZts2Y2xvb48xNjIysr+/f/XqVejLS6XSPQdEMPDMZrOWZem62e12r1+/Xi6XV989QL+OPMZh12xYtiiK+/u7nuelEknP8zzHga3f+vr6/ffff99998UsIgQ1O23TNFRVo5TCUlgSldu3b7uuC89/oVBQdQO8NgCOTSaTUMevXbtWLBYNQ3P6g4gGwERkMTLMZLXWXjh2qjg02hn4mIheQMOQMs5BZekFPmI8iiIBk8j38V0LCZDaxJQiJBBCEGYgWuCcRzFHnAM9XxYJ5gyxKJ2y9vc3f+WXfulf/Mt/QmP/5rXrjUbd9xzM2djY2OHDh2VV45wHfgSVAiHk+Q6gJ81m0+kPOp0OuJqBBxh4dIF6CZgSvV6v2+0C1RsuSyGXtW3btpOwAQAZEBx9nMcIId/3GcLg7ru4uKjr6vj4+JXnD/gwH/380AH6RSmVVZVSxBBKJBJ+RLe3N/t9FyNMCDl29GS91Vzf3JAkicdMFgUWBlBBwSW2N+gSIqqqKmhCLpdDMTp24kTMWaPRiGm4s7l5586dMAy3t7dBuS0IgmVZoCgxdQOynGgUxXHMFQWhg/ZL1RQWc0YZ51yUCEJIJMK91k0URURIGIaiIguCIGISYMoYwxCQ/sPbRkgwuPtDBIExDqZKsiwPXBchMjs7K0mSKMgYY1WSFUURsMh53G21g8BrNpt7terq6vrm5ubKykq1Wo0pE0WxkMtJkqRpZqVilwpDgiSKsgzHd3/Qa7e7sMgIwzAKqSRJKTsBkwo4AuuqpgoSIcQsFDiKMeamqkqS1BsMLCOLBQLlFnMkyWRpbQ0hJCKEEXrk/P1P/ejHysVSoZAXBIHG4djYiG2bkIZhWkYYhjGLgtALwygMw9XV1Wa7zyidmqh0A9kyzE6nhwUgMDJRkigNOaVckhiNI99Xk8lkwmI09vyQMyqrSrNRKw5X0umk4/nV/RohIqO83+8HEXO9IKJxvdZrddIZzZCJiFAoa5ph661e1x30+p0uQkhRNLA49zwPVg+wXIYT58KFCxcvXoT02WQyef/999/bGxqGocgH0Mu1a9defPHFQqFgWVY+n69UKolkstGs3dMeQ/gmwuzixYtLS0uHKn/34FlS1UQiIfmiqqqO4zVq1cFgNZ0pP/7oOcdxrt5aHipkFYUgruujFUkgGON0yu50e43dar/b63cavjsYdAXGKKfDc3Mzv/jzn3/4zIl0Oj0xlkDR9CNnF1aXPogiT1PkxcXFRMLKF3NAEHzggbOqqu7t7dEwDsMQYwwEmqWlJVBmgeTKsPRsNuu7QT6ff/zxx0FRBf5+4DkkSVK32wU7GDA/BNt62NgCwaVWq0GxBAd5xhhwaE6ePDkYDNrttmnquVyuUasBZadQKJw+fRr2aOs3D+DGZ599NpVKjY6OZjKZIAg0TTt69Ci0X7quS0S4fv3622+/bdu2qqpDQ0PpdLpWq2m6YllWIpVBCAFsBgP69evXCSFwosE/NBgMYBcG+yboUeAo73a7EKAExmCcczj7QDdkGSbm2Pf9zc1N6NJAAAtPURzHEHgchr6iKE6//+qrr966devw4cPpbFYURfAHh3Q2RZVgpQhN29tvv80ims1mZVWXZXlubs5IpWAF5g4GQFxDCO1sbjLGFEW6ty7JZtKzs7NA03EGzvDwcCqV2t/fB3GZLMthGAaBD7sCy7Luv//+1fW1y1evGIbx8MMPM4xEQZYVSRQVU5AEjLEgoGa7WC71Bs7A3WCMWZY1GAwQhihYtri4vLi42Gp3UqlUuTw8Ozs7VBlNZXKUsojFgee2Wo1SqTQzMxPHvN/vG4YxPj6+tLT0+uuvZzKZqakpWVUzmUyhUJBl2fHcWq1WjfdlWbYsC9yMy+Vyo9EABWKn0ymXyyB/S6VS/b4jiqLrDoIg2N/fh0DowWAA3iX3EKPR0VGYtCuVSrvdXl1dhcce4wNYcWFhYWZmplarxXG8sbFBCHnsscdg0IXJYX9/v9/vQ08jiiL0jtvb2+vr6zs7O9ANTE9Pp1IpqHPr6+tgKAoARi6TuXPnzqVLlwDiOnHixI/+6I9yzhkiwPJpNpuEI0VRdnZ2wDs+n893+j0wR3Uc54knnvjIRz7S7bYRQv1+v1qtgjGQZVmKolSrVXA/BhwLVL2f/vSnoSUCMS9MSoBJLy4ugix0dnYW1kGEkL29vdnZ2UOHD3fbbYAM2+12GIbFYhGC16D1rNVqGxsb7733HswwkB6IELJtGyE0GLipVOr06dMQ7gk/Fy5cgMZUlJWjR48eOXKsWt1DiExPz2qaZqZSKI53traArhdF0Y0b1/ruYHx8vFA48OyANmt0dBSQznq9fu3atW5/8OSTT46NjYFDMthPmKZ55swZ8Jjt9jtbW1ssjjnn+VxxuDL+5lsXB76v6obX6BBRBWkwg/97TAkhvu/JssxojDiHMzz+Ifnd/yJw85jzg8Bi8PJkYYQFJQo8y9Rsy3C72q/8/V9KZtOh13/k0UcYDQPP3dnZgc57b29vdXVVVXRQjMEcAu3y4cOHfdcbDAZgTHPr1i3P8/L5/L0kKFiswyFAWdzv9ycnJz3PCzy32+3u7QFyPHT06FHQGwE03ut1bNv2Aj+OuWVZp0+frlb3bt++fc9OfG1t4wD9+tnfeiiRSrfbfYwx4bEiK0HoIYwxEsbHxycnpzd3tm/eukEI4TETESeIHZufS9vGb/2zf3zq1KmQRYIgMcQxx1EYA3GPIS7LMosjjHEYBoSQVqvVaDRa9QbwOdrtNtARPM+rVCqzs7PJZJJI0tf/aA0+3yd/YYhzzCiLwhhzTkRZNw1FM7/1ned/7Cc+d/zU+UvvX0VYQKqCwghhjJCACYFO615sJ0IIyHpfums88fnf/nmECREFQSCWKUdeK5c2Xn7+O0NDRafbi+MYUPRqtba7u7u5vrG5ubm7uyvLsiBIsqrAzI04gVYvjmOAy8Cd0o9C6Hwdpw/bYuCoQuqZphme56mqDLGvuq4rksRjhhDinF2/cQOeO3xXqAnfQUIoRujnf/anxsZG5qdnJicnfN/f3t6WZTmVSiiyLElCGIa9XodSmstnoa3p9NqyLNOAXbhwwTTtsalpLCl/9Kd//d6VLYq03VojiChCiBAUI44xRwTzGAkMsYimUwlCMI2CiDLOkRtGPIxSw0Mjo+NYFK5cvoL6XnZiNpFK79WaZx548NjCceY250rqRF6WaNfWxZn5adf3e4N+ImEhhqOYqZrh+8G1K1cs07Rtm3MOJANCCLSkYRgyzmHu/OCDD9ZvHOzCRg/v5nK5kZGRTrunqqosSdAKyLLs++7NmzdVXVNVFV6zyfEJXdeDkAK2/NzXDiyGH/qEcPv2bUUSwR9f04yRyliv77Z7fcPO/OGf/MXv/t6/P/fwY47nCRgD2TaOY0O3p2bm0ul0wkzIkuS6A8bofadPZpPJlZWVE8dPpjOptKkv37lhmNL83HS9XkeIXr/y/uLiB8l0SpblyfGJ8bGxA3skST3wKMFYUZT333//hRdeApaGbdtnz54FRhG/62QDQJEkSV//+tc/+OADwMBSqdSJE8dKpVKr1dJ1HeKzYAHX7Xa/8pWvxHFUKBR0XS+Xy6dOnQI+L5CLMcYD17Vte3Fx8T/8h/8wNjY2PDxsGMbQ0NDJkye//pcHY88DT8Scc13X19fXL1y4MDExAZ5Yc3OHhoaGwjDknAOJHuAHSRa+/e1vX79+fWFhIZXJgVArm81KkqQaBosiGEhAZLO9vf2lL30JFqa5XG5+fn52dlbWNE7pgRBHFGCue/PNN7/+9a8fO3askMvDtn1sbIxTju66GUM5FBX55s2bKysr5XI5nU4C7QngDSAIt9ttXdehk4N0mnw+D2KuRNIyDAOUm91u1/d9zjDEWnueNzYyYhgGhHbAPnFzc7PX6+mqAk46pmkmk0lJljninHMiy4ixTqvjOM7t2x9AtCJ804mJCTjuFVVHosiCwPV9QRBqjfrTTz8jCHhsbEKW5XQytXDksGUl643q/n4NfDKhlnthgDEOw1AgYiKVBDDs/ctXXdd94okPg/NQp9MZKhV+2PEfWEGEkMnJSYzxxsbGtWvXDh89alnWnTt39vf388WcYRgCFu+ptoEAB45QGOPLly8TQubn53d2djY2NuKYy7IMrfNd7NYAWJQQAljm8vIycMNd14W2eDAYAAwZhiF4swmCAIR9gEIbjQbkvd66dQsOTGgQAQuHo1WSpLGxsXQ67TjO2toazBjr6+vnz58HrYBpmo7jgPBibmYmm8/zOAaefrfbnZ6eppTu7+9DjnWxWMzlcmEYDvqu53l2KqnrOrwLrusuLi4GQTA0NNTttt99991erzcyMgIhb7Isc84FQZAkKZ8vptNpxhigYpIkiSJZX1+/ePEiBD0tLCwAbQhStEEcUCwWQem5ubnZ7/dHRkZg7Qh+rZC7BQnrAGlDEwZQzfLKYrFYHKmMNZvNO3eWms3m+Pg4zPOKoqy9d2BVXTxcU1SJxcjx/IHjffzjH1dtw+30aRhRSrvd7vb2tmmaw5Uy5kwkpFbb7/W6e/s7iIjZbBZjQgiBJayu63Ecw15iZ3tPkiTbtre2tnZ2dgqFgqSosiwLEgH1gKJISTuhyFIUUc8NHDf6sz//8n/8gz+emlnYb7SRKGMkhGEoCEIU0yiKgVarKarvejQMRVHknMeUYkI45whjggSEEEcxQgyLAkIMM4wQ4QwLBDEaZjPJsdHSxfff+hf/7J/+1m9+MYw8QcTuwHHdgSSIcKR4nkdEyXODrZ1tx3EMXYWnPZVKVYaG4b7DsAfdPwDztm3v7u6CLgRMzk3TzBcLlmV5nqeqqkgE4BdSSvf2qqlUqtForKysOE5fVVUwes3ksjCWKIrCOU4mk8/+6QbcoxM/ovyv9ku3k73eQMBEQJzxSBDEOI6z2ezCoSNRQPdr1aW1JYKJgDDjkU7EQ3PTlib/xj/8jTP3n0ECoozLkkKQAH1xHMeUgbohggOR0uhguAlC3/dhoVCtVnd3d2Gc3djYyOVyH/7oR3ev5uHzfeLvllVVFbAYhqGIBcoZwpJqp555+js//lOff+DBJ959/2rMkZ1O+Y4beh7iBAsCbIvJXf9czjknWBCEv/jt/wm/9nP//OcEUZFkOQhdXZMGrd1HH37gd/75b8ahd+P61fX19b29Pei3ZFnOpLIgZ5BVJfAjURQpixFCoR8BLqWqKkEIYxwEwcbGhigSSVVCzyWSGMcRTL2g3qKURkHghyFiTNYUQ9UJwUDf29zcdFz3Z376M2ceOGMYhizLoiy5vg/+NzyOdF03TcP3vGwqOTExMRgM/MCVRIWjWMAkCIJerxOGYa1eXVlZUVU1nU4XS6XR0VFZlEFmvLm9JWn6919882vfeGN48sjOXsMJwzAMGaOIcEwIRxxRTpDIwkDRZEkSB80WEohqWkSUXdeTTeO+02ezhYKmm74fBhF33GDgB5punbnvrC0hjdYLRlSy8Imj00QinU4HC4jFMYqRqpuqZvQGgxeef95z3XQ6nUqlJicnR0dH7z2dcRwjjIFp9+6778bd++B+zZ/pTE5ORlEUBhSUj5A/o2naysrS3/zN35i2BbjxkSNHRisjQRD4QQTl4cL3Dwap8WPVl195ESjG2Wx2eno2k8l02j0iimYy9d//5Eu//W/+bTpTrDWbleHK9vbmg/c/cOr0mdGRcTuZioIoDMNBr99oNLrd7vj42MTIEOb8Uz/6ty6+987G6p1Pfvxj3/v+dw4dmj96/Nj+3pYmY1FEA9fhnBuavrW5+d577xUKBUlUZFkeHh6GFaGmaXHMYT6GdeFbb70F0DcsZGFhAeA/AGCO4/R6PU1TIPAHvP7Bhx1qm+M4nU4LEGLgndTrdUg3p2GoaVr+bhATOGsTQjDGsCd6+8UDLHz00FY2m4Xdx97eXqPRgAVfJpPjnEOdk4gAfFVKKcLMcRzHcVqtFhFlTdOGhoYIIS+88AL0WFBOSqUSIHNQULvdrmmaELgGAk8oaSGN4ObChr3RaPCYmaZpmjrkMN7jLUBvKiry4uLinTt3+v2+ZRmQ2ANiUjgBgOfLOVd0/dJ77z3//PPFYhGMahcOzxcKhbvjNZdkOY4YsIuef/75tZUV8FSbnJw8ffq0pmmwV6VhQCm1LAsq/draGmVcVWVV1TOZjJVI+K7rum6r1fC8ACEmy2omn6nu7jleYJumbppBECVSyWw2S+O4Wq03m3VCRN/3FUmmLE4kkkury9ev3ej2OslEqlQujo9NDFeGYOUaM87vRs1iLAxcl1G6X6utLq3W6vtg/pdKpQ4dOmSapmVZgE3CSCxJUrPZ5BgLggDtZrffqdVqnVb3+PHjQ0NDYN8A4wchBBJpoNgQQtbX17e2dmCpDeJlTdNs24ThkxACoZNA4mw2m51OB5SMlFJwS4Ilg23bIHLsdDowiWGMgQEN7vlRFEGBP3fuXLlcht4CSqkgCL1eL45jUCpAdCZkxpumOTw8fOLECUmSdFUdDAb3/l3wveSc7+3tgdnE1tYWXJCf+9mfz2azbuAD+Y9SCqoyAEo7ndb+/v7Ozk6r1QJxTz6f//znP18ulz3PYww1m03f90GNSwgxDK1eryOEgO6zvb29traWTqd/7dd+TZZluKqMMfjAAFHDx4MIKSj/rVYLaIuAfANYDi4/rXaj3++zGAVBUKs1Op2O67qapsFrjpsHPjsf/7mKLMtqwkYULy0tNputiFFK4yDwM5msosie5xuGLhHBMvV2sxEFXjqdQghRzkzT7PcHuVzOTiQa9TosKxhjmqYRLIIgDLIEqtWq5wVRTFOZpKqqpeHS0NBQOpF84fkf3H/2bKlYaXf6v/yrX/zmd36QLpTCWMCC4Aw8zrlhmY7jgOukYRj9fp8wRKNIFA7MJgRBoHFMBIFTjjFmnCLEsIgRQoQTjLEkyKmEpatKOmVfuvzW/+ff/suf/IkfVTWBcXrnzq21ldXZ2dmhUhmum+d5HImCIIQ0Mk0T8RjA2t3d3WNHjsLXAXE9MIKgG0MIAbcPdugAQru+Nz09nU6nwzDEHMEsGoYhYwjS82RZDkN/Y2MjDP2trS1EeCKR+NCHfiSRSIQhDYLguT87UDjd96RxcOBmUrlmr48QijklGGGEOKPDQ8XK8Lgkik5n0Kw3EEKEEM6ojEVwGAvDcGtr69xD55BAWBjBEQZjJcYYRFiCoIqiOHA8QhCmMUJIFISIMSyKqmHMLSzMHjoEjbMoCpyjKIx3rzrwqd688LokSZNjkwAVYkGSFdl3ndfeuIAQjhnK5PK1ahVmKUQpEmROKRYEHseIiPxuOhBQdO+BYZxzxrkXBpKkRlGo6YmNje3f/u1/w5gvCwT2uGPjk/e+CItpRFnsBhhjjhFsXSllvu836w1N08A/1zTNQiEHs5GcyzquG7MIIUQQ992DTQpiTBIIwrjXbt1YvxoyhhA6f+bkqR/9uJ0wHz7/UGV0BCEeI44R4RiBn6ppaFEUIcTCMESMvvjS9wkh+XxeFGVCkCSIUIkJIcVi8eiRY7DiCYLg+tXriURC0zRFUk+dOKnblqKnvv/i5TjwM9lUZ2NbFEkYE1kglDOMRSwjFHGECBYkwzYLw2XO+ebGFuIxEsXQ9TudTrZQ0HU9kyvphl1rtaMo9oPI80NT0ax0/vwD8wUj3t+4/d3vfbcyOmwaWhiGo+WR8bHJvuuZuvGzn/88kDbgsf7KV77CGJucnASDg9m5OYQQeNh8/286B93A6OilS5d2d3dHR0cxxrKoJJPJZNJut9uVSuU3f/M3o5hSSjmPGWMXLryOMVY0XRRF20oipMIvOXLkyPz8PLl7T/v9/je//o1isShIYiqddXsdgpimyKokiQQfmp978P6zQyMVgtHVKxfdgZdMpBFjNAwZi/d2tlDoqLKiKoKmSq++/NLRQ7Of+OgnvvbM1yhjR44c2lxbNA0limNCCIz7U5Mz4CwKr2u9Xge+KiEiLBSg/TIMo9VqAeINLqZRFKmqzBgVRUIIyuUypqm32+1Go7G2tqZpGtggKYrkeU4cx4oilUolwIdM0wSycCqRkCSpXC5D8fM8j3Nu23Y+n4cqjhBaXFxEaAz+XK1WIeWtVCqVy+VutwsCK9/3n3/++SiKxsfHgY6tqyqYt0GDlc/nVd0E2IkQAg1cp9OBJi+TyaC74SHwBeM41nXVcfrvv/8+RAAVCoVSqTQ9Pa3KiplI6qo2MlwBXxJZlu/cufPlL395ampK11Ug3IyPj1NKx8dH5+dn4fCJooiIwvbuzg9+8INDhw4lLBvIZ6VSiVN68tSp48ePQy+LEApC7/Lly41GA2KUGGOZZKpYLCqS8Okf/zHHcVzXFUUZbtze3l4cR8BQBuRPVVWOiaobuzv7caz1ncALojwFmZ42Oj4pSUoUBaIohzSo15r15s7u7n4qkzZ0K5XN1erNdq/LGdJMK5VMc86b9Xrk++1uvzIyeuToCUkSECI7O1t37ixl8zlF1VZW1+I4BvUrtDsY49D3K0Olo4cWuv0ecI9ef/31OI5zuVyz2dza2gLZLJwJ/X4/nc0Cb71UKmXzOULI8uLS9evXQZm4srIChG7okyRJarfboIW0bfvDH14AS/Q7d+5Uq9WTJ082Go2tra1EwkomkzADIIQMwwjD0LZtwE2ByLW4uAhcvWazuba2Bk6V5XIZDk/Av2E6GhoaOnfu3M7OzuLiInQ2r7322qlTpxKJBChYYa4QRTGbzYKKot/vv/766xBI0Gq1dre3wVIOjkqEkGmaruseOjSnqsfhey0trSwuLnLCKacbG2sbGxtAT7RtG7o9z3MURTl37hwEWMFe6b333gNP16WlpZWVNXDPBxRZluV6dc8yjEKhEIYheBleuHABHLw45++8806j0SgUCrZt27ZdLBZt2261WjCMAR0wlysgjHvdLhwLnU7nnXfegTcojmM7YZqmyWKkKMroaGVsbARjARb9N2/e9JoHNQ5M9veqte9/74VLVy5rhjUxNZ7MZOM4urm4LIjY0K1yqZC0bCwKqUwWcyaLRNd1LAqO44AyvdfuOI6zsbHRbDYhYQwYIIxzRRLGRyszs1OBHyXTKdf3Pvjgg1yukM8Xu6329vbude2mbWVv3brzrW99a3R8rj3wGSeu5yKGBUEMgohzTHksSuJBujGL8d2FPkIHxqKMMYIJYwyLAiaE0VCQJE7jOKLZYkaSBE1VLl1++0c//rFf/qW/y7g/6HcEAY9WhtMJe39//+LudhzHlpmQZXl8YiadTsecqarKGXUcJ5GwBGFoc3MzkUiA+gTMe2EczefzcISCQMf3/VQqJZmm0+6CB97t27f3d/eAGZlOp8fHJyHAABgjx48fT6WTiBDP6S0uLnqOKwnizs7ejRs3EJqFe+S77kH71Wx3OCEEE8aZIGBKUTplz05NESx5zmBza7076MpEpDEVMWachhHFGLO70jJJkhg/gJrw3WwmjhGctlEUxXFMKUeIxXEsSxJg1HejexRBEGzbFkUBCyJiwlvoGvzaKIyDILh58zogzwtHTuiG3ex4d+4sYaIOBgNFUWRVBVkKEkWECYpjjDG/q5sAbx6OEf+hyAJBFGPGEMIUMwFjggXTSA4PjxAcY8YiGkRR5PshIYTzGCMEe8YwDFVdAwcjy7JUVeecl8vlIAhEAcdxXCgUZEEkCMcschyn0252Oh1ZlXVdb7UahmZmc2lJ1WRFHAwGR46e/Xu/9AuTk5PDpfKdxVupRBIh3mw2b9+6oWoacC0L5ZLrupIiYsxFCREiyiIJw0BR5FqtHkVRsVhMJpOmbgCU3e/37+WXUUp7vcH29vbOzk4ikVIkVTP0QimvCOTI/Oz711fTpdFMKtloNWVF5jQiHBFRCP0Ix1gQRcYY4yikNAwjLEqcYYQQisPq/n6n0zXt5OjkTLZQspNpSvumYTBO+66nYubFQhBGIeUTE1OcR6BkTNiprY3tgNE4jlvNBrBr4ziOomhoaAimK0mSstlsHMdQy4FdDj+EkCiK7g2stpkYGhqC4wyGP0ESNU2zLAMM9KrVqm5amUwGcXKv/QJPc8/xYbnpOn42m+10Oqoq21aSMSoizOJIkaTQ9xOWSQhZun3nuee+t7a1tTB/5Nz9DxiabupaoZBznH6j0ShkszQKjx4+9Bu/9qvPP/+9XC534sSpD27dmpgYX1xcHAx6R44cGR4eplGQTqfzuSI8pRCQd/ny5aWlpUOHDqmq7vv+0aNHYe147tw5OGeBcn7nzp2nn356dnYaOPiZTGZ+ft7zvEKh8JnPfAYSG2FN+e677168ePH06dPQ+hQKheHhYaB8zc/PMwqxKpKqqq+//vrm5mYymUwmk6Ioggu2KIqnT5/evnOwfHzkkUdEUXzuuedWV1cLhQJE9MzOzgJPYm9vDwpVGIamrkOaJABsnuddv3nr5MmTIBU8f/58EATAf0IIeZ73pS99KQzD8fFxICwfOnQIdhxf+MIXwJocbncQBC+88ALQ+2BeKpfLnPORkZEvfvGL3W43igLoIHu9XqfTAToONFVA0gKNW6vVajdbsiyPjY3dS0BSFAVWPIIgiBKBzhKiiCVJUkQJ2k1FUXTbjoOAMUQpBbjuxRd/YJomrK54zI6dOKlr5tTs/NT0HI0PIJaNja16s8YoxwIiSEimE4cPH6aUlocr03PzvhsggjudbhDRwWCwvLLabrfB43S0MpLLFUqlkqprsKl0HMf3/ZGRMcOwdF0nBAmCsL29ff36dU3TSqVSNp3J5/NCMgXLVsfp9/v9VCr1yCOPNBqNVqsFxhxvvPEGBEXANQQWmiAIiqI0m02g78zOzoZh6Pv+3t5erVZrNpvQb8GXLRaL2WxWVdVOpwdCv5GRkXa7DeStRCLR63XAMaRSqWCMNU0bHx8HBSUsnYvFommacJ0HgwG88oPBYHl5GQiOMPfCsXDz5s3BYAB2rKqqHjlyRBCEq1evgtWFZVlHjhyBdSr0kdvb20EQLCwsDAYDgDEgXvrq1athGEIkw7Fjx/L5fBQF9yw5gKfVaLXu/f3d3d21tTXLshKJxOOPP/7ggw8C1AdkD/hec3NzvV6PUjo8PCwI0pUrV957771Wq7WwsPDII4+cPnUikUh0Oh1RFBuNRqPRKJVKlUolDEPP8xYWFlzXBQRuf3//pZdeKhQKn/70p4GFDDmbt27dgicZzFMQQpVKJQgCCMfc2t7I5XJnTt8PIE15aIgzhDFGGFcqla//9yV4hV9//YJt2+9dvHT5yvWhkVFVNwwr1Wx1Nrc3VN0kIrZCVm82EOM/8eM/ZiZT3WbD6zuuH4ZhyFEMZ7KAMKTDlUqldru9vr4Om4rJycnjx4/DUKQXbVBNwbWqVRuKJMmqtr1TfenlV9bWt2OEYoaiMPbiiCMiidI92gDCCNoEURTDkN6Db+CHIYQxFpCAMAODe4RIHEUCEXL5fMLSe902lTBC7J/+1m9qpo6QZNgaC0PXlUvF4vT0NHRyzsDb3d1VVEmSJLff29/fp1EgSZKiSDCK+76vqirob2BLjhBaXV0F/QQouzHGnU7H3993vcAwDMbp6OjoUKkM2U0rKyuLi8uwVn7wwQc9z0EIxZRyzsOAFgvlVqu1vr7OGCoWi1sHWXroxRdfOGi/irnCbqOGEBIwkkRiG3I+m45p6Pqu6/pREBLEEMeKpESRLyBkW5Ysi2HggUieggkkZ4hjAm0cY0CB4ljgjCGCMcKI4TimTuRjIoLaCx1oHCiNY9fzoigSsHyv7p48edJxHDgI+v1+o9X0dhrVRp9xQdH0IIoFUUylUmHkx4QgQUAMIc45ZRjd85rgHAGF6n+hXxhjJBDEEfd9rKmiKCMscEY6vS5ioSSJCDNRJAgh3w8Jwr4ftttt3/d1XU9YSfD0g0/uuQOCuaIog8GgVtvnNA6DgNOIc54v5icmR3d2dgzDGB0pU8peeeUlFqGxseHjx48/8fij09PT+XzOtu1cPtlqNhVFmp4ZB5cpRPDt27dX3lxJJpOSLNiGCfWSiKIgkAcffJDFMSx5e73eq6+8ls/nVVXXdZ1SChuEXq+XTKafeupTB6F+RFIU5Y03X//Wd1/oNhtx6EehJ8uicKATRRgTzrAgigJCUUTjMHZdt16rIs4NKxnQCNFYlNXm1g6K49TomB9Grhckk91EIiHLmiQJiqFzhbf6vsmiofLo2NhIzHyOYkLIxbcvffWrXzt06JBlWXYqefr06VwuB15fYPEFqK/jOM/8zd9QSsvlMqUUoVNwv8IwfPCB82fPPAAkGILx/v7+pUsXQfsmiqKqaxBLYprmJ5/6eEw5IgLnPKZ87XoDfsnNGzcsy8qkc6VSGdw9hivlRq3e7/cjylRVjxEXiEyjgSQqtVr9pRde7PZ7G1sbkyOTy3cWd7e2f/ozn0WI7C0vv/Haq7s76//yf/9tz3MSudzhY0fff//9F198+aFHHpEkxfP8++9/YHNzwzTtK1eusDgq5PLgpjg5OVmpVBzHOXfu3ImjJ2BIAR/Ud958S1TURMKilDJGx8fHPc9JJKzPfObTg8EgjmPIr93d3QXUGY4JqGGiKI6MjIDDkCiKMIVDNwNUHpgjddN0fR/UVcBvADozDJo/3O/CQmRychIoViAYhDyfcrlcLBZhdpIk6ebNm6+89hpCCLC6sbGxidExzPj+7jZQGznnMedgJy1Jwsc+9pFWq+U4HtBZPM9jNCSEUBSKBPlhDDsOYC/cunVrdXVVUZRSvpAwLV1RgXmj6hrEk0uStLOz8zd/8zfQzFmWVSqVDh06pGi6JIj3n38IIjRC3xdF8fLlyy+99BJ0ErCunZyaEpk8Mz03PTULUD1jjIZ+s9m8cOFCuVxOJFIw4I2Pj4uyPDs/P3foENiTWpblu67r+6+89kahWM5ls4xzQRByudzM7Jy4LrsDV9VVTdGy+eztO0uZTCaVSjXanaSVUE1TVo1Or0v8YGbuUCKRgJL8/nvvjU1M2snE0tKS7/uCJJmmSThp1FthFPT7fdM0p6dnjx895jjO2vrqjRs3OIvnD805vf6Na1e73W5paDjmqNvtxnEMiIsgCPl8/qmnngqCoNFovPnmm0eOHDFNE+SBvu+LshRFUegHsPOSZXl6evr48eOAbq6srCwtLZ07dw4htLOzBwtfCKup1+tALZdlMZVKZDKpTCazt7d3584dWZbPnz9fr9er1aphGIAbAccL2PfJZBKogbBMXFlZAV0qoMKqqgLzDJKLbt++bVlWoVD47Gc/yzlfX1+/cuVKsViEv1+r1TqdDkJoeHgYakoQBMlk8vzDD4uiCFaC165cgVdjb2+v02n1ej0sCtlsFgYDz3dbaw1RFM+cvW9kZASgjsXFRT9w+4Pu7tbu1tZWFMfFYhE89zOZDBihpdPpI0cWzp17QJIk3/d3d3fr9TrMA5cuXXIcx0okUqlUOp2Gug52G8VicXZ2FmQZMFK6rgsco06nB1gdcO8oBZDmwFbm6NGjkiTdunXrxRdfrI5Uy+UyIeTK5cuwtA1DKkkSumvr87GPf/Kv/uqv/uRP/ufpB84PHE81raWV1c6gjwg3NY2ImIuirMgCJq++9sbhhYWUZdb2attbG4yxQiE3OjqKsBD6gRdEkiJbljU2OQGDyt7eXuB6oIze2trare6Xy+V0Jre7u2sYlqroGBGCpemZ+bMPnvvzP/9LhgRNNwa7DUUzaczhqIclkoCwRATKKBw+nPODcg2bIoQ4xkRAgiCAFQEiBDEUR5Hnucw2EglraemDn/3sZ0UJf+Ppv7Yt1bbNTC5bKpVEUWFxjDkHaK1UKjmev7u3LQqy57i1+j5IKOr1OkEYLEJA5JHP523bBrUHRIOA0+/+/n46m7Esq1QcIoQgTtrtNmIcWDSapimKBtqmfr/f73dv3rzpOH3TNG3TTNgpVVUzyczA6YHqAn5++Zd/6aD9euDM2Wee/TZCbGZqImUZvW5bwAgh5LrOjVt3EEICkmLOaRwSTAjiYAGcz01OTk8xxsI44gxJkoQ5YYzxmDHGsIBlWY75Af1CkiRw7YKWEwZiQRA8zyMEAeiHEAG6OvxkMjnTtHXdFEUxkUgJooKwLK5XLTtFI+6HURCGEQ1EUdR1PQpDGsdYFAnHMaXoh+Au/EN/RgjRKEKChIiABEHXdR4NADTSNI1RjBBHGLmuT2moSLKmGwiRbDYLj4U7cBiN281Wv9/HhLuuK0kCQqjX67Xbbc/pnzh2DImYEOS7A9NSf/EXf35mZq5QyBEivvfeO6ZmFkt5QRDimMqy1GjUer3O0NBQwjYZY5SGhqGBgYJtm5ZlSJLEMMqm0oIgIM5kSZUlCRPC4jgIAt8LWs02EEhd1weQIAzDV199HWLvfN8PQz+VSpm61e87D517+Mjh+1564/IXfuO3jHROlNVsLtNudTARsED8IJQVBdFYEsTQd7CpZ3P5wWAQBSF1fcNOUUoF3Qhp1G23+v3+7k5tenp6enLa6btmmlqW2ekPFte39bLRC1vdbnVisqKqMkN0em7+i1/8otPvibJkJVO6rt++fRvAS4QQwFFgOnrq1CmIBE6lUktXDu6X7/v9ngNq4Xw+D3dqaGgINi8g1BIEAcjd7VYjjmOEJdu2Dyz7EIIbBCKPmzdvIoR6vW6jWeOcMxobpr2xto4Qgm6m2WwOV8qXr10miIyNjKma/NBD5x556GHf8dfW1gaeW8jlPv2ppzRF6XQ6iWKuWmsIsqSI0vrqaiGXj4Iwn85msw5BuFFr1qp7a8pqIpEwTXNoaAjY9JTSexxeWZar1eqFCxfavX6lMmTb5uTkJAB+wJeCdSGUvaeffvqDDz4YGhqCeOCzZ88mk8lWqwW5LkAChbbs+9///uXLl8FeslwuDw8Pl0ol13WPHDly8uRJeAchm+wv/uIvDvzS8EfgWsG/Pj4+PjExAYXTsqwXXnjhG9/4xvz8vGmaAFyVSqXz589PTEzs7e3BBPzWW2+Zmjk9Pb21vcEYA/xDlGUQT4miWC6X8/k8+LAAlfirX/3q3t7e8ePHTdPUDAvs6VVV/fCHPxzHMdR7FDNK6YsvvhgEQWVsNOZMU+RCoaBp2tjk5K//+q/3ej0ATaFfvPj229CDgvgLMu8mJibAWgkm7EQisbe7Cw1HFEXJZNIwDHBMwBhPTEzU63XfDyVFyWQyOzs7hJBEKoliRFlsmrbjOdlMrtvvmVZid39va2tLlKV8Ng/KcU3TXdeLYhb2e3v12q2bN1PZ9NDQUExZoVAybQshhAVB1XWYqjVNm5qaKhQKjFIo4Xt7e8122zCMybFJ27Yl+YDkC+woUK2WSiXG2O7ubuQHu7u7Gxsbi8srViIJjgZwRFuWBabwCKFKpfLUU0/BzQU79Xq9LilysVgsFYpALk4kEuLdfD3QAw4NDQHEtbm53Ww2JUninIMNB7jaKooELHvoTo4dO9br9XZ2dgCG39nZAdNOMK9vNpvwrwDmCrwfURRB07C+vr64uAg3a2JiAvbjQ0NDwDwD4h2o/BqNRiqVqtfrjUYDNmK7u7ugzC2Xy+l0GioL0LDGxsYMw4Dt/87OztWrV0/cd+rNN9+UJCmdTs/NzR07dgzGGNg5whMOMUeY4f39/Vt37rRard3d3fPnz0NMKmTUqqoKtCF4/FRVXVxcLBaLGOOdnZ36tWugZ7Rt+4knnjh8+DC8/oDPgbWHbdsgAz99+vTOzt7t27cXFxcppTs7Ox/96EefeOIJWZbjOOr3+41GAxbK58+fX11d7fV6hw4d8jzvzTff5JwfPny0XC7fO+663e61a9dK5eH+wNXMVCKZcTynP3AlTWo024ome2KkqTKnsa8qL7386uzM1MLc7NETJxrV6p3FW6+88lq/3//sZz+bz2ejIKRxyO/65QKXbn19HSEU0CidTn/3u989e/+Da2sbb771zsc+9vGPf+yT3b63W22ohhnGiCPSc1yo+JiI0NnAA3bv0zIaA+uL3AXAgCCE7sZDY4wRxwjFgiTFnLmu67qDTrN+7oGz//CLv9Zs7Pf73Q9uXmGMnj57xrKs/d093/cVSVIUBREyGAz8MAI6SqlUyuUzUE1s215ZWl5fXz9x4gTM+TCTAJMVAH7wACsUCt1+r1arLS+tRlGkqNJjjz1mGSbMz5BSAzN2vV5PJu2ZmZnV1dXV1WVv4AECQin9+b/zc4VyefPKDfjWA6d3QL3/L3/1xaWNtU63dXhhNp9OIhaHYUiI2O877VYvCGm1VQNEAXEuEzI3PaUp4t//1S88+dEPI8T9OJJEGQskCihCyNB0QRAoi7BARHIQZSjcjcxE9/xU7xLFQO8Af44j9vyXd+HzPfaTKV0zJUnCWBAEzJEo2+lO2/+Zz/+97z7/0ujklB+F3XYzjmMeI+p5SJARQohShIDAhjjm93qvL/3rA9+vv/2vfjGinDMuaVrC0hp7G8cXZucmK6E/QJzFcQQF3rIszFEQRI7jgPyYMSYSQggCh3FVlQ3DQJiVSqVEwi4Wi5IkPP/953zHPXz48OTUeK5QSKYSuWw+lU6WimWiqyjmKAo7rRalIWPsypUrb775ZqVSkUSSSqVmZqaKxSKY7HPOEcEHO9CYPvPMM67jjI6NQa+ZyWQmJiYwFvr9Plw3QZASiYQsy6urq9/+9rd1XbcMM5vPjY+PDg0N+W4gijINQlk1bi5t/NPf+b33b63lKuOI4FqtgRkWBMnxfEmSMEUCRq7bV3QlkbCjiEYB9b1QEARIgYDELoaQqiXjODYMS7ft+eMn548e1nU9KcV53JO8xuxk8eixWYRYu9uRRJ0gLIsYYyyp2tVr1/7oj/5oamoKthvTU1MnTpwAydIB7MyYJEnf+eoBcEXVCxBUMjs7WyqVXMc5EJ6IIsZcEATX9771rW/t7GxNT0+LIkmlUnNzh4HY9J2/OmBDLNzfabU6/YFbrdaGh4dHR0dUVZZEkstk/TD6W5/+mQvvX8kXR6r1hkjIxMT40tKdz33uc8DL1jRjcnzy9Vde/e53vxtz4aFzDxw7NENp+JGPfeLo8SOKrr/1yssrdxaDIMgW8g89dC5dSLd2t6MwSCaTGPMgCFx3YBjG7du3X3311ampqVwuJwkC7PKg/AiCUN2vq6rKOBVFsrm5efXq1YWFBcuyut1uqVQaGRtzBwPYSgRBBDddluWllRWEEHDYoyiCKBtBEILQ29vbg609WEfW63VJVFRZZjFinIJVfRAE9WYTWMmr1w+O78mje8PDwwAkxFE0NjYGra0fhmDVBlohoDCPj4/DSAdM/LfeeGt5eXlouARtXDabLRQKqVQKUrTz+XwQBFiQgMQTRVEUeGDCghCyraRpmoquwWLF87zA9YBkHcfxytLy+uYG5RT8IKanp2F7Zeo62EBAx+C67ksvvbS+vg6cjGw+v7CwkC8UaBDARYNzHyjb127cuOdXks1mT5w4wRhzXRd2eUEQMcSBAXbhwoX9anVmanZ0fEQWlXQ2lbCSA9eRZVmUlTiKfvDii6vLy9l8fmRkDJzYXN8TMKEsViSZiAekw3feea9SqRQKBcpYt9vVDJ1Spmkaj2kYhookhWGYTCYzmYwkCd1ut15v3r59+8yZM4IgtJsNmDfiOAZScBzHQGOyLAshtLOzU2+2lpeXC4XCmTNnAPHSNA3YfoCO+77fGwyAzCQIgheE1Wr16uUrjzzyyPBwudfrua4LqmHP84DjC9OCKMpALUcI3bp1q9PpPPnkk1EUtVoteIBBiACwKFSydDoNJz+wLYEWA7I7wzB6vR48meCKVy6XweEWIRQEAUCAn/rUp9Lp9MbGBug/oiiC8xzsTiCoAFSWGOPFxcVOpwMur5D2A7JEaEbBag64aCBFX15evnr16sc/+YlkMrm+ugY0cPBwYYzFLOKcx2FsmqYfhlCt33///WKxuLCwALFL0PNBrw+HUuj7yWQSBBCSoiSTyW63u7y8rOv61NRUq9V69913c7mcruuFUtH3fRpGQH1TFMWyEgDgcc4h1nNiYqJWq9XrVUmSwHuy1erIsqwoEvQxAIS32+1Or7u5uT2d+BS8wvd/Mvnxj3+8PDS61+yOTU6VSqVmp2kl7IhRWVVlWRIEURCIIskoZrIkdZqNKPQPH1r41Cc+ni9kNVnpdjthGKqavL+7t76+CiZ5xWIRITRSGfI8b39/X5IkTVMjGj/zzDeymeJX/vqvX33twp/+2V8ODY/8l9//g+nZuX/zb3+3UKrUGx1ZNWiMMRbiKGScAc0LGKKAj8QR5Zzju9wvfm8NyWPGGCQQcRYjzAnipqHms8mVlduvPP+9hx89P2jXw8BvNGqbm+vdbr9cLoP5raEpCCEiitlsdnR8wjAMXTNhGtF1XSDIsixBOLiSvu/fuHEDdE6ZTAZOADguwigChAwmOsZYtVpFCBULuZWVlTt3liBKq1QqwZKqXq8zRi3LchynkM3B6uDatWvj4+PFYvHp/74I90gqXD9ov37htx5JpTOJhJVIWmnTUFQpiqJup+94oWna3d5gcXkpJijmXBJwLpWs1Ro//7mf+ie/9ZvDI0P9fs+PI8SxqmsgE5VFCREccyqKYhwdmDKAjgZeUejAYAIAl3nAb+M4Rgy/8vRB3f2JX55BiIii7DqeH3iNZqfnRO++f+Mf/7N/VSiPhDHzo5Ag5nme5/iR50mKTinlERUlOY7o/7/26+f+5S/EDDMayYaRsozq9tKhuYlcwpRFrGvKPUF16AcQKCYIgmUbqiRXq9V+r1Nv1OdmZ+Iw2tjeRIw99OhDn/nMZ4Yq5YmJiXw206jVVFUBYCNicRxHrus/99x3h4dHpqYmBCQwRlOpFBEOUiPDgDLGBIJyudzGxprjOLC0hl0SZVzX9V6n63mO73kgXAd10iuvvAJ0Zpi6RkfHoWKBQ0kYhjxmhqUPBoOLl94fKgzpiu67vmKYkm7/jy8//X/8xz+cOXo6YrHrhL7jhZQxhBljccgEzCN3gAgyLNP3gzigRFI455IiI4SQQGjMEcIsxkiQEOcoimfPnD370EOlykjekhdy8nTJMGXabe/2eh0rkfRcGgVhuZixbCOI4iCkcBYjMLQ0DJgb7rlAgfDkwl17uvEjNSACQ83mjMEE1u/3EwnLsizHc5eWlprNOkJIlkXTtPP5IjhFffBOAn5JbmJxaGiIxjgMoyiKwjDo9pqWZd1/35luzz3/2JON9kC1U72BGwTO2MgopeHP/tzPNBvtbrd7587S1atXHn/o0VKh9JWnv8YRlRD7/E997uh99wkSue+++w7Nzlx5551Gvc4R+vhTn8A4vnntiq3rnudRTlVVNU0dZP9ggGkYhqnrxWIRAkwOMB5OJFlIp5O+7+/v74PgGYyzwd8Ipm2Yi2Da9jzv69/85t7e3sTERCKRSCQSsOFtNpuYHMRIg15sd3f3ueee293dLeeHbdsulQvT0weUMtO24X185i8OfL+ur/43wNLy+fzczAwI43O5XEipoii9Xg+szy9evPiDH/wAmv5UKnX27NnJyUnCSaPR2NvfoZSCoQPAe1AnEolEoVAgojw+Pl4oFDDGiFFonsIwlERFUpTnvvfc22+/DeCHKslnzpzJlEo8CDBHSBQC34niWBRFx3H++q//ulqtnjx+HCGUTCaPHz9up1KB6yq27XU6CCFo6BEht++qx+HEz2QyhXJ5Z3MTvhEwdeI4BhkmQCx+GFDKDMPIZDJ+EA0GgyAItre3U9kMp0wz9W6nB+sk2M/2+33P8zqdzurqervbOXLkyIkTJ0B72O/3682mpiuiKHLKB4MBIqTdbq9vboiiWCiUCCGMRvl83tA0gJcQYqAYUBQNmA+c8+rebr1eh70J8PbgfoHXK4+ZIIkIEVhamabZaDSuX78OZXJ2dlbX9QPiBCFAYG80Goqmq6ra63RBBL28vNzv9xljnuedPn1a13VIS0QIMYZM0xQEDAvrvb09sJDY29vb3NzknOfzeRBaQisG7TWE7UCzhRDyfX91dXVnZweo98eOHQMnVZgZgFMPDU2v11taWgJu/rvvvgtGo1EUlUolMFcDQT04b0EyI6zRRVFcXV29fft2v98vl8v3Gv1cLgdmE4ZhDAYDsMTzPG/gOo7j7GxtQ0Aq2JkCRjIxMYFiZJpmu9sFPwjQNIBcoNfrra6u1uv1zc1NoJfNzc2dPH4cCM0IIcfzoMmglAJAC1LQWq1269YtRHAmk0lY9v333z8xMSFJErAMa7UaiIV7vR6QFN98840LFy5YljUzMzMyMpbP533fBfWSbdupVEoUxSimnue9+FcHr7AxtvVf/+sf9NwgJrJimLZtI8JTmYzrDWRZFiQRcwTAEuccM64oMmes3ah3W82JsZEHzt5fKOZyudxYpeL7vuc7YRj2u517jgynTh43DEOUJEEQJEW5ef3WqdMPfvTJjy2vrS+vrP/SL3/hP//+7yMkjE9O7e7VKcOiKIcR55QKogC8cPBFh2UXISQKQkiSAejrABbDWCAIY0xjsPtCCDHMWTJhKjKq7W/evnEtk7Q8p6eqMpAZwCAGstsZDbvd7vWbN+/cuaNpxsB1PvmJHx0eHh4MBrIsG7oaRZHnBbAmAgIDxDzUarUwDKEDvu+++7K5HLyVjuMAPgr3USBIUZR2u7u7uwujDjw8uq7/33T9Z5hc13UmjO5wYp1TOXdV54QMEiSYMyVKJJWoaEm2ZDlJ9ozH9sx45nMcj+2R5xvnsSzLsoKtLFGUKIqkGMQABhAgkdEBaHROFbpynRz2vj9WA9Zz73P7Fwk0i3XO2Wfvtd71hiNHjuh6RJJlFDLf8xBCEIRTrVY3L6bg4taNJ3aHj6VcXlDlZCIhy4LR7xOsM4ZUVfVDFARBLBaLRPVmr0MoDgIuSRJB6N3vfnd5ZIQFrizLshhhIceUQPmFEOOcwZYqEJHtBjuya0xMQRAQYhgjjLkgEEKIqsqyLAqCEIYcod3ya2FxqVZtLFy6sra2sbaxapiuYfprWzuSqNiuxyi3HZMHoa7rsqg0w3CX0Idw4PuAfmGOMcL8Z9NndlMgBUQpYoHt9BEKMQolAQe+bTFPEATEiaZGUrE45yHGHASM1x06PDo6Uh4YyOVyr7zysm0ZE1Pj6WQqlUkhxARZ6veasoTzpQLi3LWsTqeraBHfd8PQHx4eNAxzZuZCNBovFHK9fgdY85ZlMURc16WYm7a1srIyOzv71ltvJZPJeDxZKBTi8aSLPYKoIqmyqHDOi6UyFIgTE1PNZpNzjDHN54sgg8ccdVptSHLAhIRhCL1mZaMSVWOJWPLAoUK+XNq3Zwoh3u93sSBKksgD2XUMJAgMIUY5YwFSROS5gLsSImxtbSFEsEAR4a5lIVFGHCNEJEo450Ik0m02rG5fGBVDhpkgRWJJs7vxne8+2uu2p6amMuliIpGITA7KEdnqGOAaCgRMTdNq1ernP/95VVXHxsaA5QCGkAjtbiUTExNwalYqla985SuZdLpUKoEJ5MTE2K4sY/9+UaTQCPq+f/78eVlSrzt88NpDf9vb7nMcb+HKSjSqK1qEUtztJRRF2apUz5y+2NhpE1l3nVCgik9Cw3I9x2zstCQ18q1/+ReC0NjQ2J133jU3M88Qu+HgEeLb5YHCzTcf5QI5c/ZsPBbp9jqOY3d63U6rlUzHn3zyyYgkxaN6RNfKw0MDA4dc1x0eHh4fH5dkgXMeej7G+Mknnzx58uT+/QcTiQRBGCLwHMcpFotDQ0PXyFu2bT///PMrKyvXX389GClNT0/Hk3HPcz78wQ+CtIUxRil2LOOZZ5+Ox+PFYhFAZSCt5/P5X/u1X+v3+54VgJXUxYsXK5XKwMAAUM4DHlwjjvz3//7fYWDEGNMjkdnZ2UqlMjQ0RARBFMVYXE9IMcOwb77l6E033WRfzXZUVXV2dnZuZubQgYNwVuVyuVK5HAYBpMHU63UYZeZz6Uwytba8UqlUBop54IJkMplIJBr6/tvf/vabbrqp02xhjEGNv3Z5odVqpdNpTAkmnAhCPpvVVPXhBx+sVCq+63iel4hFA8/t7DQ454Hnw4bDEQcamSzL58+fh7MZaEMJy0qlUgFjhJBsNtvpdELOfN9vrDVXVlZ0PVYsFkVBNnWHIyJJciqVNm3bvLL4yhM/HiiU8sXcwEBZxIgIlIdIVpXSYBkGxHfdwze2tprNphKJVGq1Hz/1lCAIA+USRCsavR7nnIoiiAOg86SU1ipVTVWL+Vyr1cIEYyyEQdjvdbthhzHGGYPguWKxCDrx5dUV23UOHjwMZYfrhyKl9XqDM+z7PiEkDLgkKtNTe/fs2cM5X1tbe+ONN2699dbbbrutZxiGYdTrdYxxq9XSNE3XNCCwHjhwqNGow4VUq9WdnZ0jR45ks9larSZJShiGW1vboKqDSCjLsgqFAvgjEEJWVlbW19f379+fSCTguDIMA0bPMNaBqcJNN910991327Y9Nzf3+uuvv+c970kmk81mc3NzEyIQKKVQcXqet76+PjY2lkgkAOK6fPnyT37yk09/+tORSKTT6YCpG9S4Id8lDl535PqDhw81Gg04RM+dO+d53qduvYVSurS0gjF2fa9SqcAqhbHj4PDQ2MQ4Yhw0HPPz86vLy2PDY5TimZkL0URcDVSzbu4/sJeFCEhpmqbdcsst0GmLolipVJaWloQbb6SUzl++DNIBmIZDIwQz7sHBwX0H9r/v/Y8ghNrt9rkzZwuFQq/XM01TkhQYhUPaI9jrJ5PJ66+/fnJycm1tbXFxcWZmTpKk++67Z3h4GEaB6xurnHNBlEF0Aj+9nhGLJjpGRVLVbs9YW18fHBmUFIUx7jDH63m6qhuWBUUtQgjOOMxYJKLtNNs/+vGTzeZOOp0+euORsbGxqalJjHGj1bZs5/bbb221WghTTY95nlOtVlfX1w4duP6F55598KH3iXJkeGj8//7jP42OTDJC660Ox5RxHoQcJHGAhhAM7l27sw5YsYB+/exJjTEOfZ8IFCGMOEdEEEQJh54fuL1uZ//+fa5rXl7Y6HfakUgECKaW5SiKkojGut0uFUgmk7nrjjsOHTpk2+5bb70FkVytZtO27fGR4XQ6LQgiQiiTyUCPCv1SPp+HjIet7W2gF1er1YsXL8Kyj0ajyWQym81yFoDZ20033QR8a8Rxq9VqNHfAlG5hYQGAXhDKCLI0uWd68+KuwumRD3xoF/36zO/dOTg4ODg87NrW7MWZ0bHhbDYLlpuOF2BKzp0/3/c8QSQk5IVcptduv/Dcs9fdfgs3+1igjuNQQXAcJww55xz8rgRBwBh7XgD1lmVZwH8E7FfTNFj30KQC4Qlj2mg1Tz9l7+JVP/3jZqOryhFwVVBUTdaSjbbx+pvnpIhGZOr5fqteVxUdY2xbFuaEhSHmUHj9zGMkCCH0jT//Gvzbx/7wk4hxpIiaqvhuPzQ7d99248TogGP3l5aWFheXTdPkiHPEVSrcefed0ag2NDh4/fXXT4yOlMvldCpl26YgUFGWXceEJMF2u/nFL39J12LlgQG41wcPHpQUBYRpkUjEcTwgudcqWz96/MelcjGq6YIkSqJSKpUKxZxhGJ7jYsw9L9A0DWjLjz/+xPnz5/fv3ZfNZinF119/QzabtSzH931FVQlFGGOgPT399NO6rsf0KGxA4+Pj0OQRAYuiGPosDDn3kWnai+ura7XG7/3PvzYDosfTVJQFLNaqO6bnII6pICAWhr6LAp9IEmNMEETESeB4RIkgyjnn3POQIFFRJUQIw5AjUhwcuuWuuyf3XRfX5AQ1b95fGsyIVnubIm5ZlizpeixqmG3LMqLReOAzsE0CsoXnusAcgk4RQnJc137r5d1k+HvepcZiMXAD6nQ67VYL7qogCJqmQmveNw3XdSMRJR6PRyKR2dn5N46fTKcSEf623bX+iUy3b8iS6nmBFwau60bjEZFKp06e/su//vtTZ+eUSLze7UuiwjmXFXFgoHBpYQ4UG3fccvt73/2eg/v2//SnL8qyrEdUBYeFQmH/9UdGJsaISJYXLmc0/crC5dn5udvvuv3gTTe8/NSTSU1PxmNEoKIib29v27ap67Eg8BRFKZWLAibtdhsaEsOwYKgEzkOSKkUjGugM8vk8uB6A0Y5pmpRSKFKF3UwqAoGDqqqqqlytVk+fOwuWS6qqlsvlsbGxfD4P7x0LEcVYVVXLdM6cPXX27FmMsaIo2Wx2ZHzkytndgKb3fXxXgkoIEQi5fPny7Oys67qSohQKhfGJXeAqCIIw4BAPAk3a5ubm2dOnAcbO5XLlclmLRmVR1KJRVZb7/T54Tc3NXoKhmGH2Ioqqqmo6m9m/f38ingqCgIgCY4xwhDGGE/f4a68DzFYcyKezmf0HDw4PDbmOA9a7ngMpjdzx3Fdfff2ll146ePBgPp8XRXHPnj2lkRHbMLyrjo6Ax4Qhn5+fv3Tp0uDwrgyQc14eHARHCcuyWq0OjMkczxcpdTwPwgkkRQWIq9frzV++fPfdd99681HYvuSrF4iIAE5X4G7oum6n09muVpo7DYzxXXfcMTExEUskwLOKigJifGBgAFhfBHFAPXO5HEcsmUxqEb3b7YJS4apCXLBdh3MOW7/neS8de7XTbU1N7onH4zFdNw2bEBKLxcACPp6IJtJps9e7fPkyGOztNJuvvvoqgK+xRHxgYCCiaGBGjxASRQq+52DNBUD1xsbG4uKyLMuaphYKhVKpBNoO3/cjkQg4NQARCmQijUbj2LFjlUoFY7x3715QRSQSCXhzocCKRqOWZZmmSQiRJGl2dnZ2drZWq6VSqUOHDoFaEIQ4gOjD/iAIApgyqqp69uzZV199dd++fcPDw5TSWCIOSAYw+QzDALSv2+22Wi3Hsj3Pe/PNU6urq7KqZLPZfD6fzWYhn3FoqEwpdW0HAD/btnudDow+Tp87bZlOo1nXNG1kZKTfM8G6D5iFsAODJ1wQBLVKBWPc6nQgqBuqDQjzSKfTAPVRUbjG+fNdD3Iqa7Xayy+/IghCNpsdHh7WdR1+R1EURZGA4i3LcqfZuTg3Syneu3fv5ubmlStXwCBGEARZjVx6ZZc5jXOXv/Od723Xm1iOMkFyXNtxrMOHD1YqFYFAGqntBQFCxPFcjDHEj8aimoBQLp3hLFAUZXJyPB6NcRRWKpVLs3OWZXQ7nU9+8pNHj97o+75nOxjjQqnQ6/Wsvl0aGP7s//6rb33n+4NDowHHpu16jHtBwBgjWHJNExGRUooQCz0PYUwEgQh0V8yBSRiGaNcs4d9rL4w55ijkAcYix5gHTFQkgTCCWUTFjZ2t1Svz5YH84pXLvU7bdf1Op2Oa9vj4+MjIEKVUIKjeaGRSKSUSsW13fXPD6FvQyUuiaBi9Xq/HOQaDFQBKwd4WRMecc3TVEgxaVogWhbA7xgMWhIcOHUqlUroeAyjRMm2MsWkZzWYTAJH19dV2t9PrdMEQf2xsbPNcAi7wI//h4G75JcbPvHXq3LkLFzu9/sLilb1790BukUBEznnfNOcWrriMCVRQRCHw3empyW996xvj4+O2bTLGGA/AM5P/7OyWc1mS+FUzHs/zLNMRRVHTovF43DTNtbUN07IqlerK2ipExIuCbLneu274Tfh+T57+R4woZrtue33LUvWU6QTPPP9KNJUOCUMIBQFDDDM/cHp9RAhiDCGM+a69EEccI4wI5px/67Pf2C2/fu/jiIpIwLFoxOm3mNuZHioR7tpm70Mf/bl3vOMdMGGJqoplGfVmHXKLi8WiQMja2io4PiiyGAQBoVQURY5C3/cdz3NdF3MO7F3LssqlIXD1BVs2QSBhyD3X3tzYbjTrRq+fTKdisRjGHMaI4W7AKgOnY2gfYRJKCEkmk5ZhOqYFJ1/AmaIo6WxGFEWO0MLCQrPZRJxHo9FivhCPx0VCLcuyXM80zVhMj2hRWVSXlpZOvHnS9MJnfnr8jTNzifywqGiiIjd2mq16nVCJIooZDwkLQw+JFHpcx/KQi5AgybLsOiZRZMaZlsrCRKPb7cuavv/A4bHpg5JArWbl6P7y/jE1wvsSwZwxWdJ933/iiccvnD83PDwMtPEbbrghlUp1Op0g8EBTAxKeIAi+8Y1vzM/P3n3jH8DzuvleREWBEEIEgjHudduIcUmSGrX66dOnB0eGi8USoVQQhH0H9gah1+v1IqrOGBOp9MOv7/IIaeLNZCqVzWaxIDqOMzQ4HI/Hw5ATgf7mb/2Xb37v+8XCcK3eDjnmu3T+4pUrc3fcftutt97Kw8D3fYKwZdlqRC8X8r2dxpVLl/cdOjg4NjK1Z7LTaucSietvuP5LX/7nG24+ev1tNz31/e/+9Kmn3/XgQyODQ4SQ48ePu67NMKEU59KZG48eAR2AoijRaNS0XUQwNNBf+9q/YozLAyVCyPDwMLTXMBGTJImHIUKIUmqa5uc+9zlRFIulEtClwWYTJlMwPAIXpePHj5umOTIyAjORVCo1UCo0G21NV+EgZH5ACCGC9OR3O3CvBiaXgyAYHBwul8ueY0mCeC3/KggCRMiJEyfOnDkzPT0NNPlyuTx26JDTaGCMRWlXW4AxFqh08q03Xz32SrE0kE1nkslkJpOZ3LfP6nbPnj27vb2NENIjEUpxKpUpFoubG9u1Wi2fz8PuNjw8nMrljE4HcwRwCHh6ybIITpvA6UEISZKUyxUCxgzDcByn2zdgaqNpmiQJ7XYb7AkoFVutViweV5RIo91yHMc0rDAMGdo1Ksvlcs2dxpkzZ9rtNhzh5aHBTCq9Xa1YlnVVN4BA+NxudRvNeiwZq1QqCwsLYII/OTmZyxZc1+20WoQQ+E1CCBVFo9e7cOHC+PhoPp9fXl5uNpv79u3jBKMQSZIEdyMSUcB7Fhw4Nzc3VVWF+G3gY8FxZXsuzFk8z7NtS1FUyzLb7U6r1apuVSfGxu+5715yNTWh2+8bhgG5QJJAgiC4ZotqmqblOmvr69ddd+Tw4cPw4YBGeI4Lpw6whgFzbTQahmHZtg2xUYVCDiFEEIOUld0JsiiCvNGyHPAbu3z58tmzZ++9995SqRSNRpOJtGmanX7P932InQGOBzwy4N6dPXv2mWee+djHPva2t70t9IMwDBkLer0eGE/E4/F+vw96Hc/zrly5ApHSc3NzH/7wh2+++WbXdW3brdfr4A0GRWdM003HhpwcYLzA/+j+++8/fPiw7/tQa3a7XbgDQCljjHHMBEHq97sgL5ibmxsfH3/44Yc7nU6jvtPr9VKplCiKrm23Wi1JiYiiCDXrLqlLpJcvX+50Op/85CcRIUEQ7OzstFot8I+E4ARN03zf73e79Xp9Zmam3W6btj02NvbIIx8Am1mEkO06qqxEJBERbDleIpXs9/vnzpytbVfADmlyz3QiuANe4cRk5V+/8q/La5uClrX8MGRetbp91713dXvt5eVlXdddxxdlRRTlXaYKZpFIJKZrPGSyImZT6cnJSVVVOGNg2Nao1d/2tvtMwzj91qlut+ta9uz8LEb8T/7sT6anp/OZ/NZm7Ytf+uqxV44nkhnX5xxhTqjnh4wxikngeUAB5BiHPkTUIEh4ZGFIMOZXE4eu1dkIITBPQIhxTjGlPOREIBRzztyhwfzK8vyXv/j597/nYcc20um0IFLX8ZrNJqCMsVhsfXVtdn6umC+UBsswqBVkudtpu64rixIUFZCV0mg0GGOjI+PtdrvTbkOgyPDwsOd5sIsChZExZhg9aNiCwKtWq+VyGWNcrdY3NzcppYXCgCRJiqwmEglYaYIkUFGwDBPMn3d2ds49vyt+vOld2m75dd9DyjPPvfBnf/6/Tdc1HWdoeGiwNOC6duh6ckR1bO/Kylrb6GNCVVEIAi+XzfzN3/zV7bffDsYkrmcjhASBUkG8SqCmEUUVxd1wNCrKCPGdWr1vWP1er93pvvjTF15+5VXOMKZE1/VMJuN5gRxRCRUfOPBL8P2+8syf6boOmy/njCOKiExF7YdPPa/HEyFhju9JVMCYChz3+/3QcRHnkrArgPr/W379/i8gTKgiqgplVj90mr/16V+58fC+4eHyxN5pQRQRQpQggaDQD/pm3/bcSqXi+z4PwvX19Z2dWi6bzWazAwMDpVJJkmVMOHBHHMehFCOEzp+/+LWvfW1ocCQajebzxUQisW/fvnyBJhPJAAEAAElEQVQ+3+/2XNcVBSEMQ0VRVFUmAn7rqhN3IpEql8sgKRIEAQCh3e2bUt/3H/3u92rblZGREYhV2XfwQDwe98MAjuTdAIdIpN1ovvTSS4SQRCIhUcnxvenpydLQYL9ryrIs6Xqv2f36d370W7/3R0Ojh0yPJ3MZ1/fqlbpr2yhAGFOEccgDRJEgUt/zkB8iJiGGqChIimy7DlZkRKTp/QfS6bTtuYqqHb7h6ODQJOfc7nYSsnPDlJ5QfeI7e8Yn/YBjhHgYGGYfiDKiKHa73bW1tWQySQgCntDo6Ci0nq5rM8ZefmrXsH7ycIsIVNc1IlDGAoxQLpcTCLUN86233uoafU2LEkqHR0eKxWIY+lePf8o5f+3pXVtRHj1pOiaQaYaHRiZGJ1qtjqjIVxaXH3zfI8ODY6brN1o9QiU/CBBC42OjW1sbv/arn+KIXbl0+cUXXwz9AGP8i5/6laim/9M//H0xm08kEg++66GPfOQjkUjkX/7p8wcP7jc969777x7bN9Xa2nrxmZ+Mj4ysLi1fuHAhmUwePnL90NBQNBrVVaVWq509d3psbEySpJBzQoR4MhGLJkIecBbA8abruixK0JYMDQ2BUDGiKBByB/zora2tdrcL0S6apmUyGaDjAC8EKHSzs7OgXIP5YDaXhp0InDAxxtGIpiiKYTk/+X4f7lV25HIqlYpG45FIxHdtcPiEdyqWSOxSfTsdkH3Ayws2AWCm5Qcu5zwejxumHYYhZJ9DLaKpEXA5B28L3/dZ4HHOV1fXr1y5omsxcA1NpVLxRDSTyWSzWdh+QbKDCBYEQVXl7e3t48ePb2xsgLQzP1A8fOj6kDPIM0GYAulNEISN9fXvPfooaJey2ezAQDmTz/le4IeBLMuu6/f7/VanRyltNFoY47iuIYQqlYrneZ1ua2dn5+jRo+Pj461WCyL2OOfA44moejqdbrQbO40aYwwSAtrt9kCxfPTo0UIuB4HijLF+vw/Ub4wxQgzIv5ubm9Vq1bbtdDpbKpUKhYKqqroegVnBNR8Q13WB5mhcjZ6Mp5KQgiAIAoXpvyBkMplMJmNZdnWr2mo0VS3iOM7Fixd7vV4qk4HLZ4y5tqkoym7mnaykMmlESaPZBKmX6/qXLl0yTbNUKu3fuw/8KaApkmUZ1IuRiA6qBU3TDKN39uzZTqvhOE42mwWzStjzNU3T9RhMGzVNg9hHUB9Xtmurq6uKFjlw4EAynQIFQBiGgiRGo1HbtIDbWqvVWq1WIpGobG0fO3ZM1yPlcnnv3r2GYQBsBp7DQOcH3yzwrQDR4rPPPp/NZrPZbLFYBC83aGAULQIrFoSulUoF/mpzc/PcuXNAh0ilUkNDQ9FoHGPOMeKc67qezWbB2BlMW3Rd7/f7x197HW5FsVgcKpc1TbNdH7brbDar6zpCTFNVQki9Xq9WqwyhM2fOrK2tgTv/8PAwYCrLy8uCIOiRCDCQJEWpVCpXrlw5fPh6QL77/X48HldEKfBd0zQDhL3AR5ykUynMQmAXbW1v99dHYdlM3xl846tfn5lfbJoBkbW+2UWIiYqYzaVnLs7FEnFChCBgAOD5vk8EDBCmQLCu67A1CRT3+/1ms3nhwoViLr9Tq1+4cOH+e+6H3JF2u91o1Le2NxFiGFGEMEcUIYEKqh6Le24YMBQwzhkTqBCGPkGMMYaIwNku9R7txgohYAjAO74rewxDqM8QYpIk+T78LcGY89CjhI2NlheXZr/8xc9/6lO/0G+2MOGCQNrtNvwm7J/QwOyaEti2ruv5YmHPnj2JRAIICb7vt5stKMIwxvVag1Lq2LbjONDIQRdULpchukaSJFWVI5GIYRiua8N3hiUhSYrjOM1mu9FoaBE9nU53Op3B4aFYLKpoMsFCyPzQY4oqfe9zs/CM9t7Ndsuvd7w/enFm/itf/eb3n3wSIzw9NTk6PGSafbvfk9QIRvTKylp1p8UJzqcT1Z363//1X37kIx8SBOL5DkJcUSQiUEopQkQUZRZyxlC32zX6VrvduXz58tZWpdVuLy8t1XeaoR8EjBdy+Wg8hjjZDXlgIWPc932G+CM3/0f4ft995e+CIADgg7EQYUGU9YAJr5w40zIMKaJyFPqOm81muRfs1OsoRAhjEvJr4tVr1q//3+WXJCDECfIyMaWzs37xxBtT+6ZQ6Gyur331a/+WyqRjejSdjKeTyak906AYYIytrixZlqUoSkyP5vN5x3NffvnlYrGYTidBWJDKpGF2hhAKw9D3QnDNtiwLZN7T09MYY89xC4XC8Niw5ziua1NKGUPgxAH2V9DkwSkLMnjoBmzbtk0LGKaJRIIibJomwwjAxWtJYZZjLy4uVqtVRVE0VR8ZGUkkYn4YMB9Be4EF8fzM0sc+9etKLE8iMU6JIMmO6bTb7SBkiDEqKaHnoTBAjIuyKIuSKkuIcYbCVrcjKxE35JxJmWI5mkszTHLFwi133FUsDnuO7xuGRmzB3chEwz1D5enxEdt0QuZLIsGYEyLApOzUqVPPPPN0LpeDrS2Xy42MjMCmBkOHa8PH3OjyT194Ye++aVlR4ononqnpkdHRbqtNCBEEyfd9jhEVBM8LHv/xE+12c3R0VNdjWkTfu3fvs1flkx/5zDi0OxgRyzCOvfTK5z/3T7V648raeipb7BtWiGnAiBcEhFI/8AYKeSrgB9/xgGH2v/utb4fcx4j8yqd+5eCB61566SUUhLIsRnV9YnQMId5pt1/66fMf/8THk+nEhz78ARrVw3Zjc3k5l81UatVmp1mtVi3HhpP7wL793W53dvYihPBIkjQ0NBRLxEVRjsVigkDgnJYkiWJy6tSpN954w7KsVCqlaRoME6OaBo7YoihiSmHs9e1vf9swDCjUYrHY1NTUwMAApDOBv9E1avnjjz++urpaKBQw4YODgxOjY4ODg64fPvPYbsb5uz6SQAiJovzCCy+8/OJPIQQ9kUrlcrmpqSlFUThGAPG6rg9slaeeeuqNN94YHBxMxOL5fBb+71CQQaXFOVcUhVB04sSJ+fn5w4cPDw4OUkoD14vH46qqVSqVjfWtjY0NVddkWY7pEdCuLi4uOranaRrGOJ1JHjx4ECYasUQiBDQOIc55t9s/f/GCIAiiJGFMdV0vDQ3G43EehBjjXq/X6nZEUQz8UBTFjY2trco2QmjX8zmRSqfTrVYLyEBgSlcul33fBRaOpmkzMzPz8/Mg5EwkErqu93oGpVTTVDj+0+k0TN9effXVkZGRbDoNr3wikRgeHlYUBbBt0+yDt18ymQQPgu3t6ubm5i233JLL5TY21mAeraoqDA2a7S5CCAqmqxu9VK1WNV0FI1NAy4Dk5Ps+4URRFKhOACY3LOvKlSv1er1UKt189Kiu64A3u7bDEO9bJmg4XNdNp7IQqADtEFifDA0NQQIx5BW2211IiwIbWM45FbDneZ1ma2Njw/O8W2+9FTRiqqq1220vCGA4LkkSCwJCCKgIO53emTNn3nrrrSNHjnz61z8D7BRw+wQiFPjhcc5t07Isq9ttt1qtdru9sbFxww03PPzww8lkEtyYXdcFI/KryJYMA8GNjQ2EEGBge/fuPXTo0P79+8F9d3V1tdPpACIIDVs8HgcfWtu2O50epOF98IMfLJfLhtEDBhsiGKbnYRgm4wlgzpimWavVqtWqSOmlS5fuvPveW2+9NQxDQSBQNgWet729iRCKRqNDQ0OmaW5WthuNxvnz54MgGMgPTE1NjYyMKIpCRbHVaoGYIBKJhJzVq7VcLlfZ2nrzzTdbrZbvesVcfnRivFAsEVGQFDkejWmKKggCJpwQ8tTXt+AVxqmLlY3N9a36Y8++lC8Pu77HWOCzUItGHMcDND0MOUEYikVJEaPRqKapiPFsNlsYKMqy3Gq1wAMvlUhijLPpdLVa1bWY0e8vLi4yP9i3b5+qyo5rqara6/Us06NUXF1djyVzGAlewEKOPNclmGDMCWJBEHBEEEKEUsYYML2A/viz5Re6mrpNKOU8xBizgCFMEcKiREPfw8gbLOfX16986Yv/+Klf+sTG4lJ9pxqGPqw6MKqAYT1wZ4G/1el0Tp06NTY2tmfPnu3tbUABU6kU6CQKhYLn+Jzzfr/vOA58Jc92FEXZaTUhXKHX621sbLTbbcaYLIuapsHIEqTfwBrs9/uipDDG1tfXx8fH44loo1GvVGq2bRJERZHOv7p7rj3wscJu+XXo1p7r8e8/9uN/+Od/liSlWCqMjY44piFQrGnRiKq/eebc2maFiEI2Fa/Uqt/5xtfe+953M8YIQUHoeb5vO9ZOvWEYEIsUrK2tLSxcWVxcbre6mAqKooiKrIiSHkuokuz4Hg9ChhEKuaJFoFyVJbXT6SDKP3r3f4Xv98Rb/xyGIQt9xkLOOUdUVmMeF0+dna00WkikgiSoouB5ntM3WRAQLDDfRwhLgrjr5IY4zJDRzygfP/YHn6CKFItpRq+hkoA4xvFXnt87OWr0224QNtoN3w8pxTKlQRBUq1VJkaPRqEAo48HQ0JBrO/V6HXxBNjY2OEaMBRMTE3v27IH9MZHN8CBwXTcMuCAICBHLspaXl+fn5z3Py2az6WRqcnJSjciMMd93YTQJ5xmQZFdXVwEw13UdTjKYJUFnCXBgt9v9waPfdxxnenqaE6yrkaO33BzRtFazKUgiKKvDMFTlyPb25o9+9KNMLpvPFhhjlNKjN91c3en97h/82ePPvloenTYdV4lqhAiNnaZjO4hSWY64hoEYUmQxnUz5rr2zU+XMRgRHU0nb8kNGMYlkCiUlprcM4+D1R26+/fZkeoAg6ncMIegf2Z+/brogB/2LZ96MxWKUYj9wwtAfHR6TZRXKAs9zgBkDfUar1cpkcgyFnuMHzF86tyvsevv79Uaj4QcBaPJ1XW/s7AiCALpajlA8mVC0CPhGNhoNjLEkyroewwyffhncd9Gx83+TSqVAEbm+sv78889HtZgeTaxXdyr1BhVl2/UkJeKHYcACx7FKA4Ug8CzTMEzjpiNHRkZGbrnp1ne+88GB/MBzzz23ub4hy7IsCbZhWqYhErq6uqzq6m//59/JDxVD05y7eDZCpWarni/moom4rCpwPHQ6nad+/OTW1lY0qj344IMQKZhMJk+ePHnixJsjY6PxeFRVVXAHtU1LlmVQ+QVBYFlWp9OpVqtjIyMQ6iKKYjyZBLQPDiHwRgI+XKvVAksk4IGCMA2S5mDiICsiIUQkdGtrCxFh4ezuDX/be5VEItFudwkhvmv3+31BkqCQWlxc1GNRkAgxxmKxBHwmgNyWZSHGCSGyLFer2/1+H7ypgPETi8UIRZBnD/JPTdMyyZRhGM1mu1wuJ+Ipw7bAdeLChQsrK0vJeNxxHF2LQU52OpfNZrOmbSiSSkUSeCE4y8cS8Xa7PX/pEmMIDvtUNhOPJTDG8Xjc87xqta7rkVarAyxpPwzguAU56sm3Tt9+++379u2D8RlswZ1Oh7EgCAIYXPZ6vWg0ur29PTs7CxXne9/7iKIolmVks1nDMCqVShiGQNCxLMuxrGq12uv1lpaWHMcZHBwEslEqtes4D7AWpZQQASZflNK1tRXDMHzfh1URjUYTqQxjLBqNAk0+lUpBhmO1tg1OYLVard1uA/g9NDTk2R74DIGXvaqq2XxeVVXgP2VSqa2trfX1VcdxRCoUBopyRIUqx3VdSVSAUwV45/r6OnRKb775JgR9DgwMjIyMAfffNM1UKiFJkh6NRCIRHoSe59XrdU3TZFk+duxYu92NRqO5QgGMvmzbdm07mUxGdD2VSsViCbACX1tbm9ozDXX22tra6OgohCJAKUYIEamg67qiSHBvV1ZW5ufnjx496rru6dOnoe28pri0bXtnp5nNZiGqAeJ9XnvttVqtNjk5CaXt0tISFNkIoWKxyFiwvr4OziOZTCaZTMITAeKapqnnz58/efJkPp/P5nNAFIvH4912x/M8sPLqdruapsV0PQiCSm3HcazNzU1w7t23b1+pmC+VSmCJsuuyRDAIEba2tp564ilRFD/84Q9DNnwQBJDdhAiBYA+B7GaugOZuc33jrbfe2qrV//AP/1AURcZY6PmbGxvRqJYr5F95vAevcPlA8/Sbb8la9Ovf/3HXcgVZ8oOAyCIiOAgCFqIwCCiliHHOQ0qpJAmapumxaERROeeFgWK73QZNazQanTt//u0PPSQI0vHjx6PR+PbmFsE0lUgkEvF6vYp4ODAwMDc7+/v/z+8Njoz+jz/+03q9FYmmWIioKFmmwwMPEUQxZyzgeLf4QAjRq47QgDvsjimuOq/ukvQJQoiEHBNCMOOEIs81EffGRkprq5f/9q/+z0c/8gHEmB+47XYzDMN+3zQMw7KsQ4cOgepIvhoRCzh0p9MBgPnKlSvtdhvwXcg5SCXS4+PjgPWCsZHVN4IgcHzPcZydnR1wusFXrVh6vR6lGBhjYKGSKxQQxp7rWJbV6xqG2RNFCkrJXq+HGO/3+87mFFzp0QflXeXj3n3TZ87MLi8vM4QIEXo9o9/vq5IoiRR2dkmSCBZ8H8og1O31W+1erVJdWlpqtJpXrlxZWlqyHLvf74cB9zwvHk/GYrF0ppBOD4SII4QYAhodt1yXY0QoFUWBYgIFgSzLYegnkjEWXns6CMwjCCEIcUmS/DBECEmSFI8nmz3L9l0qIuh0ccDMXo/5NiIUI+T5FkICAF/o//eHEoQ4Z4Eskn63ffv1hwZLBcSZa1shxolYVJYVURQwRwsLC6++dqxUKmWz2Vwmm8lkQj+QqJCKJzzbadTq5YGCEolsb28rkhx4/sm33jx79uz4+Lga0cEAcHh42LZtoOYcOnTo6joI5ufnQXOkyDKQToAIFYbhnqm9UxPTIFMAP8PlxRWEEGMB51ySpFKpBI3pu9/3XnhjY4l4PBozLLNn9Akhbt/d3tyCHZxigTF2+PBh0+yHnptMJvP5PMYoCPzJiXH07IsEMUy44ziSpMSSCUZMz/Ncs6+oqmfZvutxzodHR9/34UdKw8XzF8/+4OvfoNGUgFXfDFu1nbC2lS4WBcYa1Vo8ntd1vR12LdNtNnqtnGZUF5586ofZTD6bzwyUCul02rBMhKnreRubm2BfJElSqTzUbreffOqbmqZnchmRinv27bn2uKJ6XNdikiIzxkLEL81ffvGnL2KMi8WiLErF0kB5aMgPw+2tiqSooqBYllXf3l5dPf7WyVMP37NLIPvxD550fd/hSCJoaHhkdHKaENLrWrbj+x6MGLBtO4L070LdaDRar1ff9fBDN91wIwiSv//d7+EQnz9zfnrfdCqVevWVky8897znOQ898M5D1x+KJaLr21v50VJI0NDY6Pri8iuvvdo1uvliLh6PJxKJ6enpgYGBT//6r3meV6vVms3miy++CLO20dHRgwf312o1w+gBzZMxFtOjoMNnjKmqCofKG2+8sby8TAiJx+PZbPbAgQNgOwS8mXQ6DQywbrf7+uuvLy8vp9NpkEPD+QS+cdcER5IkMR4sriyfOX3uusld1HlnZ2d3EiEIqirrsVgYckEQeka/WCrv7OycPn3WcRzG2MTEBITMQOcQj8dZwFEYRCKRS83Osz99vlgsCgIpFAoQGJdIxsBWhzFWr9c8z2v3umHAT50599KxV9PprCRJhUJhz77pG286uv/gAdd2arVaPJ4EC812uxuLJ+cvLawurw2Ui4jhbD4zPjoRMhSLJ++8517bcsCiliEOiX79fl/TtHQqOzI6lEpnO50OJjQiKZ7nyaoaj8WuO3IkXyyqqmoYvVOnTnW7fc758PBwsVgkBIEtCMYYvJogi/Dy5csbGxu+73Ieep53/vx5iIQDhy3GWKfT4WEIseV33nknHPkXL1687rrrYjEd0sGh4RYEwXE8dFV+VBgoA76FENqubDY77Wy+GI/Ht7a2wCkeFIthGMqSWtmuhb5PKdVVHew/PNsLAi8ejw4MDGxvb4uy2u/3u4uLQC2C6l8UxfHxScMw5uZmNre35Igaj8ePXH8joGhQO25tbYlETEQTjAcY43vvvrvf78Oc7vjx44qi3HjjjcPDw4JAgiBwPbvVasGwJnC9dDrtuv5dd90zNzd34cKF1fV1wJY+9rGPARUMIdTr9Wq1WhAEkYhy4MA+27YDz03GY0YycebUW1/50r+MjIwMDQ3dc889wC8EY5pGowFiwIMHD25sbIC04sypU6ffems3pRHj22+//a677gJRF8YYDIHHxsZgkAr/eTQa7fV6x48fJwQBenH06NFcLgePr9lsQsBUEAS6rnsePXDgAIgTa7XawqXLOzs72Wz2kUcegegkTdMkgfQ6rer2pud5luONj4+n02nT6p88/sapN0+84x3vAPsMjLEkiZ7n9Xr9dDqtqurw8PAv/tIvra6u1hsNVZaXl5fPnTkLLfqBAwfAIyMejxNCtGgUJvijo6O33XXnxsaWYRixWGzm/IXTJ99MJBIjI0OpeOLanlksFeKpJMLCPXff8fl/+fLU9F6EMcOYUsl1fNM0OWOCICiSSDhifsBFijH2PSeeLyCE3nrrrbm5uX37DmQyuZW1VayotuvV1rb6hm2YjiBKqqqJaqTR6Zm2l0on+4Y1ODK8sr7WMUxBEmVFchyLElmQMCEkJBgRxDEMGzHnHDGGML52OnPG0M+UX9cqMIQQ41iUKPfD0HUxxRwhSkk6mYXi7LrrriME13fqnIegWti3L4MQ2tzchJfIMIzLly97npdOp2HrK5VKkHd+4MABmFkBa6her89cuDg4WMpkyo1GY6da2+0YCUnGogbBNJvx/TCbzQZ+6Ps+JiiZTLqu2+t1UqkUGJ4vLlyCE5lzrigRSnHg4UgkMjI0zBiDlvXEpgVXmkgkdtGvj/7G8PZa7Z++8NW/+/zndT3BMZsYH5EFingYj8cRF1Y2tuYWlykRCWXM94aHh++5695KpVKt1jVNy+WLUC0qigKwE3gMOr7HgLdBdrl1+KrVB7pq/YUxFqkATScwNh6+4dPwC0+e/LzPQsI5ElAYhrISCZnkeOTKWnVtu2oHnihSHgYxXbP6hmVZKGQ8DBHjhFIW8mtPF46Ha8rHT/2vT4sy9V2TItc1GkcPTH/+b/4yGY2YlmF7bjQWK5fLkiQFvh+GoWH1d3Z2bNPq9Xpzc3OCIOyZnILTLhqNIsxardb85ctnzpzBGD/44IMjIyMhZ4QIaiQCroO+H0JgC0wcIpGI41jnz5+/cuVKIpFQFaVQKOzbtw/gd9d1WcBBLAmw8LFjx2ZnZ1OpVD6fVRRl79Q0CIhCxBVFYYgTQiRZ7vd6X//61wVBGB4eRozHYrF903sikYjjB7IsgisBDzhCqN1pvvLacTWWeeOtC3/zj1/NFIddRgKEiSSLsuz5Yb/fD10H+aGm6ma/v2///vvedq+kKSMTo5lc9oUXXvry334OSZqm6pZlapqWL5fKo1OlkYmxfQcVIeJ1+k6/PTmavP+OfcRab24vZjK5Xr8vKmI0Gl9aWPI8X1MjXuAjxodHRwZLZYZ44IV+EIRhGCLuO248lXz8X9fgeaVHVuvNRrPZLhaL9913H2OsUqk0dlqbW+u9dq/T70BE3db29ulzFwWEAoQEhEbKQ+VS6ePv+z/wIY/+5I/8wEMIcYw9z3ddV5KUIOSLK5vtvoUQobKMEEIEe77vB14iriWT8ZXlpV/5lV9SRGl7e/tHjz9BELrjpjvLAwMHrjt85cplzli5OPDQAw9MT08/+uh3n3nh2Yfe8+5P/tov1re3KAp7O82IKgWhF4Y+EHSCIDh+/DiYeIGDX1TTHcc5duzY3Nzc9YcPx+NxKoqZXPby5cuu62bTGWCGFgoFgL5BmgdvkO/7iqK0Wq2XXnoJnJCAyVsoFKCAg6lfv9+XJAkmj2fOnPF9P51OQ3mXSqVKpVKtXtF1nTP8/OO7iuO7HiSnTp2iVMxms5qmyrLMOQ6CAIT9iqKA9w/UZ2+88cb29naxWAQzkVwyOzIy0ut1FEVBlHiet7W1YRhGt9s1TVNRJfiqlFJIX/bcACEkCJJhmbKoMM4FQej0uqfefEuQ6MjwcCQS4QwDWe3UqVNnzp297bbbYI9OpdKmaViWnc3nt7e3YRSlRWPQyQCKY/QtxtjW1laz2bzrrrvAyQJj3Gg3GGO9Xg985AFM1TQtDPna2lqtVjMMY3p68sCBA8AlD4Kg0+nAHooQgtFGp9MBKAhcLUql0ujoKMxJVVmGEVK/349Go+12G9BBSvHq6irk+xYKhWQymUymQe6uaZogSRC/o+v61vbG1tZWuTQkSdLZs2eBEQh1PNglUEpD34eoRGAabW9vLy8vDg8Px2KxjY0N03ZBh4gxBhtVOBgkQSgUCul0EiFkOrbneelUFhjfoigODw8nEonQCx3H8XxHVVWIvkkkErIsewEDIzHDMC5fnjdNs1DMBUEAa6nbahuGAdl2CCHLsoZHR7e3tzc3N8Get9lsVqtVEBIB5RzoFoDugIUEY+zixYvLy8t79+4tl8tbW1sgyABu2ebm5s7ODuATAwMDlmGoqgrJBGfOnSuXy7fcctvy8jJ4WIB7MDjTQlL42toaQigWiyUSiXq9Wq1WdV2/4447NjY2XnnlFZBjT01NgZEsvhpYDJZ7oPF0XRfyIoFdRymNRzVJknRdJ4QYlgOu6Lqu9zvdVqt1/vz59fV1x3F+/ud/fmho0HVdhLDjOH3LDMOQkl2j3Uwm0+92t7a2ep1uq9U6d+7c008//fu///uf+NQvbqyvO56nKEqz2SQI+WEIKL7rup1mq1atLi1cee65ZxZXlv/wPz4Gr/BHf2Pv6VNn3nzrtKBEfnrstaefe37PgUNWEFBBChFqtVoCQqIoShgHQYAwkyRJ0RRZlhPxVCaTef2N451OZ3BwmGMEQr+Q40aj2e30OefxaFRRFM8NOt2WqqqpRJxgZFlGY2sbYazHk77H/BALgkwFxXEczhgmiOBdd0OMMUiI4AeA82v11m59BqRnSlkYElFEiHAeUow59wlj2WzMtrpGr/nT538yNjIY1SMg12WMUSpCywQiXEVRKpVKq9WCevpaLyqKIsRmCIJAJQkh5JimbVrdbjcaja+vr2+tb4CvdTQaFUVKCBkZGSGE2J4fi8ZVVWU8hOURBB5AYqqqbmysdbtdmGY6jgP5qp1Op93uYsyLxVIspj/+pWW48OveRnbRL4RRsTQwOb2HISQKcsgDWZY1VbRNw3EshARNUymlQRgSzBAmoqLGEklBVJOpfCSi+14YhiFDpNt3QMIqimLI/DBkLEQh55ghxhgnIZRljDHEQhjQhmHIwxAzzneNwdi1ByNQwlHQ67QbrR3P8y4vrhQKI2NThzudlmMZoiIjhKLRqG2ZpmEgjFEYXn1mAcIEY8QxQQhxhH5W0ooxDnzf9x1KA4JYIqYfe+UlTRbT6WQ6l80VshyF25XNTqvdarVs2wYz8Ww2+753v0fX9ZmZmeXl5X3797Q7TcZYLpe78cYb3/Oud12+fPmZ55576aVjDz/88M033xxJxJ996qm1tbXB8jAMDcvlcjqV4JxTErnzjjvuv+8+QNcRQgsLC6ZpypIqSZLnuqlUCiyeKaX333//7bffDk5xiqK0G83t7aqiKG7gc87jiUQsEe2ZhiAIH/zQh3bqdc65KitQttu27QZhv9/1fZ/zMJlMg6CSUuo5RiYdHxkaqLd7WNFDTkLf93moRaNuINpmT9R0hrEai27tVMzAGx7aEyI1ZIl77v6AKg5861v/2lqdjxWylGBVkjHDO7VGpthRcxpGgusEhsPWKzulaBjRtW7PUNWIz0LHDTa3a0tLS/lMlhOcTaUPXJfsG852rdpttS3XMQxjoFSaGJv0/H83Dnnko7+AEBrIFnq93t13351MJi3L2tlpch4ihl3fQQj1+31C0ZHDhwUiRiIRyH1jfvDvD10QKUaNWr3X6wmUamoEM+zZfuD7kiQhRGzPEwQhDBmlNAixadjpdDqVTL/22vGbbrhxdnZekoT/+l/+25233XXkyJFENo4Y4gHDEkEBqi0s72xVsB/edPQooiQ3VHbNru+63HMlSfBcn1JBVdX19XUW+mdOnfY8T5BkgFRTqdSNN944PT3tu7aqqgwR3/Ucy67VarIoKYoCU79mu0Up5RhBnjq8O67vWZaVTCa3t7e3traSySQMNcB1CbYhWDZhGG5vbyuK0m63W60W7D5hGK6srMRiADn/+w2Hfcq23bW1NdPsHzp0KJ/Pe54HKhmECNiuAsEfTKFgjzYMI3Q8UaQw/QRiViKRSCaTA+XSyspKvV4/cfItsBfJZrN79uwBIjjjWI3onVaHikJCVYkoqFqkulOv1U4pilIuD+bDcHV9PVco3HXPvUCIxBhX6435+dl+34zGY67rDg0N5YsDRt9qt7qckIgeE2U1E9EZY1N791Sr1Xa36wb+0tJSvV6HemJ4eBB2JGioPM9LpZLlcpnzcGVlZWtrCwR9MzMzgHkAxAV2CSA1V1U1kUhMTExUKpX5+flXX331fe97H2OsUqtBSQccmiAIRJGKIg2CYHx8HPI0t6v1mZmZcrn8tre9DcQobq9HKe33+zMzM5FIBPgYvV4PWOT1er1er1+4cCEajd57773ZbFaRJCAUgr4BQPFarba2tiaKoqxq8Psg1p6cnIzFYv1+nxDS7fdd3wdmsSAItVoNcLtKpVKp1KA3OHjwYCyRSiQSmmUEQdDqdDjnQcBqtVo6nU6lUuPj49VqdafehGzHbqdfKpXS2TyIJQkhuiC0Wi2M8cjICNRYMBgCFC2bzWYymampKUABIWEC9EaHDx+empqCTj4IgrW1tVdeecW27X379mUymUOHDkEqItSjUCBqmnb//fdblgVfD3TEJ06ccF0XMo5gU92zZyoSiQBUnEolJiYm1tbW3nzzTUWV9u3fAwXiU0//GFLCwNLMcRxV3Q2IBM6JKIoQNNnv969cudLcqZVKpXK5PDExkcyki8UicIAGBgYGBgampqbAQ5UxJkny1tb2t771LYQQuADm88WIogSe5zgOx/jw9ddjSjDGD7zroQ985MPLy8tzs7OMscvzl9bW1sC9IpfLEcQMw2y3uwihiT3TR2+95ed/+ZOdTuf4E7v0zVaz6Vq2gLiuSLccPXxx5rxt9oiscs6DMJQkybMsQRD8IAiZD7ouZBNRUhqNxszMjBaNFYsl07Z838eIun7YbnccxwHJQhiGwJwjgqBFo17gY4wDxtMDJd/3MSJGp4klDSEWBg4PA0Qw54hjgvhVdtdVewR0dcjIwl2tCQfDToIJIRgjRETgOBFCOAsQ5lTAlJJ+v/vZz/5ZPBFdXV09euORXq8DjsSRiA69GfC9bNvOpjPDg0MIIRDVdjqduZnZG264QY9otVrNC3zHcUASRClNpVKY8biuJQ/sA20ssIC63e7FixdvueWWdKFYq1TqOzWozMBIKJ1OgyPr0NCQYRiO4wE5RFGUSq0uSdLU9F6Owu2t6na1gna9UdGpM2d30a8Pfiq/slr5q7/+x1eOn1zd2silMqmUns8mIdpWUaMM0dMXZ3daLVmUXd/dO7Xn1ltuD1zftl1ZUokogDIp5AHnXKQCsJqAbYopQQjBqnUDFzEGt4aHIbxgEVnBGAsiYUGIMX3bdb8C3+83/+SdHLP3vee9hYG8pkWm9+znRPv8P//r/OJm3/ERJSFnmqr4vt9rNBFjiO8+W3DUxRhzQqGORhh/68920a9P/OmvYBIw38gltU5t7R//5i8/9qH3Neo12zRCzjr9niRJHKNEbHemC7j9wMAAOJ2sra1dunSJCrtpgxBsBz1xt9tdXF6FY+b2228fHh7u9LoCEQmlkCMG4VnwKkJgCFBzXnzxxa2trWwmn0wmc9ns6OiooijXEgJAjwPT60e/891Op1Mul7OFvCRJe/buTWWSEBojSRLBmBCCGA+C4Lvf+nYQBOXhEUopIeimm26MRuMwrlaUCBGlcxcv/b9/98XvP/FMujhm+QzLMpFEhFkQBDhAru1qisY57/c6N99+6/U33qjFM4qazmVLmqJVK2tvHH/+qe98HXEBxzK33XVfPFUoT0wOl4eNRq9Vr6Zz2uSQnhIbkt/JZwuHD18fhqHv+6ZhW46tRzQqCgKh9cbOX/7lX337299WFKVv2xihEKFPfOznNU07Ovbz8LyefvNzYENlGFajvhOGYURWBEEImQ+eC6CO8TyHcy5Syfd976p88jM//zn4kF/7vTsxQmODg8PDwyKm58+fHywO+JwvV5qG6zOGAoQxJoSKXuATgjzPyaRT2UxqaelKEHgPvuOd1x0+eMORo5ghQRAS6VS/37vj1tv6ne7TT/z4s3/6P4cHhz7967/24U9+zMPBhbmZg/unV+YX6pvrsaiaTiWANw3dWOCzWq3mun7AwrdOvnnDDTdkMinOOUEsHo8n09lGo2GAKU2vl0qlQBP32vHXV1dXAXTRNG1sbGxkZMS2bZEKIGmWrgInq6urP/nJTwBjcxwnnU4DK7HdbquqCvwYGLACcqZpGgBmrY19cK/e/j5V0zSQrwABKJFInDhxYnV9bXx8PBLRMcaFQmFsbAyqLmBJg4c4YvzS7NzS0tLE9BSs3kwmNTU1RYRdU/IwDIOAgdGD63k//MEPIppWKg3KEZUHrFgqZbPZgIUUE4aYY9uGaXbb3fXNjUQsDmg/51zXYyDAjOhaOp0OgmBjY+PNN98cGhy56667vDAA/jLGGKyrgeEA6DvkDHY6nVarVatVSqXS9ddfDzIoxhjG1LbtMPSBt9vr9SKRyNbW1vb2NmhZxsbGIItTkiQAoqTdcFUPCEMASywvL9frdYLQyMgIPESEGMbY8zzAPkVRREQAa9NUKlWr1VZWVuB0z+VyBw4cYIxBLD2M0qAgSGWz/U4HmOnxePzS3NyJEydkWY7FYmDRGYY+MFAFQVC1aCKRQAgtLS0FQVAsFiGqL5VKAVoDIAFCCNzkwXlOknZzDHVdj6fTywsLlcoWxKFSSkVRhtITnIk0TSuVSolEolKpnD9/fnJyMpPJVKtVmEWCVSw4bw0MDLTbbaDtQ4pUrVY7d+7c4ODgDTfc0Gw2gTcGkH+9XoeBO3x/QER6vd76+vrFixczmcyHP/xheILoKnOIUoop7Xa7AwNlKOPS6TTEcr/wwgvnz5//rd/6rXQ6bRg9WBgQYwA3wbIshBmkXIPXxubm5tzcnCRJd999N0JoY30L3iaYMoN613EccErbqVUgb/v48eP/7ff+n9HRUTB/5kEIBbEsy+12GyQXtm1blrW4uDg3N7e5uZlOZxOJxMd+/udhpgEhV9eCLH3XE0VRkaT19fW3Tr554sSJra2t6enp2+64/cCBA1OTe8AkT5Ik17UNw3jtKvfrloeU7c3KpUuXIhHF9oPZK4t/949fOHD4RpdjSVYtyzL6fZESVZIJRWEYhpwrEVXTNILw+uZGGPJ4PE4EihDyQ+44jmXZIH1FCBl9q91pxvW4qqsEC6bVDz3fcZyYHm3uNALbRoggTKVIhGCBc4SJEAQMsCLMESEE0C+okwghLAwRYlQQEJDuMYbZMWA6ABlwFFLEw8AlKBgZLi8vzV2emxmfHl++PKtIchB4IHJkDMENgQM3EomkEklKKXgbIYQQId7Vt7Xdbi+vrqysrIR+AABkOp0eyBdAJwSyUBDeAX221+sBV3J5edXzHISQLMugixQEAV4lQDcikQilYhAEhmm2Wm3GWN80tjY2+6ah9q6DZ1THr14dPv6nqRMvn/jyV7919sLc/MKlEPlTYyPDg8V+tyPLsh6LuwGaubSwWalRQfSD8ODe/bfeemvg+ZZlgcMDIQRTgncrO8I5JwjTqwHDYRjKsgicDFVWOAotyxIJdV1HFEWBYjChsU1LkYTf+Njfw/cj6fmpvdOTY+ORaMS2bS2WfPGlE29/6L3lob2b9QYmJGShIEkCJp7rsiBAQYCogEKGCUGUcM4RQwhjQinn/Jt/+m/wsb/8F79u223CnaFicntj8Xv/9pWbrju0cGkesTCbzw0MljHG3/3ud3s9o1AoRKOarut79+4Ff3B4zwVB4EFICMGEHzt2zLKsXC7nh6GiKGPDY8ly2W40Ll26tLGxESJ+4/VHcsWCHIm8+Pzz4DMOcv1cITs0NMQ5hgFTGIbAeyMYz8/PQ3EGSCHIA+EI8YMAPJcR57quW5bFeQjeORD0kUgkAhaCUe/Ozg7BAqU0k02BbB4hBHgeFYQACf/2zcf/1//5h4GRvX2fhyKxXVcgRKQCD3no+YhhjLHvu55v5YcGnCDcs+e6tz/wHj2aCRmKRrVavbK+utZotlU1ikWxPDIcicTCvudYdiwZGSwog1EzJQcRQWk1mpfmZtrttuHYPguNbo+IQjaVPnvh/Pr65rWkS/Aw6/dN0zT/8yd2K6evPfdZFDJoaVzbCUNfoBQhxFiIWCAIAiFIluUw8ARBIByZplmv1hgP8tncr3x890PUzPzQ0FAqk5Rl2XZMGAw99sMf/9Gf/e/CwHCz2fI5CXxGqCRIoud5YRAQgibGxhzXMvvtD37wA4iHS5eXjr12LCKogwOlRx553+HDh3/85I8IITfccP3DDz7UbLdCwpLphKTKyVR0ZXHpwqm3YqqST6dgl3ddGyEUieiyqipKxLKsV19/7ezZs4lYNJfLZVKJycnJRCoThhwhFIlEWq3W1tZWq9Pudrswts7lcgAYg/hZEARJoDAZCYIA2MTb29uQiXENm8EYX5POua4LNgGcc5hngTl4KpW6eGI3oOmdH9AFQSACdV0XcxSNaTA9rGzXrqGw2WxWVVXbdmOxmCCJUFjIskwQB/Sl3W4LgqBqkXK5nM1mESKqqkqyLAiC6/pgSdAzja31jc3Ktq5FXd8LvFBSZFVVe2aPIpxIp2Ka3u51Z85f2KpWCCcTExPFYhFcpMMwxIjKEVWSJKB7b2xsAOQARlOEkIMHD0Z0VdM013VVVVUkGchPYJAN6qR+v18ulxuNxtLSCiFE1yNQ2YBEDt4pQRCA27Gzs3Pq1KlyuXzrrbcSQgzDgDM1Go0ahoHxrjcjfKZhGJZlVCqVWq02NDR04OC+MAyZH1wDnARJKRQK7XYbGJBw3vT7/YWFhbW1tVwu9853vjMa04CPxTkH1lcYhjCwGxoaUiXVMIzt7e3V1VUIhpqcHKeU6vGYJEmypELZJIri2tpGp9NZXFwEoBT6xgMHDhQG8sAx1XXdtt1rMUG+60Hf3+/3z58/3+l0Wq2GoiiJRAo4iIIgCAKBYTSsK8B4MpkMkOLX1tYg6AnGzUNDQwgzQBNhZUJj6bpuNKJtbW09/fTT7XZbUpX9+/eXy+VCodDt9OHOw3zqWvler9dB3Xn69OlLs5dAGz4+Pp7OZRVFAXoZaDO1qI4xdiy72+3CHT5//uzJkycRQlApDg4OgvATYRaJRODaBwYGGGNra2uO45i9/vz8/E9felHX9fGxyb179w4PDwPnHWK+TNOkmEN62OrqKhEkCBefn59fXFgQRXFsbCydTl/DJsHqD2K5e4bR6XWXV1dymaymad12BwyoCoVCOpmEbs12dw3YlIjKGAv9YHl5+flnn83lcr/1n37H930Ik8CERyKRU8/t4v177vK1aGynVl2YvUgpNT32yhsnf/jjZ/YcPOyHGCFUr9fjehTOlIAzz/NEWUIEu7aDMSZEQBiD7RlUP0ClgobKMEzHsdPJNKbY9rzNzU1FlLLZPAvCarX67offde7cuc3N9cCyEBFEVQsDpKqaaXmUUh4GPPShRkE/4/J17U+CIECcE0rxbnAFwYQAbV+WqONaI0OllZWFr335ix/76Ie67SbigWVZiiKBXNGyHNu2Y7FYt9udm5k9evToyORkr9nc2trSNC0Wi8GqhtTmZDptWabneUavX61W+/0+QCef+tSnMsmU4ziW5ei6HnAGiyoIvH6/PzRUVmIJo9UAPVyn0/N9v93ugqVFv98HrlHgh51OxwtCPwgajYakKr12z3TsPLsFntFjx//qGvdr4vgrJ772jUf7lvfTF1/omO2pkZFsLqUrYt80YtEUEsQLc5fWtyuCIPlBGFW1D3zgA6JAer0e4oQQwq5y5kRRDAMuixJjKPAcejXUiTEGPSWl1HFsSojjWBABNjI8eNttt42MjCRj0WQitn5xt1D46H88GHjej574YRB4qVRGjsQe/9Ezn/vCvyYz5XqzhRDBigwFH/N9xDniiAgCZhxjHCJg8BGMMWcMIfStP99VPn7iT36ZM0uinue07rv9pi/+49/HVdW1rVQiDrGGzU673+93u33f91VVhp0aiHvgvoMx1hRVFEXLNk6cOAG4ghKJ7Nu3b3BgEFphSmmz2Zybm7Msq9frJdIpGDyDQXY+n8/k0oQQYIbBjqxFoggho99//vnnbdtOJpMAm19//fXAzGWM+UEQckYxUVXVdZyf/OQnGxtr4yOjUOxP7d0Ti8UMy+ScSyClDFEkEul2u08+9QTnvFgs6rouiuLwyEgskf7eD579xc/85sDggbphM4kiQjDnPGQCoYTQwA08x0WIcRKWhop79u0VxWi+OBxPlURJVVStUCgQQizXc2xXlCWHBbbtioFICInGlJjiudWZ1ubC1sr6Ky++2G630+m0zwNBEjOptBJRLcMEq45ut4sxpSLBnPQNA1wS/tNH/xqe1z89/seKJIuiGPq+KIqqrPi+qypyt9s2+/0w9HfJVRTPzc2NDA7t2Ts9WCpzFqyurr7vgT+DD+HqiUwuixCK6JHh4cHBoSHD6D79zE///h++dObCTIiwridcn3NEXdengkQQ9wKvXCxqurJ05fJ73vMuVZa/++i3H3rbg+9993vuuPW2yYmxMAypJDqercTjKAwdwxBFGvpurVZt99pTUxNKPHr+1WMrC4uFYi6VSsWjehAEfsji8TjHdHNzU9UikiQhFoqiKIvU87zl1XVJUiARGZhbI2Oj4ClVqVQkSSoWi4ODg6IonjhxotPpUIygUt+7d+/U1BQE9gG40mg0otFoJBI5fvz4448/PjU1NTk5SQjJZrPT09MIIbAngIONUvr4N3dNOjZa3y6Xy/FkQpbl6amJYrEIuj9412CuxBh77bXXTpx48+jRo4IkyrKcy+UGBwcRYoQQWY2EvgcIgSiK9Xr9scd+qEej2Ww+lUrpenR4dJRSCo5lHPOVldUgCAgRlEgEChpZ2fWu9DwPXM2MvnXx4sXq9vY999wDISG264uiCIxJwBWAewp+/d1ud2trw/Fc2zavu+7I3r17WRDqum4Yhud5vV4PIBzAmDnnluXUarVWqyEIAkTaQ7AVIQQ4XuC+CNQfxliz2VxdXQWlbSaTKRQKuh6D7JF0Og1q5Xg8Cn2z53mEokajcfrNt9rtdi6XGx8fT2VynPMgCKLRKGj94Ox3HGdhYcFxnLGxsZ2dndm5i5RS8JQBSy1QdyKECCeqqoKswfM8y7I8z2k2m4IsUUrDgCuKAinalIog0YAOrdPpXL58uVKpPPKB98EkrtFoyLIKd8O2bc9xwzC0LKtUKiGEFEXBmC8tLTmOt2fPnkwmU6vVOA+hyq/X61BIJRIJqKsAjYNB+alTp4aGhg4dOuT5DhxjgLfBnqbrOuEIFBKMsfMzFxuNBiBhn/iFX6SUgsoS5JywtsHZDrZNFCKYZs7MzFR36u985zsPHz4sCAJ42vVNo9vt8pBBJZHNZiuVrSAIDMOA+MIrV66Mj49/5CMfoQIG5jHYlFiWpWlavV6vbVd83291O67rXllYmp+fz2aze/fuBbc/xpht245lOI4D6k7HC8ClCJSeFy5cWFxc5JxDQtEdd9wBzRLcmW6/jwj2Ar9Wq0mCyDlfW1m9cOFCt9vNZ7N79uwpFovloSFN02RV2UVMGWeMGb1e6AeeF/i+PzM7+/rrr8uKmMvlMmQ35OO6B6is6aoo/OSJH+hqpGNYWNKefu7F519+dXJ6j+sH/W4vEtEJpWEYMowYY4hQ1/NY6IuiyBEBQSKgUOBqCfUrhYVHkO96DHHLsV3Hp1TQtKhtOJXV1Xvf8fazZ08fPHRgbGzkxz9+qlVvCLJGicKR4BkGpgSh3REkgJr8atAQlAphGMLwCnGOOENUwhQRzkIWiAJKJaK12uZ//c+//a53vr3d2FFkIZNNJZNJXY8QQgRBEATpGkHW6PUhEs2yrLW1NahigVQ9NDQEXENMiSRJqqxQWfZtmxCyq8tW1NnZ2fn5y6quAeANoAnG3PfdsbExeMqCICGEOMfNZtPomwihSwuX11c3Qs4EQjElfsCoJIN3er3WqO3UH75+l9r+t9/9L1eHj58sP/rojy7OX1nZ2HzjxJvVZqWYTg8ND0ZViYpC4DMnCE0/OHXmHCECoaLve+944B0D+YLneSCOA24vxgSaM8w4xlQUaeB7jAWO45imWdnabjab6UyyUCiAy0i5XL755qNTExPpdDqVShJJQoH/7c/PwPd7/y+N+r7baDS2q9uqGgk5/exn/+aJ515KpwdbfTPgCDEmyCrnOPR8BL5vV60+EBXAiB8hhMIQYXyt/PrYH3wCcTMVl3udrQ+/9+FPfeznJEoGSwOj4+OB53S7XS8MBEGQZZUQIop0a2vrm9/85tDQUC6Xk2UZGkfoC9nV9BsgIzebzVdfPhaJROLxOJRZR48eFWOxnfX11dXVXq+XyecGBgYymYxlWS+88IIgCLFEnDGmKMrExEQsmjBNEwaIsNEjhCRJAk17NBp1XRcRLklSKpUCnzCMsW3bru0ghGAK4ziOFtWBpsAYSybSQRB4nre9vV2v1ymlWlTX9cjo6CjHwoXZxU//h//W7DMhmu4GFsMo9FwYMQQBs00bMS5gEgReIZ/jnNc2qwgLo3v2j09MxeNxUVICJCTT+XgiEYnHkSSEjAcOQiFL6LJvbL/21Ned5qYma2BPEHImCESURUkUOUICpbbjgOrC83w38CjahS193/+PH/zf8Ly+8MQfUUwIIRRhzkLEuCCQWr0yvzCHEbruwIFkPN7tdjEPf/VXf3VqagLyUhzbzGazx64GWE3d2HEcizOmaWo6lXAcJ67rZ8/PnJ65vF1rPfX0M5V6U9OSthuGnGNEeYgYCgSEyoMlUaRLy5cZCv/Lb//2kSNHDh84aFlW6AcyFbLZdHF0BBFi93vtZuvsG2+8+PxzF8+e3bt/z2333LX3wF4Ro9WV5WeffmpicmygkO90OoVCYe/+faoWDcNQUtQwDB3H4iGL6ZHt7e3vfO/7kBYHdn/5fH56etqyLEESEULgMgCnHRQH6WRKFMVMJkMIucp+iMDK0XU9n8/7vh9yVqlUoBJKJdKgMl5fX8/lcgBdIIQ0TXv60d3JxeHb+pxzKgqiKKZTCdM0KRFBvw19RTKZ3NjYYozJqrK1tQVjqUQyqeu6aZqJRIKFYRCGAB1FIpFarWZZjuU6sEPJskpFSExCuh6hlJ47d2FtY4NzDlariVTStu1oNDowUADJN6U0ny8KgtBtd6Adf/nll+v1RjabjejaxMRENBrd2NhIxOLwH4ISKJGIdXrder2ay2ZlWQbJIRCo87ki+N0wxhKJFNhcFQoFmLfOzMzs3bt3dHS0UqkghAAAg20dngJUP4DuY4yXlpYuXLjwjnc8eNNNN0H2NhQxtm3Cf8U5B9KYa5uapm1sb62urnbavQMHDhw9ehTsaaBKs20bUwJtOmNBr9Ot1+uuZ29vb4NBKLg9Q8xiTNMhgRHyhn3fj8eTW1tbMzMzS0tLkhIZGhqCFg5cZ+EEAmaeIAggV5dlGWw/gaMGfOF0MgWzbIgeYozBNg4lWr/fd113ZuZCr9eDYdzIyIjnedBiZTIZUBIAxgmDb0mSIpHI3Nzc7NzFdDoNlwB+UWavD9KKeDzOCZYkaXFxEch28Xj8xBtv1ut1XdeHhobS6TRCSNOiUP5Ctkc0Gk2kU71er1qtAgZ89uzZ2dlZURTHx8czmQyUrc1mUxAEkeJEIpG/OjsOggC6lGu8Ls45wqzf7zM/iEajgMqruua6LiUieJCeP3/+N37jNyD1CPz6o9Ho+MQoY4yFqNVqcc7z+TzGNJ1Oi4Q2Go233nrLdd177rlnZ2dnY3srEokoipTP5w1j16zY8VzLMsBXMpVKua57/vz5mZmZ3/jMrw8NDYGyxPO8wPMoJqqqwVIURLHV7diu0zd7m+sbSu8o/PmDnyzHYgnfdZbmL772+iupTGGn1UVU/sKXvtrq9IaGRyu1GiUiooSKguMFhJCAcYQQBAaCQUYQ7uJSqqp6ruu6biymu7bT6XT63bYsy4PDwwEL9VjcdfwwRK7jd7vdVDLu2latsvG2t9+PMX7+6Wf1VN4yfeZhLAg89CHl5WcrMMYYeLFi/O8cfPgHqG8QDyjFFIfZXGp9bXHuwvmhweLl+Vmj1wsDb3l15Y477piamur1er1OF9YtVALXGhtFUTqdDnh5ALVjfX393nvvLZYG+v0+QRiKctAD+b4P41cYUl+8eHFldRVjEoaBKNFbbrkplcrAydvr9fo9s9FoYow5x7Zt+wETqVSpVc2+0TeNrUqt0Wo6DvgCuX3T/L1f+L9wdZ9/4o92y6+RfbXHfvBEJJbgVJqZnX32+WcxYocOHMin0wHzbdsVFKVlGGfOXRBlJfAZY+HQ4NDb77s/CAIWhIDSu65LEUYI2bbt2LZhGL1ex7H7xWJ+cnJ6amJssDxcLhWLxaKiyCC4KBQKiqJsVyrfe/Q7mqYV87l4NLo5t5s9995fLMHexzmXIpFe1/j4x3/1uZdei8UHGr2+oMgcEUIEjGnoB5zzXao1Z5hQKskAY8JHYUKuDR9//g8/QZFdLiWr6wsv/vQnRw8dcGyz1+04pqVpGmNBiDhjrFAYsCyLsUCSpPX1deiwoV8fGBiAjhljDFO/ZDIJu/mZt07B2s1kMuPj4+ANaFkWEMga7RYwbxRF6Xa7nucJkgieAoODgxhR0zQD38cYg3INXrknn3yyVqvByVQo5A5ffx1MmoHuwzm/JrR+4oknlpaWIOZPkqRyuVwaGOx0OlDpw1Hh+p6qqifffP3C+bkQyf/y1e82egip8W5gmZ4lUQFeDMaQ7wWII8wx93yEeCaVjmo6Y9wL/MraBsJ4YGyq2TZcyysMDpXHRw8evVGLpxRRlwiORujO2vylE8/qNFBV2fNAdMMxD4PAq9Vq4HogSVK32w3DUI/Hrh1UYNL4sfv+Gzyvf/7RH/qO2+12BYrDwKOUptPJQ4cO7D+wTxboxYsX//WrX37/+98fjWiWbRBCBgaK4+Pjo6PD11133fe/sgkf8tDHMwCLOra5s1P7wWOPRSMR2w3sAOmJdLvTf/6nL1+YvaRpcT/EnueDoSvhTI9qpVJ+7tLMf/vd373//nu/8Ll/bPe6L79y7Ov/9rW333NPMhprN1unTp166bVXLpw9NzY0nE0mXdPQolq13ZAi8s033fi2++4x+/1mo95tN4v5XCqVanXazWY7XyxSUep0OpIkRDVdU2XP8xARgDcDVk+yLF+4cAFjnM5mYPmNjIzEYrGlpaWVlZVGo9FutiYmJg4dOiTL8lNPPbWxsQGm4YVC4eDBg4AbBSyEnc73fUVSRVFcWrry9a9/HQzGksnk4ODg1NTUcz/cVUT/3C+XYZ1wzjkLHnvssTeOnxwfH8/lcolEYmpqanh42HV9UZYkSaKUBkEANtbVavVf/uVfJqanSoViiHhEVgZHhmVBxALtdHq2bSfiyZCjdqsLEJfjOIlkLBJRlIgOhd3m5ubSyrIkSffcc4/ruoztzr9M08SYxmIxHjIYH5im6XlBtVpttlu1Wq1QKBw+fDiVSEqSBJSmbreLMdeiuuvage9zzmu1GoRAdzqdVDIzMjICwyBBkIAd4jgOSKhAJ8U5X1hY2NnZsSwrnU4Xi8VUKgX6biB4XVOwKoqyurpq266iKLVa7Y033gDTqXQ6CcM4ELFjjGWRuq6rx2OyLG+sb4ElwfLy8uXLV2BCVywWHc+FREXTNAWCM5lMp9NJZ5JgNQ5OJeAlAcmYIGgHYwKECJjLEELWNrY6nc7q6uoDDzwQi8VAEg/mcK7rdrvdSCTih8E1U1yonoMgWFlZeddDDycSiW63C/iE67rr66vpdBohAkRM4JnB8Gttbe3KlSv33Xff9PR0pVLZs2dPNBptNpsXL150XTeVSuXzeaAnUkoNs9dsNnd2dlZWVnzff//7359OJCE8qlaruYEPdRscbwMDA4iTRqNRqVQuXLjQarU8z7vzzruPHj0KM9nA9XzfN2wL7jDEZuzs7BCy63paqVTATKtcLqdSqYFCzrKskHModODSarUaYHVra2vdbleShfHx8YF8AcpohBCVxEwmo8gRAIFOnToFfrynTp2Czd/3fVGi+/fvHywPQyQzZJq1Wi0wFiaEAHfFcZyzF863Wq3V1eVyuVwsliDzwPM8SRKi8RgQiSRdt7tdwOFEKlBKL168OD87m8/nk8mkHomCS4jjurF0Mp5MpFIJRVG+/bcXd9GvtxFJURELl6/Mvf7qscnpvZ7PLCfwA/6d7z/WavcDjhQ1YrsOIgJHBF1NFeMYYYzhFQuuGpj7vq9FIvfee288qjPGeOgLgrC4uPD4Y48Njo8RKmIsUkF0nVBRFMRDxzWbtW3b7N9z3329nnHm5FlZT4cBYQzx0AcSJPygn3GaQAhBZcav/iCEOENUIKHvJdMxgvwwcMxue2724sT4MOIcscDo94EwRymtVqtLVxYBKB0fH4dGMZlMguocXkM4B8EdhhBCBFqtVmcvzsAiAf+RWCyWTmeDIDBNkwqCrutqJII44pyvb6zAyzI7d+ny/KVmu8UCFo0lNC3qOI5tuz3TQAGqNRpwdpu2hThxXbfRbsHQ83c/+ldwsX/1nd/dLb/mVr/KOE2lcx3D3Gm15y9deuv0yesOHs4k4kSgYcCrjeZ2s16p73BQijIkYvoLH/+FZrP5yksvE0JEUUilUrqmpVKJbCY1MjIyOFAcKBVSqXihmIvqcUoQQiQiSwghx7UEQiPJJAr8wPcYRgCPIcQS0djjX6vC97vnER3mCPF4NBqNtzv9T/7ibzzz8qvJZKnVMUKCEONYUAkRoIPnQYgQQhwRKnCCEUJ8N7tAwBh/40+/Ch/7S3/yy3qE+U77rtuPfP0rX4wno063+9JLL1+an8vn8/F4NJVKTU6OZ3JFq9vt9HtAAgXWgqZpp0+f/ulPf3r48GHwyIa5jyiKvuOapqnFosDwFUXx4sWLx44d2zs1TQiRVCWTyezZswdR2m21ut1uPJkAc690oWC026+//no6nU4kEgKVrhk4AeeDEOJ5HiacBbuimyAIovEYxtjzfVEUk8kkQHGe59mWZZqmKiuQ2w3NGaxyPwxi0QTEaDRbta3NSt8Mfvz0q1/42vfzgxO90GYYBW6AEGIsCDnDGGNEGUOIIRywbDolSwRaNFGK+D4LPcRDRAj1GWdheMd73juxd3++MJiKxbo7G7Onjnn1JYWGgkgRJn3bwwJVKKUCBlUw7GUgoIN5Ft9NnQvDMPz1Rz4Lz+uLj//30A9EQcAsFCXKOY/Fou94x9uHRwbr9erevXtbjebFmQv79+wF3BGQD11Tt7a25k7u8pn23NSLxWKDg4OIEs9zDMNoNeqnz57/5re+e+DQkUQyvV2tvvzK8YWllVy6aJq25wWgPPc8Z2CgoEcjKyvLH/zAIysLiydOn/zhUz++/fbbd9a3fvjt7/3NX/zF9fsPj01NN3qdwmBpz/49Bw/uHx0dliJKo7EjUiGqKqbR0RXFNDoxPSKJwuvH3/jRj35cGhwUJDmXy01PToyMjEQUyff9gCE4pQBF7vf7jz76KLwFuq6Pjo5OT09D1B0CvSch9Xp9dXVV0zRYP7tiSVVRVfXSpUvguuT7PhgQDJWHHccxjB5QSoFABqbn86fScK/uf48cBIGkyIlEotNqQ5xwGIbg/sUxcl3XsT3I7ghYKIoiVM+QLYgJkSXJtKzA90PGVEVptlq9Xn97e3t2dj4ajx85cmOpVApDriiSJBDgtAqCoEXjgDdwzn3fXVxcPHHyeCKRuPvuuwuFgucG0OZBCwtKJUVRBEnu9/uu7ei6vry8vLi4CJBPNpuG5dTtdq8FCcRiMdCyra2tVSqVAwcOxONxcFIAx9F2uw2lDwy5wIAA6FxXrlyxLOvOO++cnJysVqsQQwRbKoB8luXAq9rpdBqNBvhUhWF43XWH9u/fD7mNFPNOp8Px7uA1CAKMKRTcV65cmbs0zxg7cODAyMgIUMp4yIBKL4oUfh+EfsePHwd/Wt/3wVwU/jYiR8BpFmpERVHavT4coidPnpybm+t0Oslkcu/evYlU3HVdTY2k0+lkMgljXBhE1mo1oAxub2xC+QKWEJqmtXttTdMEQYJvks/nC8ViGARbW1vtdhtjDLJN+DIHDx6Mamq/37ddF8asyWQSqjFBopZpnjp1Cn7TMAzmB5FIJJZMgAG1KIqVbfAGi0BAUDab9bwAMIyxsbHt7e1Lly4JghCLxSBNEugZtVoNPCkQQuDp4HkO0N2SyWRzZycIAsOygiDwvKDVamG6G83JORcIDoKgXq8bhrFTqw0PDx8+ctgwDE3TRFGkRPR9v983QQUJZtGEkCDwer2ebdvnzp2r1+t/8Ad/4Pt+o9GA9ALGELxl16IDMeZAuOz3+5ub2wsLC/fee+999923O5HsdhljGPNer7ezs1MsFhniMHmEdbi4uDhz9qIkivfdd9+9993ns9APA8syXNs58eRuB3XkASlArNdpt+pVzoLFxcVyeajT7voBChH+X5/9fwNEB0qDtu+7vidISsgZGDe4vi9JkgcnKTjUE7K5sfHQww+PjIx86Yv/fOjQoZge0XV9//79/X7/C1/4fCZXIESggmxZjqqqhKCQBSJmhtE7dOCgKMrPPv18JJqyTJdSGUH00FV3+2vse5hIXvuBFYsxlkQxCPyIIimKIIq8Vtv+x//7N7/6q58yOp1et+1YtuM4mVxWFMVe34zpUc+1LctaWFgAFiPEZd50002FgSIsD845HDcIIWj+O53OwMBAp9PZ2dmBxoAQgji59dZbi8Uix8jz/H6/X6vuNJr1brfLWCjLcq3RkKjAEKlt1yzXWV/f7PdMSZJt12E+txwbandBloKAiaLIOAfm1a89+PtwjX/7/T/YLb/WG49O7zlwaeHK4uqqICnV2s6VhUuc80N7D4qy1Gi3zl+YqfdaVBC9wBcIlajg+u7dt9/zcx/+4MDAQOC54KQSi2qU0lwmJYsiFQREkW30/NCbvTjzH3791w8ePPjOB94Rj8dKAwMTExOyLHMehpwhjIkoSJLg+z7z2Q/+dTcmmaTPZLPZqamJYrFIRRlx8vl/+rff+e+/PzSyb3l1k6EQCRIKCSICAt82xgkhjCHgokGyAWKQV4C+9ee76Ncn/ugXBgfi6+tz3/jyP/3cxz7kG/3AcwUiWJZFMLJtU1Vl13X7nb4sy0QUwLILKjB4YFtbW7ZtA+cXrHWDIKAIu65rey5Q/CilKysrCwsLmHFN0wqlgatsZRus3gIWAvcZ+ryZmRnY9Av5gVKpNDIyAmsUGkHHcaIxDWPMQ/bSSy/NzMzkiwVN07K53N69exOJBPwapVSAtDtCwzB87rnnZmdnIdEin88XSwOZbDYIOCcoqgphyMNQfOaFNz/+i/8pURyySRAS5jrhruSEB7vgMMOYE5mILPAR9hAPZVkmVPYdHvgIh2CCoDd6venrbjh6+9258kgqHuvUVx//5pdV1tdE3u93fBamM/lYMqFKMmcBTLLgcUAjUq/XOWeCIIbhLtn5t39ul/v1W3/6AMTLjA4PF3IZURRDFEYiysHDBw8ePHjffffpmrazs6OKAuOciJIgCCKhjZ3a3/3d3x2Z/A/wIaOHWuXhIU3TLl26dO7C+c3N9c3NzTAMU6nMzMzM0MjY5NSeVrv3vcd+UKk3cpl8GGBg/GDMMeHT01PXX3/4G9/4+u/8+m/efucdK/XNMAyjsmo22q/85PnA98sjo+/+wCNHb781M1hEu2bOISEIcYQcd/HKvGcbQwN5FPjtdisWi/mMsRD5IRNFkWK0ubm5uLBw6NCBkGPYOCYnJ6/5IcFmAQytXq/31FNPlctlXdehUxweHk6lUoZhgG4rCAIYVnLOn3766U6nk81mgfRwww03pBJpz/N0PXJtp4OKoVKpzJxMwJ/Y5PlSqbT/4IFEIgG4MhBvOccMcUgd/snTzyZSyXQ6HUsmisViqVQyTdPzA6C2KIrieS7GpN/vQd0jSbIkSQyRnZ2dN944yRi75ZbbUqlEr9MaGBiAjclyPOACh2FICFIUpdNtbW9vz83N1ev1WDRx7733ghJQvJoD5vu+F4SSJIlUAAFyvV5fXl7udruG0SsWi6BqlGU1FtNh6GZZFszgDMOAk35jY6NSqcDAKJVKgd4ZFHCdTgeE5UC0397eTiaTrVZrbm7OcZzR0dF8Pg9mUYZhCIIExyTwsjVN29ra2traKhbzqqrOzs42m81UIhaPx/VY4mqnwRQlArdXlmVVi5imubi4CAQy3/cR281Qhzqj02kBYw86jVQqBa4TMzMzt912myRJjunAEA2Eh9VqVZAV0E0Dv77VagFVv7ZT/cxnPpPP5oA7sbm5CXg8qCugt/RsByEEtIpGo4EQyhVzqVQqk8lFo9FrqslrVNcwDGEysLW11e12z507J1KcSqVuue226elp6BYwxp1Ox/MdXddhTiQIgmmalc2tc+fObWxv5fP5gwcPZrPZZCINdXav14PpsCBIsNRhYrW+vm4YBhiJUUrj8bgoiiMjIwB7wPyXECIIxHGcbrebTqcx58vLy/VGA6Q8U1NTqhbpdDrgRhFRZJBxKIqyvLgoy7Ie15vN5rFjx3zfHx0ZTyQSihKhlAK5G9jxhUIOeGOmaZ49exb8kF9//fXTp0+XSqXR0fF9+/aBrUm73c5ms4oi9Xo9UMwRImxvb9dqtWQszjmHKPpisVgeHBBFUb4qUAg5IwhnctmBcsn3/Va9tbq0LFC6/8CBdq/rOM6JE8ejmhbUD8ArPHHUMj2HEFTIZzRVPnPq9MLC4sToWKPRpKLa7Rl/9w9f2N7Zmdq333ZcQRJBMiLKMlRjQcAY4hhT2HM2Vlfvf+CB8fHxL37uHyf2TPXaHc93Oo3G7/zu7zIW/P3f/v3g0CiiAsKEMRaEPqVYxMgwepPjEyMjYz947AmMBT9AlAgIkWuDo2v4CCIE8Z/xW786miSEUEKCwI8oQqGYXVycffYnT911283Li5dPnjguyzIP2ejoqBbVk8mkHzCEkCzQXf8IjEFUUa/Xfd+XFLnZbM7OzmqaNjIyAisc3nFFUYDCGIlEVFWVFCXwvMp2jXMuKfLc3Nzc3LwoigKVUqmUaZqiIvu+v7Oz0+sZXuCbfUuUFMdxOr1+davat2xJkgCQhmqbEEIFAbTeYRj+xrv/GK7y1z/7od3ya+8Nvek9B55+5tkXjh3rGZYgiWsr641GY3xoDBG8Xa3OXrrsoZBjjBBjnMlUlETKA/+NE6/vP3iQew7nnBCEGDNNk4cs9HzGGGOMSlSW5er29quvvrq9uTU9OfXwux6SqHDp0iVESSKR8Hw/5IEej4GqnCD2+L/Vd7vwD8ahK200Gusbm3v3H37ttTMf+vlPlgYmt2s7PgoRR4gLWJBQyNDVuRWYTnCMMCGcI6DkI4yvlV8f+70P7ZkorSzOfOkLf/vxj36g22lThIMgDIJAIERRJde2nn766crW1vDwsKxqMHCBIQK4J4DCDvjyTz311PLy8tTUFISsjU1OjIyNQr4EYrtqDoSQoigvv/zyxtbm8PAwPJV8Pj+9fz/3/WazCe2vLMvZbFZRFNu2L5yfEQQBelDGg2g0ClZenr87m+eMeZ4H5jfAd4EFDfEsAGl4nrdTqwaep6pqo9UKGB8aHhYEuWf2VRGVSiVR0F9+7fxnfvOPK90+TahW4CEieW6AGMOUEhaGoYdYKBCRYkkRpVQq4fs+ochyPO6TbrdPCPI8W1MitutNH7juhtvvpnKsNDiQ0oXtlfk3jz2n0lCmXJQIZsjxPUEQPM9zHBvuDJA6r4pcQsQJoQhgp0+8/Y/g1nX4q/fefTchaGVpOQi9Vqslq9KRI0dS2bSiKAsLlxqNVqFQEDgOORNlJV/Iqaoaer4kSd/70ip8SJu9sri8/Nprr81evkwREjBBCGla5L7778kVsvOXrwQhv+mWm203OH9x5sWXXkaIDhQGoGHq9DpHrrv+/e9/3/bWVlRS9+/f/9iTPww5+8yvffriufOvvfjK7/zO7xy56eZYNokI4hyBdYUoimHoE4DYPefVF57zLGN0uJSKx4MgQJRyhh3PVxSFYnLx4vk3Xn9dlmUqiiAWA+ILlBoQgokxzuVyKysrJ0+eNE0TaPgDhUImk2l3u0AAuibEczz31KlT2WwWTLwymUxE13jILp6fWV9fh+jGMPQFQQDnFMdxrmU+vvMDOkKIYzQ/Py+KMrhduK6ra7FSqeS6riCJjHFQA1BRJIRIiuw4zrPPvwAIcSqVGhkdKhZKfaNLCIGarNVqpVNZXde9wA+CgFKx02q/euwlhNCtt9xeLBbhYuEk65k9RVFMazdpuFarXb58ZXx8nGF25swZRY7AKBA0v4DMBUFAKdZ1XdO0aDS6sbZ25cqV0uBwOp2+cmVpenoSiiRglyuSAOiIKIqRiCJJEiRWLa2sRSKRBx54ALx8DMPw/dD3fUgGpJQCT8jzvFq9srm5WalUIpFIJp07ePBgLlcAVyRILbzGDzNNM5fLtVqNs2fP9rvtZrPph3xqamp0dDQej/t+COWLbdvZfA4mgMBkmpmZaTc7I4ND+Xw+mYwD+1PVNRiwiqIoCARiUk3TBHPXUydPARtscHBwbGziGgdUj8dUVSWEFAoFKMU2t7YEQdAiysL8pdnZWcYYRE0XCgNLS0tgnCsIwsjIiOs42WyWEDJ/6ZKqq5B4vbGxQakIvjlQ3GOMwRFN07Th4WEQa9tm/9y5c9PT04VCoVqv7+zsQDgmmPdiwsEwiRCiiBLch62traXVlZGRkVtvub3RaIANPcYUeldo2wDUlyGgWpI0TWu1WsDHB+Xy6vJKJpMBZiGw7GVZVlWVXDWisyxrY6uyuLg4UC7deOONMBv1HLff7/c7Xc6541qU0lQ2BXt+s9m8NL9QrVZDjmRZvuuuu+Al0jTNc2wYLBJCQh70+/1Wow0b3cbGxoULFwDeGx4efs973gMGEyANsSxLFmTol8CDCQ6C5eVlIB1GY9rY2NjNN988ODxsm6Zp227oe44b0+MRWanXG2EYcsKXVpaXF5dq25UDpY/BKzx0qJ1MZTL5jBIRCUYRWfnaV77qu16pVGo2OwHCRIy8efrMP3/1X0fHJ4AtijEOWOgFIZaEMADWFwZKfq/XGx+bOHrTjd/73vey2axIhVqt0qrXEQ9/+3d+u15vfOsb3xqZmgYDMIxxEHgiRmHoRxTtztvuPHv+4vnzM7Kk+n6IMGHs38EtxhjMIq+BXuhqFDfCHHFOCGWhSwkaKOW3t9Zef+2lseFSu9EIA8+xzPX1Tc55t9+TZRkT4f7778+kU77rwtzQ8zxgV8NxDE1Or9erVCrVatU0TWDNTkxMwLDe87y1tTUYc9mO1263fT/wPK9nWMAR7Pf7tu2CVRhY5q6sbwSuhwjt901CxTAIOIKFQOAaw3A3lxbm4D2j962/eA4u9vf+6Zd3y6+b70Vjk1Nvnj7z5FM/kVV9dXV1cXEZIVSr1URB5hRfWlykVPTCgCOGEacIZ9LJTmvnK1/50s995APdTqvf6Xi+I8syYvzRRx9TRGmwNBiPx4dGhrPZjBqNBZbV7xtP/Ojxl19+mXO+uLh455133nLLLcMjI4Si8uCgFosihFD47+jXB391iBCCMT1//vzxN07osczXv/7Y8ZPnYslcs9MNmIuohDgVJAXzkDEWBoxQenVoBm4iBCGMOMOUXuN+/dL/+HhEwYRbubT+F3/2P47eeKNEScj8SESVJcFxHIoRY8xxHNf1AfQCbSOgppZlSVQAsjO8llBfq6qazKQTiYTjuTAvR4xDWi0Qs5aXl+cuzcuyLIpisVgsl8vwzyCH7Ha716yWO53OSy8eg4iMYrE4NFweHR2llHqe57gucKTEq1zgl1986fjx40AyTafTw8PD6WwGRnsYY0mgAiGCIFxaWPjRj34UT6bSmVw2mx4eGiiXy4jLG9vtz/7lP3/1u48NTk1Uux1GaBAwxEECGQgiwRz5tqfIEYkKkYjCGDPMHgsRxoLneaHvIcwVSVVVdXrfPiWWbvasgXLpnrtvi8v03Buvba9d0RTOmW90e61WixMM3Q9CKJFIEEIEQcQYiaIoKyIkxkDo6X/+6K7/yOE70L59+1zbYqFv27ZpGzs7O5VaxbKsYrH4xpsnl68sDgyUCrn8QLk0uXefqqqXL18OgqDf7QWNg/Ahv/0n79B1vVQahAPbtR1MuOvaq1ubd9x608GDB+vNxsbm9i233ZbPFTcr1ZPHT75x6iRGlCOez2ZrO7V3P/zu22+59fLF2W9/79uE0jvvvuvjn/gFQsi9996fGygwn/u+jygRRYEhRq7SSBFiGHPEw531la9/9cso8O+/7x5d12zbCXxWKg3CcatpmqJIOzs7UC0FQXDixImFhYV9+/ZBla/rerlcBgI4SNJg8SDGXnzxxZeOHbvhhhuANCpJ0sTERDS+K7FuNpvr6+umaRZLA/ls7vLlK3Mzs8BDisX0crk8NTUFG9811/u3vVeJxhOmaT7//POVah34zhD5Rwih4q4EHXQeVBTAcIEIAmPMtl2M8enTb505c+aRRx7Zt28fRyHMTcIwDHwG8BURqG27ru0oirR05crWZuXSpUvJZPL222+/7rrrEEK2ZwdB0O21ZVlWRAljHI8nTdP0Qm9zc3N2Zr7RaBBCgIhWLpfjcci+3I2LUVU1push52HIYQ44MzMDyeWjo6OlUgnzECEEMBWwdMH13gsCwzBUVd3Y2JidnVUURZKUVCoVjWqyLMNrlclkJEmS5N23dXt7u9loT09P7+w0FxYWVFXNZtOCICmK5Pthv9+lVIxEFEDQZZGGYVitN15//fXp6ek9e/YQIoDWxHGcvmlcm8iDzK3fNy/Nzu3s7HSN/q03Hb33bffDnTdN07Isy7J83yVEgDqg2+1ixqGdq9VqGxtbuVzufe97X7GYZ5jA3gUzL0mSGOdh4DmO4zsu5FIDGevgwcNjY2OTk+PXHAfa7fbm5mYsGvV8v9VtQVvf6/UoFWFsDSRlyHUB3Si/6mA+UMjV6/V2u53JZOYvX67X64CZFYvFdDodj8fBD5JzHtN16DcMyzIMAyEkSVKtVnvllVd83/e8IJvNTk1Ngbk89CTwyPr9fjyepBRDjaVFdUmSZi5c3N7eBL8VYEP2+31BEDzHEUVxYnwqmUwSLdJvNqv1GogW33zzzZ1avVQqZZIpURSTqTghZGl1SVGUwcFBXdcFKqmqurG1ffHixVKpNDk5CVAiC3yYM6ZSKSJgURTNvgVSWaCxSpIECOvevXs1TdvY2ADqWD6fz2fyqqpWKhXQrna7XdClRaPRIAguXZ5bXl6+9dZbEULtdrvT66UyaYQQ5iRwPYQQEQVKKSJYUyO+4144tosfmeLx93/gA4ZtadFIPKZThHYq1W9+/RuZTCaVStd3mkiQ9URifaPyrUe/e+HCzNTkFCGEYWQ6rqiqjLGAIeYzIgqcY0Swa7mPfOD9rxx7Gbr6Q4cODA8Pb6ytPP3Ej/74j//4+Ik3f/riCyNjE47nyrLoWDYmHDNe2aq+5z3vcZ3w2Z/8RIlojuVjIiBMMMZgSgBlCuchY+ga6Qv9+2gyRCykhITMHR8dXl659PwzT91+842tZt1zYPoUjcfjlmObpmmZDlT8lxfme51uIpWURSmRSkK9ew3iYozpui5JUhiGtm1vbW3pWkwUxeXlZSBHqqoqSKJtO4gSCGgyTRsRbNt2v2f2+2alUmk2m4gSURQd24WeIeRIllTg7AOED+4/nudgjKEWzGQysiL+z1/+J3hGf/61/7Rbfn34V4YYJlcWV7776A8jkmZ7fhj629XKTbffvLW9/dm/+D/JVLbd6qXTedM2TKs/WChixKrVzbfff++f/en/mBgfVgQCfvcIoSBgjuNQRD3HZWGoaWo0nkQo9L1QlKWlpaWnnnrqqaeeeuihh2655ZbhwaFcPrO2tvbjH/94cHAwkUhUr4zC53zgVwYZCmGYqCjR1eWtT/zSf1heq9ZbfYRxyGzGGcJKYaAoSUK9XsdICAIGpo4MM0lWMaaO5SIUEkH4xv/YLb8+8+e/4Dk2C20BBRz5jzz40C9/6hduvuWIJBLHNiVpFzdSVY2KQhiGjUbj+Wefo5RmkqlMJqPr+v69+3b5uSyklBJRwBhH4/F+t/ulL31JluXx8XHf91Op1JEjR0RRBBCFUirKErQ+nuf9+MknJVFMJBIUE0rp9PR0tlh0TRNYsYqiwOqEdxikSdFoFJADGD1Ax4YxbrfboJS+fPkypXSgUISjRYvq2XQmDH3HcQhFiqK4jg+aWDiVJyf39gz/69974n/99f8dGNvTcRyXcSxQ33FZwDFCnGMqiBhRWZICx+K+I0tCGPqSpLiO7/t+Mq5JkoSQsLW9jXiAmI8wQVg4fOc9D9739s7m+oVTx1MZ2fUsRVAIIQHmAOQEQchD5vu+RCWMOWPMcWxCSDQaRZSYpvnp9/75LhjzwfLCwqVHv/89FvgchQ899M6jR4/qun7p0qWdnR0v8EM/iEbjxWJRjejVRvO733/0Hz7/BYQQRehf/uJV+JAvff934VSrVCqet8vRoQLWtAjEVN99993gf3Ng/0FNiyqiVN2pLy0tnT9/fnF5SZIkw7ZuPHzDe9/1XoTQayfeuO7I9W97xwNgAlTf2QHkFeJN0um0oqosCEIecO4LIvVck2Jm9Xo/fPR77Z26rmmJeKpULE6MT2GBqqrq+h7jHGNMya56d3Nz8//D3n+FSXZd5/3wPjlXzlXd1bknYwIGGQQJgBCYQEqMMimK0l+WZAVLlvRZf1myZVmygi1LskwqUMw5Z4DEEInImIDJ0zM9nUPleHLae38Xq4HPz/Pd+8p9hdBd3XVOnb3XXut9f+/S0g2QeaZSKehRwSwmjuPhcEjiaGJighA0GAzAEZnJpMC5BqJjSMmIoigmUSqVcl230WgJgsSyLOiiUqmUJMtL165dunSpVqttXZ2Aa/XIB/O8IMGBeGzZlmXB9tnudp566qlebyDLcrlcBgQXw3GyrAJVDoBkmqaBukUUxXQ6fenChfPnz1erVfD8prPZMIwdx6GUgpKd4ziR423bvnDxVVVVIdEPLIqQsE4QiqIoCD2EEKJ7rClokzz33HOSJD388MNRFFmWBdstCAPA7MaybBhHIKxmEdPpdM6dO0cIecc73pHP56MIj8djhFAymRwMBq+v+4qiCIJgWRZgstvtdqfTOnTo0PHjx2FIAfR2IKQAIRMk7UCfb7Z2fcefnKxNTk6lUgmG4QxDiylBCHlukMlkdF33fd8ajxuNxtWlJcMwDh4+ApZ427YpRqDVA6N7Op3u9/uXr17BUTw5VW+1WhD6WSwWC4UChBZAMwnHcT6T1RRVkPYWrmvXrt1yyy28wG7tNGB6CIhdmPBalhWGYSaTAl2EKMpra2vPP//85OTknXfe6fs+QBPq9brjODTGQRxhjPv9/t6YRhRVVVUUzXGcwWCwf/9++KVQi2iaAkp2ALSCzdAwDFXVt7e3V1dXr169euDAgYceekjXdY7jEGIty7JtezAc2o7pOE4uk4VzrOd5PC/KstwfDAaDwf0PvFHX9SgIXdcVBKnRaHiuLysSWIZ1XdU0TddVmH6urC6bpnns2LHjtxxFiNUTKYSQbbsQ8yeKoiQJcPuCIGi1GhsbG4C9ACrY1PSkoijZTB5jDJg3eNJd31MUZX19fTweB56/vr5OMZYUpVyt7N+/P5lMBkFQzO+NaIfDYSqReH14PRyPL1y4AMi9YrFcLBZVVa3VatlsFkYcUCVwHMeyqN1uw9q+tbV18+ZNUERMTk6CEwv08vCxz+fz3/r4CjzC9707Dd+5s7vV3Nm1xmZtohq43s7Wdq1WU1V1OB4HEc7mCo4fnD5z9uOf/FQqkZycnXUCP0ZMFGFMKM8KYYRZlqcMu726+qFf/MXm7s6Tp04dP3nioZ96cGNjo1arrN5cuXr58nve975PfvpTDMOIihyGAUjdRY6PY5zQkydPnnzppVdWl2/yohwFmOUkhBAhlBckWDRYluU4AeoHjDEkQSOEEAP7PzZU2fPG++am/uSP/yCfS89MT5TL5SgOIGA6CCKMMSGo0+3yPB/hWODZIApHgz5l9iK9DSNZqVQUWRMEAVYDkJDGYTQajb3AHwwGo6Fp27br+kNzzHGc47lxRERRHA7HlGV4Tuj1eiwLNUYYxlEYhlEU7Gl+WC4IIoSQYzrQvSYx5gRe0TVe5DiOA6gvpfjff+Bv4B79xedfK79+9jdm+93hxUtXf3zq6ShEsqbyPD8c9371N3+t3W4/+NBbK+VKpzla3HfA8Z3Nzc1apTQcdJO61um2PvxzH/ivf/afc4UC9izwM4ZBzHGcKmu+43/pi593HKdcLucK+cnJyWwul8zkEMOYg8FgMIAee7lcZBkG7OUCL61fLuxtAz9fADk5IUiWNC9k/suf/e31ta1Of7S0dJVin2FoTDlOEBRVtMc2QgJieYRYRDBClJVkgVcCz0MkRgz90p/v5WF95A/enkmma5UyojiZUCWO+dM/+cNkUvF8M6FrFOE4jhNGKpFKU0pd1xUEIQ4jjHHkBxzHGZoOk12MMWIZ3/dlTdV1neFYz/NajaZlWSAyTafTIDeB4VEQBJRBYJPBGK+sro5HIxJjWZZrtZphGPBgx3EM3yDLci6Xwxg3m81PfepTEJMC9qiZmRlZliO893mFEyHLshcuXDh79mwmlQamABy2giAIAg8xBAQTABFYWlp64YWXDCOZzhaWVrc//flvNMcOElVW0z0/FFgmCAKeEQliGFaUJIllKA682LfSCU2RRJblbcftttsIwcxeese7f+bI4X2lcm56uq5qyYgKg3Z3+dULj3//m7rOshwjSnKIY1GWMKU8yzq2Nx6OfN+XRdH3fUqxqqp7rRGBp5T+4lv3ZuQX1r7yiU9+PJNMtId9mUN/9Ed/+La3vQ2ujO8GN1dXrl+/PhwOd3ebvcHgOz/6UTad2bewyHFcFEX/+mf2bCZ/9tGfj+MQWKCiImuaous6aIxYjon8AITYqqoe3H+wWq3CUxoTDFWIadu9Xs+1XBhtm449MTFRKpcZjoWpB9w4GL2lkykQDGVy6VK5UCgXFVVGDEaEIBxElh0FIcVESyZ31zafeeaZ6uSEZuiYEI5n9i0s8jzf7XZTqZSq6lBycRzX6/X+/u//HmMMqYLJZHJxfq5YLEYRBsxjEASiyMMkbmlpaWVlhWVZTdNkVUmn0/V6HZDiQRCBRRcYsBzHLS8vQ9Ve0t4N1+qOh9h+vx9FseN5giQDFKpQKMSEJBKJMAz7/f76+vrNmzfvvvveu+66ixACQ0/HcRiGCcNQEDiYjgVBEAXB1tZWp9Npt9uU0rm5uSNHjxuGIYriaDTaOzuGUS6XEyUe5npra2sQDeQ4zm233ZYvFhOJhCjxoiiqig7k2GQy+ToTEqRLTz/9tCiKkI8Jw/pOpxPhuF6fYBiu3+/nMtnXz0Jg7/rJT56Dt1av1wHtY9s2zAHT6TSI0kCSfOPGEnQmoPcDtBRQfb2u4oKWFS+wsiyHnr+0tOS73j333CPKkizLlmXFlHhuACZoTdNymcxwOHz59On19XUvCHO5XLVaPXLkSLVcgzabZY33zHcsA3Uq8PrB9Le0tAQFx9Fbju/fv7/dbsuSJPECy9AwilgOZTN5z3fgr7q6tLS6urq6ut5oNA4ePJhOp2dmZiYnJylDMpkMi5h2uy0Ikq7r3W43DEPQWq2trbXb7Wazmc1mYUYDhwEAmoAC3bZdcAOAy+E14oZHKTZNE6aQrVYD1iiO40qlSiaTEQSh2WzatgtctJs3bzZ2m7KqGIZRKBQcx+l2OwLPgwQwk8mUy9WjR49iQnq9HiRzDPuDtbU1QhBwLgAjByLujY2NUqkEmUI8z1+4cME0zZMnTniet7657bq+IAiZTAY2ZsCXA3mY45hMJiNJ0srKyvPPP1+tVh988/3j8dgyHTC6jsdjmEJEOO71erlcTpIkEmNFUSjG3X7/6tWrBw4dPHnypO/74+EIZho8z7u2DThQjDFBCOK/HMehDHIcD1rFx48e63Q6ICmDZafVaiiK8loypmcYmiiKOzs77Xa71Wptb2//9m//9uTkJKj1VVX93qc24BE+9lM8gCod24yDEEfx5uZmv9vZ2NjwPWdhYSGdyoZh6HieKKu6kWx1e48+9sMfPfHk5MwsK4iEIEqR7fqKokUxEUVx/ebKe3/2A6IofvELn8sXcz/7s+9/7LHHVq4v/e7v/t6ZM2f0ZOLAgQN//Vd/NTkzA0MAQgjDsAyh4/H47W99m+u6P/judwVBxjFLGBZRluMEHGOW56G9AqJAjCOCMUDa4LESOR6TsFoptHa2/ugP//0vfuRfddoNTRVh1H7p0qVMJpPPF9PpNMNwPM8jhokJ5njGdV2eZ8ETIwhCvz/M5XKeGzQaDTB+UYr2HmTCsCw7HI6DIApxDGWx6wWGYWxsbwV+CJZzLwgDP0KEEQQhjCOGoYqiEBq7ruu6NomxaZrdVjeKIl01UqlUykiIiuyELsOxiNDt3Z1Bv0sR/eJfPAX36PNP/sVr5dfvHOlubP7jP/zLjZtrRiKHWNZIaJ7nVKtlXuCefOKpn7zwwtTEfDKV9YJgfXPDDWyB41mCc9mkxDG/87v/9uGHH+I5FMchxzC6qmma5rg+QA4BU6Sp6gsvvMDz/PTULKRelEolMakjjHc2NmzPBcWGrutf//he1vL0kZYsy5iQSqVWqlRjKv7V3/3jD089U5+abTV3nVHHNMft4QgTki9kKEWESlFIgyiGOtr3QxIThEkyoQk8+99+6+Pwsp/83n/KZbMiL7CInD39ysMP3f97v/dvr1y5uL21lkwZoijkcrmDBw9xvEgIAqM7FE8JTRdF8cyZM0888cS+ffugh7m4uDg1O+P7PhRDQBABL/rKysqpU6fAlySKYqVSAVxbp9cFEgTHcYhQhJBpmj/4wQ94ngfjnqqqmUxmfn4eIQSnc4TQaDQCpMWVK1eSyeTk5KTruhzHTU7VE4mE67oIIRLj1zVVYRhevHjRcbxqqchyCLGsoijlaoWQvQAoEmPbdo1EenWz9ad/+Tdf/94PU6VJJ0aY4VAcsywb2I6WTBGCeJ6nKA4cM3LG2WxSFPnmbgMh7uiJk3fdc+++/QcnZ2czmYyhiJoqCSwjSRJlOXdsrd24/ti3v/XqKy8WCgXT9fw48sNA0zRFkmHwH0URxzGEEI5hwEEGMiOO437xNYniX/3zL+3fv2hb43vuuet973vvxMTEaDz41re+9ZnPfKa50xyYpixKyWTSdV1VMyam6hhTmOC02+0//NXP7B01/vmXBYED0UwURbqhcogJQ9/2bEopxzCEEMi0vueuu48cORJFIaDqOYEHXUscxyzLsZhGUQQiNiCZCa/FaDIMA0uepij5YqFWq6WzOUXRRE1FPIviAHEktqxxv8exLM9ynU5nfWW13+/HNI7jOJVJV6tlnuMAig3tdEIIGNHhuOY4DgAqQd/tOA5MfFieg1VekiTfD0F1BMUQ+EJ4Qbh48WIul0ulMtASk2WxWq1altXv96EOu/T8nh7/B8//yYkTJyYnp2qTEyA0ZHkergB8RGHtew2alVpdXb906VI2m52amkqlUjAY8n3f912O41iEisUizAVWVlZ2d3fvuusu2H3X1tbmFxez2WwUBJ1OB4ZKiqKAdRwhBBqjdrd7++23g6EPR5GmaZKiwLw+nU7DEOF1CEuz2dzY2Lh58+ZDDz20uLgYBEEul+v3h3Ecgr06aRiw7wI6fzQaraytra2txXF86NCRY8eOZTIZkBlhjIfDoeNYQN0DwfVgMGi1WhAyw/N8qVCoVqucIFBKVU1GCBmqJgiCpqhwj5rN5nA4bLSa8/PzhmHEBHEcF4ch1Os8z8uqKooiYplz584tLd04fvx4OpnqdrvrK6sTExP5UlHTFNhfAfEKxXepUkYIra+vnz17NpPJ3Xfffb7vD3pdjmEEQWAYRpZFXU8Mh32EEKWUMMgwDE01Go3G1tbW9evX77///n379rXbXfgggU4ZrAMA04EPA1Sl4/F4Z2dnd3f3LW/5qVwuB8QjjCn8L1VVTdMGY7+iKJIkdLtdyE/c3t4+ceIExF4B5Bb+u+06GGNVAXM3Ajb1YDBoNFo7je1ivlCtVoqFQjKZTKeTkiQFQWRZFsfzsiwLPJ9IJHK5jG3bFy9e3N3dDYIA5Du5XK5SnUgmk6Io2rYdhSGcTMD6yrJso7EzHA7BO1UoFOCTmcvloMpJJg3I0QLT6/b2NtB/nnjiiY2NDUmSQAesKApiGUop/JdysRIEgSrJiq4NBj3Hc2VR6vf7Tz/9dBRFExMTtVqtVqtBENYeo1uWYVybSqVYjrNMc3l5eXp6utfrnT17ttlsplKZbDYL35BOp3d2djCmhUIO/lRZVyPP29jYgMmm53k3btzo9/vc8BjctYP3Ydf3fN93bccwjISuVqvVTDpFKR32+s8++6w5GqdSKcQyluOGYWgkU7Kknr90+Qtf/ebGzu7k5JSsKGEcBxGOMeU4zvfDYjF/5MiRZ37yVK/Tfue7HjEM4zOf/MRkvfaud73rx08+eeedd4ui/I8f+9jM/Lzn+TBD5FkuiqJCLnf8+LGrl6+cffVVRU56nsexIiYxYoTXuOgxYjiwu4KU8PWhJMMwiiTwHBqPOn/yn/7wl/+fjyQMdWd3i2e50WgAc4BWq8XzfDabTyQSM7Pzsiz7gcuyLMcxCKGYUM/zXMcfDAaapne73Z1mg+d51/HBr4YQOxqZlFLH9sAs6QW+5/k8zwdRFAQRYBTjmMRxzHMipZQyyPMcsLv6vu/5TiGXl2WZIZTneZjqYEwTiYQgiX4U8gziJbGYzxqG/qbFn4N71CIvvVZ+/erCyy+89K1vfk9RDUlLYIx3d7cpxfXJqsBxr7766g9PnbrnrvsTmezObuPG6trA7LMMg2hUTGfvueu22enpfQfnc9mUJksz0/V0MhUTHMUkxLGmaUY6jWKMGGb52rUoDFVFRwjBcpbOphDLIpaNoxAmBXEcP/MafygzcV1WlUwmMzu3oGg6oyT+6Z8+++nPfzmbK/qe7Y27zeYuESRMSCabCoNYEDVRUCilvCRSHBNCOIYbD0f2aCBw9C9/90vwsj98+a9BF5/JZK5cuvjzH/5XH/65fxXHoe2M4jhiWWTbrmla6UyO53kcQevS0DQt8gOEEDzMADmEWDHH9ziOiwnGGAeeDydvgA02Gg3YBcFUBW1/L/BhC2QYBgoRjHGr1RqPx71eD8KnoGJ7vZBCCAFQwLKs559/Hjzn1Wo1m81WJ2pkL60cO5bt+z74Piil586dW1/fZFk2nTAK5cLc3FwynYH+uee4hBBN1lheoLz6je8+9mu/8/vliYWhj6OYciwTBz7DcBhRVdEEkTdHvdizECII+yzDveMd7zh5+92I5XhREUTZ8l3D0LIpZapW2j83rWsyQghh0ut2v/DJz3zsf/ztwQOHx0EcESqpSiKRkCQBNksAvcBaGfr+6xVDFEV/8Esfg/v1pVN/zrOM7Zi//uv/Zmpqcmlp6aUXXvjCF76wuLgo8BLHcUEQeWHAEMqJArArR6MRz/Oqov/Jb30BXuSjX/pdQojr2sxrnKRMCkhjhDCEoRSaHBhjczQ+evToHXfcDiMJURSDKMQ4opRBhDKUglIYHBhw76BGCcOQZzlBEnmeTafTiXSqUq4RhCRJSqWSmi5Jhmb3O1cuXppfmJUEcX11LZNK5XI5BnDPJLIs61vf+la73Z6YmOB5PpXM1Gq1er0OxM49sRfspoQsLS199KMfrdfr2Ww2V8jncrlyuZxKpRBioTPBsGzg+5ggWKReeOHFTqedTmcK5WI6kaxM1FJGguEZGtMQx57trF/Mw7WSilfOnb/Q6/XAXr5///5MLqfrehAEYPuHfhuM3hiGYRhuPB5fu3YNlk6GYU6cOJHJZHieZRiGZ1nf94F8CE0v3/cbjcb29vZwOPSCIJfLzc/Ogvw/n8/Di0NLfw/65XmArbp+/frqzZulUqk+PQ35Da/7/4G1C53g11tE6XT6ypVrV69e1XV9amqqXp8QRZFjGKg2QHKXz+cJQlATNJvNhYV9o9Foe3s7iiIAvrMsAv8ppbRWq4FiemZmJgzD3d3dG0tL6XS6Pj1t2zYvsJRSz3Y0TXOsvXQmuF/NZnNjazOO42Q6WyqVJqrVRCIB1wSxrGVZkiI7jqOqehzHvuttbW1duXhpZWVlcnpS1/VqtQpzxj1XwfY24FIBKAUFkGVZ58+fv3zpAsdxh/YfmJmfy6UznhcghJLJJCcIcRzDuRfaq0DkajRa0BxiGGZ2dhaSHwkhoGeH9Qdw+YSQwWAQRYGqqktLSy+99JIkKcVicWJiIpfLUcrskQuCIJtNg2hMkiTIZk6n06ZpXr9+3XVdXddzhTzoFy3TsSyL43iIeCqXyxSxQRB02s1sNlvI53zfb7UagiDoekJRFEmWX0eAchwzOzsLvKvBYHD27FnH8e6++16KULPZgkHhztZ2q9WSZRUhoiiaLIsTkxWYaDMM0+/3z507l8vl3vOe90CeI8aRKIpxHLMsC5srfA4xxnBIXl5evnLlSqfTOXj40E/91E/BoYJnBUmSWrsNUZEzmZRpW5DSAc5TkOIBv+PkyZN33HEHLBqU0l6vB6L7ZDI5Go06nZ6qynDG7nR66+vr0Jar1+v33nsvVIQANsM4Qgjt7OxQSlVVBViGKIrb59PwCMu1ZVlVkslkrVYTeQGTSFdU27YD3+M4LvT873zr28lkMpPLwvjSth1BEGTdsFx85vyFT3zyUwTRqek5SZb9OI4iTBm0s7X1oQ9/eGtr4+byDUEQ3vszP/3ss8/eWF6ampq8700PPP744295yzuazebXvvLVWr1u266qyohQikhrt/Hgg/fXJyef+PFTG5vbiqKHYcyyLMEMRpSBWBpKEMshQhDDyIoSRRGOIsQwDIsSCcMc9t9wz53vfMdb33Dvnfvn54bDAcE4CLxEIpFKJcBdAVPjTnf4xje+UZblsTnc485YJoM4hmFYlhsOxiPL1DQDIdRut3u9XhwTxDC72w1BkmiM+sMBQgjOIYQQN/DhMBPHMSHIsT1CqOM4tmsDD0EQOHi+CMaGoWmyEoZh4PkQ3ClJUqlUmpyqZ3PpK5cud7udaq38uqVs8XayV34lqzefeeon9ckZVUs2mm0/ChEiksBkM8kwDAf9/lNP/4Rh2GJl0g/w2QsXTM/BGPMMwyH64P1vmJyo3nX37Q8//ND1a5efevLHx245wouCrGv1er1crpJoj+wHJ1rIE+j1ek899RRsGJRSUBYLgoBJ9PVP7MLf9/5fmiSU4TjmpZde0TQ9nSn/8IlnP/P5r+TK5W6r6Vq9waDXHpgYoempGiGIYC6Vyogij3EUh4Hr2hSjdNLIpoykof70G/fe9pOv/DmliGEYXdcbO7u/8Zu//oZ77xkNe4TEHMcmEondVuvxxx/nWEFRlEwyMzExMTM/B4NIHmJBMYZZALAuX3nllX379hWLRUEQFhYWKpUKcJIEQQCNEXQjzp49u7S0dODAAehSSJI0Pz8PZxco9qMo2pOICUKv1/vud7+byWRmZ2dlWe73+/v37y8UCkBIApsMjNjPnj2bTqcBjQPAsFyuAAkkMogo4zgKffB2vfzCy/CCmiJzDJPJ5YxUNsD03OUb/58/+uMXz11OZmu2H7GI4CgmccwJAuxnJPZRHLE8+s1f+zeHDh5stbs3VzevXL124cKlh9/69off/nC1kpf5YHoiWysmSORLvCAIEidLVs/81Ef/5dvf+kFxckHWk4Ph2A8DjmMwxn7kg8pBlHh4QuC9I0IopR986Pfhfn3m0f9CYuz5ruc5V29cRgidPHo8lcr4vj8amgDy8MNA5AWY2HIMoyhKHMeYMv/2Q38LL/LfPvVrcBrDGCuSwLIsixjEUohhhVkSzzFRFKVSqUQiEfre4uLi5PQkoJUoxaIoB0HAMnwcYxg5QRIlz3GEEOBlsIiJcBzhkFJqe7amaSkjUSrmZ+dnq9WymEuPGtvLS9dLpVLoB6ViUeIFhFgoiCVJarfbcRw2Gg0YNwiypOt6p91Lp9NQgWES8TxfKpXg3DYajdqdHuyjyWTSD6LNzc3p6WmWZeOY+FGYSaZyhWK73UYISZJi26br+qY9Xl9dS6ZTxXxBVmVJkERZGg9HK2f3GGnHH2T9MLYs6/Lly/l89siRI+12G4L2stmsJAsgYuU4jkEcVDzwg4IgbG5ur6+vv/e978UYX79+zbbtVCKBENJ1HU6KmqY1m00YjmOM4zheXl4+f/78ww8/vLCwAA8LGIt6vd7rGAtZlhVNG41Gnu3t7u52u92tra2JiYn77rtPT+ogmYJgR4gqAo5Ao9HY3t5VVX00GqysrJAoPnr06MLCQjKZ9HwHIUQIcV1XEDhw8HmeJ0gKEICgp6LrOsi9oRUKDU4cRaIoQikJpS1QHhzPwxjrqkopDf2AUgoFlqrKe+dg3291eo7jzExNaZrmeV6/3+cEged53w8ppZiSdDoNAB3Pdggh7V775s2b58+f/9CHPrSwODcej2E4BdIrTAiUqlEUEYJUVYUg6qWr1y5duTxZm3j72x+B1QZ6tKBXA4cgPCO+H0LHfWtr68KFV7e3t2+99dZHHnkkjmNN0yCCELoL4/EQGvaCIICUECR6jUar1Wp94AMfuPXWWzudHvj5IUGP4zhMiOu6IH/e2dnxPK/dbkM0pKwqURTDe3Ecp9vtgmeKUqqpsizLhq61Wq3NzU248hMTE3PzC9lsVlVknuc5jpmYmGBZ5HkesNPa7W4QBKOx+eqrFzY2NgaDAcMwiUTC0JOJpK4quqZLuiZns+lsNlssFovF4mg08n0fmuJnz55dXl7OZDJzcwvZbBY4dmEcdbvdTCo9OzsLqQPNZnM0GnmBX61WAX7RbXdSqVS9NpErFpJJA1MCYhWe52u1mizLeiLhu+7KygrGNJvNDofDra0t+hq7zjAMKHkdx3NdGygh2Wwamu6NRsM0zcOHD/u+3+v12u1uGIaFQgE+vWATRghxHJNIJF7nfi3c5Tebzbvvvcf3/cFgMBgMKIlVVSVRzDFsNpvtddrPPPOMoauQCA7NctcLFDWTTKdbnd6FSxc/96Uvu4GXzOTSmQxhWJD33XLLLd//znebzebP/uzPsiz6whc/VyjkUqnM3Xff/cJLZx555JGrV6798LHHpqanQfEGC+P62srb3/72VCr17E+e39nZlWXVDwKGETCOEUKiKIVRBDmPCCEchQihyalpSunIHFrj8R0nb33owQcyKSNhKOV8rlIpFwoFiBDlOA5Hoed5gshRwqysbsKZGZasOI5VXeM4Pogwz/MYU9/3TdMemyaQazCmfhgFbmC5jsAKMSVhEIuiyHIIplhRFG1vb5umyXOibdthGIFGk2GQruvgDlY1WZXkIAgEjo2iSJIFTdMMVTNSyWQykUwmE0ndd1xZFmVJQN0FuEfzR5298mut9VWW5SlhZ2fmO71hq9XwPEfVJFUTJYEvFAqJRGpre/fUj58ybX97p2UHHsbYCZz9swv33Xv31uZ6IqG965G33/+mewWBdz2b51lG4DmOkwWZvpaWansukABhudza2oIE3JSRALIOz3GyLH73C3vZcw+/b8+j++yzz0ZBzHLyY48/M3bDiCLTGg27u41Go295FDHT9Yok8JJoIExsZ0RJrGlypVrKZfIJTWUZ7LvOm07sbefPnPmzOI5ZlmdZdne3+Vu/8euFQiGM/P37F/VUKnTdIMIcx7mujxCSBZEQ0mi3FEWBBQucPrB6QhcEfOaiKMKcCE42sCbCERA6Jd1u9+bNm9Fra3cmk8nlciB9gKYrSFlhCs6y7NbWFix/wFCGAguGAq9PLvr9/sWLF2ELBG7F1NQU4PLiOI4xhvhtlhJd15s7zZdeeimOMCVkolLZt3+hVCrFBJl+0B6Yf//xT33qc1+t1Be3d1swENyzAROSyedTCUOVpWw6ef/9b0wnM4/96PEfnXry8KFbZFk9cfLWO+6+QxZilo6qOaWQ4jSZzyQznCgxPM8x0tq1tf/5d/+0vj3K5CsDczwYDT3Pg1mtpCi8wOoJg+dEhBCYBTmG+d/Lrz/9+L+RRZFhqOe56UxSkWTTHGFMoyiilIGaHp4TFlFECKUYnN5xTP70d78CL/I3n/sNjuNUWQHSTBwGQRAREhOEwcGXTqdlSeA4rtFo3HPPPdP1yZ2dHUmVFhYWoETjOI5hOPBLU8IghvAMj3HEsxzDMCzDxPFeN8jx3AiHDMcJHCsLfCaTymRTmq5Pz05LssAy/M7Ozle/8pWpyboiyiBGPnDggKaojuMomgxATowx4ljTNL/21W9cuXKlUqlkMplMNjU/Pz8/P08p9X1f03WeFyGyPYzw5ubmD3/4Q9/3S9UaSLOzmVwmkyEEiaJoWZYoSzzPm6a5vr66ubkJ5wcgRGua1rhSgmtVOzqSZRlTQghhKMEYQz5gt9stFArTM/WFhQVoUhp6kmEYaBIAKWo8tmCGOBwOV1dvttvt0Pdrtdq+ffsQQp1Oh+f5YrEIXWSGYSqVChwM4KdOnz4NPoBKpTI5OVmpVIA7MDEx4QWB7/s0ptDl6vf7vu8XCoVGu7G8vCzL8uLiIoi4oc4DsdF4bPG8mM2m0+n0pfMXgI+VTqc3Ntds2wYZchB4IF2SZVmQFDgNggmr1Wr1ej1ZlhcWFl6PcpIEwfM8CFGGzQ/G5ZRhVldXXduu1+uTtQmAikGJxoscQqyq647jjMfjbDrNcdwLL7ywsrISxmR6erpSqaiqqmgqISSTSuu6DgkiGGHHcS5fvgxK/Han+dKLrwRBcOTIkVqtphk699qmpeuJVCoFbXiRk1qd9vbmVqVSTSQSo9HouZ882+/3wTybyaYBSMEwzF50VTZbrVZHo0Gz2ez1ejMzM4QQwMzKsgyNN0h4hIUFlqNUKqVpmmna169fF0WxXq97XrCysrK1tQUhQplMhmHZIAiGwyH8K4guWq3WmXNnXXcv1hZacQzDeG7AMEw6nVYVRRR5x7JlRYK/X5Zl27ZfOX3m+PHj73vve1zXlSQB6GKj0WgwGNm2bZm2ZVm8KGmqMRwO19bWXkd43H777YcPH06l9WIhz3GUZfkw9DGmhMSFQiGbzfb7fYAc7e7urq9vwrR3bm7u3vve0Gw2cRTDeQD4+Ol0Wk8Y0AUfDAbmaNxut1duLAuCkCvmJqfqDz34ZqhpAFiwu7sLu4MgSJRSiC4AwSJ8cgBBUqlUQOgmimK324ZhHCRauq5bq9VGo9GZM+cA175v375arQbncN/3FUXK5/NPfW1v63zTe7ODwUDVNd/3290OixhCCCWxIAgLs3OjwXA4HHIMunLlSrOxA08Bx6AowsORhSifSCXVRHJojs9fuvTy2TOvnD3PsOzM7LxpmocP35LJZH70ox+VSqWHHnroxz9+nCLcbrdr1ckHf+qhM2fO3Xfffc8///zzP/lJrV73Hfc1xCOJo+j48eO5XO7qlaXzF84jxGhaAjbiOA4ZXiAkjoOI4dlDh47Mzk5znDAc9vvDgW1ax48ewVGUT6d++l1v397YPHH86MGDB6AZPzaHURByHCMIwk5j17FD+OyBRBXk851+b319k+MEnhNZnguCEGAinV7P8zxBkj3HFwWZ53lRlGAG4vt+GAYYY9ezQRLjuQHGuFAoQGdOTyR4lrVdl2dZjCPP80SeazQa27ubFFEW0cW5xWPHb5mbm6lUSseOHVNUiWIS+N7Sc3uUjVh8bfjoxE9FEV5d3yrkS0nDCMPQCz2GJdWJ0rETx+r1CZ7neVZYXV37i7/426997zvFdJHlhd1u8zd+7TfzucyLzz3rWWY+k/n5j3zwTW+6j0sZKArs0eif/umfcBwvLi4mkslMJlOrTyaTSUwJiBAZhoFzHmK5C6dPv/TSSwf27WdZtHNjCv6+n/212SAIXNflEGPo+pnTF/7sz//OyBQww66u3fScUbvdHDsRQWSmXsFRYA7MdNKYm50qFDJJQ5VkIQxiy7LiyGM55qE79px0P37+D3meZ1keUfaRRx4p1yaiKJiYmIC8ESi8MMaUMpqmabJ07dq17373u+Vy2UglFUWZX1yYnp4GdTxDEZRWgiAoouT7/g9PPQ6te0CTHzx4sDo15Y7HCBOomQghDM+FYaiq6ssvv/zkk0++4Q1vYFkWcrir1SoIWoMggFIMDmf9fv/ll18GKQAcTMF3FgQB7BOu66qqSil96aWXEGJTqRTIofKFwkStZtsmS1GIiSzLlKA4jmVRsMajF59/vlAqGelsENOXzl38rd//gxjJyVRhPBoxLCtJ0kR9UlVVQ9ONhIYwsazxaDicmp41jOSrFy4XC+VCoVKvTUxMll27g53m3FSqlBWnJgqZVFZUVCSJoqT54+C73z71+c99J5EpxgizPBcTxHA8JjQi2LG9CMe8wHKCwFAaRRHFBCH0az+zR73/x2/9cafT4gWWxrEgcolEAmpclmU5hgX3FsjMOYbFoQtzOo7nZVn9hZ/eC4781Hf/IAxDEsX9fr/X6RbzWUXRBIEjDIpwmNANKLAopbIobG1tHT58+MCBAzzPgrd0r+qiOIz8IPBFUQrDgBCaSiXBuEoJQYjIghjT2Pd9yuyhfVAcY4zn5mduve22mZkZgvB4bEmS1O/2bNuN/FBVVcNIgpJMVVWQz0eYwulZURRO4Pv9PggQgdt+4cIFUNMD70pRVUmSHMfzPI8TBUppvzcwTROxDMvywJCEOD9oWQmSBAROz/PW1tbW19cBK//i9/a4X4v3xnBJBUFABIO1CmyAg8Gg2dr1PO+Nb3xjOp0GTwko2QM/kmWZZfnXA5JBgN9tt+GQcPjw4WPHbgGIBixw/X5/MBgkk0mQx8LYNIqi1dXVGzduDIfDarX64IMPgsI9JoRl2YSWgJENhGE7jrO1uxPHcbfbHgwGjuOk0+nFxcV8Pv9aBE0oCEK/308kEoVCYTQaAQh7dXX12rVrhqHxPD8xMTExMQENSMgWg/cOPCRQWPI8f/78+evXr2ez2fnZWeidUEqDCEPbz3GcTCZDKe33++Px2FC1fD4PlAdKKS+wcUT8KBQEYTgeSYIIlyiO4zgmu7u7a+vrlNJHHnlkenqaQWg4HOIwME0zxLHre/DxU1U1igLTtD3P6/V6y8vL/X7/2LFjx47fKsuyKIosy9mWazp2HMSD8QhhomkGpXQwGGysrW9tbbXbTcdxsrn0yZMnTpw4QSlNGgmWZW3HsiwLenuJhM4wTK/XgwyD0Wi0u7tbLBanp6c9z7vzztuTySRCSJbl7e1dsGYLghBF4BWwlpaW1tc2dnd3oyian5+v1Kr1en1ycjKKItf3oJHvuq5t26OhSVmG5/lWq3Xjxg3P81RVT2h6NpsuFYssi3iWU1V1sj4Rx/FUfVqSJMdz2+22oWsY4x//6PHV1VUjlczlcpSgbDZrmvbubpMihBBLCEkkEjzPYozDOAChCMPSTqtFEc5lC6VyoVKuyYroux4hpN/vFwoFXVdLpdLExMTOzs4LL7zQ7XaPnTjebrf73cFwONQV9eDBg7liAQgXlmUxHCvLMlg6VEkeDoc3124SQo4ePQopSVAoK4oC7FzbdmF3gKdmL+HKHF69suT7/rvf/W4IaxoMBkEQQZDdYDCQeMF1XUXRDMPgRC6ZNLa2tvr9fq83ME3zjjvugJk4pfSVR53Xu18YY5bnDMNgOJZhmMFgIPLCsD8Yj8eqLM7Nzc1MTzGCcOb5F5584lSxWNRVRRRFkRNd1+8NB5jQZDol6wZm2M2tnR/++MfPPPciQiibK9x9zxsymcwXv/ilt771rZqmfvGLX1xYWGi3m6Vq5c477xwMBtPT06+88srLL748PTu7l4xOGV1Vd3a2bzlyaN++fYPB4MknnnZcFyGEGA5RQESRiamZw4cPFsuVRmNneXkF1pyJao3iyHfdmcmJb37jKwlNv3zlommagsC/+uqrlmXxLKeo0p4qTjI832+1WnsSEYI5TpAVbWtr54UXXhwOxqzAwwgL5uCqriGGYyhyXT8IwjCIR6OR7Zgcw2qaKnAcz/PpdPJ1cwCllOd5RCgn8AxFEY4pJp7nBEFgm6NEwjhyy6FcLieLwsLCQrlSTKcTqXQCVI8RjllEn/7qXol8dfdze+XXzP722HauXbs+6I+yqUwymfAD940PvGF2YVpIGSj0MMYcQRjTq1dX//mfP/mdb3/XDnyGE3/73/27er3+8ksvPffEE4aq7F+c+8AHP/CmN7+JlwTXsm3bjMIwDEPdMEDoijgWHnLP84A5yxAaRdFoOFxaWsIYp9Ppjct7mY8//YvVMAzjOIyCgKHoB4+e+uHjz7Gixgry1tZWv7M9HA5HjkcQNhRO5NDh/YcO7d8nS3wQmFHkQ1OaZVmCKMPQN534E3jZp176jxzHY8ogjH7/P/zB3OJ+HIbr66vLy8sTExOSJHGcwDDMVH0ak9gxLUHgAG+DOFZRlAjH4AQmhHAMCyYmlmUFlvM8rzvoNxoNjuPgjJjL5aBFLPECdAGTyaSkKnD0hJMNNDDBKg9+MRByARIaPPaQeQKc7tfjZeAxft1DDgqqq1evQiwGOCWnpqaSSQOHke/7QYwppbwgiqIgCoI5HLz4wnOUUl5Q8uVydXJuu9X707/8u1NPPztdn4YkB0XXoJmEwyjGEcewHMcfOnyLZiS7/UGpWE3oaRpH25urSxdfPrRYnq4aU9XE7HStWCymCzlB1SLKMETY2Wx97lNf+9KXv3HstuOtXtf14lJlkuUk23G9IHJ9j+d5L/QCz2NZNpfJSJL0OnjiLz71W7oqa5rCMAiTyDYtxNIoCOFdcxynqapuGKIgmOaIjaL61KTneWPLun79xt//6Z7N5F//wb2A4Xr4/gcyyRTLsoN+/4UXX6zPTKcyKYoppSSK4jiOSByPRqOtZjOpqocOHQCsFEIIdmWOp6Isvy5yEgSB41kOMWEYRqEvCAKOQk7gPc8BvpHEcbIsJxIJI6GdvP32Uqn0WgSnzlIUxzgMQ54Xr12//vGPf3x6ejqTyaTT6XK5XK/XJUkiaG/gxTAcyzMMZR3HggzQZDKpG0lZlicnp8rlsh+FPCeEYWgYxpVrV0+fPh3HcSKRqlQqpVIJJLqFQiHCmBDied7rqbRQzQ+Hw/UzBlyriRMmQEfDMEQE67oOCDE4adiOiRAyTVOSpAsXLozH4wMHDhiGIQoyRKyANE3TNEpxEATlYpFlWSAb6bp67dq106dPHzhwYH5+fmpqCmPcbrdHo1EqlcKYgrSlWq3ClGptbe3IkSOiKF6/ft0LgnK5nEvn4jgej8fwvIxGI1GRZVlGiOTz+U6nc/bs2ZmZmf3795um6ft+HBN4psDCAh0peJuapjEMY9tms9n2POeWW44JAgduSpZlXdcFmZTjOLlcDno2ruv2+/0rly71+/0TJ04cvuWYKIqvHdgiQpAgcLKsep4T+RHPs9lsvt/vXrlyLcQhpYysSulUFpMo8COB53mehwBZipDjuK7rwKT72tWra2trmqxMz03Xp6d83wdrLYM4mDn6vp/PFxzHWV1d9cOgVKy4rnvz5s3tRjOKMMeLg15/bJmIIDDipAwDon4SiYTrWGfPnp6bn6lWqxzHuLaztbUlSVIiaQAfS9d1QmJd16G+l2XZ9/319XWWZYMgqFRKYALIZrOyrMJlUVWVEDQajUBfr8iqJEmDwcC27evLN2699dZarba5uTkYDcfjsSQqMHRmGMbxPaCsjcdjGJ5yiLEsC8fh1NTUzFQdIaSo8ng8jsLYcRzEMqPRCMdRMpnEYWTb9vZuY2VlhWE4TdPm5xdLpZLnhwAyjePYNE1VlTVD9TxPN1Rd162xCZbDTqetquqhQ4cq5XI2m4bkoigKut2upmmu68Jj4oeBLMu9Tn84HPY73WazqSWMw4cPp1KpcrmcyqTBSBRFkWc7giCIitjv94GBsrS0BGUoQiifz9dqNUXRfN8XBAGOByzLqqrM8QzBCEbYCKGNjY2LFy/m80UQqOXz+WwqDWMyz3NiGuu6XiwWNU0bj61WqwUeVRhJu1sz8Nl+4P15OLDFBHMC3+12McaaosJS4NqOpmkcQ5vNpuc6azdXVldv6ppmaKoM45oQO75nO15MMMsL+WKJsNzObvPi5Wuf/9KXEMPedsediwv7Nzc3Z+bmnnnmGd/3JEnqdFrZQv7uu++0LOvAgUMvvvjic888Oz0359iuLMueFxiaYppDTZVvvfU2lhMsyx6MRrADappWKpUSiYQfBjdu3FheXoYFRxAkz/OK+dzG6spv/vqv/t7v/LZjm63dBgyC4MNp2/bayupwOOj2+zwnp9PZubk5N/DH43EUx6Zpm6YZhtHYcizLoZSyDA98BssxvcBHCAVBNBwOR4PRzPQcz/OJpK6rmm1bhqaB/F8UeeDwjcfjdqdpqIasqgylmVxuuj5RLBaTyYQsy5VycWpqkhdYVVVZRAejgeNaLM9sb2/v7u6WSoW77777x59vwz06fD/eK79+6p0a4vhvf+s77XaXxliSpPn52VvvurVar2ESwjIqcSwv64jwrZ3WY4+e+vgnPpkvVUvVmh8EcRQ1N7aiwNdUqTZZ/dCHP3jnPXfiKMI4hmkjxzHXrl377Gc/e+TwYUh6r1ar9XqdZVk/DAhGICnwfV9Sldedj4W5NUHkUqnE5ORkKpP967/+21NPvWykSqKgXL9+PRiP+oP2OLB5Dr3hnpP5bDKbyOAw8l1TEFlKI0oZShnE8mEccRz3phN/vNf9eumPBEHkeNEcWW964P4P/qufo5RubGxcuHABtrpquTo7O6soCqEYYUIpBvEWL4kY4xdffum5556bmJhIJpMJ3ZiYmNi/fz/Lsr7jEkJERQ7jiEUMrFzdbvfLX/4yISSXzsATfujQIVmWXdcNcQz7N8YYotauXLly+vRpkFqDxOfAwYOUENu2ofqGDg3MMR9//PFyuQyJ7uDnT6RStmnu0SU4jhACANLV1dW56ZlEUjdtNwiCw0eOMgwT+D5LiSTyUJULkma7wVe/8f1vfPdxykqKrhFEQbeBGMqyiEUMZCnEcSyr2j1vuE9RdcNIa0aqtb373NM/Gre37rr1gCHhhMLMz02mc+neqLf/8JG5ffsRK+AQry2tbG9s12ZnLds7f+Hq//rov5SqM4jhES8FURjHcRj6gOjkWY7juF9+5L/A/fpfX/l93/UymVQYeRzHSKKIaQzqClkW4ziWBD6Io43VtRMnjmUM/fvf/z5C6P4HHjh27FjFeMdep1c/Mx6P77nnnpn6FMuyURj2uz1Cme9+/3t/8pf/DcG8FqHFmSmYMou8BMs3rGuwU3ICX65WRVlCHKtpmpFIwJyLUmqZIxxGlBDPcwSWIzSWJEngOB7Rra2tq8tbp370zdnp6a2trVKpAA1OQK5nMpnBeIQJ8f0QziQcJ7As2+l0TNPM5nIgiWMYrjpZlQW51WqAkPnatWuyLCuKLsoyQogQEkUY8tSNZBLG4q124+zZs67rfuhDH9r7pUEMHzbgdkIVAvqha8/ycK12/MeazeZDD79lamrKtS1Jkl7XG4VhyHIIBkaWZem63m63V26ugQLv1ltvnZtbeE2KtGcZJiRmGCaTShFCYEvb3d3udDrr6+uFQmFxcX86nf7fp/Yj03w9m6tQKFBKO53OhQsXut1uo9GYnpyem5vL5/O5XE6QJaCEA0QRROIYY993RVFcXV29cuWK63uwU1arVdf1wzDkWAEaNiB4yObSo6Hperaq6Jtb6y+98LwoilNTU9lstlKphWEIhCd4U+lkKplMmqaJMd7c3EylUoQgy7a73R7DIEEQbdtiWU4QeNd2g9BXFY1QnDCSsiqPRuOdxo4giKVSMZfLy6LEcZzjOP1+PyaYZXiKsKIokiS5thNF0c7W9vUbS6VyOZFK3n777ZRSXd972Nut7nhsCYLguv5gPIpCDG6GnUaj1x14YYAwYQW+XChCDwB4xbquVavVSqnQ73cVRYIW1PbW1mDQ0xR13759yWRysj4BKxswDkajERw8gMMC96jZbG5tbe3s7Ph+CDW9JEkcy7+21HOKooG3lOf5IAqHo1G3211dXW21WoQQQZA0TYPklj0cD6WGYcAYVFEUiRcEng2CgGNQs9nc2d1OJBKJZKpYLCqK0m63HdvKZrPpRFIURc1IyLJ8/fryysoKpUytOtnqdC3LSqVSqiojltF1lWWRaZqarozHYxJTXdcnJycTCX00Gp09e2Zhfv7kyZOWNW6324TEhmG02+18Pq8bqiAInh8mEokoCAkhqUSC4zg/DJ955pnRaPRbv/VbmqEPh0NrbNq2jaOIUjoYjeCBghxeQJ0NBoONjY2NjY0owh/+8IfL5fJwOIRZtmM6vu9brgXjclhnHMcJAq/VakG2+mgwUFX12LFbFEWJIhwEwWA0glxRwzAcx0MIwWUcr+6h+/bdE8JEJZVJlsplHBNOFOMohlvAMSzGWJHEMAxJHI7H4/W11XOnz9i2WSkXVVWFGyHyUhDGjuMMRiNJVNK5LCeprXb7+vLyP3z8ExShNz/0UzOzi57nfeYznymWS6oKdJX4/vvvR4gtFotraxs/evTRUm2CZXmW4QPfNTTZde1eb3D48OFyucKLoiQpiqaCMbnb7V67cd1xnFQqFQax7/uiKLOIIILN0fCDH3jvL37kw8mE7nmu53m+H4RhiCgrSRIO9wq13Z32TrORSqWCKGw0GqZjB34YxwRjKkoKmK5YloOAuzAMgsiPosA2HUlSBEHEGKuyQinxHEfX1VQiSSn2PK/daXqel02l6vV6pVJRFaXX76uKcujwYRyH/X7fcaxUKnXLkUPlclGUBFVVaRxFBIuqOLJGTzzxBPBfHnnkkWe/PIB79NyNj77O/ZqPbfeLX/rK1tYWovSee+657bZbCcKyKgmigBiCGIpYRPyIFXVEWMTLq9eu/6f/8l+nZuYty7l66XI+m2vs7AwHnUIhPzk18b73veeO228XRV5S5CgKwUQ6HAzCMKQ4hl6cYRiyqvi+73p7mbW8JAZB9MMvdeHvmz7S0nU1m02XK6X1jY3/9td/u9UY83IiDpnLFy9iz6XUH3v23XcfX5yfDF2XRWzCMALPjqKAkJgQIkmaF0SKprqu/cDJP4WXfeyF/yAJIsNwvu+fOHHyN37jN4IgiEIMS1sQBKlk8uLFi51OZ2pqSuI56LTn83k/CoMgIIiCtUoQhGw6A4fCGzduFLK5ZCYd4ZhhmEIuD4YUQHrGcUxjDIrg8XgMD0ZEMDSxDcOAWg1CTuI4Bm5CIpGAWgoEcHAuh80YqD/9fh/W68nJSbBVQpXm+z7ID6MoWl1fO3/uVcsaT9fr+WK5UqmUy1VMSBwFAgdhATHLCywvBjF55icv/+jHz7s+RoIwdmxeEE1rjBBhWRRHEbT0JElyveC2O+4qlUq26wqiYQ67Z59/2h603njnsawmstgrlXO2Z52/fF7W1He9570PveVhpOvIcpAbIE1HonLm6Zf/3//wJ5KSwkjEhMEMSykVZYnjGNez4zDyff/3PvR3cL/++yd/nec5XVcZlnY6rbWNNQ6hA/v3ua67u7vtx1RA6MCB2fe///1vffjhbDrd2N01DCNfKPA8/83P7sCLvOsXat/97ne7rXYmk5FFqVAoTE5M1Gdmz5451+n3gPfYabYee+yx5eVlVdWTRiKbzcMZC2Y9oF8xbQsjxHKchzG00xiEWBZJgigKfOj5ESY8QjyLQoIg8vEtD9579OjRd7/73e3G7ic+8YlKtVSr1ZJGolAqTk7W0rksJkRSVLjpAPob9PvnL1w4f/68ICu5dCaRThWLReB1zc7OiqJ47tyZV8+8mkinDh28JZvNptNZhkPAmIgJgTBsjuMowgzDdDqdcrl88eLFl19+uVadnJychCQGyBuFaSDP81eegRIUnXyL1O/3fT9MZdJLV6+0220IaYAPpO2Y4PCHV04kElGIh8Ph9vZ2IpGYnp7d2NgghJRKJTDYU4oVRSFxDGGCgiCAXFqSpFdffXV9ffO+++4rFApbW1tRFKXTac0wwHMKw3o4HKuqCm9/c23z3Llzk5OTb37zmwmDoPcMRbBpmtBZpJRmMilF0TCORuYYLGZbW1tzcwvz8/OiIINezfM8KC9AV5RKpRRFCQNvOOw3Gg3P86B3ODUzDUoJ13V91/M8T5ZVMDEIguD5wcbGxvLycqfTwZRMTEwokiyKIokpxzEALonjWJDEbDYLAv8gCCzLWl9fZxGXTCbTmQxIv8E8K8kC5DBOVGtBFG5ub21vbx88eDCTyTSbzW6nPx6P45g4jhdEuNVq2bYzHo+jmExOTmLEQDvccRzHsQwjKYo8hxhCY01RC4W8KIqWPc6lUzD2YhhG4PlsNhsFYaOxs7KyUqlUfu7DHwJ6nO+7sB6CvAEhBAVrHMeDwWA0GnGcADYIjuMW5hdVVYWeU6fT297e7nQ6McGEECORAKEYxwn9fh/MgF4YgO8KhqrQRITTncRzAs9nMimB4zmOM62xaZqW7TAMMzc3Nz09PTc7k06nQ89vtVqEQQghgqnnBQixlDDtbufGjZvAMbFdq1wuK4pEKQZpF0PZdDqdzaUBDmxZ1ng4YjmGZdlWq7GysiKKfCaT2bdvXy6fURRFlBRVVZNGIpVKCRzHsqykqgTj1dVVnuc1Q9/c3HzlpZcdx6lPTBSLRSOZhEk9pDqCDimVSjGKMm63Nze3CSHVanV9fb3b7VJKDdWglIqKCJ95cEW4rru4OC+KYi6XEwRhd3s7juNSqWDb9oULl8bjMcNxmUwGtlFZVl93cw+WK/AI3/OuxLlz5+r1+szcNMYYIZbn+SCKYeRtmqbA8Qgh3/dFnhNFkcShKIr9fu/G8tKwPxiNRpViSRQEnhMFno/j2LYc23ViTI1UkuPFII4uX73y5a98PUbcnXff+/LLL+sJw7IsURbG47Hv+3fecTcnCouL+13X/fS/fBKxXH1mxvddUeA5RFmWdwM/DKLxeJxIpaFY9zxHkCU4HOKYMgwD3XSECc8xzd2t//f3f7dYyLV2d7KZtK4bLMsSjCRJoZQJgsC2XI7joihuddqW6ZiOub29C9g8w0hqekIQBJaFiPQY4G0Yx5LMAczFcwPH8XAUx3GcNDRVVX3fDQOP5/lUKlkplgRBoAj7rhdFgWEYuVxudna2VCqNxgNCSDFfkGVxfX39+o2lpK4dOLivWq2qqqoZBi8KSsJAHLe6tLS0dNV6jSr/3l9feK38+jd1JChnnnvu85///MzMzM/93AezExMoChDPI9/b2lir1sqUIYiyUUCURBLxsmc6X/3qN8emY1vuxz72j+l0FiEi8CzCsTkel8ul//yf//Ob3/wAElDoOgBXZFjKsqwoCWEQfPvb3waXlmEYhpGcnp6uVKtxHMcUfftT2/D3ve+XJinCvu987/vfscbmyurW0srutWtr6UxB5EUSeK49kFXm4KEFjsWyLI4GlqIoiUTCNEe8gDCmiLIEMTzPhqH/0B17MqDHz/wxwkSSpG63u3//wd/5nd9RVdWxXIQQtJ1CPwCdB9RAuVxuenq6UCjAu4hei1KHbxYEYXNz89SpU4QQXdfT2cz+/ftrtRrHcVEQgn8VIcQwjKzrze3tL3zhCxDPl0qlarXa4uIiiIQgepb73zIiT58+/dxzz+3fv5/jOFEUi8XigQMHMI1932dZHibQLMsKkmSb5re+9a1KpVIoFHzf50VhZmZGVVWEUATSHIIJjQVWaHV6L7zw0uTkpCYDoBEtLMyJsmJ5PitKth0+9eQLX/jK15EgRRQxHI9Y1hwNRJEnGIs8pyeSlNLxyCKIQjaAoKgcjRsbyzpPH3rjXdVsIvSsYiGbqxR4nt3Z2XnTg2+sL8wOOu0zP3nWd/xjt98pG5mtzfaf/9XfjcyoXJseWz5iBD8IgjjKZrMYRyxCGONf+Zm9cvkrP/rTIPCuXr2s6cojj7zjTW98gyzLjz76fY7jJiaq1Wq1VMgXCrlEIhFHQa/TzeVyyWQSsUwYxj/82ghe5E3vVKIoskzTcRyGIugaur5XKldVVZUkGSEUx3G3233+2eccx7t8+fK3vvmdoeMmZKleryeTSVAsRWFICRMjsttsrm5tMQgBHwlu20J9guDIGptx4H/4537uzrvuKtWK84sLRi63s7oKAlgcRizLYhIBPev68nJtalJSNExJHMfpZCaRSJAoFmQpDMNmq+05LmUQlCMsy4JVVlWVwAu2draXrt3c2Ni4++57733jvVB/ExI7jhNFkWEYqiYriuL7XqPRyGey7XZ7eXV1ZWWl3++LonjffffNzs4aqibLsud5p3+0h3rKL+6mMhlQOQRB1G63r1y5ZJpmKpU6dOhQtVqVZRlKPbD3w0RjT3zGcdvb2zdv3mw0GgC6AyATUBgEgQMsiCRJuUwGegkQZfjiiy+urKwIggBRPMJr4Y/AWPF9X1VVVVU5ThiNRjBqbzQaN2/eZBimXC5PTEyAgAz+lyRJlDKUYi9wy9UKQqxpmgzihsPh6dNnoBAEzC84gVzXjcNIUeR8LlMoFCYmJgaDgWW7oDEHlj20DC3LCsPINMcYE+gGaZrhB4FlWYPBYGVlpdvt3n333Ya2x4kFRYHn+7IiioqsKjq4Gk3TpJQBXd1gMGB4rlIpAU1e4oVCoRAGniiKvUHftF24m2s3VzY3tzc2NihlFM1gWU4QBEwQQshxPNd1MaKKoqi6Escxy6JsOocQGQwG3V4HYVKvT9xy5FC9PsFxHC+wIscrspZOpTKZTLD35Y1Go3Q6bRj66srKhQsXoEFbKpUymQxoB6G6Ba4EbP+NRsP3fY7l19bWzp4963ne1Mzs1NRULpcD2RlIKTRN4wUJeqLD4dA0TfDC+77fHw01TVNVtVqtzk7Vx+MxyzCZTCoKQt3QNE1LJBK8IHY6nWazuW/fvoX5OZCm9Xq9REIvlUpA0rcth+dF23bNsY1YJgiC/nAAqYuLi/O33XabZVm2aTEMA75Xisl4PMzlcomkkUgkNE3Zg/9xjOM4N24sTU5P/fKv/ArMCiilIsf3+/0owp7nRRhbliVJEtAfR6PRxtpas9mMCQrD8OGHHz5w4AAhhOf5waCHMbYc23Vd0AoDvhXci5vr6+vr62Eci6KYzWZnZ2fjOE6n04aRFEURJpLtRhM+J47jMCxttRqrq+uDwWBiYqJYLOaLxXQ6XSgUUqnUDz6zBY/w3e/as6fAtMS0HN/3KWXK5XIylQEQDMczlFKe5TKZDItotlBAPIMIRoJw8eVXPvUvn1BlZWpyIpNKq4oCXm/P80bjcRhHgixls1nT8Rvt3rMvvvjEE09hQidqVZYXCSExobs7zeO3nmAYZn7fYiKROHvm3LkzpxGCEyviRRljTDEtT9RURY9xODJNWFVc12V5judFQogkiL4fkiicn5tRJOEXf+HD2UyiubPb63UGg1E+n8/nyuOxZduO67qjoQnj76E5ZlmeFzlEWRASBEEUhqFpWnFENE3jBVYQBIoxy6E49uFQ5Lp+HMeGquVyOZahtm1HUVifqJbLZY7jSIxTqZSuq4auSpIEO0Wr1djZ2dE07bbbT959x53VapkVBNscrq2tbW1tREHoOJ4ma5VKpVyr6rp+8dKllfUV3b8LLsLP/tv9r5Vfv1xDgrR6ffnHP/7xHXfdfvTECYQjRJE5NK9evkgIuePuOxEinMAixBLMIF5gefnF51759re+xzDcuVcvdHoDSZJSCR1RHHuBJPK6rv/sB99//5vuS6QM13UopYoqCaIYRj7IFyzLIoSwiNH1vXw6Sqnjuqe+Ye6VX78yhRBxPbvfbX3tK19tt3qrG+1Tz7xw+OCxu++8a3X5yuqNpXI5feLWI7LC+r4vidrm5vZ4PC4UcpQhHMfFMZFlOQg8TKIHT+6VX998+nf3TuEUKYryoQ99SFP0QqEAISSbm5vlYgFsU67rIsRCyXXq1ClAxcK/1mq1aq1GMAbN42v+DsTyHBxta7Uai/agl3AGAvun7/uAOWBZVtd1KOaABAN6TCjp4LTdarXgm/fSVwiRFJHneUJQEAQ8ywFYyLbt5eXlMAxh48kV8ul0GpZ+PwiiKCJRKIicLKlra2unz5ynlGayqXKxlM+mU6kEy4uYIkwYgthzr17+3Be/2jNtVpRDQimlOAx4jhN5TpblKMKU0tHIZFl2PB72eh3EotGwy8dRMSU//KZ7p2sFniFRFMwf3J/PZ9dWb3Icm8wkeJbZvrG8ubk5f+CW93zgX2nV2Wunz//+f/iT514+v2/hkJpIxxEVJDmKY01X4jgmcfRLP71Xfv3fr//DX8ceYMbjMaYUniBVVQ1DC8NwfX19d3f3tttug9M2eG9VVYVijmE4UKvASr21teV53sWLF8fj8QMPPJDL5RBCkIMJvd5UIsEwzPrmJmBOobjZ2dnZ2tpaXl6uVCrvf//74TOMEOp0OoAZA6enpmngOwHFQrPZhPEowM9EUQZRoGXblj12fS8MwyjEHMclEskwDBuNBmi9RVGcmJioVqssy9Yq1TiOZUmM41DTNJbl1zc2QGF58+bNy5cv93p92OegXQ1R2ZZlBUGgGwY0z+I49rwgCAJD023bHgx78/PzRiKhqiov87Zt45jyPO+YDhSLcK1ardZgPDp58iTPs7ZttxvNMAwH/W6z2RyNrRDHCKEoioq5Yi6XC8N4MBiMTNt1PcQymmqwLCuKMi+JLMtShmAcVSoVnucoIYZhyLJMSOyYVrO129jZHg6Hv/ALv3D7HSdDNxQEwXP8IAh6/Q4Q1ILAI4RIkpRMGJBwsLq6ura2BhLvEydOQEEGZUqj0Xg9e4BluOFwCDPf/nAEzbxyuXzbbbfBiocx7g8Gg8EIVK2UUmg5D4dDPwq73a4oijMzU8eO3DI3P+O7Xjab0VQVFlVd1xVVg6yYOI7HoyHP82fPnh0Oh4oiOY6VzxeTyaRp2gIvlkqVbrc/Nk1dT/CiEATBeDweDoeCIPT73e3NrRiH09PThUKuPjGl66ogCINhn1KazWbr9YlisUhxBBgg0zFVVY3iuNloLC0thZ5fKBRUVZckKVcoOI7TbDYTiQQs79VyWZbl/nC8sbFRLBZTqRRAhj3PmZycrNSqrusCxBvGCHAGiMMwnU7Lqgr2GggCHo1GcUzgbON5nsRLhqEBqIzlUDJpxDFJJpPAaC2USu9///uBQ3nqSy14hA/cF8LOAioUVTPAJ+553mhswdjk6NGjRkLTdZ2hyPO8brc9tsxUNlMoFKzROPD8m0vXX3z+uTgM89msoetgrickxpQEQWA7DmW5ZCYvKEqn3bt48eKnP/05OMBNTU0jlh8MBulsRlHV+fn5ykQNMCug8sAxkSSpNlm/cOHCc8++UKvVHN+BSZGiKIIkg/CDxFiV1Gw2PTkxkU0bb37gAU2VE7oK1lHX8X0/bDZb51+96EdxykgkM2nYiFmOAy8txljYizYiQL+CgQaLEMMw42FXUSVJEtPpdDKZ0nWdRYzrOoqipBJ6sVicmZkSBC7wQpAqMixFBNu2HUVRLp8tl8sIIdd119dX11dWTdOkCN9xxx0nT54wDEMUpdAPN1Y3zp+/yDAMw3F33HX7xMzMl//nBbhH7//NfXvl17t+Lh/6URThm6vLt995G8txiCLXtp964umb12/MzMy88/3vQQgjigmOWE6gDM+I6qgz+tM//jPLCZLpzCvnXsU01hRV4tju7q5jm5lMpl6fvOeu2+oz9Uq1XCyVCqV8TEkch6AkFUWR50WGYYfd7r/8y79M1uqyLOoJo7s2B3/fz/xSPYx8w9CH3dY/fvR/jUbWpUvLz5+99Na3vGV2dvbsK8+3d7ff9taHFIk3rZ6iKKKgcxy/sr46Gg0SKUgtJVEUcSyybfPt9+1FOL+89NfQqg0DP5FIfOQjH6mUKqDCCYMYIUQZBFp7TdNEUSaEeI67tLQEKVEpIwHaNZ7n3cBnXgOLC5JIKdU0bW1t7bHHHhNFsVIqS5JUr9ch+wIMwwB0AFPbeDz+xD9/PJ1OVyZqEON46NAhVdPM8Zh77QshRCnlOG57d+frX//61NQkMGl0XZ+fn1cUJfQDlmUFQWJlmYR7I5tvf/vbsiyXSiVEWZah1WoZ8q0ZjmUEOcaYUsoy1Let5599LgzjVCqFGD6RTLOC+PK58//ymS9mSuUAE54TGURoFPMswzEMxwqj0Wg8HA0GAxwFnmtlc0a1UkRxZA47E/lMtZzmEUllkjML8+PxuNtszExP7WxtrCzfuOXgkbmFBYbjI0rve+ODpYNHkBOdOvXUf/+bjyl6GlHRtFxOFMIoIhRb49Ef/Mon/g+UGv/36///a//dAUJIEIQwjnlepAySBBFA+QAgXV9f/9GPTrmuOzs7C9xX2IYppSxFsixzogBNXwhXMQzDdp2lpaWtjc1kMnn48OFMJkMpdl13PLYwxvl8XtO0IAozmQzLsv1+3/fdTCbTbrdfeuklVVbq9XqpVAJlOlDHeJ6XZRWQY7lcjiJ2OBzCHnbt2pJlWXt2cc8dj8eUAW27y7HC5OQkhOWNx+OVlRXHcW47ecIwDFBbswxyLduPQttyMCW+76u6Vq/XOY5rNtq7u7s7Ozvdbvf48eOZTM73XUkUBUHAhIiiaBhJUHMKghD6AcMwW9sbu7u7oiwkk8lkJq2qqiqqUYShjRR4viiKEEvXbrfBb7O5ubm2ejOO43w2NzUznUxloAaN4zgIIoZhoI3hhQGDuCAIMCYbW5sEo2QmTSlVFEnT1UKhwDBUFkRJFkAypSkqxzHQdZNleWpqynP8V199tdVqwQomiBxgU2RZhLpQUZTFxUXI0Oz1eoqilEqlixfOr6ysGIYxOzsrSRKMZQVBcL09DKwkSdBLvnDhwubm5rFjxwAKCv0bnhdBFAE8kSAMYaUFwm2v32m321EUvedn3p3LZVVF4TgGDN0xpu12m2U5y7J4nvN93zLNbDa7u7sN/EzP844cOTpRm1QUpdlsm7bluQF4m1KZtKIoEFNGcNDtdpu7jV6/q8jqzOx0vV5/85vf7HleEHiB643HY8BcR1EkyAKlNFfIK5K8vLxsjkbPPvssIBgPHTly4MCBQqGwZxBGCAblnhfAbAQhBO0r23Vu3rzp+y6YeHiel0UJ5L+FQiGVymCMYbDueG4mk/F9//Tp01tbG2EYKhKEq1ZzuYw5GlFKDUPLZrNgdOUFCTHM+vo6QC6ef/553D4Ij/Ab35uCQ1HgR61WCyE2m80SRCFcq9vtNptNQBxfvXrVNEepVKpQKCiaKqv6cDjEUSQJoq7r/W5nbWXlyqWLURD4vlcqFCVJUlSJEKLrahQTP4r9IEgkkrqeGA7GrW7n/IXL3/re9ylCCDGzc3N+GHIcl85mpqamRFkSJCUIIp4TeF40EqlTp07ByNsN/CiKECKKorAs77puHBNBEBhCFUVKGMatx47ec/edw0G/3Wh2u912txdFEccJhpHEGEuyGni+aVvQ1wD9LqjrIJqdUmQYBiI0jiPHcWSRJyT2XNtxbM93Op3OkcNHT548WcxnS6XC3NycpsoIodFodP78OZ4VcrkcAEpzuYymq6PRyHEsGERomqYoUjadZlkW8jCazSY8VqqqHjl8dP+hw6qqaroexYEX+D/89J60/UrvK691v35latDtI8RmslmkiIhnURw3Vzd+8IPHfC8YDAYf/vmfm77lEHItxFIkiShGiHK9Rv+f/+kTT//khcmZ2Y2tbZbjPN/ptTr5ZIIlROA4TZMph48du+XkyZP16XptckJSJd/3vcAVON4wDI4TSBSzLBsGgecGhMaSJPzo6xb8fT/9C5MUEUURnvjRD3/w/e+pqvb882cuXFt9+KceTGeS3eb24UP7WIbBkR+G7tLSUq02NTM91+21B+OB77uIZQReEQSJxBHHM284tud8fPT5P2g2m6PBsFgsHti/77777rvnnnvS2dz3vv290Wg0NzeXSKU9z5EkZXFxEYQUAse/zriTBdGyrKtXr+bz+ZgSMMTli4VEMuk6ewlrQEZlKIJW2c7ODtjUwQUDxRP08O2x6ThOiGNZliFW5TU7egxsJ7jrPM9HOB6Px8NhH7hE+Xwe5NUcAzwLxPN8Mp2CbKIbN270ej1KaS5bmKhVDMNQFIlhGMxQLyQhjhlCJUkyB/3G7i4hROAlTJh0Lq/p+ivnzv/pX/6PTKnM8DJlGRJGPKKyKKAY27Y96g8GgwGiRNekAwszU5OVhKEilo6HXZlBt5+8JZ9NuYF77cb1RnOnXp0YdrurV69Wq1VZN8Iw9DzH930/iI7deuvDb3vn9OLBy5eXP/qPn3z5lQulct20HcSyLEKHbjlw4sQxI7zt/0C18X+//vevHnnizW9+855y0XUJQTHBgecHQYDxHnIwmUw6jjcej3d3d1955RVCyFvf+tZDhw5FUcQhJo5jy3WA2sAwDEz3BqMhx3Hddufy5cs7Ozu1Wm1qavKOO+5gWZ5hGECX9QZ9EMCxLEsphnOqZVm72zurq6tBEExMTMzNzU1OToJYDU7zpmkGQdDrDwE8xvN8p9MdDofwCBSLxUqlEmMK4vEgCKAihMWR47jhcMhzjOd5r776ar/bm6xVK5VKKpNNJpONVtP3/XK1wrKsLKmGYaRSqZ2dnbW1jTAM8/l8HMc725sw9M9ks1GEgcGRSCQYigghgsixLBtFwU5jd3l5eWH/voSaGI1M4G5YY9N1Xc/zRuYYIl9lWVQUxbbGiqLANZdVrT41ZRiGIAgsyw+HQwAEcqIApFZKabvTcxxnfXOr3W5TRDiOKRaLd999N4tIJpNBiFBKSYwppQlN931IPhWtsel5XrO5C7xZhJCmK4cOHUomDUVRWJY1DAOKXbgjiqIhRJIJA5qUV69eTSaT4GmAMF/oxAdBEIYREEk0TbMsq9PpdDqdq1ev+r5fr9ez2XypVPI8r9vtGokERZgSJpVOgGARY2zblixKiURi+cbSysrKxMTEzMwMoYwkSZ7nx3FMKYmiiEHoNYm96nnelStXstlsqVTaWN/c3d0tVyuiKKfTaZ7nOZ4HqL2qybqqFoo5WZRSqdTa2trNmzclSbnzzttHo9HKykq/04WQH+hOIY6VJMm0x4am53K5bDoNkpXz58+vrK394i/+Yi6XG41Gm5ub2WwWdgdKmW63C2o2VVUNwwhjEKuMer1es9lkGObuO+/KZDLQN223u4qiOI7n+y7DsRAmkc1mFUUaDAYryzcbjcbGxsaJEyfe9cgjyaQBJbJpmtvb27btJpNJ1/cBgCfL8uvsmN3wUU3Tpqam6pPTuVwBGpksz43HY3BkAyHFdd2ZmSko/qBHiBALUcXQ1KxWq8ViAbFse3t7ZWX51bPnTNN0LDMIAk1TkslkFpSLCCHECoKg6gbDcJbnLy+vPP3ss8+/fJoiVK2UWYEfDAaJZBoxnB/F/d6AYooQixgmXyxSShkerh6O43jc7SOEkvmi7/u6omIccZR85CMfUSX5/PnzLEWUUlYQFUXBMbVdB1RADMMAsgu6JNATgXw2AFODW0tX5SiKquVSFAcspflClmEYwzBM01xaWmIo+Q9/+P8OBr3d3V2MY8NI6LrOMawsy8lkmpDYsixMYk1TXv+lCJEwDK3xGHDZ4BYChM3VpRv3P/hAvlwmcYQQ8sOQF9hv/v0S3KODD9C98uvwyfHOTsN1vDAKEgk9k8nwPG+53tPPPBf4URjjiYnq9HQ9CF0lIXueQ0Ok68lmo99s93YbrY2tnW5/kM3lJFlwbUdgEBNFMstvbq7P7J/9pV/5hVwut7R0LQzDQiFnGMbk9FR9oirIcugGe9JygUeI5ThGEJgv/8NeeZiZXMnlcpouP/aD7weePbKsz3/x65aP3nDvySOHD2QTKon9seVhHMkK67uOpiZkUfF8J4wiyx47XmCZXiaTT2VSQRCcXPxdeNk/+59vmZycTCWN4XA4Ual2Oh2O437jN/7t/Pz8tavXY0pESalNVKqVCVHiIaAXsHskiqFsGg6Hp06dkiRJVORkMlmuVubn5xmGiTEWeB5IegzDkBirqtpoNB599FHg0ECq7sK+ReDpIUJ5hgXhLcMwtud+7Wtf8zxvYWEB9GH79u1TFIUgCkY5VVV5kQPrytbW1nPPPQfZ2/A5m52dFQQBYLCiKDIszwoCiTAl8Q8ffSyOw3w+L8pSOl8am2Z9op4rF6kfMILgWZbvB+lsHqn6K8++8Od/9ddWgKkgEZZjEIvi2NCU2HU77Wa31eJYxDKUZ8nBA4v1alEVWCOhiqoU4/DQ4v5KIS8IXBAHz7zwtKKID9x//+qVpT//g//68MP36+Ws43m9nZ1Rr2ukDIxoSOhPv/cDb3rwbb2+/bF//OwzP3m5OjEFSV3ViXIiqd55+23ZdIqhSFGlUqlkJBJb2xvpdBoGXqB+o5Rubq63Wq2p+qRhGGEUE4Igwrzdbj/9vRBu+gPvkqEtcenSpY2tzcXFRUKILItJI6FqiizLQFXgOC6OMIwqgiA4f/58MpnMZvOO44BdLl8slKvVfqcfRRHPAwc5lATRtu2LFy4cOnSI4xjEMpqmQOiN50aiKPlhMBxbY9OmLIMQSqeTKysryzevr66urNxYrtenDhw4UJ+YqlQqlCGAaAE6uSiKlOHCMNRVlef5tbWVixcvNpvNIAhuv/32crmczReNZAJgvP1+HwYElNKEbti2Pez3l5aWzp4+EwRBpVg6cuzoxOw0J/COZcdxDA1XhiJQXXAcZ45G4/F4cnJyZ2fn2WefZTjuttvu0Awd1jJJEIEsoKoqGCHhrNnp9ECb1Wg0Wrs7yWQSPsAhjl3XjQmO4ziVzNi2LckCwzC2bYMeGSHUabV7vR6wVHhRgFIMzCWUUl1XXdcFvjy0iKIgnJiY6HQ6e4k9CBHEYIx9LwzDkBAKyGJRFFmWb7fbMAOdmZ6DDkEYhohlWJYlMcYYQzw2z7O7u7uObdm23W11RqNREEX79++/8+57giDwfD+OYz+KwZgJooUgCKAcGQ3729vbvV5vYWFhYWEhkUjgmOq6LksCoPsog+I47A8HlmViTHBMt7e3r1y62u/3E4aRLxSATZNMJnmelxUxkUjIoqAoCkNJo9WOMClXKoIgDAYDx7YrlYqqael02rZty3Lg+McJPM/zEaaO4+xubcuyXKvVWu2GNTajKIrjUJZlgRVGo9GwPzBNm1KG4zieE7K5jKLJhmFY1jiKIoKjYrFo27brupqmgNhOFCGAmYqiGIZ+sZBPJo1SqcQwjOM4y8vLyXTq/vvvH41GUMaxLItj2u/3oRMGcnLwJ62vr+/s7AyHo3a7PT09/aY3vUlVVdd1KEW+7w2HwziOIXVbVzVC406rbZpmp9O5fv16Kp2VJKlcLpdKJYRQJpMxdN22bYJp/FqkCozzHNd2XXdjY6Pf70dxXKvVyuVypVJJZzOZbEoWBU1Rbds2TRPE/rbtOo4jC+Krr766srISxzFopOr1eq6Y03Vd0dR8NsdxnMjxkCzCMEx/NLQsyzCM5eXll19+udvtFovFhYUFQzXy+TwrsJARxzCMHwb5fD6fzyJBQFE0GAwyudzWxsbVy1fAl5pKpShlVFUO42g4HAZBBFmu9XodxlsQnXT08JGxObx584ZlWXNzc6VSiRBk23a73QYNpSRJ158XYbl7w7sT29tb5869evzE7ceOHQOEm2PZhJBEQofmHEyBgVTMcgiCWIa94fr6OiHkrnvuSaTScC6CaHBd10eDYa/TZihtt9v9bq+xs7V05VJCV/ft25dIJAhCQRRLkiSqmqbqhOU2trZfOX32S1/9BkFIU5VkOosRQ1mOYCrLMscJtm1zAg/BYjSOEcZ6JnPw4OFyudxqdS5cuCALPC+w497g937v93zH/c53vlculDmOUzQ9nU5zAg/WEF4QLNuM45jERFVVURTCMASNRBiGw+Ew9INkysilM1OTE+VyWZVFQvDc7LQsy5Ik6Lo+HA6vXr0ahf7c3Iwg8izLbm1tDAaj22+/XWC5SqWqqYbjOwgh13clea+7X61WFUm0LGs8HufzeYTQ7u7ueGxBR5kQks6mpqamTp8902g03vvBD6Io+vLfXIJ7tDz69l759dmv/xpiuQP79kPsYKGQm5qamV/Yt7G1HcaYUrq9vaXKYq1eY3lECEEEpYwMLyrtTu/ateVuv29ZjiBwyWTSD1wSxYVMurm5nUoZ//3v/8f0wX0o8KIgCAI/iiJQOI5GIyCAR1GEEWVZNplMMxxiKPn6x/ek9w+808hkMpcvnf/sp/9ldnbGdOwbKyuakVyYm0M0dp1x5AeYMgRhgUeqqgqsMB6PB/2+oqqExp4biLKuaYlur3flypVf//AeAP2//O1b7rrrLsPQ+t0eQiiVSj333HPj4eh//f1H3/4zP4MIdh0viuOXXnqJYWmhUOAYxHFCOp2uVKqB66L/Xz+TRgQLghDG0fr6+l74Mct6npdOp1PptGvZ4/EY3CtRFI1GozAMk8mk7TpACY/jGEcxMDCB8gVgIZg1ZDIpjhPC0Gd5gZA9OrCiqZRSjmGB+gN9snw+XywWwR2GEIrjOIoihuUNw4gijKO41+8Men2e5yVZlVUlk8szDNdoNHZ2dpaXrl+8eHFp+eY999wzPTP3o1NPdrrDbLliuh4nyQghiRfM4cA1xyLPeI4dBh6O/LnZ+sHFeZ6JWBL3+i1eEWqTkwxGDKGe5zm+PbL6lYnym990f2h5//DXf/vzH/nI29//bqRIeGSOet3txub65sa169dvve32O++6L1Gqd7d6f/N3H/vc5790z733sSx7xx13HLnlIMsi3/fTqZSmKcViEXbW15V2URSpqhpFUaOxc/78+TDwZVkp5EvpbCabzkiKzPP8D7+2pyN854dyCKG9PJlmw3EcQRDS6XS5WFBUGZr5gJAAo0O73Y7j2Pf9V8+d13W9WCwripJMp3RdTyaTHCtEUQTDIEjPtcbWs8/+ZDQai6KgGXqpVABxhiyqxWI5CEM/iiliGZ6LSeQ4jiyLhmFk0slr166tLt9cWVl7z3vek0qlLMuiFKdSqcFgIMuqIElADYWPXCGXU1WZELKysvLMM8/wPP+2d7wzmU6FfuAFPqUUNDTQ7TAMw9A0z/M2NjZGg+H6+vrps2cQy374Iz9//OgxkPgghAD47nmeZVmqLMMA3fG8drN57fr1GzeXE4lErVa7/fY7J6o1cAlFUQROQ9u2k8mkKMqe7yuK4th2t9tu7ux2u11ZlvcdPFCtVhmO1TRNFOQgCBx3j4k/Ho/h+Lh6c2V9fR0ciJVadWJiIpvNiqIIGGFVlsaWyTEsZRD0h1RZYRjmwoULZ86cieO4Xq9n8wXDMAw9aZqmJMkgpMUYE4IURYlCDP5/0zTPnj3LC6wkq7VaJZ1K7SWW4AhjnEwmdE1TFCWO8O7ubqfTkVUlnc4OBoMwDAmlsiwLggRvHIZNiiRjjHPZtKYpMaEbGxtbW1uVSuX48eMIIYoJHJk8z7Ndx3EsOER5bhAEQavZDILAsb0g9GRZPnjw4KFDhwRBoBQTQgLPJxQXsjnKMmEU86IQR2S3sb18/Wa32zYSqUIxNzM9B8etdq+bzWYxJcPh2DRN23JTqZQgcr1ej2PYlZWV9fXVbrcrcmK1Wi3k8hwnxDFBCMUR9kOf5ZCiSNAkA3ez7/uDQQ/gWLquHzp0CEZsup4wDK2QzyWTBs/zIFEN42gwGEDyxJNPPrm9vQ3xDIlEAoI9wjAcDAY8J2qaBky7bre3srJiWVa5XCYEN5tN3/cNwwAs2WAwHA4HUbTHRQMjhSiKructLS3t7Oy87W1vy2QypmmKosixbBTGIO5hWeS6rqwquqZyPE8JsRxzMBhsb2+urKzcfffdb33720aDIcWE0DgK8fb2NhRSezKjiMBCHcSR6/obGxtnzpxhWfbP/+IvkikDChfHtKA7FcdxRDDwGiVJAsd6v9+/ceNGp9ORJGXfvoUjR45AF0NWFdM0LWsMvBLDMKCVOOwPNjc3bdtsNBqU0sXFxX0H9guCkM8X4zhWJNkLfNd2oKlm2zaNsaIoq2s3n3vuJwArLhbLBw4c0HXd8bx8Pp/NpU99sQPL3ft/Y5EV+DgIW80ew7HdbveF557tdDr1en1mZqZQKICyBXLldUMNwzCdTufSGUE3UBBdvHghmU5znLC8cnM0GlEGlctlOPe6rps0EjAYdW3TGQ977dbzzz/L83y5XIbDAMMwhDIYMZlsluH50dh59fzFl19+5fS58xgx1YlJWVJd3+M4vtvtBlE0UZ/KZDKSoiQSCUoZhmH6/eGNGzdwGGmqSKKYQehf/z+/tLW149kOy/KUoJFlOp6bSqXCKGIYhuNZQRA4hk0lknEcD0d9CJzIZrOGYUA8tmONh/3Bxsb69GT9bW9/y1t+6iHI2/AD17G90XjAs1ypVCqVCoIkwNiq1dwdDofPPv3s2bNn77rjrhMnbz164lihWJREnhN4kEmsLN+I4xj6hQzD5HK5dDrdanWuX79u27YgMkYiMRgMCKL33fuGQqn8zY/dgHsk19b2yq9Hn//LwWg0WZsol6uSJK2trUGjOJ1O247D8cz6+noUBAcO7rNtmxcEjKlpWrXJmTgia2trvd4g8Jxuu8NxnCRwtVpFU+Vjx46+/e1vrS3ORY4ZBQFCiGEQbFc3bix95jOfKZVKe4HBudz03CzLsmEYIky+/8U98MT7fnWOk+Uff/Mrjz36vUqlJCmipOksyzrjkeM4EWb8MIrDQFZESRKCICAEeZ63dOXqxFQ9lUoJgsAy/PLyytPPnHvnOx944Lb/DC/7n/764YWFBU1TEEK+7zMIHT169Pq1pRdffOljH/voI4+8PQxjz/NefPmlnZ0dQ5fzmWwymZ6fn5dE+JEQDBq6rsc0liRpMBh973vfYxgmlUoYhlGplBYWFmRZdjwfEDIY4yAIPM/L54r9fv/Tn/pUsVjMZrP5QiGR1A8fPgz4OHCqA2ZCUZTRaPDpT38WIVKvT2uakk5nZ2ens6WiZ9uhH0BiDMdxCLGsLF8+d+4nP/lJvT6taRqgKHRdFwRBFGSeF1hBQAj4whQJfGun8Xf/83994hOfiCMqCsK++QVNU0bj4eb29rHjt/OywgsSZRkwSZimGbieyHNh4HEMjUIvocuHD+2nJOQYoirCcNhXdS2TSfuub5pjnmV5nqUsZRh68uTJTCoVh9Htt98ulYqIQYgyCGPEMchzNzdWrbE5GIwSmrHvwBHH9h979NSnPv15y3J/+Vd/7R3veGe5UglCL4wDgeOfffbZK1euTNendF2HpOTp6WlA3idThiRJ0C6SJXU0Gn3lS1+QNXViYmKwdQhu+iMfTMORFxCaURQhxMZxPLZGTz31VKFQyGQywOMslcqlUgmUQADakcS9Hd3zvFOnTu00G3CdE0YSNBOyLMcxwTjyvIBhaBAEURyePn362Wef9b3gvvvuO3z4sGYkGI4DawWUONBSAnH09vauLMtR4L3wwgvj4WhmbtYwjEKpAsVKMp0CFoDnuILAiaJoGMbWxgbkw6xvbp49fXpkmsePH5+bm5NlGRpIrw/yVE021D3V1M2bN3Vdz2Ry8M+Q+iKKoijLcRzDNYQ9I51KaLq+s7OzurraajaPHT1x5NCh8+fPx9FeA4xlWT8KCSFhHKm6ls1moygyFE2SpOFwuLGxsbm5edttt+XzeZDmSJIkijKMFDHGnu+zHOI4LpfLwLXd3ty6fPnygQMH9u3b5zgOIUSRJEwpxZggNBwO8/n8cDgEj7BhGOChu3Llmuu6d955ZyKR8LyA4zjX8eBXWJbl+oFpmoZhAPh7PB62Wp2NjbVkMnnkyJFqtWoYOvDQMcY4pqIoCYIEF9BxLND1nz9/HvZFiM0B/rUsSuBOT6WTlWrNtu0fnXocQMeaol+7chUw7oIgpNJpijDLcVEUuYHPcZwsiGHk25bL8YxlWVEUHT1yBFTSLIcgdFyVlTAMwwhjSlRVSySMYX9o25Zl2Ts7288885N3v/vdt9xyS7ffC4M4piQMY4ZhWJ4LomiPFoExQsgam9DDuH79eq/d2b9/f6lUAghtMpnMZDIRiYDcwRAqK6LA8SCu9zw3jiLgz73zne8sFcuCyEuKGMcxpIlEUYRYhuNB7sbput7v9tbX19vtNsBU77nnDYvzCyC9h35Av9/neREhBOwPgun169fBLloqlaampuCQCelGr0s1DMNgeQ64J1EUEYJbrdbq2s1sJp9KpcvlcjKZBDa167tJIyHKkqGriVSyXC4KAreztT0YDOr1umVZj/3gh71eT9OMdDoJc6KpqakoiqCgqVRqvCjoWiIIwpurK9vbW3Mzs9VKpd3YXVpaogjXajXQ0iGWDYJA1bUwDK2xCYttqVSilNlp7IK9keMYyFMKw5BhOCAVg1sWGMUMw4gSLwgcnA2G/cFv/uZvRlFk27bvugShOIi9MIDTVxzH2Wx2enq61+uMx+PBYNDptpaXl3d2dv7dv/t3R48edRz7B5/ei0u+820SLFnDsQUazdB3e70eRDDZtg13/4EHHshms5wohGFICCaExkEs8NL61mYYhooiwYNDEIU0Ko7j9ISRTKbBNZzLZWRFRTw72t395je/Oei0c/kMixhJEhBifd/nOI7lBNVIpDNZx3Fand65Vy998rOfpwgRhKq1umEYBw4e9sPQcryYYHNs7+42++024vhcPs9QyuLQ0JTmbuOHjz3e6fT+8R//sVQpe15guy7Lc0EUAuE2DP12s5XLpnPpTD6bK5ZL2WwWMaTZbGqaWiqVMplUtVJSVbW5s319aSmOw8X5BUmSXmsBJgqFQqVWhc0XsdQ0zeFwKItiMpGQBX48Gm2srv3DP/zD7//hH937wP3d3YblOrZtyrIMLQ9O2EvsgOUdJqG2Na5UyhMTE57nLV2/cfXyNcRy4ugY3COhsrpXfj1x/mNRFNm2W6/X85l8HMf9fj8M/X379iFE8oVsEAS9TqfVammazjBMLl90fE8U5WKpsrO13Wm1Oq321csXi/mC5zkrq8vveMfbf/4XPnzw4P4Qh4QQSEFWNNWxLJiYBoHnui5kVsARXE8mGIZBGH3vC63Xyy+WIS88eerb3/hSpVKKCKYcH0UBwiEljO2RMCIMwpqugEE9jsjrmjuoXs+dO2ea5sFDtyCE3nzHHsbzT/7+HWBkgId5PAq+/MVPbm+s/+Ef/tnRo/P/9E//NHvokD8csrxAKeYYNg59QZBePXchjuNMJveaEkIpFAoRiYBHDE6fKApkQSQ0bnV6oihyAg+kSkEQ9ij5rBDHMYNQv9+HLo6e0DzfFwWBYdk4ijCOYBTNcZzr2pub277vQmYfkO55niWEwKMVx0TVNVEUoxCPx+ObN296XpA0ErIsV6tVsKFZlt3u9DY3NnYbrXQ6Xa5VNzc3T585d+7cq5MTU74fcxzHswyJQ0oiI5mgrGA6rmmaMcYsQ8eWKQkixF+QOPBcW+Do4sJ0Jp0gcchxVJIFIOJAf3sw7CFMyuUyy6Ld3d1jx285cOjQwYMH9XSKxrHp2KKsU5YReZbi2A+8KAhlkd9c39jY2FqY3z85ObW2uvnUk8+++uqld/30e44cPZ7NZ8I4ioLQtu3RYEgIQYSIolipVKDzl0yneYEFbYemafbYbjQaPM8GcUQpXbtU2xu03zGYnJyENiRgxDXNYBgmiMIoCuKYmOYIah34HklSwP3KcAKJCMNzIsebjk0IGQ6HoM8dDkb5fD6RSnMcB3G8MHAMAq/f76fTaYZB16/fuHnz5qVLl972trcdP3krwCMIITAsA0cYxwmv22Pt0bDX65mWMxwOb66tHj9+/ODhQwgh+ClCiGWNbdMSRTEKAsMw0un08vJyFEUbGxtnzp0DxOi+ffsOHjwI2GhCiB+4juOAStocjsIwZCi7vrmxu7v70ksvFQqFer1eLJchLR6ySqA/BwyeIPQZyrAs61rupUuXrly+BiGMBw4cUHTNMAxJkb3A53lelmWRF+IwgsnLHshKkjY2NnZ2dsbjcTqdzWazUF7IihIEgSQLhUIO1tBMKr27uwvL2bUrV5aXl48dOwY6JF3XLcfRdR0ejdFolMlkoN/sOF6r1UokEp7nXbhwaWtrq1yqgB9tMBoSgkDmTAhBiMCT6Lput9sNAh/EnTzPMyxVFCUI4zDAMOjked4cj+M49ByX47jNzc21tTX4vXfddRcE8+1xZRHFGA/HI8oy2WwWBxhj7Hve6ZdfWV9fz+fzpXJ1dm5aA++YqoRhGPou+EZhTopxzCKGYenVq1ejKEokElNTkwtzi5zAW7YL3upcLkcxgXYLQC4QQpqmb2xsPP/CS77vHzx4OFvIMxzLiyJ+zdskCSLkh1qW5fu+Z1vQ9tje3t7Y2MAY7z90sF6vw67juzbHcaqsRFHEcSzDMKlkUhRF+NlqtToaja5fv6YnjFplIl8owJMSRj7GGCFCCEkmDY5lS6WSZVnP/uR5TdMOHTrCsqz12rK/s7OjKBqYJ2zb7nX7wMcBZtvp02efeuqpBx988M477wQ+Itx9jLEoS0EQZDIpcFQgRBmO9Tyv3Wzt7Owkk6nZ2ZliuVSpVCAI2fXsVCoVRYHrupLA93o9YC46ls+y7M2bNzHGOztb8/Pz0K6r1+uqqmJMTdtqNtpGMplOpzHG4+GQEjLq90zTvHDxVU3TMI4EQTh8y7FUKlWuVqIo0lWt3+8jhlDC8KJEKfW9UJIF3/e3tjYajcZoNKpWJ9LpdKlUAo6gruvlUjWZMiCsEM7zu9s7CCFdVc+fPw/a4smJqVwul8nnIDkbxL6Li4ssi2RZVlIpZ9g7f+GSqspT9XoYhk9/bQjLXf1Yv1quibLg+uFg2JN4KQz9bDZLCIFlcGensba2cuTIUUVXXrdfxHHse6HnBaIoiiKPEILVI5FIyLKcSqVMyzl//ryeSN57330sx/W63V6/Ewchx7A8xyxdubK2ejOTSqSTqTiMwsiPQgxYeUXVdV1XdENRjd1m+/yFS6fPnn3hlTMUoUQygxiO5XnP8yLM6LrOsQLP8xiTOAwUlpTy+VardenSZUXRfv3XfnNzZzvCMeLYIAyT6RRCKGkkRIl3LNs2R71Od2N1rTo5ccstR8rl8p133T6/sEBo7NqW4zjgaZVF0XXd8WhUq9XW1jcuXLhgmxaldH5+fv/BAxA1G+EYY5w0DAYRnmF5jhM51g18xHAML7iu+/jjjz/55I9zudzk5OT8/PzkVD2VSkmS1Gw2BYGr1WpREG5vb0uyYBiG5wZBEJmmvb21EzZn4R79wh/cu1d+vbzyhW63Ox6NoiiqlWuJRAJCl2VZLhRysiLKsryzs9NuttLprOd5qXQ6k8+xLB8EweryzSAIdFXjGNpq7jabjV/91V8+csuh9fV127VUXU+lUpP1iXQ6raha6Lph6MOvBwsMx3HPPffco48+evDgwWQyOVWvr14owDe855enBY4+c+qx73/7G6VSgZdE1/cQojQKbdfHSAqiWOARy6IwjEFdCKM3iEl57rnnBF5aXFxsNDvj8fiXf/bz8LKf/Na/ARkHg9h0Om1oaqFQ+Pe/+zuPPfbYf/yP//F973vPb//272Sz2cFoKIp7Z0HX9R999FHbtgVeVBRlYWFhsj6h6zqlGGMsCAJMcIBg2Ww2P/e5L4iiuLC4KAjC5OTk/v37ZWUPGQ/DBWhccxy3tbXzmc9+dnpqqlIri7ygKMqtt94qybJj2wgRhuFEkWdZHqzajz/++NbWxvT0tKTIqqpOz8wVK+UoiiCtheE4hFhEKcJoPBg889TTS0tL5y6cf+7Fl0hEIoxLpVK336vX64sH9odBxLI8y4gkjnEUjs0hxWGhkFMNfTQeX7hwOcK4WqrKms5SJMtijEOOpYiJcpnERLXCcygOfZ5jRJFHiALORxI4ONIxDIVxWL6QhSa843mWZU3UJ6fn5zhDR76H4xgUJ6qsqKoaB3EQhI7jFQtlHNFr166bY3ticiaVzYZRRCmj6zqgAuE6O47z5S9/GSGUyWQYhkll0ouLi5VKxXc9mGVAL+Ebn90r5T3xSWALKYqiSDJwRizLYnlOVVWCEWII9KuH4/GZM2c2NrZAQMZywkStRiga9geaoZfLZagPGo3Giy++PB6Pi8Xi1NRUMp2WJAkOuKIoOq4FrCaJlwRBaHe7DMNgEkFe4WAwOHjgMIQZY4xd1w2CgGE44f/L3p9+aZZed4HoM53nzO88xpSRc1ZmlmpSDaqSLZBVtjxICMtcW9cGt8HdCzA0XIwbw7UbGm6DaZqhm8UFm+ne7jbQIDxhhC1blkpSSVUl1ZxzZEZkzPHOw5nPM90PO7LoP6B7rbsWxActLa1UxPue4dl7//ZvsCxOsOPwNC+EEDu7u/1+P6xWDg8PoyiqVCprK6uw94mTZRrFrusyxhljjHLbtqXRDx48mE6nTz31FEJoMBgURQaRR0IIynCtVgOymkXoyWjY667AHvC9995LkuRjH/tYvV6HlEPYnFqcAnACQT1KmkqlQhGN4/ju/a3333+/1+t96lOfKqWwbRusZKDY51kJpweQwxzHAVLaYDDY39/Psqzdbq+srDJGF8sZLOLTNHW47ft+HMfgSgD4WbVaHQwGTzzxBPjNdvsdQGSTJJlMZh/ER9brdYRQEmeTyeTBgwdJkriu1263K5Uas6zxeAyum2Be5QcuyPs55wiZGzduQPvbbLYa9Y7l2HmSai3RqRVqzjk3RhNCDg4OIKibEAK2mbbtwQ7XdpxclEopY7CRwnNdOI7yPJ1MZkWRPXbtqkLGpjYw5+ApMkiBXwbFpChyYByenJwMhseiVL7vv/DiRxzHBWYCcJVms9l4PK5UKpzzPCsXi4VSZjabPXjwYGdnh9m8v7ry+77zO+AMrPgB0CGAQgfd2yKObNsWshiNRq+99trh4WHges8///z58+ejKHJtuyzLsigsy0JIw8Yf+mnO+WQyuXfv3v2797or/cceu3b+/PlKJSiKgnNWliUmBmtDKfU8z3G8PM9LqefLxVe+8hWwGWq1WutrZ/I8h4UAAMyQqO04znIZzefzPM9brc58PgcuIwR7h2FYlmVRFIQg8OKpVqu+7zmO4/nOyfFwa2vrxRdf3NjYEEpqrYuiWC6XYcWP49iiDBJCp9Mp8BYgSH4ymcxms8Vs9slPfjIIguF4jDE2BmutpTplOETLZZ7n/U57Y2NjsZzN53NK6fb29rffeuvKlSsf/eh3QlsPmg8hxGwWjUYjRq1Gs04p9TwH3sSHD7e3t7f39/effPLJH/iBH6jVakIWWZaVQm1tbcH/3Xc9zjkccfCA3b59+7333oMwpStXrqyurkK5OdVmKlmWuZT6gx7uK/96Asfd/ennO+1er99ptrvdbtuy7Eol8H3/A2oKQkTKUmtkjJpMJu++/97x8THka0GYt9Y6XkbMImB7BETPXn/1+Ph4e3ubcctxPCDvDwYDRujj166Gvvvg/tadm7coxY16vVIJKLWSJBJCCCWLotCIOLbfX13z3CDO0qPjwStf+9rb775/+949TCylFSGcUgqntzG4zLO1Xm/r/u1/9o//2Y/+Fz+OJPqFv/43/9Ev/dKLH30JM8o5Dyqh1too3W03hRCubffaHdd1kyTZ3dv5nd/70s/8zM+srKwcHu7X69V6vZ6nsZSyUatlWcYtK8vzsFqNlonRcngy2D/YS5bRt771eq/X+xv/w9+sVCrj8dgiFNxPyqJAGM+WC2VO/c+zLNvd3b1z+9729jaofNZWV3/sx37McZzlcpksozfe/PZyEUmp4zh941vfeuONb7/44kc/9/JfhHv09//Vz5y2X2/t/euyLC3GxuOxFlIIsbKyYtuWUsrzvFa7wRg7PDy0LGs5j86d2fQr4bvvvdfv9+ut5u0bN99+661WveG69vd97ye/53tervY7SAmd5xoZjRBj7O69O9PptNfuMMYchxNCQJIAJCfArqCDcR3nd37lVL7xmT+6zqn54r/7td/94hd6vY4hWBmttVJFniRJIanBFGFZFEW93gTAHDzfPc/b3d3d2to6s3F2NBoNx5Onnnz6uz9y6iP1a6/8HNgA2twhhMiyuH379t/86//9ZDL5oz/5p8+sN/7Mn/l/fOpTn5JadTodhHASJeDUYjRC+LTVOD4+DgIPqEIIIdu2u73ecrEwBsNuIs9zpTVwZebzOTzHEPwCDQcY8kLyBpxHGOO1tRVjMGBp8L+D+NFxnChKRqMBmGv7XthoNVdWVtzAL/Iyz/Ojo5PDw0OlzMbGhmd7X3vlq7/wC7/QaDTa/Z4y2qIWZdx1XWKRsiyHwyFCBGMa+DXf940SGEkti3o9DCve8XDw9lvvaUUajXaz0QaTxixfxstpr988s7HKGdWyNFq6rk3pf0TjCNKwhtBaQysZZ9HGxsbVq1c553EcL6LI9d3uSndtbY1Xq0hKREgZRXGcBq5HCKWYlKXklANcP18mJ6NZENY4567rlrmAZgISM4Hqa4zRyACgAn421WpVlgLiB774b08zaJ//bnXq/YuxazvGmPF43Oq0PTcA8Mm2Lc75Molh5RHHaVGWQgi/UkmjWGjFKDfGiKJgjMAGyrLsvb29+/fvz+fzlbW1S5cufeC2ALvFLMtc2xZCLOO4LEuE9dHRUaVS2dra8twAsKt+vw8iKWMwNkqIQkuV5kWSJFJrSmmUxMvlcjqdCiHAB7zdaXY6HSNVEASu62dZBjl6YIMCEt3BYHD//v3d3Z1arXb16tVKpVKrVyAO5QMZh2N7juOACTvnHEjxX/rSl4qiaDabvu+/8MILFqeDwQDkb9VK3fd9MD5tt9uLxQKc7hfRcn9/fzabgVLEcwPA4YG0C5Z+lmVtbm5C/weP/d7efq1WU0r6gQtdlCxVEHh5XiKkPS+gFM/ny6LIHjzYiaLFhz/84V6vdzw4GY0GruvCd4fNDgj3EEJlISG/6MGDB++++15YrXzo8SeB1QcQCwDesJuzHQt2KFJKpeTR0fF4PFYGVyq15z/8jG3bBOM8T8Fw1RgNadzgs5CXxfHx8c7Ow/FwUqvXz527sLqxjhCCyxvHMcNkpd8NggC450pr27eFEN9+7dug+QfjhlMHDZcXWck5I4QwRs+c2eTcOjkZbD/cuXDhQq1WOzo6gngly7JgAwv6NYvZxhjOHdCOxHE8nU7vPbj//IefUUq9++67ZVnWarUrV66sr6/DxEsIKZWczWbtTpMQ4nneYDA42N2LomhlZcWyrNFgUJZlp93GGENkNecc0L4syzrNFiwuDw4O7t27jzH+0R/9XLVahXmDUpznuUVZHMdZVgglhVLU4qA0evDgwZtvvrm/d+g4zssvv7y2tgbvL4SISCkrtaptO4wxrRBkKhweHAyHw6Io+v3+uXPn6vU6KJ96vQ60qlmWdbsdiChFCDuOczIcvP32W8CyOnfu3Ic+9CEl5GQ6UtLYjgWBDUbJoijg7kSLhW3bcRzfuXPn5ORk//Cw1+5tnj9Xr1Rb3V61WjXGyCKvVquNZg0kOEopRMjOzg7GdD6f37hxgzFSr9cvXLgUBBVA7ObzeRzHjJHV1dVut0s9x+T53t7e7t7OY1euFWV2cnIihKCM1+t127azLMuSFBpN4FSA36xt23fvbr3yyitPPPHExz72sdlsNhoNhFC2bVs2T9P0VBymRLVaffd39CnY/1G1u7v7zjvv3N/Z/it/5a+cPX9+MhoVRaaUUsoopWC5D2QDREyz2VRKLZfL7e3tO3fuSCmr1fAPfPrT586dwxhz246jqCzL+SKazWZQZKXU7W7HsqzxeLyYLk8GRydHh77rGiWXy2WjVtVaNxqNSugjhNI0Hk3GaZIbg2uNpuM4fljxgopl8zTJl3F8++7W7u7uw4d7o8n4YP8oKzKMcKfVHo9P/pd//v/54R/+HKIWIvif/sN//Kf+6z99+cpjs8X8+oc+tL66ev36dSklZ+zs2bOcEcCtGWNSlmlROg73fT+KFm+88cbde7fbjebjjz9++eLFS5cuea67u7eXZBkhpNvu9HtdpQQj9OT4+P0b77qObzkWxlgUxWg48Tyv3WoFYUi5xbillBoMBkVRVCv1MAxrtbox5u233/7KV776vd/7vQ63Dw4OBoPBvXv333j9rSTN4jgGe3ml1J/84b8B9+jv/W//zWn7dXPw67ZtT8bjarXKKTs42HNsO03TXq/X6bQsmxNChFIHe3uc2S63hVYJcGN95/jw6N69uz/8h/7Qc899+MLliwjpMk3zPMOUEEIsx8YYf/3rX3/77bdBiLuxunLx4kUIUQF4U0oNht0YmzzLfuMR96t/db9Zr/7uv/+NeD7hjq2Q0UgpJcs0KkupkIUx1Vr6gVsJa3megxCXu85oNHr48OFsNkOYhmHY6fSWi+hTv+9/gF/7y1/4M5w71WoVIxLH8Xw6qdVqR/t7P/3TP23b9h/7Y3/8hRee+dmf/VmD0Wg0+uhHPwrNkDFGScNt5jjOYHD8S7/0S0EQNGr1VqvVarWeeeYZz/PyvCxLiRCCkZFQGgTBg+2tX/zFX/yAkbqysnL96jXXdWH9alsWbCHhcHzwYOvLX37l3LlzkO+hEVpdXW23u4vFAmMcViuYWshiSBlkzPHB8Ztvvrm3d/DWW2996UtfXiyXGqHAD8KwCpGaSuuizDQispDzaJmmaVFktVpNGc0o9/1QSh14vhIFxkbJ7Oxmv1qxszy9d2d3e2fPc6vNZtu2bWOUVJnW+ZXHzvseN0aVeWpRBuABxrjMU3jolVKcUWgCoJw7jvPJT34yDMO33npra/ve7/vYR9c3NuDEUcp4lQryPVTKdDK5cePGb/zGb0RRdO2xq08//XS/2xvPlnuH49FsiRDqdrvddvfs2bO1Wq0oCoyoMYZxC652URSjyfjzn/+8EGJ9fT30g1anfWbj7Ne/cOrk/ukf6yCEIBQFlt1ff/Wrs0WklGk122fOnGl3WrVaDWEMffy9e1vfeP21er1OqNXv9s6c3QzDqpRSFCWleLFYMMYQQjB0TqdTxhgkIb722muO4zz55JNnz56FandwcDCZTHq9Xp7nBwcHly9fFkIADwNjfPHixWa9vru7C3/XcbhlsdlsHoahIdg8cgYH96Pj42PLsuaTKSxZsiwTQlFiAfJUKlmv18FNFIZIyJu7ffP9mzdvbm5uPv+RjzguB5OqOI6FUEKIShASQsC+IfA8yKq7devWjRs3jo+Pv/9Tn3r88cfBhwKUSlmWTWbTVrMjpUySBEybiqLY3d19+PDhbDFnzNrc3AT1PvDlQckI1GPXdTc2NqrVKkIojuM0jqGZ6HQ6lsUdx1ZC1Rs1jAih2OaO7fC8KCeT8XQ6LUUOp57v+9BBgtqIc44MAbCt3W47jgsfMsuywK/sHx2/8cYbWZaFYQiOX0IUQNGYzWaU0o2NjUo1aLe6w9HJ8fGxlOJDH3qCELKYzpRS1WoVpkQwNpNCCyE0RsZgy6JZnEymo+OjQVYWFy9e5I6NNLYsyyIUOE/AH8eMIkQsi6pSRFEE20MouhcuXOj3u5w7rmsXRRFWfFEqbaTNXdiZWo69c//B/fv3oZ71+31Y7HLOjcHz+TzJi9lsNhgMfMd2HMfznEa9TikFRvzNmzcHg8H5CxfOnTu3stoLw7DWbEALLoRQ0hhjOCNRFIFc/2Bv7+joaDGf9/v9c+c2e70eTCbQCtSrVa11WUjQ5x4eHsLZNZmObt58P42TK1euAE4ZRUlW5FlRFKKEgSQIKkVR3Lt7/9VXXz137tzq6urBwcF0Oq01q/V6vdFoOLaXplkhBTzGSZxBmD1j7N69+zdu3LAt/vwLz/JHkam+79vcBRTT8zyENaRZMEaSJNnf37t9+3Z/pes4Trfbfu65F8Bt2xiT52kcx0pI27axMcaYxWwKGQ/D8ehgb//Vb36j1Wgqjf7En/qpxz/0oeP9A0pp4LvL5XIZR3meS40YY7btYmxGo9HJycmt92/cuHFj48za+fPnH7/+xIULF1zXBXOT+XyeFrllWWDtFsdpu93c2tq6efPm7v4epRbE16ys9EAPBLOQUgpp43lemeeWZY1GI0JIkmWvvf6Nu3e26vX6tWvXOp1Ou9vTWk8mkyzL9r4dnh53P74J7lwP9w7Ksmw0Gru7u3fv3lZKtdtdoId7nreMoyzLlBLL5TKo+L1eb3V1lVJ6cnJy+/btZ556OqwE+7v7w+EQY4wx1gpYEAjaPqnV/t5hpVLpdLqEYCHEg/v3h8PhxXNnZ1OAEpUo8iDwGGNZGrdaLdf1l4tYKaWMphbnju26PrUsQliaFVAypFSn9NAs6/V6P/qjP0q4ky6XXrXxrW++9k//yT/v9Huz2SzJUlGUr7/xzR/7sR/7zKd+YDabwXAFYG1Z5giRVqsxm82ms/HKysr9+/cXs3mWpa+88kqz2bx67cqHPvShl156iTGWRDHsuMGdbjKbaoWkKqMoerB1fzIc3d/aUqUIw/Cx69cuXrrkhac+KRa3kyRJkowyLoQYj6ff+MY3uOM9fPjwl3/5l43R/fZ6o9GCjhyG///yD/78o/brZ0/brzvj3+x2u/PZ7GD3ITxnq6ur29vbSZIAi7zebFiWdXJyEi+j5WyOKJvNJrfv3rly5fKLL3zkEy9/PI3iX/u1X1lb7ds2r1QqvV6vv9qr1WoaEyklPHlxHPu+T4y+ffu267pAEoeIVkopMAkoMv/7o9Ch7/+xNpLFP/1H/+8yjQxGiBKhSoSMzJOylJjyUijH5bVaDR6L6XRuWZbtuYvFIo7jvb29aq1x6dKlKEpu3rz5h//AP4Zf+9tv/DXLsvM8FyWEAVeFEKLML124+NM//dP/4B/8g//ur//dn//ZP7OIlv/wH/7zv/SX/uxnP/tZIGqsrKwAUMcYw9gkScIoNcb4Xri3t4cxbjbbUso8Lyml1WqV23Ypchh/ATlnjDUaDS1VlmWOw4UQjBCMDdTpLMviOD48PJxO557n+b7f7fdXVtaAilSWpZBSGDOdL2qVutb6S7/75T/9Uz91/tyFMAwrlQpjnHILEwbQ9DJOpSoBNzIawzIOUwS2y4jQ5XJpERtho0SZxkuLmauPnW3WHcflJ8eTd965nURFp7tCCCnLzHbR2XNrvW6zKBJGMMbYKEMIOQ2llCUIALXWrs3/jyb+lNKLFy82Go3t7e12p7mxsb5YzpAh1WpVCGFZ3Pd9QggQYA8PD33fg8WK0RIzLrQlNNEaYYxti+/v79+7d//cuXOc26A3BjtZOAuq1SrEKoNo6+jw5M4bNbjpH/641lp2Or1arbK/v285NsQDLxfJbLG0KJNaLJexUqLdbqdFDuTfJM2jKLp//z5j7OXv+WQlCGUpwDTSsiiAuIBygd9bHMdRFI3H452dHc8Ler3eU089ATeXEAL5yowxuClw1jDGjFJvvvlmt9vd3NwIgiAMAynVYrHIRQnDNyAuruvu7+97nhe4HiFkNpvduXNHCHX50mNAMVTIwK2HumvbNvwXWebD4bBarfphuPPwwZ27d7XW/X7fsux+v+/aDnA9pZQO557ntZqdsOJnafHg4YN+f7Xf7969u7W9vW2MqdZr1UpdSuk4zmQyAfcBgB7DsOK6LuPWbDY7Pj4G6Avgc3j9ofidwlRl6ThOs9l0bQeuWBRFjz32mDGmUWsuFjNCmDFqOp1rLcEqoixLy2K+7+dFOhyMKcN3bt/rdFvPPP0sVCzA0bU2sJrMy0IKbQiFdKzJZPLuu+8mSQJd6fr6KlyiVqtVqdRc16bUMkaVItdaGYMQQttb9w8ODprNZqVSCYNqpVJBCOWiXCwiz/PKUjJGPM8BbVpZloUoy1JmSXp4eKiFBjCec+74nn4UQC6Lstmst1qtNE2hC+92u+12G/7xfD6fLWdlVgotPNtzAxfahVa9Ydv2YrEYDocwQoD35tHRyTvvvDNbRkBmWF9fP7O2Wq0EjDHQHoGkV0qZpOn29vZzz3/Y8zyhFYghCCFlIbXWWkhtJKgZPMdljBZ5fnR0tLPzIEmSz372s48/fg0occCbtIiV5BkEe3PKpovp4Pi43W6+//7729vbtUq1Uquu9teuXr9GOaWMHR8PlFIY0yRJgHW+v7/vOE4YhvsHu3fu3U3TdGVlZW1trdZoEULB3Z5RXqvVGtUaQmg6nU+n09s3b3W73fliCjw8Sqnvhe12u1KpwKW2OAXfxFqtYlnWykq/FPmtW7eCIHjiiSeGw2Ecx5RS8KxK4yTLsmoYMsawOUUuK5WK67rHx8fvvvvuZDa9dOXq5uYmMejk5GQ4OPY8zw8Dz/PyUq6trTmOp7XG2FBKLUJn80mSRL/zO7/T7fY//elPg6mbkoZzLo3Osmw4HCslMKb1ehWMV+bLxXA43N7ePjg4ODk5+smf/Mlnn30W8EUpZZHlGONosSjLEgTyhKAoTcqy3Nra+tLvfvn27dvXP/TEM888813f9V39fv9f/c/vn4L9n3STNCrLknEH4GdC0PHx8cOHD+/fv29Ztud5vV7vw889e+7cJviMYErgX8JuVwjxcGfbtu3lfPnKK6/AvkgKXalUKpVat9udzWacO67n2bYD8am2bS+X8c7Ozu7uThwtG43apfMXXIcRin3HpoT4vk8xAbEOkC60wQoZY4zFuFJKKA3eXWCBuVwuNzbPBZUwjbOLly5fe+Lprdu3fu9LX3n2+edWV9dLJY/2D7a27goh2u0mt6zxePhg+2G31/bcwHXddrs9HA7TLAZ0syiKTqv14Q9/GAhCv/XbX8iy7Cd+4sezLJNSIw2Vndu2zSwex3GlEjqOQwk52t87PDiwbfvo6Gg4HP6bz//K93//9//EH/vJu3fvpnmxXMTT6XR3/+Duna3Xv/3tIAik0I7nNmpN27alMKIolFK2bed5hhD6mZ/423CP/tHn/8p/XD76gaulSqLFt15/I/S9brd769ater1u2fbrr79+/uIF+NwUE4vSTq/f63XPnd/c3NyotFoI6cnx8e07t9IobjRqIOyq1+u1Ws1yXFhju67reY4xJl4sX3/99XPnzm1vb2utr1y50un0QMYspcRa/dv/5Rg+3+f+zJXJwe7//Lf/VtX3pBZxlmKKtFYW1oSwKMkty251mmVZcsuBWRwoDkopoVVZlpRxSmmWFZPJ7Hs+8t/Dr3399v90f+ehMWZlZQVjnCyjyWTiOtwY80f/i594+eWX/87f+Tt/6+/9YsVFzzzz1M/+pb8AoA5oCWFFCKCdMcbmnHO+v3f4d/7O32u326urq616o9FoXL76GDxAUpZgFYMQopTCvvwXf/EXgyBYW1tjjLRaratXr8KEDdMnqEWUlNSyyjz/whd+q1qrra6uLZfLu3e33rt1+1tvvLmytmrbdp4XnHMwQSjLcj5fCiGiJAPHPM/2bM+2bZs7NkAXSinLolG0IIwul7ExxkhscUaQsS1Midk80+33PKOE0daD7YMv/fZXkkL1e+2NM6tXr12oNwIlMmO00ZJRnucFYwwhg7DG2jDGGCNFUYDb2elVAnvJKKKUdnu9Zrs1X0yPBsef+K6X11ZW3nnr7d2H+81ms16rffzjH6+d30RFgZTUkCVADLFcZAcmE3BoCqH29vbu3b1flmVQqYLHXbPZ9IMA7ghCCFEKRUUp9fDh3vabLbjpwn9tZbXfaXcd1+acHx8f375923acer1Vb7YD19NYC6GKIoP2yLIsgxHGFIDPoihc142iaD5dEII6nY7necaosiylKsGkSinl2B5s1bXW+/uHh4eHH3npxSRJomiBMT537hxsYYQQkO0KvjtpHIObw2IxG41G6+tr7Xa7KApmg7YuhwTfLMsqfgDhj+12O/SDoijyUkyn0/F4PBgMLl6+DBW0UqnAQBz6/geohud59WbTsqzZYj4cDm/fvp3nueu6L7zwYp7nnuM2Gg2gAGdZMRyecO60Wo04Tl3f4ZYzHo8PDw+n8xlCuNlsGmPAltO2bUZoWZZpmhdFQRmDThGUcTs7OxjjbrcLVsNKKSCHAQkpTdNGvQ71Ms/zRqORZdnbb717fHIYBtVWu4EMMUjB8IMw5jajmHieixAOwwAhnKZJp9drt9t37949PDys1WpKmnq9froNJ0Rjsr+/D1axIH4EJ7BLly4BhGbbNiGsLHOlTFnmzXYLEpAIIbbFEELAtTo+HnDOz58/7/oekG+g7c6zEkJIgIIGUnattZKSEBKGPkxf3W5XIyOEaNSaQN8BCjxssoDvNZlMiqJwfafb7jme3ag1bduCzhVq0mKxAHLhI+2ID2MkIKmz6ULI4kd/5IehDSWP5jroDkFxkuQZjMFAhvN933G8ZrPOKYM1tFQl0qZer3c67VqtNhmPp9Nxu91eW1sDLViep7VG3XN8xi0tFXdspE1Q8bMkxcTAE/XwwTaiZDlbPvfCC1G8KMtyPlvGcWzbbpIkQuowDLXWlUql2arDy7Vczg8PD7ce3H+ws/+JT3zi+eef11rHi0gptVzEg8Egywql1P17W91uN0mSvb09qKzT6bRSqTQajUuXLkEqX7fbhW8NxA/XdaDSQ/966/YNYL5fu3bNtrhSKvT8MAyzLJsvptVqtdVqdTod7jiAAi7jtNfrDU+OHj58OBqNoH2/du1as92tVquVSs22bcfhCCGLUG4zIYqiyOM4sSxLSv2Nb3zjq1//Rr3ehEO+Vq3nRVYKaVkMAlLPnT27vr5uWTRJkvdv3qhUKmtrK4PBAASnzXoDYxz6vud5vuvNl7OyLIQQbuD7vt9stoaD8auvfvPGjRuf/exnz5w589u/fKp8fOZlSiktyzJOU8CJCUVwWbIs45ZzcnJy//79G7du/rk/9+fOnDun3zoDNgABAABJREFURVGIMsvTNE6m0yngF1LKTqfjuz4850II8ICdL6OTk5M/+JnPnjt3bjabFUWpjB6PppPJ5GQ03tvbU0rJIs/ypNVont1c31jp16shxZhQhA2CJTvQp0qpkiTJ8hw4plJqOEsxxpTSJM/iJD0ejJ558plP/8HPrJ+9EM/mX/vaqytrq2mSR0nMCGUW8X0/SSKj9CJa3Ll3787W3ZPDY8ZYJQgvXLgAZgtXrlymlL7wwgt5np8MB9Vq1bKs3b0dzHCn03njm2/8q3/xL5HGj125+sQTT8ET5XkeRNcTivv9LjiGHB8N9w8P9vb2KLWKXCyi5d27W6998w2tIVGgaVmWVigtcqSQxkgrwxiL47go89tbN13L/cW/+utwj/6r//b7Ttuv/6R+/vY//kOXr14D6dxisaAIh2FICVosFq9/87W/9tf+2sc//vGf//mf55z/+I//4atPPl5miRTqrbfeAptKYzAhiHPebrfLojAag1K9LKWUklNiO5ZGBGgTICdRSkHtgQ4BZN5aI8uitVpDalFkpef7BOO8KDBCBuFapaqRKbLyzr27N96/9c3XX/sP//4LtUaz3e11un34Y5ZlJXlhjAmCAPSeZSE9z8OYQh3N85xxeA8lwG+ua9uuwzlzHE8ppYS2bTtLYqOKNFmeP9db71eKPLG4i5EdRWkSZ5TTsOJ7vpXnMcUIIS3KkhACXCiEtRDCd1zOOaU4SZLFbA4MLUKIVuoDqwVtjNSK2fzchfMba+t7e3sHu3tXrzwWBgFA7itrfV6t5FEklaCMaSMX8yhOxerqOvDnykJ0Oh3EHSSlVgZMOt5///1797c2NjbCMNQauY4fVKv1WrMsS0rtf/eolX/q92tw6gpD37Ks2XzKLH54eHjj1h3LspvN5urqar1eb7fbYBITVMLlcgnEdofbjFujwVBrPZ8v9/YeDofDWq0C9B3Pdz6ocLVqAyjnZVkKoXzfV0ZPp9P5fHp4eEgIgWRc27aTKGaMeZ43n8+xMYDhVauh1nowOIELMp7NYByHyYQQUmY53FnOuShKxlit0UQI1Wq1Bw8eGIzr9fpgMMjzvFqtpmka+j50pUD1SJKkWq+H1Qpo005OTm7fvnv9+vVqtXrvzt2ylIQQbtuj4bAoS4JIKUUURfV6fXV11Xad1dVVKeVoOLm3fa9dbwehl2dlmqZpmhZ5XpZlEAQI4+VyCZo1iAk6ODi4f/9+lmVXrlwBnQQkCwEoNZ1MgG1NieW6LkCSQojj4+OdnR24Dp1OR6qy0Wz6vu/Ydhj6vh8ipCm1hsOTLC+1ka7jgxcroHGNRkNrbQwGmPPUlMRxpJQgdID3ZWvrAeivwTydc+4HQVmWlmUzRizGAB7jnCFEHj7cbnd6jssn49nB4V4hVJqmqlRpmgJ3Apz6AdoEOXRZ5rBvqlQqjudaluXaHvhqgsEsMGlgUVit1YCmBv1BvV5vtVqDk5NvfvNVMG5wHKfVarmuSymF8kCpBUR+pVSWFvP5vNVu1OtVLeRb775jM+vChXPAkQJGWiEFAEucc9BrQ6rsxupas1l3XbderxOMH7FaCaM0z3Pbtmu1CkQPgZkWxhTynuFKep7XajXgiiGEQNxnMTtJkiD00jR9/bVvFUVBCGs0GtVqHRMC7np5kZZl2em0Ll++bHnO6Ojk5u07lFibm5vHx8dRFO/u7kbLJIoiQthisXC4DbwOBOaLFrFtyxizv7+fpulLL71Uq9UAmgWm/3g8BnY/eLV4nmeMdlwONADO7KLIGtXGlSuXHMcLqkHo+YUstNbwVIN572KxYATBb8jzfD6f37t378uvfO1zn/vc93zy+9IkkbIE246yLC1OpSxPs5VK9XB/z7Lsne2H29vb4Om6ur529erVjY2NoigQMr1uF2O8XM673S4iuCxLMPbb3d29d+/e0cHhdDq9dOHCxYsXGaGe53T7Xcdx3MCPolhrzS1HSp3nZZqmruu+9punNocz9Mrq6mqlUuEuB9G9NhIM/ZutliwVzDPT2RRyIAaD49/50u/u7e/Wq7WrV6+C3KHIyziO0yRBCK2tbhhjKpWKF4TD4fDbb74deH6j0Xjw4MHRyfF4NEuLfLGIKOOAVgghGMVISUZxv92+cvn8aq+vZCFVGXiuZdlaS4QQY6wQJagWMMZZVsAklqapUkobs4gTRq2XX/6esFq5dPHKfL782jdelUJZNj9//vzKyhpC+vj4eDQaEkIWi8UiWlJuDY6OF4tFvIzffvvtb33rW3/iT/yJK1cul2X50ksvTSaT8XQCkHySZ4xb9XodaZNGyWwynY5nd27e+va336rX65Rbn/nMp+vNRprGRVEcHx9vbW1VKjVRqpPhYDqdSqlPjoeu63qeD5U9iTPGGCEsDENjUBQtpdGj0YAQsrm58eJLL7TbrQ3+Etyjsnn3P8X269999S+urW4URXFn6z6l1HfcLMviaBHHMcUoSZJf/dVf7XQ6/+sv/4s/9dM/bdIkL9I4St955x2hJEKIUsvznMuXLzebzeV8obW2LBtjrDVijPiufXJy9Pf/wT/s9/vNZhNU0FeuXOl2+1rrJMl83z9lhmFKKU2y/N98/vMW5avra9FieXh89GDrfpSkz3342UqtWmTFyWDw8OFeVhYWoVGSHR8f52Whtabcwhi7XgD7KTAmALcnhBBjDBx0OXeklARTy7IoI+AmYIwijBqDLcoR0gSbNJ4n8eLcZn+1W1EydxzPcwPgzBZFludpKXKEzAeRyRhjjClCSMkSdhyUUqQkaKwQQrZtO44D8yXGFNgzUqtSyV6/HwbBYrFwLOb7fqfdLIri3r17Tz315MXLl8JalXNOGEOESCkoYpi7iGBTlphaSGutDEKIWDYiBCFTZtlkMgF7TGbZcZz6XgVjulgsCHN232nDTb/yYg4oaVFmeZ4TgrrdvmVZpdRCyel02mq1oERVAp9Sulwutda1Wi1N0yxJECEMMzfwbdsOgiDP829+89XhcPjCR55zuQ2DkTEGMCrI/rO5y11nOp8BcYoQMhyegO7vzJkznVYbFDpBEBCkgagObRxARIwxKHjz+Rzc4/r9fhBUYMOLEAJ9GYQ4QdtRazbgb41GI/DvBc4NEPMZIRhj7nhA44DazxgnlOZ5fuPGjSRJy7LMy8JzXNf3kMZ5URhjut2uEEIh4zhOu902BhOGCaJ3796+f38bvlqn2QLIE0Qk4HmBMW6325cuXQJWXFEUtVptPp9vbW1BBwB1DpSPjPE0TefzuWVZH3gIAzV7bW3NdW3oa6WUy+XcGJymsW279XqVc0cpYQwWQhCLIYTefPPNsiwff/xx3/eR0lJK0MGBN8pkvoAlC3xgy7KAvFwURZ7nhFoIoWaz1WjU4YxGCDkOx5imaWxZNiHo4f5BliVS6rIsIeMyCIKyLCHDUagSYwx9mB9AOAlBCE3HE4QQCOts22WMcdtGCGFMgagHSvAoTYCeKKVkGC0XC3h3ptOpEMVisXj88SdgbwXrfowxoxz8hzDGtmM5rvvNb3zj3v27SkiMMXjQuK4LriJgIKeUIoQBJw9Mbuv1qmPx2WwGgm6LMWMUqKPazVYUL4MgaLUaykjGLWPwvXv3xsPRRz7ykcuXLy+Xy2o1TNM0S+ODgwNGOWzVgyBoNWogL4jjdHAy2t59iBBptVrXr193HAeY0UqJNE0LkSdJZln2eDQFyPab33ztt3/7twlhvV5vbW2t3W67jo8Qcn2v2+2macoY0Ua6rkMQhveCMba/t3fv3r0szS9dunT16tUkSRDB4J2htSYYAe3J87xupydkOZ3MWu2mY7ujyejB/fvKnFrAmNOhCBVFgQ0CYR2ldG1trdPpjKfzoigajRZjbHd358GDB9euPBaGYVqU1Wp1Op2maZpnxdHRESRHNRqNOI4Hg+Pbd+9cvnwJptPQDyghxKCsLIqiSJIoCILV9TWtdb1asywrihbj8Xj7/v3pePLee+/93M/93LmL50bDYakkRjTLCmOwNmYwGNq2vbq6+tV/e2q76m08HBwd37hxQ2N9/fr1H/qhH2o26+iR032el4vFQgjBuIWQBnlvnuc7Ozt3bt8G1/unn366XmvWarXzFy8URWEMBtx0GSVlWaZFMRtP4jg+OTl+5513FvPYEFytN6hl27bLOXccRwupZLmYTgYnR51246UXPtLrNkPXdj1bCq2NBJgZSLRInwaxE0JKKeI4xpimaTocTbrd7qVLl5vt7uXHrkwn81df++bOzm6aZbVabWPjzMpKv9VqOY5zeHgojQirdcZYsoyKojAGfeMb39i6e291dbXZbBZF8e233nRd96mnnur3+7Vmw3XdUpskzhzOjdLpIrI4bdTqtm0fHBx8+9vfLgpRbzSiKJJaTSaT/f1TcBG45pRSy+KgZoBWGDCOOE6BJBAE3qXHLj3/wrOPP/742trq6lpfyvLN35zCL/n9P9L/T679ejD+/y4W0dHhyZtvvvnY9ce73a4W0rIot6zZbJLGCZjx/Pk//+e/8tWvPf/8sx/5zo/NBwOEEGNMP3rJEULj8VBKWQlC+PdSSs8LGCNZktiuC2odcEatVuuAhDuur5USUpW5yMui11/Js3Q2j3d29772ta/95m/+5u72TqPd6jQ7lFuT4SjNS1mW3PHq9Xqj1cQGWTY3+FRZadkctCqwy1BClhJMyBSc5oxbxhijNGOcUasURZIkxiiEtJRSGV2WJUFWpRJUPNcggZHqtmu1gCqZ+n5o2xYiOMsyIUqEEEBNCGkYPREi0Cggo4DDRwjJ4iiOY/wob4FzHni+ZYFC4vSPZoWo1WqNWi3LEq3l2XNn2u12FC2VkFevX+uvryPHRkKILCOUUosjjJFG2hjYn0opoYAhgy3LsjhHGBmlMWeIMKRkvEh3dw+nk1mUpPt7hxX03XDfV66NAXYqigIh5PlOnufz5bJabyCEXNcNw3Bvb+/LX/7y8OQYeMG9Xs9zHNd1h8Oh53k2d08ZPEa7rs05j5PlysrK8cHhb/3Wb1mW1Wg0NjY2ms2mlBpjLEolpcSMSq2KoqhUKgAwgOKpVqm+//77URT5vt9q1NbW1jzPg+4N4qvn8zls8MuyPDg4AOLg6uo6QEdgm6SUyrIEAAzGWJyl6+vroJOF4/Xhw4cnJyfPP/eRNE2R1kKIvJSwDoui6Ph4wBgzCLmuizFRRoMz7Xy2XCwWHxAKOeej6WS5XC6XyzRNF9HS87xutwuBRUCSS9PUSIUxrlarvV4P+lEQusPDE0VREATgXLBcLg8PD6H1eaQSxRhjz/Mg+QQoa5ZlwcuFMU7T9OHDbRACQ5oNQggYVCCrhOKaFnm1Wq1UKnEcc+4sFovDvV0I/wFJP2OMWBwsOkF0DIwf2HeAEo1z7nk+VIIoihaLOTSgwG52HKfTOyW/Y4K0KA2Ykhvje57rurZtu54HVEuLU7CPGo0GDndBZMoYo9QihIATGCypu92u4zhCq1qtVpYlHCkizyphCHACKAb29vZqtcb6+joIA8G4J01y8PNMsjQMfWguXdctRU4IuX3z1vb29rlz51588cVTvlcJ1gMIWlL4+lprz3a0lqcsPcpa7UYQBK5r2xYH1bAyChPT7rYunLsohABIFaaO7fsPMDae5zWaNYworOAdx6kEHqCDvh9Wq9UiF+/dvFWW5bPPPssYK8t8NpvF8XK5XGZFPh6PObOl1ECXTJMsTpPlMoa953g8vnz58ksvvVStNTDGy+VSa2lxuljMT45OGo06OFkQjMECBgAwEO61Wi3Yd9eq1aIoADu3LAsSckspwrBaFFme55PZZHt7O6z4m5ub7Xbbc1zPc+rVWhiGnDHOebVaBeq9ZVmz2WI+n2dZdni4PxmOkjxj1O73+4BW2rYLZzLY+0kpLc4pw3met9ttcDzZunPXsfjG5tnHrl7p9/sI6VKovEgd7q6s9NbW1rxqFRmULxaT8ZhZlu/7SZ49fPjw3r37k/G0EKXW6OTkREmTpunLT/0JeOPuTf7dlStXnnzyySSJvv7q137oh36o2+0KUQyHw9u37966devw8DBN07BSAeX12XNn+v1+nqfYoEqlMp/Pv/SlL/37f/8f/sJf/NkLFy4cHh4uFotSKCnlw/19KSVs8NM0BTRBSaORyQo1GAwwYWUpbItzztM4qoR+LQyyNFai7LSa6/3OymrPcZw8zzjn2CDXdT3fAag4Twv6aC0rpZyMZycnJ57nbZ47F1arV68/3mi1CGGe50VxOh6Pt7a27t+/n6Yp49YP/aEfvH79elaI4XB4tH+wXC6jKFZKQY1GiAhVUmKdDI729w4Pj/aXcXrt8ev1Zvfk5IQi2mrW48UyWixnswlYb3LOx+Nxmhfz+Xw2m+VZ6dg22FphRAxGvu9zzpMkg0VTlmW7D/dt27527dr65pmzG2cQRbP5GGFtjNnc3Hj++WfPXzj7tf/91Avp+icQNskSEWLyfDIZGam0keBAMx6PGWPgcCOUYoy5rksYwxiXskyTpCiKxWIhpWw262EYanOarauUEkIiBEmvxrbtra2t3/vyl2Bz12q11ldWV1ZWuOvAEQCnM7TAjLG333777mun8o2nP5bcfu+dt974ZrPZxJQUUgxGJ5bFuOtwy0YKaa0pw1praIksZkPASLvdLqRACMGpkRdCSlmrNYpCpEmW5/nB0THGeH3tzAfWl0WeG6Nsi2sj4fj46Hd+x/nz51947vm8SKWA7gHBUei67vs33zs83JelqFSBybvebrfTJMOGQRXBFjNKgUroX/yLf1GtVi9evpynxTKK7ty6e+/+1rPPfLgQcmfvUAgxHA7LsuSWFcVxtIiV0UZpTBk2yPUCQgixmGNxjZFGQAtGjNKyLKPFsixzQghBqJSScep5HihVESWWZSGFKCYIkSzLZrNZUWSUYmYRJY1lWZx7tm1ZGFFmKDGNmr/SribJ1BhVr9eYRQghWZEaY0SphBAAsUL5RwhB+wXwGwAek8kEUizhAIKK+4HEFWOMDSnLUinBOWectjvNfr/3xNNPNKqnxu5JkhiDW62W5fkS7HOVJIRprY3GSinuesyyEEJpkkCOk2NxQgCV9Fw3lNrs7R4slklQqX77S6chaKvXJ7bnU0rhctm2bVl0NpsZTICmJoQ4e2YDnCFv3br17ttvF0Xxoz/6o5ubmxZl0C6E1QrII6A/qNfrYRgCA2x3d/fWrVu7u/uu63784x8H65derye1zrIsqFQhIQ4hNJtNVldXKSbwBu3v7x8c7tm2fX7zLEjNwRMYFkZlWa6uriZJAgFHlNI4jt977z3XdVf6a+fOb3LOdncfgvNcqeSFCxcQwtCXG2OuX78+m83ADWtrawtjXGalUobZ3HXdaBlzzvOyoJQmWQrctbTIGeOU0sPDw/39fSEUKIngP4EU9YG6G8Ah2MtkWWZZFjEaUC7ACGETBBpD+FKwDAqCACE0Go3Gs3kQBKurq4wxi9nAgQNLPKjuQRCkWbxcLn3Hha//8OHDhw8fglUmPI3VatUQDNodmApgJtFaT4YD0OgppcC8ChAyKTXgdtB1AQintbYdp1QySTJIrLdtm2EKYGQcx5Awk8QZIEbNVt0POOeMYhYEgSxKkBBVG/Vqtc4YU1ozxgLftyzqO/5iMZstF4Sg2WyBEEqzQms9GAyMMcskhS/OGDt//jxItzhlUgiRZ4UUoIYry9J1/X6/f/PWre3tbeAOIoSq1So4v5dK12q1RqMGx6llWUWWTCYTrVClUqmE4YMHDwaDAcYYGQJ3H1xClFJKSIR1r9erVkOsT/vRIPDCIAA/YUJQUaac8zTOTidSrUHgpoWMk+X+/j6ltN/vw7ji+c7KSq/RaJSlBK0V57zIBbDmy7K89+D+K6+80u/3+/1uq9XyfX8+mS+XMULIDfw4SuBZchwnydLlciml7Pf7WV5ub29LKU8D4GuhLJXnOXDHjVZgt+G6p335cDhstVqNVlMplafFZDx1HCdJkiwr5vP5dD4rikIrZNksDMNmq04pxYyMx+Ph8cmFc+d//8c/BoYvnDLYLUwmk9F0xhizGJ/NpzAqUIoxxtEy3Xpw//797evXr6+srIzHY0LIfLGIoiRN08PDw+HwxPO8er3e7LQ31zdsZqVpvFzGaRq7vrexsf7yy9/d6bSV0pxb3HGQUkVRjMfjo/2DO/e2VldXueP+1m/91t/+u3+33+kzbvteWKvVPM9njP3Id/03cNz9wj/54zs7Oz/wA9/3zDNP5Xme5cn6+nocx1/+8pe/9OXf67TaF85fgoeNMiyEIATlZaGlFGX5kz/5R6FTHwzHR0dHruumefbee++9+c47lmVx2/1gkqEUP6rguCgKjVgpBbccrXWW5bbFLc52tx8sFwvP5p7nWQypIltb7UNKfVEUgecYY2yb27adZYlRSJkPJnx0eHhEEC6KYv/g6Ps//akf/tyPcMexbVtqtVhE4OOIEBqNp++//3673e70e+PB6ODgYD6fh2EIRjlgkT2dztMitSx7Oh0zxrWW0+n8wYMHR8cjhFDgBYTg5XJZq9VOjykjF4tFEARGGNu2McaiLLMkLUthjDEaG4zgoE7zzPO8sFpdW1+5cP5Ss1U/c+aM63ue43JuIawrvrNcLo+OD27dukUIXucvw7f79E+eweOduwghgrDneYygJElmsynGeD6d3b57B2mDCO73Vy5evNjv9zVCeZERSoFYCq+3UuqLX/zifD4/d/48DH9BELZaLdtxZVFIKZ0wNKKAIYBzLvJiuVz6lRB6NTgoYdwBkONX/+kefL7f92nya//6X00HR5VKBTO6TOLhcNBb6WdFiTG2iGVZllSn2IyUkmA2Go0geUpoRQgBTrqQGjayWZZRahmNpNSvvfH6xQuXXdedTqeEIkaoZVlKlmVZloUsy3Lz3Nkf/MEfrFXDLMs8N2h3e6trawhRRClSJWJMi1xKaYwqsvzBzoOVfr/d6mlF0jSL4zQvs9X+CmSC3rhx452333vr3fd+9Vd+XQhx5sxms9k8PDy0XafbX5/P58BWoQhDOTHGUGrBaJuXpVKnzU1eFkVZcs5t2+aWhTFmhBKCQG3LGDNYCyE0MsaYrMyKQqi8RIg4jud5nmVRYxQGCiSicRxLiZQSSpYESWTk+bNr/VZFiBhjkxcJmLT5YfBI3AD+XhohhDFGyCBtLE6DR8x3AG9cbud5Dq8Q6MDhzIIumRFgEwshRJxG0sg4icJq0O/3Nzc3z22eX11drTXbSMosSSilQhnCqGVZyBDmOAhTWRZRFO3s7Ii8APoUY8TmHEo+cXykcR6nk9lCafzqb52+yU9/N9/bO3j99ddbrdbqar/ZbAJhljALpKB5nqdxtLa2BrV/Pp2enJxsbGy4rvtg6/54PF5dXW112kqpsiwty1oul4CpLBYLx+Gbm8BCLU5OTggh6+vrd+/e1VqvbWxUKpVCnBq8IYRgp5PGied5nU4HULTpdLr/cBfcWKDqAw8dWN6LxaLfX83zvCiKarUaRdHNmzcxotPZuF6vPvnkEyD7sj03TVOQRCRJcnR0BNenXmuCL0YUJYPBCAoSQijww0qtWhRFHMeIYCGERvDKSK01d2ytdbxMkiQB4lqj0VhbW4MWB37AWwFuMaU0CAKXW5PJZDAYANACMsMsy8AxC/4xyPEYY5V6DRQhtVrt4ODgzu17GON6vd7tdmu1GlBA8jyPk+VisZiOxgihZrMJ6UaQ2um6Lggwq406IEDgllmtVrvdruc50XwxHo9BMwiSIMxot9sFfiTIUdM0Bbi6FAJRQgjBmMIitSxLVcrZbAbUMdiqUEpBQOD7XqtdcxxOMbFtO43S08xp8Nc4u1mtVrv9nizF3t7ebDzJ89xxuON7Spn5fI4QIZQCWCWlnkdLpdTe3t7q6irnzHGc5WyulagGIbM5rI3KsgQ5SJKmMP8AhQ4swZ566imFsOu6GJ9Cd1pr26LgpKW1ztJ0NBpBZwmWE1Dt1tfX8zw3StfrdXijjVGe7YBMpNWsw/2llFJilsslYwystqSUnDKEUKNRE0KUIp/P5zAUPf/cR9bW1ixOCTltdqF7hr9rWVaWZYs4glcJyFu2bQdusLKyQim1HFtJDeb+CCGhJHAEOeeYkuVyORqNDg8PO53OyspKt93p9XoYI845SLH7/S7EfkATuVgsHM8VQty/9+DmjVvgD2zbruM409lisVhkRQ5UXde1a83GteuPra2tYYyyOOl1ulmavvHGG8PjE4C3Pc9TyEihYPaYTCYGadAuVGs1zu35fD4ej4tCzGazo+PjxWJBqQUQA6VUa0QI6fR76yurnmMbpIxCYTUoiuLu3bvf933fB8bCQEIfDAb37ty9u3Xv5OSk3+8vF6kX+Ixy13WzLLMcB1pM8Kb6Yz9wamrw69/4+8bgOF5G0bJaC22LQ3Zqq9WCsgiPDedOWeZaa2UkYwwhLUVRCcIrV674YTAcDqMkBly5lNp13clsGsdxnpe2bTle4AeuFnI2mzHGjMGW7Vo219IorSkh0MdwykajwXw201oyjDybzxczy7LOb57xPO/x61dd19VaGqUwpXmaYkpd10cIwd+djsadTkdj1F9dufzYY91+79rjj2spMaZRFIHE3iDCGJstF2maIaXffffdra2to8MTx3GuXLlqjBnPphAkeHx8nKYpwBCcO81mk9tuFMUUEzjN0jS1mA0B5I7jUEqEEEWaFWXmu16z2bQo59w+PDoCRF8o2el04jg+ODj49Kc/9YlPfKLf75+9eBbsrIUo4sWcWaRSqVgW8xw3L9Jf/8f34R79gf9yE7/6hV+FMNS1tTXMmCrLKIqUUp7jYEqTKMqyrNlsghEcdxxCCCIYaeNwDjMxQujOvXsPHz4EXfr6+no1rNRqNVEUhBCpNdwGy7IYIcyyvvx7X/rCF77wzHPPBkEAab69fh/aC8DYf+Wf7MLn+8E/Uv9//bd/se4HjDHm2kcnx0qJtTMbUZwWQjLMMMYQ1qYVchxnZ2e30Wi0201Qh0ELAi0XIaQUyrJsbAi1WJpk0+mUcRvO3yiKHG5H0QJk3pRSWAGMx+M/+Sf/ZLfbrdUatXpTCLVYLIUQk9lssVhQRp566qlqNWSYvPP+ew/ubSFEBifTO3fu7T7c29q+/6Of+1yr0wGdURTFk9mUW85yuZwtFwgh1/XjOKaMIYSAnGFzBjCM53mw3RNCzGYzKTTIpizLsiwL0DU4DBHBH2BLSinAz8u8ANkX9MeWZcE+nhACywWDFGU8iiItMWMEGUUp1jI7u9G/sNlN4vliMSPUCCEe2frbDBTkjIHNrNZaa4UQCjwPOAqAGH8wuACZqVKpeJ4n9alQ1BhjUUoIgbAmjZTtumfPnXn88cdXVlYcx6aICCHm04VSCuR1cZyCQm1wMorTJMvyOI4XiwXnvBpWCMHGGM93amGlUgmqYQUhwh0XEbpYpoPJ/J2vVuDzPPu9rmXz5SLGGI9Hg5s3b9q2Va/XNzY2oBXgnA+HQ1DpM8YgtUYURRRFx8fHr7766tbWVqvVevnllxEhlNLNzc2jo6MwDH3f73a7lFogy4de0xhz69aNk5MTqFWNRqPT6QBzK6xW0jR1HP6Bo0S0WDLGHJdXKpUHDx7cvXu3Watvbm7CeHd0dAS7pDiOEWHwKoGIaTAYJNGiWq32+/2Tk5NclJ1OB3R/k+kcNBmO40wmMxjsGo1Go96CAwi6uvfff991vQ89+USSJCcnJxhRrXUuSkA6jTGO47XbbU5ZFEXT6djzPGBQnfqMYJSmqWVZtm0voyQMQymKD3y5AFVaLpcbGxvw5DDGgekFFwq4boRSz/MqlYqUGmzxj46OgAjVbrayLCtFboxhmBBCvDCAKCTOOWQkS1mCUEsIcf78ecYYTKWAUDqOI2XJuQOuoYC4R1F0MhwQQprNpmVZlFiLxQI8PHMhPc/Ls2KxWECMVaNWBSsTKUvHtrMs45zBIrtarQZBQCmt+AHnvNVoY2yklKUUWZZN5pONjQ3btn/vd7/49ttva6na3Q5kALeaHS8M0jRHCI3HY4RQWUrP98MwBMZepVI5ODi4t3WHIBx6PoQ0SKNBLFkUBXi7g7U9GBykcbK2se57YZqm+/v7nPNKNWCMQRmD3j0Mqh/g9+PxFA5t13WB0Q++9mCbTAjJ0pQxwhjD2jxC5ojnnva4nudRTEAlYJC2CD51EnHdxWIBWKOUch7Nb9y40Ww2V1ZWYCMppSzLEiECeNjBwUGWFbVajXN+9+7dhw8fXr50JQh9cL2PkwRAGmj1kiT5QJcAI1Mhc9gjr/ZXXnzxRUZo4Hq1Wg2EJlGaJEkGFDeL25PJxOaWEGJn++HOzs7u/sFsunAc79KlS8porSUhJAg813W5zQzBhBAtpOu6FmW+79sWPz4+BoUHBE60ux3OWegH2igIg4qTBLYuCCFMaVEURVEoadI0n8/nnhckSbK6sh4EQZblDx/uHBzulWUeLeKnP/zUlStXjo6Otu8/aLVapRTb29tFIbTWnVa72W7Ztq0xsrkHfi6FKKWUFrNBgwVqgx/7rp+B4+6Xf/dvMcYxNswiCBmKMOWWY3EQGEKrsVwuw7DCGAWapm3bSgukFbMIxjhJU6CREEIMwZRavu8LJaMoUtJgYhh3lss5pDnDZEKJpTGyCC2VJOa0BMAMBqyPe3dvq7LQSmitDw+PNELPPnH96aefrjeqshRSqzIvDEbIECllFCVxHL//3jvPP//83/of/8dCit/9vd8pRPkjP/IjSilIPWaMa60xYQcHh/NoiRHNkxSmlCTJlkm8vf1wZ2dnsVymaQ7IOoxntm0BdxN8SRmmBGGCWZYkolRJGh0fH4/Go8euXObcunL9yoUL54wUQqjhcOw6Puzxzpw502q1bNtOs/jo6Gg8HB0fHxpjzmysXb16tdfrQFCpbXPHceI4XsznZZl/6z+cekR/4nMt/PZXfrvVakEWVVEUcLRBk44xhslsNpncvHmTc844L4qCc37x/Pn62hoqBSIEaY0IRoyhokC2bfLsnbfeDoKg3WwCCdd2XYtzxDkSAjGGyiKN42USP2oItDYGAunKsiyV/K3/dQCf7/nfv/yp/+qPPvfkk0EQuGFwf/tBs1kP6lVtqNTGSJPnOWWYEFLkYjKZVKv11dXVLDuNa83zXCFFCAEfeYOIMcbhrpR6GcVCCKE06Ht930daVSqVMAyBWQKAfBzHn/jEJz7zg5+lxPr853/lH//SPxuMJ/t7h6UxDCGJ0Me/4zsuXbrU7bXb7fbrr7/+v/3Lf11xq61Wq91uU0qLolhEcyFEUK1QRP1K6HkewlQpJZQkCDNuMcayLEEaM0ZO7bKEAPyDc240RlgTakFjCg0ZoGKMMWU0BBmBcgrGF601NgiaMyAcUEph1pdS5nmqtbYdi9suxtQoRCktspQyY1QZhta1SxucqixLl8sloQhedYyolIoQ9gj1UBhjSglnjDMLmOyWzYGpA0MksEkqlYrv+0IZqIjQE2OMDUZ5fmpfdO1Dj4PlQZ7naRTned7t9jc2NpIo3tvbg3i+4+NjIWR/daXdbtvcRViLooQS7tq8UqnUqxXXdSlBrVarVqsZYiVZPpotv/V7p+3X5nMRY9xi9spqz7a4UgJsqTudzmg0giw/xtjx8TF4aIFaGwohI4Q7zvDk5NadO7B329zcBOMuIYQx+INNK8A8QgjXdVutBpRGAKL29vaeeuoZhJAfBqCSM8bAbgLKWL1RtSwriiLbtpHSwLWK4/jKlSuPHFmdOM0holtKCRhD4DngWa+UGk7Gg8HgpZdeAm4ExACD9AFo7JPJhBKLEAKAJef84ODg6ORkuVyCwC0MqqDqsCyLEOY4jjE4SZJ6pZplGdSnNE3v3LkTLyNldLfbrbeaKysre3t7RSkxMa7twLMH5AlQHU6nU8uyJpPJYhGFYfgB5ZYQIh+l0RdFgTHt9XrAXN7f3wcPKq11lifL5ZJh0m63ueuA0avneWmaIqSBtxcEAVhjjEaj8+fP9/t94L9jDBCdhLEKnk9E8Hw+39vbAwVAo96C1y0tcrBNBuoV1CpikGVRKaXruhhp4P4zxlZXVyHUCNZS1WoVrIOSJLFtOyvS5XIZ5zHG2OU2pcQos7u7e+PGDcatj//+T6RpqpSJs1PLEkot0KAVZZllWX+lOxgMRoOhkQr8JBlj7V73ox/96GlAiNHg3a+1PjU+HY0hCeDe1tbg5MQg5DpcahWGYafTgcQhx/bgaQGlNqzdYYsnpTw4OBiPx8BrvHjxYlEUSby0LMtmFmwAV1Z6lNJKNQBURhRlvV6HRR4yp9E3cOx4nge28saYNI1HoxGIY1qtFoyaeV7CgRYEgTE4iqLT964Qi2iZZ2kpxO7u7ng87vf79XodvAABeIae0nXdTrdlu061Gi4WUVFkVb/quu5iOnv99ddns9nKykqj3fF9v1qtzmeLwWiolAoD33VdbtmU0kUU37p5ZzKZ+b6vkZlOp5TiXq9XqVQYIyDBA4KNLNVsPrEt3mg0IGDg4OCAUrqyttpsNtM4kbJsNBqOa5dCwvlcqVSEkgAJLxaLwclIKUMIYYzfunlna2sLY8IYq9drCGuC2cngaLmI642q7wZSSsd1YcYuS4ExHs+mRVEYjAhmhmAjFbO5bduIYIKwMtLhblbkf/hjPw3H3T/74t9EStu2pY3UWod+gDGWUsxmM6U0Y0yVwnJs33Ed30NKG4LSNM2LVJUCY4MQcRzu+6HQwrLsLEuACI8JAbVQtVrFjIL0BGM8n8+BhcwYAx9HYGRyzpMkAUIwqFAtRjybE4yFKAjCR8eHi/lypdeuVGqLxczzAsuxl8vl4eGxQgghFHCeluX+3sNGv4MoiRfTIs1s275x48av/+qvua7f7fRrtbrj+nmeR2kyHgwPDg6m0/kyiR3Hsx0HohGTJCGEwkEqpZRSrK6uTSaTJMvA+gcpjBCKFgs43s+fP2/b1u7u7sOHO9euP3b27Jk8T+v1uu+HV65cqVbrhSwqfkVradsuY8SibL6YurZzfHx4cnIyGg/v373XX+v/4T/844XIsySnFNu2HQTev/z7N+EefdePNLFZDg93dw+Oj86ePSuVhrOg0+k4YRVhjJRACBVxkqYpHPpRlFQqFcfiSRwXWV6IknNelGUQBI1268tf/hJCKE+T8Xjc63Rrjcb6+nqz0YbeziAFjYXnedhzkBBaqV/6pV86Pjm5du0aHBMbZzd/91+eBledv77183/hz1+/dJFSWm93jkfDTrfh+aFEFBGK9SmwDDe+VqvVag2YUxFCQhRaa2kkIYRSy5z64TJiyPbDh9V6Yz6f7x8cOo5TrdZ7vZ7vOq7rEorBaVophQnJsnwymT125VpRyF/6J//87OYF368oiZllI4S9MJBFOZlMkiSZzWbXr19vtVpxnAIUBAluCtSCBIOajHOOCaOUSqOJQUKrNE1LkYtMaCORPmWsV6vValiRUlq2I2VpDEYIKa3hXZrPp7BtBKtAx/FAWQ2TCudco9N2R0qZZUmWZWUuAODRWhJGfd+1bRchApaAZZEhLIs8qQbW449tVH1bSgnL4jiOl/O5KCVjnBILIYSwJgRhjDU2FqVaKs7AwUVgbGBgsiwrLwvHccAPMy8lYEIIIQak2jiBQYQQ0m40q9UqaKMgwllrfffu3XfeeQu6TM657/ucO9DRuo5fqQZaayEKI1UY+M1ms16trK+vX7x0ngU+QlqlhdR4OJl//Yun7O8Pf58ttZJSF0VRCULLohQTQpEW+pVXXnnttdcqlcqF85fa7Xar28nzHKwUXddFBCshXd/zXS8Mw+FwCPl0b7/99rvvvk8IWVvbuHbtWpKmk8mk3W6D+gxIOXmaIaQrQVCt1x8+fAh255PJDGNsu06z2bx48TwgN+12WwgxmYwc2/Z9j2ECbk+DwQA2XyDjOHfxYq/XS5N8NBoxbiFtKAbqBqnX67brMsbu3bv39ttvn7944erVq5PJDOjkWmsIBYeK6/t+FEVQ7/v9Pmi2b9y4AdapQL4WpSoKkWXFZDIpy7wsS1kK13Ur1aBarVJMSinG4/Eyiir1RhAEypyGPFIKig2hNYK2BkxBtdbLRXx8fHzr1q1Go9FutfI8J5TCY4Ax5tyBqQn6MyGEUVpKeXxyyBhbzuadTqe/tooQQkjDMwN9iZTlxsZGrVaLF0vYPCqlBoPBvQf3pZQra6vwpeDrK2Ucx8nzXKPTNO7ZbAaxg5VKpVarRUlc5kWapkIojLEWEhPT7/YajQacUZ7tCCH293e11mtra8Ph8D984QuLxaIaVh577LFOp4MIth+x5YQQFmOWRS3KS1nMZrPpdOL7geO5hwfH77zzzvr6GeDdQ2fJGAN1CKWUc1YNwtFoNJ3OB4OB7bnXrl2L49iyrNFkDHMOXASEUBLFeZ4TwjjnoecWUiymszhLj48P19bWnnvheZBoCSEMpgABUkoJYYBfKqWi6NTtKUkSUWRa60atDgJSx3GQ0pVKYAgOQo8Sa29vL1lGjUYjTpZBEASeRwhBWEO+0/r6ehhUZ/MJhKkDKD6fT4+Pj6Mo6na758+e01qXpUzTNAgqGJGyLKMoSrK0t9InCOdlIUSZ53mWpNPpNIoXjLHLly+fP3+eIAw+PlESWzZHCI2GE4OUx72yzGthBSF0eHj47W9/e2dnp1arrW+eWV1d7/X70MNJKXd392AhKIXm3IFxcTwe3759++Bgz3GcZqter9eDMNQa5XkeL5PFYraYz/M8B/+FldXVzc1NznlY8ZfL5VtvfTv0gzNnzgSV6tnN80WZGWMWi8VyOe/3+8DFrNebruu+8/Z7X/7ylxeLyHV9qZQ0Wmtt2w7GyLI451aZFeAVghBClFBilWVJLUYIidKEEGK73HPcrMillJgSLRV3eJEViOAf++hp+/UvX/2fKCZpmlKKlVJJtIS6Bk84pRRpRBhVQiqjlRDcsQkhSp5qPrRCSosiF4gYIZRlUcY4PJPgLAjwHlQr6ODLMicYG2OKIgOADfBvcN9kjHHXAS4jY4RTZoxK4phSnERxksZxlGCCpFBwuvphBRilX//mN37jV3/lE9/98u7BnhBFVuTRcm6MoQhnSToaTcaj6WAwHAzH4/EUPF+GwyGxOIAyhSgZs7wgcBwHIXIKuiNMGcaIFkUhSwE9fRiGa2trVx671O/3XdcRQmR5UpYlRTgMfUaoVur99989Phl2uq1qpf7YtSsfuv6ExakUuiiz+XzueQ7GuFIJq40qQsgIuVjMMKZZluzs7L733jvddvvxxx9/47dKuEcf/bSHTbL41tdfeeft9zr9HvhYdrvddrsL8WGge4e6zhg7c+ZMq9mZjEa//Mu/vL+7B0pUZfTh4eHLL7/8R37ij0Cc2cbGWpmdhhgKob72tVd/4zd+gzHQyonV1dUf+ZEfuf70E4hSZAySMk2SQpSWZQeBl2XZr/2zU+7XzXt/e3qyxwlWSlmuk+aZG7grq+uaWJZtI0PgmP7AdUkIFccxPCVSlkopyk9dtmGUcV1XKxLHcZoXWmtu27btgLgaaYMQUloCmVRIyTkvS8EIVZpQypNMDE7GmPC81FKhMhdC6lOHRnyqiJRSWhaFUFgIeZRKYYJgGpBKZVmmtcaMwugP0rAyy4GjYHMOh68xxuE2pbQQJexkl8u55wV+6CH0yEZLKkqpeRQAghCCzyCUzMuCEMJdR2tJESYII0Rg+1MUWVmWmBJsEOO2ElpKqbWshG5eJCvd2vm1hsWAPqFPNYxSRss4STL4gsYY8Iw0BDFCCILQDoMxJgQZjKBv0FpX6rVGtVZIUeQCZlaQSFiWVWR5WZYMM8dxfNezLCvLCkopjP5RmuRFCkRpuBrQSmJtEEJQRMHflVu002yub6z2u51ur91u1gLf1loXEiHGNeZf+FUKD8BLn/GHo0mSZACKGKM451oJrDFEv4GJ/M2bN7/z9338ySc/dOqjJgUgWEEQAGHC4W6lEgAylCTJzZs39/YORqPRxpkzGxsbMBwrLYwxaZoibSjFFGOhFKA+YMa4v78/W8yVUkIUZ86cAYwQxD7IqCiKKn4AIDQ4LzSbjaIoptPpZD6fTIBC5JzZ3PTdgBDSajQCvzKbT45Ohv1+N89LIYr9wyNohvb3923HgyU7LOYYs/Aj/SxofMC9iVKqpCnL8u7du2+//TaIEE9NNGxbCCFLAcanlmX1+/1GoyG1klIulstKvZbn5Ww2sSyr3W7neT6ajBu1put7kKcEZTgMqqeapslsMpnA8k4ho0qR5/lyGcF2aT6fGYMYo4xQzvkTTzwBLBNjzHAylrK8ePEieWTWJWUppYzjOEkSm1mDwQDYY5zzUsnBYHB0cgy7LQgdStOcMaaMga4C6KcHBwe7u7uw2IIrA6CabdsO567r1qs1kHqVZYm10VrneQrkPNezK0F1uVzO5/Nbt27lef7iiy8++9xzIDIghEzG46IoyrzQSMH/CPX1xs3bw+EQ0ofa7W6/3233+r1eJ01zKUtKKVL6Ea2TF0Uxj5bgD/faa69BYwExbrD9gbIK+lPGGGYUBryyzKWUvZU+IWQwGG1vbzPKPc8La1WEEGhO4XvZtgX1iXOOjQKfrTNnzsC3SJJkMBhIWRaihB2Iw12MTRiGWZ5srm/0+/04jmArnaYptBRKKaUFwaxeqzQajeFwmCRJtVr1XS9Jkjt37qRpXqlUzm6e45x7ngdCEIxxksQYY6WFVmjjzBqQabTWKysri8UCYM4syzrt3pWrj0Ed1VpjpMFKgyJcbdRdbt++d/fVV19tddrf9V3fled5kiSLeVSpVFqtVp4XxuDlIgYiGuzjZrPZMpoPBoPDw8PZbPbkE09fu3YNdIJCCEyM73rUYvVaE2Setm1PJhPGyHw629nZmczm9Vqz2aq3220IsciyzLbt4XA4Ho+FULCLDCphHKfz+Xzv4Ojo5HjnwY5lsTCsUEoZJvB6aozSJCeMep7nBj6MEBopeIsBsdbIYGOoxYwxtu187iN/Fo67f/o7f0MplecpI7TRaFj8VCShlMLalEpSREDKA/z7OI5BT8WIBaP7fD7njg3DMJB5QEkDOR8IIdjiCSGBO+84Tp4li8WiKDJEMMUEWlXLsphlc86l0VrIoijKomAYEcAPEEj0VJZlsBOXWo3H08FoCOmVP/zZH/q5n/s5ocrhZFyWheM4SRItl0tZlrPp4vjw2BjsOn6aZzdv3o7SBMyEhRDwxbjrMcYwgq0LzZMUgAClFMWkVq806q1aJWg0Ggihc+fO+pVQFBlm1HVtjA1jrFGtdbtdo3USxRjjOI6jJD45Obl58+b9+/e73fazzz7/wgvPhWEoROmGYZFGeZ7H8RKOzeU8wqc/5vjw8P79+2T+NNyjjSfH2IwmSkmg1MBVPtw/+NpXX713714UJYPRUAgBxgfccoQQlFpvvPEGpXTj7KbWsixL3/f9MDBGtVqtZrO5XM4Xi4XROggCrfXhwfFXv/rVy5cve75j29ZkMvmJH/8j3/md39luNymlwMmgnIuyPD4+OTw8+N0vfvFC97Pw+d59529okcgiIwQZY7IiJczqr69xL8SWhQkTWjFGQEoNUxccKIwxOBnBtmq5XMLhq7VWmiCEwLXTdV2t0Gw2g64CiDgYY85tZnOMMaeUIiylwtTNUlkIdXdrq9CYcS+eZ2UpkyynGHGLgmaKc+57HD8yBkyShFoMagMwZwnBuSgty2o0awDUc8q0VMDKBNQNTsAsSWHIcF23Wq26nm1zlzAMIy+lVJQlo9yidLGYCSGKokCUMMYoYzDKOL6HtUHaEGwY40IIzjkAMFIpUZZCysD3OedB4FFspJS9duXsepMhgQl8GCGlZDbHiEoptTZKqSiKRJEDSe6DLg12OoQQgzHADGEYur5HMflA1Q/bLlDRKqHzPM+TNMsyaAFhdGDc8jwPMyplKZQUQhiNkTFSlhQjizKkDVKGUqqUsSgjBLWbtUYtCDwrDP163a+HXrVaJdz1qk1DvV/5t6f9t/BfWz+zyR1vES2NMc12A2MsipIgGgRBGPqNRsOyrL39hwQzTMzNmzfzPO91V2zbtiy7VqtFUTSZTLjtgnAhDEPXcWC9dXh4mGXZ5cuXDw8Px+NxEASQwwM7wVMVfZoCesc5A62o4zh7e3vNZnO5XB4dHQE/LE3z6XRarYZw2FmWpYTA2ARB0G63bc859c8sina7nSRpmpTGGKXMfD5ljAtRCKk93yGYzedzQshyudTagO+REMIPA8f24AAFd7SylMfHxzAYEII8z6vVanG8zLJsNBplaeq67vr6OtiLAJpF6Wn3Bg+t63tBEIhSHZ8cAnWJMVZIsdpdzUU5ny+NMfNFdHJyMhpNbNte3zxjcwi6VpRak9l0NBgmSQKPaL1el7JUpaIME4Tr9Vqr1eKcr/Q6jUbDEANsAc7ZZDiK4xjQNahwQiiEUFrkWmtYQ8MWEjJ2lNGtVsuyYFpTRVFMJpPFYrG3tweKxTAMA78CUJDneY7vfWA/tpjORqMRwZhzjrFptVo2s6IoIgiHFX91bcP3/VqtliTJ4eE+xnjj7CbGeDIanJycVMMKlKssy+I0AQqUZVkWZVACt7e3Dw6PDw73nnv2hSeefFyUCjp4pVSaPHoMlBoMBrDO29vbQwgB3Q1jfHR09PyLHzlz5uwjZo8qy1IoiQ0RSjLG0jRdX10TQty8eRO04bAiJ4y6jm8ILssyyzKsDfSj1WoVspaHw2Gv1/MDd3t7e2dn5+jgEOJHfd8PgkApwxjp9XowFHU6LYjURAgBjEcIYRYhBLuuJ4tCKTWZTIzSAEF5nhf4PphxjEYjYwwM//ZpEjmpVCqcM9CQwlpjGSXQcb77/nu3b99uNBplkcVx/NRTTzUaDXDCo5TaNuA1VhonGhnLssfjMViRvf766ydHx5VK5cKFC/VGyxhTqVTBNwQwG9d1gdj34MGD0Wi0XC45d9I0HQyOtdZrG+trK6vNdgumMogujRZLhFCtVhNCtNutLMvef//9xWLx/HPPlWV5eHgYxzG3Hc/zKOOO40RRYgjm3EEIpVk2m83G4+lgcIwNOT4+XiwW0Osoo/v9FSBBxmk6nU6lVrbNMcau44A7CSZECQWbaITIn/j+vwzH3S/+h/8Oaj5CCLjCIAoxxixmc2U0Z9Yp7gAKWc4QTM1SAShujLHsU9G64zhCSFiJZFlGEIY7TgihFiWEwKEURQs45KXRjWoNZImgZ4cyAfwipZQUBQBLGGNsEKFICDEej09Gw1ql+pnPfObxJ5+o1RrVILx39/ZXv/qVJMnW1tdXVnuVSiXPSvAsnE7ncRwvk3S5iBlj/X4/qISu6yqkYNsIhZJzLqXG2vh+AHF/8Ii26o2gGp6/cLZSCRyL93o9II3cvXNrNp9fvHix023BkAmWfgDxFKWEcowQStN0NBq+9o3XvuM7Prq+vj6eDOfTGTSRME5jjMus5JxPF3Pfdz3PS5Lo6792ao27+ewc/92f+6uDwXEUJcvlHGl8fHz83rvvWsy+fPmyZXNGOabEGEMsFvghbPShxVFGAg9Uaz1dzBmjhJCiyJDWGGMoP5ZluY5vWVaWppTiJIn8wD1z5kyaxsPjE6GVkUpj0qo3Dk+OB4OBlNKU8o//kX9w2n699QuqjI0ulMhOqzsl2OK2H4T1uuW6WSEsi+Z5TimsFYDMi6F/hzk7SRJKaRB4YMzILFv+HxzeoA4RQiDCGUAaSpkhuCgKVZYMI2NwViBkqO35s/n8wf4+d0IkqdFWISSzKDEaYR2nKaXUdiystZTqg6HBPErsFkJw14anllkEJg9iUJHl8ObD4hxg29Pn+5HTmEGKUU7oqR5EKWVzF/AkQog2ErC0PM8Jw1lagOlXURRaCSklMiTwfc/zjFSGnPos1MJASjkcnViUIWTSOF5daV0823VtnBcZpZRSbIyR5vTPwS+MoghpDSWEUgpcNKlPjUMtywKhIjAATos6wvAwZFmGCDbGnIZ7CQmkHK01Z5btOlrrUkkYOxDBRVEUWWmMUqI0StqUEWSQQhjjMhdlWYoybzRqzZrv2rReC9dWu/12vd3tcLfiVOrMqf2rf3OKfg2yf1coE/iVcxcvdHrdajWEIwZpDJKF2WyWpmlY8VutFqV0NBrt7+8f7B8Nh0OM6TPPPOM4HpAeirIEVydGqVLKde0gCMCNIk3TmzdvHhwcSCk3NjYuXLgAr/ojfg/1fV+IIk1TUPYhhCqVCrCpAOoD1Q/E4QH65bu253lwLxzfwxjbNodd8+Hh0Vdf+YYQCkwHms2mNgY90j0A+E8pDcPKgwcPZrNZv98n1Do5OVkuY601LOUtZoMRwDKax3GslFBKnT17ptlslmWplYqi6Pz58/Bkep4Dnw2uALRfQkljNOc2QkZLNRqNTobD3d3ddqt7/vz5RZxkWYYxHY3HSpnZbJZlucE4TVONMCMUUwLrJAAnCCEEaYh16nd7jmNjjD3fcSxujJJG27YFGuoyyyeTye7uru/7rRb4vtLxeIwoybIMOB+NRm11dRXqPWFUa31ycrS/vz+ZzIwx9Xq9Wq2CMZgSklJaqTahF/E8bzybRlGUpnGr1eKUCSEYpcvl0nF4r9dzLA50bNu2CaMYY6FVpVKRsozj+OzZs1EU/e4XfyuOY0aobduNRn11fZ1R7ldChzOMscNtY0yz2VRKxWkCXx9ouHfv3j0+POp0OpSdxoPCZAjIh1KqEp4GpU8mk+2dnY2Njf7aelmWFsGLOIIaQy2eZRnnHOKlCSEAw0MjPp/PldHLRWw5pwtiThlwcOM4BttxqDFZnrTbbWg1FvNICJGnxcngCPqwZrMJXRekGSZJFEVJUWRAyOuv9qQsjdZKKVUKpVTg+RA8YNu269jgRtFsNjHGe3t7y+VybW2tVW9IWVqcPoJn2Hg6z7KsVm9alhUEgRf4UkrPdxxu7z3c+dVf/w0hxE/91E/V6/XpdBwEAazsPc/b29vTGlUqlTTPjDE2pYSQW7du3b9/f23jzGKxSJP8e7/3ewEuFUJMp1M4Y0ejUVmWUqpGozGbzYbDISE4juP5fL62ttZoNCCapiiKR3RMaDIQYwxSR8ejESFob+9gOBx6vu84bre3Qimt1GtaI7B6IfjUS4xSWq/VkiQZnIzG4/EiWu7s7IDw0/O87kpfCCGVAtwrjiJocLXWeVZIKW3XG4/Hf+YPngbr/eef////+eE/dRm/9KFnPd8pC+n5Tr1StyyLEZqmuVJKac257XmeMQZRcioKw6Qo8rIUGKM8z9Mip5QajICrURRF4PmgNkcIEUIQwkpJhgl0uIvFbHt72xhVCUNCqc25NjhL0kar2Wg0kDZayu9+8c/C5/vWa38V61yXKSVaKYkxVgQt4ph7YVhvhPU6tVhelmVZOo4H47gxJk1zrTWjHEx6AANEWDPKlVJQ44H5CwxrMNQBOTchRGkt5WmwI8ZYK6kNsphLmJ1EESJkPF/821/99x976RNaUcpthYws8sl8kqtCSomkQghphWBKg7UgIYRQBIrfNE1gnAVOMVIajCQgcQW+ODCjlVKiKMuyBPk9IQxjk8aJbdthtQIyOmMMZQxhDW4OGON4GUVRAt8OIc0dCzgojFKKGUKIYQR9EsRcjgYnN957P46Xn/ye73n+2ScdRx8dPzRGO44jZKEf+TwZDXv9ArB02NForTkjQgiNkZRSlAqdelKg071qWbJH7lBKqcVyBoZb4KEMXmJKaSGEzSzH98DfC4O5PkJaqSLNGMFaSaMENVJrXRa5FAoZA7RoijFBen1t5eLF881Gtd0IWq0WdXzmhrzS/PznGVzS7/+x9rvv3ZzNFo899li1Wp3NJlmS5mWhDM6ywhgThv5sNkMICVn4vn/l4qUwDKMoGQ6Hd+/ejeP4w8885wY+2GbCvhXkYLCCF0I0m81WqxWGYVmWg8FgPp9vb29/9KMfBcY3oInz+RxIGJCKqLWu1+u+70P8KKyeB4OBZVmQzwO9uFJqNBqBnQcYYiGELMtqNpuU2qPRaHtn5+DggFmk1+t5nkcYJZhprQH/L0sBEUNCiLKQMKLAfi1NUxCm5HkexzFYL3qeV6kEhBCL03azBRRgY8xsNtvdfVir1a5evbq+vg7PhmVZo9FIyCLNCtd1QYqhlB6NRmmeaa3LQu4e7CtlgiAIwyp4IFFKZ7NZIaRRSiO00uuBh0IQ+EqplV6fUuoHbuj5kBAHCCJCulRSqtO4bi2kZVnLRby/vw+xmPVWM89z8JGnFmOMIX3KQYG327btoBI+okVmEKEIYw9jbDqdzqYRMLvzPCcWAcgcGiCllEVonueizB3HOXPmTLVaFTn4lYMVeF6WpWVR/MhC1ndt2OMcHx+ncZLm2ac/9Rk38LUsXdcVp85uJQwtjLHZbNZoNODJSaI4y7IgqDDGgjDsdru9Xq8sS4vTsizzNOOcK2U8z0uzLEmSsFYts/zWzZsA/FeqVWJBeikwuEtYIHLHzrIsyzKQsYOZVrVaXS6Xk9Go2+12u134vjBpQyzSZDKZzGb1etOybMaYY9lZlkZR1Ol0bNs+OTnJ83y5nAuhkiSq15v1ejVNU4NU4LmEkE6nEwSBzSyMsShP1xRCCIoJXPlOpxNWAozxZDxlnDXq9el0fPfu7aOjI9/3L126BDiE1gjwvHq9btt2pRIwQrHNRscD4L0QQkaj0c2bN+Nlcvbs2c3Nzdlspg2mlJZSGKRcy2KMeV5QrVazvLx9+/a3v/3tH/7hHw7DEHhpSZLUajVweCmKYjydAIvctjjGGBlDDJpMJrdu3XrzzTd/4if/2EdefHFra8uyeZqmaZrNJvMoijhnUElthzNqMYsmaXpycnJ0cnJyctLstNfXzpw9fy5JElkqECtEUTSfz4UQi0V0euQawxjDhAwGg0IKoJoBtAwKhnu37/z5n/nzl65cbbc6flhptVqfvPpH/i/vGv7zz/9JP5e+I8W/77nvtDgNgyqhiGLGOVdCGmMwJRbjwKhACCmjT/EnKRlj9Uo1qFaEEKUUtm1jQhilaZZVwlBKCVKderWWFTlBBAwka7VqWZaMIIQQ6PXQqb7SVCo1+EBaa1Hkn3zUfr369Z8X6cLCihLNGc1FjgnLhEDMQszyw0qj0xFKGowZZkIrwBik1JZlGY0RQmVZfmAGC+oe8DcCoAuEgdAcAGZ2SmMilPzHH4wQzkutlGKYNDvty49dKQvzZ//rv9DublSqTW67iCJEVamEMYZhStGp9P0D5MPiFBTvgMQCpRRciwLPARARkCQYbeHdAwQRY6ylgc+GEOKcAW5hWdYpx0prpRTUJEawlJJzJ45jpA1lmDtWWZZZkvq+D8dfnufIqCzLDg72m81mp9t64dnnPvzMU9evXquGzu3bb/7ar38eYwTECzgChBCMnm7Q0jRljEGnaIxB+nRvqzFS0nyAeAOsjR+lr0BxxcRQCja5iFJaCpUkidaGEAI69kcqTt8YJaVESsuiJFqXZV7mqVESIwOeRkIoTlmapozQbru52l9ptxrtdtN3uV+pYO5Kwuyg9rWvduBZeu6T1Pa8wA3CMByNRl975Su3b95MsqzT61//0JONRmM8HlOKoRJXqgFwaBzHwxgDL6FWbdy5c+eLX/pdy7LOnTu3sbEBWTpwWxuNBiy4G43GYrEAjmoURVDYvva1r1mWVa2GQRAAa/gUcVGqUqlQSqEPOHv2LMJ6Op0Ci78s5L1790CeCR5jcZwCpgiUuDhOW61WtVp1XDeKot29nTAMsyIfDAbVSh0iYyuVSlkKkONJKSGVLE3z8XgM9XU4HJ4/f96ybIR0GIbwgCktQMDYqNU5tyyLO44Ny+vBYDCdTrMsW19ff+qpp/LiFMkQSiZJwrA1mUzSNPN9H1yComWSJMloNJlHyzzPz5274DhOkqYE0ULkSsosz8MgwIRwy6rX62AIwilLkgSyUCqVSrvT7Pf7WutcnEKPjuNMR2PgDwCis1gsSiU558fHg8Vi0Wg1oQRC6wYc4SzLCKPg1wBWFNPpFATaaZoeHx8jQ4pCwD8uVYkeUSo550EQhJ5v2za4A66vr5dl+eYb3wJCTKPRsD1XSskY+Y9lslEDex1jzO7Ow8ls2umtVKtVWeYnJyclMFA59zwvK/LpdAoDG7wOjFCl1O7u/mKxGI3Hzz777OrqKsaYMlwUBTgVgUMbwphzrrWOomgyHidJkiRJXhSWY89ms8ceuxaG4XQ6BRk72EUSxjjntVoNzqjJZDKZTJQQi8UCAg+q1SqME9BZxnE8mc3yvKTUmk3neZ7XarVWq7XS68LCfTKZwEyL8an/thDCcXgl9BuNGsjJp6NxnufVSgAdre/7gefDQZGmqVTC932ESa1Wc13H9WyHW0KI/f39GzdugK3Diy9+9Lnnnjs5Oen2O7bFi6LI83w6nYKqKcsyjPFisdja2lrOF9vb29Pp9Pr16/3VtXa77Xiu73qM4Hq97rp+mqaEWtDoQJM3mUxeeeWV/f19y7IuXLiwtrZWqVQKUcJjA9ZiyBiLUNDzTiaTRRzV6/VlFL397jtSyna70+v06/W6MYYxIopSSuk4znw+RwSHYVit15Q03377rTRNL115bDA4nozGRVFEUTIajdrttpRSawRKcNBteJ6njTk5OTk4OHAD/9KlS5BWjDGOF8ssy5Qy+0eHWmFqscVi8eLaZ/4vbhv+88//CT/f8UOh7/v4Bz/1Q0pJ3/Uti2mhYJcESJJl2VLKKElgPrNtW6rSpjQMfdviQknGOLMsIYTQCimDKLGZBX1VkiRJFC/jqMhKiAFxHM4YK4scUHSYp8uyjKIFpLadYv6O8yOfPPWO+8or/0+qMmzKWuBqKdIi1QYbQoQ2hdKFEM12J6jVuGNTTJTRpdRgUkUIkcrAxzbGGIWAT4AQIgRBKwOz+ykbEWOECMZYKiD8ISmlMhpjjCiB5Z3v+4SiTqf9Bz/9B8489qEv//uvfN8P/tBHnv0YZVxipbHmDicYY42KXIATDyYGPYrrIeh0Z+S6rpEKEqMQQoghKKhAEoKdESGEW06j0bCZBSuAD7A9qNyz2cy2bYJInueu5xhjHik3TxepWmvf95UoVJEXeSoe+ezdun272+1euHzxiSeeuHj5wtkLZ5ut+vr6uss5wjiajd5/67Xf+Q+/yW0LIfQIhEIf6BviOIVlLjBgtNbYIPhgBqMPlrkfNGGwfYfxzhjDXUcrJEHvWZbKgIE+01ozRkLfJwhjoxlmSssiy0WWiiyl5tTolRCskMEYY0ryPAfhp0UoQ2Zjbb3f6zHG3CAUxqSlyqTmfqVMPg5f4dJL6Wy+pJiFYVgNwiD0RFGenJxs7+zuHuyvr68/99xzFT8AX6vFcrZYLABFyPMcShQsCGzXh7CL27dve5534cIFCPeEG/SBB+kjoUPBOWs2m+D4B8L+IAggz6derzcaDYA2tdZBEEynU20kiBzr9Xqa5BANdOvWrSAIOp3O2toGsODh2mKMmWVF8QKeJaFkEARpmt69e/fw4DgMQ8j7sywOuySQ7htjjD41AUmSBGiaRuPdvR2tNSQjYYxAfMA5b7bqju0RihBC0EyADiDLsk6nI0QxGo3AetG2XYIZQG4gesqyDCGcFTksr5fL5Wg0YYx1V/qqVBprWeTcdSp+oDEKXA+WqhhjSFPgnGOM3n//fYQQOCG3e10hhOt6aZoyTCilYNklSkUppdyazWZxmmGMwWcfcLJKEILzBWhaLcvSGsVxjCmBoSLLMtf3bcvKszJNkjhJLMuazWZ5niNKwMID9gBRFFVDH3qysiyr4Wn3jBBKlotz586BlS54tgFdBu4XdLRSI9/3hydH77zzDiMUIeR5XqvV8gLftu1arQbOWJZlVcMKYwy0gdP5xPf9drttjHnttdfG4/HG2jpArQghhEgUx9Ayer5DCMmzcjKfCSG2HtxvNtu2bdsWB0iv3+/XajWDETwMhCAwEAZxEqV0NlsMBoPJZMI5f+qZZwaDAaV0Pp8D2DaezGFzDSxVpFW9Xgf6F2CoQojj4+OiKC6cO9fv9xg9VUMzxpazKQSi27ZdCX3f9yHOpdfpuq67vrEmhHBcLytyjJE2kiCzurraabWLoljO54PBgHO+traWZVku8ixOEGFJUriOZ5AWQni+v1jOyrJ0HF6v1ijDURTt7u5u3b+/ubn5w5/73O7OTpGVYVg9ODioVqt5IYDAjhCCcYhSOhgMhsPhnTt34AR4+umnP/7xj1NKz549yyyyXC6PD4+EEPA8AEg2mczG43FZlltbW3GSbm5urq2ser5rjKlWq0UphsPh2tqa74dRHAuhxrPpZDKJ41SIYm/v4XgyLNMS6AqtVqvV6oC1Msa43mrCilwoWRQFxtj1wyRJkNJFUdy9cyfL86IQo+lElNoYM5svGWOUINu2bdsCkdkHMnatJYRdwgGutWaElmUJvxlAesaYbdsAuwDPD2O8XC4/UOd8ACtoKTHGxmgpT7024Mz/QD3WaDQA1VNCMkjNIcRg3el0nn/++evXr9ucE0IsQkFws7u7+97NGzs7O3t7e2FQVUa7rgv0G85tx7FBXyJLeJBTx3EUMmHoL6IY4lBf/drXfcs1Uv3lv/yXP/bxj+3sPnzv/ffb7bZCOKxWGOW+7+fiVF2njaEELaejMk/B4hshdP369c3NzWazaTCCIa0sS4uR6XQKZ5rnuAihohBxvCzLcj6fB4FXrVallL1eTylVqVXRqbmuLsuSEQsKaFmWRZEdHx/vPHxwfHzsOHa9Xsef/v4fnEwmFqWWZZV5wRgDq0ajMdjJQDEACnmWxvFiYTFCCClEqRWSUkqjq9Wq/0irRQgp0gwWNNA6uK6PtLEsqyxzpVRZFFAJLMtK0wRGcMYIIEOO4/zQx/8ClMzf++rP6yJRecSo9l0bG6OM0RgZRAxGo9kUEdbu9irVGsaYWIwwKkqFKDEGE0KEPG2wKCYf7BalLAHUggUcLOkIIVJqQojSBrolwMlg0SONxhoXsqCUCFH83/9vf+h7PvkDtNr95X/6y3/sj/+pl174WKEk5VQbhRCyCEOGwGLxA2W41oozC+w9EUJIaXgHptMp9zg0RqcflVKIOKDEcl2XIgwPt5AFJZbFKUIIG1QUBecOQVgIwSnTRjrclrJkjEl96hCWJMnu7i5RpWUxpFGz3bx48eKzzz7bW+lfuHzh/PnzmKIkTwg5pfNLWY4Hh+O9h9/8xlfiZQQoCCxJ9SMVJLyWxmDGCJDYlJAWp0ZjQhFlHH4VerSCBJIvHM2nrgQWz7Miz3OFDBhkwGvv2rbnOKLI0ziRZalEiZVWsrQtYpSGC4IxVsD3xwgeToQQ1gYbU61WLUqFQieT+XQZ11rtlfXNlz7++/dvn4V/dubZJVg6cWZVKpXQ88FAQRl8atbvujv3H9y/f7/dbgdBEIRekiTNZhNcXuE0tG17ZW0D6utisXjvvffOnDlDCNnf30cIgawd6G7Q0xdFURQZkNn7/T6sM+7cuQMUn4ODAyBRTadTsA6BlsjzPDjOtNae59VqDcgmevjw4dNPP+37PmyzYbdeygL4wmBGAKQf27YxooeHh4eHh/P53PeDp556yvf9DzRNBDOEEKxNMUKPiqtIkuT4+ChN03a73Wg0+v3+6lp/uVzCMvQDiTGU6kqlgrFZLBavvfYaUN8YY+vrZ6qVOhCTXdcFZhvGBCSxRmNoyyzLipbLg8NDi9OzZ8+CeSls/QjCGCNYcEOd4zY7dURzHdv1oyhKktRxHGIQjHCEEEqsUkmtdZqmjue77mm3B+k0zXqjVqu98847e3t7CGnOea+30uv1jDFCSej5NEJFURihjTFRHAMCTSnVGOV5HkUR7KZt2+62m3B8BUEACEer1VJKRfPZaDR67rnnAP9IkqQoCtATzGYzTIyUUihTFIVrW7ZtI22gczXG+GHw5JNPAusAzqXlfME597xAa62RIoRUKpXhcHh4eDiZTLbu3ut2u0EQNJvNtbWNIAjI/4+9P32yNM3uw7Bne/fl7jdv7rVXd1X19PQ20z1rYwaDAYYAOOAAAgiIgCmJpggygjRthSWFRNsMSiEFgyGYDiu04YOkoCRKlgxRBAEKwIAzg2Uw03vX0rXmnnnz7vfd32f1h3MrwT/AYUfYzA8d1V3VlXnf5Tnn/LYDA63mVVUpaWzXsSyrKIo0zRuNBq/qDz74oMpXS/rWNta73W4cx0myiJsNYKIty+KcM2YDIjifz5ltW5b1ySefPHjwoK5r1w+URJ4X/POzIiOrVO1GowHGTAgLpBhTSrQSWksIy9jd2uz3+3AOxFFwenr6wgsvuK77e7/zu4PBYG3Qx4TEzUYcx+1O0xhVZLnneY5lK6XqsoRabowJAu/u3bv37t0zBjteFAbR2qC/ubm5TBKlhVKq02kN+mt+4MLUvX9wAEEwhJCzk9EPfvADyLCo+Z9SDbPZDMKEd3d3O50O2PqOjo7ee++9t956q9Nu13UNoYmwXh20m3qVsAB+cEtKmaSpZVn379374IMP/uyf/bNvvPHG8HxU14JzfnoyHE8nk8lsNJ1kaYEQJgRfvbYbx2GRZnmew/pIrdHVq1e/9KUvUUoNwVqvNrHOFnPGWJqXp6enxJC6Lh998jjLMtf3EMKYWt1ut6y4MYZgo7VeLGZFUXhB6DgOOLIhQxvIKMjiasaNC9eUeh4tCd8R+HoI3wGjLpzVUDGFENgY13WhgsNnB5VCmqZQ3UCOjDHO0wzondFo9OlXX/7CF74AqOp8NhNC7D99BtI6Y0yn39Naz6YLIURRlZZlubZ7AYj0et1+v8+rQikVx6Hr2l4YYIwvXbrUH/T6/X7sBw8+vvfxhx+2Wq3+YDBfzhHBRVFevXE98CMv8EUtMSW8lpP5TEqOtI7DgBG0s7VVVdVkMhmNRl/96lcJIYtkOZ1OIR1J1NyyKQyWyBhjDCUsCH3QlOd5nufpbDaL4/iFF2+AI15KKaVMkzxdpO12FwguQhBmtCoyqfV8MZ3NZvib3/jZqqokF6Co9X2fYgya8X+uiHJECYDbinOALowxjuMEcQTayYvAPTgBEUJSqhWMpBQsGrIsSwjhOS5g7LZth4Ff17VlUbjTVV0sk+znfmTVfv3X/8Nfjjw7sAkvU4qxbVHIVLddB1OyXC7Luvb8OIgjTIlt234YCKWV0ZhahBClTJ7nYNLhtYSiCEUO3ObQsIMGX2oDXjPGmEGrjgROT4SQEroWlSGaUPQnf/jef/Rr/8G3/sK/li3KP/fNX/rBD99f397Nq7wZw4dyDKZAsTmWBSyeELUUoq5rirBt21KsFmMDRgVEHsYYsirA4wNNGDbIGFOWpVIiDGPfd23b1koxTDCmjFCMcZFmabIAM5pQEuJzlln6mc985s3PfbbTalkO67Z7l6/s9vt9z/fv3b07mYyuXLnCeYUx9nzXd1yIuZpPz4+ePvjow/fyNPM8pygKTJ7ziUoDSpckSZIVUnGgw8osx9goZRDSCBGllCEY6ha8zKCtATLOIpYSmlK6MtmAdRIpyYUStRKyKjIlJMGIImxhIrSQWCCCGbEYZsQwYlZxCZRShQzC2LIsoU2WZVmRB2HjjS98dW1zm0th+0GaFfX4ZXiWrr9Vg3fPtm3btiEDsNvt1nUJLa/jOI8fP/393//9+x/f7XQ6165d29jYiOIA1F1gwkIISb3iVRuNBlBaRVE8ePDg8ePHR0dHOzs7Ozs7Ybxya9u23Wm1Ib4fZFLL5RJcCwihs7OzBw8enJyc7O7uXrly5XkqhA05TKC2BjS61Wp1Oh1IKFBK/N7v/X6j0dja2nIcx/UdhBBj9oUEhzAaBIHvhZ1Oh1L64MGD6XjywgsvnJycjsdjCK/KsgzExZC2Cj+qMasAT6XUvfsfd7vd119/vd3taK2TxbLZbCKEkiSB6QVAUCjYs9kEvGNpmi4Wied5X//610HcBugyMgTgN87FRd5bmRdJli4Wc8454D1bW1s3btyo69qyKWQ2gj8OU/Knbyumx8cnDx48qKrKs51Wq7W+ud1oNODM0RpJrUaj0XA49MO4russWSilYLMvvN2yXi3GKepqZ2dnc3NTGaSUqoVACBFt5vP5yrigJLS2eZ5D4jT0nXmeu67bbre11s047Ha7FJMoiuIgnE6nruO02+3ZbPbOO+9oY9bW1uCaC62EEAhrGKuEELCzElLH5vP55cuXHcfhnJ+dnVmW1W62oA8zxtSCQ81rNBpREAI+8Z3vfKfIcq31j/7Y1xzH0cgghDRGBiHQMLXbXdtzsTZlWYqaL5dLI81sNoME1CzL3njzs5/97BvL5VIZBNNCkiRwgHAp9/f3+/2+53nD0bjZbGZZlqapVvjo5DhPMyAuwWvZ6/XAXmDZDKqD1jqZL6IoogRxXgFxHPngL6aNRiMMPDCaEUJs2zLGAOZ07cb1r/7ojwRBUNelUbos8yxNkySRtYQnClJXgAueTCYH+0fn5+caoziOv/q1H0VIz2azdrvtWDaAmo7jAMRlMAmCYHw+Go1Go9HkyZMnWZ5fu3YNFkVcuXIFrK+WZc1mM+j7CSF+5CVJgg0aDc+/+93v8rKKwnB3d/fFF1/EGMdxPJlOm50uY4xZlu/7mBhoXObzeVnUGOPh8Pzu3fvPnu77fpiXxWQ8a/d6cRwjQ5QWlCE41WExAEJouUzrur5+/Tqw4cPhEBPi+/7J6dFkPMPMEkKMhyPf9xizoJeFtixJEsf1OedptoyiCJQO4kKhovWFowvQPq01MBgUE6UUaFKhb4BpGbBVQKMvwqgxxpLzCz0rpbQoCkjNheIFmgpw6gC5DFeyKArPc2eLKbw+cRzDDZ3PZhhjx/YAbsQYb+3sgHmcc66EXCwWRZELIRbTWbPZ7K91X3755Rs3rnW77Wazubm72Ww2QdhKCIbpFwKiLUrv37//w++/8+DBg8lk+sUvfnFjsHnjhZuO61qW5Uehbdu8KoosX73LzWZd18+ePWOMLZLls2fPIITMoqzb7ayvrS+XS2oxzlchWaAjunJ5FyQTeZ47FvV9f2/v2e/8zu/Ecby+vhU3ep4XuK4N06/UqtmIhZRCCNd18S/+7C8bY3zXgzJflqUSAnojpdRyueS8AsbBcRxptFmlqGPbtoVWcEeBr4RjFFRWwPrBoYwQcpjVarXyvOCcA+SOMdZGaamMUQBiQJnMi+IXf+xvwa//zq/9dOy72+t9z2EOJZIXSiklhOc7xihgu7KioswOw9CPQmjLlDEaQhyM4Vw+V1ZZ8GNDW1NXAj1XdQDkIJSGHVu2bXMhAb3I81xyGAIsQpBhxrUZ1qLVaf+b/+7fbg8u/Zf/xX/zq3/1b375q1+rhdK8JoQojZ5bC2ubMa0VxtgYVeS5lJKXlTHGcwNoSiAjB/RlCGMluUYGwhogjuu5/AyHcdCMG1JKpKWouVLGYRZ4HeqymkxHp6enlsVardaNF27evn37Z3/2Z2/dusV8H2lh0Cr7vq7rPE18P6zrEtKc/cCbTqc2JfP5PApDreo//v3/9fEnHwshKMU2syhbkbPec+cj57yoqhXBJGv6PPcL3kaEEGZUCg3lE8zn0IUTQqIoCr1Qay2FMAhhhKQWSile1VJygjFSGiEDnKdFsTTaWNiyqUVcpJCW2iKW43jQqSBmZWVxMhxyqe98+uVXX39j69LVrd1r09ni3oP7rU739PSUJG/As/Tln2lEUTQcDufLZbPZhMh7mMkgEsJxnH5/YFmWw6yjo6N333338PDwG3/mx2EPo+d5RZEppRBhkFd5ERkFmVLw/D979uz4+NgPgxdffBFymBzLTpIElPhwNACMBNfHsqyjoyPYZOJ53q1bt7rdPmM2YwQSv+Bs5ZxXVWXbDFpecMX/8R//seM4g431wWDQaLQsy2o2mwA5G4y0WmFaouZgZzs5OX327NlwOISzD2MM8M9z2VACedbr6+uOuwoGo5Q6nvvxxx+nywQEPdevXx8MBqsMDtsGsy3GGJykF8UDEp6m0+mFqt1zA3BJ53mOEboobxDXMh6PT09P67r+3Oc+Z9kUQijAvSGUVErBZkaCWdRsNptNkBJOzkfn5+cnZ+dXrlzZ3d09Pj5+5733p9MppTQMQ4MpYywOfc45eG8B2u932uCJPjs7Q5Ssra2VZT2ZTYFeAUYbGBmwSC+XS8YYtSw409BzpVSj0djZ2em0GoQQLRXGOJkvPM9jlMLUUZYlhPECUuiFwa1bt+DaUoQppWVZAr0AtA5MKR988MEHH3yAEOp3e7BIu9frIbJKEPB9n1e153lXrlwRQhwdHE6nU9t1Op3OeDr58MMPF2kyGAz6/T5lDDYWIIRc1/Vdj1LKMAMobjwej8fjwebG5ua667pcqqdPnwKNC2VYIySEAIsitWwoxlHYYLZVFOX52XA8HrdaLc9zXdeTUmCDMUGwsA5j7DhW6IWdTstiZDqdLhYLKeV6fy0MwyDwMMbdTguUGHEce54LjPxisRjPRp1OJwz9LMvS5UJKmaVpEAQOc6D3raqKUTtuhGmSd3vt3d3dp0+fHp2cpGn60sufsm0bcBSKSRiGUq6wAMfxsjxfLBZK8m63W9eCUlrV9fHx8TvvvPNzP/dzr7zyyt7e3vr6+snJCTgnEEKWYxukLMfBxhCEQz8YnQ1Pjo/vfvjR2dkZY+zqjet//hd/0Q3CoiwXiwVhtC6r4+NjCAlL02yxWOztHXhuMJ3OT4dnGNFaCkJoI25FUWQ7DBO9s7PVaLQAdoJjoa7rIq8MUs+e7le8PDo6cZxV2CGXxnV9YDwA70AI1ULVdS2UDINYax2EXhiGRsmyLMuawxQHg9CqwHH+HF8oMcae44Kl/YKVAk8ltFwXkmg44mzbNkoB2gf1FCShsAjuwj0GCLeoOUKo2+3C33D9+nUv8B49+gR8qVBwCcZa6yhswImKMTbPN4gYY7AxQohLly5RhrNFdni0n+f506ePiyr/9//Ov/ev/Kv/myzLzs7OwkYMpZawVe4mpCYpKRlmSJvJaPrOO+88/uTR7/3e742Xy//y13/9zTfffOe9d0GwqJRZLufn5+PhcAgJDEEYwgHORaWELsvcc/xGI4K513oe04owiMiF67qz2SRJkk6n4/mOZVmLxWK5SIfDiZIaJBCdXtfz3K2trSAMlZRKC/zL/9JfrKrKsSxCiJTy9PS0LiuEEORSgiy00+kgspL4VFUNHr26rieT8WKxgE1kXFSO47jWykML/7xYNwbL9dLlao1MmqaM0DRdUkoNUpzz54oTLKX81tv/NtzC/+43/49VmS7ms2bst8Iw8D2iBTLKKK61REZFUVRzmWUZpdSPwqgRY0prwRGheOXHXK0rJ5hBR6+QEUK4rg9gGEBQlmXB3wOtes3lhT6MUWo0MgpRi2RFFvi2rvMg8n/1b/zvrt5+7b//b/6fv/IXf/VzX/zRNK9n5+eMMaE0MClC1L7nOI4NGCwvK9d1jdaccyVX35oxZpBGCGmphJLY6FrwwHdXJlNGCCHGqLoss6J4+vgxIbgdhpcuXaprked5EIVvvPFGr9drNKLNzc1GI2q3277vP336FDJphBBB6PXW1i4iTLVR49FEG2XZttAKhiHw7buWPR+dfP/3/un/8hv/g0WoVBwbpLUUQjCLarXqA6Cj0loz29JaIWMAL4EuFtpZZDBcWCklDLggYOec264DfjQQsVqUGWOIQew5cSmNxoQYgv0wMEa5jo2NItgySiNEkCG+70utFmmWlWXQan/5K1978aVPhc0216aquBSqzHNlDIyzv/kPhvAs9a4fjkajo+PDjY2Na1evN9utPM+5klJo2NzgOE7oR4BUtVqtKi9Go5Ht2fP5/Nvf/vbJyclLn7p99erVTrsHDDvwDsDfwSI/3/fDMEzTVBntOM4Pf/jDxWLh2k6r1QIMgxBS1/V4PIZ0K2MMiIq63S7G+MmTJ+12GyFycnIC3Ee32wZ3CFxbaMKKMgN+ZD6fD4fDB/cfOo7z1a9+lTGGMc2KHOxs4Pm1mCMhsUdKsHqUVQVGvPl87nnezs4OhIvCOcusFa2Zpmm73SaEZHkJFLwxJgiCR48eLWbzN954A3ACsNS5rms7DKZkOPUAarp3797JyQl866tXr6+vr4PCBmkDjkIpteO6mFKKV2EoIKb+8MMP87LodrtbW1ue5/m+X/L6eUqqtpiT5/lkMpFSQiI8MJVVVaVZsVwuL34XMvoty0LatNvtRhjAMwnYCTRhrW5nb2/v43t3Yd1T4IVXdi+1uh0p5Ww2c10Xxjz4wZZpCk3YfD4Hffp0fH5+ft6MG51OpxFGjDFGV8YdhBChFGPsBuHe3l6WZW+++RlCEcZYVDWc+2A4hUYTIQTTv+d5s9lsfD46PT2Fh+Snv/lnL8ZFpM1isfA8bzAYnBwdCyEgLe/Js6f7+/tZktZ1jSnpdDphI+50OtBeY0SfK3otABSzrEjTdHN9Qyn13e9+9+joiFrMtm2MqG3bXEko0kVRrBRFlDYajcuXL0NOb1EURmulRFnWlGLG7DD0fccFSJiLitcSloOB7l5KOZmMTk9Pb1y9tru7W1Y5eHtt20ZaQ7qSUsog5TgWnB6UoCiKtEJJknAuAfyD5qnTaRVFVRSZUbUxZjSdPLfq29Px7P79+1XFfd/v9webm5txHEuhlmnSarUowRgby3Jc143iGCLHgOVHCEH67ubm5ubmZrfbxZS0O82K8/H5uah5r9MNPb/VbBLbng/PP/7440rwz3/hC0leLJbLxWJR1hXSBIjy2WxWlVxKWVQl5IEPh0PBVS2F1noym62vr1+5clkI4fuu74eEELA2CyGOj4+1NggZQqhSMs+LAqLkNcqyCuZYxggvK855LUVZ1pxzWB/c6rR3d7aqquK8yvMcNh3BYQVPwoXUGI6FMAwdy4ZeClgFIcTFAQJeCrgdxhgjlZQSKBEtFULIC3wAEWCQgM8Ow/mFMhisLSCmdDznefq0hMKhnq8nNsYgkNPYNoSAUEoC34UC+uKLN29eu7m1tYENGo2He3t7jLHPfvYNSF14+PBhnudbu9sYY9d3ms3mfD5fLpec8yRJGKHNqNnv9owyRZY9uHc/TdPbt2+naXo+nQ1H58dHp4SiMIhBQaG15lJwzieTie+7nMsw9BtRU/CqyJa3bt3a2toCRvjytauQP+I8T9sGwwRCyA+DRqNRFaUQ9fh8dHR0dOPGjRduv7CczxUXWmulJP7xt/+MMabTal2wcq7t1HUNS68QQpQRQggsTC7LsiwrSmkQgLpCK6UgFwpkSZ7tQLUAFBODzw5BN2pEzeFwUUqly8QghTG2LOqsNgonVVUpZf7iT/8HcBj997/zt6SokdLj0XDv2f7tG5dbjaDVCG2GRF1ZlDBGIIBgMp0SQpqdtuXYiBChJLMty3Us5sDRqREiCLu+p6RBlGBtNEbEIEQJw4wriRASUmupuBRaIxhFAXuo65ogkqYpxogRbXjWakd//d/4N7Y+9eqv/Xv/t3/z3/0P3/r8jyRZjaUGwEAZbRSk1dl+4FKElZIw7FJCwjBMk2w4HILpybYYJFxHUeQ5Ti1rh1llmWOMlRbL5TIMg2az+cILN95+++1Lu7sWRjazXN8LgsAg0mg3jDGYMaQlwsYoo4062D8UkqeLxBgNy6Bg5erZ8UklOGOMMuZHoTFGI2OMWW1cCaNkcv7JO3/wu//4fw6CgNdlURQWoYxRrbVSK/kXZhdS+pUi3hiDlDYEQ8o2MUgabaTGEIYkhJQyiiLo76nNlFIWYxQTrJFRGhbsWJYD7zlmVCrjBr7ByKIEK00pxphatlsJCcRKrdTu1Ws3XrwVtbp+HG9duso1ksrYtmsTbNFVA5EV+fu/h+FZuvX54vz8/Pj48Ld+67c8L7hz5876xsaLL97q9geweVNKmSxSeAXquo78oCxLjTUoIZbL5Xvvv+P7fqfdA1fUBToFpwNImqCJ6Q/WlFIgxZ2MxlDzBoPBxsYGCPkBnoE3JQgCYEIbjQYsUXjy5Mndu3cPDg5ee+21jY0N2PcFLEAQemCjK8syjppwjCKEer3eaDT6zd/8LWPMV370q3Cc+b5f5tV4PAYRFQBOURyDZBgAiVardXp6OplMwM3eaEbgvwPx2XQ6DaPVVEopXVtbq6pqOV8Ggd9sthAyJyendV3BdyeEaCMty5KSgwYIhuPZbDYcDo+PT6WUX//61+M4hrdDKUWopZ7HHSOtldJaq7KsMEZcyuHwLE0z13Wanc7t27e0Np988sl0MieEgJYICoaUOkmSoiiyLDOIgAV1lVAvKsh/gZBJxWsY0AHoQghBNHRWFkEQlGV5dHQ0OZ9Mp1PM6Je+9CWoPZiS8XgMOFDFOfwNF2UsWcxAHVKWpcOsXq/Xabeh97Jt23HdKIqY4wL84Lo2IWRv/+nHH3wI1j8Ia4W6eFEOe71es9lUQg6Hw+VymSTJ7uVLvV5vuVyORiNsEOTMIYSwQaBTUUp1et04jsu8GI1GCKHHT59MF/M333yz1WrVde17Iaga4NYvkiUkc2CDlstlo9EYDAZn50PO+WQ8s217upgDQ621th1vMBiAyAQm5MViUdVF6AeDwYAxBpGenU6HGOT5zgVMbts2r2po9BuNRhB4RVE4zBoMBoSi0WgEtbYZNyglnudVVdXrd2CxB0Lo+PAIJNtR1Dg6Ojo8PP785z9/6dIly7LyokiSJEkX8+nEtZnQynVd1wvADOH7/mg0WS6XDx48PDo6qqrqS1/88p1PvTQYDASvx+NzIVSapkJKYMoIIZ7nQabXdDp99uzZfD5vNBqbm5tXrl/u9Xqu67abrWarjbTRnCulqrKUSimlaimEUO+9997Hd+8mSXrp0pWrV67D9LtYJKPJGPbHVFV1OhwJISzHppS22+1ut+e6DmPW+WT06MFDRMhar7eKhmE4z0pEkZGGWMT3Q3CCM2ZnWUGJleXJYrEos7TT6ViuhzH2g8CyLGU0aL+AcqGUZlnh+z7grKCugdRiMKTDrAVN0sURAdIjOHOAcIc3NMsy6BswMZDE8aeUt9bwPoLbBthhWEUA2m78PI7bwE56zsMwdBwnjmNgk6fTaV3XjFmgMw7DEHT93U7jU5+6c/ny1W63rYUOAk9wzhi7cuXKfD4vy7zZbH7y6OEHH3zwJ9//4WQ6CsNwY3trZ2cbwuFgcCUI87Kuy4og2mt34jg+OtxXypRV9b0/+uP5YnFychKG4c2bN6Mo6nb7zLagCsDeXlgETBAOA2/Q73z00QdaqZsv3EqSxHIdrfUbb7wxWF8PgiCMowus0XVdbWQURYxg6rpIiDxLIPHgww8/vPvhh0op/BNf+QZYUUBARyn1bAcuVpZli8UcGCVDDULIaOxaTqfTsW0LTmSEkDZylf9WVaPhGQiHq7oATBJEEnEcG40Xi8VkMmGUQkYiQhry/RBCGBsAvaui+Ou//J9ByfyvfvPfciyrLEuKMa+KLF2KMm8Ebq/barcimxGjJMW4LAuoQ4Zg1/OC0FPGWDYE9tmEUaWUwZRirBGybUcjw6uaWgz21hFEpVJaa2o7iotKcGQItRjoruDZYtiSUnqWpUUR2ObHvv4jn/ni571G57/8B//oX/8b/+c33vyCRhaWSD4P9IIlKq5nY4zLvPA8B4gnz3Uh3w8e66LIKTZaS2iZiyxfpotet/v6669ub28LweM47nRbW1tb29ub/X6fMaKEgPjmNE3LWiCkOedhHDqOk5WZkcZyrfX1zSxLtEYMk/F4TAgJfDfNszzNFslSCNFbW/O8ICtyqCKu7YK8qV7O3v1nv/37v/2bQRAYJYqiwMYADb16DAwCQyghRClJni+u0VJpZLBBymiCiNTKKE0tBvM6lGGlFKJESsFsC6AO13bU8zQmShnWxmjsuS5gckZjgpBj2YTRJCvmaZpU1aVrV6/euPnKZz5DHTdqtbQij57ttdudnd3LQmkpJU8LJTkimPPK9tz3/umK1P78T61WQR8dHr77znt37979hV/4hVdffy3JisPjI8kFUGmz2Sx4nnKZpmlelrCfZHNzU2tdluX5+fnh4WG/3z8/P4fCCcUYtBSEEIDNwUzU7XbjZgMSfZ49e7aztQ042fOViBrUnWB6gnGq2YrBYTccDj/55JOzs7PBYPCFL3zBYo7neSArAcnFeDyF3eeA71qWVVX88ePHH3zwgeu6ly5d2tjYaDabIBsQQtRFiSjJiwo4QUrp5tY6kDXHx8fz+TxJEs8Ntra2wC0PMg6DsW3bGxsbQLkqpSixENbLRfrhR+8/uP+wv9a9detWEARaqqLIHdcCJtf3/VanDdgqjNqLxaLXXcMYH+4fnJ+fr6+vx3HsBQGXWgiBjcKIxo1QK8QsYjFHKv5076AoM2TI9s6mNvhw/+DJkyePP3nc6na63S40ppblwAWHIwshZBDa2tqyHaa17rTajJHj4+O9vT3Pdl588cW1QS+OYziXQdgHzBosA1gsFrAfZm1tDVEyHA4nk1kcx7braK0vmmwgrLXWsBQchrTFdDYajXZ2di5dugT6Npj48zzXWhuCMTZCCMe1HGZNp9M8KwEY6Pf7rW4njmM/cOu6di27KArXdqBEDYfDRqsZx/G3v/3t+/fvQ2O9MVjf3t52XVeu9oBZlmOXZdmIYnBXLJJlJTgoWo6PjxkmkI7WG6w5tgckFyzYCFwPMyuOY+i3lkmGEJou5ufn52EYO8+3di6Xy/l8TileZXBEkeu63W7bte2yLKFKXUwjjBHPcX3fV8oURfFclOKCPbPb7cJOhTxJ54sppXQwGHS73V6nY1lWVeZguANsOIhCizl1Xe/vH8DirFarBYkhnucSbOLQd31fCBFEMcDznPNm3GCMwcDz5MmTyWR2+86d+XyeLOcHBwcbGxsAosPbobVm1Aaws6oqmBXB7PLOuz/4G3/jb1y9enU+n4MVGrRxMHYKrqqyhJKXJlmSJKfD88Ojo+FwRCntdHo3XnyhyKu7d+9mWWYwBsFJHMdFVQmhms1Ya0Qt4treIlk+ffxkOp1iTBHSYRj7oWdRu+Ilr6U2YDM0jFhKmmUy73a7oecjhGoplFJmtVNEYoyBUoxCXwiRprnFVucD4OKMsWazSSiCSBGE0Cod07KllAgRy7Jsm0EHDOiU1lrWvCgKgDYpJheyaeZQ6OkxxhABA+ctHEqMsTzPszyBsxe6OvAuCCFc1wFQDSJk2fNtpyWIlJg1mYy//Pbnv/ZjP2I0RlgHTiCE8D0vTdPDw8OyLNM0RQjt7OwEQWA7Hkj4Hz9+fHR0cHh4+C//hV/s9Xr7z/a01hsbW0IIpHFRlkmS+KEXBJHrup1WG8Tyk8nk3Xffn06nz/b3ms3mpz/96Ws3b0BXenJ4VJZlM47WN9Y6rWYYBd1We31zC5aMTafT8/HI9/0bN27A5tkXX3zB933YWwAIFCQPIPOnFgekTVEU+Jd+9pcsy0JoFRk/n8+R0q1WCyprUeQYY0MN0GFSSoc+Rylgw+DzZE44mpXgnPMkXTSbzYvSC4YpKaXFHGNMslzWdU0pBsWD1rqqCqhGGGPXtv/CT67Qr3/w238L3mesjWVThpDgRTafJ8uZ59DNjbVOu0mxkVzkeQplLMtTTEh/rRsEgTSSYAbLSoGaUUZDbJVtOcyiyGCwyNq2TSwbmBQptEZGa+i9VmO6RW1eVuVyaVN9bXvwUz/99a2rO26j/7t/+P7P/st/47Nvfr6W1GYWryps0MXnRUhjjDFChFLfc6GTA2P2fD63bVuIWksuRL0+6K+trd28efP111/f3d3p9/txHLue7bquEDUc5VJyz/MwxVVVTSbTNE1FzR3HQQStra35vn90egS9LJQKhBBjtpbK8zzPdjAxeZ7btn18evr++++/+bnPX758GawJru2WZUkpHR/t/8nv/uPvf+fbnu1IxY1SUkr6z0VICKU55+AJxRhjjLSERwq0dghuN4w7Qggw9kO7gDGWRjNGlQG6XRGEgSGCDsamlm3bSGMYvKSURV7lZZVk+e1PvXz5xrWbd17euXJVE6IJtRwXEWYMosRSBi0Wi7v3743PRw5h165di+IgKwqp1d6fhPAs3fxCaVlWp9lqtVplWZ+cnHz84UedXtcPw9FodH5+nuf5+vp6u9mM4ximt36/b1nWfLmE8wWmFGNMt9vlnB8eHt6/f382m92+fRtoFHiNwQIGCRRVVbm+5/s+MAsWZdPp9Hvf+x4wRxdtCrDnkBRFKELIACji+/5oNDo7G25sbFjMgSV0zWZza2sHrOC2bds2A0R5PB5rjba2tvI839vb++CDD9rt9pe//GVIuQuCYDmbl7xWyrieB3yi41pK/WkGymg0SpbZgwcPBoPBzZs3CSFhGAkltdZpmmZZlmellBJmKugFYZCglKbZUtS81+u1260oDrqdPiYGE4aJ0QoJIaqqgpothNjfP1jM5ovFgkvR6a1BorrruhahxhhoVuq6zrKM2hbMdVVVWY691ut7tielfPDoIbxE6+vrjuPBZA9NHufcDwKDVK/X01pTjICF55wPT04Xi0Wv32m329euXQOnKtTaxWJhFJovFlpr13VXGyqbjffee+/hw8eghvECHzT+cLmgb3Ms27ZtSqnv+8QgSDHd2NjIsuzBgwfj8Xg6ncLmImpb6+trlmVhYlpxo9Vq1ZVgjEF/9tKnX0YIUYYppUBNQuwqjHNgPIciBzqbIssRQlEUvfXWW5ZlcSmAE4e57vHjx0IrWLa2vr6epunp0XGSJM1mU0qJEfU8b2NjY21tDYrfbJmAtEhr3Wi2Oedno3PbtqXUWuuiKE5PT+EVBuE8FEswGBGE4jiGBHyIhQsCr9fr1WVFKeVcwoxtjGk0GrbN0jT3PMdxvFarobgKAq8sy9PT0ydPngSh96UvfNF1bNd1gyCAipAXRZblwG25rgujC+TCX718uSrzbrvph3GapmvrA8uywJFqMwtqCiGMUnp+fu56fpomjx99MhwOF4tFo9Foddo7OztxHE+n0zCIocsEYmdtbQ1Rmi4WB4d7AEvv7++///77ZVkOBoPrN2+0Gs0sy8qihjVunusajRzPRQR7bnB+fv7J4yeTyWRzc/vs9Pzw+MhxXNu2bct1Ax+AsSRJjDFJtgTYqdlsUmJlWWa0rusaoDX4kYDIE7Iuy7IRNTnnURS5rk0M0VrmVZ0kCcKYEEIY5ZxHUYAxFpwnSaKkgZvlOA5kEIK+QmkB+XAXwgbPcVutFsY0z3NY1D0ej4UQ0KFCBBJjTAiRLhOoL0IIjRV0WuCwAe4SWjfAShljlGGYEMjzkBd4DsuygKEX2gDAjOM4bjdblNIkSUbjYasVvfLqy61Wq6qqvSdPh8NhnhYwAAAQiwwpy5JLYVmWMbjVaMKTfD4eVlXV6bQYpZ1OJ0sLpZTvh71er9NrN9otmKMowrwuAz8CNXYUNcq6evjw4flkzBg7ODjQWjNMrl27Muiveb7TajW63S40PLCvAogOMFk/efIEIfNX/spfWdvYmI/HVV3HcYwQBiFWmiatVktKORwOAYDEX/rsl4C4resaa+M4TqvVvvA/cyUA3wqCoK7r6XQqqroZN5RScNCgVW5NG9o6OALgHgBwLRW/CAUxSgMArrUGNQBUDpDqQ8GuqurnvvLvXLRfy+VScQGvNyXIZjRZzJERdVkkyWJjvbfR7zs2K9JECCEVz/MUaWOQxtgw27qIb+ZSgrvN8zyDkVJGa2lRmxCijEYIIbNaYEcI08goaaADkIovFgutkJEitu3IZa+/cutLX3xzY2fDa/Z/8ODwJ/7cX75x88VaACmHQz8AAJZzPh6Pm83mxmDw8b17lchc6l67du2zn/3s1auXt7e3t7a2EEJVXWitVkeGzTzPcx0HiK3pdNxut33fvRDTUIsppAmjoha2bVuEDofDMi8m0/GTJ09uvvDC1WuXDcYGE9t1MMZ5VighOecYIdd1EELz+RyyoZXRQghe1XmeN8IYuPnTvSd3//g7H/zwD13LLsoMRPXQfkmhLMviSiOEtDFKC2IxYwzs7YItdVqhf14XBRYbQogheNXyYy20xBg7tk0xcS2bEeraDB4VhAilNCvKZZoss3RjY+PS9Rc2dq++/rnPdXprrfWBrmWal1lRViXnXEFgdBiGmJBGMyIWybJseDba3z+cz+eXruyura19+Dsr9OuL32oyxkTNkyQpy7rRaFR5UfKaV8VyubQsKqUMgmAyGq+trUEGveO55+fjsizDuFlVVVmWVVXFcQh791qtFuAHp6en9+/fb7fbV69ebTQaUK6iKDJIEUK4UFARodJnWfb44SMp5eHhYZqmEMy91uuladpqtSzLItYqiw7m+LquoyjCGB8eHH/44YdPnjwJguDy5ctbWyu5rm0zx3FgakeISClt17FtO08zAIcePnx4797Hg8Gg1WrduHHDdX3oVKBNh/WRdV2HQQxUwmw2S9MMToBHD5+AUnOxWDSbTYQIQojaFmMMRmFi0O7utm3bWZbN5/Pbd16MwygMg7Ku0zQxBlFKhNaA58E1DMMw8KPQ84ui2NvbQ5Qpo9fXBoSQyWQ0m80owkEQDAYDOL6zLGPOasMdIURxEUVRyWsYK8FkB42pUqrdbgMRbNsMpu3ID2Ay7PV67X5bKfX06dNHjx69fOelW7duGaWfW6W0lmqZJnlRQasN4xx0APNkWRQVhESEYfjCCy/8aS680nVdC62m0ymQwr7vNxoNiGgB+tLI1cEYBF6r1YK15Y7j+H5o27btOMvlUmPUbDbPR2fvvPNOFEXb29tr3R7G2KJMKVXWFfSvQRBgRC3LOj052d/fJwS98cYbUHuSJJknS6XUdDrFGCutQcTD69p13Y21AdJGCDEcDi3LGo1Gn/70p9fW1mbAbxiCECIWK8syLyuE0LNnz4qi8MMYFiCWZQkJZBBNfDEtIISIQRcUKrMIYwwcV0KIw8PD2XQB4VgrGXG3JbgiFIV+lGUJQsSy6OZgfTAYwNYvm1l+4B4cHOR5mmUZ/I8AwoFx1XVdrSXGWAgeRZHr0LLKHdtrNpvtbocQQqlFCOGVACfBcpFUvA7DkBAWhj5GihAEqMnDx0/29/cRQl/84hc/+9nPmueJOacnQ/h1lmXMtsDdzDmnmIzH48PDw4ODgzAImq1Wp9Pt9XpxHJd1BfLWoq5gpF/MkzTNq1oQwsbjSZFXRV2VZQ2xeUojaOIR0nmRaoVA+Qrv8gV0CnJA0IQRiowxjFCkdFEUUnGtkJC174W252pk6rqWysA1zIvUGOP7fiNuAbXVaDSqqhqPx9CHwQkD5xImZrFYwBylpIF7hzEGo49tUeCdgWLinCsubNuGp90YAzM/cPFwASmlkCa9smRhDX2YUgobUxQFKDXhisVxxDm/dOlSq9VCSCdJYrQGhWKj0ZjMzoH5vXv37j/8h/8QY7y7tRtFUavVajabnufBwhvQh0yn0yIr0zR1Pe/y9cuu64JlYW9v795H9xhjSsgbN25cuXLppZde2tndgiNie3szCCLHcRaLxXQyH08nJycnJ8OzNE3hUyfzxaVLl3a2trd3NtcGg83NTWDq6rru9/utdqPV7SKElpPJ/t7e48ePnz596vvuowef3L9//6d/+ps3btzodrsgEel0OogSUKZaloV/7s98K8kzm7IoioAMxphIKYEGVkpqjCjCiCGllKjqqqrKPDMG2zYjhFkW9TwPqCX4MBAZAtJawNzSbAmOBnAVAesMDx+U6lXvjBC4837px/82lMz/+B/+dS1W+hjbshDSlmVpKTivGCOu4ywXU88i3VYz8D0pueCVqEte1VpLqYSU3CKUWAxUR1pryPgBNIIxZpQWQhAKEaOrXFOEUC2UlNIYXBSZ5FUURQoZhlBs2b2m/8qnbr786dvNTrO/e+1sYb7849+KmtuOFyEth8PTXr8Dp2ez2dzZ2ZnP53vPDl5/49VLly6h1WLa3sbGhuc5MKmDS2WxWICEWUpeFTVjBLwYq/kvz0EfPZ5OGu1WEIZKqWS5jPwIVsuOhmfHx8ez+ZRQevPmzbjVbLbaQKUVRUUpptTSWmKEtFZZlsVx7IdBlmXz6Ww8Hs8ns+3t7V6nW6Xze9//7h/+s991LcY5x0hjjKD9ooQZgjmXlDGQy1BKAdtACGmxCuU3z5X4CCHOOaXUCwPbdqXkvh/6oQdTDkGYYQIv8GI+T9I0z3NqW7uXr1y9duPWS3duvvCiNDpsNL1WL2g0prPZwyePKbX8IGpETYSwKFVVcWxQWeUYG9d3Op22FwaO4yppHj5+xBjr9Trf+x9X+013X58jhSilGFGNke+HwIYgLTnnw+HpaDQySm9ubl69ehVjDL3O+vrm5atXmo12XpXPVaVFGIagDI2iqNlsgigHYuuTJFksFpB/wyyitcaEPUfaXfBaurazkpolyf7+fhRFr73yCoxAnPOyrpMkAVtGURSwCBxCiXzf9zwPQl8fPXr0uc997s0334QuTWu9XC7rWmCMpVae58HuCoBtZrPJ0dERnFCM2deuXdvd3YWICoB5KKXLRZokCWG0LEvHcbXW08kcRDDAdgkhfD80xgit6rp2HCcIAth7GMdhEAQgdN3aXK/r+u79e0VRtFqtZqfNqA1qUaUUQgTOa3gMFouF47lxHPuuRwhpNmOtdTJfDIdDYIIuX75sWRaiDJwKVVUVacY5NwQDrwfZsDB9gl8SId3v98E3EEWRRWin09FaB0HANQf9eJqmxKDNzc2jg8Pf/u3fno4nL730EvTcjVa7KMvRaARyFqiCzWZTIVzX9XK5rKoK8ttAK0YMQgg5vgcNEJwhy+Wy2+0CRyaEkDWv63o2m127dqW/1rUsy6LMdd2q4q7rQma9NJoQYpACKOj8/JyXlW3bL92+s7a2VgsOhyRgDI7jeK6bpmmSLCilmJLT09N33n+PEOLZjjEmajZgEgCHBAS1d1rtKIpOTk4Ws3lZVzB/W47ted5yuaxKnpVFlmVSrwwlGOO8rIuiAIzWshxoLJbLOdQSAIpcy75wWQ2Hw6LMut0u6Iccx9EKlWU5n89BAAqNbrPZDIMAhnCMMcPEtm2C2Ww+0VpTipWQoO4/OT0C/np9fR1SZz3PY4wEgQ8bO9Z6fc4rWJreH6wjhPb393/4wx/GYWN3d3djYyNZptRiWmvOpW0zgjVCOo7jOI67/bXZbHZ4eLi2tra1tQXx/aPRyGi8vb0NPKPBCOaTPM89z4uCEIQfWZYdHBz80R/98S/84p/vdrtHR0daa4UMwEJZWkCcB6O2UgghVFRca50k2WKxmEznz9WHWimFsOa1BPcPzJPQMAEziBCCZGaQSncacRzHWmuEDNCIlmV3u91lmj959nQ6mduuo4SEa0soqitBCAFUHr4pzBUgKQFzulQcwCrYUQEFHR5+IYRtUcCPAS7RWmshAYuF4QdYI/hp4YZC3wZPS5qmaZGGYQiab/Q8agDQDa11lqUbGxvXrl3TWmdZYtt2s9GQUoLdx3atLEtc24Fo0zRNk3kynU5nsxnGeLFIbt++3e12T4ZnhBDX8QPXazQaUbPRajearVYQeiDq9xw3XSzn09l8Pn/4ySdFkVmW9dZbn/3Lf+Vfn06nsFluOp1atqu1LnkNDB+o7iiiEIByfHJikHrl9de2NzbXtzb7nS7wAEmS/PY/+Sfvv//+3/ybf3N9YyMH40VVHBwcjIfjjz76CHrrXq+3vb3t+/5nP/dWr9dTSuB/7c//CmGUIAq2Xs65FGrFNAmRpimz2WBtjQA8SFFdlxgbjKlSQsvVvmpQUUDTVpZlmuYgyUQrt46kkJOOEOTVXvRDz99zSgghlNq2bVvWz//oCv36H7/9ty3KADwgBmmMCCFpmmK6ioS1LVql8+Vs2uu2W3FEMLIYkXVltFSiRsgQhJXRYHEyxmgtq6piFrGe28gBijfGKEBxhDDGCC6NMdSyeVU3Ah8hJJTodduWkS9c3Xn9tdvXr+26fuBtXNo7Wrz2hW9JhBpBa2uj/62f/eZLn36p3W6vra1B1v9yudzfPzRGQcZPnud1Xdq2LZUoisKy7Xa7jSgBgNCyrKqqRmfnSklKmeu6lmVBGkqapkKITqfTbrcRYcvlkhEiuPIDV3DVX+tijBHS+8/27t2795nPfCYMYyFEGEdh3EySBaUWpMy5rs2VnEwmtm3BBAMN8Ycffvjs8dO3Xv/03kfv/NN//BueYxtjMGSCaLjLsN6VG4w0RlyuBJWwPRBpQ57n8tOLXBIhPM/Ly0Jw5Xq2kmY+mxmukvlCY9Tpdi3f3bly9er1a521Qbvf2969FIWN7tqa6wXG4Kqui6LIq5oxlhXp8elpki+lMha1W812FLUkFxaxgsBjFqlEGcehUirLilarBa2/4uIHv63gWaqd7928+YLv+/NlGsaRUAYo1NB1Wo2m5znL5fLBvbsff/wxpbTZbN65c+f47PTJ46eW49568c54PB4MNvrrfcexvMBf2YjkShgB0yFjbH9//+7du1VdIIRWafjUQoRKXgP5AvJKjLHNLOh7lFJK1EdHRx9++KGUutXpbW7tGC2d5yAoY8x1bdBjQfFO0zTLUsJoo9GYThbn5+dS6k6nA1oZ9Tz51rIsyIZ2bcf3/cVyNjwbPXnyrNvtbmxsaK2TLIVTMkkSLpRlWcag0WhkMUcIQW3HGGOkOD4+XuX9SN1sNg3BML0Azk0IybIE3v1GGMVRVJalHwQg387znBAG1jzO+eh8IqUEMzXYIzrdFvguhRBKcNd1L23vQHY/TNVBEIB4SGi1XC6NwTC8QU2CyBspZRj6cRzDSs3T09PNrfVXXnkFY+wy13WcWlRSSvncLBIEQZ4krusibWaz2Xg0OtzbBwV6Z22t1WkDL+m5gWVZ4/EYNEwQLbtcLpvNptb66dO94XCYZQnE1kOSEEj1gQSEPVrGGC2k67pVmTcajWa7MR6PH33y0Bhz48YLW1tbfhBIKUteG2Mcz5VSSlFrrR1mjcfju3fvvv322yCuWvGk80QIwesaBAN1XRuslVKz5aIuyrrkZV5wWTuOc/ulO4wx27aAVYRy2Ol0sMFe4EOoYRgGdV0/ePAAY0JtqyiKRrPNGDs9PYV7p5TSCsFZ4bp+2FihGmDbnE6nkPkEbq0wDEG4AnxWs9msixKQwjzPZ7PFdDoFrdXFGwR+3rqup6MJtBQlr3vtTq/fCcOw0Yggz2UyGr/44oufevmOMaYZR41mjBCCeFiMCCIIbgF80slkcnS4zxhLkiSO451Lu3Ecd/s9UXPfdQYDgFonUSNWShHCoG/O8/zevXuj0Wjv2UGn09ne3oYqBqpoy7EJIcRaHcu+H8xms8ViQRG2LXd/f//dd9/VWoeNZqPRwITBOqDpdFZUlZQaQpIJo1JK1/GLMgO+CIJJQdUArQyM3FCOoaGBakUpVUqIskzTZRSGb7/9NuRmEWpJqT559OTZ/t5zq5kIAk89L+h1XWtjADwGJR9MMvDwLJdLrbXv+71eDyLuABuDlQ9A6MOk7ThOFIT280Sq5WwOThFwC0InAB8T0nGVUgop0HsRQipeW5SJSliUcVVf7NeSUuR5vrExgDGyruvB2tr6+jqkxRqsy7o2SoFwvNlsLucJdFSnp6daa86574WUUhDkbQ7Wr167fPXGdbC5eJ4DH0FxYYxpNZudTiuKorIsgIKA1QvD4ZBz3ul1wzBSSgmt0iRXRlJqUYqRxkqLOAgty/I89+Bw7+To+C/8yi8bibIiB+HBwcEhYywIAnAFAZhljEmXS0wMmGY453fv3r1///5f+9W/ura2Vtcl/vmf/HOO4yBEwAItpdRq1ZledMFhFGitEcbaSCFqcFdSiousBEIBbiEYSi3LAk8PTA8g+uO8EkIgY/I8T9OleZ4sD8qGRqMFFqSac0bpz33l375ovyBUuqoqrE1RV1rrLMva3U7cbErOGaPUyLoqqrLQWrbjqN2IKUKMIClqiozSoi5LOC8wJcaouqoIIWB4gQEXDnH9PCuBEKK10VpTy9JSWpg6ro0wthgKLHr7hauvvXGn1+t4gR+21iYV/e6f3I3jQa+7rpRotkLCiDQS6K1GowEdSZGXK2DZc+q6Vkow26qKMityxlhRVUYaPwrBeo210VrXNYeKbghuN9qVqOqiPjo50VJ2+32CkOM47VYXYY0IE6Jmq8B0dzlfCKFAG5SXhev4V65fsW0XodUOAC4qjHGeZ+C38jwPAnInkwmqyo/+8Pe+/U9/MwpCzisjFSar1QXIEK1RLQUXijAKZR7U9JRSoG5BHQjJMZA40On0+oO1GzdugB/k0u6Vrf5Gs9mMogZzrbSs2v1u3Gwxzym5IIwZQ588fVZVHFMKZxbFpqqKbrfbG/SX6QIh9Pjx08ePnrz55ufazQ4wIEWRTaajxWLebMaAs0ZRA2NjEesP/lEJz5Lf/3ixWFScv/Tyy/3Bmu36iGDLshaTqRAiTxPYP/0Hf/i9//6//e9OT0+/8pWv/PiP/3hvbZCmqev6g8HG9evXHdddZsuyrmAkEELYbJUFBde2EUWO5w3PT588ebK3t8cs67XXPru+uYH0aok7TClZluVpVtc15GY14xghvVgkewcHh4fHQRB1u+12u725uamUajQaGBugzueLKfACUinXcwghVVk/fPj49PRUSnnt2rXt7W0tTVGVjmVHjRiUTJZl5XlelrnneQgRoCcePn50cHDgOE6v14uiyHF9eOqKolDSlGUpzUpQFUUBRdQQvJjOoPdaLpfwYEMHaYzhvIrjpjHGsx0gTbKyALE2YbSqKs8NYE0y57woKojG9n0XE1MUBca43W7HYQSKH4dZQRBkWQLRO+++++7JyYkb+EmSNBqtjY0NOFieY3I+dN4glIFSQSlttZp1UX1y/wGE7gRRCJZ4hJDrugj9qXsr8H3Ouaz5+x99OJ3NP/3qKxAtphVaLhbAuRR5ZTm21vrs7KzZbELxALHsZAJJnqPdK5dv376tkZFyJXaEWFTPdqTknXabMWI5dl3X6TIBSXhd11euXu/1O34YN1sxJRZw1hhjoE3Pzs6UUovFwhhzdnZWFMX21m673WaUcs4hTM52LYyx5ToWocksOTo6ms0mlmNfu3E9SZJ2uwWFzbIsuNSUMmOMQoYQUqQpgC6TyUQhlCSJ0hohkiTJ+vo6Yzbgf4zaoDxDlIHmBGMD2m0ot9A0dDqddrvpON6fjmGUwfNQVZXjeOPxeLlcQmk4PT2dT2cYYyFWVRwk2For17Jdz4ZmkRAEvjOlFDTr4/MhJggEsoxaRVEZrOEFUUpprQBsbjQagvPxZHJ6dtxsNr/8I29nScoYa0RhWdZpusSUYYxnsxl5nmhFCGk22ovFIsvyw8PDu3fvpsnyy2+//fbbb9eCz5OllPLw6LjT6YxGE2Cf8zTzvCBJkiLNGLPnyXJ4Pk7TVCNcwyYrx4PumTHGbEtr3e/3GWNpumSMGYOBLoDQTVChADQAXaxtM98PQVra63VsQjivqrIEXFwbE4bxycnpH33/B0VRBGEMqNViscAIXQSacCEAgJhMJvAtoA+GufEiuxUwJ3iV4JaBZL4sSymE5zkgpYd9RA6zINgZEC84/4Wsy6K2bHpBalGb2dQSz3WZFGOjtNSq2Wy4rtvtdm/evNloRFprg9RoNJrNZovZ/PDw0HGcmy++ALkhhJBut1tV1YcffAwLOi3GtDGe63LOW80OxrjidZGno7OhMarT6bRaje3t7fWNtX6//+qrryRJqpRqRLExRik5nU6lVovlbDaZXr58+cnjZ0+fPuVSbG1tBXG8YgYJKYsC4MPdrW1jjB+462tr0L0sFot2uz0cnv+T3/6tsiyjcLUjFVpDriTDTIiaWdjzncu7l7zAh0iv4dlob/9pkeX9fh+//ZkvQefLnqc6ASgF0wm0zyCKMsZgjBfLmZRyfX3dsiillhA1zMHwhzXkgiD0fPiugGV3PQ/s6ysooq4hbM0ilBAiRG2eb/gp0uyv/Pm/D3/sv/pH/xZQ/lmWRWFojBGiBpk2tRispBWCAymueF2VueC179idRux7NkNK8IogTUEGTgwhRMjVLhH0/AvcZMYo9nw9DiGrndkYE6SN69haayPrTruxs7Vx/cZlx/PKurrywq0X3vwSknS+zF0vKvJKGZ1lieNaUujJZKKQ2d3d9TyPc8ksqyxL27bPz889z5NGayEh7E5KGfpht987Pz+HfkgIwaVmjDUaDdf3sCEaKSW05bDJaIwpasSxUkpJw0WFEXU9G8DhCwtJEASE0iLPHz18kqfLbn9w/cZVx3EMQsDQ+8/FK7ZtY8JAzDg63Puj3/rH/8v/47/rdDpVXRqjpFyxHohQKSUmDFMmtUEIMdslhFCLUcaKmkNVazabh4eHtm3/mT/zZwYb661mx7KsXq/v+B5CqNlqIUOUlNQLVJkbg7kUy/niwcNPnj17duPmi4PNjbwoy7LWWsfNNkKIERQEHmhNLNeuqqquOYRe8pIfHx8rpWBTHiEIYvQti2ltOK+Jwc/eacJd/tw3nOFwqJTaubSrtYZdUq1mB7KmbMYYYyC/EzU/ODh4/PjxvXv3/uC7371z586bb7756ZdfDYLgnfffm6fJC3ducc6DIHAcLw4jLZXWejGdaa0JNo7nMtuOoghTlCSJ64aWZT188AljLIoi4OijKJI1J4RwJcFuppQghA0GfcbY0cHeaDT51Kc+tbOzs1gsYNaUYBESfGVTchzLsjQyrUbcaDSKPAdzX1EUd168s7Wzg7RGhOVlYTTmnNeCd/p9Y3SVFwih0A9ATrRYLPb39+fzeRCEQRDATwghecaYWiohBLUYQVRpjYxxXBeYF3hbQdLXaDSC0Dsfjkejkes4IAxNswyytbI8AUUL/NhRFDm2hzEGK1m703Rdt9loQwkE3WRVlnVdE4IIQc1mM3A9wPyWy+Uizcqy3Fjrb21tASuKMfYD1zxP3L7A5KIoSpLk8Nn+yenxdDqNG43NzU1Yh2I5NiEU1jLCukOEEAz9ShqYIQ8PDn77t/5X13GiKIKECCElbPTKyqzVaiGEPM9zmBU3QrgmQivQEY/OJ+PxGMCYTqcTByEXFYTiGqVhwXa/3280GoeHBz/84TsHB/s/8zN/bmdnGyFYSK+h4SuKgjm2lLLmpW3boqqKojg4OOScV0V5586djc1tIYQ2ErQ7xhjHWgnmuBQImbquIXP/8PAItmjbtl3WYiVLp6jKc0DWKaV+FEopl2lSV7zV7bTbbc4lCKKl0ABTcS4xxkhppQXQgrCkoSxzIcTR0ZHv+7du3QGrI8aYWg5jbDFdnJ6eZll+fn4OcIjvr1hjKWVV1bZtC64azejS5pZByqIMIQ0PGGClAFlpI4UQ4/E5IAUwWkBUR1mWsNgKGAzf99vtdjNuYIyTJBNCtNvtMPSn08nTZ48psaI46LR7AMCg59tZlstlnheO42xt7cRxPJlMPvrog2azsb29XVTlcDyeTqfT2SJqNqTQUkqtUV2Uo9HEdV3JJSJ4sLEBcsmsKHlVK6MpsZ57pyRAhpZNwcoGF/YCTQSquqxyIUQch1EUGWOCwAcPPyFkMBi0ogg8PRjjjY2NLMu//e1v/8Effb/b7dq2rYwGRyq8mJzzLF1xTdBRRVEE3hH4AaBFhpWLkEcDm1ewWSWnaK2l0GHky3rVZxdF0WzGzWbT9WwoJXq1eYlHUYSQcSynritIsFNKSS1ELYWSQFhBlzwYDO7cudVoNFrtRrPZBIsbfb4oRWsNaTUffPDB48dPT05OvvETP3n16tWsLPb2DoBCVVxIo41UnPNut9toNOI4jMIwdC1CUFmWjx49fPr06d7e3i/8wi/8xX/lV6aTObTXsB4eIJgwDB3frqrK9/0kSWbTxdHR0dHR0Xg85lxcf+HmlZ0rsEIaDM55ni+XaZZl4EsAfAo4tCRLy7KcTcZ5nne73TCOGLHa7eb6Rs9x7G6nw4VYzOe9Xg8ZXNUlOH/xj3/px2DyAPE7gLdwFeDGQAcGQWogiKOUxo0Q/phlWYyt4s7rul7M5lVVFXkO7M8qaiiK4jim7MKBuELoIbdaShkEXsnr5XKplLIs6//wF/9zKJn/9T/5d+BBAfZQKWWUAIoQ4H3Q3MDqYtu2tBJlmU9Gw/PTs+tXd9a7XYtRKUrw/UGnqKVyHMA8JYSpKKWYbVFMKl6Tld+zWgFmGENcYeC7NiO9TsdxLcezHz169JPf/Jkf/8ZPEttOi1oobBClzIbHKy1SxVVa5E+fPuWc7+7uCqEoY5ZlCSEZo9IYCIbpNFsfffTR6fFJlmX9fn9zeysIAtf167oWStm2HcexRqbIykYrNgpppCxGsjw/Hw6fPHlSluXu7m6/39/Z2YFoaYRQu91mlgXhFHEch36Up8v9w+NOt2U73nw+DYLI8xzfDcB1IqU8Pj07Pz+bTuej06P5wbPH9++GYWiMKsrMcRyEtCHYaCy1ksooZRBlBFOhdFmWFedCiPPx6O/+3b/7xhtvhGEotTo8PLx3796tW7fa3b5lWYQwUMZkeS60AjFjp9NxbJtSGrhelqQPHjzYO9g/ORu++OKLn371lShqDDY2OOfz6Rimc4Bjq6qCZYK2bed5Dr6q+XzOOR8MBp1OJ69yY0wcx1JKhskf/2YNz9KP/UIXrslyuXz69AmldH19w3Ecy/GklDA3M0KWy2Wr1VhfX7eZdXZ29lu/+Zv37t07OzvLkvTTn/709Zs3ciHPx6NGo9Fut5vNdqvVCv3A932Y8rWRjuMIpcqyZDZN07TfH0Da8OnpaZIkvV7P9/1bt24pLhQyIJTs9XpwPGFs4ijIskxwFQSBUerevY+fPduP4zhuNmFYZLZllMaUzGazIAiiKIDXEPJvYTGR7/snx2fT6bTZbEtlAP6BATRNk+l0Ch8ZRGyg+Xj2bA/+C+e8rgQYCFzXlQbB9now30D9gGIgpVwsFvp57AIsvqyq1UKSjY2B4zhS/el2PFAmgNAb/OeQiTqbzSaTieCq0+lEUQMQO62l1roRh2VZgj838gPbc7XWZVlSZCB7erlcWjZVSgHDBXycZVlSyuVySTHpdtrEIMzo6enp6elpmqafffPNwWAAKfbL5VIIMZ5NAb/HGDPEkiQJg6DRaIzPJzAR5Xkex3EQhkEUYmwgqx2UMQjrLMt83/M8L8kz27arqn706FGRr5ijOI773TZCCHYGE0KTJFlbW1NK+b7X7/eFEJAgH8fx0dHRd77znaIoB4PBWn/ddd1aChDwKS0owoxRhHBd10bp8/Pz/tp6URQQtwbtDlRNmCpt24JehzE2HP5py+KHMX6+MjwKPEqJENKPAkqZwca2HNu2uZJCiOUyfeedd4QQ3U7fsizP82C3zHI+RwhRisXzxUFxHAdBwLmEJkNKWZX87OxsupiXZVkX9Xw+9/2g0+ksFgvO61arJYSA66OUWi6TLMu63c7Nq1fS5YIx1ul0fN9fW1vjnAMWgBAyCCTCGGNcVOV0Oh0NzyeTSZqmb731lh8GqxUF4LOWsq5Ep9ORQpRlSTC7eu1yoxGdnw+BkptMJrDIHB4wxpjjuMaY+Xxp2zZGFGHNOS+qfLlIbc+dzWZ7B/tSozwvwTGa5+UKeihrBWM8ppgS3/c3NzcZY4vFAqNViwMUJziQ4GIaY2wLdkUsYXwFUohZRAhBCPJ933Fsx3EBEiuKokyzosgZY+12B5yM9x48BGqlqqqyrqAbYIwBUQ7gDWS/tVotMMFAKS+KAtwJAOQDnMZFJaUM/Qg0CQghpJAxpt/vwp3yfd+y6NHR0TKZp2kKryGIwOI4IoQs5wvbtnv9TrPZhDTdg4ODuq7rSlR1QQjRSEVB/KlPv7S9vb2+vg7relqtBiTSQTfcbDbDMESInBydPnv2bDSeGmMmk9lsuUiSRAgRhTGlVBuFMfYdt6oKy7IsRvrt1uXLu9tbm+sbG0ZLwuh8Pm+32/fu3Ts+Pn79tc+sQ0BXGEqpqqqqRS0VxxgfHBw04lYYhnCuPnr0+O7H9y9fvooQWs4TSBYsiiJJsjwrADIUkkPiXRAE/bU1SqkUtTFmNBotFgvf969cudTvdcLQV0IkWVZVHCRrUL+iKMI//aM/CZZL2BMJNy+KItAZAD8NXRSlFBb0Oo7DGOGcF0UGdgkgd2HaQwgZrcFDoZTSkq/AZ8Gh3dFaw/ZTkOwBwQF/f8VrjPEv/8TfgZL53/7u/wX4OMC66fMgdVGvdib4vi/lil5RSiilmEUpMkbLusyrqqyrQgneaDSarVgphZRyMPZc23YdhBA8NIzaiGDJRcVrQhhIJuEh0MhQatmuSxDKkuX+s32lUFGjX/mVP/vX/tpfmy8SjXGz1XLc0LZtQ1bb4Mu6qEsOEnWQ73AuIMuAUitJFpxLSCrq9XrtdrOua1jzPp1Ov/a1r3U6HRCOAOs6Wy6MNNSmDDOFFC8rN/BbcWMymezv71NKGbObzeZgMLAsK8myC6EAZNm1G23bYXlZc14JpY+PD43BOztbWZKDduHDDz/8wQ/e+YPv/wAhhBFyEHr59nXf9z1vFWXOecVsSwpdVVVe1VVZl3W1XKaLpFAaAdLJENrdHdy5c2dra+vrX//67du3CaOgMIC3Bdr3qNlYOXqU1lqXeVGWZeC5cHY7jvPo6ZOzs7NXX3ut0WhOF3MILQNIQ0pJKWGMUcogQePiKRJcgfK62+06FgU8CeitD75N4Fn61NsSoIg8z8/OziaTCWAtWzuXIKjzgnp2LHqxf6MuK5CzJIvFt7/97Y8++mj38lXYSS+U3N7evnr9+tbWjtQK6j1BxnXd0XgIqQSg82hEEXAHn3zyyb1790aTSa/Xu3PnjuM4m5ubBqOiKAxGAEiMzyf0+ZpbizLLostlenp6fH52VhTFxsbg1kt3HGblVRlFEWNMKgOcr1ASAkVhf9lyvnj27Nnw9EwpM+j12+22MSZJEi+KYYChlFZVDSMp51wZXde14CpN08lkAm99s9l0/AAaLDBk5Xme5pllWRCTCDOb1hqEw3me15UArhPuaZotKaWOY4HJhjEbJOFZlgFYhZEkhDiuXxTVYrEoixohBLYpafTmYB2aS8/zPNellEKYC3y7xWL2wQcfLJdLY8yg311bWwNQEBQRjuNoqRihzWYTgi1mi/nZ2Rnwm3GzAWoMY4wb+MaY2WxmpAI9nxLS933CLLA7TGczyEbvDdZaccN1XSlqUDfmZQFWCcuywkZc1zUchkbjPM/H4/FisTgfnb388su3bt4sisJ1Pfycuwdx8UWMhWVZMBPXeT0ajWDMaHV7rVZDCGHZVFQ1NDpRFPV7AwhlJYRwUbVaLSkF53xFLCoFPeJisQADF9Aio+lkMpksF2ld17DuMPR822HK4DRb8lpqpMqyzsrCGNNutwVXYBo4ODjKlgkmxmDs+U4YxO12W0rZbDbhOc/TlDEmBeRzmzzPDw+PT05OgDwhhGxtbTEGkRAMZnJmEWgTKaWeHxJCGCOtKJRSfvjhh1CDr169CpEWwC8DVm2QgrYP0MS6ro+PjwkhtuukaTqdTgaDAazVgqsBNwUZ4nq2EqIoim6363kes63FYpGmqxFIaw2r6NM0BVJ1uUy1RkIIrVApyjAM40ZjtlyMx9NlknDOyyKDqDnLcgLXo5Q6ng8buAFRQwh5fghvGUwvQgg4oIBgAe1XlhVmtRWjjOO41+8AnoQxVkokSTabzaBPaoZBp9Nhts2YfXBwwDkPwxhjDHshof/OsgxikEEPB98dijskTfypj/h5eCfn/EI5B1cMY8woZYzFUdPzPKMEJBqmaeq6dlEUlr3a7lCWZZomcMGvXr3abETwug2HQyBkhBDdbhfssXEcLpfzo/2jg+OD6XTqui6kWHe7XVBBgEIfTJpJkqVpOp8vq6paJkmWFcfHx89LKscYw2HS73VA7LSx0Y9DPwyDKAj9MIiCkEsB5rbxeHxwcDAZz6SUjUZje3t7a2s7iiKjFHQgjLFmuz2fzyEEezFPiqKYTuenp6dPHz8DsCMMw3anB5QrwIcYYzhDYHiDX7TaDc655MJzXKPE+++/u1wsNre2Op3e1tZWFEXQa5Vlib/2+a/CpAt3AjBbmLeklFAsLx6m2Wy2mM+NMUoJ27aVWtlT4apB/26MUVKCWmg8HvOq0Ku1SirJkyzLwjAEcxkoDYHuhH+OJmMp5b/60/8hlMz/63/zV6ezWRxFg/V1oyWXghEKEBrkg4uaY0wBrkcIFUUGq+g2tzaIQbDTOc/TyWR0Ph4ZY9Z7PYdRz2LMXu21kFobg6GAcaE454gQIQSXcrHIbJukpcYIWQR986d/4vNvvXXp8k5VVa+++ipj5OHjR47tVYJnWRZFjVarpY0RQoBH48mTJ8fHJ1LKmzdv9vt9xmyQ/sB8hhCCNCDLgpWUFHQklmUdHx9XVXX79m3AhBFCGON2u5WmGXS3sDQQbgo8mrPZ7MaNG47jnI+nsNweTr26FuliOZpOwLEFMSTtdvvx48e/+Y//8e9/9w8wQhbFly9dgTwO+BkWi8VymWiEMEIGIYQQQQj+FVIcYF0jQshmFsNIaenZTlZWCCGFkIMRscjf+3t/79q1a6ADy/P85OTIcbzd3W1CSLfdxBgnSRJ4vu/7RZbZtmVZFohRwjCsOU/T9IOPPxqPx5TSRqMJ+1m73Q7GuKpqQgicepDnzqgNU93JyUngORcdm1Lq3d+BT4De/IYNbhJ4fmazGVzzs/Mx5/zmzZvwOgkhKDawKY9SShCmlHa7XWj1zs7Ozs/H77333nI2H2xu9Hq9ja1NjOhH9+4uFoveWn93d9uxbMpWLmvQUQF0F4bh2toahDjkeX779u3JZDIejx1vdfepxRBCy0Uex3FVlAghhDXGeNBfC8NQifrZs2cffPDea6+9tr6+XlUVpURKxaUuqhoWpHDOp/O5VNyyLIdZYRjWZfXsydO9p0+rqrpx7frlq1eSrBJSWpa1WCzKsgLPYJqmeVnYtq2kWYWzGAPJMp7nOX5AKYV13fDeIYKhfwI8v67rtbU1AJLhX6eTuVQcgtOyLAEhjmVZs9kCY0yf7+tN0yVGGmPs+aFlOZZlSaHH4/EySy9dugQ3Hcp5URRSallXjDElOYB2URQ5jgUJnKfHh2DSBIsceK+MMXVZIW2A8NXIjEYj27Zbrdbx6cmzZ8+g2ETNxsbGhud5rbgxn84gbxlTUpYlsxxgTqkNM3oLYS2K6uOPP8YGra0PgiDY2NqEagpdC7SkRmPIPlwul7C63rVsy7Wn0xnoz0CiC2+0EAIOWIxoq9UyUgERMRwOk7yAhBqMTafZgmCw8Xi8XKRwL2zbJhT8TyvdKuf8hRdeQAg9fvwYzmSw3FqW1e51o7CRJInWGtIxoM6BNtQPoyxLhDKgOIzj+Pz8HGMK2mrFRZqmSZ6AAjoMY3ihgI4ps7woCmBkgJZttdoYI2goodjUNf/sZz8z6K9Rhi3LkpJDTw94le/7ruvCtglIhzo6Ojo4OGg2m5cvX7569TJ4XBzHgfYLbFuSC4zx+vo6pXQ8nRRFcXCwf3JyUlXVpUuXfD/Y3d0NwxBySSila70eTN2WYyOEPM8HTs33Qozx6enpD3/4Q7g17Xbbtt08qzXG0+nUYDQanS/SZGdnxxjjel6n08EIpekyz0vHsYw0xpisKBEiMG7BKoU0KyCkyl4t0lkxOUII2H3OGAuCCPAtzjljBFZGev7KkgL1kdcSIVRXBUVYIQOxLJ7nVRUvyxK2OIPgGJ5qqDJwi6H3gltzQYNCmw7v4yqaAONVgLkxcRxbjBljXMdXSkleCSHm8zmso4XuGV5qkM8Ph8Msy/7SX/pLgldJksD4ats253yVG0UpY2R3a5NQBFmAk8mkluL+/fu/8zu/c//+/X/wD/4BeGZhnRq0Pvv7hx999FG/3w/DEGEK6yOh6VksFhjjssi01i++ePNzn/scRabTbTG2yt3knDuO01/rQqYPjAeQvbK3tzceTzjn/W73m9/8Jrg0LMc5OTmZTqeTyYTXsHTLLJdLJTTkss7n86oWSZLMZjPg3LrdLox8AFHB4NfuNC9dutTrdD3P00pMR2PY+fts/xDkkq5td7vdTqeD/7f/8r8G8YnQlavnKeQA4wN00Wg0oihaTWmSQ+/JGBOifu7IWJmtlJRwKCOEMKJCCMhlhSOGMQLaCGOMrLnjOOBpgrZdCKExyvP8V37y378gHxHBnuMajAgyQkmjNDDWMD5qrVXNtdZ5XlZ17TiO7bkwLhOD4HnCxCCELMdZuSaV0kYCASyVKsuy4ApKtEaIIiSf9xndTq/TbFy7snv7hRc/+9k3rl650u22282YtVqIV7zIoHxO5zNAIBuNhucGhBDMGESJgkL5/fffH41GV3Yv7e7uuq5/4VqHQ6d+buillK4Nelrrw739k5OTvb1nhJBPv/zyiu2NQ9DzGo04l9Be+GEAgTGNRsMQ/Pjx48O9w0ajMZvN9vf3P/7446qqHz5+ure3J6XkRgG+1WrE7XbbtZ1+v6+l1FoTZtd1XfHaGCOVgfkvTRbQOUGskU0ZtNQIIumNEULZtg3B657rYkIC32W25drWZDYdjicEIYPQ177y9s2bNxeL2f/0P/1GUYtf+NZP/Z/+3b/VarVA/aOUiuPYGFWWpVByPp9VVdXttYGL4ZxnRTWdTo+OjpRSOzs7K4tGXYOUqq459AGDwcDzvLIsizSbTqfHx8dhGF66cu3D31u1X7e+JAFQhIniookHVJkxdnZ29mzvyfr6OiiEsDYgXwCdE+fc84JOp9Pttquq+u4/+95v/MZvLGfzZrMphHjh9i3f99fWB81mM83znd0t6CMNQvDiQGyE1tq2rOFwCJKjJEkePnwISmTG2NramhRaG3rp0uWyLDjna/0+4D1RFIm61FoXRQaN5ve///3h2enW9s5gbQtRxhjRyFBKo0aMECqK4mx01gijXq+npVoul6LmjmUJpU5OR+fn5xCzkmUFTLQwGAAmQQjJ8xRivSpeY0TBaQ+5Vm7gwysPADncjgu1aFVVjuO0Wi3o2G3XgaGTcw6NFPSZiDCoDa1GQ0tRljXGOM/Lsqo2NrZ6gzUpZbvdHE8nDx8+uCAWPS8Iw9BwmWVZlmWtdsMYk6Zpq9XY3d3VUlVVdXy4v76+Dim4AMwXWQ7BByBDDsPQdp2LzW6z2QwhdP/+/dFo1Oy0P//mW56zWpsGJ7jB2HXduNUEehoAP1nWWqt333nn8OjYsqxbt1/q9tpxHLuBL6U0Giul4ENhDAE9pOYlXOrvfe9756NRGMae53XbHaiFUG4ty6oqDomXtm2DZgsAAIwxYwT4Mt9xYacTmDC01st8iTEGcrMsq/Foeu3aNUrpYjprNBqW61zIS4QQVcVhEchwOIQW9vHjx2mSWzYN/CjNlkHUAF4SfIWW5Xi2A0OI67p5VSolkiRBiMDe7sV8Cfyj53n0+X6LKIpc1wmCoN/v2zarSw7lEKAsx7VkXfm+CwZY4EDgxXzu5OC+7zPG4HcfPXp07969n/zJn7x+4+p8PocLUhQ5pbQqKq01RECNRqNGo+H6K4Z6OBw+e/bs7Ozs8uXLX/va1yDmFIAQShk4xsbTOQhsGLOFEJD+s7a2dnh4OBwOjcF1JYRSMLZhjBXEhzKKEIqiqC4rz3d9L8AEKS4hnwIgujiO42YbVF8wKxZFARY3qdQFDwgojjEYOk5oMYsig5cF/qlXK30opbgsCs55URR5noPsHWEKHQA8b4CiIYSEqOGtdF0XLBfAiAExAnSEeb6lF8p3s9mElHJYwg0/UrJcAvlrWRbDCIhd2GqjlKKUbGxswBK2ZDlvNBrXrl2r6/qDD95L07TTbG1ubsJKK7CzWAx5njubzUH7uLWzbYx58uTJ40dPO51OWdbn5+fj2fTu3bsnJ2dJkoSe3+12m502pC8B7A1QMfCnRgrOOSHo1q1bVVU9ffZ4sLlx9eqV9fX1jY0NQkhZ5svlEvJOlTKU0k6nA5kpw5PT+3fvQygBJCTnee4HEX6+gvb4+DTLsuUyzfNcSzWZTLr9HrUtyBg62D+ybXt9fR0e1O3t7ZduvwjtL6XUGJVlmRBqPp+XeWGMWSwWVVU1Gq26rH7wgx+kaYr/wrd+CRR2SilYFLoCeM1Kgtput8FoDYMUoO5KKc45BMBcDPpa68V87rouWFgFV7ZtS8WhE6eUVlUB057WukgzrTXsQFhfXweZodaaWOwn3/rfQ8n8R3/4d2FQE0JEUVCW5XQ6VUoB0cY5dywLrN2M2YRSpRR4y5VSFFGtNSQQNjttmDnQSllPQJdmOw7oEzElCCGN0Xy+rDmnlMatpuu6DrPWOm2kZFVkoq5fe+XlK1cuuY51cnZy797HmNErV668/MqnV2r3KFLKGGOUgjFUQ/xEURQff/xxM4rBCCmEYMwuy7yquMFYakUIQdpA92CQunrpMogGjo+P/uiP/vj2rRc/9alPgQuyrmskMUIr/3OW50VRLBbJaDrpdDqBH6Zp+vu/93v/8f/9P7FtezAYCCEQZZ7vu64PK8BgMCIUGYUQ0mVWuq7NHJdSqo2RUtaCg/StLEuKETgqIMYdrNQXd1xKCeMdTJOcVwgh2JrSbDZtRgHlPj09Levasdn1K1cR0mVR/OiPfgWyMX/wgx+Mx+PPfObNK9cuX716td/vXr58WSl5fn4exQHA8tRyCCGj0QimtyzLoOpDa5jnBWOs1WpBrLZlWWDmSJLk448/Pjg62bB/HJ6lL/5MAxhJYwyITi6iiWCS9n1fKn737l0pJSwgh6ofhiGINBmzJ5OJEDWl1HE8xhjS5v79+3/4h3+YzBftdvvTn/701tbWs4P9Vqtx685tLwyWSbJIlkC+c87rslJKuY4Dk6vWOnA9IcT5+fnx8TEgDZ//4pc7nZ5tM/ixOefL5TJNU6RXWub1rXWssdayKIrHjx8fHw3DMLRcByKybNdpt9vLNIHbTQiRUud5XmQ51LPTk+HJyUlV1XVd27YLZR6GVNC0LhaLNF26rgNzQqPVgiRG22FZWpyeHZdFfT4Zv/HGG6BbAk09YI0AOAHZsVwui6qEpnM0GkG2O4xMYdyEzQGu62qhBeeCK41MWZZ5VcIKoG6/47puUWTL5XK+XIDN1maWzRzFxWg08jzPcS3btj3Pc1078Pxms1mXOUS2Hh4evvfee2EYxmEExOvu7i7czYrXAIRAYkJRFLPZrNlszpPl2tpa4LpFUZR50Wg0HM+1LMuyVit3irryPK/McqVk6AeO49Q1Pzw6uXv3LmX4q1/9Ksx+eQY5rgjCrpRSUAillEHo2Y4jpZzNFuPx+OzklFJ66dKldrsNDjigqCjFoEkHVgsu7GKxODk5QgjVRQnSw42NjSTJbJsxx0ZYQ1JuXYnRaCSEsiwahnGjEQmhKMVCKITQbDbLihwwpywtsiyDumgM3tt7urd3UFWFQjhJEtjSCKRz5Ad1zcFeMJ3P4axGCHleAI0aOPuqqmpEwebmpm1bW1tbjUaklAL1j8XYynJBTF3Xs9lk78nje/c/DsPw5Zc/NRisQx9W13WRV0EQtNvt5xbmCJq58/NzLqogCKbT6T/7Z/9MKXn9+vV+v+85HsQgQwsbBAHEEkHfE8fxycnJcDiEVVpnZ2ePHz+2bce2bS61UsrzAtiVlKZ5XZcQNBBFUbvdzvO8qsVstuB8NSE3220p5WgyBuVflmUUEyhndV1HQaC1bjRieB3KshpPp4yxZrPJOa8qblkWxEQRaqXZUnAlhIDaAbE+RVFMJhM46GDtD8gJ4ByAPZUYac/zms3mcrmklDabzbLiING5qLNQSZVawWZw2sAbCvpXuF8w2AD6GAQBnABCybquLbqKlbEsSwoBySBlmYee7/s+uC4syzo5OcYY93q9fr+/ttYjGMOihTRdQousuCjL8s6dO51O58UXX2w0opPjQ89zX3vttVarNRqNnz59ChF0zUb7o48+SpLs6Ojo/sNPptOplLrVamkhHceJW03Ygw7+UCFqIZQQdeQHYehDuF0YBELUZV2dng+n04mU8tVXX22322trvUajAY3s2to6XIeVkN1xecVhsT3nfH9//8mTJ8PzMTy3YRgag40xZ2fnSinf9Ta3tyzXOT8/B/rY87x2qxuG4XK5PD4+lorLmm9sbNy5c0cpsbW11Wq1zs7O4GrDmpPZbCFqXlXVw4cPsyzDX3r9C61WC5K1zT+XnAklFvprQEq1kVVVSS6CIICU8DRN67qGkxFE3DAWC6FgzOWc87qEQxl8EICmANOMEPJ9N45j+KbAi7uW/Y3Prdqvf/H1L77+3/XVvnHcarVgiAduEQbB2WQCno9WqxWGfrPZRAgVRZEkCcziCKEgaoxGoyRJHMsKPJdSGjcbQSP2gpAxRig7ebb3P/3D/+F//o3fuLS5+Y1vfOONz73ZbLfufvLg2cE+odT1vY3BOijQ67q2GMMYW4RKKauijONVsPhoNLIsq9XpAri9EiYyBtoaP4yBMjg7P6WYeZ7Tbrc7nU6WZXt7e8vlEqo4CNWhtRJKamTqSkgp0yIH91ORZjazhJBpmpZlXZYlpOYMh8O6ri2bRlHUbMaMUbCCYkxggLYshjEpqoJSNhwOYa2hlPLZs2eEkEuXLkmjkySxLRdajSzLiqq8OEwA7zw8Oeacu85qfdNikaSLVGtdFCVUCEQIISTJkqouer3e9u5WEASw2HQ0mhRZvpgtjcH9fhfUxIwRRgisScEYe65NKW3FDYwxSKlA5IcxhkVDALfD7wKEnOd5B1YNCh7HsW1bDx8+/P4f/lFVVY0ovnLlytbWlu/7hFDbdWCsgtgaEE70umvwtDSbzUpWf/zHf/zg/sN+v99otKznoTZhHC2Xc5C953nqed7uzo7rukVejcdjMKYAxwQ8UbMZQwW1bVtKDfc9z1OEkFJqb+/g7OxMStlqtT7/+S9KyR3HMUbVgsNohzGWQtsO0wpxUUHKvOv4IHAUWlVVNZ/PpdT7+/unp6dKKc/1G83Yc31m0bri0FLXdW2UAg4UI8oIpRZDlNHn7niwy2GECCFxHFJKl/Pp5cuXBoM+rGeRUhqlwzCGcYtSK4oCrE1VFcwi8/ns0ScP9/af5lkZx/GlS5c+//nPtzodwLZhxyhIlSml2CBwVAjBYc/PdDo9ODhwHPfVV18FDsh2HSCdsyyzXGc2m4HFBCE0n88JIcPh8OHDh5AE68K20IoD1GFZjhD18fEppRh2lt+6dSuOY61RJVa2bqXUbDa7UCZA7MVisWg3m2VZUkwuX76EiIEHzJgVQcY5b7VamK6cZ1mWOY63WMzysmo0GsCQVCWv69pxPHCSpmkK0yw0eYQwhFAYRpbFlBIQuwrfAgzvILGC905rjbEJwxAYT0IIgC7Aa0HnDVA04HlVVS2XS7huVVUpg3zfr6oCY8wINcbY1kpyLaVM5gtt5MbGhmVZtm1RSh3L1kbCwnvO+fn5GWNsd3d30OsTgqD5nk4msKXxhRdeeOedH/y5P/czP/VTPwXAc13XaZq99957VS0ePHgAQ2m714dMGWi2AC45Pj7+xje+sbm5eXh46Lr2+vpmFAVxEBZlBu1jFIRVVW1ub8FEPZ1Oj44O0zQ9PT3t9Xq/+Iu/CN8OlDmw7aMqyrKsyrywXSeKIillnueLZbpcLu/fv//xxx8nSbK9vf1jP/bjCKHZbLazsyPNKsEftvem6ephcJgFM8DTp4+fPHp8//59pdTbP/KlL37xizdu3AAgOc/z05PhMk1gfGKM4Z/5+p+FTggaJqCoQXwH8wRcEaWUkHWSJBZlvV6v2YwRes7uYUwIAUvac6LahuNjPp/zutze3oZmzmGWQgb+QmMMwlhpYZ7HJkkpl/OFUuqv/Eu/9v/Ryvwvvv7/4Kt1/eiTTz4BtTuof1bqBMaAl7FtmxB0IYZYCcnrWik1mswgNMS2bc9ifhjUUozG4/baWqvVsgjtNFqOZZ8fn/z+7/7O3//7f39nZ+fV11/b3N6Km82ty7tnZ2fL5XJtbQ1m0yiKKMKwSA5GMeAspJSWZTXjxmKxODw8PD4+Npj0+33IU1UGZ1nmhwH8GECMuq4dxyHIBjzXRYa8+8Mfjkaj7e3tRquDEMKE1YIjhJljE0p5XVOEsEEYk9lsxrmczWbIkNFotFwugaYPQ9/z3I2NjXanKYQwGhuDbNsCti4IAmoxxlgYRr7v/8mf/Mn7778P3GLYiGE3JQKor66h/YKqCT5cjZEQAhkC/qDlMiWESaHm06kyGDIhHc8uiqKuq5qXruv6QbCzvdloNY1CWmslNGjjZ7MZmHg6rQZQtIwxD6JJihJmU6Ckh8PhfD4fj8cvvvgi0L6A9oHMBV2oYRzb8zyDELOozaxsmZwenzx69AgjZIz5/Be+2Ov1pFatVgs2D0LKv1YIYELXdSWSo9EIPKfz+RJw016vV/GaUur7Lmg9fc+DUZPXUghRFFWz2cyy7KOPPjo6Orp06dLOzhb0E/D4gcAOcHQwGy0Wi+PjU8bY1taW67pCiIODPcdbbRXMsiwIIttmVcUNMXmSI4qMNCUvbduF5UUnJyfweDNq2bYN3wj+KijMYHHNkqQoCmQI59xmluO51HZqLkGsBiSLzSzXszud1ubmOjba991Wu7Fczg8O9rIs293ZuX7t5tbWFhjVCSFaSGYRz3ODIGAUA4J+//7946PT119/nVoWiBF7vR6g9YvFQgjhux5CKMtSx3FAUd5qN+q63t87+s53vsM5/6Vf+iVqrQz78/mcK8lrCWY60HSCEiiKojCMp9PpeDw+OR0WRQWNhTEIXKWNRtztdhHSeV7C3FKWpWO72igQRoMDDgQkYRiur6/32p12uw2rfris4YGnlDq2ByUV4qPBbrVcLnu9HkLIIMSYlWXZ2dk5CFgXi4XWCHRjnudMp9Oqqp7TjtRxXMYopCrAa1XXAlAPwO9BkCNEDU0/IDqgLAKUC5TyENMFujHQdwIXBC2d5bi+70POc7JYKi3qsjo6Orpz586P/uhXiixLkuX5+QghI6WczSZ5lgVBsLm5ubbWg9UUxhjLog5bmXIsy2o1m5cuXUqS5MmTR41GoyyLnZ2ds7Oz8/Nzy7Ig4fL45Gx/fx8mpf76YDAYOI4Hgn24aEWROY6HkD46OuKcr6+vX79xtd/pgsOAUqqEyPOcSwlJC67rrvV6yugyL0aTcTNu2K5zdHD40d2PYZl9EASu67q2izFeJMsLH2jcaPm+D+qXs7OzP/iDP+h2+51OpygKjI3Wur8+CMOw2+0jhIbDISwppwgvl3NYN3fz+g1mkdPT09/93f+1LqtvfvObRVFAAiJjbGfnUl2XnheEoY9//qd+Di4THK9wt2Dov3j0tVkt2wJT3YXaA1BNizIQ/0OE1XO/hiLM8l3PsWxIBCWEUEwwJYgizjmzrDTPIBUMWAlCiGs7ADj/8jf+9v+36vS/+Pr/va/bX1a2bfu+f3h4+PTpUyllv99/5ZVXXNdVQsDcVhSFUZoxtrOztVwusyInhBDCYFH0fD6fLRZlXfm+azk20sZizGgcxzGUIkyMMSZwPYpJkWWf3H/wX/xn//k777zzL/3Cz3/p7S/Dasgvvf329va2ZTmEUVBvpHkeRdFkMsEYS620EoHr+Z5r2/ZsNuNCHhwcHB+f7u7u3n7pJfB2AQfNGMMUMgUI0BOu7RweHvOqxpjev39fSg2rVAfr691uT2ud5pkxpqpKhBAhtCzLxWwJNb7dbkPNm81m4/G5RvrVV1/1fCf0A0osRiks9IVRO01TcDxEUVRUJcb47GwIwtvFYmG7/p07dwCcBx5EKKmU8v3w/PwcznrCbNi5CxVRGV3mVV6U8/kcBjNQZlgWA0KN17VUajlfSinXBv1mMwb1IaQQORbd2dlxXVsI4Tmu1hppCTDVRaQ4KGNASHR2dvb06VPbtnd2duAIriuhlKqlsGya5bnjOATjfqcbBeFyuTw5Ok7T9MXbt3zfV0ZnWTadzBFCaZFjjG1qK6VgHxrIU4I4MsZUFZ9Op0+fPu10OruXL1mW5bo2xthoSYwRQnLOeS0hJQQ4YkhwPTg4GI/HrutubW29/PLL/fUBF6vsciUN51wjbDHn5OTMGHPt2rX19fXvfe973//+H1FKjcGtbqfb7TJqGaQFlwYb13azIovDuNPr5Hnx8OFDyCCA87wuOUiqZ7MZaHZXut6qBqQEY+zYDJzFBhHMrHa7TRlDCMHcjhCKoohR7Lo2wsbznI1B37JoXZd1Xc9ns8PDw263e/Xq1c3NTSllp9lqt9ue5xZFgYyq69piDiiTiqJwPPfw8PAH3/8T8PP3er0rV65A3wC69bIswyBACG1sDBqNBhe6KIqsyOu6dh3/5OTk4ZPHYG7o9wfQggDCNBpNoMlQSjVbLc8LlFKMWfPlknPu+2EY+q7rl2WeZRkXtdEIY6yltCwLXJNJljGL2rbtOJbvuID6bGxsvP7qKwcHBwghz3dcLwBdr5TS90Mw+VqWhQhDCAG+kmVZmqZHJ8eUUtfxhZBVVaVpTskqqBzQWYQQLC7TChVFIQTsgSUgkgPJEIC40A4C5AFtVs1Xo0XgR/Bb0E9DcQfAD+BbuCbghSzLsqo4QkgpUZYlr8tGo9EIo43NwWuvveY4dl3XeZ4qoWtegoRjNp4sFrOqqgaD/uVrVx3HGfT60BtEcQAQETYoy7LpdAoBC+fn56enp48ePfrw449A8/7yyy93u93BYOCFAcjmKKWNuAV9Ica40+n4gRv4EWUYNHzn5+ej0fnBs70wDK9fv37jxg1IRYmCCCEEIh9sUFGVnuvUnE8nE8qYFGI8mYxHIxB/B0Fw5/ZLruvGzQZIETqdDkCJSZZCKgqlFNzci/n80ePHZVnCaiyMKEQdUWpRSs9OTj3PW1tbu3R5J/SD6XQMDuvJbFrXled5jx8//oPvfc/3/fXBBmXkC299fjBYw994+8fhVIWPClw1MAWQ7qO1VlqshEcIKSUopSDKgxdme3MLDhF4aADN4pxzqQjCQghGqOc4YIFBCDU7Tdh0JrWybXs6ncJz4DkuNIJVVVFCpFJgjuj3+1EUodVILeCFh+bdsWyYXbTWhGGEiNZScM4Yc5glRC1FjRCCbQ9nJyeY0stXb64NNq5cudJut8fjMWAPF5TE+dnw2f7TJ4+ebmytl3l1Nj7ZHKz/xE98/a233nr1tVfC0A8Cr6wLhBCzKMaYV7Xruq24uZjNl7Pl+fn5eDYfDAaz2ezk5ERrrY2BtYBBHEVRxKUAch1GnMU8+eT+J//pf/qffvL4yaDX3djYgnrDLEtrRAgBmd0777wzW85uXru5sbHhO24QBMkyoxapuDDGcCWBKQjDkNeSEGIRBlZWeK88z8OMuq6rtdJaayMxxi5d7VwCEYDruhWvGWMEGTBDgNoAPP9a61pwiGB1HEchZYzBxAghRFVblMG77Vg2aJNBx21RmqUFiLgRQkZrxgjGCCx+CCEFFjNMAfgBrZjnWK5tKy1Ojs+G56f/+a//J2+88TqYri9UonD1YDXN6enpJ588LIoijuNerwfrdCilVVX5fogQEqvgEgwWtmazOR6PgdpbLBZREEDqz2AwcG1nPp+XJewaA6m1gMWLzWaTMFZUZS0qznm72dJKaaGFWP0BuCa2bTNMfNezfb9eJu+9995v/5Pfmi3mX/3qVzEljUbj+vXrewdHe3t77W6n3+9bjsOlAFU4mL9sgtM0hW2G6+vraZoDNtbp9dI0LesKPni324bXkzBLKSW5gCcZHhshxHQyPzo6yvP8+rVrjx49Ojw83NjY6PZ6rU4bISSlwhgrIauKCyFAocU5B524RtrzvDDyHz16NDobr/X7nW4XurTnsel0Mpm0Wq3+YA0UeFprCOGrhQIdD+i94jiuBRizUZqm8GzUQsGtrOtaGT2fz3vdNd/3kySdz+egNIXsDy0VQPoYY4tSalnaCNCrNZtNmHHT5fz09NRxrN3dXc9xGWPNOIQjBV5qONlACRfH8eHh4WKxgI0ljuM0Gg2MKOccJP8Iazg3IeWh2+6AHYFSWvH6gw8+ePr0KUYrh7gxJgxjrTWlGGobQqiWIgxD31+t30nTNIyj6XR6eLifLJZx6G9srK+vb2itq5LD22eMsSyn2WwGgQcJapPJ5N69e1/5ylcqWQFbNJvNKLHqWiyT7OnTPa31YrEEKKvT6YRhIKVcpElV1mVZZlkWBMH1mzcAjQCaeLFYAAtxeHgIYkfXdafjGWixL2hi6GtDzwfS2fVs13bW19fruuZS8FrGrSbMD6BOq+u6qqoiSy2bhWEYhr5RwrJov9/vdFqB708mY8bYo0ePbNv51re+RdFqNRnnNdAdYFQCSBIOh7qsYBXMd77zHa01rAB66623wKwnxaoeKa1ns7lGBsRPtuX6UVjX9fn5+PHjx6PRxLZt1/GhisFxB1AfbMhuNJrdblcjAudnHMfGmMPDw7LMwdTZaDQCzzPGMGpLxZltN5pxp9OilLYaEUIIdsCsD/rw/M/nM4RJGIa27V64gIVQVVUZjMHH43keZJ6dj0dJkigJm+MF51xr5HshQB5CCKk4NFiO7UEvBXcHHHLw2sIHh1kOIQRDBWUYPjI0jrDPBuhyeAHhf4Q/AAGKYLNjjHW7/boux+MxMqrdbiOksTFvvvnZzc3Nssy11hhpUMhRamFsGCZ1XaZpOh6P948O9/f3v/XNn/mZn/kZLipIhKnrOktShJAQ3LIs214x+K7r3v/kAbSk7777LpDgrW7n53/+56Hvl1L2er1kmTHGCEXtdvvCBIoxRsgAknp2dnZ6evonf/Int27d+vrXv16XNeecYlIUBSTLTCYTpSWYC6FlhC/O+XA4PDsdnp+fF1X5q7/6q1euXAHGk1IKQyNI3PKsHA6HlJAwDMu6IIScnp4eHR2dngzfeeedfn+wvb197cpVx3Fsh3U6Hde2tNYg4wuiAHYPNhqNZrNZFMVysXj27Nne3l6SJPhrn//qhVoW2mrgH+HRgV8jrC/uelUVQJzXdQ1xMhSTVY0Hkh5jaOaWy2VeFggRKSXSRkqJDYrjuNGMLMsyz7lLy7KqMtdal1kOh5HGqMxKRAl4qQaDAYSywJwEgCp4tqWUDDOoN7ZnS6lhqyNleDaePHv2xA9cjPHGxvq1mzcGvX7YiF954xXI3sAY1xVsWrQRQo7tMcYIxqPx+N0fvnc6POl318I4sGwShN7m+kYUhFlW8LJotVqz2awSfLlcTqdjiLvd3d39zGc+E/rR3pP9f/rbv/Nrv/Zrq57DmGvXrvlR2Ov1ms3mfLl45913h8OhWEU6oFfuvPTiCy/Ylpuki8VyFT+dJInnBbAL8kKwmWclw8Sx7bougyDCFClpgIrhnCujlVJ1zauqgn5ICs0IoRQzxoSWwHzZtk0ZRgiZlV6egyfZsixYjom0EZxbtg2SI/wc9oBtdIQQY5TGqCxLy6ZlWWJEKcLwScXzrQlg1PBdD6SLF/NWXdeMrFoojRBCRGutjBZCeI5PCKIIO66lhDRG27aTJMtf/pVf/MpX3oa3UWqllCIEA/KfJEmn0w3DUEslhICom5Ozk+3t7c3NLWjmwjC0LGc2myljgOmTUmJiQIW9ublp2Z6qa/Cr6poPh8PFYuF5XhB4eZ67fgBcBqU0CAJm29DlKKVGoxGYIgPP63a7FCN4KTjnXIqo2ej2ekEcm7T63ne/++u//utnw+H169dvf+qlO3fupGn6bH+PMba+uUkp9TwPUzIYDFqtls0sx3EAh4aAe+gsEULD4fDwaP/8/Nz3/Y2N9Y2NjUajKSpBiVXyOggC23V4LRfJkvP/F1P/FaRZdt8Hgsddbz5v0lSaysyqLtO+0UCDJLpBggQJkATlSJFSSCRHO7uSNjQrjXZGsXrVmped2BfNboRWweALV7GrkSEJQgQJQ9huoLuqu7psVlZ683l3/bnH7MM/qzT9gAegGpX5ffee8///LDctBt9d7/ziyaPHURRBSlyt3rz18u211StAhdi2gxA6OjpaXl4uisLx3Hq9rpQMgkBhdLR/8Pjho8ePH9u2vbm52em2LMu6evWq1poX4vKVNIzJbIYQgg6TnAvLssbj8YcffgizICGkWq0CAZelBYgcFouFbdsKI6mVwSzP8zgvoZLZMszRaDRfzJIkmU+moKc2DEPwst5seJ5T8Axj7Hke+N4hDTKO45WVFYI0YyyNYtM0NZKcX2bAgvMGdjYtFZx1k8nkot+DU/Ltt9+O0sSyLJvZCCGwHy0WC4CdFEZgCwVJyqg/ms1m0XxBKTUsc3t7mzGCEFJamKaZpQXGOC85xhjE6cvL3bIsnz59OplMRoMez4uNjQ2E0K2Xb29ubkI+ImAPCCHbtglhWuuLiwtKcS7yPM8f3H+0v7/vBaFhGI7tjcfTNC8Mw3pxqWRZYprm5uZmtVqPkng0GkAyJCiW+v3+fD5/4TGETwzIJp4XPM9hsAYZuGVZLyT5jLF6vQbXIVIaGpNKVWqtF4vF4eFxr9cjmLquu7K6DDlPpmmWeea6ru95QeAtr7Q3NzfhAQZZvVLq5PTo/PycMdas1cEaDE7AOI6jaAHHned5ZSkQQv2LHnTR/PzP/zz8IsAam6YJef0aEc65YVtRlBBCgiCQCgkhZrPFYrGYTmdQOG0+D5pvtVqgnY8SuHFgRr1sRWy1WrYNkc48juNoPmeMBkGIkG522mHoM8Y8z6mGoW3blmX0ej2EUKvVmIzHWZYJKQeDgda4Xq+DgAFTA9QCwK1DBLFhGBD1NxrOEELT6QxYSP08QQr8DUIIjDXgKwCIgAcTfvfexYAQ4rou/DqEEKjbAhsEPFRIX97pcA4nSQImOYiLAhspbL8QNUIJgX+xzDPHtSgltWo4mYw45+12e2NjY21l2bIcjHVRlKbJWs1mrVYxLBMo+H6/PxwOt7e34f3q93uNRgP6JAjChmFIrSmlEDAGYbMwbMzjqN/vj8ejlZWVTqdzdHT04YcfNhqN5eWVTqfTbDbr9XpR5L7vQ3qwSRkA8LVazbad6XQK2tkkSh8/fPTo0aM4jgkhlnX5vUNFrOA8iqKXXnppe3tbCHHt2rUr6+u9Xu/ps71ms7m01F0sFicnJ6ZpBkEI+jnGGMR6J0mWZdloNIBFq1areV5wenL+4YcfTqfTt99+GyFkmUxKSQjCGF/d2gyCQCMM/SJra2viefwH5KJlvMC//7d/F7Tz0HgAdy1czID71et1x7WAhi/LktLLuxYehTzPKSZgfwMBBAicgYfOijwvhWXbDGHBS0YoZRgGdkopJoQQYhrUpEwKIQoex3HGC4QxEN6maSJ6+agBrlYJayADhBCBoih4xhFC/X7/48cfm9i+9fLNK1eurK4u12u1tbVVx7Fc113bWINFGTM0GPQODp4RQra2diqVimU5vhdiTKIoEqXK04KLctgfJFnaqNW3dq4yA09n42//xXe+9RffGvR6o+FESZnnuUZoMB4tsoRRrLXmCgW+/dnPfq5MBFK4UqnA/AqfOJDxURJDm2/GC6WUkBJpXaSZ59iVSk0poRCGS9eyLIUI5xwuJJDOWJbNsxxjJIXAMEloBTJMOD7iNJGlhAMXAC2llCoFpVSIElR3lFJCkSqFbRqGYViWNZ/P4Ulllx0GTP2vrMhgkyGMEkLS9DJqSyItpTQtNpvNtMKGYWih8zwFzSMcBFoiOPJs24a5iVIaxwspOAymMJBprWHfVUKbJnMtW0qJkYI/Qwh+/4Mf/ON//A+/+tWvNhoNKBXBGEEcMyHEsmzbthmhQAImSZLzPEkS23bglQuCAMoLIJCWUhrFc0ikhIB407Bbz93vjmWPx2OEQM2TFUVBmIEQgicf2BbLMOfzOTONeRSNJuNmswnBjyLPGGPtdtu2bWYaSZHnvFBC2syyqcEssyzL897FnTt3+v0+HE+EENt1TdNcXV2F1i/XdQmji8VCKTSbzeClGw8HYPb0fV8IsYhm88l0NpvC6fPm65+No1RKqTGippHleVbkEmnoooAwzHazJXh5dHRwfHz66Mnj6y/dfP3V14znoVOwBVmWfen/Z1SIMs9zN/DbjWZZ8LIsHz9+fP/+/ad7T377t3/75s2b8/kcaQJ6W9u2NcZRFIGCSuNLU45pmoyZURT1er00TYuSm6bZbnUBYgcB7HQ6JYaZFzyaL6CnEmyPrucghLSWWkit9WQ8hgcvjmPHsUzbgnURJPCccwg4aDQaWoqjo6P9p3ta61a7YVnW0tISnO8A6pimiTXCGENJS5KlnPPhcFitVhEleZ4PzvpwM7muCwmsSZ7Bx6uUytOs2WxWg2qe5/2LXpZlXJRLS0tSloPBQCNZqVSg9lhoAJ49hFCSRGEYgpGQarS7+3h3d/f999//7/7p/2FnZyeOUut5dQmYmSBUPYoiy7LCWnhxcXF2dmaa9vHpCUZ0NlsghDE1KKWMmYvFQikBKYyEkNW19ZWVpel0CuiIlPLp06cXFxe+71uW1e12u93uc224diwbMoHBdv3gwYM8z1+wH67rLC0twSpFCEIKL+K50kJoYVsuPJxpmvd6vcPDY8AVWq2WaZpFmlWrVceyV1aXgsAzTfZ8Yb6MuScElWU5Gg+GF8PpbBwGVQibhNCZarXi+76UMopiOPYty0rjLE6SWrXa6/cfP3o0GA4t09QI1Wo1zKgQyjCM2Ww2my3SLJvNFs+TO8IgCIC0hT0nL1IQ4liWVXkOTxJCtMZFkbmuD+oaSF0viiKJFhhrzvny8rLtuY7jWJaRpmmeplBS+dwE6ti2CWcFtBVlWVYU5WKxqNRqlUolz7ltm4QwraWU+uTkaDieLBaLxTwOgsB1PcuyDMOCbBGw5QZBAL3RcZy+oOEABut0OrZtE/xf8d1er1eWJaEIJleQAwkhGDXV834a0zQBswRPwGw2q9Vq1WrV87wXYEGR51hJKaVGMgj85aXO1asbnuf0er3Do/2LkwvTYjdv3H777bdv3LjRXe5AgkEcx0JJYEKLogDO+ujo6OTkGCInl5aWrm5s1mo1y7GzLIc3MY5jIGoZY5brlGV5cnIMVh7gwU5PT6VUwMNWKpV2u7W8vAwyknajqZRKkgTiMGfTxXw+F2WZpunFxQXPC4gr6vf7vu9alrW5ubm0tIQxrlerz5W+xPE8GF7DKph1WFEUT5486fV6o9FYKdXtduv1eqfT8X1fSj2dTh3H0lofHh6Ox9Oz0wspJfyykJwyGY/Pzk6yLNnZ2bmytvraa691l5ZBnzebzUzbWltba7Va4IrAjOLf/tpvwbkJdhLOudYIY0wpNHO5juNoJE3TNAyKMb7cFaSK4zhJIoCC4SIH/hGoH9i8LdvmWiKCLcLSOJlOJlpI0zSFFgBHn/fObcYIwr7j1sJKVuRvfeYzlutorbOcw1lAKa1UKkVRHh8fP3z4EL5dwzAajYYXBkqih48f/dZv/dZnPvvWlSvrlUpADGbbZsUPCCHwk8+iudYaU2IyikQJiOjq6tpoODk+PhkMBoeHx6cn5+fn573z/rOD/YuLnut6PC/e/txnbty4vrqytLu79/jBw1qtkSU5yOOURphRx3dLJUtR2I4znY15IepBjWBsGAZoBuGdAWtCKQQsN6WSCCFEsFLKNi0luJLI9WzH9gAbgPkJXjkYpwBr5JxTyoQQi8UcoErXdV3Phqw1YjBZSMDnodMQIWQ+T8GmlEJ/NsxzFKN6vW4wZhjGdDr1gwAQpiieI4yB6QNsg3MOaU8w56VZDFpOhFCe8TzJbdtWClmW8XzhsF4k1pSlhJsPgFyskdYS1koYED3Pg43BcRwhhBaSUKSEhFQCKUWlGnzta7/GRTGbzTY3N1dXVzGjzxtCLJ7lYCYSQqRxhpC6sn4FmDulVK/X7/V64DoGg+ELwHU+n1UqlVkU9S4Gnhe4rl0UhWvb8Hudn58vFjO4hyiljUYrjmNECFJK5pwQIpEupWC21VnqSikXi8VsNBFCdNtNkBKX6vKLgPsGXGyglRyPpk+ePNnd3R2Px5UgeOWVV7a3t5HSjx496g36huWE1Qq0U9u2nSQJBMlYlkUIWszmS8udMAzn89n+0z3HctIo/1/+f/9heXVlfXNzeXXFr4QwRhADtqPUNk3GGMWk0WgghKAduRKEu7u73//+97XWKysry8vL9XqzVq9Pp9M8z23XKYrCdT3XdZFSKysrhmHEcdzr9eB2yfP8/fffZ4w1Gk0ppWFYl7ssxvM4ApAVMPJ6vU6pMZ1OIYkRniLQ0sZxPJtHnhfmXGClESWC5wghIcogCOr1quvZlmEKweHOCNzg6tWrvd650Oo5J45gx9NaQzlBvJiD/jfLsv75RVmWhklBqOu6LtYIEAhoOi/LEhHYAQljTCL95MmT/SfPgLjsdrtX1lfDMIT2VURwmqYIoSxJiSamaXqOW5YlF2V7qTvsXTx58uT84lRKCRGRvneZSgqmBIyxRtK23E6jCfkpp6ennu9vbGwUPDs9Pb1755M8z5VChmFQ04L7EjIaILIIIWQ73my2GM+mWZpfXPSl1GEYMsYIg9AKhRASvAQcy3FtMHPB/HR2dgb9bI1GY3t7G/gvhgkwFaPRCBweABbC1xfHC/jcHMcpeMaoWYoCY00ppqZ1qe9WcLhxuOrCsFqtVkf9oeM4jmUTgqN4Dgo/pdRLN27EcXxxcdFsNjvdVqNRswx7OOzv7x9+8sknOzs7b7/9FjMuY/mEEEiTyWQCp4oqVVirioITg9Ur1eFkPOz1ozQZDAZZkYtSwbGmFPRMY8OyANRXSmGtwYrhOA5gjQCXpkUKccpSCYIpZYQS9vwS1Iyx9Y21brcN3UoQps05Pzo6mU6ncRxDgaZhGFpfGmmHwz4hRCkBSDDE0zy/C8o4Xszm0enZ8WIeW7ZRrzWBelssFoRAU5b6r7mYQiRJMpmM5PM4dAhpu0wVIMaLvkWYTuBSm06ngM0/L+1B8C4AQQwIS6fTaTQa/+s1GwqROOe+51V8T0vFOWcGoQxJXigl1tZXb926tb6+RhAZDgePHz/5+Z//+Z2dnaIoKCby8hOVhFFAtnzfJwaDPIiiKOaT6dHR0eMnD9M0XVu90mkvQQ7IeDoxTXM4HEGFJfwKURRxXnS7XdM0P/roI60RoHTn5+cPHz78J//kn7z66qtnZ2ewn8yns35/OBgMehcDQDoopV7g1ypVSmkpijiOwdUUxzHG+G//7b+NNYrjBWMM1qFKpQJeIugXB4cQrIiDweDTTx8cHBwcHBwwxt55551f/dVf3X38ZDqdHh4fzWdRlmXwwuZ5nuc5xrrZbLqebRlMStnrXxweHlLCwjDc3Nz8m3/zb167vgMvHaUUkCb8m7/6Ny9xy+eGREohO+RSjgeeR0JIkkQYY9t2LcuC/vk8T8uyRFrDoaaf51ZcsoGmSQgxLassyzzLtJBaqoJnRVEUnEdp8ku/9KXbt29fuXKl1WjIUniWfXB4+O//43/oDfqwWFTr9WazvbS0BOqHwWAE+WlwwMVx/PDhQ9M2KpVKrVbbuXbt2rVrmmDTYpTS8WAIlnLGaKkk3NZC8Gg6ixcRNJz8f/7o3/3n//wnhBApdSWsbW5u+n4olLRtmzGmpE6z5Ojo4Ojs6JWXXm40Wp7nKaV5lmuChbyEbfIyL8vSdh3AbPM0g29xsVg0m01If3Vddzwew4XEOWeWiTE2LJMQkiWJ67pIKhjU4AGCiCbAIOGkyLKMUWpalm3blmWD8cT3/bxICcIKaSUkiLcwooBaCUiaft7QJ5WC0nHbtmEM0kqB6Ae+fcd1gTujBrtswEQ45xlkhiFELOtSGQplKXB2EMKCoGIZptSKUgwqVxg3GWPPDzITIHRCCFIaTg1AaJVSBGu4IQyDYq211khp2NiSJH7pxrX//r//p812Y39/f3d3t9ZsALIIUxRWGl7yJEk6rS5jZDyd5HkG2nCABV/AkLBv+b6nnz+xiFIhtRAqXsy11oHnmaYJ9X+np8e7u7uGYezs7Ph+GIahadvnp6fNeqMahHGWKqSb3Q4wp71eL/D8PM1C37137x6l1Pf9K1eugOoOas7BzoIxbjXaXq2mi+LP/uzP/viP/1hw/pnPfGZlaRkA+dWN9b29veFw+PrrbzLTaLVaoKUFNBrec6WE7/uB76pS5VH29OnTR48eZbwQUq5tXv3cO+9QSrko4faFAVrwEsZB02K2bXuOC8JwUNj0+/2lpaWrV6/evPUy3L4Kac5LSikjNM8zUM5BMFitVtvb27tz504cx2ma+b5frzcBpiWUEkKiNIEnEDLQg6Died50OoW1FeB92ImllHtPD7vLy+1mK80zx7HBj23bptKCEAKULiD2nu1IKR8+fEgIcRyn0W6FYRUCJCFHtN/vx4s5HKmNRsOkbDabDUd9Suna2pphGL7rwXIIt5Rt21IrCH0wTZNZJkKIapqmae/i4uTkJMniW7duXd3cjrOUMWaaJjWYlgohUjxPyrA9t9/vGwTX6/Ukjc7Ozu7du6eUkkLfunVrfX2dc04Mhom2bVsLWeaX1KfSAhOysbHR65//6Z/+6Xg0NQwjCCplWSLKQJGmlKpUA0LQZTOH1GUphuOxYViw2FBKZ7PZPJrN51MYKx3Ldlwb+AeIxm232zC+X1xc7O7uPnr0aGlp6Y033hAFX1lZyfO80+kYhgHKaAgI9TwH6mUsy/IDF+CxSqWyWMxgDSCGCZshY8xgVlmWcZyCsFopNB4M9/f3z07OAH4Gf4NhGEJJOGFqtWqaxu1Oc231SqvVWllZAa8GISTP09F40Ov1XMfP8xzi0CzLkvKylHo2myFNavWK6/iY6ChO5/NpFCVQnKy1NgzTMAwuBOcc9g2TsVarBX+1ZTqw9VGGuRC8LCCaBD5MrXW9Xg+DimmaYRhKJSaT0Ww24VwAA+44DsxAnHOQFoF7FHYwXhaEkEolCIIKTK5gkxRCII3TLCl4uVjMKWWmaXBeEoKXlpaAfCzLcj6/zBZhjC0tLRFCsuxS0QUCL0ppUZSUUoj2BUjvvy63GAOeDbcPfJWQ8WQYBiyT8N/AInFJU2gNG/58PtdKWYxipGzbtizTZGR1tfvSjWvb21uwUxGE4ewty9K2HUrJnY8+ghia1StXut2uYT0PmUIaX4ZcMse0DNPM82Q+n8+ns8FgsLOz0+8N73x8d2NjA3o2Oedgw1RKGQabzWZQfaaUhkr1KIref//9lZWV69evK6U+/PDDp7vP5rPZ2pWNMAxXV9eAs5ZawLzleV69XrVtuxKGgE6Nx2PDMHzfH40Go9Fo/cpau9uBYRRgRaAvX1y+rutC5cNsNvvRj34kpex2u+Ph6PT0dDSeBkHgOJ5t2wiRy3JMpOr1eqvV8D0HAO/1jTXDMA4ODr7+9a//9b/+19949bXJZDQcjiGUsdvt4r/z134bVqsX0ryyFFLKLEvBYCWlzItUCJGmcRAEnuM3m03AKsXlAQ2hcCXEhxiGgbEGN81P7n6IEaII1dxK6AdZloUV/+r2lsTo13/ja3/3d/8+8zyENUIISYWUQgjlSQKD6qWDo+DwM5RlaVkOodQwDAuU+HGKsTY8G2GVz+cfffTRxx9/3Gy3brx0Symlpep2uwZjnOdJkswW8/Pz8/v37/cvBo8fPPz43qda489//vO+HyqtwfFxuaBbJuxqGFFNNcHMcmwYqkCGhaTSBIMu4UV2sBYaIcQslvOC8wKEU5zzCsg1HOc540bgUACsXkqZZClCiBHofRNSSqw0Y4xRDP8iPMRCCM9xuSil1C+gYwhKuDg7F6rc3NgIwtCyLNf18zyfLebAoQguIb4lzTOlBEIIYx1HkZSSZzkUFhW63NrYmkwmWZZtbmy5vvfh3Z9eXd9q1ht+6EmpF4vZxVlvMO4ppDDCn3vjbTBXY0aRJqZthYGHML4E7cRl2jJM8wghpAkmWmlcFAXBJiGEEsIYASQMamdMRjBGQLPyvCCEnJycrKwu/f4/+L23334bepam83mr1XI9exFFSqnBYCCFKIrCsz1g7rSWUspKJQS3uef5l65A24aGijS9TP40LRaGocZUSESYIXiJEOJ5Bju0YRiVwGOMHRwc7O3tlUq+9tprS90VEMgXRQHzZVEURVEAqIaUYoxVw8rh4eHp6elisQDNU61dZ4bxvGDKAO0L1EnB90gJMU1z2Oufnp6Ox+MvfelL6+vrh4eH/+W/fPMrv/qrYVgFykko+cKPDHNVEARh4DmWWQ398Xja6/U+unu3Wq3fuvVyEARI46IoNL7senNtB5RkeZHleepYBpynjuPkeX56evrhnTvVavUXfuEXlcbQR1sKlRdpWfD5fK6UjOMYyGUAnoMgiKLo4OCw1+ulac45v3njtut7SglqGnmegx4UDJUQEQnCF+iGe3FPDIdjxlij2iiVhCZajLGUQPVedhOZpum6PqW022pfv77z59/8xtPdZ6B6aS91W62O67qw3APenOeplDKLE9u2u0ttz/MMykB9dX5+Dtva2toaYFqgl7dtW2glhIBjx3fcKIr2dp+22+3V1dX9/f27d+8alnn9xq1OpwNRqMDoAf1UDXyEkO2YsDSfnp4+e/YMjCDw/w+rV5Zl0SzlnOf80saklIJ2JqGQlHI4HD99+rQoSoNZr77+umGwsuClKKBLcTydjMeTUmrOBSxpnu9D5XZRZGVZipJ7tgOGrFqtUqlUQFb/gpSA70UIUa1WXcf54Q9/+K1vfeull166desWlEIyxqCRXUpp22ZQCYPAgwSNXq8HplfLsiqVGkIo57zX62V5opQquQSJcVGUFT/QWg/7o+l0uv/sKMsywow8z6Usoe240205jr201IFIUshNjaPIde1qvTIajR4+fDifR5xzx/YgF9S23eevcKqUzrJ0Pl84jr29vVOrVTEmeZ6btq21hipbGO5N07Qsy7JNx3GKNCOEKomUUkILGE+XlrsgiojjuFarXepWJYqiSAhJCImfFxJkWaaxBtNovV4Pn1/q4AkFDwRosEzT1BrFcQztgXBxcC4qlcAwLMZInnMIDp1Ox9VqNUkSzoVSimAGvhPbtplBGGMIXba8vPiLsiQvirJaq8E+UJYlYyacWpekhxDr61dgngD1tmVZAOkBygvbOJhDYc4AuQuldDadUqXixWx3d/e/+Qe/+4Wf/RmEVaUSIKSLooiThVIK6jKn02klrHmep5USgp+dnQ3HoyiKrl+/vnPtpUajkRY5II62bQvBYezTUipRArJ4dnbxwQcfPH36NE1ypdS1a9ehbmQ8Hp/3LpIkARMVI3RpaQngRoTQp59+enh4DEKupS4IZ700zbXWQBSG1SCoBs1mEza9+XweuB7MJK7rXrlyBT60LMue7j7O8/ziol+r1brd7quvvlqv10HmCxs+3BplWeYZj+M4iePZbBbF8cnJye7u3snJyXA4vnLlyrWd65C5WG/UsiyhFK9vXPE8p16vY4yUUn7gQqCuaztJEn3rW9/p9y9ms9n6+jr+27/+m/BxQB97GIZCSIQ0L4rysg/nMpcLIeW6LtYEUBnTYkgqxphrO8wgEITT7/ePT07KsqQMf+kXfum9L37hlRsvB4GHEcIYC14yk9UadS7Ef/6zP0UYt7rNsFrtdDphGAZuEFYu20mVUkiTx48fn52dbW5ebTabru0Ypi2lTAuexcksWszGs9FoMJsOPNd+7Y3XW61Wv9//v/1f/q/37t3f2dlZWloKXI9zfnx8vLu7+2j3CRfqxrVrtVrDMAxCDfCp5XmOCGWMIYTAo8cYA807AEgaEVC5wcCBkPL98IXwn2KilE4WUZYVWCMuCsyo5VjwSWqty4Ibz5s0gBGjlAohlZLwXgE+hJWGg/gFXHy4/yzKIotanU6nEoZKKYRUrVYrhRoOh6+88sqNGzcoQVpriKQ/ODi4d+9ewUW32223u2tra1LKTz75ZDGbp2lqGMbm5uZnPvvW+vo60hKSoGHWabVaWuvpfLa0tHR1c3tleTlN0+lk/uDhpxcXF598cvfg4ODLX/7y5z/7uc3NzdPT0729/X/7b//tcDi8efPmYrFAlBim2Ww2IYPRMAxMNJyYeZ7zvJBaUUwQwUIIKbRSxHU8ygjnvCgyjJTr2qZpMoK0BvpAZUnaXWq/+eabn/v8ZzudTs4hWFKDAKtSDRzXlUIA6luk2aefftpoNFqtVpZllmW+sPHatpMkCUTkAw9IKc2y9OTk5PHjx57nXd3ZabW7IE2zbVtLwTmHz1NLCZnAg8EAUWJZFiXGeDyeRwvw4VqGCV+Wa9tlWUZRZNt2nmbVes33/The9C96SZZOF/NbL99qNlqX+rw45pxDHTgMZKurq5QaRVEM+4NP7t19+On9er3+xS9+kTEzybLvfOevkjRvNBq1Wg0RrJQGBQM8UZZlKs21loEXLi8va615Xlar1clw8o1vfOPs7KzZaddrjU6n4/sh0chyrSxPpQTPVA45Op7tGbYBbK/jeGVZfnTn4wcPHly9ugV9Ghjj+XwGYyusy/No4TluEASVSjVJksFgJISA1ryizKfPR3/XdSE1EUYxmErDMAQrPvz3BqGcc8e2Xc9zXV8iyZhpmgwEs9AOFMcx5CG5rru9uYGw+skHH45Go/l8PhqN3nz7M41GA64TgFEB9634gWmak+nINE3HsmEGGo/HURRlWVar1VZXV03baj0vAYRMsjTJofS3UatQYhR56rpurVKNomh37+mzg/3RZLa1tdVdXgqCoFqtmpjCR8Q5j5MFTIGQKgcynTiOv/Wtbx0cHOzs7FSr1SvLG2EYclGOx2MQ7FNKTceuVCq+Hw6Hw8PD47PTC8Myw7DCOXdtZzgcXFz0FNJCiCQrMKZw8WdZVqtVLMf2PAchzTmPo7nipZTyK1/55RectR8GRVFAXRhIM/M8JxhLKY8PDquN+uHh/l/+5bdt23z99TdXV5dd16/VKp7nSSmpwWq1imU5IHnRWlNqAFKllNIYQ1YIIOJFUUopR6PReDzNsoxh4nmekphzEUXRYDwq86LaqLbqDcd3LMOwXJtn+SxaTEdjoNsoxe12e2Praq1Ww0qfnp72+8PZbAZWG8OyPccBzV+32wUNA7SuAXMktPB9HwqICCFpmpZFMZqORcGhr1MphTFpNptSiiTPCCHdbrfRqMF4Cv+kaZrFGRxEWmuEMKYUa00YC4JAKlGr1XhZUkIwRSW/XIqAARwOh+fnFyCxcl0X/I/qeQILfGsvzG3wCozHQyGE5wWmaTJqgi4euL88zw2DvhDjQ1ZqGmd5nue8mEwmBrMgzBlAONd1fT80TQbMAIhVwAk3GAzA5A7IMVCZgPtqrZGWWutnz5798i996Ve+9IsIocODZwihsOIipIoiL8tyeaXbbreLooAwlyRJLNMJw9CxTaAd4ViD2NLpdPram2+srK8jBaiKyvNclqWU8pK3rdWh/JtR8+TkZHd39/79B6enp4wxL/Bv375tGEa3271//36/359PZ2FYNQxardallK7rSqXgoZpO50opXghIyWYGaTbr//v/7p/0+32Ql4VhGIah69pYXV4foBp3fI8yLISgCJ+fn5+fn48Gw9ls8eu//uub29uT4RBIgyiKoKI+SZIiz6WUeXGJreR5TggbDAb7+4fn5+e+77/++qtf+9qv+b7vuBakr6Vpwsu81Wp1Oq2LiwuEUK1Wgy9LCHF8fIjfe/tdwJYWi0W72VpaWqKMYIyxRkJwrTWhUNfISi6zJBG8gEyBwaD38NFDiaRjXOa5NRqNN958fWtn57U3Xg/D8MaNm80rKwhThDWSElF0WeIsFWJUJNFkNk2LHNhxSqnBrCJLlFKOZTuOY5r2YDB4+OAxxqQoCiV0fzDq9XqPnuxOx7Pvff/7Bc8VEggpjFDgeF/96le1ltPxGMamXq83GAxcxw/D0HK9IAy11lIjKaXCCFZA3/dt2y75ZWAdbN5ZltFLajWnlFLTRASDjIMxxnmRJGmaJoxQ13U92/U8bzwcgVLnRfgKM41KJZzP56Uuy7IMw5CXJcbYMs0sy3ghsjxBUvm+T5AG3Pv4+FgjCf1ZtVqt3W6+6NkEWmE8Ht+//ykhJAzDnWtbn/vc51ZXVwHYEEJFUVRyQQgbDodJksVx/PTp0z/5kz95++23ipLDpFWvV2/cuLG6urqysgJTF0gmCSFJkgB9TBCWoiSY5kVmWVaep+PxuN/vX1xcvP7666+99pqUejwef/TRRwcHB81Wu7u0MpyM/+xP/jSOY4zQxcXFeDjq9/s7OzutVqtRrXEpsjjLeEEp5YWQUiOEHcdJkng+n3qOBf05w1Hfcexut6uUePfdd7/48+/evn07CII4z8bjKWOkyHLY1UDPZzEGgKvnugDfAtQfBJ7neVESe56XpUVRFJ7nE0KEQrD/maYpOJ/NZvfu3Xv27NnSypU33ngDtjTbthFCRVEQggAPf2HMAcaq1+vtH+yBL2l1aXlpaYVSKkoFA7rQyjaZ5TiOayF0yZWMx2PPc4qiHAwGsCIbptXpdAgzzs/P4W0Mgkqn0zE9P51ODw/3Hz98JKWs1Rqz2SyKIqXQIooAxFpbW1taWgKpHCFEKCmR9sNAiXI6nWKtXdvpdDrRfPH08ZPBYHB+fi6ECsOw2126tr1TqVVLLWGXIBRhRHmZZ0lOGIYWoHq1slgsfvzjD6bTaRTNbdttNttbW1t+EHDOmWlwzpMkNWxLCxnHcZqm7XabYoYxVkIalnnvk/vD8UgI0Ww2q9XQdd2w4oNOCMZlpRSXl82wnu0wQvM8Dzzf9b2Tk7PT85PAr3S6rc7yEtA9lNJSCMgQ53lR8AxiHkE9BqacWq2WxcmDBw8qlUq73YZhHcjcNE1t22bUBA4L2P8sy/r9/uPHj+v1+jvvvJPlCciQXT8khAE4p7U0TTtPYlGWtmkZBq1Wq0EQHJ0cP3z86Ps/+uHv/Te/t311S+YltIiUUgiphRDEYKZpgkQSIPAsys7Ozj768MPhcOgHAbTRbW9vY3bZlgvFcEpjeAKn0zmXwjCMPCvOTk4ePXqkJIrSxHVdy3LgaTRNZllWliWu5wRBAAOTEBxLMR2NNzY2oPvy4OAg44VpWxhTqXUQBNF8HscxUrqI8yAIXN8xHZNS4/z89Ac/+NGf/tmf/ov/4V+89tprcDzCwD2ZzkEFIaUslSSEqFIYhtHuNCmlRVlmWXFyeh5FkdZoPp9Pp1MwJ7quSxB2XT8IAmYashSYIsswL/q93vmFUDL0A9t1BC/hZQE5LIg3bNOCindQ3ydJkvOyEoTwImCMiywRpYqzHOb4MAwNgtM05WXuum6z2ajX6wZlUovpZAIkINQZwWiCn0fYCI1AT+z7LiARJmVCiCxNCSEYUcKoaztSK62169pa60KUPMslko7jQeoYmEMJIaJUWZYNBoMoijgvAWMDCcR0Ou33+wBHeZ4HohrQcoFHstfrSSkhIR08KIZBX5SlQg0AzIiu6yKExuPpcDgEbBLUokVeAvkQRRHBjHNu2gbGmGAsnncl9y8uR7F6vW6aLI5jWRbn52fvvffer/3qV1Y7neKymQMaWnGURI8ePTo6OnIcZ2tr6+rVqwBTwQjCLAo8PuheDNdFGKs8Bw7h/v375+fnldDvLHUrQWjaVhLnpZKqFCD/RUgD+xkEQRzHd+/eff/99z3Po6axu7ubptlSd8U2zOXl1UajBo2NpmliRjHGs9lMShmG4WIR27Z9cnI0n0wJQbdv315fXz85OTk7O1teXr569er169fDMMzyZLqY27bdbDb7g0GlUqnWKnmaOEGAlEKlOj4+KctyZWl5MpncvXs3juNLCZ3ChDDbMEfTCXyes9nM8zzLMAHN9X1/PB4/fvz42rVtCGc+Pz+DFDFiXI7CjuPAeArhBkVRlGWB3/vMzxmmSTAOgwpkE4iSU0qLIjMo1VoShNWlDT6TUpZFlufp/v7+7ds3f/mXf3lr+2qn0yEGQQh5ntdqt9vtNjHYN77xjTt3Pt6+ttXuLFWqQbVabbfbjmNJKS3DBLKSmQZjLIoicHwA2JYkyenxycXFxXQ6/cxbn93a2nr48NG/+Tf/9t//h/9FI4QQWV9ZD8Nqq9WCaEHDoBhrQsjBwYHnurZtmqZNKdZCQ9jVeDJZLGJmGkoi07GBzqDP8/0RwYCL2radpqlBmed54BakhMwXC8650IoQKkQJiwv4DOBfV6VACDm2DUnEGOMiK7TWaZ4eHBwEFd/3XYn0J59+4rpekiYE4Ws7115++eVut4uk+vTexx/fuZsU2Uvb137/93/3nZ/5PGQmMUYJIbCAXtoSDcILgYm2bdP3/cePHwohGo0GDKZQoJGmeb83SJKsKIrDw8M/+5M//d/943/0c+/+LEKa87JSCdM0vX//PgQ4geyx3W5TSudx5HmOUkjwPEvSLEnh1FtdXfZ933ZMSumzZ8+UUo1mezwel+XzqB7LyZ5HV5iUxYsI6kUvLvoXp2d3797d29urVCqMXeaYlEomcdHr9ZrN5traWqfVqFQCx7GurK2srKxYllmWBchyR6PRYjHTmFZqVdv1DEoQQq7t5HlOsS7LMstS0zRty4AjCcw7p6en8/l8bW3t7LxXrVabzeZ0OrVthxBCmAkMO0KIIgoga57newf7tm0DcgbP8HPfkJTPK5aVUiBNbbfbSInhcBhF0dnZmVLo9u3brVZLCAGd7nmeayQJpXmRwfZsMoMiXIhyPp9PJpP5IrJtu9tdrjcb8K3BTDkZz/b39xeLhZIlEJRRFBnUDILAsqzhcJhmmRBiY2Oj1W4ghBaLhe96mBLL8xXSru2k8YIQMptMs+zSS9uo1tI0PTw8/Oiju2ma/uZv/iZmlDLGy/y5nY006q3RaGSaZpYncLQxRrRE8/k0y7KTk5PDw+MoTn/lV36l1WpJKRHBeV7AhQd8OufcsVz4fkHAkGXZZDrt9Xq9Xs/znW63u7GxkWUZfJKcc4ig1Fq7tgltp/B/OJ1OuShBJB5UK5A4A8n1L3x88A9UwXqeCxutbdtPHz958uQJlBWurKxWq1V4lQCKoMQAiQxkhYD1FbiMNE39wK3X6/ArUGK12+1SlZfnA0JayHqt5trPs8I9R0o1W8wM23JMazaeHOw9Ozg63tnZqTdbnu8bhhFnaRTPYSjXWpdcNqo1Qsjjx48/vf/JnTt3Nje2/tpf+2tgjhkMRoZh8FJSSo+Oji4uLphlQz9sFie9Xv/yEGAMSF4gpwLXk6rEGFcqoWFbnud4nud5TqtRixdRt9ttN5oPHjz4oz/6o6IoNjc3m502IWRtbQ3ub4sZjuMJISzLyHgBsnTLsmA+6Ha7ec6fPXs2mcwwxpVq1bIs23a11qPphDHmmAa4NDDRzXaXc5Fm+WKx4KUEYnI1MfoAAQAASURBVB2AcEKI57pwkcP6qi/DFC7HrNlsARI6oNKSJOGllLI0GFNK1Ku1S00hIbA5w5RDMZnPp0kUFUURJRmwafV63aBY68tKqGajBoMOxpfZbIQQjHWepEDcm47tOM4iSizLMmyLaMQsczGdgfvbMKnvegAsAWsPlpqiKJhpgKuac64xns+j4XhkWy5+3pYBuG9RFItFNBgM+v2+UirPc9u219fX2+02QgjWvOl0mudcPTdWw8uOMQaxL+ccIQWfD0IIfgxI7PH9IAwvw4fhVYIGi36/zxiDEdO23LIssyKFYqgXxPp8OkMICaGm07FJWZwsGo363/k7v/2Fn/sZ37F5UQheSKnB4GnaJmwRQojpdPrs2TNor280Gjs7O+1upxAFDJeccy00MN38eWHaeDjq9XqLaDadTuHra3eWgmoVFqTQ803TcF13NBpNp1MwLZqmeda7WCyiJEmOjo7msyiKonaj/e67P7e8vIqQIoYZx4s8545nm6Zt22ae82o1jOYL0JxMpqMiLwlFPOV5kRZ5OZmOtre3t7e3dnau1Zp1zkvbtpaWVzRSSnGMkFZYlSpNs0GvDyTJ2dnp2dnZeDyZzWYUs7W1tXajHVQrzKSc557ngbeXXvbqCvDqjsZDhFCW56enpycnJ1mW+RWv2Ww2m00oEoXoacB6ms0m/rtf+82cF67tXKbDaS2lxBgLnvf7/Wi+SBYRozRN03qlUW1UDAN3V9p/62/9ra/82lf8RgMxhpREDKOSI8NASsIDEcdxvzcsssQ2Hds2gemrBKFpmkKoe/fuffTRRy+99JLjeJ/cuzccjiaTSRyn/X5/EUXvv/++VFIjhBEimOzs7KysXHFtB/IbpdSwMlqmQxkuucyLNAzDer0+GAzieKEU4pJTRKuNOhwB81m0WCyCIKSUMowB1gKdO2YUjjOIsTAIfWEJoQxLKQUvlVKGYRVlDh80/CfAm5PZhCCytXm10WhAfe+TR4+11le3N//RP/pHK1eWPc+bRYuPPvoIY7y6utrpdFZWVpq1OsaYUXpxcXZ6fGKYzDSs8WQ0nU53dnauXb8OffKgeoGlpyyhIPmyVcNxLMMweFG8//77URRVK3VCyPe//8NOZ+nnfvYLnucBvdXptvOiyIvUMh3HtRaLBRyLUsq9vb2Tk5NFHHHOr1692mzWXdc3TVPw0rZtg16mv0gp4XOYzWb1ep0SY29v70fv/7hSqXQ6S6urq5VqHTa8YX+gtTYNQ2vte4FB6YMHD/7TH/9xq9WKomR3dzdJslu3bv3CL/zC9ZdeglUMIwXxI4bJhBBSlpB9UKkEQCQNh8MkS1dWVgzKpJSGSdM0pQhzznmRVyoVCJsRgjPGYME1LQdj3O8PYGNuNpvVehNgdjhE4LSilMIFDJhllmX37t07PT1dWloCm3EQBMCng20YFlY4U9DzPI5FNANRGrRGIoQQxiCOYYzlvOhf9HzPg8I7x3GqtdrZ2cVgMBhPZ57nra6u3v/04cnJSVmWpmmBPBkuFUBBqmEVYQ3+QaFKQsjy8rJh0Lsf3Tk4OPAcy/G9aq1BqfHStesvrOm+7ydJghC5zK0xjOlsDC8gY+TRg4ePHj1aWVm5cuVKpVIJw+ql0Me5NOpG6cKklmkxaB2+OO8Px6PNzU3btBaLxcHBge/7nU4nCIKyLGHemkcR3KZZliGkDcOoVKqc8/Pz89PT03q9vrKyAkCUYTmcc9t2wXGmlKBYSykwviychiGg1+s9fPjw5ORka2v7S1/6EkiMTWaMx2NoNuS8gMpOGP1t24Yrajgc7u3tHR4eLRaLjY2Nz3zmM9B3C3+yEtZghIJnAP7dfr9/0TvDGNumBbwMOGka7Va9Xq/V677nJUniWpdV3JxzKXW73Z7OZs1G7ejg8Ps/+N752QU4c7e2trrdruO5WmuFNKUUwDBmGBBCEU1mMIhDIsbR0dFP79xVShHCbNv2g4AQMp9HoNdOkoRRbFmG43hplp2f9+bzS5VSJQgrtWq1WmWMGrbVbLW01ot4Xl5KrSnWyDHMMs/yLOudX/z4h9/HGtUa9e1r1372Cz+XZGlecsZYnqQwkJVlCTS9VrhWq/WGg5/+9KdnZxej0ahSqbXb7WazaZgmokwIUeaXL91oNBIaVavVsFLlnGtEECIgEldCgg5BCGEYFL5E27ZhX6pWqy8sY3l+GUwPZh2Mca1SRUhJKRHWWiEAWqDkB94vwzAYIVqrsiym02mlUqnVKwZlpslAJWJSBi+R1tp1/ReOQkqQEGI+n6dZVqvVKvWGbdvUYIKXmBKeF67rgr0AWGzgfOEdgbl/OBzGcVoUBcEs44VtuwXnlLKiKOI4xhhBekitVlteXrZtO02zNE0twwSCcjab5bzAGC8WCyCwCCGVSsXzPGh6BRkruB9gJwFiHTKu4PYBwgoEM3CIQb4mUI2j4QRsZ5RSAPxG48H5+TkjGIoBm81mt9WdL6ZRFN28eeNLv/BukkT9fv+1V26vX1lrtZqG7eRJrLUGVrEUlycSoyZcSfv7+47jXLt2DeKmGaXyee/ki8gq13UDz4fPLU3TKJoPBoO9/YOLi4t33nnns5//fJ4kURTFiyhJkpJLKSWmFDSmnhuAzcKwrcl0NDgf/OSn708n82otrFUbt1699d67P5/lyWg8TdN4MppiosHkUQphmExJzQx6fnpumkajWl8s5tF8MRoPwqC6tNp9843PdJc7PC+F5GCKwhirUk8mUzAWIIQQ0nmeG5aZ53k0j549O8jT7PT0tFILf+M3fqPdbnPOgf4GXSAhuN1uAxcPoxis8QeHz+bzeZIkFxcXkEz0+uuvt9ttuFvxb3zxlwkhURTleY4RhYH6wzs/kaj8hXd/4Y3XXl9e6XpuUBZFnudu4O7sbJk2u3///vb1a0LwK+trjDFmGkHgGYZBDGaYtlYKJpgyL3UpZ7OZaZqTyWQ+mWKMr1xZr9fr3/zmX/yrf/Wvnjx9Fuepa7q+70uhu8tLlmMTg8ESgKQCmTOM7WVZMGYCps2lYJgIfVnIIKX0A3c+izBFkBaG5GV4nW3beQ6skyV4KYpCCGFbVpplgPalRQ4PLlba8zwlS8ZMraVSyjJMZhAY//M8n80mXuA3Go3llZVWqwVpQ91uF65Y27bjOF7M5lLKWqO6srKyiBcQ0QY4HPg40jS1mEEp4XnBObctKwi8MKzmeXp6ev7pp59Qg332s58FGxGl9LleHgN4AP4G13WlLAPfxxhfXFwMBoPTk/NKpbK1tVOtVouigDMOkm8xxiAP11rD89FsNtvttlJiMpm9/5MfG4axvb29vb2tlJKlopRmlwU1+WAwiOI5BHwTQiphrd1up3k2Ho/Pz3tPnz6t1+u3b9/0/TCNI98P4XorS4mkSvOCUlqtVjGmYPwUSjrOZcBvpVJBWl3a17XEGEMYXZIkZVnAXEUIUUhnWSZ4eXR0BCJlg9AkSQLfu3r1KvS2Qhz/cDh0HK9SrSml4ji1LOPiou/7PpT4wucPd0AQBEVRAEqPEQVdRVmWoBQ8ODiYzWYbGxsrKyvNZhP8X/j51E6pATSW41ic83qjulgsnjx5DOUNlWqt0+lYllOpVCzHRggVGYeoz3m0gGyXNM8Gg0ElrIVhyDmfTCbz+QL0zoZhUEygcqcoima9UavVNFKUUtu15vO5YVDP8xbzqWmaTx8/Pj4+tiy7Uqm1Wq3XX3/dcwOlVJ7zPM/jLKWUKq0938GUOI5jmkxL9fDBp4fP9vv9PkJoZeXK8vLyypX1arVacFEUBWEU1EjkeR5SpVJBCFUqFS3VD3/wg3v37sEjff369e3tbYhTUUq5vpfnBbMMx4Tr1qhWq2VZpmlqGGYQBCcnJ3/1V38VJdnGxkYYVldXVy3LkrIkFNHLH+9yz27VG0AplmVZZEW73U6S5P79+8+e7rXb7ZUrq4RRxihkYbwgYmBENk2TMRbHycnJyeHh4crKCngLQIsW+BW4xWHUg0XLMAzTYlmWzSbTxWJBKY2iBabkvffeC2vVNM+KrEjT1DRNixmzyXQ0GhHCGo0GIHDVaoAxTpL05Oj4o48+Ojo6yrLsy1/+8pe//GXHc/M8l1qBDHk6WxRZLnlZliX4JzjnDx48+PjT+/1+3zCser2OCXFdt9FoQaKsbZtKlqAgHo2neZ77flitVm3brobVJInBEr+6dqXZrPu+jygxbQsiiAjSVT/wHTv0fIPQ0bB///79u3fvtDrtn3vv3bzkzDKTJLGp2e12y7KEbL/ZbJZn3LZtLwyiKBqNJkKIp0+f9Xq9v/iLv1hZXf3Sl36JWaYqBUhUtZYZL5VS09k8zzllJvj2CSHQrGeYEKNTgugbQFMY3KMoAojadf0kSSDpFGOstczTLElj/jxL0jJtAIHgFBJCEIpb9Ybr2mvry6BML7I8CD3GmOd5oefDMhD4FUBitNaGYWGsm40aOKuSJBkOx/NoJkpl2NZrL7/i+B5Q1aDKAIE2F2VRZHnOTZMZhgUsR5YVSZL0e8NZtABDWFmK4XCYpinGCNhASmm73XYcJ4pi0zShT+/8/Pzi4oIaDPAwCKcAiR6YT+HUVUoNh/3t7e1KpQJQIuhNoQpiMBi8gOIopXDUU2rAdQYkIAgcZ7PZpayeYUJI4LkQJpVmyag/ePnll7/0pS9tbW3Wqn6WJ+PxeDoaHRwceI67vr6+vr7uhwHCCkQpMJRQYmCMsWEgpZDWWql5PP/hD3+YJcn29jZgEGApY1BLUF5eXrZtB5UAGQbCSGbZYDCCzpIoisbD0XA4rIS1Wq1GGLNtezKZhEGVELK/v2/7ttaaYQLQab/fv3Pnzubm5u1XX/n0009dz2OMTSHB0TQZY0V5uZi5rluv1vI8pwh7nqeVOD09nU6nGONXX311fX09TdMnT55MJhPf95e6K+1Wi+BLKTYimBCcZdl0PvN9vxpWarU6SHSg7QNj3O/3nz59ClSm7/taq1arBVtTo9GAPvh6vc4MYlnW8vIy53w8Hp+dnd24ccNxnPl8fnFxgV9evWYYRhiGnuctFrPz8/Nut/v7v/+7X3jv55qtul8JmG0gw0ISjM/Ksk1Rlv2L3nwxlbxESleC0HEcyzB2d3c55416CwSGnHOQvAwGg16v9+zZs7t3756dnb3++htXr16No3Q6nVqux6g5mcwAjiOMakpLKQCpRkqBe4I8z7/QCiOsLMtihlHk+XwWWZaNMRZKClFWqzWhZVEUlm1jhECxSAhBUhmGYRlWURRQVmBSdnhy7LgWQshiBqQ9WYaphBxPho8fPJayZIRijNc3rlxcXGCsP/vO56rV6m/99m+vra0x0wjDEFBKOA5ehHRoJRFCfugZhrG/v/eX3/7WdDq9efPm1taO67pKIs45UpoZBPKTlJCmyTCmvu+aps0YAZfK3bt3y7Lc3NxcWu7A008plUKDmeVSB02RYRi+7zHG+v3BbDarVRsQZAx7DxgnASUC6RIwLIDl1Ju1arWOCDo5OoI/kOd5muau65rMME2TlznkR0DBs1IqjmO4xmAP6/V6BwcHr772Muj2QGqqtVYSFaKEhiilNWS3APKEkE6zeDgcHh4eXr9+fXl5OYoi17UtwwQxE5x94IrgnHuOW6vVGEHAuPV6PUA0t65uAlj7AqJ3HEdrLBW2LCtLi0U084KK1nI4HD59+hQh1O12V1aXYHiC2oPFYgFMPOzg4K5P07Tf70+n0+XlZbgjtdbVanU6nUqhXdcHJAkhlaap41pa60ajEcUx4AdxHJ+eX7Tb7Wq1zjkfj6ZxHJ+fnnmBn2UZnLmDwQBjAmHcQRCYhj0ajfI8j6IoCL3t7W3btAzDkKUoisKyzUajgYgGrY9t2/VaJc9zURSTyaTfHxzuH7z88qtbW1uO42mtZ/PItm248hHR4O+TskSUWMxwTMNixmw2e/LkyePHu7u7u7/6679x+/btJM3hMwFfnm3b0+ksihaEkDSLPcc1DKMShGmaLqazs7OzZ8+eMct85ZVXtq/tSCn9MAANnBACxJownYDCt9lsKiWFkP1+/6OPPhr0R0EQvPHGG92lNrMMxohjWQBaaK0JZkopJaR6XmmXZ9mPfvSjo/2Ds95Fu9PZuLp5/fp1mFDhz0gpYYuFlSMIwlqtBtKNLEn/6q/+ClKtITcONni4kuF8KHkODxVsKXv7z150WD07PLjz0w9t275yZXW5uwRAphcEQBFIpAghQvBuq9vpdLIke/pkF8DF2y/fgj/zdG8vTTPgufI8L6Htaj4XQjiOBwkpcRwfHB89efIEITKZTH7nd36n3W4naWoYBjRQZbwIgsDxXIjhbjWaaZQeHe5fnJ49vP9pv9erBuHKcndre/uzP/dz61c3i6JgGBmGIcqyKAqML5s3HceZjMZBEDDG/tN/+k//z3/9P7/77rvvfvE913W3trbgt5MKUUoBX8HMALQPbsqT01OMqe16RZZF0QJ8FWleaK01JnmeY8IopUWWgxhISqmQtCwLXaYRFeAsK8sSovsAFYZZFvwZIMBlhPKySBZRWUIXEDYdGxZIpVS70fQ8J8+yajUMQ9+0GGTQQFxZmqZpnCillpaWIGNWa6yUgruDIK20hOXZdTypZZpmB0eH3Xan1qgDchNn6XQ6TbNMKfRcx6ZPT4+1xhAWxRgLKhWo7jk5OXu8+2Q6ma+urpqmCaEnwGBOp9OTkxMlFDxdcGXAbIoxBoemxgRjPBqNhABrpAGbPISKnZ6eAhoECwYsriBehI/XsixKLylIIYTSuixLWSrLshqNhtY6iVJe5owRwzCkLIUsq0FYlkWr2fzqV38FqoRMyqQqCSG1WhVj3B9cfPTRR48ePbp9+/bXvvY1LgTsruA3tCxLa5wkyWXNIMWAJh4fH5+cnGitl5eXu91uvVq7jDZ1HMMwsG2jskRa86JACPFCSCmFEIeHh48ePZpOp/P53DTNar1Wq9VarRaU0oZh6Pgexth3XCB8hRBa4el0muQZY+zevXuffPIJ/C3V0Lc9FygmoG4YJmEYOpYFT0Kv10vSaD6f9wZ9EIrMJlOCWZamGBGKse/7axsbQGgggsKK74cBWOhg7qSYRFG0WCwgprvf75dleXBwEMcx5IyEYdjpdMqyHA6HhNHV5RXXdRmlGGtI89FaD4fDF8cj/j//D/8SYwzm8Gazub29jZCaL6Zf+cqvNDvNOI2owUzHrtXrCCFEDYQQkroscoLQYjYf9geL6cyyrHarZVnWd7/zvT/8wz8UQsxm88lsmiZ5bzpyTXt7extAY4TQYhHPZrNKpeK5gcaIUkMpZRoWTJ05FxCIlee541plWRqUweBPKVFK53nm+t4LSIznXCssJGemYVlWUZaYIHgcMcZlXmRZxgillAIe5nme69lZWmgkYc8ghKRpPB1PRqPRy7dv37x+7caNG7Zt+5537dq1Zq36yb2Pz3u9dqdpWs5sNvmZL7zr+67teFKVSZxleYI0WUQzx/Y830FKmybLeZHn6ebmJiHkvHfxwQcf7O3tv/baazdu3LIsC2K34Iyj+LKcC0R5kF7reR6E9MwX0/l8/uabb7LnlUGW6cB7WIrLIFbDYK7rOo4bVirRYjGZTAAP832/2+26jj8ej8FBBlggfG5SlXEcx0mCMYZwqcFgsL+//+jRE8uyXr51u1KpKC1A2whrFvg9TdMkmNm2DaZuiMp8/PjxD37wAynl+vr68vLqzs5OkhVlWc6jRZYWENsmtea8MA28trY2n8+fPn3qOM7q6urp6elsNms1mp7nvXAJwK5TFAXWiDGWp7FlWQCZgKqXYDSZTOCHn0xGkBgZRYnjBiWXILG3PRchRCkejUZPnjx59uyZVCUgf6DqhX0a/jEMA44AUPED2D4YDECgnaZpt9sNg6rWGIhLWK9t2wQdlet7oAnjnNuuwxjb3d07PDzMs5Ix5nshM0iRl4ZJYeaDFj841GzLhV8NQnSVkqPBMAzDZr1Zb9Rs2/Z933YtKSXGOssyz3GTNPJsJwxDjOlwOGSM1Wq10XDy/vvvF0WxsbHRXVnGGCukDcMoy2IeLRTk6GLaaDTAmD2fzweDEWh9Ci5OTk7G47Fh0jCoAtMqhIDiOa11GIaL2RwuS+AHHz165Hnea6+9VkpxaTasVEqhioID1UspTZLEcZwwDDjnnueBF2k8Hn/yyScff/zx3/gbf2NpuQN8rhBC8LKUQisMYAbogWABQ1obhjEYDPYPDk7OTsuyvH379ubmJmx6cKMDeToYDJTSAJ2CaRGsGE+ePHnw4AFQkDdu3FheXgYg2fO8wHfh1TNNExMGPOkimqVpWqlUyrJczOYPHz44ODjY3Nzc2dnxAn9pdQX+/xkjlmXlOWeYcF5Ww4oQYjgcVsIgjuM//uM//uY3v3l1cwvqgGzbNm2Lcy5B3kANrTVEocZZenBwcHx82u/3b926Va1WLduejMfJIlpbW7M91/N923OTLIX1iRFaFpln2pSgs5PTTz+5+5P3P/jej3/0f/zn//x3f//3FouYYmQYlmkbURTFaSKRdj3PdRwpZZFmZcGTKB6Pxz/5yU++973v3Xvw4Jd+8Utf/epXd3Z2gudpalrjWbQQQkAdeL1ej+J0togopceHhw8ePLAsE2NcSmXbdq3RLMtSI6K1hoo5eJE1VgghrRRAZaDHArwHHjCYReCE0VpbluW6DijGfMclhGRZBntLZ3kJUul9x2UGEbwE/4EQgmGikYSEWIoJcDiDwaAoilar1Ww2DcOKoqhWqzXrNcNkoA8DLI09d4QghEaTyb179x7tPjFN07JtIRTURiVxNhoParVaGIZJkkwmkyTLTNPc2tpyXTcrOGj/pZS9i8FgMAANACx1JjPhOIJzGOZLuApN0yxKcXBwUBRFo9FgjICLFhAvz/N6vd6LEHng94GFNE0Tfrs4joOgslgswPUlpHQcp1lvwX2BECoLoZGkFEfRvD/oaS1Xl5Zr9cp7X3j32rVrWssoimyT5Xnuuo5hGJVKpbvUxqbJk6Tf7zNGCDO11sDegtbzskgQIa21LAsI0wIZ92w229/f//jjj+vV2m/91m/BlwvXcVmW/X5/Nl1gjOM4kVKYpgVoCCAXp6enF/3es2fPTk9Pr1+//nf+zt9dXl4+OD6aTqeKq0U0Q5qA2fmTTz4RGhGCLMupVkOEyGg0EAUH6SdYZDavrt946RahiGIShgEcFCsrK0kapVnhevb5WW8ymcTzRRiGruUURQET5Gyx+OLPv/fVX/sKpdS0LeY4PEnyPJ/Poul0KksBEgU4dgBuLIrizp078LPlef7WW2997nOf46L0XQ9jzIsiiuac86LkAL3DvIgxxjJZEMbyNAWUEt6Khw8fHh3uw8Nar9erQRVjnGfZ6cn5bDbf29v7wQ9+sFgsnjx5cnh8pBHaXL/6sz/7s77vn5ycpWmqMIIzVCFtWg6wv3meg5qVMgx9OCWXlwrokhuXoeqIUKMQJcME+GNgfACUhrGJMgybk5SSEUr0paPtUsqQ54RgRLCWyjTNgmcIIVALFVk+Go36o57NTMt01tZXm62WZVmj0ejlV2597nOf29nZcV23Xq28uP5d28IaSVX6vl8UWZxkUTwnzBwO+9/97veuXdve2rkWhj7GVGvpur7WcjqeUIYLzvuDnu/7S0tL7Xbb9P3TZwdPnjy5efO2aZr9ix6ML6YFmicJ4NOLsgh4P8EAf3Bw8I1vfOPVV18FOxIlBpCSrmcnSeL7HmS+27ajlGLPk6XKsjw5PT49OUMK/8zP/EyjWQP+NE1TrfV4PIZQgDiOQezieR4sZ1nO7927N5/OLi4utneuvvrqq6ArBGADWuLjKAXVf5qmlcCDkW42mx0dHZ2cnMBJsb651Wg00jQ1DMtybM/zZvPIcS0lSinLOI5BMBuG4d7e3mAwsCynWq0yRmq12nQ6BQIrCAKDMZOyFz5tYC4gc2tpaWnQ7wFjAgcEwdR2PWbagOHD4tUfDqrVqu+7CCGInOCcQ88PjFxAPUspAf5J0xTOMlCYgmDu0aNHFxcXlNL19fWVlSvABSilsrSYTqfgG42iKM4ihFC73a7VakLwKEr2D0/Go6mUGmPNmEkIiqJIa22QSxMTmAbgkTYtVq/XDJNCuB9SeG1tFQjusFqBV51SipQmBGGt0zxnzJxHC9/1LMs6PT3+9re/LaWcz+crKysbGxuwCFJq5LyAox9wUyAQfd+XpQDk+9mzZ3/5l38Zx3GzWW8226urq81mE3zmwMj4vr+II7ixTNOsVsP9/f04jt98883xcPT1r399b29vY+Pqm2+93W53MMYQjGRZlmkaEAIJZaMQkEEpnS3mhmFQjT/++OP79+97gX/rxk3Hc0HIleaXmi3XdbXCgpdAaCqkEUK7u7uEkKWlJWCrDw4OINFb68uqK9D4R1FUZJnnedV6vd1uW6ZzcnJy//59y7Ju3bplmma9Xo+iCDL2QA2WF6XtuZTSNIoBeGOMhH6gtHz69OndT+588MEH/+C//d+88zM/k2UZ6Pp5nvPiMusEPnzf9yGYejIen5+f/+THH5yfntm2e/Xq1bXtq1e3tur1OkCDIDnlnBPCpJTUNGAhrFQqh4eH/+Z//n8dPtp7+zOfef0zb21sb62uXWGOVUqOCLEsy/VsrDSluBKGQpST4Whvb8+x7J2dHdd2iyz94IOfWJa5ff2aZdtO6Esp0yzHCEkpJS8tasETJbU6Ozu7f//+H/7hH/7Df/gP33jzM5xzZplpmsMr3x+MyrK8uLgoikJqJKUOfRchBBPGaDg5PjvlpaxWq+DPACAzieO8KErJ8zynhDDGms06pRRycJBW8JZprQ3TdBwHDnnTMDDGFjMQUp7rVipBEASYEphIatWG7ZhlwSnFWkiMcZYVjUbD8zzLMvIsMwyjVqsURVGtVgBBj+N4tpiXpXjnnXcwxmVRuK6LsBJC8LwA93SWZfNoAQhlGIam41z0eqen58Ph8OSszznvdJa0lqBPAG0WpRgmJKVUmmdgb1cKjYYTuIYA3cnznD6PJoEbDRQI8OKvrKzAcmsYhmEYAAEeHh9B4iaYGcGkD38etmiIJ4UwPCnl8ckJNGgVRUEwhmUGrnkppZaIaKSU0EjCLOTY9tbW5ngwtCyj3W4vLy8vddtFUQRB0Om0wRPAGBOSp3kGCsX79+9//PHHjDGwzK+vrwN1wxhL4gzmMNM0LcN8MaKNx2OYGieTyaPHD+I4llrVqo1GrZHnOUSPZjkHGxDnvNvtttvtdrsthLj34P7HH3/81ltvLRYLpEmWZWVeDga9J0+eQs6i1hozQ0ogWFSt1qhWQ9eyL9PRophzvnNtq1FvQQtTvV4FrarGKIoWjBlB4FcqVcaoQeh8Pk+jGBxpRVEcHB/V6/Uv/sJ7QogoiQ8PDz3PsyzLc1xoTYBp0rZtjeR8PgfEK8/zWq3GCwH2r9dff11rfXBwMBwODcNYvbIM+zwhBLRSGOPxeIzn41PXdZEmzDQRCA61RgiplCfxIouTLMuOD09+8L3v/fhH79+9e3eRJTW/fv3GDUg9RgQ7jhen6XA4nEeLSqXWbDYNZgL4FCUxNSzLsQUvDZtZhllKoYTUWGONNEYEYciTzEuOpMKUmaattZ5PpqDqhUkI5jbf9wUvJRJIE2YQKXQczSUvPddBmCglCSK8LPKiUFpgTe588qFGGiPtO+HOzla71Wo0Gp/73OdWV5eTJNvb273z8d3FYvHaa6/dvn3TsqxOp93pdAzGCCG2bUJrUJ6kUkpGsWlbQgguBLBg4/H49PQ0TpOXXnqpWq26rgvDAcHaMAxMCGUEIGj4uD3XrzabZVY8fPhw2B9YltVqNwghoBiDFb9SqcCQDnckpLMAyXJ+fo4Q2tvb63aWW61Wlid5nlN6Kc3RWkdRLKXkz/uJNzc3ESHz6TSJ0mazufdsdz6f37x5UwgBoBH4jIAvB8EWYMurV9bDMFRCDofDNIu73e5sNovjGJLoFotFmqaW6cC2Op/PeZ7btgknIFiskyT57ne/22x3X3nlFSCRpUZgEi7LwjRNw6BwWMCxAlNmkmRKqf39vUqlcvXq1cuvnlKKLgNv4MwCVwfoOiuVCkFYI5UkSVEUw+Gw4KUXVBAiwH0A4EcNVhQFpRhECSCZDMNwMBi9//6PLMtqt9svCm6TJGGMQbuiEEIphLHudpfr9ep4PJ3NJv3+ENIsR8OJUgohDHMeIYxSXEpRllwIMRoPHMdp1Fu2G0ip9/f3e70eiP0ZI6ZplnkBFlr4qy8zUERhO0alEpjMsm1bS/Xpp5+en593Op3X3ngddBW1Wk2WQkqphcx4QQxTaw0t1EHgZUm6WMymk8mdO3dms1m71X333XfLUjLGIFJhPJlIrSqVymKxQErbts0oBnUgQujs7GRvb+/w8HA8Hl/f2fnFX/xFx/bSNCUG45xjSgghmJI0TeE2Cv3A8zxGaJZl0Xz+6NGjJ08PgjBcWlp6+eWXNzY2nn+MChMNXzoEpMVxXJS81WgGnj+46D3df7a7u3tycrK9vb1z/Vqn08GUgFSRUtpstOHAIoT4vg+LI0yQh4eHf/AHf5Cm6fb29tLSku8HYN8DrJ0QQjGGGDHQRXQ6HXgAGo3G+fn5H/zBH2it263W6upys9nsLHVLLgFv4GUuSlXy3Pd90zQbjTp4Gs57F5VKpb3UxRg/uPfpoH+BMa7XmoZhmLaV5BlIyOfzuWc7vutRSm3TPjo4+PjOJ9/7/vcF1v+nf/kvQcoJSgBAJbXGhBCI1we5kpSSKjQ57z178vQ//sl/thznxiu3/+bf+luf/9mfKZWU+tKvIKWkFCNKPMcuimI2mXVbbd/1vv4nf/oHf/AHz57ubmxd/epXv3r75Ze9wGeMYUaR1AiherWGMYV3qtloG5bZO7/IedHpdOZx8s1vfvN73/teGFQhuReOiEWcMGZSSim+XG983w/8SlirLqKk1+vBJRdFURzHJsQJWSwvimqlQqA28nnCFqMEsGchBDOMarUKsipGqe+7tmH6gQstBXCg2a4DZwJCavfxk/7gYnVp+erVq55bgRnFsgzLNA2DlmUJLvWw4q+ubSKGEKI8SQBh5ZzHi0gplWYxLHJYozhNtNZxmhR5aXtuwUvTND0vmE7ns0U8n8+BHfI8D2RYL9iVyWQyGAzgCoMRpNlov0CeYDMc9AaUUmiZhEuz0+nAIgQjF8yg8D9VKhWFNEyNZ2dnjDHI2YeqbLgptNYw+bVanaIoCKWwZc1msziKQE0BcD5BWPKSUoqwms9nlmW8/dm3Ntc3qtUqw+j4+Hh/f397e7tRryOktMac55TSOI4Ioa7rlGXZXem4tuOHgWs7vUH/5OTk6OhIKdVqtTY2NpaXlw1mgbyScy54Cdss3Iag55vNZmmanp2ffPjR3aIomvXm8vKy5wXArTPGlpaWwjB0HOe83xv2+pV6DTa30WhkWdbBwdHHH398enR8cnLy8ssvQ9a853lXd7b39/fB/tnpdAghP/7BD6E9aWlpqVarNJvNMAyj+eLg8NlkMtna2tze3oZm2MsDfDQqisKxLfgBAteTUvb7/Y8+vosQogaxbfvw+EhrfXHez7Ok2WyurKxsX93xfB8aaKQqa7VaEARwhSmlDGYxxuI4Bhxuf3///Px8MBiUouCcv/baa9Br3mq1zs/PkyTBZ/sPu+1OUZQ8L6aj6WQyuffxJz/+8Y8vLnqGYRwdHTHTmE0X9Xo9CCrEYI7rSymTJJFSCqGElJxzwzAsywYESyllWY5lWVphIYTAmpqGKLhE0mIGZpQirInO0zTn3DIMwthisVBImwx2AIvhywYkKTjoOYznne0mZRIp07SkFJyXQpQ8yzWSs8n8+PiQl+Wrt182KHUcC2P6hS/87MbWVcexGDOXljpBJfR937QsYhKq6fnFaVmW1WrF87zJaPz+++9XK8FLL7200l0SQhQ8m02m8/k8K3LH83zX9YKAMiykBKeDZVmTyeQHP/jB/v7+9tWd9957r9vtSikxJUkSwf5BKEYITcZTx3F4fkn5Q8YBvE7j8bharV65cgVGKLj7X4zJsA76vg9tfUKI2Wz2yb27i8UCksB83/M8zzBM0zRr1YaUcraYh2EICTeAMVSCMM/z4XD453/+5wihpaWl0PfX1taUEowxx/dA5gwvDKUUemP4c+5mNBr9+X/5i5OTk42NjdXV1Xan2Ww2AcjknM+mCw1JOaZpGIbjOIDlaK01knEcf+c73/E8z3V8mJaEEGDZHQwGELtXrVbjOAYzNuBwBwcHN2+9dMl8CZHFGQgyIHcb3lgQL4O2r9msQzMj5/zDDz80bXdrawvcPZD1ahjWdDqdTCYQREnIZalcyeXu08eLxQIcjoCHcc4B24fpXwotJMeIlqIo8pIyjAnDGN+5c2exiAzDqFUblmX5vi+EKssiSZJ2p1mWZRxHMOoJhR3HsywLbEFCiMVixjn3bAcy2V/EY2qtHcc2TFoUmRK6Vqt1Wu1LLUua1upN13XjONZaM4oty1rudEfTSZIXhm0pJTjnhCKDUCG4Y9lFUQwGgyzJl5aWQi+M4/jw8BgRur65IZSUUhBCoNzJtgz42UzTbDRqhmFMJpPDw8PFYnH79m3P9rTWaZFjjINKiBBK8ywrCkDKCVLT8YTnRafT8V3Xtu3BaLS3t3fv3v033njj5ZdfhnFNSpnEWRzHYHCD4Xg6nXLOpeBra2uNRsO27ce7T+7du/fk8dMgCH75K78CoQPwdAG1AS8OJEvZtr2ysgoX2Onp6d7e3mKxgNPt2o2X4HaklNqGSSl1HV9fllvkYPEG5CzLsv39vY8++mh3d7fZbN66faPdbFUqFSllUAlM0ypL7oWBaZqO48KDlycpwYwQMhmP/x//0//dMliR5Z99553O0tL65oZhmYYNnacqDEPP87XWDDGDMVGqwWAwGPU3Nzdhhbvzycenp6fNZvPKlSt5zuFeT9MUshscxwk9v9NudlrtyWTy4Z2P/t2/+3fvvfvzv/v3/36apo1mE8Iac15kvChKnmQZZGpgrRkjSGnfcaeT0f17n379T/7k0aOHy8vL/+yf/bM3336TlxIRbNgWIVRxFEXRfB7N42g8GHIplpeXs5zDwnB8fFKUJRwFANLA+GUQWpYlREKWUrfb7SCsQuy2Usp2zKIo6tWa67qGZRZFIWUJRIfneabBgJcEyqkoChBEmqZp27YWpWmaYRAEgccYA0AADhzGWKVScRxHCwmZmYPBgFIKocRgN3NdByEUhJ7neUoJSg2ouOaXm5Vpmub5ydnZ2dl0OjEMo16vC17GaQL752w2z0seJxkhhFlmq9WyLRdeXriJMMZRlFxcXJyenlYqNcM08zyvVKpKKc6F1lKI56a/4FI2VOR5v9+PFnG1WnUsC6ZtWLNd1x1NJvCtwSAOLrxKpQL06CKOptMp+Dlg8QDVBKwfQRDkeT6ZzBBCRZHVajX4mrS8RBYxxpZheJ43n06vXd++cuWKEFwUfDIZeZ7XarXKQpycnOR5PhoPSi5dz/Yct16vUmqEoW+aZlZkjm0zw3Bsu9Fs1uoVx3GSJLl37979+/e/9rWvGaad55Ca5hdZDiZN+Ksnk4lCl90nIBw6PDzY23u2WMzLUvSGg9/5nd9pNTsfffTRbLYAm6FjuUmaQqkDeLDWrqxAVl+SJPPJdH9//+nTZ91u1w38L37xiy/duLG3tzcaDuF/dQPfdd12p1OrhpZldbtthomUMo6io6ODs5NTrbWU8q233mo0Gs16fWNjg1mGxkoIMRoMgRQCR1ScZFrr2WyWZRkhFCM9Go2iKCrSbJHEFOmv/Nqvvvrqq5PJBFzVhBAwy0dRlGUFqDWazabGqigKCBlJsvTo6Gg0Gq2urq6vr9+8eRP39/d+8pOf3P3wzv7+/u7jpw8ePqCEXr16FaaEUihqGs1GO8lSxsyCc00wFyWIu13bNQyjKDmllGED3hBEsJSXmla4Iw3bgKZ3UfCMF0QjTbDguWFZgnMuRLVafREuYjELnvKy4LzMQfAkpUBSnZ+fhxXf9/2nT5+eD3sUYYSU7/o3b968dePmjRs3wiD44fe+/+ff+C9Ly52tra0vfelLr73+uu3ZjuMopD3P01iPplPDYETjMAwIIYto5vu+bVqUUqxVHMc//OEPx8Nhq9XYvrrleG6t0cp5MewPNEaedxlQ5HkecPCc8+985zs8Lz//+c/nef7kyRM/DCDwMI4XnPNOpwPLk0FNmIgdx6GUNptNpdTh4WGe56+99hqwafAJgJYfwGrXdaE5VUoJksBSFJPJ5NGjR71e7403Xu92u0JIhBBG1DTNnJeTyURrCT+n1rrVaIKoKM/zk5OT4+Pjn37wwWuvvfbqqy9TSjXBEO56cXGRJEm1WoVaSSkESD4tyyKYXVxcfPLJJ4PBwHbMa9eudTodSmm9XseISqkBrzYM+oJNcBzH853xeKyUms1mu0/2JpOJ53mAFMLd8+L3chxPa1kUpec5SqkoijDGfuAqpY6PThVgJ4jWW3We8SRPsNZCKcE5pRSmlkql0m43tca2bc8Wi2q1ehlRiDTnXIj/KjGBM9QyHZh0CSFJGgG0NhqNYJECsG0xj2E+AFoK/vBsNhcK6ueNMKj2er3hcAjyONt2ocUSFnrXsyHyQCEG7k7TvETmtZZpmsIFZjsm6KC9y0Y527SY+7wcmmJm25esK8K0LMtPP/30+OQQamCurl9VGBGTaUq67Y7WWmkRRZHvuKCYpJTGcRx4YRzH3/72t4uiNAzDtKylleXQD4LQMw2bGQTS1MAMmKZpZ6kLqRBCiDAM0zj54z/+47t3795+5eX19fVms7l9bQegU4xxHMey5IZhEaQZMynFEIoNKZ2+H56fn3/9G3+mtW63ulCmprXOn9v7OedKSY2kEGJtbW1l+YqUcjgcTqfTWqMOU9pkMpnP52VZFlmeFTnI8wHByvOCUrq8vLy8vAwpZXt7excXF5//uZ8NgqDRaHDOLWYopaJFAtdeHMeMmSC8K8tyfX0dXqsomt+5c+e73/1uq1n/yle+Ytu2bVvVep3zIi3yNM+iRVwUBSMGIaQW1gzDsE1LK4G1/Mn77/9///2/z7KsUqv90i9/+W//zm+bjp3nOWWMc25ZjhCC5yWM4+Px2HGs0PO/+/3v/eAHP9JajkaTer2+vLwMRA8U10Aug+d5hOFqtdpqNH3H7fV6WZJfWV11Lfvx48d/9Ed/lOZ84+rm6toVvxIWUoCCDUTWJmO+6yy1O67jKFHu7+1985t//sorr9y4fYtQ6vrecDIeDIYnx/04SgeDwdnFeVnwRRwdHR3v7Oy8/PLL1DAQItCoWJbFbBEJISDryGKGbdugnShKSSmNkwyyyqQqQZSdRLFlWYhgzrlpMqUU1A6KksOxwDlHCEEuObzLnucYhFKGbdPyPA8qd0AXAUpQUAiYjFBKPc+FdxNsAZ7nXblyJc9zqUpQGsHLOJ3PkyRRSkmpTdM0DLPdbjPGzs7OpqPxPI765xfzOKIIQzUwJiCldQwb7PZlHF3274H+ybZdsCidn58rjRBCGFPXdTGi88U0TeMsS2F5C4JgdXW1026naVpyoZSKF4v5/DLDFrRfUusXrVCwc3LOwYHbbrc7S11Ik4aHBzqFhBCQOgHn8HQ6l1JynsPYl+d5rVKNkwjkj1pIxlgl9Dc21oDNL9JEa31+fv7+++/XKvWtra16vQ6jc57nUvBWqxWGITiRgalwPUdrvbKyYlgMhEMgIZhO5o7nLRaLDz74IE1T3/VWVlaWl5fp84Yxy7EhwyzLsqWlJZCc9oaDn/zkJ7PZLAyqUsrpdD6ZzuM45lxALoZl2eAexRjVqqFhUJiKWvWG67plKS8G/QcPHliW1V1aevbsWb1Ws22702xV6hXDtKlJZVmaJoNTzrd9yzai+UKKUitUZGm/P3j//R+/887nP//5d3qjIZTNEEIYoYCtcM6ZAQ5iKoSAzJ3e+RlMOEVRHBw8u3Hjxvb1a6AdAnc8BHe7rosxBY+CEKIoc6CwTNO0XcfzvMVi8fTp00qlsr6+jv/p7/63f/RHf1Sp1SuVSrVSNx1bKQXeQ5DyPb8zNCE0rFVzyRHGSkqtNYDYBGFIc0nTVEhNDKYxkpCyoDXDhGLt2J7SQkslteJ5gSkxmYEpMSgTSjJqvsC3y4KDbdWglBCU57mUwvMdgnRZloNhzzTNt956Y/vaTq1S3dy62mq1MDUC12OUFlk+mUzKvKhUg1qluru7+70ffB8z8vobb9Qa9U6n4wcukjjLE0oMZkB0JIJdhFJqGDQMw16vB9je8fFxrVa7enUbU2IZpsZoNBoBSYQQ0lIBYAAoYBRFz57uHR8fp3m2sbEGbM6VlVXgFzDGWmPXdcGbCoIVyzJAeQ0eijiO8zyvVCobGxtaa57nw+HQsKxmswmnCUjFl5Y75vNaaIidPD4+6ff79VpzaWkFUzKdTuHuBCWZEBzkO91uF9KzTk5OkiTZ2tzM8xycdNQ0oihCCCVJ4gfB6upqmiSz2SyJM4CRwIxzeHj47W9/OwzD9774Bbg7A78SpxkYFTHGF2fnAEdZlgVcIWSxQATU3bt3Oeev3HqlVquFtSooJGzbHg7HEKMXRXPGGIRmlWUBDOBstiiKQggVJQuDml7gMkK9wLcME+ak50qL0jAs17XhXr/o9w4ODjgXYNHodru262RZhjShlLquV61Wy4JrrZhBhBCO7YFutN/vHx0deZ7neT6gcSBTA58EISwIq0VR+L7PGEGUXFxccM6lKl3ThawE+PARIqBG4lIghJQS4AMCTtmyrCJLKKWTySRN00ajDlcCuBkwxrIUhmEghRDWeVEIISzbcBwnqIQY65Oj42fPnlbDGkKo1mosra6sLi0LIaTUMGSAUwnUSAaFNkydZdnp6en5+floNFrM5u+994WVlSsgB7Ztm5nGpVZXKCCkMKOe54W+C4E3jx8/3t/fl1K+/fbb6+vrnfYSQBee7yBNDJOKUlGGtdaj0QjUbAazEEL37t07ODjo9fqGYTQaDQiXgnVfa227tta61WohhHw/ACIDZmXTNL/33b/6/ve/v7KyorVu1hura1e4KCXSjmnBw1OW5WQ8I4TAaAhWQcO26vX6vXv3vvWtb5mmuby83G53IZAly7IsK0CeYlkW2CCazebVqxu+404mk8lkBA7W/uCidzHIi3Q0nVy5ciWsVBhjnc4SbPm+4xrUZAaxDNZut0Ey/+DRQynl3/t7f08jFATBPI6Gw2GcJkVRjiYzzrnv+0iJNE1lKcJqJYmzUhSz6QICY9M0XVpaeu211+C8rtfrQRBoojnnWZJcXFxQTLDCnVa72+588MEH5+fnZ2dnB0eHQVjdeel6tV5bX78ShqEfuL7vI6UZY1B1V61WA9ebL6aQGVZy+R//43/8wz/8wyCouH61UqtZloUIkWVZlKVlOWVZTqfTRRwFfqVWrwR+xXZMJVHBMzgtLcMUQgieM8aYadq2bVg2gLsQnmLbJowXQMzBVFEJg6WlJdBQdpoN4PJgrAEZRlEUCKFFNBv0+qbJ1levgNPQsqxSySRJVlZWyrKcjAae51GMl5aWvMBPs5g8zwFWSs1n0Xg8LkS5WCwwJpRSjGgpRRynWZbAQwvknee4hNHFbD6ZTeNFFFRCx3Gk1FmW6eca0CRJoigBdgl87o7jgVGGMaYRns1mx8fHi8ViNo+azWa1EpjmZco5GHKz55Xbtm0DXfsCADs9PU3TFJqwwa0C8HxZlkCQ+WEAnnGQkUkpocUOnvPJbMrYJWdkMkMIIZUoy1IUPEkiwIyPDg9//MGP//k/+2evv/4qLOST4UgplWXFC5YcIUIppRgVRaGknAxHw+Ewy5Jqtbq03HE8zzRN0zJAYaK17nRagIFhwizHsUxHIzkajc5Pzx48eAAcy+3bt5eXl8GE5IWB1hpyzs7OzjQiIF+eTucll5PJ5KOP7hZFkeaXHdO+H9brdYSQabKV5Wan06pXa0tLSxBE4jge5zzP8yiJAR1/9OjR/v6+lmpzc73Rajeb9WpYWVtfNU1zOp1YzAzDoFapNpo1Rk1CENL44uKsKErIhHr06NHHn9wRQqwur3S7XcdyK5UKZUZRFK7tdbvdxWySJAkkkhgGK4pib2+vKIp2u2kYxif3P717924YhtVqtVqtXr169fXX34T7dz6fa6xM24DIYog3slwXURqPxnme41srO0urK4ZhIowXixhjzEwqkRZC2JYLOj6gsTgX1CBJnjCDQkSkKqV6XqtsGWaSpUlWIISAbsAg7xcl1giwVkgrAQFHmRcSaYYJMViRZoUoq0Eokeacz+fzaDbfP95HSBvY2Lm29ezZUy6KL33xvZWVla985Ve++MUvhs0aIgQVhVQoyTOikRAimi+UlL4XaCmq1SozzeFo+Fff/+7WzvbGxprUOE/TNE4Mw4AXjzECHXyO42iswNlXrVZ910uydDQcPNs/6HSWrl27BgKp8XgMGWamaUItNNhniqKErJHz8/Ovf/3rZVlWq9VOp/X2W5+Bhj4pZVGUoNyE6lCtZVEUOzs7MBvFcXzv3r0kScAJZVlWJQiq1ap8rgoCaBokI7zM4bRaLOZJkti28+mnn/YuBtev32i0mkC7wLtnGIYQHGSt8IoC9aaUypKk1+slSTQajYjBXnrpJXAUAvo1m04ZY5RcdkWDDh1M8lmWMYMcHBw8fvy43erWmy0QOwshIDyiVqtEUXRwcABZuFJKOF4Nwzg5OfFsb7FYHJ4cCyHgNZvNZqAAA2ppsZhpjYXgMKlUKjVmGErp4XBgmiYECiCskCZRPKeUEoRB4p3nOfgfCUGNVrtWq4F4aDQaJUliOfbOzo5je3meI4RbrdZkNI6ihdICY5zEGWgsoI7m+Pg4TbPl5WWY8OBbtiyHMgY1I/P5vCwLx/ds2yYUKaWQVGVZHh4cK6Uwpggh23bLshQaeBYEhx2ggzB+gZDWMAxoZgUpD8YkCALXdrIsMyizbZsaNM9zEAtbjt1qNZSQk8mIF8VsPm+3u5tbVwUvHc8dDEZlWSJNAJ2Fuw1jnBeplBLM54vZ/Pz0bDgcQsBstVqFiirbddI05aXMskwT0mw286KgjDiWzfN0Y2PDMIyLs/PT09Mnjx53u90vfOE9peGCx1Kr6XTKeWmaxmI2J4TkefEiAgc2aSHEw4cPHzx4ACbtVqtFKa03G6YD+yIGM/ZsNrOYEcfx8vJys9l89ODhbDY7OzmFgQwRfGV9za+EeZLCJ6mUMg0beCvwryBKKpWKaZonJycnJye9Xu/o6Igxs9vtGobR6Sy9wFFgzqvVakCrEY1szwUQAiH14N6nT58+ZYy0Wq2wHt66davRbMKRrYSs1+sUYZDrgkum0+nMZovz89Pt7Wu+7373u9/91//6X1PTWF5ebbY6fqUK3CVCyrMdQPjynLdajc3NLd93B4MR2Fa2traATJ9MJufn50enJ1EUhWHoui7P8slonOe577hvvflmt9uGE+PJ7t5P73x078G9f/E//o/vfO5zWZbA1mEbpmFbs9ns5OwUCpryPPe9sFqpjEdTk7Kj05Nef4QoAXeU53nQHo0xZYYBuyVI7AEQlVIqLSzLSuNESmkZVCmlMeaca0wAz/Y8pxpWavVLQkMjnKapZVkIaYzQ0tISeLymo6FhGAC0gFwBPh+pSsuyZMkRQo5pQXRcWZa25wJOHIahQTFQ54xRqVWWJ3nG4XmDCoqTk9PhZDwaTsqypNQg1AAjp22bcbIoy0KIyzaqdrvdbLQd1yKYmRbjhUiz+PT8HAq1oJfC8zzQRYHckPPLSWh5eXl5ZQWIttFo5Hie7/tIKajDAjkEuD6VUlIoznm73TYMA2Lk4JHO8/zi4mI8Hvu+D/BVp9NRSkFAo9QKoLIgCGC4dJ6LfJIkWcSRUgpqUZDSWZ5WKhWD4MVi0Wo3blx/qdPpgC0RnHeXxsAgFELAQPAiAy/LMkDBCcZBEKRRfHR6NB4MF0nsOFan03FcG6CBMAy1ltV6TZZiNo8IY67jayQppUkUA+0wnU4PDw9/8IMf/P3f+9333ntvFi0genQ2m0VxOhyOj46OgBKJosQ0zU6noxBGCMH49VzlhlzP+sqXf8n1zMloCqZA+LQJo47tmRYzmDWdjRFClmUtZvPFYnZychJFEWNsfePKysrKe++9e3V9AyTIBc8oYqUoxqMpM8h8FhmGoZAuREkRHo0HF2fnx8fH0TxeXl5+6cbNpaWlVqONMZZlAZrRJ0+eFEVeq9Xsy9rHFE4bx3HOzs6gaerk5GR1dY0x1mq1Xrp5vdFoFGUOOwpSCtxvk8lkNpkihPA7b32OEIIQMZlhmpZhGKJUMGYalm3bdpJnjJpSK9t2hCh5vEBYwUZi2hZQLVyIeLFAz7sjTHZp6DMMw6BM8pLSy8Q8uHsIISXnGiGCMcJYKzUaj+998olESiH1xitvvP3Zt65cubKzdXVzczMIPSH4oN+jFDPGPvzwJ1rrGzev37hxo1avI0JN0wbPCCM0TdM847ZlgGbTDwMhuNSq1zu/e/cTpVS9Xt/a2qoEITBTeZ5DvhdjREoZx7Ft25SQWr1umSahVGMCpAw8PcBPFUWR5xwIVimlKBXsNIHnK6UW0ezOnTuU0s9+5q0Xqnb4BzyGEBaqkMZYdzqdSqViGfblQjOZHBwcrK+vA9MPAaFxnIJDp1aruK57dHQUVnzGGAwo8D73LgYPHjzIc/7222/XmzUQTGitIcoIfk6I70JKu66rtABW1DRNCOWHPi/KWFEUWZo2Gg3fC8uyTJIM/oosyzwPkBI6m83AE/7oweMkSW7evAmTCqx9hJCsyBFChDB4IeFVX11dxVqNx+MnT56enZ1ZtvuirazX64PcWEqBMcEYQaoNQhgRPJ9FhCJgADnnWkO6ASeEEHQZmA7ykcV87nkOwpQxBh0DlWqQpul0PjNNk1GTUgrdW7ZpSSk1UZZlSaGB7UUIwfERRfF4PF4sFmtra5WwBicg59y23ThLtdZKCUJIwbMXiRW2bRfJ5bqcZZnJLMdzmcWkLAGL0kISQijD4FiGHBCEkETaNE2M0XgwTNPMoGxpaQks9Iwxx3PAnsYMopTCWMNQq4Qk5LKz+dGDx/NoYTCwEYRCCESwaZqUkmq1Woji4uLCMAyKcSXwDcqSJIGZ+MGDBz/5yYfVatX1vTAMu0srnHPb86SUfhAIWWKNOM8924OUENd1ZSnKsrRtZz6ff+c73xlPJ2DIR4SFYYiVllKPRiNQiM7nc8YI4Fubm5tZnvT7fchZBTJ3uphLoRFCcKkAhi+EEAX3PO8yHYpzKIk/PT1d27iydW1HSeT7viqF53mMmbBbSynncQQqYMIoMB1g+N97un///v3xeHz79ivdbhdsGc+TkBX8RhcXF3Ecl1rneb6xdqXb7gSec3RweH5+OltMMcatbufNt14nhCitr6yuWpZlW67UKitKwTkhpMi4ENw0bcc0+v3+6enp3sH+6em5ZVkFF0EQUsNI07TgOWwspmEpLUUp19avrF1ZB0oObt87d+789IMPGvVWo1Y3DCusVjCjnOeu6wJ5XRZFp9NuN1tbW1ugWz84OBCS71y71mjWsiS989MPx8NJHMfMNDCjk0UklTJNaziazGezbnupXqn6vp/xouD80v03nwNs6Tge+E+jaA7PCcBXSik/cKWUFF9maZqmCTwJFyXI6SDZMgj8ShhSirXGjLF2u+15XhzHSolqEP74xz+GnGFQi0J2JdwOlGHf9xnBUkrPdhqNhlLq9PQ0SpOXX34ZtkrPdjSSs8l0Npst4mgyGWuNXgjmGo1GJaxN5rPhcGyathCiPxhxzsOworUqVckYCcMqzJRpmsZxWpZFWUpCkOcFhkFNypRSeZFmaTGfR5xzz/MZuyy3iNJICNFut13XbXc7oBM3TVNISQhZzKJ+vw/yXLj1q5VKp9M5P7tI0xS2WVAxEkK63W6r0QDxRlEUOecg8AXVL6UUeMlSCjDzYowvcUchXuTX87KYTCaOaXmeJwRvNmo3btxoNGrrq1cATgMZWZxA4kMMciXTsB3HabVaGOP5fI4QchynyPPxeIwQ4nmRFSnFhBqXUa5Pnjze29vrdrubm5s3b950fc8yTEwpXCsAwTiOXavVDMoMwxiOR8PhUAhRrVbHs+nu7u7J6Zlp2sPheDKeaa3TNE/TNI4TPwzhmfE8zzBZURQQ4Qa3QGe54/tu4AbAzwJGoJRCiFCTpmnOeS4KjhBqNZuNRs2znVarUZbl7u7uwcHBP/xH/1vXdcEE4AZemfMoWkRRLKWglIHSzvM8gzIhSt/zAMHt9XoHh0d7e/u/93u/1+1259OJaZqEYt/3bcNKkgRRbBhGHC9gf643G5APZxjG7u6uKBVUwl9/aafRaJyfn0LCQKPRgsmSMWabjpQS//wXf0lKSQnRCmGta7Uaz0ohBBellFIijDEm1BBCEMpKXiBRWCYDWt12nReQDMYYZBlKKbgYAJ7N4gQAVaWUaRpSSghE1VoXRTadTnf3HiOEvvZrX3vzzTffeOONza2rnndZs4qRQghJKTjnWglwjT169OijOz8FmvxXfuVXbMeh9FI7DMp9cJMlSUIphi2k02khhKbT6dOnT589O0jz7O23PrO6dsUyTPixEUJCcNu24yiCxaJarXLOl5aXXT+UUsCUCWh/pVKpVqtQEnLpYMIMLgCllO96w+Hw5PSo2+0Gnru7u1uW5a1bt2AAAlSfUipVCQwFjImdVhc4dWCsPM8bjUaLxaLf7zebTSk1UC2maaZpbJom51wj6fs+EC5aa88NHj9+/PTps5dfvrW0stzr9YBogP0VjLIAepcFxxibFoObOwzDxWLxve997+Li4stf/vLK6upiscjStNVqJXHGOVcKCSEA77zMOjEI7JpSyiLju7u7/X7/5s2b169fxxgDd04YLctSa5ymKYRWwODvOJbJjFqtkWVZrz88ODiIoqjZbMLLIJ73ZgBkmCSJ0phSOhwOQX5brYUwZgGWm2XZ4eGB57ggKZNSeq4bhqFpWYCHgXchyxPDMqMoujjv1+t16HxwbUcIwSwK4xdoFOBt9DyvKDhYFoQQYVAFvZFlWZpg+Dkpw3DIglwgjlJKKdEINhDOxWwyTZIEEe0GvpTStm3Y5k3rUksO/1BKicEwxpQSznkaxcP+AAjEVrN5/fp1ZhhxHFuODfhZXqS1Wi2KIi2VZVl5mnHOXdeVUu8fHPR6PbjtwCkGAyWAB65lS1UCWAjzomVZWiroU5dagTrB98IwDCXSMBo6puW4FiUGPD8gUqxUKq7rRVF0cXFxsH80HA4JIe1227ZdpdQiScu8mC7mkpeW62hRIkpsw2y1WoZBpZQIK7iE9vb2KDFg5Gp22jCEvXgMEEJFmpVlCa4Iy3KiKIrSKKz4lBiPHz8+Pjj0fb/d7sJmzDmH9JlFHEkpF4sFsJwQFIwQurjoY4zDMGSMjUbjKIoMg1WrVazRbDbDGKd5NpnNi6KwDIMRsnFlzQ/cSiUoy3L32e7x8fEXvvCF7vKSZVmyFPBUF6UoyrIsJUXYtu3xeGwYRhzH1UrFMGjBRb8/PD8/HwyGi3mslMp40WjUIGOMEIaQIoSlaZznHKBErXVZSq0lkshxHCVkmqZFKQyDemEglVJaUErXr6x5nkMxhgVmZWl5NpvFabJ+dUNr+Qf/7397cX4eOIFlWbbtCK3iPPPDilSIMVaWMl5EUiotpe3+/5n6s2bJtvM6FJvt6jNXtruv/vTAAQ4AgrokIZIiQw0vdUXRvCGH3hz2oyPscISf/UcUipAs249WhIL0lUSJFEWKBAgQzWnrVN/sLvvM1a81Oz+M3JvEU6FO1a7Mteb8mjHGNz4f1vNw/cWG1qIogKs1TQV9N061sWrvoumsvAkH6PR2eQZaIIrC8XgcRv4wHVhrnaMAdZRS+9VDhGqtUS5DJggK3hhz7969MPJ936fOgkSDiiNN07Kp8Qfatn3x9Nlut6vKXCkVJXEQBAh01hAp5fX1tXNuMB5FUdLrpdZapW2WZc4RIbgM9oYFeZ47RxFvwWHdJAJNjD44OJhMR77vt42qqgY7iIVgcRyf3r0DBIEQssszWD1prSmcULwQNwWJtq5rrVQYhlqZuq4RMdA5Y9wvulmSyBhrlQIMicbg1tHGC256Eq2pI5CygccUQhRlboxJwmi321xdnp+eHv/P//ifvP/Bu5jYrcpGKWWdxulCy4dRmD/+4z/2PO/b3/6253ltV2P0SnfYVCHZDZjinPPDQHddUZVVUWZFfnl5mWX54eHhZDIJguDhw4eYq2jbZrfbBRAGRCFjbLFYbPOMMfbq1avnL17OZouiqKqyYYz1+4MgCChls8UCWzKBHlVVFQUBkM7hcOgYYYwxR2azGQQMmL6KkgSfkHMeh4GUssjyuq6dUd///vePjw/TNHXO7XYb/OLnn336k5/8BCPSQRD4Qu5tY6UvBGOURlEw6KdJL/7Od74zHIzeXlyen58jevi+fP3q5WKxiKKIWvLee+8JX0LVjS07xphbVVLTNKozX375Zdd1nWreffeRlPJP//RP3759e/fu/Y8++gjb3hjhVVXR3/yNf0gI8YSs6xayMuoMSBxM8GqtufS01p4XIDUibRhjPC72gAFle3YAOv+q5pwjTRZVAyh1sVjorlntVr0w+fDDD7/33U8Gg37Si05OTtAfHx8f/eAHPyCMFmW22Wzati2yHFVLGIaBJ4GcARCy1n799ddYOss5Pz4+7vV6cZIwJoyz4Dqttc5YFHOMUmM0IXQxX3319ePPP/3sd/+XfzoZjW9pdXi9oo4E5Q/GjVJnrU3TtCzLrtPYS//+++8HUSylzLOyLEtD3GazcY4IyhIEGsHSNEWfuljO4BcgpfRkwDlvuv2MkufLKIwxLpFlmeA8DMPRcAI0e7vd/vSnP+31eqenp6PRCFVm0zRCMCTCo+MDSIWUUlL48K2A90nb1fP5PC+K09PT0WQcRdF6veaUdV1XFgUOMRQzbdsGgU8pvbq6cs5FUXx+fv7yxWs4lkVRBMMC0J2zxfXes00peHNIITihs9mMc66s2Ww2Td0Nh0PhSWttOhxZa1fLzWg0wjfyPZbnO8bEaDSKomS32715e6GUiuOk67r1aot5NM552zTOuSiOG6W7rmuaqmkamNMmSTIYDKYHYwjYPc/L83y32SZJEocRY8wSB8ETsH/G2HAyGA6Hq9VquVzCb3PQT9u2vXPvLqbnPM8DNYlKi1K218Yaozozn89fv35NmaOCD4eDNE0tZLeOAZCzlkRR0NVN13WCc0hWm6bRxgVBsFwuMaKFMd4kSeIkhLtScLMFjzLWNnU/ibqm3e12u90uDqM7d+4prZVSDhugOSuKHOM8xth+v79ZrVH/RVHoeZ51+yYB8ljf9+Oo55wr6zrfZUxw7axSXeQH4OB6SYSlPU3ToOKnlN65cyfp91BwR34MK4G8LLqu64yWnt80Deey3+8P04Hvh/DBf/r1E2utYURb04uTIAoZoVwKRnjbdW3TLJdLVIrY5mSt3SwX+S6D2MU4i2QTxBHGU6ANBXxrjBGeTNM08CRY/h/96Ed1Ua9WqyCIUE9j6w4hRGEHvOcBdm2aZjyeYrWO7/ut0j//+c8//fnPrbVHR0dYto38oVSH3BYEgbO61+vBVOX0zlk6HGqtfd/vxfHPfvazf/dv/58Hw+k777xz/+GD0XQiuEc5K4riaj4zxjRNdXFxsVgstLanp6fDwchpt16vm6aJegkTHLlZCj+MfEo4oZYRDrV4VVW9JKXMGe3qMi/zglJnHDFGMSnyPA+i8Ojo6GAyRRuG1UBv375t6m40HoRxcHh4GMdx6AdN05RZjrWAnHMZhBcXF5xJrTXer7W26xrf96MoQSRHV4OQ4nkexFLOWiGEECxKYt/3tVWMUM55GPj44e+++64fhMYYKcXh4eF2u/3J3/y17tRoNOr3B2VZ1nXZtm0gPeDuYRjqTmHOALTaYrFYrVbD4TBKYiml1YoxFnr+fp5fSioku1m5Gwd+nudozq0l8Nw6PDwsigy7Abbb7T5MGae1hu4T8o9dXhpjlsv11dWVkPsVdv1+31rbVHWnWl/IuiqklM6ZOA6PT8+wEwXb/cCQFEXBpW+t/erxk71Ez7lWdW3bwkYbekoUWNaYqqq+fvwEYgwpZd020Ddzyjwh+v3+06dPpZSUc3wXsGnW2izLsiyr2ya62dWL9gmz8Lvdrm1bygghZNBL0jQdjwaTyWi9WDZtdTCZTibjycHBcDjEVAQCGn6sdhZ4IRrUMAyapqqqKgmT21EACHybphlOxqHnX86uPS6VNZzz7SZ7+/bts+dPPvn4W9///i9BArunU9uKc44I1kvT8Xg8my2yIldKVWXdNN1ms3n79uLp06dS+HHc++R73y2K4uvHTwghVuvbiIpQbymxxFFH0jR12jHG4HPpGHATO5lMfN8viiLf7qy1hNqDg6lgvN/v+4EE+2SM0m0npTw/P3/69GnX6el4As+L6XQqhDg8mAyHaRDsp6OGwyETMk1Tz/ellFVdFFm2XM0ppaEf7bZZ13Xf/d537t2/zxhzxIRxZIy5rR8YY03TfPnFY226Ydrf7TaQdX391RPGmHP04cOH/Ti5uLigv/73/6EQAkJyeHLGQcg44ZxjiJfcbO9p25ZSxoTXqs4T0lrrtIHqSylltU6SKPSDPc9VlRiKfvL0WdnU/+IP/tcHDx7cuXP27nuPCCHT6fjocLrZrMIwnEzGMopmF2/+5E/+5OrqwvO8j7754TAdeJ4HP9/RaBQEQVPV+GIIDXCZUrp9++rVD3/4Q2vt+ODg0aNHBv0WZ4N+Co1zlm0Fk4RaaCfjOPa9ELNU2+32Zz/7WZqmJycncS8BxXa7YAuFv9bWOQMVCy4exEBPnj2fzWbf+vgTVJmUUkqZtcaXnjYdHtf8+opydv/uvbiXLGbzsq5Gg2EYR0IIKXlZlkDgoygihDVN5UmplErifpIksBnEyqY3b96kaYpiCI0C57yua+s0EmdTd3AfwQj3drcWQiyXi8ePH+dFeXZ29vDhQ4hafM/DQ3DOEcdgAVo35WQ69T0PVwhmB+v1mjgmhDg6OqI323AdJXDPwqSSUspqA5mRcw57rK6urpRSw/FoMBgIz4fAOQxioFNNXbZt3eulUF53rWYCG0705eVlU3fOOYROKQQXwhijrKnrtusaDNxhrGav3TYqCII3b95Ya997511oG9EVIYIcHBx0XVtVlbYmigPESq31Z599lu+yIAjuP3wAy0EpJVZhAEs3xqKp9TyPM+lHYSC9xWbx8uUL+G3GcTIeTW+E/4YTzjklhEiPe0I65zxPEkYZ45TS6+vr5XKJQzWZTM7Oziglo9FIBj7QQWOM1sZaE/qyFyeU0rIsR6PRZrP54vOvyrqS0hsMBv3hwPO864tLyNqiMNlPGra1cZYQNxgM4iSEYsYYY7Sbz+fG2GxXGK0935eBr00H8YBknBAXeL7ni16S+oGsqgpYBZfi+vJqvV5zJpVSUkrheVXbABB3jBNCurrbbreekGdnZ9PR/nbkVQngHEwWpTTbFYyxOO4FQYAGAGwL2B/qTNe0repws9LRUEqJrRJFmUnhU+aIY+vN8upylvQiYMBpmkZBCJzmF7/4xWw2Y4x5njcajaxznudhZBgAPOwS1I0RP5eeMUZ33Waz+eyzz+BGgcoYQ9ac00GaYuDu4GjKObeYpefMKHtycrJZrh5/9dXrFy9fvnxJCPno42+eHJ8ZZ+uuFULM5nPgHPBrMMZGQZwkCWOCc84EzfM82xWYX4PiSggRBoEQwpMBGFvkGOlxq3S/nwRxYozClYGJcZGV6/UaTVSSJEkvRfXWH+wd7ICUYDS4qWtjzHq9FtxDvNJatwoMF8XQBrRKN2JEGsexlBxxTHCuta7rUnhSSu6c2z9bzjDEQCnVxnLODw6mUsrlas4pa9s6226dpajvcbSgYpxOp0ZppQzwmPv376PzJ8TCXrGtK2ttP05OTk6m0yljDNL7JEm6rov8IE7COIxgvaE1fBbM0dGREJwJ0XUt4INGqfV6XTdNUVTQm4dxzxjjeQF67Mura5TCk8mEOFtVVVMWQRBEoR/H8Xg8ZIJj6VCSRIQwlLxZUWRZURRFXlRSSkA1lLOmaXSnmqbBGzw5OXnw4MFkPEZ9QAipyroo86KsiiK31nHOkyiOwxBxpmqa2+FHYA1pmmJaC2w+NlV0qg38UOlOcBnFoTFmtVoE0vv+L3/v733/l9I0lZyuVsuf//znn37288V89Q//4T/83d/93e12q5TGY0ElJ3wvDENrjXPOOQP6bL1cYr0H8jghRPgeMDnOOSEUqBvnnFBR5FvTKdTEb968fv78+WAwMMakg55zbjQaOUq7Tpd1BXa7bTrnXJL0i6LY7fKry1mWZf3h6PLycr3aGGOcdlVVYRlXXded0RCY1lXVdR2Q8iSKGtVgFqqqqs1m5fuhECwO4n4/aXU7Ho8Dz6OUKtU553SnwshPgoQyp5XFpVvM51prvJThaBQG3qNHD07PjuGHjKItCAJCqRDCD+RgkHqS93o9X4T4d6/nM2O01vrhO49OTk6stcLzrNaY8UcBzSgjxBDfJ1oTSzer1Y9//GOr7Waz+bf/9t/++Mc/pr/8y79JKe2a1lrLKB0Oh8RYYxREKvuajgvUYV3XCe455+DFh+F2znnTNFZ3dVk9ffLEdF3a7/fjaLVaffu73/7f/e//4Fd+8GuHBweccyFYGAadVnVdO2KMMdfX19vt9uDgYDod+76/XW/+4n/8mTHmd3/nf3aU+F6AwUBrLVh8kJsYA3TOMUaSOHLOPH369LPPvmia5qOPPnr06B0hpe4Mmp7dbqe1HY0GCCXWKACwURSpzrx48eLrr78uy3I8Gb777rtJkgzSEWNMKaO1Lsq6bluoHyglZVlix58xBkug8zw/ODi4c+dOHMdV2Wy3WyEZCgg/DHzpcSmM0lVTU0ek742Ho+vry5cvX47HwziKjDFth3Hx0DkTRRHWRwDchqQGVNF6vR6NRmk/2W43uu20c13XeTLoui5KYngrcM6Vatu2jeNwNBpZZ9q6efvq9V/91V/df/TwW9/6FiG0qirimFKKMMr5ftuG74XS99q6MVYdH02iKASmmOfFf/pP/+nw8PBXf/VXhZRaWwToqmogzLJ7x0gHVAMjPFrr8/Pz8/M35+fnaZp+73vfo5S2rWrb1vM8ZykqJOhPl8sVjEugu6SULhaL9XothLBmXwHHSWjJ3kcDdTNgDKD0gNYZY3EQIjFLKcHV4heTyaSqqjAMcRvhEA21KaXUWLVYLFRnjDEYwtDOAQS6VfTD21AKkfR6GPlZr1ZaWck48l8Y+aEfad1BGuwoMUbjGVJKMQMFrfdut3vz9lUQBGdnZ/fv37/V44dhqJXFzt1+vw9rq6OjI0xpOUbfvHmzWq3atj04OMAEVtd1YRgBzGCONKpzzmHrEeao4ziGfyMimi9kq1urNPIr/lgY+WEYBoFvrQPLDyUp4WyzXK/Xa4j2pJRN3cX9HmMsz/Oiqquq4kzutZKcg9EDTiZvfOdBCFpLer2eY9i+6vAoYJObZVk/Sd57773xeIxy5Dvf++719fV2u378+EnTVEEQad2lvQFk0UzwrCyAuLRVPRwODw4OBoMBJharqhoMBmf37jJGttttr9cDYE/Ifl8vwLC26TjnbV0joG02m/lyOZ/PIZQ8PjyACchoNIiiaJtnGMcDV4vpkF6vdzQ9UEq1bfvll1/+1V/9SGt9dnY2mk6yLBNc+r4vvL0iYr+Sz7Fb8AaIzu2Mm7UWdmhA4G5bf5wfiE2l9BkjACxhn8E4Aa2MIg/6EIgfiqLAdKExLo7j+/fvw55+s9kcHR3EcTyfzyHY2m63vu8jhhNC0HZiPhQj22EY9tMEUQhdmecJX3o4PMRaz/PKukZr4ft+XmTW2rOzkzTpTaYjX3rFLjPGOEah8vY8z1pCKQ09X3CPCo7Barj0EWLrpqzrcrNad91+QwuMDz/++OMg9DD9Ewch56ypas55WVbz+Vx4cjqdDIdDQm2elev1utVqt9sZY7uu2+5ya8lyuWzqTkqJJjNM4jAMb8c8Z7OZlByHXwhhVAstGkCzxWJljOo6fXx8fHJyggq4bduqqq6vr589e8Y5T9M0z3NjSa/Xv3t2BptDsGld13HOKXOBH4WR78mgU02elc65sihuLwt0L4LuXaMRFm7HQsXN3hGsALdWS+lr3cHgwJPyd3/3dx49esAFtdakaY9QO7u8evbsWdM03/jGx4QQ5vZLUfuDFM1PZzTULCgfGaF1WSrVMibA4UZRRDnv9/uhFzLGQFAqpcqyNMbmeb5Z7wwcAKwSQjRNjbIGC6d7gzQIQuRrYwxx7Hq+wDi50a4zerPZXV5c9fv9PC+x+HK323leEMex3u/Ws5AVcc6dM03TBL6vrYLsh3OeJFHoR+v1crlcU+o4pVEUHh+fDAYDjB+qtvM8SQj1fU9rg8b15bPnUgoZ+HgOaZoSaotdJoQ4OjoYj8dnZ2cwwbfW9vtJlmVcULjETafT8XjMpayKom6bIAjiNJ1dXFxcXERBeO/ePbAxbduuVpv5fL5arzebzWKx2u12z58/f/3y1cnJyd7q4fvf+/UoDoilhFhOuFItIazrGiklF7Rt1Hgy5JTtdttROoyiyBmbFXnXdVVVZVn25uK8qIuQ+++88+ijDz/85kffeHDvjuRsdnV1cnI0GI9qXafDPnx+IbGqmpoxNp1O93rDpoEMdjAYCEYpccvlfDgcf/nll51W0+m0l/T7/b7We3NzYC1d1yH8UWJHo+FwOKyq6uXLl5vN5oMPPqzr2lob+FGrOkIYLFKllGVZJkkghTDGcCYBocEm+xef/owx9su//Mtt2wruLZfrtlWdUpfX1710OBkNwjCUUlBK82JnjBkNhoyxt2/fnp+f/+IXv/in//Sf3r97TwghPGmMqtsO2IkQglGxWq2g2IA93XK++PGPf/TOw0effPJJUdVQgyVJwjlFSYHSG7+WUoZRRBjbrZer1Wo+u+bUbbMiiuLp5NAYYxxhjMESBv0K/BeCIIjjMI0TWBx1Rj/56smXjx+fnJyMRpOyrtI0jcLEWssEb5omjpM4DLlw/V4MTh1STVQwq/W667owjOXf2itYKWUYR1GYtAhS82uobaIo8jxxdXWFMQLOeVmWztEsy6whXadg4I7pHoAlVVVxzm+JgLqu86xsmkZ6/M3FOXRgqjOwCAKRh07U8zzo2ELP32w2u9324OBASg8iFX2zMWk/NxQG+FF4NePxWAjx9ddff/7554g1w+Gou9n4Dtuztm3VjQ0baAXPC6IgdM7ptuOc77ZrvC9wDc65/qDvnGtUxzkfD4aAIqTHgyAAVFZVhRAiTVPkmKpqEGTbRgVB2DRN09Scc7gNOUYRiAkh2+12vV4Di+WcO0e6VqPqatvWOILbhFKSMTYajYQQdVkh0wshOHHA27DDxDmndIsqE5RN1TZCCME9OEhZpWE56/v+Yr15/PjxeDzu9Xptp7uuQ2IO4gjyHSFEEu4n1EBbdF2HLZlV22RZxtxe0odbjPKiruuDgwMkoaOjI8+TL168AAYJyWpT1egDuRSW0KzIJReUUjiGP3h4/969e01Toagty/Iv//Ivnz79ejwej8fT4XA8HA4nk0mWZRg0Mdo658p8z8qlaToYjRaLBaV0OBw6o58/f35xcXHnzp3Tu6dxHGPQAQEHPQDu5mw2e/ToUZqks9ns4uKybRvh+XhHRVFgva4xzvd9TwbWWjCAQOkwZYKDAbB2t9tBrIZnAngpiiJLKGroruskZ4CQ0TagPlutVg1qdEcJIevlqus6DO0GQSSEUEYXRdG2LTbzbDab6XjieR586YAioLsGWolyQWvtB9L3/eEwHQ8nvTTJd3vdEoKwtbYqir321/cppZi8S5Jo2E+16ZIoNp3CH6jrej6f+1E4Ho+TpK+1bsrq6Ojo7O59NDCY6jdOc+EodaEfLZazy4vr5fJGwT3s//7v/36a9rfbrekUpdQZK4QAhtSqrmnq24J1u91WbYtL0dRdWVdtq0Art43Cw1+v10naR3TaOwLc8H2z2RXkWU3TxHEPiQNeP8YYytndu3cxNzCdTj3Pa9v2zZs3cIvw/DBJerrr6rrGSUDBp/TeSWcwGOyjRL9vjMm2uVLq+voaw0PD4TDyA/icXV5eQtKONVaB50spCXNaa3mzoaht2zzPx+PxP/3d3/nOd74TRUHdlNvtZrfbUObStCcZZ4zVdRsE0W6d/ef//J8///zz6XT6/ocfPHz4cDhKuZTAFI1xYRgO+kldl9ttBiNuIYSjPI5jTqi1Nsvyqio3m+16vdpstmEYUsJ3u1zrjlI6ngx93+/1EkrpfD6v6/rLr79umub3f//3V6tVtitms8XLV28453gd89VyNpsRR0FoJEkipc85B1CKwGgdReWAKX5jTBQHQRD0ejEuS6/XE4xjcjbLsvVyoZR6+fJVkiSj0SiKorTXB8C8Wq3QhKzX68FgEAT+cDiUvgePvaqq0l7fOUesfvHiheeJ999//+zsDN4FaZpGUZAkyXg0slZnWeGcieKe0m1dtbAUmc/nP/vpT2ez2ZOvny2Ws65ReVE0ndJaTyYTrTUYLdTZQMjor/9PvxVGPnPcOu0stU4L7jFOjDHWmrKsfN/bbrefffkLQcTDew/OTk6fPn3KOf/gow8/+OCDyXR6fHJ4enp6eHgYRcF0PLFOW61QeHq+XK4XT548vri4CMPw3r17vi97vd5wOESKBX0A+lkppVSb7banp6dhGL569eq//bc/2263v/aDHxwdHcHtA4gFEEJcbM5l29aQIgEULavi9evXz549E1w+ePAoCILQj4wxWlvjdK8XD4dDrbVSBiRXEHgYZMuybLfb/fCHP2ya7hvf+MZoNHHOQYtwdXVV1/V4PKaUCraHagB1WGs3mxXG4l69enNwcEApLevKWovdz6gqIDyv6zpOwuPDo36///jxY2tt6AdBEOAn4yHAKbiqKmutMQqedaPRaDAYOGcEZ3VdzufLJ0+een7onIuiJO0PhSeDIETaM8YYo8uy7Jq2KLNhOkiSZJvtsu3uzfnbuq6HgzFQItQlSZJIjx8eHKOlBvATxzHnewRou11/9tlnP//5zw8ODvr9/ieffEIpxd574flgEFDOO+ckF845aEcAcC4Wi7qujXaMsdFojGSPcOb7vnEWrTPoP1QAaAR/+tOffvnll3fv3v3www+1NTBfuSmjYQ26p0sIIVKI0WjkC4mtatPplBIOmCcIAiEZYGe0pJzzosidc2ma9vsp7D/Ory7Xqy0kq0hIeBSEEGMVZcz3/a5tlVKRv4d8PM8zSs/ncxQKGIYIogClNmMsCELPk2hXpJRh5EPJFIahtfaLL76YzWZV2fi+f3BwkKap1nsf8D23ay3IHeF7oFwhVYS8YLvdWkP6/T7GiAijqJsRjECMhmEI5xcUoDeTARB6O3SWsCCaTqfOubws2rYlhFFKqbNOm5OTk7pT+GOcc8bEcrncbLdJkqBqtJTleY49CpzsFQLod4uisJQBSHj8+LE1e18Vd7PEF2Q3rB+6ruu6LvC8e/fuUUq22y2MVQmBM/uuKArheUDahBD7nbec3aoFBoNB1zVQ6rx48WK921LK46SX9vqDwQDXCqJpTwhCSFnX3d4hNuGcHxwcqLaZz+dVVSGhfvDBB6PpBIaKQGcx84u8WFUVJ+zhw4dl3a5WCyn9uq5xxaCjsoag0oUpA0bnQA5ClAancvjCYNj5/PwcXKqUcjAYYISCOnKL/QN5ApeKKwy8iksvSSLISPAn0dYqo/fAv7U4kzez3iKKorrtGGNWqyzLrq6uPM8bDvoIR1JyrXXbNbpVddeEng+LDUIIIOSuaZXROHLL5fL73/8+IYRSF/i+c6Ypq7ZtOedS+kdHR4SzrmvCMNxsNn/913/ttJlMJu+///4HH3wwmYwc23d6XFApxbA/YIwKIZummc/nT58+/eLxV//4H/9jlMKjdFDXtS89Qsh8uXCWImfXXbvb7ep6zx5E+7W22as3rxeL2XA4rOtWSp8xFkc9BEDnXN21GDWA15pzLs932ErSti1zzPdDS0mWZTgAVV2j7oGK8e7du0IIXGe4Jl1dXe12O0QAFBbwnLPWVnUB6Bf/3HA4HA3G/s1GbXCLkA20VQ2n+zRNF4v9eXAgngjxfUkp5YJSSs/fvP3GN77xL/7Fv0A85IJSa5Vu67rUWmNAh1JOKTXaEbKfH/z668ev3rzO8/zdd989OTk5u3d3NBqVZVnlRdvVztJer0cFV0qt1xuAqWVZLuarMPLbsu2nieBe13WDwWg4HAKvMVZ1XTccDowxg/HI87zdLjs/P4+i6PLycrlYv3178fTZq7Issyxv23Y4HuNEYQ56sZxvdxm2BTx69Gi73c7nS0pQq+WIfnEcM07SNB0OU6UU0oHuFGZZyrKkzkF6gaUymNl69OiR7/uLxQIBJw6jm/1vwhILVhe5OEmS4SiVUmL6FcZMbdv+k3/yT/DBoiB8/ebl6zfnz58/rarGGLXa7jjn77777r1799qq/vf//t9vNjshGLE0iiIv8JGGQL8ikoAfMMTR3/6VfwDZPMggKHW+/OqrsikJJXfu3Pn444+/8Y1vvP/+u76Q52/e/vCv/uobH3z4wTc+gk9BOhho02F/U57nu2wThqEQXOl2u90mSXIwGfd6MfZzp2kK/wyx9xDfEsLgd4KWKwxDZ/ViMe/1ekdHR2EYffrpp3/xP/5HHMff+tYngPUwzoYcTAjhzFdKadM1TYWQcXBwID2xmC9/8YtfrFab6XR6dHB8eHhojJOSE0bBXqGj3W63WuskiZIkqari7t27ZVn+xV/85Y9+9KO7d+9///vfC+MIiZBSGoax53mB54N2AeobhF6/35eSf/rpp//hP/yHv/mbn/3O7/zONz7+5mg00soWRYGABR5nbzMYRrjqZVl+8fmnd+7cOTs7I4SsVqu6rsu6AlAB8EAIVtettdr3w14vZoxQRg6nh/PF4smTZ4PB6P69hwKCyl2htd5us6urK601pa4sy041eOWj0Qgz7XVdv3758vz8/PDw8MMPPwyCQHocudD3/bKojTFFURLiOOcoyI6PD6fTaV2XL1++/vzzT5VS0+k0TdPRZCqlD+kbGpSmaZbzhTEGYvbpdNo2CjrrN2/evHjxsixLpE/s9knTVFsDXubNmzdto7qu085aa2ezGVxw6nb/xgkhs9nMOQfcIggCIVi/34ceSGvNGTs8POSEto0CKbbb7TBKHYahIwZhDhkdn3Y+n0spe0nq+37c74GqRn8PDbJz+2RmnO26Jo6iJEl02/m+H8exUopTBo+x1WqFpWPvvv/uaDTy9oscDHx3GaNgK6qq0qaTwo+TMI56hJD5fL5er6tqb4mHQ34zZcphAcCkwIEHF48Sp23bPCsppYwJKaWjBNQAykewFUIIYh1WPMFL2loL4unq6oLcjN8yxoyz0AJqba21/X6/KAqjdOhJ7Yhzbjgcwra01+udnJ4ul0sMsRtCoyiq65JzTowFd4YhhiiK0tEYN6Xrul7SB4642WyA4qDyRqG2x1yd2263hLg0TdN0AMwJzubj8dg4h2k1IQS74QQ9bz/zvB+PHQziOBTCK+pqs95+9sXnRZbfu3fv8PDQOQcWcrte+77fdJ1SClT1YDDgnCdRiJxX1/XV1dWTJ08urq/G4/F7770HuTQOGxqM3TZbL9br9XqbZ2AxPM8jbF+A3rYcKKP5jfsoEBqAf3i5gFUQCVEOwgWtqio/DDzPE4wDM0Nhx28W4FBKoyhB8cEE7/V6nBLEUt/3V6sVpbQ/SJubrQaoulTboXxUSg1G48lkxAjF+0oHPerIZrOq67oXR9baJIniKFJa3zk7K+sCFi1oKQMvXCxnZVFbYsqy/uijD6IocsQkURzHYSA955znBYPBIEx6lLqiKBgju13++vXL5Wz+4uWzPM9PT08/+OCDs7PTk5PTMMFeBGM6Ayx2PB6HYUQIwQDdcDgsy/K//+l/e/LkyaCfHhwdNk3z6uUbY8zZ2dlgPCnLEubDdV2v1+sgCDinynRd13me8P0wivbzgOBeyrJ0jO5FDnE8mUzyPIcZdRzHxpjri/lutyvq6vr6OgzDyWTi+T4obxTQ+Dnb7RYMBh4y8gsY3v3J7/XKsjRWYVYaU6KMMer2nmdoiq6vr4GRmE6hLPN9X+vu5OTE87zFYtF1ervdKtVyzpNelKbpaDD85V/+5Tt37oSh3zTNar0gsOyhVkrOCK2qJsuy9Wo7ny+ePn2K4uajjz4ixC2Xy7/60Q/ruv693/s9whmllDnSdarruqurq1dv3zx/9vLly5eUUsbYYDBCv+pxgVk3Sul0Op1MJuPxsCxLLigsKruuVdZQSrU26L0vLi4W89WLF6+urpdVVQMNunPvHmovpVSW74QQvX4f1wHV6maz7fdGWtuyzNGROueyfHt4eDgcpihYnXNt/bebjoxSCPKwT59MJogzkAxhmPRweoBxWi/wYWsADIg6wjl3xHRdl4TR/fv3h8P01atX/+N//I+7d+8yxna7HafMORfGiZRca6udltJXqi3L+u3bt4eHhw8fPiy2hXU62xVKKeQgSilaGkppFEVFXaGFo7/1/R/EcQwCDhrk999//869s4ODg3fee3c8Hoehj72S1trtZrWYze+enUop56sl5zwdDNCscymMMavtinPuB5IxFoa+EIJbEkch8oFz7uLi4rPPPiOEfPvbn2CcMAzDqmy6rkuSpCiKvNjhKTPGhoMxGNyXL19i19Uu20AjAnoxCpMg7O2vQVdXTe15YjKZ9PuJ74eU0uvLq81mU5fN0dGRbrtdka82a6X/1iwjTkLf96MowFxSv58kSUIII4T85//8n1+9evUv/tc/wFoSKX2ljFZ2vV5vNlvcMYR+xonW+uzsREr/s8+/xKLD6XTqR2EURZPJBNHK8zyPSxR/zrntem+Qg6bnq6++stZiWQqltGkaNLiOGEaFsWq3zYejNIqC49OT0A8cZZRS4lhRlK/fXszn86urWZZlQgDFleAifV+iPDLGHB0dTCaTo6Oj8TBFWzAdjymlbVcvl0ujtPQCpXSnFWdS6bbf7/d6iXOuKDMp5eHhdDAYad3tdrtXr14dHR2dnJy1bVtUVVmWXdfpriuKQit7SxAzxpTau/vAG2I5X2y3Wy/wMfEEdmC9XgdxxG5M4Y1x6AI9zzNu/7KqpkEdk+XbxWLh+z4eLGMMS6yrqmqrOgpirbXvh7fKMKRSpRSlDu04stFtKUYphWOCMabX60VRgsxUFHu6aj9zxBiljlgdRRE2gQADwN2GUhuEOFoxY8xyucx2e/uP9WaJgYkwDJumLsuKMZpl+Wg0Qnna1B12D4AtJYRcXF8BRgLOcRtH0Oo453q9nnM0SZJdvv+oqNrH4zE0RqgYIHTTXVvXNWH7lI/PDBYGlRzeI54/5NJx6GONLmPC9/226xhjjAn819vSAdAU6mO4xoOcwkor0Dc425zz6+trRjmqAaQo8DjQxgE/ABJW1zVkFlGU3Fbt1xeXtwujlFKMkziMgLxCtdM0TdXUTVOHYfTo3XcPDw8JozA59H3//Pz85cuXeJLYQoEi2/M8fGzqLDRbx8fHo9FYa50Vxfn5uZQyTVPf98uy3Gw2WC1c1zWl+71bQghtDAhrHMvbLALVlO+H/X6fUreviW+eAJoBQFYom5CYUYUbqwCct21rtENZoLVmTNwIxdStLo0x5pz2Awl/O9/3t9st2hvwiQBNo9DfT3H2ekrbwWCgOyU9Ph1PrNXE2rZt2rZ1VkdRdOfO6eFkyj3OCY37Pc4llAPOOavsJtvUdZtl2/l8eXJyFIYh1oZ2XTceDEejUdRLtNZZVmjdEUaFYIEXMk6astpuN/Pr2Zs3b548edKZ9v/6f/m/SY9vNps4DkM/QgBpmsYRxjlnUi4Wi+FgXBTF8+fPtda79SbLt3Vdb7JdlmVS+CcnZ/1+3zmaZ+VsMYekYTKZnJwcobolhPiBXK1WWJUNBnA8mkL1Syl9c3F+fn5e1yUag+Pj40BGUsr1el2WZZL2x+Mx1JDL1Qq9x16wJQTmH7uuQyhAJR3HMY4BxgzH4zHscuTNwnV44eK04IRzxiAhaJqGcwqeEVFLKdXVndYa1lZpP/nggw/+wT/4DYgoiBDFav03P/3x+fnbIAiC0BNCNFX96uWbpq7fvjlnjN29e9/3/cvL8+vr67//G7/+9/7e3/N9/2p2DW8wrfXF9dWTr589ffoUXcpgMNoj2c5SwkFVSyFgpiWEoNYsl8v+sD8ej7/3ve+NxgMUGfDjQEFptMuyLAgC52iWl5vNDvrFbZ4hLPT7/W9/8omUcrFYQC0npVytVsbY7TbbbXOEGiEZmpamabbbddu2WGw1HA7DMOR/J2kCcvY8D7QjEgfCoLpZCY/BrF6vFyXJoN8Pw7Dr2jzPy7xYLpe7bAN989HREfpDZG2MPQ3SURB6YdxjnDhLuWTWEtAOVVXVZV2WBbbEhmHo3Xi2dV0Li7UgCgGX0vcOT+I4ns1mvV7vm9/85h/8wR98+9vfjnpJkiReII0x2hqtdVHklNJBP3VWF0U2Gk3iONzt8sVilhXl0dEBISyIfN/3u66x1gpfCiHyPG/LijqiFIaQ+4yx6+vri4uL8/OLIAjee++9Xq+3XKwhp+j1ep4v8KyzLGNU6JtllniIv/j0Z3DeAlrz+tXb8fTg7p37QoikF1nipJTL5RLVWxRFkgtrdVO1n332i5/+5CdJf3B2517S790KmMIw1Kbbi7QYQS5nTNy5c8fzvO12O0z7y+Xyr//6J1GUHB2etG1X1/Xx8Sml9OrqqmkaY5RSXacaZOWDw5PFYrHdbosiH4xHjx49wlfAgXPa7lOOsl3bQk6IdufWS+by8hK5E8A1WqUgCgXj0vdA+cO4D16X1trdbr8y6Opqtl6vGRXIB+PppCgKGJVNp+M0TbXppuNJFAWB9Jq2klI2VfVnf/ZnnWqmk8Pj42NtrRQ+IAdj1cnJSdPUgGoJIVgjGiehMSbwo6+fPf3TP/1TQqznBWdnJ77wUR+AGt7tdsgNQojJZAJ38jgKrLXz5SLLsjdv3pydncGTCdbbGDYuyxoIQas6vM2jkxPf9x8/fgwvzaatIM6AIkdrLSW31jZNJxy/RYDw2CGjAV7ied52u4YQB+4GN+psYoxhTIDqTdMU54dShyCCbrVpKl/I0XiA6u3W9SOII06opSSQnlLq+PhYKXV+fn5xcQEcDrIP+PWHYQijatBDnbamU2ES9+OEe5ITrp11Wm2yHWaUALcANXHOwZ0BD5lS2uulzjkmOHLercBc3ywwQVb2PM9q5ZzLywrhACgaWDxjDL+RJG+3WyE81G2UUt12dVUFQZDnOeNcSgkMGHNSe8QoSYqiuL6+Zowp1aLaNsYoazzPU8rgg6FwFELEUYKKBL+JJ4xdn6ir8JU551mW9ft9tEPWWiml6RS+ESEE2inOCOY/8N455/1BCmFNq5Tv+1wK6ki/34c3KSIvRIphGD569AhvB7xkW1eQnyulRqPxdDoVngeK1lr71VdfffHFF4jp4N/R5gVBUBSF9DwIhhaLhRBiMBgAD8NLFMLrum65nCP74oLjjqsbv1+0TPrGLTOKIsoc6HLn3GR80DTN9fU1MhkhxPf3p5cxRgkXklFqHTG3Traccy4FIeTi4sIYc3BwYK32b1bi3MrRoigapn3OeV0WURQVRfbs6VPnzJ2TU8w/fvKdb/3Kr/yKtXa12XVdx7ms61o1bRzHGMgATuZ53osXL/78z/+8rPLID+7du/fxxx+PppODg4OqqjBHZrTmnHucE0I8IYsym8+Wj59+9fDBO9ODsed5hNhXL17CDoMJzqjIq1IpzRirqxYZbj6f9+Mkr8qyyrGFYrlYA4k3xlHCtTWe5992WaB9heBnZyeDYR+/D/oY23KNMY8fP357eRGGYRyHgDnjuPfg7j3nKEpq7Sz6h4uLi6qugWqgGEXrBUEPJJvQDDx48AAlmtYaAz2AcnF/AdgAicQ+jzAMu7ZFP8A5F4I1TTObzUA913V9cngyHA6h4fnedz/54IP3ENzm8/lutyNWh2E4HA7m8/l//+///Ref/iz0Iq114AU/+MEP7ty5N5/PAe0DF0yHAykll0JrXZbl5cX1l18//vLLxzAEKYqCMQEMm1AOMnc2m1ltlsvldrtL0/5v/eavx3GorPnkk2+BOvd9v1MN1voJvidGmqaxlhBCmlb5vo8IH8TRdrv96quvkiR5+OjRbDajlC4WS9gD3ZgMOME9UFVCMpS5ZVkWRSalhHMnHq/kHP029q+jw7wVKf3dpghXryiK+XzedJ21NvCgXGIOk5JhGEY+QBMMyoCyM8bsVjshRFmWWVk454yzIDqstev12loHmhij9JRSeESAtXDOMsY6rTjnCL/04quvIBKCfOfy+uq//tf/+s57733ve9/jkqNNDMNQepwxZowqyzIMfbgDU8qFYEVWatMFfrTLt4SQIPSrqtpu157nhXFE3d7MDVqf4+Pj6fQAYuHPP/+8KIpvfOMb+xK1UZDp4FwCQkcgzrJMm246nQZBsNlsXr58OZ/PYcYohe+c2+WZEB7lLM9KZQ2wk7Zte1Echf5kNERfdXlx/fzlK8blgwcP2I0FfxiGhFrGGOcULZfWlnMuhDg9PW3r5vLycna9mM/neV4cHh6HYdjU3dXVlSMm6fWEZChsCSFxnBwcHARBgGICl+1v/uYnnPN+Px0MBowKvB5CGHNkPp93XTebXaFevHv3rud5l5eXKEBvO9SyLFfbTej5rTZv314gz2GuDSlkPJmwm1WDu91usVg456bTg+l0Gvd6uP8AIK+uL4mxWnfr1cIY9Y/+0T9699EDQsj5+dvXr9/gL57cObvVhA0GA2gwwf1DvtY2Ch42URRl+XaX764urna7bZoOcEyttYH0RqNRFCZhGCprbg/9ZrXfUT2ZTDbrHaaLIcyH8IhSit4dl2q32zlGYUPq+/7BwQRInrtZIkao3e12vu+fnp6u12tVdTBIgxpvP9RDKSGk19t3QkjVAIf8IAIGZozBqlSUdJ4n4OIxnU4ZdUBbnTNOmygO4FOPUTXf9+umybY5l4JThviLFWDGmKpqIGpxzrVtKyVHL3srLAuiWDCurWGENl2b9vp+GHhC7vIMRc8tOISWDsgc6gzwp3Y/EOChcOFSFkUBE2BiLZ5bURSEWMZY12l8X0hMwjB0lIqbnd/z+d6aqyiKum6llLrtsNMTBCLgHxyPW4BHCAFoARXter3e11L+fs2ltZZQCkCrKArOBRB3znlVNZTS8/M32HqJSsJaK4QHYCAIAs4kSLder+d7ous6yTikVLeJTQgBgNzzPOAQ6/Xaj8K2bR0lEOci/jpngEC8fv26aRqsaUMhGEVRHAao1MEZtW273u6Ac/f7/TRNi6K4vLyklOZ5zpgoqwbQYHdjTQdp1L5rCgIUVYgnKDoR0J1zKLzwfpFEMRQCYE9KOZ1Ope+BdIZmBYUv8iKgViGEH4R4I01bC0axmREt+9HR0cHhoTFGK4VSD9uHPE/gn/B9fzQYUkphZF+V+Wg0evjw/mQ48n356tWrV69fbLfbJIn/+T//51obaDTDIL4FYlE0W0owrVJWebHLZrPZ65evHj953Lbt0dHR3Qf3f/mXf/nWstFaywndC3HiWAZhW5VlWcX9RLX1H/3RH33xxRdBEAR+dHJycv/+Ayq46szV7Hq12pRl+fr1a2i/giCYTCajyRiaGWg6kyTJs3I2m2GHKmwwpZRN07VtTag6PBpj+XeS9KfTqTHmL//yL589feH7/nQ6PTg4mEwmEMa1bbuYz7Msmy8W1trxeJym6WA8wQVZrVaEUkApt9JvCMMxWIMmEPPpABG22y3iD/CYoijatqMUIHGstUKXjoPn+/5kPHzw4AHoEaTwru7W67XW3bvvvnv/3p0oCt6+fdt29fPnz2ezGSc0iqK7d+9+8MH7URRdXV29ePZCKSWE98knn9y/93A/wiIokEWL3ec3JGlRFFfzhXMUshxj7W6X4zlARAHhI7akn57ckR6/f+8MjO1g0M+yDOLs3W6TDkeEWOco8D+t9fHR6cXl28dfPUl60TuP3tNay8D3fZ8QtlqtirKqqurx48cvXrzC2A0CV1N3nudZp3FsEKm01nVddl2XRDHn3BMC0YlznhUFGpjpdDoYDG4dg8Gf4h6laQq45+uvv26a5ujoaL1eF0UhGGuahnM2mUyOj49RhODmYspHSjnoDzDIslqtjDGdVl3XNV0H+g4AP+c8jmNCmLWWWI36D7cexSKCv9aauqYmqiWUE90R7umu/pu/+dmPf/yjdDT+zne+3Uv7cRxqbfPddr+ci/9t1Mi2u36/PxmPsyx78uTJcrk8Ojo8PT0dD9OyrjGKhWRcFRXnzFoHmwl8StRVQRA8ffo0z/Pjo1PIIUEkXV9fK6X6/T7YRulxQgh8mwDkLhYLnPvNZkMIoUw0TecIc45QsSeYAimFZIN+Lwz9KAwJpbu8+vrx04cPHwIYRNhVSjVt5ZyDf7cQgjhWFEUcJ0kU4/vO58sXL168ePFCKXXrVQM8wA8kKkhjjFZWOwuDImQIzgF9ldjxHgQBhNLbbWaMUU0rfA/YSVc32IPZGc0cUdaEno8cVpQlQS1vqNY6CALnbF03TVNb4nxfCuGlaQp7PVQnzhHCGCFss9t6QmZZtl4vPc+7d+dOFIXr9ZJxUmR5r9f7+ONvQHYNTF7p9uT4LOlFWLLb1J0xBv33cDj0/fDi4gKjTKd3zt555yFmT8qynM1mUEQ5YqD86Fqd53k6GiL5hWFY5jtgjWmahkFsiMuy7Pz8HHsSF6tlHMfOUgy913VNOEMUu+1WGWNBsPf9Ar5FCFG6dZYSQnzhR2F4C5YA40RwDMOQUreXuJWlEMJRojogNCDpc5SJ5GYp517iLRg6qq7riNF+7AOlaNvW7gmjEBUVmkhIQTF6Fvyd7dd1XTddy4gL48hqk5cFdnS1bQvWCZ8NPTHuCGhooGUogiEYwmHD18SzwhISxpgfhuhTX716RZ0DyRgEASHW932lDP5FYGOcc+McsAEgVdj1W9c1IcwYk222txNGaMH3jmLG3CJtKPtQTaJ6wPPpjMa7ds41bYvcQwhpmlZrPRwO7927BxwlTXvGmNVqBeZRKSWlL292aRjtcJ27rlNdA9DraHqAS7fdboHrMMYQCoBsBUHQasWlYIzVZQUEyxgDveDtMNTl5WWSJPfv34+iaLPZlHkG/nez2aASzYoSyQnUcK/XQyNBKc2yolMGpipCiK+//urXfu3XkAluTpG7PRgI/Yi8ADzwZ4qbhHEDx3p4YtZapRTlDA9ZKUUdudUM4QMoZTabDehFYCphIKSU2BoJ1NPz/a7rQBgppbbbNWIyY8xoFcdxP44IIVEYnp2d3blzCjGGL2QQBJQ551yeZ3Vdn5ycCCEoZT/5yU/quv7GN77R7w0wLlBVVV6VhJC2q6MoivwgCALq3GKxcJRMpqN/9+/+3Xd/6ZfeeeedqmqACDpt8jxXSqPF0s6i/A3DYLfe1HXddd35+cWXXz/2vTDuJdba8/PLzWYjbzbMep7HqOj10vF4LKVUqgUWWzclCPGm7q6v557nEUK1skIIyhzjxvflw4cPF4vF1dUMpp2+7yMyo03N83y1WmE1WQf3ECEYY6PRKM/zVhsMnbz77ruM87ZtsdAQT9U6DRo9CIK6ro0xzlLUW1Cp3ur2QAQ3TVuWJfoouP6CX+acHx4eRqEPJ5fbGqLKq6ZpKHVtV2fb3Waz6qfJo0eP0LrfO7uD9AqibbPZ6E5xLo0xu93OGpJl2fX19ZdffrnZbA6PD6qyxFg3+ofOWMbE/fv3e73eixcvirJumkYpjRltFEBBEBC3V4lYp9u6btoqCAKtdZqmQeBVVbPdrt//4KPpwfj5s5e/+MUv8jy31mptr64ujo+Pj44P0jQdDSdIbXlePnv2LMsLxhjncjwea4VIpW6HpQgFedeBF/J93/ME1FqEkDgMEbWqqsIwDSokhD5MVUM4CFDq4uLi5cuXSqnBYICR272fXBBcXl6CeQf8OZlMJpMJDjnUWVEQXVxcYAzIDwPnnPD2fiiIEohgw+EQc8fwyavLEoYAgNUxV6e1pvn1eV2XeV5SZ/q9gZCMUUE4+fTTz8fj4dHRUV7sojAp891wODTEKWsMcZLxqqrgfbzdbGDD3TTN4eFBVVWM0iiOtdbwyPZ9fy97J6zbG0dVXdccHx8jT2y329evX19fXx8fHydRD1p1FBl44mhGt9ut0i0iVJqmnVLPnz37+c9/tlgsHjx48M6779W1YlxyLnzff/rieV3X9+/fGw9Trbu2rXtx0h+kXael9JG9fvHzz3a73XA4HAwG2nSr1arf71tDiqIoijKKotn1oipqIcR4PE56EXrTLM/v3D3dQ4ueF0XRaHKAaTtoq5Mkadu2bhvnzGAwALJd1+1ms3n27EUcx2EQF0UB+kAwbokj1sF2xVFCrKua2hOyVd1qsbTEHR0deWHgtMmyvGs1ZAEwkYuTkFJqrfHDCB1beLMlWilTVZVSpizLOA4xPbDZrE5OTqIoWq4WlFJqHcgFY8x3v/vdfr9PqNW6U8osFrPLy2tjlOcFw+EQdQBjjFHx4sUL6GyUUlEUJWn/+HAKhdxyuZxfz5wzmAlF69DrxxjqhjIMEPF2u8U+uNFo5IdB26imaVarFSIgpTQrC2tt5EdYCQARJcIupQ5zYdbaNE3zqqyqQoPYbdowjIGux3Gc5znQFMZImqZQNOd5niQJRvCMcavtBlNFUH+rpkYBpLVGrqXMISkyxoZpH2JtDJQBdt7scmRZlHHsJt1aQ4CwpoMeHjITwhlTt60zpqgqEHm30uzbouqWNMG3QCJnN0aIiODW6rZtddeB23LOESZAbQAzR44XQjBigcXSmwkGSimmNdM0xX8Clpb0B3Vd42PcQPdk73zGGKP81hEtuLHGjqIoLzJkmiiK9hUY5YBJFovFYrVEtWeMGQwGjDHw7KgAtLa3SMPNrImwN+aTUvhoxiBIxwuCjJIzholx+F9Ya6+uruCGg/iAZdhuTzBZTIw65zinwEju37+PvIIE/OzZsx/+8IfO6MlkNB5PoZ+z1pZNjdfaNE1Tt+v1erfbCQH1caq01dagJj5/8xb11m63w1Qs6BK8CASuqmy01hiAwG9mWQZYEeGurmuUVrgI6GDN/n8Kv4m8Eoa+74d4bkVR9Pv9KAq0UowRDDHgjeCH4+KgsOaUCcmBf0SBWC9XH3zwwbe/+TGsaowx0tuzomBOtbNogdI0/cmP/vov/uIvkM9Gg+H7779/cnYahmHZ1MBoe72eZLzrOk5ZHEdt20rfu7y8HI1G6WjYdaosyz//8z9/+/ZtEATTySGuofCkEGK32zFG+r2eVphq513XPXv24u3F+dXV1eX1fDAY9Ho9aFuVUowJZ1nbthcXF0q1Dx8+jJOIUiclj24ULLBqu76aR1H08OHDk9OjIPDqun38+DEqdUr2dWqapkg08/kcACdjjMFxWilCyOnpqdYaHivck5PJhHEJEgAKMM5501ZA5THnZK0FP4OaGxO+iJwYd3WOFEWx2Ww2m43nycPDw36/j0ua57l1Gga8OGChH/SinnMuDH0uaFs3bVtjVdSDBw9OTk4wiRwHYRB6yFZto+q6ff78+fX1ddsqTBolSUQpLeqKWicDH3j/dDqFrp8Lb71eYz93GIZeEGJlC6W0KKrZbNY0DerLNE3TXux5Es+tbVvnTNfp7Xa9XK6vri6SpD8ejyFM9IJQSE6t4ZzneV5VTdnUTdNEcdLr9Sjlvu+3jXLOYc+K3Q+XOMoc/HpACmFMErSsajs8xvF43E8SSqmjFPM3kBPgqqLzuQ19bduenJzgdSPgCMbKskTNh0FsDA9hOj4Mw16vJwO/q5vFbGGMQVMHrD3p93u9niUOm3IwfYW13yi5fN+XXIRhiLrQao12lxBCZy8ew6GqbVtOaS9N0YfhfF9enf+X//JfOKG//uu//u6jd7Iib7SSvme1aZomTVOtFKbAEG5k4BNCdquV0ppz7hijbL9+G4cPTFAQBJCgVlU1HA7T4ZBYO5vNlsvl/HoxGo2Ojo6AjYFDgV2HUiovdmjBwzA8u3NnMBiYtt1uty9ev7q+nj14+M54PKVMMMZA/znnnDOB5wnBEEPR4qzXW0LI1eXs+fPnGPk+PjkUQvheuNlsiqL0PI84VlUNsQ6AKhd0MBgwAViCWWtfvHhBCHn03nuTySTPSniHEEKMs2/fvkXh2LZ1kvRHo9H19XXX6a7rZtcL4CJ6v9iONl1HnXOU+lIa56qiQJJebTaeEO0N04Q70JQNCKmjoyMQRtp0nPNtlpEbK1F4U90QH3a32wCqoZSWZTkc7n0WcC6LMu8lfW1UEve0UWHo3z09Ezeu8bPZbLFYJL1ob4LQavQKN74VHoDGzXIlBMPJOT05AXOndccY2+12Su89DKWUjAqAB5APW2uzIg/D8Oz0LqqKG6dcjTFyavczlVAisxsjD7AnKICCONpPTVdNHISo8xhjqHiQvSh1uF3I5dBsRVEUxAm0L8CfB4OB6VpKKZwIVqsVYwwb00D59+JoOBzeWsXWdV3WbX2zdHbfFGqtlEriPl4x3lFVVcLzUKSiB0K3h1dzi47gmgA0Qs6DNR0SIVQsaJeFx9u2lVxwShFAHd2LBTFhMLzZkzNMe7fSUTChkNkBqkR7AKVmlPQBEWFyvt/vG7OfM3XONXWLsHADj5G2bcfjcVHm+8pVqTiOVachZmrb1vO8qqkhyMDjwjclhMRxnGWZUgbfGqQG4EwUuIwxo/dDGPioAE1B65RlGd6soUR7EIbhbaAoimK328VxzDjvuk4Khs82HA45p5PJhFKKlwvMCU1LUeaL69n19eV2m925cwdTEZPDg+VyiQ7+9as36K9QLSX9XlW3QngAD1aLJTLlbbGlTfd3dfRN09RVCylJEAT37t1DcQBvIYy4O+eg84NuL+mn7sbFHpRvXdd1XcZxfHp6mqYpxL+EWqjodpttXVeMcdigWGuhBAf3IYSQUjhrKaWnp6eqqcsi227Xd05O79696/v+aDxA+QtqrOs6ZY2UkmCrtNYnx8dd3czn8+fPn8+urlebdb/fPzw5/o3f+A04kUopfSGllILt9QN5nhdV2bbteHpYVdWf/MmfLJdL3/ehGfACP03Tw5NjIBBt1dZ1vZjNZ7PZbpf/1m//tud5y80aeq+4l0RRtFoskTWXy7U11POCtq2TJLFWx3HsiLVWG9X2+/007SF64MDcu3fvRtPt1us1qvbFfIW5WghdoDeI4xijr9vNJgiCIAxvG4PFYiGl7A8HnHPKxK0Q8PDwkHP+5OljzAyhP4GoBjsVmqbp9XrYvwc6W2s9Hk/wmhhjvV4CVgHd42az0aaD4va2fY1k2HUd5zQIgsCXH330QVVVT58+BbQ8mRwcHx/2er08z30hi7p6++ptXpUeF45RQYXwvTgIO6M559bqW0mZtTZJ+rvd7vziCo6At34QTaeg4vB9v20ViNGmabC1M4kCNF1xHPV6veVyidX1BwcHCFODwSCK4sVioa2VUjpjuq6V0qOUGueUUpY4zwsARUPmBfkpnslg0B9Phmh9cS8ggIFbrDPWWltV1Xg8Pj0+VkpRzm8LXHDEs9ksCAIMh/X7/a7ruq778MMP9/m0aYwxjBAkOLRAt0qbosjx+03TwNe6q9u018f2rePj47ZtKedt21riIFpA5Qe0HqEMen+oyqAzC4IAkh767LO/BrlgjKE3Skws7hBCcMaurq6efPX4+fPnvST+5DvfefDgoXb7fSxxHDO3X0mEhKG1dozGQehHoe/7z58/X6237777PvqDGzu1Et0AEiQEhoPBwFFSZPl6uaGUYtQI9mAYhvICP4qi7XYLQNI5h2HMg9FYCNZq9erVq+vZ7JNPvksYRTUZBIG2BGUHpdgAbYi1xijnqOd5gntVVZVlCaf14+PjEFNUhLdt23Ua9wcfpt9Pkl5kjL7/4K4yBk3z06dPLy6ujo9P0sGAc1kUhTGuvpl901rXTdnUHfYLSQn5yFBrXZV1XddZlq3XW+l7vvSw2SoviygId3mmOyU82TVtOhzcCMOZ54lenECghplblGJxHHedxqUFo08pBxqcJJGUnBCSZRlUZb7vj0YjJjhi/Xa7DcOYECuE13XNbrMtiiJJkkePHk2mY6ALUCxdXV0dHk6ttf1+H/7su12+2xbQ8RirkySRko8Hw36agKVCc4ZOAq/7xs3Po5R6MsDYR9M0VdX0ej3u7QXReZ5XVUEp1a3GJBpKBKBNqKEBF0kpO6NBDfR7KQbOUX8o3QEVhygbjvkoOlH/EUKiKMLnD4IAC6FRbVBKt9stJ1QIAej7tiQVN35a/GbDV9d18/kcugTASLjY3d5ea8/3/63AKI5RYTSdApgE/lFrTezeEAuD1uRm72TdNkC5GGOYM4CXROgHeI9CCM4lbgcectM0iIAQCSGIA5lYrRfQ/QARAdxYliV2WuDpoW4gXPjeHuhCXwiz3M1mMxqNANWgbjY3FmKobveiKyFgH3BbVfu+7wlMRofW2qppUTsSQhDy7M1aTM/zsI0Akx+r1cYYMxilcRyX+V4+j6YWpmuEEM8LUOgASsnzHGW35wspZRLFWmutu+PjYxwnXBZ2u12YWEpplm0JYRcXFz/5yU9OT0///t//+5vNBk/YaMs5t2RvJ2GMyYsK/6ltW46lxTfENHAvKP0RjiilvheiJIL06rbnRrOEEAqD0Bv5o5VS+r5smqbGtqskTNM0SRIsitFaJUkvTft4a1KIzWbVNJ21VtxsUTs8PIzCEB2XtRpQx+FkOpmOjg6mXVOhA4nD6Orq8tNPPw2CYHp44Pv+5PDQOZf2hzAlUUoRZ+I4PpxMMft2cXHx/PnzJ8+f/eDXfj3p9+Bw1jVt0zSL69kXX3xx/ubi/PyyrCvn3Gg68gL/3r17d+7ckVJiySBWeihrDg4OuPA2q+1qtQo9PwxDBO1erzc9Oqzr2vN9UPltVyul8l2mtSZuP9iPtwkNopDcGFOWedvWd+6ePrh7DwPgjLGr+aJt1Ha7ffr0KWiQfpwopcIwRpYlN+7/kJ+3bb1cLnFbsTzj4OCAEGKIM8ZAPKOtwUVIkgSoxu3AozGmqTuwe+ZmqALwAQIpDjBkc/iBuL9Kqc1mo3SLuenb0RBJhNZ6s1ldX19zQT/66COwjagSBumoqosvvviiaZrNat1L+8N0wKXoxX2ldeCFTPAiy43bN3vI8uhIwZbcXnwppaWkaRrOBAIR6D/UHGjPiqLYrraOGMxi13UNx5zRaPT+hx9eXl56nlfXNTY+gWFoWwUgFvGnbdu26zB8tt1ug9ADhxAGsTEGhpR4YphqFDcuj8DCEXCos865w8NDIKOEkNVqdQuET6dTSB2EEE1VoSB7+fIlY+zRo0ff/OY3pZQ4t1mWlWU5HA6vr6/fvHkDAL4sy/F4HEXRZrfr9Xqc0rZt27aN4zjp9yEju/Xza9WerINCAwQCIgBjrK0bIUQ/SRhjWA9Pf/in/z94aVZVFfh+mqbamK7rwDIcHR5aawVly+Xy5z/76Xw+/83f+AdYj3jbIqMyIITkVQkJJF5AGIbbTfbv/t//r9/7vd+7d++Bc8Za4nkC+Q9C1O12G4Zh1zV1XUdJHHi+YHI2mz19+vTy8tIYc//+/f02e+Lw6Hu9Hji1vbUBoRhTbpqm6WohxOMnXy+Xy6Ojo+l0Gse9y+s59CVRFLdt01SF5wnPC5xzgR/h82utr6+vKaWTybSqKuKYc47zvQpNqdZai02iztmoFx0eHiJbCOEtl8tnz184R8fj8XabOUr7/X5Z1tvtdl+POldVVVU1JycnTd2ilU+SpKoapVRW5Ai4mOdCg+X7Pup9tOYoQKEHH6aDwTBFAcGZsH9rBSQhrEEBAVCBUjoYJOPxGMmsLMvlconDsc12Usooiqwle6MEa7ebjbWWOoLFVQcHE8w3tF2zWq2ePHl8enqqdXd+fu6cGwz7XavDoO/cfnOclNIPvMX1jFI3GAzO7pxwzhkjVdW8efMKNoPoS7KsiKKoLGoYqFprfT+s6xqtNqztpeRd11llEaCFEIPBAHEKVcitvIZJobW2xrVtC9ksRu3qpgKWgAUawM+B7Lobrx3UDWhMsV4d6RDFBDEWVkabzQZryAB0gUpgQsDpHv2TH4bUuapp8MOh3UGRh1Zhr9O/QYC01lx6UJKiv6SUOmNxda+vr+/evRvHMUiiVnUYtJRSErJ31CSEqLbTN+NyUvpAmIQQm80GgBaiubzZJd+LYsB4YeSjREBpC72UFPu9NxDedZ2u2qbIy6ZpAKdVVYVFaWCQUUPgh0OdqrV1zqFA9AIff6DX663Xa/QMxhjsCUWX2WkD/RbWJYHURkk6Go2Ggz0DmGXZZrMLgoAwZ631pSdv3NLRWoAhRfnVdd3R0VGapoQQa7WUsqqL8/PzIsuTJJlMRuPxWN14Nt529kAuwyjAJiVICJbLZRRFw+Fws9l8+umnvhf0er2iKtFzKqWkFyD9k5v6GqUA0E3P85bLJbBbgHxGO4i0MFcBHhYoKXIesIdbqhSbWOAj4HthnISSC0tMvssII4xSpbUxBnnr9PR0Mhrj1BVF0bQKLH8cx+PRqNeLkUTR1k6GI0eMahvV1kKIjz76KA7Dv/mbv3nx4oXnedqa8Xg8nEwODg6kFxBCDk+OmSNKtUkcd/Wej4as8+mzZ1pbqANns9nnn3729OnTqqqcdvfuPkILVLVNL+3D/QtmAYdH036/X5Z5VlSz+dViuVZKxWEymRz0ovi2IaGC13W93e2ATIzH48l0FMcxsQ5C9bZt1+t103RhGAZ+iNdqndFaO2cODiZ3To+VUnVdlmXNhBcEwWKxaNt2Pl/Wde206fV6YRjjG4FyffPmDYjy0WgAyArwAbblol5EiBZCtKrDdcBfx3vsui5N06qqGBV5nsN4HLxBGIYgqlAr4ABDcYicDQFoXdeEWpyNpmkgPSy3RRzHk8no8PAwCL31eu37flU28Gg9ODjKsi3nnAsKV4vr6+umaSbjgyiKlDL4sVVVad2htUO9NZlMnKOAPJHZjTFUcGOM7wW38nlslYD6arlcZlmmW00plR4HZg9pwWq18sMQZSjnHMvOgyAoigriGbB7eNRxL0L0YIxR5jBtBgUeLj6EDcYYwNvgWGBhiDdS5hlSLUghdHGe5w2Hw9FohNoLzY/knBAClct6vT4/P8f1hywsjmNsQQS1io8HxixNUw6+mxAY8mmt19ttHMegF/dZSXB0FNADrFarIAh6vd50Oo2iyBlLCFFtu91uMVJAf/Tf/rc0TaMwhIA3CAKlLWZthBBtWwshppNJHISq7TBa8vnnn79+/frRo0cnZ6ee53lhEMfx8+fPhZQInSBNYHAnGL+4fFuVzXgyPDw4vq2vi6rE81I3IzlYdzgeDQAVwqvt+vpaSHl0dDQYjHzft2RvkWe0M8ZILrbb7WKxsNbeuXs6nY6zLKvr8j/9p/9UVdWdO3c8L4h7fd8Lfd8vy0prBWs4HAI07tBLqf0iHT2fz7Mst9YeH52GYbjcrI0xk8mk7eq3b99SSiklYRiGcZQkiVYmz8vtdrtabYxzWtssy5Tao2uUsbZtoyhGEbbZbKwl6LGUUpPxgZQSa9cwAgk4YTgctm2LeHpLeB8cHCCaFEVhrRkNh/zGXqHI9wbNaICgs/a8gEuR5ztinTYK4ND9Bw/wMW4Z7qqqum4PunLOPS8Iw/Do8MTYPUmX57vdbud50hpz587pcDhsmoYxstlsrq6upPQpk9gq03XNMB00bd22LUQq/X7/4OBgOEyDIOq6BrGyrus8z52jaDTDMMSiCZB34M4Bbo9Gg5OTEyy7ALcFKhNtEywqwqRHKSWOWmuFJ51zbd34N2vskl4spazr+s2bN9AHgJgD1oIbewsymZtlRMF+fdC+OgEDS24cPpMkAk1PKY3jGH59g8HAl54yWndt1dSglhCpb8dtrLWA7o1zKMWQJ3Bl8A9tt1tnDCrLqqriXooYhBItSRJKHTI92jKEct/3tbYoDQkhmCTC2UCmh1d4XdeYBmWMxXEMshg1AcLE4eEhMRYILiAla22rFbRc8IwGYg9kFz8TnBq+kZQyDOM4jh0lAH4Qv9q9x4rLdxmaeM/zAMMURWWMkb6HdREIdsheSikpfIQI/E7btugvd5stCGLgTDAKul0zguXWCC+cU+v0/utotV6vLy8v7927NxwNTk9PBRYyEoKqGsjW3bt3JRebzcbzPGCx1tr/+l//6+PHj9F5TqeHaZqGUVTXNXFgdSlenzFGcA+yD4DEUChC/bZer/kN02qtxcPEgQRg7/k+qBywYJzzuqqEYJxzQmyel7vdhjpHOO3HiaXWF7LVSinl+xI/od/vn52d3b17F+cNyQDb1dI0DaRX1QUOLfiKJIl6cRJGfhzH/ThxzjVNnef5YrG4vr7e5nld19/8+Nu/8zu/Y63FQKvWuirK9Xq9WCzQAlnittutIc73wiiKuqbBflJOxWadGWcxNHd4fEwZQUXYVrWU/MMPP3z0zgMmvKLILKGcc+LYcrlcLhZAmzzPE1xKKTU4UOKklHmWBUFwfHAoJY/7MaE22xVPnjyp6/b+/YewAzXaKqWU7jjn19eXdV0TYmH/cXBwMBqNKLZBlyXahn0O2mxR8oJ83Gw2SdoHF8kYG/T6Sqltnnmet9vtgPL6vt/r993NMGPX1khkvV6vabrT09PBcAhkBeM4XdfdKL08HHVs5ETxh/ILmQgS3jAMsXz5zZs3aZqmUVLX9Wg0wpkBVK+UQU1jCWWcCiGOjg72irQsz2/2a9V1C3SNc97vJ7ibQKSgQvM8j92IAgkhXavwF9GPoXaEsGmxWJRV0ev1iHFRFEH5HsYxXFdweTnnUvpBELRtW9d1EARtq6whdd1IXwJQLIoiSSKQwlVVeb6I4xizvRg3gUVwOhxEUYS94/xmnQDyRdd1/X4CSmG5XDZVjSM6nU7TQR+zaGEYSsYxzyGlHPQHiA+Xl5fX19f4jpvNBugmpXQymTjnPM87ODoE0hSGobYW4RSs8WazgbilqipUY2hl0S+NRiMkYgRbxCL8cPQV1hJjDP1//N//z//sn/0zxD6k4bpqpb93ScWR7drW931qXeD5bduen59fXl5+9sXnaZp++7vfmUwmdV33+n1YpCK2tm0rhMeoc85Jiekk+9VXXx0fH0dhAqg2HQ5u5L377bNlWVZlHsfx4eEhkPmiKLI87/V6vh8655SxWusir4AYeZ7nHLHWVlW5Xq6kxx88uHdycrLZbN6+fbvb7Xa7nVJmOBwK6UOoC4QflQo6j1tN2C280TTt69evX754PZlMTu/eQZON6gFC6dVqVdbNer1O07RrtVLq5OSEComqEesFuhZruy0hxFmK4ItGEGcx2q9ljJMkwU2r69q/2WMtPQ7IxDk3HA6RxQmx8/lcCB4FEePUWQK3QHjG7reJEYtiomlbY0xVloC1u67Txjx48ABaV9BbCDFQzzhHlFLD4Rg0vNZoPjuwV9bofr9/fHwsJVdKXVxc4BtVdUcph8qnn8SUUspAOXkHBwdN0+x2OyiFj46OmqZCnwegG4QX3sONuNi0bQvVNue01+sdTqZCMmsI46RrNSh8vDhjTDoat227WW+VUpSztm11p6qqgu3h0fHhbVJHY4e4hoQHxAhiMuBVKA2Bn0dRANEM+i3sWLytLNu6ttZiGiD0A9/HgBLHq7TWEkax6xqvGMpx3w8BcdVtiz8GYhSxAEnXKIUT4vt+q8wtayn2RlMGfwswEpRSlFIhPOgV8jzHxUbUQEuK+hIFHAIW4mkURXCGws/ZbrdVjkdkUR8457SzURRJ4UE3isrPu7FUwMhP27aI9XmeN01HCGm6Fu0NMCqwaWEYqrbD11FKof9Okr6Usm4bfEFUBuhACCGUcBRGwAOMMVmRV1XVixOtNRa5QqEFmw9oLKT0EYKt1RjLqus6juM4DJDe5vP5Lz79+f3790+OT6HlR63T7/eLqgzDsKnq6+tr6KUgGkMcP7+8wPbcwWDgCInj2PcwpUhu8Tzi9qJD6OhhiYlTRymtqwrYHlBw8FwoMZVSVY39aUGapsPhMIljrbs07bV1vdttldKMUd/3GSOr1Qpv0zknJOsPBqPBoKxrpHD03IeHxyBoECWurq5mVxcvXryQUk6n07t3704mE2yyU0pJwZxzxNiTkxMpxWg02m63L16//vrrr9P+8O/9yv/k9nr/8PLysmtaNCd5Wbx58wZM3Gw2I44FQdCLY3DBVdm0rT6/vCzL0jhLrGuaxlh9fHw87Ke4d5RSZQ0MyqcHB3t5sjE4gVdXV23TOefiXkIIwXMKg8D3/c1ytd2u7z+6/+DhPd8LZ7OZ74dwiFwsVrPZ7OuvvwYWzm4GTrXuIBjF0U3TIXLW3qWFkMdffBkEAYok7ALXzmKcpaoq1bRpmnJPYpXqLa9UlCVOeNd1gS/LsvzN3/xN59zLl6+jKNLGYFgEXRbaElAiOPMoaoMbxyWAT9ba5XJ5cnJycnICQR5AIGYcNrXg/w4GA8ZE0zSEUEJIC11mU3VdB7Bz2E+R2ZVSy+UaVD6k68ihQRAggFPKKKWOEbB7aLrwaYHHd123Wq2gKWSMhVEwGAwC6YNj7fV6lhDkDLjUhmGolEHv1N4sdy7ypm1bwmivF8dxL45DiCtgdVFWeRiGg8HA9/26aoVkVVFuNpuk3wuCAD63AFnBdyGwc06RFAaDQdrrgwZVSm22azTJjx49CuR+t6NzjhGGBYPz+RyQSq/Xu1EveJ7nrddrY4zneX4YnJ2d7Tk9HzYZBPQdOBNIabERAeQsND/4Ib7vHxwcANlBbw/xrpTS98PFYkH/+P/7/7HWfuc739sfhbIkhCB/YFMV9ONt0zhtPM8LwyCOY0rp+dXlxcXFdrv9+OOP416CdRBGW0Sctm3bpgnDUHc1os/rV2//+I//eL1ef+c73/3mt781Gk7CMIQa/XZZinOGUaf1nuJ1jlBKgzC01r5+/fbt27fSD6Bzp5TaGzkOInVXN8v5vK7rB/fvDwZ9iLpQ20kpmeBxHFviqrLRzgH+gSIVVRGlmJULB4NBVTVa67dvz//yL//y8PAwDOJOK85lXe1R7qZpfD+QUjZdZy0BHgtPeRQBeZ5L6a/X6/O3l1BYo+JRRk+nUwCEKAQZcdbapBeBVgOgKqW8uLi4NaLknOKLTKfT4XAIpVfTVM4QoHdKtePxWEg+n8+bpvI80battkoIj1IupUzT9M2bN03T4Mt+8sknUDCAs8+2eyvFruuyPOdcWGutNVob5/ZYHWPc8zxO2fHJEUAUwFSr9QY9N9grrXXge0opNATQOEPZ6pwbDPqTg2kQBG3dVFVlLUGJ7JyjhG02m5PTY1grhWHo+3ubANj3+YHkhO8/cJZZQvI8n0wO2rbd7nJjDAakEVvBQBkDN12GS4huDwketUJRFL24Z4zhgnmed5ur7I0tE94UXOnLsiTEQv7MKQ2CQDDqnBOUAdFEKHd8v28xThJjTNfsX/RisSCEBFG4Wq201p4XgPiu61pbi6pIaz1M07TXJ2w/Z2qMWSwWAM+FEPP5HJy7MabXi7XWZd1qrYMgApGRZVmelxBoe56nuv2CSGA8URQJT6LlYIwSQrbbbVPXmAPdVzyUoh30uNRae6EfBEFZVH+3bEWLFQRBlMS3TCuyAiFMdeaW282yDMq5KAgBMnVdR4xFPHLOPXrvXeAB3Y2x4Z5VjELo2TEtexu+CSGY8FI3Prp5ls1mM1QGSGPkJt+EYegHEpWuMYYRFwTBcDTAxhis2R6Px23TQS/Yti0Tcs87EwIiabNaE0K0NZD/M8a0MdgozDnv92KllOcFtwBqW3eMMdigMMGBkQDCjKKoa2u8EXz+2WyGAAWTVQwBQF+x3W6FYG1dhmHgS88PpO+F1mmg4OBH4jg+OzuTUmJiulWdcQ4cN8qI8/NzQHG+lIwxxthisbi8PM/znFg3GA3P7t5/5513oiiqy/zg4CCOgr3GXKnj4+PBYNiobrPZoGebL1Y//vGPn798zQgBvYu2AXM/i9Uyy4rFYiEYT5Jk2E9PTk6qtqubZrvdXs2uA88fDAZxnIBkX6/XCg+9URAypqPUC7xePx4Nhr1ez3RGKdWoLs/z9WqDy9h1XeB5YRh6Qmqrq7a5c+cO53S3292/fx/pDa9bKbVcLuF2y24mbdG33CqHPM87O70DbPXZs2dCiPF4bJSC6mO73bbQIXjC8zxgJCh9JpMJRkD6/f4uy7DfaTweg4CG0qMsS0ppnCSYSMB0KuI8IHznHH5aezO+imYDQDu2LKCY3vNupvMolx6Hpoo41nXd6/ML3wuCILr5hKtWtXVd100ZBWFb1dPpFGuU67pFD1lVlTHKGNM0HcAFznmS9DjncIxCfwtWF/oQYPlN08Rx3Km2aRqPCyGEF4SIe1BQAIRDoADMQQjBckpjTJ7nURQBVuj3+6oz2nRd111dXXWtxo3DfTk6OvKEb50WgtV1XbdN13WCezj2URR5gW+Mmc+vUchCTfGNDz/ypdd1HYyUs3znnNssV2AMzs7OBv30+vp6u92VZdmUVZIko+kYIkvO+cnJKWBIpRQqMOQ+LsVoNDo+Pk7T1FEOBEEI8ezZs/Pz8ySM8L7wwRAHPM/Dfk9rDSFEazMej5Fw79y7V1VV1bRHR0d0d/4MUNgXX3zx7Nmz7373uycnJ03X3aaxpmudM77vJ3FsrSXG+r5nKQGcjs1cjhKjtPQ9SsBrCMTKKAyIsc5q6QVEymy1ev78xZ/92Z+VZfn9v/cr9+7dQ+iRfmCtltL3PFFV+8msqqoo5WmaTiaT9saM7vLyGhbAaX8IGoJSWrUtJ9Q554m9KK/f7/l+AJNZQm3TNNfXl6vVyjl6cnonTBKgwWhrAj/iUsBRFj16GMaU0rZVb968qYq80+rly9ecSQzJJ0nPUdpWqmxqfTMlum/arPUC6fvS8wIp5W6b25sNg1hrgxl1yLmQ3UPfK8uyqgus0ME7RvF+fX1ZlrXnicPDw71wxJg47q3Xa9yNtm2BzU4mk+PjQ8+XwMg4p7P51cXlZa/XOz29s1is0Jo/fPiQkr1KGuIVXOnRYNw0lZRyt9tZR5VS5+fnoNVRoSql9vu8m7aua3TPcRzHcczEXq6Or7/dbinZ+1vCN9kYA3cDpVRRFMp0d+/eDf1ACNG2CkptKAYA/+D6DQaDssyllHEcMk4AhqP7pJRXVdVpXZZlUVRKqShKkl6Pcy6lh14WEURrBbgRVUUcx7dGLzhO2+1W3UBByOUo75DIgZahdUNxORj0kyRp21p3HSG2Lqv9JhMh92CPxz3sUiWcS6GUkhxrCXZwEjLOSumjDbLWCiGMc/RmrExrbZQyxngySAe9MIjzYodo1d7MxBFCbtSgQZZljvK6rpUyQO/LspTSB/OI8uuWWUZX0GmFYFqWJWO0ruvpZBKGIfhHMBqMsaqqTKfDMIj7vaIo+I2J1G3zV5al7wXaGoQ/1DpFUe31OmRvCUsIwVCeUfqWTMf8R1c3ndH4dnXdat1xzm9tLyxxyD1t22J1/a2qBu0fGN4kScqi2Ft+EyKEODw8bLsOYkff95u2Qjzpui4OAzSmwImh7bXWfvXVV19++aXWdjgc9tI+vibKUCGEv5/S2u8JMMaMxuPDw0MoSOTN7Dp0JIwxwfZshXOOMmGM4lwyRqx2lDnGGNAmSt3tlAM83siNurmqKqcNFHVSUMb3kyLDfu/07h1i7NX8Sik1n88PDg4++uijoigw1DmajCnlXhCYGxG3Av6wX0HYHh8fY1Jks1mdn1+WZamsuX///gcffBBITwiGd4O70LatbjtlTZ6V/TQZDodPn714+vQ5eob9NeEcSs28LJbLpecFxhjdqdlsVlXN3bt333nnHevcbrcLohCMXrbNuq6rywrtZZqkECMK4XGPd2o/1+n7fhIm0+m0bGpK6atXr66urtL+IIwCj+/jPK6PUmqXbQkh4NR6vR7nVAiPMYaChjGR5zlnIk3T5WqBs4qBYkqp6jR4j7Zr2qbjgplOd10LX2TCGNSNXLBbzQCmpNFHHRwcTA8OIDNilGJDIsgp0HZJryeEIIQS4lAB417cygHRUG23W/xDODxQ3+MN4pUFQcAo1W3TdrUUPsgTpQwWm4LYmc/nSqmkn0gpQeRRR8psP76XJH2oMEF9oOTtjPa40M76wouSxBgD6QK6a/wrtzAtQDilOxgtdV03HIywhObu3bso7DAUicEyyLDS4ejo6Ahh1jmHvFDX9XK5RBgECUAptYbYm5kqa0y/34/jUEpZNTX+K4K57/urzTrLMkIsql5rbd2Ug36a9vrOufF47Hme50shxPnrN7gLeZ6vFkvf90ejMVQfjFFQhCCdKGVgUYuiANKPv8gExwAZYPjFaoVl2ycnZ4SQJIxQm+J/6MH8QHqeJwQvsvzy8lIZPR6PHzx48Eu/9Eunp6dZWYxHE2MMXbx+vB/Iz4vPPvvs6uLy7Ozs3fffg/o7SfqtUp1WUDAYY7RqjTEehxBni90jZVO/9+jdJO3XVRtEoXPOEqdUGwWh7fYrMNPBgHDeVc2b8/M/+qM/Ypz8y3/5L6HwbVrVtnWel4PBwFEG3R+Q/O12i35XcoFeocjy89dvrq6uhsMhkwIfkjJmjFmvN47utaXaEm26g/FECL7drTllzpntNnv2/GVd13cfPIBsljHmeYFxLs/L1WrVNJ1zrshLOGK/++67cRi0unXOEcLqus52edu2wpOcekVZNk2HFqptAYl5lDptOmhQIONABwAmoqk7KfdbCNAGMcbyPOcCXInt9Xr379+F5e56varrJgh8kPfOOedIXlS+H6I7T9O0LitjFWOMUsc5Oz07Pjg4IMRq3c1ms7dv345Gk4ODoyhMnHNhGO52GVAfaPm7rptMxgcHh+PxiFIKIGo+nxdFeXx8DNkmKpjbPiyKojzPIHJHqQ2sBeAHpND4tOPxGGUHDjdKHFgKQfXV6/UGgwEGC6qiBGMIKDtN035/UJa5Mfv1QUVRCEZugZw47mHkRPp+2ypozLOsWK5WtyPT1jqcvVsEqGsbfOw0TRkjWZYxR/r9Qd21SqmmbTEcCtw3z/PpdFpVleD8BpnwMdeJbttaS6kLgkBwDoila7Xey+ot2srbcQqAr7vd7uWL14Y4HIkgCDBT4pxrmopYp5QhhLStiqKg10uTJNprkqzN87zrGjxtfC/f9z0v6LpuuVzudrs0HUopjbWEkF6vj8Ioy7Iw/Nu9zlKitiCU0vFopLXGXOFuvdo3M1XV7w8opcvN+oY5bYCIQ/zRqj3w6SyVUmqti6qqqgozfV3bGqN8P4QIEtUw/OKNMYzuDT+ttW3TSM+D0qXrdByHANgQfzvVICgDs0QeEtxTRtMbUzHfl4yxOAoopdvtNsuytlG73S4MY8hY67pu2zpOQtjvoXgFGA++HlOBqOe2m6woM2xcltJHbiaEeDJAE4K3gPKoaRqUd720b4y5vLx0zkFrgT/DKfbw9BkjWtumqeqi7roGfj1nZ2dcUI7FR1GAnrtpGuYIpTQMo16cGGOkFPl29+DhvQcPHnieIM6EcdBPepvdNivztm1Xm/WDBw/6vdRa++bNG8752dndwWBAyH4w0/f97XqljD48PNztNrAYoJSGUdC1Kst3r1+/7vf7H374YRLFqEK6rlut1kopY0nXtMbZqmq07qIoOj4+DvwE1MHrNy9Xm40jRmsdJ4nRusgraOCsJUIIKTzvxgYly7J0mOL/3r5N5O+u6VBIOUdhhUCsAX8URdF77703Hg+h9bTWUiGl5Ntttl6vl8sl5zyOEijZKSOScYxGck6xrBCVdF3XqJastXXbRVGE8xCE/nK5rG9WEXzzmx+l6dBavZqvmqY6Pb0zm82yogyCqG1bazVIyU53bdsarYMgYIxgngkHKfR8AOdRlHRdl5cgAXvj8Xizy9brJeT8i8V8u92GkW+M8YR8+PAh2OEg2iPEaCBxYYUQgskb8WhrOjUY9DHZitgi/L2dW5ZlXIggCNJBrygKR4izNt8Vur3ZJcMo9B5YCxFHCed8vd1ILoqqrMsqLwtoOlH+YpPSXmVlLDpMNAz4nFVV9Xq9uizLsjw7O4OL52K1waSw53m+L7Hq1zmHg1SXDeh+KSWydlFmAJl6vbiuW+DW6ME452naQ33fNE2WFbh3QgiUsqC/mhbcaCOEmE7GWBhorZ1dXtV1fXl5WRTF4eEhrMWBL4IDMUofHx9PJhM/DCilZVlJKaFvRvkRBMGrV6+6ruu6zhlDOVutVpzzOE44Z2EYVVWF7ePgFuEqALjEEsKI06q9urpAMVBV1U9/+tN33nnnd3/3d1+/fv3111/TzeXzIAjKothut8cHh/Pr2Q9/+MMwDH/1V39VeFJry4TQ1hBCWqWjKCqyHaPO87wkjJLBYHl9hQ1Ny+XqwYMHp3fuJUmyzXZVUwrGpZSBF4KtQKuXpqm1tqqqLN8SQp4/fw7bG8/zoijiwiOMK+Os0rsiRyddZrnWupdEaZoKxrfb7W6zgvJguVy2jYp6CWMiCENtbRRFlEutddO1zjlKLKV0lKZRFFmjjLNto37ys5+VZTmZHmqttSV5Xq5WmyzP1+vNZrNzziVxP0kSwTmlzlo9HA3Go0kYhlAdGmfzvCyKgjjm+yHbe5ELSmm/3xeCVnWBoh5AaxzvWWFIzne7HaOC3uwHRVYbjlJr7XA49Dwvz3ec8+FwAIteBEToyYqitI6icaeUam0ZI1EYQhXU6/U8Twahh/GuPM/jOI6iJMuy1XLTdd1sNu+6TikDjiOKoqLIAMUxxk5OTgaDFIou5whj7MWLF0II9AfAS+h+edY+l6PPwzFFhQQjDHxftDX+zQJ1+OJwQVE9QPuFUBiGoVH6b2edKI2iKIoSIYRzxjmDCxkFQdc1UODBmg80X9NpXHilVFk1aM2FEEdHx+ALwL8QQtqmttZiGpnzvSSzKIr1LhNCcCFAAQDYQ//adV0YBHCs1lr3ohAussao8Xjs+3K9Xq9WK4Gk0hnP85yjdV0L4QHkIIQAsPT88ODgwAsDyIqLoui0QqTYbrfWaq3toD8Mw/Dt27eoX5um0boLwxD7Htq2VarFnCC5mbQzN9YMUvphGGpjCCFZlmMgw/M83/cQy5xzhNCmaYTgjLEkjhHWtdZWdUAUwjDEcmhD3MHBwW63qarq1atX6/U6DP3Dw8ODo0Pf97FSo8irtm2zotBao3Pt2holSJqmnEvoM6DQV0r5XmiMwUu/VarJGy8xGKIiPni+mEwmqJMAQ0ZRpDqDmRLJBWEUU41SMGASvV5PdUB93HK5dI4kSWyt5oLiWeFYIrB6MgCEjMt1eHgIvknpFu0fBEOYLArDsKoq5Ht5s/scTZS2Bm2Dc87oDja/lFLVdkhXV1dXvpBgJeDw3HXd3Xtnfhiu1ksoKQmxq9WqKgqlVNrrh2E86PU9IT/++OOzu6da69Vybq1t2/3mJc/zBqNBOhoyxmA49Id/+IdffPHFaDS6f+9BHMfD4fjo6CgOIwxhnZycMEGxmgm2SZxz7axkvNfrqW4P7r569eqv//qvt9ud7/sHh8dx3IMobTo5lB7f60c7A9Hb+GDsnFssZ8vVarfb9ZPU931KIefiVVWtN1uljFH6dl6kaiqwGUALoE+QUs6v51dXV2gpqXOEkDTtA5NwzvV6MSLGaDRiUgCEoJRK6VdV9frVG5Q4g8HAl0Jr7XneYrFAByiEuHv3LnwZ0HBSwdEOASDP87xrled50hMYAB+PhyeHR4Dql5v1Yr7GzAp07ozTMIoGg0ESx9ADNE01my2ybLuczZ1zw8HA9/0wSqSUnTZAtSmlZd3M59eA5OGRGcUBSFioXZMkyYocpAHoUURm3/cl9zAurbU2ncJLBHREKaWCf/DBB6PRYL1eV00dxzG66E6ppq494YPrd85xT4LU4pyvV5vT09OsyC8uLjjnqLeyLPPDQEpZZPnNFeZd1znnGNl7KNqbnTlBFMZh1DUNUHmsMF8sFtIP8QWHw6Fzxjm3XysuuNbWaoc4aZ3up+l4PKYMEwY+nGKAHkHWNhgM6I3lzXa7JYQhb0opkUOB8Xu+qKoK+3nDwEe3n+d5vt0lSTIej+nNak7QgoSQqioA0dVlQwi5e/+e7/vD4Qil3vPnzymlCOxIK2EYCsaSJGGCIzJgqMVaOx5P3nvvvdFolCQJEo0QIst2rVbE6LTfD0P/4ODg8HB6cXF1dXWBsYzz12+01jSbvWGMlXlBCOmnCbXOWgvuaTQacS4p5/DvUcYul8vA831fpmlaVwX/O04nL1++fP369b179w4ODowxXIiubcMoEp6PQl5rTex+T3DoB71+fPn2/N/8m3/z+uWrJEl+8IMffO9731PGGsqKqnTGtqrzZGBu1t0wQpVSjhjnHOTVQDWgTzw6OjHWMhhMs70yDldxNptRt3d/RuMlvGCz2RDGv/rqq5ev3xpjPD+01mltu67jbG/ahtrIWNXvJ0EQAeUCC4AKwDmnlQVZRinHcxgOU5zvqqqatorjGNBocLP9TSm12+57u36/zzgBJNt1XRQF4H02m01dV0mSnJ6ewjUY/XGe55eXV2hhR6OR5wVlmZ+cnBwdHYFv6rru+fNn1lrPF/fu3cNNzvN8Pp9TSnfbPI5jYyxwLHScUsr1er3bbTDQcXR0CL/muq4Bv69WK8QvpRTMxiglAMy7roNgH2O6Su1F2Vpr3EYkRVzapt37aSmljo6OxuPxdrvFOJsQYjwcgbPG+ELbtlGUjMdjxvabg50zuAz8JomWZeksraoqTOLDw0Pgi1LuGavNZsOFAG5BKZVSZllWlSUuCefcWu153nQ09n0/r+qu6zqlAEJAoQnuKQiCXpLgcfm+b7oW0c3zRRiGw2GapinKqX1W0/rq4tI5x5hAfOecw90+y3NKqR+Ft/Iy4UnU5Ri/stYGXgh/jevra8DSiDj2ZnvjdLqXcmOIuFMG1O2rV6/KsnznnXe0NmASEcgw22GM0VohgxpjWoQwxoQQ4/HQ87w06WHO4JZhrLsWQwN4Gufn54AclsvlwcHB2Z17/X4fqoAd9j3Azz30oyhCWYz9kgjrwOGsIZAho7vdbre9Xkopc84CYFNKYQ0DZl1REpmb7dTOOTQPqu3iXkKIBYmAigq/TpJE+h5jDFsjn379eLtb4/KiI+dMQsWCydBbV4jNZhOGIRRaSilMNvm+j0KZc+77Pgbjb1tz4HkoH5VSg2HfOUcdRGD5bDZTbQv7VlQPzjnhBSj9R5Nx2zZc0NnVZRj5oec3Vb1er9eL5Xw2U0qNBsN/9s/+mR9622zLCENLnSQJIcw5F8WxIfuBDCHEcjVfLpfz+ezJkyfWWuirPv7445PjM4ybrDdLrBbYbjLjrO/7YRhfX1/3ej2sYCrL8urqAmjlbLZYLpdJ3IfKczAYcU7X63WnGkyiNE1zdHLy7W9/Ox0O9qs5vdD3/fPz8/l8CV3HYDhkjNclRvNUEPqgrqBzEEKcnJyg99Ctfv78+XK5HA6HsABAxEDmxtA0YrIMfOgg8fkxPae1ns1mnueppr28vASWnCTR/fv3Md8gpX9T62vCme/Lfn9gjMuLglLWtnsvQN/3CbGr1dKT/PBwCp7aWrJab1+/fg1ldxRFSHCMscvLS1gvecKzzuCHTIYD6ESbpinqRt+4HjR1WzcV2tR+vw/pFeoMNPDGGC7Fre5Q3JjatG1bZDkQxPl8TgwBkwDATAhBBQeLstvtCKUglIIgwNmmhOi2g/TKUhIEQVXWm81mu90ul8terzcajcI4giIZkWS73UIKia6GkT3QDgZAKYWZD/jAZdstXIHeeecdPwz5zUol7K8DGYLGA85KQRBtt1vGRNvWYOuKqkzTFGmOUop0D3wOoDLYUqQYxlhTd8453w+bpimKzFo7nmAjXMM5L/KMEDJKB/DNZozFYdQ0Ta8fQ/YH2eh8fo3oZ4y7urp6/vz5er0eTw7G4zGEodfX11D4BUFAHQGdEsfxYDSCxPm2f9iuN1rroshPTk7CODo7OwvDsKqKw8PDO3furJZLpVSWZVJyawmSDp7wbDajT37x11rrYTpAahwM+5iq/fEPf2SIOz46lVKOJmPG2Hq7i6KIOuL244qaUXe7XRx46atXrw4PDymlSYI1c2RXFEXdQLFRZvlgMHDGKqVM20ynU6vNF1988b/90R/9q3/1r37rt37rf/m933/w7nuWuNVi6Sjp9wZN18LaripKQoj0OESL6NrRo7Rtu1ysT05OpO9ba7XdU1T7rQutwtrgKIpk4F9fXxdV2UtS4XsXFxdFUXVKaW2qqvF932iHL8Ju3PA8z9OmE9yD79d0OkXzgemM7SbDLB7oLfTTmLAghDC+V8hBR4njC18xABvGKiklKhWsCrlVIGH9KqSOg8EAonKAMVLKIAiEkLvd7uXLl9BNA5zPsgx+RUGwz4KDYR/Zoq7rxXyllJLSq+sa1qYIPZ7n9Xq9KAoopcZo4M9JknAuICLZT4ALATyAENc0Da6r1obdrF8gxPl/ZzyEMTafz/dcUtc5YnCylVIHBwdwjkmSZM/iOYItMbh4VVUJ4WmtX758jpCntYYNSpFlCFtlWb54/koI4YXBZDIZDof9fh/dHfKrIwRHv+u6w8PDsizLooDAIggCY1TbtoIySmmY9IIgEFKi79xut5vNZi9qds5o3d0Y5XPi8AtEdqz7PD4+5Fw2zX7CAEge8CGxd7HinVLgOLZ5hggVBMHh8REKWdB5bdv6MkBdhYocjRfa/eDGbPZWRGxvpq5AAsK9rOsU5ICYyoHmlxDi3yzAjqJIdXvJIOe8aaogCB7cvQcLUN/fjzK1WqFURYZARizLcr1ebzabFy9fHx0dARYSnkcphVmx0X/rQ2Yt2fN3Nxu7q3LvP+KcQ9zQ2mmtIdNEsYXN6Kj7IVYFV4UCtGvUcrlM03QwGGiroNLbT7EwhhE2ZTSefBAERmml27ZtIQ4Lw1ArS8jfstjuxgYCsCiEXF2nKXX9fh9pZg9uGUOotdYimqFFYXQ/1bjb7Rgno9Ho6OAwDH3Q6KPBQAjx2Wef9XpJGEb9fj/p9x88eBCEvjHGGMU5PTs5kpIHvp8kicfFarVazhdXV1dFlj9852EY+ZODKbFuu8lGo9FwOLKW5FkJ1M0Q55wBWIi5qNVq8fr16ydPnu12Oym93/7t39bKGmP8QHLOi7wqy9I4cn5+XhYwwrVhGI7H4zTtJb0IX4RSWuT7/lYptdvlBHurmEvTXhRFSX/AOa/bpq5bvErJPRxOqCnKsjRwMb05urhBWncA5JRSo9EIe5842e+BgGfEfD6H6yQaWqVaWDZkWYYFUHfv3oW3Tniz+izLss8//zzyg9tBMxjHwDyyKKr79+9/61vfiqKg7uosy7Ba3vNDzkVRVE3TgK0mxNZ11TZVXZfA4N/74EOIKECZPXv27PpqDv1rGIZZlodhKLlA66iNctpgmjgIAu3IZDJZrVZtW/d6qZQ8CKIg8C4vLxeLxXQ6RRRF5xCGYdO1aBKgV8GBZIzpTuE4rddrj+8pXd/3YVAXJvFqtYKYmFAq94tNBYKGIHuCoiiKsqnn83meFYQQiIxBYvhhAEnDnl3tOpR9SEDOYDmYhmgSPOByuQQZMuj3p9MpwhFhDDpLtJ2AiIB2c85hvcGYuG0COUQdUiiloI25zdpS+Cj1tNYwP3M361PbRrVtOxiMwjBUqsUwhB9IeBX5ngzDMPID9HtSykE/TXrReDy+UXsXp6enOJAYDhsMRkCpr2ez1Wrz+vVrxtidO3dug+HdszsokYUQrVJI6O2NNzWxsKJQm82mrKs83xFCfv3Xf/29997bbrfLxQIyDCikl8vlYrHYbtddp4PAoxfPvnLOxXEMKQwE/J7nWW1evn71H//jfzw4OPjBD36AR5amQzQllFLGSBQFSMzGmGTvFqiKonj+5Onjx4+//e1vH5+dKms1dbpTjDGnjda6FyfOOVV3hBDBeBzHVV784R/+4b/+1//6//B/+j/+1m//w87oKi8McZRS4UnMRLSqQz1kjME9R/pnnGitN+vder2ezxej0Uj6Ydd1WVZAILzZ7JD+u1ZLKVvVXM1nTdONRqM0TasaqouOULrZ7BCXGdmbcyJGF0XheQFj+5UpKBHCyIc6FZdhs9nsdjvV7ZWSELsg5KGSw0EE6zcejyHVB0KOdhCtjDH7Zb34mgj0UnpoDrRWdVMiGfhemGXZdrtt2w6vwBiDFc7GGN+XN1VCeXJ6dHx8jB708vJyu8lQS43HY61NXdeeFyBiHhxMoijs9i4JvnPwdBm0bTubzQBWSSk9T+JdEEI8z8cKNiQznGnf9///TP1ZzyRpmh2IvavtZr5/e+yRmZVV1VVkt8hmN8mhhiQ4EojBgAOJkIQRBEK6ke4GgnSjnyEBupgbCSAkjDQkJBADLuCimSa72c3uyuqq3DP2+Fbf3Xazd9PFcffuvChEZkV84W72vs9ynnPOM5mMcWbKsmy7Gtcb9xBn1x0WNqNMBzJslMWYHE3wfD6/vv7w8PCglMJjr6pKUAbcglK6WCyCIEgGGT04MqMQQU1ZlmWe54TsbS1Bxy7LUqmOUqraDhIzIFJ5nnteMJlMUIQhukG+1HcdygigiV3XIfuCkrtYLKzVp9PTx0+uYOX34sUzAJZV1TjnulYtl8v992U0SbLBYLDd7UBwybIMcBfnfLFYCCGwa8vzvCAIx+MxHF/xyW9ubpIk2W63+CSwCsSrx2l3Bz8LnJ8j3JhlWRD4vu8T5waDQRQFGC7Udf3h7bu7u7uiKJ49e3Z5eQnPFwRElO9KqZu7O8ZYFCWEEM5lXddFWeFqwIwHRwXxEQhu3/cYRZHDkkpEVXMwNoPpaBDEQRBIKeAyivOAygYDysOseT/v9iQ/nc6CKMGRAPMGzBKttbWac972e4t5rTV1ZD8NVIpSCooMhl/qsPgFrxt4IVyInSNd1x5inWNHJ2sLd8AeDUAUJfm2wFwjDMM4DoMgwK6t0WAgBB+Px3Vd39/ff/jwjjExGKTOuR//+MdRFD1+cjWZjMLQz9LUWmN6hS7O9/2zszMgkZxzz2fffffdP/pH/8j3wyRMX7x4+fLly9FoEoSh1rpqYbnM/UAyR7quHY0Hfd87Sz9+/DifL5IkGQ7GcRzf3d199dVX2yIPw5BSvtsVnMn1es2EsBY6Ss/zhbV2PB6enZ1JuXfA+eGHH969/fDo8eV4PM6yLEmipqk6bfpOr7ebvteCe13XMcIQMyfTcRRFWveWuLIsl/NVsd0RQopi54WBMcbjQnoc+g/fCw/VUuh7HhdCa9uqHqznqioQqQBse56H0Rv8q1ar1Wg0+q2//JfiONZd33Udarv7+/vVavX48WOE/TAMtba+7wvfs9ZmWYLO+f7+Xhsc4NXp6SlqOGOwKSRJsxglyGKxwLTh5ORkMBg45wT3VqsV+OlN0wINAuHP96RkvG1rFFXZaHh6eto0TdNU1pIPH95RyqfTsRACzrdFUahWAZdCo4VZG344yAPT6fTs7CxN00B6Wuu27YGPgL2klGr6DusLKaVCSq01IfT58+fz+fzDhw/MOvCZ+r7X1t7f30OCh4cDoAEdIC4IHPtwfTyxTyJYS4oB7mazGQ6HGNajsAa+hTQHx5w8zyG6cs5BYg/1EtjGIHUgb8ZxbIwD16pt27rpII3CvsDxeAiNp9IdsKvNZqN6Qyl1bm9TLCXHqmKMFK3RHheXl5dZlnFGiqJA+phMJpPJ6OnTp0IwkHwQmqSUWtvT09PVavXll1+2be/IXulVFMVmtYUPPhgyQRD4YRhhXxClxLrb21sAFpzzs7OzwTB1zu12O9/HgriCcb7d5phvoLRN46Ssck8Gni/o7etvj30GnHiMMYAiQdD5xS9+kef53/pbf8sY07YtqL7OOaU6tERgOodBsF6vfd8bDodNWb169erbb74S0v/0pz+Znp7cfryGn0eZF23bCs59LyTWwo8niWIp5YcPH8qy7Hr99ddfN03zs5/9zFJycXGRpIO+79u+67oOHYk7rBVyzhGrjTFV2azXa8a41toS9vr1ayyxqevWGFMWdVEUjPFdkXeH/R51XVvihsMh1k10vcagHUgMhg5N0zhHjzNjLI50zmmtpccx6UCNXJbl/f09mCJHXZV1Ggrk4yQFjCggYYyxtq1BmTpMN7yu6wCtZ1mGRevOOSHkfD5/eHjo+84P5Gg08LzA933Vm8VisVgsgyBAAUQpD4IAsj5rLSGWEGedxh37yU9+8uzZsyKvwjDcbrfX19daG2vtfL4khIzH47ouJ5MxP+zVQikThntAFdSuvu9hPoJMD4QMB+tYGXuexxhFKAFkYqwS3NOmR4nw5MmTY/+htcaMw1rrCf8w9yRJkmRZNpmMcHahBF6tVh4XCHkH1h1vVV+WJdzREKYRQby9c4RZLpcovw6X3yKcIXY45wgHcqkYY/UeJA+8gxl6VZbgZxhj8LIYY0fvH9/3T06mgoqHh7vlcsk4GQwGo9EAgrOyqMFpSNN0PJtSSquq6fveOkcOSjc0UtPp1PM8lFPYBsEYx6BTCAG3mCiK4O6N3wPyvuftCRn6sCny7u4Oygx0kHC1KYocfC8YrCD2cc4jP+j7/vb2Fmvvnz17dnp6ij9b17WQTGsdRBHn3FqilMIKEWMdWCbX19f39/f4aajp90wDQghhCOt936O1Q1MLmy7wvcqy3m53dV0BXUAgOoybHSaDGO1BNbZeLaq8+Mlv/DwIgoeHBwB7nHNl9ra0bdtWTe15nrWaEOIMwVweJdTxDGA0AxgSYK1SSkoZhjGlDCGOc0YIcW6/BD0IgqoGIbXfe3N4QRpngJnDMHTOGGOs1ZPJJAp8UD8pdfimq9WKUBtF0f/nH/+j8/Pzf/AP/sHVxVme7/DVIDGz1oIaiH5sNBoNh9ndzcf5fP7DD6+///a7rlVJkpycnJxfXn766aeTk5lSSqm9WBISOWPM6emZ7/ur1YpREUXRu3fv/sW/+Be+76fDgZSybfv1equ1rsoG6db3/SgKbm4/tm09Go2urq5OTs7wwI8wDI7carVomkpZ5/t+GGWEEKOdlF5bN8CQrDN93w6HwySLOZdt3RXb3Rdf/MnJyQl2s6ZxiAFQXdfoV1FYE+fiJPG8QPj79fZ1XQKIBf9Va63aTmsNnS+GetrZJEnWi2VVVU1ToWZijKGlAfEAKwXzqsSMwvcllHpJOgBntKzy+7v5eDyGLBcpH4UXglsURUp3RjvcUIxrGWOLxWK32x1pWGEYTieT8SCDCKk3GvxaGKOg+kfPgF5OCCGZlFKutpu6ruHyIKXMsgz1N1JA27ZFUUjGT09P+15jikcpxeCl6TuMTZxzKB02my3ws7Zt0zgJfR8yTyYEQuJ2u0VgOVqOcc6xXUZKSfkeCVNdj+nH/f19FEWPHj3inBdFATLDer0GJAYvJLDcgI2VZYlEib4L01KEO86x0K9Hk8Y5Hw7HZVkiEdRN5/u+EF4cx5i6KNURQsJoP1SRUhrtNpsNpRxsEN/3cesdMYQQj1HG6IsXL+I4ztIY9+jAUmDwOYuiaHYyCYIgz/MwiKuqwg/cMzst0VojoxW7cr1eQ2uCAXecppBVGmPaulmtVmVZRFEEhhllbjQaQUXUtq215OP17bt37/AoZrMZ51wwfhiJUPruqz+VUjLBUX5hWIasb609OZnWdb1Zr7Msu76+NtrBJlFrHUUBl/uljfjpTdNUZel5XhbHg8GgyPOvvv76u1evzs7OXr58iXmWOyz4FNwDdQ4jsyzLgNx8+/WXv/jFLzabzZs3b/7m3/47P/3pT7nwrLXCk5xzZfeACmog8GZAyWKMeVyCtKGUmi/XDw+LrlNJkswXK/i+EkKYEI4yzIARX8IocfuVedw5B0aetVb1LXHMD6MwDHG7MF0+Pz0TQrx+8wOlFPSXOI5ns5nWfZYNBfdub2/XmyWOFyEkCDwEiyiKgNbsCa2z2Xg8JoQo1aOxEActJKDaKIp8P0DFg1rT86QU7Orqgu8l+l7btlXddl23XK6iKGqaDlcCZTFKRs+TmEgaY548eRLFwZGu9HC/2O12nufD6sL3/a5rtdYYbOGE4NqcnJxcXV0hHnVdd319DfRlMpmiN0Ilsb/AlALMqKpqu92ORqPnz58lSVrXVdM0YC0sl0sYJUCWAt4rPWp9D3B301TD4fDFixdN0wC6wNhiMhzd39/XXet5Hmhk5rA3GjEU80dgZsB+u66Dhw2gI04oRmyoWoIg2Gx2iGsA86MowqwZOB9qiG2+GY1GxDEwM/q+36zXi8Wia/vJdFzXtecJUADBZtWdzvO87lqlFBZsl1V9JBeC6fln0I7n+b5HKY2iPa9lvV6n6YBz/u2336Kla+oODRZqRyyhpwe/eFRUZVlS6lBDdF1HKUHpNhwOu7YOgiCNYs55msVa691ul6bpkydPsKLk22+/tdY+f/7ck4EQgjIXBJ4yrmkarW1dt2VRMcasJYwxwig8nTebzXI5BzwMUqO11hjH9iuiGywJAbFSa41BZxiGbdsjISGap2kKSA81AeoJ5Ik8L7Is9SS/vr7uWjUej2ezmed5xti+740zlNK2ra21jBMUo9ZaML3EYQcU8Oy2bcHrB8BgnQYiq5WNosT3A3gEYAje9y2gMkrpyemeNi6EQGm4WW3Xi2Xb1kj2cRyfX5yORiNKyXA4nExG6IUuLs8gto2j4Nuvvv7lL3/5O7/zVy7PL7LBfoWr74XCk23bOUaVUlwISEDGo2Ecx13dKN2prv/66y9fv37d9/1mt/2bf/NvXj15vN1urbJoYpngu21Z1NXyftk0zWazCYIApOCyLbFpB8vmOJfr7SbPc63IAWvXhNrhMCOchaEP+2WkT2g/YVPZt7Uxhgre932vXBAEztKu61Snoija5dvlclnXJSHk6vGjTz75JPQjrfWjR5fv379HCY6KJ/IDBBZzEGY1dc2FMMYQzlDliMNGrKZpvv76a8/zIj844i7Atjf5rm3bx5dXl5eXV1dXhJCPHz+iKsK0mlLKpAdcVghhlVZKlU3t+z7n9Pz8/OLiYrNZMSHhKDF/WJZl6Xn+fvbUtH3fE0LiJNLGFkWO5gcP1hgTxQHnHLKMLMsk95xzRbH7+PGj54mLiwtjzMPDA6eOUqq1jeM4ChNUVOv1OsuGw+EQart3H9855z755BOER6j+KaWQbiALJEnGDtYVEP6rfl8rgAwOqm4Yhn4YxHHsS8/uPQsJRpbL5TIIAsk5fMuNMdtNjqFhMshGowGl9OHhYU+udc73fdQWqAXBszwOpouqPBIMRoMh1sphWgKIBN0RqkO0UkgcQgiML+E3iUEB+hxtnDzsvbBWH+kQQegNh8MsHXZd5xwlhKBRt1ZTSrXp4zjWbVMUxXQ6GY/HaRJxzrMsAeXu6upCCAH+4tnZKUp8pTSQi7bp8dWwIkntTflrlJIgOG63W2uIUmq1WoHVDVNlzrknGBC+oih6o8GhlFI6wnw/AHKEuSoeCMZ39Pq7r8CTKKqSc7B5NBpfrfVgkA6Hw9Fstlsuv/jiix9++IFR8Rf+wl948uTJdrcWQlDGAAAg1UVhCFh+kCSDwdA5d3NzM5/PLy4uQB7nngRzhRLu6B7h+PDhA5dCMMk5P5lObm5u3rx69d/+03/65s27q6urv/ef/08eP36MknxXFoiex7IPQz1UjYJyYCdaa+mH2+32u+9+yPOy6/s4TimljrJ0kEGui5PR933bKdgr4KiFoW8t6bpG9X1d11Xd+r7fNJ0xCi8sCkLP84RkQRCEYXh/f885f/r0qXMGdk5t297d3SFeJ0kEph4SAOe8qqpjWBkOB7PZ7PT0FLAq4KJuvwuoZ4w5t1+CLoTAuiFPciiJLi6ugL5q49br9WKxLMtyOj1B0YCCGJt5gsBr27Zt95I0R8x0OoVNS74rsd6xbbv5fM4Yq6qy7/fGGUD+wWHEBQCwBxzo5uYGBnSc867rMYfFjKY8rECmlPq+j1HdeDweDoeDQYaJFZoJjJaAO1ZV5UkJwg0qYM45tJknJyfgjaHUvr29bauaUip87+gClaZpe9gED6YO3rLWGgM+vGKEqtVqZZUeDAZFXZHDKkZ0luAtYQEUutWrqyvAAHmeE+aiKHKWApOrqqqtW1xCMBXargnD0FoNI9DQ89M0bVW/3W6rqimKwjqCzA0KGiZuKA1hSzgej4DrgfPUdXun06IoqrJBRqmqSmtLqfM8r1ctyh2UiZTSNE3btgZhQilFiLPWAkJn1IEG4Ps+Wm9cWHxacO3xNFRvHuZ3VVVxTptOSelbS+q6lsJjjHEuCSFgWcm9xZcFQwU8Ns/zoigBjnUc/1mzJwUiIhtj2EEog9kEBq++75+cnKBv5oftIkJI56xzhjHGqTh0IIJSppTqNch5nXNOq45y5gmZl4Xq90PYY8F0ZI4idnddB0YXIaTvNGN7KPFIQwlDH4c8SZI4CXESgDeXZblbbp1zmBsEQdB2tZQyCPzpdDoYpKenp0IyxljXdWkap2n6/NmTi4vz3XorBE/TtMi3//1/929/8YtfPH/+/MWLF2cXF47RIAi4EJvNTkpJiTXG6K6fTMZnp7MoCna73bfff7NabR49uoyzgXNukKTL5fLhbr7ZbVfLrXE0kAHsl4QQXde0bfv80+dA/jjne42qVh8/3gR+RAhzzlBKkzTyfSkDH7yfKEyQVrfbHF7nSRKprqvrsqxbY8xmt+17LaW8ub4jzoH/1LZtHIdnZ2dxmvSdFpxrreN4v2i8O/iLMkeAPgIX0Vr7nrfLc8coBsqLxeKv/tW/Op1OkR3v7u6apknCCH4HzjnMEDf5jhASyL2K4uzsbDwee54HGoBSqus6h3qckKZp4iAENzdMYkiq5/M55/z09DROk6ZpOJNt267Xm67rBOPWkr7vw9AHJGacDXxvs906a6M4jpPw/Pw8SSKUGkJ4XdO/e/cuz3MhmBACByOOY2eUMSaOU0KI4HuKoda6qhpjDFqg8WwMB7iHhwccV8DYcRCGYYjV0fP5kh12E+3KYrfbUcJmsxkUIWja4a/2sJgzxjhlYIMg5UMeRAjhlKJPZoxt1rvjLHJbbEEgHgwGaIRwBvSB/3qkn+7LCLmXARljdK/MYV84djhijIPJBqpGlAqAGLvDxg5CCIQybds2TaONO979MPSR/s7Ozqq6uL+/j8JEKXVUTAO4VUoxTvI89znrui6OoydPngS+xP8bBB7G/RDWCMGbplmtVoyx1WqN6MQ5v7p8XJYlY2K1WgE+UGoP8iFfY0re931dtcApHz161Pf9YrFwRp2dne0HR3232+2k8K21TIjtdgtknXOOSgCe+9Za+vDq6/agG8LLUEZzzsEEb+raWisoi6IoGWTv37z9gz/4g/fv33/++efPXr7IsowQRzlzlmhrnKNNVQOHJ874Xhj6Ety0oii++NNf7na7i4uL2dlpFEVtp3D+jLNhGDIpnHZlWY6HA2stsW5X5H/4h//h48ePP/vZz9I0ff3mXRAET58+hQYNpTFjzDGGFVH45uv1Gp/WELfbFovFwjlKGKWE90b7fsi4qOsaawqDIFBKCSnRNKBkSbPYlwFjhHNujHv3/n1d11GUnJ+fIlN6UgLBwl8K0AIoN04qAoox+z1uWuvdbouDGAQBmFIAilDper5QvUEmxqQGpxmlTBRF1jpcfmtNGHjgF5+enltrJ5NJEIaMsbKsUPAhoxRFIaXE8juAKGHo13U9m039QKKfa5rmxYsXo9FouVyWRX1zcyOlRGzSWsPSWuwtqVrUYUmSFEWx2+UAnJXq1+v1drfuWgVrbEop1MJ13UBzBNThQCbVhLjpdAr2G8hPwAgRUpHDcN+CIGjbNk0iRO04jvFYMPAFz3q322FCAkJ9URSDZADVj7UWIDnqCXJQA4RhKAMfVDY8ZPRkSMZlWVZVA/4HUDR8GIxIhBC97jiny+W6bVutLGOsKMosG6LEXK/XhFjdqziJwN8yxoxGIyhotLFoKAkh1hIguCCS49Ubo44TN865cxRT1KZprCGbzQZ/HBa+URQNh1lRFNqALd73bUcpzbIErZW1ltD9MqsjhBkHPqoNBFMQhxljmAchSoZxBFRsPp9f3952Xcc52H4e57zvlDGOc0kptcR0hx2aEEQjksD/CU8VTxgqZvAn8AU9z4NNA8L3EX7GRT5MDYiUMggiHNeqquq6bLrWmf0Wc6XUYDBUSlmtN5sN48Q5x4lbbtblLo+z1A+iKIpgZYw3iK8JFiZgWuQzfFop5e3tLeaVmC/DcBJycXLQvvCDXcswSUHuyfO87WpY/Y3Ho8vLS/AvozgIgiDLkr19keqFYNTSIPCePnnSN83XX379/fffL+eLtu9msxk2iMBUnXvS98JetVZpKYUQggt6dnY2nY53u6JVbZYO27b90y+++PLLLzkRneql9Lj0D/5bgFRFlmXjydAYQ/frd3jf91rbuq6l8K+uHldVsVqtDDFaa6wZBf8G7D00VEBBBkmcZrElrOuaoirBynr37kMSxXiDs9kMG0il52mtYbOE9jhNksvLS/DtEACdNsBcDzQgU7VV27aTyQRtVZqmQRBst1t4hLZV7ZyDRAPZCiEXzhQY2nLOseASVcJ2u31YrtBQnZycRL4H/gBmQ9iiQ/jeb3O73WKPKjDdpqzyvGjqTukOY7ggigSjk5PZbDyK0gQIXF2Xi8UiiqIkyc7OLqAwVaq7ubmpqqrrmizLTmezuq45w/qdHkx5fM3JZLJer7/55pu2bTEkObIzP3z4gOIMVywIAiG8+Xzeqr7rOkY5YwxkzSAIsiwDUIR/yrKu67rrGmRMQvYSew+LOw5GYqBGOOdg3mEPpu2YAqFuAxKJ7l0p9WezM0oJo6gUq6oK/QDJCwjI8QWBGXaYpTB1WK+M+QYx1lpLhTwatqMHM9biRVBKuaCj0ejm5gbdnZQSTxKdM+d8PB7DnZsazRjLt9vRaPTk6SMhxMnJVEqehFGaxePxmBDXafXnpuo+Yi/M/BhjGDHDSxJzhrKswb6FAM45I6WPb2qtLXf5/f29VhYojO/7u7LgnDdNCy7dcrlE9sH5JMShFBZC0H/8f/+vuq77/Cc/efToEd6K2YvAtVKqhFReyKZpsiydTCaqU69evfr//ff/3Y9+9KNPP/+MEEI5K4vKOMI5t9og3xRFsdtsjTG+5JeXl4PBoKqqd+/effXtN865n//858PRZDKZFFWJUqbpO6ed1lqpjjpCCBmNRkqZV69e3d7enpycfPvdD//wH/7Dv/E3/sZv//Zvo8yEvRPhHOgXxnO+76MTAqqRxFnf98v1pigKZdx2u5VewLlAR7JabYDzY6Apvb25ZZakZ2dn4Lpx4eFV8cNaaHow/saiCcA8GLQje41GIwwcUQY5Z9GWIRnjZYOgYK3tVVsUBWcSRlye561WqyM9Oc/z0Wh0dna+WCzattVaMUqRNkDGmk6n2WDAOY/jpGmajx8/rtdrZFPgzHGcSuFzQfu+v7+/ffny5W633e7WQLAIIc+fPweMFwZ7pyuMg6Ggcc4Bq4BQPwiC+Xw+ny+Qfl68eH5ycgLVyd3dHWcSFW3TNEVRhmHIucRlQ/fg+7Jpmt1uK4R4/Pjx+fm5MQYQHVxbYUtoDsR/zrng9KjiQWzC8OX09BTssfV63bY10qfnecSQLMuapoG0AvphRHz8nOFw6A5mx5jo73Y775AqPM8jZO9zjRkTognGDVESRlGUJBFC28P9gjHmHAMx5cA3p5wyzuloNIFVY5xEKBMJZVjFulgs8rzEBwOrbDqdbrdblAVtW3t7E3yLvzrLsihMfN/HJM45Wtd1EASUOhxa9GpG6SgK+GEXux/sLSSEEE3T3N7e5vn26eMrtAEoX2azWVWUoHoALu26LohCRNjdbrfZ7T5+/Iig2XUq8MO+18YYYHLGaSEEbNKk5DjhnHNCGCFku93WdQ1QMIkzIcR0Oj1qh/HEEKYxTAEtAwus0Ae/efOGUpqmA7S5lFLhYSVw75zD7oTdLvc8b5CmeZ7/+9//t77vW6vBUxmNRoSLsqqAPXueh/67OTjPAdZ1zuHvBfmsbVs8ovv7e3C3UcuCKYEvSCnFnzLdfgGUlLIod03TtG0zGAxOTqaj0Wg8GcZxXFUFIruyxhpSNbUvvfFw6IweDAafPH/he2K1Wr19+/bNmzco9c4vL16+fNn3PfDdLE4wZKjrGobjTb8f64zH481yRQhxxm7zXW+0EAIo42AwQAWplNKmL8tSaR0EURzH2EUmhU8IUUq9ffv2/Ye32XB4pB6u11s40UvhgYdQ13WvOl/I4TA7v7ocjUaOEmNUXdfb7XY8nDRNA/gZQ3xHKJAGpO2u69qmQf8JS6eqqjwu8jz/4Ycf1uv1+fn51dVV0zeoqBBGcCXTNH3+/LnneXVRYrAIoTdG6kDRju9ls9kA0R8MBi9evPA8zzE+mUyappnP59Vuu9vtIK/JsuGnn3768DC/ubnptd5sNvsgT93z58+HaWItkdLruu79+/d1XZ2fXzBGEQ/hh0f4nseitYZQVwivbbqnz55EUSQEQx/1ww/fdXVXVVUYhoPBIIoS2MForR8eHkD8AL8zjmM0J2kag72HPqTruru7u+Vy2feaMRZn6XA4dJZQSgeDAcJLf1h0jQ4HpXNVFQgseFy+70vOMUdr2xYWdygEAaEFUYQnD6AUPQ9UaMDV0JECrm6apm4bhFatdZak4N3Sg9JltVptt1vUZ+hjoyhBN+4Om8W7ummaZluUYIdPJhP8d/+wH7nr9y7TSLLHdpo4BggDcFqaxdQRTzAhhCcEpXQyHVmrYb0ZeBD4J2EYUsGPvMYwjJDmAKYopaqyaZqmbXsovcqyhA01PkMU7deoGGNAJmmrOooi4hi0lg8PD9uiGAwGQRAIb8/DQXbb61i1gkhfSkl/9e/+zT//5/+cS/ns2TPY76Zpul/Dd+g+/UDWdW2V9n0/ieLRaLTZbXa7nfC96+vrvCgHgwHojV2373fxxGFOobWeTCZQZ7Rd9wd/8Id1XT9//hwOhMaYoiik78VhJDwJ/mnf90mSRFHieV6+3S2Xy+0mR7y+ubmhzL148YJz3vU63G/woIBVcXSstU3daa2l76HIcM7lZX1zc7fdFag9q6pSak+Twhvd57koRCEMGC9JUs/zNpvNnnkXx54XYGoGJRcyH/p4rAeZTsdhGCK99X2v1J5m2B02YXFB8aO01lGYJEmC3Z++75+fn4dhhBnQer3ebjdFUZydnaEcmU6xKFMdx+GMsbquwHKALU3XdZvN5ssvv4yiKAjCwWCUpcP5Asuaes/zhsMBrpyUUukO1/LRo0fozkEVR4t/FA2gj9lut9gshP2PaZpqrdI0DUIPckWjHTrLvu8pZVrrKErA5nn16pWUsuuavu8hFUFie/78+dXV1TELbrfb1Wp11OPEcRyEXtM01BF72E0BJQuSK9RYeFbmYKmnlIKOjFI6Ho/jJNztdpjE0YMwHmg2RpZKKRRDknHGmFIGTAgppXYWXWPTNFVdw+ObCfrk8bPhcNi36v7+viwbjAVRXuDYrDdLTwZxEmIGYa29v78HmsWFSJIEzuBd0zZNg1EdIWSzXUkpycEBC3wpZHoUo74XItItFguwztMkopQKwaSUvpQYMDln0fJWVUWpGwwGUkovDIQQVvdt27Z1QwgJQ38ymQDyZEz4vj+fz/Fji6KgnPV9ry3puu7hYeGcq8r6/v4ei8PRd4ZxBNatEEIIZq1FSOoPlhnGGGepUqosS3BZptMprIC11my/rYHjNLKDByzqb3NQsK9WG1DKwjBUpi/qajwYo3Sz1lZFSSkdD0dRFNVlfn9/DyfrMt9Z4ggXjhCgp2DA4OMBmT72bGAQA1g9Nk6r9QIfozkIVPtOoweDCIkx0teNtRq56tHjy6dPnzqHUoBeXFwYYr799tu2q1FkE8f6XgdBFEjP8zyjeyGYx8V4PHz+/PnTp09vbj++ffu2KHJLyePHj8G2oZRVeXFzc7NZ77BhVmsLsQhe4slkGoZhlsZFWS63i8FoaPX+UqOuBck9SZIgCne7QkrZNn3d9Vpr6tRkMlFKUeoelouu68Ig7vt+u82xOAg1q9ZaMo6kUtf19PRkPB72WjnnkiQajUZNVed5rrV9eHhA4u875ZzDVlBrTRzHqu/BpAHy8ZOf/ASk7zdv3mitp9NpVVWEWMYIYwxcSQzORqPRZrMxxjy6uIzjmHFSVdWbV6+ttYRySqnSXVVVZVGD9hTHMW6iY7zeb+KScZRQRmynjDHr9TqKok7tl1PBvgsAPIwMEIHjOH727AnOwHQ6hUcUeOuAowC2Id9hbCo93xiT5ztCiO95URR98sknURTcXd8dwA/CGJ/P57j1eb5DrjTGYBSLswcrclD4j1ORtm3zsgJHHi4GYBUfZy8olIEOoNxBaIX2iDF2fX1dVRXnfJCmqKWwqx7lRV3XXEoUN6hOEKhBukUBgdY0CAIuBVa1gmESBEHoB845yffyLyRlzPWPJDDGhHMUDDDTq/V6LffqfimEiNIIpPs8z6XvAelEtccYKYriqDo3xlhLqqJEmsAsz/d9T7AgCKbjcRzHfiCTJKrr+vr6Q7Hb+L7/6NGjJ0+e+FF4VDpjLEgpjeO4rlrGmPBk27bICKrrD5/ZOQtHPyWE6HuNQHEEF/pOG2MY41EUbTf5mzdvrm9vlFLjyTBOUwTzOAxwZo4wPHXVZn5394tf/vL3f//3Pc/7u3/374LSW1UNpS6KElAHhGS+FzqDuQNNkiTL0tuH+3/2z/7Zl199/Zf/8l9++fLTIAjgdzwYDLBjxDmDIgy7HT755JPBYCCEd3t7iwRPKZVSIj1YbbQ1YRwxxvDy4Jo9HU983//1r776/d///ZcvX2rTf//997/9278thKjbpu+0DAKw3lA1aq37TgOeefv+nTnYPYRxaoxZr7d393McLPhHe56PUmOz2QjBjycPkMBsdiIOlkK4GG3bA28TQvSdPnbGk8kERsZh6CNgHeGctm1gcIBLSwhp2goFwWx6epyCN01TlmUUxUEQnJ+fB0GQ5ztMc6y1KI+apgVzuWkaPOePHz/gNOd5fnZ2BrdVZOiPH68Xi5VzDvSy4TAzxozHo+12iyGp1rppK5T/wOfPzy7jOIZeF0IEtAXWWvAlh8OhUtodtjcYo3uFlRHpyewMGXS73a5W6yiKEPjyvKzrMo7Ttq3jOE7TROxLEAscouu68/NzkMyKooCmD8DYeDI8OzvTvVqv15i64rbDIgiNMqXU87yjW+Zutwu9vW2Mc65X7bGESgcDDFb22C+lqL89L0jTdLtaPzw8YBk2ohIwBvTuHjZA1wXUHlrb09kJVmHWdWsNGQwGjLHFYoHGDnVVEHqUOizIU8pst1shpe/7XaeyLBOMgycBluRsNoM9IOob++f2b6DJbpse7AqA+Zvtarve9H0bBMFkMjk7Oen7DtCXcw6EFd/3UcNlWSYDv2sqpVRbNw8PD69f/zAcDsfj8Xg8Pj09hxDkw4cPyEZ5Wczn811RlWXpHE2SJAwiQgjkqjjhYRxNJhOM4KMoiOO46xTOMwopKJXIQVoI9M7zguNFYIwcW9jjfORILTiq0EGMC4Jgm2+UUlL6KGqTJCHWDYdDq43W2hMMwAlylRDCEMc4x3HCTwPaCtwa6R/TdqAauEo4HmDpQqiFLms4GON1oIATQlRlnkYxjGaGoywIAqV6KeV4PNRav/3wFt8izWLG2GK+2myK85Mz51zfd4LxOAkFZZS65XI5PZ3+xm/8xuMnV03TFGWJB3tz/fGrr74qd0Xbtr4Xe54X+Ml6t3WOhGFIKbm6ujKqOzmZns5OBqNsvn4oqvzhbj4cDtM0Ow6yl4u1McYLQqWU0c5aW7eKUDe/v+66JkmS8XjsR6ExBguw+17Xdf3+/UcweDxPxEEohPD9sOv6umu6rpO+wMtK01gwCXplVVVFUaGEXS3XWPFeVWVVVfluh6eB0floNDo5Oanr+u7ubjqdGmOapoqiiDECkZbWFu8F/TMhxCrtnJudTKbTqVGaUvowX3777bfS4+fn58+evkBVbYxZrVZN0xhCgSN0XaeVmU6naRxj2u6crdsG2DnqeELIcrmczU5PTk6yLFutVoPBQOt+l2+MdpTSq6ury8vLrtsreR8eHvpDm5emKWGsqirKmbUGx5szxjmfTqfj8ZgTelTTW+uur69hKBOGAVgTR9EVzmocx5hsSimx/gS+Hlx6dV2vVitQEVBswQ0bhCp0LwBawHACQ/dHP/rReDy+ubkB1pBEEZAtTAYAjKFUOjZ75MCYbJpmuVyCxQviilIKuBfaEtAbkijWWlPnwPrY7XZQCPlhiIk/6grQ6RaLBXMEC7iAjzZNIwPJOV+v17e3t8bZ6XQKzYHnCbSUe5cvf69Yf3z1BMU0GjZCCLE6iiLVdUVRXF6dZ1l2dnYSBB61bpdvfvjhh3fv3nlh8OLFixcvXlxeXqK7iKJIaw1HwF4rQohSpizL1WKJdqIsy+nkhDHmBxJdMXgI9Kjl7HRVVTc3t13XxVE6HI/A+GxVCyym7/uqyI+8BcQo+ubXf5JlWRynHz9+/KM/+qNPPvkEksD1evv+/dvJZCYEU0YzRrpOcUoo5TAWywbJcDhMkuT777//kz/5kyKvfuu3fuvJk2dJkniBTynVui/L0g8DkHiqqoqi6OLiIgpCay2nLM/zf/fv/l3TNL/7V//K6ekpMVb6oaNks8uRTdGLCMbx67Ztr6+v3717Jzz5l/7Sb3333Xf/6l/9mywd/uxnPxtNJ9a61WqV70rCaF23IHgCSkE3E8dxGMdxHCtliqIAarLZbI6TXUydnXPssGAY813f92ezE2TEPM+hLjx20rjtz58/Pzs7w2iAEAJQ1zkHJIxB2tM0eO5lWSrVAyJmjANvQP9xVO2dnJyMx2NsAVqtVg8PD5Q5ZylaR6yRQSUxm83wOaHIAFp2dXX105/+dLlc3tzcTqdT+LVQSvM8HwwGwNJQ+wuxL++apkEhH0XR2fkJihvAXYPBgDiGJLTdbqX0wGo3xvi+F4YhOlrkzjAMj7z13W73ww8/jEbjKAqvrh6hAUJhetTuLRbzKIpOT0+zLEP1Bmr5crnM87xuSudcEqVgBkBBbQ+r94Be4IlZa7HPZLPZIOLEgY+KGYjj6empJcTbW38ppAEY12FLILVuu91utznGjiAtWWvLpu66zhGS53mnerSJYRjB0CFL0izLjHFKqeuPtxhpHSdrjhhKqSNgp/k4Bvv4VddJFGPmhezSdR1lTh0WZiMykoNSBs8cn00pFccx59QZ65zbrtfO2dlkClSSMlcURRQFFxcXaHKw8Ljv+65pCSHJfrfuYrvdfvjw4fr62lryO7/zOycnJ4A88zyvmtoYYxwdj6fW7LFwQojw/KIoEMeBdOK2wiql67qmacDYKPIKb1lKORiMkBJwa/By+77Hn/L3/v4O6DUOBqW0bfvtdouhkjHm4uICwQRPz/ME2HtHBUNVlnhW7cHW31iLtgfkISjPT05ORqMR8Gy0/qgg4zhumo4QglVRuJLa9F3X5XmO+Tv6ePTrSqlnT54Cd2eMwXXMEVtV1Ww2QQCBm/Ge78xl3/Q3H2+CYP9ms0ESx/F0OgaLQ2stJf/w4YPwvZcvX45Go/VirlXf1S3nnDNfStn2tiiK4XAUp4kxOgiCLI2TJOKEWtf7EVxFfKVUGEZSyvl8/urVq7u7OyFEmgyGw/HDfOl5nhB+33dVuTZWlVXVNA2lPEmS6ckZY0xr23Xdx48fgyCYjsaMk6oq8rxcr7aDwYgKvtvtlNbwf6mb0hO+54ksTi4uLtCRdloVRXV7e3t7e9t13cXFxXQ0xqVDbARIU9f106dPPc+r2oYxAlNKzverCECF5JxjH2Vbl8ByrLU//tHnn332mRf4R9vhh/vFsSgBm9DDaMlCHtQppVRrjDGTyWg0HgyHA2t129UPDw9VVcHxPAoTQtj79++NsXVdKdU5YjiTUsqyBKGCz2az2Qxtc393d3f38IByvKqq4Xjfz1RVdXN9DUVL13VVWUMFifsIgsRyuezbRh28+yFIRwvKGJtMJrgaoL1WVe2c41LiN2NqAWYeSOviYJ4ShyGMijzP88PQ8zzwf/b6kr7Ho0CIxrQd1DHoptHZAgtEXkC/Af3yYDDQFm6RHlqsrusYoYPBIN6bZVJ7sJvebndVVfVaY1jk+z5YpJzQruuGw3F/sN1BcsGlg/iXEDIYDKQvVquVlFypPsuys/MTT0itLQJLEqd5nhulABDArdc5B53Z6cnU87wg8D777JMjeQCWadfX1999911VVX//7//9s7MzKeVqtYqSmHOe56V32IcBxq3uTdu2wF8ppaAFox7AMJQQgkVBlhBIFnzfp4Rjymmt7boGT6DrOqsVhCxhGNL//p/+fz3PS5JsNBrhlbx58+73fu/3PM97+vTpeDx2hAghur4x2vWm073inPu+b1Qfx/HzF0/BUPv+u1dffvnlX/tr/9H5+bnWuunqPboQ+IPxiBPati1iVte0UsrA24P8r1+//uG7b9BYWEoGw6nwJPIiMnrXtEdtAuf85ubm//Xf/NdhGP7u7/7uarUihP3yi18FcXR2dpalozAMt3kBDtNut7OGKN0lcRZGPn7I4QT36DmstbtdASAR36uqqqIsMVLBFNI5F0UxRiFZlvW9vru72+12wGygVUEbjaYf6h4wdQCSnZ7OkJLZfjX4GnxzdIGAlA7sKN8/bDWpqqrvu6dPn6I2X2+WcHZljPd9d0zG+MmAx4C7ZFkmDsJ1GO7leb5eb9q2HY/HnPPlcglTmcePH7dte3t7yzmT0uN8bwU+Gg8++eQTyIJOTk7atl3MoRNZKaW0hic+BzZDiKOUWWtgJNv3/dOnT1++fIlcC8MqpbuuVYvFYrPZoszCN9VaM7ZHyzGGBlD08uVL+Lbv8o3neZJ7+wj78LBarTgTSPxRFElPWOP8wANWh70lw+FQa63aBqgepfTkdOqc65RCHsUbB3JmrcWq10GSTiYTzmWe5+/fv4cq0/d97WxRFNa5OI6TLDXGYjyKGssojZF0HMd9px8eHu7u7u7v7/c8M2LCMIT/fpJk6AKBtyuliHVAX5CWwNHBq++6bjQaoVbG1PVYgRljlOqklFmW+dLzA8/jIggCTllebLEtPoqCs7Oz6XS6x72khBtW4O0vQlmWs9kEFfZisfj++1foRN+8ebNarV68eMGl8L2wbNrADxGOy7KUUgZRfJxK455Cyqq1Pjk5QYmDKhxGxwdg0uCgAqjG624Om9oxB4GqEX0tCiZjHKoxWOaAE4bBQd/3Dw93ZM/N31PZnLUgekvP61ulrSHEwkXl9vYWEfPs7IwchI04M7gyABggXq7rmjGCy9W0lXOw84mrqgIE2zQNarhBmqFFsdZiN7nnS6VUHIenp6ej0Wi32xFiAdRpDaLu3BglpQSXAK+j7/v5fH5zf2eMQRuT5/njx1c//vQTzxcnkylxsPDomBS3t/eT6fTk5IRzzjiJAj+OY6M6zjnhNMuy3S4Hu4Vzvlgs3r9/j9lTWZZaWW0dZzIIouVyvlrOfV8ahxWunDFmCfvss8+SJANUGQQeMXa9Web5tuu6smjbtt/kO2OMv1/+E3qep3vd9W2x3fm+/MlPfjKZTII4oJSvVpsffvgB2ZQ5kmUZxg5oj2EZeXJy0ve9djZNY0KsUmq7zSHExitDZLDWcup834ftZ5akbdtudltjzGQycc4Z7bA0EGIjrbWlLMsy4iggH61tUzZKqbLMd/nmyZPHP//5b2SDBLGl7/uPHz/utkVd14BXgbuAENZ13Wx22jQVGlcYpqRpGmcpY2yz2SwWizhJLq/Oi6LYbQvOeV1VCC9KKc72viRoWgBXJ0lCnYUWez6fH5eNYlEVqs88z4uiqOu6adq+74XnAQYDqAm84AiowMxCdV2aptPpNEkSc0D6ATDjVAAdP6LOqMbwuoUQMIWH3xW+ONqboiiePHninCvrCgIyetj/ZpRumgZqyjRNHj16BGBiuVw9PDzsigIAG9hdSpnQQ0yTeDigASAFc84tJccGW5k+TeMkic/Pzy+vzuM43qzWaZpCQyqFt1qt3r5+DXABQi7OOaUkCIIkDq+urh4e7n7zN38TOhggUgAU4WeGeTqqqPV24/v+YDDCUCXLMmvIdrtNohTUum+//bZtO0StKArjOGmaPbeVcx7HcZLtDcCFEJ1SWlu4NDi3J8Y456LAXywW2+02CAL6X//f/qs8z+uqTdN0OpmMRqMP7z9++PDhiy++SNP053/xL0RRVBRFr/u+V71RvpCUuel02tYVrMkHaZamaRJFZVlaQ5Q1y+X8/PycMUY5i5LYOaq63vO8tsUGLgkWLcZhcRzfXF//yZ/8yfX19e/+7u8OhlMv8DllZu/y6qEGB0Ljhx5ezPX19WK9ePXqzeeffub74b/7t38gpYzToed5VdMGfoSqsyxrpTrfD5XqBOdN2262K9QHaZoa7Y7nfjCeAJNAv3VsLNA5ofZCYtbWvHz50vcl0BchBGZ5wNXLsvZkUFUV6JB+IMF6EUJMJhPQeHHbtdZB4Lm9jwZHoSCESJIIN8Fau16vfN/ngn7++edIOb0yd3d36HXwOuODMxnmuVJKz/ORJ8IwAM9sPB6DG7hYLPuDDcd6vUYmQ//NmKiqAsuYi3J3f3/PGMOK3Kurq65VyHxVVb158xYsUc/zDoRxyTmFNgQ4RBSFUKxMJpOqqna7DVZqdq2CqwIOQNM0TbO3SAD3DkXwyckJQjOS09u37+bzeegHQJjLslZKYcBdlrlzFCYPxhghOWhJw+FwmCYYjnDOyyovy5IceP2cc1T5xEJyaKSUcKA+OTlD+/Lu3bvlcskYG8+maZpqY+bzeafUYr5q2xYwZ9/3vifg+9D3fZYNgW8ZY+qqLcsyiEJEN6iccABQZGw2G9RwnpDisN+E/TxBAAEAAElEQVQQbVyv9gxT/GvXdZ4nEAJQsnve3jTVWRtIz/d9IVjg+8aYt69eN00FTOjJk0ej0UhZ7Molhwpj79zonImiKAkjIURRN3gOX3zxxdu3b09PT6MoGY5Gjoq2h9elwnnDmQek5HkBvo4xBoQBkL6ttXAV4geXRXDC8JvBC0QRBhrAcrlAb4DpFfpA1GRpmvp+gChPCOnbFjWxc44y1zRN09VHgrY1RGtNKTfO6l5rrTinURwgstdVC5oX+F5AZ4GftW0LmXAQ7N+X1qoodoyxOAnDMBwOMyzFQt/Sti3oBH2vwXtjjCFGcUa7rvvpT386GAx++OG7zWYDbvXz58+xXjMvtvgDMCB4eHgod2We54wJ/BBjLCM0TQaE2l5VnidOpzOseCLUwmQ4SVMuGDy9rDaEkO1qvV6vfT8YZCPOeVmWGH9/+tlL3/fzfJfn+XKzLorS9/3lYg3nVdTEaTaMosj3Q2OMMnY+n9d123VdkkRZlp3OxoNhikCH6WRRV3ju8L3O87yru2yQGKOFYE+fPo2T0As93ws97l1f33748GE8Hsfh3p92u91KKbfbrXEa1QDa1+FwmA5T5xwhDHyj6+vroiggD3z06FEc+lEU+dK7u7tbLB44l8v1ymiHARx+G2p05+h6vV5tN33fq14rpbQ1fd9HQRxF0XQ6BkvSOlOW5Xa7nkwmo9EICLRVWh/MFCxlZVkmSaKUCr2Ac7bdbruu63QHGO/JkyeXl5eUMxBwN5vV/fzBKFvXtScDSqmPPUK93vMHIMJQCt04I05rfXV1BdFVGIZSekcKLAICEBd8NuF54CIDHkMFdhzt6b53zkH4qbUuimKxWmGcBccEtCuY7MsDqR9MaExp0XOiGzzilMB7fN/Xdt9EQTEahiGxDmi01jqNY2ttWRZA44wxaZoFQWCBaTmH6odz7glxyAXMlwFjTMG9zxhCSK/1ng9jekdtFAV/82/+x4PBoCh3fd/CDLYs69VqFXohhEcgPXddp5TO8zxJYq214PTly5eeJ87PzxF50CsSQuC1huAjpdzstn/8x38MCxLw4q+urpIkcZbudjvYwLZ143n+/d38/fv36/W6bkpPBqPxAFDWeDo+oonaWaR4oy2lezqTUoox0vc9IySKorZtrLX0//S//y8hKnbOUUcePXp0enpOCPn222/fvHmzXi+n0+n55YXv+1Ga4GSHYThIkiiKNBxpw5A6cnJyAjvNDx8+/Pt///t1Xf+9//w/84NASl8Zrboe+aDv+6P9EpozPJ2+72+urz3fD8M4z/ebMQAjHRUAqOeMMdvtNkmSMAlvb2+/+/q7pmmuLh93Xb/ebZM42+ZFVVV11QKqMcbFcfz48WPOSBRF88WibkrUK4CIMY9YbTZS+sAh8dkgf0DEkWJ/IoUQTHAUUsgxTdNcX1/3fX9+fsa5UMrUVVsUBQjsQogg9EAujuMYU3ycRZCc8nwLzkTf91L6nFN+cAepqsrzZNd1VV3MZrPJZDIaTgAZIjcDgQPmXOR5FMdhEABoiaKobTtKydn5yXI519qmaToeTSmlTdNeX1+jVJrNZugYMDNKkkRKsd1uGWNc0K5VTVtpZdGhAudDL7hYLN69e8c5z7K9vygCK87fYrFYr9dK9ZzzJI2ePXsGZG69XnetopRqrd++fdv3Ko4jQsjFxQXgNFSxZVlZayhli8UcSXowGAohNqv9jB8jYyFYEESMkcFgNBxmfd8bq1G9LRYLIdhkOEJ+ur75cHNzg9eXDga+lOzA4MHkFMWf085aSwiDQykgSULIriy+//777Xa72W6DIOyVgb4EBmN912GaKYQQ3INTjn+wDM3LAkUPHh0yMRisGMHjZqIQwSe0Tj9//lzu1X8V4EDPk77vB75flKUUDLxRQkgWZ74vEdQm47EQLAxDTmhd1z/88B3stk/Ozy4vLymllHJ68Do+UmuhXOv7fjgcCuFVTfn6hzevXr+uqipNB7PTs6IqwWjG1AMNOqB+WMJSSuHP1HWdNQTEFLRM7LBlsm175AAhhNYGI0trLeozfZCCY4iDuh81E5jChJA8L+I4klJKLoC9eb5QSlnnrNNV2eDrOOe8wBfCgwhXcpYNksvLy67rymKvkAX3C6UkOMWYHmIhAdvve2Wz2cxYFUXRYJB2XVfXNT4/4AcQRg/jYNhWa6VU4Pv4zcvlknMKLTom+FmW9H0vPO5JGcWx0ZpzTglXSu3Wu4eHxXw+J4SkcZokSVc3P/7xj8u2YIxQa7TWjx49urw6J5xVVZkOsixLmqb55S++gAI6iSLBPUZlWdaIHsNh1vUNQBopBXQkeZ7neeEI+fWffskY87xgMBgZa7fb/P7+fleUvh8Oh0PO5Wq1UqpjjASe9H3/s88+GQ6HWFyhemOI22x2Hz9+tMadnZ3BUSKJwvvFnBM3X83jJPzw/nowGLVtH/kBQl8aJ33fw+xAKTUcD/ByyWH55rbYwr8QHTIYt5gR13Wtu76scsk9GBo8efLk9u4BLx1AzrHLhUAEBphv3769v3s4uzgfjUZpnIDX9fDwgLgnPYHReVEUzhkMW+MkZFQ0TdOAdbortFFWmbqufN8fjAfgUwJd3hV537fr9TYM/TQbEkIYpUmSwFXRWdu27dXlI9/3f/jhhyO2jaT2Gz/76cuXL3/1xS+ZFIH0eqN1px4WC7QZqIGgCMYd98MQADNqI/DVhBAoJqqiMMaMRiPO+W63a5qGcg5CGLA0QJX0sOkBHQiYzVAyITXjkR5ZmACwkySxxEHg75yD1Qg9/MM5b+v67u5uMMhQZnVa+cKzwH6t3ad+Ytu2bcra8zxYIhPr+l53qieEgNUqfE9KCePZ6clkMEgvLy/iODZW3d3dvXvzNs9zSnkURUVewv4N4ZcdTII4pc7Ztm0ZI9PJ5PziQgpBObHaBYFnLeGcpulgt9ucn59L30MDtlpu7h9ub2/ujVVFXvm+j9n6xcWVEOK7b75VSue7EtUwCEvcY5wyEP6ApBBCLN17IxBHKaVxnMZBuNysu64hhKiuq6rK9z3nHP1f/c//l2jmwjAkxgLEu7q6Gg4zrfXt7XUQBFxQ0LziOOZMHrOLlDKKorzYqq6fzaZQFBNqq6pYr9e///v/1vO809PTTz75BNKqY51urbWWeJ4AvuV53snZ6Xg4kpL/8MMP/+Zf/+vZbPb82Usv8JumCcOYc24dNQdp8a4sINr3PG+3y3/9619//Pjx888/x5jsj/7wj40xwFqEEJ4XGGsJIZeXj2Ba2HYwj/GzLBuPh77vp1my2Wzu7x4eP34shHdzf1dXLaVUSp85UpYlYHnHqBBivdkg/uL1EELg7b5arQihjImm7jBZgxYDbRagI0f2qjpzWERa12Xfd8hDWAGM1gTnHhUP/jpjjBAyiqKT6QwdZNPWRVHc399aa7M44Z4MpJcOB3BXWm928IbFjmRK6SDNzs7OsLiTENv3/atXrwDaodULw1BIvyxhLuVTypTqhZDz+UPf90mSXF6dj8fjd+/fn5+fZ1lGCFF9v91uq7KhlBJCt9utUnsPzyRJ1us1vKyE4L7vQ52ALFXXNSV8NBoBhwBLAGVQ4IWMkc1mp3XvBT7QRyFEEOx18saYMIw4Z8bYsiyqqg7DgFEKejXntGmayWRSbHfS46PB8NmzZ5PJ5E/+5D+sVpsgChmhSZZi9qGVLcvSCwPf9yl1cRyHYVwUhVUabMXhcNg03et3b1+/fq2NYYwTQuDn7ixFCHPOOUfxWnEyEcsodV7ga93D3Igg/MkAgqYgCBjZe+rWdW2J8zzhKAlD/2Q2y7JEdT1lROu+bVv8EMn55z/5CXUOtTLnXHDPUotQniUJ5IeMUM45GGDv37+P4/j8/NwqHSVZ16n7+YPq9t8OGcs/rFl0jkZpZJXdFvnDw8PDw0NV11LKMAiObFxoKsGlYJS3bauMVUrVVRsEQRB6lFI0BpRwQK1Hywyo1kFnRLRCQcM5HwwGRwxpu90CmgXCBy6Xc1SIveJdCA9NCMJcEHjOUc6pPNiFQIeBThetlO/7f+2v/bUPHz58/fW3x9+GXsJZnec559wYlWVZHIeore/nDxhwM7YPPmEYAfND1JJShoFUqsOAmxByf3+/uH+QUiZJMpvNLi4uoij68OFDGIZ5sVW9YYzJwNddnwyS2WRCGNt34X3vLF2tVh8+fLDGAPx+8eKZlPKoUxkOh9bqoiims/HFxQVj9Obm5t3rN4AK2rYdDkePL59NJjOt++VyOTud+oG0lLRtc39/vyvyLB1kWaa17bTqauj5yX5OZ8jH27vNZhNHiXEWai9G6Hw+l5LPZrO2rne77fNnT84vz1Ck3t0+1F2bZUO4c2222/nDQ9O2xDku2XA43Gw2UvhRFOteEUK4YJLxwWB/HpALmqbRzoKNoLUeJOkRQWdMNE1jiIOYET4mTVPlm3w2m2Dmi37MWkIOtM6HhwdrbRj6o9EoTOLZbLZYLBgTWD4Ijk6VF2B24lTjDpqDg2NVVXEcnl1eDYcZMURKfnt7v9msuOdPp+Msy2AxULcNjHlPTk66rlstN0Iy1Rut9XELDUiue5CC0j/+4z8+PT1FSEfoE0L6vv/h3Xttje6Vo0Qwrq3xhMQMumkamK9mWUYpdbBiPuwUQoCix5Xwh2UP/cE2Qh9WmKBjRJBPkqQ6LEv1fR9uOHuWkupxZYJgD2zn2x22sKMQxIcHed9R2rZt23fz+4e2bQPs5D4o6rgU2BkA8RY+my/lsU1CuzUcDnfbYm+iSVyapoyx0WgElM4PvUOC2GJmxzmPokhK8Ms11Bvz+Zwy1vd9hp0ZxiZJpJRyxPpCxlk6G0+SQVLuSs5p16kkiQaD0WQy4pznVQk2Z9N0m81KUHF/f1tVTZ7nZV6AA7daraClTQcDsJARA4Xnnc5mvVGQejAHnI+AcIwySWs9Ggy9wL+9vd3tdlBgxHE0GAzoP/gv/td1Xbdto5QKPB/QCz/sj8w3664DqNYEQfDo0SNsG8TQCp20lJJSFwSBI6YuK9/3RuPBy5fPi6L4xS/++PXr11dXV0+fPgXv2Pd9LMtEEmWMnZ+fWkI3m1Vdt48eXUaBv1oub25uvvn2+zRNf/rTn1lr26b3w0BrAzdRSwm41YQQKfwkSe7u7r7+5svFfPX5jz97dPWEELJarW5ubvK8rKrKDyLn3NXV4zgOkyTZ2wcwEsdxmsbb3QZDLkIIozzP8+VmC4s855zHPfABUZULIbzAB6G1ruuqbMIwvLy8BIdms9kqZRhjgR8V5a7vNKhdUsq7u7v1eh1GPioJBKCnT58agzFHaa3pe1WWBaV0NBodF0sdiTKEUKVUVZS+7wvGJpMJEJG6Lm9ubiAhxPAuShNrrR8G4OOjDDo5OYmCEKkI7ChIfu7u7vbaRq3ny7X0AiH2Cx/8g71FmqbD4QBFFeNkvlg5Z+AuzahbrVZaW08Gm82GMc6YqOtaK5sNEoDS8EPXWqdp8smnLzxPwLSzbduHh4d8V/Z933XYsscnk8mPPv18t9vc3t5//PheePKYiaUUURTh+JGDDyfiWt/3xDkpZZ5vV6vVT37yk77v49BXSnlCBkEwm018399ucyy7lFI+fvpEKZUmAzBRiroSgm23W88LqqrarTfAqCmlu11BOKuqarVavf/wkXPu+6Hv+zDIBqspCEJASlhFYq11zjrnmNi7QrRtW1dVnudAE+MoQgdsjLGG9KrlwpvNJtOTSRB6quuds77nhaE/Hg+bphGMFEUB4c/5+fnp6en56YWjpKiq0WgEIIdTh2NACHHGomFFG4Dh1K+//urm7j7wo0E6rOs6TdOu65quxXRPKdV0HYYUXLAkzWCr23VdGARHtO/IRSOEUMKcc44SITyMIAH8AF5ar7Zaa2Mc2F2MMcAeGEoe3qn8c2PWP6O4QSyCyRSaEMwutdbKaGcI2JMoB/2DcwRAEaX3m5KllHGU4rfBLIAxFkX7PXpwHHTOCU6VUpxT59xkMjJWE0IGg8F6swGLFIzmIAjiOIHowRhHKW3bmhKXpuFkMkuSCMpWYizoZQehdAtyZ5yEZVFzDgkbL6scGMZ4Oh2Px54QB2lY9fWXX0HzlaZxfzAe22x2vu9HUbDn/ifh5eXlZDhEa7dYLG5vbzebbRKlTd399f/orz579myzW7dtsysLrXWvVVO3i8Xq5uam6ZS15PT09OzsTHc9tKLOOWXNYrFarddt2yZJGoYhpwzs2K7riLFtV4eBPDs7efbiudb6w4cPlNLJ7LQoCib4ZrNpmx6BFN0mPbjaep7fNLUn5cnJiS84GjB04b7vC9/DXRNCdHUDYKyu677XlFJlDWNsNpsBZVdKOW2apoErG/hCxrjValVVVZZl5+fn4/EYPvtlU4PbN5lMoihp23a1Wgkh+qYF//Xq6iqKovv7+yzLIJUAU3a32xHOOOdPH12dnZ2hQc1GQ7gYzOdzbR2OhOd5jAoAQnVdo3AJwxAFfZ7nGGvCx//Ro0eQgKBI6rrOWgdOOuKtcw4MS2B+kOZst1uggE3TdE0TBIHwPBie4UpCxYIi8lgZHP8W8KswdAIkjCcMNvaRgwsdn/CkOCxoASRplEbzzxgDR8pqDcSr7XtKaZTEcRgxxgT0agfD1fF0stlsiqJQXY9Aba1VXXcEnmFdiQcCeWB4oFyTw6qisq5QrhljUDmgonWWIuwbZ/GB4zjsuk5As9z3s9lsNhmjEIyi6O7+9uPHj9vtdjabTUdj8NsYYyfnJ2inQd56eHgYJOmvfvWr29tb51zgYTFai8mMtbbte9APptNpWddXV1dCcvCJKaXDNGvbtmlahEFjTJIkZVnWZdX2nTHm8vJyOBwSQozRbdvSv/Mf/4+Q9lBLUUqTKLbWCCH8QJ6ensZxCMbPq1evlstlGsW+H2LhHTqzruuCwNNaU+qEENLjFxfng2GKtSGLxYJSt9vtrCVg5wR+NBwOseIwTVPp8bKot7u18AJGrOTi+fOnQojNZvdHf/RHb999+Ct/5a8EQai1buoO+BOCJkYb6+0OjXhVFWVerVYLKf2f/exnmBy9ffu2KIqma09PTxmFFZn1fIGQba3N8608eHB3XWeIo5RuN/n19TVOsC98QogfhcAn1+s14xLILVofeMxYa8MwxGY6pRTnUgiGw88PG6/KsmzqDoxCzrlSijIXx/HZ2QljwlptjKPUge2kD0ccIQyeXlrruqxub29Hgwwd4XA4xILPoijevn3r+/7l5WUQR0EQJFlaVdXD/QIjf/Dxce612f8X7FZH+K7LyhizXG2wKi4IAkrZdDpFO3L0qCzLIori9XoVhmFd1z/56eeMsbKocTO7riOE5nmObZuQkYPmZa2dzaZc0O126/t+FEWeDNq23fu0NQ3+lqqq6rr55JOXWpvb29sgCAaDAYRCXbefRB9xREy4EAd1bxhjsKBCvEjjMMuy3W4DkulwOPT9EA/huBpyu96s12sEEZA3e209z0uj+P7+3hDKGHt4eGi7zvcDfIz7+/vNZldVFaMC6RxxDWKroy0NqmfC9rr3MAyzJDV7T8t14EuEM0op4zIbJKo309k4jmNKHRisge8LwYRgfd+fziZBEICW9O7du/V6fXp6/sknnzAhDoOzih2E4uzgcwvDZU+AEejd38+//ua7PM+FkBjxI+4bvVds+FEI4MrzRF23aRo/fvokSRJKHD75YrFommo0GiF+EcKcc1Ec1/XepxHMrShKMJev67rvNGI9xuv7+YIQB/KvMcbAzdLsV7ZT3FNw1FDqSSmxlAZV1HA4ZozhZIIKBs0Hkq6zGsBeVVW7vATWGCf7V3/4PHsezHA4lIIJIaTc29Vaq5H8vMAPw9D39wuYESWUUozSIi9x9ykjvi9PT8+n0zHsOYCp7Nab7XYbBJ7v+7t8gyvAOY+jFKQLbXouZVUXmP6cn12enp5mcUYIebi/h2nIZrO6vvmA2/HZp58DA5NSDoYpRjm667TWz5+/gNbk48ePX3315f39/V//638ddCUhxGq7+fjx43yxXK02d3cPjHqUC8YEREXjYfbkyePBYBCGPnoMkMYWq2VZlpPR1FrrLEmS5Or8Spt+uXzY7tbOud1ux6V89OjRixefAKTcbDbbfLfZbLabnBAyyDKttbG2V63uTVUVqLl110spX758idvU930UJX3fl03dNE1TFoQQKf0gCAzZ62YwzMrzHFoiFGqqbVBy7XY7pcyLFy/Oz8+B3LRtW1UFNGGYiymlKOVpmvpR2LYttQ67tlBoKqWwOgUTuk73o9EIag/dtdCsKaVgdjoajaqq2uY7rXXb9NjsBIUTIi0CI0xcEWY9z/P9gHMeBAFqKSD9AC/4weIBgBAksVLKpmmw8Ff3Cl8cABU5KO7xV6M6d4fFpvgKhBAOUqZzjDF20AmBH4wAiI7FHf6x1sZxjH0/7qBLZYxxitshrbUIm/1hBzGaJcaY5BzlIyq2bDjEKxNCQDrQNE3geccpM263tXa9XkNYM5nNUI8C60EiMMZoax49eoSaDGsJ8Zyrqmq61jmHqTEKnTiOkziLoqhpK2utYLyqqjSNZ7NZ13Xz+byt667rjmicEPzlZy8vLy/hHNY3/bfffnt9fQ0k1ff90A/G47H0uOd5MHds+54SXpS7NE0p5zDng1Ibr6ZpmjLPy7KsyqYoCmPVcDxO43i5Xl9eXWRZprseaoOmaej/4n/6XxxDA94KtkQR4kDoiZNwOBhPZ2Ot9fv373N42XuhocYpJwLhlAvTMA5C4YvID1rV9m1NBQ89fzgZP3/yhAr+7vUbGLK/ePFiNjtJkpgxLqUYjcYAV6WUfhSORkPTK90r3/cHo2GaZu/evavrWnAPl6psWiEYpbzvW61tUe0dBLSy1unJaCoEM8Ytl/PBYADQ1TnHBEf1ANEpaprxeGwNATsVO5jruo6z9OzsLEmSvm9Xq812uy13uTEmGWR7sE1KygQQbyQqnL/7+3vP82azGSHEGAvU6tDk7W/LdrsFNA0XjK7rBoMBIcQRI6UcDAZgPu12u+Vyvt1uT09P0ffjIIIi1jVtnueSH6cw4vz89Kj1k1KWZfknv/xCKZUOsrOzM+LYYrF49uyZMQbXHo8lL7Z1XUNrzRhLkmSzWq/XW23McDgEu/Pm5pYdLNBQsLrDxg9CSNv2VVU8ffokGyRt06MQb5pmsVgef7PcbwMkRycYzlkQeiig0TUChDcHC4/1eo372fd9HMez2QmmSM45KfcRSkrJOEHQx3W11hJL4dODxCyE6NuaMTYYpIDcOedHdjOcET6+//CHv/8Hf/RHf/TZZ589ffH8/Pz87OJ8uVg7RiXju92u04Zz3u13V/c4JIQQQljbtlXZrNdrOAiCrocDAHwiTVNKXdO1KMXAcqCUFkUhPd63XdM0p6enxig/jGazCVwzrLVVVTLGLi4u6qrwfd9aXVVVGof45FAWr1arX/3qy8lk8pPf+I3jAKVv27qu67rGUr+m6RBD5/cPCE9t24Zx/ObNm7pqUe+iiUKWgvpsMpkEQaBUx5h4/PgqTpMwDI3S+uBv/vr1D4vFYjKZnJ2dpelgNpv1SuGiWWvn84Uxpq5bXLQwDBkVhw3cpm17LH5GM9D3vdZGCKG1wptljAXB3nEAZUfXdSg7tpsNpTQbDJIkoXS/ELNtW6jeuq7L820YhlHoIwuK/U5JNl8uADkDaXOW9n3veQE+QxAE1BFHsNDNN4dd9ZzTXquyLOM4Go/H1tq6ru/v75VSWin4ZRxtYnbbvO0a1WvpiSAILi4u0iiWUlZVYa1VuqOUQsZhDWGcQFbSm54Qsp+/1x1jzPQmCIKry0uttbW6LPO2q9u2sdYRQgI/StM0GyRgAgwGA2rtYDA4rvGIokj63vz+HrVs0zSvX7/+gz/6w+VyZR1tmo4z6fthlAxg0Nh1XeAx5xznzPf96el0PB5j6cL17c3Dw8Pp7GwwGFDK813BCNls1p4n/EDCXIYwtlwuy7IGZ/Hq6iqIQqVUviuLomCU1nVZ1lXTNFEQgqfhed4oGwwGg67rED/btoWTuxcGYRhGfmCMaprOOddphaSOxg+RBOkzCILZeIT4aYwZDEboh4FDhGFY1yWiijw4NUA6LwM/CAJqHVBVY8x2u1utVm/evIGFFefcUgciESFkcf8A8SxjrDca1dWjR4+Y4H3fh0FcFMVyufQ87+HhYT6fCyHgoYNDe1R4OEcYYxDPYnyGVYDQrBxYE3vDUmPMZrMBjoXzCfYV+kNQbBEtAVqj8iCH3an7+h7meQdUFVUsJqHo8OM4xk84krecc4TR/ajnsECWWAfFD94CmC3efiua2+12dV0H3n6LJRaTNE2jjIHjBvquuq6jIGjb9v7+fjweX15e7mmangeGWVFVuNEoRSCRZowRtofKqqoyyuIdoekKw7BT/ffff+953uPHj5Hxt5vcOQdoua0b59zZ2cmTJ08wOry/vQXvWWu92Wy0Vtsi7/sWGW1xv8CyL9/3z8/PrbVWGyFEGPmc8zRN+06vNpuuVW1XV1VVVBUey2g0Cg6ma2VZ5tutc873QkKIY45zfnFx4fu+9AQhhBiLZMcYo3//7/3P0F/ieqDixtHEXojdbrteb4zRw+Hw/PzcarPdbuu6cdQ545IsCf2w173kgjDHKG37hhFqiRGMN107Ho4++ezT50+fNU3z6tWrL7/6VRQmg2E6HIwfP7ky2t3e3kL8CS3VMM161areeGHged5kMrHWvnr15ssvv1RKjcdTY5Q2Lk5CZynqFUMcY4IQ6wt/MEizbJjnWwiOzi9OIdCz1n7zzTer1QpQWZYOPc/jXC6Xy6ppYRXLDv9kgzRNY0o5bgtGD9ZauDfBlNLzfDTiaFNwK8IwOPYxar/l0K5WayEEpdz3/TCI6WEto+cFCBawzQQ+cfXoAmTwqqq+++47X3rQ8hyEMNRae3Z+GoZhFEWC7vXzkIwNBoMwjHe73buPH7755pu6rl+8eDEYDgkhWMUKsjC6N2RfNEzOOTSU+LGL5cPd7QM4jEKIMIz6vsdgBVob3HytbNc3VZV7nvfzn/98MBggFhykv3uvcyEESigomT/55OXHjx/RaGpttNZB4IPnLqUEKl7VBShBRruu61GQRVFEiPM8zw9k0zSc8/F4XOYFSHhHL03IdpqmGgwGURAkSRJFe7NNMF0QaPCOPCGt0vDi++b771B+ffrJj4B0brfbuuuFEFi4WretUoo6bJciR7XpZr3D4B/3Fi1geNhUI6Xc7Yoau1MFS5JkNMwQpMLQn8/nd/e3q/VmuVx89tlnT58+DXwfLOa2rT9+/IjPL6UUkimlojBBpQ77Okpp37fW2q+++kopJYSHmqYoKs/zurYHSwyWgJvNRkrpyKGO7zp0sb7vYyWlECKM44uLi77vCXVhEDnnLHF4UMYYbE9yzhBCXr9+/f3337dte35+fnF1iZq+rtoeXqVtK4SIogTrODC/A0luvV4DX/E8LwgizgXaP0KIlMJae1ic0MKLMk3Ts9NTsLA553m+tdbCFwDTVfRFQK9936fW1HXt+YIxttntjkedEMIEN8bFUYrxMaW0qmpKQdfY28qEYdj1jXMujuPBIGWMGaOVUuPJkDH29vUb/J6+74HMSREURVHXbZJEvh+WZZ7n+XA49ANvPB4/ujh3zp2dn2itr6+vQV7BRtEsS5gUOOcPDw8HWYDpuk4yPh6PH11dTadj6ZE8397fz7XWTdMaY66urj777LM9a825JEl8L0TehePdx48fKaVpmm62q73pHZNM8Pl8uZiv5vMlY3wynnmeV1WVNj0hrus6rbVj7vz8/OrqYjQawWExCILZ7NQYM58v14vlj3706cnJyc3NTTYadl0H2BgWa/aw1/zs7Az7E+u6fvfuXdd1T548CoJgPB63db3b7Xwv/Oqrr1arle/7k8lMHNyqLKHaqEcXlwgaQojeaIwCQd07tlW+L3FDrbWcYBVM0jQNptWAiJIkgswQKq6iKGBVgxzPGLu7u3v8+MnLly/jOMaetyiK3r5/DydSfCnpCY8LpVSnFZxNuq7zfJ8xhizp729rcHNz8/DwMJlMkLAYY8vlcrlcAh1AvbVerzmX7LB+HmBqFEUYj8JBHjbXvu9nWQKyB1IJonTTNIHnE0Ioh0LW8IOyGOpX3CPQRYA2Uc5BjEHVFYYh7gsGLPgFfhQwIYyMu67DCwWCBbn00R3zCI8xxrhgZVmGnu+cq8tKKeWHYdu28NStmoZzvnh4uL29TePE87yLq0tz2LyHrpVSKoQwf27x4nFacpzIgXw2HA5Xq9VyuYZobO/Wbu14PNZa53m+XC7Xm91msxGSDQYD3St8Zinlb/6Fn11cXOBcKaV++ctffnz/wVHnR2FVFbrTWuswDKfTKR4g5t1R6EspLy8v4SenemOca+oO0bgsy81m0ymFahhubZ7nMbc/qFEUhUnYqQ62NcQ5EBbbtmWO+L5P/+7f+U85Z4TQo7UuMIyjtxs09lxKyfn5+TnWogE8hJ4CV3cwGFBKiqIQvtBdTwW3SkPrh5L5xz/5Ud/3TVV2Xff27Vtwk6WUnEsguqvVRuseZRO22/7ww2ut+5cvP8X2JUjtRqNRrxSuRxAE3PORTaWUxFgoy3DH6rr85JNPHj2+xBgC/etut/MkmC5msVh2XRclGWoyYBtRFHmesM6MR5PnL56BAHhzc3N3d0cZGw6HQGKwJhEZRR2cPwghSvVKd1rZwWAAUUZZVkIIkIUhZKWUbrdbdGNCQMa19ySbTEdQMKCqu/l4PZ/fh2HMGDk/v+ScSm8/mE+SpNhu0ECg3Fmv10EQTafT0XSCf/3666+FlFAI40ZheoKIgNsLSHmz2QRByBh9+vTpaDwoi3q1WuGjBkFY1/Vqtanr+smTJ0KI1XIvPggjP0kiY7R32Jn46NEj8Dqxdg1t3Hq96boOd2kwyMDMi+M4DCPnnNbKHJYgQYrBGLNOU0q7VlHKGGNgUvd9h/+XCwpKXFWUSZJgXYy1drvdNk0TRVEUBVmWcUqbpjEGjJ+Ic973ex4DkN3VYulxkcZJr9Xt7e0vf/2rL7/88q/8zl+9uLgAU5VwQSmtm6Zt27bvhRCMUGtt2/YYmwZB0NTdcX66XC4nk8nl5eVeIKYUJZwxcXl5mWXJ1dXVdDZuqlop5ZwZDAZt12itu75frVb/4Y//sCzLJEp/9rOfjUYD+P0KIbquQcmFtV3AtxaLFebRvu8r1X3//febzQ4BVAiPENK1fdM0utPOudFo4nkehlzSo23bDgaDoz0mAu5qter7LhsNUfwxxvb64igmhHFK+r5P0rgsS0KslDLLsjzPkXXSQYYLyJkEl0UpBYTJWtt3+xVJKEyrqkJXc3SjwFq9vu9wedM0DUMf7wsOkO3+nUaM7ffXgp1DKT85mU6nJ1mWnJ1dcE6JsXmxRbd9d3dXFHnbdukw870A69Sarl2tNmVRKwXtC9YP74+TcwawqCMGJ+fk5CRNk77vtelHo9HZyamUcrF4gNZ1s9m1jcK+NXuwmsRaEmO1cy6QgnP+t//23y6r/Msvv8QLnc1mnNO6rrdFDuU15gmMMUJYkiTE2L7vozDk3D1/8eTJk0ddp5bLZVGUHz9+fPHixcXFhdYaEIvWerXc3N3dffvt93/wB3/w6tWbLMtgwIZdRo8ePer7vlN7VyfVm1//+qu+74fDES4UKHenp6fwWwIwgOHm48ePsbmoaZpit7m+vt5u8jRNe6NXqxX8RYFAI/qBHT8ajT755BOEd9inbTabjx8/blYrQggUhWD+IQZiDN1rQykdpAkcraMoIpyhTMFRX61WQHD7vgV44JwTlGmtu07xw8ZS/L3OGSxMZIwpZfAJ0TCjrJlMJpwL0MmBAEVR1GA3FCHL5RIURk/wruu4J+PDbuxdnjPGVqsVypfT09Ozs3NQYsATur6+hgMihuO+7yNVdV2nlEHVAhzLOTebzb777jtK6XQ6ReaFNRrMsPDHGWPgdEopsX7N0X39hMgvpayKEv8KsFAIUeb5er0+OTvDQBOdIWS/x3EnvizO7Xw+ByES/b9SCjAwKl28I5Q7GOwAL+j6VkrJHIFQo21bba07bBpgQlBK67LMsswTUmst/f2EBwgQZN2U0iTLAOAd6MKkruv1eo1aFug1Hq9z9OLiAtcNzwfwBxqwpu2llEp3bdu2dQMWXZZl/9l/+ndBblmv11gkHQUh5/zk7MQLvbZq0QPgMu52O2DbaRINBoPHjx8LITabTV214+m0rtqi3GFyenNz4ygFSImfH0VR5EeAsa6eXD1+/NgSSynN81z1PYr73W5X7nJrLf3f/m/+d8vlfLPZoUBDzVvXda8N9s5yzinl6SBL46Qoirouj7WetcT3/aIopNz7jgohLLHOWsa56vcaiqIotNZRFKRp+smLZ0ilyPrW2jQZQDlICIPud7PZoEqglBujGBMHgj8FSGb/nB9J2dRFWXLOF4uF5BLD7DAMrdZlWaxWK88TLz795Pz8FKVkXbddp7C3wfcCpZRzNAiCOE4nkwkwf2RHa0lR7NJBhlPo3J/lFUixAAJhGl3XtfCkcy4KgmPmsHZP5OKcl2WNdTR1Xfve/lgDdwWzj1LadrW11igdhv50Or28vEyS5GF+TwnzfEkc3e42lNInTx5Np9M3b970TXv0awCXhRxcg+GlrrUuq+r169ewvTg9PR0Oh/P5HJoXUAf6vo+iGHlOqb4sy9F4cHnxyPM8GNNVVS2E2G5z0Eh935+OJ5jjNE2jrcGR8H0/SeI8z8/OT6BbadtW9XtTpeVyud3uoNNGD5okCWQg9nBdKaWnp6dpmmhrsBMty7K+3Vugcc5DP9hs1yhxUNsNBimmP1j+GMcxsdpa++HDh3/5L/9lXde/+Zu/+ejRo8FgQB2BkfEBaJH4sV3dcMq4FEEQMCmKqsx3pe/7bdt3Xbctcmutsc5a22vFObcaezZbgElBECCyA6uH7SF8dzBMDP0IcD3GkW0LL2mNZmAwGjjnlO7gSb1cLn/47tW//tf/+rd+67eePXvGOcapGitZ7u7uwAXZ5jtGBec8TkJPyK7rQGtbr9eLxaIqa0qpMc4YA/cWYDlxlCZpJATxA484+G9R3/etM8g9i8Xi+++/F4I9e/bs2bNnXddxLrPBsCgKqw3nvGn3zGLM9QBplGW52W4ppf/hP/wHY8zZ2bnnBWjJQIZTvUHzTQg51FsSlBdYmKJwBybEOUUUcs5Rtud3CsZ93yfGplmM64YYtd3kd/c3bdOPJ8OXLz4dDFPV9VVVIriPRiPC3MnJme9LxgQY3FVZb3Y5XK+qqmrbDnQ9tBDj8dg5U9c1ZS4IAkKwaItzQYl1dV2Px0PgB0KIOAyFF/S9ni+WjOyN9TEW5JwXZY4eN4oC8OgBjmL7EByt1rt1kiRa2aIolDJHck8ah33fp2lqrc7SKAzD2ezkyZMnjAq4zaVpKiTruu7rr7794osv/sk/+SfD4XA4HGfZME4GWlnGied52+1G6z4Mw/OL06urqzSFeXpjjHnz5g3IDxh9Sim7Vu3KglK+XKyg9+ScB6EvBDs7O8uyxPPFbrerymaxWK1WK9DM5X6DVuecS9P04uLi5OTE9KqqqqouCCFxmmL+UJbldr1WSllDwDDD6BZ3DUgeXqsxRjt7cnKCsTJsF6y1Nzc3SnVoOHGFCSG+kKvVqixrcjDgRZ1hjAJ8gvX2ZVmOx+PT01MgW77v53mulAaRKEmSfu+5mGAVlTn42G13G8CcADZub2+NdZAK4vdjGIpc4A6bf/h++/AeEQGxBN2FtZY4hoq273tHTBRFAEvUwb3dOdfrzhjDKTt+X3JYB4Srh/78SKWKglAdzBfwQ5qqKstyVxTwzwMgSgjhB7tsIQQmOdV+sXQGP4WqqvCIYA3NDjJ8/BGkKmR21EDOOcEYZDRt2+6bQM8D5E8p5ZQSQtB2eoEPwGIPHktJGAMxGiUEoFNIBBaLxXq7RoYKw1AwDt4O0hamEN99951kHONXLwy8wNdaO2ONMUWxQ1m82+1+6y/+xc1m891335VleXVxiVW/o9EoiAI4DoIricJAa91U9fGFwnTJWBX40cNiASob2HvJfseui9MUAj6MqlAcA3RAL4RbgGnskRJH/4//5f/BEUMc67rucHZDY4wM/OFgBEGE9IPdbocnKzlr9sv+TJ6X+EXTNFJySqky+mgrYq3xfZ8R7BUPhcQ2KxUH4WQ6opS+efPm3dsPWZaFYYzTiayMy4bJPY4m/mpEBBxTgKKWEj8IMMswxgzSAfyEOOeouJVSVVXOV8vJZDQej6Mo8ryg73tY52XpAGUQxHp1XW+3ObjPOByUUi6Z1hqChSPUd4TEkVYxAWGCU0ono/GR1oBCEBWxlD5jDDM46IOQSKy1TVv1ndYGdRgVjAvJ0yS7vLoAFUNKv67L9+8/brfrk5OT09NT6CI5oe4gm+h7jayjlCqbmnM+HA4vLy+xQAlj5Q8fPmB1F1hZh4zIrbVSeoyxLEtXq9XN7Ucp/MFg8Nlnn00mk81m23Vd13VRFBHC2rbebfL5/L5t++l0KjyJmlUIMRwOtttt0wLtE77vd62y1oJhdnd3j5sMpdvTp09vbm5wvdFRZVl2enq63W7bvouisOv63W7X1s2xGzNKt23r+RIuU6C/MEbQ9aKvHaQxFmzd3Ny8evXq7du3SZI8ffr06uISRUxd1ycnJ2VZoupVbQf0Wwa+cdY5J7jXtu2XX379zTffbPLd6elplg7COMJz6/v+4eEhSTL8GlUjIjgh5PLyEjGOUvru3Zvtdns6Ozs/P5/NToXYS/EJsWy/iaJrusY5F4QeSoo0TUM/+uGHH9q2nU6nfd8ChC6KAhiD7/tZNmzaFoiCEEIKATYJniohRApsa+idc1j1cwQXOee+z5umIYRhY1IQeDC+GgwGni8B/v/617+uqurq6urx48eUca216vqmaYTkAPPB4e26rshLzvnF1SUmWdfX18vl2lqbZRmysrU28KNjAa3UnrDFOYcWcjab7fslq3GR+76X3r6c9Tzv/PyUEc4YGaAS4jxNUxx7KeXHjx/zPJ/P52EYXlxcBJ7vB3I4GAfhfsGRtbasKhxywsXXX3+d74q67bpWGeN8fy/+aNuWc6a1DgIvzeIkScLQJ4TEcaRNHwSB5KJt26apTk5OhBBN03hCSOEbQpM0JZa8ffdGK6ONcpZoowCCOm12u53Wfdd1m81GKXV6ejoaDyaTCbCWvu8RK+7v58aYwWCQ59vA88DZF4JdnJ8jIUVhAiYoBnxlWf7Lf/UviryaTqfffffdYrHoey2lL73QaNer1lrr+x6lrus6pbvRaHB2dnZ6egqkE0UwkJXVarXd5icnJ3nZbrdbRiVeFudcqa7rW+eMlPzps8fT6TSJs6KogDd8+eWXzjk0dUEQjEYjjErKXa61Lqt8s9lYQpIkkdL/yU8+P52eQq6ILhStLCJtEATHNcbj8Xh6etL3/Xq97vt+n4OkxNjxyI5COx16flmWQngYg4I2tNlstO5ns9nl5aWUEj+ZH/bJIrW3bWuMxb6vruvq/bh8v8vvKMsl1IEghUniYDBwhAJP4pwfd2+gJwdyg15dCBGGsbUWfxf8C3C8OZNI1cPh0PMF6hX8LzusZtFWUUqN0geui+cd7Ppwo0EwBaDFGJNcoJpxzqGn5ZQKIZQxHz58KIoCtwYYsHMOx/6YxaAADQ7LvqA2AGKHLwt4GzpWay2MAAFTpWmqum65XKJIUEpdXV3FaYoIUFWVwLqFXmFsipXEaIMJIdpa5EHUppPJBDdlPB6naUo5res6CELP81S3J90DuCGEwH4C5lCMMSYF59xRwilL0/1aMBQMu82m67rnz5/HcbxernDSoiiyxH766adRFN3c3EDKtlqt1ut1vt3leY4pJB4UodYa4ihp25YxnmUZ8BoME4bjMWTmTdPc3t4CrJ3P54DJEe6AMuLz7PmI/9f/8/+FEBtFCRDX29vb+XI9m82m06lzNAhDrbUQsuu6um186bV1s1wum25PV0L/6pxzjmqtfV/6vt/2e9Q0DENORd+3UsqmqaG5q4pSHJxsICho2342m3nShxsQqsCqqoLQR32ADw2UFSEVgKRSyjgdhqEUPmOs63rGGLF7ExRK3WKxQKlEqPM878mTJ0mcooxjjGmjcJMZ5X4YzOfz9Xo7HA6nkxPcfM55r1rflxDdjMdT+LDRg1kwIWSxWEjPQ/uy2Wz6rjui8WAjATjdewQTgt4X97bf73lgknvDYcY5H42HzrkoCqT0g8BrmkbrfjKcUOaIY3VTLlYrcDx/53d+J5ABgHrIfzzPq+s2yzJDHDvoXxjbb6Fyzm23W6xLA5UKDxnP1rn96lDrHGNsNBrhycCXNY7jwWCw2+3m80XbNlmS+YEnuIyiiHLR932ebwkhSRIrpTD92ZMDqMAfF0Jst7u6rkejIaU0ywbtYYMeYwJ4mNYavO+maTxPDIdjIAoIiO/fvx8Nsul0CtWkUkobhVCLzltKTggpdhtG6OXlJXaWr9frL774AgHot3/7t58+fXoc7SOToRvebDaEUUYFkwKDjDSK7+7uXr16fXN3h+A1Go2k7wnh9X1fluXHjx/RZ4PwgeFgEHhPnjxBjd627XfffffNV1/P5/OXLz/95JMXIEejQyCMIDahmUFLRCnNkiyOY6V7xtjXX399f39PKT3KMi6vrqT0INTCcerbLo5jLEKAjBzkWZxwKX205jjMUsphNuj7Hq87OCzgg5gRrynLkjAM37179/HjxzAMjbPWmuFgEIZh1/YgbyGgUEr9MEL0b9sW5MK26YFcYhYDfgysSSaTiVIKB09KKYSEzUoUBcdLvcs3SC2+78dxeDo7YZz6wpvNplJKSp0nJdIhjncYhhDGgt739u3bf/Nv/tWnLz598uTRxcXF+dUl8vf17c379++1sslg2NRtUVR10223OYaPyGdK9dbq0XgwHg+dc87ZPRWGWCQSfOswDJtyb3fCGPMjQOO079vNZqdUd3p6niQRyCIPt3dVVU2nJ0mSLJdLSmmWZWWZe553eXmZjYb4yUfRyf39Lbj/n372cjaeOGc8sR8P3d/P3759Cx7348dXz549A8yGTFbXdVHVHz9+rKve7DcqMiklsjulDsTk4XAMGBUjFSllXZebzeb+fu55nuDBhw8fjGO+7ztHPU8QYt1+INkLIfBdLi4uhuORUurhfuH7fuD7R6bXZrPinJ/NTiilni88z1O9gTlLFAWUckrdaDqJoghr6Pq+f/fu3XQ6HY0HgR8JIYxxm80GprV+FIIPg7UiwCMB2fZ7NUxHjC2KAsxaTCTG4/HZ2Vnft7ho6KKDIIBEBpUlhlDG7fXgoKYAPLu/v4fLAzL306dP4dSllJK+hz9YVRUaGLReOL36sJ4VDTl+whGeQMLSyqKOBIzUdZ2zWgihjOYHaxUUJYwR5EdcXjCJ8UOArCRJgq6G/bkmHPUTzB2Qp4IoQltOKYU2H4UXzMbBVBuNRvYgmWSEHEkpAIY7pfAVcHlxVlEO9n2vrdNaSy6stUkYeZ7HODHGqIN3nZSSOgc4zff9oshXqxWaKJRH6Co3+a7rOmf3oCZCZZqm2mrf942xQNOhiNRah34AztxxZH9QgO41oXuGieTYNCqEgNK2ruu7m9u2bX/0ox8JISjnn332mT64Tz969EiwfWB88+bN69ev4dHFGAMoyASHxhmnS0r59OlTgItt29bd3tQT5Kimbh/u7uCrjEjOGHOMdl0HMIz+v/+f/w/k4DRN+163bXt9e/vtt98OBqPBYBCEsVKKUmaM6bVijO0227qs8rIAlQdcDWiRGGOYyjddi2sTx/F6uQE2Zq0Fx8IaBQcKvEXf9ynlfd8juIMvSSmt61obhRIVZTtG42D/HbNFr7vNZoN+AhSdfFuAgxlF0cnJFD1BHMf4CZRyEGgYI4xT4I1SyjTLlsvlbpcb46SU1pDhcLxaLbq+8X2J4Z1z9Ch7xvAIBG3KGEDIsiwl98BwdM61XY1PgvsDHBIQK5xapASaGhFLskFqrWWMCCEePXq02WziOIyiqK5ro9ThQVEmhFLq9vb2yy+/PJmcXFxcoJIAT8s5CqYC6OqgmKCrFkJgk8/DwwNMlUD7RQWMxrquW8/zojgGH6JtWyhlnHNXV1fT6RRV6d3tLQoyY8wuL6IoEYJpreFOqU2POqDv+8AHZwueNJJSKgSnlFLKmsO+vyhKAFODyS6EwP1BmXV2doa1RUIIYs1isVgsFvhIxpjhCBMrPhqNnDNN0xCtrLVVVUkpr66uzs7OUBz88MMPSZKAuwZuODjgURQxwZ1zlpAwjIUQRVGt1+s4COM4btuubdv5cnl7e7tardI05dLDYAto6Hg8RpgG+h0EHkpJVB5hGJZ58fbt26+//no+nw+Hw6dPn2LzblHt+fi+7wMwBnWg2BVt2zJOhRCgAC6Xy7u7OwTcwXAEvSdjjFKulKqKHE2/7/uQl0rfcwe1OSFks9lUVWOtltKP45gRqpTJsiyOUjxJhEvUNEWxk1I+fvz48ePHWuvvv/+2aqogCMqicM4x+mdjC3jwMMGJY8j3eF9mv6u0d/vVeC1Qt/F4CgYnyjVKadt2WitK90ZiQejBWJJzXtfl9fV1WRZxFL148eLJ1SO4UWjTM0LRyQAjx2QK7xSD2j/+4z9eL5a/+tWvyrL8/PPP//r/8G/MZrO6bcIwrKv27du3y/Xu3bsPu7wsiqosqyMJ1RidJJEfSEqdcxYfxhjjSQ46KW6u1po5Yg5qVj8Kt9t1XbdXVxfn55fIW2h8Pc8rdzkhxPdD0GXKsoTJal2XVVVxT+KyY+zY9/0333xzcjK9uDwTQuSbdVEUi4e1MQaSEYyWuq6j1PV9H4b77YeAHpmQbdti5WgcpcNRhoLAGIWjGMcx57IsS6y6U70ZjUbT2bCqKsbE/GG53W6F8HptttstPKQ8TwATRVZDGIyiKIhCay0lfDgctk2DeU0URZS6qqqodb7v96rlTMIQFYpsnHAqaBiGF6dn5+fncD8ZjQe73Q6GfKvlbrvdRlF0cnKSDgdoEYHBOOcwUoyi6Djgo9atVqu+14PBACMkt99CvUPFMBqNptPp3d2dMQ6zjmN7vytKoOCAi8qyBKwC3AV1Ei4m6jMQ3kHD6nuNJhZ9Iw6GO/DHp9MpxC74j0EQQN1CCWeMoX9OkkQIwagLgoAJjibzKB1AxgTsdAzUQJ2PSiPkFME4ppNHGrs4LE7VWos/W2vbgLALKgildDabAVkE5ofKTwInJmSvNnMO/C10OFjtinYRjJEgijnnkgspJbWOUmqd7vt+MBohqvi+39b1YZpEwjBEOYjJKThwQRCUTU0IiaMExBXQe+q6Lqri4eEhDCP4d6CeU0oJtn8+YNRBzLRcLq3FmTdBEIRR4JzL4v164ouLi+12+/Dw4EsPw+U0TZkQWBMcBAHSljM2z/O7u7tXr14hkIZhcPSq9UMPE4/7+3tCGCFkNBq9fPkSdMnnn7xcrVbIOGir2rKDxBhtHue8ahuttRCe53n0n/3T/xZOJAg3SilGRV3X337/3XK5PDu7SNM035XGmLwsmqahbr/PXBzWtmAci/J8t9vled6pHvRGjBSttXEY9X0P3yYEzbqugbJyzgeD4UHS4qNccM6i8EKSRpuLEgqICLI1Y8xYBf1w13XLxXqz2UwmU9/3p+MZO7ikCE/iN3RdZ7Vp21Z4knOaJDHn3PMFDkpVNre3t23bBUE0yEbw7sIcBO04+HQHicQY3EMUYVprBK8sHaLgOHYt1mnc5DRN+77FfB3fru/7t29eE2JHo8np6UwplaZ/5oMXxUFb1WAjIk/3fW8c/XM+WIoQcnd9gynPfogm5Xq9RkOPPHd6NguCAPtMwOfD9AQ4PGYQ4K0XVRMEkLA1lNLRZFQURVVV+JpJkiRplOf5dDwRQqzX691uVxYNeE5SSi/wcG0wp8PxmM/nQsjT01N8365rIY0khKyX67qusbgGTlpN26L7GY/HOAnYWRkFvnNuPp+/evVqNBgQQgaDweXl5Wg0LIpiOBlLKa3VxhhBHKZpQPt83//888+n02nfawwdfu/3fu+LL744Pz+H85DSGjsi0jTtOlWUpVGGUgoPrbqu4SXTNM313S1jjEtxLK8BIAVBsNvtoMMATKVUh2m453mXF+eIXK9fv/7qq6+SJBlPJpxzz/NBSEc5hUaZUurvFzgKddhEFEXRaDTabDbffvvt7f3do0ePJpNZ0zTT6RTaQCSMruu07tF/IxbE+2VQvKpqrRV2EtRlk2XZYDDoOtX1PY40Y6xtKniXI+zWdS0ES9PUD/26rrVSdV2jN8V+Uj+I0PBhqRnINHVdW6v7voddHPh5eD6Mid1uF0URKAFKKaU0BuNRHGCQobWG3xX+1Vqz3WzKMv8Lv/GzIPRmk2kcx6NsAJUikAAppfD3ncl6vabWQZ+/XC6vr6+/+uqrX3315SeffPKf/Cf/Y875fLG6u7tbrLaLxQouDF4QBIeVD87ZKAqyQQSHYaVU1zfWWgR6QAucUKWUMQ5XXkpOOJmdTJylbVcPB2MQya21p7OZ1toa8uHDh9vb2/F4jNIHQQmBsVUtpTQIop/+9KfD4bCqCiklIVab/sOHD6v5g+d5dd33nYaxQt/3URSMx2NjFQY9nicwjrm4uPjss8+ttavN5v7htiobbJJG/pjP56ZXg8EgCCLnXFN3SilCWNNUTdPMTiYX51cwSpzP59uihKQLhCetdZqmaZJRStMsoYzt8k2+K/FNMXBJ09Qag8gshCBGH4dWnhcwxqGr6LQCKcL3fSk5mtjpdCo5BSpjreVs70GzXq8JZyinUFggfiK4KaWcNmdnZ0EceZ6HIVTX9nmezxcP6/VaMvrzn//8yZMnr169atsWKzUxtYDeMI5jLwibprm/vy+KoiiKyWRydnE+Ho8R2XARdK/6wy5CyjFSYLiqAPgBYAeHvREwBi/LcjgcgmCUJAmuGILScQxa17XneVYb5xwTHJAwYEvUPUVRnJ6eAuTzPM8o3fc9E3w6nVptlsslJKJ4Pp4QSLj4IcYYfQAIQAkdj8ej0Qi9H04F6BMAk+jBbGI0GIjDNgiMmxyl+I7oH/Zu24wRQsqyDKLY87xilzvnOHXguQZBQBiTUtZNFQRBVzd1XTdVDSqedfr8/DxN03rv79X0fQ88RVnT9z0ljFKKijyIQkj10dcBGAMtIQgCo7S1FputJeNSSsZhXuOjrQX4TQjZbte/8Ru/EYVh27Y4YPf391VVYQcJhg9nZ+dpmn799de3t7dZlgHBQdqNouj8/PzRo6uHxT3m5sDaGcNjE0jrZ5cXKNCXyyUyLHdCMK6MZoztTbApSdM0SQeUUvqP/5t/VFZ532lCbdv0wIowQN1sNqvVxhgDV8a6bfq+D/0QVUXXdcjcCIX4BZLBcr3CyBMHfbfbpTGW85S+70MjgMMN9gx26QDYhKDXOYuvxBjbbDYYOXPOnz59CmnJer3G9wmC4PziFLURRl3OEc45dYRSjs3QjhLcWMaY7g0hVluzXM49z0uSOE5CPEKt9cP94vT0VAiptc13Zdu2juyZ2kc49+HhIcsy5wwGH/KwuBQrJkF2DoNY6U5wL05CwDOYbTO23x0BoDvLUkbpfH7/4cOHPM9PTqY//vGPAWi3XY3e7nAnBdQrljDc8/F4HEXJr371q4/v3mMmcn5+fnV1BfD86tFFviuNVVmWYa4B7/ssy6ATRGhAEfzll1/e3NxAyku575yTwqOUGmcwKkU5WJalkIxS+vTxk9PTU0JI13V9r5u6BZCelzkoO6hWMdHv+97avR80/uooClFLccofHh4WixVjzPfDyWTChaDM9Z1uuxopxBjDOU3jRGuNdSKScxQuURTNZtPJZHJ6cV5VldZ9nueCEU4ZkiWKdaDl2DqCzPf999+v1+vtdpsNBo8fP46zlBAymUy6Xq9WK8ll13WwzsMZDoM4TGJogixx33777Z/+6Z8GQTCbzWazGfRNuA5IvWCo7AUi1iAezWYzIcT9/b2x9uHh4fb2jnM+nU5ROaFd6fs+9AOMI//8hYKcU0pZ1tV2uw3DuGkaefAmxZS/qqq2raHBvru7A1ARBD44HKPRCNtL67K+vb31vKCua8oZihXP83y5l8RCHSyE2NufEss5p4Tked42ndY6CCJKKeOSc77bFeg10W9Mp9PJZIScgUCptca9yPNys9kgJuItcC6kFFLyXu2lJ5Q6NMda69Fo+KMf/Wg6GQkhJKfGmN//t//O87zf/PnPzs/PwSaG+sGP9r7Q19fXgfTAzUKQcc599e0333zzzbNnLyil682u7/uiaquq2m7L+XwuvQCmWZRSzhnndDId9H03Go3Q70ZxoLoeX6FpGkGxwjJBSR3HYTpMozjA/cV0kjh2cnISBYFzTgqfc75er/M8b5pOKZXnOe5+FEVRGp2cnNR1i3kWqk8YXkRxYPqu61Rd9ev1dr1eQzWilNpbyxLTdR0eG8IsFg/cPTwA2/it/8FfhLkgTCn1futuBBrocrFGZYCfCfR0Op2enZ1xTzZNA3XYycmZ53mexCHsCLHKKOnxOEoxvXLOPTw8nJycUEJQbRdFIRkF5AN1at8rpfrRaCQDH6+eUrrbbY4DvsgPwsgPw5A4RinFrqGqqpq+U0ohwGLGNxxmaJWTJPGF9DzPMQqSO2MsCmPGmHWGMbZdLQkhv/M7v/Ptt99+//33QRCk6QD3FHSFIAh6bU5PT8/Pz+fzOcjR23yX5/lisaCUIs1DdCKEeHh4EJ4Mw5AQduT+I74BlDqcYQr9IJ4t0If/P1N/1mtbdl4JYrNZfbv7fdrbRUcGKYkUU0pJSCcSrizLdqX8YKcBJ8qwX/xi2LDLlXCh3NcfsAtVKHe/wjYSNlyVsFJpC5lQkhIpMhjBiBtxu9Pufu/Vr9n6Yex9JD4QDMa95+y91pxfM8b4xoeKhx/tEjuorMqyBHZljJFadV2HgpUxAigRaCtaaxB8EAMopUCQPeWd3W43OYnHURstFouyrtG/QXoL/JWd/oMqAZhrFEUY1bTWaikJIdgxAPndZrdDVZAkSZZlOIeoTqqqspRxzqMg5JxuTqsmcAGDOJxOp1LKtqqDwLv9cFc35WAwmE6nR1lY0yilYEEH9VsrekKI6OWTvghLvgEM4esA3QRIER7NbCPHcazSjuNwh0LY43nHuSiUzn3fTiaT0XA4Ho/3+z2qea314XCATR10RGVZoXVEI410hpCitXYcvlg9osaFdfzr16/r+mi2QAgpmzo4+W8zxoilvusaTabTKTvt9g3iqKoq1wustfT//H/8v9R12bZ9XZeO43HOD2XRdR2Gy+qqXa/X7969M8aMxxMAdGCIniaAALRAHY+6W57csBhjSknP85IkRTQEXgpG6bvvvoP8FqGnauowDL0TqHYi7CXW+0BPjToDiVApHUUhYgcASSCrAGwwVxycNi14nrfbHZ58v6SUWsuu6y4vL3CqmqYJwxBFCYZimqbZ7Q51XQJVglUgak1rrexF3/eO5/q+PxgMIKXc7XZa6zRNKeWj0WA0mgjRAQMHsDwcDsuyfBqZzPNsOpnEgU8pvbu7e/f+je/7o9EIlx9T5RDvoxe5vb11PM9xHAiz0jRH8i6KYr9dIyAaY/I8T9O476WUkjCWJMl8PgeQXte1EgL0EI7RZDKRUm42m9VqVRRFPpzi07qu67jHfVvABthpVi6OIlwhPPzD4bBer7XWAHK0MoQQQ6w+jRbDeNYYQ4hp2zZJkvP5GTQruK7D4VAIhcTQ921RVFVVnJ9fGqOyQZ6mCbEWUbtpGtF2iGXr9fpXv/rVixcvPvr0oyeBncs4HFabpoHQFfke2CeuDUDWoii++eabL7748nvf+9751aWUsheSUtpUNaV0Op33fQ8/G6EV7qcX+GmSgzVYLBZffvVF13VpmoJ/x6+ACh7dYRj6SRx5nuf5PpqwPM8PhwJq+sViIYS4vLycTqfoNHB1QTSvViscEtmLJEm4w7IsY5QTQpjDb29vf/rTnxZFMZvN0NeC2RkOh4Aqfd8fDoeOw8Ewnp2d4dpKITabzd3t/YsXL1zfA60phADgdGy1HRdl93FwiXNkVspZ3/dt2yO+NE3juQFU9vCOedI44kQxTsDUGGOUNIgMDw8PRVEkSTIcjoMgULLvumaz20LrPRgMzs5mWZYNBvnhcIhCfz6fn80mXddt16uvvvrq26+/oYT8o3/0jz7++GPKWN/3mhzlNXDHdl0XXlAIiFXbWGsdx6uqar3ZvX379quvv03TlHO/bVulLXgBRI8kiTzfYYxEURQEPmfMcZzJZEQp3a03h8MBJH4QBKvVqqirKIr6vu37/vz8PM9zoGjyNHMDJ3Qg9/v9/v27G631EKvcT0Ljx8fHTipg20DTHYc5jERRcH5+zhgTiiAiPT4+lmWdpqnsWsdxHJdBk9T3PQ48OAplDRrFMPTBUXi+AyoELxq0V99JCKtVr4whUkprteM4F5dneIy4p9t9URQFpkQDP7TW3j/cDQZZkuawEtRaW20x2er7vus5fd9/9OLl006z3e4A7WlZlk3fLRaLXghwx5xz13EOhx1YPKw/Qi+BeLvZ7A6Hw3q3bdsW13Y2nhBChOhwwJRSjh8QQjgD58Yopa6HSXm+3++366VSKgoTQNFFUeB3ua4/m83iLD0cDmVRtW0bJTH6Rtd1m6ZBlOac+64nhMiHgyiKLi6uvvvuO3Py5kBFHoYh5Cgonqw2J9jPg/IMt2O5XKKtAuaHohnfRWtt6XFfBWoy3/cBqFttcN4QaSHLQQ8jpaTWogjDJMQxPAqBrzmZzZCd4zi21uJq45UhsKBxAhmFn980jTrhYYDxsizzwxBcDeg/TM0jqHLO4Vvmu65SqqnqpvkblrbvW+yAyrOMUttWbdNUYRLHcYwnjD25Xd/DhslxHMIZpZTY4xdhJ/dgaNrIaWIdhbvrumEYx3GcJylyB5CjtquxGhIESBD4SNlZlr148ezi4gJFCAYYv/ryS4Tcs7MzSqlWFuYmj4+P8EYmhPzO7/zOxcUFHkjbN7e3t4SwyWQihPjw4UPX9XDQ9TzP9X2oA1Go4EyC7EbBV9e1UgbRVWtN/5P/+D/r+1YIVRT7vpdtW2trjg4UluGgIFdpbU4yL6qUyrIMM7daa9CXuDw46IMBJORREPhN00A9pk8bDJ+4A8jrDofD4XC0eKD2GBDRKAADB2r3pH8CpWiMBflCKXFd1z1tb+AnJwhrLaXHTa77/f7i4opS+vr1681mFYbhD37wAzydoii0VlKqyWSMQgozNfhXXddD2H7k/k59jOe4nHPCKKbGfN8HqxKG4WLxWNfNZDIOwwjnFS8A6Y2fJufzPLfWcEvyPAUKUlaH7XYLA1jseweh43nefD6XQq83S0PIcDiECyUUIZ7nzWYzl9O+7yEnKssDasosy6qmA7gKYMbzvLau8S3AvsNTB6/j3bt3i9UO5h1VVfnB8eL5vu/7Hm7+brcTnVitlw53v//594ClK6XW6/VisaCUeq5fVZW2x9lVwP6EEHhSYzNXEsVnZ2foa5+mYD58+HB2dnZxcdF1XZanYRC1XZPluVIqCkO0bmVZ/vD7n8OCgR6dAw33XGPMbrdLkmQ8GEIK0zQNOfn1C62KooCgjWhDCEFu6/v+zZt379+/f/XJx4wx3wsIo9RiPKJqmiZPUiglhZJCiP1+r+RxrG88Hnd98/DwcHd3Z63F0ABcbfG9YOJntTJW01Pl2ve95/nAw7An6quvvqqqCl4PSZKgh8HJBEUie+E4DuP0cDi0TaeU8sMAVBGct1BgYfoMN/Tp+vR957ou2FI4WimYBHYiTdN9cXh4eGCMGUMwPomDarV5KsU4P9phM8YsJdbaKErM3/LRJoTEURqEXprk/sln/HA4tF0NTYyEkY9lYRiCo4Tb8NGeTwjPc7jroHqz1sIwU2uttRoNc855nsZ5nl9fXiRhtN1svvrqq5/+9KeLxeJHP/7xeDz+0U9+F6PdUOF0XcfJcRW6EOJxtSSE5PnQWtv18nA4vP1w85//v/+LLBuMRhPG3SeeNwzD8XhYVgdKjwoez3FH4+F0Ok6SBC72UAghPvRK4hJ1XZNl2Wg0Qt3ZVBW6F0jLMbeYJMl4NCWE+J63WCzWm8379++LohiNRoPxBKMk6ACllNTouikx2BvG8XA4RtC4ubnpus7jDmA5tKngv7qucx3f8zxprDGm6xrXdX3flVJOp9PhKNdaI4zv93swa0IIYpnqVRynSZLkeZplWS/am5sbxFXf96fzc9/30SE3Tee67uGwWy6Xu32BcmE0GjnMORwOSOFC9q7rXp6dz2YzzimqLtf10WxgiZBUSggB/K85aQFns4kWer/fktMQxnQ6jaJEStn0Heoba21b1ff394fDDnIla20QJ8YYhx+ldb7vJ2lsjImiwPd9o0RZluvVtmkauGxoreHjv9lsdsVBCEEsjaKo6Vp2Wtf4BGZordu6McZYSgaDwWx29stf/hIUGLbroiyAzAPQg5YKECCkVGhIUBeiQoXGC8RfVVXWat/3ues8IRpAj+7u7g6HA9Cd9DRFCNEnO430ougB40mPS3VTLNjRWkdJAqkM8G/EH2QTcCn4Xfi+qO32+73nOFCF42hZawk72mQgoQDlhVIIl10I4XJOKb26uOCc39/fH4odIURp3fd9msUfvXwFZRge2t3jw5F4NWS32xVl6bpuXbd93wdx5DiOPi3re1J3gb1lp3V80an/b9veGKOFXCwWUkrEwDiOw8jvTm77bdvggYdh+OLFs9lsdjgclsvlmzdv6rp2HTadToMgsJailW2aRgothHj79i0OJ3T9ruv+0R/9EWG2KIrDoVRKrVarsiwJoXh0QRDMzs6ga8eve1othVISRbNSBn9GSkn/Z//ef7Df71zXk1LUdeM4HKAcIURKhTcKm8Sm6aDtgBIFmLZzdBrU8EO39rjuF/zacJi7vlvXtVK673sUZNZSqN2haur7vut7QojrcSGE7HtjDLhhnI8oiqCV7vtea9M0zXg6YSd1ocOO0hNrrRA9Gr4gCITsmqZR0iyXy8PhMJlMLq+vgyB49+YtyhdjTF0f2xGtpbV0tVoEgX95eTkcD6Dt4Jz7blDXza9//WtIPn3fj8MIqltcpLZtsYUcSN5wOMjy5P7ucbl65Mx1HGc8HqM7yfO8qmr8ZKWUMWY2m+ZxMhhkKGLgBWCtffv27c9+9rO6rrFKCGm16UWaxnB8xnQeKiope+g60zQNfRdv2hhzd3djDMmHY+w8NsYI0aGERVXnOE7geUg/WZYhhTe1uLu7a0UfhmHgh1JKqRU+P+pmznnghcaooqgYI1Hgh6E/PTv3fX+92qDJM8YoY6EPJaelyHGSeJ7ncGqt5ZRBlADm7nA4vP3uu9VqCYr95ccf/e7v/sj3Q86pMhrrIzjnWZzs9/vRaHR3d4dJAhySpu9+85sv371798UXX3z++Q8//vhjcKP6uOaI91Ig5RPLRN+jcc/zfD6fD9LMGLPZbIVSd3d3oFORciaTSdu20Jpgf3kYRaKT0JYxxsbjcRiGSRrd3d25rouLg/8+jjcSMhzmuPBouay1hFGAu57nxWFkjFksFr/61a+EEJ999tlgNIyiCDfIWoOsbIxxOEd2AZhqrY3ieDAYDAbDzWbz+Pi4XC6FEB9//DGmpQClIK8/TXtYa4v9AffUWks5A+Wx2x6AcYKmtMagBWqaRsoe8DbnPIhClHHj8Zic9NQfPrxr2z6KguFwDBkQeITtdksIYYygOpdSg6kRQozHY8dx6qqllDJ4CHGulBKyE0JkWXZ+Pm+axlozm46HwyGnNkvSJEmMVC+ePc+zTEj55Zdf/tn/919OJpN/67/ybzuOMxqNQIBCuLZer0f5gBByqA5t2wZBtNvtHNfvuu5xtX58WBRFtVpt+k4ChrHW1k3JOZdaBEHw0UcfTSYjlztZnsI2QokOAGEYhtx1kyRpmuZwKHEHGWOff/75u+/ebLdbxkEhsSAIzs5mo9GI2uPKQuc08Y3p1Jubm816V7UdY8zhLnBu7jDfcfu+bZrGD1xlDFxvfN/fbrdorI8PsK6Xj49AOtM0xXYBNwg553hrfd/Hcdg0zXw+zwcp0B0A7W/fvp3P58+fvYz8Ix3JOd9sNh8+fAB3dpQkGrlcLp8/f55lmSVaCu04nuN4j4+PURTVTWuMqYqy73uMAaLl0FKgbQZ/jcE6zrk0WmutDWmapiwrdKG+71NL/MA77IumKpUSYRA4rhvH8bNnzwghQiho7bEyDuSX1lpryTmvu15Iid0JRmk4HGFrgjEmz4/dSBiG1FBUgXhijDFprOd5DH/XmCeAwP1btqIIYlVVLRaLm5u773//+3me4xaguMEBQBLs+54R6vs+jBuQHaCQg3gmDP2maVDBQ9YZpwmOHzlp50HvNFUNOxXwbpxzuNi7vg+EFTnxNHFlwzCcz+eQewLN7U6sKHK0Ok2A4g+gwUNRjvmDY4Wa5yg1lFJhHMNzAYNcRVFMp9Orqys8KxSLRknOeegHUkqHMq31erPcHvaTyeTq6iLLsjD0ZdePx+PpZPLtd9/tdrsnyssyrrXebvd93+sjXM2Wy2VZH5moIAiC01TB7e2t7/vHNX3WoirYbvZKqdAPUD9VVWXMkSet6zoIvTRNhYK9vkSxASE8VvjEcdjU5Wg0SNM0TfOzszNzHIztpJT39/dN07x9+xZiDNd19/t9mg1QujiOo5Su6xoBnzOXMRalyRGYpJQwiu2xQvRdd5xF9Twv8HxwvsYY+j/9H//TXgrsF4IXAPpmRJA0TSEii+M4ihLG2HL5iIIAl3k4HKIzA+2NgoZaAixdSkk5sdbEcQItoTHGdX2A22B8tdaE0iAILNGO43iOg2kptClpmnqe9zST4vtBURTcdbIsA4mexllVVdvtmhByOOxBvUFJnQ9SrSyqMQypQqwGoSVjvK7rOE6hudFaC9FZa/f7XTbIi2J/dXU1m82IobvdzhibZanWhhDSVLUxBlIqTCEYYoEXFkVhjL68Op/Pzh2XrVar+/t71/GRNeu6TpIUXQjKDikFsXa73apeFHWVhNH84vzZ5VWYhOvFerFe7Dfb5WYden4+GjqOt9ttUE0j+F5dXQGJ2WxWhLDJZESMgQ3Pbrf58OHD69evO6E+++z7eZ4XRcE5fUI1YCXFKRW9MsZQhw+z/PLZdZ7k+7J4fHxs2/awL3zfT/NMSok8bS31PM9q4/s+WiJObVWVfhQOB6Mnd0FjDKaK5vP5aDQoiqpta5QCYEjTOIE+DN1bPsg87hRFUddl0zSPq6VS4k/+5E+e5oaspZxazw0834mj9KmxOIKRnkuI0do+Pj7+7Gc/u729ZYzNZjPszxHqqGpv6i4MQ0JgSmeAciHgToaTqm0Wi8W3b77jlBlioyBEJySEcH0vz/PFcsmYY7Wxp40Zg8Hg7OwMNlEIKK9fv3779u1sNnv27BkG4IPAg9YEwyLW2l4KqCc555wy13XRsILu2Ww29/f3gJzBtwIKEl0PdX+cJr7rGXKcbeScQ01YFMWHDx8uLy+BuIC/gCwGLwvMOzHWdd3DoWSM5YMB+hbP87pOgDoPAs8YIkTnMDeKA3gWMMaeP39uiEUJWBQFpF1xHLqu2/f9crlcLtdN0wRBMBgMkI2UEuhfrbVaW7iQg1eKoohY5rpu33VVVW22W611FAeU0slkMhzmjDHf9wLf5YSOR4OjCXUUE2OllM+ePQvj43EajEdFsX/79n18Wi8GyG0+mR6qUsqeEPL4uEzT1FgqhKjarq6aoqhev/5O9AoUMOecUDOZTC6vL8LQh/ug6HrPdymlWktqbN2UxDLPd/wwnk7HrutDhItm8nA4PN7dZ1l2/ewSfqFhGILy220P+/1eK6W1hDmwIRbbGqSUq+XmF7/6pe/7nLtHripNoihKkkTIrqxr5NfJZNY0zWq1uri4AEjTtm1TFWDBmqa5vb0dj8fT+bmU2vePG2k4521bg0qbTqeff/45mFBCDaqEw/YAO2jPDfhpix/Os1Kqk8JazTlv2zbN4tFw4nmB1tYYs91uy6JC1weFInqttm0tMU1ZQbLTtvXLly/TNN/tdo7vMcYIpcaYvhec89Vq1XWtw7nWGlwq0WoyHotTppRSGkO6rsOAJyrdtm2FVtRYoYXSCAJEKdW3ndaanxaoh2GIDVGAmoxUWMEEqUzf94Q7rutagrOqUHKh6wCZ0/d9EASz2QyHXGvbti1KK/wr6FIYodx1fNeDdxf6dsYY3jUqWgTGvm9xbbEPRmttiH3Sufcnz/22bQPPB0aAuea6rjtQ21prrelJ+6+UwpgI+kkgGsAUXN8HifGkCELNB+QCwy+QnOOCQ23WNA21Fm9/PJ3yk7cZahc8a3z3MAyzPE2j2HW5Vqqu6+1qbYwZj4cff/xxNhyMx0M0+ZRSjzuEGmvt2zfvF4tFXddBHPl+SAjxvMD3/bKq3r17p7UWQimlhNKy76WUnudeXV2FYQjvCdSLSEbGGEo49HNSSuyxwFwO9PWUWSllnCau60Ch1Pe9MWoymWD6LQiCQZ6ORgNo9fb7ArUvZjWspeh1379/f3t7mySJNqZt+7qu1+s1Ugl0I57nuY4fx3ErjgRU13WUM2NgaNcbZXopGKFIf4DxjDH0v/YP/52zi4vxeMwYq9ujXAYWKaCTURd7npcPBo7jcEb6vi+Kw3w+T9MMhTaOlFLKWoo043keo07dlFpLKSUsT/HgDofDZrOB0BtqD7xdlHTANo0x4clDFjSq1KosS2M0Y8x3jx70ZVlKqfq+V0L2fZ/n+fn5udZaKjEYDIC7eJ6nlMCqEz8MHGwPaJowwMLmTp0mafFE7NFDhUCfnqapH7jEMkv0zYc7c1otHASB1rrreggzB4MB4ByjdC+66WyeZSnMCJbL5ePj43w+x3vFg0XBB3zVGKulygZ517SL1TJPszRPh/kwH+aH/d5Ss3xc1HVZ1+1kMsnixHV9RHbLqOd5m83GcViSHP2EgOhMp1POuTbyzZs3X3/9NcJ6mueou8Ga4wK3ba+1toTIXlLOBnmWnGbWMCDt+wGlVAiFCNs0jcM9LE9wXVcrAYRJCDEaja6vrz3v6F54c3PjOE6SxmVRHYo9gs5kPAVened5GAV1XcMOo6oq1+W+yzmnON9gQ3w/hK1JUey1tp7nEOZADUMpJYRJKWFAGkXJcDgUbXd7e/vl17/58OEDnPH6vnccJ8tzIaS1lnPXWrvb72WvIHcwxpzN50EY+r5viN6s1ze3t1qprutOh6QFfEgIAat7hLhhf0CO1IPv+57Lq6r64osv0C381m/9FkZ60XqiWCdHgS1cIQ4QJUBZD03Jm2+/a5omyzLCKDpyPDpCiOhVPhwQY3spcF922/V8Pof/CFoavOJ3794RQtI4EUIhzgJC18Y4joMMCvUP1jzg31ZVpY3kzE3zhFrmBy6ldDwewzEB6RBHfbPZYIQWIz+U0tub+8fFPYCH8/NLsG9PphhH5M8yrTUk4cBTp9NpXddNWwEnsNZqKfCQ52ezOPCTJMnSGMok13V951gbaa2TJELu3+03//LP/n/39/eAavwo/OijjzwviKLI992bu1spted5WtmyrO8fF33fL5fr1WqD9Ny0LaU0z/NetBcXZ0HgW2MA7XPOPe6gS1RKEMLyPO06sd9vKeVJEs3Oz9I0ruv6zZs3oMyurq4Oh8O7dx+A7qzXazSckR84juMwLmTHGBOiOzs7i9MIa9l+9atfKaUGg0GSJJ1QgCqn02kapSe3HbFeb8B+TiaTs7M55zxKo75v66aE0KooCqJZGMSAVC3RWus8G15cXEC/ARUj5xxea01bya4/jVx0ddUqpYqiwgstiiJN09FohGUn+/0+juMwiZ8/fx64HuwqNLEAej/c3KAIwF0g1kop4zi2yqDj7boujOM4iaBl3u12xpheiNfffn19fQ3Bq5aqb1qol+I4Zq5HKXW4C9Et2Dd8kU50xNqu78H/IhokcYyTY4wZpBmWqcDmwPM8pBuIOKEkaUXPOWeci5O5K9IBRlLQwxuNASNhjEmTxHGc3WaLeq4oCsfxMA/LPRdjGSgQcQfBIez3W8aY4x1/C4gOz/OIsUEQYA9EEBw3Tz8Ri4AzfD8UQqj+aHKmtRZa9VIkUYyZ0K7rwtBXSnF6dLtEWEaw0loThmkGiLF66ENwc5GmUZ46jqOlFErh2EO/DwML3/dQbnZdxwhdbdaozt+8efPppx8/u75crVaRH1hrkzh89erVZDIZDIdu4Ddt1bRtHMe+H2JlDqVUyK6u68XjSmv98LC4vb+L4/jy8hJsA/7Vw8PD3d2Dw3gYhmkWDwaDvu/3uwIFiRcEWmvCHDxPY4zqBcBmrXVdt8YYTEEQaoQQFGIhzxsMsziOXZej7v/2228JIZ9/9un5+fmLFy+urq4QpqTRlNLdbue6/m632+127959uL+/14ZYa0ejkR+FT4IZa23kh+CsrLW7wwGvmJy23KK/tVpLrQPP09biJCPv0P/J//DfOxwOQRQRQj7c3nDO+14iWwCCQlEcRZGx1nVd33OUUkJg04JAI8sYw9gwkjpqi7bp265u25YQMxwOgdNAr43xRtSAcJGAlAQ9LkpOpATXdaGQ8ALfGFPXVdd1xNj3798rpb73ve+h78kSrNH10dkwxgi1T8fOdTnKtb7vi6qEdY0xpm36uq6b5sjm4CNBjQ5YRWvt+95sPsnzHLMFm81GCv2krQHoDfwM+m6HcUqpUFJKORjkMFxAawXpBh7XU8fDGC+KIgyPW/CCICiKfdd1kN5fX1+Nx2OlxXL5GAUh567q1Xa7vbm5yUdDnCpjzIsXL3zfh2ZwsVg4lFlrh8N8OBzmgxTw8mKx6IQAWgnyU2sNuwdtMBLBfd/fbtecszzPP/74Y8bYbrd7fFwcDofpdC6lXK1WYRhihTMubRgEo9FoMMiQGLTWqALPzs6ste/ev/3Nb36TJMnnn39+eXk+Gk2UUkoeHavzQQZ/HWOMtdrzvCjwoihwHCcM/TAItNZ/+bOf/7N/9s9+7/f+7uXl+fnllZR9UVTaWmCrTdOhYSKEvHv3znXdQZpxzjWxmFZDHWmM2e0P2+22aTrOeZLmmBRr27apalgvFkXRyy5N0ygKMFe72WyoPY7oep53XCBNzGAwAI8GlJswy0/MYBKHOISYH4Qt+O///u9joA90A/hx9N9lWeO44nC6rnt+fs45r4ry7uEelbrDPbTshJCmO3oeovYKAi9PszDy7clGHH8S7ADnXEtDCPHcQJ9cELnrKKVQBSI5OQ7jnF9eXgZB4LjMWssdhxCC0HNxfj4ejyGkQ0eEcvZvaxmh4/Z9vyj3rutWVaG1PQpHCMFwO9JJFCaoPsMw7E4O2mEYdn3jn1ZPyr4TQlhifvKTn5zPpkEQZGmcZQk/Lko/amY556JtGGODYTabzSBFXS03f/qnf/qwXMznc0r5dDodjgeu6/a93G72fS/LstzuD5vNRkqNNkYpZU5zpq7H8zyJ4iD0gyd5g2ghfBkgs85ms7dv3z7J2p6/ev6DH3y/qiqM4vZ9j7lsSnkURYQwiDSgW3dczgnVSvi+j6GcIPAcz51Op3EcOo6z2WwWi5VlFDVuXde6t3itxpC+F0hFQK993zu7PPv441eUWcdhSsn7+4fd+oDfOJ1OsyybTCZSaIT7tm0fV2vXdeM4FqLzfT9JotD3GSMwO1wtN+Axqqo5IkanEYHhcDidTgkhfuQrpdyjGQcnhHRSeJ632++VUmEcOY4je1HXdRxFXdcxSz/99NPNenf/cLvd7+u6zvJ0Pp9PJpM8zzvR4jh1XVOWtVIq4G5VVZi2FtoMBgMlNdjDw+GAnsEQK6W01nz++eda69VqJaXM85xRaq3FQqRRPoAeKE1T1/WAlwwGg8Egb5rm/v7edV3CmVLK8/22bd+9e5emaZKk8/mcuw6qjaZpOHPRSBwOhziK0jSVvUAfdTgciP6bVgplqON4RVGAOy7qyvf9OA6zLPMCuB46CL/ktIQHBshJEoHSAvyGLGatxap1l3FKKRJ/GIZCSS0VBPKcc6jHGCEfffRRkiSoKnD1PM+DbYQFx6JUmqaI0n/bGepJiII/j4IsSRJijFKKMUoI4ZRhxKcXbd10mGyQqvddJ01TjzuU0o8/enl9fc0YC6KwbVvmOoyxumny/Ni5cUZwoqSURpO27375y18aY7777ruf/OQnP/7xj3/+85+/f38zm0xHo0nbtofDwUiRpmmv9Gaz2e+Kpmlg6Op4gXvc02q7ugEj8TSrHgQBtEyu6/iuN5tPptOp47DJZAK3PJQoDw8Pb7/9DiY1k8nkD//wD2ez2WA8wgncbDZQAP/yl19MJpOul5TSfDRErIAAabPZyE6ArtVaZ4MBMFSlFLD50PfFyc4NN9o/7aAzxtD/7f/iP7q5udHW7na7um2yLMOi3NA/upARQhzPrU8YOBYAP6mXnpoJyKJhBYn4Tgl3Pe55HqxE/ac1DoR4nofgDhL6OEFjLbgJ5DZ4coK0xhwpejhkbmvtZDJByYnuEA2N67pCSHRglFJCrOM40emc9X3fdh3EDavVCrIea8lp39zRfAXHlBDy+Pi42ayDILi8vETiBJoFQQCEJk96fwiufT8wx+WSjed52+0Wy8s4533fY7sWBI9RFGEiZrfbnZ1d3NzcvHnz5vnz56PRyFpbVQXn3HWdyWQSJ+F4PBZCHA6H+9sHzBlhsqbtuvn8DP0ZpVRKUdc1P1m6W6vnk+n19bUXBqCiIG8ihGAFuJAqCALX9aGtNsYQYp6Up5CUKWXW6/Xj42Mcx1rZpy9rrY3jGNNheGhd14BBE0JQatFF+b6/WD5+8803cRz/6Ec/Oj8/R1sAUHOxWBRF8Qd/8Aee53me0zctZdbzvDgO0bBqaX7xi1/8m3/zs91u86Mf/e6zF9dS6N1ud/K2UPv9vq4bzH8dDoe6rvM8RzvhuLzv+7vb+81m44dBHMeMOUmSeH4ohAgCWNqqpmmYQ40xh1PvAjwZQxiEEOxRwDBvkmAQwYdkta5rQ+xwOAwCj1Iq+r6ua8yZosL46qtfY+UfYww2fYfDAe61KIXRioxGo7bpF4sF46Tr+zhMuOv4vr/ZbIr9QWuNBAkX2d1uh7K16xqtdRj57WmBGlgP1OVCCOzXa5omiiLGHGMMoja+F/p7bAuAyqQXLbZPQgGD3AZgGNQGOvWn1rlpOqTPJ3wOrRoiLJx1oIA5Pz+3J596rKJyTis4CCHaHP8fY4zVKo5jIfvZbPbZxx95ntc2FSEkSTAe311eXqIGTaPQcRxg5/iQ5+fn4/H47nHx85///P7+Xmv98qNXjLHiUBFCDodSSul4PiEERBJAXGR3BB/X567rOpw3TcMYSdO0rer1ZgmqFCVsHKdRFA2Ho65rO9kBH0WQxVYTbAQHS4tSHkRGnucOJZvtCjfLGHN5eXk4HNDWHw6HZ8+eXV6eU4dTSheLxVdffaWFjONYKRNFUVN3gPGQY6y1D8uHMPSn0+lsPsFmi7aqpZTY5Jjn+S9+8YvFYtU2fZZlfS8J40/DLkJJY3QUhnmeDwYZ+nXU7hi0DIIgi5M0zfM8t9a2bUeIJZzc3NwEruf7fhBEg8EAtnm9EFLKtu+6rsNYkpKyKAojlZRSShUEvuM4WZZFaaKUwrC50hqiPc93sCvJCiWE6KTCBKJSyuEuipL9fo+tQVESQ7H36tWrOI7Qt1RVRaxdLpdFUcznc8YYNnzAblBKGYVxFEXaKKUUJFPII0EYep6nlL64uLDW7nY7OHdA4EEIw4JztE/GGEYoDiqSaNM0+I5Kqf1+37bH3X1xHIdJCOmV4zjcZXi26EMYY13TooF8YpCyQYrxoLIsceuvr59j557jOB53NLGUUuZwh+F8srZt+5OuA+TP7e2td9qTDb1BXderzeb8/Bx9ozpZrcI2zPM8oxR6Id/3oRPF/ZpNJqBE8zxXoiOEeGHQNJXnBWHoQ2oyP59BUfr+/fvH+9uLi4vpdHp9fT2ZTKjDkZQxl40PQynB9ovb2zuUrYxzqHSyLOva1nODxWJRVQ26YiOVtdYyutlsILVs2r7v+7aFGMaCQ3QcB5Yi6IJCP5jP51rr6XTiOI5UPTX2+fPr8/Pzy8vzQ1UGoQcUimgjpdxsNm3b/vKXv/zNb37DXOfHP/7xaDj57rvv9vvCdd0oSuDxnqTpvqyCIIBmxioDFAZYtbWWOQ6CIUIoY0x0HeY0cbmstWmew2bLWks/evYJPr0y5tNPPx1Nxii/tDyKhKIospSAGkDehTEJojPc27XWoL2jKIG+Ko5jSrg2knPOGDlSD4TgE0Bh1p+8jMlpaQMoCaQQlC9ArVzXpZR0XXdxcQG6wXXdx8fH1Wo1GAwGg8HFxQWKIc/zoih+kq/1fde27WG/x9OJ43g6m6E2gmIjjmPPOwr63r1753keaqMnqZ0QPcpBxhg2tuI5KKXu7u5QbUDLjyJytVrjWeGGo84LggDLqsHKKaXQgpRlCTOkMIzBVD579iwMw1/+8pdKCeAuWishRJrFYRheXFwwwvf7/f39vZRSG7Ner6+vn/VwKSTEcbjv+4M8R86L4zhwvaapmOudn8+NIfv9drXa9H2fJIkUShntum6WDRCM8MC1lkrBRvHYd2Kos23bumoBnu/3e9TNKDgwBOQ4rGma58+fSym7rsHDhEC+69ubm5uf/exnn332yfX1dZYNIJdZLBaDweDJPq3cH7IscRzHkiNF5XJvPp/ffLh79/7Ndrtdr9fPX7w4OzuDdwsE3YwdLZKRVzzPa/u+6zrPdz3PI5Zaa4uq3Gw2jDmu6zLuaq0ZcxhjnDKlVNs3Silo1QE9Wkut1Xk+5JwrIUFkcM7zPMUBRoFOCFFGgzSjlDr8OAhijInj+OzsrG1bx2F13d7d3S2XS5xtVKWgKuAaQCnFhoBedovFAgj0cDiczWaH3V4p5TiePblvLBYLfRzgopRa7tAjOZKmuOpQpRBCiGUQ3Xdd5/shjJ6DIMDTBkIm5VFx0nWd63HkWqCzvu87joOxaqSfLMsotQB6Xdf1vL/xgwZJWlUVbHLwA0ETL5fLJ9CXEAIMjJ2Gxbqu6/oGxy+O4zSOLi4uojhMksRl9O7u7t/8xb8mhLx48Ww4HH7++Q/RtVNKjVRYaAYhGuRuQRBMz86FEPf39+v1mjlca62Vvb+/3273Sqk4zRzHkfK4T1dKCb0/Iidh1FoTR1Ge59jhYZRYLpdZll1fX4teoZailD48PDZNI42CnhqzaVVVYWwIY57Q+drTgk6llOiaPM/RiGbpAJZgg8Ggrtu2reM4vrg8czwvigM8c9m10BtpbYVQRhMpJWMO4luYhGAngsDDWJ/VMsuyrmuklPt9cTgcUBAQ67Rt20vFOYdHfDZI67quywoEtx94hJDnz69936+qAkyoy9zD4fD27fu2bTl35vNZr2TTVFmcQJU1Ho97JauqSrMsiqIwjggh5aFwXXe1XO73e6t0GPppmkPz6vv+oSqR8CilrudhWg23JooiRm1dlMz1qqpCz982HYoDHLAkSdI8Q++63+/3+x3AG8/zojBEe4MYCxAajZBSKo4SKeXd/S0O53K5hA1hnCSO43ieD6EnMg6qFs45IUeAFgVWHMewooDQDX34ZDhCc45tAZvNpu/758+fe6G3Wq0AMSgj8RNQFjuOg5lK1/UhOaCUGqKXy6XWejQaTceTPM89L8DlZYw5lHmeZxntRO85rj2KYi0xCpbaAMuPKgUhAGtBREg5R5tBTquyMcwBZDoKAollxF2HehF9lMv5s2fPpJRh5K8eF8vl43Ay/t3f/d2rq6skifpexnEotRoOh/BldBh5fHy8u7v7+uuvPc/77LPPhpPxYJBbS1zX8bhLiKXMdkLsdgeMa6RpulgtwzDc7Xb7/X4ymkgp33z37ubmZrPZcc4jP5jNZp0Uj4+PVdXUdd20QD0cVJlt2/h+4LpOluVKSa1NHIZK6a5rrbWz+SQIgu9//7OubjzPub6+HgyzTgo0qFEUibYDV4A7XhTFr7789XK5TOKMEEIIa5rmd37nx4PB4PXr11EUGUubvkPsEm2PKgjjfZ7nNadiC3jEfr8PTha1nuchyPCTvpAQQv/9/9E/ZQ4XQqy329VqlSTJaDSBgc1pSw8FpiWVMlY9kdDsaIozwe19KqRQNPR9jxwDoNVxjptEkbxhpI4qG22rtRbeUS4/imOiKBqNRoQQ13O6rmvaFlUzLgOq0aIokDjDMJ5MJtQSOHZ0Xdf3AiQmcD9sFQjD0HHgHBZyzrHH8P3795PJBMkbgQAPd71ew9ujbVsHQVzrq6urJ+ez4XAoVX84HFarFaB+3wtfv/7WnPZnAavD0CysIoAi5HmOtPThwwe4ccJvTCmDlguDAo7DHMfxfQ/74yCUmc1m6mQGtlqt2rY15AguZlkG+Wee5+v1+ogFdn3Xt3k2MFbPZ2dX15e77f79+/cfbm84d59M8NEtASnp+14r67jMGooXmp8KdrAeDw8P0AABYnnSFYFB5s5xzeV4PNZa13UZx/GLFy+SJFmtlkqLJEkeH5ZfffXVJ598kiSJlAqqOKVU4Pm96IDlEG2EEJyy0POjNE2SmFL64cMHxtjl5SXlzHGcsqywQUxrDWtm13UvLy8xCeyexrw9zzOEHg4HqA85Ox5RSCXCMKScYSULsAFr7Wa9xeJzxunRJ+JQdF2HXXLAZfHXkeCFEL7vA8dihOIU4Y65HvfcAP0fBBBPljAAMsHooToRSu6KQxQm1lqHsfl8jujgcodzftjt5WkFAtC1XnaXl5dQ3L979w5jK1AN69NqtiPSoMzfDs0AbOI4dhwWRRElBFCBMQbjcp7ndV3neC5aTBgzAiHG7BI+GHBHZDuUkjgGwFMhdgQ3CnyRUjqdTtFulWXpOr6UMooDVKWEENG1w+GQO8z3/cuz+Xw+p8S8fv369vb24eHh2bMXk8nk1atXYejjmLkuaL5jXgEGD4yWc960/Xa7/bM/+7OyLIF9np2dW2vbvh+Px4BY+Mlxo+s6Q2zXdV3b5Hn+O7/zW9PptKkKzo8roR4eFuvVFohFkqRSyu1hh0ZWKZWmMSFksVjgLZyfnz97doXDiRrx8fHRd935fNp1Yr1ea2UfH5eAwQihQvRCiMvL86atsiybTseuy/3AO7rJFNXd3V3XCcfxwiCO43gwGEwmE4BndV1j6DiM/Bcvnj2BoBjpV0odyna5XBaHcjgcMseVUqJhkL1CrCbE+KGfD1I4ajqMBkFQVQ0hpKs7lA6EkFb0juMkYYSikBBCOOOcc7DexE6n0zROgiDY7zbQYLVdLYUuyxKGF8x1DoeD74dhGJZVDUhsvQYrGkWhHwQB9nmgF/rqy9+4rjufz6EybJrmUBZo3rTWeZ49CZmtMYiEqCpwDtEDlGUZBMFisWi7Dn5s2KJGKd1ud57nlWUphADgLbqenXzvCGFZluGmXF5ewh9RHjd2a0RFuDli90AURfBDh9o9CII4jXATn+4FKqG+7aSUQijXdaHIHk8ngEystU1VIxoDibfWwoOwV5pzLkSH5+O6rsMIJLnQN5dlqa0FCHR1dUWMYYzleQ7ykXOurTXGONjwyBiyFah/rXXXtA8PD4TYzWYzzPJPP/3UWHVxcXF5eUmIAZeV5FkQeqJXnucpo/u+v7q4tNaKrvE8bz6dNk3zs7/6y5ubm/fv3z9/cf1v/8M/Ho7yru7LpjDGKCX8MHYcZ73eAoAEN/X69Wsh5NnZGSW86zqt7e3tbbHbEkIMZfv9Hqr8Q1H4vi+lRn2cJJHn+H7gDgdjz3cm41kah1LosjoURbFcPu73+8vL888+++wnf+fH8/m861qgRXAgk13f9z0WXrVt+/LlS+55uEplWX77+o3W+gc/+C1rLbzilLaHw4EQCjIKkRxHommaKEkOhwNEn6jOQTej44XUG6IFBHz6v/sP/6NO9EKIqml2u93hcAAbDR8jyH26TnRdxzhv2xZLeEDNEEIA8yL4YpECjHHhRwflDeecUvs00AvIBwWW4zij0QjZF0fQ5Q5AoycDhaatwzCMkwQgwSnSpehIpBZN00BD4zD+4cOHw+Ewm83m8zMcZfRVqIT6vm+a2lrLuYNvMRgM2rb99a9/jYkt3BBK6du3byml+I3GmLZtPvnkkyAI0LjYk/o+TkIpJaX04eEBTmPFoQrDyFoL9yyt9e3tLTmZ2eDpY8sbPhiWgldVdTgcOHdBVCHFUkqF6LquA8DuOA5SICQdmLV8fHx0fR9gOGPMaiOlRMQHRkUtO1ZFnEqp5/Op6/pCiF4K+JnhEe33eyhb4d709PxRWENDDcjH8zyw5sA7syxLkqQoCpSzZVn6gZvnedu2f3sYp+saY8xsNsuylBBye3u7XC4pZagPQOhsNqtBdvSu7LrusNsFQRB4vpGKOvzi4sJaA+2g67plXd3d3QVBiOCCQWXwMnEcY1TW8TywA9Za1w/6vl+v11JKSri1Ns9zVKhaazB9bduXZSl6ibYB+dsY03YNrGL7vpeyRzQHmEwp1dbgOYDvzvO8Lqu7uzv0+rh42+02jmMAS09gNcBapAr0Br0U3HN932fU6bouDkPQTGEY9m3HOUcRhj0QqPYM0V3Xff/73w+C4K/+6q8wTAA9yqeffkopBcPedZ3nBUgJ+Me+7+M4Hg6HUvZd18VRhA/jum6WJYCRlsulMto7GU9AD/pUcyO4IHpCtemfnN5QDCEOOI6DY4CMdVRhh6GUMssyztyqqig7ymM551YrINyWGC1kHIeT8fjZsysgFv/6X//FYrE4Ozv74z/+4yDw0B96nsNPS+KMMavV5vb2FqQJ4+6TjHW/L969e0cITdM0zXNEKiH787MLbdTj46PWOk5Sz/PGo6HrunEccs6rYh+G/ng81VpvNpu26cuyrKrGGPPw8EAdPplMcFMch2EmF+l8OBxyToEBK6VwBuLQ3+12RVFprQf5yHV9qFfZMR1SKSVjRKre87zhMFe6Bz7kOt5+v6/rdjAYOI5XVy2wiuVyeTiUqIDTNGaMQfIBMAmHkBLe9N16vd3vDsYY7C8BszGbzAElEmLW201RHMqyHAwGnJGrqyus0aSGHkcFCdkVB6WUQxnKgrIsy6ZmjPVCRFHEHN40zfXl1XQ6FX3LOc+SCJdFKVUWddM0fgR3K79pml4cV7BDn2StrUoUu85sNkM86TsxHA4ppVVV3d3dEUKG4xHuoOM4o9EQR7ppmr7rGGPPnz+HGP9J+llV1ddff40aLopj1NyIivv9Pgwj/+Tngq7+sNs/SdeFUNPpFBIXkAygKaDTxfAKUgYiHnAjVHLws2z7Bu0KSJuqqo4i+q5vmibP/0YVTfkRnarrujwUT208kA5OaBiG1HEJIb7vDgZHcVtbl23bIj4zxs7OzrwggGV3VVW7zQYoyWazwa4Iynme51r+jUTn6Rf5vu857nq9Wq/Xo/HAY96z51cXFxeEGGyY+IM/+P2+7zvVgS6XUjLuEkKwd/L2wzsp5fPr69Fo5IcBpbRuyjdv3pydncVxDFsQS02WZVLbqqq6TkB13bbtbrfbbnc3Nzdt01dVpZSx1o7HY2p0WZZ11wshXNe/v79/8/btfD53Xfejjz7Cw4ENeBAEo9FgkA6qqqjrNgi8NE0RIv7yr37605/+1HXd6XTy/PnzH/7why9evCibuizLYrfHQwCmLqVU1nqeB2+mxeOqruv7+8eiKCjlz58/T7PBcDgcDIZFUYCFgOgZr4AwhsVicNNE9r++vpZSLhaLMAzRoAKX5ZzT/9V/8L9BAl6sVlVVKaO1tlVVcQquvcaJjOPYcV2U4SDmtNbwbRoMMwBuKOu01sAPAC2iQ4WWDf+NxTvOycwXGwOR54QQfQu/ljyKou1uI4QAOYXiiXEO5Sm08GVZjifDp+/TNj0wVa211sfchijzVN0LIQDwoPK4vLx0XWwwPZKMZVlaa+G/Cl4Z9ITv+/C6NEZ7nkeZhcO4EMJxmLV2uVze3z/WVcsYh7YRdAM/LaPA9UAggzxwOBzmeYYAsd1u+/64XAyzqYC40HRCfAA5f9/3o9FoPB7XdaO1RiFVV20URZCrCyFgfLVer7MkB7SrteSOV9UFJdz3/dlshqof5Q7KoL7vKeXqZIMOmAdQPDjZtq0ppZPJBKm0KApoVNGnjkYjTFw+iUi01nVTAisFOpIkEV5HEAS3t/er1appGkrp+dnlar3QUgFRp5RmWeZxRwlJCJHqqIQdDAZ+6D81kXBk8TxvMpmMphOllJH6SdBzKMsnYJVyttlswBRjayEhBPs60jRl3K2qCpv1louV1jpJMt/3IaFFT1zVped5eZpBQoFhfmC9xhip1ZNkCmU3jjS+uzlZS0Otj+OK1hw0JT3uT6T5cIjbRCn1XfdJIlYVJX4a0rkxBmic47me571+/doYAwgW6AXK97ptYAYBLERr7TCO5SRlWWLmESK8J7koFGxAy+M49oMA581xHIyyQonM+LGcQtUlhMBV9b3QnhT3R7WoaPFj5/M53KFA2cD/xfdCxljXNwBTpZRZkkrZc84JtZEfEGLAgQ4H2fPnzynlQohvv/0W67PC0McplafNDY7jJEkyGAzW63Vd14Ph+HAooZ6Bumuz2ez3e9d1oygaTSeU2qKoPM+BmRkgYZTIVVV0XccsEbIbDScvX76EB8Fut9tsNk3fCaGwwB4ZFDNGeG4ff/xx0zR/+qd/2jQNtiR5njeZjHrRrtdra6i11hhijDk6g9TtcDgcDgevX7+O49BxWd/3Sgk38KfTMUouIKay66uqwtDMYV9CxQhRIKqxOI6t1VVVOb6HLnc+n5+dnRFC7u4fHx8fF4vFeDLEuFnb9H0v0D7hiuF8AqyNwiBJksEgS9PUKk0ICeJESrlbb7DDilKqiSWEDEcjz/Mms2lZlsTqruvW6zUxdjIaBEGApStdK/b7PaiDfVl1XYem2loihCjrilOWJrHv+5gXTpMMVRGqKxSO6KaAuaINsCfrtcD3rLV1Xfen/4zG48vLyzRNAfdCNLLdbiF7ggAA4dp1XSEEIzSO47pu27Z1GUe4BrX94cMHEOvj2RRCXvD7ruu27XEMXJ7MHdAaWUqCIMA5R/5Ckk7THDVcHMdKGmut0scV9fboQ6kBn2ipnmQVLuOe5zm+53keBDmrxwWobbBs0+kUiIMyBlk4CILycECcl1JCBoc9aaCt8C6A4hf7Q9d1jsMvLs/iOB6Ph2mUEmKCILi/v7+/v//mm9/koyEsddI0tUSfnZ31QjVNJ/uurmvf5XVZWWs8z8tHme/73/ve9zBMhvbgr/7qr/7yL38+mUw+/eR719fXjHEhhNBqt9ttt9u3b96vVivP83a7Q9v22+12uVzO59OXL5+Df3NPNgjIpIyx8Xj88ccfA1znhCZJVBX1YvlACQ8jP8uy4TAfj8e+77muW5blm3dv/9W/+ler1eof/+N/3PRdlmWz8fSkUzoud4KWkRJelqVSpigKIdThcLi5vd9ut7KXaJUZY+A9cDJRRLZ9jzeLQhw9J+gX3C+kDKXUUW/zn/7v/7P1drvdbsu6enh4CMOQMadpGiUkALc0TcfjsdJaCIEfgQfxxDM2bQWxCEI86Bt8Jhhu4etlWYaS0HU5fhTcXHe73fn5eZIkkEwZpVF4DgaDJI0h6YBCebFYbHc7dCr4CcYYP3A/+ugj0HlQz7x///7h4eHi4hKABHAj4A1PqR3zlZvNRgiR58P5fJ4kkRBit9uB40NORRrDECL+Std1jFEhhFQ9En8QBJxTCHGapvv29RulNKaEjDHQ0UPAiJoP/B349aqqzs/PYHlvjHn37j0MRexpkA01HEBmzvnZ2VnbHv//ruvu7x/SNLWUzOfz+7vHb7/9djwaIVQh80VhQi0D21vVRd10jBEoCSDZGQwGKIzw2dq2jaJEnDyC6cmKBiUg5xxLnSFkgUUKaNO6roFiYgQM9Qo4NbBviBFaa4AHQRDgPKAJqOt6sVikaRqFPtJklmXA3ru6kaLDUnohBKVkOB5h6BogGYiAzWbjR+Hl5WXkB3VdE0KttcoYvPr7+/vxdPLs2bPhcFgUBfTgQqiyLLfbbdM0lkB2GimlfC/wfb+u26qq+r4Fz+g4jiXGcRyY5kE3gA8AMbu25slA7gnM56dtZWh6oAxljM1mM2wuQrAGqInnKaU0hATecd0TVLq73Y4RCnseiPDQEOMntG0LrNrzPDSpyElCiKqpIbpCtrDWBt5x757necYcNcio7zEKk6ZplqagKX3f3+52fd/j/j4NxuP0UmYB2+AtoNPIsyEQbvzjaDRyveN6E5B0jDFgBoSQ7XZbFjVjjFCD2RfGWJakSinPcyiloe8ppeI4jKLosN+GYfjixStoEiilTdP8+Z//+V//9c9fvHiBVTkAsAHyUUr7Xgp51EUgG/GTSeERSmcWC8g9z4NkB6usAVfgyzZl5fu+UuZw2MEuB7YjGOzabDbfffcdpfzsbDYcDvHKVquVUqquawD8cE5CGZTnKYh+SqkQCoaWdV0ze9wLAuMi13XH43E+SGF9+XQSXI8nYdR1HXYP7HfFfr9v27auWwCKxljf96UUnudJIymlm80GT+bi4mI8mXHOD8UuDMO6Lh8fHxeLlev4xhhriT7aFvgQMlNKRdcK2fd9P5tNRvlgMBj4Udz3/WG7QxAYDod+FHLOm7Y1xhRV2fd9HAWoZowxqmtRAkZRNBnPgDxVVUW48/j4WNU13BCTJEmylDHmu24Uhvv9vq7rqqyfOpz5fD4ajTrRo/OBzAAAD3r4oii0Ok5gQIkRRZFUCuUFem/EFs75drtt2/aEFBDco8FgoIRsmqbrhDHGKo0zDNABOC6ldDAeoYxDkeQ4Tl2XT2bLeHcYMLSUhGGIlslxHIBhYRheXz+vqqORB8yHtZFP5SCCLW4rp4ycfGqYJU3TSKObpnl4eIiiaDaeCCEmk4nrunESItG0bRvGMUCHzz//3CgFH0RwLKDM9vv9eDx++fIlCAG4/3iOOxoNJ9NRFAUo4zzuRFEEIw/HYW3bfvXN17/61a9+/etfZ1mGmj4MY8aY1rKrG8/lh8NhNBpeXV2lgwRVmpRyOh0j8zqOU5b1V1999bOf/tVyuXz58tV8Pp/MZ2VZlkW9XC4fHh42m01dt10nOHP9wB2NBnme5vkQGhggtdhZ8tVXX3348EFr/b3vfe/58+thlu92u/VqhdfU9y104VEUXlxc4CVy16nrGmYLYRJ3XffNV19jaB0YkFKql8eqtOvEw8MD5tKEENqQoijaurXWLhaL29vbIAoxZYWjJaUcjsfmuJLnODIMgv4JggEyBXWN53n03/3v/PdBT8RpopTxfD8IgqZpiLVKqcO+BLmDnl4o6fJjI4JuTylV1cXxu3GOWgd8J7x94/jICj1x3iA+hRBPS0mfgIHhcEjJUdiLAJqm6XK53G63YBCiKArDMAhDoIVxHHsuXy6X9LhCi7muK3q52WzQ36B8IYRAcyOlFOo4sVjXte+Hxx8YBMNh7p92zgshFouFtSZN0yAIn/Ys4Ybs9zshBGUW8JtSyvfd73//+0mSSKkpc6IoqooSgXW/38MziWFDDmXA0sAZE0K6rnVOBu5BEKzXa5SAMB3DeAs+ZNs2lNLD7sAYI4y6rquUAQMYBIHoFcrH+/t7QFC77VZrTShnjHueF4ZB23aOw4FMgE+EPycW2QKBY8zBznIkjzRNCbHQDmOGK45jCDzBfjoOg6EOFiHA6QQe+oDBoO1ALNZae16glFosFv1pvQGAd9flWuuurcFMVVVFsOzZWoBqw+FxbEdrjTFDa206yNFSbDabN2/eZFn28ctXnuclydF+At08xkFAcGCe+fz8fLPeNk1TVHXTNEqa9Xpd1k2e55w5fd9jDB44ImOk73vPdxljcJjjnAMDk1IeFdZSIMrj/CM0h2EIrg0IPwprDGrgQCK1iF4+iYsdl2dZZpRGJeec5oKbrsUJ7PseQu84jtM4ieMEEX+73QLQRZHhONxxHOQYtIzIVdw9Gl6rk3UkMgTYzPFwhJf4N9hVf0wMiCmgGk+9tceObn82y7KqqpbLJSIAohLSCW4KSlLMu6A610fhv3wiZPGl4jByXRdNmsNoFEVCdGEYJnHs+/52s6/rWqgetV2SJKihv/766zAM5/M5qHnGmJKSMbbdHfB7CSEYkcY6RQDqECYzly0Wi81mA5dpkKeAP4uiogbalI5zJkTHOX9cPc7n89/+7d+Ooqit6zdv3kihsYIXFruIb5PJhDEnyzL8Xq11nqe74pBlCbpKROcjzXG/cBwHHAoqQoJRTaPv7u4A3BqjkiQaZBmlNI5jQJKe5+33+/2uuL+/PxzKs7PzruukFGEYSiMxiOq6rjIaai3Gjg4CZXmAY+d+XwghrKGbzcZ1PSEUzrDneVYrS+CnatAp/eAHv4W4HQQBNbZt2/Vu2zQNw+g3J1rrvutQcvm+T6T2fX84HK7X6/fv3w8Gg9Fokud5J0XbttvdLgxDXKXNbiul9BwXDRVsLfHicBO11mjg8dnwdbqmRWEBRAGSfNd1e9EVRWGsRSIA6gw5DpJCc3Lex7oY4Bmik6vVKk9SSBjzPIfNBMQJ0FEYSrDfLAxDx+NPpirUEmOMtgbtWVEUouvbtk3TFAoNa20QhZzzvpe3t7er1SrPc4d7aZqix/P8v6kU4WJFzHFHJPBa3EGIiV++fMksub+/h3iXMoudjFJKoRQajK7rRoMc5QjAGFxDrfX79+/3+z1sMuMwwtYs3/f9yGGMOOxoHgvIsG1bLLgbjUae5+2Lw3fffbdardbL1ePjo8cdY5Tv+2fz6W//9m+PRsPJZHJ2OXccRyhljIH7PG4Bs8RxHK3tarX69Rdf/epXv1osllrryWRyfn6+eFy9ffuWe7619OL8KsuTNI0B3s/n86urKynlhw8fXrx4AZVtVVVv375dPT786Z/+6UcfffRf/rf+wSDLP3z48Pj4eH6OzVfHPUVN12ZZdnV1hfGFtm2FkDc3N//8v/j/fPjwQQhxfn4+mUw+//zz0WiCGLvd7suqiqJjW/jll1/t93urDZh9zrml5AkGwoN6+fKl53nvPnwIggA+9k8qYbxTnEC8BWst/Q//5/9r7jphGDKH993f7Lq6u72VUjZ1h0GSwWDg+p6U0uUeBB91XWOxw6HYoX7CL0BiBs4vT5tcAZZADwGeBUisUgoC2MfHR2DOge8BWsQYEUor13WfP3+Oc6a1juIY7UsQBHEU4GERQtq2HwwGvhfA5MYel9YdwRXOeRRFlDP8/DAMs2wAooRS6rocLT6wsbqub29vCCGXl1fQe2JTDedciL6ua22Oc6QXFxdxHCKbRlHi+WFZllVRAntbrVb4/K7jeJ7X9QLhgB6XMg21VvimQohXr14BBdxut5QydOG49r7vM0YppeWhVEoFUeh53n5fQDFa13UYxMCfUJtvt1vXceIopZwjZz8xmITYJ+zkhARQgNh13fa9ANoPgriu6/V6JaWcTCa43nB2AFOplLJWy9POImRTuCog+ELBjV+HKKk1AXoXRVHXtShDhegmk4lUPafscDiUZUmIOT8/D8NwMhp5nosybjabtW2N8kJK6Xr86tmLt2+/GwxGlNq27auqyJN8vV7jVXphBPEKmFB8ZVBUZ2dnGIQuyibPcyn03d3d7lAopaRAPTFAADJGAUNWWlJKOWVxHKNiAAUAagzpDTwIfuMTowHoC3gY/jwuLfQWfd9jxxnuS9vU0KUhej6h4oRREIIQIKLVUUoRQ5BLANXc39+j65hMxojgaL6hCMbIrzIa2nAgAXh3x0S+3YFUHY1GeOaQBvsnM25z2q+C6WvfdzHxcHFx8fS9UMrjKrmua6wCt4U6D9JG/7Q2GFUIoLuHh4f7+/vz+VkQBMYoxlgU+EoppUSe50brsizDII6iqGpKgCjYHAVEeb/fo+dBHTYaDvu+74VCzwDyJcsyz3PwgpBEgyDIhhluR9d12kgppTVUCLHfV47jGKlRbkZRJKWQsh9Ohmmadn2TJInv+AgLj4+P/WkhFRz4rLWEsNN+s3oymfzgBz+4fbj98ssvCSGc02fPnoWRj8DYlNUJSNC7LRSZrCzLpushLZ9Op47LHx7urNJKi7Isnz17dnZ2hiMRhuF+V3z33XebzZ4QcnFx7vuu0ApnOEmS5Xq13+8nk0lZll0rsjwB0nmcl7QWSN7D/YJz54mWSuMEKhHH5VCu1HWNIes8zz3uxHFsGTXGNG1bVZXrO9vtVgqR5zmAq7ZuqLGMseVyCSYhywbD4XA8mxpj/CBA6loul3XbgG5DZur7npDjUtHjWHRZ4tag/gBb7btefVqAgauH6s1Yba0Nowg9BlQlyH/IX2EYan28d33fY7RZ9ur58+d5ksLlPEkSh/HD4dBLccQOjA7D8GmuJc0TQK1a677t+r5XRqNLCYLAc1xYGuFOGWMsJYAJ0NtUVWU08LNaShkn4ZNOAKKOpqoBz6NpGY/HQPVwd6pD8TRfb4lGaxdFEeUcz60XHR4+7rs9jb7hyuNeWGurovz2229937+8Ok/zxPfdOIyA5AEHIYQIoRD8jTFREpdFDVp2uXhgliyXj2dnZ9PJBBjw8+fPhuORNjKIIjRa2kjMR6v+aCantc3z3HX8d+/evX379ptvXmNkyvfCu8eH2eyMUm6M6fuWUpokCeBPEGuTyUQpBfP2LMuyOHr79u2f/cs//fDhwzAfQGL76aefvnr1EpJuqBKLokCUiLN0vz84jsOowxh7eHj44osvl8vl7e0t5/x73/ueMQQ7GLoe2veOc77d7vq+l73oum42m83nc9f3jDFd1z3Rcb7v930P7zQItMAggTfAsBQQUMiZ6H/8f/g/gb9UWlNKi7rCQIFVtm1bq03bttC1HM9xJ9FGM8YwcxRGPoprCBKRdSDvJYQwdlyrbq0FDwKJFcIxVJng2iCEtNbM5/PrqytMgbquS419fHzspEBUZYwBfnv24rppmsf7BX4mfshut5tN59B/yJMPG1RHg8GAc26IfcqLOK/0ZHYP/QqAYkJIlqXyZO4FwQrSD2MM9Lm1Ns2O4+7Q2xZFUTfdZDJx2HFuv+u6x4cHwJue5zV1q7V2PLdpGih+wjDY7/d9Lz799FMoY9CXPz4+fvXVV77v53l+dXWllEL+lr3qum6xWoLI2263YKO6TsRxfH19jd7UGEOMXa1WvZSWEIjY8HnQ/eBLGXtss8B/McbybJBlWVWXWuu6rnHnUbNDBwZQB0C3EMLlznGI46Rvc92jwxnKR33cus1gV50kueu6qDg9z62qyvfdY5kS+cN8EMehEGK9XhNjqqq8vLyM4xBzT8aYqi5wkPq+z7LEEDYc5Yw6jBOHe9yh1NCvv/rN2/fvptPp3e3Dxx9/fH51KYQoyxonDdUDYEsp5XaH9c8yiqIwiNXRFNa0TffUeUdRRBnBscFBRXOMCUd7MmhQSllKgANBZ30EJk/ieqDI+HVt26JAAXWCubDRaCS6vqlqkE04qxgcwSHX9ij/wlhAXdeB5xODPQ3HtqFtWyhsptNpFAdA1DEYxR0njuMkjRzXBTyDaRvMUYKhw7jGSUCpKeVhGGKSRpxWBUMOiKJqOBwOBhlaZODcxpjdbofKfjKZ5IMUCBn0oEC1AYez03Ao+FB4g1mtMEa02+3yQdY0jccZHhHnPMsGcARE9QDd4SeffIKLADLl8fHxuNeIEN93IbFHUQuS1/O8oq5Ao1trtT5itEEQcIfWda0kTIlLKSU1BB6VYRhSSoxR3ONFUWy2q/1+O5/MP/3008lkhmz6+Pi43ewdx/H9EPU9eEzOOTRnXhjUddl13WCQXV9fh5E/SDPfd9M0FUKt1+uqatqmP9GdR6Wm53lCdkmSNE3NOafUoslRWgAbRv2Kv+i6biv67757Dfn5bDYLgsAYkmWZ1rau66ZuozjEww/DMMsSNEu4hm/fv7u7u/PcIIqii/PzLM0hx9lut01TNU1DGXFd9+LiIo3ixWIxnIzDMKScUEp32wNSAAQJxpiubXF4xuPxbDxBu3U4HKTRsNnLsiyMIrQHQghrj0wxsPYnxFRrjfEgrM6cTqeY/Qz9ACr4p8EaFL74D+q2p+0RoGUgD0C1jTTUNEeJZBTEkAu3bRsHYXCyaEFvaSg5emUFR7T++NMIPY4h9z2okifDcKxTROPUdR3nLmPMUsJOZvRwEjmVjAqBhRACWa3vepPJxBjDOUcMh+0L2iFq7W638zwP9A5kJ67rhmGQpqkm1hjDLGnbGtF+u91CMZkkCU4F/m7fdWhdvv76a0vNy5fPkyS5vLxEiYa11l0rpJQQDt7c3HhekKbpixfPsjRmjA2zXClxf3d3e/uBMfaHf/gHv/d3f38wGERpIlSPF2GMiULfoQRCTMfxjDFlWeNFG33cNb7fH/7Z/+v/WRyqZ89egEv1PO/ly4/SNMWmjTzPX79+jVqnbevVavXi+uoHP/jBYrF4eHj48z//87/39/7exeVZnufj8TjPc86Z1vpwKKqqAuZqjOk76YeB1lb2ou/7Dx9uofGQUj48PlZVgx7AcVxElSAIfC80xqRJNBwOh+MRKuz1eg3OQVuLVqeua6v100CG6/vD4RAzv8aY9XoN8LVtW0II/U//k/9rXddKa6VU1TaoRTabjVWWMWaU3u12hFEoUYwx5aGC5aPv+0en8jioqgqdLn4oNMhobX3fBXgAwROA1vV6TU4bRkGuoX2ZzWZRFNZ1HYVhHMeo8wLX2263N/d3lNKLiwsoP5RS2SAtiuL+9gFHE42v53ld24PFAAoN7g87LobDoTJHQsfzvMPhEEURSoQT1XLU3wVBMJtNXaxye3xEoQbUAfQzyDvGCQpe5KT9fh+EcRRFSXTE587PzykhsMsXQqRJRilNshRsC+KLOg3ZgXHA05tOp+jYHh4e3r9/n2UZCOzNarvdbrf7XV3XnB0tysIwxLonVEiXl5ee5/VtZ4i9f3jsuu5piRtweLxK13UJtUh1yGdRFCVxGkUR4xQPUykFABKUtNYanRNCz2Aw0FLh5uPRQduHk4c//8THYQKAcxdwI+QI0+mYMaaNjOPY913f9QCCaqNE29V1+etf//rVq1fX19fDUQ69IEYTwtCHpkqTo38m4EbHUiGE1Kbv+7Kof/azn1lGR6NRmuaovYAXYqebViYIImU02LeyqAkhrh+g4dtt94fDYTAYeD4M2DTqcnxyPOHtdgsuD/3lcDx6GvYEhABR1HQ6fZJYPSHSkN9BXdf3/XK5DILAKO05LtYmCiVRzeDZCiG0PS6zx+XvmlZLhZMDTBG4IIJ+Ue6LosCsru+7s9mZ5zlw2TDGeD6AJQVx0tPBq6pKdMdxJMR9x/FQoPu+j44IcBo9rQdu2xrYO4oYxlhRFJiMvru7C0IvCAKQNfjYKAcBJwPfxQpUgArz6UQp1bbtYrF49/7tdrt9+ex6NpuBKFTKLBaL2Ww2OBlMr1arOI5XqxXyFvgR/Ir9fq+U+Oijj4AfQzyHy7srDu5pLVIY+si4jDGIWrTWUuqyLFerzflsHsfxdruNjmvTGsIZY4RxIqUUbbfd7l3XffXq1YsXL5RSoleYk4K1ldYaerKiKJIk8cJgMBjMZhPXdaXsy+og2o4Qw5jjed5wODSGWGu1sm3blmVtDcOW4rarcajSFJqNGv1MFAeDfESZvflwF4bhixcvpISbRE+Zvb29LQ7VEZj3PGtp1/bADwghTdNIJQ6Hw2CQZVl2fX0ZRVHV1FLKMIyNMVVRr9fr1XLddUerHc9zjNVlWY5GI7h/LTfrOI7jNMqyzOFHYrpt26+//poQcn11NZlMEAH6pkVM/uqrr+CVj3GNzXYL/joIAoyeo6qAgwNCE5BOuHoioaATeLx/wPkHu+e6LizongCnIAi0NUCVIKgFqAM6EgjQfr8/DmdwD1G0aZrQ88HqoHhiroOSDs3zbrcB6owiCTvlQLijoUWJ8/XXX8OwGuIcx/G6rlPmuDclDENrKJ6DlNISvd1uIcF8+fIlIcR3PchVUfYZYwgxUOV2XUeMAdTdn6yPYZYhRL/f7z//rR8qpZqyQDWMXIMbiqFvNEKu62ZpCr6+aZrNbv3mzbdv377nnM5mZ7jOhJDV8jhskaYpZqhBWxktZ7PJ1flFmqZpEuH5//Snf/FvfvbTLEv/6L/094bjEVxUjCGT0TBOfKyRWK02m83GGAIJMrp91/GLolxtN+vV9vb2HkWzMYZzF6Xwkyruqcag1FaHYjabXFxcoJ9USj1//nw8GaKw/ulPf1qW5dnZ2fNXL/ErYOBCGM3SASUkiiIw41AbG3vsrquq6roevW6SJJy5z549S5OIUlpU5ROgi4xAGEMDEASBwxjeV9M0Qqmu69AeoNkA7QAwlf7Tf/9/yRgz1j5haFVV7Xa78lBBsQHheZIk3HWklIwcnVdRaXHOlRZgJ3FwAeeiteWcW3ukPJE/gLJCkeB5npRHc1EkIe804o4Hl2eZc5KpNmW12+2KuuCnIf/1em2ttZbWde17QRAEr169glAmy7IoiYExuK672ayNMbB9CsMwz/M4TlzX3e/35DRmiAMNPhSy2TiOvv/97wehB90o1CHGmNFwgqocAAAeAhBs13WZ46DpVEpZbcbjcRonWZZBHYXevawr5HK075DyEEIeHx/R4kynU8RHkIYgs/F9wyDGwHMYho53ROnbtvW9AEffWkus9TwPu4OaroVbtPPk1GwpHPYopXVThWH4FB8BAqG7ghaVEHJzcwMLRNQQuO1d14GtXz4uIFYD2oGzlSRJmsZCCNBb+/0eApfxeGy0Bh4AuBRzbXme5nmutEzCCF85TWMoz+qqUkqAsSKEDAYZFIGe57V9h4ePIs+PwvV63RSHOI6Vtoyxw6Fs6u7u8eGnP/3Li/PL8/NzoCxA4EXXNV3XNB0k6lVV9Z1ESIqiKIjCJDmO9OKc+K7XNA1hR+p8t9uFYTgajUCXIPoz56iZAHqEOgwOsfi+qPPSNBVC4AY9ieIBfDqMIljjYyilcJzYaVEugK79fo8v4nseHjJqu7ZtMRS8Wq1GowEqJCOV0mI6mY+mI9Rndd1O5zOoT3zfR+vyRDkFnn84HECIU85Ef0Q9nwjlJyIDIAS8lz3fEUJw5mIqjRByKHa43XCBn06nICjBQmLfYt+3qMkQTIEFJkmipaKUMk4Ph8PNu7cPDw8Yv+CcX1xcEMJgTQ6sYrVaffzxxwAXGWNBENrjWirR9I0xSggB32PHcXa7w2q1AvQIvriu67IswbYDW4WBU9+0Dw8PEMlut1vXdf0oxNhvHMee53z48IEY47mBOC0N/PTTT/H5Hx8fb25uQGkhR4I5Oj8/f3h4WK1WuKpRDEGFxHgmxMIAeo0xjDp9L9u2OxwOXXc8LVjkjOTXSaGUWCxWRbF3HM9a7bru5eVlEHhxHHu+U9e16FVVVVXV7Pf7LBtADhgEAfzxIczq+3Y0GnGPc86l6kejkecGXddpbbEeoCwqTF5zh2EyxlpLjb64uHh8fFzvttDUem7w/PlzvCZ88SQO27aFRIkQttvtmCWDwQD0vaXMcZwoieGW9IMf/AAzeowxSGSKonjz5k2e52dnZ09jE4fD4VjLep5RGgKSOI6xlxbzQMg1aIz7vnUcB6Dp5fUVWin8LbAWlFLGTtWV41ht+uMqpA5bQMAccc4PZYFhTNd1ER5BgCLvIH1Ya8E+4ymBH0TW09pyzrnr4IJLKYGz1k2JFwEMkhBS12Vd16Lrn1ijOE7DMIQVMPgcnOeqKJDCCCFperTqRDOGwJJl2WKxQGWA0ARxLXSiTypMYmyWJ/lg4Lhstz1stqvX33yHtkqe5qMnkxkhBOM7SJ1xGrmuGwZelmVpFIeh73neaDzYbDZv37791Ze/Rm//e7/3dz7//AdC9L04FgCj4cRhrG36o3gmDIUQju9/+PDhw/vbJMmMMYSwqqq+/PJLRp0oimB8fXqSuuub+XzuOOzi4gLBEx5sUvZo9qSUqLDLsvzlL395d3c3n8/rtrPWOhxuqOxJpL7b7YqiaNtWI2unqe/7VdNgm9nj4yOl/OrqyuX04uIClwjOO0IpnKUgCBaLhRDC5byu66PguG2bpkG7PhwOAR9wzlFB0v/2P/7vIiXUTfOEG0spL84uEcsgt0KjaYgVnRRCaC1RmTmO4wdHEQlQAXkavkVnKUSHE4D+Fa0JhMDWWlBvWuuPP/4YCEpd16j2tNbiNLSoteaESil3xa7rOuztQV3o++FwOCyL6vz8HAwayhrKmTztfpfy6C+yXq/hkIbMBS0/tNhQ8uItYghCSmGtTdLIOS3VWS6XQoiyqFFAbDYbrNn67rvvQGS0bRtEUd/3uEjUkul0WhUl9mA0TfP27fu7u7skS8PTkhNr6Gg00lqv1gutrLEK2RdUJrQyz58/B9XtOE7XClTT3HWwRgYPMEtzYwxEb77nRVEEniJOj659WDTedd1mvb26ugJSxTjFuQFTgBeK2hFcG/4Yziia+CRJQOIg83mOC7oWB6Dve/yj6/Ku64wxYEagkz0cDmHgBUFwfX0dRcEpjXnGajCS1FhrLaVH1xKl1GiYQ7+1Xq9/85svHcd5+fLlYDCI4/g4AhIG6DgJIZvNpiz2WZat1lvGmFJGSUMdd7vd3t3eI4I7joNqgxHy7t27xWozGAy8wBdCGE30aWA7Hw6EEIw5wIPrulZC7nY7bU2aHpW5uB0ud6AUppT2Ujxhmfy0mgnaRNysLMv0yf0EUQ9VFL7v4bADmbvdboGNgWqEPgY/DS+l6zrXcU4cuq6qxhjV95IQ8+LFK87pYDCA10Dft0qI7XZzc3Pbdd2LV6+ePXuWZQOAZE3X4p2CEvV9f7FYNFXNGANnlA2OYzdaWTRwoFkB8iEHhGHY9Q2uXt8dN8YaY6CjwownlGT48BAXos/JsgTwBshECNUdx5G90FoHoR9FkcfZ/f39t99+W5YlWix4E6KFgyoZs8AIWUmSQuIThkGcxRCooRIqy5JzF1Qg9I6YBYOIBBkdF+rs7IwRE0VREHhwciaEGULG4yl8BIwhRVFEvgfYDG0Jfmyapnmef/TRR8A1QUmAvr+9vQUsl6YpFsI+2eIsl8vNdoX3MpvNrq6uQMpA2YZzNRiMABXgNi03677v8S44c+oGVJcZDofj8RChDHWMlBpdnLU2TXPOqZFqMBgA3kA+PlQHFMqffvqpMSaKEqibKaWEMK01lsMMBgPHccqytEoizRBCuOdmg5xYdnZ2BrEzYNeqPIDjU0pJqYuikF3/dDUMFvgQCzuJp6sxGAzg8YFbA+Xofr9fLBaQnQFWZIwRY4FiMsaspc5p2RdqCzzYw2GH1OC6bhAdLYWB0AMX4JwrZdCbaa05PS6Y8jwPcsnjBygOQoinFR2YaaCU9m2H86ZP9nhPsM0TqHwan+wppZaSJ1KSUWc6nRJqEASQPTnnbVtLKaE0AnKRZQPP83z/GARwE9u2rYriaSPFcDh49eoVIjAeqeM4y+Xy3bt39rTyC9Hy6aIBJYmiiBhLKS3rKoqCLBusVgvGnM1mtdls4E8rhNjvC8dxPOfoT8k5j5JQSum4LEtSz/McylyXO46T5UkQBIYS13Xv7+9/9hf/5urq6vLyMh8NOKd9L/f7/f3NHRQFOKJCCOZ4Wuu27du2971QCME4cV0Xy+7APoNMQLpxXIb/Uddl0zQ//OEPAUD6vosqHGfjhCPc/eabr3/1y18HQeC6PsogiBygJwFlrLUJwzDLsul0ainFbPtisSCECSFE18DB0XVdyITYyUAbr2m1Wrmco5SaTCbhacgGMaossXzltFj9j//hn6R5prXu+94PIhTO6ICNMW3TIM1IdaSlsXQMdDKO19X1Bca20XyDdQLIRilNksj3PUymQEwN2xWIUYbD4fn5OcIoVKvT+Uxr3TWtMeaw34NZqOvaZdz3fcd3QH4BpVBK5YNRGEaghKHGxTUAxmCM3u12yugwDBkjhBBOHciSfN+3lhBCcLbQ45LTtvk4joXo27YdDDPPc9q2R/fMGLu/v9/tdqJXbdtOp1Mp5X5/QFU7n88/3N4opcajqTHm8eFBCLHf7iBPEULsdof379+XJymY4zidkL7vi65vmsr3Q60lGjJoCMAter4zHA4BLt7dP97e3qNZT5IkP1nAAZKB16vqj704obaua8ZIFCXX19dglFABlEVljOHO0ZIA3VscxxhB6E6mmpRSaylsjYANfPnll0CeKWFJkmglkfOAeSAuGGPgcIG4A1LMcZyqLrbr1Tevv/7hD3+IzX0AhKCvPDs7m40nKPUcx8mzrK5r3+Gj0QBTrn3fPzw8/OqLv765ufn7f//vn11erFdbQshwOLSUIJsq2TuO43pY3K6toZ1UTdNoZTDM8vj4WBdlczJw98IoiiJCjDGGuw5OAp5JVVXGUsZYEqWgHZum0fbox3gUe1kbh9GTeBkIMSBAICu4aUcdTNcgijmOMx6Pn7xhPO94QZA8OKfI0JRyxpjshe/79IQfg/XjnKtelE1dFPsoCuI4vbg4u7p6lqYxJzyKj5P/hBBKidba85zDoVwul69ff3tzc/Pq1auLq6Mh+2Q27bpuvy82m81us8XxSJLE446yZjgepGm6Wq2Konp8fMTVQFeQJAngW0gnCSEYgMDdhCchBvTQvjPGXNctyxLThS9fvry6uurbJgiCpmujk0coFLKc0aeB2cB1QFqhfkLzY62VUu/3e+whtoYQQrSUvu8DK+37vm2bOIsx1IwLtd1ujTFVVWGyFSqFLBtgAhHGSGVZAnwt9ts8T+fzKZTOq9WqajspNOduFCWb9VYI4btOVVWr1QrBMI7js7OzwWBgjAqCgDIL6SSMJZ+KV98L4Sr0NKCNh3M47Ag1jDEhOijn0KRBX++6flN3WLaGkQhlLPSFRVHEcUqpxQFu21YqkWXJRx+9RIrFa4Uigho6HOV1XRNCrDar1WpfHHzfV9Kkacpc50m5hRJqOBwSYlCRWOIsl8t3b982TeNQ8vLly2fPnhljmOt0XWcJw2iL1tpakiTx2fksjkMgx3BYPGwPxpgsy/f7fdtL8N1VVUmtoEaYzWYAztH2jMdjSP7ReKMSKssSEYmcpOW+71PKt9stKjYEnDAMkarbtm2aZrvdai2BPcRxzBwOQlCcNjPa46Zg0p0sfIv9bjab5cMB6E4kQRQuaFyttYxwxhg1VkrZ9Y3jOECVjDFAX/q+r9vWWiuEapoGfmAIPdAYCdmh+tRaw6PAnLaySimr4rhY+Unbk5x2Hz8+Ps6nU5yQ58+fO85xn3ff91VVgCWEsRmoMUQktK+YO5EnW5zNZlPX9eFwkFIwxl3XSZI0DINjNy7Vfr9nnDwJFc6ms/nF+Xg+8wKfWmKk8j3HWusyiuISGSQIgsvLyySOi6Lwg2BbbL/66qv3725830/CBCD6U1dmKIvjeJCPKKVv375bLpdC9Gi/p9NpmmZd16EjraoSBILrcUAnw2EehqEhNgxDFF6nqNtB2hHHcRJnb9++b5rGGKutLcuyb5ssyxCNjbFYKnN1dTUcjxHu9vs9ziHWtDuM4R+bpiGMxXGM3wULXNBonFLcmqchCVTkAEf1SeNEKaX/vX/3fyCllFoRQiw5+tdTSiFpJKdCW2vt+bC7pL7vItURQnb7DQJEEATT6ZhSDirNOxq0MiFE17XQzY3H48PhMB6Pkbe01o+Pj9AIT6fTJ7OJpmsf7u77vh8OBljIii1pjLHBIEPi1Fq/e/dut9tR5mRZ/uLFC1xRlBdgEyilvu/t9/vleoU295NPPhlkOaCapmmapi3LEjADrhNKaXV0i1FBELgeR8qBnIVRB5MUu93+7du3cEyJogSn7e7urheCUrpabdq2dbmTJIk+7cfs+951/MFgILVq2xpR0lKmlPJdT5+8SYfDnJ38HXDQtdaU2TTJHcdhjgvP36Io3t/coA4jhPh+0DT1arV2XUd2QmkpheIOu7i4MEZl2WA2m3meB50Wnjw6D/hpgXOklHqe86TjwRooa+mpljVIURCdGG211mkSA9196krNUZRNAWgBUYPsejjKOSXG6jdv3oxGA1S0QogsS/J8eHd3M8yG0O7keS76/nDYGamO21GkxOYiyiyo+oeHh+vnL/E0fN+vmrrve5c7T+7BD/eLToqiqNq2tYY4juO6x4WVEKWuthtUb2hV/6aGUwqvmzLHdV2HuUjeXdcFUQhqTxw39hxr/UGWO55rTkb2+BV4fei2T8/N1SfDheMlMhY4H8ru0XjQC9HUdVXXnDHMESdRjMpguVxqIQFIBJ4/no3OzuZnZ2eXl5eAMCmlWqokSZruqNyC7zNgaSklIew3v/nNt9+8fvPu7WefffaHf/iHh6rc7w5QDQ+HQ2ydGw6H5/N5nKZff/ObNMsgseLckVIul8v1eo2difgr0PwyRqSUj49L4D2Xl5cgeXGboJEPT6bwUsr1em21sVYPBoM4TaCvAhgDBEIbpaQOowB7A59swzjn6/X6L//yL7fb7SeffHZ+fs5cxyqNZa94qoCdgsAfz8ZfffVra+3Z2VmapldXV1EUvXv3brvdZ1mGTmMwGPm+D1sEz/Vvbm6iOGzbum9axkmSRM+fXwM2IITdLx6rfUMd3vdysVj0Tf1EVs7n52jiD4fDZrPB4kU4yr569QpK4d3u4HmekpDkO8YYqBpw/TGVmQ9S5BI8Cq11UVSA6pU0+Gpt23ddd6jKqqriKMErQJWGcG2JsRYDv+zVq1ewAgFS1dY1esgnHqRt277vfS+M41gTend3hztu7cmem9o0Tc/Pzyl39vv9frvL8zxPUtTTm82mahtraRCGxljMpDPG7u5uHceJ4iCJ4vF4jKVe8NMqy2qxWNAjlxRxzofjEWNMqaNzHhhGCC2e3jt6e3uaESGEREGYJMl+vz8cDo7jtW2LYzabzZDtwAt7ngfES2vM8Qlrbdt3oJ/QHqC/AhnCGAP85ruOMYawoxaWnFzlwKl5nte2bZ4e+WKHMmOPTD26691uxzmv2xYuX+PxNBvkADg8N4BgUSnl+Ufth5TSdTk8fSBv8DzPahMEwX6/R25q2xbESBAE5+fnURAg7BBCILNBNYmumDHmeV6eD/q+Y4wbYx4eHqCZwUpZcrKtef/+PXo2uCChapdSWmsopXEYjcfjuim/+OILa+1qteKcz2azIIkHo2EUhJEflNVBS9XVTd+3juOFoe84HjYIJ0nkcs8QK81xzEtri+/CCU2SBF2KJpZYJqUsiqKuG8aY6zpxmlBL2rb1/QC1r7U2jo+QjVR9EATcZS+fv8gGOSobfGs8T6wZwO9q6m63O6RplqZpJ5QQXRQEYRigsr+8vHr58uXLly+3220QRd9++y0QSmNMlmXY1sMI4RyOrMqQowQLmkLgW+PxWAkBhPgpmwCSAAVHOcd5VkrR/+of/0nf930vocbwPM8aig6j67rRaALU4ekcW6sxCJDlSZqm0Fm7R6dHEwShPrnez2YzSqnUajab4ejkaXY4HMDRHg57fD1EqDzPOWXcdYwxk8nE4V7f9/P5HCIw3GeUTXimjuNQZpum2W0Pd3d3dV2/evUqCEJkzbIs7+/v8WiGwyF0Hvh2eDHoNbuuE0IsFgulVJoe1wD7vo9Fe9ZaoJ0A56WU2/0ujpOzszPspcJze3x8/Ou//uunOZ0oSsIwJJZiOq+ua0oIRg7Rpx6FnIwCBQRZDqkBQieC1FGvJ4UQIsuyKAqspeSkecck4LfffvPmzZvxeNx13f39o++7UZREURBFCaWWEBbH8TAfNE0jlKSUTiajp320YJdub28ppQAgibFCiE7Ip+bSWgswHKaCT8rNHitEyrIoCqNUnueB5yJkoKSD8gnwvndc461d1/V8Zz6dpFmS53mSRLLrv3n9m7Isnz+/vri4CgKvqdrhcBjHKfRSSok4jruuyfIEGghQMEEQiF7hz4xGIyGOXwdDfD//+c9ns5klbLfbLTdbx3GCMOy6HkMAUKf6vs8I1dYsFgt2Wr7hOB6Ea03TiF4BW67r2loKE0UIIKBBAeqDupMwdj6fgxKCYOVphDb0Q9/3hZRBeFzlZJl1HMdIzBgSawzKFCNVlmXMZW3fDLI8ThPPcSmlfd8rIeq66vt+PB6PBsPhKHdd1+OOH4WbzWq1WmRxcnZ2dj6/GI/Hu0Phuq4XBsbaoq6E6MCwC7gfJ2lZHrq6OxwOHz7cnp2dRVHke6EXBpBFCiWx/ixJkuFkaIyinHHuQhsHyKTruqqqi6L49ttvCSGz2VnbHklMyBxd1w3DEFUFshE6Cpezo5SzaYD273aH3W6XJNFsNmMO77qOMQf9G+fUdX2lhFHaWF0UhVKY/yfj4RD66LpqjTGXl5dRGK6WG3BhQRSi4nRdlzrU9134wDXl0SQP1mt934Psk0IfFwEROxqOO9FnSdp1nVHKdR3PcR2XaS3Pzs6SJEqyVHT97rD/5ptvXNf98Y9/rLWGK/dmvcN+Esdx+74fDgfT6XQ4zDebTZyEg8EAEswgCPqj96GCXmSxWPi+D/mztZYT6riMMdY2/eNqTQhxuCuViINwPp9DGtF1DaLBcrnc7HeEEHDiXSegDRqPx1h5BM4dyQPIATByMHSY+MO/BVsHMgh3BHO+eLlxmnz88ceT0RDxEFfj7u6uLGshRBQlopf7fYGKJAz9+Xy+3W7bvuPcLcuDUir0A9/3oyAYDofWmvV63Yo+SZIwiIA313W9Lw6MsdFohHsEHIudtkTjYwNbwjgX5xyDDlmWYRk2s0ejCqVUr+STLqeXUAjwtm2xAhhunyCFcaot0VAfXlxc+L6LYhrbEieTCTF2sVgkSYY/7Pu+lD3+ehAEICuYZU1Vu77XNA3WWAVxBOtyyhlquL7vjbWYD0jiGBoGdprfdxj3fd8YhX4Y0QYDwpzz0Wji+35ZHhzHyZKEMbZer/u+p5T0fT8ejhGCIH6IotAPA2MUIWwwyKQ8sg2IWvDxJ4RYS0AfAb5Fw6+1ttagn/F93/MckCHQECN7brfb+4fbTgjvbwBal1M2HA4Zc7A8ihDTdSKKgizOojRp2jZJks1ms16vAZIFvlvX9alfCvJ8uN5smqaBESbnvO5a30HX6hpjNpsNZtp8359Mjl5L6926rWut5Xg8haH/7e1tFAWc87PLC0rp7c19VVVt2wuhpFCu63peEIY+p7Suq6Zp8UL7vv/t3/7t6XTa1Me92vzkXolof/JFIsYYx2VBEHie+/j4GATB2dmZtbaqqhg7T/f7ruso4Y7juN7xTvGT35CUIggC+t/4k/8WYww6Bvwyzw2AM1dVBTVi30vfd+M41fq4i3A6gzbNdU9LrHa77d3d3WAwuLy8nM3m8A2KoshSgnMzHo9d7qD07rqu77uf/exnP/7xjy8vL8vq4Pt+4Pl93zueOxgMsIrBcZy/jTn/LXaGM8aiOPA8r2vF4XB49+6dUqpp2qemJE1T6DlwVdzT5DmENVABH3lViXzTqJO5A+eOtQaroDGmC/DAcX10q7vdwRjz6tWrrhP39/dgjvA1Pffo3RoEQVnWfd9bbZbLJcJu27aW6GfPnoVhAC/ZwSBTSsENH9yz43jA/DEj0zQNAAZjzFMdDCx9NBo4joNeDUwQcHhzmkw2xsBEoG4bx3GKYg/hCHpKnLbtdotmyGqz3+8pd0Dqo9jFAUD+JoQcUXHGOOeYI6vLcrlcYk0y4C59Wp2BFhMaRtTojLEo9Luuef78+WQ6dijhDl0ul//8n//nSZL80R/9UZakg8HIcRzGHEIIpMSMEdd1tZFt0zsugwwTrfBgMFitVn/xFz/9+c9//pOf/OTs7KzvJdA4ytjN/UMcx4h0juNCVgjcmJ7Mq9q+6/s+S9L5fL7fF9AXu65rNEGt3DRN1wlrLTx7YAiE0IDWv2qO6pCqqoxSKODg8RhFESOsbVtCKeNHQoFwQgiJ/MAo3dS1MaatatflnuOPRgOh++sXzzhh+/Igu94Yxbnrec5sNjs7OyPWDgZZEkYYXmnbuu1qSun97d0XX3wxzEc/+b2/MxqNtrtDEEeO51JKHYc1Tdd1zWqx1lruN1vHZdPJfDAYaGkgmPvFL37x7sPNRx+9/L0/+MPvf/+zqmpu72+sodrIVrR+EBDCoihyHI8QoqQBSdE0jVL6/fv3ZVljhymuALI1aAIU7vw4Jd76roMQzxgr9ntr7Xg6f9KXhHGUpmkUJUopKSUcaznnSRQL0SmluMMIMXEchqelAmEYNlWLco0xtt3sV6sVYRTXLYoCPwr7vk+S7MOHD7LrIYH45JOPgHdK1RNCyrJsm15KudnshFaO63mOawxRvXBcFni+6zpd3xRF0TTV+fn8+9///tX1RVHWnucYQ+7u7r777jvOXc/zRK8wM6iUjqIQTHFdl57n4Xfh3PphHEUBqI2iKGazGbrc9Xr79ddfn01nH3300cPDg1JGGauUGo0mTVPtNhvGjn6BURREUaSNjKKol/Krr76CM5Pvh67rzmaz4XC432/fv3+PQnO5XMIrHD0VLNAGgwG0UACTNqs1BrGfima0atfXz6fTqSXk7v6mPByVduiuOedN0/W9FL08HA77fYH8bYwaDPOqqoryeNeUUtv1JoqC+XR6dnbmuo6UMkzivu/B/AJ0p4wjzyF0oyIBiiOlBJGE6IpJcOifiqKq6xoWrIHrgWnlnI+mE8heCSHKyCd9GEolWFXj5mLJqeOy4XAItB4uGwh6SqmPPvpICVkUBQaBOaFa66ZvAOhKKdu+E12P/ZhKKdDlcZZCDhslcZ7nYM9dz0N7JqXsTpZR6E9838fiNUCnQgj8SZTFURSlaS5lj/dotd7tdrvdjtKjwiyNE86dIAjwo6IoZA6FbhtUQ13Xy+UahQ5kYUIISplSCukeFxnzT44D560ePQ9GbcbjMXobBNKub3a7TdcdXa983yeGkr+lCjXGIJUgvbbd0QFrs9kUxb7rujgJXdety2qxWDRNM5qMr6+voeoBLoTCtG1bLfRyuXz+/DlOyHg8RpMWJnEUBZ7n3T/cPtw+LBYLjFR//PHHXdcIZe7v7zGFIKV2HG+/OwghpNS+737y0Udd12ptDocDWnGgBoN8FATBeDzG2yenNRvI1Kjpu76ZTqfz+exJQVjX9W63U0qj/6SUhkFMCNFGGnNciwJAhxCrlKL/zn/9v4mSCzcEGw+jKIIpi+/7SRrl2dDzHUo4XmHbttjjBr8c3z8uNgbnstvt4B6bJKnjOMooKaWWqq5rGJfh3QwG+XK5fPHixXg8VlqkaXp/f/+LX/yiqbvhcHh2dvby5cskSTGIC4Vy3/dNUwNWxYl3Xdf3g9lsprVer9fL5RIrQQgh9mRMJU+Tw6dSrIV8xHGcND0aAoFzgeCmrusoSp4/v9bahmHY9T3UDEqpw6GEzJYQhsbx6uoCwgt0DG3bBl4IzY1S6nAo7GlFJi58mqaue0QWwfShOkRZAyBqOp8B/WqahhD2BJ8eDgd9sg8FQA2fVVDsKFIx1gDyDnEN5nWYNIbXPUorNCue54Vh2DQdxCu4t8AVqqrC7CE7WeDi1aOiQo2Vpqnveoyx3W4HMxGMYUZRNB6PIasH4G9OW12V7EHWtG3tuHw0GswnUz9wb29v/8W/+Bec8x/+8IdQQOdpBj11kiRRFHFOjSFYjIb3GwQBhjA8L3jz5s3X33xTFMVsMh8Oh7f3d9bauu0Gg0Evj7ukcP3iOA5DH1SplHJ/KAkheZYB7d9utxiGOA27+Zi4sdYaYgGd4rs8KR3hFr3b7dCdN01zSrp127ae63ddxx2GJfFaS1yBJA4ZY9QS13WbsqrqwqFuFAdnZ3PXd7Q0zKFZms7Opnk2PBS78Xh8eXlJjO26ZrvdotkyxjiM9H1HDOm6brFYfPnll0qpv/sHf3T57BoKnqou9ruCcRK6xx2mYRJDbGGkQurd7XZffPHlL3/5i81m9/Ll8z/4gz/6/Lc+D4LoUO6ttWFytIB5uF9QyrFtkBJmrc0GOTTpWusvvvji7u4OMDMWlSCQYWhACDEcDkM/AAQYx/Egze7v79ebpZTCDfwXL16MRqO2bbu2h/1VHMdRlGBZe5YlSogg8KMowMLT29tbkALe31rMqo3BwB3awrquhTaO40AZ5jBGCMmytCgKa/VoNMoHKa4GKFejSdm0QJWsIbLvhRBaqrOzuSU6CII8P4qjlRIXV9egV6D8KMtSaw00jhAihILnDp6APk0vlU1dFMV0Or++vgTegJpsu91iRKPve6IN6ldKqRdGvu93bd/1rX9yIUrTGDLei4uLPM+pw6WUTdMBn+66brlc1nWdZQkhRBl9nPKxFvcxDiOwClVVOZ6LOWI0YMvl8u3bt6PRCPpioDKu6759+xaCDWDzUvaQbyMUUMqFVCi79dHnj1IGW1HKGHMYj6Lo448/TpJkvVyu16uu640xlHMMHwghOtHjryO1Y84agREsBJAwpHmoatq2hZ+ZEhKgjrVWdn0Yhsoaa+319bXWuu07/GEpJSZtoRqEymc2myFKJ0myWCzev38fxyHksF3X4YkdlVjMhR4L5SDKSpRoURR5gbvdbh/vF2maPikuwDq5vneKtA0G5KG4UkopIdG1omkUQkwmEykltOR4OKPRaD6fAxDRUqIeOhz2QCJwN5VSiC2wM/3BD34gut73fS9wgUdAkCOE8P0QOQJ/EaQeFjYADkzT1POPbdJgMDBGw19Gax3Hoe/7Dw8PMAet69pY5TjOdDIHmrjZbIrDwRjjuYHjOJgogo0O1pj63vG3Hw4HYM94yLOzKVpWKGGk1t9++6brus8/+16apvt9cXd3p7Xe7/effvoZDkkQ+IfDAZK5zXZ1dXX16aefDvIRTE+wzLCqi7aXYHJub2/fvHk3nU6V1NBqK6VGg8H5+TmldDwew7fv8fHxdLQMiip8KtxibClArTydjQFzcM6rqtzv957nm5MxtTrZfWNUGShpkiTWmnfv3oHpon/yj/4xzDAAUcjTiPtgMNBGIr1FURTH4Xg8dV23bfq2bTFkrhQ2kxgwnah4VqvVhw8fKKXf+973pZSO5xhjAKgmyVGkprWez2eQxQBnlqrXylZV9fXXX7979+5wOLx69eqzz76X5znqzaqqPM/ruhZPAUyf53nD4QhJMU1TtPLoy/EVYNWDAR9UFX3fge3ebDbb7Q4h6bPPPptMJlVVbbd7XJg4jh8flu/fv/fDwFoKmQtodQCw1lpkgsfHR/Rt0COXhwJ/Bt4QnLtKKQjbKT2aOOPvQm5FCBmPxwAqIXyB7w40yFIe1bKMsdOCoEEQBHVdggVHFIA3Hef822+/xfsCydJ1nTFEndYlVVWBg4tPgjpsPB4nSYbZ1cPh8ObNmyO5fIqtgPoxJ4+4k2XZk3VF6Af4f1BwgEVFlIQIRimFL4sDRqxVSjDmSNk7Dmva+ke/9dvn53NM4my32y+/+mI8Hv/oRz/K0wwyNSllWdbQEEjZW0ut1Yw5QnRNc1xvkqYpZU7btq9fv8bhDpPYaNt1HXP4eDxG1A6CaL/fY3UMiNSqbq21ruOAQWiaZr3aQkYDuBuVirW2bhvcKBAlSGl4sFBPo2J+GuwfjUZ1XRttHZdLKfEQUHu5Lo+jKAgCTpnjMNF1aZpenJ0vl4sg9KbTseN4SRJxzvM8HQ7Hh3IfBJFSIo0T0H9B6FlDLdEuY1EUeY53c3MTx/Ht7e3/7f/xf/8n/+SfpIOjxajLWBCEvutGUcw514bsioPneV3XaSF936+qKoqD3fbQi/bxYfntt9/+xV/8xfPnz//BP/gH07N5kiTK6MfHx6bvVsuN74cgIpXUfd+XdWWt9bwAEccY8/btW5Tg+rTkEckSSiZGKAKZ7/uBGwyH+Ww+Kcvi/e0NLDPSNF08Lne7ndYW6mCkRkrtIMsoPd4dtIjg1ALfh0S9qqrlagXaAl3NZrMJ4sRzfYPdAGUFUi8IfIgour5J0/T6+jIMQyn1YV8aSpqmw/KALE4Gg8FoMGSc3N3dgVODVZvjOGEcbTYbzw0Gw+z6+tr3/Xfv3t3e3gIwJva08NR1ockDIOEGIe4sIWS329V1OR6PJ5MJCHqMfTBLiqKAJWwr+iiK8nyIuWCtNWMEuzHAx00mE+Z6uOOcc9RtbduWZWmt7rpuPJ1Ya4uigL+MEMJzjrqLrusc7zhDl+f5fDrDZ0DdI4QA/YcOEAWE70VSSsoIWm6tpeN4cRw7rgeUQilVlkVRFLv95sWLF74XMkrTJDPGIIO2ddX3fZKkfd9bStlpA4cfRkkS1XUNQ0RUG+Lkp4hhUozooiI8qXwcqGzBqHLO26qGrSuqH9/30zwDjLTb7SC9n0xmAO9RCnQnKz6MZVh7XPkFaWAURfA+baoW4jmIuqDm2e12vu8Ph8PpfJJlGTR5Wqqma0XX91LEcYzo6pzMNoF1SSkDz4f4FTkF20riOA6CYDjMEZEgSn6SnUTHbRNHFa85SReCwMPnQRH/3XffeY7/+3/372R5DqHqCQ+OOHePVT4hhJC6rrU2cRxDeG0N/eabb4xV6DBd11VKTiYT6N/7vgXoBSgONRllNomzp1p5tVxWVeU6PjgBpdRoNLq8vAxCT2s9yEeMsd/85jdSSqn64XD4/PnzJEmCyBdCAHzthBgMBkVR3dzcrB5hmREhpcZx3PcCH/5wONR1labpaDRijDDGXI9fnF9BMYkCummaD3f3ZXkoyxrYQRiGbdNhSSiep+/7s9nsk08+SZJkvV5/+eWXUKedIg/VpxH1LMsO+3I8Hv/u7/5uXddRHCBnGWO6rq2q/z9Tf9YkW5ZeB2J7PPM5PoV7zHGnnLMyszKzCiRYIBtg07pJSsahG2Q3u400GkhRZhJNv0FtMtNjU3qSnvVC04vIpig0OIEAWKgq1ICqrMzK4c73xuSz+5nHvbcelnsQ9VRAxY1wP2fvb1hrfevLXNeDLAwXH0kQTwyHUykl5W6rhG3b9M//2m+hd4Q61dtvCSBUYzjR85yDg4ODg1EYRl3XZVmhFWGcWJaldYfL2TQNyOO79YhgQz3Pw+AV8nHbdnVdQ54FbxigU6Cuz87OgWkZY374wx/OZjPMTOEm4CCiouq6FlCNlFIImIgSzCAYY+I4ns/nEM31+xEGG0HSJUnStg2WxUZRBH8gujMxZ1JKiE83m82LFy/SvJBSYgGz0RqVk1KqrkFlKsilKTOoTjDx1DRNv9/fbDY72MYNgEKj+wfgLISwHYn0ALeLnTqhrtu2reoWTx56jiAIuq5bLBaArCBLJIQMh8PVarWTwVHKOUeT0bYtdLUoT7UmSilj1F3HhjRQ1JUQQrca4Qyehzg3RVEAlB6PR5xzIBl5nsO3hlIKiw3Ig6Jg58sHOpJSmqYJ1v4AM8foBjBIY4xrO57v1FUbRn5VVV0HaF0OBoNHbzw8PBjDaKdt28VyprUmBiq9RgiWZcXZ2YkQ1mIxWy7XhGhCGAr09Xp9dnYOdVTdtjc3N6vV6vDw2At8RDrM1SKj4PAEQcA5r+odn97v96khbduidGhbhYtQ13VZVzjhjLF9CNv9B4Yad6o+YKIQMkMQzQWDfwTn1JZWp5pd4cs43FsGw75kHOsKRsO+ZDSONz/72c9//OMfGWP+4T/+h288emtyeMCoWK0X6HezLGuaOghCKQUnFIjvarW6fPWaEFLWle/7WBufJIkhyneCg9HAs711vG2UotLqRQHgUsuymrJSqrOE5Ti2ZdnX19dXV1d/9P3/dHp6+vF3Po23KVDSTqs8L9tG3d7O5vO5F4Raa9hDg0QjjIIBVEqtVqvLy0s8ZwRcTG8QY7AxArlNCKa75vb2NgzDPIdFTnFwMAYwOZ1ON5sNKhtjNOZqd+SdbYdh2HVNt9/ws1qtkiR58PDe/fv367q+vLxkjDEqNkk6vZ31ej1MSARB0NY1IQZb6igzoKT7/f6gPxoMBkVdwSEpCAKgUPP5/PHjx8dHR59++nFW5E+fPqWEM8YODw/btr2ezrBx+b333huPBnVd13W9Xi/rukUzTQh59/0PRqPR9fWt1tq2HELI1dVVVZd8778ghMAiSJQdkBb0ghDqpbatpbTX63Vb1VLKs7Mz27Z7vQEIhyRJsqJke/uAk6NDY0yrFWNss1kVRbGJt/DBwvUkf2aDBaB0qGcsyzoYjpDhgJvatj2dTiHgwz+cTCaqI69fvzbGHJ8cQUgaJ0lRFITQIAgODg7CMPQ8tyzLssoPDw+TbbxeLMuyho6ec44SjXNBKWXCsm27auq2bR3bsx1pjLJtG8EQryxNU7Q6oBdwE2Hhyxiry933iuP4zgHnrpAFIVO3jdYaSJJlCVRdUFXeVTaYVoYBB85Yu1+Z3DQNImc/GsRxjLeT53mv14MhmSbGGJPn+XA49L1wvlzkaeYFvmo7JMd2v+mB74MwBnQ458YoMFZqb+WFKQEhdvh6URSScxi4M8Yo3U3927YdBB6Ahv1cWt9xrTupzNXlDbb8ARwBDxjHu0Kkrmvo69M0resGzTyUYfBQgCy7KIrZbDoajfr9/mq16vV6yBQQ0pRl7rnuHSJICQcKgA/QNA0SAagSnHPPdtbrNRHk8PDw3r17mEtt27ZTyrKsututPZRSGkpsaTnSurq6evbkedu2eV6AOgOcAYu4KAr7wwGlpqoq13X9qAc8ApLupmkG/WHdVKrTUkpMs97NpAdBYHGLUuoHrlIKDQ++O4qi4XCA6D0cDjnnRVFeX92ORqNPv/Mx3tft7a0xWu+tertOoY8Cd5TnOaWQerOiKJIkyfPc8zzMRdq2Tf/Hv/eP71I48hA0j0m6JYRgDq7f711cXAghPM+v67YqGy7ocrlM03Q0GmAbIKUUCidsf0MfdnNz88UXXzBG0QEwxofDIRjQu9LbGBNFEZBwtK2e54E4QM0I2wIMd2BxUFWVQOl83+86BcQVnx+kG8CqJElWqwVKFriTe57n+95gMIBmU0oLlUHbtl2nlVLEMGOMlHaaptskbtvWaOL7fuD7ZOfRBz1mZYzpVANYRUrp+y6kjnATsCyLEDqbzQCBjkbjXq+X53nbKG26dm9Ihu+13W6xmduyrLfeesuyXTB96/X69evXeDsA2+86P5T2iFB3Iln4gKOXQg+02WyEsPr9vuP85/FXfMIkz8qylEzeVeVa63v37uExYko5jjfGmOPjYzDWKObuxLB4/m29g0vxTtu29XZrZWu0BXCzxFOq65poA8d5zJz6gXt0dDQc9suyFIIdDIeOYzPGyjJ//fr19fW11mQwGNi2E0Vh02AMh3mey7kIAj9Ns/l8fnNzAxWg4ztHR0dA74UQmtAXL14QQqbTKfgU1GFAj4u8EkIkWYrvG0WRazso9C3LaprOGDObzfI8Pzw+QrHF9qJjYOaADQBh3hVkej/hQgxNkgQ2lYRoSqnn2uiiRqNBL4x6/SgIAt93LW5ZlkjTdDIehZ7r2LKq2+ns5tWrV7/61a96w8Fv/uZvPnr0CK08Y0xrFUUR+hZBGUbioZ5USvlhAMzghz/64x/+8Idd133w7vvf/va3z45PFDGNMlSKnbZWqbZtfMc1xvTC6A666/cHTdOstxtK+CaJb25ubm5ugiCyHW+5XFZVwxir264sS9hIorsoqhIQY1VVUth1UwK0Nnpnk+v7PqMUxxL3V6mWGeK4lm3bKAUIMVVVZ1mGIDsYDKBr4ZxCcl4UhWU5tm3P53NKd0N2g8EAuMKbbz0CZtY0ze3t7Xa7zYoGueH6+hpb/3zHk1Jojc+v8Lc455blHB4eUkGhbaKUZnGCa5XlCXzIiqo8Pz8X3Irj2BgahmFWFm3bdl1DCOHUeJ7X64UgL5qmkdJ2XbfTZL1ez2aLpmnMrh0ynudpo5CGfd/vugYhG7iplLKtaq11q9vlcgkfuLcevYV7l6YpVsHsgCK6qydev359fnoyGAwc37NtGzt5ldk5TsO4HwAYkig4BLy+ruuaqkaBi4+Hx0IpTZLk5uYGkAmlO4mP1hrr8JTWo9HIcVzGGLQyjLGua6Mo2m63RRKj4Oi6rq5byCqMMVmWW5bVaXJ0dESZQFkzm80MUcNhH96tAHjg6wG9JqX0zvQLv8p3A0Q8tAF3GllkcRyYJEvR8JdlqXW3kzjvl5dACdd13fvvv29Z1meffXanVkQyBjVcFEWyTRF+gSMinliWVbcN3RtxC2nfxXbQW0ZpfP04jtumQZXMOeeExnFcd7Vt26PR6K49btt2MBi4ro23ppRqqorsV735vgfiTAjhec5d2Q01FShyZGE8CsGt6XT6ox/9aLlc2rbd6/X6/SHqYOAaVVUhh95Jfru9D19d1/tIj7Qo76rh4+Pjo6Ojuq5Xyzmuueu6qjPGGGAQR0dHqGCur69vbm6gsNRaZ3EyGo2Oz48PDw9xtNI0Lcsy6vWiKMrK4k64vF6vV6uVxcVwODQKokm22Wzg3HnHpFNKpS1hxEUI+eDbHxVF8Xu/93uD/rCu66qq6rr1fddxPCEYOg3AHDgGnPCqqhgnxuwKOIglMFj2/vvvwUAR7OF6vZ7N5svlEgNGMEkeDPrdfqtb23Z37dPOSy/eQnQEChLH2PM8jGfRf/yP/o9N09wZHsK+CyN7mHfYUc5KRVFo2856vW0bRQiRFr8zzCD7DUKY9QXpa9t2VRXL5XI2m0GpgxIYY8YIl9Door3AWBDOIrw6OdtJAheLhec5juP0+32UIDBSQ6mEIh1NAyYjgiB49OgRkLDXr18r1cKgHJUlyjtCCLa4owvpWj2dTpngd82Q5wVCiKooYTeKb+p5ThRFjmsRQlzXdiwbehrKSNM0jmOhF2+aBtKxxWLx9NmzoiiPjo7Ozs5gZ4dlBbjJyDrNzhV3xDm/ub0FsHdzc3N9fYtrEwTB2dkZUDfGWJ6XqLjB6WBRAc4NIeTo6KjX61VtUxRFkWYomPB82rZFrw8yxfMCsjdR45yPx2NOCa6lZVlSytvbW3gyAT8gGgM7+R3ideegu3d3bIEcII7Aj6Ntd3d7s9l4XoDD4Lqu73oYFKCUGmOgIt9sVg8f3r//4B4CRJpkz58/j+PUcSzfDy1LEMLyPOVcNk1VVQ3ogyiKLMtp25pz3nQ7/xXbcjHnAfYHIJ/Zj3NCV8cEh8gjz3OjdJqmsMM5Pj7+z74Szc5OE2ELmLzeLz0k+0lSnH8hhO8F+AFKaZLGkJuEYXh0OO73+55j+77PKRmNBlrrXj9sG1VWuRcEbV0ejoaubUf9fhgGyHA/+MEPfvnLXx4eHv7dv/t3J5MJCj6806qqPMcFF2CMCXtRWZZCMs/zCBB4Y37ykz/56Y9+3DTNeDR66533Hr31Tt21VJsg8MMwJFTfDWYbDfrAbNYxGlDcpp///Oeff/mV1np0MImiyHV93/ezoszzHNYJ8DGCLlUrkiSJlHavF4IPwsFI0zTP87bZXXYghY7jWFyAo4TflVIqDANIkZB+Li7OTk6PPM9B/yOYjUqCMdbr90GR3KH9bVcXRTE8OOj1eoPBAHoXQgjmATGuj0EEW0hCyOHhIWMC745zYYzpjIJrdhiGnNCyLJVuhRDT6bRt68FglOd5XbWEkLyqkQNse+d1NxoNwjCkzKBKllIyKpRSq9Um3/t6r9dbBC6EnTAMQYUj+g8GA+h4er0eQhxIVUw1mk4tl8vXr18rpYQQw+FQazIcDpmQ5d6Gmxqd57njew8fPoTTYdXUIB/xIsAh4BVUVSWEQPyUUkq+M5C8GwMKXA/BFgJBqGBxMbMs64+G6FVGozExNE3TVu2g6zSN0d/3g0Dvd+ai+UEs8oIwy7I4TpVSQKeUJpzz0bAv93tR67oG5AMFAiEEcpeiKPCpRqNRGmdAxZD2MCSIfxIEwcnZKXAa27arul4ul4zupoJ838fB41xWe4dCwAFAuBFUsyzxfb/fHxpjiiwHQFWWZVnWOHvGGNtxhBBCsrZtuRBQJgDtI4RIIXB08fDTNN2s1iBD8JDvEih6Esfa2bfinCDMgv9VSjEG3CsAiWGM0bpD0YyjcnR0FPUC4Fi2bWtFttstVhNiKyJsh+G1hNKtKEr89zRNUR+gwUPlEUVR01Sgj16+fIn9JY7jvPvuu5TS7Tq+8+eDKAg2OuDWZ7NZHMfGmOFwCBonSbdQFGw2GxwzFAyW7WI2C/MBZVOjyDadQqBzXTcMI2TGPM/jbSql1KaDSKZtW2ySCKIIrLrr+qDOtSacUyGsfj/CK4OpHir7eB2HYQgZT6caOKJ1XffJJx+fnZ1ZlvXuu++u1+vpdFrXZdfpPC+gwzZGr1ar6+trVCxoywHzd10HRCPfL4OPogC5AwkaO0W6rqP/+3/yf0K1jpCHCIUjaNt2HMdNUxHCyjLf8YZOiMYUKTMv0rZtJ5MJqgHcc5xRcJGbzaaqCoxKARVrW+BVijGm94YuINrUfuMQ2BxKCCSxWZbBmfO9997r9XoQd9OdubApy/LOIQLNCorid999l+1WqxbV3jsYMuqzszOlFKxvgeFnaUEplbZFqek6DX1PEASCcQhCT09Pw8iHTCHLEsdxwjCQXG62a8uyzs5OUJCVZZnnOaWc7k1Tq7pdr9dffvml5/mHh4eQCmFQGe8DyDljDDaMSZr2+33ULkqZ7XZ7uff36vV6nFMhRJrmqCCh4mQ7zwsPcissIOuMhowXolSUrdBr458gBEu5k+vmed40FTUEVR3eoOd5WPO8XC6bpnFtx/O84XC3lQ83/I5uu7i4QN9g9putQao2TQVcNwgC6ISAUCbbBLuqtNZC7PY5ZnlCiK7rEtloPD5s23Y2W2RZgswN1SrqOdu2hbDQqHVdJy2LUkqoBvXp2N5gMOi6bj6fr1Yr8NFhGAphwemYMYbQj0klz9mFAKQ3+Ob5vu/6XtM0X3311XQ6BWWJeIfeVGuNMIqAkiRJVda4jePJwdHREeb/CdFZmjqOdTieNG19MOiPRqOqLmC9wxipu5YZbXNeFMUbb7xRVdXJyQlWIMzn8z/8wz98991333zzTVxMdPyu7aB3BJXgBX6SJLuvjziVxkdHR5vVerNa/+Ef/uH3v/+DT777a3//7/99DLI0bYUaCwU3JVxrs90kNzc32zSbz5eOYx0ejB3fUcpMp9Mvv/omjmMp7VarKOyFYUgIo5RWTT2bzcqytKQDKfpOqiwY2e/3rKqqrHJG6J8dOonj2Hd8QCZRL2iahnOGhIR7EUWBbdtc0Louy7J0Xde1vbpuwWgbQrDAoCgKWDpneVIURdU0T58+PT09f/fdt0HHbNZx27aLxWo6neLN+o5r2zbncjqdlmVljAmDnuvZeVWUZQ6UxeIiiiIuaF3X2FzUNB0hJM/K9XqtCC2KwrIEpKXwJkVLfXn1CukB+7Aty4EsEiBxVVVlWWdZAm8kxhjeJiowyFOAOmM2GaMnWZblSRqGYRzHED5zzo2hg8HAdj04jVmWpdoG5KPWGst2zu9dQOMPGZMxBnAa2tS7FQ7GGMey2Z8xTNJaF+luNQ2qvbZtszxBQwjGQxmTZUVRFF2ni7xUSjmej1ImyzKije6afr9n2w6lBOcWhVRWlEmSLJdr27Zt12GMCWl7nkeJBqdJCLnrUXHjoC7HWUVB9ujRo8VsWRRFVVWbzWY8Hu8UEVG0a27Jbtq9KArKmDGmqUsoZREGMWkuhDg4OADoAGgEKyMRYcbjEfRpnuOiHprNZjgJqKiElJxzpVtE9U4p13EIpcDC071+Djca+uDhcGiMWSwWANjQG0OdEm9WiM9osfTeMF3vdsmUgEIBcIBpCQKPMTaZTJCyAY7gsLWNgtMeEKzpdArraYRuXE/P85GggSleXFycnZ3iVlJKu66p6xqBmuw33j5//vz169er1SoKeuPxGOwZ1C+QBX/99ddS7kApJGsQoI5rCSlty/riiy/+8+YorbXZrQYWQtR1jRoApZvruniDRVEOh8OTk5N+v19XLaVUSJbn+YsXL4CYdF1HOe+6zvfDoii0JoAnQKZ7ngfJkONYIP1Ho5GgAjaKURQRqnHd3nnnnUePHjb7FT5N00yn0yDwPM9TykDOddfa4f9E1uu6Dk6NCHp47FA/31XYZi+htm2b/k//5//rXWcP6gp+0PjmQCP7vaHSLSEELimEMBSGm80GEQdr5rbbLa53vd88Y8jOLIoxluc5/pAUO5QYBR9wYymlMjvloGVZjJFub0NPCWn2W+jTNH7nnXc8z0NB2nWdZTmAFiAmw11N0xRTHmdnZ8PhsKoKiN3quq6qRkp5cnLS7ZcfY2AH8LvWWqlWa3J8fIwI8ujRA4g84PkhBA+DADV7UWS+H1ZVEQSBEKzf78dxHASBNp3gFn5/27aO46G+TpLMsm3XddXeeBNHCq0wVEeDwaCu27quKWNFUcCPLs/LqqouLy/n87llCRDwd1VmmVdi7xlbVCXUAGCsEYxs2+66BgmS0t1YHyZf8iwDB6e1dl233+8fTibGKMLoHcaDY9B13XK5hJva++99IKWM43gymbiuSwh58eIF3gKUs93ehiOKIlgacs5dz14ul9tNYts2cMeu2/nQINqia9xs1lpr25ZlWSZJgnHC4+NTbOHAgUZxA1wWd+xOS2SMMZRwirkks1qt0B7RvZQYG22bpsGTsZxdCAOU3XUdpzsAYDgcgoDGH0XRjDoPFDkKR4QGvGt8MEx9qk6PJwdaw/2y831/MZ8nyTaNk4Px6MHFeRiGnu9MJhOtu8VicXZ25vuuVh1+D9g6x3EgAEdTxCm7vr7+0Y9+RCn97ne/OxoOUVNqYw4PDwmj8/m8UQ2QFaVUP4pc1w0Cj1Omtb6+vr26vHn48KEQolMNDmGSpdvttmq6um5cx0+SbDZbbOPY84IkSeaza9hFCik9L5hOp5fXN0VR9PtDx3OxehI8uOu6nMk4TrtO1XXVtm2yjSmlrgcT5p0SP03juq61UQ8ePLAsy5I2lF7aKKJ001R4WV2n+/3+YNBrmqbu6jDyLcvK4iSNEwYvXCGKqhRC7KZACL+TugvbStO0KCopueOKe/fOR6Ox1ros4P1mgR2glOq2u7m54RwCLKmUslwbr5UQotvOcSzbkQcHB5Yl2rat2oZR8eLFqzRNJ5Mjy7I8z7rDy1erTRAEvSC8ub1ybE8IYRgtyxLMqcAKXmC2TWfbsut0nqcI8UgAjuO1bXt+fj6fz5fL9R1M6Pv+YDAQlAC5QfEBwLtpGm7ZiAYomDjnYT+E8rLX63Ep4jhGKYP6ALUFGiTbcpVSQL+Ubo0x1BA05EVRoCNaTGdd1z18+HA0GqmusW1p2+5qs0ZvjBttDG1UZ1kWJWzPkOaMMU5opxrbcqXFUZa5vk8pXSwWaZpG/R5gUcdxCOWO40ghAGXhqSKbAE1HPoP3BDLZYrFQbccYQ4WKMIhsAggNekQwDB2GnyiFlh9BGNEScONms1HdDg6AM5znO7hK8D+ilPq+T/Ru3xECV1mWRVnmee4HLraGMMaoIU3XQkW0WCyklFAtg5cg+4GMxWw+n8911ymlxuPxhx9++OrVq3K/mASpGtQEeDqc8Kqq3njjjXv37uF/Go1GhJgnT55orYfDIVRQeKR4xSjukcoZY22rkKyxjDKOY8Y4Zi/G4/Fg0EehprVGFgYlBftx/Aa060mcXV9fb9bruzEFy7aR6G3bRr1Y5DmINcuy+kE/6EVB5PeGg0E0+PLLL6+vr29vb5H7BONqv6uGUoZuRBNT11XZ1JzzXq/Xi/pCCMDVKEzxbzHEagzoZol/SwiBJIkYxjkvqxz/SqmWUoNZhDfeeMN3fHBxSqm8SLfbrRAc2PPR0ZHnOVLK7XaLNAd++W69GA4PEgdEn3czFkIIQpjjOGgYMKSPC7hPVcK2bfpP/nf/B8aYMQQVYl3XZVnfCVmMpuDF+H7ZQtdpFJL9fr/YrSQie90GAayFTwm8Wil17/750dERYwzUJKPiDhrB10aN3CqNmaa6rjmnSql+v29ZVpamOEBt27ZtXZZlHMeAJVCsKKWgu9818ZQCp0URut1uPc9B6c0Yy7OaEBKEHmhs4JNy59XkQV5mWRYhZjAYtm0zmUzyIkXzh640jZMk2c7ny9PT45OTM87pfD4vyxKTbnmRpmmapQWgPtd1XdcHtGvbdtOqX/3qV5999lmv1xsOh5PJhPMdDAD81nVdy3LqujaEVFUF/iUIoouLC0wzwXICYXc36d1quhfvcylQB2CI1xgzGAwopXVd4mRgIh2kieCUc4kdjpDclmV5NDnknG42cVHl0NAgnFHK7zQQt7e3baP+bFkznU7vdKyYQ7zTWiJGuK5bN6VSSnUG8k/LsrpuN9LMGENmgiav63Y6feR1WAn7vk+IxvqBly9fit1uL9fe76wAp17WxXq97oURpTSOU5yT1WqFr4yCHuA5WAkv8GEdgnhtWVZVlLZt71pPsusl7sS56F32sLbGt4bnGWIcnklZlq7jNW292awsywpDPwzDRw/vE0K2m/U333zz8tnTLMt+4y/+hYuLC993u64LQ18IwRlF+YVG2bZtiwuIliilvTC6vb395S9/+ezZszRJPv3003feeScIAj8IOOet6rquI5y4ruv7vuc42+22aRqtO+iOOZdt3WhFNtvVH/zBH/zyl78cjUbvvv+eJZ28qsqi5lxu4zRJsqKutpu46zpqdmoGSvnFxQVhyFhstpgjJtxRCUopo2melxhfGo1GURASqpumybJkMplYliiKwrKl4zicU3zIrtPPnz9HU3E0noAA6roO+su2baXk0rHrunZdm1IaBR6nbLtNuq4TlnQcZ7e/gUmkjaZpqrbTWg8GA993CdFCsjDoAULo9QZJkrx+/RpyhbooLcsajUZfffVV26ogCKRjo7z2fV81yH91WeWWZZ2eHvtR2LXwFpaW5eR5qnXnuFZdtefn51dXN71eTzUtkH4p5WK9Wi6XURQYY0YHg8FgwOhup2pd19PpNMuy09NTcFW+71PK0VJ7ngc7U5BEkJIcDPpIfnd0HhqJbZqB2uOcH08OCSG9YQ9UFGNsm8RgJIBJW5YFoRhyANbMI6i6ns0Y65oWtTsgasuyIj/Av1JKlQWyiEcptR0HeQifv21bwgW4vzAMHdtdLFa67aC1gP7Pca2TszP0fkqpbRJD7mKMAf3Uta3neYjJaLHu5KqIeIC6zX4RNW4r2dsygVo9Pz+fTqfb7dYPgx3NonXTtkKIu00SMFMt92vvAekN+iPoE6AB3W63bVcDvLkryo0iuyFuQqDcqOq6LMtONU3TeI6NsLnrsVV3cHAAl9ezszMM4AOn2Ykr4mS9XM5mMyiAkbyxYmQnF25bXIR+v58kCcyG7uRrSHOQx+R5VlXVgwcPpJRCMHSzu5KRkLvnoJRRSsHgUOzsSGy88fl8nueZ53kffvhhWZbGKKR1xhihGn9R75d5oMF4/M03EAV2XVfVNUA19I1CiOFggDwohKjz2gsDTVTdtXXd9no917Jvbm5evHhRFIXvesgUZVk2TYu8U1Sl57mDg50wTnBZlmVRVHclab1fcaG1xmKGrtMolCmlGJ+CrA0CA8aY77uWZWm907c1ZQO2p9/v9/rhcrncbNbwn5JSDof98/PzMAxBtkCPjjILbD7SHPYH4BniGtZ1vVisqqqKomA4HMIrBLkDnxmfh/72f/vf13Wdpmmv17MsLIiVxhhiWFmWUtooLTnnGL5Fr4A/jPcKh3S6n8/c6UiMYYwNBj1IoxDRgiBo23azXdV1TQm/A8bQy+4KPkq6rmmbBmRZ13XL5Rw1I44v7FvY3h6NkJ302Pd9FFgYbbgT+sAkybIszmme54I7xpi6KcHN9/t917Uho7NtC+mzbVvGSV21MF3cbFaA6MEyXF9fzxfTm+vp5dWrv/Jf/leDwSCO48Vi4ViWMYZLCSEkjojWmtKdsAMVGGrtZ8+eYeGS6/rGmNHwwHEciGTxbDEe3LQt5xyq/NFoXJal77tSyhfPn+NMF0XhuQESIdRaWmtNTBiGlBr1Z1wSuq6zJIfJDeD37WbNmcBtgeKSUhoFge05ruPlRQbhne04/X5fKY3CFBMiV1c3GJCB5BOUHIAilOz7/mln+mqMEYL1er14k+DMZFnWdTqKoq5Td6JvHBspJdgNIQQ+que5y+US/3/o88Bm4ovj/Oj9dKoQomtaCEKhytJaj8djGCo2TSNtq2maeJus1+sg9O+kiruBDL7zm83znAl+F4DqvWWdtdueC+fbYRiGWZbd8Qts7y0C5VOaxlEUhEFQFAUsAx4+uC+l1G3z4sWLL7/64vj4+N75mZAM9T2sk6FuBpUchgHn3LXs8Xg87A9czyOMzW9vH3/zzfe///00Td9+++1Pv/Od0WjUH/XuVJWMMU4ZKhJDSdd1y/W6yDKije96UA2/fHX5u7/7u9P5bDgcjQ+P+/0hZaKqmvl83nSqKCql2qrI0dJ02iilwrA3Go20oUA3m6Z59uzZerPECl5jjFG7Sed79+7BkVII4bq2ECJNY8aYtASGD8bjcVFk6BotW0AaOJsuOOdBEAVBBJ/oumpQzRiioyg4PhxHUdA03V5W2ILvKAvUCjtXMDQbVVWVTbleL++iBHSlWmuAqVprTJZ5ngffo6bWKM03m40ihnMehn4QeDuJJ6Vd1+1Eypa93W43qyUX1LbcKIrWi3UQBHGc4mcIIVp3WZZ1prMsCz4+/cEoiiLPcfGnMX3Wdd1qtVqtVm2roJLp9/vYwim4dByHUNO2rS1klmWcU4huEQCLoljHW5Qjnueppi2KQlMCQ07szBZCjMYHEGyBggyCAPbFuB0YgwUDhaLfEBVFkeQC6aRpGtW0TdNg0XuRV0mSDA9GqDJd116v11VdbNbxer0O+z2tdV23qtOc26PRCF6djLG2rYGYYoeEZQnMJwKuyPNSSgm4AvxJ13WEamiSUJPxvWre9/0oiog2YJ8XiwUuprSt4XAIhTjU31mWob2UUnK2E5bB6WonQvV9QAxoJhFbUKp6voPzr7Vu6h0hw3YixZAyA4wKz1ZrbVQHcefZvYvRaIQu0RijtHYc5+DgII5jx3MhWqCG6E5vVivoWxaLxWw2Az6aZNmdPHw4HMINlVJKKQcZB7V727aScS4o0KayLLuuxRuHdhBNC6bwIA5uW4XistoZ97ecC9u2l8vlYrFomhoykq7rKDXj8fjw8BCoCtAvyMzBIG+3W6OI4zjSFmCfAGqiZHQc57333hNCiL0ja1VVlu1qSkBwX716HQQBIfT6+vr68grvot07otm2jUNCGAMtBkCRkJ3kDjLrtt3VaqrtbNt2LRvNPPAaYwzkVvB1Qk5B9FssZ5RSrQi0lW+//bbtSCml1qppmvl8nqbpfD7HJ4HvWhRFVVXcTbwxxoCSguNCp4R/iHzUdR3WAi2XS9gU35E8qFXoP/j7v4PBhMFgwLmo67ptlW3bSKJ13ZZ7W14IwpCqQbig/E+SBJcBqpS2be9uNYwH67pGDquqypBdQY3hvq7V0uJR2OeCdq2u6gI1R5okAEWEEPfvX/D9AAaKPJy/q6srQgiE/ID77o4I6gBk4rIs4TTRtnXbtoeHx3skACPQjZTSdR3OOe6nH7jIf7e3t6PRSHIGI0fo8vDKcaAvLy/hptPvDQkhEgBhXeN0AgL1PG+93oJ+xplAuYP64/Hjx1lW9Ho93wuQJlFcWpbVtooQ0u01p2VZtq1ijAnBBoOBY9u4gZxz9P04ZHgCTddyzu8gVtR8hqjA809PT7XWruvUVTWdTi8vL7XuLi7uw1TMcZyTwyPEFyo4Pqc2Bg1W13Vam7sKCdcsSZL5fO77IR7adrslhqHoQbUUx3GaZxhZ5Zwm2xSRYr1eF0UlpUzTrKoqlLZQzj548IAxBmEEYKemqTENUBSFJgbrWaDSgKz+bnQO4EGWpEEQwNTDdV0gNGy/LRWLsYmhbdtu403TNNBSnJycpGlaYCar6+q67rTCUQeriIA+Go3QgEIiliTJdDrdESuui1dg9jNTUvKyzIkxnudhMoAR2utH4+HAtu0sT+q61l37yaffxupWuKzh/CCFO47teZ7pFGb6Br0+7iOav2dPn/6vv/d7q9Xqn/7Tf3p0eohnIhi3LKtpmiLL4zQpy1ITQzmnxqh2N+BmObbvhavN+rPPfvmrr75ZLFa27UJ/I23HcZzL65vtesU5p8b4YTiZHO3yd91CywxOVmsNkxoM7j24d/8OKsBXQLiA9a7tWEEQSMnzPD85OTk7O2k74NkbrfWLF6+EEEVeZVl2dHQGAne5XNq2C0GCZcvNasYYOzg4QLuFedvZbAZT6OPjU/jLQJxh23Za5KjO8ZO2bR8cHBijHMcihLienSRJlRdo1q+vb7ebRCmjtX7jjTe4BVTV2LY9nU6l5Dc3N7ieo9H44v69IAiW81lZ5VqRqqpG/RFjbDZb0J3FdmuMatu2UQ0i73A4dH0vCAJORZ6nR0dHhJDVakX3PnxN083n87/wF/5CURQ/+tGPhRCcCS4YpkPaqqaUdl0DNuTRo0foiJgUqBuapkk22y+++CIriwcPHmCCREr5y1/+Uli7Rb0oLBhjXavvGsJ+v1/X9c3NTa/Xw4SpNl0cx1VRAjNO05RqY1lWXTaO45RlZegOjjo6OiLE2LaEGaQx5ldffWVZ1uHhsZS20cJoCsUY2MOmqRhjYS9K05TSHYoDqkgppRVRSkGhiwCe5YlSCs4LELrA9QZv0xKyaRpIYJMkEUIooyEmQTqEeSyECnVdx9v0LsYeHBygZbV3A8U7t1tIFYH0UGbuYj6jAp8W0F1VVdDkgOnr9/vDYf/NBw9Qpq9Wq6+fPMa822g0sh3HsizoWAghZV0JxvM8n93OjFIAODabDb4C57xu2+VyCQ0uElyeAw2NTk5OUCijqWaGMMa06TAxoLXu9SIUAYwxQjTiG927TmJcAw+Q7PYKENSpcRwr1WFone/cN+rBYDAYDEAlQXefJMl2uwU959reeDxuVVdVBQpZEJrYBAgv7l4UwR/Y8zzPD8N+DyDO7dX11dUV52K9Xq+XK9d1MTED8TshpKjKfL+CU2tNGOb9WxQPCPt4ZYQQx7I555xQ4Dj4Jyg2ILlBTIZWQWutTdfr9XrRAMfJ9/3Ts2POuee5KBvg/sU5v7m5QX+Cnse2d8UTY2I47AdBBGoShwTCp7tBisFgIMTOtzzP8zuNGugv+l/9l38d4JsQAvYcSuO9sKZpHM8FGIMeqOs6Rgzs41Hu3KG+URRJKYHL3WWg0Wi0XC6hMsF/0GRwTok2WZZVVaN1J4QlBGtbhfJ2NBqFoc85hyHFYDC4k0fAGbltW7hcNk3DCM3zXAgL5TxmeYBa78tPaVlWEASUGkx+AocbDoda6zjeguB7+623Tk6OiqLouuYOqIQvSJJuUe2i4Lh373y3r8Nx8G+fPHnWNM3BwcFkMknzcj6fw20FRfR6vcYpQTcPEQB6Ptd1t9tkOp0CvbOkDfiQMYbdi7tB8XZneEMpFRyLPgohhOCWUqrG3syq8jzP8XZxxPd9aVkAjS3LqssKMa7XiyghdV0eDIYwkHx9+XI2XVRVdf/+/bffflsK0bTt4eEhISSvSmiD7uQXnhsg0lVV5fu+1uby8vL6+vpP//QX9+7de/jgDcbYbDbjnDMmKKUodJRSeZ7iWUlp47bA1A3wOLI1BBZ3dQzQJs5E0zSU7XhtfAt0AmgJoGsBak0pxbqVftSDCzkhxCgNQqRtW2W04zhN11qWxSjnnNdNBTwZvxxtGS4P51wrAylGEAS4Y/V+pSulFB1VGPh3mh7KGaInQjyllFMC5QFuI7Q+9+5d3L93rpr23v1zTpnp2jzPv/zqC9u2P/roo4cPH2IsC1wnFQyNQV3XdV1GQYD99LZtO65LGN+ull9++eXp6eloNFJK6U61bcspS5Lk9YuXpxfnmhjKWdgbLGdzwTgm/JngZVkppVzHz6tyPl/++Cc/K4rq7OysqKs4jgM/hN7Wdf22bbOsWG82ZVkyJlDc4wn4vm9baHiEMWY4HJ6fnyMEd00DkABwlJRytVoKIaq2KcucEGJZYnQwQIJMkmTvwq+3261WbLPZWJZNCHF9H3kizRJODLgtIQQUqOt4G0URnslqvsBFu76+htPB4cmx0eRO3byNN23bEqLD0Hdd13bk2dlZleP1NTc3N0qp05NzzPrdzOZN06A86rpO6871vU8++eTy8jKJM60146QX7mbQlFIU1qmtjuMYVaBt267rjiZj5LA7O5vVcqNNF3g+VBlaa1AEZZkLIbput3BWSgmly3K5ZIy41q7HAKWONcB1XQe9fpZls9nMcZzxcKC1TvKM77U+jDG4MCKltW3bdTsrhK7rtnF8enoK9TSOKIaFUf3gIoi9zLSqKqoJIYRRAWkBt/hmszFES8kXi8U/+Sf/+Pj4+Ac/+NF8Po/jtK6a9Tauyp33B8QYUJghx+BDgj0khiGAg7xerVbAtncWGIIC4EeFB26o3+83dXeHnqKkuCv9kSlwAouiiLepMabf72NKiXPOOEGeQmmOGkXu5y6ztGiahnGSZZngFoo/EExlWaZZjP4KHntvvvkmuHXPsnq9Hud8u91++eWXcRyv422/3z85OQnD8PDwEG0/ZcxovVqtmKGgutbr9Xy5dBwHBrN/llGFZhqlGIyE8KaQgpumiaIIE4JKt8ibm81ms1k7jpMkW8RJaEXAxvC9Byy+glI7o3akb9d1t9tt09QAkO405js5HSHHx8cnJydIBEppzhmEhhjJtFzH7BcGPv7q6+vra9V2KDt6vd5gNOz1eozx29vbxWyXHM1evS0sidCKiN11XdN1yBGr1QpWzHq/TgMPQWs9m+02DUgpGdltHO/1eig2wOqAvL68vHQcR3CrLEskaDjkaa2Pj48Hgx5jzHYsCM2h3maMwSym67o0SyajA9d1cVA9zx8M+sYQ3/eHw2Gx35qDE2iM4ZyVZQkEHV8fzXyapsPB4Pj4mP6D//F3qqpar9eO4wE8cFxfKdV1GnQYlAHQuGFgXmsNHA+CTc45/D/v+nUw67ZtTyYTz3eKooBtVdu22CSqlGrrpixLEDdxHKMosSwr6g9833ddG308hFxYyGXbdt02aMUQT7uu052ilDbNzuAOk//IzViizjn3PO+OydZaO47tOC7nDCe167r5Ynr1+tJ13cnkADMX2M9FCHGkAwaHcbK/AKJpqqZpcJ2SJHn27MXnn3+OMzc+PAYnC2wWnwTEFpoPULd4Jr1ejxCGWur29vb66qbf76OHGI0noLdQ0Ld7q7CqzBFZsizrWi2l1ErZ+0H3/rB3xzFneS6l5ILiafu+b4wWQnBGbNsWlDFOxuMx8N71en17e3tzc/O3/sbfrOt2G8dYZqKUCnsRJOdaa0s6SPyQSuR5LoQ0xrx+ffXs2bM8KwHhlGWJ9ahFVQLL2W63vu9r3TEm4FmFQgqJB9L1u5Hbam/Gwzm3Leett97yA+/HP/4xTmCzN43Dy4VEne+3DuCJ2XKHfUKcix63bduyrmzb9gKfUprEKaWUC4bb0nUdFs+heAW4wplA3YAhR8uyBoPBbDYDcw0swXMdDDporZuuhSIHnXTTNE1Vuq5LmdmL1eww9D3PCwPfcSxutOM4Dy7OpZRJvPnmm29++tOfhr3or/21v3b//n1Iylrd7dgixoRgYJyNMZzu/LSYZRFCiFJZmn722Wf/8v/zL3ph9J2PP/F9/+T42LLtvCo1MWXV2PtNoIDHsyxXSlVNV9dtXlRVVV1f33ZdJ3fbPEzbdFgohPniumls2/b9UCmFQVQ8ZNexRqNBv9/XRh0fH+KJPX782HTq6OiEEOL7wV5IsNBal81ujX2WJYSQIPCOjo6CIGiqCo9aK1KW5XQ6Rwaq2h16BDMI25acy65riqI4ODjojEbiLMvSFhKZgFCdxNl2u92mWVPvRtLQ2NiOJaUkRBdFhmN2dnLieR4xzJAdDlGW5Xq1bZTGFYaMYbFY9AeDk5MTODpCfSUFc10b17YuS5Q4i8WirlrP82AU0qgOVgVlWSptMFJj25bgnFIzHA6xRsK2bcZIXdcYp4OOBONQbdsOh0NbSARP5DZI1FerVd0pHGDP895+45Ft23iDwJJhs4cHiLlsrQm+lO/7IA6wWQSRHOUdEKNd06jUXaoLXM/z/KIoKJdKqTRNsyyRUoZR0DTVX/krf6Xf7//rf/27dV1zJoyh0rbybCfYgrSjKDN7b6mF100MY4xB/ASUC5cFFQZQGWiPIMTEGcZ/4Uw2TYOZdLOfIiyKAkEVsWg+n9d1fTCawEEamicpZbmXt3Z765y79S2cc7i7BaFXlmWRV8BTUTwZY6JeAC94zrmUkjFWlrmUkhJDtYFPECSwmyT+5ptvnj9/XlUVRk2llIPBACBTmRVoFMMw9IIAFRK0DXc4AsLvbvWZJkVRYNsBEGhQjcyQtm3XmyXmyRhjg0Hf87zhsA9FCoaitNa93sB1Xbnfz9s0jRASVDgeuL/fAs45f/HiObAVFAl3m4WRzTnnnufjYbZtg49qGAXa5LquLeRoNPrJn/x4sViA8lqv13XbTG+mKEcQUT3PGw6HZV2htOWcS9uOguDV5SUqMzDIKBzJfsEi4j/IQZwTpVRVZDjY7s4PlrdtB6IWD7PrurLYLUq3LEtTAgIRUwuMsfHkgBByc3Mzm82wijDwQ+j/bNu2pdxTNwWUFcPhEGPXiKu2bbeNSrPY90LGSZomVVXZthyPx8CVga0Gvt/r9ej/8N/9w67r0jQF7y6E4GI3XaKUwrIqfFXcGaM6ozs0DYyxO5kk2NnFYtHr9WCR1TRNr9c7PT+rqkqpNssyLBztmjYIfTAI9+/fxxOsqurFixfz+fzk9AziDEg3lFJNUxtjICuGKA+hBJUpIxS2F3meSwmROAVKgflEXEi2czo2XddKi1vSMURprQ8PD4f9AWME+q3Ly8vDw8PA85DwfC9MkmwX9zkFiSmlLMrdUoJHjx65rqsJSdP0+vr68ePH8/nSspwoig4ODsAGIoBq3SmlsjiBOLGud6CulDYkVkVRxGl2fX2NImMwOoDVVpqmxLBerweLBEYNLPUZY2VeRVF0cnLCGMN1TZJtkiTCksfHx71BhMqm67qjyWGv1zNaeZ5HtQLtxTkXjPd6IZITY+z58+dQz2BgW9q253llXYHNoZQKYUFjGwQBJTxN06ZpF4tFGPYIIa9fXc1mszwvsyyTlo0drqB6LVvuwrcf8M1TLAABAABJREFU4vgSQgzRcRw7joWCFRKToij03geVENK26k5rjMYXMKqUHICrUgrmlri62/UGmanX640GQ0wCi71XFvypQcQgeyHy8r2X+h1ejWHVLM3vZL9QuUIPC6U56kWjtTEGNl394UAphX6x65p+vz8aDMMwzPKkaRrKmNbaknw0GjFKtO5szs7Pz8+Oj8Ig4JSgTv3iy189efLEsqzf/Mu/+dFHH0WDvjEGe3Zt1xFCYFtzt982gY5qNBo50qrrui6rL375+R/8+//g+/6Diwf3Hz386Nvf3iTxs+cvmeBa67Df227juq7vBpm7rsuLSmCgKUkw5bpYLJQylFtS2oJbaZpSvtv0hZaMUioFs2378GAkLZ4kiW2L97/1rpQ8TXdA5my6yLIiDEO0x+jTkJb4XrFXFEWy3Uwmk7vSDfT9zc1NkiRRFMHHqD/qcybnt8uiKFartTHaMHpwcIA7Do3FaNBDqWGMIpo2XVvW7c3NFFRU1ypKaV7mXdcN+v3BoIcU3lb1YrGoqubhw/th5CI913Vb1q3nBdtNjBNVFIXre3cT2ajpjVar1WK73UZR9OjBPYhjLEuEYQ+w7my6WG7WhLA8K1zXpVyA6FSq5ZRRRrqum0wm6/Wy1+t1XYMuAkrjNE2pIVEUodVp61oIkaUFqv+maTwvcBxneDC+ubmZz+d+4FmcHRwcuIHP9qNOgE+QLCEyGQxGQDWqqkqz7E6phszt+p7WGqOyKH8JoXt1YyP2RncAhm3XATsRRWFVVbe3t23bSWkjeCIpVHWBohZcBDKQ4Bbe8mq1AsKnlDo4OAjDnWobHRranrquO9VAQ911HeaKQFG1jbJtO81iulteQqDhY4z1ej3XdSeTCb7XPl41xhhpcXTFlFKlWvzps7OzV69eJUli2y7QGiHEdpMAGcJW4jRNHz58GIYhvhRkRth9jHqFEgNpEWMMYe1oPBmPx0VRzOfz58+fAyOB1YAxJgjCwWBgKL1r0XH89nJyijICf0sptV/viLJJeJ5n2+5sNqPaUEq5oKPR6P79+1prz3Mdx0HeAfQopVytVk+ePIMIDMZsTdN0ndqFdEq1IpiZW2+WiJDj8Rg1ADI+wBu+9+aVwj4YD4FiGEqhgWGM+YEXRVFXt6PRqKqq58+fF1lOCMF3bMoKjygMw6rphBCEUbzloqrgoWOUhr2ftXftLut2Z9DVdSjm+v1+r9eL1xuMvjLGXM/uuk5rhUbi3r3zqmowmtDr9aIgchynrlrwFZt4u9ysPc+zLHFxcXF2djYej+Nke3NzAyN0YiiefBRFvh+ORiOstFosFshHWus4jkHFQmLe7/cJYW1ba03m8yllJgh8ILiDQe/8/DzwfXBinHP6l/+Lv8qlsISNVNQ0DeOyKAqYC0N/B2AWj76uijD0GROEaPg8MMO4xTnhTLKqKL766qs333zzk08+SZKkqCo0Yb7ve4Hf7/ePjg69va1XkqZlUQCRllJut9tXr149ffZcKfXo0SOcmCzLiiInhNRtU9d1mmYw/WKMTSaT8Xi8mM3RgkN2BrcPY5TnBTjBCCthGDqOEwSeMTrLE6it96M9YtDro+V6+vSp67r3Ly7W63ULB1G/D/A/iiJCNIbmjDFNWy2XyzAMo34fcSGKotVqs90mP/3pT/M8Pz4+Rg0BeIlzCgAPEC4AuaZpOJeQzaVp2jYdBKEvXryoqubevXuAcxH6i6Io68p1XSEYkOTAC4GrY4yLanN1/VprXTVN13VnF+eHhxMhpOs6nHJpiV6vJyjZbrfQk3LOqdFIqCg4oOG7vLz+t//+33HOP/zww3fee6+ua6TSqqoI43fjHqozbdt2neKcx3G6Wq2KvEJN8vr1a8r4cDhEp661bpqmbirGmGO7UE2VZck4tW2bEI2Dd9dHYnAVElH8BhSIkNZCGozdRPhfMWy8I/sZBwiaZZlqOzRYGJ80xlRN3XVdnCb4Gc/zQOeDmYJNIqAFsFe2tVPmMk4Z5agLUf8hlBBC2G4AR7dte3h8ZIxZr9e2LU9OToIgSLZxHMfS4pZlWbB8s6UQYrNaS0s8uDh/+OAeUVpwalmWJfh4PHZcO07SFy+ev3z96jd/8zeHwyHh7HA8YvslvkqpssrzrBRy54qEmj6Lk16vF3g+I3SzWv3JD3/0y19+sV6vP/jww+/9pb/IuCzLUhldNg0CR4ONNnW7Xq8p29Ve4Hz30aBbzNdxloO0cmxPEyWlTenOm0or1e9H/SgghPiu6/mOJi1UByDR0jTFFmrH2a2yAPNOKdOEoKBXSlFtKDNCcMYI7IUZY01bbbfbw8NDzmlVVS9fPpfSPpyc/uxnPwcOXTU7AzDGWNs1nuc5UnBBwzDExHhVVYSJPC+fPXsGFjWKol4vvHfvXl3X8E3YbOKmrIwxxhBKCaGd77vj8di23arppJRZVqDOvrm5adoWKsa27VDcCMYHw37btr1e6Fo22B/Pc/ZYgpXnORMWIayp2yRJ8rISQti21FoXWW6IRjEKK0h0s3AHZIJbliU5A6+dZVmWJEBopJRts8upWmvHDzDbWxRFXZRh6BPORqMR5Mmcc/g83bWp2EtYluV6vZaW1e/3syznfDcrZzl227ZgFdCWCCHxhzabzXIxB5/Q6/Vcz4eMBkhAXdcHBwd5XkL9Ce9DpdqmrVByobLcTccXOwQUmIRlWb7nEUohJ7gbNgTNxBiDRhAhXSlVFMV4PLZtG745i+VsvV7jAx8cHKDxPjk5aZpmu90itudZicCitYYjUl3XZ2dnw2H/9vZ2OBx+9NFHNzc3z549gyFznue3t7ddq0HjDAaDO9y9aZrVeoESijHmOBbehW3b1BBCzV2v6DiObjvEFsdxlstlnKW67eIsdS37/Py8aVqttRcE6GcgbGD7PQF4bqi0YJF1Z1p2fX3dNM1sNnNdv9frHQyGB+MhbMl936cUzj5NVVWWLWwLS1l2e8qrqrm6uoI113A4tG0HJRrcWfOsJIRMJhM/cFH313vzOXwwYD/o+gS3hBD9QTQcDl3fBy2O+WVOaZqmqDUF4+BPpJS2bUlp4Xsh5tiuQwxru1rDSs2SkB1bQnJKISgSQlRNY4xxXd+2ZZ6XRZHtHqxlQY2AMN40Nc6kUi1wu6LYsVVEE0rp2elFEATT6XSbxMvNuq5LbPD87d/+7e12e31zZVnW2dkZYyzeJhhE0FrDLbIuyslkMpvNfN+/ubl5/PgxSE/053XdAu9gjDAmKDW9ftjv97AwGkOXquvKsmRUdKqhf/7XfstQQg05Pj5GR7VvbhR63OGwv5+44YwTIYSUQikdBH6v1xeC29I21NRlrYk2SgshsP33+PgYZdbZxblt20medV13fn5quw4sBuqmIXt/TgD+nHPO5K9+9auvv/6aUnrv3v3VapVkKRAFQsjBaOL7fprFOA1N0xilQEjbtu36Xp7nWhspRZmXWmtcY2qwosELgqCoiqZpbEfWdc3hvUGp57qj0QBIsm3by8Xs5z//ebzeBEH06SffnUwmz16+QF1PCIHsAL3vfD6HaVtW5EdHR+fn54zw169frxdLz/MoNejebNu2XA99v5ASB4UyA88b2EImSXJ6eialZIRut9vXr6/i9aY/iEajUeD5aMX80PeiUBNDtJFSckaMMaZTwG+KPF+tVp7nLRdrjNZLi3/wrY8ePLzX1J3r2UqpNI2zLDs5OfICHwqAg4MDuHKHYQhIiXNe5sWzZ8++//3vDwaDX/u1XxuNRsKy4zjOYShKTF3XeVHN5/PVYrVcLrUm6I0cx3Ed6PR1HMfL5RI+FJZlVU2NsQNEwKIo4jh2XZcxbNJsQYjs6HZjjCbL1QJ1LSowRF4oHDFFCw3jdruFZRpjLE+TO2+VzSZWSqFXzrIc1xi9NWNsOBwSQpTWrusWZX4njkm2MWo15Cq1M4+1sFo4ThOMkqAMBRKOgY+yLHthAAvWpq2gByKEYOTCsixwH0KIKAoE445r98Oga+vRaORa0nGc05Mjy5LS4lLYQjLkG9ty67ZJtjFhFKnXsiwhWVU2hO5MxnH/oYdomsZ3Paw6Xc4X19fX//Jf/svf/rt/ZzgcEsMMpcSw5XKplMrKoq7roirrun7x4lUURVXZEEK0JuBZHMdpGz2dTuHlaAxlklHK8coGg0EURf1+FPq+49hYIC0kAx1wcXGBlc/4bQAt6qrFmhEAMELIuznZuilb3Q2H/ZOTE5iyXtw7K9JssVg0VQ31Z9TvJUn2/NnLIAg4l8YQrYiUttaaMWLbdqOabbypqsJxrMnhwWAwENLeCZiEcGxZ13Ucx+PhKEkysHLbTcK59DzPsuzNZlPXFexvKDPj8bjX6zX7RV5Syl/96itkESGsXq/n+77n+lWNPooeTw4325XYTzKi14qiyFCK1asA9haLBc7edD4DZ8o5PxhNXNfF7QP5znZ6fCqEIEQj+QF2xVw2HKSyLEu3O7WvMcayHLQlhJD+aHhwcAAdGwSjZZaWZbmOt5RSwigxrKkaxhjlwnVt6K/pzrinQ0mx2WyiMDw9PeVMwPsQ9w4C37quYTWiiUEsraoKOzEpZ1EQNk1T5Dl+M+cQUShkdGiwQI3VdV0XpRcGwpIoGcFaVFWlDWWM2dJqmgbycy4oPmdRFFXd4nRNJpNeGN2JH/I8/853vpMX6RdffAFT3PV6rZRSnSmKwpCdzqFpGsAzsN0BzwWwU/Dd/kSoEXC5KKWdavDY27YNfchaDEQUtm1bjs05l1xIKeuydF0Xo4hpgT2bTRCFx4dHru+VeZEk2Wa5rvaOYnc1hDEGRHm3Hx6/G+UBAIZ+O/R9ZKU7Y1LLso6PjyaTCbZgCSEYJ13XeF7QdV0JCwZCXMfHm72+vr25ubme3nqelyZZXdfHh4eAKrquS3cWMPLg4KDbT3EFQdA1rdZ6Pp8/ffq00wqzC1CnSSldxz85Obm5uZnPbhFvkySRjPu+b3suEywIvPPze4SQzz//HPMi3JJGE0M0HjV88wHK6rZrmsayrF6vp7VerVbI70LIw8MJmA3C2atXr25urqqqCj3/3Xff7/f7GKUH+JKmGY4ulIVYFei67re+9S3X95u2ns1mr1696ocRVp5AP3B4eHh2dr7ZbCaTyfX1dbX3gSKEHB4eCiGKvIJYBf4+aEWAAVV1oRV59MaDXi8CHIjkAmnNer3W2hBi6F/8i/91rxcyJpRqXdtzXRdyzrIotO6YIX7g9qOe7/v9fr8ockqp49m+H1JqbOkYosKg13Y1o6KqC9d1i6KwhRwO+1dXN3/0R3/0rY8+/Ot//a8rTQjRndGAwfvDAee8bhpExrIooH8sy9K2XLRxT58+zfMCIzlFVTJCmeBvvfFm2ItePHue5tnBcGRZsixLx7V8L/Q8b7le4SmgiFFKXV1d2bbdC3tKd7blGKLN/lCen58LIW5ub13XzbIsiTcHBwfHx8f9ft9z7bIsF9PZl19+vZivzs7ORpMxBqm01sPhEKMfbdsaQ7Ms40Ig/z18+HDQ72NTVdd1RJur69dff/PN0dHRZHLkBv7x8bEfBOv1Oi+L4bC/x65V03RZljVVwzmnhvi+3wtD4De+71V5YVnWvYuLg+NxVpV125yenuZptlotjiYTBFbVdoQQ3XZSSsfxvvnmm+l0+vr16zAMHz16FIbhBx+8X7VNkmz7/f7h4aHtOtVu+VpWFBVEl2EY5nnadd2g18ds409+8pObyyvf9x+88WYYhnXT1V2bpmleFvPFqq5rx3Jc14VNRlVVnPOyqAHgM8aA9u90o66DGSIgWID0IAcsisKyHFwYzvn4YDIYDIAaaqNQvoAyR0zBUDroFTTQ6KHjOG6q0vM8pJyqarq9SQohFNIr6PoRVT3Py/Jca9209V1zhgka1HAobsoyh8zRtu1OG4gC8TP4nYD3OOeDXmRZVpYnkGNvt1uUiVprzDSBGT87O3vj4QNtVJmllmWprjk6mpRZ7gfu0dHhcNCLwr6QTIqdh9Af/dEf/cmf/Emapp9++umf+3N/DgLeqqqkxQmjYKjBr6FyBXHDOSfaYGgOz3B6O7+5uYX0bbVacSZPzs8Io0+ePNluE9d1X7+6UkrB+U9rvV5vLMsK/EhrnRcppM1cytFodH5+ro1SnWacZnGCg0QpdRyHEA1QyvXs4+NjxphlCYhV4f8ex3HbKPyfUlqMiuFwaDsSlqeXl6+Gwz5IlkGv5/tu4IUff/zR559/fnV1ZbsepbTIq8vLa9f1BLeUMl3XcU6NMa1utVGY3en3o67riqoUlvRdT+uuyHNjVLzeFEURBNH5+Tkh7MmTJ0mcua6v9jNHrutAa26IIkQL24INpm25m83GshzQTEVRvHr1CtO7k8mkbdvDg9FkMinKrGma9XqNGb2u61zfB2J6V9Pv/NgIhWRzNBpZ0sFonlJKa6OUqorSD7yua4wxp6fHgHAYY9jNBYIbsiFm2K4eIjwMe95ulw7XlKBtTtMUziBUK8ZY1TZVVaV51tSd7nQYhsKyYQ0IaCfLMsYoBFu+7zu23bZtluZIPHVdJ0lC9qu7sXairCsUCmmaWtIxxhBGQz+o9pcaRzSKArQujuNg6hwqRohQXd/Py2q3nQZjjEo5rr/dbuuyAu2Q53nb1ajM8jzP8hJeLUIIThmeM5wm2ratmxJ0tjEGkCqjwnXdzXYF7hIg6Hq9Pj09HQ6HcGlGuVaVzd4sY+dBjwDFOMFwAGaWQWXgmbRtaznuZDIJPFcp1dZ113X9fs/zPDfwseCVSxFF0eHhYVVVr1++ElTi4tze3j579qyua3jZQJtlKAWsQgiBNQn6RlhG98IQ8RBFfJIkSRJDYfyd73zyySefFEXh+Y4xuzUzSVaUZSk5d113ODhI0/Tq6gaUsabk6vK6LMthv2dZVtt2jDFhWZgeVUoBhcIEklEaWn5jzGqzfvXqFTpA8DB11TZN0wsjQojnO4wx17IHg8FoNBqOR8p0eVWGYRgEgeN4SqmvvvpqPp9D3g08AmbddV13XdcLQlgWu66L4Vm+HwSJoshxLOi3AM+v1+v57XSz2Uhpn5ycYMCzKEpsiCn2jnQYNARyZhhhjEF/ptuuqirs9QKwwhifTCYnJyeTyQTz76jMoAsymu6I2vUaCC6azKatIKFDOXR7e3t6egq0CBqhLMu0IpYt6F/+rb+GPXqAy8zeOF9ykSTbrmkopceHR2EYcEIfvvXw9PTU9908LwnRhLDFYqYNZZycnV5EvcAo3bbtcrm0LGEM/fzzz//ZP/tnf/Wv/tW/+tf+N/cfXFBK0zzHjq26rjfxtiwARBe4nGVZ1nUJP9WyLDebGBJmy7YD37ds22hNKD0+Oop6vSSOIdNpmmYwHE4mk8VyBsUlesGqqrqmhTH6xcXZeHyY5ylaq+12C89GdMBa69VqYdt2mRdJkrz99tv3799nhCwWi2+ePIPmcTQa1XW72WzwJ3DuJ+PDoihg3QkEnhoipTyaTJbLhe5UVVUvXz0vq2owGF08uG/bNhfCEIUBAkjF271LilYkiqKz09PhcGg6BbuvssxXy2Xbtqv54uj06IOPPgx7Pd/3A8+L41i1O/s+s8cR4zjmnOd5/vTp8+l0enF68umnn9q2/eTJN27gv/XWW4hK4DThDaM6g7PedZ0y2t378ru2Y9v2er3+7LPPXr58/eGHH3bKeGGQZcV2u23alhBCKSuKClxGmuSO4yhlwLoiZqFd2263mhjLsizxn0HEptltY8R98H0/ivpSSmgRQCV0ulNKJUmCblUIgWuPTWfoZlCZARvDMweEdnFx4XmeUuYuQiFAoHHHvDrjAogU51wbJaUUbGdgRvee0fuptHK5XErb2o3YMCaEQNWFhlVKGQU+chKQPLhyTCYT9NbbeJ2mKaX06Ogo9D0uGFHdeDx+cP+Cc3p4MMaYatPUSmnGqJQWY/Rocjgej0HN/+nPfvLixYv79+9/9NFH4/G4aurx4QTwKuCZuq7x1VA+UsIBoUFM8+zJ09///d//6quv3n333Yv798Iw0pTUTdc0TadJ27bT6byqqq7TxFAQHFCtBkFwdHyI+DsaDXA8ptMpUeSTTz65vr5+8eLFh9/68Ozs7E9//llZlscnh2maCsG32+1g0DsY7/ada91tNpurqyvPCyCkg5VPVhZ5nk+nUyivq6pA2y0Zt2zBqDg9O/YctyzLTitjDDEsjuPpdN62LexyhBDHx8eOv9tGtdlsoOlRRtd1LbkgRPuuGwSeUTqOYyCyTdPd3NwwJlRnmq4l+zWmeZ5yzoUtCCHo/m3bxhZXQhgcnlrVlGXZVO3V1ZWU8uBgiOAbeA5jbDabnZ6eEsOePXumiAESJoQ4OTnabrdZVhBCALdD4ZplBQBUz/OatsXBllJiSyYKa8uR8FKhlDJCy7J8/fq11tr3Q855LwiFEL4ftm23Xq/X67WhlHNuiM6yrCkr2AYFQcAtCepHKbXToBCWZgnGEdEgQVQHHKLICgBvGDZE6WNZFsAATAYYymCRAPAATKUQQncKqBUhxFAyGg3u1A5SytViGSdbIcS7776L8dVO6bIs43hXWeKubTab6e0cIr+maQjVk8lESun7vtGw427rusbUS+D7URRhtfZdw4bryTn3g6jrOssW2NRyfX2NDwNanHOOhZhN0+RZqZRyHAetdZqmhuxWMULU67quahsgo/hgRVFsNpvj4+Pjw0Ol1OF4EoZh2IuEEF3XOv5OJw0A2/Oc7XbblC0U3FdXV1dXVxg4Q71lWRZhDHNagIVGo1Ho+4hXxhitSNM0k8mEMVaUGaDWpqkvLy+32+3BwfD4+Pjtd94cj8d/VuQK9GUxm3ddV5a1IYRSrohBBRmvNxDmYgfgwcHBYHSQpqnkHDEZ8/hhGIZ+YIwp62o6nb549QraFUhj67rm+/XnhJBBr3d2dvbGG2/keb7ervI8v3//4WQyefHixd0Y2evXr9neMRHSFDyrXi9EcIuiqOs0vgveFDRFuOzz+RxyKc55HMfT6XQ6nbZth6cNbufk5CTLsrIswzAg+2UStusxxrqmAUEv9q5gqB9wN6uqStMUwwTvv/9+XddYMTSbLpB58WzDMCSEjEYjQjXeUVVVSZztxpjaFgzyro3vtGUJ+rf/5m+DOjk8OirLCneMUjo5GEe9sEizzz77jBF6dDz5c9/57re//WGjuqLIhBCnp6conCkXQjDX9V3XJppWVQGYFA8ijuMvvvjy81998dZbb33rW9/yPK9t1DreLmfzqm2CIEKzAoMQQgh0HgAeoYTQmuR5WtfteDxyLffg8KCrGz8KL07PqODL5bqqKsdxmq6GbAinB2JJ3/Vc106S7Orq9XQ6H4/H3/rWtw4ODrBOlVJaVCUa0DjeFEUx7A9AWjmOdXF64bpuZ/R0On3x4sX19fV4fLjT2xpjWw4qWaVMq7qyLHvRQOk2jZM8z8+OT+qmHPb7R0dHRZnd3t4+fvKsLMuzexdnZ2eUmiRLOWVRv0cNGYyGlpB+GGDxQq83cF17u1qDofB854tffl6WeZUX//P//f/2d/7O33n3/fce3n90cnJk226ep1lWIADNZrMgCI6Pj29ubjzPOziYEKLLLJ/Pp2EY3t7e/u6/+b33v/Xu+++/Dyv8e/fuQXS1WcdxHGP3ixf40GPO53Ojdne+LMv1ejufz6XlTKfTLCuOz06pNlc3t4RxNIJN06jOOI7TtgoZAm0TIq/WWhm9XC5919tsNk3TBIEHDy0UDU3TQCtDKS2K8k4s4oc+RLvoPvM8Hw6HnHOQMkiEKK0gX5BcQNhXluVoNMqyLIr6GMXA4kvcFlyVuq7zooQ7QFVVvX4khKCGYEEk3znDdehH8Xkcz4XuAYkKhMV4PMZ1JVrdcR+I+Hu5g41P6/mO4zhZlg37vfOLs1G/Nxj2iDZFkUlOKaXKUMw9OZYYDccH42GR5cbo+/fvHxwcNHX51VdfvXz58mc/+9mHH37rN37jN4Kop4nBZBySDSiVsizjOK6r1rIsSJc8zxsMBk1ZfPPNN5/98ouvv/66PxwMxwej0QHjsqzb6XSaJNlmE9dVU1UVKDnHsaRtHU7GXdc9eHBvPB55nrder2ezWV3XRZZh+ZrWhFNGCO2UoZRXVRFFkTZd0zSr1TKKgiiK7t0/d1236xoctj2Eky/mKyZFUVRpurPCElxqrZM0Np2C/NQY8+Ybb4Sh73iu0RRh+vnz547jgC/AlOjjZ0+LogJQjTqAUNp1Xds0xqhB1NOm60c9z3OktIGvJEkSx2lVVa7n1XWLOMs5DcOQWxxTO4SQNM3n87njeMPhEB4ETVcrpQTjELigVuj3++vlPE1TYLdlURNCGtXFcXxwMDk5OQlDv+saiNOxNg0s23q9hQvom2++mWbZzc3NYDAoikJwigRPKVVGa91RSkejUT/qgfFpmp0NbLzerNfbsqzgcue6LvwqheRxHMMPCXpTRQw4fYywdV0Tx+l6vfZ8H9p2KH62251hITUUnlJ3akuyNyJG3aOUUobgpAHkQ8XAGFsvV0Hg+X44GPQ0McfHx+PxGCWR73u9KNput1dXV0+ePHn16tW9e/cu7t0fDAbb7W4GGV4/i8WCUQG3pyiKXA8uvqmUklHRdR3uL+Z52W6XLm+a3agvKgZAF3GSNU0DIb+UMgiC8/PzO6cbY8zTp09vbm4opYP+CK0dzLS6roP5Bfqu3Thhupv/xac9PT1FKfb+u+9GUYT9udK2yrI8PJxYlrVYryDtStPUtiVjItnEGL3E4o26rm9vbyEhaJpmtdmEYYgpLnxIG7OihBBCulYDF1BKAXGHmNWyJBrIL7/84sc//vFH3/7g7bfffvfddz3PW61WmHK9vrySUmJnKKH04OAgr2opucWt7Xb7/PnzJ0+ewLGcSyuKoigIUFvjC/Z6vc1q/fzlC/yMJrtNG3DtyrJM7fyG8rIsoyBAO8oYOz49YoxxLo+Pj1GgO46DZ45aDRohaMKUUqenx7BjtSwrywpMVBBC6H6lJgDRO8s0oJ5ICmmaZVn2n00bOCeE+L7vurstOISQl68vi6IosgynFztg4DAPTQuAVTAeWZZ9/PHHQoj5fM4YS+IMVwCamdFohIHC995/5/PPP0cdQsxupyQa7yRJ2H6NKeec/qN/8Dv4A/3RsOs0ejIUGUq1VV4wxiwp1+tlLwijKHBDF54feA1g+j3fyfLy9PQ4CKKXL59vNhu0TVEUNXXdNipN03/+z/95Xde/9mu/Ztsu5YxoqrQuy3o6nRJCAb5JS1icnZ4dgy6B5S6jIsuT16+uLq9eDXrDD7/9QV1Wdds8vP+AMFrklWVZSZLkVQl0FyNsGOsNgoBQTQl//uLpcrG+ubk5OTp66623giC4urnBE3EcDw5eKNqqqsrzMs/TZJNEUXB276KoyrZRoI22221ZVpRSxgTaU85kXVWO4xR5Ja2dlastpOc7o8FAa43rUVTlbDZbr5fD4bDf73thEAUeWLRWqdPjYy8I2rrmnAtuwZAGWxTquoTBbOB72+32T/7kx3mef+/Pfa9uSks6QejBcRsnDIbCtu1qrTUxdVmFnssFffbyRZIkYRjO57Of/vSnjx49wioM1/XSNMU4ie+FCPHr9RrnOM9LXHtjjBR2HMevX16+fPnym28e33/4wHc923WCqF/VLWIcGhdj6B1XiIIA/oFYl7HZrBCjoa9yPWxhb7GPz9kttC+jKGKMbzYbLjkElQC00jTdbFbGGFhS1WVFKcV+WYhbj4+PtdbXV7d3i6fyPHddN4r6UHXgo3LOIfkvqhp5WkpZFSVaMfRMnPMgCDCGzTk3RvV6vbKu1us1VLdCWEhIvu9TQ5RSyI7tfmkjISRJsv1guY+JaNU1/X7/8HB8O70p0oRxQrRpmur85HQwGLhB2KrO87zJwWiziQnRlmDo7geDwYcfvB9FETZ4/vF/+k8ff/rp8ekZZhHADBZFsVnHlmVhbm48nmBSCS+irqvJaBgEXt120+n08ZNn3//hD9q2e+vtd3uD0e3tbdW0tuVyLkBBPnjwII5jTZQlhFJKSDYej87OzqTk69VKa63brq7b68srDAhb0hkMx1hlCDogCD3HcYbDASFE6w7thO/7SZJgs7VhVGudpUWa5r3eQEqZxGm/P3zvvfd+8YtfbDYbIZjkrCgyEM1YeDqZTGxHrtdryxIozdtWJUmy2mxOTs6appNSMsrxuoUQeZpChLHZrGzLGgx6YdgLQx+KGXSJSqn+YOR5HuEM8kTEkPV6PRwObds1xjDKjTGe72JLCSG6rmtKjWVZkC33ej21Fw9prQW3pJSQ/IPdtm0JPOPw8NCPwna/aKUsS2gTV6uVZbtowSEz3WmPmEFhBDBsx52VFbqL1WrVNE2eFXVZYhzYtm1MomHrfLzZcM43mzVY6c1mIx2bc37//Ozs/CRO81evXuHazhbzLMuksIUQlrVbTFJVlWO5Qoi6rSDZRJGHLgWkKoQfsEkDXphl2b3zi3v3LzzXD6NASAkMGxT5Nl4Hng/N6Hq9zvP82bMX33z9eDQageRarNYQCQC91lo7tkcI0aYDWs8555ThF6Ll6LoOXd+uSGIcqt88z+fzuabEEEYpDSOfEAJmDVUpSD1UwxAIpklujDFEkb332B2EBlk3VPBpmjJCLy4u4HiXp+lsNvv1X/91Qsh//A+//4Mf/KDruu9973sfffyREKLVKs9z0ynA6hj4kFK2bYt4tVwu73wlkIyAWxdFQTlvmgZlECUc+QghF7LCtm0tW7iu6zjOZDL2PO/wcHx7c/P06VPLkWhsYKvUtq1gHH+IEMIEZ4ypzmA7Jwb95vP5y5cvi6K4urrJ8zxNMzCGjLE7W2OEXNjyQZWPdp0xttmul8vldDqllPqOK6XEDN/R5BjdLFLMcrnstN5sNtfX19AiSynDMDg8PISW13It1N8/+clPyrI+OTk5Gk/CMHQcF8DN1dXVYDBAuYZv9/r1a9ihg2qUe0tex3EODw/7/X5V4cKVq9VKKU0ME/ttoXfisIcPH8K0BUpBQJvAOFzXfe+999r9Gm8sUYQXd6eaoihs20ZUkVLWlUI5iFeJN4Vi0bZt+j/87d+uu/bBgwdRv7dZx47voXt2HOfi4uz+xUXTNNSQPE9vLq/+l3/1LyaT8Sff/c7De/dbrTgXb7/9NhCIruuU1uj7b25uhsNhozpKqSNkEASr5QavrSiKtlWz2Wyz3GRlwZmknDmOixYz6IXjUe/8/JQxAZXYw4cPGWODQa9rVJrGT548I0S/++67fuAeH52uVqvFYuV4rhR229WO4yhjiqIAZF1VVZxs4BSFGmK9Xv/kRz+5ubnp9/tvv/32YDTinDMmNpsNJCl13aLtm0wmRJk4S9IsgwLXdd2yLK+vb2azmZQSq5l60cB1XU5FFEU4apQZxphktKxyz3HwYYbDIZeCUoMZ8rZtP//iM8bYg3sXH3747cPDMSHkYDIO/SAr8q5pB6MhIaRt67quuWDwmNVd6zhOkRaff/6563oPHtwnhAITchxnNpsdjCbRoF/tLBMZYXS7XrVd7Vq2YVRKKaUYjUa/+MUvCCHX19er1erjjz+By6LjOAi4ddtcXV1hZmo+X7qum+f5fLZ0XXc8PvQ8L0vS2Wx+dXVVFIUfRF4YFWWJCsAYk6Zp03S4nKj6CSG4Cb1ez3Es4OpxHK83S2gsoiiilKrOdF0Hc5TZbLFer8uyattWGYVAieLYsizMnyKturYjpaTMgH4CzlRV1Wy6QNJCsUUpHY3G7d4iv+u6pqkQMjShSBuY9gKAD0te6GkQkfv9CLeoN+hjbgBKHewO7/f7jFDGGIYtAAkAFCSEQTfq+74xijEmBQP7wBhpqjJNY2IUIWTY6+dVGQSRZdtaay5oFISMMVvw45NDwTilxPe8o6PJ4eGh77uMieVyyQS/vb396quvmqb5+OOPwzBs6i6KoqqphRBCyPV6nSQJwKHp9Ha5mIFCkpajlFqs1y9fvWpbpQmzbbtuu+0mcV3XsuyyLCnleVEopXr9sGnqrq27rhFC3L9/cTAaSSmbsuq6Lk1TSvnlq9euFzSNggx5PB6jm5RSrlarx48fh2GglIrjzeHh4b179xgnjBFuyTSNGRPEsCTJ0jSnhGHfNkAFzmkab9u2HQ77nucxhu3ytG5KnKimaeq6JIQlSVI1ne/7TdMpZRjlUD5ZaHLaVkqx3W4918ZyvQcPHsAB/242olXdcr19/PgxZs32BGXT7/fruhVC9HuDOI432zXaqsnkIAx3omyt9Xq9fv36tSUEbIRs26aEO45TFBVCH4Yigei4ruv4HpRDUNwDii7LsqwacL6QWBVFEYbhZDJRusUtU0oBOWCEQ5lkWRZnwnXdtq7xS/I8L6pq762gBGNSyq5roYCxLMvxPc65bhs/cCmXUFYVRZHmWV3XVdl4noekC6BLcksp1em23e8KhPgSgR3GjVheh7TaNI3run/xN7734Ycfgll2PQ/KjcPDQ8934jgu8wIkF9QzbdtObxcITZ7n1W2Hqfk70YwlHaBQdzp0yQXA3Tu8HKTPTrBV1d3eeoNz3hsODsaHjDFC9e5LSQkLobuhB6iNMRecZVnTVniAmCti++20bVsDiuv1eseHR4AGCSGrxULs9056josZ6q+++brrWqXU4GAUhuHdsBSltK4bOHLhSID8grYV96htW9AFhsLBscY4Drhs/EDbtt7OoLtCOtZad107HA5/7TvfjXpBkqa302toIQCsPnrw8O2338ZfLMuScoYDAG34cHAAHYtS6smTZ5eXl6vVGhwFqDTXdQEKMiFg5d/r9fCI4KnUtHWSJJ988smXX3759a++nM1mnudYltVUrZTy/PwcP3l9fR2nKd4yELLhcDgcDqDoraoqr8ow9DE5uFyuX7x4kSep7/tBEEJvg2kMy7KauhNCPHh4bzabLZdLvE0A0pDKAS3DUPx2u1FKj0ajzTrGmYTazBhzenr6ve99ryzLzWaz3W43mw2hGjT00dER5CuoRAkh8/m8LGqoP4UQhiil1Hw+x/CEMYaS3cpBPK62bfFJcixM+6e/8496/T5jjFsyCCI/DMTeVdn3XYyuhJ5/df36/PSsLMv/9J/+yAvdxXQ5Gh88ePCAUsoYp2LHMw5HIyklYEPDKCGEKt227e3NrCzLg8Fws9n86Z/+oigKS9iHx0dCCMNoLxpQzgghZ2cnR8cHnuccHEyUUs+ePIUPnuvZTLMg9BgV681yOBwSYtq2M4xiyHm93nLJcBxhBo169uXl6zvfJpg1ZHFyeXn5888+7/f7H3zwQV3XWVG2bYvX4PsBkEbLsrpGlWWel0WaZ67rgrDz3CCO47IsZ9NpWZYYIRGco+OEbI4x1tUVZWY8GhFCBsMe8NjhcHhwcBAEXlEUX3/95a9+9SvJ6cX5/e/9xq9PJpPecBD5ARXc4iKvSs55VZVZltm2BMkV9XuhHwSexwjN0qIos8ffPP0P/+E/DAaDBw8ejMYHjx69AQqs7lpiGOiPbbyGUMPzPEoJmNMsy6bT2X/8j//x448/fu+99/q94Ww222w2cRxzLruu67S6vb11bM+27eVm3bbKsqw8K3zfH/R6cMVUbffi1cs4y/uDAY51vd+DhOYYVRfMe9AyogOrm5JSiliPjdRACBDQGWNtowgh0JAh9uV56jgO5xylg+M4mLBDtw0Vl+c5nHNYcUF9v1yscRLAbKKNhjsLsP1ONfDaruv6bokeeg8QpgCrbdtWugXh6HoeiE7btuuqauoOvwrQOqSBVVUNh0PLFpZ0hsMDPByExLZtHds2Bmot048i27aINrP57Wq+UMQMBwdxmhBtbEdOJpPRaCAZPzqajIZD18XCHK21NkQFftTrh0KIJ0+ePHv27Orq6ubm5tvf/nYU9gkhp+dn8/ncth1K6Xa7feuttzD741gWEBRDaRRFytDb2fT6+pZLORwOs6z47LPPmqZxHM/zvDhJXS/o9XpG665ryrKklGzjNaWm3+8/fHg/DALElKapHn/1teN4R0cnnhugFX79+mqxWFJKPc/LsgywOmjZwaAPRPDwdCwEa5qua3VVNWmaZ2kOBAJk0/n5uee76KGhwMuyLE3j1XpBCDk4GJ6fn0OtqLXGmUnzMssK1WmIBTvVNmUFyMfZ7/gLPJ8LShkDeorkp5RK8xyj40VRMAYcRbiu27Wq67rd5yfadd2yzMuyVKqFyPdu5g4jfnVZFkVRFjVyvG3bWhOA2WC90a/fu3cPIvpvffQhkJg83+2J2lVpzi4ZO46TpDDe1FVV2ZYLAXhZltRQoK1d17H9pjVCSJJl2Lpt23YH79Z+X0rp+p7jOMj6Xde1bS2l3e/3yT4HJ0lSN812u62qGvSr53lAtVFMA08FNem6NrTSUsp33nlnuVxiccp6vZ5Op0WZP3hw7/79+4eHh8fHx4BqMFiz2Wwgmlkul8PhMF5vmqZZbRI03pgPXS6XrdKQwAMdAUQHcIvu9/pxyjBHCcx1uVxi9OFO4oYpmbquubAIIZ1qUAXm+1XldxoGuV/8xajwfX+5mq9WK7wCPC4ICfr9COATuG/EmaIoHMtu25Ya43meUTqKojfeepMxluf5l19/fXV1xRgTezm/Ugpf7U6WZ91dz/1OM+iQUKtZlnX5+ho9LXBTLORAyw0WKMsyyxZZlgVBMBwOVNtJi1dVdXh4GIRhnufbzWo6nW5X6+Pj4wcP7r33wbfwig8mY6iflVKdNoQQoyljbDqdv3r1CpFtm6Rt26IYMsaY/UpKmKcwxgBFQwxQVdXoYNjv9/MkVUp98cUvb29vsTMDq0q221gIgd24nHOMEwK/zLIsyzLXdVqt1uv12dnZ/fv30cReX91cX1+vFoubmxvXdf9MeyCQuXBUMIOP/04I0ZTg3aF5JkQzJnTbaa2bqm66tm3bs7Mz4OXf/e535/P55eVlmsXo86H/e++994DtIZVga19VNpxzpCrHtQaDATDCDz/88MWLF9P5HB4cwLOxn54QMhgMLMui/6//5/+j3++vVpuz8/OTk5OiroSw6raxbSmlbOvGGJMl2zAMA893HGexmNdN+R9//w9/7/d+7x/8g39wen5GKWuaZjqdWq4D3WhRFED22raVQlxeXt7ezO7fv58naVVVk4PDsiyVMkVRCEseHh7anjsajYbDodxB3QTXwCgSRZFli7ZtidKglh3Hqevqq6+++oM/+APO+ff+0l/683/+z89ny7IsN/EWI2+gXefz+XB8gH6x6zrbcnv90JEWk2K5WF9dXfm+n+bZy5evhRCqM3meM8YppcZQJABKaVlVSrdGU+CZvV4PYzVaqSRJFouFUkow6XlOEES2LSnlvV4oGCnLQnJBmTk5OTk+Pi7LMooCz/OiKLAsi3GyXixfvXr12c9/vlwuf+u3fuvDb380ORhjSw9U5IQzzA+Da2tVxykzSoV+AOYYPn4//MGfSCkNJQ8fPjw9PaOUFkUhbMu23LquKTNa68VigcHXuq4ODsaWZf3iF794/Pjx3/qb/43neT/84Q83m81gMAiCaDabEUKqqiGUcs5bbRDlq7LG+B7n3HE83Xa9Xk9KeT2dJWk6m80Gg8HR0RGmrkBnIwc3baU64/mO6oztSEIIQonr2s3elRvA+2g0xk6Jtm2TOKuqCpkPRCG2haDlNcZwQcHXwFfGGOP7LkhG/PWmadarLUCFXWbau+lEUUSZQU0GWLQs6k41RlNDFDHMduSgPzo+Odys41evX6CxhpFE23VQhPT7fb6fLajKZjqdcs5hpbsbs+KkKIo0yeu6RbgUgqEEQ7WndddW9eTwgFMmpUy3222apGkmbYvDbpHqBw8eHE/Gk8mEU9a0VVEU6/VyNBo5nqvaznWdo+PJ2dmZ4zir1er58+e///u///zZy3v37r37/nu+7x8eHmHOAFo3zrnRu+0i08V8s4khxzk+Pi6qCotiCCFQxyulXNdXmtZ1jawgBCOENE3dtm1VF0KIfhQeHo2Pjo6arq6KnU+3atRms3n27EWelScnZ23bCiGlsIH5bTaboswgeHIcO+z7tiNPTk6ksPM8N4Z+882TLMtOTk4GgwH00VBVX758pbVGlk3TGMxRVReYIDk8PIT3fdu2MHJcLteomBljkvEGLtCnpziZ6/W6aZrZ7BZSDMAhnuf5YYgSQQiRpvnTp09hoBpvE+iiuGBN0xRFhmTZ7/c9zwFOBjoGKTNPU6VUXbXgINBjQLACwg6rOxDNX7161R8N8ZAPDw/rtsHZtm27bZTWGtmo7Wpch/Pz8zTJsZUoy7Jkm2C8Y71e96Po7o5oQjDZRykd9vtCCGBghFF0RF3XEQJjC0KIKeuGCwZdkbSsoijyvEChwBjz/TBJkuvra+DZqEhc14UhMGqCR48eZVnWNW0QBEEQWLYsy/JXv/p8vV73+/0PP/zw/v376/U6juPRaARfZSBbbdtmcdK2bZpXdV3j62PPLGHc2a9YhW4B8hLcaDADi9kcjfrjx49xVbXWwCCt/S5t2GO2nYbpD1hsKKYxR8L3e43xtziTSqn5YnoH4t59gH6/n2WoXHdLjXCeOedlXlBKXdsGGIbKKez1er0eEtNisSBaA9lljMEhD7aabdvGcUz3VqtghCCixWdTSrWNgt4IZSWsRzEGgZ+3bZtxYowhhIRhaJQWgvu+LyTzg+Dk5IQSwhiJ15tnz549ffr4Jz/5yd/423/rgw8+8AI/iiLdqfPzc2HZlmXNZ8snT55kWdF13XK5tCyrVVoIgReEg4HoiicJ3hOlCR7INt4MBoNhrx9F0U9/+uPpdIrFQSB84WwAuwp4KCL4q73nrTFG2nbT1l2rZvMppfTi4iLww67rVNti6hCm/0IIrFODZxi4filsSG+TJJku5oQQ7GeEMG7nb7Jb8VdnWYYe9Qc/+EGapsDhpMUBECLsHB0d4RYPBoOXL1+C7oy3KRoq3FCtNeyBHj58WFXV6+tLxhgnFKjQ3RQFxjnp//x/+Z/eePPN8Xji+p7v+2VTd61GxwYATQhhVNt1HbJ+4HuA2X/605/alnPvwf2u05ZllWV5dX2ttWZSwGADjB4h5Nvf/vbFxcVyufzjP/pjQkhbN4SQBw8eEEJ+/tkvyrJ86623Pv7Op4yxsswdzybUVFV1fn5ulGmaBtoFxqgxRjVtGIZgjqezm8ffPP3jH/3Q87zf/M3fOjk5wWIHGITALcZyPMh6mqbRmmjdPX78OM/zjz/+mDC6Xm8/++yz3/8Pf3AwGb/xxpuj0ShLizRNsZcQVFcQBJzTrtPwRQQQBdjZ8zyMsnMuKTWO5aZp3HU6igKidRSFF2fnli08z1OqtW3b913O+YsXL9548HAw7E0Oxm3bTG+v/82/+TeXl5f/3d/779989IYmBjmmrusgCmHDUXe7Vmm73RKi59MprAUZYxjH/clPfvL86bPPPvvs2x998u677wohO60g8Za2i5FGYwzlrOuastzxdPP5/H/9X//NJ5984rvedDq1bXs4PFjO5lTwNx69td5uCCFNpyilrepms0VRFFBR5FlZleVwOLy4uKjbCukEjYvW2nc9pVSSJFCH9PuRZTmbzYoQNhz227ZF39y0NRpNSmld17PZTAoLtyUIAkq5EML3Q9iI+EHQtq0hCq0q329UtW17Pp/Xddm2bZHlZVlajgu8arPZoOhhhILK8X1/cnQIbKCqCuRjVGbz+VLrzhjqOBbR1Bg1mRz1euHNdHZ7ew3/2D1jyHDZoOo1xhwfHw+HB0CYYZfs7hdvwz3ork0nhFVVhQ1oo9GIC5rFSdM0gnHbljB2ipNNmqaB6w6Hw6PjCVKvMQoaIMuy+v1oMpnEWUq1cVyrqSrKzNnZGeqPNE1/9eXXs9nM87yTk5Ozs7MoioSQSZJgmOvF62sUi3XbMEa2aRKG4fHx8cXFRRAEWZYURSE5X6/Xy+Xy+vbWGD4aHtDdnolmsVjYthwOh2EvklJyzrI8kZJbjhyPDhgnXdN0XWdZ9mYTE8OKorp+fU0IPZwcQ6sxn8/feOON8/Pz6+vr1XrBJJ3NbieTCZYswQUGKCbUr7PZDPHE90MpJSe7KTOkw7at33nnHRi4A2A+PT1lnNR1bTS9vLy0XOfg4ABB0xiKuVeAInfIh+M4liW01nVdep7nuBbyX121VVUlSVZVVV23bL80jFJ6cXE2mUxAF0J6v91uz87OQPbhFyqliNboDSAzrcpGStnvDw8OhpeXlzc3N0EQpGlqWVbUC4QQaV4eHx/broPACxAuz3O9NyCFlzfGntq2XS7WhJDxwQGE/EVRmE5LKaVtQ7lICCnKvKoqW8hq7y+Fj9QZTQlTjdJau4HfNFXTdEIwJnaTvxAeQKWE1itJksPDYyj9gSu0e3NkSN1fPn+Bx3J0dHR0dBRGwdF44jjWer3+yU9+goHTXq/3xhtv6L0hNi4LLtRqtZot1mD2GWPw+EiyFOgI2qp673uMMhozaKhFAPMzRowx4/EhpbSpdveUMSaE1XUd5rW12bVkwObvKD/cYtgfbDcJxIue52HyAD+P1g7LW5ElDw4OsPIP41ycc6M0rgz6tM1ms1wukyyFXS0jFAC8lBL7tlHug4NDQbabG9Wa7K0l8BCQEdAjAQdVxHDObbGzX+b7PTyWZRGqLSGN0dhFa1mW77uDfr/X601GQ4BM33zzzS9/9cvVahVE4Xe/+93v/fpf2Gw2t7ezOI7Lqmnb1rbd/YRKzKXFOY+iCBbKaZp29W77OMZ4gyAAjVBWu0NbFMVsNv3mm2/AD3Rdd3h4OD46NMbkWVFVFXCy9XoNFQ1qWbbfawSWuSiqo6MJmhBY4R+Ox5PJBEYns9lMKYUSEHI0znmSJMv1lnNeljWAQ8YYJf85TyGljnqR1h0THCYRTdNskrhtW8fZbbF0HKdr6oODg6OjIyFEXTcol4UQt7e3CE0oiLXWKKNvbm7QgRtjyqaCx3IQBKHno+AGQqGUon/vb/xvGWP/9V/9ax988EFZllVTcyajQR/hCTCMY4mmaYosp5RKwSeTyY5zrdvFYvH46bPLy8sHDx5A7WE7jm3b08V8NV94YSCEePDgwdHR0ddff60aZdt2st0to50cHhhCbm9vx+PxeDLSlFBKmWByr9CsyxpzEJRSKUWSJOk2hlDp+PjY9Wwp5Wyx+tGPfvT06dO33nrr4cNHMGtgjFEmOJeG0u02QWMBVSOlNAg8yrH/1Y/j+MXL148fP+ZcGGMEt3zfp3t/cyklyH7IHTjf4d6IPpPDA8E42PfZbLacL0Da9ge9yA9w0AnRxpizs7O6LqG37brOtaXruuhEh4MeIfqP//iP33jjjZOTs1evXhVVCaJTKSWkLaVUxEgphZBKdcvlUqnWGIN9xsg3XdctZvN/+2//7f/3X/3/fud3fmc4HLVtC2/3sAcsVDRNtYmTsswZE+iWPM+Lt+kvP/9FW3ew88myLPIix3EOT44vLy+TLJO23SpcsAYy/CzLPDcALGE7EvdESlnXZRyn8/k0CnqHh2Pwd/1+n1AjuKSMYIGPUsoQDTOqO2X0LhIZU1VVvzdAjJtMJnXdrlarrusmk6O6rcA4oOi585kUQvR6YZZlaZwkSfLy9WXbtrDdM3s3IMhHttvt+HAyHPbvJtiR0mDQ0nUdEv9qsYT13XA4/Ojjb0P3eicrMQbrrSyABPZ+My5j4ujoCOUClNd74wCFj0EppZRXVcUIRS5xXbfIsvl8rtrOssTx8eloNGjaQikV+b5S6vmLpzBeCoLg4uIMA3dMirvE7HmOa4uurRGJ+v1+FEW9/hDV3t2szXq9efXqlZRyE6ez+dZ1PaWUoXQ0GgnJb29vb29vw9A/Pz/3fTeKIt+1t9stOqjpdN502nE8rfU7b7/ruv5OWCM4RkkYo5ooQkiWJx9++K2z02NGSNO0dd1KYbetyuIsz/OqqhFe0eNi0rnX62lqzs5ObNuGcRcXFPUQOGgYssRxCq/2OI4daZm99f+9e/c+/fTTzz//HDNKRZGBY3rw8B6MebquU8ZIKbHYnjEBYSsKWai574CE8XjUNE3TVGWVn5+fQ2FTVZUQ1suXL7OsALd1dDTp9XpZlsD7uyxrIaww9I0xb775puM4v/jFLzzPk5JbltULwyAIZrMZBEmLxYISOMh3q9UKqQLp9mA81FrPl+vr62tDiTEGFpdwKoeUEMobtjdYV0p1ra6qijOGMr2u614QFUUh4SbtecPh0LJlVVXpNsYX38kZKZFSamU4kU3TFHXlujYOreXYZZmjXgeYd3p6CixHCCGEhaFasF24BYyxs7OT7XabpxmI5rOzs8FgsN1u59Pb09Pj+/fvCyHgsPXkyZPf+q3fIvt9r3Ecv3jxqixzrUkcx5bj4la2bUspJ4RwuTvtYLXu+EcUvrC3jaIIuIuU0nVtlNqcc6INCh3GmON4XddpY2zbbrsaVRcA+DvZA6B0YHL93vDk5AQeTvgBzK/sNVslRj7xIjCOAJbZGOM5LopXTLqleYb5OMjJJRf4qGVZYlTirkPuum4ymaA0BF8BZBGXQko5ny0xOYTbNBwOy6auqgr4LmIayFa8Hc+1tdbSltAneZ5XlXm/37cFl1JiXOB2fvsnf/Inz148HwwGv/EXvnd5eWkMnUwmhPJXr17hvSRJQikNe31AtpCFUUrbqkVonU6n4EN2AOEgAqCY53mWpZhwV0pNJhNCyGK9Ojs7u3/vwWazefr0KYYxkW2TJIGxRV3XQRCEYQ/R8lvf+laaxr/7u7+LscSqKPBMTk9PQUlB4IEeA1URYaIsSxTxZVFDfWXbtlJ6Mpnc3t5qrULfFYy6vmftFytdT28553BIaZqmrmvPsX/913+9KDDAWEA2g6ABJhF0Ki5gEARwEqmq6tmzZ5Zrj0YDOPWP+iPGCCGMEN22qm1r+q//3//85z//+cuXL994883vfvfXQKx0WhlNfd/fbFcg6UCp5HleFSWl1LUdRNKrq6uf/ORnz549I4R8/PHH77zzDnCXoiylENoYx/eAWuGxIlft1IWSYajN9/3Xr1/9i3/1v7z//vsffPDB3UZ3bFIbDIaMsdlshqdjjLFtCwk4DEMM/c1ms6dPn7799juc8zwru67ThBZFsdrE6/UWUqTxZHJ9fR0nG0A42+1WG0SoUVmWSELLxfrevXswh8yrUkopKKasyd18XBQFlFLsTPRdj3OGs3J1eQnvu+Pj47PjE607wflbb73heR4huwXhCKaWYI7jFEXuWDYl+uDg4OTkpG3bZ8+e/f7v//6//ff/7td//dd/43t/KYoiy3HQqkoplaFtVzPOtVGEkGQbY8jIsx1sQnVd9/XL1+Asbm5u8jwPo36rTZZltuMFobeYrxzXsqSDuodzXlXNcNi/vZ09ffoU98cSFtDvtm23cSpsC7I8tFOUsTRNiTFgW5IkUW13dDQZDodNW6tOJ2lcpPlyuRgMBm+88cZoNAIiOBj0bNuFbpEQkiQJpQbBKwiCyWSCZ6i1fvXq8smTJ1rrg4OD8XjieZ4yRmti2xKBLytyqKmQa7fbrVIGscBxnLoub29vQQOF+03PQGcRtnq9HmHUGA1sAHeVUToej+9UILs5sjwfj8c4zEh4lmU5eztWY0xdQw5FAXTB2RLdJ6wIy7LGDjUYSWP72C7UKl2WJSF0NBrZQtqOJYXluNKxuZSiKSspZdvV8K+Cy9FwOHQDH1pyaVuCW45rdVUupYD5BaIPvPXRpVxdXcVxPF0sXr9+/dFHH2Vp8eTpa8qtuq47rcbjsZTcdd2qKtNku91uOTUXFxfvv/uOlDLNYkLp7e0t5/L4+LQqG2PodDq7nS2ALnue5/kOISTJYtu2m64LPLdtMinE/fv3pbC7rmuajnOJRnm5XFpcQGUVhuHJyRFjTFPWdc1qteq65unTpx9+9K2PPvro+voyz3PPCyAirivIX+Tt7S1Qrl5v4Hkeo7zX6z1/+hTsQL/f832fMeJ6dhzHSrW+70vbhZjJcRwp7dvbW3RonhfUdf3o0SPbtv/T97+PsxSEHiMGJpCj0ejtt9+WUnq2V+wWiTBYx6Vp2qkG2ZEzybnEzruXly+Hw+GdpgdOSP1+v9cLu67TXZckyWyxSdN01O9BDowfvr6+BoDXGw6klFwKrTVnMgiC0cFgsViAGAVcB29FzLWgeqiqBjY9QRCoprNt23KcJEnqtjHGoEXc5ZKyVEpZjoMhwappy6zxfd/3faXboizhv4gN8ZZlUWoODw8x9YKes653o5q4LKhaoEhDv2Hb9s3VJZRwWmtqNAQJUsrT09PDw0MAkI7jTKfT+Xx+dXVV102/3xNCgjBF1WWM0cQgmuGfg1LEJ0f/D5U3CMSyLDHLTAhBKUYIMYaisyKESG4BcpBShqFPCKmaej6fN3v3bxwSNGO2bWMYCMPskGcBN8VngB9y29ZQoBZFgYqnVR2lVLU72BI9xtHRUa/Xk7YFM2GjdNM0kgvbtj3HwYQ46l1gbAhuo9EI4+EY4sH3beoOqJLjOJbrQP4F65w4jlerTdd1nFAoxoLAg0ksyGLLkkEQYDrbsW3XdZnRDx8+tD0XyAuoTyFEmuQw80uShHM5GAw4F3iSvu/XbQuGMQxD3XXGGLBpX335TRzHdVOavfOzv/Pl3zljNU3jhQEmWy3LOjs9h4RmvV6naYqNf8YYuBC0u13Su3EojEYyxrquYYwBRsUNwsNBkQrIsOtAGtAkSRzbk1KCPO06hd4Vsb3Xi6hRWZbgtfZHQwAonHOl2jzPZ7OZ1tqorq7ryeTgzTff9P2IEHI33wCsBx7sKIe01neYUV3XdV0TYgaDYdPUdd0IwRnjhBhjSNs29Prx17PZ7N/9u3/305/+9G//N//tyckJ3RmmkbbrymqXpzEqOR6PGaGXl5eOZV9cXGAAR2vy4sWLn/3sZ7e3t9/5zncuLs6i/uD8/JQQRgi5ur52A58ojVFEEO1KqaoucJ2CwMc07+XN5R/90R+Nx4cffvghkEwoGIqiBBKOlhfza1qrrlPG6CjqQewGmOTxN09/+tOfnp6en5ydOrbnBqFSCjKLm9up53m2bSndom0CtgQRIWCVVy8vm6ahlPu+74WBMYYZ1ratZQn0KGVZMkZGo1HdlF3XBZ5fVSVkg5aUnNPFYvX06dPtavnhhx++/dYbxhgh2OHhzjAMjSxR2rLFaDSaz2fxZtup5vT4bHgwmBwcUk6ePn36/e9//+d/+tknn3zywUcfBUFQlU1RFJqStm07req6rutSa02MSZLkeHJY1zViXFmWg8Hg2ZPnX379q340CMJwfHRqWZbreaiuUEOvViu40uMYYY7j9vZ2NpuVeYnn3Ov1/CCilGZlQTmTXNRtg0YQC8iFsBzHYoTaDlxzSs5l1zVU0/V6ud1ut/H6/r2Hn376KQAGzNtHUR8gIlR6hihAYmVZdq2GtXeWZbPZ7Kuvvnnx4v/P1H8125Zl54HYNGsub7Y9/lx/b5rKrCqwWDAFDxBsBtXsoNTUn9CTQg9604Oe+AdajJYiuh9aIYIMgVYg2aiGIYAqoICsNJVZ6W5ee+6x+2y7/FrT6eHb55D5UJGVefOYveaaY4zPjZfvv//+7u7ecDhUxhhjiqKARuHq6gqjSVVVkNvDO+P7btu28/mcUto1LaZPYMJ4t13XJYx0XYdZDZN0U9e4o/FFoHReLBbz+fz4+Hg4GmGybJoGCU9FUcB6g6kXVRAJQJgo4jhG3m/b9IBOgSCinERRFPoBY+zmEldKSaJtXqxcj42Hw77vPcGjKDJGOY7z6tUrY8z9+/eTQRZFwf7hked5XIg4DF1BqTFZNrDWXF/Pl8tF07RpmkCRiute+H6e51dXV7PrxWpZHR7fefTk8ZdffonMESHEYJBppazVnNCqLg73D+7ePbbWRnHgel7XdV0nV6vN9Wzx859/ce/BQ0QgSq1u1S1SKcYY44RRY5REh3T//n3GmJTaGHN6etq29eHePoZ48MhVVV0vVrAWVlVR1/X+we7du3cvL89Xqw0m5vF4LHu49CluOjRDfa+MMcJx93Z2sJYqz/Pr6xnn/N69OydvXoGlSrIMBqg0TSnd7gOF8pdzAdH0erMBVmGtDQMvjkOo6Y0xm83m8uxyPB4Ph0OAHK7rStWt1+ui2BhDBtmIUq61ruuaOhRXM+c8vNkRBDJdazkejOM4toxTSjmxSGDCCiYsWrHWwq4ktXJd1xrquu5wlOFOh8QnSZKuaQFMwrHLOX/06AmM24QQ1UnX9zFU9EoyxhzG0YvEcewwJrXmnLd9h/GgqxWAmaqqtFVooYQQYeTfMCQaVir8c8YcXAJoCyD6htsG/5wQQq2BSl0pJTj3fW88niRJ7Hk+5+zqauZ5LmP8+voaHCuaLc65uomQ1VqHYWiIhZEFbrCiKLCKFy87jDj4zxEgAgJ0OBw6N8lkClSsEIwxqwnKc1VV1mpCyNX1rKoqeDZvmVl0V47jMOocHBxoI9Fr4qhDtoFmtO97zreLKXEXSSktJUqptm6EEJPJBNeI67qu700mE6h/XEdwzrumdV0XHAggN9Q7PFOA7igZaLsBz0Rhgm/t+37TdzAIw/fQNI1SJs/z1Xxhb5yVhBjXc9CvhGFoDNpoMhoOfd83UhlqgiCYTCZxmsznc2OMkuYnP/nJN998MxgMhsPhYrHa39/n3On7fjwee56HbKGtDoRS1Is4jqHQx54rTLa4S/u+wzSSpulkd2c8Hl9fX3POry5nm83m6OgoSZKqqp49e4YaAWMyAM6+V+h9ofZzHCcIPNDBUko4VJCLDp+7tdbzAuReeV5QlmVVNjBLKaVuwSpglr7v+66DO3YwGLSyxzjU9/2t1LVpmjLfgGQ/OTk5PDxKkuTo6Og73/lO27ZfffXVer2+vr7Gf4IhjWzTxQL8Ly6iy8vLqqrcm4BunBn67LOPfN+vivLy8hL7K2Wvrq6ufN8njF5cXKRpGsZR27ZFXXqeZ6RSSoU+Yvs9pZTvemdnZ8+fP1dKbTYbY/V3v/MLnu/2nRyOR03XEkIw72pi0c6jUXVd11rT972U8vXrlw/u3Yvj+C//4sf//t//+9/7vd978OBBnGVg4uM4zjdlnueW3ob7QSCviKF1Xadpenx83DTNy5evX75+9fTrZ6PR6Dvf+QXLaNd1ZVW37XbpphCO67rr9VopFcdJWZZFUZRlGScZsA3GWFU1wD88z+OUEUKarkW1zvM8SSLYG9uull2PpIP9/T1XCGxmFUJ89snHbdu+8/aTMAwJs0opQN+YSM7enIZheLi3zx1almXXtevlmnJ69/juoyeP4jiezWYff/zJj3/84/V6/b3vfe/u/Yd1XVPKm6aRWgGaCoIAXTle8o8++ohSure3N51OV/NV0zff/zvff/byxf/6v/7w3W+9f3R0tFgscKwdz+26TiuDQ4l32xizu7sbhuHi+vqDDz4ghNy5cydJEqDxDx8/ptZ2N1eAUipJ49FwzDilxnZdwzlP0mgy3ully6lDiGGMPX361dOnz37nd34HLyGAd+jQm6bByhF836oqFotFnpcQifOtk9TOZrOfffJZWVfj8Xhvby9KE2vtar2B4hiuNECSUKG2bQuZHXr9fL1BC4KXM47jwTDTWvsIbaJmsVioXodhiC5NK4P0PKz1QAVVSj178RxSdEB0/Tb3OUP+DQ4kRmRYE+I4hk6Oc961khCGMzadTkejkeMwnECwJ1prQlgY+pw6YeQ31WYyGR8e7vdd1/c9pTYJo8EgffnyZdM0k92d7//i9yhzjDGQFVdFeT2/6lp5enYCPKypu7arcUG/88474HcwIxZlXZUdEy76IT8I+DbESKOu7EynjBGiDaHmxl/tZ1nWtthIIR3Hkb2+mF31vXKFd35+PhiNcfUHftR2dRwHg2F6dXW1XuWO47z11lvDQQrBOLgbKbuqKJbL+Wq1IoRBZYX5Z29vT0pJOb+aXShpUAgHg8FoNAGkJ4RQqj87O7PWJkk2GAx8P5zP5+vVpthsjDFB4KM4ZdkWfQFi4fmCc771ZzkO57zruuVyDXsQYlMmk50gCHQvCTGwi962HWi8Hj58CJKr7Wr481+9erVcLuMovYVbHMfJq9JxHKW23h1Iwuu6jKIE1zFOi5RSqb6ua8F413VA+jsl8zyXyiCWFqhMGIaDLOv7/vXr1+PxGHMvIhUQOlA2dX+z98LhW5DYUmIMAWHHGJPdlmpH3VJG933ftG1TbUPbHYcBQsuLNb4C7szb6AfIDG7pMPw9/M7ANsAn4pL0PA8v8s5kiq0qiM4uyzwIIt93+17dqidRAowxddvcaqIJIUi3ur6+xh1V17XnI9i9R/ht3/er1YoxFkXYB+UaY7RU6AU558YQIKNCiLKsYTgty3K9XqLihmHoBT4eHASj+GHiOFbSBEHw6PEDyJIgOEPzh7YPUCieMiRKfd+HcUAI8YSLYQ8Iiu/7zOHT6RTyR0+4SilOGaUU8aQ4geiirLWz2QzFQsqt4RonB5eMlJI5Loa3tm0pZ0II30U0/EBrvbyeQ3gtpRSCO46jicXE7gjucocxxggNQu/tt98GWdn1PeA6xlgQRAAX1+t1WZau6+HeQzuotY7TlN3s/FB9d3V1RTjDzQn9A5TTqIzod13XdShhjH3rW+/jP0QAE+dAg8jJyQnn/Orq6uLiggsBWCsIAqMUPnxggVJKwhhO43K57DqJd9kY4/qe1ppTVtctWlKIt24abguFMZRhoLCHw2EchMYYwhmYmbIs264bjjIcwijw27b1XdcYDYCtLLe+bCibkZEJDAwWJbAQIEYnkwkl/OzsDA0PhrTb1Ny+7+n/93/5n+7fvx8FoeM4VdV8/fXX//pf/Rtr7fe+972dnZ00TYMo5MJxHGddbMIwTKMYULPqJXTTu9PdXnbPvnmujbq6unr+/Ju///f/QZYlcFGlWRaniVKaMWYZxX+LX4AxFobB6emptdpae3562rbt++99h1L6+7//+3t7e8PJBO6Ysiw9N8BsYYyBFOD8/FxrzakzHo+h5nn8+C0hhDbm7OzsRz/6q8Vi8e1f+O5oNNJmi4USQjhnAMPatm2aFp+UlNIShqrvui5SxyAOYIRKKeM0wfWKAoBn03Vd3zVRFKH3t9r4gbe/v//w4UPP4X3fO5yenJycXZxeX18PBqPhcDidTjH9eJ6gZnvvoM0fT4ar5Wa5mj969OjOnTsoaR9++OFsNnvw6EkQBMDkhesbQ968eWOMooSsVitr7d7ejrW0qoo8L8PQ39s7ePbim/3dg9F4/MMf/jEwpP39fYiBFJ6AtkVR3N6S/7VvS/V9WZY///nPy7Icj8f4A0mS3Lt3r+/7MAx830duOOdUax0nIUTTAHUZoYQY2NBwZ3Vd98EHHwoh3n33Xc8LgN4RQqC62NmZQGW5WCy0tnh1gUKFYZjn5ZuTsx//9V+98847SZI4nsu4g1E1z3OlDDQxCM4YDodCcKUUFkSUeYFTjsZIKTUcDcbj8WQ6dW4ycvpWQv9LKWWU47fADARg33Xd1WaN9eFmm8scY1xbrVb8ZstK3/fQBbc3Cxabpomj9OjoDqwA0Dc0TdN1DeQ7OGyYqyzRO9O94Sjr2+b48CCOQ0JI3zXj8XiUpVLK3d3dJI3WRd51ref5682mqqq6bquijKJof3+fEILLC8No3/fcoaBRxuPx9uhKI7VZ5/lXX33FGEvTQRhHwvGQB1uW5fVsZozJV2tCyO7ubtvWT7/56s6dOw8fPhRCOA7jnBdFwbmomubi4mqxWA0GA0a5MrrvVdu2hBghnL29vdvAAtm3AGXH4zHSU4nZCp+7rvvmm2/29/d/4Re+98EHH6DAR0k2m83Ozs5AUlxdXTVNk6bpw4cPd3enyNVTSjV1V5blbDY/Pz/3/dAqjdu/qqrXr1/DhMs5l7KDBOfo+ODi4uLu3bvpYAC1eNM0eV4ipyrLstls3ve9kQr7T1zXAT8I7hLvgrX2nXfeIdTA2A/z/2azWa1Wvhfmeb5cLrkrhBBhGAOQBsaPNI3r62vXE4PBAGic1rLve5c7oBGaplHWFEXhCA8UCbqTrutcIVAwbhOMVNejkAAXh3FMa220lVJy4UDDCtmitZYRCkqIcrbFYLzg6OiIEXorVYFcsm5KDKI4nECG8K9uMbAbveNWloQfEmgE1EvOTY5lmRdd1zHmNE3l+2Ech9bSW7sSegshRK8kkGnwNY7j1HXdNj1sOkiZCoIAufOAqVDFAU2FoY+oM+i98HAdx8myISI2qqrabArg0FEU+b7rOA5URFJvu1gIjqMoAnaO+BvuUNd1wzDErwbWDDFdaD2xYgFusL7vg8iHugs4FvTTu7u7RVXiQDqOY5S21kZBWJZlliQohWi2EJcIqBKVBX3MbfdDCLl79y5hDhwbUkptDSGEGKjOQ8/zxoMhGO2rqytrtVLK8dz1em2tjqLIdfjR0RFiV+MklFJKpUBMAd3EAcNvp7VeLlez2Qz/EDyGpTSKorOzM8/zGLFBEBwcH+E0QumBtw9CNKUUfpL51aXneYSwNE0Hg8HBwcHe3p7WWimN3/qLL74AjdMrRSkF3ZxEkZR9kqSuK+q6OT8/X6xWsFhSSjkX27uO8zBKhBBd2+LpoEAIISDM2G6haJq+b4MgwAzMuajyqqqqN+dnQBb8IIAtXSnlCDYdT4TgMND0fUcIQUR8XddQr/KbJVS3+a7j8Xg8Hruui1cSnyGxrOsbRh1jlZJGG0kJJ9TQP/q3/7Jt28lkkqap6vVqtXr65dMf/ehHp6en3//lX3r//fd39/aCKHQcR/ieUopSm+d50zTL+Xw4HA4Gg/ViQ6g52DsMAkQCSsacs7M3T58+8zxvsjN97733GBee52E1JqEM9svFYuH5Lue82OSu68ahP5vN/ug//vDdd999/NaT09NTIdy2bbWycRyvi1wpVVQ1Av1g2JZStk0PKUDXdXXd7uzs4NlvNptvvvnm519+MRgMHj56BEY2SZKmaWezWZqm8/kcp8ra7ZSJAEAMdhidlVKzqznAed/3LTUonHA7d11HCYHfIU3TLEk5p73sHMcZJPF0Og1C7+zs7Ouvv16v15yJLMume7t1XfdNGydh4Pnw4S8Wi+l0SohxHBerJ/cPdoHBaGXPz8/LslwsFoZQV/jFpszzwvd9x+HvvvtunueXl5fZIOl6JWVHCKvrUggvSiNOOGaI2Wz25s1pmqaUc0wkeZ5jdQO7iUUBtYoZi1IKCUjftq9fvybG3LlzB1fwvXv3vv2d96AsTpJMqb7rOjAUfBsnEfi+b4lummY0GqVRDCrw5PXpBx98UNf1r/3abyBToCiKui6xLURr7XqO1poSfgv/otGhjiCELBYLxrnWdrFeQaHSNK21djabYw6rqooz4QjGGME1J4QANokcxaLMoYiP43jvYBfIM2PME77RFiUW9z4IbhDNkKANRmNCCMSVbd103ZYXiJPk9rcGtgwUB/waiDNKeZ4XnG83Ydd1rbUUQjC+XTo2HA6NMWHo7+7uB4FHiLXGEGKyLPNdZzAYhL7X9Y0v3Pn8ejwer4v1yclpWZYPHjzoe3l1uXBd95Ypo5SWZVnX5Y1Q2nn58uXu7u69e/fatjXGhHHAOf/ii68G49FkvGOM6aQ6OztbzFdt26ZpRilVvdzZ2QHHqrV2BK/r+uBgD7lznG+XSzZNs9kU8/lSK9tKlaWDNE29wEMsUNd1hJqXL19WVRVFESN2d3cXBITDGBSNUnZFsQnDMAiiTz/9Oec8iTPOBecc2n8mnNFolKax7/uU2rZtjVXj8ZAx1vdKSikcz1p7cXFVlqXWdphmjLGyrIqi2NnZqaqqrevxZAgHVttvA9vu3buXJJHjOMqQ20e/WKw2myL0AkBWnufO5zPXdbMsg94L1+4PfvCDtm1PTk4m46FSCiqi1Wb94sUrbH2Z7u63beu6vlJqMV+iDB8d3XEc59mzZ4bouq66th2NRjs7kyRJdC8hPSmKomobiCKklHleuK5LrAmCYHdnD+y267plnm82myxLkfWFXWFAqjjnbS+LogqikBBS1bXjOIK7iFYGV4jS7oeB47ij0UD1sqoLVAvMgXXToN1p2zaJY4Rf4CapqkrprX7fGANmELANTEVaa7RQGEKstUqao6Oj3d39L774ueO427wloyjl1mqMB0Dj8OIHng9SFdt44ziOkpgQonrpOM5qvTDGYMc2UG0slQeOCBAOiV/QAMVBbK1FyWDMSZIEzhUhOGBRjdRzxgDdoRfHlHU9WywWC+5QdF1AicC6AvdSSiE3AbEU3XZdusGN6jiO6/CiKPKywGcOpcfOzk7fdoSQOAyVUvfu3cvz/OTkBNMI7g2ARnBmgK6CTgAtLyEkjGNrLSEsiiJltLNNAJGMcJCkdV1bpdu2pQ6FQ0trTanFMuW6ruuy8DwvjZPDw0PhuXmeO57bNI1V2M9t0FIcHh7CWogNVDhI8mYl5XA45A7b2ZlALOS4gjGGAFsAaYgUbqr6/Py8aZqTl68uLq7SOKma2nXd3d3d8XhcltVsNoP0DUxCFEXT6ZRS4jhOFIR1U0plrNVYraGskVL2naSUGkIppYzi0t4GPm9RAMawwHCzXu/u7u7t7YDEpNQyxoTr9H1f5GW5KbtOVm0TRZHnhyhG2qrQD6I4iMMoSRKjeiHEbDYjN2kgqJ5wYuIxQawWBMHu7i5wUMQWFkVRVSX0Xo4jfN9TSl9dXUZRHAQ+/Ys/+sN33337k08+7bruYG8fQ8zl5eVXn391Nb9mjH33u9/9zne/23UdYXS9XjuOo6xCp6+lxDdzHGeYDSDhEoIXRbFerv7kT/7k2bNn4+nOkydP7j24P51OORNV20ipyqpqm8YPAm1UEAScsrqu66JEQXrz5s3p6dne3t7+/v7Pfvazn3/2xf7+/tHdO33fXy+WaKSE51VVc319LYTHOXco86NwvVhSh4+ygRv4niMG49Hr169ns9nu3h5mI8ZYnhflzaLAG+fONkqg73vAAICFIP0jlnVdt10RwLfRbZiiXNfN0hRTflEUTVVDzlmWucP4eDI63Nt/8OBe27az2Ww2m8/n87KpJ5OJVUgxcKy1nAvGmJRdnueM0gcPH4ZBgJGdUnr37t04jpfL5UcffTS7XsRx6jrbQC8/cAM/ul1eNt3dAQXedZ0yJowCYmkYBQ/v3e/7frFY4v1hNwk9SillDD7wvu8Zp1EYp1litKWMaGWoNZw7gDyEy5U0n372SbHevPfeu7/+679eFBvfD5Xqfd+Ps/S2/SKEtF2NezzLsq5u9E0O9XqVn56efvTRJ3me//qv//rOzs7+/q4xBrIwymye55Tw25lPCGEZN4aQm3UQp2cXn3/++SrfbDab0XA8GA1hj8Kfh4aMUov84iiKOGVAiXEnrjcrVIuDgwO8hI7jNGVrrfXDEOoZzHDrfMMQVqkUHIsQT3DOi00J8RBoFMY5bHfIQ8GtJIQnZbdcLoXwsEMQh0oIIQSv61qqru97JDgcHByEYQBlPWOMO7SpavxJ13GE4FabFy+fff7558fHR/eO74RJfHBwsNlsgP5G4QADAOZOYwzOAGME1QUMGgqSF/iEGEhhmqZT1qyWm+vFvGk6xhjYlvF4slmtN5uNEN5NgoYl1CZJ1PetsSqLI9RFELtffvn1ZLJzdHRECS+bWko5u17A1ldVFawek+morZvr6yvXde/cuXOwt3erHPJ9B38zny8dx7WGKmVwowVBEEXxutgURTGfz7Bmp6oKQk2apkdHR8Lx8IyMMUVRdV23vJ77/lYEaYxdLOZJFI9GIyT9Tnd2RuMBsaztarQs6U3skJRSKbPZbFbzVVXVUClAvA+VMWgmpZTv+03TIG/s8cNHWECurRkOh5yLuq4Xq5UQXlmWT58+i+NYSS0lVjUzhBoau12bOBikRVGEng8eueu6Xqv1en01mwPscV1XY/WC1Li+tNau48Ak73iiKWtplOeIKE184RLGq6paLtd+GBBCFFaoFTV+BcbY3t4eY6yTfd/3ShlrtVY9zkyWZWEYUkrzokAfTymNoygMw75TAN66rsNHB6MAbkis+YOvCEwcuFQAGHBg4LbEu8xuElMhXfd9XxmNbqZpmixJ8SKIm5wtyNTauvEDl91stkEnJKXUUmVZhoVgV1dXgBsZY4vFomkaYrYrZZIkkVJaS/0oZIxpLdGfAdZCLgPgvVuVVZYOLdFQoeAvIQSkh1CUA71G6YXlBZ0T1JCO4xCju67zw8Bae3V1hY+raRrVS8CfSql8vaacE2P4zR42lFGQofigOOe9Ul3dSdUVedV2tbY0DMPz8/N/8k/+ied5f/PB38ZhBB8uKnhd175wCTGO5+7u7qKNcxzW9z2y7/u2DQKfU5YkCWHU930vDAghzFIUFGjw8UCxEooQMplMoiiSWm82m729vTRLqqrinBJCptNpFEXamiwdCpefvjkXLjeaRHGglSXU7Ex2B4PB6euTv/rRjxFuAoN523bGmDiOlVLT6RShWYyxosirqnIdIaUsqhJ2eCacLB3g+SpltDXEwukioaXxb5Y3uK6rtaSUDgeDOI6hh1Gqx9PxAw+KiDpvlst1XpWoMpQxpQxw2cFgEAYepdSoHhHBaO+Atnieh/EDXs7VanV+fi6EwNnY2dkBryWl7Puu72Xfd8DwiqJcrZaEkDRN6R//u38jBM/zUgju+l6WZTBHqF7/5Cc/+f3f//3f+Z3f+Y3f+C1jTOCHVVUJzw3jcDgccs4NJTBYUQpWUSGzL47jOIxWq9WrV68+//yzN2/eRFH0+PHjR4+eGGKNJkVd6V62so9jOFYISPHVakUoJYQsl+svP/+ibdsf/OAH1Ni//Mu/7JT2fT9JB1mWEc6KqgyjJE3TMi+apnUYV0YTY7lwfNfrleSUDUZD3J7L5XI2m52cnFRV5XnuZDLBI2fMsdZaQ1E7tdZ7B/tSyrLMwdNZa5UyICDKsmQMGxU9xlh/M6n0fW8NLcuybRpHCNcPmqZpqpoQQwmxVk9Gg7t37/Z9v1gs4GAwZHsjOI4Tx1uGgnNODa3aptzkUnXQymRZBl86Y6xp6qurWV21vh9qrRkjYRgzRm61n7hGgXlQZpu6I9QkN0YeQK/r9bqqKsTPCM/FO2MZpdQSwqzVHnOruhhkozDy02SgjQyCwPNE4Abr9fLVi5fcoe+9954QXAhPuC5ihOq+Bi6Nlxb8nbX24uIiyzJBhbNNnYlWy+Vnn33213/915PJ5Ld+67dc163rGt2VUioIY8454QxS1ufPX9Y3C2EgJpVS1k2HfAdpdJZlvhcA0uDC8X1fS8U4pdtcaU4IkVKHYTgcDj1PMEK5wyilVV5cXp5fXV15IkiS5MnbbwkhyrrWWneyU0ZjGq7rOvB8xnjXdVEQooQ4jlMXZV6sm7pzAx95VKt17jhO23dN07iOSylBO94rGUUB4Fg8oCAIXM/xhDMYZpTSMPQHgzSO47arhRBlUY8GA2MMtpporZ8+ffrkyROUxqODw7PzN1ipgUn99OyCUmq1CYIAVZwxdn19DZkIpRTqFlCcm81muVxbSo+Pj3F0AQsBbiyKajwet227Xqxd17WWSK0ppW3f+b4HWqppGsEZmNAwDFXXQ2DRti32lC8Wq7rtXdeFrsv3/devTpI0FkL4gLqLAmT9zs5O37dpHA4GqZLy4uLCGup53nS6C7ulEGKzLq4X88lkQikj2zz3WkpJqYXMaDAYjEYjIQRlFoTv1dXV2dlZ0zQw9KXJAOtBoarp+76V6uXL51CHQJIoPHc4HLquY5RWndpsNgBKbzxQmlLatTXwxb7vp7s7SGCGqun09LTrmr29vU7BD7vNe5zN5saQIi8d6sRx3LZ9UWyi2DdG4UK4mi8AMwshwjC8d++e523Xz3ddt1wukfYCUy0hRPYKtBr4Ly4c1/E2xTqNEy/wXUcEUQiQRkq5Wq2KouCch2E8GAz4zWZGNBDGmChMCN1GDDZNg8UexhiHu8aYmwVxcptwoRSQCaiRxpOh53nWavgBIZGGzgyjzi0pA7ELupPAj7BJCSJoILV4KcByxnGMHgv4E9suOy8gxIYGyBjlMA41ktaaMNr3/WQ0JoRUdWmtVV0P7AFXUJYN1M1Xs5YSbSBTw8QifA/KMEhiMD51Xef7fhzHeZ5vinw2uww8PwgC38dcl2AkrutauC4uW4xnQETwi2NEBzQOkFIpBeOtMQqfZ9d1jFDCKDZXosNAPhkmZJSYNE3jNGnrrm3rpmwWi+vlco3on63ko20C17u+vqbUgrW01oKxcTwX0wW5WVPtUNZ29W0DjXZEa41nFIUJuk8pJRQXWDaKT2wyGR8dHeGXAmMO1B9MwtHREXdFmmR+4FlCu64Nw6iqSs/zXd+9vroeDAah671++eqLL75AOeCcV1WJ6x1pgjh44C7n8zmjAnem53mEs81m43nedHenLMu+UyBt0f4qKcuyVFpDS4OpG/th8zzPi3XTNMTYNI3BA6BvHmUjnBbhe13XlWXZtr3W/yVdUmutVI8CTQhJ4xjKpcePH3ueB+4bd4W1Fp9G3bYgssMwxJ+XvSbU9J3SRrZN7/kCZ4x+9Jd/DrqdcU4IYZxMp1OtJUyV56cXYRgmYYLKfXh8JwgCwmjbt0EQ9FqBMieM4kXt26brusloxDkfD0dSyuvr65/85K9ms5nv+9///i+xbSIX9zzvzZs3htK6rrE2mzFW1lWnZFEUvnDB4v/oRz96cPfezs7Oz7/86ssvv4zjNIrjOBsYa/0w0FoLLtBzINMBKepN04CqJ4QcHR0BNm+a5vz83HVFEAS+H+B1Y4wZTaIowrXFhYM+crFYQKgr/MDzvOlorJTC3pX5fF6W5WQ8DsNwsVgQQqyhlFKHc0J52/XKmqasXE/4rlfka91LreV4PAahc71cSKmttUEYUko5IwDbjTFhuNWaGGP4TTqU4zA09Wma3uSvcCgbIEVst9uUuyRJoigCvAE1Yi9b33XRsIdhKNvuVgvZa+UItn9wdHR0MB6PW9lywrWRoQis1YQwy+x8vgRTlmXZg7v3gsBrm6YsS4fRIAh+/Nd/VZblW2+/e3h4SJmlDqfGarLNgAAeDlZ3cbVgiIm/WdB0enr6J3/yJ0dHR4eHh4gv3/YN8+VisSjqinM+Gk/btu27DrPF7WU0u5orpSwlfd8v1iulVBhEhJAgCq21RitjDOOcMeb7ASEE2zlhP2GEck4dxrDq5/LyMl+tq7YZTSY7O9PBaEyobbuOMIpfYTAYvH75Kgwj7KeDnsbzvGGWoKPtuu5yNm+aLi8qpdRgNAyCoKkaaw0jtJctoRRKtbZtj4+P27a1RA+HWZakd+4eR1HgOGy5XCrdOw5jjMVBzDl//vw5jBR93z969OTevXs/+clP3rx5s7s7nUwmnDJjzHI1HwwG05291Wp1fnpWVdW9e/eUUovFAtghJCmMsaqpQeDWdWspJ4TUdel5HhKGCDU4w2jNu67rmz4MQ61tK3vnpjJB5TYcDi3RlFLZ9X3fjgaDNI2VUtZqYq3vhU3X5nl5dnHV931dt4hsrertDZumMWiUW8TlYG+HMRIFIWIawFpeX19fXs5Wq9V4PHWFnw4GCPuF7L3ruv39PXSTV1dXOzuTb33rW77vd30DF+rV1ZWU3d7eXhQl19fXVdncsDN6tVoRxsFBW2vLqtBad7JFCsk7bz3Jskx2XZ7n+aZEHwbI/2B/FyG9nuf1UoeRr63N83x+Na+qCojvaDI5OjqyN/nslNLFYpXnpZHaWms00Ua6rui6BjOnoSwMw8lkgv8LKcLDh/c550i57Puec7HZbOq6zrLMaAvPV1EUvdLWWgCQruvczIpKSgn1BX6Grut8P7ztgYA83arI67o+Pj6G3QzhBUopYhmKB1o9wB7o+cAdw/vZ9z12ctxgQwplD78LhkC0aE3TYPMpyP2yqEFf3irJwpuNsVBk3lgBEJVH8d3xD4XgXde1dQOswvd9xOK0dVOWZZxEm81GdT0ek7UWUi1lLPS+juMQTQDqoOuFIhlaH9/3B4PBcrmEh+zy8rJt2ygJrbVJFA8Gg8E2UU+jNen73g8CSil+ZgizYHxGaYdYHsIytFPg3MPQR7sDMhG0sud5gedzzhn7L4uVQOZmgxGUAA7ncRDikANrwfYn7KfyfT9NY0QCBUFgiVZK2ZsUD/RelFKXO0op7JIpyxIVxLmJQPPcIAzjotjADKGU8gM3y7LBYEApDcNtOn8URaPRoGkaxO5eX19fXFwYrEgxZjQajacTaOZAyHayv7y8XM4Xz79+ujOZAuqD90IIB+hp27ZlXYkbN2vbtpw7nAmInh3H6bVyHKeqa8TOgXbH9h5jjDXm/PxcKjWZjqaTXWMVJVwphXVJ2khCCLboKqUmk4mU8uzsbJhmaL4nk0lelXhYQHD/KxFeYLFFylpGCBKqx+Nx13W4zaSUFxcXTdNAvUo5B15ojPGFj3YWzjAhBNpxS7TjOPR/+3f/Fp/yYrWIoijN4iRJNpvN3eM7vu9nSUwpnV3MfvjDH56cnPyd7//i4eHhYDikfOuZp852UyxElMAMQs9HzbZGua6rpXr69KmU8vjuHUppUQLG157nzRbz9Xrd9ep2xFnlG9d1CfZ8ERrH8ezi8osvvnj06Ill9PXrN6v1+q233uKu4FwI1+26HpE22ESGmQMXDX4qTA+Iii3LcrlclGWZplkQBJwLSqmSBh83pdRxxa2ilhDjeV4UJeh+KKV1XeKXff36tVZquw1Q675TW3aS0qbrMWcEQWCUTpKoqeumaRyH4caHC09bo5UlhBirkLfueZ5wPK01o1QI0XcKzruy2kJxaRQHgYdrZT5foioAGHMcxxgFkTWuhvFkOBgM+r7nnN2/fxcCFEYprsvr6+skSebz2ddff3N4uP+DH/xgNBn2rdRadnWH9ms8HqbDUZYlQRAEQbCYXUspozBMkuj6+vrp06ew9nz99deO47z//vv7hwdd0zquwLA+Ho9fvXo1n8+BzWqtpbaLxYJZEsdxmiRaaym7vu9fvXo1m82Oju5Ya+umsdamwxHnHFYmIBaYEJqmQ43hnFd1C0/v6empoURrjRYTnmdGuZQyipKyLLFCuCqbssqpJePxEK7GwPOqqqzLyhK9WK5d1xlNdyi1YRwFQaCVBRFQV1UYRLCIK6V6pHIkCZSVURR1Up+dnW3ysmka4bmO48hOaS2hCySUApNQSh0fHWDqdV2HETqZjg8P97uu+fSTTxaL6/fee3cymWw2Rdu20JrgCga2ZIwB7AqFcpZldVWcnp4yzo+OjhAiHwaBMYZYpMrVq9VK6q2/tWmaXiljjOO4WOTsui4c10iDxJV3Y0N+3batEB4hhAsH6BFjrKk7xhhiiozWWEPuOCwKgp2dCYolOKM8LzfrYr1ed53cPdiHlIcxorpeCAGtzHA49jyhlPJ8gdnRcZyiKLRUKLp1XX/3F773p3/6p59++vO33nrLdb26ru/fvy+EuLq6hNKiaZrlcglRy3Q6zbLM8wXgUvQcT58+hRh8djWv65YxTpiDOEdjDKW2bWtC7d7ejtZ6uZxHcYAWhxLeti1CoeM49hzv1tPQNJ3W0jJa163qZFmWk8m4LMur+RXksOPxEIfTWtt18uL0DB1K27ZoU2D1dwNfCGENAfC/XC7jNOm6NssyeFn6vpd9yxgzhsB7G0WRKzxcs1pr5vCiKAChQbV5Gz7uOI4QAoYP2IQ9zyPG4mbGkRiNRq4fII8aRQJ6DNyfIFbKstRqm+oCRbZSqpetAUWiNWMO1m6+ePGia7d9htYaCbqYBtEdwpyxWq08z8vSIcozsJmu66TqYIUDDwgHJTAhNC5KKQQ9cMqAr/d9H0Txer122FZQMRgM/BvfQNu2zHGUUlGUWGvrtmGECsYxn1trmXCstdAmApEF0QaTIJyVo8kYAKHneZRyay1nW5nXZrMxViHMk3POsa+Qc1wLtwRr3/f6JowefS0wixsAxpRlWRUlLnNrLfIHblUiW8PETVim7mVd132v1us1gC7f9wH1McawIBhfPIz8wWDQdPK/+Bv6XghBjSWEaCPZzRpNdAYgfLtW4v+2bRuG4eHhIRB013NuPUlxvOWajTF5Xkx2duDsns/n+A9xGpVSWZbF6Ra7AcA5iMFX8jAMXVfgWwghnj17dn5+DkAuShMhhEGao6FokdFrokbDFooRTimF4CQcXc/zsizJ83K5nLdtX1UVNM1GE8YYZwxdEYZn3/cdSpDR3bYtTDO34r+qquD8c10Hk0OWZaHvHxwcQNyG0DiMGTDhAt33ggA8Nee8rlvAKLBoOI7jeSIIAjQ89F/8z/8T0DylVBD4QMxcz/GE27ZtFPi+7zdl8+zZsz/6oz86OTsdDodP3nrn0ZPHw+EQkQdnZ2e9VhCgABUPXA/tiBDC4XQyGuPpnpy+efXq1ctXJ5TSx4+f3L9/f1MWi8WiqlsA3XVd+1HYtq2Raj6fy66fTqeh519cXHz11dP9/f2D4zvgVtebjdb2an7te4HwEEXBfd8/PT1Fb35ro8VHY4y5odtBOffW2jCMIffmNzuzHVcAsRRCtG1NKXUcV+ut6VQIDtxus9nMr6/x0aNVwv1irS2qEoa/rus8sX0wnud5rmMp8YSrjAZfU1etJRqx+MYQ13Ud7nLOheNorVHqKKVVVdVN2XWd2Rqq2XQ63ZKellJqtbZ934ZhmKQR6ELOue971pI0TWDxQBNjjXFdJwzjKAr6vncctlgsPv/887fffvvxw/uQT0VBKKUUwovTyOGu4213zW6WqzAMhcMwMkJ9AoP0T3/606qq9vf3EUDMGPPDgFrSK7m95hjb29ur2/7s7CxwPWstoxQJmbPZ7OOPP/7pT3/64sWrv/f3/t47776bJAnhDgo5BLy4uTBpsZu9jW0nYU1dLBa9VghZwVVurcWGyjCMV6tVWVeQD1dVRazGbS5lF4dhlmWjwYA7tOv7s7Ozoq6yLNvd3aWcxWFyo2UUxFJGCKI4T8/P1+v1MMsALbiuawhxHLdq6qqqNnmptfTdoO1qYuzO3m7f94wLoC+e6wBkLcs8DPyu6y4uzh48ePD3fue3HIdVVVWW+Xy+bNuWc26MmU6nw+EQkmrXdREHmqbpcrlM03QyHkZRtFqvP/nkk3fffffg4GA8Gkkpv/ryKUKStNauH0BVzTlH2GbXSbiorLVxHFJKoXjD0AzMbDabIfEhCAIu2MnJieO4Usr1Oo/CBJXAaA1wKI5DhzJt5HA4nExG+Hjbttda11VbFIXwvVtdahYnENwYY3w/PD8/f/78Oe7f2ezy+Ph4d2/qu1u2SwhBKD89Pb2+vlbKtG0r4Njn3PPgYuae541GIzhXAKrhOobupCg3QGguL2d5nvte3PeSOS6i2+GYi+PYcVgvO2ttXZdFuQrD8O7du0EQMOpgU5tS6s2rN9DD1XUN+2Er+zAMIz88eX06GKZ5njuuOxhmMLA/ePDAWo1YhHt37hhjXr16Vdd1FCaMba27RV01TUMsxcQYBIHre3y7FJJpbdI0uXN8KISglCNYfLPZrJbr2yGEORzJbZPJZDqdQkaJyxbACQ6S1ho4fRxGXddhLdvDhw8PDg5evHoNywhadkz/284mCEBwA0WAqh1RHZZoY4y12PRC0QQg4hLCZ845Fj9TaqGccxxnNJowxkC7JHF26/LDwXMEQ5uFi4gQgoAoAG9oFITgm81GS3XLmytjgyDglGBs9n1f9T06G20ttJtZNiSELNerwWDAKdssV4jjcjwXYlAoHHDP+L6L1c7AkJquHQ6HMLdiX4jRBOWZc54X67quN5uN4zhxkjDGtFLQ7cF/ANgJ8wC6K8z5aLA454BKm6rGmMQ551yg2KNss+2+c4sn21Z1WZau64Oem0wmQLhxHUnZIYmQUipc7vu+1Fvmrm1bgIJGKkKII5jWGrTJ+fk5NgJJKbWykJPDKAN1eRiGhBoYs6SUWZbiqGituXAhmIa9FKNy27bX19eAgfHowzjilIET1FKCCXnw4P5wOMSYBHZvPp9/8803s8U8DENKmOM4spWbzSZM4uPjY2PMs2fPOtnf0qmgp/f39/HxKqXiOByNRi9evMCoIIQoy7qua7RfVhPk9K5WKwCQDiPj8RACjE5JWLWwWho6b0JIUWzOz8/RS/iui1AYvs2AVewmAQQKk81mQxgLgqAsy77vfT9En4DpixCC3cQgfOhf/m9/5Pv+aDQihLSydxwu2269XjNOIIQMw3AyGlJKi83m2YsXP/zhH3uBL4T4xV/8xYcPH7Zt23eq7buqqiaTSd/3URS1EoZhHgdB3zVGadcLoihCNv2rk5OPP/54MB49ePDgwf1HQoi6bdhNdKzv++v1GvkrXbPlaBljo2wEpnl/f//OnXvXy8WPf/xjrfXRvftpujUBLRYLa60lJM9zzh08G5xgTKKj0chxtkEVy+XS90MpZVN3t54d+LSP7hxbayGrapoO+6o5574nMCLQGxgJsZZaWbxafd+HcQQeDfkfXdfh5eyaVnhuFIS3PHpVF23b5uWGcx4FYRRF1lIpZd+p1WolhNf3vdUGV6HjOHEcK913dTUaDyADr8qmbkqjibHKcZx3331nf3e/61rP8yzRx0d3GSfzxcIRbDKZAOETguPQMkIdwSbDUV3XTdOkcYyr8PDgwPW8vpeGmK7rby2+VVHid7++vqacYh1yXVZlWf3s40+SNK7r+p/9s3/2T//pPx0Oh4vlkjNW1TUkFL1Sbdv2WtV1Hbhe0zTgUkFVUEvyPH/+/Plnn32mrXnw4MG777wHpBCyNuB5nudtNkVRFJuyaNtWSp1lmYaMwhI8jtls5lBmrbWWYPIry9Jx3CAI2q7DGWjblljrecJxnDSNx8OBMYoxBnF6URSDwSAZZMySPM8R3LfZbBzGpVSOK6TWq9XKDzzXdT1HzOfzXqsojLU1QoiyalbrBaeO5wnBnTCOGHPKqkJtWC2XlFKl+iiKsjSpqmo0GmRZdu/O0cOH94E6SNmdnZ2VZY0Si/qN+QGhbqA2+r7H8Q5DP03TPM//8A//8PjwDoLa27bN87Kua0d4IPUopcoazvnp6SmldD6fo8IRQlCKpOz29/dHoxHn3A+2Kp+6rvu+PTk5cV0ffcNyuTbG7O7s4Q94nnc9n2mtfd8NgqAoNsMsOTw8dBwXZNPHH3+8XC5hobp//36+3hhj8Bzn18vBaFgUpdT64OCAcdpWdRB4vu8fHx/HSYjmGxe67PXz5885FxjqEBAA5q7v++VyeXFxgVYDHMpgkI5Gk93daW9aYxQhTPa6LOu+V7Or67KsAVNB+0KIEa6jtR4OszSNOecII0CqXBxG1lqrNCxjruteXV0tl0s/CgeDETUEnT3ewePjoxcvXlxfXzmOc+/ePddznj59evfu8eHh4Ww263tFLCuKCrY+S9mt59oPo6ZpwjDE0GyMyvMyjkNXONPpOIoSPK+zs7Nvnj5DJFsYhnGa3N48Ssmu6/p+u7nBdV2HbdXc8NILIS4uLoDa4rnDLY9MNVCQrusyR+BfKaXW6zUq0LbbY0xJs1qtinLjOE7b1lprQtjt9Ot74S3R1stWSomwA7jOhRBKKXgjIM8HlgYaEfo8Rh1KaTZItNaTyQRIVV3XW2KUGNzGjLE4jIQQXLjouaWUsutvaVP8jRAC4cCcc7xEjFg4hT3POz+/PD8/d1wxHo+1llmWZUkKq8pgmGHIZNyZzWb4SAlhwF2yLMMTRMFinOd5fjW7sNYK7gKIAtN3i/wJIcqyTNP0BgjsbwM5hRAO40opFGxOaN/36C2AQaI8gYGN0gTQZtu2WOQMmBwjTVmWt7ELSveu63Lh2ZsI1rfeeqsoivnVDI9yPp/DbwRiEQPY3t4esqzQYVxeXpKbnQdxHEdxAKhP3yQFWkpx9Ukp0zhBSw39e9M0ZZ6D7Qnj2HWcoqqQhgUd1XA0QOztZDJZLpee53HmPH36FPqBy8vLJEkCz9Nao4eF8gdPPIqivb09SEQotUAZm6YxSjuO4/qe67pBEOEF77qOWNb3vdbWcbbLuZumVUoGHuJq1Wg0Er4HFThjzHUd2EFc163rsq5rai1qJZA/MAawdgJjxkeqtZZaQ/zjeZ4fbuOI8Zggvuz7HmE39MMf/yWOPtYdMMYo3YLPrudsVuu+7zkl0+l0Mh1ZQz/8+KOzs4v5fP7WW2/t7e1xzgFNN00DQ43jONThfd9rbazSSRQtV/Od6R5eS2PMbD5/8+bNz37+2WKxEI73/vvvHx0dKaMvzs6RSVMUBQwpjNDoZju67jUg4o8//rgoql/8xV8UQpxdXpydn+/sHwwGA3Q5ZVnGSUIpJYQCT8Y5ACiCSwTju+/7jDl5nq9XudmugtJt2w6HwyAKwaqA8MJYYIxxBYeGAE8IAxn8enhhgiDwQ89aO5nsAPfCZHkLPMLXijmAcWKMMUSXZal6SSlVyhhjlDTADn3fF9zlDhWOp43Uynq+0LJhjPp+kGUpOG9Mt2dnZ33fHh4cPHz4cGdnRwjuur7rOl7g48/0fatv0kGjKBhkWRD4zBJKaeD5r09evnj2/Oc///lkMvmlX/oVRHUoo/H513XNKW/bFhmSVVNhohVCuI5LjF0s5+hohRB37tzBZ84576VcLpejyaTrurwqrbVEb8EP13Xn83mSJJPRGPfFcrl8/ebkJz/5yXAw/va3vw1lUt/31lqI3pqmgR2v7tqDg4PFYvX65CRJkjQdbMpiPp/PLi67pqWUam2CKPTcgAlnsVi5rtt23Vae2Pey74UQruskSZIN4sAV+/uHQeBh5M3z/Pr6+pNPPlFK7ezsJUlS5oXv+9PpTtO1y+WSCyFcZ71eB643Go02ZXF1dTUcjfu+t5SEYTgZjRmjp2/enJychFFcVNv7KIlSIThilgZZmqYppZZzfvLy1Z27R9/5znd2diZQetZ1u1wur6+vF4tF13UHBwc4cmg7wD/CunF1dVXXJX612eU13vPj4+P9/cPFYnF5dY2i3nUdZHmQtmC21lpjIMHcDz17URSTySROQlAnjBEhxGw2t9bGUXp2dqGUKYsKcCPQWaWlEAKdMDHKWjscDh8/fmyt/eqrr/b390HfKKXy9Wa9XqfpwHGc1XKTZKnsjaGk71tCCEWCETFFURwc7h0cHDiOo29MtV98/pUQIk0HSZKMx2NIMBHHhT2bKEUg5SFn2d/fDVMf7UUcx1pZre3Z2dnTp88ODw9XyzU+qzAMx5MRhteyzPM8X65XGJPW6/UgzR4+fDhIUozXVb1NDTw7O9sUlUOdwWBorb2+vqaUEmLh3hoOh2kabzabn//8571sAVQMh8PRcAKX1nK5nM0XUEfs7Owk2eDNmzdIKgI53nVdXZdGq8XiejSaBEGA4PuqrJVSaOg3RY52Cvc259xx4OJUED9gdnIc59GjR5PJ5OTkBNWUMfb8+fOyLJ88eQKZGsBjrXVR1eCAoGXxPA+DGd7o6WQXC5fw4/V9jyYVczJwMsZYVReMsdFo5PtbSBUzcF3XSZKh5QKM3TQNYtWgB0KIgOeL0Wh0q78BmYCzked5HMdQQFZV5bgedL2EEGdrtZG33Q/lDIcc9zMhhBiNx2et1doSQvKyWC6Xh4f7k8nEdcTV1ZWx+pbMiZNUSgnZX9dJVEZ0q2JrmFVRHCulrmYXURSlcWatxQWOywRRzNgof3Z2htKLVxhNoZQSe2kBfLZVXRQF7HWEkNPTU+xbdBxnNBohehrFNAkjvLlop8CCEUKwNaRuSs658LYbzeEBJ4TkqzXuZ2ieUMRhZKaU3q4sM8acnZ1hjzVQjLZtle4xOXueZ4xhGLN8b7FYnJ+fAy6BDmR3d/fu3buh74M4Qk5nXdfC84bD4fHxMWMsTiIkVIMHJ4Scn11Ar9K27Zdffsk5l10XhiFzHEop1pBnw1Fws78EgiKtJdpi3/eronYc59ZZCWVYmqbEMmRrbzabtu7QATPGrJZBEGBnLnJJKaVFUWw2K3h3vJv4+6oocCdADwqSDTBhFEXn5+cY76uqojfGVdd1uXAw6qDqoWFAi7zZbOif/uG/n0wmAGkJIa7vce5QSgAbaiP7vvddASgCQ4O25vXLkziOt2LwdUEZQ1Vouq7rOsdzwzCEw062rbjJCMbeKBy45Wb94YcffvrRp++99979+/d7rbq64a4AiwyeFTdFr+RisRDc6bouCKIwDF+/ePkHf/AHv/Irv/p3vv93jbVfffXVZrN5/PhxMsiapul7laap63mEEEKoUqooijzPHVd0Xee7HgStSLG31tZVC4Z4vV7D9YoWPo5j3/fRxgISd8TWfoV/iPsCKktCyPx66bpuEHq+73pekOd520khBHNcSil00E1V1XWN0FFOGeOEMQKQua5rKXUQBK4j9E1YQ5Jk1mpr6Wg0iOPU84TvcoR3BoG3XQGhtVLKGrPZrD744APHcR4/fvxrv/aDvlcozPCY+L5viLVWbzkm15WyD1wvCD3BnSgIu7p5+er5yenpmzdn2XDwne98Z3d/D527lFIwN01TCGaV0Xmen5ydZnFilBZCHB8f53ke+D7nXPfy9evXP/yTP97d3f3VX/3VOEksJSBwwzAcjEdt286vZo7jAMOndhs5zW62d3344UdFUfz6b/6GUsoT233DSqnDw0NLWNu2m81msrvzySefVlWVZGngRzjWb968kX2/XC5lr6VWbdsFQSC1BfZbFIU228xulPA0ixkjURisV5vzi7MgCO7cuXOwu6eUqopyuVyenp4yxvAe1nXt+l7bdr1SfuAtl8vF7Ho0GtVde+/ePUvoarWydhsdVDel6mWSJL2SstdQKjDCetlBi4ASGEUR57Trup/+9Kd37tx5//1vvfPWY7BIXddJqdfr9ddff+267uHhoed5t1wkTC1nZ2+yLIMHajAYIAUNAQFN0zx48AAbUd+cnUFrjBETJ9/zvLYFKq7yPDfGIAWAUovy4HneZDpyKGnbFls1O6lXqw24RUIIBjZ0PPhIoyhgdruXIo5jaJUm01Fd121bM8bqslLKaG3fvHnjucFgNMw31SrfBIHXti2h1vd9fCDr5dxae3R09Pbbb0MVjn6x6eRms7m+vj49PQVvFfnbVcdABYqiQD5QVVXGqPuP7r/7rbdhpwKOvtlsLi4uoija3zuElTVfrReL1WKxODk5GY4nw+GQORzZGVL21hgp5d504rruneND33e7rmv7Tqn++npxeTlDODsuYs4FEPGiKDAQQjrZtq0xKs/zNE3H43GaDowxi/WqaRpG+Wq1ul4s4fUB6wF8iBBjtMJXIIRYQ8bjsTEElw+uKSmlpabve6VUmqZGbZ1fnucpLWG78X0fFwXaCMxgfd+/efMGUJDvBUiSXC6XAF2YI4A32BsKDwXe3mSTFsUGP+RWDdYr4FsQGEGIiRaobduqqrTW4/GYc+55ASEEui7AGEqpzWbDGKnruigqfC+gvJD7cM7DcNuyCCGMIUVRID3L9T0UF9/3q6JEGCml1BCLiBDXdX/pl3+573s43ykxIC53dnZAcIPrjON4tVrVVYlF0Sjw6/V6td4cHh4yQoH9c87hTJRS5nletw301JxzIXiWZUEQYIkh1NaASdbr9d2798MwfP369c0nwynhkGCjhbrVtEE2Qykdj8dZlq3X6/V6u7YYiCMGddRr3/c9R9xqAYUQGMyklNyhVVXN5nN8NcZYUVTGGN1LQgiSPhGvABwd6NptDgsAy4uLC0A7aPIsw0jGIEKFEAXWEK21tRqs4mQyQW93fHzs+/756en5+flqtTLGuL5PCPEDD+TyO++8g34RP4w1REo5m82ePXsG1cSttCtNU+H5AP7RHULyqLUej4eoyIw5jHDYaQkhzQ0LD4v04eGh1rooN6rXi8U1IIDxYIyDrZTalIVSCnNdVRW/+7u/e+/evevra9k1eEbAU6BQVGorZBwOhwcHB69evQKIkKapt6VoM8dxDo+PMB6Aq8XcQint285aS//v/9f/y6NHjw4PD42loOesJZ3sHYdjZq2bUkslBG+aTluFECNGOGPs008//Y//8T+mcXZ4ePjo8ePRaJRlg7KurLWEM7T2quuAKhFCfD9AQ9O2rRv4SqmvP/8a6yMw6Pi+P51OpdGvXr3CUySEbIp8vV7Lrg/DELy4EKJpmq+/+PrP/uLP/7t//I/eeeedi/Or169fv/2td7uuOzk5HQwGruc9e/aMUgYIWmvddK21NvQDQshsNofi2BjDqIOMQUj/8NICyMV8D3ly3/faSEDHKHK3HS5oo75T682yKIow9IMgstb6QWStTbIhPAFa6zLPpZRgu/q2M1YlSRKGfrDdaGkJIX27xS3v3DnCT4jrwHVdyohgNIoDYhnimAkxvh8OhxlsyYyxz37+s6dfP/tv/9E/FI7n+z60+Z4jqrYpq5w7DuxLXdtIKbMk0lprqQLPHw8zIUSv1NOnT3/8478u6+rw8PC3fue3gSBSS8qy9L3QGNP2nbU2TGIpZej54/H4/PwcimloGy8vL4Mg+OCDD372s5/95m/+5vf+7t+NkhjTSdu218uFkds1W7u7u5fnF7d6CCDVfS8RcdL3/Xx2rbWeTqfkJkGYC8dzg/V6fTG7StOUEGaMMZZyzpWUvnCvrq4+/vRnWlkhxJuzM621FwRKGTAIwt36QI0x88UMd7frCM4pxEx3jo6Ojg53JlPGWFEU5+fnV1dXg8GgLMvVZp1lAz8MHcHbtn3vnXc3m400Wmvddn3XdUWRSykPDw+fvPUoDqOua4qiKKq6Ksq2bVerDXKqkEwI0gQjEXOo1aQoNoEnDg/3p9NdXDpw6QdBgCvy9PS0LEtQchB/JEly9+4xVtyg57itl6htk8lk7+CgKIqzszMhxHA4RAq8lDLPSyEEMNdbwU3XNaiybdumaTwZDfBxNU3X9j3eC8dxzs8vwcJwznd29gBRSCnnVzP8UnVdQt8QhuHh0T42pmMVsbV0sVjJXl9cXRpC33nnHUopd5jW+uLiDPzvwd7OjVkyhUULxbtuW61110lr9fX1AprI9Xrt+35VVbu7u2hGtdZCeIyRVb7J87XrukkaTafTvb0dz/MIsZw7Wuuqat68efPTv/lpHKVBEGht/3f/6L8riuqnP/3pZGea52ullNGKUkqN7rqOWH3nztF4MhRCCOFQxl+8eFWWNZa6fv3VN2EYliWC5reUDQA813WHw2FdV6enJ6vVamdnbzQa+VHoeZ7RdrlcnpyeYcZAJYA6JMsS3/W4wzjnXbvdzGMMaZoGIkt0UW3f1HWNYu+7HpCM8XgMRhXYz00LaDDaQR4E1qLv+88+/fmLFy+geQXx5IeRufEnQk0BXbPrunEcMsbKsgTNfUOOky0bZS0hRKme3uSUojupqgrhPthQjsYRikA0DWjBF4sVQufxH8ZxDPZ8sbjmWye4AxTKd70wDLFWHMohRuh6vYZpw1ICSEwIEd4Y2621RsvBYLC/v48Kja4CLaDjOJzRtm2hIofCMhsM27atywr0XxRFyNYihCDJLxsOADH2ffvFF1+kabq3tweZ1Gw2q+saMWZ9r8DCb2FCShl14ji2RLMbY37fdpvNBuhRlmXIageSh5mzrmvOqbWWEDYYDMbjcVmWupcYeIAmQgUVhmE2SPq+//Lrr+u6xtgmpV4ul5PhCNP4dpa+iRTBNwIKhb4H2wugHEVTQh0OWBTwGz4TPEGY7tHuA6fHu490Bmtt4Hl5WQIDa7sGFf/w8HAwGOCuY4wZbb/++ms0alvJv+umabr1Nwj35kPgaCgBR+G8EUKCICrzqsgrPFCpFWMMAAeobddzhBCjwdAYo7X0fZ8TAR/lbDbblAVk2YQQhJmlabparUaDdDKZgDsajUaXl5cIWEC3DeAGnSshJI5jcbM/ihDSyf4mMMUAmkWvzCnL85z+3/7P/6eyLH/lV37l0ZO3OeeL1ZIzwTnX2rRtq60JAr/rOku0w13P3zbXaCrLvPjoo4++/vIpTtvu3t7bb7/DHL7VDArnNgltuVze+rnAmnuO4Jz7XsgYe/Xy5X/4D/9hPp8/ePDg4cOH3//FX/R9/9mzZ+siD4KgqErEd6GZkFI2TTccDpMo/uM//ZP/4f/xP/ze3/u9f/AP/sFwOEzi7LPPPpuvlreT/fMXL9M03QZDwwNiLRgTSFuMMa7wp9MpNCXYBQmmEugXZgI0cAAeCDWw12H4A2+LYwflHUY9rXU2GDHG2ra31jZ1q7XWRjmOo2W/rUwRZAo68LZW5KIoON3+NZ1O7ty5k2XZwcHedDqdz+d5nqdZzDmNoiSOQ5yhqqgdwSjhwuWIi7y+nEVRWBTlycnJ4cHxo0ePri4vP/nZzybT0dvfenc2m4VhOB6PVqvV3s7k/Pxc9TJNUy37NE2PDw+DKFouly9fv/p3/+7f/f2///fffvttxlgUJSgPrutWTU0p7ZVp27brGuQRdE3Td8oTru/7su/LshwOh5999tmPfvQjpdSv/tqvHR8fS62ApYEEhHm2Liv0iGBvUcgxwH3wwQd/8ed/7rru3v7+kydPUI+n0+lwPEbcvxDCEDafz6HmCcPQc0RZlqenp5uyur6+doQHisrzfLLNtiZQk4AO1obABSNVh6eQr9a9bA8PD3d2dsIwwCzlOE7XNcvl2nU9KaUxemdn5+DgwBhTtc1msymr+maOX1tjwtA/ODjY399FS7RZrSBMBv2X53k2GhNC0iwD+eK4whNeFIVa9XHo+15oiU6SJAiCLEnpdsOSgrCJc4GQ6LZt4yS5e+8YiTJxHFdVtVgsgiBgjODn6brOCwOoxTFMn52dXV5efvXl0/t37sdxvNkUvu9LqaIo4kJI1UMD5LoupZZZQpmdTqfAyBkjZVNfXV1RSieTCXDH1WrDGLOWlmVZlTWeIKG273vPE1bprm8eP34ItYTneUVRKaWWi3VRVGVTD4fDPM/ruhyPx7u7u2maCsGNUicnJ7PZTGvNmRiNRmVZ3rl7xIVwBPOFD19p13WXl5fr9RolvCgKa+1v//ZvX11dffnF14wx6nDwpAcHe0r3Z2dvUFeODvZh0WjbfjabLZfry8vLJM7efvtbWtn//J//czYapmlsjBlmad/3bVOtVivVtYeH+3v7OwfHRwjIaLsuihJjzNXV9cX5VRzHWlvP8wRQW7ndk4FcmOEoi+MIC8UppYYSx3F2d/Y457P59aeffur7/s7Ojuv6aZoSYuq6buvGGJPneRQlKJmMOZhDXNflnEopvcDHa9V1HSMWbd90Ot3ZncLQigNMCImDLaeMabBpmjCJoU8qiuLy8nKxWPSdxFeL45jybaN220hF0VaxZK2BqAg+XK0NY6yu2zzPi2IrhQnD4EZp4BljoMKG7QDjK44KmCAMYFEQozOLblZ1NV2NftTzPLBygrt7e3ubzUYp1cn2NkUCOAe/ydTA+9I0TZKl6OEYY1mSAh7GvwL5jvGSc15WBYBDYFfffPMNo/zOnTtVVS2Xy6ooHMeZXy+3P2qa4Ft8/fXXQRDs7+9nWRYlMbtZSkipbZoG1frg4AjlrygKJQ1kFa7rWkrw+xpjKDGj0QgYbZakkMrdfkTr9RI4FkqqMSYIIiGE5wi0OMA18TmcnJwsV3Nrbd22aZoikyiOU8g/wPCAKfJ933GY53nAGgAv4fVvmsbzPGUNFofAEO26LueibVusP0+jENAUSnPf92ES+jdh/bjksywjjLqO8Dzv4uICbJJSapOvQUwZYwbZEMGBGBqFEMhX8zxhrS3Lumka1wvw0CF1BxDrB+6tbaKqqtVirZXd399vmgYUliGaEIKghygIPc8bDFLEKGqtV/MtdMc5v7ye3Y6RSODjhGZZxjix1u7v708mk9Vq9fr1a7x9eFJAfKuqAlayXq8J265PhXgR/fStGgxMF5o5+qf/5l98+OGH3/7uL8RxTCwbTSd9r65ms76Xw+GQ8luY0TGUFkU+ygawtMRx7DC+Xq/Xy83z589fvHjRNM2jx09+8zd/E1W2lT1acsQE43kAOpJS+sIVQlDCpZTXs9k333zz9ZdfnZycEEYfP378ne9+dzwer9dr4XtlWVpK8EpYRo0xRJNb5EBr/eLFiz/4gz947733/sF/8w8ZYx9+8vHr16/fffe9LMuUNthN0bat0pYQUpUlOFr0UkophMjfiq+VUrPZDEAgrqpbBgHNB2UWGkk0nZj20OrioVpr5/P55eWlVFCOayCxECN7nkiiGFryNIu7rqPUYgHRNn5MSkpJ0zSXl+eU0igO3n333YODPaWMMWp3dxcji9YaKxfTJKE3mdRJEruuG3p+URQvX7785//8n3/0009+93d/9zd/8zfv3LljjFJGc87rrhXC6fveqP7+/ftVUU4mE05J27ajwcALgq2JtSwwahhjTk/PMZOFYVhUJWPMUu66rrZKSjlIM2stTMJ1WXHOu7ZFu0wI+fLLL//sz/7sF3/pl548eUIp7WSPFwaAlidcz/MA2+Cwzefz/f19eImfffPN3/zN37Rd9/r163fffReZRkopPww4dwCn1VVLOPMcsdkUuBC3Gx4nY0p5L6EMMH3ff/PNNxdXsxupnyWEEMIc4Vmru65jlDZNM8rSqqqk6jzPm0zGQEm11l3XrFarqmo8z0vTFJ44NNxeGGhlXN+DF1Ir2XUd53Q0Gj24dydNY2O2Cy7zPF8u1lVV9dpguYLn+1k2COPI933XcTzX6eoGOtyub4qiePvJW1hOh/OjtTZmu6h4Pp/v7O5Op1PotaM42LLkjiPlVjczHo/jLIXTx3XdJImstVgqb6Rpmx7NkJTK932pNTg+Y4xUved5gnFjVFmW0+n0zt0jx2FBHOD6xtk+Ozszmmw2heM4WTY02q5WGySkKC2VUkkYSdkRarAJdDgcIjeYEk4I+ebFcyD2cBtJ2UFPc3VxgXswy7IsHSKHff9g9/r6KoijUTb4L2goF4QQuNX++q//+sWLF8hEhSo2iBKlTF3XRbFpmuri4kK4vOu6YZrdv39/MpmgbEgpl8vlbDY/fXM5ne7APKWUlEYnYdQ0zWQ8vHfv3u5kqrWsquLk5GS5Wd+7d28wGhJClst1VVWy12VZbjZYxqe+//3va2U/+ugjz/PCMCzLMkmjNE1WqwXMB3XXbjabd95+dzAYhHFU1zUsb3le5nkuBJdSaqkIIZCroy4SgqAZJGPZruuiJIZqQmu9WswB0uzt7VFGQMuCAViv113dXF1dQQkHWbc02hizTfOSsmmaIi8x0DuOU1R1lmVQHWB8xwIoY7TjOFEUQTBQlqXWJo5j1/XrumaMzOdzeXP/G2MY48AVQP0DD7hRpPB2i2h2x8fHWTJgNyu9tdavX7++Xszqup5Op0mSoK67judvbbydIfqWCIuiaDab4UcCLIcROohCFDzoiQkhUINAY0cI6fseWXrcYXjR0MdHUbRarp8+fYrbNcDApiyaj6qqNLFRFB0eHgKaNcYU1Zb4jqIIS9WEEMvlsqoaFBFjjNEEYkEIOZDDEgRBEoeDwQATmusIcDL40BhjQnDMjf1NzBN2ILl8G5oIjS88iev1mjt0OBwGUYQDoJQKw9haS42FDbZpGqWMEIJzCrwKPoC7d+9+97vfnc1mf/7nf26t1cTiRQMS4bpulg2Bm9Z17XKGCNz1ej2dTq21QRwkSQLxJQDIdJBhBhgOh767dXK0bXs1u8Rwu1wuZ1fXwORg1HAcJwxjpVRZ5sYYa2nf90VZA/4UN1tHt3o+ut3koZSqywbtnXeTND4aj6Mo4g5N0zT0A/jzMLZprQ92D/AJE0I0sbPZDB5kWNGJNlEUuZ6DzxaWC5xV4IXW2idPnqBZB87dNE3dtm3bAtITQkBMslqtgiDQWgMDu7y8pJTS159+wDk/vH9/dn72wQcfrvNSCM9xHM8P2raVWqVpyl3R9z0WCLRtwxhjdrsha39/nxG6XC5fvnz5+eefj0aj733ve1Ir/Ep1XStr4zhGmwIRved5gJc5554jXNe12mBpz09+8pOr6xmE5P/9//GffOc73zm/usSbr7TWWlu2xUUwu3DOIz+Koujy8vLDDz988eLFeDz+1vvfub6+/s//+S/eeuutMIrxGVlr67q93SBBLHO3EcMOv0mdwC1w+/UxTNwi6vDhb4VW1hJqAPbeXot4KwaDASzcWuvVcgPEHs8G10rf91mW+YHrOgJKuL7vB4OUc261yrLMdYTrOWmabjari4uLL7/8vKqq//Yf/cMwSqTsAHgaYwaDgZLSGDMej2ezmZQ9IWQ8GK7X6yiKHjx4EATBfD5/9vTFp5/87Ec/+otf+pVfPjw83DvY55xhON7eKUHgeg5jTHCHEGKUBObvBX4QRcSY8/Pzv/mbv/n4w49OT0//8f/hvz8+Ph5PJ5RSyrlSSlszGo2ur2ZaayMNiEIpZRLFvu/XVXV+fg6A8NWrF/cfPoiiiNwkEOLK8Dwvz3PZ677vIch1xDakMUmSNM4Wi8V8Pvvss89evHqplBqNRu+9997e3h72mXRdVxSlMppTJpXBHAlZjCbWdX24BDgX681mtVopZbCchDGurSVkS7Shb/Y8Dz4aazVjzGoVRdHe3g6G+MFgQClfLBbE2CgOgiBYLJddJy2jRtu2bf0wKMuS0a1SVWvpOmxvZzoYjPAV2raVyjx//lxrHSZxHKeu500mk7Isy7qy2lRljszhzWbz8OFDpdRqOc+y7Pj4GJ8bpg5UNd/3LSW3cz++vuOwnZ0dXMRd16AUzefzKE04UClrx+NpkiR13RZFcfbmfLlcEsoR200IQXYdBo/JaJRlKedca0moaZoqiAPO+Xg86rqOUgYIyhq62WzW65zR7ci+FcZWhVV6Z2eCcNeqKqy1k8kkDMMoSpIkgR8NgPR6vZ7PZ/BGoaK0bZ9lWd92SqnpdFrW1WCQIhS6LEvf3+4w3mw2bdteXV31fX/37l0hBBi3oqiaunvz5gzKy81mg2lVKQW8bTQaDUfZwcFemqYg/d+8OXv16tX+/qGx9vT0FJDG3t5eFMTL5XJ5Pb+8OpdGW2u/9a1vSSk/+dnPsGSXc04IWy6XmG7zvMCx11pLtLMQf/Rd3/et7F3X3axzkC/D4bBqaucmDhSWT9XjFvIxuzZNw5iDSRpXIjAPxhjntO974bmj0SjwXBwSUMbIZ2/bdr1ZNU1TFyXirHBf4djgq1lrvSCMb0K9USTqtpFSUspBhg4Gg/39XdcVEG+BVLoxNpE4jinlSinPE67raq02m40xFlNHc5MMjhEXwvOqqtAo4y/Oeb4uiDZeCALLBcN+dXV1fn6OHziOY8ghBoORtbZXHdsGH5rT09NbmRrU34wx6MSXy+XV1RXWtmImRLLa4eGh6wiUTzSLvu9LKdu2laq31jK7DQaHUOzi4mK9Xs9ms+l0ure354VB3/fQyOOG19ZAvo0bTEoZx2EYhlLK1WqFTCJ87KvlZr1ep4PM931it7GFtzSL6iWEbpTSpmtRp7BX2+UOkKdbkVNd18oagIVCCN934eDDU8M57Louz8s4jkMvBJRwcnIC3R6k68Bogdns7+/Xdf38+fOu6+quvaV98WFyLgBe1nVdFzm+qbW265vlcjnd3R2Px2EYTqdTQ1B566Io0myYxHHfNuvlEpLB6+trtBBRFEFUgC4NzSVIp04qpdTbb7+dJMmrlydFUSyXazReUkrXdeCB8H2/rPIkSQLP77oODM9wOPQ8bzgeCSGqosa2pc1mMxqN4jjebDbL5XJ3Mh0OM0SlBHEElRHn/PWLl2jy2rZt2mo4HG5NXdZATr2/v48EKDChwPPevHkTBIEyW33hcrmk1oLpAqoK6RSS1Sil9K/+07+9c+/u4aPHi9M3/+P/+P+6ur42hjx48OjuvfuTyURqVde164eYEUG9JUnsOeJWqRd4Pj79i4sL13XH47HU6vnz503T3L1713FE1TbQE+Byd292skKThEIVeD6O0fn5+ddff316evqDH/zg/sMHUso4Swkh6/WaMqa1tYyiuKL8EE1wXsH3tW17en75zjvvOI775Zdf/viv/vrJkyfD4fDk5KTvFboNa61wPODDKFpwjgB4BBGplGqaBlCnvskQBzQKZjBOwvV6jZcZZCW6MTBooCO11lLK5WLNOEnjRHhuHEaOKyCrjIIQ37Tv+9Vq4bqu1Ypz7rlO13UIv/Z99/z8/IOf/s0777xz/8ED5E3gKjfGWGPEzWrw4XAoZf/q+Uvf9zabfGdnZzKZ7O3tTUbTMt/86Z/+6R//8R/7YfDbv/3bb73zFlh5vO1VVY0nw7qurTZa6+l4Upa5HwaMseVyeXh4mA2HWsrrq9lPfvKTj3/2qbX28ePHb73zNuecC+E4TlVVR0dH1FpK+PX1NdRFaZwopdIkQSBQnufDYRaG4bMXz589exZF0d27d6GXHw6Hy+UyS4dRFF1fX282mwcP74Fcr+vad4O9vT14T2bz6/l8/md/9me//uu/vru72zSNcDwIRV+9ep0kyXA4rJsOq8Rc110XOSY8RO2tVquiqBwhqrLseqV6STlTSldlY63dPdjH+79areI4TNNUuE7kB01T3blzZzrd8jjgyvHyoCA1dbdcr4Tnz2YzQ2zXdQ5n0Fv4vts11eJ6jjgZoDLaEMgcge6cXV5UVcMc6gq/65vQDw5296y1gNws0VVRoqlVSqGg4sgZY05OTsIw3NmbKmU4p74f+r6rtV4sFsCrEBhorb26uiqbWinFyVaE6/v+8fHdKIrqslqv8/OLC9wgQRA5nosCNhqNQi+Yz6/zPG+aSkrZ9U2ve9d17t27hybJWquUgZEn35Rtq1CoAj9EoV1czzzPk7IbjrIkSeI4dLYRrwratfF4nOd5WeZ4lGD2X79+nSQJ6KHpeAdgd12XzOGu60gphRCO43LO4SrSWgNfRGYNFtU/ePDA4f7Z2UXTNK7rQa5EKX3//ffruv75zz+jlPayDoLg7t3jNImyLLNKb9ZFp+RmU2TDgRBivcqVUuvlJs/zcpMngywMQ/QTnucbYvH7DocDMFmYua+v51CESCk3RQHeLQiCJIo8z82GI631bDYbj8dQX/Vqq+BBQ+m6ruvgmu7RrAghhPAwSYJ5IdvE+bau6zAMXd+z1t49PkKyEWyG19fXs9lMCJENUtd1iTZAuQBFABKDScJa2ysNFSaaPCklaAdjCGDLOA6Xy2VR5PwmTgzKV8cRWuuiqIB5eJ7n+1u/EQ45QqEgsobkA5Jfx3FwsAFdDLNB3/RFUcRZCjE7Iq/wvdbr9WazQdalEGIwGO3t7Vm6tTEiry7PczhPQbDC3zcYDFBf0VctFguAGWj+puMJij0EUlBiQdiUFxvVSa21VhZarqZp0jQdjUaTyaSqqtenb2BIxDjkeZ6lxBgDhgc9mdYSgFzXdQhwxyH3vRAgTZ7nSvfWWgz/gCoZobjnPc8jjGJ0V70MPR8SOoBGt7/XKt8AdTs4OLhNlkIbDTgniqKiqDjnspXw6+CQvHr1qu9bMA/owtfrdVEUWZbB3mgZBdF2QwJ0vh/eNnaCUcbYYrFYLpfaSK11JyVO6WQy8QKfEAJTZ1k1su9fv3yB/Gr0TJPJhDEWhqEfhrdxr3hZcE6y4QiMZxRF1lCtdddJfBrr9drzBD5bSinjxHVd1+Gw53POsQ7ucnZ1enpqlM3zHHEtTb21G/ey7eoKYiqlFOGMMbb9rZW21iI9ERkFnnDrus6GA6j4IU1DkcIBBhWjtS7rGjez4zjNfxVuh/kZBwDwE/2P//L/Hcbx8eHharPpuu7qevbXf/03UsrRcPLkyZMoSTBwCCGUNFprEWzFlbhDlVLsRiiwv79PrK7r+qOPPvr0008ZY++8887x0d10kOF9LorC9/0gjtDZ4OosyzIIAmYJ5FMPHz769NNPP/3006Ojo+FwcHV1tdnke4cHGPWaplksl0qZWx4Ti3LRzFXlNm99Pp8XdZPn+fx6sV6v/RDbb7QxhlEH8lLXdaHYRdHFP9Q3cyrYJa11VVVYLAC5G86clFLpHj8/LM0g3XGmwaMJIbRUfd8aQ3zfbeuaMDYZjYIoGg6HcRxfX18D+samF8dxrFZCCEoMpTSKgtFoNJmMdnZ2wABuivzTTz+dXV4Nh0M0BEgJglSQUvrq9QvdaUJNGMTL5TIMw8FgcOf4+P79u4SQq6vLDz/8MEmSX/u1X8Orhe7wzZs3vu+/9dZb5+fnm3x1/+69pml6Jdu27ft+Op3GcRhFEQIbP//8y8+//OL58+dhHL399tvf/va3XdfFmXNdF0ogfGJAg/u2E0IoKaWUk8nIWrvZrL788stnz57Vdf3w4ePvfve7UHVU9ZaAUEr5gQusqO/7LEld1wXKKDyHMYbgHzyvrukBGDDmhGGojVXa1l275ZdlWxQFtxxuGs/zFovVNy+eN2Ul/IAT2mslex0EwXA4qtvG9/3BYHB4fBzF4Xq9xm4QKaXLnTgJ4X4ihHCCaOyuruuqbTgXlpBVXriuW9VN13XUkq7rXE+4rmutHiQpXk5c0yikXddgl3BRFKvlhgmGTA3gwbepV/gMEQ8mpYQYFuEdQoiqbbqu29mdtB0WlVZ932J8fPXqZDweD4dDAITY5apuYi3z9QZHDsHZnAsIGkaTsXA80Oia2OfPn2+WG+yNGY/HMGYjD8913baroyg6ODgIXIGLmxBW1y2ggsViheoyGgx93x+OMt93q6aG9A0lIU1T3xVBECBjwhiTF+vFcolGkzHW1HVVVTvTPe7Q4WCMVh6znLUWrnicZOFuGwKAJXDbKWm0JRfnV67rJkkGabYxFimRbYsA91oplSTRZDra29tNwkgp3WvFmSiq8vnz5+fnl8QyBF0ywvBdcKe1TQ8xR9u2xipK6bvvvtt1LSa6pmlW+ebZs2eUUiymHGRDOAko5dfX1yAyHFfgOtZaR8H2PsH6Cuxrh+zaWsuYE0URgqCapkFZAro/Gg1c1w22K9IpQBEAD9syKQQ0qdZaJDyFvg9zCQoY4NKmabwgYDexq8PxaGdnBxqX+Xx+enqK1aVRFEGjDQzbWmqtdYWfJMkmX21Fx11njKKWoFiALoTxAnqgpmkotSBxjDFHR0cHBwcXZ2e421GbN5tN2VSHh4eoi23TXV5ePn36dLVa9U2/s7+3d7ALEafruhcXVzgeN3JsVVUV+EfP87DFBDc2oj6N0k3TIGMPSnbcXZzzssxhwHIcF3M15xw4JZAb3G8Q9tVto5SSvcaSAKWUcPnu7u5sNuu6brVaQMx+584dITxAO3Ecu8JXSlFmm6q+hXCapkGCJjYTqJuMGFQfz/OgTIA70loLvEMIsSkLtKp1XYehj5WUnPP9/X2MOpCCVFVFNIGxcTgcQki+Wi1wo/Z9zzgRQpRFDdwLTwEsDYYcxhhzOFpeIUQUhGBjuq5bLK7X6/VtBy+ldFy4Mgn4/TAMjdJEG+FydP9N00x2dmBtPjw8NMSenJy8evUKUs6+77GiFAHp2ERiDBHbADnfWq2UCkIPOQl1Xd89PsJJjqLIUlYUBTJ1+7a7vLx0HHc4HG6NdL2M41hr6fliS2pRrrXeCuq7XiG1P47fvD7ZbDZYxHx89w54MMwAjuMgcfBWceh5HnMcKEMoparvEePi3SypAzINQwb9/f/5/1nXZRBEe3s76DG/+urpZ599lm9KzvmTt9/GQ03T1PdCz/OqbpviDzxNCNE3DcDJ8XicpTGldLVanZ6e/uWf/0Vd11GUfOu99956663VZg2QLBlk1trNZgO02XEcwH3GmNnF5fvvfxtXZxRFL148/9u//dvPPvv5gwcP9vb27j18EPnBYr2yht4Wy75Xr1+/xoXe1N1yuSSE7OzsUEdARrpYLKRWaL8Gg4ErfBDtONar1Qov5C0wRm5S5gAqYn5F0VqtVvZmawQ2pTDGbq0f6BIwhY/H4yDwPOE6jlMVOXROp6cn63WOZcMYKRwu4DHhnHue17eN67rTycj3/a5r0AANh9k777zjuu7J6Zuvvvrqy8+/aJrm3r17x8fHuIv7vi/LEj4m3UutdRBEEG9VVRXF3p2jo729PeQaq5vEnVevXhVF8b3vfQ889LvvvotXd71aOI7DhQPple/7CJ3b391L01QIryzLl69f/et//a/3Dw/+wd//byilVhtCSJKlWllltslSQNFdRxRF0bVtkiSMEZjpAHJUVTWbzT/88MP33nvvyZMn3HHRCA6Hw7arDw8PIR2AoRI1xgtcHHoQvs+ePfvko5/VdT2ZTB49ejSZ7BhrKefz5RqaibLKjTG+40Oobq3V2s5ms8VioZRyHJcQQqkNw9Bx3CDe2keqqrKMoi9HHzkdD5VS4+HIWttWdd+3t8LPFy9evTk/o8yhlBtKqrqZz+dGacbYdGeyt7fHmYNBvMw3RVF0XTPIMjS16DC4YH3bNV27WCyCIErTtCzqNIvLstzd3U3TWPXS9/04jiEmTdLI454fuA53/cD1wqDvu4ury5cvXsGrmyTJ3t7eep0rpeDNvqXX4XjYbDauI6B2euutt8bjcdvVq+Umy7LBaFgUxYsXL54/f+n6/s7Ozv7u7mazubyYMcaUNZ4XgKHousZ1XSF4L9thmh0fH94MMLYoijdvzvpOTSaTLBv6rte27ZvT103TNF0dBMG3v/1tzDye53VNDTzj4cOH+we7jDGpFNIg67q2xkA4XBR5FMXD4dAVvtb/JY7u4uICFE8Qetuq5rqj0Qj7Ky8vL9tOworYNE0aZ5DOUEovL2ZYT7SzMxkMUku0tdZ1BdGmbTtoeixhdV2fn1+2Td+2bdv2d4/vYocVLi5iGXTxQgjszInjaLlcGmPeffddKSV1OBR+8PpdXc6qqsHjABtAKVVGAwY2xnjC2dvb8zyvrmvgFt3NtpPlcrle58gu0lqPx2Ogj5Ra6B0xguPWAkhzdHR0fn4OUTYQHVx0kG357nZzAJgs3HVRFLm+j7+31iqjpZQQUWH6DcMQXNLt14njNIoibHLMsgzeI+xpVkpFgY9aBXEeWgH0povFou/bwWAApQreuCxJ0L2hqSrL0g08hPu4rmsNGY1GQKGMNE3f+b4rPJcQMp/PF4sV+hX0oOiMUfUJIdZqyCpw3zqOUxWllLIoKlz7AFQw+CG1pO/7vb0DXO+DweBWsIWahU+GUsocbozpu+0aHCklvLEvX74Mw9BxWN/34/GYMdY0HSJU2rZl1ImiyBUc7ykUL/jBQGiA7wOaCKxUCFFucnSiqOhxHCM0VfgesIP1eg0bIGNstVrhV9baQlNFCHG5iwOMSldVFSEGbbTv+1J1jLGm7qSUySADVb2lqjwPmH3bd2ipAXZaa+MwiqJICI73DumYWmvCaNd1i8XKGJNEMWNMMP7o0aOyylFkDw8PhefBlGCMQUQRGgAo8W/YbW2M6VrZdV2aDjDwG2PC0A/DULjbZADOue96ZVlC4M8cDo5iOp0SY7uug1oXImZOaFVV2sibzUIu9mPi/TJS+b5/dHTUtu2rFy8dx1G69zyPclZV1Z07d9AY8Ju/8OgBKFpK67pGaW7rGsMYPkn0pjjhxhj6r/4//4uxSvY6CL3RaIThrGmaly9fvn79+u3H70wmk67rtyyD0coQY0zbd77vp0lECKGUuK7bVrVSSjhsd3d3NBhaa09PXv3NTz746U8/cjz37t27v/prvxbHset7llFCiNTq5ORkf38ffgGIpWTX40ZIo1gIcX19vVqtvvriyy+++IIxdv/hg/FwDCQ2HQ58Lzw/P++kQjZJ27aDbIShcDAYMOFeXl4+++Y5eEO0XOt17noB8mmQawKIpb1ZU4W/QReFt0tKube3h3ETHRs+wTSLATaGYYggJTRD4Cs94WB372CQpUkEQ6VS/cXF1ctXrzA7Op7rOG5ZVV3Xea47Go0OdvcIIZeX56vV6tXLl6Cr5vPZg0cP4UNmjF2eX5yenr569QpdJlJbyrI0UkHwGEURUoKHwyFjZHdvHAR+GIZJGg3SDBz2l19+iee7u7v/6NGjJ0+eYFZWSjHOcbEyxqq6wFILKSXy0mBNz8sCM3qSJMVyjc6VCafrZC9l23f4UXGP1HUdh1EYhtezSyFEma8ZY2hV9w6Omqb5wz/8w7Ztf+d3fw+kyTZxlzE/cNu2NUpD0yClbPsGPqw4jjlldV2v1+tPPvnk+vJ6tVrdv39/Z//g8M6dqunatsUdlySJ4PTVq1fEsrIsu7YlhAR+hM9Na+354uLiLM9LxvnDJ4/TQVbXrbXWELJcLpMo+s53vlOX1ddff40LoikLzxcgE5umqcrm8np+NZv3veKucD3fcRzXEev1mjLS1K3U24TG0PcYIdYaSsxyuZxMRsPh0HEY4yRwvThL67re5LnWlDCWJUkcx77vep5XbPI4CdFwBK5HKVmt1vjfrmvfevctkBFlWV9dz+bzed/JOI5HowlKHYBA9Lvr9dphvOu6tq2jKGKcHBwcHB8ccs5WeQ6IZTQaOUJIqU8vzi8uLlBgzs8uDw+PwzC+OL8UQty/f18ptVgsBGdSdmkWKtXHUXhwAB0rb+rOcRxrqVLm8vISNv4oitI0btt2PB67rhvFaV6sZde63NFah2FIBU2SZDQaJUkiZY98LyAlo9EgDGNjjFZkvc6vri601hcXF5B3pGkKaZFwOaz7u7u7ACqw0HC5XEKDiGhWIcR0sotLQCnVyxZgyWazsUoXecWEEwSB8Pw4jjdF1bZtucnruu777QZfQ0mWZb4XUENha0AQvLXG9/3d3SnOnhdGnue5wlsul8v1qmm6Mi8IYeA77M1ODs/z2q4WQhilbzofi/O5Wi9ns9m33/8OriBjTJoOKKXGKChOwM15vosgq8uLK77dN+9vB8UbfK7ve6UMLjekmoVhKLtGSjkcDoFGEEKgwsFfZV3hi4AmjqKo6ySwJYjTOedt08OnhpcUMl0gBMLljNgkSdD1xnFKKUUtJ4RsNhtCDB4KvGNhGA6zLEtSZbS11vNcAIRoWHEvhWHo+wHQjk1R7O7un12c/+hHP3JdF1IE/KhgVNEq1VWB+Y1Smg3TKIqoJScnJ9baIAhc1wcFUVUVRF34STABdrLfgkaE+Ddh7rjcHMfpWomBnzEWJbG11mHcGLPZbF6+fJlmcZZlrusAaABygwYrDENraN/3lBjP2QpgbusOSkwQBKvVCl0sIBwhRBwmWms/3NKL9CZYn3ACYbG1Ni83QOb6vmeEdl1XFBWwkiRJAjeAvA/2f2stdr+i7wxCD6wO51wZAl82fn2MwVEUYYktKrXrur2UrhCMMfhm0MX6rmetpZSD50Xbh2YU+idr7e7BLrAPkLbbOsKY63t9319cXPR93zWt4zhS6qZpkFwPsghFnDE2HA5dz2nbVqm+qpr1cmOMsWT7OQdBUNVFHMeoQZRSraVRCp4ATCbw2BpjtLXr9ToOYhBceMR1Xd85OrbWer5omgZQDvx8IM3wHoEFQt+ZlyX2L1FKHcZweq21wvMgJccJ0VrTf/cH/xKNm9baFwIqkzRNuUNns5lVREr55s3pxcUFxlAR+oEfUc5GoxGjdr1eR1EYx3FdlHmeB57vCBYF4c7OThAEdV3/5Cc/+frrb8bj8W/8xm9wyM85467A5Op5HhcOvVmJlSVp13Vfff4FNFh7e3uAH7/66quXz1+cnL5xmHN4fBQEge+FvVbGkCAKiWVnZ2er1cpayoRDje21qqsGoep4TqjHXdetNrk1FPy6vXED3A6jmDkgKUVX6ziOH7iUcNm3uNcWiwVjzHHY48ePIW/E00Jb8Pjx4zAKzs/PVdcvl/M4joeDFIoxQBGz2ez1m5Msy9Jk0GuFfcZdJ1XXA70MAg8DPWPMFcIS0nZ1WZYHBwdpmlLLrLVtW3/++edo/qA4QWKZL/woTazSfhTePTrOq5xxQ4hNkmR3MoUka2dnJwpDQszr16//03/6o+fPn3/ve997++23szjZPzoklKJAQuiWZts1tEhwWVzP35ydHh4e7u3txXH8+uWrn/7N3/7lX/zF+9/+Nuf8F/7u9yeTSZwkhNFik2OBndYaa1vqqiLEWKW5Q8GtzOZLQsjBwcHJyYkhFij6ZDLBGiVwJVVREkKspULwk9M3QvAgCBD47nmewzhjbL1eP//mmw/+9sNXb05+8Ku/fufevTAM86oUjF9dXcEttV7lUsotutb2YCiCwPM90bbNYrFc5xtpNOf84PA4DMM8LzdFEYfhYDDomvbWt1KsV4Qa4XhVXTDqJEmiLCmKylhLuNO126Yhz/PNaun6wWAw6pVMksRhNA5DrXW+XiObdzQaCMbDyB+NhoQzKWXbdy+ev+ac7+zsZFkWBSF3aBRFeGmVUvlqfXl5KaUM4ogaW9TV/v6eF7g7k2mUpJTSzWbzzdNnXdd1nQSkr7XFneU4zmqxhM1wMBiAdlwu59hVL4RYrRdCiPF4PF8sdnZ2xuMxauRms8nzkjDHczxNKLMkHQ4C118s5nVdp2nsek6SRIQY7jCjjOf7w2zUNI3WFgJbKWVVNUr17GaBEud8urPnuQ41Ft2GEGJVrJBiMJ1OsNUKDimAH+v1+vT0dDFf48+AuUBFwSvw4sWL5y++2dvbw3XPGDs+PkbtpJQIId68eUMpPTw8ROxtVVVFUSKnQylFCRdCGKmUUo7nr9frtm2Zw8ejKVr5y8tLQthsNlPWGKO6TlJju643xsRxvL+/BzQIntOrqyuo6KSUWTpI0xTZbH3fX56dr9drPwodx6FsmynoCMY5b6r6BpMopNRtW1tikiTZ292H9hQCf6VU37e3210838VHJHuF310IL45D1/UptYw5WEhQ1hW1DDJwPJcg8MKb9V/oAoUQ3U2ztV6vN0UOVgUXIzBj/DFIWNq2bZse5kfP8xhzPE8cHx9zh+It7prWWh0EEbTC/CYQXNxQ8EDLoLhyGMPcmCTJarVar1doufwoFIyPppMsTpuuC8NwNpvVdet5XjrIiqIA4kgsg/QeRX1b84RwBUdSQ9u2lhJKLWLS0fFIqRGqUtf1arVCjAJaYAjgmMNVL7U1ED9BEgCAKkuHaPhOT0+7rtvf3+/7nlDTNn3XN3hng8DDghDHcSjlUkr4Upu6W6/XDrHoYwATIKFAa71cLoMggG0CH77nea7rGoUdPhGmfaBQnPNWtmB4lVKUE3BQqpd4TFZZZY1sO+QBbTYbSrnW8iY0REOARZmFIAH3dtv3Xdcxtk2UgDMXH28YR1mSxmmCaBiUy+vr675tUEnR+nDOh8MhMaaqKs8N0FliZhBCCN/b3Z16XgBvuCGaWtb2DQ4DGqDZbGaMCbwwGw7wUXStbLs6ChPf99M0rev6anZBCHEcVlWNkgbGcEop53QymdR13fXN/u5eXdej0WAwGDBiwT7nea61iaIIWtIgivq+54QTQs7Pz5FUJ4TwXS9N0zDyERSCMQOzEPyFwONBW+d5rm82X6Vp6jBW1/XOzk7TdcCwyI2Dqu97+q//xb8AL2tvYvgZMY7j7O/uJklS1cXZ2dlHP/34m2++uXf3/tvvviOJmUynEA9RQlarVRJGaD4wbwnh5OsNbk+00ljMPJ1O8zx/8eKFEGI0GStpcHCVNZQycN5SSocyo3QYBkqpvCzu3bvneZ6hpC6qq/n1F59+YSg5PDzkHFF+zSYv86q8uLhwHMf3Ai4cq0lZV9B0M8aQDhXHMXQG1lLscIDZyhjjCOF5nnOzlpwxliUprgloVCm1lPLHD+9j1QAjJM9z4Ld379+5c+dO01Zaa0T9QuTYdV3fwhXPL64ub1WoV1dX2PxwcXG2XK4vzs59359Op8PhGD8tY6zre1SdsqmrvICK33VdRGXu7uwAn5NS5vn64uIiGw7gBppOp55wCaOyU4zzLE2VkWkaK9ULIRzOm7ozUh0c7o2Ho+FwEIZhXRUffvjhH//RD58+ffq//8f/+N1vfWtn/2C92WhtRqOR1Mp1BXwiq9VqtVppqRDW5XlenIShHzRltV6tPvr4Z1LKIAhen775nd/5nfFk0rc9YXRnZycMw5OTE2sNIUS4nBiLmzoIgiDwKKV126C9SJKEGPvxxx8TwuCHqut6k5fT6VQIdzDIyrJs2irLMogZB6OhURLlxBpVV+2LFy/+5E/+7Fd//dcG2Yg53HWEtgZEjLzJCx2Px6vlZjabSa1cRwyzxPNcIUSn5OXl1TfffFMUhef7h4fHCAvwPM9hgm6Xr0vHccoyv1123nUdMpm01nlRrFYb2Mq6rtNSSa1cP6CULhYL1feDwcBhPAwDSzTndDode563XM0nk3E6yACeLxYLagkisoZptl5vuq5brVZdKznnTDhwjwvXF44TJaEx6mp+lYQRzt7h4SFe5NPT0+VyWZVlHKWoGWEYxnEaBIFS5uz8XCnjOM75+fl8Ph+NRqPRiDHSdrXnebJrle7btr1z5/itt94GvLpYLq+v5rBnCs8dZiPX9yCsWec55rnZbMYJr9pmf3f61ltvoTCUZSllt15urq+vQNm4rr9cLn/5l3/54cOHX33+Rbtd5KLCCAl87mQy4a5o29rlLgIPnz795vr6umzqoijCKMKabd/z3rx5Yw2FgQtiZ7x9UBBPpqNBko5GQ1RfnIQ8L168eLFYLPb398M4BYGyWCx29vbH4/GrFy8JIYw5txOq4zjaGKw94K6Af/DzLz4zmoyGw93d3SwdovLhsOEbMcaEcAESQ3W7lb/4AUjt+XIhpTSEAachbJsI5XmeVooxYgzhnLq+GA4HxlhKqcO4tVZ2HXIpIX2z1nZSQvwkpUQImRCetdp1fSk7xsVied00Tdf3O9Np3/e7u9MgCLRUwJWXqwVUehC8IuUEAA8mxrKojDGG2Ovra0+4jLE4TehNKI8xBLVZay0cb/9gVwihVK963batIVZKKRwvCD1rbRRFSIe2euveRWNhrc3Xa1QBSynkaLiBh8OhF/jUEqlV4IXK6CAIyrLkTGDPJqWUM9E0zXq9RlcUhmFdVcDYoHlyHKdpKlSc+Xy+bf5k77puHMe7u7sHBweXl5fr5UpK6TmeuvEXC8GF73mOsIyit+PC6fseejJkCoLQt9bu7u4aY/J8nWXDMPRVL6sKax40QvgsJUoprWySJE3XesIVlHDKrKXQkMEvDMBpOBy6gYuX13Xdg4MDQsjZyRvn5q8oitI0lUZvNpvhcMg5X60WwB1BwhZF0Td9VVWMUENska8hb0+SxHMDQg0qC+IegHMPRsOiyAEcjkaj8Xj89Ok38D0AnAOh0SuVJYkXREVRSKnLstyS0b63ldUHLqX04OCAEBjJLYC0um7SNNVqC3wYY3w/3NmZDAYjx3O6uut1D5UF/rxSvTHGKOWH4d27dz3Py7KhUr3UBskjs9kMr5jgTtXUfacGozF4dk+4UnZVVbmuG/jQ3PK6rkfjIcBUSqnqekA/OM91Xa+Xax+5uIy1TQ/yx3GcR48ecc472Ydh2LRVXdfY8YN3vK5r2C2FENRaWCgODg6w5vK/ZvOhesdIQ/9//+pfWWs3mwKf72w2q/KiqorjO4ffeucdaClWq9X19fyvfvRjqdX9J48Ojw8H2dD3PMjfdC+7rsNFTLYJWJZzbpR2fe/gcC8IAqP0er3+4Q9/+Nlnnz169Gg8Hk/GO4PBAOuiirqG4ZkQsl4sPc/TUpV1pZTywgCHzBV+27bL5XqxWAjhXVxcnJycFGVdlpXr+1mWBUGUDrK6rp998wKR0I7jCJdv7wUhkJtCCMNeYehzYbbHxS2ldBjHMO153mq1SpIIjWkUBK4r7t+91/VNlRcA0l6+fL5er6M0Oto/+Na331dKDUfZFkIztCzL1Wo1GAyYsxX14109PDxMkujq6ur05M1yuXz94rW1Nh0OHjx4MJns1HVtLFavcMIZzFCb5QqVoKqqtmnwLYIgCEO/7/vRZGyMefHiBby+9+/fT9O0qbuqquIkDMOw71scr6Zqu65ryqLruvFo8Pjxo53p1Pv/M/VnsZal2Xkg9s973vvM5547xZCRkZGRlVWZlVWZVWRRRRIk1aSMhtWC5aYMSa2G23ADfmhYsN02jIb90pDa6rd+siCATwa7JUiQKLVpUQNFslhFVlXOmREZGcOd75nPPnse/sEP69wrxUMhszLixjl7WP9a3/oGi1+dX1xenL16dfrd99/vDUeO6yqlMCZFURiMHMf2PA+w+h2LJUld13394WsY42Kbuq67Wm0++uijNE3/6I/+yI/C9957742Hj0ajUaukEGK73aZp4rqu53lNvUMWYdwcDHq260ynVyCftLj9xRdffPjhh0KI733ve4eHx0qDkoja9q4mptmWEFI1tZTStgW4uSjVNlV7cXHx8uXLt956i1u7RxGin/I839ubbLN0Pp/3BwPGxGazAdJDkeeR708ODyzL0toopU5PT58+fYowHY/HOwVrq+u69jzPshzYnpycnNzyx5MkAUefHQ+3KIDcBvR81wtsz51eXimlfNfnnPX7/dV60et1LMuK47Vlc9fzEEJHd+8M+z2Msee4sm6MMT/72c/ieNvtdjHGlnC63S6zbCll0ypjjON4rmtvkk2abQlBGGPdSmB4+L7vOF6ep2VeQTtIKW2rerqYX13NN3EMoVtCWEZj4dhFURjVMsbathGCdaLg6OigqgspJQfpvusAEpamGaW0E/UYY8vlEkzUYEq2bbcoitFoTwhR16UxJo23D16/Px6P27bWUhljLi4utNaQtVoUxXg8Vk1LKe33+3t7I4gWUEq1pt1ut5eXl9v1BmiO9+/fr6pquVlnWXp2cZ5nRdu2hwcHQgjBbYQQRImDLScsHyeTCSGklTVCJtumxujhcIQQWiwWl5eXoJ4OOz0hRFnWQgjK2d7eXpGVl5eXQDZvyqqu61q2TdMQShFC3LbCMGQEZVlGMfF9HyECn7koCi5sgJGEEGVZGWNAMAH1BxKmXdu2uRjujZumWa5Xy+VquV5jjKumhQ/PGLO4AEbUYDCgFDPB6rpp29Z3vTRNPceB3IKnT58ihEajYbc/KMq8KmtQGMBB0jRNVTVFkSmN/MCt67rX7wNh1/ecPM+BNF03VZZlSZLcpr2NRqODgwMQ2MIh5NguLE8559igzWajkSmKAk794XAMfRgc0mB3QikFP78g6tRVC+sFz3c450q1VVURhAEHBdTHGCObhnO+jmPIJBZCgIRNGTCrxIDg1nUtLAcKCEKIM5Lnue+F4jZ9pGmapkE3RJy9vT2waO50QilllhVN0wSBxzm3nF0ABnSuwGFarVab5QYGZs55liVwH4+Pj2vZFkWBKQEsFghbt1wiRijG2AtcuA5a6/PTM8/zHj/+hjEmyzIhRFbklmXVVSuE4JbYbuJ+FCqliqyUWt0qY6D9DTpRtxsBHwPwkuVyqVsJmzJ4zCzLcnwP1nDGGMZ22dtFUUCWTFM2l+cXIP5gnNR1DYKznfzCdYwxVbXb6lqW1aoWFr78xsAWeGZa78xCobMB9KhtFCGkbRX8fjhrBr3+cDjExLRtyy2utc6y7PBw3/fD5XK52cRN08SbJM9zyD9omgZ8yGzbhvelrss8z0E6YNkcLHMRIUAfBLANcr7zfBfmE8dxU9XCcizLkXrnwmOU1lobo1zXtS0O20BKseM4wuJggLVeLI+Pjz3PT9Nks4kRQgRhxhigU4zuhGXQnt65c4cJrpQKQi9N09Pzc6Az7o7XskySZDAYGKUAHqaUjicTEEgCVJzm2S3f3RiD//u/+3eKouDcKou6yHNCIIcBLCvU8fHx22+/Db5qH/7so/OLi/Pr8263+9577znCojdJn1JKwEik0SCiaZom2yZlWfT6nf39/bt37wohri4unz179uknn3/yyScPHz58/Pjxw0ePINPK931uWxcXF/Em6XQ6WJu8Kvf29hzHWSwWcbK1bbfX6yFDttvt11+/+Pzzz7MkHY7HnHM/7GhkKOFZlkHOGlDk4HJjjEGPCWsXyLQHqhY04LDdkFIKIQLXA14XvFoIocPjYz8ASnvr2DYhZG84EoI1TRPH6ziOP//i00Gv/4u/9AOgz8NIBy9Yq1Vd12+88UYcx0mSGWOCwINbBU1tWZYvv37+2WefzVdLz/Nc12eM/fCHP4QmejqfQSmBoFagmIBVICSJip3NMTXGYIN+53d+p2maX/u1X+v1eqPRnm3bcRyXdRWGoZQS8v5glVYUGUHatq07R8fj0YBzzvCOFsostlqtMMYIEaUUZQzIH5TSMAwtx4beAi5aU9VatUD3LorC9/2nT5/+8R//iDH2V/7KXwGtq7pJswGeO2O7mPCqKpRSvu+W9Y5rwjm3uAiCoKzypmn+5b/8l0bjX/uNvzgcDrVCdVMWWW7bNqakbVvLsSELYbPZCMY9z+FUrFYrUIr9o3/0j05PTx89fnMymQz6I6kVpYxZAnb2TS2zLEvTVFhMSill2zRtv9+HthsTttlsrq6uLMva29sjhLR1A7VvOp03tYbpOYoirTUEqyVJUlWF4ziDwcDzPEIQgMxpmidpXlUV2N05lgtdWl6kQeB1u13HsTjnmJLqxkXacZyDg0ng+2EYxnH89bMXsm6AymOMcQNfKQMH0vXVrNMNhdjZYcDvAWGaEOLo6I7nOVojjM16uYKHrW3bOM7SLLMsxxAMu6oo6sZx3O1GnPN4u0FIc0I933Fdt9cLKTHaSEp4t9t3HIcxfvLqYrlczuZLkCrnee6FAcAYWmtjMJAqLIsXaWaQCsNwOBweTPaBeKGUevXqVZ7nYRiORiNIlYHD7/p6tt2mbdvuJOK+U+aFlI1t24/fesQ5H42GsNBZrVYnJyd5Xmw2m7ZRdV37jhsEASTrUYpt257P53lVZllWNWWRlZThw4Nj2PtAvb68vDw7O4MVp9n5tKnhcAzty+XlZVu1TdNw26KUWrYNVQ6MaRBC8WaDMd5uN19//bXjeBhje8fR7u02PsYYg+CYBJaM7/uz62uENVAY66YxBs9Xy81mY1vOcDgE3A4itoxShDFMkFIKHhukNFj2cM7BtipN05///Kcn5xcPHtyP4wTo6pawbz3NHcfq9QaEYZCtASEaXljZtMYYxinQ6oHT1jTNYrEA7sfx8TEwfnZaQoPBlPJ2t0sYFULAPgEaVmD/wGqmyHLOedjpgh4cwCTwpCiKAmkDeAD8fjhTLcsajfYAFAE+VpZlSZZC9YDeFCEEHC8oI7YjCCFaITiMKKW+78/n8/VqBUe71jpN0/l87rqQwMZs24YtocG7nETgtjPGCMJCCIbZbDYDHo8QTGutkIEDAmj45+fnoCQDQs5oMMzzHH4DYXgn8dO6zIv1eg2BHECThwaxamrP85Q0SimMdBiGeZIv1is4GuC7wxFACHJ9D65227ZFliO1YwqZG6sIUGYwS8Bx5jgOpbgoiuVy2bZtskmgkRoMBn7gAtXJdV1CMAA22+0WMOMo6gDPAZppuPXAq4H+Dx7p5XKJEXUcZ7vdCiGurq7gskCDwjiB7BA/DAD1AWntZLJXllVRFKAAW692JApjDCEMeI1FUWw2q7Is3cCHrSggeXBnYe6t22axWADf37Is3wthmIc3TilVljUQoGG8Z4xBS6qUQlhbXASBB9sJ13Wrqrq4uAjDsBf1kjTO0sIPXBBOwaoavjV46LdtGwRBXlQAXLVta4iB6wkfAC4CRGTWdS1vwjF3hEXX1VqDXnC9Xm82G4QQ/r//1/8XY7CSpmmaqixhaw5LFmNUmqbjYf+Nh28KIXw/zPP82bOn09nV+++/Dw86nOiXl5dZlkFg9na79b3Q8VzBOMK6KHJsVBRF9+7dG/ZGjLHZbPbhhx9+9NFHy+XqN//Sb4VheHZ2liRJ1O13Oh2ljOsFTV1neS7bdr3ZrFar6XS6Xse+7x8dHbMbz4j59aKoykZJQojj+rCfhtlXCNEqefvUKrlLUQiCAI5SOD6J2XmRLxYLQshkMrl35y4VhBHKBOeUUU7LshSCAdTMGavr0rMdAF0Q1qEfLBYLhFAQ+KAh6nZ72zQpixp4/SDzhNYEHhog+EMNJYTURRnH8cX11ZMnT16+fPnmm29997vfheVjURSvXr3qDfqwSGaMAdUMRlLIYQ1D//z8/KOPPvpP/pd/+fDw8J/8k3/yu7/7u6+//vrBwcG94zuW6wF/NssyYCm2baulatt6bzhyPdsWgjEW+K5lWePBmHP+Zz/7s3/6T/8pcOY++OCDX/zFX7Isq2lb6AwczwXXHPAoT9PUEkxKySnrdDpAp8iy4uTkBIhclmXFcWyMEUKk6ZZzrjWCKgncBWNUqyR4PjHG2rrhnDuulef5N77xjaurq3/3R38Sx/G3vvXu3bt327rRWiujh8OhwSjPc8dxEELxegMqy9FoJIQoiiLLss8+++zf/rs/HI/Hbzx8E8ifsLT1wqCuWlBUGGOmsytKSVGUoGR0HT/sRIDFaq1Xq9VsNptPZzBqZ1mRZzXGBM6/JNnmeX5855AxdnV10batUm2v1xuO+jspa9M0rUm22cXFhWVZFreFEFEncF3XtoUxBqIY87KwbRtcbVzP1lp7jvv222/3+/003ZZZvtlsdjoggo0xe/sHtwYEWu8SJIGEC1ZYVVWdn12u1gvB7W4vOtw/QAj2Yqgo6+v5LMsKKaVWBiF0cHDkeV5dl1rr1XppjLEYR0hLKW2HTfaGx8eHtu3Wda2UNhoXRVUUxWodQ9cihGiUxDcxwIQQOLcopZ3Ah8dYG9mNOpPJpNfrOY4F3A4g1mgjy7KcXs/zvHRdHxkihEU5+BQUbd00bYWx6nRDpZRlifF4DLy0oiiWy9WzZ8/SJD84OACxDtQojE2e55999tlivbJdx3VdjKkQjHN+dnI6GAz29/ePj48JIeCksN1ugVfQNE0QRGA00zRN4Aau60a9LpQUdoMHwJWnO59xKYTYbLbGmKIsPc8Lww5UHkqplAr0rcDPPT8/Wy3n7Y1A3bLtTqfj+AGsuSETmlK6v78/HA4txuu6BjtNICfZfGcdpFRblvXx8SHkuy/Wq48//vjJkydwxq9WGyh3YRA5Ny4SRVXmeQ6VZBcXmKQIIcp2lvFQWKSU5+fnMO+1bTscDt966y3gwiq5M5ME2TtCSBldVRXsnqBpYIywGzf8xWyeZVmr9O0JClgXYwR2Iwr8RaW0LAtQjaZpsqyANgX2j2VZamSgoQf2ujHGaAzHnpQS3J6QIdBCAbrTNA3BGI7/PM/BgzfP0yiKhsPxrcOq5QigTwFQgTGG1oEiCts9Qshsdp3neaOkEAJmdSjF48ne7QAMBrkA0kitdvsyrYGGjxCZzWabzYYx1uv1JpNJI9ssy0BdSAkYmHcB7AHAT0rp+/4bb7zx6vRlkiQ7hnvTMMY8YUMpACBKKQWaMEQJLKPjOFaqhU660+lYzAKgpdPpIKzDMAQrCqVkHMegUodmgjGOMR4Oh7A7gpsOIlxQIidJYlkW7HbG4zHcMq21ZXNkSFUXRVHYtm2UZox1el3oEKqbpFGoFb1eL0kSJQ00/dfX12VZw/gNjEYpJVjrEbKjoMDhdXV11cgWtuTQesZx3OsO2ra9gSE4QghWvQBngpwTYwOHC0LIsQX0RuBCAkHASZKEXljXJRCWQj+gbBf6DoxPoJAChsq4BVWOECIccXBwAOTFyWQCpmKXl5dAWWOEgNSRc76zdYVsxvEYkGOEEP4//O//S0qpJZw8z8GfA9hOtm03baW1Xi3mTSMPDg4ODw8fv/EI3VhXA6ACImTXdYVjAwXV9T3OrUZKi/OqKjDSVVVCHzrqDyHTDTqSL794Op/PYdlHCLFcL8/zvGiePPsq2cRxmhRpHkQRpVz/BxZ/cJ/CMEQKMcbiNJFSCsu55a7dXHSslFou591ud7w3hP63LEuLs7vHx0qp7XY76PVhawvsli+++OLNh2988AvfC1wvLXLdSi8CaJFgjKFRsywO3Ztr2VEn4JT1+z2MUFVVEK3j+cEHH3zwzW9+s24brTXQFEB3zRir2p0LCHAtAR9OkoQTCuKsppaHh4fwkMG0zW0LxvEsyxDB8ENgx5EnKYx3Fxdn/6//7r/7nd/5nV/83vf/4T/8hx9//PFyuWyq+vWHjwzZmSxjjPO85Jx3u5FSLcOk0w2NUlLKIAgsy7oHRpqUVHXx6tUryFitW/XNb36z1+t5ge84DhNcSsmtnW1HmeVllUO7AB+SUtrrdAGTN8b8q//fv/w7f+fv/PZv//YPfvCDyWTiuq7t+XlW1G3jODa8vYwxTAzIRmxb2La9v793eXkZbzbHx8e24/z5n//5naO7gDoIIYqqtCyrqOo4jvfG+1VVXV1c1nVdV1W32x0MeiAkJoScnJx9+eWXV9fXjuO4rucFPhDF2kZtt1s4JBRWhBCEKfwnkIY1TQNa6CxJ1+v1bHa9W2MZkhcyy3Lbto+Pj4HQhpB2XTcvQA26O48tyxIW12rnqr/ZbIIgcG1Paw13/OXL50KIyWRSlnVZVYwJy7IJIVmZU4qxNkqpO3fuPHrzoee4SqmqKtI0PT09hQEa7hqokHq9HphzxnGcZ+VyudRaMybOzk5s251MxkKIw6P9ThgRQoqyLptaKVVU5WK+quvacXY6plu02BZWt9cJgqDbjZCWWZbAcg0IDVAQt9sU6L15VmJGObcsYXPOMUFFUbQVrIbtPE9hreB73t27x1A6bdcCSPXq6ur6+rKu66pqKOWdqEcIk1Ipadq29UIPG4MxatqCEBQE3nKxiONNJwgfPXozDMPAj9brddsqKSXI3cFpCVQ7QojFevXy7NRxHMtyQF3vu+5gMLi8vGzr6v79++ARmG2TdueEMgd2V7fbD4KAEwo1utVqh9Ag0jSNaztRFGGMg9DbbjcYY5ik06wATwQhRBh2jDHdqBOG4Ww2m81m0EMo3ULmved5BiGgq9u2vd1u4De8ePECYwycX3AShiV4XcNuMdBaD0f9wI/i7RrWTNezWdu2rZLr9doobVkOUB3yJN9ut1RwSqntgPmCMcaAmvjOnTtSyvliBtZCcEJblpVtk8vLyyAI1us1ZvTBgweMMUDQtdZlUYGSA/gPUkpldq8MdEhAAobeWilVVRUMqJBTB74PAP/D/1JKkcZN04CTre14CKEsT8DoFQ5vmCjW6zX43edZCUp+QggmBriVsLazLIsSDoycpmmQUbZtHxwc3KKzUuowDJXWQgjKMAD8eZ6LG4F8WZae4w4GA0FZkiTX19fL5TLsduCPb7dbIWzwQgOLL+vGdrGua8YIrCbhTDFKA6+IEAKSjovrK8BmQGeaJInUajQaKWkAudxut+A2bDsCoGXA+YBtRim1KVDoHKXUbDYDIxJgWG63W40RHDqAt912lq5rw6UGcMt1XduxoLuFjc1qtcqzQmu9XqyBMwePX5qmt/tcaO6BKwbI5WAwaGWttRLCSpItmFphg5umIYz6vu86u1gnpVR30DfGxOslyCeLojh5dQY2vLZt254LBpBAYaKUKtXCxrksa71D1g2c7FJKjczjx48ty3r69KlSBpowQgjFCHrr24UsFDeAjeGHG2OUbksIpBZOEARKGnDc0FpC6IhR2rIsTExd11K2Wuv1es25IJRblgWALjwwXugdHh4Cu/R2b7tYLNI0r+saaQmfATyfgd0IL5oxBv9f/0//Z2CWJEmSZUVVVQBXQOL3eDz2fKcuIQVJHB8fH072LC6m89knn3x0enoKxW64NwbLOG7ZQRBohNI0B+JkW+dAw4S5JIqid97+Zrfb1RpBTZdSvnjxarlZbzabNMuE7Xme17a7hFeMKXT9bbMznwX4N8syR1jAyk/TlDIB7eCtLK4sS89zhBCWzUHnuJjNHceiGAeBr1qVJNvBYNjpRJywpqmDIIzjzb/6V/9KquY3fuM3wJgAuOG25yKEOKdSSkJIEAQIaxAqOpb1rW99K88yKWWebF+8ePFHP/pTTOgv//IvO44zGo0cz10sFgAXUUowJsKxMCYYIylVVZUIYa21alqosGmaRkG4Wm2ePXvW6XYfPnzIOd9ut4ihMOgA+gpLtKqq8iSdz+eU4iAItFJPnz59+NqDKIrqsoLwgE6n43qBIRQexKZpgFdbFNmD+3c5Z1mSQphaEARXl5fj8bDfjTzP63Q6SZL85Cc/ub6+TrICY/zDX/nlO3fuUEoxJXlWlk09Go3SNGUENk1WVVVNVed5jg3q9/vgylGk2bNnz05OTp4/f/69Dz7odLu253uub7tOnudKSShPsIfSRm63W0gaiaKAYPzJJ5+cnZ9/+9vfdh2Hc44Rff78uUbG9/08LzEl0H6VedG2beAFSqmyKtq2BiE9YyKO49Ozs9VqdX09rarq8TfeQghVZXOrgkzLNE3T2XyplDo/vwRzHc55XbXffu+dThhRSrfbTV3XUjXLxTrLa98P4UgIggCeCsuyPN+RUq7XS1getW0rZeO6PuSyAVkQaZxlGZgKQnIOQoQSHkRhWVYEMyllXuWMU9dykmQbhuH9+3eff/31wcEkiiKMTVEUl5eXvu/v7+9HUVQUBSI4juPVatM0DUR6G4Ph1fvVX/3VzWbz+eefSynbtt6fTDq9yPXDoijKukII5Vl5fX292WwcxwXtSBAEURS5tgPa281mE69XWuumqTjnjJPhcHh4uA/8LSjuhJA0L5MkQYjAIolSKusGVkVhGAJ/xWgNZlHb7aZV8vBwfzKZtG3btrUxZrXaZFmxWW+NwZZlWZYttTbGVEUhZWuMYpwopWxb+J7T73QRQq7jA9UJUBPYpIDfD1DxbNvOq5LZTiNbozTnvKoKhFDo+1rrIktvTiY39HyQtiwWi6jXBYUaxrit6iRJ2laNRqPx/iRJEsC36rLpdEPX8bM8weArCuccE8vl8vT0NE3TNM3feuut0A+WyyXAFZZl9fv90WhEKKqrNoz8MOqC2q6qqrouwf8FAuOfPHkihAABUxB6D19/5LhWFHZtR0DhPj09bds2TdPVZgNnquXYZVlig7TW2226WCzqouz1ekXdtG2LESGMAs4EvCtIj03SLaAywGfI89x3XEIINFviJswbvJTquvZcH7oc6MVXq1VeFreMbDjzoAm7BdXgBq1WK2BJQp8BRzIwsvO0AEhJCIEw5ZwjrP/9gXoDeiVJAj1QU+/8VC3LAqICrOY551VVyVaHYQie44JTSinI52FfRgjzfR8TAq2w7/til+S4MwPDGBdZnmXZbTYiQghR8vDhQ9/3i6KglEMCEhQKqNuAHWqtNVIg8KSUVkUJs7rW2hEW53y6mF9cXMA2Cja8nV7XcZxkm0Fag7rxtOt0w/rGohO2CsAxkmUL7RQ4ycVxrJRarVYMbOIxAsQI+EJAgRBCcE539niOA6cYZcTzPJDQwe4vTbI4jou0gL5E3vizb7dbcMm3LAuuKnx3z/PqBiaNANAyMO+QjSyKYpsmlmWVRe37PiQcIMqqqsBGwRjJGNPq9tVBd+7fgz7pNhAdY7NardK0dBwH3jvgsRRF0bZtWVcQKpWmadNIy7LguarL3UPIGIOODRBrILyTm3hQ6JbqulathkkAIYSJMcZQZJIkAbtvbSR0bFK2WZY5josJ01rD3wXGYHEal2UJOPR0OoU1V5IkQLOpy1zeeG3CjAFOn4Dm4P/yv/jfwaATxzGY8QthA5cQ1BZSNqBriOO4yPNBt/fo0SPXdQlBL05enZ2dXV1dZFl25869Tq8LWYpU8Kur6Wq9Jju+vxoPh9A4c85lo24fAhgvzs8u/TAwxlDKbNdHBEMgQ9M0xkDOQI0QVkpigyzLQlgDMAgPPXwxuILQkMKOD0wKXnvttTzP8zwlCNV1xRjb39+ryyYvUoYY4+SN1x8hpKuqqevS9/2Li7PT09P33nsv6nYQ0k3TAL0uz/O9vT2lWzfwm6Yp0oxzlqcZY6zf63S7XbBvmS6WP/rRjxaLxeXV1fvvv//o0aPhcOh5Hsa4UTVnVivrtlF+4Da1bGUtNcIY50mapunRwaEQIk2S05OzL7/88vzyYrVaPXz0xi/8wi90ux2FUJZlVd3emOj48HpQgoqiAMJEsomhiCilTl+dGGOY4E0thRDj8fjw8BDQ/vF4zAUlBFtclFU+HA4nk8mzZ8+01nVZ9Pv94XB4cHAgm+bi4uLHf/ZnX3311X/6n/61e6/dL8sSEYwMKcvS83yMUVnli8WiLGpwNDbG7O3tIYSuLi9t2x6NRsaY7Xr1J3/yJx9++GGe54d37v7yr/xKGIanp6eu68GCv9OJMMbCYjD0gOUmdLqjYR+i4ubz+aeffG6MGQxGcbIFJs1qHWOMX7t3f7FYVFVNKYWg36IoAOYF1DNNUynV+fk5t3bsDSnl1eX0+vq61WqzjVerjVLKsb3RaFTv9CxSazkcDIbDPueUEMIFXS7WdSvXqxhGSfBngdkXGRIEQdNWlFLX8Zumqarq8vISVDz7+/vdbhfdBN7VdQ1gvtG4rmsvCMqi3m63o9GoUZIxUlWN1lK1bVHkh4eHGJtOFEVRAPgBvN6r1Wqz2dRthRDa29uHttIY3O32lsslIuTx48dVUXz88Ue2bTuOdX5+PplM+qOxMYZxLqXURoKGd9AfdbtdhBA4NddVdX5+3u2A/1YLlAUpZV5kVVVtlqsHDx5MJmPf95M8mUwmrazh8xR5RTHuRD2AtGGf0rbq1atXi8ViR2lACk4s8EzpdruHh4ew5zXGbLfbJMvW63VVNUKIPEkdx9EaDYfD119/fTQabOP1ixdfT6fTppHvvfeeEHZZlpPJxGK8qqqLizPw3ovj2LYF4cLzQ8IZzB5G7WhGQghsECDHWmvo/qF3BPLrerFM0xTCVbrdrud5hDPQVAohbNtFSK/mq6oqpNHj8TAMO7ZtG4xms5ltuZeXlz/58Y+Pjo6gRYCjkSJsCSfoRAghYxDGqK4bzlm33wMP6sFgUBWlZVm2I5qmAZLGarUQgjmO99f/+v/m6OjOycnL09PTqqooZ2EYGkyhpjeyvb6+7vV62CBwNieEvHp1Wtc15wLfqMwwJUKIXqerta7LcjQaaWxGo5GgLI7jtq0dx4GME9i+5Xlp27Yh+NmzZ2dnZ6enp6PhWIidxxjGuN/vW5Z1dnbmOA4Qom+RYwCuijwDs8DhcLiNE0IIrJA2m01d14Bb7KhOzIKDDcBdOOlv8a179+5prafTadM0BGEwQ0mShAkKCifYcxljJpMJHMbwr4QQThm0d1VVLVeb8uYsR2RHGwKnCYxxWRSr1QpsKXzfPzg4gEg0WJyBwSmldDqdQv8H/Co412AXKWwLYYzAfd52EEKybsqbqGytdafTAaM+0LYXVTkajwFwgi5BK+W6LhgSwXUA9n1VVUIIqiFpaqclBEkQ3KxbdBMYSODciyiCzgmORWOM0hKKZ1mWEMYAREyj0bNnzzzbgzGJUnp2dgZA/ng8hksKNwjUBvfu3VssZ1JK3/cgbACYS3G8BWFEkiRNLdubQCT4YGWeQs4N/OThcNgqwxgDxw1YXGgtt9ttVuR1Xbt2AH2tUqqVEoK8YNu4t7cHWzxKOeRYEEI4p6B1VUq1N7aoN5vNBv41z3d5iYCYYoxd29Faw4wHzy0xGuYBqRrBdu2aZVn9wWiz2S6Xc8/z4BoyS0CzBEtJ8FUApqNt23D34cOYG0MKrXW8XSOE8H/+N/4mXP1bR2no2qDvBqCvbWullG3beZ5v4xgwcPBcTtPtcrn85JNPCKP9ft+2XKXMehuXRTUajUZ7Y0Lw3Tt3wKnl9PR0uVzWRQV3N4qiThgZjK6vZsC+p4KXVQPA6Xa7bRpZFIXn+fC0EYIF44wTeBzhqMaYEoKKtKhlbTELUVQXJaIk8oOgE+zv7UGughCcYiJ1GwTBvft3fDdYrRZIobatBbO0lp0oEkJwISjDnHPHsU7PLq6vr1+7fx8mCamUH7hN0wjHtixLQ+qiMQRh2xGMUGAgOo5XFMXZ2dnl5eWf//Sn333/vV/4/g+UbqE7jJMtvO1CCOiCHccpqirbZowxpI3v+57r+r4P8RofffLxv/7X/3o4Hr7xxhtHd+9orfu9EeVsMZtjSrIkXa1WQegBMq+15oRCb3G7EIHqDL5oP/jFv9Drd/bG+65nB4Hf7UWyaYHQAEB6r9ezLK6lYox1Oh3oOxFCz58/D8NOGIZ1XS9Wy7KogyhEGtVtY4yGNVNd14Hng89yURTJdgtOP3fu3IEfe31x/fXLF8++/vrevXvvvvsuY8yybLgsxhit1ZMnT8ALtG1bhDTnlhBsbzTuD7oEs08++aRt2/F4/NOf/nwwGLz51uOqqhCmQggIlIDtCZAkYMMLjSaMLxiT7XbLBC+K4unTpzsrB8HLssSUwcJatpCRbOC+HB8fz6ZXX3/99aNHD6H14ZxTzi4urqbT6Xg8hnRCOF/Lopa7zIMqTdO6bgghVVWu12vbFiDWGQ3GwH6FQpxlWduooiiKqmobVddtGIZlU8LbSynthD7G2HWdIAgYoSDjFUJATB5CaLvdLNcrSrFShmC2WKwsy/L9oGkaqRFjrCoyxphSsm3bMAzTdDtdLCml337vvU6no3QLgwosNOM4rqu2lXVV1OBz5nsBQgREzYQQSvH5+TlBKM9zyxK+7x7fu8sYCUIvSXaCNd/xgchSFrXYiV7z2+JFKQYq0nI1J3jnldDr9e7eOz44OJBS1nWZlUUcrxeLVdu2h5PD4WAMZpXX19M0TYs8AZCbMQZjYduoTjd8+NqDw8NDz3PKspzNZmm6zfM8ybO8rKRGkR8YpCilsDeRUgrGEUJwoEJPBphZCmhQ1EmSZLPZLpdL3/cPD/cPD48JJ2VZA+/56uqiG3aPjg6SPHMchxC2WCyqpqaUpkkeRRFnDDiIwH4ry5IYZIy5c+81QghCWMq21+szRhHBQBvSWjqWe3i0D/uLMAzjeH11dfHpZx//+Z//+V/5T/5XQC4BAGmbJpvN5vJ6ttlsmOBCCITI4eFhU9Vff/01UppzK03TpmnzPF8ulwGkslRlVVWcsv39fUaIUsoQhBByhOX7PucUsAc46V3Xvby8LopiMB7BWDKbza4ur6fTKaBEjDHAt8CA0HVdyAiGrVlVVb7vR2EAL5cQoipr13WzIi+KQt/4k8HWEmOMEYVD6+DgIL9JXcQYw40DFGdnVSCsIAjm8+XFxUUja5gcAI2GDwM1EPiXSimKCfQ3CKGqbuGn5XkudQtjQNM06/Wac67hyvsBAFSw6gL4DbAuKWWn09mVCylBHADAkpQSEez7/nhvrywKhJBgfLFYzK+ngMfA0rnT6YA0AdDZRu74zZ7n2bbt+74lBJSvHdnL8wDIwRhrqVTTgrM3kPAAVgHdGzzYUu6cgXctnW7lTXiO1tp1XUIxkBFhCwl0HYRQluabzcbmNvAQALC/5RsAbAN3HOjzaZoGoYcxzvMMmj+AxyzL1lovFossyyBYKSsLyEfO89x3bcAmAXi2bZtyC8hIQF5SSnmec35+Dg4jRu1cYHa/xxhwmQHwBdje0LF4nkcp/g+bLWBoQetMKYWuRikFoYXAeAPSmGBca42JgXMQY8wJvu2oBOMHhxOtUFEUeVlVVUUphk2iMYZZYjwew9eHvGP4qE3TIISwNgD9wk33PG80GnHOtZGUUvzf/Nf/N2gFlFJg0o8RvdWqIAQEUrler0HupzWCts6yOOjdGGOQw3VxcXHnzr1er0cpc7zA87x1vIEHFAIrQK1jlIZhtK5rWUsYK4FIWBSFVMoL/HSbtG3LmIBj5hbiCjw/jHzg02mtEdKu5Srd1kVDBUEKY4ZsYaV5RjFxPOf48Aha2l6vxzBxA1cIQQiilDdN5QgnCDykcRDCAEGgkyCMaq2++OLL3/3d3x0Nxn/zr/+NMPTLulJGa60NQSAkadt2tVqFnt/r9Sje+SBzRhBCUso0Tc/OzrrdaDgca71jSPT7/c1ms1wuIcJCGW3bLjzolNJ0m2CMCdrtCDzPK8ry2bNnf/yjP/niiy/eee/b3/3ud6uyVUpZjDNLMEwAkE+ShFlCCKF0e3JyAgf84eFh4HpCcKgCz549+9M//fHe3vhXfuVX+/2eUkpYkMTOAEne6ZsQAUo159x1bYAbLcuqi7ps6j/4g3/99/7e3/vBL/7St959x7WdTq8LCyaEEMRxADEfajcMxNPptNPpfPObbzuWwy0ex/FyNe/1eo7jlEX95MkT295FNrmum+f5arWcTCaYmLKoLZtrrTmnnbCrlPriiy8ePnwIxMbFaimEYGK3iZdS2sIyGlPOwAYlDENKGdBs5/M5DFvb7bZpmjTJkySJ47iWbdNITHaOz3Xdaq09z8cYW5w7jmOQsiyrbeskiUHYEnU74Mvfti0U4jTNF4sFpKRZloMxadu2LGrLsi4vLxknliU4F01TD4cjzndrF3ibCGF1XWdZfnFxEQYdjHFa5EdHR9AKxPG6rmvHsuBbaK3augHh0t7eHhAING7X63WWFnEcx3HSNE1eVmEYIkQYY0Wx8+NxPacXdTzPE7bjOI7Ssm1bGHw7ndD3/SRJmqYyBhOC8rwEC8Gmka1Uvd4AGySEgFkfY9O2bRD6rmunabq3Nzo4nNi2vVjMoijyHR/0ROt1XFVVXddR2A2CoK5bQCOAuL3ZrKTUk8kky7Lr60vL5gcHBwcHE993Ed5tmixhY0yVMp998vlquSnLSkrZ6XVh2QFBUkEQwBKfU+b5TrcbHR0dwYsMrc/5+WWrJNLGcZx+v2+M4twCBhXG2Av8tm0hS87zvMGw51hCSukIyxijlfr0008///zz1WZ55/jeZH/8+htvEopcx0dYY4WNMUmeAXQqhGilbprG6F2EC1jbr1arxfR6Pp+v1+tutz8Yj/r9vuB2GPn7k8Mg9ICcSykty3xvb//gYALHvNaaEFSUGcZoPp+DFV9RFE+fPFsul5QLxhimvK7roio551qhJEk81wVsXggLmmDXdTebTVFXRVH4vgvE/+Fw2AmDpmng5O71eqvVqq5LOCOBXOv7vmU50+mUCg569slkwjBN0/Tk7Az6JzAQuXv3LsiQYQtsu47WOgiCpmkwMtAW5HmeZwUMMEIIzndMeYwxowKooqCqjqIINoYACLWyBqNLhFDo77AQIAxFURR2IvgY9D9wxieEAPkMmjD4I7CsB6tkzvlms9mmMbRWRVGURRGGIagEtFQIoePjw+VyaYwJggCObfgldinjjBAC605jDBAu87LIskIbsz+ZSCnrssrzXFAGjgnQg0KvL6VkjLVaUc5sxzFaV1X16tUrxljg+VBypZTQacFqVUq5Wq2asoLUQsYYkLGAhguNF/DDQGq9u7acgD2vvkklhtanqkpCSF3vHMtg632rFQWIztw4BC2Xy1tWE0IIPgDsheG7gDoSLiYA/OACaIwJwxCcXcFgpdfpgI4SPAo6nQ4TAnwGoOMEViXoCTDGVV5BwSybmt2Y2wEck6YpY2JHiQObfikJpa2sKdlhEPC/0IcppUBlCcw28P1HSGOMR8MhTI9AklZKgYkPrOxWqxXGBmmslOKW4PaO+1+WOezxQBwAwgKgnRVFAVsUjDFoIQHMgmdMax16PsYY/2d/7W984xuPsyz76U9/2u33giB4/Pjx3nj/5cuX6/XacTx149mYplvHcdKiXC6XlNI03rZte3i4//bbbxNCiqIoy7rb7U6ns7PTC9u2qbDOz8+zPBe25btBXZeUcsviSpmiyAiiwIcwxsB4ned5mmfGqEa2UO6haYXfb1kWpTQKQ8ZIVVUIac/zuGA25QALQz8HkqJW1nmef/nll4/feGRZ/Dvf+U4QeNttipBWShlqup0+wnrYHbay9t0AIf3ll18Sgo+Pjx8+fKiMPj8/dxwnCsI//8mf/+N//I+///3vf/DBB1G3gwjGGLVaAdCyg3ObFsQpRVHIpu12QraLgwCoM//93//9k7NXDx8+/Na33u31euv1mlLa7/e//vprTBmMFIwx1co0TbU0EN4XRRGhVAiR5tmXX355cX31/nvf8f2AUWG0zvK8KArQzTZNI40mhEDyXVEUx8fHYRhOp9dJvB70+hBX/PTp09///d8/Pz//5V/+5cdvPTo6OsLYgDiUEBKGISGsbhujcZ7nbVNNp9OyzClm9+/fH3R7QRCcXlx+9dVX/+Kf/8/wvo3H47v37wFHQWtdVVVZ1gD8VlXV73f39w+LKvddz/W9YX/ged5iMS+r/OXLl3VdL+ar8Xj8zW9+azqdAtEQtAh5nvV6PXnj8scFbaoWIQ2+/1999dVoNKqa+uOPPx6Mhnfv3oXK4rseQgg0sND0K6VB4gvWmtCWHRwctA1E7WbrbbxcbaWUQggpJXj5AlDcVPVgMOACxm4mhPA8JwgC23XAU4cQst1uT09Pz84u4jgOg06v1xPCTtMMMCrfCzebTVFm8D4jhKIoyvN8Op36vnfnzh3OaV23GOPtNlmtVocHx1prKrgQAtJFm6ZK07QbRXB+VFUV+sHtYGdZVr/fe/2NB0q32zhFCCVJdn19vY63RVEIYTvOjqAwmUwYY3maeJ7XKr1cLqu6BCFt27aMkU6n0+93gcgFBNLNZpOmqVIGGeoFvi0sSGEjhLjezippPB6GYWiMAiItLCAsTgkhkF4cx8lyuVwu1rZtW5YTx3G/33/nnXeePXsG6sjXXnttuVyuVgul27qu+/3unTtHjmsDXff6+jrebKtKXl1cJ9sMY9LtdhHBxhhgDcNKHZYsVVFwQeu6FoIdHu77vk8ZLsuSUaE1EkK4rg0jpRA25/zq6ioMw9ffeAhKrh2QaXNb8DRNQ893XVdJKaVM0+0nn3xycXV5dXXlR+Gv//qv27Z9dXUlKDPGMOEChJDn+enZRVVVs+kUKkOapgcHB+Px2LMt4PU/efJkvY17vd5gMLh///6dO3c454DABYE3Go0AhoEjcLtN+/3uYNhtmipJMt/387z4N//m3/zz3/ufV6vV0Z27x8fHg9Ge7/u27QrLms1me3t7Frc++ugji/O6ri3hwNhd1zVmdLvdEkL29/egIzmY7MHnzPMc3NVte8fONsb0ej2lVF23xhiNEaACQgjXcsIwbJWaTqeUUhi6oigCdzrAqBDB4sZJaxtvoM5zzsuiQgggc4PQzrYK8EtY4YE1GniBAjVnvV5jYiDkgDHmOS5YY+zv7wO9r2p2LHto5kBtB91G27bQxwA1BWhYbaPyPIckhqgbAjNEa+3YNlwrQEarqnIcC7aKcLoD2gpdNeTeQPcDYY4XFxdN0ziey5i4nk4367UQglMmhDC7ICm8kw0aAyeFMcZyHUQw49xzXWjjqqpSrYSPB0wDeNTBldP3/cgP4POAgpVznqYpvLmwpYHKDL8hjuM02wJKAj/nVgCBMaKU2rYD2w8gnMGZC5/2Vr52e21BsE9uHHHBPvMWFIR2fL1eQ8q1EAI6M9d179696/t+ATm5QtxSoKCOeUEApw+InwAmhyUjqFDh2avrWjj27Up6R7yhHN1ohqBRQcRwzmWrbwE5s0trYMBPvdV8QJuotXQcJ00SwLmh0jLGjvYPAKdfrVZgOGcLSxnt+B40oEqpJInhmQefF5ATYYyjKALJAoZ8PErhH6C5h02RbiVCCDPE/o//1X/1ne98+6OPPvqzP/txXdf3Xrv/4MHDnYoBURg0AdGtqiqv6rppm6bpROHh4SFCCK6Xkapp2rquLy+ul8slpdy2bW5bSiOpFcGUMsKZWG9WVVlP9vc6Yef58+ewGEqS7S1lHgY+WOgAl0gpQylu2zYIvNFgoLXCGBdFRjjb29vTTWvbNjEoTVNIMlZKATJ8cvLy4vx8b2/v+9//PiHI90ONFKVUyjYMI0Kw47jn52dtKzln8LczxhgnjuMAsVE2bZU3BKEf/fjHH37089/6S3/pO+9/F55ICB0rG5BL7BKKiDEE4TiO66YcjUah7zmOs4lXz58/Z4wtl8svvvzy8ePHr7322k0oqYmT1PO8wPOFEASzzWYjOKc3+V+O61qWRRgFbmPTNPPp/KOPPqKYHN+9Ax9yEycffPABDIhu4CulqqaEpZJsGy0bxxKO43W73bpqpZSnp6c/+tGPvv8LHxwfH98a8sJoFSfbxSoGPhAnpK0bQhEjXCnlO+5bb711584dIUScpP/23/7bL7986rquwQi2VzuUXuOyroQQURTBAhFRJCi7nF7XRRl1gsP9/dF4AJr258+fP3/+XLb64OBgOBwyxrIsh+kHrO0Xi0W32+WcxevYdiygr0GZrppytVqNJ3uA2wkhtpt4vV4vV5vFei2l3NvbizcJFBGM8Wg0+vrrr/M8h0MO+ielVJbXZ2dnUJuM1gDmM8ZAcQYcFykboJLEcXw1vQahKBiwQVc0m82urq4o4ZxzSIfFGDO228uUZVlXbVVVy+WSCyq1BjOnw8PD/fEeIP++7yul67pO83y1WgHd1bVt4LKkaTqbzaBw27YN2WebzQYT4zj2vXt3hsMhpRQQpvlqmSSJ5/owIWCCmqaZz+dJkgghmroFYBJjrLRECFGKq6ryfXc4HPZ6PSGElg30oHGSvXp1Dpsdx3E6ndBxnG53t8hI07xpmtls0bbtcrHCGHPBsGkfP370xhtvgtOeZVnT6fTs7Gyz3kKl7vf7i8UKeiZK6Xg0wNhYjh1F0XI5v76+zrLk4cOHg8HA932KWZqmVdVUVTObzS7Or4Rte24AZHDP8zjnBikpJSF4u90AVciy+Hg8Pjo6UFJyZvU73bZtLy8vr6+vm7YK/Gg8Hr/x+E1A8YMgaJW2bXuXnF1Xe6MBxWQ+n1tcHBwcUM6qqrqaXp2fn//Zz376wQcfQE2HMIYsrZbL9XQ2Oz8/r6rG931wOkDarNfrbi8KgoBhNBqNxuNhnuefP/386urqyZMnvV7v+Pj4V3/1V+/duwf9Fhi/7e3tAcaADFlvlhgjgJCLotjbm0RRdHpyfnJy8vzlq4vzqyCIMKOv3X9gWVarZKfT4VRcXl6O+oOnT59utymg40opRInnOaCzKcsc2DbL5bLIUhjlh8Nhv9/XWsdxDLxGhNDFxQWczWBDxTmv6wYh1OlEkJoHxgRlWU4ODzzPAwrgoD9kjG3TxHVdcH5HBEPLm+e5bbsAqxBCwDL3tkPSWkNvBDXWtu2HDx/uTUar1Qo6EltYgPoAr1xKyS0BaAqAndAcwOEK2jTwpwC5MewZYLPvui5AEdCUg5wLvpSWKs9zraXrusLiNwfTLrzPYhyOGCGENNr3ffiD8/nccb3Dw2ODUFkUQoi6rKbTKYi0gHNyu8kBxgWixHH9qqpaWQdB0FS167q6lUCJhkwtsJXRWveGA9/3kdJpmkJeC3y7siyB4QorTuiWoO8EZUCapk27s7DK83yz2ZnKAtCIMQaeGWB78DfCf4WhEdoywMhJAewAAK3zSURBVJy2261lWVm2kxgzxv0wFMIusxx0r1mWGaQ452ByZNsWjGrwkZRSbSubG18xWDHv2iMhut2u7/tgETCbzRhjeZ4XWZYlaSNbGKUYY8KxAfyDP1vXNcTTwcap2xt4ngeNMpDVgPMH/X2zS6Gw4Y3zfd91LPDckVKCaw/8EcuyNptNkRZQJaBpk1JqrF3XjaLIcRwpG0DpOOeg2YJjGp43AFzDMARriE6nMx6Py7JcLpdSStW0bdvi/f6B49j/j//nf3PnztFqtfjxj3/8z/757wVB8O6774VhCLa2cFYlSWK5Xn8wBEyiaZptvIFXdxsnFOO6rsuirusanIWVUm7gC8vNiwLY07D62d1pKTlndd1oveviCSGuazNOMMYwbSdJAjL+IAhc24YmScrGdV3L5kKIpqm0NISgXtQTgmFMJ5MxpbSsckY4pAzVdd3r9WzbMgaVZcEEB6yu2+12Oh2Q8zx69AgoCAYpYAVqrXu9TlvLIisdxynL8uXLlz//8MP3P/jOaLgXdqIoCDElWZblVYk1UshQSrE2RZGDxb/r2ZPx3v7+3nw+d1wLJOVPnj59+fLlo0eP7t27l6YpxlQjbFlWFISWZbWNklJaQgDTWRsDY1YjW+CWSilPXrz8kz/+0ddff/3uu+/++l/8DcZYUdaTySRJEill2dRSyiSNpVKWZY2GA8+xNqullNq2bc4skExDgZOqiTcJWIcAQLrarC+v534YdMKIcbLXHyKElov5er02UlVVFQTB/tGhJexXr16dnJyleWaMsR3njYcPPd9va9npdWFk3G636/U66ESbzSbLsigKgO/5xmv39g/22kYhrAvIzP7o04uLi9dee+3tt9/2PB+IaI7jeF5QVVXTVPv7+5wy3/cRNgih0WjU7XZXm2VRFNwSGOOTk5Ozs7PZ9dT1grpuGiVhf0HwLncMuFzAcDo/P7++vh4Oh+D5iSlTSp2fXb46eRH6UbcbgVIdeG/bbRrHa2hSwd+Fcct13bOzM8ZYGPlgcGCMybJsPp9DhcIYC243TQMJMFmWJ0nie+FutnMtgO4RNrqV8HJGUVRVddM0rVIIISAD+K5r2zYQafkuMw4LIYzGZ2dnIPuK4w24dYzH406nRymVRgPNtq7r6XQKhkOdTgd2u4xygCUcx6GMwMoA3BPatkYIvf76665tE4IA3nt5cgYIjed5kKS+WCyKokiSbDqdOo7nOh7nvKqauq7D0G+qnDIchuGDBw9AfwR7gVevXl1eXja1LMvy4OAgirrdbreqiiLPq6qYLebgKgSsFKDhv/baa1EQAvAAW63lcpmk1cnJie+FkMRKKKqqilKitRaCRZ0gDGFv5pdlrpWyqAW+NoSQLE9evHiRbLMsy+7cufP2u2+/duc1RAlCqFWyLqv1es0I6na7/W6PEFKXFaVUakUIIQSXdZVXJTipIoTOzs5++uc/n07ntu0GYbharTCmYRgC7tLWjeu6YeR7nhd67mazOTiYHBxOgk4IWpCf/OQnT58+/at/9a++/vrr6/UaemXYazdNCxsGOIdg4jfGYIyLvGrbNoq68Tb96quvZrPFcrlcrNb9ft/1PUIINkQIMb+elmUJqYjQYUwODxzHKYoMDpiiyACfE4yCB5tzk1QDiD7ImcEg41at0rYtQrhpmjRN4AP3+32Yf4q62mw2T548kVJGYccYI2wriiLHshljaZ7leX737l3XdT/55DMge0HFg4MTuKpwNCyXS6DsuK774MGDMPKvrq4gO66tG2BQAZxDKUUEQ30GgRtoKUBgBEdmnudQ2+2bdEsYDvFNYPktYx1OaxjkYMJv21aqFgZLOC+UUlgbCF7TWjNLXF1dQdPGOXdc13U9x/Ud2zbG1GU1m82KNIP1Gb0x57NtG8DFJM8c16eU5kUKBHBKabZNbj3fMcar1Qo0krbnGmOKdGctfttiBkEAbDalFHjZ77KbjAE+GcZ4vVkqpcIwhLFqNpsBZwO+8i1bDkhH0CoBOQzaYug1QVRRVVWWpSCLFsJSxiRJlicpXCXHcVzPBjQOY2xZAh4/kB+Nx+PtNgEtsNhlZHmQB1A1DTQuQL2Af96sVlmWBZ4PwdCMCqhvtm3D9pnvor5bQIuyLKsbCeALJDkCPAStmFIKphFYfEPrIjjtdELOuWVZUmq4rbAJlVLqVsNsAC+I53m1rOu6Bo/ussyBlwUO56CmB5oaCCaEEABqQhkEsxIgG8i60Vrjdx5/5/MvP/0v/rf/+W//tf+11nI2m3355eer1aooqocPHx0f3fV9P04zSulms5nP567nw1Izy7K6rGDVhTGF7SassbRGSZLM53PGudYYbkzTNFK2cGlg4vE8ByFyeLgPTjzr9TqMfGwQxlg21Q7xs626rtN0Ox6N7t49hhnR8zxh8729PcvinArL5k0tGSc2s7mgRulOJ2KME4KBoHN4ePh7//yf/v3/9z945513vv/97+/v74MUcTzZ03oX08Ys0TSNbHYwbFVVVVGOx+Nut8spu76+hoNKa9nvD5MsJQhLrWbTRd02ZV5yS8ClF0JkWVoVpWXz0WhU1yVQI22LE0KyPH/+/Pk/+2f/vK7rH/7whw8fPmwamec58H4A0K7rZr1eb7fboirh1IcK1e/3Hz58fTwYFkXx6uTk008//R/+h//hb/2tv/Wbv/lbRVEA/Xa9XvtRCNPVcrns93ueY1FKPTeQUlLKEEJwMGCMT05e/cEf/Ks/+7M/Ozg6nEwmtm0XebVJ8qIsfc+jFA+i7pdPPn/x9bPFYlErtT8arVarWimEEEbog/c/+OB737Ntd75aRn7ALEEMkkYDyxJjalnW3bt3sywBCDoMw/V6qerqwYPXLMt2XQcZI4RQqv3qq68g6eXhw0e9Xq+VOytqzjk4RB9M9oMgsAQHMcFms9kmCaU07ERKqS+//FII0dQlJiyOt0XVPHz4ELRjnHOY6mB3BjULyLZQEIGaIIRtjKKUu67dti3wADDGZVkr1UJps10vSZIo6KyWm6atfN93HOv58+f37t2BrDd4abfb7cXFhWU5TdMIITBhCBHX9RzHyYoKKub5+Tls/YDlQDEmhICTLUIGYww4Pyhl4HgA7AE2DnlegPhou926rkMpBnNOIC7A9AbHCfA2tEae5wnKLMsKO93VagXVDc7moigIxcYYsItkjBwdHXHO7947VkrleQrvdVnWJ6/Ozs7OpNQYU0rYwcEBfGUocJTSpq2xNowR2BC99Y03bdve2xuBZnA+n2822yAIDg4OKOHb7fbjjz+GVgb4sFCp4Su/9tpr6/X65cvno/Hg3p27lGJ4T6vaXF9ff/rpZ/fu3ZVSIWSACccIFRYzRmVZplRr2zYXlDFmM9sYA/00o9gYs16vf/7znz9//rw36HXCzi/98C88ePCgqCtiUF3Xnudig7Isi6JISbnbhVkWY5wJnlclwWw+n//0pz/96KOPqqpBiChpLMfeOWsjZFk2Quj4+EhrnWfJO++8M5mMy7KkFBukoigMQx9uzUcffYQQevDg4Q2JME3TzBhTlc1qtdrb25NSUs4sy9o5bbaSMZGmaa83wISA3j6O45cnp59//jnUGYzxbfacZ3ue50EskuU6ZVkahCyba7lz/OGcVkUOJ82tSQRBGF6NIAgOjg4BJM7zHLh38GISsmOxQJcAPU2WZdLos7OzIi/ruiYMfBwoMDsJIePxWAjx8sUJgDRgtUAIKascFJePHz+ez5anp6dSNfC0AwIEuXMAHQFnEaAIaFAAnwN2Crz10AQDXRgc/nzfhz4Sct+rqoEuDXoUeWMPQTGBGSAIguQmIRE2evCyCCH298ZvvPHGj3/8YyC6KKUG4xHG2BhT1bWUqmpqThmlFH7a5dklEKdu32VQuSqEbds2CGmt26YCsjygZZxzz3cAg5dSgrELnO6MIMDeGGMQHwR9EnAboPuEvtNI1DRNnIAK2K7rutMN+/2+5Thwpti2zQjZbrfXVzNgRu7v7wNvCX6IQQpWioC0wYcHIBBaZIRQq1RZlqvVinPuWBbcJkAZ4aYAExq4gMDlN8YsFovpdNrr9SCQUSkFECZMWXDvwC7fcZzhcGg0RggVdQUsESmllBqe4SAIPM+BvpZzvlrH4EkLT6ZlWY/felSW5auXpzDFQWsopXQcLwxDShDMwJRSx9/5MkKvCbga51w1LbD9er2e43uWbVOGtdbxeqO13hETlYbHLIqiWraAZAMrAx4tpRRFGF5My7IsLuq6xr/8C7/x1VdP5qvrv/Pf/reP33qUpltw/JJSa62ztFoulwph+ChN03S6PbiXWZZVRVmWZZ6XxhgYqTnnvu9LqZXWIPwpy7qq6rIspWxhyuec+74L54TWmnHS1JILGkWRxYVqWqVb27YtS9R1zTk1Wl9cnG232/F4OBqNok6wPzmkDDdtq5Qaj0Zwtwghsm6apvEcSBZT77zzzmazubi4ePubbymlPv74408++WS13PzSL/3SvXv3hsNhqyR0PFVV2Z6rtRaMwMeu67oTRvAADQaDeL3RWsJyUkr5e7/3e8+ePf/ud7/77W9/R1hWlmRSK5AjwSjJCN1s1mEYMk5AcaZaeXi03+5gSfTkyROM8d27d4WwKaVlUV9eXmKMN5vNZhOHnei999578eLF1dWVfWN5P5vNOp3o3t3j8XAESYibzeYP/uAPvvrq2QcffPDW298APb/W2gsDACzBL061dVnUWZYvl8uLiwvP8Tud0HV9IVia5hcXF0+ePiWEwStEueMFPtKGU/z82dcnJy9ff3B/Mhn3er379++Px+N/+nv/7Nmz53fu3nVd996D1zqdHhBUlVLA4oSM5E6nB60S51xryTkfj8fJJrYEAzJ7v98fj4ZBEIBzUlEUP//5z6WUh4fHhNJer9/r9fb29kKIDcjy5XKJkXn27BlcDbiSyujj4+ODg4M4jvM022w2daPiNIFhej6fK6WyLHNdF6ivcEaCgyi8hKDrsSwr6gRKmni7htJAKd3b23v77bfTJM+yLAgCqc12uz07OQcICr5Cmm5ns9nh4aHrugYp4GpkabFer3u9ntY6yXKMaJ6XSZI6XgAyNHiKjDGOY0kpBWNQayChFg4AWGeD3AxMNPI8VcpAy6i1tiwbY9Tr9TA2rVbwTUG0DwxLqGtFUUip27Y1UlmW5foBlFFQt7VtC4kxjDHPd7XWo9Gg0+lQiuu6jjqB41hpmhRFKaWGoNz5fHl+fmkJG/D/sixHo5FlWVfXl0KIMivgic2yNAx9P3DD0IdxC2RNUGERIicnJ4v5qtPpeF4AWy3Lsu7cuXN+dhlv171eDyGEMWqaKt6s9vZGEMUjFQaoP45jCLnv9QZpuk22W4RQksSU0gcP7ldVpXRLKe1HfSklcEMdW9y7d6/T6cTx5sWLF+fn5x9//HHdlL/1W7/15luPO2EEfQZnFkSt+54HNJ3VanU9na3WcZZlzLJHo1EUdTebzYsXL9arOMuybZrAAosQMhgMHcfxfa/X61mCQZ/tOI5tizTbuq5DCArDDgiTDw4OGGM///mH/+Af/AOt9WTv4K233grDTqfTiaKobhuIWldKXV1dOfaO+9K2LblBMSmlhPH5fP7q1av1eg1rEeDw1UUNIwQhhFnCdd31ZkMIsS2rKLJdW08xxgiYMdCFuLZjWdbp6endu3d7gz6MwQihTqcLMz2l1LYtkJ5JKcHNEtT1wrExxrJVjLGPP/3EGAMbajAaBQWJ0RjQXNhVCSHGe8O2bS8uLr7zne9s1luEkOc7TdOANhz4+LdzlHcTDg3nK6DaUGeA4AG2lsCdhc2+Ugr6tqIojFGEENvebevgM8APoZQibW7EdOw2IA5oo7An6XQ6nNKyLCilo9EIVqhFXQH4gTHmwgLuMiHEBZlLo8CM99YxH9ZhjdIHBweO65ZlmWw38F+DIOgEIeecMgz8E2MMYTvv1vV6vZhd3+xzbEC4oRUDTAU6VIRQXdeq0YQQcGUDmc5oPGiapm5buGJVVblw46SBPgMQVljtYYxdz4bLDo0swPxgYwnBa77vD0YjeJIJIUjrqqqg6nY6HTAc+fcHPWM36i4Exrz9fl9KOZ1O4fEGgSf8uri4cBwHvqaUsiobIQSw74FY7DgeIHZKKWAwwwKRCxsUAHDf67r2AzdN0yKvbkf6mz2yhRCiEOB2fd22rcZIKdXtdqEDAxCuKIpOEFJKkyRJi/z111+3bPvy6jxJkrqsgEXTtm3gep7nwVS/d7C/t7cHUNH19TVM8owxQLzquo6iqN/tlWWJf/Uv/C/Ozk9evPrqP/ubf/M//o9/K8sTrSUgWE+ePPm7f/e//83/6DcfPnwEJYBzXuQ7TzbHcaADRYgsl0vYFidpKqUkhDieyxhpqrYs66ooEUKgCiYU1XXt+y5gdEopWBrCXxpFUZnnURBSSl3X6fU7SrVllhujnj179vLV82984xvf+94HzLIQMiBgQQgzxsqyMMZEfgCbdc45JQi2lsBqGg6HYNPyR3/4x59++ul3v/vdB6+/fufe3TRNHX9HDqjrGinNOY+CsNvtVmXeKtm29XQ+45T5vtsHOmpRzufzPC9/8pOf2Jb76//RXxRUYEa3cZKXxWg8cT0bFHxREIKmknOaxNu6rl3fs227bRXUUK316auz2WyWZplt21HUqesauFPD4bBRcn49BaYCHAyDQR8j7br2/v4huwn3+PiTz372s5/98Ic/HI/Ht+A2eNZjRjebzfX1dZ4XdV0bjS3LcoTz6tWL+XzZ6YT9/hCO4ThOGGNpkjdKHR0dtVW9Xq+S7Uap9vrq4rd/+7fffPONLMsoZ8+fP9cGN0ouFotGtmBsRgjLsuzVq1dxHAPi6jk+nHmwQ6GUVnnmeV6/2+OcK90q1fZ73eFwSAjyfR+h3dYgDDuYsCiKgHGYFfnpxbmRilIK7iw3EjYzn8/Hk8n19TVsbQTjy+USYVpVDRzPsIWC5SOo0wGFzqsSLFtgFCYUbTYbz3MP9vaDwIeOJMuy09PTrCw8z4fx/c7d+1rrk5enUPSlbBBCraxvpzR47WG8wxgbjZMkmc4XlxfXhDAhLINplmVFWQshWllbloW04Zx7jgXDFkJoPBw6rgWNBRSRJSDwQeC4FmcWLD6yLGsaGQTBYDyqqmqzWVmWhbGBv7qqi7pqb3d5GNOqquqi3m63tWw73S4hFHRJlFJKOcZ4NBgao5qmsR1gua0Xq6UQLAr9e/fuHR4eMirg71Vt2zbqxcmrNE1hkBsOh0qp6+nMcZx0mzHGOKHdXuT7DqFIa5mmKee01+vB8FfXNYC+dd1O5+vlYhVFEb2xk86yIs+BuGoEY1K2abqtmzLw3IODgzt37sFWFDrs7XZ7cnK2XM4JIUBR6vf7j994CBCsZVkf/MIvpml6fXGJkMbEcM7Hw+FkMrEtq23ry8vLP/qjP4yi6Dvvf1c2bbff8zxPKdPWzXa71a1Uypycn11fTaumjbfb5XJte35VVeCUBkt8Y0xWFMCABpyg0+kcHx+BeEIpNeh3O52QEDIajVzPxhgZg2BdAv8n7EM//PDD3//9f1nXdbfbPzo6uv/a6/DQaozAfx9YO2CfDYv71WqllPLC4ODgAPghoNCrIMMxzRkVGFPf970gklISRo3ZWRBhhIRgRrVNU0PTRjFJ0/Tq6gpIYK7rWo5t27bvB7B9A3S2bVtIaQOoA1BJaD5arSilTd1ijCGSyBi8WCzSNOWcc7ZbAMERCLRIuCawNoGDGd/YlsKXvV0p3hKnDg4OoO8py9JoHMdxlidAZtdag74eKE0Aq+R5HsexkiYvUmMUxKNxzi3Lga4FFnau6zbVjogJbQ2s6hhjIJLYbDZCsG4UAS1JKRXHGzDdqOu6UbIoCoQJ2WWul6PBECFEKd9ut5BjAVI4NwjhGq7X6yAMu92u5zuWZbm2U5alamtojxBCZtf32AghylkUhFo2wIQDQUOv1zPGwJbQGEPxjnsErQwhBBPm+74fhVBPpJSMEYRQFHVh8wNCV4SQrBvo52433bB0hsteVRXwleG5hW2M41php1PVJWwVwN9ANRKGQM45eCNjjGF2yrIMXNDTNIXQDhha0jR9/vw5tD5VVSGzU997nreKNwghmDogkgTfXF5CCDTQ0HjZtj0YDIBuAbKAMAxXq9ViOYNXEjD4LMvgOUzTFGOMpIHSDR1827bS7IT/nU6Hc9o0DScULp00uqqaq+vrVtaj0cjigjHW7/frumaYVFUFDoJgPwHgHGwhlsvler2WTQtb9dvYK/yrP/gthdSPfvTHv/brv/Ktb71t22Iw7IHurCqbJ0+++vDDDwlh9+7dg2PVtm3ZQktOjUKL1bKpWhimq6oqq4ZzCo4Age8yKlSrpZSyaeq2NarltkWMdgPfYhwzLBgTjqVbZVkCqP0gEXcsbntur9cJQ58Y1MqaMaa1qqoK2KPwbAG+Ap01KFBgr9Q0jR+4dVnBAXZ0dGRZHFbaq8X6008/ff78ueu673/vA4jxke2OxlhVFTaIMVYURVWWSbZNksS2BZx5GOnXX3+9F3U2m82XX355cHD09ddf/87v/M633/3ON7/5zb29/U6/17QSjj3GKECOhEKEws4YGjprQGWTJLm+nP785z//6tmzo6OjyWS/1+tJvXPks21bUNa2bVVVUPu0Vo4tGCOO4yGE+v1+t9MnjC4WC0C/AfNECE2nU2OQ5TqEkCRNKWae5xmDv/jiyWq1gjdtvd7lSzx69MgYw5kVp4lSGgbBON6Mh/0g8FaL5eeff/7uu+/arlPXtR+FhNGrqyto9SaTyf3794F8ChyL6+vrLMuiINzf36/rFpiJCCFHcPgjo9GAEsQ5t21LSrm/v4+JgRmOMeb7fl21V1dXH330Ecb4zr27lmVBDT15+Qogq7t379q2UxSF63uQfBXHMTbo+Pgu21kei/PzUyHsXq8jhA2FGDjC2+1WOHaapkmS5Hl+fHwYhmGSxm3bhp6/t7cLxYKx/vTifDabMcarqtrb2zs6OtrGKeyJbvkNsMg2SBmEtDSL1dK1HUQwxWyzjcEYsCqbOE5WmziKol5voIymlKbptq3lcNgnhLieE7h+WRZ1VQAxy3Gco6Mj13WbtgUgR2t9enqaJEldtYPB4PDwMM9zpUwtW9sWMBRaFtdau57d7/dns1nbKHBOR4iAH97XL56vlhuIlts5IVPu+/6TJ09gwZGXRV1W3OKHh4dSStnWnU5o225RZA8ePOx0wqootNaNlCcnJ7PZghCilOGcE8osLrrdPsgGm7aaz2cI6VbW2zSVTQXMG6XUZDIZDAZZVmzj1POCbZpNr662aeo5DmECKV21TVnmlFLHshAyQgjGSK/fEULYwgJcpNPpQJWHBT0QxoGUPer3bs2ZLNfzfX/Q7Xme17b1cNQviiL0fc55pxt6jhvH6/V6bTsCIUQwu7yevnxxopRilCKDPc9L0/zZ86/TJMeUUGEppWQLUc2Cc2ZZlhCirCsgbAGh6u7dO6/du181tW2LKIrGowGUlziODdZN05ycnERRJKXO04xSenx8DMzILCuurq6ePnn21VdfWZZ9cHTILSsIAseygOrUNM1sNoV3LQwj4OhUTaP0bhOHMJZSljlQyKWSBg4tjQhCqNPrMkY457ZlxXHclIWwWNs28GLCPjpLUm6Jtm7uP3gNtMbr9earr74CbVO329lxll13Op0mSQIUIpjJFTJVVdVV4/t+q+T5+fl0Ovd9v9fpGoy2m8QgBK85tEqwMRQWg6oFLxT8V6CNAyYE7yOwlKqq6vV6BwcH8/l8uVwajXdu+xQNBgPbtqFUnpycAMUb8BKA2UDaBeuwtm1t2wUMCZanxpiqKKEFgSUmtJhCiNFo1Ov1IAG6yJKyLJ8/f75arZSSALNRwQHzU0YDOW8+n949vuf7/tdff80554TCokoh0+sNAEGXUlLGHMeRqoEK1rYtrBehcdQIGYMJIQYjQO6N0ozsyGoQxQidKHRXWZJC74UQgn2u4DZhtKoqQ/DNjlVqrV3XByAKGoK2bcsshx4XfEehx4KrF8cxoABgQQxLWEqpNlJjo7WGmBNjzOXlpZGaUgq7sqps4GfCWrzf71OGgSkFm/r5fA6B0QcHBzstzngM53tZ1HGamBvj/s1mE0Vdy7IgqgsejJt1v4UQAnI9hC9hjMH5ebflUA2MHKDAADPYpmkE5/DWd8JwtdkIxizHgccDQhGANmMxOhgM4OjBjAI1BQYeQEBWq5XvuGEYwkXI8/zq6greC7i8MGkwsrssyui2bhrZ4l/+3q9bjv35558+eP3+t779ThRFeZ7u7+8/fPhwNptlWXZ5efnVV1+dnp72h4MgCHzfL/JquVxhSixuF2VtFCI7Uw3i+wFjtGkqjDHBuCgKm9ucc05ZVuRVkUutBKPCtsLAY4IFnt/td1SrlW4tywo937I4Y2y7iRtZu64LSECv16WYcM4BTQH2NKX04OAAwmgdx+kN+kVRKKUQJa9evXrnnXcEZbP5tdb67t1jjE1T1Y7j9HoDpM35+flisQjDMOp2CCFNI+ER3MZpmqZ5Xphd5BF2XTdLk6Io3n77rdns+vr6uj/ovv766yALev3+ay9evPijP/xjpdSv/dpvUMYcx7M9lxBCKIVrAtMbhHOdn58vl8uD/X1wKeScc2ElSfLVV1/9u3/375qmGQ6HvUG/vrH1g9U+MAkIIWEY2J5lWVYn6t1yD21h9fv9LE9evXp1cnLy0YefYIy/+933KROG4LpuN9sYmOCEsPPz8yzLGKHQ/EG9a9s2CAJg5WNKkiTRWkdRoJXKsqRpFUQKZkWJEJJaAX2hbRuMUJ5swZrv+PjYc22YBZummU6ni8Ws0+nduXMHzOHG4zHn1A8cx7H63a7rurblYjBZ0fri4qLf708mkygI4WFdr1ZPv/rqenrZ7/cH/ZHWmlLW6XTyPL++vrZt13Gs9XptWRYA0fAqciG6w27bKMqwK1xtJDJks9nAS55lWa/X6/UGUMc9zxtN9gB5AoVjURTdMIIJxBgNOXSXl5fz+fwb3/hG27aO72uFwPWAW0IpA2RhwW1ESRpvX56exKvY8b398R7YLCndYgRRzc1qtZJSOZ7XNE2aJZ2o2x/00jQ1WNvCoRQjpX3Pm0wmSinGCDw/0FTBaZckSZ6Xo9Go2+2HYUgJr9um1+tJ2cRxLFXTKgVZVU3TIKzh/efMgu/byHa12rR1AwhBmqaylgfHR5999lm8TYQQtusEnr9abYwxti20kpzgqmqWy7nnBZPJeLg3dhyHEAQiiZcvXwph9/v9Xm9AMMXGzOfzxWIxm82YEJP9PSllWVWcsVsiqu+4o9EIEjXyIiWEYIM+++Jz2bQGkTzLCKXdbr/T6WBGoWsBsm2e501ZKaWEEL1ejxJk27aUDdCY5vM5KJ5AcwSCgzIrHz58OBwO0zQVgnm+A6MRQqg/6HajjtbSsqw8z9Nt8i/+xf/308+ezqaLbrc7GAz6/SGm5MWLF8KxgRLatArk8VDfIdnsxomgxQaVZbnZbMbj8WQ0dkMXlKSggajrum4a4ezU9bZtu66tWxkEQStrOBqH/ZFt2+v5+vLy8uc///nVbJqXxa/++q8Nur0XL15AByaEBe2C74VVVfX7/awszs9PMSWWZTFCGWNpnMJ9NwZDiBzgUgghQpAxhhPati3CmjGaVyU0diBAJgbtHew3ZbWKN5RS8IrEGC+ms6dPn3qOCxdnMpnkeW5ZVtXUVVXlVVlVlWyVUspy7PV6rTUqioIgPJlMRv3BxfXV5dm5H4UQ3dPrDcIwLMoSGiM43W9pwWBKKRhvmsZ1bRiMQbgH3Ta0CFHURYhwZkXdzmg0WK1Wvu8naUwIAQ90Y3bhdQB7AyBBKYXY+DRNhRCu44OTLezum6bJ0hTMRPb397phRBm+Lba3flRlXUNgFGNssVgEUeh5ASx5KKW2cAhB8LdgbTDGy+VyOp0ya2dbenh8BKc1IxQ2m7PZjBgElCzoqimlGiPLcvKigAYLUnEYobAiREq3bXt2+mqxWNy/f79pmroobduOohBa2Fq2xqAdakiJ0Ts7Ca01ulGrAAwD69c8z6uigGVZkiTwBzebDaBHtm3brgs8fUCSKKWEYvhnznm/399ut4zysiwXi4UxxnOc4uYX0sa2bdt1QJQghNhut7D5NcZYjt3pdHq9HqRCb7fxNs3Kslyv40a2ICHfQRh5FYYhKArh8AKxOWBXgJsCtEYIASbV7Wa2qipKaV2BM3YNXSwmxPc8TFhdVo2UwJ1o2zZNU6M0xqjbizDGgevAT0ZYw92BkCWNEPALoWvc29szxsCRl+c5MaSua4wpdPkANzZKVnlBBcd/+Tf/atXUX375+WA8ev/994PAa5qmP+hFUQTuxrATWa/XZ+fngEwihDCljDGCmVIGPGTbugHouKqqtqkoxa7rHk72PcffbrfT6RSo62m6LYoCE+N57v7B3t27d+GAIQYRQhzHQgi5ri04Z5z7gWvbtpRt0zSeaw8GA8BXTl+dffjhz9I0f/To4WAwGA6HjutblqWRgRegli3Aj6qtoexibFaLJQyakJAIIeQXFxf/0//4jzzPm0wOYImWpmnTgmOygzFu6ypJkiD0KaWLxcxxrH6/L1Xz5ptvDocDWbdXV1dQ14b9ESLYdXzQAS2Xy7JqbuHrrCh83+eUVVU1u57WdY0J8n3/4PAIVp/X19dPnjx59epVmmf37t0bDAau6y6XS4TQ3eM7IDojhARRwDjJs5IxZgzabrfYoH6/F4Se69p13V5fX3/+2ZcvXry8c/d+FHVX8cYgYlnWfL5crdZKqdVqhRHVckd9IBwLxv3Qt4VlMNIIa6OAr7aaL6SUrTZhECmDtEIaGVjzay0d226qEhtjjFZKOY51sL8PCkd4Ra+uLqbT6Z07dyaTA8/zxuNxEHhc7CxzMaZxHKdpBqgk8DyQ0u+++85kvBdGfpkXZVleXF1++eWX8Sbp9XqTyf5rr722XscAMzDGjFFlWTqO5weBJUSSplGvW1Z5vEnSbDvs9bvd7na7/eqrr/KshFlkOBxybi0WCyCsIEoA2gQGbhyvbS6iTuD7/t7enlLStu0k3qZp2u1Flu22WiND5vN5URQXV9ebzQYZQikdTfYBdqWUzmcLAFAxQQd747opAz+Cwnd9fQ3JqlVVUcExxlEU2bZwfa8TRpZlUYS1UuCaWBSZUuro6ADYtd1uF4bRxWJ1enoqpdzfPwT3o063b1m8qqqmrQghQRSB5ssgBbXgltKhNHIcZ71cxXGcxDHGuCzqsiy57UiltDZFVWppAIE73D9I4vXV1aXv+5C/O51Og0706NHDw8NDyLvM8xwhAvzLLz794vmzr+/duxd2oqZplVLcskaj0XA8ujg7Bzkn5zxLkjRNRqPRZDIOfBt2dowxiMMLw45lWVIZjPE2y5fLZdtIrTUiWEvFbzyK8zyzBPN9f39/z7IshLSUcrFYAKEbeLivv/46w4SQnXE/qKqjXnc4HMq62Ww2m81mPp91u91OGHHOy7J68uWL1Woznc1uFbjCsff394HcORgMYFkPY65Sajq9kqoxGqdpOugN9/b2KMIIITizr2bT2WxWluVgMBgN9wxGhHFhW6qVYRQAX8p37LquKcOEEGwIpRSGjTxJa9l++fTJyfnZZDRmjIFho1K6bdu6agkhEBAnjWzblgmqlKKYIEQYJmVZMibqut5sNoQQKmA+0VrrpqyqquKMuK7LLe4GPpyvoAeEGg7nGYB5kNU47PWbprm6uMTaTBfzLMuOjo6iKGqVFEJkZdG2bVlUeZ4XFWyjBMU7Ddp6sVysV3vD0Xh/UoObF6ZhGArLogxTwrM8oYQD0YcxBswn8N8C1z1KKVA2YaVQVZXv+1XVgIpNaYSQBjYbwjv6edu2VbVrXACDgQuIMYYUaXBmahuVZRk0HzDu7o3HlmVhjCnFWBvATgCQ/g/4dgzkbG3bVs1uk6i1toRj2zYyBlxnp9NpXZSwNZ5MJmE3dByHcgafxxjjWDaldL1eI4QC14NtMiwlHMdplAYwvm4aYNphYlzXBUuLNN5ijIeDHvjkQfFp29a1LMt16qKsZUsImOEJzjllAhZtlFJmCaVUXZcAGMNZkOd5liSA1sDAn2UZYwz8d0Aq2CpFELIcB2qRNqALJnVdj0aj8Xi8Wq6hyajrWtwIafM8r8tKa90qWVWVYBzqLWgv+v3+8d07xpgwDNu2zbLUcRzC2dnpudQGdKxwEwkheVZC5wTKD/jwTSOhiex0OpRSeD13Yp2qAKNN3/chqqeGJqyui6KomwYyWCmlbauyLCeEHB8f7/A5bbIsDSPfsiykpOM4URRpIzlllDMp5atXr1qlYAUMggbP8/b29sbjMTgSUwRBkxhewyzLtlkK/DxKKf5Lv/6Xm6Z5/vy54zvf+c53/DDI87wostn1FABzQAWllGVdwcofxhSttTG4aRold6HihBBGKXj3aS2jIDg4OOiE0cuXL9er2CBVluXe3phznuXJ+cnp9773/uHhIVi0CcZd1yWMIoTuPXityrM4TbigUkojpZQyCD3f913bcV0bzCbOXp39f/7H33Uc54Pvf+/NR2/Vda2U6vZ7ANLajoD6qJSiGMmb1FJAHRFCAJstFosPf/bRO++8Mx6P//7f//uj8URrrbUBkgHsShaLRafTwRj5vj8aDzDGSrVKqeGwf3x4x3Gci4sLKeWdo6NGyj/5kz+ZzWb37z8YjUbQiGziZFen2hYC3gnG0+kUBE15Ubz22mtAZyGMNk3z05/+zLKsyWRijOl1upDtCPe1LEsmWNM0tu1QSjGiTVtZXMzns6LMDg4ORqMRxjjLy7Oz8y8+f7JYLDCjEEjXNHI6WxRFmSa5ZTlgXhUEQS3reLXWWMumwZSOx5NOp+M5VhxvlstlnhdKKcvxWqmhhYeXjVKslZKycSwOOyBjtNZ6MOgNBwOtJUAUnueAfAFk6lD7Li4uoByA10C/37+4uOh0w6ZpXn799Z07dxgnb775xmS8V5Zl2yqAi7/++uvtNoG5p9/vt0r2ej3bgjR0K06T5Wx+cn4G/IwqrzA2/X7/29/+Nqjcq6rayceUgk6iURJsHUCkLaWMosj1oAJbFGEQqPu+T+gOjm4bdTmdPn3yDDJuMWVVVWFEhRAw6w+HQ2PMZrOxbdt1vfl85rm2MWoymQRBgDEF/u90NkuSDI7zfr+vlCrqqq1qSulyvjDG1E3puq7jAIvoME3T0XgA+0fP8whm0+l0tVotFqv1en14eHj//oP9/T2EUFbkGOM8TymlruuCqz63LJAo5nleN+X9+/fbqm7bNt1mSqk42SZJUlQNyGgoYw0sj9p2tVphoykmQRTZN78o503TYIJ834Uzu23ruq5V22632zzNHMfJsqJpFecCY+y5gRcG2TaJoohxcnFxMZ/PhGBt23a64XA4BEI3oHGcc63Qer2+vLx89uxZFHURQiDmBdqyzS2lVFkWtm3bFt9ut++99+54PH7y5At4o8E4Ch6te/fvRIHLCCWMDodDwe0kSRRCm83m6nJ6fT3L89zzAkJIvIw9z7t//z4AUavVSkoJxV0jYlmWsC0QWNzqv8BJFRBKmPoY4UII17IRQlzQs7OzVbypqgpY7YyKBw8eeEGACKmKHBZ2IHGwLIsLqrVGhqzXa2Mw59x3PT8MGqnW63W8XsH5mqapUcYY43qBe5sG2DYYY4wN/fcxOxghxKiAsnx5eVnUFSArZVkipW3b9hz34HDCLQ7taVVVGiM4FJMkAVkugMqwhzo7Ows9X7Yt2CJuNpv5YgGoNkSMV1VFGBdCUMpB2Agdw97+BCwrBeO26yCEYFkM1DfGCGMCIe15gW3bWhrP8/I8heNztVpBcgNU7+Pj48lkAi8CcIlms0Vd1whTTAy4YABJDn4D9F7A6ILGznVtkCY0TVPXO0b/ZrOJ4xj0AcYYgFottiNfAuIALTKoFwkhkFQIKGZZV4yxumrBvRZAmqurqzzLgCpjWRY0MeCxrtGOMg/rUUIIpzuqVtu2VV6ArReAdmmR+74PEsiiKICDlaap4zjHB4eUUrDaRgh1Oh3A84osny3mBCHXdQmhWuusyCmlju1Be805pwK+nSaEFEVxfn4OK1qKMUHYdd1utwt7DIxxt9slhAC6jAi2uHA8F1h6CBmwn6SUEs5gX4QQKrMC7gUA9m3bgqK2rCugFTZNo1q5v7+/yxgV/HYZCl7/3W73/PKyqGrHcfI8B8y40+kgbYDuBpgiaAI8LwD2OUh2QD9nEIL72zQNmDPA0Q8yfIwx5xQZA3o1aBkxotVNljS85t1e1A1363UwU83KrBd13MCHqTjLsul0CsQnGJubprEsa9DtgZvpZrNZr9d1XWPGwU0NLF0IIfgvfO/X2rY9vTg/Pj7eP5zAl5RSlnmBsQHuDvih5WUBXWfTVKB7h8Cc0WgEwcnr9boqcqDadbqRoOz6+hIjdP/+fcjzkmpnqiEE++zjT3q9zqNHj7qdDgC2oE0Y7u9tt9uyzD3Pg1H+7tER4wQhdHFxRhC+e/euLSyllC3EdD7//Msnf/zHf/zojce/8Ru/AbN1XddVUzOKh+MRnIWyqafTKbwG63XctvVgMKrrstPpua7b7/b2Dg7+/Mc//tt/+2/vTQ5Go1G/PwCDcpiigKMwHA7B8dX3/U43tG27bWsYwnqdblGVSbyF6er58+cff/zpt7/97XfffdcYc3p2MRqNXNctigK4ukWeh2EIQVGff/HFrc0dE5xSOp8vRqNREARXV1dJvJVSAuwH7n+2axtjZrM5Qsj3wu12u14tKKWWJaRqgGAoLCfLsrpuXr58+Wc/+ynBrNvtEsIEdxsp86z0vAAhcnl9neUJqPBs19JSaa2DIOh2u0btfPzLsqzKpigKbjsGETDyUEoZozBCSRJjbRgnUHQIIb1e17pBj5RqR6ORbYs4jrfJZrvddrtdzqD2Sc9zoLttmsb3Xdu2r6eXy9n86OiwaSvfd0M/2Nvbo5RXVaWkKYpCSjUYDDDGXuADHL2Yr1bxpqoaSunV1VQpBX4QdVGCsefe3gh460A+wBjHcQzVdu9g/4033pjNr2+WMgSG7G63Y9u2rJvbpo0QAmBqVVWt1mVRr1arJEniJJVSGo1t2/a8oNPpPHv2DMaAwWBACNVSptlWKXBj0YPBCNisWmutELcE0ibNs9n1tFUSgnhBLQWBjGm6xRj3ep1Op3N85/Ds7AxYgCBrBQcE2PS9/fbbvV4PIWLbom3bbr9HMVmuV0oZgBX9MIRqBTSyzXJFCLGFA46LcbKlhMdpslyu1+t1WZau41VV5btOFISMsappGGOBH9V1HacJYBLnF2eDQe/NN98cDHqWZVGMKcXbDdDd0jhOlEZCWFCPOLNG44ExpiyLtq211pbNHceBYj0eTeqmJJhB8b2+viaEpGkKihBoC9q2DcOwrZqiyHu9HgwAlmVRio0x/X4XEEfwdICeG2H96MF9Y1ReVuv1Ot4ky+UyK8u6ah3H49xqalnWdbbNEcHdqJMXaeh5fuBijGHcz7KsbtV6vY66ncePH8NMD/saoNl63g5QkVIKZq3XawVG0BRFUSSNhkXM1dXVehUTQihlXuAdHx/7vp+mW4hgStN0Nr9GCKVJfitpggVHtz9omgZpBbZzxpjQD8qyyoocGQIG+oZgrbXnOXVdc8EwxgwT27a1NrudXVZusx2IVdf1oNvzfd8WFiamrEtAesDD1vG9Xq93cnJizC7kFyhlQFQihGTbZDGfA/9yvljM53MYYLRGlmVBs3h9PYMYIt/3Xd+DvQ+wuWFtCkZNhCCwaQXcAhixglmr1aZtawjUa9u23+8CLAfOBYBa3cac1HXbti1hO1YN2EPAuwzrV0JIW+8EQFrrosjKm43nYDAaDAbQDkope70eyG7iOCaEHOxNut0u5E9Aw2eQAqDBtu1GapAI2LZtMBJCAB5ZVdX19TUgYb1ut9Pp3O4967pmjNi23SoJXR08pVprW1gwLyGE8iQFIAr0nlmWNUoCWRsaMiBgua4LGCdl2PM8+IsWi4XB2LXtNM/buiKEZFke+oHBqG1bcPy3LMuyLBg+MTbX19fz+Ryot1EUYWNsYUF/gDFumuYWSYL+FdjrbdsajDzP830PTD0JIdy2gD4vpayLCnqJ6+vr1Wrlui7FZLPZDMe7a57nObTFYIsPUVSu6wL1BRaFypg0zdN8h00C1YRTBsJJgMqapmnb1nVdYkiSJEVdAbBkjGnanWebUgpC2OB1APIiPNKBvxPFw2xzdXUBgUtN00ByHedWW9VhGOZ5/vTpU4UM49x1HMvivV7PsiwA7YqigPqMMQbvDN1KcOMCOaTv+0Xd+L4/mUxgS6u1xj/4/q9lWXZycvL+++8rrdfrNbwhnDEhWNsqdRO2bdl2VRcQAhjHO1sLWNYyxixbYIx1KzE2YRhOJpOmrrMsAdUA5AZA1+l5HmMEGaO1DMNws1ovFoter+f74XiypzBRRtuCV1XVyrrX63XDkDJcVVWWJZwyY9RwMABhJzJEGXTy6uyzzz/5wQ9+AB5u0Fz7rvfq9AT67psXr9hut3UjLZs7tqeNzJOi0+n0+/35fA6N7UcffbRYLHq9/uuvvw5/BJzrYOmLKYHxEWMEnoq2bZ+fn1tcfOObb3ejznK5bKoSOtzPP//8669fPH78+N1334Xxdz6fA9iDEDo5OYETF8YgygSsSwD4HQwGlNIvvviCYgJyh8lkEoaR67p122w2G4IZHAPwvCKsu93u+fkZgCuEkCAIxuMx3Nk8zzEmWVHleT2frQjlYdiRGhGw6NVtWZbC5r7naa1d28HaVHXRNA28h8porVCSZ1lW7JbLbYuxAaYCoiSKIiOV5zugT3EcxxhdVwXYgcI6G6Q9V1dXq+WWMeE6vkHq9v3hnBKCIOGHc0YRpgxjjFUrDw4ORoNx0+7izzzPa5VkjL18+XK+Wq6Wm8Fg0LbKDwMlDaO00+kkmxhjfHR0UBRF0zRgRuB69htvvKEx2m63IGwEDimlFAIMIA1NCHF6egqLf5AN27YN1gxHR0fD4ZBRkWVZs3MPNk+fPgXydVU1wACt69oSOyqJ41pYq6LIjMG2bcOsDDllCCFptG70yflZU1ZRrwtdV78/KMsiCIIw8pMkns1mlOKjoyPGSRSFUMeBBSylAmIA9JdCCN3ouimVUv3RMN/mChmMKaQsa60325Qx0o2C9Xr9xWefx3FMEXZ87+7du4wxjCkiuCxqaOksy/F9P0+zpmk6nU4cbzHGnW4fHJV7vY7v+2m2reuqLHM/cMfj4cHBQVUVGKE8K40x222apilCBKybjUGU3iR+2FxrvX+wRyldruO6ro3Bp6evkk3y5ptvQAgPLOYgnKQsS7C3PTs709L0ej3P8wCm6vU60CUD2wGKFYxzaZqu1ot4sSIEbzZxXdeUCa21cNymVZ7n5XlpWZbUpi5qQ/Cg2+OCCk5cS0B1brUqiiJNc2CZHBwcAGUT6vhOPZOmO1pY0/Q6O9f47XZblBmQz+DALopiG6fNTaaQMea1B/ds216v11I2Sinwhd/GKaXU8b2maSBovClrKSXYH9ZVAWsy3wsZY1VV122zt7f34MGD+/fvJ0lSVaVCCkp/WZbbbRrHcZ7nWpvNdhsEQb/fd123E4ZKqU8//VRKSRACenIQhTBjQEOpEFCeGYxVENtX13Xo+8aYH//4x+DC4LpukVfb7bYs67IsLcvudDrDwRi0iswSBiOpFMS5ZHmCMbb4bqBFyDBKq6qaTqeQmei6Lmc2SJ5hMAiCYG9vD5osjHHdNvpGCQ5VjlIM5A0pZdvC/UoZY7blhmGopITfDENUVRUEaaD59/v9KOy2bSvNLqOWUgpkj6apEEJIa6WUbbkgHoJHF924tDu+V9d1mubGGG1MVVVZVgRBsL+/57ruZrNBCAW+DyIJc2PO3u1GcFRDy7i7SoxBhycYp5RajAPWAp8Z5v+rqytAiPujPt0Z5xbASSeEAF0JsgEb2drCapWENqWta8752dnZhx9+2OsOjo+Pa7nT32mt1+slHCKDwaDb7WqtBWOgdYDdIqBZoNOCvw5c4mArXVWV6zpAvXdd17ZtOFNgvjW7y5KFYdTr9QjCvu/3Bn14rwEBZYw51m6P3+1233r7G+jGFGO9Xru+3zRysVpWVRXHMXiLVEVJKb137x7nYO3HoM4DnauqGiGEQgY0HG3b1k3DOZdSwwRe13VZ7rzcHMvK020URZ1OKKUMwxDIshhjqbXjOHEc13Wbxinn3LbdxWplMDJYW1yAaiQIAse29/b2PNuK4/jk5MQYY9tunufS6KqqlGpBCjAcDmGX4noBsEWNMfhX/sJvQg7dd7773VvahNaaMwa8JWjeGWMGIc93bGHVdQm3YbFYSNV2u90oCo6Pj+N4LRiDJKKyzGWjhGCcUBAIKKUg751S6gcuQRghI9v2888//8M//MO2bb/x5uP3v/f9vYPDtMht2+aCtm1rpERYc84ZI1mW9ToRxri5MT6hTHheUOSVVA1Avp999pnnuO+8844xZj6fr1arVsm2bauymU6nvu97QQC6FUJwVVTT6bUQVhgG9+7d9zx3Op2+ePFiOp3duXMHOhh4z3egnW3BFyGEUEo4571eD2ENh+5oNDo+PibIvHrxEvBM1/X/9E//VGv9xhtvsBu3zzzPAe7SyMB4p7Uuyhp6ZPhe8JxtNpvlfDEYDNbr9Wq1sm273x8kWZrn+aA/gh0B3C/w1EmzrTGGUgLisk6nM5/PLy4utNZR1Dk/u5wullHYr5qGYOb4AUIoCMOyLKfTadXUnFPB+d5o2FRV2zZlWapWUkpbJZum8f2AMJameRxDnBnFGAVBwC27aSQxyLKsTjeE4D+llGwahPXR0VEUBbYtxntDiDFYLbfX1zPwIbQs64ZVoBzHAYcCjLHFaVVVh4eHGOMoCAFAppQKYddtBTqP2XIRx7FtuZzz5XqDMTYau67bDUIg8AZB8OLF14QQ17Vt28bEHB8fA90Kjk9jzGAwACJtlhZJGq+WG5DGhGF4fn7ueZ7WCGhD6/U6z/PBYLC/v2duflHKi6KYz+fT6bTb7cMa0dzEyXNmWZy6toWJsexdCltVVeDDBE3DrcJjs9nkVWkJ58GDB0EQHB8fL5azzWYVRQFC6M7dI9d1QFsAHAKI2IO/y/M8jElZll9+9vmTJ09c1338+PHrD94AHGW9jbdp0jTNbLEyRsmmStOUEdq2LcMEIWS5Tq/Xy7KCUmrZLoy2bdsarWEVtdls6qptW6k08n0feMGDwSBJ48Vi6np2mm7TNCUEBUHw2r0HcP2VUrDNzLICxlnwJNTGKGUsi69Wq9VqdX51DfhKEARllhNCOKfAAddaN02zWCyApQHF9K3Hj6FyAQwPYu/9/X3OKRzMTdMA0gDNOpLq/OyyKApEMKW8bOq6rgmlnhe0bYsoUUoJboGJke86nmsXaQK0etDxvfHGm7B9g3jjoihOT083m43v+3fv3m2lBJodpRSbnR8VmIzDLgkhNBwOHcexhFMURbKJ8yLdJNvhcCh32faUcw68i/Fost1u4zRJ0xQ4tZ7ttm1TFEWv17EtqyzL2WwGCSe+F2pk2lYOBoOHDx/ev3+fczZdTLfbTZ7ktylVoJKGUKDAD13Pub64qusqjrdStloq0A4bYwijwKWzbdsQTCmNogAgGWBNbDab1WIBAknLsl6+fLlcLh3bcxyn0+klSSKEtbe3Z1mWVkgpVcvWdh1lJCXcICibFKoKpYQQIji/VU2u18vpdF5XDUIEjDCgAwMEWmttjPGCnZEBPA+MMcZ2wc+MMctyttD1p2mWFq7r9ns9sL0AXiZj7O7R4WDYgwqAEVVKQaN564NPKUVIJ0lS5nnbtsgQGIyhg4RtL8Z4k2zTNJ3NFlrrqq6VUv3+MIoC0ADuDv6qAnY2vvHiEoJ1u10giRuMoPECWMuyrLZupNzVUpBrwMPT7XZhqyiEyKscADkgS8AACdQrQoi8EVgAz1VrbTMuhACCx8X5ldZaODa8Jsvl0vddIQScR9BsQXVlhNRtywhhQmgpCWOMkFYpbAxhzCilb5wH0jQBbpm4yRL44osvbvaSKIqiIAgcx/V9H0x2WiVhr8o5B45BlqTAqzHGYEq63S7MA7AvSrJiOp9BOwgkfUiIgWtYZjkQWyGkRGvdtqpREjZ4OzkthTYXQdk0xsAwWde1bBpGEEHY9Z0wDF3PhoVpWRZ5WYEOoyzrIi2aptluU0zpeLKnkeGcIoRUKweDgSUEpdSzrc1mA5glDNt+FCqlbFuAdTDo27Isq+oWhLRt2+If/uAvJkmCCbl37975+blGRnCKEIKLBXoHdWN2FwQBUpoLijFu20ZrvVotZrOZ7YgPPvggCDxQNCCEXM/uRD1hsbqu4QVmjPWiDqCIYRgwQhHWBFy7svxHP/rRJ598sndw+OY3vgGO/q7rGGNA3KSU2mz+/0392a9l2ZkfiK1prz0PZ77njhEZU2Ykk8kki0WKNblsqwQ9CHrTH+D+AyxbaBsQDNgP9kMDajRgG+gnPTT00DBaLUiCS2K5VSxKrFKxOFQyk5kZc9z5nnvms+dhTX74bkQ3HwgOGTfuPXfvtb7vN67hIwaZLdyaUmpCWH8wYhSXZfn29Zu/+Zu/efXi2f7+/iff+pS7jhDKGIMwNgaVdQWvkzFmvV6n2XYxX1mcNnXHbUaJ5bjc4e9IWYzBKAddKyCTUkZnWQbw1Xi6B7kJ2+0WIQ2Ov9FgwBmdTqd1Wf27f/fvjg8Pnzx58p/+41/2ej1wpoCwwHJshBA4hvKigqVBCAHvALyNGGmYn96bLE5PT5eLddLvaa1fvXo9nU5HwwlEKFkWhdPB8zxuM2ZzmKQRMi63LcvS2szn85ev3yplQMVV1k0UJY8fP95l6eXlJbAqbVv7nutYDPLowYvuuq7n+5PJhFIKYQ2+77sOz7Jsb2+/acXf/PJXgBtRjIGhU0pJKaTsoINCiW6yN9rf30cIGUSapkvT9ObmxqIQh2GMMZAuAdZuSi1otsFabTabNN36vv/06dO6biEkrGobIVugMJq666QSQmBEu66jBhVFBqNzv98HeT5wUkEQEIvBh9x1XdLvIYR2m+3XX38thGrbmnFbv7NJE8zKsgT8AHwPSmnOLWTEdrs+PDyE8CHQV11fX5+dnU0mk9DzwUWFEDIGF0WWpdu2bSEZC+xF/d6w67qLq0sI3AflXNu2EIpLuT0ajRzHGQ779+/ft22rruu96dgYDfon0N7B+ksIAfkqEOvEoGdff/Onf/qn9+/fj+MkiMLjo3uUW63opJS3i1VZlr04PJjur1aruq4pwiDhT5LEEJokieO5nHPb4uv1erfeaK01RpTS6+vZoD/yfb+uG9f3uq7VWgOTMhoPLi/Pge9jjAVB5DgOQbjrGpjDYEMlFiuKYr5cIUOqqmk6AfGMd3GAhDDGQMbblFVRFFEUHB8fW4wA8QGltoSQw8NDCPQCLiyO4yQMsiwD/RNAjHAZK6WEUBbi2+12vdkALo4ZBQTRdjlcQuPxeDjqw5WplKrLqq1KRImU8vDw+MGDB5eXlxCCAJ//ixcvfvGLX3DOlTJRFB0c7TPGxqO9pmmyNC2KwhgDpyWsqa7rel4APwLgxHVdl01NCIL9DYZ1eOs/+vhpGIaXF9fPnz8H811dt/Ab4Tbr9/ugnS/L8urqKk1zSqnN3efPn9+/f//3//APFotF1zVSdXA8Qsm9NngwGMAubln206cfaqF/+tOfEMLSdGtzXtf16emplJJz/vr1a23MgwcP9vb2Tk5OesNBXdc3NzdAEa7Xa2hEgMQmKB9sygrOLsuytDTX19dt29q2Mx6PLZtLZJRRFrUwRu/l2xhj+i63HTIOId5WCCE6iTHdbDbwac/ncyllGIaI4PfyANHdpbEjfPcQQvXzXe60QnmeG60vLi622+1gMAhcD4YV3/ctSizLklqBmrttW0BKQHtO6V1zDiTUNE2jpYTpH3hG27YxopC4JqX0wiAIgsnePiiQKKWdFEK0ge97ngemHK1UVVXAtALpCXgS/KVg1gNdl5FKCAE0NKV0OBzCqQV1c77v53kuoFgaITg34AGj74oH2rZ1HKfpWsC3wjCMPB/k7TCYdl3HHQ/khggh17UhxEFrDSp7SinEbmtk4N85s5TRRmnCKH9nHOm6jtsWMUhKKTsB9M58ubCsu4rM4N2/YKyESZlSuk13oMMLw3A0GmOMb66uN5sNeEhh2q6aGmQ/2+2WcQcQvjiOB4PBHVpRVUVRAU4GLzt4BYIg6PeG4D/IihysrIAvgnUjCkJIogc5fxzHSRQgbbzAhXHN3NlFleN4sHymaSqltiyrqbu2bTUyRVU63DLGYCjvcWyEUF3XeZ7Dpwq1SDBjIYTAhH57eyuUBDkjQigKE6UU/v2/879N0/Tg8DBJkquba0KQ0VopNewPANjf7XbHx8fyXT546HvwIGJspJTQ3LdaLY6Pj8fjsc0Z0K5wxsGzBY4SmFWn0ykhxLY5t+hwOPRdBwDwsiyfPXv2r//t/7ft5He+850f/OAH+wd7GGMhBNLGYKS1vCMcEaqqCiGtlGnbNs2L0XCSxKFt21VRlmV5cfb2X//rfy2Ffvjw4dG9+13XGYTrunZ9r67apumWyyVjLMt2m81us1nBpwwW8X6vd3R0AHP05eXl119/vd1u/+iP/ujBgweTyWQy3QPqzXXdxXq1Xq993yOElGUO6S9NVWkpXNfdG0+iKLo8Py/L8uGDx5RSMC2fnp5SSvOq3Gw2f/BHf3jvyZPN7eI9gWVZ1tu3bzHGtm2XRcYYOzo60lrDq35zc/Pq1SvXC1zXlVIFQeC5QVVVWiMQA8FnUtfl2/Oz9WaJEXU9+9sffwvSETnn69325vp2s0u7rsOINkJyyii3kMHvG0MtiqTqdpttkiT379+H2Wg0Glk2L4oMY4qQBoO9bDvK7e2u2GYpMng8HldFAScs57xtG9jDGCNtUzVNFUXRgwcPgiiEj7dt2yLLhRCUWr7vE8JAwVBV1fnZJXANVVUhrPM8pwhHvaTM8rIpp9NpkkSYGDjyXNftWnk9u91tUoT08fGxRejx8TE0/UkphWiDIADXSVFXIAeczWYfPHzU7/cvzs4BpzHGNF2bpul078B13RcvXsVxXNdN0zSQrxMGsevZrkPH42GapgcHB4PBgFJqDIbQIMuyjFTAs4PGglIquiaKImCsINnZsiwAgRi7+5GNMcvV3LIsjOhys/3JT37yve997/vf/97V1ZUfuOPxmBBCCIYXynEcCLEMggC8NiD55JQxQvf29ubz+atXry4uLr/++uvD46OTk5PRZOqHAayJMGHALbiY3TLG9vf3uetst2lZllBgDCSIbLuqqjrVAQFnWZZtu47jKKhXki1ABVEUwJODEAF9iZQy8P0oChgjbVerTliWNVvMr66utrtitdxYjmtzx3V9QogQrXpXh6e0DILASOV5DrzmDz64B3fV7e1tVRVhGHaddByn1+vBfYMQIkZjjNMih2UXXuQ0TUGCZgS2qNV0zc3NzS7PHMeJokjINsvzKIrCyH/w4IHWUksFKIJFKELIDXzGmBAKfpXAaTrvMqLyPJ/NZjc3t6vVSmoxGo0sZkspKSGQhO44HAZE+CObzaaqGvCuAgNACGAh/PLy8uzsDPiyMAyP75185zvfme4d3N7erpbLsqpAH+l73vHxoWVZZZnDEh+G8dXVVZYVUsoXL150XXdy7wMpu6QXgUFvPB5TTP4XPiK83q2vrm4ch0d+JGSbpcXV9UUUxHA1TiaT9XpdFAVl7F/8i3/xD/7BP/j2t7+dlcX5+TmgC/CLgHuraTpj1N3FhjA8/GmaBl44HA6Lori5uUnTlDs2lLQIITjnruPkRdHUNYhKYZeAPihgWqRQZVmDnBnGCyi3CcPQdp33BkZKLIA3IO4LxmjxLsydEqvf77uOA5ei4zgut+EaquuSM0tKKZQEfAXiUkFlZVkWIUhrDQAMHPWcMShBAbZnsVhIKTGiYE5vpeCca3NHSmZZhimSUsLfDjHXFmO2bWNsQO6jlIJMTjAngcxou1oD5Ewp7fVjCAkHsBwuddAYQRwtfDOMsc1mA7YAGM48zwOvA6zNMNEqISCncLlcgjORO55554ZumgoUXfBfYeI3GIFUDsAwwMMQQgD+AQfKmVXVpWhapA3oN5qmSfMMvh+l1GAwACDDtu22boAB01pTi0E0lzEGIRxFESwJeZ5/+eWXoN6TWoHJADg7atkgkgM2E15Jy7LhN66NQRrbrhMF4WK1lJ2wbA4ap/eCeuj2btvWosxxeddKbrN+bzidjLquQ9p0soVLdrfLiMWyLAOFA6yF8KXaRjBuZVmGsTFa397eOo5D0V23G2wgcRxzzonFYAAFUeM7ErNdrlfOu8YgjKiUEv/w+3/ouu7B0SH8Duq6dByHc26U9gPPsfh2ux2NBrZtU261bRu4HvhBjo4PwjAUosUGOS6HU2m1WrVtGwfh48eP011e1BXnXBnt2g7g+YSiwPW6rmUWqevatfnBwZRbltYaa3N7u/h3P/6x43h/8id/EkUBGHkgshXEcVXTWpaFKanrEiqZi7wyxjCKj4+PXdtp27Zrqtvb27/99W/+6q/+Smjz9//+3+8PhovFglCraZqb+aIsIeem0RoZowLXg4ucEFTX9XQ6hdva5pxS/PL5iy9/+8XR8fFkMvnggwe9Xo9aLIqii4tzOAfLsizKLAgCjI3jOJ7jw+8giiKKyXw+75oKHr75fP7nf/7ne3t7n3z6qZTS9T3Lsre7jBD6DtnWbdvWZbVcLtuuhpiPyWRijBoOh1EUzWbzq+tZFEUHBwfGGGPQerUVQi2Xy+VyuVqtJvsHRZEppR4/frjabJ89+5picnx8PJlM+oMEHkcQ01xeXiqNjEKIYKOhHLNPKQ1Cx7LodLIXRdHFxQW8kFVVSa0YI1qjtq1dx2GMaSGzorq6njdNE0VJGIYgz7IsDqeMZTHGmFLCGGNxutlsPM978OAERJ2U0q5tQcAnpVytNnDyaoWkVJRSx3OBhO261qKsbhukjcVplu2EaPcP9obDIbQatI0wxtRF7QYAVVoutwHBXi6XEFayzXI4p8C0ixCyuDPdnzRVzTkfDoer1Wq52qRpqjW6vb1lzIKDKY5jICnqunZc3u8FFsFBHMEqDMrKIAhsZpVlud1uv/rqK0iGVFJ++9vfnu7vg1/4/v37tmOBxawsS9hEd7sdY3Rvbw9Q+jRNMboT1D96/AAofqUUpaRpmpubG8vigEdqrQGUTYvctu0izebzue96CCFIjoXqyfPLizzPpTE/+r3fg8MUIdK2LaToBa5XVVUr1WAwuLi4UEYDxxF4vuM4SZIwRpareZ7nVVUt5iv4QHr9GF4Qz/OquubcybKsqpowgKOHY2yqvFiu5mWZJ0liMQIDtzFmdruqymab5VIo1w+CIOiaunvXv0kxwhgnSWTbdhxFSglYwDzvLnIJuAOYy1++fEkRvn//PmNsNBqB1ZHZfDKZbLdb0M2UZWkzF/5qx3E0RovF4vLycrmcR1HUdd2DBw+SJNFaRn7w3gfQKfmeQ2/bttcbbLdbwN6g2x5E95vN7vz8/OLqPM/z9WpLKR30+1BEC+M45wyuEEIIxlQpBeKP98a3yWjIOQcy8eLiIs9z8Ax+9NFHjx8//vbH31LI3NzcgKwiSaJB0qubEvxPeVa2bcsY9zzPj0KtNedO01TPX7747W9/69oO7MOHh4eO41RNXRRFEHh1K8oqZ5gpJTCmZZmvlxuIToX14MmTJ3HS/+lPf/ougSkBrA4YtK7rtrtd13UWtbh9l6IMRAFFd/FaWmvPdYE+Oz09vZ3PKbf29vaCIGCYtVK0VR0Ege8Htm1TyxJCVE1d1/XFxQUhDJLEybvEeaUUpEMLoSzLGo/HdV27ngf7A2AbMBG+i6HfgWXv/r17cRxrLTHGSGlQI4F+vNcbwDxte1BSjIC2I4QAVgFeCsdxAs+viowx5nku3N9v3ryJosj3A4Bs19utMQYhIqVk3Mrz3HFdIQQyBtBZANIwxhAwASTv+ym2KIp0s2WMJVEchqEfuI7jMG7Bj9+27S7LOOegyqrrGqANMEvBdAi0I2NMtG1VVVAuNBrdKT3qut7ttowxz/PBew44iDGGcQ5fpCxLijFQ9l4QhGEIrAJjDArfQGqmhMQYM4uCrrzMckjEePXy+cnJyXsGEyFU3+XjIxBKBkHgux5sSsYYg1HbtuAQjOPE87zVYgmX++XlJWSLMG4B5wO0MqjNhBBCGYRQJ5SUklILZmuNTFVUrudJIbQxUghCKQjzizx7PwJipOfzOacMIR0EkevaShmENOCvlmVTSlfbTddK4CUNxq7rKiVBNGXbNiHItm3RdRjjpqzati6KAmkjpXQ9GxheL/CbpiGMJUlCLSaEcLgrhGi6FkZY0AJWVVVWjW3b+I//8O89fPiB1ggRs1wugYmwbe65rmVR0bRSdb1er65ry7YdxwHpJUJoOIQgaTEc9OA9+eKLL54/fz4YDLA2T58+HY/2jDEKmSAKlYAiI12WZRR4ts2bptmlm9GgPxj0At+P49hmFuc8y7L1egt9ruAfLoriwYMH/cFgs90ul+v5cuGHAcY4z3MwmzDGCDZN04i2m0wmw37iuu56tb26uvr3/7//KQiCDz96ul6vue12XVcUVd2J7XYLQEJd155958Sxbdu2rbZth8PheDwOfN/znKaqb+ezm9ns/Pw8iuIHDx5MpnuTyaSuK+B9GGN703EURa5r73Y7i3LIg16v1zD6HEwn6/V6sVgcHBxwzn/+85//8te/fvr0aW/Q97ygbjpjEBTpaK2Wy6WWihBCKHqvDYqiaDweIoQ2m51BBA7Ki4sLiNOryubm5hYhEkVRmMTGmPl8blnU9b2qqtoa1u743r17SS/yfQ8A3vl8fnNzs15vfC8cDoeu6/f7wzAM67qUWliUbbfb29tFrxdjTHe7jTI6CLw7dMGyCGZGqk7Jpulu58v5fM45t23Xtm2ttRAS0GNKCRArvu9qjZIkUrol5C6fmhELHonlcrnbZVmWMcYZY1oh3/e9IOi6DmhNmH4IwVrrqswR0owRz3cATA3dELAZxhizGSFkvVjudjt4nmGTIxYHPzljzLLsJ0+erDeb2WzWNhVjLIqi+/fv122jFZrP5zc3tyCBAtuplEprvbe31+/3HIZd17YcG0Klnz17dnNzc3h4uDcav6ct2ra9nd88/+aF7/t/90/+BKZSz79rU+n3+1mWWpZ1cnICwYOYGEi2DPyIUkaJVVY5YAA//vGP67p6/PgxKAKDIBwOh+AUAXkHZpQQwilrmib0A4SQ57lAX7ZtmxX569evs7IAfX0nBbdspUyZF77vc8oIIUIboMLf2wZh/EIIZdnO8x3OLSkVIeTly5dfffXb6XT68OEHnDtpmmZFHgaR50Xr1ZYQRildrFez2aytyqZpMDEIocBzB4NBHMeYEiHUZr0T2mw3u12WK6WSKATDedPWvShGCMGOHQYefMIQwEHeZXO/1/wOBoPXL17ChvDJJ5/A6g+/l+ZdQYpSqimrOI6TpA/MY9d1s9kM1BjgIxmNRqprgyBo6tpxXSll2dSwwQNnQchd3Z7jOAcHB2/evIGWzyTp27Z9u5hdX1+nu3y5XNqc37t3D2MDmiRYoGEv7ff7tu0ul8v3scYYY4db0+kUwmJms9nZ2dnbt2c3Nzeh54OX/Ac/+MGDBw8op23b7tLN7fXNe+c8RhQhNBiMMMaYUXAOdl03Xy7++q//enE7hwTao6Ojx48fHxwc9PuJwci27avZTZUXALcTQnab7Xa7rarm8vISZKb3P3h4dHQE68HZ2UXXdczmQO1JKfOiNMYEnt+2LcbYDzygcjglAN5gjB3bBvTaGMMsC/wrvu83TQf+yjAM67rJsqyoqizLZvPbKEoAoLIog8kermRQxDdNU5Y16PkQQgYh13WLooBsVcbYex00ABWcc25ZXddpLY0xNrMopWWV13WNDAPMOAiCMImBIyaEvCsIx6BMyrIMJrzL87N+kkyne+DUee+qWy5XZ2dnyhhQ64ZhbNkclluL86au4WV/b/lE2rxfveBb5ZyXZVlnBSgHXNdFWINtH7hOpZRQCj4NrXXV1Bhjz3GBrAQcva5rsAswQuAvAmq+6zrb4kmSMEZd30PorngR4FshhPtObgVKL8uyttvtcrmklI7HYzj6pNawZDLGZNcxxooir+u6zAutte/7J/eO7Hd9PsCBKqUszo0xq9Xm4uIC0tGjILx37w7GxpQghEDjq5Quy/LFs+e3t7ewIIVhOBwOCaNwfFFKZdd1XaeMAfoPM7rdZW3bBkHEGLO4Des0pRToSNu2gGb1fV8r6brueDz2fb/fixFC6WYNg13btnmardfrTsJDSwkhhHGEcNu2/f6w7TrzP2fIWXmeY2wsxo72D5A2UnaMMWCTLU57vR4glBoZ27ZbISD3K8syqJzywwDGbtB/r9drITXGGP/T//L/ghm5uZ4xi754+VJK+ejhQ9e1+3HSiWaz2RwdHd27d2+328APCVKMu/hgTAhFJycn+/v78NXfvHx1cXHxzTffHB0dQa21wfQ9tux5XhiGbVe7rsMpszg1SnLObdvyPK/f61GEm6axKFNKPXv27F/9q3+1t7f30Ucfj/cmSdwnFru8vOa2TRitqsoNfCGEzSwQJYBeilLaT3pKKSk1OFlubm647YDOYLFcU2pBjUNd1xrfRfgIIWTbgOQZIbRY3B4eHvb7/SzdDvsDIbtOiNPT09/85jf37t377LPPQIdrWRbkCPiBm+f58+fP27Yd9EfGGEIRkKFA4e/t7XHOTk9PT05OgiA4Pz//q7/6q+12+8Mf/V4nVNO0HaB6GFNKObfAg22McTwXmOzLq3M4XJq6q6r69etXq9UqzwvbtpO4jzFdrDeEECVNkiRVU9d1CffHHSmG1Hq93JuMptO94XAoRGtRWldtVVWu68VxTDDL87xpOqDnHMeZzWaUWkoJzh1CUNXUjsMRQlmWDXr94+N7DJO6a4UQdds0TZOm6XaTAtEJbabwdUASMRwOHccty+Llm5dNU3VNY1n08cMnngdOUuxY3Biz3qWLxQLE6dx2OeeYMim169pd11GMKSVCtHESDnoJ6E8dx+nHieM4kH1cdzVY/ReLRdu2vu9HUQLLU1EUjuNNp9O6atu27Q36q9Vqt11Ce+P9+/dPTk6k1EopjOnrN2+AJQTJCOQ9dqJxqFVVRdU2sPpvNpvhcAiKy6Ojo14cxnFMKc2yNE2zN2/eLBaLP/iDP4ii6Pr6ut/v9/s9oEiCIOhEY7suwPug28iyoq0aKSWoYdq2nc1mFxcXm80GgpWPj4+TJFktN+8N/HBJjEajruscl4/HY8jfMhiBbteyrKatECFff/31f/7PPw/D6Mnjj+D5P5zuB0EgjU7TlHHLGAN6F6gksi1e13VVFx9//BSu1ZcvX3Zds16v96Zj1/HbtiXMUlJvNtnbN2dlWRtj3MCHcCOllBZSvzMQ1XU9mUzatu0NB48ePXn+/PlsNsPvM7XDCPgjy6KB7/u+3+8no9FoMOi9x11A7wIYEqAUcRCmafoXf/EX4CrCGA+Hw7qu/SgkhKxWq0ePHtm2fXl1rhUCNyswPoPBADIFXr94aVkWo/Sbb74RQozGY8uyiMX29/eTJFHKgOgbuhZOT0+l1BDIB5ngk8mkEwJgiTdv3hBCTk5OCDbD4dDzHM75ar1omqbfG3744YdZls3nc41MmqYPHjw4ODgAFkZL1ev1jFTA352dnb188UII8fbt2//df/Ff/M7v/M5qvViv17e3M4fbcRz3+/0oirtOEkIszgkhnZJd14HCgRDmOE6apq9fv17Mbi8uLvI8dQP/448/DqKwrmvIIjLGbNeby8vLqmnBjGLbNqMcQiIsy4rjnhDi2bPnl5eXoNQJ43gymWBMYbRFSIMKxSANBjdjjOpaCKYBKYVSSkuzWq2Ojo4gfKdt28VieXV1NZvfEkIcLwiCYL3dGI3BQCpFq9/VO8JPBIANxhQ0AHVdz2Yz+OK+7ye9Hoi+4zjm3JFShqEPODQhhGDjOA5kswHjxqkDgt31et2pznGcuJeAUKFpGgDIwekMKMN0Mo6TCL4faDeCVQe0dBcXF4DdEkz39vZs1wFMaLtNYdzBGEMPI9hBwDENwiBoydMtWL+tpmkuLs+KotDI7O3tEcbgwsUYI0IBmbNtG2ll3oUvwk89n8+Xy6XnOEIICD8H/vH+8YnGqKrKPM/9MABxXtu2XSeklKA1BLISlmrG2HK5PHv7FmwlcLVxzoEuZISuVitYZUPfBYfBdDqNegmgs0IIx3VB5A0zcZ7nt7PZer3eblJoWBkMBuO9PcD2ICMQ9nb4u4IgACwz6fcwxpzzvb2968tLgAyLqpRSGYw7qSCKKI5jxu2madqme8/JwqQBT04Y+HEcM0aklMPB4P0t39bNdrtt2koIIaTOq1IpE4YhRlQpjQnj3MEYt23dica27aLIYaFCRhFlQt8Hp6fG+vr6GqgtY/Tl5WUnBVglGGODwcBg0rbiPeUilEySpNfrnZ2dgYUZ/9//r/+PosiKosIM394uzi5OT46Onz596rs23Nxt21qWtbc3zrJssVikaQqqBcdxmqp2PbvX6w0Gg/v379u2nW62i8Xi5cuXv/71r8MwPDw8/PDjp6Awdew7xNj1bIyxZ9uUYdF2u90GIJO2bo5PDuMg7NqGEmZZ1tnZ2a9+9auzswtCyO//wR/t7++3UtV1jTAWSgZBKI2mCCGEQOUDfXmi7Th3gP+Gxfp2vvjVr3715ZdffvDBByf3HsL2gDGm3NZacu4URaY6AVM5Y8x1bXA+dl03HPS4xTAhjuOsVquqqkAZYFkWbOHwahVlxi0HnmnOOQQld00LPh3Lsp48ebS/v397e7tcLj/77LOqqn7yk5+sVpvxZDqajBlh8FM4jmPb/D1vvd5uz8/PwYWrlHz06FEYRvB/IYTW63VZllLotm3rTnme17Vym+6MMcPhsOuaoig4dzA2bdsSiixKwsifTMaTyQSqMJRSSmmIutltUsd1W6kgCAD2M8jIcV1XG8NtJqXcbteMWEEQHU73+/1+I5ptugvD8Pr6+vzs8unTp+/zM43BIEEoihJYrdvb27wqkiSymdV1XVOXSZLEcei6LpDaxGK73a4s67IsN9vU932NKNA3tm0Hnue6DsAhrsOl7Oq6pRQn4Z1HwY/CqqoAPnmft+S6Ppi3jTFaIyllU3eWZQmlLIvZnEAL3mq16vf70+l0Mpnmee76XhRFTdMAJrTbba6vZw637t+/39XNcrMeDAaDwWC32z18+HC5XBZF0XZ1P07u37+XJAlcG5eXl19++eWrV698P/h7f+9PoIgQZuLBsCeEaIUAbdD19XWel1mWQdAAeGAfPXoEIZM3Nzer1Qoka0EQhEHc7/fhwAJMAozuQeh1XafUXVMbLOuWZe0f7Nm2fT2bZVnBmPX5337Rti2I5Cil3HUIIRoZIQREDsIz7LteGPl5nhuj4TxFCHmeY94VvM5ms9dvT+e3C2NoGMRtKyiliCL6LpaZorttDeJRGGOWY4eh3+v10N2dXW1Xa8hn9zzn6dOnlmX1ez2I/TPGQPwmkDiwTsAkBAiH6gSwz3/2Z39WliWsTJZlTQ8P4jg2xrRtSxk+PT3VWkdRxC0HSDFIcu/3+1pICJjVSp2env7sL//ScZy439NaD4fDfn8ISr40TUejUV3XxuD37yZISKVSvV7v/v0HcOkEgee5rhDt2dnbuq6fv/jm8PDwow8/BtUwISTuJUEQwKchpdztdnEY7e3tLWa3sPpzzq8uL1+/fn16evrxxx/tHx5UVRXH0XA4RNoAo7rbpXleJkliO47jOFAgA/MKGCDiuMc5E43YbFa/+c1vfvvb394uF7Zt/+4PfwDehSwr2rpRSnl+CKMbIDe73S7Py67r+v3+YDCYTPa01ldXV7vdrm5brXUYxpDKUdc1QloplWY7zjnYR0TTMkaSpA+3xocffkgImc9ui6KklAyHo9lsdnp6utvtDo+PLMuqmo5SCtopkJoo2b3XGAEkDOhL09zNKMB7GGNgCieEgLWtKAqINR4MeoSQO/pYStu2LMsCbzX0AUCADkI6LfKbm5usyE9OTnzfXy6XYRhGUQS2vjiOOWecWULepV1IKT3PE00rpUSUAJEEG0vXdbttaowZjIagZIWrQSkF6S3wNQEgh4wuwCNsZkESh9Y6L1Kt9Wa3bZrGYMw5B7AQUwZQd9d1jFDO7zJawQhl27YQgmLc7/cDzwfzFqjRt9vNHfPuue67YmnbdgDng/MfvSsy9zzPtW0gaiHEn3Pe7/dX240xRrad7/vT6fTxk4e+6zkO77pOKEmsu0C4rusQxvDVwN7keZ7veQihy4vrm5ubuq7rum66DpBFSqmWCmBIoAgBwW3b1rI5xjiKotFoNJ/NqqqCP6IRchynarpOCkiCLMvSYMKZBVMX7PyEUaOM73sASmkthRBlUazXa4YRxhjM7BQTg1EjOq1103QIobYRbdsResehV1Vlceq6jpQSY+P5jm1xogyFkDzbhgzF+XyOEHr48MHJyUmaZ+8L7iaTSZIkfphordM07bqOcauqKvgcYH/A/+X//p9Qi2iFttl2MpkCPel5HjEIIeQ6DgyknLP5cgGqMYDvCCFIm8lkBKKuXq/X7/cno4HneVmZb7fbFy9etG27Nxr37yQRDmQJgsFBKdm0VVWUYFItisKyLM9xmYVsZoH/07bdxWJxfnrx4x//eLq/f3h4eO/Bw/F4XNU1tVgQBBDPCKTS3UdPCCO0bTtQDMRxhDFeLBa73Q4SJeq2me4dgLCRUiuKAj+Kq6oAqIZhAqAuaEUdx4FqDpi3EEGMsbopX758+R//4qdRFD344BEh5OzsbDQaOdyZ7I3rpkmSpK5riNgAagmc1cfHx1EQQg17WZZ7e3tFUZR1Fcex5wYApUAqCbRtUkr/9vMv4LVpmqZT0hgTeuHh4eFg0INkrM1ms1htjDG3t6uqqgwioJfSGEEnjGc7YPi3OA3D0BiVp1lRFEkvSpLEsThMGEqpxWJRV60hlBBCCIuiqKm7oiioxRgjQghm3TGJXSMopZxwx3EGkwEcBxjjuq6jKOKOrZS6ubnZbbOsLLIsC8PYtu2uFZCeDLJZo6RjW65rN2Xh+/7R8QGYwy3Lsmy3LMvVZts2AtJ94agaDofmLu/YSCFev345ny+Pjg4mk+k333zDOR+Px/fvnwRRmKcZ3JFVVZVlDVgFkMJKKUY5pbQ36GOMMZKwF/Z6PZg/MDYgCgarJvwu8iLFiE6nUyGEUgaEFOPxEFjUNE1hD9lut6vV8mj/YDQewNHZNS0MpodH+/1+H4J5pJR11a5WqyzLzs7O4Pp0Xa8sy/nNzHMDEJ53XXd0dPTJtz+GvwUyKr/88kvG2PHxMSBesBYDpg18EMZImruqx29/+9u2bW9Xa0DjoayprpvPP/+8bdsoimCVElr1+v3xeAwHVts0Qoi2ql3XlUYDUQWXdFHkoLRdr9cvX766vrnpOkmpZXM3z0tQ4kspMaYIoaaDzxN/8skn2W47m81s27Jtm9sMql1t296stkVR3L//gHNmjLm+vm6axvfd8Xh8dHQERiGwB8ILBasw3By+49Z1jYkpy/LVq1fz+Xw8Hj98+HAymcDYVxQF1D3Bdo6Z1bZtmmfA5BpjCDJKqSgO4iBUSp2fXeZ5fnNzW7UNnPhBEHheAJowUJrCTfk+25NarCzLvb0ppcS2nclkHAQeJqapylevXn3xxRcgpvE87969D4IgcBy+v78Pb7oQYjQaPX7yUAihhXw306B+vw8yprquB70+5xYk7G+3216vN53u27ZblmVZ1FIrpRSg+G1b+77PGOtEQzQhFA16w8PDwy9/+9svvvjianb7zTff/PH/5n8dBMF2u3UdPwpDQsh6s7uZ30I2r+oEpZQQyhiDiBzHcR49ehQEwWKxaJq6KIo0L8AkCDgHeGjg30GNtH8wpYSB/hWmKKPUarlRWlRlwzl/r+lu21ZoBRwoQkgjwzkHuwDc3zBA1wVELeCjo6Pj40P4snDgFHWVpulqtdqmuyiKwiAG7Me2bUKYlB3ohzBCGBvOeRAEkR+APchxnFaK9Xq52+0g8h4GIyiogMmpbVuplRDCtrlt20pKUIDpd9EJcOsD6AIQ4PXVTZqmSZJEUVSW9XsYr9frgTUP7lP4Om3bMkwA9vN9H2H9Tg/KyrouikJrBAJwhJDvh5Ri0bTwMK9Wq0Z0MF4wxsbjcRAESgj47QghlJJGaWNMJ5qqqlzX5bYLUM1oNIKrHGZcLRW4K4QQqhNFnr49O02SpK5aKSXkR6bZFnCdruu++53PPvvs08VisVyvDKH6HYMEnCnMmnducSnh9wjqyTjqVVV9e3t7fX0NGybc2jB4QU07vLmQiIkxBs1ZWVfwTEopDca2bYPzdbfbNa1wHec9/uo4zmA4pJhpI4EegahzwOSMMbC8aa2TMOqP+gDEOM5da9Nmvdtut4RQ27a1VoSQqi7gQ/N9Nwkj2+JwrVOL1U3JGHNdB7ZWMKgeHh5ORuM0Tf/lv/yXlmVN949gvwWEqCxLgxGwJU3T4P/z/+GfjMfj5XqltQ7jGFIrrq6u/uY///X9+/ddx4nj2GiMibEdh1K6Wi/iOIZeSdF2oAOFhgop5ccfPTk+PrY9BwD59XppW3fFdkqaoii6TsDuwrnlOE5Tw5EdGY1hom+7sm2qvcn+sN+HZ9S2nOvr61/9+teLxeJ3/86PPvzwQ9fzlFJN1wLKAjcTPM0IIaRRlmXAiE+ne+ouMoqXZXl5eXl5fbVcriAGPY564F7ZbrcApMu2A9wVrCWO44xHg9VqtdlspJTH945d1y3KLE3Tpqq/+OKLqmwGg0G/P7BtWwk5Go3yshgM+sC4QejrcNQXQiRJkiQJxQSyZ8HxNB6P/dCDB26xWOV5nmfl7e2cUuo4nm3bWV66rlvX7W63o9yqqurq7MrznSdPHvX7CcRZKYOhfOP8/BIT5nme43uMEQi1ggxu8L7OZrOu63bbbRzHCOkkSSaTSRz4xhghW/i9VE232eyEEE+efHR2eqG17g36lkU3m03TVjDsMmIhhGQjMca2b49GA1hY4bFuRZfn+Xw+L8vSC6LBYNA0XdM0ruO5rsu50zTNarXABPWCyCDlWCzP0zAM96ZjmOwNplLKsm5ms9l0OqXEkkJk+R0JBYEFou2Go/7x8XEURW/evLm+uXVtp24bpcSjxw+ODo6jKMjzEtIZiqIAu2/TNFDaY1kWpByBahDe3qIo2raGTdp13clkdHJyAoGTRZmBrY8QBkjMaDSK4xBCUOHoZIwhZCyLunfLnxNFkW1xQkhVNbAjvnr16i//818tl0tuOZ988onrulobzGielVdXV7BlAngppQS3P+c8TsLDw8MPP/wQUIrXr19XVXV0dARB+eC4ubq6WiwWjegoJdPpFA7EwWBgWVZb1WVZMmZBWB2ooy4uLr/66qs4jt++fTsej3/37/zQ830pZZ7nLphvpMIYa4yKori6ulrMV57nwZXMOf/oo4+UUuvt5je/+TLP8yhMOOdSatgu4HnAlEkpmUV932eYgLWFUNTrxXmaDYa90XAC50YUJW/evPnFL36htWaMDAaDo6OjR48ewd9o23ZRFHClAdoPfIdjcUrp+7SeX/3qV4QQqAYCdCHLsqpshBDwS5yv1kVRWDYHQzEkiQvRdk0bx7Ft277vG2nevHnz4vUrUHbWdT2dHsA3iTFOdzm4Md6NgFoZXVXVdpMSiizLSpLk6dOPoijYm4wQ0r/85S/fvn0Lezml1nA41FrCZfPxxx8Dj6mN5Jxjfadsg+wVAO+DIGCEnJ2d/fKXv3zz5o3WuuvEkycf/e73f3hwcFAU1Wa3LYrC8R2t9Xa7JoRQhjnnLrdt25adSJJEKpNlmWXZ6912NpuB6CTPy/VydbtYCKVs2+Wc13VpEUuqO/AJcFNI8jw8PCyKHB7gbZZWZX11deW6Loy5APNAqdp4PAZLGkCMaZqD6quqqiSMbNuWsmuaBi5CUJXBMua6LqiCgPLWWm+329VqxRjbG43jOIZvEvZAEDABggKn9y5LhRBaIYCEgyDgHHZyDRgYYB6ua8PC2XWdNtJ2Xdg3YG+HGxEmRq31brcLggBUO4AoI2OAVwVplPWuyRshdHt7C/+8VgZyR40xjuPBjL6/vw+PEFzAgIMCLnXHaRLqBr5FsW3b8A84nte2bVU1kO7BOQ/cwBgjZQcBRkIIN/B7vR7Ae/DF73ohjYl7PYJM27br1QJYLErpndwbY9d1AQeB/11LZYwBv2oUeJ7n5XleNvXx0b179+7Bz2s7ltb69PSUU3J9fR0EHpyNfhRjwoC3hUlLaw1pMn/91399+vZtGIbwN15fXzuOk8QDWGshjBRSiOEUHY1GiOD3X+HOaqA0jF+73a6qqqqqqGW9948HQYCNgToZgnCUxMgQzGhXN3lVQiPCarUCBSGgpwBkep4HOry9vT2MTZL0+f8iURZ2j7IsYV1EiISezzkDRRrM92VTR4GXlyVnFAifuq53u11dVkEQaCG//vrrg4MDartCKzjGgU7JihzmFikl/n/+s3/Wtu1itSzLst8f9no90ak0TS/Pr16+fJmm6XQ6PTw8un//HqV0m+6k7NzAPzk8grYTx+W+67muC+1RrmeDwKVta4xx0ou0kLPrm5///Oer1eaHP/jRZDIxGDVNA+Z24OPrutb6rrDMDxzXte/ff1CXFeg8YCTabDY//elPHz55vLe3N96bkHexMU0rQASnlKrru0uurms4TDebzdnZ2cnR0WAw8AP3TnJ+ffs3v/xFVVXf//7v3r9/XyEDhILjOF3dAGWjlIJspNFwsl6vwWYfx5Hv+7Zjcc67VuZ5fnVxWZYlpWw0mvTipGmqJEl++MMfSq2++OILatF+v+8Hd/CV1roqSoyxRVkYhk1ZaayH4wG8ky9evCqKilGeZTlCqKoa3ws1wvP5PIgShFCeF7vd7k5P43HOWb+f+L7v+J4xZrfLVquV54dKKWZzUGBk2U5LKYRglGdZtt2mlmX1en1YLrMspZQO+sl43A+CQBsJ0EJdtS9evFJK9XoDhJDSWkrJbJ4kURzHoe+LVm42m8iLIK2qKLMPPviAEFLUBaVUqM51XcqtpmlmN/MsKyi1er0eRkQp5fpBXdfj4UDIrs6KTjRYqzD04To8Pj7e3983hHLOoQkOQhevzi8urm8Y5VEUCSExRmEcGWOm0yl0njx78TJPU0hiy/N0PN47OJi6tte0FSyXbdu+ffv24OAA0ERYrLebNMvys7Oz3W77+PHjTz75ZL1ZAt/kOI7r2r7v7+/vwXsLLtfVajMYDOCkC4KAUrq/v0cIwcTsdjvb5r7vQiMCCNqaqu7aejgY27Z9u5h//fXXm81uNpu9ev12MBg0TfvwwePDw+Nnz57t8myz2cD9Aa0UQoi6LuGSk6o7OTl58ODBdDqFFj6t9bOvvr66unpw/wPX99q2HU7GgCUvVst+bxDHscVY27bzm1lRFLc3c4S073uj8eDRo0fccqAx7ee/+BvHcT761rfSNA0CH0y4ZVneXt8sl6uirozGJycnxuD5fPngwYPXr1+/ePHi6OhgMpmMJmMhBEDLRVUNksFul6+XK2iFiqLQGFM2ZRQFoe+DrDMM/SiKjFSwzmZlYXEaR704juc3sx//+MeAWBRFMRgMPv3uZ/v7+xDAiDFO0zSKg729PRAJWITCVQSTCoiEhBD9fr+qqp///OfX19eu7cRxHMU9y7Iot5umKaqy3+/XrQDKo6qK3WYD6rr9/f17xyeh5z979mK9XitkNpsN/Ja55TDG0jQ9Pz8fDAaMsbbthBBV3TLGGONh6FdVZZAaDgeEoMl4+Omnn/q+u1qtXr58/fLlS61RFAUWwd/97nfvVLBtm2WZ69lBEPT7fTjEm6ZZ77Zv3751HOfBvfvTycR1HNg6vv7qm8VicX09u7m5/ejpt548+ejg8DAv0qIutNb9fhJGfhKGIBgSQmzXm64TlFqL5TKKEsf3Npvd/Hb5s5/9bLlcTadTP4got+um6doWY0MI01pibZRSmJggCFzb7vf7XuDvdhsAShFCShlgzLdZGgRBEvds25baQIJUlhYwQGCMbduFSU5rraVyHAdhDdgMRTjLMrg1QNovRCuEgMIlY0yv14MUvfeRbIDQA+wE5KNt24giYwwkAnSd3Gw2WVowxg4OjgAPBgYTYHXRNXWRK9kpo/f3p0dHR3AxSykxo+CL/M1vfrO8ncNKM57uKW0YtzzHfa/NtbnlOA4YLUE6DOfDdrtt2zYMIsg9EUJEUQKYOpDdAOeAS8C8C9y2LKuTQnbCdh3ZtZ7nTadTKeVus0EIWcwGjr5pmiLLgQVjjE0P9sEXQiltRGOM4Y4N85wxhhKMCXFsG2PMMGrfNcKBncJxfaUUZ1av14MRBIAZzvloNOpEkyTRaDRxPQ+mIgiDgFnT4rQqyvV6vdmsXr16JaWcTPc/uP8QXr33DLjW+vz8/Pr6ut/rvUcxgW2vq05rDSoCSEHjnDdNc3p6yhgbTcZxHLuuAzNxXddBEAKY0rZtK0QQBHVZwCcJwI3D7XcBNEgI0QiBCF7czjspLGYrpSi3hBBKoyiK4rjHGAPfcVmWTdNI0eZ5rrUcDodxHENWH2MMgU0wirquY5Rjg4IgmC8Xs9ksTOI4jr3ADzw3LwuC8MHBgTYKlOtJFBdpdn52dgczuYHUCv4zszkA6m3bQsME/n//N/9svV6nWVFVFfQi+b4PeENRFKvl5vLyEmP88ccfQ7xQ0o8tThnlAJ4nSeLYFoDzWsssywbDXp7nCJnDw8NeL06364uLi89//Zuu67K0+N73vscdmxDST3qAOiKEmqZ1HMf3Q8ZI0zUWp5xZWmtGKJDxoefDymsIllL+4he/sG37+PjYsixm2bsszfP85OQEIbRYLDi3LcuCpTnLss1mE4chDNR707EQoizLLC8vLy8RQicnJ/DPK6XyPKuqerfbQWInaE4xxrvdDqQJjmMXRSFke3R01O8NtdbL+SLLst0uvbi4+OTjbz148EBrfe/+CWVWXVfD8UgIkRfpfD6fzWZSyl7UBxu/0frp06dRFHSy3WxWkK6e5+XLF6+NQYyxthUWd7KsyMqCYMYYE0JGUVRm+c3NdVnlfuT34yRMwv39fdd1hVCwJBVlvdlsNEaQe9k1DSUWQggG/MViebfKI8ptZtu8LHNkVL+f7O3tKX23WV6cXy0WKzi5huMRhLhU71zKm/Uu3WZ13WTbred5tm3fedzigBDCHcsYMxgMmM3LrNxlWbbNFMKiaSFjrKoqizPfcS1GhsOhyy3btmFugLe0U9Ky7P39fSnlbr0CGcdquwPCpWma73//+5bNf/GLXwDgXNYNKDYYYwZKDppGaz3o9SHuAdB7IQRshxAIDlwnMpRS+tlnn2mtLi8vHz16lOf5D374fdd1/8f/8X9I0/Thww9AG/HgwQPbtmEn8X2/1+udHB6FSYyNKurKZpYX+pxzjA007zZVlaZpVeTYoMPDwziOR5M9xlhZlttN+otf/fLt27ec2x8+eWoM/tsvvoR44bvVqswRQoeHh4wxzhmgO0oLo3F/kPT7fdvmQojf/OY3u+W6bdsoiQeDwcOHD23PRQhtNpuyrCAzOc9zC1sHBwer1er07Wvf9yCdPwxD3w+4Y8OyPpyMhRC3t7fG6Nev36xWK99xhVZKGsuyR6NRmubj8fjbn3728vmL88uzrm1nt7eUYXCT2La9WK3O3pxx7jRVwzgLw1Br6ft+GPm+79q2TRAGnTKsEOv12hBsO5ZlWXeROZS9ePFib28PPsDrq9lms/nsd753fHwMZJbr2UYqzCh8BZAcgDkL5EfGmDzPEUKUW1998eXr168JZk1dCymn04OjeycwlzDLvrq6ivs9x+JpkUd+oDHqug4pXZUl57yrG6EVQmi5XGKMe72e6/ha6yzLZrMZhOjattM0TVULeKE455RijHHdlIRg27akEB999OSDDz4AkPLi4ur165fb1fJP/uRPALzp9/thGIIoO8/zxWJxu1ys1+s4ju99cJ8Raoxxud3U5dHR0XA4JIQYg589e/ZnP/6fuk4uFovvff93PvvssyAOpOygHq2ty9VqmSQ9uOmhv/zq6ublm7e2bU/3Duq2UUKtNuvdOt1lqTQIKEvXvQOBLEIR1uPxuN/vNVU9GAws+y776k7CwlivN3AcB2q8q7JeLBZaoyiKPC+A07JuGiHexbkp5bquUbptW0DXKKWQxYWQLstSYyg+QlVVrVYr13WDINrbGyOFuneNPcBsQEJ1HMdt24Iv3vEdIH0czxWt7KQo8+L07CIMAkIpo5RQihGq6roqS2PM8cF+f5Ds70+Jxaq8ACwNCFzA5JRSbVWDdGG13RRlBU/X4eGh57hCCG3upi4gSe7MyxjD+8stmzEGNqm2FWALAwQUlnwQZcNCDgot7thG6U4KLYVt25C2uttsqqpyHR8hRDGRUi+XS4yN7/uu78FBAV/EciwEdUBKGqU1Mq5jN20Ljaj9OGEUg37x7jVRpq7rtm7ASQA0OmUYmgniOO4NEttykl4PBilApw4ODhBC2khCCPym0t0mS4ubm1tMiWt7URyD25RzDrIK8s67CuoIIYSSxrI4RN/tdrvz83OY2CDcAZ4uZbRRyg+D0A+oxQihEL0LzwDc1Izd9ZD2kghm2aZoQA/aKSlBII5QJ8V2ux2Px34YCyEGgxEYLHzf18asV6vT09MPPrgHyqLVagFWUMYY5zwOQ5jyi6IwEkFOwmq1Ekpajh2GYZTEFiVFVQKYkiRJtttalmVRximTUlZlKaTUGGdFTgiBJDNljEUsYjGLUI0R/m/+q/8KAAZ4aJ4+fYox/vzzL0CtDMKps7OL29vbe/fuPXr0QEpJCAKTP9D2cA4C/Q+easvmoKYf9nvT/Ykx2mbWarX+D//hP2RZdnRwOJ1ObduOoqjXS7TWGJP9/X1wLWRZ2okG2sSAYnBdd9DrQwGFy+2rq6tf/epX5+fnSRx/93vfC5OYMAoJs3lZXFxcKGkYY8YgOGrhi0BoOLfhJrMoZkopyIv68ssvLy8v+/1+FAd7k32lFLDXjPMsy54/fz4ej6IoApAWWJ6maY5PDu/duwc9U5zzm5sb27aB+DDGtI2AkGvgH40xaZ5RSpOkB7irbXHg+P3Q7/XjFy9e7Ha7H/7gR3VdP3/+4vz83GgsjabUAtlpWVWWZRNCPNfe398PQ9/xXKTNfD4HrH48HoJ+HHzyRVVGUcQY+/XnX2BM4fi4d3R8cXHx4sUL3/eV0pSSQa9PCDm/PFNa9Pt917WTOIR1H6rcIDK06+R6vd7usizLmqbz/QAh1NQdwWYyGY8nw9lsJoRo2zqOY2jVGA6HTddSTISSVVFe39yulssoji3Lmk6nnudBrJpt21Lq3W6npIENEhhMQlEYhuPx2LwLnoElNc2y6+tr2L9hfFdKYUxABZUksVaCEOIHAaVUSg1Ej9YaQq2NllmWgdbNSMUY98PEcZxPP/vOdru5ublhjERRVDflqxcvtdaffPKJ77tpmsZJOBgOLUa7riuzvOu6vb0913YYt7BBQRRSTJTRXddpbUBfDPiu73tZviuLWkoJXuAoiizLur6+vrq6Wq7XWqG6E3lZKGlgEfR9Pwy8KIo4JUAAaa2hf5BzB4KqLU6Pjo4GgwEz+Ouvv3758iWwGEEU3r9/HwB/8IgNBgMYZO/Io+0WtMyc89FwAi1MQRC0Vf3q1avPP/98l26kRuBccxwvDMO8qCilIDxiNqcIN6KxLSsrClAEKyEAEKqqqmtlXdd1U4ZhOJmM7jisotxsNoHrRVGitSYWc103CDzP8+aLmdaaGJMkydMPP3qfqdE0zRe//S30TNd1/Xf/7t99+vQpY2x2fdN0TeiHXuDDWdnUHWRTgbAP+JS4l8Ar9vbV29vb27quHcfb7Xbj6V4QBFohyN+imGRF7tpOWVdwfAMSQBCG3ybwRLCwzmazqqph1YaxACEU+Im5S8o2AF8J0bZtSwhihBCCfd+PQv/TTz892p++fft2uVmenJzEQcw5L4pitVqdnp4ul8vecNA0jeP6IIiRRlvEsiwKd9h2s8IYP7h3/969436/v1qtXrx4cXV1BYGr/+gf/SOE0C7P+v3+cDiGq2K322VZsVqtbmazsiw9DyLIna+fPZtOJgbjqiiKqtJCt3e1s5hzPhj0gZqBIjzApKXUWZYZpX3ft2wWBAFo3sHHIIRar9fX1zdVVTm2B+bTII6UujPogYiNGARDHihrYZCC63C7W4Pf1vM8TGl/0FNS50WmOimEgFf7vdCKEGJzF/hNmOR+9KMfvX37tu5aivAuzxyLl02dbrar7QaGdWLQcDLeG43DJHZd+J5FVuTZLiWEADUGls84DIClopS2bb1YrJpOQAYNY2x/b0+9oyYxJUqpsiws6OizLGQMISSKE1jaLcsiiGZZBltlke0Asc7znDAGo6plWU1TMcZ815VaM0J2u912uwWwCkRmx8fHvu/b3AVxjlKqlS0Et1oQ9g9NiE1j2bbDOSIEGyO1phhD0pbneQ634a0ET70QQkgJUXn7+/uMse1ufX56MZvNwjB8+PDhZDg6Ojrq9/vb7baVIooi27YwJU3TgJgO2BVYdV69enV7fWt7LgSm7HbZe8CCUYBLlZRSY8QYG4xGxpiuaQH/6/V6QCkCzAZ6u7aqWynyXSqNBpYQGk3KsvR8B6qHbJvDmwio22azhT8eJTFoAwghtmWBaw0RYtu274VAfdzObyzbHvb7jmPDdLher1erNZwn1LIRQhDURwzCGBsljTEGKaVUJwXI6v0wrPLKDXyGiUEqSZLpdG+z2QjRwmANI1fbNFohOG/LsmxF19ZtJ4VRer3d4P/Xf/1fQ0ENzObgeL+8vITMtDzPCSEHB0e3t7dZlvV6PYwNGFCB44cLQynVtqIsSxBj9vp9OAfni1nguZO9EcZYSbO8nZ+enu622zD0P/vss+FwAFuj1jqKYlB6BYE/HPUhf6iqqqIo+v3+vXv3uqbNsqwXxZTStmlms9lf/aef3cxvv/WdT7/7O9+DkBsFMxbnCCFkiDHIcRzQcEgpMUbMIpTSqio8xw+CoMir3W739s0bEAUnSXLvg/t1XW/Wu36/H8Zx13VCdKCEVUoRhIuigADGTjRQBgBnCrSdZFmWpvloNILnMkuL9xR11TTgJ9Jan59dQngjIeTlq+dSig8//BAKoSaTSVGUFxcXb88uIBzFdV1lkOu6FrMRQk8ePwzDMM2z09PT09NTx3HqsrJt2/ddgAkxxo2QCCGp1Xa7nS+3eZ5DcltXV47jDAYjUNBjjNu68TwviEIh2sFggIlxuDWeDBnlTVthRMH3dHV1Awp6hKlt274fIEMIIWm27cVxUWagtknT7T/8h/9wNpv97Gc/e/jwIXjK4FcMBGuSJHEcb7dbuKgADN9uU0qpFBohDLe1UpIQIlVXluVoNIIWC8YYZQweklevXlVV4/s+eLlhqxsOR0HgK9kFgSekVkrVdQvnHbQIx0kY+gEAZlprLaSUuhVKKYUIZowAtwX3ou969+/fRwgRgjjnlGGEcdKLx8MRRVh2Ar4Tqbqm7gAj4ZxTy2rb1nc9oAx6vZhSulwukqRHKc3z/ObmRikzmYweP34shHhz+nazy+q6bUXHHc+2bcfiVVW5DscY10UuhAAcHlAKMNJCMOlw1KeU2szqxclut3v9+vXbt29vbm56vd50On348KFlWWVdwTpRVVXdtR988AExiBBiNE7T9Ha5gvlmf3//4f0PfN8ty/L58+ev3r6hlBLChBDD0QReIsYYhJJoLQkhYRiGYTifzzHGdVm2beu6LmSsgDfC87zF4vby8nKzXgdBELrhcDgMgqjrukZ0lmX1+4ntOsioJEk829ZabzerNE3H43HXdZ4bdFIAGv3s2bNPP/102B80TQMZj5CavVyvdtsMSKhtll5fX8OwDgJe0NsO+xOk9KtXry4vL8fjcdM0m102GAygpgLUXZZleZ6HCAZfPWNstVrBKQcJuqCRaNuWMQtjDEQSSCpt7ratwIy+t/6AaptSrJQKfRdjbFF6dHwwHgzjfgwaKaT0s2fPvvrqq+vr2Xg83tvb464TxXHdifcClLpqGGPaKNu2ZdsJ0U7GY8uiR/sH9++fJElSlNlf/eVfp9n2yeOPLMui3EKIgAhBCLFcLtOs8DzPCwNIRui6rmkakIGC78H3/d1ms91uMcagCwxDHzrfgNKFECnbdsMw7Jq214+jOAaQAIhyQgjIltfLVZpm6/X69vbW4k5/kDi2x2xmEcsP3Lpqq7rAiHq+49heUWZ5VmJioK4XygDAhYcohqgRSuluvWnbNgwjwBfhPuu6DnoYwangOA7sYFBKc3FxIWQL9XQgSouiKAxDx3FEp7ZZ2nVNXhZSyqZpwjB2XZeg/3mXa6oSBPhCCErxdpu2QlqWJbsO7ERBEARR1LYtpiRJEtd3lVKMUISQ6DqE0HaXgh7atu04TGDQlFLe3lzVde26DmOsFTLPcwjEodjEcQyRHDc3N+89TJAPApvSXRi9xhhjoQVkFnDORdsCbooxhj5pWLkB+4GxjHPLGFPmxXa7bbsaDpM4jpu2hag8z/PiJKSUeo672+3STfrFF1/M5/OHDx8+efT43r17vUEfeGFm8zAMDUaMYID9wLYM8FVRFEEQvXz5sixrznk/6Vk299wARkOtNWa0qqqyrjHGvuvBzwVHd9u29+7da5rmzctXMOnqd/U289USIeRYDlAxnDPbtpumLuoKIDHXdRnnSZJIoeEucD1bCOH7HsV3gc/z+RxSuOI4mUzGYRzt7Y0BLSryXCmlNGKMSamk1l13BwcURUEQQgglSdRPYoSQ7Vga6aZpZrNbjLHnBuCvatpKaz2d7nmeY9t2K8VisRCiRQhpcVefjTFmlIOMdbFYdJ2wLAv/3/7pP82ybDQaARmJECrryn5XgwpPOdIYGGJAyKuqOjw8HA7HEK8CNB+jHIDK7l3/g8EoTbdtU/m+6zjOdHoQen6abos8V0r4vn94eBAEAWXYdV2tEKQNaWQgFV0IYTECR0YYhpxZAAz0+33RtISQ3Xb96s3r//7/8z9857ufPXr0ABr0bNtO01wpZRAUzkjP81zXadvWtu2mrTabjZSdlmZvb8/3Qq01wXi9Xt/cXL169QoR/NFHH0EujuP6QItAhytC6M7NXjeg0Nzf34fEL8vmQRAgpE9PT29v5uxd41UvGcBPtNlsbNsBBNhxHNfxQQwO2bOAcEJzcBzHzOZKqdevX5dlORlPPc+j1BJCQDyBECIIAgimM8ZcXV3VZaGUghx8l9u9Xo9YvGkacBKled22bZ6nWmusTdd1TdNBL6FlWa7rcW4hhCjFUkoh27qsBoMeYxyM9G3beoHvOM719fV8PjcaR1GCMbYs3uv1yrLQSkgp9/f3KaWMEdDQQLop5xxiTmDfKopiNBo1TfPmzZs0TWGBHgwGUAkMh8t2uyOEYIyEEAhrQNQopf1+//DwEGiIXZbGcXxxfgU8xWg0cmybUurYntJCSoiPssuytDi/s/Mo1TQNZXjQ6zsOhyA6pFBVVUXdCCGatu1EA+4nsPhB1Tf8FH4YQLPv9fW1Ufro+GC9WE4mE6SNUrIoyuvrK+ikS5IEool83+/FPbiJOeeEWiBfAOlMXZfT6RR+C8Tiu92u7SRmlhBtU1ZKi8Xt3HXdXhSCdqSua8txnzx5khU5Qoggs7e3p42cz+fEoL29Pfg+iyz/6quvvvzyy16v9/0f/C7ABpCKRCm1HHuxWNxe3VZVlZUVWDghpijPU4rw48ePe72eUury5no2mxmMOOfr1TYIgq7rwjA8OTnRWneigQuGcw4RUOCDhix+hND+/j4E1m+32/l8vlzcKqVcyx0OhwcHR47jGKMMuXOnG6SklF1d9/v9Rw8eXl9fA7giwDFjOZZjg04I6jsW8/nbt293aQqvWJYVGOOTk5PFeiWlFEJEUSS1ur6+zvNUKVUVLXhQ1ut1VTaAo8ARD54ySmkYhkBh5GXRdaKoKrBHvaeDAd6AFQvefTig2rYlhCmlIDW77ToYvzDGzCKEkF4ceZ4XeC7nLEtT0DD5QQDBpJyym+tbYA/yqkQE264HyB84J2AKUVpahFoWtTkPAg/46+ODw6dPP/TCaLfbZFnx8uXLm5ubKEoGg4FWyLJ5URRN0wZBgCldr9ewQIIKG3AU6G4qshQgAYQ0lMc/evRoPBkihIbDYeD5UkrOHdDXgmnRGOV4LlwnxhjRdfBCpbu8ruvb29vlcjVfzgmhURRGQdTrJRgTjBHGpK6rpmnbtrEsHgS+7bqUEoQQeJPBIZjn+cuXLyGeDaruu6674x+0gTFXSkkwA9k7wDC3t7cQpxeE3mg0mkwm6F2YRVVVs9ns/OwyK4teL6YW813vvX8T6H4tJeDr9F3yIti0s6JcLpeMENd1oZucO06/3x9Nxu89ClVZAPXx7Nmz29kcsFJKaddJ13U5ZRhjIdv1ek0Idl2Xcbtt266TeZ4bJcCADPcmhE34vg+ZMkqpNE1B46UVwhhjhn3fT9PU8zzR3mWpQ0cTsBbwIViWtdvtMMZSCgjIGAwG0D0D17RlM8/zmM0ZY5EfOI7DKI3jOHAdY8zs+uYnP/nJb3/7W8/zPv744wePHn7rW98iFlFK3d7e5rs0z3OIMxVCbNIdgHBV1dR1nWXF1dWV6oQb+Ixy13UZY0AcG2Mcx4XxMQgCxihouLMsA7gdhqSqqsGt/96dACAo4NOe54ETwnaspmkcxyGYJUliuy6ceL7vyU5I1c1mM8bYByf3uq6Dg/30/DLLd6BkqJtGKRWFoecG0Luw3u52u91qtYMyD0oZZ1ZR5FmWTUaD4+ND27GSJI6iaLPZQuYqoOBFUXzwwQfT6V7XNYB3lmVpOfZoNNJCpmnqeQFEzxRFIVqxXq8BesD//L/9b13X9X0foqIxxoxbIF2Hp5wxNugN27a9vLy8vLx8/vx5VVUfffQxCEh/+9vfdl2HMYaiU1DwwJMklEzTrcVIHIdAA+1P9hzHCQPPcXhRFFEUJr1otVrZtg33qOhU1dRg+2KMWexulXQchxEKRAwomofDIbdZXddXN7d/8R9/2u8nv//7vy/uopax1tr1Aq11GEbT6XQ+v33x4kVd18vVfDAYRFFQZCXnHCM6GAzapgE943q9fvXm9eXl5ePHj13XxYTBxQM0v2VZwFU/fvgIGMbRaCRV9/z58+nBfhRFVVVZFi3z6vnz51Cw5XthFEWO556enk6n+7vd7vb2ljE2HIyrqoL+R0Lveu+7rhsOh5Zl1V2LEBoMBrZt77YZHCtJ0odnq2kaKWXcuyNnX716ZZQEwCDPcxAja0zG47HBEILCESKz2fXt7S2nzPO8wWAEb0LbtnleIIS0VkKINN3CZqykBIKs1+v1ejFhFB7fsiyB6EF3UTG0bWuMUK/Xg12zaSpYy+I4nkwm750+oJEEcfR6vd5sNrvdDhS4nHPX9du2dR3fGHN+ftHrJcaYXboZj8dtW4OQC77hwWDAOZ8vF9PpFB4z3wvrqqiqxvdd23YxNpPJRAhR13fwnlSqKIr+IHFdV2tZFSX4sxzHwRorpVbbDUL67OIcQk2vrq7G470gCCgGoLQxxqw3m/V6nWXZ+fm50iKJYoTQp9/6eDQajUej4XCY5rssy87OTm9ubh48eABWO86ssiy1Ntt0l6UFpZbneYZQm1nEIl3dnJ2dDQaD/mhs2za3bSl1Vhaqa7e7tcPttm0tgo+OjkCO7UexbdvcsTHGWoo8z4Vs9/f3LULbtr1//74QgiAcBMHr16+Xy2WUxFCMmGUZDP2IktevX4du2HVdUTcYY3CHAa1T5UVVFYyxjz76KIijzWbTik4pNb9dIoTKsjw5OYmiqCxLi1M4FmGUgV8E7N8wfEMOuFICWOb57c319XVXdc+ePRsOx8fHh2EYBkEAMrWyysMwZBgPBgPf9c7Pz23bllo1TRv3e6PhBDI1iEFt275+/fovfvKTsiwRpnEc/+AHP7Bte7VaVW0DaD1cY4TRtm3TdFsUlWt7eZ6DSrVr5XvUynEc4DXatoVFCCHkh6FSqhWCcwehO23Ze9IHEAW4DOBq11pjTKuq2u0yzrkCNzxCYRg6LieEDHpJEARairZt5/N529bGYISQ73rj8ZhhUte147hCy6Kq1ut13bYIIUDgIJ8CYqWG/X4Uha7tRHFg23av16vyoqgrhNBkMgGJyHq9buouiiIhBITu2rYTBEEnJdxDQPbZtg1TS1mWvV4vDoPRaEDeNTRL1dG7Sl8spUTaAPQipSyKynVtCMRxfQ9jDA0t3LKAA3rfSVoW9Xa3vry6mc2us13++MnD0XACaLrjcqjZgGu1qEqtNQQiFkXh+z7klgFKxxhbLpcwCud5HgRBVdVAlWqtMboLQDk/P4cNDeJgojiAuQqoZKUUaD1dx8+y7Pr2WhnNCIVaQDjWhBBGKdu2Pc/DGHNuKaXg1SiqOs/zQa8HH6DWOkoSOId3WRqG4WQyubw4h9OpaZp0l71PQcOYGmMciyOEmEWSJCnLQikltSGEdJ1smka0dVmWUkrIg4CfGhgbzjlA18YYCNxWSlFOLcvyfb/rurosYaoAHgBudOCOu66bz+dN04RhAHtLr9ejmMCZrJFxHO44TqdkkiScsrIslZRxHEe+t7+/Px6OwHz2s5/97Be/+MU333zzf/wn/7g/GMCGE4ZhHMfbzcZ13U6IsqlBUe15AcY4TXOplJJys9ls1jsYmzzPg2xbSu+G5uFwWNeVeBfWtVwuIUeTc25ZHEgPmEBA+QoWvdVqWdf1cNQ/OTk5OjpKkmS1WgVBgAxZrO5kmowRZExdl7e3txjj8WAIhnohFHedpmkWi4WUXRCFlFKj0GK+2uy2Nzc3F1fXtu02rbAsm9I7ZwOEwHNuOS5vqzKM/EePHoZhBBal2Ww2n8+zLJ1MJkEQzOczIO5t2yYWa9sWazOZTJS6C2peLpdlXmKM4cbE//1/998BSm/bNiRfw7sEhDeE8b/X8G42m7pqLy8vf/rT/7TZbP7w9/8AhD5t27ZtJ6VkjHLOd7tdWZZt22JitJacc5vZSZKEoZ8kCUyRSkil5C9/9TeTyeSjj55orcfjcV23RVnD3gkjvBCibsrpdNpPeovFAriYuixAY6SUIozC1bi/v1/X9WazCcM4z/O6aqMoAmbzrpnYd/r9Pkg6lvNFmqbDwZgx5gcuuEnB1TybzZ4/f354eHhwdPwe0oQP9KuvvtrtdqPRCL9LSdFaA3uttDg4OuKcy64ry/Krr77abrdAYsJlL6UCaDTLMoIZFHIxxmzPhdQQwBXg8HVdFx5W3/fBD7zbZtAlvNnsiqI4ODqE2EPQGUwmky8+/43WmiLMOc+rGmMcRCHn3HZ9OEmVUo7FwW6WpikhLM/zqmnbtvUDD+4VeM+7unkvmyMEgVyJMgwTW9d1XdOu12ut79JuKaVQ+IqQjuMY5Jxd1202GzAu+L4PKclaa0ox/Kk0TcGe3XXSGBMEUVVVUmhYgyjDQgjQOUEP7nsFGICjSqkgCLRG85vr7TYlBPV6g/39PVgkDg6OFDJXV1dwJUOMatvWSJteP4bV33V8+A+7dPPmzZu2beMk8X3f4e5ul2mt5/Nlust7vd423V1eXlJuwelMEW6aajGf53n+4N7J/v7+/v5e01aGYGP0eDw2SqRpygg92D96e3Y2u5kTwizHRoj4QYQNarrWd73tbp1l2fnZZRAEo8n44ODQcey6Lqu60FIQQlQnYI32fX/v4PDw8DDNs6ZpkigEIBaIKqXU/GbWNA0Ug0L+O/zBX/7qb7788ku4V6DFr5cMttt0vUullIRaENfUtjUlJAgC2TZVVe0fHe/v78MwURbZ69evGWN7e3ugMjw6uhOwr1Yr0D7CEACMtud5tm0NRkPLsuIwAEdS27ZZmm63W7A4SaUeP3l4/+GDvb09QNC1EGmaxnE8Go20NnEcS6GzstAaNV17dXX1racf9/v98/PzzXL16tWrpukWi0XVNgcHB6PRqKqqyWQSxTEghUoLEFwihMDz27ZtXdejwXg0GsHhBsfrdrv9+uuvYdyJosj1vabuNEZhGG+3a2CC4A4AHS6gjACTqLvISqOU2uxSkPskSULftcEghJI4lFIqIXv9pK7rsiyNRlpro1Sv1zvcP5BSXl5cx0lY1a1SKisLCJmEudlxHM92Dg8POefQSJNlKSNUKQXtfpeXl71BPwiCJEkwxpSyy8vL5XKJEOr3+8gQIYQhd/MiePQcx+nFIQj1pJSu60AJ2N50DCyYEtJ17bIs/+2//bfX19cnJyd/8Ad/MB6Pu06CGglGTyHE4fHRZrPJ00wp1YtigOf39vaCOMHYrNbbLN9tVtss2yVJfzwe+o7v+y4hrOu6bZbC+eA4juf78OkBEKK1vnfvHqW0yHOwfF5cXADU3QlljIGAsaZpi6LwvRDw9cFgAEl4m+0KdLfwwy6XS9CwwicglIJN9erqihAyHo+H/T6oU+AQzrIMFKjG6LIsGbfv37/v2jYsyeCJNhhfXl6Cz+Py8nI6GVNKp9Pp0dFRmmYAGUgpXceHs91xHIihUkpWVdUKadt203SDwYAgvVqtHMeJ4xj4JcjFgMMf4FKQZUuhjTHbbAtgM0IIQ84lYzCovf/tgFzSdt0oimD7YoQghMbDURzHhBGo+BT6DtmlCEPYJ7eobBuMNMSFPHn0eG9v7/r6+u3ZaZZl4/HY912Q3G02G6QNtVjddEKIZNBv21Zqo7VGhlRtE3o+FF2XZTmbzdfrdde0hNw1cTVNA8FgYLZ4DzBPp1OQAIIv2HEc23UQQoPeAGPsea7ruuv1+s3bV4vFwnH4J598AhlSdd0CqKa1hkagMPR9xyWEAB3Rti04ISilEIuolLq4uLi4vN5uU/AlLFZrRKjnBkIobjtSakJI21SEkCgKhRC77bqpsul073D/4JNPPhkMBnfBRmUGTlg/CAD/hoMIqsYg1Vwp5fsBAGZa67YRcRzjv/izPwNcumkaGE0g2B2Yda0RPA3gYUEIYUTTNN1sdldXV2dvTymlh4eHGOPVak0pLcsCfMJgYeM2CwIvDEOsse/7URQ4jtPrxYNhL93uhOgow0VRPHhw/9WrV3t7e2EY100HtHccx3fx1jZDCEVBuFqt4NIlBCmlLMoYt8B/C2jZr3/963//7//9kycfffDBB/vTw7qu4emHzyKM/MFg0HRtURRG6TRNN+ud7/uU4SAI4jh8H8ZY13WWZYRZjDElze3tLecczCwwvoCPFCHkuu50OtVan52d1V09nU4HvR6MZbPZ7PLium1b6H5WSoOkY7vdEswAQMrzPK9K+BGyLPN8JwxDWMrjOAYHMmgDIaqurlrfD13XDePo9vYWKHljDCjA6rrWQhJCJHgnRcc594IIjhXbviNxLi4uoijSGtV1LZS2LMt2ONydtm2LTkK2k2vbts3Lsmzb+vj4eDwZwg+S53lT1ZAb6TjOcDj+0Y9+9Pnnn+92O0oxMNEwFAohYBWDomKoUyUEgUxKSgmRNtttyhhDiIBAEBPjuq5tW7BmQfM6iI1g4FgulzCdd10Xer5SCmB2uN5gzuj3h7vdrigKPwqDIKjr0gt8zpnNOehJ67pmlEMULTy3xhilzWq1evPq7WKxUApnWRb4EaXU8byu69I8B6FuURScMdvmRukg9OY3M9u2pofTe/ePPc+TUsi24za7ubqe3cz9MHRsDzOLWXZVNev1ervdua4L/urNag1p+23bTqbTXi8ZDvu2Y9VlAdIKgP0wxo4fPHr0yAv8ruvauuKcV1W12WwYY9Pp1LMd27bhR4ZnGH7p1zeXb968gYbvfr8fhYnnBVEUKYQdx7mZzYHsUErVVcE5Zxi1bctdz3EchDHkkjDGoLYSZCWXl9fL5RIYq/erNqCboHTUWhuskyTJ093l5WXo+ffu3Rv0+5TSN2/eXF1d3NzOer3eH/7x/wpipSilbVVhjKfTadd1eV5Qy768vHx7dg7OifVq23Z16Ae9Xi8OAPzf3NzcfPXsG5iwJ5PJcDSCFhfP87SRd071toUaLjjcGbEAVyjLkhAKQDJkRd7hWwQz6rRShGGYZdlms3qvBAKKCnLGQfwrpQwCD2Oste4NhoPBAAb99WYDn4wxxnPtMAzRu4YJWGgxxtl253neZ59+B0T0RyfH4DhxfA+c0VBjMBwOGSag6MiyrG7KTz75pGva2WwG2jWNDPxy9/b2bO4apMIwfB9iV+QVY8zxPeCGMMaQFI/NXTHLeDwKQ380GvmBC1eXUqoq8n6/D/MK1DbMZrMHDx54njcYDD766OPRaARSBNf38jx3uL3ZbEb9AXxQXdcVdaW15I5r23ZbN6D+bprmm99+dX19nSTJaDT64NFj13XhNtqlKYyGMAaBDxrs4bDo2rZ9cXGxXq8XyzXw3Y7jALXKLYe8q53ebDZKqbar4TmEb4ZSCopJKWUYhphSKSWMBZDmGHh3yyfnfLlcVlUFDFcQ+FEUGUwcxzFKIYR2ux2w+UIIqfV6vQaPS7bbdl0nOzGZTAih1GJgzsCIApRIKV1vlrvdDmOklMKUcc4Hg1EURVp25l2McJZlkAQB6VwQygDHoDGGUc45b0TTvOtxB8TO933IvIAgCfj+LcuyXRdexjzPjVLb7RZpI4QIomA0GoHT886FQxm8LDZnRorddq2UqutaCfnHf/zHDx8+5JznJbhE1d/+7d/+m3/zb8Iw3N+bUov1eoOTe/eYzbuu66TqDQYIkc1mAxeTRahSihBWVdXl+cVut4Mw/clkArzwdrsFiGQ0GiVJghACltnzvIODA4yxMhohhA1WSvX7vSiKXM82RlVVdXt7e3p6qpQ6OjoajUZBEBmjpJTQ98Vt1lZ1URR5VoJGMAxDmLRaKSildV2+evWmrBrOnfPzc2NMWXd5WXhuhBDitgfznGVZWirKMKW0bUrPYYNB37Ud27aTJGEWAQwVTr80y66urtbr9atXrwghJyf3QezFOQ+CAOO7knhjwAqI8b/45/98Mpkwbrnu3ZgGtAJ3HSFEXdTqXaPT3dNMLISQ1ihN05cvX85mM4rpaDS6E72KbjKZFGX2fkecDAeQsQseRtu2HYePJ0OkjZTim2dfnZ+f/97v/Z2yLG+uZt/57mfcdpXSjFEYa4wxSou2beHUi+MQlINt285ntwClHh4eguC3rZu3b9/+6Z/+qecFH3308eHhoZASxFKc814/ns1maZ61bRv6ASAZACFqrbuuaZomCDxCSNsKrfV8uVosFlGYaK2llP1+H7J5HN+HT4O+y9epqhKqaXzfb6qCcw7A28317cuXL4EFsywO2zNCqG1EnufEYlprwH5+53e+e319DXQkZVhrDXgSBAIxRoui0FqvVuur6xljHNBvCCmBvxrSojns9Fnu+77UarlcYmoNBoM4DsU7i3XXSSll03R1Xe+2KRzijuNEUZjneVXVtu02TcWZ5QeeMaZta2OMRbHnecfHh77vi7a7U1NimudlURRayyAI3rPVcN5BygO4DZRSwyFUuHQg+YQ5Bpwpm80OyrZhxiWERFFgWZaU3Z3Zp2211oDRIoQuLi4sio+Pj8fDEZwgm83m5cuXQP1cXV31+8PJ3h5gNtJoIPvni1ld13t7E3XXC8aapjFSIWQc33Mcp67r6+ubIq+yLNOapGmKEZ3PF7PbRRiGjehs14HJmGJS1+XBdMq51VQ1s4gQLSGo14/7/V4SRnVdb3frdJdrbUSn6k60nby8vOaOC9aHuq45Z13TYIwB6uec2zb3Q+/e/eNBL2GMrZfzi4sLUEB/+tn39vb28rJCCJ2+eQtjAaCksKwDfay1Ppzu397eRlEE+agIodPT01evXi2Xy/39/d5wRAi5vV08fvxYKtN1HcgyHNsSQmTZzrbtMAzzPDeIUEpHwz4IQI0x85vZ559/3rYCTEaU0uPj48PDQ8wosCEwwbuui7GxbXu1WkgpGSbT6fTo8FBrXVXFer2+uZ0Rgh8+eey6bhhG8FhSSp9//Y1Silo2IaQs6+VqA7H7ShlQxWGMkcaWZX3wwQfwg5+fn19eX223W60l5FNUVaWxhrHVGEMRFUIRQpbLJeBJaZoBtOA4ju96UEEhhHBdt5PCYm7Z1KvV6smTJ4PB4PT0tCxz13VhAIWNC5KZOWdwT7ddY3NHa73ZbbfbbVW3EIMELNJ4PA6DAAZ3wAMY5UbrsixV16bpnfkOY4wo+eijj2zbrqqiLMsiy7quk0LDegb6hCdPnjRNc3t7C5on3/ellFXbUEpd15eyCz0flOZKqdV6AZkIgInCmg0AwHQ6pZQcHBx0XZMXqblLZiKu6zZVDYgCUKiMse1y+/z587dv3xJCPvvse/v7+5RbMCYSQoRoDw4OQPZwR5to5fkOZRxjTPFdUCqULvz5n//55eXl0dFRrzf47ne/m/R7SqmulQghhYxsu67rjNZCtDDCQrzw/v7+3/7t385mM2h1nC8WYRhqjbQ2dXWX3g6gArAcIMYHzh2+CCi9giDwfQ/0xIAQK6Vms9vr62uY+ZIkgaRiuHqiKGq6rigK370bT+GIs23bC4LtdrvbbBzHUUIaY1TXbdKdMSgMQ4gGtJjdtq0yOssy0Dj2eklVVa4f9Ho9x/G6rququ32p67q2ruE7hwQyGPUsy4qjHlgOGWNVW4EVALSzwJ7DGQgpTlJK+o4ixxh7nuf7PmTzV1V1eXkJz4AXBHCATCYT0bbL5XK9XtdlSbE6OjroJQmQ2oAyQOzI0dERVDO9efNmvV5vVuu6bZQ0cS85undyeHgotZJaTyZTTAnEllqUUYSzrNis1mWWAxkCC0+SJFVd7O3t2Z4LSYcIIWZZo9HIsmzrXdcnAIGAenBmYYz9wPU8ZzAYOA63CN3tdhcXF2VZGoP7/f7RvROEdFNWIB3GGFHKtNZGYwgrSdO0UxIukTTNlTKMMYPIbrcTChljbmZLIUQntGVZTdMBSwv8ADYmiTzfc5IkNsYAn2bbttZytdoURTEcjDHGuyyFUNk8L6AYHhghiNcxGgN8yznH/6d//I+/853vOJ4LzjtIrHZdl1hMCFHlFTym+l0IRV21lFLOnbZti6LI8xxpBG+X1trzXMYYoYgQAjULvnMH245GI9u24YELQi/wfEKw5ztd1xGCHMd5/s2Li6vLfm/0yaff1lqB+Ewp5QcuXOcwscIRv9lsEEJ1XWupEEKe5+3v79sWxxgvl8vT09Of//xXnucdHB6+gzfK+x+cZFkmlHRd9/jwCDaMoihAhwREnuPwOI6hrvvi6vrLL79klMM7ee/ePfgcWilhpwFg3BjTNDVImIUQsmtgjNBaQ9EvgF5SquVyuVqt0jQdj/ayLAMyy7ZdIURVFTBe+L7fCdDlcGhN11r3egngPUnSu765/fLLr4CDsywqhOj1eo7jGKWrqjJSbbfb04tLznkruqZpDo5O8jxfLucQDSClhIe7At6x6ZqmIYxqrS0L8gOFbduA3yopOOee52CMbYtKKdu2HgwGSRRnWQbHwWq1q+vasuj+/j54a2GCj+MY6lbgFgQu1fM8KTs4L8DwQggB+30QJOBwBLYRqEzAHeGTgUmCMQZALiMoCAKkDWg4IFdmuVyCWGSz2X366af37t+vqopyS2uNiXEcp+taIUSe56vVqmnaNE19x6GUXs1uXNd9+vSpMSbdFVmWrVY7hJAUJs/z+WKVlYXrulIrgpnv+zZnXddRbDjnBCF44LNsA1w2MQbSKyxma206qZNk2Hbdb778OoqiKOltt1vb4lVVEaSrqnK4Dfl+cRyFcTCeDPfGo+PjY87IbreDBjFq2Y7jMG5TSsfDUdd1gBxA6UoURdPplBAUBMH+ZK9t28ViAakB0HS0Wq3Ozs7evHnDbKdt290u++STT0bjPUopOHkxAlLprl4T3EBlWbZNtVwu7927lyTJ+dtT27ZvbxewDoGlq9/vT/an3/rWtzabDZwSaZoyRj799NOua0D9oJTarNec834/6fV64B5yfAdj/OLF61//+tdN03z44Yey7RzHIYwrpRbLreM4zHbOzs4AeyZGI4SaqgWZP0Lo5OSEMWYwevv27bNnXz98+NDzPK21F3q2bZdluVqtjMQIIbCVwXDWtp1lWbB3pdsdeAhgyseUYGRJo0HpH4bh6enp+0gt0K2DyMyyLCHauq4RNowxShhjDBFc17VUBhTQELbJOfc9772Lra5ayJPIsky2Tdd1d8Cz53qeB7RDUWR5nmspy7J0bA9jDJp3x3Fubm7eby9wACqlvDCC8ZdSaqRACPm+H0URoQg+B2hchXNyMBgEQVBVVVWVVVU0TWNxOhwOPc/TWjZNA+Tm4eFhkiQGqeFwOIgHWuvtdvv555//x//4M875vQcffPbZZxC2l2U7y7JsZoF4izFmqHFdt6wq13UJol3XgUcSnG5nZ2dv3759/vxlWZZHJ8dhGD55/JHneY3ofN/nhHZdd3JyBP7T9Xrdtu1yuWzbNggCxrjjOFfX15vNRkrddR0yFA4c2BC6rjNI3YFDxrwXLcCM6zhOHEcgJ4VQdcuyOLdBYgX3PfQvwY9W13UrRBRFRwcHVVXBaQ9DCWHMsiwtpZSyKsqqqoyUhBBEKcx2oIGrqkoj4/s+oajX60VRiBAymIDxxRgDnifIgzBKwbX9XvL1TgNtc84Bz+Yu32w2SgiAVeAgBd6maZo7UpJSQggABKDGC33fcRzQEQKYvdpsgEoSQtRlCQ9GXVfDJBwMemEQLBYL4NHglAYU48mTJ3CJp2mabneb3bYqmzTPFDLUYmEYcsc5PD6Bx0BKubid39zctEUDSBg8BuBMAmDFcRzbcweDgdY6juPJ3t5wOLRtF+BJ+D1C3cXp6WldVq5nO45jWdT3XUKIw1kYhtC2vFyu67oe7Y0QQlp2tm1TSowxEI+c7vL3G9R6t4XpvOu6omi01oRa6/VaI2pZ1mqdKqWququqSkqoXGNSSkpQ6Pu2RcPASZKEUtK0VVEUkF3XdbKua4vZQRD0hwOMcZpmQPICqAnkjGVZWqG7iDjO//+CXw6B3pjG5wAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 20,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "Image.fromarray(origin_RGB[0])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "id": "83fe9bf8-6b34-4835-ad77-bc5d55a94251",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABQAAAALQCAIAAABAH0oBAAEAAElEQVR4nGz9TZYjy64sjJkBHsw690lLs1BbGoG6moDmPwdJ392VDAdMDYMHue8T1zl7ZWWxyAgPd/wYDAb+P/9v/9eIEAHgrpIkBsm1VkSgJWkx1loA7q4IiKDQ3axN8orMTABV1Y2IiFjdXaLYQl1XUuh7J0Ayycz8vXdViYiIFQkgFE3kesVK1f79/b3vm+TrysxMortVW1KgSUoi+spA137fVQWQZFXtvYMLQAndLXKtJcZ+14ur3nWXSJJLEsjMrKrM5LrUlEistV5rve56773/vP6z1vr7z7uqXq+fiLh343kFfT1bzesPI6qqqkj679daVR0Rflup/bcRVLB7g6kgwJYyIjOXGBGU7iqhGdHE3m8AkfCCSyU1yUiU9vv9Xiuu66q+SWbG3nvlD0mwde4qAgDObyQJaj/uvt8/r6V9M/B6vVZw773rLWmtpa8XACiI/R8io8UmGSsANDLzqtLff35jXRHx9+9/V9VaKSHWn3/++a2611o/GWutQO+9r2sBmGVsVVVEZKaqAIjce7/f+/V65Xr9/fuXiz8/P0zsvat3RDAh6V37uq5XhiTUBpCSpD9/Xq/Xq6H/4+8/f//+vWsz1p/XT+13CHepqsi11mrl3huM1+t1t/755x8i11q7677vhh+uADASwC7eXd241RIKIllQQ1Lr3lJ1+bmnJO8KsQE0QxIUJIEkGfLv4duPCKklefP40f3J6/V6ofXe992da72uRRJ3dfe11uv1uu97rXW9ftbrIrKJWPlaFyoCTB8pP/7zXT8/P6Te77ekn5+ffF3dvYv+9uu60OrutdafP3+8w0OICL8hIja2VGJLPp5jGbobiO7nyPR1XSR/f39Z23tPElQRQaGqgAZQ6r03AhHR3fd9d5Gket/3Pad+76piyJ/s/3Z3VfXeaFFocO/9vm9famZ2d3f7KKl6771W/vz8YFd3e4efA1vdff35ue+76rZtBHDf9/v9Xr7zAEkkAez93nv72VHq7rT9LNz375+fq+o32NeLF1X9KxUD15WSfnL9ef2g9/7nn5X5X3/+tPZaEa3ue0UAu7WlWj+XJIQyc3lftUjCe7hun6D7vvfv+7quKpEUMyIyfkjurrvejCoUK6sKOwAmMriqYGfQUIsFRUReiwpJVbWrgEREK6sq8vWuVifjKrEbYkSuEhv0ejYggswO/v6+q1txrbUYq6oaErnrHZmRtvYN4EpGxPv9fr1eyfX7+3u/6+fn5+fnp/q+798IRqQkegtUV9WuO5MBgr0IkkJXVSarysdQQducCIQAbgrCToHUSnuIq6paighFdjfJiHjfOyKSAYBMAAk2m8nf/VvlbbYiAgoAv//9GxG57BHaa9iN2vr5+Y9UkvKVklr79XrZzO67JS2u7u5GXEuq6+dFgeRrxd77/n2vtX7vd2Yys9QS13Up8u/fv9U+DwKADJJduO+bTJI+lQmSJKKg398bwdnPAR8T23+SFCRfrIAAE5G7Fd0RcSHslCOCVHc3SlJ7/SkCF1/hryOB5R1mC/9+v0naSr/f7yZeP/8pwduJJCNstUj+888/mQnQntQn+l2bJ5ixO+5uZmTme489sRUi2dLem8ckSbr39qlZa/3uu7sRrKrf/Wujve8WAwiqfeJstbwl9t4NZSYiurvUqk4qQIcI/l6gSb7WsmEHGuzjzZVzo37/xAzPv52X+vmjQt57n/cIAK64APjn+Prni9Hd3RsAQ88zTY6L7240vc/XWt69Y7Uxrt9RFskAAai7uzNzrRXC7++vpOu63rv//v2bmf/1X//lN0i673v3vdaKBBV69xWLmSTLG+txkednL0GCAJivtVZp3/eNjJ+fHwDv9/v18x9Jgcs7vLsjcq20iSjttZZPn45hr6otr3B2dxckUSJZX6GOXUmsy8/FF+ZzUcQGK8CWV/vZFSu597a7ATB7gxEtu1H7F+/bqlLdfha2e7MTQmiRSglSlBLMwOd8aT92bzkUXexuW/s5aNVVZae/GADUG8AiMoJqn6i5oyp/2tcmRPi+SABNdXcAJFckyckR1mzUqtpd42cZUaEqktd12Wl6Jzje80o+3jYCVSWU996JBJCZe29v5XaiAZG8cqUvACGpMCeyIDqimBMHR7mM7AaY8wQJ5z7djViOhUgy58YbIOOu/Zj9st0L2icC2PPf7kJBzAmNI4KxGtp7312R6c2GYLX8nu5e+ec5X2A/y25r0Ha7OYnDVjMSMf40X5dvLSJyvQA49+HK1+vV3X///v3Pf/4zb860Dd9VVfXnz58JXCY8Q2ZmXtVY6+V3ev9H+K/S+3mtxdDzyNRzKJxl3Pe99zsirlySLq7rutB8v9+ojghnKO+/v+/3++VVAl6vV3RJ+v393Xv/XK/X6zWneF117xCCrN+/v7+/K/jnz5/dDsPt3iiJCpL1TwPYuu/73tqSqu6991ohade993aMrd5772VPbJ8xJ9xh/R4HP3Z2HHJVghk8ZvrZxDF51fxxDG5Eq0lizsN8jrf1k3g7IlkMrmvvd91NgaHrulrefOhuqdCKRMbE7hCcEj9ejJyAtLaDaQLgsWSOPCIi5jwzInRuvLvr/Q6uzCsYNtai9t7/1D+v1wvgk+pLY6ABqPE4qgjgbGJbt+0AnfFZsca5Zp4VK4lgPKtRrSsXpd/3u1Tr52XfD0Bq78Xu7ZwWn5Tm8xwng0pEUHL6MeZG0ro+js2PzB/+fr9DbUjCx8lP8P1+P585zqmZiEgm2QibC0nVJbEGYqA3w1o+QmMKryuvSNtOxqyqj6KkvQc+6O70YkZExOu1MhNshgC2NjtAZSap6r7v20bBa5iICFCg+r//++9936V+v9+ltrOpqtpiOFUBGVBIUqO0yXzXri07xNLEOziJ+nlS0eqIFULVLG+fBDhIICPQDX6FKQ2ebA1nH9kpUlI/9uXLB2cmzhZ6nvKVKWDvzbazZGZe1/V6vQCAQUEQyPG7DX15uOfpHwNX80WPMY3XgCPddW8bSme/3R2TAMx9Adhd12UEpPbdTgUz80l+fe6eGCLPQ5fsiXrSGG8xwwHtAFGZq/bu7tr3fd/yhwbZ1ASFOAs2EQag3mWjf7zsLOCTuHp3Sdr3jfoAWydjb9tDX7CvxBsgM1dmVXXrhONbokO9qqLtAyQpI1+vF4nMDBquGTu5VvrnlqoqIHKCRbBJtQrdIiMYjE8A6pUXqspBmIPp/vLZr5f9WUvarfuujV+Spd59MwoRCQDHICiqtXc1wFwZSVHqhrR3cp1np0aTULMxsOYGC+pWgxjPksKYO83/5OViLJ9kdduf7e5YpAQlKUb4RESEHXlXP6FYVd37zszdu+4ecweWhIIRFqkgbDXBgJ7n/jzHE23AkRi6QGUwDPSCu+/Mi9K7NtVrvbz4gEgcz1jOO6rajuOTqozf+Vhav/8calWp6vaD62b1bavy588fAPvuBwr0HZc6ewXY3Rv9bMsHaRJU1SCbXVU6j9VPjKSajwXTeOdzbVCstBcj2ejHSnwnPM9BPq6Tdjy7W7ucADvNM3Rlmzl2ldV6jA8lGWjBcaCOaeIy/sCgs9+PdxjXfxbT5/oxaOXM02/7+leJLEzu8cTEJL+fzrOvvBTH2H8yzwjUE2t8vZ5IAF/WrL3Q87f9WH5nqPd9Sz02P/H8rS3q+cATrhy3iwnl9XxjXtekX+eZ8gQVkgwhxSeqFiON6DEEPXa7u8eddXcg/zcb6AB34hxn+8+y4IRPDnOBDypqKMeVjMdHPD8AyEwed1CqT+j4wQtOJgw2QUc+qO/nstZygiQDDYrP3uCsakQQ0dp98qJzWGpS+AKAiVHPc5xvpzPqeIxPn2dRUDcGfXWiCHgXfe+H/3HX/v33K/w9wvOl7ZyNYoOcY2yfITWhdkBiTwd6tzl5xjmns3SkelK+5zLmK6qezTOP41zD///t7YrLMW7P7uqu52F9P5rnZ5+7722gr0zBf9y7gLl2p+K++DHXnLtiBn2KjURBXaUgGRmxJXb/jyuXFMTYGTxX9dnV28d2Tmw/T9nlru/H58vobnGCqcZ5VC3b/7FUOnnTWT1/JfDZD0J9YUx6Vs8W47FIs5LxP7eQ/zYiqj9X6KTD5+L7ETwL4jd8m5Tn3z6pLz4gyOdnGDyKL1vBRQ6mnItPfPUsYFUFMs6yO3MZt5UZ89x3nljIlQM7R0k4nrolRvz8/Bh8/H4ZsEN3CC3tuwub5MV0wWStNU7WFybYOOy911qu1jq4x/fN44QIDxSUmYrx+yQDNrjjk84HjIknhDAe1j6xrnHNiQ0CRLC7e5dk26VM1rtaumJl5t6N7kBnhsRI0JAqu9XVmyoKpCJACd0hLVIoEEQQAowGHXg1w9/74LK+TduHsw01AG1IUmHvSqPmPabnOc7sCa163vCV4QPolo3rp+wG2Uw/KVB3C2SCpBqurXWK+BgjYxPJcMjgfc9j0ZIupDdahLM+rMj6YI1n+/JsLIkBCGW4l3AqtQgV9/vuntqaq38BBkR19zlIaEUowijcLF11F+5qItDqKgprZUQUJw955TJIIakkAFVno3c7AZ5lCb5er1YJnSsI3fsmFYsnz2ln/r1bKuCSZIgNsy3RLiQCu2vvjrViTYoCQAxOTYAC1CBTrX33rnb4ZbSJ5O4NwBVOHEuakecpSZgd/4BKAE6sYSsThvalyddIAnw+DY/7ejYhXLqPsRf15rZjgGyVjOWEzVzv/X69/vgRVYmZLahS0uKrJTWo4ODBzt+mNOFdCiCEzHRs5QzcrqLU//z+HZx4EQ4OBJv+LyQoIj7u0EGGP18n+5UUsXw27Xd0Kki2kGYWAKyT+ShY1btrd01hJUKpNkKMCQlsNjOCDInsOzNjit6OtzZJdAAEtJa3Px5b193dW6d+FQfaAFB9RwSDGQxGVe0GUqjyNltrdW+fE/vv+76ZyjTdo2EABE0wc62Ve7/H26kJRQRU732TAiKp+LgxRnBdl09hlfb7t7sXIzMFnAN0EgOxSitf3d1Q9y71GNBGgLlWgA/WHh3eM2x02zShJ7bkPdCbnFWqGwoJf+83eDXZEiIiUs1uDfgyz4Zwtgl0gcmI6LO9SaqK4XoVggtRknaD0iK7RWauF1EkybzWTyy+f6t7Xxmx0geYK0EJqBLUQAdDEIJ+wgrtbew+DroqJwGRs3lJosVMBCBckQCYIJERCK3lUnlBykwapehOJAfbZncP/hFSqBxcEpG5uFLavzsXG5AOlhSBQKlItvau98nt8X5Xqaubyerqez6t1GstRyG2HXvvHqBe5Cypt7LPDCNq73k72V1qRzlJEuGwkSdm4+R1c4Gcc4S4924MtCdt0sWPOEFbSJAPE0Sh2QAISjAkUVJVpR9MTo5xHCWeoELSuY25LJ+GCO/k/gReGoe+1piaUq+V9sI82YF95/6K1x/cytHtEzA5yCMZsXsPjI5/vybP4THZckDOJ0g+sGMESKC75OAZOInlJ8rE3Hg+q436TqHTXyR0AFAIjVPv9ZXHQlVrEsX0Wp7l7KAI+hwKYEwReq6KPIl2Phi9NFwhP4sn+Jk7dYVq7+6+rovpwIOuRN33PZFxEMFQTGBtU3BqyK4AP7f5mGKexM+v3TXwiuNpr3kBQE+iS1fJuoUUgsnLvra2GuXd0j3EAohqwqwHL2J9nqyI2cH2sxPZy9wFoYXBlB8gyfuBJ3vp4/2729b7WWobaUEGg3yoiCYNoIuUc/I2iO03S5hd1oJCjrbJs6PyC0bhLLG620Qe168asn2vg7avAwRDiK9oRIFuxaS7yJPkOG63tRzzADwmaKLog5R1N2NWsKG7P9X+EyfvPgV5I1Ux/1Y4nzn7378Psw9Y5ViCrpTyK8F+zqn9eDyfcKKy549EEegTtJ3rR3cBMth5bKCDyzLOa1qTIKH5YMiiBKhwYr85QRPp/I99ci6yJ1pwlJVhAqC6BSgzg2nf/dmcz8v7LQMZzs9dCOG5lwdr0JPsnDrZE7DRVFkdaGNwt/7+506An2f3FHW6OxSZKX14UuaL+bFO5nDoDy44J0O9JRm0goIgFLWnKkOSsaBtJxtroetB5QJpM+ZH5XWsvrt7vS6aiwtERBUk02XOciPIXL5QJ3yzJaHHGeCrzulfIqO7JVDVrWftDDnECR9m9xvpJ+Dy1CKACUP9YIgINFh9k0p2rh+pqyoosKY2Qa0rDsxWDscloZURiGaQlapqlZ+L164dfzFcTKgW6R1C7LA/t5HiME6zu2vXVgVfrgNc12X/VHtLjDh81ENSNVGzuwSiJ936PnvPTvWTc8JMUOrIZEYC/Xj1GKciieD18yo0M2xG73rH8dZ2DSSlrvrk0qCTDQDYVZkBYzDkoXVIZbsYx+JvxRXUqdMbqikdSnaAX8y9lmgG095FpT8kgs7ufKcEpC3VFIa7g+znNPEAOU82fV4P1BpJQmP/VWRKW+pIrZVVtxPgCDDAUC5qV0/oEdVNoGr7LGWmKWq5jK3shgGnJXkJnX2tWExzB5jO4pwAf6rf5wzZBAAaDufjv+f/0ADAccq6gL3dN+I4cORiiCcq5xcURXIqut177/tYEG8XG+zMTH6Q79/fX5/MzKRZTA70o87HP8SIqbJGhNPsqjKDOl9Xb5gUbY50RLzf79/f39e6HkfibDYzhV6v1b33/gUQXCZB3Pc9ZMuzgP7SldmDWH9KWASG39WNsFeDaRQA3F5h62S0+0HdHEQ9J26MTIuHtOwA8L4/Ve5B3wNOgCVdhwf4RHgcouy4BGDifT+5J2Qzg87R47MN7GBMsWaLXAZU2Woq5lzE3vPhBz9GBEMBtdQDMQaZaRS7IOPIz0F7zFF/1ayMkcFnOcZQZ1yEk4BOJSMiFppVW63MiFh+PmS7d8LBCjHhUTkFOfxKx1733XHJuzEyySzh7ve6XoMCADzdFxG8sX0DQ8eIXJmseu+722ArfN79QN/3OzN/fl4R8f776z0QaxUqd0pipheFGWutcrOMQryARiiN9gEmTNuDOBAn6eCDsTKISD9oRa3ruu87wJ///JH0+/sLwIdxrXBxnnKZGgl1B06A+GCC+ELW996A07NFMg8oLJT5DuvKzHTR7NmHx/+S+JDT7NtyLT11UXJFAtqGUEmceMmRJUknDG+3DyjWWi3tKjKuE/10fTKAJ9Z5rN5J0swqv8UsMuzRc4CayWCJ7q4egBtBcZoVbJwgKU624Lw6nKtNHUrMYDwx2fN6IjYc8NRZa0Tk6engygmVGiQTrOG48QkEn8MSEfw6OMb1HsvyZaY/VZ34qvg9AeIx/KdY2nooi89z5ImvdO5y7ugbA/28GRGhSTY+Masv4amqfj8vnhx1oEzGeWRt3B0nrvUhlrBOR8xzI0YAM376qwijgxr7StRDIx+GPPnz83NuTTgX/LiJ08QDY3FoRscTID2L9j98n77WX3B/TSMjDNt4tWkK8KeqMbHrpxg4LN8GyN67Aeiwz2znDTtiMiA8DrrGYPqLHaxIoE3+ky/5G/M8C6/hPsUPSbt2NNZpa/qXlzl9ImbhxikeMia2N5nImaLXoTHlHT+egYMVDPHDejTihAh+/EWcNJ4g8SRUz9N/tt+/zppp3vN8TldL9+RAX+fiOajVlUici3mYCH1KlI9x+/7SOKRx/fvEtasEgxQNOlZ+FoRxNkMJrX+Vjp67EyaR9jqhVWq2ybMUEAycKqvx69/7jQzCjQNdajLNxBbRQht54JPGfq2eb4eUER412fyiCOHrIr/t/PPH5+fnbfq6NZ6kLCI0Rb6n6vahSj2PVc4hzxFba/mP3xcgGTDl1yUN0vRsY55vIdk1xvbL4Cyjn2utQN737Yad+fDDjZ1/TiexzQiTR57H7YATce29G51CQuqn9JgPTEF3djiVWaf/VFO7cax1Ta/Bh47h21937TjAz0SlYcpiV7cexOvTOYPuPbxhlyDojT0cDRKmhKVU1ISeLQbWFWxVNb45+qF1RXTS6VXfK5Xh5FUZBKN79/322ql27e3bvlYGyxfTQIu7dRBQY5DNgR0hNyF1K0yMRVMnWoVrpuwKsZ4DI+PZsOGOYE2zqAtL3YhTdHLJvrgLjEwHJV81sZwlqirU4E9TGxh6wOlAOAXJe2/2dOfuqt13RNy/v3xy7wQJB09D5nxcsiSZFoLTE1UHwBKpn3V1i+ygBAVIgcFci+hzeCek4UGzIFEVkIPZYKjVaddwWhgIQVdkd6t3kMh009Faa10Lv1tPbEFx+rg+Mc0CqsIdGovIRW2BkwlHIjO6d2v7XoSail/m/W5gGeppF2egJx4lIoiQ83BjvgmFMT7A9Cqxg8ymDyaN96ARXLFidxngsJupqoEz7U4o4DRXPzgfoWHqji2boNCmFgZBBWmjI6ZkMzswIk5FJZzta4Jskuv1qipUdzejnURlZpXbUL84MBEkd3cmkVCoUILbQqMgdUVNh6dhjoRy/fl7vyXl64pDyY5wpq6G1GVHLgLoLO773rtJXtfwYKsq4wowA0S7fSOTjHj6cg3OTIyijLwab00MQiKNebdKBFcGIVbde1Y+oqt6WusnQOwWHMp7PRuPBVxxdXe7CVqYVuFqhapqm4e58qAMvO9fPPXhc5CrlMm8XgD2frcUmYyJ0XjK6Y1PPXatqAa6pW71tDOg//z5AwQQUm1pEUkyMyJXkmpbqm1WJPB//B//h434dV0rh0pa1VN+zQACrZWLi3vvf35/13r5rIkM5pCxulHoVhdV2iGx9q73e2de67VWBMrd19rqoWsXGPDKOWB8/ecPIqHEZBxoPiUntMH3gYxDwlovBavNFdwBRGQDVYPcZV5PTkBSU59YEcEsoAQCIVasvHJFRANdHcH1urAhKU5rxQQ4bFRHppFH++OYwlmAcNPuyhDNS0vAHfrRRJ+2Um0BQYmlvW9CQiYomxpOkNeDdoe/yF6VXxQhSZNoOZjrZmDBHb9DIV7TWVmNvn5WCcWS0BDRKxdoTNyA0XdLAoPRPqgcAhHJEnbt912SMu0dJmVcr+v9u11Q8d1z/LAtFb0YJZDDBLquqyBUP2hyd+/eaxlmnmAFEDgNRwNRuxptklZQRKkTTuBx15bEYKQPxTiu/xEv8kHbpWevhKZKhdZE7Se1c9gwNGNAQKbNo/0fgnBKNmzDcESY0qRAEZ/nNQCHs5Ix1MCp/n3H308S+AQWmaeMIjFc6MvnXz2xLwD2oDOf6PDUOiSt65LkSst8F5rAft/GAshBridm7IpxUj6eT36IJzvFQH7xpO7+6jRX2TWslk2AutESGBGLsVb0lGiawdZ20dE9QTSnxguIUuEVr7ELxCATDJLv9xvDijKJ4wtzRIETeLVE5FMewJfNmeAKAKKdrKl7zAnu2gBiMDNIbhDfjnN8nqbGO8/IWxQOosrfQ5hXL9P6JE2p1nFZVdegkDkZlHq6EmZBYFDIfqhbzfZOJqZBkGi3VEnztCbnQlBIQYqGwGFzgArbXvc+OcPIcG9wO9SFRHeHOQM2kNSDWUwM+iRjPu+UHJD/D2L8YeECHG/wWIvBLFywbmgiW5CNysjIIF2cdq0KdLCOdEInBshWP5U4Tvk61NqOuDKoKKiEriZziCcTtAfQcvMXBKmx/bxaVT3vP2iXXCcuqNGtfreC6RLhqdhsgIg1h9OmbUrKpp7Nkp7q94dgrCmKj2cjYzuvH4KwF0cgQgtiiZigFaJTFF+bz2DzxM0wvuPcxIH1QVg+9ofTrcCTNk+kZHKEursSYbam/SbOrT230J8UlADNpHMCPNUBplk5ZGZkHx7c8Q6SkG6x3AXoYhBhWpSzmJy8CWstMe/7BrDWQvX7fQP4+fPqd4msLkj2YQHnxM1rvQN7bw1rld33WtfhugiHwQp3zvN0q/L89rnnzHy9Xgk+FRjnrxm5ViSjZeYhvisqOHTfFdinRSHIBJ08ALjWT/fWMPCRk7t17795Xa+VUgFDolSFybYUatjXyowVRG9RcL9Y4gCKMS1tjTh7MQRA2yo6E4sZ/p8EddoaY/38XOTqQpX8huEHxuWsqrr/vF5j0Q6fkyS57vvO6xWHLl/1YfUc3yecXuKHEGE46iz+gVe9HmoiGlVSuhDhIJ4n13cTlZCZ+Bfw0/NFIXJoD60ddCWmwWljWzGNtQn2nvQ+IsgFtFT3fa/Z3Fox+C7V2opMIoU6Mf84aWcOVe3Cg+Sjcl257jC3ePrETvjy+QEH+cZUgx9M2sAHAKrulvnPK0yk124xYtmp+cMAIdeV8fv37yy9rYN1JvK638YOMiKis7rqbqD7oUEeQx8RCrYeHBmkDfST/U4spa8XwEREBBR6WDTSh0fy71seJt2np2DcuXvyI42rPdbkW0AiMmaPVZVpC3D/TCusABJ8KDjPhxtMue+7qvrezqlMnunusDAVSdLvAWARrG+U8TGOf//e3dsW7/1+P6v3vLMn/y2An0D/4xsCGIk4s5uqfnGseUH73gg6aIBLTOcYTKByyjuf5R3PZFOszFxr1b272w3kK5KUSYb+J+eq+L1Wj2vBEYHwX2VcADpaujMXqerd9TnITFzXlbDY3t1qVQUss2Rmykn8w4dIJStx9M91gT1cfMAkOEYG00SPqgr7b/fM8F/W2MtuIySzsqpbzCw7/qqKsI+0Ko8ZZQMX9qmbPO6AmY4VJLa03d0SfL3+VOPeA9EGI1f8ibjvicTm6WO6A+K6DEEGVp9+qohwcTVOMtFNCLH458+f+75dNwBwXVdGlloQMlIH9j79ORHZXYhFKri6t9E8Zto2X9fwZoOM6Fm3wCkQAtaoavz8/BB517urcq3ofr9/X69XlagG1bVdZBQMZj4t7p8UyDGizxpOP2Ef4u70HezNo/fGg3KSQ7P329TatU/M9QlNpoPa+1zOGxAKBzfP+RKxy6KD1zQERkwd7VTF8e/X9+E9FMNPF25ktHzvk+L6CX9alzNWfBIn76WQCyxVdjAYIICkMxlbyZzKw9Mj92Hr7arnqB77nJmxqzJTxw09prsfgaJ5urMs+WgBfiy2rWKemJhP0stTuxh3///HOHxKOpKEik+f7XmzdAo5DYAhoPlIhBzE/GOiT7bLrxeeCjM4i/88Lzz/tg2APvflmr3RILtBnDff952Z/wNiCC59wpIDLBKS7t93d8csSD9Xa9uuT3e9HJTnJ6R+tC1AigdrepwgThH7f6yzr2nlmkzEiaFEil9EiZapJQcWeR53f/ZDnwAMwHej+EEKpNmT8xIme6qTy81mfnrjT7QmjSSVyedmNPGLAsAHJvnc8qybPwEA1PEwJYxRqtWdU/dr0UJ106Pw3Uga/ZW0zEM8dZXDEp39ME9aFvrxkvLTn4/nQfzPDfz1e6/OZ4N9vUgyOB0aXw/oezsdI9+Pq3qO7Sypd3MQNQYkpgv6HNWH26KeDhMN5+Lr4klSMXX8wSwcFThvHURmSkXkyCIYIv7XjTv9JsjTvUDoZL94er/zhMuatggXUv69l6euTqemX0nm/zgIz+8NE3xFO3OK7MSefxv/gkE/cqrgx25/31SfxSTJ0wcnyW1ctpAuZOLrq59t//VwPwb525weKxokzWTxz0OhN75cnWu+Zbl4ptqt1q4qdCPx+S6kGSe+Ggx+J5KOEDKze0uQIhe141nwBAvlZg0A/3+K4IuRYESWkIxXnq7olojrWjn88gywiq1tw/85OZS1kURg94DFZJUpSaMSyQGfZKPKgFy/oKjODCLQgy3HlUSzGWCutAFPdwDXsDqTVLjk0xCSyGuJ6FLJ6rwRU3lWjLiLGhURcF4dZglGMLeNj4ypYOJngsNeywd8OG4AzOWSVDxVWKmO589kE9aRxAQWg8Dh9IYhKKC6WhUrmH5y06PYvV+v/6oqq/+ZyTI91dJidER3m0nVJzl7kOSggdpYK4YdLmQEU0AGJ/eIiHBjJ8jQlOJnS2nSKFKlYpOvZnR3taLbYLkkSsbyZXmzyK3q3nu/0UrQVHZb6MyRpXmQRTsSEgrt2x702towaVuKQOwRdZjjZ+pzZg1hVHAjILAFME2YXesAfo1Yq+rdY8H+ZVZcf8YhtpAPY9X5AQEopqdwLdzVX59Qbs4ZUpJrDgoXM0v1iCUcV8RgYAiwU1X+GC+KKrckUvlkv1JJ1C4CEVhprKsf8wSM6Jnrq0KhKmJAjSc6d2nlufg+oq8AWn3ftxkx3dtCEZnpMmmjD5txeB/d3TXUpoiQteKRPBVs9odl9yRvwfWpqxCI7O7fe7sl57QpCYCVibt2zfF5WPSQwVgSTDL6q8BuvNuJMEmDHc06hiosawjK2V0TJzzSAzEcdgbPRyIzI7iLJvH6r7s7nMPAGSbahQeDXECrpHoc3QCFSIhd2tCVdhRoNB1y9ZQAAkFNy9CfP3+2k6G7fDBTGRHVoz7gNRQjE3ftNhRjPkzB5YaqRsScOeeQJUCIeP356R6ioE2FvWwX+nNgTJ2gpdb3rvtuIHgITm5MnXeOq4oJEZsiMjLW1dA+Ccbr+jnO1cl6x6CtVzR8/ABmLmZGw0reTgDiNGs49XRbn7tyOOGgHig045XVozUSZBLVw3MhfWcqSgQTzNqQmFdQKWC9VndTbgtidzfaZfsxt8DpyWe3qt34TVlHyRi8NA95ujS9z2LWO9egwiBovRBKu+qOyLWu3k8xDZN8InarazJbn2bf8NilxsBArzUpWssfL8Tf955Lz2kFBCgyVuIJ1Mhp5iCCYWRhaC8hOnSIbCtoMQhGsA687m7V0Y+Z8wvXhmIlyG2c3TMRiD68OADm0TOTgUQ+8dB0AxJBZLpNDo/9dDUmmhVlpxZ61keAHMuqzRCDonVyD1f/c05/KjQ9zJZ5+zKY3yHgyOo6227AGZ7RV+A7WY2zMS1rwmB8baG5ChfjVE/vpRfkCqvFuD3BH//JbRGyWh5DYUQEB/6dQMN7c/qL3HZBBqAnVwzONX94h0/euA73OMIVde+QKjfoem0d4AYgc+I0jUVu7xqVdnrtT2jepKRY+cTmJ3qeGzfyZTVEr2hBBBfjIN/tmxTUisepn7NNCBFrxNIGzTPPy0HuAEje8LISfp/mHPjNxjKm2RKnsIkD9nWJpDm1+uKNO+SdCwEA9IiGGBoQhfIBK3w3vcdDdVDY1QoRKfNrn9Pqbu4ji4bH9J1OrNkHTvxCILJ1LAjD6VyDrjo8vHl+OANOrafEzIN8DX6PgDQa45N+h3stMmJIZ2aQaaTPARSq2X5e9VUjxQBhlPMlHYx7mlnmjnoem5lZg7VNPXlu1w917kInK3P+KTXI4HoQusfQzfmM0Ny6q+5mYWxZ5eiAHRILk2bwO890T/qUJ/DEP5NV4ST5OAJ7X0mvT1afbMJCT4eyf27PH5iBAzLhi3IyzJwI/hvUmCj3yDwcAxtcaXrg2fDPbn2Cn4NPkYhIfQDBGKZM8TTm+Iw+T0sSMroKwYzUeklauRxWB9d3ntXifd9y6xwTChKxrjmBTBJpelOwuxii2rqhEfGaC3iTkevqbu8I7/BjALmew4kDcK5Rn9rP4vLosCXjer327a7OqYZJFLV3r89IEEUEWqqdSTTKRhbkiABfbYAPIhVoEAgE47qu933vuhdXQvf9K4MQcF7YRK9YyaELhmVST4OAT7dETKnnJenW7t0g84MMPcDbIGb7dg/zaAjvlpgWQ/LooN/327WQDF5/ft7vKYmvtfKo6QJYefHI/OAg5fgoYB0kXurud93/9fpP2+JxmnXU6O5733/+/LnWKm0AvFJ1v3f9888/ksDOHKkVMLsbVuEbXO8bRq1uMBodqu7eQLbSOQeQDMVAsDIAMRrL3aBCsTIZqn0biWly5lJdmUBtQdYyrZrihyTV3n/+/AlohgEkUOi9wTclE9t6ZJAyM91o+ly2XzGqT8rM67pUw7ioqtefP9I/00jLsPUjsg5uu9ZF9X1j77ekV64H9cHhr8Y6UlsqE+0aEkqRsGY9BGtYhDDDFdxhjD65Zn1D/pJ7/Y/9dSeCOI1JtLcfw3deE/tyKvaHQvYIX/WzMk8h6MQEzOWpD/X0WrjCeWqYkRGReeWSsLterzPr4hz5bg8BekVECG4A9j8v9y5c67sqBUxXcHeLH+qdTkXrCVkilrXD8CgZ/gvfrb23x3XoVJ94gP/7vn9+ftair+dZ3oioI3FM82z5xEnpAtrzZp6S+1NEktRde+//9Z//vN/vLjeWu5OtI/N330/lbUo0x4vyA3meBHhd+/9415SOTXMoCW4vITkM5yOg9Ub/vBYFKKj9OKNgcmT5gMjMUO+uDun3fpOiuDz/oBMqJ1s6LT1dhV0O0mvX18X4fAWRe99rtXWbNKVj3ff9+vmprSHrth/NMg7YLgkEzVs3YIEjWsZYEHPC9uWMGk1mStx7C2XGcgNhFuJIZLEdmvper2XVsv7SMZri4dDA8+fnZVIDF/be972fnRYeEXXOy1oL7kskAhmcJZKSQiTu+8aMjhPAKpDIDCq33r3bGsZEaJhmer/30G0iu5WZP/8xDrXd/YvO+/5VIWZ+xqReGjDe9ijtVe/7rqMGFxFmSTr2er93BBB5lDtChb1vk8EsHzIeOddaa8+d0lmBiFOw90M3jQ/DywU02k6BjEfM7Fk3iYWqe39XZqRpkdj7fmp6eCQeMAPbRpLpvEiu9cglPGKEp8jAR5Xr8/6vmGkXdJTndV2vscwH2lNBUsb1OTyniLS7GHmc4PPJ8IdXVcdUIDHJZ9ceRSac+liclrbZ58cT8YiKRQT/XTc+xvYTffrFllhTbPpaHEzdz6n3bJhZrq+VfJqlSRqWtx32bt/mfP175c/7hwnT2uwZICQJrWstHFp4MMGuLWu1eJxEdzsCAdBb1xoS45e3oqSfn5/7vnvgcn9+hzs1IntaG44IwmHJ/etSTUA4Rbtnezzv8Mo+K+aMyvbZgyTbQG0Gvx43MDXzOI0qnydFeFebbHIYf/EokJOr9Iup7go9COyIIESIYlBjvz4rP+mBTsmaNix07tSep+AHUxVfJTIAHkbxjCOQzA2XxU5tUAJ+WjgriVYND8lL5yYwELmeh/V4rpIaiEPVHVkpqICVia/GSBz/m5N6P3TCeUrrdJWcrfpZgcdoPP/1Uf86+PjeAw9yhFPvxVfGYVih1G0Vs4xv+d+5BqLHSI8JsUZmVz8fWN1+YjQ3p48e3WGTuHroA+lNiq8EkhEKhqajxxlG4aABZucLIvas+WliP1c4VXqvIU28nlCncNTGng3/PIjvNfl6osap4/CGnuWqY4Ke0G4isS9Lrk9g9m/tg/MDAJ6C6L+2kKT/qW/qc89HJPWxTv7ka10fMoiVTb4qH5Kc7GB4ssq8MnNmG31RIKe15PS1rLV0+HJVNabMHVYCgNpb7LXW6/WSam+glVbHhEoT55C8csXKxY+tx4Rs0+XQP9eru3//+Tt3G3aEWzBI9XlOEbBQYsT0qJDIFXsH2My41gvVPGGBpPf9+3q9MkMqkw9JVt17K4y/dDHidV117/v9+/r5w2RXBQTtv++/K1/rcoCB3oAU4IoIjcB97/ddFWtlRhX2vqsi8nIhzld+XSxRT7nynMxHGnit194OHKLbpHi835vIVqmakEJVShcSMl09XGsgRiOUEbQk9xTQuik58TOqea1rZIqgXJHx6u67f4ecqwLwer3e//x39zxgj2CRY8EuSclohvYgJOqOxVh8//2tqv/85yci+t6OQXPkzGtdr3v/VtXr9WrtxZUMWcW1q6we4wlgdjxfARxXxrXOAYmqIvDzWju6tdGgcN+3zebeu6upCbmua1WVibJPsyUHcdaAec3My0v7v/78/P7+89+/fyXt3RHrz3WBvd+eapg+4Hnsl6X/fQjvnku0/yDzuijpemXPOY+7ut4b6Mjcu+5625S9e7d25jVBZ5WxQFcxqtTduRIfZZ0VGf7TAI1D98Vjg4Bvg0VJrAZV6Ej8fLQK4JqAlYcXQ2rT1GOtzHz//Q0P3CMjR03UBd6Thj1zIBHB3/c/MQ3kx8SDEeHpbSbk/Pz8h6QnYOV6DSfBJdy1YEHvKgDv2jn6hP/qeeuG1JnPeJgpaM80P3QfNyBJqNptDp4fkKT//Oc/3f3f//0XwHVdVbX3b6zwPsR03X9GTTwhzGO1u1G1lxvf7GSaBGRkM9d6se733nur4P6Jh5uqj1xAJCyX/36/d9/XdaUHQd1v/XNLweR/Xq+q2Tly9zXHl+8q2nnkRM7oru0uYycn0S0rWFap6u8bWsnXyuWP1X2t60rWvtGdGVvd701yA2wFuNaLiuoGYu8Gm7HW9VONv7+3GK8/Py38vrdMTmhmrPXnmtpWfgLr2nr/3tLO1xWM2t7F3I2qfiXyusi89zao2kTXHYqI9XoFIvcE0KTHfTEgRnLFKnG7bzZJUGIX3D+IeJTzY9DCtaLDH8KV931fsdbrZX1thFWUcMUfXPbBLssjMQcuz8goALkWoMyWJnSofnOlRwa0YValpLVe15V///7tt1ZmOjm8KyJer4vkff9G5soXgapbJdLSemtdP+/f3T09xk/rUL6u+35X9XVdP2OduqW9zyMD1npFAIrr+umRGqORqe5WKRb33n/+/PlZ1wT0tuSZPb0ZAHO9lqSyjvohGXWVROY0B02cZJ49Qh61EtFkj9YLjQ1RoeYusXslM7Owd1eCay3PYxrivmJXPdXXL/zFvEUHYzOGyd6WESvWF1MAXHlxKrqncfp/xkx773244io9GVFEPPUTSVufyP7dxeB1XU+K4srZWmv3Ni94doVj0zIQEhxlVNlc7fc7Eh4c5o9qBl0Jh7Lnq6tuTKLOdNnh5MHHyXnF/CGKBBnPqVl8lMZGdNfPS7vCPXZzj32ZoIdRppwCfUtALl6RVfXe79frdV2rqwA+bPwT65sy04Eg05JfT73Il7fS1aTde9sx7d8CsHwjjpXV1Y1Q3bcaK1OzSttP/Su+15Mh7P1OK1jKE3YIF1SRgGmHE4gzwomKhzmTzFh8ht1u7bszKzMRXbWrkZkFXGsReL/fXX1dF5ioUot5RZhSVM6IIqK+OGiA54NaXJBDxgEiMjJV6Hv7cRsyxoOeAApu52ZEnETFrmfoVidh1nxTQyPnlm6FBQNQHSKGVIfA/ORI86tmxkqraDqdC3Q1mjGKzzImMsQ7FYVMrsxuV1YH9qPbMY84fxAPhfARHXr2sKtzDk2vjN1lN7f4OhkXf++3TDAh/APcDXE60S2E8dyRAXs+WHlMennfZbqK1GtxrWUkmxkFfbEnQaSGjhDVe6tXjNhpS/ujPn16DRTV7ZEaOui8bVRLdxfQAY96ocrgrz1Xi40MxhIR6N11CmkRDwI4w2H4ZASXU0dGUI0uHCHIiGC020Om2j5y/G0tCbTvt9xGOj0sw5R5yLwt9d4POH6Q1uqjKBQR//z+va7rOkoEEwqStbfVXh2f+0HHsahxMFBmMKL30cO7FsmaanZ2aVPXeon9+/vb6j9//gTpJiab0/u+FxcPV6JqA8iAqaZ9QCK/2RiA5b6dZFXp/d5hHzTYAgD813/914Ey6n6/VZ0RGfnWHUTkUshjdDw3dJ2UAz5kz884BWEdj+KzzVxVpZOyOlAkAoOADIY3ub42oUAsLuVhCB2GZ1VZfNzq5dFFhmHgp/ZCUjHZ0coZUU1AveLJ+j8Gy2g0ImJvk9eTR3UjM8jwlFqAVmLFsDD+9eJB8QHUvRHmVXp0AIGop5MzIvM6UIXPoGVRh+7CmMGd7rJ+zEdEmK+FYFOlkcr8H+tvF9DYAE239nzIb7NrGfH/+nlJ4rA3h33WZjv1Z5ZVCLjyuq70aJ+695Z6Kioc9U6QiGRouUvHHW7PlSfDyZVmAjBOF1C1Nlp7Ty3imTlJRHoIleLMRzQJ+l/6FsdHfo9qHBxXB/vkeXVz3/fZTukR8BHHwaAfBWAeAY/zXZNlqXsKthKAVjDQIlQ55wqSXCQX6q6uGSA1PaWfQL9HMS4RCE/r0WecAj8VV86d4twgzT0JOqCv7zcPm717eSd9OSH9u5DrY/E8Iz/QASl8CrpNpmgDxtF5NBz6wIc8NDb/w8WI6eWeyVsAVgZm0s80+z2WETFP5GFsAVDzc51HpvqBJL+jB3/RByz3Q+kZYUUSBVHv9299DStW1fTPaXD5/dWH5rszZBsc66+TPw8Wa6akYHaD3M/pU939lFJJZni67MdTist5QlV1OwC61lpqE1BHD8kXiDDbPRmrZfEbP9/bQkHOQt3g0Z2z7cW9Gw1bcwlOxiw2stWh6O5Qo/nz+s/eW6LOIEGLnGdMEL93w6rFDEnHTupJgCNy/bxs9S1d8jSu2YMSLCm5YlGI3UMy67bKGdfKhohArt/3FkCfCLGhghBc1+V+4d7b9iAyMi+cFKKb0pa0FjNz1x1Hpdzr73Pde3uM6hfIHdd1Gdyj/hUvAoy8TDqx6AJUMSWWAlo7W3d3S+v1+mPAqyfqcnZKCZnXfCqYiW4HRmjxe2M/hxGnN7JGeiAH7/PcTfFM6JgijBp738CHWzTWb5s9qIefdfYPPIDawW+3ibFCrotcrwuAyPcue65Sr3VJY4l5jIzjiDgD57/nqcYpiVSVZhbogAuPQbYdypPmPkdYT81nsl98L85jXkhaHeW5X8wwAjPM9XQblvRMqrXXTeeJmZ9xegR0GmUjtPt/vx5EQv+SjXkuzIFXf3XwRlCqdUVE4LSt6mhB69NU+91R3KnQl08/L0tXAIjuzVA+a27Xjc916qtX3P2Gz7MAsPfO9bnIZ6s/HaTPDvwfb/jAEwc0/HrZoaRUUn15LRxvex72Fw88gBVooj6/iT5Fv7Vej4XBowhgLXf3BnDMjCnQ4wWeTO8ssXdCP1IZnOY7HBZAdz+pWlVpZA7C2EfjIBnho/oJyfi1StKj9uzHReQKsHVURv1o+Jmp8ryeWOWz08577IQExGknNjV3fKVz11ZBJsw04Lhld7vP+xCRHx4Bn7GXThXx78r5bOwAuqs7Z/4VTW8x6xun8Hsu+OtZd53HMqZgS6HPt1vas87zwonAn28HMCeXJ02RrF79/J6ghTpEF5l6gihAbh7pCiYjVga+UYCMHsGpD+NXD1GLUBDiRsdwzD2yCE+GAlPcCZmqJymoE51VtwWfATUQwNNtYdO11eBR1+LUAk+X4GwccCrV0z/8hG1JWCPpDFWdJT3Fue9DbVwYMWPSj2e3W56yx+ekf4EUz6Pk4QZ+8wf1VRN22h+KyLSf/bYYT8DDr3hGqQOv4N+X6s3TOA3Ve29I9wSHAKZ1iKCo3v9i0HwbZHhvz7MRSSvPj7+YFiG5xRlCK7q3z3VGwHLOe4el2CZfZRrRqF5mAnhu2CB5TYLm7D5rh5MPV40iC58a4Lzyf0hoBBm5pIoE4YHAJEfUPvPq3mjlWnlopZmJmUnzrNSwaO79G3wBEDoY18wJLEaoPB2kfRRmjBDk9NKF8mX9XER15xENn7AbRsE/LyJxnP3eO9ZMEA0rJgOQR7Bm5opcXWWsku1x2wSmskELS0Z4giSjMVYMDbmyaoPTI6VrDLYloWWdG1PXJlw+fW5V9Zgnr9X7/V45yQ/JFUu9F6N7u18IZ1sko/e7q6z4XX372dz3bXmsZj9Qg6qlE3BPk/ZRTQC6t5BUrWCGEiF2UPe955EAM6g6sTKTS8P6a5N/+Um8p/01nilWrjGRd0/bekRELAArX11vTc8ISVpXsScVtwK0gBmANA4GINnleXqARtBiOnuxjBN0dwSr6n3YtoBKXbcQWaJxCWOGPrCnk0PjtDXktjb9xsoNp+J6bFR/pazpsW/D5hXcb3IobkoaF3aXzgmG/Dbw6VaW5BIPyfgYQXs6AkgyOHLDh7G+BVzXn4ysM2PMtjsYv7+/1tN6Bo32vT9DKX2P3U8KHd/4tANKHTLewZVOzKHM9b/+87/+/v1rTrWnSrT6WtfdIyYhyOnuWq/7/kX3/n1XVf78ZGa1areOQQdTLoA0ne7K8LqHtKWJtezuu6olREYc64f2aGajXd09n5qB9j9WfnxMBHUSYEPp5Y569wDfVdNp57EXUoOS3ndBFe1NviIJS382T91zB9pRxFB53RnhJoOZDXiED73+Nd0tjBSjwb7LViYzSti7XGE+5MaICAG7qnfnLFV4khOWVS/ZkvdDRCAsNU0g9q7diIhYyxvtETOQRO++86A1M5y88osEy9KL6fk4EydkDHW/zMEGppUF6bFGvSNCgUIfIlMPacTpfJZ2qYGEd+zmnoA4B73t3kxuwUsPoGsqG3MQr2tpresS1RJz/STf73dzPrPqlpQrq8pYBmyyafAo9913V6sdJio4M4FvbyfIkwVAD24xA8sdrRMjNrs7uZLLwGKMlkH7s9QqzEgwHqKBR3xadaZ2uzKUivveoPfMvyKMAwONw/PP3WfcNHKrpy6E7O58XQDY7nSJzGBApDYzF4DqpidYzppfT4GaM/UaT/Dk6btrqqCfBHsCLM8M75amOIJggBFhsYEAjkd1B+0chLhW4SRO06NxbOCebmEXfp+khGQw+dXKYZWEudSe7mCSZGcm+MRqeXfpiI644d8jWZ/86Kz3sZa2kGM4P2wge3Y/yjFj7ol9eJQc+ivO5uEw7dxJFhaZsKnN0Rjp7hZNIHSldq4n84r45NUkqnYgZL6WZs1OLp48MsVfWlsKB3jWMFeHB0lkAp1tLV+QiqneYFkw+XSOOgqaw49JutrDbAQrCAKw1m7A1RS5TOw0WhJdGJ/EY2pcgLXcZ+CioPfemVdECLrvW024IVXaRzGBQQ99hLlqGoKvYws94dmg8A+tethbfeKAPmTvR+IDwOnA9qiM0AMAj4J+NNDaU+wk0CjA8gCBQFNdZu46Ch2vfszW/CSHj+FsrdV5encN9scM9MMEsfTMeevVJJ7GYRstZwMQzQzlSf7b3YbnEoJSgNpVT5IcTnod08ugl5NtVitAiUFZuEtkMhFUdUHdHhLjreIq3ZyBCZDKEN6UG05jZR5GOidsMJmLxt9ZdIP/1D/g9paeQTBOspysTuJt5F0NLkHVhzYaVJ8xggCZVd0shOd8hOMqq4Vj1qHd38QMYlKqghVzvGfOqIMjV6FDXdbkJTHZh6v0aVnogZt1AAU/aADftlRfkN8kzMH+9zykB1luQp0nDvmuGM3Szc47WghqQn1a1ec9XtAzDKzWWs/AU0YsD73rEwf+C3kZWbtjqVpSwFA91BWMK1ezDcTPZwqnAXYAte6tAhmv5Bbu8lRdP9YGwICSW+rup1fw0wkDYBqufCcHm/T3+Xg/uO+DE5gW2F+SAGutTN73b1IU+5zVlVkc5Vye6rJzs/hQUMIKChg6pep9r8ium0LkiohcrJJs0K0c+4WY+nN1VjYzCVS5ZrvAq6oehcPzOqoYAJlq2tI9f0sStOWnLBb6EagEECh0wMGTMa1pdDk5rWNZd6lV1e5+175+rliZzHZj4Zhf77zDwjc+ZXXvQ9j2Pa5cEVH3+77vjCsz6z0JbYIBT77JiLBuhAcwvN/v7r7+/Ky1+t4PEh+ZghV6jSiWu4vXldI49pIHgTjXjO4KyDkYg3AogOqeAT82JWwyKe7Ru5aMA/Hh4p7/2i74UT4YcPeWkvzIR+FAp4MFIwPsupneP7BL+0aRn3OKE52PKvhwGT7DiLt7771rf46Api/IN/hlFEJE9MQOONdGfsCI6SpyhRgA2mS951hJ5alMDjvClfbJrYGD0iUD8fS1tvRdfjkn9AuyHe3osXSRESuzjY1hDD/Bo7XGx4f1xFZDWna17flbZ6RPDWHG6HkEYoy+/wkRBBMlIp9lOQ86Zs+YdVm1Mh6TYkTZ31s1yn7TqQvfyqcebsDC/jhg2ZGBPPuLYvAYK5JydShnTPm4jrG//fVceMJBDJOJY+4kkekdvtbqrkJHhGccnhrFGLiaoFvv2lSldGWIFu1otZttr4jAikBnBmrXllD/eb2c/HejDrFl9NXJBhvtp34x9137rueWNyXt+77//n2vtRJZVSvTpFn32zxrpWYdcW99Gi/pNtLJIQlLLzFTiEYwMld63E6f8TE9uVzHWmIEk+sik/CAY7yrSa6VJHFUhgCEZ0+lN35ICnwqYPjuLiPzulSbU3h8Fe+qiiBXBmhREB7u0srclVvbzURMxmqgD3cAUiD6Obb+0tfPjytJBpjGXTGbzyahRChchmxU6NNw/rnUB4Y79sfLbJam8TH/lVBC/7z+E6Zq9m61HXQmW7O2zzkC4GGWhh48FrPR7OjQ7tL77XqX0UQ3jmJwKzxb5Ruc2lYTAV6v13ecBAzsZ99UX1PHjlHCcySfe/++VOrTKzifKT7lMoetceyApH2fgwzLa4WkUkcEM1SI001nw/Rcj07byQTlESfPeQ42g6cV6HR+AcgzsPD4nQ/LBl7m+XOT+S22d1ZvJIucCYf6KU/5dVyte6qfEX2fq5o3H7g5Jyz2L8Ews5ifwIaywJO9fI5iC58b56MQKxJwS3kP3eMAEItnkM64Zk74N6jll+V0IfNfLtVX6OY1rDWlDqGeKP+UTHSgXwwY/Tna/iuTpT/Z1NffVtWz/OM8JLrx40sF91lGHQ9kbzLbMlaeRpvnPVWFkaTJZ4bQ+Q8UNEl+8tszWDEiHo7J872zt/9NTvw83/r+kx48hS61N6cAdbK+6bWna8MYBJ1YXn//8TSOC4h/1/N9MVU1SmpT2jwXbOjyIPeTqHzxyIydPWsrkjH59OAfAILomfI9y/5Q6p4FdD1JktkjmLknBQVGxK4Jndlau5vSRFYRUx/WUVfxkZSnchTOc/RFNs/cJgCDedGqe2Ti1EgfhUCciB8PEAqcBhQyA9ZoMLzkr8CATy2ax+QZmcxQUN0TK2KmsFNz2WOpYhoAehQa/rXPn739fejmaVoNN49m+LOLgIdW+dmZZwN8m9/u55nMJ3//HMHC51Dg67znlxa0viZ36JxrfgwCAaxcU6eNz3jziFjJqvI4QUmFTsefznRdxel+hrZe1zo9bPSAT5/W+z5xez0xuxPgj7Hl4asKnemJPPP7J3xdDnDNpY4j8V9Vf14vu+gcpB8uwf1cuQLv7dM+oEN3k6tdOT1HxxeRnrUDeVYl3INEvt+/jwHae6sr1JnZAywDCIg6CvsDUQxs0CBDaeY+aYk1HjdWT8bfY0yZSVS9a0vGFKnP07eZgJ2mLB76uYsm4yRUMkTXDCNkG2CDyIyL/Yzc/TS2k1OJc0YxpOTP8D09hvjLXiPcx/ZBc6MwQimwipLR6Obeu7+Y6plX5sV1e8smWepjAzxsiyGE8CRI3X3vd0S8Xi8T8mJOkUvPHV98jD5lxmczuTE4wge5Vc12BTWsdcwZcQVZPGB3Qp5IOUqUJ/6Ifwsh+DmuRVoMO5nJSENr+n3/o54KXYNqaWY2Mi0JgzIbcNhe5mK1w68ZS2hbulaSiOjdrtvEwNTP7IapECKTVaccMCBLgknAoJM7E0c08iBcnKIwjz05qTtKnit4eLYA0Er3RnDm9SVPBgsmzfdAt0ynXFw5M0vhbhzNTS2pUSJXIjlGWKhmkC1Zr1HKXCvy/f4b/MGpYygcT+Nyw8b7jS9xl4iIGSx+MC9n3RnuDI1wCcVNTR2KCDzd4wzHxx3F//f7/02BlLdQZtz3/esZGxHhi+xdJdXe73vlTApFq2pTGFs23VkxmihGeA3GP4Z7wvQGwDHZ6lZr3G24Kd4MjkY1GpVlw4ruiTJh5BXSiMKaXzah9vlSxzc+/1BA1WSsvOBZBhN6du+qkrtwOUVyq5RbJRvlMbwnEK/du7ZcBCMht/83Dw/gJOrcajTIALP6ze6nqESn/QdCOjV/NVs6exTTnXJMXzBWxEpGtC35AsjIXNc/965G8/DAAN9jxtpCC3lcVLdaJDIYzFhrOQCy2h/0LwdGUqq7th0bSVeKAax1/Vyv+9d+BBGRsAZBI7ir3XLm4C7WIrwv9hPc2xF6amGQe2+r3fwAEbHylYtAX6/Fu6o3oLWmuauLFKbzthqgMvI0Akzq9eGPIA8wIOmIos3o7ID27ImRdCPlPgiqOZ181sgjpOQagb0hPoVi6MHtp59TKwL458+f7r7NcGFG5ifWw1SWqUOHA/fEqQBgR4HTbmMz5AnQLeGZcWoXFSEyzJ2r0aH4fvl0GAgIodk40oDDN+7uKkkZT4G627JDMaV09xAO0zicYHbPcrtp3/R7tE49wWtxfcRd+sjKnP027NHyIfqK/+bWKO8xzVzh70aciRQ+7vvEWIPIfQPs/4449aBr3qOadvlJOe2Ip1NSkSmBwQhYoIhOhALd9bDq3Kz7uUQ99AF7MD1xx3CSQmxlIAeJgs6p55kO+j9W49yJaS2SFPPRqgJCSU9vRm2V2gBo75HL0onCx426zkwAUVMVmT8/INSVNkHTKKmnco4YVY1CYxNImjBEyXU7OoUDULVLJi2edrYYvn3po45599YT7M3mmY42wdFez0l2re5LIMx6v0N8+J5d7HaLgWN8L/6PmcHu+yWnJS9O0QcBFYFAKHHir6mOzbTFSRnyPNeqmqSLM17bv58n4juaceV2H/AgGgFiCSCiRVAMLo/ROhW8uaOchHno7M5vmXq+kWfApm/+PLKhGdvEM/0zmJoOZ+Ppc+ne4o7ESloGkYcqEcCUniLWlpkaQKwxNO3QBxQb6BGXbhIpkDnwEqcs59KODnTrm5r+s9PSCKDloIwS9i7F1MN8+jo958Pvlx7I4fAIXIcffsWBYCBVl42Ls/yJFL1F4gSCHt2gHnT/RBr/81QeI/OYXHwXNohSu17xHW/fXV1YdOmA3TN5zkPU/ObX60U/ezJi+pwB7N4mZ/hpHFtIj6ZXwfow3c1Q5LTmcamKnmIQrr06jYNiZIDR3V13oOlBNF3HaQeA933LhRxNoGW3mq0TDqMbaFpIc7aic9VQQCuA1nLulIcHTo6w17PKcQKaZ714Mq7nrybmQ2Y61ZyjuHetMC3H5fsgaXm8xVAyMyGhy2rQ8nTuc3J8kEFFrFdGJhsek43u3q27i1hc89R9zB7s5Nsb8QnjqpV6YDunQwA0nS0pnN9rJQchb3nGGEGaCpMxFe9NXlhrvcY3eqwVsH14HcQb8Xp2rU1e5srUEfbAactZLvSRfvYcHkxutZHvg92G/U+f55XfIwp9yzzIZTes+HcgopWviM1TeI9hTZC1YQSCgjxSI54rfJbRMFtEAMKZa+WCeZrt5BybcUqMDxZ1e9TUGBpCPf0Zj2PDJMC+ETkiXCvynMcJyKmIxYMb+ZXgimACc1bDdeBjMv4Fa5198kkxTakgp3IYXC5lu6NB4KNyT45zlXVg1JghUwFPbq0tz7IiNG7+KZUUY2IAGOCFXUAHRa5BHFrPmvTeAu6j3MCYqPEhk/Br2z+WMZ4RcINnTD+tnvIpn1LB59T3CL+PoFefSi+Oi60qHaXoPE3CLhl9W4Y+WqD++IfEzgNwBLi4rhwr5MsexPqrrOTnZTlH7Y6EpPu9u9sIcWbWvv1vH+yzz1d/zNRXJOe02QuiM8w9mGekwdSd/Do9Ap+R1Pwqeel0FOtQLXhmVps9WVBVdQHsa11Cc+KnhpqMTK8b9t5G1KKbUGZemd39/r1X8Fo/64qqut/bjZ3HTEZ1R6HYgYcs2bs8Ozoz0w5MZWbX1EOkzljdvd+eHTe7xpQqkjmS0XYbjltixvd4kNLAmw6AJiqXEXQ4mKNaTsLBdFwVQVMQ/fi4zNlwecNTyqwj9Wk6crX+eS7dLUHEer2qimoFE2G7VENln4Jhl2OpFHabYZ2LEJFx5RWs2qFRFuzuleuzD4VMxrV+bzckr7yWzf7z6I9BFsDd++NxzhYysuLDtfd2w3DEyinsbE2LGcIQl2C5e4YSsdbSCC461jwBzRR+SAshqyVGSGepBKyVe2/V6aI/JmKebw47/9se2m6stZwJjJvb2949Ih514piJgP8iy+kAfN9B2McumQJ3AMGqMmo8/Vb4HCj/d61rygsHRhQRiq2O492fBXls1O5P2ubj/023eX5w5PRc3mNFn7c9kcNzIwciJoCcsR+fT5s26gmoPzb5s+wnB/246PiUXJ5viYAUFu94/haTEXzRGg8v9fObry96jPPjRHxx1pI5hi4z4vVjzaXGo+19MCxpELHv/YMTq+BMjDqJdXmC+XmPtKdAY4SXpwwrzUDmJ1ypejq7Pz76e1uOH/z6I0FUf6/n48y623HivXeu1xPAPFf+4cafq/clqTwC7fO9zieHIYQpG84+6T4jrvScqeMdvgMMfRmKpzSXp+Qaw6XzAzi9qI6K3O92mo09VEvA9FVJSs1WczZ92+afO3rW7RyNT7llLGoPN/5/rEYfLudzHv22KZIdVsD3MXn28POCAwz96+l876Ln58fR42FPkPa4JdWu9bP6qP7GKUjoNPOoZ8bEAGcwAq7tEeUxGIaELSvBT6J74At0n5TVlx1z7I+N/dysCzlP+Oq7e5Jn4Uu+iJxOcomYDBb4iNiVz/cAenxWg7TT/NdyeUfU/Rvro1v8GOE+ajPxxYx7TOI5O+M9/cvnB362x/fG/wrIHyLMgafn9sLzMh++ST8h012/NDa+FtGx4akf+31n5hVWGpLO3tCTzPMwg+gmUciMJiMFkssDbul3rlWtXe3uwUdOwjhIHQlSR+OShNIXfrkObSYiwt1Qsfg6BOv5+mPfI6LqfozpszrPxl15WikANmtvvsyZgE6Y7x32ev2x7TSNMzOXu0GUgtUFzuS0Sb/JE+yu5H3fXXs+TKHR+PG/yI+Lho7/E8m1VhsR/IijJJGSHIPCTZfTzAYig4/1mW6Q2fiREFiETm+FjyVxfOr/BpoC9XTI07UarLVKtY+44hiRYGu7NBiBkaXC9J66ztNnovQiHhltj9kgtdayfh1bK3NX9d7x50/E0YqoypxK9Yo/gAtcM1ICgKPPbrNH3Fr7DKajeuYhd1vNoQD09hiPK8K6puy2MmTaKR4QVxid59PD0MprSSIVwS7uvQO6rosRUgHNeW8LHRk/XNafwoFmXKi3iMZp6e4IStGj8KdjgnsiDCC01GZqZQQtlxSRu+34adTf9vlRPn+sIb7CNZzxkW3w6WHMeCeShwvnTx4Iea0cdFIBYAUCjKdKw6HJ5lSwZUJ7WlPYMgxf1urLAX8Q6OcKIwiVpGrkWpmXt67heRzi9zC2vWZ7yp7XyBSXv9E56uv1WslS73qfEeT/pU8PwqksnXT6XJIeY71yfZRUqvbeDeV1GNfVPX0dLWmtdf/9rU8LlrqaiVyLee29e/ScmZn8GtL4+DnOLFEDwzAfKaaJ0/yfHDsSXIHryojg5q53RLTVAYYdZbCmDyw8/tjSa22hNbqAwGq0+oykPPCzaEaooda97+6KdDNPWxHxYXEbpMKJayPCaUQIHv/QjKmiHM1tNQXPIx1vOtJv2Pfuh2r4pHDDS0wEVw8v2+8HFGzEirtqFCAb28maWvtWuJchfCW7jQTaodjlLYlUR2ReP3v3mdc6bniinnDyyaqyf3X6Y2hjVMSDEnZtbqx1BXN6mylmmGMTGOJ1d4tiZoBEZvX1yleufb9JXte6glKz9fPzc12Xt3F37/dbdYewrkymkOU5vl2wZPQ48Ol7eM4agnTrh6fTe17rxFma8+/+lIzSLRXVzthJMwqVg0IAJk/BkvokRtftnFD3XH3ilkMmZguE7vv+xAQnDCVQW+eA8juJOgcWEXE0vQAgD/oYEbQsM5HXWmlxIwtNWkrVR5Um2PiDH6jUSa+E091QtQcOdjH+E70BJNd18ROcdUP4roGcFLcJd3rf7+3beu7I5MzaZzvzg+A/sM5WHzWdTw7PU844i2ry0eNrPCkvHIOYipnM7omXHrz7WfmvXjmcwMkVDbbgibRd3h0LwEw+OjyDOH0r424OCT8Gcof/yrQ8SBb40L9QABEq7OSRKkIzmHNT42HnE+CW1HVQl8/iPOkKw7R7eG/bAKprz3GIsYdCrtVWXngEF3XaBMtN/SPlYP7UitT0yHDqK6ebzA/e+bpOBH0ieFfyzNozuIy778BikGbMjShBmFB99pFjkhiD6oU4nhWYWbuuFZ/LqKppsvY1CCO4OFJ/AD3F2ouGpz54KM6IU0bNmVLs/elY2T3hnpQ1p9CTe3WCDDPfcM3wXhw9NjVTUoy0O2LllFQftxwuuk2/qwuPvpyxZi5r2SOciwVgm2ZORJnZO03UcbJkefLENBieBMH74ZS2PnjEOdreOwkQ4EfZxQYxiJkm680zwwibw2iO+NgEuQ0LV1VBhhHPnDYSjf2gAKZ64rBnTnQnCzoSEBq7P42OIRkQYXCJD6TOWadGY9bEDbrTfi2RqRMLSWrCzUARLAW/SKDenPcUhD+exYnInpEy5JkUdf72X69vI3asxJgTf/7r9fItzQcdSVEwuTJmNhAVREau7EH5tw/aFYkMijkJsAvaw8sgInN5mzhqqRQnIp2Ddgy8G0ZYPY0DGiEzSEAQarQIrkxrCdk+vl6v+75pMm/elneksyRycQkSN54N3AoTE6bs1AhEYAWVgbXCUqJoBadHAqecaAMkI5+MPBO6ABANYKN/1mXOv7pbVl1iWvuE1lEquEpJZMxc5rJ2qtWHMKruCY7gOTyEkmv4FIpcr9f1Whfw3xWRW8wMxlSlukmRqVAimwYRCKFEItZancF4qaCj0OshX2utzAWFVGW1SspFTgMRBMuKG08YwmHyTsuV3SRMgg11iQFU64PWn+1phWRJQGLvLeLn5+flYHc0NxKywCpS7v3Mk94/lQfnLdPqCWDf997v1+uVA44WoIjUzV23t7sfZleRo+ni6lCVYh1ynCricgVhZm19GyyrZQAkMlC9u9m9f//+Ndbu1uxWV+nejejFC0DXjiAa9FxNePTCKdn1dqjU3VW3+QLxzOt7mhIhIteV911St8hpxJdHYNuidncT8YhhHvbnBCK07ciu++4tuRM5Ed/BJA6cN5M22Cy7maYTWFew7+7gGn2OHplKhqfL1IAXM2TefAi4h9PIE+DOl9FX5PR0efLfeIj/9X/6X/t9v9/vR+rjWMZBEBAK8JHIcILqKpZrT2ut67pq7ycg9hDFLtXQD2uX9t6Wo/tgB0BId5cbbuIjLj1f9N6jbv/nz599dxnE+jLNOOn0QXlCKjIj1t+/f+dtKwnc920Vfv9yd6maHkOifl05UxMj1nV19+/vrze/Nbq6OgTO/GR2t2cPuB0F4AMvP77yuoxHcu9d944MQVaID2ELWWUpWuYI5Hh3JWleva34bGePs9fM1YAhX2PwIEMRawC2VknVvQIJkH3XRleuRaLLoMja2mi5O3rvrV0R4SJkoSOSE7FIqK1gTyNuRCTba797u2WD8WBRZiCESYJJNBBPcUa1JXYC9wm67JO0qy5eSEOZCVKKuw9Xy+XsSErMyLyqSWRci8z3737XDkYsPdj5Q5nWae97MGwMhWFid3hse7tmTgnr9bKJLudaiGtZ8KmG1uEwF+1PudhAX+snFlmFXBlXruDewVjXq8oCUoqIn5+f0PX7+/+BIi8yXvfeB2JWHvgwmTduDPFQr+vHbXJ7bynUtS3CP9vAVRdImmvmCO3aGELFBluLhFDVQt1z7xK1VnQ5NhUUoyUrKeIjmvSUIl1jMuMxxmt5me/7N/NaXOZtznOHh8nVUOL1CcieRyCVuvfekXg4R30aeukRVEf0TuqqJwOMCCiy6ncgtbwk7WncOMPeg/bmMVxJOcawHhsaUPRToZlYHTmBSTa3DZRpQt+SvDgn8TEvxmc5jVTfWOq/ilT8wMLb/wrkXELQ/hofThA4Ikfjh+J5jdkpQGl90IjTYRmmmNzv+2E6GEZJJjCiHn5vU3qkIpxlTlroITeiOiNXRh4tqGSmPS8kKpPX1JGa3VRdOQqjxMdooyBVkEQe063qknPaiJVBdTeqboY17ljFVpGLU4IWgNdrvd9v7dmWeQRWMz0vdAOeLpTdKmnvtzTt2b91G5Z6AdflWTJAl1u4+RXle+cARkNYgCsB3l2tiVrzWnajDhJyZNRCYrsR9Ys29iRrPYnLqAt4P1Q3HuXzscM6J2XO4bOZhmDIRx/GrFoB2N2n7tmBFMpxAlwWgjgziX3ArBI1pEQh9NQenYBMx6w4sqrnEhxPj+haTK/AOddkINRSCMEYHd8xyOtJ412KEocd7w+fB3oKkZK1KJVPwYDjDV3vDsntpj7DBTGIDM/prTOi2WH5Exy6fO5yFySQrtAIj8pvB0NsInpGcxieGZ5yRE6+a0XnGJTkHCOWYbLuaoilIMGevrgzT5FEuBPYyfRU4GGBjIclCNctHQI6EGCNnk8nF1Mtj7ZQQWzHTtSZbM1/k2sIxBFqnUzCVbLBej6TREXAQ+xyFJQbWvGxe1YBcCiVGBLf+75/fiKTHjxZZ5S3H+7eOzrkrr/MxdhcGCO2nhgPFLoyg8NQ3S2NGSGvP38kaUvV7uKaQrTpBkbFKQrJJW4c/C4zVbhvJYIZtfe+b56JhpKCzJVQsd3B1wVrbhGaZvvMMeZkslsM/r/+H/93S7C+1uvEzev1etW79t7Xdb1er/f7/X6/11p/Xj/R5YNmgfse/n8kcb2SQu+3AbwrCUUT9+45E24BAu/7dm11ICuUFyIzpX6/30K91pXJvvd930JduXBqO3n6V+tMOa+q80dkrsxIZqn3u+69VWCuFcnI9y1FhmJ3l58BV+b1+/u71pXx0433713F4MrrJZOfielAWEmkZ1gBo5iBGQZowViN9BwKCNsS7+A6o1n+lZnQqm7hNKa7g6YIjslSaEX0qWmq+VqrpHv/SpUZ6woAqG3ibQT+vF4U3u93d/35r/9I9fv7u6748/rp3pH6sB0n1nloOf2/fq5IhHD3zRYXA7irTmOwbOyuK7vxfv9V/f6slWuUdU3kq5bEdf10459//rmrPfjXLvay9tBBsr0gIOuBJKTeN33zRKwPj2vAl63X6+XGttIwJbYmDjPhf+9NKZP60oKSeFclGes1OU91dZeMCGVPmr2TrLqtRcyIhu6ufaOaGT+RblHwKVC3Qe+Dv6IY00dNujmZLUKJXJCffme6u6nVGyMkNvN1PfvXya0lel+vl2qksDPNAq2qovjz87MifvebrXxdMznNKxk+LuvYy8xMC3HZwcS13EkVlpoAJG01yVxrrdffv29XU5kxs7KltdYjnxPfDBmyiVJfuSS933ut9bp+7vumVLWTM1YXpwbijI7T0YcTlfTQhnu/1sqkqu/7rr4vxP/pv/5Xd//9+9cX0CqS9b7j7KSnNjIJwCgqd+2pyfnbq8oKCiG4Oz8iuuvv+xet15+fa8W9d9dQVLo3DzfQ55SJv+/3RNUrtMutkq/XkvS778PlHioOqf+8Xkl3bBZVpDII9P3+G6HlEVpqa32tYIZ1dIyMFuin72HFW31m9LkZTiF5wiCCMlE3F7v3FZc1tCQ2FkBPms2v+dtSPR1tyFDz3iLzun4AyON5GaXezY5Evhq5i+/d18/LBpC5duv/+OcfRP6f/s//l7uwrp/M7MZ97+4mLrvMJ/u1e/ZDuXKdTZ70lPjw9AGP4HpKPQcpr7cl2a7rAnDfb0nrCvXkYHGQ1mRcV1r8r3u7PrXIrtr7/WdlBNT9+/u3qn7WlZlQUb/tXoYIk7goS3EwxCfm5lErrJ7Rhb+/f4cTsfgckGPy81RBs7XjJMwkr+vKUV3+cRRojmd9oQO/v7/MuH5eu3HXboSIXWa7cfjq7oPSp0EJp0rgZPi+7wYdHM88z0ahSHrBcUjg/DAYz0k5nxMRKmjr9tN5XZnL3RD/+c9/qkpVmflysffe7/3LvISCYq11uQy7Z0Clv3fC0EMZjTO40g50e7rbte67BOy9r+vn5+fn/X7vd73+/Oy9a6o7lHDXmWMaJLn3u6quXHbBbopzj+L7/b5PzzZPSuzk2T3boSD1rjeABruwhYa6ZCVFKx9LVffv+/0XamP/EWE6VYyKRwMYWruEQ1LzCptq/lorwmNNe02467B8T7TnI5RxYewmTltHVVkCrjXIoGZuVl/Xper3/Tci/uvnz1q5660yZ2qeqR5CE0IGTb7AKbgaKUlaM1qi9u6qe0x6uBCKbjgb8nr6mLhKk3mRVPNu9zYfb0WesUlzwB/ljskBgvga61ClwnSV1x625zMl2JogmXnStNn5dnD+xtqOHqwt0vvuciFU+FjCUzaYfg1CgseWhuXzvq7f/l9nWNRziP71OSpOpeQjEFJV6HIOnAw/kXmnnC0gwaBmmmQXJ+0TgYRMldnvOyKuSPr2NHcHN5IklzNA1GK81mU5Ig8DWysi4SiUrbCAkLz46aaVTHbv5575lC8MhBzitz5E6ylgGBoqT1/CFCj5BZEfs3DpM3fwNHxN2Qa+Hb8h8jK6fVeh5IjLDMetPWQs6F17lx6RxbR8D2MeCin3rjBr+O1PdToatbWnzYqhZ7SnR0bPk+nGSLyCvKGn7bzP/EV/Zh8KA5kIUdGoT9+wsYkM/6x/jyh7fu5gundSkirBmA55MRc9Q4eBCDoB5jRSmUNrKSX+uwcwHtXoRGb+/K8fbHT3nz9/urH3/vn5iVhVBWtt5mXgr1Xv918738xkP5MyE5gpp6p74nzXe/3EW2hScR0gzGc8aLi9e1v1qK6cQnxV9cBnuRi/v7ekxYukpyuRZDXuv/H0rEuCtbJw37/WB5G03786MnurtcFOz4UIDw75ND17bNR1XV6v9/vvpQGQIulJ5H7c7/tvt16ReWVgkVTVvX+ZP2u9ANz379iI1t77enApWcf61K8Borv2bfWm4PVKi+rNbutub6968kwAWCvXIcfvveMVQeZaLcnFfyaZa6nALp8WV9gIuYUvKt4Sq1S1RQLvyBcsFEnd1bHBUGBMBjV0N3mTh6oaIIwJGaA7eYIOIco/7L13d15LPYCjUb0R5j3KeIcQMpInV17d1bbsPTdriWtCT3ROKYOGV9dar5dyUarqLeOjR40YJzpQE621FlW7NtolyGxt72sfXltwwE8eLYNjtJeX1EKEWmmX/Hq9+JkaLZAdaRyOYOvee7fElT6rTtE6iWrQ03Q/8e7xKG1q37BZRjV0NLGcOMlieyLauURGRAnLFZEj0/cclNZ0Fc4WKjPJgzlzC1RqoHuwPomFR9p8GjsASFUCLLxvVZOGZy0LLtG66K1ubZVnHQHWKVQkMEoQE3nYarzfbxgCjDB9zbvoz3oFIPViIJEY5zEdwl+mEwBY942IE3Kt5L+VLZ9dWlW474jf1+u/SFZXNOL1IumAde+PhBIOVcTllW63Mc7KPsH3cNKazy9xmAUOVup01WZm1cywuasiEsFYZC/0hJvMIUj7I/4YWTRx5PS6MKLqTcL1QGdeToDfv1sj1+qeYj+95kmlMlNH7XNiO6w4/AjHJejITHOuglkpdDSwhX91W2HCnxWBmn0EuDTkljIXNayGJnOsEKFBbwtgJDxz9DEmtQU1GEB66hYz2CwVpUKri6HY6L7fqOsyxberlHHllfp0t0DaIk7FAC1E8LriYxxcPtfUDORm3rgILhQZ17UYqSACPz//cczMjK2uIgB73+CLw5VVP+TADwfMSn59EJkQQcZyn3BgNHstciZayyA9QqnbfTzXurpbSn28wyKFExNf14wH/Lt3Arle/9y/awa9MXwX440yA2hzFJmZyZWZ9e5W192WKA+rdpfAsJ5pMrmcEvzrFJAmDqGrrW2p0bNT5nXFNadpeDcRwUYEAQXYqo6VzCi3ta2kuGsroqdoVyP+0pS2a/NuG5vRbVOCQhJ4tKZcpmCuVz62pT/ce2N5LoaNk524VvG6XtfPT3fv0Ztdf34uwhrHOIUmOvNBRD8dhACP0rv/ODW5Ezo/maHtHaCAnHVKdV1XxktqVa9IJlUHAJW3Da+IIyg07abXdV25uhtUZtaeaCnCJe2npl3PBQzRY/gvFtqh2OmCKjqg+76dAGMofIa1Y10vx2E+ZBzbiyf75ecVwEzbmnxYctZB0hoUT59FROSKjFyIELZ7I52PZIeJxwi6W0kKuEmjAnrltG3X3uqO4eyLHO60ebEznUGfNgij2xAgdHWDMfPDtztcGoH2P1wRMlXh2fancjFRELQiGIhypnD2w1EhhlPDzJS3RyTQXBdwRJY9FX2Q9KHlO+vgOBrkchzmxPgQpslthQg782mbgNh7bx4ZcL/GPh7++uFWDOP6f0zkBsby62S83sndT1BuboVRrYfdOu3N7tVvd4p1S7CqmWFXCiZ+x79IagDQDHPqXC1wM/3Tx3ooPBzUpGHR66qKI0QXB1j0QTObxB0NQ2wHQG51II4S2GeJqrYj2CdlxZcQwJE7pVVg/X3S4CpPDHX4b4eAgLFXJ11puwPJ5W5taLtKbdSCLHQPir69gedB6GNzPpeNT7znCKRnYKWffouudw7JazpSCAKFeczOfkVjj/EsCDAN9aOpNqXm09wmtjvIPQgRmORHI6/zOSbnRbKJQJoBHjHsRgPY4khtP2m2GdpzQE6HEb7+e3CuMcLXda0rTDBubA01QJLu+/7PzwV+5n1w1Of48/Ofp+1mqrUkyd63PMHhxO0BAZxmz4FO/tWuzOf6a7gDyezegDxMY600TLtr/1yv7l4MiXUIywCu6+LehjKf7NcG81Ahx+QmWd3rfDF1Cs3zNrKBB8f6+fnp3vvdNqoO2UasJwLo1/VHqH234OmyAYXba69Bo+jUi8RaZ+zeDKB4DM0pdk+qC+fhbdHbHvnGc1URbjzonnacCKH2LvW+fx2dh3sFyAB07ztiofZ0tMYiolvDJT4UFh5FHJp2eDCux9KttdCfzWQ1UJUT6UFuYDjQJ8lk76PKQyPcOIKB/JqeSsKTtX103X/Hj50wkiHUdc20UpOszFGMCFDdBXRmZMY+qsU+usd9svfNw11ZXC7RVPGff/65RghMNgS2m+6SVEu93e+BKTF9KtukDf0xys/kA54TG/Het4Su2XXB1VRIuS5ZUgfPKHG2Khd2bYARnvfQVdtUPWO59ilu8Rv7qbmejCEpTHI5YgToEeRjVSHgPib3YJnRAPKff/ZaceViTmuAw8XOxITmjOmcJBGcBr05xI8Xz1iNNkIvKUwwAq4M1xY6DFXk9Ht0OJI5cefYvvveEZGHn0Z6/Oap1YD0UFlM0jw7zdPgoeoSIjL70AIfh2c7uH/ruq54RURYhVontjDbU9UWMOh5fYjEH3/vGteB8P3P674dSvdhA44n/rd8y3MlyMiMV74A7D09MydEDELvfbs8WFWmSQrgyq5yJZFMxoxjOjUuMpQYiOSx+yfCnVvyjHFTFQAUqKPWNAHTsNRCGGlPkiCYpphmpEaUeZhxopM9glSscCTcXU+I5Vu/rgu0mqWHvMMhg7RLPaME6D4aZTBETyDLTMu2UJEcQSmadUWSnkTtC6HIGl+ygLjvMoOnIZkfawL1tIkl5yRmTZQSAEYnjkkkYy0GIu53XRdHkxNxXdlSg9d1bX96xOVpnG296xEyefYzT2Oa82SZScEzdyZjTDPPAI3ZFWBcXFTQdLIgFR5Br0eGLSIYUXrGdURm6oy8joOsxWEYkTyg4wTlVXX0Lz7jo7xtrut6vS5U/P7eg8eYiNhuAf8ofDiyTZjcMX0QZjAiJMR2mzpjSgecmsqxvhCx1ouuP5wiEnbHUBCNM41XmtAuIjMAGLo6Tsn3NYa6uz0Bdb/vx3rAMyAGpxmXicdqdLM7yWavWACoEY8YSfMQZ3agBCGYnGSGUpy41mOv3vuW9PQNulHk02jtzRdTSPFv1loSXdL3z3vvvJaCau5D3iF7905cXo21Vqzc76pu/tsGjjHwkfWkay7HuHIZGDOUmGe4D50OQnA/JIf1Y1vtUO+5/umlIvH8q3+9fKiCZjZCVMld9fIwYnMgfQkjFREROINANDRMWzl/72cPAKFGBtdaRpHQlTPoxvLppwHKdHnOc/+6UJ3zyJbFH/10zg32Jo2ruETx8Q786ruumn6/yPxXteZT5oUIxlC+3TKiL2t54t0JoLvboebpyXTLmmPFOUfunO8zIOf5hMcIG4arKjfHfvwjpKn/z7g+uNj+NGOfT/h2iE/28vxXX7Dv80+eH+IoTnUPVzYm1u3nnQKjZZp7xjSh6bT+bijlRqLPExk75kv1PGjbTBKmC82fnwsZ3NIew/MB+cXCban+Pddah1EsaPoe8XHZbg76bKw4yXsYmPg8+udZPEf+WR8873TjgRnCqu7zT9yPEpRQjrbGCEbwKNt6wkW7hKFz5SfqP7bnX/tZzZX4XM8MY/4fT5BnEPznnMzVhjfjY2kP9JFNCz44Mif+fbP/+x8/q9eHfUYGh8Yyc+klqX1umakReBhZUH29/Gl5XvFFP2kJv32/C8C1Kj8Sqm5yGZm6SCdqabrWTN55XNU8TZU2jvbBLLJHiMeiRqPbK99oG5wZsmXghhwEO7CYlGdzlFTkGrEUAb0xlcWOhFLTL97EQBUfoZznebncuOLI/flsP1TVfbd/c993Zv78/GSmsofiC+nofhrb+vPnT9W969bWTFMEImJPp9vIWkoK0pyl04owK+YfnMrFEbv6nLRxh6aelobzzcDP7+/f+27pa6jaCafsTDHUWUZvtzD1NjPZ00rQrVdeBYu7ca0gk7gA1L3ZUCgyVuDQYEaVYHZ2y6o23qPW5QXAM1MbXzvvMfRxxO545DeODuoYUDswE3KeZWq1UB5cEmG2Z3e3IeJciwzUcP80qrx133c0ritzTVvOcxk8UqUkiP3f/9//zv/8/Pz82BlU3yQz47Wu6ntbEsndXKXa+5X5DMtFrKoygAB2FR70xW9Yr0u/bizS3e15RZlBAhlVLO27duGIR5ON3XpLZCw1y4ydo4Q5JnhWdXzhJ8s6jItnG5P5uKA5jQxedAJ8LJZtjT9sA55xGrF4dVikB8BhRT5hT09BJ5ArJGNXk4MtBrJDLr708zQFhJU3YnGEAT7ycvGZyluZQYaFnXRitYjYuwJAxHVdPh04hVnbxMzE0cTKzLVi7z3DnL513c4mjYhXrDLHpvl+/67/+l+R+X6///796y9da/F/k0XxUx6ZomOvcaAfXzYPAwcAvpJkHfXO50piOk+cxrha0hGhwP3317QUnty4u9/3rRFvi3TQ2HV3PWv4eeinJUyz8mE8xLgSSRcbn05pwzrv319ygsVp1QYZMTyGr0P9XaR9OD826GRGdB+fBKAbZlvmWlIhtmvIk/iyFrpagQotjC5JVHXECIO5r9z8+9Pu1XCE7jCcArC42ozZxlo/JKv6fu+1XhGRwVOSyofbTkxOhed5OTbDilxikJcQZGbEW3t7qhfADAYJMVZwkVM7fVxpVUXw6Y7GEeSJiHSRldxdBD1zqL5ShVEQZrK6iVyZZORA2j76cZifVZ9kyV9tmat738a8IwJVJH9+fro70MmIoZu6YPhKqGNbrDECnMZ4Zma8cu+JJADFpf17e8jaObljb2bSzxEBevxBi7GuleyKauGoOQAQWKdr0TZDQ/yZqpqo7j6BzjMZRQc8IR7s9qsgY7sHYbd4tm54cBl139tPKr7kLd2l+f2b479AxN77fg9Tfa3lstjzjbYrj69x1Sv/LVWKf6GlfNz3c2aB010bjK9emM9lzIe31KEw4izGCpeMdAK4D6HD7/9XRvJltX5+fqCPFT3fmI1iSGAIIkKK7JZerwW0+ZlCByb+uX9/ARx+ZjiD0BmP9wlvfC/D3hoP6hGaYYGIIxTnFWEjIHVVgk9h30vqU/A1if0TPJxFTsZ935AyD6sF59gfxezHcAEYIWKS52P7yHRLTXJd0c6xpjRasMiPPsWZ5zGd5Hwy0icuOhc8b5uAGYc0NF2u0rRYTzX+2QAz19DpVkzN8/1+Gy21GXFHwbfnwkmG24TVr+XgFG/1ODgHEv7nDey911et+PvVX6XLj8s72d3z3+eX/e9u4a/ffwZNSyhM8ykR81DwpHMqwuyd3fKiGGsDprdbz5piSnXzUIY6aF3Cfs6X4T9nJgRNRI2EfRw0nVNsrFwye5FHu++45uf6v89X4xO/PQ/i2Mwn+v3XoJmvBXwCv2IunHV7tmVBV8R00pJnoYLku8r5fJl14I/K/72mbrNlKtcz9nbSY5eLt2cfxkMi8DD3o6vm5X7KxQYy7fVwDhOXk3H971+Pzyl4FtNW4yyP5Ar5I6WOAY1mPYmIcN/vc2Yfd+Cd+TjBp4cUR5T++VK7TvcZTSBwAsXMaSmSvkbPnCD8Kfg9MKukNZLsZ37vV2w2l63CA3H0Jj5ICs9CBUhVqaihggMKhqiqHd+eziStKv5v+9CnexGZkf6rEtDKrwTS2X1Xce9cU/c+fe3zRIPsaWHCdV2xcjL+XZISRG8UksoM1X1La60n+/WemaOI6dgE9Hq9VmDv7T6i3jszwxM4m5Jy8bouHLlwsIeXmyRD/3NLDbHBnXVMNIQuMImRg2e1Z6o7hHJQ/p+fP+99a9r8JJks264jSWNO7api5V0jfYmZYn9Ou6wCMPCBbRjB4Q/MCPmPa+GB5Wath9WC159LWtV3VSGYa6HLEhScJMfw+vB5rvUzjcoDBnezSb1eL7kzVVDvRndh1369Xtd1edwuPXvYZ76bcuqrcLm72gVJKKoKEnKQgHCypnLJY5IQtMuJaniUEQTFzA7bXVZyM3x1BKpVHrgJOG5oyR78vn/NuPlYCsBW6bouCvd9b5Q5/E8kqvDSRDuIOLtijliP1IpUbiSeYbIm5iv7E7SZR99HXCEQ7CqVyMVIw7WornK3A65M6GEOSeoMH2qXRBCxToA7pt9O2dyH67riqDy2mbKjyl7mo7eZDGeAEKkBZ7qDsMyspIcVsbWjOiLAJHldblvo3W3Jk66+e5NEV0/72Vcxlo3DUOpTXncpBEDfhmDWMbuga/c2PZa9iQlKxrF/YczWrBpnc9IGN6tKetdm15FlCWeZu93ES4ZnUqPAXXplaijHc4iGwxa0SIi3eNM0bCLiGYOZE6MkUIq3tzVOTTKwXMxvReJxShPbfrvR5wj0jMsakc9SqyuoIEttxJIImUwlAKyEiS/VzZjpxlUIKyiZawnawQ4RsBsQRwwFGUtiy8CHJ3vhrr13i2hzp5pgTCMup0IKhG7bw8S0DASMJuYlRiE9jgOI9fohs8sTbwMggczrhDKzIwFw5VoZXE7mnzjMUHEwJJVmJ4/kilqoOvqrHriLUKBfr08Q/Di2zBWf9Ik4OKCktFga0VBGrAhlsGesHUeLFdIGoGbtBqvVGmW4mI5QxnVduII3VFZZq8diHFiJEk46Gd29+fex8CdMifJkkwiCwnR5elDcMVwdK012g2LfGyGu7MJdpimYjHJ0oUX3pYiPRoYTJHh8t/YePya5K97uRsJ1XZZTfg5gz7jvWc6TuY2ZSXDvfddb4s/6j4Ld/a7bxGYfg2rBOyzCvaZ50L3ubmgfvvGjiOahK8LpeOQT0zhpQowkuNOLdFydmRYlmhA5TDZfAErWfaFdcF6rMZ09ERHrE6mXOKRPka0I4uo4oyJ/778kK7W6KUvrRSAlMcIkc+HCsERm6sEXoYff0kHfUaMvGq1kDHgVcDtoTow7Iy6FT+zY58ePubHJddz7hRQ7LlQVQgXrSrqpwcr/wAkcDwbv+E7yaFpbNVl4CUnuQ2pba0VGjyoBurX7xowxPnk4qtXG1MY+9+k7Ol/dpxDyfS+ScWkbH3dF0AOo+nScZmZrQCcX1nSiplkcL4vbUrz3IruPEulwrwTCLS2mjOG4M8xwbJXl9TBAuY5W1nPBwBS+8ZWP6as4zCM89dirpz722Q/6fBrjTDoFMGV/cC7Pe+zxR4ALIy20QEbQ3VS2VyRLwF10vMGw4Y84BVo+heN5EEoyyA48rVJ8KqCj9kw3s0VqCNMut+vb/Z2f8MRp3ynTiP928+BNNlac+Wd4bCkpsMVoE7OBMgnZZcMZ1uI808hFWSxQQfKMupgA7jy3XIxAlcmtjpXOMrj32xeLtki2PGmvd5/vHRYzSpVhwU7O9jl9f886+CkhYpqNn409f+uTiviMR/VVzmnCkwnC0xSHwBPrShJMr0ZXHSbIJynFQR9ml0nv9/vRx6E7hFdm5nVhvDNmNlBrbLPrGVKR6t62ALboyU/B48/PRQgdmimEfpCKdSUOO2X65hhTKlTt3btyem1MgBKBMMZnbSFZe1gRI1m7rIgZ0US/JVj2xSmTyZ+FCVyXHprRFAYOGBARQDxCBV61Z8pfRHB6wQ+Qr30qbwPquztqcJeHab2YmRubsdZa7/fb80LP8/4XDtRQ3ff7/Y7A6/WCRyYcGjaP47UVdTjyfv/tbg/MGKdLZebv7126uyg18fRgHLGqDA76WGRSaJjVVk910baOwXZYcaQXnvEhz5krdXULTXU96niizNn0rVmuCQ+LiZmJYKE+KP0cyOBniBznSH+qx0maOXyENwmpGOqq/ioyG5VoxH+98s9/XkcpbKMVgZUXDwnlK43pn9eru//+HSUzt1Xvuv/559d6uUIMKjFk0VkKHMTIIPEeuZexglMDfL/JEPNihKtTIQCFj5+IoxzuVg5z28hRPiCZcWXm37+/EUmAzNEYOE6FpLrv+7YKyLWucUUx4zGs0uzYa610bChBLFd9u+sayS6LV8GFumpZp0kuSn0ctnjYGod5C7O493sGhCQiMibdsqReZK5QAZ/H/bQYHRMcB1WFKYUOPwKOzluZlyHbbjOqp7p4Wufi2Q8Aunffdo1w8s/DB3tw1j7dcd2tXVz5SE8bvfPTjGeSuwsSVkbFaOPV+wZwXT88ZStr6Unae1P1Mc1PlYzkwcKfgkY8HDwdZ3NA9O6OtdwuojMEmxyjacvyfEuM/IkhgClqPTv2rFiQr0f+E/hX64gpMNNi/XXB0I741AzPlX+eIL4iueqSmt1HrpxupCMf8TMG48o1vbjY0BtrNOsn3SXV7h9Lwh1IZlyzGwcx9eMfpmZwve93t4JXxKrS3jeR13V1YeSZ8LnlvBasvUWSkXExhBJcaY1ELifDLZjB+7r++NEzqEij4gK4MptDRJeAcJ0w49p71zf4TRdYJ9Lyk+7TChjMiZziX90BgAthM8XdkjfnKYyb8OLPdmVc1zUsdwFoaxdAyIQ2bHd8eBV6v9+BBnrgj3FY2dU9BedV9a7/H3t/2nRdt52FYdc1xlx73885iuP/kM92yqly2YR0jlswqJcQ6Egg4UbYQhJIgHAIsggiYBsLicYdliwkqxcIsGO74kqVy06RuCpJVX5InJRzznPvteYYIx+uMefez/seKfkal3YdqZ73vve991pzzWY0VxNBlrmP+41w1nKi+jQUfv23Cmu0MSMq0hz3MZzHPK9rvo8xUB3BNxqVXlXXNa+YgLl8mCPAcrjEljepe6+gXA1nAL5IcdFFzYoqW0Iz69bqtQ5rK1PdM/kzq0YHmVoi2hn2mK8oIun6EwBp7ih7xTbrD8cY+oNaMJbuXgugwU6QmKtY3nQyDr9pHxtjlFDnKgfI4ljTanjO3iIkU6fgIZa+nUz4FMaIFaz9jKu2otGYGdKB37Eq2A2xKmh6lLQnrAQSG2PUyp4yP9kW9rG//703FbLT5hKPrlSs743bV9EWHRdgn5vZ5dp9Fm/T7N72d5eRXCYdK4XmC9mkj+MKl2QS4bDKSkYu9sG6DZlNuPq9NKEie6clDWs5a2KuQ41q4tQn9469974QadHqA+gM2cyszbR6iu6TKwnlfovttBLaKsmFQPN2tBL764u54uYX6t/+7R4iX7I9e329nrBV3f94DYr2ezKTi0Pw3L72XOqq+WqL9Rn0LAeQItaRVEGUXZJQ5YxwMiqNwh4u8sgLUELjwCwjfQHL19p8dqGeE2AJRu6/hfU1ohob5HgyaXs61nOGrLqVClef3Ub2l+ofZYhMAfs3g1dqIGMc6iDlfnOhluaZZvgOvcy9gFI8BFSlrF9l3aKaR3OJCVbLQUsOTSiANTKWFQrAuxzZN6hsUqt0kfYAiVAqte5sny/3y07Oq/eXpi6+bgV7Lewzbh8cepmZEuq+U5MsBzqPdTO2L5/oPLvf/5lv2SXOzYzdWGh99T5B3J62w/2TF+D060FAPE+f1/f327i8lwlIwwObldaLblZmXgB9HDAwupewP5bAkANoo/AK6lygaOXVptqvp60IKav5+BKMoapqQEwOynrEMlPlWILyI/Ex+jZUvCsONwDXfGILa6EdrkxKp85KhDRSEWdFzI0215N7HdbXh6TYpvUnpbavZF8922dJKee8ruvK7cHA2oUlCXkTdhwHm/9DAHmF6mPLQFH5LbHU7vcU1EtZI0kvdfZAe8lYZYRTrJQ9AIotvwFD1myHVeNM8e1ooicuAlvB0Ay/LnuT5s7renzmaJSw0+MBtbOwIhVIW5t1cgKIxDkvMzvgGSheVfdeMavoZsR8nCr7QGF3wQwGrwoJUwEY1ky5DFZWzUgHkMaqooMEpOsKN8HcffmJ5RaZUDVLuO3MzGnHOPww86fxeF9W6YhqOFJExLwdY00VrUZVZDDGjaunlGBmYk36zIyMWsDyQMDhzfzMREZ09GlGUb/FWiVBp8GQklZ1QhoiyCjA1RYGM3pLBFAwdAffkNVW9dp33D1l5Pd8JcnDrKKGwQSbU/0MbLQFaUbZiRgMQyxXDQy75YaOzygNQFXIWHvbRMC7OJJYW0bEzEq/HSuvC4BuJlGxMYYtoXxKYcQ9VlzoLu8HMVRLPnuxrLebyV+WkdUgDrgfACqShfAneHutLjUsq/+lPWQdpYuI+wQuNhAAOG63OadGJBojwBbAwy689j7NhbzVNnVlLHstZuYrT6+7K6HjsnSc6BuzaoyjaZYLlKpNItpfzgXr2Grt/lJxLPED5aeWFSuzIdn8PiWfgKpmiUaUEB7K/gBJWwlBrtkKGyxEIWdGCHSUx2HaQADMK1aPuxKgjW4MKhA3K3p2rt417CKKRnrMgsGGE9KBa3MH+khJ4tPL+lgrlLtLoyIqzX0MD7Bgrcxjw91RrWmnvU49CLNlBq7ttwjUcLfhJJJindDdMWdmmjtHu+hRNX4pAJlCYfWcI3odSVEiFZRr6/TjDiDyMm2+QMREtZbenDqEiobKGrc3WjhKmgOZScdBXo8rU74koEqWTKPd3CORcnXxJSmXiVVoF+VDZZS1MSigRCWnUDd0yTRq294QxLWyjHS15cwc9FIYwE5WhVQ3wN0e1/uOXxMoWrWyhMnqpKd0temRLTM/IWnH6spK9C5X5rziuhQTZMhvWWXGVZ0gq0wAfewImzKzXxU3rAg40RBNKeGVUR1XkmULvanBMicVrfrww6RaQgw/ClZCs3mNqAg5cC67JvXxyIRVAmXDb0J7SF1LqAnFfpQ91DIQ1RrSmCStsqWP0MEMugDIXf0EaaXl1646eAkrsO+dq92Bjm6niGUlLzZWRpkUywA5BbD580lS6lG51AwACL/TwVWHyJhzlsnM2Q63/ihVa82OMRDyVRIUjUZrqv7aeCGkXhXZ4evhNPeqleGqtUBTa6bUGewVnFwoMDQourd0ccdy4TZ3x7VqRQPrhUVxInt/1YyIBFfIW2LqVsaGnr1kIOuTKSJlvITptXgBMMYKt1ec2fhnhZA2XKVzADDW/CTWx4rHA93wxKrY1ku+Z5/JmV/ywBBGkGh5byitLK7Gkjg8vtCD+zRVOKSYQgRQ60648IBak2j3eXRxvDF+XdJiVVssReVzGQsWO0tO5BTfJFRtzShExmGeS+xO6YbGB+gmNpfSTVGaCGrt1F7ZK2BT/bhbM4GKyqw0VjKXkaskXbRRNV42q6DNh1ZQgheC7kGJaxWr2jiwNMoZlchAFOkFRuejfegL6Z10oeRUQkmJlPnIqvLuXWgn75wirSpfV3t1+vH8SaKrx6OElHn+rwHkzRLuxinKBKmontj9UV2OAUQLlVODdiSyDDUbuvxkCvQFvNizvaQYyfAi1qZN5xjDI2LOczEjyt2G9FNzYUYWO2tPxalGPn3X6KrBwhONvic6Nplc4Yf0bx00mX31HtFLSUenSDJxXpWpnIHCJWSu5xUZTxQGs6xEn87XtUZYZshiS+Ds1tt/ab5/skq7YRrqRDmYQFlDzC0iFgu82LloATkj3O26ro8fP+pbNsWo1mtPC1SMYcAtu98NlzK1mb4ipowK2pYqM5cX9bPMxlX1jIjKrm+rSLSfViN0yUxkVGZiFf/2fNXOjuXFqp8L61td3aQpwgbLzSqTmJEmL0rlgSjF4/VC5V0bbC4+m+XLULhbrfe8zs7eXlPITYlnYl5BpDvNnby6hDHTLMfR6poR0b1Qd7e7GwDMxzsAW46IL69clDYsfksCuN3kb/Ews5sL8hRzzismx8YYk6uj2He6ptBxHIaRmY/zlAg0TXlnsE9KyGWkyq3LCCB5nal9WXA1dXhEYTWT2vsTkwdIzzuqajxVzXt6V9XMQKyww83MZqmXg3jW+9NsVCatUFbdWTd38+No5Gjly3PUlv4JZS6rEfu328ipE7M045rvbao4CBVn7i4mqiTTdWfKzNWTIQlkBOaMjGoLDJEAK3JGVdEgBeOquq4pbfpSdGxdicfa9eacmbFAE5T/5JqfzydoWSW5g9U/0W22CnfGHnksmA1XEVFFqDkjM9/f3yUxcByH1llmzuq1rMGclbXgJ6swGVr8Iq6rMCn2b39jlT42X0RHWgyGdGwuLpPICKzerZTt2R6ez+btcRxix9mTRxpYHWOlLonylthgnLX7vaTci1KHpfa5FZkVSfPDSzxutd9VDY4MmOSpqjvQtDKwMH1gmIfoftTCsMpLsuNWiJmXpDALYsSQBKz7zarZA8NvpGciZpJj3I4qzGsqxyFdYm/9ICJmpPE26NB2pLK2kcNzxiw1RZVRFxJw3O/3qHy/znHz+9sXAjyv+Hh+JClrQZSTU72W+XiQHOPmY+jxrb5oSYfMbwdQMyPFZRqD5IwwMxtGEllwOpxxaYGP0RCsZYnX1rKZi4LeHoA6/3wMjjFyXlM+wO7qVZbgXmREjUGWm8NR13XNOQ08xu2LX/P3ne+P67qMJI+Swj4nzefMinT3cRwk55xzzuua0sDWKd7IsawIuA0eVVXXFZnT1Mx86Qz0RO/KHczMx6g9jWFPGJuY4VqD68zSh3zSqlKk27vKqq8LXurPkEgLOXf3aeWo+6+0DyhyeL3aqtpRl3CUXZlHuznky7mvv2ra8PI+WN3ftrTQDztDMXP3mWEct9tbVV3XuS/4mle9tGglUHccx7XY176QXNqk4BYR1wwB43eRovIJF+yLFJWiwgCtLxO7kNLUmIrdHcvx8+VgXZuuHomytc9KvK5TyTXOJBvNYSpz0Ui4SRdqf7pOPzyls5FFW/VNWhs+/aE/8Av6op/5+e/oS9IOFgkrB/Fih8ZVkDKW9ERI/p4v9Sf8/M9+eyyf+WGYxdlRmXFPbEIVne/5F3/lL//Vb8rM4cfasaNaa3fQjdpz1iT8k9//qz/2499IviYLWFNUM1u11nrOyXXBPUMW+FS/mnMuSouhKlAzJmKpEL+2sp9f9GlQuo42rkjj5Tb7H1hHGHqS9nnh6w+whDnM+Pote5n336pGvCsjZpLOeV19unusLHZR+/QdRXNTK7RQSrJW4NrR7yKWo9ti2hNeBhNeFTt/21dSVnRAJS0+k7DqsmAbd2maf+a+nstBofxqMGY9Gc566N0GyQzl4nq5Fdf2AYVfqiGXDemKVhJVMpOEMuSJ2vtAVrIwM49jVC8vAFWBmTIjtBRRi9iZSaDE59QUXSJbpUSoKEmtVT3pXXd0e3lLZ1QVMSNoMIG2+Gz6fGYH2JPwM9Nyv6SIqTG3F1PAMcZy0tH7cmLuOuN+uHsy1LZSe8nIeqzXv/d7NlxuHyL693VdZjcsCHDVU/yvQ8GX6o+aEymVShIp9d9eKTnjuPkYAzRUGJfHhzK7KqtFekssOH4+mynP3P6zqg5rrJ5ESI2JKcr9ht/+D+q2NfVfd0Bfiq9dQK1poFWCNfwYhwLiBwuyOoQURByIvK7TYMdt3Hx8/PhRlsLuVG+Qu96wONaycnJ3lVkOVXnjAmqYVcUwr6o5p4IDaRuYmaSDZPlI9qO93W4fPz6y5WbMqIeEiBh0URMFD3Y/ZtR15swixkxkWiXMhuSODn8rYs6ZgB9HdHppau3aONIoDfoiymjuscQS1U4naWNc11UrxVIIrMczZychepy6u+u65MkA1W7n8jhdJlXoMl5WpW3ZycFhq01hggrwvL7SAgeZw+12G7IumI/3Dx8+HMNrBhfWPeLKOo/DO3CX30xGZkpQquZF0odlZs6w4RNQAqzUyN2zOirKTNA75+mubhURVQfN3RF5zQcAE1OXKVZ9ZY7huBJAFIR5fp2Zuciuarg1AsdIsmCPx6NyCrMa0QCBOS8lzKpK7I2j6H6M8zEfOW/HW6Iej4/6sDHG+YivfHy4ffD7B8AuqcHECeRxHDCc5/V4XJnp4w0AYeaMqqxT59/dP9TMgJDJVdYQWWlpOIeZaZ9eSGmFLDNimvoWFev4Q0xGVM9PHGB2zoQuUQMYhLtL1Kc31hKrxGz4mRFo35Xht9vt1qnF1F5pY4zrnBFhw895HcfB4f2e60U1156suc0N9mUislGO2Yp1xYK7C/G+9nr1ipMLkZiEsNbac6oKSDM7fBV0qzhazXWHINrImp+5jlvF02+3e0RsJ3OzprlujTdkuTtzx3CFWsoNVX4Md59ziirjMpVWlWrVhuacQpZwVRLNTLXE8zznvIT47e2uoq6zOyrdPBe9dw4apOXQGVoaCIaPGEOuGGHgaCJ4DvE2Fxw7E4N2vx+RZ1U47bj5nPP9/R1ZY9zGkAF1zSlRD1c3WB6/ezemG+Gz8rrCx02Of6oa3fzmtyNQ54wE6XfQV5nYI+IYd+vGL8uH+QG36wqdI2OM2/0LEZGBDx8+vL+f7+fjfvugSoQ8GN398TizdZVvAGCsLjq0RuP9flf5pqpuh8uv8pqPzHx7ezOz67r0XI7jIJtPrms4r0eXVECF7wDimtf1cDMVkquKWRFXRGRcHw4p5sqX+qoqK5B+u93ev/K4rut+jDnn++MrUlqmeVW7nm59ikIgmpuQmXNeLZpAS97PqdxMNkezV8qLai4WJfWUee9wFC85j5vBpH/LqlqePl0EAaBrboQefc/tiNiE21rJ4ecDMpLRFUwZHTXC2Z64U/H6n9g5/wRLtUDUCD36+7iXDq5XcuCCjPoxbrdbyFXI/e1+r5nkglVIzd2cbtcZJLUb5JXubhxnzEQ8ZhdEfNyaPDx8XrGjtKUVt3Cz2bDhACNCxsuZuk00qXLHUhWzZUirqiLPzIR4+QCDERGXjCqcLOQVcRXCzFwJB1+SnE4AbAed7Q6AYHfaaBLXpXr3ZWY3l1tHzOsin3uvPVF1Hfh+z7f/LH6D18//4ndqMlt7nJbiqA0L79C5rm/+tl/4qp/w0z/1TVpZyvMi4vF4DI4mydL+hX/+V/TOn/wr30hvmUjCMzFnZHk3Klby8Ce//1f1/h/7S9+kuboksjS7RpEzTqzLWw9xhRZVhNNNJmF9Wm2mmFkVpYhTOwjuJfmUOgNdJWplNa+vPV3nlnsA7IW91VaLOXcspPWOWAcxGfPcP98H9J7/in61foTnlRI+N0sZEKJMkb91/1HfDjcgy1HOcbiz+5i1NxN9+AFzCv2neVKC45oogYBynp2923MzYNRU3lIL6aot45AIlq7w6WOEXXJXeKlzWV5NmjNzTrC2FJOwyoJTdnSBFBdREGUbXsmuILs15TAanFzthcmqumLuRwYK6Ra9y5UVMUvNr5yZY9z0+TAumcMllafaLJFAoubMM+dx3KKyO8bd9pe45r1ecv7aFfmqsi7whTpbbmZWsatjT1IPlmrjDlPRCqajmFIvstWWUEyVLX031lZPuLl7Rm/Xmm+UD9xx2CrN7xx4TUt8+PBBs0Uxz4cPH67rmvPUN+6pq8Dex5saBvsaOvp6OYkU7+j639/fq4pImVpXNdXRDDGngbdhyIrHycLNx3meemCItmIZRZP0TtZhUqu59F1zzsd1Ki6ac2pzy4g5p9NWjMfRbcJTEcWQftXtdkOZwsT7/f7x48fXR8IGYgGNqeuCnzszQgA8IOX4wAV0zEw77Ha7LeJE6tFqfIVezhd5RjMb5hGBEi5L9YbIzKK9Tqz9wIYdmdL2w6417EfVZd7u4pZwQ32Y0VFsXwpnVBjtcM+0jNLeojEdt8OPozKk+qAlfcUcHFWFQmQkoW7kXMoiGyspmC69W/DV/fy+jL07aHx2QREL/R/RLD12OkFtlAsnkntAbLXBAWTUxCTbALO6yNflQE1fN3Mw2HgVMwM8ZychgKqLDa37wod7RFyrl7KjKDuOa87qDox4s3Ycx8ePHxWCKFrVxsehColEiWiO0fQtf7/OqBg1aHDzQUsvozuGyz1lHzlGs7QXDipIMwtEZoHHcRwS8JzzfO5Ea/KoVIbNdzVUPR0Ilr0ZUCpH8H6w4ChNMdzuA2cvHpWaddduR6I5JVaVMCy1ZxpL26oDsGJL+PaUBMzRirsliYsiZUoiVyHpskrTFQ1QW2VWtc/ZLStWhbabXFJqJD/LzdgH/DMi5Bi3zGVqukrFFTk5h/cTFCxTUQv5RHBsenatTnutZgvJbcFS1RyhdWElnyCtsnyW17mNiNSLjtZkjmo79Wfhn0rj1plRqxCzG/7HaJEkunEbf+/4Q3DL2oeBmIEXST+6MKdSy/1+76NzmY6gKrIRcWxY9R6T5RTkw+w5+ExkCRVUVeXiQ4AwhHr4yDKawf0wFMhzvmfBaWAN0mUTjpKquaFhQZlZSQkiEQlYTKLG8DcfNsbQFu3ubujmOliZ7pxCKJiASGWGcdyzJtzDYHQ4WQyiSuwxMx4Sgp5Z3OciA0kbnsXImUW5yPRujNZQNaoI6SOb3TBfumES5xtjwCi5crkiqcmpf2emzmazAUsD9Vd4anfb9s/b8wQAYeMYY5iOQ+lHOG2MW+UsUzSrooKN4TwOs46uI0NONGW08v/X//O/VRB2HCyqf2yvEgwUFHMxrIYt0N5Lx6MA1bB0gW4+OFSC4UtySNJsYRxUPFWXT2vnuuact/sHrbXapPpeKV4rlP9k626MaYOJOg186TzUiml0A9Iz28cHVidWe44W9P5DrqxMP8xqPXx1Gqq4oPHc16PSdtfcIZlMdR4kukztSB1N7kbEZlNXGTFjmqQxX+KWzJyPeYzbvvi9gWguaYc0M61iSa2oRqb+G1YnJxDbUQMwIDZqTFOdMvYcYkETkGWDNHvW0UIh5F7vf18PXl+1OopZdRtejVipNZiOKrFhX/4o18Ckf/ppn3n9vm/7G7/4C9/ZQEOCZOS1K4l6vofxa7/pb/xGn/Bd3/1rP/PT36zSZK4QQoxBwL/7D/7yfqe7Rz3dAfpoUGxsnd3t7LdvQ4/4U1CexmjPQDbeqtS9J6W+h03McfesViVsjcP6XOuS3OoSjX/e9Y5tElvrDZ9v3trzMWoeZj1T4q7JviyrndLEqjrtuth+z+vT/3wnHMtlAFAt5SUzDzFMU5UV65t4fpoWpFqpC2L7pOKn0IVYVLLVC0Vj1gxW1vLn2HfH17Z5I4g/wT7sfaAfmfH1TqvE7d27k9pIVlk1c7naAmRlBSojAAuWdDIiU7Jk+XxYIC0ydN1J1ExxfdPIrN0pLSILCRSh0l6RkklVLrH0JCo1KUwMYXOOVBe6lu8uIGB7LmU2qmNPQJut7CEWMEFjlZm2ipKv+xKXowHXA+on0pqQTcNciUMvPTMD23OIlBF7W1rUS41sN5OUlO30Wz88jvF4POacytoyU7JNb2+3121zz+SsWasI0vFYh4hbxxRY7tAArphkHeYw6+wLa99b7U9t78wKhAlWoK2gAfw0Ml7OMm3FsthQPb2QarDV2pfaY2mBMvZsHFW0hZPRtwd4ZQXYzE1rJRLd+PDxeHw8r/MMO8ybpOSeM6RXl2LWuXaxer9OoguWizn+HClWqsCJ3jfRR3W184W7DyeyMi4ARBqLrtyelUxUomJtiDOqEIypbY7NaVT0o4WGWMZmgtgBNHOzcvNiY3Or2QOITK9aubVWVFx5HW/34zjcjsnKmMKqwg2qJq89ZU+OT3ZPa/OkPQvFz4KQM1YwCJrSDUxNo6xCIY09a0HIUJH6d80AU6HDCuhpi7dlavqo51S4327elFYkIkrqTn0eINNspUmVAJT8XxkAhvY+D1Ulzsesqre3ASqvqw0zm3FqQ7FehiHGqW4f8nigkRjD60pBuZXb5TXNvUVuC2pasuVATX7IV14khTkXaVi1LCOu68qUMAB3i1sa8X0soaoYguJCQkAhopt225zJsjGY5VdmJEgOetJU/1deS7Ni2wBkVIhopungZhIpyDQTuQbiWY1WoWzZKrS/F3zcRSSxnn5VSborgmpguFnDYCoNwkPRCXdTM7awiOt+kC7FYx1bBlPWqea5LQjVPiC1jWrpZcbjuqxg5IzMSukhxZxWx0skkIDEvHJgAJA52uacQwWgVcikSbynOS6h9avwZjzDr107X4WwqlWV3Ps1yVxOPRyOZF5B8BhHZl5zHofDnB6jhkknUD0Htz7BGmjo6vnndUbCzIbfMvM9ZqHu9/ucE2QB27Cx5DI1HGtS9XqZV1UlGu9RgLralWGF4UfmFK2rGXckq9Kaz2UaAHJmZUzDUcgiDC5hECMBi2TRqiyLLrMjViSMBh/SoAVwHDdttTWLOPQ2WNrCE8GYiGId4zAbMxd214/s2TpIT+0CZjSag3aYH7PASJrR7TiGgMR+O8CR88rmI/nNB32QlENaVJ7nNA56wW2ucrJW5f3Dh3m9VE+0WomBg+r+0Yx1LD+tKgRKigDneV7XNIObwewKdee2uY4Noxl9DGdFJSRoZBjm85SGrQJm61pAIYsp+hgdjsavZ9hxY1UmrpnXdUbGwcPUqqw+U8Kf7U2YeC5RKCF2sIqV1hzLNJq7ZZra1zo9FEhXyvuAVTlnoPmxTxinmhvakHWG6shrpYVUdU+ScR1BKdLQYtIBHREcfCbD9ZTAWee1AjdmFh002YktwJvgC52tlhWkIBo9CDTnzBTKrqvAAsRXkTyOw49xXRcIzYfrutxGH8YiHMm7KBt52NNj0MwGBtyi5uKnZadDgTivMUYtdJwqF4MkaowRq4GwlqxVFYwZecWsKolFZYWHOAYpVdnS+wpV7G5hM9m6dZ+NZImtK7tGkhUpRS/tb8J7OseSuhceNBWTPxMGZlQhkZF6p0MuSeIvo9ScY7jbP/97P2n//sIvfzeQv/db/4P9E5XmRMF395xAQW2BzKzKr/29/+HrJ/zyz33rt37pl19/sh7TVKjv5Hd996/hcy+zxmiX7lVI70Smyu/5ebxnN7KeKtYuLnX/tnm5Y58OEuzQ2MlnuNr1oCvLqGcigSWBugiwJdyyaMeaYHvmKzLbKhUvZ14BmIqw1RHV4yTNvT6X0O7Ldtpu0+3z8XV6dPRIYBubveTC+09qJ5x9DoaErIFn5aO/SApPZi0iXV15V+JXsuVTHiLy51YN6AsIBWnKiI2LPlFAXwmo4eXadp6sKFX0NQ8cS8ApUIBsQnp8SWQW6YRcDCsZtUpTmakSxtpaaiaAmpISZHe7M6tgIKJQhUErIpBAe3brXJYMgvbC2kNSjS3vkK2Hl1GN3Y0AJKxNj+UkuZJfzSVUIZv6Lr/wlr8V8b53un7KUWnwJyqHL6/9w89MoRVOiUSnlrLXUwR0cTM7QLKi7cqmKox8gd/ux7S/S+4SVrj5EB4z2dW39UBzg9oiIuLcuXq2t7pp5gT69JLAWMaMSjO4D6dBbjqZzCBFC1f9qCwFIDQWsiYaGs+KXD11O8YtMAmWEAJAZc5IoHdePc1a5jWOQreQkBmVUw9oYBXdz/PMwHEcRX78+NF3nPd8DJXL/7bzq4K76gpINHQwIki7HfIeqMf7eRwH7Rn+Ikt95lpFst050VypqrGet5PDXOe+npyS+cZkpvwnZHfeXcHICcDtIL1K0fEuysD9aMSmOiGyLTW4u4rrEVEaJ5awEDMzKqPyGDe45XnOOceQFE2G3JJr1aq8MWCZuSth9YLY5PZ8W9WgiMArfB/duK+XWvv+rbWojLlBQgRGmKNmix5XJWDZ2uNrS39dXeuc6H7nGnntQ2YjSjxPJwWOS7K+/OUpHOCOh/RJu+mhtkws79nb7SaGsBpoeimMIMBUArZGY6Y92VkRas1FJmYWwLG3joXkadx4U0Zd0hfYpUTTA33hA9yPY295qGcJrWIaeBwHgpFViTZA6uYNWOZmVSiUuQm24GDJtUSPMdrfgaSlBZ7PmqxisgvBteZ87WFcT2AqSaLdam1YZlY1tOOkUDiNFpMNZRHCbone4+uhZGUt307be9xzA137Y8+KhieFu4/hZnYt1OhxHDO7c3i73ayeQOvdTXre6Yu68q5q9ym8bpMSpGHu+vcyfTEuZNQnH9s1Zu6fx7qL192pnqEJ+Nz9X+Y5TI72tjZxW+xxM5MVj6afBOR6zerjlxNMfyB5mO8jBNxabtxDuh7fEHpljU9LaknKQjI04sNVgnAaBocPJSdxRcysD293ZxjK1Ho06vnLdzQblG65zRcThw0T3KtIjso6r8hZ1sUjyah1ybmqVLGyYxiHFwCLankbwjkOqGVXxkEzIwo84IPZ/hIk3Y4cpn/YGBhHFGnDru78uLubk7wmzpjDewFqknTOABhH5ntVcfj9wwczmxmPx+Pt7W13ugTiWqeSCZ21MsZu45sZw2vtV7VSrOpWQ3v/kkQ24L+ukoycEKHneX68Hh9uByTE7oOwyhnBmPPD2xexbCTOSCuCnlXO5/zclXVf5r2vSubZDLwuHEfMS5o0WTPD01u/B8hA1hQnioebjE60ZS8M2yXt4pdzRCv0OBQYteug9gS8NHirSkCpvmC3l9XdehD2AsDhKiijZ3KvPgDGpea1NDJ6Xbyqv2zB+SWKo/kj+z2sdtE+MvbJ1fTg1f7y1SRR+KEE2FDvZ69T9x7AlDj4izyB9Bp0xt1uvK7KGbWou7ryXPdF0s19WBtkqt65qJXAUW2lE7Cpe98EVA2BLcsTlgy6uyvOfGJz9hMREr5rCCsYGKt6CEBBocFUNy1VwFs0jgGpbR0bRAPg537pD0g9y42//Kvf+a3f3E3db/22n/3lX/wOrINphxakcDXP4Ptv/eLv1XH4Sz/7LaR/65d+UT//9u/4xV/6hS/t8eJnw3XsXVpZX2REXuDhTkh+dTjJH/6+X/vM+58RBrkhWrXK8fxMEO+WAcXZ1TP6pS0JBNqcIyKKYO5z4XmyAIgqmNV8Iun2zH85Yuozl8qXdMUaJNlxLdaUel7/DBvkEpjYi2JNSLVqsD+wI0CsPHPPz4xqOsY6zVEJ6SeWCHKSXXtNrzsYKEktQMkAFwZbw705nFR9irRXSHPFzm+fc5K0p3y1WjJfRUVoXUC+/mTvEgCW/Wu1gwhdMompBUcavIxMSq+9oiATHTPtWdIMo7piQnjiuXVkJrhwOqovALtrOiutPhn5Wek2xCpvBFq2knNPtqrF+QZYKKMP1bNUfZO00Ha/lPaXHlkny8iqZyi4x1kHYiy6KHaPdzGI93WubUZj2IO8fpgL6PP8ZK6gaKd4ry/93N3f3t50DYLHX3O6v4Q963PmXJy4NY2zJaVuQBc7sOCWCjKtgYpKVOcG9vcHRozizYdA9ZnZUErNjUxGldXhozJlSZgLBxRTB+OsKkfXRAge5lVhbH2iZ4WXNQQVm5dM2ppftNd8VEZGt6pZ4q8Adr9/WB1CucI0iKshSYaiO5icfgyYz6zIOtzHGDnjPAsmVowhK+usNelIp5m4rOo6TjwRlWj0rOZSgw/RrKSjF92EcYsErlKZhB9hoHf9u22qdiG+7aqr9lSzGcIsdXuKBt0pjNIezURY1/xgTpcGxRLx0LfvesGnGHq0YICeXXJLOuGJ7FK/XmbWayvpQlP3yzMkgEekPNtQEVPHjANxO9idx0oWK0Jdx/Oc7j5WVERSwthVxbRl05JrWuvUaSX3q6HgaQN2HLe3pj3sWF8PUwtpznnOKzNFN42psuGq6VsXYR/nOYZb4TwjY+W3VVVXrXzSTAdnZS41tRralJQ8osyIikhwjHEMa0Ej1+QvbFBV13M5hpFGO2z4Ncvmkp+0ysy8Un6hDiTTzd/PqxsFoJB8FyqyUWAKdJzWiCGzQqTMYoAKVq9znY9jkXgqM1kccGvbv/ZOcz+Yk0mHF5i9Y1Y1Eq9QISZoooX1e9/E0/2FnX/T1ETOhb9RSYhbsZAJREEu02WpEFN1ejNuqDDJV/mKkhIeUFUfH4+2mSGjsyypS1RmGgwxpXYGoMhcqle7yrNP/aqier8rucNLUoEVfEiQj+C8nqtMe/5x3Is2G8XJRNAk/F2JgBWgxivx6alwZZwhIWuficc53V+SagX3aa1yCcemvOjkNvoxMjPnk6Gg38zHuXHoegpawuIHRkuXsGAcblSbyhSdg1ZZiSTLh1cx0DJ7lPwn5YlgszCzrDBIlOSTywuDbu6FOeeUoODb2/04jmqN1jLzKJ8zfBxaqUwCFpUEDx7mI2KmLtHGShE8ILiBeqA2fLBsLsaErwqQu5uPQMUsWPd5rWrcbvuYFIvEVfExN9Bs1d0KBg7uQkkGC7BMyfByjDHGYWbyB+6WHSJeRKEzYwYAHk5vAcIk6cdgDQhQFeHuN9yP45jzjMiKUA9EuP2P58NhkUWzcdyNxeG45jqMe+mlTjQ2m5Twqtyc1kR69/eYWZlTmy+srpg0yfh5zuxlYu4L4NOInJQUWUtwa29dive1ySzZi8V3jqIgTYfRuwR7WCSPFw7bPj0zWzmfjaN7SUimcAI0s1aG02rtRS/UjDX3qMyGSeB5n2i+wGnCNlPsz0gUDvOZtSpUaurS3eHmZe0k504iA2F96FRWWfvfRARZt1t76XFIKFH5sFgq6M8EEkodFCbazlwosY3MorgVcjxIhFL0rKrBkeUpqnNNoEj4sJoXTW73XC3MZ7rb7Qx07DvMKiYWzA+9MXJo+TAJ46ChrWKchnn58OM4JGJXs0oCFi/19E2YYhKoX/3VL33zN/+cfuVOoQor59FnrgrW/gl0TVG1Ltvs137h279pNYeZ5XCCIGbNn/nrX//7/7lfB/BT/963fPfiAFeVmCq9tzNJJj2J8bnstwfn5duzu3MEMus1xkhSotcmKcsXtdiuYDbooZPn2u9JtPSmGkE7/jTz2uvzpcBa7NhvhRHdnV4sgGouXIT+aKyaSy38Qj0zQG39taH1eikp0iXpJ1ip72cH5/lXrwnkOkb7M6wKWbCS7lXC2kO2p71oaMOx+Maqiup095fUfbd7e84Q3roD3VkxcidmVZWrd60TfweEqeItvM3W0Q+rB4iUaWxK7r5yuMGbiqjnVGImCmRtkZG2hL6TKPMSiLsIGxnzinK3UksJmE+h4uURDfZeRaKY2bruuXyzonIB8liLsl+p/krv8bVJK1YmW4SyXB7AIPEiJaj7pBWf1UNN6T3Z9U5Dn+zagmhCb/Yc6KGulwS4qt9cq1iDtRu/huW1misbSbffAKAQBrtiPs6PX/ziF2/3cV3X4/EYYzhZdCWVC0Y0ALnKkWQdpieemfpJsvs+yYSbFTIjciLLAJMNkpvMaAFEaIlDUE92etzlpKrMmNpCoipmAw7WxZgZsi6zsWSf5zK4sco0WuSldoZ1HQ3DzN7f3+eVYwyObjQdx9GxSMxYOtoqJ9yFmKJLy7Azxurqb+8ty2EM4O12r6prnnOmlbS4CpIFNkPMiMhsYZJaHW49DMlSo0qsPLaCyBSPl0RE3G5HFcye3BU0flIzxaUcuef9nBPmRqt87kdqNarw7O6EVKkAhjId7ajSYk3UcRzGgS5NiN/ZNYAZ4js9hUA0Zzfyfs/0/Y/PVcvW3rZqRfsNvURqZsJAlChGmVVOmsOdVbLDgQ0Ms+GsYuas2ti2yMz7bezPV/ieEjhZfKRa5QPVAlTLkVe52ORVZRiV7UDTzklL0Ev/qXvcj+a6rlj040YmmMNYFed5mrnIsSkvOI5A+WiXFG0jNKm914xEdQaSfSz6GKPiEnNMV9KjmtXeNX0UVES0EbkhIgxOG6xSNlSF4R64Eg+WIKhgZuDSdh9S9CDNbHDAsxc6inTvdK7JLeuxAoBEBrlUNG2xeRVSGiiRrEx7rVSJCbl3t3oyRvI4HFiVvDW7zHYNplt8KrhUlftB4vWSdE5TGMi1lWu6RoQtGVsAsTpOop+9bqlYp8G22ayVBuztVRNDGkW5GkGvx/nShep3PrfmlyBgtCnMszVEuC+5PjxReZf2MZJzpkYgKobc3s0El9BOIpR+ZUWonNWtbPW9vfI8z9vt2PeLZ4vsucY/cxrtqmS+oumqir4uvkAwg0YwhpwbK+aUxpROUyswQC/FrlamenRdZ8iUl24+Bt0y5WsCGY3ELMDg4qcesg3vGYVu75Mc3ThCBsRlNXgZylzGpQaimOVGh3nRkpYFo9OGq2u4VXONWVRPsZk75m6d/z/e30Eeb8fhI2va8h7E4myTLPqtbto0rpiJcvf7/T7nOcaQFGIss1n3scEgeBEO6YW5YNWrxtLGWJnUQXBd12QLMoU4qNZE5cw8xvjw4cMwezx4Xdc1JSttw/04jo9f/iiAgMnO2zjG4eB1vpOps2m3rDM3MljTmVUlhJw5KeeSQyxfyNno+niZCdwOgRBAN/K8zq0uvjfYzPQxXleKvmenZwv88kk7Sy35zJyzJFFF0tbYUpWXVV/fAlp7pfcG+KmPwN5yq6rS2OrQrtlesIWe3IXpFV+TO13nqkbtRykChVIXuI0xKrnBJiiDJclv+G3fh6/2+sX/078pG6e+QtLMvv1/8lXe/O/8F/8G4nltZva9//gf+8v/+V/4vn/yh1/f9hf/kx8F8Ce+7s9+1a8D8CM/8y89v4v2Z//gf/D59/wr/863rGbac7v7k3/w57/qB/7Ez31JDrcukBlJ0mh+HIM2zIvcZbis+e3f+DN977/yXcMJYYbY1nf7Y9U/BwCzMWzvllSwuF57NADEi4QnFutev1KL4mf++jcmbIdAEBZ0KaDsNA9Id/9j//InmOr+OogBt9QS0JQlHW67grDP3Kqiu3xQarFEAiXJAmAVeLXo1pmyF8Lrbe4D65Pr6ZP9NTTC679ff7KHZf/tBrHXsvfTJvYko64zXWnk82hZaouvh+xOaTSwewfYN6T3Rdv6VUkkcqxZzZdcdp/+L/Hqy2WzV9+zjVTDXnTUl1vE63H8mc/5zEjuM3Tr95KsTaMtozPaoYo5ujYREO2xHTtIh9Hoi/HcZQY1vdVeIclskKatO9LVLnQAgKUIVI2K139scYQCLkEpAYlg6f+DyBd8xH5YKHQXWtbT++B5mTOvQ0Ey5ifI59fxx4qcXyfe/vfrt+9ffebPgcXz/vTDX/8zFxCsQ5qs4+2NyY3SrVXl4TrDSjK9vxG0sEhy5wh76poZB+uMUkUa6RR9bCHRsr3TSXpf6sseIrTzQprImqux8StnIekc6muyABqsmIUsxybkLZKL2LuP9+vxfp0hERqXVLJuaF8+VxpGKunnzLpmnI9rzuyWBxwq6dthHBF5RlzqvSQLVsQZ83Fdchh7fQbD/PBxeGPPdtyvKK079ZG2GpJ9UlrRsRnqIgMnqP8JpVBdN2r1dFj/NgozaxbKvOixnpBiJrz0bO1FdAGAENoLklpVNSMe83o/z3PKPjcXHyHUr1a9x51ARlwRFyqWoPrMTKcpGM2l6vQ6OHt2dtkHiUxWVkVb7rnwVWkGUVfJOg6/jbawNqSTY6MUsgzNBxCwUtuxTD76G5PXdW1p7ucC6Mm4hnc1BwR+3kG/+i0RcZ5nVd3G8Xa7uwu0NsyGcey+TQUi6u3tC8MO0sc4bsddjoUk3ctHHLcyz8KMPDODrJfxcbfjOG73+9vb2wfCh7nTcsZrEv66X+xCgBlqhlj+knnKTJbLjHVwuB2EZ87MmTXzuhpL2BlVd0Ft7+yRJUE0vB4kPZF6EcEJ7yxFr8qsSkTUzAofHMOAXLB5Jw3gkv3zdSiEcCPuHKPtUZ0Y5mPb+ZIkE0hYgKGSWwsZjcPH4ZtLqX0qVeajy4ppM3nyPM84T3vZbfcNaqprYF8rIIqNEiUGAYx00zrV2lSHMDMTNTP2n9iLnvMetw3FfF0g+/UcXoHOl5pZ55/Dx+3o4Rs0hzQMpdzWPz+eDJner938GMdx3O/3nrcvYyX7a0kkJGwbTJGtA1xVME9wZlxd6csxBt1f2ThmNvywcQjHCGM2iGpDUbAo/C9BQxXh5sfwm29xC9d20LNljNsYNz9u43Y/jrvZ0IoD7DjuHz58+Jqv+Rr3AVCq3WPczIb7cb99uN/exriZ3dzuPu42Do6jOIrmNsa4uR9mgyZmsh/HXT8Z4+Z2yGfV7ZCWxka+aOikvvhMb55Idbj7uB3H/eZHv8G9Rcg3HBdY8KaqagM/q6rj0G2qzQssaeJj3O+3D7fjzd3bf7hfYxMHRDfe25eeHd2k1ww3mJ41sxBZ5of5QT84vIyXWqSEtCtvbSrobYAM9P5tpBuezT2jWzLLisP8NuBMJsgyFhHq1IrlQodRyfkO5rai5Fbb0r8joqw4nvf1nE5lGRCpWNdje2dZ9WmtscUxwz4KB80VGcwQP//To4EKOmyNvKu82lWgBpS2MyxqLf5npQ9ZXRhtkvNT7/f1IlVqUciLpfv69f/oH8Zv8Pq2f/SP8iXTwGvM+unrX/yf/xBJujTn43v/8T8G4A//E3/iM2/7wd/xI/7VAIT7ZWai5mrmfNX3/Ll/8VdeNy4AP/wHfkPFqe//0s85aMjWKMqqSIiMg4ycWQFguJs/921A+4FJc1UC4zv3ADCWGICy3z04kVe+aGu9BoHixz8/H2RBT22sRzT2xrVGY/0DjQ9a/7lfP/bjX/tVb3xvkvsUILW997rdk//1P+d6BZrJgtewanl99c1WbWDh60fpt9ox9jh8Zua8zt7Xc+r1/fu1w8jXxOAzr3q5mN9oQPaRt295B+rrD2Ub+8mfaG+oF429Z4LStj39uTTTuOGTlbLSGKByig33urGTvZ/of1qhyWbvlD2TiOcIm5y3P5NK9QKP7G2z/5esUgBfSXQkj9qPAJ8GBvs/FIFgJduffwRF7Ni7qjoD30FdMirnC/b+k4nxqWvslaGdvtYV7gEk6ZJJyMYF+ucCmX0Ln3/crz9ZI99A182v3DtJLdzBHvPXD9nltnqp0e+fjDEOHyyc5/n+/p6Z9/ud8Iwn8S0WCJTk+q/+SSIS8f7+rqPqZbQXXsDM29ejRM8EUNHH7qC5H31IVfXuv9Tg0Vboo89WOxSiN/zTxuA4bPShE1hquLMrtoD+bLgphBiPx0Om8ztvMbNrTm1SewTXf9YVYQ4XnezQKsrMoi+1dDXlogsAFy53H+7CHVUVzfwY57y8m8agDfeh5NDHUeKxlOS52vPpNozurWgsZ8jjIHzOUokLExjYj9PM2imsSpRTAAnYYW5jBRDlPghEKJM8DH7NjDkT5RzmBrPzcZ0zjuMYt9vgiC0Dq7AzmYmDwLDjGDkb1FEqTRpJloQQo6WJ9lRDVWS5kvwUyq6X0+uC7NIpSVm414yqYwkQWgFWG5EeEYUwOyJnRIw1+duv2cCyYS2vBBKjIeX9WysSlRkzMvM4fFUHuyRjpDmq5pzXrOvtfo+IObWxyn6wJCK3z7mV1eDwA/Rhh7HOOWOWRffTPnzxbc5ZSLNhw0zOaTRY+6n2cZYrEcpKZs2adak14OlFHsPcD2WPYuSbVJ1YIeQvKmZFYQwf4zZnVs2KDizIw92AmhkyI80rQcquMAgIZ1KWKhOZJntxFMTsklIbUSg15fZLOHpNztW0nIkGPQrMjspjZz3qL0niK7o7VCL2V+kku65H5xLa9cxQTfHc++mgzYbNZGbSqtA+KySBighWmcCjtMd1zjmP416RJtrCygqUZYnnvzrzFGlNFqtvb3esKlUfinDpxEovQBdVFZlU791Wjfl1i8/mftiWilE188qWsNtncy2fZ36uHq/LAHKMN7Mnf34uQos++HmAsXy8YZ4+m6yo7d6evHerdXqP/m2u4KMkUM7MM04H4TbMAoUzBS82EOYsoUkYId1BDEPMcCu2EVqj2d2JDACJskIQVjUrnfBj+Biyi5DMHUB1Ews0P4yd2PdmsvOfl6jp/TqvM1SoPu4fhh+ZrKL7OG63qwxXlGjOZSgrmDq+sEEbVciIJF254pxSMgaZMws5bkcry1WajeN24zjGGNecx/BY9aPMPOeUBMp9YKd2QgmZWUQ0Ykj77oIdzjlnxXG7UUX8ZrNvT9Rnm1QfMq+EjFcS7n6I/nNeZ73f3gayUoymMUzRzHVdj1MeY1LKyMzrmpkZ1xxjCH1a9fG6zq+8vyPnQJGjrIJWTHODjOTquR6rhBkSOgkzs6pN76pFfdPGAekSduRKYDJpx3AfWvxVBTqBSBgSPmzJYybhNHdXXxeKzmnJSpsQpLlmqAOiNo6gE6toGBESGdqjV1V0LyMCZTxsjPuta/eZTCsmXzY8d28dzbiSkt8EABO0iMJmR8CAsDSyICspN43GrBzuu0HU5G5aAcP8MtHskC1m+Zu9vv23/+DP/5//EqIS9qXf/humygC+5x/7oz/19/6qLffLr/r6if/sz/zg7/iR3+RDfuQ7/sqf/YXvi4gf+dK/9Zu87c/8C7/0o//+73vGA7/py93V7WJB8ofSL8oKkqOGu3OY1/FJApWl1jHpsJTCxd/+29/1dV/30wB+19f/9H/0N/9AVQEeMQGYg8VEHj5ev5qkN/T9k8ytB4raBkQCSsVv+z0d1WQaDW6ZODNY/KF/+W/u99QL5DqLbixKYsgWhNzJKkRMZEMYTEdFRMgLGi6vKJHK8Jpz7uhf8Zgtmusnw25MRXcrSEuUvB3q087wUpVJUcKVdyZAoiqRae5Y376e72bQFkkbvuvmsU161V/sD6cB2c71QEE+1TRI+luQSa6ZszFfqIANMdqEHJaEVR9TKIDqZLLSjoFFQ+CSPTazRFE4ZFhyiVuhqhgZUiOWoHtWhVafkXiOan+Uj66m6f+TaFYNV6WtIeVVBRbK1TCQ6GlESDI2E0VKVUkdh6iYbXSkLLXHoL9CY2ILQY2WpbJXDrDuiRTMTTM7CWanu2YGugqR+iP16NFc4A4vE80yk+QV/XnEfmYJy+/SsuDGqn6gn0t37dOisOKO/iGbX/c6yFjAN3H1eikpKiZj5fl7n/lMvGQv9go2AKOo8nc5eqxia7QYBvdXm8wccgKfZF5VdZ6nvAwVPUqqiVmRi7YgyiAKdDOUq7pXJJmcynIi74dXzb6hqqpSIjNbvEkCpOW23EauIhhK8guCmkfOqTmEUr1XKNHMGIHwMZYN7NMFrh+kDWPRhozyhllZiAErj90xRmZd18WqmlmZjhpjHONgVc7IGXGdCGTNIT/KMQB85XxfRyIzq64AzMcbkEbx5SoiPl5nIaDdEBhjzAwR2M/HjCiWHeMAcJ7nxy+/k3QaWpWuRQ5mlg4Jd7/Oy92PY5jZOec1p9m4f3h7vJ9lFJOUbhETNYe9IXHc3I/OmY2Ee2bacRRBlg9WWlQaZOmZZgNkSUq6jLQS+emALzXkzMyVfz5wIa6sSGtt8H7M6B1JwLGZ8pAPWhmYSCnd18xCDGMLZa8Wv+wBphw43WG0RGU5aURlqNuddWl2juM4bl5zRiazDkcZM+b7eQK43+/HcWSeZJncQg+LqOu6xri93Q5psC0V1VGwL3zxC9d5fuUrXxnGY4zMlIXMjHcft+P2Zh0e08yKxxUzqvw4Zs4xzL/mi3mdVXlFcKZaJ5XIChs0siKc5cZizYqqC+Wbo6WAvyqy5SCE5Yysku0wgCsyCm6yaZ3jGJUzkHQnM+qciIkpqglcS8ijsohxk9EujcPetB+duffEXM4fshipQtWwA/qm61rB/RtZmXlepzANNMsryyjjTQCJnDGP437Ns2aY2U3WqRERF93MOcwoRf8oCazejjElLtqJbmYgEyWh6JwkJQWk7fL9/RxH3m43Og+M4Y7sSl1cc8ZpLDvcHKhgRc5Ayz+VFPyQsCbeoxm2VSCqInOaCcLd0hpAmvnwkWG32xuQMhzyMQwV13m4zTiDRHgAt9sY46ZdFco1vWt7nZD6kMvcnPPt7e0+PHPeP9zev/LRbMQ1J8LdpQl0+Nit5uM4qnieJ+HHTV4paeDhIqVEzAkw8nJKmgLXDJI3H5WTZjGnDQLjui5nHsewFI0xExjHcRxHBoQwOKqiplooyj4m5aXQa5OLFQ/EoAfK3TEyUhmyVcRX3h9f/OIXZ83hVskr47AbaF95/4p6j8dxiAkzu/0hyXiHyYWOZ8zzukC/ePBwkGU32D3beGteM/z48GHcikYfRask3CR+aXTVYoowerkFjcetihdSO2pBJHIHmMWijftbomaE8tvOdkjHIfGnqgLyNhwKZAobZed+K4WW6Ko1DTDexn3cjmE+M67zqipaawTc7veIcV2XDrjHx/fMU6lgAuf5SMbtdhvjIBnnBUsYUS4MXVVFzHFwziDhfsvEeZ6oNClHjxF5OVoXyY9BHvN6aMlPu04kIoc5Tc0RZkqdPs1hYluEDT+qfX2LcFQ85lzs02ztNKqiRCTqcBCVZ8ySx1VhnDHbgcZ9jHHO63HO42AVkWTKzjcpt9JRyxZ3bZRktvpvmlMUvut6AHA/3D0jpLw6M5xjUZFnxDUMbqOT0I6MrYp+EO3GqTgPAIa5vABIuzLGONyPx+Pj/XgT7sHMyiSRaADTdOza7XZT3B8RNoZqi6EdgAfHsx/7q//1X34W7I7xe/6R79fPf98/8gP/4d/7yeP2NEn62b/3EzPzOI458/28vud/8YMdp8KimPikMfWT//s/nzWXU+szZv2Lf/dHZL2msPCHv/HPr2DWnhZtwJ/7D/9QRc44VSz7ke/6Gf38R/7gz//ov/8l8pN26F/8qd+vZLNi/tHvbrbtH/r2n/l3f+G7dIAUQPP7cbCSVwGKjwvzQtWyd9CAt9iIsoQah4Kr/YbQqmJIfeJ6TERi4OBzoL7+9/z83/2lb1dR/ut+z8+9Dss1H7baNEae88oE+ZSNBXCeZzHdHeQ1Z0Qh+UN/+G/tN/zYT3wD7Zlv0w9RnkASBkgGqQWw4WaOqrpY0oJKKzU8ufvCpFj1US2KJqQVoCSVUVGZM7vlYGYFZtZY21q71ws/VchK6RNWJCoMcBrMpwwWmqlYSqhgPmeIvujdLgjp68mFsSK79okCksJJLHozKksdyC58k8tNsACpH5uYVGC1wAgcRhTboToiEa1T60kg4EMYwZmZi3sFWTWU2IcFrHRo0CIiqybLYW41zAcNVRGs6twyMiOyCpETRjUm0JLmNoYLBzFLUvoAUKwcuBYFuwRnEHg5C2if+vttFCwipuwl1WpgAZVthmvK3pWiVWnwoYk4Z0S1zo67ZabcYo/DVj1RKJgqoAz0Zn2mzOV0NCPnYmXKogFVqIzKyjKzaPa+07rcgjaR6lSTJGzQPeIycsG4soBZs+Y8xr3adYbGYSQ3cDULSBjNDSJIIdCodWEtDKCg7obuLjd0p+HNdZ1hxzBr9pPCzipBymFOpwwa5pxFgGN8PD+Owzg8KsoqgcclFf0yb/nJpp+4Px4fI8IQx3F0WBXpZl/84hdJWiGvTn0rceZJpLsXLDIMHD5An/NiWVUNHznjKjgtOP3wIPy4Mev9/SFzYHPLLB1WLbZokZnMMOA635HC6ntZ5kwhjh+Ph/xEWYw5I7ICGTmwELA6nrHxEi8t8mgzksqEjAbFC0swSuosLKMEGFIzPrbKsQQAy7GyjuuKuLZXuOpKUx3I3WeEGOiyctGjVrFcUaWCiZwz5APMRfrCygClTlar506BHwxf+MLbdcV5prvfbrf0dsX0253kTFRNGB1eVVGzIOtaKyPKEkV5NL3oy9FqSBFYca2kgdu4lUUY7YxZVdgAS3fI1zezKl1CWxCYBJnyp11KTbsemaG9Usi4lNkKQp4dWJhP7pKte+1+WhVTLudC6mdc50RQmeXwqrges6ShDemCOBWFVtVyrlOtSFTSMWrO3W8ZLQLKLt1t4+nGQGapvFre1TKQkMCjdDLNYcjMGXOmDVRWXF95N+IwoUYPGhrT71bGqvbNYibd1jRZ7ZSqTKglQpfxBoymYqEGUQB+NEDFeBsCz85zieuaNKyK5HEcM2QGwKoSD7wWD9kEWMisCnfB+V9qeOSSUrPjOKy3fxi9WINDzjUfjg8RMSOwHLM1jO1Z2j4LRHMgKX/FzLRq/2TSYwGaTNIJDStImkRkdfmbo2toxETFnKgyDhNtifz4eGADEd0A6MkO+UvzE6ktuV+7HWbHhtBbU4ITcOELWFi85S04+aSD9rHBZvUrsNN8Po5j02p2xVGawPuJK7kieZ4hpgrJQhANpu0FuNqDKo+aWWWXY9hi2E071B9YNauT26bYzXwwi0eLUM55qnw/Dnu8X11erTIbxYI5MmslA6ouR0xEFqexDR9kFp0Jmk5Fo9HQjC4bZocdxyHgzTS4D8WIMB73NxlNRCEzvDW0Cqgpo7XgiTkwBEqPrOP+BdgtM6NBxYyMyPrif++/X7RrZlQNGoxSc9pAfBgrMwM00u1Skch0uSMlWDGnHUuHQjtwY5nwmNd6uIvzRtDsdrtd15XZXfc5mwa8YAhphuN+M7PMyMxxO8xMzBQJ4cr+dEsS6CkvvugQyN+sjuPuTw6eShvGZVxEklkpJRJjRV46MlNocX/zcWXEV87Lw93G293MI69IXAViCBUPikZdMwsI7asyqs2I87rkg5oFqQOaoTgErCtlhFECj0UlssgjQoGq22BWvT+ux7x8HCE3VHAK5eiNHesdGEtQBUp6F9TweeK/IltXKrJeO5/RttDYiorDi3TBTgblbD1IZggjmIjEcKeaf/j4mEWMoaNekRylOCpgi6YYyUqK0mk+bj7GGMJM1yIYAObdGbHXC/djIKKPZvJX/6//1jf/j/5Qr/rxCW75O37b93/2hgEA/9xv+0N/7b/4idcO8F/+z/81AG7HcCLj9Vc/+Lt/VP/4N/7OnyrEX/j1P/Envv4v/Niv/mCpV7demWAmk0QZ/V/9qe/8V7/7b+whlWTYfnMI/YOE+Y//9Jf+yHf93PqQp6+1u8MMkVJOBGTaN1hpL8n0nFPJofthhvfHaYOfdnfND7se72XmLBtW3tnR/+5Xf9/v/ObmJP/u3/OJJdJ+6WSpYuaFtZ0ClXgO9e12e1zvwqEg04o/8Id/ff/2z//kNxH+igFS/FmZCZN9WBeRjWPYU5y/UuqxXUYDICTIUjUHkAsUvCdwrTBpDyYWzi4zXY1EfHIxBOCWmzdcBbCQCPH39b7WvsFLcaFDIziEzGKrcJVEw9a78LkG9b6Xfa7F2qwUk63WtpHFMiIT5k/7CVSpZSw1TmaWl9FAjrSJ3aYvQAVSmWkUoZoIsluc7tbqrxWonFNEx5JtZCZcHugthKlz01SGd1M9UvRctV7hhqrorWi1h3XbTpmuZ1ZxEofoEkYrcRsrMyt24CbICDv0qGIChWpV0PUKPVwUiMd1FbGxLe3zlElaooPJAtT2z0KBakELZESZKKyYqlEG1X5U0Zaun2yYe8o9/xPr75d93T4KsXIuiRNXd8hlP6x4/rlj6/09+9sGaVWKM0m/j1EacABoUlunr5Ov34i1sV/X5e51uK0gU4QBFY/yBSbMlXO5+1Ipr33XzabpFa8lXLnMyavk1YcoWGXRhIbKzKgU1CGrzDLAyosTYB7HcTNJAguKlVUxM+K6dITrHM8XuW4YkZI3UTOISUSu7M0PlWggT6YFQrFMietAnjV7SfcdatZ2n0I6UBJQU7lFdalZKSkmr9yuxWmViIy85A7d8NqqzHIo61ZXjWwAzMKLzsglZSQsZeMisuac+3nsea8mNpqwaZmpqjZb1Cdvt5u5zZnXFVWMklkxBdtQFV/PU8PC3iWX3FGl4uCZiRaIyoiAjQa0WFO0lfYI/JwvVDdvqLNkLfq4toJEIKvyc/HIgqFkZaXU/CDBLrOeeK26Fu2vaz5nVGSwosorB02JiEKGTIFhaWB0+/qJI+ULiGhnDrUIw7XWuSqF2M3n9bbrunLhYM2shqd0elf6BUrUB2AWwgwstBRhlQVIuLut00IpXSHnnPMJ6th6XboeHclrKpupoLCKIAa0IqUgOIcde1WgtRPzOgNSBIUPN24VWR+Rs/GmZAPw1rJ3d5Q6D+ne7rv7lK1dNuuyiK6wxZj3jqaDeQ+aWpQkz/N0d38xGFCkiI4EFD3b8KEcRusHSKGsuLb7zDYIQLViSLGDTi3RiCiHrGU1dcHlOjAbLaweWi0bkt71aMcYV0rQi24WZrUUFHryZJ8l6EJmurlsbGxz1JFmVggt4YgYw7R8zIztaxfrtO1NPGZn2kqWqkqKBrdD4lVDH6gUyBaXuIrKSdsbWVLCZBUej0cXNY5hZjk940G2/PhKnrHGuaokcQuSxiGDp30Kk4ZVvlWHWTmw0RMoPVZaNu0qYHS6CSclXNOFrEzjOMZxs+uU/94YfuSyq/DjuJlHXDmryhJQaACUD/MxkJWIopnfWvIbzS7OTJq5Gc33LtobYNX6v+pZOfqZ+hLqWKqhvvogDU13PzKzYKARrMqU5N6cssfT1+x9Xsl/VLoN48iaTt6Om9Hg7V7mh5kZk4hPXI660Faoqokn2UTrLlGu/CVTEmgKujMnKPuDQqTBkepnRZu7+AFEFgtRIM1pnmDIUDoDThhn5YzKYkShsmiabBLxnjPNQLcWtaqaAq8vGBdW6FOrvKtTXL8hOeh0VrlONQlBJUoioiYk6ouJkS/JqydL7alo1bYlr6/sq6G0xNlLf1+bdmAFyvayU+XeuNiTwavKHDRIGs3c3a1WKtKsUUCY8zrqOA4Vy3Qjon+jzDM3TACrNxVb+wpGelqfeftGjBWL15CZ9vIrKRXg/4eXKo/7P7VDHsdRqQ5c/qX/9Ed/4J/5kdc/+aGvbU2sf+1v/rDI4q9Rb2byBZC/nVGw4bgvpM1WT2C1s8PLz1ffpxGSXFW8iADLXPJTz3s0VCAK2uypUsQ3fN2/p9/+nb/5nQIEr8Xy0jCoKuA/+rUv/a5v+qTl+5nXcRxtEKOpBa+a+akh0hhj5hJRM8OnrfXPq0D/6e9v+eg/9ePfJOJfxCzC4FgmXp2GLloBPochf2YInwGjtg9Iw1DxcoKv99cSodbzchdOFi2YRyqdQ1XWLG3/jZVez2qZu5RB8t2p06IExAB2PaovLTuJUrKmk6O2mEh/af//bOechIBDqjwLHmwsw+IhqGhKADCWsdsq3W6pTuUKGUglStaxWdYs0gcHTfjWqmIBGUkaLEV+rHQ4iTHal64Rj8pPddgbES9PxPjyvOpZhoYGBY1PWKWEVaSzXNthf9Gr5nx/+BL5kzqAvoVY6ZCTnHpSDZnu79E4aha0P8PLLNoBrR6F7kIOxp3VrC1FqNh9kdozO5q155UvPDjNLPKT7/rMjF3hjfZY2/doL/RvgaUkAo+XncGd7jyvMEAE7OPwbb6VTZF7SVzdDjY7bF+AwpvSlDPLzA5ERVGZUycRC68CLliUz/18taxIwrqioZ5craZgp9bgnBNZR+exYzgrsjJZ6Vw5U8QYI0Oq3SX3Gl/4jiIik0lb7XB5j/fqqJo1q8JsdLH29QFggbk/OwpkFYajcr5WyPYbqqoQRru5E7iu0IKfq8zkrlgsiwmkO2lZmGvNLwCGTkzzMQbMhcaPCEkybCbVc8Nin3/74qvFRVWR0pyiu6tZfV0XF8Z7xnmdEVGAqZGp+pqtAz4qx20IK5MolKkatILBBiuqeePklZPygiIGxw7097Rmh/gdNdbSLKQolUr0iGGGrN6MqrJT4spMohZPJJX0ldnwioi1sUC/NmF9CqovG+hoVKHEmjqKqqoZJyY19IbMzMgV+r5OgK02Ued5VquPqNBQO+DIpfGbi8bcx7aZOLfoXlBVycQFpLhj2q9ymBdhBbdxvDkhl9yIonl7t13XJXqqubHsRbCBvSk9m/+WKVSzsC1VaCQD6VmpFOK6rkhJs1RE0S0qV2XNVr8xSVc9GmKUsHfBLhCsvU+PY29hPXpyQoO7e4f+L9qSutrz47lTOO0pCiD1E0m671mENmYgmg/0rCDSg4lVoZwAUEZm9o77Yiy5cpr1vF4gIYTL8bwz4G28adGVkWW+HYHu01bEpUmgtFZz2F7E5HZIV8nEs0CwqvK99ZuZxMnMjj1KtqTXxhjHcSMZUed5VvJ+v8vZVZ+2Dg/rQS6XcqzekAnbWgDgNnaX7crWL9ylWZLHcdBaAI8LgcJWT+he9xhDAdXtdovQcnmCOBIcwys6cjUzt+GHtZdNRqmeRpgNuhstLQkraG5iBlZFaLhhuFrfVUmaIaXy7YlIGX3QRBMdoN1szpmiYw87YJz5uK4DYy/z4zjM8nHF45pSo3IQ5jKQoA1B3HTxkCyYCAVG0lfgqOFy+NLqeCFaKzT0F31LZYA9r1od3ccYxrFrQOd5uh/HIEkhwcyehZUNeDGzipxzCuu1Y4Lne4jrujL6aN+7MfoMMiDW47IoF8G9qZHmZTNmBfJ8vCfh42aGyJhXG1SbeSVUyHYf1MMLNI7JTOinTTUKdNHQFu1N2MhOioB9p0r5VthQOtoNhNsXbseMZ21+XlNAg4hAPSv9e0N+OSg+Ocf3KHF5+e7RG6sivCdzl3BfaiWZU5attZTJSJrBDycZlRFxvx9VqmMsYvZ5kVQVe8NAsAvfL3rat3Hc73ftihCmuoxEPMPgvhITy7FT9E/y2H2nv8nrr/8f/7KEnF7/UMipxzn3Pvbj//GP/JF/9kc//+d//Bv//I/90g9WFT+tMqzqIUh+RubIbNm5vNyF3uUvmlUaNN8mtxEoCbWzKhNTbcr5co+3221m7Wv+cL9r+eh1XQ83szxk/IFPSwl69P/Rr33n7/qmT9S5fv2Xv/Prv7V/IlZIraJ5Jcr8VYEJQKxCFfrg+eqqYJ9//dk/8ms/8pPfCtE/zUeLtH020QUgLsz+z9eB1aRV4w6rmcPhDsHN4rXirBx1CTsoWWzRGex0y7rsLhy+Wm/VvZKVUazrqGrmJIhVQ3xe9h631yZTu5w02nIVTVb4vo4/U/a7/Fe4JJC5g4r9mwSsRJWvQtmqbFc130OiubPgu1Ae3VJ44uwyDTjG2Fo2qlWJpeJu+wR0URXmjEzAdozXbS173vjrE1x7VMHNu5fb91SK4BcX2V5aoFO4AwKycdbTeYla1zf01w9jtG5uCZDVzwZ4mT1U7anWUllXq0L/8yfZW8xzQ42S30J/78sj/uSh73+8NpZqlXG5Gh4i9u58q3ONZ1HykxAOaCcLrPBpr3q+nJU6T6+Yr/ubmdEdZpISwBMzZWhzrJ5atUB2aAjANDNb6sV7zGvNVLwc/QA6me9GTqUgcjJ/1L28xBDrzQ3AHARRErirqojLhUgbkONRZp7xrMlut9g9W/TfJTyF4vbIax33XZyZMeO6zpUEQiELqfRPH8POPHOJjqMykUFWrhSLBOlaKu4cx6HOdYiLPAxIlVNV04s+SruSdPhwN9JKlXaVOeAAMpARgkPfxj2zVE7bN5mZ6J7hEzAAeCWy6jgOSK4p5MZUaggfx5HR0hc7VrDhM6oJt0a6yX0bpfobSJp3m47jOK/YbRJ0Wb0TJF9eoJlp+zpVBWcyxQSAZsNo9ZqKiJI9qdHKKifl2LS8bQvSZ38yEZBhTZeAL9K8G6ycEq6rykhKqbI1U+BmTot5VU6BzLsRMAZJVejjOku7HukE3c1GrqgI1oXQHWc09BaYWWM4vZgdz/U5tOtrACGNAw4fimk6HxPrA0CJJzl8+HJrpoIpIzS1Zkyy7RNetB+Ka3UCIF2Ox6i8Zo7WVmFgosvklp3tTxuqWXkVotL9VkUpC+Ryx9W2q2+43W5RMyJyyvW0DzMSZbOq7KVv2dsZveu+u5HuXlUr/bPtnbC3UeseZm868hupqimpRJbQAYCq2M/qquhh2vxTtZWqTJaLScv17CoAFCJyjNEezooV0EgHrVrZ0Z/z0pbCoQLBwnqtgr3h9nIYrGfnjMI4Dk2wKTs0twLGuLl7VtHsuN2Vdpp71qTV4YI9j31s0H3zWyRBPPwGpiA97k7x01N5JW2hyyICaCc7WMR5jjHUTdyJ7nVdTtuI9F2VmJNJcJlTw1stoyR/61kqi4ISJzOz+/0+p0deVqCuq1JIIGmpWlGqUqDU7F3RkfvdLLs0VAWR9o8jA5VTU/q8TitNmBtbZT17fwULLsGSSBoGzTCCUavpXaRl1jnzui4bOG52u93k4j7PE8vmRApwuSD6oFcWlp+tdl2zkbRDGxeVTekNoc7kWDz8HXrSqRDy9nYfC8fl7lIOnxl0sWlpPEQCVPjxUqPoXgfd3AboQO5ytaoRkTNRUggDEwETm2sWgEBF0Vk0Vlkx+kSmgeszmREXrMgcx5EpIYGRmYPmhDgLmlRmbS5/f/vQQE4YGl+mdLnDvlywPdnkmrQD1AeuqvaeyRnVOxiZGbNSmOqaUVWWtbwRVcmTK33t3CRRTYzQaZvxjL3W1oM+13ZuyyqO4TIgFKx35QxtM7M+4Zl7eMvDzs9Eum+3216zdhwnmwQ4+nUDMKMy0qyBXY6Wqt6xWlVx1X3AtkT5JJijhP0wzF8NS4ac4dfrp//Lv3h7+4I2n8d1uh9mpgIhK/yTNmZl5IRcJ7Llp93+0n/6v2mgVs4f+F1/Zr/7f/V7/uL/9pd+CC9prju9tp3kJ81hfD4BtkZ1am6/juoYjWJAd1wxaCpFmOwPkVX1q7/y+775W34ewNd+/U//3b/9z805VSJ1g9hhPSDuBppmBVmCInP5urFuxy2i/u6vfkcuPF3XkNdLKIDe2CX5GwA/iXozc9kIKW3Mv/Jvf8P3fs/fwv+315/+8a8f45aSDkSRFVFER4P20gKMuNbA0Z6IKrkaYE/OQqPJWvRoTV3FG1ZK94S+K7U4CtnSSrtXliyzYqiXJXj/7nS9BI8QKNcXZHbtAGv0OkuofeWacUWFLm5Y/DgNuVBqVr4ABNZJImgKlbIqAQafOVk3mDv9FgSi+djQXi0EYmZVBbkwvKPvzYzZXBAW/Bi1EhMzS0ISa5I+br1lWr6yzFeze6dG2Grbfb+k0FPA4yqR2blW9wv86LP5TAf8XE18fRpK90uiwz+wnk5UzNX1Reelvb6yU6YgWWQUhLJOrJqL9L26L9Q7qtDsJMvoaE71iu6eYL0+49q+xPY4JJ8tkO5+EzRmlC21fKzJhKqNZ9n76vpwVTwrMt39GAfJGXHcFkG/smKJka4Mts8W42Kb2bg1HCyWsnR3ca3bObWNMCFzENWauS8GqwOUS52zXq5ZlZTxlHauRQDXija4i2CfoBM5g5ViEbjgLMhhyHlWXCUjnIqKuWLWhqeJZ/8cogX32MFzApk5FGH3SbP85bh8OOtl2lWmBd2wjcj2Hqd0Vzz+87wMLKREntvVIyriXZIWRNlwr8xkCYq2ANpVNFhEAR0Ki+Sgp/+89MAu7WcKfvuUAtdldwcblrkQ2DSJuFWVGlrkGMdB5pynt3NpZiatyUjHOFR+Dh011iGaopu+/UWiLiNaz0nHGdm9hWcj3RYEP1u68Lq5Met1L9y7t7YZKQyqZgKwMmqtbaCJN+ldt9M7OrzShgawzFiy3CJLQofqKEY0hsHM2Em9AghFHJoAHWs+w8y232BS3dxnRaoWckP0S5Ez5+p49Kawtu+yahONDGS6MSoLMB6WakIOeOsKDru1OVhh54SJRITqMnrG1xXun/Rd55wST1KVi9SpVrtBpz6JWsxRV6rmS6vCeV2c3P0lve25KJ6nV9++LizKzvOMlon3zGkdyhgAh48xtslELfaRZK0O797v7ofou/S32yKwZxGiCu5r91yr3VeeBCmJgIWQBWfVgvS3Oye6ZZ+XmdlwkQP3sTCvJ5T0k6e8t4Uq0sYY6jVFqtuPOeuKUA6j1zOgf2klJT7ZMXfZSAGKLVQzF8FBn68Zu0jpt+M4bsfbc9tdiP2IuN/Nnr7Euxdkx9F5kUnLcr1WFv30iqjOxNryQfVvufuMccuc9/sdgJ545KXudK1qbnX/YB3AcmdFg9MyERHzmu6UvGeZuo7IyCvm4TelsEazATeSgSodWaBXzdVSsyq8v7/fbrfDD/fDjDOiS3BmWcxi0KZgM6T5OO4cfuw5JrycjYM2kpYgUPIQ6LDouMt5Qls/3VCc1Voo7gN0AYv6gKBvjO4OQUqV73W+rHcqBuuHvnv1WsXq7WfCrJPnyGsfXlhQq/299cLdeJUxlx/sTr+Bs8+x3qLFHejC2QJKWFQoEmqsOm/HcT/P9ywpKdvw25VXFWBuRDLWqiHZyf+cMeek1b6e67oEEb9mKybYiyDnc73gudZmLHM+Y6AnfFVt0dRtVLYPnT0Ur1N6RYv1+k4qKlmr4XXVt3YX/PUTuPKcXYYDGhUCILP9wxlcIqWNjtP1bI1Qc7flt1fVhvWaGOd5fvjwQRLccc3dZDAzljSptJ3vK4V1wlCZ5e7f+g8/NZ/5MhQAbuOoGRgOQLWV7/pt3wvg3/0vf+JlhvRQZNMxRmbmjMz8/n/6TwH4yf/0z2oE/82/86cy84e+/s/pT8YYLxsOBM4XnFS+pq876utQPx8QP3PC9M/zuQNvnBHM1Srqhfkqi72XmPApv/vrfur1qnYRBNhF5a2wYP/U7/4pAH/nV760fwvYP/tNz09QArxHiRDZ3F9rEmamtsyexgB+8q99w0wU/GxzV/4rP9Ap8Z/58W/g8GwdflHeU0BoJaqGLr3s6kbPHMkULIiDHGKfw8dO3QNtZKrTBW4L5PtcDi9DpxyvCaLNLRSLkFSLfqnm6e64U6b+JMLpJGQ8ViSTckYASnW6CtBRsKxJqV7DEnBT75ZRsyJhdXD42Av89VwObepY28Vrr1IDEqhCDdXdWwSLZi7UL5sBhJbTkrhJ33SBgNms5PAbhjafmGFmw13nQ7UoXWdTW+35dXJnQ4INwCvLby5SM2y3y2V8WoGq65I4y+ujSUjRsPpQFEi60GrMK5F5rh1BU1VqII1MFKRqbaZ+cJYawllyStlEEgDVn19VeEHHAHRZilbNfLXReuJlrOEwHdhrMgIQ5Pg1XtX4KHJu0ng1gOLzu8TrEbn//CXgye7MbU7NwuU9Md97ougDF6Vof2Bv8sttTr9SD1bdzdcTBCte0jdyFTuwuuVwpAC1gD3zemQko+cQCnBUFfT4MhwEmTUlA8Eqd1aJlZDX9ajIgwaYD9KGEuf+aG1BIgyQXKhOxSG2x2XOOePMWly7SkOR7a8DKPqOqpIoHguspJqjOQuhcLqQWcFKIGdeqmHMjMd1vj8eH89HPLfCflRcJRAzoxs/pYP3VMZncTVC+YpyWSv23bPBl9mmHoBemVnEzLjmnMs4EatHP+dUediWaFYZT9kBae9bS7ejZPZemJmP2cA2NMapClEIWC3s8HVdjznPqmAGYiKmo4bg2nLqq1Z4YkGgytcXsipnj3HVNnELfDL5ei5WsgI5DcmKmhHXzJg1JeCdgx2GG9JB/WfFynK7jS8ySNQMB2++YoJsGUwNadbs//Wp+YyKdGFZpTAtcvPMn/tyM3OZZnAKud3RpzUD1qso1y9Ux/FTfmvFTMwrZxtxPpuo6EK2Estrg+tKuIykweUUUssoTP+4rus85TYMH0ZDWmFQhp8Rlc3/sNcB3wUjdRTHuMmSNIlAXy3MBRoFIFvYblc9wbpmNqptbLnTP1uvfRc7QHwFDfaNP9+uaAYQnkiGBTUzropJ1hh2DLmfiPfXvsSz5lwPVK2k67re398fj49znnqskVch9hMfS91dM6rduFH7DFj+qwOwqLxizplzZlWd5ym/aN2ZJtVajEb6eU4R9avKaT1DMitSm4C0JrEJBYCRxxjDXUG2doPb7W2Mm6aTGMKZ2OOveznug6u7uLeU4zjoVquTaRyyUV1nm5PmPo7jtl3pKkm4cbgd+na5AkwRP+kFy6qU1ytKRq9FWbh72VF2JAd9AJawggkhkRjgOO73okeRPnwcki14e3sb4zDzKERlZDvfcTjM01hufgwbR8G6juQ3My8zuBe9YON2f/vwQU/znNcpAfZxGEeVOnW3MW6gg87FGXkGJb1lv+IUmGDRigaTYcGQvoqZyx2LvuzWyBl1xSyC3rdP+ri9+e3g8KQFqoywARtFJrA/nG1B2rhHufUWLPVxxzHGuN8/HPc36SFpvcDHOA4fw8dhw+FW9KIXqSUpZ8KYNa/UkyXkwcj+Hj/INvcuo4+b+VHspwDy/XqcMWdllGyx58wrUdec5zV1cMBG0WfmtY1Ms+Za6HI+NBvwp4A2yFyy5Lsq30PZJcu9naD9OVdEAqjU9UKqrGq1RDB31FqGMmmHaV+1go6Dt+PmfqzuNPZRiw5ytP/XCv5ay6MPl0hWtof5IEnk8xB3d1nBP8++lSbtRHrFeTHnKcFqvX7X//B7dEK52Tf9w9+7f/5r/5e/lpnHS1r77b/t+67rkk5pVX33/7hT5X/hf/r9JMaLYtax9jctavND2e8+5qD2rD3/xMF60cr64d/7V2lV3WSs//V3PHPIHcXi+coVJX9WTSfnJYMHtar20tvTvqqMGC/o66/9+n8fOR08WvHl9Xsa6Ejyd3z9z/4zX/c3dB5rAvzOb2ic89d+y8+BrbX3mv3+rV/6dq4WFqx1m8uYi+e6r22Hebo8Iw20ddn7ma73oyrMYI6C7rRQIQ3tPlzYTDCd8uughK5nTeaV12IFO7BZqTSArRXSc1PXELXdZ1e4LIXkTx9TEqCXecGKTh9JBpBEElG9O3EMuJd7mp/gVZlmBYvCLEQhtXH5oMvoW0y15/8vHz5u47jbuNFGwooyZxn20pAwuK/ilPzKrew1FtIw9Z5sDh9lIqdYwqR3tU4KRpVwwoHSgRWoYhYzakbNpE4k5fPdt5TI0sycUQVDn1x4fc9zVPW8huu3ah0rTEoiCleEYjpdyUosC8vm+vWMjmrFWT0aRYFZFYlIBdRWsExclTMz5JgBltRt1SqjVQ9e68Av8NT639LE2c7SrwvzJZ/8Kv/5XL97Tr7EkJqZ9VIees2K187/jMx3xrT31WrEYrD142Yyfen7aD80g7sOVaKCyL3uXuPYneP4knfxxR/Ua875eDyU72yyXi6m5wpNi1Q+E8oOwDTfyKBnibPXXWdoV+aUWzXruQHu9E2vmQkbAuyQ+xR2lxxXRc6IOSsmMqx3iM7GdVHMctSQghJWdq4LUkyzHuBLg/75eGpdelN/lYiZmfBThjJY1pxXXdWlx9vtFnHFdWbUlMC4XP6qMrediftxcze3p6SQ9ujdsczMmM9Wz/3+Yd8CF4Bej2SMUS9cRzNtvB5R4vNUicbt9/tdBpFmPI7juN0f13k9Zs2itf+kQhlzu92OcRz/7X/7ZUpssCUwy8z88PdHeLGMuQR1sCAT+3THmlW341hVkKaGaBp25VhC/hkAZJ9VkZbFUkxFJcHawlFPCemWmah111q+SOlTEwBrzlkIIKta1xdSa3CPjBU8EYCbm9l1XcsrK56loBl1+J4kr6fdBovWIpQ+z1zdJ+XJkwAr07LadCdCKBOD3Vwkz4irgfQ72jjPU104vhT59saxtxutrjHG/X6vqkvxmfWugSJ4yRJTwtwDo2IWLFBjDOeIiOQStVtrsmtIL3IOKkVHxHmeNlzXNiftsPM8u9ZjnszMLuRwV+WtKX8AXJp7emBLbvSlIWYkt/oUFfESki/fe+ISoEBjvlqZO9V/V1BmS09L+IjjdouIubjf7GrihRpVzwZLZgIb6tzbOcSbjYqct9u4rlKQgVafxZyLYY5nGUL/LjYaSiHv+gposvmCggvnSfoxLOLKzPUTkhYR7+/tO8cF19fYPq73WqCdXRFTgr2/aGNxq+UDbJgL8l2r7KUd0mkt4auK4UxzOVTPqrrf72aW+TFifqYwsQ8zRMJbzpJiSLrHGIcIX/MqBOk0Gz6M7scBj4oEZ1ZGgUVajeM+r0cRZj7Yi+44jjkGszLr/TxJp5ubcXi7l7vRSPNE9H7rHoBAMqBY3ubHzZ2RFYkxeNxuniNmwQw+2EyNRpqZKWozmFUyMwMxksdxEB7zqX7f8Zk1K0xPf6PpAFTSb4fGdpN49fgiwt3dPLIZ5qq5vL+/W4sXrCA7G9qh6bGPtuM43t7eHv4VW0aFEVHdrWiP01Vv3YGjoSRYCNQ1F6Bd15OB4zaQKhMrDeaMh4EcbhVzInOyYC7yed1uoxBxtgnCGLePX3n0qh3u8B3S6eJfsxU2yQfP+L6efHVfzLFafPs91Bux1QdlVURoGiu/T3kf9BLY7KHFFAQAvL29xVI0lLangqSpXEw0y9wFsR3m0n3oXqKmggU/mC0MQYMVygv10knG7uBlaut7j3f9+3aTAHieLURPM+Oc+LQ38rX/0L+ET1+/+l//FQDmNsb4u//3n/rd/+B36+ff9T/7I/jc66//Vz/h47PyKBrVjc3Zv/qB3/mnP/8Je4v487/4fT/8bT+pn/zxb/trn3/bj/7M718VuOcP9y5EK39hzEphdF+Se9Ni+0jKKgSyBcD/7t/6/b/7G35Gb/76b/7Zz3/1f/Lr31FVis3+sX+mZbH+yd/10//xr3+nHsR/8nf+wO/42v9AP/+6b/nNpLCwQpfPxNP7Ug0j6lrri2YtCKpz4TMfZQtJJCL3OselP1MsOW48279aFtiw0rVjq7NXaA7hjmAz08d47u0LEoVnrvJMMNhZssGYDUMGzcrILDP6GCCdt8qguNiscdz3OpUvAyZmCe2Ynb6DRnQ/9mCHamElSI/Zrq6NMTxu17gYZ4v5GioIhyFNDA2iiq5I79PXM19C78C6M3maJErFDeUPVRUZ3as0gFTjWiAkp2XmTHkKHj7GGsTyw41GGeWxRU/gn3QI91YfL7UhrvcXccZUD3B25bCzRKr+ZuZmWACZqjznLCPhS/XKnkpkgnUTIGiNbVHdM6ukco2FjxWVvqoI3wOooOrTidG6Ks/AvgqaSGBVmff856evNQj65M48uRIWrK2PLwkt1mrik1L5fJSf/uoTxJMvRWi7HYeN52J8jVcz3d068lklPDBfUEhdg22juGvlKNjfO9pzNJeFIfCy9nVWvT56kjbGdV21kINOGs2fv29OoLKzYZZI4TPpdCrntVJBJFPGXqSD8hP2uK4Us3FO1cUIoHBdIuMQq1eqJGVsCWUAhK9sKxOFDL1JwR5JG0dWDvc553W9394OABFzjNGHZ2cISCIyr4iy+5msKYiUAxZxonIY3I+YUVb346ji4/Ew4iv5/nb/QiKNuK758f39C2+3Is7r3Rcr7/423t9DxN2VGD/xk3u2neephmOnSWAlzpgoG67jzTMQUXNON/twu8fh53l+5StfseH3+/2suGaqSzdglUwxMyPMTNW+qpLgsi2cwBmT2RPU3Tk8UK6kV9oJetJVEfF4nLdxuMtCnu5jJ6U1Pyn9VhUqCmXkYQZD+9pFnud02uEwtVtjcbMr5VpJcmFYGh6NlRunpIxWo/D9/X0c5sOqWp+oGDPmcRu0uo1hgB22Q9JCC7i9vb2h6vF4GMnjcLPj7e2aU76sZjYrs0rxGlg2aGbX9c6s4ybfmpNFK2TO4xjux/U4c/I27kEtY45xm/Occ37NF/++x+NxSrPOW217uPv9IKnt9VAFzDHeXDUFpfomebLicYyDMIuceV5XZoI2hjnt/Tyromt+hMhsEXWMNzmvZiarQ8xci9yG14pQSY4xZk4zI1zPVJvArDoOdSb7MMhoHIrCu8W1V11wWVhf13U9THRuMzOn2ZyzjMcYMSdBP0bEBDDnxbHoHzM6NCHNfJEK4zwzWwcCmdOMDsvMmiEmEBZXZ4wxzMupnWHvdltmvarKQPp1XWSpEZcZs7WUburX52oQ6la18wPpbrfbUJ1lHR5eVe/v5xjjw4cvZuZ5zuVcTcCqa+Fmdrg7ON29wKySSel5XREhu2CtoE6MOYbfIgIFuags+FwHB3POGVN31251Y5znVI41xhi3++PxyBljDBs8z5M2JDd9ne9yOjrud61ZW7u6Dvhx3AVa4SDJrDDwuN+0imwc0uFrXnSdEdF9U5iKuIWKyjOmuyHziuk0c58VcV1Oy4wkfXBGnI9rjHo7Pmge+jGKKaQcgZnXFXG73d/uX4jKKs6IiGIiMqPDsJGBj48zs95MjnsaeS5BVyNwu/nMiCz4uB334zhQ1pDRF+cGMyaKVbfb7ZpTkqI0hMImWVaq2u3dJd4nqLvTjQmSx+0mTbJakjB6cNm04ZEzinY7DgDXdWomf/nLXx7mMUtAJ/rIuGZGXDXcE1TDfJhruUVkodwHyTkjZ8YMjtHq6+7IOsxnnHHiPu5VQTtUp5tn0P04rGac5wPGyMioMWzcb4J4mZnfbjELi25zzsZ1S3vsWMGNgBnFiqzlb9QvlaE3tVU7syIhmM15CeKAJiOXcdyOoQKxuc04M3PJevB2u2ctu100TjIiSljlyjGG3ySIFedZkcJMCfTebrSZs4pjHPLkuK7HGOO4iVyQc87KlFKObTJL5v1+p485Z8wyN5pV1f246QJUEJlzjttBNwZ3vHEcB18y0s+//vb/7d8m4e50z8zH9eVf+Ht/6ff+th/4qm/+6//Vj5Ntl7p/qGWlqXhdl5F/7f/wr/9L/8s/9ht947/+Kz9UVR8+vGWd/9qvfO8f/5a/8lXf9qM/+wfGGMi6rosvmOGu4yOqPWb71dkay9x2YmxmiXx/f1fZzhOZsQPr3+j1n/2d37/f88qLBuB2dE/+N3397V/+9q4FWOPDr4jsxPVTrKb21eiqH8R1oo0xrgqrFjd6XsBgpWXO3LUYQOepNJwXjiyfW6zQ4BLjWaAQa/sPl7ZFfgIQ4zPHWHppAJrO04R8RsQVwutOPwYX2YpuRM5KH8cEz8dZiLcPH1SvOaz8uM85UXWdp5mP45jXZWMwysqtOOc57HDnnHKksao67rcB3I+D5Je//OUxLDO/5u//+9/e3v6b/+a/yYhxfMhrXhGHD/nDnh+/MtwPH4/H+YUvfCGv91rYvcNt52NuuwhJhyTKQSCkCJNFUGGI2VL2JqrVlOljqO5VsM5earF02ZSRZsYPj4iPpzZYVpUgzcrqFcPPOWmfTYxRqMyCJWiEHYPZvQ29L5Z7hXpCEpc+jruNUVXnvKT4h5C2bXG4CdpYdUU4DOYOuyK6IKK0tpqZq29RdJoLEK9CWKBytdy48A4bMh8ahub1AY2seQKJsdizVTrIbtbaOK3E+RwEAGXiEWhuux9snw6Q7HrxC55xD6OZldHcC5iVdYXKJKoUu3ui5pzz/ZGZtw9vOxkeSl4K53naSq2V/ZK83+9vb2//7//HlwG4Hyo7bm0akSiVwqgz3HmBcmxyLNU0AMdxiJDIqjGGNJ9n1s0HrRwcY5hjntf1OA/3zLyu63bc/cZ5XldEmRVYkbqdK8pJ8+OKOGe+qU6QkwYO2/YWFWnbtEYCTAAUZ/4T/9D/YHdN1dLSXmDDa3VRuJps7u6V99tRVVk1DovQgQ0fQh5kw1pQmfmILL9ncTjvw4nEPFExCK+SuwcLh3sl29rGbYyBSHeryPN6/3C7q6fF1X6UV+T5UA24xW/O83zdx8c4FN2TlGBPFDIqaYS3mFZyXjlnRpTxcPfEmBmpxIZI1GOq0Ng+8klI7sWOmzZgAOC29+THx+XLLfpxngDk1p0L9a75mpkZgUiVnfY4C8YA4JoPirne3m4lTLIXHGVmAtNHBa1kP3s4HDRME3hQBf5ncUVGsyIyYyjojOnu43DN6StOyTppDLWkVWHaTYPM9Jtro58RMl7QpNd89WXZSikbRTRnDwXYTRzXSjrsMAVV99uR16xMT1aKIniDjxkxhHvMnHN6V3mX2OmcVeWutmr3/6voRxd3hxFLH1K9LZmc2ziqqhI2nIYrYs445zW1hdNJvp+TknZYu3xVZeJmH1ANo+pDGA3FIftg3jW5S7x0K9lKi/HSOuctI9k4fP3IzEY5Fn4sF5jElyEQQnSAF7mswYg4fKBKhbQ5L3f/eD50GS4H5kzXf/h4TGG8E3QlRe7+uIJkFSMTqsBp9K4nMWz1katWB7jL4XSSRYJ5H8d1Pa586ienOPA0syG781XUH/sY4JOY0b+93XqDls3vbuIJzrLGeLi7sTeoMYaZ54s1SyFut9tuO3QU5Td1DqsKTE3Ove/BGm9TC2GFVi0+anWSM/M8z2rn23p//8oO0KVbBmCMEbmdXT5B2ahiCiBrVpWj3D3jygxvE+OmiT4ej5vbOOhg1eVm94MVMa+H0IwCu7q7txh1jFY2JsgAZ4TZ8ON2XddxdG4WcZEcTrfj8XHe7m9j3PSYzsgq+jiKLew8xqANefOO25uPW9kTZK+IISrN3O0o88wc43a73QifmTOfcYCemB6Ev4o8ZRai6GOMyubbH8exrbn66HGn7/p372uX/LGdY1n+auk9Ho/b7XYbo6qu69wch/txaxlhPhv7VZEz5PRcFVpHYq24Wc1Fn4kd8ySFa0gJa11sjvpky+fFdV2l4lfmFP13nlXlTiPnPMWVyPCCKdfRxGPzGp4dqs4iUkozT7GkHf2QT3lzNiRMOxxEPeidKhERiA79N8gt49IRU8Q1+5MBSPhtxQYiGKf+qteUKaVpNIctOwZbCLoOLaxUvKgqzmePIhC2JHcAszFIv2JWyrL7oNsX3t4ej8f7+/v9fldVQj2c65okiw7gn/oH/hB+6/Vbr996/dbr//9ff/Qnv+04DltCNiopKrNTFE8+RQF3TKL/FCCrFgvX3R0cjciUCtAyyrkdbGhwZ3b6hC98+PB4PF7ENSDj+xYofVX36FcCeOUSQrZnU4KvnbVtw6SH+kyZYq4ZgCxmSQvJzRA5z4uF0SWDcJqTFZkzNtxZMa0JLJcV55UznGaY+1z0JXc35xRuXEe8gjQdVSOLLBqtsDjkVYUaghmgEmXwDTEqyX6slCDQbAHCJVuoAxk0gCZNNCxyNgsvNPYMGC1R58wxDr/dVFvtAZLmyhKzGe4R0lIaemDjSDOcj4cZyGEm6ki1hI8e0hL8WdKFHUwIYoqux3hTngEofmrk8XIPK3SjDBr5ykyOl44/C/0endw2bh4RnIremgqVq6wkEq/g/MP9Os+M4DAzj8V06otp0xAQ+ldUtSO5xIcJcaFxHAcRLLjpggNVbgZWdjbiFHUzYWbtuFJJLKf5KjObmZVxyPPQeF3X+f7QgLfJ4Kogdi+vcPMbWDnbqWKMofSgiWqShZD86NPvZNggB+eceU21rFFk98g1s5g1q8YAjYYXNQItNncHk2wHIL0yC0npOKpDXg3sbxUr4TczY2bZnH4b4geZLbmGhSqhuuIpB0NUVUVOdCUVoKAjGonOkFXwK6K4jIKg1Fa5XUUK8JGx9KzQwxKzAuHD3B3Ep3S4vt/29sqnxRQXyESJrrz51PmOiJJIKrHH4bouuQQrsdEmGBFMVR64SQ4LkqfnoYmnH0jGqQH+uY1GbOjW0BWhUrqixMzHkTnNxtZzjLgyFxZ9yXKamYym1tZPMyNcep1r8ogWXoS79f7gLZSlR6Z6cwm9T5aM7/t+XvgzXCwbvQ1LikOjqmkwLyFyn3IJXQl2o3IeSp3NFl+0cb0ok8gf27tYxWCadNirLGXQZabC5yQBG8P38l9cxwIQT+BTTM5MVszCbYyS6w42oa1hrySP40hw1szlErFLdYSVFCfFL6Wyq5yRUervDsLlM+g+YEW3WbkE5pe2eKGAmMU73AywSFyzHcVVkkjpPOprS2xqiXohM2vOzBp+jHGgDFgUUFlzqQlAzAyDjeFlMlnWWesVoDtdwvmw5oK8V9Vc8oc2DmtYb4lvppsyb4Mvv3vERbOqUZkzIioFMb1mw4uUY885cznQvQYuAmNFxJQIPApVMQV8SXdHMqNrbFmMRGYSw3xU5nXNUJe+wbeCbmFKpVzsRonxLLAcV2FaBUqScCulyjp4Mm0wkdXSj/2rzDx81Pa8se6myoBJn7wWI6WLO2NudLTOfFQiu26l8MLWUtLOrBNLP9gnmhhoYxjJwcXAgmitYUanYemAOG24h/vtdpPUnGrcvjlviH/6H/he/Nbrt16/9fqt138nXv/m9/3in/i3vgNllZQcye4Gb/loNfA/gTRzd6cTBjNZTHTDCaxiqlWwYxuuQLaWeMrudc057/e7mrdKScZNolz+0moSbqXZbjtt6WYJQukkqThZ7EywnbcsM2Wb3HnkNheIKATdomKep+QPaeZjJDjPs7LcbVYqOarMAdLHgOWcIIBcqYJBZ9PmmVYr63tTGmu8plu7fNuj05EzdqgNWqKuDCuUwcrqVcBzJSISJklQ7PNEInNWGssyIclofb17ZlaUGggZV5VOQdLKaUzLOSOCLzp9sfSrhPV6UZ8yM1Od+3nNsEhgsc4yZTNUmck0QEVuv872WpLs3hkzMwVplmCvgdIQjmWLqtOebmTzDozdiNgsRI3GUy1Nf9jOIxzHgeXxGxH5Gl4raWMxyQwqzY2Eyjx6sCjLNBoLh1tGPoM8eUiSxYV4hbK5rKqD1Y7H7gDEHBNRNh5fqdwdOZP4J5Rgr4hPw3vOKzOP25uCwl2L2qB0F//eXV6yWNUpXZfBDD4xMxFVhzvtaQVBspAsxPUC0V8vdz/Pc83N5wuZKAvGook+kyiBT+QEq5yOJJzFxpgVWaxIkLmEkVzsof70rCrGnLbogkqA6zm1utuVTYODmUc9uS7AijUXI79TkRden0pxr7S9WtJc5NIJeiGHRFxthhX5UtCxMYaEQDUfZqUXLfP9UhtKFspHZl4xI8LtaO1jtP5Z7waowhMhvJPGtmFYMGk0wpKPfADtAho9q/su9j6DF+UYjdvrr+zlxW6896Ko3nsbK7G8CVKyzPqQbucu8091O9t5a6v9zbkS3yeLTH1vw5PNqJkzvNZkw3ruTy5ZLj727mADqCVAYhz2Unbl036gqv100wxj2OEfHo+Hcmgs2tv9fs/rzCgaEmTmOTEMPm5uuK5HZYZKohXGMQ6rCDcXY7gKNBcTgl5RiWk+eLu9kRXXfDwebjcA0mMr9fDoNCZoJNoOwHYqbnaL1bmtKrr5GIf7OVN1Lt3deZ6tKzOcy19Ay39G04pMAgqtGnA/juMYd3GVX5d885Gi1dfkNItV4jx8mF27SFTV+nz+4jO8szKScV1mLrVnAKtZyvv9dp6AZBF2Q9WtsuB2441kZpzzQtY4TOsRwxktx9cqAFVYDPaa47oesUV2S1UwyasOsi1MtDubWeEps1lZ+xa2nUM0Nya5LdzXVHxGQpm1BYi64rB013GYtaqn8alTuCn+JAXz6SsuHbrxDAwgV4KnJKm6wZv4tYc614VpQ9QmZ2bS+2gA9mhFwJRVGLCGzqtKCoZf/vKXx7Jh2xKVmhLXdV0vKOXfev3W67dev/X678BrhYVcojPAp1RkRR3GTwJj/e2O0CiO93BbBnv7Q/BUW1jcInYg9/7+TlKmsFzNFVvdZq7q+S68XtcjM5cX9LMJnC0q0QHebh6oFVEo+UNInQzSuMnWMVN0ihSVN4bRMNw4xrBUOjgBlgFR0ZxW82M4qeZiVDQ6cd11vZxHSnwIZNWQDqT6mzKjdHOazwgN5EwAnV4eRfWmoN4BygYJudeU0Qim2AUlMdnp1h4biYAqERr9El/PqioyI5O2+09w96haOvZFKwVGDaaNa0VgvN3u9aLPXFVSjjJT/mlVW7TDzayCiVoGy1hZdIWaAkjddbf4jcKJNoG+IZ3NH+CLbLUGu4iQL6T8daRNsuarEuaqEpROhJKs3Ih5lvj8gqWFbCWwPcu7XQhKNll1joVzjjll8eGbTD/8GEdMxe4pFnCRxVxa8wCspNxdZUQCH27383zXsLCClcfRuH+S0I3RMhMxQbizMhBzuButZiQns4ThED+wo2dg+FCNY14psSgAJvGFAglfoMdOCllZM6e8i+rF4KtTbmlJeJOcY2Yd4y6RNysc7t3TXkWTGRInK8Bo7u5ZEaBsrrTjSJ4Lrf8AybSsZsnTzaivkpT2SCJh3ZYvsn0FV5qqELZ3n7QMHO1hG5nptHGMcR9jjPl+Vj2TagCZbZpFLe+lX7XzQ21385oGbi9c9yErw4xGQWRWRGoCX3NGpntTIYzdILVCqvukkLjtFmvvJVWyW2rHBNUNpGuqDm1EOs1aq0DS82Vm8YknWxmp0g+sIkO+rNpYjRRueTOV2ArSbsPj/8PYnzRLliRnotinqmbH3e8QY0bOlVWoAYVCowewObyWt+Fv4Zr/hGvuSK6555LC16QIu0VaGiS7H9CYGkNVVs4ZGeMd/BwzVeVC1cw9Ev0odIEUIm/ccD9+jpmaDt9g4ABbO1FYUxAZEABLgwuzCJNF49M8zoOAsBgzUXgklBpfOaaLZoDDDWESniU9QYSFis0kPg8PhVP4diui7sw8HsQQBgu2bYvpNDObdVDKIi/LoskmmiJDZgnSoFjJOlTBSinNQluUl2VPpqqdDKUWYTGDkTGTMJsRSa2ltH5LXBgE9PFQJIugeNhK4V8d4p5B07LQ0j/phoYYBAOk7mF3nR3iWtNADMHiZuHKpewkwAVWShFw70kdDxVQ/tEJfRKui3eIiW8hSTvr0G3m7J6VUkqz2nsHLDj6nu22WCKLlORERBAm4WV/iLAym6E2BL19KDYlE8XMgZCe7ltjZsQ2I2Gm3jYnJyEQdbVmyjChxeAkQbtCIDKiA6qb+5DGjhusET5AKcgDDGPhwkxMZVMzC3OOGjudmdUMwiAOrDY8ngGrhkto6hx6WrB6eJVa8rBVRKLrAyTPaMzgs+kwUhInQrh9xvm4reepkqpZdD2rkI8i1QO+BJ9rNWTwol3SdXNMIDczc0heEUxEmIJZPBzpgDjW40hjiqalmDmcHR5yaETUW+u6saBUdqgCZbeQ/jcK4P/Lf/rfZ9IzBia9dykLJg1hFP8hgRmng7oF2STIHenz0czdRaqIQLH2Fg21CBHkGZlDG1+El1pjhBJ5IWBCbtZ16EFi4Caa9VKKEGnr5NhJqSwEO97d76pEmywlcwI61puIlBph3wNzWES8KxHSB9iNYExeiINaVUWiubnf71tTs96ssdCkYo0jxmbjQ1V7ZMwcLiyKbKSQxJVo9vJi+cQ5CMDA7s5F3EjVzaAOIlGz3vvW1ziwuqdfQwwcat3N56JxVQQKKXhTG4pTzOxM7qnugcHDBNCTQzFOsPGKSzYMl7uR74UQ5tZ7aBZ2m/IxrKpChZlDADk8bw3gIiLU3QDb7XYPHjy4uDz03u/u7nrvhfjq6urBg6v333//T/7kT/70T//0448/rrW+ePHiflvv7u6+/OqbFy9ePHnvvT/5kz959eLlv/t3/+7rL79qfYtIeLy9YebHjx589tlnv/z5z37yk588ePBAVdt6NLN1bd98883xeGyt3R83d7+5uXnz6u22bd98883XX3/7+uWr29vbcGg53t2y21KYHNt2FPJdrcK5VoVQorsaaklxW2txdwlhBeJBqw5uAZJ96gAg6YycrUwiUu+q6pw6guChI8UOwLs2daehYnU2SGNmdvRzmd/RcS5lUQ10mNmwkACgqaUqTtCe7NmQYrHhn+RA/MQJg6c2K0IxhXnPwJm1UDLcZnnmo9OHQVBykin+HB3gvOCzkcBcdZhbJbPls/+Ib50QudS/jH+L0dT73/1v/8+xiCVcDCL/Cvyqg4JMzSfN13FzDHDmGvmPj9S+96bDVhMAOwoZKL89OeVgT4RpPB337j2KrBkDY97j4/5HoAiM9G63I3JVDfhnFnqpu55yhv6uOFYV7t2CxEuAqRGC8BUFs9KoySNMrbe3TGLa0Y0hVYhdVt2chIXgpF1VLYpWqqQtDrvQIdY4bg0uRQC4prKsc8o8DFnU837trLXGnGfe8U7EcDMwCzGZm3cQo7W2LEu8BShmQejm6mDXpIlFuheK6JRuDTij/6kb2CWHhNa7hmE3kQlL69uctMxO8OxD0EmC0phLrTVHnuFNPepqZ9JNnSIZ4XBa6z22UDrEdlWzAHi5q3HJgyGds0aXXUQs7piZ+cndJ26VDK5//OY4zxIl6Tn/jyLzdAh5mqyQpep7FEJDoo0CoRah3OL/OUBuDIGmDnDEkcALdz+JA8feljCNFfEzn8A5TDgej0IhdFnMjM+0EM8XcfyHiIiwD5tlEWEO5RglooAubLElz7wl45+zQwGCAJF+STRaHPGdEKURc/p+zwU5V2Nc1SwURcSdkJ4hmBGHhn8jFxGJIaiZs7q5GRQpiMUkqCA4rBtCWHjUjRG9iVnElbn4sIlOVdYAK46lyMzqpzlhiDDlnxOWP1DZ40iejlM2RLMVNkNtzK6XZQEQKRcGgiCfBREHoH0IhOoY6hjcTOdzbKY/epoYiO8oHgAKWHn+leeECgPgDSCB39F9PJ0BcZdADjVVt1IKSRURN+29TwT76TCISfK7Ro65TZgHyiN2cfhOl6lGOG+1iCCfAsYJmlBV885cbaLTzeLwrln6nqayPtqWGfTGCyNNPN8FNBqsvXfziBv5blEVxnjKihHVyCcijQggDkFO6FkXILR2rLm5eymnSWl0EISrWiOSWiq5ras1UzHaeu9dGaTRuDJR9w1KTuZwhoOdUuoyDmxmZoiZbmtjQrRLAHYnNVcYgY2QuQ9n2jFXKYDQtbKx3+PWbWHnVpZIQz1LUzAzl6JNx2wvb2+tOcCnFB856Vj23mtdfKhR4Oy12+1CmgVzmcaNsjafDp2Bu/Tk9PPOgp/RY8YWTt0mOzM2y/JQmdL5zDPHksow6mbOTk5cBMwhpUjRRwMRiTt6GO0ZEQSUQqTRsHMPQxCOOa+1PpdfLAZk5JmQ+0zLRJIdEE9nrl5VpTEAD3rz2F6n+3D2EH3eq/ggNxgscre4krybOO3Hs20eImqn8IXRs09dA+9hGXDaodF/tIyHtdZwdQ4ytogEUN/d3RJZE81rYi/lEHif3jsJTrPfbhcXF2WczuevMoyUt35y8x73I2LOaS9PMIiAU+NA1d2XZQlglI/UCA4Bca0z5x7fnUR263qk7Kpots+IiEK5OPEIuahOssZJz8j0HyTwymk27kP9IS8v7+e48cOjtWlnh3Hk0+wgBhkjjBXLmbyfu7embPikUwABAABJREFUVISJmBBaieOIOX3NGV0Dd29m0elg5kChzROZmRkcsSXuTy6qVBfKnT2/r4gYgSdcYkA75zPyedoRibC7b2c+F440EwaS34HTGv7x67Q4RxSJxGJ+3DJUvoO5gHEQk7swsbAAVEp4O9FSHj68vjveq7br6+tn7z09HHattfXuYKqXl5cfPnv/k08++tnPfvZHv/nDX/7yl0+fPj0ej5Xth5cvbVsfXR/29enTZ+8/e/JIW/vjP/7NL37+B8tSAByPd+v9vVn/ySef/uSzTx5dPzDTdV1vb29v3r5+9erVV198fXd3JyJcpEg9XF48eHh1OBzKbnnvow8++uyH25v7t2/fvnrx4tXL1y++/35xYvK+NRdmGBeGmekWbDjn7EbGbA4DfjVW1amdNG6szyCakpV6usM5owCc0LQLwsbpRKyAg1nM4Go+s5MIIoRBtwRCbzlCJAnRj0O3ZT8LQdPQoNfRiQrnBPPgFRI4lC+YIuxSBGSPclfdY//P7GK+eJjnzU83SpLm/NXTaXK2bs+PmKZ9Rsv54nd1zmlQriiQsyNv/9HvxLuOIMHzreaHYkxl5/PiE214XqafHxPzPoTHm+dUlueH+vCUjSAWVg42knzmNPidkNv9ft9aa77ZaGHEbQyZsZl5jjcfcjlRx3gQfFyYATRTiTmDOoAqhZmKUGG4ae+bQGRZpFCx0nsnEyIUFpiSuVMHedMegqFcACNX67CmfUcUeXuQdiMiOKFkDy+DF8zSQFZEzEFnIhyZ94AcHuCsbWtGEJAGLhop7UMOImYRhCzQaAHQKdhEmQh3C6SowX0cRaEhqaoel2FGRL1vzFxKJCtxqCw+LHboLBQyc631eFzNjIbETly/BQEb6VpUSIgQXatYlabhZGjOFOJGTEbmnDDy03oKoqa7m5oip2zOFDY2XArM5GyTBKc6D7ZkGquZFTrFIBCpWbTPc7lTtoJCbQYxcAgXuqjPgqKX2NfQl8pOczfVZpXA7E6kidEDp39vFxEhzIIK4YekjYb5s+foS8/z3XlGxnbMKgKTjZxTLNcExs0t0U1774QIkkIEFnFH/GYh9kHZPZ3BxVzHjvJk/UXoWaow88Dwhy+2AGwGRh6NeWMH9LSUwi6qqkauXXvkIhwdbZExUeoGkBtFS3jMupidDBzcwLD+mkbzqsqSt8J9hnqOg14jnXeEWNSE3cbvEAUs2sOAuJCoqgdIgzHFA/LXLbW7RSTapjRV60AUllFuEIYzkQSIkcIPJ/i6CBjxMLKO+R6nDd1YVJkFGgBOgSuKsevpKDiVE0annmoVTvlcdw61grwt/2RWQ4WIPOT4meJsOt3PwcGmCCUyfPCKhMQTM5MImCkdZMjdQO5MCjcoMXMppI3OZIFCeXveNADRElJVwMqZ9wmPaBALOP+A9HnLIyfm4OxulMO0cT4VWWjI96YGo2vvPWHqLERwtcABxZR9dIgRukDMRVWXZek6DioHc3FFM4e6gw0g9ewZAU29EAfpM+qZMEcLhWVmCRGy3F+Bj9DRlY8lRwggEhPbpO2Ojc/uLRyZI1DHisqeV0D3YxcoMzOVCAE8ENTRQIno1y16zwm0yQ6BO1PB8BAOu0UFwVEzBJXQ1SIiDkGsIh61qzMNwjxOme6P1TLfCV90sqDvfVuWhSUGg7F3kwXjBrUkqJfd4l1VG4gM3r0zgLBzUjWz8Olx9550HiaBmab3AwGAZHSKI6k54OBZuEaAcKBpD8fJ8KDuCYegyZn3UZmMemnkGaMz5aeCP53XMv2JSQ6IOPBdZuHyEF2Jd3v2cVibpbYlgYgJ5OwwEGfSGlsUZhY+LqOrq5GIsiRmysxm/3pAIYK2ICHmYEEKYAGJeS+lAH5WUp4qJVUNk4t4/d//6//pf/2r/83/9a//j4jGH+IXhEU4Mfncw1jRA4xtvfc51TEzzW5DVnfRv2ZmMjcNcQAsUpo1dy0MpMVIjLsvzEytba1ZV+DsUQ50zEgNYWaRWMNBkj6FqupuEQpHKx/EQiGcsdQIEwCiod+9h0hjd3dFzUeRo7jeW6xwA8MQVup5D4Xh8OCCsQhOmrfd3M9qADNzPo2LLYaHA2rnnpGHk/4DM4MZpf4myNzQ8yAepXtsu8Kk8DBW80SnnF6eaPpROYRzuzs7wlYnAgsmif20Nk4T4Fzw4z0tjWrAIIwoHR9TqLq7pa0ll7KQCJhoKSgilet+t+yX/eVFXWRXl8vLi+vry+uLy1q4EH/6yUeffvrpgwcPCsv9zdu/+os/3+/367q+ffu2q5qBTfdF2v3dN199sTtc/uGvfqGqpbCr3t3daN+Ox/vt/vjdN1/+7V/+xcuXL+/ublRVGOu69rUz8+Fwad1WVXVdlt3h+qLU3ZP3nn7y088A3N7ef/311z/88MPbF69efvv9/ds3t2/eyiqunWAwLbJjdSZnd3Y4KWVDwMbNY6RjYt5Jw3BLHMoShBQfcqP0vYlODMVmaRgzt5G9GgkRyCjtGpJaFZoggXP0cGw8YXTj2c30F0AfDZR8jgQjBINsjogN7qOdPQ2xQnZmnjvp/+lKDA/D9lH1zA8dO/RUgZ+vLkNaQs9aYC7YH63e+Q/nT0Y8jLAQ7yn5hfIkOonAz0g+YKM0Q9/8w/kHcYL+ZJjbB1wozBSYzraBmU3zJxEJHxNCZC9hstBmHRuviJazWRyhydPCZq015xbzVB0XyQD8PGEkRyj/g2QcynFJ27aFCXxghkz7um0qvYKFEEpOTDDVvq3MXDhgvGruIGOGee9dI4xT8nvgIVUOgGjTzgEVDQkWIpATU9HWdVDrxro1w+i0uQMR0Qxgd93XZZqqNQuT0oWpbGtnZqGs+0WExYmDQ6iRLKWQuiu0CwODW8giqr13q7W6m7s6yKFEYHgzc08d7SCm9m7xByANVFVPsyyAelfTGPN3ZkbCnGzTXnd771AzV3JSdk7nHdXoTpqZwkcaxdajuD3tBCaCO1cGXI1gDWNxJEonMuMz6HzvfXc4qGprDeYh8OLMAbWbvRa4b62ZNmYW4RLCPO7sRhw6QCFAIwErcdjYj+EpTwDBWKHC4uSuFjLh7rB0EifN8BV5eZp9RQZTuWLorKpq2J8Hn36eK3HQRRxjJpEqQMuhSUqrgWzbNKAYsuxCFM7MVNvVYU9EW9feOyTpzAygFDJKE3N3Y6tcmEVN8wQ+cS+DdVlKSrw2G5YV7l5KZSpd006TmUtyFBuRGMxDFsqICrPI1rYwv6WBxGZ3HROtwE2bunNgg3nrLcoKAFEwuLN7X+ouxhRmhrDDJkdgv6NlTjCCAJTOBMOTCUEBLelY0NXdQDKrLCKErlgeR56SOIY0Num9sxSS+KGbmRRBqBvFE5s1rvVxzsQcj5xQSqgIdrNTYE3DZDCXnAacQhtCGo4DXxCMAIWHIi4tB3YJGeuEbRNEJDCxeiJEIu644yStHAjteKbDUxcz6dV0D0pDZhqlNeVw7GQn4InRCGRyjX+vqpRawhnoct8tQlRUlch3u12kiamHL9nUFJHjcaPzjiaTEEGJOYT/CDpSPM0DHnRqlNZaVVl76tCHDZuxkjpgkQUG/ZgcLl5KYcDMdoc9bdzb2rsxo0h1EZgvezYz1x67MqyAi5ArNTU3J5Yo3rqpme52h3i4TKUu6RpqFiVMIYKQcK00AOUgjmWMbL07IvmIXn4mKAxnT6SG11odUTbk1+/dzYwhIgLPll88vnhW571nBjnTtm1JUGcmnlJkFP43lQUs5C4lWQ9Uat+aU6hjStxtzU7HNAknt/hwq/s9gNBo8OTL6CxjQvZjpCnCzNo3ZoYVD3AZuxUATq5dN8thQowpqGknDxMR701N80i21gFyh5ozCEUotiCo9VDnlm3bzBPuGydFwHInvVm1uVOV5JBHwTbJ9nMjZMYzju/oJUUK5e4wMjciCuVqYYEQOQdvi4hKHdRiMteUGBhZV7LBiQFEH49IeMReHboTFFtmVJjhPxRt4RJ1b99WKrJIobqLL6jqcaYzs4QEI6E1st5ChD/U0ePriEg1aq211mfWaGb/w9/8H1rrrbVhzGMThp1rLG3/ckgSpdRchJkHOwy+ruu2bfCQCPG+ZbcRKGotulrxXc5Z6wQpbCoj4xzwEx0Kf7GuAgASghMEYhFSM1VzFWGn4I5Y6uSf2s5+akWO+c6yVO8KCqxc8svcvW8bEUnIjDliV5bd0q2xR82bJ6YCCmdHH1zBkZi6u3NldUvfcnOzTpG3ZZHpuSCYWU0nSzC8dWLsR0bsJyTRGMtZAfVeyqLD+eJUzLjHmSWU/zHTaBHppjANatssBiR1GXnsa4stOefSnlooTkRCDKZuBg/ePQdokQoTFVmERSAsu8ql1F1ZDvvr68uPP/3kyeNH63rPsI8++PBnn3366NGjJ48eFuG7u7tXr169vbvfts2hu90umqd1v6+1XuwWllpKKfCn1xdcyldfffXtl8/v7u66bofDfrs/rtt9KaytP3v2tC7v393dWVfVfry9H1u4cC3ETFIurw5Pnz47XFyuXYmobbrfl4cPL2+ePPx2v3v+9fe9dyN4195WYtvtdrY2QmdzgpJJCM8BQBp2JpouKyIiqDnlLN/SxSgnoQaFJ4XHg0xHJHX2jqeApeQJQwTJkVFEVzNjkakCqmcyou4aizzmutFsVU/ZXYgUgJK4lPUVjyaKmtEYbHqgMjPT0GAJuHOoc56CBmVipiGmA4BgRg4VFxKeQqo4q4fH4p8YnHfopgPbjHMF2xyMO9w10abj92mwRc7eJN+YiMf/0gjCp3919olMRUopJBGRNFIpAMzJBUg0O3NSL805FTSyFeiu7KgsRohxUWbXqkS0O+zjQ3MswjDzdb13X+xMkHWGYpZsdowObDYNrHspCzHm7EVde2sEkBuXult2SjyUqAlu3RBGj2ZtaxtB4sRUVVNNvccRIIjI3BkJFvBxf+JM52Q3KAHOcPPiZtm97srM0ULQrXEFpyYRO4i5jI9RmPa+MVMd6HDmsiuiqnAjRigruXlhkKMIQn0GbkSA92691mVr94WklGJqBCxV3Ju6Rh5g5m3bdkvZ7xdXW65LJATajEhUXa0JFamZyUWq0btyAKVKNTM4d4MPGY/dbrf2nseLKcELV7DQwt6Mq4gzA8WMRQjCZNThLObUgqgi5ETOAEc4MAx6lwhDpDcjktnRdHdyrULaNobv6kLmMQR1OBcxbUl7EnJHEXIPwxomD3UQi94bmKBkPcxXyKx7jrgJpKWKe7eubhbIJCahUkQ4oFxZlGUjDCFMpd3gJCSFGAY1K6WGuUVrnTxG7hTnfa2VZLeua2srhImlNV3qBcyc1LqKoC6VyFV7qXVrjYjM+nFtqhq7dtu2EgaUCxMk3LZUlQgG7cF4LO7eu3YpxckMGwgWGtcii4iZMfm23scZy1xSFS1QjOzWXc12dcfMzRTdADaFQtXcQMKVWQxKJEsRImrd1vUu3LRJTaF5gLPIpPIClepkg6tq29boOfW1Y6TdW+/HbQWwLLtaa29ZCFEhZrGELrvURWpxNUb0z93dpUgRiFTmcL9M7NxSWFVdHYjN3c3M1UmkltDx9sIEYi5i6q3fR9a4VFFVTjZBdfdNG9SoCDOZO0zBWipva98yZRSpC1gR/BIiGtXsqN69tca1DJ3AnrNCKUQRKzSmydu2AbS/OEgYn0KYOR1fAAKVEqE/po6Z4kQqHDlx2J+YdXeYkQxqfMykTlINY8bbe0jTFSlLWep2XCXClMGBbIPDu3eFioizm5uzs0g3lGV/v741x2G/7+um2vb7Q+/dzEU47EbNTB1cFtktx/VWezscDjtZbm5u3LywhMaPKpyJuYBo7dpa62qllJh8mnUHsQSG0zhY0cFodt96j7Cmbupdo4tRKrNAu7pu3Zdlx7Ksx6O2jRaRUiHSO8Ahqc2H3cF717s7gKKBUlmWZQGxwpycCre1eylMpbvrXQMJl4I8wyPOmKmKSCnsQoyia29dhb3E6J5SmpslFbnNvPfGzE6s6tRLGYxUM3PyGoC+ab8HkHNhgYRgIXnQsskj1iGYFmB1OHIgmd0G1fBc7NaYeb/fC/H9eiSRyFzMPWQxyxLeplQWIZHeO8zCDyxK7rB6itM6jMxdzVpfihD72gM+RDFtBpMslF6QTKq2dXUnpvRdi4Q7eFYkzFQMPWZPLdq9ZlKL8kBkCftGvVkRgVGVBdbiqM5ih2EhWWcQEalFouwkr4v03kOtigsRLQBaYpkiAxujYJZo98asTEEBvbFMNdkIQuzQ3g0BL3RvuvGyOHNXdc0qPcQ+3OJMt65mozdHRNYHlyxARkHs7F3gy7IEmrEWllLcXbIbRZHGFVlCQlyEVRXmi5Tu1lpfdrul7pt2l85+UvtCQpHl2DYArlZEyn5xd1OtpQQ0WdxZsjG4ZTuGWmtBVUj4IDOYeu/OQUbpVIoUshYlCcOU4dq2FvgPkt67QSPNCOhwqC2adXctRYRKa603JfJwg6NEAefqdwIkpGOUovwTMljTJmFz4hzIr1PhTi4E1SbsQsxunpQVwKxwBkYicnZVdfbeN6fUsGxqREna7GpMZEhweMrOhaunO8uwlvCeAKsibkrEwkPwUqSWYps5scFNtXdtpgSJ+NB6V1XVtI8d/Ba6v7/ngducfgoRewLiEi0qAAAbwbSTQCq7xU0gNppYs1gJ3ZKJNpwM4jY7ExOzD311IirLbuvd2LgwVA/Xl+y87Hb7/X457EUITI8ePfzggw8+/uiDn//85x+89/SH599dXR5+85vfPH306OGj62M7/v73v3v56u1xfcOVHz+8FoiIrGsrstS6XF1dXV89DDgPke+ZCP2zjz54fHVxd39sra3bkZ/Ksiu9b7vd7vr6Uphvb2+fP3/+w/fPa62uGooS+/2+lHL18MF77z97+ODx29ub++ev3759y8xPLuuerm8Xef/Rk6+efFNr/fu/+7ub+/vCwhAX2V9c6XZP3hkd3hmdPBJm7PcXrTXr6mFiOllmk5AGaOx2mDCIDeAhYkmReAsXVe1uxKjhQK66NS2FE64/kCdchJy7qRNiuFmMQl0vdFmsqwEeuQ6B2IXJ1LgWd5puEdEGdE6QKRElAJBkX2ULDFqJ8NWj6+fudg5jdI4ePgjpnTnA20wVzp56QRGCiXycVlkKTsJwYnAALEsh9jS+STtGFuEhxskIHZ2hCuQxDmUfI/csgEWySRGIlJLTMOq9k5SoO0rWXwZA1XvfRKTIUrmamRsxA5ptYU+QuBM5n6zjbZHFMcFHUXF7X7ft/hitRhYCfD3eLcuCROiURGYQN2vRgDBT4VpqDXHN6AJjMHvdPfK6w2HfWtu2DoDCbwfGJXwwyEFb31S7wzjcEIto62peRYxls8baorKa38otWvDssFKKw8ITV4gPy84F22ZQqDVzIgYZtdYCPlBotBficaafwWzMg+NBZvsyMlFVMGh4GHjaqMR4PdaZEZkQGAgKvlsHTAoT+dZ7bxuxwdwKR+5iZuQhQ+vurtZZqIokMI48BaEi2QGrqTkMvZQa7YjWGjwKeO7dlrr3EI0JsYXAaqRtLLPCFDCowayrWqkHIgpBBYO7qsG9a/FKbk5MTNGRcjiBuqWdVIx3wuy3dw3Pm6Gjm/Andz8c9qpqzYwMBnNzpwn6TQybOZmH6oubmneHmhmfofmLVGIIyMmcDSCGg3TbWuQD7s7Oo8OLWg9EbNZNyaGhjRLuQXGFzJzTxrBuiSqFQrzWo3V06hIpeu8K58HqmbPuaPf03rO9bR1kpexIyAaKuIjwQK3E2rWuoXyi2sw7uZUqw9LMzHtd0nyY2BkkQgxilnVNUY1sKJac9uTkZMC0MPpSjHAQohx2MSvgCjJXeIz6Q3dJHaouNbY4i+SqS613aPQdJX13inuLh4n0GkmGZPQbtmMLyEjeoskrVSu7UqX03rf1nsxrkSkRPMx1cmOqqrlyaMGbaeseSJLQimPiARoaATT/HC3IGEHHD820sjg5gQzOBFVd17dl2am1KDI9nE8CIGp9NPKMiEgp+rVSC6u5jNFKzoYkIAOTjsyh+7q1RFrnNIbmhA0IrYUosZbZCk2d2IR3BiLaB5hodEw5Ua9IVKGQJKTZzFS1bWxDw2+Uxz3j3MRZjV+2EKgXbT0IGalbYzZ19eIJwpwARghDFVHdjm1baAn4K4Cmvfcep5EN4sOyLEGYYWYnMmfALJWAo1lNBO+G5B7AwRQy7MRcSllqBbD13ra+lBoZJIu4iym2tQM9hOuVzNXXbZsJ5QRxBN/UByZTHazwAjiDA3nrbq2WnYuTsYOjGu1wN2NIKWXMtxAA17N7637mTOjEXBhO29Y9RGSEd7vDbrfTtIgjYSYOXweSUqDZ/g9ZNDBlcRKNEkb8KHZGJiucTaIcXwxAAbJDz4kyDw2e48pT0zLBtxirK8++aH4HNIuIBAJGZXTqsTJTP8pBgYYxi1GhizAsNONEJMA18QSrZJYflUDcfUUocPmsATCFmtwp3NQH+IKZicDOqWMy5g85epwBPWYeRMwFYFly8jnWfA4n4352s3Vd3V1qAbj37sQgJg7MngaVqlYRzkmRDYBcVCZEFFM0TCYw8VlqCJiDqRBLKSUKZhgLxSDCrZuT6hq6eXQazJp7amvFcipmvZR0ezZfSlU/8bOAZHswcyl5MU48/Z/1jMw1358YDJk3fEz+aRDYywwvAdNgFj9T9T//9MiDEVgkM6ZCDHXT9GyncVjEsmeYEpjHRHekvQxXhwWWJ93jxxEWIg9jIpQsWvJm5O4MBof6B4hHQI69P4ZCGs99vuH8X+YS8AY6Kw9i+fmcepGBmV0CoR2q+24Z6wCUstRaN+29d+1JO4oWQy5RgFJWAvOc4swIItskTp24qfQRA+Y4ypkI3Vq6NkxTLkBCKG4UA/HOoQbknls1Fn/OoSKRi/9lq8uy2+2aad0ttdaHDx/u9/tS5OLi4tGjB59++unPfvqTX/38F8/ef7re3bquD6+uKujFd99+9eXvn7/49vsXz+/v75dlefLk2fvvv399cXVxcbFtPcRoLg5Xu92+b+3+fjXr1u+fPH10efHwbj2+ePla4cuyHC73b9++/uHl8/v7e7WuHdGYq7ul3WxSeUe73rtp319ePHpwfXk4rMe7Vy9/6O34+NHVftnt93sB3d7ev73dnj179sF7zz7+5MNvv/7u+fc/fP/tt9988+314bDfycVSlros7Cyu7b61JoXNvfUuzFVqAB59tM1oLpFM2si9Z4hFyM7Eek4NlIhEOX53J6LBSEvQAkVAcIeCiSRAQJbKBURkXS2UNYmCyIBQ9uUozTCPcowhcGa6RDRE9c09WvNnuVAQbg1nX8jBMd92d5ETFj95hnA4TTmV+ODzpfujOEBEk0Tt0KkfQiQ2xDyHGsj58FbmPp1vaGZmUc1GbtM1jsXKYYIQnzg6yMrMYSyUemNJ7aH8RMQJIhjOlj40CEIPJXLm3W5XKm9N5+lz/vDj96OJNY54Eik7Qcx36IxmXEq5v78vpSzldKK1vrVGciiRBke9A2QTpGtXwBwloZMsxEZo6kRgYWMyplKKFNrVZT0eTyf4ADwDpK5wS/BX1+PxGMpRU+vh9PRDCs4pMRDugaPPNq6GIBEssGPpmsMEY3Xznp3FiE8RZxCKNmSnVcdY2wagMLOwWm+9OVyW6sQiVGoFkampewyP3M21t7bGG7TWsomdk0vmoNbEWT95nkQgYgmNMm6qzdQJHhQ5kIgY0FUdzDHSjgrPsskVGXBTT8bcyDmifCChsFlFaIQIM4hBnMJGQskX1bLUgZSEkEMExvH+GmoqZoigkF1I9lE4mZm5FcuW+YxEgSel0zbzdw7+OM6HGqQMdc0YlcxgcTrwHCC4WnNlD1T5Cbti72YVI+9HwM886eULUdA6uAU+hwRI7T4qIiLa2rQp631T1cp7IoI7rCsMCMmqYclDlE7B4ek8uBlAGN640GRqBSpGI0FWM9XGDOIS+MNzWlc++ikQ5RTEKiBDpw90OIaYFrEweyxijICL3CA+UwQbXt5OefpGLqjdHF541NuR+A7821xp0U6fHDaFi2cvSdWYg54lLGLeTTshsHNMru5qwb2JbRwaySfRLAeQyQdH8Z9/CyA0/VS1tQ6JDHuSHfLLauDV/aQidr6EThwbs+i5xrHi5kadhvD9LITCBPpclGuE/rjgTBBP708CoNYTLih6TB5jZ+ZSJG3cLS84kq0YsbKUWhJHmiWZkZRkyBMRjXEfDfl8kDh6Vg/upZQ4PYzgKUtsAclO6I9rmLQAUmvtvQcfFGCRSkTLYqoNTCnaDgdFBZC2cz7YLwCcHECddQzRhLQQBYsyekeCIYIqIg7t3UM2JKuC3O8hKXliMNayy71PmYZH6BxJiTnPDJwQ1c84i+ex7O5m5G4S9OZRpcSqNrNmp6Ox1uJMzhGUw2KAHKDCYFKzdduWZeldEQAGhqlmixWAMMtgXkRZR0gka4LUZg9ex8+ZKN17o9+82+0ioKpqjjEoWuLGzAHWdSIuJaltbTtf5HFkxj4iR3frYzwFJi7S1g4ki45YABpiaB0p7OkLF6IWhWU3DVj7PLNmcCYCO5i4jxxoIufjYWn4pMeWMYLDvHufs4iIVCPOmwe7iYlJKJEsZ1ysiHsSrcPeB8AyydtdzUWSMQwHfDCjIn0dQGsiRPkwrSnP8G/xGGqt2RKKpa3WYUzUWitlEWELzXAWM9MAoMVjDb+nyJLMpwJCtrqGCeIIQfnS1o2zIzAjlRBrNOVj3w145EzyxvVHKpmHs2mAvUtMuKKKS6h26/Mk9ZiRETBkEd29906jAeoeIRrD8fIUS7NlEFVfPJc48gwUkFRCzGPNIczqNrrpEauTPEmpNEHdXADh8KokOEydvEc2DyYmYeZo2c+vMPtE0bB754dEUqs75bEea0AEZg4c1xQlNbg59eB9mZdS+pYxiiho3h4dT/dU5EPQ4IFglM8O2ng+kU2ekJ+ezN45j5wiQwBAg1nt7qHNEfIAgX8sLKreQylh3LyQL5VaWFCpHg6Hw8W+qQJ4/PDhhx9++PDhw4uLi6dPnz56/ODhw4dPnz5m5pubmy8//90333zzYr//6quvtPWu28vXL+7Wu0fXDz7+4KM/+tWvP/roI1DoNaS2y263K7TwftkudqrNfH93d/fVN998/vkXb25uP/joo48++kgqzPvrVy+//PLL3rdd3ccTMdXj8ei5OrGq3d3dvXz58ubu7vnzH27v7548ffrs/fcP+/315dWu1Ddvbh4+djM8fe/hpz/9+PWL18+/+/4f/+4f/+w//sfn331f6r6BhMilhPD77sCqDnWDa+trV3aUIqWUvq1A9s5H8RZNtogxmRGZmWfpeRqNznRChgZb8HZHghF71kbn3CGRXcGTuEsD/G7xy8JslqpaoGSFUpzQyEeveAcP8u7yxhBBOP1VRjhkWeunFC6v7+zNEIXl+Wu8CY86M49QswRsnmfRmBSJXM+na5g/fOfTZp4ZxjcuNlj6zHEmnl9GRJI4F2LwleMvMyrlxFfBGcd7kM4UURb56flhpGfOpO40h9XuFqjjqFoBANpzVF9rDZfgyG9VNYDKnkANikqy967zo6KmYy/EWXv0PD5TMql3VmdGYbZupspEwsJDP0JAZ2MSA8BEgWeptSrovt2LWaAIf/QEo24uI/SctV3DD2asntkcDXLYnEaqNXcCmXAVJnNFpHvsMZCKgNPVhMk4YqtZOkfK9Brtw9LGKzELO5n1rbfCwmBrTUC1FO0hx5+0tLlQspsO1FpFqjNpd3XTtnEtcdQwCwdWs2OyTcYRSSJMxFtT5GzntGSFiVwMDmEW7poMAhrD5CkRjuATyiJUnE97D2M6Gqyz6BDlZnC4q+kYUY4shMzVco7KzEFO86HnrKoMVw9zFA9vSDeLHINHATwP2rZuqp2IpFCeO2SqWph675SK8RJ383xbMrOfMYIy22CqtfJ4/5lGaN7Sd1Bpp1CYAy0HzKMADOYncU8FTNvtqlkw7HsP5Y1MXDoszFLServ3pGWeR5bTn7lGXkVEMdwgPvXMRp8wg2asgPl9U1oJxTkNGOI7piR3UJVrSY5FYDTHrCNe7t60F0qsrDui7rLsqPG8mXDfti1UvSh67cDae536HCfGLMws5Oy7do9pWHRVXAM7jTFXnxs51KdnTPOh7Dezn7nHozJrajx8UzLXwkBMnFFtc8/M9P1HcxU4emfmrfeIgNNDKzspSIBoKWX0+sPbrAIwtW3bRFxELi4uYmFEf6TWdIiZpwXRwEyPG0hEPUdSPi64xNKQQoNIqcwc7WH3kkIR4z2DELhbxIfMwyiuaFlqpE0kzBTjmPAyqft9yMfmHo9vvSyLapsN0bg/rTXhGlpi8dXy1sFGeUfMnED3+BvhwiRSVTUmukVof3nR16ObqXWWGN2kQcXWGkZvmMItlnHWtT35IQMgStCBmYVnOzOxCJjAgjyDc6poqjlqMiulhMVDehkDGO85Gz3unpYLTExSizCHwRvW3mSpzkTMzqcBUXRNiuTsN+1LhOVsm9MZIwphUjaXX56+1FqL9RB/ZTm1czOLd5/BOdbzyC3YkdvER1fFVN1c/YRzOQ9ueRnxbqOfHesWAA07AB+AAthZLB2fHxg8H+E3LqaUQkMZu3tqGXBqyL/T1jTN3Cjqg4htsd3GOZS99sxj4AB67zFlWpZFas2qWEQzksRHhGs6E1lgwDCoZfOe/yjUq2p4QgYsNkv9IVZk1nfLEuZDERNEpNZiZsf7eyKiUs9uwtTP87gPGPyLZVnWbcuAc/YioLI0nw8xxrxjI4w58Kghs2Qi4vPab/KWzz/dh0DgfOizi5H/GbT/EdsjwYjmhlnzLAZOoYkiDoduXzIDwdE9dLUhZj6vCm6gMDGhkIAiBwuYy4DymEdOASZ4UECtmZSQ0J+e0ifV33helodu3+12Mxq4hywkJ17BlBMplidITFCdTrmyuzfTAmFmKgFpPuX3Em1ii2TcDS7EYWnjI4TkqDBEyOJZw+LYzaeGlPzFec9luLeZWT/TPAfgrsQ1TL+JCCShDBM8he5WhC8Oey7SWnv8+PGnP/30X/yzf3G4OsCZ2B8+fLjb1VKKCL15+0pu+O7u7uHDh4dlAXD16LG7P3j08O3d20VKKWVd15ubm/vj3d3N25ubm8Ph8OjRo8cPHsrFBSBSdN3u13X97W//8XdffPntN99xqZeXhx925YcX9vbtm6+++fLLL75Y1/vD4TIavm706tWr169fF1DU5BZQR06wemvt+fPnReT4+PF7T54uh6U6AWjt4urq8JPPPob+0R//sz969Pjq3/8//92b169fv3mz7hZcXzYFzHd72S3L5eXlk/feO673b1+8Ot7fs5TetuA6nYvInt1zH8HWAbCUUefkL882JbLclfnPo/U/XzZy6RlMiFLtOeD+8XBzpZ2mkWMrMiUj2U3dRllMFNI2YzHYAK3QmL56ljyn2HXeSst9/U5f750C9Z2YM4KAuxPJTNTHreB5IL67Mt8ZpZzfZIx8JhCmpZRhndhdwZJd77lPhwhfCtHNmAxgMG/fuc6hlcfbtpl1Ht468ZOpxSUizmnWEITbOY2IQKcjD54fcf419/v9siycbKxILIqRx0dQDAkTKW7mmvkKwzXdZ2KBFTgsdebjFFMEpj3S45MasbsTu4j0jpkollKg5u611lmZ2xksrqSIPcSBiIXMfragU9FRUu/H1TTMNsEMNPcYD1LKM0Qf050slq7VWrdt3VpbdmUpUsvOe2tdJWUqVFV16xTmBG67mkQySXCEEQqL5FzWJ6bFPQV/8sQqy44opvkeRpcOIhEyIy6QApCTB5SLIGrq5qH956O7HCjWHqk2mEvx9PQ1DJpUNggGr8RDSkhYwsJksgS7hnZocjuFAHhITMEBt1BJDCAHAKZFwoO0m5m2lTmVtK2rmUVfH6qhP5CFCIX4AyMdEY2IYeZRZcYBYcYinHWLkTt54CFC28J8pJScvedAloYqZ/bOtm0zcxiEQ4kxTl0CkfrYXSLhCkNEpc65E4kIFwk6a7SDxNPXodgQH7Z8NzNXG0rUzAIRQvASB6bFwwm3jRFNoQJE0l6Pa1c195PwUqGADIR/4JgAuCNNjMPDk4gI6t26mzXt4EAkCIAUXE517nCTNjOb6nE4y/tHdAsl2N60xSJhZpJTIG7r1ntX9kJcSiEeqs4lSzKNBpgpO7QPNTuAnWIgDwCUTqfdjZwZpwA0y10RsZCrMFfV0T6gAH211tQ2IhrCXXlI0OwQgRDpzjileuj1xRyYTprSGMQSHWE9Eyk+W12UOeLZdLfK8AnToUc6I4MzibARNu0A6n5nZt27BB95jv+YSXgpuyWH2xpNkFKiWo0JOKsFwMMbVDgNVEIJZaCGst62rjEScXeuRZCZokczmQmRH0dspQqBmSkFfsWJnWtB9qsxDwxvGweohDQQs4AJyGE4089UL3DCUB72ISA/ulrZmAhQV+CCx7VZkbBZotgnRAJx004sCIOuswKPyMJyOeq7qWqe/hY++C/MRMzkgZwxgrOEw0rX05OQWphKOFHPfCLg9OrmCiImEREmeE5EmQyqECni7luMp1goJ0tGROVsZ421Gaib9GAf8HVnqVyCxSOafqHGMmZEzrCU4XFCdI54cDcUDqbCAQmjbesiwly2aKKFCBNz71376u7hP+8+4F9ECKlIZoenkjCgHizuoGlpKtgxByVbRARkTqGabn2Ul06cPuFRl8feSY6WI/PCYSw7OtcAh1unRVNUncDCMAuIiFABoK4B55kA43jogS7nAcZ2V+vJnmQp2jacwB+nDE9Pgu35ExZmiHhhEYNrz45MAqRFQuSCmc1JDRwLm8kIqs1dfaigi4irRaVEFB5w9k5/+SwvLcROJFJS41E1HNRjhh0JUE+qnjMH4RbR1QWlcHRINOEMp5OpEjEcrkOQNELl2Z41KBOFBhTBSdjNYs4bzmfxaNQ8tK/CyzrvpuWkPeKvdTN3AsXzypPLwEIpyRyHNhGc+titkhwfDwrFsizdV4c7iZMYhmMzF4sHGcw99yDMBoM5tIDVPWbiGP1KdvZhMBEu9GWprbUWbmzqLFIEataPLQYDcWJEaA4pAQKYCWYgt+BAEVvICtOoRYgMSsiNSSB3czjIUwhFxODQyKMi1zwthFGHRCnlrlEkUNCenEIIiVh4kYO77w67Bw8fElGt8i//5b/47//7f3N5uLq5e3t3d3z06MFnn3227MqbN2+GSm27urp69OjR5X6/3+8fPXj4/Pnz755/D+D+/v7LL79+9eLlg4fX63p/vLth5s8++/TjD997cLEHzNDX9f7N29eff/75/dY+/fTjn/70p3f3x977t199eXd/665F6IP3nt7evTWFmfbWIkj33td1c/e+bsthf7xfwURF1rY9/+GH2K1Xl5fvPXn6+PHjp0+f7C92y4GXZbfU/eXFxac//eTy+nD18PL/82f/77/6y79saseuqtq3ttyXD95/0kGXh4vl8tC2fr8emxuEhGRofWbSBHOQcSnn244i5ZUTjwCz1sqYS1m9OvIxAkQhPXCqe+fTV/Ue25yQwq/uXdU9cHYcc+Cons1cx7aNGstGLq2jG6tT742JhNMHAR7ck/nJGU9i0ksD+DfGHjO+/eiaKTOlXHjuHrs/IA8JzBvjUyRcZFbUjKnuFq734+XjZWe3dRbjQphaJOMaRNJF0kWIx0RaRBjg6X119tQUqlCDExPXEpJAbduYKaZTEObx1aIApkGkqrG7zUe3NJboylxmE00K0ahcMvuFgK2pSrS04s7GGeAe/m3pjxGDf2Jmr8Lubmo0+Dtm1kxLKXAXRJnghXPapDAMTRDyzBA80fNRORojJkbMQI4m3p3AgwZCekKe8piE9hbcTmEJtbTeQ7ckTtOQ3fPBDQKMzIiYxY16NyCOp7AiSu+W2ZvUtgmBmVQTALW1pjELHY1AABELw85k6nYGtLKHEkktpS5EMeDk7ibdE/08ppoBN0rHSSYi6g52doJosgWIqEPBEr1VZq6ShzEj9ZMRxoMIyymvJHQmbTrjx+jWZOAGEI3PWtg7jSQsVUP1rJFJROeNnIjswkLknGpcRAyHAvkcfTQvhJgzQeyqCDZvYgsHWyY+N55dgJxng2TUzDk9ADD6LtH5YxHpTR0B05cgdeVimU4zFuuaJVTXg38M4pELxp1prZUaziwLrMf4l9zGTNLHfIgDVFykboPieJpSniG6I22NHKguJS4D7OTcXc2NiYnrydgub0csNmpbC5koniZMIySdB0Ea/chTMIpJSOtm1s1J6vyHM32Pj2JmFoBI4RyRiCSkVOmEI4o2iLfWghOiYYQXw5PCAJ/FwVMaOuR88vpjWTDztgWnl9w9xKhsjHmJhk/BaDMRZemlFsDRCMfjVpnhTM4+V91oENL09x6LOY6H6G3Pqz0xeJnD69gsaMlrKRlPzXoMKC4uLlJnO1Pk0+ky1jyIaLfbjevxAdxyH2UM5sS4R3yPRrTDearlzd/BsBXdti2yZxs4AevuBqjZuM+HwyE69Fu3AnXYjx43Lbu+rUJJi4qji0Mqkym7VylXRtmZzHGWxfW4u3W9b/e7IumBBk9Yr3cz2+8O8z7YEMmMDYkxo+tNSXiJzr1l3UPChHoyWEuHzyy54z3cSbjml2JyS+sqIRhcRJjegZ+4mUEDHRwfDXciUbfAR+WiSqQ5IkAO04MTpm7ktdnymMluMo39FKBEhDAhdpgInewgRMhXHa20U6AYXdSSnlURWJay2K63lm3jSN1inobQat7ch5IRESDb1hKHScGzz+vf7XZRAOMsWxIRzX6Rm5kPS0ZDogkU79SoaoAZ2YlIGf/0bEPRWfzHvHUjQJ3Aw8y83+8NHmJgAdPovZNQgueSaJryofN19rlOlD3c/FA/TRdnZ2re4bi80+HCHKul9+6O3a7G8KH3DhKRYYg9TAp5uD2pJm/5Rwdj5oveJyUw8wq8c83zYpiZHSHHNBtMGLV6fMR8sudL5TxEzHfOO+zp9Tg/K1hb8/LGT9U19nv0m+KeOBETCAgY4AitsbyzjgiY9HymZGbJNigDIApnUFNzJworicRmm1mvdTcPzVxsiffBaYINYLQA5jEHp1ReHPOZBLUxMYI6xDSUtynTGEu3Ck3vBffwwQxZaLCbMAI5CcBHs3KeYjjVxRl2nRCsnx8txRO+iyav2uGDfzoOrAZjlsK87HYXlwcAIvTRRx/9+te/+hf//J9//PGH//APv3XXRw8ffvzJh1eXh9dvX7159fr+/vZwOFxfXz95/PjBgwe7Ui4uLgrL/f39F198cTwe1+2+9+3Rg4d1KewmItt2vLm5+f67b1+/+uHFixe3t7e99+PxCCrLYX91dbXf79X87du363bc75f9fv/ee0/M+3fffffDDz/c3dwKc5Hl6urBk0eP+tZ67+wopYBF3e7u7u7X49ZaNBxfvHjx+eefX+z3zz5474MPnz1+9PT6+notR5A9ffzk1//sV8/ef/rhhx9+8OH7X3359csXL25v7i/2l4fDobk/f/W6qT179vT68ZO74722znDTxh7QVQWIwrh3bITcm8Hd82H3cLZ45jOZP5l/zt2H0zExf2ixeMPdIn+PTNUJqsZnO07dYa5w9eTElVIAjnzP1Zg5+HowikHICLynK8lPD+GbTPNOF8+j1TdD6Pk/HHEA5y8641/g7HzB//TrPKjOl5mFxk0UnKnUODKr8/ePKx8cqNN9zijHaUn7o4+IQ0NEzlDKYa0iwUmeISteQaDFPEmHqEpMyens9zFxQHEua55Ns5APrB9SXAUSrfYwq8kJHCOFSqKxV62tZiZIDSaYwnyJVnqMQvuU6PfWVmaWUqI6owGZbsd1Hnzzi5hZcYLDycMGwYwMxAFjJQotPpvmtO6pmta0o5OjgVxC4yuoMBzqfFHxO4D7dV12JfyNem+ew27WbhE4AUSHm5xbtPxL1RbloLemoasooRQSE+mcWDIAhosQjckSh7jOOa7PYUaBHYU5WbR04J4qCkQEETd4Uzcj4VprH0k2iEiCoOXECWSaHoySAwQAHm6WrbUwTihCwWv2k6AOwsHY0w82q3rmzAx6t/lglhLsL6NscU48hsUaRTJZPBJWZo6D8SxxRK0Shyay8exAGJqTKRjJ/I+XRZEW0FmLJpDM3cskNJ6pp28wuSHY78zk0XcKMY2BLIiUpQcrvZG7V4m8xbpuOGNGmXezUkgQ7fEwcAvTN8BNjSBFeFnMqZlCmGuhrpiZh3n3LqVCSnQQZSm6dYeJkBjnjiUXIjcEGjxiRYj5azZWSiml69HM3DWR/4woGk2buzuc2AUkQiH4CQAOCtCOBdYuc/RT6qMBVgaAaE2FgzMo7h6TecjT+1D7CUlmI6ArQNEMN1AOTOKLj3zOU2UXNNVV4lyZBQklQbcbtCkRBX+BiEKYUyMfHG0UWEjdgAM9f8IIUNoDBPuXDE5urqo8lGPGGZlFfABMhrhO7D6fHKHTMjvDxNb9bp+mNT7HR4jMDM4l0Q/5bzN/5VKK1BI9y977WdPhlPO5e5wm8TfZpvYTDiruv5QhmxH6TEXMLNvhWY8JWWS8WRqZWXcXze4AJa0NAMiJ2bu7kXPkehQg/4jLEamS+isiRkSuAeVAHnih6pgvFoZ51ybkIpLaZdFNEJFSdOuqGmKKXY1ZKDqVhcEsdYnmgrsHFDysQX2eyu9CuWiA36KC1TaB8cVDz48I5KY9lBSjAu7mtUqVEq0/HRP+i4uLedCSm2snIi5Ewk5kSIgLlwKBJl6DS6kiEo5GcZHazcyZk8M5IjZnaUTnaYGFaJONlRbrM8qwoIWvTQO0PxOC/f7i3u+7ruYja6fCwtqDM0zjo0e3PioaBEyDnEACIWEYSSJHiE5tIFh1hbkBZBETADZXtRbW05UH+MVLmbC3U0JGTm4uReKbh/1DsuMYqln1RovER7MgN0L0Dc3myiEyddd44lOMLehHJMOlLoMJEVVZAMDczTvcg/HqvpRTIjWzutxazMlEqCXyouxjjTAwNqyZGTFtfQ3cDWVPzYPI+k8SR3L3bVuJZD5iIAiGJ027Uwo4VjpGDnqeqkav1pMhPOc28Qves7kfv6s6sqPBw3fVFve2q1cW55NnmxQyI6jRoGpzlMEOAowcLOwcoxg1ZVBlIVC0wjjOKi/xKMzcyEWAHoRsi+C8aRe4iJizh2oLnKR4nhoAB7cAkRaUZQcijWl0Sk0Hy+5sAmbs5oqEIhOXIhLyn/ELrIXXKTbB7OjtdA4aHGQcw7fxAALqHIZndgYuGH84tXRjMOdG0FMPItcnAMzhW3rbxI9zBTqUQtCXylKW/U5qubi6AtnjB9e/+c2v/xf/8//ZTz75dN3uP/now7rI9dVD9f7Xf/Vfvnv+3dXF1dOnT37xi188efKEzG9vb9++ffv999+/fv36888/P97dX15e/uynP7m42Bfi43r73Xff3Ny+ub+9+d0//vb/9Wf/0d1fv3yxrututyPhJ0/f724Xh7+ptW6r9t53++Xp08fkON7fq7b1/qjNvDsb130lKU+ePDns9okWMQt1m262ti0kEtZ1PR6Px7vj7e3N119/fXNz8/jxqwcPHuwvDtfXD+/v7x48eLgcll/+5ldXD67/4R/+8W/+6m/v3t7t93t3P96+ubl5y8uuHq4eyH7ren97d3fzprVuzhTcHFVigoMggXfMBkR0S6OQkMJCAg6DOhsDWKSD0WiQIfIacqbw0xso6FEeS9jhlQgCHpa2Ts4aGSYQHlgxZw04oyfvHR6MdHeQxPlFzgxhnDnxzgVmI89xd1BosJxWYHQQzw/Bd+IDSRaSJ7VFOv+d8z/70EylUbieDvH8HpgCWhjl2XlzP95xIEZyl1LOegmjXTUuobm7C7tX1RAHOeNT5OEeWiGBCcrzlkvMHykiXRxodI4hN4eGpi3cfUCrPKYXBLj13nvrG6POf4WY4Y//9BzGRqLKUMC8LOI99asUHB6si3DvXZtlRZnAJRViVY3yzAYQj+BBogTgkayWHPMEUsAHkzvS7hgBlnlL570+PyMjpdahyQGglNJaMJmdWFkC7akiwvMUyYeUh6UplGKAXokK1LRvrfXCxNUlYCwOEWHfDUc7MrOolYNQZ02JJKV0xpozsziGJKaVIC5CEHfeWnNigkS3sWs3M3IsUih5Y+w23ODdS6lNe2St8VVVXUPfk6d4RmrEt9Zcw/MmmJmuqrUs+2W5Pd5HOjuP57iBMQHQyIynAaa49j5aL2w9RwcsEJHWVvNOof/EgJO7wt2zAaNQNShIi4NAFnjF8YonGIXK2G5nGz4BEjT7wa7Z/1adEnanHZf9fCKdJXNsDhZCqDOJwyyKV04h0NhC2X0A3H0pC6VhVTc92XUGCS0kepmiNFKaxTzATKUUqqV127Q37SGTG9dfRJjQDdu2OVPMJkUkiE7MUcyExAIAL8Tq5q5CQaedHXqEIvxut+u9p5i+FObUklVrc78IxwRDt207HA6xvevcBRImmZN4Nu4nwd2H0mxSUlkE7gqrJVyxmIhgTkjmapBgs6clQlTMtZlFCRhTSh+04XjzeEUdOHu0VWopxUa3iJmb9uPxyOmvG409mqS4tp3YktEiiaQwUlgfkwQe1GI7W2DzH5ZScBZe8gYylVK0tRi5AEilvlLj64SCzgRyc7JWLNo0OCXKYOZ13Xa73bLsbQjb1lp3ux0PS/M5E5t3ySxsVOXs5zKbTXHx3c2aBTYbTDGZzB1RpKBQ98LSLal0zZSI6m6HgZqmKfelpqphIZDChbkhS5xYZvB0Vh//JCxUxWEWesLxBHe73VIYMO2t961rtEvd3O+PRzfb7ffM8zGFUHEYXBURdGtwWps29cOuRg3cDWYaEohJWGeeOIKxQdy0LYt4xECiZVmiZeZnJ7cMUqWZF/BZ3wFShKkYYVcXJ5CH6U6e97XWAN744JzLsFOe9U8pxfTUbA6RxfMkIH4/FdLoRNTMcjcEdc48aQEXkeX6+s2bNwNfcOoQR0tI0po4qbPu7sN7XESExMy2bdt6r7uDWvOuc4CWd7L32EHhOBJLd67tEeV8PrWInjOpCkrtjNLnm4vOp5T+zl9F72bKz8xDIWBT67qGk3DE/NlTwIjunJQEGPfi5O4Eju79/Igk51s/Pa/56amYnalwDJljjJS1KEmgG2qtltdWJGUIE2+yLEtrjciC1F1rDbPoCF8DrZBfLVKcgRg8wUzcvfd3Zv4zBsWdi9uST1xP8yLgVLie3Zsfz3TMbAnRQYvH7RN80dfVKoFOmWIMJVU7jThPAy7h7mCZ3I5QnwLII352MlciGf8o3NgkwKZGDAvKrAPuaijMTt008opSSt2d8j0banzxjPb7fR7KZnEAYShczK/LI9/NPAGucG3tfBln/uAuUiuR6eo+xJDe0dN1M3NAisTkel5VVsfRaj/7/cg3JkfxtP7j2jKWQofPggWQHHAgjmrhgsoXV5cXV1eHy4ta5fJi/5vf/Ppf/vM/+fDD9z/48NnV1VVr7Ysvvvjhhx/u7m57bz/9yWe/+NkfvPfBexe7i60d/+6//sMXX3wRy/L6+vpf/+t/fXVxGQOeb7/9+q/+y5///d///c3N24uL/e3Nmy+++KL37eHDh2kX58wiX3/99bF1pm+ZS2/69u3bt2/f1qU8efLoydNHodZzfXFZJAwFWFvvvfOBHz16dLk/3N3dtdaWw/7l61dPnz59/PSJut3e3l5cXFjXzz///Obm5ubmZtva69dv1UEkrtZaF5FnH7z305/+9Bd/+Ktf/uIPt6333r/56us3r158//23r16+/Pb759v90WG7i8utt5u7O3ELk/sCEotOvYMpIuPcNTxIE3GgDSwuRqJy0jSJ/6XBo8mAfFbmOXHro2pKkdrIyRB9llDlIjipQ8gBYfLeVe3MsDf3cnfjs6OE3ikmcb6do2U8L3IeGRi13/kP7SwsnweD+OE7Gp//LeYwzZZ8RqfTPz//tfMLngmSqqaWgeo8JedRdf4mHqZuRF2b+9CPiCJuPCwboirzgiMCyBAKyacz3nBGgNOlEpVSenKBbQbW6CBHyiEiU4JRRNQsIyCHAy27W1eDJpX1/EaJSDfrpuzBpRoaaUV0bcwFzOja3Si6NarC1IbKTJxNbe2qWqUEAO38zQEUHcH95BPAFMi3mbfPpRDsMRDSUdFhXZlcCnk2BhKoFk3r1tquVmaO2Vd08eJxFRYhhxlLqXXRrW3bcamVQNYtyg9TX/YHIlpb8w5gK1SIxB29K5PUUlIqyaHhQlyIKQ3luAiBuqp1R4CoCcwCjlo9OeMAnNBNl/3eXbbWmvYo/tu2WUwz0bmIgzftwYeJ8zjWcggXhUpTKUzkoxu9tdZoYHRFJMfSruOW+sQGb9uWOPtCzEuq6SpU1WFSuNbKDN2aee+9l8KlFDV3U09Zaz4RfYmI3KzDPX2FAsACRAoVSmu5k9Wsjx6HOTnoTEyLBgcgtkHXTkSlVgC9NyJmESduGj7PZOZrbyVO90Jk6RfNHPxEmBmEwyGGYvG4W7Pdbqfb1lq7OOyibNvXhZyJSJg6PAxaumrvva19v98vdfGupoFjDgkQb00BJmKAdvtqiuN6Nywq0XpXs/ADV7NSdt3aqDNbZOEi4lv3xDUgjFQCkhq3gh1R/UbcKeFcNSorkSpSu+nWW5ElGuuc0x2oatdOniczEQOcUm7OrTUqiZqOSab1JLWLSLjHx1NjJyL1nvTCuU9p1IQ+JvAzqzYLd7gcyxjckxZHPs6d+BsKXlqQDzOlNLOg+EJEki4oZYbgPAAGVwRANzW3IpWZOZcQEREkM8TeOxOpqilKKc4MoBIty3J/d1yq1QoAXbWrarB6KxPxxcUFgNubu/1+f/ngetu2ut+pex8g0lLKfr9n5gldoSET52aegAVWOBDDMXcnWSqFjAFb7yosUou2MMhCSU/U3npj5kIlyotadwLftq17Hh496thSI6fO++PY7XY9xe0Qu77rZmrMHGiIwIYInyYwcJi5NVW1GDc60E3JPCZIZamhJQJyAYi5NT0et1qrlEVVj+tmZqUsUnfuZLDd7mCGrkrC3YxIejenvtQ91FprAiyyMzORIiI9+h6RxxC6KfnpoI3FFjZGuQbg3TTgLSLsXR1alkWkeBqtAWpcQgjC3EyYi3CwLmKG7+5mvVsjImLeHw5mtvbWghWvVlgEvCx7d08L1iyzudZq1m9vb3d1ORz2Wztu20aRcqnb0KwWyKQ9d/Nld2Be3Z2k1h33dTvebyICEi7optZNRJZlWddVpO52xV3XdW2pPZ1o/7JU4tru73vbiKgUjlixrmvv6sRSMyMsRNpaEJJt8ISdiEdjKHe0Q4hh3tZt5gdzvzsJl9JVS5GwDCWiw+EA4Ng2QEJmuffOghplv1s3lVpipj0zD3fvrdmAAQsV1eYaYhLUe4/GjZLyUHasstjIb2amq6qd2XK4mHc5NoIwmHnZ7QCkxZeU+Caqqg6BsKf4ChFt2zaF9Da14/1dhpdQSTjjCkWLioiWWomotbaeCcKl0RrXqY4zEta0cosITKMmjNsiVOIcjy58ays4ZREzBp+Fvt679sbMwsN1ond3UnVOWVD03qN/3XsPJ6Gz64eZqVmtFTW8bYlIaHg4h06uqUrYHfHMTuGAjRAXtWOpRYQdaF1dTYQM3roVliJLbMMQ/gzMU5yqAWYL0fBCXLk2UxBi78xhFTNvatGKEZFa2QYiuibpgHrvTlJrjaZqwtcjMRstmK01GokzYqJFlKA8Eve8J06DGjDGYucvTI/rQO1HfukWda/Be9fdYV8P+2Za9suDR4/2F7tlWd579uRf/+m/+s0f//rpg0cff/LRe0+ernf3X3799e9/+9vj8fjk6aOf/uSTTz755Mmjx2s7fvn7z7/77psXL17Vwk+fvf/JJ5+89/T9ZVkq8atXz//yL//y3/7bf/u3//Wva63LUl+/ft37Zk77/RVQzJkgquVwccGFrh8tBDHD/d3xzZub2ze3Wzs+//a799578uzZswcPHuiqy7Lf7/eK26DhAOjrdrP1m5ubbdv268G8H9e7ly/98vLy0YProET++ld/eHd3v67tq2++ZOaLy8u3b9++6TelLsuyXF492B3273/4wYcffnRxuOq9v37x8vvvf/ju26//4j//j7/97W/vbm7X7d6bLheX14b17pZ0Y3hvmxOWUgNGqB5QMlL46L1SKq06WesR4XO+gtMGyb48cYwTtm1r2hk+MfA81L4DEeAp9uPzoEmKlnm6K+U0mElGuUKJCwtipkc3vxQzC4MfSZWTU5vewRZLDUnvxxBvQ0ykR6zw1OtNtB34nd4iQcJ3ms7q7flvZ4xyd5JTo3Docb7TUpvjhBlebHDEZteAJwTGvG8t8HTxynDRWwht5OWN+INhyMfM5+fOCJWnMz2/wriGdV0DhC9T58h9W7shOHnGdEo12Y2ZzPr9/UaDRwagbV1qRRAZQhm6b+a6rjppOGPBYNs2uMM9QK/etffu2l11L3XewCKCkMxR5TPSn2niI/3dVRT1d+h3JNZr3qN5a+aheN7GLqWsrRE7CYjA5Knh7xMp5GZmZGTEcB6y+5KY6vFoAwDBBCNnh8LMrHunzszuPeN4hLLxTwDWmPoPcUAHmbqwB/4YJGQeyQ3L4hqDQKJSKlFPNvxQKiIKIEDkH24mwiEjlrVx4NtKgbBpt5g7UJqyhLUMLOG7JAVmOkRE5+qf68+GrmwstWiacpqgOuNUunjKzxJLQOSjRQrVpgphl3BgIsTopoQEXPgih7zH2QQjoRdneyA/IiPOacvNs39urVlreY7+gjBNPFpEUXTbAOLCoN5FpFbBoIoSJaKVmZnFwuRaTh8Rd+BwOOz3+/DqEq6RJZiZdRWReEw+DAyIKCCUQOg1snkCD0SKxd2GOsinA09KUSMoQu4KFwbWde1qRXK+dPaMTopWns/OVds54mu2tUJhJTM/M6JEkhOF+elpAh+fEq2p/NEAC1DoxwjBT33HiGW1Vkq8wymRAgZAesjAzpVmZkstPLSIZhtLRHBWuvjQho0J7fxxQEmdALBnLyzuHpdS4gi5X49AOipPJW0/Axp5wlaFiIITEhPIU6pUdjEBpsHTQGgphdBCrTaMWOfxudvt1BqNvsxEq86FGjcnzol4q621+VfxQwwlw5k25YklQkStr/O5BMgzZeRBYZ3KRU40ZgeD01F9WchI3USYXXpMyM8633ND6eiYCvEQTWczJULYrsZ1hjASwu9qaDW5gSQkFdzJvWvXQE06QGDZ1T1409Y9sWk5pfRoNCTfj4lcRITL3d3Nsq/EwhB3dDcw15oEe87VMAeM72SfqQjQu4hIWeaDiPgWE36mkptP1Z3yDYRVld0haR5LKS028vqzQys+KzjwYUZlrauqE0iYbUKB3olvtcrhYEKZmo+Zv1ap84DnoJWegeLm/47AxTHmmlNWjOZxhNfeW0wj4yu4Q93YjAbsM2/bQHyQ+5xeuvvW2+ya5+YdW/B8+8+r+lHDfvxOhgt3pyKVdxxzMM2UjmbDm4a23FmzbO5ZIhKgbS3iY8q2kJQqdUyePbA8dDpNwpns/HnxeM3bOMU+iSjUvzw7dDQ3ow+Db06l69PcxszWde2epdJUKsa7LwsmPZ0lOmeCGv7uK/62ELTwbGICJ/MwD6G+IQI64yrR6dpC6mnua2b2s6MzE4Ddwg4NauKAlLvrsiwzjwwdCmYGU5DGzxchxTxniNzM7zs+enYusxsbvUwqKVQznnW0WRU2KFXxJvN6WzsFwwAWmLfWqMhs4cWiSEAHpYmAqlp2SCEi2k+OCQOPNkZV4WJ9FodLXOB4ODa+shtxxmc/rXYWcd/OdMjHvzrtzbxpwkH9Yi6mvL8osiwgu7i42F/tLy73j548/OXPf/Fv/s3/6g9//Usy2+92Dx9e//DD9//1b/7mt//4ea318ZOHn3322c9/9ge7Ur/69qvf/e4f37y5uby8/PnPf/bo0aPHj59eHq4ABvTzz//hz/7sz/7Tf/pPX3zxBRGFUHPv693duiwHd7+736os98e7ZVmfffDB0/ef7Pd7IoGTOz179sE3T9+7ubmpizx58vj999/f7/f39/d3d/etdbBILff3967WjuuuLuu69t6Jfbk4CAvc13XV3tNwQZanT58J1w8++GDdtlevX8R2e/Pmzc3Nzddff311cX19/fDhw8dgXF1cffzZx59++qnZP/+j3/zmb//mb/7+7//+97/93bfffHVzf1f2exGxduzHe+udYm5CVGKxjaN2bnkbeu84O1L5XA0xIhiGvkjIXDHbIJsA6GYn+lXwKmYHOStTuKMHDxMAk51NUO3sgzImuOPdeI4B340LOJ3+Z1/n/DUjxnlAO4/Y/+TF50NdHuPxmdHN98yak4ARA0+XPUUN+TS8pbN7Pv92nsV1DGA8cyEnOhXh508hmgtZ343MfH4uEZ9fZPwpvxgzD+59/C2546xymd9aREKmPH9tfCM3EiFX8zALIDdV650jTw6Q1MgijADVkiQy76opbMOEhLXDkdJ9JIHypAlfnWE/7km+7btPFkAJhDRz8ZAMAHBOpzYyhaoxMxWSQuROps48ft8cbJZkxvwkKDEXISKy3sjF8hbnJAQZ9DiGsBb1iMLIOdw6mRiiEWHNRSQg/ggBLBCYDNxMl2AAR98RQ5M5cwWJhx3flp2DxpDatQTmPEBAFGUwA1zEAEv+VWEpEA4sdD54dhGK1B+GbevEiGZ9sw5kOU1EcQvCnCtyl9MR5eRq5qrWCUYiLOBMFNzdQRyNf2bigelxd2MvhRmkvVlvAIoMlaa8rYFzMDdzpLTruZxV2CcVKRGw5rHq6VBuMbtVTTeIkKeTKgDsDM7ax+EVfYZSisKjuV5rNVJzozidJZWNwWhNAUh3ZtJx4o2NFiRTAQjOcO4G7dpDR5/Jk3ZFRMxgbdqsMadfSkBlhCMCRRZ3gu8G38x98FFVrXUnVs1Sj0brKFsVmbLkrY+PJCqx6GNPxkrmwiLiKStFri2o55HpJ+caPlOxEP9x11DHnuHJGUi05IhiDpvDigw6lvc5/PHAImLeMabTGIna1tpIfTKEzQOJCHA2sxBoIRL3dKMKlHOcURFvM+sMoR2haEaYWa1SChODOa3MU6qeiIgM7nBhKaWAeA6iFd6jP3VK320UDynlCKe29bLUbmot0d1EoflGDC6lgIu5c6Ug14mISGHm2KSFFwSzxSkk0zLdZ2YRhkgtvXcnEIS4UCr8IUD1iGLYU2ubWEQYam4wDKRuKMQykafpjogEPJ6ZbWTYSWQdnVqMXAGQScsxpt7DWy86ylO3KdocRETOQsSiHQAH6hzuQGeBG4E9zno17JjLQhAjmHkQDUFUpKq6qkcDFEgpPjAFvQDCTsTOIHZK9dfcoFIBMgURStAR84uEgGzOA3XsfQZHuCulMCR6bWZGMGT7n0kQurNEVEpigMFsRZAWaI6QrhcZCBSP7D38mRW+BVQHHgY5fHZyu3spC2BqRpBSovXADniQnYiIqJsqnJhSe9Ty9JtnJRGBCV4IQBqiskhV34jIDL2bak4a9/t90+4ON6fcG6P2YwOg7k1TBcOgvffC4u79rInj7t2CUpRonUykIkoK3B0jZM38hkhUnQjEElMvNwNxElUIstSxrszhw77CEML9gZ8hVCmh9zCDD0thKlRSMM/MlHPWRpTyB8wMuDrcvKQFjpsZ00nlbpQx8VeZX8iw5wmMNyXeezMzkroI61BDCRhgpCstuBJ5hJ8SGg5gcAhtuEYZrzl5Zgnh4bBPH3e7SGkTxEshV94dqLv9bCuU2JJxBoVguiPa0JHw+8DgzCuJFHfu98Fhi3OqmyWZ2UNnLgQa4zkLGQ0jOorDMZTwWp44ownK+XHvyKS5O7EQR6fYEEdeWFMaHJA6PN7iiFQPC3QOiYSI9fDAVavqnAgBGHoxTLMysT7/thCzY8seTRQws6QlcOoeZUufQCABx2pynwupwKd59chYnOGcyGgYU7oJ2EDXE5GHZ1iMokab2N1Btrs4XFxcdWuHq8unz5588OGHv/qjX/3JH//xf/ff/S/3+/0XX/wesNevX3755RcvX/7w0ccfPH303uMnDz/44INDqZ9/+ds///M/f/nyxYcffvTek0fvv//+5eXlYbno6L/7/Pe/+93v/h//w//t++ffisiz95/2sWDq7mDg/X5/cXG1bVs7tvc/+uyXv/zlH/3Rrx89ObjrtnVT792++ea7yvXt29e73a5UXvYHEllbv1/X/f5C6rJt27Yd74jX/eHy4iJkKtdVuRDxrhj3Zt6ITPe1XOyXpe7U6eHFw+wjQlpfX7x48erlS3ff718+efze8Xj36tWLKqWU5dmz96+urp599Oz6weWnP/nJ3/7t3/7Fn/956/3+7k58t95iXVcutRZhEMHgesIduPmA2gKhqHPaj/k7TBbKJVkOIaYSak4kRJG5EHP0STtnOpYoxVMOcxJPnmfrKQDG74izWUi1+CQdeLADQB5Hpo0EDhjIqXeGtHE5DvA4Ambrh5mZy1nIpdlAmv+cORvWRMPGj05HCY2p8nnJPavYedN4CjpS/l+eEW1bSjXv02x0vk+V0nvv2gK+kzUtuaUYhs+cRMYpACDyYToDRRcedfikkIwvmFd4xoOICoJDWScE290LAQQbmSed7jPFl1XrQyiEe2tmbVcrmRsFfTec5zEmbATroaZF7yo7qppbZ1CJBHSMmcQla+Akprk51HL2O25GfoUy3+5Hr3ETzsKfu/Y8jEfPQN04KlrKITAidDOsExgu4RWZB4JRIGyD3Obu5gomNncCE0Fi5E7nKAIi5rASRejVcJH0gTB3Tip4fC91Yua67FpT4cqJtFEzC6EXYHhyZ7rpNDRsglrvbBPqnnxgjvUK9bgIGIGzi28kkYEhpNVDF2t2XIiS+WIDvSMiucWtu6UO9tgBeTCb9Uiq5m4HwjhAARdigjezoATEumQ5BZrw7jnfUaeLGe0AkRMd6Px3Zi9qNLxp7sYTnnb2aSQ7W5GSA9HIp9kpj9+Rs/UDcCQogYaaCVBgxSmFPfLgNHMvzMIm+ZcYWYsN++hCDKbEdRcZ+m0/jjtElMLjXBwW81qAKotRfiMahYFz+qliaJDSmOe0ts1yPdoH2dSABK2Fi5hmjLNhquEDHI4zBjubR7cpb5STcVpQxC/YENZx92VACTwgP0Nbq/9YIZzikbW2YnbjRvA6f9ZERJyjgx+9w/zNmKAEMc+yBZRNtRCfxODqzJefUe+if+lnXLIISYEjZRJVDZ1npuLuVMqyLAROWMSg/kajMwZB+6XUWp0kFky0Ffb7fSDEmyb9w0P2xlo5u29zhTNzG5PnKLDnckL6TRGEKSZpElZS1FpDy9LdzMKlq6OpuwBM0Mhkma33eUIwc0hVhJsdDyXqTLhVzTsRLcvi7pRSfzY0e4jOlFGjH+Hupg6CmcO5lEXg5tp7N9C2dcQMJGqUHPODOaZbPjvN7m7mS90H9FIIpUgpxZyiK2Fm6m5mpeT9p8HmiIAQ2z8OtnVdaczkoznIY9g+pwKnG1Ik4y2RhyKAW6HoXaWtEQ9/QjnDBUxO6Vz/c8XODCK2DFK/elxqTMVKCUwBzs7RGRKZ2c9Od2bublxEkAgd9Ryf+hnZfr/ft5bvsywLeqK655qHu5ltYT3SQwQxtxgJ09DpsoHWMZyiBL/rPExEXDgoA3NKMGv1mMj5UDNmZhJu2mf1RaNend/9RzvXgVBsysuLeEXWew/qH8CAuZGZhYTcjAnumWNF8I6NGeenn32dUHr3ofKCUTrG1+EzC6KQ8ZtOmGWpAFi1bSdqPd4945iZ5DSSzYo6CuB/wvGLS6ocYHszMwJPEND5zeczrRcg1RB/9Eo49/nNdAdc1UbMAbM4NJzjopCmfPNT1wYyADUca0cjPwnkP52BM88/yM9G+rFMLKRLU1OgMDN5uANn8xpjUGVuqrpfdswM0947AYimFBCIsGyeYhxI4xUiSXlJ5hO4HuDwmc9E9asWtBpXNQ+wMmGgyTD6nxx4i65OI/kKW6zE1knmujMqZpnBrCfBhTjdmEicqVuTyo8fP/v0088+/vSjJ0+efPazn/z6V78U4e+/+/bli+f7/ULsRP7Tn//BsyfPri8eXD+4FKJ//Pzv//2///dv3775+c9//od/+KuHDx+WUnrvN/rm++9++I//4T/8hz/7j29eviqVnz59Wkp59eYNER0OlyLy0UefXD98sNT9l19+9frV25/+7Gc//dkvd4fD7c3d/fHm7u5IYFV/8eLF8Xgspbx48eLm/uZwOFxcXNzd3TXtD4lpKcfjrWsrLH7ZBVSrEFHfrNe22+1quIWbEayILFWWIm9u3mrjsluIfKlSy4Hfe09EgpFn3ltflyp3293xuN3d3SzL/uLi4vHjxx/95COq5OJ1V9abu962b7/84su2bvfmRKpm2qqkGIpPjuS7aeRcnKdELgYtBDiCTcET4TIeYvymwUWKZiDB2XqOUDTrkXfmjXNfn//v+dZwvPPz09smPAX/zVf+Ps3m1FlLdEqKvPuV4SwSufo7N2GenjzIkjMccQ4hhpAqgMHaYObokp/fTGMxtyHndBY3zr4XMw9OvdO70+O5lzMfczu/sP/GLRr/cB5n43Abow5LwJpPCdUBvfERWM+BY6oqcCJWb72beicmJ5LCEYxoIFDMjOCFoYFGsncWWDc1VTIVZkHCfgBilglanN+Fzyb/7h4pQiTOBTzQj7GiAQzXOCK4m1OM1VgB057ZdLRSQhOGWA1pxAwKbSBn79bJlaTETPT0EQ7yOAwoSnQqEsA+Lqx9i14fBGTEzsZsYGFxd3NzOJNIqWZGra+9cXDo3LU7mGrdSa1GHLF1mnFBwv7XyTmmnjFz83CbEHFDMyVi4sJJSxjCPzEOcnU39yiEVkpijxNhLDgFJCK3xsDFPSbAufRDyRAEWEmh19DpynmQuRFDuFgzs0A1I2yNOeOOspCrAwied2Fy1yKi6lkHRsqbTzXWgQAgT3FEQs4W4oxFKojF8nIRIkeHuxu5JRfRpPeerRxhkIswsWxbL6WI5IqvtXBuJHJHtM4oZGLd3Y0JYEGemj4BwCDJXhLnKc8MNZNazn5nNLFCPdOT7QmgWSC4JPxGRcrct7H0trX1bgBMmCQ8mwRUYpwRU4JC3GFujmGBk0qbahjeFjF780TQc5SnvfduAR0XgnCBcyqIZqcADiCK2JzJpy5uImZsdMFZqMxcP4nL6KpKsdjIzIgTdK3bZjChZKrYgFXT4NvQlLNS1d5jjEZE4Ska8NTIy1lqPP0Iu2YGzOkTiGhzM4V3C6PPrMw5sM01QxyTGmgyHaLAOIvL5cxxOnt8lCjZWIoU268Ugy/LkmoK5PHAVNXA6mTa3b3WTKZVTd0xiEPEkV8h+xfDvsEHHsYHkFK4zHZplHaGGCYEigAxqyIupbjBtYGJEZrYY21JISkUsJJgg2/aHU5FBG5GQuwnkYhI0IwCssVJLdktdds2NxURd45qudYqGJ8iQiZRGJspzDXan4VNRjLJvLXOqe7I5m7pOwJz6jp6K0F3TNXr0GdQg1syfIq7gwRGfWtnBwkDAyIBFmYpwhxicq5Nl2UpXMgpRGJjaQ058qCMswM2+kZgEmEIzGHuzZoYMaC9J8B0yBD4gMRbFP3M7GMuEJbv7mZqoyPOzIjmgkVRRL2vqr0U9oBjm0XvNN5S1WSsWIySSYG0aBbmmCf0AKxlw6s3Y8HhcFiW5Xg8tt5BVGVp1tSDQBRJnpNIV926GrwslYhUTT0oCSABNE/suEdmvm1rlP6geDgOEISHro8isfcSc0FmZkm8t6VIbyRJ0XhyUgP5ZFil/3PUVBgXG7WfZpLBGFIu4XfFsa8ZgBspO2f+ypbq4YmeVvUQDAmRwrh7lBVaCG51IuJaAEaotQurWpgpjq6GmXUuRAKDr20bu1uYJcyTzkS+oU5luJmMBC6qr4xyNpzbU3G9a3DkKpMjfObqbllKlW3bet9o0qY8KmFj5iolpeoAs5OtlJsi5qicFl5x0ttA/6qbhguwd5xNyoiIOCJP7E0VEWcANDuhIyyPAhiZggGweE87y2sBNXNT60pZ+TM7h4BRLAANt8JobHmhWEspRkVx7EWryrwzgwtF0GLmacJEo/1Rsz1tasEFyOQ+ZZ0zb8nvotHa1fAZZYyFwQMSn7GG44COeyQz/kAiq1EiipvoirBFimSAcqzFZalcy/5wkJ38/A9++elPPr68uL5+cPnkyZMHV9fXV1fr8bgd73dL2e92+/3y5MmTi/1hkX2RBcB3z7/767/+61evXn326af/6l/+8ydPnjx//vy7775rm4qUV29e393fPLp+8PTRYxHZX17c3t4uy/7q6urRk8f7/f7y8vq9999/+fL13/3jP27af//NV3//+edu29s33zLcDLUsV4er+KaXl5cKL6VcXV09fu/x9frg5v5OpKo2taZtNebjkYWwX4qIOBMLSuFSmIpAzTsfy00hrHxfl/3FxcEJbbccj9J7f/TgwUcffLBt27quAK6urvbL8ubNm+fPn6ut69a2fn93fMtcVPXDjz8kwvH2Dr1dX1+a9Zfff9fXtR1X61s3dWJJedMTiiSP9ZzKRph0hbnEYADOhBx+wZ1Eau89Wx7gdCoicpq6V3AzH40z7qf20qztiBI1CQ+nzNMw1sekKsvvURUJJORTsvOESZGLt6WRM2R/yBwhyjGP+/ll8T/5+tFQIfs7lqkRmU5NeYNwJPg/egsbYxIAXISEhRAaOiFlNPd7/Fowa6KKSlW8VAgW8GAhjuGlwyONISN3F+LhXwvofJqAnDp986qy85Wd/QiMTMN0xEcbNAQ7KR/HCQvNbrv9zoofj13dJGIFQQkeTldTjDu0O0HB5QUzyFnikMkzmhA6Q3GsW6Sl5CAQgy192bNN7O4g19S1RMC5i43B1/yS8Yfo/M2HTURmPtLi7O1x9v8iFBagexSuHKr8bnB1hbnm8J1icMGJE4a7sVO0/4kIYCRAKSt4EYno27uZmaoxEcEAdafuxlHTuSscBCd2Yi6CjqY9ho0ilULvuzvSuRMe2wdk6dENwJzEzZgstGFzjzOpKnx45hAxc7fVAxRRaOBVQSV9NXLRjN172mDmloQfkvDvWtupVLMAy+XgDoCauseMkEFOw6wlINbCQ94qx9E80BkZmOYu9XHlc//O/4x7DSCQ1rmDg+c8WzuqYVeArLLiD55NG/fetbVGhGVZMN58ChhEBhEfDSeiUN/lPngCNiSRCif8IZO/3pVY3eE68Y3ny5IHmTO/C1GktdlNGDGaIOoeZDlWDSCze4DxlOvJQ0ucVlUopC4O0JmqdtxDHrAWjsyaUr86vamIaTizz0gR+dHI/9JbpNY81CPvEcCIGahSRYKuadEPi3rY/SQEgsEh7O6lSOYfZj6mDUQUK3/eJQCjYesjgzoF8fMwF/Ex/ovmFMU96iUHFZZSq4G6Z2NL4XMOzQNCE2+uqj6mOrOkCSld4ZMHHY1ZmY/5NsEDV9xaA/xcqzbk4mIuRETruq7ruux3cxlMiLWZhc62pGHsyUVmkodngcfMJGym8XTn1/DkunutNQBCklayyeePHo2ZETPXMuTKpNbKcFUVJwNBzcbUbv6BwolKAuBjYSU1r0dEdFvtbBw6byy5UQ+3dnbzgWfPTq0Z3LsOayjO8W+WeTGoYWbzHLRxkTi03J1HwUCj1R13TDX9ot099BmKMZgEbMhxPcZAL3uO0UlhEiYPVk9i3ixEgLiEuRqYQMgmwulxnPkH+kAExA81IJecGB0783GtIZgxPG/n+ldVIi+lnt42VvuAj854OJeEn63k3BLCAlLVi4uLm5ubmN7MGfU8mM//VdwKTURJjhO33rR1Yq/Dd3F+8R9lVz4aQ+Fn19ctLbTYieopNYGXM8pZbKhNezLBkiIbBeE71HRHtEBnECAGZVkyriJuCEPCOSy0JxA9glntuA89+NPgdKIlRwph57rQ5/EH42HR0JjIJRToD4T1VbSM8vyKBzpvVK6BM3ibj2bNeYYzj4zTBhSJ+djY0t5793FKYjbyCCwQYdP0rj8/RpPGHJBCZOE3f8fSB8EAcHognnbWOXNyeJbGA3czhxuQkJ+4SzbXKoyJgFMInd80uHARxMhcXRlEAUPOvXa2BoZKdpAlZOijEFGRwgPzZQlw4fl9fQzDx/ZXFok2GYCZbsytlLnW6HDHbU+qVj7EoDJx8KvzPjNNJIieeVljzCHVjR1Uw1ECapnALIf946ePrh4++PQnH7///vuBUvn4449/+ctfXB0Ob27f7A/L1fWzUgoR6m6pdTngYtX1zZvbly9fXl5e/umf/qv3nz3tvf/F//jn//k//+cvvvrywYMH7z19v5S6lPrJpx+9fPG61rrb74lot9sdLi8uLy/3lxdt0x9evnjz5gZETnZzd/v27dvj/c3lni6v9kzFnQ4XuwfXjy4vLy8u98t+X5fy7IP3Hz16dHN3//0Pz9++uT2ud227ur9527bNzW9u36z3Eqv3h+++Xw77w8XFsl92y3I4HNbj8f7ulpkfPX5s/f72eAT46mIhOhyuLi8vruNk2R+WvSxrWwFrbQ3Y2rr129u398f1cLgsi+wv6tu37eJi+eiTD9ft9rCvb1+/fPX8xbbeQ5WS2JFbYyq8EBGPND7WKY3nHv3x6DjObX4WD0eBNGDD83dmAhNItUCTnq+r8xc5QCRJlDsb2iJL4lM8Pw/p/z8q2bMrmVEFZ4fFdCGaHzWTkPN4PoLhj8e5DlN40G7PY76eVITeaQmJBOGHZoN4/u3wB+Gz94+WQcJqzm+7u3dNrZ/zS+q9czmrVnCKD4Hcme8zznfMnXt6q7NHXCJpcY7GPVw54aKZwTJzNKApgekk4Y+lkZt4N0X2GxHDVyYCU2tK8Fh8RvCurmZEtrXz1TW/3XyC5w/R3YudsDBzrZx+iU5I+smiVjdYKi4QErNDRm4GI2eDuyq6u4HCXVbdXYIp6+4EjZgVvqaBBR2fU4BQaHVNuhsiv4ntxsXcm3aDE8QJHk73FNqLbB6Gvr2pGmFuRXZFarQVyjuSG3fgWM2ZMmOLngXn5SWgRgTJHY/zO8dloQJlMGIULmZOLEGp9MCIps3oCeFAkT/C5qOKBkwg1sVdhiIupWtSNr/iYLMTFOr0IFV1EsbG+RuNCXd3cgXgFlPoZATPTEWTzRuLjOFqMGIXSIQkEQmDXjrzEwNCrItDBM5PZuLRV4u8AWAmCJM4E1zhRlTyIPUCjMaTbnEfiMjBQTh19u4pcC/EEnHL4A41JSIIuptRWis7cbDvgj41Wklp1e3mDlU1gjCTObpa8CtGscozNkGVBoaTUkYoNDzPqspRKRJRqZWIzEMHP6vc7rZwjDfjxHAfiAChTOUwbn1hZgkMnsJciEHRErMq3LsFfYWIzCzKwjjvZzDSd4+N3LdndW8pxUxF5JwhQ8S11lSfQKBu7OzPmoFJBEw92h/ktRSE9hmzDzEYnKkaxlVFWZjZkvssD3xMNYucZrAYfyYi7S1yZTMjyRNFJCgScQKkhzAJIynfLsLuUO1AOKn4iNV5DYDTMOnJy6AAdiYIIiRSAXUOjpzCFcLWlalA3N05gmFQ8muZ0XbiJ7kIuYswzqprhOc5s8JJT5gohpvHA42TTCl33MnAeVxt9tqYWajGYZPzT23uKMLOMCI4mbk5ha3K+bnl7uGKkdufACZJatNJqbV3pBy6O5mHJxxGRZe88dBZIBGA6+l0jL+CORf2cBwkYmGMe+3uIfVM4YfhkKUyrM97IlJKwdBQid0XMg0YcyKFY9T9s+SzDN+wtBDrqrosy263A0AU8HiaS3RZlg6KsofnOwwkRSRnTIBr76G9HzYEOe1vnQL7Olf7UFEKzk73RGEUdScRYle4xcKG07haEqZwY+OstQKBEtfDMYwF1Ew1xianstOJSNgdrXWFgznGkfERMvtfYwUUwMxawoyz7EnJhHRnIJo9XPc5GsQAPc74H+tnRhIzZ2YdRwAzp7/rWDlxb3k0pJDM8FNeGDd2LlT3qPZyUhEbQeFuFvB7s9OpGgVw/yc/0bFl8G5zIZ6g9o2ICFYkRN1ad5iZlCLC4fnHhaGuPdI1C3JvHtyUzKNozyGZz6e2S6JIEgo6YRCwONdCFwBk7jBiOSOvjvlJNFiFcywAYGqwg7zIO6KMc+meHsFsMUcMH+SgKES7m5maGSTQjMI8U6KRKUJNY8tQnFFxbDEzQcwMpg4rDIg4TushMvv5k3E9MIOG7yiTZcvvZJxm5ievI2c386ELGFdDlEqfk2EcIL9S67LsjdDVSylXD64P1xeP33t8eX15d3e7rsdnT55++OGHf/iLX3z4/ofburoqmS9SLHp/BBFZfT0ej+7+7NmzZ08fr+vx22+++i9//hd/+7d//fvf/15V/aNPdnV//eBB7/2H75+bk0g9HrfW+v5ifzgcVPXu7u76+npr+ujRg1//5tevXr2K4G99fXCQ/a6aonfblSUeVq31+uHDw8X+waOHV1cXh8vLspRleXFzU3qr5O3W+nZ7v60rO4Rpa+3t27cQXpZlf3F4eP3g4cPr493t7rB/8vTBP/z221cv3zx/+erB9aPPfvazRw+fMEO3FuGukTt38351edgfPggF+63r8Xjx6vXbdW2trWs7dmt3a2+6laXuDvvWL+rbm6bbQSpGIyN445FKZOk7KonYcoA3RDsnpoxOMR8gUjcwEUoMn1jKXCTzqMJcNpnRgJgkDgJLO0YL+YyAUfLJSpqyQI0jfkIMfLrtmmVimZJ7wvCMM/PfAuAhJTXflpLLWvD/x4volLrM4HPWV50dQH13aDwS5OD3ne5MDJMdZuDZZhKiEC0JhQYdDAARYSc4uQav6+wOh3DJKGIRp3xAR09fNgZ7dPoWAZ4Z6M3UnvinXxYDmDm+Mo1WKJGabq2ZWphZxrEDg0e6ySMltkjqZo7t2Taj2b09fxzNFAahOC4JiQB1dwtZgMG4pYEqDx6PnbK3eSMwp2FpzpmdV0poy+nJRbRNVrmqmRqZuRvUoUQuwkaiZjAjASei19w97JScUtdXI/I5SCTrByg8CkhT1Vp3LIWcu6l1N6fCRFxbWwEXeGEigpq3tmHrzrLURbiqamvaNy1cWCpBbExyo3x1OJzXtorsBNxAoVAtQLesTmutkipKnukdB50ZABTRfSASoRxyz8QFDg2woo/+h1s389a6ux/KPu6tQ0FGriCO4S2xh9r6aZs4BY0iyJtCDJizc0DWZ/0DAZSIidi9zzWd5SWByFXNCUIMdnbmtB71gLa7WVdlSEyZSZIzyaNrEPVHd2Mp0a/a7XYiCVb20Z0NAB2xD9Rz6b27azQafGB0WRDWWpkVac98rPeyZKAppZRRttEgh2dSFYsRTNYDgsGJQzOGEQsThymchv+1E0kRI3NTBzuZee86W3FEFM7SNYsE4sS0m8u4x05j5pDxFIA5mZsTWNiNFk7FoSBGExhkVFhcjus6RnoIQBoR1clAmyNKMx30gIk1CkHwMhI47eSc9Noomomo1p16WoSnSD1IynCxY+493bxFKgePKLpTMDJ3VzICZ+ZKxKUUgVNr3YK4L3lWEE0vZSIqQpFaT/EqZinDmCRwJREciyyllN5SbT6Sy23bmJSZ+2ALU5GYuUVQKksmDczcWgsIcbimMbPIwqFgH/5AlDI1ZlHdwR0iPGWckfyQtACFuSxk7oCwK3PZYGZMRDYcC83MnUUoGnC1VotHJswhqhQgxsBax9uCQjo7giqhG04zLtduHe5e686tB0l1WRZyrNv9sjsE3o+JWtO+bYCVUro2VRUGczHTZBV6cF0Ip7MHAb+YHxeI93moq1pv6upSijCXspBj2zqUeLcj4kTNDLVkSg4zx7SsEPESrZ88lUSEubS26jRaEyC6CUwhDklEh8NBagGwaXPmhRGdDMCJOX3FOClGaelkrTcjGI/q3dSadXpXDzzlu8xExBRqLVaadg+6dRxl7g3OLACTdxcpREgdjmifMHOo4gPqaaZdWYzdzN68eVNrvby47rrZgBKs6xqhNgZWqnkxEYBFhE9j9lGZaJ89rHn4ujsXcbXWu6kKiIX6QOL4mMybN8QInkpSHODT39gJtdRAqdiYkOdzD4jECKVEQhRREwYPm4xTI5+JiVtr0CkUPJQgFEp9iKCoGakquxuZDDZm9FblTAh6WQoF66FrD19HEsEZNV01rINEILWYQTWls0spwfji8DAbmRCAgBn/KDFyj4JqdrtOtyLeMKaCscaiDc9OIpITFZAxCbG5unUzdo+uXJBdBZlXRpxUixvLjEmOhU9l1sg2e2+qWljmhkKSt6FmtUaDAhJNbk8SDnuZ2ftMSYdI9WnqGwFNBt8qDt24YgGZEAwGBZiCETymzaUsjORPuVGA9pi5qYbvYzC14UwwIgrlYcnzOmIdE5OmJQHpUFdxG+RwGu15TmXQyRPMkE5pPkLkxHBHJeoces6xNuJWQkQsBxooRUI7Ybfb7S8PIDGz3WH/6OmTR08efvDxh8+ePe29f/jhhz/99KcPHz68PFwc7+/v7u7iaLi9vXWmWguDrCtXVOFd3R+W+vLVy7/72//6V3/1V69fv74/3j9++t7V1VUtu621UqrU6t/yzc3tkyfvP3j06LjeLfvd9fWlMy3L8uDhwwcPHojI67c3d3d3r968ub29fXB10dYbb5t2f/BgV6i8evXq/v7+cDhs27oc9m/fvr5++ODy+uHs2B6P293t8fb2frs/rvebEOLgMy7aW+v3oREb/Re5LYB9+c0XL1+8fn1zu999/+rNm91y2O12T58+e/LkydPHT+oiAhIZGEPYcdtqrdfX13e3x+fPn7em5rrblzev3jz/9rsfvv32/u621vrg0cO7m1tdj6GGFeciR7liyT9SZC860mZnwIzoHYgspQ92NuIjQook0nCGKQAONreUcvYxVwE4MiE7Vcun6mtEAzqDb0QWQGNIYCPI2tkGxNlkOP8TACBnwqg0gJmnKzyLPwhUzszBZ1w6q9ZmFMoFP+ChNnWtx29mUzV/jYzSDK8Pt1FV9YSXepyAqmrezTTaWKUI19L64NubGTmzAxnr4xpOxV0pfDbBmlkWDQWWGVFzwmbWm9XKGE8Io26P9ww4TR80FWEWqb3d32uPdn/dLRn6Qu7RYXzmUOXuZAEwNgO5GYSgmEZQgLAQc9I52YmFKMdkAxnsqtpU9xxI0viqAdSCwYsG7TjJTTr7dwB6V5jBk/Ue/RQiiYgWWKPuLmLBZUp6VyL42WGqJIUJS8D0WiiAwMl9a+uu1AE+jkGXNzNmsrRyJ4K5dSFxwtZaFYHpcdsqVy4CsAEulZnXdTtubbfbQaFqAVbUTakQAWRea9mV2t1Nu6qrqjMVr6UGjJj2y6Va5Hk+tL5pV3ZE1LPpQgzZlZ0zMbNXV01RfuJSM5uxKtJa09aFqHAAcgymQe6OyTARpJRkBmonwEHMGLYLTtDYFg4lBqY0OZSIhIJ1c9pdERNDGNwsKNYB1fMqVVsDqNYyxz7ruhKQSEnYOCg99TMJkY66WTcrvATMr1uedFDTVHD27l1q0bWbYb/fmVnbjkEwi+SHwG6tt+6u6nZxuDoee+/94nK/K+X29nY92tXVhdS8NlUNr1AR2Zdl036o6Q/WtEct6kz3x2Pd72oRNYWDBa669XVZlt67G5VShKjDybRU3u5XcwKolGKg1pqDwbWQOJhImV01BvPmzCHMYWreO3MpLAzpvVMyrMlBBiIpY7ip/1/C/qxJkiRJE8Q+ZhZRNTM/wj2OzMijqqa6t2cWO4TdpcESiEDAPwfwBiyIljDTOGh2pqe7uquPqsrMiAz38MtMVYSZ8cAiYhpZANaoKinCw91cTVWEhY/vKKU4cZpygJTUnWCNU3EuSNr2SXkeeGAoERiutbpqRAJnZpZEDFXV0vKq8OEkBsMJ7mZwqUYJSDKBtZQSwWW3vzBHH3aNFiw4HG4FfMaEaEvEAWYJAb8psVWPpJ+I8iwp8VKqmYlkTmJm4Q3UqzwTkVgAKTqSDLeqZiIyT/l4WkZUJQ4rOVZ16h5xpZTqyDkTs6qmnIiIc9i8sYdAjcjURnlnKxrqhWXOGcTmnqc5zZMDYCHzLKmqL2XNaZ6m2Qlr0XnONACaFrhPACTCL8sJYGGolkQsU661Wk+dOfjVagbP0w6wSDdrWaMvxkxLCBkoGJRSypISi5W6LItaySlpQmkgtALzeZ7NpZRiqsRMzGoOd5YsxKUu5u4Gg3NKxG4dwhQVQK26LOs0TSKZyMZTo6Yr3do3QZkmx7Sbaq2n2KfVXU0SzdNERtHdSJTzLgmJOaqtp+MxT9PhcGDCqsVdSRIxRdESQ7ylrCKZONTtXA3MVGo1pilNICtlEcl5NzOFVhn12oO86st6QtS90wx3SqLw9VTcfbfbzfOOKZUKToBVtzZwUCoppWpF18rM05TMjLpS/Ol0ilWxLKtqdeZ1LUUVZKWaTDM5l7pKmghSSonoSqH+ZR4yYsy8Lou7znkSawvPUgJ2ta4wFUmJsCxLXdUVEr2VUJcIgz0NgysGGSmoAz5Vq2qZphQKEyk1qQ9yhF5jtRrOcwYqMCHiJNOUzUPNgDrERdUdwtGT6qAfJxCcKiJ3ciOgegBnCOTqzd4Lbg4WIadlrSJi7uzVY/YtRIChQhwIlH4VEcC1WlnWfDgAxqE4JBIGV3VdKzDPc8Q3JpJ5ZnJftRlPejK1GqzpnA3w6hTq8e6cpgA7MCdXrKW0dDnbuq7MLMQ1jNM3HGAjuFtm4oZBqKrOzFMUaQ2gQV1hJ1J31Fr3+32IG8EtTckUtq5zkmLVmj87BDBA11XrGlB31SpR5cLdQ6JZwY2X7K4IpQU1JhceQB8IJWKQOVkUq4NWYGEswWy1VjWfcijhl5RSFJwpjOAdxdSNsoAkwduWz5KmaQKZVUUwzKAxqHWywhTQlej6mCsULNQkZNRi9q+1MEg4m9lpKZKn1czMBYlDmFzVVHc5sRtaxcBmrhKpijoaJjCqhoCdBc2bA9JWPYQHSoXk2aOPwEzwlFjdiHr0BGUiA0Vzwcw4CTh6lCQSjus07WZmlsSq9eb19eXl5bzbffur77///rvf/MW3t69vrq9epTQJz7vd3omcKM9TpgTMMRp6eno6PR/zVSKuV7td9fr5/u73f/8Pv//9P7rj2++/Px3X0+m0rqs5y7yvIFO7fHVz8/rr999886tf/epw2IMJZKuu0zRdXV044fHx0V3dlVwTY11PD58/Ly9HId7tdnVZj8cjEy3k0zQ9fT6tx9261uenEyVZl6JF15fy9Lj8/u//cPf5/vJwdXl9BWgpRYQcvJ6Oq9Hl9Ss1d+Kbm9dX12++RtofHm6Oy/39/d/87e9U/ebq+r//73e7Od9cXojLaTmJyC5PSy2UJkhyolNdAAjx48tDWddpSkRw2OPj4+Pnh9tXt2l32F9dPZsRXMLsTZXMAWcH1CiJSEYnS1YiuGehohWe4OGQ5SwZYA6tfyvEEFCtxaxyEjd2jjAmgU6CW224ACJ2sqY4HFAlCmkeciKyBlMilqyoCByUO1A7bojdqXbmQeTDZlZrTa3QDfxIQGZimuDu5m4BWOhDCDc/61xG5UwdnsjkdB7PRqPT3IcOLkKwIjI6psSMzpBrr6j64O5WAz5CzDkNz9oGrCASkWTQtS7qknOe865ljFpqXXlJTiw5hdhnEPOIWZgtyUjbmNmdlIhTtrXlCeu61mhyIZKHrM2dhBkoGihFaucDwAxvgwQArKW2MrDf59HgiBDk6FURSdWqGoIUFLbCMBMCs2iprh48L0IY2tKyLKFr6e7VlOGcyKoe19rwCdEdI6tm1axopUIkQ1plZqJSq5o1Ue+oZ6g3R7atCJBvKdpm1og3ISt+5u5505xo3Zd4TqQ1KmcjZrhTIFHJdzKB2bVWVbKQ4JeUUjUVEmJYCDCROQkRmxvV6kbupKFw4gYWdyraVF1CI6F5wxhiZYtISmnocJhVSSmlWeHuKKVQY7kEfjDYcN2Q2w2c2ix+I5JGROYE6uS0zdeb52SMsLv4+7nF0NoqxB3Mj9B0iZaKV/KmD+VQFsA49p+7G4HhWRI3GRdvTVUmIC4muhjuiLEuEWhZCqNxbn0jAmSu7LlJw3sAxTxgCcEx6krxTTaj6LnnPZpGIVE7GmMa06VaY4BjZjG8cjc1I/LEbQ+r6ul0ypKou++OldPO647GmBLDTcMVJZCrROo+7Xdxb1NKjjafARChqgEbgj9gZMCUMlhAUtyLkpqqei1Lynuis05dPEfpUrcRjLjD56aUArmwoTm1nwrGl6Ex6Cwky5lD+To2izOYmVJqDTwiBJc7JREhb0LETRA9UBru7uQs7gajNqFyj+cePUKgSxd7jPQRaG0LikGsjzaY93WpLH2A0LGIMe5Ah+IQRRaOBMp5F6GwjV9EDGxmMVHPLBAOY6T+nkjGimgjheGTR9rakvLOhwHY1dI8NRJFEjGISE45ZoGK3m/k5iRk8FW79Hdv2canUFWLnSgMadrUDZdIMk2caUr9zodf9+FwcPfjy4u7X+wPzHQ8HkspmYWIFA5o+BI1+ln0p93dKHADzoASEcIptyvZyyRsATMGYQzf1ACEUaRZjcUsIjGlbzOorvPs3vCmnAASgja7S+HQ440ek5Y1Pv5ut2PmEPoZTfRGVI8qbl1H03fcBzPb7/ezGRFbqUSSmA2Jrdaibo2wKCI0Rpc5mRmgzNxNBVgEDUfgZAYjcJ6IyJrpglJLKRxqFa61llQ4BCyIARMRTqkpz3UwZ/y3FltQUnIzMABO0aeLQJTmXHWFNvgDEeWUU0pRXY/WE7NYmzy0eBdU7lotNOaE2I0HutU7kFvbgELc3bs6Xa3VzdzJO4R4xDHu2Aoisoh+gJmxwLta1Qh3ABRwWDhIx6gu1nxsMSM2MjK36NsD67qmzADWdXHQPM9gWdeVEKCGs5M5EYMIwtYnpbEAYlfNKZdSmnQfM5OAwCTUfeMDAmstsLVQKETB1WivtuoJTVqx8QLGE5TO3RQRIqfk1jSfGwMthvnmZxHslkoQmXoJSXM0bTlKcHdXU6hVZeZO3GhrJtLZDcLQa60iOedcA6Fj/Vv7kb3f79tPubt7Wdaq3ueQbabUAG8btYL2olCziYPARSLfbnZ3kSIH82kcE2YGNXLyL3PeuJcibLbG8W8wds8sko2ZoCBropQxdK5m7jylkNWgDiE26l2BiCFE5MzUfCKtJyPhYVa1IurfPg/yADG1Hydeq3KSnFJA8N1A3bxqZALjfDSYEZoooYm1ZkAAHKnf+I5QNYo8LqDgfuZUgwjmCofHkCOYJ5ESqof4JTPHeiXJ0zTleYqy9quv3n3/61/d3t5+9f79m7e37797e3l52O8uiUR4nqY55CF3ux3Iok6IMCiSd1OeJa/1+PPPP//88c7M/of/4X84ntb/+B//4+9+/4+xcw+Hw9Xr12maSymHi6v9vH/z5s0333xzdXVJwmrlZXlJKX369LGUcvf5/unpKZIfIjfV66ubZ9B6Wk6nk1eVREIcvtDuDoKVevTntdTT6VRKqasmzrvDRXo+vazFn49pyswiSUo5kaTL66vXb796fXP5+ub2m+++ffPV1z9/vPvDn/54Op3evfv6q2++TSl9//33v/7u+6fHz8fjM3bzPOf9PB92M3OiaVfUllrWUvY5XRx2y2kyLafT8u7N7WG3W46n4/F0XE67aZ92u4NWXU62LhSPQA3mFKgEc4uC2KFNmxsCMEwoqBTWKBPwDc01sLYemrIpsVuTXonTJEBsqQ0aQoM4FN1CzkC9VylgivSWag2WoXcEdYN+mFFTZK0jBkRiM1am9x5iz4yD8vBFfjiCw3Zr95f9eXI4vt/P6hhAiJWAAIlccRsNfpF/xqvF2f5WEWdIzkratTrLuU5R1TQlcnanhuAArGOmRm2yvbDBsR8hET1R9Ea01OrORHmec87LchzhcPsjKU3aVTnGkWRaEnOIAY7fawZ3yjlHjhMwG3NnwAF1cgsV5sQg5sSMaZpCpNAAU2UYOYQoJWZLkTQrep9TOCE1hEIYd0V8JjhTL1SaXnk8mwYkI6Jozlm/odLK43ioG/SRNzoone1nGk1ehNuaMAPcahugV7eUWChFTRBjRXeXzE3p3osZTM08ki3U0kgfAGqtcOLkANuZlp3ipjgJkTGzOiEQTWZWCotEksoUqWmrLcMACQAFCVMx1DLhnXh5fsBn4NBYtWMRRJpITavzvIAalMkNvZ3g1nThEjML1VpVm2tUjL9bq8bMm3dF4+9QiCyFXjSiHeFTyuERFxKV3CjOpApwkjwTs64lUrG4VyIEN1ONdDylAL23sRJ35ljb1rWKCM45SrvnVSsjx9wD7l7Vq+paEjG5CzMliRkmuInoMCcz1FIZTYxX1XsjEd5qixBWstTFFdCyMYA4garXdV2ZsdvtYs+zI6UM9ySJArQZ5KYINCmxCEhKZ5a2fpUWESFYN3VsZ1WXAYeIOMIWFX6206Cgx8WaiXICKTkxRT2NGOI3G8yQrR9W0iM8kRkzBw/WrepGxQqAmzpaQoBObfPzZiRycEpmcWJEahPNLzIzcCNeBoYt4Actb4XECm82pLUGKnhkdpHPMHPK2czUyb1J43wp/LCVeXPAip39MLllv+F1vKFteDfQjMBKMICTkBGFOlwO346GRw3vBLhbtV3KZlYZcMskkb6DKE9TZIGBXm2fA+5MxsKZU8eJqTqIirkRE7tHfOM4hMndKYm5u3mIUWs3vPHOcmcBQFyZCRpy6CRERAHdb9oQzQMcwFDwBxANsvFWUQOYWa2lB7GejvfHzcMthomYCVFFWMopWPamZu6xUwxMAqs+AnVY5oZ6Nrv1XPmM9s8516q11jQlTolc3F3JDY7O2CQi7TAw1QaPjIQ7iquoXcNSRSTnlJypt9to6KGYmYHcB6Qq+uKUUqahiAawIxGbIH5kXdcWjSP+MDmTx0dTNQU5cRgU+9aLpZ1T0dsk9255FTTdANtEAto1lrp9Ub+2FuXauSZsqqEe2Y9wiTpxZFFNlsPOCVAcCpLOtdlYnyKy1goCO0Xa1zT7AqcNoZiVnM8XVcC1s8K+zK7it20wXNao/r26aNcTvyMJTHnD2Y4WjLkObEhElXh3FhJhDs6na1yfyxcRyVwDwdbue7A5+5glDqoRP82p6baBzaqpR+/ZR4HUdLwt8O3MLUJHNJ5SENR/CTUcCyDnPCUhR1NHIWn3BI5N/iqSxlwCjTbc2rvMzLXGhh3Jert+Lf7L3JcDxlO7IbAZalXZKM30jNwiE6V2QOt4OnFnepBsSD9CBmActeX2URrIPHBWAXl2qFtAlCnG9V06EWiVh1UTSh5rv6FKg2tHpiHBG0/Kw2fBI1YT+sFk1OgbwanbrnMyNUiTDnVrDuQ4FxV9YBAHHFFouCQmHwpnzKNUBtDBeBS5qLiHxRq6DVuE62maUpbr25uvvv76L/7iL968e8vMkki1/PEPf3rz9vXbN+ny8no370ILYF3Xh8f7lHiaUmBHRSTnmeHPp2e3Cue3b9+mlH/66af/9J/+03/4D//h89Pzmzdvcs7Lsnz69Onx8VFEbl69vry+OlxezPvdtJsJ9HJaHx4elmVZlmOt9XQ6mqkw7+YpesF1XXe7AzmXsriDOQuj1rrbTUS01lLKYhXHZa21zvNMvjOr79692e12x3UppRDzfr8vpbx9+/Zinq+vL7/66quv3795c3N7e3tbiq1rXU9lmnZv3769fnj4dH+/rus//dM/ffr5A7t99e7t1cWh7Cbh65ubG2Kap3zJUzW92s+7Oe2mdH9///x0VPVlKe/fv395Pj5+/pymtLvY63KsJy/qbEpxigwFDVAPNtF3lNDt20SnQemsDAovhFgSZqam5iSJR2yjpgWgUZ2pau01VWP5ANTF0rfxVr0Obmocqe4OL+4WuD36soTph9o5hgCxmbzxj7i98ybz2e7984s26fFmU38xUxz1qpkpN/fMTSSDowG2R5lBzA7Uru7Z31ZD5SR+aa3VDAnh7JiirOGglH4J1e4HxC+VCMdRC2CExPie0+kUvzceRAwXY9ejNUBHwhItYwOaXEI/uqrWysIxRYjMfwRVgsXQe9yl6FOLSDuFid3qWjXO6zbqjw+uNTwpY9YT40F1Q+hHMw1cdGiv+KBeNiH8NtLF9on2c+hc2hGxUgMlxNkfUT2weUHsFUm9PG4DSdOwXBnrIG4Zr0WZmSmJiPtAwcegSyPgIcRBQ/7euY3emr6IuXmI4ru7BE+sqzvGwIo4tdIqmvzqOWUSUfdqlZMEky+S+5aVxjR4rBgKQa6mGKFtwB9LszPzty3hcZLZF/fTO0zUzIjhLOOvQeogIW4wKwTnmRmDN09ttkZChLJa83JIqXHIQ2OMWJjMLZF3Ug0aJa/tt/4ZR0dJgjKo2poUveUdOdi5vI98gpkxlIcijWaOwizSgjby6JatAHKWScTbpgURWQWneOcoSZI3xTAfU0TaBJdaTFKQq+N0tlCKiqylJdASOXpM/nu7pNZgZDGxEVXT5Eld13UtFZREpszuWm2s2G1oGMuVqAl1hMQLbXpA28jurWVFHHQWcWgbYcatjicbEwDt5m9jXwRqgIjCIpVavhVpSn8g7Ax216buFzuUAXe49YaIhLWwwUHcPlp8KHczxMC8p2hWSolxq/TyY/RN0SvbcHYFsNZiZiSZmQPfGIJJWZxz1FY08hvusGQiieONmYnPS5q5SazB3SjkdVnhME3h7k08rmHonchG+XAbrFJK4dnLqSXcsfMlTSTsQIWradUaJjGudlqWlDnvZlU9LUtLznKKY4CEd/Ou1rou6zgGmnmSNC0sZowDMqXWZTTTYrrLk6uZV3MPffAwnouDZJpSHCrunuWsukydDmrW/HX7dmszdm4D4KYETinFwLef3EZ9nuddsijOs9i/nYLR9y9RiGGM49B76zOl1iKR/mIz7dLQaGPxpKreRcWIyNrwufHMR8bQT5O4VeJ+lukGQJSYkpqv64lTFpEkecQuNwpkyUhlzLvrC6eoZhtJx0ODeuMTG8tmE8REyIzPwwEOIWpedQPRbzJjIUMYEbKcT00HMy/WiFijnUFEYIrhYVxcY7qqma3wyOS+SETQ0BwxzEhnEWwiHXWgS3S/1J28U9/D8aWhZ5FSsj5j93M7mBlk5qPv5k3TsT3o9i3AaVlKKdM05SnVpZzvw0aXZTxHH4gv99Bu2paC40EP/+14xXMhojnNZuYI6BGqB6W6zztiWu7KnKyHo8079MFQDy/nHwPYwY55ngPH4e5T3s3zXLSGKMA4o79MXs/icGNJxFnJnaft3bI4sqARJONlfcpBvZXgG9vhMda2jgRh90gix9etq1v3lRwOjtVagdGU1dv9BzhLOFZTT6ObdWaYd1A7p2jUJH3wvf2r9zZn3IkWFvxc/AMQQThOlVozk6TMkrC95n5bqhsZhaBZ4Nra+wR98c8ySQ71ULgBzORkY+M0Rf0YORCoZfgUU7iAvru7wTOzh0B0Tte3rwKK/O7rr5j54eHhuC61riTY7Xa3N94OYQqEzELkqoU4TTkXDucGDR+4slZVfXl5+ad/+uf/8X/8H//wxx8Oh8PXX399OBwCa/P67ZtXr17d3Ny8ffv24nB1fX19cXEguHpdluPd3d3d3c85ZxEWYhGpaylarZq7W63MHKj79fgSp3wsv5QSlVLqAsCtCPGUZDdlSXx1fTnNu3Vd/+VPf7y7+0yC129uri8vU0qu5f7zJ0k+iex2u5/vHp+fj6WUp6enjx9+/vDhw93D5/1+B7N1Pe136dOnn3dzZtKb68uv3r47HA7X1zcXl5eURA37Ob99/fqw2z+/nO7u7h4eHi6vr77/1XefLva16PPj4/F4HDhhd4f0xhQT0Px8Wu6MLsFhTgSO7hWFYVFPnHqmTUTwDlGEg9g9mCMAJOqoYUNNhKZd2ll27uGCRJwEGvYrv9S9IyJKUqsRSS/8YiJq52vYNuBaODqjdbbR9c8C+S9fv3ifeI2LaSGrZ0q/+LZYDOOwGNt/ZIZjh45rPr+DtyQiHlCkAGNTjzOxq0bLiHJx3Ed86OdXa9vFodOwtD1JCLZdfIX7Wd/AL2bVu4JpNzLEpvM7PkgpJQYlqhqiSsHYMjNzg1rKWcPzlMjVtedJZkYhDEgwgpu5OjvEgaaGaFuXvF/crvHf1ESyejwfj7nxclvt1xrLHB0XkHdwb3tGUVQL/KwK1m5fKQF2cmJndH0yYjR8Myxku0BCnHM6rasriEgoiUzUJzyureLnPo4PFWUfY1Yg+kPeRsQqHDxOkMGISThPOw14jpupMkPhcAZLNDrjlALYo0RhjuZDnPpEhO4GNG7XOPkj9Lsks6anRp0jF09/iBhZb1/F59Tu8dBVM0AEq+V8AMfPt74ax5/DRzV6YOZupUaLngN+DifT6BlX07ilzSnK4pwuRJRzYiGrWuvqarV6mpK3lIm890VANE/7vkpCAZtCmD6zxOAXgMOYEQk9o3Ema60NXwzue6BlBq2YMRJqVVnfe2lsvzWoXE0dNDrHZu67Kc1Z2po0T8QWh6h54sTU3NJEhFjQ23sWPoRRXTU9g5Vbudg6PkZkBIvUls4OOiH9Umr9RRQLOlPsSXNzbYiRePSllsRCKXyYWxDMkb2RORsArWpmLMg5cyKFjwYKEQVEVgQBXXNHYjYL98OWWQIauoxEoaGGHhYHmAceY2uEnw3CQ8jMmOKh64iSfT+F8EhUfuLuMeEMafN5N7k7tBKQkohIpOwJKRqQI5iidRPDyiK3cESUhDglJy6m3vZDtM3c3NdSYoW0/IlbsI7+W8xUex/A3Mm09lBHFMI+IgBEMkL/wEAEcwIJcQJpdYPxJNnBRVczTynBtWitpnNOzKzuISwUUTtEX9ihajCjoTBkPa0MfXc15wZsblmyB74rhQ5ZALq2B15UobwZT7UsPDGo4aAstLzg1W0/zSAKQLjkFISt03LyDRUl8Phwcvc8ZWbWQmFXFkgKEJ0NK4Sjb6VK0zSFMX1Ql9SMNgAt71rwRuGA1Zop0rW1zapZZUnMYSws2Ayco50eBUZUsLFOnACwVSOnKrHLRKQp/aEfme6uHTzjUQcSQc2ayzFBCMKlVu7CKm0pwomoaO1Bvk8LHefmwgbL40KJktbi7qVEldseFnMMMMZmYe8LT1VJmCn1QzHWYQBkuFNPbZsHRFxzd0DgcAIMJdgQgaCNKbuT+RCbI5FEnNStlzHu7tZ4cUiJGbBNW91bo9GEQgQu5pDUjhyPo9hcjQhM4RXZ5gwAXNnM4eruiTgRg7yG1Dg1tPVINCNVsnNfRscptmqFk/SiS0DCZj4iT6vQ3NUBh0nizmpTIxWRxCIi61qHNHS8CEawGOjVWpdlcff9fp+5gf3MvMR8yje9TqahQdDaMTC3GnkL0NrQzFTNCU7WG+F2fpPIYSgypbYhOM6LX6RV46/bve8tf/VxsDAzkbhZDbymtrG8NtxET+yIilW4sTcPw/h46OndSHm9QYubUQq0kad4DKPihGVEfDeiAK7E6kptc8C8huTMsZScc07Z3Wt1NWcCSxTiRgRI4FWECOyum1lQGxa5u1PRyklwXiqOQGyGxzKxe6gojX7W+antdjvOaZrS7rB///79zc1NyqxamHPe5cvLy1evXhH5ft4JMTk4RALJpsxJZrOamAg2iYhkhT0+Pf74pz9+/OnDw8PD8/Pzf/m7v/vhpx9fv359e3t7KuvNzc2vf/3rX//616/fvrm8vLy4uMg8G4xABnt4elrX0+n0QqZzTqoVlJjItLw8PTyfjho2W9UATDkNTKnBzOzz/aeLy0tVhWnOOeedqmZx1Xp9fXl5eXm4vFqWpbqeTqenp8fTy8vHn356fn52LUno1aur//q//jf/DdF6XH/+8OlPP334+eefH5+eU5qurq52eTKznLOwHY/H0/JSy/HHDz/8/vf/8OricHVxOe8PBprm/avXby6vbuc84cD73Y453d/fAzbvp4eHp3/6/e9elpcdp5yzq7qpcAp9O2qBCe7u7NTrxkAIsSNAy+IAUeAOCY0WQizhr0bU6bNRcVjrtakqp4YTjoXrTh7s+16bNEhOcJGCFRhKve5hQwOCsGx0gBFcZd/UliOWcNe+GqXg2Lk9349e8BcwyVHX4csXdVGr7b/yMBn5synx9q9xhTELFRFiN69u0UNK4/1HLQ14rVW72KS1KuGLYe/4FXEOjm6dqs7TLJzjO9Xi7CsApim5ezSCgXAkPn+WEbR7EOtFLxmI+uAQTc2lC0R3wZrWCueI+CGQjBDPbzI0TI2F1D4IsyHQZWrWLMzN1dWSx8Hrg/jTbmOtzKzwGLEAcDUKH+CxCLYxvU2o8cuXe4NLd7GHFniDJwaE2kYMpiJNiijqUXYCFsU8OcQAgjDB2U0dVA2ccrVWApADSqYOBMCP4eTWVBCpNRpDG1PMrOrqTdU2oY9Jq9taA4vFalCDMTGJwk9l1eqc8jRJpwG0o0JEYGeTwfYHYekghyHPDZxnwePutWjejyJrLeTE3I4ZIFodBoobE/p5nkDEnEUM4SnfuqFov9eSZNdqUFe3AAMCzKy1MPeJX3wzgSJ3stbsjzdkR601xJuiU+6m1ky6v6A6tA+y6VHFUgkQNREFkkF7ahVQwEjlg85tVletMRBCULDO+Z+6N29DZmzmCptVS2BBmAznnPOUI4WNv8qGkhc99VKKxKyMz8SJmN9SlGQ9Ca9uVBb3kPd1hjuRMOu5wUYIECElMAMNe9Nz+HMfJP4rxAbzGqjrMC5nIqBhCkZvBTGB78i389BJhKdpqlbG6tpuv54kGTPDNCKdk1ktzi6IE8iJmNBO+/g5IiY4YETJ2YMBEia6zLyuayRq2nf1ePotmncTc+5TX3SMbtwHPnMLo+SLSlVieag2XT18iS4ZLTdJov3JxxE1MJPMTEko8vi+NtoK/LNOHgAwWR8CtsOGkIIhHNBWZmEKgTE1DQb7qhVqsekALKuaWZRtRTUOnmmayBzoGBBvbszoNGPVzdSxE4ZTSlnE1cqyqmlmmabJoeu6lrLGHmm1Q4euQs+a2K3e6iP87cYc+7R1XmO1tCL5PCmNyNTHZu3wFpFoYA186VjYXT0ry1DBlTNYy92LqXSoVnQSA6tSKyMwDn0xmxl12d5YRa2j2tsx67rmnHPOZqJaalXOaZ7n0XGPlcPdANnpnCiMJ64avj/MbVrbguT4HrM2WQqoQtyfcQ9Hd6bWUOl3Jo8wMja4rqvq2PusqsHuHqnMaBjFvc3zRESuVoq2dKHJKjIzk3yJ8j1DaluJ7h1W6u5niadogBMA0hrQd6qq8OY2UUqJFpU1T/LG9TVrZiHx66zpSI/hRrsn0kynwtKphjeE9/sYl5GnRHR2OR6vnnh9ARfaZnU2REMAgGvRkSZq+AnnbSLYHn0kRt4nIU0yGEGm5MThpPDFxZB5rfX5+TnGdOu6IgYdnLyPZJsBdO/Nee/1bkcTsX0Oh0NUxTFysE6HGR9whLIeNM94je0qDfcEol8mi+Mr490azFJLrU7CzGLmDg01jJQSWuMK23ezMNJqpTuczw93e1R5T9I8RqlnjkW7ntjpf/7s3J0Z05SY2bSsyxrCfl11XxoG250aTKSGhUJkwiMkjCAzwjgZGUxVQ7x+nIPxAAK27w5iitSEiMAkTsE54pw4pzxPu/18uLrM05QmkZSmaZoP+2k/XV29ur6+JKKg18apx4Bz8+aYJxGIwxz+dDr+y7/88R///vf/5b/8zZyneZ6naXr9+rWZmeLl5eX1u7dff/31X/7lX/72t7+d5x2BCFRRQlH1eDz+/POHUhZJnKd0M92cTqfoHM2a12kCUJMty/J4enJvT0lVn5+fnx4/Pz4+5sQXF4c05Xmer66u5jkTqNZCxJeH3Zzl6eHz09MTuV4e9lWX5bSclpdlPQo8T1POudb66dOnP/7zH3/+ePf8/FzMLw8X3/3q1+/evVPVaUrTnBOT+VpOp58//fjThx9+vr97vPs45QznopZ3F1998+3X77/fHy7mw4WIXF1dRaL18HBf63q42KWUmIUstA+hfZybIcZtSsQxEA6Rmn5sNRAqw82FKLovYy9g4B8BJlJHzHTH3Cg485QkeTtHTBsXkEDRYAs3HWuFWUNkWEc+Rp4TvIlRVY4AONJsaxPmtmf/vG78//Oi3sbCJjn58x//xcbvqY1v32eArUZUGXuzxzCTluXKdqOFpoZbAG95DKG3+YP31vwIoWMc5UbWFezRgdDU++/a6WAppdY36y3LUsoAdhE18FCUOj7oykRVLXod41ePHyHALUSKTUI0iWmtxbUh5a3WeFNzExE3iwyNAaEonyn8lBjMBPJz2+IXh8W454mdmbjN39p9dAANV1C3P0NmgGHgZIBBcyV2hhqoVX3grtNDqcfrEMgHt1a6hdouACJRV1UTlLybKc5qcFVyq7HyLXFKzK0Frg7rmydoCAmcvKqZtx6nsLMwZzKtASYiWZYVwu5x2jALqZWx5qJYip0QW2IpKpx8rMI2XIL3LK1338ndw94qVLVjDt6cMzdw6XZWOhwGJmapVSkOJ2InX7UmIkoJws4tc/AOr4J7GOi5h+qABTC8zeiYnNCoep2kx851qL1L/+1GkViEB6AHnSMCgXvvRLc6Pxbz6OjE5KNFFneaksPRPHHbcRUzOUpEJqF6wklAwWFo8EKinl01+AocGppNRuaxjtrXERlWlAkwx5eABXT3LRhxIm+c1bh1MIVW5wS3ar2XrO3yY1TP7u0ZMbPXqqqSJqJYxaFGyR5eU2fke6xSxMbpy4atVyxxeY29Bq5xgRH7HFqqqjI3B5f4szcR7NYjaEMxIhBV1RRosRh6OwIwSRQMaQfFzguHYTY1af0/iwVDROhyaG32TsY9LeQWHOO6KSJAI3f0V2Kh7sKiGugXmJlaCUwjc2dAELFIhxBw32Ejb+vNFFVD8R6gmRr/3/tphPbzNOidOTcQyZkxyASmQD67ew37MWan3tEjoE/52kQx+nTUJk4MFmFyRDQgyVFxaVWRnHNL8UfZn0RCiWecK4k4iKlETU9arUhDAPYydXOixJHcAEUaMCF3b/oI8amDVVu0qKpRUyKI3xhjLiICExy1qqrmnNOUO2U4iDqIDewetQNp6IazxE7XpuZk/Yl4zlnSLvQCpmliktFgGrl1/IJaQ4sYzAltOuU4o8tAroLo2ja18DYf2IAn+w2UWPAApyREPTq1HRPExOghipMz8Whar6tO05QkjRTHFNFfcPdqWk1zzuLkrgptjsdssZfi9Ik5gbtXa5vOh16gNctfACJSqxVrhnLjTPWWCxBxSgQA1X2wx92hpokFIA8Xdu1KDczSQquaVYdCnPvMreUWXlv/gCgilRsZxWhFiUjh6ka1TWKZwAHycbewJwEaRDxKC7i6JWo3cKSA7l5qy7q4TUeMeoNGOGqQVL3GzzGRbBoxzEzt9IQwuSm7hQcOhkpiHGTEXXKDQedMS1XjI3trWzAzW1lDvSzioKupVUgoR0YAPkeJWvVY1nmec87zPAW4TWvAIrKZho5S+JFy2BWqR426XZPRH1TVsipcBxhKUjI4yKK5ec7helYa25xBbg4ncu5nlfbVfqYRmhnCUCqG7+1Q5qprQKzMAtjHCPxP7Ds3jh3hysRtfgJTUwmNvDhlCCGjsUnBSVUzZ3hT20ZH6BBR4CMsssjWuI+mlbI3vGi8SISTpCmDqWiYLBIJO3HV8ADpNLF2PLaI39DR8VviH+gXfqHt69Guj8QyQkwDOcS/dvpGrauT5V0mZkk0TdNut5sP834/g6arq4tXr17dXF8L58PhcHG4gOvxtJiVlHnKAve1vLy8vNzfP/z+H/7pb//2dz/88OM05cv373eHfUppXkPYP3333Xd/9Vd/lXMupfzwww+3t6/2+7261VrTvHN2zjwf5r3PLPTy8rKuJ7MKWBLZzZlwQXTJlE6n9enqBQDMj6eXx9NxWZbPnz9/+PBhv5t+/PEHZj4cdldXV7vDvN9f7Ha716/flrK8vDz9fP/5eDw6cDjs5vnNy7K+fXcTTR9JdHl5mXP+4Yc/PT5+PlxMb97e5nmf83x5cTXNs6peXFyIkLlCXXF6Op7uH57q6agpsLL2fDzp4+m46OPT6XBxeXH9SlXn3e5wOMyH+QIX++f9u/fvnj7dr8/H9XgCgTiVqgxnBsVoyh3mTe81eoINw/5FdQdXSSxCRUfO4dHvcArRUELAU7ilOW2hshNxGwwTQOTq6PmMbltzHG4bFFs0Shozo9avtE2f1JhD8KXjSb2GJh1GFoSYbo9L866b6kCDorX+VOc8Y5MEjsxndCdpFNvCESW3CU83KO4z7Ta/kuBxdOwRj6YbALP2Wyg6XGc7pnNtjE12sb2wyCWiW12OQymGvTcHRaSTgALTRMwwa8i+0T0cwSRmtt4nlb0f695I1aOgAue08ZJotTS5gUEhzEiIzF+1qEffsGpVIMdB5n244mCDtsMiRNEM3lPudmeo0dIjQnLo04xXi+YB5TrzAUdLg/pgqYMsgbA2RZ8eA2e0erNm9himxVMR5sa9jS1Rq1ZXcQ/wdOJUBiQBDIMZk4OIazGCg2BmlLjVcWah4Zxznud5tTVGmqbubRLYEpSckkhadeHe/sk5T9MUDaHYYIPJNioE93W7lIMFasExpqZgHMfSuq7rur4spzzNmx8/d3qs6nkntvsSqpUAPAunnE3LUko1m0PnDjDzgGa1gkvNoDEOaCN2uIFgxpIIXk1Lra461EdS2Gv0fC7yBgRZiDkFSzNkoEP0dIPgbR/Bz81g6q9YHNWMhUhYckreeIwGVLdaakMnRt7M5Aj/Wp3nOWUGrE2iXGu1aNPGFUoiAKYwaOjFN1/QTvQf1AWEYrPruThpqlpn08sGkXCvIJgjTHWjzcUox1NgowigRO7qVasbKDwzwNw6ZE1X0DTgYUA4mrSnHBzXgPK4u7qbmnpDEbQpljtvsN+xv4KcGS20WivJGIZ04SgiEalarff1wxwv2L8sIZPDDsOQKwRggRNtQyV4NEZ8IJ9VVfu0MOac/RwagYwRQJRNzcPGHHDosJJzj7m3iuecpzyrh8P9GVwXqyal7KOk79ID5r6cTpRkCjXMiOnmxRr+MAGUJBi2EZS44xLHPRy/K9ZevESEk4SvFTn3mRISt9kdc2MhzimPBQNqzPBR3sTQ+3g8TpLGFGiXZ+tyEVsQkTblyc1A1esIKaZWSgGZiEQFG3e+rmVMlvqKNaBJiAXtZZPF9uVBpqqn5cTMAQoFUFTJw+7YYqcQUSiIdamt6u45y2h7xxM/44tS4EtXVQ0IyYYJnDeHdxTYbTGnlEpgH+js/wwAZLUatzKnkzDhAKaYinRmL4axcEpNbiA2gLeRbJD9aEMvH2d5nLjrugI2z/OmkXMmZDqRkZE7d89nM3OtGr5TRNxZ1nE0xG9RVeMmn+YbuIGED9CGmTniT1RTY6lEcoDy/4Vp5p19al7jtKUzeThK/2rm0Paz0vZRWtdV3eKJL8tihOigDYLWiEsODaKM9zzGNiCvTRTqrbSgn4pwR1rH6mLmoMxwX6KbxOhMCx9vZWaBBKEz1p0BqHlKySk2X3sT3gjFR9nTTnYiIiplBUBJMmdvslgahVxg10f2kljMbJI09os7zCw+e6AbwtVoQH/dXVLMva3XVE388ng8xhXO88wdXhRRwglhYztOGfpFAbyRtpry1AEiQyefN2up/UFVHV0wbIUiNKWh6pyZyGpVZtNOgzSzSP5yivkPm9XoFIPIa2ESs2pKRG2p9L2QRxFuXyA8z1pc44GCaOKkqut6ihw2NntE4yaHDjAnpmByVTJtCai3Rr9vWp/bdydmMOV8fl4RoNCjvfcs2WP2wgQHJ8m7OQALRE5JUs67w3xzezvNaanLaTnuD7urq6v333z91VdfTZIJklIC2ePj0/Pz0zSlm/2lmT48PHz69Onh4eGPf/zT3/7t7x4+v1xfX+ecP3369Pz8fHt7m1L6zW9+8/ar969evdrtdtfX13GRkeyd1iXn/PpwAZjILHKTRUpZ7u8/ffjw4ekpfMIPcbjnnKc8MXOasnAqy1rqyszX19e7OV9fX2tdf/rpx6enh3U9PT0/zPP86ubm9vb26urV5/u707Kuy9K6MEK73cXt7W0xbcM0ryKyn2cR+f7b91mSOYvkedpXx8vz0cx++umnu7u7T58+OoxQ7+8/vbw8X+zzUjRNkjgVXz8/Pn1+Pj2f1uvrG//xp5TSze3tbj9JzvvD7vLq4vr66vbt7c9Vjy8vIsHWVjOaWEpUN9AYA0uUv8HpPpeKxmFPEx0far5nI9QAQygUDnWXc+4d3ncxMPEhpujWu3tR8FijoyCY5N4PCOoKMh2/emb+j18Rv3ecAmNvntdtX8bj6Nm++je0P4/v/MWu3x707n1c9+XLuugAOrBoYI7MjZlyniRc7rurSx9K+eZNQpJTaJOMjX/1syTkGCW282WbbFAvjLsYQvVeMHsrvCtRHJcYYOZaaxi/8bAOMYvfHvn5iJboKC0vBSJhv8oWSQ56A8CbyLeH/jwMvtaGrIEEMZei/2Ee1hyAIzoLjV7R4e5tLXlrziXvCVZKKTceoxORqwmzpOhtt5sWSAQmbvIergASBWQxihA0vR+AAGGu6v2MNMRQmkBJAqvvTFqsuCdi5lSqURtokjWsHMXEKmZhHl3bWlouFJ1jx/F4DMMDzskMzFRL7dAXmaYsIoqGZ6AkIKmO1MTHm8pOtHg0RFaJIkUIr0JnUvN1WQPklnNel9o6H7VGR4Nz2tGuaoPVWR8djHxoLO6+sMjdJadlOa6lZK0xPTCzU1mnxCkaJ0xVDY5EzCJwbaJcTL0JBgqBOHIiT1Mmz+rBvy1mFuipojpIvbHfmVmESylayzRNImlZlnneo2dpxIgRqbsH6hjUVF5aRapaTIXJgTAJLKUAJkkAaSdgZBtdc5XJzSsZu6tbTUkysxOFVlagYUMRl1gSp/APJAYLUWiQwuZ58kbtICGmLkbantfAn4RrRBcdcZbwmiYmSYkIoX68rqec5zzlVQ3AbrdbtVIQ0nCuOhLMwcCUUlqXGqoAsZPneSYlZxJJIFLVUouZMZEQaal1qcxMIVCsVnSdUmaQw9DlByLWVC3uzpy8CyGidxZG8cBEEIK5Q+Guag4iRupOGCMKdyyPwhhDhtcQ7j2Zxd2hJqD1eNrtdpRTrdWDbONUa93t9hTJjRl90epqtyVz7gWPVV1rZSMXgTObQkQktdJrdIuIGopBa02Sd7u9EBu8+RSbd4xNG5+FJgyHWIqZcGZKTGFs4yxCkvI0AbBaiZBSnqZwySpublXJkVhiggDAzQiYAp0eKwRkRIGLDlAfCack1dSqxkYe1dqyLCKym+a1FnWcTicOfLjqqhUNQcSlFgKxsCMSxwxgWY/xNEUkunVRRUgi7argPCyXzNayjgOsl2EWG6q6Df2qiDnM7KoxmYsNoqrCKaWkZmEGOCa68TLTlJI32fCmbxG9ylg/zuSg6hZgYFJOKamTqork6Kccj0eW4H4TXB3O0tqCTj7PcyxykZRzdqJ1XV9d3NRaT+uCXmOQR7lo67pGFYrW4HAir1pTauThkTFTL1MVUHjmlPMM2GlZatWqFvl6yHH0boiOIs07wpZE3ConqWth5v3uYl3X4/HIndDhIaNYKxGFAZW5QVhN221nUjXuSVUDvqZs7ba71rquNQDq4dRFCiJalhfAiJwFXgMsTSnxqjVkdVRrIg6aClMyeHiPmxnYU0pGjV6xqV4aI4s5aN5tvjoaB+5OwlorrKk0xabe7/dZogiskbO6WuggaF1LKYbwxGptGmb2WHjRi2RmZiFmbpgyAnbzHEu9qqY8MXHpPc2A2fO532ctaWu1sRN5HOLVbV1XySnn7EZaKzMbzokagFLXQORuhP+cKDBEoTHbexDWkisjFhYAWtdalpHsujXQdVxbrau7M/laVmbWOsTMPABhTFy1AGDIdixDDRl0Fn0ZCzhlCXsg750ImKtqmDhKTg3YQtI87QYJkFgj0QqVXUlmFe4sZ3c9YqpVw5pXaAKJu7FAmAcdKdpJ3M0RuQHFKRZ87MGQKmAeowuKTzQCl6QpTsDqMXoha4BlJjCqq6paaGeskQozs9a2fZi59gz+fGq7m9lawvU3s0gNTXXAzFLOy7Iw835/SImvbl79q7/4zXfff395efnw/PD09OR+8/79+7dvX19dXV3sLwR8XI73nx/irH/16iplJqLPnx/u7n/+dPfz48MzM9/c3Dw/Lcfj8dOnTy8vT1998+27919PeZ7n+f37969fvw4pxxGup2m6vr4WCXmD/PjyeS2LpnR//+nu7u7+/tPF4RC19NPT03o8ufvFxUVRj7KtruVwOHz//fe73S4JLcvyT//4D1Gcv337di2n5+fndVl++NOffvjho4jkaUopVXciOhwOl9dXpRBziz8pc0ppf3Hx6urq6mK+OOzK6oeLKyL+/PT8+vXrstZ/+Md/+vnnn//u737nrq9urnOWlHdrNTWjGQItkPniyp2Oa/HH5wA///TTT7v9dHt78/L0+bS8XF1fvH7zZl3q6bTaUiCSWFxRXQVkqrWUlHjK2dVMK5pmIcEBafWSO7EwEaoWgOcshmCEERDTHHMn5mav6B1JV93MPLx+OQkjLcuS84wOI2xcPiBw0QBABmomEpEKocNivc9LvCsruTvQ/IHGakRD5HCU96MsPAdSoia2RCAOwiZGCr3J9s+D33GgA0g5Y1Mwj1fMJHpzKkgKwsymCnCwZ4VzztmJa60iY27hrS5LKeeE8KUy7yDKdg0e8xvvTCVimKvWsnrg/wFEXxYw9zMtKHK5WitxaClwrev4UGbV3UQaOAjwWkvkt5EunpbT+IzeqRDufhZLGA3B0HkptptmZq5mTqYNkkXuakRMSYi5KYEzEaJ24y7XYdYLYKCatoE9nLiBCtPIJKKBExexbQkjGjaxPIO3Fu8yWp7R3N3IisTXlZFSYmm1CnrBHBmnMHNQmySxhy2RGJF1J3kKO3Wm8BLLWaJ2JxIP0L9adZd0hnIBGuAvM08p99XTGzwdQxhdgAjWY13GQF/VYnzfFiX1er5z4ahPz7y3n+OYb/uLOTVM1xeMNeselWcgKLlZCJvVvnTMCDTsNDYDn6iipXe8uihiQJxCyoY5RM+im+Pu1NCIoxaKv1ADcoQXUVUINUJgAYSEqxYOTxdGbGbf7FjqYLa4bwJUNEl0F0HHX7aV07JwV1V2b1l1g4g7QO5WqwfCI/jbTh0ASVDVWgqxmDZFjCRnq54YUm30DFr3fTvl2Ox2IiZmMndSt8C9E0EN8CwpTjWvxnkSSQZWH5iXtrrMDObRWcSX+iLtKw4O2AcgIA6P3Krj29AbEKMXRc0RGtRrVSG2M2kc7i4sOefleAIijPVI7gYXMwWRuTGRd4ozE7nX6JVQd8/o89GYAMQaah8kYquIWF9yIiIko30T4JNpmlJ3BiqqUbW2tkDfAswdodQBbGFwWUrNOUuYGLUeyrTf79dqMIdAiCW6g6k9RG7DjR4oiRKzO2sX6EfXMyeiYTU8Yqu7uxr3uWV0f5vWaCdPohuhtfvGXL36BqYxXtsxReiug11Vq9VITG0ox/auas6ZQdo5paHZ2wekbfxlZsH/dI8Z1Lmna6q11mk3xSEUi7yUonUlov1+f96Vfj5o87SLVgkzU1cVdvcwdxHigLlodzKQEC7eQJTRtQrNbIyE2g0/O5S0L6qqGWqtkzQo4/hv2xfcCqHzJmImotPpNDYRbSRGMDKPzWTVzGIQ9ItheNyT0S6pazkejzkPQQf3rr9kZtXUzMTPevg5paifY5gfbLfQtwQGvbYSfZHHRAEzTdk3BLPzju5TxHmeI0xZ7AIKWSiO84+Z3Zq/h3vTgKLWUF1rRRMlohBeCyxGHI2ti8TMhrNFB20qyfFih5p1d8NRE7aHG2tvrMP29c2AN6bcYwHHqeKtdd6C3rYdtt16BBBIY8Vqw3tPwuoUw5jxzQOBPF7no7OqTFOtVdeyauUq0zQlmYg56hnZaLPVWhOFiv55pDOuh8+yCw0vwMzTNDVaUH+4m4KQx5VsP9T2i2Oteucojb+2JQHdXGD7wZFHjtzDv8x944AgjQyb+qbh7XeOqw0gBjmILKCAaCAnIm9p6IjGDq5u0tm541LHc3THyN+IiMHOIGsRSSscTUOugVZiXTFxR+73bQtsNVS6lpiduZdwVGp26xseIFFYqeWcV62dxsKcZJpmTlLUD4f94XCgRCml2zc333733be/+vbu7u54erm4PLx+/Xqec4hUrfV0ej79/PMnZn7z5s1uN6fEidhQmbmUsizLsh5r9WmaROjTp58jnux2U855mvNoB0QLIOd8OBz2+3mcg4+Pn1+W48P9fRQJ9/f37vrNN9/kruJbay2nZVmWCDL3D083r2+vLi5vb1999/6bq6srgr28vLw8P759++7x8UFEfKHjy7Isi7qta729vZWUHh8fjejdu3eHw2E9LYX18vISwMPDw/H0HBe2m6a3N1fvvnoT2tS7/SGldNhfU8qHw+HiYv/27eu/+Zu/+bu/+7s8pW+++SbnvL+8cKYKng4TkViprbwh+vz588vpueo+pRASLZL5q/dfm6EUvf/4cy2WUo4Ys5xWZkrzLgkpSHWFeRJwX2wjQpqFC3bIlIKIxJsBYlum5D6krWKVEkgYNazTwmiwCwfwWZUdvZL0XnGgp+V9kSPMgbbbdhxk7t7pWpuR7xeb94tzB5vzbrvxx49vQ8T2tf3ZcVt+8Q3npLF/pR18nUwBgCDuHvqg+CKCneNMNBDHvtvGnHHNY0en1FwVGo6pw01iPfRiePCi4z0aCWKQlbahMk6Q88V3uJZtEVLmqlrLmlIa/DTpjD51r6YREtEjVdRKaLPosGpzV7ja1PfduIb44NGphzVk0HhYCea9GA6xDgsGS0exELm5AhTNFBcZ8k/nPiiGhkH7N3Nr1ueh8KxtDQlg5qSOulYRSiJEnFhAiDw6MJDuztzkguAwmDnXWkGemJiTQx1CDHcyUzizE3tYdcTyErNojrcdF2Rx4gYJDmopkQSYOZGZmca6odY1IqKWH3vTmhorxlmCYfDnO0Hh7BoLsT0savzAgJVSHI5dwSKl1PgJ3WLezMbAj+iMCIK71SYUyq2g8uiAUBKzqKsBBGycBGZViV2oCU01zXoEHK569BiEzZXgzFyrQUhYwosXLUmlWszMqIezxtJkEiJ1UzOHNtmn4EC6sZ832/hr46AyAdBazMzFWcY5rcytfWRmarabGoRMzZg1cA2mFW5N2wkEZ2l0sgYMboSRZihNw+6I2ogmQGyhx4WUsnAuWmNgEBvGmz7uOZXvG/ucICaR4Nd6UwBucInzDvemAhHvQGo8sPGh1b2JkgYLgISpEalkhrGpKntKbvCBy6GenLk7kXiDfnj0rkYF0xMubxyVMRamFq2ir0BwMCVhNQ3lWerlEDOLpFKKN19TYU4BLUg5uM2OwdElEUqSE9U24TFrcYGJyiYvbMkWO6eUqc2gNgcDOzsH9jLFjF1drYlLOZKIRGVeVaGYxmj03KmJR1BK2YnAPTRTAk1KRCkJbziQ3ow6iInJmtTz+VgSJiDwI9x6UGZwjfF0L5xKKdZgqBRuddx1JqAWxc26rvMue6PxdPIMYGaSKOdMdk6OLZTAOv+QmTnFMSDnDLWjWGNleAdBxZIksPTuBjcSdSs2zBWEPLXWT5ilNzdjZmauHnqJZ4S5EzhUoAjStKmaaZzItguJkJSLY7K7B3sfOJFMKWVZlmP0WMaRpk5ElCcxM2KWlGC1Vm3e6c1ITOGOrn65PVaZubquq7pn9KKu9F6YNXibd95vBKWGebM2c0gQX9d1jXoD0n0UNhh7M7UId827gCU7FF0OgkVKKQQRzmZWi8E9JU4pCaVuJWXMXNncLLZJ7DiWVGstpTVWRq9tfFgEBIuaBt72ibdnVPWcLTlFx27b+QWasXiLzEwNYhrSNWq9AGYiQXCwAkcQeiqNjMkEhARLCOy3LWMKdweZUyIOXa5aq8a0kKO9bknYzOCWmvXa2XAIOD/QSCNKWdyd2BM1CbGGruKwlD+npPOcSXgpS5Rr3P2rJZzt3V0N7jlPzDkksohoDc7Upqgzs3VdY19w09EwgjPBhTixe1Pmr1Xhqq13EHJ02l2ALAwHaoMEb1JYeGC8x1lvQ8LK2z81tA7cg+kFD+U6a/OruD/kTlUNaD4aZgAZEwdk0IJIqY72nogrt966DV8Jd1czaa1tqtVCKI67NoQ1UQNtLfiAkYbrQAgURYwiRFIbuwnewCM5nmmc+GdwO9zhTr5xH3Rqeg0YM5gIGWB3qsXYCexEnhJP+93+cLi5vd3v9wByzvuLw9u3b1+/vY3p5f3nT89Px5fHp9NpffPmzTR1MXCy03p6eHj4+OHT3d1drRUu8zy/e/fu4uKimL55e/vNN99cXlwH+DS6aYfDPqgr8zyLZFU7Ho/H5eXx8XFZT6fTaZ7znKdv3n91OByI6P7+08vLS/iZB5glFtXX79/d3t4CKHX5dPfx88Pd6XR6fHz84Y9/uru///HHH0/LMUrl3W4XbPa11OSYphmSzLAsRSR7Xf/4hz98/vz5eDxaB4BMk3z95ub56Zs3b78CcDhcgmSapouL+Tf/6vtf/+ZX//a/+V/9xb/67b9/++//9m//Vlf99pvv3n73dXS4luNpXVcGweqyLC/Hp0+fPgLIImVdcxZzy3nmq/nV29dVvdZ6fDqmlE8vR611d31ttRBat42IyrKWWnMSUD+kYGAibgc9S2ISg5lbTBPdG+TO/3/UjYatFaUzpZZBdd/1YB/AQj8iBmi9cDXiEAEe4oKwUdP2/CF+c0R7+0Wt2MrjRitur1Hren+1RP/PdFK33zlii9VzQXsO9WpEjM7IP/8YXCSFnYoF7IKaSB5aF8lFCAhaQZy9aVtjb0vr0YOLKO3B/XG4V/XGWwkpPjPL0fDtMxYApm6NUhJjH/eQYo0ktTdJxwdvH5/b/7+87bTNhOFe4dT6lRLDxvbxHeHyG4cLO8yNIeFXRL3FFtFDGMxhldve2dzCei3mhw5PAFgIoFqrQ3kjtomemsCJHDCQnye97dlzQFz73M/hHVcWWsFd3WQ8oaZBWn0xIwNYEL6OUZJKSrU5QDSYflO1jkqSAU5OFIYAmXJIdVNfiMxs2++HuXuXwGkuMt4X7rgp/dp6BwVnxTO1M0e8y0MRM1tHOo1PF/+kMNOhzdG6zr3v0s6/PgfWeK+xUck00pm+xs7X2f9gnMIVzd3DLJWJWlVGdhYFaddJybnGsbr5IrEgzB2IALKg4zJD3UhC7+lMQhiDhfNi7balTMISVG1zNaXOMSZYVaTG1RSRUN0I4mh/V0CS2RpD+yQTmqaigwO814xkpWvS9oqiQWIi73f31lYgoSbEULeZMdo4qzJALDnnDDYgbM8YzSSbg82vvpSyrGua5riRvwhhv4hlOBei1AK/GdS8B52+rs4ymHE9DbKIRjpQVQSIpZmhIaJ97MHlVNwokngw2ElaP8QlJTNCOOioK9zZwsTLu1xZKByhCR3V4PCPj3DeCAE7Ed4+4pQmEUnUbsLo57UlvWHxxTSeQQpKHHkDje/f7QKT3NSkIRwaWswhBWxLWdlp5KA55yBfRuxCl/UOyg/8rKwT37/lyYxNOlguseCifgvP8JarAyRM0UdxaGzwjdbieeWbc05C7tpOgdjStlkVYz0ws/Cwqm5E2ZFnt54cnW8OxqHYY5GIcHtbC5gWgNgOWvOwbOEvvXbdnTd+p+0EizwbDegVbcBxVXFJbhjz52ApIyZm/Yw0syh0vR9evyhatkedNF9uSiIoLcEdV4IvX9YHia0B+uUw8LzXtoKZrWR1VU2B3eg9Ke8QJBGp4+hhog6OGLk+dRsG10pEWc5thTYqdLgNztJZDDMuI3CY7T5wpy8SmfbqOvp2ZgTEkByA61B78vbEE4VjDpExSMTNgoYTFHwGtG1YTowmX9SWTYw6t/fKzosQf5ZB0gC/bcbF7k0mrc37ren5efewbW5jelYV7nHj/HTavtu8uZvn3smKVWhWa1kcLFOOn2jFkmrfpB7zma6jR4SG7JAkwkyS3L0WVdU0t/01Pp3ktNZSN9leD02bdIUoSOYppWVZqpa6FMgXXhhn1beeSHkP3QIikHaB2e1+b6lgP6TGUomTCz3jpJYAnKmG5wyhTzncLT4WNcAFxh32jVeCtxPVgfC+cwDhDAGQB+fNYgdzzNJiWBM0ynFn4rMHPpk6xYl60U4kjgCeRd7aHui4Y8zsbf+CKIRXu4pWE8aMBLddecRXAG7NjHrEgeiXigiIQumDWMBJWGqt1VTAh93u8vLyzVfvXt1e7/f7V7fXMonBv/726/l+vrm5fv369evXr+/u7v7z3/zPInKx218crnKWp6cnANM0revp488//cu//NP9/d3xeCSi6+tX+/1+v99Xt6urq6urq1LK/f2dG93evtnv9zc3N1EMx8qJOLbb7eJZz3W6vr48HA45RdvXPn78+Mc//vH+/r4u9eXlJW7psizTNP3q+2+I8NNPP336dFeX9fn5+PT09Pz87O6JJecZ4N18MU1TzkLSmrm73eH169dhWZ9zvri4iIAz0KpBWb867K+vb66vb25uXl9cXEXiVMvqtZzK6fLV9bt3b/J/92/fvH39zbfvP98/fPPdtyerdw+fy1oj0WJywbTfTcty/PyZ53me5mRmRCnJNOWdHHacpqvrm2l/eLp7cKfHzw9mJpDn58d1WQIiRSmzQVc3B/cjg+isC2BmKTFAVixGVmYwC7/u1oOLkQWY2DmwmVE+IUaOTsC5xArwXbhmRejYnCYRUL5I4bbni5+nmrFKz9oiRGdw7pfn7Bdws3MU6kJCI7/yTeU5ft341fhfev0yVuMcDWJtgM9/HVcV40kzq/Wll7K8vaQeT5r8x4il/qWI17iGL8PO+frVKkUbrfdh2zd3r7jtPY+vcBePCCFYgWRJUQN20d/zxxcRMKlbKLNQt+A9P75whI2LBOwLSsU2PndgnVloScaPJ0ncH4yzh5+fm5swx91wB0zBJCxGNKAFaNL0sdSMousSTyiUtECu7VizfmaMS2fJiJq6ibVZGCqnmCm2ZLG27MpNErd2jnDVpo3EDpZs3pAKYfHV82AA4OCwxacjEFFVdWpcHUIzcUXMncbpEqdQa8iSqQYyOfaRNgp1hPOGjvZx9ju5N0YxmQLWk7dQmfPW52WPiWitq6oKNSJQrZWCni4BOcPYcvEsE0k0n/uj7fYz8Q3ePTmMnMM3krj7qZGzmUdfv5gyE4OqqrrNU04p2boyuzX+dQsKgatOmc0MRCLRAm9ry1QpVMhjXu0IjXuEY5TH3I51oBmj8GATidSKzLwWE/Yw0DJzWytzsH65WCNMMrMwzDxkPkKO2qIhjZZYuFt44YRGH0gs2szuImHrxeiydXFjJU3uVFd1QphjuTuRCGfEtCQ6XP3+xwoP5lh8IiEGdcE7DPW9NifvBIMYGMVonkAcGsJtT26mly17NNNixJRSNnitpUHoO3jDKNIjpmb724wVGvKu8TdHsXEGKWgrrJucCYOIz5UDNuIQ8YEC/Zg2wJIonKobWicvJsYGhZHHULNPSJvYQBQ5qupQIqKUOexnVKcpS05Q9dVBkCkzSzUN1bRWawoHI9AAAZWGQZ3yNIm0RxZX1a4QlIglCTIoUQj0xwcCmRrYDITgCXFDJKpqXCeRUaeknI+9iMVCrqOR5ACQQ4agViYKy2QGZQmJdROQSNLuodX9V330R9EFtEpdaq3d7zrwIPFckFJyo3VdHcjTREilFKi1XhMROYTYGGY25bkNBGAIyXZnWCvqJHF0eWtdrRbXyinWeZgrWzVFRz3UWuEcJ5CZRd885QSAGoxf+55qq7c3KXrS0EDjNaynyKgUtwozkzzFTJq5M53M3D283Fm11rpqiU65MLtpX2nOTFornM3CIUHbw0kCD91Pr20CII5oowMEIiPmqjqSlHjqo8vmWs9YzW5o4I3HYdiYtWwbwWj+zYgAbr1CjiwqxfMtNYhLajoyA3e0bze4GyupmTrBWSTHCezenRSA0JW0rm7UQ4tvM5VYgUBIABuRxJMAgJBndVPTVU1doxve/jWOekwx1HNrM5CQrKu6MLMTGygwsaUVTkKt7GnWA8KSiCMmC0iJmJGYKkKJak2ZE4nDoDXEpKSL9qPFijYd7Q1TU222kEREIjnABV+U/1iW5bQu0243WlfeuyGRdQWH3Kyuq7q7alnW4gaWsxMmepspcxzl7dwav0UbSiZ+ddvxIqLrsWVDTWBWA0HDobW4SV65F8A9yRkqYhZGv+3NyRInIgIoOPztSRGoDzUCsUYUQ5VAhMWyJCKBR2coiDZTHDQCazTpkAzZrJzzGeQb676R6LiDnGWQvMr25sc+AVA0lMOjcjNV9TB0ZLgrA+6Dhhx1eJwsm0kRxCNlEo6qmuP0T9P+8uJw2L37+u1X37zPc3O3mqZp3k3H4xHMu4vDUst//i9/87vf/e7u08d//a//9e5id3G9P5bj56fHq6tXnNPD88vj8/FwdX356jo6iW/fvp3n+ccfPzw+Ps5zVq/3D3c/f7q7uno173f7/T6lFNxqojDRgUja76bdbnd1dXFajinxLu0ejvd3d3ch7KyrZs7zxSwiT09Px+NxXaqI/OlPf1zL6cOHD89PR1U9Hk/rWmutU95dXF5fXl5GKY6uPkhElCmsWVNKMRNm5v00/+a739Ra7+7u7u7ujsejiBwudlcXB1P58OPHH/744+n0UrTe3Ny8efPmzZt3V0/Xl5dXjPr65vJ/+7/5dx8+3f3xhz/9/e9+d3d/f3V9+Vd/+V+9vr2yulqt4ZR5sW/0+2VZSg3X5SnP02We0m3eX1w93z8ej8vx6cjMj4/PF89Py+l0en56efhcaiVJnN1NPVCHZHGUc58AcZNZaQQfIXIi83AmG5VhLDaFB2+rtbS6Qr/bJhK2KQu7MHUGwWZ9tp6Uj+CwCTgDExMBdvtDfbGOPYLkcO5z7F/soNHQGfudNgAQ9JRv+57jz3/++sWbAFANaB6FgDEzE4SJ1YtZEGCpIRE3vw6bNCbeTXrj2DZ0VyIyr3Gfg+o7+ux2Jq3APCwSJaVUTmXwsyLyxOlvVUfgbEP686nXOubtrz2Me8dXtkuJIQ/zUOFlciXEIgh+TbA/jKJyIKi1cBhvWOv2JoyMq5MCHUDz4+62zth+d9wPagUqnHxbCYxvNld3502TQOhM3aamsbltIcA3/n7RL4xVR605BIDd2ww2ftd2BugGixkMuHXoQ4MUCiBJEpFau+giwjwHrb2K2GtjoIRBCegrTON4aB4eJDFPyDkbISJmrRXcaGa/WPHb8pvo7Bw4jkwA4VZFfbpoZrQBgtKWzbW5sNgFagXtXAuGLjuMHENpftxqqCt0EkYXfB9I3d4SFqKm/0w0xRC4eiv945eOXm9oA/hmhtnesjYOZADygnocoaa6NYBHzN3dybn1A53MnJwITWzHtLf7KESbASMWWdfCoYcO9H7L+bd7g7C2ABFcw3EP4xuiNz9Ns5kVdVdrvlDmAgoiq9WqhGmawQkEyeDgG1ObfoylSObBoR97XljcvWqNjdf2FXGNQ70tPNqkQef5QACx4z5zIM8VAlq1llqEm1Ifh6ZQuzmRjRDTwJtBIHHvVAvgDLbN6goZgAR46FQ7mu9iPJWAuOTMzDFBisccYJBaVUSGhnBsHhHppmax9NvkncKigjzsGWI75CTVLCY5xOxMpqqq1DdgA2gzGTWPATUL/gARNVvxzVw6i8iUmbsUxJTD03icNENYhZlDZH8E+vFEmDkmOe3WuinMuh3UiI/jqfUfN3fvgM92cqgqegUeT1ZEQhkr90ZJSKallKqGqNUZWNWba6aq0Do+Ray31kdVHQGwS1u13eBnlMFZMqSd5T0uje2A0C7Wqp0PKXkSkYA/BNUwZjxLeAK3aziTNpPw2FnoNB50DQjuY14PaTc4EWtxdksphQ9bHD8RSFnSuWfsXmuNKV98QwlhoY2C5RbyGh+zlEU2YiFxEjFzI499eaI5WJrbrYULABFZLcxMAXnoY8+4mdXrCDJm0crk7YOOxnmsAe9N3njQcUOmaZqnaYObANFkzKqlXb9W9+YWpGGOaoZwKgX3llbMW4mIuxd18/TartVfvOLrSVjdm69G/7ptFIk5+igb9ttYSBpNlk3HsKUmm+lKW2kbXU2oVdi5pFSLrhhzw4IGQ1Wd1YqbSUgb+gjsrV71lvISB/uKGkyOiCSJqUkPIPEKeOQ2zcLm5K21DufzMeTMOZe1/TkSofj+aZrIzrPlkTKa67qZ6OLP1FJ+cf9Hlbt9H+4Tp+0//eINzWvgMEcc883UpQUlI9+ajlqMR8wtBM/jkYYFQhM1cXfiICjQuDnop7xuwub5hO2JdDRv3RDOgWOFExHTeejdxgmtgGnXbK6Zh1wfu51h+N4uhiiQbERuMDOFp/CTF8nTZPAk034/f/X+3dXVlWp5vn8C03xxUOjxeHx6eRGR+/v73//+9x9//Ony8vK3v/3t27ev9/vdPE/LsuZJLi4udrvdzc3N7e3tPOeqa+i9mdnHjx+Px6MIfX78nFIqpVxeHd6//+rt29eS+Pn5+XC4jNnveEYxiUyUdrtd5CellLW/QjV6v98fj8cffvhh2J7/+NOfTqeXp6cngN0oJTkcLt3djV6WdV3vX7/mw+Fqt5t3u/3h6qLWSuTPz8dPnz6+vLy8evXq4uJimqZdnl5eXj59+nR3d/f4+Pj09FRKSSndXr8CsCzH55fH4/EFsFe31+/evfs3/+bfvHr1ap73Dr66ur66vlzW4w+Mb77++re//Vfvv/r66/dv9nMuy3J8fjwen1+ent++fe1OSy2f7x8NcOdlLYerq4v9/urw6je/2a+n9enxVJcK4MOHD5/v7p8eHh7u7+4+zMfHh3Jajk+aE5ObuhnFIFcHGtFdzbawGhIi08Ep9cBOExEgwm31MifVSPUpnCxja40d1HdHz03+LDyO3XqeeG3S+O03jL9u/9D++2WL/Be/YtSNv3gr/xIPvA0d23cYF0OjjBqDQx73pL1hA0D1IlO16Q4EXYUpj422DfsjzbCOnotjdD0t45tH63D7wWNbW4dSM4P5bCAyroG+PJHGG3KTLWjnl4iwNqoFEX351CyOQjd30whtHODlLgjq3rp55CCHuquO9hqweUDUe9bb6/GhAt3TFwBO7hKwHyK4tzkdYlraMfp9VO0dkkpNTKIVm4gRKDWzH0fT4orFBoA5kBXcpZvYjZyorM3mh2g0wJ2IqhURIWc3c0LIAxpx61KwUFenjA8scDIFwSUwuSAnkAgGGq6VVTqOVZEAbaKT67SbZIxlPe5VOyGo6bbbQAB2kHwrzLiZzns3R3H3Ti1zCtadSCAGCJZYBJAwPOw55cg43d2rovkfEVQNnhhMrZpqaHw0mgSRCM6gf+/SO0QU8uvR4XFC9UpO1my3YhW2vo42F50zUTNaBiFA7GYkJCwAsYszCchaIyjqWDdTw4hTjSSiWuGeSBILM2Dkm6ElEREncJRqqGZeA+HyRdyhMQFDbx9a2zbxj+O5bE/6toQEKc0w5JzNUGo1BcdMlKU7EBHQGCnRZYj7HK6k3BeSqkapHxwtEhaR7BQe06ZK2NYJHiWHj0ZUD4Jmxkah6RwkVVUN8WgA5IE/NXcLtXRmtrUEUzySQbNNsG5p6RDfAoCUJnILK+/mhAwnIuW22DqAmBxs3XEKXwRcc0cIM9N4WNQCGoGSTC1zYkopScquta1jEQi7k1pT6FX4WgrcWSSlrL1pYmaQtswRTbv+vzmllLN27aKZKQSHzkGvxxpiVqgFURxQD2VtN7IGjGg8fDKCkYE9xE4irjrbcNXSUuOdVQOcimh5UNvlzF1JKK6B+zOxPualDv2icznaZiwAWnal3Cslbp/CvK4liB4ASilkKmh2X27V9Iscuqr1bJe9i5wxc1BSVWtdS+P4CYRTkCFBUct5rdWJrJOlQRSpyNhEkWb1JkKQ5PI4XL84eqAehdx506oDRElEllJHubId06kqJTGCmg4k6mhFSwwE1CKHZqCaESGYuQ1uGmLyRugslWpfCJyIJPNSaw00rDON9w/8yJetje3nojGa2Aai+K/CeRh0KbjDYgOjFMZXHlKAfcbOzN5g584ACRtXLlZtbaM3g1nn94eAB9QsgFFfqKT0Pwg6aTxioKoaeuD6EuwnIqlpUgD97oRVb6QXcHIja0qubKCGM+pINzpT3fqIPbz6zCQ4bGSghkoj4ZTSPKXGpzLVUkiYRdTVDCIZve5SVSJRKJuDgwAvThzwq1g0o13VI55DEAJm26W4LeestYAj1kliMRXdUvLMyJS79kd7xG5ETH3+j9aUg5qZV1KHcWjdB1aYhRyk9Vzf9g0Sf97IZ7brNNWCjhZi5uqk7sPvF10jo0t/REbb6F39NGzshDigW47BYrBq2sU72olg7onCUeOMMqu1NnO7oJbEhAVsRImY2GnwlNtKGy33tgwCtNxOYKA1b5vxMvUVG3GlPZfW/YwhBDv1gGPqNBEzp5z3+70TkkzX19dff/31sh5Pp5PkdHl9eXV9mVJS9zdvb9d1vbu7u7+/f/Xq1X/73/633337/vn5MU88zWm326c07eZLAufLKXNabX15eSH2da1/+tMfPn78eDqtOQsLu6sIR8e/1jpNuzxPacp5niaZARCkV/imdlyX07qezOzh88Pz5+e1nI5Pz9IkhRrqrZbQOPT1+FLWI6xq9afjiSBEqdZai61rnfJ8WstprZxSMmi1p8fn43q8v/t8//mOHGbInK+urp4fHj9+/Pjp06dRopxOJzO8PCy73W6/nw/763mel+V0Oh4/fvixrCdOUmu9vLj+y7/8q/fffDfPu//+v/u3Ke8BPD1+/vDDn54+fy7ry7Iea61hSLM/XF69ut3vLj8/PBnxquvLaeUpvyyn/f7i4voq5f2U5lLq4erqp59++vzpbrfbCfPL4fDy8Fm1elldm3gV2gY8429bsAmwRp+AmHmDbW4iLWKYFFrcagwCsYEQDdNoQpP1jJAU2nMf7wcBzv/pg5weDdo3hhPBOWH28zePy+1//aKrRS0xU+L8i5xz7PTxh21h7GqNBYnzS/pX4n9RYo2fChjC+QpRiSisQ4katSFSOOpjjHFA+PC3/3I0Oj4jsZvXGMtIIukW8iMHICKmZNFoa236GOqMj2vuGs3u9nmc4d7UFNrk5NwIGA8Km+mdu4dnas7EDriFoW1TF+jNCupZOpPAXcirVg91g36HyXs3xM5PsP/Nk3WdxpQS0Pxk4gETRWFl46qiqtGNQdZYoQoWAZG4B8kQkRBH75kbrFnBDCMnIwfBiIWYQK5a4KRQsz5iYufOGOk12/AYAMSrmVl1UyLPeU5JQnPVYOpKEk0BC5JyrBsiKVW7zgRK89o1cwqIiUAMjeprZrValoA4umPxGPTF3IO4kFNjofpIbW2IW7jBKUkkcxbcBI6cwNHgS07SGUSlFAblxEQcs5dhOLTNnuNEl6gY1ckRUNayrIFbHrR5ojY18LC8bRCpaLlRzrmUBSBJZMZqIPXQuelLhPtDp37UjUCgRBBv/t19Z0o8aHPXGguTU4qCx0M4l4hgFk2sNgaUJMIgCQxA9QoAJIGsY7Jp2qnWVVcLAFfT8nGR5O7ktlmDDgvzVZVu4kKN0Uldibc1ceO0Zsmnl2VOkzqjVkPYhHrVQuCQ5Q8t6/iRMMsxs1Enxsv6dDFefM4LUVryvSVqmggnYkXIlrkz3Myrm/kkMwOUUpzr7u5qnMSq9t7TuO2bmEkcZC0Du5mDmMnaZ2hXT11imjsYyKLoS5JSWtc1dgAzk2QiKtq6g0wOh0Va3JsCLMJMwdyMMOGEsN6NHkf1JpOGTidWVXMnSPhGRv9EUasqM0/TlOc5Sg6Zcikld2B5deOQygGFOujyXGjD8h0a/R0IHeE7MXNFB9metak3h4FbOBa2iMxMmwqnHTiO0Q2xhjg4zzwFJCLpLEbV18CmcmPmaU612GlphJzEErZPZkHuhhUbmtsezihEpZTcnb1GKU7W7PU8YKhoOB8z01onSUwUEoBjdTAaV1ma6FQjgcc/kTCThHEa0YCSOLOwMMCj3RuudUxgjt5XTSkFFqkV5A1IHw+CiZNTApNwdmKtXk1FkNIUqGM090JrdVdOta7CTWm/lAAkD/wVAdqPGADhBNgG7GbmARd3L6UwJ++Fh5oCEAIza12j6D2dTsuy5JzJTVW5ZxiqpVRNicm5lKKgLDTuMMK7vlbtmknd9o9EHc4kaUA8YgHUWmPeOxaGWRPCJSKGmLtDmRMzk7HWRUcLr+GZ+yQbvXfOzBxAtdY7b23Z0UuDMRMTvZxWEuam4IbWWhReho9iJFg9xMV0I7p7btQavO5CLC3nt4A3e4OloSEYQa2JI7HuneFMiQSmWquRQ8SZk6qCoeZFLUWrWWFuIq3PFlZVXimEKwOjguo1giWlQMIvy7Jt7ZWix2UJCSJ8Oa6J/aKlqKoQSZ5qrVqqwVKatRbqUvbu6q4EylN2mKqatq63ahhpVe82wuOUpe4+MMYpzExeS62TdGfj6MHTeS1568kiGk9hSSUQZqZmZmGqaq4pJRImtRg2hGpJv/8tIxJpqYvC4iSQREzJG/8i0NqoADQGsB4nPDkaGqn3WqgX0g0NJ0xNH4/YB1W7w0CknUMR2cjdqlvAVURSYjKKOxmjY2spMAWLh9HYN6oatl5MCcyTpJyzOpFwnlOadldXV1+9/5qSHJ9Xyen9t9/cvH497adpt7u4uKi1Xl/vprx79+7dm5s30zS9HJer6xsWiPCc55xmAKqlLutDWdd1XdbjNKWPHz9+/Pjh+vr667fzDx9+WkuZpulw2KWUAC7LKhd8fXWd0pQ5M+BQj7totZSynJ5+/PFPT09P8zw/Pj7+8MMPnPLhcPjxxx9F5Pn5+Xg8fvzw6dOnT/M8SyK16kbzdLFK9eeFhUVkXWrO89XVq+urV/v9nhmq+vz8+Pj4WVVP6/Lw8PDy9JxztrI+PNx/fvjZ1V7d3rz/+h0Jm9myLC8vL3VxVcx5N01ctDw/3X+6//nh8W5Z6z//yx8/ffo07eZvv/2WU57m/V/+67+6uLgsRf/6r//6//Z/+b/+8z//Y62FUA+Hw9dfvX337k0MzF9d7Xe7nboVdS6UEpPj4e6TV93PFwS5vLzkJI/PjynJ7mK/rC8yZdlNM66v3D5/+GgGRREWB0wNhCSplmLVAESmp6oejWqirusJd0VXsAsRBqfolnqLfwRJEoeswcE+mvX9LD6nSO1gxvlLbTOGzoLH2DTKPIz95Zvv9E35OnKJEerbNVMkwefCuG/zL8QviM4dzC+usv+66MtTgC5xRo2bWXjFjTdkInQfu95YF3QbnVrXcLIfmxpADA8C9BcXMFrA85RHodHRrB4NmhFIx00AgsITEC14l05uo7Y2jYjWQPuMWowYLE0fMQKBu1erHG5M1PEjJE7tUiSGfgZ3V3KJPF/dzBjSeuHxmSWbRSYfd7hFbgrPQniraXuelko1SZOkoOS1xKuqNvpNE92KeZdHDs6hkzHwUAyEDb1XrUZMYAHDjBwKc5CHggKxkAxcjjVr6lIBSBo1FDnM2IS4+4cxU6q6wp2luruHNQSDSKx4ypkZa10SyzRPZF7KGvELTmrqCOFSZraLi4tabSnF3UmkmJLQPO/WdfVqoWuq1V0hnKYk5jTN+838n2tdVc2osAcY2wFitI2XsqhqLUVEWFj7fAPk3BoKcZJE5eTLsjJAIY8MArdJsasRpxA9j4mNa9Vam4uJq6kCNE1ioFNVlqRlIaLEYq6SJEuqtSrZshQtR0k0J0kpCQHw0+ll3mUAtToxG/FSFcCcktYS2X80QdsCCp4bN83wyJXzJJ2fRrXayH1TmlQVwgpYtbhFIomIpizWwbGIlNqhVROxEyeZiKj1XKyqVU80ZamFWCSn3fF4rBXTlEGdgOpUq1U1do66d5f37r6eFoBzzoml1hozppRipNlmqsu6Gui0FhE57C9Pa3l5eZE85XmqpX0Wdy/R9QjzaseUZiLSUkfBQ0TEyc2acqA3TL66gUlScjO1wg7vdpFmzuzB4mxvYkTErlZqVQ9zF/FoH6gKB2TI2TEq4VprSqRKBq+q7hDJKUXUYzZzAqUcBax7yIebKZzaGRLaXyCe5p1ZyPAIWMxs5nQ4SF2LaXXynESZqyngnFIcEOruVVOaglPv3CfwDjCx5LVW9+LuRJznSVXX46nTLEGSJU9p2qWUzHxd15QSZylldYLC4MoxDHcQeNrtyMhKiYJ5NGtrqcrnxirnpOFQLSRpivRUAtRaK/XZbKs2AbgnYgiTQEv1qu6emJnY1AJfsJsSIkanFDzVoN11ca6AokSd76WU4+l5nudEXGrRUpeTASzEwiIsXl3dErMBWmtKacpTKcUBkVzKEojxPE0Eh1HCNE0TuR+Pz4ow7STAU0oQ7jEexuEL7zBjRjwMoimLnE4lXOyJkKJd0hPoZVmJWFJi+KpKZHNKAKlqgMm1gdaEC5mhVOQscYatRcXWc7HB3vTzAUYCU6mVkKupq+bg4ZOzI5HAiZjCd52aKBqLCEzXtY3BmRPAIlJqreqgIIP3JgUZi7haKTURJ5EwMzQz1QWdHZmjelfTWqGmvnr381yWJXbfnKfhJw4mdScDpyxO0sBNvCyLu8b80tXNbZomIlnX1arDea3FTFNmZ1pLcxPRtTTQ9SRzmkspx9Nq5tO0Y/JlWQTkIjlnwF6WUq0oDEwhqsmhqgBytVpXsEsSM5SiKQmR8IY6xQzmiNglzpTdYW61ljccSpRsmQXeSimz8B5vNtEwA5g7twiBdy0FJCnnxNSVs5UFiboEtIeGU+SRosCxxFg1SRJ3TyJMSc2U3NTcKU07EVF3I6qligTKyMldVSvVeZ5VSVU5i7D4uhbTaQKxaPfJHFmjFZ9kiqMnhrGM5qotzFara2cRkyQmUleHaSUPk+jKDGF2DpGNYAZRdGrWpVQN+ZbsriHxQu6ZxSTKUWUGubh5WUokNtV0nifvJtLekJYRIRtrzFRNleDB0I4DNwh+TSaTeC1FJMMQoNCYoTBzmiYtBYADwflqbZEwE6qW2d29rIWZ5zmFDAqSuXs1D2SAuy9LnedMIjFHakML4WCvROcFoCwxY7CiRURatK9r690ozGrOGcLkbGYwJWbrEgERk+PDE1rVEbBWyQxuGpnCIkwKV61pnlNiCF6/vb2+vVlsfXo4Xd3cfPXVVzc3N9M0UaJ53l1eXqWUXr26Xtfy+PiQpnl/cSk5V2MhMfi6vOx3lcxVaxJZjg+1Vq2Lpt3F5e77b7/a7Xa1LNeXuw93q1OqBeuyks5ylWbZzWlOLI5qqO5KULXl6eXx6eHx4e7+088/7w+HzKx6FPZalw8/PvzDP/7+4eHh+bQ8PT2Z4tWrV2a2vtQKffXqGmA9Hq+v0lrL8bQGD+Xq1XUSmeYscFg5XBx+vnv68OHn6Kr8+tffv7q6mJIQ0fH0cn159dX7d4nltC4AE10Kf+1OTHMohxrs4fPd4/PD8Xi8v7//+f6uYtofDhfXb1+///Y3//qvpov9P//pjx9/+PD09HRxfXV9+/r+/lNdzIzv7x8mSQwcdvPzw53B2U8C7DNPQqfHR+FUl9NifHV1rfXERFeXE/ww72je0fPz558fPharVQTzbndIy/Hl6fEBplmEhKoTOFWtbkakwuFyUimsMpkAq7Wax1yRVDXPcylaS41ag4iqFZCVujgRBLoWQhJhdiqloIfE2C/N/pCZnHqjU4Pyw4wYi/bacyPMLux95BC4Sner2pgxvduO0qCaIiJqCJOTyPmH32zsZWGmEGg3i/Fl4GHxJbXHnGqkfACYTM3gZCREQMhJRhFOvZwg5nR2mWWP+Qfg3SI4Pn4KWy9V5ZwoSThLxqd1J4at60qEOAuYkpmVWmqxaLrSxsHOvNpiVbWrUhMRRXc4PtG6rkKc8+zu3np2SkQMppjLkrsb2ADkNJVSVqtAmA1xeKFrWJY2rxIhhltdLQbC7MRutngVo2EG6aAUI2E1CxhO0OsSu1OBc4gZOLlacg4FyngY8Farhr5N5A8JXL0BKYkRrl1fzPfjv53xCnfXGhBoIW6jBnK4K7uwgCHrehodFGJHE2FlFrKmExFIZmqLuDnNBkvQvDsicpJqWqszg5mrFaHEOWkfuxFzzH5BZI6X0zq18ZrFoaXuSzkxJ/S5fLQqXZs2qYGoTzas00fR8jwSUNPFAUeJYgQIG6GJnrh5NxRpqaRbCHQTkNLEjgAskVuQYxsijiism8aaE2lyrM2iyqGG0HedJIU7uKNJ1FSvQczkJCIzC1IwXuNhcWu7VlXm5GzmlBryjREZk3pDwaPrtjX4dyPiU5hzNsBhaxWDk7bdBCeYuXXcU4ojHyqU8ixSBcRCKbpYwiQEJyeYunktDj29PO92O3IkTsyJOQm7cO7O0taIQw3TTyIZcIBTmlr/iVwkqRcigrNWV609t47jfyFOktM0Tag1mEy9l3Z+ubtD3dtIeVRQttFC2Lb9WoEhSSPdYZbO+2UQCdxhjcPdMnq3Jlpz3lnaBeRgAKJD1nQ1PbKlGr8xxOJTmoRhlrhB2N3cpG9ni7GvWYAAG0QtOkMBeQ0kkFrHBJlEC7Iru7VIZlbrmnOmEJoOVRxzp3BF4Yj1vgEoMnMoIe3muY06FQZCJ3CSuVUtHqqRlKdMqWkVMbXa9XQ6TTJRb81EqA0yZ6w96wBjZi5adV33KSmcYtt2ZPi2fRuRC725uxVoaYP9fjD2NdYwohHTaKOkOk5cALvdrtbqrtM0yTyt61pKIcKcsg1zVGoJehQ/21i6XQPSarzCQM5zIAOiZRtSamDiJMnIGFoqS/TxmInWdbVal5Z5p6iBO068oUlDfaSWUlUZTiyqpdToY7QHMC7GvA0wx1If64eZQwaJRg++VkMWlpgzJ85drMfXdZ2myc3WWkyRpuzuq9ZEEQfjaBciEs4i0oTdiJ0IdL45ZBbuCB2e2RWS4+F+gYNlqCnV83buvfnY7KU1VnZEZV1Xg+c0J4JXrVqimk0pWy3xUMysVuvoAQEcVtd1Jc6M822JpcsCszPWOpZTNWdvNN9SisV8g5oyJxN1LE1A+5w5FKka03jEn9H66dNICgs2hTUgYXxYawPk2Jg20IBxr8xdB9qLzCzoPFlkmqbVAr/TeFTuSuQMuFV3BhNAAXuLM6Mdpg0IZ0RwQ626eu0biok4fHttQ2lm5pyDROHEcI0Q3lLYKTrUpQErtvFZJJmprmVYy/IGlFHXoFBhFKJZhN2VAJClAPcQODBdMFMP2T6EKAmIxOIjb7bnCPUdikzuHgcvEU2SrNRIcBozyDwoCi1VInNvnPn2qP5MgKdNxSkmqVs+P0Zi0A6dpozr6i7dDhRgpsQc2pfhHd2YPAAcTNDxKWgTsWsndBBRDP+1VEU7O6JJPYzBzQxNiUZhCthmFGdmFqKnzAwmmHkDJllwFOOJUDcyUTVrC0o4p1rrw/PD6urAm/dfXd9eX9/eXFxdpDQBTb/6N7/5zW63Ox6Ph8NhnufdbpeI825elmVZTmz08vgEN2aczJg0zGyWZWHG69evif3jTw9lPbnj6emFnS8vL9++fv3tN9+/urwGsCwvIBdxRzU9Vl1fnu8/ffzp/u7ucDi8ef1qKeXu44c//OmH55f1+eX49PTEnFJKlxfXFxdXX3311STp7u7u6fjkJmYQnouuz8/HaZqY0+3t7TSli/2h6mLm7969c9fnx8+q5dWr29/85lfvv3oL84fHu8fPD+R2Wp7+7m8/3d/fl1XVTSS/e/fu7Zt3FxevZsI0T4fLy9dvrmOM//D8VFb98cPHjx8/fvv99//7/8P/7uXl6f/0f/w/f/r06dff/fr29vbf/jf/6+urm//8N//z5093U56F+XQ6PT8GOFmdZS112u1TZnHbJclpyknIbTk+ZcHhcNjtZmK7ub2C8zRlZPnDP//x8+NT3h/IzQtDRD1kyS0xkzvnFImWdSk4FqnmQ02xmy+SiJSiI9FqqTjUyZnENjsxokRoSWwXM/WChTaLcrPguTsSnnd321NxDMY/bXCv45g7n9QUFp3etlaXqov3kZ53mFkAlUXAnMI14AzcGWcTtffs+Ulj8wfe1JvYbSOw0Aal2PcjbfJKbP8JDYnNZmZ+VkBoqU6DeHitdaRK0UUEgmrUUqyo/9eivQ6PRK6ZKTInCzWXfqvjX03XIdnT6Bg95Gno23QtgKiArCsZsEOpJaBNcSagc4EdZeZ4BO30JzJIy9LFCSakTa4KLbrE3HE8ITT1woagDXti7/9qZm6DRRUzXQp1zTHCihR/pIPUEotYBB4QxRFS0YR/vqDruJmEvg5CIokdHidSIibmRGFVghAchpGIVK3uIBKCRGgVEdUadRtTYk5x1ACsqjTPCbBaiDjnJPAB0SSynDOlcMMzM6uqRGSxIIhE2jldqwEI9UoK5Ri4EZVajLzNGH2ztsLt0E1Vo4FM5ALKsgvSZ2yZkC+Puo6ZmxGC9gZ/SihVpJFP0UmMZmZUAwRuHYkdXl4kyDknJhaIwbyQg/lsch0PQjtsLxRIG8t3KD+NBzRoAJwGLjoqT+oev9GxG0hj3mTPipZNZqEMIeZqFlDcokrMOTFJtKV78WxeTduEE6WsLftvIrxx2YkpOOTucDLXKM+razy+JBNB4LDoQ1dl9iQSZAk3i3E3wAHUjiflgeTwc5bj7oKg757tLgIrDq/cuwLjm9EN1rdhNxxZebCRvT399iM93WkCAZ0HblaZueM3zuwvqzXqSVVF3/weHqcACFXVCOE5RE45Z/e11vYomUNtrmPqvCUnsWdDWWWAhmi7FFrrql0uztBiIiJnirKTxku4aBWRaZoosnh2r9FBbDWJuQEeNkUgYoc5AiQm3aUmtuHmLKG4Vw1xvT1yjINlDfMSvnZtl+EX2Z4HjVZCm4DBYDs/wVAxgEnAFMM4vZ2O7huGf0MmCwNktXqc4cwgZsnJCbBWuHZUc3MhqrVyuKT6WYeGu/gTMxthLSuD5nlORKGMEguKBveAiCHO7VRQraaNDgj3qVslj8VZewQII42A6g7jqGiQhxXZZkkbE2HYtPRgbmbqJpDsGQjUdJMP2O13zBIU/cQc8rurqoh4dnaCmqqLJ4+haxaPstYdRA6ttAbO0uERLVrmQQBQyzL2YOwmNQuDa6FEzKoaz12Igzkfdwo9l4rVdXo59kN6rPHgLop1iGa7BwFyc7h7KWWkVpEHxFhSukYKEUFNpH1hFOfojmKBfFJ41TrAViJC7ZubdBk61m40cPrsorVjOjG4IVUBmG+Lqf6y86TRh25F2xfurpKkmDa1S2+Sm3FJ7m5NzoYCfkUORw3ViVh1wJmV2q/WqPcTtxlFpJOhW7q9DIxsNKb0Dol+e2SNUyaiUgrIQF2nO3Y9GuWYQvNZyIKlZo4hRWkNji6SvQudSOt8RW4ZuatHbwvutRSAY/rj1cAEo0jB4paxw8zbpCLk1tXdPXyvtUEXN3Zl2EQeiwTCt3EJQMvU+giin59dljzSKrVxXgxyuvflJexuFshOYmcOA7PeLokWmDeuVw/dsA03z3uBvcVPumtTdYlRCTf3B2u4+GBwUDPfbA0aqLp5ZeZQ/2uj73CF7IqbRE3psHGnhaf9jliWWmit01qnnaXdnHc5z7no+vTi15fXFxcX19fXb968eXN9SyCB7PIutNZgnjm7eMVKTC8vT2U51bI+PDykSQ4XV0DDyDw/LfefPv7pD/+yViWZLq9uv/nmu6+//vrm4np/mIsuT09PrrasL1dXF5cXh8fl6aeffnx+eVL47evXpZTf/cPf/93f/8O//Msf1TDvLqv7tD/Aed5f/fa3v3375t3j4+OnT5/AMsn08vT0+PIMYFkKg96+fXs4HK4uDuFvtKzHw7xTLX/4538B8Ktf/errr7/5q7/47Wl5+d3f/t0//fM//PzhY0T+l5eXl9NRRGo1Jjktq6kT/3TY7V+9usrzBOBwOLx6dfvm5hXAt7dv9C//q/dff3PI+//p//k//T/+/f9rv58v56spzZeXl5eXl7XY8XiccyKw76bT6RQts3m/R1DSgCnx4+Pjy+PDq1e3r2/fUcq1LE9PdX95tdvtDhcX19c3r9++vXnz7u/f/uPfX/3u/uMHXU6UCEBdl3I86rqQe2ISSd2hu2u2dysKNPHnRh0novV0IiIRMnPtymxRX0QOm9LUScOUU2NgNW75Rr2fhnrVl+MN2uRgcQpTl/Id9Nyxheks3NUndZsfN0PUkuHaKh0/FQeOt6OL22dsI6szxPT8tpt69fzX9ivquD84h4DIVCOr1EHOjyIQm6JdRHA2/sDI1eOECg13omZfJmF50rWdI/GksBmPLNGHoYmM99ztUi8iLdSHxz0f/22GkFB3p5TNjH3zILqCT/Qe3GO23UKcNxfYTSqIFqNgrjCOBmu4oZ9lny00oNw8tHZTP9O3PX4boSFUPaLChbuAtX+acUPpTAc6F7f93TRqS+kirqMfEAqcIXA1PoOFho97cGW7fjqZ2pwnMJGH5ymRNCSWs3NoNDDcu/lKHE/McCaWSAiYxN2jWdJKkZxEhBs3LIb72qJnd45RrXIW22zYpJHHWBRqPnQWhVlH4jH2CTM3C2+PZRT6NGQh4W3e2s+OTb/D4qyL9YFG/RUSD6Ki9wN4rCdijt6GdGsv3lCVNofjeWsR0ZQz54nNqjahjMEhHMRm6t6YTCl6FvHRgwKKcxCg7TuPOxCpsLubucGKKrwiZaittWYGJamlUBIHMZJQSGJJjO0B1lqMVDfUu7GgiajJ0GF4t0oPc4gEILLEhriCBA4G4IDE5TlNeccia6C4+bxdty12RHcsnv5mv2w/Mm9UIpmZnIrW6GUACAHS3HuT483HcyHIYCzES7sHdYx+onim5hh5vuctCQ7aWAtk3nsEPX1uM+PmyEq00QPYNPvHo6QxCaV+IsWUpnv5BuusfVhiIpKUlQBwFFfU52CchIgbNqYjGqi192IE45AgLVJilvCkIeIvr0dEoFDVUkpAE6V7V65a45LQmw4AsqQxFay1MlFKKQBUI2qdz8KQ3mmLlsabUD942vk5FBrDT4R52ydqi9xsXdd5ngW+rmssWiIycnWjjTv0WGbny+i7hrsYLw3ekbmqBhdzmiZVhdb2APWLd4jN6+p//ky5e7O3yN/vw/gUaONwoe4qG9+panBPSdw1lLt4Y68Xafqo29FPezeDmgJkVH2z7Im0VIgwaErCIVrJIf7tDWcT/WZvvMr4NdvPYnAtxgJiiLqHHIc7Mx+X0yTcOEDtDDUzC+w/9fs8ynszC5PPUsqyLPER1nUlyTjPe6uqEiHn3Hvb2DwycZc8H4i9uxKAmSksxMjcnTswz5rMsuYmqx3PGud7aIG0iDDySyhKOw4kmN7RTWv1vDfcYPRGHf3P0kkoJBxNfqHY+N5UfIEG6EfjZcGh8GrGresUJNSzKlh1l94NCp0Ld4/YC+DMabeuvMWUEKo3QXI7h1nfiA+va8Oo55whDrCHxL2f98voiI3bUqIVEsskTClB5E1lPedcSimlVXSxdEspYEHESVM3q66BncmcIKLqDoW7IBvMtLZf0K4j4DltIwDoYtjnNG57nW0nglpXq+dCgf8yMzeSL2MCEbmdj1FyHosHLYp+sSroi+zLEdJYPpppX17eFhfT84Nz8O8NXGbeND+FCSKkZs7EoWK1iTB/vlDjpZueWXw18vJS1j4yYiC4UsxCKefdblfMyHR3cbh983re7Zx9WU6llGU55Zxubl69f//+9vb16+vXDita3D2xuNrLy0tdVpkyANUC07qWWsrz8/PLy8vsu4sDLWVV+MvLy88///zhw091Pb26vr19+1UYQDzcf375/HR9fX1z/QpwFrq5uZnn/PHTh7//+787nh5Vy6dPn9ayvLy8/Pzp7v7+4eW4rGs9/fy5FL28uP7uu1998/7b3/z6L+7u7v76r//fz8/PFxf79fQcU2tmnqbdq1evvv76azMLMWpi30/z8fj8+e5+t9v9u3/37w4Xr56Opz/84Q//4a//73/7N/+FyOcp39xcq+o8z9Nun1JaTitYAP7p4weymif6dLePZPXm9e23779799X7/e6SdP31N79+8+b/w9efNUmSJGmCGB8iqmZufoTHnVdl1tl1zUyD8DCPwPxcgIB9WuwC2G3sgmawO92o7q6u6asqs7I67zg9/DQzVRFmxgOziKnnNNaqKCnCw9xMVVSEz+/7+NFnn/9R9vs///WvVBUoTdPEzOM4Pnz4sEy7o9VIIF6xK3Ot85yGITFrsblOZdprlUyJEWqZy26bUj57eL4eWVrXZLXePH/+vgoj0D/u7vZoaR5WurEy7AD3IlXqkEbTWmu0ByixiJQ6GaCKRRP0fgv3UJ20Book71SZHzRvAIJLkNR71b9leAP3U9m+S5f+995/MVqsuDgd3WscPidcj0d3BznM1rSF7n+xVY3NLKaNLEJNP6i4mBNx70A127M8++2yO/hGzMDrU7xwx93jY8NGRUmseX+1yuBqVf28t9LYIhTp63YI5KKHD9pnhbQxSwB+Sebek/DeY/2erTgsmrVB5l5NMBAAdoTyIpLBReUOENgHFkB1gpI0bIuAiRs7Qu/dapACLaFnu4vRLAElX+4Jc+n8MJeHrdDCYvMrkJB6YjeTYKDAgGgSYPgeSkKbZt2wxP5nMgARVEWABMgYTRvw+r2Z3wW7RTarIgBMKWX2hM3RBUkVkten24sw+bB4BJ3nuTqn3gn0rc5kZmpWRQjYvKdj2nrXwOzquVpFSinDsDIPdk2tq78CrIaxSPVIqzegfCAeJ2OMfNhbZ1HPQBf8gvDE5Hh3AoBq2msxClGs9W1nXoc+pNlt2yAgEaekIEABdahqgMoK6OTqdhIAucneepoDIo7xXRxXj28EerkD/CoRyPkPLojUni+ZuTKKBUzbEF1bKMAt1Uex+jEmBCbOCREtcsyo+BAhADGRGiggIxPROK4ceVvqBOAtz0A2eAjIyCklQC6lmCpzAiZV1KgieeGRXe94LjOAJXIudC0luv3zPHt9yLiR6wESUpMWNNdv8FuWNja9Bw1+4gkYGA1pcmFSwnYEWTV0oYBcVsOtOTHzNM0A4Fl7GAU1VEupQeZUUYGgG6lkokg2pFQj6zBkMqkIYISYQr7I0MCglIIGyfMv54A12TPyGUULOCKIhiREx6W0iRcheuTYC6CuxWKE3nIwC6FEBQNVdjoNkCrUWlwgmohSGgBD/CUcmI/IQop4HRE0un5ohsS2yAn9jMhhlmY8i4OTMHICMHg/v6ndJCQJgfNI3tog86iwqIk6+rIANF3B5BqVYfp90djaY4+003GwzYFYE3vwyYGcM2g0eqPDODAz12nuVsgskjQVMUA1IOKcB/UEzBreB3FILsflS6+EOItgSr61KEVTq4oTUw2AwCwG4tYwAqUUcV0ahy21NAZaj1S1j2wRCtEl16hDQk/tFIy7K9VuPJBKKdZg5Zhd0i8hk/NvmTmPAxGpiVYjGHxG62F3gpIhOdIZwjAguVw8ulycbwYDaAkkIiFTk5VKrhqNhqgKybtS1WvPh5ijzzgREafQN7snZIAUGx4RY2RgPwJmHmwRQc5MiXy8Sp+1A2Euk/kpxABCW6s+YMvDm1jIoVEPDcpr5tPOiaN6sxzQVUVQo6VaQcIjmJlTcs3QJMpeRGRAaoqoCA6WjqFz7tKbjWruvwUu2aUjEFTNye8GaqqJEyK5npJ6UuQYEItB4eJlaYVETTZvURpGDGi3tLnK6m1GjBBDQYs4+DyZyTwXbE0ML/YfYhUplLOUqmBE4DMRGAnRCIwRZgngNBHVWqvMBmoONfPGumiUN8nr55gQFAkQmECCN6vuHYuqd30doNJUqa1LurqjQAS1WupBmxrNCEJctVVAPeYkYGBiVXXx1VYqgu70m5NV1eirhyKpthqcSzogVhU1R5kRkm8Ba9XhuF1cJK62GGRl98Ju8lom9SOBFmCr0CTzFCH8EbPjR6LeDQAIxISupB0yqz6yCZCQaoihkoMTwEJ7D3Oe5lIAjk9OHj99sjk+rqZV5qdnZ0+ePHr48PHJycmHH3x4fn4+pISgPvkvETLiPNU6zfM0sQgmzDnPZR6GYcickM7PH+ZhmKZy8fLV3X633e3evn1bSzk+Pl4fHyMlESvTPBNjykQ4DBkpTbv9d9998/U3X37++eevX786PT1eH40X797dbW+mMk+lFNGb7e7li9eA6enT54+fPvv1v/m3Jydn795d/fGPf5r25Xhzygk1TavVICLb7Xa1Gh+fP2Cw66tLMzs/Pz/dHE+7/XdvLx49PP/3//7fP3n67A+f/unv/+7v/vD733/++WcA8MEH762PVnlcrTfHtVZXKoF1MsX9bn779kbLjlHWR+Mw5LOzB5vN+ubqbUqpHpecRya9unxz9e7l08cPfvjx+2/eXrx683a/vZ3LfhzHjz/6QOt8e3W53d6uhjyklJhVddrta60+HEbKPqWUUr69ubq7vZ2LHJ+cHZ1sRh0NcL/f16rEQy2ahtXm5PhHP/vp9dW7q4vjebvb391dANzd3ZQyDylF1OZH0kBM1YxT0l56Rm8nVPt+Mhw1vj7zopkOKI0cYUgdVNGEorz82iafRHm/FaH6dj9wB9rXWf9e7H/AReYc58iRL+Q9O28TKQCI18kRAAGJAQO4YqZgRgyHaHxxLwwBMlp+r92/Ms94EQFQsYvXYrsda5QLZABpprXVGRfTKA7OCDRxCHx6UcYvDRYlA4DQzOu/uFgHIwIft37oHyAiqofG3hvolj9KveYNrUP9Pcyd+RQeBMNo0JqL0gIAuNyFx28G7hRCgAcdIKPSywXB6IOQgzZ12SkGwOhndlMYd+aSFa0O7dsC4jkROjrRp/W0TgiZQ9SMiNh5zg6/o0P9oK+jeyDfRd2uRvzhbHVATOFKu0OFxYZjJMXA+qKFUJOJdo0yilDSA3oC7HcHVUXb4NNSShEXoVkRpejoayhza3v5o+qVy47JRAuWYNzd4SjqIazB9q8Kig1k5OKHILw4SPeOEyNoyyHaG6opgtFiHbB1yawWbVxTaHJt7T0WfC+CxI0mHJUbExGrBxCaC3b1D7//IkQXPjJPIYloquKwcGw1rYRERLWNcWZjN0TExMRGHtw33WAkzqk3dRtx1RAIGDCiRmTClAaCuDWRmtOoFkJw0fmMC0vQhCVdPw4VxdTREADkuE4/+UAIdmhQI/IwDCI2ldmTXkb0bH6xRWOO2eERQLetCosAwo/yMAwugeO/3kW5aq3M3CRkD6bNg1Rq3CpYfLiZqVUzwwYUcYaA1978HIkWcogZiE9N8m0AAGLGBCgNnw8ewLQhT7FRIm6LJBDBWQ3SDMNBibrVYgxDZLiKVFWg5BdDbqFad9E7lNJElTzoJMRaa0oUdrvTuUv1KBvvrwMiMjE1BaxgVHLoP0PrM/jRDnFIEXad9EZCXlq8+NhFf+R7J9Gfr4ioKIVpQzUvJhySmW7NVRUQiWi1WnndaRiGnLNLASOiDwTuRq+Hia1xqt1zRDoN0K2xOe1ZLec8TXsA8GPYLpWY2XI0x9QLJURI/Tho27cN/azqtyCi7gxLKX781QNfT+zxnsc6RMILUA+ncCXVlJsSPlGySNdDjZGagAciaiMSE5HWWrVmdBVx/wbyCl+cHeRIE4AB3IC4HYXOm4x1QwCDcRwpMTANxg5T94FVA7eNcb+Z6R1COyCKFRGHYaj7uVYJjQa3kMHHDiLD8sgDWK3V3cfyn7TRUhx8wG2GoaqWOlND0LQ9HMOH7X4C7PfocibYaJNx0ACausmhGIfMaKAC2PjTcXJNTSQykXg5nQcwSq6HQjsABNXCOcCL5BxjYLsjaQG9lewwpUV3xR23qtrCC/ez5s5JVVerFQB4qShOa9taHcrkK0ZN+x1bXOQvIkgEtVbP8Uxcu8NKmadpqrX2xrKbXwPx2VQubyNgFIIXagYiQkZowIzosimAB0yNeWUBegS+OBChcRphpR2eXT81tlANWFx/3HJ/c/wErJus/uvWUHvdVvRfiWKcmXOBjUBN0PoCevnGS/OCiBhhSxt71jaeHrwPiQGoNiSC6wM5bAegRyywWILDJokDTsiIrOHpOmvAGhe6eR8viKdUzeZahqPNyYMzQLy6vVlvjp6+9/zHP/3J8+fPj46O/JDudjsbBiI6SkeJCJkTcCJOfKYuTU84pmE33YJKnffblPNqNIAvv/rs629fROw3rE5PHzw4Ozk6OipVmWm1Wj179uzJw0erYbjb3r569eKzP3z66We/f/ny5TiOz549ff/998dx3Byffvovn5uqzlpqubndbvf7955/9Itf/OoXP//l48dPv/vuu88++0yK/vrXv1bVz/74h9PT01rnu7u7m5ubBw8ebDabN2/eXF5e/uIXv/jk449ub2+/ffv6eHP053/+5++///5vfvOb//Ev/udPP/3jfr8/Pz97+vTxer2+ub2+uLhYjevkmWge63Z/fXM1VZF5SiRDgvV6HVUYkWmatO5vr+3Xv/71asRXr15lVille/M2kz57+mi3n/b7/fF6tfn4ozLvvtzvrOy0zonHYchoMO22tifCNI5jSmna7a/ma6Y8Hq2HYVXm7bu3r1frYXN8CsRIA/MwJKtV7k5Onr735PryzZvXr2/fXV1fXFiV7e31bZWpSHLKBoGIzKWwn+uUtCm6weKkwGKugYuVa0wQPHQ4WzpmPSpYHr1uT3q+139y2MPt1WM5j4yX/uV7H4vYE+RDA9OPczdP/V1xKNrgy36W/9XAA+53qpdfsbxUaNGjNSzJYkGEMLe85HAqAaBWYeZQbVgcVURUlQimPUijVmJeIIz8t0RkGal+z5q54/Kf9/KrLofINu+wvDVEJ6uCY28cr+fUM2/b+tsOjCRTA0s+5aJuMnwAAQAASURBVLZ9NYCBK5hiGC1EcjCSNm0LIEzeY+n3T1FDVHNoIqKGRoxr/yZ19S1v5QAgAFogRqmJQpF3Wg3YNU6b4vTyyRGRSIFeNmwPEhFVKrYwd7kJ2tNwfDL2urkamZTqeamr+hgw3LPCABAUYIcXOwQ0tckliqYYPGoMl+M5vYoQu/C9IQXjiICGYYhTRMBEFFkqEkIpRVo51uGdXeENMXq2vcSuEkz5Jo5l6LRKRFGX5/CeeRwW9q2Dbc5V29W+T1WVEyFR0YIOx1U1E0amxI4IR0bndRAmJnbUMIhS6Bdj4gwAgfH1qhKaeq5IaICGChjPOeodzJTYHa6qVtKEydRVNBkRYyJwMNowhKPNrIWJS3ktgNZqBkL0ucLILEQk4grGtdYyDIPF2salA0elobg+kIgAmgh6bNe8LyCoVC+xe54q1jZF9JEMzYdzIjPHNGMzYA9Sve3TdDvcYLRSkxgeTrQvlXlNihIlrQoKyETEEKNoAcCjePMKGSMgkTmn15s5Cb15qKpe6Y90J2xCBEAe0mGA5SogiionIg7mOQAgETMnJKPeYG5X7vetVmtFpoTJU1iVyJAPca6XbKRbf/9HdTy8is/Vdp4JgoFWFREfFyRgosKUCamKIVZQISKGpP5sOViOtVpKlqIYxAgetVFPvFV1qsXMBh46zvB7xUWLVjwGo6+ZjCpyGP0KbvDALRsnL44o+FhXIjRDQ3XKoQIYIGisn7pitKVEiMTk4JTBodkAZFUQjdnFIUxEap0AEjMTMyL4uG9VzdSSDcf9tIifFoB/Q9eldGnD4IFjLDOAn8nEgKhVa60EQJyDEBFliNp9VWSkyDE1ywe/aYznkegIYbdOXuRCEwxeMXi2pYCqmvIIAGJgVYEFmQgJCFGxn/GqosVIKgtTA6L7U5DQVlOGZJ3qY6omkWgQsCXH/lQ1VUFgZCQOFiJAjE9wHephGBTMFJ2Qq6oIRhyA1WW5xO1nC4wOfBNEBDMHCVCcsgoteRPvLTjVWYqqMmcArZGgskssmRk0Aq2IYAzqCtcDACV24SGBIWARseBluUdIIuLvqVWXHBA/UxY1HARKViuAeZ/PDEw0aNyIrlFsvU6nGtLz4YDvBWG+3SiGJ4GRIZGpiTodgP0RmqBHO0aY1PN7alZITQXQMDEgGqq3S53XE8N5Gj3BE2AABVBoE/hqrV5AwRBsF2JwKSsVS4xdYAIAEreZ22igVV1C2QxUaymJXGPSQN0mKHo7BknRHHTWq1piplrNCF3CwlTFTHxkulmzuv6MQUVVQKTHdK6aZRKVZEZAjjBdVYCYiHz+di9/exkMfQBHi4e6IpnHDKpmKB4OmpmEaIKbsCDlHmJEjs6VC6FWgoy+jOY5v8dsFjA1t5wIQOheqZl6DwS9ZIaREi9Ece4H7q2w2EO6rlLmBxMdLOMoRBd3yQOrV0eIANkIfVY8AozD+vTh+dHJcVFJQ/7w4x/88le/evjowWq1iq76fqb15mg8Wqc1gAAYAQJIIkyr0XfxJKXaTATTPO13O1UppVSRR48e3Wzvrm/vquqwXqWU9tM0zfNmfbxarU43R+enJ+theHPx6ne//bt/+Mf/oqqnp6f/7t/9u6Ojo6dPnz579uzq6ury6roKXF3vLy8v53nmvPrpn/3qz372iz/7s58/enB+fX397t27lOjs5PTB+enV1RURXF5elnlrhuMwnJ6cSK2vX704Pj7+t//mV9vbu7/967959frFv/3Vr/bb29/81X/+i//p//1P//B7EXn29OmPfvzJZrO5ubm5Q55rqVw3m816c7xarcbVrAppt9dhBKnjmFdHm3neX767lWr7/f7k5OQnP3o/sb15/c1+d3d+vr6+ni4vrtRwc/zo6Gj14sW0321PT48fnG1eH2XVnBldJ9hMQYXYsxBxxf5xHFVgmiYiQlrXOqPKyfFqsznhNBIO231Bg+3ddUHh1TAcrYd5Gvfr1fHm9MHDIeWrtxdVlX3rgjhMLCWO1hNFvuhRQWCWcBGKxLkIJAIFLiz6BwAh1ObDOpdVe0OwJh9gZmICgabxxqLjEKPq5CeIok53EMFqR/JQ8sFmvPqBNTMiT9oVEasTGTQOKwIwMbS8Bg4V8MPHAniwAYfu3b+WEruXoeQ98XbFANH/pFZFXWCh+1ElAsAgYFJMsXWdB4+mUq939wtrZttaafJQzO2LjIg5o6OKvldx6CTBqGG0IiC78aKFPWGihVyCf7iBQWv/aIDxBM0ELbn+URMAEgg5CsRAlbaAvFWlsVbVkDyJKkjTt/Wl7F9DDXBFBiYKDl12kK63KhGh8x6dqQiABkxYigTwGpEA1SuprScbDEC/LTVrxKHMiZmhxWAh08pERE47jE2GQK3omzNnHmqtpkujrAflLlBvCKeUPAHoAkW0IPL5W6mpVoxj5LqHx2xErYMdfNkUEYmClXoozH8Pw2CtJd9iIPXP6cP3gqyDgIileCEgWPgGlhCB0FTwcA49CBYAyI2D5040+lGoUioPQDEXF8xchkuSI0ORa61tlxMi5iF/b8va4oVREAoNp1mqQwcd8Q8tqusLy8wOb/Yuk1ajHPUkAIgqgKq1SrDXltqVmglwIgDzVpLztFMmRJymCUBbSd5lzQ0MCUFqn2gagw6ZONYXobcjKeijgm3+raqWUqrG0/8ep/17R/FwJhectKVelP+hTLOZ+Sr1qbB4AD0uUB8eIpsSUVODgJwzMvf10ah1UKSeIIm9GeKy+47kxFIQmoSAR7YtNAkjotqfZvAoJNikzfgw55xVdXc7GTo8CZCJWuEl+L0WyagHjsQMFRXi4iM5aQuSUnK34x3aqcwiknlwhl6ttdSCCIy9JXYoyi73iYRqFAmYOzxmnqYJW++ulBg8A4vxud5HslYrDULy4mmauSeITqaqEhwekOcwrS0CAIBqKoLQtuCi6QGg01RTSgC62+0RcRxHIiqljOOIMWO8NncCrcln1qemtbO8GsfmKnzuC4CR7ygR+R5dRVX3+31KCT06d/WBqrXW6BDel6PAmLlCvvlrOAKS+PcDaqY/xP1+31M4i/IWH9awUbOo2UwplljcbpsPwVQkFaZEiQmhyAG1q6oQCg6SkHzOCoCRukq5kCVPFkQUwVAwr9gCOtATucC7eB07paYzrMbI+2nvm3hR0lZElFL9EU/T5Pw6ANhvt4jIKSUKaLSf33Ec+wbrK4OIZuDzq9pkoIgGnFrsX+fvpKbztDx0GKO2D3gHa5rL/c100KNaeqXKjAAhj2eNGmMGiJQ4ZX9eNSidiMG70NarR/Q4AZnYzGLSDjTgq6dX990BIjFRFUmIwCFMjNhycSeG1dpr/6gCgMxsihK9x2gFIKKPQPOv6KiKnA+V3lprtepznn0/55xpsYCIWObZAM0Cmu6GxReyiwX4CrjSRxg9NTXz6o1nnBgNXgMwtNZvMkEDJqgGZo5mJxe9auTw1mOvZhZxjlH4QWtDoYGsVyRw2eO630JBbMyK8KrUa3zU5V4a8qWZyqVBQ0VQELJDFt2xOejm2v/bJIW6Z1luaUCgNhpctSICMzEzNoUCgGgMWPMph08LNriJqQkCiEaWAf2+MmXzAhYhMhMTECNTzjmPw/HpybBeAeGT589+9md/9tOf/vTo6NhEp2kSLcfro+Pj45yzgiYg8NlJJqLFzLTU29328upmrmVMfHd3K3M5Pz8fmcdx3L56fX1789VX3xQtz58/Pzs7kaqIeHZ29vTp0+P10dfffPnZHz796qsvyjyv16tf/OIXH3300dHR5rvvvvv222//9PkX7969+/blqz98+afdfk9Ejx49+uTjj3/4yY+fPn2a8/Du3bsvv/zy5uZmGIZhSLe312/evNrvt29efYegJydntdbXr1/v9/uXL1/8h//wH8o0/8X/63/4j//xP3788Q+mefc3f/M333777Wd/+MMw5qdP3//444+fP382TfP19fV+v3/9+vWTJ0/u7u62++no6Oj05MF77703z2XeT6UUJlytkoiiVVWd9mW/34/j8A//8Pdv3r569Oj8kZ1pnVarfLvbm8yroxGsbLe705PxaJXGgUrCMaeEADqTj9HLzAhlmqYyu5RXtTLtJwBIQ56m6er0+MH56fH6aGRMQ8qJZFrdnm1e37wDRkpkCMW1XROnYaQ01HkvVTMjpcwC5rqM4YTQ9//SFSIehNmaHaO5OqT2sOv6OcJFb7ZZ48o5EIL9bc2iHnLR5b8GfOE+5bVbre+FcC4fYItv9P1vTZGHwkdBPybQst//OgFexk5LN7G0EtZyisXXARxsNTjSsH9Cd0kHzbwWB8ZtVrl3/O/LuFoTX+wZkzvE/jn9F8OGG3WvB/eRd6pRRvT3a43Sx/JDPGxAAwx2kB0qat3YBmc0hqqZs+1ckTtIQOZ3gYgBDjJT1cnjQ1AEF8IAdJXrnqw6q5IgKqL+vVpcjdargYJmhMxM4t1lb6yT9yoQENbDqAioJqLmZg7UxDKxEZKBAZLzRAk8L/Wq9jxP3jUCAKk1cwov5G1YX1CzTLhajbVKrSVzSom0VDMxIkAyMTNBHgy9CUCYcDfvAFxplkWj1jm7qzYC6BOKnZSsqrUtn2fgZIiYGunRHaZHe2rBdVSrtSC16rWpaEC7obVf/Bkzs0Dx9jEiiaqaImI1RUAE6tm1N7GkTpyIYzysmSoTEpHU0pB1koaMiF1J0q8MKUoB8b05FYnZaABQaxUwROZEAEDsUjTSD+fyjFForiAilyIGXnDpx1g9rkJEB20iMHLiDKqqYgjoUq6MDNA0ePFQF1BVL/wTY4mD5MvPSOwljN1uBxCMJgkmeSjZc0IeBkQ0QxEpVUuZKA/QGP+UEjGJ1Gk/C2BOY2pN11orYRpT9kgLAE2VPSmqZmZFnaOLZubTOIAiqgMjL573NmlVBcAxDyIyz3NklWZOGFv2gnpDMg8JEceUlLlGl88I0bSaup4ck4FUEdQWSHkNCFerkYikzF55ScxgNu8noqgr+bOrC3kqX+se+iBToojOPRNw/TpC7g3TKF04QwMQkURUTDExM5v2KLw1SYhTSs4vdS3EIpWMUhoAANSmaRLTnEZmLiJMdLQ5utvvfMVSSrawyAKWxsHTYLYDpLlDKBGRAUXEVFNKqyHN8yQiOefNeu2pSBXzIMkLbS2yRFUAtSql9QZFigBSIgKzUqrH47VUVWVncCO4HiKqgaiKuK2edjsYc855tVqJSCnFQJBMVcDCDoBBYhx5AID9fq+q5iLAiL4hAIwdgg7maP/WcQ+flFJmZlWptUopCkDc2CVMCFhEEIwHnqa9NEG12GyEQKhFfOSPBwG1VqA0DIMqKATfIZAgFpJstc6qKaVECfzxdvJIV10QEYBSa2UapzIDQDUNCkBKESij+Qyk9pSt1pqJh2E0UNWamIZhrCaqFSBN04RjEqkqMAxjEQNUEXBfxMxMVEqpqmnI7mtNdZom9lOD6NvAzERKj3687DvvXfgqELaqCqjjmOd9MbX9XNTJrxTSEsykKqElwVRL0TL5rYlINAQUiBI1UlZKCVr8gciIgFh9ApYqiogLdEFK6gzPhBWslNKMAyJiSsvkWZlpAColZge4pDgzJ2KvQw0pm1kpxSRYo4BsYH7WIHa5qCoD5pxFlSlT0s42JzQRzTnXWgDANcOZGQDnqTCRtVnYPmzdGq4eEfMweCBbSnFznSBHw4EongshEW2nvZlLnnBK5CmlXx6zl2lw4MFNZUqJmRDB54K22E5SSrWII3sJkUNj1RhJq3SGGyJ6mMoexpk4Gn/IuQtxT1PpJTgLvry51hwiJkIArLUWmQEgMaUGrUeAxNhKghjSXMFoMDNDFTX12adAB0XAOBSiaupqZBYSbj3eW4R9B9pecCUQ0XWnPRDLNIhIKYIGidEPICJyI934c+n0GW3y49ATAO85AyC5pCpG7uz7KidE1FJEKlLUGatIqTWlBJ4eez8DqEgFtGoKvqOi8wzMbFWqVAOSogzEhFXqetzwsBrX6ydPnxphGvJPfvKTDz/88OHDx4yJgWyjRDRkTokYTbUqwW53V8s0z9Pr1y9rrYng2xevrq7vnj5/hqqvXr1Yj6NalbdYRb/+9rs/ffnFfj8//+D9o6PVNO026/WzZ8/ef/7eZrX+46ef/fM//+Ob169V5Sc/+ckvf/nzH//4x9NUfvvbv/urv/qrL7/6ZrfbqcI01+ubu83J8Y9/+KMf/ehHP//5zx88ONtvt3/84x9vr29evvju0aNH77333rt3766urtSK6LxaraZ59+7dWyKapt2bN28+/ugHx0eb3//TP/zn/8//sru9m7a7zz///Pb2+urqahjSD3/4ow/e/+jJkydz2b+9vZnnacjp4fmDWuvt7W0pUk/Lg9PzR48eEqbr6xsfBEVsq6Nxv7s9e7A5Odo8fvxYRH73u9999+Kbn/zkR8PPfvLs2VPVqi9fXly8Wu3uTPa7u8vrSx4ynR6tyhZHBgTxgqtD1ubpblfqXHTcHK9W6fLtxXa7ffIk2+UVM79dvxIp2+c3m81J4uH09MGDzYo+eMzv6OVbrNN+uhtOT09lmi8vLnW/Pzo9vruBupvEzFTAyyxqZso5sRNwJGBHfuqZ2ZqxioqqBnin5YTY8ysv5CF5HnRoa/UND63iEx6roeEWn3b4yTId9R96sL3M1vwNKhHXYahFGMAhdQQiUSWBlNiHOwr5jIBl6/Ogohohd5WehENLSgHAp3a7y22U0i6H4YImhszVVMQYGvsXQFUY0Bz5FV2xkIfsFC1pMSosgOI9/k8pEaG3W3rser+haKrgFFEX7GxKKCmWAkhkxlb4bsVQd5rUF5Y5gRmIpyOmAJmR2ngUC2lh8yTNqoxMRScAElfDRjBDIhIVImQ8KCCqVVFNzuYl85TSuBF1Ii1xom9bZ4fIYJT3EECb/pVGZ7jBBsDMqjigJTAx3scNfSwEM3BlNBe48eErZrjA7i8tcpHqck3dDRAztb6Qgx8cw82QiWiqxWVUDOHQnGQa0oiI3gP0WqaI7Pf7NIzdu0RWu6gGQfuiqtpoWYegvG9cRFPr8OHDabFenYpKapS1iAAXBDZEJAKmRAREo1lUL+J3HVLkJHVTaPo9UdbNWbTWulR+hpwzJSb0DD26do77X5z8A8zATNTEsfbdQGB79WPQL1hEhmHoQA6vrHt0XmtNQ845IyUAEAMQ0Va5aJ8cyEBtr9amE4zmWGP6tcoQAJii3ivtEfhOIjbVIjV5/5bIDKuKK5AZCQBIpDrWThcThSWK3JgopigHjr2hSQ6HP9ov/eXVR6YMLY7pN2VmEPJsYu3s1SZi3B96u5KG/F5scmjxTRce6Kvn0J1aiq82NVSC1mpmw5gBwBlfXrHz9a2lDDn3vBGJeGlw6bCfm1mHpuuAnXUWFhPRVZAirC9WgTgNvcKqVZRCnkGa6BdRm04EkHP2xAMRAV1pxRTMY1xopd9+Bs2z+uYF/Yd9//iSepAXQJKYVHwof/bV63HnYiOBmZUyu9kxOTRXu4HmheN0UEXxOd+goX6DITvHjJF4dO/aulIBbFkcovtn8KDdhwAOlfQ9BcHej0ZQKWUOfelosOuiQA4ATq+khXnpwYSZhSq+77kYLOx3SiIyVwEALyq10NmHPt9brhYf+OMgFzz39D6uITHRYIROxSdVbE1RIzQDgl4lNDWDUqKMhlGcEVBmqsGbn10sLqUY+CQqXgXqtsm5De6zXOuciFxPsS0jdJsGDUez8LgRcpVSZC6ZB/daAIGa88pfbb1NAPDynys/+/znJWzGP8odTc9bfAGZXYk5jKeLWIpWEYHFDMy+W9p5i52sDeOQc64mItb2fGiWuuA8GnikGLGOuizL4Yz7+D1ABGjaGY6taOedmXtXmRqAhZkTUi1FO5xhwXdtHjwaKMxsbcRa9yMYRDLts82wZVkdo27gYRab82nbV8fhWhzSeZ4ROaW8PFk9biMfMd8OY3s0NSFhA0y29lN0VsMhmbrmk4cZZuIo42p+iKLR1C8eEWPWibVKfWvy9P8ihhiYtWmE3zNN0TZqvdylDfTn2Ldr11rDe5kA1OIta5dmcTCFX1QFAI5Jm2ZBbekjDA/xgLWwElJCFEJD9ZlMCODx5j0uZcg6UOMWQfT0nHcjYKztESMtrXfOOfFQTNIw5vWRGtCYnz1/ntbjOI6nj84fPnz44MEDALi7uT1en6zW6yEzIjCywgxmmWgq27dvX3/37TcXF2/eXb5lxpOTk/1+Pjo+U1WpRUSubm5KKXNVMS3VfvqTn5yenRvZxcWbeb87Pd4crVbrIf/DP/yXL7/4l9Ozk49/8NHJyebJkyc554uLi7/+67/+i7/4n1+/fr1ab/yuc84/+ODDR0+f/e///H/3y1/+/NGjRxfv3n754uXb16+mafr5z3/2/Pnz3f7u4l1ZrdO4Opnm8wuTFy+/3d7ePX361AttwzAg2e9+97uLi7c552nevX79cpp24zg+fvz4+fOn44pvbt9dX19vb29Xq+H09D1mnkrNOatYSmmzWefM63F9enY87YuZAdZxRWCb4+Oj9549ef782aeffvrpp5/up+37779/+e56s9lsNkeIfHP17u3rl2UWFbm7usgpMelqyAmMoCbLyGSkJrWUWmcRSrXW7W6apskM/f9e+Ht38dZUHj9+vB5GLbuT47PV0dGj8zMFm7d37xA3J0enx5/UqfzLZ59fX15PZTbTgRIg1HnyresD4SEi8AOOJg4yQD9E33t1n+rvBzygz+6/ImDrr/br0M/X4aCh3+Ch99sDkm5GvncN7iyWRgbb8e9OZxlzdMz29z5qaSGX/9rtDCy8fL+kMAshoRFh8PKmDl6pfaDXLu2AiVtayF6rvReDdVFPRDQ7nOV+nc2kOQY5Lvjec2x/7ve+XJP+HoAYzMYA5CqwagKmKqGSDYCO02l1Dnd3AKBNoMEQECEN2Xlw1pDwAEhECSMdcKQ9gRqAQhCB+3i5tjkaV4O65hjEbGKCqHkyGsVkVPGhvRZxYfsoxZidg+AZL7kMhfrPTK35LSJgMPP+NNGild9DmCqzGTBlT+uZmVLqTS0L+RbzycceNXqmrmAcxDYW8SHMULBTqw0oiNWIaMhqWl3eGSGG9MYN+QgkAzAkM20IHwdvNRUrDrk2fwDQNoFxIsTImptotJmZQvCtELHFJMBqiNB64ODnoNOgVJURxzxQ8qqMqdYxJw85fNWISEF7pOJrSB3mFmejQa2oUxH7eVFEYG7O0jmw3hzz50MIRqZKmImSkzarGhAjckgZ9xSCGbEJmB1OjoOEqQMJJZIvRKM+c4xCrM9ZykTIhAlQnQEWHxU6vdGjsE4mN+jxJVE2JBETl3vFwELLXNrahIHwGhEtmuFt6RgRefFzaYqmZsaBbghywfdsYN9s3T6ais/qRMSmvHqA2ZCLArMRAyh2SQBuoGhcpHkWBBD0Kh9oFdFaJedMgcc2b2mWEOkxCqLrwfhWFcammRisDlQNWSZCBkLy428GTGYOU8Hq/B0Bn3qClOxgoXwQSKv48CHCSyl5k584hylvSv49OuzG0SNjbJgWv1+RChxzJkREqoAZI4HatNt7vu17zNTURSNEKSp6qACJABHVxxgDgomZizGAk7GDTAgMAAQoambVjNDUFxBBx2EwM9XqDXwiMmMxQLOY4+5nTdUTp5xzmwN/KCoDgNQ5FsdcTCj47cw4y2wirJw5Be+kfaxHoF5Q7eB2j5xdDag7coe9kpKIKIZ2SCmlVKHm+WKGGUGbQmTsYbWTgA+MGWTObsBQDUDEgEkFhIDMRC0ag07vAQhqBjUhegCo8+yABWIQMKkVEVIaoZGE0ftmCBiAjprSYGZaq1rnblkeBzfdiYjg4CzbTrsHzu+HEeKqABBQ/I58hrEBQI0MNvw9Rabuqx5/YBcF0RAzU1UyJEpELV5p8iFm5tQgrwcRUWJCRJsR9NAoJkLmgwqGH7TW+XOZNB2GIQODRrIBATBznWoSEyRgjAntTt8PrDq5KqIRJQw6UozizDn7VHlDY2YQ8Vlly/iPiFIiOrS1kVwnojsXA60KjCklVKpaTRRUId7vS6UiAtzcN5EZIDIglFIIiFImoiLVXIiWgAhLqbXW++UYpKBluatFVVXppsyjoRgKHbdgAAhIxv7oFR1oYQCMSdpj8k+nSHR9YKGhKmFo7IuIuBI4Ijb9fo39ZGARc0cfIfaemYHPlQDBwPADKCIRSHwnIjLeF8GCplHi/l+kMmXkg0VhJCcfmqEP3iUn03nxPXavexx37f5Xv1kAAHbhAAc212rtRqIcrGZenu4FizacbOBUm0Y6M3e1IiJSMTOkCBmAfagGolCqqkULcMp5HMcRmIfN+ul7z/M4EPPx8fHp6bGZ3N5czdP0/uMP1+NRpkFNRMp+f1drPdqMt3d3L1+/+sNnn15eXpjJ5ngNhKWU15c3KeX1MJgqqOymiSit1+v3Hz7Zl/n6+vLt27e7/d3Tx4/ff+/Zh+8/n+f50cOzBye/Oj09rbXup+315cXNzc1vfvM3n3/++Rdffbterx3PdXx8+uTp8x988sPzRw9//rOfPn/2dJ7n3d3tzeU7Rvvlz392fn5Wa53BTjdHr7d3FxcX7968/vTTz25vb1NKu2l/cXExz/PmeH17e/vpp5/u9/uT42NGklIRYLVarY/Gu9vrab8VkbvtVkTGcQ2YDGDMKeeEA9/d3b16+d3lu7cPTk7PHz86f/jw7u6OkM/OHj94cLxaj4/PH6rqbrfLOdcp37y7/Qq+vbvZnp+flzrVabp48yrlcb1ez/s7AWSQjCp1roAMwpjAeK4yT2UqUiCXalvb3d7cEKbb6xtGq5t1nfcAJvN0tEr55HRCywnXAyHg2cnx7sHpi69xLnq0OX74+PGrV6/SuxGmPSjQmLGyccScjXAQ6gkAUXcE5CptPgXFAXODA01dxtp4a0BzvQYz8yMFTUdnWcRvdqxLBELjSy5iY4CYFgEQuigHZxGv1uXtZ0Sbt7GI2QCYmJFcysSaNBQubNEyjRQRVwZdvto3RsAJAK6WyATLdnR3agcGX/TR0AVkYhwgYP9GPEBUhLKvFSuaKZoCkQG6niaFUL4faiAkpRg31bqcHmm2KScWNS/P81G1Gh7uGowIE8evuNQlmVqX1PG4EBEgUnE08jdbE2U2cIUOv30mQ3TT7WoyAIDIisiel/n4jQAAERAkf35hj9Ufg5IrTyzW3au72Ji/3jHGFrUQYkCEfZxjGH4gx3YTxtBzD34JEfx/3tTE2JeE2gxyf5beWEDEPAy97KEtvCAiV9Twd5ZaE+dhwMhAvICEDEyhNoE0lxkRPRNr9NeUUio1PqSFkJ4jhev01WfX9YFDTcUOxZLQcGJs32tiBtgqBUtwEdGhruNfSC2B8ZkiKsHJdFATcWSG1TQzOo6IiZKHXSqmNSDEvtX4wCwqpRDeW8/gQ1oEcMtymt8tRQcVlgvu7+wnzS8YGu4rol6MnJaImDMgq1kVU/CDRGQQMw9FqgqL+DxnQxjyUFV8iIUrRaEnHKjUngAompFrkBBxNWnscgZKQAlQXcTMe1kKisCUMVGK0y7mklnWqlPqg38ljELv/zhUEheFHr/xpdWIRQBa7py+N9q/YkZSp+21qblOr12Gkthe2uIt7M2oYIzo/ccURpMjhQh4c/9eVcX7o1bIU9Fh6LrQ/gkxtEp1cUmgoH1jqJeqog3vYW7roBJF6GYxiKWRczDyBnTRf0tIjutTO8gYeGcMmcxsqgUJEiUiUgSrFcihhuDkGv/e2toOviF7UBiHSA/FWt/q6OlBzqrqc5jjwHdxbBEQZWYwA9Mxp/6sqVnZdsa9Tar9Hvuz9lUjV2IB8bZGx3AevKuB0wp8gLgFb+TQ/8EFBy8Wf/HcXbjK0aEOmoUFA8dEigQol+DA7na2asPA6zzPvuxuANWiCIitZqziuWTMLDeLlrSq1gKu3OHfKcH09n0bTSRe5D8MZiA+bR5abYiIAKzW6twBIoJewAbAhEiGZCmxxlzH4LG3DalqVaQQEYAy85AyAcxmaJB8AQkRUM0IUBFMg7ytZikdlMnhvgq0hfSR+VlLKWViNGqF8H5MgpyvDXpqvf5CFHa7La+ZEfE4jg6F9e6ln7UO6+ibpO+olgda8xcLHEQ71AE6bRuyH8zwI0RkcUBAyb1DpP0KxCymBBDDfwGItPE8D8gIRCQv8rSuS1Q829xIMkjMThjul+2behgGRNQq8zx7tzOsmRzO7/Kaix4IO3qQVec29CuYMpiYFmPnaHFYGrjdyTh4KFwu6pX9t5yHgogG0uYwWt8YiKhWYcE/1HZOa605s49o63am1lqKHJ5aPCMitGo9UGsmd9E4XfadENG3urWWDhkuOeBLW9f919IKmRmE7DSpWqh2knOfDIyWIrFw+GSPCjxWDqMYh6h1hpkYLSZt+bNwExAFF0V1wEhK3tOmlIgZxERqKJXc66QAtEGpiFgmYaZxTIgoIqenpx/+8OPHT57c7Xfr483zp0/Wm6PttLu8fHdydEyPzed7V9VSpu12O5c90jEzn5+fP3/vvfXG5fdrqXW7m7aTmO3q+ogBdtttmeZaax7G9ebV7e0tJn7w4PRHn3zy/vOn56cnu7tbAxlGutpuv/r67TzP795dvX31+vr6+uuvvwWj58+fM/N+KsMwfPjhhz/72c+ePnv24Ycfvvf8+eXlxT/+4z9eX1+Czj/+5ONPPvmBmH7zzTcXF2+/++67P/7xj2/fvr28vLq7u3EQ2du3b68vrz788MOnT59eX1/f3FwPY9ps1sOQABUqVpnfvn17fXnZi7lAVGXeT7dVwcw2m5P1el2m7d3dTkp98fWXq6P1ydnZNE2b4/FHn/zg4YP16fHq0cMH2+3257/42ZDSH37/6TxNpdTr69t5rmenR6gCtXDKI5PUKiJWi2kt074iQq1JB6RcHW4kOsvMYFpE5gmT3V5fz/P+5malNp+enoxDevd2jaabk2MinaTOOOTV8fF6/eD05KJeitnJ2enz99/f3e3nud5OV9NcUE2K+NAP9fAtSsQxDq37iNjqDUGGiG0jea4D//9euPz19tcopy5my3u/tx8xa0z+7pT7v/a/Lv01GvAC/rC8gGWscv8TDgf8cDYO48rwex/VfoItzV4e5N7gMe/6ALg28YGZ78fdLKDUeh+RRPeR4dquDReaNXCIbKFjRfsCdpMb3V3rSVbr9BJSE1bEyBT6GGFc3s7yz9WUtBHHFvcbNwWOoEcycN6mIah3iMAc+VOrdJgzetFZTcxS7B3ztLbJZXmDMWqYXlMHBPZsJKwvIoQgpKe00fzBaK+a98tMlQCaiGtUhbHDGDBmAnusZqrIwK3Fr3DP1VHrhLQuEIgID9mMHYQnVQwYqngtGaqZmSIQJWJSUzWNTrqhs53NrDt4M3NwjgXoG6O9LQ5TA0qunCEiEh0/a0hXCJAkIjm0KPYc+liU2G3RKAYvvnpEWKE33FqfEECJEgAwQkqB8ENVBGJGAiNABxCjh2uIyQnAUud5JgEiSoyo1Gq9y7oXmmE1zQ0pqvc8vd+FNRtRnWpMRDm3oFn9mkmgKXy0Yw5AQNE3VwQzRGYEAiCX3j1aj05DKyJVxEwZ0bVqxFNEcDQAiKmJccLmdQ09sTULspyv5X2rpwKAIfrrtXxHADouvWs4qe8MoFIKpVZogKZ40AJczz6qN2SMiALKixDTv9CPmQvDNiyr71I/4NByS4E2b3ZhB5d2rZtmRIcsRNcCDaz5BSCHYJB5rtWsnosvqI9nVPUmAsZsJMdVQCJOlGDIAo7eIwT2PU9MqsrEhGQo2I88UcIOAwjjEMaxqkMKpVYxNARDEFEC9oG6CuaZJhErmIq64xdVopQ5AbJIMQIWALBqSkzknTJDEaPEAGokGCFjZQ12TQcOdS2rgRNFvEedXA0AiVMmTkiKIMzQ9L1cRAri+EZ1D9QS8zzvY0gVIqh6PBo4hQaS5DRwQlWFKmgCBq5eBz60WA2cVOMbQRwkLe59IjRH542gzwZX0aazEImib6fM6G1k8HPbFP6cX+qFxwWJwEQCKmZmJi4HVkTEu6CqWufJjWqZq7N/U0rASUQ8v4nyLfkgewXwHnH0FYkJkf1I+pzGbluw2W1QQcLEyZARKWALAIytVOAZlID5cCk6VApWqzU61IOQHYuhaoAqhkh+iaZVtKQ8AuK0L5LES6sMyDEDGYtIdIMBer2VMRLU7l896/ACgZnVqn0x/TFpm0n0vdOaUtrvY5/YAW0bya21ElhfnxD5YXDcY8vTwDN5Sgenjog5ZwYspbjOudtmp5ZoXIwxcx4SJ/KqtM8uBvTRiJASE5CqIaGFkjZQ9EMQERmzmBs2ZSTChGAAxGicmLGXnNhRFcgMAAkpnk7YN49VKwggMLR6OhoQIBNrQt+UqFHNFVEkz+XMhw04CsCKZ60JDFWMCNOQveGdfICFz2rycEONOdmCFwMAxKlMs79Z5JDxEppf52FOj5qqaJWqkhI5qwDMwGF16o2LQJQghKaaalWtqEKABCQmIgKOjpbCiARKrWgEzR4wsVmfquI+0pPXgy9YjgWyZntt0VJR7YFcBJdm1ksiBgsFQzM1UK2oUZIHH4jnV2PoxfEWq7SvgIA+USTD3n9jcKJZF+7x1rpFRxpa2KaiUmsMWEevcd+LXwFczBJRo1yIiKgmYHMtzHx8fDysV4IESOvjk6fP359rmabpBz/8wXvvvXe7vdtd3JnZ+cnp0Trn5M+kEFpOZJByZiT65JMfPX78+O3lxbt3795dvp3n+eSB/MuX3717d/Xiuze3N1dlu/eRjcOwOjreJB7e/+D5h++9//Dh+cnmGA1229vr68ub2+ury+vtdiulXF3evHlzsd/vf/azn5VZrm5v53k+PUsPHjz45Ec/fPTw/PHDk/OzI4Ty5vW3X3/xGRE8fvz4g/cePzo/+9MXX/z97/7ub377t69fvx2GIQ/jfr9XBCLLzCkN9OD06dPHDx48uLi4OD093Ryvz8/PU6Kqxc/YbrctjGRQVGqtOY1n5w9OT08342qe5/WQMyGuBkaadrurq6t3r2+++NPnYro+yvP29t3Fy1/84s8enT7YrMbNRx+OlOb99O3X3wwpDSmb6LzbyzQnBJRa9zufNDmrjZSECMBc+NlDJURMCJsxc4ZipONgxFJrmSroLmUysdu7u+9evpjK/pE9ZqZVykRIMp8crT/5wUer1dFuW3Iech5vb/c313fX767nuSYgU1CwWhWTp22eyTiqInn+1UMsaNBrbKFX9DYxCjpm1pSTw9AAorU6aA+0nI/aTLr7MgAA0/ZBANoq7+5VtTVAWr5wL5BDRCDDhVJxPznYvSAqgC3ON3eHcvgcPlC0ekjZ+lJRwO3Go1dRF9YDvbGBgItP7f7OA8yDv47fQmOmmG7Qrryl4ofE28GO2Mqgnr56U5WIiJJHu64g7UvoD6s5QbDe0MLmi1AJatcc7WapR8VgbD148NiDWjnunuYxNKodKpgEBk7RgBTAtMXeLpgPhpAOq4bYOKJevIdO1euMS3KSa4NyLdrQAWpudjweD4M38b5fPsHWBNMFsM3LPsDRaQQA8pPX6qx9syZmQCQg9a3uHVdvoWP4MGRWJFFRFRZNSB66ugqOVGN26GCD+Hv3w6uVCAAQrQNvjbeONi0AbG3N1UwB1UOskO6O0vKh8Nk7hC07iiXnlFx4w9/AiYgYA2/g0l2HJfK2voKpCKiJKYKSAcKhai7qgFZP8+pqXDEd0jBorAMz+V6NPGo2sNx597j4/UBqww+rqY/19JocNpF0MKIxqaioVRUkBAIFVMCpzDlz5uRZbtvHup9nPxbkkguEYqamoKQm6IL5HiACNKQKiCkq1za5WA3VIAExJ8d0OaLNVOQAa2GImJiYCWppdoT69CwimufZww7EGPTiTQVtPbd+RH0/9A4/tpeFWA67jA0RMWdkkkXHZvkr/ueWuen39gy16KJHyctn17exxmxqR3lg8A/8YwgQk0UJw9tDoci9zBjByHlifgaQ0MX0HOWHjWJB2BojYKaghAqmEfC1ETsJmBk5JaR9KVDb/N+QakBEVBUiAkaGkIIoYqqCPm7KUTSoqn0myAIuvliKvhp9x6oL0qRcSnEmLTDlnD2F9r4otS5KctAtmGeM3rsbOLSdDoXS1guKMLGKVlXXqPDSYeuSd3tFXW3YuRIxkCneSd19LYqaGmJGFU3E2kfh4XV4WD5+SrpfPnAXVdWk+o10E9qtBCI2aJlX9FRVEbysEJxtd2xE5C16XCyFxmce6r6OlVgaE3M8sDW36X437oBcIYIBgWCJRvH+qiN4Uooua0grM3sSo6q1zjk7VN4BGO10qwkoCAT4lRpnFZGRmPl2O/WCdP8NEelutB9GP/JtM9d+UrBpePaH1Y+eP+5SitwjNViXdOpHo9lhAHDQipqZiYS3JkrEqooLbXb/0k6OFRHiQzW9eWEUjdFPEKqW1d2XqkKgk7H7OAAwQ/d6DpJiF212GTkzJoz5WS0vuheotZ7hYkljAR3rTq4K0c4jgCHZcquYWeeFpJRssUvNMBF7xmJmXsNCODgaN6r9Ypi5MlFikjg+1ASoAaCUgo5Qc3fmZ6pBzeP4tD3QLqA93BZnI6LPIPARYCLitNiOoQAjkRYyGoAhgQiEBMO9dWsk7P5fu/cCBDAwxih5tcLsYad5a4TROZOHlfdfX4bmvsyOzzRXbPEw1y2nAXQ+ISxCtXbkTVFR0dTCW3sKfYAbhNEDNPBJ135qimlwEfuSIgCgTxVhYu9WI2YX6+ZhGPJ6papv3rypKk+fPfvoo4+22+0fP/9snvcPHz7cbNbjmAgFQBlhGHPOp2J14MEVZSgPReTtu3dff/3tNO0VcC62n8rtdl+qnj14+PjR+dHR8Wq1On/4UEROTk7Ozs4enJ09fniuVr/77uLtxavXr1/f3d1tt/tM6b33Pvj44x9eXl6/ffPO0StHR0dHm5P333//ww8/PN6sMtu8e3d3/ebi9Tcqu/MHj/7sx588fvb8zZvX/8//+3/33/63/92rN2/OHz1+/uy9/X6/38+XV5fr9TpvjsdxfPjg/IMPPhjHEcCePnu83++JYC57V1k102na3WzviMjn3q1Wq9V60OMjZjo9PTk6OiKgcTwbON3d3d1cH19d3qzGo8uri7vLmy/+9KeLNy9WiQfi1WpFgPv9fHK8On94sru9A+X1ZlXmXSLcrNYAZKJEgMQDJxpHBG3IF0JiQB5NAICzi8vpkMmnXowpI/OQs5heX99OdRIQS8g5PV6NDJzATo6PV8O6zPrd9DalPI7r0wdn43qlCKaQmfOwQjXvKiCETpWHxQbCzNB6hqpqdkgllps8GlDebVqcNex/aFok33O7ABDUhvjrAlWhi/AM7n0p4kGnvb/fS1v4vfztv2oIWwsg73nkxauEFgYtPb6TYQECA+zMGgQwE2qz5RcXw8sv6p+PoclS+ve2XzzU31vk6aYj/Fr//Jg44AlwUCebA2r5eYNS2iFWCRfmzxR7nOCNHFp06ZbraYv+Mx7aja3fqGBgAkZq4CJHvqrY2mDRCrOUkqmqVAfYmLeDDRIpBbEPwMcXUXRrDz/BzpiKyogxIFmMdzUzhFb+CxscTEtcPFWzQBrFQ3VujB6umpEE1N2L90lii3kXuqXvDEjImJgBBWw/TzysfMvxkIkI1BDBiBnZYgQMiIJD4VssQimlxKk5tpBBcrYb0KF4j4DgPUqz2EyEyCQWYuJGSEC+7Q01UGJkPrnbTABi+B4itgKJ7xUjRs5oBqgIEjh6/y1qkDNtxD8iYmNVAVNUQwM07fpEGhj60GN0SHZEANiQ7S1MMe/MLsZpNNcpTulrg0kcCQAmJiDFCigJGDBRSohMi1kyHSOh7eC0s2QISsQ+XHa3vxVNkpyzroiEBuLkSYxoG5B9DyKqxlzPAxalBTHa5tT0s+18eE/N2HswYCoiSKSukgc+Bi4MARPmEcWikdxiDyCiaZrMDIGY2aLpDv0otnVDRCJTWvQiiAiBwMRU/OYJwccsRURqCp2jaT4gAhnbHNhmfA+hECgieAuuS2F1c+OIjlbZumdoPOpxWp6XVKFKBW2m21zqBoB8uKg1CKgj5RAdBOKjOU1Ewhd4L9GUEdXV9syU0JDELI+ALeXTKpIEKMSrRQQIEw+AWEoBIErInLzmRUQW5B5rVmTR3iFyauhcCzZIas+aPMzV1lizlmYgQPXdH27gUIArpUDraHVTKyJSJkTLxCaqqN6vm+eZyWXJ2Q2I/zqIOrnOTZaCB5HASGrVDmhSI3RAJSD5kNJe7Gy8d0RrIm3aTiVETlTNhYi8a2aiqi4gpwoiZlWtlVgRzaSh8c13rZEPP9YakbPP0UUiIrEAylj7b8PihAtUVbMYpYCIThVxP8cccbmIpMTQ1JURkRlFSEQROBliQmijp8mAXbBNAQkSEodoBybm/byz9kTU6UoKIoaJgROoD58LlkOtdRzXKRGouRo1AJioBEs2uD0Yk0ehczTuBzEABwXLKKCEO1ABi+Z/mJ72mqVi4oRaa61F22H08IIADlIf1BJUv6mGYPcKlwFqj6L8/QFFBkTETEwGNfrwRAQWMoFLvSIVkczOsZfMSBhS1aFwSY0OBphSqhqlamYO5Xwf0ABExGCg1dxGEoBVAVPygoiILEaj+3YZiJATECKwtUirw7ydY2y+vKJmOmQGUC8FIePhrhGZubbfAkCRNqJTrYWA7siQiNW0I/n9pSHQCZQTkSta+XQo8iKRAXiCnchRZkDEVYOqDQCE2VSDpNAMj7UJDmGFANBUTBGN2Gv9nmP7psXuewzQTGqtSKYQIBprtJpe2rfF0zdY/PlQ8yI0JaY4uIfmDyx/Fxcxt9lh2CQiokVfCtCMTC06tFE3hghnffcCeEbPTo0R87EUgOZKgAcBSqKQTENEHzYWewZb4wWImdVQJNSzEdvEMiJGAIOcx0l0nmtCOjo6yjnP8/zmzZsPPvrwpz/96TAMv//971+9ePns2ZP3nj1/+vjh0Xp0FRQDUSMDFS17q9v9vN/vr66ubrd3KkBpWKch5fGD47Mf/+hnCIAqm3FEtP12Yuaj4w0zP3788PGTh0erEax+/tkXf/lX/+urt99N8249rE+Oz370ox/+8JOffP31t9999/uXL14TMTAdHx+PYz47O3n48MFqTF/+8Z8u39LV1c0XX3xxd3f37MnD1Th8+/UX/+f/0//1//bf/z+++e7F0+fvP3v6XMRevnoDAOfnj4ZVHlJeDePHH3/8gx/8YLfbfvXVV7vdTkSUYJr2Vebtdgtg2+1tne5Wq5VP0duDXly82e+3w7A6Pj5++PDh8fr4+dMnJ5vjq6urh2dnu8f721v5/PM/fTN/+e7NlYm++Pbl9vZut98OnM7Pz8/Ozo5WjEqrFaxGUCLWFakRJTEzEWjJ4SoPERGCGYROkFWpMLHOJoRadUZQHIcMyLVWnGGudbaShozpXVXZbnfH6/MHZ4LAlPL6aHxwfspp3G2nzcnJuN4Q50knIU5MBFilIpGrnLpwgog4j1QFuj6LHyKAA8MLUL2m5GeQiKYizeMH+7dhG/2AHEpOncKGiAjsXQbf4B4zowM2mlfqNbh++sKVROprvVXaqlwUjcrW99QW1/Qwr8UJh1evwVnr+rrNBfpXcuneEELvJ3v3dZFP3nd5AG3cbPuJfS/ybHFUf8O9m9U2zYiIVIGIsSWGGtaCCZM2+lK/EUTUaAYcuhTaLlK70PSigrBcB/C2IwK2eelk91bDICaue0TmfBBAi4FvhoAMMVqQzETAEqACKoCihZihj+HpaM1YIL8Bd8SOW27SsmaO62upWNAylTE57i6iGR96FOVS/zxnybp7IwBAIF3QkDwoFginaCaBjGdgR4iqtW3NiMFzEynuKZkNCH24GCohADGImJelx2EEs1LEDJEJPOM3MGwpFBMYkjmFBqKZGFxKllKjqYGkoKhsqAisoXlzKCb1ncHZR7aiajEzJEwpV5mI0LUTPRjXA0COWr0fRIQRmWC/n5koExMaQUoEyYwQCFDKJCbchM5yzkerlYlIYwv0criIZOc61gjFOvcVekROwJAgAQtqb+A4KIXAEYN+y/1SmX20N1bTUitzSsOQkQ0IiFUMAI6OjjyWBo+mfJqUxGZTMBIVLESElAhcbqS5diJuaY9IQSPtBTdK3pAyRLHQ2HSxN+bcj7pv4UarNDMY0jCXIlIBCcJttym4YohIKauAgJgdwB6qWlTAGZH+WVWsCpghGTM4OF5MZMKUeczZAOZ5nsts2Fcven0UjeXgCXuqDIgOqOtVQFfg7eEaIkaNFrrwGpiJd9YBEUwEkJtAlzW77jqxtdYONPBhyNqCP/8uBAZEUbF4+NH19YsDNaTEcWYpMflIDw+GKGhL7YLBhryqKmhEOZnZbtqD0ZrHjtGRyAjQqDbr6bpugRnOiZ3m9z0H4BcsgFZLo5iCmzUEz83SkBIAzFIXU6+xzxhV1VLmWXS/3zPaeh0ze60150spU5VxlYcYrxXWHIkAUKLkbIuc5IAkXJg7A4CU2MeqQZtR3HtZnhqZmacB7vPwwIIGUxQRLVpUkofQotBgAhq/FYNtvVMJ4C19KyKlVOdMzPNsBn5apWXLDucSEVXxqUgBdTVVMycbE1LciqoqMavjKfpx0nbLFpRkI8yROLj0q9e7gRmb5HjDDxNg4Qm8AoZkJgjJ9cOQyKoYoKkBQ6JkCImSoJT9Tnn2PQK+PUQUgHOKrF4dc6aGoIC+hdrkhkUlJfn+r+BhhKlUEdXMScHEgDoUQc1zzmEYDG2/389zdVB9FMWZE2dV9aB2THkYBi+KE/av9oMsPiGwOQvwjYRms1QAwMSILihXXb1/kprQ8wohokRoFkJHMhczY04OS3OrkJCAqQUKCECkWkQUNBEBsef5ogJITKAC3hxIiQjDvYa9sobeb4m6gS1wM4oKipAwGeFArAhogojmxSlX5aSYe+ALDwBe9vKhGlL8qxmAilREEIv4FZjACwdoiPloWM27fRO9AgAQ16M2Xa0Gptw77R7PLU2HmKKrhQOgQZdmiEpEhHEKiIyJiJIG3xVQy1RUNXxOb1KZMWdojeUG4TN1Qiy6hgH0qBGJHJHk7su83QbmPN24ZlOC9rYeREbrF8MSw2Ge+eHDl42U4ONABdf7s9y4DACgQB7MEx7q1xHCUcTBlNjJawCkYJ7/ajxtBEBHg7Dj2k1VFYnJmR0IyAwiRUpKAzGgoZmoIoFVAFUdNqu5TNYG9RWp45hPT48//PDD45OjL7/88sXL7zab9eMnDx8+enB0cmxY97VIrftpmud5N+3v9tM0TQ/OH+12u1LK0dHxg0egSOv1+vTs7MmTZ5mT1vn66t3u9u768h1R2WzGp08fjmM+Ozub9tvf/tN/efHt199+89Vnn/2BM//kJz/64Y8+Pjo6Oloff/bH3//VX/71q1dvVuNJrQWIHpw9fP78+Uc/+JBJvviXz7/++ouby3efffrpmzdvPv7oE/34kz/88+//L//Nf/O//K9/eXF5/fDhw9VqVUshzolxc3ya1/nZs2fvP3t+cnLy3rOnKvLZZ5/+8dPfb7fbBw9OT04eEMHr17cvvnsFqFLKeuSaauJBQPZz3e2my8vrhHB0dHR7+S7nnLA+fPhwmqaPPvjgw/efb3cmdUYoX371OalcvXt7+ebVm7evnj17NpChzERwulkj2u3lhVYdeZBSh3VORLfTzsykzmU/DZld38NUKwgYaC1l3pICcDJjRKhWAThnVsCcVqujsVpVjJLl9dXN9m46W93t73bb/e707Pz4eHP+6AlS+uabF8+eP/rmydnJ6drKnryiCgaVRLW2lqPvSZd6cj9OROoEQCIArKZWpNduWwnyXjLpOaeXdgwi0bD2WkYRZgZBug8RH4yWVY3ADA/WL37d2zwtdu0ACmyvex/efu7tMj/p1OCEyzcTUQfGLD/BQNBSO+zuh8MlN6hQ2LHv3Zsu4SdgRDSE5oWqKmIsHQBwawq6v/BLaKWt/sG9+xKDJ7PP7KxVDKn9U1jRxWr30Mh8Bqqzf80izuwpekOX9ItXgA5z44REJHPww6F1n/1KXUBLVBR62dEIQGL8BDAmYG9QoWhNYIWa+jC4h4QuduAJhZOBHYijCDGp0kC8JsgEaOYSNy6z4bkzGYECGYgJInJiZnQdCSATn9eak5lg/J5JTBQxACZEQ6cTCjqbm9ylmJiCMhOZQiKuU0UqzGwCgGbs7llElDnzwGZoWkN1yxNUAGcxemnUyIjI9sVpSLVWTJgTWTWpDqKNAVE+I1QRQLU6Vs0NtxYzYIYhDSIyV09jfBYZJuapXKOZgqgpkI9WQwUBdYgXqpe1DBgo55X6nUohIkZmZjAxEXJpGRM/1BjaQpiIAVWLIQMDOkao1rIessxaLYBk+/0eEIdhcHAjDQlErIqIMZMr9zCbtDCXFE0NRMgHBCMSg4CWMvkDR+clI6uqFAEmQjbAnIfdVACM2ZASmrdCDYETMTNrIGgciu+zE0MIDgBUK5p3/MwMcmbPPWqtVZUA9qWmlMZxkGq1qhFUFc5JwASRnd3KTAkhxmywmRlCdUByYmauVRIhISCxQyHNjJEJmZgmKQrAwES4L5XQcspSQl/NxztpywY8ZsBGpGcCynnA7H1T8R6d4ZgGD2AMFABFNHMyhForJAeECEOTFUJLKWEwXWNCKROJxXgORgKz6tzOOpsZJwQmAfFDSi5lBIqEiTIgg3feVVTFTAy4mdfDfDwI0AeagkIyAwRUUVVJKVmiWnRISVvy4+M2UZGJXZGuFEHkYeU8UlOzu92WckJOuzp7K5g4zWo614zZmmIocUZEAydaq0kRJUyJGFG0yoRWEzMayFyEU0oJEKe5EkFibgAbGVNWFw5hKipOefBsjYwSJiQzVQBjJCQSLaC6GlJRmUUZEDghYCmiauM4ClWEGDS1yoOITNsdtDodAFQtzZ0gM1cRIt9lbG70LAA0nloPwwCgrR8opcgwDCJKhOuc9/t9qcUAjHMkuQCIoOJM8OgmSa0eAfecMxEaQC1l7lgvJHEvw0mrllpFVAVUvILZELk5VZvnedZQD1bDNvsn2I5IRMMwIACTj7dr9VpKBiQKnuYFSrYpTglItcrG6DRGENCakJ3k78X1UDsESpy5T6ufCyASsZU6jGt1u1t84h3VSROmajMnkqpzLZR8uhIxEXOe7+7mueY0kg/gBSRFSrSbt4jIQy77nYiMq2G1WkmpPtuTCFEhYULGanW7m5Bcvk4IUE19KqNjoKqHNWRIpqTesl6v14g476dhGEBiUuA4JBHZT/M8z6IFXMM80byrKXHPyZEIUVUk51xrrVLBjBmJybxhnpxnq0wMKrVUMyEDMGICMwATE2QizNyrWiISPQkkM2O0WiobU+JEpDlJG29DTC71DIjiTH4DUGNK7BavKtIBY+JaBUGWYWJE0GpqSHngZGKlFm9BI6KBEZE6zquN8AFkEUnjULQiATGWOiMQJ04pMbqWezXHIQMQQC1TLeV4c9TtFQCAmlbJmdDEEDk5Xau40x+GoZRSG35Bwab9NM/zOK7NjJCZ2KEXoCYmjFRqKTJRCmmrKgUAyjynnJGwerSXkmrdl3kMY0gG5oMfTTXKkWrDOBhQUalVdvuZEqc0+MGPxig5/QqI0KoLy6NiTNYgRs/t1RSQ0NHDambAlFtEDohoiuiGNCdfcBEhQCLAlAxkltklAM2siiZC4kxo5OP6AhhoJhUROacyVURMSDkRGBQfOJwGJDJIhqCkVsXUEhMSI7Kpq7smAKy1gOoqp5SSSBERREucEqGZKaiZnD88u91PRjasR8v88PHDD3/w4cPH599++82XX35Z67zZPDw+OTnabKqW6+nu7u5O6ny33W6327v9tN9Nx8enT9ero+PTcRxFJF1cIHCVue53Wq7vttPx0ep0A6+//e71mxenm6PVOOxuvru+KH/4x3dff/3Nt99+e3NzAwI5rZ8+ef7TH/3qxz/5wYuXX//nv/yPr169ut1Ot7troDHx6vGjZz/72S9/+pNPatn987/88e3b169fvvz09599+8VXP/nRTz967wef//Pnf/t3v/vPf/WbYvLw4eOT8wc5jzknVTnbrJ88e/TTn/3yhz/6yfFmfXnx7uLN29vry3dv3oLayeZ4NYxX7y6//fbbt+8umDnxGjkhGgirUuKMhMw85pSZpOyvL94g6F+++ubkZPPs2bM6Xz598v52VxXuHp6PRM8u3ry9evN2NeYMlBVRTfdzGhIWMbOksN1PnGCzHpnRCDdHw36/1yIpIzMg+KYTAkhIJ0d8dHR+e3enACKwm3eUMqe0K3tE3qxyTmmd13ngk5Pj0wcPxvXAzGhwefOumO7naTjavP/hD1arvF7hx588H/jPk01//7f/5e7qVkzAAIeEKKgqYiqVYtRikIBUlRKnlMykupwvgBoqEqKBc/1bkwbJpXaciYZalYwYE5g6FklVeTFmqf+5KfKAq25UMUTycaquruEwIqvSq29+GUSE3gCKHHHZNg61i4iXkCPPAtTQpFBZclnVPBT3gr7/onebxGZPsIhCucYrAETktFvspLw85pzLfkJE4kNRAIHQcKql37vDMXydGSBGohBxiuazmfrYIUBgn2fhjAlOJmpIVaGqITJR8nhhLrVfTJQ81YpWJOI8mlmpUeaoKiLiKFprXsoM+8CL5Pw0IpADfjoQkYjMZMpaqqo18Ut1rCQ20jB6e5MI1GaNQfHVwAxdyxAYQmA6nuehI+9/6aoGSkSAbS5eiFq5gFZnFQVMX0BAlBO65CkAKoGYmglQFJVBa7QpQpexUh6o1Ql833sTIKUuxmhoPpndUmLEHGInbViFQwjNQLBgCG9mAFAxFeXEIUQMcZmGjOaTuA2JERE4ysZa1RTJCBrlEtrgvs1mU2utClKtqlZ3ZE1ELuq17hFNRYR9zh50OdJ4IxE54fpQYlF1imZUqM377eSxy5hy5FqIoFatgjkSs6pVImvtZ0IwNCilaK2KARP1ETg553i6juJt2s5RCIfoGTIjE/dPtMZOVERmIGQi1gYmAQBvIil4rkfDMKQ0IOI0VxEhMmbsQ7PNzCm25FMfzRDFeXqgWquoVhEcx3UpUmt1vR8HcTICIKthEQMkcMK6J9kpe9hUa63TrFUQgAxyHryHj4jIlFKixCBR805IyAHTjc6U4/gMAaCamoKRSY0Mx7mFAo5B0Go6etGuybyZd4eBzcDU6yMW6T0hAMwqqA3swFFWrLXmVbbOr4j8wpX0fL8qMy+n9TIjiLUaUwAFRWqtNWUaU5ACIogEqhDVfTPPFLw5XJvYnH9yoz6a8riqIoiUUvZRsVANEedaA3UI7KqhRIQKlA6lO0SEhm4FRAAWkVkqEQ3jyJxVNbwUIIC5KJdXDZkAo9sMaAKC0WIFAUBIjC7lqgrosCUotZoac0BY0SRlUjFkIqSeA0R50mXkvT8KzslEZq6TQhttFxNCPCoOkOQC6mNmZuMY88NB7qFxfFqGNb2A6EeZGkFvQbvvUdXebW417ACR1lpLKW1qGorUUsREEdF3Hvr4X9XeV5znGQN2g5FWVSmlIDhE3ETE61vSxtLWuYhpBvPIuFT1LY1RDvd6DPrU9AP+PPDkYuq0jpCDMhNVjqge2RA5ETUOpHOwAUC0qCo0nx2fSSSlEvj0+EYYNgBEETFE5kxOO1EUNQOhJiVNgtCQzAQgMgPAOI45jUTc1ZLrohLPzL7CROTysPFowGF/wAyYKhGNzKpqUmU6DGyTRuX1n4iIVEvMTkCd91OPKnzfepiSc+bwFcguoiGCzOM4hnU1g8QCAZJVMHMMPCAD55wDruXUJyIyQAIpC7YwGZKPqAUtCgHDNh/TF2WamCTfSt4O+QhEcRP8dNyQm7T+i4iMlFLilJBMqxiEbqVLjiooOgTd8ftSATK7ZlfmaXtnekDUIxNhIqLiFJWDrFqcMkdDOIDMt7ppVbWjo5XZQRPOI5DVMJSyN2hC9K7LIGqBemgtCDANVUu2mLlItc6qIFIc3kg5sc8nUnEugtt238Ct3UQGAEwpJadENaxea2UQZMrB3SiCCiklL7o7OjBUCl1thNBtXD/+0TQmRIBiDtHv6xPwTt/wttjVLYI/+GVFQWRFAQgOcQerm/N1DRyVFpwiOij+x5qblaopNC8T5+w624bOyEQIWhA6YcfMyNBTEAp+SnVVVFVxlrvfmi9USimNQx6HcXP04NHD0wdn8zzd3d3VOp+enj58fH56eppXmVK6vrvd7e7MTFGPz44fv/dMqiGSmiGZC/6dPTg5P9vc3d3dXL97+e2XAHI7pGm3f/vm2/32GmW/391Mu93rV2/fvn273e6nqUjV09MHjx8/ffb0PUT+p7//x7//57979fq7lLOUst1u5+3rX/zq3/67f/PrD37wwe729p//8NvP/vhPqvXLL769vb778Y9/9tOf/PT1yzd/9Ve/+eNnfwKgs9NTSoMqIBMzj5kfnZ3+9Mc//T/8H/9DKfLF53/6m7/+zetX356cHufMTx6d7/f7y4uLy8vL/TQdrTa+ozlTZmHOplTck2UzMkPNSKvETLjfby/ebsu8u725/GL9J6PV3d1uGIbjo83w9FGdSyI+PVo/Oj8bmUhloJEBRXWVx+NHG4LgwRWZDSnnxDiOOfnAGFVI6tvVxFANL2vVyPcAGBUroCEzQJTgCTMRp5TW49GwGoch1aqAdH17e/Py1c3NzcPHT3f73ZNHD86O12V3d33x9ss/fjXvS6kyTVtKZBae2pp8MS5YsmZWreUGZkbIPuQN7vlfPwgeUaAamc+LOTRCF287EAcwJhpFImRgAC48Af/qq/+iewSntAMG7WV5BmnxTvT3g6HhwVZ8r9l7QH60rqkKoDBnRRfXRAtKCAA4H5h6kzxciSsQI/ppbZ8cSeHS7XbTNc+za5ciooct3opXUzOFIMMiAIjFaAZ/IiLiw9TMrJRCHt5Ed9Z67pCbYm4MH/GmOYUdcW1AXzVcdBfM2zxghj5QsTWW1QSNLeykx7otabfQYbAOWUJA08AIAAKiuRNrywEhKnXo18cNdPQkAFMnFkPoOUfp0eWO3X7GgHczyymnEHRQ1wUGQzPlTI5TBfaWLDUaUlJ0sovvACJOOefQjGFQF6dGauxha4n+In0HcEBpk+I4+FREFF8ZVQBUIEImSsSZU+wPn+hSVLQIGnVFE3eZKXCF/q6ApfsbqAm1AUa/3nFVqpruy7H1DdcrT31jddI5opk6yDyAqarGrkEZbEkxtSIH2CrHhnZxFDVRES8aWzCBMMKjnsn7+xHJHPzo4ukBoQdDYEpE5mMYzWv4wNSEYSEQ16KqjhHBUNg5QLiRzFS8cJUSIXYdFJ/JBMzo0Scm/1UwZEBAzuO4rrJXiQqaSmxRV/Bz8ioiq3hNhImsiBQtJsqU0pA9/fP190fJSMwZkRTA2Qjc5kd6dUJCuMTBa6AaTQ83KN3K9qE7RITgc2JbcGxKRMQ8DEOttZYFC6IrKnVITMP7d4y6Ng2nvlso1E0VAL0A5UM1c6IxZa98lzqVUjwlqLWC+Xzj6iFgQgK21irwbwcPoUopR0c5AuN2bUSImNRErYI6RA1qLRhTW4PEZg2dDqhIZE1HlIi4mTBHB1mrajnCHJFFxHsUvtn8CBlyByUaISBom33tFt+acYwsznqgFuVMERFVNOEhm1KfeaYKKSWgcPluNF0gCAAgESa2vRkKNjFEdwMQCocUZYgD4dONppMqxSJIdVPG1rpGZlZdj0o0MQ6cENFjNU+fXEzYn7U2mQdufGNYYIpEBEyYgmMJTV/HE2w/R60OGHm7lFprzWlQVZGqGvLd8Sxy8qjbcWtt/oT7SHTHHULhlIhYykxEGDh8B+y4pnhqLp5UXfCOiAwJE5GBtvlAiAoiARn1ne5eHhGY0Qsxfr8OZ4LoN8bkhphP4DVdNEVQAOKEgB6ymSEjlOK6WQkTGgAwGkA1BYlitjXIXK012qotXpEq3pw0MzJI6KL71efAaxt95AJjCEwH0FkYBK3S94+65mQbSJtScg2iqlqruIHyn3vmbOp+RLBLRQp4H8+3BGIMrAq2jpqTe7sHAXMeXTgWd9sA4DMOoNU9lyEXIhIiIymINRBvb6kQIiRChRhQ6y87zNVBl/vGg2uTBa7bd5pJrcKJWdwlwIFvtNCO9C8OWg0xiRSJlk6QX7RZmHYCDuY45wFAfMWYiX18YIu9iMJl+c8QLSUCU49ywMnz4KVwYPboBgzUVNQqIhpATwjdyakLxWGyEH8NJwkQih5kHtu46p7xkBFRTZt6hUtnWdCiEVU80/Y7dYDRIQ1w0Dg23JFZ+8IF6tJDylCDb5xhU/V7962vTeQcMWI1Dv3Lw/NtX+ENZGKm1PodqmKGVUMajU2JyJANHZ0Sv+6VECIiZEVhRgYQrUTEOaWUsqECAlEeeFytxjEfn27OHjxYrVZXV1e3u21ejY8ePXrw4MEwDCJyc3Nz9e7dixcvEOHxs8ePH59u1kdmCIb7/X57s9/v90S0PhrrPF/fXEiZzOTy3cXrly9evHhxe3V9tFmdbI5FpOynu7vdPFcAEhERTePw8OGDu+3VP/yXb7/+6stXb16mlKrpu4ur7X7/yz/78Je/+PHZWf6nf/ybb7/54quvvnjx8hsAMKVxPHr08MnbN1e/+9vffvnVN0D46PypJZpLFQlEzCoPH3740a9//Wuo8tu//s1v/r9/+fnnn51sjs7Pjus0393cvnr16ubmap7nPA6JcykFjFImp72UGig2HbNKmgBWCTer1fFmBWrv3r29Ui2ligLymjmdnz8YT/Pp0bpMM5pkTqthzMTDMBytx3EcSykppSGvTNTFbpNxSolmLGAVUMVAFIG916FeyDdcjWMVLaCjcXXhC7CcMOfkdBaiwePPlNJqtXr08DFymvbl5u7LN68vLt9dP72+Xq1Wpx98eHRy/N57T54+e/Tqxcsy7w0qM9WIZpslCbEjAKjWIceu0+5lypgsncxMnTzUUjuA2M6KEHgJ87agghm6XL5X3l2SAAHgYBJhcR6WpjJE49rPsbm9cAHmFPiDNwmoMx8S+EWr88CnbfnL4fTB4qs9eDQEp+7i4pKwsQJ7SEl4oPNwSj4Q8L6tXNxjpAwh81RLJdI2avhw17qwtnHPPlJ3OUQTDnEFeB0ZgBETJ0SsVK1A8xi2WNowWh5rWShsttWOyKcjnWNxmEhEvJTXBRgM0WdtmMc0rnSgcZ1hlKk5GTREPDh+aE/fv6b/t287iBzMMasH/4mtRNEfQH8qqMLOBvHpGABBQUGgPica2LmOCDwwqTrXymDxaKGFKU401fYyAzHpAwVi+l90jHOtVaqWIqqzl6cNoapU02SuqUWdMODuRO7JOwMzIwQgWFX7ZDxEnEvRLqoM1C+pqjmexANlj2tVlfp5aDrb/Vku9xYReegcuPzYE4ct6HGymYXMlXsYU7WaDJHY00tiJGMBMFFmxwxSz0BUlTH420TExF21JYZ/+dYRABBA6w2cmKrr/SvfY1FTdvYgMDeEM/iI4MmTumEY3JT70/THalI9DVBl/3IJdR8AwkQ55dGnySAkb86rqYGiQk6DiNQqhE2Sntg3tdUqtQKAK7Y0wF5U1s3hJmGFgsMATZi07/NSSs6ZiD1WSCmRD4oAAACJYeBtAZmhRhyvYGLqDQ1WHcejvpP7vrJWcuqWy/cVM0stLgqVUqJg43v8gUtFXw/1VcS0JiTKIaxSpTB7rpLMTAUMnHzn87U9medutXu65R9unW7dcBmlqJgCQxWVmIjQcj+0proXm1nBpAoQuX9l1aaE6wfcCHDglIhjUIkoej8s2sVoFBrJLeE8CFTEBHIixSgQQkwpk2aX/L0xG8kzHkNFkRY0R0erd+1a0czMrFY3Keam/GCbXR9eD1YRW9GUiKTO3Xl0XwIA8zyLVv3+tGdrABmr9SDR7GbN8x9t5OelS1t6O1/tmL/deo/+V0eOONRQNeq1/h5XvW5B8yHLNTNm9llrtdapFDPjnOC+bz7YxuVv+t1prWY+Iy3eDyICLsA0jNmvoK9Y2/BR6DmcCOhDF6JNZ00oO6XkCBtoE9TjERAqOK+7hRSIADEH3j+n1grQq5PiFTyvF6Tm99xAqjZEepG+/v2YOKHJOyEJAJFEau+im5nDmvZ3u3Ec3UegHfTepXoFJ86+Zw6gNVECEgDrDHC/cpHA0qeUVLCU4pldrdU9HCIig7a+I0el3FczPFrfPBaYEU+f/Na8BUfdnvhSBGfBTXQrf6tJ08U4YIXMTMR67QDxXvqU4oW1VgMSkeLzk1cDYogAatNYtu+LhQYIgpk1WVM+VmkkZGYus6uYHsrKFkN6x3net4Pcx1Pdc7j+8p+ISPRiEVMmqOS/Mc27pXnsp6/n3oAIgCrSmynLz4+/Gpr5bmzscZFa1cw4d+5JDwCi7dVtjg8l8rc1a3AIMf3aMqd+bf6l1JbCP74/31YJOQyBh3a6VTWnhIjk9W06nHoAAEJq6nFkoGiqikx2WF5L3mQwJ44G2rN3sYiIwB10ZxsSIlNmRqKcMufx6Gi9OTo9PT06Oioqd/uda7+P69VqtcqrUcRub6/ubrYXby9TpkePHpFPGTUSkc16hQaJYZp32+uLl6++e3fx2mPFb7755puvvry9vR1Tznm8nG+vr6/3220suyEzr9djKeWrr76Yp+27i4vLd9dV9XJ3/e7y+vT09Fe/+PW//dUvnj09e/Xiq9/97V/e3NzUWutUd9v9ZnM2Hq1fvHjzzTfffPfNi83p2TiOswgkpmEYxnFzdPz48eMnDx998Ow5I/xP/+P/8J/+03969frF0Wp1/uDUavn6yy+//ubLu7u7nPMwDKimUgmRU0pMppURETDsiIEUrTKLVdRi9URUEDlRRkvzfkq5njw4HjDtd7tMRyebNagRaEYYh3SyOVqv1sMwbFbHfn6rGSEhOfPLLa8hAHGqdXbzZYTirRik89OT7TTvS1FVKSpVtJoNQ2bERMMwnJxuTk9PT042Z+enp2fnTCtMeYDx5PTh2dnVzc3N27dvj1YjI2TGu9vrk5PNk6eP6zyX+Y45ydTnnrJ3OpcH3PpUVKJ+lLv7iM3WoIVtB5qXmJDafv5elnv/5PafhC9xgM19IwmththPeouXvFze+9UeG+HyW/rvLm3F8l/99T2rFe9xgV3C6DBH66FVsrqPpkPYwAulW2iBNxE5yrWvnrbCaE9YcAHdWsBM/ILD4N1b9lbD5DYPxW/VKxhutEVVrdp/le1TyDRGs1AXmfby8vpDOViVeMBA3oLwEj7cy5bdZkbIF5FHeCvzOcD/6suL7DHyxJc7ZA7Mi/CI2PagQoNAox7muzjbGkSxCZ91z+1CRBFJG5ljA5F5SPta0EBjSpWTS0GkmhmoOXDegusMjbxs7X4IDq7isNtU1RSYc0roA/KqGrMjj1RqVUPVPUB8b0oZwEdPQk5ZyKMc9cBRDg20SGLADEBFiqomV4bw0X+96oDq14axBRNAx0FHZGymiMl3NADUWlw0BbHFMGBIyBTFKgMgQMxEgAl5nnR51/7IiEA1JF78OrsL9wkvTvQ0NTVBRTVFTBpuVFFNKlgMN4wjSJRcaQ1UTUEOPWSsQVlCZkaFqj6UN0YMwmEYRgxdgJ7PEDHnOMmApgrgs7uwzlqVEE0hIaCRADAQAyczkFJTQjN0iL8pGkIaxpxHq1Lnst/vGRMzT8WxHBmAxGZ08jSqY/ALGqID+XySKG63e2j1p2xmGLIE5ArnDSVuDaLv3GDXBYFm2hRBdzs/r4sE2BCxaO0bNUIZy0hUSsg+gUWviTkxMRgQsIExMjETGQApMZjWWnWrxMDMxIOITNPMzETOZs7IZKZSREsxAOYeEsWpzDltt1v2cDslZ3TPZa4qlBISOlu1iqbkCqvimhDerPCGrEGAVq1ls+ga4jEiDUQEfAKwUdkV7wMwtxocRYvYfz2NAzXBNpcONPISBppqoBwj+EMzK2Vy/I9/WvJtgSgNBgJBriwVDNHbjy3HMzOzeS6q6tOYGjZP48YMqsxElCxAqy28bnB5r2CGZ/VjraEObeKt2ERIaTBViclb5lq1RJSz559zrbNnwl5B6GWp8ECiIQPtrcKWRftYbDSptQ5jFhEHfHKMqjJVDdnqhfqlgUGoGEYZSxofGKsAsSfXRETBplER5RyFIOxuMArZ1YwcPdtSDEAUnynlyRAQilasOAyD0//cntbA0QBhMhQxHXDoX9Fq855yKPhsAySj0LgtpQJ4p4Xd+9ZamTK2WgORNaVKconHfn1ejiQibe0sM4NW1ULEWklES5m79QZmTAxVepPPE1sC7OzlyEMJVSEg64vevnvSRKRApZTEkYmpCvNhAcGlEPrkrVrNcRzNujR4G1lDhUWmG0UEMjOFCvfDL3cntBgbZiAGCsae5Zupjy50r+rxt1ZBPMyPhcCqISKaBc3Hmki9ux4zqWoKbuAhs/P30KXTAXxYRQMELgK+OHJidRGSquqsQkYDJCQC5DwMvOQAA0zTVJRFlGJGAzqiAQAcuNWeu2Gb4Og462bpHV4XeApsRttLq/7rLhUBRj6S0P04cZTn7IC7600CFAFiFz4EDcUvBjugaCDCa0KkYOu5YkVA5QEAWBUMBEKg67CXFvF3hLOLnAFbqS7eRuYEHwcCWihpLUEBBxVc34culglmVYpjELzLwDl5WCkiaM6HIgBlpg6hd5SjBzwEjVjIZGa1iCGtUqY8Uk5pyJvTo83pyeb0JI9pnveuUE4pbTabk5Mzl0H2cWbvPX9+dLQ6P3uQmMeUh5y32+16NZzkTT3dXFy+uYXpaJ3usu33txdvry/evK1TPTs+W4+raZovLi4uLy9lLl5xTimN4wgA2+3t9eU0ba9urq5qoSJwfbVNvH7v2YfPnzxnwu++/dPrly/XK1yND169vNjdTrViPllJ0X/505fX19er9VFKiXIeci6gm9Xq9PT06ZMn7z19+uDsrMz7v/3rv/ntb397fXXx5NGj05ONVnn57XcXr9+g2noYmRENtFSmPK5Xw7AiAkDNOSMlCyQwmKrODLXst/uLKpv1uFltVpsjwjRPOvK4zmtSm+92MI6rlDOTgZxsjsdxPBpXYx5yGoe8cpvjhVERKVJALREfrdYwZGae91MpRcGqqc5zOFbmTFiJMnGlOquYisk8T3cr2hyNw+np8fn52fmj80dPHj989OzyptZiQPvT07Nnz96b5/nN65ffTbvd3XVOaX+3Xx/lDz54ZrWUab65uWNGMyTwlOhQ7sQY6uOxVGP4gCFhL3Ixhn9Gj/ghNBqaOTLvT0T70XmdcYZ718cNTpwXQlbV7nTaoQII+dNIkfBQeIowICbpLDSx/A9dVrl97z3L/K++upX2yp+7kv5PizO7LCJT/xVc9DnufVdQXiNf6zW1xMPhaiOEiTkGiIvHgX0afDSWEFGblm3ALUU0hlioIKpIKYVT71X0ez/EYMuf432zBgDu11or0e2zr7yrPYdNdGtnLd2Nh0nYensQYB0wQEj3vqDVKshA7F5C1T+q59D+BNxYoprPs8W2QyxuAEyqd2YBwBQAPYvDqupZL6h5TRGSJoNOp4FWroDWD/H6d48P0Lmw6hBo7c0JDPurrpzuXdy4L0qMQcnyh6fixfg5iGTUahUi8zx7Puyw276TtKm3+cr0DkD8BPuRo16J8eJHuwaKllE0/c3Jpt03g3lk3GGE0E4jEiFY8dv1bAvNEjGhZXY8mhISmtYa2m7q6qMt12pIbE3E5jVmq4ESUDEwptTY3EwUXjZcHRgYiilKuG4XJnEvQj6b4qAjHdtGwcxHMlJehndVA9vpo2jaRiNFA04AakZFlHAgRjA2RAVMeXTqv6oyZYSKwJ7cMOeqIlrBlJEo8UCkNXkYpW3eGgCwegjPhkQIbey5YFRPCJvycI8UAUCRqBlPRkSPj0X60e3WgZgpwJDk82a6vTMLdgD5vGslw/ZzT5NS8hVy84FtfmmPeKx1ACKw68Z00TDwpll8iKIPLkdOqKAQ+6EHeX1jdHPZ3EAr7FFzN832qRYnj7VmXlODIEe8kgZqjrURWAlQPPjlIPoi0ZhydTIeEhgYxcX7AewrBo28m5idFeiZdotAI38IAkw/S65dl3PwQokoYDPRt0cCbOOI+llOHCbRzAKdu6hKKkL/HH+Nw+Ar1t2wxxPO1XQWjYZOLCOA1uKk0yZZ7zONDpBa6jN4JNLsw+MOYkldOjPVPoULkWCe946qQAyOkIj1iammBwyIn0JEp3YrESFTIqox4NRjBT+Ui+7uAoZkII4han+P44+HCrSlRADkJkLAaq2mPh06EjAz64ffQDS0GTwxi/VxmkQvCIbVBVcMTrVOXaQAD6+uOIIH84JRxAxbHckwODpdD3SGlmK2Xv08z4iYXLsEBIxEZmzyyP1hiYgLPk/zrKopczOGOgz5kGAHDKzvbWqFm8j0vGRgZirVOlHEDEBTTiIiUnxiHbfuRNyjtY9tf1lulb7giz/f6wM4p9qMnKXp58vDH+ZDaQ+WjqzZtMP6mwGAt+/M+8ZNa1pD5St8ZJSJW/bb7W08XzWRMhfBNrEjlhqkh1D9D/3XO2WAqIuagJnxYRLvsv0iw5BqdfwLIioRMRsA8iIQ9Bv355iJE0a13wASxQRKx5L1xUTEpZYKIiZKYg3MQoRhqQ5dekRMSD5KTQ9ByhKkYkEKuP9Ml0/WzAiWpQS8t/+NcIn28vcjIgYFCRwctAhv/JkqAgNS89SqKvPsxSYiAjVFSIiORO2MrS4Rb22US/tCwoQpJc6Jh4w58WoYV6vVek2Jd/O0n6dxHM/Pzx89evTJJ5+sjzd3d3cKwszjmM9Oj4+Pj05OjtWq1Ao5H41DJtzXm5ubm+t3F7d3V9vrd/u7u/1+L3PJxJvNZhxX8356+fL1ixcv5qmi2Wq1Oj4+Zs7zXG9ubvZlBi37m3fb2zuzFeHKlE5Oz4a8vr2+eTeCvN3fba9Ep9ur/asXL8ukZ2fnx0fHVWW3269W683m5PburiqsN6ujIa/W648++uiHn3ws0/zNl19cv7u8vr421YfnZ+v1uk7z3d2Nqo5DGoezUibH0CEic0Y1KEJDdjDUOIyerhuIVbHEqFJnzolX45BSyrQax3GzOl4N63EcE1Ie6PRoMyTOica0Ot1sVHXMw9FqnXAAIlQch6FgKlpKKShozDGQw2L8DxkUlTrXeZrmUsJoqw7ENgyYmIi2+zknmudpGAZPcvbTdrdb7ff73TxzXs21iGEahpOT0+Pj4zevX97cXl2+S+v1WHdlv9+nTA8ePLi8uLq93XZ7sti1kVO1QwGMDUe7OOBhlNqQoR6xLM8CAJgdLMb/9ss9P95POP0foEE7+3kHAPcsh6Nm1gtJ/Sd2/0h2h/W/cRn3TEosTtS4OLBp2uv+YZPxYBZcXqR/Qre3Tc0uRA2wdbNVdRgGIvLaOlEoeUoj/iwvG3u3o1VLu31bPhpddMv7gzsY4UCb3huFgBHQ4NLCL5+mp2ZebrTW6EdEAWNARVDXcV04DnVVQkSNyoQhYvIJif4R1BACiGgoiNDC85DKQEBw1HRIRhv4gBwCpwbHaAQPLB17bUBgnqf2MYq+ahaASkT0YRiKopAOxel+tz1prKaEIVONLnuE93wAItoCPdiWMtqehgADeasOHA0O1vzuYcgYRBSr2vRpwoIjW4DVw9Ha4ns5YcIUd+03iPc2vd1/HiEFwUAJUVhV1QQEyIBCpjyKHARQaxEA5mAkeogGzRshASe0GuAEMKh1BoCcMyX2rnGP+4nBi0aug+Ji0gCGSKZmIQcKRITGsDjzZAZAABjqrQCExJw8NUUkby2GxMghrHX2NzpswAWue0aBiSkmg4GakSmRF0wSGDbiV7IqCsrEPAxkICI+0SSr5XH0SCvnLLMyD1OZi5RxGI7GFQ0oc53nGQyRyADVGcTIzNlQErOPPhYpLrxsZiKNs23So42ETrg7wBSJiFvQ7xQ+i8JbShhMVB7ccAf1ViOalYGGbrwIyTMokTKOozMYHO3SA46lrVygZz1iSy7JW2pxm5VzTjzUWosUker+I6WB8wg6H0yPiVPYzGy1WvtD6XpjKSVGMMSq4og1ZNM4OxRiAsTQzpoYmhhnRmZWI6Lg7oqoKqeBjEx9e0dFRlVFNepELUJNjMy8L3MPmxQQkBTBAET86JNHV+6PAYA4Dnxr3FWtgoiUEjbUQ4MXoogYKAGhgWrF9jRTSk3aUV2sxdzYmWViMxMtnvU73dy/3qyxkX1eqOctjKZVpUJwUczUfKJbT5Wt1WXchmhjYQS5NO7C/6kcEvu2bcyMwXJoWgaaWquAiY9+Dg6wOIc5u4XR1kPyfUjUUK+q5IVCRUVgJg/5DVRJmaM11A8vYgCSCUIEB0zMk2alqJswuTf12oTz+ImjSbb4P3TzyM50iM9qNh9sSM6SOCQ/gATAauY6M0hUqqrVlJIa+onw6MXVrxAxRLmr+Jzx4ocIrZSCLV1BxGrRCTczCN51eMZem9iXOaWUsOM5wR8gY7RDVZU4bCA1NYTwawj9rA0phWQDYlWotYrXIzjgbqYKBgxITEQJCDz79UzCcRNm5pQHI482wGBhfw9BGC6WuvlWAPWjhwaA7BVc8uGIhygtxfW7IpRioK8MIAH4QB1ILuoUCTP7HmBmSkMpRWZR1ZxI4hoUNOYgi2kiRkRGwzYpy6WYWAObiei0skO4Ms/zvXtMxJhc1TPUGQ59YG3G2f2jgSmoICgxkwHpIYJE5KYRCQ7J831oWlUUQ2MPoqINQESOZEDwa0R13J/P0fV5pIaBfcbDy+xA9cLoa4XCjyiYmQsfNI3PDooOv4+LfBuWJD0DROTsQRR0NKCvYWMhLYtZhAgqpQe4EKMfFQDmWjKnxEwh8h0FmqoyDAMPOSBRSPHwTbzrThSF17ByTMzew1DOeb1ej+OIOWFiHnIaMuWECasWmXFfZsrp/efP3n/2/OjoaC5lu92q2ZB5NY5j4jpNk09DkQJSTev27ubm6vrdu7e311dv3r548/rFdnuLyNNea1FVm3R/d7e7vdnWvaLharUmdKAAM6OI7O+2Zd7JPKWUEVcqaRg4p3EYhtPTByLzdre9vrx5+/bt5ZubWuH5k6dnpw9vd/ta69HRcc55vVnRwHMtPOQPPvzwwfnZxx/94Oxk80+/+/t//qd/YIWcM4Mx4OXbi/3uziM0VPP6Ghmx08cU5qkq2DzPBpIm1rWu12vM2VW3iROY5XGVmRIlRs7IR8Nqc3SyWR87En0c0/F6NQw05rQ+Wvk4tM16PeRsFZ0YRoBDykl5TFmjgCMi4mqfIJqMs4oqsO0BxDFoAzt7kjNATkK0R87zXEXq3d1N1TJN0+12u5vmm11ZHT0GzJyIMeVxfPTo0TzdEYvV4gCo29ub/XYuKnkc1uv1flf927GRnvyweLIXURAQA1THtgS0EqFF42BBpwcAJG092p7jAAC4z44GHnpWfK9g1GOksC0WUT0s3uTZDUYaFMHCAW4BrnfbEjY4qAT7S5wg0f7av6v9eflJcU4ByEwNzNM/iJnz0YXqvx7J3gL/3D+2p0WxmMLmSPNWQOxd3MhfWnvGUavLCATgQMrA+xbpYItaKktEhpgQXcLJAqvieCtYtF4Aot5u6LYLwGcfAzipCuJxgo9nsyoCFqqH4NfjpX8wNeNgwikDKph6/tgSWCI8UGiol/sBISaEAiCASthOiDaOLwkaAEFCYnfeZfKL826vRSKmxJiJQ3gWo0hjhGhWtdUaCcUCGSsAPlC056Id2QgHF3V4A97PdYmIUiJiBK5WVUE1kgsAJVPiJCLOYXfUqCN0fUCCh54eQ3uLxnVHImyFWLX+vOEQ0xy4kT3V1JbadXGj/n5VdRZ0+HZsbWwTz/BX4xiqeowuoWNmANyERoyRCIzACADBEmI51IPbQhKN48DMANo7Uf1pqio51LxDRg26lqj/vG9KM9dCIccSWK0AIGacBpFSm6Z5P4E5j9XlghA5s69AjZmPiErgOtKMtUgxGcexnRxDNCNmJAUqVR2xoAaMwEDV6n6e+uBNj7ABYMhDkTqMAxBKqQYwSyVFM2dBs0eNbV95C4iKmStXITKRQw+i9bewHR6LUiIWg9qdfKs1IrZpbCLqk3U6EK419/rW9ZeIgEipzjQOrK87Qm8QMXPK2VfeRZIOZqIfVUqck0ktpTY743N9K7V8EtF5aIYoACgq3t+WxpO09hUHw/T/o+vf1iRJjjQx8JeDmpl7RGRmVaEANLZ7DuT7v8TecT9yZrgczs70NmcaDXQDKABVeYoIN1MVEV6IqrplVtMv6svKjHA3N1MVlcN/6P9NMhDXakReSmEigN2diN0aUdcsigh3tLyx6aoxVnlWXxGhKbEzWPQL82Ft3/eybUGgMfbx1M083aj5yCLIxSkioRr3/ZWyScJmJkKlFBWq3VBUfRBZW2sUwwPZqlcXkQTmIUJVkydPfdqT1z+tBVMEqfcdysDOiUgMuMr94IwQkdYOHxoBNDILH9ozswymCWG1Pvk5jiOXwflI+CLUAESUlFFyy2ZtYp5Z7lcSYzKZIfQ46pTUosENziqsj8sGr5hJVXXVcnTdu3ngETA8ofMjgM5sCJ5fcza/8mc+fvy4rmu6sFaP+SzKstwj4fhe7s7iEd0ghzvui+/whFMziIUTKZMPmpn3/TZp1fmJec/yi2thUVqoVOpxoH+KUGsN3mmT897ORchDnY75fsYnpJy6Gtl9BttatziaPY789YQaxtctf0a2Y8ahM7tpte5KLELBjNQ4QGiRag2jI6yFmTmsmZm1TtPKt2fmrq/uPfIAyOvEmKjkjTofTHNojDF7jFGkYSAw5/Xnf2WIdQPoOygkWyDubuZmxie5+/vj46GqxGnifI+3/RxnMBeSCJIZSClpqEPrDqdXTK3KCLNWayX4jK5HvWXXk3pvKEtv7Pt+RnhlLjcO8WxwEdHQ+nbvrRuP8BSBIXAOvSMmKPr0ytyUuoFflFK64KJH7vr5dOZOv+8LIqfuVJzI4THnOHVFh0rq/N38gWzInt8z77kdB4A5y43Rn88jcuAF7zFHhm9wCwdHbjRVhdOyLGVbycOqRURWyDFiSy7R+W7ejFX6xmEuuq7b1WCHe0dVq0hRCEN4oSWGc9Uf//hHLpqq463uqryuy+fnjy9/+fj09PT4dA1vP/zww7/8/p9LKRT2448//vlPP7y8vCgLgWBuZs/PLy8vt/1WW/Ntu4pIKeXh4WFdy368/vTXH398/+d6HET+sC7bctmPQPAvf/nrX/76V9frdhwH6v7jjx8+vH///PlGJN9+8+7t43futBX9VPenh2tatLx5+6SlPL59s23bv/nb/9c3b59+/4//4//8z//fn378y3dv3n14//zh/Sczu+0vzLwsy3Ec0l1tkaqQrbVMYa358Xwzq6qMGhLAYkyhTFq0FHULO2oEXS+Pj4+Py3pRlkLMDBUqxArapDxdr5fLVo9j27bH7Xocx7HXN+sbKcU9ZyrhsG5jmmWJ+e32qiy2rB6RsXSpVUReXl4iUhyGjADlqgYmQ7jZy+fnl9d9r2bEuqyQ7dvlzcPj5eG6vb6+foaTyna9LMtqFMuy2eaqpdXb6+ureyzrWo9kG58ZsHmcTaGRLos4mfczu/YTliTFHDlNI07l2fmkPmc7c83P/RURX+3mcxQazab4+lfO2znubxunTYox+bTwMirMn38QTkf5fOeILsl0/tzztZmZRWZiTERFEzHUk73c5sycyDgfvgMztUhbtcwE8ofRBZjuaUyMGjDGU5m3ffz1uP7MQuP+Iv7imt07zqwM/2GMtnWi3WJUVfMKPfzeUHYzM4/GwdlCTU+InkkKgSnsflfnHU6ltGBSSuXSwZ4FOpQ6HXuSp+Pu5k1VRTumsRfJvRvsTARzAKIszBTerGVlD/NgCEoIB6VOV7MW7n2852EJnc7gKFQAKCtrT8tS0Sszkgi49YxNWEFhCRXGPdrmHMUtlTy5FJngBGa22oQorQ7HBkiJyC53RERpKbFo4TQtZEpaS+tST/0BEJF7I4Ywt9bMWilSSomwauZuiR4AETNnwpRwt9SXTFe3tPiL6DLFaep4BxFFpMhn0VxJJsLAgDkho1b3SVpKQpIgrDJ8Jtwbc28iNDtyeMPMac+Y1iZdkCxNDMyjUwf93BEzR6sVCF2KygLWPlEnKauEk0cDSEuRVOVxLMsWnYdG3pVUqZlLUSoc0Zg1wkj0omVZlttx1HqLiIWVSZpHteaGh6cnZTlapa6SzmVZiXBYk6Uc1qIZER1tl6Ucx8EsnP3vvlQpKETEohLRosWSxMWsFASqzZhQSsk772YpLp3JUw5yc5PvtRXVUgqZHa220WWgDvMLmBMxQK1aHbjTuTJnNZXZSVbvCS8RESVCWKLlewLE91wkE/1ZIhZdiShgZkZMRAVIp28hciK63W6qKmXRaaMXFB71OFS3HoOy1WYGoJSSdE0AUhbKL94MrIlqZlIQUgtKuLhQdImX2GsFWFVVhZmfX1+JaNu2vpu8J/ellNpSFqgRUVoCubsUTS9Qs27vZmYeVN1IxiAuolkg6qqFivSpcoKK4TmRNTOvZkf1dS2lQNzMUJPVr1KWWo9aDyey9MZEODB1NWCoR22x9+cVCRcICXJ3Ujar0TPvtu83IV7XFRG1Huk603pwAACvTURIYNYHP0U4AlYbJ7MmjAlmLVuHQHeojmwQuT1/3iPiOIY3T47ZB8rA60EDbp2PL6M0enrSucoZQva9V19uWfOcZO2AUgqA19fXfd+JaF2JwLeXV0fqYymB2n4wZ96a/qVHKUXT2J2CORjUjipF03NIVXNFhdPLy0spZV1XAdLQTETqceSnz/KPizKLB8YpxklKZmPywFJmEuDwCEiw6tqsl7LLslwulxiFtKq21lILd1kV6IyAw3t1EWPGHqB1XW8vr9JtnDruIIO816YsEK+19jE7U3N7enzbWkNHU3tEUMBal/XmsX3ye4EyVBOaHcdR295bchERzqwWrR5NRFRL86O1tnR+e57ZHmEZP+HB6OJVQ+gIOTAQUUS3qlbV8N4GwuAQpdWikmbTJDs4tdbjdqMxLmDVgMEB79NDonvdOA6lyDuspYRTijjnWZ9hysy3shA5mbVmYTUbzeYuSing2VqTXHtJ1hGKCMlD2U2Imbi21mPUqI15xEQ+8Y17kPQwM9bSmjU3ESlaskEwNki2nCJ7B61xa80NzJqNJ3dXLSKSdTuCR1BiVc2Jx3EcpRRVDnP3IOVwJL6AIhiUnBr3u8iFiLSM8IsCaauEgBGcKZiTTEMj5nPkeOr0Ne9sgVOqGtYNB+ffUBeGQUQceyMiGmONGT2ENdWqgZwN9GiQdjigEJGsVPuxY5YdYuo4Kculm3lrtATkkEh35zNzkUIUIpJmhO4uSxfVW5ZlWZbXvX769BzEKNQYx+eXbx8elu0qulwfnmSRl9vrZb1mj3tZlmBqrRXV61IeL/rpw/u//uWPqvzu7cNa9K9//es//dM/eovr9dr2eP/j+/d//bhty7ast30vZa3Hq0AKy/Kw/OoXv/IWP/74o7uvZQm3zx8/fXz/4fOnT/BY12W/uR0HsT49Xd+9e/P09ADE5+fnDx//+ucf/nB7ed227RfffSNSPn/+LFI+ffqkSwFj1eXh6fHp3dO3v/ju22/fffPNN0uRf/nd7/+3/8//8rv/8d8XlR/bXz69/3S7HURSSll1FZIIMzeAaq0RxCBhQXA2ny/rVlusaxHGsb9yeBEKZkJcny7K67asbx6v2/VRtYCEiJ4umxBH2Lrq28eHp6eHh8u6bWtbj3W9XNb1sq57sSK6rluScSJ77kTJVM94dlvWz58/W60WYeaXZWvV9tteWFoLsFyW8rzf7KgraxD4chFdLECiDw9Pj49vLtujqmrhsrC7BVprx/v3P37+/JmIrpfH42gvz3tzBPFRba99rKDDeXsUdTCzzv/MtppX6u1XZoBBFr2beafwjCpL0CecEQGERxvyw0PwkjpPAwCd9K7yjEj7TJ9JwthliS+bs7r59znFGh/HPAYSUzgjIjx7Zwn8OVWHOL1i8HR88qcG7DSjIJ9GHV+R2nQREXWCeYXncZClKc22LEYXnojSAjfbzdVa3or0f/HOauTzRXZtkfDwli4ntectyon7MxfcA5MhEJGNnqMdPAh6EUQcQ/KmJzPZ+cyrBe4tUVFhpHWuu0MEfQagoqkB7oFAkZL6xGlLUVtzbyJEAiZy0xhYGHdv1XRU3ieEQC4d72P4rKmIJL9ST+IjsbC9m4HMcQczhjwoUVughDTnyR0ESjBAEp9OmIBcXoW/BvdjQBP4xB2aP9+VfDHFObJU84hI3m8uIPRTwls7nAfoGjDPOrOvrZlgYcLKo7cvRlOnt8wzZQTQmo9F6XnbZoNkbhjMP9ynhX1xmFUfV0NEg23f3P12ewFNyZM+FhDJB2fuHtY8UqZLhSg7HX3JjVuBMVWbHaD5yno7gfLzruav+7D6nOHAEdQNbAnMpJLAtWoW5IUKF2U7sdGYEyLB4CBwKm4FmptqCUrJGRDFLNhsmGQ6glUAJIaBUvS7pyB9k/SnA4BIRXKtuzscqoWER0lP7k7mNvoL6AIdvY/jxBFIciERRZvwrbsjEUYSw6yZc2BMYDoEts/Ve6GVka5ERJen9pE/4Rykft4tA6CyuN8FbGfOxye3WFbhoeBNHMtSrNXopr5Dvm9c/HkIwNxdSyYWgPVODp+LdoY5TkeiTjIId4/ekKIajUgw2Om5g0QkCHtNdVZObd5cDmZWSnZr+pV7tveIYEbSm89jzRERedpexV23MD9LYrqVYj6dOe7If7DOgLXWWnqW0gkGmUJfYe28E1trAjIznePriC5nSsTM+77PipGISinwOI4jz92ydDcjM1PlfNDzWLr3U+mLg+Qc6I7jmCFobtt5XGVhPA+D82E8H1n02g9zmDxGmv3azs83F7nq4v1J9N2XN1NEjjEd5fOraHr2zDXj7iAn6jNboXnG91qoLEu+8ywv8wHx6Ymfb0Wupb4S7iI6fQHkm3N0U2hvdQDZ7roDef37vkcEkEPLkWVYCsB/3fj3L/WuaVSDrTX26KBgBsDubcJHW2s85g/uHjO3mCT8YaJmZhks5k6cX2dbN3evzeZPZhXUGw1WZ188D+ye8uUHnXZuv7en9YPIPg7uESCfvnfhibmE+kwgifddwrf3+O+hA3fjnNkpjojqSOTFWBPpIdTZofkd21CiQvBxdJX7UkomjzRKI3dP92+rE6dD59sy1sm4+V8qYPFI6bKKQ05q00yOPLuUCeH2SAcfz9L9dCqeMk5O9A2lpnr/6N6p5GDSECNCoEUwKHKdsHU9qPG8Y7Cj4zy6AWwkyvNO2mAi5NPh6Pwz7zOicx5xnxHx6GSd1/Pc5jQmxnOjSefl9t/NeRBRYICx59XmhlnXlQg5qqcx+MkG4jyIlTXRgn6HtOQy7mlbGik1gAIplt5Pc0Nt1qS6++Vy2R6uLdyrL8vyi1/84u3bt0/Xh4h42W+q+ubNm0Vx+/z+5fVjhL375pvHp4eX1+effvrpOI43j28/f375+NP719d9Kevlcr1eruti7z98jFG3b9u1aHneP+/Ha6uOsFrrpx/fvz5/0qB12x4eHuruCL5eH7799tuHx+2ory+35+fn5/fv378879t6effu28eHx7q3T/Wz3Z6J+OGySdE337399//z/1TW1d2/+eYth//X//xf/tN/+I//8N/+/vnT58u6ruuCsMfrQwIxmFmInQheLVxIO+Gm42nTCAGXywMLIoLdoh4EXVQeVn33+Hgp+ubp4enxrapaQLRs23ZdNw6YNRY8rpeHZbuWZStr6HK5XN4+veWi+612KDHS3TAAGIyImJgQRFDmh3Wj7ZKR9vn5mQE0Wy8PwGERLRwRSuwMYi2EYF64rA+P77759vHxzeXycLlcrB7WbmW7LssiQsdx7NWINZjcHCzLsl02vKw788vdYXHky3NNzghGRHEaDPCI57nliUjmzzu13CmBGPYBM3mgcSr0Y4XuwX/+AXFnRpwPqRmLvro8/CyjO//A/Ky+k4UFRD+zJsYppOPr8D62dqZ23s/x+TPziHT3BJeGn34dPK/NhjDK/Pn8juu60s+Yt8ycmg79OwI4iR/NKNTP/Tyaz8PwrNPM5yfOiHe/M3ccBJ2/y5331cNpx8zOZGlGtmAQUR1mCnRKZTOw8unN5/fS1DbwNMUKmtsvj33p4/tI6ww362si42UASQeMvlq7vjMiodHM7B6U2kn9QCB0O5ME73KXgsyLIzrcotM1s1HRv19ZNFJuMtlKw2qYmWNIm/JAJ8dIYjqVJdkE2SRA1/JC/wKMPpdP4a7kRnS3p3Gb+rJjeCSOOjwpiL1LDsv9oczWGz90f/z9Ed2z546Z6p0MjruCyL1f624pDITuQYoUQzKvIpJfP1u4+U2T0wdzkq7xlAp4k1xORIH7grMBMnSOwjPphIhwUCpC9cOMEBHSqzgiIgtvDqeUAWaQEGvL0i5RXiJJeezyzBQQiiBLS+Is3iNImIkdcHOBM0tZx5Uwc0TiIYPRwkSE0m4KQUxaCjOTcD60ACxaay6iwiWDgrdEUwfEwcKaQZC4UOIEFDhqAwDqLaiISI/gBPZnKGYiZc0W0LHfZubRC+ChVaQskbph0YthZm71APyEDW8IYxYWHdvYRKTV1lqDcNDMIZCgRtUsvwEgqOf3tTW31JRDM49wVQWFhcuYG7h7nwZykggc8HXdmLszB4LcwsyZ+Uh235C3c/fk9eWVjPDDwmwEay353gQxRC4bYnGzZm1ZFiJuzYJsCiq87jeVJYKcwD35I1FJ2FISB5VT/bF/gzyXKLKb0fOzOYKYfQGYB/pyJRbgnk2Gp6GvdVF0gEWE4N4db4UAhHmEW6oMR3SNohG0YGQAWq3MnGx5BjNz827idT8/zDkbnt7xx4Qc2fXBGVO4OXnAevqLARAij8SKYOhaRYCJY0xrO16XmcP9FP3PR9HdYJAE8HFWJjwmTcISIoV02Uk18+YVHkRIKyNOCFIYmALW5SIjsknamoFJNRnRjbqcAIiAISOY4+fevuktqs6VVV1IJRHCIkLjAI4IiZkoUKc/wpg6iVycWISJWzq4EkknHXhEODOpdhAUxJrVWrt8oKBXveHuub2+7vicz3t3z+SzV1OD0Ds7BVnzs2qwpwk1xyQgoattAxjJ1mhe9DtIowDO+zynuBMCHaMKOvcmAKQEGnchrgTgjSloBKgrGDAz9ZI+RMmMIgLUrQuZ2aKP3E90TeavGmHC8Bg9xrxjQsTAvbUxf762ljZMo7tDRFSPVLTmCfGLMa8VkKbihiUm30WIA+l6CyKz6EW1qBC7NwoTAkGSSZcfnQCEebf7DUVePkdYJn9MpKI5dUmP93p39eiHDZDYk1wc0hO5n1WVPXpwhkJKYz+KYIF1cj1RMJMSp1j9PT+b7+ZuzEyBMCd4UtmaNe/ofWbqqHLrd6Qn60TEmZmk8Oews5zLZl7pXNiRzE6AeYpS98XTS7C+++a8prdX5le+f3dmoT5eNkR3qM59BYu8WstGEiHCIyPaPR+jPEvBpSSuhIGAsJQiuhBrbpZtW96+e/eLX3y7bYsqt9Y4/PFyvVwux+3zn374Qz1eHx6v33//nSr/9rd/+N3vfvfycnv+dAsnuG+Xp3W5rFspLL6/Lrpe1uvr823fb+0ws/cf33/I4S3ZcRzH7fUZHmtZrsu68uJhLfxyubx790Y0Pr/89PHT8/Pzc1iUcnn39ts3T++i2b4/wxrMtu16ua5v3r791d/++le/+r7W/Ycffvjn3/70H/+3//C73/7jX//8FyV+9/iY+eValr5hEWEN1P3ZKMhTj8OT8B6JjlQmZU83mlLKoqJCj5ft27ePj6s+XS9vHx+v11V1YS26bOu6Pm1Xj1Zve4Rd1rKWsmhZSmHmogoP8ihCidjatq21NlyvLCISMhDmb68PbVkj57br/ub6AI/rdiFWPZZqx61VJVTOnLw1i7LKuqzXy7WIpqD0m8dHqCAsrK2lbNcHKUsQg5VYHCDWZb3ciqVSo7vnsdUBan2+hUj9XCJiikivDRA50YAxIFLO390pIgX2AZcgp+iyJd3vu28TJ6QVEHr9FtHBpiMJh+B0gM6TIszPbN5c2HEv2M7CQKdNFKB7PCH0WSP+1Zd3N1BCtzygTgD2TlXt7xP3V5/lUs4rUkOX54Vh1hRE6Hra95Po/pXHjH1GPzNzAymFEygNU4FT0W4DBQkguSQYvqS9kgRSzSFxLUw6okoMSSzK0n5M9BFxh89wRLpX5sBsXmRzz2SVurth113OegQ0/DkQCfHrZ0vWBfl9iYlIv2hmxBzpTKcnG+vDeye704Y9kxfJY5+A6UjoDk6Sb+r6tNnOJADRp4q9wuagLqHh3czJPOQ+hUkljhTQMtwzlRmaeUzV8n8zqWLmwd/Lp9trUXNHNxDK1uigGqI3tudxNd8/4W2ZCvSueZCZ0agT8pFjZIFMmsPL+3We3pBOL/TUH97Ve3Pch+zIdqkPTxteIRJ4HPVGNBq3hDBwZK78BV2BB4ZzJnkzWZnpVFd4+8KzC2ASMMBTwxljGCW6sCiCHFGbNzcmXdYFYGL1gDlqc2GIgKQLolXvHqwSC1E6GwWQvglBrFODJzekqOQCjdlL7rIQ3loTHgQkYClbBute+SPg+ZRPbNLoOxxANMul0qfZmVKMMWwvY8KVuBQlopbowS8fVpi31mbWnre616atszG9WUgyq5lGO3x+QcyJpcd8EwzyJ6mQ3JHSMfJgMyMKpG7xEFfI13EcyZ+/N+RORVFPtVlHVu3bWkZqfc/sRcTC5srsH5pdPO6w5HE4Ue6F5iYk6eGZPRoMpCUzZxWaHF1hJlE3VDIgpwLdWI20c9rn6CD/KcyZusNWVi4Yk0AMjSgeKtNxait+lbExs5tFsxouIsuylFLC2uvrqyV26MtsbzSsevo4sv02T4sEYMwSBYCq7vvenX5GTV5rle7re5r2m6UY26ymcDrCzjs0ycZjI98lAKODnwfjl3kuj5EodGTvHEvaEG8835y56qLTlVu6hRORmaXu1qyIZhmW4oNEIXxX5Z33OUXuOtKECQOgW2Q53S6ezYtE38lpK0UEp7jSXUyyX2Tujt5Z6xaF6ddFRLLXlmN2FRaRGFq7RAx4q+7RMJRvOfirdZK6dIkc7kUvugBEHhnuzd0iLDdOwFJVUUQC3lqDdfEnH1yJvIAc4oysorn7JFDPVZdUhXxw2rEJNlEDfdn3VsnPVMG/PAfvfzPDqcyde3/odEJDnEmrucB8kJ8jO3+d6TYJZp0G34U5gkVodqPyZvHAnkR3lWTmQPQZS+ceew/zmSZmSG+tETq5N98n7fPIB4gs2Af/aDzi+6nXw4JIAJFg9QiSFDzU1sK9l8t0zwspBtrr3gUIBpDrkzrYPDHeAlB4dfui/idCYRFkry05OgGEw7yFaBkLwAnU3PJB3rsYp5sPdLJxl6nLwN7lyk6Ij5Gm09elL2Z6N0CG9wRgRDDKOcI9wwqPCO75eX4FGvu69PENAt59xwBITL6fC3FJxbZIa6d+Y2dkjgi4d/o0AUDJ/IWImUvhh2/efPPNN3nBInJ9fPjFL37xzTff1FoT9LRt2+Vyefn0+R9/+w8//Mvv3727Xi6Xz59fPn7849///d+//+nD5fLAUbbtUlhUbm62rsWs1s+f379/z4OE//r68TgOa227LAISQnhj+FpkW9ZFCiKKqgLbWkD+/On9h48fj1bD27Y9PFz0m2++U+IfP77fX1+EuSirhEh88+3bovy7f/rH2+31w0/v//SHP/zX//yffa8XKeu6dnuGBPNXR3iA2Q3GCa4EuUM9iWJEmtIHIqKEaMq0LNu2LduiKvT0sH3z5uHtw/Xtw8N1u6iW7XJ9fHpbylrdLouG847wVhdWiVzlpKxhcXt95SOZDqLKZd0YDlbAHZwtdwogaFkKE4UFBS7L+u7N28vlcrT2/HqT5ThaofravDpFa61buliz46j7a122FSEia1n0UszhraGsDw8P3337fav+6dMnRLCQrr66lLKb2XEcZtVbR/l+tTXiZMMTEREWTIIITnLUKUk7SY4TkSSKBEHR/T5wep3jp49mNE7p+hc/ffqV83/Pf/j566vzHcDECjHzHIwxf/GVf/5+kV1O95h5Kd/39fhecf9PnqGny5uJ5bzmGcfmcW/jNc+OvCvz4I7RzI0xDCcilvukd8KzIyKa9ROTiEcYjHtNLhGTxXMHuCGtFoBuIkz9PB1Jzn0CTyfFBGRTg1Oe9P5l73f+dDLOhaTZtOtT2NG7ALrvVUc1p6lneLhpUQBpEyMMAVFIQqbyfcwMQXDyCPdGFMTp1NSrwYRA9zmvByVhPT07hqhGxyWNISxRciQiFW+UWUAhiUSfzyIJip4Qr9m9jshOQ18wIpqQaOauahh94CnwNEX6Ij0iglmNaCpL0QJBa26t8d1fivrk+K5NROSUScp5hd33AzkzTy9Zd0fMqT1ABA8miCirdM1P8uhiSH1+TnPdhBNiVSGWoI5gJKJw9jBZlqI9YzjaFMNgKYuIFFEiCnMbZipBkZhkd49oROTRQbNOSLEvMAsrs0KUwClSwqKFSQgsQnNDMRLpAjDSIofYCeQGRDbt0+OWmIkVQdZatZ7fE5GuwswIqq3mFNpZzcyJZSBhwkEUaaZqtYvZAoQc1ZESkUmOpVKVhDwQETISDqBTxEkEYPfo+ATO6iUHhZhbtG8qBwhaRESC2oytBCHOwb6rqlnMvO2UuNgMH/lQSilctLkF9UFRhy1EtCT6p9pca7nVE5RhzXJEHG4DVo5qLSEaLCnRYpPH0rqRGGZ9lyV5azWTvwi0MaEFwmpVDfRhYiRZiAjehROdKEjy8SLgzBIRJKxLcUM4GoKZ13XxHGMwi5aWxqFmZdnMLJKYnsbryEljy1glIuB774CEIyh1uVR72SzDb2l0ARjgZAwQPJA2a3ACaaGUO3OLVj1SaSDxHdC+ar3HWQr3Ye2WWpGOVGSOCJbOvCVihlNEBEdkQyvSMYISQZ5OvO1ora1l6QqFPlkJAFFrFkMF2lpLgIYRT9dx77Nu1FqP45iIYnfvQJRMjHO27C0i6tHmAosg93CEg7Ky6GlEZIPciRiOME8C6LIs+a0puihAqtT2zGzcWgZJ2lNFanrfNHRZL0RkGUxXIQhDPDz14e2oweaWEo3ExDHgwRFB3BVK884ws8zywMOjeu9FEhxOUpY120u11hTtUk3ZvxzAZiPji0yCxjGXB2NOVqt13bhqbdqb5+E/uxVExIJ0a9/3W+7H4zjsqNu2Zam/lmJmrf/8vVLpRzszMXG7o3JyVddq+36UxdZ1XbbVaqMwEcGIvWGOcEohzLyVfbzIeQKlnFsQHJHezwwkFZNOblszb+vfSLpdw/B18GZgQAOULmOCCK+tDRXoPKopwB4dqpEMEmYOKtytAMi9AuzEBFZmIvEUnPNwb0lwiHw7BuUSA0Z7EO6uLBRjlN1ZZyBAQIXFQW4epwlwqzurRNJUuv4cZlaXOyW3mJJC4N5960e20PkaAQ+YaGYrxCLhBPJwAzlSMSiS0g0eOwIQG+uER4LlnYLrjEiZepoLbygkp0wPyIWCSKLngvekGd1BV3IxxXjdE7sv8zw6/eVMY3DKcQGkembfZMGgFEflMwatp7zoWy8A9xDqdXIiHUY0IEm7PqK9VlWGQ4iUc2TdVVxYGHT64hEieoQv23Z5eFwvWwhE+Hq9vnv37unp4f3799YqM6/LGrA//emP//0f/q+o+3Vd/vzDj//8+3/59OnT+/cfRURleXh4q1IIMMBrdfiHTx//8McfCkmRoiKZGC9FkomzaGmtMZxBRcq2rEUEwetl1aU8Xra63356/9fn2+uyLNuylCILl8J0e3k5Xl4ZrsoBj3AhHLfXvd32fWfm43Z7fv/+u6e3vjVv7rVVT2kAPuptk5U5HewzKY3kXyURvduPzQaEgAIiVIQXpoWpiDyU8mZdv318um7LZS3bdr1cH7aHVbhUIxVEEIIhpRQpQgIhp8LFadiLCoVbPXZOIRQhkEpEJkUwc0K97WamxEXl6fpQRG/H/nzcwCJtuR27v3pdD2eTRjiOUpZqcdtfIPz09punh4fHy5UCF12CuFpw4LI8/PKXvwKp6F8+fnrvtRHr9lCeWnt4uIjEbjXDlFCf8gKIcCBbaT1nyU3AQUOlzqe//birhObZzQYASHS85Fj+QXkbImKM5HIvSPTZFWH05ud+yr08+uP3YQCNIWDWOMM5Z+A3x5x3nkQ5CmTqQAnM5v798uKrzTt3t4fT0EPlkRvkpd9Hm4OkY2ZDS+IeDYaTwhcUPB4DjEH6HSyeCEMwcwyuSv7M/N0vr/AejXv/nbrYNYDglG3up+64dTJCTg9rKUlApGE5TT9/fepHRocR94TcBg2qsDSryLHnRFGl1RxTn/H3UpBzXq0zdGLU1jFSyPyHDKk0aFEzXydg2OGFR7h1mmW+4eBQuVIyDbnzhedK6DNbAoV0daMwQlH24ZKSQ2OmpBWn5VJH5OZTcHfuq+He108pmknTPcf9bFenTTZFEBzoQuF8GmHdzwlyEYoQd9BJ07/Wuq0lW+DjnvhEJYDu63X+V06cTx/ay0x0HEc27Zn78eOtRgQJr2spyrXi2F+TDLksCxE4AeAtG8R3Hew5bRgrg5hZ05nhy9fcEjTQtgCozyT9q59JmpS713An0lKWZYWwWbRmXaecmbVsvOSM0qIlfVeIESUdNoKFvF+ukZu5mEU2Ak78QJzGdzkNWJYlBTxzT7ojokZE2pq4J//Tg5hBRVOs+N4lipN0WZzByURaSkQ6vPeJKwA3r7Vma6C3EsaUAOB12UjIERV+BuDNHIsGjbyZB3lRSczJfcKW3P2Rg7bhwqqqJJIpLEZ2O+9JX6JEicukGfPciQqA5uE5KA5q7Uif5zEUvitCz97efOd88z4x8M7imI+g1hphmfQPpAOpUnZqiYOil/oAVLW5+7CGDqaj1Rw2SUlrkmBhHzXhF5FvvIQohM2st//G5+armmWZWkopRXKWleOaMxq5/wFEke5HOI7j9bXVuq/Lcg/QnRSQwBg3CyKalkKdyUZEREPnBlNLuZBIibo3dCYVdQ156g07HuiA1lqtNeDTzHD2QedznE1cGfJ1fUYXfZZiZtG+aJrgy0PoDu4as/1sGo64LfMOZ0CIiDOsaG49jHHi+S+ZOeP4VMbLQEZjnCi6zLvUTY9an+ZllqyqFgNCPK7T+6T0/oD7Or9Pcc9nPAFOHo6BlxNubiRlWZaIOHbf9z0pdmOEjhESOcJgLqM57e4edr6H87n45Am7wZu1lnJixN2CgYe/etdxHIFUVTNXo85BdR+YiDawVBERRu4+52x0EufsIcJNcT9u0GwujK4+fS5p8u6dzhrg/nUmp/rnAXa+w0yDIoIGHXp+Svid/4+UrRo/YAjPaDaMu5k5I8/4XYDCHX1BBdwajeg2Piibq8jvOCJ8hyujWzrRvPwYeL/4Ge5JVfdq2WFn5uSQN2tulirKX3Yw05EAaeU+Y9E4LGQMWjpNKi20s4E/708+FBFyB0/s5mm64t4IivSXGjlrpkPMHOiNCfQWeTSrE1eRNmP2hRh7nJfrvM/zvxExT6Wf/8BcIXR6iTAgibrjpE/T/bdidMZ5KHcyixLV1rKCFhAFPFwIadZ9XmP9qyHd7NWC/LRQVZXD62H7XluzNHpINbtJJcgncvvw8S9/+Uut9enyIFI+fvj08dP7out3336vmnwIdnchXdfViPfjxR2llF//4vtPHz7u+15rJYplKd5arXttEc0oYluXVZe1dFH6ZdHL47YUue2347YXpoftsizLUi7eYr+9vD5/Dm+XdWGBWVu2rZTy0/sf18v2d3/3d8z89z/+aEeNo3mt5LToumQrM1zNhLCKkmreA2YqZUkOvrvRAO1HX8CwGqsu67pct3XdloXjUlSYyA60WB62N4/btm4ewfCny1brASIuxSWKqLBkv4qIlNS9eZiAA9ZaFBNdFMxgRjSyfqxQdglBAAS0iPKFRSSYZN30eKXnuFWh7pMZBHdzYlFowI7jqHVHWBG6rNftemlGh4e0ePuOW5TD/PPrzfy1mj+s69u3T+++eVrW8umnYzAvczGfttJJAHlsFge6Ve+oTjOgJb3iVDS653SbIkQ6CHFuCv/CEuy0lU6x5Zws4XQC4stXROdsnv/pvA3Pvz7mGXfNoHMo++rncQd38Fc/jP/nifH83AGQvh8E8WX7bP7ZcY8tPS3hL37mFEDuFznKxt68m/VUj5Cnth3ud5t6z3F8x5EUdRJ3zLHt6T7cT7FTEnV/IilXdJdwOg9B6Xzx8xbp+b6g2xTlELLT6gB0s5Oe2VvvCRI5MYanYZhJz9CDmQqnpaRxSiBgBr6cKkQhAD3bJ+9HGYWwJItsoN+o34V5HvSi3wyAhRMLje7xWBypA9RVQ+cov98Fb4hIM6iI4JxopnfU0PkQHc1UYqJEE92VXUZsSr5x3n0wM9wZVN2JlQBhJvRzeiZzkYyyPFHuAiVf5gNjSWVD+Z5YaN7SCER4T8SEVVlUOEV9kpHX57VSVIRg87LpJI/EpIgOdWZRkcR6G1fPnoyHOaVUNSuV1py7K+9sZ6QlN+VSVOFgBielkpB4dRrTXSIDMrERZk4pLHTFSxHxWvOdVTUZYplbvOzH6JGpSEmKohYmItHCzMQBMvcWQIu4iHCgOWaWZewRsHCipJiSLouZWQSrcvHIGfGAHKfZ58Bo9WFyhDMjzdCAQHiymNIXepZe8B6pzczcUqU452Z0JwUYURpjY6K7E95pnoh/RGfzZhsqmFkHd0JVKdnB2Wp0qtY4OuIF3YTZSdlag2Ui0kn7EdG1ZCOp75x84NYaS0H6apPwoAsyc1pPB4wHAzbySwpF5JxM3A1w5iLCFhQxdJi6tB4BOI4jCF2MIsIRSUAN82leb7W5cFER0Zxp994melYKwD1qRBmyPTEAw+u6nuO+uxuCPNhNWdijHbW1yhQKAlxZWmsR+RGR5NyBrpk9oIgIS+Xn2rKnZmbmVVXJo+2HHS0iQoR47nQAiGZOntUHPDIFEeJwDw94hGWyMwoPIKwjlplIWeBhcGFJ4BZl+TCQpZM44IM9MT4906fRCAdy9js52/eTzBPH2+9wRDBDmcmD4BTMswKgyFuEbNnOwqyfKDHADkK6Zi03E9wYAv6zn0XEqsVzxD1smebraJbx2MzhREPzjEvXSuCMX4G8yHpUXZgkmCg1hL2OggEUzBGW7cUA2enAbq0lNCvvxgQRiMi0NIsImMMteoMS7m5hiSxxdyFe10WJU3kV8CRXo5eyqcmUKAbC2O99VZ3yMwDruoqSDznivGacyhXm2TvPA2f0OtFpOCQdLJ0rgMJba8MP+Yt0J48wH6qb55wgH5/gjq1NfhAoiT9dHKFXidK9iOJLRx9PRl0AQQnLYgZI8q1K7u6I7gOJL0TaRl+CiBgBZfbBlE8n9vysLtp0GpsUUQRU2aLntDMtnlkUj/bH/D8iikjDvqTPBVJzG+ye2rMxjmYnCu/nbN80mR/NzTioT51AwYHouncgooTJcECEDKHpJ2xG7kKpKHvPEefamBccEYlAmV95JnY4vc7P+qsXEYXfZzXRYe5jlxNJqnlz/0R3hwPRxe3yt1LkCyVXETKkRQShuXMpa0QkSjz3Y2+0JE7HInLGIJIKz7yUsmTvzFj16enp6emJiJ6fn/P32lEPj/fv33/+9OGbN2/fvXl72db9aE8Rb968K6VUa9ailMUdYd6acdGny9vLw8O7N08//fkv7//648ePHyNiERVlCBfBy6cXAFpYZV2ocIKAWZZCi7K1ut9ehKIs67aUUhZVqq21ffd6WwsVZQHRtlyeHtZ1beHX7cKgH/74p9//0z9//vC57RXmRZbCspt7cym6XJ+K1aKU/hcg0cJFV1FiUvOaeMzsOKiQiNzIH66X6/V6vVwuqwr5piIEZWzr8rBtq6oKsWiwECJJBAQK5kWUmcHCrPAgZXev3tD1l3rOkwoqY71ZNlBXLdS6Bz0QqkK8uZCEQSngz/W5LGIQkHPDvu/rdpVtCaaXzx///IM8Pr75/le/LCwXfQjVHU0MpOut+fbxcbtcXl+fW92DkjdHQmZ+MCmHR6SsYMauTDg9B21ADIZfL2kygCXHn8cw7Nzlp1NXN4gEMNzbfOgGbDghIPir3+35gCdWJD/0NEH9sqZKQ9SYRekp0c/35NFioNGIPwWlHpjOP9//EBz5cKkfr35iKp2vtr8b956sDybU+YdT6Zb53BbMVqk7IZrXWokkJ3zuzun5g7yF9zhPJ0vaYJn14LxplEykOVg9SXZhyhED6eU7vmzOKBEBVpqPYKT09wiWKMT+pWjMLzOvAlLykO5Vdj8IurEqIgjKQ8o5q17qyEvgzutr8CRvxvhtYIx/+1AohhmX95wsv3BrvhSJMcSIDh4AwXMLxuAKxjDfIy4gpPqKuw/rYFhEJxJTR1MTUQq3OoGcHOAhUTpb6fNR3WlyffCCrPQ7sbKrK32BGs9X25uICJOB3Q2gUmRZFnfLE3oyeYLnBNUH+o6CHM6GsSBSJiwC5gnRENVI3GR0AEVSy2DtqLdjD7MqXXeaaj2UBnIMLAJlLUzECO9ErIh+RzmjQCYgWanwXdm4bKUvU84CVTzMw633NFAjjY1ikc4nX6SgSIBbawYCWLUQibXBlfSemwYoKx1LESsKEuWgDGsi0rGjAfdmZo60ciL0SW/vgRmo6BLEbkibZTeQ0LIsOd+ex7+IZH3tFubeqqcfrxQd6znNOWMmDdOb9x7COp5WRWTqeUSERYuUhRfuYuZOzMxl9FbMqCi1LNIyv+3OQBGZjndyRVdyZt73V1ZRWYijHlQWWcp6q4dZmw0OJOUyXalF03ZFShFOV8k+N04OThEW6l5ZRITgfn5AhBWUtROaBXHWTFEGoTrZVtl/yEJ3BEojiuYezbioRIloiVae3Shm7umpkqqwU2IdW2vR1ZeUiKJ7k951p4VYufd6eTwRODGp0mJmGaOdEn/oIAr3tCWotQLuvo6GFGIQ89KOkolT2Sp6I6aDzFOUq9YqWmJW8B2AAPcwS3swUWVAWq02RbNP2Xb+ed9rzsfoPPFwS+ZzLxJAyJ6VubeEJDl5mNXoJPS0Vqbb7ZYOwFO22t1lkfSpAPGBL7AMPawllDqQrVeM8oaItI+zOp6ciFLlLG3HiYOgEUadkunIGB4e0ceYPOmgAAB3SOm9P2bOaeeY2nkpCbhjeNRW00ssKTP9UECWSTx3rve844uRFDowp7ete3Sl/ghSqjpPW9HCSha43W7uDrCUNbsD54/IGqZL/ti4GPfMJ3pwYKkRDJJSGNzMCDAEiVA4pyVvhMHCwt1SZJxZiiprtNba0TxM+7HiZp7kcBbJAXVi4RJL21ojVuKQoq02d9fCEd1zvoiG1VMmFBFRreXTpNMZl4/OrJZSiIIzH0UeeTVanErciGwCDvxI3gQeAKFcTkVXFSXAUiditBGZh6WNFCJUDyKseQYRzTic73Pvzfe+u7lDlUU4KpdStPDguftIVnJ9shvcomO1hEU5kn4dnnDbpAvWWlX1LKEaxNbqcn1oXq0mEuWkLJC7xiXQ+yNESVcTd0/1SiGykVYrozlRWIyRRV8z7iO37oKgGeFTIXI8r36TmRHEAXazCE5Z58yxOcDMnhkVkGCfLLmRXcZEintCBb5IiM9p7nzNvx+AGZ6NPO5saiYiR3AOISaWhIVoTCYgKcnU08W8MiJCNsgHLIWZNY0GKSinUp3olA8ITEwcJIHAOGUAjmhZDctSZNWyLtvTm4e3b7757tvr46Vc17/5m7/57ptvrR7uvi0ljBtqa+35+fn19fW777578+5NUb2127Kt67rut3pYbNtmjVgYYUR2va7v3jx8+OnHH//4+c9//tOPH38E8PbtE9xutxeELaptVXi01BKNFh4iZV2X9bJykeO4HcfBIGWGO7y9fHw2CwatRRPsDY/Lti66bLq+efcWTP////Lf/tN/+k8//uWvbx4fj9uxsOqqrKphIAgX4Xi8LJrtR2cnFBXVnHuzmQZ3bwIRWURU9XFbLpfLsiwqVICcdhRCUXm8XpZlud1uzfDwWNz9w8ePjw8XoiBhhpAqSwkSKgoS4eIFcC5Fs8dhZgFTMkBy5hKpRec4opF7Tpa4n6rRmN19U/WlPG2b18dFZa8HgAiispCwk9TWXl5ebreXMN/3/XI5IMTgVZQuenl5LUUfHx/rcUM7yG2vx60etYf7FEwKd/fevqfICUb0A+4cvlJoBUMigah0MZ8ZOPOIESAE6PQuOrWNcsAZYWk0l+o3EZH+23xSnMaJQkxfYmrm3sw3PP89RuY/fz7pbNnPH5ZjX/wKD1TmfOeIACyxNNnljK7a2c+I1PTp4Td6a33mhz+nwIQZTbHYQdhhZhJ2QjNPWbIUw+/X0FdIFrGW6yc9ouebz9CEL180zoh0vjz/QD96fNQ/QGR7OhN70vPDyvUwn8XMu3JHeYT0AhiJ4wsYTr/bRbDcspYlIi1CmZozhANAJxC7c1hQWB/wNWPmRUueHVm9ROKCQRCBh1swsxShIc4pougGsOFu4SaqzJEKXmBY2kmBQdTMqzcNYS3ZKI0+YUUbnYbIkZZwRBhgjiD1COrjsD66ApDzpczOIgJuCaUSKdklCgJBgiW1HM28rMu8U601O/ZS1rUsZgEnFQ4RT3EgmBTJYoYIIJKigB61mhk4ukBwotWDVNjMwoMDSpwk0YA1MxJyOIxEc5O4uYFiW9WsRnjiCWtC/iKYYV6LaFENb2ZmIRxdSDufsmpuDALAZTGrgDMoVXqoMzydONxgCBZtzQ83gBszM4SFECyJZlQm3RYGSXM0i0AqF6bisbcwYiJRpAg2EQs3ayyliLCUiDiaAaEiUiTzQ+oynU5CgYAKVFgVRBbhkWx29WWJIFUqHRjP8AgLol59lVJCJT2fhdhiJ7AuZOFpg6Sq67rmNKYUuHvbLRyFF6vVhUUZgWye1FotsCyLB1prrOLhECLQfhwSzN03lahZp4t0SKqzcuHSWgv3UjQC7di5cGstueuBYCU4WTRdEqLcgkM3bd7a8UJE7i3jTUYsUeoWnJ50ZavHDYkVBLXWzNEbRpZNgowNREFK6gR3NmfmEmTNrUWtR1VmFm4WtR0AiHVVba21cCUmoNbqESyIsOBw76IAQbBm1pyERQpCrQVDCFQPvx07CbOIlhIRZgloEVVtzQnS8TCtpdRMFooAaynNjcnBfLO9vrQMr6qaPTUhiuYqVERKNjsAqw3kTEC4UBzHHhHbtpFF3VsEZbFEHK22IcrtUWttlVkdZM0cvqkGUfUqQSIS3tzCIAB8eL0G0I4DcIYzS5qOwoMDRVZQqjQHEVkO1oQiIsdzFEEGMRDjaK/MaLWG12XZImyvBzPfbjszr0VqrV6xrmsw7bVFs9QSa26zmIkI4nv1K8QEy7lmsI5R4b15nMdtWoh7s3QdT52ATjsbEEcGsCiA1AJwzyRAVRVM4W5mJQrcwn1ZtmxFtdZFmy6Xh6JqzcxsWcpUXKMIILUJmCDWwizJb71RCHAeK0JBcAZTVzNEB2R2W4dOHBARYjbE0VpzAKSqpayp6pen/t72nEFZPWjFtm0W9tqeIyIQogSou+fFZ4EXrZEKs4QbzGB+HE2EhTTM3KNAlcW9ierL8dKs5q3jDAXhqkLMnmJp5NkQILjmmjlqa+n3+9ACte7mjWAkfcTqbsqizI5kwJqlwh/BiBpAxKIKZFMfzEwe7s1aAB6sIuR9tM6sTN6JNZyVDgGAW4SjiAbnJD8poFhUBIFmoFCispQYcHqioro4IYi7yyGomVMgvInIuiwi0lo77MBAMDEaA8QkzITwVuuxI5q5EAU48v0tSIi0rBHY950CoguRwGo7an83BBxEYfBUCmnRTtNQHNXM7PXjZ1JaSylS4NknDCFOtrkzvKW2RUR4a+nnktifJFYHPCiMkdaZzMTJxOYQFfXCrR0wZ4GoAGi11VZZsnoUgJMiRyxKFGYWxgiHt1rdTFgFMA+zBrDqEpGQ/mBaggaJ2ZP1xURAsA14IPqMOihZis2XUpAQm0gf15zth2r3XUP45G0vKuRBKWhNHfc1saboo4IcwUeQlGVr7hRYRZkipyeZIIkIl2zVBQcTs7DsNXG8nOtERAFEop1VlQWZa6qUbaVtuT4+Prx98ze/+c32sOmqv/zuF1tZzOuSGCPm5fHx/aePr68vT2+ffv2bX29r+fDhJy4sVIywPFyjGqQQUd2Pp8enp8v3UW8f//rX//EP/+13v/stCX/z/Tsze31+2Y990SKkx21P69gwQwSL6FKWZZEivBRS8Zo5cPp9xvOnjwSsurbWtvVSSqm3XVUXLd+/+3a9PnjD/++//df/8L/+x+fXl3dvvlFSbKLERgg3MEmEUFf/MqvpZLuoFuV11aWUZVEzs8reGoULU16R1yjcVi5b2gG7szs7eXWzuL3uUvThsoVya749XB/fPLbW9mo1urK/6tJStW7btKpXArG12pqZ18tlcQOnfLGTB4EE2s3MKRBuHCA3Aq4JCKTQdZXHN9xcQRzcVjLZboe5qodEMEt53evHjx+XZTMzFScQwThC4RK+Cj9cVrKn5w/vb7XtzV4Oo7KstGZMj4CKMEnKB3gq6qS6CpAG7zmoyMFg93N1s7Cckdq0FSQON8+RnhFlk2k0kSztwRGaNW021bI+SgubxGXMOeRp3osBf8IoYkVKxirqKswYAInsiFH/pT5CEXhI57Pea8K6HyISo7pj7nbBjOBwWLghJwru3l3XsqEfYOYy1N3d/Payi4iymFlatgRsPw5mhsHDmLMkI3ikcJOIlLIyZ9//UC5MJCr73l0eldDaAaBwMTNmLazASVXgS8hxJAs4IgKHd+OM1CrCCEDWY28H7mEOmSO3IIaCIRzeAbAk0nGE1FrzHGjlcevu0XKCEkwTO+bu6dwhXPIKNZE/ko1hp4jsBgV3CBOyKkM6KQSEJTXMUib8q95G/oG/6AHc0Uf9+pM+bknahN2Hb6o8v262onq4jQlRo7EtEQktsyDpwNRR5Y8+BAYd7vxP4yYmniIFESnLNh+ep9kiTk/wcIfDB7vHvDMkgwVCCv7ieTNlkjGm2qCsTgA5dbYoEELEpKpONInR2UrNp5hcXNZEe+QNVKIoIuwJSYoONabsUdYcxcw+UH79AJpFuLUIDxKR5Cgexy4iICGSLu6TTF5JE78gSVcRzXPdLMyrhUxfXydmAlGQam5U8zA3yhqI0rIcHi1ObIGxMDgGxTsdTxKFQ4D0hhySXdwsKEf96RtBkXZQaSbRsYWR1E1vYVI0iTQS4f6FLisGuSLb7ckfblE7coFRSEQkWifoOoIHaBcAKasohqflhKHSwBqMJlTkcs7RE/qEcw7n+0ym9wLJEXBP7Yecpna5LE790xFwU2BjNC+QItIEAIxAss8SXHHeC7n73NOXh5ubg5jDwR2mHo7eq5LeZkxygVnqonHhe0dWet7FknNdcUcSVDPUG0LQx6rpZgRE9vOIhO69zKSTMSfSkobhATOrHNXMmqpOuOtwl0VEMMiHOnPOugsTM5tVswqnuh8QDfcIMhyNIEo+HlB+Uyb1Qb3b9929yXARDHOP4aDbe1iUHdOETN/HStlSBMKbo+eFDgPAguROK7QIMTSoOsiieW0pwENdCjACFohSynEccF/XlUnNrB6Hm0XACeZ3m9mxikZHDIRoHpEdHKttwMxjtlqZOac3+TMlhTGyjqFugzcTgjgJOJ2XU1exGAJ3+QhyoktE27ZN9CyEU0GrtZasgdxz/bQAYbj1juHk/WOoozD6wJZoQGZO00VPUyimYCrLdfAKe6+hpt7yCQhH4blJa63zFPjq/gjIU4/IIygEhPQlGtshKcStK0eQKGniekGeKpcczJpGwc39aDXCgDBDay37dx1l2AJMLVJLn4Ip+a6EYFAmO/DwCHPLZDDBZcx9M55gYE5EqrounV5+jkLMHN57namy0YHB5Ewluhd0civco4WzV5c+XU5wV3eMT5c7B0GIRDnUE9ngRnF/0Z3VrPPeAn3IRgQzaxSsNKjuBCaOACmEJaiUEtZZThlCYxiRtxzeMhHRuq4zqs+VEyxdMcQ9563jMPbSN3gqrwrQ8hCut9xGzpRkH5oJA3dXRx/WSxnNEsDALHm4+/3MjbF/ghP+HQlNcvfojvNEFE4D6RqWWLB0C8ytHD1dmwuewKCRRp/wh+GZttxn79F1yKec1dDCjQiKSeVFOrKYR/fZzoXQp9DUQdFRWCAMJiJlHzZaOSEe2D1YQLtvgpIyImolydYBpaBNHnnhLs3y4OSiQWjhZHWvxwNBRLZtuz5dt20REeKgCGU8XK4fP3/6wx/+8Pz68pvf/ObNN++eP/30xx/+FBHv3n5LWoT1zeVJy1pro8DT9YG9/fmvP/z3f/iHv/7ph2/fvru+e/Pjh58+vn9PFNf1KgTyYMfz+89HPbxZKVJKSbJSRKxbkXWLsKQPiAgimOhhu4iItyKSYlnl4fJ4uVy+fffN7Xb87//pf/8//o//U1i/f/eLwzpQApQGoZEZrzAW5VYrM0opU8SHiZZFJacOwvBCKYmK8NqWIozwVr2JlguzpHBX29vxui9SeF2SnFhWBXA0J5JlUw04C6tIUSalnDixEIpbAErMYGXdSATMBA4YRcSYMAYo3BBhYeJBHo5GHoWgy+q1raKvyClJiAOSgneqpGVbM8mstR7HjVlJCyMEUZSvl/XzM3lrOa379PH508fnrBlrrYoetxF5QBBO0NkUzZ25TU4gT8dcWHif/oXnxJS6r6G5Ix0x+s+nFGgAAcsNlVz9UXrx0OU5lTN3gu651phVAIAOsj79Ft1L39NxmrlEMP6113y3c3zLJQPqVMbcaDm/lJOve5xGygMG2+OwmYF8uJ+PYJLgWiII77Xm2yeqC3njBoU4R2gYyCkW1ArV9GH16jaGyeegdBrATrrFCcaS2Xu3VWOnL4fqPUU63YR8iw7yAiIiW9hhzoPHNB9xvs18N5zrUAgR6Sm16DlBfkoMXN9cWDzQBhFGMVyzE9QzQHcyENHze+ZSSjfLfOpf3pecjPWFxb2LkBZJqTqMrsveeZqatMzUB8vC7Hw359eexclco/0HkIMysftNIRmpUuKhvR3CKMvCzF6d09SHOpaSiZiJw6e+VCqnTMDqwH19cWH5mDkPDiT+PUeaWeQHdTW6zMa8Tzwy87fwBJ5O5RJEjjTTDNPDAiB059hxcKY+aAiDkN+uJ1h5T5gZxB5Ra63mzaEKFTZ39yiswgxPF2mLoOrmAS46UBh9Y7NwmmOZV5/sWRL3lo06GoQToOPoY8yrp7zJuq09eToRt4JEhM1hkZpe0vGbTETCIl1+Hcg5SzQT0UnW7UDcQTMH8j5EGhCmirmSMLPVZmaafrmamVXAEr5kw12GiVhLOY6DiKWoxW1Cc4nZzSynFIzk3WbuljuCTgZxeZdi+lpnXjoY1jKkRMxrDLvw6JjtsY+SwiAMG10oymLTM0Hx4WuN0QeJmHsk11rmlZQqfcfRPBuhkRZWydsabF5DeCTeI3tuPVykrFH3uGsWzrpEBJEwd0H8pPCpcH7QKY0jZq7VwMi2HImwCg0Fo4hozOQBYlXNhWr2zF3mfJb3AFAKl1LCeoATkQiKMCZmpAVL6vUYRCPCvK7resLmEQcs7UapR9gBg3cA0Wl+fQZ7j5Mx2iuSYonWJU+7kWrmoymmVFNqu8MBBiHcanUikSKUM/JkXVs6uR21eicfdZBzngmp7pSbxw0eFuaWPPTRUMsb1BeMeWs1IkopCftMrAEHI+ap0KN3RDh5j8cnJRsnJJiSOjEL5ME8zdr7agErM1ukd1E2B8XduePFPWAqC8/GX6sUnSrPw2Npnlgz1NwPqhEfsk9ciKp17k0QhaEeB69rJF6fKAgW7sfRWutGwDSloPuhmKQR9+yD0whuvK6l1q5NSswejcEi0qwmQMkJLWABZiEKq5X8rrrMRWGo+9E81mVhSoyjU3rFUqf9U6d5g5mz1bKouHuWaojwNh6Od+Fu6si/EGZdFh4JdTZYcbed9JNGRt7VftqamTsy1TQz84ZgBDqs9dR3YGbyNtt5HTabRR6D43TMjZ8H0JpZIOtcS/nldGvm8UDTYZ6YRZAs9ST7SJ6nICJH4s8FTKnbGZ1PSwCdIdBctDgftSKRRRnNGaQdG5Z3RkWShp89fNW0HU4oeALkYBYjO+w4DibOvhsziJSFAcfgKIqSmUWSnlLDMDjjjxb1mIkfM3MyhuYdy5J1JtRu40uOZT90Rr5IJfMMdTcdTpZEFJwe5M7MQl8n1jHU1TFbD12INY8d9JBKib2AiJBKyhckTK1P8sMsXIsmI5LcmYWJ4NbctTM4OIsPEYEl6qqZBCsVXYosrFpKWZftet2u12ueetfrtWwreTCxt0ayEOv7nz7+8MMPT2/f/PrXf0NEn55fb0f77t037969e35+BdHlciHIoouqPn/89M+//e3x/PHh8Q3cjnr753/+58MaBT08PC2kwrS/vB6vN2ZVLqRaVDjYq5EQFbpcLlrWensVEeFlHtbZrSNxhpuhlHK9bsuy/vjhx3/+/b/81//2Xz5+fP/Lv/kNCMfr7enpydsN4YGkVPY5pFlYq4uwLMLE2U9IiZyHbcsobWZe2+zsdMxUkDusBUnqkDERdX1J8+N2MwtoYeaysK6LlpLEsSAS4kUYYG8WYx4gomVTFJF1o7Q5DGdWTyShR7gxMbs5SdSjeWN4kIDB5ABKWbftujXbg8RMmZXCmSGyLtvlcsmS5na7vb6+Mi9FtJAExbIsDw8P7463++urCj1//HQcx5s3b/72b//2D7/7/fsffryWVaQwwW2wbwLhkyfDeQFdv4bvkNoe2C08gqWkIjjPl7s7iGmKb3LiI8jJCcEdQ8ccfaSRJ9087uexk+f+nQY8z6ZxGQF8UQLkXjvv3/vRg3/9NX/4/D6cgPyvOsJmM+v++a+MA04BWGZoxKJzAMAAstILnPg2J/mkJA2dNRqaNwDSdTrJ3TEa4rP+/KK1fX46ealffFCnoiBbEieGTiAsj6L8BfJe+d1jY9JtMvUOFXbzPsiPnK7i9CzmOCqbs50m9sWdyl8dtsH3PCAilFmYMxtwdwZFT0MHrQX3wnc8dQDwaNRVtMLdWfqq7RlMF59mUJD0yiov46s1V0qhMZrLMu5+zad+SZwg6TwITnP+1pVamZgSNx0sWWhJL0tg3jxxm1mv93qv38VIxMEdX3EqtjlSt2WQoE73IZs0qWZ8uuyWHKs8UJlAgUzBEQg4IvcSIhzegsTGOggz9yZFRMiMlpMIEABwBwMkWqCkeVWHGziARQuJWgt3c4O5AQxVO8yscbaXgqo1dyRrF57+tgoiNwviNOpxd1APNKq5TNLfivuaYx4PQrrCJwHBKY3tjkAIrwAypc07JklO5nIch1tl5lwAABLrnxvWECxcEvcViUMbU7vR2aYxx3BHuIfldDc3Zx9n7ftuVItoJGY11yulZw4AtOY+PL65W18AQwF4Dgbnjhtx56517CcV3Pnr52A3L3suYD81/nOr56eMBcZATuIj0iQsq95hd0TpE0YUkRyt7HeOwN2bKVN/b+6h0SIhbtbngYOclp0WrtVIwKzp6Jz/JCNXmy8EE9+/6Xm3RkQiKs2Nqu+16lJ06Q3dOYh298IikT5ejTU0j3UiGnHC78pVPO9SBLm3y3U9twDdvUX6hcLMEk3AkwlDHuFlkVxpFlMOus+c7+x0s2YmRBSobc/6GczNa0QEY1G1akdrLfur7larWZWlzAM7698Rl/ZlWYio7kd2N0spjNiPwyM8AEr9rHuT9RSTUtEK0TfX/UHmTjxHyDhNPn++9uZfdln92ZVhJpCgayDlOyfFBKMjm6He3Vm7ELSdtDdy/Z+vfHyWffm//fLuX3PU2/Nz+zYhAGy1kbCAqhu6qNXIdrKPFcEJoU3U+ggO80PpX+1XjmLSWj2Ow5sxsySgFYTkCLizkLu31sw9EQt7NdVuVQDhkop+oNvzi4oIcbouzVQDo6EZnsZFFECtVQbfTGUJ6Rp7E2mSSzrVtEREiI6jzpPungKlsBvPGvu8B1OOPpI8nAgDERJN4IbPlZ+3IqOcBAVnL88TOCbK5JZtizi9cudmLybnCQCEAJYuUoDujdwjT88yuyJJmi2zdi2G5DRCechNONEXWen5aYKcehbfxeco02J3uCewIIw8Uv42EwO+P/EhF8LMAJsZ9Ta3eZozjUQ3+sUnJ39Uv0GU3FcAd/GRe/uGho7J6bK/SHbnauz/eorJ+Yd+KIwNMu9hT6tyRQ1rVBpbov8wQTB40eNrchc7HBlLdojBnENpBHn3yWJGANFM1+Vu95KvRJFnnzjtAUBKHEKdlg8wupWDLuvlen169+7b77//9vvvtodte9gujxcR2Y9ny9BK9Je//OW3v/9dKeXf/Jt/u12vf/jDH/7lX/745s27f//v/2cROY4/r+v69vGhBWD4l3/+w5//9MPt5VmA8DiaHdVECremqtftwhbH7WbVSlmVRZZLESKifd+Poz4+rm8e3xbR2lpqCixFc5sn3ADewVr1sFna/eFPf/nHf/qn4zi+/eW3gN9uVURq3SkaJfqfA04R3tpO0K0oARQoS9nWoqqqkqxDIYag1tqsFxIE2CDvRESt1Q1UhMry8PC0FC2iRcSbAXtRKVxUyyKL6kITgpF2VJCOAEoYO4suG4qSLiE6ZyYymzLNkPg+YRCj7QljKED6+QFYyna9xmH+6fWVIETd9ouZl0VLKTM1MjON5OlRKWXblstlu16vx/766dOnfd9/85vffPvu2z//4Y/HcaysqktqNDL35l11A8B6T5toAILOR1hGG2bGlBc5LfV5IsRorRJ3Z3gmAeAIEfEha4cvPwtfHpcz4Hx1op1/+KsjJr6sliOiz/NOn/VVNIuhtNLDu3R3DzOLoR759c/bGe04xEREmO5lyzxHcqmNP4dIAToCTrrBe59JMHNEsnMtW8buzrq4e0sxS+maW92S/Y5Fvd+o830bf4l5kTEUfzHWYdpqdlDM6aTuwKU0fRyoNFU92g6M1h4mxeOOh89OQWaJPPEADIk+r7i/eMzpuiZbTno8MhBk2j2x6RHpVgCwU+pJZ2KEUzmKHHATpe36vWAmhBNzIg0p+WDURXyiixJWkYWIE/knogG01qSs1h/iWfDZE0mXg5bR8yaA2lHTNBOsEQik7E14n7X33EtE3KpZtOb3lNfNx2l03iGZ/MlpIebTyweWYkR5ws6OTybTCKqtsUC5MEtOdSic0CLczQPOAiGBSH+uFIwQkDPnwEhVmYelcIx+iVCyLsK9MGXOMTxCwxkiyRRycycIs4YTB9wSAiIUbIjmkTWMs4SwELFKOiHSxJw0M1RVFS0iBcFpy6Za+p4cVhxEdBxtYucz2SEGZzmPRDuP0zpYSEVEliImqkrTKkaFwsFknid/J50yM1s/xXNBEjiEiLnw6u4w89aQ6sREzGitCanoImzmTl2wl82sNQe872pA0kRVJXX20WeqzKxEUmtlJtXhmewe98Far3koOmoeQB0s/3yfCLD33mQOrkW6VOOMm6PB1j/aPcIbF43o7kVdpxdEhF4AMzCTyvEInCh1GjJJAvFU45MxLgZgiGg1J+QpxJK3xSKIrLlnJjkL9B4oLZjTWoM9ldoDBB7qlMlOSXxybzTMmX/MoajZ9XqNIXfMxKkx6u6XdZ27L7wRUWpd1lpLKZJmme1+ohzHQQSY8yKSPS+OcBdSq60mjZx7T6os8vr8CqxahuZNxETHRERHNEQ3r5Ik5XkLpyAyb51Q5LFbbe2w6sJQ0ogI8mDKjGrKAQKcbNy638KauVvOG0Wc2B0s8M5EMgSSIEhEbTQiiUgTkZ1nQ0TCXe+nsnf3iFJKF3SwJiI4eY8ldbxr41M/xT3xzsQMSiupfgLlKTXMe/LsTOk4UM9PeEyV0oScOHGVEBGWpN9ApBexEUGMxIDal0Z0+Y1mrpO9JRHuUwpvYHBeZyCaBSg37NwyGF7flonfqcGU37Pfxh527uZhzS2auZl7y0k4E/eNHd7cQKA8ntGZtkn/zu+bi7Q1T4h+yrwzgjllVzwF9KU3NvIg7xKmzNyauzvDRYS5ADBYyhe5N3cKD3dzb94szaqZqYu75vcKDyQomOatGMKZ080rIUUKNOYEpas7MHBVTBTeIjzMAkEkyEygnz3cdZ4o+WPJmHNkBqai+dQoyqJEFM1aq+fZZC5AM2OSWcjBA+QiUrKo62NGDu4eP47IvgvkPto2q+5eVIlEczhu7mEMVuJ+cUkYcSIPBtj5yHjWu3udnMbDBiybSwmRUBZW6prb3QmTACJHePbSZ/OJQJLVvNuRClMA+vk7yAaZYiHgveUddirp881itI26+Gg2u/KuUTCzA4bIkpZOGb+Z9f4uM0GjN2XDw4JIIMlCQc5/EClE1ktjEMjTQF2EE03AgsIimbopYM4qKeFDA84TwdSiG5GYRzApE1hI121Lojyj/8q6bA8PD9vD9ovvv/3mu+8uj5dt21o7bsfhrX3z9i0z//nHH5+fX/7mb37zzbvvPn16/vT8sl0e/83f/bvvv//lhw8ftmV9enza1rU2//H9T9bq999/z/jFX/70xx/ev99bXC4Pl4fr+/c/UuB6ve6fXz5//txux7YsEaHMiy5E5C2o4OFyffPmjUXst5f9diulXNYtCeGrlnZUR8Q4d+rhHz58eLm9/uXHD6/7bblsInJ7vS3LsizLx0/vHy4L4MJdWDsiqVuk0mmfylJYGGRHtTAKv67buq4k6twAZIQPLej9COdwCBlFa+04DoSVIiJCBap6Lev28Ci6MimRTK31zIfhYfVozZMTT1GMSURN1iiFc37YGz1O3qK2JGOwsAc3AnswgsjJLV01mKXosizrsix7hDRr0Vn90UyIisjT09PlcukLkpsDzFjLsixLWaTW+vr6SkRv3rzZlq1PKcDNYYgOZwCfW7oZJ3sQoCTSZ3c+MnPpgBX3ASTtBVcYsgF6P/WYeyoIF1HPfnzvIg2lYNxtvfDldA0/e81sgU68yPGT+RA7AHb++vknf/6G823vBxa6WkESR3qUZrg3Zqa4l4jUu2OwcG85NqBOX4VHp3x+0YolCtViZu42v/I8kjARRsQ52nH3IjIzJUkI7ajJMUHmpy8rP5vYcwTMY7Dp5sXk86cEqnRGbt5czDtW7YiInv/kFyEQE3onJ8Yl5G95lpMg9s4LhM5bnKJTTKToI7z8F0TkkN07EJSkY1EJAHmnFlE/vuO8NKIP03p3YVQ91G03LCgD6h3mQ5S8XPREnpgZ3FJZ1Yy5H0oYhCJKQNNo8MyCIbsmc8aiqnmwZeeAxjGb2DKLPhDPFTabBO7mjtMX6gpvE5XqA1KSP8NEbnewxnkRz2CEAaiIgIC9HQwNssSNj8FWIvQsYOLCykJk0Y9tcqcUJB4gZxoTmLxjECYi84D7WopgqkyDiNJ4PenODFYm4oXMjnCrrlpSvDersiARLaKlRYAlhB0UlCNQVdVqhi9a5gi/L/ceNcZNcAdBIMTMMUbwSTwiViCEGMzh0QJuRoGVhZmXsjBza622VlS1FLfaM3XOVQUmZl2Ieh2YUaxDegYEIC8mweiUgrjiKRLA3DXM4U6Bfd9TlRro/hg+TCpU++Y/P2LqQ6rezxt7mM40yvEzuXXbfauf7lVR3dMHhaiz+d0jYvpaz3ZgNuEiwlPI153Cx0AjiIaTO/dWVGSh68i3zX6wdKPju8Rxrt/R7TOWO33F3Wu1au2wtpQtCNVaTV1QFcFULxwD1fFnGrKiAzuPvO5mYzYiUgASzvahmalqzrswCmPvwvJ54PVmXpYlNN1ov+SUsiBRx/CmsdEoftw95X/mzex/NrjjOI6WOMQ088gPGWqKtda+TpCz5yky6Um0R0QwtXaYWUZWo5QS7NvfzNJT9y7ODCzL8vr6arWWUkop7ai349URsm64j0nNvcU4pO8424S/Wljz6JylfF5dOyQGZoEiWjso+tz7qz43xrwoyxsaI6b7/RwbYW72eXJvZYEwgrOJPtf2DDtjAbCykHBrxh1a0Uf47p46UETLPHEx2jfdF5S7Bi93SV0gzzSm4HQmb4x7AZyLZCmSB0Fm6n5CVWB2mqmfNvNfI6JFKyJASaUwxj343/vrBAgruvYGS0kYv4iYtdYaca+XWms01Dgigjzy5rm7Z396uBYvy5LFkpvH4L/1c818KCSlj1rJJm+ebhmXeCRG47bPmf8dGGUeaaCaB2KEeBa56A/jHqyAGJr5NOjlo5NOmYCOGyLnGDX70bNT42atNVXlklJtAiA/lDn7gGFmCEtKaq65MG+txYjhPmgdXx2y96wLY1lRkEOZVbVak84Qy0egSQnJk66HPuvfupSSCpfdUBCMDPsUx3FEcOC0BsZIiYgkyImimyox0fAjjezL55VHnng9tzsBfzINu58rgczg/CQ/i3G+9JrT739J43V/CpPSEhGIBi/SJUWIaJj89QkMukN4Dt061zf9vYiiiC6SuRMr1LwpMbP08YNHAjGcnDwH6l9UCz2ngkW2tjN7UCWi69PDm7dP4Hh+/nQcBzO261WK7rf95eXl4enx2+++f769/vWnH7f1+nd/+2/fvHlTjephb968eXx8dIdKrOv67/7dv0PQ7//pn15e9+vjmzdv3oTX1+cPv/r+lypye/78vB8MWkuB+7YsFBBiVdbrg2O7rBsH6jh9Hi7bw8MDEXk7ZvKQMWRaJxzHERHbdmnViehyuYiIKH379k3A4cYUOlINEVlUySglr4qWNG0CQijafhwdge8pcm55JSzHcdRqpRRZiVlqrc/RKOyyLRweEZcr0bapyGVZuVxbD/4ArLVWb3utNQxHHmzM6/UqawQYsroqlY2Xgty/TOwN7ihGZECgFiLGa1itgWCH6pIqU3trylxKedgeqtNrbeFcI6y119fX19fn43j78PBwuT5GUA3b990JQWChoqwsXtuyLG8fn9x93/dl2cqy4ZQXxZjvJWx2usDMTZ+l0NwUMQaP89yJE8Iin4LBwrkfZwBScGjgUGYqmwWLz1zu693HX1zkV9d8mnDOX8y9M4+2/k9x/9fzR5z38jytmNncgFEcfY2lijj9cP5N+kufU51cY3GarAzFByaKpE/T5EWMasW/hGURUUa8nAznuZlnRI678K+95vc631IfytL05auXgz+TjJ5+kzkoAqBjQpkaH3NtZKmf/zMT3TxF8y/NTJVLHnj57pzddQp0+H03sYQHEcODmGQcXZPQS10xpB9avdwag4iSVcE4MzD7IhExBr+EQBg8WBCMGCMJFyCgDogkZ4mZidg8R5eI7iQJRLj3jFmIzRKiyZ6cAHNwEIE1k93GrMOfi5hyiJGA3khRBOuK/wmooGw3E3XP0n52zV7LvR4mHY3VCCO3TOCE2dzHHctlShGdlJud2QCchTgI1iU7Tv0Eztl5bsgwZXEK8kH7jCSb5OQ9WbgIC9KEvjERiB3o/bTIg3ZIXtwXaASTRFAQBUNYwFKB3tvuU3tmFaFCECKkBhmrEiSi+4/lbbJ+BEKEzcPdqFNcNQaaHSQkTKzKVERZxZt5NXeXkUsFC0T6BIwIwnABkzAFU3js1RbRkg1pKAARBLlmit+1PwASSCbq1NNEk6N16MVSFnjUWhFRlo1YRaRrdEWH7HsnPJCZ91kWYG4kafHKqdqcFSko4ShfBNDUGi2ljCHMz6PkPbSZWWpKBSA61u5weUGanRCymcOn32JNGYnsq6Sc10xM2BHN7cQV7MlfxhoRBBM5RcTeaqqjEcERZmEWhEDJBd8Pg6wOmhnzEgMCMgz7EBHNA9yP5db7hZIqX574nFRabi0BwK21dGZyT9tsqtaI6HZ7ydw6R2pEFB75W2bW0szp1HQo2cwZPNjEsjKR18YpZGO9SepmdbdSSmtHs0Ydp9IzVqIQoTBqZhR2Zr0WZgKqm1kLQheY7xTcHu6bWwyDeEcoSIhT1y0fTIZnISgTMxk8vJkFq4cZhQFgOMM9QBFCQQzvaPaOOMl0ISINVqNDm5JjEwFvkUavxCzEARaOwcrGWCf5vRgJ0CAhkn5sC6k4UneAKJArgnMfEpk7YdDa4M1gZtkS7bEF0nmk3iWAOXuhnuMzi6EIMs/ajCxEPA7afmQC6OqXXYs+EgLTWguz0cXvSAEt3MLtBK+aecA8X31Q5E8IjntjMbpOb3KNUueM85Dr18kUgIWrKrKDy6rUv4g3a8dhqe8qwsytyzs7M3vKiRPlaoxIZ+wsb9Tdj3aYWQoLeDPipMR1ZgrDW2sMMAiQ2Q5OwlE2mFNRi4ZbIRHcjFmYlcAzQwKQQkUEZ2KGzeUxfrH3n3t/NgUWRgTLqjVn13kvBSKg8LCj8gmgGxG1tq7gxRIRTMRKbmywAFJ/KClvPWHJR4MY74CvXl06IeXlLPu0wHB5zJYvB5t12BCQHgHFfTaYunXZXAPkUbJ+CYeDiDS1ArpjYgbQHHIQWMIRFs0csDwjmTnCkCkWCREJU8teTMDw9dfIJJxHy5AAUCp13pPdPCAkQdfhYOrZVjClqeudY4wzzZCZS1F3jzFAG2n6sGKfXVpAMjPxiDAERAlwWCCZ7dk6EYkWAKUcQAwWDKfEBmtSVkuR8CDloS4nRRaAj+NgoVJElV/3l88vz+7+zTdvHx4eXp+ff/jhh6Pat9/8Yl3Xz68vRdent2/effudNzuOY9u2p8fr4+X68nLb9/3f/u3fff78+Xe/+/1PP/10uVwIa73t22X7/ps3TPb5w8e//PHj508fLqVcrstx2/nxjVllZOIqTl6Y6n5zQRF+uGyXdVXmy1pc+DgOzUXbjIbgsNnBoETCLKTrujJk33dlXB8fjv0GN6HouL4OIijrsixatsuiquldK8qLinnt/R0zhAnDidy9Nk+BLvOK4KUxwYvEWpYrc+odaplzHc7SNN/Hj/r6+np7+dyOysHV7bZXXtbycCUVVpFtsbLRuqKsSKgzEFgQJqPBi7JLCqmC4S2z/EJqxZbmIFnNSzm6FFyQAN7s9vr66dOnx8fP+75fro+lFGv12FsLD4rsHbi32vZlWZa3Zd/3v/71r9VMlhJGfTyQp4b7LLHQEWrsnno99418LjvvLdo0q+mFE0KCk8HRZQgAwFKCE0Yc5IjwPF5TN4SH0Eaf0XXC7L9e4UV8IRt5H7qMaxsKF3eVu4Qr/6uvWSvONxmVmkM4ulJwrxul8w0DCazrRUmvt0fh15l9HsE92WNgVuNEhHAnOJOqKNId1hvQ4zBG1887XYVsoE7nBWf1N9rFPL/77FJwpPEh3D0buuP4YO4/5bNJN8Wf50fkRNdanYU6dXee7NIK8yx0AyB0KHE+UHZLQpAEkYdrYUm56BQI5ZwQdy3wu5wVd2lHCmsxZdDOl3W60Dg10XUpIoKhw5qd+4hI0H06IAEjHYmERgaHJoKHIkf+vq7rcRxAqGoQt2M3M9I+DeBB+sqjWkQSRJpZciZPmS6bNbPEb1hXKO2LsjNVMtkdZMIvBnQjebqPmu/rHn2qlu923of58qFec8Jph1nVIszMAXODB9Q0KMiVKCekNFKQPAOF2YiEdFHJGWdmMQ7qikrZ3MnuOctxHFnOjMLArXdc1LOaBhOBWUshVa2vL6xCXRJMnVHd2uG6LqBUE3JmXkSo9+P7cEk4ddhdWFWVSaub1Yoxl+bRDw5OZCX1phVzljcCoYWXZXEB6Ig0Vwxz96yFBgfYe1ueiFWJKDumAFS31Prg/hQsRtuJO443SvDMyCNiYa77cV8hmrrMKcoqrDqBGfnp1Y1jcFNLmXO8uetmjDgHvi/DZKpQDKn60ygjQY2nqrhzmCdBPad282qdevVAnX6A+b24z4cdgUiXnCBHAy+CKQ+A+SuTk5zWIgpkR024ODsRgYlJWYMQUtRShDSYVZZ0QHHzahgzn2xU3SP46f7Mk4yCLczMsjHovYmJlEQ+jmNIO/STYEyrBgTDSUQSlDH97nLZj89KTFKPzDF6jSKSBXBCsKRz1zkCqtzaYOyLRHitLcJKKV0mhnx0g8hbjWZRCEA0c2v57JEtCR9gxfyySNGvamalz1IyroKB2+2mqpKA9sEBBjWzmr1XvjMsaAYQGnBS6pNqVKvzvKQAhmIKrDNzStH0Vo1Tn3iuhFSZi7TxtJh7l7s/NhmCtTP5+0ojKqIZOZ2y48BEBPeAud8hOQhQpQQFLGXDCZrB45XRLi81/14XyR/LJwIg+76soqpaOMyCQkQ0YGRz5hgR+75Tb1t5rVVEWvtCf+jrQteTGWtzz/bvQjGlsCZrK0Yf2sKFJNKcg8hbM3SB5Yiwo7r75XLZbzdvNddwBhBkGRlB6RMDMjNrbX5HIUqxYO/AM4EYc7//eU86Fdi+4FfTxET0lumwpB73fPcqIgmN9FRTLwXAba9jLfHs3BHRuq7zUOvTgDSKK3cZkTmcn0ced8X+ng+oaqIqzOw4bu5tWRaRpP1bjxicFvf9beJE3LLwiUro/jpfzkUFtCyrWbVeuVuMzkXvYdOckHSmtMRdOfKccbo7zLsoF9Baq9WA1Hzu3X/3iE4GgighYIxoBnfrneuMV323JjDAHTzoUf0L+tAKQ2eF5bbyRJyl/PLpy/anbG52mhZHjp37M1pKyQI+35eImO6svFzJQ+gOHEhoIlGqLGV2R8ziVr1Z2t6Ge22NmRciVpHUj2BOUnG+A8YJyMxpOalcmLlaU1FDeBdC49ba58+ffyVSWFj6iEZV06r906dPf/7znwny+PgI4e16eXx6W9ZFpVjgujypxFYWYQrz28urVf/8/PrhwwcAf/u3f4uIH//8w5uny3WJ3/6Pf/jt//XfP318vylfl0IRjHi8LmE6+lkRSFnyoIi1iPLGjNYOIWal2+22rquZvcZLaw0ex3GYmQcJcaaZpaze7GG7MPNxe9nWVSiEUKQ/rIhgdPYGeQhCl0WYSpGySNjawQ5u7mtr7fPnl9vtNvxdYWYvt9cbhRLWhY9WgYsHNU+BgJbexUAJSC6QWm0Ok7eyCYGogUOXIkuBCi8lVEgUi4Ike7eIIBSAAEcYLK0UmyPIiC35eSZc1tVZ5WY1caXpocTM7siD9eXl5cOHD9eHJ9WLatBeU4ix3l7NeiRcVr0+PHz48LFWA5hJHS0sV2ZKq2RDjTOK0cCk0FjZs3l3zrtioEhnfCAiIVirp55d19Od78b8BfvXu5/l16PdrzK6cy3w1Y8RfV2cxxjTfnX4fp0lfvmXGZFY+vfpKVDc5dn4NK2dV0hw94ah45VHho98jzoJ6x49MGWi+p08J7F5rDMPwZSY/okjfubONbPjOOhUus+PCIDMoycI96OKT+P0+fhmoP5X/ymvM70kMvc73ygA2RycN7BPpz3lzTB5LhrWbQ88zKwikDhmZmRHyN2Zhbqfm9XsrZ6sqxKDmBOnsJ6DDkRWrqOI3oqJiCAn6xCg3NgecAiLECG0LI6oEWHhBk/WqZQweItmh1uQSmrWEUuM73xeZD50C6Y9dCKa1nWtLQ9vQ7CyipTsmWVX3L2ZtX33zOndPSs6GYlXfyqAu+XMG0DvQOTOMSeWehyttWVVANaaiIC6bbQqW62M0KJmpiK17qxaFm1HTWh3uEEoRRECVvebO1SXUsq6roTSUikHgIcIIRxhxMRgH6bYyJ59dog8jrqryMPDA4M+f/6MlP8hvO5HbYfqosvGCYMJJhJSBbObsWhJtg/Bau4icbC7iQhDwblc2M3cw82aJ5A5AGYRIokgZlmva38inGKGhdySq8yAe3u53VoWlmX0rhqpkIgQKzhYBRAwM8v0PCThRdL6sagWr+kNGsyiq/SKUZTc080GibhgTTIeiZeViYhYl2VhKc+fP7OWan40E5HU5lpZWmu1Hk7pDMUtUbwREH653R4eHiLsdrvNJoqWEi3ZyOGWhOsgkqWkshccjJQTyMmPoLYmSgFUO1KOniNqbcuymHkLd1CweEJQkBavHgHi5HOEgImoWR+utnBFKaU0t+O2l7Vke5W1eLOjdds3otRYNmYOp/1o7qFlNYu9tgIqqhFkLdLat1PnKHHRLXU7arVl0XByYvLAXolIdVEtCW+up9l1Rqv9OIKoMKtqplALEeX+ZOboOCUbmlhdnpTIrLbqqrpq+rlTB8YS1Vqz2rlctlZbOESo7mkYwwyHB8HdKsKoMzsEbsfRXp4/rWvZltXM2rGj82Oxv96UAXT+OsKtWa11YbFqNHy/OcJr7LXepXI4s0MxDzOz2tx9x95aE5AyU8IEOvk872edhVmmaym+EPljCAoU0TTIEREmcUcj84ii6R9OmMpeCZpIFFBq+AUGIjsYkkM9IkqZWOQoH8ZFmTjCrR3BHO614vp0PVoN8yzYwjwkBTmImTnjVQURkfBluXhtgsiSMslgrbmouHscVYqqqkgSz8LJ57BXRNzg1pfl7Xa7Xq+9QeD5DATBx3Hk1thtV1lEpFZjMxZprXXmbXbES4kI1V6P+YRsRdRai+p59Dfyj2xCd5B/nu6BYZPmXq3NnENUr9drO45lWfdW933v1bz7siwpZnN5uAL49OlTRCTofVtL9gjMokVLmPSsxLqoGGjRXnUzcyaRqsqB/eV1Qqty5OjuCT9hJlb1QX7J7MS7Qkn2mFpqcnIOCwLW7ZH7kUpdlztXcdxur616KWW9bERkFs3MTl5KWWrCXIkzrgcnPisBX9Zq6z1ZTTHItLKj47BOJo9zBtb/0FqziFJKYW3RgqCqaQu3LZeZGwmotVa0u2BbayK0rEpOrfp+7CIyjRuJiNE1hzIXc7Po6HEij7TFCvNgZ2bN45g60ss6Mxwp5OHuzZHzFk3Od3NwEIcELLctjzYZOgQdwND0uRtdEhGGvA2ywZKdDqJIKXr3FKEIZnOjKYEYSSoPHg3T/DMFOonDI5r1xnFuVLOIEJABksINjn3fXXRd17zzhNi2TZMf5FjLxipEoaVQKoRF9G9hTVkzPk5MGY92mBAfx0EqrAXgo5rv+9Pj9vBwqa37t7//9H5dt7dv375///7jh8/W4rvv3j48PHBZ0q1kXVcC1nWVwOO6EeLHn/78/Onl8+fP79//i4h8/913//bv/k6Y//CHP/z617/+1S/e/of/5f/9h9/9Y709f/vmqYCVGNZu0ci5UYWqyGpme6uJATRvrdVweGBZlsuy1toO1SLqzRYth0duXjvqa20R2MqSZyIztaMK+2W9wtuyFgqzakn9zTmUma1pjRfRaiWREPKGrSzBsV42B/Z9v91utrbWFoAdpiJMfByH1VaURYsjblZLrAWoQ0lx32+PD+9YV+IOatj3V1Xdts2bKcq76wOE91al1ctSkLz6vv/JU0SGhJBMKVCqz4tKaqwelC1IByjcDxxHY8jT09sfP39W1dZCWa6Pj44wx77vf/rTn8qyffe9bJfLw8MD1/L6+prTqf14/eUvf/n09PT800tEDIN0ve1V80zPMjiCBW6pczmsJdwtrLVgBFP089d8FGoswnOTzqn4qLgmOivx03cq0CjqslHoTmLDYWgSjqJDTeVcCdOk8qLPQtxt6geN3xpneq8tE0WMc8k6d82pAqRspGZdI7jXjfOFKYxnXSwKAHlHrZhXgOfEpWPT+vVjfNn8M0cEiyBwHEfibccvZmsg1acScxfZr3QPILib+TUzo4DVLsLKzDiBomt7cfeR2sT9W1OPVzzwzJmxuPv0fB7HbgCR6gOpmj6xXe5+HDXFRFtrgJdSAPZoBEk6bzZWMtEVEY0cQAGCIGJ0PcQOYPbeaRiTHJiq5rX2eH+6+zRmLOdKnU94dxrHqYJzxQUQ7unDTcPKJdIVCJHygxHpCOSZELdwNky+fvpvzo+YH01fvmYgnvZWvb6KhDyFcIy2pZjZ6+urqoqU3FpZP+dbZQ6BU/PGT4uYTxvjPumiPmEzqxHsoyxXleO4zRuYPxmRLt6eUnZMEk59QN5sx05AtKbE+by8mUdzbySsspSiIImI6n64bWVBeDCJFOQ27qq56Z/DogoKsGQMWrcNgAt5xHEc1Q0sUGxcQEKlz9hzUEnW1u0aEe5hYQyQCMC9JM64zFSYneAEHlwyyypXlUU7FCOT9XHr5voRkpEPZX+878k5sWTmPK2ZmUDNBkuOsrEtqppRW8ZDsSEcD6bWvJQim1Cg1hr7TkTrtmEELB6t8f6I+0De4svXjFlfh0WkAmQ7A577iIow+3Y9RPZJ7F04Onsuc+ry1ToHwp1Gx6srj2Z0qbVC7sHXUuK/aM4UaGBO+gJ2x6CzJuRwHhgA0kWG05+DJ38/CGlPhWzqYbbfcoDITDi/f3hWEoPv4e5wMjPWoURgbt3lBfvtRkTxM2vr877jwWnp40d34fsPEBEHmtVwMuvjMp4s5MF/HjfBiYQlnb6zSBieQyDisHoMj6LeQcuwBI/aGktHWLTWGKSDSupDuZcokQ9YlqWNEV9txsxL6XqVrTVDB+4ex5HbQcpC4x7en0jEwKZi4EKnbI+P87VjZ4jmiY6u2zxuMhMpd+s8zArWyZnNLDWfvd9pTs78vu9TQT3fZOwmxTzs0Qu/hJ+kVfNcHhEBj7KWbAeYGQ1/HQSENaO0qoZQREDYh23Y7PRjwJu9Q2ncCS65dseAa24Zvsdnd399fQWQWcWElvhg99GYZAKAt9fXV56DtWattdRnmjqZM6Q0MyZokA811Dw1BH2Juhkj8tEju8bDVWF8qSwU59UGBfdss+ctTgSeq+v0rPPV1XE8za66jOqIr50pkCC+7CuJsvBY0u7hToQ7ubrHMsJoqqoy3RXmRUXiNK/Ol4yYk4XxDKT5X+njPiIS5qWjuJmPo2NG0lEPY9QM7l6sWV1HBAlnrjzXQ/9cEUTUvVfXnn3QaFvZtsuyAwTO3W1uzJxEqxm47ukaQAHRYunlk8AURALbkjamyu79XGAlgey3GuREA+TPiGxZuTPzsqSXcphZNxKO7n7RE57xsmoebrjrjEwIGH72mmTvXBJ+gvVkxUsjoacslD1Xy/3jlO5fPwchCabI3+JpH0jEwolLF5HckkkOOU+N+iEMGjgmluF50VoTlbKuJuTuDKzr+ubNm9xunz59MjNlXtf19fX1p59+aq09Pj6+e/fu4eEBohnKVNWsvbm8K0C11w8//fjjjz/ur8enT59IdF3XX/3yV8e+/+UvP/zim3e/+O6b3/33v//rn/50fP68MD2sRcFo5oaSU/nwiGCFLgpqrTWrr6ya6MpruV6WNZtrGCyb86GTIa615kFEoUwcrCxdicij7QeyfUnU3BFcWJZ1JYpmhwctWkRJCQwX7RuZwoRIC+fMeb1suWxaQF3dm8NqRXU7Ws3yLEOZu6fibFHmUmC11T01uDKyWTjgTjzAxQZylQg0eAJ907KBZl0GFoSDEumtXBbsr2DmogVYlsXCW7i2elm3T68vAJZluVwuQajNwXzU+uHzJ102MJVlE6Wy6vVh2z++8iCtHH7UWl/323G0iC4aLyJOBsBy46dmc0/jE6xKgTzxB3Fm2NflA5K7z3xm1JaLjbpIK1L52fy+uWJsqOiTycgAM9O8c2D8ald+tUNjYLXw/zDd7WfTv4YTnIXD+e+Jul0qMJ7P6a3oNIWel+ceosrE1C1Xu1kJ0ReD7nFGgCiIk0uZ73nnDOc9pG4Q1b+4p77a6RMxoEBffakZqGUpIwPD6U1mOjP+d1zbjPNfwbLuJeep3gSwbZ1DrqrJIDwfE9SLizFCBzRanVVHQmSzhVyy69AhhNnVgBnSGdWH+AqdoVb9I3oG379eXnd2Vp0y7QIo4ozyH0q0gHXOJZi524EjYNHQ8s62cICFlYQNcbTqX0KU562fq/arf5pHAvqN8J5gIfWQu5iKh62c3jl1vg9RsvuGk+fIsThVnUgytFKYDOv53n9Ft7yme+FvRGStrWuZS1OZ8tByb2ODYFx/DiuMKNyaaGHhlJMgRzKpEGitBbrcGUGqBbyrv1CgtgS9wcOIWSQbPHCCW2tuul3A5JG0yExZWMrqDtHuZsHM5A7qoLU0mOiFqiTfFKWswc3diXmYpxARaUKzZgHWfYwDiGBSJVHKwyA7EmFg0ryHEcTElElTKbVWs8rMWhZmDrPjqBpCrBDm1IjPVCtHiEwkqWCYlL/oAwGRsq4MNLfjqKqqS7GjpuL8DHW5hMqak6IEtSaNwcNDF3FYIEiYEGF3NV0kIZwpgnwovs4VFdmtSw5iVhQ5cZrVKYFUWs6FQON25ZtHkgZ7DBpS4wRykIATtG7hreY2pIiwLN6YCQgKN2/tyACXKn4RKQuXX4DBZAGv1kFO4OYDzX6SPhURVa4WREhj7RQ4ixSLn727iIBlBzQRFUlDiVEkAAgQg3gYFGWoGrESAeu+1qMQmiuqRwJOpbc+MaO8QwGQz/AHeFL7uQvE5PNyAcFT8JamsQdlbHTzcKb8xCYQJXI3qwdclm0D6GhGFFIKEB5OgXnxSkrU3dciUhC3MrNgISJh5ET3nGD1NNTJo90pPmEECk9dy4iU3YeldmGkWMMUu6Qu5ZyfBeTSzMeS3dDumzfbj3m6qpAIaTLJO/0JTtGapYeniKTuN8AeXfqbRruTmbtyT1AEaa8r7s5wPg5gGadss2rmS6Fsxg2iSp9jqy4R1FpiUHMXJHEdmfkNRbLIfCjMugiYexumyUTUWs2eb2+EI9cA5QQbFmZZB/ZLigiDT21HIgIkLTpEREWKaLXWWkN4ptX78ZonQVroSY5Dx6gZnX7ZES6W9W/vKWfI9YhI5CSROzlRBOWe9EHjCrO0jxYOiUjBU0RQahVIURE6jiO811d3SBgltDUo8a7o7S4iIEs4gAECcc+FBYA3EykqZNYnGyIjxYx7okNEnLTbgAqNdplnJZBDJYxjEZGi0S7MFM7dx4Ec4d7SJEmKJh2tVj9SAQQU5suymBn8XnjnLIDCyTMWpSFH3WnHEOBIt+zcXYmNkkRAZ7edR3CIKNq/rFml3m+PcBfqkunoZyqUOJh86bDwmWV5mFc/LZtRVeRkJg01Mp8DEWjQ1ImZ4Z6+L71Yvjdc74kv9f6bk6eAe6c7poYKeya1SYnqHJkAJOfxIGHJAJhpUe4OJgKIs0YIjMwy3ewYzBBB52Z3kcNT/4XTcX28peP/putPmxxJlmVBTNXMPQBkVXX3We69vE/4/38OhZShkHwz5Lxl3t3O1ltlAgh3M+MHMw9E9XkDaTlSJxMJRHi426qmGoaw8Jx5PgYH0Ju8fbp++vL5drtF2L4/fv341d2/++H7MPvlx1/2+771/umHH/7whz/cbjcDLdF8YN8aYSP8sV4///LrTz/99J/+0//1n//5nz/d3v62P/4v//jHS28///XP//n//b+8//RXez631jnGmBZjMtAQYw4Np0ojLCx8mg0TKFUZonLZ2vXSVeUJwF1Em2hIz4jFzMxijsTXCCIIE6ZidQii9e62E7y0RqlCZG+t92pvLFxASDRx3C5XMuAIuAg21bgE5dZ6d9ANZnZP2b0wCMYYzyf3bXd3j0QjPdWuX7/+Ir1dui5Kc8Hl0loT4LHvQagSLZSp2TUw04CO0Ba6hSr1kkDCmvcjAuHIIK5hCowApWnv6ughAcWnx6f29ZcuuN1uX7586ZfNHNI21f6477/++v72+cv1woC21i6Xy7Ztnz7dbB85+xPCx9gfz6cjQvScQZFwNyn2/AVeSr15EoiFC04ARPITYG3Oqm5HZC3bAk5AUJRFR6IVq4Kc57FcrSRKOI+erxGD9AX5lm/Sztfhr4+qacrTT/Cbf697/J8ntHbSESwrRyB1D0CEpPwESK9cLW2aIMBiJzASkvplVY4RkuEFhFTyoMhFIENEwOooMyISCt5JWtECV/nV3bM9DBdfMoQr0/62Y7Gi1qavRCwCoBCv+K0eMALCxXVWwrIAzhQh9QlcVjVAtnAXkZp5WQn/KTg8rgdYmXbLIh8DtRIsEYL1LGOllpIfmuODlc3wdTW+gFsVgf7PHnYsmijU7o3VjqJSKBKQ3UYgiztZptYAoji7yWzTUIoaQ4rN+AgWj8X9zUph9dPMJ4+2T52xE1+ledattWRj/WA5wzF79uoavbAK63uXMPRKs493Bg7wZ6TYRgpqkVmroI2ZURFKPkeynRNABBeMaBH8uDskdYOgWbcrlv4xPMJC2HSTpnPMjNW60gEuypaaZYwcZteo1l8MOBwB8cxItUu7dG37MNFXmTwTHjadw2IFCDlwiJBkRpWcKERa9Wqwb9ulGqGqJf9AVcAw9TQKCEChqurB1pr22s0RkRWFrMieN3cFCCrMRrSQkalXwmPrWWS5tLYl2S9bJMf5mtk7sGFHocRO25gLnnGUVFYvaDsOHo7CFQJCQBpbwjmS2+lobhwzaWv/EFL9V6xecab8J5TOkdqQIe7jGBA9v3JLxzqhCfmgqPv0ygChyzSbWX5IYmCOWVwHVIXCME8OKlX1YvYqgxnViM4R5eZjkDW3I1UqrN/+5my6e9CLkzxbmesefc1XR8SYL1rClOXGUqetD/G/O/5roeacuhCCOEqqketTf54oKbNI/ammlXFp9lBh7klbjkQOSGUpQbqqxhzukwz3bK9NJ9Vn8pkLXEKrmQMDaL46CeCBSoryMq8ebzVhpCX6IzzJEF6rd2zROP/021c+rzh5ZfdZGY6mikrKlmRc7ZGlCcAR23ZV1WTkq6yAXiDPRd8qhY/SbM4oBYHhljw3lTxbFUO5yuoHlmk5ltoASq08cxVV3XLwXiMiZdvOdd9IXpmmJNsqSnMxShyLkOEmyeSLT2y8LvGGGuxf7JHZe0+mYgBz+rZtc5YOsCx01unA4sARmE0G3J5j3w/5ZFWVwL4P5hY9bUWLPFOQNfkci79KtDgjEBbhssoWAMzr9nMBjy10ePrWmkj1k1eFCOGRzAhIKidmoaSOYU4WiFLQrApyr9nRXEZZrM6/mZHzRVGTpjIisNqeAFAliPKqIjLM3WeERWj2qPOJnMw4U+z6qD2i2Jv6UdV5edjTbn8B4SzPZr9eZZq4+5jPWDRnopSoPm3ARJLkwTNOJZkq8QCaZBApEdGUictR3WZxob0CHngUssyRfdkcyvYwZXsFYVRVndN9zLNOaRYKzczHlLYlWFq9eC6Ousg5jIvFyuNjsr1yy4goZo+UpFxIjYhI1KNAIyx/pTWJ9zIhGbrp6a9IOmKGHykFs0SvnZKOwxA5ZRgOzw/NB9q1qyocZtZ6imyJVeWJ7r7PMff9x7/+bbpJb9L0+Xz2dtm2ral+9913iWbMRkXuwNvWH893H1OV27Z5wkxUe+9vb29zzEvXP/7+d//jv/7X/8f//f/2l3//t+f7Vx87PAZpY8e0rq2L7jZ6a9vWLeL5uD8fD0hs2yVol0tvoq1VpzGLmGNMM/NR8LGcq7JXK8gRApigaPoigoFNc/QqEoiO5KuT3GXTxwSncuvUOfft0rWJojRHFXAVt9n71q/XgGyPx71JmDdl772JRljO+4iIShvP+3Nyu16EYTbGeJIsT5qNKKIpi+7Xnv4Q6D4hoQ39wm7oCQDsWS7hklGNbEUxQAQswhlGlYtcdOv9etnJu4378PZ2vd1uX77/TrQ7xKNNcJ/Dkr0RAB2KT59ugM/n/PXX9957ykf1y/Z8v6e2mZmFed9qVrP37utlVjjEyyEV4eEvrvs0WAX3Pbue1LH75hBl3Cri8TJ0L5ppYp37c5v0zNRYJ+L1mceHfJt0/eb/Hj/8n3aAsRp4+Lve3m+MwOEIDmOChSjkCd5yZGfIc8pXf2VFVtUBthOG8TxBfbb5SWyZ8ViyE/jq0B6W/JjdjdVK4Sml/2ZZ1g2evepxp4epz3WNhSQqm3YsI5mA7SPGwKmf/5tFO99O25rOcIliOBJGZAV3ybR4DaCXjbbQ8wOOiEynhOcv47HNemvH0832TXh19wCASLpxdwjgYciqP6pEY0cxI3NgobZm7vu+Jx2LdMnhGVFwFS2B1e3J9KfqWPCoHlQ2mrgWS0T2fZAM0N371i7bFsHH2HNxmpdvOBauop/ccLmmy5Ecgenao25mCZzDwgvlWgJoGcFkv5UlKEnPIa5jl0ju5wCpDQy6ODHCs0sBn2ZG1dY2uWh2sILiqWCPECISo5/NtabwmOGYaw+JiEgILSay1k1RVWpx82a/P+9+WG1BSbA8S8MY0oKkKCKmFXjKopCvrZGS9YtcQUnBKGlNRERahXRQWJY3TMDWLr33tvWIGG4oc8bneAJQaaotueyabnrtUSzxnjKzFqnm9GJ/PTKxfKnonq2DNIStLexdQLi1fgrsMnKdx/5nIf0wJzKMrkxANScFKstFltw8/+AojvFV9EoRVga8NT3QyMvAvU6sp/xvIFEZa4NIdn7ipZZRyG1YRjBCzVFUTjdfanHIar0QWQ5+qaQiooD9KNceM69fl/ImSwktwt3C5wyD9YhIZ+PuNXqaras0xXmSMxJNBT5tr+n6w5wVKiOzuxVAR4CS3NqQ5iDSKCXypJ5gyUEtC+DT2VJNGUDMCHpOEVcMYMPM2mLE8TlDWw0O5bebBVjtfPMMa1nfNM3ntEk4wTmeSfNLcOxTqIl7EK2+PVJOywEv4vqEp+WIrE1PI2XTHCA0ySk9rUdE9vsP4m6Gq9Sww/TCBcxpRNBtRpLPKUlEuFkGEBJOj9KYySEoyUA590xxwUpCOOHFU+vMIlxTwEVXTRvmpLBFaVREuJmHU8TdFUqy9Z6wH4DhpCiYjG51fLIpKiK9b9J02De0j2fXiFWRJGryn+RM1S5mUl3hzjFrsCigqmB+uEF6wNZSAPSYc6A1N0OEkDXWWGGBktlOzolcZJIQ5uY703wBqKXMrkG4J5+NdOkkzWZ2HCMckDHmNJtzbj2rhNnly2EnUeUcTw9DFO0nGaIEMG3KkgvmQpc4ESHDoknNUIwxMnzv11vsD9vH8js1GtfbBYCUqHim94yILC1TjrmixYWuuf7ZQVCVhkMAKGqGPImSYiGqwEhRuuTCbUooU/PI3VLknSQsJNDS/GVFymeEqarqFmE2pglFpAnM3Dwyk1DVM9+7EtqaD/eY7pFmGCxOwbZt7g5DiiVYqn2Ea7ap0+NVYumAw2fUiXNEMK0kIiIS6+XZvTYbRWUPr6MZpLS2YZihmPaTeIbLibxCiAAiKm9eAStX3JZUhWYxxtAczq5jEDxxCmaQXzFIFi8QohkOh7IIN5rUifDi6M90Jp+xKCMVFURKD7yugQIy0sYFPWgOZfTe0/JGUosHgjm2lyYHql2laWthaL0D3rtePl3VzYB93/sYWW/68ccfqU16uz/2L1++/P73l9ZaHivL9oOKACLau475HI97GuD3j6+//PLLGOPLly8Uedz3L5/fLip/+8uf/7//23/+9ce/KPDxy9fO4IUSvWljiObsn2gTFYT5NB9kbJfL5e3t6SMIRtjYXVvXLSKez+fPf/tJtbe2qWpW9pXW1R/7ICFgEzahLhYxm89L08u1w/05hgASPkbS11NAgauskNXjeb9vTbUxkjZ/uvlgRBfdVLsKpDVeu+SUjW/aLpdL753hsAQu+f54Xj9fESN8D0tRSXWfnsR+Edqkq7Brb9CYMT4kOkHioipAJyzQsNTC09EEXlljkRVEkSFro7KLtz9eLlPw/px3q6GSy/UttIu+3Z97JNQ59jHntN3MWmtta7opG1vv17fb7e3z5XL5EBGGSCMNuYUlIgGVkicTUjUpbU3zSBa2Qph+kmQsWtw8ZhV5QjkyAMkdznQ9iJy3z7Z3BmsekdC2IFE+H4dPeGVQR/J5eKjzz93dfSCd6unnWLlSrJLuyem9st/jbcdPuHSJM2qE07NPHxCVRF+616SMqjid7hEzGKId2dL21WpNtpXkhU3e/zFFFdJW6ldRRLZ50uArVUQhnkiQdKiUSC8Md3NX6VzDocddi8g0y2GqVyZ1iGRyxWHVfbFjudf6xCuyXSb0vJ6ZeW3awJw6zEqnRxzNmNRoCzIACUQTEZmFv2LdoQGZiiXUl8WXkhXoCP2254YaEXtNqR0/Jyu4On7u7lFSsBmWvn7u7h5UaU5qhWKSSbNHOGnuLSkuhE7EaYjxeB0FA19N8PNKRUS25o4rPK9d7x2UHNck6RQz673nmLVIap0utufTulfhASA59z2COSt1FMLd3eoYRESoHjMGkv8+Li+zEq8MCIu1QwDxgLvN1anTJs6ICUs+G0RLF00ExRiexzoCVECmhU9rAk1KgFKhCk9EFLqqNMXj+SwsNyJEVcRzOkRe55ykI8xT4kf01AFISYZ6EMm2EXXIQwhtrXWRLMZ7cubHqZHCU09DQNVerZRkpi1jRwCVZ4oeeyBh1lDWanuKAFN6hlkvjdxji/pBG74CylfXd8zj3xWCR1jKwJ6qSuc3HHs+PxNsxQqz9sxRMD6GDH3FjjXuv+aTjy1x7N78oZ3I6IFkIJWIucJQP0xDsrauE5en2G24wRwoEdXqJr1uZC1LXZsjMON8ytz9277LyoLX7XdRWzOTdf2s6gAPCbFcZ10R/LrrYxukIaum2WoYmpmS0yz7ZarKyETrNXNSG+3Unx9zIAMoANUoFhGJcLORs74uwaiW4G6P/ARPhoywCISjUUBvSlKaCNlyMyR2RpWBCbg2ATDGdLiEJJRbGI7kAbSaHjTDyecdVuuwhGRN0rozgjjha9Jtq9ZYgTkTcu/uZvOi6q+t+Or91hZd8zWHwZfSUaiBn0bmD6Ka39+AC0R4IJYPa0acxO1EmjZh4zHT0fsZwZ7146x3qCpP3JVzTkE8nhPCQ+PK3b2UOU+AixKQKzJeMgn75GDLyGVU1d+wgAK4tP4Y+8qv1GtEc3s+nwCEOCbH1qGrA2tmY7rZ2FrrvUfYSxgpT3EE6NetNbkNs30OH3Mg2NlbG49noYoSkAwYwgkvAhfkDCIQZiLqraiGPWAUCMu/lC9bEI/j1hZRih9XnhOb7snu5AwevMpmtnUVCa15pRxgcrOZeFesPgBZ6dDqvuThVZFMkaO1LW24e2LVvul+8JiqrZl/9+mQCLgZujY5xuzoCYxaxpnrppgsaIeLZPXbq+B1vGwR7AklkOXI6VFcLE0L0hURyCopPGc4UJ4r3E74kcVfXi3gOQKQ4P7ctW2tNXfZ9710cXp3z7mMyFaSw9aaZIVd55xzmLtDtLU2fQEBzKK4oqT3non02Q8eRfN8Gp5jIHnEPVQ1vnXNjHXkjx7ver+Akh0FBKk5N8DiDaqFFZEiCUtvXo9PKEJqZukh4syKgIqKalMETHJ+OI25CJJeSKAZROXDvdyu+na9fvf59uXzd99911q7P+/mz+nWr5cffvjhcrmMMd5ut3ymF7ImelTD5vPjYz7vEfz69etf/vKX9/f3tDqfP3/39vb26e3Tj395/7d/+dcf//ynGPt83DUiZepimrIE4JrotfVh9tjHiAGP65bqvC0Yj+dzf05Seu8Rm/l4Pp9jmGq/XC6XyyV5E3rvbX9Ka47out2269Z6lhtUqLDW5Xa5zDk/vn5NC/zxeARhPnxOIlSbiJiNOewZUIXZSGBd0g0wcHm7CiLchOyq6F3gNu35+Lg0etMwT07Eri0o19421U0VTYIYuz3v933fAfTet63p1qW3y7axNcAwR2pmkh0MJF0QmiMLsnU6miQQyGdMT+Rpbq38zyEinz59Qpv+vLtotkO2bfv+hz98vT8+Pj52m79+/Trmc/gwG9IkIm6323fffdf5vN/33vu+jxJgrLH29Fbm7kksLEXkEelHInnOkRwYyJETEaGILf+EV6eXFKgrGY5kw0mTUuQLJPN2cTQJo+A5WPHekTWsZIeHXcIRBsXxaa+86fD2R1z3m+gOp9fxLUdg+Zs3fPPOcsWvvzp/giaf2TcX/7q2NN1r5r86CrHsS3UWT82e4zazpZfWqTjHRIQtsQZmllQOcbZL+fJsxKzyxHqtJscrkiwj9u1K8gWx/m0fOP89bVJSdcjWyr+e0flP8qNadRXg1YGK4kmoi9b1fxBQ1cAS5nldfS1uOpOw85+Xo/JIG12kLJrphFRoTEqk5hHcg5nrROHasQA6Hi/XDmFrLSMv2FzoDg8g+2xCyUJbka94+QRnza4wBMjJcMn+TAFFQNVujjHMWVI3vuayjr2Y3mXtuqo65d2YGTxcelbiM1zI8gkXJP0IsHIB930HhCopBiwqVnICFUQWYtljuLmF9iaEUoKRcU2GCgD2OZJ4CmRmEEj+SNLdphtFWvZ9UI1xiXAwYOnuMnvhCQbSKC6IpeVwuEkAqaiLpOHLdRcJT3GwUKhKDyEkaXK6iKh2wKZDqpLqHmEzWtPUzOity9qyrbUYq0RyJH4kgM6LSIY6peBVJqNpGNZ4b83gkTQYRTQQPhx7HEiJhc0GwEOdaM5kNc/W33Fg6gKqoL+kNk5pbcIQ5iK2iW9fx8Q4VnpTOyrJZgPTPWwcUWxefx5d85fFYNMoNKUfNoMkQlcDlsNSQgnmFl7KqNMHNOfA1N1n4soqkYA7IMwoMBNFwqeZwxIWl2TWWSPFqzoo6QRF2kFgk4vj1VkkgN1mJiTuDhR3MSlhnvW4JDD01avP0d1IoGSStwE5lZ2iv621TIES13SY+AzSKwqPyHGVbGAVGVKCNGHuLst9ZHMvwtx8VQ1zLg5c7NNNRQCPWXLlCLjVbA0ccMk+UQTSoHkggTk5Yuw5XSDhlkFtimfi1PxxQlVtFQrPzU8yeRKQ/SKunPNwxFyqniLSc9r8XLFaObaIHL4gnUsZ4kI8hSLteIDM2nhoTaDglHfJqmEk00Es5FUSeKbFTPvv7koVcrq7e/OA+Ux6IxEKjUXxPWyO4Tl7pAfxftG8Scb27s4Tp2V1fSVViOxI11eNMvOuWelxfoa/AgEA8DA3SbjfShET3zjn1DSsryiqIF5NdKEuED7nmtuv8kFEpGqXmc/iPQogp4Uzpy4GDXMwViIEEGY25s7r1cPCZzoBCAKRM1pZE847nes85lUl/x8lpKkKATxboXT5AAEAAElEQVQej0wFW2ttOeWjCuyx2Bwj4G5jat9SQTcRkMeNLyRNDs1jTgNVGwVyQJ+SvaKoA0pYYaFdyih4wFVaFIh0zxVwlwiqiORgQvS8sPx2VZUQd/cq/uqxz32+eJ98zgQkiIgVWs3K+kQQZmYrlJWIYIHAQ9OGhAPmkeSJ0JreyD+vUAWitHDHnHneqWxglQyyn5SFygiYwyxEFpv9GdhwwBQzJlyUCljtp0DqFCTlTHKz5XYly3fkEyme57U5haRUsz6xMasS4QsHFwXH1ZT4sKJi5Nq3eXV5wyoycw9QRRshEZgeQp9z5pNvuaQr2CU5Y3qgUSRi2K7UlJLa9132/vnz2+/+8Ifv/+EPb99/+v4PP0zY/tP8+v7LPsfvbtdPb2+XbXOz1MTOYxhmqa/2vD/G835//3V/zl9++eX5fL69vVHb26dPf/zjHz9//vzTzz/+t//2X37821/G4/7x/nW/f3x5+7QlnHfEzDFdCYoq2/DxfD6nmzTV3lU7gE3bE8+ApVt5Pp+2jyby5cuX2+326fb5crkkWm3brpfx+E5i33cF394+X7cbzMNcGJ9uHe6fbjcRfHz5lJbzvj+n2xhjPPeYozfp2hjmNmFO8vF4BEx73/f9/v4ugLht7bJdwJ60D8ZAo4zx3O+Pp/Bt2xgBd4nktIO4wSb6RoqyiuM2ZhNlwPYx52iKhjlsOiyovNw6ISHRLhGQnlqoAJx5iApDlTqmsViiCyIiKRcism3b5668XPu2keyXy/XtxtazTJMUfcPHvj+kibtL07dPn4j++b5//vyZZO/dToP9YQ53JeFWEV1hlxBuIXSfufeAmuKNYILSAECQoE8Pcw8mnS6Blege7jXj0qjCumaHhipkmE3Q65jnaVj29pUdHZnVqukfvnu9+Zv8OW1S+t8jdv3N6/h5fvIRCp5/W8/l+L/VJa6zbGYUBz1rc2YjIkRaNQwq38/UKZiuXmsomB7AqyHUWi/C/HQ0WZGUOLcgq5aQ3If1RKoUd7rrtGwJnLbzz/NhOFCgPhD2qsOegvDkdDk1fld7mEz+6WNoLgPCVc4oy7b+lg6yqQhUIyRhbEydPnLuAw2FD6qnmFpv4e5uaw4HrJaAIyyhg/lWKJs2jjEcqfDxbcfMvDTCq/kQgKjEdA9EiJyG24GsQ0jLUxQEVDzC04N6SQvmzsvIKQv8skh0YiGE5hhB0VXpF5GEgYlwjJEJcG/iQYnwVi2mhCMfUpCtNZ7wmRVoqkigd/UqRZ9SH5iItKbuzCLf0ToIcDx31d5aC3dlOMPmTN7ICKa2pCoPwEYu95yTcB/GnkMTMBvuCFK1UhEz69pUtRFzQsRFu/aLwHzMGjFyRriFI0EyvbGpQjMRmo7WMs9BgKlI0UBVOkSh0NfBzidrQBRHlJpGk55Tgnk7zzmWxGXbuoIap1HeIxd1d1adSZicrjkZT3I9UzNLIp96lCe5M5wLV2tGtMI+45zu4SraKKLNYwqY5jjfM92094r8zJ1ItkxR3fRyMJKYhdvwmh1QVQXUY2ZrqPZkCJM2BPCgLZlWPzrDS8I3twRLUphJKgDAjOYD1OygQEWLoIRr8MUjooxK6miqPB6PlPJahiUrYYTnUV/42oicwjXbIYBJLharJJjmhiw+BCR7Rx6tDKFR0VgcjyYD/Ig4oC04AEBl6ZwkjVBmUJvnxf21kTy51iW7K54I/0qKVvFP9EgLA57IylwKBggJj2hkAR9JCUHKncTMMHJhbizrO/DsHlfXhwxVZeqc2Ajp5nPfd0bS6yMJBebc6xYCZkjpmmvPjlMgpi0tXABjHzN84R0yw851LguWpJ0pgpUf6rHY0dOPTklSsSC8BKsFlYzCfYhW2L9EIOqEKqitqWqWAZPDhx6lb4zivSnnETXYT00W5HULTN4AnK1rIzPDkABajbSkWtk+RkRI6xDGdEM0IIS9xKvCwrkEbxDRmiRHVJYj3Z0BLERPBTpK7SqiXhqYVRkyGxFNtTAU7hPQOXeck405qEX1DyAlBH/9+uulb47AqjOdK5UlD8ZoCSWI2PeHrpHROrljOqKJ7nAz+3g8SPbLJiLP+25mXTQi9jH2fc882WFZW/ES4uLWeo46z8mUywoz0EFxz0ngUObIj8NbRCpjxiELlIUyVe1dCc45fTidCtWFASdUVniUqRfoXVsWwhM0fnjeWJXHeKndFkhKRJtu5oPhgICOU70m0VJ21ExXw0hFt20bM50pInzaFFGEQGITUCXQhjkQjnjs43LpwmbjGU6RlnnvQbB1RAhrQ5oHU6pq61vvGu5jjEYRIIN1Ccy5W84ZaXXWT0Ft7sYXkD6zYVFtbXPE8zEej6coUrQ212fOKTmYUYS1CYutDvycez47ac2SqDJeVZ5I1uSJbA/M6Y5orR0MEWvzYgXfeDEh+kKXSA1zFUDPk7VKMpwV5gx88bElZWViZap24QBZw2gVrwsg2Q2r9BhlJD2Q5S2E0cXVmRRcnqGCdpFLvwAYz5Gti33fpZXSr/bWL9unz59//8c/fjzef/zlx32fwbhdP/XeCb3dbo/nU1U1PIPp7do7ZY+Yuz3uu5mp6qfbtffLdrn+/ve///L5+vXrX//Hf/vf/+W//5f3H//8669/ZYzb1gR+kcYsMQSwGGVXw6oxihhCAplaiaD33nQL2P1+H2NctmvTuPSrqip0aThuXdhv+vXrV3d/2/r12uY+9sjyC+d4Xrp+9+XT1r+01q7bZbrt82lmcx/7/gj3LrKJkjH2XUS+fv36/rGH8/54/vrrO8x/5dcfvvv+h7ZJU5tjt9kovfV2c1XG4m8fY6i0jkuYz/EkXMYI0efzeX//8Dmf9wdt2tDnHA7bx9t2uezj0VpzUb1YuIiptykGBajNAU3+oZwRCIswVVJkuq34XyitNb+KGihb3Lat327P4Ji+bdcxhigv1+7MSKZh+iDHmGOMcO77dPdPt9vvfvf973///d/2uZtXDwAOqLBJA6Mf6QMAYAKijCGR1GtJAY3S0ksUGQWkaphbuKf6o0o6viCUCFEBwrmoebFk1BZtMkxBc+dqeFXDueBaeHnGVa07EE9chXgR8Rmx5vZriCn/+7YZdrxEXv4l4lXa9m+poY81OXQWymVn0j8NiuxlRJkdtlbqwSS9aHdeHdqKVL2uoeKaYIS5z0CoNkJBD8/59iqhzjnzpKdVnGN1gIQFNYSmf/22ClDIpuO+SBItBzddp5m3E4X1EfljEUJk2JlxE8i+9fv9HnNKa11L/naFncf3HpRa3mzPoXyxjFSSVzIClAjAU1s0O14zoeWA61J6y3oL4AKFgB45BVcIigTYpw9hcYG6w3KLrw8xGCJEkgbFjKJkSIRDVFXbMLcVhqtI0JNfNUsIuvhIQ9h6C+dzmDrECr0pqJ5tfoBZtlrJQNCdqVOirSWs8UlS2wYgpj2eQymti4joVlnlnPtqQYOEjTSpDU0AaBchAkaJaTsnpHLvZ0b6Y98jLDElcyRJMlQJytwfYdyazudeuS7FUz9WyygzoJCYhvAGwjyIbdsEdDoAXWr2EZjPnb1bga41IvY5RGRML95tShRLnMwIBC/9bd/359ibbhE25n779Cki9ukiTYVjN1z75XI1GwCokgmOBxkUkd7phoKqG5omAy6dcFhtXQkqUtQxd0XvndJ284horTXRrE4/x+jKhFG5e9eaPlXVRjGzOaYP57ZdLpdk+gQjoqjDghYRrbd935O/9Pb2OfOrYdaFlF5j3Ew1VpemSbAxnvNpM6aZhKrqdnmOj4BECkAURNzm8LHnWJ+RKZ9rZqZtm3vG6JlPCaMgf1nySSBrNueTQURDqpvA1N9ItFGjKukW08yHTXEEVeAIY1BEIeKAI0S1bT0I8yJ/JiW7S6odwsTnuYtAhTk/HJAseSSvLmJ6Pi+wAYlCNYT0bekSnaqMlpPGnrhEFWnMQuyhGyGi2gAQVG0RMdzcJ91FTKCkFksovUTCwaAjMOdKxSJWBQpFqIII92nT3ba2qZShbKpjjPmcvetkRCTeI+gUJrUwr9u27898/9yHNqrIMFMkQCL7z25RWIIIfHx8CLz33qTZrKRo2t6aStJBp3E3h7krRKRJSTGHu4Ih1EvbgDmnjQnVpjrN9jkIHVajjxBoV/eYc8+17b1HxJzmCArHMBXJCm2XFpEKUgEPizA4KAYTIFVdp01VbVqz6EJ0XTPq5UVz+y/Xm5NCy+tUnVMVKsHqz1JzfsEZCqBR2AhKJuTSOihuSKFpB1SkX9uwed/v0lSaFAVwpuJNVUSBcA/RxgZnlB5V4jwz/SYQFiFBBkNYtDT7o7VGgQgM5knEbwYDGb03EZnDbX8Q4dNzSn+aJzhQtx5ZWEle8qJzTxiep5pWpjXTdh9TtSB2XnIvUO2MGHMKU+lNAczdAGSthCIf7+8B69f+3O82HXSfQYdQCjrilt0PFYlpAJxKSoYM5pEHblXLXUS0iWT5uLruyDzXZpJ9ahNEGsndfVprbU7b931Lni1f4kaRACkoZdpB5pecYgXPIgm3CBfG1rPADB9z25pIm3N3G3JMCWmml9JUzWyfU0Su1+vj8ZhjIMpJAUFRj3AfAg36tDkyblN9joGmH/tgGAk67x9PFUlqBp+hPApraJdmZhH0DEhEBOIz4CEhwlAkzsEQIZhCD2CaSbsoCVhYYnPy5EPYjDXTnCfCp/mYXdG1DTezQTaRtu87tKWhR30LgiGqUN2HuUdWV6e7paCOCphT5ZZRFoUgnvsOFVY1hyKSYckK4GraP8t8FFYnBjnBl9ByS/Pb21W0hZlHHl6dEV1VKMEUaCaYWt8QCEFBaKKmSATMPEpfijlfQDLpAZoqcwLLbU5ulytUn8/n/tgJaa1lqUG6unsYLtvWLlvvfZ/zL3/781d7ROf1+89Q/uVvP75/vf/TP//j58/fqfSg3O/3+/1xuVwuF97vd8Bb+2zjub9/vH/9iJCvX79KhCj2x9fffXn7hx8+a3z81//1//mf/z//Lw2bz6/z8VXDWydD/bGnq9r3vYmybV/vDx8Tisvlot6ez3uYhXmMCapCKezaRBQ2W2ufPn1SbmahkDB/PvdM/p+PD59ij0fvfb+/z+cdwufzaWP/Ze4Mv//60/390+fbW1OZor13Vdi+b4HrRX2CgW3Ta9/m7Urqp9vb/bE/n09Ano/5fD6F3Ie/3+9vmTrN4aqyCaHuU3uziPf7/XK5UOBuv/78o9nn3vs+bdbLGVDw8fUXQ1Clbfr8+mH7UNWt3Vq/9O0WaPtjnzLgoT71sjnCSKW0rJMoYbDnTjO6ZeRGUaTyNP22yaaBbfOtiWxXuVC2j8c9STfoAZubMNgkmu227xj7fD7NzUl8/nT9/Hn7l8cvogoDGL33ro0eBythok3cXap2k52pHNqTnI810C3m81lMhE0phINEwp0iQltT9kTxmhkkiNBMOTNyFeYIhAKZXXqxEmZhPwF3UWBhFt2cCAlvypzm8AJyItwZriLFqJ/hIKx6r6s9c06AV9rGle4yy4X6DV8gUtA7PIwhNZiQ7wx6OHG73MzMZqhq3zZU05iR1UmYsAUKQxev3JsRgZgiLRBmYQZVaUV5NRkOEc8mfJobaVmxqHbjKu5LdowzBE7LZU5RBnyGqopKxOw9rVy24mE26mOCFjikkSIQCX2dL8xL0pTlSk23tnX27ohhY4b7Kq+7WaLAgMznjYgW5oAGPEeAE4uZWDcgQVfQNUCMWF2FVX1MsFA2jNyL5Mlh9HBOTk2OpKM+AYCURh1mOd8GWQp0KqCYDRCQVpXOIt6IOT0C2qitgYzwQDJyyFG9OPrLxx6qbZQuLcIR7JoBqyxOzijJmXAfRc0rQnhWiBMJtjzQC5Q4fZWHM4BcpanWWsAWonI9NCwsXo07VmeGQWklCAmAYSKiwtbagk83EXLNbCIs3FHSx5FeM51fjoK8Sjkofm3VFxV4K/7kkS3KbdsoLTF5ImKI6eYQ7QOgaJeWbS66O6QlQFWp0rPd5hbQFI6rW03bgXC21vM0RYTNUklpXSDKVgul2nmaJzxMQ4anOR5tKaR0YOGWMPfiKc17LGK2zJzr/rPgdqrPiQgUDnhNTZOas/6RIC8A0yz5UWyYHpnkY0fV9AlpIgEp9Z1FA6i6Zbo+sIC4azOGO1Sz3J558SgDgdzeeTDtVduLBeoJRsCzXwfMbNYEneFOx0TYJfdbtWoCSUVvp087ETNACKt0DiGJaQTpQDidWfYKD5oVsURC99zLyxAlUYPTiPJR5hSRo8p2rPlRVjyeb2RFERFml9s1IiKyZ45MlllycwvGswSTY5rFLEZ+s0ReuNnchzpiSpbckgi1URrFY3qKOoFkiGha5H1/2EEgGRNWMEWbO1uD9PQ6UeBzS9IZD7exM2dHS9yqpBbNbIzp7pu21Ghh9WzzmSWKsM25x2F3Uks7N1LN5CQTUoGTyRQAwZ5w4uq3C8lpsRa8uIPgqz5ZhGPQPJ0hqnpYSQBrq0Ss9L6qmavMTHIu9mYsv1jjOLKmHJdWUO5kVS06NEQjGVA2qPSefbznY3+q1mTvGCMF51ha7tGcaxIp4DF8tIjkuJtmZtb7JR2OmaVLKUwnXmpnZhYx1mBoPvIszXg24soIuEXEGGNmN0wlIp42I4KSFcGYc47xzK36ai2uM+WngaXVbS5g1YE2wpqbzT/Z9z2JqQr1zux7h6r49Gk7WcwRaRFIwqVwCiwgHxA5+Z5WTAIwTwA5teUBJ1vig2JxgBXdVwAQs8RZlFAQ0SICHh4uottWhvSAR/lCKvH1wqkGwpEI8ngV2vPPs8kWwJ6kCSIgH8/nsWJYPdtcomETjKSaly5pxmHmyQKWSlSn7oEEoph1j1eI0IrDPhNXpAsJn0mDgoDDYM4kziFtRNiYEJ+jdkg+nnAR6ZThYNg0ZxM2ttSmhgCwDCzMIkIhRhyIP1YTNczWdBCYLf2c9dAVQ5U9JMkQoveeG9LrLiJOAOllbxNakostsAJGn8+vu5uN5HRpTMYywDHh1fvyZBtSIMLZLhsATbUkX7NpQA5kKo/jmfCR5L+pMaXW1Ilk2SCKiiN8kdJ5ANEvm1DmnL7v201772w6zJTydvusbfvhh9+/vb21lsTO8/F45BDZFGzafMwh9+fz+XjsEWH72G32hr6pYI7967/+H3/6y5/+Zf/4RRjvX39+//rLRUV6i+fj/utHjcyQJjZnEY8rNGX/JIl/3W24KFvQRVWALCyazWn7NJGmbRtu+3Pf92f49Ngff3n3mNu2DTN3b60Nm2bD9yGIa+sfv1xu18utt+t2uVwu/dJak9Y6jS3jeXMXC3dRbNou391E9Pvvf3i7ffn4+Hg+n6kJDCD7DSlzPebIuOg59nivxuP2fO77cPfL7eZJwjctpTJ7y9knsqk0pYq23rZLa13YyEbVTXq2TkATt9qDBFpDwqqniUfiY4MeJsk1mxLHzgmawRXUbYPeHG0+PyJSco/O8IAyWmt+f9qMx+PhZo/3D7dx3WTO/X5/77pd2mXbGiNbVyCT2r2Ab3kI8iyQfLnLDEQdSBnOiEhJdrJRXIrpHUzMShwA34iwuQM5MBVMTo9kYTBXCgRYBj9JDKaf2rw1/hkkF5yq6IjdnV4NEHeXNVWSPY4QCHkeV/6fvuKF4CtuiyMNOVvm5YYq35OeNaqaXkmM1HHNPZlxKtF9gbrXh5VZrtiZOZ5Wxe66mJofzsZGZTqH4cqahSzaCwB52rq3WJjcw5O21vZ9j2/Ig5lg6hxfOpz4y3Gc8rsV1UREjLGvwFsKyRPFi3lyZNk7CIAt2ReP5yLLjCZMt75j4fTiiOwPFDWyKSuZwzozPS5xjlwViYyxF5ccQ0R67zO1uSISWeDmHin+TjcEbVq4CETNrQrhsfacIwIhkmqFhwcMr+QhFtC0uvisKGJGUCrUSO7lvN81pqvptuec5iC5bRuQEibfAH3PByD32/lLj0fFhCu5b5d22r54bSMPSZ3FabLWe7h58lbblBy7SJTsWv8FUoy2Dsl0W06X4atqX3rFx6moq5tztrb1fim+VqNSQzQgc84xS7WPrHE5X5TUJKW3bfV7EeIGkWoTpMdESGYsWZHK0DMQ+RA8HCER4YZZE2gEsG1XHqO/2rd+yU0PWj4CADmnXUvXJGqcSY9MwH3RJ6AkHY91zv89g8/rsXnqGGU47Tl7lsWR3DIikN7TDFRUDQ3JOXgkvE+bZN3NyYjU+JNMRSOb3kU3ZUk7DIAVwMdix1osL5ZRFJKZNO2Ou0vps+XBTmEMDzcXqWXH6l1MT2juYRdSNoCkJKRZ+Jrbe42xV+UvKwfp+Zip8lpDKcirR4RKP5seZOgPkBqncZejNpGGqdxAPTCMbKAt882VrucxkBenf4ikLM2cc1cQTjMTsChJpIZIE5g9bUehW0MbNUg6c3woieajqMkdbDlt7EmaSWciIjxQkrCJMF86qzGnRaaaKeUNIOngzOmhSXsFgpz7mFYQ/daaO/Z9j7BIjvJsY66bVcnNmbO72X6e5tj6tnsh6pM7MQoKNfN8x6IQy9pBxETxIbw2QMRiQIL/5qnJoiI7nxQAWUJL0sQoQR0n1dwJlWTpL/qcekzm5hYBOnOFPRCqSvcxBwDpuF43QMYYYz5ba8KWjjbZ9KpMCJCccy+kfFaAnmBhIlJaDGoQkWT4EAgcNhM8cpjWgo6nxZND10xbeuhpvirQYYnrLvIV93RDHjYr4BhjAMmBkbMAZf9V9eBNPJwmTwXfWA44XWKmLj4tImAu0mMJISZves2Zvf72nEjHPk3ShUIy38WpyCUCoSAwbQYDkqgZAJAaD3QEe9tW0KSgHWVugdiJ2iNWshqvwmKWPByoysjhnI5NlXPs4p7KQGNOksnJN8bQZPc9lQlQSSPd3PEqDRMEvUs7cR+uyEa4jz0iuvTjQ2A5Vq5cbdhCCiVltzubqIhPM/OclouIlhBIm2FzCfMSgAoR5h4IF7CrZvlfROZ0IOfbY07LsDxrlDWe6CsGAbDm6IJrArwkLZxBj1f9KYMl1ZaEKXHq+h5hehYsA8jRe3dv5GqB4ChK5ifanJYto1UTdmQOEFkrT8+pZ5KtUptPAHRAWPKYuSHdJYnrIpkCQEZTdtGwnB/h5XKJiHAf+54norcmIjNH8WZ0U+WnLGI+n8/EY365fvnjH//4+9//XlUfj8fXr1/3/blt29gN8E/XW2u6P/Hx/v583pO58Psfvnx628bj/vNPP/36y88//e3HP//5zx8fH53Y749936mSzHUfz93H3LYlq46Xrh4DylVSD4T5JopQR9Bj2vQxw5zAsNmp+5xm9tif7x9ffeyXrf30668K2DVyOu/9/jHn7F03USWoMtzk+cSwuY/7/X59u9xut8EJoGtdw+XSVbtHmLmotbZdLtvb7eIx3z5dWx2ZOUbMOcP8+bwXgVzE/X5/4hERts/rp9l7n3M2M1W99R5b1ABISIa4TZY4d4QDU0BFKPrWZLtemkCyBMOwMB8IwgJueO72vIuzMh2Eu9OMMkFCValePPbar1fqJwPNUyawCF8TeCmCVHMf8+nT7vd3t1RyQsvBNFBFwzDdcl8xsXA1TlUUKmBCiMve5m81kb0tjUwmO0kiKAAiqepzRvggVI5olHL0GX4Jc+rNwBxgPN5ZPBQJ98Xi9Vww2SMX4WprxQrtgGI2JtZ03skAnu3hORw6G0mS7nOF4ljJWSI5X7ZrdUO5gsb150m8l9Z+qXm4OxNjVQOkHaUA/c28cRV8/XVfdLelksVFlyUH0SKJl3JeSj9mpboYkc5pLU+VOy6oc5nNleAfq7TeVsVZfJsAq56ZFOOUxr+s3PpBAEhCy/A40iec171ubxEwRNgyr/mVR8Hg1Qh9XVA6Nj9fB2Nl+aIqyauEcK+d4UFpfbiZDwenB5oqJCK2yzZ9OBAwJk4VbK1ZFEAS375eMTQ909qcErBpAvGlGXUsitkEkNqV7j7GALW1VuyRUdziv3HbpzWtU7CPx7EUrM75eSVz97zakof7zDVS0DzGfLbT9GbajmzjeGXjRWdhGQy6B7L+Sn+VyWudX4j/xdRyvV4XTjVEWkSyHFGPmdFwR8wFtZ/uPSJrDptIa9u0IgzIxDv5DMup4KX4ukoPa7snTaza2UCgZrDleIhnc5O1kpr4PWjV1oGU0w6suoO8akLrQchhUPjNLhWR1BZZcwV8IUw2bfu+P/enmTXpXZt7jLH/5ukfzzpeT1yyn+nBjC3MLMzJOKpQqkm7mtKJi1ONjIiU3Tp6tom58eJ3juSIIrOXC5DDvZ3k13yNSfRK2k84iDWdy6T+XGiiSCVHkhCCIUSR+7wMMRfU0N0DFhGsDKhWND/KIxLr9Pcv90VE/K0x2vdd1nCvF+SVEXHwKKBy+AQYzoiYc4rB3UMkUZ3btmXtNre67ZWcTNuzFFMM4QG4I+EjSzEgwpMAycMosWkxGK+H5Rkk+nRlRIGmZrYEk4J4jBHuFLn0S+7Pfd9FmpnlTGluaUuxKIngUXIlszi9tGSd3MNgQWHOpasqaaxPyF0KLtZf92lu7gBdsn5vjBNLRyyaqKjSwznF/cZ0//2ulsTYwNI9lTrotDXVXlWnFNWaczoCoLLoJOacHvNyuwFIVueciV1p6esy8vKS8MYseu8J+9xtRkTOK44xcnoQgIUfXFLbdgk5OuoJVa2XLQIhvErOLXxZgDytwmN3AVjN+MpIW0tmfXVPXkIjmfwR7+/3NE2Z9B7k8O7ubvj2EWQ7VARz2jFlnNsjCE2RW1TenTn2nIm8rcd3NCezOdx5spLrwb2O1TqQwTTgpdB4lLCPOmAW5pqSVDPLvnF+SMYWaYFr6mFZgzhMQaSIfXxjgf3Fy3Ck7r704Q7E1rEnE+Veh7e1WJMOW+uNkq6rbAhf3FGOMDfOb3YvPVTFm0osqcWUwwPHmASUhJD9GzUHVne9tqSKZIS6mvbsvUtTsznHVDYbE0i2xRzSJlV8GoQCJYuqrSIQMjm33MOnmaWQMy2JErhGBHNLhAvrMaW/ZdYhVQ+PgFfAl/9W0uUU5sLdIlr9ySJ2Jgl00dO4H1mSv0HAUg1OFs9G9exJEWoqVFkGUhTpksxsyNWbcx4j8Uc4m59/fHt4IELXkbF9fPz6NYgvv/v+drv98Pvf/fM//3O/Xt7f39/f3+fcAUTYHKMRJPbnc4zn8/kM+Bx7b/z+y+cm/pc//fTzjz9FRFPev74/73sII7DpNvf7V3tyDxHh1gHkQGCyoliN59ROLt+EEAvxmGMMtzliejTRdu2P5/sY82M8s9P7mDPMG+W777//9Ha73d6e47k/h4fd7/cIS3Z+m/HY94kYTZso4cM+7fue1JufbhcR8e3y9vYW4WOMfd/jLvOyTwfcL72nBuS2bUyqPB829jnndbtIBrXusoosjfLp06feu5Lbtt1uN5L74zHGULYxxpwTZG+aRO5UqXIaAhC0HHAOAExCOqO4xZwY5mOPfSRXKyJKCBBoaNQIG8ZwzDlFI1Q62QK4Xt6e+x3lRklL/JFtTe4CMswG4baP5+Pju++++8d//Mf9vo/ntDEjGNMYlKbxSnXi6E+CFEpU8KXLtmdVriwSS2tquRupgmKpZGaKaN62lkmFu8OR0IvV4Vv59tERTa4EIryS6BkOq4ZIHsTjnJYz/VYopH51dO5WivSbM354kJOv/ObNR9gcp5DicDorocXpNzgIIFZS4IdVzzT1+Jzje2UNJPMUpSMrEXnXC48pqxGYTlyWMG+dssDidf7mzXPOw5sdLqOcwvI7x3VyZcvHe85RZUYO6zXSTB0ZUFQ/rxYHQOtbM7OYRw0xYzmp3uw3cVJqk2CRnSJTndpgMQ+rXGDJiEDiCKoHzhCvVnOMMTynYBkBlPhGIyVhDyuMW9ZT0jhHwKsKShAe2lrNDAIBOW2VPA3uniDyGsUEJdxzFvTsDJINpRr3Ir0390BYdpNyfclYTTBLIb5jt0UEYADN7diUlXCSqpotflSZ5PWBl63XhiYS/Onu06JlLrlKTkBIQTNe/d3jyQTgM5EMdXBXeG9bMlWA4RXndW2tNQefz6d57iQZ+0w0Z21EKQ5tAxH0wl6LpAwgAKFNExHVrEFrwleJ5Jnmbo6aIz8RkjFH1QXfOMik+0rCoQoFsqNiZtQX47lXazJ4UokwMw+H5Y0HhIhSiltbQUg+5wgh/fTIS6DLs7H83O8AsjKd4Wwsfp1Ib5ZJOyUIczgYrJphzlg6JGgpQ+WFJ2ehDxNGEaRmlwlcRPAR0USCr0B8xpFDpl5pTgGYJfiUGtXVLwyqZWDqhRbKaM7OZcVlzsIjp3fBzG0WagUBpwREMsqER9CrGHJEUOuCQUraLKlRhcILoBpE3xhQcw+gtb7KgXa2ce7FIn2sRp2daQ7L0Vx3n2PkDtl6j3AGWyKl9wHz1lr4DHdYth6LvoiBse8JOUtqgwy6NSlbAu6jCqiRk0iUS1vJ7yJsyHaHecKFVQRmDEO28sLnHDDXrafeaUzA/Pl4772n+miefVXdtn7fnyRfQiMAEArsz2dVn9yT2lxzYKyG/MqFmBk1ZBEPWgF3c+Df3BKpQRRoPDse4WSSHzJxGBKrYIxjwQ+7efKVZ4ecXIp12blXq2PGSPQBRbnaKYFSXA8zwql92zYE7u8fmQC31vIZcDGFeE0BMBKLr9Ds02UOwa33rn0DkJGiFeYFSTSQNQ2hCNTcEPAZQDBcSXq1PZ5z5LerNsCi7K0tF+oAwuZRtshYeYwRiKZiZtNm9jZxqjeZmROYEJLOLJGIKj18TDPTRrjbGO5TNUkRIgqKmiWDKpbvPknW2FOuhxfjUUSxQGnaroPWh0hthRKCkheRm4iYO5Zm77AZtniKgWxpZk4Jt3MB8YhIhI0i5uM3m6KMT243AoAThpBTfEaPLuruPqYHkuFJmqYJT+uxhACttdZbd3fPXZ3S9bMqCxBSEhYVFtEvW+x74BU1ZsrnOdFHEaS+L2bm5Mkq7IHwloRrwolKtnPR0hTkKY8IY6kAZJEUjjAHPaYB4hHJGKHSRDRLF4qVHnjSyDIipu3usAhbY1PlR46QOguaQQnBEkN2RBEkMuiQOIFxoIFAGEpYvTwpsYYUgS7qYDKbZBCpIIXZTyspb3Nfzf9EdCW+SAhlhVBENJGmOifdXXL1WjOznpTd06DW+6aq7rA5hU2bqJaGo0+z8O12BZk6Qj7t559/3t0++/zu9z/8wz/98Z/+6Z8+f367788xnl6c7atYf9lu1+vz/njeH2aW0s2A//jTX3/58W//9q//opQv3316/+X5/v6+3x9O+D4E3Hcb9wctrv0qwjlmOFicF1BZfQ5gznHg8vbnc859zrHPMQ0O0aZN9Lrd9jGnD2n6dv30+btPJN9u1++u/Y+//11r25///B/7PtumX3/59f3j65fb1eeYz3087vDZSc1nbr4/RszRe58qZra/3+nx3XffMaIRyWw8ppkPMPbxCJgKLpfL7XolY8593/dL31SVEaqtid5utyY9AeTpmrsZ3AOwMec+QKObKjMgjzDR3lqDarDlhuc0hJuHIbZ+lYBQAE9CcymCAUTpg6VJyiqwupkzLCxIy+awwDwu7Wpmbs+KAxs5IzApDs7e5GPOiHh/f//Xf/3X23b5p3/4hx//+tOPj79NGwrNU9mKCDXdIAEwEX4UwBlJlFPQwjwmCWCnUCghUaV7QIRGjeSqYyFVsx+QHUCKEEz8d85BREQqsVZLqQKndKiZ5TBFz8NjzTcVnvQ3trR8boahkfFnpRJ/3zU4ojZ+EzBXEIWlGYlThvybj4mIRRxZSCkutLbZEBGhEiw0YgQr/yxQZ3qc5BSbiUHTo5x+5MYdXsINWECkOCCBK4VcKn0IjzOEO/s0R7H1/Mn579ZkVYz9CEyO7SdLZuL47ZH7ZqKQ0Dcukq31kgNC347L5atwXIw964cvLZZsNZ6CpEj3Fwtuumz6Kn5EsqwdD6ZkBwGEeWiiAqRYuQhC3QGyafN8Bk0jKEZPiLIEgw4X0DHdqJTCMx15du25Yw/VtbASD60e0IrU8/KK9GgYyeu2ici+j33f8RtR02836PGoqvDJ4qCOKsAYmTGhwl5V4XUUpakK3NzCLMeegQzjWmamXRT0VFWIV5kn3V5UGQ9B0pagxVH2xcLIHe3TvNpyLa0nzHvbrkJ1zEjhiiwOiTbdQlSBCFjQglRGYHrOh2RDSbd+dfeIIsvJoSwRkXiBHLjG0IMYnonTa4QjL0xVe+9CPa6WZE7hHqO/efFcC56oPF94CTli/1d1PD+8Ytl8VkeJGhUBeu9dFNOKPDxdyHyWdJ6IwMPMJAQqY39iYRnqpuIlYpwMxCSrcx6eE92ieT3h3m1xRB+bh2RLkFiA1JoHXgbF3Wc48mAypacQUayHiuq/xao1HMv+m5oZULLDOfvriAQs5TUIJVJeO+LAMEcseMICJK9zJMcnn29kHfPX880bycTmuOs4QuTUNDhlxUetJMfUY8m6HliXDJZFtLcCRRcigNW2Ss7e3C0J+pBYl1dtN3NAkxfLjIqunO42piinjSP1zbjc1tges9kDeHLNRijgYZpuMzD3MWXmzG3ifE6mdU1KRyrB1iUhwrMYmWW1vFo6QwJo1L1syMpGJAU5eZQwV7ktfNq00Vo7mcHKs+WkHf96Lrl5lm3Ey8UWV1ZefJYnijfDo2t3MGNHA48BBAoZ7kT2uESEokchtWt9acLSEieZu+bYRWtX8PF4yBzbtumixzN3ggMjgpAl6ZQOeQZg8LBwM/PV2zzvQK7WpS89SQBs6kRRMqwK9NpfL+gvwCyMqiprOni6e07lHTvwWNjk1jp79NyTlLyXmZszfyWkroBmoaYS5z8v7cDn5XkviBYzWyEZEhKw9ViX2ENYlgGL4mLM57Sza866cNi01rT1Tgmf5j4TBhqnM34c1VzPc3Ry+sCXPsfx22OzZSfqON0izd1SGCh5qo5Hk0oBZkZE1rZIuhksUGXZZGpFRlWtNXHHSTGFa/CVDJEeYpGnwix8frrezKaVQoYd0hwqcABOCrUopjzClK2Jsm95VZiOiLaAMHn2QQZFKQS33rOuYO6RjX1m3ujwCAsSi9tcEuQ83Wx6zWwxp0XEDSl1wwgBzcPDg8hZu+PbD8OSJmU9snoMBA+PH+YW1lKxxJPJvITRM26rWYbsRnlACtsTESnwpapsTVVlAaQjoiUHUmB4sIo4SnrTW0TCRkp/WESUummbiMTajDH28dStZ+koQ6+ffvrJEJfLZdj85Zef3D38uqlct0sTvbvbGGY23UVhj/mXX3/++a9/mXNe3z7N4X/5y1/ef/0QiwG3fRZjUU6dpuUJ771fevdZ8pYRIVJ7tUwQ3MZERJJCp5GfPjwpwAOfP/fr26fvvvt8uV171603mXNrYmNebm/94nPObbu+vb11EmESTrjkEiEY8JhzH8+P97Rs+75ngWzOuW3b9Xp9u2zSG+9P25/ulhFRzs6YDZLJL+PqrbWmer1eM7x4PB4iMmNek7lmOe6UCnvuz23btttVmmZbpoip2ROQxiIwL5oo8/0FFxIgexWtxRypfgEFs6OBQLg2tmy99ArVqhUGFdFwjTCACciXgWwy3W63X3/6+flx/49/+/f/8v/7r59vn1uC7EUUbKJVc65ccu3RV+wR0wULiOsVJHyTduaUpIVkmhERAjSqMTxyQ1OJcJOAgtk8YogHDCJKd/EaYcP5lSxT+ZJVWwY5T5qpec2/MY/57xraPzWBzwf8CKvOljbt1PmjfvO2wyzIwmOuoCuO+PB4p6+BQcqBM9ZYn3+Edse9HEHC+dv9W1bn4zPT4KfjSDnyWJGbrAAmVtweK8A7PpanhlC8ctK6JHfPvPz40uOj/DQjnZE8loTo+Tq5WmjNp8GD4U0ItOynhYev7j9qz50uDk5PZCGBFB/8ZmucY5qsrFA0IsVxPJByAG3y4ApqkYnWdEeELEBgTf1SRObc2TQVSShQVaXuM1OvjCnXIkv9S2QNox6OImQUCfHqAa2tU9o8SsDdLLtCLEBa3tQrW+OCgdXziOnhRLb3uGKGesAeEydGooxjjmcQMVO+SMJnJAepUJhM1XSnBNMq+USQ2paOZQaCybYNqiS00uGMxQiXcqCxCJnKwVcFhUhVFIUoweS7g8PDaQit85TJRR6e8Iq8Q8imbCrS3GdEdku6iITQzuQ0BxVGpQEtv/V0UFfOXM3k5FRLM/oStTrOTHaNzaNybFFEaGuVD09zM2di2qpEd0RpZPFQAVm5T1bbBQJZZyYdUmutqTQyB/YSzzqnJ+MO0iCSFCpljJH8MoDk/EMI3XNuCkf7XUSMSYtwErtbreY8HjMQjhx88azzV8rNeE17RXbAFuC8KEkoXAi6QAq91bBW/p1kq4qe4pNp1AIAZU3/rs2Z36SsYnwOfx028fjHyfam9GvDyqmO00UWH72IHGULoAq5R/tN5GgGVh1xjFk2dLWFmbUMlrfLs55U2CriMc3nGp+vWiNKpEQCnszDMM9olHUvKRfoqlvM4atCoSI5++BhrbVkIgIJDx8zwkRVSBBUAsksWIb4sm1mNvYHya5b3tTz+Vwm0URKgTybRZs2Q9AtUa+WbEBao1NAffkLyeMhYO41TaKHpRWBQ5UqgFWwzLMP8fyj88TQ4TXzHx5xBpgAYBqZ3FTacMAMMi1BCcIBCEkxq5xy1yYaZkGYDZ0k2ZUirTe5P7MCnQw/OUhcIcu+DwvLzHomg0Cu7owxLJG0qgV4m/ugtJCY7mNM1Whdwn1kWQSlfkgyuUwiOMyD1iEefmgGHp4LAIRuhR0fayua2YEfjTVrlMZkhuczyEq0L8qT4w1mNidINlF45Fi/2QxZdOMrxEkNrYiY2cdIbcNIRE9lTRoiCnk9AghpNlW12AE8RBhwsxhjOMpNZ1wJEUgYXANYWJIU9uQ6EyuWYxIEuttRsz98fR1SlJKHfVuIbFWSIkozOauTr03lzjmziz5JXrZm7tNm6hWJBJLclDWEmtJfZKTdNR84xUD1stmYI/jFv4owwhkQkQzaM9Vzs4jUJtxyppTMId9kfXbpGYSsufQaUgGcyhZrjLarIjDHJKtPzGwXISAaBgZSLNsBodgysf4ShgO5OBuzCxCBiJaPKiqSgMdxqxUO5mKmDBJcIsdXmLlKeCTCJMygkN4TAkGJJtCcoFoWXqtwvej6ili8QgW6wWYkfxpJt4horStFs7nslnxsSr5dr8/ncwzDUixXbZfLxZK8c9ocI0LapgmS3Pf9fr9njeN6varqnPv7+/vtehVBQi2ez2dMY4jNOX16zPl4Pp9PVf38+UvX9uuvv/7trz8+Pu6frzcJzU6qohmGNA0RmKu26/XWRSf24/wuj9a0JbClLGfvnSrS4EFHAxvB7dOn26cvt0+fC1CpcPOff/plf95r6pjcx2M899/97vuv9/vW9dP18na7bKKCaF1v28XmPsZ43r+Mx90z+R+7mf31L3/etu3z588UfNm+XLY2RxMDpKXT7F0dnpMRGejHgsIJ2/P5vN/vbLptm1kk5qjqtkXXjO3SL5eNKjNcertcLtKaPF2CooAFYMn331TMJ1IchAAZmnKQxmk2pvlUSFIsZl6ZVoBEE+11ZNm0AVQ2FBe4E6rSRZ5mo7V223i5XO73+5/+9Jef//bzfhlX9pjWRZOBNX0kI5J8jl4cCtW0FCnwdjZhXl0u1lFMaIVHcr+rcCywbrmzQ5Pd4uh1oSxL2sbyHWRSYrjzFf+sImUVL13oEY1L4CA8IiwNaeBVYsvgJ0nnk4AN9HN6VgPP9V9SIzGCoYwgvNqTYYxlA76pYkMYkqMYS+nx8PJ1E2taQVUR4p5LKiARr/bGYfDLCGcffs35AtlNWEO5ERn+Zjjv7g63DDoyN/FQfbWOfA3x5ksW58txLyJis0itjus5fvubxLi8F18zwBn1+YxcRXz7yve3jLp5GiOMBVw8L8ERUTF52c7TwovL6/XRq19HxpxTVwEgv2uRJq02LIrWwhzlmFChw5wWLq3l5Fixws45RdlaE9GGhG+9cOsRVTDOkvkB3Tx2VZIwne8rr/x+v2/bluXqHJbINfF4LTdPA2bHbj1+kBeQQD47BGDIiKXnfiqW5yXNia7OFJGiu2POSdl6b1EOB+quhGr26BKkV5dBJCgYWGIbEXB3KWhHzHB1pCNRVXgc95U6e0JaFJPfYrSSnMXbU5xdlKpBBCFNbWZRt4iXe+82SqCqta3EUVEPmiJLvmXmzjakPmt8u3QVOeWa2DdzCG3fn2Z2uVyOoda8l1i8LMdi5mclhhkWh5E6u4oV1XneBAWyAtn8nOwf4pxpENI069bTTVQXKYVlepb1xznnnBYLAL8qW+Y+4RJWn3yQzOWROf7t9b9hSK00Z+ohJbZEaHNOs9DULMKcc9gE0KUfFZ78NFu6yseJOGyfiMyArp7Y+jnWsuMAlmD9QqRkP4EXRP/Y8GuK4GVTnFkv/sZapXWaL4HyAq4IYEG3gRoNULIabvkc3ZKwrWXPcIz9QPQlek1VW5OIeO775XJJSG0+IHio0uaeeb6qtq6qKqCLz7lvSRmkOBAirQmz0BGTIKOzwPShea2Z/JnPuYc74T11AwEhs1wcteXKIr/WNmEyXs/0WCKRgJMqMMs0dkr9iZBCcVYx1desWjYkl68MICsLQnJM45ohFxwekUVu9G3lmJlZnIwhABx+8fT4sHBHnipHC5RRrbmjE1iZE0g2CgVjJJEbduzH0NHz+cyNkt/o9poqL6xUUYL53HcLtta2y2WMkT2EtDP7mGbmzlZy8oBHSOVgv76/9965StEioi2HOySzUlW1nKxfSKpjfWz15IGqKEeq3zFaa73BfIwxgXRSM8uv7j7HDJds6RyHMWeh990STnK4gDwLGceTNLNpxYSZrAdAoasOt5mMAdRwi6AvztLycekTq45WWd5sXazktX1FBh7TSA4fPqYSKtJU6YhwSVWtb1wcjuPG00tqbBJHQztOFf1vbNGiKowDo5St98LI5a7WSL61Rb2mqlvrMGSHYparKNTudFe8kBEAGsUpfSPgjKosEOpgkPvzYWaN6H0jsO977qU50+7G6aZw9CjmzFJpZ04dWyjQKMbVD0kKvDFESndUsmRuPn3S0jZEDo7NDA0iqBKQBPE0CskRZmb0AATmkvB76RY+QSakf5Wr8gExyb1gMID+GtJZDkhVJcThTTX1dW1MmDuKHScKhlOa5OdIRoR0MYRuVa3OXXhEiVyt+23bYg6zTDD68/54jh3Atm0HeqK2fVvGULm1vmkTYI7nnLcuut2uJL++//L+/i6K3vXtcm2iZhZjuHvvPUkCHs/5vN/H3OduTFxWyP4Yths2JaFQCp4hZtG2qlZn1SyFM7etmVmy+pEr9K8619DeVHRrukkTduoWVEe/ff7yw+/+2Fr76ZevHx9fnx+P5+P+899+vF2v9/35pz/9qVGu16vN/ce//a2L7sP3++OXn+FzMOzt7e27L5+///zlcrlcr1cbn2MOFZnPx6+//tqbuvu+7x9f3zMWejwec86A6NZbk96vEfFc+fnW+rZtW2vuzpDn85k/770zsO/7EYLWljF7PB7DDEI23XjlvnN+bfIp6JgOmZg+w12ETftly0IM6EgIcUwfo7u7DTfTFkkagqw3z2k2TYJt5mw81RXigHBLUx9WfHukPh6/UpuIXLebWeyP0XWzfd7d3b1rS8b/MEci16UXUBS2RmequHYgno79nwgskhEWwaQOASCRz5tESIpDHOfoAEFk5BORZVn3eRT0q/0XFSMd5+X11SulOV4RgTopwjX4cJyy81HCb/5qfebxFevvXgw4WGHk8Y8DAHi8n8uPn642IkJORjtqqDOals5UxjRymrOt7gxXdz4DVytkClccO+eU1f06xw8v67o47V9YyxMHRP7JkRXH4kw933J9Jr4JRM+x1nFT6dwLnnm62eMPAbQ59wwuUxHxeCrKFhFJl3O42PBoKsqk0ExpAdKjNc1YIa91rqgiInrvZjPr05tuc86kZgtYjtQakOci22nbtpVCLqCqRrjPWDooIuxb8WiTsm3bY9jxnHLyLckNzcDFRaEqvXeGzVFDfcc6AoigWWxbdWmQqAki8XpME7zy5Foc1WEzHX96hcyc7/d7a/nDpNRqiVC2NXEeUSloFsrNrCFyfHS6BbhtG9jX1s/rnxbu4i0FhASOgk8UlGrdyyyd64aQfd9DtDXFtLy1+/2emWTrLSoVVwTnnIBTGsBwmza5SMVq27hTW0CGhVdkk4c9xm4+fNuuma48RrHvbts2zQCMMRIQkrJGnRzT3cPsYOeW8+YkNet6R6x8u93OAMXe+/V6XRuAGTHnP/KHIeUhfHGc6GKpGWMAoqq3283M3GKM0YJjjty6+Vd5tWlKnh/3McZ1u0DJydZa39puc4YnMVV+xTLrNITZDJuHzWrbNmZy/yaLGLIaCcpIgZ2ABxIXHRFJ6gZn8h8Gseif2Xt3cU8Y5cKOhnDmAEGaV88iSIbL2YouymcWPByrc5MIh4JBiNQB54sXQUVk+Fi7hUdqfcxAxkqhRQQhjtCWnRw7An1UJegFiU8kXk5K2zStijrDPJVpttYf90eaomw8ZwMkN8YLQRpOIma4uzaaj6x5QyzH7yOECAtDFK4JgKg0kRE2bCrRtLk7FY0y584IuFXP1YYIVDhn3L++k9h6773lcmQx0MckIaLwcJkUhuEoM4k296oEC+kMzTGmrNEK3cNyjL0cAJN359q3CD72HZQoeucQfAMKAoCXfY6UDItIbQVx9ygmc3OPnM5o1FiUh117a23MPQNEX33LnE3uXSNiq6ixWm379Ew2lZTKEGZmpEFsfTNwzkmhSHaltFH6puHc50zqlywkuCNmSNtaa0SOYLmZTXrrgpC5j2xKqlQBQFX3fd9/feh2UdU8AXkA3d0jtktrrWV5qCZAZJWik1YgfE6H6HSbj3vZnxqH9wNVTq3G4D4Gg3NOrpL5nBNuHr5XgOVOHJA3kqp9DDtqPRFBCaXOOff9kXQ1xUaTJU+hw5A6hCtwyVUdYzznJNlX4SlHpM1cqZKC3uaUTO/7PgfgTTT1ZpSRUgtFgS6vMi4p1X5IMnsPAI1NRH1FBr8JyLjqWcdv62irWrgg0UzxCkGmpTnNkDERnmkwA+kBW2om+zRp3O+P1lp68K33Mcbj495ay8JwQBEhKbJTFCYWqnLSAQb8etvcnq1pl+Zu+767m5Da+ng8JXzbLk01Q53WWmJdRbv5fO4zE8XWOOd0CxHNVon27fl8Ph6Py+XiHqKg58xhWiH21iLZcc3CjYG+BnZshvQmvU03nzNtqaimjJl72JzhhFBBC4e7UgCBlVSRUlP/LNNjgshpmOqwU1uCgyBLnhdwlU5AGNpEKWEeUYigLJuzZrM0OUGEQQ8p2vaYc1eRntp+ZLjDfGtyu2wJd0JEqlXPmErpujWRxGWk+FYibxmimfzAJBBODYS7qoz9ycAPP/zwwx9+uN0uY+xs+vnzZwDPx8em7fG4q4iq+vQxRlZ5x5iZa7vJvk8yfDx//vGXMex2+9TbRdzuz/f3n3+KMS796uMRwOVyqez3qCGOkdOtfVPVlhiH7Xq1aNv1UnFdv5ASUO2X77/74+3T5+3ydr/fY+w2nuP+uL+/zzH+9vH14+PD3UPKHD0ejwFS/GGBMEGI4uv9489//tM//eM//uGH373dLlFaXPzy5csf/vCHn3/68ePjQ0Su1+ucc993s7nvz2EmT0mcvmim8W2Mwa1vl367vm3b9vx47mNcL2/CyqJn+Ov0uZnZ7Xa73+9U7ZetbRcDLARiFF62T+rwfUwGVVwIoc8REq21VhKb3igDrkwqNUUODQUkuXyEgKtQVbYGaADTMc2k6zZjAXFEe7/Gx7O3LURthk3C5NI2WHz99aNDlKKkkzOJLUVF8fx437Ym2hIJkVFfJho54xMRCZiO8DGmT+u9a9vMLBFLZLLWw0GAqpJBLBMcxHAfEbFmVdwcKQdmfvhcI6mQOUcOB4aBZBSRbUSENnX3MeeRfWXdKtEuxbCwEMlZE/RTz3MF86+KzAqxuPocZWDbGgFb8dU3Y65HVlJUEieQV07BzDF+M0KY/1bVgIfBPPwkMldXkk7Nk5Y7wxgB4KguV+YaGW4GIEVgT6BESmQ1R49qWn6yLdnLo2Cdf5XRfhV1T8kOUTX6o9CzciscrYIKQZMe6FVPfi2FuzesMm0mabJQ45Xd4YTMDrjMiALVnZ9ZRHABA+ybhru6W7EIZm1XtQGOqLJNgm3Ww87wyxO9mUDYdNuoDQh5bQV3+Jw4XUx+5pHDADAbGe25O1NOI4pC5lzeOBblCNnXG0qE9gj3j+iTq+Zxbrj1lVsmsdPxUtV1PWdqsUxDSnhYgijVlX2hnUpolGCIBpGQ5oLHrjbjsXSVJ5HZVE9Bl92sVO/OckEGkSZNg4KAG2BGwoDr9c1hoIYoISYglCoqStWVERd1J0Ja0SC9ak5pcbLd4QTXBFqeijVL0mS9jsenqvgWGHbUUPKs2hpFO77x+OQz7t+LPbUq1ueOyvEESaoKRTFePdvzV4fT12zJ0c85bvP46mO/9d7BmJacz/WU5e8FPxKbc+qj5lnIYuT0rMc7VcQTjZ6E/TCzkNIDtRfHoNiMxO/JCaMYJx6a44tExI1+QnacKftr3dZo3GEouSr9xzvzYo6SRKwOv7BBmCpJxzk6/e+p7X+gvhFN0phWb+r8jbnF853H6GYWH/Kh6Kl7OWcKHOOo9wGQLO1SXzsT1dn2HC4A3M0FQCob+dESzfEpD0prqgIVYSjCfSYSKODm3vvGxQCxnFntN/K4iXo0kvI5q8B0sjxFX3SssLubhZkFHFp1Lp4as+uhfFM8Pp77yYghHIe9Opu7V/nmdCiSYwPA/X4XkcOfoab0dUxPUiCSsraxmUmTgC1YJWxMg4uqKMbwpOFSqUBk632fFkl+fsJomNmw2XtXSW2CyhZUdd8fiVeKiIQnHTrnYzwBSe7CiMg20VEXjwPfEYDTHavxuwYX8aKzQj3BWr3e+3iOw+Nk32zJdudXrNL4OnT9VPz9dsF9sdTVy93ntEIg5/eeXM/JTRwPjln+D/oUb4VsTuB0zH0HINnHDYKYDpsjsdAoZHv2HzL/XA3MsDlNQG+ewlR/f95Z4c7L6h4vMxNqfPtmFpXU2idat3OUb7jQJa01qrTWfO658hGxZzs0v65ACZ586kG4hflsrYX7cWoA2NzHHK1APZ49yYxnns+n4FXC8KK58whm5ffwjPmoyKoVysn7q3QGQE904+m3KJJuCprQaFbJcd4BPVWvknuP7m4jIaM5JVvCKwQpWjFaxUtBh2LpOaeQ0UJfF2UVXg0f4nhY4e5JVAuUnRcgGJVDJe38Cp1TBTd3eYLhW2sqENBmiiLmtH/Gj7Wqc85SYVhU6gAI3bRF1OROay0BGunYzQxjQpuKNIogvvv02ae9//pVe/vy9hYMEfzud79riVea093FYs4Z7o/nvk93w5g2hiXjpe3j+Xx+vn3WVEYZY06fc9IDSlXRRlE0pQjdsx6YxJEegIimlRMRNl77JR3u9XqV3sJJtMvt9t3nt+163barz8mY9nzS7HrpNruIk58+3S7ChrDx3If72+0WPnN4UBgCTtvHGH/561/3fX+7XJvy7Xr7fOOTxe6RZffr9SpN933/9f09IjpZKHEACEP03o+5euDVLchRizxHzqQS0NZaMkW/v7+LyOV2U80Rkt57D916/9S2i7Rm4e4WSIVtf94/MiO4dM1abxe9aMfYiyCJECDMs44ACgFFtKRnswkx0EQaIAlRStG7yLglFAbVLqKtbdt2dcN47iJtuKccXe89R/pJ6YneEpLqRd0KLVUULOdV5U4A2mtZRCROUWUW7GzCw4SSHEnKPB4ZW64MR5ae57cQ4mwyHYsPIBWhEpfhNV4nRzyZlC5cpTquuP83Nvb8koWrOszpyWvY4VnS9fCUy2B5hNOrsp7Dj+cwU2FCV6x1TiWOyziHcEe895vPTzrhE3V0mf0E7rHacpFlbl/YQ5yCn7OZzZL6+RuPf/NUoz/+9O8DG65e6fHDjJrO8f/h60k2aQx6EcxKZvQv71sWlPkHLqAgY9k4sHOe58MHCFGpJIkeVQUykabCacZieoDZfGWBrDA3VsieFxk5FaYSC84VYDhUNZQ52RjTvJjNeDzaOOu7mBWAvhhBBj2nKnImXors7bTKESm/nX7l2MdxbLhcRKlOb/IVI2+t/jypttzzicraEMeGfu02j2nectIPALxymyyWKBUEvRhmciynXH4CDVdeEeFuyMcPQhEIjQB4vV7zvppWNcaDEEcwhDl6R2SerbowYIfJqGcxQ7f+CmWoHggLlo7DweHd3F2OTFtqBR3BdUhEpMaVidxycqCqinAvIsJTfIVwj0OEI5d3uvXeEcwGphcTW01QzQM7qpqkUhnqrbZhwfUjgsninnx90MwTzErqLFmWIY2KgHiOWgXMd/O51iufLdx9jiJPcp84hnME+zSQEK3ZU3e4T7dwRtAcFvSgg+7woC2RAT/+y2MfnpJzNZie9TekE/+fYGb+3lQdJiKAGh1Is3hYOrwgslHY+rDVv42KDBPX7Qf08nVwRUR0zhkvZqZ6uXs+BXjkn5YFRxYU52HxY6Vw9cQljez0JZiecIBleTJhTVBB1vwg0sJ9zj0iVC6ZqCywLtx9usO9SQ2eRsScJogce2MA4RIwt5iTay45IVd5GuDRhJ6+VsUXI7d7qQu01sPAiLCBhNFkvTg8wugEwt2Sj9HNsIBJ2XV3ynSflrFu0LzIm2uqqfqBqiQyoDcRYVhiqN1RtWqBigaJFCqIoj3LACbg5pkUwVYN5eDYGGO07CwFw4wiohTV6fP09IIR4GmIAEKqBKZbMiG/vV1zqJIqAdqwSK11m46AQL0SXbKRFGiOtR/JViJhxhiqOfER7pPDIig5oBHJ2anuNLPpNR5mBzmcrYqAQ1pPik5ABKn/axHhYxx2zL8pRqTlDyZ9KQqscSKQW4TN7hHxfD4znM3YwpbjSFTeUZbiKnNkAhyxqBLIJoLC3WeoST8mxxjCoriPnBfNsBM0G0y+yWkMKAMRc4xt60hVeWCdVgcO+VMRkRQ8TlN++LgjmtFSHE0I/Ssoyf/1VDs/BStxipOq3LZ+a2Y1VhgW7gENryn7tMlaSJNi6gbQNEd7CrrlOdQHKsVtP8ByACJszGeQTQFVtymR6Cr6MF3zMrbAKYkRW3eaWICqRqlyTIsIbXSDjQmPphrhwlTxTnBBAkU8whaSeDH2eekNCD1gMfNZhSLCUc66qYIUzcQeIUCAktODSDxO01hTM/RArHHDgFAF6kmjn0OB4QwyRChm00GRBhLhC+lQzdgASEFIJT0eyiwiM3nFtKkSllaXFa4wYMNjhShmFojee1tlyvS82jbAxQw1XFu/So/j7hLJyxs2xk8//tjeNhF8+f673vXxeDw/7iK8vb3t+169+sSpFTKiJ5PF/X6Hzd6aQlrbYktklMUarkFAwlXJ8MRkhchBkdG6usfxEEXRmuim19sta3Dbts055/Tb9e3Tl+9762N/PN4/fvr1609//ctPv/zce799ul5++C47izb2x2N/Pj780n/HL1tr5sPHNBug+zS/W+z7n/7614+Pj+v1etnaD5+/zPl23VoTNZthlnIbb9dPvXcHtm1TbV5YRER4Ypsz0rjf73PY4/EYz+f7x6+ENlVpXVVbUxHpl3a9XrfWANzf31tr1+vtst30uvXL7XJ7k36V6yf2K5LhbOwRkfLZNsZukzaFEWPOMYPSBJgWMXN+092CQiezUyOuKghz28V2yJDWD2HcjAlt0pyAZJtAMT9+/dgfz9vl7brd9ssubmHm5pr0owaYCxmSeWPRE6Q5EsmRxii2y+TLAhCVaDBZcg4RxyxVV06YLo/ZyhW+MCyRzVqRIB15ovQIqxI5UYkRNCJQ5Fur9sSqDp+7uxl2YfWoeBQWqyPw92lwTdQeS7fecOSashoGkqVh1Lg0VyjF5NZMi5PIraQh8KWEh1U7iMX58lL0AJbKQ93pUeivi/aMSgM5LE4erYVMi1pxWCYpoOAk7Hq4S5ya20c+fzhHkpkQnP+kHsRRl1z95Pwos8KNZZzg7oJzys2DuCy/qK20rZKTY0USxVe1iliqoAz+n1SC4ygkNHWUzpLnMKaZr7zfSmArHAckE8cFrWt8bQd3L9IWYQbdMzwHC6QoG1JPr3zAsbEWstyz/rTCFOgpNOeqDRxOsX5VezUCxtPwdC59Pqeur6JHrFmylLg4nlaFOysB5kp9jwdsc1pMb021UncBKMh7XomHgB5wBjOZV7x2zP/J4ckadhxLUflDlXzohEhC3BFEJscZ3CRZEajS9KiKZWQPFS5+TtZ+EZ9uZvTqMGtx+MluU5bkl6yFDae0lxbOgTg438Jps74aBee9Hgv9e1R6cCp7J1TyGFU6ntt6LovE69iF1UZ7NfOlNVWd+wDYWk4UV1CYteFYfa7jabr7/ePDV1sJyJziOK3nqU96yUvAEEnW5QgPGhiI6asfZedyV8aaaZ0r588fyhr6P8LW/NW5DHb841wwA1B7at0Llwmrs74yUq40IJdxbTxfm7/8Qn6+hfPvSonHA4W/Amsg4XgHO9qrlZF7A6dFzruTgLkfeIpMO3OdVXWZAbrPUbJJC1/wG5rB7O+JMNzmLh4igBLJ/WdusZjE1qJFmAQDNh1NqKoCZDPpqML6QkYc0+n551kuiQiGqchM0Vw6Qg7J0HSxAKAikAO9j7N9W59Yn8bGYMTwam4ipklrr2e9THUGfsdG+mYPZPV6Ea0dTu5yucjqLYC6yiOhqtnFOuoU+baVYrE16b3LkCmR49n580NzLufh8x9eChSv3aJn0u9FYOarvp6FgsNzA6BAm6RU23g8hs2Ufjk2ZETo0qz25ctVNGBhKcw6ImI+n7mvpLfDKbyeoHnAKrhKrTKbK49aM/sBgI+555leF1CABSy2djsR8q9nUTwOx0E+zkt86/tBFxFD0H0KWoqBAI6sKkh4DEsIbjLFFXA6ojiUIsKLUkkB5Nw4VbJvvmM06cfDXQ7r5dHi75hB8BIXW/ZHfjvtdjxckYKle7i7z4WwAXDpGi8gT6HabHG/S8qceCLwpbUMjamnleza2DritTeOq5L1SjW17H6kkUkTHAnEomjm74E5d5KNLSRipNsVM6em6+HhxHN9j4AMa4li7edcTakPrmauuYtLVvNtvkYbkArsEWElBFACeovFRVBTMXkBp1FPLAOb3bkDM7m8dTGDmPsKgZJizd0FrRUvNFaGAISjODVkgQkzzlZVOQWssgALKl3ZlAI57ZDcomOiaQgxbTzjeX8MN37Vf/mXf/mHf/7Hz1/ebMz98fz1119++eXn6/X66dMnM8sE2BxmlmX1OT2Iffr+HILQ8gwxzGAj3NWjCay1wBR1MqQUOCScKqLaF2wtBdvsud9l4u3t7dIuBN6ut8+fP5O83++3i3z//e8u19v71+e//ct//Md//Onrx/vXjweA73/3w3XrWekLm+ZzjuecY9N+u12bqIdGGx4aEWMMi/IW2+3Wtg5wzHl/7u6+pdbLnLmfso5L8na7tdZzYut+vyckLdXRc189Hg8zszH2fd/6NY/rtm26dQB9a9fr9dJ7RGytBeVyufV+oTaRptLZuiUDjxIhggYgz2hr2iWZ1GHTp8/H/Tn356Vv2qL1omXOow+YuUUDJGTfQ5tDVTp1C8wE7UhNR2LatMkI2j7uj/Hf//t//7f/8W/23C99+/Lptj+eAvi0CPOASBq2lzE5Iq46XPaNpsYRSHDtz3NOVQptHioIyx5SYUyOYMaSqkbycDB8HjucZ4RLDcZnx0tCKAd1Qta3yllVWlSQkLPZP9l8fBsvxath+81v/YQNPhzr8X//zq3UKc7X+bff+JQj9Fptm+OdEd9Ga9+EDfXyVzRCfGtyD8t/vsLDMscqmp/XNq00DhqO06Ue/qXc7ngx+5y9z/G409dEhC3euGO5DqQMgGYZnSVNfoiZxQJnp9HEklqBOKBJ8LvaTBVCHX3nKBZKH2aqEIpIsyzPiIIx/eCCqty+MAdAIpEcnpzEQZi7JUlMXQwtqz0WCDSRnA8DHBVFZdB/elrUGpODCqU1tOUXjgcfBNykqai2dC31OZ7ju45X2eZ4or5Q5j2FScmDZSSZPI8QlsHj3HIVofMTplu4pd85tmnG1usas9aCkKQd5iYt4+90XbUnji0Ld5/VEE+fhZiBsADgkvyONQ9W6FyRxElmtNQrZl2uq3q2NDN6y69RRs5d5FSe+7RqAwiKdTjrsC5NhcLQiCy/Fck+VvVBFge6CFegko+GmY41ba9lV0EEVgU0/QRq433Dy30+wwafbqu3EPGCBxNA791dLbtAQJDC1ttmM8sfJCWJQUkViChmON25uMMQgYjWxCwYzWCG4Ykosnkg5B0RTHMe4mHDIxC1acSJEFhMOCxlhrMFgMiyf2B1UaKufA3vnmxcVSFT0WCet2s1YFEwSIZkfS8c2QFLYiGs9P6wesvkxcnSCV7YYwJMMozMimPtxbPtA1CquaesaVmY6omslgml1GsREfScpJVD2DltWyIsw3LGUlS1l3YHRNMeUBBaI+IR5tOmu7eW3N4qKKlaRsCcTH2SBDjWqF7TtZZZaUMgTAvEIBHuyeaFnKoACo0VZtZKlzXXwaoLltHGDHMzuGoTEoLMVSPCEFpnj3UwE7lDT8pJd3hEDkKmf16uIpdE3J0QpXh4DQvlidAyzwCy13rykVX39eyJCUm59O7uMAIhAaHSw0tOcD3fNFKp2eIeKdgDTk4PhwdDnvfHdulZOFNKu7QkYtDeSFbbzJ0RSYY/bRFtqOYIQlaSFCoBg1eGUH4nksvXiRqsJUkOH7ocZ75vhQnYn8/6a7rPYWPkJ3DlElvFWxjFZZgVW3+ZE0QgbIavhmpEkBok3BYgiIGswGar0+aEuXn4PComWVNfyLIjh3FExJItPr0AsNzrrM7DmtEA0FrLaloq/KTQpaOg9UcoReQ8uXnQPJ5zApEFkDmNwz7d2ikMOhkBp5lnV7/Y/sPNZlvxR+aBsuj9h1tSDbt7zin11jvlOYypYhhJPgSBloTvinLMCjxsFs8YR42/1i3LpmN2UT3EogBtVG7hUwIpvm4ROTpxBEl2gv3nralquJu7IoQUhruFOXzmNmyMSc9I2ZccRmLOGAxzuBWcy82TRjiFP/Lf5f3TeiS+jJJgXKS0GJnlE6/hQF8ISfKFiwGEXo8EJ7IwCeR/WMFyRNDRE4fFRrJlcENaBly6LG3pHpc9dvdIBpXUiURoewW1RwSpiRlOeAWYDYZ0U0doxKCyOc3M6C6tSksuCOUUpuRM19ZFj1xOm3z99dfn8/nlu0/mw3wcyJrn89lUKfocc875eDzc/XLZRHi/f/355x/dTMPVMW24D9JFQyUE1gqQyohQoCt704jIuuKcubyZIDk9LtouKqp6u37/+fN3hP70y6//8e9/+m//5X//l3//D23b25cvnz9/+vLd23bpz18fv/zy08fXe4Qp1HzcH/vj/jW1pkWkupAxQ9i2/mXr27alavsehrG7zzF43TYH9n3s06aH9qaq1+1ihk23jE8o0ppKbyS3LQ2VXK/X+RzZwtHG7F3Li+eFFj7n7NrT/xpCIczagMPmBNDKuSd1YnUzpXfQYUOVl8sFwx4f70IDVZsSFGkKBRqg5pMOd3ObMe4UVdsRUziNSCl6kh5zDh9jKGR3fv369d/+5d//5X/892vrc3/YmAJI7yEcYxBorTdKwFhdkBAtp01SVRrVnRFHhuyNoq3NaTU1AQi0qj/isyyYiiJW3ywiEJbnEMvqJWYjJXsr8Mykjh70pn3OuRhSinQz3GF1CtPqunviark6mRkMAbF6rZUQviKlU+aZmcWR2uFUGJVTh+OAxZ0/ZH0OzmFYRhblAE85J1dD4lCIXy9KNOFBUi3LAGb0HnM8flOASNySNp3uPIEsYuW6y7h9M7WXf5sXc87MT02uVzWB5PDq6vnRMVp/cry/4Pd+Ks5m0hf9eH87GiMVy7x87Wk9T0uSPz2LJGU5tLWXgus+Z5ZXmSohtjL1pJsDMkrOgC99ShnkJJUTAaV6xR5BJDTNWdpFCQ20cI3VC31BNHl0tKr07ZgrolXpiCy1JhRQfvMMauetm2bYzAuoHkJ1ciJinyNeJZOcwcgZ+nCLoy6rqoxDjOvVhZOq1V19jgI6Hw8pnBQzy72WFSmleinV+NEuOE7C8eFHq45VYQpRScLs420zPMxzbsHpjJafmYdlVW5Q8YaCraluXkpoEVESWbkBcn7mN6fX3VvruTdUNcO1OB08KWb/fjRbjj8/ZpWPnxxZU337CmLyMR+nIiIsojUtdFZENprWVOOKxmYp60gW89f1HAne4e/HMGQ+NIt1QADz4e6s1eBxhXkBDgscA8Agm8U8BbG1hu6ZeyFVjjwHywCHQD2Vx+3bpn7++WGcln38pkV8/tV5bvmwGmvjV+UpmHRYtaQAmGMwOLFHlqRknJ8FFqQ/IbsHqiL5vY7deNjxY2HP93IEoL5673VItR/4HKwS4wFPgsIQzA1T9M5JvjIrc4lgkmSEk/Q5VFUhIRqJevbw2EkxcQUZ0NRNsQT3+PmEHmZBRMInAhm6u7sf3M7rSeWurrNzGseo/QCyEkiSaNnLqTGjGGYRCIT58ScEJGJGeIiAttx87eQxBgNewEaCUNXpC2xm5uudACpV+NZB/v1rfW+p0SZ/bxO01oR0C18QD7LI92OFwmRk3aeUfRwRMW00r8nGBGbk+ytEC+BAR4gA2If1XkTrRZ5PqKrNhS84gRREEY6cHE6t3d6ak3OMkPOWe4UX5qxAigkFLQVymzyT/x9/e+zD3IyHGTn+EQdwPQEdQslsLbIw4YcO4d97/UShHF3381Oo5OTE1Zn3m6JBR/egrkQ4w+kCBlM1SzTcLIjhPQvKr/oRSR1jmIVPS8mPnH8huc8hOQKqpQBUJTy8ruR0nTxBJQrwk6Y7IRjxd5OKgJPfEGQccQlWTfYc2eRPmBXngJAtSAfBJjyHR+6m5DTzQ+lkndzeeyGbcg+sAeOIUJVwI/N8Bt1jTrepEsogpkKk6XQLs9bp9k2jBq8yeo5xFYgCKHybOAAaoWD4Yq8UpYojYoZherXWVUTmcM06tRILN+mnkJQFGajXMR8UEdmZPuMpfrOpshGHhZRh9XJFkPOxqzpJuIcqW+/uwFG1r4vPiSolaZhrJ9dhyVjrAOlEhAibqLQUZglRpVBVt237fHv74z/84XK5uE20CPN9382HroJIXo/JmuhWvL29/fzzz3NOqrTL1jUeH3zud0byo8UcT9vvglHQxqQj5saKHksvPItcAFqTfrm2JpfLJiJv19u1qXi0TX/44YftcvnXf/33//U//2//5b/+Hz/+/Iu27Z//0z/98R//sW19jHG///r16y/3+3vWWYI25xzP3cxgs7Ws3tNfpfKIiOcctu9CfrpdJUdXcvOYpU61hSeTqJk16baPdmnbtgF47jsQ/XrJ5562az7HATCczZ1oicKoAAckn88nIGDv0G27bNu16RYU0QYILajEQrsCgWT/EYcDKtquV2LGrmZNkWznpEA0RzA01MMUjDA3gT1jPml39CuhVdxDwRzMzA1m9nx/5ivGvu+PMZ+bbqqa1hvhydEwx0sK8byfzQwn45mmwxfd5vFSWYoeEImZPjeY6vIJlvQwr86ZBF2wsPJH3eewn8c3JpY4ARsCFrFRQXVydjiHbwJHQnvKFcuqyzcNm7NJPMdvvznRv/nVtzb5N03X15vL75zeeZjrWPHYkRmeIzczq0YZVjihSgrgvV8WNqXW35YSR964pu7GqS183MLZz2JF+Af2Kr89adsPvxmrb8xzTPttc/54jyxyn/yi4z3nUL9BwmFwHl3fFeomLUO66poBhiThrTux5Onh8AyDj8plbRoVEbFw0U6pZEFE/PSs6/7rytYbgCy0g9ndYrjHElHIveXEdAzfr30DHKyK9bEDxkz4ccZlsFRyBeDWtUFey3RcdqzkMjn3wny6US85MBcnQMJvdl6K6K2nG8e/1y7MunOe4RdgveYSW89WLhCkS3ZyAjZH9AaIu0MEyZ8R7KyJ09f59khCGD8gCukOHU736aQ6U9y5dou7ty6S843aAPGlwno65wsK5c4X9jWODZcPOlUcUrQ22bPjqKxHtZIhrx66yIEDz31FEjmycmyeRDDWsQyamTQNvsh1zYyqODGUlKVb0KxYoSFJLGq08yE5Tvtc3WDV1kJmzJydIDVi58vW5L2FmcUcZQ5yC3jMOWpdcCDZqmQuVnG8e1Uu3OBWbFgVQToSnkPS3DMVI+lC91i1w9fejlRmrpbqC1F5RCFni3k2ZxnIvkotfL0h92diCoTZqaj5eABk6IlzjyvBljX9Vc809avlZUlftYz45kqOBwfh+Ydny8CVLBFJ7i8BI2nhbk5SUTxMAHwOMm1yUNia5n60OZuICoQ551vkQ5AIN0K6UimwaZG825GDDGS4w90VlEBTjhpoIAAbe7FpC2KlxCKi0nya2VxEHRJRrWasiUFhoKUHhbuDr/i1rJCHo/7W3d1NoibkY5X5mm5ZiwGg2aVmHBRW54Ko1jkCwTgBk0qRS3Wl0JXAOCQC03xO17Sfx1V5fUXAAESN2tHdt8u1teYmZhaZFeRBLgGMSXJOMbMEAfmYR2s326BKBlHyV6dDXa1sRATM4vBnx24cSxKMkvgQRPj0THheeJZ0bKKbuyOcyqbKbFuv6l5SrMlprCiNZoJ6clyAKw0+LOGqOLhZhHPSPdw8VW0yhSz9ap6Sk5wAX4jZ+M1nHjPGIgn8T5iVenUkSFbqGsJWsyHrExaELNwZCKFSPXy4sXg7q3iX1kQhoqRII/fnUylA6nklNVcd4jh6HXVXkXv74MA/jMxRlTvKB7FwTwIok0bKEptlPgFX3VprPs29yDgr0BH1CJgDbE1TSNmmNRGJhR3PPT+mM5tLFfSISDbKjmtQ7Tkvl5AYnxZzwIMBTdsRTljKmzVKDm+JatKEau/SdYwsZwgFAqQWRubFK9AvWnIkeYR7cMVFXhk+czTWa5A+g5slB1zWMBbdaP6PRDKcvWQs8KLb8UBgYdviGCKgJ3Ubc2Sv0HBlxw4O7dw0qlqTEhWcnO0x3J2ResHiDlBUStmo2ioRpMwxlUkS7GC0bCiT+74nsrS3m0jJpgO4Xa/90s0k1qzWnPPj4wPA+/v7+69fL5eLsjmhFKjkaEZrjZqRFSihyv3xvNyuohJ3M3vK/5+uP22SJNmxxNBzAFVzj4isqrv1yhmS7///GwofSXkzfWd6uu9eWy4R4WaqAN4HQM09q4cuLbezMiPczc1UoVjOIqFNpcA7TjGhrDvpEeXVB6Fq671vl7ZdLr3p06VvravoRTXG+OsPP/4///f/9V//6+9/+vj69OHDf/pf//f/5T//J/b28fOnnz7++Pnzx9fPbzaPdCLwacdx+JjunpxSao55TESk7hUjYh6Hgkp0VWkqys+fX+ecKTY2LVpzC47DrpfLwP4BH3q/pGuMCGPaGEOWSNinL59+/vyxSwMwjyoPWu+MU4tIjmMn2frljp8J+gwlppv5pApSjMaJLsnSh3sQrqHwuLTt+amPAzET0tIgRIOH+3TC6RLCSAETQ8xIF+5Ef8GQ0uvO3vvb63673T5//qyql8tl3t5F2Zo2lYh7UneeZY9/kwtuhpubKoEs86BFAc2BhIoIF/shIhBCidZa2ry7ewQVsri091emqQgxM30Ap1QOmWOk1Z3J8iFVKCLJ5/ciKPDYu1p77THR4fmXD/mPgJnhSPY6H2paOB+llVMUICLKA9wXDzR/YDFfznQ61oTvF/lhRBCqrdpkAEgRqbPYzER7vWXlolX+dFEvxaQyQ8FD/Kn8MKskkA8mI7+ILWcd/ljfnrHuPBnPw0V5P4nO5vLjE/Q1J+Pj3Xt4q/zPloJmVZQqJEFmYQHLEURRoSVYJu1xNtT50LvNK6jsJAV7s2QytJYtgFX1BYcPUBNzmrcz7vG+KgMklChgZxLv63AQCYS5TxutwGMkme1WABGYw6Rp0yZglAxDJJJbpGlvNiPL4uyVteoSZaFcZ8R0XDe1HJC6B9YmJFXlgSemqppbYE3P7tVImD84oHKl4NOW3yxQesMlt5cFNxYOmmQEF4cP0uDmAYWIqGiq9gVJKZjxAqZHem7N1mQt3OXHWGR+gWoAc8ZZz1i4UrQ1qtJh4dksOKGtWM2b7PJmvklnRhKq3HU7Ex0qQlm5uOpZ3GaKVpDUu/z4OUVgiiBnJnT+SnZGAchSgY+IJJal88TpV5kFW6aPERFebelYjSibPm2IhWoWzjllj3AWRiWgjWSPmWB8mA8RYesJ7citOMdIidqHTtiiGUfkWGlJoImqsnG6zTlL46q2QZHzZ6lGL/1OMtmFSpknBmY52CEdLwu94QiJsHCCpqdv3gP112YZkdeGggAuUGdG6q8K6TM2RYTIXWwg1lAFQoFmd2e6NVGqlBLPilb3yPvA/v36YIPU8z9rs6rQz5KbYehtrXSPMAFVpYkCPqchx78MgaRlmojAnYHeu+Bu4LRtW2+66dNxe2M4FSqtwaa5HSPCQu4yaUiljtTACmW4Yyp7Qk/NXZTZvUhehmTUZrhbxnqRlAeSrBxIHsebNEnM5/Rp5mlQxFjIF//q3mci7QnGwL0Nt/V+HDFxkAyo+SAgQXeY7XkqiEjfVCQ1AyvjPJ9Oqsg2VUf2v9NxKW1KvLdOhlJaa8pY23aKtMLOhQPmqckEJNrC3eZ0qKt2UYBxGpKlHKxHMNC3DQu3aasx5+7TsW3X236YWe/9crm01nyO1LGPSv7rZWYaQRVPaqgKAsdxIIS6gkYUOTPOZhumzQG4SId4uO3H8LCct1RL9IHIBIGZHceYdsBcRHqT7MHd8wmqu9s4xnEAjsIHhCSRYTEYzSxmqVxKkoAeiplfJHnHuKtPB2x1tSwilKV/ZfCoMTxV1dxLnyuW2hHIRfc1rKLI7xOSDErhMYeTYXDJ9keaPHnOSIuOuxqXi+1fdyDhrymdWQlKPW6RNNKQABYbP8264AG4QFL7mMvHOL9+Rul8/02apaSKFPjZbPo89OkSMLN57paA+TCmqDRr1+U7H8fhjohIyzxfMmCGYx6uzMcBguVBr5pVtI0ZADvp4e4XEWov0oEHa/brERKrvAcQHjHNwgmll4B/dpAVNI+ovkpKvAvKuiPcjeFp+FuK/wFESJTjYUXmFf0Bz1gkKYkWyFM6M1IB22o4k0zR6aSzSU4v1sQYcEA1sSg2jaFUQs1K5ZWke6iiiZ7eVKL3Rn+dtuCYe7/kTp90tCYqGoCyIVxUnq/Peu3b04Wt9Qba+HD5MKJ/efu8zz1savB4uwn008+ff/zpp+fn5+enJ3hs2rro29uXY+69d6WO47a/v+3H+2FjxhRBExnqqcbdheKAUshilauoSs8ugXtvPVkuOfDorT1frjYHW9u6NOGnTz///l/+27/+/r99/Pjx17/+7d/94z//p//8n7eXp7/+8P2//fEPnz59Oo6bj3ns77fbYWaEwnkcxxi2aaNEkNm0bU1aS3JPDcSOaWZ2O/aXy/XpcrVjpDNNB3B4u8RloWoTJW5mw613vX54UdW5D035dPU57NiHKfqwxpipSa7iiOkeFqp6eGqjuY4RtyP0fVgEBLdxHMdwE6FukkpgLUNcgaoS2OwRoUplj4GRzs/OpuLwYxgUEoFGaQ2hKRiKMPikbFg1XmsN1O3YKHHs72+vn4l56Xq8TgY2baSOfT+OAXj29YStNz2OI9EKlf9HRKRzTbMop3EATHpc7h8qNWWeGR4hHkB6vu5ucIIu0jM7TYM/RJS+HWVGDSLyJJ5zJnCAlLS+Iykt0ylmGwtLr+7MwAVpNp28M6zpYs6avWT9/mcv/0re2c9oZjZUNV2RU+MqvawBzX2fezn/l3eRv68GxWc1+FgWZqRwu09cz093ryzljLV5nKYldIRJiPa2KnOIyPv7e+89tRvMXSkujHCVexp53tuzgj2ryMyufczWWsAQCYWrEgaAz7sWvS85oTMW5R/sQfn5LMoeXwAapLnPFA+bc1rMFI0SMuUaAWYJL2AINbJRZwlUAGDm4T6sinhbWpdh7kDXdrKQW2tImJzBUcWPI6bbdAcM0EbCmUKdXRQqh9t085k6HxoEPIRogmTtqypbAlCLwxDCyzUR9qZQUVlSWEHhtMi9nbdSG/OAB4Vs+75D2HsfMfvl6kFlO+wW07Zti4hxHBlcQJYeJxzZfXHfLpcxRh4xESnaLJfLU2XhBgRT+jTfgOFJ1+y9ISR9JkXQWveoNrs2KiPEASc7S5UEZ6EU4SVapnXaITtxQTjsxLsTjaLCCI4x0HqXlhSFiOyKJmu7zUgLjZZNZW3LFqK2sABiFvv+vl0vVgZaTXuf7h4TQAyPiNQkFGoEwsNgZkO33mqrJNZR3X3sQxPMSlU2t2nDpZVVpiy0Tz6y4ziu2fpuqkSYg0gOcYaNovNtm7vP6SpdlMdxAJ7+TNljfn5+jmNOO6ZZ061QAUsRbWsEkGMd0BNiethsveekNBDmBgntsr/fAiYqSjkOH2OINF1KaWWLRWYyN2Pua2gsCncfC6Uv0mbiBUBkhu4A6J4SkfMsXWKpYhKrl18CK4nLYBKjqxWKRUVb6jZkDjBSiy7kLIwjMrMBQQ+Ya1cRmSmn3Ft2Rj3oDgnLqaohQ4jaMDGJokU0yUlLsqDDhaLa6srB1jegZToC+OLNeeI84Kh0Yc59HpfedWtu3pt2UdAJJ0ObhIuI2BiRm9oiavQUl20Lc59DE3EwDu3tcrk0bypgOOw4zKLmTn2Gt63nWJeM1snsnbk3zuSszTmD0bYGoMOdmAPuQd0EGmy9tVRbNPdgtNaEPYxjDod6nJBvqPTsWJmZMroqCYMVuxMR7aQYiE5j4jUA2GTVpYkNprkHXISdElEVGr1QGyI5aQaATXP9cLiFzfdjd/dt2zZtQNCMKU0N8xSfdzluB0ntzYnp3lrTkOM4VLRvW85yU/cOdCW7kAgfhy3bRgVtDKpurZu5qLaMM+ZChbQk/Lq7EEh5sjkSQNW1HXOolsNKlWcR+75rb4VG0hZBlHiciSOVC9xd2MIdQVEwRpPp7mM/Jsk0E/ChRhH0XhpvSP1md5uYPgH0dqEWfcbdx9yReoSqPg8zm3Oy0BBZZgCpU00J+rEfALKVEHE3ClbVMY/UMM/sdzW572mQRwYlkC0leSMiXcSVYh42ZxI8I0KTfJisCnGJsn3KVmZ+4YzYORpfVTciHOa9tQS5u7tHovZj2GRkn/5OfknYznTLZAEo3/EE+IIMCKXNOaXJdrnkiI/h4dZFRVtMm6margLEsd9y9lhMXVEV6aIN3JYc2r6/q+p27YfNCDMfZ8rYtc0QtxDdMgWlqpkd+zHngGPben6LzETdBwMtBbnMhE1FRbtBzAwh+23MiW3ryu3SRWCJA1cKRLPGHu50F6H51GRCpWCoqEYDcNhMGzMzQ3K/SmacAoGIIRKO0JpCwszKpiuIiOmRWA2QpErk785cBqw2imdlK8w5PRm49o3ZnfMAoxxkDHBnEPQQoUYwSVZugZfLtkkbZuMYtzl679v1CX4IW2sCBfJSPLQl0Rd90VUyL2/tcrlcG6W3xtYZI32eUxzrcu3b5fL+dgugP23ap8TsGM8N73OO9y/DDWYf+uXXL99dnp7/+6f/fhu2QXazi2qM43aMmwPA5XKxcfv8+ePnjz8tmYQ4jgME3BsCcwKmQrZGsqXJkLBR0nRjHqZJgoJs22XrVzHOY1wvTWkfvnmec/77v/3rn//8xy9fPv/j3//D3/3Tf/r1737niH/5/X///f/41x9++v42DjIYZjYjEFT3uO1jjgCEYZHYH/p1001ELWLYZeuMSCfVwyOGeRy34Sqi7GPG7tZ12w//sr9dlHO/YY7vfvPbX/3qV8dxjEHVnrbG8xhN2qbdHW+30Td9Cjw/b9Jl+GjslDbd+6VLa/365GCovu/jdf/58/vb84eX7Xo55uq1u7u5Kp9si61NiQRVbU1bazmToRKhHkNDM1TOcZtO0Rbh9MAR0ICSl4v2hsuGUgnBMZxtu/brp9cvEbG1dlH98vH77//w7z//8LPdDjpsuNLnMeDRWic4Rll267ad3bfEPGG6W7zNo2296+bV5kYUqlkcIxBNAuHTB4DWOqSFu6psWwpTGVwJ3XrzFDqRSD383vUJlzH2mBYPrApSVWTYgFBcPMqiTUHRHoI5Z3iM9MGGNKpAps0SBSBJtsJqFU2vWl7rlblxxH0uhWodhjQNusVcGF1HgvslPGGzcAIsy+Eq4kO+gtetilc8lm+TatBHehqFEgynFd4Q0rS3DsBgzKwYntzqOUaCtm7HzCI5A0IhueghISoMmM85px/ee6fSzf0BIViHF5Yz8AwV7b2NMVpvEBnTwz1dhtxdNdvB2a1oQAHQt207jpuVABOT+dJ6pUlhFimOsQx0WhkgBSxCmEVs4mS8BnEASE8ew1LTfZzt5Lqcw/A1YyoiYKXZe/Zic6wHyBq2mkv1A4JgWKR9z3qHWIwyggmFchQKepFFgXScN7Mo3SmB5Cy0sakSyWWa08x6v2jpKuUcSVOQIFd3craUEsAMwLE1kdQIa9y6RiQSmcNmLDnw5NrBaW5jJC6xgOa6vMiOW45l7mDd7MuUNFWu8pBQlTUWVqbCSFACuPvSOpUekQvds77w3tsMX8AOUWgIJQRCQli/yuybRU2Mc2R9n+y6h24thJGgLVUKvca5Q0QXF3q9VLRfqJ595OR+J86kbZuZpc4nyjHolGJyLEmnc+q7bdc7+9drWCXpQvRAJc3o0HvPjqCyQPmM5LrfzbV9vbCUTs5tlrVZLpnepfVrdpICsV2auxS7MieoSMHeWpAqPdw8B6Y5M8fIDlmK7/feE1F5HHPfRxIB/EHAPTkqeQHTDYXNKc6biDCW4sj60Mdtdd9cWEII5V+XQIzs+6SZZ/X3v/71hHVUIn9elfQaMJJE+drd/dMf/1dESc5YZH4SSs3pturcx3mTK5SfSJgHHb/1lA2SFywR5ViWkLnyLJ2TgDZ22UjAPGyAneXgtayp3MNMVn8kqwtV7U1zisUCdbuZGXwgkPannqZZueXoCSuFkKGS4xfLkXajzIQ0eXjMEo6VSB0nEJ6ezMkAEl0NS78fbCGgOETB7FnECaVZvMSJnGilacldqscdZiMhuKrSRCJMAsNzbppqdiRTvQbFFnYu23E3C21F7T55DIHY9z1QUT0tfETatm3HcZwTv3UNbsfRpMVSRMvumJ9rCRRWWPaYWXipXDKhFxERzeoqVcpO8YdkfKWWrj34Zq8/F3/4XMnxNfGhttWcbnCzmYilpvBg6hZpopmcIu5zzjvXF2AiyU8SXSylAAZkmdDU6vDC5fppI1GR38OS8+vBNMXwXNJzempD1F4rZsQdA2Y+z/jmK0aRNeVY3zePElHV+pTFvDW4QCOiK9a8MCNXxg5i9Wjz53OxkUwIpdypYiKSzp4VLUQaWWNYVfX5laYAAI+ynPPUsSzsxj0xSNRAPuiIcIDEcRxdyN5VlYLm+XjN/T5sQVGlCI9xHMoTPpoTvXAEFX4XjsAZoESaLFX/CM9Y2rVLz85vIIwg4UpRja59zgEPuE8Pd4dVG7h3ETiDc/qcHsM9aGEQXlo3s9vttu+7pBBGgbdUIgEhOSPJo/wMwgSwaAWaNyXDjCWywzzCwswDdXBXpxwSMmMytYxJYRDOYCGwRVY2EdlkLNPDljO00y7GxMEmApYneTZxyK4CjzlvPq33Lr3lxnrantaRWqMhhJnF6YtUw5F1/3vvCXPopHZVFRvm7hCxw6Oh69Z776qtyYfL5Sr0/f0YN7ebm9uwDy/P//h3v/v0+S01Wfc5AICGcIEOcEybxz7tGMMOm5vwer0mXi7Mcq7dyEZ0ZbtcYJNk01oC6cK1qTTiul16777kMLet9S7f/OqDCP745z/8l//6Xz99+vL8/Pyb3/12u15++vj5x09//h9//Pc//OXPb/stiKALEzNCCw0XB2eI1xTSGSHAcLsgmggDx/EuIkIoQwmbNi2U89qvhPvM5MTzEIzGGQNz4GPbj3kcR2vNHE+X8eGbZ1Wdc378+fNPP318fXu7Qt+Pcb0ob2/TTZo+PTVtW0DGsH65TjcHI5yql2t/eb7q1jki5z2XSxeFuwGuguO40UtwlgYRUTaIgCZNGYVbBB2UwMwelrhxTvFWuhRF38tpTYxh0IyuNsb44x///f/5v/7v3//Lv3S05361GWMMkS3LwTwyCE0T1uwUI1t2FTvzgLokNlSorakh3CeyG5eeTIgkbwqCzDUvJKgCW3pAX5skVNSdnvOQ6k6mBI8mZ80T6ValKiiUM1s7UccV5D0ij6Fy5woSXgbGJ372K9gdH9C852XhAc1XORITtZflxgQgsiI5aiRy/uJZheXfzGKw3PVrYoGN5UGYtveuwtM7fUYNMkm6jzmnaPc1866D2P3hPeukC5EgoEuZYwF8Ir6SxT3T0bpvZWChy6UiD6cHDaD0FLC6aWnDeeaZ552MWF2Ku9h+fVwhQgtZiQIY548CyL7f4zNwZKaV2G4HIFRRlUdQdxTZKefGeKBfn5+SJ1y+8apskIn1ySmKIp45TgoNJRBpXI9UsywgQS1VVXWCWcKRDkFQgsm5N7PWMhnK0SJUxSPGHAmsjTAuiYgEC3nMVHNZ56uo0lPTglUBSKpGSwjExhSRSjIBUU0dWe0t5kyi7ilDTYpPCwRCwrPLBotwM0roajMnDDzvSa5LLWXTFEZONkvDnOEehKokudTder/kwNZ98sEorBgENUemiPjpv2A2k2NJJnrEzBySI0MKT6SrLH2vrGwT191aY9OUpUnO3tYlh7dJoJC1JytcLGmNs3adyYKkk0E0d4OISk+piFo8k1zF+2MefC4wfP06t/fZVMst/Xx58nQQTBXTkwXdNGYu2jumInKSlosyFW7Wp1+u1/Tom3OaAwvspmAezb7KTf+aApHRoNRlI6VCkfdk9Vf8TPdX7XruoXyABQx9jHFRZI/qHd53d0Hk7gE6ShZOTtoGITYtQ3msd75fgxSsMSKgv6iN5ayaAAj5kGHf4S6Nkohtdz81BzKeJJhHRKrdg9p068qRb32GQmSzE8U/YUJfHp77GINweaApnpeRkpVVlqmmAHT+67LHLg68Kj2tbrKuTL0wlnCciLQmWRNb0kAjtdCykSOeXqCJGpVwZNWICPDhDp+rdBF4cjWf69qXnHGkasC56rMhmCde2H191BRZhIRN46qQHYLqfFFERMvqc8YkmSyDulceNmb4kgQjyp744VnDy/QOBpesKtO2umjP8PBpQUmhoNyZc06PcAqEbmPOiDqyi54REb4ErklSZc6ZJmdL8hCqxSedxcCC2ZIQZlCa59qehWxljjRPjG5uAScTenMC3hIjZBZzpN97Hn02zXxke2u1lJERzGzWEet+tj4DcRyH2RCRS++W8Dwv2Gpk+8aKWb5iw9kFqxIOK5fJ2LXO2UeSf07AMuFIpsadeUtAMgg4PWGQaeSzYsUCI9y34QPKLtxnkhEcCTcyUs7i3CMSD4v0/gDqoZBzHsmbEEF21PK3WmuBtAkpbXwkPUGaiuAhPisQiDEOts54iGkswN4vgvyCmlMTjIi00nVBkizUx+FmhAsV7om9lmL/RupQ+phLDwVdW8tEzTxJ+ARnABYjhrsT6K0gCTVNrKFMkBSEeZTevLss8LJn1hu0dQ4n+MoTM3BPikQohauES0o/n2dlcZ1qpaUZXuKqRajL5GlFPH8II9BwlZ7o+Fxsl9bSE9u8jgARWROKsW57aPJ+iYho7EgSTRTRAM6QIGlEuDPYU2ay0Sy83BsMQiXFTZzCEHhXXlw2YdM+hcfb53/9/b98ftt//vEHJzHNwCPh4vQDkgSiaRZBRENQJDb1SKqRWVc0aFOocFMxKIFyM06MSUC7ng331CQDfNjU1lq/fPz0+b/+y3/745//9O2vfvPP/8v/+t2v/+7jl7c//fVvf/jL93/54cefPn82hhP7frtcNlLN43bcIpSiHpwJqCUJB3wYBryrNBEJFVJggHeiN7n0jVq2nTYcwLbwiVNEBU687rcvt32/jcvlAmn7dd8u7enpSbWbmyMOmxzHMcYYXUCizem58DOzHakGT6jq9Xr99rtvv/32W4q+gF/e3mwObLK1C9jDnYx+ecacPmaGK7dwUBFuQ+Ggh82MpAh1lyCcw8OpZB6abrCJwi2S5LEfThzHse/7558//vXPf/n+L399f327vHwnIsOOHJDJOXdLjcwCFRvAHMCgsoIg2xqllS18J61mCa6U6tWm7TkYaUeqoppOvhoVVVAs2oxgIZ4Hf23FypDZI4TuGCmfBSCrkmS8V8ZyT0GJBeRCneqpj7NUXSLSVjBWk/IeynLCifS1OQMdyShtJnwV+6LCaTbvqxRHnFlrRnzcqyoHVxN5ZW4rNUr5nmS4WA5y86tQQgKPchWZLaQjrYBAWylpzujhvrB4qRcftRQyBLo7KXmhWvTae4EaKw0wS0JuiULn3Vo4zViHYRCN5EmBzPcRkeTKgr7SiXu9gMQfZgFckDmR7NxjQb/P7BarAMNDKnn+U/J21mN8mO99/aTy9zTn9GVJiEyT8wN8lcpcSwHF5CRZimYBOCJSaoZecV6lgVxySrJUJd1d4o4OJ+kxwxgwQs1qQcSS2D1zu/yOCUbNZ3F26AupFZ6EgcaWx7JZgjfa+dErpbC2Xc6NoXq2Fczdk7qbN/bMRUQREXlr6otX5s+Iu/Bspjh5BkcEhIl1csOMaRa9nyJvmlpZKe+OiBA9SQj19zk9A9yDTVsezoBDWuv4ihhQaebtdmut9a4nQ6BWZ9PWmipVeu9bEn1JlCpy5fL3au2+kR8KOREZC+KfQ5jzriaS+Vy35+rKjZEtKF2mtX4y+tZLy250iMjtdjvnXWMM+9oUWkTwIF6XV2hmaRR5/kzvfc65325mNh88ygiKVN+ODxf5uBUfN8iZQ58fd3/QJJeEwPouksT2+IXB7/m7/y+NgMdNvdiVce6182uK6jnS4eKu5wS7PuihcvNHde6vB9dxd/gM/odLwirCz5sREeEmkvlEUirSvZOQVXrkREKiaxq3TvdEnotK8cznnFK6ENVQWAfAzE9cJPt166yk1mvwYjFttkiKRGLUM4BU9DSzRbQmlixEkkVbz2d97nR3g7szoeZLmv+8PwkXRzCy6b0U+cccuTJba/R7sIoISig1YGSjSMAX1Xy1C/WkEhGpFvKwU5C8QXCaAcX000Wkry7vNDOrOlnEEcMnKElv0VO511zWyXq2k1WktTYXycndbQx3b7UsJF2+2DSz3AgXEb2kHVeJZ5xHuJuNMWJZ2vnptrrm2blpIiJzBHcBZiRYnwSMYKDjfkhVpPKi15aRkoh0bSJiZmM/WvSgw8NjWZoFRGrGWBHM710qW/iafH6Z/AFOttVpKhue7LacnIRYs+68qqSN4UG/OiP8pm0dBPWtzxxgfafguicAIGyOMwxitZPkQUIzVnOQbr7a//mX+UDPs+kso+qCF4TnLi1aq+uX23w9IL9cu89TCOpexuuD1Wecxh4rQrq72TAzbVToV/d5veacMAeM0VKqFcWKoiLo5jaygdKZsx9PxDDciygLhKpF0MNsSO8Ao3rB4hIgU+71XOoLAGxchkCxWrqqknHtIZ7nrauZmEQJ3AjohAYNUJEpwRmNvZSlLUAKQxgOR7jkEBcosNdiuDze8ML+ta/O60ZBlJ11YgBFpLfWtPmxS5PWtnKIGDMkmjQRJiReKa1r7z1xAb54dzgZfXB3t2EibF1IjDFEqOy9i7lISrL5hLcw932M11c7vum07z48N4W5f/r0+d/+9Mff///+C9jf3vfLt99gWDjYuoqKSEzv7ZLtIW29tS08xnFrVPfD9oNz3wTbtXWSMcOdiEZpy7iVDjBa2/LIduKb754o8v5+i8OfX37905dP/+W//Mt//W+/h7R//Od/+t0//P2n19tffvz+f/zxT3/+/qe345jJpkAcDts9iDn8mNOKDLpUCRhNhHQLTI6uTdXFrVGExhRbI1RCBAyjh0VIPcqUfkCISOsG7se4HbsLX9/fc3d8883x9PTkxOvb28ePn7fbuFy2q4JPV9U+j7G/30h+0LZdLz/88IMTypbAec2HOMb23bft3ed8hwvkChVORwAi0E2gMtM8bPrwgQG7NfXONFk7Y/scc7pPiquG2lXCwjzcxadjiGwkxxjDc0YwP3789PZ2u16ff/Wr3zz3a8wwi631RGXm1BdVALuZFeKvEjNZIchIGFJmy8LDIZmIrBMti9ook95pcTpBkpkoZMAZfm+Rp4pIziyc8MO8BkXlwq2qmNWQRk65SgIqzOfjNjxT90qZsokf+MVu/cWrxkhr6nB/q/WH//jrXP36Mzjnz5zVkLtzFb0RAf3KkeiM0rGAIVjnI+Ju6doKYVefsm0bHq6Ka7B0XuFjcvUY83kKtaBawI+HcuXGZ5K5AJgidy+Yx4tcizCtbeaZ9q+zI6PuVzfwvMKTAmr5MbyXf8UFB+59RxGxY3DpB1Luue9696+kA0lWYzWvZmVRsfof7gk/WF/j1BHLS3z4Ly9lEp/hAYEoQgwmCq9ZU16SikgA1XcIICJRyMhuh8SchztaE1LMBsne1WAevtCkPI9e1cZwbQKUPXeUCQUSwip5RBBhnko2orXuZfEjAcx5nMfGmr9VTy7K1s9JhWhyWtKCeMbMhq6IEJRYTye3c8LSUp/jcslGJlNJ2HGaoIQX7AoUdwSdTpEWa+y2LqNSGwhFKPcqPdlFNXswRDbbyfTJMCsO8Fm1NkBachdXxy7K3TFEUupLhBRRFU22Q+0TINYMAXRqLRc5sb6ek+EzgauneuaOZysrVsVYc54S7jpzPhcBoGOMaUfAmGtoaSiZmcOyV2ewip8xMZ3ujUB6ri5h7H3fzYzSGIQMBCLEwjft8CbMxj+QNlQRgItQRM2QWv7ugUxy8GiUwrWnAvfZubsnjgBRMoFEQB7MyTJSzCjDJ1mcA0+JPzBRuHUPc9SfpR+YzBKQIi1iCGr7nOHmTILPyB6rlkDa/ZBAdfPy51OyVeXUzq4OSLZXzwMJcAnENJEW4Y8TfuUCMeLukkpABE2YyjGptxwwrDWQKPkqOHEeJ96b5E49O2WwBPDf/ZCzvE9Y76zjpGWMW+qE2RVLm+EUTagbpdLTCZYUegaBONdweDw0QAKAsP3yUMsUlU5hK7mdcK+mGVVyNFg3R9Jsjh4+EXLC4wmCItSLmg3zHK+xnlGquy+U+GrM4RSWUEr2gOsp26LfuAGRaq7uzoi2DGDbsm9REVUdY4Kl4GVjzDkiLsyARopodpcKTyaylpOjyFz1qBEM8yBAlZAloFaWxhIZBHK2nYXPtJKrWD0dYDIQGhYMwpGjpDTbQCp2JvBfTERU2Zr4HOniSIApHhuRCmCgL+6rmU/P6jz1xhPT7tEoITQfx3HMcs6L+rHI4uGXHa7cSroplmjKOlurMU8yTUqqGZqEC3eSLfPuFUi5HLmwcqM8dAMYD/SHk1ecfyVN05AGi4wz55FtspO19dAgHgpF9aXrzDWDSp7rfo45819nHeQuawWcX/BkLiDluEWufTMlUyJ5zWMy2Pg0SXm3c7s46uyFk+ph9KAbIaoS4bAJs+y1E45kt4CJK4O5kqItBQbHYTUHCsvZgrtZuIDaGrQdccz9yBuySV8O82ZnWCIpDDM/naujhK1IepK5Fng4DylGiVZBkREvSXRBKDPhDmaKk6YA6a9j2UNf5jcCIkEnDk6EpE2j1KwYQsIM4dSWM3Cs7F8kJd9L4YJk05b6oDmCztbAcRwpXKhsEZF29STSnHJJhXvBqkQUSHM7aRzmGNbQGGH7/kTfYrw8f/j7X73sc/yP29vmo8XY9+MCkWn759ftevnw3cvW+nBrTZ5fPux7v92O/Wbj8EYR2cRGZLAwlybX3i7kHNPHUBHtkh2l3G6tbb1vJA6bz5fter2+3V5vt/fry1Xa9vv/9t/+j//z//vjp8///E//qT89//jx07/+25/+8sNPf/rLX3/8+GWCJpANVAm2t92OaTnidnq4Q1RE5hwiSAkwtRD3Jt5VYN5ae9p6V3HGCLzuxz7mRbuSKcmZVZzEBPU4kv3B2+04jjFBx+euHDadeNuPt9v7n//810+fPn3zLff9+IwQCzpba6RS5Rg3Kvb9PYSqXZ3mIzD6+7vH/GZ8eXt7jYg5GDdYQjBQEsrInCIoAEXMcNvfubE3EQQEDbQAXGyOiAk3mMIn3OAzbLiMkAY4ifAZ0+FQynHbb6/vDF50c4MNd3fdOj2durJUczIxdOyiBAXVGa5ylBXzCab2v/kd7gBQm6QDMDwspru33iunAymajl++vMEzn/QlYiVCQlU1zGJN5RKBRQmpBuWK5HAJKDURozhDHu45DJbOexST8gTWyeOPZzjCSmoreNBJdi1FsTOBWPnGqRddv1ATxNXaBuDTAFSGm8QdpL+j+/r4lDWlIitwMwuvmc1Dsmer041ps74a7tVpVnxZ4Z6lZhR1qEdp0lejEGuyvR5BnD4L7i7aVn5YDVmzJJl6ZZs4j51klFCWhnGs+jlgDbowgsEMwhHh3upozMCQ7RKR3nsaV2AlmnigXf2ieRz/oQDmQ4vi/JnzPx6T2ibihWVyz6IfTDBqWaRG6Q+LyGS4+fQAQpjNT4QUajHtp9RX8m1lb8j1Cs+c8pwqt/Oxbdt2G8d5vObXyVRPVd0pFT2nu1PF3DV9rh6WIDwn+EiLoq/+6aFBkn/IJfJ4c3LF3BcTxSwi5uNwyQHJiV/tI5xPJMsckgk6cHcKW9s8D2TeV2cOJdqlIeiB6bPm/FQLtNZAlqx5xPSYji4xzUg6IRDESqNRtiV507LfnMnuUu2rtbk2Q5AaayInq6w6b9R5NyqNi7hcLtnvPO9Y0ol9KaefnaT8gRQqyz+fXaJziHHmlyfi8f32+vgDvfeIWETur55g/uc0E6mqIIcS2Z6UBy10FlhaVPvjU/aH6jG+btStr1xR4/HvH2/R49/Xn/ngpcavb+D6uLNLFysRfWjF8bxF5H2lxYI9u/ucsyRQ1tvy69d5PcAd3v+Lu5FCvudl59+rpgmbRSRAF6TAPNdSiu2JSO+ttRTTyjEsKGznSA2VlmfBFg/xt2syf9I0yqoURKRAImt0tXgWZgBsThEJRJoiAYlDDF12CGaWegcJji212whKTbC7prGZRTmCfRUGbc6U8VtooGxwWB4w9WgXtEfILne7rzVpqb2ThwH8pBY9tIGRTqfnMP8rafrHS+LSKsO9f1zI2IjwNftFFbeYcy1F9/wW4Y5s/6mcTF1f00KlxsOR4eYu1kRy2J6sxUhdIpIBO4YtCnodbxWlzy77fZwYEb3sGVZ0Td6nezHBzD3iPoc/onQxy+AtIosHcoydzGg/x/C1PvU4DlE0SjAa6cHpZj4ul0ssXK4vSeQz7CdCBOapdZIFZIa07Cqfz+E/nhFYZwGAWJPY+96Z4/zJCPriBy3cSu3i/BmlzHFUi/Pruff5mHJ3PF6GLIvUqHKXJ18LD7COx9PqF5vd3bXMd76SbwCqt0JSHxjXEcGmtux5HxbnHbbT2qr6Cppr58q8X09QRVpK+Sc0PkIlRETCLZUg1mCEEUouNqynGk1rbettzplqY7lYzr1jZtp6foXzGdWng/MBmBKFeF6aDgCkmH/wgOrZxRPJhmOmZ053zWZ+OGAKQjQiGGigU4BQD5ESRYnEqnhI0uubMhDEScA+b2mGuyZrISVJNZskFsyhsSWhY8m9WpXRgpj3U3Xs+87LHdGWz1GW8OE6IzKfQQZ/oNUaNg+fal0Fl4i/++bl28u2CdD18nT5//zj3719/8P++fPx5UsYj+lTmv76N+03GkI74vnl5bvvvnt9bT/99PPtsPfb/Obper1sam36GF0U7bppa03gYmLjiJAQRdr1zKnaSDGzYRYIafp2e/3hp5/GGM/fvfz7H//wf/yf//ef/vLX73793d/9wz+8vd/++Jfv//Dnv3389Pbx9W0fgabmmCNFx2FoI+Z0gAzntICZKsxIDxPT7CjPULUm1rWFO6cZwpQ9woJmZjMa0SkbYC7EdCAYc87m3R23/RhjvO/j86fXHLZ/+PYbp3z89OnL+1uAFtz3fWPcUsLz6fr0FO5+u93eb7fVnnZI82GvN9t8kHh7/+kY72b2/U/KgPbtmw/f/epXv2mhACUEIdm8gEaYvn7eB6GhW5PqTEZy41Dt+7CwGdPy/1rLrNsJV1WzGHPGjNvb/sPfvn99fWdQQ0TVxMxMTyWqtUZz9T49Pfl6JfpGQGhkQ4dKSc4IM01lMv0kDz6P3Hkq0npPpgpQvKn8pE37ee5klrTYW1CQrYEsGWIPekggpBAfiHvobtrCEEtK4RdZXL58YY+xMjGWl809lD2eDudGw0rAfpE3noH9fIdz49viTeE835cyKx+IMOfbBRjhIncPjnNrm9n0O1Is93XWDnJqPK0rSRDZ+pb3y9MHWyl5yC7M7nKGj99lgdoWl/jr1+Md4ENCex4r51ud+fwv3qFBS5+QD7dSVY9xyILWLBLsai5IKRmuokKpbXUIao5Xc38wQ+p56Z4j34eHlHmk+0rsKKVaHGc5GufJLjl0gCwauJR1Z6b+zlSPARCQCCyxmaTSBCIMluZ1zioFKZhh+VgDD27L5lSNiDmPM5UUEUrl6GSxCfLQR0Z8D5szU3IkLBwJZUp2MURSmzmswMfln5RXd94rtsxoW37hvBck09gt5Xsbm2qaECNCkgtWMMAyQT9xZTnzqWVDwqaTTMfCWCpcqS2UQ2mEACk+Xmc/qYmZhEppPDzkK+4eoUD+eszhKY4kOedVBRUpZ8omWg6uuZdaa15TIESJG2sSIzp5omcz51A2pAJDtnzXWpI1B8aCfCzKuyUa+kyaYe6jpg1JMUSVLNU8OPdP5KxsqYJlYzsBiCzVYuYFJ9Omrj9ysiCttbHfSFLFZ+RmTs2hvM45jzknIlXefU4nUrwHzHPj6/hZD9NzcpKdpId/TXfDnPzz/nRqBEFJcIHnQNuD1Ht30CIBPl61NEH1cy/EPYyeDSysViXxYFHGe9Wn6ZKLdGPMHl5K4ayNWSwJkKUvSvG7JgDTNVSUIqsaF1Q7TAR0taV0rxRB0f/IyGG6Ur0gSQ/i/tXr9Igwt0jyfVhOU2OadFGR6TO8QJI2PVWy3cLSIFeVLKvMrLRZ4gW5/PR2uwUsh/wS4qmpSHgyYwNAPcG1Kj1bRPmYsQgzub2z9bbMihJ2a7Hgu9X48MAq1M8jMyKGuxuDNKQ7ioRIwoKAEkN6PGhFgmTXMjBwZ1qnnpS5LmpmM9zD6AxLuZEQTRHmbGBW63S7dLUQuFAE5QtkZm4mvSlg5uZwQiQAjnUOuruBXNu/Hl8WzKuP6e7cH+qTbHZkXE+Ink8iSZ6YNj1MshPq5gYpSj18zJgm1T/J+nA1zn1GcIY5PAcO4dOnoYfN4wEUnPc8bYtnuMOnh9vIM9izyxARYDVcmCRYj4eGckWjmlhi4Tucix5g5zF/b2hKDt9CFM4sUUvcKAvhsx4+26C+VDrbAhM+BpksqrU3wBcYZSVheavTqyeXmKQwZP0HhfAgwtN2ruAggexHrPwhFnPg7B2oTkoomXDG7JZmwI+lkN9SKm+hU5Rnsx/Ayay7vzKjYCas1CYdLdm5ZDZTcqzTmsL2fY+ItO44M5l13+7EE1Udt3Ks2bYnAMmaadIBQepkBXLIYAgIw5xeDU5mkAUDJf1aM6eacXtCzLCUeESEkERgspLygt0n3zgCFbgzUwcFsIiWeRKorCqU4UCeO87sAIZrJDG+VuCcpqqp740FndBaRWiil+0SsXXd4CGhxYevrmcRpc9md/bD3VY3zb1Du6hYxJhN24u2J3P58nl//dy2rr/77cvT5e8+PP3Rpr+/HYcffI/25B8+KHi9Xq9PL7/9h3+4Pj9tH59u+ziGibSL8uXlwnHb7cajX7pcmiNsxBSJ3oQesOkIm+HT0rDrdrsNs6fn6+12++v3fznmfPnw9PHjx9//y7/++c9/vVyeXl4+ePDHjz//6c9//fTl7cvbzUHtW6hCaOFFQtbWoGAaRWdTm8MCYHjyloMMAmIxGyBiw495dMVla9emFyUhbuYZogmdFK38NFRNdbgdgIE2xtiP8Hl5un7z6fP16TI8Anw/dvvyubX2srU5520cT8cxxq6HAH7M4e4h8fz8fGmbiIw5xjhm7Oa399vnL1++vL7dfNrT08vf//0/7sdr102hTfTar9fLpbcLUgmVETYd5lAiba0DIk3U3NJpIe21xWZqYaQ8lKo+bZe5z9dPn3/64ee//umvf/vz34738Xy9YrqINO0RkcDXx/FmqcmrGIKgiiJoBklAlw2oNNFQjRB1KQnAirFYM0hvFDatZGz5uWIVCVtXCzcL90AZ7wCAMRvuGgDdQIQVVoKkC3LTpnwJiQCL0ZAqif+zFC7/tyxLow79x9h1BrVKTZMgllFrFUd8aJg+vu2ZO+VLozKr8y9Tr2vlQkizsPxQEQmHiAjEZwTX/NHXm8MZwcIYB5aj3mOJV5+bKM5VgOTfiQiRyKYiyd+vHJbglULJADmlT+66lsHc4ocuoPX6TAHAPNxXoujupcQeIYHCZ+UdC8vRPYh2zr4gBGhZVZCOYKQUw51DkqOJsx/gy9xIVW+3W6ZH5L0IERELlzVhs4cJg7uv5hGChZbMQjdKs9gDibRHBMONokVYTIyZe4SFuMj9eH9I46rGOEv/83afYkt5/XmzLpeL+0ke+yobmHM6meQr7U1VDXGMkYoClbtYSShtXfc9TjLk+fhvtxsWuPdU+QKgWnLE5wrGKgIBpEsQ4WcnpjifISfUI1WrS8QpH192eR0epguamGu/3l9oZlTxE7Gp2noXEQtUu0MltU+CENHkPfJhvpdf7VRPXTlchEfSHc0s5za1YNK3OXEzqyOFBY7ynLzFvXNGsrWW73/u6rPVxJrlzjNRyGRo3/cTtOl1Y2tmW/VnhD88mqenp+M4MiOMiH3fGaGqJ50SK9UWEFn0lrjrVyKkxcGGZJIUEe5x2KSwaWN4krIAaCsz5PyVc7OkZpG7VX78H0AE5w//T18P2/u+kM7NezYas735VbQlAYyRpn+LHlMFdjz6G9cb8r7H/Q79+GU4jkg9pjg33V2U5cy5w+71LgrEkvgrv7O4Afqciz+pCmQMuaOGRCQ8xhgJ+VbVJmfrqt7b3Q3JcfCAXfoWPmtbLd27/OKttZa6/YEmAMOmpfdY3h9VpIVbBN/fXslN2FM8IenfpiMNWsgTFxCVUpaIYN4xAEik9HkPIwJLPirPeH+QWDy3xrlTkn1wWIkf9t5/0bCICPfK4PPUOx9fHofn8lhE/URj1o3NUt+9RmSJqUG2POqFRJLncGm6m5Xndq4oXyAIAFzjx0hppZKmAFWI8Ij83bVO6hp679Pu3WWsrra77/t+v2ameHf+jMBnTsMkBQsrU5luMB+xxpu5TlprLJJHSrCqu/u0rs3d3cZ0Sw5SfvQY+xhjjDT5rGlbvuecM2BaWlATcFU9jpu7n0aQESGoOJO3/Twp8iMSMXHGybx7ZpbN23MlWNqw3xMOnCVlaWc9bHNZuJ5YWlP8OrDUw0riYWsZ+c5x8Xm+nzARIF3iIqXL6j48JHNnuL7HrsXsSuEsrOF2/kF5TzZImpl2telrqX+d26kuNhLy5oRbA9E0/zVSLMB9zglRkqmkqGwJ0B1uCUnNzDhW7y8ixph5AQQQtYZFRaUEHZsqQo7jCHddloq5bd1ghfGLaeY2c3RLqIJMQpLIdK/OQZQoBzzMZgpnzvxoEU3CikfUjkgBvYUCIJdISKbkBZwQ0vlwKORDKZpNluJZLVNZ2BmRCoR5P1trW+/jtpehyooYtdI8TlRCzpEQNLfp1i8tV4IgRFQoqj1Pxt67qKsYxtDOD63dfvj+y/F5n/vztx9+d+zoWzv23354+fH7jyNsjMMdfhyEf/fdd9/+5te//d3fU1X7RXq7PL88Xa/H2+tVg4r5Kq5y7bLJtP1wG08i1+1iY7rfrz9f7/sehPb2+cuXf/vDn37zu19vl6c///X7nz59Vunf/epXY+Jvf/vh5y+vn768Hrt5KdPFmM6mERoOUR5jUijCnAKragTTNbeUAdNskBCBB4+xq6AJni7aHCMA8+kpqpp0b6rOhkVn0GaUCXchWocjpgtpwY+vb8OmqrLp69vtdvh33313DOs64+Db7V1f2wi7zMthx77vosquT/JiEq+vb5++fHy/vRpv7/vb6+vr7XZzw9Y+ffz86d//8Ifrdn3q28vTh19/+PZX33334emZgTH2Sxd3ARxcCvPhwjRTyabygLWwIZky2kQPIDrl6Xr5/PHTp58//+0vf/3+b3/7+edPPcjA7W0XEWVPU79USTjXoYqK8kyAMw+fw8xM4MNC3IJQCIWFuXOERIFNfDFvwabNAM0qGojADBcyRLJUXkyXpCAgVhXjLGWQxA+30FkilHlkr6J0xbpzp+QBjxNz9xWGrhJa4NTMrVcpIHydTeWfT63BM105z4LHaP/4n2e0x0P2/jitjfsgmudlzzkddu7x6XamcKfIYutiXsIo5zmVj+kRGXpPNkQyDeaiT59DKc0A+DDLxTlxXI3O/GE8FAJRLdR8h/qbs57iEn99PFPkwQuUZJtuJd1v7hEqAvg0u16vnkRSlIykiDDVR6QsW1bClIlmdXULTwhECKCBQn5CoqirKPum/Oo+jSpphuLCMUZp1axDEZAkZyHMkNaa2aRouYgMHjOHBXQvZjKR7MxCrssCFZiZam+tRIDNbFbhWNqM5/LaLs3dx5gt5Xce5v51+9K94xiW9iRZvxHSW1aYsMTZCtbo/6QB5/GQGLZcWHlU5+IE1oOvS9dlYhwJgU4AmJGpKIC1UUWaM6d5SBhDPfemwywsRCRtqae5UrSnQAVsGmK0rXsgjV3c/TiOIFQ7WXxRrPwvd4qIjLH33h2hwoC83w53f3p6fnl5GmNYeCqB+Biqer1eywB++rZt0jVvSI58+bVSSz6srTUAwui9o4Sma2Y1p9mYEdFaa1K3V5RuJiJNNTVw8q32fScTJxPa+KSX3Kt5/4/jOJNXRojI8/Pz6+vrvu8npiszEHfPcdwqDtF7z6ve9/2w/Vw/gGUNuI+T/k0Ac5l3Z5hrreWnI0LBUSzB+kAAShHhdHP3cKaX5BkTze690jOoAWCxze8dwbyf0jTPaSR2YyXEWbGcWXjem7zgNGo+Q08iaOZDsMs312JfeAKAMnrl2eNu19a3rR/HMcfsvQMxxlTta7CkzKkEkPijOaaqZgE654wwFWxdfcy2NUHAjUBvGhHzGE3QRBgqIir0JUiOAOlSZub3EtCn9a2BnGNIQEUQlrWPjZnoWAXr+JLqxdgsnDyAeRjgl9bnflhMZr8T7uGYFcQV0kUX6QXrbvhZBwEAa7L0eB7QSyXbc2gECtTg7t4om7a34z2hrWbTCrzlJLOWA4hI+JAked/MWPXbWSIyD+/7QZjBInuw1Z6r0ERGF3FKQMyGCFVbaUY0URWbfsTB7EzkXp7m4sewPCYq2M7ZlAlqTw7Qtm3TYtg0s6xDfE2bOQbJiJYUgzmOzNXDp80ZDkQwxIZHRHrXpKSwu2/bBkPMcAICadrYPOEGAqLibco8NtVj30vsRySK1D1tqS4L2EXdp9tM26SxG8lWVqxARHL7xzwSsBARcJNkjnlxlOOc9yKSSdW1IZAmQ1xbiWRuxrOXkWADOoEg88ydZw86C1uzeTZSRcQJujPS9odkGcJLNSLqeYOQe9sxG4t+pjKetsaqaa9c+US+QyE5Qpf5fJhPG6q6bZvAx9jf5nG5XJQyE3HTW2sNdfBaKWasY87MclTeKGMOj6DqcZhSWpMIH8PPRC1d1PiQ9QnYLhf63SbaLUtsScUEiCo1wmxm4SmqQlrqLLJp5yWot3GM4/DAZbtcnq7HbR/j6L0/XZ7HGGOM3pq77++3RIJIyByTauW8KBpkttUtXKZvrSvEIiRI0XAc+xEBaiJuztULFUaRTbxnLe0zW0RdNUBVpghqkipJsVToQG465HYWkTDXVpAMUe1LmBMllRKEC1oVwKdFuJZGQ46YfExVuo3eLn2rBnFSgmvA5a6qYNkCN00eVnVbbBzv77feLs/PHxwyxvj55597wzcv26btw2Wzt9e//f6vf/3Tf7+N29//8z99/tsPvFyHy5Pin3776+tlv95MXz5cv/nw/vbZ/finf/qHb7771TFMWnv+8EJtjZjH+/Hlp/nK8aW/yIcPF873L/vr5/R7dC8WyZxzHilqTBkjIrS1nz9++vHjT88fXv7hn//JzP70pz/9+MMnM//5p88v37x8Pl5//Pmnt7fb+2HULU9eIbMZLkJ378J9DrdonQixcJtsQoBN6HYWAEQkbs6cmIHbtAi7DN1a34SbaER0iJMzbaQ1ptuYkbBebdv0aQJuTUJC+Pr+tm3b5eUpPn4KCLru4xhuP326XZ+26OrCwXg73t+P/TgOCD7evvz0+eP15dndP395/fz66XW8fnz9tL+9m5lbbL3/9cef521/vjz/3a9/+/fffWe/fpeY9vaaGOaX774lgbB5eCEMSLhbwGMijNQIg03CtYml8j7MIXPO2+12e3v//PPHjz/+9Hx9Ugt6ocDapZHZA3KEt9aUYmaH7Zy8tJ4K3kdBlspYM4dQqpp7LtwaSyVReysgJ3jpG+Ee0aiHFfpPpMjyOWVFald4hJvnnyWR1Dhz7MiLcM8BWwbnzABTmRxIYby7vOJZ8T6es2dJlm4O5ai4Xq21jGz+8JOpdpsQP+p97lrlYs1RgTud7auBcFVAUSVOuQxkPU9JJ0KYs+XRYFVps5w+UiPY7KHYVkRkYVIK/3lGMNeHrSCcZLSllu+FWauXu6eRwwlCcXfARRixpnRuM+9kCJC1Z+Q9N5tmrgJRiYhpB8lUdnF3ut4TKp7f4t4IA7AkOSOCaIsMFPciG8iMYcHEh83k1FSTb42Yzj7u49kJoHS518sTIwGoZkEMCJ33Jx0RLghnlAtrEcFEZLcZQVGltihBDhZ6+D9gzb/ulOTBQNDO0Xzyi4L3X4nCITtKmxPu+RTLJTKNkey0wYzTdBvnV7YHV4laKIiIWGXSV+PoEwNZe6kKlUo9z/eMssQIgSSELu90VrwSiLDE3EvP4QnOK+n9cm6Ax0ZA2/o92VqsAABmwQI/ZTtY0yUmuw5BPS84wZn5W+dwoPcey2KHpEfs+57og8vlQmi/lEdUCUc8vPKaVfXp6an3fhu3MUZ+n3RolEU/yGxJVWW708xqasHwNa2KB+XnnGPImilx9YpyDEueNSFxapCS21ZakWbpZmrbtrnLnDM1Y8/Fnxs+G3Ln9Li1Nm77eohrC6yv7+6pYiKroxQxtanbuSru62q9w1dBDVgwR/5y/Z9/cd4fAKo9lsDA469kIL6vw9qwZDV5KA+p+RnU7snoVwqu91bi+VvnDX+8wlrDzG+QCn7nIWGyxnqgJ3IWQASTEVCbyr86V1Zh6QmSBxAwmKekTBLSNVGljoAxqXmCBMUREEVZV9cXCQlJIHDG7nXxef2MCBUhN42wNT6EnNrLEhHHMYspBJoPLMhT9V7XnCYjTP71PZoFp3lGqvMhFtbgDFzu1cEViohqFcxuIHVJ1yHl38j7gVqk6dVQO8OXoNrYv4jkIvDknJbITX2F88lKgMBMv8DMMJo23eLB26a1RhDmI4aq6sqVW2hOZlXbydF6fPOk5RM8C79leb3azBYm94VnZu5Q1ZZzvJSOFzUrnAYQ7vSYQPb6/exAxl2L3WMWNJ0PzfuHDRvufv5CRCASb35vftc1FdDhq03H1efN+/z4r4/JzeMDWtDc+ymef38cZZ1y3rH6zEzbH4JDPVV/0OGMr44qj6+4uJmiNb2jAPIX88LkYSqb75bXoKLnvVrfHViT5MoW1labcxZsJz93xW2ltNrv99BUl52iKQ8tv/yB3mRhqhVS9y1N1/NKAEmwfOLJ7FiAAhGc1rhbbyuM9cuW75wBPyJZrPW4G0W3vm3bOIxLuyTKKVIYZEYcC7jHfS+yUNAJtVgRhRGNhc9McLOSqbz3GAGSBpCVBSGF87OSccn7M83CPBuWOA+FgDbVkunMSyycwPlAJ6I7g5SAkP5wz8+Aj+Vbrks+ICJyUidNIsxsuJN3T6wZbKrKaO6HHSN62M7j4+11//H7//7fP335PD59/vLzx/7hG33+YHr55ulK2a5PwacP+nKVp+16oTaPGC/XF2q7HfvT0+XpP/+z+vz8w/VPv/94veilbx+ubWLabZs7EH4cB0RBPVU/hs39dQbRGe/HPqZ98+HDfsy//e1v3//w837Y5fJ0vT5H4O02jn1GkFCbObWhhjKYgs8CH57qV4mmD0ZiWUjSwRQLrX9P8gNgQAuEwwRDbBNrgqe+bcLQjpk0pXAXaZxZHriYzWFzjgmPlL8Skbf9GPHxrz/+9PPr8SKym//w8WNnTAb7+wRvNkAOO97f34cbhNeX5w8fPgD48uXLp9cvP9++fPz06f39nQAhjdJACbxcdsX23J9eno7b+y4WEq69XT+8AC5VKNArn0mNRxM6I2ktZmPXsWv7ANsdzUPGPm3O4/b2lz//+cunz0300psfg7X8bE7reqe/Zo1biKlICah2MmIy8F63HlUBlH4KIrN6cXelxAogWAyCTZsncFmK6OuJjMjPFfGHfMYfksPKk1icTIOLJ+H3PuFEqSA91JwP88wT+3meC2cD+hFPGBFnXnf+ZHJZ0uMxHsCtWJNSrDzwIb/6KhWpf13VZxbAZ890nZuD1Iy39ekP8eExApw6RHw4X87rSc/qc451xpCv3YLA9Q+VbBT48f6vjz/8+NXswdH38Wd+8d3PO7MO6JSAxflbzUsQxpGCZlrcFFtmMLlu8n6l5JchPKrzZ/lEpaSnPJNQraw2QMYiWAvvspZnEkZCiqgNIITp/3NmBo8vM6sCuO6LpX4ygw/dE8TDFLcOyxPVH57q5tUFWdl0LWHg4f8bo+beD4VrI1PEdZ0rtaCzHg53n2UbHFj2ePnt9c7hOQtgDUFEDfsAiEC1mhyywFFh7sGFHyxnmohA4QhSvFdnzKQL8F5pCCmoWTTdUy9Rg+buF+mRoA6pFn5+e0srxcxxqcXXcgc1oVUR4Q4WnIuXpytJlY7gnCVMMsYwR07O3X36PBOdy9Y8CMLCS7gbSug8bNs0Z2v5rOGeTzrrvJx0qWqEpPtMa02qD2T2td5VNSyUZx+hyX3R56HvPs0mPNws45a7Kym9n12MMDdMmxNrdINZsJD8FHePE03RWqe6+1tY5QfKeXq/BQwp9Zy5qXvMs4STpSMSy2kNgOOs/ZaoN1IYWc+gsxKYr2AwEREUD+ZejtIjyZXmWLrZX8WLlH9eujWobpmehdbD30feqMdgcybi2TbJ5XQq8pGSOPNaup6iVU2aZgxnvVuiSARAKx9Qg//HWFB3w0v5ViRzzSToOCkhyLxElloAPEAPh6fkUlemAFKjCDjtcHO2luCo8iAuyBCBOI6D5PJVPgNumFVNwnCrTpy7z0t/ytAxxgiPwnKnIIIkC6K0DiQgDAQIZDX8tToeTml6LYBWivGIUNI8Op+pQpooGQh60sg9qmfMsv9eFS0TKEl6RsAlxo2w2qv5NRVsFE9aVrbmgyKWUYuxOE4erfUcYMaM4VWB5O5LT2lVXfKwmDZsQlXFAlMKOJpNLmSZ17CwW8CMJGpn33ratKSHCCA2jWTGjfuJ6BGIOYaqasvct+SFfQ6qiDQRWJUZQWRzM9dnPkckFnquKSuZNiWLjXlun4isenJj5Bjh7Fzhly/ec6HSLHjAh+PexUc1jnl+p/UFcz/mtvE058sPV0JFTxo/AQnYvVIm6cLsG8CO4zyK1u4OMh0UUt+RS9ctc2N1j7zbrd25FVxWjfl0gBTddLYWXqSurOtAiLYC3uZQ5WEa4HOIiFLoOfROYO1Jssi2TgLbAu5KQeARAs3VKJ9zwiPBAnNOAVpORClKcU9ic6i03tXHRHE9xGcNbVprcsKe081rzlwPYWA43NKV9xRROxfAia8TUjK1ClpYhqy0NYQqgk6EmWTTLNFkKToH8fBU26iBLUukASf2DyW041GMkoJHR8ZXNJXU/Wip85CjhFbC2cwcvdyzKcDIRHlVxorFlDYm3ePMoYXq7go2bb0vqdgaSrdM0SOiCXu7yEU8svuEy+WCrnM3ZXSImsXbHsf77cefPv34g+3Hp09f2rffPP3277Zvf63XD71ff/XyLM/PfLrOBpvvXz5/LyJ84jHmHMfz8/Xbbz6I3WR8/vjU+LJtE08tboqLNO0Qj7Ah1ITwQJ3ux7B9HFShct93AL33jz9/+cO///n17Xh++u75+UPvuh/v7+/7Ye7BGZ4eIXXyrkedtuIKRCI9CBcu8ZRgpHSfgzAPgA6IcIUNmAOEE40IG9EbEQ5zd3U89dbYKM0QYdOmTwtDqFBUhk1LmVjzCYbCwLfbEeN42prpPgLbfuBnP2w6bIzx5e1tH7P1/vLyApW3t7dPn1+/mH15fb/dRldeLhcBGvByudpze3kaT5dXkc6Q716eP1wvH7br7XaIOFWofgaB1V0qE9rpbsce+83eX0WeBKReAjqP2/72/vPPP//5D3/8+ceP9BABRNJ2HozLdaNbhJ6A3GzRAliwvjTlIlLnYfrWu9mY08MhUopCWRwASbCVSB4HKSLTpogkxE4CrTXXaqpGVOkgER5hcw4zaZ3UToQUkVZQqpueGpmeKK1i2pB80EOp1v6Zkz/+AVLFA5JX+qjmksf+Q34VkaSFxWrxALOXvn7roQrNpA/ZkmYZo65wTXqQsCWV5GEufjZDH+vPgCEFq1NlbNUp+W50RjjIiJGfng4MDCWg4KZNNW1Wpo/J6lz4GujU4aj1u1UnslrNknO4mSzzqMwniORwJPKxjBuK0uFcatX5Raw0lLNh6id1CKuedfeW1EdKamTnwgIDvgw9IqplcN5Br2uqWkvWNPgxa7s3aeDnYyOzcwYhZgp+qPg59lhdHwQsnCF53NUlVS0Kd4+lfOPuKfNdT8UjUtVEyPsAygPh5hEzVQXcJyYTECiSHgurt/FQSTNSQ7w0hM7bGvfmzWqcsAFO83lKWz28uG53PKwerGZ7plJ5nSdjUETO6ehKlUCmSQ+VPW+sncrG8PTFffyg1po0Rfa+VrXGh+FhviQNCYVrGsJz5+RoxKcdFq3RdQoRqesjkq241orrP8aY0y6XixTfO9mJd31I5PDK57lgzi/o7qfPGxbghIJt22yM/GrnPCqj1da2Mz6cjw9AThFqCqHkIqvrw9Q33yorWNW7qmfON7ZtM7MUBzodPvMhSsRt7klUO8cgZ12nqgmtzwIgy3JdelciaXFUr0zOzi8lC/E+RpkHnVvpHnGyYQTglJ9FPCBav1pvj3cmncjqL+X+k48roZ7RypQfPzRONMdD+6YOjK8/7ryS+puSOZUEmZ+D8fMrp6teYv6zdMxviZOOGFkSY5HdsrlU34GPr9oICFgyCzJp0bbVRjO3kkSCijRRD4NNF6HA3a2aJhJhTLqBqEjBfmx5fT1EuQDCzagSRFpK5lDzF/cqVhMUcFFkZmu2ggniKyewh/1O4NK200pUFp4Zq8ec2BAJJpaJFK6uHJBbv97TJiiB5dDmhRAhm2BRas8Y7ovw2XtvrZmfwhKz6QXnWbAALGam2pYUQ7U/Mm++7eOhx3yfT1bQmG4IamI31N1nNhoewPllp1XyinUrFmJ8ZristeG5QkQUNuMYN7XOJRmQQWbOKQphQ4mtZKvDcVeYjlg3JCkJ59VaSpGFneOytZ7vuyksfoEqqq0n94Hw+bvkEjV52In5AwuE8pVwOpAlcQEiqkZ50ET4hayALFKPUCRwjqF/8VrvX3Hgvoshixf9i0HB3UAhNYjruReW454GFEj+zDo89jm09yaCEolYbu1m57igvmx+o+xiVPKkZ8DsPVskX522khlBpJXvbGxbkwgK0n9vJXlzhjsjFFUkw7860xXkanwnWr1G6+7Ta5CoTVSQboXunm1rP1EEOfzJGBml45JJaz0EJiQTATQRpOpBeiLec9p6WPGgsOp+LzzcK9e+30b38HB4Is7OgH4uCTO7q/oEYGmVDK9pbb1PvtV5W1DkIzu7WvGwLFeQY01A4E1YSHiRY8Rt3LbLRpV0Bb409CYtKHDf9xjT9/Hpx58/3Xb98vlyO57e9pdf/e75219/c3l52hov8ir2/umHP/1bzMOev/ntNJjvTTtjhB3E+Obp8vTty8W37oO317E1o8DjuA1zy6HEdNuP4zaOYf788jKSqiv66fP7p0+ffv742vv1en12yNt+vL6+ve83N4AqEjOYt9YQUWMAT9PXbNBnMJSaWrhZVSxaGbuYh0JICeZvFQIya2BzHB7ikc6KGoGwDuqGiHCDuYcHqFSqahNl3xwR4dL0+nSV3t/2A10gMt6P12O22/s+xvt+IxHk6/v72+09qE9Pr6219/f3L+/Hu8fwsIHeybYJPCAztsnr+4gfP7/bDB9+ux3zu29luxx83RrZWzRpjcgAlUpveg8mCPMwuNnYe39yH+F2HMennz/++P0Px3FEMuGErbWnp0umPU9PTz4OLLzewyDMV8J53xqN4u1hWpgBJyvDFZFFhBKBdHios8Jxpi3JKSm45ayKKfHGecZlvsvzaM7kQ1a487WZ67eE4hUAH05znOE9Hmrg+hmVAKpZhfu3q74oADjJPGtJGEqeI9Yg53GD/+JDnew5HlgB5H746lcc4/MEuV/AOUtb73yGozMWAXCvgvPh39ed5/2XzhTaZsrF3U+TKnrvjhXrChNRfW8Wr2+N+xvm3Orx/Drf4fzfyv8frvD8X0n4N4GY918+g2bKhQGlWpyAumGHuz9OcNf/lVHQAitGpPVr61nqVs5aNxhuzpRYPYfpqeAgykhl5BnVWq9rK6i9m01vrVHq/IsIZYuV6uUhTF0SUXUxxlM3whEspostpHSdEOsuRQTDcnzqiIZG0A1mnt5ZIjWVRVk1CGPSQ0TjTtF8OJ5DzipakhjtNt2TM6ACD4b5HX6WIIooD0SwRgspjRoQL73nyhtUhSKLbk2SVIhglsCMhoUFHZLPba3R9PL1VYNw0+bUpGNpK+yEmYkk5Y6NrVdLWIO43W4kVe6tAZGmGh6M4BhmZu6FcAMw3boKHgS3sb7ynNMDItIuF1UFXMAZ4TGFtVDJlW4lDTQDliSH847Ovfc+IlIFdPg4q+6lDJyWDxKRkA9LWqkgzE0TO6hCshFZEt+Ow9xSAt9LWJsRiX3L7DO5f5ORPnjT3CJiuDk8YAELOLh2GRSAEgQtvPo79XKGhy8mcDoYP4SJBOKp0lcKLgtJcUYiR6TxM8gqff38AWb9iqUXTTLolKBkry3Vy3G6RJ5v+xhnz+h5vkUSaR5/RkS21h9PhfwVMzvNe/CQRj9G0jPHSkPQzBxRRoUBLLHsAFNjwN3DwMhOZ9m5AQA0tS7OzteYc0y2JqICpgqJHSVWUYIF67BxmIow8fsPB4CIiKjnFAiWcTUL/ny+hEbMMQbo0rYIQx1vXn56TD2CGSHp/5ABZg0LSEDJKOXGXhKBlR/HKK4SsuwvJzuQVcznqcYgwIKuOUGRSND0yhzOh1WRIZHajMBddkJCVDUIdwNLQ9Edc87j2FWVS3oQgIVzTvdpcMF5OiCF90pdwyO1Q3NCTjIh9FW6Z7dUALCaVLr6vgwPG2Ns2xY2h885jwiqctuuW2u3eQhCcl4+y9LW5oGIOQ2Y1VJJByqbvXesRgOipm0ZmCLDLuDLSiT7Dg/H7YMG5gIgEbBIvyPL5gVDlt7vveH7uFtxZh73d477p4SI5p+9dGKqUEdK756duLN0ytM8EVuycM7VhqsufmHdAUjeIjALkzq8/NzFAbC1TYoPlX+/+ncECEn1qexeZXPW6aN2i4Bm4zZu12f07bK1XiZRQELDEo4UURCjVVrpg5dhQpUemnFnRpzsBgptttQqnSMETRnO8CKwoLhqM3mHrtJELWaYU0RzXO0RiWtFhKeVtLfWiKRqZ2Rm15Z2QXP6nG7Til5RUKMSbaOTAEWCdMN9pH+20hAEE8kGIMwhmtKzCK9s3r0n7CgRfVKtXiUjipF7ctCweg2VgXhBG+pAQEmRk4lFqVNSmlJLYT4S+RQMsm0dKGa9mWVKQnIfwxBgIjvuaqBSAHgKGNMG7Th8jNG32Pddw1suHBsGsMVxHIC31m5mc9/buM73ffYv/fnb65ji1iQuXWfMz7dPn3+cT5cP18tz256uqhFmxw3Hm/h42qR98/KBoWPH2+ts220cc5pqn8ewcMCnzf14n26qvXV5fd/nnBb66fNPP/388Tis6fV9n8NuYxz73If5CAth690Q5j7nNJDS8rmYWWnjkYUryOwdAXBNEeBIqqeULj3P/VePCxEz4/KMFt6JRsWMgWMLkUBaJUWgUcgGQHsL4n0fw+br2+2wqa7mjlCLQc4ceg+bb7eDEgE5LHaTAHFAHDMuThk2pDUlRRHcgjHBI9oRfJ9oR6jYZR+h7yFiyu++fcbWOsGUWkt5iuxbwRFGye27pW9vCrvvt3c3ncf48ccff/r+Bwaeny5zPyLCp3VRiB9mEUaqSDsBrlz+QK2l01HA3H221lRE0dxmnulAMVFisdzlXphU+pT3ZJ9mZqJi7nPfI+fACMvOWaawTUUa2qz9XPYiUVEoYVvMLoZUx9mBqOkgPQgsrWmecd6/VrvKBePBYOjDYEIkh9CRSRGEKODe+q1cQgtBg3PMVg2zfBee50g88HGiKiaKEHqPnwDcvYnU5Hx963gcmxVWKylROfX08wtVihi1NRZn5MweNQNLwLJXKoU6RwWccz/EGjwhUqm3ZrFOlD0NEZLm52cNLEnnXgVxng5Chk93W/3datECqRXF4gAnk2nNIhmERDYbguuwT3NYEekq5J3XF6ek5HphDXC4BArvuXLpGGLVve6l28Ds7vM8E6mBidUByDYnhDhORxPeu8WpP8NE8uXpGOufvKZrJICmzd0tnDwX2Vfd9xykRASLL574olQVXk/lbKgAXADFyhG1CmAze+ySut2JfPLAJdvH3T7KY57LqH4y7mQzrGELayiX71CPICUZzsuoH0ZMC1XVrWmU2eb5lc9vmod1pmR66QCnWVgAwr4JW08oWtDlTm82s5hu7m3T9dXuLfyaTSXRUItEERHXp6uqqrRzI+XNb61t2yb6KBxqJPpWlI8VL0rGcqV69xljNgRO7kFEIl8sprn7OdVZmeV9xyYIwhevNZVOzukuUKbk5+OLiERdn9eAgt4dx+GBxGOHqrhzzrDUl3hspJEppaZ3PH9iTGsf+TmwfaghI8Jx30r1Sw9Nrwpa6x3OZcm1X2JxWs63jYhzyHMm0OdHY+lRy4PFa/5izmR8USwev935n49PjQ9rvvjYuUpTLpUPH/rwqkXFh4JT7wO3GsR5RGkAZupejVFRve+4nDaHWenoGeSr7mxrzeGqOkfO1mqgkZcgIrakEh4iRuFfMugzE5yontucBkDl7uCamwZo6/yqFXUOpoCFcz9BQgZIlO1AwkzWAXMmUOmWdD7BQJBBNJZQdg3StWnAyjk5gFJfZ1O63+d7UdrIknDfOWeeYZlhN7ZzPBURWNmJpPRxRFU0Kw4k2ilDeAIiYpFPW+vBahigKA+ICMiJqMScnhH1DGjZGzjXYZ6yaWTqYeEIkIOAz3nk+NrdxkiHmwsZrem0tDAJEV3dGM/rL+GxBXECIGjuFqvPHasovW/br8vU+Bplk+vkXGY4A8j/bPB7Kmuf2/98KDnNe8hKqjGTj+J8Bykw1B3zdu4+X+APPkShx2B4LqH1TxKliVWvJZ/xFZpJyg20TgQ5Ocp5YK3YJcm/DTQWrOZc86raWpv7nbzzGAoeH7eXbV5W+yb6tQ0SqQK6i1ABdxIu0GCYzUqhDAJvFKMpSE+4KixjmgiWTWX1f5Ld5BHTAtj3/Xq95sJ+fEAikqU7SVnq9ytVyPQApGQ/08tTpB6fnLywhfnKmUh9J5S46Blm+cAICYpQuGRHz/1bR2r1z+8XSTK92iD0krolyXMc5F4TB6W01roq2h3BhKWKdy62zDATKRMRHrOLyoIm+BIu2bYUAvDpUzQYmMeILnrRoTACKiS269P2/GEn3vZDP34saoiEy/Tm0IGpm/DaFEJvVG1N8HYb4/baxTeJFjaPm90ODBOPMFPqpIWbwaeZIUR1u3aq7uO4HSPQXt/ej90R7Zju4zhsBiwo5tjHCIr2Lea08MPMQRVd/WshVKgiosA8+0FntlGPMUFYkKQMAMSa7GTPNpEj4eHmzmiAewRbuNAVYZEzCbCxAyE8xmhNQuKY4/3Yb/tsVALckIL5TojITJXUyOcqw+ER+xzUiIhhYcFkHgRwmItgE9nN3ofr+81sjrFDY9h1xoRy6+y8WqMK5pyiBMVBUSEtItzMNYmGM+ZkmI/dLJr2Mfaffvjhb3/96+ePn0hets2nHccNrfXeQ/qck36yXrOXnBY4BDztYaZZudwvZSKyVJ3tgcD1kDQa4CdsYYaPvB9kAHNOJuu+mNvpuRBMnRCWS8LZr1RIonXnSd1C6qL5Q2V6RrB4/F1UacIz0DlgjirPvm5gYd0CEampCqtHCVYZVSFofdIvMsYcaJnZOXjLPRsP5wLuCI57mXaPMw/HR1Sm91V29zhbvn90boElk3F+o+wdezjO3uYj6vs8cE+SwON3OZsFaW1VDQ8pgyjKw3eqVw05InIk/3Cu3Y88ki0HTBXOSl65Bt/uLlF+fGbG8FRxjAc6JYDsjCd+Rsrq0EVKjTk/Js1XTg4wkpElfGSQ5xu6WaAVQj3R+FhsC8tBNFVYBtQRJ88wf/78RNYAxySxT/fVhdW9TuPMe68ZAFPJgRqWQyUwx2FrHVTUoy6xizzqTjKuWHg+kPzByFby2hGysiFJTX1iFub+3PJs6zkRuUfy29cIiCVDVbS6NKsocY4I8kxT4O7TPE3U8haDoEpqeg+PFpES2nk9Ap9guFNbqskXfE5K145JJ0DSkgEwGKqa3onZ75hzjpkAxdpyOcs9lyCkOYiq9FREQDqiVfeAETkYczKkN+09lm1XurnAExwY57y/VuOdwFjNgkJ9PxRsjxuSAfewMVtr8Ai7Q8vIco9ceqWlnSYi6cq0ZvvZWanmunvFSi7VAW2kS4TFKqEf40s+U5xVpYeg5rTrCZLModpqxkRW3Tyf9WP2mh+N/5dX1Pwnp4D3xCiJp2UBkHK1aUAfjuVTmlmaha/avnKgdIC0h0YAyQhb1Ve1uMwCp9QN1GOKSDIM7e42lViwDMR3zQYmuSbOCEl3l3CyUVJq3+FBmLIjXdVyPwpSyQ1lBrjexB2IOScDJakRhbdQClpy++08I0hq45i1xvIvs3l0FkurN8x8POc3Os+A3jvoIXECZJCVKiECMjTVXy2c8Lx10+Z0SKgQ7d7lXW2BPHuw3oegpgxJwlKJU9IeQAXe1c/2h3fLhXkvtPKfclHnf/qDkMYqYFNlylczGHN+1VSKh8rNEwO67p2wAUhVc4v6Ru5eSARnQuOAOp1X5Xyv+87PjYj9uIlApGUCE2HH2MdcxmbwMQ+GE2CYCiGgV4syGUyUEC1jpDh5wOeSpphZuD2oPMLdWhMAVfescpRAQMMjlu90vsOK5Kl3wMADF+CXsoj17WTZSN73L+tX7sfJvbHydQ++iPsiS6QjJWQyJy4UwEz7IoAlQJonMBYwDxESpyhVuM8MzFhHGEksMCGy35E4uszZsimQpwalayPp7pd2iQgf84T1tots2lwkc7U8ESICcJG2ykWaOd3Bwqu4GZf9xroVllOPNPNJBZ3k5qZgB8wjLIsVYbLlLTxhbNWKoqRJenTJ+09QJpgBvIkSBfFFFI8g0kQSDKDEVN1nyhnkNBcopHakVBUlpQkq1t1Bd+m0luWvR5BZonp72IMAAnR3CyQNGlk8n8bRYSmtIUviys/jT4jyWM7x1XqO2XLNx5qFrkhXba2NiOnewNaaShdKol5bSzVKUpJll7mv1BqCKCmUmcyR1gMKBJVKA4Ygtq7P180vlyNs94nL09M332wfvvlye397/bJPP4bZMczG+3zFVe0bfXp67g2EC+3lsqnq++vH988/H2+frzExj+N43z9/Gu/vEthkC8FtyWEe4zjGoFAaI2Lf9znnvo/sHqh2B9xiBpzisRi22ZdwTLeZQAKIRFBFKUBXbCpdFGYWZolbjAgLS2ZobRNGNlpEFSFS0Iqa0gQSahOTQSctFz88og0GzYpmXwqgIgKPVJh290gQdTicY2J3I+nAtFsi5IZNC1JjeqQlVO+SEsett7DJrbfWAOkqLy8vL5fL1rU3zphvdpNXP+x9+C4am4S4X5uqlMJ91mO9N0TNq3jiRmzMMWze2vYklL/97W///u//9vPPP7+/voW5eCghwJxTNRvKkhEjTelkJSpp4gChKKTuDSVlMxMNIYyIVaxmbVpDODMPd0p2padL9wWDClB6r8MUiZaeCPegW6V+vUucI0AqmdbHTj5g16rnGOcpWYXinIlbX395qt2dv1VjiRXJ6+WGQBnAnnHeUxggIcCnktVqh83w1SAt38Sco56Mt3iodU/FnMeDI8m5lkRZXdWjexJo6oftHAnyntI/NGqBaiHr0irKwJYFZUH17gfWw6/HncjDUsKHCC1mAOn0m1jLVAmpY/eENZVF/L0zeyYzxbnN+PxVre4RaAtfBIngOqvpyDFlrgsDYlo2QIYbUbBYRnUE+QDCiYjkKYXT3VTLerS+aoJvAWa2G56QuNTR9sgGTyDxA4QjgbtwwI4ZRLr2BWEWsdIZnniDtSbdEAuBTA1WcRJW7ksBiVpQlJzO56ETBa0ON8uJuWXbT1WhzjzN9Hxa7s6aJjEixrBk9te+DWQO3rcLltJSbacoEemocXHWhGfx4w/NbzIxKi6q1UrJe95ay9SE1UHAjOgRQc2kU7SRWiUTVNigQfJ2u1nJ6qTgEIIKD5uztb5pd4RjLXSmI7GotpPlKCvRUFW3CtBZBuu25bpaWfLMoNZ7T9kJkl209yrszUa/PO/Hu72bqj5fny6XSyq2nUP+1tra7KdNJc4CmKvfnCaN+Z9So/9qTq+Spq761IuWpZtV3xHsoukvqqrTjtgj8+P92MOQjLQM9ObBEIhXD4GlvZ5bwK24vg9BL6WYolEm6WsyVglQY+YhrLEJAAQCIQnFd0dJjVYyJPYQ4PCQDj7s81jHUkS28R6mUv/TFx9ANVzn9JwzixaRVuoyp5rrQwMyInJqmREsaXCPm0XK76SEc5QtuJpQXw1/yj+cRNVQHiDcs/TKsX8S6CUkpg1NBSOf2dUSEqoREyjVrUxCVFsXznGUyXbCfNbyUGEwCbrTPVR1ISMBD6fDXCpoBhlWbR2qaghphnCoeqo6e6Sh69YV0DlnhUZHhNFJCfPMSuvgVNUuzQGphPnUyEekVgZruB0RpCfzaMVebm2DW0T2M8QiFpEnVk5MOYE/EdMdHlKWaXGWtYmXORnsyOzQTJpkh87d3crKK1IZ5K784UAIhEJ3ni3OXAMqml5cFpHPMQcnIiGtZVrHIJum1oCXYVibc+aoalphNEQyoML9yK+Tlk8g3SIoY8xxHCR771mijDGWHsJMoOBjG7uOz+VpB2TP2lKvhjnXKN34lqVOZDokdag30eSBesrjKQhNoMNieiVHwLNfZUshMyL4wF5bx0Ruq5wzBCl0xz3zyjV75hkCpJy75bMjWh1EcX/lEeNmlBXiS7YaEfFI+/xlNACiZnq5nYpgt1Dr95/XtAWNWJVfXauF0zkjBLFpna3HcaTdGgqfEumkkl73JJbcd8QMwhkUN3cTBx+8jglIuIAwQ54X6TQc0NboMczhXrkqQHPzIDVHCkn1y2afmdVR5aEUX6YD27aNfc8SX9jM3CzIELakg2ZPPeNMOCNcMg0LhEfOeJWp1S6ViBfHj5kCpfvFKQ+dJrLJEKZQs9vqOONDmtCS92Uc2aOewV5QtTPz9QhR4ankxJpAikeiy5OJIKDDhg+fOHzOOb1vqkrxQEwrXjTDqcpImGsTSQGWUkgVKiDuNjFFmqi21oWm0xjQxqdLe3rucTzlkXR9fv713/2uffvdx+/jy3jdxzhsHjZfj5t9IaZs/UUd47bbOJ4/vPSnp9vr6w9/+/Pnv/2tR8h0mGNGR7tu144+J9xjWjTREO422XC9NKocc76+vR/TjmFjznANIcxbl+Ow4TbGtJjuDukELDAMlrmqaAY6EQGlobN1ABY7LDwUHhbTPViKrmeSAgpoGbQpIQVTqC1WXRgnLJI+AUbs7kLPwWojoS37qNenJ4/5/rbfxnHMCQFUDHabw6epdkjsxwxCpE3H8vVRhonotrXeL4CLzDH2a+tPz88kL5fLb3/722+/efn2w3Nv9GMf+5vEFB8D/m72/aefW+fTy9a2DgZg2RAxGwETHGBQm3awNbQWIoeNq7zst/3f/vVf//jvf/QRW+vHuB3H7dK33nXOebsdJK+XFszZXUc2xN2A1KWXLirSs/hXVUnEc5JKPJZcnD7UV1mnBNwF4h5jmD5tXXqVT0CmkahkhZEEiwddFa9yIVvMDgjotmCh9VknGmvl71yj6eQYQ7I/cS9xCRASAckLSJnA9TIfqJ5XlcEzPDygwMhkUs5XPETph2BrgAaWtOTjPJY0H713MjVBZbW2y1U+b5zXdS3s8KPsxcr08vA6C11UHn4/JdeFZi1TjOWo6sxQIGWSHEuiSCTlKaP4frwjntxXyqCISKkoRPhjFvp43Pgp8JHXb6uUqlTE3b1xYY5Zn+XhgUBvOsawiEZ1uHYVEcOkAgoVpXPJoklrurU+xhjD3EMCFIYhgqrqiX6JyhTNfbiJNF+JEYDssCoYQouYbtOgvW39eoTtt5v0DQ0gjEW5TA5kbxJpJuMQKXHmmoBA83abJx2jRuuURmDGXOTCRlWap4DKHIvLqk0EZiYMEYK+j5LJsZgpCqiqvbU8uhAhjCfpZmY2IoNWumBpkmT9dE8lsy9RqYbHNLNGYVOne2XtHk6ztNVoQolS9TWVrGTmcVhu41knO0mZeTxSQDVPpbeDJFUSeXsWh5nJCyWtTdhTs1D3fW9bBznG2K4XmI8xnz+8uJvN+Xx9IWnHAWk51otktlIiQqX5jIjRe5deEjsJoKREb226pYXSbdw2bq1txzh48HLtjQKEw47pADbdjttRCWKRBEjQHckuzpI1K0UJf9q6u9s4VkZIdz9sABhjxL7nGS9NpzuT+DTnnLOLiiI8WmsJlLV5pAGSAK3LnEw/BJsjAQWanqM2bHgelmaWTEXzcI+sF1W1izpTGXsCYKTfIzdtx5w2LWgiGoCyzdt7HplJJY0oi4H0g62R6JpDOh0WOVYimTPVRAuqyhkCzlJhlaCI1TkTkerYPwS4MWzFiCSoFYSL1G3bMuEyC0ISwANAREU0ApRqUXtMmw5Ga01aM7O+XcnCSXZRetTAJIoQkYm3rv+FG8JI2XpLA0/AhxsZqhSEz2FWrQdV3ccIWBdpTRrCp7nt+XHwFlQFVbsKRdBaICYjRGFzmo0mIqL7fmutaaLbEjARHtMUhDkFSzLdbJob5jQPSm9EHDY9h1TDtLc8U1tImMNcRSIwhgdS+yv/L4SNZGtt33cCQh639yDSUoQRrcHC9+MIYeuqKW/rRklfjYxuORagz6H1rAmMJs0BC3o1WcPdPO1RNAEIoY2kztK80UtTAMw5BWq0G54y+sKAjTR2wvSAm0hI6xTVvgUw5pQAJde5uiTHX9gUIbPMOUNVtLfj/d2nX69XEu5Tg4Q26e7uw7PgzI7xjCOFscyGCLatebIkwkQkY0NTBcLMKNKCvg+SV+0iYhE+pyFG2DSLgGoHMN2OMbIGdPfwCaAVKD0iYtrUcAtz8+yOaVcAYwk4zXlU2ZOD0GOyirGEKwSB0HC3LBvyHFSpqQUE7hZmgKYcBFbTU6TBw6bJ8lG0MTZRmzM9P/LodjAAFc3BxT0JsjljdL1EVG5RWXvasMHEE36f51Bpjjg45mp+5Ywi8s1GmAPee+8ttT9CGEGdVhj7rRf3xMwQrqpsZR9i4UIV6mQk6j9EmoiqNiUixnEIopj9nuO3CFMLzHEwcGm9d4UH3CX43Jog4oE55vsIoRG9t33fDfG0XVQR5vt+S1eDIBFsoiQCUG37HGMM1a7aq5uQIvIUth4zAPQuIgbzMIsEu0FtmEd2Qn2O4WNu2xawYwxHtmvpx4EweO53XXjx7P3ncCq0CxBzDEQ0IZoc40hTPdUeyTlKlmN4GKVAajRLanc+cSUJFdGkPICUcBpLpmhOJw1JE5GAu4oYWGm3B2BNtauCzkAwDkz4lNYpMt1uVa70zKkF9Ikm2nUTERtm6RtH27ZNoW9vB0LaZeubOMxhIBSybZvYLrTrBVuLPeZvv/vuto/f/O7X/9v//r9+GbP/+NOHl5fPb/v7ftN9m7d+bG1rF94yfWgv3770S3v78umnH74/Xl9p5rf5YXvRTd8+Hbe3Iybn9MyCvvn2ZT8OJ0S7ISzcwsHYp8YtPKYjgp7Qsy+3t7mwye5iwQDHtNsY++EjE1pqb5s0dfcZA3Tf98WI8hnJTdQcfSdR48xGgDIPIXNWn4B5FswBkTV8I9E7hMN92tFVOtlFVJCa2gr6mBCa+e3YIaRiH3trOo5DRYLuEVSZbtMtWo6XjPDepDE65rPK0+W6yRbxpKqXp+vLy8s3337769989+2333733be/+7vfKPHzj99/+fzz8f527Pv7GNdn/Wm+trdNrtdvrw0K95sAJYLDSZoH5lCxKRQlBDGPsb/O//H7f//rH/4m0E0beleEz30CAlFVomc7KSKU0nv3OY9pcPTWe0IpPJp0TbwSTQiJFsUfrFpzzGnmqn0Oj0BvF0SYWaO/PF+nyHCHWSGdk92TcI/WR2B6kCg0CJpH7PuYYSoqDJtjmdaCCcWIaYnUI2YqD7AEFR2ibXP3GR5uVQR6wKlIAgf3ORs07tO63I5BVt8vzwvRBpa/AO5ItiRwyEmPyUooES2IAEKkz+FktC4A5jwgVJXhMwdF5nPOVI1VR9BdmgCwoxzvgjAzWo4em5m5JdMqG3CyRrASXpYxZ7NVFKIgw3xUm5h6igWFiINuyYINRyCdhEVFQcd0B2GrNi6xJHd3J8RtAtJazkjuLpUL3ug5H0v6qpkJypwvtTQRIWBb9ldwOlNlgUBguKmmspKYDWfiCAUSDp8WCbEjaQiavxdxiw+0RmM6SxMh1W2A0/K6hFxAwxPg6BChhlBZ3i0iIk7tWyKdudB7CacRSf3riAghHSF3KPy9LZoPBoHKNkrVLTnASIPPLnSD+8hkdE1fbWv9pP/V8hRKhEiL8q2pQjd/4NIy8ytnUa4Gw5zjYW659BtXLZqKqanVLIo8PvPKSaL69GtQIOX2B96LFqnKn2V8EQZmGp8d35M7V3DNkp6PdStIqzmcKJlCDVwditbaoybQOdADTLXNOedI1x9tolm2yUJNiEhOZUHfx2iptndnlMFszDm7amtPXZutwyS/b15w3t3E/yS0zZYxZs6gTv+kY9/jZEwhovxXJPXqFwva3T2ZvUkALvU/INzN5hhj9SmwMGLsTSUuNDRK+ukAUIrTYLUScpQRaTUJD+c+97NHZWMxhy1I2ih5FVWtbx2lFZyrGnjkGTKcfoIayGSaLYeLep0/f3oU5/NKIHo2jH4x/uUDXOTxfXhvTuP8QwXearXe//78MSyvrBQWBzTfPJ9CwqplATXoC5NbcKCcT2ZjBi4hAYnIrmyNHTzSoiMi4kECwMKDrqKtsSdJghFTT8AOEYQwQKeXV826/gUI9zlFeYydaVtNjjHoloZe517Lbh3DKWxbT505JMA1dxmmChkQCiOsfh4SCjNtDcCc7mGNLdLWaA11Y/FnHDO9vlSFIPUivXnE7XY7Xl9fnp8jQlHXiSR9Mc2W3JHC0Iww9zhsPF1fMj7kSrs/aZHhU0v4illwahOfJfVkNqdBJFSbqiSYNgDLxY8CL7VerP6shUhG2JwzrOZ6avQUJgjICdMi8wvmkD/MVXtkV9/Dy4mOETGPESUY/tVSb1lxzXD3llgksFHa1vd990z0zW63m5lJbyzHrMwiPMyzMdzKQDl3nKcjjrs30QhIMhM8sNAUSHA4I22ggKLxERLmXkKJENHsQKb494QxPDzcF+PXk5VCANmdBCAi6eHKJfFQGQALP2XLpCH3C2qinGdKkuB9bW176Hrf4WoA8myole+TtXlx/sw6x5Fx0mkMy6ZysZrCVZqLYFGyz/14BmR3T4ETRzjRL1dD9QLy7w0go6WkHR0QbZRo1bUzKTAozCxojnBxaOsEfN7XQ2+NAXMryI/7nEdECLRJshvgM9kcomRoqMi1bwAieBzHef15KN/P9zwv3An0pSGS854wwLnp5lFaBSxAcgi0a3MbiEi2LiBQhBPC2xhmA0K3Es9lYg1FXWe41MHvggiCqprYbB9JotMu4qpc6hKx4OtCDYT2VHyM5emFTAbmzACqkSkYSYJg7623puvczAoNgEWA7E1ab1tvIuRk9vG7qILZQBKRnFs3gYIiTUgjEhqjItNNlXC3eWzAy4fr9antx+vHjz+9vb211n7zm9/8L//4Tz8fx79//9Pnn3767psPO+L1/W0Psy7fXbZLu7xcXr55+bBtDe5zvGMOhtF8vu8G+vtuwxTq097f39l027bjOF6en3+1/Wa3+fnt/e327scE7XJ53o75AoUIyX0cX7688bjZcAMdzLVmgWNiGo8J84JTDXME5pzDZrJovfy5BBDLYCwdUgh8LKxwboiHsxJWz209QQroIRIBN3iwoS2Vjuiiz9fr9XrponPOEKrK8/Pz5v4+3u04zEwXgj5RRUpkgYQIbWyi6UH1fGnfPj89Xy7fvny49m3bNumtbf3Dh+dvv/v25eXp6Wn77uny9HT55mkb+2/e3r58+vjxdvuy25c4/PL+fn17bR3b6pZepFcBHJbif2lM8H67DWvX3n7821//+oc/f/r5cwtpTS9bCywBV2rTq2an0kapqLgDUDZp0SjhWbNCqxKpnAgREgxRQRDqxNYupp4EJaDl6A8xph0+He0rAX8APi3BmBKhZOoTLX8dE2mqdFayGoxZAoF6BslzjiUiZakimZuVjIJQ5Npi2jyGuyuoqoiwOVNKtjTU14tkwIglalUBORDYeq8KE8tSUSq3e/j9nNMGIcl7PHUDSOakIa2gkLJ3SHpgMRkY4EKEcVENE9pM3lV7iFLQOP/m8WiuUuVR2yWb8DkQz+xv1RGxQBIr2c0yNEAvmuRD/onKHKrEwEJLkRQFXb9uOdXbKjIdqo12vluzmEA6xiaMPvtUgYD01lTc3SZAgdCRA2Jgpd1rEZTPRzs19M0yokfE+Wi91B2rnPP10M/vBKTX4v0YHj48mylgyiJWKZt9DkrKreesAIt3mmfYHb93116rEz0dNZl6Hj6c5DX9bIvfjIQO5s2tdLHe/Hweq9awiBxV5M2tMezZtMhGekIif5GCnO+GhTb0FM6Aht+RFas+KbxDOYjF0pTLw3XlSQCQNkVSGyDCULIosQxytaB3S2DzvG9c0up1P9OBXESESbAl6WMmPNgJd4/9MISqmg0R0VYmXXmrz+wt41q1AMyRSDCyiWyt6t70aYw1tHy82wCqbbres9oj/3/C/ibGtm1LE4O+b4w519oRcc65976ffC9fVWU5sWygg5BM1zSMyoBwy5JpINFFQrJEE9qIRkm0kCwh0aeBSkJCYAlhRAdhLGRLlpFRkVRm/aTz5/3fe885EXuvOccYNMaYa+9z0wWhzKt4cSL2XnutOcccP99PyWW1qj1WxetM1QuDhHLJTWWHyQE7eR3i7r4MpUQkn2C2JE6vGrPUIwppahY2py0vrvxXOdXbUH6qYe5mYw65y+i72bQcmKiOMYalPnbuspmHlvtySF6sei8JHLuztlD4m6zfokJULctzjZ0xGgCWXN4Patr73nyoZs9vVkkW1UC6v28G5wdufb3OLCjQ+qr7k8yVVfZkau7u2bh5CFa12R+DwOLYp3RF9n40OVcJYABQON5ykyu4r3TJfCRncnS6zwnQo7FaqRn3M/Rnnluw3oiUyTl7W483JO+nUCMFyCuJkYQ2mCVvHZ5oQgvAU9LFFqYoLReUoNDMLZwqMRegY06zEKG2hgynqIl9Eh9IwrIoEmYBWThqOBDuIqSIByMMIWbp3nAXL8wjxJZVi4jQZfp1hoOKiHXOnpGBJCPtPUAlkz6J4Knfdm4WVukFQpj8tkAw3KcFPKjs9wDoWR7BEO4DIY5IzD9ZRhF5LPp9kUAiu/DZ0CnOtgRO3sq5sCNCFydlmqkQQLbhMi1197RzYLprJHPLQ0AbMxDwgNB9ZsiFroZuBD0kafS5ut3MpoVnVy4i3KaZta1zcTqX9JciC6NTz8BZhxNJWHaDPILmrLt+31OFsVxBck5fCzNqAl+F8bmviRL1roTj3OZ5dglzU8vK0e9JWZ0LQreiUaVzLUitKTQiebpL+LA0C8p6kUhAUtYGHggYanqpK8KzhqXpPcLsl4u0FpqC3GvM/rCMH+TxtG0JlRRpqoZia0c2lMvIPSKmIXUxFz+uUTLdtSXyZGY+Zr0XkPZhkm1xt+M43JwsbZSwEk9mLobkMFeAEJuxcJDVrQgmSJiiGplJRdpDanYPFRqVHS11kFTcTXFUA4mQSKV2UAGrB12ZeF4M8n+2pZt4dkp5EgglpbfphFtM5qHmWdrn2ki5ynPVZXDNt3PCUJtddVNt5nNxtHneH1r1SsaIHkwrBJFNe7O3+d13HwH8wR/8wR/9nX/hm2++uX373Vfv37u2/vz8/dv14+vn29vn21vH18+9xdbw/HRJ/aU4pnhsqk5Mn2+fPunxehw3mwclelc2ddTow30i7NKb9vfPjpvN3377bQ4eqP2Y43o93t5ux7Db8KC4IaUrxvRjzGPYcYy0bDf6xIyIOfyw6QIHFQrIyV3Majd58O4pqJT+qE5Hrt5AZJhJM8O8wYZQCIAi8IWjbacgv/a2X7Ztawz78PI85+SBeZs2bjaPJpCmcUul3FoJHWKpfgrfuO29bcKL9pfnp2/ev3t3efrw9PT+3bunpz1Tq35pzxrdh33+/nhuT+2rd0+bvttv7y590++/5+vrDB/HcVyvx23f5BIiiZXS9PNjlkaUppd9e74d4SOun69/9qf/5Pe/+661JoY55761LsrE9ltQQkEGtLUo0rM30a33xDP5cg2R7GWfW5NQVc+gbXkkEJS5PL0jUgZHBT2j4SkbWfkQ7m4UcYc9ex50Kg3qAiNrepIC6w+BkQ0CYGZhqcXSX8kvSNK9t55SAhGR7b9V7Vn4PVU7N1pCiEQiqZ0EksZYm9uRffOHcI2IpHycWVxNgM4wHsimZ4YHzulIE1km09ABF8aDlJLGEmSuzDPLr2qbGXg/X85CZm2B7CTcG7j5AavpyoJGnLdxDcxKEam2wN+4LWdCko70Z9a40t0vfm3N/NzdG++yMilCnE2UlqvE84rz1jAEqZ9AizjGmCMtZCTcxxyyMrB8aaWoqmS1GeJEmNtCcaUThSMSeBdCCi174A85LxMVSpnZ+l5B1sILfimSgtHLxmVJYv6N3kPelzOhicy+lu9oiITcezYP9y5SWt0LyzpTu7i84pbY6Zk+fvlU6mxLCY5SbrwXciR53jHgi0UjJSczI6KR2TiPKOrg40VGhCfpJiLSDjf1s+Vuwpzf5AYLc2gmTSUKcq5CnobR8lj61tA8POkpAaGmqn3Qpmdp7+6HHU9PT621GT6uQ5pqb9u2jWP6Alcft5k3zczSX7f1dS8e6KB5zSmtaWbXae7ee0/bpJyXnvTys9MDYM65bdu2Zf8+E27PgSpUKMITibHutnuNbfHY//tC0TSHDlomig8338xqPo+2hHK+CIKPG+/xn3rvsbS0flBkimRJ5plVi2THOETEi2UNVbW4a/+eHIYMFhHBB1HWL+LPQwV7/slpK3r+93wWj394fp1r9Qcflned6nh8a5J58Jw75Vy8tR1y5CBZ1/8g4mf4W5uf2fjOT0eKS90TaaKJc5FCxagzKZqIcBs26RBuTURKoItp1CJMqQCm/3tYYIKip9PfigNrg6Tcl88506e02jEPbQh3z+y5Gl5NSBolKyisfwpSIPcWzpfLJoPAeYScxKTWmgWUNKSSqVGk937Z95jmCnjMOcWz10UsAzaS0hqodKdqJ4fNdD09wxdJ0OeYlKWRE1TpAhfSMbHq7UDuvjq/AZAoQJEwAuZ+3A5ZjzX3qQha34A0F6utJGSqUSvFlond6V7rZSmsBQzwCAHN89MFoDnozvu/LBlKGIbV/sjSdx6WIJfT3DsijjHoUf6N0xGR4BBBhA2WmmgWQ57nvJsFoMksWJ0yCbQmHjUcRGmOgVh0bQCl1VGnSRqq5dLhCU2KiNRSynFHYtJwn6M+LpXcGZL6WjXxg5lhYW1WriN4TB0eAsPjxq+5McjIotcQiRE+G1VnGvRF0/bMqHIjz5jnJz7DiCzK2Qnsi3VMzmMEkdCjiFClCJRCsSgljrsSNR0Uq9F6uNZIK9mM0lTjQUMv37RvW+8tJ8YCwtPwQ9wtEWMDDwIwVlPo1pq7i4v01iiTsxA0i7hb4AKKmzWKMywsXJhNL3LcrgaIYNPmkOk2kje+sOeMQBpruIPomv0jBsQsmufkLrcYidMv/KEKJYnwlo9eYoaLpdZXrHyJq01QB7HyMQ4zkQ5LPKzWA4AyAzMuiQFtTG3nvDPZ4RpJlg5VETM/e0znQW9uENM5RcRskRfmDHNpesybSt8uG8cxxs2sd5Ft296/+/CzX/ziFz//eTaFP3z48JNf/GFo+/j2+a9/89tf/e63tENpKk4YwzKuNkRX2bWFije5fv9x83G7vo7b5yb6/sPLMPv9d9+KdJ82xnwbB6VtL09Pfd883o7DwDl8Bm7fffvx8+3T63VauMOYG0A8fHhMi+HukeAhwuBuHpFGGdPDGdWzSgAXg+7acvoaEKarWmnLV487nHBPuF5UD9vFAWgkegkkKKKNICRa47a13vvT3rvu7z+8kLyZf//p42++/c4+G3xm+g2vQyoikB0vmIpgGkV0701VA5gGt3cvTy/P24eXlzTWpgQZ4lNUeHuLaxd52vrenvfA+6beu9nt2kyjPAJENbpuZkZ3aIiLWcQAp9mkUFX4l3/51//wH/7J58+fG0W7hkvSkQQxfJyRn8yOMoXiwq7aNRWx56VvWM5AWfJlICwBzhLqO6NlWY3OpN80yUzMwofdxeSkwLF3iWDmBDiW76jIXBPO3MURoSkABMnOBhRu2b4Muid7OVe+hyvEUBTcvAaSdgx3z9DBCOM9Cz0DacX7qNPqzCyrxRxVktJioTgzWN+vNs+pKN7r8sJc08eI+/6lpPYHAG+igFVAycythk51pp2HQiaTY857XvQ3BipYIj73NFsfgs8a651PxJ1n/lC/8+XNOdPy8YU/fDmce3geqn/zvLvnPNmeWpfaQgJndzjCciYGuM/M86ZbkNIatSGcItn5UxGKMs1KEdrU3VPGNY12ITloR0bPSNRrU0cpexZft/J4ETLHd9nrEaqDjEgMN/JgZk7RydJGx+OtT9DF+np8HPfJicWaziRuMSKnozYns8uKSOtAeLaKVGpUuWC308yK47fSzS+roAxfCxiW8ytNemph3HN1JuDQRIUpc79y30zaAIhoLt5MO6SAC1HDq7OLlCOOhw9s4Qifxu0iTIU7BSUFUIUshEPyEGO5bqlqS+HNIIWiSlVfI+iuHdqO44gE3IckPw2Agps29NqxgXTB8+qJ0rlWecH8qjHhPucE9n0/B+DVfjMjeRxHhG/bdjq8Svkq6evrp9ayhWcxzTnz6UCFq3VClSa9kqo5cGaTuYdDIiKtNEJro845T/GtvLrMe3IskEEN5zw5IhbG291jaZcIoykRjRIWnHMkooZpt7Mq823r0nTOyQjV5g1nqVxLmnjIZbN3leut5UEJMOkTj3nuWodY/2VEQt+RYZeleRPnAs4q4jwDHkPY+T8jYgFg7jD+ZEqSZDapwfXGCX8rOHMUGOYeHkWEUCNnnHq5uaWZOfPE0aVnroCk5eQKyr0WzIF/11aBoYTB3TzMTSDZ00y124L45lCWFKVbWd7M6UE5J2a79sejCIBAA1GaKKdVSdUwMIu5FKNJqIJChQbiLlVTSjYNwrbm+GwaETNcozgqGQz50LMQEZ+OoGqLEK49EuakbK2F+TFHhLfkKZplrV3W3/VwyrhDVdmqM+0pNAUIsLWu2jJ69967UgTjyFWX5WWPiHFEjmCFFMoClCOCjmgqmrRmldRoyBWbRWAwkCikwhLEvR9UNi554E33EIGqpFiu10J7UK8IJG2n0muf50IXtHw35JNKM2oPDx+Au5feUiYrNhOOJVmnpfCJTwA2px2jDqxUgjxRWyTTpDVzC5slLElWo1GgiS9LwmkYJbQxfCKB+PlI3L32YEkfkUzsgwTcgyjVYgFkyXAyHnpnNewHKj8QUnmSCaNiwmrr/HA7n66MadVZ+UeAqz5EKsvc923xR4EaYSUXZbgjD++F2Ks88gt165L6SxnqLK1qkQMMuLvmi6x2HsvpW81mkk4zbFWPPs8IETy4OyR+S6mZtwibijz4GFdETV4XgHQUBVKwvsbjSR+wMRNqiIDTcxxt04YdsKmqXcUOk0BrPanak2S4UkVVIpU7IpeQUkg1RxaSeXb7dKYaASFENfUgw4yglJtwydeTzRFSCXGisnkWA+djPQPsvY8A4IRTJSay4jwQzmy6VpAuGbdcXa2p9p70nDknl3a9p8uUtjCk0Mm2bdLUwueccx5b51tEFxClmBn0SBWVNYOgVLcizdLHGJnXjtsxx+3laf/mJz9+9/VX37++svH7z9/avGEeKpMxrq+fn48Bka5tUsQNNsXcfY7jeru9+XGwdyrNp43Z+9a6NGowhrmNGUEDv/rqq7ZfwjkDHvzu4+txjJgGS+pQdlQ1J37CRtHsck2HrzojwOkTUAcRLkiRcAiia6NCVGGDbF7NsJgoCVgkYU2KJF8ZWB6hwoCGsIuKyPQ6I7L/8+756cfffNgvXUTebiPCjjGmmb19HsPgLVKDLYKARbgjKR5zzluMThl2++7t7Xj9fN3395dut7dOfvXTn7y8e2K42yS5XXrftGGK3Xy4bP2ya/ge/nIjZDDBenNO5aaNiGQU0sEIusMmzUDtqvqXf/HLv/qrX87pxzEuW9v6HuXdEAqGytnEtHH0rTFzZ5sZMOcxeuJ2Vus5srtCTDtKsz5cyQyWTrStzTnFbKaDbm15gKZS9R1rqGwRoa2rqqVwFYtvKapjDdLy5CHZ2OYaArN0V2huUlOwL9qF59f5+6rKlsPbbHmdBfxDyrHqtAiJyKZ5xoPlYrYkKqK4vncNFyaw4x75A2AQpdZZo4KSaon7sUqsyO92jogMKD+tgPsaP64vq/j98HV+2ICfl/T4r3kOnslz/r2cdTJWS3ldv2gei7HeyKstmOrskWIpFCIAs7Cwc8xWg8/ACWvlShsAJBGvpXl9idGYMzDhCs45ADQKVbS3vm0iojG1P1/HNecVyZUdY4w59qrOVSjSNLXLKJLicwHEskzL8ljacndEhBejOGHHTkQNGRBUdyiYwvruaV308BAeJifxAyj8ueweElYWsu/uysuCkM0xxpyRI6YsVOacSShaWNT1FNdSe8gn7g/VUwlZNZaHR+WyX7Z5rGode35+7r0fxxF2h22cUyCSUpLi94kc17jS/8ZIuT5Rrp6IMA/CODi/YHU+fpCcJCwlWOSx7bmyVGN6UgK2bbM1ycnTa9jc933YvN1urTVtPdIdfk5tNWwUkdZ2XcrM9mApdOb959w7KcQrVVV3b03Pv81rzgI4fzITiux+7zCRkbCSh7jgCw9fTy3u4jqx/nPexlhdrizFi3hMiZSYspkjd6yE4PGXY/W66no83CwvMh540bE8M7u2x/ddVIjV13C4T3OzGZAHDuqXc+bz63FB/uBB/2BTnPfq/MnjH57LOCKyZ/mDn+Of/7X6efexlSz9rfUilkrOOe9OKaxavdmjDKHEnI+4GtfURcjcNlyQXPWcokcaBKgKoIqgmzLCYoRtms10koCbmznQqK2JuzAUWGYv6/qzR9Nai4jjOOCRkISIMug6bzW/vJkRMY+xtSaguYcl7rfuTKqrsCnXYoiIOSeXFuK5hk8uYgRF1N2POYLYVNOV1Nxb9T7ZsrXcWizcr2gn6Qg3WGpBRHp1ChcNRkRaarkpe+/uOI7DR/TeswXW+zbnWL3YRM5DQGVq8MjMOhySU7JL3zxgYyYmLT+av12hkkhqqksERHOSf9xuFpEb35cshi8aSym/Rc70zd1IdWESrCIebztSgoEexZFFnhY6xlBQm8L87e1aM7E65iLllFKDl2ejCHU0Ws4HUHRxz5jgQU/mCGzOgMFdahgbDogwk0AWOmAiZ7KPyJcFAYgStbTszEbEtKoEHtcDUc40Egi4qCSwfvWpz5b8Xa/7DAArXbj3SR+2JKKOXgLF38hJzPpzE9ybYh5f+CiecSAezh1Z5T3JQkqn6OB6fwFiRf6EU0fALMzHCa86rzM/AcmtNQBmkxFkKOhrsP+YC+RfmVkE5rSustZSodnzF6SaBxF5eVRDSCBvJiP1pur7AFWEgUTqzNuhUoGmglo2xMdt763uv0dCqCQjGZguDITBQxMWi4gEpkal9Q6RgJsnTiRJTu6AO0UlmebhCBoKEpQNiBn2oJyQN4I4GVVxhx2lznV4FEOTdwzd47ggRwtuSYMIXz6C+ckY4eAUDyLM+WD9oqpkV13HXNrjpnpYHSUK9+v1UPHWuvn89N3vfve7371+/py0ltu8xZyXfX/3/PSjD+8BXFrTiJsd87jZOJJgEHNy21IaYdyO69vbcb1iHPb6ZuPWVClxu76C+v7lJZwSCHprTTvR2jAfw0P1uI5jmIuGyNPzO3Psw27zWzPznOfxnCdSJCUMUiyPlnsqMRk5xaUGUMFRdb901ZQko4/s8w+WaxqzYXUa6awtxginJwi69k7v3Y8jk2afRxif9v6jb756eb6I6uv1re/b/vwy4i+/+3xFhAVYl5cufbRwcx6CMW3SADmEmOOVeNtur7fry97+8Oc/J/m3+k/fXS5P+2Xb25yHm8VxmzF9avNdVJpwaw39Ioht23qrI1il+wykUKencTMxYhwxW/zFX/z1//M/+U9/++vfNratdXjAnETMmPAMCTnmJWTvSTTnoKPsV0GGTwNjcQvWgZvMnWwNZG0XAFycOX9gI8JT5S+FlB/ykC/HBg/DpIDUZlu/zMfBYqow5HGQVdVjUI0f4kPrT0QSCgGUo4rNae5oeCSTnn9V5cZ94wGAhJgU/PuRIXz/FA/Lqerlh9eMiCLiLjNCoLpxD4OhHPveE8LTcuI8plHnjpOU1pNz8YPsFLyH8ccEyddwG5Esa5yvfP8I56TqPhm+J135m2fJYAuatw61R7u4++vg4ROejxlAg+bvEVFYqKhzRjI3leS0EKdKQ6NkhEhZAAmIqNXct6wFM00przMhm4o7qaSSy5+mKYCZaKtcx5H5mkXUsD7bZIgQraZHvgVZH69ujVbHNDMMiYXzxoltAJJgG5EwNpwLF9GEKesXcWfIKO+pQ6YZ9xP0nNqzIG9r6hagnuDJ1VCOzG/yEDpf09LqQe/KN+Gx6jKgeuFTRAS6GiJAiCEQUBXQIdXOirPpmyKbuSCEIydLzhxmVif4DhfJmywUamut96wWWmsjcXkWid/rfSeJ6Y3Sti2cxzxCUpzDr9fr7XbbtQDkAFZPPdwdfvfgbUIp6l6I0B2xmuVu5i0xVxbh2TBJp9a1GZCYkTlt00YPH5MeVGhjCkoUeDH87DtkCKmwUjkRmLQuStqf3YeuqPQE/hgRk4XrSklZt/yJ+cwKwdzgxvD8bxhimk93mxbltExWSyr9BQk3t5LaXa6q9bK2Qsmib4GO7Kyy8qW8KBR76AzlOXZ7YE0XjkDWfcihwcnWEJQUHM1KGuExmH4RsFbsSL6lgFoD32zjFU2xrbYSAuGTq8sY7iwP+UiUWV56PgPm8DD3EQOIlKfP7qBUyyPK8QsuwlZs2+HmILQ1TQhquZQgzOnWtrbavciZfm4BWKjkWBnrDtPdE5GllMQuZ9fXk5Ud1ddcISWFBtp0y0JhzulzOqhNzf0MTSSdGG7wO2IlIlJFC6Qj9YTzHJKZmJHWoiYC2VOPOT2jQWudSNMGRFoEQwNBqpClbzxHOEU1wuccUAfktI0mqS3xCLnm04OaUfJpftl3ETmbbu6OEG2EhYC5NKd7kYLgQDtXS6Z5uaeatjg7PKyV4tUd8Eg0wYyIQJMIKgM+Z82QJZhlQBktheeqv882RRQBnx4gNW3xghEitGmeKTnKg3nTZj4iDJHK6XkkVMf9rNlACcluio7ql5onKTUqg3WbgVAKi+l31ocmyPZvTWByL1Bawc98iZ4wTYRw7jmmXWjpcVjihCXAJYCfqoeP/afaQyLhefzUUi+UPqoTeq+6v8hgSljU3Ayezl5378A6fAvDazNUNSff2fpLxrLqnVWR1i0Cca/TWfN1hIiQBKEQwmQIVDyJdI/NEm9xo5LmF24qbe9dRMbEPEYEQarS5vSYyh9qEEQOoTK1YuTOZdJpLQm0VIG5S52GCjdJ2aZ1EDeRMUZBBj0XIhoFmlSycA8BRXK1Hrfb7eXpImS62hWyoXQEJDxs2vS73xXCtTWnJ0IRXrgIJiUcyIgRdn8WNMuYKhG2jm1mJ2QB0B678dkc5wlWX4mjxZC0r6ecaHkAK/4LiRk+p2uEe+ua02yoai63JRQXVIHEMW8Oa61JF0HrSgD0DN425zROi4kZTS/uDhsQd/fbbVyPY/jx8uHpp3/wo+eX7be//u3HT9/pfP708bvvv//+V7//7Z//Z3/++eN37bJnaIWH9i0oDIrqpk0C8xjjdtj1ijEA7L2TnDaDniS+2+1thmvbtssTVM2CHq9vnz99+vz6dpvgbU4Al8tzu/B5Tl5vt9tIn2yxauioSgBUkXBxYZoMhFNSOzcAp4iI9i4i2PetaSjFnROTcEInfRxRnbegiLjUPPM8ku/JetHZRS/bJnHR2DS2pk9be970pz/++sPXX+/P74ztP/vlr799/ff/5B//xZzostfBbTGGJxQ/CBs3CAS8zkOJhuhN3ub45fdvl4ZvX6+vt+Pb7777W3/w41/85Cdbe9cpxxxAkC4ItSYqIEfr2KIpny5Pl66EFxR2mI8hMhRu2Cbc94ljfvx+/vv/t//Hf/Af/Iefv3979/Rh27b5Nix82zabR4Ql8XAN5rzvW3tQAiMojNa6SK67JO5V1qp0ZPkBCYmkPJiF2yQ1614FLc5+vAPJC6QlvXJRgmN1VdcjYLiZOVhk7shzpUAS1JA4Icr3w0jm6h+eFd35mizaVtKIkdpUS8cnzt9/XANhNf49IULroLmH9LMKjigN4MeW5xJBu9fKTnoEjiOX2JxzzQey5GaSH88mf67DkryBrQzaI0LQIm/RQwHMot2v5MV9FbRBICyx/fSK/fCajjzkmfnRmLDCB40rloPdY0zzlLPNpkX6m2LNtjIxJjzt8bJuxOpCkSTaeSLWYHoRQbtuPi2ACLj7YVOhKz0qmeIcbbXWtm1z91sUmr8uetFu8w4mvDiFR/KNgEfpbyB7l1qkYWTlnKdiqmJEhBCLMn7eCFkQsfUizJt1/mti/YVcTdvHuX+yyrnvO1ZHIe+45Jxk28+pbL7aeeQ/TlTypcxMW8uaiCdHWpIImpd9b3iwsbWmjTnwBKDrieZF2tIUyaJCRKhCw5phl09JLtV8BPlzj7OhwtZaCu7nBauqSo8IkQSmqqrmkshBxJwOUlWH25iTZsccbev7RX255u77Puecc7a+UaWzH8eRVz7nVGn7vk+3+yBoHDlATkhV3iieMOwAgG3b3t7eTimd88DOcVz+ValbJTJ5vQhLSFbzduUCO/cMV8NiHqewM2W17MgQakKwomZuZVE7xqA86l1DRPpWfQ53A+8B7nFFsXAWSNxfWuowRxMrw86rut1u5iX/a2YSiIdK+Py1ZUMSmbU8BBqe1/bFJvr/9ROiIvYXjTE88u7WV15D7nddTmt8mJSec6rH9zo7HbUSMyhrTsiK/kHct8zJSnm41JCEpKYJ7r0HmW4xACJ5g+4eI5W0qADhcHOfghqQmHGMQbhKz2pAG1vTfe+fP36nyvI0ort5GMzMAs/Pz11baghnWDiOI81ykpX9wEg/0yMVEZ/JSIomOsHVHldm+znrhjnvW6Aspe96s+edz1XtFgj2LtWQSlvggCQBMiLccyh6bqh0PLZlrdtUETwpFWdgATAr+nrOQbdtE7ao8URV71lLF3EjD/gxQ4KZnYfnGE3AcE8n0ZRv9CUBKCKRFoieM5WJoFmoqg/HudfIloKiieDICCwtP6mRZ1vKVwWch4MsMnmm5jlGS5sjFVFwjrE8qMJtRPZQRJqogzO13EXP0WeF0PV1Nr/Px5NA5Wo8K88oB0AFQjoEXpPe7KI6kJETNZ+790FSmCnGDIlzad0j1WpNR6KQWOlSnlTBhzjwsAdJAsRjKfslxCOf+mqZIz86JUSSWe1nE41rPDhjxoJSrPrrfrtyAWfYs4qWtd6y6+xLdV96yzFV6uSLqDLIUo9D3N+0/nwaN7Yu5rLW5IIzVBX3EOXce2siEJm1jzzSuizmMCAMIhIPcutSBA0REXgMK+bX1jpJnzFjwjwABroyAjYtHK211jY6bxFdm83ZKERkg0MJBCci18YY5u6ttSyZzSPRARGe86lUDxGIuZeAe44igoJQgYso6YQHNGKBzaE8mdtr2aAYuRHpElyBOg+kOwj/4b7lXjs3bLYKs5etlCyAI5KUICnsPNy7FkbmOI5939u+AZ56Cvm5HQxEgkRT6ESA3rvqPI5jiO+Xvj9tT5dtf9peb2+//OVf/cWf/4Wp/tWvf/P969uvf/ub3373vSt//Ic/IzXtw/q+F2tBNd0lEu47j7GBIgqATgm5Hcent1fVnpo1kDiO67jhmJEdxt71EpfDY2Zq1BqJr776qm2v8vo2hqUjppnOcO3S0FzEgw7exuC0mBOREssg04s3GtEae0NXEWDCQiJUaITowHT3ucQJlcVquYtBSpx5PhEa/tTleWsXxVPDN++fPzw/PW/bT7/5+qd/+PP3P/qJtctbyDHn77/DtqNtkiF8ul/nPKYPgweOQN9EFOPmNOwdW0eOn/rA5+Pz7z/+o1/98jd//Lf/8PMfvf7hT3/0L/ztX4S9raEqxa27WvjeFdY626Vv+6Zmw93HMFWFNWGodGhj36U/9X759Ovf/8mf/Nkv//LXT9vTNd7ePb+jtufLFm7DEQEV2XKa59W1Mdy9W0lmWNG2hpBcDVAS1GlT4Em2UtFgSAQ9oEoVCRwpk770hxu0nL/czwmhLmHeRnFVJGQd8ZiNZ9hdoRUUUQtbUfAxezlr0jqYCsMcIiKtWsxzTnqwKU7zlYcSRh8sJ0o+srICyWrYV8WGRTSr8UnhdLJ4dguAJqjqJwNr/u2sPCTcK+Gvk848E7cz5TsP5UoUHvqn6fhLfhFPsuQ7k3O/z42rJKnPFZX6p6Bg0uLqvlmNgrj0evO0kgdRJF/YTKDCFYDwqV1tFaFcv+nusXB2WBVT3vOWA4oxJoCttXCf7k10jIFA+n+YTTcPMyD8GNq4tS4iYwyflpd7HEf2LuGRxHGpZCFACcLmPGe/meIAcIhZTDeGJ8bUSpCt8oAZCXqOOac0FcoYwxG996YKYDJET0iqm1mArbVWjk9GOCXBc3F/QhEsEgICVakex2E+RGTTtuKRWqF2s0LuZ1psPtxtHJN3Yqe3VtF2TkeymLYtJ0a9pz+wA2gUy140k5UktSzsvu3XslQ5aY8RNqdbzeHd/TiM5N66ankyCR4XokA4zZLFHBE2w+ZQTZ3kLsJwzuHapW8byetxM4tt27ImFIW7yUoX8ocA3sabiLR9qyrObNvavnfJdgt8zENVx3ELJK9YE2VNcvGiHR5d29Z6RORdzaUZ7mV6WTTg6xht27beOyAP8WgCGNNEJI6cngFA66lAL5WZryGDLvuR7Olg5bhN1OdA0aVqCtS6mguABqTigDDmmNndX83IZP+qHXgbR94cZSPpMEkdtJh7vyDV8sxvx5HLLysQVULgPv0oXjs8tm1LJmdEzJTPCTaKy2S1xOhR0PozSvIBQJtlw5kPRcSjnC8qnJJMeenSZngM9PfY/VCaVpbtVYdXRI5oJ3wuIrxAcWRyJLNsMQllIGzOBUEkmR4mIkInRZq2tiJg4QZthk8RoVuxo92aaG/aRBBOs5asU4GE2zQlGyXC5zwapW+qQkUDxA3hlgBpO5D2cUIKg2wiMc2IaE1tmM8iB9oskXyouqciUogUrc4jxpxdW/aee++tNUYpNEjTLAY0TfYSip8EILMkVEr1ScwhKi0iwtHbRtJmHTYZac1MVBv17DjImtbdKxNhaEwL9xC21GgFZd8u7FU/iLBnbGQ2cdFEU27SHcyiXNsYt9ZbmB/HMY+ZxV6+7fKrMPcSMXazMd76vqnqtHlOk5LikUXsTNKvO0KEkn6qEcaIaj560MMiu1iQXCEOQpN/6m70TBToi7frZpGEczBsgNK08N/nKg94mRVW7gKgjI4KVZGyf2FzcbA9podLSI+CAUcE3RoJiJt3FZTRfAw7kt6cJwVshlmsSB51yEQSKb1q8+SDFJ/C3W0aRHpPckcwNWThQBY5VfC7e3ZVsk97L2ySN1UYqJxsOEnqHe+TDdD0fr/OaxdVYowxbVb6R9EuEYblCVx02eVat7RSOW31qD28LQABAABJREFU7HPoGtVHyJ/MORPmR57gHsuSbwu6S0ozFnpxjTIakcjS3lq23iKiK20ebhxjSJS6XjyAmc/zLsyXOZrv2yYiPqYFzKyp5qKFJj8ccIT58ENY41ogmihQqgGpxA6LRpGWcOI5HQJmLgXQx5zTbUylNMKnAamMzmkGyqYtTzRnaFdVJWhLNE97I9Vm5KYixAJeRDajChm6LJeZ2lPk9HAPBVLDQBtBccec05BCnnfG0BwlZdda611TBygfypxT06Mo00pREQnSIkRa35RhZnOEqVKrwKCqkDHs0K634xYRfeutfN0OkjPTbZgH6EySRZAQjjHcYts1c4mrGI6DCu002G9+86t/9uf/5Ne//p1pv/7VL3/3/cdPb1f2bsTThw+kzBGiHcJowL4hKJ9fM4t42vb95eX49NGDr5/f5lH0spgxfNAHcEkf2SwlPGY49761rs08RChtTNxsdh/v2wsZn17fyBiBLeT5/VdBAdsIHNPHtN717TYAP8xjmjCdS12CTXWTwBzSmhI2XREUgjLsAACpoi4esJ2ZTiQTXkR6a0/bvjd5vrSLsNEa+LJf3l8uT3vft/b+5fknP/qxt9b2/de/+d1/+v/6k8Px8vQyPcIxhl2vx22EOUbAHNz047A4oCptlyBGCMVF59tAdPgR/u2n6b98fb1ejz9qre1dni6tq0BDhot4p2Dr4Yyrm1mEMFUYVS59l45965Om/XIFW+vv333z9vqrTx/fvv76R3vbffoY4/3L87wdW29P+wXwrqpQi4jwOWfv23Snm4hQc2JHkhXghKJCrpiJnB8gifEpUkaFuGCB2bIwmDPrCkcUnyGWo0SseklEpIsTYwbJ3nYzcx8R1eat2i88z30RaaCZKajaDOHuremcEwFVVehI5TN3Em4FZc44HBIiOGuzx0FCAGky9KXitJLhJGr5VAEcsCj7N0lvhQz4CSfxwAyHTSk2iqzGKN0jKzLU9G5EMP3Xs8kli6VlS6bX75NHVCug7JfvhXGKirXWLCXla1iSSjSeojyx8KruToWIAneb0kppwkBamKYVFVkycjUe0Dyl/QHpmasix4xc0x1NIYNj3HvZa/ZmZq3An6vrMHM4EA6VBLmvmSkaSba2Zcp4x2mQlDS2Qk0aH/NmWSpErbVz4oCVHJwdX55iG1LAykTXSQGwBSEgC068VIiyaX/eFFnkE6mRfYHkVx2QT86zJDvruvwgVYPxPuGJiNWqS018Oz/yQ2mxUHPrjdLctdquD1pK1YcoeXqgerTWNW08q6XzUITwfpNXAbxu6f0r27QRgVmpUg5y16nGMHMLswEg/b7yZW+3m4gIS/A2VkG4bRevznQQlNZ26sKH1wyZtZJsztm25P36cRz14vpQfeG+UfM+tG2TNduMNeU+f+ec5MvyRmYpdXzBplbVaeP8Xu/KchbTk9MVsrpiOZdeYLCzwKszkvPsMJEM+LTpI1tK95CU17PaUYW1BuAuJLNqBSCCSM2UVU/ebrdphigRuBOMXevHwsJTRdAqR3+YjhaSDSxoR+Gy/RQKwEO8OKPn2QC7x/cqw1Q1ow4WTs4XXiPX0qmdfr7U+fp8GMvEQ3zBwxeZvrMhUgwwhhXYY7U5zxfMcyyzriaS8AfkBSh9joAl47PgnGHwEHF40oaIQEr4QCAJ7ItaQvRQtqYMu1msodSSzPFIa/VU3KpLUtUm0uTeZUyRjDwAdImEZTO1VgUZ5mMc57MgyZP3K8wQ5+GzagDve4tkFa4+RK7Jccxt2853yc2oqvu2T7fhOejWJcrqAP2Bh5mHE1wQS+3PzOYwsxJ5fmDyZDgSkdbXw73rbuRbY9suZiO/uJyi6KGqvpZQaeSsZpZyQZ8tNaCqyRsReU4WNhQMn6TKyXh3j2rJG6rpfrdrAoIOeJJgcZJ7yhIuFt6YQOlirBM69RKRPc5s9jjgCSxKhe4ER6VlWr7QXCojj7FCwJRP44nRqsMsQpzJQfeQtAfPKT2hJEToKXsWoirgdPM5jWwiaXsOFaUE7UHsM84TPT8IVj+bTBXsvJT73E+lY8FTAQ1Y2QznB38YEOds9tzLXL73TVQEZgeQksTrMCqi3T0sPH5V3EvYTgqfACTHGK21hChnyy3ndY+Ba02Si/6dFJbzsDgTiVxvWQCfR9txu7l7PFA28kO5O1kRLx9cuaRldvXQ3TvjyvkuEZHwiog4jsPdSxeG97gnoCxVAYtCrXtEkzalGrsJ1Uvpz6baWstzFsvVubmb9pYiXhERJ4PRw0yIUKZqVMq9hrsgIiHRjqoJcsxjTinko57Thew1L13x/N05Z+a15/JWKRzfnFP7fk5U8m40AQuX4bVIChlS+XrtlznPLKg1wRczeXOnBLM9BI8FqFdSs7PsxOX5iSqfPn9+fX19e3v7eP34u4+fAjqAeVj0LrKp7Pvz+8vz+75v2hUimObTuvLd8+U2bxYjbtfX18/HbYzbkYmoG8Y8+t4yJ5nHmIzQ1ntn9gl072ZZNjULjXb4FW6tydPesG+Xp316tL4D7WZ+O8Zt2LRtuDXh1vD2drtmiwMUokt0cSFVokUoEcRIkiso2WpdOcADyBQqwnAVKEIlk21QQiW2Lpe2Pbf+srdL3zpVKXMMGzfd9kgdYwiIY1i4h8OGH2nlJhJQlwiKC600rluosvXWQQzdxhTMwKvFr777FBGttd72n//0K+nv5+uhB2AeZlNp+6YiurV96723xGx26VFgKIhI63t/+vD01Y/608vHj59vr7fWtufn53kdMId5mOtW3Kcz/ySgJzSjjto7QlOU7j7dsDifyWLPtn8eM1YEQG1dUlLJphkcXvP5cGrbUrztDDUVN1DmNWMMN0pTIUOkUyeZKd9jADwPCLLCAVZRh4esjEv69PzN84s5Kyhs0heeOGe0wSoDznXiBvIHvxyxAINnYXzmITn6y9OjYi/vVN7KFR/yPUks3QojETFT4K8Uzh9VhwO4f6IzqJ6TmMxwz1wXC2x2XqEWFvj+cX5wwJwX+fg/zwOiXiT1+Rco71h1wXlwxEMDNx+crDJbVRupZtZ7b737NLdsCShgJdCQhC8g+ZcqRCmUVKIgTcuMaxV48nBDSabDVF7jPfmmoqRDUKu5BvpMzdD1mVMqMUBJ4W/V5SeYLfBFkhZJazzN5eJhdXkCQWA1D6q3URIR6VMZoAcyU2yqmuEyOUvhSDjKnDPl1TzidswEgadppMQCLeQH9KDUvnV3WCDcZl6P6gJO5+3KRPyLVZ8ejaen3BLJz1wkAuHeKKSEMFgIQGWPRJdDiUQ1w8xJdT8RiRRRUMHS8BTt+VjOTAinkckaaKuq9jamkzHczEyiqSokLVCNCPfybeq9J1P3drtGBKWdgSyLu3EcdSoDJ75ERLDEKs/GhJ/K+KfxqU/3ErA5j46IsLQwoQh5G9eSCIKeBbCN0baNTH2T4k+U5U44w5VQIVTSlyBD5Fqo0QTuwVLLjpgz5khzjhK8ZRAuKdIg2ZPzHHGckQBAgv0AOMOTTkFKVKmQijvuwUevTuTyixRjQ4S7hScL80FZ54sAmrtezhwXVVQjSdfnQmMIQY8Zi6YeDwH0B6H8/vOsHldlEXepUgLoqiMG6GnvOWZkLpV/LigJ8yj4owIuRbTLBW4iEhRGieJJqrKDAgczM6yNmCgNQSKD3OAsRqWzXJQi7jYGKBCOR3h0beCqWCooSy62U+kKZNUP/gX1N81Hw8OWuE6VAa2mZBUucmIiInVVJBjLvDe1oJOaIirRUhsjn0KYxYwIwS7q0wjVSnO1a5sxUxzrPI2CcIStgbwUrFrPBF9S21LCAkfQ3dOulPVk80RkrQs8tlpb166qMeM2jtY2Tya5BBBmHu4pdEwWva2Q4WnQ8tjQuSPFQmoKmCIKpa8eEax5YHZDakmSKSEUgBTUK4sA5KYJIgWVwoAIq0byqqIRKUtq4Q6tkJp4j/ozwoZJ0xzK5DJwgY8ZPvOlGItCVPUwAyaUWoFwYXiSeDNpyamQ5FXmZ6+EGAnDCJA0n9SmudBTOJzEOtdO7lYlEBFki1Unr715TxeEDXAWXC1XabUIUO1pnuVK3nMsagkFDrM5RVASKclFEiHUwpAaCgudyUX2IhkrwYoVV3O3RIlwV+84IqaFwIJl7BORf4o5p5FZ4nKVowXDMw8zidX5XXlP/q8V9NBzvB0gQ+BhDves3N2T4cz0d0xgrqJF1HzflhfX+YJyRs0sWiKQI5TI1KDW89mfzQRA4BYBUihugbAvQnFxfs9nJwxZgrbB1fgIOlkKPLXgwigl01NxigBz4dfxQhZl7iGJqB8m7jFxdyWuGUJKosnn8OlAKXecK0kEIpooIUv0hwNjThenSuKpEIZEZJOqor1Z5NQEHijFOM1GaPIdwlPUlAQwA9v+dHl5Hmbfffz8+na7HuP19TYOjLDt6cmnNe3b5eXp+f2Pf/Kzb378k21rCMc88Pnz5+9+N2/XLhLCT2OM43h9e7u+vdnNSDbpAe773rdt2zYLn3aMwKVt7bL3p3dGAdvrMSwYkGMY7GhNwmTfWlP2vntkFtOF/dP19vHzW9M5ZtyGM1TYNtXLrc0588a3JhcVCmjTJWj0MWN65Hww/XLWhpV8DEIASlDZgk25t7Z13bpuCsRQSm+6d91a31rfe3/q27je5mHvfnTBy7t37969f//h199e5zQRcbiFe9BFcmzPyD5xSBZESvbW9m3b5LK/6+J+3JrHPK7fvr6G+xjjsj9LU2nb3qUffhzH9aaXdy/t+am33j17p0aJFiIix3HENESYeIxxeafb0wtUzfy4zViaKeIRZG8qVf43AObDwyvNi9IcRo2Qksm7ZqSZgWlEhLCRApTYnbnHBAnR3JI6p5OuQYooYUG7GwDn76y0GgUyHdPHHAhFgVNINNCt/KoyDgtQwtP5JOUhVuel5qmafOA1v6lztvampBtLiMhMx4jH4hjiKfhMIHv9SHt3qhHBWDi7zGnu3z/kaUmFWCZK6wTxFEiIE2WdseN84yhBmRr75ZrNWJ6R4YzkWdWVJvMa1z00jiv3fkyfMs6LiNboI+MeT3fS8nWv3I9nTrvu9H2CBVuF2UOOGhFIQpwoCQcsRWTWDSaZ2Kt7z06lzzkLf4+asBU5gasVcxboLLn2mnJEnBIvJLOz7muaEClZclJeH56QiIALzppdirynRPqgZSntpfmRKWomVmWkUcV9xKmQ9LB6qvAmWRTkh+kfSzunEKSyUFTpKFv57Um5FvGFv8+kjUt8uB62auaIOZkBUM2lBS6NNTo7NajkEcElzeOU0To7PUIumP/6OLWyV7PqRNifa64Vp7d+mNWjhbf9Us2yeoeSqtu2ZALX9SDnOVufw6MId/VySaldtWldjEecLGuSWGv9jCa+1NjOLZGvd96HcxWe9xxf7uT0SEg+YD2p9T2WX9SqoE1EQlQUZlXOMZGzESoSejpMrhIowGxBAfmva4t7RiX3ZFwGE3pS4tbzOGb2vPM6x7gt3vJ8rC1z8Z7NlISora7V6pVGkc9WH9TpcW6KWPO9L5cB7ndpCcCczbDHLWYP/tXrJxYRp5XrD1ZX3oFKhe+tzTsV5Hzx8/Hdf239Qoa2mF94jvsCjCQEMCIiMQsAcmblqZ+XCwA14pLqZyq9MCGEkkKk4E/hMSWUrLk5sjvkhbM3DwUjtGVhALMwS7uCSA3pkmJYdzW1r3wJuZ1fj7ORM5K4e0xv7ZLEYGBJ8QGOYNzVCwGkWpIIY5qU6e6aKYkA6EWP/0LtvLV2HIcDl8vFwm+325zzab9kQl2XkYPo8kcNheZK5Wo8x8I7nA2m3DspRSdJrn4ILxHh4QvDm7fpXsquoFFS7Xme9d69Dkycq6X2ddFeJBwhd3LOqR9IT9RV4OE0x5ptmhlrrxWp1FnnRGRAsBIyQXJzT7nmdHRM47RVCgx4uKenkaSUkdcHbyLZKRKs88KDZJglaUwCrMq5lMsjEj2Wj1oqFYjQUobIzhXCPJJ57+4BVenbZvCYPsbMlg0lxOEeCZTIbjIfUD8r6iaU/gxhmXvxTDKWnmUuITldaHGXx7ofjuexsiJ2rBbFvQ5a/1Sx/Uy27oVicXEVSJjLUspYday7JxwdWEc4RDS8fGXgzILoPGQl4ce1NabjDvOpWXFGeD0zp4dQRkSyYjN2ZRJNDxvTwkBFjSKZtKCt94iYx1y0lMIP15b3FcTOGHu/XeZWyFXy/KbBPYLBaIFZvHJPofqVhnIpbJ5eUCzeNaNpc1SgdjAKR7DcSwCW0CjSzbG1bnfdxJUzyP1+Jh4q24Z8HOw/sOzufbTTM2klVGOM7L2uozbjdzXI5Mz4c0XB5zhUe1sulfUuUdJhmDYGjYxGQCLolBnydpufXl+vh3/+dH17s94aQtp22Xs8f/X10/O7l6++/tnf+tvP796BwPGGYce3Hz/+7tfHx++b2fH6+fr66e3tcxKRZupUMZxhw82vvuLH09P+9TdfPX/11WG4mU+DTGxbe/Jd2ozDLpcdw8M60LdtVzCCFmxtC5vemniIzekm82juW9804K0l9CVRh1pmLuERY4z0SrOZ/cXqehsdKAibICjJRqnq97L3beubRBOvJbwOPYZIiM/wafAA5Zuvvv7pj3/053/5G2mt9z7GsEkRcydFICrELRdF+p4rW5PLrpfL9uOvX7rK9dMn8cB1u7m7yKfr8ad//hevt+v333//Bz/95idfv2sR27a9e/eB25NuvRtjmsAzgVaVfnm63d6AaWavr5/i+cM7IRyERgTMExqZsXTThjUAR/WHCriU+QnJtkR7KnhXJiYQVP9Tc1UnG+AeB3JppjShaJbAklxmBu1BZh9fjjoiAh6aHSaQsfTW466PBUBRYNXzD7kOiIig6LlTFsT0Phs/j7+1lcUJRIFfHuPY+f1jUodVbCfJZSUu97/ypb937t+MuGfecv7VSnHj4VMQQDqbcuUheco8nCCPocAjUM4dX34BeHATuNcvwBIwQtVx8eXcuEylVj4ma7qZr3B+qMisfr3s+QseRt7DYD3oeCibvxwgA2giLZxmMYenmFZAPIyiC33wGPZhiBxJenYxyBBGajaiogy+fGbxkMp7akGLnNF0hc5iintUd/V+73Jmk6rfSd3FHdUJQNiMFhEn2PJcKHXhS/zNBQu+O+8jQNSBx2q3Loh8mV+ZimZPJyechS8yz/L6TsVGFqJZqmcLORIQlsdwZZEpMGEmVGnNmXoY1dWNFKaSnuJP66RCBCgBQDv1ji4AAHEFOSxr1EbKSRIk6RbZzSpatRcXPiLRI1b/H9EIugaMafEgQUEKQUVE0ES5t55gEPeCCr88vSMJz36MTTswPKcmqtKUwhPnTJLLvuVhuy5KEsmk5ickL1fL5bJHWNjIDOSMXGlZna9TdxUEM5tEbwLBMWcQOcceY0Tcy7+I4stlH94RZmNOj7AIz5p0TJtZTidd1qZP8znCDBEUCfdwCzeQUbpBiSie7jMFAxL2qaAHhjtw0uAnCppSnycbK/EQaGrHypk2JZOo5g/5k5kLP3imrcvP7cQX1FYyszmTzZUXsFjZKKw+STm12B+EuEgu9eYJoEFI8eL5BxCr9i16c6WS5lCqSmMicoegpNfy2lSpWbx6gK5ZIBMkVeDua1z8sJoFgKcsR90eD4pHxNb7zAoDeT4YAygzj7KxYVAp1deoO3pOSiQVx8Nm6kpyoYAEKiKt6XlUnD2jlBhQ1WgNQBClPoVoezMzNzO3gt9HwKDaVUTL+CHSCzGEbjAU5pLaVRoAlXYtZoGqKDkDkqqL4ZEFZQo2IkpOKVHy/jAcJiCqXjbDSZRQKhRUZWtiBltqHnV6lv+NBOQ4ZvKLGtu+75Z45Fz6iBQsCYk5jIl/OCkhnoBRBYSW+QEIRmCuzCBy/1Qgu18Dz4frkelGLeNcbwtczmB4UKLaezWnBdLeKrKdnU4/YAoBeASMIojQNObJSSzDbCKiqwRlTsttm57ZsjroUrkYAuLhsvrAtR3BTHuYA97sbmYBrAyPDF6S2z1CEOUcmcpe4QiQ2lo7Srfs3NQ5qK5cqrKI9bYiMg5L8wMADENShng65eaJkQaDS4VhnbLZfpKgCHPhWfUHNfebe2m9pz1D+6Lb/LAjSmBJkVrf8GSOJdeUSzchhAv8XoU3UWIniNJuUNVwJgwqDX5JFuukbjfmnPBxv46wsBx+p5VRiGhvLYWbD0dMW7GXpGy6mdlZbOPOkSbJVOvg2epaydaZsdzfNn/BrTVRVUcehhChIMgaGXkg3bndfcZM0GYdaZUaSE4HFc2SU1daoIyS8IFoQxYZZk4EsW16zyOFKIg0yBr9OCJfIrUfhyU/CB4hGahFTnd6z1uDSC+D4eHhbVGya2srDju6KAnWtRPAtDFtBB0QVRNphMTqftbcAil6F9Yk4RAR/fL0oW1PZs2c02WaiYr2Tdgvl/71Nz9+ev/h6x//5Mc/+wM0Yh6Yx3y9Ht999E+fcHvDnPP66uNgmCgoErSRg2uRadPHvI4jFQpkYSPH7XYb8zpjRly2tj9dxvTX266d33+WG94AtLZtbSPphttt7KpzV4Rh8PA4zGRa1120y4aIuB2Hx5HvMadFDiFmmJWHipBdkpxVqX5LbgorAetNe9d9a3vTrtIbL1tXhbCrqHALVz9we7vpV/Axb58+7bp9/e7p5z/5yfP2j7FtoAy37HwpI4DOCG0SbgIRJ0MFe+8fnvTdc/vmeb80vSW0yuN490Q3P47XOX797cc5j9fjBvnZN189v4hA2rnf2dCS7IUQttb6nMccxzGO6xxj+/br6yv888ePHyt1EXm57A1kygdAExglImx7+mEkfCZq0SPME64FCQmncCuqLQAIKFRQ3KeHEyhnH9IR47iRFcPcHOESjOSZUKkasJh2knIFmCJJuSM1Mov2QLIvM8disRh6cK7aWJaoHp2qWkL9OWBM3fQJxBo91xybUmNdEASzzXKPZBmn11wB2UGDV0yOiKK3PFQ3NZNYY7NAgaMMC5R7H5OWkbjXy1QbK89QX21uVI6dJ68//Pn9C8C0uSY6j6Uizj/BQzc8Il3DwhxzUUof223woGShg1weVt4PmXoJ8vREtN78pH+yMkWSXXtmQdXFYM3sau6okvlNOvxVpdH77u5zeo2lkQzs8scMIYQFDYX1llaxVVNXZ2Bl64/92PxsFl9QZPOjprbzmVDWnUUEZc2GyoQte6Ne9oHkkkGqvFx0Wqjg4b5/8RXVLU+YVtWimesnJSkWfPGsgR9HPecjP7+xpRHNk2V0J+LWyAXrKF2vUB1r8q4pkr/TRBw+F4dn3Qaex8YPLoBkjlwex6o/+LXH+6/U2xjSughFgshUfBmQrkWZX5UHZEttifPWYyXckxa+Utc84VkInjxasnWdV2h1PZkY6Q+2QXw5b+QaKtrSQM6ng+WmLQ+3NBY6Ou+Dqp4dIxZIJuV2MI5rEI2P0ln3bCZNeViyGG5mpVEBgC4qmMiOsp+rQu7cuYCf4xpZA+3HpZK/M0aQ7CLaqMbssOdiM7OkrkQUr9LdH4GjKHbA/dkmfuMBE18cv7+5EvRBSJDn+MWttf1MAh7/NVsP589zj/xgRd337wpb8qBDS1LBcM/b6uubM4k894ucUW8NcLQicJR3ZgpBA0uCYJLFKuiaST0JZ0AL5QFNW9NIkc6zZUsRNTO3ISJNuqqapW5HrkmsMIaI8Glc2JjF6bjz/M91ez6a1ngcM+tTSFmMZzc3p6z1J4XTTgimZitKgix+HB85mmcIykFurvlhEyg7qFz8G4vLZw/1l4gkHSDf3aaVLo6qpiSVj6gZnQqqdyuS7bDECOH8sK01oZKcxzhjF6lJGsw1tngtXq2WwmulVr2HhaJZwtPdF/wk6GHppJjnVhHgc74nwHJ9eOg4JBYj6uyp1WhmKiDy4sjI4zNhu/dtk17ocAMC7hKkp3ZrII1qAPHSHGcKulaDNV9oHXOAIL2WMG1GQByQdKBCSsRFYhhWU1yAUOZwWVpjYknmkZouW9e8KJIOqAjAapfUMfHFpk6u9jlMWFjoL0YHEcHIRpueAbwO2YfXvO9lQfVSM32hLhPmONVHIyIlf2Ohgu4nztrgzHAQ92So0rCClSErVEHK3oaRYjCDIkyxl7l6IW3OfdcrPVqfH2tE6WHu+OHGKdhf1f9LaIPkpm14dfRm2Hm7zCwV5s59F2uqkL/xGPrOI6mhlUKUpZ3XNBut7ecH5xqLRHg+r3LRpkbMaumvJ3MPKalYs65EsufhNUnOrg3WCZhTzcdOpT9oTxiqYVOKg0BqsWvmd+QZ6rNszvPo8RDJHDt1zXyh3nrvqYfS+v3g1hQPS8/hFbIzNXB6OmmrKkTcmLBwMwNEdNfNLs9fQ7bvPr5++ngV3bYuBkGoI56fnt9//dVPf/YHP/9bP9evPuB480+f5rjNj6/z06uOmx23GCPmCBtm08w8pqWaKDQEAkkBlsx9xxjff/99vH5qfb+ZOVvr2/P+3C9PHvz49to2hcorJcxF2tO2976F+a/fftuJXRXaXW2qGhuJcTucUvuyoMdwBgC3ksNzAynJ86VbDejMgyEFEYsu0ptetrY1vTTtTXqTrWnbetO+Sdta2/fLtl1I8Rk2p92ubgOMn//kx/+lf+mP/z//6B9/f51v0zo6NpEsDCFsKk0s6DAwKLZ1ebfjm3ft63eX95s8XTqfL3vberEgzY6jE13Dj+vbGN99fv3w4T1af73d9i7SReTSVJu425hzOA6fdozrON4OO27wNucY4/tPv/mrv/ord89W8L51BlpTuHfoWiS5nd3CEtdaSLzw1LxPt8VpU1VXiYmynkp19mzvPKg2YJEiz7Ig8TUiIdKVcPc5JmoaXGmPhLtAPU0OPO2rW6llii+slidWtVAkue/u89VHxOvaIHf8yDnyqV8mEJ7Tbzx88csJ4vn9+YcoTOs9jP/gl3PgdHb3WbEozrh65qt1hKzAUrexAuAXtOfH37x/hLjHzMdrOLkhj69wv0sP9EaeDbITcOwr1kcsNNMXr3C+yJfvSJK9t8RaPqZqfmKwv0xfSTZAtu0yxnCfqirSElCat+v+ybmSlaU+lbio843r7siSLVlvYoefFcJaFukbYevUTGe8TBQhIuUgVbBGyfxApWXnOJIQuJL4+xWex0CYuxP3ZP2xLifDYRRqbwLmYLDKDAZFovCKlbWr3gHdqQG7SpFz6qsRHGMKKK3HGruX2jojQdTJOhYHgEZx5hjFHW5uqcyZjwrreD4Xrt+dNMNtSkvyA5A+aVI11bkT+HD9EbQZIQGFqmR7N3OnhN5E3W0CMefULgYktXXY0dgITa8IRPU0DZX7Eq0O4uwi427HYnN6Kgq4p+PoGWhSHkREqE3LX97PqW8sxB2ACPv06ZMItgUyjyVKtO/dMwGSOwgtEAizecxDIUxdSmxmc+SuieJiublPHxHRtx5hAfOYOVU0mJdErTeW5b27M9HRCb1MpRuPRhhBRu9qNsyreRUs7zVZO5knMzPtHIUp18I1ymflPUpQYRHwOxO+mGyxRLAi4l5OPGYzX4anCgGsfqTIqZd+5igLv1edywwZ9/C9CpuC6p3rqtCf+S41Y3MXpJAySQv3cpGxnKe5J4xD89QLcwsPpAKWaI7ZpwlDGt1OQem8A2iyqhGhCgnNUZwAolndmcfEvTvGszmaH6h2NCmt9d4iIlGb9FwV4Yi2cJtn9ORqEPzgPuc6b+U6Yasd6EAEw2JC0LvCqqxSlcbmhpzMB0KoLBtwL0Mm3NdJoosu/eLut3GYWetdRE7BjHrKvCPASOZdTKtEEckGfTmtAgWoRC2gcM5jgA40EcHdjfLM+GXf9yYK82ocNInVn5a6VMw5E5Fxv/MeM/MYi5i+mgh3CbG1/PJ8Ct4NfhhRzGouXANz6ImICEeIQCjusDlTe4ugkMFqFgsJN55lZLh7eYCf/5cBDXmykfBokNT1gc2F1U+ECOmV2epa88JoEXkvclRHoLilGQLI7OKCcCAKXB0uJRWWHz9WybypzJIHNtydwFfdvWrwbERWKvag0ldaIJAfEMrc06gzuwlZ1BU3zN2Dy84yguL0bCaeDeuMiEEuUeqazrCG9F4zw5S/OkW53L1LdZPdk8EUOZylhEe2xQoUdGq0qLQEMB6jhDm5uLURXER9XQV/FfnnHZDwLh1kRLqrLmCRR86TxxgMaSLpO22IMQboJ1/gzFLw8BURZ0gBQFCVgeJIkwxxsXuOFau7HSDD57TWmMh1s0nm/EpYRlB8eLLDgx5OSXkUnFpXKXIbJYxKQKBNgFOcEuvhrDYWv/gMmZgBKVbiXs8irdxTR04fPm/kUChKpz7M5wKVuHsCNYZbdr8iwqLaB9kEP9dAClHFzDWiTTTjT5SBQuvy/PHT7e06rt+9/vUvf/+7bz9CN4cMQ+vYtsu2bU8vz7/4O7/4xd/522htfj7s7RXjZq+fcb1yHHG8zdsV8/A557gdx20mCZkAwuYMH8dtUNG85xNM8e+ASGuXy/P29Czbpe2XMaeFH8dx6Ztvu5lJiIqkmTADXdToUGC/aEApn2/Hb79/dTCmAD7GbcZ0EzJQOi/ItBJoEWW70BSJwxNSKV0UYG9t2/rzvu1b68LeZG+9dW3bvu37Lv2i29a6UAEJ5zjs7fX1m3AIPjxf/sv/0r/4j/70n/7Df/LnT9HGtPkSY4xxm3MYhKoCoWGA3iT2De9eLj96t3/9bn/R9u7p8vLyTtp2eX55urwYoCqXpvB5e/10vH73vMv2/Hx5935/vmTwUdWuStzmmGaDVJ4SLiFba09PTwH7i7/41a9+9avW2lzSiT7HdnkiNUNjilfWlglEKrFLHa8ZszT9jXwi0TSEIJu3gunRKtmOzECWhGHbtI6WyKdBkZglOnBvYatqhD3ALVHHBSIiUi+nihaWNNR5+ucTPHdNrnKcelQoTCuLtnkvxjJpzzlGduoSIXrfrcwDzgFntk+BE8ksYCRADB4RRltxnlCJSPrVffbwg7ntmQHme52RLW+AqqBqu9UTfGwl44dfutiFD2HT73njw2TuTKiQjW8CpYiBiBAF6lzg2fDMwCsPf1gpwhemJ3W3s2nOCH2YKnuEPfxOLNXGfBsza+lYcF5xUXElkvkIpnZaJilS7G0oxCPWI8lEuBqmXvVydgZFDwxhX+UipClDLDzGcV6HI5FknjxBIVJ8+byl4aCSIrZmfdI0zKdbql9+8SwDZqYqa4kGQoEEC95b13lU5OFX0x4vndJgqKaIlO2tp8JnNp+oSkrvfVnluZR4iUFElTBJDa+6ekYu93pHu3d3clApTSJCk1ogTET648eJCCxtvID1vi882In4P7vCMBuqTfV8C6h2e0jZc3H5Mq6sPpBAVSlhZtJYdbk7BxGiSobmvlISClgktsf9iM3g0domxfqprOVJdSQL2b3V2vXwOGke+dZmNtwA3/cnETQ2ozUiWyyIEE3EYI2s8/V7VgLm0yq/0VY3mSeXjBWpVfXO2mVQImWx5/SYwxsjzOc0s0TX5QwC6swhmMidy78mz2szF//QwhvlzPZWDcOIaA3ubj7nPPKeB2FmfJh4WxE5sw3mYMptGdxDSNCXe2/2xuBATpyEQn8kA5+x5jHS5YoSUVEJu5dwWXSR9JjCk7tiZ3ssJ4pAOYzLkhQys8fU8x4fI+C+bZuk+ytTf7jgFREBuFK6NpIWsDFFQim9dyXmnGYODUGPqHop73BejFJ8DKoGdLWLXDTdNw0+o5JzIUNBskVYkttt2BgD7tL73jsAhwUgyMOtZWHQpHjdGVvzAlT1GDddQso5KmmtaROym8XM8XOJnXpEwKNLFxUPszEtJp2mhpDEizihXcutzdezi0QmAEvLvbE5C1jOFRZaa/MYnXqeFpYdcbiyWUyz2Vrr2jwBU+53DQIFPW05fU4zH6pUDWE7R48IaU0iYsywMREB0AIWNJsiaK3Z6rPiUSy9ilqBoAWMFeV8ERhUhAFP0S4REVFy0mC2NH4iPxHACIvExnmJwKVUboHSIqUNEzfVEtSFSOkQYtFfA4gafKGR5qA4PHctAwZopidsGhHDCxca4Jwj8QgpZcGUqBLBamISWXrLKssYZTYg8Nrsuf1UZLoHvO26tT5M5pw+jYCwCctBOKUpfMymzYnVuchRrQT9NoawdWEwaYMpviJMbwTSPW2h6LBVObuAlrJwlXJlK63wY5IdmWDEFJGzevQ1Xbz3rxdiQxARqdSSEFsACHo40jhkMEEQng8g62plq+0sVIoKhdGkdaWAl22LcLPSMKOwtyaUEoldAqQZhbuQXyZVw61F+tZ5PCA4igEkoqa9964NkC7a2obcOiKb9t7vhnyPA5nMFWp5Fy6B6cnmFgQo0igjoNoCAJLi2qc45/1FKrhRswvZBQaVQEhIMJm6ORcHCtfjUY7H2Y6Zbp6TzKYthyUqsxwcLJbENEVVdVZDqebJEhRVhGjrmNNmkJCGe+HqpcEeAbOilyurtxjLACIjYorMVz2Zqu+nlJoyPKZbNTnCAFjA7Lr3rYFLZUO3bdOI19fX17fx6fU6zEO6gUfY9GhA79qEm8TPfvyj/s0H+Jsdn3SOZtPmYXYo5jxu46hHlrjFFLrORrhbbL2RR1oqZwx0dxN0Yuvt+dK2pz1UQZtwxGCYBrqqAD5jzmljXq/XrdEYMRGNpPb2nJ/XIsbMfCZI7U5pdPqcaTGeYket1k4o4gCgSBccaa311gFvqnvrl22/bG0TdpWtt977ftku2/4kW4NYxLB5GzLnZMT19c2uB17fhvEnX7//u3/0i1///luXNo1z+LiN2+vb9XqdASpUxSlNXBueujzv21db+9DaS99etu3r9y9BPr+7/Oibr7W3d+8+fP3118f17fr2+vr9798+fxcaIxDaWpfWtta0SYM7dahHa23erDVxA83DFZCP3376sz/7s4/fffe87XKxptrJtM6iIwuTzFJTxJnrlK8CgiEhoDfR5P8UnwIUZaMCq+ssCbay6XDL+lO2ts85p88wJFgxCwmfztYFrqRqa62N4cdxXC6Xgi9k/paEhVQwKYvMSnTyOEtEQ0SAmglBRqLH6jd5Clnvwh5mwg9VZ244lArAPVws/Mi9EMgx1RyHkJT22OM6c3sywdgZlUvdNmpQxPyvgFQptSY0fKEpnV3NODPJU9HJ7D7UwWP9jHlOYvBlQI6Hr/POVNxYgO8zXU8Q3NnuPUevknpWZ09tvfFZeJ8zZHiQPzTryQrwsTTIZpZ0ZWCGNyosZtClEYV4SVkUULIxGMGgli37bRy+xM1S9TStd2wecxolNOFJZj4NDZfLnq37VDF1RPiYbi6RRhgzLBBUtKYGBiYgAgz3gJBNNUeg8PCAiLSgT3cV9MuGoHlBd6qVK+wtq+Ko6N64qDhuPlpq1YQHZbvsEbSINOFMrI4AMS1nZj49/YeT1iVRDYm+b5lW5vTj+dLTq/bz2zVrFXdXQhMZN0fv3XMgBVgghJl4qxauIjeZlLQkRFrOWdy8EgCKUIIxPZSuqggZY+Qs12yuqWyZyVVzWYWL6hM+R4nRKVUC6ZT9oHinsDGpImxb31T7MJ9hopvNCLfWmrYupPgIZ1JfWhcP+/x203wd1RBer9f96bJftmFmNu5gZsG2bxqa9y0CdBvz1kWhMKYtWDKH5xi3p6cnFQmbdppLkaKamgrws+ErFAk4yW27zOmpeOmI7z99t6SPKvQ0att7dBLbfmnXz8PnEFCVw8ynzWPIVs2UNEG8jTmPIwP0nFME7t5UoXq9XsPdJafsNISAAgZCVCJi3o7ny1PfXr799tvPnz8vxghkdUZON8ucDdphEdFEqc0RZo4EO7g3aao6YNO9KS0CrEGQMEQJVTeNiFkCpFgZzjkurrc65xVRnGGciqoRSe0XhJVPR864ViEUiI0aEZb7pYuZHTbd/cPLuxzT5922Md2iuLUicAihHWZzHDeYR1OQPkeWANKSNi4wpK3unNPmzAlwSkyLz9QZRdFylKpwU61xauHMI2CzdQmb01yhl60nONrm0VpjiWnVrgmnuzuxPT0nDtOZroOhrTWJ9ARSVWh6+lmEHG6klHxBBsaQHhTI1rY557jNRhG2YWExVTskTuhwqKs2AAJ1BKnSlOA0l1QUcxfyeb+01soLEWLTt22fszaFWwyfTbd93zCnQCPdd1ubbmbl5AYm1lgo0poixNzFBQpQ50O1E4BZSHYSyd4vc87hN2rrDTYPm7Mm26Ud4l16Nu7c/VR7BXBp3Z1IMqdG4sVCs6ZEzHAiJZRbhCMsRnYZI4ppDKO7tdYCAWHxHN0Z3jX2rkBgmo3ZwK5NII+IVgsgpaozhwjL/CA80aYhQhVVbVVyZIh2C0/Flbzl0VQUShbEM6H3KQXepEWEm8PhEVmvWJJrIpoqUx48u41HRG+acvEknOEWYXQKVYQaYimNTgFhp4JGINV1FZEcAyFb2yIicUygW1OI1+A/4NnMCoSV+1HkFdtkE8pSu0henAga4Rb0KHny1bNgxgPC3G1GgK0RcDdXRLjZaMxEVUSISB2ERIyzSWMgGR/SKaq966aN8LAJd/PQ1sbtli3Cp8slz1YVsSTzRyRdPxs3mzaRpmxnHgZAe3s7bpemWTTmGAA0c49NA+TWTNCUfd98WhKAb9OkdZDJ3peWwt3UbZcoT+AcGdmwMebz89PtehNRpbiNiFDpZiZsKc2gmnYMkECjuPRk5W57ywrNPXLqYBE+8wRO088QCnNY5zCbIEQL2pD2cBHmZkCTpgHYnJQWUkJyQmW7z5ES4FBT/KJfKDz1NclEiQTcxvB56dvq8xp6b71pUxFMN/MysMjdzSAbN91wvz+RVtVU2kTKkw2bEcGmyWaat9vzRenD53V72rddn5+fb5/Hp+8/9W3fnp/7ywueNlDGpyM0ZgyVeNnk/aW9bMDt43j9bl7f2jFijI0xbBzHTbt69DmzoJdw8UTWhMNNRY7rLbvSx22mWEP4RAjhLZ30YsSYw+YxrTns7W1TCe236YAL6XbYeGPg5fkSPsY8pDfvQt2g/rT3iDDYbRyf3mKaWfhhETRp3RxQpWxj+DAj+XR5DkYENgiblvah2/vn5+eny7vL/tRaF26lw+7PwWb+snfCMcxVJs3A69tt3/vrx1dpHy/ffPOzH3/z02/e/+Sb52EYR1z9dejcL9iA25hsFIVu2qS9e3n66uWJNhv4LP2rd988Pz+/f3l3ubSufGnjJz/+6sOHd89Pz/bytO9/+Otf//pXv/rr/qSX521KPO+XRCKr0ocKN+0NDPB2jM8eh/ucrj55/Xz8sz/9Z9//7lt3aaA6eu/9+T3NRcSOIZKOVIW8sDlnEQm7TwPTdi72vQMx3UW2dEnMrrq509xRoDbzgPvW9uVnEQxXNunlOw3GtnefEzSndOkOcxsR3PenckmZMxttY8wIvzw/39KGjFjIDdm8JSMp91fllWliwMj2r7vbA1Q1+4QxDUGRJqXjG+4jwqTAi3fVKIZPS6qjuqcYnmSB01WXW8hK2wIJm0IEaQSYAzD3gEtJK6pHNLZYhOOct0s2iwPlYAiaTWnapQ+3xHhFYJq7Q1WFknI5ESFKoZ5l+zmdihD3aCcD9OwduIMUKEgRVSjqvHQus0urViNFpIuKyDGHKkXE3PLIEzLCw2YrFLBRpLUWUixOMjGwhXcubEAEIlREt50RwwxOlVakdtWc7SYmHmQjgpTWBIBmLzKxW86a9q6Jk4Punp6TKFwByeopBiQpH/kgq7WMpadJEkzwQIq9uiPFq3NRZL4uYJyT8GLzVrI2hz02GFh27bqOxogFTmAJqADwE2+QRzyQ0P6E3RIMkRRkbxGWeLzsUdCK+5pHNRmqlGQHhPkcMav3SSlXxmxcLXZrZiE5kauqRClOjDHCC6TqS04Jq7Miq4oJmK1/khJ0FXdvrYsIQrJ3rKqqXaR+NdsnvFPCst8fJyZ+HZnibm2ZJ7qHz2lB8hCoe/godEiS3aJcT+7tn6z3Ypq5pR1f3u5zpKALDDPGQLoy0EXE5hGeygrZ3HLY9DHx7MkZNLc0s/i727+WJdtf+/81VWMR7haYAygQfiJhqNUKEpE0wk6Xwp+2/0auqr96+z/A25wHEnlMasoP9p4eT+7+xz/+7+Lh6z/+s/8VVnMrt2s+WWFJYaeY1XEc/9bf+/v/4N/7n6QszbQx36p8KovwB+EAjXQKBeEpnOAeiYeVKMh1znMjB1ylkcjlgud+SgECNS86dwuJkBTPTTzCua7qnEhnj9PLqHbKYpe1c3XEuerOPz//LY+l8+HKIww7vWHI0ywlpgmwaaMG3VKW46G0CCGe9gsC8xi5bhOlYj73voA/pLaq1sYYGfVi+ZAj+WclrZvCRJaI0mKMuy0j2UQlVW8/lnPduoeeSBBfEMeMLQpGJEc3/X+ANanO/QhnjMlglw44oL2TZFKLiITYCBe2arqpKkXDw1B6f/MYt9eb9CaqsebhCLp7aqQDmHNOKwT7cRx9saGaaN78eNDEyodYw7SIQAnn8MRdr3YySjQ7DGEx3D3Kq9lQ7MT6QxbSFY2pUxjplJ1FQtqfBIyJa4hhDnd4eQMJINl5iDAPByQUYHW4BWiU1prP5b23Ot8ESLjNbNkm4F0s4I4EvRRUOGXiEFmQIcfLBk/tOKas4rTTqj3SwSnvlSUtIAA42DKYAU42MkiNEj6bDBFSi7kcBFU0Z2oxprTWEK4kJVVZmEIKhActykJhJnmRmtRoR7GskjfutKfLVqQhDw9MHwm0ixyF+/3UAz1SLS2qTxaLOZY8dEbSfWNNLxhOj5AzaXEnaREisvctC4mIquSrf0fPjr2nsHZ6ryQynAUPEzI8CUbaRA1hx7jJyE2kkQ5doRQ3w2pk54E3j5tSQJdsVJEwT92HOFsDGZd6y+I7JUyTeWQCojaXISRihsPhqR6+mLH3GLe2QO4XOeH3EWlyR4pqU9zdpKTEXU/twIJoJr1i02ZnQJZkbFhrCoSAOUSqYcziBwNA2Apo6SLlc7gV8JOpNh+Lpnv2rfJ0q2VcgEkSxU7PpMLmWMwzvc+gMhKIrHanHTMcdu8413fZwr6L1lSEX9/kK0WEE4kOaFjC6sCwo4VJjNvN3/oEvrpcLgG5Xq/aVPsm2z5s6r511a31t88fny+tIfztim+/vd0+zevrhRpj+HHM4zrHbczbnDY9LHg95u02RKTv+9aicONiZuLhSfYWkS5NlTHt03fffv78eX962l/et637bbxeb+IhFp2C3j3LvK4icBuXy9a7Pr97uo24HbY79n0/3q65Em5Dmvoxx82mDojQQ46JaRlwituijdM9pV4VFKCJam/vX949P11e9q0TaqaMJtKol9ZV2Zts2+XSdFeVeZ3hY4x52PF2nU83eXsl/A9++s3f/aNffPz+7fe///b6/S3mbW+9P+/98IjQDaqIsGZT5gyzpv3d/vLu6d3L88vT1vbOy67PF9nFOibnbWuXl6dn+dnP9uc9MIaNwC0N+agaoEMgTTwrAJ/zOG5vt2PK9iTUz5+vv/v1b66fPm/7i1LMbGK0pS65lCk0ItyMy0tFtEvqtAtjmtkcAmD51Nf8A6qa2d1hzhDVJqJpYpojius43MLMQyoWUwCykTPc54yIAhkGVXV6ogYqQRaRythRGl/3nQUoxRESYTUzRinUZxRdqs4RCKGk2owFyIgSi46T38EGuMPiAQINoPfOE3scWO9ujTkf/UJj+fH7sxCl5oCAjQQokUr0TMJnibzUQephKAFJIQArAmmW5kJqlgz+MNa1FD38UoXhMYQ+/vyeh4+EcIeUJj1TDi4xbgLurZdeiVmEK5isiTOlzNI2NYZ8feUbuacXKR8v4Jyi53+FjDR9yGFYLCogAASytSNCX6PkiAAkS54IaPrDZSobZR4QSRfxRUbLiemS9wiWGWGhgAsa2liyDXXY8JHSve4YJfOkmGZ5+UmEZNSCORPxx6+8G7l0VvVbtstSEO78PZEliutuQKTpcKpfgk7Gpe8kZ9z1mfIjI4pkr6qLfzDdHaxXP4ttrVY0+SWkIYe/4SbLFjgn1ikcLydfK1AyP0qqeoDOcIZTJMHbCflOY0XPdV4rT+U8fvwO0mj3Yd9DaZrHraomXiQ8E0n3oM3Y9x5JALaCImft0Xo76eL5UpYgGO1Y0mIlkoEIpq1CDeqqY6KlwJFJMOCNGxbB28fMLOCPL/86vvz6ufyr+c1fz/8LUMLrKQRi4SKinorTS1EQ/Pn+xYv84dO/AQANf/npf1vT1xWLReTvfPVv4m98/Vf/C/+D/+hP/h0iFY/Sr2JmhRGRnFIH4t/6e38fwL/19/7+P/g//48TVe3lF91U1McMQWQ3ngGGeGnhnug7ksmMRI5tMwhWARMkHFxKY7URHvMSCYJlnoFCKkZ4sAJo1hKOEhCuH1aNutTUyQejkfyZsJic2TvMtDp4unQyFcseZAZSDqErSZoNIODCalS1mDiFwUEvAAOjZYHmyXKHElnDSFPQgALjMZFR7qKaiNSK/UIg6In4oSSUtKDgIOk21xVqBGNtj1yYidOrA8LcK/kUsig7oXQXC88+pSPFfqGipBoiteCFrfWtNGwaSQ7L8omkMvGn1CBE2FrH6qydcOtY2siZ6wL10ojovTfKbQ4FtDeIhA0rz/fqZ4iIgnNOptdXBUNJ5Gw2Vs8QikUlOokD8iC10BIV7ROJFl5CgOu8SfXZLMgNKHVqgALYgpJGArK88AYROZ+Nc23POTW0uPrZNVURLuO3kxW71NRtTBHJxEJLHM4sL9Lz5I66ktoIJabAMw7n1SfMZvVkS2eOWLpKQPpRZ1mSssnrE6T6MOBSlYlF6nlIk/Aki+RMXlRAWuRJkSUHI1wIkTSfcwDa0uwo212J48o1kGVNkOytTbPiFPQ2bOZBBoYvyDQAcQuXxJfXISQAsiady3sqta6hpJ+CXueqK0EUZHcvb5mZWQYizfTqvniWy9fCDKpEtvYjdKm7JZCe2nL8LlImKLr8n7jgtciLZUPKCFFcZwgzLTwjHrIDnrD5BdhWEYEG3bNrrRIiLnRzR7RE98VKrPN2CRlC8pz9FkaKNVcRYe8NFvedIqlp4u6OdHlqYGqFA1lEZ5wuOH66GwHLHzp1IJhxXgJ2pmSZmZhbWJIZ6zrXicuFMc5eryykX96/8/vyKsFaXsxW4dkEdxFJTm8yMsyGmUUk1bMRNStOdqSts55MiS8yQzZL6M5Kgby2ltnIKDbGUCVUpttxhLkrsW3bnBNmT09Pz/tlvr6SQsi+X47j1tp22Z58TPv4mfOQaYMmuaMM4XRDdq5yCenWcyGlMS8JaU0iDRmqbwiyS4uYUMGYr/Zpzrg8PYm0TVp7tz2Zu2G43W5jjNsYQylb32JamCkb/ZhzBgQeT6khIuy7aJfbGG/zaNfW2pxO3gYQNh1hQmjTCGd4E0rPL33eL0+X7d3Ly/O+P2+dboZbpnfSBKT21rdt3/dLb50EXLXy3uM4zOy43qDtFz//+ett/uWvfj2m/ebXv7Pwp61dLpfwZ7PZu4rI9fYac87juH6+XXV7frr27XNTRMhxhXz98u7dU6J29+cnbRdRfXp60o234/X1+llbV+HWe1fQ3Omt9TnntDnGyOGXhJvBDvv06ePH7z59/vTW+0vvPUdg0rpC3SzHyElwyMfXSoA9aytLXbFMb1prPkeGAnAJEIQA1kWnw/MUczf3ASQiJrFJ5k4VbaUIuG17zOEx8zgNs1TRUXLOGWtARBEGh0cEp017sJAUaa21MqtZs6g80FH0J2SWlfHo1ISLGqm4FwUcpDAY8UUcO6PZmVTron4st7PA/78vrnqvxPDufxMlmNyUZ0woZLETZIhbpHVlFWywVc7wcdYFh8EYcgaVxwtwf0RWPw5XMiYGl6IjWRMdGyOPJxFayslRWqtW+Pn32QblvYAvccf18jm0kIf3jftRsvACIpKkhPzfKZyQxJmV4K6Gx/lCWbFoy+Q1xwuVNKtqa+k/Ns83I0nRaW4oAkmVeY6ISJ/AGa55wuaYLxzUXB7F2KUngi+y/5DphVvQ1SKo2sTt3nLI8ckart7bADlhooSIVn2twkWuXWtetGzZWDZ8p0pt8j3MzjJYFsH98ZEDyMJvLbS7tWDpuIqEJGg1FqaCeT2ttQzXpACtJW04n9qjpmgyM5f27zmOG2NUU001edhmhnAUMem+JUqwMLfq+gDuBcJuqoCb5UMjAIWyml7usfD+pT9Jqp/I+4RAZ1wP56rW7uIBAI4FJH5YVB4RAgJuxoioHj+pjXMOYBlc/XO+ft7+tb88/k+ly50+12tP5sZOv7q/tf+3/3mv8It3/+Y//f3/JuNLinX951a/+fWv/Mv/9n/0J/9OrPlD7r2U5soc+t/4r/9Pz1/OD54hvvfuCzYvD7S6qkD+83pp531bP7wnmngY3OUCOf/4fJ019zvb/MiU5XwuXN19FsrBz5dlcYDtHA5ntK/H5+cLLj8uUHNivV52RR8yrGSWoHcjYtYgse4PqsmXF3xOyzNAnR9nztm0BsLpEY0vuwa41zB4CIqZ6OcHyYbLxIqP+f85yKuM9+HVkntxXkmYc3HL1VeFXXk0RRqpyaNOoGPvHeNwr+pIoQmCIiSsBkeAbFvxNFIF4dRlePeuZwUyFhYxN3Bhagh6CCS7A2ahhCwzBgDSNGfCGRPWBLTOUX5Z9D6uk/xK+OKx5vBuhtNRYN3/8/ejqLLuy8PW3cMgOOWa0vSpbnxGdat2jGEt4nC3sGz5KxbwYdXYWaBkybVOkzy5s2wre4d8pUKOAlwXADD50jmBcSA1RRNq0SghVOh0h/uMqZqDWAJgyUsFw0/leYcp6ZJUkqp01oYRkgJKuKjUuJmIUM2hn+Rw0xtEWrPM6ENUCc8A67h3loIWYW5EzjrOdolIwbNLeBEIGLkE0yQkGDUKiTPufhltYkmUKejZKuJp95V9jTkl0FoTLrCZQh35zhXEAHhAT8OPIikAJcxlS6VGU9xG2JooRQhV1dYjKiBmqNy2rS2AXEqUrSWaSMh7rIsIC5ese0nLo1IlJYEL7MDTGgQhtOUnn4+rtgxFRJJiE2bmBociC9TVln2wCj/DIJkd+/LxIKlsjhScynb2o/b+fWjEkHgk0oNeFFy1CmTQ3rjE5xKoICJsmvwmL2GClSY2Ze1Bv0PtiMdtnsNq0Ju21rSa0SC/LKTPMBhra2P9MCIlIWUJvyGIYSaz2K15iHtg2sgZYKTwJUDtM/z19e2YN0O8+PPL5d2753fHjBkws4C8e//hw9c/uuzPLUQO0zGVgBsKvPLQJYyIiKenJ5EGYBzZn0FrLcyALefbgJvNzEB069vWgjrMb69vCu5PL0/77sauoDaPeGtvb2+8MQT7cX37/OnT29tNtH+6jtfbTdtlztkBhFEFhBLKkFigp4CAAguA4dmBmdNIbNv+/LT33luTp/3y/HJ56j3Fn+GhbPBI4fC347Zfuqp6xO2Yh8/N54enlyjr82itbb23/cL98vk6jWIWv//972+3myP2fX/e3gn95bJf9v76+un19Rpon3kdqT8AJ9zmMUDVd5fL5enp6en5+fL0BNE5DzMLsWkHYlz2563ve2/0GfaGki6gD08OVhhEWkBs+Mfv3upWq7bWkL5dWrYWLGn0e6O80o8zH8imC8u2d5idbfoFPHSz2Lbdj8PM5ppeRCAlo0VEIOfpFhFu5mBEqAilqTvJhDimWLouFzQplUHI0swTkYS1imjv3ZczwhmvSCGb+8iJkwvzNEwF7CY9I6oTYalxt7ITEOcMEsAiuK5NejrxAoAxkWs/LDjP8LWO5sfedNwP3YcT/xHK8fgi7p5ws4x/sYLkQ6Z3D7lCjfDHn9S7xBeB8Swkc2pIsqwRYOEg0URVlek/ElhnhOZ8+Lwn52q5R0sRP2+lBPw86L8Y8q1Q9kXSDqClem2spmM2Ds1M6/DL1QAA4bAoEaB5lmFJ8yeoIlEskZIBUQhlTksTCl3tbnGSPOaDz23dKUYq5j4cKklhMzPRtvr/qcZVavOie4IOilRWxUCoJBXnPv7NCOjTUvNJKQDNPbHpPe8vkjmQOh0CidtxlWUPmFB8rQ5qACi6+QMfXc85ElJCbJG/DwMS9gQWH2yYYestc/HWpLGFI9yVkWI6CcUrhKuHw23ZL3nJe9brz8Ve4GIKRQCuFjOhorHmHrKAuxHRICIL0Y4QIcwj9QQkVFvT5lbCP6iCKsolK8Jg1+tVRCrjFxFE9mCPI9EBNmOmUFkspqufJlItx6guItvWANIDmCNsGvMETT7t3335bz1uvD+//nsR8UdPX4xzZ4nma1YxAsKTmWEC/O2n/87jL//m+u/+5PLFT9wsWxI+v9jk//Gf/i/P+vC/8sf/w/zhv/Iv/9v/9//kf16FKJ2kHzPcTzr645fZUFB6p3LOOccRYWYWZqn3h4gsANZ+qBcJ0MNOBF1OPM3KPUkkh1wZKxd6PxflGe9WMMAZMSMC9oiYzrSeOT9ZP48IcSLFvVj9pBqSQBmCVGW8SxbVv4Z7NZsQyZVwd/MJD3bPSyr3VA93E2XYtBSvUE3B4iRtOpzVVDljWXiqE8ZcLHfWOCU8h9MRgai8UQk3T+NseJWp6S+HtEDzgZCsWiUKgZ35CwUt4UCqwBJ1r49WPrkpRubB5PtB0+CXIuoOZE6vqr6UgSMSidKlkTp8VNALEmrTguh9k1bdxoiQ1lOhiZH4lOxW8Ljd6BFAa5tnbeDRRBOalMVhULQUcBiVQCgAn8cD0kEzb04IyWoG80zUq57KsjRmko3WdDoP6bwvtW5wyuFkl616xu4sCkbNn1fv2Uq4ucD5vfeaaZFds84lzKVaipE2RJGuK+HKVpiCAOBpfqjJdy3EbvbX7hmAYO0eMOcCq2xMuV0gTBCJvwp30sMJOkMqKUoAeHiktQa13rF6KDxTOhIq0qkQzkiR0kzIOoD17EOE2oRBdYl0sRXGLDmTooSgJD1Y+53hbnMaF+x/aYukLniE20NZhbT7TX3GpFoAeTERTggjh8e8T1aFhaFOGEQOMbVUIwBTVfeZ5StO87GVDkZW6yGGcMIQKTqSJ50IqkVhlq30CGytjiqQoi35XVBNtm1EyrWno0zmE/ePl900i2hCEV0hscDAIcRiQZh7LmlGUDQlvk88nYi3ReVAWYJnq6VmJSSn23BLXEl5xS/mYW6VEzRhAUz6mrRjebPfnchzpMuFxci+aMEOK4PN34ol9XxmxnniO0q+qhpP2R8SyXCWT9wjwikS7c50KK6WqLat3243i1moZ02A9GqR5o6NCHdG8CFvzpGEZVWcIH6fw1wpwCZt19YYLGc6YLpNh2za9y2IT6+fv//8SXt7cr9cLl9//XVo69d3b7erAbo/G+mOxjbfxtvHT09PvV06BBGjhnIrTp7AGTMLGCW69m3b/Har2MTUZBZ3jGGq/fp6sxmO6PsF0+12jOsgdXo4eBvj8+fP1+OWehDH7e369vb2+QrRz59vn17fZHsCXMPMB0lQb2bHHG+38XY7Do+AHtPNIxBpySuUfe8kt2172rfkvz717altT23bWuuq2hRetlJ08xkz/LDZhdu2i9Oux3EcfZPUpGCg9a1dnndt333zOhnbtr29vX369Pr542vX1/2rd8/79v7Sv/7qAz+8vB2D3K8Tb4dftu2bd9uH9zsYVP/w8u75+XnbNlWtnoWPpDbYccsZ7LZtSXk1JJ4/zGKM0aV/Osbbpze0bX/uSrm+vvmMrz982HovgFitEvTeO7M5mA2Uwpq5ezDtv9m7MsJc3H2M8qdcRcpZBc2lt8Ku2kQSWNRMrXx6mQWLgIYws1hOHVAkqESVSIAvRRuZ8vQVdate6rrlbRnrC5kMs9jLxa+pntdDVZPt3wxQIsEQh8CqmBS21twl4EX6BgD0vptZVvvuFjGwbBG3rlFqDg9JHTJBWHUTSj85Vif68VTypb16HtMZKheprurDTAPqD1f7EsUv++GI5SxN86x/yD3vlXn+mq7RVxVJKMlgC7Qu9DzTIuHsTIrv+pJ77IoFFAoSCggcUaVZAW5ylpPJM9j1Xn34g5hW4trEzFDZKqph2do5XTlHObLU1PBQQ+fV3G63+w1av+KI3nuMWe+ZGCooySyo0k3pDl1EaYs4hWZRhS5Itp7mmUEwUg2UEREnWYurMamsiRArWa1WgHvOKqeElEdi3D8IzxZUQgEEySq44TgXRK5seVSYfJjOrfa7J5vmXCLny94XRNIhU+9xPct6PGE2UxM4U80vV7mHp97Dww8zkT2HYA8pCPM+y4Mr0vnN+qT1eetBiyYUnGSr+ZvOTKbmzEdb4PG6vNQpTqkUATDGmPPw0hRNcVq6pA0gAezbRjIsF1vkPcyGACVU7nZQc064709P9zUH/NnHf9fNPEJV/2n8H//ucxXGv9j+9X/6+X9vZsC2mtRZV6Y8zP1x/LPf/YPcXb/89L+LsJ+/r0nvH//kv/ePf/W/DiLc/sWf//cfnlcoEaSN+R/+v/8X/7X/4v/oi/uMU6AsAYf+3/xX/2d4+JJwLFZbfuPuvbXSrSmdfViAgSYyHw14sv3k5ZrABfnwRekkuao2nv89E9BzVT8slVxxjxeIc+q7Tpd6kVzhiXtNILSvVl/JCGUGhgJoZsyTwGpYOpnKg27uY9ya7BSJcLKlEK1jbtJDiJAm0CIUAAy4zDlyiJpnT0SEufQGt8Q7tNZU6TPMrEnF3JPXsigtxf0JWUxHFAVjJn02pri3tlGURe1bL7W+APi0zAzr/lgOUERVEpmk2rMxlH/nZQEVpyDT4vRzIZGl9A5DRIoDw4q1OuftOA53tBCqlJ72qXQAPG37GEMgvXUIb2N4uPY25zohEHn+PbY/Ki6JnOnj2V3+IgotU3R7sAYlKarFUr3vDvLOQb3joyrOmDW2PJDKTwIABapfvkxuKCelXHHS4IrCh6WIMAJihMwcFMNM0nrd0jtPQGjR5OmpmR4uEWQVHCkgrRArjFypqTNSlWQ6IXBPxILAszAWRsgSLlxLwlNKk2QEC+ymUcWZITxcQlSVTW3VWJXwxTr+SaUwtfzJLpqDRaW4iMZCPa9YJFLncj6/E6kR2Y0KRn3qKLa2AoBAImR1lhcxAmuyzaXMDc0lcR4fuWFi+YpzAT9YGqpyHPZ4Et1j4wO+4FwVATcnJZxQKsIsnBYhkRzjO6NqTWMiYQVYR62KKpsoK9x9cbCqSNCDBafPfn0EmrbWmjEBe0gRVJBZcp4D5+KhFS83kOmRCCOB/YdHtqSZl9elZ2JDsvdeBKE53So/bqpxh+NhtYp4ZibrzqykcG2kWGMAq10heRNCSBV6irS5zOj7loZ0dRqhgJp92zJxsnBEYH0uxsjlXjlSEYehyshxDKiLQOHA9KRR30NifhbVJJCnEVK4e46t+75xTp8258RBd1ftJFMNd855C7ft4sS0GG7bJQehTbfLN9980y4vL8Ovx+27Tx9H2MfXt+scIjKPcfv0emkv7eXJaGOM223YnHnDc9m4+3Ecx3FUck+1KFHfwmch9b3FzD5//uzu09Faa9LmcczbHB6i3cKPaW9vb5/fXgGodvoUi5ftouD1mHAbt2scM+iYx3FcDRTtBszAOOx6jBBZOutlPwEEXZ+eNxHpve1dt6a993eX/bJtW9dOKEMJ3TYw5uScvj9dKG16PG37j378Y7H5/a9ub29vu+zHcczbPK7XpzEBYNpF+48+vDw/X8aw77/7/Gd/+s8+v143cv9KGPuu8uHdC7RJ32f0q5Hwi9qHl00apcv79++21szser166OXCwwYJ8+MYbxRTZHuVi4WXPsBzjCHz8GkMUekCjRnzdjzvl7Z1JOcrTsUZSaPEVIpprWX/TFR67yOpSeGXy6XOu4jUq8s5xJmlZAssd5CsLvnZwZeQICRknhVXQKi6dXd3g7n76QgXkTiRpoqiQ9aYquTuyrm6Nuics/UN94K8UuIMCzDL7VlyekkJ8XtGISJzzbpTuBMPVeIZFs7fxxqB4mw0P9Q7PzxHH8aHsaim8fBP+XXOuh//arXVqqMZ/1/2/jzY1m27C8N+vzHm/NZae59zz+1fJz2JBwghATEFdrnBVCoYUzQBS0JPEgSCoZCFMJ0JxNgKphFFcExoDELIZSJEox5ZGDCUTQAXSSVGThSL0KqXnl5/3733nLP3+r45xxj5Y8z5rXXufRIV/32/enXfPmuvvdbXzGY0v2aKC4iIzSjxLUv9/s9LyTvVvK8+PK7S7wGozvhQ9iyS5q1qTSgKc9PMYIxxHWDHJfXlfp77rWC4lNk85x6uYobEo0h/3UYuAQN9bzTvNWyfGg85DnLgjr4pBhY/nSYCo6DByTzLXNo8LLwsNXU3AxHu0S27hbHXKoBMidOjyHKHsZ04qwJRdZVkYGNsg6Mj72YtG18iohlP5GRI6cJ8PFOPDWAOcUm0GwA46SpAiowFsusw9yerVffwDn4JLlLeeSS+afo8AqpIA9erIRIOT/irjY91EqmviWE5m98RqkqImWW0x2xzzZpGEkO6g2+DLGZO7vCI7OjNGyyESJDmnoNY51mPwRWBXfcn6W0JL7QwCxGHg0Izw1xxBvNnn5YcpWgR6b1nQzslSYYQBYwilKEQK2BCIt3pqZWtNZt+xqj1kswD6L1HbziNf1rf0gsOAuv+g0/+2mc/+GXjLpulwBKSkZ7/aB1I08TLRHezPEkAP/rJv/wZL/2qMY0j2+YXcOA/+oGvRdgIysOulfo02zKJdIoQ5Yb4RT/vD+LZg+RSpLtZ3wCklWgp0ntkTYqCiFG3QqL0I7JYwLlCZxVxPCv3QSJNkADHAkAmgGKU3EQBBCdRPrvDBIPMbZkZeROBi/NtbjLZBYqQQE8BFYxVddARCaTA9aC4a35vRJgIdHQIKGShKqhZq0KeIgUJGUPEYDllMZaEIKWLGACUw/4M2PUFSilmwYEeTxckIjvFmZ0O8uYFEjr7jiLOfawnZgWaIgiaQSSE7r0wd8HIdWPASOFwF12E4uG9NwBSmDEAIKWKiPbeY0jQqYh0j95NiqqKe0ewam3ZvfAYrryDIe+yW2GbC7SUZRbO8pZPgEtKJ4JhMJiIZJ07ItA6RQEmqTgDaM7q275QqFb36XxjWeAKM899K5MiHX1sh3lVTZ0TUWU46BPgtN/ewdHdpxjmuiQCOP2qDj2H6NxrKWmI6tgh1ZwlzVTUsaxl6F7I7AOsXkSZ2bK7JLJgnERoajEjctBHhkYR3RpFCRcERuWJKauZYboAA3/oJpQi6qNpHLO2Ms5ZhMAo20+lKYqEDndLjBzYh2wn3XQUXYlMJT20aNp4uA9qGEfEMFYPGZNxxHmAp1KRjlLs2MstNTI4YLLkxB+N/DnXYUZK9pJZMyA4GrdgSUhJ7F8+TgCDeTPsZZAw5tkFLGP+5XO/1IwMQZXK9Bub8ioXogUdlNw1ECSXZTmfz54xqO0bUmqFgVIinJJ7SkDYtl5ntWs8gtSH2pu3AMjhJFFKBkZ0EmDRQiHVu/W1ZzQ9kCaqCqqqd0vKz3ggBFQUSB8vkVDVUpZt26w3vdIFFBGgRgQl198Rs+fi7wxPjVNVM2t+ER4nU2t/3NmsLudOJ0P7IxlIQk4awmxr5D3v+1YORBLHpi5CyHBydgTSup7IweIR3RuE4ZHNBY+sXGZIkpH6cHWWNK10ZxkRfyoTePrfIk5afI7ZTDtLiVprEl8d4u6t+939/dObA0tdjscMG8qBDx8+qrf+Yj3isLz2+qfeePxGLVge3LqoFF2WIyBJWDeL3i0vbW/pkHTvra2kllIsejtbNwdk27YUH5HjcB8cHWMpFLRzW9eWyikWXo+HUg+nWpfysB4PRWvr2/npXSnlfD7fr9vt8fbmdDqvbW3bm2+ezWwzp7iTBrpL5gB7R05EliQcLuXmWFXqUuuh1ENdlmW5WQ61qOSk82Hwp6oBkFEQeyUo15m1mbbNjiXzfO8WZmx9ba0gnjueHtV6rDfhElx+8Pt+8PH9diznV55/2NatPrx9+PCWspgWL4dCqdxuFl1Oh3pYZNGyHCBpf+tm3VsD3frZ2nY8FVGYNUkvryqte2tbX8/e7fzkqYKn5QAt1q23tq2rJgA8DY8J1ZLhRQQ8vFlXRII4eu9KKaUMO8megqmyLFUp2QuZ+VW4I9c9EQmLERsxG8gj/uFclSrVs4QHlSLLcgxIa7a2zd1SCM5nOVhYyAkyBsxsWRZSW2t7n0BLpcwsKy4MrExOmBTOBEllYi+ZWA6FGsx0MVe2ofa088LmTh2zaJjv3IPtvrW5z17/d//p2Sz6ktMOFnF+ZtqI7m/joO7Mvqjuwh/cKwv75r7nd3Mfv5zqRCpdjpkmXPKFubsESezcPXoNTWHqRH0C+WCjPFsayJUemCqwvL78Qd0N5LItQ0l5PsoJXQlyOIACKHuNP09ov+mcrUUA5m08e9UUXRiV7MsdzFZ+qktEEfiAUntvW+/ZIVGmSrdfVEmHItreV5mWLGmQE8idhuKFJNyNpmBIRIhZz83Uh0K0710vMmRAmkGGQFRzz2OHAdChtzFKCyKSKqOSOpUU9z7B0aOlu9/t/NIkW3Mwh7P8MG7FEDC70kvM6LwD3Xy0AghRybwnHTh67yGxLAsKt2374i/4Wny645u+9Tc7+j7rEszwJV/wJ9/+zq//xn8v3LVUmfnkb/zgn/y6b/4tv/6L/tj12775r//H7v6rfvn/8dN+HYDv+Nt/uJSCqQT3y/+N3/7293zr//2PYEftM5Ky8kt/5m/5tB/4t//Jf7nHwWYNooEkt5mDIpzVPhLezvc/5d1fkn/4Tz76LZlmFIWKNm992/aPjTASHh2JPYBb79ZWksFlf1udjLKUOi5XfrbeLaGk/+xHvu5zPvPL/9mPfF1Yt9Yonj2ievVmGeKfmRaKmf+v/pXf9/aLJfxQFwYSIsEMtgLKVNcREQlPRUOkSH3K/+fKELGLvU16xoWtcDX5Z211n/BjdYhnlw864rJ4DY6WX8LN624wRQrrvF3jeYlIEZXB8euSm5pItkTpIXMzUEQmUZSAqYC1logI78JBtE7dOFVRGdzvjk4topJL4bKoqoZz10sjo5SSaa6ZeViqBMtc/pyUycLUhC0CCh+4fc/lpwuqKJfEI2TS7CmUfyFO86o0wKvq476CFdHWrfdOaq0V4z1JgaulFKxtjbGwpAJ3rQezs6fv5yxd5/KYwo85o0vReljCsXaDcLZrY0/DipYoQ8KQYFVN7ZydeK+qFoE5YGLiUDI5j4sTOPa6sIiUmYTnBe5l0IwaA1hq9egXTearQ0SyW7j/FeZZ+8SXhjCVg727k6M7AvRwD3OLEppdU+XAMStFJcxME7Dslt1PLSwq1i0sscS5k2ZF1eFgWBYPJTA64hFwZqUpK2SIBOfRPFQxNL0l3HsEYEYpGsj+cHYJQAY9p4CIDO/UbDUJZKoepd9gjhX09KIIUVLEJw2EkGFoaeajYwAFx9/m/4RMp0gyZ+vIwAUZubh7j6yDOAJBy8RnpCeDwHzdbyRTqQYAQ/O3SZ9RzcrOmOwcxIe4AjLMxTbM3J1VZXCvYyIsSJJm6QeO6yVLREoVd4aHIZQkS4QLB+NXRzd7MHQcscgya7sjabMAEh8E1KtS6UCsLAOmmDFJpsSptGRmWbIXaop5QuK+t0JZap2kfk8/p47WWvNU6Jn4CNYyxsDc7PY706cgaM4gM3Ofqh8zMCBp7oxICrchjawjOItHQqHYrL77DE9FFWDvbY9RRQTPuF0MD1+S+wo8sl/NOsj8hiE6sKt+gBJ03XdkAClnlX8hY6e59Nzm07dR+RSG9eFugTi3jWRaZ820Iki6OVUpApYe/ubd+uD2VEXu1y3CZO2PyuH06Pnb5XT70ovPvfTS608ff/L11xj23EsvdIEs9ebBrdlqZqkjkMvvYOT1FGFCQuHGohhhZq11Us0sRSWqVSDO65kQdzdxUt231mzbtu5Oiefw6OZwlMMBVK3F3df77Xioy7KEd6Xc3Dx4+PDhG0+ePn7yxH1zwtfNUhnA0T3cgT6M0ETkUFWXWko5HA4qdVmWQ6m1lKWURaUS6K2UKolwDCpVBItoFLl78uayLAGcz+dPfOq1OJ+fPn783FLcQMihLlWUoqDSt9vDIdSOt7fPP3pV9PTGm9tHP/LJ1z728Tfv1o+/9mY/Pz1VuTkeqMbQ29NyPNZTqbXI8XQqh8UlA+4aEICioAQJw+Diujuz9lGEobwL75v1lW4enUmy9YYlCmLbzk+evtlxWk6HjDQSiJFNY03HWtFSCjzM1oDXWpfD4u7Ntt67paZNESQ1JiIm4j13TOwtumDY0O/ToqWUtTX4iAOywioiKXiZ2rFiUgEUVQ9LTfvsranqVYy0bVs4lWIYOWpMII+NeHVMkQT3ZQpadCgZGSJfl6tccUw0AkyZ2SkevIdpz3Z3/dkS9r6h7/99yx9eb81DyXKctsmUGxyI3RHUpaJtBNCs18lwdB9Z21tOKfamLtQ8m9mcme34dp8onn1HuOxfY2dyjhK1Eay1pq5EKUUoe9ylKtdBKYCR5T2jZjKkLVA4HwH39+8LZv5zbLX7fmFmeZbuHhOgBbh1ExF3KaXosphZOEQkHQVyXy1SCAINJIQR0DT16ubhoFI9AK0j3mJQVVmy9V977+hBDF2HLLISYW7I3cVhZnSUUpyBEd1NJymgD4J6wCKcUTjM6nru9JlcJzw3o4lRJyiqMrxVh25HQqx1hNFZ7U4nAOqI/od0h5m5W5AicqiLFnq31hrgpRSGCXxQ14LWref+JyU4nRwonpaKZlX26c3wMb1/vOwXwJd+8Z/+xm/5ys363d1dKeV0Ou3T4y3Hr/uyP/uXvuO3h2guxJn3fvmX/OdveduX/NI/9Jf/6n/4430dgMginkiE2af/Knzxv/6//47/4Y+6eynFwNb7F/yc3/njfeAv+Nzf8De/52tJltTgDngbsQID63bftnPCosjQZ2o87t2EkV1J4TPuP8kl3raziEgywMMFTA/n/W3pWGjelIPptP9KUj813OHf/8P/Re9bWFdJl7fIdHV/c9tGQrvUGmFttpQB/JX/5rd+4S+eJQkPatQi1tl7VyEitnYGATcOuCCXpZjF3XrW9DsdyH9M7q14MyYxtSqTbG9NEuE216MUxydDBAy6+aw57s1bad536OMzFUEMlg4utczh7pU3V1K2fGoPhfkopAXoCc3TFCHg9BYg0LYzgMPhgB3Bp4UgB8AhaikRlp+Q3UdhMPxQirsLoYlaNVety1IizLwllmEpuhyqBKxvQiEc6bGT45UC0HNSgymhrAn9SPJe7xn3Zju0iI5K6QxcctNt65poqVyXAVStDx8Oq1JST6fbZOPDWXWJ7IAHrY8CWW5CSglGa43QbErnomyOCBwOp4jorXdry7LUukTEua2lLpQiiN57SjqV9EPqVmuVGLLnmOWJ/NhAkit6oiH2HJsR3rt59qCW7DuqVrnCku0AAZ/g1QwuVTWQ2T6ZLtDwQCylqOqad8m8UEyTyBEMtB4CipI6+gE5wFQkC7UDXOQID83KboBw+lhv3SOsh5n1nnM1F1exCO9hUUSLCgPsdsnYrWc1VSTbns4YfQMqEWJmCogKINatKhHw1gOmqkuZrqeObJ8qlFeU05Lm8im4BapU0N17LSWzPiKWWi28mYmm7yUZ4d2BKEKIOpCykYeyGKJZVxBaMi8qpUTQ3EEs04U1wpAD2AMYKluIhLAKydRAdu+jZ5l+hA735DAD0cMH7ZlkstZzKwxYEXVEug9MA3rN3RCXAMuRAPVJBxjrz4hsEAF3a20rkzmfcCd337a+qz1bDHmV3r3cFlUNsrtj4HCV0d39fk1fdEnDJ0S0iGY9FdouuwOZE20ph+NymrcrRMSa92ZVqpSCpBlOlMHhcCCHEnWGBLa1dV3TRl6rtNb6ULemd0PKPZbF3bdmWpayQESW5ZRZVneXcAs3j8KBZfbpUKVFIqJ7P5/PGXqmXn0gQtCtNx/iz1kAFdKDvbtNZrGnwUHRTFNzQ05MVk78lPakipuZOURKFeqoYUGRpOVZrab7kCkVSauUkPA6NmCxtoUH06OYO42E3Uxk2KAI0cPpdqgHkkFAZGttvbtfluNyvAlSa2neo3eLVrS8+PCmebCgBc5P75cTT2ZLxIPbm3e/970/5fM+91N3j//JP/vHn/rkJ7r6nbWH5YRDtft2XltEIKSWg/VuFqTmcrSuq5mdTicL37bNww+HejzdPHlyp8vhwfG0ruvT8xoRvbdc9O7uz0/vG8m7u7OInE6Hh8/dWu+vv/56D2/dSylamMI8pYiq1lJAkcPSW2ut3t4+RK3y+O7x3V3v1i16Cr9REXY6Hk83N6WKu6tyUVFyER6KLkUFQethEEV4hiOz9D+c/6Kt1czUfe29rVt1B6WH393dveul58fQrxUSAvbWFkR/8nR58dFnvPs9P/knP3nytP3g9//Axz/0wx/62GvnB+VU1Xsj7XQ6vYx20udrvT2UWouoQJaDFO0hm/XWNsCXUrZ23tb7Q12yjp80bwmHdYbBzb2Hb1U0WXJKaq0BnE5H937z4MbDBVJrieC2bQIelkXA1NPJ5XqpxzSwKaLUooF1XRlksHdTLdu6RUStVZeSlabufqwLQw6HwSxLG1dM7G7v3bpBUgqP6fjniLZZdyNZy+LKiGG6djoskNQPn5uUamsWwggKBriU4RRs3Vi0Do7GXEzJ3ns5LADW3nrvGOsKVaT3Tg+qiLC7d7fw7GZXyi5TPI5lGZQQEZnCAJE1Qext38xyn+2PjkyPaToYWoqnE6TmIwhHNOvBC33XE3ZHjYjChUlstqwCW6oKDoRUGrONPVs4cTPIpGtCcQGUkTk7ENOYne7ORA7OqDVgBVK0EF6LhDOrEapaivqFWc29y5LtzIsNXgB0JWVWiiPi2iZqblsjCpoJ/wg3yy4juR8JgxroPjOSw+pjNqD2IxflHG17EAYMCQ5REYr1SzVlcBqnF4IPGt1M1oUhBBGGbrmv5lDOykG6cl2IjtlwllJLIGUntbDkWJdEqILZC9+/YtZvcqfMOiKvOtv5ILOXlgDO3XNvP/axLiIBc5eZfjAmyXuIPmadkiIi5uhu0c0QFEWaDSVHKCZV3X2WkX6i48s++DV/4Zu/IsOID/47f+IneOev/oI//n/5tt/qWZz4cY5v+mv/0U/Q/gXwhb/gq77j//qH1m374l/4e3+Ct33Bv/I7v/O7/pjIMCL+iS8hGUSkgG5uaFZK8bCEwWg6R3pfpv/nOLwH4IoCtbZCqZDv/9S3fOCFDwL4wItf/H0f/yZBoPdO0+ltXSYRN48hWTFHQmsrHo1fRbqJFmE6SyGoWhiRlqzdf/ZP+135zr//XX9gXqOnsdv/8l+9gJ+rXvQMMN0m9hEIoGRUKiLZ//FIEO+iZUBXY8BWUuKze08oXRGx8OjeY/Ib5dIEwNuacm95PdkH7j7gbFe1udjlj66wLpy+wfvHzs8JRvKpYra7IMlm9uEoFBFTYid8GOOZgkZS0hRUSG7bBnhQinK0sAMMXdu9gLocaynCoqrWfNu2UUASATzg0S1h/5ia0pLtLKSwjuuEa7qFe2A0QPIGMyJaa2aRuX+YZXnOZ2MUE+fDS4aJTJ4jwtyzkBcRy7Ioi1kiPEJEk7EkgcBsthva4Axe31UCSDE5ADKU+UesrymEPIx0J/TYxxQbaPVs+c6t0MfCugOoyKm5kEOLQ6oP7lCpOy51Xu9lfcNY+i7Tp/eU3Losg3uxdr45tZIjENi1T4ZSmTDCh/J36jebiKalRFamJAvJ2Xhw98T8m1fVrFQOkO4QiGYthfnQs4M9txiz1hxw43i2BIzOSslsUDxIDhXDcHGZQGbP0gw5DGBl98KeHE4RiT6tlQeKyRUhZHSDDiRGokRFFCpAjakLZzOOCQIoPeOgCAa0KKdpnA/49qX0LgpwABn6LFiIiEJzN0ygHRk7FmrsmHnaw9cREVGK5nInIr5zHALdes55eVbGYo7/Z2rqklSjyypyGQOZnaYxFeawjAgt43JUU1qBKspS7s737p7YvIu3ZIil6ooIRWYbEgD0dCvK622GIgno2JevqdwOAIuWiEhV6oxTsxx/PB6RygW4VFMvd2znV+fDF2opY7kAsh6cU+C8rhHhA4iuSQvrcInEi0yMLrOFgWiD5xJAKogzvY5dIg0gIoKYGulByTVk3GDrPSMTyh5+jOmf04MTth7EIFrPqtaU0N8rGpFSC5hCOHnJ27Zt5lUYIgU0RPTuucwKyVhChymWiDiyCmzhqpq2W9kMn+tDBCCqeWKbx7mbW+8WPVCCIOthefjowcuvvsRXX3zhDXnXu165OdXjoRxPp9V6RNelBOlta62dz+dtXe/v78/n86gwzn541i7NLJz9Sqw7DxHRsogIqeZY1/O2bff39zen2+V4uL+/7717sFmsbQui1lo0K4ZS8g+lBBnB0+l0b+a1OtSowTO3Tk+clZSlng7H480hlyMRWUotKseqp0NRKeIR5owGY6mlqtSiUIAB79YsIh7c3GZrysw8yVYRwpoXeN7WbduwbSjFuxHez6uUirZVnl558aXP/uzP7t3O690nf+QHYWeJbWuPXnh4436ur0UVK3Bh1FpZCjzCPMy89zC7384RYdZb3xYVuIf58Vjhgejozfq5rU/beoZ5UW6AUvqk02/bdjwewzu4zEUjO0ACUfeuUiRgFpjoegDr2nLlOJ1OybdM7MbxeNwdNCf4MSLidDz2pu5ni+3CAL5+3ME9ZYggRGrVRQ/Nett6SrFkp9kxcDEMdLcdG6uDmTbQyJiAjn3TnMCghC4OEHCeap8Tn1ds4VSkCIozEvPNZ52QROQacXNREXi2G7wHY1er4E/0z+uf37JcjxmawdeFczuyd1yJXeGqmzoXkGc+8/pir18fjyMnaUKA6YnqExEM5dcLzGR+6YjE9u76+LTrG3v5amSmjrcde7Fvz/jyY0stB5k6bDKX/kih8Fnu9UkswSgEjvaREUGEaCQmHpHEkh4eiKEszoAwXYczLhsboVZgcICR1BSne6BmcJTfRiEmkc3HNjziqAHLrFpiQvaTWeU0CZS6RERWleZtCkhuQQgfJYy3PCS4RcBhOpHgQ6M304bIeoYAEFBFOSIKV6UgPQxzlw5Akl2ZX1FK8TZivgkhAOgpmg9h0jWHyec8vuXbvzwmM4HUL/qC0b/9NV/ytd/4rV9x3QD9hm/5CgDCUWv5si+8dCCB/pYq0dd/+29rzdKj5bqI/k1//fcMV1gVkl/8b//+fN2iXwtu/pW/90dUFSGOkMJf8a/9B/n6r/i5v+M7v+uPAhf7KAD/1T/4z0QkLQp+wef+xnzxF37eb/yb3/M1kdw69wgvomYdlCIUhZuDNEZvbf8o79noDyisdViACSEcR+/tsBTP2ghSwZgM96vO9Xte/NKPfOIbCTf39756EbsCYL3JsJZN0+IUNI4IEP6zf8bv2t9ZhTGIE+Jm/+a/dsl+//rf/h1aLucUPYOBkAgd61eI0D0KKQJDpBMqRUsRS/nBMZuEidRMm1IO+raIFB8nt7VLSSi/kZELhV/xMQLp3xLDEA++gyRHdc09GAkDCsm57oGgVs1T4aycpSDgXvXEvigzFVMpZJKBZdx+I6bDMLPblJx5V5XoDrgIRVhElElOhtbCCAn3tjGFDxluEQyRDB0lZ4Wk1nHy6jk0rjI18UQqipLqQBsL6IT4qjINXXqwMElECxZzGx7mCQMMQQr9XiQQhihiRl1bb8l+FFVzdzfOt0XqXYkUqZAI90MpwDAlGjbOAZIWLpLtOAg1u8RJJGYKZUQk4VRnbwiADjiQ7WJoKmo9gA5AdGHCgvcUNtKgNbmC9LQgCJnUkwG5zB/3UNin6Ro4m5BX4G2f0kH5q3FJs/jIkVADGDZBnJ5Imbrn8MggQ0ixADDsNUgJYKKNkQVRDguiNIdORALc4ZFGN0IysNSKlubnVEDJND/qZhYekTsiIoa7Yo4LMvWsMsOnEO6QzGwHRyow6uuODGbgES6RsYJQXHUY3SXhnz5kFHyQMCcLPyKEUjT6uLcFIhTIYGKq0MJlljVIDtE1mBNqAUAZQnXCvWfNnwOmASDgJgPxne5euTZoYHd5iGeOse2mdNyAn41ZBdv54YMTNsQcB0xFJtAuBkRQ3V3Gbih7vLhHgSIC62aW4jfr/b3kPPWUYoJCIYyhVpoii+4IQopK8u37Fe4GQhX1Hr054In0E51yIR7Wzcla61AboGhZUiRiWO8GAgIpEnREdscldBqkERBQrPcqCtBaJ0kpqbVFMgcuKKJVsgoBCTNglN9iLsdShiokMpgeZQ6oaEe2hNOMal/ZSeZK4CM0jxg0h2eP4D6RmQuLG3ysqxGTjLZ3PoLi1jBm6gh5Z5zmCgHCCRAWlo9bi2QzJ6nsgmQpz0df1BEQlsNRpk1R8xAgEf0QDYiDocvNza2I6FK5FKnl9OD0/AvP4faG0d/33nefn3+4FN4cFni/f/wYvdnd6g7vEQZr6QHv7n53d5eXk317M1vXddt61Wpmm6XioXUzWBjCWyf0vvWt9/O23a2rs+Dp0/6pzcykqJSyNpupNQWhApWMlxiElKMsh3AKay2HwyHMJe1/ITSzsiw3x6OUEjBXqOqiZalaa6mSLli5+kPI9XyPqEpUXUQLFRHh1pZSe+8WQIiqFkDJZanLcYlg79Z779tGsmW3s3VAsJ55qK+8+BzLByBc17t2/2R94xMfee11RAt/7sFWiH48KJytdbM49ZvlFHVZVPSg6q21+/vWWpq3gcoQGCTgvUc/RzvbtrZttb4xEOattWNZzCBaG+XufFbVHlMv6Mo3m6T5qMJmRFSrFlX3dJ5Pr8RBRq3T+6D3oSOYuShsECVmJ22UydIjSQbAQbJgAQyolD+bEI61SKX1nqnTsZaIet62DorI+bxl7dBTJG7+9bKk6J27OzholcuyrOdm1tMDgtmGHSnAvizDpqSfZOITvDaly7UsA9HxfnsG5PX2nDZmQv7MOpBluxGvJfp11vSBxF7NtG5IxSNpQXNzT8VHzI56TmROomnOdplVp0uelRJlY0mT/VeYdU/fqVhJscncMGlKQ4u3XGfa7j4ikiuNiV0tHJmVkphdvimp8EwaXKeg5BhNGQSGl2VZIiKNoTHPMquwk1ARtrXeu6SWS1qDzPrEflNwVZPAnrIPFrjoaJ2HmaXFvIhYesUOXNN4GD7xVKNEZxaTf4h5YaSQTmpQB/g7fxWIDN85BMT2qi6zei2sowXPPYAzM/Nea41IGzFjchSH8v/FN3U8yAwxInHz5u5ZJ5b9qiffwAZBy9NikmmoFUMn3SLoGY57LtwZcQ+Y4OW0ZVrdxLd821d+8Fd+zeU+XCXAv/aDnx41/e9+8D//+m/9rX7Vw/nz3/bbQOw8+Otp86W/9A/nD9/yt35v7/2b/puv+tJf/NXf8Xe/GldWq5eHG3AEjd/xf/vPvuDf+N/tv+Kkju/nicE4ir/1D//ML/oZw0nI3V36VOJI8ALM2rq6q+Y9gWu7SoDNeiqBmNGjRw+PLlfZpjCUIA0I9GZUxTAi/dCH/8L73jPS3Xe//GWf9l61tg7/1eg5w817WAD4GZ97yX7/H9/91bvqiZn9vKvs92/8t7+dwF6RmbdkTObMIny6ZI9zHtE8M3Yf3rY5pSIGVTipyZm14FLCMjzDu4irhAqzBnn9FPaV6C0nFxe++rNsE5jZXkIar+9dEQ6O5yV3cvcqyjkMRCTCzRFhI59R4NJSJslSa6ApWZQ1lwty8g4ShIIIJkMvUdmpqURSEjUCJjlCyBQIuAJydxC86HLBR1Ezeu+gkyileFyALbPQpgM1Sl7dnHEnL/uN0BGqiosE4gVXv38mB6YRGJVIjQwIhpqAkqyypPzDDoVSqazKVAcTCR37WSbAWS/fKRtw6+4EVBdh3vOxXcQ87dxUfSjlRcQwIM1Ub7/AOWbGE7xuhiMLeX4JHfZrnIiesUHuyyYsgkNiasQEiCmKGHSMPWJsxJ4O8zK27Dk1SOzbACUwbXiBBJyEpbMaZ8EyRLXMoFyCCIeNG27uRaTUpYo2Nzc3ekEEoKQxlW29UCL98xBpvOTp2pvZNASpkYYQUSpyogpFSacPoxt4liBFCiL/gAK3MDgJT+ECERXAGIMB5KYp4AR3yUmX6ScjolBTJmCEOBOExUuXmDY0LJKVwz33ujy1PPd9lDpz6SgqNgvtGETuHBuXUpdcKTzLs7vzHgzlADBcTix/tbPC8s9776nRnPsRydSbyc2ZFPd2+QRn0EX24TOZzPvE3A2gJkQCGPZs7lNfKhhCaMngqU+JNYwBNYf+1JeSq9YiUnluJKDSw1VqwsMHr370ilNMWVU0IyVSE5gMOCBB07J4jv7oDomwUe0HckscZP+MTAnrHSpUESTFZTxK6wPAmb2pnPd5qTFRCz43BYeoXOAtoxghz+zX+xNUVZbE5QzA4mhUF9VS0IcCi5klNpgpQDCzmoiodeFVXG5BJYLSHT1AWeqi5eGjw+HQEaUUKmpVLoJ2xtPHx4jD6cBa8PAGwNLak9dXuucISWq3u6eUWPoC5MNKRbOIAMR8MFmMVkpxjs7hZu5u962ZRwt08K617c3H7bwCqMdDqWge3ULoaC5w701JVe0OMwNVl4McTqt5725mVUutlZSU2c/zSW2JIlRhQVSC1s3dsCo017dAtNZEUEpZDuVQdFkW0Hsv4TjWBbr02qvoQQXbWSWEOsJIxP39vW3bBiyl3pYKEr1jaTeH5ZWXHpy3V+/v3u/t/kd/oL/x0Scf+9Sb6/npSw+PEVZ0Od/7zdP17u58Op1ONw9OD26Pp1uotPPqW4N70eyFMVwZ0tce3tFarKttmzAWqoev5zUM5ebQe5xuH0o5nbfe3USTwZ7ovdjjBHeHSCTLWITU9COsdQHcHL23LH4lJ39uiyNazqFrwa1b9wBEy6KqgPfeI6wuSyklh55nv1UQMdQ0tnXtbgCrliB6uJtlfC6qEVxKUdKnBa6Fw9xGaCU5zAAkZA3GOc3HYpgl4LSUn+vtbPV5uq65ACFDDDJ9yvY5qKqZiOaNiqtO79i5r/6JGZM8u33j+kzm689kztfvvD72X+2hzv5p87iSxboKKTllAkiG9+sbwre8TQeaPK6wdTFzB1L38hyHwHDs6/NUexlxQlzwhllTeMalaT+u24r7LcUughWBNCbez9ijY3iIpGoWs48kUn08NHBnBE4ETtaORQE6yMxmB8ecOXbIWki23s0sdyWRYhEECtlp2Y1SGQr9Pmwqxd2He14IiKCopv8tRZGAKxEhC0ZjYWz3WbLPsoaW6u7WPSJsV6gfOQNz7ytFSykIM7NsWo09cuihgQxRAQIGeIhA97A445Uc8rsYasS2bUUXKVqpFu7uClAiJWRzbw4FyPAL4AEpSAsGYBb+bKGIb60b/ThH2DNDIqZwYwxAzV/8zt/5v/kVf/T6Lz74i/5A/vAt/+3vFREzu7aUXJbC5C6mcNXVp4d7UkX3V0QpkJHHPIuXiBGeBqYMoIi4WQ9LaYTN1meuN6vUHt5bQloJfM57fn3+9ns//A1C2nqO7L9Yd+9BZLJAxg9/6M+9/32//ie8UaECVTFj7z0tzN39Z/2M/2h/y//z//UHw73PFs5bmBu/5Bf+8bd85Bf9kj+VP/yVv/GVITCMLln6RuakLQOnCkwpZkvAE9IhKGsupVlPYgYgQbhFD8ew3gFJ+L7czYmc6bXFjpTNZ4Krjl8W+/Xq7UCiSIJgty2rtlmcAqAiuzRF1jVkoFng7tBBuHb38HGXhjqj5LSW0a6MOaWSszyKTbmr+Pl8ruVQStVSEwGRuf+yLGYtEcGat8ydnlSZWSwbHSeEERFJqguChGL0JXPILVqWujistRbmRSpjDNi8izGMQKfWKK8TP5qHRJR6EBHv1vsGSMqCZYYoYaWUGOkKSTczVeyC6iKCidpQVUCCPUmVQhZVNzAEGKaLE1AfQvKywHAkMIMUKkAatPR8QASUoqIiuouIgHCBxdjUAWSvOC/Q5wYmMijTyJaoAjYQOjHTjFJK7xum2COnFCf23ZTOhPPyslXo3iHG0NWQyVZIDESiyWUkEESIpgwshq0mwoeWHAZaQkdBPfq6OSHpMugBB53uUaY4uBKCIT4n1Fzh04qM8OyWZoaavTsyiiophZpuAIb0AYYqJ2/CrW1JtWWEkkhBGwkP9MidaPhHp9VrT6iUiGUv2pwlFSuQVy1z2mZxqCWlKJxp3kvGcIxPZPBIPj3Sn2zokmHEniCVzMTaMyGPGKimIWJFSoLNpj5xLh2FkppwOdxEJaMzucqdMirIAtlelRzz/+qfmAWyfXhERB3ZQviQAhQfsZHO/wVGfTvcXXN6XMlAs6j3YApcDVcLiaAl20KiDOVPyYqPmbetL/UQMaqLuZpkKUfTX9ez6675pePLRCEahoAECJEhR0EkisQdZmFmLuitRUQ4507EUfNMsI2nMHJi7RFEHwyJHPXZeQU5bmMab5RSbOb5Cb6AhGQA9+xNzlKqTMxMLn5978CUAqYaDXtEojA4GR8qsqiwJFhqFkYRbn1LsjrpYe6eFj9ZPFWpbkj4rrLnwMoefib/DjdH69bMHeV4uilVmpsOLkNg2/Cxj6wf/Vi37fbBDcoD3J/RtqdPn27bViy2c9u2nutWKaXWw7q2wyGVlqL3LSwV3eRwPN4/PWsRNS1RRKu6rd3gUdW2bbOzrNaetraaHXTxEC+LR2wdbb03M62lanH3g8pmEdZqraR2g3mjxQHl3K33npXQUlRYIETJG27mpqBmCyg2GiKipcGMLpJ2zR7LoYpC4BIoqkvNmrC0Zjc3N4fjg23bRORYtN8Jt3ufO31r7enTp6aKZVFVqUeSkACscKvEo5vy/ve9Km60dhC5e+OTr7/5SZKPHtknPvnG3b3fnNrt/Xo4HI7Hu+PN6XhcWDRH+3I6LlohKlCFFFZrvQDRfT2v1lqhQLH2nmyaokuJuH34EDis3dZmDw8ipIMuFwFOQAjNMFRVdeqJisi29smQKkINRw9P6lYWwSNKdoDHPkaFoCwMSSZmD2eMnhSRjiqWc0cpLKoXMTyVEJp7ToGswQ3HrDEnPZk32EXemIYaYd4waLR0p0fYdCsupUCs9Q4MbeDs4uSfuiHhIrlVl9RtCl5naLXW87nl7N7TwpzUm3Vky3D+d07M6+NSwfw0ueCzSfLVK5f4fL5hLM6cxdDZMxv/zBhkz5bn3j9tSN92cGZJOqGZ7pFe0Km9SWhhiRwy8wwyheN0IMySK6ijaxwhszruxDPJ+fgEArA+E/IYuVlezkiAM6VmItwwNCfyyXE29NzR3JIwtMdJb0lp9pjp+lbGlG6btWq9tBMzNNzfLazUjj4evJQIZgLMDCunyfR0eBmlx0yA65WmUUo369UduT6lDGepMjtLnLg+pHGXKhHq0w8z993rjiunSAyzVTcGQWgpZt1bZH4tUkqGBA5VpaZW9hhVhEa0/c5EALDrnGrWKi7D7m2/+hcc/8Vf+vK9XrVffo6bfUSCfHsOnMcHf+Ef+Ka/9VW996qH/cXEBSWhY11XuaIotNb02RPLOfF2brOqJu4/2wjmUQ61aLFpoohwN39G5iQbQyPtmmW9qxuijN7WfIjTolPKBODB4/t/6Os+8Flffn0a3/8DX/uBn/QV+2cAyJGQxM6IuM5+/8f/9+8vqh3SW9vf8C98BHl84S/5mm/7a1+xjMLkCF8STAUEKT6bXdneSvVATlKrO5JMxghI9moD5qRikOSHs9x+2/P/MHsgyOqK8y2rZcz4eB/hkz9IIN3NMn+WaTGaInYJZUkuwVSPsoto8D7d5vJ1ObGEzeSEFaYRTZCSAbmCKcZLiTETkbwBUYpZS7iKqjCJ0fAY8zft7K/LllnosQjZF/OYOvZmFgmtlCBHVho5T4tc37dcK/1KjdCJ8NGGzUr/aonw3GWWZ0YqMhPgUNV0xUTiUJL0QeIKUyMiOYE8lbfG1pDiwNgLoRLjke39umRu+kSakZwS0CEiuZJzvjG/K7uAdqkxX3BW+2TlTrsESA4K/bQsjSFspu6y3/mYlf6I0Z+/XiRHG1eUTI8VSsAkeRPutvsEYqTNkEJJ9buE4zJnzZByS8VSYWAwTlOswjtVIEJPPxoqCYEKhoR42ww925upGQfH0MPNq0PkiQsC1iM9HgQWHhIy1TzAdAzO3sLFNhlwMpRqzNnhmgNxtNQmyFhoEUB4dLihoHBhEUdIUuiFPjEhKtLCfQrCj7GnkqbW+z1PH0sRqAo9ERPAKARxQAcSYsNRvyY5dhle1oTrzV0mztkuAJZnAoDrlUckrZSfGTw5tkfBenK9aq0pI79/iIioVIxV/kIJG3JdwEy0L32A/W9tVLs02RFzVCcOK2r2DwBCRWlA5PKGUV/KDPc6sLm+D+SobJRShCU4mA4WgNDN9+BnnMxQkJZIg+bUMB+kqZSeQqR8p2WTdvQuPGFRWXRB7CTw67irgJt36/368n38lxzGXm5ZrtdRbvPZ/JWp9763mBJWLrMwlxfuhNsQ9dyDurDRvgNMyVIk48Nsn7BcSmw5VBLTsW0bySJM7H0b1Vt5+OCB8MHmvRxrXWqErW+8/vRH3/zwj/xwW8+vvvrqiy+/vPX2ZDu78uZ4kpZyeD0ietuug4qIyN7vRQm/yM3NTQTv5OxndIsGN4tm3UmUejjdOM++ri6aYs3RLSyax4YWVNWDF/a+IaK7EKospSy1oDiQ9kzRmKrmomQgmjdX1YDBvJBFVEUivPfOUjOS04HIyXDsAqnovdu2hoqWUikiPC2H4/G0LEut9aByhjs9vOWkiojudjid6u1trbV1V1XxDl8ZiN4r26Pbw/Enf3Yt+spLL3/iwz/6kR/5gUX6ZmV7cm6d4aPtFnHfWnv6ZjjscDwebk43p1MVdUrRuizHWg5upnSLaOvW14ZsE22mKFqqWXRDsJ7X9uT+3C1RBgEPVUVQBJlosNDdhQEtRLiHxxCalhCGJyFiJ4uQTHi7+7SLI8OHW49D4G6edOJS62B7ToLOZV8ya1L0cDhURAqp5GeVUlXV0o1lmjK4+3lrEFGoqRpiEApSOPqqip096tY2UijLtP/cF2SvKBSm0n8iOETEiIElnLY4+xK6k1QjAsI9Z9HdM/WqA4yrleEtq/GPd1xP8/n+DFfG54+EdJ6PTzTcvq76POf9e68Wzh1E/daINK42hT0ayFqFqo5Wx9xuyJFu7p+fKLkwHzFAykNMW1YF/FmLpvwxnmXf7Kt6cgqyPzb0P90dVwnpHuPITMrdnVegoJnTPnMjLpyZpDpEIEb46O455Ibnh4NksiQdAYMqOQf9CENmMWL/Cr9k+V61ZOdB5v0PN/d9N7qMiTx67+EIYnepBkJIhJVSFDnZ9lEySi9pDTtT9WdqDCIiU3ArU2ezPopTySMPIUVLiby/mXsDo4QTkjsVONLg6zV9TNHALOJeT5JnBvk3fPNvGuXtCOeu+W4SkHBedZWznLZTDCIGue3rv/23RYSURYr+ml/2R/b3f+kv+upv+Bu/+2p64un9XSllqUfdxbTnMTP5y5lli5sAPfe8eRrmu41jxKQX5pwx723DnMb/4Hv/zL/8U34TgM/7zN/wD3/oz0ZABiPumUluW0MhclVNIVmKMAROsI1kO/7Z9/3pDAgQdLNreTAFbWuWHRRrJH/m51+y3+/+7j/Qe9cqGEozTD7lf//3f/fP/3n/Kf5Fx7f81S+X8Koq5RAR9/f3OUIjwsIBA5WkR09cmu05AwEMkcCxpgzeMwF0H9lCJk4ikmkDUn9vJJeXGI6gpP0KKfB9jR6TjGlvlvMdYMJ3MwFOGAhJBvw6WMRl7ZNZfcRehhyVtmw6pVcZxnsHkhlSLgHw6I6kOut4KdzcCK21tr4OyoCoEontl0mv4SRAY0DLxpXPMA8A02U0rSXnNrCffJ4Ec41Spmoi3FFKJacXS7aWCqmSrMRBqR7mjdk1ZTZnRMQQZoYU2yjZtRsl9lQdiYDtscIOjtgZgFdbiM47XWS3ihm/EpYgeu+S6gRz4M1Hk5D+pGxI3vZwU5HgKIdhdHpT6zNmUI2sVudHGTIkH03Da1OKS2/ZffrJUnWc8oQNDQ1/QpzJgJp33IOEKKbkY7iXiEgRwe4h5A5DmTWaEt44263hgazfItJAHgOyK5qcc4vupslEnlwbylCHyBlVMn0LuPd8PVk2E6sWkQHc2MQJhSiEEQxhZDqKPa8UaGQ1lrsn85B5p6ggGDYAEYZhR+ORcvQERZBoJ0/v5dzPxijJNjk9Kw4eEdGTiTpT2jkRSCaYBLiaMqTCCfY5TiZpKVUpZNSOPbL3W0rJbDJvhaQND2eVLREo+x6dNLyrUKFQpJTtykArS0XCYVGVnOzk7uZYyv0lzyFXpZyf7m4cw2BfYLtli15lGDsEMHyAszTW3CSYENmAQFmpbj0nRl62kKpVJOB9LrGTfILIRJlaPYVOhIawLAcH0z8Do9VqEBKqZdkp9DHXxEQkIIEBSbKNsTaLKqau+x6oAVCtO4xyzDJLLRWljkBzDE9moQpZz9ynv89i/YTmTviSKIFaUpOFgckjGIGc6VAfmxsNVWb7zolSVCRNr1lr5axx7Fj3JM16EG6SPXm4GQKUog8fPjos0sXLqZal3N7cRDu/9pEf+6F/+s/e/OQnP/biiy++8jIP9eFLL7zw3vfcHk/bdofJcGmb9d7NW6bEpZSy1MPhgFROCouIm5tbVdVaDLFufQsLoYQEWVQOWng43DtYz8vpBNBhHi7K4+FEqtaSap3WmyyyFKm1CBJwLmkgX3WR4VDiToc7w5i6HaklTjA8uonbVDKIMLTwyVNFnn/6GK9nFoocWUo5nJYiWms9ldPhcID39TFjqjACkKK3t7fPv/wyb2+j97sn9xCou/SVEoVe2KpaKcf3v++9D28ePLx9+PDm9vEbn+jtDi7UpSyHWg+11kwtPKxHP9RFwyXczZzUYy16pBTpgFk/d99aXzcgrGe8XUjdmhvVHK+/8fTufivLIWtDWUKJESuOVCRdyiIsUoQcAFAliykxDzJEOGAmFjQfQDUfFR8nBMI5y0xFVOsAbwYJzS5uBMy99VaSAJhcmhm71loy7BPlolWyLg6sbRswIc+eCyKMKS2hCsK6ce8eu7kPjJ6qRqReBlV19JxTvWhkfKl0+Gn6KHvjLUtUFtPw1V3KEkiBZ8clO7pEWxidjMw1d2Vijo3jakm5/PyWNDVniOyril9+8KykJlxZzOMSkeyHjGxIJi8MIx/O3HCk1iRFM8oSEYW5zgR1bE9QMBX7ZliY0dyuLTJTgKGwGRf3v3kjZzwzoewjB8bQtkCwzK4XA8bBeKmlyrquKlRKSghwottS0XQPd96SAOfDszbEAEWEIUKKCkkb/uNjTZQh5UoyGAOpNaqLgjSvd0P3QNC8k5o9gDIkzaFk71s+EpT0H5EMK2MIl+w9YclWgW1bKjCP5q+mIcpWKIuKipi18J4QfSABsUlzz72+zAoH3JNJDHKA1EVkbJPIumsJH3oShE/KfBQpZIQwIihxhQx5pmS+vzIpxvKlX/in99fTJOP6bfvWmBWKX/Xv/DEA3/DNv5m4gqDNPSkiuXnpHYlf90V/AsA3fOfvyt30L/71/5Dkr/4lf3iuDodt62/5rqwy1Fq3fgEqFw777/1orUFK5jPlqrnd+qoqVTQ5gyJJ33AizCxWyyo1/RmMsXdjWJbhEfhp7//3nvkVCO8+6+wMj5hFROEHPvsrAfzz7/9TRSiirbVtWz//c3/7/gkxrGVza4nP//z/eP/V93zPH8xJeH9/j73eNnlxf+fv/c6dA5niWL/4Fw4Rsv/qb/772TZJ9yySGaq6eyorZf+thydMN5ve+cg5k7aM2wgpkCAsuEsUCjx16j0c2aWcASjedkSyyRkSmWvlyYDhFJWYjbdrWEcg3I2hEiqVo/U+dPwmd3QMfqX07TwX4b2Uk4mQzOTIMdRoaYQILwRdjwiYmZqaAwjCy7Ik1JQI0NNQsJSiKohw77AA7Hg4IG2QrjpTIppUOs7S44iKw2s5aGEZiv89E5LckQI9IiDC7N7Y6L8xgZgT+qGqpVazcPfwUBEWmU1X7nV9EYF7m48jo8NkiY/8CwgMh559Cu9X0awnbLtl7poKE5l8AHvfb28SttZETHy267N0Gy5FvZulWJRIIQf79ap+kVus2Ui2LHzYnlwBTWVAg1XSrr6bIQMg7CefR6o0qypFJNADU+yNmTBEzMzCwxEMB+O4HNKw3cyaN3N3GCIqsw2OGDBpmRq63Jd4Ao4ICY0QlnFiESEaiHBvbg4r48HZmMSAe8/KNyVSAVCCfdw/mZt34WydlSL3a8u4QgQiGd14CBxUSjbuRmcgBnxIXcjRYq1JTVeuvaWgpQSKECIeFtahkmhuTuZyzswiGtO4aCwdvZtZWXYxElTRUWc1LyKgYngGZxgTAZMUHNhJOtkOjXC/Xjo8YvT6c0VVETIdgMd9GavEWDiGOFwM1KsMSQV3M2tAkSltKkzuUE6Y1tZlOWIQZEcYgMGF8ww5gdCE0Zo4TEgz25vCAJyix6OmiXPvHiEZapaqlAj23hEoRZNjllGmFg3z/S5EWnYBfbsSNjfzyMI9zA0UC+9TzLK71eRZPVNmg0BLKW4DqAyMXkPs+GZnqEvQYaO5TKJoPhY392SZA6Q6DSScHkF3S2GqLNAPplhmVSF0SIne57wOBiNMCA8XDHHsbdvMbFmWUms+yt57bz3F/hK1keILWabc+2hVMvzLqzWyGkeDRVXdu7cuEx6ZpBELX44Ht4aAuVsYKR10URMvh+NyqDfP3ZbT4dELD49Vi6iv69M3H6/n85v3T59/97vf/7mf+8r7Pwtm6xtPMftX6Ttl3lrvx+ONwwbNe+zmyNJHrcdj4Li10B6lsHZQNo/z2tB6sB2PR5LLcmjdaymtnx2oNTmlcIeWCvB4qMflIAJv3loLBCBmIwDO55dS4SmBZGEMhyf9dSyOvfep2+UAajlkazf7glqECGvNyoalKsuDBzegLkWONzfLstw9efN8Pq/3d9W2tS8WTi03tw/50stYjnz8ZlmsiACWEv+HolasE+e+PXpwKyE18PzN8rEPnz71iY8s4g9vDrc3N4fDUUThDiYmQspSRWsPeDMIwlJl0Bhu27ptW+/eLOB9dptCBOZRykLK0/tzb348nAh1TzZDIK2hkQNJSikEEj1+qEVErHUn0jtNlErpvbtbt23RBTvs0alVlCVopZTUjuxdWmtmBg8oSr4/Pwi5oYT1VVlJ6eYBt0DArVmzdlPqllJHqrnsbKPlUADJrWCUg6UoJP3S3d0s4DEWuj4kTEEuy8Jpa1prXe/WsURmfSkHSQaNM0W8BF1ka3P+qtB2BMpFdGO+1TNfhV+aHNg7wCGUXJESX+i7UPZ1mDH/S5FCaMLqdMomj7uYve6L4kMCAAcQF3sj9xI65hnKaHIMTTJw6tGSu4kSRWRH0OS3hIgCBh5rzaJSVjSGEdd020l8lu86Bx6q3LsUe6UMwKHUfgG4jdtoZiW7lyJD3zPPGUZQc6lS1aVWd2+9i4rEsIQqmrJayLuzbdu6rqWUvO6l1O7We1/KkndKVVSLe7h1txAq3ARJa48OD0Epi/U4HiuA7s2szdPlQZYeyFIRJRw24idPx3kVLXRmT2NZ6rZ1Rdrt5oYURVggpSSUixl5hxvMxU0KEcaACjgCLRKMbowoE8HpyC0J1s16D8hSFpBuQVJKaa0VPXIZ7ZB9OFrfSJZUuQUpA4R5LIpaSAU0H8l1+vGrf+XXffNf/c1ts97br/3g1+2v/5W/+luWZelXOc6v+eDX/Plv/UqQlKJgZr8Afu2X/Om/8C1fGVcZcHKJc2oF6IHf8Cv/+BiUqiJDova6vWrd+xXa6lf/27//m/+7r3YzIe/a+cv+rf/k8k4MfuB+iAgQrW1FlFe5sdKVLBokrbmSySguklJGiGkmeo2C/lk/+Su/+x//sQhIyFv4t2EGIqI743M+8NsA/NN//ieKFopE+Ac+e4hv/dQP/Ps//KNfu23n1trnf+7v2P/8//M9f4gJUqV4+Of9jK/af/Vd3/VV4yG6qaoUZWBd17almTCyT+OkezSzS1kOaK2VpWbSFv3S8T7cnNz9/n7NgnMQQbXeIbRp6khG793DRbT1LLdAiqpoRIg4qWtrtWrAzRoillIy1FPS3dv8qMTcupkqNe3GCDMTiVJKYq6z8xwR3RqQDnZQZUARuaUOP1uMibC3qIuIIsTDl1LDHKCKDnMRkh69eVbB3N0ZWnSGF0mzzxyhlKIBnLdYloO7B9HMBHAxBSHet56gjNztPHoRLaXa2EVy1Q7rLqCIeniRGhFr33of0imLLu6GWZOaxXwvWsyAmKQ2M4qowFoPohwWkdJa8+YsSmoYrG0kZfadkDKnEUqlpqBa9L4pQlVnt1Y9Zzq01iqiFh5DnT61uAv3A6vDIoNpd4vsk6Yed827UWrZtk1hHnFzWJqnNZSlWVAgzuv59vZWc4PzEUbP7jjgNmTACAhElKphYYiY9U1VzZyFLhLYWmtrLs4lg+OsRmd2vuc8SY0qUgkohCIWE/YydmWHMnEkAiV5rEui1ggUVZ327YUaEYKgDHmijPqPy9Fab72NHT0GuCelmLOphpG3oNSa3tgeWe3FqHIWiegkRBjesoRalIWqLGajhMxUheiN1CX7o6QkGRYh5HGpcCZ9P3fZrVuCUQ+H5XA49L65+7HU3t3ClQwtEbF5J6kiHgGHSEk94Uw/6VQoVJgoD02V6NzLZ2EbMbxsA2ZWREopLRW/iloMHtqylAJtLWHiORaghcISEb1bkSEsrIx0ms3laJHi7r2tJG+OJ9B77+g2IP0TkpNVfAESTJh9LVJ8Sn064dElhE6ljvo/hYLeG6kQ6eFOYdHmoVoy4gmLwKimA9EdolWuEuAe8fjJ06XUmgsPSSkecb82CZCq5Vi1kERI0cWlR0QPX9u9Qg+HgyDnUIS5aJZIopQKKbZFtw6EO1QIULR027r1tBoKoLsLRFWSTkymk1fChQAgENu2GWJZlshlJhBXEMpzb8uhNOsWAaHIwqw/UKuU7tbhzkjtlRjx9WhutGghQ1pibevIyiiiIVPaQUnv5r2rFuUwl8hkTGsJYuCgB906CPbNl2UZHhDmF8pYWukF4WFb4oZkO68RURcVFndHqSzVB3IthtxfKYg49/bk3F7weNrun6un20fPnx49ev7ll3Qh2n2LILkcK443y/PPv++nf94rP+tfQuCNH/j+dVsTrth7727nbXV3iPbWT7c3IrK1RjJtbEiGyn3fDEBRdru9vX3+eBuUJ3fndetP7p5+7BOvVYgejr33U62tSK31fj2rUIUWrLVACg/BQLh0C2sGZ+7CW2sZ4rs76GRkS2xdV1WlMF0LSYJuZk/fPHPug6oqhU4a4uZwEnGzFSK1wGztW1mKWtsOtzdSBRJrOz89PzW4FAJobe1hjpDjLWSBHLc439+98fDmQIr3LkhRRK2I8/ne0R6IvvDul7aXbk/Fa2m2rr6u59bX114H/OFzD25vT+Ww1GW5efT88Xik6M3NTZFqZv381K2hd7e1980oLaQ3D980wlqn3HhULdyanc/bUg6bhRnBQoJUeBTJtt9QEAfA9FYhqFJLTa9oABqpeYlyKIlBy0mUlTVQDoeibks93G9r2zJiKSij94jcsxxrtyQ7sqJQlOh927aNDNW6bQOvzpAqNWEy7gxXN+veoYeOvm2tm5WS9lcgtSgJCqKqRAHJcBcWqm7N0mDC2pbVk+x2BJAefL13laJaI6SG2rT6uyxl65ZAku4DLxNCIENzRESqewBIoJ+biRbAQSa6dGKkQsJH29mNTCwXcx071AqRrBWqquoCoPUZpwVhEUM2IuvoSTYCyVzIh3tTNiY9uwujyyoqoEsIJoQnp8l4+vkQE4RCiEhZlphIvFFAJ5daBUy8VDqou3sRnk4n7xsSkBOoOgSb3B0qET6Qj4hunZHYsdCsh5l3C4BaS/YwBrs6pnhsnkHOz0HMyqbiUgtlOzfOVnI+LfqoEtdaD4fDSJVnZ8eapVpN7AqrZN6ICPTwAT2jR7CbCUs4LFq3HpFlZiW1NwufDsMA6KAzvAodKiKLFs3iKdydpQgpniuvhUi4wzS9FqkqANxaRCil1AVpKxOWkC650IkH1cwiUhsowS/RR987whjqCIkkjjIbhBE+coqrhDYi3DxVQpmqPIn1nxUZd3/G2gH4kl/+p/Hs8R3f+Vso7L03i7/8bb/pV/3KP5Ov/2+/+GvwtuPPf9NXks9kpBwCek6LFAjZf/VrftmnNwQuZQHk6//r3/Pr/tejJ/wl/9ZXvf1tf+nv/L7ri80jKzfuDonr74owa7a5qsBb16juLojuDO9mVkSXpQhoffsH//D/9C9PF6J/6af/Drzt+If/6E+STEH5z/nAeOdP+6m/7Xu/72vc3b3/k3/8f/7cn/4f5Ovv/4yvePsnZPyffZOf+b945up+7s/96re//7//+79bdtAJgFQtBpTZrxjHshQHZixVaq3u6L1XrV0k6+DEwKpBhA73bjbqf6Usifjo02ccyE7aQMNVpQSS/JbAoH16kqSn6MYowkl6bHoELQIenU5h94iS7qMTwb4/x95dBCXrbYHk26qqEyo6UAzXHWNmBZEioqPesfNb9uLl7HCmsJZMpcSg+/BA791UmZje/MDQ8RH7d4mI8pDLezYEOb8m+8wAAtK7h7CURaS7e2trYpMTACIi0TvJpWjRkn2O0bGPRKui5PtADNGOKiLO0YB197xmpaYhOcneeuxCC6VwSNfQDUEMY6mhAKIKndvfSO7yRrl7amhlrNrdYJZP0sySp6SqhRKpUkZYdAEYcIrDRAepJtfzAjWz3lrvnmfaekvAbUazyF4hqYcFvRsMw+8tF7TIoFpEupXw7vOBtN73uk/W1RRDSneAegcFJuv/zuRRC5NqxNnr7NGJy6KUMtVCliIMkUCYBzzrmgSs9UhZau+ZdSI1dZ10y2/IUCXPJIHiHCISDEIGpjsiXBDKlPVNJV5fDiVZ1kkDEtC9e7day4QU8ErFIgRC0SA6Ysi2C3XS/nNoWu8ElKBbzoMqauPmQ1UgyHKJI9XNsjmZtW7x6Mna2TUpJl2LSgRCMegFEhBdkFOn7i6pPB4P67oCEw+N7CQMTJaMsnTmZhg2yEOKMjXEMpYDkEwWZuyVN9l3tN5sEYdQ9UDSMcgjJAcxPgvvBGlSVJmyTFQVhLgFYJlqgXSCokVYWFtrmHIJeTikFFDFOVRboZJLigPH5bCUktqK2TMnImujVAHEBuA/Minv1pwiSBB9UGZ0URInDCegQmgGedEjmH2W0QzJJ957H87NEQSdHo7dnNYT+zAoJ1yEW2sdPphVlPCcYz3I4PCZjAhDJMYZ4GZdRKSoWZxTiEeYuLSBtPSOaZ+2LyzDaWA+o+zjTUmWUdgx+LyQ/FTuq+seyAGXcYiQbbsvXmSgRuGIFFohCQ+6B3MR8G629m4CVC1Lvb15oI+eh2/r40+9/uTx0+18fPBwefjcZ37gp/70n/1zcHO7fv8P2Hk71KWrJpYw73MmCYfT0R2pCJ1Us1L1cDjUWkXrujYAD557+Oq73nc4HF9787Hbm60/UZbT4ZDX4u5UXZvFUfIPqdp7J7S1RmDbNjffBc1gYb2JiHvqubqZBUxS26H1NLTCGA/jvm1bpwpLJgBszcjOgN7qodSYgvZFtQ4gGCLifL47r6tZ3N89bX2VhEDzQIo5tt5rD0hsPQDZ7s8Gp9jhUMsB7K5m/e7JshyWeiPerG/Hgz738GZVvnl394mPvxbWbp+7laod8dyyPHr06MGjR8tyJHlzc6OU9f6ub+v5yROhwXvr3TxApVYV1wi4dWtOJbhtm0p9+PDRFuetdY6kibkZ5Ths21lEShHVJSuJPXo0E2iuzNkASCCMCuYohbu7QQROZB2cE9IoAdUDx2ZX0siaZEDa1kCWUs7ngSAopcx92Ziqt53d0btbz+hcpejqm0Ump0ItHPDSmPNomN2MpIloa7cAEhPku7apcyegJn9qIAFNr1Tx96PWuvZ1/xZLucmImHnt3B99BgyaQGWAlAgfHaPInc2nwONA/A2B9IhIkddnml0zxIrMd5hbSyqbJoY6m/kXkxFyOt6O9YEY7xPu6OuJE9w/PD8oCSmlFJjvq0qZaCyEaTnAksv3jLTQsixmNrToYQwUihexjCniygMl67mS/YMguaimhkt3LxBiUPp2/c+BPlqWJcu4SWYjkHnbrqQB8+jWh9TB0I/CBNlmqzEi8nTM3byDSS5igCGESQRDVALpzgEmI4zhKcyZ36ajAry37mPIaITbno3P3+Ut15xsgZRZlVq1VPU1PXuHXAqBIlK0jP3c0+Ag75vt2waAIZAoYzM2N6UCSK3R2U6IjCJt2jfvI1unkiQ5lFyy65IFmPnOZ8DPn/b4xm/98qVUgL13c6jqN37Hb/my6Q/8luPrv/E3Z+B0JVM15SfNAXSHqv65b/8dv/6L/tiP941f/1//nlwpSP657/w9v/5X/OFP+7a/9N/93tFDfBbCHRE+EL9ea738wiM7VdkM39oaEVW0iLq5tS51PEVrz5YE3nb8f//RH89WpHfi2Wzf+zbCTms/3p8D+O7v/n0kRRWIuNK7/gmOn//z/tO/+3d/O5lyPkPla2Z4zy4oNtT8AmIW3pOwtODqbTnyZSxgQE4iUVUxHwCzHCV5oQxLPm0pJZziMfPT7N4IcmSKRH617EpOV1B2TzbnnpeOEasXI59ckmaQ1MOH7O2YlWnhYBFmJhGKYFWKUCCJ97vC6swfR2rKNIUcaqsjmsMFSOMitQhaaxGupaTEUfYnRhYEiKCkFcFMEjg/IW3bet/MLMBaK1Baa3kHnt1yGIGtd4tEpYg7Egqm+WEiIiWCYdlKUhmwdpdSIpcw1exhzgXycu0pZEUKwpdlcVy8q0enlJw6zJyLcMqVzVLjSEoSAYSI2LYtaQXu3hhOlMRuxtAwsPA+Pf2Kamstx5iPVjk07SX6AIOQtLQYpQdQ69Hdo5tkezGXcgTIktqVPbxL+jgl+TWLpZQhcquBEFqYiZlH7h1BwDzoGZsPzs7ApYNks55SzACC7hpJ8Vl9UxYlg46wxNUXETejQAq9B1NfBfTudBO4BiT70hOY2uCe+JEIwMb3B2rqlsESvL5zAXZc1Jihk91dF405c4nhAoDUSCdDgvDm+fSZeZe7S8A9tr4lMrxtW9RlPvP8RoAx4N0xdrwxlsydAMMsw4p0uM1us2AIgSRSLuaPDHoSYDRpctYJrcsSNUETrhaEMjiuzlwoWdIWDH3yTOUyowf3AlzSmDOvnuWBqQuaBZr8WwKiQNAsMfzZSBxY+EFl7i718n5VRUgSHVMrCEgT5w7VUoo+A7cDgEIpRXrrJMwSAEJhKSqqum3d3dVM5o1VahYRRBICAzNjdl73cmFEREhoKfSsOon4XJBLWVLENyK89XDnlF6M1Ep3p4rUklbcJKsWm2A/i3S3cwwWFEl164kyyzu8ryERQ60nVb1jLnmOMDOFaq3h0roBqIclx6XPhXFszCKJd76OWSOuknBJyTokdV/ch6ZxblU6aJw56SOCk4ewp8A6xXvyk1MBJCKWZdA4PTrgEPbwc9vWzUUPx5sHxwc3KAWPX3/9U598evekC5578OiV97zvs973WQC3f/7PP/yD3//8gwcJfWytparWvsySnG093dHaJKOblOVwODwEHzz36NVXXwX4dN0ePXr0dD2r6mE52q6xonKienDbNlVNG07V4u73T+9E4N08xDFE1EmWolsP97BA90gIrhQGaLNOTe6VCGwN7KE9REwVYDnWm+duHxxkOejSo3ffwoSmCMlaua0rW0eppLp7b851O0ip5bAcTvVwKktNKfIMYVvf3HtdqKxws3W19Wz3T909nGv4+Xy/MF64vX0K4Lnn1vtzC4+IbWvdfTmeeovWTAqWpYpIht29t2ab2BbhzTzMhckXKBpxOixbN+ey9v76a596/fXH5/P6+PHjuqSWR4pSODlMIkgdQUFEDCVIz8RVJHXxEqhqyOGSdMMUPhgF9CxJS7q19t5hXZI0676Xbeba7xFyVZXL/xdVjSn0k1lxqnL4IDyy1kpPWcpBIHPrPo1vsoIUkPCZDIOqLKKOyOJ1Tg55ViYpYmTPzJLiWxR9VMSTp8rrpAb7jjmyEp0BFZ6VB3qm5QZgWtlNclpEtgADFthxlL4zCMY3TsBzRrlAqnGFu4MDtwIoR69zaExgfF/GYONBAzN93e0WpvnOpTEDgE7JWzL6vaL7IrbXZwfOLCKS9MfQkSkizaUHCgNhspOQKe4e5pAhAzGKaP/uz/+8nZCQDZGMyZZlyQR4XVdO/+JwV5b9gUXqv7tHxOl06r2ranMDUGptra3rqlpUNYjkQGYjxd3LEKBmEEZpqdgP9S4IMWzJIB9hNsQ6Ipj0YJKBNvzwhrpEnjzmciOJDcsnmo70tdaElIRP/YB8H4WkFnry/yM4FKKcHsvM2QIQDPP6HL1IsB8iLF0AwsKJ9APMnCfTixF0XsalEEDvrbWWAIk5M8sX/Yo/hXeOd453jneOd453jneOd453jneOd47//48f/Uf/ZYhmo4ikOVpr6S/R+5YZr7v3cFXdehOWEO1mzaz37gYnosAx+FYUSdp5RED3ZE+S0NR7791ZVHTYKWVz2N3vtxUJpL0IIUEH/PiCqvg//IY/m5/4n3ztr4swC+8jv+p7Jcx7VgwGBDoGkwiXBDgyiR0ko8KBY8YsOszcp5D0ZKQNTHI2q65cVyaClRx5ujIVDRoGt1pVdZgZXCXAmYJRogw9GNv7K6K8HIkrGRlw9slDVeswksxE/VLPyiy6iCYdKSLCTWL0vEYaVdTTBQxZ7Z+ivCG9995NRLQs2cBoboVa8suRymWqYt2nG573gFNLqVqNrbm798wYEUFEVWFRAEVoQy3WI4JQYaqeFpIWFilko5LCSxYOoVB9NnZJlVLdsiYqQIjU0dWnQiOCBUrJS89BwzpIUKPEkjfaHaUMBTCZVQtrsTklXNLmcbI3NV0HzMM98eKXFreipF5rItk4xrolEJEpJALBQJQm9nkfBJGdDUeE924kE0iXvkFZ16i12lRqfyf7fed453jneOd453jneOd453jneOf4n318xuf9hg9/718kie7IFrDIDr91jxBCFIbePZyJ9lTVAaFSCnG/3SeA1KdkQiLLkOgtRExLTkkUrEhR+lAmwmD/ASnhEU6Q0zJCCd16C8mE9aqFK0IibBBh4MWZeI4BTZKpaAhM6Fw21pMak+3Pqb2YIOA968SVbBUHaNd3QcRrWUEM3fcE+xQRgQSFCo+IhPmJSKY8EQEMjcOErJGCQLb9ySH/d90LzPM3a2aoqqIiaUu5t6BJDsd7jJu045RT7hQSHHIbif+LGFjviEgNcNAABFwUBUpSGJQoIuIo+WCyozthPzJxAiOVz85wQJSiE+PqPphj2ZJurcFDqhSX1tuw7T4uyftAYvmuNGPz60im0LqHg4S7SIkIMx9XR1EpqgmBnn+LRK47SYvRuE6McdZX9isid4uz6TfbmyyaWNysGZQyLL/cXQbiescAYEi5jHMZiqNM9er0cxKZ9lAUpmT0wC1w2DVN1lOkQ5OXkpWBEvMcJsL/neOd453jneOd453jneOd453jneOd43/+0XtPOOi2bR5clsW87UBXqQXAuq6t92VZfDgkBhJXTYWweZOimUq4ZV7ATJqSjezTpkRElqmjkQh51UGTqaJ4mzgOdn7T236VzdEhG5XCVdPwaLRGkanj3hoFJu/g6kgQdX7i+NiEf2cjGhdQKve8lJL+ixe09qc557JgetRPYYC3nj9HzzkwcdTZ+92ZC3lWvORKnJjqoUcwPmGmoin159OhYDcI2L8xH2s2GmNobWJQz2a+ielFkkZ/ZWjoC9PZGbAUZSmlKhPIzkhDIfcwAKLD/wKjMHCFK0+MdV4SunlBrTXNAkjmaEv6iKp694j0s7rSsXAvArNxX8ZzdY8hBpDfY3QTBMAEdicvyz2l3yOVLXNw5HDRoeuAojQPZSLFx7golDTvCcoAxLuHBxgUcTOdGhX7jS6lrFsjKaCKGnZmnbj3YIgjPCyLHwIitOrAoCcWYmKw13XdZYrePtq+/a98ZUSsW99HwC4RLCJZDkphsN4HNUem5T0hpZQcMBa+D52I6GYRLKUkYSk9mRMrEhzyAABS/jSvNyU9IyKz932+pZ5NdraxG9pc5kBEpOdL0ilFBa01Eam1JoxBCSVL6qTDW2sMk6k2nDoBEkjZkqqlKiPi5niafkWuoMHSnaOU4ZHLqV9XREUQ6EMh4zLrGEB6tOZQUQzCBndLmB5mlleXyPZmG5lkQyLpEDGrG56eFz5EC4bCTEnMjIgkDCOntwVqrSkSaxbNjCp5w1Onp7WWcojp+msxEC/NBm0jT08xnoVNial94vg1hYxJukYudvmYkn2aGIdS1acUoQzN+izADcas7MekKAN7/WuQ21WgQkVcKmgSSimlpP6tgqXqVApIvjFEJCW4opuZaeFSKpKiLFFrrUN31PMTSFaVXQs6hlZ8skZTsRD7klrKrN9FmLe9sgjzUkpeewKcVKBl2VySfLWP/DEYWheR1Lzdl2yStR6y1gikPzRSX2MIWU26RCkFKtu2aSlIYar5pOTKS2aMot3jSoTIk+cYAECuNnmHk02qqoPbHDFmCgmVbmaIZKC0tuY8TVyP74ITRdwnfR0Xzed1XUsRQBIKJNPXJGA5n80sA4J06cnHw4wgvNNDQCm6evMhfgQAvRmBY12A4X+gSeEe5sxZ9E2+jJMsFAJhHj0YSFFoGd7YUEdpoM1xLimmGO49IvTij5rS+3luSUSGXLadwa8WRSmFw87GVbVW7TSPnoXUvLcxmfipjpvrLmT8XdElIlxggxrNDBTylMzMEVDxiNZaZ0hhi2H5ZUFLAWSR8TWU7m77qUpstokIk5GeK89wegLgQxGvpapnNbPet9AoFOhwa3VPgJVYODz1OtXCo6ejde++izDl3TMAVdPQKyg4FE0FdQA9JHx2VeSydIyeSYrGlbIXyhmsS86p3NRmfDMWmLLvIKq1qiBaWMvdKj8zY4wx78x/zr/6B/L9/9P/+IcAP51O2EOokN47IMuyWOtmprjEWABKUe9pdqL0aNsGj8Li7rkiDbRXNovMzZutbV8hc3a0Zq01QpUMR2vN+1tXYDOzYML5zIxaYpgpkxRzb4muY7BkI0OoAkd3G+6bg9Wf+1c4whAWHlpiKHgNEYS0mcGVM6XMHZGB29Mp5+xuDp9H+m3mYuLRk8K9LEuY994jLPf9PShWTfbdcKcfmzuY2gkiBcKhLZR7DaKUYZVwOtTjcTndHJbj8ZV3v+eVV15577ve/fBQnnzsI317KlgfPDy+/yd9ttw8+LH/4Xv+wd/5e29+6EOl2uf/nM/5Wf/mv35/xkc/8anXX3/T3a318/mct876tixLIjkPh8MEAEIQx5vbw+nGg1sPlEMPPL5fn9ydz60TZe3t8ZO7p0+f9t4Pt4dXXn3Vwrfzmg2VFJD21u/u7p48fuP+ydP1fN62rW/buq5P7+83Y59uN/mYps/vcBBLCczuluuhhbr7zeH4nne/+tmf8b53vfTSg8OpKJ88fmPfsKSoRyzL8ui5hzeLPnzutm32oQ99+EMf+tDjN19fyAeH5bmbm5ub48uvvvTwhRdf+cz3v/judx9feRcinvzwj378Qz/y8Y9+5Ed/8Pu8rS8//+jmuDz/4Lm2rmZmPZZlqccD0oqn1nuzJ3f3Fnz0wvMPnntOlnq6ffTCiy++ef/U3UX8fP/E232lbfdP2PuB6mbNtmQ7R1jAEPL46Z2h3D7/Lr158cdeO3/X//S93/sjHzs+eGGPGSKiitZa6eHdYC6KHF0ADod6WBYRWc9tDFrFoiXznN77zfE04hyzKYAvEKrUHpeOl7ubt8/83F83thsbiF7q8KpzIu1Z4T6ks7RqsJTa3BJOPBwPHO6uUouUiKBKZwo4QpBdYpcIgpbTDjGl/dJqUEop5p6SByQxhJipwwA8fPYC49nulyGm+JFTRTzVSUduShKRuNULTTdGC3TPcjFkscbet4tUjWA135b6L8O+Mx2aeLEFJp9JfMiRi7MIJxPWYbllA/lV40/GX43IJvYuYAZjeQ5ju2e9pN/jq53MxDqlKCAiVRUiqTPHlBy9VCwuX6c+uuM2E0+yRESgZzQ1241OF6bB9CVwjhROVwC5Mew3N+/IosXahj3/ueK11lr34D5jUxtqgYgICmWqQAGASqTqF9DDB7+Z4kBKyYsIOPxCU4VrORw8LNwjPM1JZXSGE/OcKhPj20kq6NObLvNkFVFQSyVHjKhaZJp2uLvHVMcZ5h8USTz/5T0ZIOa1jGFUJhzCTKRkucj3UtI85r47bvTIr8x86HB8evmrmNT8PX3lVBozM89CSHjvvdZD7z0txUfMyhyOCTa4PGVzNzPVmj9jFqJaa6378XjaE8JMIEma2d4z329FKeVwOJy3+4gpkYOL7dMc6Pm92Ad9a8OAkWR4hDkEUB1qfjLkAUopKmk1xt47B3xeA+YpKkx36946JdJMxonWZv3FI4Dhu+smym07A66FKhpTWsCnZndeEeUiSLBXyDJ/mDMTMvSa55QbEgsAACGd6bArqpwG3eSSf76tPXnyy7J0j1KKReajTlIp0EmTT+0ESkRYMCIkpidKPkuhjt/7oF5Y0klmjTDz+5SXMg9CRLRwrMHz5HFhDThJnWpnmLcFQ4n9OiC+LAszlw7smZ6WPaoK2AR2dBEBg7FXRkYdR5W99741Vc0NEvTudtSqi4pespFxkhhxZO99ptnae6+1RsoZzzuQwRwwDGBEJJCTVGqtRYu7b9uGPdGFT1PyFAFgxnw56w+HQz7juJIPyK/IBco9n/3Q7dx3o30vAUkp29bLQbLAtN9qd1+WJXf61lpeWq211ho9VITQzXp6BiiFqtu25UKXQtBmltICVXQ7rxbulj5tsCnmYWYtVYWoMxZvIjr8A8ZGtT+d4WY8pgbp7ltfRaBLzfmbhpap8BFpZI9Lgp3icOm65el4AUjKKNZim6WgoOST1bRDDM1nd32HA7333psMf5boGT/loyoVkRLQiMncCdiyLHPps7ERhyRthwJxYi9eO4coCkXTaKB3AEVLVc2QCqToLvBjeWnLsmgRTe4XIEAavcQY/EgQlohQZO1bzLyrVu3hJrJUbbaNtgKoZMYhgeG27AEl00czB7u7SFFSzT2tyhBi3iJsLhWRavT5EEXhblBZVNxhrQlQDsV6wCRS8QlgaNaW1t5T73tsqe6qrLWmPW33FmYSiQizFLzAZTHEvknlGAbQew8gp0/aIk6njAqk5o1EWG99WRZeaXCS7G46zmS8fhlvKddXyr5X5oYVQfduFiJSNfdKEZEQ6b2bj+k/1/yIvMuAE1O9r4h5JtsceTQiMvhgCntqBIRFNCtK3cx7l6IC6eGXdDS/JUYoQkQLcw+m5ikhLNTUKNewUX+1cIa7OR0WIVJEZdu2IKXosNzIklIUNwRHVdd2IWKRSJcdGREuABHWUnr+jEhjaM7DpkgkSQ9fWytmJI/HYwxE3tzE58AwM6S+tCoLGdERcK+1UsUQiQRVVUMAnv5lFtHDQ1iW5fjg5vj8wxff997P+MBPXSIev/Hm+f7uwenm+Rdfludfwide+75/+k9+5Ae+f+n91Xe/sDx8GBGcRYR998kg8Hg8ypB4HFowInJclt6bpt57YNu2+6fn5nHuXurhIEqUEN7eDo2bh8/dakJgl0VVYX7f+nZu5/P5/ORxX7e8dmttXdfzerdtW4f43JMZiKzXmSVaMYXcU1zQSTWIBOAPbg+f8d53/aTPfN/puPjarK+HKmXUicCiIA+HZTkIGQxfz3evfepjj998nW5B3N2185M3X375xRdeeLSe785P3+ztBdBBHA7VEU+fPv3oRz9+fvrm+vTu4em4Plqr6GFZcmKyK6kBL6UcDwdqaZYeLsd6PB0ON+VwfKhl6yvC1imbrLUupURPtcv0LukRkgt3WY6M8vyLL9fbV37oYz/4xpMnZmMLFhFMHVB3F4uM6ADVaZGgWhESzlwEcAWNHNuiLnuMvKdYqa5KUfISsF3Hz7nNUeV4PFqPdV23vuWvxpad20wtzc1nPB+ku6XQms84fCw4qjFbEeSUdkb00YCKWiVlvrJtZmZhniBqVU2l/W4zDxphSewZ1uXFDBs08aXYf/tsVvFsgDFf2V/f37xP8/1aRgS+h4rXRiGzRyIT/Lt/S0QgZKjyQ0FPwdTJ+3yGA5zrDMY8wJ4b7qfB8Eu1tPc9Q9k1CAFkST3fwwwVZrNQRDL/lxnPR0TmKaPVcTG0T8tPubbNy9FYtB6idzGwkIHWLBg6DOIirvablJbWlJ/OTa61iOEBLSKnw2G07J3btsnoVBRSIEjpPJ8Aa2Tu6hSO/kbeoN7bHrePwRXRe5c0zEBkv0I1UzvPZHvUdTD3RVX66CIqRQVCampROspkBZOsqmb9/m6FR4aSafgwR3PtvYuoR1ikBUX01uhm4SISxNpaBNOnKxX5RYSSW5REoHc3s+UAElrTPDmHFIEohY6RGOzP5tu+/Tf9yi/6M9/27b8JA6HhezieRn1p05RdWUCqLrmvs3fvBnCpI+AIZkdriAEDAEW15nkmSd16bNtqZmmN1ce9z2Wlm2F+JyIiW0lp3b5t520blddcquRKkdvMVCU3kt770FoMU1V69HWL9MeboP/z+YwwZQhorUuNUgoMa+sRLrVGxLauHTwsZbs/m7WSbunbVqqoqgsylcrUUECCu5bmvjRwKI37Xnkate1Jpo+4rFBZikqHDBH0HtZNEKpKpCE1ENFak1JUa4notnk2cqp6D9XR+M0dLntIQlnPG1RKKRYdg1g+ikfeL5keuncfXTiEwY1DENi9T4+xnNLdRKQUHQFTwNM1FnQgzD1CdMlEgqQo3V05nLEiWelEIPYVsORagGSgOIAYEnFwNwIqUE1wx1jCQFAivb1Vx+akYFGh0L3DTTW7Ba0cbiIizbpFU1eukCwq6cMnQ3a1M1C0Zq8B1t08i7iZtO8LtIioFpJr257cPT0el8PhwMD5fM46TmGxzdbtnO2CfVQAGoBQugVIUelua9uUUmtlqREpkLybwIlZCOEWBJZaVeql5Jceqp4oCW0WhTwcTsCaO32Ki/bWzRuAQlFV0cISVcZEd/Oq1RFZ21JVCD0QZsuy9N6BsDb6k62Z9S4udTmWiLW3oiJFfdbudH5Udj9jVs2zPFZrLUVba91aZt9mrTVzd6pAAp5LECVthDyyXBQebs6QUkq387ZtSxJS3Eh2ixCW5QDAWy9VSW7NArEU3aL39bxvSEKe9HB//zRslOcj4pCcqwIIhSKgoAKw1m01I5UqKFlQzDRUXMzh4Rl4AMK0+yHO6z3J7C0UKam9EeZLLZlcFdG6iCOUCHMZhSQL64EQIMtkktZ+5kV0OSqE3m3bNqH4KBNFN2/WyaBKuHv4Ukp3772nOihSFTmtsWbckFed9g4Op0qtCiAzn1JSlZd6QQcEoe5BpQQCFpp4jxBSVIyiQoSHuabAb64Mbm7RYzB7CLEZMwkcgXSfmn4hkUgWDmXsEEbaNVmfpjjDO2rEK3sXUQTbep+tnnKiIYocSOndPTrzQYs6pbXNzJblWEoNkg4LUIqQQTogpVRJ52EMmcl5dPci0lrrWyO1HheBuoe7NQ/buopIEQA95bkDAaqWEMsVP/csJ2opzS0ilqX6FndP7kfazAah5aobbNY9QlS1Lu7Nc5ORIjO8tohurlIl98fu1FqFm3WUEojm4WuDUERRxL1n6GLWPUJZRImQ7uFIl40CxdZbd0agWQeVs6sTQ5pYERy+nO6cIaNAByyF8HDvwzBPNWX/0141evQEPQXZzHA+k9QJFvWBjKj7FllKoUgzM1gRFRVPf8fpqzdSfcF5XUsVKj1Cip5ub44Pbk+Pbt/zgc969BnvxXl75f0/5WMf/+TTuyfvfe978eTuoz/6oQ/94A8/fv2N546HLsLjAz58wT75JoBS5I033hDosiyP33gTAJTuXihFVMlaCglrraha61ucnQK3QupyqAc1CroRRWoh7yW1XABfm1lPB/K2dTtvd48f393dbev6+PHjtq4kW2v39/d9W8OilNLCGAPu1XOzNjA3fUwN16B1k9ZuD/WFh7ef9d5X3/Pyo4fH+vKLLxyLvvn6a601Jdx9s9XRpajEevfm+cXnX/joRz/6Qz/0Qz/2Yz9G52EpaSz+4OYI4P7+/nBa7p8+uX/jk8djLccbip9Ox2VZDqfT66996hOffL28/JLEk0cPH7hvuXk1j6KVKh3nm8PBvYno4XDIKEhroRQqVOD9fDgdO7pEO1Td7p765hLwcDNjRKkCnszCEEs9sRws+ObTuyeP71Rrb4ZgyEiE8turiKpWpZlZ6xHBkDA4oArvfbytFEBn1iTdooy0kFWHCwOAbdtYVIqqzNqjXOXAQqESOmAyIsuycHg6RkAkq47m4dk0ETgN0c0BaK25HI9AEVJEmHTJntGQkFLJUouJmTUKPfpIw2ba7N2y5L0nn7nM1loXPazr2mm4Onp3rZnxMGW39jDV04t+/tPs8ocysZ8jVry8PJmdVynG+OdsmWQyn9X8Wg7LsuCS5F9bHI3Pj2ApUrQ4jBIJCt6Rd/ubQahqYCCur9PpiChSSynufdu2vGPjG6lA5kfDgTJLz4n1KFV2yqph1O7TmIMB+nBMwJADY0RM+vck3qY5a25wQ5FM1Z2xt0BDAMs0P3YbhvGrce/2tsye/OSIyiPjeFDhoHDuLZZ9SwCHsri7DzAbK9UpfmlGTROn8XjCvadsdupdcVza2Ixnh59ZZ4pppZD4um1rEtBlWUpljLZkTq2rbidqHc3hnCfgqPT0WZwQiiMcIRHLsnT3NhBxml8ZvttdTteQi+qa7AUtIsMI9PAqhZlwPFuu+NZv+4pxhSKljMuz8JIN/Yli5exAns/nMY6pmOABR2KUfE/qOAwlRtli+NwgS3VaD4uwjKLTs0eOk5it3byc3vvhcBC5wAmv5wnGWcT+63wu7p6JH4Lbtm1bL6X0bROFMjPOUQJsrQ2UxBBVj4JSkM8rUX+RNW+zAZWZBIaICJk4W0QSA7x368Of44IcRuynPfrPezbFOc7c3a4e0BzO3RGkQmSvTEM4AKsGCVj3MTymgAEACy9aPXE2QhFZSknEREaZY+zLKHRVYIuYH0Igm0QspZiFJ8l+gmn9WbBAIaFw9550Aw9R4QRzapZ8JllgQlni+kqvUsTxWv6fqsoM2QFX1cQ/J6NkroOeAEMM39ZdujDtuHhdF4zRcVKl9HQVSPfaTDnIXAQ1Q/jLNYqqns9nTLh4js+FCwARmJlgQCjzK/Yl9TqgBxAUH60v24sjA+lw3mqtqrLfN0Dy5JdliXnPE/wMQFLlPqkyY3nK8KLuZzh2qSsHPL3CZ+73X8g0sTGk0h4AHEoVkcQ4XDD8y7Ktvez4pUEHEDLcTFVVauio/pI0sUXFJP1mxvIgIOBmfb9R6XIAkQAjLA2MSA7ER9bFzc1sS8MyHSu5IcphWbe+bl2VUjQXJ2umInd2b61TsSzHBMTWWrv3ejPAlmMbM9+2JoIOY/eEpGalOu120/RHilBJLxpeRBhQDJJCmIcFA8HhxOYAzMKiZEat2md2p4NXlF3vIH0RHd1Nd5+hg0x1yhxjA003wzJVyY0qrEciVTmA1kqma3futaUUzFJ1QAAPwIFa1BM/6QGO7wWdAiGTmrQDxSOMEkMONB2NRqGegewPhoiyZpoE700oUB3pMyQc7sEIpYw28tUIHB6E4buHWQY3EVFVM/fYlwheQewuK4DIsiwjAJ0z3d2TU2BmSZ+p6dKTBXcRXWr0hPkJ4OmG7QQQOQauE2CSDlSWUhJq1JxDlAUD4juO2AM1IITuQli64KQRHZIxFdHcsqPr4YIIodaDTFURy+6TAt0GwC2ihYVFd89VoDuMppBp1J7FtWyKAgEKQ9gzVNBi6d0uHNgNIBAWThWf7LxhAoyIoQ2DfQFJPEXejutnkWFMdxNBZICZWEcOe5jdoTArHzosysWyf+2jb7FviGSGsxeSSMYqIIMTEprbKxCAiEqZ8ClhR3hQl3rz6OHxwRFLhRwevvLuh6+857UP/+CHP/ba0yevf98/+scf/ehHm9u9dSsLTzf3563H2K1qrWFXfkhSSinJejAzpdRadFlGMcIslIfD4VSPrEejvnl337pbGEWPx+OyLO5w73dPHmfi2sl13c73923bemt3T57eP71LT74MxCFF6N1apO06c8MmyaBZdycCaDZiEhGB+/2T87uef/juF59/1/OPHhyX2yo3x2Xhc5/6xCdFSZal47xt57v7dV233j78Iz/6qTfe+NjHPvbG4zeVcns63Z5OD0/HZvb0/k5f/yQkpJY3DrUUee6F54toXfThw4evvvrudr89fu31j33i9Ue32/m8qTInwu3t7el0KkutkKdP7stxefjg0enhg7IcWCqAbdsypVRW6zU2RW8jBhbJst3hUBkwb9u2NYuQxR2feuPNTz1940d++MNbt7rczNUjKKxakkVjKWI7m5yqujciIy5oR99DXOhE3GnSXfZQhKQhNCKbByPYu0qAVXXwdCi1qtQi3nfGFhMJFajkeVtzaEKFCIWmhE8p5f7+PiKWZSH1/v4+sS2Hw2HXl8bMrERq8zYSRDJhO5lEX+33iLgkqEmKVNAvZ41aq0XykmzHO+CqQrpHLPsEn1f0TAM8IjIU3p269zUwT6BHlhvKbi+UYRLf1ljel3QAEaM5rCp+aawhrZKuF2Qkfge+n+p+LXvIR/JwOOzqZPvfjkRj2tzux34f9kesc0sKD1KJSwCcbxMRtxhDaC5NWRIv0aPWypoBPUkKLzsZqIlMu9y+uQ6aGSYVLaakeMzedOJeRLQ3y7uf2DSBeJi7sxIYclacOZsw15C0402AauqJldbXSPO94S5IM0PIgPBZhCL/MPGLwiJpYDkfpAqUCfqNAYuKcDdSkutSSomsbElooTvNLIA+Q14pqukcWbTUxbet927hvCJz7wPl8oSq6Py6CYkCh4TW2Dn2pOt6mOajIllrSQeuZmZxgdtn7JJDlEnmZgap7pOPKixBCYoj8tbkMHNIpNlygDIgZ6UUgtO9OcXcxjqVVQBMcFoO5dbacjzEhFXvc9h9duazKp4DhxSR3gbhkEVl0O36nAlCwiJII5EbM65JDrnpTgiKUnpv7l6UYASsiMaYvYigI5hDLJpO+ES4kyoqIHpYbu1Is29wTIuZ4o79nu4wDxtDHYQM8LGZcaAp1SYilIP152HmHlm/wIwtskrCMmpmyFxRlSONyXKSRQT8UldLSD+ChSVxpgRVJcLNAhFlAuPzSkr2VfZskywQY7ghG0XuznBRGWIJsc9yCDzrJJKo2ABlsOhzeAL5CpUE3LuDISxkwUSPZ2MhF3elOD1JaARFQhhZlrSWreZcInpEhHVZFhEZQbd7JpDZuNhaKxGhGiAQ3S0n23i+WcXHpF9EiNTcG2o9mNm2bTk4pdY8z4SzujvgFHp6nlMkHegiMpjO7vHMcIaSRES4WSklBjulC4tQ3GdGFGM+J+Uy7BmoUi6kOoqJYzXIDS9riKrat/18JAkOlOEqV0VNrhIhCZnI5Pz4SFAwAkBvTqbuwvCJNZh73wyKRPskDjernDELqioiFshKnzKSUY9IR9tAov4C4ViWpSx1W+/duwRBhIp59FSyTMdikdvT4fa5hzfHZTktD043D59/+OjRC4dDVdXjUg9allJTdMBaF5He+9M3n3z0wx9prd0/fvLkyZPz46fbtvXWrMcnXvsUnFXLzfG46FJAZVHq/ZOn6lBSYyQ0QlJlE0dmzAF1kRjF8TRQVYikWWWuwR5lKcN4L9fjaYOHUSkxESFkmMaTEZa+w0kkA8WnRgCALMjmOkmSoHswhvJIJHYcDLKKGiLLEgFPBIb7KMkViBMGhkemeZormAQxqBeTrymOEIQgKBoRFtbMVLOhnr0RGiz9ZXV4vV4Wj4SS7SHBHmUlKAbIZPwSISSzbQY9Q1tBOEhxDBcK3BChymUZzN6td1UtZSlFQZonRHLpMT0tSAREmKGMUEq5sC0AQDQTLeUg9jus1krhnpuBWVbwwACVh7uFh4UiCzSaJVfvGYEIRcpSzYY1qCsVCkhvzSxqJVWomv68eUuCFoQnVEYlMidk7kUhYVAhNBKwIOwBG3tr0uwlxmIrAXjyvpiwfQ+HhQdAESCoQ1skYjcKdpsF3LH4Zx0/HA4WZuwqqpwTYYQDg8kUAFgUKkIZOxEGIDNv+OAuYkT5kWxGZnVEAAEiO6KT5YisL6RQB8Gtt7U3KVqr5lYI5emFF5979V0f/9iPfeQTr70e24c/+vEn631XvUe80drZEbq0/iRj6FqroW9bC1gp9ZDaEmmEGVBQRheJ7h50SEjG97Vies+YeRWppWaEs65dOXzpza2t63Y+t3XrW1vXZmbN+txEDMnKjtlykcFQysHYw0UKgr11d0hRUiRwAF5+8ODlB/8/tv6kW5bkSBPEPhFRNfN77xsCEYgIzAlkJlAoZGVlVdfELvJwww0X/MNccDiHTZ4+7F6wzqmu6s4RicQYACLivTu4m6mKfFyIqrlHdPsCePHeve7mZqqiMnzDa+v997/61e9/+Yu11N42g9RalmVRw+Vyef/0+Pj4eG79N7//45dPj621UgrFny5nmKihhW87et+t2sOr+6d3ny9F7tdKq0Xl7dvX3/3ud9vL9vvf/f7zz79oH364lPNpqcta1nWFWkDuIFYgvS/l9d3d3WlZbV3LesK6iKIuhRJCCV9iK6QBC0tv3gNeVZelCLHtIT3MitMc1jb/4t3zy2Ury+l0f3/ZHZFnsYpZ0FvQvtp9zpZx7i8DRuRPVk6iR22kfyGQUAFyJ+ZrWRIRg8yZvq7GZBUI8WSoiCoR6AyPpIVFQAAlpZQlq9YQkGm3ijyd9VDtEZhZyVLTygiOk+ovoqVUb+NcyJilGXaASbmniKCoQN1dGDkQFFH9KgQ6IruEiBimuYmvkaGtcAwIr7I72em+xmE4JI5wfX1zScRuKnXplG5OljIWq+kgy2TiTkRnDHTnUCQRGfcm0xIMYqjd1kGqamP7Z/YPkqZj5irQzKxkdoFzfAdAMLmrqpI5jw0dMhERLRDLoeoY3EFyHMUMPCIywX2S831Pb3XJJ0JXiCKoqTlx3CNJLOhAIw/Kbm5t3DQDjgL4+KpAKvr0PE4web/jx2EARXq+P6GZUOZbpb4zkrUriDRMGj2hTN81D6WspvK+tDYkWE5rzelc3taIKGpmVmSwXwRRLTXdUoJsnMoyuazZv5cb9W3OqW9+6/yxQ/wpRbzGXVPBV8ALt4jKI11QEfE+iXbX5tYVDHDcxuN1JCAjnRhmV4O9PDsxRytrCFl50uVTdQwldYRkdiVuJ0tJRuXBhifzPAB79z4vXm+/znHxeQ35LHIFZylIlczdj9uYty6l3HAzHO697/teRh1hIljWkmsvY5/NTvbgkmWJMgeVvfdSRwPJ3YsVkuQhNiBzXgFAGJ6AFjGolgAJDVHPM3ryH46nLzDRuF2iAzgmN07co9flTvGcqIwES3pQNanm0fuuCQIfpfK4manTRkGAWXMfd8yqiNu8dflYxq2Og7A9Iz6AUhZyMBFwk/SUUty9z/bheF4iIldCy0gO8onEDeBiruQsgr62tgFABsNTRcngwN9FRAei9y5Cs0Hm4TBY51xTPBA5quoeswExFwwkwZNH8OUEFBxBECIqkgTVngSBMcwSmU2l1jy5wbe3JQ+hYzscbzjXz+jxjT4oE7UxFuER1o+5U9bD1wA6tPFzS44ppYhQkp/MiNDJ/j3W2xyt5AYcM70M7CKCIsx5dESSZkutqvru8b2IHFVORKTE/KtXr3rv7pGI2dZARJ5OAHo0MytVs+tkZr63YsMLQA0m0kkPmgmpEIWK9+i9R4BFl1KFAw0hWRYGAfTwAnbvz5czgg+v7k7LXSi8teIDxlaqfvjhB3/yJ9//9FuffOc73/rkk29+8MEHS9F1Xe/v77NdWUSLCVT7vufjk9CXl5eXl5e+78+PT8/vHx/fv39+fr68nNsev/nN7999+fT73/7u8z/88en5id1rQJyL1mhtkfrqdGewdul77yoqZTQlCDIcwRTorLUCUa6aH/loRMNVTYDuIYqMBT5nFKo34kzzaQ6hKQeBokoTNWutmTNNC1VAwiAU6b3FzNo4RCWzn5rFxADkOKMji1GE0yzxFxYRnR0SpkklDWB2wEcf5HpYHN09Ad1dx+hco+fThJlS1G76uUd8SEUM0dTXGGdz3ISpm5Usx2E9LkAATGiDNNGiUo8IcHxW713EyuS0995FJGLaXIpIBkwZkqg6gBjj1dxFhDUb4LBExYOSuJ7R4URwjE91VHWj8ZfwClVN/jSyTW5aigG6tT08RAiRnhmvSsi45ozkpDDL0gJzuLP1XpZlxG0RZ3h3B1SRAgk5MHCyZxjRkkVb6ERL5UmhEmSPEAdUgkKdhypGVueJaAOnyplQwHnoZMQZRHzkOpsMxnBMGdiIcFAmZqkj9CZm3h7rdjNnyyeoqlDxiFl0X6FEyaMTWKaiheLO5kNwyFLaL4Cq9eEuin7+xXt9eeqg18WXttzf7yLPL9ti5XmmwaWUbFCa2bEHE+dyqsuyLKIpAmzFKqyEWu/hl4s4OvRyufTeE60U3ki21rbLuRYFS2/RWtvO55eXl/P5crlctn3vzqB09/1ojOYUKPv8nktNO+gQiA5Gvqiz9wYzW9TuT/ZqfVDg3Rfvf/vbX5+fX0zo7qe1Lsvy8HB/Op1aa++fHp+eni69Pz2fX7ZeSi3r6tF6d1wurfdTsbvTAuXD5XK5vOj7MPH71cpyAuW02kffePv40Uelrk8vfzitFxW+efO63K2i2nrH+SywuvRlWenR9l1rOS3LshbcrSgVxcQdfYBv1UykoK69R9E1J/2DRVirwLYLm8eL79vWRHVd13W9C+z0HhHBUBGEB1nM1nX1vUVEaqdlAcwJ/5xp+S2U+Ssp6HGgi6pNwRRV7eFfS6RVTUTTEJZkb1FqyfCmqmByeoUylCAiZ5b+lUIgM6veO2UEnMn4HQEWI6Eakz/SMkwNzeFA1kSzMX19jbAJEZFOv/12t7o/o9M0A/LtPZFZnswk5IrXy+y9WiKerpTgGLLBRwveRHnE7SJXhc7b+Bw3uLmbSxgfpLja+x7/ZGbKof9iZpCB77tNluKKw8XgeJohUsYC2ThRlQPPck0Lmc9XS3IwVEMFQNu7iGhmLwdUM0KLKce0Yy4eEZGp6OtIrRBVhcO91Vo5eX1qY55JFW9U0EQisPdQRa0GLZ5IKnJCX/IY9iIlF2+WjWZGaigjvKhlIZEzrEHqHYBAAY4aj/LV1Z8iDrk2VEwHrIx5DgUHTHnukwjBpBy7VhVlfhtM7BDAUkqPTlJMIUy1mHVd8wrGIZBryIPwngh1NYVwgsbmgGhUiYn9oriZbW0/BkfIt4RYGQKpX/uC3QdnIL/C3nue/wSTHTdWXoSMESsC4hGeLQNTMxMK4H0QzLIFPWyZsqmcB9WsCyTCe++g+hR2H7ygrxQeCXokQQisqLsf4FK/QQpMzQOPCIeUUpBlqsBqEaL3nhSyrGPKbApmbhUR0Mxz0lZqBALOotp1SBAcW7S1VByAmDHkZscyyB6eeymymxc9AoGM7ExSXK4EkXGjMnb1zHtnuNEZcAFgCvR5ZxhtqQb0dnGGSYFId57KWGqzE44QqFheLYAeMVSdwSHSO6XR8xNtorV7VsiqqkpHDOaliqrc4IKO2J1J6sTKXZsy4V1ElmLkEGk4qmsTTslQsRyaGIHRWKUccTZvRb4jlRDJbm2WuRMEYVmLIiIQIaqitGElFkLCYZgwTREthaTJEKyyogOOyQFOByBmAaigWElqaqZB+1CrDlMbMw+llCl5LZItLYOYGB2OQbo+bpcTyDQUDO+gVi21DuJcOKJ7kyhlmS58KFYpoxSstSKSQxjZfciwYWYUm6l4kp9jpKMhvNFxERHVUuuaJ2Iu9XwrH72QcSRf42Ci90UJiQkOZDakgpFNcQgod3enfd+zABbT7ru7V9V1PS2lBrPeICVUFdFnATMevZiaqZqIIdK1DpqCf6rFGSa6B51R7laSXfHie9/dFvvg7evvfffbP/jB97717U+/861vfvvbn37w9s3r13d48wpCPD2ht6HLz+D5JRpHDQkCVdflVdVXH32ECPjH6A539s7uPdjdvnz39E//+Iuf/8M/fPbrzx6/eP/5Z39498cvz++fn5/ei4P25n6999q1aF1XT5C7gx4CmooNqQgRKQpkmaADRkSbEgXHcZ+W72JQvULZj4xhxA0yT7SBeFV1GTSvfIpq2epGYp8yYSowBykQU6cLs++ZfR2oiKoxazjEEf0qDSKqgDA/D1eMsRwJB0lPBWlJVX+XeT2EI3UATHpengognSGqAwqSeXBmDTncC8lWZopSHuExA3KqGea6lKIiQniEF6smKCY9PEjvO8QiYlkWkntryNomhbJTyQl2MNHyOgB4BLsXXM/NHr4sS89GrIiWReC99+ghIrBxClKARK7Me6oqFHH35q7uqurIql2TZKzF4MoIUTGz1hwCNYNz2xsTrBhw52DBwQLaozd3q2UMiCDOSBOHMdwZs6MRq0OyMyJBSV0lGW0YGxRlASEEHWnLiCAiWmRFPY71wIFABkWuVKmB7QA8AqkiPSVbSDr8WCciBZpVQQyuzdTEPrJwqaORFxjSfwn0y49OYpWQPhoWENMAeziVVKVYD7Td0f3y/Hxa3pmuIiqrePF35+faNlnvXn/r2/e9n2q5fzhVK+2yybS9JK9VQe/9pXVJlB8k02JTSdkIq0VKPbf+fD7v512XTquX55fUZW7N+z6qLwC9977tL9vl/bunL7744vn5pTXf9n1rvbk37631S+tiEJGeVTfQMjwLgPDhLiG9e2bCHdZ6L5Ba7eHVa0r54t3T+Xz+7A9fbNumyIkCT6fT68t+f3/v7o+PT8/Pz5fuz3tceqDvL+697yJyT9a93a+LLWsjXi6XL7/88nKu2/kp2vb2gw+XZVVZ7tbTp59++umnn/7ud7///N37+/tTuVxsUQA1M73kyJSql0tdl/V0yja9sUMLokdvfd8H3tspzVvrqlbNkh6cdSAJD+9Ol3j/+PzZ7//4/v2joyqkmkHE3VUSmWcRYSaL6XN00qec/zVpaa3TA1M0WAaaL6duSr1SLTLLvex7ZqlmVlPY9atT4NEk1gSmRYIc5/xTyFGVHuXGgVcPEEFBlKJma35ZIHz8WGS7S0SQQjCRXUU1q0hYWXJNcQPbnnp1idhRWi5hEbFrJEtFRogAiVSEOjzYc7Hd5uT540BgAJeMw60HyfKbsk8ZZ653O5FzWTtiTjtU9agHSKrCTENAQqSaWSkpMZWZhomqhGtaAwGM7HsKIEutomR39xGFVHPuzaxCU3Wv1iVPKN8bkA0NFUEOwDNTCiSJGVrGKAjzJsgY60J1TANyIQ0hFiQcUpVWyyqARJ7OEYF0EyjrukZE9yYiNoac4j4ElmP29rLBdoTInHnnpWfVPqRWiwFIXD5JJryT6u4qItOyJYcaFEUusszSJq415iJgpHwPADIkdazcGVlaiuKq52yqyrltmnc6ajVT9b212DWqLUUGP+QKcD9muZyQV7NBph9/nuWcjONozl3ZOZvreewpJIHKR/Kakz3OmZumlbAIPdUsVVW2bQcCXy3y85bmJvTe0gJZEjw6x4LHfHCmXAd8CUn6795ba8cxenxlGcCMUa7zZowMkcnRBm64iMfPWBks0zhGQBOiLLMTdtujOt4neZiY6GgZfxlA0KN7iyimagJRCiQnl5hQXtxUd/lFzudzacUGITwlT6X1mITso7UBAZwEdfApshOFOT5Ty/PaveNgUukgOXyNm51mRQDCEyInA3BvCEFNF7imOSJKjVwOb+p8Z3RGZjqt9RF8gWDM58Le/Wt3j7wml1//p5Dj8o71MHPf8V1uJ8PMlHqOiOeqYFZZJFWoX215yPTEPuh/+cnuPaWpc+VrDqaVOUw7gkMmrWnSFBFDoDOh6ExsYM3jv5RS6jW99kHV/ooWANNvHCmYYSaFEgIYtE89Z8zwfeRJ+Y16uPoACccBUpovHYgnab2bMVXijgM4W3Kt7Wn7bXPwm/s0pmDYMWEDcLlcRCQlxzBnMANtfjRc8yi04UN+7J2MM0dcwgTd5JEfRESs68oJTRzPFyIil33fe79lDeUPyAHlkHBPhEuIJHkgl2hWR1ShmAEpaoDOoIjWImLKa8yBUtTGpEqMXZ6en9Ww3t/t+757+8YHb7/5zQ9/+KPvffs7n/zsn/3kh3/y/YfXdxAAHb5je8Tvvmx9833HFPao1XhU+KmvK7KUqqqXy56j5mpmCWeGVLPl7vX9Bx9/5/uf/Id/+5fn8/bui/e//aff/O43v/vVP/7i17/49W9+9dvz8+WpnXffQL3zZl5AGkxNa7WiVigm4q3rODd9PBlVgdRaUmRSwUiA1Wg8XxUr4kZLf4z9SQ4acPYLR3qcFe94NBxUnJuGoxiQn6ICn5BUUYFKVaNKCorkZ4r6aDYlUA+UPAI11e/yoL3yNvOVPMk8iYKSJyt0SjNGh+R8FMehr6rRXadgKXg9gzqPptgxWyDJdVncfTpsJfKLIlIG1i4U9DHrsNPpBNPWWtt7a03rVSk0wQt6fHaaB6XFiPttsiumpS5td7JXzdABAp3ptGAyz1AkcoEIgcyzT2YyNQt4EZF97xGDe0wRioagM3TOK7p2ONIG0L0NuM2IKaKqe28Rx/l+AylEwqulMYFtqpY1LSO3HkDkvyF7IkAkHwWSTnvs4dEdKmPemxQbkhm1JHvI4xBMJn9aZ8qIM5mVZry9Dmd4zIwFYlLUbOJTMHPlGOTza2wh2bxDCxWphgYMNKBg9B+bu1K9Myr3vb179/jzv/m7djl/85Pvvn7zwfJwd2nvUNHUP/z4m2/X+5/8xV956z//+7/hfn613u2Pz/vl5Tb/yYOmtRatn9a66HKsdEDMLBG/zfnyfPnyyy83hy4rzVrKRZv08KSZLMtS1N4/vuzbdj6fn56eHh+fztslfMzqA+yMLWLrDVSrBWo9PO2pnAI41BgMSO+xdSdpZSHEqQgJKXK6e27+q8/++O7x/RdffLFt5957a/u6Lqe79dV5v394Ecr5fH5+fr5s7RyxewABgyhLMTapKlA99b54eT6fF0U/VWl3VQKx3909rPXNw+vlGx+8/fTTby/1b3/9+1/X+vG7p8d93y6vLm9ePZxOJ9vtcnmxutZal1Lv7u5qKb0332RRgWmLPbwfGWZvnqYJpZiYgprags2591Atdw+v8f7LLx/fn/etrINwtNZqZio0M3YHCY80wiyl6KwIcl+YGT3UTIuVUjiACDMOTJiwzjRbS8G+X08kHdrjR0wIB+mpWa1aTBDhlJGHD1EijiHXweDLjZD2GW1rJM3q6XSKiPP5PEGOoqqcusellEQCqOow2BngjgCG7YCZ+ZSJPSausYWHJ2TjNhsZo8fMl4arrQLIW5AmZEdqlDtxZgtybNL83SOXGOokYpJi4LOheZsIHc8CU9tiZIDzYkSSeTfuYa1V02IvhwTz5t/d3fXePbab3zIRac3nyKoIIgV0SR5eszlBnbeoyGxGiwh05I/Hxj+mmMf5O0Vke0RAxklhZmmAlGRoOfJp1VK0Nh82IcWqikL74dIx7kUKjpPCIYycc7x1nnnH4+S8WflbpgofrjwUig4x6PnMGJHeHrmYggjVIpHJ8fHY8g+Wh5K7Z0PBpAbYmudzygJYDyW0nAEdB8CMi84O0aPNU6upJlv1Wt4nsI0zZS9q09qCCjHRpFFnoipMgsmoBuOmuk6n3kSIHmrVqmLJfkwyD0nGLdA0d+CM4jOLnYd0IgRmQX7FEoiWXCochOJovbfWS10x/zJjRwx4nZASgYjR6ZkQPD+W7JGRH0EwNz8OCIoIRN19qniNqz2mrwOiNlm7R0Gos9/hPpKD3ruL1KLVjCLufcqcsIMkh1XsrAd6JsomgPbJHyN6UjEA9Z2IMZnPDZPCnjqKLEZQimrEgFsg/WNjTAdM1MwSIZWDNbj3NJqVEIRHOKCpLWoOunOIH6gmmc+szluTfy/Rwh2mI6MaQ5iMYqPsVABJ2abjwHLP/lxywhxBhYmiuec7zLQ49AZee2yfm0d5rayEsMmxGelhOlffUGmEM+tHcimH3GXWkMxtlZ7tNT1yh/hcLkURkexN5pzyf/XKb0SJcQQNHVmqCcmWVs8UM5NsAGqQPpPvzgjDoIIc58Go/wWq6YOdM+qvhHpOEzdO9akx198vpeYsH2S4IyHQxdJkshy7Y0yGx/qK3kMIVVEVneoOcvMscl839/wgs8Ou42rGlr6Ix+i4lKW1TVUl6wodjYaIyEx3dtgAs0RsNEpZqrGQlOGK3BNQWmu1qh7Np+bzWur+dFZneIcHiFBORQBS4B4IqKoVI6V37yl5oEpNFeEIURHt7s37YuXu4f4bH3/zk0+/+Rd/8bOf/vmPfvyn33+4X/HqHrHjyz9uL8/Rt7a/LKpgE3pRMYG3LSKqVzmta+ljysdOUn1n571oylmLS3b7gqTU/vQsttwtd1jXuw9e3b2++9an3+jbTxj2m1/99u/+7u9//vOf/+Y3v/vss8/+8PvPv3x8eWsP6GzuJgItLBSx9Aqb8ns3bXKGN8Q82nq07k4VLZaCwjGrgiNpSExdZFRN52RS0p/5Zj8mXhmQEANId1EZbLfU29PchZSrQMEA58qAYOR2nNQM5n7M6kmyPUyg0ydxazKmTNxjJDG5cwUAxwxZdUDD81y6gZNwtlkPTJaqBpFsrTysbtuF1/wBuc4TIObdOxJ6RlGFmZRSdo9SyuRL4+YRiCJ9jwcQIk/DWqqo4aYAHrILAMQc9N5U0ygqH0fOMiECMw2SgYiuYFGFhNloV+nQR7iqb2pRK+JUiLTefOCqAyplqXT05hiOKnR3n42whJWJSAg93MQmhjBIiChHcBAzg051qznCxcxe4shKRTDpM4QEhjJCcprzTMnf7ezj2+bxJ5JfPBPoW67kjFHjeR3nyIxxABDD2kXzb0iKTJjbLERHoEtxDIAiKgMYAJGtp1t7UUXzjk1EzxHt3bvf/eH3v/vOd37/jW9+ZPen3c8bz3ZfPvr2pz/90Y8//s4P3/3hsz8+vvv8Vz+P7eIvT946gN775XJJl4Fa677vt3AMEy2mY4QD7pfL08vly/ePLy8vLiUierDUu3CkqFJuW0F07/u+tzmnT/caiGTnlhHUoBWX5kELJuG9QzokhHm3KBKULaKPM09DICZQ3QOfP77kuz+9PD6fz3vbLht7B5/29bTfP13WtS62kGzbvrXWIzsXENUiurm3y36/LMEmj09gGE8FUMaien6Covl2aadQ1JBTNg0vl/2yb+bSe4NENRXhUpS8OxI8wucUMSJcJkZSREBFiMHSNjUm8lxqdW+5CijVzIIE9P7uldTVr+TobCCBQspQ+rTpu0F6QMRgWrSYCIWhpZiZD/21McPhV8aeEKEo7+7XPhch6LwetmMDcpyQalQAO7poKsUKIQEWqEq57Fuy+FUEBlV1DhMHIYBhzlpK6UNCz0QkOCrJLIBz44tYEiNvhxB+7VFfcwNVFZPee0wK27ElswbMJ8KZKWUP4Jp7zPmUiIx7zEOXcXwQB8W3jBpKrpNS1aTrH/lMpnLXhrsMW8QjGI+cX1VFxthJTWW0XaFljApuEp56HYSMd7PjEFSIQNM6bFlvDO3kqChvJjE6zi/31nvPmGlDGrpnjoRUQSV0nJ0mR2Z19WZHTreyPinwoLeUsxIS0TP6c1a2EYGA0+mEYlnWFj1IVajaLLf6+HMa3rhTpZQiZqnlmoWTjB67ioSmGmfrkYeUGUV7a1IU3THWej7+cYTnCereI7rpogPk7KK5mkOYuacGXSD0CCVVlrKUuoC+760US9ehGBTKge3Jgm2UEKp5ErTWQoqVrBUDU16MRDLWZgV7faJb62KDbSswFeWwIZAWDO8TiBvuTDuTiE7/ysblZIczZ4bQzJdIVrPO3nuoqonABroysW8gHOQ0azGzokbB7NcyiSqZxajqgbWFDB7nkazkohuno3AptfmeDWrNNIEUaDIbEUhfKEkuNxCtG0RNkeDMFDMlzTQ8QqSaiBrpVqxU69ueu3fsFQKEqoWTc9EOpTjAVO/v71trgnCP1lqtdZ3S7bfnepo5gYWigAu01AXQ2HoTSkQDbJSiQ/yGIiHQ5FmFBUKhUAHNucucTI7QMOOYBra+pTZkyhoJRKpp0FMpXmxgU0mAWooKUopBYoSkhBLkygGomn2Z3LiuIGzMxgPM9l20PSvDfHwq11cGrNt7AgAxWglp9J0/Oca/M8yB15PmKKRlfOERB7Me1/m7mE2+fW+ZDOUeVE0QTuQ1jjnKPANUdToKYobjrBeGT3UMwchrf21da0TigtB7995TQkXVyEAgkZ2ea1pMJHIMkZH/+GoxvG2PebhlqDGrYjWgvXf3XkqpZV3KAqCe7kyriYRznkSprjxgESKyLGsphSG1hmgxMymFCQC30QSlsoiWyU1ybxE9382m3L/TlSDHAD8C3Z3d3aia+l80VeSEfIgrCkIit6GqMxTIhGPft4h4eHVnqq2H910FqqYitZhBRGsZIp29R6gIg0nc1nAUrVZIYW8SY5DlYGfbmkPFyiJLeb188Mmn3/zzP//TP/+zH/74Jz/64fe/d3q9Yn+Gb3j3vr08t+3ZQI2Gdu7sd+tihmgb6GV0GJ3nR6iM2qZ3FRFX791Us1gczYIE1sANsl+28+V5WRZAe3OtS13vofqDH3/3uz/45F++/+eff/75b373+7/7u7/71c9//f63j9v7y/sv3728XDbRe1l1ubdSuSHn3kKVcIWCgeQgCbVUSvQmAKpaXVYJwlTBBAAdXSczG7LebcjAigxh0kPMKcPGTOVGQycnsJNVJllpmwhNIeaC0fGBJIY5pUoiIEITdR6dypFmqRlUehu2IrjBuWWD6Mhq5kWNlBHh2U6jD/pPkmIHVtZdJww1991kYKYVudrcm5nujDMByggIPRDhokke0hRQSBptqeWuLACklGO+EYe+tBSJaysQc1BzDWzOF7+c6knV6L15L5BlXQXYW8tecSa4AQToEb37m/u72d6OdLP11vfu1cxURQskRFWg0sOTKmgaaRSVfeeIHjsdTAiYa4Q7I88Im6TBmYcLgOYIoakExMNDWEypwt5jFKjATPpnZ1mcFBVqtq9HNqelRt97OKdJ2GiG0hXDOfPazRyHQgBwCYXpnPdCTKwIJCNG4q8EmMSKcevmlCaWZW2ttWmQkRaSAYQ3QN2qRUDMkqSWvHZILZUq7q2hiUhvuF/lXWAtp8u2dwmoq3Atd2VZP/7ud/HRh/LuczvViP74+P7j1/frsuSUZd93BM2qaUVqYQAt3GB1XU73dwAC3M6X5/PL++eX83lX1bKsoda3Ldi90bGraq3VVHvvT09P27Zlu6EstdbaetoRePpHkBRVKUbvzlBRz45FnlyihGZjwocdR0nIvRpFrIf//vH9xZuaba1fOi+NW0Nz9I4aWPZWa1trX5ZFQjvNSlVFRE/DtpzBQqU1tLZlOMrsMA81GAIWvIDvt/787vH9HsRSnve2LsVqccq+72Z2f3IRKVUZ/fLy9PRe71VOy6skowlTtpHige4SVJN1KWo12IH08nGH7L3tHRe/XOT5i3fP3bmuawvziPvTiZH+4tfRReJ3ssrIBmIgG9AkXQBK5vnunS0cEJnJ+RjRMG3tRImyLNz3UWomUPYmJtzd3QEY4GUPwPrWlSYWCCCYVa2VspJdkhzgmjSiHkKu613qoiVmqtbqlPP5XGsRU3QeDRQzgXcngUBoZ++JtRVDEUl0zNFuGImuldV27xoxLRtwhDgZhW676XMf+IvrPOmoZlVz5jeHdSP/SxjSUQPnHZI0Zuc1XxyjYx9qC4lPzX7ANRscJ0hWjgAg3XfhAGbnGyXt8XK5ZLWSNjHu7t5I1roMP7xSdGrQlFJKuWL9bJr6jC8iKZxhpkUVZAG6B6qMXD1VhiAGADnmteHtd9wIM50d2qAkyItQln07i3ApmRO3mX9HLTUiRuMDolNf3p0i1lrrvS9lXZbVO7vvOVNNsLiIksowisECRJl2GiS7O2m9dwdFzGoRESfb1lq41aXWNAkb7F0B6K4idOYvJBC300mHEmOBOUkIFJbQoQgVUEwDeNm3anJ69VCYdgVJqLxOsLOXmVYNCfcXUYBO9t2F6cE1EgYRi6CImmha9JHsu+99syLePUflzX3fe4AqxcmEztOG2m36VagqUDJHPzZAaz52igCiosO7iOTFE+1hPq2Jc5oryfRVVTH3IQm2LItqenCFmTg00kxFEAJHSEn3UYVAVOCRdzTJFkfHnYLwRkmhaaZwcbILqtbBMldTKFy6Nw830Wzt5dkXEewuqu5hRQSSyiuJZ0xscm7knKSRUqyoltb2gVs7CNsMkMu6nE6n8+UZgrIsQW57c4aWkkq/2cWuUmutxSoBtdKat8ueHDNhJ0NNPCI8RLIbYhHR3Tt7ktIp6oHEY2tZakJenVUNCqe4e9u7aVWGqSkQTohAmdSQpRh0CUcnlmWBsvWeXZTMbKyU1tq+t4Rvm5lAIroAtZQ8DMDI7UOPdAdNkYiF6qSQMAHK0UEwq733BFc7PDMwHUaYQQ7sNnLGDEI0OUvKHIkMgECaFSGgKkFRkyIGsO8tqKneX6QUKUIc9q2JAsoPgkIVCZMWwKMpD3NRkdCIEJSjwyUCM+vdgRArVgxA82DfRLjUYlnrDzMMg8flclnXVetSRPfuvfeczHNUCAimEK6oJf9Pi5bBCwRADZeAu3vAWmfQAanLyayKKkNaa4tUwrfmgNZaDeLe1nXNvmtWEUHZm7dwJ9diAbD3ZVnEEeGlLs1DYUWrQt1b3v6tnYsthKeZx6muu3cJQqkwgzRvoKebqxKlVhHZe3i6nZcqar33zlBKa3uttZj2badKMY1Seu/RXQvXYkXqYApFE4227Wq11tqCvYWIMUAPhCt5sqplEWD3Lh6txZs3r6D84v0X693p/s3D+5fN1tOH3/jgJz/5yV/91V/+sz//k29/6wN5KLg87u/+SfrZ6EIaupSG3kW8nIRNfHsJkVoN1LbvAKqK9661JPHLRnuCRo0WoJZSIAanilHB1k38TolwPz81D1VVNsQWBLSo6UffWD/65Hs/+rNPf/aXP3j68vz5b89/+N0Xv/zlL//2r//uV7/4pw5pVR8fn+5sDZFV6jLEWzvo67p634rZ1ray1IeHh8u2RaDQwnuFitC1ODwk1al891DV02np4fu+i2kpFmCQMPRoOeXz3rKACniwZ2qRYlcQlBSqFQG0Jd9XLZTG0ZVw9+heay2WmaLvfSullLIQniq4AgRYSlGrCLbWFAFohNJdAYYoB+IaACxUSinVN09/Ywp7DxHUoiQlSKCUbBN35OgXNBDhEmCER4fYuq7DbioiugtZVEWse6u1lrpSrRHQFF3WRFUnGLP3Hq0LIMGtt9dv7tNS1d2LSa01ObK9N3c/nU7HoVnsZGbr3dLT8AcsUqiGYIxChdnk796gUtelLNUZqsXMet/73s0stOzogDkVyyIiW+sAUKoBgYhGdxZVUevNe28Uy0irVkEnQEcnGP1USu+9ByFKtT3xM7WS3EgSYUaRHsDgdau7x8gFnWOMoQGKqbv37oGhL0+R1jspnBOtNA4DUMsKQIZXqRZRUzFBjwGZVpUQOHuqeJaytB5CFaulZuhOmXc270KIcLFiRZlUF00P2Hokx97pcKslYXZMgIJSQ0zEu9dlAd2b94iC0nsPJzrYSHxx/9RO96u7o7ePPvzgbnkNKNpTa49F2lK11AWlqpk2KVqrLQ7v3Vtr6+mhbTuoRaraGqJb6wDd/bI9X85nA9+8un/e+x5B0bXWfd8N2TN1KSqROZKtp1NAvHXbL7OVABG6t9Y3j2yZsvcu1KJGR44fSEnAVkcExMc4EdUMqonMKlrpeL9tDgS5B3aWC3onZEEDzh3iWJqXthU1g64mcC+lFo3mmxMZGxoI4v3lYmYw06rtpb0/779/fn776nXsX57q3ZsPPn7eLo/t8kx/eXl+Kw+iRbhJD0DXu9Oyv9iLlYLnZ4S5rBVLqaKnhwVQCXB37oHe+uWs7HUpuzczPZ1qMXl+bkESZQ9vqF98+fzbz794ujRYVWOtS2utDqFMuLtBaqmKoQhrlmodaiLVSvJyRZQUdppptaLQAMu6wHTrDVBLNhNk1RKdL5eXsgzh4mK597/mqdsH3LeoCq1brRXOtnUVWaQGgKAaBgkKRpKtI8sL0z4E//NQooicTqce7K2l4bNMVouW4q1lCWVWS7Wgt+57euxZSb63Q2AlAaL0KEtxj36DnVnqKlBPeCw0DVN6T+XaMs7EK5YkITw5v2FyGIsOXZ4l/WiBJK1m455krnZRRrhAajFL456uAXZ2k4LpeKqq27aZJQU1vG+j1SthMrpxQ6QIkKo5oFYRCls0zYmsjcZHev+SnlZrAlgZINlRrcwBXkZArcUgTAEFFCu25nUJANRFUbJnQo+Uoy5EKybLsrTW2n5Z15NMA2UZndB8qlHqFLjyTP+AZS21nvq2GyTnumNMBM9uimq5u1tEiBgabzKYTUw5Bmi1LKOGP/johs6mhSRwmDlRnbWfHH6S4YxAAqSOVkYoc4akmmB9IoJRhh7vePwIZH2fDpPpviAmjGjhuu+hNW0MJkYAx9QXE6Y7uS46l9pwuksDtKTyH62X48+SfMvRXwYQg55OjZROyebWjV5oKaW3iAhMTapj06oqVEyHiUJn0hWi2CoiScNyH+vYzBgJBmjZmLleXveU7nCQPmxvBxEoGzZ5wsmV4ZyL4WBEJP84IKkgknmVBNI12kzGADznG/m9ZkNofFmPyRbyUlQgGCj1AasmWe0QbRu6nUoKmOrWRSACunRvyKsVVrXZ+lJ3T1rXbF5cW0iBJI1nQpEzVcPw36KHePQkxCfZ4FgP4z0CkUW8aWJcOVGv+f/uyeLtAoAejpYB1xARwmgSEgxojI4XRKR3phevDC+oZAzo0JTMRtVomNBAmIigDaCaiGZWBBExMBKZdvO1D3Ba/k2OfSzlapJ8yCmpeiw8zcc8b1zil6mQQU9NaHi6yOQISOUrIHmRAdbHMGSKSaLP6524AurwpkeKSoyDBzd4PACqRSbteV7VQDoJkCFlDM1gVCPZ0tRkDEpyvkQ1mqgkM8eyA210gjJbWhRDLbWe1u4JeIIkg9csAj26lMr0vzWdSmHIhgWOG5iwKIGyoApG7ynFbxPWsZmtc1uNIEC4hSEvL/mJArM05BXvnt90sRHqAlCwdScpKeNBktSynAwkdZMAo3V3V6oudVkWVZSiqkqERJK305HRS1G1AiCcpsWKAlFEgz3do/2yhwmoS6kd0Zpb1buHV8vdUk93H3zyrW9//wf/5t/92+9+//s//P637WRoj3h+z+29xFmlQVycRBM62Oih4abiRSR4EO8jIuOeBBmd5MDjD6/yPOIgMftLQw0ywOyFprkBlT1P0Oi7d4qpsZSlfvPDhw9ev/r2J6di95fL5W/+5m/+83/+n/7w2R+//MP73/3yd7//3Zevlvv7sljjSeTVsqxWwnupqxU15LirM6JYXdQ29uHfBlKTr9DJSJuHUsppWc3s0naSpZbWuxxmFoMsLtf9IgJTU8vImstDAIIRbO40ipXslypGrC6KAdgm1rpIyv6ESkzPnkOZckj83cxLIxILV6B9ksVIb20ziNUlI0ZOrS3nikzm/AA/51YVYAgKRjAknFC4e7a3jilxnqFQiXCqjaeZEGwMYtZl3/a9IWfstS7LUmJxH4jja1QJmhmHYdgtlHcQyFtrPZ02JxTLzJZl6b1L5LoPg2UEYfep6coenngrD7CaAx7hEMnd0b2Hu8BFIdEZ6Oy9eZDutS4R6M0HKTTHIoK9ezBIJA4rPQjSnSEgV8XuTGcEAY0JahysGAAizmCwh++9OQZrLKM2QAzhlAGPP5LjfPuqJodfGkYLdZimTe1JjQmtH7YImAZtuVQhmpEtsbLjlDxSJpKmWsqSMogpZGggCEbPZCJnGgkAzovx4MPdXWvx7svH5/N2Op2Woq9P9/f14dXdK6hi3yP66bTcPdyH2rl19bhcLtu29Z56bQOon0spgM5ovfdwEThZray1bD265wULgr3tfW/LIqelZPblfc+U26xezi9PT0/Pz8+tNQfdI3d+77317nq1qE1Zb5IJugxIpzukhyNbvoZs9Sok8QVZRSPYeuvBjqCWKN46M4kSgSOKaFGoxH7eF9MQBkTFykmXUmG2rtXbdnE5h15cv7w07Hvfz9vl/auH+zfLq08//g7L8+/++Pkfnx43spqdvdv50pswupjaupS1CFgXXe4Wp1/aBZeS7bbl1RsJ0aBCqhWrSwr6rOvS+77vuyvcaVbraieV56f+xfvnx6dLh9Y0AlQk+VJEkDCuHIPxCkg8Ni+v2FpLjESuLndP9KfVunt6jmpRzXqjta5FJ8gi3EPVys0oNb08RmUB9+lliJDTqRSYu7feMzBnmQGBQqEqHbOy45gZZB4lyFFZ5mgRkQMnTy5VXZSM6Mm5QEAkRNTq1YQlc6c878wMpiBuLXRTAIVkSnUmREinOcXXio5cihE9MXw2NaJmfMjtazdT5VFtZgGckyfVRDKzlBJggtHkhsAyfl7MLORK5RDOz0pKF8nUvpm+4mOn6NSObb0v85oz9Tom9syNlHpWSZ9UKUSGce+hM2VSLNPkJ4Lpvm0iUIToYmbah1mUaim2qGiwT66YQWXqs/IqkHMtGzAYw7dXmf+SPYD8GyA9axwTah8Rnos7p7Z0dh/YgPlce+/eOaQ6CD/q24zlWcnMInlsEirTVo4Y6pLjDGf2iaP1NkRoyKTpmuViHWOfdImNaK1RwTJ2I5EqqWMIRpIeqjp8e0oRsu+7TeGcAHP9JEvriOPjqZgUlGCXiCzpc1lwUkMz+Y8UBolQSiCCQVDlkGvLGyEHIiIT3KTr93DQElJ03DaGcJZtaQlzmHpFBBnVqqpFuMxPOWil+RW6d5IqScMox/OYqz85SZ5j3/xqPtRNWA/JD1VGl+sLET5S88z3VMkhJ3agnW2ynQerOU8XYp6XtLXmHRhdE0ndZjmfz74sCJfpnjqevg7mF4CejOw0Kc6UKAIRve8zEhUwEKkZgwAzDig0/zez05GCp8ljDHAOZg2W4cynuXkOK0QGFE0G2jbEagwBm9z/ueg8Ike+oZIKcE4SybREkgjHTsxEaqSV0+xn9EIyv6UCg/g8ajOkdtyAlPMwEYkJtPvq64h3AKCgQFO4R0dwyHovIlKYdYiQZb2RtAtqsmkD1BxMyCRXm4gqWJwMQPsQfMqa2KNNkkvGIoqIyTWFhY4WbEAM40bkU1DJv4pJRkgZogHn0Sx75zJTYWIKREworbUejS1IFRqhqmUC3HNqlCJVyArCLAHYpOQYeQSCfChA4oo4lKKTL5Da/aNxUEhCr4wmganwUMYiCWiR4sLsy6T0EZlCOJAYwP5iJmLO8NZnopAym8nvnNweEQzf+ewZDqRMeivlESFah9onoJQIl6CmIZgQUCgERpPuLVSs2Kmu3/jow+//6Ic/+vFP/vQnf/7DP/1Tqwo4t6fYnnw/wxuuMNsjxuMIa0rNE0xEitbE0YxwPLJVqGruOLMKkuqiJp04EP6KCIYGs4TMe4hQLUoq6CS7R5CaCDtYrQ8fvP5X3/gXP/rJD57P+xefv//NLz/7T//jf/rNP/36i1//IfbtJEK5l9O9uj0+vbwu93U92dYQBChBtt1MAt4VNA3I6AOLTUOC8X3z4A/SFUEZQr9Tgk1ELBWG5mMi6ZGxkdNaYng+ZjwYf1euN2fQzhLDxU7yuoeDpWhQ8wBSGR1tYIijjubUJFCEMBKBMuLmtcl7DQozSIwgBpCSLes8hK+18Ux9dCp2qlxtw2RYbg7FkIQ4Nu/j18NLKbXW82U3scmDG30BVc1m/e2iokQWij2cAiuWsOXkzoUjz7d5ErEz2H1VCY+hEI10B4GZDWLhKP8Gp2PvnlArgYQHAqCqqKskNDRmusSYushEtrIoCGcP7+EIqXVFppxzg2TbLTWjMloLdMwPbuKzJto8pz24ng5II57Z2s/1iCR6DO6wpJ5dHykKhsMIAaBnKJhAceQEVwdvTxNPcHyEyHnbxkMcqHhSrCJXl6bJRSpEpJ46VCKQ9mxmOSOS8H65XDw6Ni2XGn3X+4flVX3z5tUHH3yAWuFbWdYPP/qYL1uRsjkXjtLo+NaEB8NEi1o1K8MkkGoqqg1QLeS2723fWocE+2XfA6y1JAK89T0irCyllMu2PT8/v/vy/eVycYzCILdA6/3SdqgMKF9wpn+aVY4TQYkAkeJAulg5nU5rXVREQkivi3nE1noA3nvLA8AsQXlTJUMcmW8o1MQKVIIdWkxBKc0peygWXRaU0+NL+/z8bnt+jv2s6s/ni3106sDn7x9/+/s/PF/Oti66VKqEiC5rWZcufNkv9bmYxEM7zeFW3/ddbLdSlzYU3UxU6hpkb3l2RPIa0i4o2VgUoei7d4+Xy17XN7XW1pGAxB49Lac1JYFM6QEVDMMIsUxWRXJhxRgyCYCZ1TBI3viSSh7qo/2vyTvw6BpRa+VNDnOg02fE86UuibAwNRMbcwKFmtrUSUpTHxQR6igQqBFBFTXTySbVZEaIONPlmwCKWoCqiFTrzyoAeQP0dt0icTrj23xFjMpv/CmOKJeB9DhMYw7SjtvCaxPhSF2GWHrypedHBPJ8nDkJ0tpTKIDZtQC+Payz9k7CcGKgJelv2axThaZCN2T0NLMim/mbWmqXlFKs1tldPfpr+Rz1YAkPeOA8oQJIH0czK0Cm/esAAQAASURBVPU6qhSGgscRQ7KoFSsq3PedqYSKCqC1xhsXpaNkGADLzISWZcn7uG2bzIZrgiezj2VWQd22rfdWqha1UsZzGqSgERQSVoAEzRPXBzYenkdZqshoh7v7mKLEOA5z+ho5L4MOAk9SojOy51lIMof4NwlrLqp1XUWE0eNWeA0y3Din4Bgn5DJvCo6sdL4hcG34yawqs7swFqipRHJrCVPvZF6qJAFYQfdUelMxTXU7mQryV2k1uWnYDIXJiCx6+yCHEtSt7RZWrchUYzsuSVXXNfsu1/K4967FhoAMYcUCFL9qCRzzvXxMp7KMu56bXISRR36W4l0wytcUeDz6JhF93nsRQYRkLwNAkdGX4tTiAq4VeC457y0hMaqjvM+1lKq/zkhRl6y4zKy37bhd2Us7FoDcXEQ+0977IdAlIrz5sf/NIlBVB2wm7VGuStfqrWUhikzpNAVL1fft2Fq3F5ZbnWJFCZFwJEuzFM2xyfU+EJAoqj1i9NM8+lzA49SHiEhRDbK794Saz6eVd5Iezqj1Ktd0BMoMQNeomv80V/XXbsK4hzdNBxnZsEeETKdyDLYajk8RKWYSoZrKOoxgutylyL7knZsflL1G3ubZ7p6UVM7OSJq9kULvx9bPJZ5rbGxSGYj9oQZBNVUTyyF5RB/kPIjpUoqaVQLs0RL07iV9dq3WmISrZTkty9Jadvo5C2CIQE3ZJ4wawJScvRIO512yQ01xDv4yUT5iy8BxkL33mNSAIEutMiXNj0WLI95qUQymtGQvbB57JKtWAJnG5YOb49Zc5EXYTOp8aibaI8Id+fBE6J7lhImVIPdt17WyyHL/8O3vfuenP/uLn/3VX37/h39yevsG4H5+f3l5Rz+ftC+Lia/swc1zpgRm8ywb44zWU7A2+ni+YzUOYycZPT6PPKuUGoKCAjU1zwJBEAG6kAqFWr6JIyK8jQTdUjrOe0ZSEX//xVN5Xu7fvn776Zu3Vr7zw+/8+Gc//hf/zV/809//4pd/94tf/8M//frv/+Hy/uldf5KOMFQSYpBuYK01xX51MYeEQlQixtKtZiJSayV5Pp+dIUsRka03n77fQ08o+yQqqmJiFPFDvG1icEabRmmioUiNlVIWHe4QQ81B5s7sEZxx1TRTZgA2p+W1iIpOpfGZXnCO3zmE2e2IqO6csf3rA4cZc/TQlJApOC8yZjJfPTQd0AC1ZuKVGjsjYzuStlzVBLZ9d/e6LENjSxIoBDMzDCVI8utZmsxez/GljnZqi3Z81pGNRARKTemE7Ja3cIVIMY7JHvIpkUOCbmh5cyTxlnUN2cKdkZ69DIyphC3e9+N0T8o/BvaY2Vh2EhFOFk0dr2tqO8NyMGVv07NLSgFJdnaGkA5YFsOYc/L8jkjAXDKYkuorgKqJpQvqOKHSejgTjBGjCDAYKrcP0Rj5IUrSe8+QdZu790hsL8cJrnpMhzC96w+qV17h48uzCcppXc1qrWZSF1vr8urhHqVi76f1/sOPP+F5t/MlenOOcJE0mWsSFSzFamrEzyQhAXIi/Tgvtn3vLj3CzDIH82Qn1BTQtm3bcrwcEz7mEZ3R058TJJFUhSDcw9RADQEzYvnofqrqWurpdLo/3a3LUrKPHhFEZ6w9lmWxusnZLq21IHrIBApFhFBCQ0wo1mEGkVpKQV3stJRSigqL2v2yCvTp6enp/bmdLwXx8cev3rx5841PPyl3rz7/4vHL8wtKrfenCOwRReNeuCF6836BVr27s23btnZZfNe+m1f31tp+fnmK7pidbh6pL1hrXYr1vrfmbXeK1rr29vx82QJ6t66QagGBRkRrDkBrFdGkYGaeKbNgO0qpwdKCTf25RO1rykd5ak3lsMFdIlTNlupggiiPdag3iXSt9YDCqepSTzCAjdmx1FThUxERFUtf7tTr1EJjmlwWG2ZFcejy6hwN4tq8O3aKEiEyGuHzC3aGlVKKtday1zxOipSHkK9ctk6biUGtjxoxvA8PE8QjFM//1COZvE2l7CvtgCuVlyThMgi/GYE5vvuoZ6/ZrF6Hz3LkMGP7o+bH3Z4RZkZeu1RH4M0LtcM8aPbGs7Y8vlS5pppxkI7zejJXxEytdao157czMz2aCvlWpUBl39PhQopei7j8diVr+vwyWXZH30mWsvC6UI/RyjC4L2bVaq2V9ANmMAACIiEuklxBzaTXk78uUkpRDXeQrqpVC0mdOOQQgFpUqZJ9GneHQszSqIGBYJqBJeE9yfEUsaQBTPSi5TmVlYqQppoKQcgaGC6z+WqiVgoghGPAHVIOzJO2u20XGc2D7FLnFO8GcCoa4S0cOdElZqdECagSHr07VBihtZhVYKxXD5AgUG4KkOZJXaYzLebAVALVDL3RmKYFENWIFK/SuVuitzlnFKEknjkynVEiBcA01bMk5tIcJadzpHMk7Tjb0n9QZpmUMjyz7TJ+YnSyh20GchyRlzFEjyMiFhtawfzq67YY5tgzowUjkkBHIhjC1PrOL+s5VknYaIpYDvEVuQ0W7i5WjvgYs+nu7rmd7FAfntiDIwVR1QXZwAUAiVBqJj0Uy5ZJAqoxE7gy0jJJf15KrgfN+iR/slgBPGNOWoN4oIXXukjvU43sqrtmQ+0sH6uCzCJSOOfUAhEJAF0R0EQrQJNgIKOFP/Yzh98bgEP0NrewAXBS808zbjJudD5n+Dvi77hXNFABH0ogGPk1kOZKpjJ8v/M/RQSgKcxEcO0FIAUSVAEdxbZIRJgIUx035aJFx2Q+58/RzUxTy6oPbKRIuJtCUqfqemyIXPZtFVSpMFWUgpyWm1kxrUoFkbLh7sxKIFNDSbGiWUUQIHQiW1P1KA8hCcBKUUuF8K5UkqGhqlUr4fT8yhnNTMWCASYApYhI6sYCEEYiyPJ+y0ynDtpLkZJURoe46xjnKkSkQKRYa4ltyRNdVaEKN+l7671DwqymtYxBpEgxiejNe0TUdT09PEDs3HY51XJav//9P/n3/+F/95d/9a/ffPwxVMHmfRPj3X2lu3VGu6A3BE0rgmCnd3b33tE8vGkSyqHs3cOjDQAF7KjtEZm7dCJSgT1ZkopUbldJuHQOkjXRE0Hv0Vpb6ykRKDAzmIhYUMRVGTVUo+2M7X0P2PpwWl9960effuv73/p3/+Zf/vLnv/yHv/nbzz/73We/+s0//u0/Pv3hZW8vHyhM4q5qWZbYA+6JLbA0eexkp5mZlKLqTH0KRoQynygpclS/IgIbTdneO0USX5IHRyLVt82zPYAhK64q2pIfZcxhk6OPvWYadJnT0WE1JH2okUIMw8E3MSzCEdiHhCMjp9AyN+CIhJKeSZYaDWaW9mARgVzoYE8MTs7KksYS8Ag1I6AT/BUD9x16bbjMzEu1lNKGMXqsZU0Ig0LE1AK1Vkbf950uy1ISvZacWLkBDooSBietFDJFa0TELE9hS+wVheFJeDFN9liM/LNQO5kIHFit2S3KoRyDYmoo0BIRwY4c1zGC3oPhw/CJaiHRh3TLELM0Q444ylIdYiKH2pUzAJ9rW1Slz2HBcbhC0N2PPuOsIXVYdiETpwGgGNE8E1C1SEHTa5uVGAd0NmDDMkn+yrgpH9aApl9BijmuEAbFiuXUTlWPE3PgmgVVTVWQUUaFU5ooA5e7O6jFBMhu0cAJqypB75AopcAE7ADuTg/3r173LvDYthdBJz2i7/ueeh+ZQCdkoBYtooaUoIhlOe17V9Va1+LsL+dtj+xvXl7OIQ6xZVklom/b1vz5+dybSzEDL5fLy8vLeWvN+968M+2/hS1VKEFBiEQwvX8TSSiii1WhmJS11Lu6nJblVEstalpfWiPgwN784bI9PZ8fz+dz319eLjdqxgSgZkWrlkVExbSudSlQhZZlvbsTEQnuietFrfdvXr/56P6ufPvT1x9/9MG3P/6Wsj5TPvrWd/3u7mXftq15289tNxGHF8FDlQfB3trjy2N5XFCMpmVdavS9XTLvUIAIDQc5ev0qSWvKYxGQWu6k3J23L9rebdBEmTub2V4XgwyCkkT2vIomO5ISDoC9BwCGnNYqMxCVUjWsB0S1FOsRUsbALIdMQVKldReRuq4qJYDboCCSu3/8V05taq0S4q2raimLFHNGizaw9MEUxM/ryUVbykJKemVrscpqVrsPHGies0mkKKXMPskYDg0lau8qGqMldcWoDn12HowGAFiW03QlFCJ7kcPg1/3rLi0ZqzPKytVaZLwm/JZAJHhMB3WMxzxouu+muKYkZdLM5mRYRGRdVzMjpbUWMQpGmRBOd2+tyQgyHGefGnTwR3Ski448lLNYrUO2NgvwkVuqYqi3BAEJPwYEo7KQIFkSyjQ7EZlHZWElMHEJgyCqlU64D8j3uNpoyQIUlcJpmIlZMJggiZdHvjiKkAGptVpXIYJ92zbOLk4Sn/Ln59CjAgGVBMLe9ieOI/bIp/O7CaceyPQTCjAde9I0ZIzeOHA4gweomhPjkd1mUOhuqeo5y6G8/gNze4T7fMWV+ivjnWDdewGPOgqQPkfneTjl6kgoV8pmioxdQ+TsVJkSZrX05CG369QXOpF8ZMe1Am7e0aUzmERoXgvGvP6jp6UTloA54uu973t6l42mBhNIOywvcOAS3T1nCcU0x6UUpNThkJTOhwsRGZ4cCTJlMjwS08bE1HJus3mfy6g0jgZ/3MA25nl5ncbnx6U7boLYS/LGw0vSPISQNC5wb820JgcspcLzycpV3fc6FTy60HJT1mJCrLOm0JtoYgP/Xm7WPAGkoZGOxTNbgHMt5cT42A75txngDtZAfrheka4D8qSEijighKlyDP9bTiGuNzCCHldrRcBUveflydhExG1QuDkJxlVhZiHH1R4/mQ8Mt+iyVFNnch2GUnre56XW+QADPu+z0MSysQBhkmBU1bTegk+OjwNGHac3UfsIIJgrUK8iBb6cah4uGQYiXLNhDJG0SjMBhXChmik7jpNl3KL5WHvvlJ2is5ujIraUJUVwRSQRMWmTNuLvDYty7KChTCBUGYajqlpL26+TijHEtnTgmMBsqSgjcB8BdnxZtWNunLTYnK2Vobo/aA49h3QkU/VwcGKRnwhAi86wNvsmSAJ8TrZYbEGhd6anQHZkFVQTUxErq6KeFsuapC56Wu4+fP3jf/6zv/gXf/WTn/zs7oMPIQJ666GGMoCO7n33/SLNNdwWHYJ7nbH32Lu3zrYXy8JUFYJIiTJSJFpnwuNI6QF3iUljTf+S3jx7qQtRRE2MVqYIhnuKantZNASM0Ejj7+7ujg7DelrU5HJ5tzdXWQYc6vGdoJrV73zvw08/+ddt23/7u9/88u9/+bf/5RdffPaunbeXL788ny/nvdGxFlsScwwiAgK1YlaLqom1vgM8nU49fIseEVZrePfZi4KpcaBDs+3LVNBhVhRCMm0nW3gg1ExNQxUGwpVGSDK5c81Utc7hSWlm2SMIj8hoQJ1NQjlgWDMCX3dipi57a3IApgaM7ZoJHIFl/qdkVXZ7yP6vT3ZmGzDn+oMSL6qaxoa5p0YNHBERid66jRLjtyDuLvMs/HqUU1UdlnjHb+URmAoot5f0le+SMigq2ftMTompiCojsoPs4XSPbEFPZJOq9iEqKZ6hGZqQ5aTsBoSiRHJuEUidJMGcAAM4EAHZg82kGCm0McpjgQpUsm/bhzL+SLSy+r092DIV6e5H5BRGBO1AQZum3DkgwghFERlxfpAzs/EqAUoxITpSfHoIQmSTkt5HxjhjO8nO0HmAZrzixBhydLdzch3CMNGHVw+tbSGye68J95JYzCRJAr17tGp2WtaznftYuvkv/XK5pN06gNP9WhdbquXwSgUIT7h0BL3T3dvuz0/nfe93D/fZCgxxG447PG/74/P56Xm79E5y7+28XV62y7b35n3v0cNDxqMJAVQY1omesh1jeK5mpZSy1uW0rKe6FNMiWKrdn9Zaa9krVSDmwOu9v384372cz9vl5e5yaXs2LvOky3NtWMQLxNRqLRWn0939w8P9/f26rqsV39vl6Ul6vHn1+sO3dx99ePrko2+8ffW2713vXpVXH5R/+sUvfv0rD3QEwSZsBEQa2YI7/bxdlvN5uX8p++k+XqWnyt62Imnh4Rqu4XbkIWC4k5IDt3PrLy9PL8/n5gFZencP1rJm3hIILePY8lRmtaKqi5VjNnskOcVMCILumd9aktkSbuYcYM8cfigRrWkpiLBSlmVhXBFV+XJ3TEq8u7fuCJTFpCQTtKpZVUp48iDoHmJZ6jMkiuPAyxTT4dhtqppaISOLG43pAfFN1R+EjzQ3ByfFeu/hDuBA2qadTwZS3LwSCpFB71bm4DZ8Ha886zlmSDeQUskQcdv61yOZnP8BmZLLIz6PZDnTvK94B5jZNFbETUweP3Aj+hBx0Glv4CF5hcuyihw5zMjrjow6g2rig0p+kfmTR8ROQFO1pGpelW5qtWU5RSB8Qnq9zcuWdV0OrAFxFHosYzaVNj/ekevFNPk/oKqUKRiLHASpGj32y95aU0OtVdWC4UMzdtyRnPil4I0KCJ/dVdymoTfnpeZgI5WBSFEtJtqznXngnmeHDEEIgiFTP0kIFUmkERgJlzpOh/R9CekkI67lTZ6suRxTiAgUMxU1lQK2o8mRYEIzO4QcIgKm6fOYbF6BZVIUcJBQO2aDAUTAGalTp6qWukdg9LjdASG47O3QPWeKxZBkCtfKnLgKKSEUlfDh/pxQMRFBzp10kBNUDxGmQzNy3Pyp5J8tmlR5HP1MkpAkCvEY885Yj/hqunNcPoAkvQ2HDxxJC1OCX2+o3Lm4c3I70JwQmRNXnbCTq2U3ESJ7c2NEd5HlcF80d5m7/WvxYjzB7HFMPLancE5G6gPFkeOT9IrsKcSHY6lkxY7h3Tq+VUSYqLu7DJUFdx/jFCsi06SXNCsGiIg7TYSa4jE9oy8kUhnYQAYFIgZLyF14WrqNZn0Ehn6ATOwoGTltFjsU3cZ2C1No2spDgCF/7McCm12wEbEHjX8CpCWEt5H3mtdm6BlcXARgKhzCMclrCpI8cClzfeTCyAaze6QjswLwCUc81pWZlaI6xcx1CIXosPYdHQObB0l6VmHQkkSlFp1tw4FPokRE9vjcfdKb9VjLWTeYFVuqJAWA1BRjxeh8iekcn4kcgjrKAFWLaQ0bGmMycQdaVWixp2+zZ19f8gPmXgbErIqYScFgGhNqmohuTbezK/h8qudlLOrkmMXloyy1uLt7y5ujZibovScng8my1lrrcJ44epSqCe70ZVmk2Ln59vLy8Hb5xiff/Mlf/ezf/sf/+P3v/xlkQcARVqzqQgSxM7p7B2JdloHBbRe0Fntj79KBgObC7kEHFQZVFERKjzBa1m2dHERZRVL0I7wHo3vCwyjebSlYisrk2wTBKCplKdv5JQ9REQNEyOwU2rqiKHrTfVs6wa5bcz2Hiwe0LlZqQ+zePvn2B3/yo+/963/zb//hb//ps88++/nf/+Mv/uHn7949+0t7XR4AMYoG1VFExIRKRFpRiRhMxMeCT3PaZNCNJjaJZNwKLG/8HIkKGb33h4e7iJ7OvumEqZCs81UFotqpkGnzCDiEoys847CqKKTo8RfhyJ7qoOckYmFwixDo2bua7Z65xxMPX45kRTBAzkHnaLdpiOSfE9MSSpfQzKYZWfjnwIOHwkfirSLYaDWtMGBmPsk1AIokZ8/LUk0UQGp9U3L0fu0aa5r4WErrq1hJTEZw2LOJiArUdERQkqAHSURWvRApRadGQpAUzVF3eg8E2XpvrSNYa02l1gCkFKW2tmeSQJVkAEZErSXYnSJMnfBwpJRYti9SCSvNczO/RyYSGE1nITXhc4MbrDLP9xRduLYDZPyMOMnpGS8iBhXR4IgeATIi6X8JDMgSWiDJ4MihUYBIuFMukkT05DVEwIcFpIiQoWNOwSOfJCVROIkZ5HRJxFxXcISiObdGeININSlku2xtv2znl/vtzH2T3k9V425x5db2ea717nvvu3sTEbIQWfVrBLuoezGBu7+8XC7bvm3by7Y9P5/P53NrbrUwTalVJGLf9+bxfL68fzlfNt9a773vvb1c9qBAxTsbozEIMMTBYGLfo3NSgoUiJmLFlnU5vX51v5R6V0s1LQaEe9sQPSUORUWL6qlqkWUpl315XOplb9u2OSMiWmveOiHrWt1d4aXoB9948+nHH3788cevX7/+6JOPP3z7wf3p/und+89+89vz4+P9enrzcLo74e2bh6WsUv2D9ZWe7h4vl/cvLyQvEj36zihBSnDr5en59Un3Ame08G3b9n13d5USbXeriTDMHCXRfGYWcE13KysA990fn9vj83bZWkhN5XJyKDlFMLrnzjUdFIlEhqmaUCJ1p2ahEjFciAgoqLM02vc9J8CSBVD65CV+sSxWq1pt4bymibjJADOxEQN91CAi6UnZx6yoSEFMx91SRSRUxV1DOqOP2ZjFwDyrxy4i1LFFM+syUwgVEDGqYPR9RjbO4duCHLH03l2SLJFih9dQVkpx/4rxKq7Fdhnn4sy05avsX5IiPOY3ScG/Sd1SxiHDIKBDUTHjswyym6le30111JOjVsCVMZp6N0ezPvsUJOGeXBuBFishcHcIiiKbm5lIJ1t/gFPMBpdt+MZkvqUC6kw+R5w3iMhSl3yPI/rpQBdCRhdY9k4102KnuEtRrvSBNVlsDlRKjuwzyz8gr30yzjPv1+tgXSPCrIhqqrmoqkAT55OhcGI36W00CI9hDqBpZyxzHuh+HajmA4gpkxsqYgqmG0/sufIyGQ0SMCBUOGBaYxGUqfqtyRtM5kZcuzW31dpRF5EcnOH8V968RGqpJLM5lw46cBeRFp4jwbHNVAXIxRlInIYQQ4B4H06AekBtZzvtK5c0Lky19TbWvQwwa/5Y967z9bW+0Q1he2KhewfSQstyDuzd8z+Pqo8TwQ8AZsTkEiXiOABELvBrHjUAwNCgH95QR+Mj56WjvRdfu+ejgJz95mPr5gg386qSEzAi2DOnIsJ7SOKrxyjDNcrxHMcnSpho+SrrFaPPAo6WG6Yh2jiw5cBs3wyoW2vH2tBJgciTKZ+1znlm/lZ2anEkdscNgUHHHQ4O6IhC6F1VaXF7kQL43qSMgAJ1VTvGF4bhh02K9J4cgaXW/G49Gx9BFT26KYprmTYC4pz5cBJC8lKLqMwO2XGCkISGHjgLVeSCSFYmPGf1qiBckA65ArroaGEm4h5Ic+gr7zc7YMSQ9jkeQZrCHxtThLXWWq9afZbDLGDQ6mSEFPcY8kE58GWCGQVI2zMSruMIGNVgCBRKgeQ4Upn0UZHRxU8KBuN6u25qi0Fu1qmEkQSH5IoUEauFvd8uwhzMmi2j23iEoGDvPSkn8xg7hAYPNfWvCD/mUpSJpCKSb+8RUZYBUnXvYgJEKaVUba2pAiER0QZpCiISQ4RM52EmdTER9t623pZlWepaBCqnP/nRn/7sX/3LP/+rf/6dH/4pUL2H2UmIiE6wx14LbCkWJajYe0Sgu2+buEfr4pCUPDGhWOxbtgPnsRHOzrS4GelWKEZAyCOaAUXOmLt7F4Y3s15xNEAdRURLhVm2WcBUrUsiPawae0cPeNQQIdu2KbudhA7R0vtl3897wrVZVOP1h9/43p9/8qO/+OFP/puf/tf//Nf/y3/563/8n3/+vDtDlzBzakQFUuRz622qZca+75t3FBWRvTWowAfJz3QoWg8370AcPKtiAe99d3eAqhpwMLzvEHMwPUslyJKoHc3DDh4pay7pWT46UEaxoGTPm3PJZfw/jrgp3TTxOHP2eyy5iWz0pCSUEYU4sChXYNbXT4Hjlfef1Dme1UyyOEeaPdzMlrqYWbtRHpHC3rso13Utavu+R7CUEqEe7fZTsjFda03hq0xs0hAJtY7PGoLP86xZdL80AJF6UwxV05Jpe2YNYqZCnbKddG/AaDQ4uacytJksJdlgA95RTF0ID0GOhkdEVQFTpGCw2Ac5lqPDynkGjXg4ZOIQ4Ui3QuTPjzNFjka8ikwwWj61SLi7SCpn5CfUUkA6OgLVkHNvAQJXMYnMhnOFltENGAlmBvEAMCfMc450HeBwQiIzdmUiO85Wzf7PNcN6er60tpfFykLv3GJ7fHx8/8WX5+fH+8tDb5sxbF3vl+UJ0bazoBE+VaDH0VxK2bZzNsWKqJHdTEyixbbtEYhA23vqOGQITQM5UY2Il+2yt/583tJmJlrb2n7et+ZJW5OGQb1xMglnifzxQIiGOERNq4iollrrUm0pda22FCsqRamItveLu1oJgWixstiyLiZyqnXANeWuJmRsmPeA+ubth9u2tX65O5VPvvmNP/vTH3z/+99/8/bt27dvX79+u9bl+f3z2zevt+cnEz0V8b7dPdwJgRKrKkr5+OOPnS6Cp+fyZW+9bTtdYQXagZfWrLAzmveXy/n0/Hy6f+GJyAWli6oma4CtR/Tl7gQRNc1Ri1OsLOv98vRyfrl0KX4qMNWI8LanJyVUqpWl1FKLMPEJ/cJW7SpTctRUjCilJCjXRjoKqLRLE7OiBh0COqqSPqBmUkpxDLmQr8WEa+ZgVhZr0Zh9eaV7eGuqWpY7YWTNARETpeQ5haoa25Z5IwWHemhCgjWY6JCI4Z/h3mGa7XDlQOqlxbeZ1SwFZ+fIzDDrzNsCOKnLR1KUyibuqeFy/Ua4EeQ/oNHHl53F1JX3e5ME8kjwbpKar4+XbwP4V3PdMoAJJHAtj2VC1eSr5OHDbbiU0vsYKM5UR2qtpRT5StU5Uj0zE6Rnj+oVyBcYPQIfSebEmOz7Liwx7WzzI+rU3MrjgBNukG9YJFhEtZZMgGotpZR83hEB+qF/M0OdbdvurZtZrbX3lmSbRHOKVaWkTAjhUOk91loA7Ns5pgZPaw7EhLCKTM9iGR2mURtDh5wYI/Z9W9c1q/ySNsFOVaNKYBBbPNguW84Mrei2bRKekygg+SwSgeYB85KqSGXKppvSZbtkQ6hWgYmaag5nu7uD1ZbevMeuqj7FtIKDwKDTlSfvJMnEcnSP3rtYJQnBsiwA9n1PNryVZe9OP5o6QB4zgytLx+gqJEE/fekgKjr7CD4Icma2nNbcGknlpSBDQx8j9HQzFu90BsS0Js2AEM0FAjERAyJbFIMYD6R7refgshiBIByoVrwdqyrV2MefazVS3b1Fq1ZFJZ0kVZXDDbFmUrIsS6I916WYWfIST3VR1SRZZZ4HDFV4kkXQe7eSgJyckmEUOKrN3d3N6rIsFGzbNpKeWiNCxJZlcfdtOyO5UGMEohA4hU6xqiLNL3vbl8WKFrr3Hhnwj6ecWyMiyLYsxYnee04XW2uZGGakOHpyABUwMHpThoHJdQTFQauFKScGYphv9YgwqxEhzDZ86rjTQfZOgXJCKiZPW1UTMGYzIxnNSC1HhmRjj1NFZicw51g3oGhJF92IiOmonuAIwciq+kh/Bb07DMWkWP4ac/xE71qWm7Wh4TGOK0HqdUU4Y6j/ubtKCmkCk5rh0b21nUjG16j/l0UV27YBA4kNhabJSSaLQ09CNfUnZ8R393paQfUbGdVSSpHibTQyiqiU0iMStpCRtPfug9cnaqU3mqVntaoOU5+t7cuy1Fqz5E7rVPe+LCvDcHQCwt07gHVdS1lKKVlmZEGb3/r0cNdaizRmmBJH+SKZ5sUE61KqLCSl2JdfftmjL+tCEmCtNcWB3XOYeEgHJYVKe+8q6H0nXXXZWvNoAOta6t1yur+7X5ZPv/uD//3/4f/407/6Szys6VsnWphkRFGIrLo6nqM1ldBqCIu9g47mdC8UUWOPlBX3thcmpKh7RDYJ88hNGeEgUwU5Wk+VrPPleV3XQKPIWivMurtqxMsZKrWuzV0outTY9sTFwQwC9s6J34ueizti7/SmQYNE37d3m+lCqK7rYir0YoSG74/v22U5Lbrs3/rBNz/53rd++i//xf/vf/jP//N/+q9//MVv285XtWrY3i9mtRS7tEs6B4WEmhYpW3QyarEQhFlCWpUQUZr0CE9QXykxGJoUlWVZRhUEmqhAXNPNAABa21Lq1vvgpLn7siwv28W9T32gngmHw6JHDjqzxZzQslzJexvSUPQA5P7+vge7u0frvl/bf1LCD8AbiWh9BxNRO+DNAA+4fp6MJFNvfwLqyCn6mEG8DDqSaAq1m4naUaDqMYIwIXE+n4vasiy1rhF9WdbW9LbIvuxNS1EFs2HkOW8vpVQrxQc/yOGhOrB9ptq4l1KsLCJCeIvIUnNYMSJlxOlDP0FbP0ME0NYjQ1AADB9uz2BamQUT744Q0ISeDs8WItQ0lMr+HA2G0a1xiMJUoOQ45uKQjdMSZGrhzBoSFOT6OUBwnr1UUCABMU3useS4VkTO2yURpBD6eKiBYNU13QlkfByAcUBc2yUiEPHwiLhb17Femd/6oIeMpEVzbO5e1ZZipqODvG2bY1DyCBEtuiiMe49NuyNeXi5PTy/v37//SL5dTZ3eH99tz+8ev/iDRFcTd/bet21bT/XeTtu2qcFbXC4XW5e6nmZFwYh4uH/97un50vYWXmt9/fpt791KiY6X5xctJqaPzy/OKMupLqfmUCkYnhjY9/3cd4/Yu4cKA92HgnYMiDus1OyIFLV1Xe9Pp7UuQnrre/QUN4NCwIg5E7KiQnSISRW11fYNsqrd3+37rlLWN689WllOH3/7u8uy/P53v76cH7/1zbc//MG3v/e9T06n093dg1U18fUkD69qldNS6+vTaV1qRETry7KUUr74/PP3j++crqq/+e2v3r//MqJqrZ2EFrUaRKidLzsen19Rzufzy+NTWuDijqVIIJ1XxuZtrZkZ1awWDzR3Fztf9svuovbq9Ru11RtrXRO28Pbt29aaQmqtQra9icj93V3bdpuIgBwmjBS9mJgC4hEQi2QgdpiZlgJKtLCSckUIwbquFHiLbdvgcZNlAUcBPDlo4Q5RBWHq7mJS9c69PT09eTRRtTK6ch5eyvJwd3o6P6lqtpWzTFWzWuu+71TJRtvO3htFYlmWIUihWpK+xADQwmtZA5SIYszMn5Slni7tkm+eipv52tpelrrvew8HoGZB0tUjahlgY5tczkRZHqW+mQEWka0D2lSQOnoNR3GrN+JSs6JOt4jDIOCKJlO1YyBhSetVvbu747wtScLPPLPWmll9znI4mJsCxOnubtu2HL0m1FxESKlLUbOUbl5Pd5kc5YWK2SAwzpS7lPJ8fhlTosQWFUNH732pZTHLONN7MBK2W7REaw3JJsrZVe/QKDHh2vO9RqWeo+1JT5ltYykply9TS3YOvXl4L2Q4lgiImghY0uHTrIpELk6dgIdkzGqqjUfEQWed6FLMa1uWZS01LTGotiwLfSJ444BsjTNARGxyzc0MQzWDmMyZHJD6dDDC7IUchzdGbRB64FenKuwAHWWVPmZ3Y6dFXB19eU3pNAewqsrZlcGcWx5//lrHZew3wRjH3gCGceO1ozrQKDLHemPUmL8OtBhXr6pmZWDEgcERmiDYgX8YhO0AaFOQOf+t95TVGV2rSesOv2GNxny5++m0HE2NA1zqGB6/ObSXSdl19zqnCpyzcZJI9T8F5AoWzW+6rktiGDbfZqOLZtY98oDPvR1gb33btmVZYt7V/MWIiMDee6l6XCKSK9Jajnxz4eVqSQgQbga2RwF89L3Ir3TXEBIy68PjQQcDVJOc58rUZI+AMOe3xA1mQQ4ql8gg0Xkk1M5k0MiTl6WqTkoy0DhcbuM6Lci7x+MKAWi6EaQuWl72DXBXEAiIUGXYuA3Y3SyXVQdPYVABGYqcNPS5VKevcra7mDJ4KjoAAKEqMtztePOVv7YRRs1X61rrCMqzZZhJbt92HgNSsYRt51W6O+kFUq2UqhIJgS7wcDJlMjJT10W23ekoyF7mOBIyLIw3V80bb1n0yojjJNPL3uqQW8guvk1xQQDufV2X3tJeJZ3YI7VbpmrIEfOvTmZHgNKb8d2+71BNQGOu5lKqFGutlaUuuqiqe0uuuu+tFCURcJl6GzH3sNWyLAtVpDUt4j0oXNd69+pBzcrd+oMf/fm/+ff/4Z/9xV+iViKJJgqxxNP7XEhJfwYF7ugd0YRhqpIgGA90R+IqU6w7Oru3fe97G2G5jHJupN2iGF4YXEodJTHR257Pq3Bic2oaz2q/bOGoKwFgisQmOsvd933v7nVJ2XFpbaf3dL3a+pmQKs5kCwii9dZ3qZVY6B07tTx845tv/u1/+69/+tOf/g//3f/3b/+nv/7s17+7V11V9u2luq73d4AGmM5LkXJoku71YiA9GBGSPZcx25fEVugEtTJzlzxIclskFEpUxHsTES2iqgNbfawTpg3TOOPyfAxmo3LIk2A2X2KKL8SVZHUF77SJDMyFlwIfpHC4KYZqVTEINXrcAJSOeHVcVf594jhucowRhwGYSFL4enh4iMrdssImCMKvp16qe6TgZe+RIiZHlAjARLakkYoB6cM6TplxhXnemQ3er8jp4T5vWJoVpuUwBFSBaFJwME57kLHe3/Xeo8UQYrCBN+nuKFa5JKMbnpwt9XAyskkUmErgAFTy6YQfTVIHWM0y60m1jkyLYiLVx4kWfpuwjkMNwy+bk50EIMHYuJkqH7lNxkkKFUlOC50Yl8R25cEts3/KOe2xGzmJBBQxhqi/iJRSD82UDC89xi8eyWux63Emqt77+eVSij3cvb0/rWL25fvHl5eLP754tLZvsTdvu4C+7ee+tWj7vmfYzE0tIkWt1lrS7Gfg2rj1BmGS9MnkNiMwmE2tNfYG1fP53Aht0V221re9X9revF96u+zb3lrz7iJIqidl+jrn2pBQGMYFLEWLDtPlY7gWjNbo3r3vS3pKR0R4X5qVKktRLashj42qtdZ1WRaynO4ePv3orTPefS7RcDrp64f64QcP690puyQA1lXevD61KquVu/V0WtapXxnb1qB8eHjIxvi2n//wh8/ev3+/e09EVuuxNZx6WvmZasnKQQCVWq20SD3LoLsizErCbXrvhDrFKXvn+5fz7kE1LRVaou2978zmu6f9JHvvuaiKDPjSEXl0uvWoWUrcJc4Rak5Cda1DoHFPBJ+VWmuL7ltc9g0YHp0lRcC/OtJk+vrmHRH1dmEy+6E2vFTEzDxSDIagOgCGB5nGwzOg3ea3A5pBqJVlKakUSJFixQdLLm3PM+Bo+JgeH9swIjonV3bWX/nKIZmZRYwC7/g6B7vtiACYmT9uXjqIvlqsyHAX+t94HW8ls747tsksj8ePHWNevVHRB7BkI2y+5nBe7+/vOT2Bj4sEzP3KtgOQ49/MVeQGwGtmNRPF8AOYnMEwb13KSB71uUiii6ppyeiU13mEOzU1s8o45swTbao5j86KVI/yyQZu/pBRISNEmgxdpThyC1V179nUxPhgDTAJsyHDFUlgMqSMwrSShGUAZVA88YtIA2UON4C8yTqNTIER70qtpYhq806dJntZNQ/bCDhDBTCF6VC4nPXYYlaksNObq6bXMthdiSULe+apliQg8e4UgWgbkg81AoTcivqqFREjI3FZs7Qch72Z9ZjooLaPX0kCEGBmvJGAQxLlkqAbAqTMrWQmqCJZvwEQLYl0EEgpZWhxYbr0AMz5eTrYkgo1KRB0hu9pUStpQHrshEnADqraQFwlKSnVl3CcbSSV2Lat6GAk5g6tOhg+owNOMlLrD+Goqu6eEJfBKBOJiBYOYHdX1aVUkt27lVnxJe9SBh4awNY9phfx3LGZg1tgQEZVxALuEVCnSLbZCQZaTxgKnCE0S93v+dWCaNueZYzVJf1TIZYn/2AVzstRlVRwAQalLJCJXUGRHq4qBnHPWatKwmBIgQK0qZJ1IAkVIoOVdk1cIjzDAIfPUVeY3iiiJUiviDgHT48ipCfIXm++XTJdZOD2B7jXvQ3J7tkKAVIAIoqqmWZiIZIFgsJDlAJRsAxNZgIslkI7gzMjk1IR3VMBAokOEuH003b4GIPcCh7cEBZMMiKJqBVRBsFItCw8UEopS++RGWK6pwKWOQpmH+rmpJEIU7FEkddiqog2EMV9ayAFgWCLRrKuSSCJ+dxTrnWoRcwqmxGejLsky7e9mZktRpLeROeAq3VEKKSUSmPr23goEiQ92N0zJodMNwjVmpqHEnOYJvvw/eJACY1DgIGwpQDo7s17Squm94x7R4QkYZmiHRER7FbEiqhDs1cZSIG1bd9Prx9+8Kd/+q/+3b//0U9/ilevpoTxKAwmpJaADJEGLega3aPviG4SiIAHEeFpqjGeRCRuLMKjDSyrVMNCH/CZagoTdG+XLRceyVq0LNV7j9Q68r5f2h/+8IcWfPPmzdsPvlFr7d1bBtUJDdXEDHeP1ltzb6EWZECoSw2hiG5bY8jez+JqZqsuEozLRaWLBje/nC+9fyl6//bVNz795seffvdbf/1f/+Z//P/893/9n//Lu3ePD3V9XQvhMpJ+dzhUxOAB711rimFCwpKkGjmpE6ZhqqqQw2WdU+mHHBZSSSMAUUoRpamIDCoKBlcfpWqCxJODDxGGqMGooQDCbnhc2b2ybMgOMwUwIo8KRM70CCDx6BiFXYioSfY5xjFjoAxwD5WhROa4OujBkGD+ZbWy+9VRnFMNq4hKJBqARatqEoUAiINHNpa+twypy7LFXqyUstwkfUZRSkIBJSKENCsB9e7JhEXq6qtCjYJ0NSOle/cIhFA0iHCaFo5AxoTqk4O4CGFkkFOBaeRINDqFUiy8d289daABj4yEKRAyjmaSKcgwC3MfPg9I9azE8khOiT08pbalmIkGMq2kpb2ZjkUQZIB+NMpHB1MZ6GQEqw0sYcJ4RRLHYwimlrnnsoxQy2cNUXCqCh0dwFTQaKmJmATg1GpVAthby+6VlTJPq2B4Hh+qmtjRbHJBEPBaVop4tL1Ho+yO563/8cunzz7/clkFreveBXJaTi+q+77v3nN6ZkW3fW+9qxlKrFJvhxlpkvD4+Pzu+eXx+ell23tw79E9QrBt2743CkLFid6D3be9vWy7RzjoiB7ewnu4Z6+JHNRu0EOUcAQpiqLGUnWtttRSTE0iG/0R5p59jui9R+usXKwgw9zuVVA7Aq7haVImJkuBiYvK/V3dL0/7vm/P7+hbFa8Gk2bU0+n0sm29RYHZybDeraXen+7WescQqGzb+eXlhfS7pQpPS/mote03n7199/T4/LItYg8rIrCH7J17Z0ADioTstVZV4REaDM/HrxqSBgsTZdDcKUq1oGzNg9IjpjZGooIpPrzP3d2mMRZnS15v2GcYzZG69+YgTFAsK0gto8U8BOjz/X3kPOEQY9VS1TIHu0mkZ0DVmfwvS+97OLP/FanKUEbIymbTMUwaEw4tBs/EyGaPXrWIhFri1IqWkhxJNSTIEfMTJQO3RooyklAOmEzngMRG4MZ2Y9ZmpVwbWTrmeWTKsgztwXm9EIujJL7mcIn2kmsJOsvFrxTAoKpZsVpKCQwV31IHuSBbsXnBHOFrVMKqekDqcL0zetXBCQrSjHLSYMNPp/tZ6I4mbI5GMBjOifQupVZG1LrO8yJZuvlltUiZk23YJN1EZAomIMsYe2vvvW+bShGBuKcng6pSpEeUZVmmUv+Qehrul+UYT/NooIqIjeGt5rR63kk11QiHZKNbpI0uQj6jPA5HAh/M3CkbliAycIsoU7EySWG5SQilUhDdO1o2GDK9w2xdBIcNrE5MvJl5b2T6A7hd7dyv40qf7scYYnFzzYhkATwLg55WunLFtY+2xrHgjmrw+Js8geIr9lGpSv2Vz43Uqphr8bpvr9pgONbW8Re5T+fdnDdhWvYdLyZ+3FR4PcN678N57LALC4TE2CRUk9GDiQgVdXh4kKxWJtrBr7qVInNIP+yZSyk2FcV0SpbfNqB00oFypWmSBMiWPsBZ5VsBwAillmK3NwEYBfD5fFbVUvLXc37o7l6kHPGXGKtEhtyRzHs4O1jUNLJ2dzHNQaiI1GXZt+2YscfU3B6j4LnPx7eWES6PsH58UzXzFmrp4JNvAuEItYDzxldtLEVcv+x4uF/5swBX6yMT7T6JEzF0xwFYsmwpOSEcm+Lw/Dyi4c12MAwg4xjwZf8M1EOdB1QBhjp33vIs+SwgMtjGgcnxy1wp4ZaljNEljmHOFXnh7tqZvQz8r1/MKRZTTRrDhVUHCihN/JjtUo7tGyJApCJejLGDqqL77iGLleOAqFCFqEhVE8VihSV8nI4xIuqNP9PYbVRRcLDKPWESWaYe+zdBPsMUwQ/XNPbehAoVwtV0tTX7aLnYJqGeV18TQjWj6xALycWW0w9npKMxVVrr275JOQBrCZulKMswd6UoJTLxzVx/mMXsvfdoUrTW4gWrniCxPtz/yZ/9+D/8x//2z372l9BCDynLlNHIzgIAaIre5R9zhkaSjmgRWe07ghGd3gLUcG979I4YkdBqIV1MKdF6c3cZSIG+bdt53yS475fW2v3d+vD6YewFJYDW2rZt29ZU9bTejWHC9A8nyU56aLGhAx2Rf0f2gFNCVWFjH0WAHtVKNVUII57ePy6nfV0eEHvfQL0UxXKyD37w7X//Z9/98V/86P/+f/2//ff/z//3F7/+3cW3t3cPp1qis41Dc6z1fL5DDcWgLM5Z4Q3mQS4sVWE2Bmo1jgEwJYQwpMSiic/ZadxInpqZmMHZ+xD11nQnIjHd1DJ6c3LsR1KeFMnsdqlEQFVzBJHS2ZgebKNqUkkBGvcWEaLEjV70cdDE4KiPf8p32PcdVo5zNjOYrIEvlwtJs1LMQDQfHOAjXJgZpyuemMYWIaXHNWTkNLiURRWpBSqawrJFRDJDMLPEgOcaAKUP+6KR1FIFQSdt2jdGd1KG1gW47VvkLFhFAi5wxhbdkDrw7L1nQsVh4zfxP6N2Gkcz+ZWEdT5H9TFHGLGQqSeCIWYQKsccKT8i19UIGjOY36akX/ub/JTbEybTwdzAAeYxEQpVUUGe4yPZnSs5Uw/gOPjyMIWI9DkrTluU/OHb6Vbc4KeCLsrloa5l3Ru7c9u71dKpXz5vf3j/9OE3Hgpr9M06tC6iploMNKC7pw1SomxAudhWSllrdWJre2pQb/v+9PT07unZA9158daDInK5XJp3qACFIR5ovV1a31vL5nRuw84IAYdmjSeZIN3NeqrVwKyi1nqqdanFBIpOplwGm+c4MA2BTCtISrFSliR+JMQtIjzcxNIFQ8gGVLN+d3p8z8vl5eX5cSnwvvd2Zt+6shv6fvHOsq5LKexh2iFdFS08gi32zs1MllV7E1nrm7evPvzooz9++cXT83OL3sMvHXXHo17KUuuyLMu6ndpdhFJNKAgDkayVImC0aHv3TI97sLXWpUIk1JwgdGu9FkuMZVpHIJutA0gIEXHQCJ8WQ6lgIqpXrL6KiomZFJOQ3vvW9gKRCbWjx7ZtTP3GgYrSpS4GuXFsGYtNVUMm8i18qUbWpAcePKxaChiJJQYpFNWSjcnU8si6qgwvXIYM11IPmhlSDSxz2r71cKWSkvbRKuJgqaVkw9dTNj4TZlJGEL7doZweLuSxcfqANMZ1aBw3ryPvnUdJJpZyBAGZw3Y5BE0yI8kCONv5VhWpS6lmVmrie/3IeI8UKCkMV7bsDGU6ab15cAzsmw2UigRLLckO49RTyIs5aM+ZPNRaa62tNZhOX2gLDbN+fJFb7aeBKSNz0nYgVm6/+BFvMzFLgF4RGKMHkmxUBCEMd9+D83nj5taJd7chEjwFr0ScUayMAawJKBG1uXPaHYcGZdZuCBCqQwo4csVZUhvFMRJejKFldmlgEAlWtbXULJmy0diJ5vnIYaMIDKZPHcLT6DxlnwQixhBQ83/niagRDrhOkFgmSLnP97a7+zKMSUr2GLKEEhFTy0kdHKRnZQKABxo5BQNFhK6QUIhSJ9zUgx6C6TN+vNydGOpac81lwo1RJQ7xOUZkvBhWVUwVtKmxTNJHb48zWT+aSTXGFKYLIFM/1MwkRuoVmjUNg66UPhHIylTyVAgTIZzFT4rUiyRUc4wuMOQhr6x3uYFeHKX+eBY3hg75k92d8DG0vJH4kwFlH0JiHpFSNy40q7VWqzUZlUnDNjMhskkSc5xOhhVLDNVa1vw4AazYfXnYti1TkEmgUk/APpkPImtJ0o9m0DGyAxCReWq6lRA5v4gAFfSaFjUj9brmQHLcDhGdVtUiYpJ1eKoIiqgyRhoBQCXT4gaAw/Ezd5woMVoedIemWsq4hwPnFiRNbaDyUiQqkRnjQeaWHSjKBESZGaHKNBpOmeicYkwhiYzukb936I59ZZhQNPuW0aINPPXRwh/9Dooc/RYAcMyEPuUKzYLo4Ui7kZRK0sR163UyOc8nJAOTgFktBTRnwKMk2gfpANcTFpUo37ospZSYSkEiApNA5KzPVJPGZGZSssPV3L1WA4K9qUhZihWhY9+3dXnIKqVdotZ6Oq1StLW297HG1CimKmDAJtE3ksQxZdtJWk2F6iNIYGJcsrfBdTmpove99Z10M0v/o1G8gigiYXSPGOfQUqtVg7OuRWv5y7/6l//iX/2bH/34z3F3R4rDFFCUm1AVRGSWLjAJgQ/dd8IZPXw3ZKeeef/DO7y3/YIgBqERUkTECLiyM3o0CcGO5n1vG+laLBpa+GXfdC9j0XaKuxR7++E3VEsmT8/nF3dqKRmrxzC5WjLQ+t621u/u1rqUrfnj4/uX/aWUsp7uhzWuw5uHxlZ2U22X1tzJrn0zs/HN+/v9Jfyzl7vXH3zj22/+z/+X/9O3Pv34v/t//L9+/r/8/R+381szNREtKTbucC1SdUlRPWRbJT3tc4ZAel4nOHrOCQvKDhQRIEUpBjWq9L7tfRva9TAz02OeNk1KSGqenKPonxEFAoQKRBABb4eKgSUjxLSIiBLp1z1E5cHRzk+eDXREz/A8+AwheqQKRPgAiBJCNbViamoMdkaxhHT9/9n601/rsvQ+DPs9w9r73Hvfqd6qHtgkm01SjC06jhTZgkIJgZEEyAc5QZAg/2cEA4ENOLGUGDJgawoCOXJITRxEsru6qt7h3nPO3usZ8uFZa59T7Vw0m9W37j13D2s96xl+gxS75MhgMI+AORKJRJamqruX2iexUFJSRRVym/ID9SUSKDVnTlByQphUmISTbOsDY8+c6eOHypeImCaaLoGAp8MCkeRJFUGT6ohxj05UnNsy2Slr+izxsSBPTiqM3+yrjqMxosb+BYlPv6vd544qPPwQ5z4SOBUZHvR1Mo92W43hAhlDs3J8TA2wRr81SUR0NhGOs3XodWa4x1BbnZ4T9yCPGfNvufKROiOrEXYbANRnVyIbEaW7ERGn00lUzazQ1KWnMKCq4Uy5Xc6VpJFqSrPka/DHa//28/7q3TvS5Wov++cLNt8cniAIKHrvl+26772Hw3qm5mWTot2xuF2UBWBZWh3fuize3a7XzRxAtwhHePTcr3tc933z6BYAmbtF7xlbWA/3DMsMlu5hY/xJWdxwTxVZVB+W9bQuzEHwLMpvpNd0TlrVyUTE0sK3FIUqgkZRUOoXFbsjMqLXu1vW7XLlBefz+XJ5McHnj999/vDdfv1qXdv1/GxuKsu6iBJf+37drnu/4pE8ACZ3ywxtQqc13F7O5/Vh/eKrd+8+vPv244ft+XzplmEKrR6F6rK207Isj+20yJIiEdF7R8bSysaFqlcSXsE9k4RFe4+Pnz/tZpBTEBxoRIfSanVwePrWeLkksSTTolOdaMxROSKufT8ERz2DmDJp27u0tfZvEnoMdRVWuZ43ZhZe5gLEfbeFClwjBKZqftactvaKIx1YmFXV9o2TkeGVA7OAuCTRK0HJBCupqmVQBDOxSI5eX1WwIoKFFy4haybhphn1h8xMmgpAZt4jS4bdewlH3SnMAoDKUgalzFpF08Sx3SYl4xFNrRDK0hgaifix2cfvMtcKPD5kJKsQYipgCJFEgLhorUWvHRnsSDlu0GXmqQt7Oi11DSMoVaBGzPHsTeKrJjMPDw/HkLWupLWltUY0FGrrCk+nk6oSbd6LYsMixMJUEip8gxIUppPAwkJDlgaQgiDVrZASylS1CBrF3G7ShGRoX2Hm2aoalERUUOmjOYpR8YZ7HHd1+6ohRtWClkc/wN3hgqGdAyBIKrgOOO9halr4QQyzE0QOAtV4W3eqGBU6ax2Tit8V+nQ32m2nNefsKO44dRh4g2ob6N2N3FLk+b8P8erx34MKOHGVOcXWfEpY1RhtPJKoQzzzgCAczZj58nCon38fAs3Me7/1WY8q8f5njoVeQNM6V0DfYwh4xjzXbsLIOVHHETFn1HfP8JZjj7cf4YHs4cNh5R7wEIDCvQz3im0UWUqPkxtcj/K47KP4wYQpTsSj1IcfV4jRyLEqgEWkJmBck8wZJSPChhxo8gBx4ggB7h6TCTCK8YKWjRZRWB8CenWJlpGRZEKtWUZ9t36g/hzu3kJ90yyOPrdMdpOZmfXMJMH8rcgMd6L0iFA9YWwDi+FrO6JbPflaJ8eLEL4Nn4cQaAx8aU1BeSqKE0A8OL3HPJmIAOKIJMFdJoQ6zCML45BVzc4fEAJllJBywpEsIUV/IKLpjlaP+p7Mw8PcxRMUVGIAs/tRPTCiEUaKalulQe3HEaNvV57lW1lRjzJSmKTK9UIMxnXfW2u1couBRVVzMzcWsx4EnR1cCZhbXQCSvXtyKgkT9b4vywqUx9VhEE9mJiViB8yxtlA6ET09vK5J7LFP7yEec0tZGpUia02K5r1XT7e2QIUKZEET555chizQgGDVggcgAAkLq7v3cCKWpg9r6wXmcwx8EWO6JtSoU4Io/SZVUPpYkZmMpNxtM9vb45vf/t3f+Z/+9b/227/3O9zU+566gGSPPN1eDDBMTKsvRgkJ53TUxKzbJbaN95SyTIxuYQQHBQk83LIjUkmEy5YrBNBFSBazsAyzbm5gYpW3X7xr53NYNw+uFutuJX/18PSoba1wtln//Pll27avvvphtXiJSGih0ucwc++9I8jd9/Due/e9R7f3X3wFKBgdHZG9+xb9+bw9vHqdyH23oJ3HgWl53vzy8cO3f7Ge3r5796O/85/8wU9/+tP/xz/4h//0v/0nv/jFLxeWdW2ntVFwDNYMc0qEW3crVfEizouQOUoVYHQV6QggFWXrQRfF0mfYKZ18IeVy0UO6OauWgzQlIDzzwUlEm8dIAfxUl4jQyhImb7OJkmdPd3cRaa3ppGS34ftdligAUkQE1N2KpoI7cEdmitxOItwAR6MmPLb3cRLV55c3n6rSQkMQfiIkI0K41flkZuvDU0R0vxv4JJd4W7EV6ujZN+sxNKVzFI9UfA0qWo3wYGpUb86nOAQHaLCTKNPJazktS8uJFChPFFZRZO9GScUK1tmbdncWdh9GOfUnK7xiAnAAYFrZ55j+FuwlUf0+vtPIvUsD6mfKyOj2DO4Cex4f932M4mw6IAOJgWA6XmIMnQ4AhTiQ26fNXxeRkqYj+t5fxNGundOq2oD1NJgZ87iXqYxQ+GALJ9Vw7BYp1MGfLvbp0js/PD40l5dvnvd2CU+NQLplGR92O0Juj1LT1OJXeyTCmcnMdvMqM3YLq7lkxL7vnrF77N23Hj3SAsUOs/DdukUYwsN7uFMyt0y3mlbW7CeJCItqa7I0bcKRhioMp/0IswqESDyLchGS1M0jLeCUII15aN6EiEoTgVbq1/1yvr5cnrfzRid+eXn5/Onj5XJ5fDoBUIJQmu/muG5n76a6XOhFlxUklnvAHR0Uqvz0eNqzn54e2uNpD/98tcflqut6tQTQzbunRboNhnlVv5F7pmfosigNtjtFpLklS1sX5mX7/PzNdx+u+748PRKrZ4SZ930RVWVLFHQFwwr1JnecysnsFlRaO0xlolAOlB7OEaoqqpxQVcyhV2PpCJ9pkkyRthgYVblfjVEurKUgyRSWlUZaQdsYByKSC8MSAAsLgzQoSGqIMoAzzFyMxAOuNnBYRERMIq2tm20AwMRSo6jkiN16ZSBEROk5FOklEcuiIu0oIgCs67rtlzkMYMCOh3ZE2iOfP9ZPxdPMG6URqITiUGunI0TPb1RVPP57hmSig6ICACM6yc0bjzClSVu7+bwuyxLDeuZ7AeH25yYUCPfa0bfSbVzY8ULHWVbfZClzDB6iSAO0W/aDmG26I1fPCdIef6WOFWKZIrvMfDqdtHLQI2Bh4LCJeTSljnKIAuFOQpnV7bhRMonIZzkX7jHvqioN5lK/iIm7pEzeeh8/hYJFj5iVPLIAmkCpjKHdykRRTjbCA8odztIqZBONKfhRO9EN+VzYM0Jyeml2MNWp42Cpk7vS+vp1Bmq3psqSnBnplsySkZED3FhKbiKaWTXw7ZiZzjV0O6+Q7jYmcuNI8EQwaxIVif9+hbvv9YRzAmvrdXc3nyT1+lfwCT2adXRVevO0rL9fx3ytbslEEbOPfwvcDKiqDMoDaIcKC3f1MyZQJEe7oVAKQvddhrF+jr84qqZpUJGzQXXsWDOTYc0yKm2zTmyZzpCISKolKpkDmkVc9YYf+4uSATYvf9lxCKnqFGmjoHLkDADtIMpPjFxdc3frbtu+NVFlisxqZ83aRsvy5tjYI6tiPhDvd/9dI2eojpktZb1/v81+AXAGqB5juJcISzlTjFq94ttQ4a8XOyI+ZZG9SbgMwmgOzGkwEGbZj9vUtxA4t5H6vYpCpnMNxJgp0aQiS/VG5joPr3YEDZSCUyRE68Ap1fISzKJy/giqKrQIgUwye0WoH6pQQkTMysw1X6EIoiMmg4gyUpSEyRPdjUioAA7lq0nA8HHJBJU29gBvcE0tUEzIcsms9a8sqpoZcKdIZb5vSFVMP53GolXVKbswfqAuzd2HdOu0umRGdXa9V0XBrS2RFg4Vbq3xnVdZdRNy/kUAHsmg09q8W4S31nigqIIH6no8e+T0x2Ky6I1bZFpYTXOGz0oEcQ7QTbqHl8SjSCErcbAHX79+/Zs//enf+Jt/4zd/66fycAIzNzVIgphbMZznnSPveixIRonNmPfe975Fv+LqZMiItG59Z0olhNvWN7gRkALzGAwfkbLSDYCSkBQEC4+ey2k9PT7sV3hGzabMnYiRse/G3Ui46cIiFn6+Xq77xtOVIYNs87pUorzsV94j0SXzqcTVHUtSeHqkBDuye3b3racaQ5DZDbuCTks0gZC/fHx5OL1RkpdfxvLwxU9+4yd/8J/8J09vv/jv//E//fDLb54/fbSrrdoSWRZVrTUqOCUQVBrvg6LDzEIUgpFzFFDQbQbP+ZIzKdBaE3DJLuRQTrqtVaoxRAwscnEEIgCPTA6KSBssI86DQcvELFpQV7hX148xjB2qYiIEMSE5JiKGmcFaJqdVsw1mwSyl7vIaPrJHr3YMkc/qqCLSGHPW08ocTSJgNOaSjmwpExmkuvTevwcOYUGGcI7uNnMm6ozOTFE5etMzEaywOrLA2om7WwRArAfeLzIHzoECScLh7mkWlqMbJoyMvtdbZeYon7joCeeRVtYzL2bgqAbrsVZZXoEPmUVXngi7KJwoM3ttjAoveZPYnJhEHIIRA0U1AECICI+R8VTcKLWtI90YB1mbulao4TMhQwD3OPylc4x3htfAvOQBTuOkJJjvAFhaWxqR9k6Zab6XLgeiFEbcbFeqI950UW6rAd0DPVWbrK9CVrSHhzfvX799tZ37xf5N77kuJ9mW63aO+Ujrhbo7BAvrcRaDEB5m+6dPn8o667Jtz+fztm0R2Hvfd/OM625bWEIcCHASeYl9ZsG2xjkWQIT7LDmKhMxBxVenRJjvsPQtzECm+0jBwSDRzDAntyrPwrddOFOSE+mTSznBVjT6rcLMl8vl875ftrO7l8zS+Xx5/vx5WfV0OuU4m3b33PedEhGgeHlgAmS3DRRAFBfm1avHi/eHh4enV690ad1wvu4LycLUk8zgHtaj90EzHB0K95qQuZMEgmBj+47SwDJ2s8t2TaBkDtw9u3m5qBB7JjEFZfdeD4S5HLBh6ZwZ5XHnnZMTA3bqGVUpEJEIqygnhR9IQJqpApfYdQ1FIr1W+BESBjHkGIRWUcEEksggYgEI6RE6CjLlcCcOpuABcBARXVpOg8VBMaqwyBwECRr4ULhPd1yUhW2ZWoVPsx9BBnGWyxOLmO+lpnlf4ta1HMVbNa+LdXbgPI6myX0B/L1e1Gx11fqqnj7dJavjJ1iZimlCAApVPgLqVNKqS+JJ+qsTh6ex3MRI31WbA+BdDcwbC6Yucm3LBHhPdVZzERIalhxVJI9mx3qKOAxQBYSi9rkTmIcOQunmDrrdnPYlSJhGw6Km08kImqLCFYSrlBvyjNXqAMqwUHJMbsewjhNEPUZVSY0FpepUswp3lHx/OBLcRFmNM7tzU6KMIPdIisg6ZAZYUpIijZyAiduuITaGklQBXIUH7trMJARSCg0uIhwlqED1HyYmxrXvi7AqE8qYYEz8zQJj+sQeHhmSAua6IpnaQESEyKDxfEt6oXHbbE/LdqJTW3rBVQgU1MMpqOQ9AxSBSMqkoJLnGsEiBx6TQBFABkGqpz7UPupr732UmrcjbjRf971X9x3CKD0ks19Z9/cb4BjoHov+cKM5Ks8ZznhY4iRAnBFF5wMP5nmEc9Vj5ck8prKDyj16KG49kjLMei362ZCLzEMqMgs1wVMHiycTm0AFsFdiZu6WlJxZ+AnsCPHM4enia1NllSkANIJvBkEO8lj9Ic9YlqWYVDSFmokIwpKkzJnZC8XRlIgCg0M42AJ+I1G7ZWvDeZUoVRWDFUkROCh2AMoYvNQghVEHWMULZk4qCD2BiEvNpnSkMvM2258dKB/y4sebrX9mKvuxLEvJOkhr3DAWfCYGAalGxJzpRFWol67Orc81hrlF0Z9a3MJZFR8QcGcwg+sQECrCLyMdoCBwaUbPTwLNJLiqehKr8TSPLNnT04alEBGVMwhRqnJkZL/JhmcmJZdflYiKavShbavSgKF/exweQFCCAe+mMuxR+u4U6cU8HCp7QVR4GO3ea8FU0o1ZThBVfuB3SJkiHhMDL5fnGjYfZ4a2EVR9724hIq2tNXklEmFxM49YmAHsbolsp5U9RNlBZEBNBD0r8dptjwhRVZYAlJlELLxS3iQRZSLq4X0zM394WteVzKk1yRTz3fYtMvW+uZvJnMS5LEuUrydcF9Fl+clPfvwf/s//g5/+7DfXVw8ZniwMAWAZN/TzLcdgDEO0JJTLkFct0c29e4ZFd+9737b9epUMFUrzDAOwVMeLyHzIDj9/+rgsi4qoLIu0PIQPiUSkiHl18AWISTKpu1EQR3mBka7LK35z3s6vH59OD6f0sH0335WFBemRFRV8t31397W1dVnPn593G6UCaWvDlZmu/SpooFKs9mQxv3DCLZ8/f/sKvKz45ptzz6/b+vTX/6Pf/53f/c1//N/+43/83/2jTx8+PiYWUQRRhEqx6UtCjgHxHh6mCmISFi70ZNZeJrASDXkTqiKYSo/1exotmcnCTbR2GWGiZCN5ttgxDGchzIRWT7LCrxDtZhhhYnYziVSUiGLadLEM+xNhEZGKdfW1LuruPmFf1ZQkSKaPrszRqJ2JhKoyya2Vw8QiUYQxcHfbto1U1nXV1mKkOFMLjFDt7uv12id4rb5EpLpOGKNYSgc3GivHPWLMtlZpYKZ0ixRwMATwQjlF1GXrtBEufNNxZBTgws16eOOB28zMomXVEKBOCjAJ6xh/VTYpAqbqPWdEzsALlGZf9QJBnEwUxNWIrj17f6c5W6fCvNd4OW6DNZ6iqUdg9+yZqeXNTly4riniSDkEC3KmGcnEwwSZ4PvOzDIduetmqxIXygBjkEM8UzKjNe297/s14EJHWh+qS1ifE33a92uQauNEKKkwhScz2rq0pwd9fHh4+/bx3fs3X/7o8d2bh4/PO617dhGW9WSf08vSjbiH9+7MvCwnWRbVpXhP6bHv++Vy2fpek6zL5fLxw6dLNxHZuhVU0TO8fH6AzXph2h3kxMlIrzKYObO7w5NLlszhlosMoSML3/pO5uEdBZemPJ1O4SBxtujZC61V+Zg7iUChQRFWwnLjtFViZrLuTIKUfbd9t23rWzfd8PnTy3fffvzm2w9J8fr169akFMUyMrx73zMJi4uSdfTeSWU5rRZOTCQhmq9enX7w1Zfv37//5usPu/uHy4UpO0MWebyu67W1hR4e18eH0/vl3bqujOybEKxykMykhLSVhbv7eevX9Es3T2qnh6ZLQR5JhQES1LxKW8vMzY0TrS3FzQaqBUiDbVFKJSLImqWNfNLdCWBpESCBsJKwBVGiiS7rejlvGZREJSO8suRdQ1CWRswBgnsyCcSt19lVRg6iLcN97ygxXVQdWB35sZGJ6CgLMz2IgfJjBQ1cw/Dj8STK4K6GZHCKVHpa1QVxWg+PDgz8sPm+bZmZvff7De6DZj9GnRVWqwBmvrHuZ3F7Q6RmUqKaD1n/DeBYXZXszVlRBdXxV+YPlA+Oz/yzqtbEnWVpRABRHN06hSLo1tGbl1RPLMeQRIuJF2nMy7IsTdQzEKlLoyKEU2amlCeFtt06Aq21ih9jlJgl/DFCuggp3eEliQCoLpH3kJ8KgaGnB9v27sbMbV1IOCICOYybLENEkoUbc6XtA6idqzaZKaMjH1Su28XMZETSVFmY2SyZeaHWWrMMj/BIwLkxaE+giL4WYe7lel8WlIOBuagKXa9XHgrMXJqU4y6KYJxFKqJESABDqMkbjUy8sKAAEmDAEchYRJnhGegQodYkkBY9AuU/MfXJCcDSVkb03oVYhc7XTk16JESV2S0TTMIJ3rqDJAoAGGmeiGTl7g7RrG6QF9OHPeJy2bW8y6YYEjOTckS1HjPvOEFciHziRHp4gsCSmb3oUEQZOZyIBlszAHgmc4iIFEi7oK0o76nMKRVGwsTkaTeUP6uIhPu27/LUhmwhynC4mGMpEGHKiAFBZUmPfdtHvcGwsPQschoJwpIISQMqwqPQokz0zZh5UbEMUDbmJpwe5XRJ45QI9zJtIcLCgogID9bGwt12UrHwsGQuaetID4/IwPqgoot7zcQlLPrepS2ZiIITZABYlmVZGnvu/eqW0lopaRceVbkJ6bZt+74vyxKErV+JhTW678KsTZG87aXe3tzdLZio3D627RJhRBIRqroIm5nvnYl0XUbbK4wAISm35cw0N0CEqEruyv6FZfYib3o5QpySACwsq6Ikcs/ee4KYWVgnHCMAhBf5kyASYYVqIWIUHIezCmMhEqFMRoIihUmVwi0iQVBhGWQ5VDCKNEwVNBbmcWxYoPQJWZoSU1KSiA23KqhqstSWI2RBMJTKp7dHRQ93UdFlQSTKADmJLINy7645cAfwAIUQhfW1tcGUPkTmzJ7WtY7X3vfee2O6kRw5hQhg854IJlFtScLzkEBqRnqYUHIGEYJmgU9IYHcHsptXxC8hCoEIJHowhFnqnFcqOWZ2y9YWIvRwItKlVZ8ots0ySjJHRR7bEo5t23p0WWTVFcD5egVTk6Vs2MdMQgoKnkhq7SQrBWdAkHrtm22bh9UMnCLdvXFbHuR6vV6vFyJaT0+CIA6K7tZ/9ls/+1t/+z/+wU9+uKzkscmpkWogGdpIaxTGY+oMQBMOBIMSm8WL7R9hZ1CwtMBivu/dbL/Ytp+fX8K8Efm2e7dFmRICUrkWGYwyt9zdsXUDmCl3380s0pXp8vJ8sEPLRH33Po9ykLCqzqlWuPd93yNs9721hgwP62BlJUoFp0hmM7aMuEZUNfj5fHb3dX1YBRwg4mUFLW7Z923LdG3Yrxaq67pSS4C2uOyb7YaU5UE2eXz17kc/kbf/y/WLN//df/OPfvHHf6npT21VZHfu12ShVdtuERmNtdRRMbd/pEckWJjJPWSRJmqDih8w727L00MVLSKiy0Pv3S1ba1mj12RLRFiRKpg5wpA5JR6oTO8zcyYJ1JQYnKCIigVkaYhorUlTUo5uGamyRBSoAOYFc22ZmZbkwaU8wBAp10bdrxsheIrjWQTLwsxtWVTaHCwPCZxEqGoxJTKJm7Zlacsych+iLCi/p3tUI3fvPYlq6DRyUw/zMLP14bRos3DzThARLgEkEfWC57EmYdu6Z1DmwiuVhCdYVajACiW4nWDQejqZ2cVsXdfkbBDhBuvluhugJA5QOQtK08oKI31d175bdfSIKCL3rQPcWGkS+q3mJ0HCLESdujY1M4vQpvu+29YfHh6mnsVAMaC6i6BAJoGYVaWkhSsZFWUzK+woDYVb33pvbSVKBMK8JgFlBpPV/y2gUGYhDisXATNYA1RwSkKkpQ71yEAGM0S4e+/7Ji6iKqq77xQ5ZnTC6UbpSBJiIHvfttieaH08PVSZRCzbdumUp7evQ0kfHt7/8EePr9+A5N2XP3791U/+4vO/eXVacvukuvTYHHk1u1x7JmfQ9dIz+KO9WI+lSdhOhBAERRIul8un8+Xa9969e9T6vVyuV/NA7n3fIxPcE5t7B9x75QlBQDKQDXCGBdIMjsYgFSLqGbbbZntRs9yrNcBWpzDEtp24hnjEyYC00yOA676JCDemGlbpkkmRMAvRR2I9Xxy8uPWlnYTgtn/z8fP6lz9/eDr1/qNMX5e2b0trTUB928ysteZ+9i5tPSWT9Q4CnTR2c7um7D94/xph//Ltmz8CPl7t3evTzrzv5/5p5xMeXqvRg2e/7pfvPn24tOVBVx35ByLcu1EkJUdr5rEnPRu+/nz+8Pnq0a5XE+ay3UyVjWypPh6VqNWQGIlZPhZMgacWJrIqJRIRCjMzz31dVyHu1jlZWaDCMtTwkGxbEgmVXesA1zDLLSa4pWfXtq7Lg7tHGi2tWPYUsMhwE1F9bJfLZS+TCxVUpUcDQbPv3ntnZl1agXJDgoT3fQ9yZjb3KAkhcHoCTKmqS1tPAHvaLMOcqBMvU/SgvELYo1eIOC67rQpOM8uwycMqnRcjCJhKaY9VqUxJI7zb7BeISDk4lsNjr26uuw/jxuJOMWfeuBWEEJaCFVb7b3h+ZVY2VEEmvWB3tEhjJSCrYizgsTSGJ4LWdQFgZoRRmWUGCE1FVQLePUhYVBPlMQPVJTMZ7pm7bcnUVg24yGJDhGxwYZhZhCJShKX8R0eRnKNpnSysTDl8KomSwsIcQcosQsQqbD2u1+toc9Ldrw8BKqB0XcDsHlXxMmmUNfOYuhVnMBKoIyfdg0lZibO7mRs0mCmQ6ZFMa1tZJbeNtcyBpVoLqFSgsG/jf2e1Fsvdx4bAVv3dKMFMJkL61G2gKa+KiR5FJnkBEYa6VQ7niepUMyVJRHhikTXC3NORiJIuZ0703iFavudJOHwXrvsuQ7GDAsEsgejmOSRCyAIgIUYMYyKu9lIBPjzgg5J1SKrepioR4chBAM0sZHIddQB7ZoTDBt896ADigkePdgg1HNi56oWwoIrQ2h7HmHGWVQRwsarqg0etddPWvdGbK+GYLZYbESgJDosgVilCgiMUifm7TXT41GBAXqvjJXQjiaV5iK6ticjwK1YRITPrHkoQbft2dUBi+MXVE1iYu5UulB3DrqAb6DoJg7tTAck93IpgPC7AvLpWmanKqqfaFZEGDxHwNPClCSqOgFlJARUkKQsTMnp4mYgwiwNZdLziiMJwWg6lUC5Efk4aVb0/Jc7GW7UKc0LmBjAxGOxwj15Vbh69wakvzaCkqaiWGdFzZDVS+OXJb7n1EQslIsTM5ZkUpe1GBB77jhOHxvnoIKJERKmoL2w2FpBnMDGLoPTu58BaWYh09zB3sQ4Z1MBS77CMxlhAxGASyRJV98lXqTWU1TTJxKItIxNRhIf654oV7l5eX6s2kSHrbb1o2612fUQsjbW1JJl6cDcQu4BraEZ0OzOSUpeGwQBnZlapMQrcvYke5M1irTAxE0MSNZ7ODCQswEzu5q7aWlN3LwSlkC6rgtmiV4OchnozkCj0O4otQ3VQCQlbpPuEKhYzp4kI9cv12KQFglVVEuamy6J9OxPzr/3wq7/yez/7yU++ev3l254BWMQe0ZIMJFxmS4FhjFoZDGdJAhM8bPN+TbvCeu++b77t9vn5s21X3/vlem5gWU+b+3a5WGuS4IQQb7wXoTQ5wWAh9zjbhX0gTXpETFPfuq/e+/l6cbeHh4ekUNXl4dRIPMNK0V342ndPP51ORNR7z/SyFlTiIntu3c28rcIq+763VRuWzNy2i3tXXZLQr93SKFMWUZLuHaPwFhICAtSJUyQp0He7gB5et7/1d/7m+3df/j//b//NH//Rvz13X0Xt4o+nh6YcvcM9zEDEDT2DIoAh1lAVSEUAt7zGLiKz34TGWqMMGr334jMiIrimw0gabvcTQVcehIXFYBk7Msv+Z54uGMLyyhwsmSUfWfTwvDeZoJgieUcI7YUeHX8xM3vv+75TcoRFMIuAiSpzFSl2MaYiPREFodSqsuAwMgJg9fVr05UGH8qrgpm4mmZ87x3Se9+tN13d8ty3zCw4BmIMWIiG1o5HiWwxlyZigZ/3vdoKnDeP9/qH7ZjJcNGMB+UkeRSxx6y43ouF15m/m0VpKgxrFlbmcMCDmgqo+tOWdjvq073sRzlndnSA4Q8K32RRzpTh2NpHFpEzyz6GMyIAJMKOsTxmlFNV3/eDB5dh7hNDJJxzDlZxrBUkIb10D4vLExmJCEQ1oy0dyKAkRkRpHKaAEOF9rBZRBGHf9yR2lgQ5wdz2sE754eXzx5eXvUdrp/bmi5/87Lf/4i9+8c3Lx6fuoIaB3iOL8N0z08QreT2dTnxqQJh3M9utew7qL5hItPzyrtt+3W0PC+YebpGG6IlrpCMTFOGRXiQS4qHmCAQREyKIKWhHCqzyTiYiRzUoktW3EE0JCEDsxM4Diai5k4gQU1CgR3K21txMVU/LUvGgUJkUtK7tfN1776BYkvZ9P5/Pz+cX+/Prw2l9fHx89epxWZZ9t+v1KshXj09EEN/NySKTM61b35iwnpTATampMHOPuJp/OveTeBMxL+bIZfdX3f3zyydvD7HG2nRVUWUpSk+GmTnwct1dH2RdzpftvO/aViQLSERDUVKOznCD8EQlOKIcXGmYQpezYIRFpIs5sg0CxUhdaqBSmr1BsCgbe1UVJDtyWVqUTk2Uo8MNjQVAl1a2o6VBmMXjmMkMzbKnip1JvKNwr+q32tP1ZaUvzFIOfpJUibdP70YwUcSyFAYhQZwkgz4MLzGF0pyvl1s54bJoBHe3e+rsLVHMYV1XYyhKWA9heXx8dPfrdRsm2KrHXD0G95BQKOU6UnLA2aqAF5ESwT2iyqxlINqoUrg7IjGXecn0MCPKZVlUpdRhgLlc72JUxe0CfgOotz2FJJKKdBbkZnUYOZKYmJWB0kQgSiUVakhOeGtyNAtEpOZMNCDZU5kPICoLFAMwC+DMVHc/1FjdIjPBpEvT+9gaw9xnWNoIswgxUxpnZqEWLTxAJVk02LnlZEBDSj8qJs6lVeqa6R6ekEqEQdQpB+lUSh3OvXCaUWpzQ0frPqxXRCYaHPKsaWOxZ/MO8FO1lnAre0l3rx2YVfIxzdF/ZvLErw5UbziGemyRgjLMXFmYIjMoWUSSYGbuJsJAmlmMGw8z46aRVGArzMLPM44lwszFcipPMA8HsgR4jw2Q81gF5rxy8k+k8fRgzqqTCbOGFIkSexpPvu46c0ptCd9hrmYBzBPZH5HMXA53hX33WSETkWfySNImDmrCdXNyhO5P3wPHT1QO8lNsjMsLiCIiy6GeyLMQKEQlMBFulA0swrsNs42SDC0IsUwJDZ2SxTypopnet905ivebmQJS0eJbJgIgj0j43s2Nl5qbKIPCzEt4vbUWEaqLiEQaDbuYeRrOAqkA45ER7uu6AjDb3Y8mjkcGhuAWjoTvfrUPtvnAidWSH0nn2hqAbSpSzO1ElQlibowD3ZeZQ598FMlx2zuzDzLe5oHyr50yqGsgKsmEMVwoiUCUJX2BZ4jHlD5BWnNsO74/emFCSGFRkbFPx5IYk5Lxv9yNMej37mUHNVg/UWz8TIoiDoNALEqEMHilZkMPaNxIpW6lmlOVVPXp5ECBBokyJtIaxS0URbniCogZPOT6EuUizjJ2B3ICwjF5dBEBThEpSbysRa2CzOx2KAVSOgAH09wA95dds9SpCzL2ZiEdIoKpnJaL97EBaG1l5ginGwePmCmAMv8hIlVxK1E37rvztCKIqeA+tiSRNFXVvW+ZZvv1qx+8/ff+vd/7nd/57cfHU4SxMHEQh5AHOcGpOLSTHU0EomDcVpq773vPbuj9crl8fnneX86fXy5hu3e7bDusn89n7yZA2s6B4uRINXQQAKTxYspE7t7Ap9Op5lee4TZc7Ino2vfz+bzvWyAdvrRTinrAwrOcoVt7uV5s6yS8LOpp7p4EdqremM3+Xfr42KU1guz73jPTA+zJJWVOKrq2RQj9svUq4Qrkm8whzEIZbn3f3Dacnt69evf+/d/6a1+8fvNf/hd////9z/758+X85Rfv9uTegzDG/u7OLE5jokdTFSnBSWCGmXneVIiISCoPIy4eKXLaKkSMeAsDgSd9jm4ONN8TWZxHKo4lVypcxXkSDPu6MM9MlDrhSA9IiYIBZqJ73tpQGU2CWZrZoqsXF4iIiIt9kZlEPI+yHCERguQs4YZBbuUS1Kx1mlk+9D6mQ6oESS2/39t9MUNVn56eLLy6jUNOFhEYx8dAHtqNBEST2xJT590BR1YLGoSSGhlYZKawyi8TsyNcImRtXWTwVFKEl6W5V2SInMroA7vO5O5DfmziBq1GhzRIXmY3BQ2U3sztldJxBA8/lZyhHoekA2ZSOCi+lbZmptkQ3UwkZu5+PIfbSzl4MePA6gC0iHwVJCMrVMbEJuXsn4ZT4dOOw65MdEUbwGbOKiKNiZjUAGLhtqA1B3rked8u+66X7cOnj5+fnx/WlYV/9Gu/9vT2zTcfft6QbVkzPM1VddX15frJzJBqppl56vtrfmJpfrXSnsjMbd8vW++ePbIbkujS+2ZmGUnwgCdZwiLcwxnAsEHK6vkWm7ascpAhpYQQ6elOLCjT7fSj/EgRRpQaeVAwEzIRlExhsEQqSbldK+jEhIjGuTSIKKssy2KRft6JO4uvJ21Le1iVBXvfrterB3l6MnFTB71crs/Pz2F9d9vC1v4I5iRRZaIA+b5vp2WxyN63sj+7XNDkuqwkQFn4Pp+v33789LCsD7qctAHhbnsGnDOVqrRksm66PpweF1keP308f/3Lb7eta4O7G4uqClFi2LlHUI8QSRWJzBL6IWGZpcfcvFz1GQb2vnoEnENunAorW4bygjK/pDCnkgHg1EUWba21Kfo4vgr85OUyHrYsiyNqaxf+MUHLASCds+4hMBSyLAsJB9K3eV6Uc+PsItX0iHVySIu/rZyBHkf1+L2QO/ma0wcuQu5IJQBkWQHAOzwSnuaZ6RFmkYm+dSFp0rbcyrCdQFFUEiRFDPMhgJm8tN2m424FYzCp6oSTDDXf6SlVoeMWmuqcKyAbi+gkS5RbZIEfi/N1i+ggkYK26Ryx0LKsDw8PL5dLeWeyLhFRqtu6rmldWLTVUx3sNiLyXgjBtq5NWTykKIR38Qo8nyQR9T68S2myd2uwx0wibRCPfY8IZmmtDTtNqWmbFYTGI0KnWhcdfcfI6mHMYD5Q8rOCShlWhN7dLJySF21BnvOLfBoPTmmZevTHkdza0KwvODDdZ+33Lr7j5uuvSw7YPka2eEv0ZVitBh3UdREpgFIEIMwcBKaZFxIhk2vEEUPMi49CdCCJc2DiK4mxSft095620BKZldQmFQ67sOm31tRIygGMTonk3eoH4HdTypI1uj1DIhKm8qmjg2VJh4b40bmJTPegqV6Lo4099sYgLxHRUKzOoWlBt9nXjSHQe8/q182+GeFomgC4kd2P3sf43XnxGKn8WFQ+1SBv4wWiMW2YweXWU5+yEKrq3q/Xa1MRkRrtZ+buftTzOeW7ioM2B+RMg6/kJUSWmRFGMovozMKY0RQecx+TVTm8cJm9OzMLcQyM4QBmiEgBNMz20swSVA/vtoaPllXvXWuvs2bmZIZjphrVsB8iAZX33y+eY3IOoqAo1oC7F6iQeXj3HhnMfQFcSn0xxTMB8JDjnv5yo52RJSke83w6Ami9zZWay1wwd+t5tM9ouIAeq+i+20LDQdc4Ia06IocY4Ljc1trxBJiqAUfMXF3kY9Xl3Vfdc2YOBMQd3QUAk5asXV3puq6B4kHzwgphBK77XnIXlXazOFMbr7iY6mVq4lHXQ0QkJCl5VMjfh3LMx37LBasXW52LOjXrforb427uXnhpAlm48O2TK1TmnW8nZstvbHnvtCyZSQwGF8CUSNIHIKJaUnU9QqqqQXG9Pj+e9Ld/57d+7/d+94v3r4nS7UqyEhmRA0boXIpIUCTPLgqqDEh4RBeYd+u9x7779fL8fH7+fL5ennfr2/UCD4/o5pd+SfOn9eG6741YCCpD8sf77u7c0a4V47LUMoK5BmhZ00UfWK/a4BZR9sPdrRxTmSSEZFk0rPd9D89AMALUwwXk7ohh610ReN/3x8fHiHCrCMBB2KyXPBLX1CAoGUJa52pTNXeKlMbEUrprTZKp5/XTlvnl+1/7g7/9N169enV6fPh//bN//t3lfNL2uCwL6R77onJquvteuwEAJYQoCJlAJGmFi/GKM/OOdz3bHzTi5PFNzzgWfH3N/f6rVgJHfMDEkmQgPAyRfCBcink7+pijM3bIRlTnotSeibPYPTQmiq21cRyUCEYEDUuq5QgX8wf44JdGBMkwtKifUSkyy9T8VBVuAHC0mOcXMzdBj50wzpRjKktEj4+PZcxzHCt1qFVMrjEF5uT5OJJAIBWKLHbVcWIef5Tm/KSu1t2qOT6Oj4kNyaEWc0MADVuUpJj3UJHvCLCYmizzjwpm4yyPIza+pxJyNEYzs8w9MZFc98vmFjDnD0eEzHwgM5vy3XSlKu1xfA+fgDQGZQYoJoCMiSEQd7/7bKCsMTIFlB7VWhdiMCURWDzALNoan06SIPPN/flyffv+y48v559/8+379++XpPXp6Yc/+fXPv/zz/nwlaQ6xSOX2uKw7i/nOCxOhe7/2626bzkKdVQK0e+xme5B5bj2CuFv0mll79sQeGQnL6n1kYbunnCEFIQmeaTnwdYFEoHjcTJDCujmy2EnIJiSVeZddQcEbJNqycBk0ASrUhBaWk5KARagpPTwuT29enx4fnq8Xx3a5pnAjUhU0yYWJMtz20/pASRF53bsBW7erebo/X85J0cNFGjelFGS3vjcl5gzbifN0WlSRCZEGzr33y9a3vly2/fOn5+fHV1++sZrdscCt755ETVmFmYUllUTePL76bsef/dmf//KXv5TWmHXmGZwIi6QKYk0JZBk8Se8xG8rHOV4hq6BKvvdjnfOUcXH3ZVlYNBxmlvCCI0U5tRz7guA5XM1nUCDVhZkpgygAKW/vyl2BLJ2boPIzSMokYV0alMcqZiqVWWkNQxEWBVcpp+9RP0zDDjNXBQt7JhAipCJEiDDVVRv3vtXsV0TWdS1wtYgcstLAgVjUjJ7BVZHWf1TlfD5v21bD2GVZRus/Bg/ryBPcHahjbpwIMnVSjgh2VLljOHwnNX8EuiOxB0DMNXE58Iz1HusWSjenHkXVR/c4oyON4SmINTSxSVQ1ylZgSD3TpCur44Z/wbAdTXcfHONbeTiucP6VOmJmmJwS1nU9s+XHmalWulvAEbKZ+UCpjjLVBlq9emKZ5El1AM0pFgW8cNEiUlpK9bx2Dw+n+VKHthBL0pDcOIIymJh4dtHugLvVPpShSjWeBZDJEUnlSJ330KB5eo3qP0HDhw3TU6vA7jn+dAW8ODhmVG7zTK21yOHTwMxAdCsEKesiZlPMi9kySkIjhmATe0a40RhP0lFFZ2Z6TX8jwcwcdyjl++Pc40YLDozZXvce48yLLJejoCpeE7BS0S6R5kREKIHq2WVGVOM2bkVyDGhQRJVzFGaZcEngpueRVSsS8SChj7KHizpFU1CaDllpFCehMsgbvZlqOYKo2mBcaOLMLAVdL+EBEIE80sMYaKKiWoFVRCij++6FGEwZuRigVM0MZUGU0mb1HYQzI2xA1ypRoOP/BrXg1j6oCW81tMrKaNVytCtlM1COBTSepHAQ6vkcr484tegvMqbWR9pXL/J+01YBfMtNMzKpEOaH7OH8cBqPcSQ5iLyVmj7K3TFLmgliFr6SkUHJpKAgVL+g0mgQUVjBIFMGGCEIgSgAPGQaAgGo5GAkkSS1k+bTK8FMIJN5cIdyRj0AjKHiELUIUC2JmqiMBVlAsSKmVbTmmmzkyK2TZvo+k+Z6dCLCIDPzuGvQ3g00vNTimLP0wGq8k7BacIVJLoBwgdszCc7jOl2bgkf7U0REtfI+UhLcDIdYwMN1HITyJs5iDmc9qgQMmckZPP235kEymq+iIhBOTrg0ZmmZKVJaODXCTZReOjGRSi3ySN+3sD1JWYbFFDO7s0oxKj2p49bQQWNJ0l/79Z/87Hd/+vrNY4SxCASRlrGHKRjgyHpmCBAP8yM+4CAd0SMszNMjzK2HmfXuWzeLvJpHN7ddmHhZN3v5+PIZGQ3clNdsxTfq8EgXo54ukLVpKm1brzdR2o/dh+4RMS+nZcECFWkqrEnsiWKgeumPq6TTZd82KyyMZ1ATCc/CNTAoI3v3NHd1h3ULImKhbds9Y13XsFy1JWd0a4sKSVOpvtW+7+4OAZHb1UVEl5XSzM+Pq5xfvt7sw1/593/z//T2//jmq6/+q//yH3x8vgTLq2WJPULj1elkvdfKKPVEgGKq9yMK5JIRUSoo1X8lIsqZebcbXNCHwF5KO6rfIGLPEapyAtdLO02Eoox8hIVaZvYeblZY5qlNxomIbhHR9z0IqjX1y5hWAURgVgwcPiFR7l6qrZIbIgoQi0AKtqwMKenX0ntPEiJubTGzAX4DY+ics4MgWnxUFmURJHx2uPKuc1wYRYskaTrLzoqx1Vi3cL5r2ub3bVRoCk0RIJWAYgaBcmQkih5BAEXONwUqWXmGBRElVQKew/Fo1j0sSRHuiVKfEvbiXQB1+I45Koi5csHbmJcZzDRbd3FUvxGFJWaakLkYqW3kbJfkwLsVlgvu3tp6REWhUnypdOKOGWRJSNE6F+qMqHcJIGLwCYWAsi+N2m4JTOD6rUTPZAJPPQsA0lS4ld4cgXs6AuZowamSyZ44X3dP+u7jhz/5d3/2V373txdVWZef/s7PvvmLP/35h58/BDy5RLjSkRFMEKq8L3vGZd8W0XrgmbTttnevimyP3D16hkXuY0hA5tFzNtEYxd8OgIWIOUqUEGPa7wkbVlHhlEAKZIz4SyFZCJGwIqIghVt5fxIzlVtMk0wNPLb21JoiOUKFlqavnk5v3r99+8W75fHhw8vnjKuk922/bmfv10X09Xp6tZxWSEvSJFjYZgWaV12otd2vsm89g5mbyCbI2Pt+ff34ZLrvRqr86tWrdV3Tt4joRgTo7s8v26JMr1S1Beh8PssJtCxUcE6MeViClofTxR0WHz6d/+TP/nwzf3j1TkQwrGGoFPFYVZd10aV6IpZFjhQkB2F3OwZsjYXmBJVoKHswM0g8RgFMHKoBGqd2IIWZl1Y2PL1H3/eEi8gius6Y0KNngFktgzLLS6nSr3LXQ8ZYoKweHh7K0hZVLl+98EFkQEFIdusAVl3dKwOdVaVwRkD41JRJyyqrKAOVvLA2ItIUba3vu5khC409duu9FXAOE0x2UZAps6i25eTRGcPpZ11XniKyREQxdPsiIgcRIxC+LloCBDm7e1W+HL9Y1z9FrchLrBuosJIYwtHVSC0VTyEtC/rT6WTRj7hxX47GFBK/q8ZhZq2tJCxjNjGMCCJiWU6TpjraIlWDrut6ZKpDHcYMwOl0ulVMRGUMlDnUFkYswPd6f/Nn6RgkRPi0nC4r1ByiBcw8kIZE7r7te0SclnV4OQQPqwMaXwdtsmamrbUGWIancTLFuF2PQO8Fr8/M0HF9912H44pntXDcwKyHhRhUte6tsAT4NpoYlz2vjoFjOMndNiKq4WDO8Z2ZNS4Zt/LuI0CYU1XNSxD4lqDPVk0BU8vRkcmyLsOi7ApmP5towiruGvDjn2rdS3moxF3j6naA5cibcwKecYekHSYKWQtoyVnQ0pwQVsjmm3ZcnXzfazNH1MQ65zChTuNbn/t4EZmDAHb3/fIQwkxHbu8uBtIS9x9CKAj8OIDnZYCIWIovMVIQKm4Y0Luva6tydO+9juFCXIBGQ3o0ukBKZFFLMY5uPWFAVogo6HazLCBQzP1WQ7/jubXW3D2DSvcHqCM+W22eGKnVsaMqM6WSDYeXMreqLm2pl3KkHbXv75f3ETJQvaFMszjaaau2o3M0NfHy+PXIG7ilCpuJlxhtoOOlEJGAwgYm5rh4uk1fU4iJkrJAFUEMkbF37grgpEzbO9cQfl5MtXGJM+4aN8fb5zlhGBsBg5IxUBbENa84nqdNa3VlYbBHDMfvOmnq+gebRY4LoOoJ3EU9u3VqRhuLmQPZ3VS1Vt1uXVJaa62tIBIiGeG3ml/VHGEUGSmcAyLCUlqBPg0S08Mr3BznzbFZjrfW2lKb3cwQXqiZOsloAtrrB5SUlLrv4MFEqodzADvvIzAXHNQ9MqUa08SqC+LQsK3t5rWHAYDSkaz56z/+8e///v/kJz/5NWKPTOhCKH8HD988HLDWAlKtLkYRL716EE6xJzyszwE7ERFr07bgKru7NDXPT+cLuj89rAHq1hUUFH2nvffZYgi4LbLATTlVtVs4lUYbeu+tCUp0kplVhJgKhM1kGd6NiBha7kAx5jjeewcKDQuAbYsibsKq4g4FMfP1eoVwOFIoIs7XiyOlrRTkXuqXtpi2Ratupk5731UVG7tnN1uWZZ249H799N3Hbz983t//6Ld+9Ou/+3/4P/+nj29e/9//i7//Z//2z+jL968eH83OL30rFA1h9LWyur1ESYS4OwerAMOYSR6vHbPdTkQHtOpY7fXP27YBGELlRMcZUaJKWV6LnAyJSA8mlhzSVA7K+6XLICWuaVfmONe6ba2VtBx5DHECniPozIHcKD6VMLfWSgK0Qr1nhhuY1oeTqKaZIxPJA3sF9z7YQyxU3MU7JPzxhwAwoxDjMcu5A3WVmdfrNTN5hotjgnEcVcfpcwwo6vmUWmlTERb4TsJMtzh8hNace5Oms7GIcNN98zrP+G5Wj3rppY2Ss5sJWEZMvtJxASPw3pK92zl7c4WZxwcGiPF2BDMPpvL9qxwfO7g8mXOoUmRL23tENAy449HKrJMCmSgOS538PJjG8+Sh43oighPBUZc4DnqUUEh6REby8pCiwdoj0jlAW/fn88svv/nucjkJ6c9/8cvf/o3f4LZ+9cMff/mjH/3lnzz1LZMXXQIXNzMGLdqqYbKsa1uX8mcWaZn9su0fPj+/nLee2Dyv5pv5pRsR745MMoru4cQJeFF/I3o1mKrir0xvtP4l2XOs0dH1j6ym9ZwEEjtSSnQyGSlIlCGGCMJDghvTInjQ00kZ1sOckpcTvT49vnt8fFgX4nhU/uLpSR3n58tzGqm8ffPqhz/46os3r9dTe3x8lFXB4gRLyrRMkYbN6Lrv1DsolEiFMvZ9v+7Xs/AKXs1YdRFpEdt2NX1sp7Ul4eWynVYBLyA5n8/Yd3kbTd9oZdvlwO4QWV49vN62bY/rx0+ft23XtkaSRxGEyWtMBqpO8GxzR1JWW4qTS/6GZy6keoNsLKIxHTSPtRqzm0PEgGTQHq5gMHmWx2QpzyWAwqSMBGD8GUpLz0CGqmgVSEzMXJELTNLU9+hh1jNIS8ouMjJh4ZSQpkSUYQnSVvYENo7eiQarsWcSwpOUlEqrd6DwIgLIMt2xHtu2VT+X/kfAseqA13OIqB55QVckIx4eHmRqJx0hQnnUdd19tKtEUohlTJhue7MygZlEDS5hZdTAPXXuaBQeA7PCsFRLsbW2rqtf7WggFg2HZqzLiRUfSx/wzKU0lcuGk/hIzNppzcwIyxjzh3ogy1INlCK8QFXr9foUzb7//Nm5umFXj+xo3/ecggjHD7u7HukjDoDinPMwU2N2pCm7JwnKf5NIwKMkIGaS8TRvRMYYJ4eFJ1JJawkws2oxWBGRlKWqNWh+qNdZQ8Ia1t0F7ggqlGZmIU1msTFKiCoFj09KGhbxRFzOeBRJw7FqrrVxp4ga6hEjLJMA4SLq1PlSANHjEWWaR7XYOBkl9ZEAi3CVOkUcyyyGIabF7t3oD0SEGLpBx6j+tm+RPCFtw2QKczyVCU6QxDw1Kxrv5VdRylkYCEkiLoHTI084cnL3GgTdmO4FiS1PoAPWRKOjHMf+PP4hiYKGwM8t3hRVm4hIKYsChunQiswA0RiR85hLl364Eh8JRcJHB51Qw0a5m0WTaO20zBzbmJKIKvvi2XFklFlR8MSuE5GAPOq3ohDDylK3Kyw0njBFoHef1ez4JiVxaQBaJkbiWG+2Kj8AyswIy0KkZxEtqlFyoMQBzPgwQMgZt6aU1jgxM8Oqw68idrOtqvOgbj0SyXRL8u427yFVVOuLjrRpRKjR4BhwE2SW2W+h/6utz4MXS0jAIyNvpTVT9VlqtjwUdobugh7nTn0+RnfMow4SEWFM/YUslyxJYhkc4WSISJ+OLMxMmd33+t172RseX4camePW1EwgiBBBIjyYhCBmIdE0C0+XAgsR4KWHx6Tme0HrUR8Ro487+1AuQsw6dacGfhU8eRk12QWQxqRR/0wBJsqBqiJhZjqO+bmnjuM+K2Ls2CkoKfbel9ZExKMTkbBiyJhxzEF4xUDR8tTQTA8zBnmmeUQEgQ99tMrUEpnpX/3gy5/97q//5Dd+vD5qRnAJw4cLK4LBO7x7WloXaYRGvLI0SAMzItzM+7XGxb73bdti3wFiacmyW56ve2QP8737dj3vvi0kbVHbTQb7cQhcCUgY6aZCxHzptlsog0GE6L1bNip5IYIymAlMbujb5kOXWLAbKsP2Xp6rFU+818md+9YzE2VGHaVDKgC2bWvrmgmzSBaz8EwzW/lkkWaeGcm+u2UB25SlaWtrJvV+zdlVJISwnp+/u3pK42+//ZMU/t3f/Q//d//7/20m/df/1X99fT67kBm69dPaak/JYJMWcb3MWjM9HA5AhRljyJR3uLWJDI/KAY4eihAivPqCteQOlEWFAwxJxUiUq3IWFIOKtEhMgybkVAcV5dIkJ6WlxmK1eu37eVt1t0WEUO4mpZpGZc+ekzCfUZbCjCzrONjQRpJww50OCCoVIM6k9LHBavhZg8fjr7fWONG7B7wCJh9yYaMrQ0HOTLpKcunMq/X0jLIRqsOrztlKXViYWaNbBYTC6Q2VABqU33C4+7Zfx/HKlCCPtLSKSyWARaJVFYKSmWgKaI3DdM6Bj2nEfUIcEcR0nNczqwNVVVat/+pGzZ8YUE8axI3IFIKyznyJ6h4ZSQfDK5MnxwpAOAw28uXZMM+sJzGL8PGAUXkrHalnpICEB+QyIgiiLEkSDhZi1sjwxLqccmkgMZADHulb93hu+g394Muvf/nLf/4v/j9vXj99+fatnNZf+82ffv0X/+7jX/67bdtFmmhrsjwsaw+DICXbIsupJYTb8qDLdnWR7XzZXq5bij5f7bx3DzrvO7Nu1YIBWaLK90QOfMRsEtZNz+OViwvPnNNleXT/JwYJwiI0YJZMSqMNjbB0GIHD7NJhBGfiBmPkviNMhfpmIqJS3sgt4GuySwvupOui8v7Vm/cPr949vDo9LE9PT21ZSHhPv5qfc9t8z57M7Bm+bx5dOZswwcy77TtyAz3sJufzNQNNwSpgClAASWkd55fLp0/PcOOnhx4OhIhyBhBl/pSkhes59+183SLJPdI82UBKHKhDWDiTzCy6UZEpIkmCWTLJI4lJREfpQpwgwGutjlXEA73C2lYRYgYJsTILPBxV0LKZqWpTWnVxl4gYZB0AZWO5Lqq6Wy+7LBUNHggWYm4iGVTyN7K0ZBpD/j4sDxcRksZAkiRAXEesrKvGds3MoWGUASq64bCQXETD0WvQzXW+T+ESVnAn0VHZlhTfnQ1SDWMJAWFLK7Ecj2I9YtEVQKHNiCQpSFiA8kHQ6m0JS5QJTsnaOQDVGt9AVQ2G71d8x3yC5RCeYHcv2Zcp93QrLJGDiHSwXZhv36nK1jPTTIGaqhaMp1JWYRzh70ZaJmIRonu6aM7uYuGvhWgB0PfrfRJ4TGK62e18HDfITFSuKEPl5m52dcueMdvJ5YU9LqgtNen2myhiHrOUytksvsfntPDee+89aGojCRcApgbFEWHbXjCJ25huRtk7fR+iuzMAwMgTpvbHfV13fB2VpIyHVTDB2wCW7p5OhhVGiw+YO2eNC4Dou/fei0IwmGMAi2REjSJJhTOv+xY+XjlE3AIjMzkyldsIl75/V5lp1ZiKsHvqwsBqZ0SMKrQmx5SRyYU6nTDv8l7rvavqIgtP18S6x8l3wnGbuGsPH4/idsTdAUdn1Zo5Ra2OJu/t5B6E5dubotEBumtC08Gnv8eT35rcAGo9HI+nvh8Wy7KE9bq7qidrJ/S+ASizswHYi3HZ9VhaazHaV9Rau+4bUdVCY5MXrUsgTAqusUlFKQJwuWzLosxCICRXlavcfO/Ftr1fb0TUa0lQHquFCK3p9eViNpTlcddXO343MytZrDtvLCISUQQBYPqg8qyQ68eO5390s+63zMEcO97I8XaEOCkw1yRoCpoyjwRgnGBUB85xkZiz2TqycvA36P7vZiZPODRNPXkqlVEfA+22VP9vYM5xAyMMfedkENHalhLcJ2FYRCZXh1XlLmTnMVpflqV0XFVVdfTFatHq3Z7jA/SRCb9ZlRJRIK/75ra31qjdBsvHl7uTcOMWoELXqaooT/Ou+RWUEwtDU/VLRBgSEVv5ak7RxXo9lTAdU6llWUecdJfGBTg8ThcQ3J2l5lS3dz1YJ0lE2buBoqDFcQzMUX6rSS2JNOEk8YMfvX/37nW3y3cf9nURaewvO4QXWkFB2TIpbDfnTPIgXR6X9XFdH6ELMr1fr5eXfb+q4HK5nM9n2zYVMqdtj+eXy6fPL+fLM4OW1h74lfXtsnXmtZuvKiSSJTYcSSoiah5LW5hl37v3TYeHoCsLlad3dMtYkaj3ynK9Xnv3YWOG+d6RxXwW4Qh0uwJoupq5mSFyYV5FmdkiaouBuVz6ZFkD8Izr3mVpZmG2iwhbWnb33praeX968yRLs+7X6y6NtVQXw9S0JNQkODKfP/7lv/7X9MOvfvs//bv/66/efvGf/1//8z/+t/9GkA8nXVTJgig5cVgelBQbq27b1r0fQ0Uf0T7vjG0q5NUWG933OrxG7JWB/s2olvkAedGQWbhH99iIQEQ1bYVJlZdVxsQdjAUF+yUCoKqYYjCEUf2KiJIC8BxWkBMwj8vl0lorGOSiUnrdIOpuo68EFBS8vKBa5egBKw6OyrG1cTcHwEQkWRrT0JusbwrfwIF7YdlOp8KYxB0n9ti+9eiKHsxNF2Cv2h7wTB2a3Hn8ZAEEuhkfOqtDrHGEV7chyHcbAg8IBjJq29JQH3TnO05dzDhf05Ij2M6rZSI2T+bvpUnVgjSLRDVnb7+iotUqOp6Yu/Oklbn77oNJSERhvu/bosMBNSIQY5ZVvN9BISIKGsB9uksmj3yDhjTYkAz0DEKSKmf25M294QEi5bYIhPUw3y+Xi8piu/+rf/Vvfu+3f+f1w+O6rD/+jd/8+V/++edPHy6/IDIoL8t6Quy+n51zakkiqrZZFlZ5fHrNLBHhyG3ft91TmkH6tlsGwCFkUSIxcM9SuwXKzrpYppTE6QliIiixUyDBpaiZBY4uO18RIQZNfLwZhsJq7HBlY4R5J3CiqVzkSm5IX4UQzoLny+W69ffv+9Obp3VdNYVc4EjjBG0v/YVfnvT09vSKtuKXsjDrIhxOve+Rp2W9GvXYbduDIpQJ4d7NIrx3219e8i9//ouXl8uRGFy2DY0f1lMSPn5+flz1cR3DQK7CE1BR4gRTW04v23Y1PG/94+fL5Wovl/721KZA6gAtMlFm7rsJig4qmUnlYZRE1ViToalRHR8WUh5zyJqjercksMi6rvu+e7iUXgCXmkuVPrUvRueoYiImBnqz7oxAWin6YIBBR+FJVK4x5i4gXdpyWku+5yBZKM9ty4MrW9e2rMvm47z2DJS0DUQUEVEKk+bkl/AMpqy56ZGTZ5JKW9qaE7Bzn2zczvqRIFCxDUoM2RIlai0q67pKDPpGa41LjIYJQO/dPdb1ofetTzfjY1SLmUziTo+pmHrTU4UdoyoUEWmtzo7jPMpI60GQstbjWY/FBD9npk8kzkixSqWD/PiBYUcvklMwjCcApyI27mqTu9kl7viqU2kvovdh8nycUzmBQnXLx69XxGNmvW59XVc5ZEUImSYiraKG+3Hs5RxDSTGgts7Ma1NRZRUzA9Fue1UC3BZGsIr14jARkSBTWFKIyCnJ3Up0+3q9ls7hoWJVQBTmcZLVkzoWemY1kESEt6r4CyYwEvfR1YgILeXq7iIiY+qSKcmk8zkN4u7uUaVvUly2MzOD4MgMV5IDbOTuXibGrAdYkVlzjqGISHWBRUxY8mXba+8d4Ks8FB+BAFUJeF+l5F0jYDyPu5/p4dXHz3HYjHM3Ijbrs/VY87msZ1/sLKQRUXE1KsMAUSZ4yGndWmc5qmu/bxHRrMNZCCBE8WwPPiEXKhJRxlioUvBYgpiMzdufSGSWEH7ynRbaMeWTYvjyAPgxM0EsHOFuxszL0kQkzPe9M2WbuxTlhMVje1+vGxhHzV8vwt2RXDpN5bjVPTySQMm0tDXCKVJVaBDzh3HXUboQoWryfd+J8uHhgZmv16u7Pa5r5Vh15VNlQA6afd8dJaUqXFs3IkahmC7CmZDMDPKM1pq53yDiWmkWzPyIm8zs6T4bPUzKPLAoVdijxpg1MifM2imRKYUgGz0BIkZNXiI9I+t+S90ls/RuRJlry6/rWgmfZxm/S23SKC8skczs286MRRso3EvGdlxzjOZezA4A4LGblXpEErZtW3lZlhMlEqOPUIks02BwVGpbUMyIAHJZlkzfd2vSPMP7zswLrwSySNbGFq2t0sYuJqJlkdYWdwVAAhLA0qwHSdPWmh6viSspTHb3ZDRW4VuhW8s1iTxTDpiGu2VERHnx1flUZ4OAM7JcbZdlATBstISUOaeOkfWuJdrkOx0urJPlXn9it6IzY2kNCAaBxZP3fSclZlhS750tllVevX589Xr94Y++eHr7YL6xy0KniHDHtp3P15ent292O1/OewTcoLKItG27fv788e2rt+vDE7OcX56//eabV68ee6D8bz5+9+FyfhHiy+V6uXSzZCpeDkW6WcDzctn269aVT21ZtK0Pi9SZ6gFgt7z2q3sX5ut1Z+Dx8fT09GpZ9OX8ebsYM/Z0u5iIdM/eO7MqSdWCAPbuzOwRzPz4eNou177Z4+MjEfVwD8CiVFQbSzXOdvP98zOx7ulsyU0LNfB8vdjuLDg1BVM4ivP/+eWyh1+7ySIszKJ7uPcdQQ+iTSXSiXqjsP3zL/783M/7r//kr/yv/jd/cHrQv/f3/rM//MM/DGdNPCjv27WJSGtRbXYijwi4KEk74a6iyMwSqC/Jk9pu9f3Lfp3V/oAHE6d7z6RAEkrkk2vLFzKocGWqipQDVEyIdDhAhFa2XmOWSGVcET5sbJA+gBEUwGy1OFQXVe3dW2u+9UA+Pp68NvK6MsnlvD08PLx69SoiuhtTQSMlA0S8rqdMsgi3JBKRduysHJAi1mWNYW1ySxMtTbgMQRrj1mkNYJ/HR1vX2nrjX0XocjrOZS8pZqRnkIouS2WWc5oxCBTn8zPAuqyRcj6fE9nWhURs7zk9zPfeI6odMFg2njFNMG5fNNQGZgdNJC3X5aHiZCKJK+Ww7ANqGIPtO8e2RMySpSYwZSxrdF+VWQRKVjKAa99VF0DkcIWMKNxc5Oiy0eRCM/O6ruW1VQP8InFnYZkDU83BDoUwIhAgUzO8UsdF2rIsAolMt94jObE+PCynB5Yll3U9PUI4kigdLEn2/Py8Xa5ff/31j758/+Gbb//RP/pHP/7qy7Utup5+9nv//qfvPvz83/7pd+cPzBAnsKq28/b56fSGWTNpWRcROV8vz+eXyxaPT6+X5+3cfXl4vOT1vJklHGREUZqrBCrMM0tkEIqJejNfiBrgMwPEniVBmDnkYwrSJgxFcrgIRJVBizRK2L73vgcig5Nb9LABbNwZyHSkE+JhUYJdLL95Pn/57uMX794w89PTkxNfLhfy2M7X7WWDIx3PH59fvX58//6Lh1cP68OihIXo9OpVLHJVfHj+nH2nPFm/vnw+e3Qm3bptu39+tq+//vxnf/rtvntrRW7OZZGlNZqIrRjIW3P33Tbl1kQtOoKZ1UC8rNb75bqdL7sFradHiAqpZQxST5mSsK6nRoO9WbM8AQsywcTSdvPsu5ZwNKjAyrXLAmkeSErmZHFQEHczMqwrq2qiEPmjx90jq2vmSL5Thpemgdz7SPW4qZcEdoEyMsMh0pbT6pZgldaYYLZjiiwShsDKyBiHy+lo6NRxn92JqEbNYXtmWqD3ntDT6bQUqZwzzeKGaxuOEsuyJAHu5LfLrg/vvbfWHh8fL9v2/Pycma2thDydBEyHgF8ll2Dbeq+AYO7FfFmGoict61pVKDCkheu5ofjPIBYRlog0s2Ud9eqyDN0vERFplSZVAVzG3a21rV/Dsa5rYZXdRn6YQx3GibgUoSuqiJTf+ejLq2pJ7m3ny+l0aqqHRD8z997Xdd33K01Y9VEI1DyMB/fHjkEaTfvVQbiY5bosLY3qMrYxupesXqm7+9RLbK2JNPfuN/nBG300AsxSA716EPWJdUgcBxWpyADZAnyjM41XS9xaW4iu+15RvpLa7uaeqhLRj/J9YERvDVo+2qiZuXv07qpEVNgkyczbdAuoHkZMKzwwuXsxII+ObE3bsrxDcnBQKwkWiBsKh1bEkiokCcURzkAJmBRHGcMjeR4tY4w53/SoCoiobiFjtDTm4z2ekmcg0MMjy39+5ECeADMVwHU+z/vKeWQhdENXxhDSKM72HEHPOSRNoE99GGZPfZSsUx7j6H3cz3XrX9C0VnJ3iuKCUR2iEUGzAL7b2N8bKt6/3CMnqH/OCA+f3pW3H65bPyafREeNTczch4rgeN3H9VczYihtAcz1f/AEwutDk4aTBIETOWYTVOX0pFsQ6cREpWeNSGvllLKfqk5FX8esXibQOI+dXLU63bXMj8BHk/GeWYhEzcwSDDxeKEZzrkapowg8Duzjzc7vzGc7BINv0JdMFyIR8m5VI4+BKO5cqGfnj0fQHz3LYyHxYQwVWdCPnJNqmtiYai6Oq6EAQJyRSHDEmEjLaFh4uO+7nU4nKbc3EYq0vZuZNq5UNTNF6YC+lGr0hDwefBtGDAp3FNWCqNK1w1XrmLvGBB+Wa2hrTalsFW7vTsu34G7Jme1EINXbMq5G8x1zLwfU5SZEcbz6iKA7i4K7QHfLjI/2FjKPFhJL3HZNDMt0ZQ5wICOs/OcAJA8TYxHK9GVlbaILvX336jd+60fLowLOku69dzqd1gmozvPzy3cfP12uW2urctvy0rtROz0+vf4M//Tpw7KcPInSPnz7TYR9/vx5v14cGYnzy+V6vSZJkkSgu7mUeTTcvPeI7plU9MHS/6jgwo6yzgyWWo7d/WXbWbcW1j2ccDWHDZiS6rJbZwRJqVeImV2v14ihbJeZlHCLy/kaSJJWnZ7wuGz7JVynMFJrbVlX2677viuBhLfd1nVdTmvtyM16EgHcI5b1lMBusahEpmEn84hobSXLYAenu1vfu22e+md//Id933/rt/7qH/zt/7id1v/L3/vP/sW/+BfPl+vp9eP6cBqlIJOUWYg75knBhwZ4FSdZxwoAFBjiOGJybK4xeStk0CDLxC26MhfGOavciwiiY7Q7p3Yl6RxDoIUnR71+ICc6FBHCLKpg9SzELVUfpJKe+vX66EB6xtPjK1+WkrIrXkAxhM0DTMIizEki7j5cHlhEunvfd9b2cHoI5PV6LfXUZTn0bhCerOXVdTu2fPoIHBOD4yyhgllOMZjbaQioagXb+y9mJl0irLVWqtq1Zubnt53Z9j0nC2OsPWbVQcm+N0QYaOdyFC7WfiUqdMsfchKAq3yNuzERT5lu6050yGgmUoAYCglJ4Mq2Me+dss7kG6yXJsj5RoY6DvQgCjdNohGXUIQyAAnPlNpiN9ReZK0cPprdmb1cjinBTNoWImqNlzVYHKnSIAwSEtKkzHQKEfn5z39+PZ8143E9/cs/+tf//Kf/4u/8L/6AiN798Ec/+dnv/Om//KNffP7w3C+viEVb2tZ0HQUJcD6f7bI9LutyOn338tHdHblZv3bs5t2iIywyiIKLilynT2MZY+RCv5XGK3MBWEGITGEQI7zIXjGEnoWIGcpgyvrPqemiixLnsnTbwnpEwJNJgmDpZmbhEV6+m64Ix+YXSnw+X7/79LKIPrx6asv6cjkLQOGN+NPzcyNSya++ev9rv/ajd1+8fXy1ro8Puoiua0ZeP1/37UrJp+WhJ13i8vnTddvt8/P588v+8dPluw/bt9++7BtEaF1Xpg5khI0hlUhjmfmb997P4Ytya2sTgrYUvZony3nv3306g9qySgblFAWS2eKpuSGyVBtHENt6F5HltE45mUHgZGYZdorpmTHqGaYc80kwCWR4rc0dlBlJchf3vmetBKA8HZIE5cnClICuCwX1cCQ1HVVDD2/BPvGlmVngsL7tx7oCE2LKeaqKexUFw1JoZPVcTBaWRiUEHklEjlEiMTOckSWkRz7tJG6IsDuUByYWslw2KRPWy8SoAmNUR5DZ+jB6YGbP6dAWFUBuYL0jOeQp9cp3LmhE0tqYHgNQwfGHjvLwJqwQVBd2XElO8WdVtYzjfg88DsBtWTCwHt8bQR/lWGV3c1Xc5GmPy8YEFdY3eZrhHbFriKTM+ouZW2v7vh+Pt95mHWoq0nrvGJ2sVM3G4g6MgFiTGc4MRyDjaX0Iv0GXI4beU6mEI5QZ2jgiSuSgAisnMbNPFFU4ypepUl8R9gAH1pUdHoGpU85HHT73FTFzWSv5II/Bi8QwkDmDiywDwUi/UhiItMCYbI+pnFAEJQspMXFE1OyUQKAkKR37JAgzGBkhOaHwSCZIOR3FTHyRDHhm9l4ZWJVU6t6zEMGa7p5OhY85TuvjDbk7Mg9/P2DQnpFgLrHevK3myEEpnEzlgE2DpMKLDjsNjG3AR0U0VuFYYWPXZXoygXBoWNHRBKk/HJxITlBkggvJWh+GcXqgWB3HQXvbY/Oys6bHE2bNd32WHMVUmQ5wECccGA8kh0YcKmw5khNJBUpi915d6vqIcT1EGUik5eAzJzB8krPm1QXuEh7IAjGzQsSHF7qJEmlmyMxy6IEnjt+TRdSrhhiAhTHfKxU7s3D3StnDEZFlVHsEpqOGLHzz3O0EwGIkuDhm6cV5JmLm3u0eqHuUT1yw/6DMHIzwPIjgwZiOG9PXFyOnKRpCFW+ZESpUZuC3NGegamMoWIdNkTkAwSwM2HirHjEWz3zUtZe51m1y1nUUGCJnzUZEKovqApBbUBoRBeAxWpsVUnky4ipAA6g5P4CIor7XZBmFKagFXFCN1jQz4YFIoQH1iumRS0Qs5cZCJcnoaeUjx8z1RkoZu8LLQKsnJiGPkjmBQAmxDrpeZlpaQQ9UVSrP8CztmeNYknbAvGnvvXDaEWAwoZSAmKfvfEwUdA0zdGmcQ/BjokfC3VUZyL1fie31uzfvvnh6/+Xrt+8etZHHJqLm++XiqrKbn7drWxddqv1Dtvc9ephvW9/d337xpUhDKlNL4r7tL5fz9XpV1aenh4d8uJy3T59ftm0jlm6wIMzmoBvtDnhQMkd284jEPtSzGIHInqnESFIWFvLYeu+8XbjXgF2uvUdY5RaPvNTG7xaRPdn2fT+fz0gmTt/75XIpSz9VZ6WAS1MhjnDbd0Q00ZXkct09oO0ByVlSveA6NYu/dN03pIuqKFl4W9p5u9ieqZUfWIYFck3dbVtcVNK9W+8JFj69eXp4+fT1H/5/95/8+u/+tb/++wHnxv/DP//vL9ftcVlAEgW3Ec4wGoGlmm950C1zbvAYEl894W7p7oeuHgAWEBOcI4KYq+0XPnBD1cMZoQ2lx1wq8VXi4K6d5XnXJ51VEhKH50K6O6sAHuFgYZHw6N2IZO6mW2jKTHAKc2Tu+340Mbm6opFEZBmU3ws1R9KDyQzKzIpK94I3GIQXnoMOPjJhuuPyVBNaRESVmbetx5RyDKSH17lwfOBRRR93IW2lwLZtlkHCCdr3PdOmQ2SCqK0rWTdzCiE66lXPyCwVd49MHxKGdzOrer8ZI4uo/wXUbH8UwISh3VU60OUxy0SJoGEfwhha8Tfe04gW9f+GfNWtiVbnb0mg6IRlxhg3s+dsengKM3Cc15SZot9rwWMmFQNolChjKBERFVlXWU+yriQC1sdXT3p6IAiELTwiiLsQKPPycv7w4YM/Ptm+/ZN/8k9+8ye//ls/+xkTffGDH7756qu//Lf/aut4bKq0nPhJQt38/Hx5eHhYVCow1t2V4WBEdA+L6Ig90gYzE17SkpGQJOJwBGVdOFFS2TsxD0GY2l8gzqySighC1GRmWkwKcEaJXzVlafqABWHu3T1FHy3yum3n7er7VsOeIHzYDYFdIIn+Ytf+0oj1+SKqu9vD2iiDPJiC3ITi6w8fv33+9OrV4+PTw9u3T198+e7t27ep7KrkxOCMiI7L2b/55vnzy8t3n86fnrdPn7frBX2HNCxyOj20btfC8mUwQhASEWmeWY5BtkdELCRtacqiIbLtHrx89/n853/xC+NTe3wdqBVBU3qjtMczzKNQhwIRKRMjIqGlBZxYBKVvlyMH4WJhZdFih0p8snmKiIrWSCIwljuADPIAgqQVDIEPGafaKUCCpmFjUESW+WsNAlQbkjfrR3jBDIcMEVKXFB1AtjQreSAZlrGZhEMBKks5gSkMRbWsWjSTSjP/yM0iGYLwo9tCysJ3m6iK4QNs3EQXbSBx2y+9wzKDSus5Zl799PTa3Wu602IpoJCqhhlPTHNOoquIhPcsDpdIHOKgESJjwBsRLDc0u6epKIgOPRtiEKG19ShcAWptkaURUfQuMmUjpBFRKRRUeKj/N1OY2qWlxZHgDEvKFEAKXl6upTNjr1yOWSMicsheVOA9BjOzzq/zpc6FUsFE2RfTbBxrjdrrW733ckrxKQo9wvFU3CGi8DJqt+NfJcIz6fsTuZjPOvN7gy/b981qktNUNURimuZl5nJas1/rJ0VkSDp9f8hZWewIzQmp+e98AUSFHBzve9hdzxlOZHBjgsxzsA57YfbabHQrR2lO1Ktz7IEAJDO95ICP0zRKIr/KGCWSnMnEbBPc/LXqmZT0eWAaQI6bvJ0fYzhS94sx0h6bc2IFiY5DfQ5gZ+5+d5TWy57RYv5KRMyZ0yhKMTKMEKEItqmNfPRvymf4drzNHlVtniMzO5KGAxR6f67fF7nMnHfur5g948ykmcQMK1PgfmmNKT3PlsBdfnMsS9wtmPrOWORcBRqqK4lhB1eSMSBKKe64UKYQZZqbdwZNdXV4VDbSQMUiM0wfx3qwRwe0VvUxCjhwZdWUuS94cExKKdM7zaKuuumlNHS7nQFjKfZ1ha3boPVXnvkIQEfHDj5f9LGALRMRRJyDEHM3qa5ngruXC2DIst29tZl30t393jQVjrd+hJRx14WTByWnzq2HGfcdWdOw2qhDCZZo32w9tYIKV+rPtwmnzG0SB2y79nWZstRjL8GbWs85WT3j0UXu0VV1WZayTHD3shU9ZP7yvt9wE+K64SOOtXfk9NWS5IRl2L4f26r6UhVR76Pc3KFcXnHHpTZRmW7YFkPlvsq1X3mtRxZQT1uVRZg449ytX1me3rx9WB/l5frpSdeMaO3Jd+/bRkLXvr+cz+20Pjw9loTHvm/7vpPh2veXy7n3nXV99erNvuWH7z611lSXbv10OrXWtm3buj1v2+VyYeS2GxNrW4Wyb7uNpqikhwUX9jAT7kFJzExwigxORIC4qRIyel56j/CHhwdV3jzqsED6FlbuIj38ZbsCiMDeXQQnWdG47/u+97DOzMtpdfiS66INMeSOwBRCjny+nMFajX+Z0H0zs4xVW2GGQQQRJnXEddtpJ24K4omqg4MStG++U2QYJamKChNMWS7nb//kj+2nP6O/+vt/5euv/8aHX359/vDh8/W8LMtaUJHquzFnFX7HrLWqOyKissC8QQbqqwrg+on7hm8trUGCuNFDBtajCqQMRKQolz/NfdicC3tsk7nAbs14JNIj3INQmRaBlmVQT4lpEpIGPXjr+6KtqBpLzSsAypSmNRFNH8ZjRMSgXmFT9XQ6dY/z+VwDkHVZeu9mtzktEbkn3/neH6GVaMgZxJ0ZBkY1q8fWq0eHqWJQN34jnoyBTGk93HLKivMvLy9cxgI3fA1ndbvwvXL6uICKCUe8re/ISO+40keenD3H7SKLfDED3UrHTCxuud2vJE5H1L0d+lOfYP7P7yEI6uVWdGUu14+YKI1kJsqigdPxye4+2cHVqh/fz0BESFOAS9sSLFDR9UGWpT2clocH4cYq1+v1chnc1If1FBFff/21v+36/os//MN/+ff/wT/4u3/37/7wRz969/7Lr3784z99/fp6ff6074/kgnx8eHq5PPfrdlrW9enVw9KIaNvPD8t6WtZVG0b3hMoCIG5+GqPRnATP8MGjIEJxxMpeBHXlOUwfq28LRVFkqey1VESQlJR1z96DmDWL4KCygliXV5Z53ff1cn65XspgJRHn5xfAg8DEkblbBuUe3bCrsuqSFn2/LspCpMKX7l9/9+nr7z4sK7979/b9589ffPFJmranhzINMLOXl+vlvD+/7L/87vznP/903bB1ICFUSntu+yaaxGhUotVB6WHebRdZb7NcZmYN4npoQXzZ/S+//vbrDx8e3/xAE8w6G043NEpJnHsM9Zax7pgmI/dovmQp3NbDQ4yShpmlCqegG/h2toF+dZ1jGKocZd7IVSJi+BDdomhEMFftxQCCBtq/NkNOvGT9d3U/629VBlLy0du2VaZ6bKjqdBNJBDyCWYd8CUAQYgIqhWYCzUlQamqprxxbFUBZkPi0iR1JFGBm67pmOrykyAPHMIBv8Y2IyiZXeeinjkHfXTwsXaQ5ArxxH5jHB+YQm5ia9jrG4GM4XAhk5iOzPaJWfVTNio8y8IiKx3FGNGzwAGT6MZVtrU2VLCZKi17Tl7xVlIf4glemV2NL3M1CKmWqz69k7/5eaApWM7Nmggp7ABQEXIgANjtav1kY61oo27bVvK6WW0RsFmYecS2tM2ZO0tIME9UYB/BsXhIJqN8hbY5E2TKkBsSzY1pj4DsI4mg7FlOHhBfWWsETJHxEb757ysgsveWICNtDVFXasbvd3SxUaz4zfi+rNEqqFNyql4usNXmsthimSDVnk2K0mzsRC0mPm4nzkNxgCkIELDAb5CP4/srX0XEYD4qAARBN95KjgICO2q9+TEelAyATmcEzoE/SxP0+A4DIjByzQc/MKP+hqrkPw5T5a3XCDYpt/emxgm/giukhebw1KjJyfUxmAiEoy1muLIeZw3rOW2ZKwvCJnbuLMpO4qBvjTQGQ0u+eTybCmSkp69pqJk8BIvRI5RyyQMgIJCBjApnEiBLZY3By1BlGACVRdbxSiDyoNWUdRo4xuhhBRM+XMzMvMpovquo9juQJExogLBNQdpNpwXBunJB4AsWglM+oHapl/B2Z8CGaFgWtqAeLWayOxx5JyDnMGesfSXJLZRKZ5SmWKKrGoO9aliQvC1Wn0H34zY5ZQb0RZo4Skh3O0jlOnNq6ZY5GYzQ8QMs0qgsAmZJJSV7odWSkByWJNF3ay/USEQliFpUmLEgAHbcsPCNuSaGIqCoNeTxprUXatu+SSZQRQ4PheKT7vhNRSY4hx31AOKfI/MFfUKES9wFQJkIAMylEwSxtJa2jtLgRAy0oZbWHIGImZeLIyCj/LZnsAmq6BIeZPbRVRCBDDDYzLTrAp9MJomnFCmZWKe6932zeJkYamZn7VqDEWmHMzMrkwufrWRuWVRvaehLRJLZINy+Rb+th1nec6bJv122/9v7td58ul0u5rxKRBD9fni38sv1SZeXE9RLfffPLh6fX7969W9d2ubx8/vzZzK7XfTf7/HI2668fG4MD6H3fu3X3gQWPZIQHqTKDk4RYSWm/PvfrVqlTEzotTZn2vatQhOnDSszBIGJpGsH7ZgwIubt3L4CNsLYEpLXldOrb3nvfM8+Xy2XbT08n7sEoZj4xc0/4bm057S8vWzdNjQBfe60VInLvwTQ6g2bJ2VrbN+vdici6s2SJwVdxQqyZsP0aRtqYk7s5cCUOlVPG9Ze/+JMvvvq13/mtn/zN/+h/9of/wx/96R//qe/b4+Mpeu/d28AuRWZKMIDhZlA5SgRP80YMMx06dDiJM8L7gPWCiBFBgBBHjpA9xCEihKkSwfL5ICIWIMIyy9VNplZCDRPoVlpHQR2I6VU7bdbNnZRZmBJZvGJHaX6AqGiiRwlNwsIpQGstJ6qQbuyZG7KDiCItb9oUAVQ3bGROw9m7vkQrLjgOfexbI0/Xlpm1d+ou6r6kLfesHxFJThaB3X3wdKlKJrMIpEiCCcTulkksjakMVsjdLRLkFm4BJsmg4fY5dKni6PAKvtcZZ2Y4iKRIIlNIDwDyLoMCBWgozRT7enKh74e9B4dlYGBqgdw+BBja+OGZKe2enEy3IqJgnJWDYmTqzASPGgMTUQmeZd3hPIIoQHqL1afTyTydOIVTmKTpurbHkyxtOTWVBUy7EThHzsa4Xq/b9Sqgp4fTBvzjf/rPfv03f/q33757dVp/4zd/64/ev3/55hc9KVvLiAQ/PbxalqWp1tuvPmZrtXRzULGjCH+W97o74zwK94wkqqTmcORGDTWHmdTRxajcTaQRokqfAg8jRkkQEWZ7piACkKXpsiwsoYWUQFsY1yYllfz05k3f97AuWZg+Pq2nSIe7kCA5AgllXZSJOE6v3gSl92tb1Rwfvvt8veystDzq+y+/fPPmTUKEtOkD03q55qczzJGEJihZWkYIu0pqoxPrSbigXsxD23qUmqLSFtbmQX1zOtEe+c23H7759hPJ2tanbiELNSYajfmYLbbhlbrIDB3EqsosvQZsA1OcmTccCpA6NJ/L5b4K69I7GKjXSGeU8jEQoKFwDyYFx5FxVfw++A7JHETcNIBEkgqSbaobqA67yhLDoZmW5112XXvWMsxsUK5UqteQB8ZNJBwgF1EQ8VQLDXgCNHEZx1Aq4EDes0QBLMrB2NMjKtTzCFqEh8cnj16J5ZTxy8zyah2XKnVWMIjodHqgSQ+kObFw9yaLpc2R2U2jh1iJtUm7lTkwIjqdTszsmdEjM4WFlEBc2RIR3XcKjlhKd2q7EJbKVDMzfaLiR/XXipJew6+lIh55+kwmUckgaPqjztdKNNSLAkbAqoNaOEsPFOctHEQwHxTio7uhR8NmngoREgek8PissQKyOry3KxCRhWmMqoHCl8ZBmLwzna+i/Ji3DLKQDQDSsixp3cyOovG4JJqdnnrZPtlBxfiznHDpsUTHITpUeSeaq74ciSCAMti9Y8iiEkEJnKWAkSCSnAlNXYKDkLfnIHKDFg/OoVcxmgWSrvKg9GBpDqiPrurRrkiCzwMpb2cOMrO+Xypqhxok3WkI3//w8bLvvwpHnUmZMUfBNQGt+7LjqR7wjMws4/uR/RCOOFjhrCIjzQAHQFRrIh3TEAgsxyuby/QWRCoEHNq7x33VkLPAGiP6TP72cWu3NU11U7ddfb8l7v95JgF1+5JJme55pHFMsddmiSgbuUDBAwOUqcStSfWi0jPSidgtwnukpzuziCpRhrkIZea2bdXHqvRxcn2TBzYeBab6lRbmeI/AqhoRHuneI4Zq66GjOFRaMJpYAPepAVxP6PjMweQbwwe+24zfWz888Ag8H+b3xhTJKayUoxlxWwlTDDAx6eV3q5Hm18QWjHchIuMAmIs2gXBnlKdiZk2iMwGc2gLmbu7uVu2PIGJqrWV69V+ZtJ4zZgQjDNiCqnqklMiw2dQ+ZQBMdWiNOMh30CBWJVAQCi9QKaaKUE0C5nNhUmIiEWYqQdz7tLIuplCdmNvqxlsuO0FPd0/Um71FLYyjaOA1MsFNmbXm/sOqvo8gflvkYy50N/i6i5kR4WGi1Pu1NXn3xZc/+OEXT69Py0q8kKcR0eVy2fe9FM4DJCLX3T6/PJ+v27quRhwOSZyvV5LY+s7Ukbzv4W4l2UrCz8/PZnF6emzryqrdIjK1rdavl8tlv55t3zIMHhm26uoeQZleQ0gCooFetj18p0hKCCMilkUjYeZE8EgDJRFEnGDhJGzu3RxAMrEIiCnZPS9bV830BIm0ha+2+86bRaZ1AqDEECkju7UtZUVzSKSo6ml9TPEg1AkdEb138z0i9n1HJClHwPaeRbNI+vz58+n0KCK+ZwSBJEER/enp6XJ5kRbC8e03G4DXT0+//1d/D0HPzy/ffvvN7gamWnARcXBKaLa1YqpAH738sR8xEEbHRjhOhLHpSAqQfGz/xPfGvPWdDOK7xvSvxKi7Tf3/J7oSUdOG0rABlXJVJVbVFUuCss7roXLsAHM1k4jGkIeGKNcN+VXXYGa7dSJq61JyLH3KsN9fT8kU4Y4flBOVc+Rhc+Yw7nSKFI4bvH3gUNWsp30b4famMcVmckw/mJmfnp7osA52zzKrVqKQKJL+/IQs3PhUJaVjaFrAY7/dDtPRx6fWWl3qMTAoAZdMTA7T7e0QUZ0XR3X9P35rNFX6Z1PjezhzYMyXqEa4CRZGIigik/NXEQrjM5NEmSJjDodRQhXI7mYBFpa2LKdVT4uuS1sfHt88rQ9PFFTKZJiNAJ+zpvN2/cUvv3735u32y1/+w3/4D99/9dXf+Gv/wfuvfvDuqx98/af/mh3LKrkjPNZlEREgakIiS2vh8rIpSyu5/plvsIjP26xASzPhDAIO8CNAiaCgJGHJ8tms2rGwI6W/nVyI3Rl7wSzujmFoQEHpXomfFXVoZda1PSiHL2bmuwPwbpnZlCOwqrx+9crdz+eXEkPip1cidDqdhJIof/yjH2Q4YF+9f/v09LRdn92dxd++f/zqqy8fHx8vmzEtu/P68Cz6aVlfKKj6/hkgShVqyiTeFE2oqSwqrfC+Qh629eti+ji6q+QWPQLcP36+/tlf/vyy7e++eP/46vWn8+bddWlEDsJA2TETq0gjaqqaQ3yHVBUsNM+v6tINsl2hV2bG7u45qKGKW8pNv5L11WqZqm9AcjWPbkfhsTyBihjHe6/dVKw3HjaTjAnNBRBIs9FjO47p8sEZhYyO2ItJutytdJiZqBC7CgoiHBLlOWDF5aFVVuSDl3d/2aVZUwVhUa4iyVzmNXPFLkx04Xwst11c1NRB1Pt+DKc5J7wfmfzKwXHbLMyqOhKV2yOqbmZq07rIakq6+6/UJ3RrLBIninBIYxBCx74Todojx5+OyKLH1kWq6iToHecaAbfndgTkipYRUdmycCm5JApiMV/9gBWEF1D+SKnh5drC4pPkTdJEULNnIhKQZfTeaSb6zFx6p1ZvgtgKt5nk3y9oa1gBoMZjlSnWn26E3reiq3EZCcy1Nw9vVMPgvjTKJGKOYhqPAw8Z40EImJlzjBOJwMSSSbt5t84p66muf2DKM6Oq+FL4o+FsfvDXiyUoRFLF8jxNKXwusiAzYxISRg6DgvlbHHCPcdecbOGZMRtYt6/MrJnnOKIqWBNJFVGRx4aZ46LRf6qG1mBG1Y+xArc/cCyXGRO+V/CMD5ye2nfBI7UC01Dtqk7ObDZDxow4a2iWtfsyk7hI4PXjQcwICKYwUgyty4Fqrlwg0itLGyoJk116VP50BBEuyFzcQallCF+NP0lE9WaEFOUdVygEeAVZgotScsmn5Xze9aACQM2/Msd0OjN7JSmUwmWZmJlZokrpXrDioCzeCw15TBKRsq37lRbGfdA50p1xLoyJuohI77dETYtwxJlg3ywy8f9j61+aZUmS9EDs+1TV3CPOufmorOoH3gMRChYU4Y4yC/73EVJmzxFwlsQIwSGAbqCrsirzPk5EuJmqcqFmHpGFCWnpunlvnDge7mamr+/x8gTX6TX/6/X5qmqMzkm4q1Q4+VKm5sRzxaS+R8iCpmD1bqaemrEynjOhzHTWMFmmVUaEA8xVTohM47RqARAQkeEja9QxvYJm8DOzOiIqKYlwRVkxOOV55D3PPngfsbyC2XsHo7XWR/HG/Szy62WEgEX0Ebba3Wr6WGnf7ATLejR18BQ4pTpuK5Akqr6mTfLhTD1l8VVi+Ku2YbWK+JLgyoISVQtJrehDFWuf2CHUZij3milDkJnpsSgVSyqpjo4yGBpjeAyIJ+LTp7c//M3vPn26bru0DY4pJfXx9Zu7S5Yu7i7WjmNE4LK/vb29PW73b9++aKLH8OMY49h3+frl149bJ5p73G9HUnrvNN3frq1t27aparp/PO7juH3cPu63b9GHIKXo0FOcKYEoodvMvGdSLMZBERUCGcIUIni731X57S7qh3vXrQVxHMdupU6pIhIsyDoiQcjtfuw7fYwcTibEjDiOY/jcI9tmGzdjCVQeSTgyMjbbtm2TFFPtcMRwBD0zwqPDRejHMUg12zI4epS3s6ffPj5ijH17KybgPVNGJvLRP5vZfhXSb7fbLz//w3effv9+af/yX/3zXz5/jv8t+nE30cqizKz6k7WvJ0ijyHFPnP/8G7wUijIBO69rpv58Kp3M9pOILHrBXMZVdnK96TxCzsSArP7ChFKUwORx3JOoivc8viRRSI0qgFfbDpnZo3v3DRdV7f0BodlGYYx4LezPQ7L4pQEHYk07pyVy7abXc29FeRa4SF7oV7/h8Z6HJDn68HU/W0kY1lSWEREsF8KiKHtMxl2xdhNLTYMAxZoX5OPsDk+27HnG52tlPgEmfB7ZOZ/La3djxgIRoXHxaldXPSYsrrAnXDBInuh0PJueFUlBypo5n53lug8xCToJYFRzuVaOWZSFTAKZQE4010QoSSbSUf9/GcKtkXN9MtPKMgMUlX3ft+vFLpftsm+X/e3TJ232uB33fn+MRzBopDEPUKUZj+P+p9vHcRyXbf9f/v2//8Mf/vDp2v7Z73/627//u//yww9f/+kfvsSh/RAz8xQEmQWvqVVkZq3Ztm3btsltMk3MLJY6WkQARQGVIKLcOVijwzj52YX2WnlGBe7ZzpDJMZopilLNGD0cwUhIMJnhchzAMPiuKqIGbrrZviM4Dnd3edNt296+e8vAftl++umniPjljz9/+fLlcrm8f/+dmYlAm729Xf7w0+89Hsz43Y+f9n1/3L4ysV94/URrPDwePcxMxJCayYAGcgDwiAwV1CC4Nd0UpjRhU9t2a03PvCUiUhgQeGYKRO/H45fPv/7Tzz8HeLm+gyq0nEJ3BQmeaTMX8DXWbIFT+3cOyTC1Q4gsIGeeVnBVxZ6Q/XzRXq3j6reHG0X0PNkwiY9YCzrXRBoiEgkud8AAxFREc4kSr40zzz8hTbfkyjEySTUTs7m6mILE8lItIagok5V5Q1a7/9wO81RcqGYRqWT/VR9emN5HNbbdPbJSI4kc4zjcU23uL52iyotukB4RnMd75dzPL5ULDl37nCoqWEfEhB+D1TB9NrCgpq35qi1VtfKTBBAlRvU8sp5NsZf8jKZSJqCRfYzK/6eN4xwC0wu4Oh+jhHsJxFRLk1XHJd2di6CkqsDTSPVMorCq7tXay/PJrjuG8vq1aoeoToyPUsYYPjwRpnrOKrUmD+7IvN/v1Qw4D/bwqX87wqu1eUbfWPDrSmeHRwSUKK1zVZVmSTyOY2SUDVJm6rKN9SkuPZe+Z8qz3UYyI2Kats+EIAWQWbWizuQ50yVKbmeMIW6ZyRA1FVoG+ghkeMays6skeEUIWRugUNSeqpFgfa5qC5+PDKu1AJmLIjIlnqyDdPpIkmoNALPEtpLUpWBVZyuFdKQAI0o7PSBF3dBcANdYfjMRYap17SLP8LMOBV8BNQk8YVXPV7zio+rBlmQlikfNnLaPeNqMV4F6Np9Kd2POgqMgLll5k0w5UAoY7lgcg1hUTBHf25ZERnYfdRnaTIQmSqlDzbOEtYqJAiIyGBmJmBubwhEzMRGRFagmkLUGvKt3Ze49fMy9JQQZkSpaLAjUqJZBKoQ5MpAiSrGcCyIlg4jexzge+75vZtLathlTKkkD8vF41JSgohdJ1WdCWfGgALpgYDVuSIpYphfIOTPdJybPKAUlyfRRQ05U26aSpyQpiZXw5eqirNRE8VrxnsdcJXj155qRZiA8meOV61U3sG1lDJaZZW0/T5mkDM9kyVwJmVMIZb08GB6ZriCVm0nkPDJFxCgn+Op2uxXJZWtt23Z3L35C78f1ba/+aO/do1OyiVz37TgOECUpXFpZrbXpCTxnEaV+sRrMmXUEL7JTZuY4etu3otC4e+89BaZbhEMoy6Y0k0RUszgCiRDKS9XBcRymmxkBqYmEiNhW0rgOza01Wa09Sk1sAplFcaRKjnH4mCCiKLb2U0myttgJdDyTg7EMXWXil1Ig4fHl669v322/++nT9VO7P76E8I27s48eEH758gXAptv96LvDtrjf7/fH3XTLPcbwx+1OEsxHvwf8/d0eh99utxEPhmjbt8vunt3dR373ww9mJsbHx/1x72SGRx/Rj2GCzVTUuo8+OiKHQgj3hIMZ+y4jZuYzRh95PI5pLW8q3W+UJPNyyb6l99ElFNw2ozQfh3dXhZmBgdDL5TJ6/9q/YsQxfKXwyBwVpKkSNPcgFWxF72j7vl8ux/3+8fgQS88RobXjVRogQRkj2raptMw6N+aDVtkzJAKmNgSj9JyNb9s10m+Pe9NtM3i/f/v1z7K9ff/D9V//23/1y5e//Of//J+RMdJj5PtFPQh3TjEWJYlkn6AekDGtyyGSkwQETPZL+UxkoVsHHDBmKcBEIZ0ERh6RjEwVo8CMzqQE06AgZi61Nn5EkGnaarF5BCN6egqbbaI65iKcyaWZxWS5ciwhDADRx4iQBLbLGKOcilW1bUlSRQKZiEin1Dk0Bbr3fR+Rx3FAcrmFPVt7Z+CMHLnOE31hjskiM2dm+GpyCVtrXA6iqlqzguo+rIhJQzWX3d1v91uSohO4Md8fkQn37h5FYjwBikaLjHLEIDk92IFwP202C6eWgLvvNYJOQpE+n6YIPPIEJkyeW4/VyEh4QISRvqBev6HezKNYyTw7jCUcKktDNXy6DIITA7V4mOpAetQKCwcQGbEtPOp5VwEIdPQAQEkRojg6AMi2XzTRLtftetn2q7aN2lQbM72P2+327du3fn9IYrcWNsL699+9jzFu3z4S+PXXX+WHH+/3+//8P/8/fvzh/f/2P/5fv//xx08//u7nf/xPPPp3Jl7ljKgoPPxxvwcxxqCkKMyKdxNjDA+ULlaupGjlMClqEV7wr5ljZAFKZ0OBhExzuqhlCmYpRWvdCg+YGCWbZumcBXzZHwxPi2OommoTs4uqpam2lrZtqrpt9n69JPz9/e1f/v0fROTnpr/+ur+/v//0009JOY775e3693//twCO43G/fWmExNhU3t+v3/9w/bj95fbx9dvH/dFjBLw/jvv9/vEYjx7UUl3eaLvhzbS1vO5UyQZV1bbZtm22NTGamahWH/wkPbNdvn07frn1j/uAtZHR79+qiHR4RUShlJIyYgAjSlVLJit1jAGBmWHpqlVErlRzZCBgwaIxK7Tc/sbwES5rfnamr7WFqRLuSRS2+fVEEGvMaeEbhJn1RQftvYtw27b6FT4mMrGelEdUCtP2NjJy5OEDHtBpwJOZ3Ud6nJIo4dnLel0EKSO8QJiV5JlupJ5tuAjxjAhMFee/SsipmcO2PTOPRwdy2y4oY9eL9N5P2TlVbW2OhTNzjOM4DmYNTjUzY8FjFyFrlspFASsU7dkVItkPF5mKLPKiGlDOw3XiEVbXS5HMLB/gAuVt29ZER8bZZMzMsrmLJWYsU8sKyOWlnREL0Vlme1hTwxKCpkzfxyhUlepxHIW4rO+uNjEvmLLHdakaERX3cqFd6lv7Mjy3fhyy76ocY8ToAChz1NP9KMmsGWZqGGxWiPImQkG560IYPjKCmRk+emYEU0bvBQU8fHhEFWceUZ2P6/V6+Lg97o6kysgYGeU9WPNOSGlgTGuimqlGeOTIpLWlvo1JM0aWfXzAS80sQ0hjuQEnkio8XDQoRDNVHX6M8CQdI9Z4p3pPWjB9nVgtLw1rkKqroz0hFgvqGZnR2rU2Qz3sdM/kppvnnB7bru7+7f4gaVaDR6Iovedr+vIgIxUUMuudEQSMQi1xrBAlWANMqfZASs7ZHgKQZm1pho2cOhlA0cYK4DMp+VmVJQAmCvXl5XJBKUlkMwLLg1vLN4xkeb7nOT6s3z5yiMjwALKVOEgEkJtu7n6Mqbs2YXslrURi5W3FH0CkasldhRCRU8u0+vwqItKAQkZkARQmaDwBD3t2vxD0JCNy9F6/V6lmMEaMY0RQ5bJtqpaZ3h+qygwnEY5weAhNVIPpXk0sMKFFWAlXMkYXMyrde7X0COI4daG8935eq4lWJV/tosyJkmptqzKmwoaqZGAMv1y2WgAxvPjUiEDkvr0RETkiBhJIAhHLUigziRSWf6+oNs0WhYlFkdBmG3bybwJQETA8mWLUjKAyAlVXkOrww7tWI0YkEcOL3dAiqWqP4Zr+drmKyOPx6MPFVEyOUe3JarMHMo/wHmM6uomU6kiWvEMMZCIZWVU3UZw3xtEdOMyEpXRZLWNIU7h7jBTaphaUos2oGsDe+xiHmTVBRs6aIqcAVfUUJwXrcI8qMjMzo7EwESuz43RsECozxlApb7gnHrAetzWxJv3wZGyXVjBUz0giMu/HQ8rB26rnYl4PXTHIGE7Kd999F87MTIGkUChLQHvb7H6/7/t+uWzxcUeimR1+AJFIUCPDIx3e/Xa7f76PX//tv/g//fiHbfgXj0d+AP4Q0wF6RsFKH32ISO+9937cHv1+fDu+ffn1i2obI3rvl8tWQtTH6I/hn7997QO/+/73tu0ZcnvcjuO43x+/fP7s7hnemh6PA57HYzweR4yhTQN59H7PgUgGMRzZhVvTiW4NlzHGHVWTFEk4esdlN8WW4Zetiey3r3f3qNbBMfy6uemWGf446MHE+/u7KX1QRPpIsRYIEXn0e2Zum6HpEcl0oR4uEXj74XuP/uvXr0ccHo/7/cNE932HYPTypW9UE9nIoe2a1Ao0Sag1SmOmiCGZWXoBvB9HjHGYRXgGBh8xUlKwkcyOx4+/v/yf/y//ruP4b//05xjS+9Ggw4eGKFOwBAglVY0UlKT5hADUCAJIjHSCotREeAjRrB3joSLMIQgKMhyJTS2GM1LFVC2GS0KVINWuxxhTUdJERBAjxlDVy95Gj34cZgaBzxaMgpKJOo8ByUAQDio1EiMSKaImYjXmlKZExji2fSsXDR+9qbp7Pz60maqNcEi2yy5pH1++ZHLbtoq+ppqr5x4vcEeZCvBUpHuqThm8bbuc8LwxxhQWWOKO7q7k5Xot4Zn7/e7uVG37VgaP1XDIrC+V+3ZJYWZ290w/2wQx3JTeI2OIyBQ0Tx+Aw4OzlqZBosyop9aJTC28FOFmJlUae4DSilScEZEEJSVJoYXn6OEZJmqCTIzhPrqA274JbawxS51HJZZIaqaXCGMlL7ogooVfEzGjuPdMF1EmMsaIISJmkumVepaYCk0isprtZd89O+bQyjRBvWhLhruzvBWsXd7fEtLatl3ePERpje3z58+3z1/67eb9UZXApZlcL6r666+/ZrNBOY7jy7ev+97+0z/8p//p//4/NeO/+x/+5Xe/+9329l1++zUIio9xiOYm0lR7Hx/j677v26bbzsQBjAL9Rug9wiigJDuA1IJBA3RtBFhEOYACQRCQk6wYyUxppDMjAkwzNFEVRLgkdDpNRSUu7lH4oEcMBdXzG3uT2AyH3z8e3ghNmPDazOR6//qhgvbGfPzS2nbhff9uu1z0goeP3Oif2uXi92P0d+Pbuw6/Z+DtbdvaOB6/Hvev6YfCTaDu/rgdt2/++NgCh3t3l02v77spRLM1NUMz3aVdrG2t1fgkJVNxeX9LFbatg4/b/f3tx3vwS9j/9l/+9Of78en7nyIR2dtmma62CYXKGrYgvZm18ow9jnSkliJBIMaIuF6vU84jMiWsTZ6wmQUYYGtNadVaaZeNpIKqJiJjjOIotdaOSN32oiFBRMv9a0njjRKhlCnj/OhdrbknMBWYnuVf4yhyJRnhwx3YWtPH6GLUzXZIDK80NSrXVUWy1O+TTLBk22v+WMi3wrJEYtvME+FBwigRI+m2mXhyKQSdR5ltF7M4hlP49t3V3Qt0eNn3++HbpVUOeblcOHUZWKC5WRLrRBpeP717ZA9nZDM9+wOiajG04MWZgqXvlbxeLlWgNdtq0hk5hnuzLTOh0tqmqpkupJpmH6OjogMnaCiMMDMxwTS5zOiTAJuokqXSvekomcmd6e7C0gpNVW1tz8xT2KxC0nZ5Q4zeDzEmQJG9bSQTZQmUgI4yHC4ZVHcgW2tVttSvO7qD2jYDZdHKCxJ9Ihbca06li5MZS00thR5RwU9Og5YaOldAVsvEiJE55bzrDJkt2ImkzYg4juMxeskb9ow+RiCNU9e0hopnc7EmvSAEEil8MhKfSMiydZ5YArKOL5R/WL1/TM3YKufrRxJzmlPDIJJTfTrS02351opIsRHqek78fa74wWUIdl5z1e2LaZOjEKEFXgo4PF/QzvnSuhIQpERWb2wKTcEBydKJLwRSIU8qirFObZTkBrkQktVqYxRVfI4BFy4XE6lxIn5nq75wvYg6KWAUpOdE/k44tWcKk/mcnmEK1AOYGP147dWt3/fEXZGEJYPACJ8O5lId1Voo4UcsIYOSrsoTDFqXN2tfsqSGhj9E5qCuUL4lHUTOHCQXtCYzw0M0TFXEIkaVeViNIpKkFfmzeFzuWS7ZAEVaIViFuW2bCSMWWYxZzyuWkMB5kQVNdXed7U9ZC2qiCWRSLBog08X6pXdVpTvXc4TgWKag64KzILhT2XK679avosiEd5GkVALELNecEhKrohAiE/cw5xOFH6nFXo8jT7ij1DRbRYTJYBknwbMiXdTtftQJCCmbZGZHRCY3tSQjovceIi6iSC4WR+aUbz1v4FxLKZmpxk0vynTvMbKAESKlS1bAJCTwuB8ESubx8XiAcblcquOLRaGJaU8vrbA6YAJKKRYXgBGFKJu4GLPMtMisgU+kR48KySpa06QSLBh+jLGoH0KvGCQLq0l4jmoLkIzyhFzICFAyuaDaSsHcGyL9/vAYvUvduvrLDXawHlKS1E3g+fE4jnH7/d/8eH0zyohxhB8OjkElDg8Iex+32y08t21rbSe1P0YMjyjjqd57d8/A437cevTHNVRa2y6iOIZ//PKLWOvd3Z3MPB5j9MfjNnqXjMdxHMdR7l+eFM/juGcMVVVaQQSKnBpgRB49Etn2iy5JNgIhGrQQy2Bk85CEUfT26DF820No3t37IaBsosRx3Gej1/ajfwRS1O6jJ9WaUmR45hgmtm3b7e7uDnzeNlOVcmCD1lzfKBYIUkdkhjOHbW+UFhnK6WChaqrSzHyEu6eQioykZBVDwzMzSiknyRHdH+M24GK68d/8238TtP/6X/9J94tTEpoVPQIUJJc8D8FV/QaYswdJCJGKDOR0s68ZlSi2piXflJlWoIPhAJqaiKZP+2tVjSSzbF+ieCSZq7Ucw11i9BjHqPkqxcQc9fiKIU+U6UhhW9IhGhFLiQACCkWbFS1QuFzE3EFLZKmZCEKNBa1FzjJbtWTwJpmiIB6vBXDvBwC1HQsRdo4gjuPI6WGuJ5mw8Efeh4iEqvskXIwIAXzh5WLNhwGIaY4oFZwxRi70XWYmHImyHT9DHqf4zSkdTIB1qhcY5HmgYY3xGcoM0rhg5FkswTTdckqFRWtNMTW96hMKvK2qhFQeIkuzp6zZ6ggdwxNlzcpJYQ2KJtnOuFl28TO6genRs3PdwCKCVUZUK7Q0WUy0+FbV687MUWQoCNUgSrWgcEnrFzL58XGb/3e79V5TAcvMVg1ij3x5ATiO4z/8h//ww6d3w/94uXz66Q9/8y06/dF7bxZj+OguRlHVbRcRa6JNIJUIuYgoVZJjCmdI0IkFlM1EBhjE6SgrGRlFfqGKaDneBd1EqDVapjBF5kxckEgnsoJQICKrTSCeGeOQhKKrHF8/bo3alI14223se+LYhM34y6+JuO9tY4r37v0Of1NVM2E8jtuv22YAqalKz5F+H64m0kyGl+REELI13VRkgSFN0JQqMKVpNiWRtWxas22zZloOSp8+fSph9iNSMnrwo48vPf7f//G//vpxOG14prhZE+FxDNV0FBV3xigwAr7pXjO92vVmNntKAIreU++MKM9IBk9gYMqySyjbIULXrpyfUO0cTHYTyOSZnwLL8fWJ7AAKdXKWvmcFEfnElYRI2zZSU1LnJ6cAsrWVe/KYV0i+CpoC3Y85yFIh1HIecbdHr/FmJbLutRq1jDywCorz6NiubzyOCLj7497r/ugy9F0H7CqOyNb2TL9cLpk5jkc11jI9WOaJM1HLlT8XZW/VwxNUXIdG3ZmZZhcqZDkzYd06kUamkrJtSqFOLx6SBQGesLUFHiwGeGvN5jx1HpuFdidZvpXnkzUz1TbG6H1k1vhtSjoDqOSQE2KbYFaUJiNLYBeTJl3vPA/JVec/61bbTZWISJmN0alvXLqqs4zxKbNQHxpe7NIoOQcun4/xJLmVhIm0zQrzkEvnWMAafAHovQ8fbd8oEuPoT9einKzvyrinMjCzBB6Fiom2X4lmzWhlhthXue0CqkApGREZYdYKXFq8GaEomiyO0PmDdQ11o3qUf+/0wqm/9ZmO19nixQemSPoT/c4F8Dg/E6gNl1VRTl/ZE6W6XskC6yE4V8q6tsJTLNkMTNh0FTmnlDTXX56pwPxYYTmtnot1xmkpFEaRwOpMmQTgiChlqjGChbgsgudJMl3fDcCyvHgSHoySmQpFojz1Fq+74CvPwJYvAvpySvhkIIKrCHmCEX7zm9cNZ1AIx7lachlaUF4+EFNVdV22UMniY/dQQYmZHsMrV1py6M9DMyKkmvmT9lD24VHdTC5KFlZ34rzC+UrgSbGoW+ARzqUu56eI62Q4PH9WyGRyMdVrUlqJckUSUUjipIjXWx26bhEzUeafkijKoEfv7to2FGagsOwipVSsRQpG9WIqjRMha4tOt3AqqAF6ZLIwLdl7T5+cqxSUvJ+pmpAIhFSHiqLVMD+f5smckeKxnPIki36sE1HTiTBTEbpL905SOGXhiwED0lR773yJhRTRrd1vX88Dca66anGZnftx3vElyaCqqhYnJYHh7ibVRMPwYIS1BjIBbZZEZIwov8DCljCqPfmCLypBb86W3wpxmV6a/NpiLfMcE0TUWhsZUCl2tMNPtb/ZVR0Tgd/HDfDvv//0N3//u+3SJs2EGJH+OKSPVKOIR5Wp/Rh9s5HJ2+MREWPUFKz6ZDJ63G/93o9+fFwub0w1SrUytyTcT5HV3o/Iqf5Q8jaqmh6kINm7e+/bRrYEE1H6cqlgxvHt8Y3kezNR9vBMV+b1erHWQnn0MdzlkOPxILm1/REP9LwfD2Eq00Q+7rfqnYrYtm1Es62JJ1QMPQLIycoGYJtVumDWurtCm+nwIcp9u5qIba3k60qMpBqml8sbWHoHANDdcyQW/AYCU5zrattMm3r0MQ4vy0NtPWI470cc8QjYd999d7lsx3Hsdn0eF1BINR29iGwZDMll3D0PUlk4l1M/GYsvnmlCO5NCro5krnrmyexSjRGRjqltkeVsuWKKhiODpblFUkUTVNEqc7Iig8x13N1TJmKHUA0yG4UEzVprzYu/4177JXwit2cjWqYFmpQ5lip1epHNyGJipv7ioOvLu7E2MpeZSgX3zJldnWKc9edcPcolcDAblvN/664uCk8F9FxFGRe7+AxDf/WqjcyXV93JpyjzUtAREVZ4IlaVS07kGlagkdJpq9OejKJNAtAmpCh0FgDFaSQwucoRZ1Yzhiim8E91O2sQMGkgTxkqkeqfIor8PHFxWpFuhCum1VE6crItqkhBgVw8otS/bdvafm2Xi+6XgNX9a2ZG+Xp8fLvfvt4+Pj4+juNOsuZO27aNMXp4JS09fPSIGNfr9de//Pn/9b/+r58u7d/9638VkMfR718/f1I0SKaPfhfjfrnMdJ8sCZ/SeDCDh2ZJR85nNL94JgOhNQ+Yzw4so2zkhHQteW5kKlVEtpKYJmZwARA185UnPLwmgRmZ6aMriGkoFCqyqTTh3e3WH18fejG9bu1jjM8ft7f98t37p3RvEaG8XLb3dpUmKUkTaakqFDk6+njk4YhpeVu/HFHwQI6M7oBCy9zWdG+5m+ybbFtrJpu01tq2bXuTy7bt++7upec+v/mlfRzH/+8f/vwf/+P//ggT0eM4pLXLfuWLJUotnqYmIp7pY6g0UcUiKqYQIsgcky9NsgR0QiTMTEonxZHB4LOylal7Lyxk/jNDmAfCmZ69bsC55l8V1JeqE06HkarZVo1Xx8jEA4e3tsXiYFa21j1j8QvW79VK60ptHKuZpTotN0fGuN9lHdNZSiUJgRZGrSZXL+eGFEm19lzbNIJA9j7x25lZXfc6mivUunvtnY/RSW6bjQxNgiKAyvKxC8/MZhM4TdJ0nWMxpYvPb2dmWOL8up7jylVmaMLKPXIVma21w+fAQ0oGYqltYw0egJnunv+pqiLm7oIoT9oRY0lJyDO9wdP0qHyLSLY206nIigI8c6rXCcH5OWdb084eZ13EbG0uEZdaQL44bFgRfc611zObv6yU490R88sUJRGkEOME5r7o/rfUSkktpg5bHen5+kJiVQW58lGsyIQZEZ96ieeHA6hcdSLvGQLJYAgKglkDY1tl/7lhZMmBiOiIKezE4g8vg/hz6Z97DOvAnYsSq1QEp2Er8gTHiwiXFkUl3K9bN552ynWv6mP/Sl9tKki/fGviv3vly3tes591tXj5VwASea7k5Sb025897/mcGi9hNZ7Jy2pQ6WK6zhuLTKSKFilbRJLxV49y3sB1easV8GTkn5dxvl6/1KvSyXlb6BFRTxxYhBBmnpPm0vcmtFqPrbXW9vShkwnsEVEnC5fvsdY6PNW815NaZfWLkt56z/kddZoBVNjA63M/N+dMxSZ9TnSpssu5EWYXZv5+FrOUJJV4YgpyJTR1kT4cKCayPPsgE/HOQFY5OJNYCCqE1g7mHCxKohRfknB/CtIURzERUAERMZZxORFpJjmnzSk5mF5JWE2NZgxbS+U5YcDzb7CyT5qKiIccj8Pdr9smixmroilSHhwFL8/Mfd+x1BH2fV+I9MxMLdmbF7H62ocVz54ne2YNutdDpCwpLGkSQmRCJZGHD2MluXXPKyTM2Hceffn8qPkU5pqRl2BTyuGzmVp4Kn8dVquqip0iC5lZUacGkiP98XH78vHLfpG//2d/c30roDW3rR05xhiPxyMhsjVZ9vEkj2M8bmO4ZxbtB1kAXyEBzziO6J0+xvH4lkERs62xTv+spl4/jiMiRKmq43GvY9PMxtF9pBqRFcYwQaY1HB73zNybjvAUsj84EBHKDJHb5y9b001tjENFzDQjtm0L5X65XvYtMW73+9ZMNnk8HmOMzYQct8e92bVddhEd3s2244gxOjm9bTP5uPfvP/3w9vb+8fENjEw/jnG5WtubiaqIj7m7qIysvqlWV0OaRfoxevcExD23bdv3XZoU+VNV397eIBxj3McoochNWK2Ntulxd++PEV0F130bRz8iL7YzfHaOORvypTIh+dSAmRvnfIK1rpYk5Bn+z5gVKxE5jsPda6Ofx1Fmysz/kaVSKoJsSq/e9JygmpLsPsbw0uJbaaiICEWpxVTKGlufqqrnXq4jeWQoliuEzxbV7HcLMwK+3K7X4Z8vFWxrTV+iQe1lj6fGxQridXPm6X02Ps5Uod692o5Pi8jjOPqYcwkR6X303k+CsZkxZtmcq9HJJbP31GKhvD6piIJZzThyXvz5ZxUtg/f6IWCqZM8RzWQ2zcK1Kq76vVa4mJdxB2fBzrOfXiPQxSqvxGrdgQxMVkvqlJnIeqx1tgAoE8Ee7r2LTM3wUgnLCI/wCJ0I6ICKqWgzsU33XbetXd9sv3jAkR6dvFRu9ng8Pj4+Pj4+Ho8b1oS/htjHccyxJ+nu33onCdGff/7L//N/+fdf//yX37/v0dN72PCdepGMJBw+hh9dVSPEbLte3y+Xr9stbKCPE0bEotcl8aJtAvLZ0DnzMjkpRZHwUW2Fuc6CE9MTSOZMJ3i68yBzzovKKMMRyRopS02Wynfg4UM+vBk/Xa72jdtuP7x9+np/mOj1be8Zl9jQuOWuxEfvG22XJglKFh/SfQIZW2tD6I98jH4/HvdjJEGFmKhRBaqyGVqbOiN16EWMiEId8+vH4/opt9b6QGZok6+3+z/80x+/3Xp7u1JsDE8m9tlKex20nDu9QlJrzaiHjxhdVbd2qcV87rsz3R1jbLrV9j/LlcrrahGWV7OAVJmlV/wm4zoj7PmaW56s2eMyIJmdstfcMmaQjdeTQZvlms3OMsH9vJ5qi1cBXKgrsb2Hx5iCeaoahKVcr9fM9P6o37vvu8vgqtv50sSsLXC/36sAnoNxcoxxu33btgtW6T4bZJlwRA4RKyx09QdUW2YwwYjXBmg1LFZtDryk0CI2aQ6nSl8EGGOMVhPjl1xF5lQpTvzq+XXq7r3emRN3MzJt1aKYksYOoCjiddL6chHLTDUr7F45hO/7Lsr7/X4+5TxfL4ni6yI8P1aW6vX5sxFhyOhHaS+b9yjNnoK6IGZaHzP4S00kN9vB8KNHQG3eLAW5ziyhNjMSo4IKKKBRcsEsHbjf7/NmRUY6gCbqHmLmTvppAEUCInJiAvFaIRT8ErriNwGWWiOmPXRNbEppSaican7JiAwJvCSmZ5QNnN0JCITZihRewxOqmM3Hmcni35cYJGW6VEW1c+PER+VUrnvxy52BWZFx2lL89fGRr5OxiZN6atzNf53MWZyFxLptz4e9lngArIdZXnlcHY31daICPIs7z2n8neevm/KQQLI4PzXgrs9XTN80ILFyjswl4RcJyWbVnqBI0TsRWQfBnOrjZVgqlPBxqjOfWwsvGcP59/OXwDOZk+BEUiLGyBDT5ZKYiAymiDYpkn0CXEZwQca+677PwqC0zdxzgjQBVZpWnEgzE+EYAzHOZ7r6hXwt4TJzcqUW/Wz+VKZy6WoRghQW01wBsYiBoFBywuArhQKBagRXOefpjmp8zaWbfs6iTSZzxuOoRaqmpXKZCW1bEk4EEtMoaI7ImTTRhegucnVpsYpquSVnJjMkZqEIylx9VTmoshqoYxwkRxXWGYsVUVqC4Sg1r+eqfk3gCprmyETZBuQMuqoR4/BhtKQmFYtSnmuy4e5bKyGNcS6b4zi2tz0iRKx6aqsfEcP97BVC1lN5TjILnFMrP5upqI4MAdQsESM8OlprPQrlLmJW7L8RERm6jtIz6jAxycCqAAlGUqgpISKeI5AiRMk9msqa/mmxB5kKKli6a+4u0JEeMY5+//j40rbr9dNGGX0cmpbCmrn1EQ4vO7RqsojxuN/7owa27eNxD8/W9sxyTOmeUNn2Ep/o0cPrsDSzr18/A8gkYlBKzRBjjC9fvtxut33fzbbjGMDIy6WWVQLuGdGr7ek++uGQPVVU1SMip8DeiPj87auZXNqWmc1sI4xCs8cxRLGrgO3Wv9yPe+BqW+XMkzs04tEzVK063DkcgGqroBvDj37/8cef9uvl0Y/b7YMYY7gMMcvNLIBgilK1eYKec/KlEoSYRmQKKaVEPWhPPYd1khVjlq01Ly65KZV0qrQrm2r/5fPHjz/+8K//Tfzv/5///O3bx/uPlxj0SCVQcvc1m3pB3ggSmcwCQ+e5os6srv6wQPsmIkWFMrOIPJUwsZK/Gk2UNHel0gpSFVBBKS1RRGizUu1j6mIkzwIYVKBS8DI4EBYDWJlKGStNiaLbiE15SPgZK3MGVMwLW/idysxON6Ao3Np6nfBmU0WOjNFHRITpdPis5tdlazXwdveRfZ45Jd34Yur2CnJm4hS1qnEKQaE4HFNCQc5Gp8hv2hMa8qJvgaIQkkTELIIqTix2laoCekpFZCZletq5O1BYxxx+VOCOl9nLhOPURHc202TB0+vV0mPZnC7QVsXzYFV0qwmHzCjBflVVWY7BMb2C2tYQ0/WDJKgpHhEyIT8UFViTbVNrsl+xX9kutJYeERhThNnPAvh2u41xxBTPf+bZb29vqloD4eM4Pn/7eL/sw2//3//0n8fHx//wz/7mx82uavfj2LqnpDHS836LyDozteqN63Y1uYmIqphZTlWxAj9Peh1BEWeu4XA1U+qxgqVlGO4EFOe8J5RzBedMe7jUFhcGDVJmtSTrUEuAzFQB+Mg8IpvyCI9jSMdthBDbh307/GJfN+H1erletrd9++jfjjw+vW1AvF23y2YkW2uXy2ZqfYwR3sNHTDD/ox9fbh/f7qDCrFpdFI1m2ozNMCLF2EybaemrUQVUsTYc6fBw7+Px7fM//fzly8dj2y/b9hZId5Ba4lNSEj1L/va12ABQHYlkzEGuzrJfzZgov9Jt28xkjMEgSs6mQFMqtaBj3mxnRpUSNosoIEp9+rnpzjNhu1ymz9k0SKRiFizPc1KKvyBLC21KRtXUqvfeY2JDmpCUttSpI2ItHAUgmcUA1OTynUHK5HuuS9WIqEbSyp9lHbznVcPMrtermY0x3Eemt1JX5ZvY9AQWWT21MSKi6W5Nen8cR9fWROkRZlYiXL7OsQJxrHJ1DkMSszVTXXdVrTCz0vbRe9/2vQYMEeEv5XRRbWfwE0mhI93HHEernf3KOsG0WdnPS81s5nwTpQFRufHpmqFT2fc3HQ0u4N46759oVqwttgpsFJl33/fee9V5J5+lbkvVh35GFF9yiGcEjShcpJClOn201pSyDsunZV8rpS8vpSbLTD96MBkzEDKWQ88SigR5+CghihTN9IxxdnH+KqKfN+Is9M9seNX9zwFaZpa8pKqO8ZzQvpaU3V3W36yK+rm4q2SpLPP8mgkohUs8Laa7+hxYiUj52ebscwNAFGiKf911rteKP389CcyikOD5dFcdWBOzibLInAq35ytf5rrnPeQaZJ1/kFlgPO/G+SMRUQXZXxWZwG8usnbU65iX61vk6oW/Pq+I0Hlursf68oE5QWjOFcmxiq5Tiw6/Pd3OC+NzcDpITmEWEVv2bihNF05OVGamB1Gk49mML7bA4/HwCU1/CiTIYuFHjNaUtPM5zhMk8xXqtu4nI0LXm89dJovW4u75hBKs5ssoRKJYUfJIjOgRKo2rqK4HbBAHMXJGFCT8aY51Quim1Mp6+QgVYUJrUAxQJE20PKySpUous34s0745N05UGzuwpklT6AOUhFCr0QVWsOM8o+ep5GSlvLLY/FniGXmClNac/KX7O2/ObHlGqlqFtL3tdlX3HjlBKzmhyzJ7RSgBsClUXia6Od2GZjIdEcdxpOgrFjqIMsues6Rqur2I3MoauBUuKyODbM1Q1m5IkscYCdhcu0+ASaX7ZwGca9mc08iIwJo2zzphLRgWstEnYKfmF9HHaVFulNA84xYktl1sl+O4qfnjcQ/uHqMUIMuQzQV9DBZbxvF4PI77kcJr28LTPSGjHz6K6uyytfc6nGRa5fXb7QbEl28frbU6cusbHY/Rx+Pj4+M4DlIztRwUW0uzzXuSNTcCkJxk2yh5PBVG5pg8xoiItl3IDIpHz/B41AhGSN6/fHx8fHz3/i6mo4/HMbDZ9fIW48iItl/WKCn2reXoVGVmbXaSxrbv+xhec+PjOJqJ2ZaJR/etQZgJqDaxVqsfwpjKETn7GqrbtqnZ/X4P4nY8bGJJSvvUH/3IzLZtTSVzrqNENFFttSS+fP/ddb+0v/z858ftW7CEHqoluYKGlL/Pb87AOlVOaFxEFPP/RBnUDqrsNhcUYtu2Zxm5UjShttZyeFZpSZKGdACaGC9Dm/pYM3uMCUP5TZSBt7aLi0v1nX+jNzObWkJZpj7unr4GL6fJWQJEeMpLAVzvqXYe+apnX6MeL7HQc7u5u3BGZz5T84kGLBeMv7qftXont6u1OpPrP7dtG4uVenKG/yoq/fcRCi+RF6tIPoOjFHNqoa1XIJCV0qC2xkxhRaxJha96duc9nzlYm1+/YBcVL+ptLGPQM7RinnATOlg6WInKSDL7dJtaSMBKHs8VVdl59HmW6vQ+RTIpJAQiVElV3S92uX764UexFshS6Mm1AT8+Pr5+/frx8THGiPDXZ1dPzX1i8rdtW0d3i+bxePzy+ds/ivin60/vbfMhR4bQ2A0QQRLSDGQH0gMFN6tPEGYSKuFFo0eeNTCjWPYvz+KZhdYFyPSqMhYeSmUeeYicMzbJmhW/LImKg1URZXW1mGOlkA1KhBAmuCEl0BlxexxmGcd+/7js29u1HXg4+udv9na59NFuTSVxuVxEfuC2uTsEY8RxHD053G/H4/F4PA5sV2gzFapyU92bti2b8O3TJzOzVGaIou3t7e3Tp0/f7/seYQiVdn14/ON/+/k//eN/+9Zj278vbQPTjdrcixfBc3+dy7Lw4IV8qduz73u13o7jKMLtuQXKI6Mf7pG6ZhcVFutkO47j3GDl916tDQ2eKNwzmGK9d993MS1D6QJk4iXdPbM1d9d1SNaJ3XvPDDF9fSdm9fUbrDXJV9/yUjOeqnvILK8K92rAbe0y/OCLPRuZ//0ZUq/Wmpk9Ho+K1/u+t9YCpzzN8wXgcrls2/YxZf92Miful9MxyM/Nq8zMnHnm1B6LBQGLUWmtFOZRVRNzv9c2F5ETrV05NtYMEjq1mZ4w8qkBMSu1+lIkl31NXdL8FrHQSVwpdJ2S9fVP44+Rk7MjUy5Hz+IOL6g6WbrTJFS1Or/uXovh/BUWfUgCiRzOGsOKkCyVRbLsAQuCh6L0xxg1RkPAu5cUwwxRc4A+2VF11kypRC+c5Jy4nrA9GesMykAUfb985LXGCzlvBkuAr/YFkFG2rsGT8ViKYUZx5MzW572whR9miqbUqDKFJQ4xMrPuO+eE+bQGzBxe5RRnEjybs8UHiAhECuY4LdJPLxlyikzUoXiyCv8PIyJkwSLX6+yyzN7x6pTU2opzDrBWzxyTTYBlngtrfd5vfjuA5Qv/ckCvsmrkwqjP98+c49zz52qrS5LELP9KU3oBM3RN1xkOpArNDJmZHrP4zWrDEtBVJp8IVWQ6wqqIe06wzwte60IKsUtJFGNAplpQMUuThDUdOY0casomWhrYyCW0dm6/Sm+yj/OQUmHd2xQ1CiOThYqpn8KpOnaeg7XUM6K+mFQj+DyuYq4jTLAxqg7QkhWR4pmPzOrKp9QcQFiyzREji1xWiLXSTMvSxkJEEKXNM7tu6ZEJATdrD3/UldVJEfNXuZiGTBfLgu/K7FE6YhBVyMtUcUovzeqUKYWfQDLIgkjPvyhNmZLHam2WjiLUUghZ0NoCE5/dCr645611W3VQvi7UiACTKgwb/UFKTqjobOBLFn1aysGINNIq3yc5RxCIMTyh27bVKCwL6+tJpSznwIiIBaTJFzw2F4VvRsSYNHis7GmGzzUJU2Udg697U+adtXmpa4VnMAJUFlkufBaL1VKud6EGyDIjStXeI32M43b/0uP+6bvrd99fE/4Yx8fta2bv3t193y+jHD9ATyBy+HEc49u3j/4YAEz3EZ6gP8b9fodw2y5B3G63KBlYJsnHcft2uw0/QI0YEaOmH5nsffQ+B0RjDFJFLeHh2WwbHOCU152npYlRjz56zO57GeyJSKIozataywhBZlp3pfTe7/cP9/H927XZnunHcWzWPCCnnr9GTX5K38xdCwOsKnbZKre+3+9merlcyKSkuzcYgHyp06J0hrVwqoiMGIGUchSKwshGgUp846bW3P3ojiwpJ0vhAEULhjEUJsmucbm2jNySf/t3vz+OR/ThCEcqqlgUEsIkSw2xUupn/7dNWpyXRIdIbYdUndKML514iUhVmbkI0HtfAATh0qc4VziwgB5JEwM5RheBNlOFgVEB+IxDa5NWfSoiKk/SAUQKnZ0xNbYAIbWGzvO4LTOkGfI4p7XjqPheXc5tM1WeHGwA8AwfU2vdvRIMTCfhmVet3nqNH+exgqmAuZTFKs1IV06kEgJkitBMk3B3eJQgWSI9/EzmqqkL1Ph0YqAqRJbVpFAoNLORcwylSzOmupaxfL/PwrWm7mMcQAiQo8Az8yAspSLvw31QzFQBHWOsRklGBitpzswFpWY6Vmkt83nVsVP2pJWylPQ9SbKo+qvAkDIvBYvQFQQJhYpgnskQiA6AonJ5u373w+X9+x4O9227WEREHMf94+PjT3/+y5///OfPnz+TlWGdhcEMAY/Ho37tQmLL4/FIz61dkvj67cNiMLY3cbkqMy2jMTYzC4zHkZkDHOPQ8v0QmLtJVI3sSIEk4GAuuZmZkC10QWU6gSldmqDOiVAJpk7189JNrLN91e0L0fBbWabMREZMQBiDgErPlJImMomAElTtoIlGagZzjLg5Fa2J42JG7SlsTTQi+nGkw3NI08xstoH69fHtdj8efUCAacGoZtI2veztYqEmrU1PoMjcMc29EoyUhMKFwnvnn79++6e/fFZ73y8anksIpLBo5d0wu9juDsS2baRlnUiAwEQEQi9vgnw23bSZFT01QUYKy2qoVn4l+QS7j1l/lQ6TMJmRuakppYx8Z5r6kuVO73TyWSFX3lqrvTSv5751NaVpMfpoutEmrh0SgTMEZGEw5/VNzEhEjQ4WRaFymsyIUG0l3ioiAtK1zh+FVFGVQOJ5JRVxRhxmZmqVOqgqBKMPERXR1uTsvkFEC8oUYWbVWTixxFL0flVfeO9CoTyiaLHVFfUxxsiQKnSqxFqwYYjoLI5Wm2MNcsxsjpIpOKc4KrqsHPmCC5hCyJUIx2yOcNKJlFPskOeUiGQUMHCMup7I0cdg5DnMKMRoTl29KYCyhGxLWiUzpykmyTJFA6Basg5ip5rxKYYB1LArWttMS4GwlpcDoVB3x9JedvdS9Fmhpbqqk9Sqqm2ziHj0HuWMugq/arTk6vZNtZVVSE9IXgUGT/x2WlidicBEip8p44ocz5X0+q+vbzu7BeexW/pphaHns0cb0UdmSSTMhM0jcgykpMxJo4JjKnr4ovJJEhIEZuTzMeGv57eucLK+8W+Gq34qQv13naGZcMtcQHg2qIDlcQ/OZvnZZn79cPz2M8+aLSdc/gWA9PIeeRn1v34gl34XE1gStSJSjRagxJZmmb7t5n2Qdp5H9VtI1oqsa57Cv1E+8p7gIvf+plUWC8lQjyBFWqn8zX53Dh8SQjJLJPVl/ZTlbOTInJPA3nv58VQWqLqNcURUV8UyfWK7RHwM9ziZEpAnfv1cV+dEcbHrq0Gjr5iFnL7k0ye2PmEKiZfMEkRFdNtqsDltA9JL/XXOJJc0SQG/qy9Td6niSkTUdq7fvllTnMaTQHC4j4w2q/wJoxcRZbmV3CMGmQ2aJxJbZIwRS/TspQvDc0mDUy/TVFprEoiIhGfCk5xOX/FKaq2r9THipYuEdZqTFIF7xQApE+CajM40+8QV53oWS6egpg1ENfUmQd3MCBzHgWX7GRFbs8z0dGbUGVUPkSrVHq6j8hxGRYSoKAifbdRq6p45XCX5XLidW7+T1MW65JyJP8d6QWgdZVH9GhqF5Dh6wYpsMwUfj4eW4lFTEx2jHC7TmU5/HN9++fyXyPv100+fPl2lwUe49+46Rg0xDDLC/ThGMhDsvd/v98e9j97DU+1b705o9/5xv10ub9JMR/ajnJ89cqC8T6MDqUYwjuOIOAARalAAbttlYh88VVvVUfW963nFVKAoVTSKyNGPzNzUItJ9rF7vBNtW/dOBJSfGy+WN6cfx+Ap+ettMNcPv92NvKiLeB4DWWpMGH1y0RlnEbz7FHfzTp09m1vtjjOF+qL5VPT/HfR5lGaWqSYoKxirII47jOIaL2XbZNxoQVCtk3Bj+9vbJIzzTRwwEdNu0UQwjNWEmP/3w6fO3j+H9p99/+vr105/++EvdqoAWHV9EyPQYp/Y/l9rCGeb+Dw95VR1j3O93M7tcLueZUNmSv4z1xpiJKVZhKiWF5N7DpVRMhPd+lJgqyW3bfBV/k9Tw0go8w06WJFLhwCJG+IhIohGt/AhjDmlVldUoylzyrtPBqI4XX4YffHG7xUtsPQtgeSGkxfQ0ew18zxTqzArqZtaP+CL7cRGDI0JAf0k2MrNMWWY4e22HVVX5IglZf6+qrTXBtNasSUt9u9c/POPseSDrVKkgU00r06148SgD+YIMBVZDZOLIZk4/z3wZUQ3r6Ru/HlbdFKkLxoK3lI4VZ4bx1HyJuWwmPo4sgLeAnkKATiAgoLZtf//0iOh9ZOa1WQOP4+i9f/78+U9/+tNf/vKXb9++qZaXTVZiHQsqVSuxUl6SrVlEGeXI0Y9f7v34+Pj2Bf/ib76/7G1Tce9U3aUFeD/G1RSZJnLZt/fr/vHo0aP7AZQ7E0rwRYDx0k0hS6G/nFQzM/WZoWVklvEXy2kAUSDqc8edae3MeKWCEDK91o+gJHIzGGpasM9EFEA0vacoqH24GSgmmwbj1g9++/bdp+t3uBzDN3fKtV223S4ZdHiSvQ9Vu1wvA/qXr/fjfvTezVBNnDp2TdRMTVlGgiJiTS/aPr1/2i/XpNyO7rTdLvfH+Pj8+ZH8dvcjsFGmry1JqnucBX+tMZ8tyxOyQgA0bdK4uBgitu+7aUkPqqqepD5VLbWdVVXGOfh19wQm5ArIkqGtfFWQnMyIKtjOPV4/nmeigmfp+ppgYA2WCitUu7IAquPli8y0ZO2mv/r/c4uhGt9PWmVl1HVAebFNZyMvq2kly5jmJEK21grokYswbGZlyFDJT+2F8yuTc0O1TVvbj+NOtm3T2+32UtadPJfn6zw2IwIeI2O37Tx5ZttU8sxeckHnsOb2Z7l0HnH1fVd25OefwdnKJFnWweXnpzMbfT50LCGAES4iddDV/dy2TReq5dU76qwdErPHVwVIvfM4jjpATrzqOZG2lYXPvilJa2ZmHx+38wZVKVTfsvK8ydQpmRY+A51j3rUktLoLAULMGmGR7ihN+TUjNXJk9ChZoeN+V2kFxz+OY9oaFTp/HYvunoSoKCQzbTOghPtZaWi+4DGqNTVOOxyRDHz7+EDdSq0jdUageqwrVBTaiAOS8OI+CihqUxF0DLBkXj08QDRt3LQPTyKDTMZUrag7XNO0Nfv3KRsKYXjM7sBvX75U9VBdxBohlT9HFYTysnxREmJQeXrZ1zC8FjdP2AArf5Izc1r8FtSEVmrtLkl0uMtZinBmCa0wHmOQs6khmQiYigrdh7FAtvD0zKm6cdwf27aN0dOnSgRJBcboj4Ft20xqhwAAMyhSjX9VFWEBRBU01eFdVqGD8BKij4BJOeCGlGq3aWYO9+KkkbSapy1Al7vXMiYzYoBQmrBUzNzUtqaZiDLYQQJR9MJSOIs4mWPV7bPWWq6zb2sNPrZtO46RmSZTTeQ4jut+EZExembKZgmP4Ze9PR4PIIQQlSy9EM/IVGUBJchynM1gmglT4KOCwbzAmjYi+uOWmVS97lt9Ux9DUNFLAEQfhx8ictksEuUxm5kTXx+IdFMKOdyPo0uzAgUd/aFqoi2THsj0JAcSAl3tErXpD6kC9y7Whhe7oeZfEyLha5mdBxYoEXFps1Pg7pjoxwz3pbkgZ846RnIhZFaIlTXwcWuXApUAaE3VGMmIzNUU2PcdNqmM9SHatiVco8OTxOVyITXcO3ql71e7tm0rlWaSBROtIbZMFqMyF1nCZvCoEQFURoZRNmurawZ6jjHK/1DEAtkoEWFCRHq4JMwawThcVMfR2xSfTBEqk1mIeNdNu/fDb7//w/d/+3e/v1wtJVSpbRLXb48+4puqRgApffR+uHvprNZJwNvtkUFIArLv1/sxjr98LvJLIobf3Yc0a1e7sD0ejwgfw2tq/eiRyWY7JUWDpji8966KcNyO4+jeDG2zyFMXUCJzDI+ApMABZlMT0KNEubIOQkCK5GPNfOTb+5uPjhh1hn/50rvpZbe9bQUM2q159BiHM7dtS6SPY4zYtu3t8l5nYGsNCRX04w5ARRzY2yUzH4/jsu3u0fto+97ahkLh1UhDZGSQ0nu/Pe5U/eHt3faLpjzu92+349I2QDw4HN3z8nbdm3087klx6vF4GPLtennf5fPnz6JuLcfXW9tw9I+f//Trjz/+/tP1cr/fIUoh0sn0MXOOjK6q1tQFCefJv5/hA5GOMTHPl8sFoPvMgSri3+/3iHBPsxlHtqZWTKJn8Tqnz6qaRJZXZ0REUGTbtqOP6lOYbgBGcRL8YbbNVj0hqpItM6X64z1oCmKMgLiZtbaPMTxyeT6h9DVK5i2XU7eIVBMKQHn2nuGy8iTHhNKNMVrTfW+rrB0V1OvAfpaj1aasc0ZmElZSiGfKPt2GyiFJrHBq8UJmIZnD9313SiXQr3HcmmRMnF4lG5np/SgETI5irkqxw/JFlm+llImMOSWzqI4tVufII929iV4/fUegjxE+NhWidJsYMa2Zcnh4UqlAkMB0Pal5FgARNFHUB0dQWSKC6QESmQLNzJKTdffHcSszlTHczKqLaNT7o1NNNk1RsW3br9q2ptq2i4hs+x7eG7evj9vPv/zlH//xH2+32zr8y2qeHx8flfgWdtFsW9VvO7rProX7GGDkOI6P2/27T2/At6/0d4V8ukqP4xhb435p+3W7dPejp4/N9H6MrYkZeqQHgxC2pPQxjvSRR19Moiybnup9ZEAhagAyylUpYsS+bzYNWMbZrFihbXZDPGq1mLXN3QVe3aUQJiUyw4eJjCNoeblYZMZwKPZ9t20TxPt31+/eL/Dj0vD9D9+1vW1t27ZdxCIwRrh3E237dtkuA7m3S390gX66vl33y3X/dn27JmW/bE2hyq2pZdLQLq3KbxXapqqKptv13dolaGPEr19vf/z1y+0xPn33u2Owe2SoSNU5s6ltzfrhGW7G7bKdJaiqSmVv5Sjbq2gZJDfbMQEiFjFOocRta+4e/ahdAMBaq7g8e1tIK9QruVnL4DH6LGnIPob9drrDhctdjZWRme5DRLbtksv7R8xk/sZwn320KizObnWdBvkCFezDY3mhiQiUmMLSXCpZpTBDFVHVVmiO3t0Twk03D5BaAjS4PQ+NsyJT1Sl4mvn+/j5ZrA6VpluLiCkBrUqCCBG5XC7nIabb9rjdx9H3fd8uF3cvRSQs+bGISGFQqrG7cXX6RGr3RUSpJyyU0BzwiIKLjWK2vb29RcTj8TiLZHdXaUUtrCrDjz4y9n2XZpkZPSNCW+Git+M4Yhxmps2q+VhD91w41KKLpke1DiOiRLbcH2dH4DzbZYFk1EpGuwLfc7xXB+xpdzZfEeG9Y2mC/6YsTKZOf5H18yv1rxJhQogmirH062fjVoVAkjHr59OrAFS1rUHYl3Pd68WcHdmYqglZvYTXHtvZe6jmTP3xjB946dOISJQy7VoBwG8MpvAb4us05kagkNaYsNm5QKsEpbuXMhwcC6pcDYKTppuZIpqra7iuvHo8z+t83bdYb4ulSpdPsc3f0KEzcyGY5r9Snv3Igg/i5UadeoZYM/BlYT9Nfc57Nf91NVciIk/OcwRFjBBSzRSMGICsNtlfz5AroaqjZ41zn5Cq82m+JnD1BMxO+Ppyjkm8Plx5IrkoIr0/yGnwHREyUBEJkXO2m+nh6cEJ+IuTYwkWtDwiIFLRqy6szjifIGNyypvPgq1gY3OKgpfRNDxiAuSeLAWsvlQuPh6Wm2XRRao9UZ+ZXo983kkFkzlbuUVoWVF2rZtpS8bVuayvdmL6X7eYKDZanWfIiV2MQoZX63oB/lVptqewMEWttVKiKR5j3ciZRCkZXG2upf0GeB9ckzeEj0ggdm37ZT+beefc4zzCuOYqYxx1d+tS1+o9V9pvzo3zxsZwRHUfn1LYY/hxHEVPrlR+4aokZLqYztTWpjGgiJQWWsWk4cMXkThGZoTJs8maM3qBLLmZ55LOzCkgFDHG0L+SbVdRSOG+njHVHQnvvR/H+TShetl2skyQ/DamIo42Y8ufv/zl89dfbdfvvr/qxsOP/rjv103ExvDHox/HcK+NELa1fsT9/hhjxPBRrk2Bp5Z4xPHUiAiFRHjvPYgmkSPdu6g+Hn0MR9oUfvR8PHrE2Haq6ba1DGRoZs/5+IqW4+FgIqLXcKL8AAsLuXQjpGI8FlHkvKUR8fXrVxPdrIyVs/aqj6hqamRRW1NEUrMMXFtrrbGC2ozqVtZEZZYXJtYu13oEJjPoVgkkoJhaa/d+aGY5XJ2bz0c87gdENzXRZqIQI3nd3jJpbdN2HeG3h1PzYrtoI6o7E/verL0fjzHG+Ljf3r+//OXXX+5VY6hG+nEME7EXfVQs5MhrA56LC5dRtIl8gUSRL2HlPHWnoPiSjM6p1zhproVQmASBRFGwxJQiULk/DncvrBoKKRrVLdTKBzwDjgCaKEuJsNQBRerNVfxsulVcjojoEdVJD4exDFqO4ziRLOd3fD3NKlehtfM2cEWBmINT1uKcm31Nzc9D29e5vaLqWmk1c6/PmXyI3wTiOq1yTS99caTPPAeLxPt620me8xysUL5bqyNixZHZiJj5xpo+nRl5ZprqbNAnmhkoPbweqIKVmUREqkIYUThsq98A4GQkztYpSIaIkUXP0NNteL0NqOzZ4SNFk9AEfGQgbGv7tlFNtLFdWtto2lrzAI2IvN/v4R3A7Xb7+eefv337VsKr1YPO1ZrJMqmav3GNyICThMaUpAMSIj3sT1++erSHcTTKh3TlJprJ+PXX9tFuI0hKInwo89qsJzSqoGIJ26USQdAgCRgAH6eaTqlLEItVh0mfw9wgisJGnUdT9UE4myxCpVKVGP1QVTGjsYd7teGRu6pv2FUbIVu7fvr09vZWT9nMfvfjp5++/75xNOOP75fLpo2xmTBFcpYunCHRGN1HMnJv9t37p+/f3n9p347HTbShiZhaCZeQyBhHl4ts27ZZI1nGObQmuo+0W3/88vnbz3/+fETKtgnbGCN88qdU7cx5KpiWUa2/ZKcRwZjdbUYxEU5AAXJO6n4rjLJY5VxdnoKrqGpRY2qL1d9frJ2531Ige8lw7Dc2h+fG+avy4czHMMuB84SENHt9rOTJBq0kYW3M2k6ENvPMUruICWSr35PuLmsGU2/PEg3/bfK/fsvkR5x59Iy/U3bkzHzyperBa/48k6jI2dZfw896VYMv5qhmIiyMcrYUYxK5VUVK2uP1bFRVLVbwom8UCkZVS7OwtebuxBMaPJfKs3Z9zo198QXkBSFb36SHL+rgPMwrs62IUB+uqtu2sZjbywzh9VlXbnk+kddz2x6PY2HMuI571q7rvY/qmxKZKciEKFWoqZ45HRHrnyMmgiSyOAIggoFwh0pJ7sciCwcBwsOxBMqwoPklSlo+cjN0ZSQWjUJmEBCRDJYHpohUeRlwgpJKSsZIZkw+6gQ/YJYEJQZQa8sV1BIwPusxKbh/jjF2tTKBIyZmvU7iYwXUTHrOQjfcRW0q1i4Jq8jioj7FNipJq3sigkyM4LPjvpDP5OTYLDTVZJNWgKoHe34vIJnTkPtUbY4IVluq5k9lC0sVlsfdzKUkF1Y8MmOw8sJ1cswzJb2UIoUJpiIVGWRE7KZEJkJE3LtPFXEliiA9gb5AZdXPdA0RZVJGE3cXVgxJI09NpM3MvefkhpRmY9QKqpBZd4gIKV3GIkmAs1gvg1yViCh5FUYWQL++eiBVoFJmrs/jalkVRH1xZLUDUVrSslDoE+IEOrLqqMwsKBoyfbi14q3Urs6IqF8Vw0UW/xgQZCDGOGoViCwKN7OYIoU44KrPRo3xIcECec8ULU/5K57S0gmEltkTU8SykJVYvt+SFEQmdUWCid1FHQaYPVwbGf3wTGiz1ugCHzmFv9NZ0udaeqEBghlNyeDIyNIiZdlvMAMjQtLTH4X13cxs3yoEVt/xjGRVSCsL9jHTI4o82wQlV7o2uKBMeWbLjCuFHe6c3bcVvE9VDJ2agRQZ7hUrivhy5rsi5eQEOMYYR38o1WiRqbSmLdNretDUxvSDrc1bEQUFhQhk1FCl3BFzeniLiFAxMaIBiAnc577brJ1Tqf44pHqLksGAh6q2pmn8/Pj2+dsvsuF3v//99dPbo98pIcJ+uI98DD8GSEXyUfGDfNz77eMxxhCSUJUWwBjB6XleXqP0jN47IoYfpRARaTWbrYjumXxqwmcguw8ZtLZR1MstNJk5IqR7ehxcAPWIIYLdGqFaTy8i0qebptfeWRonstKXCB8pO5GWyOF9ioAPb2Y5BqvT33SzBnE4lfnp7aLSKnye7ojNxJQxPHyoSNPZl2miFG0NFGtNRSTSj6O8UTOSNF3QYqtVAsfhQ7Vp20ofxdp+lACmGXqKqJo126iW/f44jvBDNLatifD9u8uP/Tv/l//sl1+//OXP35L4dPlUOgutlZfyQotlRGQhfUfvKTLNuqikyHSXHOQzI3xNjyKiCCjrXoa799FpWriGeU6aqtpxf4gSIqYbSY8Y0UfvHqUQYUJLCjInly8zAyH02RtPkVTh6PMcLqROQUPd8/Bj2zYRLSYURVQswZHhZcUlSAFNRBgRFCpF4rXzNaGAEVFuayvILB9EINOBEwUnJHP6h9Pdo9yz1xy4zgeS1QSceqQ+BGB5B6QTMAFqCF+tAYVHiKKJ+nRcgmjNbBNLpVmz2gqngUVGpGewJuMAlk4hADBMeWYyAhNIKTgf/VBVIGM4yGZGg7hTnmDF8ywlJFNLDAoAovLOyixBZrBKqBYhFK/NFoyYHU0BmRRPUE0bkvSI1hoVKGg6zbYLRaC2v13366V+9bZtrbXee82IMvN+v3/+/DmHF98UHlk08EhEUARl6iMCj+jDI2NZ9xWHlJCgVFfql4+HGkTalnKLqZoiyOHH7X6ktpe5eqqqj5HliJCz2wswKU1TaSuNAAEAAElEQVRQhoBZydYidc/HJAAwZblLNHdEwsmqEJ5l1ZwsTDsZKKfJ3/vbW0V2d68pjZm21kxVBJe2ba1d2vbDd99/+vRJRO7Hw8y+//T+6f2iGcrYjYL49PZuSs0wUsUUkkgmmpmmilpmfrrsP/3w6W9/+uHjdvvzt48ETHMzqrLofVi9+OBQ23TfhBbC+xg9+u0Yv/z67evX7kGVJrKLmIiOXq2jmIo8mTGGFM5JpPbvWcmEuwIDHg7Vtu977fFqSJ38i9YaIGNEzBlDqXBWDvJkMmLVYPOyPVY6hv7kxD7ryb+qBs8/rIaO1+YUM/Z+VmUiqDplVnRr1EEqGZD6NyRRVn/COfAkkUS6O+Z0UEQo8wjKzAShppXSFUMYmAr/L75EhSoSkUz3iIW+lTLCSxIKlF1EZv18m/Au1CfP/zkF6mYUrZrW5uEmOq0xnvDjYttrjIxMIYoVePJV8/k75l2tvkVmVkpQCI7eu1IoyGRVcdWyNbOEFzi2JDHmhQWQZVUrkQmUWxVRCLjVSZnl7mpknDV5jdAFzCBs1VleR3SuPLcYZ8+pSZ3/dhzHVD8nySnkNbO9E824iIsASiKVBcHPKN+6ApfW+0dElEQWkJKyOKU9Y4QHIarNVMBHP7yP7mOEZ8y5x+zULoz+edPP4vx8LQ2NJcRfqc/LbLNWXxKTs0CSHD67Tcv+Qatn/fzYTHh1oCNGNAaQLMc2wDMFmPM0YYn2kISKRBak+UmreUFC1a+o0volZr9+od8gN1Zl+uwPzU+sn56TZK47UyoHZxuj3hQZYWolcJgL/Bbx7EKxBolL5ppkFWZLvvc5ay2u1FwnKxMVpvsANed5kbnA9/MbRVY58tqW40rg1sXPf51DOQpJpYRAtC5syYGg4t/8nKLs59lQj0yZYiersKnxr5Dy8D6lxrSw8TCKCEYWehnVkvjNMqgVXJ+cqSUGpnOCIVNTevauXnuW89yM7Auk8fpwubhe64CeIjKiqCn664/IiX6vOxYJJCIKQ1wfdy6P3yyns7Tz8BfxktrLmPILCaDmAwjIkj3IICKl4n9WS0FGxoQwE3BvbUdG0InZeQTAKWlYs1yXpwFWbG179MN9kK1ZIxnej+MI1VLO48uhljkdLQFQ0kRVK4GIZ5/udVMU95skcw6sBIClJEQzOcLHGJFZZ13BjFVVFr18feYc89bHqg55ERVUVVSjum0rYDit2SqiaoMANU2fPpBBKKafsiNFxUjVeQSduWntOZDBGX1nyVdPNtLM3t7eSH58fNwe943mGToXKW03Uf04Pn75/Mu933/3u+//+b/4O/Dx9dsvqnK5bLfbrXf3yAyYNUwEFHD4cYzHo7t700219N7weHRhQErrG4S653F0wjPTR/oYw3OlJkrdxCUckVFKCEJsm1Uv23Mcx5BYxvLR+30AUzayrkQkANfqzxFjpHuQWZpbdaDxnL1M5GoUA6NHIo70Ycot66l6ume4FQ1SlJHOvu9bazaZ9jlQmXR1gerjTZtQJ/ZC9nZJBku8o0S7MgOhlARMVNVUzcwuFxHqEQnhcQx3J9SaVSf/sl20mZnB2vfWzEy35v2RUsrMA4s2drlsf/ibn6xd/uGf/vTzX759u92u25ttm2Soah8uv51jrGNkAh8yE2fuxWmThlM84gUSJSJrGv+MRDm7xYSwUqtaz4GU+tT5gRmJjAl8gLxoUBOEQrQ0uyhTAiJQGrxzU1TzckFbTtQGXy+y4H+99zE6l5D1mZ9Ul+181RliUf5jtWEnt6vuBhYyK+E1EFLV4R0vWDOg6t85EZJ1PfXu89ip++zL7HfiIUtsdg0czEzEY+q1P6Nevae+yynN9Xw6kXWjVSml/M8Zec+3KQUkMoW0xYosyckq+qc88QoKc3RWOBjdY2Kn+zq064irN5dUT4pVp50rz5E8ub6Y6vRJeOk2qzM5wq96bftlv1xHAMJ9u2y2R6D3ftnfls4oH/f48uXLx8fHmV7q1Cfv56r+qxN+1g+ZqowIlEBgVHBGBjP9Sx/bZhfIkdxSDie87w3u3fYmolN4VWzgxF5NBJdIyfiAHIxE2qjx8BowCFgWlDOQUkXMksSQCcog1rwrluJGnkNgVVIYsW3bpMHzcMJo+6VtmzW1t7e377/79LZfLpfLD99///333+/7XvWgqgoT45HhmgNxXLbLZbNGILxqeBFpzQRsWxNjMt58++H98ne//+F23KByjG4mqrntbbs0CYLBJYiTBbYxSbGAHN3/9Ocv/+1PX26PsW/vtl8ScI+2bVqtABHBc6goi3Pu7jHtIaVEHWqiJvr0A+dTZPdZoFbyb8/Yetrdi6rW+3tMvPGEkiWWSNUCkdlLHTmL0t8kDPECHsTCbqzl5+dVzS9o1fE8IRtyZlYiz2Hpaqw8h73nvsNaQHNVL4zoPHVJ3QzLS/zlwicC119sxs/LPhtbr3tEVc7zc0K36qd0Suqc4gJY6gZcCLjXXWam56+uA6qeWmHUzwztPFFXAvPkOctCu4jIS+xG1nlV0+8XbChf5rFYWFR9ehGfWjlrsuKBFyeC8qtzdymvgRd8a6wWz0upPGNcncDF9N5EJCnJABLDAXjEttX3AY3UUjcTZI7wdCDcC9MWMaMj6RVamIRUgyRQPooT+ROFq9N1YLhASEjpameOWB8lnIgsLACqSFFX6vYJphvQhK9O8lMqE01KhlChUmy6fDFCqJs4uhNiwtKDjsWqIorjXCdrYV0EmPO7iPAM78MzRCSSU/6q/BknQA++9sBSVViJBc96dcZvIQMefC7l81XvrN5SFbQjPCOFq+W1JKGWLraAskq4JOdYsqK4iBJrngYSbLKaGmtnzsCvQcKUs72QDjAjm1pmmkDmOL/sgQmrxlSIsJkiw4eosEamVYUxgOl+NH/jOgg8E6Aic4aWOXedcyStEhoooFhtU0QRQNMEQklkxGAkJIvQU58thGgJVBZZvTpdKUyb0O51KqWUSJbkvDkkBSJagUcCbhSlJHI2imrEWhCWSBDaFJjiiaSUfa6KpEeW9E71FBa2vLKlJpoJn/7AGqBnSWMwwyOWUigUoCPBUwF4JaxSw+oavMgTY+9dRXwytEEikGQ6HOWwB9R6ZVTYjkwBdB7xQkTAs8DBjhzHiECNuTzyOEZR3JMzwa3/GQlVbWIUyT5edctIPd85jSTU36xljIS4e97urkpTVYUvHwUWVjyWXn6InI3DKatznhX1BVSmWTZLw3mBbSYmwpTC23G7tM3kKcWnqkYOKlQyWXKBLzv3GZkKLQYAkUhQJZA+Oqf4nHYPIWayv9DyKXViESoEkwuLMMN5RbWCTRKS4RgxrmYZPtK9H7jRzDxDVLUZMhAeEWAE8njc//jrz7/ePve8t8uP+9sWGc03+Cgl1UxgMEf29Iioole0PR59HO7ubDOZ6MfoxxBBLsElAMfRH487VaxJQscYnIr04kcIxUf6PF1PuqNmxBjjOHrvbrrVkxp+RIzWWpIRCDABD8bDTUAzkp4xJQZe+veBQJ2rhZYFULzHTGQUeTUBz7w/HppZwm41YY7itqf348P7huolRxA0ESKZUbWs0nofTNnb1tSO0WsyHAjD1jaDyggHRVvTVlc7j3cTafu+Wd6Ph7vrtpk2qFze3qXqNx9qM8mDRLtcWms59sTh4xER27btl+125O//5g//+I+/fHyddYIkjuOYSJJ8wnRXYTDRPyisQUR3B7B/eluZxHzzSlxASkkP5sLukkwITcFJtHbkiOAYs1RLxPDMSEJVtTyQk0iJwOzbVLXY2hobahUOkczAtm9AHeiCdaKT0pbAx0yhqtaTqT4F5HPOMCUbCMBjnBGzvBhINlZ6UNq3kGXSUJQdn1Kb/TXzY6aJ5HIR9zVNmvPb808vQjK/qVpXAX8G99lJzGzWKkXDSdnwSKDQBFWVF+JSkCmICGEhN1slYGcy4PCkzW9KpIOU/Xrx9ZVKLD2Xwujhw8NBlXailWhqlXiIn/i4Wj9SUmaZiJqx1whDFMoC0teXmsUGhlBLAI5qdXSJtf3yvl/fWkT5PLu7eTAhzPCOzH2zxx2fP3/+/PXbtl1881NYZHm1VmKBE4CGyES4h+cANSJyTGGanOiQPHqPryPDw3vuF142SPOIMe6ZLqkdMhJt28Nj9ClWD0pmCkUgpNbYexABswjxcjsjSfioIk9ETu4XURASTF2/szV/NlDq9BLZNjPdiBhjSNJULrYLsinLgPe7t+vvfvzxDz/97u3tbd/3t7e33/3udz/++KM2q4qiH3e4ZwyMHv4Y93sTRo7aYCRFJ65VkDmGZlyb/PB+/ds//Hg7bvfj8XHzYOxbu17b29s144gc99uxbZfL5dJaG2NEytvV7HL5+uvjL5+//fKXL9T9bbOcGpYTVCgzrE2RJxEJz8zpAtXMtm0TMfdeg3FKMdstAwSaGnDqdMTLOCpEBCopDMLWVsJZykYiS596jhHHGDABS+KHp/b7mSPhbGCtfXpGk9qhYIBxAu+f7y/XAJESCCmHjlww4wlVc2fNGhGBZ+U2q6ylsxOv7tYRDkYpKKmsjvMEGtTrhBxnZrU6OQsBPJU+67uo2iTTjTr/OfFunjnVxQpOW1d+lpHehxX+pDY7yPI1zKdo1nnNZ/iQJe8qIqIg2efgdzvzqPr6vfcSrCqeBzmJihNE8cJZ4/k8sFr/VoIIkZl+zOspiYfjOI5xrw8/r+fsOkVEhp9XyIlyKtnOPFnrxa2odTWXSwAZnLlmRGaWR2IJIsXkxmTU6AmYzfgqxIRCy8yqSVFGOGuEO+mBJFUk4ZhARK8+AVF9tAj3MSPxuVjPJfsM9hP0+2yBr6IKmamJCVOtY2i2e2eXOzMzntz0MYaYqioXnWZVDhEvzmaeiydTro8ZiSwNm8px63ZBiEQgY7WFVnWZp4tGzVLOV2ZGZqUN+O2LJy12ct6eP7LaP7NXneuHC4Ahy/qCJMoIKhMqRik/nueCq18Rk6f7jNzTlKUgdnk+CM5GdWbmFFYVBUNfMKL1g7Ycw86AIOv7KVjBFS9J7fnV4FFHqDxBLyU5+JuVUAWPydNAQl5GpkuCeIIFpq9OZhNNmbJbmNLcU0UZeiYsWIqOxSQwLfK6UBAiVvg3JM5Qx5e08jUlWicsVj70bEqVKYWIJKKMCUpTV6a2lkYE40lyY064W4Wg1U+bKcJlaxHI4RGRi6uZs9zBeYyyRmmnkmFd45rzJ6ZS6GySTQ5AuLuplu9fBCK56UaVLBIsgCkkOTHJIhaI84w+t10iH4+ehGgTscovTXVrG9NFNWeSmWMMIlU1+igb7wS8HwBU2Frrw8kgn5gUrkOZGVrAIKcj6ylGijTd2mZmo4jByzJhZGhOsHrtBdo571XVJzrR3QsUOtwjoukzWnukLE6vCGjKuo2qtXkTUBKF7w9Ahc+Zz2zu1nwgSjxv9gThSE/PLItXeRzH4/G4Px4z+maksFkTtojx7XH/81/+9N9+/uNND7vQvX/cvwm7iBDau4tIxijFlOM+UCSjlC9fvo1eSvsrJmVt5PkdS8mgx3EcR+/OSEDc0XuSMGMAJHqM4fE6d/IMYq6iKQKniIg+Hr0/5s6d6FKQmsGI6MOZEJFw1HxSyiJLi/zgHoHpWhoJmupyZ54V8sjQAlMKTEwkeG5w4eNxc3+o7qbbpe00E2ZrJgJTmsmlGSDjkdmPLFVFD6VBMfyo/8wIEElXsql5QgFPuI+EvL+/275FxMfHhwvf3lsgH703YS5EbvXXt+0CYL+qobnfHne4ew5P4Hp9//u/++d//Lsv//nxD99uH0K+X66ZLisjOSNF/aEa/GZNVQseX6t6xe44O/Hnj5xRIBZIuLCLjpy9BRUTEpLkGL2wFXnacGXK2rYFthEyAFGlKUV8xKhTYxoJikzzcEiASzTkDByxwI00RaEIVIKVOwJLImEz2ff9r8LHuoznf0ZMI8aCGGSmWdYurjTor0Yrhe+IiGP04hzWh55pcV3qOj+f2WEudZwzVi6+dJ5nfjxnwkJ7TpPOT5Y1HB44Y26+fsd5qbn+JkuUcdZaK3xJWWfr1sYYOSZOTec8PzDpvmrGGqWu1ZhCK2wnsqS/khnB3EypIk3qe4mZAMcYt9stejdahVR3d+LhLvdHsmmzCD/6V1U13TY1o3imD0/N3nsZ/16vV0mUvn3vPXKcBcNZSIhMn93MnPYQWWIkBCSSZeSWqV/vdx/3eOx4H4bv2sXMcXvcwcxHjpT7iBH56OPjfqjqZE9KdVQUVJOMCbXXAINRbpQNEhRMQzXRopqlKKnCTCcTUwvjyWwkJ1auSgVhSqGm04k04bW1675dt9aEn97ff//Ddz99+nS57ma2mVyVb5u11rbLnh69b4LIGMf95t06tff742Nkervs+2UjKTJxbb0Pa7LtG409fte934/HL19thNtub++X7dKOx4ExoemlPERq23Yx/bgfP//5l6+3e1L3/WrSRnd3lyZ1UOhqnWClajWhL40KWZXtZMogzBZ2IAezGFXbM4dfG0rN5oTnTEdXcn7uLBFZLjgQkf7ogNRX4JTCeh4Cle1zQWaeO2VlwmfhhFyS1GcBIow1011YCZ57/GxxndXKPBMWZCwzA7VDkS+JNM4q5kVb/jw96nXa/FQlnOsk5zoCzpt/frWaAEcMSgIctfdfTnis8Wz9ed/3135Wrh7o/bi/fsHz+b6K6q/nAxGRpTL9V8fg+chE5nE9k3D3JMjno5/Peh2t52lf/2rTlzSrh+hLtulUheDiM8/+K+c6qVs3xsAUqYUuet15okaE+TQDONUU58rr4aVUHhHD+7wXCJUtAAplJu4JwFQ9OudSYUpxB8GpLYGRPopShHRERjLYRy+gfMIjx3MzJJeP0nPtnhedi/aNaT5WWMkJpp0Zf1WVBTZYai5cWyICifEMUZmZKQBXX11AFU1KMe1LDDVL91drtTFTqrKFMGNKoYx5ISVZPD/tfMaZGekvd3+McM4e/GsoB8nqzs4kZvKRJMtvNvJJaCYFyPX9cxohpBAr2lGZlZhWlVOqUemBF6xR7WwWvApATMMIAWv0jxjMQAhmnyRnm8A0i1cj6t4zo3ZKq3KOnG3pnCaPkhITxojquBslM4/jCPCEnNU11Pj3LPa4yok5PyDr/53OsUHEi4sVYyoZzP1aUWh2ras5JqJGUFKeIhYp5BJLhgLJCLLIsjoHUdUTqVMM855PzhKZGT6G1ph9Ns7rTOTzKKcM76lPXM0MA6zVHtXOkKq/yXSngMFn16OUTwCjhOK53tLrJopIiRBEDUG5bAZUWAQSrDhT7QxM4r0gTn2mTJaBl0ojCEgmhZYF8YWAMdzHcDLFgHKvgYOeEecEw0tkddo9Z0QyMyT66CooK4h8ORSD6DEVwuRUuQAo1WgCMOkVReOUgtiUF3BmFIJVz5tpsmastbhmmxBPvZ/DU0LR9gIuVGA4A1vB9/Dy9yNiM5PkmNQjSTKDorStAUAio0rf6l8AZCEFss8fqUSWpmP4qfBd+EVqFil+CpE3yR690Ivh9bVU1bbWe3z59vWXX38d4dt7296Nii/fPhNDVbamUPFH9O6ZjMBxjBq0R+bopQpgAKTWchLBUuWFZyYjylQPpPrIjDx8jOEqrVSyzXSEu6ckICy6dwEa4c8AX3/o4cWhG96jmD/JCCea0MDoPri6NAkUmKjqqzoBCrgMIhO1f1Oo5aIcEAFVWEoAkJLKp0oKMj1jpGumi8JUVRrSmTClCQSBdBXb26Yxigudmdu2UbejTzjcGMP2rftwd41grcAQdyfC+1GZzePxsOultRZE9+Ed4hOWXIvVzNyn24oPCO3t7b2P8Tji06er2duff/n45ZcvP//XP9H5ab9u+3Ucj6rd6kzTOg9qCFEymBNqIRQTwWlzGEtMsRKaE0d3poBjjD6GiM32RdVanHQYR0FIqlRjZgwf3V2kcXrnCAt/VmCbXCc5CRWQoqaqo4S7lAWwWJHnbMxJJhFUbRXpKwskcRxHwtVm1jjG1IQ7g2YdHjLbYenuBQXPRcSY371KkqmtGmdKd35OfYJMyPRT/IkLGImXQTrWuLjknUue9EwHRSRyJBwM0aliUB9VmdkM478ZT5VIZ6IQVApWdRVATjYbY7lSiAAxBTaAANupTi4hpsoC1FXbdogKHIL6G6lBOyBkYGZANYkiyYSqIkvIV0RE2r5f3q5NLYk//vGPxaiYw9kIj7w/+ugfH7feWiPzGL2g/t/fvnt/v0bG/f5xHMeXr9/GGBRTy9bGQg7M3lD9QZfo9/k4KrvMEluOMnvPTJRGApv2e6BHw2PP/KTbDmt+jMcQxUAcKQNy7+Pb7XH0YVYpV4EQdZEqaaBQQAliUEpuqBB/SZoIKMXSoigQZhrxXA8ZKQkRtolcwDRkjiRThba3cInhNTZWcBNemjXmRdkQOA4QkubH4/71S/v+fZNNTYemicLjI6Jn2JWEd9FMtNZaa0CAocLWVNSlGSSD+vsfv0sGJP/4+fPt/kjm9bpbk+EC6vvbG6nbpWSwdtuujyP+9Oef/+nnX/rQ/fq2bXvtLiGNNm3s0s9ly/DwAdHIEJ+goWK11B8oSI+RXaRQjUwPtJXMkwkMd3nJxmea1ChSAqsxS9OyMmFmBhOqMkq+hTOgV8/r3Mwzp8KUFHL37dLOzZ5CUF5nGHMbchpFzh9KVO50VoAiUg48ryyGifQqDGMl1WtWLE+yySp0Z3zTqrzOarNeJwCYZKE5CoFM0r2zBGPOspkgJ62JE7gWayM/4dnycsgA2Pc9n813nmXhc6q0LonTPtpe40Wd2pXvIsKPXpXIsheFUZroyoxm0/8850uXpPCG82PBZJRPOhB9jKJ+FFkpIqr76e7G6QtVcg/n9xKRbdsSfqaL21aIs2lwJQtKsNoccO+WyZlOYSKkBQpmE23bJiKPfhR+dfY8pFoCFQ8wCwwVUKtecZwY15rRw8NHDEeWLnRmqUqcvZUMRziKYlSeQLFoeCnUl2nP+sOzZKxVlZMSriRTAZUYMakahGcqIEoTcQ+tgW1Be6flaly2rVJhrqKg9i9qbv56AQRCYkEaAZDLyWyOLOZqW+O6KbMZEa89alJnyAvOGvrlVQ5Gc88s0xdobZjpVH9uyAREjImUAoaIsG5tef2tzlPdrpVwnGcEVys6IvRlQlvPkVR5gYmqalI8uq7KM2KUpNBqtJuUklDWnDPDkQihlcZurgmqgpQUSsYoBUaKGCmC9IzKuApLEvVu1gF63qV8mWkDqGSnQqZRPCt/hyg9gqKI0okNWWnxPHeirF8hUlTYqV4eEXOxLloFXmhnzGIVk2B6IKolMl1DqSZiYxxuIkkVoShtsr8+PPo4YnTYXpnm/BVe8prBtarOpS6FXc6cKmsJAPdvH6pNXpqappsq3RMKd3QfmaltuqkHXUzKSq8yzNrzJjoyUMyGamQqJ443QysSRYzoiKngmlARSQpLYGwiCOrGODxSzpUPtIqcFThnZ/E44toMmLOKuv5mtpzJjj4eIrKt8vh+f1h5vs+BU4lz1F4rbn6iVlLOygeOiMij+0kmWb3MiEi4QBIJjx7O8MtlRyJyZBH/17kXEbbsEEzUM5Q0Mx81a6Q2K/1sIbTtYwyWUil1ul4LqtTMzAKpmFl1LXhyomQ6t504jf1yIeHlBX9pNuw4jh5u2rr3xzGceIz7l/uXwfHj33733R8+QbxtMo4ODpEtAv0YMWKMgFhAxhgBVWVELjLVrIJ8jNGj9369vkeEj3lAHj4igiqIfHQ/jg4A6ic1COeYcfZ2E0wfYarnyVZcnSpp4HH0A0CzjaR7CqHbBtGYTsVCkYzMoFez6tTjTC01hskgDU7iBFBZ0fW6S04p8wgUTSCHe/rFSnCmzaReEQMxBqWJEu5Iu7y3t3Z97L0fPtIlUkETcYoqW7MjbD76Y4R0UcCagOIp1h63w53RB4DLtn///fcDvB0PD0Tm1rZt32sw7kltW2be7/dxoNn2dr0A+Ljfv936vl/+xT/7u//6X/7x5z/++dHHgKooqRmRDCltA5mYkcvl4iMcJVLqANTEzEbvEy600oKVczyZV6qqtiklklBRIkrHwzNWt/X6/p17j0Bh5CiiaEQeR6/hSZuUQIRnpsukR5uoxtyqZmYxRmZioTYchafOQKgqU8YY6S6mgRxjSCuNhhx+kHy/XEXkfr+Po2sz5RPuOGmiEWSbwTdnSy89LvtehLTILGv3JWcZJwU4M6HSTFS1Pw6e/YIXUR8zc+9n9nmmrfu+P9loa7R1joJnrc6SMFYuBg2W9N36/IKsSPWYgayCOVhC2pjA3cU9rMxUVDPzOA4uocey/SsCf/34qjU0Hj6zGM7DzUwysx9+pjNYsjFFdK0DU1W3/fL+6fvr9SqCPsYR7kd3ZLobjaaZTJdvHx8EqBhjmMn+tl+v+3efPiXw8eXr58+fPx5HDGfCxzjuj+M4vPfjOHw6IBBA711VCTWdkD4Ry2QgCrCI6h+s2EgioOF5kF/T/3LrxMFx24jJ7pOEstR51WarAqI1NJGsXnNY00RL0QCbjiJVicg4dU8S5OybUmjFsgByosLKIHG2EHJ2WlNBVbam4c5EKxuJRPTxiBEmhX4ZYyD9srfr1jbJ6LdxbPAQoVVl29THnukiFHwimT62zcyKpaMRw9pm7QKNYzw8btuuv/vd+2C0S/v129dHP2rVIHcADa3Z/vbpk7Xdg8itH8fHx6MPJzdh3ahB6NaaSRv0hC/i0QKgRtSkDkuvuJ5ja61kojBb/7JtF6F6hrtTRCcuhEGgLI4w7X/qE6qGeemATNEj91EqHterzT30ktaeKVptw0IyxsS5bKtenUlj7QJfz3eEw0ukQDI5lu73GeYyU1WPxyPX1BQvHBMRBlCCRhEjkwUfrWh7jsPOu3SinfmS1uqTAfvMb2urHkew2rSlH7Z+cIzh3okQmIhCc9rxLvmw+pDz0dQJpqpmSraqAQtudr75fFURfuaiuTqJyFFT1pFhK22bR8dScIjFY3UftKdkT0Xf80pqYlk/6z4XgKqOHFiM6Cxl+MLyvtzNavJetn3f9z4e9aDjBZKDNTquXyXTS8+P47AcsUAHGRGeJeHbIqJ3BzxBEQ0gIoGIEVW0eIkzCxPofYjICQaeaxpM5MDUIImMSIQnAEeSotYiog6+Es0Q1dtxQ84zLoWIjIAv6K+k1CbjZNRYdYLNzJqIyOTgI7b94u6RFDNDjDHSQ2QYCM7dRTFOxyapRui8EfCyeUt4UkZ4ZqqUMGYh8bEVhzaKjsN0T8eUJsqa0kR45vJw8pKeomWe6b6YtAQyBjz1ZQMIGTGqHx4Z6c8RNzk7Cyh1jDkNT1MyEmCNxaZdAEmWDmdFawgJZMBFZ1NEN0HkGA7R/bLHyPQeESaiopmzHRY5VNVz+NFZ9okZCJ8RlOleMuhCRaIqIgnAfXkHgOkhQiXK1kwKa8cU5tu+uXtmHRm6NcmczMuoORqm4Eetb2UTzE5/5hTuSqTRlFp+RkxpWr7eNLXhkURJz3kmKGbGMXs53buJmKiWnmf61jb3HpnVLXs8DjKDoKClACyeO2cHTo/xBOqgiLvM1lrNno77o3Zy+VwiYzNVMoYzxaRMCLyHKzSnNmP1MojTjiXT3e+Px3HUst9EpIenDwAmJmQmRgSoQNrWQtl7rxXv3lEg/+HW1NQihlF7H0RupiGsSK+mmQxPZlKYxUgmqATo4SKAFgM6xHTbJmK2mWR6DPfoIpLCHt7HsJlFSaZHeGGWIkKK7BFx9Ilm8Qh/PPbNIqRaLiI6hV2TxxEUMzOQGQmRhBxHL0KhqqqVDY8DSEpr9Xg5PCYwnCBShBnOSGpR0KcfmwBjHK01Qg6fDqXdfVP1ZPn1TdNC0RhOoZgwsocr2OxKVU+MqKYJSsDcmgliRB7DM5MJMyvYobs/Hsflcum9m2gS9/uxbdu+bwciArIk6yWhpuF6PB5H3m3fAnGMR/fOPXa1Tz9tP/z4/6frX38lSbI8Mex3HuYe92ZlVXfPq2d2ieUDhASIoJYUPwiCwL9ekD4LEpdYLblLzWKH0zPT3VWVmTfC3eycnz4cM4+oXiqmMMjOjBs33N3s2Hn8Hrfj/LbvrR/nGBhnHvd7a+3b41D3x9l/+vql97Gr0jQIUZ7HN9fWWnv08/71IxPqfhxHEbOPfqZkBTnCqHI87sl09xHn4/FozbZd3YzJ8+z9HHX4FY787CFUUa+pXXXKERSiJIwGU0VTktJHpKm4W4/puUpYRpJ0pUFUQZYSuwFISSnoGgJ9uPHTbd83M9CbIckxhKwRg7rtbbt5myyd6nNDEBk9vN0k5K3tb/ubUs5xMMNN8+wmphlxnHl2qJDirhiJweB5DPa4m9nt/X23bdve2v7WYzzYv3v/7vN3P7TWVHRANEFVbw3aKAktYAlEZKCl3MRaa29bM/BrxrfzPH/z68//+X/xL87z/Iff/fj7r99+9cMPje7NIzszpBkx7QODGiA4HUptKbqragGtj+NIhJgCOM+z+Q6RGRDdszyEvaniHD0DWpVwjzNDRDwYOc3oK6cwg7uAxW5dzXV3Nz+r6eY+/cmDmdH2pkEGt31L8Dy7N9uar7SV/TwMau4UOc4zIeLiKooUlU+3t4pdY8TethSKKpf2O0ojg6GCfua2bQrpvVeQr/Z+tTxGqT1LipirjBHqRZTJUgMhoG1zRSAjBoTt1kj23gtSFP3sx5Spr7TEBEhWUWelV++WNsYYBd9pNZJfI2URddUxCGCzJtYqnzPA3BDDpuxqkhw9rLl5YTRcxI6MYJr5trWC+FQmXUXCiJODcfZmRpHBdKG5kdp7x2pVRTxHTyS8qYhBGRG9R3NvzSJINJW9jwHRX//mL3/7z36bmT/+9Adt26fvvr9/fGiEe53CxZsBTIsYlpL38/jHf/zd4/GN5L7vAPp5Hl8/xuPIx5lHR6YiI0MYkowxctLnpDTxRtIhqkZqIpkNA6PMQgxEcETG0JTGlpmPk7bZjydPnA34rjXPJEMpkn2MM3OUD0OV2tWMMJT5OBjIyS3P1kShIwvfHa6b+3YpZTZTYWoe7hqDkWHWBvM4+lUviYAxxNDa1pqYpsEjekYYJCG9d2ETkSB//Pnrvu/f/foHdz+Pu0uoalNz3/Z9q+A5ONKobhCCuXEH3QTKAhDx7dPnkQMW5Dh5Uroof/jVe0haQ9v0x59+OmNsbbvt3533873dPn/61ba/33s+Hv3bx7c/frl//XJu7b13kmHqwsJ6tzESZRhRuPdEwQBFndBk1lEFmwJ1RAJm7iI6xqihpLpNMrBpJhLct63a6waURnGt5838vD9iIpPFzMfZz+jbtkEwegcQ46Ux7V5r7BIGqDaWLlB627cUjNGZ0qp9VvPqMfu/6k3VUyBqBM7o7luZGPcIRbi70M7ebb1EyvBZ3Nu2tR4jWfIo5cCiVQeo1by3NB2jtb1iskJas6uKm3UmNDPVGirpYTSrwQKFdPGQYE33OIkh5tLcESP7oLL6ztWQmx+5ACa+Wkpvb28iUr6Dm7TeI6u5vyJDlY5mTXVqZdXznYwzkTm+dgVU3bW1FE0C5qZ6jBCh7x4IIMWlaoQKtQJWxZIoGRDIwuCatdIiIac7BiIjwmCfbp+K0jK/m5R63ZMG7K1FTMVTnSO/qVDNS51OUVIMWsjA19GWluLuiKOfUmRAzIPSzGr8K0vU6mptmtlxnuSUVTCZjCyoBKdzEws0SqSgONABYVZ6UzBlYCGOrqUgIgVHrmueElBz3Adc+AGrM/hiiHpQsvojC/IkSlV1ELmoy6oEMmUwwav9EGc/rxaRFM8pdQphTtbhLE5rAF77uiq1af25sAercTKt0er8y+D8b7pCVbf35apzYkUSySixpfnPr10NXTyi6u2g7qFMqLBcqFGZMgnXD9Y7S85HVXv0eNosB5UOMxeDkkFR02LdBQAiS2RSJ/xhuG9my5kts0lz91xac8opKh8azS3GadU0YEyMiFBNkLQ5toYKRWkF8x3RbKpHXpDyym9el8q1guclE1ji0jJRy5xdV06+KydVY5RNX1l9Vzs8YpBR2XbvI3M60IwJzJgzLRfAVsPMTAsuuabQU+tvWl9IdWdyzPFWM7m4iX3BtiEm8oQ/XBdYK+oaoFXEd1WoR1JytgOLm8TICEBpYhQxbV0HyzRDmhSaa43uI0JnrjwqExCdFINSZS93VKYKGdVzlwSQAkXWyqoO3oqwtWeYUHBy0mro/bKvM3OQsxMhJcApc8Y/09mnSvb6WFVS1Jos3GPpNxSDpTR7XCQgmkgKkhnpW022QbLk/qead91XRzXoQ1Mxv2T5UmRmAY4rFBQioH6vocSCyp3JIgOQ1sysCSQKnJswMwiKdkLSfPLoMkqXCYNDRCC4iC6ZM/3j6l4HkSORUVLqhfxz921/GxxnPzvOLgcavIk1ef/k75++H+fY/I2U8zzHyJ9//pqBo3/99vE4z5N6oUvgropdRWIER5jVRKjG4/WcUkACg4nE2WfnVQ0yr9rIPM+hqq1NyUPMZg0BTUwmcExNy+gdbnKhcwvWICLCjJGqHmPBn5IZA5FsNnr1HaBaan+maoUpSqYgFDbRN8gc0dxhLpkG28xdYQSSooKUfpwMyr5XYyZHNnMXb9qamzftEUG4WQahEiGOCcvWxI9fvibZ9ptAJGJEoO239/23f/lbqv309cvH40iFAuPsYeZq5sY57TNRl0T284y+me/bTbabQXqwNX1//0SGuz7O86/+8jeP+7/4+evjH/7h531/29qmQtSag6YkkqNncIqRZA5A3FWUESGctL0qKtbG0ZXBSGYGBJmRKIZOIkCVpE6MsSbZew9Qpi1inT4UU9ta7abABDypqotTJJgVERVGkiNK2z2KBrZABy7q5ud5SrJkdtVsM4WaNlV0IHsfYwyTpfAvWgE2f5kqmJVrRpYjUTmHuWioRaQqBhljlHOPu2A6iYQQZkIVQ/V1xzRAgnQmRwwmRySZo5NszUS8aPOz2Z0dQFluXnHbzHo841hdbzO4KpNmAlidF2ZGCkeXpJrd2kaybuipYWaFzJlgn6l5MaGVlY6qKhaqJTNLFDpIQ6kKWtR6du0ZQqmvOsYoD4KadgvgrmY3VZiZmKFsmPW279vt07v7dvRHUtq23W63MQZ65xq2ZCAlRCSVRFQmehwPVfnd//p3+76beu/9OOI8z/7o/bj34xzj7L0X7qOOTxEZI1UBHWYWg6YCE03vedYSI6fauYlCXDJVHZKZce8pxzmgNxNVbIW2JLA0WpMQNYrm1AFTKT1UAKqzO+9ovgWCPceIiFBJRk7XXTMv2kUPB9XNqUlRoZuU1oyqApkcCiEjCQl4nRpLmLcaOGaSlB7jHDlFWEcM1zcTocbZu0lrLsrjrB/Qvd0iM/upal6gbaFZYeg8prLwUENK5HiY5Ntu33+6ifB+P0rLRYC3W90ka9oY8fNP959+/Ho/x761K1yITONoVRs5isugqkWYqtFfJl6IA0/k1IjAeaoaoG6ttaZuY4yR8BBAVHRk6GBJWF1i+JkZmIRPvOg5TylvlvOl0Sgmpla0qB5DniFhlQ9qUHE1Mb2f92AqnwSQq4qpQVegKOYsP1ss4AzJAkip+GobPeGitoSXFjqjENF1HrlIUArx2Womq6pJqFuVPHhRAbhe+75rDXiWUn2Z2D9vMglBDcmRIyKipPIn4Y7W9JTyZHlebC5Rg8ysYnI9MorgYtXaUsPGmkVXFoen3oS7b2ecplZ7QhcO8ZqWlwxQ5iBJhMBu75+wZsiVuWGVKs9J8MsSQnKMcVl2zQSsuJPuOSIXPD4zj+OAvmJCnxCn6wdjKUvPo6pUziZ2QWaj4KkGruVPKzZV5PW4T5I010uq4C0W2UKlcdWF5CWAexFXZ9kTix4GcqDy+FGfyKsw5MJK1wdK6FKwVRERg6mZeCtMY1zLMaPuV3XBUQVwfcxFfRTYlP2lJGvKCugkXqsqVDKHaCFnSVIogsm7qpO23lnSIHMmi0LGYm2buhOFZyA55aJrp4yM635eS7+u/dpUo3pI8oxH8xnXBq/7uiAc10dJkc0AoGQxJy1hfgihokIwUpiuopinexEJzESJzMIf1xqqdSMqVTZAqJPzwFQwCZsG8TRBMkzoqlQZY5iKu0cGp7aa1g03lfJZIENgeBYYMzCpKicruJ676tKNVOS8NAKaOpXxWfSEF3A0YlTzSYCJ8YYIGctGq5YlIQkKJM0nEEC0Pi1V0Zrl7DjMzvEzeE04eiRpMj1mI6YVu4mKSCz3v+eTkqqn50aa4QbElVIszMYsHiKvY0BE6vTPGJJ6BYgAg1mdrJde3QxwNVSOuLi4oFJEgnCsD2FBeOalpaDkdGUGUNZQjQuKccVWQI5zTBa1N6RQUszr244xatEJEqJc+8OEWN2cCwYxHz0dgJVELaeggC3/QC/hyujunmD1STKTObueSUoVYJhOuyhAINhLA6p84bKUmTUFtlgxWGzA6uURSHD5gkImhl5U9TgOqPrWRLX3UakAkaKm5hREjCzguBcxrERxSZY/HlS19x6ZajTR1lq5zHtriIw4S6BYVYOhZluJAKki9TyOr4+fThy3d7Pmvcf33393ygFgjPz69WuloZH57duXj8dhZq1txdwpjfAaa5xxP2Oom1KOoxfvG1KSZh7M0UdwZIiqq6ppMT9naI9I9wZVnBGjelvIRBWnxYpRN4Uh5+YltPSrLy2lkSWqd6najhSQKcIeI/NU1a2ZQQ0ChElBJ+qEsmsBZI5+nG+3zSClfAKAxBgpTHcFOZhkSRk3Fem9N7k0P8xto3QJDk1M1TpXFahoc6j8oJ9FfSR7xNtbU7et7aqA5L7t33/3Lqa6tfb2lkIK3UATiqTQDeoWEUewqZtoAW9znP04zsjb1v7qr/9yjEGViLw/xqd/97cZ/3ged7qZ1yVDBKotY5QwV/NNXXJIDakmVAHTi6XOlWRM2PiE9Za20BSPOZNjDNXllqjaTMzQYwjEiLUX4jqBR1WzatOVeAzChrBGzTM9FONUyomS7BCbO4tkCL2QhEkUJLLiuKoSZx+qQMK1FTBt9JE5WtuubOkKwmayNSejPFH25qqYLXZw8kwE0yhcISI20Hs0M5nWo6DifJyltIyszCDIGXsjwpYgMlOiAE5JyjxHrnylvlVmpYN13wrR46ZtZAlr11xXt7ZRLbtmxOa273ux/c1MLFS1j+kUUGmJThIvWCICFeRnbrCreGRHldfV2RcV1TBC0jLdrJxXDxy9OHKcsMMa8qgqTBvM/EaRbdv+7M9+85vf/EZEHo9HZa71S4vtCQhTIkYUop2MWcpladWc57nv+7btqippvfd6RufoY/QRI7JYo1PZYvb8h5hZH4cajK2O7BKZqUKZpJTnRKSpSvNx5hh5HL20mh1KF1FBD0gGtdOSBLSPOn3SVTZqVU5CiWmSzIgIxNUD5SUmBNSJSaSJkIVjQp5FTLXAnFDJVFHB9bMipYlumiUlGWPIMD2Oo7kcx9F7N9WIbi6fEpH927dvEV2///S27wCZsW2NI8wsVE3hNpFrZkJKcGQi+hCwtIujj61Z72qqyozzKMzq7XZT8QiiR5D9jI+PR++jtZ1zBGOqpmoqZmJQCQZBlFRY7SmxMsi96pNq/hZ6v48BnbC7uod1P738rovYS/bjqNhShMeqciOz5I567+d5XidyEfOEkplqzkI2qmLhsC5hAGtOKYuBuvmTVldgyOrJ1kq+vb9JX1XW2r9SQARJUTWR0TUGxWk2W+TrbTNpn0uFdCmvaBORQQKYJVXlNqYQQVTLXlGy/a8KfvXlzUynmN9rYn9lR1g4DneveYXZ1lozRe0vEdkmN7jS56nnXMGfkxb9lCVS1cy+bVsNpStsZmZEbtumipcinfU/JS8ehhbr+5lzP792/f0sU6+tdJGci8EegYhf0F0r0a0dqE/RwbnSWmtHZkZuTQE8Ho+IwGIsiwhfxrS9Tx0rVUWKzhqCa/LAvCr4uUCtAeVOTibhkBEhk7wrC1dQ842jn29vb+VflLN+SwBrPCoAqqyt4dt1i64nSjLG6DlylQOZWbS9S178+vuLfmBmbULdSYSqVTuTq8SYowxqWTmRI5eiUtUY1zhPporaBIive81MOgR1Qgyy3BRUL8riTKLJFAnS1zJlVY6rXi2f4Ou8vm5gLnDCNS4GUCMiERH706IX//9fryvvWogqwlWQL6JcdSUkRwxGCpqJbZuQYwy1iu9ANUxRWrXatlY3E6QpTK2Ahc2bEFy60GYGYvQhSZdCQSrJJjW0FG2FE1eynm9tvwSWw/UanJYRrbctIpBJES//2MxF0B0QsakDswRaXgTWr9V/1TNVztWMo9zz3N2m4EEkU+micDEROc+D5LZtajj7Q0T2fU9oid7Ly3iWi+Y473ktTkhmrnYNnn27Oj6L4EFyqcxXqjqYY4zJBHsxgqsNbAsEXqslIfkiG8b1ur5VZhbw4RdJcOYVhl5XC6oi5GLwQwhM3NIlM0ZhcbqJiFg9LRiElME8GCJ096abSvZEBmqav9JQuRazlEzw2q21SOcWqMZkZdVmq6EQFUZxEXs4qs7ftk1EGOUzkVcErJlqWVnOfU+SKcvyJEkpQEfNldxQerNka1vbNlXrvVfn9dq2cx8tHYgaloIR0YvlaktP0t1XwqyAHMepMjvor4oA9TfVII/BApI5PbKbNlGqgKIwOjQFpGhSXfhgjxM2nUK/fv3qrtFH5lRHLsB2IXR0TeMBRAYj4wxpUEwpl8zM4P28mzbfxNw3U1Kin3VtKlsFXqAE5+apYdYyUfVNENljYrwFUHA5ZIqIwkSkXAbKf8KmXURkprVWR2PPiKKLS5ppgVEie1AkMTKVkmaAwmQzcxUxRkQ/e46TkQrZ3DcRQCOmXwpiSEIKVUfE2XuwmTFmT/o4DjJ83yA5Rj1NcXc3c7PKnHrG5/dP2vzL18f9fm++lyXn8XH/9vNP9mu73bZ2a357G8x7H6Z4++59gEFAzN1hnqluMAiS0YeZJnQMkDk4bHtrt/b+fisRol//8PlX33/++Pj6IeLvn8yqMb0MvUXM5mMtqsAYcxKoas/MGxNioIuzXSmgu7TWIOKMVDWTwuCBNNVisZk/ERwXEkdVz/td3UzUzCIRRPbekb5ppeXbtiksIiiSObWLUYyDNqFrg+l18KjOhmBmBofk2c/WrNlcdWOMXHVX0USvHaSqq7e+OixkRMQ5c0Qu9FDlFWMMxex5wMxVR5+U2ehjmpYSVSlD1EzMbOmB1B3QaxZUE6SLtne9R5eyo+rs0LhMDYLWdjOvaFRvaPtbRndXceMxqQQz4FQqXNn7dO6tPl3iotEBlVBu23Z/TCHl6wQRkX3b7vdvItV/sKmengWzTFUdY5Awa9rUzNSa6DbGuN323/zFbz5//vz7P/7hp59+GmPc7/e+XiU3G2OUkuVcbNQrf60QlJljRGu7TevvgtT9ad6/EvQ59xtjlEKPGytozqW8HvF1w1NU1cWCwU7YSClsszWOiNELMcB0CnpNdSOFaM4wK7kx6lAXdy8w88gaCZgvK9GciEZQVNitldE0ZfYCUm0aegFFEFxeVgkKzzwN5u5qItoGGIge56PLHn4/Hl8+vpEU5HHIeX+MT2NExHiIhutnmG7mAB4jttbYWhYj3aRsIgDE6P08RnRK0GvmIW/bfp6jYGlCGOTT7e3t7dOtvTO9D3z9cn758vU8B+iCllFmifNUKliemBptcFQ5VxZNsvrRMzhkQueizcyCJW+3tyxFiQgtViJni60GvL33GGWqNzPwGtZhjZEuFagrX0JyZDTf6+BQNyni4ksBLAXCGtFjRIhkLJ2+J6GMSzWmQC41+qy6Q1/Gkqrq/hSUuhbqlczUQ2dMrkXFpMxkRO89opChozS1qrLAFOUdEeM1//dpUz9nhFj1wsXFlUUyunaBTuZdRbZnIFriVcSab9b7l6ozry9ff6jWw3U519X5cs+RpcUti0r98s5n7r1+sJCwE4hbN1le2Nq6XtUOw0qhc4HI5sOawoellByVluMlw88lTVrz8OvBRcSVu14fvtLJzEwfOSJDnu3DayHPylNUzGuOEWMMMiRlmROoAIlRvBGYiipVMMHqTEKUVQZXZTvTVlDAqEy6EpGIaU9S7UPwqoTnvBd15M+RkyRhpWNUgWlyo1UNnNynwmcucYJ5SorbHL4AJVw/x4eTZB/JHEOwBvd66dGsD9IpAMw6e+rfKMyYYsxlblLy1KWQkKDAFBysdSki0syifJXrIvV58+WStpKrNljdlOKtYYomiTzRzrKkNYTglKgWKSVaIidofN7DOYGudgDdJry8RqQoLR6wRuLVLEchl6cBlkgpVeskQA1MvVvWvo8Y+767WzU5i6IZI6QG7iW1uCQFq9B5iiiBsnI7xqi6yERMiOkNE5W7rLsjohPbJPIUlJ+Hq4io7uZqpqqDqQllilAY5m1xMCoaZpXZEcFpiVaFWe0immisD2dV0SBMY5xkzDHyFOoQIFGiDpwLA0CQUeDPFTB4zaqlytXpKwgAVkhjaW21V6uDWBiS3kusuurW1ZKUKnLGGMlhMFcjAy+ojcE0tbLzUbOIMKk4gnlVK1xEBOQyP64vPI+E6l9UTQWRYAjEfat9P5EBooPgSFUdQZEwQQ1/Vxozm2VXKlmL2Uruhc/ov8hX9OpzA2AgAxkmcBWSgwFk5cqCDGaPMN0Ws2gO+sEiX0J0JiklmCc2eS+xEIwzLKhMkWedEveT1w6QtOaYVLwhItYmYQkidTbLAuFkMieCQkW1dh8BirZ9e74t4hhdYhRZwLemCuSIUh80EUFz749+HgcNP/zwQ3tTaxg8zfTbt281jvv06fOnT5/u93s9+dZasWVKWqxW8Hzo4KSEFHlJIEozg9icDCUAUdiEuIr2fuSIGi4BULF+9h6DFIFlZBe2Jrs3XfCkczzyauVKRTcXtWIsZFbXK0vjLcuQDoCkQPbWiplvNn9j9VMiupYJujAzRzJjcLD8Tkmau4qNnoI0N6H0M2zTzUwo0ZMxrKlW96L3iCAbrD4VZp6ZVtGWGRkZcoxeutmWcCjI/jjMvLWmIi4wATPH+TgzCNm3980tzzMzrYkhYnSh7CYm5u4cISK9QzTcRZQfj3thAX79619nSv8vU6j/6v/1r758/ckUb9s+xpDSYJgpbp5xAoBAzUacY4zN/HVSAVjBPU1NVKu0GGOQU6jm7Kf4MtmO4LNbP4x2nU/CZ6uKdQCpV/DOaRyDiFA30ef4awKapg1YQKj5PJtrYRStJkpGlcnIzbYyWo2ROSp1a7fb7TzP3vsrBLp8fUocgQFBiVGXxL+ay3EcQW7bZmLneUYmpKQM1LWZ+MizcB4KTMdXAAETGZmqNIVt+1WSqdJMhOXqKa5mohHRY6xiVd0LJCUmftvczBiIiNv2pqql3Xqco/fuFN82tQZBcbNVxbykMdiajTFK56s0acFyy5SEgv0qBQUw1dv2Vg9RJhcOLKZZ0purakYZwmuRpUVsaxt0RIT6tu2tqoKkvH33+Te/+c37+/t5nl++/PTt27fBPMZ0GV5mwijhg8oN6uubelFvOFAgkRJzLdnzOS8yA0tMUkrbUZ8rIoWSQ0JNCGkQ9zYtkfK1+gUQxPTuoqaaAH1EMN0+KQzECMsEEUIV0wEEJBCzrSvpIiBckYXWK44auBoNIpzKerzwQdhK0aV+dcnilHvtGB3rVFs3n9UnzbJBMRdVa64yY6+q9t5//vlnSe6bd5PH8cHRxY3B+8e35ra/bTW2E6C1lq19O+49xk2auhYE8vF43I976hADe8JgbRs1EiSb6b55gs3V1cZIAT4+jr//3T/90z9+6QPAdh4hNfKd9UKr2GemUEUapgVKpaaCKWwppUJZcjYRHCOk0OxnZOYIqrJBxYCFhjOIbupNNeFq5xgu7mStFZLnbZTQ92CaCpdK6xV/+ggFBHTV4BryACh8pWk1uMHn4G3m0qDq9Pud5avOQejK8NYjW3pR16o7z/Mqz2biKkJmQU1rDMMXfK+IbN4iEdFVW53yKwuaK+X62jUUnZNIn1QLIet75qVC0hwq0YdMNpZnP4/jGHGqqqvVFiaZhTNlDePtSrdm/1oFETlGqYGJloFqbe7ZuC9EiU4OWRG8QdILnDiCQvVNFaWktOqpkkhCcKIhiu5EPovSusxSFuSaV12v4+hmpq79OJCjaq3qC5BTeCiWktS+78XseG1bVOruL+7QE48ZiBEeEQE6pOrSa7pbTQV1c/cSaSh/vOu5zlTGdLMtMNddxQdgml8EuLnPpSQCiKGqQYzRL/iBXA0D0xjn66Lhywn3/Ps5wc2IcJEAJ21jkghXyVzvn6ZlKgI1wVScQ5YLb/zphwPIqJYGzYwjSmR2vqH+kIV1fQ5vZ2CcsM7MhZmugxAk9BfNzuvSajUk80/+Va/W77Vrq+LF83/iZXYnawZ4fcL6QRoEhS2WlzcQFzMzMxkJs81bIkWrAmKRYIvWnNEnRndSk1glLCPL3aH0PIlU1eJXubtC+hjROwr/wSysu0gsDKmgELfJYlXPWntdQfUa3Xy1zVImpkueEaPgN8kVLxIXmheoqmbiWkU0Mc2xKMwhpuvzZI1IA5CIuGRFyLFtbbXlUJVYdROqdWKKrH6zqpguM+Jng6qW69LdwNXfukLktel8yirMBp6ZVerdWjvPs4BAlztcZiVxKjJLaeBJxcmcjtZk2V3MSfX16yoorGtkPcFrLa0Z7bMaRglqqrrqyJDga8CCKhLaWs8o0YJi5lejkTk59i4qKq215pqZGCR+0T6sT6tmp2iN6GFm1bc+joPWRUwzBBPucnVMSdZqMbOMAoNMCCuAJXL3CxgFOUfANffOZQBQ92iMEXhtf85pdUp1N6WwM0A5r6K1JuZcon01YbvanCnYbm/zw4llzDQRFwkoOXJyhAHATNdZVTwISHIKgWciUmBN9/f3t+92dRKDeY5xblvLVb1wsXfMTEbc7/eI2cY2SlaCPkV6JwSGrEDDREREjzpLXCBQU3Ey6uh312oY1ywoCDNvivMcBWh8br0VsVdH4Bf9vqv9UV/At2b0SpSx9AvMxGRZt6sCMIiKOLT62gZC0t3NWx23YFVBMkYImGLanDnm+qyGS3LIULCrSkczq05/Mb2ab5P+Pas+AcRFm9njOEH+8N3nFH08HnkObZtkxuhqJYsY7nq73d7e3gYTOZAQJhIRA0DzbXd7e3sXkcxxfyQkzISI1qyG5L/+zQ+tbW/bm0H+4e/+wx9+9/vMkdmuo6caXqs7ztKDzBqwuPGXR8O1/uUF5F8dCj4tKyb7qFpmuuBXrz91hbXWWr5MQhQiZlDLZTA2E/5McfHqpBecfpCAu9uKvfPEryBWiQ7p3mpmQ0YGLh/BbdtKVud1FdVv5JLzmFe6ltaEMMyG3RNyaC9st5oRutp10+bNiOg5cqndXnGv/swRLMFks4jIRwYDmLJbKaksg9YqKXmpOehKUnMZBffeARWx1qBTrXS2D4DZw6ySTFAy2tXTu5INVtjZtu04jloV7lNlZ4xxu727a8kvlfP5DHVmvm8Y2mNYK3MQePO3t9tf/MVffP78+ejnzz//+OXj2xnjsiSZy0BmFosLuTMb/dXjjete1YWXbPicP68ndRUAded77/kEauaV0eKXr+sR6KRAB7QqHnYSPR+7Ks3dBYZxjn5kDhMZKYSV632CY6Kc4KbBGL1cSWBW/uTQorlVWybCwqglD0kWJmuZ31yDrJd1AkAyUApBMXEXUZiiqp+K89J7/xqHizJ3V/Tez+P+pm+iwtGzn7ZvhGQy+5DCsEVGBMJ0cxGc/Sj/OXkiPsyAx3H03iP6FJYsw8vkx/1Bxh9+/PrjH788Ht3aJ9X9jLgi5wWaHSNKJ7YCviyIWWFPruTpuglcwjXnedb803xb1OiJV4qI8zxdp4WvGhwzHNXzvYrPa5GY2ZpMWIAlN1NLpQ7U1/P9jOETezi1Wl75Vs+pw8Q+sKLENbGLiEt/ODPLcPGqP5+Zz0okMrOZVdIxqv0q05pZrLXWHkfPTPNq7osoivX5WgmvICyZOSGUitLGx5rWLtei7do4WboG21Z1kKpqaZ0sc5YrZOmCFtblymxh/G9sqOtV53uV5bIQiBWvrsh5neCluHThljF5ps/XtZGvy8zMbfMKUNdBcwXG+qURgZzs37p8LpYoFxe9YICv1a8uWNC1okTk8hVXVQ9MtmWAOofp5m69H1jE66LkZgaQ1vzlUc3Swk1LdytqhAsNCEWT45KqnzdIgOjXIykWYRQja7WDywub63WdbRGhhMo0CbjK4FqJWSqpsx4QUExUxShKpLDmTs7CNghY6sNPUDJE4OVMZZWzwsyOca+hXlV3uEg+ACZXc2ZoNn1m6qoIQKgKCbwYDs3ydXnQ52K1Ul9hJLKwT1j6STOIVldihdrKFRRSQs2VzF23SyHgshp8YhJEysb2KeemEcjMyaRTVC2ggIqhAITgdJ4s0x/MAbVRdbXcinw+r49sZlUHKrIVchCk0LTGYpXlTCAokVuryfy6VxCFzwG+JJAlnFWPwkV8NbdGnFLPWnMkvSzfYoiIeE3wMqM0CSQzgwnArVp0mtWZjNnEUJ1Jm5twGj5PvTirrnmNC6FTSJI0mWY/aqvf1gdiQFWEEd221sR6z2SqGaoH88snjsK9M4s7gqX6YGYUiYUPuYpVrORVcppcPJ+7QrXcEfOKyxGlErkmMDQzm+tfpj90AW6gUhzmmX9AsliYxWMvvb4iRAorM5BJ1IS5ZkXz2ZqZqtcVV8WoWhCBaj/LGaEGZBWTZXo5L+Q4DlWd7sSBM3pB1FTIHKKoDsRtc1WV4uGhUhYt6YQ6ZZtKdYAx65e5Aas+x2onzQ21LEODs8tQ1NzWmphitTNZxC6ZLrNiyoSaiZi6qVpE9OxmJm5VOqVAzZoIpAWFkrosVmd6kQmVcQ6oqLmJl5KKjEzwSuyyADumZ/TQHNnPPFvumcPEbrf9eIRIK0bY43H/8uVLMEu7MbPEgWikgUJEJmvxFoKAYcjMHFkpXZw9zx6UJSYn4q1lgAEhfJ2IVSQnpEj9ENgykp5HtWSNlK/0aIbi8heGipSR3ux5F2+iEJJEuBsYZuYqXlJI1WaGWGFDI0r7UxSqJsqa1JPsPXSkFcgWCsC0QSR7qqubg/F4PISZY+S2cd8tzccQaQACJzOlxKtmkWaWkmMgs6lba8ejZx8iOh7H8Xi0zURo3szdb3t7e7cCv952Qq15CrZ0YPJaFVL97ytFIFENoBzMhIt+/vT+17/9y3/213/9+PKtbSZFMkuLiASqC2ZmI87IDjR3HxEV8RZHiC/rfMrmFWBMxDIYiJXEPFVAa3M0s5wltFyfUB9iBfHKpBQAp+hVArXCPCOlZpJrRdBMI7SPPj20RLIgnPU9Sz9Y1RWZOmWF1dSMKufJGDwe/e3tzW17hU0phIS59951CtLMSVFElCyNTyQFzaTaJsWWijqTBFDJ5OLqY+VqxQNaneKkYmF9Vj9UhMiRZAXAZj67P5BWCiUiwqKfybZtoz9JKFtr+7aZNvf6Kbp7mTmJiGo1RcWnFDTKFpGcmDjKBAzXU0G1qwgXZWk0zqm+cEkxj5Gpc9hhovtmUBE1VWzqzdvIMPPvfvj+z/7sz27v+3E+/umPf/j69WtNWs7R++jneY6zgAI5YuQgqDNylLrBdIVcJa6U78/A3OPVVSlZqGvxX0W+vOSZmTkYoKInVTXlWWfWP68bbJUYziFx4NGz7dp833aJcY5v0h8fIxAphcUBMxgMQqAmx+jJQRJWAoFKIpleYgUJEpHRe1chBKY0NbJimo2MJedbDBcmKdSpu1MSqHPkFalqWj6Qdp7neZpC3Dh6P8GHIkfcv300EWuNif44DlczAzPGWW4Oe7M0CDDOropj2fMkcgQHIkcqMiIxfWvZGlXLkcj3Tb987fePPgjzTaVFmoBmzW0bGZGzcTmyK9Rsv1pH8pKlTz62XJojEJF93923eqiq6r611vSqRbUy+Rl4qtqtSFmg1LZPLfTKhIveqKpdQgRWqeRKk66K9Bc5VXQgyyzj+ic+GZoZTAlqqUIut4Wx6GawJUlTZ6E97dN19ciA8jSZ1lz1jyI0kZjoPAKwJVUdEb6JqkpTFw3mILhGI/MbCljVYyEP+EzkppTLCk1X9ettDjNutxsxaUQcc/B7vWS6MiIlSfYMEbGX3SQrw3w2NQCRCSq8buPLDk0zMWvuzkREwq1a6fWFp7oKKGWhsppZV/SryGyT4jr7aJwl5y/0q6ior6fuyKc90hxaNBN7jo4q6Fyr4jVccE15vTqyNf0o9U4hV0dnq7/p5dIrT4Lc1TMeIwezFGSiNFNrhGReDTmD9R5AZmEUF1DzVVKVfLb4ahVe6/iqTitw997ria4lqM01svJtFRlLrURVFSx+vQJ1IrD2ZIACgYpDC15dWCXTqbJbAyVcXUwrxh2nbqrKVPet0nCFAKuF5dp7vHY46vfm4ufonNTNZ1/rQG22OV+37ut+mFcECInZ23/pNb4kJXgphKpBwP9oSlzfYY0QWSJ+EVGUeoNg8jOm5nYGptCUqoghhhAKLdsIM2Nk6dm21rR5aeXVUayETb2NBFOU+9bOgYgoAPNEtif3rTGzmAByWV0t7laOuHhLs5yrkpcDnZgSDU6kmkRnlLY7HC9ssZyeSdO+wsvIagH2co3+VJQSrbXH44Ok+1RVUVUVJzArtQn7QoVIbVZDtDNGH8WdVlP9uN9vzdWe8bcii2m7mo7yEuBqDXMNVWYenNnPfj2pK/Zt21Yz4TmxwTM8mU/vcncdY3JX3B2L8SKLTrNWDkqJwRaxDQulkxG5wCeJEJhJqlQoqO0JMhRmZiejmYtZlaDI4rJ0dzeIggXTAgPJ7L25lgqXmUCfqt2X4KGqclRWIe76tu1AsojYC9rXe9/3PZaYdl2XQry5XsSX2bkpYDq12hYioq5LVbX2Wu/9HGHL/H2cPQNt8yvoX7Gb0PJ/qul1qUMVI+44z7e3twLkxJo7ifoxYv6oW3VhJsRx26oMlivABlRVm/bjhMw+6NFHbT5zi/v48vFzH/d2+9wGE0qom41xfnx87Pt+nufHx4eqPx4Pco6ArrjU+9nPEPF939WaWliaqvV+RHRAI2OMHpGqm6rqyJ6pkJFRTJ56VRc/x7SHrUN6prwqo58iEzlzdXz50pnOXzoT6tLe4Gw0Uk2beTI3Vzdxgaq6LkoEEDkYfeSglqDvOURu25uaIaWfYabW3L2ZeQS9WSmg1DEfIx6PR+bow1meXuE1gKquGYBt23yhu6rm+fbt66fvvvv8+fv74/zp4+vo8fnTp7LXzBFZvs1iTdSI8+Oxv9123dIEFVctKnQb5LjfPz4+xGdDZIVu/fUPv9nb49vP37r19tb+4s/wz//mt//rv//b1lwVTBXIlUy/7VvbLO9zOjc3ToXSXwLtZIVQVd223X2Lkfd+H2OkwF6QKZWQTMDnbKDgilSZSajvt0sa2kzrnaxuREq5GV5JFfuQpibWWht86vxV/iw1s4qYqC0TEfbgwoaoqqh6DbhqJb8C265XRGGoBYtqERGZpZJdfh5p5mD2EYXyyzWPxctxiZdBRO3iOrDaSg0rDlwDsaO/IHS2LYJxdnH15++d8X/btgfP1tpkBdfsAlYoPpLuDbgkdqTC/rOSXBDi4CBBLPHVKkKUFRLreivNrR/f9zczmYfs2pZm1vbtGL26AG3fttuOGJ8+ffrt3/z1b37zq59++ukf//D7H3/8sW5CUZ1L12qccWUy9at1AXlU1VAToWYu53lW5dZ7J2f39tr79SN8edmSb7zOqTG7LzSzWQC/AOyvD0mmQgJCaAqOPm4p2m7bbYvx+HY8IiWlNAqnKEpSgREkU87zEFMTCFC1vYioeD/DrNRS+QT/a+kwWUQmaCqRLO06FxlMq1qUxEzNMjML/REiZOoA1STJEZtKc9tuuxLRRz9ORsZxHCZtNCglAzGPxU3szG7gtt8ixvn4ej5OEdzPuxhS8hz9jD4kKIjjfvRIEDSsKi4izsDXr/n3//DHv//7Hz8eKfIGH0VyMd+stMdfnkvtuHO1ri6KUO+9jLsKx3G9c9/3CNpiq1aCXUrmFygJz4JiuaSqF/5u27ZaabLopvMRX9RTZj+GmLVJ45IUefUTLVldFy8bbgDH8SBpOt13a/kV5KoyVV4oJHdVnW44lSnl0sVcyhqvcbUuJMcwKck5rROs5v1QB3Ce5zm6L24tDJtseTwnn9dGkEp9S4OtPD5s2mGbWXULtq2ZWSd6729vb8dxnOcBzPkagKrXXl8y+xSybVtmxnhaDc+0kM9kGC+1YiWisbS461/HGKqo8GVmx6OPMWpOvu973Vi9iMoZAJo+tZxWyg0Ax3HEMjTFs/zJK0rUq2JXZiKHmanO9L5i4xhDVxaHNdeuH7we1qo1ZzT24GBSqeVfJ2bW3Lf28TFVs0bvyVGSUwKt6NNHP44D0Nvt5u6F6inR73E9MHdRocpx3Ec/gSxLBk7R/3ngRcQoYrQpewnQW2YW4IlkKfFHP2S2mbJ0mOsBtO19OoSKuLfqMJEEnwhqm9JB4zxP8Wbu9YxrzlDfByJqIpYJ1A4vSeQg9n1vzcW0sqIqIRj1qCZTX0RACXJv29kjIkSQwiyth6m4NBHMQdZ/skBiXJjJawPMBsyCNpWapLszkiNyWc4CmCkOp4uMXC2AGSyeB2epdy48At2XNZarmmSp/plOjXiyqJLNTGyaIZNUbXVoiIiLjRwqWY+jZ8iZIhArRQYlOTh80bvqcbvC1RiJDBia1Q8US8B65Nu2i8jj8WitKZSmtl0OwENgt20fcfZzAHBRFSCSImXNurk1K5/qjLNnsIqHUjOcLSKGiqr56GQSKW3iZiMjts0ZaeJCYWBCLlPm/FhVC0IgohBZUgpuGhFxXhaRIqLWZZwPF922ra+eDskRJ6TYMGCpzyd3b0ABULWQtNkHSXkh/eNi6HHqCmRmlF149S9JN8fMzKagYh9nRBQy4Tq9ImneACRD1QrAP0erK1wGImtgrcKJHpjgJjFh5nEcDLRm6oalqu/uJpo5BKki1ureDhC7e2aO44CZm+zNClwAtZEcY5hi33ert43xdIrPye+tJENEthrSxogY5FYxvfc+q1wm+qiBm4mmaIlSRI4E3297WSOoWQG9QJiZuKjq7dZE5MuXLyKy3d62ts+I4ZtCEyy34QkDnHBpFTcUQimivOxGhpndtncAESxziuZ7FYRUI5kS4pYCmDpmr3qMEYMCmOl+a2cP842MAhid8Tju377ev5hzkOf5+Pz9bSspW+D+7eOPP/1I0n0D9Nu3b+d5JiUz394+mc1TpNRrkEO2HcDtdlPVj4+vmbnv+0iyp3vpwbUkIniOnpnN3U0AGIQjGEHydruRzCqzM1tr6j6it9YqI7/ilU15sDrKpRiVXA0dAXIU/aRNqE1CGE1NQYOUWoEKMe3skCLb5lu7ZfT+uAOybVtrDUkz29veVAwkefS+m4+kQkg5z1NVAULk6Gfvp6ju7/uI8Ah3ddH7eZQjWmuG60dE3DUjjvsjigMiI0d3V/YRx2OoIXkc4+v9Y7+97999d0pvN1fRFHjzZo0kKI+P8zjHcRxNmogyMsiI2D7vcYaLv9/eJXB83P/s1z/8F//5f/rHP/zT3/3d3/VzRGS5yleo771HdnfftomO3vc3haHyXqEtuBqL1qKuqr3H4/E1q7J3y95FyhtbSdbFFi6X1a2Tsi7LkcGUwuaZeBnkTkppCoBmXrbrHKFNb/tNoSMiC7Oj+unTm6gDyMq3Witdl/r8iCghBIMorMjZ2vx2u6m+997P0eUl060U6na7jd4338iMiKIgelN3r0R8Fn4qdZTv+62fcfY5tTMrQwepVtQMsO5r1KoF74pBdxWR8zxEZHM7ZWZ4wnT3Zs7SBbxZE536eUuiXEX3tr3v7xFRCRUp4xhm3PZdzNcQQ8lBcm9b4b0jAkmd2W+QNeUGyZKIzz4yaaIQ2KaZeXmSVUyuOrxMd6RE8lRGIiKO43h7f4dKCu7n8f7p09/8879+++7Tz9++/t3v/u7j45uZ/PGnL7UkxhjnMUyb7l4lXaXdpO5bK2JeNS57P0TErYUWC8bf379bOmIhMlPqwvBfHbFnuv/Sm67edwIBztJL5vDndrvdz0NEMhAJLW2UeUoOfPnZm3369Pbnf/43758+/fu//dvHeYdJ74cwa1ZT4qsKmnvKIpoRGQW8ElUZ5HT7EPSMPLOZgOExyjz2PHqJMGUyMYLFdKcwMQew4luLI3N0EVGb7aaRgeBxHE3fat+97dvmrT+Orvbz+dj3fd+bZoBRrP5Pnz5X2rxtDS4cPvoxGNb0ZIdKEufoQyLJj37MtitVzdq+9d6P83T79OXj2+MIsx08CdnbLalnQNUr0YmIoz9U1Zpm5nmelLmWKo0/R4yI7L3+TqaSSHG8ZcSoKf+V2dYe7GP0Mcwnvaj3DuRKXNNNwCi0RY9RJRaAo5/BVNPMPPqpqs13khxQU2ZkAYvXy0RHRMgpOqG5tTuwKmozg63aFexjmFmhJGbvQ2sSVvwOMCKLPMTntVzaT7Mhy7wADa9JWtXYt9vNXcXF0zNH9qhy9DWazSY+UzBDkMh0zanEzLcNQOG21K1V3dbaxTG/ckWIqJuOvHrfZUBQ+64E1XIZMdbWu4DEVYbYIuXVxe77/vpmd5uP5jgC4vumakVOERFZBWddDnvfbn5d42v7YIG68SxWJZmMjCroeu8srbqS1JalEywiUvHcWmtmrQppM9PnkBmruZmqymsiCngZnEwfEBGSj/OshkTUSemGLJg0Euz9lFRGJljypqKaGeImpgKIao3+SeasM839JiKlvlgL4hp/YU0suci0WABpnbyCmqAu3prZ1XkiyRjQoqk+hd0y082vu6xWncKommxmz9smy35anvtTRFiGZGIOlXMMmq62Q22v520tWjkL9EwqOS589MurQH7BKutZO8bM1C1Hvwbg1/trheGlD10fHhFOmfvylxTT2fO4JLuklh98EpGetH5MIkGs+jlL8wGROs/GGf2xJmdT5mIi1qc0tXL6Ovh152ucD0rKpZkJ6CROK0X0PB+bNzNj9cyk/NnkfByqquqX0dlVzLPAXrpwFxAAVdNKsgB7NVssSkON3MHlE1jF3gvroOjHdbj2Hvv21lrFO7g2zovOq0+ZEz6hVZkqiKwNISiYcUwsTpkezfFLcUJau7qG8qJhuJLRBIAZ1iaRo7bMFWKqDqwCgy9Er2upPIthndsqF3uqWEAFvbpatpX8jTGIiR0q6J2q8kJWT3wfVKYqiZRwEZRPg2UkaSaQ8qJkMJoKhWQYMFsAoqLIEapoJpkjy95DFBnTIs5UGSYOd9PZG84ihE/cRBZm6oxh8kyPaiW4+3TUrkH3ig8Vx83UJma7oEGo6VOM6JKWKWKrGUUTzYuMKta2TcRLPkdEKmXHAl9EBEwVen0fkYsiNVVDr0BPZmAaKl51C14YsNfyqNGNCnQNmuY6FNn0DRgfH+Mf//CPvuH7X302/2QOd43oovrt56+FgpNFvq3jQa1da6++VfN9YPQREbFtvm37EhAemRmRolBqjjzOeznlve1ldBwu6q5j5OPxQUpzb+Y9w0S27b08tOqOuXkJMl0H24zbfA7EruM2InZvIZM/VseCUiJi882kNAVLm0ZFCBGFuUmrYb+686ZAbbpSIAuGQVM1mKRodo5Qqxg+JQwju7hCmIijn5Xn3c62e6uBiRWpqZzbbc6d7+PbeZ4lJWCiIPv5AJK8IXnePVTb7ZO/t7f2BlG3pm4DBBxTdcz9u7fbGO3eSj5pFHJB9PHl276/CWWcHZFv++3z58+P/+Sv/+2//f7Ll59++vFb72HbruIggdSp91/nhgjsItXjpWV2nReY0zmFKcc8l9u+jal/8Qv1jVpFVRMuGSAxd1WfnrQVrGbaG1Heam5NvcRyZjYpRSGaN31Eh4it8cK1YhHjHIODCTZ/ez0EL/zLBX28vmQBHNZgBwC0qUiJDWmJK9UKLG5IRDwej2qUry+g1/l4DUAiooL8PDcjX28L5q2Eut9ut/CFJAQmniXoaq21qkWvjcmy4FKvLlVtSbfNtv3snTkouDyc84XP/4zPxaSgcg2sStO67OJkduIGgLftrSqZZUju5t5jVPOuhAze3t+teQS2bfvuu+/ePr9R5ccf//DHP/7+559/LljBeZ6PxwMvg6B5QFf4MpLUpq0tYRFla3vlXete/UL6pJ7I9a/XZ3JN+K+bXBNgsjAu85DlWtsrVkhNIJ85DDDIRz8ejwdM/+Kv/vJv/uZvROzf/bv/+X4/zh4qFYeFkPJSClFEpqqJpkgyrcykIPMwZcoAjVPvKyNVFaUjKylIFUD60itTJlJLkCJL+jWnUjEBqiZlyp+Ikhhj9O7NRu9xHo+7SHM1AfPsw95yRNsjYhwnydaacMvRH8e3iOGbDacEzugjIlUj4ttxfPn4Iqa+7QaMIJCFtz/PGJ09kFBrG9BUFSzIfiH/UUKedZ8HR/TKGiYmAgDx5G9fz7QeXB9j3/e8RJt8U51t6DYds5/Zcj3TOv5eT4o6RutUrQqliqV6W/RZ10kSJVjy0haT5UCJZExV/GpXT9RGrjcXbXGdTU/k6ZVIuLtZm/flUsqYaK5Vxahk5pyIiKiaujVqkCgYcBIjB1OmdNpwoT7t93CdibMfVOCaRfQws77mbbKg0RUQZoNswZhxFfAyNeq5qHBXAJfFBZvywyRJ1yctf6xXRcj6kSvblJWck5SZE87fO8ZYPOf5u1prBsXKLvACay2oi07qzSvylxUu5AnDWZURcHkjywIz1weuXP3ZcLnOjtq8AC5OUGa6TIhjigioAjCyM8o3dy4X05RqNbKMjibbSxmIGAV5FZkG9Yo555wVfMUrkmVNIRCUVmfGLKtegmmMDKDG5fJStm2tZaYkJWlGV1G1FO1nyBSNRLna1jfwxfCrEggAlwrFeZ6FyM9kRIpoYXJm+wQlF1QVoFjbIvN8WV7lZFhqhPOKOSexIRzneJGmVE4hwV/QDwqIXDay9cxed10tjoi4Cs6C0EwNf1nNKMx/MMAEgqWMt/YoRHBZFlY5VFWhUoXJEhpJTpbnqN+l5SskNmViyXqceolg68R2yKz/UXN+kIhRMkrXeTYNe0GSVrYsSQV84VSjDxhdDZECcUMKFgkNZqLCBDOHUJYsIVRoJSCkkSl16kt5J4mAUafX5GmIAvCprQmfLS0pwDUH25up4uiDSW8NohEhClXdzFV11HxDQlnFUqWZT0x7IqKHpNX0Y669ZHClJrP5khmjILJqVg88FxR8GmhHooDukOpaCQGlvihDXKc7SQUjJ0JGzGoKsdqWcyXKBOhiqqyuinvlJHWXU19QZwAoWWZVCuYU/UM938xMKfHZrO8mVjjscN9IFmNe5q8mgxxhrbTnAznMtakFimacmBmnCicLZTZBZ5OvkAvVAYGYtaJgZMTyb8NLr3GuPdaRlsgFLp1PzBTLfy8SEFmqVFIjGlURrX8wMyyN/hfJh8Lvi5mCKjCBCTRZyhaiYuc55lKFZkU/NVcVGAWZmIxnkgJzq3AXEYPp2LZtq76YskDRFbStNTnG+Hjct5u/f25vb9v98eX+9ePtvX33/um797f7t69a7IDLnECMUEDNTMVHDKTodK6ECHs/yCDyPB+Px6NQAzW6EREgkQPB6iFkpgGmUKGbbM0yoSYRPTJaa7e3LSm9d4xBUEBhqShL6dgVIyzzyTu6RDifACdU8045dcLSmwqzciJJUlOmEJ7YspBW1bZZCTCOHNEHAmkOWqo1gWKaSBc9qyZ6VEYM26xISo9xjHEeh/RzO/d94btOW0pFBktQDdrBESLqCndvalRxQZ7Hx3HSfP/03d7a5p4RQri29/dPcKP5yH6OXo4hq57pZ0fGcFNVZaCI7Rrcmt/a9sPn78Zf/sWvf/Orn3766fg4Ht8eClH3Ap+bGREXD63uUkLK7U8w9b0vUQgzDZI5WQMJAlq2kwmwiFiyKsUILDoPRAQmZsQ6SAChVLtGVatxGxHmc0xXAwcrhFghvVVj9XynhEcJeyrNLJFKQR3iCXCCmFIwxlh5+f/GKyLaFKmqtLFEB4ikiffeKamqg1kwAUAfR1f1icRZKvpX1ktE76NqHJ/5958WwGQAKSlNzZuNMbgKMEUpbgorUStZLBhSCFYjv45VV9NKypOmatqogqwqMGdbdZIkxb0GRAI1mI5xbmbuhmLOR/ZMMVNTls+we2utZm4yk0XXjDNGZNHwM0kD9r19/uHz97/+Vdu28zx//4d/+vLTjxVUL5QmU9y2Ij1dIwot5wLS5vlS/1e1rowxGPXn5AugsaLBpPhy8rTlpfJZWbJmZg+ODF1wEncvsFR9PUM5VCQkqS9KmjEyOcYoR/T/7D/7z9Tt43H/93/7H8b9I6InTDNUcjcT1QiKonBCM0tGSnKvzJtcCr9YsLPCTEmtnXyKPwlEKJqX+QYJ0fNx1FNNwSaqyGKJSnXRmYMyVjDsvT8gsRklbYiHVTjyZvfHB8kRLfIEo/euRpglAqY52DMSfJz952/fPh4P31oT3QznOTL0++9vJu3+9dvHvR+PyKSKExJBYkBtSgEzIKlmqsiYDTbVmQIMLg0gtxhPiLIY3L3cWEacpa+iVKi5ikjdEpBEVuSYD1wEUiLsZOagc2XRc0ubaGXCV9PktTf0JM69JNL1h6voWpVOyEv1CxWfrhPPuW4ufuIY4zWuVrrlvgGkLISnCKbrK4KMZMQwS4MLLDJF8tL6ru8zgR4FlhaUUPP1tScYe9VGnMNIlxco+PVmEYkxXdNERPh0b6rtKaImzqUyJXUI1uGO2jEqM+OaAEascf31ha+54/WXABIW00dSmxWcUK67V5xfmTJ0LSLYyZyUqPUE64avJSFVf0EgzOwjEkTO+FPtyIionKGSTBN79gQnUdxVp7x6SeRqCZrGHBSpasmPecmLs5yjXEqjFTEhzVbpmsziLIlWwOYQE+HqB4wsyN+a0V31j6JsXauDOM9p8jzP8eJ8dQU7cz9GtwksfdaEsjqyF6Fvrk6sAYvkwhTPodaSjpwMdTPxpmobRLtItSJ6H5l5odsjMqu1icqbmUHVdn0PmT2PZ49hXayU+hRSyLFWBjM5kSeCZLK4ytU/uAz6ZH7s67LmiD/pY9UfDMKIq1M61acKoPsCMrweRPVIldDS9ScFmKLNhIlALDMFWZ/laq5WlYMQsuDSTBoklCVjZCnUZEzCXkRKSqzGUsmuTcoL52mnFZ1Sm06LVGSdF1kuUdcQoO5MtSrcnZnycv+vC+y910hyrXhTo9CqolQ1F0moqibRey8+STViL/oHSS8Xp0BEV5GYEJlUGJCMHDn6MRLRbCsvJyEKa2pLSlDFM1OJX5qJsQS+RGRCIWRWJi8QhtkJLqOzWQO/DKuvS2bkJRV+hae1biOSBfmof2qtHccxr3HKrs9P7v28vkCtnmu1XO+ZobNWKqtQftmNs49DkelEBSZgFWgKZS3zNlxQnJnWzC2vDvVr2StUqmgrYSQ+/eUYCaTadNcm0m22+iiQqc8aEdHaE7czA2Vces4gyT4oU6XDZZ7cq9ncarhfLibuvrUNKj0EpE49c7iXAfiMOQU6Gi+q0Xjp4x7HsW3bvm1mLTPLvrS1BrHXHmq9+eqkkqyPrZWPKDOgFNFRM5VNR8bjvIvh06f3H3715l/jcY/bbXPX3vtCu8ybcJXBsqiGJKJHBsfIknYURR8nP8YTvj4n8ACmgvQocWpSNdU3ABHdrH333Xvv8fHx0XsXU9+boiRGyvamxXhcyp/neR6jq+o22/+4gFXXrQsGZZIOON2bgcI7sUyluwJM3axUqbPGFdnPQgkxM6IrLKJAKaFotFBz0arcAgIVRWbPrgCVg0MFJ4FBFDuQlKVuTUZBxOfzghxjjBigilhEqIZtm1JdjdW0YzrFAUtEH2/f3W5tk3bD5qLaQsfAiM7JZYJJU0mbGBYmIs8uCRNs202EfdzV8te//vzTT9//9IefygG7Ojtmai5ZHA1qzZaqbJGcExWY+uqv1z2vhEDNzLww4YSIQRdTCStRiwiZDDRTmVOzTEREIRpSShcOqKYnCiaiYprV/yIxixs1SIFGgAUayiwzHkZa8xnSzVprx72XmEKRkM8YBWOTX2YI+N9qJc+Ac8kfRhQpLif6cWO1d9fNmh2ZV1AGMWQ8xTUBUeOS4VwbbXYJ5jg6ySyZYxU8+ZbufrvdWFQIzPGvTArVJEBJSRm5teZqNgIkzaa66QIwzw9cQRVq7u5tWaSU3j6SsIL2cERU6VKHbDkBqLkJjuMx2b/Mt/398w/f7+9vonr2x89ffv75559LEOg4jo+Pjz6hgzNBf8YvyWsyX6jmAhldiyczc7EN+fKqn77e+SdR8TrjrrfJnwATfslwfP2n10ez7U7J3/3ud//m3+x/+Re//e1f/c1/9V8j4fG3/PHHP0QKRQVMNVcBg5i6knVFpZNmmM1oUVBRyt5ZPqBlI0ohCzm/MsOyGkH1QTQzY2Qfo94/hEzxSiOSrZyHYzRqMI9+tsP77vu+H+MIxLZ5Co/eb+TWGkX6BI2X4BoTMYJHPmRvs/HU+Tj7eQyIZhSIFCPToM03s13z+Ph2PI4BONSSmtmZqg2kkiCG6jwoszjPfALcigx9ZSl6aRcXNFcEkhDbtq2Er6rpWafb6E+dXjVUeVOMJ1zuCXR3l/X0r0O2fl2VFQb/k4e+YMLzda0rXXIAIkIwMwsIZs3r4f7JQuILOrWKtGmPJXqRKfAfv1QKIN1jZIwBAjXUg5mxwGKmVwkzd/EvcaO1zc2sEAqMyQ64YOfXd8NLylEPoW7N61VUS7MmMc/S6SVjuf6niHDElTlc+/FKeGxxV3UhKH0BuACUlXbVIzXzB5AcHPNHuIBvxJPsUF9pzjoRl5RYTjx2EzE+jTxmF+b1JWsd4jUOLzzsleY948bLg/ORMcVvCJLTUXQ6qoISML3mvSqSCECmMSxISVHb3Nx9gXzWMSSzu89LM6PSd4IjUIWN/qLgmQgoUxVjlisTRdLUxnGambte1csEQrS3KgVny0Fx9RJEUkTX2hVv2lo7e5hJxeyMcW3mOZpPWFNXIy0iENHPkr6omwhVTU1VjSVWVvUhy+abCRHU2HOtoRWLa069eqZTQymVIkR5h70+IQMmXgx42YmSlClBidV0kmdEmOd03bey751g5sBMcKRsfaFTgjklAU2BKF1hwsjggK7+q1CiqAhr2qUGlpsWJ50nIhYOtiI/fBY8mI6AdbBJmnu1wMsasSypL5d5FWTpc9fMSEsfDwsKS5mjyMy4IFJoaia06uLzhcH/YupTX1LAaRoKSUAhrW2CRKabecUjpiqlsrboKYkMUZqQKhGxgkfJbietfH2c5QC9AAByHYTTiZFuXl/FTZgF2JmD3zm5z9z28h6o/V994yyiHMmqx6oerdimBTVBkLHum9ZCA+eksuIJYkpRqqq3ZmYjZiRNqYk+MD2s674Vpa94TyTKGJwQBPhU2BvByMKGu+t5jtISr6Uz/2DCyDFGJNTcVCGWooRlDpVnt0dVmc9+reKS44dWU7BWCAhTt6rEsmA8dVTLejQqZrZU5yZGA2viPg9Cbe7utdmnI+vSnnH32eBDcM5PG+U5h69obmKJte3xFHmytlnbxFvONSWiWpXd9QkVeYTNtF2V6jQbALKofaJjDEIjZ5AE2JodZ/84Pj7n9v337999asw474/jPHIpyZkZRPt5Xp4BoAJlGZ+kIMW17VtzX0hLtSJ0HI+j8jkVKbZzOiMiITGm1lFMzy+BibuK+Hbb395uKcgxVKjuEDkfQ4VSgCBElTxgMAczMscFza3NMrXjxESVwGACMPA4DkUIBjJMJFUAbICblRFuRqrQRcRNapyphIlhkWscYhDTzKxeUdmYFIZ3ZE+wxwjrut9cNOvIM+8xznO8vVmJJhTFEckcQY6JJSai9xQZ/ePTp0/bdhsp/bg/Pr7tb++329sPn7+HN/SefdA0FGUGo1PkL6FoJjBlxHEcSOl5qkxi3bdvX4/zmwj+k3/224+vX//+P/xujHEch4m7qAKFjVJUwCwTKyGRamUTiMV3YCaJOvdrLF/UpPo+QaGU+I2oLvljkfI9TgpTYBPIRaY85fRSOXfuAN8+vXHOWMS2VvvRVRYgNmWOvp8bPyJ69JyokOrKzxKuDlUBLUk1dz/6GRFjnNehqZOTH6rTWnoqV4uK1Bhn0iVwHGOM41FqYc5kgYMmvgiCUrVURXIzr5lGndytOcnI/gSKlwiAVmQSXd5sIiZJt1YR2H0rslwfs2NrZtPoKytLcxGZxzmhIps3ExWhq4nS1LGSvIiUTHEDQ0BTNJUq3aTZNC8AhUJqRkZ2VfWticijDzIBOc9xvx9Jbrf9u/f9u+8/3z699zi//PHnx3n/+Pi4P+6uxojj6MfR3Tdzj9Jwrt5lyfxoV0UOkITKeZ7lTYpk9IlLf82FUAFwbnkqsv7LGqvOfElIYiYAyQv9I7MpA8C4ziBICsnUyiiX/RYFJSwfod8ej3/7v/ztn/3F/+df/sv/9r/+P/7L7z5///b+6X/8H//V/fENAkh0RoxUKaAZk5WLzyHV4yxZOxpETQQcjMqqptzMksqvImSMUY5dGmxmoGaiZ+GPrSYTvUZzJmkqzQdiZFAQ4Ec/VfU2tu/czvMxBqUpYnz9+JaIt7e3zByF2gta9eURMhAyNIUvziOrgznGiKbbW3vb2/vb/j4GSD3PjBA3UzNmtcBKlqtOjSzi1Ex/TXsMChIpKpfoTGaaq7myZKe6ADBbgyJHsXZHjOIAOtO0ZRJlyEJJaDJNSBIZmYNMQ3NRMkEYTJIXDFNVQeQIWfyyvLCvfJY6VXdgdcdiat1psfouzxQzy7kaQcES7GGV8W5G01VX1vtbLMVNkTl1nHAuUYoaxFBA6FmIZiZ0zqzkdcixZMZeq7Kr/pxFO3iOfpVzV9e4rNk5pmmriKxPCy5WJgrhy+nh5Msw77btAObkM6LaBiStqFKDJKZfdyAjt81Z4/oaL1nJzg9Vp0ipakeCzIhewXzmfUQmOTrMZDljycs4ZGU+1el+neEliX3zzKL2hxbXFaqqU/hKnJxTRpt53SlrzjRFbVa+h5dJQ9WjIuqxFMZUtSQ6LoABgazVVIXbQtZJnTaQiSBTcfeYutXJMkMipbROTK8L7r2PMcoQrw6Vy9W6fmOsRayquRaoTuLnfOGXI7IyaxZBcVFXGzhUtkIYSdWJl/BChEFYnqvuVyNkJqMqVRheveSzjJgrr4ZifY5celwCqIxkZwRTpeaE5BpJ150JEESSJaxXIQXARcjmSweoiJ3XlcpqfmDBa6/X6w3JTMGztVOf2XwqlBTYQa9sibAEkNMCWgBmdQ90UlvVRFW0Hn5mJrL41IqSFaoh85ODqihdhyqe12NaiVf9vTBrskoUy51c3o6Z2Zq7e45+rZlV2z+v97r/azlg+p6tE6hyncyMM2SX1rYwu2Lfmm6lEqLqbgKh6pubuYxxRqRXUCPJMC3PJfES6y5eMZQIjCpSp/rLS9isdTu/TxYhGZfeaf2NViCutaGzu/iEPIg8g4Wr9pcQ+XoTZlO/43riuVTWVVXmlCBILanoSrNWww+1hq8lhIvNIjJdtWdlrAODxV5PgcRUCofl1LoKtQkDXuALTkFSChPmLcsr0UwpVFTEVdVSH8gEYlAlEmOMSeqYeico4OnsnjElOUvs1cWcAQ6zB0lSOVueaiJwqmjOFQWVHAlTm43Jsj33Ajmf/Yg+zMzgKRIRI7PB4M/IQ3KMcY6h6jUiuOac9f/f2qYT509T3Ta/GuSvm/dqqVbpniKbuS1bQlG6F7VGQfXW0kNM3z9/96v903H+/HH/+v7JFXwcx+j9/f293faIGJFAZfVlfbH1MyLyPM/zHGOkqm9bU93aBm86/3aNYo7jCD6/Xv29N2++3e89SXd/e9sy0fvRmv/Vd3/+eDx838zb4/EAo/C0APbNLzhfLnJ7AYKwCMCxTERRCm1i8JIzkUKxQnXkaUoXEVPWql6eAqqqSIW4SGmztJY1wUUKY2BEMoKD1HN0ZkIK2EMoqUKkulCRffTIy+ejYkV92yvm1xpordVxpkqzVrbGI85+fEOOtp8hqra1/W2cnZmjdxEdsFTYflNrvtHRTDHGOXoNt1M4MiL7qVSltgYzQca3j5+D41e/+v7P/+I3v/vd5/f3NwVHP6LdZv+CJPNPOHBSXRdkMLPnta0A9N7d3baN5Hn2iDBt2vzZLgFU22W52VobGezZMxRrtauMlzpw1pqqxSlK5ogQU5NSHzBV4ZmMYA5S1ZouRWUGn8ecqYtQMjPfWovBwSwIjIiombv3GFdNVS9dwqRmNilXL+EUgIhd7aG8tMqTYEFDyj4LyCU5O9k6BpeRObOR2sX9qdp65alzzbiWQ6+V1/A15iKKgktM/0xVdWvVJ1xXoG7Tv1dEWjNxiei998tK6Urm6leU5tlm7RoN1fvath2jj4pybCNjRFB1RLXrM8Bj9BHR9u3tu0/v372l4OvHl59//vHrx7fMPMcophKWpc2+v4nMJ46JrvzTm1w2uTWH4Qv0Ty8xWBIr9yWnnNh1Hj1PHy0cxMuBOG/yRP2QLCbYnO3Ia5pUSFdAQoSP88xMV+0x/t3/8rd//he//Rf/+X/5f/6//F9tv307zv/p3/zr/niEQEEV7jpbpaQgS7hkXhfJC2kHzCiRWURfieVQXclAFj+oZiRpQBKSIEVrJSWmgoxCTNGRZHZmiMIUUJjK5p0xkM0Mrqly5IjHxyN6UVu9qUplc8NIU3Xzwh2aWWty299ZKegte8bu+9vt0+bvpHz9+cuXn772MzIkTTRnKiUiaqyhJYSiWq0kSMlw1BtrOlLNdyU5lThYFNApMi+qj/GQEJW+8ufJ1X9/m+dCPvVKAIOVnd4qSXjhMlxy+YZWWMY13qyxiaB4ZPbLAGjNXY2CHHFpBMyeemVoOudV1ypdg7fpuHtVMTXDInSCYuSCxs3caTC5EC8iol6Hu9bXABDTHeWZCq4O/ROtXa+5a1b1ZLY0Sl+QyfXJZWg0KyTIc3ILyJKeuZxr6sIrvLwmqyQZGcyqfFCot5euwXVG65Js0NUQsQp3ZqYzzc7MWVtpyU3PQSOA+/2Qmvet12sM/5O/JPNxfDCncL1eIhGXDMECMF6RuTRTJ6BmuQBwgZ7mDVyWYAAcSlcrYX1W6Vu3agIHJ4IXE2xaJEdK/T6gNJSCqHsqC5VCsuxqZ6iKNIiYZ85atJZX0QFc9Ercr+sREXfLzNpwBbkBM1Zyb65ubUzZp9q3oqrM6cZ+7YG6w9d5KSLIUBEt7lkfrdUQcURUJVETNAVzMxeRGa6YTBkcYwzzjUVaqFmsGjUxGbrPOF6RuVpB150RkWpUSvFB/2MoRU7Z6ItjA0yKvq2WwXUcTjZxJCKjcsqrzxEh5oxkpl2rh8lMFUiyfHbnZJWiQWqIwFyFqjXVUhHT3lOBCUDAPBD06nKsS36mXwmBuJotKreIlJmsTLwDmIORdQfJkMX85HSOgQhN3DB519W2KIi1VIE0xZ+mtxPJacUByUIWJAWmMAi4tPmQyZnRlhliPW9KJcOK5U/Ti3NdtGFVGZMICnD2GjjrOOZEs89U5lppkoycQmsjRm3LGMN9K322hY2YSdASA1O9/NteAM98ScFlYbnNzPJpKZHIGFH75QqvdbEsTk8mxzCzC+HC5WJXCGGdDiVFS5kt9jUAJiDMpApjCpMBiokZEXevMV9OL8rKdgRanXMjGKy2ijNSVVSRlIjBTJgSz+utbRsEqvc3bajBqZy5gDFX0yfXaCXnXSo0W9GKAIFOT8Iqq545lojYTMXMbO5ZiJqKev7SpaAOhoxJtJepEmqLUzRTVXfPCo5a6mhKEUQ5AD+PvZm2Flfcnn1un2VDVaFikG33j94fj4e7/fa3v/n6Ya7hDXE+Mqse9+9++NVxHI/jPI6jVHBLGjHjiMgxkllK//tt31sTlQ6MM0b2cRz9PM+qd1DWTcWBH2fxeNvmvUcmLvZvmRV/+vRW+mTH+TjPc4wSnR6sLBLMjLpfKpLk6D2WCw5IFUweHHD2IRL9nLtgs+WVjNSlaVdEdICDIUdCTWvipSg0wTrds/QDkMmcohkOdYrAskamliIMDt1NTBBKRs+e2UN027YblCkFSpytoELURJznI4KqyhE0E7GIjoz7/ev9vJvf9rfPI87juMvH1xC5ffrO3r7z27ZtG5oTCKRKGMVMkQMxYpx5RpxnOXULTJFqQtave8vk+/v73/z1X/3D3//TT3+4k0F6RNg6jESUUwGrsOGhbsinjOcsi1V12RnOtEBkjFHmW5wRFKSQoupcsrpBEDSbpNSOqCawkCIm6lruFMwzxiBA3b0BUmxKE0EBiGMKW06a94sUyIxsqllAmNnrmIEayuCoxtBr1lhV+ioya/vPWHF1Xo5Hr02n4lS5te1xv6MS82lxKJfHREYSacXSLfkYFUFeybfITC5UtcYGBi2gR4VFV2tquIzZ1CvE2tRrnwO6ErsyqKltrTGi91CiWrSiRizfFKHMRzcj/9vmsVxVpojL+m7XcQ+o0niex4jH0c+YJ8W+723bSovgfr9/HI+R/ePj68gwE0iaGUcKp+qve4uIctju4wBQfPvoZ2YiRwr6GePs11QDs+8Am0zOuHxIZngv+7S54J4CP+WmPrn94iRn/lFTu6zis3KHAq4LSKHqXCW4pMtUNSJ8d9vaP/7h9//63/zP//w//S/+m//2v/s//Ff/8uPej37+7f/33z3uXyXx1jxZmpGsJ1hqbhDUUJ1ac+EoTCRJsUZKFFNlThRTUsyamIKa5FjNHYgdMdQK0EmW/7ASUCTfmoXoGWOn73vTrRH4cv8QDZdtMBlQA9RGxuN8qOrOZq20TgBBcBSEp7VNCaDfdrTWOoa6ZKbCTHeTdv84f/7jzz//9DUiSLvOWbcZNGQ5wAEYzN5PUNxR5qFSgPCZN6assbzMuc7clfUJiSRHyW6pKrNU1mNkZDKXJWcxN3J1QgTIESM7Ba2119Igr0qGpLCUJoJUAvKLMrLoueoWZKJXXyZqKxd+SYTTOG22TqQQnRciqae713dOVFziJTUqUtPaUC01ulTRAqdcmzRBmXM41Ihd5RmXSsn8EhadK7a5RlY5xYV8rnKujNbkJQ/E1MGqgYdIua+vN0UEVDDJys+qoeJkZCepEBUtDEbUmENVpKYDl7QVC0cNaCZ6D3fR5pGdKiZNxWAqAn9xtOFs/xVM/dK2nEcJySvDucY36+dmWV5QarUJ6wjS4NW8qDB7pU8Ck2V6Uiuq6MigzGbOVZG9tEe9iamoQSMjOVQUaqaSwZCYPjzEZPOVjBipsLaJqANBIAW2tWeoGp1jVLrw2vvffCPjPM8xummJVTwB5ZkR2UlIRrVNVNUgUWKeqlYZ7GXHTBlj2LYDmFLAUFOHQtUvG6SVh9UxJ2YFAqw+sYwxmNi27arcXg8Pc22tFXqzWmIijJC6rswU06Zb9Z6oQljWPI/TLgdAgVf5jOxKXVUYUlVqZb+qa/R+Fg4HE5S1el3JfMmYZ29JVctFrVr+lV7LZH5GH5lDMTV5RZhJznndbGIWmGUeWjX7chOCBDOlZuuuvIr4WbRFEg2rGwSkoNQFytfH1So0kyBDqCLkYuGqKhXVd3f347wXOjem8xvLSqe+tYoUIqD8eEr1RqWmh7yUMzKLmjpZ0fO+cUT22+2GPtH4fc5I2ZpHdBEHUNVCpRo6b2k1m6tIKxUxumspBopUs9EMSDCmkIBMImumclKkM2iqKhql5iI2xjKsXgBCCq+ivar5K8Zdg+VKt0pSggwRE+EYQ5SloKGhlaJFpO37dYABNtuvZBxHH1FtXFFX1cgoPucVIyhTRi0zmr+Vv2QULxxIoVJrmkuhYdJwFCLmmllOLnV9bq4Gkr13r1o3CaTpZi6REhFS+M3MhG5m6lZH8tR1YySIunMizBS1+kMu777Z1iVS0lXdG2JE2QgkKcLoSSF5yYz7vmUmRTNLWaAae5MDrGIjOWKY7NvWTL0nVR2ZAao4JCnR1GakKkXKxbcxayRa21X9PMaaySsAn6j/CgkqUmLFFJHNN444x5kSzd3M3ByMauAKCOR53r99/NRuKiLv7++Kfjy+fnx8xNn7eX4Zw8zO82QWrmmiSIrrm3mKiDeF2bbXSSHMMxmq2pqdMXBCFe6NdABNm7jszcYYqlBwa5YBSJSKv5kA43h8TfLj4+N+PCJ4jpFJiFWv+/22NdNIxOp8J7hcAFBbSaruECkV9GuGQLpHqKQ5VSUntF8yMhkOiYhhUkSxjhyju3s5W2SyLOAlS58/Mo3iqSqsknlU2TpyiOYmW6UTMdjPfh8Buv/qRpWg3I9j9FRD+XtVJljttl7SZU4xRITBXEQ1I3q/f+3v79v5dkDNN9+GcEOWx0+CpMHMdm/sPOPII87jPh73Qbg1SjaN7e3TvvlxZozx5evHtm3//J//zR9//+Pfjv9w/xiqIF109jEViClCx+r+uFolBBcw5BqD1OOYwIeRx3FY86Xc8cRWmFkOxuAoheEiAGb2LDn30mhZDaaliVgqGKWMmgJDQlQFQpsJTNVIa7KqqsC0amepI6SMAmEWnQmgYDDHeW7bhjUNuLLt2SVfBVKlLM/0YJ1xJTATEaHLCiGZEUJCtWmThUogookTYIljQ0M6tUB3VLXrTKyyXRdWnCEiMPP3260ne++iemubuImIe5lg6cJbibL0J02ErYnZJiKiVMG+t9be7+dRGaxCm69p8zV1ibyyiwplE5HRPEaOnElaj/HoZx+Zmdu2ff7h+33f7+f9569f7ufxeDzUBcDeNnXD+RCRtjWlbgBnrzZVVZTscw2MUT44NdVnhTusWqWagACKA7yK3+cooiZsWPnvdRXVFMaSnKrDd+KKWJ3Y+crns14Dg2suJyDldruNs1dI6ef57//ub//1v/4f//K3f/XP/pN/8d/8d/+nP/74+4+Pj7//u3wcHy1L0LMGzSI1TocgQ91BBENQ2kTUmdRlYcVqcrYybKldo5NyUkrFVmPtOtuBah3RsipJ7uoheoy0s6u2kfHtcRfh+20bGfkIMG+3m7ow49FPAB1Dd227m20jHqOfJqIq+/aeokcfBtlut3fVwQEggjEkyOOMjyP7mBSjqprIVHgVKlbzBwITkYsMBuGuXFDedYQJoL0fqmreag3PxOXaGhAgI3pmdbt0bUkUvjpLYmvO3UkKMzmOOo63bat1slY4Cx8bEb5VlsXkSKgmxksJfPTlyEX2yIi8qYyeEYe4bbK5e/GBc5ZqNQJ8gumKtTbGOEdXdZn0ghRRKAGJym7BIoupGw8WvmYu7JUyAzABVM0cyAhkjiGC5J8WwIqZY1SqX/gyCIC6D9UWrIbmpSJUI8lrc/GaKaqoSAkBXPfw2o9A8dnmfd+2PdeJzJfBKUkRtrZX5zHnUGeqZxX6EZGMZ6QdYxClQFHnSM+c6mgjZlXYWtv3VsBsIDJARA2VsJSSxF3VExl9kAxNM1OrPqokR1UqRAnxPWUgZMEDk2OWxOsvryjhOxSJglEEcmSYwlxFIXWLSIRKQTKK+MkkdQTLPbdylzLX7RgEA1Gud2ecYtMcE8BZdAwCascIkdWvsYJAc2/eIyd7KTIxzevn13UV1QRIqGhTq3ETVrI+ZxdALKUBTApwKtRFmrfoIWL77iQZuPmeojW3b62ZSe/9iHOzLZVnPyHDzMQzj3OMUX7WZu1xnACEGai1CC3Ht0xIomCWEzNg26ZZ7SgmKT0j4lRv+97ijDPG6E+vBQAVODn1qKeGkalApeZOgKgYFeVbHVEO6W6qmWP0cFc3zcw+zoKfiYFKrZXDeabL4j/U4iin3CuI+3y61AwteQeFmFE1mAl1M6Iq9ehFA95mceKm/Xicwdu2794iWOgeSLra4Iiz0u4mZoP0tmeOL9++isjbvtWt29zrCGFMii8IBlQ1I8VyrucVbM1sjBxJaIrZ/r5TNBgUHv0wMybPcTRz37YpScUolVGWQwMFIuOcri3Lqa+US1jQdNV5m4DZSGvbFudA8QSwhhwQQTZrzbZ+ntHDvWwG9P1tIxkjRz9m/sQJiBqSMIwILu/fcYaZ1wyHLEYw3RxmvZ8mkRGb6e22kXKep4Pe3CcXZg5JmCiDVlGbwrNqkCRows1V6pyTgt/jnB6DG9SO3klOfgGHiTRvpfEYUXQHiljlo4/HQ0TctZk3t1qQzHSVfWsRkTE2V1ciD5UUBavdRm6bmdWouRD1KVZ0uMmEccjtbRtjZMbmXtpjcZ4BvL29ZYSKZMb9/m3bmu/tOI46UBUQhZuZOsCILt7MLBLnEQRb210dVEqIGqGZndRMRKSoN7ccNHNVnI/TzN5v76ambmOMrI6vW7k3q7iqxkFqDXY0CgonIaZJQrQ0y0S0mZI0NQQBcW8iIs2hMkgXJ0bE8F1F83F8BUIY0c/3T7f7Y3x8PI7HOI/OlLa3+/3e+3G/f4sEIKN3US8viuPgt68/CfT97c00TToDZw6Sb999ApDys8gkzVazuZ+PTffbtn/r47ifJv6+7UmOMR79PI57Zqo3M4Mo0TNH76OQR1AIddtUMM6jx0hRY+AcnYR7gwgpY5wr/AST27YFmMwxRkARqc3EtPfRfEvq0YcSGZElTxHdA1NLN0NNWraSye0jQSphia1ZUo/zvNntu7f3IxKjb81VLDNUGwbPGKSYWNBEtO0muvXktt/G2Y+v395vn5pKRhjovrlqiRic4ziO48hzd5uVnKoINgvTQL+f3366QZxhEY+ff/z5yx/a2227NZiqNSR3dTSV+2NQk5at3b/9jEYhMuL84/3j42se8e3LB+CPx0NzfP/ejseXx737r/5c1UVMIRgHkLtriDz6GAFotn0zMWZnirorLHqqGIMj51hYJrA2XWWMzggRiegiaPtW/EB3pQZTzNxbiwhEWrOo0YIpKSfDUk1UzLzm+ioqRZQEEQEnaGrmDrIvj42qyZdbKSOiFCJkySqoqntLgOd5nl18f1FxBYDj0c/z3MzdLZnnecL0dtvMLMeZI7V8I1QFE418713FElSYuqkaBWOqDU6BLmVCYM3dXd2OGI/+UKLddo5goNl2227ufh49Iop/AU0Xaa7atEGCg8xK5TMpsPdP76UDZDB3hxXVmZCTOIFUteabV/Tuw1J336qzfI5QNXcv7k8MixwQKDQyCHHbzIHSemjy9du3j4+v3x73+/FI82G5v+/bvncMBhKT/vHDDz/03kdOCl+z2/vb+66bEGOMx9HjDASEkT3P81yiZrObhNLtGJnJyFQtTQTUmDhY6M+ZXGdmTfIo02ShCEkkFRTVyitqUqxMKTHvrFbyVA+KZRE8e6NEaDJhNge2WfEk0nwbY9zv99ZaP47/9//w//zhV5/N5K/+6q//+//+vzdt/7f/x//9d7/7hz4eu52Px93M9lvLET1CVTcvsUOIaGSPQSspFCSZOvOpgrtb+SROhmAGy0FO5hRuU5kJnRYOWodQqQH7OMNgu3uKjeQ5unY6OFS62tvbW884zv72/ikiobZtbiYjozPFHLKr4fYJ4qIKhr6/v++bVBJAGd++fTM1vd3up3z7+PpPPz3uIUQZw3ZSvLmZUXDGMG3Vajfzps2aB2VkqPqxatGIBOCtmXl53Osi/UUOV8cUldPIMUjTBvQEVZ2I5rtZdYtCdbHAVOYM0lSAYksfj16TW1FCiuAeKu5efx5JKdMQEYwcz6CgluTRh6qqN6j1IAUF6iPZY0xVAvXM7P1YgKlksDUfMSCl+a2rfGIwzKQXCtcUdcmjYmbcbrcy7p6hFSxeQMnVTmQUoowz6iNljqLXS/JxntvuJlJiva5rUhJjc9/cej96FnWWKXlGKlUYvXcT3batOBeJQUKh5ttCXogVFDeJEsBQjcwIxqCgRBmnoE1xogWwAmIyIsNt23bP4Hl/wFQyzQvYOOkBzKz/pCpGcIyIGAIreO3mu1CP444kA8EB8jw6SW8q5Hk+AG2tFaw82APh4lnKrZMxQcmQAvOCYM+kqjJHTk+c1cPNISX5qwZB+XtXN845AiIpKCms6jtWqTZ/07JPmRWzbzF6gmqeZeqHdNFj9Ihg+SZUZaVWReB5njHYWiugbmaqmrtmjpKixtNwDBUWXYQiGlRimmcUXGHWZrPnISIYwQUKqsCdgTFGmVlfsrrVXiyrQixNuep8Fyi0934VfhWgg6MsHLBsVMWMRCbmnGFBRjGxqBoRQNTv5X8kRgegBn2u6IHoJ0OrybYMCFcBjJqtzZpYZl025yTr8dc4kDqpegt0lBSkpGRBta2ZWY0UoaBkjdR2n0gVcil2SlEvpmWMch5fpYevhIkmSthqUk+rNIXIAi6UbU1ZeKe2Sl8mlMmamGjmOfkvZDCtRlsvy+86z4Sh4DUiwOrJqThQgvgF2ccv4DpjJErv6mloJpsL4W6kZpYlrIiIq508azD1i18tswaoBg15fTHbtu04jt571ZDmXusKUzapJArqVwsHg7G3zW/tspGYJCHVIsPUr7Y5Z6ckRPVC8lzpqU76vapZGrHUnMY4wUwrdJ2I0ErQgsweATGzre3iQtHsHUJfUPAl1zV/cKIcVNy3zS0zB4FllG2mYiBbRM+RRRs3VRVG1sBWBbrvO8nMMcYwhZu5e0TvZw9TRTYTM5lWB0r3ZtYoY33/tQeZqloLV9cdUBWlmaRAEUJJAVxdZHIIC86tlwmQqYkPJiVmNGRF4UINmYsXIKqAWwkWMgWgWlNTqCUFEdZKuFiK8CVL7Epz2htUNHBTUElOkBildLZLFgxmKkaD1Wk6s2sRYKqMCtS9nEtHjrP3huZu25tD49vjy/3x1Zy//s0P332+qbKOOsZA5sDJFHHZXKt8TSIRBj/Ph6q3zcC3iJhDr4wRZyD2vW3blhPef8zZbpiJpsY4j3skgPf99un2Npjj7I/jfjFjGZ1AxDkuouzasKpkDilvHZaKfEHxsxyVA5miyHE993H2OndNlZNzAZLm1sfIngC2Nge3x3E2x0hOrewMNfgYU6arUNxqbZJjLBWDeYxoKqoialRjMnoXkR5nRmzbZmIuat58248+AoyzC5FbQgv+Klq87uYJqoSDSSYSMSekmlSVt93eblvbmptohsQQxhjHGIfop/dPn5PIiB5hkRzhlDAh9P27NzRLxv0cknycByMzAMNt3wl89/7mmsf57TZ+dbt96n1U16FwgykKGJRachKlEj+nrNAlIlK3fdKXVLdtO/sBQE3MDIXLqHUuHjPRrNicWDyxyGTkEp2T6lVJXPQJLUvr2ZhfHMuZoK61eI4hqqWMVUMFmROZqONvHiSqVZAoBKLxS1Mimef16vQXYoUjwPN8bNumqtu2uTYA2UfNRLAMJ8eLEwkKDplS8gkVmDIzJVVRAHBRo3v9fSyZdxGRyMB0iasM+O3tzd23dquvaWYKa4v+OvvilfcI22aKzd1nBTgyQcNEe8EL8gSSMQANV7NNxVSIYI6ewXT3nvHoo4/x7f5xPw+S1toPf/5nNHWzyDwej3s/BdhvNz1PAk66tBJpnyg52nke9/u94Dbu/jjiOI4KeHOeiyn2oxD3bU6HyUsQ9TpS5yuzBh7XqOo/fhWPugI6QQSlUhEGljpGLl0MLqfTVxsbVW3IDCQL35bJmgGfyfGv/tX/8P33nz9/+u7P//zP/8v//f/uH37/+xH4/T/8hxBNtSTQCWiJfR29W9kWlrUEEtCkkOpWuPn5NSIiZy++ASBmaiIii/r3mhUWd5UdkCCSd8lmoYZyljITa61HjscRlfi53M/+eHwA9N23rcHkjBFHuLtvrcfDqwYgzbZ9m0oNmfl++3T00YMR+vPXxz/9/stxcr+9m07EARdez0Xv98O31mwTq2n8gJZg5OJ2iSzCo1SzvsJIZkaMGrsJW2a6PF+1sUoxITkQEBE3E1FJZsToqW6iEkwT1eZFkCworODKBBk8SN72dylgyYR7iLzc4lxSPiJTHYFlgFd53RRPy1qTthxqzCbXBiite0oZvJXMHjMzxSfeUKFm5tBz9LOfLadXYs5F/vw+12A5MJFZKlIGGJWyXiNgkpfUTwW6C1UhK1ur31LkymRefFdVZXKMUQVA1Smcrjf9IsKs+PoEq6ubq8jcQeRLcvj/Y+vfmiRJsvNA8DsXNXOPiKxbowk0QAwJgiAICDkiu///eWV2RbgU4azMEASHlEYDxLBRILqqMsLdVM9lH46quWeD3pBCZmSEh7mZ6tFz+S4ALEZRazPZY6RV1HLKBg+nOc/PRWMcT7P3Wg9EJCwCHsOqZCskTmaWfwEzp7t3B0KkTVNbCCVHBiUVDr1gTWU2nuFZYzlGuJsZg9EabY1nHVOj+naKMWdhSTBJNxpwJDJLfRcx08QoDdmyhU3GnDLnggblI3jVrayJ9uT9e4Co3F8TJSyU2pjB4SW9yHWaTCB4iZpE+aoRLRkbqWH6c2Y8gaBYngurlTadj6RY5vzw+0JpLJ/fXEthYvRbPS06w3LVD4lwn8jlyEn9Z+JSgCwRDZmmoDOKExHgkU/NJxSMZsp2YwrBrVVdNMYIXvXV88+df+WcMDZCjcIItcppHY2ZPF0uJpMKq0FSv1TqpK76OYtdPFUoZBkqFMmnbhqDylLvUf0CyGxNmdkyhk/n8czCM4M4aQmVZcHlIwMhIsLkw0Ycqiq8PTYb8clTL1kxQTIxGMzchM+6N9a8u7ZlZFnrcSlkm3vpfs9kLkqYt1SmfG7+CGFGhhCByCLKUZmYiR+3mk7+Z234ooUkr7s6F4m7994zQcTLwkQeOh/EvfcJo+WlwMQzDwPO+RCIkjgL5AYkM+VUOW4eWZmk9T7GWJgsAGBlIvI+zKx+ctsuk7gOLtVJwpRNCipwTwyfJ9OpgUyrN/b481Qkmmt1Rq7ImgWBKRarn5dE0+yOZQrJGS4r0IwxdSLOc6ju8FSTo+rUIJPMZlNlcomxgrg5TbNsRuQiRNMY9pxOrRwpMusU5IImloxkiV1neAWImm0+PYXVaKjdhQAWGKw6QawBNo+IIInMJE6pvF+FpAB5UJEkcQ/HaLzRPMC4lnYFgWKI175TEWXJzLRiMT3AqLGEalklRzoZi2xbE+Xh97LkaZt8+vS6bXo/3nu/z2ehqig6Fm3t0tp+ux1RRFKWEQ5Cu+ytNeuDEvNwD/M0kS3C7vd7jcWqM+gj9n3f971yX2a+7Jd93+1+670fx7GeOEcgEff7YYES5C5evxbQIJywFhvibOTNH3dLG+t0rKPHgfJIpvQ0s0hnxgYhCnMjTqadiIpFloMTjnCqW+1gM6Ksk11ViZgyNZIZYHHDrR/GJFy2sULpt9v75XIZ4Zxo4GSxRAwjuikLolXEGGOULXMgdtmT033c+9HdZuiAuCOZFkuNSo+nfIDNTN2lyU5bCHZtet3DwgJpEWlAiLKSBnzXPZXuZnB3UE4tSHp5fW2q6P2H//EPnz59+v5//NR7Z+7uIaWIAyRBVQlNGKxiNjy8ur2VBs0zlpgnEzGjOHhLXqV0REqPfeYNKpaWScKNyrWSeWsNBK/YQlRiVxmU6/iY/Po4+biLy1MgwtVwLBQSLTLU3N0VFDLP9TMb/FMkcqzjbr4qeNXP1nvWhg8v8ppGoILzpuHuwiwiXv2qQD461rNHICIFj6yWZaGgRYlEGhUtiJgozdPDRhcRCFWSKiKNK+uijNz3drlcIuAWzKos8SQmjwWKjYjWxEuvYunWiG6NufdSN9XGKq1MFsPTkF6+AxFR6hisEknU9Pb59v5xP0a/j54E2dqlie5bMqXHcBtm3cam7eXt9biJhTMzCVc7zDPMzMaICBbxiMrxzI2ZURZH9Z/wldmjClfM5vgD6szLWvl8XudA4sy+nv/QVM9j6LxXRLNcicebPOqxWm/xJJ+rqseY2Ok5OQHM+v3+8fff//qXv/zlP/knv/vP/+iP/+AP/uDP//zPe+9pt48f/o54B6Ig0FGQpIDIJIoTCNM1p8q5GnHlUouc8GykcXHJKVH/AzwjCgY7f5yJKuHiSFjEMcaxsRginCRoY/dxh2iElfiQstgYbtZ722hvlCQGc8pQJmzaCNoADnNQZ4aHH3YnosvLV8fn3rt/3PoPP9x6d5G9bi1z0ilGSFzFiagKS600IhIhVT05qHXLnx9ftTmFgEWzR9HihAvIQHPCD1U1CzOjjOqaTWquu/ttoz2T3d2JNtpENDI8BksjklkwEbn7GENl4/JEpKJMzbNtvQKYMlQVkQr3V525tbRKHFSEucBNNcQyePSj1lXRSouhllGDB6v6ohY/M6NIgetX0UPQmKrgrLURsSi6Ugb29bNRupVznUc2lqociv17ll1Mc4Scy1KoNlrUdy5eSS78896+4ImcyY/ZOMuE+ejm/jKU68+5pybiPM7NeP72UktBAh44ZegyCFRUykw4PNJyOv0Ga4sYHlmonxoCEVGpLaIw3sh934lpjCHS+EnXKTOXEBq5e5aPD3RmM2ZNWj69uHB5TxljRNCcQyEzNTNrAoyFJq9vaiy0CKsJJCEICTefEeckFGEpj+Gpcqu+sbu3ba+ROjPjbIG4n1JpRMSg6RWYqSLVTTwXzdxmHsXsKmKszJT19JXC+eCLFth7f6S5K3ziqTh0d8/Ok+39eNhElAkrqxCSMrWc0gvMzFrbo5xXM2mM4TGHTmmes9VNEUGTvILzk0Y4iEBQYi/d19V9z+fD/OlOVu58vjICzF9866OZRJQAQ2gK5TEzskT1qs+dc7qWWYfZ8xLPzDJGopWkclYfm4ioqSaggWSZ2cKS8C21PlBkTuWmJBJUebE+WmSkF//9fApYbIHM3JoS4G4l4ncaLAGP53J2rSpcAjgntGcJqixCZJHmQTLJXSKIiOTITPKcp3QkIk5L0i/u+Ykv+PImR0Tv5u6Xy7W1drvf3X3b5tFeYeK8nlKkYpaIqJpBVQuYEMvzRpY/xPxvpnkM923bigzp7vIETKiPn9nHGKTSmu57c9dqjHH5M2cGTTVUVY3M3vsZsEY3LNmJM0bURbd9I5JudtiY0InpoS6RYW40TU8WI3rF01JRDk93T8xBwanFnem9W407cBKzl0h9eIXIOO9/JrlndcgWFnoaukYEhrfWyrIqIqqZU0sXQDiIVEQzKDxoexA/RETwUMOvzledXtXhqv0S6RPGwJQkGeeYPKr3REuY8UzpymbGMoDAoBVvqQ5L5iKPIIH0akHnbIQFnZ+60PVnGsGVQ+97o5bE5h4UrHR52duW2jgzer/f7u/v7z9ZH601JurdiCg5RaRtG0UgmVQ0ptwei2CbyvMomS6P6mjcbrfZtSVS1SZ8vV5rqdxus9yt1mEJ8DKzsI5h7kHC3RARw909vQ7jM0sKjhhjDCYCU5bpeORpEXHuL6L0KCQOYaoOeliIkHOoShDgfr/fMxMOIn7vXUBc1CqRRJhHJFTBzBR8jBxu7nTdmEHDjXt6EyUeGTu2JuLEd/OCFhw24ih8Yt7v/O31rRUDK7L3DufiMXzc37kzgMNGlDGMbkJMJOEZBCjCcb/fSXbivYX76JSxbZeLXkJSVeCDSaV6VsMj3H2kDbN+G3fam5VIW1JmDjex8Yn5ctkC8fb29t13333/P36ypN57McyZOZlVmZp6cMay4stHE3ZFHq2VhtW0qvRziufNXCczSyyZYzWbsKqOuYkoBYVYnIJPpQp42XbPcPeqrTmJmUvH6Cn1fIB0Kg7nRKyVwieXHteJPpubY27eEj754sQsEmgFBF6i0JVXzqKuhGctAUjbCjmVmVmq/zP/oZjCYBHJj9Swisxk4fL98PI09poLWd3necHbtu1tF5FYyMkIjG605OIzH+nKtm0i5IFhB1gZfnKYqZqGKhReYMupSAqIqIDdPcaRmcnkJbHr6cjP99tPH+8fH/eeLiL764uq3m18fn8/wo6Pm2VshYTM3Gyn2STmc5ubmfWBoE2Umd39drv13lmK2WvnCfJF1vdk53tmPs/PSERy7ffzv89JSM5z/4HFe36Hqh7y6Q3PhV0FyfmeFYLmGqEF4qskQfX777//T3/xf769vH799de/94s//Lf/9s/drd/f/8tf3kwkPRgRNiKCmUQ3iijvn6kTSSiEgLufy3ClkfR0ZwBM42UqyE8ip3JJUg0WWZg4gjJMknsk2xjkoeEHb6KXHRvo6PfNbMJ3maVpbZ3WpG0ElABzuImKprBHjHG/HfcgeMS+v4zE3fKn9/7f/vaHv/v1Dx58vb5ajIgYY0C4RgMiyroJSUREWt0uZk6iNeU6P2me2U69WKdAzzwB8RjRY5WgtZFr9MULjZVZpBejZSEbEaWpEfIYIa9MiXS6P04CIFXvZjL2HiuqTjRZ8pYAtERt+XyrBB5LlJm3bZNZRH2xJusD18RVREpWg6kUoe1suJwTlLNQrCuvjKukH+lRE1NmnFPZ543Ay8jncYyijBbZfT6FUjMpB4cZ258mz/UBfCnkPSdCzDxKuG49jvNS80tb4PMbeMpqPIL2/B48enl0CglFyPQHrpbK5CyYWVlXzlixGmeZS8dnXvwjODwHhOf7M+Xl84uPcN6TeVIscYozX63PONehh7url5scF1hvDvEyEzPazvNksqxW+MjM3rv7UFV3KUmhXCYroEdTIdx08krTo+DE4R5Spoyky7JMmLMJF4A2nmS+KXNOkiJL8lhpjrex5JeIpNpsCfBq89QjZOZS5Y0Id2OVUyUFUxeHakHXCgGmE2itlZIBG7HEVKjCWWlWMYgjzZ8sGeZ/vUq+pwlwPaS12YhIiYElt1deluvlSH1CRVMkUdW+mIhwPNqcJecSkSyyiAQTwauq4V5U3grH5+9gFKdxOtrPUbyqIGVVghXZ562O4gznpmwRw42J9r3RlN/IipiYbksppBEBQmttjXmDc4Kl+ZmqvnqhmclVzzhNC5dM1WbuM/2qp1bgAirRAslFe5+ggHNaDjDg5fHIcxJeBZNMbC0QqSrBMQc1seT7iR7+HOspZFD9UtVWYzpaCWVmluMOJm8Z7o4wFpkb+lF05Vnn1F7FKahGlMAYY7irbgALt6YP5ffe+yw8Nt1or7VtUZLhXLlSwZWCkDm1k1ExgkDCrJLHOEPqNE88lwTzmeCWJkQCosRClEibenjMLEJV9GJuMYmIpZDnJ2+/HP3qAmSZ9UWE1OSdZ5uGiEquSXU778albZlZTP4JQKrjuTy2SDNzWjFTwTIFc35VNwJlQ4aCugSipEumlwDXfD4n01tFJJkSWTXjmXN7RtXOqprEKorKdzH9RhCURe9RYZUEwKStlfYMAptKK6pFwDOQnp7zyMTS8wN028i9gKPVy6wC1Y3GGMQBidbk7e1Fmwe5oUMDPJMPVY2g4zhiHiTY94t4VsNeVccY7gMgZnKP4R7MrbXGEz1IRJtWIwPuftm2WBpjPsYYw7xjBBDMqMw+PGyEReFdK8Y+N/tsjCQ3JVqqraVkRDWCLjXRjFh98gqcVtIwpfFGlMWXKa0UTx8B8/JsJxHpo8RFSJUaESUiEOlp1SeMiIgj9mYZtImSGxMJiTahIFbRtu2c9/udeXP32+2u9763bW9Nks1iHIYQoqSECzEQGZ8/fzCjtV1bE1aPsGMIYVPtZuKRhMhhkawv1xcgogntG9OmYKIYftzTu76+SZpHt3Efx82sR9pES6ZTbaGA5UTa327vm7YwE8ant5fr9Xof6smtbSTsw5KQ4HQMGz0MAxOi5cY4O2jT936WfF8GujOBKzdJnny/0vYsK7hCuFBmRBkHM5chc8ZsgjYu0auZzDFzPXEHgaWowUxc9kaOkKZZg9iVpAhJSSrXBTGvLnnEmWvKY2oy02jKyEDglLAu+xZiVWbedKc1bip0LRV+HqX4zszsFhE+oZKAzi48TSe2SNTExUMgIM6IasQTzeNXuAm3+souDWBVzUgh2rZt2/cz8gRShKVxayIB4qmzKlIwaXJ3c8eIbdtyIkjCE5WFkzIR3JFEIjLc34/7++3uEbfbLZVpUwpKIif0Pn7z/hOED7fRu6iqajJ1t58+3nVNXN39OI46j1prCBpmvfcxRnBAkVEd1UABxIiBkmEcSFgBCyviEVGpJ+UEQtevCKI8DeHi8QjPrB0r1f6tr9dJUNlUrqbz+f08hS+/+HElrXie8DCriGAsreWvf/3r//gf/+Pv/uIXP/vZz37xuz+//ckf//ib/3G/37//9X///NMP7p4McvOMJhrjnukUxDKl7wou1O3g5Dora3SAmUBW3rcggWUeDEZMTB5zTuQamGjaSQTBMu4RyGF3NsblchkuGyKPcVFjFRG67PJ63fe9tSbaWGR6URBRhvYjky0QRjWvZN0vtO2fD/848MPn8X//3Y+f76Zy9UiR5j4cxAWJIxJREfn4uINJdFPV4rt1i25DuJ1178p46+HOOVOuktLXtw07u9vsSLckijV0qgQ/60StXTZiNBIWpqQIG8UsKMfpYre5EJJZVLY5oM5UpaU9/Hj13mV+VQqPNtPm8rjMacUnIu5mliwztTMzgFprvd+rlCmgf0QUiQMeJAlNYpxiBLwUauc02Kc7IxHpi55rdR76WdqWqPJVnq6emUsUZrV1ziJw2oSf1elZkWZ6hM0MdtlMEBFWoyqmYksU2FiWwWE+tajiCZKxmoDzmYo8nE1mNF/436dTo4o7ZOZ0sYS4u3mv6qPK9UxnIIaPqKkVKh2KiPTBs8iftfEYB60h2cTcZXV1J9YGQC5QsizrrIyk0iTETJBi2iUSgLIyBQUotLupEMBVQczpPVHkqYaX08a0NPX4odS38stH4VexjxeoWER6L86nRFpMw2g6f2Q+g6qaCNM6r8ata/hHRIryDQIzS80Vadr/RCnWTWrW3JPl0EgPUOt8ihExDiMiaSoi4QV4+CLyZlYjd0KzSAQeYR4ZGemYhkY0KSxPPzVX0ryK8w2xcNcAqIztAQvPJfr/tIDwfA3/+OuzEl6bZDKuEBRFh61Sq7wJgplVeKs+KJGn1S2d7nPC5xASq+ooiCzW1DUzKXFScwuDLSwAeg8QcZv6ACggeoYjibLWWXVrqUgOFLy6Wbk00HNh1aSMsyu5yYmjyqSaZOdTHwur47gYbQUKmM+dQAIWUBFF0yMzKDPMtm3jNZAvUBJFBsK9AE15XtXc+U+/DjivnLSxmR3H8SiV1yQwJlLoIdumTP3oTbV0EXJZYWP1pwFUr/38iojkCm289FoBqGr5Q9afaz48xoiAJzKrx10w04zI/XKpu1JHiay2WV3b7M+lxIR6JQmP8IzwDFaRCXEvET9ez61uRa6uxSPfOO9DTlj1Q9Wwfte2NSKKsXohUb95Lr/fWvzrj6cogDwCbnIGnXiYXMLOtT94muaghPMzIE05DesokrVuJiV7SnHPLZCn5QAJkquYLA/oQBIiKcsEuTJdLlMHJAm3faN1/p2B6DyoPMMTEbE1BaZDnbDyghWd0DIwFbqQRUi3QJIosTnSM0SIGyd8jIMI29b2677v+6bNDmu6I+HhSdj3fQMDKB44Ebl77UGIrLVKRFN3PdY8SpdE8IoJjxPXM0vIp1C7bmGRHoV6ZGQQWJhJmTijxCfcpDVVvSTVNIwTXsfJCWx/evSttagoQg9FAGYFwsxGNzNvLFKohIgs+H0g3TNFq5VI8AhQyYwjAxbpmT4N2JlVkiiIjz6OPtxG6fQyK0swN92a6C7EY7gfN22sCm0iDQIM6ySV5IRkro41lchKP46I6H0TuUnbwdu2v7TtAiQJAY4+7uMgIcWGcIRzBCGYsujNWworpfBHH/dxt+HeTaTV67q1w47L5XK9XtxtjJC2VY5YfajMjIyqkdz9fPr5THWpSphQSMKz2TGsn3EVq7+ca+S7dC7mknB3s8cpVqdW9Y5777EOSp6oq4iko3dWaTJHJWcOEIvqMh/8mvacAZAWXiaeLuw5bsxccCXWj+sn0D8aJGKOaBBhRMSAw1dChcwsBJk+plmEFawyszgZNDkbLEKQsk0nqcK08rmgpnLecxG9XC7C0jMjYts2Vsl04GQyNbOooPb8qYGQphFmURNhZGbxgIb3e+/3fgDoNj5//vxx78UBbm0TaePj/fNPn/OnH4L41g/ZGovsl8v1eq0jqQT8Yk1+qvuWmU0UTN3sOI77/e7u1UqYRfhq+p+5nLs/TX8fr1jk7fPf+AlAFF+iox8B0x/r6nxwEcHCz7Xx0ynAq7/2fIhw6XGfU8la7QCu16v347//+m//y3/+z//093//n/3RH/38d775kz/542N4krzf7t1uSpISk1EJLpo/kQRVQz6IEougRE855G9dXgBT9RhZfni0MrcJpSvnGCFRgsxu26CEj+hiyF00R1e+knApll2v18ultSZEcDfzQZSstPF+DAtyaaRtJw5oE73++O4//mgfH/jb7z//3d9/Jr2StO6xnef6vPvsSTGGbo2ZSxrqOA4iSpImCuJ8nuuuDz7HgfPBVfnBRDwmxSmICMLnli+BT4Y8h5rGYjHqLpfu8fkryv00S1k2V6HxiE5PSdrTzT+BkGdO/rx4Mr883dzNCzkcY4zFh3pQFXLOeMinRqBXnqM6uYTuXi4zWBzac1XU3kAmaKEx1/jnTIOfRxGLwDqrjLWVwlZ8joi+EkIAIvzYj09bKZ5KrXMTRUQNbJ6DeURE2LYU8s9p0NkzpVVPVY60QugXWJ4VyOenqGxzWGWevG3b7eM4s2UPF5ETlFqQeF4U4trUvqITZg80nw4jPBLTdXmzt6jSWlOVzCn0OCsO1EGQsuQqtLyPp2QdkknLUcGLUI5F5U0QlfgM3AtXQIBEhCBbm4Eb4elY0xEmliAMG+6DmSfFGklMc/odjrOODwSV7FVlh/LFMVbIw8jpxvs4O6HMa/A5b8EYIyfXNYFkXn6hROGRTFosgnAPK6Ws2Qufy/FUQkJ43Xqt+XwtRwBMHJ6eD0KsI4NWTUABismHea6gJr3HS4UcXGr6iS9DZ07uMZ0z+fOfiJKLLrsGp5wUvxWS5rfWwUCohvi88HkreJ3VJVFDCAJRURgol53xrFqRSVGzagbAyFa2eD4Is06Zg9ycA4cILy6ujZ4y0XEAStq6mrU0Z5OplZ2LgJkyWg0TskSYC3YkZ6pE65DMCA/jkiuggsnWWZONxZnNrFADtaWB2b/PcKqWbeI8tDG1GagwTjVuX8vqEVAyKIOGlxqq8ORdcUZSAun14HQ1xlTLV+Bpppheg88iUmV6dYLL6W3bZEuOiBgTV/OcViSTIzmevCiFyTkzqvWOnLgG1VbN0bppFvPV2p6Zc8i5+OREVAWwWSF8+MTkFz8ls9rVk4lNtCQQJ0O8klduoojqVeWZoVYb4zwJZnMjs+QlnB42GO6jNqwIFyeEqKbsUaaUwpqWnoAvgncmVbsjYt3t2TtgETMjhrBUyQdAderN2nCiUmKaR8IyBK7zcoIFuMSrVkIGktnrZybWWU6yJIlbsgIimTyGl/cMg5nZYjYhqyc6q18pLf85pzqOISLSuE59jyiljqU/kKO72YCibcLsHhZhCd8vbZM9E+65v1zNelrW6SOqETFmRj0ZuQCSQZw8Ax6G9XQXQsnob7pnJoHNjJ5TI8rh3RxnnyhwnvE4+duYNc9kJ0SGagPY/T6T+yQgCyccEemBjPqQEIKQGWKxx4souOo6t1FsJ642THhWXAsCBUXCJCd1XApvWNC0EOEEDzdmCUIfPjAKMO19FJSJhC+7bNtlbztl9GEA5wiKsGAaiZuP3F9frw7/9PIa6eFxjF6cPqHlsmZhZvdurbXrVT7eb6C/Y5Fkkk1e46vb6B/3d276mm/K5GZwk7TLJkJCREegeyfhjoTF6N1HCCkRffXpVZFxyNef3r7++msA9/v9tb1ZBNXsRXjKRhCLasWonNGzkpUTB4GaZhRsBCwTXfQU94gmSI+lRVgSk0yFjgg70Z5UGGkGs0oyEY1YqZVM1FQutsJU7D4juXCNF2j23k9JxcIgrpymZIWZC0Y9E8rnQ9MrKiYzz/Nrvp9mJnKijgFwUnqkzpydC/LkkW4RnsTEiD7AHHUDKd0NkUKTziOlUpurTGUuTVAm1SkOkgRR1QnOSRKSAltFhIAmsITJvZLUrIPEfXBlxR5TgkJY21YLXZSaKojM7D6G2fjx4/123N/f32/9KO59Koen7BcDDRs365+PwyP266VddlFtrb2+vEyV0EwWjYhbuVqwhHsJ0UFimPVuvfc+7nFSuor3Ubf/ibg78ZcrnY2IrFyQUDiCfHqdeQ6YJ6srS0auXA5WSTNbGIQS3KoG6EztHtVyZtYIpwRt1tcpT7PxACWUhUFhTonvv/9+33d3/+Vf/df/8l9//+3t7auvvvrDP/zDw3E3u/fjh7//PsYdMWgMt7uwhmdEFm2lKhggZTVJMpNQU08U1owSONEVpSIQDmrgs0rLE3LFAm1tE5AECYSFJSHwNJF933dHttb2fXu9XL/59Prp7doUyiSayZqDzMeoqWNMZRERbpcrb1eSl/7+Li8XCv+b7//r3/z9j9998zNGuYVF4bndnRJE5V4Wn77+JjPLnjAzmFm3pqrmWed6PX7UxwU8vUCMmSXcGxRZWzkIAUaCJ+9/sq5q4eBsWmCWYeAMIksTUMDT8zgcYCQrNhXxDAsPK34sR+TM5mrVPfW5Nm0iUl67QPAUlQ/+suF+DjPcS97cIyKZ0CELalqhiIgoJcxJqhWYleBNRDfJKWpDy0t17pdhpeMLWvAEZiIKd2IwU4lfrGuKohEJqCyoiCFRfP8JNY2INIfHhPdLI5rgmlxF6SPvnbPJUoGdOaGfvGKuFqGvvVkCdUt2i4gZNjG59By6UUl4zW94QXY5mWFmyMyw2g4MQtAXsj5z03gEA/AYiahsL8NqNUJkwUTq/2Vmpnt1ajLC5+yLaPXKo4QMYzbqViCaT2RKXkQW95qIlIoAnGnhlqEEFLzeg5mDSg5rVr+ZWWg6Kv5YRO+9OlLz7B9TKWG1DbxtcvQYNrZtE97MOiqoVTHzJLprZm4OSRSTU4TiIehHM4WdR/gMcDTdq866/2wY7wtodD4qAElolz0WTr1ehEkoOqcxeIKB3W/H2UaqhkS9FRf4Pial8JE/P090S70ZRETTe7BWXsHagGm/HEGLs3TuyefEkxY8uNhzq6E+D54ivswfz7P3NmHVdaDGvNtZeS9Wa5l5HmnzAxKEpyxD3eHzNTnVBEQyaNPJNS/sdmaWBAFTComwBMDK4X4cB0XSRUUmy/G8mYisbCAXLJk5hbSJVihkYpssUArKMJ/bSYQSFiM9WGXTxioZ4VFU1dy2TVSKB8sqsdwsHythYl/ZV0A5n3JpG1afONctqAuuHy86GS8qcgFQzxl1BdOqxNx931tNjGkNEGrSci5LeqKOeEDAJFpiLc/D5Mnp3bfadGdzrvLGWMuMSxAi4t7nurUzM1kwm+cUZD6Icj/MYJX61LWwKj82M/fSAJTzZ3sfqipryxDRNPRb4IFzPdevPg4DQEtKtLZeZeeq6rPpaO5eCMAssAnmOJQCWULyJBFOa+pr3plYlKLXneSSugFUVDPzdrtdLpfqFvPTsPd5bc/oIayq5+Q/JvpoPdMlruBr7D1ZA1RjtAgbLdp2vaw5VTKRiopIrTGZcGI7F9J6FnPyycwsM13C0yQ800vh0OEvl+3lRUkOs8PczDpRttaOo5fku7tnDh9WoimtNQzvXqJl4OphE7Umk5aPoMi2bfUmdUPMrK07tk5Kc8/jOO6jR5InuefMdgMeXqD09EhOCXBTEdKt3W8hIu45xrgfI2KyGVhm7+HcfapKgqO/u5fEkq5jh4kkLHhGd49ARMZwi1IWJCGu6XJ4VLa8l5UagaiQquruw4cz7yHpEOTLfmFhiKoKJ2z4Pe9EV6Ixjp7m17ZtQY2ISce434/3I+7J2ZqMcBbiLCM0ISJzH93bJjGR4NnAohrIzx/v+0+/ufWbxfjGDs/48f0zi5j1l/6CMCFWJpl2KRH9uLaNtwYgzJX5LqO1dtmbII/j3u+368v122++uu6N2Wb8WbKRAA4blsSpe2tTrijinKgw85QxYxKRCmgBighhZf6i6zrjfNWchEVhzfPQ9PkQefpkQqpBe4bWnLkhB+EiD/LeTBObnrFi/tIHdIvC4zw1ZB2FmN6kX0wCmbm0P6q8OMvmygJfXl4AVATRJ9UPItJlV+FrTiUipzcXg7KA2hGNJdwRyYDwVMnOTKqdm1V3rCNVZd/30oHO1YHKSA/ftg2Gx0XKlI82s7Ch23bddm01jB2BcI9tvzoZgargOiw/Pj7/dPu4jcOQI2OYkbbLywsR3fvx0Q8LDwIJv3x6C8LlcinUbK7527iXtzDG0Qv2rKrIrIzWPe7HPZKO4+j9ICJ9prHMDumDfXfmPMAjBeeTiUaTZHTmLec3YOXZz2uAv5wYn19/xo6d+dF5AWfyxquB21pRXSoVnAggLAHzn3766f/6T3/x9vZ2vV7/7M/+7Ltvv/vFYT+8v98/3v9W5eOnf7Bxz96913lgXMB5YArJVvctFhg7ca69uSZBgZRyFM0MT9AAkiHCABGXGBwSlAInBmqSMqsn2pt+ert88/bpeKedRYW2Jq+vryoUMYZHsm7aXKPfj/7xLkT7vouyEzL4Itft8jVtX//u9Q+v19/59d+92//2Hz8f+RU1QVyuO8cQpsw093wCXNzvdwDEWsdWNYIjYmItn2GJtZWIKsOxjHLJqoct286YWNHz6ZyJEydnZq0rAk22gsxUvAKLm7n7vl/PTQSfgsa0yrbKKOaqY8ZCE9chXmIElWgdx8HF1+BqrdB5mrfWao7KzDwp1pz24NBWGli7/jy5S1awKMEvL610iWORYHlNLyNCmVk4l9wRMzehbg+EzomBrhxvb1t9vS6+KGatSVH0qVwqAY9px8A86/qzsl1sTjxvinMDnrlcPo3ojuN25rrnv8ZSjjjfrUCIsnDUv/Um9TjGGGNEydnw4uWe6jAiwsnnKfCcP0elKyB3j3ywtev8OrG9firO8EPm6nniXSIjp+7mCtKZT1N9dUSEiSops+fwkZTbtqm2YUZZoZktHMRt2+ZqMAfxpSnnTkSXy2VYv9/vNdwwOwLYtk1FQLlt2oQBZNi+aQaNMZi4ahVtbZq5U0IVkqP0rHmqgkKImfuTQimiJKygReid2uvOaxBaBfmZ7ls8Bv19jJmhLtBXZkHxHmgHTBpemBmREAnA7tWWnKV7sJ/6eJax5BBjzUMXW7VwVphdv1w1+SlxZGlc4jRPr1wLbYaMmKPbXAVJnSpckPJar6u5zkTEIIKyNJbR70lBTE1n+SegRCoBGWlJRCpLXIo4LdytOEVSI1EEE7+9XpeoSWHGqIAFum2qSpxjjBwDICEWpgy4GUVet30ua/N1saWCDEJMOXD3MOd9r9nvPOfMQziSLEOJpalIeHePkalNpClzAXd9JKfUEJqoXTaakDM5hXZ0Wfi2favCu0Sk0kaEMRMn0nzEqETqPCPP0rHCh61AkEtIbN93XqIsZUXLa4C8tVZNp/Psr3euKymk2VmDRYQHRBqzn5mBu49wEdmulwr6InJ9fYkISohIH9Y9JrtPxd3duruDqffu68zQrc12j/AYHbOMJzNjlbMILA6/+SPDALI1qYp0rkqWzCy7o3qYtVOCmEndR0FnRWSTRZNdRySA3juyXS4Xzhh2WCLTuakomTkomKpjk6V+dbnu6fH584+FONqYVZmFPK16+4xIG9a7qg4UaRdgRLooRz4FfU9HEFHGVL1ubRcRj7Dl0qltv/UR3VW3re1E1P2xZxNcP4jyJW6q3NydmPqTOvoMkgQLL3TGtm0VgLZtg0dxEe/HwcyszS04V26RqdykCai60bK/7Pt+oWb+/mE2+jBJRwSFp1t4ZouwYu4BbsN82zYWOY7jfhxmE+28bzsye78XMoYAFb2POzOQng4GEQgeMaybZ+ZRCtgZiIJKIjPN3JMyKSwt0i3vvTfdy9ugJLjg4R7UeHT/4f5ThbVNtHuvDmK4TQWmakTN/IlFGqYudNbME8kMFtk8RuXMEQiHxQShIZIlmBVZEgCQBZ2iErYo0gSTtj3DjuGazEy9G2dkkrtJiYRH4nb04wCASBvj25dPpBpAEKRtJGKebaeZwHuMMY7j7u5CqqqRPMwA7n2oOKuQ0NvbW+/H5fUqio/bTx7JjK0Judn9dnzctqZbkziObddt2/y4S9uZsRNdVBD6crmKNoSrgJrkpulx2khkunlZC0BByFRVAvsjO8EYVpXPxHwIF989g7gpMyzczESl+n5n6hNgkmYWqq1YWGeyYmaiO5CqGxEdfaSNTffqsyRTaaE7Mt1rhrttWzkwtdZOF2IuivITuwxAmAFgUrMooDK5AMkyG3nV2ns6NrmYKaqqyiKy3n/mA5llACRSaeWI1kRUzUZt0vltZUWR2Nu2Xxoix0iKFMpIS08uIpEHHEwk0mRrCQaysr2yomiqC9oWwsrE1VTd9+u2bcSpypMKS5kRpKQin15fRESZiQkgkZpk+LBDG0fScdw+jvvt3j8+Pt7vt15wO22XN2UVburuKTwQwQCJI9tFry8vb29vKtJ7t6OP+5GZ1sfMgyNUBCLu3m/3Un6eBmTIXLOpUmmLOQMoH4pxhjtltkLyz8k65ZqQM3NkFu9sjFF8cpEKJt2WF3Tmg5IWT9OLM4Dzl7yMcyny0/DgfK2D1WZQVS324BpFmFlX5Y+Pz//tV3/19//ij+7/yx9+8+3PXl9f/+AP/uB4fyfYT7/Zf/rxHz7/9INo9vuNIUWyRAm/AYzFJ89kgfCqB2IZ7SSIOTN4Qh8JAIV7eBBtooGAW9saxShR77eXrbU9sn96ef3Zd9/87s9+p4lIgl4vLfPtcn297HYc02WS6X7vt6MnxQg+hjF1NGlWzfStYZf2Le3f/NPf/ePf+/1/9Yt/+Pj3/+GXv/qb7z/Mvv304hjLIISn6IywLFhyaw0kZ6sic0rymplHnmkMC7QpSDJzlF/A5dLHGBaqmkHmXzDeI+L99qHcyvHeIwrPFYC7BTDuBy0d9dYaNIZbVYnDrds48xBPVPF8vV4z86f39wKHn2vgVO3KCDqV84gsBgJNtKzR6oNUucVcuOyp+cSLPcHMNKs4y8zpaeKxQKMzHpakShOOsMoViWiMwaruI1CcMoxhOdxw+gBFZj4KYPMmSpERjoii/DjNnJaZx5huXtu2CbGHRUZSrExyOW5ONNykjJ2guVzCqJi5GZ856pmp0ioBIsLMKvmvlvo52Y6IMtib8WF+3nTPTFdlgE/Pnbq2YcO8u3tiKwT/iBHlMAJUlTMHLR42O3E+nTLsUZNPFW6g926gwtogsh5ofcNs184YGz4e1JIKxUSkJKytQTjDSXhjfaArz3m3cBAo091A9YHpDEMzqaVHL2FWlUCkofB/o6jYxMylG/b8hCqcqipTeIbmJJEKsTSuGqYCTWYGl1ctHAkzUaYlprpS9qmAMZuFSxK5ehLP3etqPNTK8IXan43niDIrS39MXM+uSa62whxJ4LFcxjh677F06iwjPM+0eDYm86lVmZQnQ+A8yYsEvyI7n+Y0oFMCel7G+siTHboArXVjHYUtzPOtiKh8WR7of0YBxihB8BhjooG/GFI9fL3m6bJIS3PRzzFgEk1voWoCUTytokIqLFRS5hQGo3MCBviwPAXoisCQmPAWH9V6L/yNEKpAEhAi4VGOmqrbuZk9gxaC5fw4559rYwtPDOrz18cYPD3uHoLJs159Elerr5/L/vlVz9fdx5isXVpjDSyOXD71zCrzU3Afo5ZcvW2s1VuPuBqNyo2Zw7wP8zX/P3ve9ddJj6hEgYrrjEfzmyZ7uVZCfb+IMElJ2IrqKtG/aOQDRTmePW+e7FzGWjPPIOQqeut3lSMQre7GGKNVvVQwubWYT27zp5fXiBjjAKXyw3daNsoo6MwoIFnCfRKZHZnEorpJ+fo+JCIKGSFnX9b6qMvwmM5yXmBYciSrnmKtC8uUcHdtqk0L0HbKpEUEiM8+bpQJ1upqxyIf1n5RFlAws61rq7FMReRzfRJRAkLs82dxvV6JPyXdie9j3BEjp/tlFMI9MyN8X5p2HmljjN4zSLf29vYG4Pbx+X6/M6i1hozeR4Feq2Ev3JS4u9WdOWlIVa4IwwJEvYQuImDuBBHRy7b13nVrLJIMJgwfww66w0ZgnanhiIik2dkhImkPyGhd8v1+Z9bLRSPgw8PLgEQSLtxkax5jdM8MngzqIE5lURZORBBoatplOgWnJDkoowdlDlVNeGR6UkkbZyJZEmQe5qNTbyxNWVWF5f24sbxcN210YZe2OMRmwYwwO45xv98jwOjE6h/vzKy6eXggLWPLdPjLy8unr19ePl2SYJ6t7agetvlxv40j78gMe7Wd86URIRwOZXrZWpjfxyEib29vr59e/f12j7zf3sf9hpj1SaVsPMkNycyWBGKLUKaz1UvL7IRnP5QKdraC2GPUdoaLolRUYhFPW3UGGZk+ofU0a90ex0EqNd5h5sQ0NyuJVzxR4wr8ch7HZ+Sc0QkSUcFnQmbOfHHmgl9CGQEuc8GzlU1EBaat3zsFNhcusULaXEWzZpuffd93KuBiJMX0BRWRww4GlZF5xFQwSfPhBqZgcWaAW4F6Em3BhVprBcWkMj7lTUQW9NeJCBFAXvfLuvJk5Yqn5cHhGcc4fry93z6O++jdHEzEHDX2YBrhfhsR4UjdGoi4bfwwjnIbI4ZVMlbHX0RkSe551BnXey9+VmZ6xn10Yq706ZwsVQ7j7rkGOMyMKcL0xXDpfDTzlInHOYunHOaMM2eromZs//Oj7ekQP8/f5/Mdq3fzW0f/+c31hzllIfrhhx/+8i//8tOnT9y261ff/fxnP8s/+mc2br/yETlY8P7Tj41SXLT1YYf1UfRFFS3kqmfAmTTxhH2dY+JIJg4qxB+YUcJpnMiwLMJvjqaqjMuuL9ft9eVyuXzz9vbyT7777uvXF6Tn6BisoF2oqWjjXSUIGWYegUxGQlg0E90sWZSbttfWPr28/uz129//p//8z9rlO97yX//b/+e//9//f7/+2199WL8qL4wbZ6blRLmfOUzkSZqoUJmcZGaQRz6w7ufTVH9B/Fprx/DnJxJLJyVj8jwB5BJ8jQjZpmZNQYrOye38ZprvcAqI+tI3oqdNjad07LnWYOYYgydjbm4BnJX84jynWa7587efvjpzuZo2P4evR6QiqtAqrEUd4qchqqpOpZWFkF/L+KE19VsLWJZg4eo+pLubdbPHlBUUY4wCpzxfRvHx64MXP/ksa2Pxfp/3VN2H4zjGGG+v13+8Q2NiqR477iwym2x4Kr4Wiw3nsf78islOnd2T+hWe7u73949qXD5+a4FuWhOR4ebu+VSd3e93EZGyUic+E+ZzYF5vXnuceer/zBJyVVuVcidxZXQOgJuCEGY8TbEL4FH9yDTLQFy3HVpyXrXaoh/34qx7WkTurdXTKmwInTrjXn+uqbY3YQgVM2mq10QSMGlw6STTITDC54mDFJCIVvbgEVQLiItrVNI1KDpJ2QYUoDCZMjlAugRgqqOTtRpEIiuJnFAOIiJGIw0azIvwQDFZj6A+7IynJUCFGg0xeYZbViepFh6Y4uyCIGPhZ+ZtKdmipwOj7lrNZYmIVnEOYJIzffFunyL78x/+8SurVlzRfzb+CAV4zoK6Z1IhGDMo/ARXc6J7F5Emsw4ppmtjMq6Ms7afMPPEI4QvB6YKGcXNKzJABhU3oKruIMLLZYuI6kkTNWa2TCxdE84IByd0WqdRDENwlcj1ngyKtfkX62P6goDK7TGnBC0VzDQyiSahhwjTZjkiqvEdw0iEmGlJv0w+BGqFyG+JuYEI03eu8pkAKKIq2FktjzFlfnE6ZWath1oMzszIYJXMPCbqQYfbJhuYQFw08sJbZQbopC6TZxDlRF8v4U1mfoYAAVy9CQsHlXiQExE86RErZ3WXk5/PSVNgCgA5gCly6aXvywRhINwHqwiBSxt8it4xUXo4cTLRpltZfgdERMsNwt3cXbXNRG2BfCpmCUnFUyLxMnAu2XNMKwGzTizlyadKzBAhByLj7CbyguuINBHeWvlmMx6tAs7M4z6IuC18I4BNFBuP7sOMpZXEd+SkpYNQKDZRYWa3jIiav9Ha2o7y6OOiuDBgCzUKlkoU6mCoFTrzwnW4mvvRg9iJyCNG7x/3H4WiOqyFlBORl/0CwMZIuLt3t/v93m2oqsrGNWOx/f5xCxuORKSbCaUIuUeYSRPPLKPgUsSe6VEtXnNPV1VzV0b19TODaBBTZgBe8Hn3dOvFJMygAgicSWpttwrCVKfyOqFLOmtTZeIID/OJwi+e8MSHM1FSueERUwYRuI4Vql7hIy0blLpQrBJwhwZAoUlCCIJQIijCtqbV6xEmVYY2YkrmMcbNBzurMqsQcwT6bUBTlRHEoCZaXLEAiapIKyw6N02Cw4cbt4RANFmkEQtLEHOH9SHEfdyHGyEEyYRWdgiWum9vl93M7ve7cnz96YoAI3wc/eM93JnSxzAzaS+cEI66FUHThDTMAyxMZwGcmUQgCJBOy55gWQ+ufJHWzq1jIbLIRkHhmGwxAidnRBJq0kug1lqyJNOUKqYyoU+iuSHGGI0FAncPZJ2YNuwcudSDq7+WbfjZNDxpadWg2bZNn0Z/RduJ+T7z0CtyTmaeJKPMLJNvUBYnMJJQY91lD4pEU3V371axnABOFpCyUEKIKJEEJRZiYSlcXQTSwcRNNhXNzNraxNAmIB5j1OrV09yFOQIjvNhr3JiApGCWgoIbZcI/Pt4/f3x8/rjdRndPz7BEMgLpgQgPwjA7bBCJbq2pgEi27cS7Hfd7753cqhM96+GIGHa73aqX7cOmOmA10DOOPnTBs3Ml6xGRkV6OZw8ROMzjY8nWPvMn15Odp+98f3+AwnKVjjmJi3ku13g0aDClXdfvq/P3t4qH81jGxCpS8uNKstKa5IWLps8//fCX/+k/NuXX19c//tcvb9cX/cXv3j5+vN0+i3BFvECmMdVpyxw2KnIwKJkiwXUQUKmuLUXK2gTEQlQj9eL81rFf8ptEKQzl3Bp99+1Xn173b77+9NXrmyh/+/Z6beyHjUji3Ig3labcmhTzqeAwFlF6B0EMSo/BxqxC0KYvb59+57uf/6Hqizu3i/zJn/3ZP/sXf/zrv/tvyaLbbu8/iQCCGcuZwUU9ADJtyn/MXeaZw46IoJR6UljiTwXaWixSjkAAFOBkAEHIhHsyZ/WBAw+yJBjuq5FReGkWsLiHDW8szOoBeALm7mBhbQtdoO5lnDFHd+4O/mIxzPESJRmxICkZdC6/KutKL5o1qjgHJje5toMj02bpWwMJG4eqlrPxWURwAUTdPFlkI0JB9mb/iDJRNsuk4EVodWbUljyvmcIrX5317Kp+3R3ChNhEmcVHms36v5x4a8vVXq6NoyphdZIizMt3l5mFsQQTEyv28WwYnUXECYmNmhL5k4NJ3WrapmQmZQLTGDzTSS4VfT38+USeniWTOmeZGRNUEkBU0hU2lasBmM0GpRXYBC0J9SlUdcumqs8qP1pzqWqlUU0WXURKm3p+hPpOYkKqu9dtjowgwOxskKx2QrW1qlVpHA857/PIPLu253VnppmV3jtO8iEe/0qrT+Y+EFlipMfosknNjHgJKZ+Nh+LTFl9R8Chun19exW9Zn0lj5sNGd5MpxDDVDump2Zyrz7S6JFlIP2JlFaSfD/65C3I2MCImIaAWRPXaCbEI3fMAPtuNT8PeuSBQ6PYvTA0X+w0LhfQlSeb5W+ufqqopcHiJ2xZzOvAAKT2/yZxJZoIi4QwgkIld22lC+D/toZ5Fe0XBE4ZXz/kEAsSTiiMmaXuOQCv0aOmc6SyMq/JxerQV1lqiUnZFBFGWJyGA3ntdZ2Ve53/P23saeFAiVuv9+T4wMQsokvOL65wAj6Ap+61Tq5aIttZGedTWR3taD7L4w7mIZ3UDz0FinRPnp6sIUp8xnuBe/OQMPEtTpopcIkLb7HrmCSj40pMAD+hXPr5n6YUwc6EwKoIUxuF58SRlIUlimQYUldrPi1motnXly/9jFavgLxbMuiQBDMkqrKqMUwYc2jTCbfZxIzOZtLU4jvHyctm3S01l3K21va5cmIRARDWTQZiZb5tEoFQD6lIdlJkq6u70pFFZR9i2bWXKxyJV+RekA8tn81wwzKyipDTGKG0PGxFI2RqRIOZeOyUAqt84exJzUz+ekU8JgwRQUzh/2inn/oqIym9EKeDH4YnufkvqkY7kH374gSWEWHVzivu9Z8a+7+GDQRnhfaR5Sb8UfKbwma21IDDzsG79DuV9f6Hk0ofro/dum7Ym6nAzwxyYVVfZ0wNgkQQ4gi0jC3khYMrwYWNUxlBbaXQ/V/hvTfnOKBpndrug9YWTnLc/USJVZwN+U7HK1/2knFfcm6/SGHFYQenr7AkPIHu6gJxl48rsgiwionp3qty2ramQIDzDBxHe+8e93y57e71cZWOzCHfayYep6uVyeX19nVuAoNc9wGO4jbhcLu3SmGXEOOx4v//0atevXr9mlmM4MtqlCfGmTTqlja2JUGQ6kikjPRnKbd833XbeN5VNcb/5cafwTeXrt9eXlxfgh4yQ5diO84RF4jGMmnfpt46YGviUtMo8dAKYWjYzgBSrpiBntHw7Z5APmHXd2iqoCmV9YWaqrAhPB0eU99EDFlsVyBn9/ifxEMG8TS7UwvVVb7EE7b/IGomw0Ger3KquJQCkRw2xAZRAW0ZkkodFOJYFJBGdWUq5KQgxISPCKCghxBnupUaRLCJN29a21sgzkoQSVTVtS/PicQfoQatRbWeLlpnZPRcyqzpWJAjCyNFtHN5/8/mn3/z4+afbe5Lo1iwxzCx8WNjSIKxGm7Rt2yYJKGfqbO4ew0bvFR8qRa7k3nq/3++0eGTuXh7diAwkMxf1xt1laVvUQzrvfC7ocpR8xDl9/WJCWNnQnIPlY4z/0NY+D68T35hPg9znVz6noMsMD//o9Xwqzq/Qw29SVSuymdlvfvObv/7rv/7lL3/59tV3v/iD379u+7fffvv7v/8HqhrIHnmY93ADi7RLa+nmo7t1Vp15GtEqFIlIARBZ+lJ6Y1EiR82mpiQmarKk1JqAQlhf9+2icmF5bZu7b0EbqGdEBidJIy4nMgpU35krujFyyiPRqtCUtcnlur99evn6q9dvIqdk2+/9/i/+6F/+8f/+H/6/H7fPDdir5zXz64l6qyd17vSV2xCJ9B65MtIzmQkkyj6wBMxqIVU/EZJLOIMzx9PB+sU7TF0oKmlMIJnXUc4FmJ+oUmbORRk9Z6RmeQLleu+4/PY6efyW1cExm7ZwrSkRmdVh58xM0qRpMTLe7zfO+dFomejWPYkIG0flfrqsYYuXi9XSPX/7DAUyhS1XqZFEE0g8F82Xe+osrB5Bkh41V6yphojcjveIoHyw3+dnjy8C7Np0UvTMU2yZmbdtU+VZkD8Ne+unqi1SV+XLUKPeoZ5mPSkA1QY55amf9uBjUDyvAfMRZ2YhbmL6tNu59oqzjVUcFRj7vDNCTxlFZGa2Jzz2Fz+1BipmFguqHRGKc0ysksjKs7dtS/si7sxtnHFmbABYltMxkOnM0mYDb5RqYmlLUE7V4jG3aPG7ipE8nz1xYsoGihQR1BeQ5ktk1DywQcQkRc3NIBcickletc3sRFas9syimxJGrVGiYTbHaRlHv6ls57qZNkLz5Ez30e2h7BVZqFFkpoOSqSbW9SzBKa2By1uiTtZplLJO+wkGzoS7E8Ar/Pzj1+zHF6gATERpJZA6NaIJoKxoWGVZgkBJ6RGgEqmhlNPJCKVCW/1yEBHco4aiBEokUSMqQ8JVE3ISr4INTsTESfN6g7nIpY/lXgDDc60/NhJnUmyb9t7L6UKESvaHKMc4ZiQlFGfbw4lIWfLxwZBMKQmgXdt5fzIKBZ+BpBm6IacS7brDpRFQTxcAS8l/0sS6Z8Kj8rbSG62owaKcbDlVr0bZ69ZDXP0ULHmVEkCkQuW6ZZJc2hnoaWHIKwwRPaIqViY0vEd6WH3o0Na0CVEW/bGaKZy81CNBjBK2jjUtTyBzqlkslUZSlmrTeMm5AwHoKn0nwWah3EWojD4mjmV66BJA5zJdBcvUe1gtvSWs/xTy6uw8ZSpqe9aIva7OfYRDpBHELZlpaxdPV92SIqK4fjT1HU/lVSIqr1gQJRhSXPec6BpOljIE5pLnIYpYzWDwdA5PZFIVsXXJ27ZFZEH3p7xnmNmUj641IJJMxdbmGBNOYuFE2Bf7Y372ksF4qCVnW0bwRKSiwOQJn2MuZq4dzeCoPcgsBM+kEJGmgiZ5++lHN2cGCXyM+/sHEW3bVuJ/YwwWqKowbdu2aVMW6+O43RCxt01Eoo8xxmV/USEKClUkj+jpESi8qCMCkcWRqDle791nWIE25kCNBEGeQKTb6FgVf2AO+nKh0vhBHJjDmzjVJwkMCGA20lm5ScExJmp0cbnrlgSc4ISIatjUMc9EMxSQsAUokjKMCBEcCUCEZ0CNVEphEhYI9XChaqMFJ8gzzSO8CYUNBpJz27YrXTYRbcyAWw94u+7X65UZJCyquW0Bev98I7Z2aaIa6f04+D1k526foJ9E90aVa6nojkg5mBCv1z282+3GNZ0lpBv82Bt/9fbatoZwIMKtMbeXl8jtq9eXTVttroLcVa0ZoMqtREtjM3x11msbXi96rskzQGFWFCvXyQRqYsMeQVQYHyr+z6zcEq3trTUjo/CKbxTZpBX/ZJ3hhbXBpW3uSSSqKrPUJBWect1UM+ayDOHnC4ulRjv3jspC2XxxVu66u7tPa8jSsZufKzMLCVd4VEz5SzgoPCqYMHOtpYmHqgShrBk5MjgcYRbmSswiDCqOmbSNwExKRKptE21SGM7BKsIamUporZV3PWNij7gGhIpgKYwUCaOJww8b93F/v98++vH5OG7unQhEh8cx+nEf7u5mqqqqBOz7vu87a6kDekTUSK7yv3SEuY2BVQD4oj6OObfJrJ6Uh2VwlrSrulkdDb7K0UeSXXd38ogjMAX5K87XTpxHBUlOmWfk6g4KE62ybdaJD6Lmw2fljPbM7DbOL87H+iUk9fHNCSKyOb0vDIJQgXUpKbxmmEWLI8jnHz7/1//rv1z3l599+/Xr9eX1cv35z39OrIcntf2j92ABi6QJZ/jAmuswcUxY1Nk+CRGh0IlHKclZZsFMGKLER7lEy2usnUCY9+Oj34lHa43bBt5FedsbGIA2FuWksDAmQnUSGLXrOdGS7sMu+8vr66fL/vr29tU3n7799PqKJtyEkQP45puv/s2/+Tf/n//t//Wf/+L/eNniqi1zZNDMJeaDDCZl5jKLKXGKSlS2TYdZCcXNNG9pLyVJQUkBQJiDmNnHgs3XWWYLmrd8GRIIZExbaY4I80SmVKuKEJUtVM3Dsm0bLx5Huc/YJNtKa49mX71mqUJZwlpENMySqEr0BNxZhUHETO41jHQKlOshAEJowViIgAlPyMzX19fb7XYch4js+6fW2nEct9ttpuGAW19KRmQTLlqx1yk5IoqNsbcNs0p9hLJKG8p8GyfKi0hVP44PEYml2r1t2yRvU0QG1ySrzsnKXp4yz9mApkg4rS7/2UqoE/sM13GKigGZqcu47jwysCrzR7YjD65cfNEge+xKIMY4IkL2HVJd7PIBYa8eqhklnpub7k5Bpf49xvDlAeTuAyMzq81UlzTGOFEkotXpQ/ENRYSAcF/VCgFQVbWH4+gs3JnZw87kFetSmFkWLb6CzPn1SrbXsMvmN2BNyp46IpVHhvnqYrjUqaG6ZVIhJJKCgQq4zMnk7rkAWVW0FeQVMVHgj3KLwMRTDaJGLmv+E6vnGk/LImdXoJ89pMIX12KVhabIx+tpnPil3291XMteM5AWwQqCIHFOPp/fDZnK6hi/1S4608TZa4ugglwtRv6JngWm7n+9M1ePCmsc51FQz1xH1/k+KweNTCck19INIKxi1dnrquuoCS2eFacBWiOdeUHrGgsvcN7zs3kBoJLvnO9fjywAmufQ2fcFsqZztDDJTFTIXs86mk8QFBFV5cd1lNXFTd21TCS4FNhn6hMRnAgK99x0GrtXSDo3M1ZjTIgTxIFqajJrLl30FVYecJpKMc8sDfgiQMiTiuZ55J/rsP46SQ5JEXGqQzMzL73NehaqGoExjqrcnt9qxrAnxb/1yNLd4zTAElH5IlS5e80oALJShRG1aVZehV8713A8jYpiQePOdASr/CueXk62akb4GOOkeRNxeGaSiLZFXgVK3E7CMboRZXGehRsALehyMYoD04VXVk7JnCyEOYcXESx6z4wNRJhZyBfokigkJ+sYVsujeLzzJPBjPh1iItr3PZBffOTSM19PIRfiY+oT8mMj7JcLClhFUBZgGq0J8blIiiNSUPsRIU33TfpQpIgq0s3icnkZg5vytm097kW/F6IwL1CDsvCmIiJbO7Fh57Or2HjdL3ubmnDMYNLW2rhbbca6KlICItIRgIcQG+aOTvfIiAzEMB+K7aRyRMQwi0gnPul8z6+5LM9TMSbfLDIyo8neNuHk4zACaZMIU2URjYhjdPfSbJughpzQy8q5C6wLr7ARAJJXv4VJggrQAKHYWVNERBMRCDMfcTsIWgJcnEwse9tEN13Setvluu2MNGKiFExpd910u+zycq2RaT9MVUsk66f3Hw9rvNNXH2/7T/vrC7b9BY3Deb+8Zol8kPO+8Ug77hEOBIHSRwyw6vW6kzJ81OIX5uqEM5GUIBNHEAUqtQ4kBVNiajRUBKAS7HmqFp6fywwWQbVm60vnmnx+fmekUmlcdZM5M29bASOpuzfdBCBQMFFkch3sjOCIQesQO6NTyVnJExA6IgCeg0jUhuVc1IDL5QJgkYlwruoSEVg//qidJmmwPmJGZjJEpPmINbOcykVZ71Mg+2nTkcIou71TwrSJNml1M8MdsGSSjdu2FTudFqC3taayASiZPWY5xyPno+FF9vNMi4yj38dxt/7Rb59vHx/9frfRI5NlZH583D6Onklbk01ka60kG2qne0Tv3aa9PGfmAjZTuGVS7/fSra0jpu5Pla81+51+KyDOLLXwBdbzyi/LQPi3dnQ90FMk/zx96AnHdyZpWLoSXv2yNbqsf2qtFff7zL/P95w5zDNM7B9BG+Y3P63wlUtV+2P920KOlJzk58+ff/XLX160/at/+S++/fZbYXp9/QTdb+6h+tX92Pbr7X33cbP7u8cQbU12S0MJ+5eKT7XXg4udRATHUkCeF19p1fxrUqGiWZW2TQQpohQ+7ocI7H64QJh034lIdFKygmBWbJuIaYBYnHzBve+tffX66fXl609fffP169smAu/I7pnHuF32T3/6p3/6p3/6p7/6r7/MwHF0oZErWz8PtWm3s4CNlbEkkchOTxjZwu+BEABRofGnl2bNRYdNbQudVM3ZDj5T8effyxXWIkqRntbmzczb/U5E0iaj3pc9LHPlQmXz8QXgBefUl2YW5BHdrL6pcgIqbP9StKnPyKzE7AmKVBVlWfDMmVfXmLAq8Prt9/u9vjiniQtPcd69bd8jwh/bYj68ORHBb5u6nTn28/o/N0jdQFlqGmMp+z7vu1z4XJyDwwVgrot8/qeVW3rJB9KCy5077gFuXe85Kw5+Ru48vD9OlSkUMeRUCnjKEOrnmLmkoetNmGsCTWdiOQ1ZMqsATpown9XnjJQZb8+Fgfl5A0Bk1v3BOcetJC0yM1VkGrSet5ieZrxYcL1Ynb9q0kQ6ElJXy0nrm0gIyPQ5Hzv1A888h4gKeHCkoSaKJQuVycDWNMu2q5RXawW7L1bJimsEFMMk1i/nh8s2lshpRNSkGKVSkGCQPuxD6THkJAqP1po0fQYezCdLKcJY2pigYIHPCTmd9cxaTDjhH6tRmln+Y4RkKmFvIsLZ+FzX8Lzi8wnVM5cjMksOg7iKilnGf4Erq4291n21HmarMFfEqV+B1cxn5dJi5aSkpIziVp+bEwBUirnyJKZ11g9LZxz0qIXOxOv5lZPSSVAW4WIh8iJq1uU9dQKYSIJgGYwsLzHPCHcIhw/P5KRkUuI5tgDBZtycp10NJFW4sN5IAEIkwjUN9jTi2baceoiY1TIBlByWa56QjtwvLQCvIcsqNgGkeS6pFWKgANhgj1gl+Ty2w5FBUuvwRB7ODrKTYNuaeYzh1XmtMCQiwurzDqtIIwp3RroKJXMEVaDhhZIQYc5ZrIgIRTgCCc9YtNesCn+MgUwhPltaStymL1UdClRZ3fkop7zYCqlRDLgw8LI0eDq93L0osihPo4UYB5BJwg2iNCtAICkCDHJPt9TGqlumL3i5Vuhk4mqpIpJIKth9MfWfHCskfE3HSzpCIkKk8k5FtX0iy/srzDPgiLPfuYJ4nJ1FViWafVZ+CGhPonL4BFKG+aAQEc6J4cnMEm/wUwqOUN2xaQlGNQ/g+bmEiayANoVaB6UP++mHz0hHQkk5gUytGb4d6Vm6LDTp6o+mW5UBqjqOfvv8Hm6Xy6UyAAooMRJKrCw+jJly8dQjM81jmIerqsUwd4vwGJlp7mP0dDfA3a07yZSyqKo0ltelz8b6Qw1l5lV1fGYAYXaIMLHH6BGUbgyBW8KT2KccgkeO4m1GMStIEEHJSlQhIoEkLr48FdGEkjh7RCLhKQFBpoyG5EQTQgYoLWJQatDetIEHAsggHRn3e8/DaWRebGcVJmb03pOTed94S6br67VtO0u73W4nQlitOfzj4/P3339v4d9+E19/jcv+SipoigxWLbmEEW4ZacblIMpIZwixcHK6D/GMMBEafViftlW9923fAGCyMfnEfD4O7pUilJPpDFuEdWytaiKnEQgR1Txz/Wvt6GpoE4DwDIpqGAULqwCc7gTB1PLg2Z7jAmwSgawgGEuls5KViPAMEfEHxGRisZLSPRKxmh3hE1ZaDbWnrDGSEnV8x2QL19T5UT4xpHjFU/9pZpa8cn4iFuLHYDkz04OEWoXiYQKCcBNtLEKKOE/x8oNnFalFzkSbNiRESNuc7c7LWOn+3JiAiDhg7sN9+Oi93/v9cDvCPo7+0/1+txHMzuge90CwtLbvl+1t22g5r4zhxzGGm5llPJxFbIz6SqQB6DbMLZCBHG5EVCAUL1JgXVAhiQg1n6m7Pc/oRNoXffy62yAwscMzHXgCOs1n9BhRxJPMLAm7ndPUJX8gPJ/eytAS8zyvGOv+IFZgpXPnQqDZ7K4AG5lI0ogssc+Y40oe5gJi1tmWdRfiv/nrv/qL//P/2K+v28vrvu96ud67vx/j28M+75s2Pj601xvnUGEmHTLCDJGcSA+4FxWrFoXQas4REeXC+SgRSs+EBCTKitaYiC5t21qLYRHy8flm1vfXbd93Ln/zpsyUGWMcs6FJIdymiyXJt99+++nTp0+vb29vn16uV0XmuNPxAWmy8aZEsO++++bP/vTP/93/+9/93V//Fe25SS6jIwrMnRueZoZpMyJ+aqBQi4hEzg4yqDLEkvR4LIlHFofSbDgzgXMc9cgN1uRppeUCkNlMe+odLXLft2pvzQAlHEjGQ+O9ZFgyDfv81V4cZlBmVlcoapZAzCs/jzrT18ADk8AEZhYmIGwhDOkJwXe/35m5CsJ+P4pCfLlcuh3ujkVfPxn1WB2ixz4CzenOP+rg1OyqBnHMHAtRXDeq3qd0j+s7a4h43vx8qq5pJdXzCZ4o16fidl3eJKISJ+VDqLi+J9Zn4YX1m80LTiKZth2Azd5FePVqKw743A5NhLFEarw0v8FPDN7zJHL3sncqyeTVHAx3LwD5CgKYGfuTaUs8sLo2xngeyZzHWQUvd9ckYqJAjnjAVr0PWcpsRDSPImGBPi+CiFBlMCK8xkul1lifgZltZJITEesjGz4jF3EKn+BJBygJomzDz3lmVSZV+81Pe543UXhOSWJ5mrxX8ZxcRspLPL13IdZ9R07wD4hqlrvaseuzu49hIpMF0Pu97t6MzoRalA4vNZZcw1URaSKeuPc+UeZCGWEZAilay7k8iUiISzseVLPQL0g155553hiVcJ9/rqojSbHEis9vnx1oUHW9sapursFq9bkqywkQZ2FdMkJFLYZHTPRF9TYBzil2TU+6FEyUC3xfx1REYOpXKxG4ANlnhQz4GMysKkJsae7uCAgnUxTPHLkIrEwZXLR4RBMBC2IkCzGQExNZRbIkSg3ruXF4Mlc1ZpoFQEVO6dGIKAFzmrlLOxdkpUK5WAdzt6/olZkRJkQIgwvWhHOtwIJBJwQLf3BiUar0UyKKQtnRg/8Wkd6HyGUu8WpJeoqKe4EjYEYRNkZlgTmsMyuzZlKm1dMAkBGkj24oTelFUFI3K1SGlX/SUmEt+koEkkNVmzZHaiOLx9Q6V59CFsU6IngqdQMoQ7FawJEpE3FuFkxCmU/ujqgujAhkBsSc5sznvWJV3domosdR/Ihq7UEKnQdyH6tLHQAoqfGEr8M8EtyIWGqyoSzaWiZ1W+3n+giz243MvFwulRxTjYBmB5ArV7PIsBBJZqlWHC91+iat1GJyGRuWCGiu/nyJtd0+bvu+g+m00QNhb9vHx0dm1mFQ/b5KLkSEE8PG/X6PHLIRAHMXUNv2bdsYELZCPrt7E1Hl2DSP7G4jDOkDeHm9hIcQXy+7S7P7ce/DR8l+hjITsfUj3EShXoge8snSMQ+v4NNLtNEyEEhOeMXnIIZ7P2yMIW1rrakICx3Dq/H5FPkpMkAcmbzwzxERlVQlAIwxehgli0jCezdtbGbkngwGmqi7lxsHMVduxgRmQZJXA4gYvPQDHESexL56WyVJa4GASeRwqLAqE0mJ7w1HILMbZSj3C20beCc5bvePbdekT28vl2vDiC2GNN58835PN5HrvnFkc8vWRHd9/er1OD6GHf/wmx+JVXh30Ndf8ae3Leyw0T1dmar+CJaUiDFYkJmteJNh6UrsbkEk234dRuBj3/d9b/dhmQ7SgiSiEBJTGOyB4pkMRc4kmu3xL8bwE2206H/ErACQ5I8WvqhKSQzW0Xm5XHK5YZek+rbpp/21eObnhCfnBqNMq577rMx1EowZ4JwaEmeAqMLd0hNJpERTZaXuzFOODQAkzExmlvzIJiteF+ZRBFBWVT7PfX4aD55IHIASMYyATM70Ohzcx3GMvW1cEyJQTn8XEZWmLZBKjwm2amsi6klJiBRtmKOFwqTIU9ua69BJsyOsu330e7dhiCAYZY8YmQW3sISobvtV9+3StqZkt2OMHhHdrSYkcvqsVgFcig8gyqwzt/LFeoi+SMLnoK9uXGRiSTyk+QjnxF74arOH08dKT5kZCArn1VrJalUVx42en0ie6ZCsaF+vM03n5fr9/FO0XAbw1GHPVWw83qTuatSwN4gIHs86WFMEYQzWpqrWfYzBrYHp8+fPf/mf/tN3v/PzP/5Xf369tuD29un15XJ9e3uNHGGDmVRZlPw4Mr01gKk+DBzgaltnDhZlAifCLRiBCeG2eXgSqg3PjbhJSgbho/vWrIVmepM08n703Llte/WFkTwn3kylPSesWqN/YoB/52c/v+5vb9eXy7ZtrLDh966X0X/6Yftu22QbMXbd/+Wf/Mnv/8H/8jd/9StqrW28bxsRnW4CtRdqABU1oZ4tG/U0R/Iae5T1dwLpDhYlSp5QRzcfY+ytVTwZ4aXBXmYMPCteqnbJPDADqjXeKV3MiIhUjYjW2uXl2kTv/QjzstRy93u/nz6UOdmXj+ld730SBE6KewRHOBED2fSRKEaKCAOwHNGToLJBtVw/66U6A1plU8dx9N5n74CKimNVVlGZSJ3mLKq9d6J5nsZTS+7cCM+hzMyGzXSomPVuPZMSPqkggLLUkI8y2ybn3K6C+twvGWdsiVOml/TcaGcyn5lEyczHcZiTcDu7VFVYqqhHpAcJMwicjEbKaZ6lyDbZ35GYLrY5z6AvyN4j4rpvAO73+zG6qrYm7l73Z96eSpzgmeXvRwRYLK/jM4fMWdqcTpcMuA+iVIGwhEfvnZin0X1EzmAYAKpxoD/e3rdtK2cUZjAzIoYbkkCiVCBMKXh2v9+ybaq6t633u/UDyUooz6vMDK9ZM2fmGCVbCneLABGN4cwckm72dIbN2xdARsbdmXWZwkVNtKUJZ5IQgG4js9ozjbh1ByIuFJtK8ZyKJzlGiq4yI7I0WHNKrdbEmawjF+UpKI7j4GHMfNlbZiI8mZj1bJdkQT2AICQTCJEOLlAWMt2qWgpkUgJlbxnuYxyqW9nYAJDiKgTS41hq0ksvZwaCyoaZiIgLGDbZVDBQVGFKTlP3KkA5+1dn9x2JyAj3gs1QpBDVb64baO6RpkwX2VWnYPX96Kr6dr26OxBNONKZOcO1Fn6EhUc46/Qr7G5mziWIxTJ6t2GqauZK3LQlu5khXWhafm7aSnhdVa/XtzqDE+xR6sA4kfOlwJEEsAmkikYEKQtRsV+YE0hM0yTgtF+rVlBTxWMaD2VhUJjXQ1WdheuubaIDYhKb3CMIYBImZkqmRkycnKmMjABxk0ojRk69RFLVKNMfYkoa3TYl1Z2YLCNiyutv2xbhY47anJm36xbmG23Dp746JQKl1JMMQgYza9PV5aK27TIi0tKHQILZfTCJtlYo9EIiULX2GcoSgYvuEZHpTVRJwk2IkMFLd616XCNGlmhHDmESKXptJhOLchRUOF72rUCDCNp5QxMLDxtE3DbZVMLd0hmuIqRL4ouKks2fPz50m3eeRWpU4u6FrWBiMyOg6VYHmBInEuFmxqLTC94d8H3fPeDum5QUPJi5tS0IFGmR5j4yRJooZ3g/jiTetq06CyyttZZcW5shHGWSyKRU0wkC5qQ3Ivr9HhGq27ZtkVRB38cw8xpwqapwcwsPW+1Ju1wucr4qcAA++tvL9f393ayLUCaXnTFnwHN/uTYNw36733683TgGt8aZSgxvJKRqYwwPS/gI8xil0kqRmus39VEJew9rtL3tr3nARu/prZV706HEu8CPEXZ0j2HOurXWwikSCRpmkSrcXCNHBX3vbkXzNQtzgDSDRw9K9sgaFzLEaY7Bw2N41mRJQNU/dXdmiGikRL1d0RpWahCWItWsCSIShoAGebXbAVBWuyoyUwi5svlJoAIVr5OYPUCYGveZKQliKBVkicwGgMZilBmGSGUIoeddQRfm3tptHJToZPyeX7296uU1Mtu+tSZvl+un15frtv/DD7/Rtn3zzXdJ9PHxISJjjOM4LMbo8f75o49glZe2j6I1QiAbtW0jDhspo9KpzGxJIM6AmRMJ7Rsnowe39unrT0jf9k2b9gDrzkr9fgNjU0SYp4RPPj+ITsN6YZ4gzIzwUNXL5TWD7h+H6lZKm+7WWgNzRgAk2hLcR3lyckxdv0EqxPCMoGDmoBgx0wAiiHANOs5KKcKUdVYyGUgIUnULZEbQ6sSZmXsOdwgRJKlUoGteEB+3277v9IRJKXbctm0WjiLYJ9c8GJgobnPyMKQHMpm6m5bubfmcR9xvtzIBetkvKqQbR7ibfdwtIsthvEnx6FJEC4C1adu27ckiHmDydDilpyaraGNJJk/LdFKQECgv21VVfZj3Xmqp9xi3GJ08NiZSdzOiYGnb1m/3KAFqZSL0j/fk+wEavRdnoVI1G6Pfx7ZtNgaFqyqFp42RSUSjd7PRWhPi3o/e+5kNI5I9qbRA5sfIxuwR4YbwTFh4pR5hQ0QS2ZerPIDeR+Rj5KWkCqp2ybCOJWYTBG4TtejmciLJA9VzMTMsFb2ZuWYyQxYhrc7ZKuwzs7ofz6UyJmCPiKQsRmORoYhIQD5s1+k8nMSskiS3200If/WrX333l3/56etvf/6L33/5pF+/Xf/J73xLHNvOrdH7h95+ZIuMFETv4yNjluuNGxdZ1Trt7D4qEYsGs8lCFNFKx/twkHDjZD4SlDiSlKXT1okT8e73sNwuLz/dh7T4+u2V4McxtEGaiEhyIoVJVbeL7pftuot+267fvr0ZKEcfefeU9jLy/V0vb+gdKpWx/OG/+Of/+v/xv/67//DvDwpJsm4qzPNOEhElc07Faho+EVsWnhlgAmsSg6hHopcsioxebBOaUbfKEk5i7r1b+L5fmcktmSj5MUcxc1q0rPSg0nGhYGViAkNVEfl+e1dWVmGVQJpneLr1CGutbdtGdGp84FwM7h5hNSWu0odK1jsi81Khycz27Wrd2EKkCYtn2hhuXbmkNMTdbvcjL5dtu4T7uB8ACOE9klmYCWbdhRszUQbcimA4hkdYxS0wq6oIV/V+u3V3B7h23Ou6bCU+/C4iwvAweAGUOMMb4T6Gu0OktSYEh/duRFS7IyKQqUyeGGNAdKbQmZF2Slhh9cUiztECZeZUvw8rzmM/Djd7eXkZ/Z5ARrDIZd9BGT4yXbdWsJFaIRFhw23Ytm2yWiFI5uSMTE4zi30fY3z+uEWYLOR5Pw46S/cnlXgU/2pMFStVXUNHKEtkRulEi4TZ4UM0Rz/Ybq3tIq21RpP7fVQ264Wxd2TCHWrhHF5QB8QcsTLz6VWVmRRR3VmeXos+bxlnjTmIoSyzRqTpOVPsP88H3fFsCQtxpLl7hDPzVAKkyISNUhqdLYzZBXRYmJLwFO7NLEMiQRlORKAcsTKdpOQQpxkMVme3QDxzdIBATG064rkccTIbC22TWQC7OYoGUHro899We/kMu1H1xvyMMYdf56k/GzDntqdZ5S6pj2cwVxiRYOGr5s+utnghP6nQouddXbj5swNUTZRzYkxExHPwm3PkDgCe1VNQoVU4PwESiIgClBGZpbp/NsCKFTr6bHFVil/LHZjqyiBEGoNk2ZOUaMeMd01BVJCtySbgCp6lwkIVEAEkQaSBM50iHVPaAJQMBM02ECO8umu6bGzPpzNvwnJgxkKGzNO0YNujumhMRL13Ua38jwr1R8TChRHjKfMUmVwA6meHzGTBVDmRTXE+wZgPQjAdopiIonTIMmWOWANlpEfTydYnNoGEBUzuHhksTIQIy8UeqTF75Z1M5FPh/gnEQkkgAUB8GjQkShzHRBjCwuxzMp3gIFCENxWAEuwBEfGEu/c+iHJX2fedgHF07zWEpW3boFMhMN1UZNu2434nROU6a5FHRpBo4eswjQQBhLtjknQAcHiSFLDTJ2gYoKVIwSV5zzUtTFp8P8usBRmE8jJNAj1sG0r2tzFz3SsGRMQimCcQk7N6WJKZ4QCDS5fdIzKaCKmybiKSnrxwTXWQT48HmoIumbOqPycYXL9miTEWEqx6kUnwEUmQpkzJiG7mPjztOG5MqVu7sDQwMo+P223chw93N3Sukc5wd1TKXkYE4V2VN9FNW42kEJRB47AxMkYnxMu+q0hrck0dn9+RASNLrwZtevhUJiJOMCtJ+CAkE8F87QxkdTVnU5ZnBhzISo6SiVPygQD/UtJmJt7BzPnUPxbV6qsiKTGjX7FvH7nOYsWhOiaFxliupxHwBCtPvVIGcnp1GEBKHAGiGrgO1AWydzdCk+CSn0DkGBaysdzclWCU0tp2vUDYMtK8ieq2kfB+uX769HUSvb19VZHhOI6Pj4/t0riphX/+/Lm9IdxBItJ0awj1VE/2zJYiXO7a5Y4kTUCyAYIg4OM4jn4/kEaYh9dhQ1KSpc0hazSWkZGomxxAkEClQl8CsuBy4V4W4IgIFt3abhPRk8xCdRkAkZZu6tlSjIjK9M+h4r43pnrnGibPA6haa/Ekr1LDpTkzTGTNAM4DSxlBpUjs7vXcK5cVLtHap64xEhnT0y9gZhnFeS7r5hlkiAikRFa/tViYS5BvkfAjKRGOHt3M6gwSFgpyd2coCwmXrLRAVNqEdsc8fXRrsjV4btu1iWxNWaTEKpMLayDDbYwjour8YSM+rP/UP3Jnve4B9HKZHna3Yfej26hkTjIL32dk4fj4fIuI6/UK+HEc1XqLYWmeiLFeZ2UYw46IJepxnvKZuarEnNSSQMq2lUypEJ+JKS33+PM9K8N2d5lwuSf+0WK9EVFkKUVPYoV8KahzJjD0BDN8Gu6VWmyTJc2A1deuHzxPlhlJClvuExfH0/I6g76YStWKpclpoX/44cfb7fYXf/EX19dPLE2aNt1+9t03EUYCs05EysLM78x2fw87zI90iLTtemksvff7h4s0ca13bsw7Lm49oqTI1cwiO1c5x3NTXV72T6/bZWciD7+jSbteDIkcH8eHSjaVTUHcKooKGoBN9KqXl+3lbX99afqqIh4jHMGRNvyWv/kH+uifvtN9v+PawI1ZLpfL7/7i996++eb44ftdpPjvDDbrKLIBS2baBFNqzS1AgHDS3KdZOWoNkCpBpknVPx+ER4gQmHiJjzAVrPc5JDxRNtLyRBROrrEAOEYnImqMIM/kDBXK5aaBJeWbmeWWV6/e+77vRFg9FN60yRohVJpHkFMBt46YCnoTJRRhNs7wOMaofOBk7QGFuc9CnpYGw0R0L5cQZvaFCnd3eozZs6yh8KUNUiUPNMeqU6szYkSENBUirMktLSJbLIGYM6d9wl3l+U/n/qqrkilfSueP79tWfObaeieu2JeNKwFmHaWD0DS9oFv1maaYa0k601PpMWO+A8D9fq94VefC/X4/P8sa0tdHmNpGRdbAE3I7IpRb6ZrniQ8nZiV3czh5absas4qqKBVkfQaKLKUgIiJVbgwpBr/wrARUlScfMkpVlgAVSqIolQY4V4OtRG9RYNepML+YOUHElBBGMZpK9KVGlFq4xHREklBhVTKSSOa7JKs0EQmk+6BIJDFzI3KLpGIoVnyjym7SAwgiTLGiRFgS0aQaRQDoNp4ibJ7InzVhrU7AI0efLJTzYZbU7VLZxT+C3dPqoZWOwBmmC+owi66CdsyilE6Cy1P4Pgm0j0jNmJEi16pi0cxkEIGRWC6J+TCfQNDDY4Cy7Ekq7s/NyTWtQiREKn332utEuthZgLgbgHoEIGImIaZEpE++KyMRkZ7wKhhZaJFBqFytIpxZFw7BbFlD4ckX+/xKYSrmOc1J9LhBXPjFf8wxLv0z5hP0gqfZ78m0zMxTZS5QfJKHShAt19kKEFGo5kwIK1FYnFco82GIMM+eEoFZkgRZKn8umLCQahsQlYtvWh80eTvwOobdM3MTiQwmUd0iwiwiUTpbJwc1FzbGzKzMm+t/SQAnqKRJK6GoCmQuB5ARMovmNpPdrAyhgEkkxWEPKn3zVGJSAahcXQuPkCimd8zok25hRdmKiOIjZVbL0QmAVKuMqEJ20kpBpk1U/Y0WpO2Mm8LCmGYqSlxdLSzQYJ1rwEySzMztIfyAyOFOQkG1Qh/Ejcwkzqo2ZU5/EkDvvcR6pg9cabSCPCJLJIsYmaVTySBtjaQKs3EeEpWfVREuC8iXWcxtYZXeO2WAyawkx3Dv/cK8bVsShs+D3K2LkDT56aefvv+HXw+66R4RAXJVMbPr5UWFzO5+dzOLHJ4e7m4FhkwBi1ABL/txmJGzHMeRSR/v92MYkzLt5iNSW9Pt5SqMDGT419ermfUjPLyxSGu3PDhh5pUbZ6ZbFuOw+KHMnJLpBWCJIogFcqltYwo2zNj7FG8TpUaA9ehnmHra31UzLXfrWv95LoYEh3vAbLkSbCqUnFZs5cmnjYGsqTSfv2peGxFZgsMrhRsWlemWGKgnMRPLFKL3jP36qtsmGcPjZnYd1o4O5H///u8NpPsGYtH20/t77z0ivv706eX68nrdL5ft8nKVrf30/hmAg5hVddu3K7YNmQpjkGQIgWRSY8LBJbnlVfNnDOvHEcMo8vb5p5f2xvPkLV4MCqsujYRgU7ixTgcAmPXMhOxmZX45HRqdWLetceT9fo9Mla2kseKEyK6Tr3ZiJnEyK/fe3ZJ2YdbMLDml8IfIDTN3tyQqybKcfgIP644oGVgg+cFYnmFhHcUVwGWWlPNVsv9T8Xg6OMyc+1TGembbzWMbDMziLVf7mwDzTkTwGGNQlnoz08rTPaoPTSB2IMMXJzngzqqtNVa1dFZhUVKphhdKS4uYmc0wwu42hke3cI97DAgniWcOt4/b/fPt/v5xv92nRUITcfdwZ+aSp8qgY9yRyR1sfBxHhEXoWOSUzCzZ1ZjiN1px8rfZib99ls4b7u6n0AU9JdRnMn2mlXUwJQsRcUVaisysgYrMR3z+30NAMb+sXWm98JSpR0RhTLYtzwKYnnSz6qqec+5zReGL9O3LRfD0YYvJrMzD7fvvv//Vr371e7/4g+vbK7fdGVtrl21/eXkhIhUWkDD6Lu8Y26bpwcxZUh6C/WVHkvKGidAWZoZfxxiXfUeymWnbRdq2qbIQbFO6XK6vLy9fvW5XzRxHjPvo+enbS7qJwLJzCmQjFSeI7swsxBdtr9vl0/Xlq/3t2rQlRFRGjIhxHDc71LC9+ttX36IPqIEMW9tU/uk//YOvv/7qb/7uv4Xu1a2vfrHK5HvPDvrad/Mr9KjrqrNQHkpEUok2Fm9o3vxMJlIWi7laljXL6noA7pYZmTUM5MrRMNFRmWm0ZJ8jorU2ZX1oRITINKQ9uzmyfCKwsPrMaov0JPJgs6O6OaDWmk/4Rh0fpxQ553zzqHhiZkCVUo/cnh8UtjIvhNWIbMnlRiyjqYhRpgY55VcqJ2R8sSBvt/dtFfZPWyMzz+K2qkE7z1P3pbY9WXVLFMq88s/I819nGULTAIWqOx9rUHcm5Lnmc3Ubz8wqp6wb3NLdKo9194iRhX558ovKzIRFultmpjbpvZevIYLv97vHKBD7LJoyy7WYJ5fNcA5WUVCOCPcaZmUNikePCrkglmJs16cofpVnSJgn1Tys7kwKhJG6ZtCzazNvECgzOZFcKnmFKZUaGXlt8+mVkNWBWEyPEmeySkEzExQPXRpegleZTwMrTHfBLMEIkAiSqzKpRCdCRJqUEwfobPtRluye8xwwTppiRDmnZBWZBcpIQhmQ0sK1L6mM2ply9k6YZh+IiPwpjJZ+4BpBPUrfXNVvZlo6LauueZEzgs/FWu2lx/Wv4PLMAa69CcwLyQgiAeGJlkgiE2Uy1XiehyjrOSJZVSmD6lw/AxlB5r2liCrT0zNBUy3pvNSIKD3wqTRA835ilRMiUtSRWH39zKghKDNFpJmBSEky02y0Rpl0oi+wZuPnxn7+1QDKFRtJuQABAABJREFUTCKnccXsr4uIDzu/eQ4QpodRvWXkGg/i6Tg8d3iutnGexObaGkFnY6x+toYPkSlA8ERl8KlfsnrVNoKIwKS6ldzsGD09p3BwYfAmR38uGGVUhUScw12JI2MeJKXe6WlmnvPmFxT8zA9ymnwwc5YlTzFqVkv16Zh/pKxLYHwKdWcRkZhbpWircfVYhUREkZ6EyCxFLyZS3jaNMFoq5ZnJLKxyeBkMJNEU+nIP99G00eyOBdOUtq4js2rpGtSIUFUjlNDSXX0YaRCzRJZj8FQ7HwU5BgroLrNRXbdxfu7a0eexUb9XdJNluVzApACZWVOuDXamfTkBEcyY9XDdk+JWEJHjocVS3ZdqwWSumefKFMunwU99uEhmLjJwPZf7cbj7y8uLiLiFu9OmERHpyrxvmuhuM18/7Iicxbbn6D2GjYtqlo8fORGL8pRIDsskjwNApvRuESHa3MMc7hBJ90TMDXK97Gn6U//w+yH7BSz3yNEH88UjM2Kq5fYx3EAsTUuyJsgz0zIEnEScqFFjteXOQHXuQSJipYiFNjpT1VJ9IaLHI5i8oCqARcodoAR4Hq0Tmj80RVncnZeLG2kfPYhQ60cyE05AbVyPUajd6ogTZQqkbRTJQqxgVSVUFWwRrHJpV5EcZvfem7Vtawb8+u///na/J/Gnr7+uZP3t7c16N7Pr9bq39un1TS5bIN39fr8raTgz2VaibRbpEOgkBgV5RkjZfWWY6cYwx/CLtN/9nZ/9k+++/S9//X/H6G17obZ7hJunRVBOgAzROoIf2k6rIlWPxDwNOBKiZQYXScQMaUpfGrGeJ2NmMlE5SxfSWFQjwsYjns98ZdG3qqblnMkZrVGhI6l4Lgv1VD9fWzCWS4VQuvv0PHkyj61X3erjGEAwq3DLJVHpT3zRpRKYmTV/mQNMMwt3BgkoiDxMRGQCUaj4ChGxNeHFLhletBcGsO87Z5YEYH32xhIlvchRBiqgYFDxFClpjNEjj4hbH4Yk0VDetmsPP47j43Z/vx8ft9vHx8ePn3/ar5fKMo/jqBvSe3f3sqtB5u12y8wCcN1ut7pFjeVpokJeve3VSDovNTNnUz6/aFGBqT/Vyc9r4MyheWlenvl3PcTHn+ttlzkDJWQ6JH3R6/zHvyKfaN5nF9uXqn9d5ymocybu54N+TidQ8tTnefiUD6zDdF6qpwNyu93+4e//7tf//W+//vrrt2+/kbaFuYD2bcuIcLPWXl5ervt2UfZx67333jPM0lmIdQvzy+vLtu3uHmMaOiCofHGR5JjBX5nGOF52/fbrt9draxLbpvsnwLrbx7YRQ5ryJqwiuikJI3NrF2bdRa9NP23Xr16ub/u+0SMv8m7vH/cf72N7ja9lt/th+01lQxJ0F+bf+92f//xn3/7q/zTz7VJeIbzgS2YRBuaS4ZwL3iOqW0ggmoJMAMLcPebJi8cdPiMAEYnwmSIC5fP8OJF9uXCdKMJzaZ1roGi0NTJpTWqzI3LAnsGqWVOwp1f1fWIZUw+3WAI30xg8p0+sLKHg54XNzIWMYGYmrXcr+P255DgfPSBmn54DT+pWlWee3x+ZI3NTzSwPRqWaIq+Xme3bVpnR87ZanaAzLXngWx+/KDPzUe2P48jMhy/lc2/it54UEZbvbo2d6pHVP5XISN3/KURnWf7hZZiAp35W3YrpnFo9TbMMqtV0ftHd7vc7C6oBgaduWv1qLjPo9Z71MTmROcnVM5v1NdkObLsk55pVz/mwmVViGRGAA5SWIy0ilJaPYqIsYpJoqUjw6pNXCko1Knpa5avHQ4Q6MAquMNOvZGTK1JUAAGLEGop6dyJSKlFGIlTKCpsce2B5/OYqtIBIWzaeABCeHpGYMAKiDChVCTGXTGUztSCQSTTZxRnlM1zpo4iMYY9Nw2XQx2dyX0+gxGlqwUUB/AOeVGBCJCfBw84tuBYZR0BAGVmpQE2WiqM7Uaj4ognKAs6Y097S86qJCgpnP0VOYurmEhHKD4pzOhExSzF2570FmIgL/FMVbOEP62GpMDFAHqnpyQku1+JS7HwAzzJXDcyMsyrNUtktTHJtNloPlbDS33qNMZpybc5dHvJ0VcKdu5F5El/dFxpECAia6PNVx84zbfaJgWluxHMrQqqZEjHF+VEzB7gnRUaGtEfmzaQFAz43IbLEshVlMwMZcEzMSwaevXxbZklTSB24yhpw1XpIAqLwGQhoCSowk4oQlJn31tx9jJFJUDAX0VyqNldtEUFMp11QfTpHskrZbBRy+Axqj4C4Gg1R01+AhBha6SUw3bOyrE+jLH44CTlnffUlEaHhEekNrUcQ0dZa2wSxFYiXWJR4iXuRUEvU9LSItVRz+5oVV8fh1NxmIWHWOm9AOF27isZDUWVPMByJCE5JKhXmuR54TV8RCXIVFcAZQctDuxavFkTx4hmjZBIKZtq21lqJedaqrRYuEvDQUueohLiS70on4X66bJcnw7adJwG+OBIq7wU4hf//dP1ZsyxJkh6Ifapq5u4RcZa75FKVtWZ3oXswaAwaIMARDueBwp9AkXmhUIT8lXwhH0YGADkzHBDd6AVdXUtXVuWedztbhLubqSof1MwjbvYwpKTk3pvnRHi4m6np8i2BLGrNuAhK7fQ2J/aUBNFFFTkcDpQ/hKwVc6lHYhbiNHFZy3I6uRdwAPFrrUUpDJObnZKZuVop5bTMgLmaiCQKPYJaihLvrLqqrfAllXHgYRiGaVfnmdOgq9dVtYa7uEA1JXE3mLlBQMIsSAESUieDVXOtqm6KYOYRSWjhRQ8xdpYzI8QbOdybQGY1tDa9medwxCiNNKH7NAAgjlOQ2syF0OCsPRVgZo3nxwRhJkrjAGAgmM3oo8iOqPYwXoBzdZfAOvcWZwyxyT2oNwZU98SoptWNU2K2auU4PynKNE1XB353f/fq1aullGEYJKcXz29/8pOfnJ5SXZfr6+v91UH1mkrVUsHkRpVgMF4LOWVJcBYwjBBMblcnAQs8uSMJw1hPs67l9nD1J3/0x/cP89uHp5OWzJSEC1FCBhniaIyGL7V6Yasr3Mi5wXSi0cAQUECwnMhLXZg554TgHLltuolb7ZFSSpynYbfQuq6rQKY8LVB32kRlzL26k3liYrCqV/PEzJwCJh/6jGHYQEQSCoVMbn3vd5V1BkpRc0sSXnS+4YbQ5hLewooHk8e1VIVa1Wmawkpewj8xEPCSwwE4cqU+Z2eibmcKcKhzuKmZ1jrkDEkEpKBVRbMSDJIkzEncHRxNTBIiJ3IO0A9izLCqrrWwplNZj6qz1cWchsyZjCCMar6oHssyL8tpXY7LfDqdQjFbKGa84YBaVRVcA3m+rIuZBXYvMIo5Z6SkpkHcDap9y0DM3XTjYRJRSMJsqlfoHavLPP7iVvdV1PuJ22NSN7fovGADlJppzufZLJFso2TaOqEXr8vz6/Ift3+nbXbSxY0uf/IyuSc2wBXNcCEwYgBVV8TQpVcX7ZcSF1Nelm+++eaXf/ufx3H3T/b7691uSFyTFE7KMkiqOZODUMdMxycu6pQ0IWg4FgIHPKRhGt0dzsMwTcMokomYICklMGn4BWhdTk+J+faDD1/c7MVKgo0C01XXB7V3OdNuNw5jDh/pLIOZT+NeKA0sOxkO43DI4wB4LbVUULJq8/F0fCzzUksl4ZHlq9uKa85JBniB4aPnz3/xR5/+p//x/62qaTe5F/fWSa+1EoGJhDlIL2YmDBFRQggiEhE3Tl+QXppsZHxfNHPiLRMnIgoqRqCoeje6Nbu9T/nMvJqbuQiHLUWskKbV4hDimCaKhBO4kkhse4fHeGhbCSxJzUst1MakVbqnV+0+2A5dS6FGMTy7uhA5UQIQyrFORIm8uqoHFMSir4LWV4yN5oH0BIcpPRExEzO0VFdtsqZmILfqIC6qrCqgywWccw4xp5jN1m4lRURWiptRTy2sT6Eb/I/c3DaQSBBLccGDw3ngZO7nWtp7xW7uRDF7Y+pjf1N9Os7xuzmzOcFRzSlOXvNGTmEhSWZoLQZJ1IapMX5zIa5rIW9uF86cc3arZVl7U9U2U3F0XEaTykXj0gSzFL0qlNBg63GG2CDwlgaAtvGYwE2p17OhS2VmqTm+9DDPbtTyko2yCzQRSGcmV2NGgNYAuL/XeNuiT7S7Il/hzuKQ7oPKzCGY0WIf9SkrkbdCVZzM1aLdCxERjlqoIy/YjRAa6QgDa2NYpswpJUogArE3ZJedLzWkfDcN24tQ7n2/tuTVzonXuQCmPg1uL7/81i1lP/OYYqG1Svv8Kb3z7dZWob8X/yEiUNuWLCHqGpyvUGMO1gjVuTmqc2wk2tyAYbVWd03Ezpx779bjbrjFvhYiCAdeoJrydnntfOrDkvimauGKRiB4gz0EqIuct6PIXUN29PwtWpV17r9y17QQkTNkoN+x+JUzG4GZogGmVnxjNFFkzxRgfKKIzgBtSNSw+eFm7NEq+RZVaeBoRJwbPedn5+7EnELp18L1pQgu1/n5h6O7ZUbVqjuiiEwpRf8r1t7Wy8w5F12jBNrQO7FT1rWKCHuGswiGYYiKecvsNxq5u0NYkJkbwy3SrbjbG8XLOry/3SNTNFPfOKrb8+LOiD4/MoJ3ekmmLEPOyrQuBmcGgprMvXHeurY1FFoCQtKeHXlKw6XgwXYDzWzj5vV+cftPSUTCD+d71tk9LNZaw8c4vkvwzSQREYXZgYiASK2amXYITWw1IgpruCxnfUiiGBOdWzCbgm5bukSX9k4A3KmU4hzuSi2aREerdSi7aH1c/LqupG3BExEJzneJmYimaTKv5CilBBBIVR9OD6f53bBj0IqYNQFWV04iiaB0PD2eTqd1Xdnx9PQUAc+doKi11rXUWtVKrbUsq4iMYmZWSiWSnESSDGlImXMeRIThxKS+EnHO4zDUZS1rseQypUmrspuruWoY1kOtNHmZaK+oEzy4dmZOxNZufpOc7hnG+T6jKwsAtflnnjvKF83rbXGe14N1tjF6C8wvsPTnqBUH+YVHd7cRZ8AcVLfObG29IiLEP7gauZtIIXV4gsOwut/d31tZk+Cwy6BBbWXmU5rB6dmLD6rp6XQ6nZ7u7+S76bur3V5LLaUUrdO0l3EopQzj7nDYu1NQUGs1qpXNrRY2B7mrOkBZJA0UBmBpwFrm41KWmnN+9uzmBx99eH19dXp7Ui1WqBpPOYkMWldV1Lpwn9Xg4pg2M3Iy2OUdA0DswqzhGYs0DAkspL5FaXcnChxHW9gbL6sJvwXI0JqRmDMFUCLev4bg2fsJX+SJ7q0UR9iPuEelt52bvS3P23m0vS0uZoMXM5O2i1NKpUQSHJEQ24lr/TqZm1VxakZuYEdHdrUZcmxx6gA/JvFefZVScs7hWK5OrqasZspwMBk1YCUzk7ArVdhR9aksi7klkcQqWLVitnVdHh4e39y9m09NOelwOAS7JGZll/EwmqrbVy6lMLzXMBS3ZV1XZibz0BXjbhaC3oCOWff5bd+vIc/3/wIN5xev72WA31tp5/XWX/6PfmxLCc4x4X8Nbr0F3vhzTKI2ctnlbdne09BMrlqs6AtvCyLnNwTQYSMGHI/HL7744vb29sXLl9M0TZJnzK7GoCFl3+0Ki2lR2DgdAF7KYFoM6qbEbuqnshpomvbjuBum/TTuhmHaHa5TGg5XV7EmAbjZ/PToVm+e3+yG5LomKKD1NC/rvE8HGWy3Pxz2A0OFkTizc+aUecwkU8ojiTisFquVKJm7qq9LVdWBpa716eFhLUY8DPsrnvZczbnup/G/+JNfHG4OT3d3t3xlBWWtiaMy9DjQ+vCgiYlKSp0QG/eTU0qxyxrGty8f7rgAda21hqqwWWxevnhM58MxnjJJkg5DQNf6bk+vP50AO4zjGHJil6sxkq5tdcU8WVWjSVRKIeFxHFNK8zxf9k062Og9wwvz6oqcs1svW8y0YyXcHf3kaqn4pSDFBsnuCZvZ+SvAotTTsORzh+Oilwc1a2a0W37IHdz4/XPNzMzycP6Uns+0MLVtny1Oeldf3+58/xQbxlRrraU5k0UkCfneAPswc4gTu3vMDiMNdu96m8SXR/C2o70VLxpjHnQsZ7U6z3Pf1O2p+XagV9SeBsSX2O7kJYNy+2q1OpyNSq1VxHLOwlvPJNBeBA85A2dGkH09uGrM6OBpj2leYEBDF5DbRE+TcBxgcVkEIMShQinpTOogAOqV0Kwfs3C0aoiIc4pQGPV5i7pmRBKevU4S70vwJGyAN7NxCd1r5iAy1Shsvrcy4qyyBpqXoKvG2gAQDjHE7Kq16lKKiIRr4ObxsHWprG9OIxjcjRQXO5YoRKHbVgx9mbYnCUDYs2ovqi9bVA5EfCbT984L535MRHOnB2h316A5CxzkTIjBOQhC6IA3xGzUPZxuOyo73rG2vpc1VlnIKvdE091987ZmkpSi0Vo12gduYTPiiD/HJSY+MwTi5juxkQd4rIcvCjvLLSpJNNhajKidghFSNB63RtoMWR0ULGizRuqMe+sORwPwOCL2dulXcw4lQQpTQCawdPGh8G2tdSWSQOSrq7lFO7HlWN5EcfquIyJi6xQzJ+sWQZxjnhTrJ4pnIlB4lwGho9h8RHKWcnQK5rx5iG/lxHAWyW12V8MwIEmDZhkzhfeGeu2RV6IhoxrbSkTYvaGJttVEnUmuRG4KCVkSdOWX9/TARCSY3gYiRpNx6siOnHPY1Ywpe5eBtaq11hjeXMLMlMJwgkjYXYjTVlJ6bDUiEbpA3kU+7aqeuB2o8VaJwqmel1o4bEjO5jdEYYtHlBMDcDNhpMROoAVQq7aRjQlqhuokACRLNESsd0ZTykbhrS0BVzMm5qRwcqirwxLY4AZioujVxOaqValqHBkbUQod2NOOpqopJbfqgEDIXcOCUohhkgQYaq2lrtGtkCzffvv10/Hdy4+upx0PwuMgamWd626cktDxWE6n0+l0MqvMNM/HrkFFdVmXpVjVSF+s+roYM2R0gGACovn0sL/ajeOekxBJqX5cVtdSlvX0dNRS2MWKl1WtKsHN1clIDbUETN3gVisklEDgxBBCV102DQfXc3Tz7fkDjQoMd9fuOyxbodJ4V3FoMXnQ/ok8dM3d2Z1DEarB1YDmmYfQtFFr2fymDC8im0RLOy+CB6vuYQjuMIM5pFWJ51McZBaaHESFgEV3A+92u+ubw/Nn17spPXv+cjq8GKf91dVV9fr69euHxzuoxdGz1nI6LeCn/f5htH1VHwdwEjOYailWvK7qqMVLHVMKTX91ZzBJMq5mxsdVl3WZ503dcBjzbj/SuyMzqnt01ibmtpWh0QiPL0tE5MyAc9OgcncyZ0IiVqFqxdkF7M7eutUxi4ncTi+wjW1t12qmzpDon7fI2XCnFF1E6YVxEjaFg603Lnq4lu3ADBB143uH+ErPKJk5oGHB/P9eleXu7A6NjgsJixAxSUrpdDoFeIOjh6sa4U/ryhTKfGd+HdzDKqlhoMwBZA5tCFZzh4mBMzFJc4lqHvXR84KZsWpAvZgRDhFmRkmcqQifyjq7L8AJVkslUi+p6Kqlno7HN2/e3D88MKerq6v91Q7AcpqDTE5EAQ7xqkbG1Op8M0PvNLVorxqWJGtZ47esp+4Bnw6MYme0JfSEtcZSeb9r/73XVnBuzbu+xsiIgrgSm73/JyLaBoOdP0zRWrEWGBD0BL78iK3C2T5i07ZsTe2zlo9fnNS9tEYX3UJ3NQ+BkjZSOA8q4mdO88wS+yWVUr7++usvPvv98+fP024UdyEIk4lkSzSaGa+wXRrGcXdaT+v8NJcZVpmSGFTVwXmYxumQ8jhMV9e3N4fbZ+O0/+CDDw6HQ1Ars6RlWZjcy3x6elhPJ9K1lnleHPkakpyL8QDKTEReE3RgHogmpiwpg8RgtXJolQABdlxOa1lrHq4M5EWN16fHe3z77XORm2mPPBLshz/8+MWLF6+/+aatC1MGm/llq3p74uoWFS21GQp0LV41yJAI3CWZmZIKBRAMoexjnLSdlVWtCXHCLWbEDWhZawVT5jOxv2g0yyDS6X7Jici0mJkKKUPdHEJN8DCadOdnGkT37RU18PbtvHvbEhGRmp/LRQ5no8oK2xpG3jOeyC79TNborbt2PLVSw9W2KjQuJosgtgEQhFcJip+Z2xmCalU5pZCV8Qso3GWNQxSATw8NoSiY+8oPKoSpWpbB1RoBE2A4wzWOsX4iAApXeKT1YmZqRURiAI4ucJhS6koH4erCKXmtNWgXUUVvats5j3GvvA/t+ozEVbX0+ENEoS4UdzIoJ5vKF7m7mlV1bZCwOJ7J3ay6VnJhyKIrGRG7ma1rhXCQ7DI7O0jCaMocKohpK8MgMQPbgggzhBHhCYBWlUStLdEcmZNIlCURcLWlKGRAS6CtP4PoBJg177rWMYpdhiDSn0vlaNxGNDJDUXWzyF9Dv8QIbtqzJpiZK9wtgh5RGNUk1603GdW0a+s5iYRKlFnOuZjG0+rUZApxV+pNoH6pUUO1Badoc+Bq2w/0tP17iNP30TjRdWgNofc/hWjTfTlrurRw3LigiBTf3cm5pwFdwK2d1uceWJtvb8dGEyuChBImzpsHCAE+is0aiiiIsm27PKaUEvdmDDO32r3zvZnIDGHrFtfWC6FWmxGh0xhCmISjEx8rZHMyQOdjWE83t+DSdpQ3xgUTSc7MrDW2jQOgjjahzt+gPidn5m14bg0+QNtzEpbWgLgYjMTU7vIcdacIQ0nSuq4u5+O/nQ2qRtGIkciYVVWrW7KUovimbTphwYhoY/NMRLWurQPnPk0TgeNOwhrgOT5oU+Rzb0eUs7ipOQWYtjf8/Htxny7UCLNwiJ9HPNrGJjEk7zO0eLiNf8sgNdNSDIHbjmG7d4dnCRxTyNjOa1VvV9t4sJ1DHqiEbeNEKzT0nLZ0Z4ukJYjcDJgLhLjdQK8qY8opExFcQxG+usfEO8AL61rdnTgZPKVBvcn0B9I4YtFuGtdal2WhGIN214dtJYgIQdyMncAUHO/qAdIJySZJva8pTZ+sESvMmvtzPO746N7XpG4Q4UnS9lwYpKUywhkViZgSGQdkWKdpePn8RRr0eLyPNT9Nk7nfPzzevXszH5/QSpEiks2KWtVqZS3LMjMk5/Hx4VhKqcXGlC2xVV2WalanHQsT2NXdjcx5Va4r18W//faNzevL25spZbjWuhbTRHAht1pMCZSQam9SG8EcW89iAyZdVilEm0LfOUJ6U1dBP9e7Klo/oaNltr1D/HvbCH2zx64XETLTLlcb1faWoCeRc7PvItwSiZv3HqN5K7Th7vAwBgMzCczD+Bz+wfNn45B++OHLF8+vn19f7SZhwbPnL8f9c0lTGpOeTszp5voZER0f74eUd+MoIrXWp9PiksxsljzurvoRENFZydxVj+s8JGZmdYda2NFa1dP9kVyFeNrtmLnC05D3+70M9+NuEB+qzVV1Zc5M4zCmrnigZ55km4u6O1EwOduBQmR1tViPkqGVzIxC8rQj04goCicmGoZhyLsYMIpIZIGhy60NOWXuTixb7LoEsGxn5XbSbecXdZ2O09PxUtI/Etx1XYl8m7ecQ/cFgVA6SfiM2OzIF22bFNRUWJugcZyDEVPYoaqhRh5XxczDMIQRccy6cx45N/uDcRwvz/0tqxmzyJDV7Gk+nZbZhZGlMh5OswqpcKnr/empHl1ymD+tj/cP9w8P67re3h5ub2/HcVdrtXqm5GUWIiqlmFVKOXC2x+PR1WImFqbiqmqdAkdEYWzv1d096JRb4PJQEFT1jjuzIOUD+v8fAn25E+MGhk1OIES3p8wX7ZKLgzgSIX8/68F2jscIaytUtji5SYcwcyP291u9nR2Xv0KdD2k9+XE+Z2s9WQSARq5i4ixaAzhUvvv229/+9rc/+NEnP/zJj0VkGkb0GVpshMR5XefVPSWlHfGYSymlLPvrfSllTPvr22c5jwTZH66fvfhoOuyn68PLjz++ublx9900HQ4HXcvx8dG0WF1Ry8Pduy+/+Px09wQVqJSQeXeeaM2oeRAWyqKj+EhOrlAjEmdykvk0p7xT9eNxfnyad9eJZZCEnIfT0/FUv8UwXr38mHcHALc3N9fX1/OyqmFTcnKzcRisP4st1am1FlV3kpxyEgChuu+RjjZV0ca5a88FlIeh1gb+Mj3zyYP2uT2meHCoZFiqKfl54LktiVor4AGgw4WjyrZINnWVbTldwiXiDxuRON7ncsF4Z5leZoOBkYnKGU5bmReJmftZnb6tt4YEjF89i0XHv2gHf7XV7g7T0ES/3AXcBHotyGvUG+hxJ//xZtluYENzdFUq7/2gy90Uf1iWBX3gcfk+y7JsOaF3eBp1QzI9K7A2bMi6rsHm28LC9tJG6PPIA0PaWqRt5O3aAhvYnmA7Emzb5lpKKQVmtP3MRSfCO/KorQeraymURDgJBc3FK4PcxnGEmzbEUzikppRSkhiwmZJwVJUAWDDux2U5edVhGEhCVDqcENjMtFQiF/IwU2EQUqq1gozYA7IMYK3KiUutAEuSaJTGVkkitdY4haybh8FsqYUkthPDIMIOU7NA1VnrqeQkpNWejkdJjZNNFMNhr7XGBQeZR1WZPKeROXMI2MLLWktdU0rDMOTcUnARCZ23WtWsKwERuXsJGQ/JkoRMA0qBdvdLsAFC66+C4FbW1d0bwDJkCYKB3bO7vvllO7MvhyQxJrVtK7tHqsd9znyGF2xQUhDMQAiRXjUN9p2Hc2nflugZZIMfqxGzBGHY2kYVhnkNIFhsOXM300Rp4EQiRedQFZecHHCFtgwjpRQt3sCuhLBZnEDCLIDJyFsNv2kPMDM5AlFZaz2dTuM47sfJzGpdc04DpVqramllv2tEZDJPKQXzyrtE1vfiHVLejLDRtQfbFlpURKqVKOndPeecGuyWUxpa5HIE2CM6C4k5RQqijUYyTZOF12XIEoRHXh8FZJGY2FtpdWldFoW7JwDLcgIwTRMztHotejjs0cTiK7Ub6NM0uXuUykQkSUBk7gDDKSUKkE+t1b1ZXERysmW37l5VDR6O09pfRG0dppQ0VJ2qlVLyOLDIcjqN4xi+zdWYmQ1qRSXROIxEXuqqrX+RtIPVz7lazoJsZss8m2FIEsF0GIYsUkoRYZgBHjVtKZZZrq73ER3JkYacuXNuXQHLLNMwEnuZrWhl8pyzVY0z1cxyHlJKgA3DqE5xmg4NvVMZlIYcDy7xWaEK0cQxI+ZSDWTTNFj1slamREnMkSWTsJmttTLDGiGCrCg1/E/T6w4MfDsUQ1OQmZm1upUSsEzXWk1TGoachbyYOUw4yTDkxOpWDKWeqi5q8ziJJLKazEtZipmdTqe7t+/u7t9pWcecWIicNMC7wLquT49PtRo5Pz3Np8d5mq7I0lpNSKFAld00DFnVTMYJw/S0Rl07cJYR6dOf/WIP3zPY6vHp4d3r5f7pmMbxOBczE3J1NiCx7MbxtDYwRDUHCXEiWC1lmMYtRpGfk6rQ/KAUiDWulcwqR9vFuaulOBEV1bouOQuiPwvnDaABRABJTaO4GpzYE2CmVZU5jUNgupZmN6p1w78GrsHNi6o0aIkBIENKnAdxrUPiJDQMMg4pERKQmYbEn/zooxe3t8+uDoddvj7sdzsZhIfdVNxvbm5WrU4nyen167vT6RSe23mc0PiuKGtzlQgmgiDt94OXuh5PRGTQ9bSY2brWasjjBMfS85vdOA0pcRYiOq6rmj2dTtW0mqYxJ7V5XpMnzrloyUlUS0x1IokJX7XGvm+9v2jk87CbnCxszIlomibJKYpn79WviDT8W9osWxEneOh5aEDR1MdxJCYND62OSdmQgZG5MjPA7khJSilpyET0eDyKyNBprgxs6fiyLCWODEkkYnXdDk0rVXJmyQgSsnpgYYhCK7MSA0hxV8N/EfBxHFW1LJWIhmhItW/KRBTSBCKtAI4DNOeRuvzS4+MjEV1fX1OSAM4ZW48EzW/WXSu5QZVgjFX1/umIlJZaZy33T4/zaR2mEajH+VTrend/93Sa9/v9ixcfXF3drPOynObTaam1ei3ublTdPUZGzFzLoqoEc7K1zKoKsjGLqtaqZL4Z3tZaoWJmwzBM0xT5a8DZ9AJm3rBgcVe7n9l2n90b9AnwTXDRwg2TE2Kc5I2BH9IbklIICPVUJ/JrVK3Bd4iP2LDo3Me5sepaftwyshqrIs47uuhrbHkwNY0Ml26juIl+eSeltG90gYxgbngnN4R+77qu8zx/9eXnf/2Xf2HQYb9zwrrOqoXJ1bysCgMhDeNh3O3N6qonVXW3aZqIaJBpGCahNAzT8+cvXzx/ub+5mg77w+7q9vrZ9fX1bhhbbXNzy6AhSSY8Pd5fH27qrJ9/9tu1uM7z4+TLMb244tsRbjruPesyprSXCWrzWqpZGrI5zLAs5elYiHi/vyJKS1FLdbm/p3H/7OqZu8/zvL+6NujhcDgcriMN2B2mcjoycUqtveUd89WrF3UiVZecyFFrDan8cGSsdR2GPRS1VAmtx1rNbAnbS4ippzRQxwnGIMS6BEw8c3OtYYDYZWgBMGeCrOuiquO4n6ZpmY+lFO6GQ6oaiujC+bK8BPDw8DAMw+FwyDkHgAINZEuAx3sCiFldrS1IAl5rcbecs5sfj8dYY+bq8JTFXNfS1x6L2dmbIwr+jYIbcCiGpyRCEGJyX5clUk3JSV21Ktn32nkebIdYz1rXuZTmuwYsS2NGuDvcm7cOjITJzbSG3A05TG3VcpnxAgCZQ4MsNgyDqs5ziYA2z/Nal2Fojylwwb1MjdKxDU5SfB+YWXVIsP1LKVuzw10j8yylhFZWL6eolBIEGWaYwSz17gZ0k7MiMnW1GgUwB16awrSze0amXMqyLKfQk1vXuVkDqBE1qjnUmNjNl9NM5CzNVlBEzHxZlsTMasUdqpxYOjWKwrk7SqDtdptZzESpq9H2++KhZ9tyPm9hUYQkcfUUOmm4IGCUelbxpfPIkUUCNOlwM6bG2wDUm5gOAexeHeoAOND5sa7JPXRyAYeBpL1/e/YUWLgKNL3fOLlx0dve7Ig4tkikbjH1RLyLn59QfzF610c1UONbJ8kuRNv6+dGA2f0fiSmFSsm2/Pn9AWMHAiOOkijOz81RkBALkbv2qN5EpFxrGiSiOTs6IbFNcUOCiBwbd1Ho3K/1i07Y9n2LlXiHrb/u4G17xIQb8JA664tha/lXd89ynq9uTGzuVszxPvv9vqGzLgAFQBvBa6NGePz71j2KT9kcjKKkMQszW4sHwY0d3bglQ0oQuMr3utTMbN2lOaDL6KnbMAznUHKh4dHaY+GkzcLMQS8UEfVKhI2w1Bps7eA/E0UkkTCpUbTNAEsphYIv/2OCblynI41j1WZxbtblN0IAsNHemDoWKPov9YJivRVpbX2aXwCmTYHd4RDYDCICWdUKIkkUaQ/ofD1mBncBoy8PMyulcMopJe0iapcfx8xazgE6jluzuixLEtme78YEJseQcoiXxyArpSRhVZ+HPobVsEaotRa1JIOIBNCod53Y1SLVVqcgXJgZu3mLIh6BXsNDmBksBHbT2qkKkpNIlpyslLa0/L29E4z0ltLRJk1eU+h+hxpuO+QqABoSgFJKVSX23pf1p+PTw+NbIqt1zYlF2OpmEG9rLetSQ8zIqj49nZyslKKlBsrRzIWEnXPejWm0Ai1qK3bTNGUh1pvrYbyaaposTx/94KPddDiM049fvLw23IjfklM5Pbz97svPf/f7P3z2zevXX715eFpPbn64up6EH+ZyXIuBhpzIWE2JlLZlQbR1uGJ1xZkdoSzUf7dN5+6t395V3Il9iw/oEQ/AecwOJNnsIlxEJAQ8hOu6LX4JxDSZA5q7GmS0gbcYy0QImyuyaKmMYybPuh5znq4O027IBE+Mq910s99N0+iu8zyzlUQ+yE4OUyKkIc/z0Vlub5/f3D5/8dHH7969+/rrr+/fvnv9q9+S4/nN7bLay5fPb29vmdPD/ePt82dZkquVUiXLOCQf5Go/kENrVXjKo4MXs2q+31+lLGCC6nw8LmWdy3paZkpiYCPkcWBORKS+iZqQyDlG1dK6CyKShpxSCuc7ALWuZoYm6MoRV4Bwd6eNRNCOAGYzC60sC43TJGkc2Jr8vveZDPcXLqZnl+f+lhPHibAFBFcbIqfpARx9XBxRERcveq+YkQ6HeU/dI8J+P68sTr3z+aWh9dpyhsQS6CHqJ3KtytyGAbGUt6+mnU+4LXjmQkRkysxV6KkssxkklSQ189NymrU8HY/zPMfzsqqBfwaw2+2iQL27u7t/d/fw8BDqqWS6nXRuVc0kUWhZBU/vnK2mzfmpBduUUk5jXbXWuqFMiSjUXsq6XD6R9osU7ezzD1/+wS9e8bt8QaWhDb+GczqxHdYXn+52QQj3PhfqOcN7khyXb0IXlCvph8X2odu3JiJvIjOtX7ld4XYCtk93ACGo2s7AampV53l+9+7dr3/96w9+8PHNs1u3gPmoEKdMbhz07pTE2SbfMSOltNvtAIx5Ohyur/bXh/3V9fXt4XC4utpP03R1c3s4HHbj1NIVB+GqKxbZs6vbF9fPR54Gzn/7V/9JbEq1Phxtl/z5NE2ZR04TkahinQFO8CDgrNWEx6J6fJpPpxOlPbOCsxMX9f2Q0zBwCi9GZ0nh1wqgmLqHkGer66qZqte6nHsEHPn52SFlO+XdnVhCv3PbZfFoAvrUeC9uFKIAvXGGizxze76qam69Fj0/TSIqpZbyUNY58r5aK6e87YggL14mcnF7ozDr3auA1Pm2YWNB8sbL66eVxWhReIszW2smMC/eKcd8AV5b5rkz5Nq3k3Tm4uJiCkVErtZxRu/p+UUpYRfT71BNI6IojC9DaN/xdYtj2y82uZlSNtzltv4vh8lbTcvMWVqbUlVrZ4Vc6OaAOm/R3QN4eBmEt5jT4zNvG9O6I9T2oTFo3IKzu296V+20spo4iQTm2VatG2K0fx01NPFD3+aRADiFhFf8iCOm0BqwcBZ2j+VdE8Eo5nXulmKAD3dlb0ibVuMxx8yMesThDpZtNKvq5C5NWcoaHQSNTtPXd6xChruq5ZzjX2OwqaqSkyQO4ohfWpARzNpqxaZcBYDDg8Sa1WnAfr39j/ptavkiAeRlrZwaY0TdUCsR1YhhwdXtnUa/2JPUa+PAJIBJKJnCzeAcotRmXlT7JPg9XfIt1IIMMFBzWnKFViVI6O1tr4Dat7tmXVW5e6x5h50kalx6CIjcGgDRBOyAk3kIBbdBHwOUNhKmO4hS5DqmYU4grSK6XNIwb2ZuZq6uIpKEcxLAiGQpuu2rSDtiih6sY6ONu84gwM9djyiAt/ARfSmthYimPDKT1srkvffvzEje8mAAVpYksjGXiIIlaAaFh0B2S7oNDcPfwH8Sf7VA8qurq4XG8UXIE+Kwb/Gtvm2xgLOqatUG9+t46ZQyEblFzZbjCyncUaHkZNKanGZeAezH1vqllBRKbb1QylJLiQ53SqnU1d1ZEKT1Gp+uqqpQNvg07MirV9+CYMT3eI4i0uQf+rCdSMhaGz+zgIXI2UNOTh2RGVOiBjBjgdYGUaXeqshZal0JTo7EIlnMDE6QpF5DR0ASb8SH+K2tlRbHS0iVonkyt3wl52xGYZXemhgMeFDdzJmSMMGsrLEnc9oKeLKu7M4tFsOgBJUhx03osRXoCgpOZ3EgZiYmYoGkOEk0VAHih0nUFAhbywY58YshQ6SSIuL0XmVFRCBjEQ96HDVnkZTSmIYsgztpuG1zYIoWkA1DyjmDLU/iXh2VoW4KL8zIWZaqEHaWGn2ulLzYMivYT+uqpazzuiyLGYScLEHJqiUaiNkVrpDkbj4fi4zT7QcvP/1n/9Wf/PN/+eLFBzvImDNef4dvvjj94bfHu1e79eknz/c3wyeffPzs+bdvf/P7L795/cbrUi2R1gSQyGLuaq7NRklIAjblHuqJQkTmCkC8qRp460s6kfezWzn2vIeV8EXkxBk2HzylODRFhB3kKuEHE/ODxGJeA78KcqMIUqGwHSHVTakxXxi9/8JMLExmKaUhZSLPUxoHGWP91AVMOmR3v7+7W5jncVzHVNYT4yYJmXnxysPu5vb57e1t3k08DKr+4VdfzU/H19+9Oj09Laf5959/8fV33/7kkx/dvjgerq6JJOecWMacADetDpdhgKsIhAR5hNPOHEw0ZqQEYazramruJGxO5lRNrRTJwyDZqrrVJOJeQ3IcgBsxeUoOoJrGeuslhzq5VTGh0H+N1auqRu6OnJOkFKx4Ik8pRVvNABFubuccxYkv6xrt2SizhWQzONkGF1uN5Gi+5Fvq3HJQMzMVEuEE16oaEIKt4ASw7V9s6jLoWiUXJdDFf73Y7ESAEpA4q0TO52YmxInZ1DhJrExHE5W8zOwR3XMmEgaTkwXf1SnUUeNfsK4LJ1KX1XU21eLHdX53fHz3+OSEyMt3CVrX5Xg6Ho+P8yI5CSVX3L+7O51Od2/ujsfjbreLmQl6E6HJQKweAWpdY7/3NkGXgLDOacw5p5RgBe+7FoVAa4+3F0zaloY2mEA8LepKIpGbnT8OobZOgLG7s2ytq0jVyCpzq4XJevFJoVjRfJu3pNbdNy+PaCUTe8i/MnEEc7sQf95Gxxv+KzBQqkq9Ux+NcO8vaoQX346eELONowpdHM4JS5nf3L0ZDuP+9rC/2jlcrbhVd3JOQx5VnQQ5JxIG2TRN+/1+HMf9fv/89tnzZy9fPH9+e3Wzmw45pSmnnNIwDNKGGqCQQmj5CVxZCLvD1b/8sz//4Pbly2cf/f6z3xzffiNpHaYMdvPKlAWGqo415ZFTdk4VRKRwKqs+PDzOS5kSKwBOIN5dX+9vbodp4jSQpKpKtVZ1BytonpcyDqmpjVzCkt0BZyei1NxxRasbNZiDd5pDClZaQBobTngI6nc17/q1UcO1nJz6kFkkFOeiFFS4gcRhweyt0bZwYqFa67LMamW/3xt8rWVggQeztcGAL/tisfxiX7R1otSLt4aNp96l3XJ1s40YTANNFCcVlBKzNOFKxB9CjoaGdryEJk7v2AZLv6JBjs1s007amvV5TNHpwcVL2/QRQPf5A9x8Xdco1tCq3K3qq5e9pxjTtu1gBDNG6/LHcIWIBFSX9VSLiGQmJ4aHBxiCbeFm7byWTCJaG88lDs0gu7q3AOxQUIwlXPWSt9/mxrHnzKL8MSevWtvwv/e/zEzdom9LobFLpB6a0wY1q6qq1LxdtJeB3gwMTKOvkTg8gQgGmJMQHGVZiZxSG24BDmbJOTGzuwHMAuI22nVvU4uIiRulkIg0EsfLos4jBJ+lxrbl5e6l1Kj8nNoEgBEi0h0F7cYQdddSiSgJO1zdnEicNAYydj7JiARO3oyB2idWB7ttdslujcHV9ITdrRbuov8M2QpjMwOzu4fYk3ci0LmzEo+CCYbqBgVCSZLPl7R9a/dNif19aTuiXgCf+6noNTbe90Da3jbSvvhBovOu3poobZEBvXw6W5Zvo8W4jHB24W7MHWE3aoqghcdDIZyf4OXHuTuntF2YNegRmBHZ7dZz4pb4EFmnYHUwEjOTZDTs2XvfwsxKee+vtVa4j+OIotuTsouuP3fPm+39W9pEW0pnsk3kqNHr0YHTcbVaqnottQR2YvsKgQzZ5s90YQ23HfkMok0tzJ021Ka7agEC5GlG7c7UvnHaE+kBa+tbx5E+5CGiRuhUMQcFscsM9sQucFZOKGUJieOU2Cyp1ssCL17UgYu1Vup9JN7maQjxpwSgWHBFZCCSFPVYcfeGcGxvFY3AIB53tIJHx4FAXLRS8KNSionTsiwSHVMREfHGFfdALkRuFY/Me1fVOuqySdoQsUTPBehnQLq4dbUqEek58pI7sbCGjcPl5JkQPxn5DVFgN5karEVwLrSaS7FqrVqdEKOdaHhFNJiGSbuDGrVxB+nWpol1KOd0EExpyMw8pJzzQETLXNZajWyapmE3DOwSsEsyRX28v5PMN4er/WGoZVYrta7mtZSVSJIM1bAcZ1NN8Fp1KevTfNJ1UVVdq4eim4M86VpSzjmxu3tdUpookVu9ubr9V//Vv/gX/9v//fTyA3CGGt68vv/133/z93/z1d/91Xr/etrRbp9NwKBPnj/LOX/08sV394/fvr2b3RJIzUPRRMgNZObVa+t59aB6eTq4AmS1mrtyZRbqJCgmxFnRSqMtFl2mLJEEuzs5uIkbRu5iEVOF3EXCDhAASIwJYKNKYZFApBRYIu992j5c6qmYmQVEa1nWuhCLC4ETz/P8rhYx7KaRAC9zWedpSFfTWIsR22HcpcyRSCSncb//4Ic/HiT9/I+qruXdq+8+/8Nn9+/e3j8+3T8+PXv24vWrOzO7ub16fvvM6kpappyuppG0qmpiyQ32RDxmAGAgCSpJTtfPnj9/edxdHeRUt70gkoKiL0nYh3C/2+YGOScRmdelx65tsgpiMKWwToAzwpwQBPJhGAC4RqV0PiCGIYVZaFOSUQ2yaosVAaILNQ0zd288hdaTPdPSyMhDJiCGhNsBeoGW2tqR23F5mexuvI849QLxGMFkwyt977fMcAmiBuBq4dFzTs6gTak+wkL/6C1dpj5a545T2D6xmql4cVuqnlRntbWuD/P8+vFuqSo5B5VtcTuV+vTwuK6rEptZQT09HVX1dDotxyVOIhFJibc7SeTMvJbZ+/h3U/QBYPU9rE0fSrcrbFfevQnsgkj53t1wrxcDq3ht+/Eyadk+q/2h/3nLQOhiI0ecjaK2tqIUl+9/WZy4e8xTeOupXPxk3JnoIwzDcDkEbuddZHpwuRhZb9kpn/VAnJgMNIhAAu/X5pxmdjwev3vzerzau3BKzKlpOhBJtRpS93FiE+dx2F0dbm5ubj7+8KMf/ehHL54/v9odpmHMTAykGIq12wsHUgRJba6jZlB1Ebo6TP/0v/gnn/zop3/113/x21/+9enNV5Xmx3kRqQdGHgRmyVvKYkSCNIg8ndZlKad1cRJOopJIRFMSkdX8aVkzSMYhDSNkCFZI9KZVdRxyL0uIOBF1pGfXnFR3B4dqEYAQxtv2o6qGVIfWKJwaIGI72bef3DapX/x6/Hs5zTJkZqq1ejUAwn2kiURsRMwUU0p3p7Iq83mEeLnNEcles79u0I+iJYbAl/ln/MDmRxhAGBEJkvB2+tSKgAdf7v3tr+cDTjZMgW95Y22+tQ2A29KtuqxrNwd+Px+mXkVrl2+MbS69LgMQiA9c7Kx2AfCOKFZdgxXcGLx6ISFUSqlVI16FjSUDMUcmotS9jmNtUM9+zw/LCGTS2BDnOBD/nS+m4v30Z3c1r5f5v4gEBicuePsKfYvDohfgXt17S4paHAh800UV5t6sft3DUZLiCAd8XddhSIkEXY8pdnEKDUZAuq5sfANDqNdSPKrz0cKMRGA4mXrUaUGeTOzukdBuqyG7rKrCLCQBzmU0vy9mb9wRNU7h3GdwDWc2Apt7DV1OuHf3evSyzarFrWARc2XAiKWTzDzKNms3lAnEZ3wUYqSM818vG58e6VlfvgoXkc5U2SSxYF5jyhyF57bDW01r7tGwtuYQYqQhf7g9qphxDDmTwwmXHODAicT82yPP66IsLJxSInM5O7K0BdhqHTeLJhMRpHWLI2sE3GpPOxAeD87MiRAHu3egf3unnmYAzUEkWvWxW4bEwzAQe6QrsaRr9X5GRlNH+8qJni5vcbAdxgi0u1fTrY/b3qEBt9jdaj1nNrHtL0/fy+2XcjarVjX2CgvHjWKHCEGt1AKinAdhqrU4wA52JGIFgVquEJ8S28xbV5/YKE7jHpKilRRdpQqAJRGB3U1rDCvcLEg1tdYVq4gIcdUGV1M0rkhL7ACY5ySbcBczC4HIa12JyLpaGwe8hMk6Hl4kOXslOMCCUmpKicjViho4ScJQSmlOsG1yfhaqkdZWDwpHcofXupRVVVMeuFEunYXdfFnWOELIogXIrgp3FScxDp4CnNvyjykfRV3HzLWuqiWxcObw8eBoDpnXtbAgiXj0BdWq17BECm9O4nPLkNw5Oq/aTEojdzcQHEQQZgOpqqCmlBLxpogzSFJv9kjtOAw7awLVzkOD0iY5UzVEucFsLVITUZiK9iOwpZKyJWrbebbNjtIwuGupdVkWZsk5s+Q0DbvdmFLyCKzsD6enh8e7qqd/+M3fTTv++Ac/vL7Zv33zaFaXZT7O81LUXIpWd1f1+bSS2rKUh6enp/kErSzg4OlxBG1hZ9OFQIllGofdCIe9/OiD/92/+Vd//q//NV48w7zg8S3u3n73m19++fd/+/DVHx4fXqEcj/O8fH0yobzbD4fbl1fXHzx/cfP6bdH6OC+LeSZaXTMnEDvZWuKgdWaAoKrh5htNqCZB0TrpSqTUGiOSOPS4rKk6e/SWIw5EB8eYeZAQVJPQm/PovWuH78NcWZjNXGJKzyShQaAh6yjuXg2qVot742skBiVmCnH70JLwUtYqbCIyglm41vq4lke1m/0hSyqrLnV+ctuP481ul1IddpQEVsuyLNNub6DHeVkNx9Oxrnp6uCf1n/7sj8sP5uPTAxGNw2GaprUWETnN69PjfYLR9W7M4lpR1dgcK8AEcRFKlZ1Ry7os6j7tpnE3iYQg08gyOjFCEo+FzPtOd2s9M9+KSndnJpHk3LgYIDFwVVI3IggLk3jrz3IpBdqG6oEFa7md1xDxcNelVLOzaV8Ly7BoaAvzhdwo2MN4uIGzmC8K2j6JMjVcDHJbPO70oveCf3wNt2iORP2zFX7b2GSrkWLLnk4nZs4sDHYHCN6sLZpewJASOWsxaxh7wJwYMFdvKBWzWr1GXuvuIZRuZqXWynys66q2eOM2OAtBxpxLrY8PD6fTicmt1LIsAFEeuFqttS5rgPQiYmupsJBM6QwVKDvUShDl3J0u5uFqdTspgpprxUJKC5ukJRP1dHAbq9qFH4RFQLx4Xeb61Ae83gc4ZjYMIXxocFi3FAGcApJdgwPsRNjYZOiT2K0WIqJIzZmSualdKPH0XJ/7vDcSkq3bu7XCew4T/rEXDf1A8tXmh2xmgRikwEy2WTTcTZ2YuKg+PD0+1ZOMomT7q91+t4OPIkKQtbgRZ+TgRQ4pT9Nut9t/+PLDH/zghz/4+OPr/SERB08j0gm0Fe0UApIOUDNlcA8JOYI6QBBc3Y7//M//xYcfPPv1X//lqz/8djWpPJ7gI2xkGliMOMyXicFI0PV4nE0heTBmZ4EkTpny4MzGIuPIKRuIwNXM4OM0SUoIMz9TL9XMkrQMjZijAHZ3ttaMblWN9qQriTZZ2VazmVl0zLfEWERY8nn1No2SKFXOjZhSF0lk5rUoEU/TRJDz3DJRHofQd6iqAFZdAny3pap8oas2r3OgoMFoEkLWUGxbbdbrzBKU1K0KiHWVhSJOmaobFSBknIoWEREe3UxtVVU4kzBgZIS+/Igi+tVQl8AWeXqJV2uVRAy6FCRnmCsRqAsRgYjCbRxWUzhcuBfVANCJyLrO6IpZkbCqqpUauTbQRjhdB1TNakrNc6SUEs5Su91uQCpW4qqhkeuaqbEI3Nxt6wAyJxICYq55oWdMhF7wt+fSknmNeG49V4qaLjwjo1UR64E7Cc9MA1UB7WrBTGZa+qEQESacI5zCPkZhZFXVYYos4iRE2I8TBNzqUDczLVXVkkM7HbGNg1qB1yW8tgMj4mbCGf63FZDYfEcvNAzi3wckYhGwUUwoo47zEAhiCwsRS8SQxAQhGFDdCKGo28TBYh0hhuOxTJWIzZmiu9jwweDIf4t6E2djpzOepoVz631NZiZp0llbfN++VMRjIor6uel9t5o3wBvSDrzY4SRBOu+nQuyARkWzPiZFn9xyQmKJo/TymDGviTMzmkqnNwto9A+9hEJRn+ARiLx5CLm7uQqJQeP6mZkCMudgbtNLwBJxDji7w8xV6yWubLsB0faTC4O+WA9qqhauvDArm7R2HE7MLELevX/NK1/0d9E7PczNkZ6IUkqhjqu1llLoQpg+YllkNttsTbqHsJmBzD3TBWmBiJrNeotGrd+RUmIiVR3HMY5P9MlzdVvX9eJWc/y2R3bVXUrdo4ELbtegPdtgMicKPKB4sd5WrGTOubXw26WZ99Zg9FjNQy2Gg4TflFrQ5/DvrZJoH6Cbcrm2vIgDj9Y+qJRiTpt2opaWFAIInEv0BeOJhsFGTkn7uVVNBVHitYuM3xin7JXRxkdOEAeROdhTlugNBw1VkqSU0JmB6A3gwHjrot7Rrf1M8pRSFOTQav1mwc1hpIBIgA56Bny+nykITrwNSYjp7GHw3r6msI6n85nkRkQkVGoVYk+ixWqqOY0BVyFmhK+IAdxo+6rqajETpg4wScRGaGyr/onubrCiqla0uojsrq72+70ZTvNsQt++ffXZ53/4+tuv3t69+fbbrx9PT7tRPv35R5/+7JPpMFktdV2Y2uqthuVUSik5D9gfdF2X+Xg6lbKilmg4QIOgD3NuZnKsbrqK5MyBmpw/+uCP/uxP/gh1vf/3/+67L799fPPuePf68c03YnOZH5yLD3581LunE0H2ltfyTpZlOtzsxvTJhx+a5C9ev/v27qkoqbgSkQUYqmW0oKBQ+LbIvblStyRheyARiqk6iITY3yfscedoWUjWu5OzmSUK4BIHmoWbBIQTmQQgAeHqxULizOuqRB66jUTwkC4iaom+M5odtLmTmzEBYDM7zhqUpkwQR80WC1dkTGRm/jSXKTvRwqaJMU3D7e0t8rQ4j4a3r989Pbz7/Mtv1uPT9ZjLMo85/dGnn3704Q93z18iJUCxLseHN3U+wgubcWKwhsJiC7lVTUmsUPWlrO5gTkmGab/jNyetzoLEUqsK+SDiak0BOACiF8OKALmYqXVhmBYend2tIffBRM2DIAaM7EFa6R0oZg32bxjzEFyNWVJKtaiZhYuE9yFkSsmaJrwAkM1M0VzRalpy6mQjC/mrcyRvYbCNK78PSL6gjFIna2xTlMuNj4tCjjg1Cg4RdfU+VU0iME7SwM8xXLUux+C9G0u9CKRegMW9ioB/0rIIL64I9RVODrdS67IuVR8eHu7u3pZShhTCjuZENq/O4lVrrQB7m59ZFKjomIhVa8BK2TT60dSpGS3A2jlbyJmtZ5l6FrYIrC/4gind9hfOt4gveJj0PfruBTkIvc0HpO2v1jvp213yyzGsu1llOeeK7z2Xlky/lySETOP2k3HDN4ZnmIteSkMPw6B+1mGJb9HstVpQuuCqoFlxkBOnFP/J4OpW1oWc7p/uD6erNEiQ5tkB4ZR3ICZK1MQ+GzCt1np6Ot6/fWdL2U8Dxilwm6DkDDJQz0W3DsP5XwAkgkPdFXQ4TL/4k38ijN04HV9/7eudprpiTgxPEj1fIRbJjrTMd+/e3qkjJTFiTgOGlKbd7uZmf3u7u3l+ffucJJtBBA8PT+/evYuz+PIubX9gbhjLlq64g88VwZbIqbYO9Pa7fjE/3yL/tjjR2yXth7XvX2jQkrWqWR2GKees1ePJckO2EhGVYrWuKaVgNcnFKr18qZ4HDJeL3Dty2LtdBYDgyqJDD5pcy07cXRJt6PoYGtVmXZFoExcAGJDMlxvk8hN9G7D1q3J3h7o3saJLRfS4b0bn0Vp8nXThabdtcOnmT9Tz2+4wpOM4Wmjd9Q+N7xUdz3Oa1PXVtxAavzUMw263sz6h3R5fXGOiZqlz+dyjDbcNjbdYbWYObN7qUQCjkYHbIbWtq367lAVm2rhtzSPN3D2cihE906iCCQJKLOiMc27KUCDQkHO1UmsFk3AiobXquq6pnfTu7jFqZwDmNfCXTlTN2IPqnbCVlMEHcGNi64ptqsrsDu5QNAAmkrs3lpEzEyInIsDVErE3nxoas7h7DgFndQVqaCc7BBTxMqDabQTkTVrZG2SUHUxnTEtPchuoxhkdWdeCb2tvkiFyUqL3QlDYDm/d0G15bfHqvFq7eR0xQSkmz9TFb7xNvNsaFREwNTVaFqiBWrK3vV+UJ9THwtT5rIEFEhGKyWpoYhMFpPz8tdmFiF2YuXaTpHalDmFKnVNHDdgKBnFTErckTLF1jQxNS6xFtGBAJyFhEjICtIZSi0hmgemWHITMKUBRAEfn4xxeL8MlM8ekaMtXmIiS1FoJFwEl9NEgfBGj47XtfzNjRnMNfQ/42iw9cs4cnKfAooh40z9rMaXhzVJqys8XsQZAdGQ4AL9MW2yKCS3U0NGzRHCCdBBDhKoojYJlJEJGUmu1foMihJhZ7yk40PrxgWEmVwDNbgR92zsAZ6fm32ggtjaX0EhmQ7EqwmWmjXAcpJwNv9CPKLMKd5E8juNaSyQBAe4AEAzAREws6i0KpSzBxFdaEjdt8zAeTiyJpWjZlndKKbFIYtCm9kRb7G571pr/cE9TGt0I8CQkLOiGRsznkQ7Cb1mykVU3cELVLO+1omPZxVFHnLaAy8LMHMlNFmFJqqqlMkLfTyyGhW4UVpLmRqau1Df1+5mWM4j7+onDQFiMMIxjOgRaj1+9e/v5519++eWXv/rN39/dvfvy669ev3u9lCoJv/jTP/qzf/Hnf/5nfyxe5vl0mrMkNidif/782dNprfogknbTYUzj8eF+wZHAkkdRcysS5G1TIwvVBSJlgTAR16fju3Hg29vDP/3Tn6esr/6X//Hf/t//n5/99a/uX313GGV/M2pSH4x3eZhGU7G0Z01lkcenO3p4GPbH/fOXP/3Jjz7+yU/zr3737du/dXO1qkR2xmgREYWmV/jytZybiInUKzPnPLqrMzEHd7rh1YFNuaZNh+LeSsz2AwTUhMIxiOScg/efmCUFPSWCLbmGOplLvIkW62uNiBKTNNqCt/4F9eflMIS8rQeMJAnvd9NhnLLwYdzvp3HcTVfTeBjzbmA4hax4XeZa1lLKsizTdHXYXauRIV9dP5vy+Obbb9999/XvP/tDLfM6l6e7+fb5/fOXL/YfvsSL5/urPZYnPN6d7u+EidhQlEjI2ZTMPWUOLsA4jryTtNs9e/bi05//8bev5rvjQlJTGkI/Iw+s5GU1D1EykYFaAzH0lm1d1SrcSeMscBAZuRMzKEmilL2dPhQhSPqpF1M2EFWH5NT6dBZdrSHnfNRTyxCYjRtzGLCNOdRTaoTIVuOzmJk5J3GHuAdc1Ky5J3hI1xCa6IaaXJzCbReTWEPtEPeu36b4YoCb1cZtIVcdx9HVyNytKQS7FzPjnEPzxY38XFsaOwgW34XcuNftKScRIWbT7qFjWlWfrJQUzme6ntanp6e3b+5evXm7lPL4+LjWJaUEa3mLqmoFc7I2KU3UAHDQhvppUpSllHAEEI+xaujY156DRjbefLYV1dWY2QnahXOJWtqxvc538n0zm+38bXlRD2jbX+2SP6wWoDDA0PFKANwV6Ns73qGf3tiysgs8Z1Nca7zTJqUjItFS2TKHLeRapwRvr8Z59guZqwBM6flAp4uGPrU8gb0pMA3qVQAjg1t1fXx6evPmDQsNOcWMWViAKjwAVusamibrvJzk+Eq/K8u6zqfrq/3tYX9zddjv9yJieWRupHwCtQBDRk7C4R+meh47EaMqNNH4yY9/vht2r774/fHbz7M+Qh/cj5VWdggopYEplWpv3rz58ssvD89fjle34LTbH3QYx8N+OOwOt88Oz57vb244D8xZgbdv7774/Kto95dVFypumjYPuQ5Kaw86ENDuRL14YyMiUy+lUJKcB5Co6nAheNnFeRxuaKWXE9FaS8/fWs4TTzZLMqvwNh5cliXccGMN1GIOZT6jmt2/r7v2Pi4kVsilhR6FIhR1YyHV4j6cU1yikK2KUq0BSSwkANFXSlv5qoUowL0N8xj/LRIpv+i8bwMh9JIvljQZrGqog7x3zTALcJ5ZvSAQZRk2JDM6djVk9jdo9+UnkqOugURhcpRlrbrCnbbLcJ+maRrHk5nWqn2qXMxMlYCcRBVaWyF03qreHKblQtnOO+/34nHYNrICEcu591G3evv92GINg+Vm6qoOhTUWJ/qPxsAp4oNqcVc4EwsBsAZKDWQqGRnZPM/mbhTKDk3siIVSZlHo1qdJKTnUK4mkrWfTo0+qddVg+21N2QuoelvcFzHF3UPypqF/ox6I72EONEskM2My4uSurZdjBne4kpNQFDMBCHAwOXeWObNZcYrc3jXwkM3QzaghS93V1Qwxk4kYjHODamtvUJLzY6DYsm7WZuIlImwb6Ts40GRk8RPuAHlgnoUARFdHRCJgu5uG+Aphk5liZkSn5H36zZiHUgrAxM4E8qZHaWRkmoRZElzVSBJlTtEUUS3k0WsOWCqIyIqROcijruDAmTGVUplZOLSazEFGxIScMycGqLqZVjhHNR2KxNpccxohQVUTsaorPJx4lJvPgVfTi/Z/r52IE1sNdBsB7MEVBJiStzGgLmsVoXEYUmbubkm1Vu94FSIah52GqQ9RVHQcWYqDOkWtR+GYO8FUiWhMGe61NEnAjSqGmPfmptVsnbdcaw1FAWZmUDVltC4ShXGOm5mJ5O0JRqxpX9mhJaBG3toZ5ohJbE4pBH9FckoUZXnIC6g6gcMmMcpjc7i6gpNklsAcQqL52vvljhVRaYiZmql78x7wLmEetVBcKRGIGSTua04jCbuvql7K6u7jxMQ8jbsoojcpbHKPqft2kyHELBQOSSYBuXGHSN76f6UoYKmJowzk5u6llLDoUDddtQ9RWjwJbI93jAM6IkMkN/Db+zRCgM3NXYUzCMkg5NVdmIVlM8+IYljVmVNkylVVzZITRMjJnUjyNO0WKl5KDA/DD9YdCYwkrVlgDmqsBDDW2tQIIWTV1NUV6goDJx5kQOJhNzrT48PjZ5999pvf/PZ3v/vd559/+er166dlFkE1uCMP+Pjj5//H/8N/+3/9v/x3N1fyV3/xPx0f3tiL/c1h/+7dWteyf76jlI7HecyZHOup5XRpyHU1JvVABZEpLBGLUM456HRjSl7m0+Pdi48/+Bd/+k9ejvnv/+2//3/9P/773/31b/T+VB69DPju1cPCkBtMt5ymcUiHXd4fxj1n8YcHAk6npxW4evHi05/9FON493T8+3/4/KS0hBoGkZFXV1db11VEQqvsnONGWSpMLQsEgFAdd49RbiRPrWQi4Y3fuM1Y2GEgt5okJSF3EvIhcWJxqBkJXAhODCg7E0zNYrYMmHrrZ7hT80OKYVF7hk2vYTdlSZSzDMNw2O+udvtRGOYvb5+5GrvlcdgdDl7LWmwcsRb/6tvX6WF+Mfui9IPhSm5fSqnPrg4Qud1NH37w8vU3z4vqF3/47POvvnr76n43Th9+/NGnv/jZ85fPHUXYURezmlIOshFI4AniyuxgA4E4jcKcIHl32H/yySe3z//wtL4F0Ai63rIQyZGMRnIfzjRQuK9rNSXm1AYILcYiJWYSEslCW+eUKREHilVVzTznnEQcULWUw8y8SdzFFouhRMvDpEnQxdxsi5OXCWuo61sp6B5XEbwtxOyMiCFGCmdQdMnNlS54Q05wJwgDHM5PMdtxd+vaB1Fu1HU1jS6bEYuqeQ1NAWZmSCYU6jLXWgozj+MYtTRcQU6hqq215fdmXhUs3lnQ1VVhq6ACizuW+XRa7u/v7+8e7u4e7u7uch5P8xMzwz00/0QYIKYE2778ecGvXdNB3bQULaVogZpayJtHWhJQdu5sWRgBbl4KuKEqqOOPLjL586ulVfEf+PtpyflWX7y0q7YyMyNaSOf0d3tdIhFCHYMoEfGl/M9WNW1/DYTC9o/elPaZCAEVAJ/tFSLCb+/W9TXfmzBXhJZW+6DtOt294cuJQ94n+u7OFLqsQx5rKe/evk0i+2mfUmYmZ0MNnpTXKkk9yRASwVY1pTQN2a3WZV6W09VyNY7jMO5yztM4BnXe4UIEMDEMMTOXmKF7+79myDzsxg9/8OPb65u7Fzfr3Tfr6y+8kBauZYGzGoqtD8f1m9dvv/zu3Y/2z68kyzCN17eFUpr2h9sX+9tn09U1SQ6d17XYZ7///TevvpvXYsTFbC6ruKU8RP+aSEg8EK1olYwRqDtJEQuDqaoWVXanYewuKk37yJr6btxd09pqhGjBoKs0B34HzgCWsvZiJNW6ruvKLHnIUZeuaymlBM6rnfimcXY4gZtYz7kCbs19q+aeRCSiQaPTt26gWZtAbiMZqzFY4iFnVV3XFWTjOAbwOGpO6SpWABr1wM1gc2k6apJbbz221bqu1BGFRORqBg0SfvgeS5DP0eLJZVUvRLYBN0CltuIf3Ca3y3KSzh/c4MTxPsVK/HUcx1rrPM/mdZomr8o5b4Po+K0AAuScpmkiwjzPqnUpa7RIsGEoWixX6ZGK3xce618iOpim6mY1FDYa/iIKNsDcc0oppePxSEQXmvyxq6IVvj1HMz87e3NTY4leuJJ75Q3ZwQKXUBOJamUtKYkMmSFazcnAMuScmFzVGlMYrUE45QmcolXc5rpGITTL4RkYJgpo64mZidncq6661pwzC2lR08o5nU6LVh/HcchDkC5AzLmBeiMcoZMiAoxuYCYRoKqqgZhYMqhBdACAwDmBSQu7IabjaljXdoJWrSn8iIUVqKsqIxkZomp1hhDIDbz5X0dG5d6jD5mTX7Qx0GaMtWjlxqtlQugIG7swsRBZ1UzMWdDtZ4wAA0lmbxSjnMYovAmQUAOStK0hIkmhjWDOgDAn4qAVsrCbEtEgUl21VhUfp+xqgDmcWVKT2nJyycSJM4XzcMzHEjetI3IyGFnOXf8pUfXqcGaCR9NP2am3xoN0TsKiMNUwQB/FySM9Nc8s1VzLKpQ2VLARq6oDQmnWSu5MKd7fEclWsqoAr0sldkkDCWrv55rFDRF3L5sp11pEhMFa1SzyFYdTIi6hwcDs7Oa1Eg8pxdYkZyOQs8FgXoqmxKpaquWcx3HyVv1qSjm8c9xJGJv6SMpBjKEQ3xARSTkaASEn1k2A4a61lClPy7JEPGViV5SySk5qNB+XYRh20w4wMk9JKOWjzmFn5+5k2jkkPk3TcSkWj8OgbkSScwpFa1OvjSWVVfU0ryklakDojjruiQCnaJspgVNKmcgJRZWJnLjpyIOWZeU0mLFI3jTKmRkWcFOEhxDHfSaLvCZL6ynknAP7HXF/mXUYByaO0WtidoeFAiwBMMDCADxGcCI0DCmzlFJCVCNHQkMemrfDuEvZ1nXVHt+jZ2fwdZ2raUqJwTBl9aprKQUgzplBahBJ5l4d5JCUY6AOyuYsabesteopjQMPQ3ghres6juMuLPLgFoEZnJhEAhZewSKJIAR2EqpWhiTjOApk2A2Z89Myf/P2zS9/8+v/9Bf/8Te/+vWb716dSpxzcCFLRGovX16X+eHf/Kt//n/7P/+f/stf/OT4+O3HL/bfrvd1ecRwnQc5HA7zcswyaDllcco43s9Omqd8WteUR9dTXWsySiRDmoYxiVBBzdM4cPKygjST/eTDj/7lp3+cvnv81b/9nz77y1++e7s6wCOfCHOx1SFAXozyKcm6Oyw3V/WwGwnChmmfiy2fffZ3yvX2+uWf/cnPl9P65Xd3K+eHuTwc72g3UHY1a+NBInPX0NlzV1RIdGjbLB09Ja3uxHHkK5mROBHBVYQA8urMSImFSEtNbMLC7uRVGDlxThCYqTK8LKskn/KQUwrFBrg750AMCUHFgylU1AFmCnk3J1QQcZZdlv2eWIyZr68PNzc38/F0d3zcjdPd030CJXjIYroqtKo6ES3LstZX+69e//jdw+uvXx2ubn7yRz/fXz/DOKbD+Hz/8tmL26sPX1z/57//3S9/aY/zOI3z492Xv//9Oj9dXU+7SdgKa1keTkMaVc2Rhv3gJObgNDnBoezOuz0cb+/f3h3vq+t0mOa5zPM85JxCDzMlYipq4clZVKHEnNI0lrqoBfCEzSPYUs65qLIEl01j5uNObhjGCeSRZQFsBqWOsJWk1dllGAZmNnUmtGZktBWaBiyISDhtdtBmUFWGd+OlZg5finJKnAZtKr4BP4EBKQ5mV1SbLrh/AEy9umUe4Jx5lNAxWSsRCYlWTSmJM4CBc1UzNaaBjdwaD0IAmBNI0shMy7paMDtzKrB1nQGQ2zAMbk5CPE1OvFYjp7rqOj+RMA9y9Ho/H2erlrlAHufl/t3d4+Pjuq6l1LnMzn5cjtrLu4C6hD8zoq62aPbHLA6lrABIyKiutazrbGYUfryKPkElJqZocKibac6ZiVU9EUlK7ihlSSmRqzbzlQ3yY2kYqTf3NaamAKmnLGZW3XzDWHKopXF14+DFgMixieFXrVFdSrPbIHfPeQQ2fd3+uNwTi1kbW7WEqj1TMjUnSGJu9ZIxMVFyuLMrXEAKV1Jjc1s4N+Xn2as6kahTzfIe4ixJKCX75h9xbsd0a/E0Du5eUVOOn1FJ4uqSk1d/uH96M96byziOzJyzDGBxA4PZ1uU0p5STzG6n5fRwzNXtVNbH5XRYltvb27zUYvrs+ub5s5tESBCDm9Vwc00X7DO05iCraXQKeeA0PBsOSR9v345YvvXj42modMhyXFcT+dvPfvsP374ZXvzA9ze0fz7e3NY07q6fyW43XD8fr59NN7ckSUHuljN/9vt/+OKbb3f78d3T8fnVoRjUydYSPnDQAm8q7gQSkDE70HIod7fE4CwMUK1VF61enDAMGe5FqyooiIwe5kZn+H3j6hMvAVwfEhPF3u91n1J0JtmNFGqqKxHlzFpLrZUgDkuBrCRKkphoLcUvCuBaCohySiJsqsf5xAFmdpQ1el5E1Iz0yrpaWGSPO4NrqWCvpcRc0Mzm42JmLEj9ZURuMg67GPlAkRO5W5ZEhGUp7p5SChp/WYuWUELVIaVwPi+1qntTBO8Pv3akNKz21hLBVE1FhtTGf3BymDp8GBKAdZ1bGk9Rc4gQl7qYVziW1ck8MVTJSmWQVSV31bKeZtsMRN2trqeTz/MRDDA9nU4pJSJWVd34eil71ej1XO2n0+l0PB6naYrWxjiOwlxV3dRcTT0nhmNZ11JK7nmgmYqI1fp0Os3zPAzDkBI3BT01Q62rUFKtzDykbKh1LQ5LKVmAhc5+y9EuU3MfhsnZK9SYi60VPgxDpp2kgGqqKUiYSBVIzBADXegP9Xqv9GKMtioXsGIlsySWlJJAzMxKXUx3+72IKLbeDIRcg6jDzAkGj2ow8NzqHLCHc+uF3E2FhKAcTb4uqOTmiTza9XZGsxQYYqxFZKZNqwlAyFVp+xbi7mF9JCnpWi+jXntDs43ZG2uHjJxgbgwxDSwCNTBwBw6ZBRRqayU6yNwq3M3ZqzrYvBoRXEmEXQGOtI/YhST6I4yg6J6bKBuBJ/AhrWXiDofVEnl3zMdq5fCApeY7SiLSZHLdEzkMThZ0rljQ7mFr5MwSjlJRkzhTclavKQfPv71Ui1ltKqBtdNhE6piSqrdeuaJ6JaJ2B1AjpXV3DcdFTmBKNESp3KHZ5OS1WGRTObcBr5uHp6FQGylH3EwpGZiZm09awINBMVRnR1VjYkoUGv1qTgQIZU6qihq96pRSWI6GwllSg7svYc6Otuw2rkhIO4Qkj0Gtw4NaI/mCY9w6BQr1CsCNCoqZCafWzyIE5G8YBjKJXqC7W12taoPCe01ITBSmZDGZUauJmRPUfVkXAw15bDklAqSlYBK0u0TEQbjw9+ctOTfMhZlVMw04kKSWf0iibpmLGMWASq0Gj2p2rQt541kxM/MYi4E4gGgUyIXIe8raBcCJhmFoU4dw/CKyUpZlaWw0JhmHzCIibrXWOkYyfUH/TizuXktpjOSAwFalLigAin4BhAEit7osxpTdXZKIiDvcqBRVM2eLKMjMTuwhwa8Lu6ZhBHit5qQiQmAzK/MSYmmcE3Ut6LBnK2WtbpxkGHIeRwBFqyfAGYl2+/319fW6rr/5zW/+5pd//+/+w//n9Zt3b9+8Wk5rZLhM4BwKF3643qXEP/30J//tf/Ovf/aDD1FOy/HtzWGyl8+ISMuaEh92Y1F/fHhw1XFgpsCi+jCNt5JOxxqK+1kSW2XCmIfdYaqu5GpWdzkl8g9f/PTf/Pmfv9hd/c//7r//6te/X4/rkKE8ntSqoQqr1VpRHUlRRE/l4f7xmDJ/+OzFNHA+DJTsOB+/+PKz2xfLKPmD51enZX130ifUJETsFUbsLByLXhJlybErKXYRgRkS4nwwVnU74yFbmApeCTBI0tiSas7qxMJIlAgujARPzIkpt5Y5k7kkyYwxJ85ca62rwkShBrI2WnEHOUOIbbVgzotI4pwyxkGGZNNe3NZS9P7+8fHxOM9Hq3rY7d6CWJ1Nb66vP3z2IhPVtbx7eMxpiMHCt+/e/v7LL4c87a4OP/zRJ3/25//y+vmLFy8/GJ49p2e3P9jt1flq2u2Os6/z43xKg4CqaoX5wOxEparrDIR8l0W5qeoOTpLdaj0+cZo4iZmlIeeipZipretc1IQoJQOT+nn7W2ic0jbrc4WzuXeDodQhZt1/wAEmx7quKTWbxG0Ib2alVWBnD4WqwcZkbH367kvEzGUu4T8nIk0+2r37CDZoHDazd7c8BCLMAxXYrLbNhZgcdqmKIMzGtVbmJKAebAOGi8RiVZe6AuCAwXFuEwWnCOjVPFQ+iEhXq6oUd0zVmeJQZuYKI0PXc3R3YrNaG+iuUC3sllKttlS9e7w/npanp6d5nkOreSlr0RqQtku/SCJCaKNvyMl2EtHFjMV0jce8ffEuo91gd8BWQGg7OpXcQ+IEmOdZJFhEdGaEdR2pRi+ibf8ZW7B5L1R8W/MinhSIyDplQOGcGpWRzlzr80TLLxgind99VrXd8k/vtB3v5DLrurhuzqDQRAUgHlJ72JqtAKqbqsYNHxKnzmaK6/bQUCi23bTtZjI3gpJ5jWgQFyPEEGLiWvXx8SjyDiS7q0PO+YCR2YjOUv8xM0wxPCwF7GuVJWcDk2ROyzzPx+PRzK6v9oOkIUniZDBGIL5icA8KHghxdJ/VsBR7e//ay/GTD65/8JOff3n3TtN4tTtAaynz07x89+7usdr1zc3Vi493N8/z4TpN++Hqery+2d/cXL38QBUGEGcCfvsPv/vss8+qKYjUbS4VzOKmQGaSHAp5sgFcY/plRE21y+FuGlqzZszJPWZupB2MHngxVe0pQXPQDXQ6M6s3CrpWA6BBgzcjCvlPblxyV+lLzizsJV1YtjwQzOKOyC0uEmkAblZKke4Uba61u9pQ95SONRmMJ6tqNeh7FLAUVTWvKQVApHn4pY5dBRqIRdUc6hZdPEZt/VDvQLm+nNRV51qHJB3K5NubtGt2j6Fry8MDE9wSz7aD4rOUm7aW92+0bRaEllA4cdQKIHNXYynV+oXFSDa+iJK7VyjiFOCwozVU0xB5vbR1AMWEqc3Pm9hYv5Pbe0YAUHUArjUyXmvvD5jBjIHYny3ueXRYlBxZRNdSygKz1I+JUgpaRAp5HiULwzqjJEaRsRuRgMIO1imxW/xuNbN4iABSa826CQtfGlt7M/M0gzbAKogoszQwZCkgZ5GcxbWdDYmG7XFQQNzNk0gTcdLq7k0OjR3BUCPiEJiJoXloQnoneDXC0LYw3DwYm/3v/fDYjlhC81giomiFhrZQi6Sd8Ri/f/6+7UTw3kCK9UFbAMf7ry04Rg3Xxlhm3nRX3KyGZGNkeIB1JyMnGMyIQIhdYQSnbukEAGQpat/WlYVvHBUgBrFElIWYJHYzznkJu1V350AUdyIOei9DzVqxxEzoYIMOgIcG5jtWRfQgHZuX8plq62YOUY9QheY2HDwowlnJnWiDaJlvxiRoegBbMRaqg8Hn3OD0cQqfn68woopnOKVYHwELiVSM3BKl9xMC30TwzAyNni2xqC5O1rgzBUBzAYmGw/ZMnI1C2rOpHaYUErPtVi3LmnOWLETk1vA8IuzEnDJLrlYAFiYiNTeAY6ZtMBBUvVrdgohCmbhHZ4VzGNXHaUFh5SVN2iScnwADQmSfRSQ0EqmD8wlh6dFq9Q59qWbqwpK4Fo2Am3LSkMcNqyRDlmELzEKJOvBGJAko+otN071FJTQfUYQeM6o2lXhzM6sMZhFiGvMQQ8FEIhSiUW4OcuhaIMZETJSlYSzLumZJCLtrODkEHOc0xa5yUzOAE0mtda113A2VKTfaEoViCsKrb+PPR7psIdBWpal2F3OTcRDORBS+F0aAGZhCWN7ceUhwIivVzMpaGTlnyiklOZ1Op+PjsSy/+f3v/vZv//Yv/r//8fOvvv727l6b6hAywx0KaDXJTJFer8sff/rpf/2v/ze3z29Pd1+72tVuIrudy0rgIY2qPq9rKWU3Tcu8aqlutayzGRy82+UPP36RzMiKLct+l69vrtz1eDwup1MiOux3Y5Kff/Ljj5+9+M9/87d//bd/94cvvr4/QgYsupwKWFjGiV2qFZAZCzGq6lyUZjV7nHap5GE6DMdV337z7dOqty8/fvnB1WxVXz+cKlSyshytMIhzMnMGJZExiTPMTIjB2IxJqLEGkpk1fJ1bhOpGKgkOKpGdzwK0pe7mrq6hzskwJ3EhQIhy8I1qHgZ3LlTAnlmqUxi4I6CHIHGRSYgkEYtIEpeELGDmWqgULEtd13VdqzlyhtpiquyW4JUcSaaU67Koail1t9tN0/40n55Op2AK/Off/u4v/ubvfvrpp//lP/vnf/Kn//TlT3+Ow+FHH328M0vr8vR4Nzw+3txePX9+C6/JCrvZsthaVnWRTALwwpzzjqubIwI1l1IcNp/WV69eWVU3kjYob0aD0YYPioALx6lmZuQu1LT7m3+bN73fcRzNNhkSoou7fVHS6CbpH1DnJN3OvU9xqduGt+nFhUaLhVVVQ8o2G8UtwRARpya0Tr2UcrdaK4zO6XhXOtnOTJEch0kXG4+zwwEQxFA1mGvuvIkLMrlD4eomTsSupiFuy27OFBolRghUVCQebmSGtK1Fp2pYl8LN+8oVBBYFrWu9e/dwnE/z3KyMlmVdlxrpoHU14JBWaRVmF4Bx9yjF0ZV1VdWsrutatZzL0QtfqC0JjhpjO0O1C5oyI1DorImImJ2Zg+3FW2ubnTUOf/cLivX2KfGHregl6jopnbVPJG3JUTQ47CIpZ+aAdp/FF7b3fO9bSGByzq2TfgTpxh3uAmzOjHHK7p6Ua+WlFlWtuqqVugY46NygQau0fUsStsXZL2HjGFv/0GDdsde6LOv9/T2LMPN4k6tBDBRNNSc1rKXgdBrNlmXJg1QVERnHnIWPR07DuK7rOi9edXl+e7Xb76ZhP+0yi6P5WLb5noOafcvg7mauVr/88vNX33xePv3xj26mZy9fPD7dl9Pj8fGplPLm6fFxrWna37784ObFs/FqPxz2483N4fZ2/+zZ/uoqzv6llmU+cpLP/vC7/+Hf/w9mzUJ2WRbKKcHFnIaEoilxjE24wVbdAVcDNWFX74DnlFIIkMbCqKVYE5TxsOQhIuYckq4eQ1Hrt/1/jcsNQKTRC1oaKLSVvpersdSmEO6dOnGOWYB13SnrtOoQqYl/lE4ON7NW67qpmhcEsIW6+GJUI5JFmhtFizyxuU7rKbaOSCuOSllU1al1CTc+SKwoN6t1Jc/jOFYr1IeO22WrFYcGwnH7rMj/l2VJIiRtSGrc0tf2687ubkWjUPeqxCyAuUPVHUIEYTdlJjXfvpp1dT2mBhuO0C0i6uZq2igYjaYeUZSIzC2aGsFKQxdF88sC+GLc6N70sXBRKgMIArP3Pgv3V1yJXVgVtidr5wLYLyyXEoILG3s7ZAjMrboRzE2V3ITOXs3nc0tEtkaC+1mchpmbcry7u405CTcbY5CHnE0EaAekKXeH1DALCAaWxM5B3GYQCXtnbAPnex2Za/smqurQwKxx2wqX8ZdaX3D7R1y+fCt326qybWsRp23t9jCHywhL1Ce8MY2z95Zm/EC0ry4fbX8kyiHoEicR+q5rKUWQ48LaQwFncuJ+9NB7h02fipObiXWxWnKWFkRUi/tZImK7MXHhzJxEhjyUpW7wwv4D56k+9fKSe7uPZYjmg79XVJ9tbNHVp70JibXuiJmRtz4ouv5eW8HelKXcC/XoHttgmyRsN7K9bbdw5C6uyBzNrhZ0hHMs2lhI67xEiElj6gGOzGqMCIK31u6SkdHZT3hdVxYQJyISQBEk8rBq6PzSfn4TRTBpYmYUiR0xM280CTSSUtw9UQMRg8S8kpvQwJLN61JqHhKICBLYDFUFs+A9RQHu2tdmRhIus5THATy4Yy6ra1j9iUiov5wjzuX/t+XkFkPXtDlV1mpbZ6S7TaJjUJIqQcZpArAsi7uHD16kU+15WZOaiy3Qu/iEPpsws3VdGZRSdDjE3WGaUspDMrNwGYwuBgBqcjvBMSARye0heK/bm2xiW16xHx3OpKqmCnfJSSSLB7kdNTj4Hmq1BDTMC8UAyD2DRZiI3Br3T0DsCLimiIz7XXxHpSjqQ6MQZkYinHNs4wonRhpkWdfH+fjqzZs3b978wz/8w1/+5V++fnUfmM2grkQTr/E5hN1dGFrn6+vpz/7Zn/70kx+gntblNCReAAC7YUwpG1CriciYxnVd53kWkdvbazNbT7OzVPXbZ/vrcfSynh7udznvxmFdTgOTml0dDs/2+w8PV3/6x7/IRr/867/76uvvHk4ojqp4XKHAfpd3h2kuK1cvWktVUliQ0B3L3Wk4padKN893aYQS35+e7P4NJE97n55sN8GLPFXNChoSpN3MlJjY3Frvb0hZvXkMhhxgGMBS+AXYOa46gq8AarHFGUQw9iDPuVWFNBccciVDaGFw5rrUUk/CqFrNK4sMMkKrlyXKIyJKJMRpkkHdBdIUBJtogJWnUupaiwU+kBPlcfJQeZBBREzkYS4nLiFctJT1zbwMw1Grm1nOg5rd3b179e7+3ePx7bvHP/zhiz/+9I9+9rOfXV1d7TLvrm7yRLLLz57fDLe3WBccH3A61WKqysV0rqAyKNJ0kCFBREObNY9DGh7uHz7//Mvf/e737x6WqqzOmfMm3BjneI+rLThJSmhigSGdcOEnZI3DjlaLJqJ28uQ8unvVdpKWUkL0gXOKowFA6EqkHFihswToZVQfhuHyPD3XJF3MRkQArpGoAjG9aXMko8s3xD96MSWWTaze1NQMEYrjItPQ5OhVFXASZhHXluCwh0InIljEpLQBPQgSEm5GMZxsFj9xnoONSYnUrVRbVzvZ+jjPT8txWdZlWSNgRiHaHMubGpB8L2Kz+flfWugmIorwq1pqYPjajcLlrdj+0LNt4OKwdndVpBSsvKZFlFKijj/vXQ8P7kwsjzaLuxxBXFQgUQBvqtFmhtbTb3Bu94tjtF3S1nsBM4cv4+Wbt2t4/0tRb50onIkSkRE2LD024a7IcJiCu2fWRyztu5xFibdOypYr9k95b119L8cTkcFdVR8eHsZxPBwOU/eJqOqiShcGMMuySCIRGoZBhKJOGEHDMMzH05fffP3wePf89tnN1f76cLWfdoOknMfMqU1gAINLTg44AcKTDOT44os/lKfX/OlP9zp//eq1PtxnScd5+c3nXx+Lv/j4k+cffjTdPBsOh+cffnT74Yfx5zmYhMR/+Pwf/sN/+I+ffPLJl19++fr1a2IPVlcpJRHC6jGBaqkJrERDqE4isp9WVhDAYRrixiSSE9S1oQxcSw02E4iKXgqRvjfk1+5JC7TtELXTtg69VVDB8nV35z6W3xZ2K9+A2OPfCwgNc7p9HJlfFM/oiqeRrF4ubGyTxqYTCncPJSdhMHMpJXrifqGGk9IU0Ppm1Smx3jTQ8kRdZItiM+qWln9vmTU4BnWXEHOJ8owIbmYVoKh/3ZyYQ+oc/SK9tjy81hr7MUtjB8Q+7ItfDQh9vcQx49HoC0lwOc086LHUh3dqGiNVa1NcYtRa41acYYP9Xm2FRuuEXkSnrUAzs8v/pKrmtgW36J40fa9mUg1pnkweJojbO6RQnK1m1FqcRMbGgJKkvvebD3MAK9ImgM4hMG0WKsaBHG4pODdJMnONcQtzSixCwkK16rqukIRNbqiTnDOxu8HN1VyVnFKTfCaokXVUANqSR2uEsMd0NG6fk7WBQBOuQAc3ERkC4AVuwwLvHg79FQc5d48ZczeCuweptjUZe5y1i3ZUW5EaLr6tuRUZQ0q52vlcIXjHl8XFhIBzfHo0oc21MsfcKKb/BJwrcCKSi2tOLEFwD6/61rFwgBJBWQjhONEFtJi5Ib3bJhJiyiwAh0iTN+VhYWZiAjd9TnRbVACqpVQdGzjYYvQqFJ8Qfegusk1MTJHjeChPhJAAO8OhUI1eBisoWn1bGNr2fGyJlBILzGhjEMV/MjNil0SCtP37RlJy91KX9oxiyAwPOZfqdVvPRBDO5OpVEWWSiCs6BoEBWK0wxF4RyUnEFNDzLt2CMkLRzRkes0Mhhof4Ania9sxMHCIdTTKxmi6richAWZ0SM4ThTEqq6r3DzZSEKZqmahYjdHcP7gvYwVTWGsPtOBm68IrmnFjaHQulCW176UKWgGKE1vaKWTVrdscB0iBzIbhphYOa4TOpm1VzCgXRBjkOE5qqOclm10bOwjkALu5VJEnAlU3NFGYwrWbMw5BSoHq4ZxtMLAyRttXdXcLpJwjYtdRaPFQlmGWaTOFuHg6HYZMW27aF4wQDsTAnpsQD1kZukXUtAOecmMTMyDzACQ5DE+gWIkIWAiow5CQ5EcGsipBZBbeZBhOMyZnUTYVALiQyJCJatT49PhWtT09Pr9++/fWvf/3b3/721atX9/dP7RRvrdw2/3GAk0jrCTJ5+ZNffPrf/Nf/6vZ6Wh7eeD2ZVbfKFCLVVLWqVnPbH/Zjyuw2DXl68Rxmd6ZOUILWMo20v7l+Ep2PR1dcTcMuy6OVm2mahH/80Uc/fPHhuy+//vbrb9/eLYvBEyoBgmHk3c0+T4OuLia2LMs8awUYBirVDRDTu3L/Zjl+8OH11e1U4XdPbwFUiMhpTGWphqWyYaDRCRg4dnEXdWxjI/au1ggQOwUjMTQEA7FgiP1koffROAEteyYHu8XiYeZEHApmTJSIo5VDTQJKAWM2SYMTFTtH2tD+k0RuNbEkhiTJTCAz0xg5qMOI0zCMImnMmcWsGickAstqPs8l8LjqZqBlKXsZUh7NTCGr2rzYxx8+L47Pv/ji1bfffP6733z6s5//4KMPp2l4/uKamZ1pt4xDKTBD9ToXVxVKjvr09LCseqV2xZLHQVgCoQAiV/v8y6/+7u9/9ebtHXiMDIAorIzUg9uZkl3E3nb4CvvmHw5ypmZD577MxYj50imnK3jHwDkMS6OeHMddiA61mBx5G0fr/IyQCvW46BrJLiOmDjFB7tfWTDisH5x9JOI1whFJUJEivKIpNuNCBMsUXaa1Rar2IueYIYSwGsGJQ08eqkTiUT7FckB4/bFXBSeQqJObk7CBCZy6s4OZRy7SLiOlFbqorV4e5+XueH88zktdqqMWq8XMrNZaVlV1ZorCMAbpca8s2s59JOJdo6of0LYpQqG3LLdMHReJe9yBEL6OP1CXhFVVbbNza0WydS/PNo4L5g0JBxxGG9SbzwmrX5SmDbwZ53KDbTeMlTs6PzkeFTXiqFd0eHrH4b1Xc1Ifzmx/xcV8Ig4zJwKB0KQZiaguy/aT2QVs7FCHMQIOHXtha8rknGxTP+3pOABmZ0ZgDwUE6jWBw7p40mktD/f3AA/DtLu6Nifh9hyjFKtmVMtpmZ0t+q05y7KSWqmmnJ5VK09PD/Px8fH+4fb68OLZ86urqzEPu93hMO2GYQhkCgAmVngc6jnl65sdM3/zzTdfH0Y63r959WY0N52/+Obb7949vfzhJx/96NObFy/y4YBxlw+H/c1NOuyQZBrGh/n42e8//5//w//y61//FsJffvO1dMm6uOaq7uRCXjyceK1aMbMppQZtc2RJ1iezZl61CoNVNyRmAmlDVAVc+bzBwUpNO7Ky5PNiDiBt2Ct4a7V6SFe5C1xEag0DEuvxzUM0ndhDcivkab63liJL3PaLmeVhkDAwbKcxHA72IND2PcVmpu7qNeTfqTX9FcA4pGEY+pnSRpREbmQKLRrxx1NKlHhZiqkCUR+GagzJMIiIWV3WE0j8gqcWr1rrmCQQ5iH+ai5O3NNacvOqFUAU0zCNhpGrwtSqkTuJRDAhAVw9xrbhCtlsLxUKgokIJzaDV3O1oJCpllotACmSExGrmWqAG3kLNJJStA8oPI1bP+is1uRddaydBU7dDikmsu3HWkNWzaqGImN7n6rujhhZtWaH1VqlWdYFzD6a505EMCNyIiU4sTIFIpiDRe9AQP/c2oJKm+Xpdvf7tO1cm21lSbgghTihJEosBDa4MGu7ce+9iAgNcgC4k7ORxXQstHaYgs4B9LF7wMSlmRaQmWlRDY5muM6YGzmsLVPqknS4POPfj6r93yNB4Q0+ffmtveXyAMDARhLYkKWx6Q0e+VacaZefwo0BUsw2IYfz9LhtFSIBcdfRA1DViKglLu+/FRNDIuBTAsgJ4qZVmiWD2PsCiRe/276RlpolGZmh7RwLkcaNneVnoHI0FZZliYFevNxbY2/jM5gZ97SDuuNuA0Rxmx94RxBo789FSkVECEuL5gIa/jIQkepNFj+q4tif3infvVFyXo1bq2Jr+2WRlNJ8PHl3CGyDeu2mZJQYUlHVLMXag6fu+BencSK2xABKJ1B9P8nol2Bmaq2lp6pBi/Xe8I7FWV3VnUkoySATYHBW1Votj3l73Gbm0NyH4dK7764whamZNwlcEnatS13hVdKYsgQSMDIbv7hXpdrlzu0Vso9D8nP/lben3PKbzvVqigigUtajqnCWRMRJVYl4txu9v2K3EjuMRMgKUkpDHt3d1yXuYcyNYdVqMSCLkHCA0Est7BIMRHeHNp5f8yroydzWRCRJgaRzdiJSb30ta0rdiZIQxIlMiJkpSMgQ46Y9LiBTqxrkZITJCWBgc4Ap0h6SJJJSMQ23oxp9AWEn0sTEqLACFC1OYGfStaguy3KcT9F4/sNXX/zqN7/+6quvVJUTVMMka+ulwt0CHbqq7YYMsiz40198+sc/+zHqcnq6Z9R5OQ3DIJKXZVnnRd201HldYcSCaZqEOaW0Hp/mx+TsnIgho5BA91MeaJdZhizlOFtK2X0Enl/f1OP8q1/+6t3rd6tiBbwni/v9brraQyAQch7IKvlatJpX9eJeHKxclvJuWQvdfZQw7cixDEMapnGceLfS01JNw5SASbzRvVSrKTGMCCRqtZsCtJIVTu5w8+j9CSVK4O7BlmQgohqOL0QcjRIihjOLJBZmMaAL+6mVbbgRDT1JHId4I3N28Ga8SZxieeCcs5CrWlWtWj26o2TCkqchpeSuDiKW0kRB2NWjvz2vpkSUp+Hm5TAMx8enp9OpFHVJx6JgdXet8+vXJq5vX33FjGfPb3fTnoSvD1cvnj2/2u/2KYkqLcoGAy2l3D8djSWNEx32GYSQIy76zTff/fVf/d3vfvd75jTudmpsGgwiM0qJkJKEBgd1imbbs+7Nd72xUkJ+v9k+hR9Y3PZaq7dTn2xrpF7UJHqhuytdGZW7CnSPh2eunTttCd82ambm8AEGEWIBgIQ4VGR7xZL5wiykveFlAXwxcCD6firM3UeaiERyyC5WU9+kg5kAB1NwC11SDNrd3VpHwcLWgEEpoHUBaCSiLCtwqnrScqrr03x6Os7zPKtb6Yqp2r1AtowlDkC6qL5cA+6/5Y52efSc4y1Lv4Hv4cC3o2pLPf0C9IsYiClaprgdPf3UiKe+4YMaDftiUr391j++vX6uxnUrVrcLvrx+N4KFosZ7DfHvvQy0/aft3c7PnZpC9fbm209eXiQ3wf82Jtq+aSg7xKm3jY/ODZMLBBbQpMhUlYwkk6SU2Z5qfXp4fPv27f7q+vr2RmSQzHGc9g/y0/xUdR3HPOakOtS6OoBlkeMRZnkcyrK+evP6/v7duq4382k3TofDWg5lv98PwxAijgp11SyjowKWc2LG4zw/nZbHV2/cqFR/9c3rh9P64Y9/9pNf/IlMV5zHSmlgQUqUB+QBJJ9/8/Vf/c1ff/aHL16/fn11dTWO46tXr7799tvD9R6mBnb3otWIK5GXmlIy7+roTGzIzATyqnHrHG4bt83M/PwIYqima6lu1J1yzQzdsDcSnstuDjP34U17atvyaMOui0WFjbkmiA++XAP/eGVu/2JWq8Ih27bi/gokQrxt9Iz69qkBrwvcxP+Prf/8li3J8sOw39474pzMa56pqq7uaTs9PQ4g3JCQFghSoCBKJLhk+JdqLX3QBy2JFEgBwhqOacwMoBnMtKt2VdVVz12XmefENvqwI07m60GuNu/dlzfNORGx3c8AnpKoieYAUGvd7XbMZObLslgnhlSRjkUhCuJQ1aZLqBFNEVFKcQtVZdnAIJfFSD+TthXr7mlomg2fCA83T/WsHP+ALJxBDPKLY5CJ3Jqq5rgxOFT1tBxS0wcUghAKIKzpaTlVKUJDljJzKiIhdmubXDbJ4JhEl2LJfuhlNbtd/G1PjfN/HAO9er3o973/hO3nquqhIlKYiMgMqus8TRGREz7r0uIppNTRJh20hsh0bnsjytH3WLqlTybHMsXggiakmYh6sY8gJq5VkHwcEyoID4EI7WQ6ntaeUxBFX9mZ7HiEM5iYIuBu4cxF+pCYaFOANGiM/HscPe8d65sTqTvIADi82yyhQ3959HEJZNsi7iggwD0iO7n5tKE1dRkJUgGTU3ADnJBj8p49ICKFMsIS633eacmYjff0cvu9FxGWEqm2sak6EwVTIGUq+WL9d4RkkqR8pGic5raRPH8GYHI+bck79JZAnV0VCIQwU4dcphmze4BB+UKZWyQENyFvp2UpQlIKE6cm08U3j7SEDU1tZzh8rsXdQ9LTBKkpCiZI+jD0c3EDjXtiWnq1bE2V/SLfsrVQSYGQUdqlpHsBxu0liohpSqgzHJErPwad+DJknldFJMvXWmvdOJuR2BIijuhXMjpP1fuh07wURvcKzfUB7hJT5B5E4mBzC3Uiyi0a/esAiFqZS02hGooLyB/I1VhISgnXvkuThOzufhHFQeEj5zhjZoBUO19b3pd+ysvY/6QswmNB9sUYfYw8GgfdqzlvCzMVZwQ4UFk4krMc7kbEhQqILFAKz/O8LEvAKKXPO5pm+KiFeygzF0klASqFK4sqdG0UHoYApJQixdXIDQhKA+WucgNGoqgmZvbQvHpgQhE4BTySO5C7LeeEEYgopYDF3MldUrPAg8ikk43UwwkuRNLRnYEwAuApQmZMQiB1Uw1nArMz1To7QUEWboZkshrh4XCK0c1Rt9PpdDouqvrTn/70P/zgb37xi1+aOTOpAgERZOORuli4gJM553mbv/bxh7//O785l1iP93p6nCtNhSFoYU+6npYlhTDU2sPD3VTk9uaKPOZ5pg9fhnmgPR3ur6/3UFseD5OU29sbW1tbT7acJqaCeHHz7KPnLx/e3n35+a/cOAiLwgJcUPayv77a72enaO3U2uphtUowrce2mDvBKQyuQFO8udeY7p/dTlL1ih3GIC0Tl0osUaiQRy2SIvNujREsEkBzQ7pWpByCUxAn6d1gQqjCRJVpkHwipMv2wJkqGBFswXAKzFMt6WAX1t20U5rOPDlLqzdLwpLBwwNWUiuFycKJsmfCIlwlhCzCzNcwdV+dAHEmEDtLUVu1uYgUKq2pg5nJEqUB8YADYbi/X8wOKXVDRLt5fjw1QywM9ubRphkhOjEV4XZYjofl563N0/Ti9tk3vvbVj26fFfdKqIV5mlFOB1vreqK2ijbWGfNsh/XHP/rZ9//sz3/2889efvBxneCOMI9UZosIsFuo9UnvOPLShYA42CPUnWK0+YgJEOG0g8MApKVodsf7UTY3+QLzRsyMgIiUMiXZRJinUnu9d4lT7Qi3kdmMM5WJhSuhOzJSKnKwWDgSL+hIQdqIMEcHfAyS8DjtKdKtbaQxNDrXzNyS7oYOwgoikFCn2438rAeALlSJ9B73DqaJiOaqQYWYUYI6EjCEEXTUdrR2tx4Pp+NxXVqYI8xsWZq7h8Gam3pHUDuNP0QXRwSF9TGIBeVb0oU2GBFZuCMvTcFIkGi7t8B4MtxRStkw1ACGtJali2Qay0kQbeW3Bxfiio0NQ5ESOBER7CGS9uf9evYbN65//0mAkkDQS8rM4PNKbiVKjm/zFboG6tZo3rKfzpS5KGjThYRKYu0cOGOc3KMTW7ogJYiJi7iTRQfNpvDSuUzy3rrdqt8tZ/DNWSqZFAEOWP6TwQXMZaq7iHh8fHr16k0QS9mlv5MOgZtCgnXNkmmZ0pG41iAiWZalCs/zLMS6rktrb97dL63tpmn/9Ph0fXN9fX19fb3f71NqmJkrPPOVZT0eT0+llLunp5/97FO/v7sq0/762Te+/u0XX/1a7HbGdTG/vio3H3x0/fKll/Lu7Zsv3777N3/4h7/87FeJeK91+uLVlz/+5CdLWz+cXqZpHIibWUOIiDWdWRhhCDJf1YhCShGSdVWRpGuCCEUKp3I1nV1FCSB4qsGTZI8sRBip2JxFiC2eo8DgnLJK0i8uKlgZpPLhUbO1UdTDmRgQj+iCRgOovN1KAEEe5EkZICIkScrPdtkR6WrRbRcTx9BazyFLKa2Zu0QU5q7m5+7ruppZdKs5uEpEzsDF+yQPZs2bc8pluZm6t5WJEKZt4aGXBiAl+ukC9SAdgKRpjySgnIoSUcqt9WzcDNFZ9R5Q0y5OzFlnOYB0IIdr8svDHdEjrHerTKOsokPdGoizfmaQEBiBDCiuYUr9Rlii1zxcVd2seyFbkjN9O4v6/fI08gEF1tYuCtyLCaKf/3oZLy53pZ9lQ1JNLZ8o6WyW/ERmSRwqgkLDySEsAtUVW/sMvfhk5rLf73OukqV2klW23m0vTQdAv0opwhrGyIMswjwsHFFEUlQBgCde17tTNoMSw+iO1dbMV1lKbEk+yBBhrqZJBRxuUZwJvRCcvIvYE/Egtb53lbcKJc9o6TXVeXZHRETNbata46IAPvtMRnTdsECwpcuGpSDkYIpfVlk4F1oBoJTJXbP+pdGaKqUUETPzpgjnMfGmQIp1SQdkY1yRfHEHSEAJ3srJ7XsTb8TWiekfqfs9EnUZsFiXE4DUre0NBaCw2Lpg9NV67UeUdO7tWqVMFBEFk3Tk/ZlssB0322rZbkcCqLYvshF9VZWpc7D7UGgAtOY6JYHTur/5qPTGFc44R2P2e3mvN9zFqirjK7i7qufXjjHhDA8z47THEjGEhxWmrkcKmFmzaK3t91frIIckuLo379E7GhcXqqM7zsE1u1IaLRMaa61R5K7hJLKSN22hE0+Jf2AKQpia9LyqUx024Pq6nlSVnUE8l2pBAHkf83aBBMvbkz2RPIjpkt0Ed19bSzhcfuYt87ALj9zzMYSYpmQLs4WaBnEEbG2n7BDmCgqPDCrMLMKndV3XNk1Tv8hmqqq2Fpb9PKEPOixcneRqnjaiTrm4qnzBVPfh/EbCThTJ1HaLQYgA4mq/X7WFg0t+2gigZPtALTKZtTByImHmmkNpsKVSB7q/YRCoSHgcl8WdpnkuU6FaXdgCi7bTuigIRVgqs1w9u8lwKLUQynFZ3t7fvX79+s//3V+8evWqNYeAIkTgDjNkU6Dja5JbxyAEQefK3/vNb/3+b393FpCt7C2U9tf707qcTqf1tCxLJg2pm0f7/R7up8MRfRxqbVlfXu/389SwTlf76+kqzB6Whd2eX1+R77C0F89u52n66a9evXr15rAsa8NpAQS3N/Pt89vnz2/3V/sWS2C2x1Uj5jpB49iUDIXFPdYwVBSCBQ4Hlcqzx+H0dH19igiFQFiKE3PAqtRSOOMuAKGu+VbnyYfCOTkFuJRKTM2jdIk0EkoAZmyKTCJSpUwsMHUoB1XmqdRaa7ZWUxGDKEoRC82w3Ia7rIZj7N9SShBZHlM9oVf38MgIqMRRmJtZnWoPf8zHZWnLwvPOoKZNpMLJtGnQXGYKaLNmejq2NupjtfXuMZ5dX6+mEgo7HU/V2BfXieR40Jc3L5hL4Vlb3L19nFHjqFe7uitye3td91d1NQ1v6k3tdForllrnU9NffPrpT37y8y9f3xnVmxcfcSdqZnszCAgitYjQQiW46+0Kd9CjRYoXs0RszWUDymUYZc6BfOroqlsaO+cA4Xg8cpmZ2TQATNNkZuvajXNpw3G8H6Avj6NMAWNM+DFGyl1SxYOI1My0GwFkRerul/Hl8jWZuStAvB+g8yTflFpyZAXhaBdjxrSDyCY3Uht+sGkqjfkGQcoMgMktLJuPFCt8IT/q+u74tK4rebS2LodjciD7GaibCVCPUCNDwLgasU0iadMBuUB042xvO+aTccYMd9brCNCXk6VzRsccTN2OCP0XicjUMsZtz6wioIHQ+NsIwQuaGF0wuUYUSATfe3P+i8eGjcxEaAxOBqoLw63gnB+P+yhy8dYjRoxL0U+KyyUhA6TaVQzHIzuzY0Wd540J9s5eyHads/bJz6ZrI5KplHVdj8fjw8PD/upmf3ViZkv+M1NukMwb13U9HA5mts51v7cI4lIZJT/S9e3t6XBY2rq8O1Up0zQ97B9uxmOe52fPnhFRFA9rQvTu3bv7+/tn1/u//sEPf/bDH/Gpffvr3/zm975dd/sTCgXXUi0w3Tx7/pWvTFfXn37x5R99/0//7Z//+ar+7MVzC3/96vVHH318d3f3ox/96Pr6utYa6Fxcax7kcAkENWNBJTQ4W4hUjZALeaSO6mTyCFeTWoiopZ3sIHDWWp3J23ADGsrk2zYcK7Oz4s1smmYbrE4aI0F3V12ZuQ49lMwSPd3eo++m8Uy9fHH3M+Ode+Q8TxcAJIP3nHCOjZPPUW1m5D7VKkUEcNVVFUTdDIklfVIS6TYnYZGZl2VZ13W/3+e2EkaMbsuyLLlHWmu73S6/+MZ6BUDcsY1hXmsFcacfE+vo1kVY7uJILpeZqkoF1a4FCEAonJkCZdPbdxVCmecissKtJauZC1WuNcJtVRlU+cy/8/r0VmYgaEv7I8ZcejvKtpReh2HSZTKfvYPtRALF1oGycfKY2aiaXVW5q8lKRAzpGWcW1bXWmm3xzTg9gt0ROZoMjyCnENgWaLaDCIn1Y5SUj3fLZm1U6XLN04B0AmlEkWtl3c37CKKQQizETt1RDqkxO2jKzAyGq+2mWZdThBcWB4zCVJ1Ra101KUPc2po+74WFOkOvm+Il02ALGLnWs9/fzzveNC3O2gZE5G5b3d7vx2h2JsLX3b1p7sx5nhm+rqt5lDIBfGqLu9daicAUISMqRoRFUyNhM0uQQG7JiEAkSlyGWlLmIWQWrkocIkIhiHAPBkjIVGsVZsRF44rc8lWIAAGDKstQXwIx8qrzCIERkCoAKJOcEf+IQnXNkClCJLwsapq2w73YYM7+JoK8tbQ95DTZ6qd/mWDGzBZO4KnOnUTtbmanMBqiK0SUg0Md+zn3bY04/7mc4dBp6ZlVU4SVwqMxnGeTu+s8TURk6EoDRATqCJZa+5AhhJo206i1pnZfbH3cDdcHqBqAaZqYiyO0rXBnWEr6u7sIM3OJaCBVT80VVY3WSilSRFUpwEyGyOLUh6phPlMdUouUAjOEQ7iUAk4r3y7JLiBtrZZCKBxIMmozBcDCZsZcmAuALNezmTTJ5OREFJTqpRRONkRuiMA8TI+ImMjMmAo4rLsiSxDMrNQ5NUgzNwAoi+2e4KqatUFuARFPhXs3KlwKR3if0hA5RcIshcS853MemKQwszCHR2WZpJhZso77Kc+AEwfCNCB1hMNcjTlt74zjxAWsjYhqrVCX6jy2RkR0FbdwbYtbiJTCkvhztwjySiVGv8wIa45ia6FCWSqrBghUmJg8KJhO7iEy3VwbIYS9Vq1F3Z5Oy/3jQzPd3dw+u73lqarq6bQwy+l4un98muf5cDj+6tPPfv7zn3/+y8/zvoThDBINmAUQAWYRJ4Y3ALurWVhfPrv6X/3BP/i7v/vbhQLWJDws2nJa1uXu/q2773aTmZ2W9vr165ubZ3Mt6+n08HB/vbcwnWt5vr+dSkzCXqfHu8f18OQa0dZ9mcK9MFOtz549e3x6+su//g+ffvHl43FZFbXCAgR58eLFBx+8cFptCSnYXxWuFEQodIU5TtQyT/BQgwUBWJUOx4iAGla3eUaAzZ0KTqeTE+HJdl4q1xQMN+szLE4vShaZd3lqEWWGUEHOiMJUKpdEwRDMul0qA6SOhLEKSbgQhwGBSbINyxoKclc39Wmebq7rsiyraSmltSBCIj6QSN3e+Sbz8Gjv5U5hqhoU81SmqbgrwSemaAuYJ6ZaqNayL9JWI4oqYtakkHoYQddlNTABjIfDYVkE0ZjiuPrd4csvbw9f++CD48EPj/by5cv9fAW1UqU1v78/kO9jKnUyIlZ1DWcWdxyfjlTmCn56PP7i089fvX4LyFR3zLysDQ7K6wVImQBwjSAnKiwIcwt385wwkNR5X5Zmpuax8dlSSW6l7NuWkpPMrVJKrkd6m2+JTpEJQNbGu91OVQ+HA23iJaE5f80CDAPkxUCplYKzhbQJgZJHZC8UMU8Ts0Qd9RKQouFTrcuyqF1WOwKcUzcABEkKZXQKT2f6ruua2lpznRK8lwzPHFYjYNay2yskRpZBv5RSpqraSMgpmjVrauEtYOCDtYfl+HB6XNppWRc3Q0uDYWrNVNMaV8wUsFJKfpeMOBi1K42WAQb277JxcFmFnn/oLkyUbDpNIj8AcDjyhkePzohueJwDMQBxkf2P7kmfBNRaz93s8SEzeBEI5vAzsqCrMSfT2M6I4gF5fU/jJ7PF7SelFNW1Y92zy3wxYQ4eY38zAtVa055zq1Wiy6n0V6aR421N1fxUGXq233L3WuYYk54Y4OqeCwUCToStF581myGYC4uMTgKr+ePj49X14/XtjYgE034/gWNd1wiTkh65taUHJ6OUJusqcgyrzDxNU50nMzve36vq4/2rWuXDlx88HY/3j48vP3h+c3OztPbBBx989qtPP3rx8vFw+PGPf/yd7343WvuzP/nTu/vH3/nWb37zu7+D+drqtALPbp8/e/FBrfX2+bNfvX7z//nDP/yLv/zLL1+/CpLvfOc7VzfXb9/evfzgI3P84f/yx5//6st5nud5VlujhZmRCAXnMHdRnbjWyoFY1SgaPEwimk/gm5sb1/Zwd8e17K+ubcimZlWfEGUmuLXgmnjSZVlsNLKTsZv3KKvp6AlkrOtCRBTeltWGAuhWoMZQnAJSK8Bh5wZQRCA9q8bjdDj2f0pplQ5hGAUTGCQBT4Sth4b24tzdSilujeAEcmstWssDkEUKl1opojB2dYoI1TUdzgNh3tACwFSLtvUYXkqpLHX0XwqzMCNiEoFZSQ7IhaPbeloiIpVGXFejbr1j1oS4ndTdA0YAITiJ4uEpb+e6CnOKZjMzPCgsOxeqpi01pUpblkBMUqIGgGU9ujsHUykirG0RovTfForTsszz3smbt2Ya1gXk1FOTjlR1dD/XaZqm4WG5rQqMzmaq0/d6vvTy1YZR06hOY+vlTVNR1eTAD2i4u3stfWRL1G1mRJggAGlHR5Yu3Kh6OJ4iYpomeHjrZivmrm5lhPrzB43RgNlOkO1EJtC6ru5WhlZtyoYjSEqN4SvnqR4GkFtojrzdbJMZYAGRhxCHR9NVVUVYmG140vb0tpOkU6OCEw6c0J8YxABm0dFdyG+bn9i8xcWAa4sfPAbnzAzmHHq7exJf60aURVfj8Auib/pwnCPSRUziTWYwIsWh8ijO90r3LSTO6f1IkGKzTMRy7ooxRa0lKSXwKMTCIBKniL/FdvDzx+kxYPwzAJ/nmahLBG1PuwiiiEivztFMVc0jZrT8PVJHK8HMAADfcFcp+XSB1MIF1GTjffmo7fvg5SKi02i5oftQ/XqYT2J9XgoewmK5neiit8TMEBRmj9gEXTbAsAx9/HPgzI9AqKWCvIOi804S5lJj4KPifb3BqXT18lQTYebkR2VbFN1vCRHEzMTSbBUI9T6Z5h3tIpsgLpLE6bwaMoLruAAEILxPqMJCszRlGjVeamYxCW9rO1dIymAmhI0puX5cp6nWKXX8tpuSEiw0OrtbruDu7ppzOBBECpgi2OAA5nluraUcAAuluDoRra1d7Ahsf6ZB5oQHp3qJW0RH/W3pNY9m+2XXVmoRkSpThIVHEaTRPADnAYAKdDksd0SKrAc8PcOCSMDEESLVER50ssYAc7hQOCzVrKTQPK1mq65RuE47F3pajuuTWbjUevXiGbjIXKmWNWzRtWlrywpgmqb7+/tPPvnk5z//+aeffor/2CN3DDBkeAJgBruuy9Wef/M7X//P/tF/8sHzazvcLadjUqLDhYh2dVq0qdm6rgBdXV211h4fHw+HAyKmIiQz/Hou0OODn9Q1YM5GcIdhWU/weHh62pcJwP3946ef/erVu1PWZuGYd9OHH718+fJ5ncrx9BTW5kql7vZEwbI61VOTw3Ja19Vtbbw0gpoZeaApU3NKwNwCI10MFjBGeBwOi3mbiwJQVXUVqVxElzURcswsVAp1XkpSEoQhgiodFybA1FU0ujs8IRhB3iH/0sV7o6MuAyw9zoTDozdJI8C8c49BFsmjkZjZ4R3TdIFqiUhzHSCEnAS0K5INM/NWa726qjfXN0TSViWSaX91XNvD08Ech2XVL15le2VdAUTTRghyPEYwxUGPq91/5ermjR1f3T89u7l9trt6dnU1S2MQ7qPtq3AF+bKsRSY4eSPZp3K4vHr97tPPvlybz/v9vL9KmSVKuwjvk7RgCsANDiXrqlP5TxYBM4BLKTLvA2jN1nVl6ic/RnWU+JftPN8eQIclE1EtNSJULSJqZRF5ejxy2neXkp1+EWGR1S6ql/ejwDar4RHQE+Tskc6RlIzZsH43t3NjCxYiksgRjBZwG8WemYFJ7Mz6M7MFa1OtqWEQEX1pEUYfNnOe1NwxMxqqvIspzM1Mw5tHC7w9PD3qcjgdT+tiqm4WmtNq2dI77z297BWeLScjzgnfZfj7tVB4EbXPcVyGmvE4cuPXXvDytzwCsCzLY0xQ82pkavdrVzVzJFzwkP/2B7t8eNd4v4iw490vP9uGUQeC0ul3DIF5MNKzBZxy1Nuvvxe9L16NLpTMcxVdDj9k2AdihMjLuvfXvlHE+VLTQPBFRGst8+ZwR3CVQgFXXdf18fFxfvPWzG4IpZQ6l1orUSDILE6rMq/uHu4AlzqnoHe27/Oj9qrAXY/rW373dDzsd5N5O55OL19Ga82Wk5t98oMf/uQnP5nnevf29f3T6erFB1//zve+8s3vMJf5+uqDZ7d1v4+It/f3f/T9P/vX/+Zf/c2Pf/L8xYvf+f3f+/a3vvXig5frut7c3kbE97//Z3/1V391Op2+8uFHnspzICJJcSmDkwUJq9uiYRGVnYGIVqBVJl8XWgsRBZOaLW3NPI2HNkzP4qh3WHysge2mxGCVY5QbeTuIaF2XvPXbIZPbRwaiczwzQbf9t95bD+8vyG0jRw4Ppc8VYjDAL/cUjQbK9qmS0pWvJGApJKWX5RHZ6YjU+0LEiQ+1zOrJ0OqBCeZBLTLLCri7NVXhVLrdVlrB5Z5ySoGM3Ibjn5IaEelVlmu+q3hCCoe6h+kKos4HBqQwN8vsHTm82d6RPJqtZtZVzRBuJlLGBRcaNITCnPGaiAqLDVegzLhwERZyJWCUu9vF37bn2nTLyYmQpeI2ch934XwvsjrLu5yXoc9yY3RX3bPplsddldoFoh1MyszpDdBL5V5uJAxngO+3fV66Vbin7jhyfDkgKplg2IXoRX4xBkMoiTScrn7dTaHn8rVIP34d6dDIDCaauKhqs06JDHMzDYOICLNzH9klpBqezN600kg1c8kZEqH7urbwbfule2f/zuTuXdCsGw+gCxReCEY5yxDHZ0hhiuAhah8R2xkdSP2e7gSNxNkjUrE5JbSj5+4FAHMKh+SKSXB69FSY0lB7iwf9kaJBmRWMai6Lw/zv0OXqPXtXDc7FSoGhwd1d1SOIw8Pcg6iICMNL4VS3JrrwxMs6lklVmykXInBQurGTqnItNHq9PMTostGb69K8f1nqvYZeptDwYc5MI2fzWyLSjz+y7Mh17O14tJTTiQ5kApAELbfo65NSwjSPO0XaqIzQuEVBHnywyCoqW49gp9zIhDE5TMItBdL7b0svaJjiMHMeFkSUCTgAi47bD4MFECTEhVkgEM7l3Uvl9GM/Hw2hMbDWMXZuYo1SgJwIiCDz4cglDCZKVhKTAIRIzfAEwEdqYoMpQBDGYLmVeTdMBrrK93YYllICcPJgiaH+Mk4GgIEhnRIeFl4RQWkfkhJdUbbuRlpYpWxrn9pgN8+RZ89W6ObOu8DP97uT3C4u4Y5UuCYB9cNfwkpQya3gAZQUgbSgAqdIdSmGg4kFYhFE3I3PiaKymWnkF/JMyjsDnJlrPa6Ll+JFWvj94Wl1UzcH7/f7ab+/uroC8eL6tC6nZVmWhT3W03K927vapz//9G/+6m8+//Szp6fjeTv/WkgO7z8jACa1CsNWv76u//gf/f1/9A//3jzL4XFV1cqxrC3H47XW5tZOp2VZSp2vr6/v7h4Oh4PaShTLchTGXGVXi7XlcHhYTrYel3byiFhXbcvy+O6tLUv54MPleHr3+O7hcAQDJGpmjtvd/MEHL26fXa96aG1116v9HBzOApHqZMwHVVcIsYSTRkRY1lAaEC51Umuh4cCiaN2pGQBMwzmzc1I1s7XQpGpcC5MTSCikEMXGtUmocyQvIB8slI1PQjChcGEiDid0ZwGijfuKIE8ZcJKUugOzCPL/AZAhsJkBZvGlBs5iOcxT9Z0BRhQYBUgRwhAqpQrDiUoRmedyfTVN03Q6rUT04uWzxaK+JgNdLe3p6SHi5FzsqO5oFhxwx7oiAsdFnw4P73ZHNp25fPTi+UfPXtxM0931/sPb6w9vbgg3V/NaRK7q/mp/82y6dfBcd6UUPRz++oc/+sUvP9tf37784OObZy+CmTl90qDuAKsjzI3IQdl648HM8UQneh6i7JG4kp4LEI1SmRzUZ4oxihYiQlCGm3St3YoK6z5qRUTmecamMXORCenSsqppralFrSRClvPtca8TCSCRMDZPPyMikkxQ2EPDERhc03wIFxFRNYLnjh52QZVF1NL0kpyZhDnIdSTuAKWuR5eNye/IETkMo0gsURjCpzI1b6mL4QyLOGlbzO4eH07WFm2qGp7ihebuYdlS1hETL2rLiyTqMnffcvGky3bRVETEVs2OgcSWJbxf627ZZ7x/+KDDu4fsd4YL6ijEZmpmSV0BoI7U8blsbW8Tha1lSdT1S/JWSSoapGhWD+W01RXb64wHPDQGunhkTczMmYzmn+OiAMbFwMbdgfDuzkGRvRLrF35ow/dyZZus0KXv14h/2x/cMv+m8889EFCzUgp5aDghpfuLqDW1w9NTrbVMdb7amxkbEZHBOBLY1w0+mIsUs6aL9Z2STXxmnvc7C5daDk/H9nAvQvtp9oi1tWVpRPTy+vr66ur+/v7zz764e3z3+Pj41Q++8p3f+MbLj79xsLiapuuXH6jQLz77/M++/2//+I//+I//+E9fvfny27/5W9/9rd9+/vylSC1lmuf9s+cvP/300+9//89+9asvv/LhR7XOpieOTnon0GZtklLYiVdiUKMwQ3MjLosZ1nJ1dTXt92cZbSTVkQHoEEMCYHB0+8YOcB0nSYwzAXZhuoGI8L5ZCEAg3MKVpCaEN+WXKd0EmVrTkejFSJTP2aOPlxo/Z0qtJrWM+FmpIsLDMnlo5p7w4xwFaxMhkSpChYWZ4aFr2+0mD3eN5sGCQswBVc1GpCRbp9ZkLrp68xTjJM4OnmqKrW86Be8lCaqlFB42MZuUEdw8h7pdBA6mzQEKSaaxmyXgzBACgguV4taSvJa+5hGhthJR9gFasxxo5RGThknwIAbCXFtmxWYmyJSWUxUi40l0iQH1pm5GHin4YmujQdfMozUinJCldace6NlJBxcxQgakFOn1tLUF3zsh++GgajGMhd3d2BOqm+sm3xaITBsYFEhnmsik9gw+vFglo0F4CTWJoNz5kjaeCRnKz1CYeW3a2z7ETIGecOZZ342CkcD9nnF07aNJSjB5+mVfOK9zoBAHR6bfhsxIMgHvBxQIZk4dK/1eGi0XVJkNIp5Hq7sPF6kxYhJZ11OOktw7QYSz8AhLtYWEN+SWzK+2XaWx2yOAwiVhWeOI71HK3ALGkT5IaVRJyBFwSlxfhKpdLWbWjbZiMylMv+9ecGKkFzQETrZ11sXIAh7BXaEXzCxpeUV55VmYS2/ZefKNmXma6mldVHWUN5HV0WrK58WH7TpHmDuPxfOelvW2tGiEky2aDtmCHkoz54n3RU22X99C47igo9k/emz9U5hZKJfKfCZUbytNSu+4m5kPo20iWtuKsKT5EhL+1wEVMO8Sqcy5lBMkXGvNmblhoOIjtIPNKHu9RMRMHuAyZaHGRPAUUu+KghEWFk6UPSwjhIWfJcw4UqQhsviUICHAU/afzm2I8ybNNl4CgUS6sCqQIEZE4GJCi7GMfi0nuDwKRESkRoR2Kq7nVnX34+FEjJQqaWruxtOOJipDFr/HldGC7ciiPNDRudkAYvQ1tvd1zxK2G7KTFApLK87Ub0F0ziHDmYkwjCI6FkgiIsCAaDrpEDvBUt9WRJmbKrFIKSE1JVlIxIkcsbAESXN7Oi1PywlMu6v9fr+/un1Wam0RazvlMDZhPLq2JPN89tlnP/jBD37+85+vp5bHBQYLbjvSAAwvKgCZs9NUxKBf//jDf/KP/9MPnl2vj49hXoUItCzL64c7J5hHc1uW9XQ60ap5kVtrQgz4w/07DtxcXZNIGA6Px6fH0+PT0hYVKaFqa0JQo5bJzN++fnc6Lm44NlMFKuad1F0103U5qq7h6i7mYawe9aRx//T47unxeFqd0FZfVqwK89TqleYgZ3cOuHqsBh1Il1KEqZuHFZkcauZtaek+SgMAkqq/SUUgEems9khqibuvq4pIoZKCjWlNyVTCHOQ0xD76uqXSe9gMEBO5TJVcApyciSEInkulp2VuLXV9twOWiNQ81SusOUlwpSrCLPNU+5AtTGrhlEudd4V4bdY86mQffrgQP6zNmbyZ+3EBpa+sBrA6tye9v9fCuKqqjmVpO8Th9lbi40oQDsD3dXp+/fzq6mY37Q6uETHf3Hz5xau/+esfPjw8vvzwo699/Rs3N7fH4zE9zIkoKQII5FbtB35qUpCnxkpen8qiFqqrBQhca82jMw2NuhqwQ1W7lWXXOjqfOX2Dd2OS4dIRMU3TuZ5B5/659QM/eXGI2JiZ21mdr5M/2Vob2+EwdBAdOIuO9s0kZ21k9z6IyA5XcjLXdW1ufOHLsFkPdsVFAiFNfYLzeHcK6U8gd4BW7VkbhIm5eRyaHZfTYTk1eBJn0q9IczOM+QZdVI//0SxrfMcLJtTF07YL/mv/Gv+xBwZ8+TIjygPT4bjAJG/Z3WW43IalFok5Oz9t+y0Zvibbh3lv+pfhvt++8/HeIz6dv7Hbe19/e2y38vISYWQR2xMuJ3hZt9iwb+Ax/s3fzQCUtf0lB/XyfQOZSb8/6M5m9Fjh5BFdRzZyguJtXZfFmpKHqmZ5IFPK8pEF3GAWqq6qSROIAauepmm32yVh/nQ6tfW0LMu6auoDe5gGKsvL6+vb29uPPv7K9e3N6/u7b//m9772lY9/46OPVenpuNK0+8u/+cEf/dn3//j7f/qX/+4v796+A+HDjz/++te/vt/vIyIZxV/96lc//srXHh6eXr9+XaTe3j7TVQsLto1j3eDX4GHwbLIzk3XMtwkOpq4NTcQnqWVKrVDVIV55FtMG4ATns1bZdjswEHzj/N+KHK+1I94vexSje6LubpaQ0rNw9+UuwPsPH1DWvqQFxDXsDOqMTXA5/7w2Gr08ACxkaytCqEYxeSEicSd3L2VQlFMIcCq9Ns6KNEc7akEKgAJmp2ma5jL3NRVQVTJC6aL3l6lCW1a4RbdNiYigsTHX0wK4iJQqCUJhBlHpSlr50mD2dPQwtzFBdQJrjB5EKnUjMckY5+3wa9g2XX4eST8aZr+oj0beGNtrXra3YpRj297soXl0S9093Lbi9rKVOUL/uS3YXzmwPTO1APIxBl7RFZzS2KPjUrMp4KVM0fFjEKIARTg8CsI4/xqxjZhiuHH21dNfPUG9OYM8a4j3bl9KuWTeXzjMOcDMizaiEHSXBcC5d/tcOZlIPNWytEbhtdbWDGm908/cbMl7unBHBzhFono5IMy9twCSbDKhMxK2YGzd7GcUFmNqaN0F1xl9EJANnJz1x9g/DPhQfo8+xUU2Wvod6jircCKplYeaXR4IRAy4hXKXECBOOAKos3I4mNLi8rzhqde6iGB4AC7pDMw7AOl1mxjTLF4Lg4m7kiQG29lRS2HuHD9KeIO5uzPlyKBrI0c4iIEAMUmRUkmKA5Y8iQSwcW8EpHZrjl25ZLLFTJvMACJCzYgZYeRRhmw6BhpKsJlxB1EwU/ejtssyLCJCOoN0UIyyE+ExSUU29NAh60RsbjQyGeauZUHB8F7gdSFNIiIyBDSZaSn0yJaesEPpwcxgmVFG/hCB06JlkIo6sJlsSwkhhZnZc0cUdGBJRARTFOJI+9IIqXPz1d0BTrOXIDhJpr2AINjHBCRSjJc4KDzCWmMWIgGXbh6D8bnTZixCPb8pIEwRKRvlBCoXvsobEJo4SYCJUUcywTio1Fomd7fW3MzTLJkLk6hHhDOl1DQxjLggSECFUv2RiHqnd7un/dhN8RKSAJ0JwMzJ/w90ccggAgtYiJEDHypkrfsnAxApKBlBm7OQlKDiVBxkEQAHCEWQlG92EEkp4ILJFUTT5KBmKiJ1niPiuKx1tz+29eF4WLXxbr55dnt9fS1TjRbH05rDHAhzkVIY4OPTcZ53X3zx6t//+7/86U8+WU8t+8zo+MnELADo8S1rVxBzLeAwawbbFfyd3/mtf/D3fl9Px+PD3cxe60zhReq7d59rOEvhWohIpB6Oi/spsXO7WkCUoju7uZ5OeLq/v394erg/3D0cbfV53hdEuOlqelqEiLncvXt4ejq6Y5rooHF1zc9fXEvB4Xh/XA7mrVO2GChV3d49Hn71+s3d0UHQhtXQsvolEFIZHk0jDXk9dEgUAeB1MRE3cxHZT/P1brcu+nR8dLPiJU1Iw80stb1AW3YcoAjKmblbO608zzKVbOgh0+hwUETapaNTC4mIOGy1cZDytvwiYAgNV7Wsy4SyS6PgNNtMmj3FEDbgXNJMAQsEd+18eEDNLWhumLysoW01ejgS1+b1uLa20rx7Nk1tXY67OtXMKx1BkKFWta7L6gjGYnhaTgUUc4lCdT812NN68ntdd/ub2+fTflfnqSibBur845/89Ic//ok6X908v332IiLWRVW19NbexMwBNjXVtRSeSiGKrDkBI8fxeCjzNE/7UguAUM1mlAibteh2DJWZPVI3dc7zY5vVMBeADRpDgrHWukkJhLctkKVUcSTlR0RQONgZEBvGEb20i9RHyuwzRm+UGJIFj/dxoohZT3S2oKluET7NNcJCnYLDyYO86em0UBED3LOl0hNcEiqlZFZHkRMSzrgvxB5Jp2LkfcvTVIq5ebgRNOywLven09PhsKxqCLMEcruZt5YfA5cH4JYUurfLv+ZJn3kWkFH9PezIZYk4LhdnIzUhMEOyOkXdEG44TxPgo+MPAYYLyIBha1JdRISYLBymlSuzAGRmEO4Q8Z7tdKMsH2NYp4uPFxFh6KZWmcn24dvfKlEieVWbF9SW/CBvgZyhB9sfLhOJreICEExqvg3bRYSk67dlFrc5IWPIeV6+7Pbgi4DVE0YOABPV/PzMnI6sFCileDS1thyeDk8Ph8OeK08011prnXNiHGEAmcYaCqCw7HY7ZkbTzJ+zHp528/XtzfH4tKxra6211UxP66pON/ur4/H4k5/85Mc//olGfO03vvE7v/e7V7trX5ozTXX65Gc//5/+9b/6//7Rv/nis18hpNT5xYsXu/0Vc9ntrq6vb589e/Fbv/m9r37ta8+evfj6Lz978ezF3ZuH9djqJISc1admSiIoI4eZAgsRMlMih0yFmUWhAGJd7f5hP81TrXDXtfWEk936hIFyAYwKLv1LkDOSiGhrxo9kRVmYgQhUSCjCIpKi0TULmTF+MrzEOEgpr+d2E8eSuFj21giStU1EuCWOr8+3mEZyFlFKoXCEAx1kxAQhcOFCgKmau3JaEham5XjsWAnvk8p0LmGWwiwZGbUPGyhFUeGcNmfJAnCyREwEB3BZ8VN4W8yYiSN9ZDtzKuJ4PBDRXCtFoQDBhYsw67p0iYOE7PbTg8ws09ds8Pa1nVIuGixca9Xw0+kUAZGytCW7SFvOn/uRjR0R3m9Ndj3c3YZBST4zKaWttdyGfEl8yA5I2qZ6h/uc928WmJHupBiHpG8TFACboUBEmMZqK3GUUkSSyRvMRCm1g/zfAJzDQS4ImKbPENfKVHKhlNx+v/ZBcxuMo/nih0R5wkpelLSfCbinxlX/kpyq9wDBGZ2VmaeSu3d6JATAyZUiDGStWWuVuUqxbdwEkAfMzbQWQVjedSHOW92vUfS8h3vhem4e5BNiyPcjQrURUeXsVLJHn0bmaZua4DFiDFNPtvJ1utVqSrYMRX0/K5jnus7ES0YBTBlD61SIQqgI5WruDcQcl2Wb+jIycOGhZwG4RaSQM6doGQ3tijM99UxDTaw/A3AOsxWgtAeLGLKQw4/Hk87mHuEJMz+uC3Dm3mA0ybZ6lQdYYrvmfXFetGw3CBYBwd1U9rI/1MEkvRVy7gH/rQEwtiC3RbLzVcqJMYEDIJpqVWYds2URSa2XbOmv68pD0TTTsua2tnVXixBn6yg5vaX7cnFP9QI+1LC3OJ2vn5l7dog9r3keGYM7oQE3N9dwFGEp0jnkFMLiXiyM+mIrnmsipcbCE4kPTgN0CqK0bDJTGDRcSGRTSswBKYA0RkvaNoEAAahIDTY2uIuU2JpZan7RZssfbhrR2aPNBZafy4IKuEglInaorQAzl2maAQ8NM+dsTo2YtNGJ+xLqN/Sc8m5nX0Qi/RBMDJqmnarmZF4z9CEcHESFk08IEkahSH+AUkmEuLpDLUzgRk6gUj0RKAhi9iIkJYWJaJosoMtCtfLVlTVdju3h8cmZZNrf3NzM1ze7q5lIVNfTaXHXUKNUejNf2no6HBn89PT0s5/97JNPPnl6OpbCYfAYdwNbonVetODcgNnps7ngw5c3f/CP/uE3fuPjw9svwhpYiGiqu/3N7YcffPRwelrNWmseknTWrihr3hChpqqCeHp4fLec/LQeTsup6XFZtLHFym7Q5d3rd7tKCD48PL768svWUItwna7p+Pyj5y8+fF4neng6JpXLgpyYREjKsurdw+HdnR8NZQd1mMH7KQgiUjJyXiMKcRINCMbwRPo0TexmRHGapcikJQBWNeZWhScpQM7sDAAxgy0NsIWC2DEoVUkozcYkAQENQAqnBUWEAQA5COmx1QsD9NZVZhgiWVYLRkqR5Rk4pG/59J/HOCmVJQFnDgS60zupQxXmuDusT+3+3f3Tw8MTyxttIWXq0lClHJ6Wp6djprxToS59NPcRUADEEEFhFpZa6/X11W6/t/BTW6UEs99M19P1TLWsbhp+s9/fffbZH/7hH/3kx5/MNy93++sAH09HEpaQjpPIcqrrESgoWTYR4QGj4OCYpxoR1hZyZ5IxPnWAyoUoXe7NxEsDabO0Ce8RM08ymRkhhQOk1pq7+3IeS0M4NByFSzb1MrHL0JOHAzOL9FN9y3u6BgTBwsMc0kF33IWpz27qZrbpKfS6YuiOLsuS8NTxpTbyLVhKhHUDj1RjAyJbpUGBrGDNEIWYuUiZxNZF47iuT215OB6ejqdlWSLgHjBAwy0NRuAI9vMp5xf82Msx5uXV9j65BS5Sw78dEMfPA7BLlMl2kvvFBDjOHLz8AOeXom1lpO6mdKOa7fYZImUrMXQZLt8IA2HHCZKiNKfxwbHP2X5Woe+lkfntxsT1vflwvib33Pt8lfJL9QbiRWp6WSf7MG64vFxb0bvlS704+1uP8QHG/Op9nJqZRVbI1HODkpfldDodn9694zJVEdntdvv9PodQwuTOTkEeGkZECx8THztNUxbYmeUXqukoezg+auPWWmoFPzzcXc27dV1/9MMf/ts/+dNpd/Wb3/vtMl09f/HB6fF0O+0+//Sz//Ff/s//+t/8q3eHe5lnCt5P+2mabG2ttVrrs+ubDz/88KOPPvrqR18B8OLFy48+/PgHf/Ojh4eHDz74INmh2QVEdzBC2sNmUuQbBIAgFPM0yRTW9PF4UNXb/VU6em641gSbpiiJhSdCs9+XCyT8xZo8b3azpM5vRYdsg+K8iV29nM/bZyMXYCQS21//9kIlIl0XGqjPvPLnJTFQfhgDancvHFKE0FEq7o6L0VfSDLdqEBlfiEaLHsQhIEASIj4QykAvQMjMOEPXxTYXkdPpRESUGXuch5ED+ZjjDI8IV2tYs33mWX/wGckLdC9AVe1EEhEishwsj+CY1zu76hhn0Qaxicwpo8+BUuU72bmJa/MxM9+OOB9iB5f7NyJiXKi8BfmOfZBLlGsp5fd9kPl5A8506IqbWcaIUjkFxobAfsJeEQGKAIOJQlBYkraorbmBw2vN+CXd+GS77kCWW33Z5NKUjuOFw2I0cbNgACBDL6qb0AEMt+7jSiJisIxKo8pJ1ymISFE+DQ69mYl7KRMM4HHAjYBhZghCX3LnGrunEXnQ55nPLiJ5uvdjsYPp3dw5of7JfR2Txm4SHcGdz5Kb04kkuhgytkWPIbqQMX9UREDvGgQxpdtgZ7BxkBADnFzhAVblLhaNIlK4v9F5r+bf+lLu9ygvNaUr7kVAIqJmVpmHrm8QIQUb1YyGo28ynZhZiGkIpRAPhEmqhkSIVLA4KOBBSOHQmn6/0ekHGb1Yeqjo96jPfSi700TU4Qb508497aAUosxZ+7HSTxDfiurYXtO77PG5KhMRojBTCxRiUx38ij7QIcrSK+2RLuDuac9A55zBHVyYOF2zwcxMhYjCXIhZSIRVPSLAISLTxNv5SKPNKSJLWOaenh0XpLxyQNj6gmUDRvbBzcIclo2DCPNwSrKAhgcsjwNIt/cmdwMl5VgsLCIcgfBJ5ojUaQdxOALOEc5dlSo8gnJS7uHhPITUAmRBFgQKYhKwmWuEB0rJtUME1pZwssKcyqWclOkspLOJk6iItHhOh0kiDgukCZ50EX8bBOA0YslgpmPTElHiXbPSqdOcZuxMICk8gnGUyWqFiMISrsilKAPCUiqoruaaaixcPAIiYBKpQeSIBFenDLgjPKDMRHJytGZPaqelXT9/9uzFS65sjqfDaVmatmWuOyJKC0Q4VtPTcVmWpRJ/+ulnv/jFL47HY1/nPXM6z36RRI48W83KVHW1aD5dzVfX07e+8dE//P3f+k//0d+j8CpERZjZWguCcP3ggw/4qTwcDqfT6bSs5n48Hptb+swdj+30dHh8uCuEUHv35vW+TKpxPLXjaUVUYbdlRVtESi0FEQ/3T+/e3oXCKRY97p9N+yuZd+KwdV0ibJ4nFgkODTo8La/uH97dHVZHAOuKoMkoQgxEYASFDzWzMVDKayBwJE/ePEDkoFXd0ZpmTgOzkKbBMlA8Tl1VOMdXWgh1CP5PtRaRrtbbGa28acu5g8LSKjNvghRSDTerhYgZbpFaikRSCjHcw9TdnQXMBE4xi0JE3rI65TQwFmlMHGTZ4dLwthgxmsaqdLq/ezy8ene/PB0QjuUEERChTtjPVcgQbnqsEwlDCBExlTzKvAgaMVPZF55KqSzXu30t5enp4SnUfEfPnq0UT95ePd7B4SxxuPr+v//3f/EXfwGmj7768e5qf1yXRVsZI7yIME0/n45qK0SEcNdw2xBY+2m/aDNTuDOXbvrYETp9NpgN034odkWKLDlqoqwzmoBJ0qe9a9pl+2bakhKMzjgR6jStq1rSUnp3mFI7AKOxmJmihvY3hEV0dYZAIOV5S4W8x7jJP57WlQUI7hjVnObIub+fOQgPpF/XAulzKqcO+IGaGSLHUR7qEVSrMLfWWviqdljWu+Ph6XRc1FLvX9ysKzqEdUGIfqb92rvj/UnmZb/eOnwXoAvvomzrIwazPjp9F0F9/W+ltY+k0/oXO5fKWW8lsYbHfYlUWLBNYEIkWJpHmJZS+GLG3rVOcpEkcpPRhznowhXCEt2IgJC/m2obA2aZ35+IIjjn0vlPPOg86awz8bkA3rJnZhauCHVrboZ+d1PMBcIR1CzULEgdHBwhIy/fJLXzr5tB4PnQxmUnoSMOiDinmXllsqmUojPR0xgQQ1c9PD6+K2Xa1avbm71dIQoKU0cGd/BfZg7LcsxyEYCrKSsRQSmL591uF+FBQBgRzaVOpd7dPfzkxz89rfqt7379d//O393tr29vn5H62199+Sff//4f/tH/8ubtGxCoxn6+Wdf1eCxXV1e3t7f7/d7MdFmFa26V57fPfuOrX2NIa9aaBUOkE676zSFnJFMjBiUx8XHhajyBRIzRrHM+d6UWlsJCSPl5pG+FBtrQec7raReFbqJN37vvWXGZEUeObc3Su3WzHEciC1hSFDl1Z1z6mupr/b3baN7z6ggGCNANAgBs1AwA1jTL0V6GecDcQxsrS53KzMRuAc8vEdO06xJQERFuoZlpuDcZBHRhVCpJQQwHIRCW2DQe6kPWtl88T4DDWoLeEhHJo9USQKld3TFGB8G8qa5zim9HP3SyTYPeFoRQYVCQ53XLfZBtqWVZLYJJAt5a65kzQAS3Pl40s45Myfo0W045Y/UuEbeJJW1n8ra/6AILnT7A2c6+VOQah0PQxUF2eWDGeLm+iwOllGkql0dErjIa1Rp88EqJc7hVmR0hFBRd7L3Po3tdQczMKSqQnTZ3Jw4Z8zqOICZhYXDyyLMCrMxra25dAxCdbRyUMGXr6MvocZmIaFnW/X6fa5Q4CgsJhAjmHPAABWcQp2AODrNwAVqv86nrV4tQTs0dkQRPckr5om0fSDcOgkdM0+xq6dzV71O6ZklK7/RdoaaAJ/GdiLJsRScLMXEsyxoRJAKcW639tMgqtZONQeFwMm8B7pq0vdsahWWappLFydCrREcBZQQRTv2hBHQShTUIC5ELKNjJw3mrDM/BMtFFEVKLFHaH2qDlMbEIBcjDwwhMHER5nBiXwnzWmdgCRtbVADrjeHzODL3ggG9DPyZiaz37cUcLR5g2D1gf5EofIDjlhNbX1vJFC0kvIsaYGhsm3CniLEYaEUFmbsm5IyI18yzOKcTFSzcuS+hdZziEk4+iq9Tss+YFzzjeL2aMbIw5W22VmItUibZaGvMkLyizOBHJroU7suYPIFMWZyEiFVFw+uUSETOZSATnOmkwEBVirpN5y2O1AQIUEPWpqufLG5PnOMqhltAR5tq1oCO0g0ojGhQR7M7MzbCsNs+lR+2gIPH0TZViEUtb2tqkxG5mDyGWqLO61loZEGI3JWaFhIcQIJMwO9GiZs2IqEpVEEmxjd7GVViM3NP7KMDEJJVEyNmhjoCwcI0IT/lxKTLNC8nB4R6TiAyYvZs5CaZqwNJOZiBwKYWmeW0tLeOaUsv3IQ6GSCEppRQwm9mqDeaFvLUGSjYRFQtRPZ1Oj4fjBx98cH17u9tNi7bHp4enp6dlVWv60UdTLaXIWB4ec6mTlDdvXn366adv374tLAYzdSYWrrY1tAjvEXyklGlnsYS1Z1f73/jah3/w93/vn/3TP/jud769HB8qE6oUhEa4obUWRHOd5XbS5oHDsqqGazMzEyJv7d3bu7u3b2Ypbu3Nl3eFK5Msix3uj7sdz5XcAyG7/fXx6fHN3dPN9QupEzMQ2O0mYkR4sxZqazuISK3XwXQ8rYfT8qtXbz97sxwddQaxnBbLPhTAwllO9qZCBNwR4bkfmMl6mx9wgL2IrOu6rmsC6WsRtVXVa00DA4AiEx13zz6hlDPkqbBQ5g9qCCMpTFkMwSzMTJAu0R3i0UxbW4KJC3FC6y2ISXUVqUTsbk2buZcqtRICYCoyRQRjpTAhqizMIZJcd5ZaSp3X1lbzddVmfFr8zd3hy7c4nUAMZqhBFxTBpFhObTdjN5GdLBy7fQpxmRApAoxaCjsTuLCYtUXdycskTuarNbe1teO6PDwemqKW6erm9m9+/JM//v6fPx3bd77z3Y+//g0NPB4Otdb1tAilQgc8FF5KcQaDpLuaqlEEcZduPC2HcAJLESbAkj/NKbhARGnxzRjiRldXsyNCew0TTJaSBdblt7YmZikgonVdtzF4IqPTlGJptrRTAmspgUZFRk7s7sFIH3mEWgvf73ck7O7souzMpReWZu6esNIex5nMlQFyVrfWmntvIJZaA10MnOEb7jpLL+IIggXFcF8npma9yRip3xFBIcI4ng4KOrmuqk3TuRellMQZwTTJ+dqBMwHyzXVlCygjx+uDjstQuxVlW0l8/oK/9ueuH5iikn1OcjnRArKR4ZvWJ1G0tjJTar+kvA53a3re7hdn3zxlAVl4iHpuec5IU0ggyZQej+KEQB8mjM9vgRApObbKBIS6uk/1WMcoOq0czs3vLXWmC2oVEciDPNCtjEHhknwJRmG0BMqyiggHtoHwxgnfjpTtkmbVl6OQy593pl3HDmaId1VFt4mCqmYzOmuA4/H4eP+wv74n4Q8//ErppV2AJG0QGQCXVR2nkww/GDDlNJiLTNM01d2qjVWthQOq/vr121988tO//P/91ccff/zixYtvff0b3/rN78zT/u712z/7oz/5H/7l//jFF19MV/tV2+2LF9681vnq5oaZ1bsp626328+VADN8+OGH3/zmt0uZmoZ6UDqWYMD5mIgkwsgNTg73oCyI3D3C2+Pjfj/Do5m2Zrq2tU438367RxYeTHwxb99KXMseVpfChLq5OyOG5kOfVKWczbaSt4MI8NxQ7r2UsKaFBBvA82Ll5KNdKp5crKKeteKsL9M3Y1OjSFJ0OAIGc1dTrMluKKXUMjETI8J0KL+M108xKTdHhBOzBJHCYNqaicgAbJs6SYoLukcgmNLfq3/sdelnL4MD/cwIGMJX5cLBJVwBSAZBV6ASRSH2czfHc1kyIxWRqCMvhrUKcagu2pi5zBMHLcsCIu6VKRFFl2jJQVm/vG5NwRTuALqvrwdtCspjjLwdyx3PEuHDn2zgSTk6O7V3o2SoBQWdyxkMsreNdgkzw6PWWoqYWWvDcxiJlgQnLQ/wMFN3o1prZaFaI0JIOgjJvAgVYk6lf/IghICEhSiksHM/+7ayh8zDtZkyUZXCSCahccCbuvs0TVKqs7s7mHqfLpUZx1TZ3YtIW1dEzNMUEQJiFqiXQhrBhmE7L1VKLfPS1m4317u1lrSvOnFLgRcMBeGNWrAJIDEsLHs87orsWZ8DSY9F2/YQkZmoefKB2TQiAsIi0h3LcgiJnDBJDm0AcPaM04PFndGVhJk4UFxdoSIiU01zCHiENaBQErO2yCI11aHd1DWKEJcS2iKMmeFWZap1UjL1BmZ3l7mmZBoRUde2CuJSM9iol1KF67IsTVVqTTEidPpMABmxaCrSVNMmA0wBNgdLVYs04M0CEujC3aVyrvhAl28SBmdotBYkaYDuzcBSpIS5sIDFglozCytcpUiS+CuLlImI1nYKQylDSy143GFWddVTrVUkaRwQKmZ2aAoSc6p1ZmY192hTrcSiy0rR/cdzEU7zvJsnizhKNXdXJwiBvKlImUoFjRrSzYNk2nMprTVynWpxdx5a7SKTqZ2WdX91xaWGwwnrulp4nSZIacuJCterfZCcjoe1NRI+nU7ZSNNFMx0spbCiMrmXHHRUPlOvl+MJIGYRmcC+NgVARWAIAkypY8E8YGqdzgxIRJATMwWVmPgI8XA3Zw4Rkam4QRedptlK4XojtSrQVJnIUbhMXoWZWTTaaTXLWDlN+9Za00wXCFHC42RR6+RJdiq1VjkRtbW15iKFSdLB+6RgR+U55r2WsmprrQFU6xVN9GSmhybiERxG9ngSqdM0lcIeODUrqBGxKgcxmXAwOS8ahaZlbcuylDKlvpGIeGv76zpTMTVVTXK4qi1rm6YpAm3VWNo0TfO8/9qzFzdXO2Zmt8P93fHxUU2X01Jr9dDb5y/asoZarbUt61GXx6f7X37+2S9/9fnd3QM7CihAAmneVYYxMVpDgApDjaXS1dXpeIT6t775zf/sH/zd3/7u15flbYFOE5bT0fRUwtqqZvrQnkQKo6i5a3u2f46oiMeb69snPh0Oh1VtOSxPx9VNLNi1CF25FTMcn57cRFe7W+45cD1Pq7Xp5uX+2Uf7m5fPP/j4Zz/5NKcTt8+fv/zohZk1PZbC81yfPb92yP3h1bu7x8PqYCAA7nbT3tZwWMAJZeI6T5mcNFtaHyx5MCXaFgQKFi4iJCBySv/gyGkAVwcvLcJNmMHiHlxLAB7OoAgOZ2IWgjcVLlXQ3MKcKcDsZhGmqwFRpmmaS56BZs1aYyYqkgQsGtCv4tyWE4SlFHZv2lzgIu6eThuFmKQEGxNVplJ3mcMyC/N0bHH/uDwd7fHUjitA5f6IRijX5Zvf/M3bm+c/+MEP7t7eU8XV7d7X1dzcGGFugLJUsoCqMUMYYTYxiaCwaVuMd/vn1/Vmd//mNXTd23w4nPbz8lbevnzJH37jw4byg5/98gc/+2y+unn28ivLshAXAUFtt9tZWxOXNJXquuqy5Fce5BoJhDCByNzaupZS5pKOR5RCjA4f6XCGxA5UExEuYquWMslU3X3Vln5VwgJD2oGUUosUBJsZkRCkOyqlXRzk6fTkiDIXCekFGOA9k0teZRRmIXaWKHViamrogyMupTAVC49wdXcP1XULmo5tmJMq3mCWSC293t3urESPaJb6C8n+pVJKnVOXC+rR2sqFmNkiW3tRdiUKHW3BTp5Oy+PxaV3XcBcGGQNoTUOteTMYOCiBem4Zslm46wIgXROoO9h3yvpo90ZI1/LunYgxxaVkwIS5qxFlruKrKQucEEwaTiEgIeHoFDt0IvDGdwXJNGWNwCyE1MqBd4EIpkgZEcvBZqiBCxESV4ixltxdLXIY6iCAHTlONjNIIc6hlplFtpIlh5pTEUKP9UwCRJUSMCTsa9gxchF3s0jHBOHLOb+HLqe2NhGSImaWmDtXd22Fab+blmVxV29i1WuqIDInO4KIgrqZsbuDnZOuNvCfKd8r0jsyQcwiRKSrpfZP9sjcnQIiEkChaQIsYl3Xt2/v9rvbl89ewkm45k2cp52Tt2bOpIFaSjN/d/9ggefPn4vUxCLspIKlzjt9eirTVbBKqWW6amv7/r/98x/8zX/4rafvfuUrH/70G18nb8fj8Sc//Mm//J/+n2/vXs2311dXV1eJMBYiohVemFfTp9MxksPvhvAivKvT17/+9eub27evXtPHX1VfmQUinB4KjADMKIKQ+i9EkiqwgFMQldasV62OAJrqvT/dIKZpSsiABZkFCFOt0UmIwlxaMzVlZiBzacpbn/LjNKYUCSJjInSqRZg1oDuklspEfXKbOmuMTuXdRFsvEulR2bozOHzIRyMS6Jqob3TnZ6ol6cYKwEK5cMnt6MEIERam8KZmXDUGWpA5OzBMYXOto5PfnAhaa63CCFeSxIYmOKXbcDAlVBSXi7wMcjJl+wCeXYUiFIUjzNQZkQWeiEy72dSaNVUjojJP0zRxoK0+lQqnFDXkji11hieNdNrPO0zruro2YZ4KplLMzNwAZshUinuU1EoMjyA119DsWi6nUzixyDxNHuGuTOGh/ZQjckc4CJwkl/3VjdtjRATBPAECltNgKbW11rRFeM97wSA+LKdxQ6kIcZ6B7qlfmC0kci+llCIE7Eq1thIVAmUTMh1niKW5Z31UE5iCqLWWw+Ewz/PVvAM8B9ndtucMWyIeduTn/mKwEAsxJzvHvYjMpeZsxJr2AzjZFAFKWHae5slUHqaE1mHNPQBY00gbiwiPHL8SiBkNQAq6IjibxR5KVijMw5nIsy+R6hhFNpR/xCaPSdukdPt2vbExsAF5klOXLAaQwzIGXC2RRSxCo5O4rdshyOGeSrUgYKg7EBHV2l8qD2Gi3A24EKXcNkBzk0jmGW8g4YQIZvkRYhQEcunKnAR0W7kt4zFkT5sqEYTDPQhcBG6rtjBnyRKLpNvMapdZGxCpgHjnKlMpeZZphsIIRxgA9dabNyLpqpWdP6G0H+hIOU/fhcA0KrrcBgRxRBgoUbYpDR9gKpCUzE5hBqE+eko7FEN2tgEuRFHAqd7Mtc5gCXNDUJdeYJmqgKwpg6SIEBXmtKHqPeCcRUCQxWICZNybG0mfrDYLBJcyUQ8UbCBL9iJA07wiZUCJiKIWFLZajHjaP+dajUjDdVdPsNO6Lq5mK5wc4Wp2Std3pkOmGxRhHMwC4ToUblOtmjhYdQWYLOlzFAQ/Hpl5mnrp7kMXnYjCh3RNEQuf6kyFTq3p8UREDHF3Pz51jqW2HrSC3E9CUYowkXpDBjKQwxc/BDgXuqtZoLBILWtEc8AcbZFVUtotwMvhWKVcqgAwszM1grPAXG3No9DV1nUtpahqShnVOpfFww6rNgOm+SQiXIuUyTUWPaXCczEiiMvsnPqUHERM0QK2ttgoGxbZYyIubrbqqdb67MOXH774kBnr4enh4e5wOLy9vzPH7vrq9voqld6WZYGHhbfDuq7r8fH4q88//+STT968eWOqIpWoIJwggPFUXRtS2yMd5yYJKQZAyje/+a3/+n/zX/yd3/7Wm1c/L7APXz6fhCm4Qqi5c7C5matqIRZQlRLA9W4vteyu9g9PR332/M2bNw9v7g+HUzSbd1MpdZpsXbC0VRd3D4O3tpBHuFaWiFjWBir7/RUJ6eplxm63q2Vuekqvxecvbm9vb9/e3b97e3f38KRWuAi7abMGUDdYhjCkUp2mIiUylQz2xJMObrw7iHKgJDIm4JKK8wR3eFchDFieQgCQLOs85ixIPdg1zF1XChixu3egb7ZIHW5dxMWTYxBBhGmueb4rQte2agOXUrmWotbUleBSsKuVWJyi1prcauJeNJKHa6vzFMQAq9Hdw+nx6fjwtBzXWAwKTHO5eX4zKa/N91c3u+vrZrq7ruR2XNaJMZVaCgsXt0U1+ckOgic0ykLgqsZFpDIJHg+PtfhyOtqyCLPN+1Lu12ZSptvD093j8tc/+mRpcXP7nEpxA1Nk3utqzEVAAWO41Io+gU/NuPQOCASDiDmyNN3CnxAMVAgkbN4ALkXAkheUmZPdklEyg7sBJTMq9BiXEJssvqTINE2pWJGaPtlxQ7ggsjGnqmqK6Np7RJTEYHh0cJmUIEk/AndHZ5gLM9L6QupZzpcLERU7XsYjcYKpNjcicsqFZ2HNL9hDqhpBpZzHpwleSxkFrgwmj2hhLFLmqsvh1Na1rURSWFrO8VLluntvuLvDjSL1/DqOaXtH6lB/XM7H8uF6pgpfpii9/MucY6CVqsjgFG7Mi9684LO9ytBcAwMeQ986nDa8NBFhiPXmzACBtGDOYc7F+GhTrEGCCIkps+HUEhMEpRrQMMWB29D0ik0vhZmFJcUigLP2RwYpGcI02/vGeHD4mPAQwwMOCiIIRRWi6BzmMFeoBwqCwqJMRJSgUFwoevS703EEfqZrjQeALlR6YVt1cTuQgo4poRTOurbD4fBwd399fVtrZZFaZq4F7lwgtQapdgBgN2eqUuZ5RmfV1dvb5+o4nI60LPO8e37z/Oc//dkvf/nLh4eHH/zgB29fffkX3//TUsq6rnd3d599/oUIffTVjyOiqc/zfFoXEam1zvNMzMfl0FpblmNYy8pymvirX/3q1c312y/fLK3NBZB0ygTcu8fDwCrHuFJdKKHvPU+CVAjDI6VojutiiL3wNE3haK0ZzjK06LSwjMliCIAM/fCS6IRzZs4gmyYXGMkzgNaamRGHe08y8+Sxpj42yN8ugLe7KSJh4W6pATGyvvN+gQczOMcqgJm6BzSiZjHXP49HwMbxRFkGIFXf3ZMJGsTpwxKFCeRuzQ1hmqiZiNTK4lqKiLSlhXmiRLYPXIRa02yKZROJiHzULEjSQE6n3dw4oSsEpAiCt94X9HDuyb27asfOAkJgBMgoPFSjKTjCxNoSTOGG2KSVCUBhEYFYaDg42JgLO6iUIlS2W9x96ZgAqHsHATHVIhBuHjgOe8hRbamGau/bjivQKwjrcIEYBSNtnSwAFOe6ic+NOV1Xg5uIdLoMceKWO9KTuiDRtpfLfqpMyPk7EdUqfZ0mGiFTxu4kbkCISDgR0E3eYhxbRLWU1N0wS92plO7pKHkCU4orZRkc7NE7ITkKzdubvQpKDQRwFwvzzZcIAljOq5Gg6q5GnFPqbOJG9LQAHVuVHZbI0rPzGykJkn3ZsdC27Qc1iZEO1wDIgaDwcAMDlPrJlkl1d57lMiSZKUvBRMznO3Ly11PN0jQbogRiEcqleyGC5aNXQYnTSJwECzG7aVZIqZaWM8ER3s5o+/x73nIwKDTCEFYLAyVbDwP6myeehnmgj8H7ydWVG888JXcfblADdkIy3KEG0CWV+riKCHeyPjalitxXoz+CLdIjPFutZoZB0I+IjsbAGdAVERtdrX/xJEYN+ISbwl0SDwEDUAoXYrghIomyGgp1dy9FANrc2CLYqJ/qwz4apUwRsLXlJ2HmYMi8IxHTZizN3QJNzVlIKEXNiKi5Xz2/RZEW/nQ8ntZl1bZYO1hT17U1OJGwmy3LAlCtKRHs4eShWeaLVGYUrmYtgpghkIAxlVJKmKfjyNpORDTPlRmqSoV8qF9qs9aaiEz73bLqfEVEdDgc2mk5F8DuV1dXdThJiIg7lnaa60SCcF91EeI6VwYtbZ3rFJRe1rmmubBzNtG6NWOOPlJbnxa3iRnqrbVuXZZlskedJgBqK6PL7SzLsquTmVGwSA31hE2au0xV24IGbjJNZoi1NUPs99cRUSfOz0MUIuTuZZpGLNg2u+f5tugSEWUu826/v77iyqfT6dXrV29fvT4cDoflVKfp6vbm9vaWhCN6Aayqy+NBVR/u7j7/9NNf/fJTfTqlfYRbdxlxOGnXIMwzzEHKDIZp++3f+93//l/8t3/v9377Zz/8y08++eQP/sHv/P2//5+UUoSquAYblwKgRTut6+AEMkUU4X2dS5FMoE+PD7u5Xu9mTVRVa2ZqFqflkDQzKik3GET08PAgiHf76/aNb1xfX+3m2mx9fnt9e3tbJ2nNwnTe1w8++ODm5ubTz3/17t3d4QCZYpqm5q2Zpk58Hp9caJpnqXUjeDNRpwlRRz5HDAt0p+iMVBCD3RBUiBPACXMHSVeRp8H06lB+CmcKojCQN1UCEVXmUGN0QaZgypzbzIh7qs3U5XxtPI0Kl1LMHZx2AQGiWkWkWig86etElCUiS5Vd7VREU7RlbYdGUXaVm54++vCj6eraudZpv5i/fvtwOL775Kc/ND1cX18zwtelVplE1NZQJ6C5uXbVK0ZCiMGMtXnA51nM7M3du3V5YtOraVqbHVn5eDo1v37+/NXrNz/62We/+vyLOu2ePXtOIqYKMIHcws2nqRBI1RCeEM3WmqqlBmS3/nPjDGBcANJucTtSK/S2emrjZyDKimSrlLbCQLgWkTDvbgTETqCkZDKf2jrRZO2C4Gqa2UvSX4wCSYEDM1GuD2+WxVt6xpC51BrRjUsyAJmn4Gd5vzaEOwhpwhhd2Yx5czu/FMsBwEVyhKKaRe85cvWvmUaPhUoRMBmMN08dSLLBEkLpTduyAGlKkqeUbujm6OXq6K3HloDIyMEQm6799qN85qaackbq9vTgHOudkFZ543d7Qs+eyKmLbG9AzOLX9bfyU+GiVqcBCs1eZPoeXFak3WIgmEWyP6hdM/KcUxGdE9ZIx8qeQlD+U/bb/W/9Sq63M2B1ZOL9OgiLCxEZTMPRn8nMhYuXCObWTF0V5hIeUQp467Glbf0Gu42IzdZlvA5vS327JhtKc1yu3C5EnroBBW7NfF3Xx8fHt2/f7q9vIHx1fb1Jyo10i9UciAJWi6fDiSD7q5sqkinfPM+319fuLoznN89evHjxb//4T37xs59LocPh8PPHhy+/+Pzx8TGbTdO8v729nfY3ZrY2c/f9vMubtZt3y7K8evXq/mv3b9++fXy8//DDD1Ob+9vf/uaLF89/GZ+cloNAihRMTIQUAyVmd7SOe8wxY6SPHXXV2/RjB4sQhas1z7eHlKnUjn6ICJmEmZ27KKRk9UlEHm5Knm7alsZRSUyoVdw9mbJ5x7MFE5nEp9uMBzwoQEyRErudTZqV+eWZMLCKkZwBl66TxMQcuQc7j9eICoOEz4I7wqhZmFlQpsoRnfMY/cOEh1vXiKHC2ow5LS0SIaqG3hDMdDSh1BAxEEKWtVPw5CL/X06HiG5QHBFOJCy9RRLCRCwEFA9LhGkp3I3rhNQ9Ub8JneDoht+ZcXchZcDamhoKpgr3IkIEZQKCutBQmDZtTiTTtIsI75IQ6dTZhZXoQoq/nzyBiCjMug260sTV3LoFTyfbJv7GvR8pPDjBw3Cs15hDO3wUHFnuOjhtXDunpEsrsQgJSe1SeVILh5RSluOBx0MGPh9AmabJrKXg+Nii58OXxzmYNwKgqcyRXRBzawogsewbnicihCg4iNgjyAIR5AEYR54F5CnUFKBACfKIdPwLJo01He8DAvU1HUhh3O1hEIREjnPakFLybAGAE5yclDvzkD6yHsurlwS0jX9xji7bSUdEOTli7zh6IBcEiTBRiv7nsuxuRkkgCTjjzOkHX2zEi9I0j49IpCxTrZUC8b5WrNTihEKpz9b7j0w0TZO3NUbbmIeQcvYOM0Sl15x3VEDdLHF5GMpP00RE2hrSo8c8AWUJm++yIBl3cUZlq2p2EABCjADMXSs7v5ePZF1ETG0LokxUayWizBZkiHJtUYGI8vnWWeK9+xtjGj80GwkQooyX2QdI4YQM211WLlfgJj3dBdlLzR7IdrsNoW7CHMmHDg5KJIJFkLnO88wRsPeCH/FklNgfDvDKglIdZPBVDSxlqgoGsK7ru6cHfXxYPdRNU06AgkS4yHFdPTE8HhbWKOCu1vdR51GkAj4rM9fStX/zQOdhWSSgKTxvkLsfmyZlg8tQDREzC1Vl9hLU1A/q7t5ai1Ro1LW1Ns8zVmXtfbsyVSJSN2VlKmF2bCbQSZgDh2W9JllNYQimSUqQUKzqbuZgCDFLMgKEVTPKKCCgYx4kQuSxmppGCRCRmTNwam5m67ouxZl5rkLM5m4WRFTn3TTP4FjXddHmxFJKD35MADi3QGsBI5Y89stcKk+q2tY1whJemO9yfX39/OULkbqu6y/v7t68ev3u1ZfH4zGpg7l4mJmYk7YUEUn0WNf1zZs3X375pR4XTq0vIiV4QJjIaTTOCCFlfyW1qOq8333vd373X/w3/4d//p//0y9+9uN/9+d/9vLZ1T/7Z//lN37j6+34ru/T3O/TpCANPR6PDGaWCDVvqtbUbV3dbD/vvv7Vj59d7e9f3z3eP6iv2E1tPTFDJtnVab/fMWaKEIJQ2LK2tobpbipE0RQiVIXzUphZKfvr6/1+3plFa3BHIeIQIh35MWolIqEqXEoQtDUzA5wZzF3Mo/UcGm5gjnCjMHISIkpF9bDCxYg71obOqpVM7FnlULhGBBcGM6JwBFqgIFZT1jwLUktjU+HvCoUYmZO5Q3iaJi4SERpuiFIKg1XVQgVlP0tQESJgh2BVPTwe19b2ItN+d72bXePh8Xh6OrrJRy++Uqb9u8fHVf351bPp6vpb3/2tOk+f/OIXX3zxxcP96/UAijwqA24hRBzacliCHLSlFxrYSUAi1MwcZra4xX3Tk0xMtq5tbqd1sYiXL+fV4/NXb3/+y89JyvXuRkTW5p2X6N3UF2D3bvXh4jlHdQRfjBnRZfiCWXox0kFZmVx02l4EVFtQEJFwoaHCeg5ho1ZJpWVX3ywGsjGX+yXTst1uB2BZlj799iBCIW7jIzFzbklblZnrbi6lLMuS2EhHWEo2AjTkmqhITly3CJWBo+evadRhlgOtbXVtA21mplGj5pWx4bAiIkiMJUEC+RZ53jLL48MhreDdPav0ZLX5aB0OMvMo+y9avVtgpYsk/bIQ3Z62/XnLx/ILJvwPFwXw9q/nsnlw6jKH3LKy/pz3x2Nj6wAX5sBbvbcVw5fZef9JastyIUnBbRCRE0W3OT/nVHxRSW6SottqBM41S8/wxpVzP2vpb1cjwbd5HSw5rn6eVXaz39rY1A3uvqqKELtfsH/9EgZ4cdmpI1IvcsJf+9aXtzIfCaDrTlpwb7acTk9PTw8PD7vrq+vr64u8SMBkHUFHqnpcFw6IyLIstd54qI/Mairlajd99MHL5Xj6D3/5V4e3b59/5Ss3+x3g+92um3ITSZmI5HQ6icg0TZnrcneosoeHBw99/Ru/8ebNB6/fvf3GN77BdSKUjz/++IOXL0G0Ho8zFy2lxBj6EOeciWPoHhOc0DmGEWxIGdvgHBS4u3m4OBZtdDpiEK23pcWB6BpO/mvLrxe3MAqkqNg8z5mw+abRMy4gkIl337fbK6cubmxSoBd3xztgof8556nbCmce8kBwJh4FaqaXnhgWEdkUnlPYSHj4cW6rWs0JlYOZq2ybMT3JOnlURIhAHiAXiohobVnXdNnIIeqZN5v5GI8BHkb2HhEemlhLzvvSR6NciDv1PoGNuTgZZo3DhbYSMeeilBKsLFKZEujDTHMVhKUgPCcVmBI65Gtb1DpYIwgIQceP2KZlFRGttYTATNMkRHOpGkm5cwZPpdpQHetnyFgqMURqI4LGiQ2gXFqsZUM2x295Qy9OyO3sEkZmaI6Y0POBRDzxuA7byV9aW1hS9xURYd4GDrZTLzIRx9YSC89ZqkdYesKzFRYfhxcRMffVjOTBeiTFaNyX6HDYiM4v40HdZmpDJWJEkO4px9j4YwSQgISZwUnmybTn3LrLj71iNc1wRWMUbeERqcqH3vYEEWBdU6G7W25dE+nOClnZsnm3MMlf3cT6850juEhBauhFj9kbwgkAeV5ATqBdYU4Pqzz0tw1Qa+0CuJYVeBcaKbVaOtP0qBHZjMg8I9cgwZki+sGViWBC2oq7q64iUmq1LN0j0ixERIowM5s1GkggCjBFxjbV7n8bAU2oGAWBzbH5BHoQk4hwqZS2Q5HsbE7kRU53XfobWe75zEYQIiLDNdGIiQuNCxO9FxR54pyTCUca40YEaq3ZzUlDsNQ2dLeW6hcIZpYi2aYXZmKCdpmEgfMRSr0lJiaZdjWcTim6m21pYp52DlJtLRghTWS6vq5TKcLkSlyklmZhZvr4uJyO7x4fm+pqmolUCpEFgZP50PW3YZSU6iBic2vm4yAGm4caq23nvjCngEAxZ9CxqXS3IZieMsPDmpglBzTXICxcFxZpa/OuwsqmlhZ3proej9lAcXeksLbgFF7CEbFYCKeYFTWSg5l6empi9QClWLgDjCAhCEiQIkU9DlUwgzR6M5iFiKVOFGrmDmZ1b+uqazOz09pEpKlVzY5AiMgUfnLd7XaQ0nmZUyWXlsMlDpAnryAPOhFyV6IK4fDgQhFiTU+ng4hMu/r85Ytnz54dDoc37968fvX21Zdf2mkV4no1T/MMoDVblhYRIrTb7RDU4HWSh8fl9esvH+/v3Cw94RzhElxFiEtw8ifXRVHl+vqmucnu6nd/93f/z/+X/+N/9Z//k8ObN3/yx3909+7t/+lf/Pd/8A//QfgaYaHNm8KsFmbmqfhqPE3VYcw01dJaW9qqS/N1WY4rWdzsdiVifTycGFRlP+/MQES7qRbmuU61cKity+nqar9ShC1rO9SC3VS0tOurXYQtx/VweDRfzfa5MHa7HXUGFjLFFy4i2hTzXFNGLwLrsq7rwszTVEQ40UPH5ZjgZwRU84KFUNRsKlAEGB6mxkwgydafmQUD3ogkEWXoBQpUhBlFxMM4w74pPAoVEspsKUcBZiZ0LoCJSAqRsFQBkaqptjJNne4KCGi/m652MwlL18yMw6GLJ+/2V1dXV/t5Oh2WtqxtWaXc3O5vPvzK175TpqbOcy27+e/+/u8o4u7+S1v3f+/v/Nbnv/zi8fFJ19VJTqdGYfMkBnB3JyQSCiKNIHBQVBKuDKS7IlZDmlceD/r8xrRamfa3VL68e3j37u7z16/n649K3TULVaecjFOOt8W8mXY5kOhiRMLosYKZgiTDTCQtc+SGwT0xSrOLWitJTfxFCrIzs+n5wrrljJTcwJLgqMRwpQJJMHUflNQclo6usoSWpLgOM1euUVKbrJza4u5NnRnFkWIQzpI3K68cpYQMUvs0VNUv8agQteYdfhKGUItmShRcSwpNZ3Ha4bpq67o6SMqU8UizfiiZ9oSUQhQpHJAqek31/v7e0EUwyI1HApoQTbM28JAOGLCBaoFN0TRAQHbWtp9vhnZ+kfz92sPdPbPhkcb1gI90OuiXIfvUrkpE6TOUTY4Mo/kpcIHH3l6e6NyIv9hEkbx6H5TpTHeSY5IFcEbmrJN9vF4mk9nk3RKz/gcBcYCTHwiCMPoQvH/9ptSFu337xWxuhnuwgNXMm7rakJchyhF9EGqtqrrCoTCzZkU2AwvmrWDmAdAdZXYOVi6m6B0KB4Dcfr30zadwlyKPrZFgZq21d+/eXN1eXV9fqxlr2+/3wtyaMxOxJJcSTYtIcz+ty6SziExFImIqFbv9fj8/u7n96x//hx/+zQ8wyPza+UG11no8Hj2sFMojet5JKSVcM8XIGgBP/vDw8Pj4+O7du0Xbdd1p2LPnNx9++BKF1dYAcXDKsuaM1FIrjpkofMzAsrPDzClYm9rbafugSfZjMeC0LBFxs7+apokpTL1lE1IQRBGmpkSSbZEgKlkLRrLWzc3XdXT/R8WRo54O/XNs2ApmHnGmV62Uo9nLyZNngY1IFeheBVqA3YMEiYonoKTarHecScBADDcPj/5huoNvarBFtP6KEZwMzzDyBHLmYutIVwExJ6dfw5DnNXc1zej5v2mmqfnY1TqPiVG3yWotW2y1FCRKubsLt4ho8Hma3DTckWxnzgE0k629skI3o6OcJwuZGROXWpSiqSIwMR3akkQFEaGabS/KmQoQzIWYoqPNPbU+YpPcgxCIHLDwFlyEGWIRAYsQUCGWEuuqYWYcwBAuHhDoBNliHE1EVLv4SIo6wT0phh2um7N9uqDrujsInCfZ5vbqvpsqtjHt2RMgyv5qzgUXQ5y6k4yHgeeWTORDh+VMRjJ411TEaLcUJiLyyBGWiVM43HPK6UHUNS2yGRS9V8iUNX1UFoe7qrm7dsYSBGbGQLKawym7PYWk9bO2lzBMiHQ28zBY95a8mL7WUjN8bDEgRonVj/7A9k9I7Xv3PoQlpyDyAZnaphacbxFAlDIBOSGEbbtuRKyMB9kQKiMqAB3LsW2AZELS4Khsh/J2+7colQE1y7PWWvqOzPOM3jnTCFPVUqb8IhvEKzqWo8OwtzO9h4SLb5d9k8TQQ+jiAWbuhhbE5573CB6/9qDugu1nMFJvl2RErblutkNvuzuX3zf/H5C+DcfPc+lO0/T0tGyfIeHKOZ3bRs2Zk6TIU7NWZEoQdfR2NHXQdSl5/T2i6VpkYikOPqjKtOerSfYzzXWapvn2GkWUucDzS+7yFDu+mF68+KhZU717fHjz5s3j4SncTqfT4XB4+fIlxuCFR39UVYnELPI/eQU0ggPpC9fr8KDwILU1cvLTpVbdo6mFkxQ3jYSYBUGIuQic1BtPc8AT8t0Ma1OYi5S1WVNPQKkHwp3cShQLrw4Aqq6Ax5KHgDbrLDuzU1sxhvkBhqNBm4GhXewzTES0ba6P4qHdA4xZPetfDqIgJ44qNW/96mFtRXBErKrHZQnyq6ur3hxFUBESLqXs93suMteJKD3SAoAwwGTWzFqGMUYsup5OpxcvXtze3u52u4eHh88+++zNu7dPj8enp6edVC6S+B6Z6ib60r/1sj48PLR1ffPmzbt37wbTtaeNnV7icASzlFI8KIi1ubF861vf/uf/+//6f/e//efXE/+//m//13/353/6d3772//kf/2Pd9czlpbOtu4uiWchIqJJCu0n9Zau6a2VtnJq3iymZJlC8FxqtswAzPMExFQFCPEMBb4sR2/aTkdnPjw+3NTdblfpZr3e71j4ZFjXVW1ZluXp6Wm3u5rnuVaIAxcdaOnqHeTwPNJPp2VdMc8uhYqwFHZ3JhKEBcJgBgsThhBxDrIZHGDmw3FhEmIOSV+XnsQwbwOi5F66qxOHejCiErsbeaqDIAindZlK5YQzEg9LDDLTUkoCGRzh0YkYda5N1SymuYjU25ur/X5HFLXOqno4HCNsmkst836/B9GrV6+WpT0+Hojkare/3u++841v/Nb3fnva7w7H4xdvX1fo4fGhQm9mudm/XB8Ph4d7aCuM0mNw1rZwwImRWhhGSeQ42VK6R0oURhEU6tz6uttdXT/b3dwGy5v7+zfv7sDTbndFNAcnZxWqCuqRuq3m2kopweRuBHARrGsEzDz7Q4P/RhHpdYzsFgHw6IOOLmbDEt5pvRHRT9E+RjsXw80cAIS7PcQo5DLQZNw6nU4burhPAAzGlGdGUk2G/o211g6HhKuV5AwDo/+eTph5kpvH+3PJfAshyXjKxBxOToZ0fhtvTWe7OkeEMwkldGg7xDQckpVwmAV7OMJVl1Xdoa7rqmfer1miZmw8+vAqs5z3sV2/FhxpgKcugx0PYBcuAt8AAqcV0HksbPbrA2TqBnb8t35OQHekxK/hqON8LS+jfyYdW7qZ1ycR0aM6YSbOirwTvobjlJkNbi22pEL47J7V+7M+8o10T4yRRg7l/8sPj5HCXiYb6NqowsyZ2mcm4NDFm2skJo4o+2E9hvKF+872CUdzpN+mLW0A4AMBsd2yTFe49Lk1gwqxsZFbW9enh8en+4fDzbNpnqeI2O2E2JPy1IlwCBYpJYBTa1dqtdbdvPfQ2rVq2Vb7yY9+/MUXX9TdDtbBWQ3r1dUVABGRMYqstTLzsixMsX1mKSQih+V0Wg53d3ePj4/X+1shvprnjz54mW725OZBw3aKiMi9f0HrOVHXgU/NVIqKDf0RYRJMJSJSPtnh1KjNNhMB6R82+L0A9wFiOlpEErvynjq7eYuIlNPbFtvFUgSNPHjbp8JEOZseSxfYwAfvPXpUoKA+d0t2engn93p0GCZFl4Rz1TXPRk4SaGawABCq6mopfCUikuM0c8VCwQ7vEF9mCjPm8EiMvDd3gtQJHd7s7l2//cKaE8RhqkEeBochyEJNI1yBQm5E7DC4M4WHu6uraEKviIRBkWArFQa5d2ijOyJYahWBt4SsUjiDEgJNzEXImYmEKAgsQmZouogIR7CUYLI0lMlJMs61SW6KWmt2G3v2HMHgQhzm67rWqYtJiW9l83mDJwLi/fKBAFAgh9H5YGagU0guTy0RSXNN5BARyNYkBo4gLgyi+lG23++Ox6O1hog82pzDzFI0JTzIg6kzQCICZInlIqCKpAO6dDtTID2CctDqLsywQLcISBEGJGJBOr6drI/SAylUF9TprIF8SyDglKkXuZPDEkRCAfJ8d+YABYMCsK2PmNaIQM190oG1wBiLd9I8IoZacz9TzYmI4DL0Evo19uwooYyRdaK44UTM2YDKt04wBp+RV+/FIWaRbgVG6X60/Uo+1D0ZChFMkK6uBVKP0V7K5UJExIUqz+OwCBGeS0FPCBxdDrdXc6VwKQx46U0SZOSJDLDu6HyM85Q1R9acJiTWTyURIQ5k0s/FI9QjrxB5uDvc04y5u1yEE7GIuKXvYBBFD0VE6ImvRzgzeEhnRfTG8Nghvc8EeK75jhthBiScEtaL7BMaSEQKFSoAiKlp42AuTETmllyklFHJJIxTPK5D5Wk9NSKiIuGuFCIUxIvT1X5XdzPvJq8cUprwErYsK4poeKzrPM/TNM3XNx9dXatqazbPeyIpZTqcjnByDV99aUuIlVKEgjx0aeHmA5NuesaKRKAtKiIQimGwwVnIVhCRhTbLG2gAq+dZpxEB4UIMMwkJAVYFhxCbWaoL5eubp66JprdTWqZCnTzMNCK6asuqGPurTlJKcbOcO1EpwawjNRk5U4Z8FLKLqCaD28wL00YIz00mpVK3lYqIcLVcm1tjuLUHgzFzPdTkO03TFK7zbhfz3FN2RLiySICsqZl11FwynJmmWsLtzesvX7958/nnXzw+PnZwFFUiiSAn3k+7WmephYucDsfjcQltd3d393dv37x58/T0YN6yDUREGBu1p5hEIVxLDeabF8++893v/dN/9l/9d//dv/jed7/9//5//N//53/5P3A7/Zf/xT/5vd/7HtgRjQJuFptYTlO31SNREh7dpKwl98nVZimaPjbT/OzmNsyPx6W1BhJmYCbi8MVaWwLWQ45IAkQDVoRW+PH4cHU9lbTzbNbacjqdkvVXa6W1Ra9R2KJnIJoMI2KPaCtWRXrKT3OFKcJTuT1t5s4IG+aLxrznVFAKc5UQdoSlTopnhoRu6Z2IiYhcoIUACvn/0/WvX5Js130Y+Nt7nxMRmVlVXd19n8AFQJAASAgW9aRHlC1KXp5Z8oxn/uD5YHuNZxYlWZa1xqREkSJB4nVxX/2orsrMiHPO3ns+7BOR2aCnFtZdF32r8xFxYj9/D4OAEjjOpFsTEQmLdApnJkI8+ulCrGL2lDgRWoyEEjFLTjymtJ8GEbq9fVZKiUmTOw15MPjj49PT8TQN07ib4HWahjHzNPDL+8P3vvc9I/vFrz9/9fDm4dVxL3g4Px1PC8rZ59PxyccR09ivwDB02R7HKkKxlvJoxhmjyDTk2/14Mw3TkLJwrfXZs2cvXnyw29+5Qypubp+nfHCM2sjcmZNp+IKZhaSYKq0PkToElGJGGdE33AnXKs7BDg63CenpoRNGtDk4VFW6VJW7D+OAq6RARETibnAjciHG1nO5A0hCqhotsakyMGYBUEojIneyZvHu7DDznEYRkXBVMzd3OAmTNdcWSp5g0w0p1rGFF6/DHpRExBRwsEjO3pUiiZuWaE1Z+j4GTCklbdSCxkeAsBGar8qC7ghgkogpmpbzeWmtaTMttdW6db/LsqzxSTdkU++srjezK0jPzLo+9vvV3vW/UyjuvH/Nt/O8lZvu8YxeWuuo4/nKZzjK1HiF6OO2X75uLKkP8UHXHhlYu6GYYnFHWrWohMhAIGIRjvZyFVEK0ZYUNEQwkXE0bLx6uhobWQc49n4yNvzhYdk3x329DMBDbnVtHY0sQG5kZOoh0krORMQ5iVt2alqs9XsUReY0TSI5UQDAyE1pXW/46lj7/iFft+UUkfk3mcDeFMIMChxxNW2tnc9HYn56ero9PeUxSSJmpJSCiEHCQfLKOYOh6vOyzLUAziAAwmilsvrJj3/+538+v3vknBefY7wVF+dczsEsqLU6KOdMTGYtmDvMrK0FPvF4PB6Px9evX3/11ZcvXrzIMuZBnt3fAmZaS4GwJRamgdOUUjIDrfwmeDhkgkjidrIDCu0yMCFZbmZWvapqcmL2UsoZFDgmb4AD5hBi5hzOF52qEUW6d8IISKm3Qz1o94uv2JTcQg93fUCC4h/zuO2uvfdAQQHEFhHmgSXZhnTxKwF/YXQldgJinMogmMWIhxyu5t4NSj022GbaCiFJxKTAMUEMGs+qO6ubx4xIEsi7+oQ1q4GsUDUSkcSS0mVipbW4t2pVIJw5NDGZiLOs4+IGsq5zJGwOq9WsIrz6mJzgbm5K3a83so+bqYNgQt0H2LQUII4iLaVIYLXRNfkZaN1jNVOoLYbxoTkciVJj0Lr9QqfAdI4oEbk6I/oyUmsGa8VcTZgDRs4WGj0pZMA4nIK2rO1rkxNpPSIbda1cVSV0cSgzYwc7lKm2bigVX9BaKNpET4fr59fM0tPTEzNvO8PWmq8r0MBymFm+Uu4VEeva086chDiO5hZPicihXpXccs7NNQZ77kAXH4N4t8x29O7LzdSbu7duvZAzCUAarrxeicDmcKgr1A1EEDAnEWdxD7160fBy8L5QCj9eke56L+FPu9asPcBe5n+X7w4gMTnRKui1cqHNQCyJE/WBxBYoWTK68TS/x9q++rWYn6dVBZeIWqu4CCSsD4DVTrGJzymBhfCekKiHhrUPSSklq42ZhTOvfoAR0CVfQPYAojdrrQUaLHjd1yydeTnxlXaIrz9DFxO6HCAzU4PkFDCGWitdqfb5OpKJQ1Vrdfcs4uuu2zdIUp8a8PYnsk4itgsHWDSna9bv59NdiYSJHV5rrS20Qy/qppeDntKyLCJyc3OTc45PKyLzokShLQ4O3X8nc3JFXRaZht1uz1mLuaZslPaHZ9PhpoGOWp/mZXHFcVi0Fdc8DqU2Vd2N+2masqRhGA7TQdX3+/0nIlMevvrqK52LTPvHx0et7cx8s59yzq3UZVlUlSQ169uMtgIaRYQ9VFbsUl4wO5PBQ3V422DErRGRUoob5ZxbbE5EhmFoVpi5BevbIYkAbzVwpHBDwWqqxty8Sbh/rvUWXIhCHcyamlLZ2lrTWuG1angDxOd095QSp3QsT6rKzpJzzI+yVMm5wjgJOUKZPMrNuDURIou2tpRt5M8dbVhlyIn4XBZvOo7jF4lub29vb29vbm7u7u6iUEgpz7XWWqMoO5/Py+mcc7q9vWXHuzdv3717fHh6PB9Px+MRRrvdbqk67ZMzbZ8kvt3xeFyWZT8OzHw+n8/nc2ttXpaIekA4RrBHbpSchqxOJDKOu9/54e/+9/+P//t/+9/+X378u9//+U//8n/91//qy1/98vd//Dvf/dbHgKLMdT5rK60uXhqRs0nzVrQUq82Lk7nTcp7Pp9mqaanluMR4i50DSTMME5Go6t7s6STkyJzPx9PxaK3UNGTABk77NAy7Yczjbrer55N5W+aTyVpwrNJ3QSjVBk9htWWttWJ9GFnCzxGohk5INJ/yMFtxaM6ZyOayuEIE6hRmtIGbgpqicy5EhEQgDFJXdidnsMHcTV2dDNo8jCskJE+izCAKwpbX1rosEb8PGyXf7/YIZ2LXnBKHKJTpeVlASLmLkrg1IeynnS0LwZNQZkbmaT8SZGF+uZtePn/x7u3xi19+obac58evvvz5X+04S/v4049+61sffPTyJpHOx7ff/Mq4td/5znfF6ec//4U6DrtJ3UoplNZVpYX/jBjCyxQMJCAR9sP08u7Zy/vbu5vD/jBFQrl79pw5v3rzaCgkA8BuVEop2iTUKImIqNYaO4cUecSVel0JzslNTWnNMgng0N5nZneS5MMwdCKO2XwuZh4WStIJMEpETSuBnRUIDSruyShAXGEx4AYK2rcPw7Cczmtut8h9uupxqFNrTd0IQkzuej6fo/hWVZZERG7UVsJexL1wrHVmdmqlggl2KXaZeRhGa25azSyFdIxIL6B0TSbgrVkFmJJoa1vqcffW1NxD3U0SpZRFRN1KrUXb8fEURHdbfY9txQZvP37FTMZVA3xdnW8Jui/rus6oxbiBrzNgbwliM+wAogDrqRCJ6PLi24cRujQDfoWi8is03/Wnsivo9XWN2Dex/S6ET3ITEUl9QeLk0RnTKuZsK6yx53fu7D6EyfDVV9NVvej6w4TfZKl1i0iBj+s56Kri2j7YJQetb5pSMoVwdlG3zu6O87A5U2x3Ta6dKS6CcNiKB1t1ubef7QOYaezOEokLEvG5T0acmXe73TAMQrxltWHaOQD2nCXnrKpLVTN7Op6POM7zkph301TnhQYfcv7mq69B5GZE0pqlBDOb53mccq3VnHLOQrwsiwO5+0bC3UspaRAROR6Pj6fjw+PDN998M89zPoy94LfOnkviKSXmJCk2F+gcaYitIvMASDgnaUuJr685SUrhRGFm6tZM3ZAan2dvrd3upv1+r20VxPJN5hfRVsFDaOvSOMhGUV13Ttu9iNHwdZAnc/VY2Pi64n3v9OKKUMDMZjWWHFvt7ev9juIHILMgJhhv9m+rmPn2wKaQxRIhc6iZ1zB1IqgAQxYNrWc3Vif2BEqc4JqYmMVj4USm6uxGkgFXa1eO5mBTIrApCAlEjMBeSSAfDeaVXJ15+9zkJgAxBmERDtnpMAnfvrKt+jK11pxHhrfWltKYOQ3ZzeZ5llEkJQo2iztTSsndKMqMIEwroO6JmZyYyLlLJPbB1lorikhKhNbVGSJrt1Kj/+qg0abB8N4QLttzHfeS3l8Rb/GQmVprakprv23urdnN4XCcrwTziFZ05Eo5WZ/63hcweRi3ujvUw7AbABPSkIeczYw66zICdBmEFW5QJgg8ONOrWdu6mnQwhRwak7n1njP0Zh1wgaiZw7qRl3uSxMw5JnUWM6Eu6yGOeNIAjJLGJFVDWNTdLAEsYvBaFjAlDqktq6VGvCtzZeYhS6kVxOYOj31IB4+1VkLrKBGD+yckJ2ZSODlbbz57XR7RXFU1VLdAZqCuORQhm929abFViVfNUkpDHonIS9vSbVBzr7Ndj1/aEvkgSVhiaqWqRVtmYZZAmCeRnDPBaq1lPo3jOKTBzGpdeiYQXpaFVnBQQGu0lgjqzJx4iFgQT0WtdRx28WF0NYrAyvyptRL1fxeRUhqYWmvNNJq9ZVlaa0HfDyXbLbNujTEzX9wXYKY1lCq9Oa+9q0Z7xpyHbGamMZfRnMZguYRZl6Pv+MO2yJ3YmdliIngd5kTE3IPVOS9LPE5JRFIS62sLVk/E0sDAkFIzVZJMiThZSoHKUs4l0fF8+tWXX3zz8Obw7H68PczvHmatnIRFAtTdSj0+vdsN4/39/VNt8zwz85Dzfjce9tP59HR8Oi3zicwppeNjI6LDftrvxtNpXmrtMHV3xHVICeSS1vqGXCJZWzPzqqBEzGm7ZYnCjMQ5oI5atTGAEFGS1MmdWmttulZglzwRos5lrWCmNG40Noc2vaDazDWKGwDaWgxTUnf0NGtBACNrVlpZ5hldj1Gd2OBFDUxK4JwScXOD9qOyvcVWGEUKbK2ZUy/+qmptSy1MXksxs8eHp/3+ze3t7X6/3+/3d3d3d3d3S1koSWZ5Op3fvXkD82l4prW9efX6fD4/PR1P51Oda9QoqjrusroNaceSibmpPj48hc72NE3LfH54eHh4eHj16tX5fHZ3F4BpyIO2xkZ5nOZSz8uiIpTztJ8++63v/5/+8J/8iz/653/v976vDf/2j//4j/8//6+c6Ec//O2PP34Ob1qOpi0RO3HKg7Xl6enJyFz8NJ+alzwOp6fz+Xwe07gs87uHB4HUubZmWTJIrJoWdXUQj6O4T1pqzllofz4fzezm5qYu6TAOpN2ESnIKslxK6XR+zDml1B/8lNIwjQYPNg1BVAtYEvlStamlIZ3n1hryCACBCillJnJmVK2tORGEKbrfqI2SiDMFWAaACFMSxPpXtZmBScCJxdWqNneknNxUVWGeWMhDYyCTqaklkXE/uqsDtVYRphj6iO32g5mlxIlBkkUkIAPTuK+M0upunMYsy3xMhN0w7sbcSq1zbUsxVWvuavcvXtzc3U37fc7jze2bYRjOT8dlfvfVNzpNlmVx++0PPvgA4Gdj+vDm9ic/+EGpPu6fffLBh7ucHx7f5ZzfvHsg92m/iwZmGIbj+TwfZxlyTqnVJbFb9THLJ8+ff/ji/oP7248++mAYs6Qseby9e/H4dP7yqwd3nsbdu4cjC82lmZlw3u2mGC9Ow9hLEGjTlohFkrvWWohNRJJkVbegFTm5tWm/8+48WGutto4UISmGldGaJmEmaa2xO6+Nn3Ae8sApmTVtDeSZkzOtfFAAtJzOiYU5AQi8ibZm7iyptB7/hRLQZSbHcSylhNZdrzgJphocuyDxDpLNrBZdao0l5HXSVDWzkjgH+K2Ztlqjio3ZYimltcoc/TXHhrW1NpfS+ywGMal2V8nzskQVXLW9Oz4ty9KLKmfX1kqNC6WtWGvWrb+i9Y3pwHstpffyIERudctQ2wjYzLb+MOo2Rg/pl36P0PGHa27NaVBVtRYvHk1MAIC2SpS4E3/cbR2CxB9c+rptSRLpoJS5t5Fmm5dV71q1mokVk5x41X/qKzY1xE7SPXTC3J1JhGUF79QttgMmQt5CbeYiZtM5gcwb+xTrwkBVnbhZcyDlbGbzXLx7FtjWWnf6nmIYBq2LgmDN4FyjIKT4RiusnhU+18KcWBLaZqPFUfH6FS7dOZxL3lsURyUGYXYfhkFB53mmlN+8ebM77O+e3+92u17jmZ3P5/3hcDgcIt0QVSUy16enp2d3N09PT1nCxUAOu5vPf/HLX//yVxS7YkBLbcQyiJktc42dRGutV9cIBgoPw1C0MbMpjqfTOObXr1+/efHiV7/+/HcfH28Pz3KWb33r0+fPn7364lfWshbSwbX5fFpyRhoyU3J4SliWJTRcAAih1ZpTCgUN5tTrXyIjsGQxci2lNYa72cljOzdo37XEhilwpsLw43Emot1+9BX5zCKB1I2nmkx7HZgzmFtrWuMV1lJWV7xPeOf0aHDZJJE5M8E0KCE5pahgrWpKSViIO0s/pkixzOtsc1fVqkZ9fhHFpFqHQsFzSq0105ZTIhg70jhYLdM4MnNti9YqIBaGq5ufzvMgOY1DkHOFpGmbxl3vx+wigiXhlJOYwKa11QUc5Epjc2Y2N23VA2QhwuQpiTO7k7Zq2lgkhXJnV9vxcRzHYWKS0HiZl5pSYkqAldJYWs4551FN59PCzOO4A6dam4P3+5tlWdQQzFRhlkGsuWrjlFurcB+EnamU0prFNQzblMREkjx1q5ExT0urpm1ZVtYqkwAsiZm74IhciWM19RZ4TSfpT24pBdaYOUtKkmDqAY0lLMuSV8+CFKbYDAap2bTbJeLNf66PM/z94d/1zxYj1h0pyJTMY5/rHvyMdeLy3gBS+yTN4E1Xphz1w6cB0U5EROqBOFIzgYTYMlwDCQiwm8OcybvnD8GJDN0GmkiahV+5oWc0iBBYVJVB5N38zqHsiVex/sAbW1eA9JRSh7hAI2H358choY/2/oq7g0JEBNG+0TZRiDANVbALEYdIaZCr359wkMPNUxLvG//L2HgcB9q03QBsq1ER9qAaJlv10DYSOTqxxza8ejOTuM7xpmu1QKte4nV6xro/vO5XbZ2+rwn7IvjcSwYWEs6S1nfv85XtjX6jjWFmXj0hCL85dV7vSF8dl4BkJBah1ixgbMIQEfdYBG2bXhZJIoy2XLNALg3Vmum37xgPFWQAAQAASURBVEhECk+DmAFm7M4unaDOkvNIQoX9dC6LMO+mQvJuPr356utm/urh7VLLzJTqXLVBmJMwszYDMKfEjmPOpZScOjp9mqZxmna7XXzTaZo01J5qbXUpdXfY7c2hWpt1bPmYUm/24oT0i9YDvIXOiplqH9kCHJlguxHrPTUAMIYrnF0Nan3vkQjG6pZYDA5eD/QqtaKqdDk2lwvb/+QKghgNMNC8sas1U3KQsKsZvL9+lDhd881hzrFghKlql5oEzD0MrgOTF+Qy6/hMMnhsflTVmhpZfIqm9m6ZH98+5JwPh8PNzc04jnkaY+f/9PR0Pp7GnMs8x7BnWZb5vCxlac3gDpG08dmA1lrwruF+Pp9jE6Kqp9PpfD7HBTcCsUA4pUQeKhqUcr7bH2byw7P7Dz/5+B/843/0z/7FP/vRD37AwBe//uLf/PH//Kuf/fSzD57/9ne//eHze3jzVpOQNaVgsymYmQVKlhLXQufj6Xg8Qc0pu8Obn5bZFQyKZXsUamVpTctCmocE4OHhjSumaWLIPM/7m9tEKKfTUtuSqgtzSrRWvSLSmi7L8vDwePfs5MYiGVwi3bNkmKo2D7KTxUMHbciM/Y7HMUtyMwbA7hy4OQ7/Vgd1nSQHAq5BROAEJmOCw0mizyGndQEQjosOM28wM95lN3PVcBKltTh2dnNLDOoAUQ/YbUopZ2EOamuDe5I0jfnl8Oy0zIMkYSIdUkpMDvNlWbQpg3bDuJvkcHtz2E95DaQppcPttB+Tm05JJLfz/Pavf/pnv/j5ME17VdH5rOfl6d3p9TevX795mASHD16Mu/1+P71582bc7/Iw3dzciMjT09OylNba6XQSa15rIgxMA+Fu2H3y4oPPPvk0DdlB483NzbOXf/XTXyxLXeZKhDSMbjKObFfGiXSlmLrFUjNzNzVnV2ZhYcCi0jCDrvCZEEliZiZWrzH6TdFsiqibu7PwNE1pGN292cpbiXVlqdOQiTy2asxC6NbBQ8pbpxfpxtTX3X/fcJoFjOiSFi+GFj0fofQO8L0lzBia4+52FZGEmIRtaxd9zV9X/DSRRAQ4mSs5acCpmEW6xmy8e7UKheTEwqXV43wOmfQQFqa1X90m19sH7u/sl1QfQix09cMrs3HDM29JKq7t1vReZTfYWh9v88E4AIT3dibbh9n0hKnj/iLi9pXR3/7xq60vtpnj2mn7Crdej5a7GzXtvWviDfeIKxHgLZtfvvt7O1v/jf/aMxdfZqD90l3h8kJsDIZV5d18g76beTebZGb2gdy9ldndTR0rTi2uf2Ae1+vWi58Yn/8fXp/tJNP6Td092CV9igFSUE4p6FSttjQOZV6eHt4dpt00Ta3UPA4gNvNtEBCwQTNyx3kudSm7MZfXb6ch3+wPP/3pTx8eHlyVx5EuCIX+NVWVghAfwOng6zZVUXa4CCdR5drs8en0+ZdffvDBB4/HJ4MnTh9//PGzF3evvvp1v+zVCkpKQ0rOlNLAS2sb/j+8rYS5udYaWjDcWlNDLNW3u6NwUg0ks5q11g77w3bI+2yMugtDyrzGAdvGQGRuV5pG28GgQEmsFPF4RizYrbAO2V0pN9tdu1KX2xaJgba4OuorgnV7mtzjMQ9HrPdEhgG0pu4+jQMRpcQAZyZ3U1OroM5KNlKHK5tADe7Wmjd1YnT7ehZGFjKt2s/wFZhFnWg14yVnGIgDUl5Pc0SxOOSJiRH0wxCq5GJaa6nVBxmi+E8puVkphRAEfq61Ikq7lIdh6A1/bzgirbBZiEkzNMT8U8wqexyIrmutCT1aPr88R1dh0LfIRkTLsiRilf6MB3cm/nyapuvYGF2Yw3R9JAWdPSQiapdNTBAryEHsy7KEQV6nYZtHU03stdbQv+p/S6TPAt09dJ57ggltniD6UvAeQkBMzYxpNYcFmJwo5N0c5q5mHTuBTs29OlgwDof72HVDvFtpOdwvRulwJQt3387yFMCJTI3JiNmJmxqFvAy7u6k2ImISMycQqxKTw5L0EprRK7fMbK1ykuiNvSmIWEhEPLmZeXOge1W5q67ustfx3S1scxquelQOF0SixGhmzSxUcERCnYGZuZRi1gKntj1+3C2azOzy3I5j3oTLY+JLawMMjXwpzHBtW7Icp5BeMoCYU6CmWd0JK3hkHQXEGQWpqmGLGiCRJIJOursKQEBzg5usWIqeloRFxELbTeSSwMgdFjxqXx8GAEQIyIiRSfwJiIhSQLBli5LE3J1OW2sKJZLEAnBrZqYGJiD19N9nxkQQATODg83RH1JfYVSpk4Quqd0I7B5yfCuGJv5TwBeSM4pqZci0L0m+enj39es3j+e5qp/PZye009FOTwrf7XbSTYyNHYUI5imlVmrajdM0uXux8vz583E3DFMey0DMZ1XVtrR6Pp5LVQfLkF04J1JVsOchk6DW2rUXQt0NXdUwvAiEiDyMWJmJRditj2Oo7yu2WO8ePG6FNV1hTt3evaLGKobTBfpr3P05cXV9okNuWgCgV2WX+nstDEzhAiISdm5umaVFTXbROTAAwYUIrKqEIGikwKbOJL1l72G3edhgrzlJldzd0FTNNils02owmk+LwXe78eXLl3lIx+PR3RPo9HQ0M3fU1kppTa3V2Ef1EQyYnNBMuYG65p0fptHMjk9P7x4eHh+PtWrQhaIeQmcWkoLAabq5K3U+3N3+vX/8D/+7//7/9gd/8Ae3O0HFn/77f/fv/+2/PT/Ov/X3v/07v/XZ7W5AW8ibSIddWSfPi5HXEENWOz2e5tNMjjK38/k8z/MyVwpcB1rEaiFOItrw9PQu5wyQqTIlkdwS3JcWWdh8qc1uaNrvTuOkDnJbGQomWcz93dPx8dxAwkSlteaLmqtZa0bSm3QiYnIyDLt0OOzGcWSqhBW5EHfHAp59kSGMConBYV6ocFOoaydcmFt/Qj3kVrpsogMG4YDhGLnHbIRgqjUCh5l7z5099eacQwO8R2+hPKQhNI0pvO6AIQ05w7yVqrUb5h0O8YhOmcytjTmlYdxPw343zOcjWhVXRwHV41zIRVVz2u+n6aPneZDhr3/2C27t2x9/lHIe97v75zc/J90dDt/67Dv3L16cj8evvvqqzMubN29OD2ddlkTIDHYbiF/e3X7/W9/6re9+T4Z8avXw7H5/++JXn38dElatKktSdWYJwkhrulWQa8XXH1BncicGa9MhMTvc3NxDl8HM3BqtokQ99RuFdjsRwlQPYRQRyiChGsJBQnGHhrJHVB7wYMoxUdDD3EC1amgdB9/Vwd3TgSng+maBH3KDM4MujW6L8opjzrtpEcWknZ2IWm0a9hJb5AmIvZp1dUatTS+dlW6D3ahlNnwlcUqcWFU7w9B6ITSMOec8l6WUUlszs9oCON0h1PE51wWOhVvxdtSjlHVyQByxppKAxMUbs/Tqi4j6p+EU7kxblUbrbN2vwYFXMBk32hLyegYs5hp0WatyLy8Iv/nxHB1WvTYhv/HWYGI3XpuKOGwaat7o04Ze55ppa7h633XuIAH86h2mWYiZEjMJq1kXwwPUqxEycWKpoY2yftCQBqC1/4mU0VfuazkaXWXOwZ4DuWahcRzNrIQVX9PqJcrOxMKrMEFYVPjavW/jEsA3vbeV2kbM7OTb6KMzORJZVyMJfRf2Usn8dDy+efX6sNvvdjsfRmRPWSigXWSSN+h1qa2WOlOzKQ+11Lu7O8n5b/76Z+enY2QZdzfiagpTILsbkUY/12usvsKBmcGZEjNzc5treXh8x4yPPvroq1fffPrt7xym208//fT58+cwZR8A1uYEU+ozKWYeU3J3o9YLcigZk2mpS845PnUeEgekXLWtGgCttUoetMxSq5QFHfm1bk1cW61uNkgSkdZqsDTRJyYu26B/1XsjgMyFGZnWR8/CvxeMqAeY2fpq4HLCu2lwbEDisIbZSceR2VbqbEXj9sSJSM4J3QAJsmklqJsb1BwaehZwJph07xdzbe6MTlo0ZwWJNyUYmZpWqHXaJqjVom4heHT1sV1bA4wlh307ARIEdCYmCBFLENmd3AkGd4KRIwlpc9XmxOzhhoJmvcEwsw3k7+6I8Y1TM+eqvQbjvD5VsdKA1QZJZsYg3jAsDB4GC71Ug5GDGO5Mzkwh2xlkOe9wmJgzmgglYiO4U9qih4YPKyuaqzlbeM0MzK7mak4wc+7McKJ1gRejitUtxgOMbhaLU+NVz8jN2lIoZ1pbaGZuraWYI16v7EIOyppuBwIbr0NbtGYgQovvc1l+2qrZk1h8vZ3xcMZox0N12HshDg/2iBhLigVQbQQzVVewM4GtL6JQtHU9RXcCcWwWnBOLUi/lhdDUFI2Y4Z6Embi5hgYaACbKLA5iBKP2Am65ThjXi66I3HGpYztFFDbQ4BhUJIIzyAzMsKACkhAJSbTWTJeJCPo7rgn+Cit19a49zoZ8qJmrXT4kegggCmiHUWgArnNz70Eh3tSDIdq/aRAGuujolZghdVp/XOq+WFszYqxT5nkGIFdcnZCfU+8eZdgIqK7MvOo5v8cKXq8AtmwKhJ4ZpbRaV6/rBQAiZIBadVcmGYbkHo1x2R1uIvmZWbgLxgnMOdHa59tai2//3L7se/VEx7fHAoEgwDCo8OytJtnf3/PN7ZvX3/zqq1dfv3k77iZ1MyIjL6U2ayLJRtPS+pNCfZbXw6jW8AZYSgmlgf3tjRFef/W6YxhSQpJiel5qcjscDmkclmVZloVMnaBwrCpQ2yO2fQWhzprBurOlC53pCrsV2TqGqestCw2RuBNq1kIKvoslMRH56iJNlx1+xwypuruiF7XRyApoVZAMjAgRNcdqbB6x8FJmkRGRt6s2eD3lAmrayKi6e5BZtijkgROBqq568t5M53kOVlUMpKu2IBkCdjweeaZSypiHQELWWnMedEU3+MUotdOPt7y4VT9PT0/Lsrx5/frx8XFZllorNtfraEJAxOJExVzMdzfPPv7ssz/6o3/xX//hP73bTQ68ff31H//P/9OvfvbT2538zm9998Pnz101lH6g1d3ZoX0cDncPXVlr2uZF59LcTqfz+XwObZIoNRoanFszZh6G5J74zKpVZAh58ygTa9N5ntnMa3kcTs8ONzJOlIe51bub/Whj1WrENzf7u7s7Inp8fCylKKian5alAZ5IDcykDjcXzpRNVXPO0zSJCFkxxBzU1byXp5TATOQMuJHBnFdlXIKbm4V0sznEVwBO79/MudccFgM7JgacGV2Tz8g5iqPQWPaAD6hba05EqlWtivAwDDkLJwGZuGUmAiRJTvuYrNWqYZ0izHkYch7hbq1mkSQ05rTfjbc3u/lpqss8nx7fvX1gxs3N3d3hkIehLU1k+OCDZ8+ePf/ogw+dMO52v/76Syd6d56+/urX93eH//IP/v6zZ89+8Tc/EyuqOpA+vfmaC4SQCQPJlIfb3XSYppvdtLs93JhPt8/S4e7+/sWQp6NVkVyqkmS/6ojco/vkFQPyXiIDddBrD48IfgS5s6qKdHOg2rq3fErZkGutIYTG64PQWqtq4zim1f/WzIRzwFxhvu3QzDflYweT5CRBBSMSYU5S2kXns6c5s2spq67p4O7oIWJbKdDapdhquuvvIVBcWzOimLBHtORVsrHW6h7O9l2XykPqj0PgsxfEHYRMkMwk7IRqWlsLMZRaw8yuo511k2S46oO3YNtrB0p+tercbtB1ZOYVu8vMcL00t1df7fprYi3YiPqAnt7fW0YK2t5x+2WiTZNrrYCvXnxL01sqV1VerbO2pGOrO/olL5jr6luz5dztG61VhFy+Ncl295Xey86Xe73N5QG6fkGKwv9Smm6X5frjxQEAkHMupZBIYJfDNU22n5yYOQbx8TrbTdmuxjawwNUlvfr9zcRBAc+SCV64eHJrWs7z47t3b16/vru7k2f3IjKI0JUGdXxl45Qz5lnHYVQ4mMZx9/kXX/3pn/1HwIexi12t72uRHdZUDwBoILns2Zqv2Bk3IppLOZ7n12/efPXVV2/fvh0/3j1/8ez58/s4G+TrGjZQv6W4+zAmuBNHj0cZSIlYxCFEUKumyEzC2Q3WNOY6AqoBSWNpbslQa805B3LVLOSU+wo3pcRMZureAETilthbXND4lzu7nZD1wLi7S7qWJbuAR7a76e4ezllx/uMarrgMZg7n+ag5CUIUrav2A79CHbfzQNsuCuauDmvNo9RPQtpiAWTuGrLm7CBzFgoIanfh0qYO58CcEAN8hVtk8lpLSikzgRO8ovPPPEsOqwNXWHTaRMIQ5qrVAOE8DaNoUPRbQlpqjWgfkdzdiWTI2dwBqqq1KpjCcwF9OxolDRihp9XXFSyUkpj1QDoMuTZFhsa21qmupbtpWLf2Yn57oGTl2wtg3XpQa2vTOIrIttlCU1VTVR5HoS6VRmusoI3FEItn6wEdakmEGQYiXw0P4sz0xeuF6wGglJJiAbtt9twd4fwucHdeYc79f3FiYmTG4F5PG8O9JyMSYiH20AoP0nnUtxScgJhZxI63h0ghSkKl1aoGWCx8qC/YjUAMAUvzZtrAKV4TBvfGIY7ERBwTgjACNHdjye4GtdCEdW0kPOTcKy3vK+5QeOu8oC7RFDU9M7hD9fp8iIh6/bVKikg8U+7RUMad9kQUKlZqzUEOdsBhMdKKixk6O9E/xM78Es0RLW4kO10Vmg3gRClSLREJXfZyS63MHHI2TZXM3JoZ8rAzMNN2siVAHWk1JIgkata7rDhh2pd1MYqzeNQBACkeUDBZtdYahIlT09rza799DLE1yvdQFVcwxGe6bLiZu61GfilM/VJKZi04IcMwNDcza2adsb0+CwBCgjIoRP3WALG/75yuq6a3RTLuD6oBHLLM7MwSMF8yJs/s4CWxZzFKaTfmm5uj29dvH7959zhXXXxmhju5mWoDTIisal1amP2IdKwvM1dt1AoRDXliyJvXD9M0DXnKqUKSs0BcBsqTttaaeT0v0zTd5IEd5Txr6fbO8ShFzbcdkvheioABMhEqNLoFAAKJo8gAYOGuZn2FwhwaORry/wRs2hkW4r3h49FNXJg2Xs1vFFoe4nYrjog7bKZXXzGguJLLDxSSrLMg7rWWR0CB6pbXuducetegXmMfNVOStcoMf3Jzc01DNvfSVAJyqzYNQ57GPA1Fm1UDMDJVbfN5aa0tpfYXdCMImDhlStJhLQLvLtiuqq01q+Xx8fHx3bEWJSNvbubCkkWExd2LecqslIoamf/wu9/7o3/23/zTf/KH97uJATb/5c9/9m//zR+/+ubpWy/yy+fPxsywAiSQu+nqax+FuzevnYRvprVpK03bcjqVeeE0iFD8MZq7e/i1CiOJHHb7YUxM+enp9PjuaKBWtarNpVppuszCfNjv2RkktbaibRiGUcelLSkN07RXkqXUx+PclAii2pojoDSqfSTM3EefEVJATuzoFFO4k5oZOjFQAOYQp3ZyDogRgP5XKbaxURPE0glG4STnxCTUkyh3NIcbHB76G0H4v+oV+iH21pqQCWiQNI5jaGUJnIjGTCIS3AQoWmu12m63m2321mhAjH320/js/hkLkS0Jw81hf39zIPJ3bx/icRh3N8P+QJ442X53uH/2Qmu7mT5JKak3t3MxPc8PpPOHL29/8P1v73a749uvTw+HLGmw8vTN4VWbW8UofBiHwziQ6uPbh6eHdzc3Nze3NxgGpPTd7373/v7+p3/9y5vDvciYh+DKqojEMjOqsaWcYwgWxUrQ6Mg95zECJzNz5E4iEgr2W9hIhh0ex5KDcnVVd7Iw56M+dwuRQg/yUYwMI2WRIYBgodoNApmjtdCXTiRS3TeDYuJOUnVAODGJsHnISYfVZGAbOKZdEBGn2AmjVyNOcJdEgTnb7ruIkLtqMzgTkxAbYktpF26OE0f1Q+4rJYPghtoasSc4CYtTzrnUOs/zeZlLKaUUjR2zgcy9qWtXgTZvFqKoZOHTGO62wZ8Pu4tIvWB2wHl1k0qd2EIcPqgXbF5UaW2FPUfj6v0TX1rWXqtQnxTEP8kifgZEsEPN3QN3sSK81i4uigrANzDP9XMUZ8ldQWmrDWDmq6lVIoGQu5MaJck519YiW6FPd/uKheji67t2+F0iUdWjT2MIEdxgMWp3ELqN1Db06aNJv/Co3aTHDAdTYkjUlrzWtFFza1y9sH+ukETEgyAxM/G61PlbVyA+J1Zc96Utj8rGfY3YcHeRNAxDcmqmwHycz95Q5+Xx7cPpeBTGmLKIkEhOKUTqicijgrGk6uM4mdb9/mZ/uP2TP/kPv/71l0hpGAZVNXXpT28COJQp43kL+t62yYEzMylZIFbDhoOIzsv8zatXb989PHv2fLfbvXz5EkBrLSeGVYdmy2ZNFSLUikqiceAUvqGuKXFzS5lLM68VcGtqXJlTEto0qmJAJsQsEFFfFqaEkZjY6+qoJ5xz3+DF5oM6E0HMjFW9qa84xDiCq3k7EVFYsvU9ZLRnzkSUiNTUr6CUvdtxS2tN2Nzd0UwVPnAX2oxRGBGBycnJifxiRBIHKa5VxEAiyvudWUMYALs6GE6qLsTkIPR9JnXwguY89IYNJpzUzazBRVKiLkJ51QDDEyERcrQeTKGoZOag8FgiuDRztxZw0BDxByDiIkIsrTVzBRnDHEbht8QEcDSTIuTdgMFFJAm3ZjCTJBR6aA53ZyHvfslIhGBpB+DBrHVOBcM9HFso8v6sBYTwRnN2uLOAGSmomu5ENAgTUQvKjCQjeNNBEjNrbTAMSS6DNmZij8RGVynfV+CGMAN2Pp+nIWWRgPGqqqm5Y0ypmnY178g1wkbop5BXWepwuFLVkL+CdrhsPPmJAVNaOatdUeP9CeKaaUxVrTYRCeyKm5ObOKMDlyOQmsNYBBzquw5mgwJMHKVMdyIbkgRh2INC7kbuZgRydiOSIDAKMZibGcxjz24cu824jpwkDp8F8NbXuY5266P3Yp9DmcV7x0WAE3cnCzOYtXDrjakl4OSdc0DMJGT0vu0eEYSJyDq6Q/hieomNEbTlBgqJtT4uiSzY25ve5FBANLvaUEppSLwBtNSgZt5aqOupKjGJCIIAppd2N75BbJs3FUqKKQNiUWOhuBAWNStvSvrRuR5gryNtXqsuf0+/0R1K66oSHS/Al1NOl9RLK7EHCOl3q3WJNec4jks5r8EUzF3TAsCyLDGN2zJWbxTtAsWMfzKzgODIYCepTQ1Gkhqg1oSFdxON45vz/MXbh6/fPKgxp+G8zLISGOAa2b3MNcpuIoDNFCxQJ7OWozVPIPPldNZS3b2cy24Y67x4UwULxBimqK09vTuGiAIHSQMIvi6HHsC654l4ySKtaXDw3D22B3x1R7D2w1Hp9muRZBWNsBgAg0k6/ZU9GJsxIwhfuXXDEyj6/gGcQQSjFXFEROSxckJYnALqpkokgdpEX8srEZmvrkiOgHbEB16RikH2jPLCtgZY4bUZrcjGEJAnc4BS7mIP6iFcSSQy5CnnrNqiYQisbykxEJWAcFo/rn3dXUpJy8KClJJR12WNgBa04a18jIeOHTDSmFvH+CGNz15+8I/+0R/8X//lf/f9Tz9Ww8TITH/y//13/+nP/yMDh910GAfTamVBM1gjIfKEqolFiZZlrijFa63FaqtLKfMSsr0ypMBoqGqtzZ3EmcnNwZAw23B3Fh6Goda3bx+eADYnUxiIU1ajpj5JbsBxXtJpGPcpysTD7c3d3d3D8Xw8HpeKpo4kKXlt6jHTrJ7GtKnjRZ+pqtGZ9ENwxTIAhfMsC6VEwgCxC5PIoFcEQI61BpGDlOBCrl1WcCsMvClShHEPnzpmh5MRUg+UBABBMWbUeeFJhiHnnGl1bByySAJoYuaUMsDFWq06z3NUmbXWVBIkTdPw/O72ow9eLtYcPGYZmNM4HW5vPv7wk48//dYwDJkHrVUbhjTe3jyfhun8+GTzIrCq5fnt4VzLfHyXyT/56OUH93cidBjl+d0uSzo/pmf74fjA59qE0pDzIElrffvm1buHZx9++qFImEfQR5988u3vfPZv/pd///R0evnycL07IrrI2G74/8i9PdC5cupTTmbeNiTuNgy5NY3AMgzDusViTmmadn3Jvi4DmVnygFXnc60aSVVlGIgpUSLJAMXjSsKhjJBA6mitLaW4exKZxj02PWHq9Y2t/B8yRzKhDImv1ohT+DPFMQvAacxfIlVtKTMOkhbd5o/MrKqt1VLKVpYwus5f/K3gAfX9z9oqx2i7nI6Pp2MEjWohOYGmDYpQo4gfvzImpCsIsbAEsDMerqjavW/a05ZA40/6SzFB+2J/2zCvjeglM17C+wVmTNfXYX0S3/vDHjKvrtj2mtQnAo6rKu76N7f3AqAxyJB1i7tiALcHv28+mENixlfsa3SL1DW5eoiQJIYuf3i94U+5b/YkdH4vS+/AyfeiiaJBMist4GNdaZyjwBKJTeMmNQrAzWqtcfFj/78mE6gZr1DYrTpan4KLNdR2ZXid1FxfTmJkSTYMpRRzqOr5fH58+3B+Ot7cPmPmxDJIIhFEjxR3s2nKWXJq7jfP7vI4/PqLL9rSgN6JiUhaxeRVldfhLDOvNCKL70tMlJJwMnKwJEkG4pTM7O3bt99889WL+5fu/vLlS4i01lSlmRJRzlmUXESEzNuUp5SGYUzsplayJDB9+erN+TyLyDTtgg3LzOyowdPog2ydfXEoUzJGXs+Du5u3kCxJKV2I0Ot5jnxKxNp5aRfcgVwR5i8UrdigrFDeqKWvBxkEYWzYRibqSzus3EPmywKZtsEseUphXsWKC/c73lRYWGhZFveaUxIJ+QoCrDVPMoQwPnWhoVi2Ecw5Kv+wKNPo5gMtzKBrMkfHexNgquYOM+YUtUErhZETMQQCMiNGpwZ0zSeCmQUAU4hgOgxDK3Uui1iadjuhVFprZeY0MCd2SwxhEWKlqNQo0HgON0UY3ZmZQy1yM7MkNzMYwcitK4AHgC6xOGFHY8R0DUdEwKzROsumjdUCMPMgKaXUWmvuiUVYHI3MSYIZAyEm5jBt3h7Mfq38YpUq4MwSM4gOLCWOdoAZGVD31lpMO6JGSpcew7tzcaxpQpfVugd9NMFMTloLXBm0snS3TZRSTGPWmN1BsEEV8qAXrIgdgIDo/6JXZucEgoj2YSExEChnivUuOhElImqo4DCjNSVh9qDjOCchpuaxsYw1JoQZ6xPV9yqxQOgbrfg16rd0Q1moGVy1knA8VcbwIKYbVA3k3pyZJeZ5ECfre0qJGjzyGxEFYvpC3eEOVunzze00xM8gqXkjdoFsTyxWD7ohdffw4Ng6h0JDYM0YcBFRq5qIq1VFSokdat34B4ZWauv9Krk72ESElQ1lq5aYA0tvbj3oAOBEYRIR4TIgcElSpOpE7HAlXWWn+gVwa+7dp8qsRaYj6kO5DoowzzkDRm4gGoYBws4E24BeAVzRaJnL0i5D2Q5oAYCqatQpcLHg71Ovq+ZcVv0YVU3KEWuah34YVaICY4KbWqkPy/z26dgcaZhaWVIa3IP/ifhsZGRqKSUN9kcwWpmTJFSD0ZgHNtKlQbzNtaq60zTsllxaUbRizTlmj4pyOp/fHqdpyiZam9YGMzQjIW6AXehVAPoNwnaGO4CWA5Lhzg7itqYKJSJwCrrF+ofOMFMkSp2jK6Rq2pdsPlxllF4bUR+LoI/hrhryTjXUTu/upJj481DyW7vHK9V/035f0LfETuQh9G2EvgHmrQREtY6YkvDzNGfmMhesFQmzcB44ZYMvpahVAAbXc/fnVFNKOdZYzV3CmM3MtBVttHCgjJS4tdZqdXdTb633wJs9FcytNma4JOTkkozlxUcf/xd//x/84T/9r3/8o9/NQGkmA3/5xef/6l//8evXD7uMTz/5+MX9M286n4/DMBo1IlrOxUtLRCml0+KtNUUtZa7HU13O5/PRCQbqNb1Zqa22AC6kEtqYnBKTtfL4+JhkTGlQ9WVZ3IU4KYiZhUdwMrDkwYiXUpupNJhZHsebm5vD3e3iMu0POb06LQ5SFkHTCJsW7Jo1TQixNW+l6JiBwOcHyIU721cdoMSUKAQ3Ayh4UUAgJ3CggZTUgFBOIzCc3ECC8NgBr3IMFgAU4b7Dcyem39iMIXShk4uQKidjIuLMKXEeAoFPEd5LKadlLqXJeWkGAKWUnFj2E5OX5ShJhmEax4ElMaXM0+2zuxcffuvm5gbA+ekYz3IidsWQhEtt89meygcvnn/15utWzx9+cP+dTz/aD9xaGwT7UWA6ir98dijzzWueYai11LbAzJsup/Pp8UmmHe/IllmGmx/96Pd++Lt/+Td//fl5KUlXpR9mCwoMe21bZWBrCg+kHwvIFevqXjVkLzgmWcgiKSXhRCTNrU8ppXdo3aNeokwJymXnNK2TTTIzhHp3kr59IYApT6MFzzPyYyj/d0nSDhjR2OWrbW2S90WnuqnFjgu2Ce2sS0oHYE0B8Org1TM7QOyu2smGBCesmyJa4wP3nZITQGohhOGXRshBRKWUcDsLxmFEy6pqTbGBcazBdNP2c3eAmBN6chORZNQ73pzz1snExCFqQbuSII1yyb0Lt0Rbsja9ZFdbYlqZinEfvQ83L7DkkBqhq7Y8uLgb5+669Me6DaYryhLI1qYvHltyD8tpqCp3JnBjTn27a9Zao/ekmNlXb4Lr8mY9qJGyYtQde7O1OHy/V+eVA+RO2Oby7gASUvXm2oVggnmRUhqGgUGulmQYB9qMGEGEEA8I10apIpLCdsvJTCGXZuy9rLd+8qtWPK4tEwXCkaK1JhFiDyHG01y0NtP66tXXv/713f3LDw63d2GYHK/AzGEMyVOII/N+2j1//tKd3r17QqtYp1rMTGBV5Wjyndy8Rcvn0bjAgmkfpExicw9HHK+1lLIs9ZtvvvnFL37x7NnLm8Pdhx9+OOx25ekBMNewmq+qjMbm0RfRmGk3pSGlaXf34csPdreH/+1//w/nX3zu6kQENbUqEK2NOQGUmMeca2ADgSQ1T0N4uYtI4pHYyYyI1GrkZQTqg5gIqg3q3VBwk6dhuHs0/1ursv10Z1WKobfA36NFJBEj5w7mpO01mVLMR0IpZdXKIkffKuecUtB06UpsKaysCCw0H09AE+acBX3mjpC5RqgOUafCxYZafUkpdcpObB/UYgdj5F32aP0xrVHZqMbqO7yTyE27HSZXjp6MmBFqso7uDqIOJkImNgqwJpwhhJgFdNqwwwMyLeLeQAHJ4ZSzWlU15kRMLGQKIkAbwZ1i1EApiRut8zmsk24j7hS5sDVWOCBhRhiQsZTGjS6xBQcJZ+xgj7q7agcIm5H3KSFdQgeIyHqEWfVjVkW03TgxrBsZiIQyTmKpWnjtN0n6Wi5FpAhIVdyAgLwPkmBd1wogYo+vRcyt+Fbyxs0iZmHpNrXbudyEvFyJqdt4uTqBnd1AHpZC3AEz5k4QSu7Vu3zPZVOXRM6lmDtHercW4A4R1kBKOMzgaikNAAloae5qDnJVZyaj6GfdLbbLXVHDEAte6eIH6/LQoaQxANlSDvoSqz9A7t5UzV3IvGOp1xZdweQgEkoxDkqC2DWFcnwAkhxKIFCIo15dVGG3iGksHQnN7k5GZgqOAOoIDYacw8PIPdQFPWRCRMRJSGkcJ3aUisS0G0drrZXuD+HutYa4K4E27z4wBw6QGARmIgpsqitaa02VaCSilFKt2PrJ6G/d++R1yxlbwhARcC+h4rCZhaoNE9GQMiCqFSTDIAAXLWTerM/+OYl7JDlPMsXpJaIoqkAO5jxItLirgHaXwu8JVc2JUuzt1Jp54lAmISKnJDIOIgKzmuRxmVWaIvG4m/a+6NPpvKSU5rmZqQhRgAfRTaq6wqSxmSUaOJkZquogOJ1OAA6Hg7ubYn974y04MAxfjS4Y7OaOeTkRe8g1V23kMDdXq63C3JMwSE1hbsaK7pWJKF3XlXv/vg5y8t6cwAnkGgEDqzSFAu5efd2Qr+NkAydGk4iwMe93WvthCoSGB/JxXREgcBkANBQCmNl12+5ebEt6DcTElLrmjccepu9xVT0a4K11j2tCwujgBVKgtdYBPAGL6kBKm3IahsTM83wyb2EjUWqTzV64VgCtj07E3c09PAZiakPmZhb+zIBZtdZKlMW6Wl5H7a7uJClNE/KOUvrkk0/+3t/9ye//+Ef7DHccBgbw05/+9D/82Z/Ft//ogxcfvXiRXK0UslzreVnO7949JZe73W0O6qWLIAN8Pi+1aK3aTB0hHdGVTiJoq+l8OtelDpLykIR4OZfHenKn09wO+70jPT49JYI5zGwuy3lZpmGAJEg6n89EU22tmj49no5PJ5H8wcuPpumr1w9n8+Z5VIWah31mPGrcnS3ZXOdSx0pMbgZ4YGuJiMwbnIVh4VIWLY+7WSOHQCJYksHcA/joROZGFoqUwiAGeWA8o56gDvMR6oCoHpEjb3qjjgkSYyxVzZq75UFyzomYgUzMzE29alPj1sybk6GcFwY5J9VWi7bWTo9P8+np9vbGDjrmaRr3wzSNwlqbNrNxOhwO0/MhGODnp6PC94fEYrM6qOaB1UrO/FuffO873/ns8fGxLOfjw+vl9A6tUSv3tzttL3KaH9+d6jwvywLmlFIp5c2rtzTs9jLO9cmLf+d73/uH//gfff31m3cPj9N+N45jymHf4JFmmnZJfL+QuEREGC6EzfI9ntGUBs5yXqqIpJyJUzO0usTQrtYaxgrDkNc+JAKsKpyNjAkd+p5TovlcSFjIgs+A2ANFSGyttRYPZpbUSMn7loZXFwazkLLpY3dc8LFRF3tTHdOQxgS1WtWsI/NKq06Uct5ypqo6dc+egGlTrA4yu/uyLFsJq26hME4XMYIeQJg5QMFPT6fTXGrRYAOBuLU6z4uAXK0FUcEijjHILBSlcdETIQpRsO6DzSucT0TSkPvGvqtqdThJYrhIoHUC/hMPk1kXJ474uWXWqppYFMpdg+G9n+suDh3mpsz4//ezNa58JeDsGxrO3ci4w+tM5zn6cxJOkrp1wCqZ5u7DMAAdiX3V7wl6O71GCTNyivUK9Ud54+j8ZucJkKs5RSxzAemlyZetpN42iuo2TROxl5qZuRc3qxYBFK7934mIowwiIbr0t7wqjKmuF8HM3bXrqpJXNTNKoa9uUMs0piRsnvNuaTVwCo+Pj1999dX359OQhEQCG0gII3ByaM4DDRhYXtw///Ynn87H0/39893Lj84P7yrnBssB+g1MhHtRJ/LsTuwOEQhMYCY5mbpaKAzG2oWKtoeHx5v9/utXrz///ItPP301jfuXLz+4vb17dXpySYDGxFxVFXO4gFfVwVmE758dvvPZRz/5Oz/61re+9fxu/6/+l//tl7/+xjifS3NQlmSmiQCy2LSbWS3eHG2gpRZ3D7WsJJRInEFE3mJGBSdkZs6JiNpSWtg1k4QrvIfWg1scqij2bFUdUtVAJtK6oXGsJToAIEl2EfYY5UTZ4O4OCuveizRXH0g5rDYiT8RMZO4pDVfUU49elRwpnlWRxBnWuvKZqrmKm/MqHw0NS9daV/T+FUI2pUSwqGeuhYfMjIEQzSOCAxlE7q2pJAEs4jEzSxfW9iTs4czqEKGURw+iOHef8zFPEXAMSqDdOFVtALEQXFQb00AiLKjNtDUkJB4QylpEkpOv1RsRmKXGwIskETu7SY5ZjDq8ywBv+y1YdxtFeOi6uzPVWlstAHPOTUtmIWbXFrrBKUnk/Qhu5BAiI2IiybwsTm65eys6C4RE4GEO2vsR6p1LrdXJpmkK8YAuvdTURZI1DVk8Alor3nTIOQ2ZzCmOoWnAg7dI1NQBBktIJZGZkw45L8vSJW0Qqv0iQjW8sJiHIWm11syJ8pRLqUXLpv5KfYrYB74QtGpBxxdRBJmfGW6AMVEmuKOVxgbqGFBxolbN2YllP+4CsAxKUCzWFC6Z3Q0WihyCoEkoQKiuwlmY3bxqVN6kisDZSM6AlVoApCHM+hTMlGO4O4abJQsz5Qi+tZoTSSJiNvWUkjChy8YymCuMPIzG3dy8XUg4RRuxVEdyMIKCySBQomqqbK2omY0pV7VaNedQujIeEuClzGGJW2slSnU5U+cS87LMQrzb7dSqWXBKiYLIb5bWBnJZllbaMAzuVssSmSomTLvdqB4OjK7QQEes7XTneKhV6sfAzZQ73ItLKYf9hFjLi1CmUkoN3L+IxTiTJcyEhAkKrRZNlJpyGpiEAKaEgUop5saMWmtKMo5jFwElSoQsSUL5D+YOkY4m95UlrM5mbdyNAhqZeMyNZHZrYNnv3y5nm6bq3Ag0TVTakKdpqsf5TEmouqoLwYCiJVJvygznpgpwa4a5xjryeF5EJOd8mguAlHips9YGdhJwojzGCqgZKxNKg8/GlMKUPloDV6gBbqrOMbcJRlqoqUWkICYYjCMLXJUvRIh5TXV3Tqtasl5gN2vdSYEDdDMCE3WBpc76874fIKLWjBkboXftqLvxr5mBNUsi4ZCPp/75aKt6iYgASeQsAeLqhBrvyGzz0OhakX7qgKHGhxBVdSM4gdicmjpIh2GI8c2QJSc8PLxpzUQE1s3fwvIujisAEIKlhp5VfMjj7f725uZGazsfT6Zq1pblrEWfnp7Oy2xwJ4lMkDITPA/jTEnyXqbDNE2fffzBv/xn/9UPv/3pLQNAay6Jvvjq65//4vNqmHa4v9lBl+x6N2Y9Pmo9HXbDmZzYzvPjsanVRsTadDnXaX9Q9RKjEJZSyuk0N8P5PJMRg0yNnAYZAMzH0lpzYyJpTQGUUlo7MZG5CbxqNfeH44mEVfJizkuFa0oJhl/96ot3j/P9y08+fPnx/f3nc3376t2plspMzdzUqyFlAqcGCockVxxPhQhjUmE396a1KcO7nQAzqtcEShLUNfUu26yDDCKwcBdUQJiIxeEWCogJZu5giMBzSmQqjpQSTLW2xBhzNsS2wZNQIXUEy4NYhqYqknKehDM5kzoaOFHuptnIlCYhS6jkrZl6c+fddHNzmNz96XyahnQ+nhInnWZNuZhD2w3Z7uaW6lksp2mKCXS+nUqdbamq59P54f6DHe+Gv/r1T59/+OzHP/kvPv32d63U8nS6vzm8/fLzcjpO5E9LGZwmyP75C3e/ubvPu/256tdfv7m5uX/3zZs87odnz3xIedr/5O/+nX//7/73b77+87SfckqztZjDl+VM5rvdzl0DM20WZEgmR0yAXTs7I7aSJIklEZukzCK1tvlcmHkcd86U4CknEXFzhYmIUDIhTgMRsiR1IyJJSZsz0JplAjtZMw2LWvdw/hAPOcsmIqYKRcoCJSYmpiDWppREuGjTWsf9riztdDxP0xRsVQb249ialVpEJKWsqlW1mVJOBterds4TiCgzOWDkrdSAQNbaiCjEkKJGD/5ULHz30zCXYk1J1n4PeHj39PT0pN09p6sNa3OBVNOmVaPtcQBMRubO6C4DzMmiQSJPSWIRHIbbwfZJObDR5KFgw6yqibsWiXsslls4e3U7X1UPhkaPtoEcY05BoUqBx3H0LZk74lppSNGE26U6yJ0QCHCDxjJKKAgvkJQQ7HszjmGVuwiZ1mgvY8Kb8xgdqxFLHvK06+3BOijnJO7eTM2qqgqlGC601lwtpcSUTbtBgwi6EYObEKlpM8ucU/gDEYIoawTRyDstXFJbLDAAdiajqOKCzWXwZgp2Z1ra4nBKlMbknl0NRqZoc3MhNlbOnD0lbuKugVFPsE2LuyulN60pJRI2s6VV97D54FaXYGACRnBoMxAlmYbdXJbDND6dtVkVye/Ox3dPD+NIh/3u3Vxyyo3kuJS7+2fTNOkyw/Xu5vZ73/7skw8+ns/nP/wn/9Wf/dlP/+ynPyvHR9qJtcXbvB+HFhEyibs1t2C1KkULi9RqzjmnZPAEJhZyMFFb2sPbx9ubZ2/ePr16/e7+frl//vKDjz959eqbc1XAMnH06mmYanHLMOenUznsR+H26Qd3/+Xf/WEme/WtG/zdH/yvOX/xqF/PvpTmQErs3lArhZcBksFV6Xwu45Dm5cl1EXnx7O7WVK3pmIdEXFsLiK+ZtyXwiYmIKJFAuj8ARbShADAGTTzuTBIZh6TeBQXMWIj5mkqLEJLoYksB0HatIh0cEc9Sd1R1hxm5D+HOBHF1UxUQcZ8cDTmlxFDT2phcOGUE009qmc1MyLN0lQWs4j7EBNAw5GFM7l5KIZPMkoYUtFBoI6LMl/nV6tMEh0koHLmS2pCZwFUbOXFmgXrY4aYsjFKrMAuTm7s1TjLwsMwNHlunDnOI8U2MutxJ1SJAAdAgxIUH5zgCmOfZVbMMIRWlcHPUGsaR7iSCWE5DiJiTE4dVVXK30E9ZKsg2a1+YmtbWGphySsN+atVqLQEPS5wQEx0W5JCbbnlI0du3zuKk6Fhba9Q16tQd5mitJJYIU9M0CWhZFjVNKWmzUhqHmCbJEF7xVfvUMzZygmwso6TMYqZdPcsC7LgCbzoWf5ty9tlJjGeimoxYqdVqrblLYlGHxXNsy7dpAtiBK+i0IKh9FClK0Wf/UdSv3lCucFWHaczrQgOCKUWDE0YM7GwURKSo05VWVEIA60MKemVLxxbBzVzhjMCii5sy94ngVv1vXUTfzTORoxPVIRKpypu6w0MnrH/f7W/EeLOZTsNA5MRYl/yIUDrlodVqQE4pI6mGnBaRuHYkDylcPJBtK4LUwIKcc5iIk2CgRCQwtVjOGVaScmh8SmstZAOIyLzFFreVWmtlBzMPOUtKpRSE0HufWyoojH+c13FptC9BwgvLclqH7kRxmaQWJe7rtWg8YikXS1RxMIkz3OAr6J0R3OkOvvMuN0rCWQICJ+pMRoY+NnYgLJcYRk7h3Oh9nL5e5ETJAzQSCBwH51GEzWm25mngaRKwsIwTpTwK59MySy16tckMgNz2LAhzJtKAJCjcPKwC1Q28Gj+ao5Sg0Mc/1WrToqbmsQ6L4kCj7ICQAOFfHXiHdaWqHUi+4j87ms77zH5D2W0jfAd1kZjuuLOpH3fkQkB0Lq2wr8jyjj7qeonx7qro1guu2xMta4tLFkZcfRjvV2IS29UD0K6obtRhbxFJtg/Sodr9b8Vym4gusi0U6Jo1UUkwc7SWOi/OF+7Q9haXa3W1ZIjHYb8/MNbTC9S6lDKbmWpVrZ2qZ8A6Moh6a246GZj4O9/5zj/9J3/4/e98drdLHQBM9O7x9Kd/8h+//vpVvJkQhACzcj7lrNTa+VhuD7tatAU75zQvrS5arVpiJnDKQ8pDGsZlWVqFzbM319aC2qFFW2uwLpAOJuYkmalZKUsJKTUPWoeWWh8eHuLr7++etePbWjRsgMz93bG8fiq7m7fTND179izvbs5qbx6ffA7yM6xDusIYqTF5NiqlClyGJCwgqx3KCmcr6iLgxBx9R8wre31tER6cMqeQ6rHBh+ahpkvBe0ggxJgcDnNrKuQScM8+612bApJgAkfbwOvhaaWR0cAkoMRJSEZmzskgTNkbU6lW51JNtQjDdkPmnFf1fm11nk/DMAwpZ3ZxJ62ZBtIGbXA3DZB8sbrM83m3G13w7t1rEvzWD77/gx/84MX9/fnxXPPj8vhUn550mYVoYKnnZRTJQx4PNy9ePOckbJYkz6dzHqf56XG/342HWxrkW59+9MMffv8v/uIv5nk+3N4w51oLEYd49TyfdrsdYEHr3xT+3b1WJaKUUy9xtFZt9dwoyVxLsiGltL8dIhVra4F/iLmoSJaUnYWdHd0MNBbJHZpBst8fUpeQiFuBrjxlFsQT7jmfnSlzambaHNQVekWCyqYdCJokWQJ4jV6JIQxXs2pVxENOrQtOqrV6YVJwIgZbVbeAyeMaLrs+9SEO7CwQkMIBH4YhMAZBCA3X36UWBP0tylFX82a9y8LqWe2hIBXjRYUzJQTREM5JSCinkXMaxjwMAye+7DZDKc4V7ilIj4Hq0cBheV9O4xJqLnEskhwDziSAdz9kuyr+r2Ps1V8EMymcI7Svv7qlgAD0XsIqsIpf9ldAh3IgpuEapmjM64wb2jltuuUUc2utdapdD7zciTuwXkUFCZz70pU2FnRH9HQbXhFhN2FyYknE5RqKiKtYEJhLD27kMAxx+J9qK6X2DOLkTZXqcp6ZeYBvitAANuHu7eTISthWdO4YODbzEk6gQBRlJEIc550xTkNzdaLW2sPDw89+9rPf+d53DtN4mEbeHTTl9u4oebi7u6vnNCX56P75Ry8/ePH84PeHv/f7v/9//pf/8t3/83/8xc/+2o9vPZtbKeYMzuMQcEV3axErheBgM7CoKpEGcwFqYCRO7no+L2/fvvvmm2++/PLL73z23fv7+2999t0//8v/DBhbjBBCZM7dPaexmjNM3RhUy/zqy8+njOc3w09+/D26efGzN+X0J//5Z7/48qyaTQktBSbTnGJrY9QsRLYkZXGYt07PppUaCF65atbdigIkGEyqONHEYOdSytZrdMjheoQiDxO7am2t/S0kRJywOL3GnK575LX16eLDru6bDp/HXqHXWFeQBCP2zWa8lRrOSHBTauMwySpu7Cthzd1LnVmi/jdJso6D3Voj14Bfbp/KzC4qx4r4HCxCTuCUWIg9MwkLQ1ggoYoZnOPAQ5vaqgHOHTG68csoIdRPA3vlWN87Zm3M3JWM3RNLYKsdzMIOWVpdWtOgJSdKIGhTUF+wu7p5qCpTMGq6Myt33JoZwcOLKktmZmNrwmYIlFZ4ELTWAvCVOV1LcDfVUmpz2+3G6GUYFBU2hERkPs+hUS8ikofNFiT6eYtye+N6OFYnuugz17ulqqYagSBAZu4e5oudO8EJWwm4klwjXtRaV5dRERFrxU1jrmAaPBY1MwExsZFtpp4UYm8W0jYOU4YjiiXV0PlV66JvXXSxt8ddGSyRVLiaaqgGXtgF1CO6d4HvkLzpqMrewDdCKG7BTMFgiHTd8r4+ijSxZQh3NwMDsXWPSF215pwlEbnAHSGmSUTrKNHMuGd1hPmMJGIwrjDQg6SckpsxZBiG5KHcDUlpKcXIhmFgzq6AmpuVUpIQkZs5MQ3DpLaoWagcE0W+62tbhjKxXItUXRDCVGpzGFgkOyUBUSA0mNlXwQkzQxd445w5ItZvZNzA2fcaiNMWikJu2YIbqnAP0V7naLGYkwivJvcsFCDnCFbRLoWZtUgCOTN5mGutCBIRYabQ2zQCs1O3aPZIW3By6zznAKKfy3KuzadBkpxNH+Z6cpvuX+ZpL0Az1+Z5kDAHrS2pVWtxFsLap20DhbWS6IBMN88sW8cVZYwqmdk45uj8U0q0JnIi0qpucCsiEt6JG7Nru1/bD9a+bj2QthYCV3ySfr+6f+ZaHdhWFW7Bxd3tfdTcesg34o1tHfX1Z4jYF2+04eHhHrSqeJ2ogTYU0PbheTUs8as6DHjvKbvuXaM8CpdY7hublbsRYBhQUNPLPJdSOA9uZBcXR0KXp1ZmBqUNsRlz0AiXrXSJV16lKcM8SVsxrSG2GnFPUnLJmYc0jIfD4Sc/+ckf/dEfffjhhxTzVJKUcDweo3XZC/b74fHx+NVX3xyS3e3k7m6glMnb+bTM82zNXKHqpbSmVVXJJTj47l7nVpe2sWVUW9dIr1prj1FgOS+LWXXCMpfzvJghZ4mbZk5OUqo+Hc/DmIZxaPO4lKVpaarVYPPTu7mMj0ejbI5nz+5eDuNuN755fLcsy+N5ad2VCgCtqGosZ4yJAZGcYCAN5+AIEshCWZIwt6auQUiIBZiXKJSjOSeYmoddXnzSXoP3IxTlaYjsRhllIVkZFUyKZz9MU2xZ5kSchFprlUBg9xyDgFa76KOZE4lPUNVKGDMpyyAi5ImQhMY8jMPg7q3UTVwHgDcNBbupVHdfljniwPw019Nyc3MobXl6Oh12+0+/9b1vffQpKOvpzbs3b7/4xedPD+/GLMTDs9u7OusXX78VkcM43N3sh5TZ1GGvX38zTON8Pu2WBcsMOY6397/7w9/+n/bDl9+82R92u91OW8l5TEwgOLm24u6xQoyyiwJgmDMAAq1P8fp8GVk1tTrmnCSb9fmqM5KIqhPRMAzEUtQukYclWhcFNYe4TdMERG3jECam1B0ge1K5hBJhzmlglFK0a6A5kTeNSUoKBtkwDKoxXYvmCBK6+uF4fxUT8P6PqtamycU0TKzNt7BmBiYSBpmGlbSEDL4BLlnMwqEtQCKltZJzxG0yM1cKQXZfu1T2Pgly75TDthogRSnFa0YYx1FEYgCRc2IO0SgjU3X0znUNs6palgVduTpgdPCr+LzNBLfwS5T84qzuWDm03XKZePtlWpmWTEyrcQj97esIxBSJgMs7ek9D20cNzE4pRUQ4kYisg1iFq2vviok4iNhujm6b5zEgAeDO1vcdcSh7X01JwrEguGUAOFwnQdb7nwD5Uxdo3caaZACTJzODrUYdkoko51Ekg+rK4DMFuqW3wNhHmjinTe/6vZc1EwnCNkXFSF0ry3p3tXpiM7EQo9OyXFIahqGq1lqX0+mXP//FL37+85cvX94+P8iYedwRSR7H293ehA7T9PLFi5ubfSIw4fu//dv//J//0edv36gun/9s1spu5mjJjDok3m3drZC61OIE5+44m4ZMHJJgJJlTzqr1dHr65ptvfvnLX/7oh79LJLvdjnJimNfa1EprOWD8PKchU/Vp4PN5/uWvTqfHV+9ef/XtT178+Mc/+v73Pj58mz76ep49u9Pj20eUsjw9UF+QNhIVgZEBXusy5ClyaGst50zs6i1qpagMQyqsSxMxha8DRbqKI0s0DePlfLo7oKtBblg6E1FziAhTujrKtu3ngMuiYh1Y9H+lzn14r7LZai4RYgF1mUUP+Ch6KYJmSh6SusIgNyBTeEgAxBwqWR6nsW8BY6drWO10YhJ/NYvfCqHOfOhdTG8fEMrSfckhcDJPnAJJC+HaoBY7PpcU1iedjR8LwuhHcOGyOsOdBUThJkOpO9dGgxRxz73LTUkAvjmlAKbCydB8k3JwM5M8woOfzcRrRDKT0KAOXWuCm0KdHUNO7tZahfsuJ08SnTBA0M50l0QwBsSbJ2Zdl5cwNzUGoqnpdCfvU7OYgo3T5O4VLQbEAgq1gou6fVxxQgf8BEWbVsz6dixCQC92U9f/NTRkiSk+t6qO427Mw7nMDoPF6wuFAGwDBXwn2NjR0prDvCsBrovVLpJBoH5i3OJRYRIQrf7jGmqB1BVsYcZB2NWtSwB7F99C197j6+ZhMwAkjtWBm6s3m3bJm8cc1AOHHSW4NadOIY4P7GburFBxYk9hIUUkWMv3bc8JsBAbGzPMG7vEsnr7oYASgTILeZdVXCW0VplK5lKqu0euV7WU2My6IquzOyUWb94rf2a/4tm7d58qrIHeutQH3Dk8HoXYrCmhaRMRxEnrFHp2JyjSlVfbViAG0iz4mVsioYC4uBHzJuC5tUPbotJWXt8WL4g9gppqYK8AaB8xefOwBhU4lDSMiJgDWBBy1cQUaFHqw91gEAZJQ/Iwn07HWmQYYfb6dP76eGokn7xMKWV3LPX89HQ6n89qOu3HYBQoVyLidT69BdmoknH1pXClHrmx/3llR+Sch2FYSgqfSQDE6/jQPUJnzFz6hV27WVxN66+P8XYvfuOqxsMay3NipnVLjLUX3Q7Alhji3fTaufdqs7S14luUvn7r6/b1N15wqyriF3hVgvG1Ad4C/fVrrtXexkDuiANamVoGMEkg4YXzPJfz0yn+lq5aMr05d9dQgTbrxeg6Wmbm1mrOyczP8xGwaRoAO51O8zxv92i7Skypmaec9rvDsNt9+umnv//7v//97/9W4j6ejpv26tWrzz//XBhESGl49eb1l19/9fGz/fm8MLW8T2nKj4+vS6khmBzf1I1aa3M5x6GqtT49ns7ns5vBWSgMWlVVQ5crBjoAStPj8aihagt3oqqNwz4NLjkJC4RJJA9jG0trVkp1YiSYmdZa7VSqF/N7kd1+vH+2H0Y6L3N6eHycy6kavAknpCDkB0zUmikp2+YL4CDHmCUkb93eE/MTlmpqYSwBIWF3aqpR83YIWGQEIgZJ6FQ6As0bWDczE+qYoz7B12BPhM8txe03UmVvrbVSq4s75UxOIYyfBuEhi0+DyEgMEUqJBSTEWVLESaalzMs8zABr81KK2SMRHXZ7Zj6fjkQ0SFqW5WZ/N+4mV7q7u79//uHzlx8DZMfT6d3Tm6+/OT8dqYEITo2Jb3b7F/dwkiHLNOS7m4NrW+bTUus8n7yWdjotJLTouLv53ne/9du/871vXr+aj++mnAbhgbm2JQmlcVeXwrFax0UYiplzGjYEb8cTSmZGa9anb5s5pMT/dcnJXJ2YWBRBJEuJzL2zf2P+IJw4jH+vnuU4t+6ec+DM1S8ZGGaaJa31aOexR+EbXmK0yrxFYopqL6CnrTVdoS6qmq/Yv387+KxJp/samFm4C69tnXYJTqJmFrDJ6N9aa6o1pZRlaK3VjvnoUZfJrRQjwC/RNZijERKJGQFDlDCUztM0hOqzpJRFSATWFA5mU+1QW+1ea0Fyjgb4N+LzGlFp+0f8+aa1cfnlNRUQ9Xpne6luOIh+y7a8jKv5/nsv9f4r00qyBRDjp2iAxS83FOtyjy6s3jVaMse6YXubv539L6+zXvMtd/QnMQxXsOp0xhvxb84FogGO/xT3LyawwzS2UoPFF51PkNdKKWBKcMk9R1xnov4ZmKD4jWu0ohE2+BLcnazjGBkUZFpmpmZv3779m7/5m+985zu3z17A3Js+v705HA4M2t/f3+6m53e3Y04xyXh2P/zwR9//p//kDx4e35qXt6/fzO/E6ll1IQvMvFsI4DiJu7fqZIqxzy8qOXdcjFlLSFHEz/PpzZtXD+/ewuXh4WEcd6q1loJmLTyAnAxQxx773XizVD0/Pb5+dS7LSf0HH37309tPv/Xbv/2dD78z7J99eHd3/z/+D//vn//660OWAdmJTVQSJeLWwji7s4JVtZqKBW8MQ8rSNajcvJcBgHsIJ4XHWvcc5ehq7MoJktaR3DrX5jUCsfB7kYH7xES7XvVVxUJXhzBusXQlIDczpsvvMyVipVXemRKv1sdhwEA5CQuZtaoLMzMLUZd9TSm5K4NjhrIWQt1AJ2dpzTNLytcQaNmG75cTTpH3o8a2UCwOzSlT9cwMEhaQBFuOQIkJxCDy9+s9M0uSjS5XICqraM9I+mNO5sxsboF6q6qAgjinnJlMYdY205vspI7mAat1qy3gKaGcRAHHYeLQvY6OQ0PHxBCoEG3ejIWSZBYic2MNYwFzBxMLB6U4pxS1AAeETMMIjQCENG/mgE93ZStbhd+zdL4bxwVlSltPiI4s9fhw3ul1RKAIdnHtch5Dm4TQHaPDixiBcJUkxJlk1UxSEYFHrwHx5O7NzaCmrY8xgtHiTl2NYEXPEUDSVxyqFAgnIDFC3RaAA8qoqoQQ+oQ7x/Al+pDmXe0xJhnEXFt4q3bdI4vFlYecRvhoEYXEWZ/Jxs6WmeP9QR1L2ylrLDKkmKAzQlpdArYbQRNrQHZzERATArKUmCiF3mZfGl7iqlnTELWv2gpbMIfX6YM1d22tlbIQ0TBOKY11KSTcD99670ko9ED6IuvKO8uJSq1RSTBztVjaUxrGWitgMWMDgZN06XYnOFmX+6VYwKlqNXNYLFWiSO1p0sPhtY8AujZSny/Hg87MHBRxjRqlKz2oiDiTtcZw05YzmJJT4C7CRquic4wtxfOgpqY5BcGDYYGXE2Hq81IomROxsCTJZNLcmtuw3w/TbmZ6WpZX5/mxNhN+mmdLA5FotVLneTlxSrvDVErJc25SPGoNJvEsLDFfaFCGi3RMBFbslnXBgD4HIaLN156ZCRJdgbtLbyxDeyaCdQRN60fq0gEygFV87ooMx/0ohZJzj/hxsbyLE27F4iVnB6DqMnroP/+HGp7xpa4rpC1MbyEe14XXqlGBdV52/dbXr/O3/3CraXrnDFsHoL6GLgE6lXcch3Eczezp6anOZRgGi3IVvH5FioWiCLt3e0mCMF2UOWP811oTuJZa56XMp1YX08oOWQXJ45PNS91N2E27cbf7wQ9+8Lu/+7v7KYNABBFxoDX8zV/95V//zV+5gxlPT0/z+T5gVk+Pp8enedzn8TC6YximRFmrFS0hN32el+PpkZnHNLmRVmtFI0AKKFFyIjOrqqVWIgGHOaqDWGFCTMLabJmXYQiBohjYgoSHaXfY39R5mZfaeCESElBrVc2WhVP21s6nx+g+p0y76XBzmL55eHz97vh0rI6SAGMwIU1IQwJJU2+2igdTDJslJtY9V9FatYtEf6JmQEwLQ+MUaRUqC4BMqF5F2Uz95PfNFTFaa/GUR54wb5kZKeWUuiA/EcjJtS7zCU6TMIShIDNVzsg5H3bDfsrcVfM01kqJKYHYSDgPMmxPsSQDUJdCRE2yiHgzYZ7GnDgdnt0P4yg2joebnIecdvp4fnzz+M2vfv3w1atJRshIZnkYtCHL8OHLnbqnIY9Dvr27OR6Py7vi1pblXOfz6fUrOc+HF4T59OLl7e//vb/z53/xn1uzHB6i7gjHI9MxB6In+zbZXJ9f9GQYj2h/muJ5CWkZNWNmIdRAnl/6VWumtVZJBHAzH2KNKMLEEEmJdQUhMzORmHsUTKFBGOq4zBnQEJGjBHcN6kpzOJBTHoahNtvIBSChbtpk1VrIRxHRhkrbOqLr9m9I2SWhukliEu+lXgeYEIVNjvRE1HvuABUSQ5gzMZc6A5imqbXmxIpGbkDHJHOHvAEhHxJ5nYjQvQwkJUrCSSSncRyHYZimKc6zpJSTgEkrYE5M3rQBZG7aXJs3DYxoIBXjmiJ2NxfR5nXcDABk7rFL72CaizzWhqaJ342gCoAsdB/oPWzFevvWAHhlyRLo7u23fE3kKSV43IHKnMEB19TIWSlAohZwdABwykREfUbXpRMBN2cAm0HA1vQCMDful6EPl81smoatFu0nHNq8OV+mLT19qBGxgNCCP8GcU3Z3tVrbBiXoz0uHvTKlUDa7tOjx4wTCNjp2mK8VXkgjXfJXZMCcOSBCWaSxRPtVl+XrL7785c9+/q1vf+fF3bPqfsj5xc1NLcv9/maahiFlCqwokIC7+9sf/fB7rx//4e727s/+/C/+8j/9hb2pDW3MGVqZORZPkVdJm0EbkPJI5FoXcOacokFqxUlgWsuyvH379ssvv5zP9euvv552u9ay1sXK4gRwbBp0YG5LOZ4XYBjy5OoPx/b14+mnv/rSpt0PD/eHm49//8e/M+TpP/3pn//ir3/pMirlqLooUWYxaK0KcDMtrUUfaN7ILyj3jgVwAgLNBxg8UBXE0rVBENqdprrtG7amd90JhVF8pOZLTAiMQCI4OCrh1gXPom9zIErdXqJQ4PWs65L+7XrGHeGz7GHaSvBgPHSGPllMPwggAbj7YJitxYvDlSEplBBicaKNqXu79I8duwq6fFNmBsTdUxokZKHMAWOAOeyOukpLiLE3U6YEvlj8mBlBhMUM1Vp4KPQQEU5mcADRDvQaj5mZs3drMcSjH881KHrrwNgzESDs5N6cwO5wTZSYeJ0SRgHAVizFpJ5gIAE5O5EvS82J8zSp1VZr80bOU0qNPNZ75kDrTkNEYEgscjNYUo49U5yorvKvFkpDAJp7LQU5D8MQG9YtzqTt37gTS/tq+HoDs80RHUh8KWQ5CJzMDNTSTLWpJpaUUhaptc7zKbEg+EIGoMKok8s5h3tFwFcd2HZlzYzgRn0Mpw4IQrxZmNjZLIxhXd2FOEBIHBa9IXvFg8eDpeaEbgzhkJhgrOPDbhwfqSIgucEETOLuIdgekozMlHOGcb8sdhkQJpH1eSYi4rTNXDtMJ/7vPM+Ba6euNwgAWVIfYvoqZwogLjILWRfOTZJyzqp+LmdiD/APIONom5riMCYRcSXVwEOSSF53ZrQ1WvF4m9mG9qQkxMIhPBQ4o8BIJ3JVR8TZyGHWVXIJAKs7mMgbrROmyNRhzhHZaLtKzGyGpi2voHRfe61tShwvHXmu6xIBWcRj5sceMkhErtrMjTk5gmkszFBFt8PtGbcrzkNiV+xsFPSUlFKSgYys6bvjPNzdCvzh7dsvns6PqsXZ0d6+O1WlsOcmh0j0WQhDi5pSa83W0Bk/MeSgdWaMtZvi1biIqGtsikjYNlwuQvx+EFB6n9LD1tVfv2DhtqB8/bP+wvW/v+fBGPOO6/5z/U++zV+u3zT+09Ua+fL7cX/XP7+84PYi15/w+h2vfw3r0mD7wH/7F7Y/74WINQDWEXTrrV4Bh8MwMKfT6Wk+lzCs71C6dWdiZu9vRej69eNfzuejW0Dz7HQ6nedjp/6uN+u9D5gy5SGN07Pn97/3k7/z7c8+dYdQ12VgESJ88cUXX/76C3eMY4418jyXV28eqJ2IKz3CxadpOuxvbw9T7w2qlVKWZQlAzZHOrnY+za7KJLVoSikLuVczG4bBiVW11FotWGIJFv69iFN6PB6HYRiGAcwNTq0tpRzTTCnzmAfdKTURoVRRtbYGoZGyQ+fzI4sMGG6n22f3t+NhP+zefPHl16fZJQHMw5Bv7w67Udx9LqUttZmtKGZzJacgaQklMmPV2mo/zCwCiuRI5tRn2xExQAZ3djYK73e3yNne2RIEItIYHnujaHXcJaCqquxQJVVNIusIyGrVIfUlD8gTUxZOnGPovixnAGMec84EY5KcchqGw+Ew7Q7DsBt3+5vb2/3+0G4bEU3DTgh1OhBsP06UMu8ONI3SBtUKsDcv5/n07vHLz399fHg3UG6cGP7s5pk6asO705mIpiHv9/vdYX9e5lNdapmfLbfv3rxdHs95d2JOMg2+33/00cv758+++vKVa2urEkAWmc/nzcuXiAhykY3EZXRFREyhMtauF3HrksRrrcM0qsFAEDYCWCQNkESSGBpB0N0DpewuvlqC0fsTsVAiCbxor0Jaa60NsgogX2FntogRA80g464BxmOYXmutrcsOD5JKawCGqz1wa42MhNIVW+8STEKflghEbEZqlTQZwCmvIhQIWeP4tKvXcf8I2xaxx9WrsH8JBUyQgNymYRjyOE7jmFMKDqp02xW18BPplQDquh+7bt5+I5ZeB+Htn+uq6gK82oIz3v+5zgWGS1JeKQa/+VcuS+Srv/sbr2mbs2v3QyL37JugaQwsLthskJpfhIcu78hX+7ct07l7jImDfrXhg7aNnLttKWYrVv3qZ/141KrlLEGkooXmHjhCicbU1KqrW0j6Ws5rPXxRe+n5Mcb0tEowrQ8OrUcBVxkkzn9UnoGmAxMZFdenp6e/+Zu/+cGPfu+73/0eeJiG/Gw3yWE/juMwpCTk6hazQwCkH7y8/wd///c/+PizZy8/0uZ/9acnvDk24QRmMqbeYpF5uIwCzSgJJSMnWIKFZwTzwMR1KbXW2uxP//RP3z08fvX1F8PhRkSsTqdS+lcjghnMVX2eS2LQmGDpWPDlq6fDV68955xvP/q4fvitH/7o+9/57e9/76/+8uen06xBlSViRudZeVOEXr01M3UYkJm5AyGxFhJEaw3B3oFdYUzE66ENK28mWs1+YrPXUhriNBFtN+1yF+IUUbxQyP6sJ5+oa9FvB2d7LByXBumKtEUeOZ365hmhukag1b2bnEgyvCMdYK7N1Yu7chZ3J+5QWZAzS8oSfRquCqH4iUJxO969VV7xG7LOtFTBTpw6bNDMYhbTV1ZEXtc3WOM8retMAUWcDzkCmDuTBHnQ7Lrz73MoETA3U20NRGOe8pTC3ySuqTuySAwXEnW+m6KZdWUZduqob4d3CIYTE7NYa4k4NKeZXJxD6YkVRi7dSchaTDeIiE2i0XXt+3DA1Dik9b0h5JNyjtCa+uYcTGTubg44JU5Yu9/fCHPx5dcyNyibYMBUV8lZYgi6cgGYSNW0NXf0KYWF2ZR6FzIMi0eCEZmmlGHOPdr2MBLnQAhufQNN7sIkzh4r53DrNe2TQQIIBmcQww1G5hyWYhbddSyLA2YHYR6QQNY1VBzhQAQJKQv0CSV1zUwiqRWqPccnviAzqSeKPiAOvF+4WK1bX7cWUpCJWVwT4OQqHAx4EFEQzeFOcL7iAGQWIuqOaUQSrCpXZiZ2TgQYgXb70RRWmztySnHb3F21DcMQAldbNFifejKYmTe3NA7SU5FJZuIh9CbNIFnSkKxVNTWPUTX6Bes9AzGJu4tkZnWP4UXkqhi3XlBJ8TzH7Q2VtOsHPq5VDNsCDMdrb5ZSHocBC4jZQWYLkVdDaYWIBkniEjSPHhupe2L1u8MXBLKAwE4uiVJiEeLGAIsRP831q+Pjz7755vVSq2SexsRZ1b158DBLWUyVhdwRXVYZU/PWfYBxAYZFAI2tbFR3hhao+F5/XrEGrusACsesPu3HthCOZ4+IArWL93/c/bpY8c2Fa72k1EcPK0H0qhzuORtAzMtUI2BtBUT8whaDPU7phsS+UpDeTNw3LAmtiJKtXLve1dA1Wmy917i6FNs/+yXy1QTWPRY7tM4BgMBOsBvHjlFVyzwzIGloLch/WzUc8YIAaHMREc4ckhBQILqg2lqDOzPgVmttpYbfrzeFK6wz60SE8zAI590+T+Nn3/utn/zkx/f39yFS2h3OADO8evWqlMIMIh8GUtW3b99+NfLgd3mAkSrpW3+X88Pdze1+2lvtLqDNzUnm0rQsWluZyyDJmeqyQLHUVmpdWgPLtBtqrcWsVW1uWtoS2mpwMnJQM8/EnHIUKCllhR9PpwGcxwGAegUgmdNgQ/OlNRlyabW1whAvKmeSKd3d7NLwgbX69as3krLkIaV0s5soSWvNUOemtVqtpoqUiAABRR8Wu6iAYzQNWwgnIvUVk8lAoNKbOhGzCwnDw7Emkj73cVZ/wC5ic8GpClCRoVpzUrgmOCwT5ZSSO5UyJ+7jp5SY4dYqSyC1QheXpjyFZkacmilP07TPaWRO4zDd3Nze3N33ZzZ2X8VMKxMjD5h2GAe0JEtp59mKUrME2o/DI/Fxnrk3LHJzc+dg2Z0ej6ecB+HkoDSN42F/Oj19/fpVOc/30+3u5pZlKMDu04/vnt189tlnX37xzVwWEYk5rORR1Kuar+IfRAJOAPtKXAtRdSEkAojgCQ5tjh4lfIvSDi6tutOQukIhMisopQSWsGBxh6q3FtoQBEBB7hA4EQU1vlV1OJzdNsfaS6cdMSXuV7epAOecVVtrLQ9dMDwusmptHja/DlCIT0R8e88HuKi7U2I3mPTYEO8YkVBVQxPeYpAXCV5EUpK8+dhhnPI8z8RgAWk4SUTz22qtvm1a1pasB6t1n8PMoaE6TtMUW+DUZ82uFjJl3qoCWmsrtZWqtWprUWoVvfgGba3p+o64lqSKn/c2t0bbAHX9MawdbzgyBHqNOzMvdDp0C/hrqGSivtXkviO5tAcxcu/pW81q09AwW5sNDqh18IZZ3N3gZo3B0TFs+hMAuKtxExGt47BL+ogN0nUDrHBTDRHN2CsZVg0iuPe+V83MrPMXRBILBdjBzDTVJoIAO8HczNWMrDaWykUCGUEdxUrwsB3oNzqQifBOzoBbKKhQT0SrMkWtlZI0bxzTHLecMwtq1S+++OJXv/jF7/3ejz/77OXt7bO725tpmlJKWdDCzMPNPDjq7bAbP/ngg2fPPnr58uPnN3f/g8if/tt/redHpqBJG9lKR3YD2LwBM7lzSo4ONwA7mYPRWnPC6fzmT/7kTx7evpvneTjc5HHQti/zbMtsBnUloqenp91hL5qrkjRnHimN50pfvz4O+6ebz7+4PdwfBNPd/tufvBwyP5iSujASMxtH0iZIKWU3jGCOx2caRlnVgKk3zKzk63lH4mRmZB67XQ1C3P+PsD/7laXL7gOxNe2IyDzn3OEbai6SRVbTpBo04X7phmwDgluG4EYD/lsN91vDDw0blijJZLdMU1RxEKvEYtU33fGcjIi91+CHtXdk3vsV1YmLg3PzZEZGRuxhDb8htVSoX+cujR6dHROIAOThae/BNyJYhdHMHDxDbgAoVI6giwZnPmC0BdOdpGtEA6SRUpqrj3c5ArNwcjmzm82dCEmEM08RYZDm5Zgcn+gEQMaRKkJqshuChzASgWm9BkhZ4T8WAcj9kwAizZM9C47ZEi9MOBNReLinvEV2pVk9AOyg56f2kAIQQdbysHuzdUW/9NTKWItGBAY9OAcGpL6OdetkScWdUUZIMV8SYki57syGOtYWAMD9UBfT8NyBkAjAhBBcEwkiQ3gltHnyZoUjokG4BhFTEUEKQoAwVdfu6ooBIldfEkFANwovhPM0AfYMmzn9pRAJOoGKhv3I7erj4wGHu112okYZJTzAvZq5JsadU/InzdwRceJJu0mMg6cvLjEzILt5/1DziJGBJxjYw9MfyaHvK0wIbBBN3ZqqKRAylUStuBNEd9xxtwACKUKC4UHsCESMCIHASIGW6hfWg6pEf1GajgF1jWoAwJQ5Q9j3XobsIJmbUrfdsGrzkiBR7hxmFmEAHVp5Pp9baxghIll3yBVUkAIsAhk+UIHLVTUBCbbbtm0RwROVIha+bZuZLdMpN+DeL81LYObRlc3NLGult3tY3s1931OfY993C09+sruNtLlX+iMboL0DyQOFm7NR0M2tJaEarlGUEFGXBlE9MLTMzDSKZjf7N41p3jHYcoXpjzJYn/zHOBznk61rOJ4XZnJjREJScAQkAKSExRsTCUpWQgzCAw3p9OKTX379zc9//eVX79/vUnymyWmRaZ5O5/MZmr1bX62PT062yBmTVlfKYIznqV+rdImF7tqYIzyK5CGO085rklWAg2F2DKGIQGAYGV5OguOK9Xn3UcE+jieugUUMSvaRKOIozB9nAqNHfbxrhEofMF37KmAGEEeS/OEJfEzWipsO8PFFPjp/79oBcHvAI5i7ifzi9oDH2InM/SOAKLsQ+Xy2TDMM3bYNuRx5ONz0vX14d902oJhZzUQEwnoGGgHdTEjHYEbErqLEpTQA4sIy/fCHP/zJT37ycKYp5wZLQobevHn71VdfuZsINNXn5xTj7eaf67oH+XK/PG37N6+/+uqLr57dP9yfzkGgaQ/InQcFLIjNHdS17rqtetm3bd+bu5Qy359ROBC2ln3jdE5GV2vVzOz+fC6jvzHPy/3DgxDrXq22NIap6uYNAogIxM/TCZHq+7a3KkHV0Myg0MMzvL87v3h+d7k8ksxIYuEavr3f1Oxp2y9rrTs067M7KR7Q69PWd0SiUQFyVW3WQZXHiM1yDHGmiu7uDAGRXgsEHmaaGMQgDHfLPuQY+6CNURSCLba9RaTpa0dnWGm57EuZAqy2ykpGJEgzCXOZZZ5xRkRgcPTTfD7PZ+TCZT6dTg8Pz/nhua8XzOyeGe6I1MAcCgMhNAULN18vdb+sxSFMnz979sXfx+tXb+8fzkuZmsWLFy+Wu/tne/vbv/vFuq6v375riNNSTnf3X3/96osvv17np+lzKjytTxd59rAs8w/uX/z0pz/9//75vzeH5Zy1E5tPS5mny+PaMthKx4uO+e/Elp5gUKqhmJllZpL3KFehUsp5Pj9t+153SLgVBxEFgVU1yV1pgM8Rs3FaCrtrbte3zIi8laYf0IAz+x0tzyO/9XVdp7nvZapKHAA5o4OZW9PcZ29bIt1xVG/hjlxKaZu5exZJ8lszM6Dv+75ul4hYloknFinTLEgSmAMP9n1vbZ+miYq01tZ1TWpozqZElUdEUlcO9ageDyQruohMJd3p53k+nU6neV6mWYgjouluZugW2vI4abXQWtNazcztuo98tJBSx0Vf1+TrauYfNB5vF+18ybHy367AeXf6LnCDGOqvzJU8N2a/HrO/ZkzS4170KgAFB2hzvYn4+47jH25RN1Sso6k+tqr+aK31zkEuE+OyeKelXb/XEZJdd0wf9fSISBI7xFGYsLbXWm+h+4CBHqpaa5VUP+GrRCgReke9Bo6NNSIgMPVcRyPxZmNCzNBO3UENkMIckg9c6+Pj5de//vWbV9/84X/x+9///LNpmoQgg2yLDpQwDEJprRUgcnt+vvvBH333+59+3t6//+rvf/Hl3/9C20rgFEYJGja1BCF6hhM0EwVFa81dRWRb1zJNKFxKqV5fvfr63bvH+/t7GJ43dZr3vVloBBYet9vcLJohA7bg1+/2ctce3u5/b7/6/mffI2939/NPf+fHP/j+57/+8iuFMifvGxk8GQOyr5e4C0RU9077YoIBW8jbNEDFAeYCaAFBXQxIR3u/Bx7ZYYKDShapFZw+Jh11CN+6HX05AsQoMh0llVuwdC6DMeqAMNqe2OGNHfaIwy0iug24EwkEePQNF0nCDLqRfaqeYm9A52kE3HLQkKJwyRjjdv7uez1AmreztSQ6lYiINAzcgZCLmFlVdQcR4e5jh+CNhUjSEDRGVhuIWLcNmUoUSl3QAAjIm+B4BN79yhREtd5QKcwUqOFW22qNu4dZzx8RkYgFMSyL0oEBhRCAzUzVCpUe5bp5BHUlY/YhkpqruoMRYGERTglbVjMzI0Qhnqc5jXbc3ZuGGRNPxApOECQysaSqgpsx83TqVm0QkSRqT6k1D0EPEUaAps2TuJvl1d5vBUayoVOFSKdpTmNliEgFalcLc55KIe4K4NVUFQGROZwiojACMmVVzdzNJilC3PbarOGoFkTrkfQszMyqvrXqGiKiXtUtDASCSDQc3RDDq+YoZBboyHUsTLXW1BYOBHAlJkc0a4XZIJgi6XPpQ4AEnTpPaOHqLbET+74z03KaeuDe9c3dvWcCUnikBEBE3SCBgZA0tFVzAzY2syxKFuYwV91FZJKspjv16uENzdKdSgcUhbla9fTq7OFFnJfTtm2qdZomYkSK2moObplK4VN41LUKCSyybRtFLMvCRO6aXHdmVK1ZMZq6554zkzVPb/HsgyEiIJYyW+79EQBhpojMJAFQSlGt5tlRkZSfMrUWibKjYyJ1zxIE3au7TyxFSlKG3f3gHhw7a2vNzJAlArQqYFiW/CwQuRQRngIM0cF7ZyAMEGFCNgD0kFkQMdSAYCJ29wDnUgKxNqsaDbn5/vXbxy+/eb0hmZCp35U5dSMnKRFYWMhjrzuX5CVidvWZ2aBFBCADAJesdISqWm9VdSxJX7gHmwt62Nc36bzOwhzurbVwjBF09EgIMUbseJu/5ZE99VcHneMo5B+viYhMPLLc6i5wkwce63L2TlNLCQeKu+PQctdnRuDbgx+/5IndZtdHLHK7FR1/Pf4LAwJ3nNJxWBu6zcfRjiPEFRAYaTWLiCJUCrfWnp6eTIMIa1R3T7+dceSUb86wDEbHutcFVOvlou7AzIWQAR1AGBVQ92qqCOCB5jZNpUyTSOFSHk4nKdP3f/TDP/iD33+4OxVIJBEieFOTUt6/f/+3f/u3ABAKKCDEOdpfvnxJZPvWmjcFT7pOXZsb7PsOBCHEhVo1bW57Q4BS5kJFa2udikCRlqvm7f1F3bamzKVMGLG31iCIUOZCOjIBEVmW5dmz+/y+0yzzMjPC+vRoTxWCzJtDLMtpq5o2rXd3d+u+myuavn79OgDo8ojuD/fnx6e91mqAj+vWAtTMzM3BAcKz3oxLmYoQYpacARFrq7XWQC+lcMlyYe+qwQHU9CCaiMTdw0xEUnVD6+7ujMFMKfRIxCRsBrW2ZlAIAFEdAoIJDHEPa7rv+66+uPt5Ol22p2VZlrKktRUGBOIsc9O6LOfTcgdGSDjPpwijmZbpNJeFWHiaJplNA9eLA8k8AwmoQgQUgQKuSsyq6tq8KiILUts3cI2w8/05EL959ea73/1uAL17fP/J975X7nD+4uuf/fXfbE1xnr9+9061muPevKE9Pa7LfPed+/vT6YQAd59++gd/+E+++yd/+otf/P3Di+dWDRBqs6enp+2yT8tcpDhEmGOhcAgHRigiOT3TM6k1m6Ypo3uLcHORUoha29d3T8v9w0mKe2T41VTdYVrmnHeEKCJZYFpk2XQjApmmtm0AIMS11sy8kooPaZKX8S6Sm++683C/S2b107YhohC7po83tRpNK6VpQga7iRRIrlpCfjxYeJquEGgC1NqyLbFtVVW5iKpq3YKQiM7LqczTNEm16u6mIRMQkczSWnta19p2Rwi1um5Wm6rWbdu3LctfACAELuLuql0iXkS6IeJALeaTp9PpfD7PpaCb5A5tpFq1VU8jDGuu1bWGtciaxACF+k0fAjHFIPxYq49fDtrK0WBPSOOwwUt5shsADjoRwQ2fVjC15JiQ0mc1sjGe0XZ+3A0Zp4f+Ea6W+13ctsE9WAQEXNUjcIicDek1SuGfDAKti59xjLrJcfViIKuJyCBSXfbYlUjI3VEIANq2VasG5ujumqpmDsZOiIAB1hRvlEEDwdMpkopBitFlIRgRAcxarUplGq3sfhcoRXrYsfNFe5qUgnN5meLDInIESwEAKRQQFgYQh/unu//yl7/865/91e//7k8///TTScSBhCAAGDtWv1mrenEDcCzOZ8IXMzz7nU//r/+Xf/Hu66//h//7/+3NF78yN6YQAo/qAIa81yoAc2Ez27aNKWc6uzsSeihGbJulwdDpdNqqbduWoLbT6aTb1taKSOpI4LVWQoF9N/d5KXv1Gfnrrx/DYP7R9z775DvPnz0z8D/+oz/47/7FP1O3v/yL/+BOXKQ2LTLLDrVpOK61iUzC6O611kkoBa4KlQBTU9cgESbylHvggRlBnKU4cXNDxFKKhie3gpjVzd2FuLCgsJm1kQNfYw6PxF8kmFSIMUtrXWKqAEBEiwhVFylloms5BtzMDjQiDGi0aiBiyU710SjqYu2w73tEnJeziLSteehSCpF4q2aGgIwIQ85tmiatPok4XvHG0MGPpFqJlnme3aBue27fTds8zyyoqsi0TGci2qq6e5mX1pqFC4kHqKU7CYap9r1VexpMOM8FmQAoqxIswswO0FQByBGOlPtYjlqt4UnrLBCotVnzICDhvLCBATDUeZqWMqeWPnQHil7IcHd3dfeu++tu3nIZY2YRSj4XBqTFsLYGoCRciLMt4abn5aSq7lYYy7wIEoEvUgzMmjZzZhZmMCfAiQVGy4eKiEiMzn+3B4QIZhaa+rBxT9WMHmd36aPsBY5iGCKmWoUULCjI4KGmrqrNR420lxZS1jwV37xp2yvNjMhzKZL9do/WGgKWUqppNG1m4ShIhCQitlvSOTkd2LOM7KHakBAwOAIQndmBIMLVMBVYelM5O/toTQMhBJmIGQ2ECIVHQ4/QLWhQBdwtqfm9nh19s8HBDaAPbV1yp0BgIjqdTvM8R0QhnqYpK46dfgx4VDta24+k4pgA0zSlivJRkcrRjxjVWoqT8RCsMzW4VomudVkhWpZlrSszc+8Pd4wcXJvGN3T/1lptUzm5Q1I2qLMrC1JorRlblDKHQ7JxVQHAe2c315tAv6nWZxKVp0SIc5lCWzfIGkywvJgZVFHfnjVr/KUUa730ngJN4anBQtosfF/KVMqs1YhARLTugt5ay02ZABgDICiQkRDBPVTNiVrAHrG7vXrcX1/W1eDJqjrQPG/bNsl8muZQ2/dVW+uqaoBEJKfZfc2LlntV1tVGnu/uHeF1xCXXrJ7wiHWsCxHr8ZqMyZiPBPVjcix8K4fMEXeEROOJgJv4KXOfuKIsPj5mnudH+OoPIqcrJO/alDgy1duPu5kIvaf60ZPHK4+/fvSy4/jfzp/zvRmJXnHfiDgIwD5aS32lQ4BROf5gko6PyI9FuqJA3T0CzQwdzMy0mbVt21LW3m7YX4EITMCsAfd35x/+8Ic/+tGPHu5OBCCIBA7QofiPj4+Pj48RUCaYZzbXVGFapunTl+falveX907xeFlVXT1YddsxQI1AJt7W2uHQu1rzwhMFmMe2bxFIMglqCw+35gYAUkpym4gofQhpXNhMaSJsXdeOEmSayoJMzLhMctk069DzfJqmKQA9NCcjIFkgWbx584aZzXzfTWtrDhpUPQxRE92ZyDGBUqZ5nhCxe8e4ISIKEpEIqSeb9xii/X70Tn50XdwIB3PIWiwAMhVBzndROKIPOiUzpdiDATKwRrpTGyMIIjJ6kAPubYsoQeGhuRTPZZqmZV83d6CogkUYnCcMQsL70/l8Os1lBkIKDrW67c1tmk9elQoCEzhkEI3zvLXq7hIkPMlErSlN6jBl2vbw7NnT09O21+X+LlhevX794rPv0TTzvDxu9YuvXqlrRLRm83wiKk1j3eq+t9myKULf/cH3v/vDH/38l/9w2fbT6UQea23v3j12zDYSdoR44ti65uooK/RoJn9CFxftFQiAFFA9aNhsgWZqjmSWqAcekhaqyoIJIPJBmVMPRCxFMtIFAEE53pV3NmEIOUl7TgU4TdPYWAMQiAH7TQbCGI247hR4eL2BXrEzAMBIep3aiL0LcZCQQwkhbN9Nw3NVaK0VmvZ937Zt27baNlUNtX3fExGt4/ERR/f4iHSBAACeSillmud5ns/3d/f398v5PInovmHnJbUwNTO1qqp13RIU6jeryrE83n6vQ+YDbrYS6ODEBBB+vMbe/hdHgQ8Q0yYIsUtQ3b7leM31gyAigm9M+G7fknqcRAzX3YEwaPhlJBIjl/drxTY3mr5rIAA4UzkuZifcjY7fccGBiZgTNol4pUdea+vjiuVb0v4UEWGsw9nRPBjpKEzGHmlmNa6Yd5W7WiuJ4LDt6O6VeN06ryd2nIN/vFUdu2S2+bJnaGaA7IBff/XNn//5n//2j3/r2d39d77znfP5DKdlRCwYCHXbL9vaqjFO5+U0YXCD0wR//E9+8ua//+9+9atf/U//j/9RVwsI1Zo6oogk08QDhaGq3uXaQTBUkQgKc7pBUlYKGKBprdU5/QoxgNSC0yMweYvKRGYqtRkgqkc9x7ba3/+nX3/+2S9fvPzU6zYxPL37hqBNckIMIhEkRhUSxW6AxDglcZGpzJP43swsZduOG5pXTJhTqaSvEkQCUk0jggKO0BEIwRlTeC0cEbNzEzd+KgcGgYgyOr2dyLkiUVefuWIQ+s3FAIB937s1QEkZZ4KxbTEzQmJuMaAhohCa7zBEKLLugEAZJCMGRZb1MrGM1hrfNFpvB8/R+z3+mqd3gD37UMQEyfIkcwpFHet8OwxyAA4GAxEBkLufl0XdU0KPmYNQVffapMwZkR0z/Vh+s3vdL062ABmBCJkYr3jhXPOjFHAz76S5vLBEsG1bZioiEhTuqFbNTG4Kc2EQESkm5ellE13MmAEhwNXatgOAEIAUBiQGAnRXBEqHIgYMABs3epICBIhYWAgpxZURcXgVWC/vAYCrpcpqF0qL1C9O6V0Tmq54E/dIHSzMICDAPcyTZkeIjABUIsJR0z0vORcQ4daQiQCJEYECPAgtYC4SYa1ZeCAyIhCgq0JasCX4kKhhaKCbMwoSBRK4ewBDALqrIzgRE6F3KTmHSGqvMx1i4oADWuTuOLJZSJmxm2A9OpwWclRkaTyHJB5sGUIiUm/i4IjMvJSpteYORBIEEUiHciBi6jlRkYjAcObrBBCkxEpZ7871Db3XI/KijLg/R2riKJIsl85XR4SBiJG60t3gATHMWgiRzGRmruboDLiUiRkd3SA9kRGH9CUDI3ghnliAoZkHmIMSEFIfSO7qZg6GiAzk7oCWEEZVC3amCTFzURTuY4+IpBTtbUxIfYBjS2bJ69MHXOpIZklD1XFiEdZqRDQXQauFi7sRgZRCzETARNhFyxgB1MEJjUXdV7W3e90iynKK7eLuAhjmaROd+LSc/OKEKXA4ECZEFCSentdmpZQ+eEZIn81JuZWUYwKmoTzuiJgEfgjK5irREHVMgMUwpoa+k3d7ySMCu8ker0yw4+fN+/K/oxE6jO+OXTxu0vXbVTi3rlz7sMt//IbEFW/QgDigJnjMlvELjn/5ewy109vI8ja2OD7igy/l/esCQBpgUbfwTYEZDWtIXW0COsv0+qWOYItuOHtH0BkRIpN7ohFDVfe9psmQjrw6va2RBUlImLh88slnP/3pT3/nt360FAAABkdwCBCCcHj//v3j4yMATCLLNHHUMlEaQ87zi/u7CQWdYlpOzOXy/mLW1n3b60UheGJ0rMn03WsYREFXf1r3iAgk90jhZQtv3syMuUBEocKFMyaYpBBRGpakpJ81zToMEFC1mZkE7+7uSikeuq01oeMRMU2TE0dgM/WAWpvvflDgItDdq1sLaAbNoSNSHSR3RjxuGECyp3IvF2Y77gWIHGF0ZKKVMvNdTjpJX2ZCxETEAJGG1X3dzh4yZNfHx1wPcCCMXE5IAXdzqg20nYqoL60ZBQgzLEg01XVnLjABphxsogMCMDxM0YxJhGlmmggRuRy4R0QDra0F9RolRWKPqHtBQiDGNIujT6dlN39/uZR1faH6+t1b46mpLqfzm3ePa9PT6URE4TSXszDViMd9f/P4Xi7Pnq27eDz/9PPf/4M//P/9+798/fY9kAgSAJ7vH3JMBzEJA4C6A0CZsCT6xPugZxFM+yJ3TB0XQu81ekTOtgYBcYy53BOtzgRTRCw0gHkMzHNC9M2spdNMOidviocqTYZl2TVNJ1gHIUHA1nTf97bv83xSs4SmI1CEhWMQAgVSCAoAuHqoJTkJAN381gMIHV2ViMNzAloEhFmyrrrooIOFAmEps4hUbXtrbVsvl8u6b9r2dV29aWsNEb+d9x5LUwadeGCJubuIJ/I5KZ0EkNVbDbdW67bv+65Wda9J07g9PozMavyXbterm1WZYjgPQ4RDEHUGzpHJHXWl+BDzHIEBffGHMXeuHxGMMFSxMkHuJnN+1Va70UamAALEDEYDMC0dEBExyQaHP1YEHkamBx4HuipHV9llosQvRYQPQ6mM5qNXuxIiC6qpnXbddzKOStGM7tMBGQEzRrqxu7ujIzImXrRoAVcNsJr9GQQMcA+lho2IcECgmXkYWvuAWV21LWDI7ySJEAZrHRGz/JbosB6nqbZqGkEob96/+8uf/YcffO/7n758DugvP/38DmGa54RQIrJZbJf1su7PHz51j3p5kvvTAqUU+N//1//Vz3/+87/+q//w87/5K1c1j4XSbgOSZG0Zh0cwWGsNKdwx0qJLJpRsb+aNwojQ1ry6mSEJIEGYObCDWaBVMEAtxMw2qXqR6ent9pfv//ZXf/+r/+f/61/+1u/8rqP8+V/99a9+8bd1V2dU6BY+FEQk83wixENLJGF9hItDMzNI3aVh/0FXLdU4UuLsrh8Dj2MUdBwcHdKPBCg5G4g4pgcAwCxzzog+5oMcial0vfQskDExs3fP2F6moQQGA57Oi5nBMB+Vwty3hiFlF7nzEBFNQrs1As47GMMPbAwJNzcAnKSISCpyjSZKV93rk5yOwj5EGCAyExNnWwh6Fat3UzRLHkCqikhUJOEVfZSipyNNRDCRiLhHixi0IExH0BguoSmdG5HGq1fSnLsTkXegSaSKdZAAITBQUKKCswwmjBFg1sG5DtlRywvLfclkTrX5ztlGICROv+KW3nWgeuWDAEIhomUBACRqdcv6FAaQwCQFPFoYRCRdJFuv2AmKhiDZPRMmIgr1XLLEh2XO0ZHLuNOH6E7EUKBCTNwaji5WVtsgwjBcu0EzM5fsYmVejUTdkdcgAhCYCFnAIwk87n7ADLLwkw1SQURkC0/JG0qZEuxBdhKpCXFmCUKDqE0dungcQMxSYsAjI7kDkLOljyxKzQLoOwEGqjt7WsSSuxMhsxBlG8Qg4+3sx4p4a3ljbBQIiBgFZyrTNDXvcxhv0oZCLNw5bBFdSkdY3LOjen3UWpmvNMVjAz4IXccrjzHKCb1zFxEZnpiqikOVOqnbY4KRmSXANRLEDiDMARBmgCBETuFmHuFmATCVUluDiAjDQbrN6hf2jMiGqhcfmxAc2nQ9m6oFr927I+/KZm8OxdwtekPSHEdaRUQRTEQpEEUkGTCYWYRFGFJM01QI992CkItEZAGBsmtARAEQIMEcVFr4avF2257cYyqxkauDeb087VN58+bNeZkI0NxrrXvbmxsXIRQiWpaltRbaq7xHntzjIRyYmUhJtr5a9aAkIr8yDOhnjD5/CHoXbkvZKoxI5dJbAcwPmjlDnIPwg3wYrh83RniAUaR6Ws/38KZLnKfxYbD1QWqan3J78GME3nbx/IZRDB/Wy2Pk7bcH/8ce3x7ntwM+pS+PWm/+tbVmrR3fK+94fgz2EhURUaJ9+kN6sHK0XJhngHxbv7m3TbMgRCjIEoSO4IGn0/nz737nJ7/1259++mk4aPgphXkigAgR9r2u6w4DczEv5cWzh/NpJowidL6bjB5kmcq8PF7W9WnTfbtcLl+9/vKbt28ul8ssy76nNayRkzkSyXRe3r19VN1Vtbl1wQ1k6LUnTKYLM89lEhEGLAvXuu171dC5FBRECq2qDOBWgGcp5/M5wr5ub54en+blLPM8zUtJNYbV06YvEFKEHzBXMMz4RAPMoTkAQBoKjFjmuPISCcKHRKxkeXsEOt1gxQmZiNLxIigL3hoZZDBA1vLMAizBmgmEG3W6bktLTB6eH4OIDtHcnnbdtbG2NhcH8gJMpOoQEr5hQCFC7HxytapG0ySXp/ceFT1OpxNJKQATEwiCWeYD3kLdPBwjDGMSDmZyIjM1q9v6+PbNvj2u6/v3T++2ugOThr97fFy++YaK/PwfvqwtNPzp6Yn2eprPrm192sqyOMum5m1//3RZHh/Xx6dlb/Bi+b2f/vTTzz776quv7mrFeS7Ez1483y6rmVkoAeY6nK0yjC4DEREGfftILChFOKa+NjiCY2/bcWeuZOdEAEFEhHpPhoiWacLs11nIVJopAMzzrNhggNwyDYaxbcVolxGADS19RMRajdQSgOfdFKvPOxuqQsJMJSJa21VVpGQjK4Wgr4uVe6ihkA3FGnfvRVzzjBmCiHFG7m4f5Lbu22V72rYtZ/q+723bjw2rxzk3Vb9IdwnsbSUiotINpTIBTumrZJRk0RlMtbZaa9M9Gb/7vh9reK6LfZUG6MnDsD89lsrb1fKDldOPKOaDlfM2ljuW995O+zDZPl4McCS9N5vCjcr0bVo+Tq97biHiNPVN1iGGbkT6GRAMhv/Ha765xbXN1S/pOP/bF/bl9xgbw9oAxoaIA6N0e8UQUVWpB9fIQUQkIrHMnn5tZmDd2jrh0Nn5x3FDHQJvPFRvL2Y+o119AK53ESAwnd4IEQOCiaQUZLZA3TSAiMvTuv3N3/zNj378g4eHB3Vo7tPpvNw/TALCMk2TyESgAbS3yq2SeVI+n53g//Df/Df/y5/+2auvvnr/apUyB7u2HYMi1D0AO2P1CE7MiAolpkYAgNnDw8FdGcJatQjMfikX1wwDswlMYA7k4Q5uBKLVLrU+tu3v/u4Xf/6XP/vkkz9vpr/+8mvzOE3LLMUsRISlTAqOftmaelT1UtAd9tq2bZ/LBMRw42nUsyNEFu5uMiJdmEZbnxSIdtPnz4kpgCyco/raHxqP3HNHAowQBBY2xv9xK+NAwPkV35onNk2ltb1pM3MEoqDEss9lho5qiQCTQZkv3RUHM2XIThsSEGbGYwBgffVAZk4JN3Rg/mDAHyfg7iNyIfMWnuXVtGHFIxGLQFWd51k6szKYE5/f5dAPhgUAIICZMVFkewwAzJn5dDr5TQ0CRqMbriFffDD9mRzMY6CLMxMhZmarDRG71vDN47Qske04M0AP7ALXWaBMPzlGQGDv9nWje+PBxMIEAAbRcjJ6qFUIdurae+4aafJ+nGfAUc6mkZVkh4aIOkKJeJg0ehwNorQkBWZATGQm33TAj1e6GURYVea03cLU4VLzWmuhAphKlN3UhwHSZ4gRcpNIaQ0CZCLTShBzYWAKR/Ieb5EjIjpAgKumqhAVKdqcEC0QHZkISZhQw4HRItzTEKhDdFu4e5ADeNLngZFgWNOaKQCKTBCh7hgpyEStwQEEJSIkAaDT6ZRR+K4NwoMw0h8oG4YRtVUFBqCwVrd9YkHEJJe6t2NsGZil5vXNNlZN76cFBvi5d+cwkEaDf+zHPuR/qMOzPYv1iMipbWC1asWAUkp2WpgAEecyubs2TZoEMoV51YbhyMRZhleDSNwQTTK5ZUslqx5KiEUg+f29XMScJWp3hWFpa2aMlEW+iBwxgQhgjlnMjvCm0zSlbGjyOo/lyUxbq4HAJMOlDZITNclkg84RYPu+ZtUjCANB3QO8pFxnh9PlWBeluQZeQh/NLwAVEaWITM12V9t0fU9wnua706d393cW6u+ieWBVCXx6elrOp9PptO97rUog0w1zFTiVsbrQS0QH2xF0spN7N+7FwWU9tlUGdoIIMAAMTocnAOyALgoPz5Qv39hxXlloT6QZZOs4Dw4wYDwATr0vG4QfNH4Re3UpLUBuQ4f8heh6f/EGE3EMwr61/CMJ7fFBcJPEHk8ekeXtz3/s7eNzOZtqEDHiHQfwbKpYa4hIKRwcDnCAPD2p7xlcplHz8RU+KHZ6F8zsJ2OeuugDNI2AEIQeqV3s9/P83e9+9wc/+MH9eWKC4siQXYXMAiHRlbnkZtXp+Yu7Tz99cX+/zPO8LDMWvnv+YIgPz18QMGKs6/qrL375t//p51999cXj68f0rohAg6jbCkGlzI4ELIQ0YaYTnHdqnk8HAATSkDMizFkQwkwVLVJeAhiaQ5km8NAI2yozBnIps/sTAgjSeZodoNVNN8hBlohPt06oC8folntk6DnehGGSUgpLIUDLuJkoOzXhmTFTepLBgCleC2Ma3fKRmWEIfpcRHwSk6ku6u0dkq8Uhq6gjgYqkPZm5CAgBoLM6oxdwRyVuATwRMBJENfNzmZ2jtWqmRDTPc4QSn6zuEI3CwSu6cSiq8jKpA5USLIqBZVrOJ55nQHdTBu56t+r7ur15/c3rN1+/f//+8fHd1gxQpuVk0b785utmWhsYCIqQ8CSlENetQjOcwsxqrTCJulvT7e17ePMOPv/x9374g+9973t/9bOflVLO5/N+Wbf1wsJqzdWJUAQZIOGuIhQHVw0AECg3FIfq3VUIkh2BNGAZhMj5jygoUIi7+3rrtoUA5tbMzCC2uhPR+XyeZN73PdTcLLXWc3lnIEBII1itFuYaGhrE4KkKKZI0DQVNqh2kLyiRg4FHNiuEOKQQccIQ+cPlggGLSJ4aeqSgsOUkDhORMEthy/SkSbJrMucTsO0arVqS4tpeI8Id3N2yL+R9fe19UO4i25lTSSnzstzd3d3d3WUH2N0btMu+hrZWq1oF81BrbVetCODWlZ9zIHc3GGRIMZGPxHwAAAA94MNl1t2jC8kcyzJ9tJxmauYeifc8QspbdEZP7bpfSUBWSgM8FIGTuzvEDhmvV56OmDjdXywlwXvghrm/HMvRgbeDgbhBLBB90h6A1eOsMjd2iMO9qZTSWuulY3SgCAQbjTvsHF3Kmx4RzCnP2UMjJCLhAtD2YmjQC80AMKQZyc1aWDkquT3Qby2v03FhKcBS9hzGduT9JXj0daLbYk9Ed6fTcr5/vLTHx0eSgoRffv3VL/7Tf/q93/u95f7BhadtvzN/9vz5JHB/90xrc4Onbb1b5nmeLvVShEqRAPzp73z/n/+3/+zP/uxP/+Kbr0wworrTiUHNPdKkFRFT6dMTAMmOZpGsOgzq1fkAwlB3MyuU852cCOGmiu0WhmBMbgKhdQfG+XR/h7Lv+5untq8rAD0/n8p8kjLtexfyCXbQaK0FGAac5gJB7r0jUkQAEMFTn6kDXIULS8s2TIKtDiXFBNJnTBIDmgJAJIjd4DPhZLd2KmOTz45ueoM7eAbpaWMSA75+jG04+r000L+lFMTIqCHUzAxKgHvKoiTMByLCPGNMMIjs2x6ZGBKhWIBDT1jDI+nx5kaAdIPcdkgqD3QcAQQAM4YDhlpKmh49YsLMLFLZhxlQPSiAgYEgQjMODw+38OhfrBSOrt6faz7kYtaqWaQMsScKYywvSETBeT65FJI3dXQbLH1GhIzP3N1NhLMQYG7EKFS6croHDl4w9gA1GMjUWl5AFCbiSNm5MAQ38Ah3xaBMnicRIYYw0wxHEsDSoSaMlNwNSnfc7Apk8HczeBCgN0P6aRxuN5F6zJkfMgydPQSwlv1zd3dIlSaiJDRm9ntUECATZo/o6znkMymaR90SKZCBMcUhIxF6fcyaW58tPXA3D4Aw95bUAC4yYJyEND4fzdxNeSrdGxoApYe6FFh4QIrjGkhBIBWR6HXXG77HNf/MBCIHtJkFOkVCyVPwNNKLrbWdutjmVZGotUYBRJTV3aN+6Wl4TTQgRv2RhRwYlaqsdbEQIlbtihG9W37DWyilBLm75zInIjwx196UlBS3NcttrKkCAEYaOxMEINEyFQ/tiYEGM1MQc0lCcp4fBnhYuHq/qJhMjeR+0I3pzlHxHSsIelMemKrjTzH6wMfmd6S1aXVKBIFAjBaedmWZSAAhOBBRkWzwWwBaCAkDkacjRHpNMyVJxpCCxIAu5hezixvf382ltG0/WRaMq7vvF9i2i8bLssy0FR8ytsTcWlvgdNuZP/bpm7ADxz7Y/RIPVWcY1eJE2eG4ONBjd+rgMwCIZK1EZrpguadecfJ5mzqLeyz6132rn9sNIy43j541fCC1Eh8GVbeP4wUx2FzxYfoaEXBjvHGU8799nNuw7PYkj+eP3+FW2eV4REBQLv1A+JH0dGKrxjP5+o8yagdwgCueYjysZ/aECJTYmwgI87a1WmtSAd09CAPRkQIoayqAeD6ff/CDH3z++ecLwwRQCHsta3TL18u+bXv/yu6MUZgmIQ+rdZuVysx3d3eGCCQUBGHLskyLzPfnzz777Bd/83evvn797t2X21pFSgCZBbbGwDyVZXh7JDM+W74ZR/amxJBnJIJJyjKVdd/2fQ3zPMF1byJSiJq2WjU1bJdl2beKQL7Y6e4cd/fR6vuLmgVeSzBpsZJ7JNbWNw/OELNwKVwIA9AhKKz11bZHRxmLxBE958HCkSn3CjrEXd0R0cyyH8kIDJylIcC+W+T20cd+YA0PQOwtE1RyJoiChKKh2OIJmhs1lonFGM2i7QoAAV4Iy8RQFWK3mCcpFEpgaM3rXtf3l3dvZVpIiiwzlsmF57szn+aUICIICIe97Y/r/vhUt7Xt6/r4/u3b1xruENZa6tHu29Pbt6895LIpTbOU6XSaIYIc7uZlmU5I0WIDYS7SWnv75TfLs69e/q69+OTlb//2b//b8zmVVBAAwJknETJDJmDCQOQgpEh7wNzFzLpgr0FYdh4AOTAIslU6miU3C9eYsLVWRCxcEEOtQm7uzBnkZXOJ8RiNaMO7sk/cSIWUAAAakrA4cE/ZfMwKvQ039Qzpqtm+7xG1lEKUQKEOpPT0dL15CJKO8mLyfgnAIFw9AygECI4rAzYoKb79gGq11lQUt67TntiZPrSS2XUNj8bKdqhenc/nZVn6em5mWq021dra1lrzprXWXFIwjZH7FbiumVx6A8fMPK7t3OOzjmVzLJMGhB8udL31d/PKa6f3dvm9fab/ctvozow6byjFcUAYOiNHszYbhmknwdMMmbLi9WTgtkYMAHB8Ch6OMz6MhfNPPBChaYvYT1LIumdyL9fSwIuFXVWv+xe8VgQQ8QhEgYiCI99FRG5+BMRZuc5EMR9cBIWZOUskt5c5I8IU1Mkk/5DCiojU+3AzdXOgBWGeZ1lOcoKnWm1biWKr+7vH9031dHdupm3bDZ+Iy/Pn51ng4fzggdvbx92VAy97fTjbjKWaPZv5v/rf/fEf/dEf/cXPfhbbapplGZ8YlKR5ErEtwJnZgYnAzCAlW0QIWHiihIioolu24iONbFjCDSHbRAYOkSO5TSo7ESCW4Gm6X2g20zZPp1ORp8f3jKSqGuDh5tWhWVQUHsjTwkWY0qENSylATm45U3KyiwjElbh7dHSnaUodLB/aKxEhCBTAqSRqegSZ4B+XdTqGLsc2MwzicTZdUymg6Q434UQfDxieaWqXTAIi4okLC0bHs5RShDBryGZ+IJkRUTjZhgYI4UbDe4eGyFyfhkBIdBh2Qo+KDwAT3hLcRMp1hEcwE7HgMRM99n3X2rI5x9idSnKa4Ji2eXlba9osCFkmRNRwc+to68RcdKJcuHc6ed4syJ41gEc4ug7ntkQjJsWvz8qAXZu7i8hUJgLUtfXzIQRAywKR58jDoE6QdEtTJJ/mQq6WeQcEWI8ZmJkYwKkUJoTMbBmQpKTdz3Vl84ihNp/QPkQUYmSSI8vKklVvcxCFpZBtIEAhdgfT7gSQAPU+/4clEjMjghCDh6uCBxMxi5YkaAAGQZJyMxPQdE539KDDPtctetUnkl3mFqbaLCJCpjmriDeBu0dEYbbAdGOLADVTM3NjSHGFIKTsN0AEpZUVc3TQhWWpPrdnJkEubmAWiJwOeNZS+rK4O6AwSS4I+1qZGRgTapYT2KyVUiACCadpGmLCU37lY2s57o2ZJZg7q9rHBJjn+VZXMAYX9JgGNJRFDmRRygM4mqomeRsjUryHiHJAWPfJyPPfCss8z0Rk1VLTYlkmG4YWXQGLC7Aws+4VPYiAwiMMzJAIhdXSxdMQs7hi4R7umdVCQhogLc9QCoFm8e8mBYIOPTo21NtliBnKlBLiHNqjqxRhVtWZKW1WmJAhIqx5SJmJKAYOOUtZiKwOhuCEDVEDKqNP0+l0D7U9vXl3inDV7fLk7tr2V6+oLIUX2dqm4bW1fa1c2nye+XKZy5KFSVU1DbcsT0JAej5l+N4DEUQMN4CejsJgNAPA7U0fOycAomcX3/tdj+tfr6IC0NF9CJBCth8HSTjKax88nyr8H34oABwncjzTX+9pnovH3/IXGN1jxGvvLpKZebRmr9+tLxn9Lf2Z/r2yYNDbKwfY7OYIfTBAh8CNsyKga9FkYBAQUzoQMQn3ecoxgrYIi+C4qWThEP2PCI+Wjc4wbG3PJn/XqunwjjTfQRHhqZRl/s73v/d7v/d7n3/n0zxfBOiWsOOR+fPYw5w5fWiaa9O6uQqU2czOz55xmUNj2y8Y9Gx5EYWnaSrAz89f7Xv79fZlIJR5nkmIy3bZkQVI3Exdw8wdmdmanqZ5nk+EFJmkEzGLuwYxzXNEuLUY9IHWVMxjKgHgFlxgWZaXL19+8+Wr7XJ5JGJGISzC0mEmgSSIFh4DKkRgpgoGgHjwlxAizFvXpurpj/U72IkBkBJNCH0fSR0FgFR1IWa2UcvDkbRoZBO6D5tIeHRfz3PZY7PU5A/oHJ1ElwYKkoZDuDVTWMQb+6kE+tR8n4Uh3AqyzGa2xm6+zdOkUsCN3Ly2xtzKNk3Tcr5DU15clolq88uFTIEQhMGxPe1Pb9+1xzWauptaXdenp7XWRuaI0aaJaq2P79/ve7xfa7A8e/b8VBbjJkTkQQDEXOZpPk2Bvl4e47I/f3wPb9/Ap5//3k9/8uLls1dffn3/sCDGskxgPqW6GgN2M/TAiMtlAzeRCYCywOFIpk4kuUABkecdQhRiMDhMyEc2jIgYah4hMxFxErAzqSaiZVn2davbnrlAjomwtLjrAAS/WoyUIvOMXQcrANRqqKru2DcKTyV2AO99uezekaewyUDX+uGg09cY80DwsNQbQ0TVAEg6z9BM6mQ2AUBtdtkuj4+PW9232qw216aJLnMHvy65EIi9sdRbozRiZSKSUqZ5zuz3dDoll6e1tq/bXtfWEptSM7XOn5ldqyWi89qHxV7aG0v9Bz3g3FCuiJg8s4jETmRgAEfsNJbNa318VJQAYFi8fNhuva7/cP0USoFAMESCuL7+gzwBUNUjWlU7sxw7UBACovdWym1qkWt4JgfGzBQIg+FFQ7XIk94fQEQ9G/euuQEUNEqxuVAoKVgvyF5jX0R3TRtXdE+gfx58mqZQM9UaAeZxZE0e5tZop0rMjExTV6emvpPl9Rv7FFNxiHBFREPycBp8q37brhBfR0SZ5HT30CKYApmf1v2yrcv5TNOybnWr+9t375nl/jzN8/RAz6vIm3dvn1qD0NMqLAGBDPyD73z6T//pP/2f/uTf/vrv/g7StV4fUwQAAN2DomOOKADQEVNaKDxCqDD1XhkMnmo26XHkPOBuZrW6EEIpzGFtb2gssNyLIYEsxARaqUmETjKpW87cAAD0MqG7OJI25+HiS0NbmIgyFLlGdEhE1EwDoYvL9gwYIkHEA47b0xZFACBIP/QgIskGzE05vku4DTGIEQP0X1KhLJ9i5pxxeEMcg54HJhWi5ZWYWBgJR9kpEa+URsSZfiOYOyAQFbPmaoCEGSNGd0wb4QlqAFIg863qXQaTiEgMTAUsJ6wnIT0vgqrmIRHCXPOymEZLTwmkMA/u/bORo4WZgzsRpb6feyAxgCMiOXheWxJANjPvLLD09OGMuiMiugM8ERExBQJ4CDF31bd0/CoAYIPilOq4AEip4NNBeckRgMxBeGhUuIOHZh6Rc0goPHExEQlvJh6hY25RHqkdFDdeJHy0hQBUVabCzGkgzIdiP0b6tRCBJ8y0X87uM57KTr0k5u6FJ2ICgDA3c8uSf2CG4XjAQFIhOcAgnX4DgDg3ZnM1IxCwtGgDAjqqxOlnRiQEhAQggmjNIrHK6lGYGWi414V7hKm6BTEyEQATIQFjl+kI9ESWAiIDmfVCYN+PkVIpWs1YBBFbMzUt84lIVOum+zRNmd/GEFUFACIhQmRGxmQrRFcbm1trREYThXk2kQU5mD2UAJgTJk9EBAmFpxzwH6jAHR2wDCMIEAHTsPeI+I8dSJAAATxJdLgsy8SS4pa7VmQiRlUFt1xlekwJ2DMB9lqtNQfwMpGHmnkEpF8umKkqMGXVNYjhSBukuClQJHhmSEJmzenqVxYRzYyZZxbzoF4s6P7AjgAGjmBuGF6IM6vPrkLWVjn57tjVnkWktbZtW5mXItJapUlkmfZ9DwNeOBDcDBnRY3cvBExQ3Y1YEQ2xCUMspcD5/DBXBXNhrtueqC0LvFwub969vX98iYizlCpy8SdvZptbuJ1DRE6nubc+vEuRoYeDU5B3NZdecxoBZY8ArEtAd2xBBkzaZYYREFLCzm/q5Qm2oht4W/So9VoTOQbPt0bIdek/MBq3q+3tfz96+I0v5UBUXAulxxH+8wfBUQi4ffKjc/jo+Y8irXF8QrjJ/29aH7nKZ9XfIxCQgSCguRFQWkDdfjozB1/vCw66FLEAhAOo6j40WiOCezaQFEsiKdN8mpbzj3/849/5nd96saAFXJNkAoguWgvoiMCDgT+XaWZa5nJ3f1ruTjKLha3rkyM8f/GSltMZw+q+W93fvXv9xVeXt+8//fTTP55P3/vuN0/rujfb92YO83waw8nAZyLqMB63u9PdsiwYVGv1QaqHCkHKUE4nLBMTs5m94/frpanq1hRBw30OWpblNJ10t1evXr19894Cp0la1VyPPMUE004WutG6dlHhIYRGAAAW6upTql8SEaIDQTqCZFxIkdSAYwildEz2ArJi3cYuWEoZJC8DNxyAJjMftW1CBEoNj+49BgAQCB6o0aBCMRCHAuAdW91jCCJaJlGMx/1JKgDqcpoLoAPt+44ekxQrBaO6InhA+DRNXqmUUnAiD72s3BqWYoxE4mFhGqDZ58vF5OtX75DP8+m+tcCLbfvlq28eucweqK1t22ZNpweeC9ft8vT49vzsrgjN0xTu+76L4Czz9rgun/Lnn3/+8vmLr7/8Aj3MNRqFOZEkLjdlKTAMe+svkXFcAqlM87Qou7ohcHq5qJubIUIwAYVjB44AdMYNEc3zvO9Hk6TnJPu+615Pd+cDgJdx7a1WRdwgYBFRVZkQcOgmDOFJMxMuzKTqKZdGJBHBwFCIAYEpvJPumGn4T17XkJz4+Vl8o5XKzIUYhQUhADQcABxg27ZvXr96//S+eWvNtG6Z+rpqa+1IPnu4jDmjwTGDCQBEpsJCSf3NxzSJMLVmEAauoZbqL5ntWxfGYZTw5o4E4AfcLD+oO1r3lOu6vmUpb1Q1c6IAJiE5IX5ZZhrp61g26bj40TFZ3lN6DEQKwoTygkdingOTtZuwec9NfVSmc4vB4/hZJUnOXaaLx3KKN1zZiMgG1xHYYHScF1qk8hxAF8GioU94NAD7DTbXVHPFjk1oDY8DZv8m14o0XHFScPH0/QMgACcnJ2KKVCMvaqruqSSY2IS0BoPWjHfdae+Mxg+x2Wke6eCQXrAfP3B8YG+2ESGEtboFkvPd8/uHxqhtI/LHx8evvnmtqj/47iev3j29efP26empiBR+sSx8OvEzuW9a6+Xpad2/hnfn8/K8zAp6muV/+8f/5Ee/9cNff/FrZjghaX2HCOGYsJje8LRQVfNgxo7gBWI2I0Mk8EhvC6buqH0kwKru4WHmQiScuXStPpMAYN22CnUq58I4z4vtT0hiahadbaGqlNpjwBGeYZJqEQo4QpRBukYMZqZ0JwHu5N7OAYbmltp7B/E+07BMPwXpQBpHhIfBTdmIbmjniUkoRY635whNgmZOsFFmRbNGQeQARMy5Bs+ujREwyANEKEWOFJQO5Xyi5IQfUVNSc4nLaSqIaFojIp24AhyAQhuLZP52nHYW6RCciFhwFPCBMOp6SXxor3ICuIO6jVkTeYOZOKtrbpqFwukQbvD0/kZiXooAU0RkH4uIA5zQoIfkYW7dH5un3ucDNjAAECIWAQYgzH54au1G9sYxmjpEFGJFbK3VtjPi3XLvZqq1MzcJsnmo0XE36Srv3u8U5nYGwIQRoRAISMwB5u6mHTKslCJW7Lc7Qkc0EaBLoXmSaUorWfQspqsKgVtt3jcFaBEYhIipTlwtUBWDgKQUUFVmFCEMCnYqXdLJO+yfKSGGoOjh5h3AnFjQXHpNCYCIRQqgIUCYE4KU4oi1bdjreA7ghDwLOzKjh4W7CxISaQAgGUQzJQrgmEUCyAgiyf3oZs0JIQNWT6wNdTKyBqIzE3RTZggApkLEZlljKIgUDkTChA7oFgBISGaRufcyzZ2e5hEWFk5Ek8wRJFjCwzWYjQkZgXloNrhHKCBHQASICDRFh0AP/3AvhyilYM9XqGsNAkUWGN0Kp4p1uvllw9zAkZFCo6mGATPfzXdmiQ7FIkJEEC59cfS9bet+YSJZhIM91FqypgUAHMitE/KIiNMCsRkCcjkRIxMjWtLzYsjKA3KZpLWWQguJrAMEQHZiEKzmiV8N8LSeZmYppbVm7oychRIkYOAAR5oisDXrpAuIQthMlylZ5CBCHrHtrcgUTmaeopFrrQw4SUEuezjy1IAvNerCy8NdIGFtp+UuFpiA9m1byrQ3ff/23cT8+Pg4v2+vv3794sWL8+m0Xi6C1NzBvZmu++XM59PdEgjNanVHQAZ0h9aaIU04CUkAbLULwxB1lwX0Xm7MYMUjMX/JdDLCFKjo1ZmAUPX0r0boxPUREmGEsVBXQejg6TRoB+YUwskNAEfw1IOjjzq0eGC7Rk30+ifuwkKISZDJmMNuohwfDQgIgM4lxg90ESIit98PPjVGtwHDopf6Uno8lwsYfWBEHpQNUKuJdLJhN48YpprcHet1Mei58MEiC034dMoIs6CCFiwigkTNPKGIAVSt5g6kpg7RzNyhlNmsCTEEGhAEmsPT2n70kx/85Cc/efH82d7iXFAgIIIlzeQor4sIEyaOPTDgfppO06yqHmGhW/X5dCK0uaDtq7i3bV/fP4bps5C6nHe6RIu70/33PudqZg5P2x4RtVkMcgQGNN1DTYSIgZEuT6tZnKaTqu5bffbsWQMzJyFmlJogGfO92et3b+/u7iaRjAXrvquU0+n0wx/+sMj897/69a9+/U1Z5HR3jjKZRimo7g0CCzEVtbAetiYkPOUU3AEcHMnVvRROYhAPULqFuzUGDE52AHmv5oIga60AAEXAMfM65qJuEclNSwlecjCtWpCiRiAIciC02jzL2oTm2VXyo8dmDlPBQPJI9I1E1GgWaCFlv+zCOAvDHg4+T5NZPJzu6x4btVkcJ+YiXAS5I9hPD/fLtARQqwqO7qRFeJbpXB4C1rfwZnv3uD6+fvv2zftHEGqh79++vjy19dK2VfdGXBpSMNK+tXVdPVQm2XYjiWmms0iJYEUkfvbsE2v0+HhZqp5P9y9evMj0YyKUQA6pm+2kOBeaC0SUFghOjMQsIr0DygI94wWAPpEDMLX9CAU4dZgwe6SZau57Q0QDTO03NWfAMvE0z+iBQYVKa02jzvOMQHvdwRxFsuh9G4a6h4eGh5mZO2WpApnLnPSxMi1mFoFp0ZE/cwWrtrfWIMVjIriw3chAyzSpO9agxDwDcNfLyEZXRFKCCQ18X7fX79+8vzyZtbavtaqZWVNVRUdmGQlatxgEBuyk9wLESJzcxOV8un/27P7+/tnD/SeffDJP0/s3r+u2MRGTt3pZLxdEDPdWa1PN/LU2w6DsMOTCFtF9Gg/RRMpawpUMkvZs6cuBHorIUhg9fXMYAM2TMAMiPPggXd3gKOSJSDfJiO7zYIEO4eEJPwTqIhUJy2jhiMiR5a2+c5kZY+lFDRrrtCsgh1pwDITdEGQfRlnZC3H35CKziEWAm3vuDmhmSMQA2r1LqY4NFCOVZSoMkbODvteZXOGGHcCTSsbISIAeys4EKF24ABDAQok72rb3bNK7AEkEA6i1RiKiJcFxQR13llVrACBmJKo1qWSIwAe0LTGfTXdXLaUwYOx7c0dHuVtevHz+KK6NCczdf/aXf/l//j/98/vzsu8mz+XXX335y1/+0sE///zzheBZIbp/eE9yocvu9rjHQ5HQnUUeXi4/+S9+9LO/+vf46Pvbxy1CMIGgzNSvc2AEIlAEkbubBoKlWJ3wxJnuGmReRMCI4ASOgcLoCCiBUBWoKpEQiUOpu/MUZwqKXUA8FCiUAIQxADGE0Q1BaZrOaGHmngSlEQDM81yIQxAgqpuZg4B0+2W+XC6IISIRRgxzkiwiVJO3AW6WfgJmdlqmJE4SESKYOdzAr4C62geMrBsRCTvvOEzdHBlExDU8Ii0EVM3VESndsBycPPL+MiJ4Sg0jl9mwRediQVLBSKamyixcSlNVM2RqqqUUhGCeI6J5BAGxgEdhERakbnkAIwzCgMKFAcEcAAHd3DF8mQVJtSkSliLq3syQaZ6XZgqBMhUAYJGZOHWhBUU9Dx8IHATukf31xCqqalaOQl1m3PYdoCNO5mmZyxTmLFKrVlChItPSo0rCum/Z1PVssDGkBDIjOFgAMhEmEymAiaxrcWFEMGCOPWae51NrrdbN3Rm6UnSAh3okXsABACZmRNxadbNSCvDUWutCfUAe0bQt55mRtm1ravMkhYqZztME4BHGIhAYwyRMwE2IEwXsA+CRASimihoDGbo7l1JK0bq31jASNygAQIYoqCkaobdRb8IbALGrfWIEEGMYBgiSghMgiggmBxXmIlXj0GYjkOxxa+rZACKRB1B4IBYSxK6OwIEKEJmEUALqAgk8DAIBCwMmhy9MAcHT9BfAsxyNAO7mAMhASCzMHECm2qJNkyTrIKs7yCQydVnlbAlT32IBAN0BSASZiQUBNIm3vTNPPdkYCotasgDC020xG1KO3NSbHW9CD8TsbsGxlIAntiOmUhTRUnhJ7diBJuIssMUgLpmFuw5HuBuJeQoGdlVkggAND/fU9480RMlyXQQAw0D1TNOUgopH/bPrWo67iIiR8mwWObeJKSNTQKCSAZmHabJ2j7Ix3jQVs7sQnRlle92mkvptV3lkZmYRaz1VIqIChQhKmcs0r5sGUdAUQCCTLKfTNKHazNNcpufPnrn7q2/erHszjaenpwjc99Z2FeLTfN4v6+PbN1qrXtpCd6fTKQveMvE8z+7edlWILAp6ek5oGJhVS11+HsZuyVhIqZWbLzi+iA+Bj5tLcUsCOX5mh/h4jQ9iOd2AQPIRRxn+5qp+NN4+zk7/8cdxnNu3fLTHHH+9vYmjans9yO1A/s9+3PVUeegWXou+I069PRlE9DEMYFze4yRzkY0Ic8cIdAwK7OPIAd0dumQu914EAaqq1qBpTuyMLMvz5y8/++yz+/v7uWABoHAM90gcdv9qnCp7AOCubmGWFYRt295f+B4mKkwbtbladWbV2qDZRDSJPJvPP/jO5+/Xbd2bMIuIzPO5ajVF5NQnT0SlNwGgZZnM2+Pj+62t6CTnO74769t3r1+/nuc5Z+JW99dv3jxtq2p9fLzM89xaA1cMF4BSyt3d3cvnL+bTaT7d8bz88tdfvH739unNO5yQmVN6LSMsC88NuBs8dpwauLthz50sjLIsRl1ZLKeAJ3DKencpJQ8hDMAKowOFZdmSjsnCjMzFLD0VFBEIs0pOOQeOQWXmMiFRRFJAHSK67vSmrmgcUMgQU7E+0IM0wq0wIc9i9LTvqnaSSbDmZve0rT4IaQAQABZ+eXwCEpEpiNHBAefzeWv7NJ+mh7vLu9evH9998dXXv/iHL16/e49lUtDHTd+92ddLVu1JZlKtoHXfGyPOhe3Fy0nwk5efMXNo6K5+imcPD9PpIUQmmQFAmO9OZ0ld8XnGFoy0zAIEO4Wad91LRxQx0wgERlMnDy5TkdkwNNVHEzlFdLRWiEaMApnDJLStI/jymYweo3sjOQ3mXm4QiCgp+jCSNxHJLhB2vY8PPDYIqYPdggDy+J7cp4yZNIKIJhYialbdNctMelXeBXVPrsFBNjmWiObm7sQs8xRCdV3fvHv7+t3bbbuoZ5jaTLskFUIibds1ac+DohMycgkgFlqWZZqmaSrZAb6/vxeR0GZmdV/NbL88bU+PAaiq27bt+56GJdkbjA7r6UvcsSYfySpAh40cqxYAdCRLb9paJpJjWaVMd2EgJWJ4IN9e6sOPJD8de3MbEnptkFwFyoImIPaogcgHHxgGosfdMUWCOEugjjkA8Crtcaz/WZrEvlBg/n5wcY6t4fqzfyyWUnpZFrMi7HAAbW5We0EyDMr+OPZFHqARTwl5SrOvdA8JwkIM7AcSMhvICJ0q7mERlDWRJk1E5vPpAN/RqDz6wVseUPBxSik7hBjZXfbEDYHbeWKmgLC2rwAxl+nLr7/5l//yT373d3//+5/cffOuvX5d3rx7/fr1a2D45JMXz0q5W2YCgcBtX7eqe23LNO0An758/uPf+sG8sL33wrKxeERhQv/AsDBLKP1GpDwqe5gHKjAxEzvn9IxIWHBX33VE7BLEoQ7anMhnKATMEASByUkLM7cQAmSoZmYMOEsxzIC5D2AL1/CkNu77rtM0s4AIAmR/xcyCcGImypTBoY/nnsuLUPILIISIkDluFNpzJNy4UQKMTOQIpdxduJibp2HVgPi21tJsFnrekXo7mCAIAIIsAwFAorvwRlEZs/coahUAEXu8XUpBFmZOJ3M3JeKkhKTBn5uD61wmCHP9IAFG5MK9X8LMIr15a60a2Ok0s0gXSCIQKSS8t9r7xoRh3lpzNHefS8GB3DjAIESUUbqGy3iyIyvdigBJYSrNLFyBZFnO61YBgEi63WCEhkOtqfafzAoWRorx6QhAsxQigkAjttxRxgIy8SSM7r7X6u7L3TkiLIQT5JuFLQ/tYKROnEAMjCxgAKZkt0huMaqu3kgyGIhCDAWYWZhE5gDrxOZsTEcACjNLYsoj9dzjGCfOOLhciOgdb83MWMq+7+EuIhRYayXDUso0TbXW2yDbXCOCkTNu7QOOACPLGxzh3djGNR3zEKOwBKRd1rGBASNqAKCnhJC5AiSKGMMDiRDYU84tofOISOAf9blyne30l7GzHJ41BJZZBCEzi7B5IAHYMQ8BqCu49LyTUIQSDJa72Ai7sWsRZz6ImG4r13MIB8QgcM/CO2Wv7/ZUz/Oy76u6DRjSsaMn6Gg4BwB0OyUkJKZyrbUTQESa8WbxIcAjLZ3cg7Hj0okEPNxAeagKAUKkuwkCQQ9xhiBeRCRdP6ybg0FQeEAQE0f0vvjxfYnoIOmZGTJSgrW1OkI3jVSl5KIEmCn4QBa4Y4e6dRoDEZm1QwApXcX6jp76OiOYI8BAYmaRQszqFSF219XApcxI0zTRhPWyewkRIpqeP3/++eef75cVAPZ9f7pcXr9+/fz5wzzPMk8oXB+rIZXW0lWVkeYy6bxobVDyC/rxZRuGu6bfNw+kHx456zW5vc4zInK/xgQ3C+LN4LmmlDk7/Fjf83Gs+N8+yG0uejspPvqIj6bM7c9vv+zDU/o4lPmNx/yNz/yvvjh/dt+8rsce0TtJQ7AnASg37sdjomcwyVeCnBWDyI0N8gZ5hr6G6UGqH2yuIqJ1z1+YCwCJyN3d3Q9/+MNnd+dy+93DAdi9m1VGV5wEZp5JgLq7g3qqKgh6mNm6ruEYgW2v5HGeCrmZ2TQV2rcy8b0sJKXMp8fL0/52BwAmXOaCRdy9VXSDeRKRWYgKl3CcS9HmdS/13dPrt08Rkaz1jG+Yy7IsRMQYk8gynyahuUzLMk3LDAAvX768u3/27NOXP//l33/59RdrbU01t8AAjOh2bsfoQhJiyBjSIABJhMMyg2IIT1JptiQmmZpV9wBHGqyWNEwrk6Bja83SLSywtibpFQkQ0FUwIcIAwU1S+7AXMFOFzM1bpsTm0csjI9zXgLRNZTF0CnQ0hKZudZlkickiQhtECHFrTaio6r7vFDDPU25uEaFmb9++fdrr/f2z5e5+npdyXsJ31ApTga39x//483/37/7iH371xaun+m73UN1Nt7VZIE5CDQGgNk2UFAS9W+s/fP3agT55dv/MUE1P89kstr09e1l4nmkqZZ4gPFpdpEig70Z3S7NtmiaWaUJoVpsbERNxhBGTKcYQglQ3dBeWICTVvsbfZE3dsJyZkA0NiZPjhp70QnKPIE7PAUBi4FQcE5HMuhlpmqT3+iDcnYmYyBWsaSnsDt1aAGBoGgWm3PMgfcVAtGZHMq2zMMUMowfrH60VCZzLhuAtqzYgEKFjapixSKyPl8vj4+M7d29t91Br7uphfYyYWbc1QcySdtZ9glCYHKCILPM8n+Z5nu/Pd8/u7+Z5NrN9W1Pjatu2uu5m0Vxrrdu2JeQb4CoPhdHPCgEO/FegHVuDARJ2E/vx1+xEe6YFMcwsfEiOxY0xxLF43tb+YlwbxK4t0eEyNDq5Ed0h1rvuaU8au67+aG8gAHUrFxqeKBlYc2S/HB2uYHi3lpsyjpwmAUu9bvWtzW4Eypz8f+88CK5tu+aZAYngPbq4t0cY3zfcHdPAzQAZEAs6ULayRUUoFN2hw66in0+mH601Ei6lnFMqfdSWcRR3hMR9WDvclrMDBCm6PVs/jXAFbeQ2F96zrofydNn+9b/90//yv/yjf/Z//K/vlvLs4fz2cbJWL5fLi4f7KjwR0YnNTmrtctneA5aXzwHh2fn+d3/7d148e75e6h72tDF4E7nKCfeb7teyRQ5jGxanRCSD29xa6oTDiCJuq+1jXGns+46IRBMWJAJG8AwHzaKrXysnNQR7/lZKiW5ZgcwMhM30crmUu3se6L9cK5L5fwRL0NsG3WqrlCJp/KEIAEIM/fwHBn7Ux29HwjH4e5hEqOquSpTyMZjEih4zjvou5+hivgUQ3T7GBVHEcPdDwYoZzYIhKzItM7h8PXp00GsiCKCHMeHpB/6Bdlfu1BF8HXNBmf6kPpFGC4CkEo96VzCSiKSIW9epGmaZx2XpecQgF8QY6tBNibtKNZXI6MotACj7uu7e9gZAPUNNrBdkzAMBQMDECABta6V0oSLE1CqCiKitZcc4/ShzsKlZa621Zk0RMUbhMtyZWcPRI8kavUVGAQyOjsSFCvS6lQsFMIIHZF0cr1xfTBMCSbMryN6b5FXOU3f3pIa4h5nxyKQ7HXFMoazBuPZl18zCkBOfmYMYKZsAiJjlj74KQ9d1Qk8ZpV6xDE2c+RGWIWCO+2Tze7o0J2o3cSqWXGNPIHdSlggwf+1LLBEmz6trOObfCVg4S5zIRIROfbck5oBw87RUz8ayiABPqeSGo7yUwVCZp0HtNkfIDC0luKMLiqkCMFrGuxm4D63SPgoTt+MObi1uitklNa0ZUfvulbE1IxkY0PWqwjCJPSi1x/5h5gC0q+Jh1Oq9ZBYRrRoNqEEGK6YRYFkEgiAg7DYlqcI39m/EruPd99CbTTHP07+VACPTGCp+bNJ5Fdyv+7GIgCdlxQEg7QtKXwhiYLq6Omjb680SmdM4J0qW2JPsChGgqi0gRBrAU2vvNzWgh20rZQqgZVkQsdWGqOatlLIsCzMvy/L09PTu3buvv/66lJLZzuPlyZDc/XK5uBoj3d/fn06ndV0RWVXTWh06Vw0CnZmZOkdlbCdxJI3HY4zbvrnGhwEBDeb57S57/PW44x+Gg/7Ry46f8Y9ks3E7BL/1+OiUjv+O/RLxUPz6Vkp8fFZ8K7n96KxuPw8+PL3jld5VzZAIc2zcnuTt/ne893ju2Cl98OIQEfl6kcnDs0B7A2pItAIAoSBPRURQZJ7nh4e7Tz/7pBQCgIBIUUpIgk3v7YwbERAxvNYDLZszVBDYPUIV1s2cWtNMgCtz1Pq0rbJMAf784cxl8kAughT7vu57Q8AkQAEQubRo6L4+blVbIVbX9+/ftmatVY3dXVtrtZKGGwQyAQQQbpfHZSpQmDGEkBlV9fHxHSIDcfVoqiJUlrmBNzUz80BDTAAlUTZd4mb0EkIw58QXQWK6iaK6imMwQxiaGiJioGe50MJTbzZS5eGI2oOIVM1dkWJiIeJwNXPz7tNg7kCphU2Mqh1q1ccRjoZ8t8gyaAASQ/uRIDgQoSApQAuYu7UG5pxIv9ygLjqYqxkDGJi1XbWGa4QDIbSVdH/8evu7v/nFn/zJv/nL//DXu3nItLaqDdd9axazLASYMiQB4Q5EDCIV8fXTU1bi57ePjHD6/IEFLTCYvRBMMp0mINgfL1BrCdTWcn0zJHWrEDnMmBh7zInEIMzEEmAYAkHVNAUauw/VjXe3OzCVkhxs7GFdnmHWdgJjGIqEiGR6hjcU1WOS3uZdtx+R2xYd4kDuHp0N3tFDgIg4MVPBtBArqVupluWPA4l6o3dzGJsP+nLeWwImJmFxdEJ18932fc94I7fyJH6qavgHIj25yDgSRnRdEuHcyud5nqbpdDo9PDx88uL5s2fPImLftvVyqbUmay4jq33f8/e8MmaJyYejbos3xcpjCR1BGwKk2IodO8ixSt+u3scKfFx/PtwTb5b3SLWkG4mm43G7Q/XPvSluHrvJ7WJ+7FbXd0XHEXRoce2qpT1QSEDZh0XY6LJkqTV9M9+Zj2byAYk6kvzr0p0jfMRI4zzxOKt+6VJea6RzeYYxiKbO2rmRR6J4kwNL6zqIEUEoN1EQ3f7u3jXb+jzKJKefsPVuXm37+jjN5e50No3X794rIAb9+suv/j9/9md/+Id/+N3Pnr18fvfqTbm0/d3rVyL0+csXcv9QEE7z1Oz09O7t++1yV+94FgL4/NPPP335yaun1fc13CkwC0fHlDzuab8yN6YhPZQyCGZ2VtXOD78ZD8c8UgVBI6JMgBN5B1n7IGTmy+VyOw77LSaEiFIKQHAvfvBxp3IHt9FcCTPp3TwYyEQU6YE/0I3CGYVpRAAzlcKIHZ4ZQ9vyeGRwCKMMBAA+4qycyESUs34cOR8SERiABBp96+g9aQrIAl7EuNuuVhmuOItxxVSt1VoJsAgXuq5veWKJqMde+vo4qIsRzNO4ZZg83lBzaLo3NykTBGlYRCCJD9AH8MGAGPa/o0NwPEaZrIfTMfCtRBKBfclKZ6zA5lbKDAA5EWCwDyJitILCzNSNmedJpmnSXceN7jsFALl77xAN7ZscaRPRum3qNvYgt6Zp7Ao81smELGfuhphK+30TGcOpSIlwdcX+va7rVa5IqXlBTJGQMAAxaxEGyPkHGmjeMU8sM7FJKMwx3CzdxHt7U4RLYRHen1Z3IwZC6GpRxMxctxYR2X0OV3f3LjuuRQQDtLVwZeZCbGapUZbaGyks7+acKbG5QxAjIqeFWfNMPwFplCoRj36Wd2fUsQdEZM0FMJCyTdxFI8w8E2BEDHCzBhpE4ujQQ9isS/VauVmTSMJwEoQDs4kEjMQegMPXF0eCmj+z5JOWSELZwoaUjb/NPgiw7TXMCTBx2whAiMQwAq0M37MXEindkPcrF94cjmYGvfU+SlB9giUjM4gYEZEgeRQRxNSxHMKCiE0VCFlkXVfsnpF0VMSIyAKgK+IlckyPpQ26BCWCp0lgAFxzj2maRjJsZeyagMc8zEISllIoWQoRqhURJTltKTePh1Y7JpvQPRCNgIlSgcA0XMljXlaNx729r0rceNsLrhb+8PBg1lR9miYWuXs43z9/9ub9u7XuVHe19vb9u7uH+08/ffnsxfN13x63PZFR1WEv23k5zfN8d3d3uVwi0IkQ0SB5+x3qnDMh73t6h8TBl86R6b3ADn7d1I84gzpn44PE8tiojr2Khr3W7Xu//fj222+f/199/GeODDet7GN1OwKR33h8/Mez4m+/7PYXSDciuH5QP0h+dyBI2fxs3RABUgIlEBGBU4j7OD6jMCYPI3JH7NVM6EeOiK0pIiJ12fwyzy9evvzO97/3/P4B0roZDjuo3joC6CZnxBAA27YtKGp+WffLVjUAEVtrcTEgEmmAJRNg9NjMdN/2fZc6KcSyTKHYTCWmienF84fLZcuiadZgw9WtaZg23S6XlBzZtg0izcNUre5aW7OqrVatCZzWSm4I4u6tNSEkBhRsbvu+bXt9d1kft/WyrZboNYSAaB7m4IQhAjmswYgAevkp6R5gEKlI75H6CwEW7gAegL5v3VwKKIO27qpGiE178weT1hiR646DWjh6NDQCQIfIdDvlMbDrQgNk0bxDE/EooQdAQnciFIAC2MMwgT8WTgsXQ1ybggdPU2FUi71VRCw+dFOEgbDVBnU9LXenaUqd+1S6mkKnE+i+/fw//vLf/S9/8atff1ENNSais5xY1SAEWtvNrWWlPTBI3c1UAYvHFl5ke/bMPLiu63rZy7yUQsHCp3m+P8uzE3Do+gh7W5Al0Bx4WTbXVrUB0FREJDXRkKK5ATMgWaADEUtE1KoFOOuwzAwDqoBIbkQkXCZm9tDcVdwDKQMS78WLrrODACHEGfC5BzM3zCIrEVERQYBQA3OCKDwAOyn6gqmhSpTw+MBBfwKEEKJSSt13TLBsdInAzpjtYOnbdYLyHBGhpAU99c5AkIuwEbS2v788vXrzel3XpPiGGfggrOasDQr3ILoRewZkKDKLCDCf7s7n82me54f7h08/+fTZs3sR0babdde01H1u+57TKsc5dahU17/on5hfKEZS1wVJnKj0Ypm7d9fzEa7knjr0//BmATwiexitsETH3OYkPJZoANCb6jNep05PMpEcDBEwvMstJpYrX5aHTV+IHmMhIhNjqsSIuRM6mkek0FzKiCJAAvx+A0To9jyPXCgj5Q7QjTy3Y4MLAKIgCkqg/uixHDk5hWvEEJT1hOunTpIjBgmWwqHl4HsD4hEkYURG/KW2tAFDGc6uI6cKu+bA2drpWVEPfXL+JLaeXM3r6u20zKd5PiFtl1WZuerlz//8L/7n//lP/8U//2d35+W0TO8vT09tD8KH03J3Ok/MpwJwd7a6tm17tz69mJ8TwOcvP3l4ePjVvl+2ldJFrDcz00xLc6YQot80GONGYxUpMIKREnyXvcSbO0KeqZIZIgbhEtJNUN3dk7ONiCiFPDRR4hHYzNSViNyAiyACuLq7urlTBC3LsiwLQXfdbKlGpsYlj5CfOHLUgEKUniYJz4xoKQ+eTeZj8BwZbz5KKapqAymd2Q0RgggdyAUSRq77iogkBRCThZYbWqcip/UOJl0yIgLDeUB+UxCAiEop3moqoWa/R4iLsEiKf3lGzpzGc8hEFGoAH+ftEaEOKeWdmNYYPXkEai2lcykC3Syy66sR5gbVGMGcYOynTFm0joHf9AESMTMKRIkD2w/IEbjIXE1ba1ykFAEgMvLE/IrgPEeECEMqF6bjbtaghyKJGxAKBHXJLSQiSerAVJyIvKmbeRvDSFhEBASw5CYdA3FsEF3mnjAZ/IQINJZqzPaBmhkjAQoRonU0AQ4CZ15SM/OuUJOuH2gWRyKRQ+EKPNDa8stowEQsIt2ZqPNYeumcmdNZFAgLdWNea3q4CBx39Lp2j4oUInKAjloUw7VgAKPd21F2ARAOHlnhJUyXR89VDDvchoiAkByCMQ03eiUwhvVLKl7haAfkEMkXttaSxhCIAeGtAed2bCwDZjP2kjJPvVMHhhBISTADQDQIRAoCImZAJMsv2/L7ZqZ3dDbURs2abrYDMGtugRgsmeICInaRd7DMpLNH7WPbm6Ypx7S7j+U3ADrGeFz5vucGenIeooPKoTuAUyARmcTRN7npwFDP16/NRkTMzYxGOT9PIItD173tANkitmoYRsO07ahU5QA9hn6ewFEmzwMeKsTXDRJvdveACGMWGg9EROcKEEBr87e1vV3rxbGY07rXhs1tXdfWdgB6eHjIEOf58+fbtr19+5aZzXVd99evX5/Pi8g0n09v3z+paikFGNZ1nabp/v7Z+XzufcXWi/qHekoq5o0dpQcxtytdjGJzv0c3Os/Yr/8HaeRt3HAc4Qh9xls+SJWPX+DDsOOjQx2v+eiZmzO5lt5vi53HADhO7/Y4337mH/v0b7/+uALHBekfTX0Xz1Xo9iv/xsNe39mluek4Go9H4vyIIEIcHUAj4kD59ntD6BDNbWF++fLlj3/84/P5jAkOxOR6g7sT43HZTqfT3d0dAiSL0iHMvDUzDfdQ7eiSFRqStKbWXBDQvK67al3bCtwn11a1zFNS7kLN6q61ZmG91W1bV0SsLeq+53Ays71t+9beX57MTN3rrlvTVq2ZI6JwmYRPp9P96cyCIkwoZtasvX3z+LTXdd82bdXD3FMsR0pxcjdnZBAJR3EUR0v2evqBI0SqTLkBkzgxM8UNbuTaSOG0a4pwSO1/0GRyHlrx+ZaqLbWSIkybewQzJLbGARKFG92hHXIJul2mCDBbjcjYO8vU2YSIYUgGoEQtAGpD8gl5JrCwi1qEEQEzqptZq8oZFiOixEIsrhVEENy1vn1zuazrV7/+4t27x4eH5/P501XRZZov65evXteqyKihQRVF3NLIApuGoQUTRTzW/f1lfbyspLquezNn83Vd57vzw3c/g0Xg6bGtl9j3aIYLITKUsl/WzZsbTEwc4u4JoHXwcDRCN3d3KUkb6fi3rM0BXePdBOwdKAlERODktmgzwOuFZcbkvPtoheBYB4bSSS8CeuZxiKWUzGNG/2GErURgHnnCBNrczRQA3CbhnqlCMBMkd8BMeLrihse4yqJnOhREBLm5Nw03dZmKMNXW3r5/982rV0/bmlsV3GxwEKk+AyQsIjEWCQBAYSpCIlzK/f3dw8PDPM8PDw/39/dEtG2bad33fd/3dV3rvndE39iR/ZD7v+kxxoe93H65oEvZH4FWf0H01fg4wu1fjy3++NPx+7GBjgXvgxfECKyPdf7Ya449/eaw103hdl2lzhqTUgoOqyQ62gXD5+b63g8RPcctuN2qRt7inQ147Gtp7fzh46NNyj9AVOHtn27Dklz8ZSpmIcPl5Pag7o4RFVFE5tpSzgoHPrN3FD2ut2DQOK9nkk056GRsFkQ33daNF8eJymlrimYT4c/+6q//1b/61//kD/83P/zh91++fPlu257etqd1e/v+3Xk5ne7uBeFUcD+fH+v+9unpdH6YJvru59/57JMX/+rN6/dv3nAQJYbxxhLiuJXHV4aRDKgqKZdSCnH4aJEBYOI3c8+9ud05eFVVlcaoRnenIBzevJz6/3b0YxmJRIojmkPXoUYkFGZBxCLCNy19d6d+0XLUXe9XatCoOhEleiXP2TW5r3R85dtI43YXyCmg7gdo/3bK5JOMgiM3yXYRUgBwT4DztifDvBmhUOFelAE7ru1xJQFARKapMHNoy+AO0BkoR7hb63oYt7PrBgzi5glSwN5egqmUpHEDYSBqa8giIm5dfTplVmH0RRK86XptjeR1zrwgaXTH9AzHy1ZPp5OgtNZczUiZioiofoDQzoeIhF+/deEFEcN83/eJp2NtybZBDrkIZ0BKMpSPCeIhzCnmG6lhpNYD377CXO9vTtJsLPXeDyCxYLY4OhQXmUgQAj5Y1nIJTsxCmv5Ils9zYJpD9t9EJAWu0MLMLJx5IsFomZNAjKg3v5iZMVFhkaEDbl3iV6lneIFHXzhLGjnmLEop4YyYylZYSjEz10hsXf6LiEDF8Cz/dnFhRAwrJHYU7QAwnDDMwjGvvmQ7J6J3fc0j1ckQCECyZMBEVbtNmg+JXCRDBOK0gsKIkWwyFk7iB+R/k0pARJHkmVz9KcWrkp/QqVAC3UEsl0VAMA3hTo6/jjAAChBJ566GAMJCA2hNSTDIDjMN1AZSQF+Aj+Qk/bsisv6ZXVkH7Jl8hFk4BWFA1ztxjAjikitDBKAUSK5838A8rySM2kT06CadJyijpUEGxr4Z4RiFRN5anp1qwxGERQQGhDmmCUo4RseiqyoEYnfWTY2WXJUCsfPJoZN3IPNqAMi6dWcwEyNTrfbY9M2216CJd+etsAdCYFn3zTQCoPBuZkB4ujs/e/GchNfL47ZtX736pizlk08+madTRHjTQALipvvKT+f5PE3T3d2du9daM78KCndwgJKk5Ly/Q5zDhoRG2IGKv+79NyPhCjw7NvWPttjbRf92jTt+v31BfAhO/ug4R0D27cdtpII3+flH/719wUe//2OPkdxeP+iD6Ao+6HgjorsSUfb3jr0Nbi7LdS9JGxxMnZjoz0Q6zSID0dBY6ispuscVDuruYZCNB0jucZKmujJkLHfn73//+6d5oQCCIEoxPYgwAI7ohYt5nk+nkwggQinFHQzC3Le6b3WfJy6EEbHVBkFbra6xlAnCWqvuChRqqvbOzAI5dxELd49aqzYXZiKq61bXDZgCujgcADTjddfaNvPmgOpeTZu6AwJmw4AQhzE9k3q8ff+47/u6Nw9at/q0rburATo6IMskguLqwR5AwUwE4lECvDl6qlqBQ7q69ZtiEPTBPb0uUBFZsycD8w4dhACKPqlNUz8bwUMlTQQRHCKlMSkwIbkAgGnOBwBhCACRtWOIgHC/SZWIKEAcoGvCagABogeqUl8Ao1ZVdpkLeEpkhrqt+/60XiL9jYHXdS0O07xkXwIRc634+tU3v/rVV+umCNMyn5a7hacz4ptvvnnNDstUKoShEHCtFZBRuHpouAIS4Nr0/dPT18Sf3d9jGLiYNbM2zxPcn8D08csv6rqS2/50mc7nQHIHYxZactCpaiAxTQgUyIGALISYgjxENC0LUY9iIZwGSy2iE2dw9FIQMQ3Ww0HdilDq5eQsMzPyDuKbeOrzKC0sEdxMdYg4AkYEErVmRIROqdeYVdZwoxSO9+i7o3kkHJso0h4lhTMAALohbQroH/dVkCAciczbKJUOdKUbYjRvl/2yrk9Nd3cFCAfzXs9FREJKFw0ETvV2IuqmkVwkIYun03I+n+/u7k6n+e68CKO2tl4ubVu3y2Vd16enp7ZXVWtuamoaqSnl5kmr7WipsSINhZq+YBJl08Ii4ICg51gdqlQQjgg0fBONBoDzdsn1m+5u3Owd4ZALICQiLIA5vSYgt1O42VYQUZAcU610LPgeNHQ9epKMiEie0itIDEHRO1BJDg6PlkJ56BG9UJgy0xn9w3ExECEr6ZHFAsLEfDF7okdGCx2u2+aAdoyAOQYWtO+5g+UeYAGJlsMIyUEeEV6sFcJ0OLth0MaAViamvcxTXpA24hkiAhp1z4PnensNo3dcegHCQ1tr26548ZnKdHrcLxHBE1fXv/7bv/3X/+bf/PMX/+35/u7+7tk3757eP61ffv3qPC33Ms1lKgx3p7lu8+VyWdd9nk6fv3z46e/+HovAvoFw1tjDey028cYQI9iIgM7K7nQ5EhYhRJZCZWL1YmaJFnS1bNim7UwOwYxwiGCaxUMyQkMPQoikrfa75swIIBGIJEQYTEJSSiERKkJFmtneWhkakyKCnDPRMvvNkXA9c/e5lEJZBIFZSgIBREqApcBhxqK3ZTEMF0KhiQZxPVSvMQY6JG6USOh83DXJTqlBgEVoxiDXOCeVDjpy+KAfp+FGv9ecnRtzRKKAUOvqauDMTIAO5uYWMU3FQ9O24zjtlDOIwEBy7JCHjN2AkHkaNTUEIHDUahDBR8VKGzOnnnyvf2EgpmkGRTgiFRFIgSLELs4XpNrMzD0xvILAoWDoDETp0G4tTHM5YhFm2qwl0p2GD3NSVI+JgIhZLOl5IqADQgQDsiATmBkSVK3XEoba0dgwpHAkQUqqZudTAKUocgAAlOwfYxfjlYP3mykSdJYREQmKWS4CmIQ1SXM/YeAi7qGqWcnrtRA1HWTL/ErMxb1FZvzEZqamEaGmmHLPo+4bHhrWJyF0mXJELDjkTCIQQUSOyihzYWb3LVmgnEtqgJlzkYxyNJO1/EoAwZkeAKWXVkDk6kmOwQjAiF11igKQVFugAyEwBXeUE0CfveFxaENhcpgpACKDTkxfJEcAaG4YydrH7EK7qwPKROaesDFCIKAIBwfuSlhdW0xG6UJNiUiQ241wxSyiVnHIJ0dPgVxVKQghPIWrA2AUA2qrWaroRf2xm2ZdM672egXQEBHcY1CRCdAMPFoGIKUwIu7aYDSQa63C8kFHhToZopAcpdNjRzkm3tifBsYjopQijBZWa83j51u46+OlWvjV/Y8pO70fdE19MPgPX9wckDwgdjmNASAYlVBRcCq21d233TyqEjecRIbJPQqKSOaupZSI+P73v//q1as3BPu+Xy6Xd+8eX7x4cT6fz/PydtuzCXyszkQ0z/O6rnmG1D0MU3r0hrs1Yojbi/PBLv6bOqX5OILOj7bYjwqfx/E/qgH/xmPeLlK/8QV53A+K/7/h79cEFT5qON98O/ww8T5OYMQJCTi4nswtuvE4YMboRz3bvyXwcPulfsMZ3lzq33Ta7p52a2bWrQsHpCIiwtxJSsIgEXGe5xcvXpTCOCSfPzgN6klffkAzCACH2FpVi2Z+uayXZSKcZJoBnFDMre6a2RRF0snRzGttVS9msZzPzFxrbU2b6bbWfdsAgAL2vbl7mWeL9vT0VGsFCnd/XJ8u66U204Btr5en6oDzdCbhLndEczg19zBqra3ruq7bXlXKvKq2IOIZ03MoHBAsAgghy5JgER1+j24ABy6xLwXMxIyYSgVpfHjTkTjuFwx+u3uq/CAMv1YY/QpA38Olr8nCkLaBYaERgRhj7msvBGdyNczBECFRmGoR1EedpTo0ApJHoDV1xjsRi9ignUTnMqXvETA4eNX2tK2IQYjzMmfMN00TTwUR13X95tWrx6Z/+/Nf/8f/+A+XtQZM0/xwvscp6NlcXpzmZzPLJK9fv77svixLnJfarJk+bmurHrQKUkGv2tx9moSZz4uU+/uH+6VMCOsj0Ondq69g3xlwXdezxixlD0MuU2FG3Pe9tRbMhQERSDiAikzIBHvNzkxWCY91Oz3t8/oTEQAxIzPH8FEbHFQnkoFNDSIyUxHx1q3scruxpgAwldJaCzURSQEVAOgyvEU6MC/LS+aqKvMMqmaOjghUhrFwrVspBQs3s2Ya4Ag0iUCENb1NgDPxKUWsNm3NU8iDSQSdxCDWdX18fNxbzRtXtWW5M21tONPCHJHCGo4AgjKVqcyScs8icj4ty7JMk6Tx71jqPS9717vaa0ZEtVY3uLYvbpi0Y5n6YKXqcklXwctr3/Lo015XyIiI4IHaOxafY/+lb9kBHMkh3CzUx5RExNEE8Nsnibo3k3fSMuBI4AdSYFguAy6TdM/SGDa4iIiYiAno1C04dAp7d/cmAQ4ARJxkzqF4u9+pNmG+bQweX+To598+bteWY/2/lk3HdzwiBySC0Z7p782LH1FrPamFOUj/UADg7HncXP9jg06q5HENc7qBgzOyTF4rkjuVZm4a0zSdT9MX37z6f//Jv/79P/yD7/3ox6e7+/l0v6m/fvvusxcv27M2kxDTwnw6nequtdZaT8sEP/2dn3zy6cs3P4eIvOkMkMSfEW8chM+IjFUSfOHu4FFrZShHJ5CI+nUaeM9Iu5reXQyRK4s4Ok068bV9mOUKkwzMJE5bR1BfWdwDn+9mQUNhp1fcxunlaDlGYGttnmdh3vfdrAvrtLYXSSe1pHKQ3bDl4dra7cINzbQw61G4xz5oMyw/VqR+HXpvwnMXQcRDsx26Lz1oUzNPRnSqwGlgZuM2hPog0Fwx3GyoT/MR5xyt9Q+Gbm+l3CyqifSepqnuitQb7FxmETGLbduyLt/LmgnAEcld6bgOfZEhQsSDaRgjnA6P1iy/V0RMLNO0qHutmsLOgYCYbN5MaxsEuftBmlBVyvJyB65H1j2TY+gDBESIYO7odLN2xW4Ne4hLuRp7+NA/Y2KkrkqQEtDTNCNiBmkoxOlwbsaEQUMU4KiDulut0zSlCJarVXd3Z2Yp01JKQeTWmpkjFyCu6lPKx+O1jsjMEOQOpUzAo+qWQrtDs7fW6p4JcgBQKTN4uJqQIKKlVDf+/xn78y9Ztqw8EPz23ueYuXtE3PuGHMiBTARCQiBVl0SVuiV1r6qWqlf3P129enWpWlJpooRAkEAmkEBO7707RIS72Tl76B/2MXOP+x6UfCWPuBHu5jacs8dvf19ExMSDfwugcBSpUqj35p7g+Oz2ROgA8HRNmRwQkQB2g+WwoABzKUwsbu4QolKqEdzVQCy1SLWI7loqk7BHSiuBmY1Iu0KYB9TQWKjWEiS9t1Jzy5YdZuSOJI/KAnMpEmGqOhWep4NHkAhHGiEQUS1VGK4GUGEpPJiZS2GhUuqYsuAbV8hEVUq4uWkhEilurmbMPG961qpKzNNUicTMnMHZ/yZKxk8Yq3tyiSElar3vBtrdpZTCbGZrbyJSy6yqjvCrigDMnThIAIGajuq0+/F4LPOcQ4bz8Zi7tLVGzJLURJkQUM6Ujxqku051tjAiPhyOe1mIiDxH0gcZPYpIFR6XSZS45jyICJdSci1Np1MpZT2vBBTitTW1qLUSsUYQs0wHSF3d3j4vz0sPKXWqXKZhZRZFpVqrG5Zlmcqcpjlz3VqrWe+qZZKlrW/fv/vOt76dnd7n5+fn5+cMfy+X5wg7Hu/ujycze3p6StGLDDSFRzFieKM9vAgIcWyzE3uitZW6NwHb7edtOi5Gvk4J6fRMGPYoYSsNvkg1t8BlvOc2gbx95x4rvfjl9mbcxEz7d13t1036fT3Cl1rQeyhz86XX87x9DyJYZOP/vFI1lFL3cOf2/TRAaG43CO09XAM4gjbciuw9kylV+CgiVU/CXc3DXF1bz4G+0IR0jNKSmXOJw+n4S9/+1nw8ZAtLiAPmBAY2HWA4wR2nh/tXrz+OgAgu5/Vy5MfnS26W9+/fl3LPAbOuznt0crlcCrGaruva2jofD+7ZAOPn5/Pz8zNzEZEwPL5/Thw+keja7PG51Onp/NRaCwkiOl/W94/PT5dzgLPnTSwQFikCnkjCWuuhjxeicPemfVl0VZsZ3aAGNYeZE8AIcmEuk7DLpXeLkEISFKos5BFIRb6EzBAArOsa5syYYqoi27h0aq9YBKk6CZMwwlUHahrBdkO94+FMLJXGbgKEp4jw0KwQyuBucA9noFZuPZhRCwFwg3uEuxFEqoXHgGEmnITMHEGlloA39amwOy6XFeGnu4kE6DjefXR/ugs3VZ2mySIOyeatemB+enr6q5/+TIMfm//ZX37xH3/3j0opp8PD3Wk9v3s+Ho+l8rc+uqvTtPTG1u5bDRZ1uz8eIRJEnz++W7s62TQduq5Pz+/Xh7v7u8OyLB021++zrUDHYztVWUOZaVmW53UtHsacyrTL2sJwON3DfG06z0LC3dxs2ageK0HamvxMPSIOR+EbDkXVXmtNnguM3JiFGMDp7sggdyOCqplZYQm10+GUxmRdW8ZAqipSilSQuLuZZ02nu4lIX5u7igg8TLUw3x2P7l5FGKbbcGw4dbVwV9JSkFynQWBJgrTEU1wtybqc53lGWCmcKVkRcURXS5zUZV3fPb6/XC5b4J6lE6FCFMwiEfBwgkjNOWqWqdZaRYhLmU/Hu7u7u+Ph7nh4uL8/nU4i9Pz8fHl6dNVlWS6Xy3pZUkzYx8lKhG5xztVWAiBkcT3S3Y9mF4KYQQgnDCYC4CXRlLunFBCIInyfJtiLwhmJfuBudoNvZhybNlItwEBq5GcFZO40GLNZiBOAES+cCEeQh+1+xDZAeyHWaGXjl0rYauvdzDK4KrX03t16ujmiUE3s2CAlEpExPTscA6V/TL/GYwxtlFOTU4NuyBdvXWd+kPkqEJilTcknu2HCs/5etFabgtAuLRDYZr3yzmRbqLV2Pp+PBJlmZg4zZp6mkrluTtebWcDcgzgGPoFGxk/EDgRIHfPhKMdTazic7nvXtfeFYyr8lz/97H/5V//b//P/9bUyzWCZ5+PF+vmyLpd2Nx0AFODu7k642qqt2XGSf/Bbv/Wbv/mbP/zd3/NlpVLVtcrI95BquoSs1496U6JrAmbWe69cxBzCIsJQVfMtL8onEhGD4trDzEvhZVmISLgeiZJ5i4iq1Gy6AVi7mnsgylTDx4NOkDzz0M9be6siS1sZUUSShyGT44gw7wAJD0rnnO/rvRM8SWEyuRI5IAaBMw9WbUx1xs3L3YnGe0hKRDCxdnf3QSDsTsRFinvjjYYNRNPEoOIuHjZ2RO7HDRQWN6SzuVpz3zFLogFqnbNeQDSuRUgiIuG7pZSEeKT5zYZQvvJ57XUoMAWTIbobR1h3AzFLRjUiA/bo7qFDhc7de+/ZpMkf5nlWR9YOpmlaWhMRDzIzphyDHZEzwXPj97WR8FQ4wgvDATOXUji14kXCaSrjcfTes5ilaq21eZ5FZKureoRl9WNtl8M0J4KUqMDjfD733u/u70chYBNvS7vEsoFVzeA+eJiyeOBOiKmWwpId84nLuZ0Ph0OSKCFsmqahGwL03kk9mLLklWK3A1yOBC0PTiRyx6prYSFwrZWAvELTwNYz3QPWNDe1cLYmGEilRDNz1SyS7cafRv0QSfUYDPi1pxcB9+GJAdyiRzQ8ufV12Edmhtpg9Uy4LV9JIT0S30ZBCEHacE6l3OyQCzawTbZzKYZiF48JAY8AODz1HSkXImWdEsj1t61+YU4xehCl0NIYopBsDQVTqAwiCDDI1Zr2KpqkVvuhxsuUOaRwSHKdCbYZwhz9p9GD3emyk6hzaNjv3cJaKydNv7v7IAXbE6H98eWYQcp4dr9+1m+SmXFMYTLXzeG5wcLIvdbU7hJVTW9FNwwcJZm2mIFiyV4SEdeqbewt63Ry+/ifqtdpBhDhZlarzPMcrqqtlpIlnDHAmcR04SwidaIgQxjYiS4ei4EPR3FM1DtgFj26UCmF13UlGdhxhuwV62maPvnkk+QGa305n8+Xy8XC7+7ukjs03V5r7fn5GcDd3UPygiaBXnqOlHDYKicvuqC3ocl2c/DBX+kGz7wZfdwehDYQzu0z3X/eV9SX//mV6WhE0MuOxN/wuj2H/8oP3ObDX/l6cahMX0dW/uKEv/L9159j1Py2H6/jvrG9c2tNjLfHtkEiLHVtVX2HTuxfkaUHFqEi0zQdDqdpmsxgESIgxOBcAgBu5kEozA+vX92/egAnExw5WN0cXOe5zpOqrpGoWjg4IxQ1a+7em6p6oK19WXr33j1U9enpycxOx/ulrb139dDzkgFNAGjNEFSSepxn4oO5goLIgnoLd6gFuSEixF29w2jj2FSPHmyEp6WpxcYXnQQTYCazruE+eqojFBCGMTgx5zw4aDKO2TzFdRck3tTy3gaQE8MYrOlIkb/tmTBf4bgIVgtKZjJmHiJWlJ8dUW947rgqOYwhAAyxsSXA3H2IqIFoeDyMcSQ4wRFuMIIxmYe5k7BHnNdFGIc6Za/DEe+fHi0wH0/PT5ferfe+GD1r/dnn5y8eMRVdLo+9WZ8X78vdcS4+FaGHyvRw97zWbqom03RQio9f3Unlp/VyPp8Rzlx6X9+/f/vu8e3pML9+ON1PhfqC92+0tf74PkxV2/vzs71/K8vXpvv7dVnJJ0rMXe4c4SAMFrFS5lJGw3Wbv8h4lEmySzkMeB8lOfeUu/CcuEvkcxZht9aQgetcZt+YQXY7vCUqYzPkPirEAtrbNZwqxVuZb+9IFECvBCK+688HYSB1YxiHwhw3yCAhpi28zxMWEc2niXh6ejqfz+m2zKybAqAiA2pHAFPiFWqd62GOiFJrxk91ktPpdDqd5lo/enX/+uHVYZ5VtbUlfcHT09PT01Na/oSN7P2fPTu9mpHN0m7XiB1iwxAgbJzQtRSIERq9KPnhS77gA7fuA1Un+y/3aOrWWdx+FjfjCbkehg+6Yam9dUO+68/d5t4Y1wYZNVbfGJ5vbHWCXV+w5nLv+edsZ+3MsbHZgQTmDO3JG+qvUoq2jpvXTWh6W7q9Nsl9Y9vePcK43ltd35sui6pGVl0tgfNj3mpdrnrR2Gr+ewyGm7IyACJxoAPcjA/xcP8wH/B4fr48Pz5dloBOU/ni3fvHy+XVdJrqsWvU6aRO59Y/QhyAHPSc5tLUpFABPv349W/+5m/+z598fPnpZ8Qlwnd3mbFrOG7vVVzrI1JKKSERwQPMEu5uL5Fl7n6tRWxXkvlV6Vxr5agAeu+lFOJSSnFQbgTtvj2s7RgkpdRa6yQy5k7TKWx8k1sEWPc7fzVNqqaxN2kzjNduu6nZeyT748gJWGwIQQpSN8kCa9J6xTXF2DfIB7EZgRI9WcEglzIRR19WwJIbf+9VuKkQuzuyxOrRN3WXVELJqCPHEjP6rbV8sAGv+2ir49M2Yp3h3r7d9nIPbXQ5mx77UCFh5vScWTWAe0QkLV8MbXcBsFGXRUYQzDJmTLYtYxhEWcYs00jaE5Pbm+V6K6UkrW+w4RqAUWxlgu0aS3r3iEis0OFwmOc5NscRewxlruHr0qZpKpVpG/0nooQGDypFDwtjZiFyotPhyGVc1FWA6toAT49XRYREAJRgMcAtHEQb8WCYl6FxzlIKAa4Wo7lCBKEtziSirO3BQCQiNSKIBxdcMtApwfKqkr4KHOFr65kKggScMlLJPOMACgsFRlMlGCAOHtZy259EFDHINobWXwSFMyIGJjEJAa5WjwNChODBMwGHw5J5y93DkFRj5DnybWYiFcEB7OxEAIGScyUsHBa8Ox5zYqQoFgMlAX0BiigshzoxIcw5n1oES1G3zM/51kMA17a5mUX2w7NsPAzUflHB8E1VghhmZm7ujoSXX4fAaUykMzMzXAD4xtfv7kGRnVtLahbe+NfDAVg4C4tMKVBiSQVPxDSkaIbO01Y43DxfcpyV68GGihUiwpHUNwwRYWmtAZ7Vn7xeh+3zdSPUFgHDrDMzyNPwEA+OrsRcAuiBNRGZUr1M5HF+PlsAUtjhZIlXIWEKpch6+k4TMpAkd3d37p/23p/Pj8/Pz4+Pj+/evTuWKWHbWcZz99baNE2qrdZ6qGWtRYWjiLsLwa7M27v3CPg1Mogtv8XN6zY0Gf/NBxg3z/1LMLDdkt7Ok7z46pe/uQ1lhsvEh6/9TG6/7suva0S1NS0+eH/ENbfOY9LL395GdftZjawFtxwtyAG5D773NpocZxsJfPhQAADIyYsR3mHDennyhZqpavLX+MY7m2uVhRNdw1LneT7e3c3zMY/oWx7nYAJSFLtZMCB1PpzuidncA3RZ2/NlWVtPzv3eOxQisqxdHQ4kEYN1zdo2SWlm6vCg1nO6gltv58sb2wgDW2tZ/wqCuxlBVdvSAZAwRGQ+EglZmHdrG9dLRO4CeLhphFuYW5iFB3ePjWKOk5ZHnJwpWCIM6REBtQBChMSCgpQIyKEXj0AghNm3LlNEIIdCCJ51SwoPRwzjYBEITxZuJ0BK3PA7jMQ1GdGBAAWRAEwZuDITuQ/OfPA1AcaeihDrDffSvuQiAggNZw8GlF3dWlgBPbel+gTB0ts0lcPpWOYJzIaA8Hw8zvP89Pj0dL5od6qnN5+f/+Qvf/6Ld/joHr2pyCqBWaAFxmYcMk+ziBbyQK3TcZ56mN8fD6d5fp6gSmFEwYXPfXl8fDdPHzG5rk/Luy/uDtPSVju3SmBmhb9fltOyPhyOEXCzQgxIxjGFJdd/RCQnSMZVef280RC6e1gwcRjUbJoLEe2ynby1fwuLqwV2ZZcYBF4Qs1DNdFqyOIEt32DKcX01s1RSyKngfJoUkVQhXfsQhPcxDkVE06GUUhjU2qIeRBCRHPoeQ57CtzZmKkJwwXCQtGduRGBan/X5+bKuPZwybhThCC+1MAJBoxxQyzQdpnnOovDhONV5PkzTPM+n0/EwzaepHuYqQuval+fz8+Pj+ek5/5fUaJb6C2PCmUYun3MB6cdzN/jVZO2FOWS+MfSqU+xxLH1hGqNdI/LZZGv5WhzcvWRsXSBsCXDWFz7wC2PxMzlhjNrDs2dAlCNjGyXKNl4LIKmWmTKvdnfPwCj1zJGkuMGmQUPvEntKuTuF3WITbYO/W0YtG34yXbGqhvuLEnlwcqCMXsgN3cCI4yMiQm78iCHjTkZwBLlnaDeOGSxUKhUrDtkkka73x9wDnXtmDqrKpQ6ibRESo+CsuYQEMlZ1j6AI8Jgd5XysYTHNE0t1R2H55je/cbx7/fmbL372s5+9efuLMk+H+9fz3UOgPC/r+bz0blLmc7P358vXtN/Phd0KmJlwPKQ486uH03/3j/7hr/zq3/ovn73TkVxdk4jtVg9c7r5IRmDnrupEXoVqmWMiM/PeIyJVQsmyBGPbts6lNTqWaQpqrXCSUhBkFjtrBnEiMIIQcjUa5j4AAgN2HrbTpZFkQyuwrYer7/agGLKdW63TYmOl3cPa2+w3H9F4ZNsJIJtSo3SWXDzJZJ7HSC1cy90aQCmTWScPEYYNhfAiGeJygpu27sUIiLdyEQNbnM9M4YFwQCTPXiLM3MUz4n0RL3lQaIjs+OTc4BlgpFsWugnbmJmcvLvnjDEXVTd3c6+Fi1DCE+DKcAeb2eF0MrOu5u7MKKUEmMhhTvB82h6+ZVdBQxYuyMMQZp05Mz4xM0YQUxUignJIIbdrik4M3jU4gs1MmAjk3bHJwVyWZS+tEjLfcVfNTq8rxTYHmXAUqcJMQ4DbNYJChItk6QRAqZKhXf4zG4EA0yDsK3lvC+WM8m0F0WHuh9OBPCg5Cc0NyiS1Sg7XZJU9H33+vK5NmBNoYWoRwSCZKgWYlW4NqAcI6s4ASxHi0RIcWRtjZ7siYKsfx1aN8BxeBQJIws9B4SQEjOJEZMhGxMTJfexmHhwRIlXDvJvCfUAsmDnqNCmF+XAJci0Nlo01IeCc4stJHR0+EufCwkLEEkHiV29ECPIggIULCYO0Ne9aJ6FAeDBzyTlnllvnRBTCQ9UhTbmUKYXpU0oqHx5uslQgaa5pbLbcGALtttUlx+jbXkiOfRh1+03vHamRtfHCufsOdhrWc//TlsVgq9VlslFrYebUByOquxMaCAdcC0LZzR4TOFlfuElsmLmkqygiQuaqqhFWRGRgKQfmZLSjyTlxkCANDi4+TTRXpaI9zktfmzqEiGqZK0v2/2USqYMnad+BibfJjfLw8PC1r33tcrmcz08///nPf+nTr5dS5nlOyEp+e+/9+fn5cDjsCe0HocZeVs8+416R3a0e7TW8L3V6v5y+3n6KvkR+eA2kXjZ+t4Djw2z2yz//Dd/4173zy2/4G177p2ib+PrKP7n7Hnhthn4zI1+K+Yale9HQeAHevj3Vmx3kHsle3q9BwfZ68X4O4KrIV8t0d3fHpQQlx83QZQlgFMBA6sZSSPijTz6e7o7r47MjWu/nZXleLpfL5Yw+kbnQNJXW+tpNfT+fJByqukZTA5Og5jOd51ndns+PhiilQrgHPLxQcYQF1PqyLOfL2lrzUSuNWo97U1lyMDfCIyzIPdzJw3KYywD3IRhKI9VMbgQqMUDgJGmwGK0neBbC6qAgg2XivM37EcAx1BPzl/nImGhotLtbJi1BULfBXCdyBd9lkE0EuCM4u5osRKKhZZvOMk+2P1T+sP4yKBPIScC76szI4hxAEQ6HBphcI3qgJhgpXEMLKJi4CIk4IcyW1j569fE8H3q3z75488Xnb+f5cPr0/rO373/y8/cXxetCTujgNWJRO5ipFzMrgVKI3GBWSxUKcy9ME/GhyFQkukWYgoPcYBHW2/n9m8/mQrMwSkVTbXHplyUstF1am9Qe6kHCGbBwNWMRCNtWNMyKnurg442IQtfdkebXzNTa8XjMGjsRDRImv9IWMEvC5AAwS2EJo0j+H+Zs395aBqIcDyiOFhtxR25tTgaHKqqRxtbMriU43rY2xVb0tKyWRkQMWVe6fca1wNOhGOXGNgzJ60ywmvZlXVNVSESCKda1lhIEJqm1ci2llGk+TtP08PDAgsPhcDqdRIQIx/lwd3/0tj49PQHIEYY3b95cns9ZBrWXrAG3sfi4J8MypY7OnobcAHCICMO1jdswItCryh1vPNtb/+crrCtt2e9u7XensAXrcfvXmxOI2JKnGJnk1XFs2Ujc+KkXnIuutvt6i0gp6v2EiYMNEYYwUHgoQbBJxe0LA2YJkO69A4MOZ4MtoFz7EFfjvIc0+7cjNslj8ACtbsXW/SO3hdF02V6ci7gPIaD9/WZGlvPtXVVrylIQRcSgAonRcMsvsg0oQTcnGRFOKDEn9vI01V/5zrd+5df+ztv37/74Rz/8kz8RMD795i9953u/+vDRx2++ePv0/pGloopqfzyfn9flk9NcMqEEDoWah1tMhf7eb/ydf/pP/+mP/vjHy9t3N4uHiFJvO0bL4xpIX8egRmWkzpnKttbQ+3XxpIe9KVjkMCoRZQI8TZMbnF22K91uNTGTe5hqZWHibDmqaiM0FqvhFaPnDlLvsWUnWWhIKiLeZuxz8afGx765aAuAN39xxSSP7XPziG/3Go2EuWT5D3uLeHuVUuChV+IVEBhw0/SQmMpk1s3DLcKHAqJIEWYbk4YCSv8SImxdM0SQyAQ+r0B9Y6W+NReUpceNY3gPeyJir4nhg9AuNVxjo+6nkTnmO3ZYyo6X/GDLqKpnDBzYeuNpGQzYkOiBHEkLV3MbJYVdbnBTgUnTVGTC1gHebFieNCIii1ytr/uC2SsUec7ZnZKQh9NdFhbdXYRKKeRhfiUfiQj3cELJWfEcw5SrLHNeew6m7c93XwzFh3gBBxHyYoQLCYJzADe7OWPRlIrWI8jUAGcRIkmyRzOTsaTgWcpnFmJyIy5MVFhg7u7gcNN5PobaePZIzlwDK5NEBMb0hDDn9LiNSqenGBQ4yJkiUv41vSGNjIBATOqW9eckblE1UNmV1m2bFKSB5KMgNlXNGTa5xs2wscKdA0TBwVldEICYLMPISOA0g+AhIlIo6w8UKKASRAg3s9ZNtQhxgMLCep4R7cQsuUiS+9pNVc2tSC0sPgDbGZI6CYQLcwphu20K334LybgpnUZEWIJ5mrtPpUYES94vGfs1wrAZFyDIA5bFkaSc624RITskm1m10ZVAP0QEgXVdzfrVZW7CcREekAgawhsZYJF4UPdwcBGAST2Sd17D61bR4TFm3FFrrft0gXoiF4kzWvZwpwiRqIUPhy7yvLa3z41KDUWYFa6TlJya6LrCSEpai1DvEdFJXa3WGuYMOR2Pn3z08fnpuff+/v3TJw+v7+7u7u7ulmXJi8oGOLZsXFWFGUmyt40t+Tb3uxud2zJEGmmPKzj8gxcR4epMY78hwzS/7ILeZm63pv/WAXzgD778utoIepE9fvD68p/oJm+/Pf5mlF+8EzdG/MtHxlbz+qqDOBCDbHm7RbvDzsB9vJMJWbckCBVmRoSptm12CMiWclYXnQODpJQkQTeWvUpshWeAiOphzsg4fFO55jynEIjBu3tXk1Lmw/Fb3/nl1x998rPHZyfmSlyk9/7+/Xtucqp0mKtZV0VrvWdCRgx3tRCzpfWmPb17EhYCWHqTqbqpZxkcYeFqXc26NQ03c2cxKud10Z7zSIRkKHFyZP5gEbGoAvBNwTgAp3C+anUGU3haGyYhLoMhptZqQZYl8AjmKMKwgFEkeUmW/LtHbGk0p35pkAeR5DLxIU8EIgkmWKrd8bZdxl89gomYy4iGPTvPrJ5N95wedQSYIZSuewQrjnAYcmyeKDIVdt8edMZ4W5GOyYI6vHN0jlfHAwpreHatl7ZShDimMtd5enw6v337/v27p8tlUQPftTfvHp9XoMBLbeFPmoyeHVWicDnMc5WkqUSEu/W2qpp37V2j26HU1VTDl7bcHwtNUufCDG9tfXx863738CqMn577Tz776ZvLmev0kbZXEYWFNUBBAWIebB8OZipTLVKSkKaUMsl0HaoE1TpoCHkMkQyoFjFnl88HtXbAQcSDvShIUCap8CAWT+GCIE8QJFFfVvhIX4cPMjOzOh0iguHuLiylFGGEe54eQKUUBtRtXddmeqglNSnMzEML1WxrixDDb9VNK5NtFqnW6oimnYmCS3d9PD+31iKCki2WwMEEAUiIpZRpmurheDweT6fT4XC4vz/N83w4HBKZxYK51CqlcV/7ubW2ruv792+fnt73VXdHkGlwgLa5JM/Bwc14UwQSw8+0wbmB2ASHkV5472duytrJA5twXiEKTjHDnDS8gVJv1imdzsD/75RCo/yazzdJgBAbTLBw2szNmwCjUhXwjYF6y4yvdROKnPHug+ebwsPcFcLuqVSK1Gw37fDB1O3uhCT6HmNoI81OqfUkWKUEr/KeHvgVtMyjR+tEMfQ891pB3jAgkgw5fzNEQTLqcILnpKT4GMMe9irXqonhZmp73FuPfL5lmg4Z7kf03kudgRRqHsKN5t1hwgU51D0ggJRFvrX16USz0DzJNz95+Ie/+bed5bu/9I2Hu8OPfvzn6lam6f5hWpf7uVQnbkoeOJutvYW5CFdCor2ZickF9N1v/dL/9C/+H//L/+/f/+A//A4shYR8d5VbJhD7YtizXzMLMCXU0oNZSqnMbZ8hT+DOxqdvHh567YXkoFBm+72biHCpzIXdu2nv1s3LvjDNI2hIphHZPq3N4eZmBnIuZQvJr4XsLbYc5QzfB85LydlgvCRz+qD3kLlQ4jvMTIZDQ2FJPpEOBZCavfkeOGqtkEiypAgSlryFIrJ19bP/SWZ9X5lS4FnlCxCncDATbaSwcMOQrMlw1d03rTW+pTMQKdj6f/nsYqApr6tcRtSd3S5DLaUUdVYHS2yC1YOMLQblYRZ6AODp6UlEapmlTIn6JAtESM3CVuAW+Z5MrpKZFrsXKEoVAq9rT38B8pxQiLhOFlCS7W5Sqcx0I0uUf81a2RayclJNBTMLsRPt47Sx1+AYQGhiYdKFp7ElMNBay6FdUx0J81YuzCoJM8M8fCQ/JSIRZ5BNXISIIFjaCo9CXISYAJKgvfJH4Mi+pkgSFXspZbNlo5QSDjWTGKYhA4ishmn4ROLbhPTNpw4aGqGJd5MiFJIU3ZlOhAeYCYksQhAVEQE5GGAPFGYHQlhvNdm21jnxmLLL5BfMMZyLL8vSVB2UEq/7WXHljY+UAXNHIQ+XQK7xkS8OXmZ4JRaiiuzrptgIKMBMAqJao5S55KB/+q2Eer6oR1ahiI0ByCMRO+bsrhFIcjxm5pQoyGUHNjOn3PDXfqPwzczPMOiyZx0fpCXMLEV2l7lX3HdPkOqMGzZjhBqxpX95FRHYF9woyG0ZkYi4DqrYPW8Z+eHonKdqRezHrFPtvatGqZK0AUWSaB4AQs3Mdi5oIhESB5ppIzYzI1vc13CUymxuKMRJCQDA2VUX4iCMqTZ3F65ElJA8ESky1To/PDw8nZ/ffvHmebnM85xHyBw4i140KJpKbAIM2ybfWal9F3yjLWX1jadu/ye9AALQBxnmbbK3HedFLX8PhvgGGrAf6oPj4GXf+PZn3LwVf02Ouh/qg4988F1fcczbd37V0cYPY98HrrSof23venPY9MGZ8FYLzP2y7wts/ZD9FBJID8vQQa4gxb38lxWHInWaUgol/SVhzIQAIZQJM1sEhDUA4U+//rX7+/ufBDwCG2PE5XKZQyaaVMgdrenaVS2IJVjMjJq11tyvpJ2qmuJnXZVYzKKv6wgnC5u6ui29WTiCIYULFQexMZXe046WZPMC4GZB3TJnAiVTQyDcoeFJossj5nUOuId7SU10ABG20/cIIxgMxFBEzIp/ZGkYsVflmUaTHmlJkPkVy8aZN7TH9w2VAS0z71qg41NZZE0yRCYkh0UABN5IKgYXPwCiFAmwfKjbwjFA9q+FOIbAgzGMoCBFoEjSMjXTtXd4SKBKeTgeetfPfvHZ+/dPReZpOpjjzZs3b968EYEFFjUiWq0bkSn8aWnduvpqyV917h4g0mXtbt3Q2mI+ppsiQuYK4dXWZo1ihmus69LVL63cv17X9ub9uzVQiNZuvZmRjeyCqNYShcM4wpLPKXXpUkIMW+dnDwjSQAnxVOduOpglg8w6DW2bQoAwAZxDwu5jVKwUoYBrmEW31d2ZkKzPWbYgd0ipPBvWPfFOoKRlOGBj9CAipeuYhFkKkwtiH4EZISYzSKZSbQBgbywARwHOyxrgqUxKwW4k3Dyenp5+8YtfLOsqIpYS4ht1f51nEam1zofD6XR/9+rh4eHheDzOc3316lWtZb1c3PXueCKiZT3DLe9e8iCmtb9cLin8O4gD6JZ34KurkNnU4c2+7RbS3QFKWdF8s2+LdbfYeywYdO0IfdlT4KaOecVzuVEWvW8QwhERAxFwndwe5ykzb9+4X8TVHsZLcA0sAmYdKAB8KKBdETruGmEBCw934+QQ9a05mfStV420gXvnbQSmsCAHVfaact7kG2RT7u90W+F0OyV+dbg3ReQ9Ms5blORDrhZmRFcXk79srdXeXQ2bBoSUG5hujgRm2HYrnDPeQEHoHmpWhWZBJfva67tvfPsbX/v09Sdf/+T/+6//9V/81V998fbtsuD+/vTq/uHd4xOIAqWHLdrNrCSaNNxJAlaJHaiE3/qt3/q7f+/v/+B//93EawxemUSXx/VG7feKN5JI38Bo7k5lvHYK6x1fBrouM7NIWil3T+6D7NeNW7CvlmQ1MxNiMxvc0kTZ2q21chFw4oBSnVBqrRFJ7DKmUvdR2LBMMsfgkt/M/e7efG+837iJgXm5fupLqhn73tk6CkRjEnhnoKAxYRMqUpJGQrfJO6LJRzGGmHjtFwx8aMKdOMkXqQjZKN9EWFimk/JBiX/cbKIEGNaS3jZUW4YBNdnjMCZa9/1rN9J0gbHfbdMBojHnfIVIbPkzR4z2FHNhwdVrc+RaIiLOZl5WrjlFXllAwTDrSRKxb6jkTVyXzleGsPGkEtnBRWL0nK+0OAkCCiYqkpRjuVWXZYkrEt73mXAzTXkzylYYhhndN/J+Q7KqtS8Y32BiVCAiJUjy357jWcNywGzH/CMrW9nHQ9IlFwFcWJjYKYik5kR7j301wcO9wz1joHCKIAQhmKnkbSlckJ7SjVhKYe3KzJnwDig9FWG4u0aPLFImzt73bTwWzQZ8pizObJJG29Ny2v/JzIrIYbjI5i1JSiZyLZtZHFlE3mdkGdLc2EXcw1mwAfPg7gaYR51KAqlZhIYslKvpTAJEKUVATEkLkVuAzBxuhGsCTCOx9GkABmqaFibqZiwIIgdy1jciwDlUF0M+aqNZv01fsfUMc95AW9/3fPYwHe7hcwizJLQ+ZYF861VuxoUc7OHdvArmw6G1ptYTrW1mRBAh5kIJgyQipEGxLGABGHssW/ejrelEpI4w40A2eQFrmXJHbPY517u5X69uazJQltQjSIHVtLWmkOYIkmXpbigko1fPjIIKIarM0G6991FRxyjn+8YTU0p5eHjde2/LuizLO3k81GlQGm5UVYnT4I25fnfPL5Lbm2zvNh66fY8UIs7GFXbbQUR4SYJyG+t8YDpv//oiQLyJePa/fvjLl7+JiFv7fHu021/SlxL1v+5tX/FLfnE+1x9y7GT8ctTUMGqBuzPOm3ztzSbaNsJvboLTFo/eDg8DecBt+IMHiMPs1tNbeh1sFhzCWXg+Ho/z8RCpZUlp1gKDggkOZxYPWlZVi69/45sff+3r4P/Su66rruu69mZ+CC6GUG1EtK6tm5sD5E62zyTXegQQ3iPCyVPUFuS9a+/tsqxqXusciX0NtxgcdQ4NZ5bKMjOXps+UaSSLyBiAcYBFlLJAYzFKT4NLyCI7ikSDFt7Mw73GTuoOdg8G+RgaTM05AVwIBnN3wpTcf8SDnyMfitEVZZfocR9fv8PdKYcIBzEbJz9t1r2YNlxjytINsnoGC0BINThPYAzn0yX38Agd/IuRZdTEutAgTAwLGMEJStHgM3jVLizEZO7qNpVCInWezufz2zfvfvGzL9xxPMEN69rffvH45s2bWtEd52ZSiqpTIaNQ06fL+f35+e59QrajTFJKIYWGs0y9N4Mg3M1y/GPV/sXbt3dVTiz308TzoTD70uoDL8vy+ds3PVCm0rQ/PT19zLPMc4okexEWhqNMNYeSKAZRipklIrLwmMHTFHcBUMbAvA9aysDQiRVIbjJyR4RzUKESTl2VKwmVoQa/lRZMg8skRGEa2yQq+dRh1jrRQAS4mYUmaDNjFHfzcPIC4VJYZEpNyO4WTOQDSVurRDP4YEQbL9/Sj11dA8JStJ3fvXv3+PgIYebi5pQj0VOdpmmuc6nz4XC4u7u7v79/eP3q4eFhnmcROhwOAXcpEC5CqtrX1lp7Pj+en5fz+dxay6p819VVsSVXsREv4SXQZsSj+fvxG4Ay6treNmKuMRsSgzpwlJsBH9LKzIJI/S58FbfljvzK3+/NsWSeyo59looytbGR+gZtfen8eBLiYAgFX1PfXYRzjyIk2z3CmfXygDRvlEW3pF8DIe5pwIefefnaCjQ5kX71emnEfBC5x+01vrjbRE5ZzksO3rL10V+MzAwubiISCTCRYDJ3t64agbg2UTK/Si+vqtU9qcWTNkVqGVuGSCC1VlVFWi8gKdZSUQxEiY8L709vPn//+c++/8vf+O43X7/+5HU5Hn/n934vgn76059//aNP7o7z+/dPIrWpLWpd3a2jCDyEeYUCAbCbhcjXvvbJ//mf/rN/82/+zWc/+kNW39PaiMANTabs4t47hxkFcl7AXCQyO00gA40nnWzlg9yLRq8VEYNqWHWqFePe5kN1BEhSHaa1rF9gS1PHPZwnMzM2CKSWypGTqNrWvXGS4CCMOIpHJC9SSlFVuIWp1LJXQrCB6W8DDN5eABJvAkCRngbuzoMwiN1CCjJ9yiNmjEcUo6iRUFlPHHgZsIIh/jdwxZlbgikBfTzyIBPmuPIlDaoEKkKE2OYhbizZUJ/eOK7RB5U6xmQ7B3FkNpdp8KiS51U7afecuswcNG+oJTiUCMDxeHR3N1jiqSIPmC1Mo2BhDoZ7IDwSO5A6rBitqdzQIiJCkoFZPiDiSBZ02LYXryWtjNWjj8HsAcoAAPRt+ilDcPhwWJu7QGp672khmAYxW1Bg/ElEhq6VlASAACxc9xsbEZ4cGWCACrOou7uJAWNOPRLHS0Qcg0VKhMLIw827UBAJBRsIDnO4bcpA4mkpaERSYBbKyZzB1wxmClgJIirHOgE4P5lZN9um0UE59+2hDHIgyEkQ5k4QLkmgAkCQskeJSPHI/IpAhFLEDBY+cBZgTS8yF4E4aBefocoiBUxu4tvTNRsjoAkZIOZktwn3cHMX4ihUhWEghgsYDldFCcCzaVxLAYWru7ZVWQsf6gRGU01GEEok4eg93vY3fFkWICxbeeaO8EiyemHmzMaHRlaZplpba04YZKawqzmgEezuzidtQafBWr7XAplLVtyHy4Rj9H/YvTMX5pJRypYdWVK6eRgRzfOgA00k4jQfzLpZQLM2NvwOs2wMebGXe9NsEkjdrGshzi6ru7trrbUQe1iOQxjMugpxqRy3um1BALWuLpPUWmptXLraZbHzpakinBJMHoHuFkYaOJzuzHrrF7PYb05adg9lZhYkFyjgb9++fX5+vlxWDhapIjVhdbeul69XdK1j5WFvGaGvryGmupOR0Vbdxh7NEFHhcmsiX2S5G4nEbQBx9RwvM8/bIOnLh9qFMPFf97oNQcYHvypJ3t9MX8JFj1nQ69zZyxMbkYoBxFw2EN9tVInb672FRMaGL9j9/Ujvbq93f2eCmIOdBnQ2oU2Dez27ZIhCxEVKKXUqVUqkvkvJ2ksGuBRwc6ibWaxtLWX69re//a1vfavUeelrU1y6qQWkJPS0dx3BEwCQWUQoIiiIQKHmBNWISB14770v3dy9qy9rM8tRAj6vi7trhxO7RVNFBAlHRAY0+XwHLQLcAUdomJqZqW065MFEYB169yQlpXcBIbDY8Ieh0REMcCbJQDC4jMFAIgLZuJVbY35g2IaxCQ4OImIqILj3kbZjGK48RlC2EYNBsUnB7Q2HgGezJeECRTD4+QLzPKCV5JGN6qANdEMY4L6xCvJLfWAORn5CFjBQNyUpPHoIwlSkTkXmL968Wc9r73Y43mn3ZWlN/f3j5fn5udbCXdcODr+sAOvEZLNAvXlvDgplhqzVvU2lOqLO1VEMoR7NfC7y/ny+UHD4xw+vFtWUUZ2mA2SCTG8eLz/52ZvnJ0yforc4X5p/JDRN7i02Ax5M8zQxo6/N4KWUCFN1LpjnIxExSST7LnNK2qoqaPOg4MgaKxCUKFLsT5eIVXtb1jCrtUaABZUqc83oP2uVrtwTeEyUg8XMhTlVrExbzw5PKcUTAiYcQYroOjRIT/O0LEsKKV3H2Eq5IjdutjGAwzynkEu4AgBzEJZ1BRNz0XBVhcg012mak39lnuf7Vw+vX79+9erVq1f3p9N9rUJEa1u0dRFi4nVd22WxtubwwvPTJdS091Ql7b1nkpZ23uJGIs7DEWnhxtw1Zxp8zUMQ+7T8wFTQ1TxuqXIoEUVwikxmaA6AnIKulh+bJ9pmqrdTyp+LcIQTZMwjXxEz28eJNm+ymWMLQEKwVayupn77rrElI9RpVHe2PoNvSFcGGYwzPLpxfr33bI3wNOKQzDPhlkoqiT0eLFMw4VQowjYVPA529Wt/jQPagpbYfVY+HkpyLHKgMIVpKVqGdMrG6IGtPO0Gs9CR1TMxL8siIkRDmBqAMJKXKwdDIyLvk3ti47Fur88++/lf/dVf/K1f/dW7V3cPFb/993/t4XT3xz/80S9+9vMqhepUjnM3UlVtpurd6OgBhiAYbHDbkJ/3Ff/kH//2/+e//T/9v//iz4wI2sKb0IZ3iVANAQlJwJCMLSAiKlt8qKqJm+WtEcrMuGGZIqRB5LpbAAEAAElEQVSE+q5wO0J9M3NYay2Y5lqYyGJIO8ZIGkFRiBTBqnoJAJgKw9Xd7g/5IQbAGDws2XuoVSJgXcN8mmbfAiMiKkzgAkCIjVMNSLZ89QWkcb+idD1THZzVqoqhOp9tnlhVOco0TY6cOYeUiShYEOYUAeYqs6G5O4RpBNuOayA0yPDLwDynWAGZDUIpbOxEgDNEMLhvrwHftu/m+eB+jo2iZ6C+ZcLWSmXmgWylYJasNIFLqRxO5j2CRYr3MFd2B0lEWJAAzJLDUMwkIkLQnvWdKJUBSlE92UY5mJkH2Bg0SCrD1c09N2kWRjP5z/0rdfDgInifPFXVucyFpesoehJRzvdO09TdBMTEwWGDmouZJ1VNYrYUQE0TkVV1DBI14hynCHjXZr71/JOZqDti4gMNuB8RDUmOYCrmUIsIlFqIxN2mUg6Hg7YGQBwIC/O1qxAJi4mbabgVrgjO9sw0HWsR8yGBPZUypqWJbe3Exd3cvBZ2kJsBPk1zdjly3TC8iJTCBdXMgkCTIFF/vgZ7713myhGtr0Yo00xETZWK5FRJUJCQEHW31lqdplGbyVqgB8gt3Hug5kNncgc8TN1AwREoIoHQ3iKUChNFt4WImGoSuxxqISKYVq7oFhSFWVgKSJhprpINSQYBYZqlpyBioVLYXdW0sDCP7hMzapUQ2jwdAGTfv5RSZArQNh+VHbNKqGHGkFrKDvKDSGUuZTSBA0gu7t5sLlWqtNZWXWutRFjXhYQokAp+4cgEPnsuSXoCocSikSA7YzZQKNx1jYg6iRC15cKpywd39z7ULIoChjFcHe7kJink3ZrBwq27hQXpgCiYO9znOh2mOav+ZlYIipgrdwvzmOohiPqqjBKItmoVqlKCHBzCsiqcqQFObM7nZXns3p3J0S5rrdUCVsrxdD+f7pob6dqtIYilsiDJf2Ee1l3b3d3R+uquHt57Tw2kde2hHkHMKbBe1vUiIgQslwttCum8UWG33rsbh3POUhKYSNUKD1UPM9fBlslBgJnbtaq9uyJi2YjPKHk7ifY5snC7Irv2GCVv6V7gGAl5dhHJA4HIU7qmxNsHgcyViLI/s6ebdBMb3QRw17gYQuMs6VrX5J0D/HaV5wTaqOzxHmDt35VTYplbSmVQqBqYfEzDbRcLocE3O3Isuxk0yZqN9cYb+DMDNh9zO4N5P7GZzGirmndVzSpcMJhJhIPY3KciO9frenk6zhUU7jDJlIqycw3hwccOCnOu03e++735eHpu66VhVSway9rXiYpTkEdYb2HEUmanuDw/C/F8GGA8D7JR9RSAgoi5mPVlXc1LqUVkcvdCZXUTrqauPfPfDqOAdTMW1ujuHkrLOIK11sp88lFH3oCmQDgZBTPKVJnJ3dXVlJzCcqLXkZMU2YgKNqGUEjIPQ4DBSWzPJWUeMmCCqnI4lSthSfduloFcCG/XSSxDbhThjpwZI95InSO2NIFLOiSklCFAyVLbmzGzhSPnYjxMg8ERljQxkWAiQiFQzoMWkQCDVJ2iTKUSTyBrYXfz3Xw4SjmQHNoa7en8ox/++OHhoVDpXd3cwaVOXFRqkVpkwqS8tGBI69zcVJ0Rl+7PSpKDHnDmAkT3Ps+oc1HrgJZae7OwfhAw1vfnxbmalHeXJeqxafR367/7nT/84Q/fV0axeT2bzvxuWY+v7qVUa4bWNXyqRwDWVSjLE85CAnHyZs3da5mZIcndyfCIHk5gLmwa7jHVeZrL6FeMiNIzrgRRiYlm1FISKtW9E0iKOCz5p80MQbXMDKg6HFOZLSBCEaYW2TrbI2kRqTKZw3uXoEKVKnpv03RQ1eWymFmtVUDau4A0/AWAMCTCKVRIws21Uynd9OdffP7+fCEuTY2E6+EQTiJyPNzNx2k6Hu5fPXz88cf39/d3x9PhMEuRBC1ab6adSiGCru3p6elyeX5+fvaurm1ZlhH9dy3EHd2v5M+DoiIimIXcAymkTUSUIA6/IWHK4Sm6KUbHYHK6jmsmXxSDWKbI+r+nhSZO7EK4s1I2twsDwZKE2B7EXCT7QqWmEQHxBrq4yWbTuu8pJTOHGzMx7dCt/ARQymb4IzbqnVKKkTMXLgWBDG0p3N2rEEeBOyE4ckS5RFBoWI61bQ0iFjEzgTCocNZp2GAUAYOzJ2YzyJPOGXBmJEGmDJzfZiFAHsw8+mPTNNHWy52Ph4gItVJ4mmqENdeuCjhXLpO4s6486tIAQBGk6s/Pz1yk1nooJ3evk4R5b0tElG2cokhp5gAJwwmqhgiicPPC5IG3b98+vLp/XNf/9Ae//9/8o98+PdwVwj3hH/zqLx1AP/7Zz5/PS9S6lnpZz3fHaSJ98/m7p08/uZMqBIJ7tHOSp3Mtjonxa9/9+v/4P/zT//g7//nzP/sx4i3gzMbwtrT5+Ko3Z5YS7h4Go0JGAKEWSUdAROKViER4nqdMY8wtuYh67xGQWnTRtJsWzuECa7r6xQ6HE4xIIWUSqbVWadpa47maq4fDhUDCbPDny/l4nGuVk3B3w9qr8KEWQVgqnkbksJtpJJEkwEWmSGm9QGUhhJnNtUjh3lS1k7BIJb4OkXGpAEQG2VWpRbsnQU8giYN49HWDRFjD1TWRLFzLVOvz+b1354CwsISqEdM0z5QiUzAzD/Mds8c5VpMTRhEkORXIDCmVvau2XkRg6F1LJSLpbkJSp+l62lLDaZ4P67p29eN8OB6Lmc1z7X1Vd3W/DoYQE4eallJEGPAAmFGEAGh461qIy1RZGCkVS7Iu6zQdAPSetD6FmJr2psEsU6lcSqh5KBGxFAFdLpdaZyLy3iVqaDCLdfR1zXsoxK4eIJZapMok3U11JMcA5jK5ejN1MwrqXWkjNpumelkX60qIUqSO2lnoukTEoRauZVRFiVhqdqQQ4YboQaAClH38xrMtFyRRmCzgoeTMXMAyoMKAR5QUxOMB+h2tqt47IoSYmeAUrES1ELMksbh7d3eEGwVnBOcOTyPMXKswyLurdYgU5oiMOEdcC2DVxdUMlAAJEWEaZpRB7kypcUAJdPa5Homoq7N5DCEjBlhS/y+pu8M1oXkDxLeF0R6pHM/M3SwozBNCy0LJGOlMxIhIsleBUC2lYKA/wkOx9UuZKzPHyDNjFPpEODm7KOttyUuMWmsRYq4Jy3J34pTnRfKzZxfog45bersB9DffqpAMz4hzIFLmqVhEay3Bt75lS9nO8E32WkQgXMqoqccwzDmkEO6e8Ol0ziJie0Ga0u7nMN0ov90WXIk2yASRU/ZeIrv3owK2HRMiFBsZHQbn0Ggxx/j/WdYiolTewpaT9N7VQUQWQR7MpTBltlE4A+9QVTC6oQcroZsvvZ1XXXss6pdFhQokuHIpIrVE5lFcwnRpfT1fzGySIiIwb61ReC9iMQYvM16f5mORc++rdk8JGZFK1HxTwsSGnMlHsbbGzNabu11FR7Z5KozqXbZ/B7wcwRkM7XnsDuChTbBui4rg7uBAZA/suor2EIpu0trM9HIuIGLgG8d629La7YebPu1/TTf4ZVaML4GlP/jni9cm7ITgTelt7IE8cCRmJCJCI8xvJgW+fHDaOt77FeW6vb2TOaOCF63vbPtHpBDaLkNKnqmKhRcp6t7Ns0U7TeUwz9lTtjEvQwlmVEREtB7d1NR7bwj+5JNPP/n6157fvlFgUX98Pr9/qq8qTTObK4Cl9aBSYwJRKZMQc5CbOsizGQy4RjNT9a7e1DImyPHO3ntrrXUr9UREIrUgVL1b06S5BAKRsxaFiuXklRRNybQx7ZPEKhwMgWAI3iKy9QSCgwhVilTZJBK2GrZ5ThELaKf8YZCHht+s5nxM2ZXNVpQHBrESiGjYkL2Tn4Ss5pzsZaOJD2Z2QAiqRgAzwBRIKhEiijGYlH3sTKSTZNevDNXjZHhr/EaIlHkqpzrn2fbefYKITNN8Ot4f6x0p3r19//jufeveVsMk3TRcyjSpw0HTYQ56XpuSTPVwjKarmhBf1AJRgEuoEIdDXd0agGYxH9rxOAmZFJQItz4x2RLalmP94tXxYZKJqSyPFxynP/vJX/7hj//yOaCO5aKQdT6uj629Nj1WgjBHHLhmU3eD8O8TbhsvD2DeLTbBXrOsHYQ7gz37V0EEAjERlTFPaJl9pT1Enda2PtwdyzxJl3Vde/cyiRRxdZhTsBAzFRLEkIQL5vHxGKGnAVjX1R1maUKlEoOFmXwDSKcgcC4iSc/koTeIj/RfuQ4teS6YLsv5/fO5aV+7knCpc7Ym6jQd707H+7uH1/evP/74o48+mudZCCAyUwbWy5mIpmlS1eRsX5ZlXddlPecP67r2pr137xo50ubuG33FbgYZFKMTgsT77U3LG8Pl+3+7Bw98cU5HDjNlZnDKW7c7GhrsJ/tvAIwpoA3SDLpplRPR2FC5B+n6+xgVdmdm2nUKs38bYyYZL8FBuye6HoRSp3Dj59ohZhEpYLspVCER00QEH8VRd7/VKBvdRdUREhBTRA6M7Pcwbft+Jz84NwoQE9+01vZbh2vBdzTuAIjQoU5mHWAvRYuSJdPYAEsHWMPFBq8sUkAV7KywZDwdDCYezhiUbDbqi4PNKHMuVX37/vEnv/j54f7upz//ybe++fUCMsck+Nvf+2Y9HN8sy9tLfz5fVDs7FUYHnps1whEw1SQW6gAhZhAFPr6f/tv/5jd/4+//g//187c4Lxym6+OxFqpVVWnIViF3ExVBdh3MQ170xvORZfEi9ymVsq/w7X1GVoiCGVyZnTFEjsxjdfdSRq8yR9iIiEQSku5mZv28rFOVo821lNRSsda9uAVKKZWJAG09IoQnIQ6M7q6ASD2g0S28F75LU2NmAri43EBDxkekMKe4TUQ4e8lQKgXezHqE1ToHOTxnrKm7uaNpLzIZDX6+MdrA28IGIhIQPrRwQV658HU3xXbDs2xBzA7USOy/hymojLTotglsZn4Dz/Tsm1kbz4626O4aIto2+Nr39W/W3XXMrnAlInVzdaZKlKxsm7pNJICOiaTWSd16MzcQhyGpGkM2/DmyES1QdaIwtaS33DfgvmwAUNyU85LTBxI0eDRx06JvreVdNbOc9w6YW5JkIiTMLNs8WQVP5IUwKEhGdrTlGptRpS025iSwYIDIYRbk7i5MJOX2Pub9DUNrWlliWEIkTDFvZJAWYuWR7WAf5WT2bEsxMxcAGtpNC+cIcj6VTHSriFjrG+oROXnPQF8bEwMp2WwgUBQOoqDgDP01m7epaiigAJgLCXLyLSIyTUDmthE21mE+YCpSlMIdwcEsJORgpYjEkXs284lqAVhVI3xPLPhmpDYJRXgwhO8GJLQ1KYPLhGlgNjO4hBAiBsOzwbq7RRSkw8TNK/nZmQtAiZwRESAZ6lIDKkAGF0JQOMKZJd2f05YTZamUvUELlfRPltiSMlmiKjkYFOGgJOqioBHfjNLuhtrdK6GU9W2i9JpOo3k+EJyDxmLgZGhAVlhA7r11jUysU5VugL6YMcAYQxtNStbJmZkJyQ1USnG1iCj5Tncew58p9Y6IUCeS4sFN7anZsupidGn2dFmO09ERAM9JuGXKAQgVrm2FWTczJxBFX9fL5RLHU0aL+XsAHp4wm0ssl7Y6oTBP09T7qprFY0hrdV2PqYhd5tYtET2UxJ/AHiBhOJukIvDN/P21ieLtJt2Dlf2f6dr5Bpb25Zjgxijf4MQ+zE3+ptcHEcbtb27judsfboK8D195zntotV/9lsSO0EoGc3Ps57+fweZh4jay+eArdpd9mxvvG3n7oKfPMrNEKO3lHgBJxeruQUgFrNPp9OrVq9PplJOz2ZW9st0gR43zgYh7cJFvf+c73/ve9378R3/kht7tfG7Pz8t6f2oc0Y1SZx0W0blIgDKItCx0DTKGa10jwlK+gjg8tC26rmtrzRyBbkE0SARMg5LeFCDLGl5QgEAMIYapmgflusxgFALOL02wVt6oQWcQAFhKLTXNo5mBiVlCl9tVQZQRFxNxDPRUjBEA5p0V69br50dz0HToHePFetsuPys9nqr1ZhDBqNXGIItOflcAw8FvwHynJJ7f8ApIogfKaEYkUTlOHCJcmA6F54nuT/eH6Q4o7miX5d37x+fHp+PxTupU58O6dAfABe5S60effvRpYPE3l+YpBWpdncIIAagDikKemYg5EOgd3dC0FcE0YZqckXTiEODd0/rTz999/PGn96+kOT7/7M2//b0/+sM//wsF5HTo4RVh7k/nx+fLaeIjM5NHutRcJGAGCQ2qEuPYU0UAkelI3+p3H2xed88JJndPNsyhiLWFL6WUpp70V2n93WCqOchFyaCXSvdBPthZtv4nJf4iW391j5NABASZa7IGRhBorgOa6IMyk9yDb9ZPKcUdhbmHebiUQvPULo9dtcxTJZDwNFUpBeDj/d2rjz863d197eufvHr1cH9/LyLaeu9d+2pmfU02UV+WZXk+L8tyOT9dLpfz+byu63pZemutae89dFPZ2e2hj6Ytbqwx7WMaLxPg3S6NyzBP6g0mHkwcm6tND44tvM4PuGfYBWS8gVEHNU0VcblaQqIksL06gq/ICa9X8YHZvN2JH9jS67IhjHnGwR3LADzYgsLNNMyTMCnpUczdJbkYttA5S47jTiSWUqQQJwWAbVxKtydza+3x8jX8CH2Y4NFWic7o17epLt7EsUPDzFxT2TirsNeiwK7LkmgvoDg87VzsHPUs+U9BRCiSlcadIUHQ1p+fnz9/88XDw8MPfvCD73/ve9/46GM1g8txwne+9Uq+mJ2ffvLTy2efv7mbp/pwtxI9XpZmfigsZZqd1ftTazzBeQpHIfy93/i7/9O/+B9+8IM/+MUf/zyowjhEpiKqHmEtTHIeO0kR1HkM+lPI2OzuzqDC0vOxWqIUr9DT7P1smezYj+5uPYmjTYAcA8ockYMiIiXLbj30siznSsd5mgqziA/SKOecNyG4GSIKDTWBrj2zVhYIs0dyWWQWFyJyKDmNemsSAA8pgwUaUswMZoUlggkuJbGOoxmD4bPZAQ64qzmO82SGEXiPQP3m/9LRieRyGqpTG+oNPJDizCNA5aw+kkFQpG4T8ggmv1m9EUFIIhC7Hds2M78WxZg2CdWs4NvQtsk2yU5yZrTRgHn3zAj2bZtvjjH66yIkIt20t15KqdOgxTazxMr13td1ZUoVFRcpGu5u2xRSAo89LQsiEM7hAGdHLB0ytsLEfl0APO0VSzfPSBvBKXpKhVhEw806mCgEQLiCIVSx1VUigjw27gMDBqgwl93YyEkbvEko5cIeM9/577QSvs0rBMs2Q8/uY1YrIig7ekTEQh7wzF7EESl5vHe6ZIAMfXtmzjKXwgYysY1tb0znBzhIwMQbfyQlEDFCu1EOC9IQPLYc+hs3+moQmZjkWvijwSQxuii1Vph2jzAP4SREZKaubpSjYN7dihERqRt4FCyugKVR0A0G1cTi+6BpTZqydF+0DbQkptgBoUmkELx3g2k4qgiQtPW3XIJpuPNP8GQn40JEbhHaZRR7oi2rw4noUKeI0EQgIgygoZeQggFOZFmsMHOiSJas8V2DniHxIJx0cxGBlHG7shRfFwlvDArdrGD0cq71ruslZFg6CvYAYmvQAIybojJtPEWuZhElRtRfqgjxFi2RqgoILGbGbk4+GGIp0eRExJCprfbc+qVb66424E+ttdaaNmORw90dhMFSmAlSay2luFkO9FrrvfeV11IKJWkBwszULWfbAORInsw1KZEwWOZ1Xde8P6mRw8zBQ7uMiOJmLvf2Rn3gs7/yNx+A0/b7RjeIX94YxWzbU3xzhK0SM7JMEDZ1jr+xQ/t/9LoGZxGxMWB/5Xu+/PP+wS+/HzdLiPlqT/ZCC7YQMPyayo7g7ObgOyHcl2/pjmjYmmMAdmaAa5C6xXtBg4FjKqXc3T0cT3fbVWdgBEl8EXYCSU/SrMPh8K1vfev73//+vzlUW7sptR6q7CFqZAqKAJcA9VzUSfowKCvYBmHM6N3fnn+iSJKBNiKYS++rgoiIC1FBGEUgRdYS3pJ+PCwo4MAo7+UqT8tPlCgYG6HENm4ZA09gFgoHfGsJ+O1DZGbf4gAWbHExRwxxu+3OO1G2TNIa+D5udL3Gl9gEGpUL3yOpbO1yAOAdpJv0q6qKZJiPIdJoiRuSfZpp5PlDKjNQWYQhFO69iB+m48P94W7i13cfH+qhLf3SlvV5OZ+blEOZDhYIqsFuFtmoP96dvnl3f/jk08P953/+Fz97d1Hh1LQAYKNZYAhCKcI05NS5d9foCrXB3i1V1Hoppc6Vprnx1OTwFHJ+vPzb3//Bv/svP/yrt80mGKJpE9dLW6eFnp+f76qcjjPCXU1FW2tTqVmRfLHvbrYt89Vf3wRbA3yRCbAQmSpEcv5yGPagiChl6n1trYFpnudSSs7EHuY5iNiIXsCxkoSVb7KnQXKeFBLucMNAcIWDxt7aIoRhxLCFbi+NRhCRuqrbqtq8iURT7dZY5P7VgyXf71Tnef7oo48++vjjw3F6eLjPc3Y1d1dr67Ks6yrEy3rua8sUt7W2LMv5fN7Znj+wEvtZ4aaKmUaFrgnYDTXRS+uX/81k9gMziK+yzxFjEs8wXPhuwfaXAy/UWRF+8448iQ/M8v5UsBWndnfz5VO6tZDXL3Un4gxhaZsjzVTW3TNQ2u6SIZi34Iq2HHg39fth8zfqpqalfAWL75cfRGRMeKNgcHufb8/fb7SR3T0Refs06fAm+wwREYDEDPfeMw24qZZeS6uqqXDDsjUPtu8a5GSquq7r+/fv//Pv/96vfP/7X//v//E8ydqMIAfBp6/m3vvl7ds//L3fv7u7i1/53sevjr948+bVw93ho1cTo3AR9/XyZBZ3xykHQl+fpv/LP/5H//Jf/r3/+c9+EE3n0+swDSgxbIzEE2WVD0YAO5EM9JmPbnAgFYZiMhtT+qUOCj2YB5MDicTJ2dRQszJA1FUm3tSkyOHkg4TP3MOTS0s2WfJl7edlnes0FZFSmZkCCdBQ18Q5565XDzfzIDOrZdAEVSnTPF/WjghhriKlFCc0u2pY5RPMcKhKGc5mG003DWxS1elAt1FkyhnFQihMjMKgoBQXJBh8y8/HQt1SJwpzRM6dlVIcCRboEcwgtVa3kSsRqSy9xwCo+o3uFuDupdSsxkXEVEqtlTg9fpfttYdJewXntq+RK3ZHJm7LHp5s0nXO34iIbwSrwVeB8XzdmgJmzpLfVAfPa0SUwmaytR5vayXDuDERBp1uqsCMoHPPd2534u2mBiBEUgsnCqmnsowwX8flMvgPCCMZRV7UEW7XgLoPOgsuAEhyQD7KPM+9d/dMsSQn15nZ1BnsEQhQjGKDJwcJyIktkjVk52oNvODjRZ3mWiZvPYhICkgDcA9TCxSMflVOe4LIiEjjqs0YRAHJRldSkeZ6C0fAU0YyqywOmIYhAOYk/MxiCQbWIKRwQp3DYRZBuA60ZBQ4bAMzpyyVxwDj0dVsjKflUCaOJERgRDAFBMTCDJAIA+Rh2oNCRCYpXBDmDGYw5+xjsBBXEQSrOyxw481dg3PPxZjGLZAgytaBbPNFlLQBREU4ScV1WHgGQEBhJpKICHCOb8XQlE/VqNFm8ZFEELLlQ+PuuHv3QQZ462B8z+3NCAwRppHGJ+4ZAQ4QIAMIkYueSik6ZMdHny3tcURkVh+jDGkZbrsSFy6lpNy2JadrwFSRKhu8pTckBIHw4v7Y+vOqHaQQDdcAkUQaa3O1Y4SPdpFFt8X66tZ7XwcbqjtRNO1Ve6VaSvFA4lwiIgWQVHtErNprrVSqIJwwpvEd5ggwiZQysfnhcKKk8HInEqJQVcrCh2VpEElHjgh5KVABgFIoOJX6MrrfsoqUH6Ttn9iS5H3b70fY3T/tdwyIG2bO3ZgOM7mb0e0H/PWva2ydR4stx/5rPvsyB/YBYPnyK3Zu0Iwq0grd9Ay/Koi8/eqIyKBkj7Fe9CtugrzMrCJCW098CALkiggIZbRtBDNLACSSUlJkszlwioAnkT4A92hNXQ1E4HL36vU3vvmth1cfvf3ZL9bWW/euWBafUSkKkRAITBaEcBZQqDHVwuZu2ltXNwSRReQ0fp78uoXjeQkkjIhkjGCIxqjawJ2lOtwNGoCFunLwzbC07Knk4AA2cg/AKRPExDAETNm0N9KIq0wCJZcVABk88PsTsTCivVkfA5mydVSGuNFom2WB4/pobtkj90fGTIMHcoCX2CO6OnGUMd6TOr/J8y1pIiN24C7trTnacn8iaNepoJQ6T3KY61RlnniufHe4m/ngRpdzWy9tebzo2g/T/P7p2czUABZ3eFcE1VpfT8dTqcJTgOc3z+/Oi58v5n1IwrNRWPZ+ZSpFirsf66zWeu+AQ9h5IpmkHJyicdF60np60/zNX/z8xz/92X/6kz/7y7dPfmIph6dLj95n08t6vjvKeT03PT7ICSn/2Hs4sdQ9jjfPmkZWyhL0JiRpeJPzTDjDubGUacc/0S1ijZIII9S6hUudjnXKB9Q9CpfTadrgr+RqMUZgk4wzNsTvbjDIHUPgBBhqiQ4QA97VQGDe6nfmOaKQQZqUG9viKe8YROQEdYuEJ9RCcCosUlPa93Q6ffzpJx999HGtZa4TyLWvsNHZ62szbSzl/PR8eXp2VwJaa5fLpbWWKXoEfTC3FCODpR2pkSCOHcXgA2RIu2Xe/3t7hL2Iuf9pD3CJaE+uY38HcVCM8OyWfZoGMs2RnL0RnG2MD4dE8ufdEl6t6zi9VArbo1VsKWFunp35e/cgGe/mb2RzPmQ5GSEMZgztyIEnyCr5dqWjzSi1pNxKABqe3bBwNxuVAttevqkM7lYiYsew4aae8CLb3zMEuknJYnAL0FbnJ9q60zHkTZBwpHVdl+VcCs/zTKOgP5RTgyVAnjQdlI3rfCIwdbDlod39crm8e/fuhz/84R/+0R/8+q/+rW98+vWkfZoIr2fY67uPTofPfv6zv1I7FMIvf+v0fPfucvna3X2Z2XtwsDXvdlnmuyMzHAfGr3znm//if/xnP/hP//HHf/LD6Xj0tmic1c6Je81oIgJuY2IZQGBEyu7GSimDUkx2STYOJHrA97K7J129Ay5CzIxMLymEeEyycaJ1IpJEalul6UasW+/9si53x0PQgaSCUsSNzTrCq5StOhbEkgWyDJ92tBURTVKameUtTm3vm1dOfS/LYqaoc0SEmmzLMpXzctgiueNHG8Yg26rgLcMxIAHPA3rGhMwkMsDYYilPr5n6fDekpygIT8ayLQ6H5xR/BNzt9rTNzIhjo5eznZ8yYpoO+UuMoa30YjHPM8BDGNyHRIK7S4a+vYdZ17xRWYgZ+jvkQLBq7ykBwE6IUrMDFXs+nAzSKXp6OBymaXp+st57mctuTCiMATgjgsOTbDM8iDxRbEXE/DpNuZnCfJQ8OH1FZJtIysKThlN2WQlCJIWY6/np2Uk9290BJJZS0Fvbbez4Cs4RHlYfD4yZA2HefdVyG57uFoRZhmhRREJZRDIIinmeUyTJrXlsKACmLNPyyJPdzDioiKz9DClExJSQe7ipmRURZ+JSE10wwtsi3pO7GBFMbBJZbCiWyJJmhj6IUgcAgLbBm9jvZ/ZGjHJ6De4O4WwcqGrK9BUpQZIayO6eo/ORSVvsxcsiwjsP0L4iGdTVlAOuQlyIqRQqIsJLW2qt2SyirdiJ4MIUEbo2Zq6lgGQoDUXkBdzWXcycWW5/M0J5ISEWkCKEUOsQvPKuiYyuUgohnMYsNJBvznMQEWBi5ghLU5LIeUREmLpLJFIOUHOCJRIx6W62rq/fzh6IxKZtG0Mlm2OrkgIIpsqpjzAGAyooCLpdbjr3jG+S6XGSMr7MvHsfsIrE4IkwAWGCkI0tECwW2eR383LpftFoQZo4dE7r1EgSKUJElKPspl21tX5elvOyLDmEMLqN7hEpjBQR4Zs+dikFzg8PD+729PTU1pZPR6QO2QYetbHee9Kxb9XQaK0Z5TzMC5d867nztn6ABcgf9ht427GBxUb1Pt6z/2nf//uRR+53S556kzrSTVJ6+7q1D19+XU/7r/n4fvAvH3Z/fwS+/CWxZb+xbY2vPMj2cdrCtRGy3J4S3WS/zINwcr/k2+7Bbfv3em4AADPjaeQS2R8ws1W7SE0RW4Ai4JQ7JoaLNUMiC4Dk2nn381+05sulPS/93eNZcDxNpRC6NioSFMzEJTFkJiw5qx8R6hrBFqHbSP5+2i+KqeQ56aBjYp6CyR1OZkERZB4eMNssNhMjMnAdffVMVxIzROOvCALcQQ4KS4cdQtfKYBakR2dgmzP3lI1jHsJ22wJJ3W0AjNGEjaDRs7m58/6yYwZgI68Fbgyy+4CZQaIIRSBr8JIO8waecG3NbeWa/ZJLIcDhxsSHuZwO01zLYa4Pd6+0+dPj+fHdU19a7xYGgq9tiQhIm+eZOfnAqzuiNwl8fHcvv3J4/dH5z3/6i+Avlra2tkYYgjk4nw0cXKXWSsLUC1Xddjd14sIAQ0nOzj97f3l7/ov3j29/8ovPnsA43d/N94sH9DECarZqz6WrqgHUeVJ1BNcqt92tGG6WDGEfZkHZ+82uAgFg4szP8wZKKUSUfFfCAiApnwCUKQU8o48+ADOTdWXOoDnMvXIyieeq2/r8NxZjezg0JmW3OTlsFYoPeoMBsIzTvhqEVK8ofJoqvGuRUvhwmtmjm9/f33/66ad3d3fTND28fvXq1ata+HK5SJB7tN6XZUk2I6IBrRwmQTWzXwCmOpgsXnaArxtwszmx2Y2XS2/A//ag9gOjtzOm7sfBVqGjLQGOffqFhmwIDWzz7YMGgI3O43r8jW1+t5HDKu7BxgdXdD2xm0Sdru33F02bjAD3ZvR+qPTdAJIuBIN0fdxnQxQjJmQwhoQvWdmf9TUMEs5L9+315Xv4f/jaTT2AfaZ6dPCIkngsZ51yiCBG8T+D8uG5eu/LstRaT6fTB+szb0j2wXy7fCJikdhwp7XWHr6cL4/T+/pGfvzjH//Jn/zRw/3pNB8wegf4+h39o9/6zX/5r//9f/jP//lP//TP7+6OD59+9Li05253M8Mx13KY5+e+vlue5fQwBwrw6cPh//5/+yf/4d/827/6q58+Lm2SWg8HQyco4EEUDu+ICA6UbWwk78u+v1IKOO9DRIwhkc17ElFCHSMyDbZxMwOhppwZyJwfadpx9cuDOdkdQdwt1qaX3lfzKW+bW0UVKYVqrZJtOxKapxrOmJi5RFiouYM58z0uFMyAMBObO9+s3ColJfHG8hHRNjiPSqm8YVOYKdHs6T+x1a0owNnJxNDpSJfp7sIyZBVsizECHmAmd4oY85i4QmsTbD+G2nkMJ4tIyeHe26gv9wUzz9ORmbU1M2PJzvBoFO1NVxlqdgogZbf3rZpZ7P5YPSAiLHWvdo3jbEs30RCbqcGOb4+IZEPg2Ea9B7eE2za2v59VLohNw+Vlh8Yt91QeIU++8HBS+RtmLsJ7uBs7E8E2gRxmfsOeHWGDFp7MYyj53caKw0ClrQKYgykcnFFAaU2zaGcaTj4sGKSUfG45GiGcrX8PM5OtHJjLOt1h1l4BCoJFdDOKFFEqYDFXIpLxXggyG+5MTHEwsZ3oNlKrelQvnYOYBJ6kcyzFu4Ms3BWUNC2bHR+1pSxnwUEkwpx6JAYEJEekOcO47fzTpzCCzA0eVCRhKkn3QX6lmtzIO/NGZZIWzghBuLmywXvvzKhZFXPal0sQEyWHk6dH4kjZqeB0HDe1ykJE7iMAJQTcXHnrkhGHeGSFXEPNHEGOEKkskvefLIMIR7hvTI+EIdec+bJH1rw4C7EEckQRdiPzrSABjuEiKGeqr545yQDCPSfVk/p3G9J3EtWGyAQ4Mw0NYqYCotRO4c0f8Gi8o5aUEXNQkmZ7LugYJJOczITzPDFRhCVYTg0KR+ACfVq5hTRg6aYhPE01p/DgIYxws977Wns11baura/ault36xEBA1mmUkiYk5lRqRFBg9jZXh1fA+imT+fnIExVRCRFeoLZQEtXSD/WIlynymYWbkxFJJWniUgwHkuya16DoQ8ij+tG48yDBj9QDLGSAfn4IODAy5BlpxgCQOT7G246puP15dDnr3vtb76JoTeO+S+hoD9455dfX+4Dj4gKEkM+efB+vTjmy/PBTRi9B2QAYyhA7iX860dpQ9Bh6ypkb2cQYWFUh9w9XGWecgb47uF+mqbe+3Jp7IVOs4jkCWYaHI4g4jKhe7O29hZMrz/+5Je+892f/Omfuram0bo+Xtpxng51WnsHESebN6OWynkcCggkpFZ4RO+uqrnmb/FCviXb6qrumgSUQ7+JWaq7aWreBpzYAcOY2AxO9EGukUGUEo6UvgGGTzUE4BI71x0xp4HlRNiO++nBnDTikeAbohicPogssMeQmydDlqgp5VCzgpYdY2wK0I4AISEY2PLfPVqNCAJja8hFqiEQDbqu2E8q8n+UV0dXSt4tsItDFeEQggjNVU7Hend3fDi8qlGe3i1vv3j/9HS2ZqZRSgUZ8UREa1PnUkuZpEqde3e9aDnQx69effxwnKcnN5RSn56fH5+fWl+ta8BBHoHjdDrd3b365PWlXb74/I2uWmslmdTM1JawqZbutFh/87Qsy3K5XJoHn+Yos0lxeKlz731Zz6bc7o4J2FH1KkxSHSilQjLgcAClVAa7e5ilNyYqmRDtWs08OnsgYi4CF9ceNBQsiSJGpMIGytK2RXjXDOayuWeadArknoh1iey6ABYhTGO3bGi4ra06jEQRdiK1MHMhKiKUYvVuhRhDAWsjntlewjBz1bAglALgcrlcLhcAdZLTdPfJJx9/4xtfy4ylzFPOIq3nC8IStr2uq/UEUyDUYCrM3b21pqqwTQ5gy4FhnoIFEUEkvl/GqHpjj94203dro168dvPl7rIFcLdmamP+pw9tbnLJbRvMx8TdZsgznd55BuPaEqXNI2BzFrvNvLUtSPIujKx19xSjsLJF0TEIqwWUo/scQTkHCqIExbpn1cuYOWegYtvGnjx8/MKLRYSPCS2CEzHDXbjmOjEb/diELo7zDMYA+MVwIC9v437DM8EY33LDkkguIoKJa3gqHvXIGCfg17pe791a964ZnBPFfrTty4QInIwHZWD4k/8FCM4JE/fe++Vy+dM//9Ef/sm3v/fL3zl969uU9JRKZeJf+fanf/fv/O1/9W//3Z/86Ed3r+/rq+Pd6fC6TqfyjdeViHE4HM7en5bL3eF4iCLAA+NXf/nb//yf//P//Pt/+Af/++81QMo0H45hZ0sQ6Obuc24TEXtYl+cuoElKL6XW6l1H8AwIcbBs1ycxcicK99RHbsxEVCNFSzMSHMY7i84EcgoNNzcp7KZLb+fL5WmaCtNxnqvUIKq11vQrobmz8rvqmON44bjDAmARSUqIcNxCMyIizOc6EQ3FB55IpDhsi1UH8kgYYZ4KHEWcBw+IMVUCRVjCRAXkwsSE8BT5yzKqx6jK5IA1hty0M4NiRLmlFNeU8ylINkIZMEAEDwgVAKDWWbXtTyq2wS93b6tmrTkrWSJDvlF1aFPRyKtHHmt9ZNdZhM4/JQ3OMMhmDgSHIHNy3gKha+E44/CUrOvW+3NXVQaJiEUQDxq1oVHijvBwIWaEI5yobNsZdZq2ikAwaEcZCGjOMJso2cIHXZybaiPK4fxopl1XMjpMyfbsSK4Q8rAwBHGwoBCAsAzt3MGkY6cKiCIs2JlKYSlt1Y1AzIii1ipczKyWkgS7G+CM3bWreu9TrUyJEbjhUosE1t5MdASccLg7kUdvgyaXiIQLC7laOBlAwggPgiE2bFGe+uDQzwfQWhvqC6WkqkJm9NlpH20EMCESBVdKoVpCyHrrXU1VOEneSzc3TYVghJCHeDgLZ/lcaCBLd1KALHszDyUAM6NAFWEQcybzRIHee1ffVqfbxmYGliKSEyMJCc5e/yQlK0MxFLeur/QW5CAapHO2NUw8Wmx8wut6MTMHl1I2xlbAw31nw4Ztl7L7ADNbly417f6eC6W0fNa8vJsKUgZ5dHV2H3nrn5Jwcp8F5FIqD+avaZoigpI4isXdLQiEnp1hol1kODt2GHMICWF0KqXWstefPIa0V2sL1OR0pGzXR3igB5TCI1aP594bTavF42UJlFOtIpVo9R01uq6Xy0VEzKHWLpeLbeKiOQNckF+k1/g4J0Mo6wV+OBxKKW/fvk27jCrMnOqXeTMTSnesx1orfEA79npquttrM2qfUY/AlozdJrS3S+J2QiONHN349ZuoZXNyL5PP/XtHiOPXYIhvstb/uhQY+5feBhYfZrmZbP9Nn8fLtX99pcn+oP17Hfe/BpIfJv+4ueRrLPVSEepqpoAPPh4RkfT0+xHMSEYdN3JUknK6frARVtkSCIAIzNRtU4RGOKLO06df/9p3vvvd3z8c7FnBZFS6R3PvQNd+OMxO1r0XY6A6j+gPEVyEHZCi6zJgPCTpTiLCRqDm7q5uTdUBRxJoUYDVrelo3hIJiC2ZP4IRVFgc2/5NCoeARRTiYJHk5xgkbR4kUN9AH5xk9diC5tuwHNuoFRM26N31gVkEhOmmYTIWwsulC78unNjRRjSoFscSiGvgzkwj4qatIg4AztvAEnGktSZgUA0xFaEiUhjHucwTHw/1OE/zXO+Pp9f3929/cn56uiwXdeO1d+1eXCz64XQUkfOyFF8OB67zoU6HtT1564fT/cd3D53ldF4/fvVApb49HhFxPtNFLywCikLl4e7+7tWr7/7yL//s85//4vO3j5flCKlzyc5iYWkXNb8UYmY+r92MDsd7l2oh0QNUTqfTsiymbfjHYNNYu9YaQUhBGGx4KBFhkuzt9N45h+5GDjnaEczMY2Q3q94lW3axdSCZwg0+UG1JQpY1I2Ris9tMysIugAKGVCnkSXEYA3aAkaMgqTe3pEtESqkAunrv1LWlGxrhZTLfRKhZRNjNvF+MqhC8WxB5+Lquy7JQYJ7mjz/59OH1q9PpVGtN/rHL0/PlctGeYwQZbGQQqwmqAmCqWQZNT2Tb9O+wwzcLeEfkRiSb5LWYyNeE9sPWLkZ396aGaGN3YcP4j3hx/PIGOM1ERAnjvPUmWSXaOkJX256vLO4PV37jYtI3jbO6yRh9tGXzny/sc66T/QjuDg52zrAAIwsdY4FJurn1vX2/wIRiJlQ2s+hbD3K9V9k+ACAsNzLLuHFwV7uRZ4sdUfIVDibvaq75/WJFRMP3lrhVK6VYd99mLDO4ShOTz7q1tgWH4yBZQmptADpuW2oRwcSqygkpFgawruuPf/zj3/3d3/2NX//1Tz/6+Hg4FC5SiQLHCb/2/e+K0LvH95+/f/vp23e/ePPu/cdf9yAm5MwKM6s2TxkUg0gcmf673/6H/+i//8d//Gd/pcu5Y5mrFJm5ZXmESTggKRuSQ45x4/LztkzTZGYqTVVjA/2JyB7kjDvvrgpmXpZlX6siI272RCfFGJa5PhoiEenuXf28tsOyzPN8OJzm44HMiMLdYS6EWquqr5dlEMMR9968K1GEcHEuPMFMw0ZFBChSr4/ZPCIyoXYPDpRpAtB7U1VGEZFcw7VW88j7mZF51rmScSKyM+wBgkCc3Zq5uxtgBqISo7edUcCLpehhZsfDTEQtRss0InKa13Vood8yGuSCaa2Fp0yMi8jAJobutnoPj7EhDnZcye4TESQieQfybuTM1DQfMfAWqZvOIpQ44oEkitjVdLHZtwT866qRJXBmuKYH3swLSym7Vx8Vn4QSmyMQNlj9ZWjFDugEbwTOOxA6zZ37CJ4Tdhdr+CBbpggDEVEIE1GBR4SNIe/MSX0gweHpsxKS7ZkLU467G1LKj3VdI6Mkpm3EJRvoxkwgGVRMbiwiUizU1EFSZyml2HOXUiSjxlAWSXoUCIKpTocpoSOthUcp8nR5XtdlnufjfMipLKIIg7Gz5OAoZ9QTHg6jMlqkTFR4u3dAN8+qsyfNJkUEZQbbW1PmKDIfioXnJMnaNIhBnF1NHw1gCsI0TV19XTuYaq3CwmwinM8g3xU50C1i1okFRvm3OZNSM5aksU7vMgqnu1lJKSAKEEm3oGWptaRK8W5DAbj1kW8HChcg1tac+XQ6MUZa6O7MqLVakJlJLWa2rOeIkDLN86xul3Xtvec6zu2hvQf4cDhZuAh5cixbB8DCBrfeVu0RLlwSS5nLeofE8Abx9SQMlEobEC0izEIjAEp4Snhc2irIbm2EOXFdmopQrTWT0loLEVm3w/FYhLwrbQAMAOo9yFP4NMnGIuLx8TGRh0rBXKbDHD3Ol+XZTamcW790Y6nBYg6iKKUY/Pn5mSgePnqdcI517aqtr404xoZ0VlVj422UH2BVL+LpCFtr0+Gwruv79+9aWzPp7b1jk/9d19XM8m4nKBpMImItBzVp4/u5Nl1zdcQWTdwGH7dvu83ZrtYN2MrzA7iNEUEW+irwMHOY2zUkyvA3jcQWbO2/p9Fd/Ipe7q0n291h/jOchsHbSsXANYLaDzLevtGHb6njTaQSPFrd148w4DTmOQM0iNN22I9vUBncDP3u4dE2snsVRqJNVmqvLLi7qgMhPAYf8jSxXaZs4nv5KWauZc5FAjCxE5E53MOcI0gDCO5NtevD69e/9ut/+z9+4+t/+oP359afnp/v5lfn1utlOc7VEWHGhcB4vjwFuTCpGzqEawTtATZGTTwul7VpH1PB4WbatHuCTlM5KeAw9dEa9SBTc0+6xRKBbmremVO6XOCUUgNg0nAmMYT3DkoHLEkVkRTuIgQKD8NYY+Ee3W0M9aXowj7aJGAZWGW3rL8kxkTi2pFInWdYhGw2k0ZqHcn2PJYobWgrj3CMxA0IJxI4wk2JBx7BI3yPMMiZyGxoI7hrd7ArqlTieT6eDuX+NH/jG19/dX9Yzpef/vTnz5/386M+Py+9J5KDgkOorM2ZfW36fF7MMc1HOl+Yy2GSErI8PcZ8en13jzLNh+XudC+gzz77ghSXp2dhno/T6XD87i998+/82q/dv7r/1//bv+89UPrSvUxzBLWuTAFwB2BO9VgP1YQRbKokXKZSSo1iT8vleV3044/ePb6/Ox7BZVHzbsfjaVmbdpvnuZym3vvSeg2IlPkoTMXMsltg4a01DzrM4ualFK5F1ZLqLw2+hhNolhquJCwibdWExSzLGcA8z7SFYmnxxvCHexgsnPMReDHz5MzQbukN8zgR5iNkGRy88zTVIlnOTeoHVZ2pZgXK83nf2CJmTmLEZV2NorII8+FwePXRRyDP0e4I663lJP9emqRw155Jb0bAS+vMbDfjpqvasrYbQ6FDMB28p77DVt+Y7j3zJCLgBQfB/lffyEvNbECuAGIuN2mVDQIwY2Yuw46ZWc5e9nAAZcgiREIQAdwwUV9RRrcehPlqeDPi3D1C/lKSIcydiKTQALEm6oxGT5iL7KY7PMicOAnlOIhSosYjiFlKcXeHhzvFy8pmRIxhtME/rK3vFiAj8jH3ZMm+U5JHKvOHAcu89Z43NdBRRNh8qLtzMgTIoMDc04ncDkjpZNkaUSKIMGZEMvGMU80o6MqCuX07D7CYZ7pYU4fWQ0SsayZdCaPsrYX7z9fnP//xq9/7g//y/V/+3un4LbfOkJRQ/843v/ndX/rWZ198/vh0fr6sa9PHZfn83ePdJw+FcZgOtDyfL5fPPv/8/uEbJESmhPjut77xT/6v/+x3/uCPf/9f/a8qLkwFIlwnCUQJgoUnJGht6zxXM/QOqRwQtdaVzJU4pBArCLWUgojee/LrEt1EC07aXUQz1FRmhgjljdvWVLLsBAhkRAAuS5uqlFI8Yln72ru6ddMiom0tRLVUCmdgKsw812mOiGCKKGqeQR0AFklwaClFuNqXwpVDnWIv4QXcdI8H8vfZu2VYthndbFkWREylHufDsrRlXeskp9Pp0tZujZkzkb6YAihlEgr0tADJlJFj1GNFEbxOs29c8bQR6Kipmc1zVbfwFyOQuwbVHmr13l2o1GoWFm66cQyLpA7i0pqIHE5HIlqWpS2XWuZauK+riISDmTMDyn5hNoFik56N4EtftPtcq6pmU80RpuNMhMs0z3nyZehIjuWdZLJZFcQGJuprl+RvD3hXZhYpG+EmyoZtVlUGmOhwPKgqPIpw791t4GOfH59qrUJw7WYGt7IF52oaW4dZWIJhBlWVoCiFiATBBCNGSgQDPmSDUhBUu3qRMkUOB2BU1jTzvWAUFOZwsnBSFZH5dNTlEsxBIkw0QYizilDmybuaKRExUSlTqnuxVII7+U6nExQAH+ZTRurJdmBmAacihETXURBBwBCzDi6x439UIzzZj4XZAiChCCJ4EFPkZLJ2dSZsA5OKwRjMBAfvdnd4J0SR5G6FQPYAK2BmOpA/QGRey0TZhcHoJBQmBkmQBdzMda8d+DAVCczbaVU3L2hmbjrXAqKUDs5XWkwSznq0iEz5yFvbmPf3Wmlch++JGXBJHzzcm4jvGVGWdkzD3IskgDyhO7zTc/S1AQgmQ8i2VvZUwcx2BqDUmeyrEnZHfp3RSi8VQeFQBAVSFQSDa9Rbptki6V9zRjp3vUfwNq3E2xPknbC1siRRC0uE96AwakQtZPVYzZ25TsIg0z3x4z5wHYO/Md1na62UYt53Ht2xJkWS7w7geZ6pSEQkoOtyuazrej4/5w/uSqiy8+ADeba990aNiOphzsKBjYB9u6hE5G5TjnsxL+/D1Yu/7Kd9OXzxDb+0J3XYpin22OsmzgimssdCNKgLRzX31nPkgSgxIC8r/x/884PXBye//3I/t9svCk+KgthBy/vrdlZt+2/utvFb7BHkltDu3iW2G3VbVd3fsO+dfRvuMa5ZEqgPquEE0xFRADIl9G7kwMuyPJ3PrelpuiOi2EZst5Y870itYOJaJpkf+NXXvvmN4/0dCGtvq7kRoVRnWnsnErcOUpYko/KOoNbZS4S6RTft5uZwV1O6XNalrWvvkQl8uJk1tWTS2nTBYIm4HfMO+T83TyqO0evzbYw/11aMQfkRwgDBo/oezEMwcHA4A1mFBTz5aEHX9flVq2L7PVN48JcXEpGZ4zrFda341HqtFu8YNxG2uC773KQ5lTHP0whvPJHYGY5xbJD6dBmFkMzPWbmZpMz1cKgHQn1+/uJnP/ms+v3abO2q3S0EgDm8dSKd5hIiCHSP87owl7lO8zzXeWJmg9/dHV994+sfrf2zz98cj8e5Tj8Hv3VzNUac5ukbX//a97/3XUO8urv//N0TQVBmcMmMobCIULaJHNxZ4FwQRMIQATHxJGUuM7pdWjcPBwVBakmb47Ucp0OGMqrqbqPVSQRm2+jK0oQkhKrOJWXt9i1jbmE+UY2IZB0nYuKSwgRElNMfuUMTIgFz2SYNci2lWU8oRLhuoOJ0rMTMZpFKvz6mXUqCqdNZ5L5LShuRAnIaIjvXl3CdCkfvLFTr4QK7PD6SxzTVyuJAX9v7t+90bTuTc0S01pyQ558J5Bh7ARIUne/cX/nXcR8Gq/loBn5g7j5c2y82wof2dreQES9D+P3Nez/JPeJav/Pxqdg3X9xSYd18V2pGfuWJ7aH5TbN3vDz0tnB5TR5eXu/205WMwN0HKODGAUXELsEdt35nB/NsZc2x0813r7e7zp32f/du+2f3f8SYd8h3jvPhm074nm/ExvRDRE4opWRZL2JoiYnoFiTuxeLrdKJ3tTrQ1PtZ4eV9vjWJORHmBEqK6mRghn3+5osf/ehHf/RHfzSV8smrj7PGQYHv/tI3/86v/9rv/uHvffbZZ8+X5el8eff+0b79nR4gYCLcH0/vLudL65e13T/MTHIAd8Fv/t3f+O3f/u0//dMfnn/xlz1MIqNeFpYAMbu26NZlI+vezzAvYWT10rCFE0VkbzOqjnEh7Mw7ftUOHM0eIhr8DtiK+9enxswelAPyS2/P5+U4L7PwfAMjYhpbnOHCnBJAzDxNEzMXSabb0TkspRSpFeg3hFLbE8+qXAk1Zum9w4KYCgsyxt7ZQMfj442d13aMgLtzgCFwNw+CVy51ZgaRqY2KQG1tcXEC78O6vlXHWBBB7pZKfUmKFJHMMi8S4NgqNSJcSjHTuJKV0F6Fz7LOdfFH5Anvb1ALmap3ba1R2cba3cyMIJY8wTePrEwFoFKKYzzB3S7tYdhukEEkxNuEaZqjK4GfjJn/NBfXLsi6ro4RYtzagXVds6P2YjtH3N/fY5TXx3kSDeYuAMwQqQzaeUDnue63YihXc55bzdEwZs7QtjIPIiiNgAdxzr5KEAkJSDygSYjlZuFMUqS0VKwKBxPLUKnR3k/HeTFTNSKaylwre/dUss5xU4/BJJqsc/PpKCoAKJmsw10BEpAZAmFM4CLY5yQTUZWU0A4zoxyTYyKESKrhhocr4ECAwSxSnchgYQEmkkTkDUWv6+zDQHNs7EEbaVOEJalzUrXkHAPD4VFY0uEzoYIrCwHhFOokHpwTawnT1pzXtA0uyIUBJJtNTsPkHMX+7F1bLpA8kVplKjXbP+6eMRvgNMTVEiW+EYHTdjG+OfVwZFF2lN92+EoMCXIHBYjdyS18Rxj6jUJAmLMIPKwrgKnUfYcY/v+U/WmTbMmRJYgdVTW77hHxllwBJIAqJKq7lp6ZnqYIp2frppD8wD89IvwwlBHOiJDspaqnq6ZQG5ZCAsjt5XsvIvxeM9XDD2p2/cbLRA/pBcmKF+F+/S5muh49hwnSzjU6U2WQSfWSXxc5tqqA1eLeemtmRpUePbqXpcQkRJ7JuAKBkdG15M0WyalyDdGIaIHO6BIb9RFy3/yxh1sxrUzh06AaqpVVcgItmm+JeXb3bdsWU9+8r903T2DUmEkLtOadjSowTROvqpfHx7dv397f37s7kDrh4d6yr1vVNMtICZBxr2mga3V371vmCTKTjd1eZHWfZLZMecgY59t8/m//k5BSxLLCPlDaE1qGw+twnIxpriNeI3p6ysGGp8N1x59xDGW+67XDpd552zvZzvEErtkv9fCGqxub509AiCucW/aAI/+7r9v5pXsCfIxO9tPjKP56RM+YlgHN+595AYCBzJWI0LqTaZXBg5USeMEkm1AnSCTmK5hyuyKmpaqYKt7/4KNPfvjjv//ZX9+/vXxzf3/zuixVi56XQm4bYgNdNclTw0lAy6B9Jqgk3Lle+qVtHlxbGniJCE+HPUbDs/bMTgymORkFBc7kcg/U9iyIHLy1AARiatCUiLtmtSQcCX0adsaZ4QPIpA3NiYbr88UAqAsATw7+LP3AJqEsZmbuGLd+8KmmfRtVYzkQ0U9HOE5vLrbIrwpGRE1arEPonP81keSmF0ZVWUo5V1Hw2e3ts9u7ly+fvXj2XMRev7r/4ndff/XlNy9vb9bmW0gPCdnR764ibGmksivLtvVqFcXK+aTLcnEPto+e37346Ob27s6dP/rkB7/4xS//9mc/++bVV6dSf/jjj//kTz/9/ocffPXVV0Vt21wr1dh6tNZVNAWPlaQYRT1yeolKETDcVVitVCubyLb2CHTnZWvn002ti6pmtXSv+ifXoMBKsXVdSYrBJCnsB7vJlaNGVcUgolasSk/zXoqDkoKWKlYWk2FtSlFGjCkryZzWs6VmSXwSTsRyPoucQAW307kCyCChbytEhZLqShHh0UkWVaECbqoopzx68icIBlvH2OxQrda7J/OIOtdL6z3qKXVQ7HJ/eXjz9vH+YYgYsYuMhsCoFxgwO6sisq7rerlkwXTbtmw2btsWEb41+gArJ94DGW0nSC0EGZmIJL22fJf1O/yeTwxyWk5918zuTnmkFJJc9S45AkvmZMTuUA5fGLPAfWWaQXZrD4klcN1seHJanLZ8sGMcfNOMiZ56A9IjApLj35o+lCouHoOmKEainogkKknlNQ+52vahBQ0hgqGHwu5edH7n9l4N/sFb8ZpC7FYEu7vMeyJDs9AdVFJrsaXWzQG0vkI5GHydAfe+tbb2vi29sC6StKKkDw+IwQcM7NJHAAJNREXsevsAQL/66tXP/uZvf/j9H7x48eJUT89u7wwSYjdVf/yDj29vb+8vjw9v7x/fXh4v21ev3/z4ozsHFHi23JyXm9evX3/95nUtL56fhLYI8E//yff/T//6v/3ZX//H/9f//LU/9KAKCsUFblpVi4O6hRikXLPfiHAwBKckizk13VbP5lt2tmtFypGGK4xUYECoerNewgtRI/nQ6cFvyRCqWi6ZHk6PAtm27f7+/va0PL+5YYiNHCWjsYQODDBXMEQExWzUKXxtW9Gqqs3ZfD1m8gBShAkekOhsfd1uz7fZn88dER5CKVIGKxuECqs1wrKrlYSpyZGTFxJBeuYZeYaSA4cqxYqQFWPkRzQpR0OCPSJMkuU+p0dzbJPuXkqlMoGE+XKypPW4loaelPj3W7r/N1ss++CPmSEZoUxdxd01vetMbU6nSiZLpkQE6AjVOkkQU3X1apAknL13jpQ7vX5oAnAcIchKLeckcJqaMZ6JoUcoSKKh9OA5VKaJo8npaNXkGVURMdEQlFo8EnwVgrDczT0AwLuoJsho6yugiy0CcC/uJyJpp40gOWnTghShgcWsure9CWCJU1AttUbvHg7VUixDQidES4hEIPVamATgkv09MlHgZqY1IsKwDQRsGtlETeyLoI5yZuo4g1bsZCd3751BF1jQEeggxEIpVBZNFR+P6OEKoWiQTveIHnQRqizLEiY0g0BJMHKgDiIJls6ojSJOJ6X33sNjcFWNZFW1ZDxXzEYrgk6PCMrJmAUUAkWzGFwoICxgSTYQAKDBHNIO9lyaWqCqrgRj0UKPLDlf/VX3Wk8yOMR3RrBgIKiqkRQ0QgBDpzErHZSMR4ItdzOTs673bYSMg9LZ1rbhSqRGB9NMzM3DyO8DSPbekx1ERJLwk2TWbEaecujXXT0Ts/89qMNyWwRZVd0RgtFQitBizT0kRh9GRlUyRizN42ElQw3ACRftsK1jVelSm8TY4bnCFYlxItxWsyLs19A/Ilpz31rvW2ujnBmTAGAkShhNbxHJsvu6rtu27fGTiJDeGnLKrmqd0wujW5XJdiml1prTennoBNI9jYRm6DPPcD8UnlaR909NNu85wTvO50lRHIcgADN7/PZL9Zh8cs8ZvpOV9PcdBMBRiunbPxwv5/j7vCf4/e2R4+raf+B+qEmTNmO7693b33+sT+/LCbg+BUncxEjYDt+bZ9i73Vq6GQC3t89Op5sE0tcaM5wRkuHowd596MsDUI3wFi7FfvSHP3n/g49+9eZXj72/entflIKb925PDU2jiSazi1JFVIVctzXBMVpMpTT3S2uXdUt4fzAZfSMAQnrk3F1kEO4p5y6QQWM+HjQHRcd0sRxTnXurR64TocxYTXbtk1mZFqFH0qQHPIAxzoe9Tzvsq+6l/wi4j+pEcr3vYe51Peh1Kc5nwfmw5i74Pd2VfS1FMCW7VbNOnest6IRatYyno6ielnKuaoLbm9Pdzen53YvF6tdffPOb3/zm/u1b05u1+0Y2okVQlJq0qSwqvm5ELKXe6k1KNdZaKWi+ocnWu6qFry9u31vq++ulffzB+y/O50X87esPn9/d/sEf/OiTjz98dl5OpsUEgVoragkXKWb5WNIcSRAljIo04AAU3lGWtG9m1Z3NuXW/f7jcne+S7LBaSUSPFjMzUqbcpczBM+yl3bTz59NpXxsgsrLuNkT6EperKKol4wRRLMuSqyXtm03AQO8diT49sIWv63Y6LSPYMIuJbp07NJOiAS4txWbkoPntGXCSTEXB4ytPrZmv2yVWPrbL27dvt77Jqb558ybRgm29XC4XDMrTLiKn25vldDoipPLcMuPN7Dcpf9Pf7RDovEtHG0VSnnQC37WWR7O2r3mRK6+PSIqSCEeX4vrBPbK/9h4jwkNEQmXOcj9pjR7MJqcqmHwrU31i2McP130UWuq3rXFMY7u75v1yjl2gYZP3BjLGrQOnFDCJg38nE7sSCeHe8bNXtxiR6dbRdX7nJf++11OHOz6o8zWwLqBjFJprrTwRgEcLmxRQkwcr6yPLspysftu1HV8J4BLExXuJVK6SoYorRqV7e/X6m89+97vffv75Rx99XMvpvFQzLAUfvf/++x+8fPv556++/Er/qf7Bpz/9wSc/eAxU4myowLPTzaM+vr2s8s038v7dYuoszxX/4p/9yf/5X/33n/38737+dw+jHNLp0YxDnAJLFXoOTMZTkW2SZpYiqWzchwX2eTrypOLBHt17D1XklJyq1tmEhCrUuOtipWfRxPCzb1nxl6C01tqc58+USVI2CULujVzG0ZsjWrjArBYzS8luMzufz/ttt8mQTLJ3zyAfQK01bWDvXTjmS4NBUMWsyA6yQDCnC8ediSz/oeWknmA3ktkQrPXWo+f7u0eECwfsbkwujSHeArTjSj4um922RET3ljWgfGQxNwhmhGMpsjMR1z5pmfOx5iBe3sCttwxHbZLR4J3h4RiUvHlKcXC7zBZXjpKlESDFBngnC50TCgpM343hSAavnhRb6pLCx4f2tQDIGqIcXgBEyOgIKoRKhcVuQ57u/fmv2HIRyhhw4HRALShEGcmpZeM6IoqWmlVfZDMxwYSKZYaSZqZIitFQ1bJUIUavLlOsSZseGPQP48nNoXCoWgY9UhxOcTHZWuOwMhQRUbOCUspS67qujpUdU4wXAanL4uzeOiGa9FHJQkNMotYrLB6mUpdGbESMOXDpDA+EDvpcSDIgi06QTN5BERU14e57XCX1HDife8Ajes/Sr0F6oIxJ8CiUSilJR3UVpKEWTaZsCpitGoZCmPVjYsc2A1hsMSkejhBViRbrZczK1yqSHGeJyBaRFJ4DJRCKIAZsScxEMTS7wQjVyoky2lenqkKZsO5RbVNwRF+RJgCzVCwT/pRF9LSSuxcRNWRqlzSwg4sxC59ZYGaQ9C2QUFL0cETcLkvfViKBBSTYg2AgKWSLmNt0qTEiYDWnQwukNmqnuCoKhJ0My3ZgzU6drH1kRE51Rg/X8O6+bRs8EC5QhXjKrQ/3HyUlpYamkTHE3R8v9x4t2FtrSiRNUH5KliWySUiA9L5tEtJkWZZarNK8V+7SaolLpQMBJBuZAOjTJppMDC5JslYDIzXW8skhEz/nvtWZnQHdzcdcwzJq+SSL6FVKZgZeOEQGu/HNn/VpRv3URn/HS4Zm77td6GlG303Or+8S2cudT4Keveo5ZQivhm+ercy5uzxssWtRIHuP2ZH49inhIEkqyaL07bdkMWKpo8OjImXI2Sc8UkR8ID5yEyEtavdIO0sKg9u2EfLx937w3kcf//rXv6YuNLv0/ub+8WRUtCphk3hZiqmpWbls3rvDQ2tRDe8JxbfMGsjUd4UjPIvSTlhme2CkMANSVDsGmhuTVpKi1KJkQJP068rKPga5kpebDogSHWFFRS25PzHi4EHOmZ6OKdQ0efccnGS/exycnkWR1WBAhvUeXaEAbdDOXYPpa1Z8ELvPdEumD8h3+NOs+HpFMGhIBIRDdEBRTU61mELSy3b/+pv7f/zHz16/+qbW5eb29nLZWsfqvnlLgamEFSyFoIu7QjwaEEstNzfnZVkIWOH7z56dnr386L2X77945s5vvnmzlHr63ofv3/3z23O5uTmVYlQp7IvKTVkUkFEXSxsS5CSrwyCaxQgps5JLIMxKWepyPvXeL1vb1r5to+imFJVBnpd8m1Bx9Lw7GfOVUlUUojJxE61naFXUDCFJq2pl8DTZUgFIKAPOMLJ3N9FqqacoiXlIrLnlvSdUaYowkHoM+cKzfixmJopSSu9tXVcGSjFSMykVpVkBAPdsoSgce5A9X4ocdSuqhSK9x8PD5bFvYaUNZwbf1r41S/PI0GJalqFgmmlAjDnky2Xbtt56dOe69cvatq0DmMrtcp2POERgyYAwwSO/10jiabx7zJ3MJv7pmh7v6OiR4u7GbWZ+w26m31FOfmaMDuQc/lIRGfDLjNOesi4fT4PXl+8bUDV7nANpOc9q2MjRGR5k81n7o0yB1MCYiYoYM1PZfd/N+zV+S4vrIUqdLCqzLXHYETMV3wewj1chMmaAZW9YH+7qbj32fCDD8aTwTva4iCDUymILjSGbiKTezjBliSBr69bPvZSW9zYiUlAjSX3z63ICQKeLD0EaR6VFd1WVYCceHi7/+Jvf/s0//PzZi/dqufngvVrDzgv+yac/+elPf/LZl19++fkXX/72d998883D9z5sl+35eSlaS8Htcrq7ub3E5c1lves3CFYFgE+/9/z/9q/+9f/6b//9b37167Y+qBAWoDMakbIUhuDAVSJXt9dcABNsfDqdtrVv3iNCgioVIjAbnjuAQS0EgK15KT4QFkPTtXgqUUfMxSu41rqvttrdW2t9WW6tmii8AXDwoHwHSVJJhjBUIaaEhIBMW5IO61DKj9j5UAxW1QAOECoEgIkq1FI2IASEKH34/EjElBQD6L2Pkw4msFsnPMkgoWMUFBBMaCC7J+pRFVBFMNxJoObaGxx+WTg4rszdouy/VFU1gHpc5/PWXX8xlnEW6WTgHUaxg5AJziulJFtNPuKilgo8hHvPvqaTJFIAQkieyynXdgKHVQThgO1fB4CwjJ1VFTDRFNA1hlACglIMCMZAdNtE2yFzXWY8LAyXSQxIDxURQwyJ5zRecHdTodCjM1BrDclGdCZHMcPhHQtzjRsjeo7qMKJ4BKEiBEVFpUhC3ta2FbVlSYD1Fu5WqpZC+OhZe+oNiRIChncdFM3oThk1oyjFTDSfxbCYQMRAzKolIiI5cueoZAoMqilBFgpNklcjurPNFEjNRJXhEmNA2MwgkLrAtMPCWyIPRkl18hlyBv85iSGikMhqpc6we6+zHrYohRBVCVJTeCBdPhL1aqKWwZjHEJsJ12mBa0qlM3QwdzlJKSV5y2qp1a406JJakQkWZxBGdzikmoQMqCDdCaiojOJqnqUl9RqhMga98phZoYHH4LUaE5UDtZjMsRI64YezB0DK5FVKNxNTMQyTOpLXJt7Bm+770hRjIpFwCLjXqHJw0QQB1NOS561TwCT9fWo8qOW06hQHL9YjWriUs1htj9ubzo3WggFmZG862Ln71rb1ktkByd775XJhSGveNo/Wi4nZ1ZumHdkrZ3EVP2Dra86Aufu2XZTIts/BbF0LqBHB3m3dRCR7Y9muyXdmGK0HVuf9CPv9jMmsK/Ju2XuPG8iuUvblytk6fnLMQ9lfxhMfvcr9hOcNP/ik3x+98ff/ab/87/zU0crPJfbdR9j/st+Qa+Y/X+N6DzrAMfkDdYfuX0m+4hhszZMMPLnt+8H1qE0FYB9QPJ/PNzc3kcQHSaWbRE2hzmSbGuWyrDe33pp3hjtjWZaPPv7e937w47/6j3/5uK43C24W6eEOMZialcQVQwSLSlWx81nXdW1073R48wgItIT3xEJgTLkURTaDs6wnpMFgZGoKtB57s2VvLonArET0mHytx5s/V/POFc6hDUtx7+5d6FZQxnhwUVXCE1ONUaIR72NkUXdmMmRB+nDbr02zZHCgyBjY0xxEnrwXMbcBRjuaAJNRdV85elg5ozJFoIRZMVE6i5gpTevJpJou1U61nKxUtcf7y29+87uvvviq2FLL3bb6pXvraN63oAcZm3k2lpelaIK7Hh8fK/Rkp5vT+VQXK/ri+fO7917W5fbFzenFqUbghOcSvNP4w49fnm9OZGv98vC40fvd6fT+8+eKz3pb3WtQpJiwC10QqiIJa8+xQRUnFR4UjQhQVa2eHi7b24fL49YiAtAqVehKDC1TjkdfShEtSQoqWfSMyJAl79u6bhkvZTxV62n0WskcRSPRW3MnHCaKCCjDYteEzB6dHEAl3AvTAPvowJRSqlqyMKgqPc7n87bJ4+MjBTc3NyQvlwuj21Dn4m6cB7rpqT3xXJThopqaDo+Pj6+3x0WiTaCHb2vvvagV1Wq6mGbYXUpZliVj5XVdUykg4/ht23Y9PAATIj5sSEwOBkyHdTR3+3+P1uydNExE9sKTiEia7rh+SmYOHBH5CPaOpVB6+EgpgN0S6rURDQDU8RFJBrjdgB+SkLlCqINLffSUrr2vw8l8+0L2cHz/Xk4WDxwGIlQxlT1SHS0JBd5NwkUkEVUkdQBJpnX6Vgc7rqCt64mRPHqW/fSOn9pd6nEhvXNd6bJ96kTk497fEBG99+gpn6mjIRHjkq/nnCElAaBWAxAC72M9dzQxlWIPl+2z337+s7/9m5cv33/58v3z+fa0lLrYT3/yB3/2p3/y53/115fX9//xP/yvS6nr45s/+vGPir14sVQQJy03y+nhcb2/bKfLA4q9OFcDXij++R//5L/9P/7Lf/fv/vxXv/5lCFTdNDg2CqqazrqzpJ7WXBtjwQAJXhuD8YenPJ+U7q08DumgqzKwjNL8LhyAPUqZj0eni8a2ba9fv74xuzuVohKpE8LxFCgisHRsMTQ1RMS26FtrudBrrTtEa7cJuxXSKSS7Q4Wrlno6MUaoI6Nqr5k+hQeFKmJTyDNLeyQMglIRQ9VKSsljbi10i8EZJKomSTmhomK5RLuIZByb3wXSo0fEsQGW9TWRMW1ETqLf6AzbYzybFJ7p6fZrvGakZIayGRflDPBxL+cCTjIHMqHFmuzD+VyOO2hf8Db4a3KgZoSvEbHbMZI7/2VETG04Idl7i0j2RD1CrIdE9jvFqln9S9CFR5+5ybSow7bkiOqIq+e9BQ4cIt49T8bXNRe3qAEo29ZEBNkKzfs9Rzpt1EQjIqgCywIus5ChVBMTEcy5RFUZIgo5vqaqpZhCVaN7xN6ISkNwam0tRUspa7tQoKbO2NZt21rWgJPSKhhm1slIjad0DirIOQQzpnySCCCz/cbQAepwKqoyACrEqZICdEHJPDWnjN1daxHRiFBGEU3SVDNRjtpqDieIjQWOXdtNkoCLIC1gnanopKCkVuIYz0xqUiaXIAANM50kLH5dbflQRDWCQaqg2JIM2zkMM2DY4Sn/LZriv9lORwqZZPZMd3goVDkGAIZi2GDwo6fUleqsxIgj5NDE04SeQUTNcx4x82fLclRK2+sxQCml9BagEx0JgwQCOdM1cVO78nXR3ns9nYRQhErejpGdB/uAYgNFxbSYaCllu2y9hVWE6MPWvnn7uOmygQmhzEXfewcOQu2qAmubP142iGVc+PDwcFqWWiEi4QiHjEkF3XoaEYhoOLpvSXzC3thbOmb3JsJSiqkKgh4xohCQSNFhmM5iXA4IyGDTzaa0+27Fdt9zsCOjBDPz7qMT8hRYw9HVfweW5t0/5ccz8M2vPH7kndc7R9iP852//32n8ft+Q3Kv18o1CT+wniTbQfYXRivhSnp0PM6TaPsQxxwinCH8kG+b0c9gCztgnGS/SwBEkKX7iEi28NPptGM+zcysmhUzVWVCPIIx2POcEUjklfdt27poefnBh59++tO/+PCj3/3jr968vdydLVhEtVZbDDWHwligVbKrVhAUomdggY6RIwYGC5HSNesCldLCJQlGNUCRECboLBFS4JziGcsASccmw80M+I+MaYnUOoRwTK+oWrHiAdAjkgw4LbGbpYD3sWyBGWQimbkZwshevTbv0+tSGIcG7yhxkMf536tiZ0Rusf3NqS6ZXF46L0p225USxwgFIpQ5ylJMa5FiVJNS9Hyz3C3nbdvevv76qy+/blucn59V6uPjxQVr9M27QyjSA86Wg8cmqkmB0fu2bY+X++WNsm23z+6kP2tv771s8vz5GWzu56VKsCEQfv/l7y7rvRkfL215+f0Xz55//3vfO9WfBRNvpaGByMFcjExSAMHsrIeToiqhDIVqPS18Kw8Pj+tl807vRGoSeuyg3IjYZ9dNIZLah+O+ZnpE4ObmRooVKRGjVNrDI/p5OTlDU5JhtNyEAoMg2Pqa+6WUEYGRNNUh97vzWgGtcVt7MTMrEcwTcHchkhlrxNPB7oMxwQ5I+N1KCJQOPwhlhaP3cAmC29bf3D/ePz48tIubjA4w2VuDR5emqjenWqKmUc3vFZHMhxPzPILabbu0rTMclCAHT+MsrBzsEMkd3LufML5r6mS3wNxJWeYvs2PPHKqdrFbv2FshMdsAIqLz/sw4XnLl7ztIBWk9ZUL8pgm9GronV3FsBT+tGz413Th+fDy4jAemYyEJcYJmZkWsW0QwGjOuGTN0I+86XuZukEmOUbIn5YUn5WY9FPqP5zZ/eHKZ+wdxZRJ9Upy1KeKQnfy8LltqCLIkcLwh3tbuW3BRiEhRmbFHuCiHvKWPPte+C9ipel1KgJ/PZxF5fHz87edf/vJXv/7+9z558fyDD8ppgb14Xv/sz/7sz/7yf/u7v/y7169e/fKXv/zqTz/9/vc+vGyni9ktlrrosiyNfH157F9trfe4ubw4PTudlpcn/Kt/+d/8z//L//uzLz/3zINK0ebRie5hEJO0/nsem5QYtmdQZk+q/ALVYmLqA84RqlTNBoxR3H1trlsvZUOK0AckaJBshXtk8AoTDYkIDwFFHx8fv1y3u1qf3yzL2fbVFRJVFWpOzBUlO3NQPS0JJjAbgqyTmx37QsKsRPTeRammghJ7H0g1+/AjEpkbTkwpCHed0UIxFVV6R0S1AkyWtoPWRv5cREod5dHUBs//GVIBPcWDrFZtbXUXEuHvBlTDzEyFWvFw91pueGh17D5x7FYOxV3O+ouohnt3J5BrD2RWl7L/DyDCRQQR3V3MTIpa2v/RLwHg2ddlMu+s6f4E2LYOMRkjMhjvSey3SJugs/RfSSRBMhWUElWLmLMtmLLlowg+tqkiGISHcKC8kgzfJwuDSzTvGLPimDpHKYckyQmSlxyM3nsAy7JkK65s3rPwKZGTxj3V8E51ocjWQ+gCNVOKNKfkwBc0OxYKYSg7NPMkjDEN1aJmLK6ECneWs+S0NJFaa8CtFDXhKh5dxmCSpdJGqZV09tbDvUXWJW2pytGUC/ZACBEqCHC4J3H2EMh5QHQgSUeTWAqaMIhI3lQqgRDSlWROS+eTrsXYvcvg3Bp7iS40KDMFzc6zZsKNfBysGTdnnpvleTERSE/snAEBZ0oEi0VBId3dJ7oGANA8VGqVYMTaKbrY0hG99VM52QCdeCTTQJFRdA+xUFWJXLC9h0CLTahKCEE4sscrcqX+Gt8qg62ZIYPTD8FeUEzCQ0pJw7ESYiZBab5maJaAI3LUmZZluXADJsI1HwSzQlNiLl+S1UpR3batqSqkihL0hBWoqsCTT2hM0kJVTSu0hEZXgZmbrZQ3W+8iobKcishQnHL37D6VUrz76HKQ3nrUUaF8eHjgYRZiGBR2K0vra1bOkgcuWod3ciB8bChLtSxmajk5GdIyNZIsCgTDIlpvWbSZlfWs0O8olnGHyPhWLMJZ70Rkt0GT51UkhTo1p5X2UAAAn2atJK8FM0iwq1xzxYirjz9EBgGAgSQ4w6GPsZ/w8Suemu28sXZ82zG8OJ6YjDQ+CyhJ6nG17DhEdQBSo5a5Uw7qHdMhHnWMx619JzA6Jsmzb+DXCyf3weJ95FUECnHR1trN6bwsJ2QuAZBs6yZ3rCqlJDwwenh4bz31hlo+Vve2bevD5cLel2X55Ec//OSTT1598dveWtvYGyJEpWadzERUitkSqci9bpkkZPmml20k7hxT7kweJhERKWCLQOIFshgDQJzCYpLIrsQ2z1Wnop60XbNHZDnGkssb4ZBQgRWxYsWWCC+iRaRoQZre6EPxy7O4njNB6N2bI9ElksQxk/I08baEj/bO4MZQgKXoACQ9XdVZrhrPcbawE8uMEV6qDH8JiPQJbpScYs/ksbtlpc/UYMJQV4UsUqvW3379+Reff/346BLY3KW3LuzE1nzrXaUELMIjwgLRH8PLWaSqaj2VpYpIa03PJ2nt8vbN+vB49/zly9vzhy/uXn/zVgWq1mCPD4/t/o1vD135xRdfvgwry/O7m8GxbAsD9N5vSkVsGBagZyNABGI6955SBVDTqiamtW2+tmSvb92TnUMmtcsowWYNdGtZR9s5k+aOiDidsknSRgxhGiEp4ykUE5MiyUolIdWKaYQ3EuQQqJhaNV6y5Rv5iGf1+K6uD4/ZlEiBnJwqXNf1/vEhes/q0uVyaa0vy0mytjLn+XdLJTA+NUFqEKeZbd7ero/f3L+99JalK4Zv6xoCd4dHzyIPUEoX27RY7+H+uAsCc874ZPuX3UnXhFkBQqbj5dNiJcnsuV5tHf07rR8FIsax5iFik0Z7mLI9wD1YuUyVJw6C3Mf693wsi4NTXyAbaMyzEA2B7SSDnB3gq/cZ8abMEmKQkm2c3WzGTIZlquCaWSqHU8fYV1bKcOw/T9u7t6f8eg5q0wBgdndzGiPLftfc/pC47iE+Zo8xpuDQE+/yLWTT1fiP0EzNrlyeSL6cjMXNns52MalPovXwwXyZ3mpd175u/ZwFlEHTKaZYKRI5rtajJ2EpB41WqAoNSHisKIG+doNcLtvXX3/zy1/+8uMPP3rv5ctTtdvloyL453/6x7/9V/99v+8///kv3z48/uqzz3/6T//o7cPjjdOEt8vN7Wkx0tf11WNI0B8el49qRS1V/ot/9of/5T//Z//j//I/vmWBC2CCCvYcKXKOmag9AWZEloF2ZLjVosWk9whG97KYaWE1sOQYbdaxdI6h9t7b+rgmD3TOkDNx5uag9rz/TA2z5LbpitjisT188N6LS395IgRa1BAQmFjJOpKSY+4SiEDvPeG4JZ9X9977kR3eJhl1rTUitm3r23Z3d3e+OW/bloTwJrMfm2qsgBIUU1KFjQOvK0EtopAQcUC1hG95o2YMg2ISYvRwUB0wppLoqAGQJAumPpaKWXUvqt8xnxVQp3gEWvfoqjDRCLAiJ/WgHdlkTuIPKInuHlMjvRwC0Ygg0docZ0AWK0sxPe4OCTipJpJcF9EBlTI3b62h4u4RXZnwcb20tSxTRTwtISLYRfNxOZkVExWRYBehKFShosjZ46CIFFvm/tSIDIQZ0W2CY8wkocqeWsKjCiBai3j0dQOl1tqF47RFSG49C5qea1FgfQ6KiXPderFqrTcAp7pkCqpEKWaT/ptJxCtKaNb+rS7wwPAFCKeK5cpRMTUMXuJ5RyIcKvW0IOhbo4QDOXi69lZckw2rtzCrQT8tN5DkZiXEUIJA6CAyVSlC9r55Iyhba2ZWaqH2HjArAmzh9GYq55N1oYNdaIgOQo00gKBoaAggRpWlKIXiXkQiWn9clThbZjeOwUxMEHQYRCEMhvdS6k0t4R6tqyiK9HAFSylFCgCEKOjeW1xEZFkWs+xzEN2hG0IkgodIfVGFaVGpVlyTPysnl0KNra0ioiZQgYhLhLuZQZWO8GCENxeR5XwKb4tIZ/S2BoV7e0SibVuPMbtLp1ktdXH0tw9vTEo5nUMjwhDyuF7M6rpuSO3OUilkQJKCvDUgQxwrVgW2XtplfdjDAklcohRyW7cLELfnm+W0IDz6FlGNaqGStFlWADgYnVRqKQIm9YlQEfK4rcUKl3O9LZudXj1uXz9eHpqjlPNyU6ASsj16RBMxMUlFQgCtuXC2JNzDe1sfa1HSI7qIqaG7d4QC6+VehJpTEbkXwtu6beuKEJPkrIZJAbVvbsJMtt2HgHi2iRAutKQ27YmagwTERyk5E+NkLnMz7X7ocM4aP9211hEtAWZ1BDwOLUsKitRaAfHe6VmGGNAyT66kzPzdKWE5UrWni2LZMwwGJmepCGEZS8XMCbHP9+5hn2QneTIkqg1C4DR8e1wl38JTZ/RDJt7dE0gpM/67OjCp13AnO4yqMgf0OUwjdhBXHrlAcqAgus8mZJ8RpCjGgL6CpGZ5fpR/BWapETc6n1RJnE2RUm2Jzug8l5OIXC4Xj1412Q8DoVQlo/dQwls3lW27rJe3jC5Cj/b67avS2gcfPv+jP/r0s1/+4uvf/vb1N48f3Dx7vOdCR4Wdqy21qDJCGRRG37xtrbuZUWxr/dK61gJTHfOvNFFnj2ABQtC8h7uAdedjE6pJkpGOnH4E5J7VOY1kvSoCy46RoZRFgfBYRaIuZiYIP9lCEqE9BXrDBSJaowXJzug9enhLY6bwnEmABgVwKBUQYTUlx9xp1hhFYrajc4VEdpqPUezsMqmn5mdSJWadJLtMOkBup1pIMrqaGCSY8yJCeKmlmpridllOptKxPW6X19urr+8f7j0Aq+W+b49wD4SXHtIjxVc6oHkF7t3JVtVEt94ubTudTqfo33z1pb18r5hYWfTm7Jd7o3/8w4+2+/vHx8e64P5hKye9ff7ew9s3VdAf39RluTlbXfDgzbSYmfRE3JlYDvALx/1AJ7WIWVEtRZZSTqUUlZIQfQe1Fle8XR+fn291dPZFRQjpzh5uomUp27aNqoeNoQwxnJba+8YmploGr4+YlXNZSN6czwBaa4i4PS9Fa4SLDIGQ83mptQbdvZdiOmwmeg8hzKpBWnhrrZ5vJNUEtBc1UZZSRLC2FaplWUx0WWhQBj0oBfDm7lWtlOruRUo4ZYYow2kuRQzfXB5kUYTe98cuXpayro+IiDU5nyPTNqj2QNu8nmBSorO1lWTb+v39m8QQ9t5z5qX3HvCke2QfzAICI9BH30aTnV50iFHs9m6IWAUiy4Kp5EwEKDoQZ9mBv6o3DDnbbHONAvsQU8g4eggaKVTKIOzI0rWTGN0YFU+egGJmFpkPDg6DgQWNyaYNQV1qVkAgFC2QoANKm53qDPYAwmhqUiz7lwIVVeYAnkrvbqdai7n73g/PcpyJBkSCiBFhe/SEj0qC83OndyFEq0qQ3WFWyjJhq6KLppAMRHuLFu4Mn5LCe9r9pGrA0ZcTLRATNWTTkrL10Fqq1dn1dfNNShHmRGGIQIvUUwl4wCOWEEQbBINCePFcITlWkAOTCFEtzt48mNxOIjBJRIMmHkaoQ/pxNFL71hDyJl59cfP557/7zWeffVgknlW5efb8Ry9v/y//9X/7m3/8+rPPv351v/7tP3z2p3/y9Y8//N6Gdul+A5wFP3r/vV//wz+sW3+g3ftrCfzJp3fFZAn863/5z/+H//sf/n/+zb+9uXtufeuXt0s5d1lFtDOCUikRYGdd6lLqjnZMxPeyLC3L/q0tauwddq1olKX28NHbzcxZ2MEonbV725LWWQ0UbNvWWlezmKCt7h4imnBglW8eLx85z9BTrbQi4RZ6eew5xZpOWeQ6d4rJ3eAS1exUz/sEPjAGQDJhLmbn02ndBNTEd9RSeu+X7VJKKVaYY7MhEGiIe3i087n2vsE76OvqRc20ikhbN4+dBAcRocLUWMqx+dZWVS2lSFEG4NGy/wzpPVprSzHhaeBi4koBjZxGBCnaeyCk1FMpo8C8dd+6k0KPra+qKGVJ4KeI9Km427ZtW7dnz56p2cObh6wTpa77PhRjVYPY1ou7n+uy1GKn8rBxbSgMVWWO31LhCO8R4b0xeWTMPODr6t4qzcQ8ZxLDzcxqlkJcBLXWalWC0R1J6JAKGh4EzSRE3F2z1UT1oEoRkfDwoELDAERn0Htucc3xbGGpldCtrXSalrG5bAlngnUy2O4QBhVSSqmqrbXWQ7VAl9IjAqhmUImcXFcrtUq2dIGkMxK1BN0zVEWhISYmhmDGNEm94EGZoNlMiiR8b0kRDEELh8ea7HmnU0S0bePk4BVYTvTCVKWoSY2k8x61BxGB5wyA8VB/FVSzQXZYTXu4IAkYYhRDhSrSIwKB0Kz2qKqkNEiShUiQYUyVdipFVDnBQoDIkEUlyKI2wJHuBilikHBvaXPp0aJHREnUBSLnGNAcA6tHhc8ZoidF4vBmsMjMiGNAOqnBvW0eVFVFSVRzGnozs1q9s28b1M6nwhAEFWzIWc8xOCXQRC/LAJJoUMJHZ98xxnJA7dHdaQItNciBjFSTQdQRhsrue3Wfk00u4jrCN3A17pn8dx9iEqpKd5VBQlIyOj8kSM6QoElJt9G2hsByOlFt7WwVlxZv18fPXz+8ftwgdjrdLPWM6Jp9NIk4sDqLiMQYKIIHu/vWtm3jkUhjQLey0J80CZHDBwzpvnm07FWmy7rew8yH55nHdXaXWXjxiaLJBDjducdUKssIF2nc5bgSMJad7CDeBBvI4aXXedfraFMSyh/Le9eM9/Db/etmSJRvS7qp4Wmu/Yy5So/VyhF2jHfopJW6Ys++61oGByaBkVPngJSEqILf/tQVJcjDtRz7ADuAf1+KuRrdr9jycd1PD7//STjo+pMLnXtjAhARnw3ItM7zs37/8DZO55w+UiuggCmuEH3d1m31aO5D+FREOns9lR/+wY8/+uijbz7/UiD3j9tieH7zMimBeu89G549LwFmpsHLtomY1XIS7YyE0vh8mEKEpxrwWEVJzQASKgZs3pGeVWRqNwqATFREVdVUE8ukaRWz5Z6wiRlQ+tYelnIqqlYsudznlgdTNqkIuig90uBM2gXBxEWOHzqQvR7sxxfJOeqhIYMD5HVvLyD9Sz5prUmbgdk+2p8XADWYSKo2gFDVYijUYqgFS5HTUqpJbP3t2i+X9ub1o1Nun92F2mV7bNtFZfHeW2NLvSkY6blOzlZDEJQe/tgoq5SlmsaLUj02CT+fTNC/+u1vn92cP/nxjwr48u4MhfojtwdGr+R7z549e+/FxRTeRaCqrbVC1Lr4+phQnQBzVGxP9dJd5CYqokm3c3d39/DwsG3bw+Njd6+nG63l8e19TnWmnilUKzWntQVmxfKujl2jA2zCwYZOESWDLh1RpDBERYpWaKioCIsgQ66amiLZCRFExGk5iShCcqRGRLzF1rqokRLeM5DSMjRCKCilJIwt66AmdPQsxPM6QrZlcK5iEeEH3GDvvbEB6BFvHx9eP9yv3mvRiBDuTAAe2f8XSbBSrSfV0lp7eLgklmFoFM9ZwYw6ZhVOZqqHrFu+Y6d8ru+xCkUy/6GAGTaEDjIXHTXwHLyUMV7Igwl9Yp3e+SKRfEjIU5X5hfs7c6cwGT6gIqPYNIEegm/XMfPn6f2ByJbl0cVEjIsfNjCFJHJ/q6iqlMkwPOFfnAh8970cGRik1MNQa6bXs1oq0+JzHxmdtv0KW8sPTmv/zs05mOgrGmh8UFXHSOqops2HO85zPOlgLkviqi8w4hnVRLAAjECqZNVyKhVQjCp+AR0RHWopIJFHy3WVRGuCqqrZ10k9UW99W9dvXr36+c9/fnt7Pi/6g4+eL+fl9rR8/PLZf/Gf/ckvPvvtf/iPf/nzX/7i15/99k8+/cPTs+Wb+wcr8vL53Wkp51K/+vIefCDa58urj9979b0PPzhX/OTHn/z0D374F3/xF761U6l1uWFfg41CcdtHvmXMmWcTKGmN8nql9qpm6u7eRUQ1RMeqcIaqRu8AI2+aBwuTC1LoJgUim3eZrJsRYZNSO+EPnTlJifvHx6/fvK7LqTx7HjkcI2Yq0bN76Wm/qEZJdsnx0DXDp2/h0vb40yBKLLWqah/dphChGqY2dZ4PVQymCjNVoauIqVIHwijX7wgYY7giEZlwjzneWExEmneMJpNQZfI4ybRmfevu3hxPAKAOes9JQ80+hIioFGhhhGjJlCwzMwLZYsgZlu7eZ3Xg4fGx2uLuUyhNRBRQaJGhsM1clFnvC0LtHDmpNAF/uWEz5tyrSzLnh7MIH/TuzYOliAPe3WARkSS2lkKJnTkXyKDTIuKAKbyagrltEcFIObLRhtmxhGOfljnUvZRqYh7Yts3K4L4FEBC4B1QkgtJ7H7NpMcoWJIozCPYIYZLAm4gOSK1Mk0p1iOYcuhUEQVE1leLseVtLUXcPbwAooiI22wxTgjuHXdQJZzezej4buD48tN7NVLW4J8cigF2/2FTRGdkSoBgl1FSlVitCrHFPJtHotF8iUIEWICbJ7Oy1HdafihDKDLinOsDR3xhSJuJqTCMPQyokEEsxVfXWCYgVtYRTg9GzUquEOtP0mampqYBBtrBSzFShzLIWRA6Bed+a1HRi7knEfVTEYQpGD5ZyVUVWE3tvvZNI7rUAKOEeTmcARTnUgXLDDoUuBiIShE2HSBn1iwyyZPqeq4M8eCaMZ2+JcEg8TCacpdqOWkwsmRCnUzVdHCNwMa2llGzWJTWcYmBiJRWsJB13ABKC7l5Ew/TSe5T62P3tZXv78Nh7t3KjyVyFSCASZbBu5zlcktYzS19m6bRS1JHkIOKzq/2a+1BI6d7zPe7O6S/3GzJs1pWgZQyUDl+ZeFodrG+SHeAIb+NeZS8rcJ1cPXz7d7BG7V+dNaARACUPk0gpZRbssSeHOFgaHPppM7K5vmEGxNe9sLuQ4/XGO4O4cgiJgIwC9kuYv8yP2/WdQsEIsPYwZf/r02vnfli5VqOuL5JZJzquz4xfY4aGmAmzyJNhs+NJiohHiI6bE+SY8FehDuI9q8WWmrOU+bih2V4Lg+9fDVPv40lxUn+rWYOA8tHH33/54Qc07RKr90vTV/f3d2cJsSVUgu7OUbYaWYq7qwotN/4YXU740/V6gxGzvCaSlnTCEckpC5xp7XFtTOUaAWGD9GhY/AxHOSzfjKFLid7dIyCd6MHuXQeVUnrZXIQkIbvO8MwZSJl2eq6ijC14rYDsy2u00/S4wNI3YX+MCR44bpPk2C+ZVgRNxFRPRYRbNRHNsB4AHrb18X59uPfWUZZKK6T0gIds7G1D79EHTViuExeIRC/ZrRaEBFcXU2Ev56qry6LnF+dlqd23b7768u58evnyPdwtELw8Vbs7u/dm/OD5rT778LM36+XxcX2AnlDU6NFjM2IAkyWR7nMvD2xY7BFDrrHb29tBSO4uIqfTqRa7j5hkvXLcszFVKDiJG0opmQBnf8A9CFSbU5pkDgcN0MVUWRRkrrtY0axzqJpY5idw797C3YvWUooUqTCoIMbQQjWNiK11d4fCbCBlwltGuhFSShUTmRDCDKqsmJbq7uLXzslu01rrr169+uabb7a+iWlrTXOmNEEu06HnpS1LEaF7W9cBzM6GHgcmPIfWMoMG5xwKJ2L5+NUk9zo5rmHurO/s5vdokPcbOv54NYBXUwZ/h43m27brWKpLwqHdR4jItL1P6qT7Z/cuujytHh4iTkmb6R5ASOhepUwiUEYOCxomN09CT3HwlWMRtr6fw/jSnHkWQUQ93CLu+XZERM8GO3WgstMeIjU4vsUQeXxxYJj16rkO1JK7X9jPUPDun0AVLWqhRrWotQakAfTsM7G1dnncltqqO6CjeQxkWz577BwdHkLFe3QPAMXqmHqMnA2kM1rvr9+8+Ydf/NyqPnt+e7uoWv3g+8/fu8G/+M/+5OvX33z96otf/fqXf/7n/+6Tj178l3/yTy16sJ/u7lzUBSjmDFF88/rtl1998fz29sXt+eXL5z/99CdLlcfHdbm9NUG7eEiFRHi4u2IgyfOqs5ttZpkAa7Gc+dpIB1PSJctqzjCGmeUjiXBXDZvMCK1ZP2mZw+cQVc336pxO0hQd4cBNtN5fv35ze7q5vbnRALprFXv6TGWY/lycCibrr5DJf/E0glJlaq3lt2uRyY2kpUihah9rXjBxHDJ8EzRS4FcBmwIcHArA+YmcJ8sF6O6JN86y47CuoNWdADJjy8hN3HvftkY6D1nG2CCZNmfXMKK16Kl0MFmsZjAzrMFse4wdZ7v+k2+qSpGe0jNgSyI9YYrDmJmW9AXhZLhnipnjspgj8R5dJ5giR3ez27/ktHCL3nsGEaYmwcS2ZKwSkeM4TPrz3MWZAJsZMGZbYo4Hi4p3Ajs/wgwOx7NJW+QRKWTqkZoAVWP17AGlmkpLACAlcdfBHs1HOWAYk0gmDA8JMyvLyczCPbkZKaSkKg3dc15LRXUgbQJdo/cerYuVspiEZDkHBw4DkBDIYEGBmlkpAE6nk4q23h1clmWQrF4uU6h1iFmMuHMMvKRHydCNgIpSrHrfUtq3ezTvEBWxUiuQgeTUT5802SJQBdQIpUoCiHba7N38ZYFh8561Ss43TIQeoYGgIHKMOBCmMEg42bua1VKkmjgjohatpWpCyMACqWoAekzkp1xLQINGVsRUwZBgpAKESGqkDXI45jhEFpf5mHNTN+dqZeutt6inQhLB7LUk1CSmNxUxhcDANEGRFelrIrGPwezbjIceYz7im7JExLGycL1X01FlpletZG/ZrAqhkh2Io2UbddUMoNNksHu4L8sJp8U7u2oXa+Jrizfb9thCrZ7PJrpERG/99rzs5+mTinA/f9m5Kyb3SbjvbrLM9GzPgTm1OEeF7J3O5yFQyKLm8Rbl3m7RyZIZxAhbRePw2lcdZ99gN4L7F2mWnL/VCshv38vzchWLG9S7Yznp3vDXJKKQecn5ePkkac/JjSvRwnzbsER5JXIIm/A0JsOTZPg7Xk/+esh+rzHht968P7537s/1ULwuv/3ORMSYJZ8p/djD15t5jThVdOryPDnD0SyYFShVrbVarVoMmuiHQZ+DGU2SHDmlKhzIlgZSGlEasdzd/ODHf/DyvZ+9+up3W/eLt1dvm0cJWW7cdCYYeaxtY++5crBt29q6qu7ksySCQxIuIvbC43FxyvWmYZZx575IHJnEoAkQk1DVksrBGPeKg9ORY8QlG2X7TBHJ3rsWU3C6oHdWxJN/53kdVwEHrxBsuYbys+//ZDHsbnjfZZy1ErmupWkVkx8LNGE1MQ0Da2FVFUSP1kMurT82Xx21WllOl7Wt3bWYiPrats27IwJi3BVqVMQZyHGSUrqwe+sPrze3+7d4+ezu6/s3X7z6+sMPv35x9/yzm88++9U//vCTT17c3d0sFbHd3d4sp9sV4brYi/e/6W9VSjJTFDPv0bZWqspsTAQpOUotyBYhZs1edVMQVKvFipgNTcu8G7VWs0G/nFCO/a9ar6W6cd9m9hIR3j0iOMDJRvJUT713enAIugCAFCtedn+hM0JR1W3d0o3vi3DEZOFmmvFIzovtT9bM6DkSGFVNRNndzJLHbJThfMxWTC6R66KqVsJdrfq2vnnz5vHxEdV8BJNjwYkIZ1affnCfIE13sC/mYUAOcMqxhjlCGnzLBRwX4f5+GQUIpQikiEy+08kPjImASOuy/3Q41H/KuurkRt7dkM6082g5cx/JXos6JLf7yYvIbtWP78HchLt1Tbt6PZ8gdQoXzVjfzHTW5rKsICJuV7DY8Qbu33g04A72WXJgRoQRiTuV2auMq0ZDDHHO39Mw3683z23/IA/Zb66HnJSAqaEkvoV9fHDQCAGF7NGyGt5730nCJejB1BrbV/UgICBFTOCqKsLwWUs4hBwR4a7btr169eof//Gzjz58//sff3Dx1vqjlZuffHzzX/2L//zV6y//H//T/We/+eW//4s//8GH733y8UcPq39z/9gZcjrfP35u7jc3FX17+/Do0YDzi+d33/v4/aXYGl6LakiYVT0BwdLy5PeiT9Kh72WavOplWWqta1LsAg4WQEyNkjTReerJzprqHq01UbW6iZlBFEhaKZs6tIcnvq9YA/TN/dvz+fzyxQursKRJElgpOfs+nq+T7j1Yi+V8tc8w9vjcfUazGWlhloFyumR36PuaGTlw7rpDUSlN6PBbLABUzr1v7MoUB4jwTo+OQ8MgBkgQ+97hSJLHs95bRO/ES6rKrF6N8DAVXyIiyoH74PjZY0EhBku25co8nU6iCeUb0S9JNW3uJqxWhoMIunvzTVIVOSIBkknKMD7oqUs/Fu3+KOOanZFkKcWdJpodMkEMEqan58xRfj3YNImEE5F971wMiC5y0JoY+ja6R+aj/qZSi/UcpkqT3nIASwkULZwOdez6bNSplYSVBHJUMKWBci1KjvWP76ckhI4h4QwikIJGdDA8pxNNpLg3d/cMwT0ZJtVjaJw6AWjr0dhILuebpVRVvVwuhOoM33kNaywXY85lM7voSQITtFoogLuQMboFAsvylbhAA5aRnORjeLLOYnYZJKlgRudBdkMp0STHAkiVhBdCARlSwCiqBom2KSDVQKiICZSB3kXVCAUttYKRIUSo0pQUoDtVRPW4A4qZACnDqdCIxCcLLIff3GrRnDr1iAjHKMnsZoUeHo1bJJItryfTmcR3h0eAkKxIFDMLB+HOppLlugGLzV36JCWYHa3dHTamrq/kFF5CRPbEwETrUsxEVdsWgjoccUgPj3AzrSWxsAFFIAgHgdCq6m30mbtgo7hYLKeHdXu79ofmWs4ns06ghSJmzRv7VpdZ1Mz9lH2S4w4EQLqZiC2qmkLRESEymuzh2Od1AcwYZve2PpKqQfW3dy8DMJcIzxV4zUl2KzBi2RFakeSuzbgbzXG2c90eLzBtzd4hTMOH0eG59myPXmE8x0n9fzwrYFRAZwv3SbafexG/53WIMJJo7BqIzMmsI+XVu8d5xwEcbvXESwMAj39657Oio2N5vMn7fZtOYpTjjgcHZ05xtAyQvEnTGIiYOtjCc4wuXZRHtNa26qVIMAwSzDHh8K1nHth67z4+1YJitVTVZ+Wf/Omf/cPf/O3nn//mzeOjldNSl0Z46Oo0mTTsRJGM8nPWLVpvvbuqpkRDhlY93J0+iO6vtarx0uvdfacuMVZdJGw1c1yHmQjNjAiJ+XvL2ULx8EuAZGstpqSKBwnpQcSEQ0eGEvvCyOX2ZKB31AVG9BP7UhlcD6oyQv8nWIDR9eacS5Qrff24RoSIVC1q+XlXuAoS53M6ye25VCsZoPQerfcgpACldMjavXfPIQpPokUACopRLZOVEBY1CtxkU1cyoj+6P3SWwH2sffOHb9ziL0/Vnt/cfvjigx989OH7z5+99/zZRx+8/Cc//fSjD97r7YIqZ8jjpQVkqQiYb82s2FJ1okGP+y5tzPBRex/MLBk1ASQGZ/wgqLXOXoRI0rdaNb1awoxuRxmSUsxCAKVWAWC1WC2aIZcKVBK2NkDyBhFZloWkB8w0hMEwiqq28FLKaVlUBxuqR2QfydQA9tbco4fPXlPKVg8jVksVgDCGQ8mpq6TBuPafnwxLmFmRUintbb9/eAiwLlVVZyEw6QaultPMlmUpRdd1bW3tfWtt40SOTEsiJEAdfKyDEMGzKvbOXjra692i5uiSqjGBQHMTTkmHXPY51HsFZRx3aDqGd8w4gKwX79+V6xlPfUfM01DVnMDVQztt9MEmFkAHN+sTx5H10NSmPvaHZae8mhscqbF9SJwy9x81iNafaJWpFlUR2XqHSu70xESGQHXoFcvoxOVXZAp8RaKNKnySXHx3A/h6GzG9m6qUkojQPQc+JPyi3jN1EZVCkc7kRctJUlUtUHFNhYJ0kbpHGqUU9B4SgBU1Kbrv0+HlQaAyrE92pbyaHAoDtPduJmjxxRdf/Oxv/u6TH33ywfc+ppTvff9Hpss/+YMP/V//16+/+eI//Me//Ptf/P0vfv3HP/zkx6s//OPvvuriby/rq7dva61it53tcrk8PqzvP3t+KvrRB++dT/Y6GvomxKlWI7beTqccXUQCPTJxXdc1caQ7ztnMbKnLsmw+XpgPyKoVluwphLe8qB7evWiP3jvWdRE9nU5aSg8HWMy6+75UZHpbJdfeWmun+vrxw8vt6WxqYoo+SIWuCz/3EPydfRFPy+fuziHtKh6MSBUSiGi4997IHQyllOSnJRhUkSy1jE2ZNQvnABsJkmITmej4yMQctS602S/pXWRIeCrFID6i9AQ5hjvMyrgHx1obBZCIBIjCUvCV+x2zuapzXFFJLsspYiUH00fvqTPMrTerxQaoYnwOEy3r3rpmQKEJnYbA+3DHc6RltIHy/s67oUWNqktdWlsBZra+rqtZX5Yl6VcEEDIyvnKQ7hJGNTOQ3XPTukjiXHw+B4gMIvy0aJiyvRP7hpRlraoiZe2ejVgCZGhQoGYmUE9Skt7NRExF1EQTCJ0pe6GK1ixr2dabQmop5/OSyN4Aq5qISQy9qlpFUaCeTdes58DUGUKparaXP0g1C4iYQSTCO4NZtANFwBSHBlp4tM3DZRCNky5+bVSK5KwLkzlAk6hFupMaDlgY0BkqMAVFxbSFx9OCUP4ju6ZBpPS1wXyQ4MnM6MaUS+7ksrd0MiM1CKEJuvCuyauQfQ8PUSF9KdXMorv3lmLqtQyWLBNokKR4sjJIVSOgUDms/8gmj0wsIxGpr0OuvorZUoqiKnJyQhgRIedTTfLVDZek4W3bpSxVTZDDy6ONJNkTlgk02ltjHi42GnoRcY2NJhBCrijZ0WyspR46mQAwZN5m2UxEMITUvLWmaiIW3iLg8GBH+DkHwyIw2cYwQ4FSivckEUCoheoqyrqQ2h62LUIZKsW9Zw9w27a9E7u7yZiajdPlABNCvMWab84W1h6gf+cLT8OL4zv3n48/ADuONA5vlj2gOb5zfPbQEvm2S98DrCcfORxnr0rsvzwGZNfI7NAxyPMZMzkcI53YO88H5k/M0POdROp4qsdvxP9vr6sj/K6+8TuHeud2ffu28MkM9jXPF5HMtfRw2Bkyjl0AEMpZl5hVWwCzf5VrppSSHaiYNANy6L2PACF8frNijN4VlTFKaU0//Pjj7//ox7b828d1uyM70IjVnYQpUpw+zVVdTp3r48Nrp2atauvNKUoV4Z5akKSgT9QDOdi/8yzGPN7Mgfdrz/Tm2AMREY+WCZXMZRMuw/ETnhFihHuMqQew1grOqTkKVDB00o8wyHcz8P05XjshBxrw4wLan9f+SPKJ4CmCYL6ZpVTRAJ09AIpAQZOopsXUiqJj6+3x0h628ADMLt2F3WoFsLUeET0bXSEhMLE0HwBE2UNM6RBn8kmECB24Oekb8nHz+wv6A/ziGm/uljfP6s/vzvbi2c33Pnj/T/74H3/4wx/cnOvd+x/IV+u/+eu/+6u/+ZvmKHdLSChpNuRkhg4Ox52ft+uJ8cFEJSzL0rctI+ncuaWUiDEiUUrJSD28ZZ9npJq1iki2QCUH4CaEtWhR1VTTy2mRnGfbcSItulmFX7dkBvRIitFSihUR4RQmGZZZANKzdk4Ws9PpdFnX/UEbsy4CJVLAQ3bpwwSzBC2r2wcEUTWh1YdtfXh4ePv2bS6V3rsz6CGzsMgIj8im1rNnz2qtDw8PexPs6CPeseccIz/XJPa6Qv9Ttk5H+xfXU5XrSyWowr2siUMxcZr1d63ffOeVdCNVNvjE1sn8xJPdcUwgZYyYZfjr+3sm5IdESvTp0+8FJ3oopy5lQgASOpk3cL+i/EuyKNukXM6A+p0R6uMNH9+l1zPfz58zDpHp3K/3bWIZDqbsUBQYjYB50KsLvt7bNGgthWEOfeY5iYws/ZhZqEYkUcuIH/K25JX22ZXar2WYr0RkDCXYJ6XefMWYtyxv3779xS9+8W/+7Z2VUsv52fPnN7cvzrr85z/50df/3X9z/+bN3/zs7/7m7//h05/+UzN99erVq9fffP7550Hpzq150N+8ffjqq69e3t3e3N2+9+LFTS3Rtr5dlrKUU0Xn2gYTHnLTY9zhdV1PdqX+HhlvLgxBD3dGlasU7fjBklwGPUITYRe+9S6p55x4qEPPU00Yqf4wLr+HwyHA42V7eHh4efes1lOPoHchJChzHttEtajRAoPbEMA7QGJkUj1buDvyKxfn3qQppUCFHgGm5n2umAAJ2oH3ZOBlstbUk2zWe4/wtLFmlibOOrbjlonoziFOmu29uRGuYcnR3cXgGB/BmCTRZlqTp5Ts+ysHN46/l4loOPZF9juQ6NjuTYK96Ol0MjWIUkpbW+89RQ7TO+SEICeuLeFhvXdR9N4TU21mwZFD7dvBdNd5Hs3LHGmQAwYkjzxY3EUiOomI0VUS08OOVsL3+7A3/KJtHiyl1FIeHh+be6LhVLLxBAUyL1CrnCeEQd4zxOYkQiOiqBAaUKj5IIyQqoUpT+MZCQiQECYrprKUZBVl9JY6qipQERpEk/KLJISiJlVlJlcZQ7Vc3zkSVgvoAoiZTLDt6CiAzC5s1mRU1JTwHl3NKIJOEZRSXCQA75srAKgBNIACBWlDrnM2doSIHAFmcmYiJXHH+qeJRvQR9+RgcHoesKoVimRnOKHinmPlLk5ECFHVipmJMvUZRXUgwrOzI8VKyMGV5uLurkWidYnBMAXImB7PyfXeVYVZ/pzbvpQSga1dvLVaUdRQCkkVhViEhyM7+s5hy5jY3Iz2GBG9agGZ9Rs9QGd5yCv2hTsEtOZr0OLNeCvyyQIQkOlIUGpVtYTKmCqy26/S3Ykk5sUwcSJJUFZrDZUWwOkkpxt3uJZNxcvCLkFLwsq0gum99k2yn9u2Dc763MzppUQk4b4DUNE9plrd8MdZNhz7TBjvZq3v+O/dGe9HSHPFuLrb9OrDnh6BWDPC3f3lwUOPNv5+8N187PnqXs6fEUPsf9oNooiMHu/4inznIaV3DDzRfO2mKvtI+y/xbjQ2vij7hDiUc+a3HH/j81NJcZCXNjrD79zed49/DD1HXf/6V0hStdp+HLO8wMOZz/js3Yco174HnybkDi4iZlZPSzktWgtmj6LWKqZjD6rk49ViCnV3Y1+WBYigm9npdIouW1/dO0W+/8kPPvnDH//67//OA5fVTaBEN9wsVtUSTAhATDFAXCP/yavzQduWOECk6ckUdLdu48Jm8VyArF1jpv0+7nbo0ONAkHDBu3qhEkFV8WDvY06+h1+25g4zqJbUYIhU+UsYEiMNhPu1HDCXXOYS+/KeLSZOHRekwX63bi0yL0+h9qTpdHyYzM63JMtDFNPzUmuJahzj9z1ax8Pq6wYKaq0x4GrixNZ7BHqAMGp6t9QQosNzTuS21nqqkA4msyUAYFnWQJxrea/ryde33h7wTcfXG+q9ly/fLr96+7/9+ov3P3h+c3N6/v4HPN3+1S9//Vd/+5umuFlqUAhx96EYL+9ugSdb73qtYabPnt1dHjRtr5nRu5Wyx5e5f92TvnrYFp3AuQwmWmuakieiAHKG3WCUwXFAgTMUKiqkRe9rX2ut6QjoEFUCnVjqieSWWUGeQFFV7VsjB1jMdDKsTBBytthkIIxyroilGDS1giVHzFIW4Jj9zu2P1trrt2/ePtwjoUneEcHkwVJVxS4UX0o5nU6ttYfHt5f1gXBIED5aHSNYTCuRgIydg+BJm2ks0WlR52MZoC5mm3Zkg0+gv5LjCqZ7AkwyJ2lTuzGrSRLCfflPuuNh/JjfuO93AE+YFIeRzYJFlken4dSDEYjB+zCDQQCSl1xkxmH7IlQIREw0GBIiEDPbSUx2p4NdhEYEQCIFSkpQzwiXgGgBQBEf610ixx7B5LAkk5H/sNYjDGKQotYIpCDlO9v/6X6Z/whIBHtQTC2bToSqLnsbPAWfp/uWOSJgIp6pLwCIjacjg/qo97hctsvD41JqhuyKyLaZiGgKLCFGEzjb2pZEC2M7l6WQ1GIR4QwF3f3N24ef//yXH3zwwaef/vTN/Zu6lLpwwelf/Okfv/ry6+j8ze8+/4uf/ezTT/9oJd7cX94+rBGoNWzVgvb6/u2XX3/1o+9/7+7uNvoWvYdvoJuJJYV4KX1rqnOSJ8d8VDujzibHHoSIXEtjHKwl3JFpWe/yrhKMwNZDtYmptrYsizDcG0xFKfnwI6bAdVonAOruIWrg43r56pvXz589K2omBWBRqEAmFeAIa009Kw0iI/gpT9TRVA2qITLhQOk9FSqqpqyqqqU6KaaAiF2ZFyMiyerNlAShAeagUUazGNNguTuSmrFw2C7MegISfuPualCIh8vYRDpxC9fOysGkpIXXiB6kM2zMSnPwd4GebhQkuK4XEYnA5lclThEpxXrvYKjqOjve7m4YiA8iQjRHTT0DXInJrmsOgty8n8vJveugDZaUi0tatKyx9nAzK7WoikdLNLgE06VDkvBSMuPYAaSD65KxblspxSzVVXJs9sC5hexsp6gKVBDespLbvLfWTKsuxQYq1ltrPVy1SLHUQGhtJYuOIb6BLIOg9FGFYlVJzxfg2rZTXRgSAEVz2NaT9EJQR1ofFC1VRX0MTbswPBulR1y+I0bT1YrqmMzdIgQMSWVXVdVg99ZHRYojEQkwMXi1Vp/kZiRbOFOQqpiqRXcH6btBCUnKqawzQR0M0DPUY1gC2yQpj/dmDQEZZMRZdA9Xk4jRsFXJyI4SVMjJFMHwDrFqFkREt6LRndFN9FxPN+ezicKjuycEKp1vslqpag8CVA5CxXzVUkopQYKhhIiaCsnOXtUAIqJvrXcHqFpKNVIkGEFTCUZrzaze3NzcP74VMeakt0OtGMzh7I4ho3Ktqk4iBEYOmM2OqJntIwSY4w2ZTj22tW/bsdybGloRsW2bty3Do9x4pWiPLkwoLKwoXHqQpJrkcJlgSEdm6tQLdBQ1xE635faOa1+J+/XSKaIFUCGspOUNVe28Mj+bmXIM6HLODnEyWu0zGLshyw7G8Z27YeLTVxxKy/tfj4HCKHSBEaEHgpNs62S3IQ7hwne+9q/bY5z9VEdJdb7Mru3rdAf8rppFDibInP49vgEzi455dcdanergxtuj5/0M915DWq53zn8//js/AwAcKP+7d+D4w/FsOa8rH9YeRO4ehaQlxdrxMc16/uH3InPiNK3NTDAkUyLOPsN+z2NvCggicruN+58zUWRcLhf1LLX4tm0iUuupkxGPEFHVj7///Z/89NPPfvkPbx62pWppomgoYikeEAKliGRx1+oigcHDpqOM6DG5pgQM9kk0uj/xfbUc18Cxf7WTNYjsqXW4A0IdOroihyWdJSSSaRPcoYrT+czMyQ84rhAwkkQib/X1rPb/Xpf34VG+8+g5EwzZk+SRP+wBzbuvDDhSKCqHgM1kydqFePftsjYP9JDeMwQ2sVLMwnFZ18vlAgAKbxAIwwDILAImc+/5vNzc3d3enSKSaAQi4uBD91IqTst2ebjfOkXtXKLFUhZ4OPjW14fXj3//zePWUJdfdsUjsSpOz86hsm39ptaMlCESI6/QhB0BkQRlYzXKdY639/7s2TMTtSkO5O60IoP+Krf2qCrKxD8DyKeZ9zYEZAh1RHjBUkq651rHPEtmOPvY2MP9w4tSpoh6YqPlmAWp6o6iytMWDvTNotJ7f3x8XNd1mGtVEyWdk2oFQFGTyVygqYOu6r0bxvRavrz1Rie5bVtrDVWo4j2KiKh6a2M9FxPdA0S+efv6zZs3l8slc/jcKz7xmceVSQz5sGOo+u5r2OprRB7Rk4pZBoRC+HQIVkSShX2s6jTpMmyvqu5G6zu/MM9TD2ervP5eDtsq+zB6gLccHdlEAI06qV1VcJ/4HZI7hxBJxrWNIyISHF30vQI3LuE6ufPklzLpd59We3erletNpxvKI7j7tARPpoHesRvfeaM4GUDk0D2W2QkHsmKxhwTcfd/8irwXswQJtG3Ujy6Xy+Vyubm5MYxoZx9K2pF04fAk9+fYGvsJq+qBz9L3Ffi733z+V3/113/400/Pdzcv33t+B+3Yvnd783/97/7Vtsb/8D/9P3/+q88++clPX370iaDenJ//wy9+TmjrTok3bx++LF+/uX/7/OWz169fb+2iQDWrVtJo1NOiEHf3qUWym45t22qtVhaZafDpFKq6tdWajSjicPNtvpzdI+jsfdAl5tVGd1VPqptDZBIkIVQtAAbNiurj2l6/eXP/8PDsdKPLUk9FGYMB3KfnJWWiKrLJs1cx9odudVJGaRaaQBqZnLsaEU6urW3bdnt7q6rZdtS5UEMi1mshWBKfLzKRCQUaIg3p3QSY1FAk62Jq6tElYKatr6JF5EpXgZlmmz1pD+Qr4sk03z51srbxzuPIW96NZVl6j3Vd9YmFKb1fOOZyh+lW1eht1CyyABpo0bdtqxUASilUae6yxe4mWms6drpOo1F6b2o7SeegZd62zRP1I+lZRu8QV7WROAZsEdH6piakESEUVVETEq33ad94QHEnlVLaUwApkRmPj4+YkXCJSORpS96K0ffOmPy678rjZTudTiLSgjWjH5Hb0/myNYXens4R3Fo3VY+oVrpHa12JoubhdDfRU6nr5VEG2YwQFC1Ep0DMtq1762oopSQjXoCeTNvJQTX1OqyW7dK2bSuqUPVBeZECRZZH09SE7bpxDcLMKCGmKsXRyBDRasVXZ1GK6pCi9kGOGo7Ba4NUi48YTOVqKf7hMTmxqxrpJiPGN1AZAhhgprF1RCioSkTPRjUd5/PiWwvvoqfL5ZEet+dzKcUgoHuPUkoxMdFkDKAKgnvfEtnp31oIbm5OVstlXSNVIjxqLefbM4DH9WIid7d3YvZwuWiOvHsAOfo1msYzLhdVzQaRIEbhBchebO+bTIxcylNnQJNhPXNQB6MIQ9JE1XZXJOW0JGGzzo6xmZFeigoLyWBHipgzal1IL3UgbUgu1ZZlkdSsYeS4kaimnmGjKNXFomgLSg+WpTd3SKBsflFGTaDdrI5P3OB1BlhE6APvt/NU7x5oh1LsXlamdSeujiGNxTEW2T3l/nXyrdfInth3W2Z7T38yOuz+O7s0+89H6xbux9TrWJrdfz7alzznJ5Cz7DlnzZVXEHtM1F+6fBz6ReSggp/fOyIJeVpuH9UiJIIl9KBa9O07k9fKQY56paA4vmePBvC0BX297aPxkcpB7wZzRE8qVDkUlSJiqAFjYCNVJVMC7NDuQ3NGduYMERRtrZVSkjl8zMw/JbHIio+qisB9rDFVdYeI3N7emtnbN68BvHjx4nL/4Nt6++zuD//wD//i2YvXX756uFwWvSmQky29cb20m2elbW61RFCs1DO8U9xlOI+8FUrSY7ArmlkMz0iRnYFotm72FYXEG4MMteLRZDBtjHRaVSk0gYTugXT+Nb07ciZF7Hwz0v5t23I0OiKaE0OBDIbk6eWkjxmrKG/gbPiNsGBdm84GXUQAkUsUCX89RMARIcJSijP3hVJQrZD0vjGjqiCq1CJWqyq6b9qMEtEZru7YGiOgZmJlbS6G3mPrDSruDIeZIIqIdkZrfdtaD6ii1mSwX1IYCWqn27Oqbq1tXLce7dIundTKoq5K0U1Kci+gVCgJ91M8Zu1cUc7WxTppS3WymjFh5hJqpqkmFYTQ3YtZPhE1BHt07GbNiliZDTfBtm6DaEeweVeFFSvFANiyZOhTZsCdLmam3jCzupRaK6itNTCS1g0AKa15zgK8fPmyyFVLCQBDVMrAFIx+43AKkijHZHOxomq5TZZlcXB7vLi7mqjJujU0r0VNjdFzMisduSXRq2Yqeii49E6hSgF1TKFPdxCMUkrSsxUpVqQUdW+vXr26PLzNvu+6PaYFYQyFnhiWariGY16128Bh/Hdbd7B7+Qaty7Awh5QQQBmcFKNkoNkZIGOONR4tEkZ9apyPzP5/kEPce97n/NBuM2Wiw1prmeOUeiWNOyYM0/xidyK719ivxVK1LPdzp8GkvFvGypSVJD166Um9kdkUnqbB+eYxK5G392m32d1haqBOPpHdO4ADq5wn2XvfG3f7a7/G8RlVXI9xTcX388+C+On2BkCQ27b1Hu4eMyVO207SI5xhZsvNzWkp27ZlIXvbtoeHh2fPnp3P5963UgtF96xDREIAl7Vtw0+NZt5wdlkq3al3VS16rNv661999m/+7b9/+f7L9957oZ/Ye6eXAD6+K//V/+FffPFw+eWXX/3jbz+/e/byRz/8tNpnn/32d+VU3Nfeuq+PaNu29gj87ne/aZfH81LX7fGmLqWUk5wu25rPJdj3O3Z1spMVj0Ac8HSnm/Pj4+PDw8OyLHd3d0C05oOsSgQk3EOkuYpzcW/ruiZ3sRWRREOm3xxPJuDNOwCrJRw5/XH/+PDF11+9vHt2d3sjEVUgxdrjJSLubm5JPj4+hndoERmDSQLxQ7UXE4/A4UeKmLZLL6WoJpuXtrYB0FKhtnNPILfPIa4bSOBt6z2W0TnfLpeLIkopgtgB8OE5BOS9s5oWUY++9Q1Bb111VJpyNANAUQsK5UkC3Hs3q1kLgGm0ZOExune/ovxmzQ4iJsLeR/AfzhY9E6XuLlq6x7pdrIiZ9RRjt9IJTBa5FCKm6OO2mlUqko8wJnhsKTUEjFi3zbUCuhP6bj33vga0OTOSn/gX37YeA2duIoJDtAnYHMWlmagi6L1tJuV8qjZBzltv0V2F1RQIBKWNOepEMWgxku4tY53e+3I+uePh8WJmAYnwUtRBEdZaUjAJDq21nG7OZpY0FWnLRdWB7mECT5CDiKjQMVStCBWhMxu/JtJaM8lWMzo4SEqQA2PRhxKvBWmSxM6ljPjSkXDkkcxLPS3aBpY9G7Nl6CbPomy2zAWl1rLYtq0CqqlmMOI96HRK5psAsrEpqdWxJQdOyjmmApYpgCRrhEiSZaja4GJIuz+h5Ko59AJaquqCkl+nUlRGzhDUZHWOwdDat7ZYCZHRS4rurpDsWFqusCSFHvu2dZJQYfcQQQ7bBIXK7m3dAER3Eenb5sS6XpbzLcGqlSoMxuRhjwi6X6F0ki0FRhI5xi5zn7if0FmbVNXBADUjgN3T60E/MPlCMAJoj0i9kIGv01pFxKO11iSotbTtAoWJioTaUGBqrRVNLEBNlwAg8RFUpZawilLL7S1Od33d7h8eL1v3wVAvlsSeo2iXEPMrs9/wc3LtXu416VotU/09B95vhcysb8+WY76O/nXPu97xvvufMIj8ru04Dnr3dzvM0x8/SVd2h21a0tNn60ZmueGdb5yelTsK7PieDI7yfEjudUcex4OB/bPZwTgEZAIST5GH//++ZvCRP9vxMR3P80m6+3t+uN61w+v4EDHzrePDnZ873JNvdQzGO3OSQwSqtdbWGloTkZy3nCunhxW70lpeZ7BFaRD36/iNiFRbJBroy6ne3d18+NFHP/jRDx/evLpsWItXqaplWYpINE/IVXRGCMwGCbG3ln4pItLAzC+GjC8aOUxe8X57r32bfb+TkcaCnhASDMaybLkgvdlg3aASblavywbTwpBZa5+7Yy9dXwWr97+KXFfv09+LiOwcEhyA5Lmq9Ro3x1UAtlvN7sqwSPsjVtXkPNBhH0abVEwTEMcgJIJQtTkhqptva3f2uUjMvAsbWgrFdZDwgAi++erNtm3npcB4OtdSwozRQ0J86+vjum1OmFhxSAhopWsENAZNR6q/mIq7wK30SVGpWTEc0n1pW3QMY0OtjOLUsbqXtsLM6qm+eP5idDNGlQHH+5+HBLAsJ9nFJOLa1D3usplaqLvbsX0naiOiVBXqXPMynr2KJM3EOE7+lEbSRisstm3raJzAIg+f+psqjCJKQ475wJM1BDk3JASjSxj1ypgAoBRz0Nt65XA+7v1BBKURYUERyZhnKv3Gbo3zdOc/361yjoX9tOu4265ve4Hd3Oh87es/b8/++KbpeddeMa5f9O1XdE/++uMvr5+FyP7gDuCLfUkcr2s/+W+7Fc6Ue/9nOcihH9/Th06s9t5TNzLXVU4e7d++GyXh0Ax6x4xnQ2l3gpzRxf5Md2+4X8J33p/x+yeWX3YHqgdflr/JUSmf/NJ4+qDzgynQOObdJlQqcTp7NXmEDYr95PPjReSyre5erriJPZO5kr/ml4qIhn715au//du//YNP/+AHP/jBBy/ef6anojcQ+eFHH/w3//K/Kn/517/76tUXX3z1/Hu3pvX5sxeNW/MLkKRnZQ3/4uuvXr16PWqXHu5NVRNNvLYt5kzE3sHLU83BhMRdyCyX39zc7H22GZazlLKzAyA5egDMakhrzZLiS63s5iWzu6frJ02RiqgVUu7vH795++b57a0tp0R62lIlVdOS9M7Uk28CQ2bpndUrB470RCbXanu928yyUJjL1d0RuPI9R9Ajp4ivbs4sfUVyIpSitVqmCXTfeuu9OSM5X4LRvPe29t5LyWV8ZbuYFI/Y7fxxKdrUSXaP3lw0sr4QB0jC9Jvvsq5ct8zg8RneNuvyuTijj6JSxutqpgkSgXoE01EiNz1JQsVgMFxpYkSg2r1RmO337BIXhZn11rFT/c0A20R3rFy64ziIzuS1mKTVH8M6QQIxM7BMvuL6gD2c0cMP2eJCMrq33qIPSk4PhyhBenTpwWt7bKCuKcgJMC3lVKrCVjZV7c5snd1UCwl4FNOqqmLZwhq0BxFbuImaCOkYI2kQEe8epBYTM7EDKWvmkR5DS250xCR1iXNNZI1ETK2UHk0MqpqM0xRoMbOy+TqWPQhLxXdxcimlJ2c+BieYswGoVkSCVA/uA/ilWN5VRmhilAiAqbhLEAoJKpj4M+RTYY4EJ8UTZK5LQSgDeWtw6GslKYyoQiawSLJcoJDrnDvA7u4uxdw92fm4+6pANBcRhUIknM6MmujhpS6ium4bADtXiGDw52WrTHVI+O16aZRE58sQ1m4HuFHCpfSAlONYgmkjYhC95VEOHdGYItJiVBXtlvN0aeIBmg3xjN636L01p2qSpgA6Yg+BqhHmqF0L6qmc7qIu7WF9XLfWPHyU6vMKgVDFpa25V+YYQ+5hcXjzFr0zCcv86ggx5/LTv5YpULFvkunksLNW8Fuv74wGAOSYxxx3IXmV1nD3XU9SZup7jKWexFVzbBhPgbjHRHE3giRVn3Q1r0HPzMMBjJIt9EDQEhEBeSLzOy9xnAr+d16BnEq5fvU1G5+XY/t1BfnO5zlrzxGxTyPvd28oow8XYgB3WNG3D0IyQXZz1nWktccQEACHVNE7coP72YpClmURkUS7FNGidiqDH6Ja2dM2SOTWBh3hQwbPnRECLFZY0LaW4d2yLB9++OGnn376y7//2/V+bcEcOoWWBOmbSRDdOSZdBUeS8Hm3Ock7xtkOznGR6bsOHSExcqqj70UxJOtkmqLxOUROAlGmi5rsBSrB5Mce40eijCgphyAQlZpCNaIujIgMlfYnAvik/XAcQpYMv1STBmO03nHdTSMY5mSmzcuRSdX29LaglKISZlqK1iIkENHDSSmlUiTYBzFYIMY4dG+X5hvEkCiv3rStPdpgwvfZHXWiEa2t97qK4fZWosWyFGbjqLlfNm4AJaQT2hPiQ+lCF0aylaqQpgBVOjVEYyhwOLmDZkd4JBN1lwp+nAS2ANSQLU0RJm0JsjYfqKWEYyeKH3oyM9ObUZHjKXpQclZvZnlKWqpBTAO1iwkOi4IBkUrYxZzQLunD922WbPk7EC6mNI4USz10VS3pboOqGnSkhmG40Knpj0qSrFkOrB86wOkOB0R/XCgYAxlEsqoSkk89U47kDMtxGJ96eHzC2D/s6sFKx3zL3EE4aptf3zntre7Jr03GqbHFpimav8npq2s1cKxn+u6e0gPFE5MITGbw+XSACc6KuFagdqGJ/XL2/XJNBQ9WMf9lYsQ+InZgw3o6SUESAZFBnJm3N8fz0odmyrdH+ekT8+xl0vBnAW54yQQxMRJ2B4AMhqcitBDRPVqP1hmRUGo5uPxh0w7gcHIMrJI+JtA1k4drFUNVtwTv5DElkLwkmI88O/YQBbp0kl7MfOnhATbPnnFz3+ePhmfvvSe9nADpFLSIikY2h2a7DKSlXLNHjo7XWu/f3v/qV7/+8z//Dx9/8OHHLz744PzSSq+1Pj/hzz79uKv+xV/+9Ve//S3u2wfvvf/Hf/zHf/MPP/vq1booVa0Rrx8eL+v681/98v6yIlrvtq6PqipWzMRVUQC/zpbvK5mZooBaysz87Xw+Xy6Xmbew981ESykQuhnVqOaR3Jly3eNmpZRSeijMai0lIlQEmtGk7TGJqiIB4REPj49v3r5d33v/XJecyMilm8dULSJqyxzdwYi1cQikh+fKbRSCCBQdXC8i+TST6DmLgBkOJTtO1j/O5zPJ6L6uaxZxVE2BFMQio2+N4SaKkhRdVEZ4c3eMWNfMBB4gcmY+OU8k2XgnRco7EUxOLKaffGJSgFTjgWCSTnne4Gu4KyDYPVpbe+/1tKgKVNhkeBORcZDI4EmCg503rdpIDtPXgMHwgKkJ4QwkRRxUSYj0CJsPISLIpPRlRGRiHAG4q+FUKukGhUoyaMpkrJBwdoQkYvRQPM2UAyTRe4/e6A1AjmwD6IwePSKYeb4390Z68558J9inPAWB7q2njkAEeu8DeZ+bP2d+pNT8ASIBtt7MbOESamSwdy3FTCQAsogiMcZppERBCbiIGnKKaUxBmJkKIyJJI6fdL9yJguhBtt7DXURsjprIzMc4R7ApkJbDszzdnHvfvPVIkUoTJcFQU3cwNneKhFgxsyK0aiYCagsfyBlo9qBnU5SChIz3CFczDebe09EggRDeezUx0WI2fCIdDhWyY4z4e2TkWNV0NMhFRGz0k0GR3lNlxOygA2yqjFAkN10nmBDAotp6gxYrRSUcZES1utwtHpF0eaBdqywSVhSQTko4FUKjxIgw5lMopSQIIUKjjY5fBkuqaqWYWWtNM/vV0dxO5UQx3Su4Q/JhVKQgIuFjI53P59772reErE9XPcV+U2haNUa6AlAhGpTNxQVSbFnOUeqlc908HPAQSqQfxayE5T6f5XyT64xBTNIp2eFVAEmP5nO2PDeC7Vi+Q+Y38wgR0XcqxHiKzr2mZ4fuFg5RVCIJj2Ny8/j5wWvrcj9URGQvDjNPEJGEbC3LMj+O4w97iHOM3lT1qBMw38xj5iBy5erdP5tv2+Mr+f0V93fip922f/v9x3d+65SehIDHL/193/vOx68/H6v4e1J1+PbrI94Zbjg75AfIXCZy5/PZzLZt61sTkaqWynjunnYnHWfGOPmAssyZhl5PpxB4VyGSjmW5WX70Bz+8e+/l+vi7oARx6b50LXATKaUmuXMKx+8rOQFpkadMuMwKg063NJdNBGJ2/SMCuCZOx2B9794l2G1QnIDAIB08BO65a0JEcilnVI+52LCnaoensD/H/Z+9dxKq172GEXS9Ow01dt3hbTsuGkCG+HlRfm04J//hkJEnwGErpHkQES6XZM0UBSS8bz2c0RoFONebgD4+tvWxe0PbItksRuQLkMnIMvKvy4Xkfdb4+9ZEDGFA9B7ODVIC1qKlPigFVJmJJLoHiTCJA0+bMdkmkGhXEVFk8KzOY5D/JGaVOcqYC9IAQGutY+groifdwiQrGlxZJEebjr07xGB7sHWdkBwjpIzpuCUimkctCoZMBXV5Z3+JiQwSrNwWA/Ns5XQ6bcxS3YB3ZXnDe6e7IgljNnWqgEixWSodYkXUTALqh7ZJLqoxg5cJcOsECZrITM7FgKp2s5yMeLxc9gztYFueGLejmco7gN0Ujr73NTy9iveM35ha2Rfwvomud+mpIcJTC7Yv7GMCfNxKIyc75NvDyh0z8P0qnl7IvmGfzPm/a705SyEAEI49SzkuvOGwBACr1izE6NQq390lgL34EhkgAWRkSYkqGZBgJxyebd68byOpbtnVOQIp/1Ov43XtTzkOChe7i3zHH8lTjNU+/pP/zPOJCY4VkdbXXHt5sUmRwIi0VJ0BH09hFxOeoxySB/QDEfeIiESs6M3NzcPj9td/+dcvnz3/5MPv/+DlR/W9JamAboA/+uTDRf/Zv/v3f/X111/+8T/5o48+fv6LX/79w8MDzieFPl7aq2/uwfa7z79kkrmArbVlaUrLImxPge95M/dqCJPTISR6N7NDCoZ5TwJATsPlQuKgtu0Yi9YYMpQC8mK7i1jlXHLvdO+pZnVMAoevwcvl0lrvDAk4fTC5uY+i6v5Ejmv+aVffzJL/SoZXT2wvhlkBYo6DRWSAPqfcx8fTJw0m5KxgrH0rpQQ7t772zui11lFRKUXFvVGEmvMypYrI5f5hOCn3XHGDBV9oJqkVsp+2uzPMkzdLrRRCTFUcLrhqm+FAOxezA7+vn8z5Lts6KB53xBAKxUVkhwMJUmH76sEzlm+zfyBAa81V0/cj8aoK97DFpEVz74zFiqoyuK5rtT0fTtqzKNBQ2zs3w0mZja1EkOzeY1e8UzWzxhaRlWGP1r11RAeAMlGfuAY1JNdtDXeaRXdSqNF7KvKaQnq4R4iYzI5FEasUR1aigr1HtyApVhQSQ/RHU27Rmfq2Pir/gGfN0iBUUUN2gJHjfQYR6ZGJNDhEzAfnIRRMGDHT0YKmwVKWxpYL2QYwjZ0dlkM/DhERikkeblmKsycpeYKy3F2SyVSgNqT3suxSYRGuBgiLjngvHUnWanN2LreFMEhagKAKFBn0DClBZ2jYyGUBxcSudA/pliVGiAZUKOFM857bnKS6e1AQLaEIKofG/mBXTh/gjvm0bDDx6uC12rYAlttyWpbHyxYRkkVHBYT0Hp7jfIEnMrbDmfJqODhNno+QSCAhJHsEcwCYJJCUj0VNmGA16Ry4HZ2xMOgJjMm9tG0bVU+nk0jpdDMLaAqC5zSmznSOIp4dacmdrI2yUoO2lKWcnnWU+8eHy2Ub1Ho550ciOOjrVUopGdMACKGKJGsCDo2m0UqNqwuVlPWbEYbO8QMhFRhKlBiaKBigmGsegUOwMr9FRDSN6X7n9dAJ1WzqzpSSyXVJ2pCDenJkGeWma7ySX/Q0eXiStfJA5nEMVtLlYMy+ztX4ZG3MkXeMW3EIMuT4Rd/5ksEbBVyZfo/Bx9WJzvx0fNc7R96j0sNZjRB2P8q4wKSTVPJpMPTEs45fDYDu/vvsDB8a4OCheY3DretbU8Ig0b1vjaSpmqoVEYQgFMp5wBGqekO4IkoW9cE2b5FVC48WDcr3Pv7w4+9974vPfrd6LBH366bidyez5I1IuXWIE71fQ8mnUTvnQ4tjUBhIien90vZiEEQkB9CoHXKVLsNoQWUSBIUm12ckT/4UC1VelwtS044UoXFXXRqnkRQEaVRTCZyz1kPuUWb2532ERGAxyYksMHIzZRE4fBD2jJWP8O65IkiKUUWSa2TzXiEm6kqPDnYgcphl894bWw9SLQXY3NmpZotJ0MJLb1wfsV6ACA9MSScZDStkZGOlZqQUcHFSBOFFxDzoHc0jgFAnxCkUBBGA0OS6r1UgCsv7ZqBFCFICXoeHV4PogdltX9UR0ensXc1VlDc3p9vb8+l0WpaFrbfWTrcnMxOxiC6D3fG65TPI4K6CBs+xnYGEh0AkoyXVkjZTbfJsOT2i9yii1XI+2JAkTMnjC2qSWSoBJH0VQPdOtVora7TWSEkKHMk5tlS2MwE1jZ4CpkYm5RITCKaqogK/ojZkEhr33tPq9t6RlefkHw2KQk1zfsHXbX28eOoqDNv8rRRU959HrTD/v04cIwBOx300syKywxOoYnJNffNDe5FoN2X5Ch4QWKM0PG5CVqdEBqRGhJSkCzUcFgeepjHxtEawP30+fdvuJp5ei4aHTBxvTPqo3AjARI5QZzM8+c/GLKKO9YOIMFEdHP3jVGY5NTlpYn98mUnvo0m56szSvl/d5bhFOanh12v81utK+rVjXkTeqbvlXLFGtIjIzkfeSUFkWR82T4+eX1xMGSamWgxANlTWdW1+c5NqnuFMuYEp1pbTKcuy5EDNuq6Y9GP7qsuEOe8zgc27laJt+/I3X/zln//Vjz7+5Acffv/2+bPFWPV8At6rqN9/b/unP/nNF9/cvffMHcuyPLt7UYv2h4eH8Nf3l/u337x5XJebW2No7x6t+2ZhCdPgbpEPdROf+RJmNpVd3K23nABqrSWlEOjhqFqLKEpxd5UpymeziRdB9wzMnEF6UaUwIglLg9zDtJSMQUS08Pv7+7cP98+f3T1/dhets7sLxNRqEVXG6CIqr8/322GAogQjJ2Kgsx4nQopP8Q3TqkJ6JN4hB/IofmmXbA6dzjVby976tm3qY/uUUrImFr2v25Yi6qqqmsy0BJ3dIQEwnO4OK6qaQFyCSfb+zmkn44x3ogzVWLi3cDPrPuaNZXbOIyKi1VpLWSbQY3S2fIsAUtkaaa1mQY3ZXRWZUVgyOISqKiQ844q0XAog8igeKgwdR6iyZDbkm7tGrVUY27ZxOZE0GYxiUAmyhYt3qOUXQZgdy93MBruHJ5y+au2jXuCI7JZRDarFREeTS8aslnu4h4iwOwDlwCD4tl3WFoJlOZOM0WmToqoGCZY5WzsMSrqNXFIhqGpai5oR6OHBuDktlsVvYSpDQCUR0aoqRNcgxURH6V0FMVSehopX9g0k2xpX55EOdDl2fuKaMJqZe3NGdlhERIqOCIDEXvwGHXRGb6PzLBoOkVRxhDMSsA6hoBSd2PEMoQykzP8DBFJUEJooZYMkC/QYxhIRBgNCz1NKuhKFLlZrrQobiVZ3NeNENwkZ3TNJ2mvAx5ZgVpIg4tEGJwquc/lF1CDu8E6HW+vRenRPwm8VPZUaAnfv0WWZwaoi+06AKWTrLQCFpfPNUU93l1GxRimlj24T9jqlYLTBVVLHWVOt8ehlZ9UWtdZ04bN4lgO3yJR5r8zqnDzZk/CMsZhgPTXWk56fodTufLisl8fNW0dwkPlAoEKwR0QLEUkUnEySgGHQM6E9lIHTcowQ8DBZtLeLZ7MNmRONFsgEC+1+K982ITF8J5IAskyE3H5Z3+JkGtxfuw+KbyWuY3eI7jnPHoXsX4qn2aOIuD95IvsW86dgp93sHkOu/UIwaza7lzx+5D/xku+4uic/7zEfxL79NpHraPq3j3A8+H62eHrTvn2ekmMK87reOfiTE5Yr/z4OyTHnHFqt9bws1UqttagdAt8gJwmVj5Gw/YO99/XyGG1L7jdnT5dwvrn54Y9/9Hd/+7fb/ePDhqqyKk9Ve4iGM6ZtnOsTszYfs4o1HtC1ITMuQhIwO2B4xwFgmWFJHEP5DNnJXJ5zXmVMfowtoArTUoAQTOpQ7otnv1ifcsR7CPXOkkgHv/dy53W5XHnRphLgDFv379oPEtxxa+Nxp/NWhfdEjrMzIZSiolAjyBAfsk85AYQSkZfVwPvH9rCu6yW2DtAIobhmnsucWBSZQxwqCoRqUt2ranl47Fvn1rZ16xSDqYt6hFjJMVbdKShDVKRqFZEmg+XLiAKx5M84pisYT22Hysl1tpAicnN3myNtp9Mpcy01S2RjWqn97qVhO51Ou/naD2hmU5PsyQ7areie/Q4/jhK90548lPx5NHWPIel8QHKY5ohZcBzh1/y6okYTsdL9omrZe5hNjFHWTD3W44pS19TAAAaQL28rrjO3qDmx79HWbdu2Hv7OmX/nct1fY0kfFvb+/n1n6RwxxZ4A67vgZ3vKpLAfZ3e13zZf2BPvvcA1IzcedmL6+9ki2834KB3O9cDjNe524DiqMq7oO4ZUhn3O8AdA2gcRgUqxksBLHGAjqjrvmYx/qsrgvrIsoR3vKmaPKCWIdw++bRv0mi5eo0N86xTnK5Fle5de5+vbazt/sfem3vGn+w/5p9E2N1RbRLpbF5He+uVyyfiZh1dmIzG5UdJr705Z5uzV3AhPziokSBZRh3z1u6/+/N//hx//+Mcf//Cjn/zoR90fitVnqKeKn/74Ey/ls99+VsmPP/zo5vmzV69effaLn0f0h8f2j5999s3rt1nWoqDnGK17Ncuyo85Y9NoHtuuYUgYBGb+19bIsSwKDvW2cxJk5E57RlJl1VUaGgoRouj9NHKiqTF3olveB19Xu7rXWKuYgW79cLq9fv37/xYvy/nuEtCAmG+jRj4tcwVrvLIXcITjk86qalBLODM0OpSsRyfxuYtczAfOBSXYREc2hEhcvpkq4N4lwRFhJHfsIDyKQM8MT64vhlCWyk6EmwmKZdvfjft9XiHtC4UVGp3Ys+JiUdfte2Hu/fpV1kBgNDPn/MvZnwbZt2XYY1HrvY8y51i7O3qe8dd7MfJmvVEqy9IyFZGP7EwID4YAIjIwsDP4jIII/ggg++Cb45QMsIztkwwcGQkEEmCAUMmGh96SXepn5Xtb1re+pzy7WmnOM3jsffYy55t7n3kTr49599l5rrlmM0cvWW1N11UrNTFmbRyA0vianqjFjLFG+BC+9gYa3Goeh1goDCS91difoNA3DwMyllLkqACG4eyOjluYoYnGVMiWQAcyhR9BA8rVWnbT52N4ScXdTNasK55gijOtygNBmtsmI2QK9a2pMrq2HR+4x90uO4Kn2iM96xB5fk/b7mbmhViUlYonJ6Sj5JzBLBpEiunOkZobKHjqFbuaB+8kskSioGxDauAQ1Zl7KG+3CCBq13CggUuPMX7pA3Cdyq7ekhShwygHbjYZjQ4fNWpyMc2DHrRWeuXVvWBo/MRFVdXNKMcpGxEQSLCmt9LjEFkR91gXsHM1pIGJD7vM2JJEKEvrQE8HIaUgZaoklsbgam8bgMAHcCphE3kitIC1vJ2CtiFNKyePgbSLTw2lUU1VltAXtjf5XAJ7nJkUdJxLBZY3SgDt194MOY1NVsxpSVTHcR9QaosQBf2y2jHo1ehgGMwuwgUYWZUbmDmJOzId0pdtTjymIlFIY+PB9pg4wExPH5GLP0wID6HAns2qB2TPBMNCwUaLL/Xw9T9M01VpLKeLuamFKgkoJgLnXFaStd3Gx2AVfdc+om/WlYwwxwFytemmbZAXn/MKI5PVfLr+3BqkBAAulqxarmAPWgc2HDx+aDQek7mLyIhRe3OTitBaPtb7/6DHZ+iRbOBJItddydVrefTuj9ttnsvqW118RofaI93ArmNP6XrnHNK9xk8mJHXdIzq3PqdI/R8q9GM3lwhF3Hbd1npZLWB/z9VjHW+W4+X5yDJJiMCGxbIfRgyOdOKLtpStfa4VVBkp7Lm6mWss8z7XWUqY67a/313PZl7KrXqpVzvLmO2+99fbbH/ziF3OpdUx7tWEGkziZSCYg9OukU3YvId+yNFf3mS1m9ghMqamKEgXd4hJ1rT8FdrRWUuwldzftxqoN6Hlj2hEQS3hk657kcG+ZEcFGwC8kZLfW8wGL+ZSY47UISvtDWeoIbTlSD/EXlGwr/LbBAkRm4bdxE4EHC8cBouyokRkH+JKSZEmCDLBVR4aMuVS/mq+vrvb7PbSS2iAioAoCiJ3DfRKzSOacUsoiQiI0DMMwJjObZrval2JSSqpOxs4kRtAANDduMA7vxuDWYmSSsLlu5JFz974A3OEaeL0+lnZrMfuhTtdoXYio1ire5Ou8FxG4D0svHYD1To8F5g3hAqAxLHDnMhERDtxPeG/ilFJRPfTuQECT4Qkz1blA45vaTkwpudo8TwxmZu0jUQeT5UFpY8ycggU70G6RHpibmVYdhNd2MuxhVD/bRYUp8PZXdxeWlBI59vv9PO1US1VbDM46+fzN9mH9zwBqxbd7S7FSM7ZR2+UUaUFqs14WWdBiz2891eWX5IclvTa8gZjrda5wIXHoG8l8eI3l4eJgFaOUGQMIiN7bih+EliMTBUtb4xySRN4q/AEh80gsowzHEYswC/UhqPVd6me1eK4lESci8qYwBSC+o/1Nm1ps9KlVdUFUWSfBWhffX3+1rwhQa2OYdyCIoBBPqq1eP8x6cNc1qObutihLeQ8oRSRweR7crjnlcVArxXS/30/TlLMQuREpHC0niRYCtHWDMITmTIyd9AfUsiyAiRwqmWutiUCSbS4f/vqjb//Zd88eno0bvndyMtgmZWKksyNst+MHn312Pozvvvd2Pjr+2c9+9viTT6fL/dMXL379wUevrq4b305E6arQkjyLyLL8fbUapa9PXiONO2YkaOe9iR3E+myxVpbkA9x9nkKm1YhTi9lyJqLEIi0j6ne786YSAUYpJagzc9puqpXnr16ePDs6Ozne5tQeg4i6aympDye35xtw+hWeK9bwItYlIhbzmquGd1Dg2CI7RESQhlg1zSxTrRq5aNQ+gnnYaIlpndlMRWhMY43BdFW1NlhKgHkNKiVvRLlEiHaVEIUWze39EgEDrSp36IUnrGKksLrLQFAT12yd+TbvRhRKXUbeIMciTWCP2rBuo7rkBA0V4KIBtSYihbFjGALjikRMzsUKwVlEzWatAgIJWGMsy4nVFKBqHg28lJKZq1Ym8Y5PrBoa2gzAq+achZKq9slhK6YKrahiQfFAbgZ1M9NS51ocKilRavLcMbdpVSu0lJKGgWMGJcs8F4/xVsBdS1EDmVkqpQzDAG7AU3cvphE6mVlgnaXLw0siI4fB3JiZXapWhmfmyao4Qy2Q61FJNrhwCFZzagzypU3NAQCEKfqmAcX3SGKZkgiROyW10qSJ4ODGJl+9UjmE/sFXFoABc4tdJY4oZxz2LZk5m1VaoiX3lRNq8S45QM5wEiFTMwU5u8OaqANpINoRm4Eo1rC6AmZJcjXVUskRxXYhBkkUUhukjeBqxEzkOUks62qdexSY51lyAjXGDmb2yFBBZm4o8RuRnBLFfEKSwQVO4m20xslckhgUQGI2IwspLC9BmN46xtISLnJUbotz2UWBTWTmFDE+zLUJzzAzhHW/Cy8CGCPG5GJSwqZpcrOcU0wgmLUxN+6jws7stSoMeujkRFhb3NVpAkjYWeai025/PU91rg7VWkVSddMSaAWhJAQw2ZBzOM6o49ba6liZJfTm4tFLC6uIZixAGueDRtlij2jlmIEmB+qvd04Wa3ujyg5aQPM9SYu3tVWHVQra/3rAEC/tBQgQsG3zXuozM3clEnft+DgJOt+FfZf72S7/XALfVdQV8ZAQfUElfQmaF7O7HPD2W/s5d4/Y+iHr0G0d6q1+NneCd2rB/ldaeYV1pL58+3LDW9h8M47sEaA6hOHeSl3rk8TaWa6vEauQkSAAu7iTE5FkJqLdbnd1dXV29zzaudInXlQ13HkUcYN3MeafHJCcSmkx+jQVxDNL6e69+2+/+86nn3xcr3bmpNXmYuHbhdk8goxexRBykBAj2mIgimTJXOGJAhQQz/VQTQWzuQeMn5oomlkQ7Pbso1sOb9Fte45Y6Bg4WNYNDldTbdM1xCLaWVvbSqP4tbhZJMzdWyN+3x5859pdr5BlgUWwFXe1lJq6LHlP6uIRSWP2Avdl7YC3XClKZMxEAvdqcGc4ZZbEmZy9mpKDcx62+2l3cbW/uAABJMJgM6NkiFTQYOZEnLIMKWXCNqWjk+3maDtsNup49vTF0xfPn11MnDaSk5OYhwgFkYiWSmTMaVl1RhCgxnAMO6Ilhm41wrCEWF0Ean3pLulu9N0CmlTnoqUOkk6OjjfbQacSPJ8BYhcwMQtL0GpWaxBFAkhYiJsaDaSqBv6RewMTxJG6M7NQCE01HARJGoaGXobDoIyWJET6G8hVbdyBRAQzT0mCgESaYrwCoFaRp8Ts1dSVHOzttgDkbYYyHmutqsmEmmpArHZ196Jz1Tk2Fno2DndGyGD0IKeUeZ7RO4TdJvhrpul2xut9azX7E4IGREQCGORGH4yYIcKNQFeEo/DXOq7Lc1ynwWGDAw+6jBHhJpKZEFMDZG36+naqSb1Dy226rEX6tqp6LLsVvSBicF4x03Ybm6qqmSV3YQYJ/MC93c4ZajEzxT7Pe6uV+lwxtb5uG+2/Zf/7d4Eg5EZG3g2ANGoiHJJzTkSyRH1mVlU7tJAOtu7mK7Cu3ZV4rDR3j07j4hDNLMbkYoYZ3B7QYrWEmJMsZVxK0WDnUkpkRJvNYFpCJ2+326V0SiSZSNEHrYjcnYnmeXZ3aVlB44teFmEPPxxgIBinHeZWajF//vz5T3/60zt3ju6dnfwr/9K/xGncX16lk7MjwsPz7cWDMyjuPzjeDvj89MwpXVyr6YuPPnvCbjmxmDGyMSoE6qoqlLBC/i+rYqkLaG+puZpBDRSQyVjc1QpB2oyPh63lnLOq6lxrUXTPWEpJ86w5WwjgcSudtAYPBerKwOSuuzIlwnbMWvXi8vLJ88d3Trf3zs+HlCVz4lRrjWGBGNkxgrkJCOa6KgMtOS0CvZKSVhjTQipJFBOZXOdIbpko2KVc3asphMWFc94QlVK0VK1FVbWWUooTcuIA+RsZkZvVYPZlZk7CglJ1nmdu5Y+4q16trULTyjAIZAVmKaVUNZClnIdhUC1VvSLq0gG+JnhjgSGihRBomSpPKQGqIHcXT9SiWneKsiaHbKGIOJG6AQFTybVVQtTdGcTipjCr19OscyEiZLiRmhLRyIlhpWg1Z0ZOA3PX6UzCxGrVinpYAydX7Opec17cOnUSrGYwPcBB5u5kNNXSRm4pLdTtiChGmJRUjcygoRkUuVKjV9xN00CckasqM6mbBzS5I6e0TSaTzE3TT0rcWkYxZWaDz3VKKVFKBuNE7kRJanU3S8QsSYRVdVIloGpNzJIHclQ1qAqzjCPDSynTvGd4tMunUmLsB0Exxs5olRJjQuKioaxVKDSXWAJna+5mJWqPBlKrItznaZicLAIGGKcMIjdTOJMTuQAKPzo52e/3qlVEmAS1OikzNVpwR8wUMhMZDEawLEEchUzJ1RyWJaVoLplnYQ7EqRNx6H2zCJlXNxWRxEzWejjpwEiu7MzEpiXnLKnzqwAAchazyknGcUtEZgBRSkNVBwMs0WrxmLBC8x1lVk5E0mbKy7xPSYS5lGh+C7GEGSOmMWVVLXUmpZSSJHb4KFlBFFMoblrdOxwfQC211EmIASPznNIwjMeyNcI8z2ol5ZRyRGusxYcxk0OkPzszNVdV4ZRkiJVqDHFj+JiHGhwseTDJxXmvVJizpFpnoVB5q3Xak9tmM0zTVL0aIyXhlAgCMiGUshMiczOtoaVJJMzs2hjSSynMRkSRITOlRCmAiADXatRUlCLjaqDlQIZUb/0T62C8Q45mXaYLbnqoPLMILQGKo01TRNvNnQzB1U4U4plwV6GYr0dXmyfm5OZk5A2REmGKE4Osj1JjCZ1ATUbcwk6RENDaZtJ6UdpFX2lp1ETL1sycD9Eg4wCGQevhrAINP3T3WhLeWeqJuPMqe4/eW/uvwZ458DfqUIAPserSmwR1mcxDXhTy6IGOR7iU3npZB1U9JO3DjVHwhISgTNj41r7pnt5gFMxSFhkJ9RS7EWJUsyAjp8zDdsjbvNvvWdjgESUkZjpwhhsRTbXu9vtAF+1K0VrmeVfdqoHTYHVmGkzrydn5+1//2o9/9MMnL3fVLRnNsx2lNO0tZwI4MNSwGIpUJ4t0T1vihyWTr3VBGJG7F1N3MB9IgACYq5pGv0NI3N3UoiXfw0FlFneLMWeFm84CyYGrDAhrVXdK0VITLj3eNTOhFKEEM1f1pkGw0hGlaGgzmbnWiq6G5W7C5IfZYJ/nOc4/UkNVLQVEEHEi1KrCXKZgxSeYa5mRExNiSRuZesosIsmqajUzDDywm7gn1LlWL3R2du7p+JPH10+fuwKJ4VoHNmPIIK6eFSNndVXYRvKd4835Jh0fjUfHx/n4eKL0608ef/DxswqiPEBgUGKCB2sI4CAPlk2Vhe6wZZ+9+w0FYM7KEapHmMMZgBuqtdIFYDVIUJmMnSApCSXbTa8eP32+3d49PRmFt9tNZpnnWdX388xeKcl2GGVIZpY4k3A0tIP7w8wzS8pDYHnKfnJ2CLuHOGfEa2bsIsKZGQyCWZWc3GqpJdBeQ8rUCxBmddagd0xdysCEGaoESRJqyBbQGGa2qmRgZ4syrgc7Lpdpr6opc85RK0fIeI6bXDo/MYDofpvVlDhMbKD+E4SJajURGfJmHLdznS6uLnVqgt51yT9X2JVDJa4/mrZwA48FaWE1tUwvkAEc5YTWZhFm5pyptQrNiInZq6v5VnL12jsEro0o3kTE6wyrrhrfAPfD9C862IkBa50UcIiwOoI1gFqx1czIo+sZEAk39cyH1NQP+CCq5hKkuJ1n3sOrwZ1FzU0tOyGktrU3mzufZeJwQFZ7IczMJDV8XJIWdDJsSKwpzfPscBLGUgGL/LWqM1mCGRhAEpIEkmquBhL2Wt19LvM8zwoH0TIFsPJErTPOzNa1s9xVIORgyJjGlBIZeXWHW7JaK6TPeXHyIMUJ+dMo23mMXBElYUrWKlWuWph8HBKTTlduZd5f024Yxzxsj0+IyEpp04FhWGEpcfCxt+zXKNQfA5cXoXg3+GDODDGxSu5kLNi9uPrp93/621/9xjuPPvnGV782nNwJ6MUbG5nubH/59Pmzq2n6vHz+6ZPj00fg48effvj84mp/dXksKEXNYDTsJjtmtlIpMadEwjpNdS5klrMkSURMxDB3dlNPHSlJwk6U0yAj2VSqurvVWdOQI75SVagPkjwlqzWl7OalFJgLIQsnpjxurKqJxBxbUECZzqGXmVLKOcFxubvOTJvjYyUUds9EmctucrOMxCJuJmM2cai5uwVJbl2Xinyep/Dy1XU/1zRsqpqTp5QEXQeOMGxyLUVhm3EEsLu8msvMDIMbS0qJiSlgt07DMExlzjmT6RwI3iZ1ETOe2A5bAPO8388lEeWchUDOqqp1noonIkpjtXqUE3np4KD2YjixZWGH7ufrHs+QG66nKbqApVR3Ik4OTEXNKXDUQQSrB2Qlap1iWluSEKeYclZKTFzNAii6lAU5ZS3qoLBfZqpm7lZ1nyUlSZNqmdVcG/2bExkxS0rsrvt9cdeUUlUtXuEuIK0+2RwZjhlXjZZQeOwWLTPLPNXI5Mzp6mrnRpJIIDE/XrlkFu7D9GqahpyQq5tq6Vm7aaVaazEl4VJttpmIItZ171jcZXmEBhL3l/e6MjEXixmeoO7wVvt32pUaYrZVrZAmkYgPU0qNnt7cTbVWIsouourQWkvVmpkawwYh5TFKXyIicNNiFkrZ5mRwQqAF4Obq1bmZNls6GCJk1LkF4ermBObkAJGAjJmrGxfvnYeGIcSh1WBElFhI2AIJ4W7mjChFKjmG1MZd3RQwATlxJoY5m5EDpETOMCIwSxOmix5jc/7s1MBCfhhkom5VPZA9voJAD8NQom+E1uLOlJ1EBKUqNYKaqIlIZN6qwVAGU1NS6teYiZXIrD34Xipgdx/HMRPXOkMNTc+oDfda6Exws9HWIXNNsK5adUOtUXsbhmHc5Hn2UkrVkhKP4+iuzBFrl1p9gVENQ1K3YkVnc/ckzJKEfZomM3MS41xgs7PKkNMwbEYLlYwgdk6klUsp6sGmEMQSDIKAnVImLmUqJWTHRIRVvUxzSoMA1gnjWltJK/cy4bIaY9p2PdO7PBfpgwC06vR2O9NuLw5dTHCf98Dq1T8SCfKtX37h6/a0mMfMTIx4NFyV9SYwGl9qJODxvJeil6rVAwgtLtmaLkiA326Cornzn69UWKlPI8fZvHa2EipK+KIu7mu/73ieVW+4vX/1qfWtXqe46wOun9SNn/ssNHVUGxp+oXWubj0dZjYC+m5wh5qZidQqOs9aS53mOpXO7Ux9rszd1YLUR6nrY8eNqqrTPF/vd7XM45AkJ67VDPAU2N5abHt08vY77756+vxqNw2bDVim2caB1RB9HAvy/qYSp5HueUwaUeBthIlAh+FpDevBbcrhcBvdEfyFDVIVE5ixEpZPL+OjHuF3/KpVEsAgYTPu48FJJHQjrdPY+EK2sVq6ONjeQ/FoeXxEJJK8F376L0FEKUm8IefDkktJajEmpzZZFo0UW9KSJJKZ4GwV7sKUzBUGr+ZkzDxyOj07PXvw6OnLebe34J8lIUTXK8PcgoLMFYllm8eT482945N3Ht0bN3Ln3t2rat/58S9+9cFHxYU4/Ffv1/cFRiCIUJ87wgJCpkJYepgcbdCG+ulGInKsuEvaEYncwRUwB5mT5mEz76fPP/3Mqj548ODrX/va5u5Z2ZcGqIxqgtZEbWlbBxZpKRqwZJbqFjxnYecj0jKzaZqOjo4Wu7E8mgrjjoBtKi8SVDI2jmOdS+j5SdfBIrCWmf1mm5EIrh7Yu4axpNbucBIRywMlTYmDhIZBIqy+KGm113S9u9hfunv1aoB7awIvVimaDIvFs4Bs3DTjkXAeLPjaOKxQJ/0VNFfiRKlLHDE3zquUEoQ5SdxGdAyRszPzWnspJEOivN+INlf75ZZlaxYvWB97jQ6IkOVg4ixkZvqn2MkW7PHhyIeNGVYsqEYX884sYIK3alR1kKobmVkOJpuWjLtrAPh8ca9EhKDvCqKOZka+7BUWpovQrk7MFMXUlYpp0QOKKoaTQo+tPTXcADBRA9keDM6yenHg/GvfcsiiSaytnlayCu87jCOA0PFWU0WM+hgTVS0xnxwPMaiwVB3mnCWlFOVf69CzWiuavncAs4WZS52Wp2xWgRhgbP1JH5BNS9Fa68WrV0nke9/5/oN7b5yd3X/4cGQiBjaEo4Sri5ff/vY/vXN07/6DNzZ33vyTf/adJxf7KluSjdYSJEOTGgOoQDIeOBiohJiHgftc1Y2HI82RicONCMLsJCmnVDk3CH2kyj3IFJEhcH9wRUyDxDyHuzsF8XIUa8zDowixhYpbBOBu7lTUg9718bNXpydnY2Z11Lm4cIYQcTV3OFzI1SkRhPiw680clCT4w03dqHY4NCwAsyoEZtIybzajEEcPP8iZp1pIAI7pDnWiPA6RtKWczasWGMElKIGcyBPo+vpynkpKSXgoBoWP2+My7czMCcM4eoIFNI8wl5JIcRO9EAuJGSDxUCBolW93b+hlC/G5KFPFmK1nN2tV7OZ/axNljt8YipcoxQJtQCORxGOCm7lN86TV2CEiHp3/njGpu2sFoFFOd3C1BHKFagnUgppa/Ms0S8opZUnJyVSt1GrGmWsnkpNuu9x9v9+HvyYij9KVw42CX9lhHh3vllxWERE0urgobC8xBThRlMZajE1kbXRfTd1JzdWt6ehWt8ziTIveLIiNmEyTCAKKrY0jwVSpyU5AzRVqZklEQKYuMWTfmlBgYU6puoUujbsDFCo6CYmIqht7s3mRwTNzSMtSa5YJ9Z56uAruEWqIRCRuSmWmzYE0HG14Jwl0nDdMFDWCp5wzuQRkOiy4q8W0HLmDg7sSodqVkrSx8ebznJgC121wmHPsao2N5TmlWquAMkfc0nhZvB4MrnRnCWCeZyBq7QfrzYJgPwhxqQCSMZm6cys4xMoM2amw/M7CLFHTAtC0hs1CvWBBbXEQdc2liGREbRgU4+qwCmcz1daiEc45Mk+1IkmEsrtXVgAc7GsayVjft6rk4il3445SinkNTEgH87XJNzgTwcyqqdbq7khM8GJe3GTg8ejYOQFWa9lP027aq1tVL13RG+tmpXtIaJq1Vi133xbZCFEb6V3Dz7jTp8VUPRFFt8qWtsCtQGSlpngolOOG9Av1UKm7V5cVgUEL63ntrPvpA/05tSp+bI7+e7v5zvgu6X6/fR2af6GgpyAQmGLAJ95EK2j0giZdbshy1evL6TlpWKslcTrEUDeu/WZKSat/tms/hJc3ZtvWH1ks49oZr33z+j24CRFcn78t/G03nw46Lcry13ZuoCWMIgsuA2usjiyJOCQB9/t9TOlsN0OQG2M1k8MswIHWwnpmGGGYaX8WAZ43d5GTk5Pf+u1vPv38849+/uGc6yanfZlFxlIqsUUlikKJluI0b60fY2GLTri7dio1ooVa5lApwOr+uHsbsLDDow84XusWO5buOgCChA0EMpNGuN+C0SD5VI3ebzApMHMLUW5CFG8+o0M4yAcVJ3I3ojCM1B9966WoGjOllMwLDsvAiSgFURNImAZJMfRHFkwTrcirtZK7cCKS05Ozu+f3P/z8F69evTIgMcdxqnkmirMxMtOa2Y+HfHfcng/jgzvn3/y9bxahf/zd7/7igw+evZrO7pzv50pJFuahdZDdNt1qpr2tW1oACxQA1KAE5WDyCOYcIQr2HSP00dzlaYbVmsrMzFOpP//lr37+y19cXl7+wV/4vSHlYRgSs3U0eHsiPRbvm5gaTMa91hq1P+r5Ejc8ufXN2JOoQFaTUJ8BSRKKjnH5ZlB1E25gALjDot59IMEiIlDMOyOKOQARgx3WemYgokQSqZn37LRd+MoUxg28sSdWyI7ISLnJQbW92YghblXxbpovAHAGdabZSKg6rpKYQSzBl9EZwoIonXOKXzJza/r3PpUwVW2MuOhWrroxrNaqXqtXiyp0a0EjhLfQfH1zEMvKOZgaakrLQffCq3Wy5O7LJZsdCogtM7GDp+MFDuro/gLugT45LGMiWnNECq08SztULJhO8vHlr/V+sa78tLhv8+rQZU7Vl15C+IUvqiBHrNE9I1P39egxWMTbQaRKSs4k6YasIHU3H7+sWqupKapb1xn2GGlZ5O4A1Fp3u13OeeRGXLccsGi1ANyEwYpHSX3I5PA827ilqjInkSCNmkspV1dXAP7sz/7swYMHb7311snJydHREYMS8Z2Tk63Ir5+/ON2ePXh071zw5z87vSx0pdud3C3t3u3NaiaYw5W01hhUpc5MH8+SW+crzjK0Rx3kbpVgQiyMylJYSk9IwARhCwQIgZjTkKdaejLWHqVpMcsjMYKS2U01OBYkAaWSG4RSCuo7tVrUin/26YuH9948P9mwcEVxDI5UqlUtwyanNLhVr2QiIsNqAWxIEqVUa50VDKuXF2MexnEMK+rUKmJDTkJQLVqmxD6Oo1XFrk61OPnsE7m7KREUWuYdxVRVTpJJVMxrrVWrmTo8weFgSVLNp/1uZs0yTPOVu+ecU8pVrWi1Why07NnlpdVAvQ4WNEQdG9/MEShwKd5pDojYSWNUBYCTmbuBaj2QnLm6hYoBAVAYOUm0ThUeJje2STBAUcf9uDszqVZraittO2gQeJuZVVFPLCzMDXvSwh6ozdaILYIUsaf3LR1wh5l51RiYIgrNP+khqgMI1okYYC+zllLH7FAjIlMtvXfobQg8aruN6aYN2PeOUxCLGZwZJHxoc6kZ/HBhZnVJetmRkZhjDpkBY0kiHmKw7hb1l0oxTu5gQkwf5+SqgHAyd3GGwpnIWYopAIWTBtEBmjRT7wlgGUhgW8QeOeSW4sEn0hhOjni/h07LJXBjLE3LPDcANYviwQS4GRZWpKBHd2QW6uV1hkU/HOxw5ZhMIyKizKymiNFhRzs15iTJPTSZ2aq6qoMopT7o3l69FF3NjJkIN2YArFQhgRsRQ1i4VeLVTYaxxXAxOoWekgkD0H6Z1WL8mKKpQRSdoAQWApmbUKrVDIEwTACZuRo4kVUrWsM9LN0t7yyysTBSDiZqlcASWzGz0KQl+DLWEo7/Bo+uGTHlnAC4wU1hVR0SiABOxgwXdwZLyvlqKqXWuZTraX+93ykc1Jhd1o7ToyQDrZ2k0TpJRlS3W7wlja9yeQqkllJaxJN6ZGBrL7h8hbujReRt6/qqybl+/+LIlz21/q8vSUh3OctfabX+ly9ajtktwiFnO8CrV/1edHGFFmj6IdmLQs9yOUvWsRAV3rhkjTnTBjDuH7xxpbdfdLvMf+sq1meLqHPfCltfv+e3L/9G+HX78m+GL+v78/rxv+A4qnCPuUu02UwW4pxSSKoCiEEgP1DsHrhblybDcrbahYtERJhq3c9aq2qbkuXMqcmAvf3Wu2+/+87nH380l1pSBfFUC+1VhAP6yQ0FHwO7nV08AOTL9b52rw5PZikE9HIGETF7zJsFv2zr9N6sJoS7WtZksB7GiKjE3H/3VX2P9Jt5M4J8fRmsz42IOhcacLMChR4Q02r3xRknGWL4Mwy+mcFT1BylhQPMgDWIBJGru0GNo7Lpfuf4ztHRycsXF5e7kLagajoweww1GBJ5ZhqFT3O+t9k82gwn4ziQPHzwxnd+/pM//f4PX+2mPCaN8jPdJqX78osFERn5Qrz8+i1aFtJyyevVtdxnM9vtdvfu3dtsNq9evfrss0/2+/24Hf7iX/hLQonca2nKgqrKfOACAMITtV0jIA/CTLMwoWY2JAlm6SgRHua15MBks9qsHV/Q57vii2rTN8IgHGlqxwQRUVIGG9RNtRoCvteGMLVWd40qfrTV19uNVviCYdgcUZNCRNjdMICuBHhqIIHSnIIHTnp9znHHbzyqmyZ9tYNosZzCUQfo0+8BhU4Rw3Hj2FlZA79JMLE8XAJZMD2Y3lpCa1/Tz+s3ZZLLeS7f672KtDaqvrqudUliXalaKv/x3v64+zmsrGu7kI6gjpu3PKx2pauk/TecPxaIxELZ2s1702boL3Qvtr749Vfc+uvyjNZvWG4mO9VSWhPFtNH79RMws6KuqlU9wDVOJtwIaZcFH/C63W43DAMniYbNch+mMgFYRof64QM/yEukDsRtl1v3yczmeSaix48f//CHP3z33XfPzs7eeeed7WbLwGYYz7bHD07vDEO63F9SPnn05qN7Dx5+8MFHdPRwuprARcyASlBXUnWf5rwZh5SrW1wId/T+4X4tZ2XOjkQc1AI55zRkm7XW4GpttTljwMkTu5MLWycdEK2plFyT6DzXlNIQwy9kjqAFlpQo2shMktigpOZO5JdXu+cvL+6e3RtISFypVevAPoCJqDrKXIk054xNv10snMQTG5gp5cTnd07Fbd5Pu91VzIGnlIjdyHa7XYhO55SKVYLnzeAzSimIelAiM2N3CFvVTjbBLMyemKqy7q6v87it0zRfz+MwDGnLo8ALyA2spSDQxwCpupoMQ6cEu9U2ELh5swlwqFaP6Le6sUHRRvFjdR52JfVZPCc4qxVqdNDJ3aqDrAZWvJYZpcM92CV4vFdnsTYyS0hMnSomsthSSgylmSlgmRP60Hv0w6o5zFNEUHzQKCWicNQNFxMFL3d3F0oxn28r3TXrbJsLjHf5lsMJA24HRJLDsRqnauMy3IqIgbtJxOxA9F3DUsdRVb2IJ3dXOHtmkpwEKNOs6m5IQ/ZofBKPw2BVGeQwY8BIQNVdS2Fq/AFEybRW00BAiUiSHN1rJh+GHAxLmbLBrbqpeozINy3ILpOw2O6QQcgJIKjp+r6bu3hFDeDFgvwBMM87ohx834nBKUWXOCgxiFxCX0vNSS0cfFhV5uSMIOZEAwYzkFhCTyM2A7Q1kK1qnWftnGbMIG81XXIErLdaEREIr8+w2WJmj1INg8jJDU4CqrViZb4Xs+5Rz47Uel1lIXJmsgDUZ2OpplVpHIeqam6cxN2nucbiTmmoNajyEOsiSjySyMyC+D6sRsDb0rBRVagl5nEciEhrAaBlMmJmJbeUWgepVhVJRBSbJKhYcmfGR63VOXRAkBJYFBS6nbt5mmsxMDG5U0DDfem79kmkFr536suOMePAHS2xe9cdPeQ/hzy/N0UXj7sEE23X9S13CIZuGgt3X7s3WRFB3UwDviCCWcKU1/+0POnlCPQagZPdDHrocAGHmIBX3B7Us4hbF+u9uN5P6fYXYQmDfI1cMHdH6Pb05DagZEsU0n8I+xUB0yH/XB4HVjnY+pc3b1T708E9H27SFzSW1/dk+act+h83j4zVBHC8VMtyQ9xVQCmlIUsocrGt8HW926Zq6xYTg0jEqgRvk0U7twlfk4hsjrYPH71x5+zui8+eDbyX7ZEa5mojERMTS0xShFBWtB8CC+2tl2AIWNTNOwPAzUIyjLyNNqweJAW7sMMiNVJ1WwoxUa+MQqoTq1oUOAL+h8Yv6YqAiseoTLux8FC8Wzhz6EbbmZfZinV5RRsrbzweav3GQLkFA2KtAOcc9K0Bd4lH21cFAKNxyADISESICaZmiBp34H22wzYZiPODew9IhpcvLwCMY2JJZa6chGAMcjVhGnI6TnxvM7515+jd83un52cnDx5+/PEn//k/+ic/+9XT4XRDzlOZx3FUr3RzNa6X5br0cFirbWoeUdGM9lqN9Jtcrc1zcasHH3hBa1CaBVm0wcDqPmw2eTN+9uTxBx9/8q1v/aWTk5MyTaWUJALnYppTAF7UaiVIbkrIZkacUhDYAOCcYHWeJ+ZxHMeeLRkxS2aRxmisWogouv1VW5YLgEQoSaIUIXvU17KkSFmaKgl7DMCIsxeFVRg1WVh3tyDvYOtt0iUbMLPcmVQOO1dNQIssWawnWCdhIwKTqpbam3UdJ+wrW3zL8q5TxLZ0SZbst/13KRMzOQNCMrSqFjmInVw9hk1U7dCsUIrZFLPAyLnfqPjE3Y5QbjHC/a8NAt+u8VBUxfL5G8acEJz7y52JGQVeice0gmeIBqU+2OwOtdV6JT9glxwUBCvRTgpT1pLnTgx+SHebRXp9V9y64UuVbeXL1EogBRfX5mquRrZsnS94GYGZzBrzM1EYEyERktb40SZ31AqUAPb7ibnpR4VspNfocGYAbVycOKib4JjngobZphpGy63WmpIenCxI1YI4tvFirARsYrGrGjPbqoJGAMGEE5w9SKqdTaFW4rM/+9nPHjy49/Dh/bOz081mUCCxPDw7f/L05eWr58dnZyfb7Te/9u4Hv3zvyedPdxeXF89fYLo0TEJOCK1KHkXYjeECNze4CYQ7XACHRxelGwtFMgYIllKKYbfqpqrsycFB19NKtckja1MnZcCdtCTNrFWn/UhIaTCCERhMEhXJWmMy2ws5E2zIkockhOv9xfPLZ/dOz8btyBBypkSJTQZxciPzBBauclgSe56FDeDKSkLb7WZ3PYmhmM0RrydyDgC8GTmPmUV287Tb7YRoM4w6l+n62kHR3Vla/THYrHNxqxJC6KAQPrKUWE2qkzMKUDzkCLY06pjNrE5tzYxgbhyNZCsSXCIJwRkzGOBO1RGwKyVUbfEZ9fa1uqXUtobRob4GgFKOPm3oyKu1VmdKbf7ZW/JMwdIfeqgUnDJdvM2DayDCYLfo21ESwIyMWMRJay2lmiq5qSrIWxmFiQB1R63RlAIaIxIMIpJYDg2qiJ2WLWwGRUrJAVU315gnQZ/NCZx8lCLNa+vP0CHqi5DIgzeliRdQUEiY01wthc0yOFSdWViIG9cOiKwXJgLJTEQVNKuRqxPikTPBSRxu7O4MKHMonju5pwiVKQW3ibsFEymYQq0oqKZDZcNqpVZaY0AVnkARHdZaIshpXoJaH6SJWXHj3lnqha+LrcVNidFt62mPiMQ0oIbeOlyYm75kxIvcCFfJIWAgVh5gTq7d5UR25ACEWEQWHv9YQInYNLSCu0BfiBgJOMva9MdrGIbgYQ0gU5RDmVMSud7vI0yJ4royiEgpxvgCZkwsnEI8gxnEyYxYlrTQDFaqJ1S3KOTP8zxNMzNtt9s4Z+nCvOGKosZ/MOgSq7PWOkseaTUGudRs3H2eZ12oa5mXA3q/3j7BJRwgPRZ1UpBLFsksWUEGupr3V9dX1Y04MXPV7qeJFnlLaoSlUOZaYhSz3fzOJHnjJjcf49ADcrX9XrsyJK0CHe+vhQV61UUBDld0CErwWvn51is86OsvX/V2bh95lSTfiKHbzr/hr5Y7TyuEs+rBMff10Gr/r3+ddxDdzStdn9uN/J8W3M6XlQZev9Rehlh/xfJMbx3q1mHXn10f/8vu+a03rL/ltc+uwkezhgVydVczhRpcKbKpm5e/3M914zcDgf4KLlRqJUly7XoMJGAx8NnZ3fuPHr58/Ox6xnZLCiRidUotRWzjdIAEwaPdrNe2FktfBmy+AGrWfONf9BCWR8PhrVZJhAPsbkRSyROoib8TENUNqJoRB+IjvGgr3IFvoRu+4AR81UcC0HhtX1vn1slIraNwiaiN4vU9moRT4pTSIDwMg2lhD7aigGXVKOS5cRYeSIhwdnr30f1Hv/z0yeWrC2rzNYdmvjsNkjJhIzjJ6W6Wh9vhzbPj8wcPTt56+x9+77s//fmvFBAZiJgYk9aUmFc1svUaphUe4XDne85yWIFYfQTAyotFNSHeaZ0GbjnUPM8p8Xa7PT09ffL548ePH3/22Wen29NlJddSrq+vVcPCpwCr55zDQroHFqBlGiKEPkrNzGWaF9dAK+XSTEy39imt1LZ7Z5iIhmHYDKOX2bVlv+5etASclhnMoNzq8V4JrpEzANxL2wey3MXj3FrGt0vJ4Zv69G/IsdRaXW25k1/2+sJFu3YK0iFSEOYU/M+Uc5acGp7LnGHWvZQt+kZLORUtfu2v2sdaV2XTQ5B648TWP7fDdn1vLA2DfpSVlbvxsJbQKK3oUbqBclsNEq+/cXnD6/u5e0DEmd86IF6zwPxafXO57cslrB10xMrLzfkym0Z0mMShFYfFEqvknNFtdUCg4w1T1YW2M4xZJMBAJWqklyEHYNS8T/jYOCtVVfNa6zhuW49kdRXuHlBm7a/lPiz+uomNx++NqplIG1MK5EWg7UopT548+fGPf/zuu+++9957Z2dnKaVMePvRo199+PHnnz873uQ37svlFc5P8ntv3t9dvPP5h7+aX8LVvKqxVaeBglETq2ghAahuGdJQ9CsZCMBEBrSBBTgTJaEkXjBr9cJBsQYiTmJRk1WCtipddSumVV3duF9R9RJAW6+k8CFxogiTxRVW3KGurq4vXj472Ywnm3GQpA2+WabdfrePhyXDdjOOo/qqKEYGsWGTN5zzMNw5vnMyHh9vtkebbR6HMQ8kXOb9brcrpQQmVlXn/T60rLzUJx9/KkM282EzqiqmiVWZeRzyPM/T/rpOs89V61xUVcvltJsvXlLFVjLY51IJtt1udrsrSbJJo2p1VS01kZCkqgoIHarEsWIldOxjg9lSOyKqVWsPLcIBN9MNVgrCCqO4cGdid5JQQhEJzme4EBEXdQ0O3QRAHFYNUdBOK7oioiWVOdiZnjm3MBLdzi9jEkRkdkjFCXBquWjrE3gUfdysQBpT6cG/+KFJw96MfymF+mBjAJG+aN9Hx7OV4Xq0EPurAcA5CYidoOZwT0WVSCLCI7MEZGYiyiIeFD4h+1dNbQqKKTBr1f1cMguLKPHVvCfz5JKIHaQL/JVdrdV7KWYaOuFnUYUbjJzIGDU4ptxNjdgdbQzXqAG4Y1mTu8EdIQKgjYuP2CMm9UgbW+zgIY3bPXJY5WFoVHVMHF0Rq8XMEnfvTQQyITfENmQJNrxoe1Djohlysla7b96NHQTPOcTy3N1JkoiMKcdWV1UmT0LSdJlJ8jBred2NMLNqATkhMEVEiFYuiJzYqQEXD9Ved0+JKVEAs1Pi6lRrlZS9wfhBMGJqOorzZEwco1ncpAo5LbqRtJxJaBru99dB6UwN0jYjKKMikRQB4Gq11qqFmaV3GjkmOTTgmhxzR9T5Q+JbiqrHyiFWYiPmlCGpms+1THPdzzWYu9TMDBxGEjDTWiuaE0JX3O5umMzRCEzb1YDjS0NsMFyiulczJ/JWGfEeqjoB5raoHTo892nPJbj1pe90cP+3E7kl2vD+agqZrc/W/9tT4u6Pb+jaEYVWUATq/UpjDbs5nJsWI5YzZBaAzHTp9/ZIt70Wx7/8fh1bUO9Ud/PX8tvlgyDrbcJ+21/Le1uPF4eA7BC1EIUqMt3MgW+854teyy1d2+Xlg8ulmRmv+riLNXR36tygt76rqWpyv6vucGmmmZmJ0GkYdC513qeUhFgOB+vDTrHlnIUzMUfk7QCYWJpegJZa1Z2dq4fhOjo5eeOtN598+snF01dTLVnGoi4EVXfuHVQCM5fW0lzfzLaCgvTbEEQjCCPJOCyt8KbsbYK+z8igN5CjK7ZUFsiNQKTV4a6izI2WuSUhkXSzu1lvGRxmFZfILw4FwL3zQfQUr/NXSLDxuzUK9LYTGy6aI+5tQ0rWZPPa11E7HxHJWYYcKkYEgqTglTYnk+BdYRbzMs8DpQd37z16+PC7P/zZbm8E1FooB5m3DyziGEVG+JHgLKfzLGeSzjbj3Tunj1+9+skvfnk96/Zoa8qUJG3T9dWrxBtoh/d/WcK/LsH0GtghFIYDSEFb1tZ63O7DgjegNkvYth4JT2UeLOecUx5pHF9dXPzJn/4zncv987vDsBmGIQmI6Pj41N13u72IhCwHLNg7zGoo9MDda2UhGoaUswCmXokoSSIirSUWkUgbFyIYMw0pMbNXLDXQ4sXdKZFAOCUwcZJq5uIEITXVWs2JPK+oayLKcijIozweBs3JhVwkxVgUgDXWJqWEeQpi53CZwa5DDZYcbCAaOE+YwwzmjYU71urNclI/PvWtcUgaQXIYEOIgWiZOEoXpJVltazOG7IClCgMg+m9BIK8NDmWuJnCHRhfDD7a4n9sNxM3qPFfl1Njvh5F/+LqR50zu6GTaN6Bky9Wxg8zhzg6hdPguOuCfIexuaFPEEjAEEel3MlJfWZS9+rWwAU5kiPwpKOu+AONjLWQx86oa0H1ExZz8ds369seZjGLggaTD64iIJKCIzW6oaq3zUqyM/6aUoFyjOQzETLuZBdIBnOI4zS7hAPl295iXjoAjuJTGuQgx58ShUrtyWEs1pM38J+HeGuHum8wM1IgiwSw5Jc3a5X+q6seffvLPvvOn77z37unZnfPz87Pjs+MR98/PPnry5OL506NN3u/KW3fS5re/cvfo+Mmvf/6ry0/t6tojAydshNRNXHopg+FsBLhbJ2YyeGIi4uCdsFU41eD+cUuN3MnMpAP6IkRNahXzsoLMUGvVYlmUyYUhoArAiVgSzKcdrBKlgQiE4tVL5WgrWpkuX5WrO3sLeY3s7scn2yElySnn4fj09PT01AnzR+37/sZf/2vb4+3x8fEwDOM4bo6Oj0/ucMoh/CbBym5m1ogPYjsy3Mx2u6vry6tytZuud+5ESWatpRTrYw5eVUvVOus0z7vr/W5X5+nzx589/vSTF4+fT9f7y+cvX169rKXIBZ/cOa7zPmvKSVJKpJ6cCTRrcSb2G5QeZqYhdhPVQXBbK0ylVmuEnhSVMyIikWKBWGAFyMKJGMyt8xeBWppKRMJStFDENIlcUbTCKKqQ1mpH7qYNgXuYgTIi8iZNF0GmT1bFwaBEEIBI2ryKe7CEM0FEMovHqmh2rJo7gbjnpdY5nhCcVTGo783dRywHsKnNU82Dt7ZZwHFV0eftGwHCUjuDU9DlmlGrpaq1tIdSMEMukTEAEUkpTbUAEFAKwli4uQtcJA1pqHW2Wl1YUnatu/08pCwCZbiSuWc4CzFJKTO5wi0RU5I4S3OnhnHmLMzMBiNTJI7WMpGZi1dzVSNfhMjRHYprUMl0uUIPrrkDk8q0v16mlYLEShvN74H4OqZJ51JLKdthNOrql0Bb5aA2+kysZNw4rMFASskA18osjbUEJCJRJETvMIc7VNXtuCmlUI+tVRURnpotzEyHDVAV5sKN0cWdmnKj+ziOIfsURTsNggpiM5NhYOb9NJGxDNnM5vnq5PQMgEPd2aHEMYINb9ksAE8pRYO2F9oPzM9RKw2wmfecJ+ifE3HOOeVQdYow7dAEG8dhgX8TLKD/TCnlVoBYthNzdpJZ1WUAxMFgcUm8MLybhZEtAbpOwzAMa78VE2sh4hsUxBHuRLG/lkanEY8DtxPRQ7DSi52HgAmrKLY5p0WSZVVN994Zbj+vbJmboYPlDn69T9WuPfcX5mO/4dXfdju1xioPjN9EAiwLGelrTdSU0kIMs7wh9ojGzFJ7/29s57a89HaI1r4Ut7+0R/yHZt9y8sunDhHgqoKwDtrilsJboAXAVxcYydYSAN20cry+XctNW+7/sovjS+jAvaKAcau9WuP/6GdidjA1C8QIS67olPNoZp7M3Rl7d686GzUeg83R9t79B3fvPbh6dbGvutmQVQ2GjMiIkhCzgMwiH3UC+/qeL8+d+q2IzBC+LAZrMOlOI8mJAkzVjgBhDtxkS1MR6SjBHWWuJh5VW0lteImZ1auZaZRags63w+GX+4wbC89ijS02J8A46vXWQ4m3p5S0MwvwoQglTOxQ1QpXuAkbQ4QSeQWMqEXZLpbciWSeK4OoWp11HPj+2fnD+/e0TO4QYFIfs6UsbD6knN2TWSacMJ/ldDfnO0M63myPTo6/9+0/+dHPf3ld9fhoa4a5qInmzeh2OPnVxukxxG/aOIca0HovU3+5e3V9vSMXyzXlPM/zPGcRkSGfn5/XOn/vz/7sFz/+6bd+7/ffe+/9t956axy2IrLZbMxsv59EhBCGvY1Pm1VmYeFafF92rUFENM9zmMSubm3unsdhM4zzbopdvMg5mruqDsOwjBTGHSil1Hm/SVlV4RZQLHdz1MQxEaBmalatVFVlNyLWiPC6hHfY9pTSPFesdzpARLVaONzOroLlWURt9wDNiAT4yzvAazu8/KDw1C1JM+kRoTFFOWDtK5st1BtmefF9tuoAr1vEBHfcGBtZBgTW6+rL3MStXy4+brGZX/gpD1q4VdN1vSyXt3Gf+gZQ1zR7kUsDLEKNdf/QcV3KxLc8I9qC/+L73ztALZzoLqI1pBYcUxw6jvaFx4n14L1rHbba3ff7faS1SyJqqynoMOwcIqWgXu+m9YrqhWvEh723NOOEI/bQzkjCIS4A1P4VS+DhBFWN86RVLcDdzbAdNxHsmZnZAeAQG/PFixff//73v/rVr7799tvuvhmPcsrvvPXmB48///UvfvnqxZP79x9+63e/NmxPv/PnH/3gz//s8uknr6zM5cqqmmlV23tNLMMwmJPOc/USjZBIyw3OveZCUYdzeIAiW73bqiYRyYOnxIkl0BZMAlHAoDlk/9wbxZrVpovgY4UUNovIOQ+jMCgzbM55PD09vXNyut1sTrZHR9vxaBwJdu/87v3793MeN+P29Ox8HMda59PT06OjI8lpMx4dHx9zTv/X/+334h7+9b/xNyQxpRSxC7hlEkCwHhdyClJb8xKM+sIEchE/yUcnd45hQKkQBglMwYTUS3WOlg9Yo/yDVuhUnz+/vtxfXFx88uEnv/7Vhx98/NGTJ59//OlHL66urNa7p3dOhs1AQnMbMBQ4s5gfINDVq3t0AanvgHgvhWhDW2aqFoWRYdjtdq1nCI5WTTd85EgEKMFMiyoDZOLmwXyrTlrLVFVAiVIpJXVCV2ZO7gyyLv8J2JJVWRM1sGD/ErT1QUCwORpaLy3QPsXUYFTjgmI/hs2Mbv9yje4KMwvWlZCZiA0oLCmlQEDU6ikldLRjW6hBzOsNjqvRLm02MBEzELrcqn0+KzmaypGkFHNqVd1hzGJanChWtaupq9XqiSh0SjkZvGglh+TkTBU0cMoJpZT9NHO1cczOYDAcRU2cEo9uNpcilMCch1y1lP1uTDJuslVVrzGZAqMY05FIR3OK5ERrrbVKTuM4VLNSSqmFyVPOSGmeZ9UCwma7nee51uJurTMQGkUEd8t5CLOoVcn8aNyYKgHjkM1sf72Hec4pRsyIWETgbkWZOQ3EACgq5UwAWYNnmZmrqyrMRCTlFMaUQTFjHOsmLDEWFsoaCfmqBA5jIWIOHXTARai6lWIkqdXhmiRsU8tkZuoWPKINIkpDZoFIIudSNea5iZUZwzgSp+oWlN1mtTpERE3BGMDVzd3I3CuKaSImpoA9E1HOCRJD6gXRmdcmKTGkDKBMU845cYqwuCXSnJlTKWquwRPWWqAEGcbJCJJEhkKs6uq1OK73u6J1LrGXJOcR4GkqWuoSJtY6m7HXwsxDltgSjc7enRiqVVUTpVpRb3r6ZSgfh3TrRgh7KxKKhIcWGeEeiy8goojtD2FuL+X6OrO6CauON3bfFmQhUaogxEoTMXNThRl6uhWQqFLCoUbxWBcX3p1WiJoMixFdrsVWemC2YhxZwjs/jEhF7/dGerzcnDhDAAtZ/xL1rGN9hzYozPqDX/S69dnXv24dUN7+5M2IDURJDiMG62d6gJzd/N71m5sH4V4TnHa0S9fX17Hd3L2WWURoHLTUqEMByGmEF8Br7eMAaFUGMwP5MGym3XWtdcjjOI7TvLu+vtpsNm4M19PzswdvvfHxRx+QodQqbrOCWNyRhczJ1MOmmZt0SKqqevApMN1qjzRiCT7E5ewUldFQ+3OgFlvKgkTMSM5rNZQEmKpP06QswzBkosg3zKBeVdXJbMVMuzwg06CT9vVdjWmclJJbgKEspUTEtVb1sG3svbTncHNLRiEjHA4S0RRptRXZDNl8tlq3w3h0tK1lAnjcSGKyWkotcE8CAlXHvJ+owqeikPPTE5vnd998+PX3TnF0dDHXDz9+6qpuSCknp0S0Fb6/3Z6451IHcBqHH/7q5//4T797MU2CxBARnsu+qvEoOvuBxnq1ktt+P2zzXi7p5IjcQaeN/0m7CPit7cCsB1BoY+x0d2n7Tmq1wO8REXN6/vz5d//8zz78+NOIoR88ePC73/zd3/7t365V3a2RCqmaIpaoZJ61oBVQyAylziLCoHjsIfeSUmJQtDEBxOTtNE3jOBKh6lxKi5t1YVEiMw07aSAysxTAKNd5npOQEA3DwEjFp1JmqyoSiqwcoyrRX4VwMc3jONe6pieY5/nk5GQou81m0xhichCitnxjmd8DENkv3VR8WduTgAYaB6aivRLRMGy8NwkoCcIL5yQi43YzpHxIe4iJ2vNayotm1kjPe3fC3c3bhmVm10p0IBIPj2AHFYfWl14ZupVFpTZ0oGaNfnIFCGdHaHqvM+EWsRLBbhQWFzO+9n030z8s67Yt0ahnVV1+351jdfdmh51jGMSs6VkuhbDlsGbVXSGsSuKRT1HEwNZL8zdM9M3UlzpQOXbcXErOeeHUKaUsheAa1fF4HN0bzvMsIkwU2OxSilLqNwTMxsxkiF4UES0FDhGRkZk5BB2naZqmKS5WF103bqX5NYrb+jaxFSGFu4fsZa01ln0pxR2B5t/v9/E0ROTqcve9733v3XffvXfv3jzPWfLx0fDeO+/+8oNPtpvNO2+9e3736PkrPHnx9Pjs/O4b7+yuL6fL5+YzfL6a98eSrx0smXN25pxyNFFyzgC17L6WuZaU0tHRkZvV/YSgpZYYRsMwpHo91zJprTlnY57mWk2zJJ4rzzW3ToMzwOa2n7UyH+kAOj+/c3znbh43aTw+Pz9/9PDu/Qd3757fv3fv3unp6fF2e3Z6crrdDDnl/pwlDRABieSx6uxAztkRqNFDqR0Ajdu+SwKq5uSllF0eNwTXMoHCn/qQk1e1WhD4JbJAd8IJ+wmmc6nF9PjkBCfH0IpS5+sdE6VhRDVoBQiuGCTd2d45u3PHH73zzd/6Q6Dsrp68fP7RJx9973vf+/Yf/9HHv/rok88+fXhyd8tDlpTGbNCi8y1MLxEJwwmheKIeEGIRkaq2rwUAcxIWU1xf7UupQTvvBDWt1hid56kMmy2B5lqsahoysxhcBq6mu7l4eBFODlQ3JjKQW8AZrLAPwe3PDHczcnUnRQ96Y7e1rp4BbkF8wMxE4m5owHIz08TCVTlqeu4hhlRDpVVrSokaL4NsNhtVvby8DBaJqC0ySFUhvDk+mud97WUpyYl6+swiwuKB32WO6pLkNO2LNGo3dubE5MTqfiBpbMFP983M7GByMgJ7Q+iRY5qmQA8CSEwQgbs7R+l3rqWCzDVI4dQDrequFQIjOCGldHx8bMH66FbNzb26iVlKkihHggc2TuJKZhWq3NxAAzlrFzWOfy7tmWVWGx64JCz48oATNBZokbA4OWe2CFuTBRcfIMSUWkTCvaNLMfPjoCadzWrWcFHd2oYdjH9EHRoANxYEdfcaAeW6r+iglIZhWMfimcWjdlwVwrH4aq1TmfP2CCbOtDQTmDlRsi5zlIYMaQ+eGnd07B9nYov+FbmVGcnVrZp6A12ou8YQCHMb+l88zeGEG5Fwi4819KKxolOCE9G43cbPzEw0mFczMy1EWEJtBBobpg6SDJJZba4zD0fj0UYd+4srX4GF3MYbtQABAABJREFUuLOoB+z5VkoTQcOtASFfZUqqrTq9ALmXyu46Bo0UdPGIiz2K/y4lBu+9qb7evigl+6J0Ll62mjReLoFu+vLldfhT356qutCirAKaL8CSLd8e5xzjE+uzivNZ4tRb59AP2Fb4jXjotQFakK0h3LfO31c989VBDl+zjsy+8EK+6MSw3JbXvut2x5hW8e6X3e3uh8KVYonkjCxxBjDP+3naV52tzPv9Puc8DEMOZkxzcwOZqi6KiBHgLjc/KF6ZOS3NT219LWNhyeNmc3Z+996jN15+/vnl7vp43CSHgSXiLjMQqnsbse1RZoSncvPp4Oa+WK79ENGDAtYeaXJjicCBhDbyZQAxehNLzsxKKO8JiZAB6sZ044kQEQhCrAS89txxc9l71+F0D8BE2+nLO5lvwwriZWZ52EQbJ4lsToaj7QjzOu2P7xwlAbsaLMr3gpB8qNNub8U34DvHJ3dPTzaJhP1v/Jf/6nu/87sT+P/5n/2/v/1PfjQCIySzn+TxGDaq3T0+vr/dnp+fX07zH3/nex89f1FTHmVr5uyac56lTNN+SyNu5gaL/YxnsbY5IoIVGHUxae4uK8Jnurm813eGiBabQG0QJh0dHdVa9/t9neezs7u1zp988sn17hrA48ePnz1+9pOf/OQb3/jG22+/+9Zbb6nqy+cv85CGYdhNe6+kVgSSJZOj1mqqwzDEKM3aGrdNFMQwXnLOWURVyRHt+qXx6B1mwpJQS7/4FikpAFioO7lrsDSLCFNTGKSORklJKB3qWRFjLX0TZm7udemZUhBowjmkCkwX0gVmCuWGL7Ez0bKTbje4V5qanSWiJDlnTr0fgsNEaM65JYuqcymh8BcBWq01CLG81W7gADs6k1uDdK9NlvvKTn7Ra23l1j5x/Rsz876nbpVg+nThbcsfN7lqXVLZ5ePMHFSXy9uaOzyMvB5AZHHPWtZq7gduDos+1WKsXl/Vy3pb/nqA1fzzeYr4rnhGLIeP1NrA8N6fTTvmzcFjIkLHcy5X2i+7Hf+wHdAJeZhVfZ7n3W6XUhq3m3Zv1RYZRV9wcExxXYslbzeBWYjIF7Pg64uKICq81dOnT3/wgx88fPjw+Pg4P+LNsL1z5875+d2r6+nJ81cfPn7+x3/y3R/94jFtt2+9/8391XW5erWzAnNVTdsjGIrZ4N5BpLLZbKZpykMaZAiYYK1zCCNthkymtdZSahI5Oj0ZH4xJiEjINKVhs9kY4fJq9/zVy93lFeaK4vsym9PmaPvGGw/fevPR3dOT7Sa/+ejBG288fPjw4dn9R8NmO2yP7ty5c352ut1uxs2WiWN5cOxirTCFO6JRB1hV8yllccChCpRaoiuwWksa8RzcYQ6bMF9knUEF7nJ97e7szCC/LKqaAOQMOMped3vUen1xyY7qdnFxoeb5nbeH6bxeXl5fXwtR6CdD7cXzZxcvXhJsk2QYhu32OG22w/YkHZ/k06O33nvnrXfe/MO/8Af/tX/9X/sv/ov/79//v/z9Z4+fTkmTyvHRaOVQsI5XrRWhU0yLGoIRp5Aexapv4QR3UnjE/AZ385YxA+5moGiGqapjgV4Ckbeh7TXuOA7TEsoxUb4T4qhW4gDEgNY218bM6s5uCgRbEzpnptYAblNMVVlU+UBZBOamMXVDtdbIlWAa8rFElJgaiY/INJW81sdZ4ZTDUFjINTHFIFq0fwMSRsLLHLWIQMSce80xWCAseb+7DE9EjaALFKkvAWoGpvDcAvIQoHIwM7jNhxjcGmGlCjERk2TvMyfqLtLgsUG8lCTtdpPCSy2hSAGGwTmloupWXU3awAmBXNH4BBHSgwBJ0IsxmICg+YO5LwxbqhoSQiISDK7ExASdVHJy8qlMMGw2G5awPsnVTEMk0EIiTkMLN+i0w3N4YzjslhrtqTM14B/z4jUXvXUWIe5UTMG4Rj1GFOGU8pq7crGzhLigWMpEPXMLjDshYP9ELIkSi5FHF5ZDionBWawJdTUdwVilApprIQ+oTyFhScweZFSttwmgDeqCQBQ0DwCCNT6iVndPOXEXsVvDGIIClxwpcRYxI9USOR+TEIvAHY2vwAlgUUMNJd9Ogg9hgN2oZaPOQonIhFgbZ2pUvhFXFbxC2tkn25pxRWeVCJwJr3g1G/fqzYBj8Td0E5qO7m7XeVT775ckVAeSj1VPmIj0tQ5PvFr90hnOa63XWEg902P3W7FOS1MPiwdG1ENBq0Cb74y++a3QYTmNtQ/u5/OlPdLlbS0+6FzcQThPhGXgf/mi3gfmW0e7dcxbIdHr9/83v9bvWW3VG2PGy9e9HkW5e1MY8pt3SZjIa63TNAW+gPNe4DpP3J4wRVro7gvUTVXNdTkWzBmURVw14NKxlhQNRydDPrt39733v3L18sWrq/l4bNFYEz0TBCWyaeNMMGsEdY13AG24Pd4OLEOmccOZuXGcxuNWEHmbKwbA1Gr00SEOzFubi+6jRxG6hSAdxaeJrDm7Fm/0GHbhjIuzOzB7L2EuM1vn8gqrJSLM1GoQjcIKVnW1QmI7E4AkBIdpcWaRBDis5sRuCnV1Ny0CylngPM8W5cJE9WjYPLx7997pnUQG3b3z1oO/+K3fffTue5vN8OyjTz/+8GXdXZ9sjway0yR3JD88PX/7/oM33//az64ufvrpp88VMqaUxyAPYYG7Ipg//PbaXu30ZaO3tRf0ZnGvHBaV20MQ3F6r4loc2Kk5x+5M3Ig6l+bx5ni6nnZ1B/Oi1dRTTneGs9B7u7i+uPz15fNXz3/r5Yvtdrx3714eMxGlIWVjMxNy1zoXzRxdTGiZWbJXdXcybxwUBurLRlWjz6aqWjVLqlaJiJ1jCs3IOKW2+sgPMyRkzEwiqipMWq3OM8xSyhKwKmc4K9TJqpu4MYkDTpCU1gkwCYeuABEJMZM5tRXLnXLc3a1TPMhiLfuz6qPrHPtxWd7u7GCQSErhWwKWLSIpZxECE2oUcmOtMztKKaVOqmpWIxJoffuwSH0ztI+Yd/IeDgoXbsPVBG8bPv4KIEZoF0rxL7SBFm1ipl7ROng0IqI2ABIqks3Nrf3Rst4sKOHbbrPFJQqcKMYFWw8J3aS4e1CpoQnXN/0O66qTIWxrVrDSVrl1/r0kFJ2ODCAIQELaEGrssC9yE+4esx/eB7KIqNOmHMpMMRYEOzAjtCZ8pyRQVTdipq6IR0QcnredrB0CGKw2thBFdaPsp0u5HIZh2IzU5xhrRQvhettZwMwcYWcf6ieKeUw6kI+6H7JrEZnneSHyffb0xZ//2Q/O7tx98ODBdpPuPXj73tnp++9/7Y++/b0//tMfFuaff/Zyc/+Nt84fnZx++vLly+dPPtldPwdPA9t+Pw0pjzisAbdaaxXmxCLEwpQIm7wZshwdbTebzXb78PT05P79+2+88cbde2dnJ6dH2/HBvYcC345Hm82mmr68uPr8yeOnT59evHyVUgIlsJzcufP2u++89eaj0+PNyZDGQY42A4ahR2J9zZiCZsB1nhkEN5v2mOd52kNtc3KCOyexTyAjTA0uLAnCEoxbq2KN7uARRhrmvV6/uvj459n1+PwczHp5XWt1BRENkuZpV0034+iqL549efzZ59eXl0ecx5QV/uTJk6o+vvrGo0ePnj158vTp0+12a6W6Vah9/ulnn3/2CRGN43azPT46Oj46Pt1uj0ny5mh7dv/e0dkpNps3zs7/zf/6f+Pr737lP/37//c/+va3s3JGzkkaWfbN9e8EXc2NH17CFHWbKFw3Lk72oEXvn3YmYfZocDlAArImFEHUVFEQiP22cxHYZDCAhMiBYvlpkEiHUapu5LFaIkKI2BrOHHqD5satdBPOi9tMhxGn5F7DAjMd4JNjTrVWNw+g3ALQW7yDqo5jdrSSXAiagsjcNUwoxRwc2pZfdqVRtSa459746luzgCm1yhzfrjPF9mwAXjd3A7yiHo1HZgdspLqRmqpWkLtL0EMQQ8J2UpwYQAMzAapaHAov1idhCCknuM5VRToEzs2dWi+1x8pBu8ckrkbSiLwoJlnD2+nBxLNIU8DtDQRhrn2aNGzKol+pqhxMmIeyZXNCYdnbbTFH5+Jjba2r3jXHUsFfmoFL/uLeOMFvBdwUJJx0qP+1m181iBaEWQmqau7DMGxzmlRBYtTVrlZxkrqamQuTu7lVt0RIKUlKxKim6s7U+sDRHg9hn1AqjNNbOJAPAStF9T21mJiZOCpJxEyuZkvSYk1Krpkx1eDEjgMSkbBIGs3MTeOeRaWfOO3Vq0LB4BTta5a82Wz2c8Msxa6In7kzE3q7k07kwVJk5TBKgd6joN4d9RXsjWjl9laziDdIp9bHeS2D6nfpS7PfW2dy65jr13pVHN6/+roe/h4gZ8vCjsD65vEOUOfY8suRuWO2lwr36iC3z3YJDpc33AqPbr0ZQLCqAeg58O1Me/n5tln3GwRa9EXBTXtbP9ZvuIGvX86tS7h17Nv3OYoyDiNjEqMbfZJa5/31bp73m80mJM0KCgCDmFmitlxf3+zUp9OjCxJDMt7j0+oWdf3T09N33nnno1/98urVpbmrR8cVWSQ1b8NRXqvViKJ1D47Az1YB/dJlOpB50hKqetSHhWKH+4pZl6ISCov1Elw17h4mKsw/xNgTexAjBCNkv3sNFsPe+xu3njgt+AvEdm53ibtgydJXef02LncydnStM5HnLEMiJveqlHC83VgtRj2/IcC5lLK7LrudEdFmGLfjcLLdCNvFq2eXL57kpPPuxdnJ1//lv/ZX/9H/6x88/vA7meg0D3b9cjzeHo/HR8N4enY+HJ9+/NGHz0sBw1KqbmBiplJmpzps8kL48vqKWq5riWgBhJ6QdzKCgzG/Qcx+Y7GGS/NDCe/wKqXM8zwMQ6xAkRw3MCCgDS0PuPsnn3zy8uVLLdMf/uEf3rt3b5qml6+eBrZ/s9nknGqtcBvSJks6dMNaZtLboYAFuUAHQpmZlhr0UES0YA3aHlSTJGH/zcy9K7FJXoiQ4UHZbQEEC3R9HGmhAVO4ABDmdXkOrKhyaLxHVbTJd1up1lMO95Ve0M1Xr7M3CxD5/9J1QeirM6WUODUl5OAsWYY/ydzNS5/BMahZpZ5lLf4oJnGcCD1OWMpSC4Xp8pEvPteby4y+3B4ui8o9lDh88Qi0Qii0q775XYu7OdyiPrEfO5daj6e9mW982hav2pbByopSj5y/0Ce+/kt3h7Ze+hrn9donb7gGv/nq/bS2C71FEYfj2GpKiFavm6fE6DMdtmJyXlivRSSoIGIYYRuEZ70xwBwt/0Y2uP6uW9erqtyDVeq1+Bij447ojl9+/vnnP/rRj956+41HD8+P75ydDKfvv/fuT3/18a8+ezKcnb/79W+8uqoQzkebd7/2/ssnv7p49bHtrohwfXWdTk6iEZJSHrdjllxrKaVstsNAJInun5+9/dabDx/eP7tz53d+77fv3r17dn5+7/75vXv3NsPAvX+Ias39G5AkHA/cwQIkA5Xg6QQRikBtfzntXsnOUxqQMvIAN6jZyxfuXk2naRpS3gyZvV49fvzy6ZPd1fX5+fn9R29gyBDB0ca1EgF5hGQGwOnG03/+mMiREtynZ89efvbxr7//pwPK3fP7lOT6el9Lo1gf0/jq4sW8323GnFlevXz+9PPHVxeXJ5utEJvZsxfP56lOz5989vDB8+fPd7vdJg9aaygLXbx6dXV1mfNQ0vZaXn4+KzOfHJ0w83Ycz+/dS8N4fPfs6MH9+1//+l/+q394fHaez+/8f/7hf/7y6vKNszMS1lXg2iwYlCFCpmDAVRs94mG1hNgYRf4DLO0yxOJqrHUBOhORkP9Br8sv63bhNWNmkRTblLnX4IILGRIyT8s+CFuac4bVJQAONqKYzyRyJyNnd4IRGUNCbSfOT4JsUrWa2ZAOOmfW+QUAhDDNbprMbBgaYLm5no78RdTX3Ky6SBZhEoYZmGp1NUOtzELMoBA35MgkM8ltqJK3MhQtPXkzQ9Sa2+Aym4WeB5mBqMnCNRsHjpmb9U6ubjBXYmaG0awmUCZxDs1DxOOvtQafIqLPGlx/WsiN+IbZbY7WXd2aopKzmRtCTomZOWidKBTJFnvLPgxpqoWNRSTq29b7+8wMRAEkATAoC9dSBdymNnuPK1r2zOzBYRuNEXYyD74pWGi+LemDqR6Ke9a4eVyEQcF5CltFPCxgCT2EYLJ0ZrBAhiwzHBzdbADW67a1VmcwM6UkIlZLdLOJUx4zuZd9repCwStu3Gk8RAQkrqimTdmPedxkZtYaI7IVzmQdZt8LB0QkwmQVcHIwsTf+mUwRZKc2P+kWWKPooYm7mzqRsUSGz2DWas6i6vNch+Sn41ZEdvPEUS6WVDr7P4OtGnmrTcWyEQnXupxjNNeKmbWJfOvKVu5VKxEJjJnj5yWY85j5XgWja4e0XtXUQ/D4B26kbV8c9B885c2Ao237ZrRu55Y9YrFbIW8LLISWiK6HNd2FU6u4O9D4M1f0kuvUoi/+L0gj+YDMvJ0Dr9+5hGtLlZ1ac6D9hlaBmmNFP7Mc7bVsYfnI7deXFBG+LExch0rLJbgfLnb9Rd42nRDg5N5P/i9O/63vD38/tkyt9erq6vr6+j/9n/6D+NT/7P/27926e21bSiJTWk1Qh/3UYKB162QufZoleHSOiMzO79178expnaoIC9NX/N+GAQWPN/8x4MRNi4O6shrVoCJQC3HhXh4iAzu+cv231/fkF+nfdycilTjt1jq2mKwgt6+Xv7W8+cPt33OPuqnXvo+I2MwKjMjfuGhv/vDO34V76EQ2ItrVwB5WLfeW4B1C8RvPqweLgdeqzCGxemsVGBHmabfZ5O04bDZDTsQw4hYsCqUYwYBTLbi+KhcXe52xkTGnPKR8crQZE15dv6rz1WAbr9f7q5enR3k7cAbOj44yfDvkY8nn49HJ9uTs4RvXoO/+7BdProtsx0Jw1QAqGjQ5jZyMscZv316cr5Vd+CBfvwq7Q9WPQBLelNafcaB19hrXQCuVioib11kTq1W1qiQyDCMRpSGr6lT27m5VU0ppkJcXL/70e3+axvRX/spfUdVf/eIXT58+BfDo0aO333zr9PRUQO5a1ZhZrTCIOaWUJJBfzoAVrSlJFOlj+jEeXIpTdBdiSd3xtRS0pcvL3XD3lJLPFQixK5RSylwB7PdzzpJzFmYRJpEIDKobua9vaEopuQ3DMAyDiHhRQqPm8lXRIUr5aIB/tO56ExjrxoGi6svCOXoDRARhCKc8COc8CCdhjpouiUhg1ILOOWh+vCqZq9ZqDeXRAkpzIphGfRAetihwmC2taoa0G651fuur/8ZvVtQh3JQhos7tvV8ZhS3uq0jdUFvZdxkQe325ksMJSQaFm4dkBFGIRKq25kxzNOxMFHKGbEAXMF5FhnFY7iJGS/LZ/3QbZnXDipJHAS5uI9Z8OZFiLR7hkKIeiMq4y6qFxmlLLAOxeBhoasZJyAnkJMS+QO+930YAaKzMQq4Lb2Rw7LeBFOZaq0lDa8/zPO+n3ianQRKAaDOE4TVVrTWg1+wBswkxJIppeTRMZhiWdl05535jyZ2ur/cffvjxd7/73fe+8uadu3cfPTg9Hen3vvnVSnJlMoE3SXPS9999+P4bJy8/++knv9xOe/Fah5QSIxFthpQkA0ZmR5vh3psPv/q1r3z13Xce3Lv37ttvvv+Vdx/dv7fZjsN2yJvB4eZVKAEVpQA0v3o1RBIbObAShGCGMet+hoyStwxW1AQhFKDsL57OV6+OxxHHJ0iK3RWu9tNnjy+ePdtsNpuj7QkzC9n1db2+vPj00ycff/Ti2fOL89P63leOz85lM+TtJqUEAjhB2I0oyJzRoKnXv/ghmSbiOk+fffLp408+/OxXPy/z/ujohFimqQRgkpmTDC9fPd9dXYtQYp73u2ma3P1FztNU3H2/309TudjvTz/+eJqmUiYtFWTU24HjOAxmtCuDbOdpslLr5npMuQL+5Pl2u61nZ7KbXlY/fm/65u///n9nzB9//OGP/uQ790/upJSDJKivYjE1Z+ris+KqHvxhpPAmTdR2QLMPh5JxdDyiRRbDnr4akYgP8QHw1VrADIkIxAgSrD7uMKUlsLEmALZ0bs2Ugs0T7hTM8QhxblOLJEDI2JfmHntMTUZrrU9nuft+P4d9UXWQLfVE9crMEERLDw6j6Nd2M0LgRG6kSt4YE1seF/l/FOjMXZptjxjGmbITtw4wdcUnMwtbIyIxqtysYQM02n6/j40tIsQQ5tbHW8yrBgwbDRkrBIM6VFXQpocjmkYrdQDOnGSI69QoAjMzPEStIs/y6t4Ik5uIE7VicCu7dhvWzR4vLrZF5+1rDzquQRzcrBtxSingEBKsZW10x5lcOBLvVelxVUBd4lcj5Oh7dFca4R4za22slUHpICKSSESmaco5C/G65D+mzDnNpcymJJJSquTmvt/vA5DoaFz8PfGAiICxQi/TMAwsUqty44t2dYOqewwkh4PiMWdwqqbR1CWxpS65pD0iUktdqrkRdbFARJKQu5Lz0rRp7FZt0BdLbBfV4XmeVRWmkrpnM1NHku1sVHbTrtrRnXTv3j0ze/78eZnmhUFkcYFLId8UqkUVUSAwp9pfcSvcHb2O5atJ2vYI+wWune4XvpYTWL49fA8WF/4lZCrLz0vo35bcF3XGDK/1dG7ldT0kWs4nj8Ot0245Hq8vqE0xuav3IoGvCHW/+Lu+KAtdXwL6+l9nkv1tWP9mlXZ+6R2+1f79//u2W68vPMnf8Nf1e1Z/tag1hPWISJnI/kX+7wL4/Yt/42fH/8DM5lp2u+v/x//8j5Yj/G/+m/+7/8V/9j8h6RMlZhFZtlAf0gS8TFPikAGMaUDrrNFxqzlJtmwEG9Pd+/eefHryTfo3b13Lw/1/L374ZPt34wmKkIAUZtYILFpTicjdv7L/916/XV+r/8P44YP0H+Fmu/Ld3b99683v7v4mgF/mvxO8ygDHQIu7vnn5t2+889W/A+Czs78HNIimfdETpwOQ4dCjBrq7WiJdwAxRo2TcWELtdjGEwxBREhLyYHCAhR6iJ2Lh5E5l1lq4FiTOjOAuouPt5mgci+7eeHj28P13H9w73Y7CNJxuxy3hSIRLuXdyfJbznaPjB/cfPnznve988tEvPv1s57BQ6SFUq8E7P8JpqswCv21Pln201i1vTdTXWKOXN4TBWEXewCrhC+MZ1qDfDV4bOiJaekRLElhrnXZ7AOM4npyc1Fp/8IM/N6vb7fajX3/w2Wef7ff78/Pzb/zWb33r97711ptvApj3xUqFkQIpZt09MjomcmISERDmeS6lpJTyMMR1WRCx9IaGmVWdHU2Zxrs5dK21VqamC5mIcTAjNI4jkRvcSikWKrs5cQrqmtZNAACklDI8DcN2ux2GAWU2s8wcFaul1LQ0ptpCEiJ0+pz43pixivu5yqOihZJkGIYhjcLMHqQ0Qsxsrh6SPaVaMatqquvGLzq2lm4+cWqRan+m/bX64KFstP5gi1tAQcjMoZG42h3LQmrJqqNL22BdAf/Njs+aUF0cqvHD3nq/9wgqOg/uLV8FDqVkW80Atygl9vatUnI/2iG/7X6/FwqbfWh/XbmhZWOss9+ohvTTOBwq0uK1/+obLiLhm9vWPaVFeXHlrzt8Ms6/bbSDdWLzNgns7mnIIkKLfkxvu6EXsLHyqsxMJOHtpPOKL08TnVtuXdx58eLFL37+q+9+53uPHj169OCNkyG998bdjz797PrJ9XbcnN09evjwwdtvvbG7ePWDb99/861H10mxv0Lds9g4pHv3zu/ffXB0tHnzzTfff//9P/i93/n6195/9+23t6MAwXVssFnrhKrmpqGjA6+lYJqyOfa7+elunucUukSbESfHgFx89hjj8dndR4EgTJsBVuYnn5fnT+vly3mQ/HIzTdPTp8+uX1787Ps/ePvhG9/6y38JQ9IXL548/vzxRx/NV6+S2rNPP3n+5PH++Djtp/nRfR5GScmhzCw5c8oGcvBcC/AvxI39/Kc/KvO+7Kery1cvnj57+eL5fHG93+/3210a8lS0mO9LULJR8KESe53L9fVlOPG02V5f7yPCr1N9tXs8Pn+VJc1lX/ZTRFa11mFMJycniUu2fHokIKrARdnPZX9d6uWL56dH26PLC3cvjnTnNDH/7je/+a/9K/+Vn33nzy93u7OTU9ANEiyAyeBw5sRuCSCDkpdqDtLmSMLlhy9w9zYMyEtr97WtvdiRxVMc7B4AsKo6E4JnN1rHCHkXAB6w5bU/0tArat6eYm4KPQkyd27CimCRxCQtDm2r38wkolDzyCLXm8Ld9/v9MAyBYFrRClCtGmaTDnqmREQKZ7iq1qDsBhrmVx3C7uJezEzdosiZvBGQkJlJ9Ov8YA7AMHfxEPokAFVn97gm5lVV0v1gTYL0zh3VapZMDSpjS9Lg7qVWIqIkUSkOOU21UmZ1N/LmcywqEEJs7H6bJw3SWtUB7KaOL/LePVgedh+0IiUQM5zdTN0ErTidJUc/0N0pMdxRYWZpyGLcoVzezL+7N+kdVlVzwqLXxtQ404AehRIze5gqd3OP3I+ShM9Y44QPy3SFqOaeTqCP25n5MrNz2DHMEeK4e5BzpJzNSpmDLT3ljuZOKas2wDhDiBMZmBInqnAzreGkFW7KkkWkFmNm8kyN9x1MiQimpjaTMzu7Ua2Vg4ktzr8iBPSGvCGYGmYPcpxG92Fm5jACMu92u1dXV5BhHMejo6NSSqjVu5rWam0mJ4WbqbWunZCqzsWZqJZ6GPS/eUu9B9khIxlczURkoScew3csQFMraRuXEKrU8SzWE+DLRj2s/N+Q4N1auqugR5dPuQPU0aeHVHCJA6KK01tMHEOnh2OS4UDy2Up0wMFgubt5k4nCinpnuY2vL0KsLnZ5v9/85fLPW7FU//kAO//nuC2HW7r+k9/MpV/7Cix9gFuRIuH2p/rZ3oj8+lZaM/7H1MuNM7eub+Hu/+r/8i/+w//Vd+P3/+P/099S1SBg9tb0yKq2HihoGIQeyalqJMDsSMSBfyZamK34wYMHj+/dxdWX3i4zk1CVK96wlETEDU0Q53/rdr3+kr4NASfQu7t/58ve+dXy7/5y+N9Hxykwru/s/tYXvvONl3/z8d3/hJyJDo3NuM3LT31N0vLbMAuARXEXQBjOZj/VeHE44bpSSolzzln8aDOmJFomDp5VNTO4G7EwiRnmeS4z3MQIxUpV5e12O46bMW9PH/yXjv7Km9/86vbe/fP755cX08lmPD+hzHSU8ug4zcPZ0dH5/XsF8mc//flnL145w4KUUYiIqusonIxrrRBqN78HrMs2sWD9wQEKRERruNeyGdfrf3ln/FNb/bGF6N5q0y1hYAc7EqWj8Wg+2pdSTs9OY7lO82zBHZqEmavOkrZM/OzZ0+9850+Pjo72+/2025nZ82dPf818NG7GId2//3Cz2ZT9FNIU0KAhbzM7nDnYxYU5DwnqzCwktdYYGmiVfiQQuapX9cBwccOLLq9aK7sDHJBn4cxDAmKyt5U0AZKcMnNKaS4awdihbCwsEGbebDabzYZ3l4sEWg1GCtXWlKTQB2631wi0innimYW+EUf2mCSllFIWkUQ5pSQhCNTm1Q8hR5nnOpdIgL0/Eg+Gkr4maPWg0YMT78GKQLr8OHqmyUytlIz24NuasZisW0N4l3bNykR7GzdodPTUhXmWdXhIrhZO6diW1E6M+wqMf0ZEcvgiAzG1swzFqqRwF2/tAe8kfAqLsUYichK49lO9UaAkIlM1EfdQmlDmYALvReubeS/h9h2ghYZagjfmkGb7jdBf6PBkfAFPRednSYOxKuLEIw2H706A0UoniftwVvysptM0NWloJnePWUr1RoVNRJBomrp7F28XCDOxEHEpRRITQWuNZDiw94HE4SQgmDoRTXN58uz5j37y0/e+8u77b73x1htfwWl+82xz9erq/N7pV7/69r17R5Lx/cdPTS8fPbh/Ueb5Qjb55J13H37r97/1rb/8ra++99VxzMfHx288enDn5GQYM1xtdzXvd1737BhGKTqrsqSU2N1qVZ0vLl49f6aXu02S+Xo376ecsxPSONx/8EBrffzBJ8fnD87zNnniaBFfXA5XO7+8uvzo4+fPnuwvL54+fvLs2YtSzWX4+ntfxd178+PPv/1P/umHv/71fHV57+Torbvn7CC166urZ08fV3LP2V3rfpeYZLORNBgLsUxVlwT4ww9+VfbT9eXVxeXL3eVV2U9lP027eVd83G6q+qR2tdvPVffT5EycJCV2s8moFPNq9XKeinptkb+VyrzfjpucBRgs2FWYTXm+KttMW5ZyvS+ocymS6HjMR4MMZrvp1aPTYXr6ydO6277x4PjiEvfu/gu/+wfvvvHOp59+Og7bJGm1gKVHXo4GqSWiNlBqfTC4S662uC4+ycwhVxZdjhgbjDUvNzd7NzkrCuHGyulBbk7RPOrjvUQRDZP1M2NmqzWJRE3ZO4aleXIYHUq+zobGstZYAIIcmIQ8peTBidNLZtV04aX3KC0RmZagIah1th7oOuDBsMsgEjODLVMDqwGZ1FrKsZfBjbwzoTEAFxGhJNxnFZbuEDk5I6k7OzlEMptHztbnE9CfDYE5MweTsFWtqqwcE8vEAiIjuDaPRkk2kpnZtcS5BpzVQsVcuAk6WzVzEVFXKMCh+6TsIkTCBFAgERwIgJjDplJhztJstIaHDDOeRulyDui8r2nI5JjgfoAHJLBtx40V01JhUWntljdsXLvFPdZxbzQyQfqi5u6goB9MVWdVBRlxZmZTddeoLN5KD6pbMjOCQ+Be1J2M8zAOgzlKNXcnFk4SVNjKuLy6GrYbZk5Nuli0etU55bHs9wrfbDacZKqFDJKTE6aicy3mxFoib5SUENw67FmG2GGtOCLS4FJQMwJMyMVIXWMALLMgCMCcUxfRtS4uP4wJ5jqVlJKKM4igGjV/iHFW8+cvL16+ur5z70HKY0jIbLfb4812mqbdbqq1wllEicibrgCzgEia2KIisgh3B5jImJKTMsSsujcqu1Xo6dVNhLV/qgflHKFSb7C0V1iEZU8uv3SzBXH6ev92HdQu3nT918N7fEE/32gmL5+IE1ocLXqW2+PjA9IMTajhAD8jEsDN1KFMWbocIlaR+vKNWIXdC1BticK9Qx6W3wONAhWA+/rkI12/cdjlylsw2kPS9Z25dZdWt4JeP8/1M/qy1/qAv+H9zZwc3kmAMx88k5mVOlktzGvZsmDomPNGgvzQzMi6xgZZ5Nq9/Ppary8skFY1suZ1iETuPbj/8IN/fXnzL+jvMfx9P7Rn35n+B5+k/1C1BtoiMyVJRmBYLwjj7ct/93CE8d9v/PPOX5n+dvzy7ev//oebv+vu5v5+/yWAz+/8PXePnfXWVfv9V+f/0S/G/8AJBnzlZvb72d3/5I3n/9byz4fP/62nd/+PQCOrRvM9hxJJs3i9cO3uxEbEZgGJAsU4zZIHBgSWU8ebICUeMuekm2G8e3aSWK4uDVoz8WxV0MvY0FLsajdd7adSdDtkc0spHW+PTo+Pzs/v3H/73jfO/8CP8rX6yPTzX//65cefbuGjYTA/lfTw7M75w4fH9+493l3+6U9//AqgzSApF1VizoNYdVWVCAgOa6ltkCXTYG6IqmUfqSpW81e0KiG1/xoj1EPIEYqMTr3Us6zkdt9qnRMld2XGdjvWerKfrne7XTSL5nl2bVIQOechHYVMi6tdXFxeXV1HR3ozblOWy93u+z/64TRNv/s7v//o/gMHbTaD1WaNzMOLURZWt1qdhyGlFP1YdZvnWRDtwoBsGROzMCMH3wQCqm8uRCASITfiLKRW697UhUFCrjZNU9ABjZsBzEMeQnIpSxIWIlnIiNuAmntiGVIOVspurbVxDnlnJmCKVCTYSEFYcr94OoMkZ2ISySnnnIac05BEgtZRmFuhKrXmCzPXZTzVXCPlNlM2byNS6NJHEG46DkSdxmIx8kwOgrpR8DyBiJyDfDTeSe7sN83IMluLpXqih6nRbmcoCLaWNdluW5tFpZ6mt6MCAMGhUQUQBM1nB9mt3MFy3ygQDe1hM9kB4RJS87VaQ+yLmEXjIgBruP0Kj24SZReT9qDWnWHqQ9SvffiQAzcqNLnRVDCzGkW2A211Az/mHJ6RgIb477oYi28/gFrcXXIDNVJnh/Hus42aYkXUTEWTu+dMRATtYhZA8AlFLypCr0CFhOL7PE0Bj7eunZH6KyLY5cRqrZeXl7/+8OPv/+CH77758OTk5Oj44e985a2rF5es1w+3Mr968cOf/+Qf//Efvfrsg9//xldOf+e3tom+8t6jb/7W177+9a8+evTo5OgYcDcLiCumq/3VpaAO7tM8TdNu3tPp/bsFlWCxIiVn3hzth+un+xcYNpeX1y+fP5/n+fL6ehzHr73/npX68Ycfv/EuHr35LmRDeQAR9tPu8eOrzz/77Cc/+/hnP3354sXlqwvidOfew7/2r/7L5+cPXvz4p3/0R3/04x//eDPkk82WOX3+7MXu8vrlrpgpj1c0bBv2rc6zarm4VCdIGrYbSXlZBi+ePpumaX+9u76+LtNOi7148ery8nq43MlmMGdjqkoh5bqfp+n6ilpfXeOpFSVmqWVW9cTiaoC5qJd5s9nU4ua63W5rrfP++mT0a6/ul8aETAlU2a/MbHd1f3tUn3x+5/T8wenRy8efnv3yJ+Pmd9+6c/T2owe/+MlPy8nxeHS8nLZ1rKV6NYPBQ0g55hPdAY01FnkmKZyJDgo4HZfaqqV0wzLELkgpubsHNrNDrshBrYLDzC7ExAGHViJiDkJci3C5cezFro8uiEI7V1akb+huzk3VAWLX6tBBBk5CFOz3FtZb50JEmzwgGsuOnPPmaFtK0WD6aqFSaIONnIiIVLVWh6kIs9CuKlv3tlGzMDNCEja4ohpAknKSwA4nzjLt5lC5dyiIiXia9pyIKNWgik4JQtHZM9MQb5hrdTURyTIQQ4g8YMOE7TCoanXbHp1YLbXMlSwLuyQGmI1HGTeJHFdXF4l5M2SrTkQCUa6peb4rUiNyYbh7GpKJqRV3jTE6N2URZ4LVIJhyRw5NAqsMieCSmMc0LJa6ziWHthOCSp5kGFQ1iJcc5MQ12JtFhMSrJxbiWqszkQhzEwtxMyV2YsqhudfYO5QE3mMvhysBZuwsQinJMtACDQFtroBwvtEEjskBSWRRFGRJiQL3RdFzrkmGwKg7nAxMpKpCQ6xsM2IRTqJBl58kYqBqhSUbbCqFWHKWqdRSFCwx98u8CdLsCMkCLx245XEcE3MbEXfHPBuTiKUhw0mYkuR59nmuRMixwbLkgQDUOgOgRA6DBQrfRBKnwdR31atDxuNdubpDWYbt5eU1YCI551Eg7BjDrrl6BUEFrFahJiA10llDuSqlgbxOU5nnRv0dMwlwEs4A3HyyDodrncAa3LyR6rtXBBVWWIilTA44ggQVQLB/AWiSzu7qS07HLZvFUkpfYoruO5kOoYmvLZfVtY5d5JWBWMehQL/wLcNrDCM4ETm8TeS3+rU5C4icxcAON3iO8Y3m/xlxYzjZYVKrFcKd4GauiOKUqgU2mAlC3DjYuCXuFtk5PDUcpvQCQqcZo+7gW5e7HbbFT45D/zaM9WqKLG5F++dNlpUlElliqFv5La3SV/RgcTmrQ0cIredv6imlOHWWBPZV6INa583x0TRNFxcXdS7/xv/6Xz47u3tycidJntWoWAiiDMNA7CAqJWp9JUD5bkbsWmYiH8c8E+m8Z8DcatVEmclmo1q099XbRf3J7u+cbjcb5l/7fzQkebM2FPRbV3/rw6P/AyVyYFKzWkUatTJ68SJeHx3/B6mpwhsRfr35O1/ZL7mxgXgd/H56+h+HShO5gPDpyd978/JvLgu3dar669fjf8g5sfLn9//PxP7w8X+7vVHM3Tnq5qXUqkyScwZT7QquofHLzKkVaJUhDFVzYqQkxBy8GkEOb4bAu8FV66TARuR4w4mg016C8sLKyBTybI46l3J5PV/vd8WBLDuzu5vNmPL58enZndNxk/n8FPdPbZ7EXS+m7/+jb3/2o5/ep3yeeL58eXbnOJsMJyf5wf0/+uM//vYvfq6ENG5mojEldkNRcbhzcXV3GRqfJIBFbmbRvupZbq/TGXGSAFVakHajw6VUQ9IwYFxuLewWyUaIwTMnDeaXaiVxdldzqKHUKQo01nVTGyiGk4HChlfzaa6qOqQmkerqOadJTRlMVK6uf/CTn3765OlvfeWrX/vqV996481753cvXr7a7/djzu4QckcxJxKpXrW6GykRg2XMQoyiBk+xmYuyYEwylaKuDOJW63Mib77PtdQK9jQImcZiDhFFIkppCDorN29isxIMYu2Vhlwrjsbjs6M77ID65ihtkrD7VIu7U2S7UTswM5CIOBxtpM0DdJZliEdQzThzaB1xSmk7JJYMZ4cIc05EVHTWqu6+2+1qrVo1utXeSaepZQq9E0IAUK0pFC4hKffJlJSYmNVqNWWQQd1cIIlTWFoAoINZcwDckV3R4afWL3K34E4P2JM1Qi9lbsTVHksQRIxaVDJHwyYCvGZIo7RrSsQxCObubk4sEfwySxTKDYqmaBIkBAFliv51xCTIwuQV5EUL1BiRm3YQU/ufOQ6D9MIQZgnvHPPY7BIq5TF02BlJolLQrn4hK42CC9idFCBiI3cWUwNbpA3ucWPN3atbSjxwEL85uXIoWsadgROxw9UKABFyp2KWWYjZQAaSPAygGTuaK9SdrOi8n3dgzzk7e0qJMwtk1rnWmmgQEXGptYZKBchQ1G2GSWJhMAhZspmWaY5el5AMaYDFMB1qrTDSas+evfj+j3/y5ptvvv3e13/ra/fvnW5/6+373/nOd/7p0w+neff85fMT0//qX/8Xv/6197/x1ffPz+8Mw3B2esZws+JeCE5eYMA8lYuX9fpqrns2TcKnQ0LImw0jp9TjD+bteO+t06OTh6iWT17Y+OTF02c6PXu1m37+q8+ni1dXu+sH7yXKo2yOsD3C1cWTjz98+oufz08ef/Djn3z28SeXF9fm8vXf/ebv/N4fvPXwnY8//eTPv/fdn/zkJyDbvvEoS/7ks2dX+10pc51Vy3z1+dPZcPfOGcHSkKais6u6VexTmVJKOG024eXzF9fX+920N7NafL+73s1lX+bLeR7mEZyNYUgVDpZdmaupCJnVWltxobh5rYBV013ZRxO+7uowDFbnQHXZPE/TVGslpGRFVWUcyIiKX1/uRPU4y7N6bcfwq5fyPN15cefxB/JunjLluxvesJera111gIV8tllNF2b42BihNuXVHZ6IEcCxRv3r1IxbQyAROcgCEhUuSYibDpmwiBRV7zMN0VtmPoQBS42L4JI4DHV0XFQrAGZJJCZomiQIaUZ4YzwxIkopwYxMScDkFWU3XW+2IxIpu1U1s0TcYMzC5AjRpiFlESlaixVnD0hR4mxmBIzjVqtriXCUhpSNpda51pKo38YgGRAWIe0IUjdyJmbH/4+9Pwu2JMuyw7C19z7H/d773ospIyIzIzMrs7KruqpraKJBECQEwWAiG6RIM5gkggBNQDfQIEQSRtOPfqQP/ehXMpnJTCMFCOoRpBEUjQIpiKRIGEQRAElA1pi7uubKeYjxDXdwP2fvrY993K+/iKhuUDJ9SW5pke/dd69f9+Pn7LOHtddyZQBuySd+MJrbWdlniOk0CmROWs2NJNxikcR5asZ25qx19EnwnVMCoO5jHa0qE4TZQIcyEqMT7nPH5FZVrVh1IhfilCL0Ly6NvIGEGe5k7jRqnQn7iahPrbekhBIXwZ2hR4dvykfC2s7GxMyOOuwYRMIxgbBItzSffpbeMiODwaSVZCSItUyVzD21tueWW52OUge2BhFMnQBTatmjKGeL/OlcmoNcl0EqtaaUWZIkUobBNcIgwlyPisyKBnaXaLVaWRNpaoUsA2mNZB4CjN/qn+wNy922TZ3WT4B/yJzhzljIhQIRV4euQ+LARDXFBi0VIIiwjwwkhnmtOhUJpzbyAL1F8Tr+X7S6JOeUsqTVyapQyn0xr8X4LKGU/XZ3OBxCpJomDhXzcsyQXWv0JSCogYSoEol7Dfp1n2mhJnjwAgDmcDZa0CYvKpM+tUv5XCy1ZRiL6dYai0oUu2hu6vrxxcZj0PsPf7SiUKPdngpKdAwp2acq8rXv9QYGCcSG0ixc0bybNjJzmjD+bQ0krRXp+NemartQd2yfiv8WNzR/Cosho+ttV8/Fq8+Hr79lgff41+sX/1ucENdH3l/403QeavV2NLmUOLqcBXQ4HM6fPbm6ujw9uzlqVceqXyXpqLXxqHmNrA3znD8BUYh/Neh+FOIAlDJQaevDw1SJiPB3f/Uq3vntzV+kIcDB6FISSZ/Sr71WplIwM7ilXCjqx1Ms74ugdomMwPWJR8KwaxOxWMGErpxTEnEI5+r1i7ufPw4asamzcOx6n73yF159/EcA3H70R8/v/pvFGtJPhLkR4JlNdIYvrgIzI5IkGj8H7sLQUlJErbtZiJJQ31HfsRAYFYxg0Ws5MneFVdOxeCllrF4UcO1SKqVsh3G73e73+91ut9lu07pzNzH+u//lr//Nv/Kf8U7vrDY9/JU7r9w6vfHgwZt3Hrz+6fbyb33321cA9bk4MGvNThMQlLDoXn5uvs35zWu3TDS3FC4ncLgOk/WNmJkAN/Cc65kwIPOnjJmTcM5ZhNxNtZQyBBRXF6oSMfKRkHEnJ57AcQQwGKUacyXpduOw+/ST/X7/7PKi1rq9tT1db85unNRavWru0qg1S1dUzaxLqdH/uOWcYW4EBG4ZFBqJlWvqupibbazMoz1ey8DMTuZCglbMNWC16tw1gpyG2JqkPnUhbQ3AiSB8sl6frjfr1apLKRKa0GAtb+gwBAqDyFsnz5TKkdbFGuZPRDJLv17lvuNIujA7VCSHtkJKqZj6aJEdDgIwLdra85iCKhJoUhPRZRN/ooi7qOX90lSBpUa4Cp8gj+TkNPO+zCChxpwCQOhoSxvCQg1EktJsySdr3ybq8WAP+eXoB+GJ37RJPbWUaCQK2cl84r7idgNWJ+XbOL9NrcUL94biDabBUjRirkjP+T3nOQY+GqWAgR7jUze3Wg2LCvC1JebRDDAzwPD8VJlad3SkNU3RGlOcFToX/6nVWY816pmdPjyQ4/LkdulMFOjveRCO997QhscicIAvBDnyXU4IaDRzIiLThkbMktp4BhCPBe5GlEWUaeZDIQqqWo/G+77vAx9iZo8+f/yb3/reT3zxJ1+/++D2jVu3TvpXbmw+/PDj+/fv/9SXvvzK3du3bp7cONlkIQDFKkMBFVSA4IbxgHHYXV2eP/58t71MhC6n9brvulNedyYEJuEEJlDImBPcO+44pdUr9++/8yUf6rOnj8+fPoOODz/4/ulhv95s3A1dQtk9+tEPf/Pv/e2rjz+6+PjDhx9+/OnHn7jJ7/zdv/t3/RO/J3erv/V3/vYPvvfdR59/erpZ37p1S+G73c5Zus2JHfKgPg6jXw3ndJkKJGcX0gQwDVqLVi5FUjcHwNv9YRxrLTZU3e/32+1uPOycAZLdWAY7EKcKGsbabzaDVnVjpVBRNbMQgVW1WmuU5RFNCkQOlFqtVFVlTqUMql7qLhHDKspoUHcThqhuU7rZd2F8+8Pu6bNH/Ul3dnO9VYz7vQQ63pYs0EiUAEM0ETgRG4xBmJDzTMRAC3nYMQve0gRzUC1qmnOPFw4iKqWMtXpouYFDu0eEDmMh5pwSkZtWrUZMkiQyPvEVmWW5AZlpqQMRpZQlWgjVBACB3CFoKF04wP26d2BfDmKSWTgJGaoqu7NIL8nddSwzK0opxaCuzQ0jIhi1ODQiPiKKPD2zOw1jJUqYejSiTzcxlVJBcA41mTLbkBSKw8Cse0TB5qeNX5eXGF0SJoarqZuIcNApEUjYVRxuKKZK48jRslxLHctm1a36npm1jFWLwpXVYQySlJiIc4qqoLsioEnBK2ZNQNlhptF3YRGwJZZETKH949H2bRXV4IlIJKOxO5qqclBfg2Nvjpp2WEmfGBcmL61thxyhKpOrV0ywvDCs7gSXroO2Ha1BnBqFqs8qETS51MzcUNjm7obWgMPMbAaafl8sgMlrbhxRphPLBZGzgHxKWLgZ3Jj6riuqwUgXHDVmGnRiLcr1dubJlGuUcTLLlNtxcxOJPc/dMSWPALSRiYRy5FbhRuRglDqGBFeBEzFnrjXkKBrqr/n2E1LaAKJUrJiTAyLScXcwAxACHodhd3nJrBpEfOG0zeHuvA8BCFYes5YfAIw4+/Vjyqyn5QfnjSpwJRPtRfsTroeuvugaWkZcNPWDLz9INEn5TuXgFw0QWs2yjW2LbBsv8ct7ZQlTq/3kmsxXdbwED5zd7Fnw1MF8Td7Jj13ER86VZRAS7/GmLsvGLQYOd8S8kYK6O6ORftIUTIadWIaWL47nc9/1/MjEKabl8MKbn4+QX/rr/FCe85aWjuCPvYBgiHUHGVh+d3dE9n754T8N4NMv/3rozajqX/jT/8HP/9K/ILlL4gCnlETof/7P/q9ePO3P/+ofARxG6tbgzpNbXEw5JyvFHRCG80JgEqnvhlJ64T5n92M8EwfjCMojih5mWvzXjrf2fwrA+/0vEdNb+z/53LWFrXlv82tv737u/c2vwENRXIWZcK2ETuy8yDN+tPnzk5x4VVVK3KXjhE8pHWUImUFu3nYZP/I8HRsFgXD2KAQb1BUWKusswsQcigCAhccsSMFKW2shJ7AbqVfE6NSqY9V9qcNoqjAFOcwr505yQhYwaXXfVexqSunJR5//zb/yn333b/9g5bi5Prm1uXH/9iuvvnLn7Z/66o133vret7/9re9+xwBKWVVnBPy1lDmoFSebdUBb4GiKgxPzME3gnWN/AV+nIworbY3TN7JNIKDWCuFlUmYycZ5Soilsnv8UzC4+dcNOi3Fm2G5vm8/TtqcWVGAchkePHpVh3F9tb9+69aV3f+In3vliyjkwz7vzA7vklISzm5UyQo1YtNTEwg512KSm6nDXaH4hp+hXopBjhJGZgIiTuBITRwVRiCEUpNNmFkJhxCzsOfdDneHPQLRHwsgtpdSnnIhrUHKGZmbgsyei5Xhg7QWSOWqiKWWV+i7n3K9XkhMRSc6Sk1vtcpcoqFI8sFGRom3jXI+w9kkb3IGmRBd9euxEkx67oNUrAbQrM6PJs2QmM2uYIzUCFpnVo0iet3oLt2RoQA+nZUtE0xQTwGAOiiLNrPFOsb9PzKt1YTeocfOE4og5A104TgYzq6bMjJkhBgimZaK0nMmBzxMjrcCkjeTw5xOQi2PemBaTHMuUtx+Tldc+uJz/ZhaF+gnjE3nzl2SpmDky/tYapaKGzu5NsndeOMsv8gkmN6cF+PjsAvwPr1rNR1AURfKqDxMBd5oE88yabDMICufYAaOMpLV4IUjKHIw3Zp4Sr9f9druttaaUQiSnmBHRk88/E68fvf/eb/ydv/Pm/fs//fWffv3+q/gGvv71b56cnp6dnYbsmtVxGItbZdRRNQdtjRtKxbAfdruHn3z07PGjQYezs7O8WWG11n5FOWsAwIKmGtGsSCCi1QogJ6UM2pzcPtvcfPVV9vrgjbtsNZ2cok/QPS7OLz97f/fk8Y+++/33vvfdhx99NAzDl7/85Xe++uW0lu/98Nvvvfcj53rvwb3VasXMtRp3QpLGolZqIVbjst9fKlZG3WY9EBfBqHVXDiBan666VV5Pz+hqF8mpcbc/XF1dXe22tRZnEvGqvi8VZJxzIZRxNHdFY4qbpoqB01i1VpW5QFi9y1nCopqbmWshIhfeuXnogNa6H3ZmNTMlqz3Rvl+N4zjWMsJ4s0qnZ6fn28fbw9Vuuz7ZrDcbXiBA55n/3HwjJh185uac38bMDvdJFmhKBwlRNHIyucI8EZtbxXHtNHTeFDbH+pqZNjwIOQBZELnPh6qVUrquC/z1bItaM2x8y/VbcPe+76M9JAqTYeUQVnFauTTlj5jIyAQT1VnrwVyOUngLc9xqkhOn5AR1r+amCmKLRjYidld4VYN76CakYRiY2VrDcYRtTZN2Jt0KiNS0g0IJ7oZaaDK2UqvBAx5wzaVeBAvM7MxsAiBcwCzESbKklFItxQ3WXIaIBViDeNsprBBldlApkW9WT33D4gIEAVEjUDGgYWHI/cjuY2ZaK+fkY/MJmhj09GiDhSzqwuExZHCgXvUoEgsAzhSoU6hxpM1bUhs555wlS1LVOo5mRikHLVZMzCjgzeZSa5PhpUUQFpurGiL7CwKY5v+IBO4kbBR5b2pikhQD53HVFO6wGdwZjQ48GC41SAhZmYRTit7xQGmySMskutEkezy7dCklFuSUKXjVZlKNFqPW0IRwB7PHfwBsAqwJSJvPQ6SpOIhFG+TPDoeDmfV9n1IyqzDv+76ohZjevPPF0EVIHGPmE7Gku5OwHsl168JFWEa/x8r/TAEwT9SYD4qXGKDjbLmeUJ9sTvvITCLZrMh/pYMmIPXCHDwXxWFhIud7ma6c0fz/lgBbehI0cYG8eKqlgWs3gqjZz+UFANecgHhRKKBlraDq9vIbnu/puRt5+Qgcf3w+oH3Z25+/nee+aPnzc3e6PP/zrxOB8fvOXsLz9Np3f+d4/8NxHP9v/+O/CeBXf+H/9Cd/9ee8I+YmOvrS6/zVn/8LP/+rf9gAI9RaQyytTV2vzKxBmAhhyFIU7datW48/+7SYkvRVi6rmLHOexKeCf/i5PEOAwET46OSX39j+iflUX1h0+cbx8eaXmzPNRMQfnP1a20u96QQS+6uXf+z4gevP943dH3t//ecBRItIomTpGDA7mEVo0Ubuk7M4216aCITm+5mnfduJKXprmRjkLBEQRj2YHYBqqQTmVN2qqlukpVGqHoZSqldjby2pMK39Se76VOGX+/1+e7DtANl+/sln//lf+xvf//V/cHeTe1+tON27cevW2c17X3jrlXfe8hs3f/jxR0+3e8miRD7tO8e+wAlPYBOxIhZT8bnbnDvw3T0IS5bv9ynJtZzAzT8HmnTy1BFw9Fpw9GBUj+3EOokC8NRjXErRSfsQU6orvquaVq+rtCKiUkqX8ubkhICxlh++/94HH3zw+PHj88uLB6+9fvfu3Rtdd3J6GtwKbkbmmaVxPE2OQfgA1h66uHvVgKYr3MmRmKPEjS67+ziMbkoMJrAwEQ9jyall4YkbbLi6dUlkuuw23ZkDSdHlHO93d6ipGkJ4ZsYyEIFIKDGzOUGi1bPtyCml1OUu5dx3fd839ZrVqus6WE2E2FWHYdge9vv9PhJhDZxkc1nbl5bQF5e6fKzH6Pe5zOyEQJ4nT5REmMjm7Gqz246FDacp3F3myOYJFnwZM6aJrh28dPOOn6KjThItTsXMtblnx90z7o8WNdh5vc8lnWsbDa6h55ZHjCdfTx/7RKb1ku0g1siikX52FZjZF/nr+U+zzacpA0iUJDtg7WpjXtG14sRsbwH41BHy4+rebR+ZisDMXLuRUss1PLfwMZWLjT3nnIk4S0WhaKLzRsnWujfb7ahZ5EZgCofeObvZgc8fP/rsow8vnj4rZehP+tdff50o6jWoZuRBnt8xGGPVesCgZSznj5/sLi+8qqoKKLP0q9Nbd+7cuHtndXbCXTY4C7EkQjAeAQDBFaQ+dtSxZIMTnFJiSYB2ybC7RD3g4rGXQk6v3z49++mf4lo/++zh490PV+v+9Xfe2Y6H/+K/+M8/+/yT+/fvnp3ddi2PHj4ppdy4cWu9WpdR2aINlUXE3A/7YZ8GpK506XJ/uNheKXR9etJBRrM5AN4NhxYAH/a7MgxalbDdH9yJRIZRh1okrbpVr7UGIaS5o+EByUCuKEbgTDkHGICJue8PQyFzIlJDKSMRkUdvahfAyEM0gQsriRt2IOz2SoyuOy0+Gl0c6mePn11cXp2cnGzWm5nVFcBYzbxqKEfArSW24EF7ZpGf95ZEk0RJBFBvTb+RW2wtACLM7ObOHm13KSCjrfzmROTBfudBdsXurlpEgvkvwVUdSRJjIs8/7tEc9Exd1wGoVUspQilChtb2AZ0UJ9v/UkoQMTPTEClIOWd2qrUWdwbFVwtxNU0hsUb8ogMci2z6rZmgrusgXE1ntzdKNpI7X5BgxTtzzmnabmNjBsDm1a1l/uY91SzWJo+NyxnqKk0xyHwYtNYJvxEWIUVGdtV1xF5qHcYxKObbPINXo6IOmEGj7Y1CS8rAcJg2bDmYhGoZxIlInFjdxmoEY4aqF7PMwYYQKljKHEH/ZNdjkEzNtOs6S9F+BgvkOmCBRCeabRIRwUL9yL0qaYs5owc81v3i/cH6rUENTX5EZzGCbUlpVlogYuJoBDZXOEVOUv1o7COxZ3BEeVhS04yOxviG9Ik+GQaTC0eJmAQGnignQUS11insOU6dFi/FJcXchzNcmnBrm1JqVRhEYEatJaVE7GSxwZi5g1xaQbhZchKwmCR3LWYEROcnwZ05EbOV6tNzScRKXIFRrahd7baXF89WqxXRg67rxu1ercDUtWoZ6zhorTzVwbldMwmxgqqaA2BfyBXbcmOmmcJxyiSpaq11diCub6YUCTbg+YCN5khv+kObAot8f7weqeCX13MjUfEyJDCHzNWirHTtDe3uj7vmBNMiYOYGWwRgbSbQtG23Rz59XUsfYkGXde2gdjFGFiQ88/vnCwMgEHUHdH5lOWjt5yYJwvO9vPh1L7mAxZ9e4vT8QxzzOZcO6G/x1c1xidBG8J/v/43fs/6jz735B2/+P26fv3J+fj6/Ut0Erqb/uz/4v/wtLuZXf/7f/rlf+edZsmQ3reHKQZhcWreesHByqB9jK7z7pZ/YXV08/PjjwWpmeLEsGVP1a06bRZ1QWNyOLqC7v9//0otxbxwfrn+FotAdfuA0kyff11o0Mx3vb34FbgxantNbplwia/7aoz80v3+s2sD31xEurWEJNiEwF48j1B+CDTUaQ6jhXdmFASJnIDHlLF0nTXiyQZu0mLs6EZniUH0oVpXcQZAo9GV3wIYyPnry+KOPP/7Sm2/cWZ0cHl69963vfOev/3p9dPWF26+N29oj3Tm7dXb7Vrpxurr/ysdXu7/3/R8coizDIiLa1gsDYd68leGdEOC0Iw6ipTCDbQQtxm+EWDxhNDA7/Qtu9msHE8xDEEIaduO4bKeOxzbIMRqhLRnOUEpJiMxsLEVr7foe07LSiT+PADi70dggUSJCIK9uucvD/vDdH/7g0ePHX3znC2+//fZbb7315oO3yOjq4nLcjznnLJ05XCuIjUVARFy9mrlzA4rWWoPqwNVgrtSEMSCwqkWr1koCYVb3oJIDEtzC8EePC9xrHVl4mcsjhpkK0arL61WXE1e4qmoxM1AUKjk5IahBUlBRuqeUpcvRvU9Efd+tNmty5L7r+j6ql5vNqus6q1rGg7uFts1htyvjqIFK9dZvNQfAs84NPccuFW7rC1LzBneChNcSlE/mkSag6CFmcAMeNNw9Wr50RkXZ4pwxQ1riMmze5NowELj3VpulwNg7EwTuDXUPZ+aiVRHaxUTCxKyNWhbMACRQcKqhNME5GjiEZpBRrHebGp7bvcImVPIL6cLmBymA0EFdjtt8vNSGNz6OKfBOaVkGB5kf8zIxUC+Jo8m9ZY3DICqCNmLaycNnwtyyf4x4288O8pbHZGY9ulNaSjkcxtR3rRwA56DUmBIcc4q5PQ2mru9BIRVcHc6JYFSrgmy17nLiWqvAU0pIbEaZcP/2K1989+1/4h//x7/6lS/3uVNTYnFvjhyD27KpBXWAOO0vLh4/ffLo8Wcffbw9v8iSuq579fXXztark9s3T27flPWG+xVyghU2Y1PnJqIBTiAhUKI4beu9aZblcKBn508/+tGwO0cdMtvt27dXt89Wtx/87BtvrO7c4bObn3366bNh/M1vfWd/8eSVOzdeuXn6+OnjR58/NLPbt19Zr/tivt/vwVx1jOTdaC5q23GwoedupcSpX6033emNG2AfymF+mgWmqIOVwUpxNaFDxVU1M09ElaWwKycnCV1VAOo+jVWzpZoyM1fmcRx3h4EdvbZmJSJStWoerbZGdLHfgSnnXACwcMowYWCUVMtou/3qxlkl2RseXVy9//GnV/td6jYQLuMxY2VmICw7mObJGaCquEpp5JFCUQ2asmm4PjMBEIkASci4CR1Zo23j2GcFxCAniBiE0yR4RnMa2ipYuBGeg5kTM5GXUgKPTQ3yiWByDjfCG2ceM0OCSqaU0GZHcGOoapgWNPFIEWEHEYVhqVVTSpHrjaoAA0JUPdoxGmjFzIxaAVUbMt2JOLVmdautrZXIWaIFEgKjFFtjGO65L8vdZcqJxrbq7mZBjGbzXhsStYBpVTUDkHMWloDDiYgT5ZxMi9YaW7sQqlppNUF3ghMZUNzEnBmBrTU1IlZrksJkHppxwpxyT5wIZpGF4qZBz5yijh5Ray3FzMLGB3oBE8J5vqPJsCL49Cz4BmcW+8ly0fGDrKpVlSKLAAdB0Mbdpsy9anV3EelyFmKoBacZNy1BnkOOwAssLyaOnLN02WoptaormXOXmBnOxWrzUwlMQpH1ZBprJWFwcFuQWfXJUsfzsoaDbSJdUUGNsY00LjNnBjGUnUKXONSsccRjEhGC/Wvyutxbc0swwqOVRoIPgsxqAHFbQoS5ljK3oJIksHglg49jiUG+vLy8vLxk5t32Ygh0WR1iRpkdgRZzJng+pqd5PZU+HfN7jhtVC0GxfBHXN9q2lwZEHGAHLTAOPr3/WtQ31Trx447rV4gXQrJwPl7+2Zft+j5XnheZjuUlLU5O7lMjNtGcradZp/GFaH+6p3a/83g+935yj1UwZ9bnq3rZTbx8cHxRlJgcgpd8dvm4r4389VP9uIHC9Uny4gctdOGnToFfp3/7d/ofjr9+995/JDml1JvX7e4SOI3XuUlwH5O4/4P/63+/1MFrDbDu/+a/88vxepjB3HesMhKpqltlZqUaIay7ml1rbrz3+v3XH73+8LOPr3a7GycrTk0DY3EvznF37jY3A00P663DsQL83PHm/o9/vPllNIW6qYMDzVUkgAj3LtrHPzj51WjqYeZl3ebtw899N/2iVgfTlw7XkwXOVQdcD4Bj2U518qPjOE+buCOa60gk7p4BSkTmTJSYE1Of8qrLq14cxRXFVA3mpObVqilKqVVJQWGMqruYZfM6jKNgIJRS2MUGffbJw/2nT27zur/zxnq1GTrj3HFKnnO+fTPduv3h++//5ns/GiLeIDJruJw2Y6dua58Cm5dOMJoQkssQt/V0TB+fR2Merrm45K0LJlCX8f7jmedvnBN8CLz0hO+N085pwWWtb3mdXddFcT4i7cM4kKPrksL70824Pzy5PLf3f/T44tmHn33y9a9e3rt972xzdmO1GnbDMO4TiwjVsWZ2pEQEd6vuojVSOhbJ9RZgHOcwG5wDbsQ5ZXIYKRySEyGcIWMwmJgYTOqWrhNnRBV3rHXeZ8nbDjGPnhMZOZyJ2kYsYEkp5RYAgygKv0SUc16tViklZmRJDHJYOQyqejgcDodDuOPTTtQq/D7XZqfZTlPS/7nJgJfZn+VOtFwX4UdOM6HFlsQe0eyL1js1hdhr25OZAVP6e5pUeAHrhMngG7yJDPvR8mPCHRBREEhPmeU44WRCF5O5FTYX+/XxBn/MRjdP++PFTFxuL+4sy/kfI7WoXx1H5sV7fG70vfVqtbwwtSTC9Z1uOpY6lLQ8rr9ttqvhkof6yfKOmLAsyMfU8WBIGT0lnogtYe4xa4lotVpdXFzUUrquI/NSyunp6d07r929dfMP/OzP/t7f+3vfffedGzdvBiaBIWOsd8BN1TSFcU+E3eXhyaOHH3zw+POHl4+fjodDoTSk1Avff/PBnRtnuHEKIrhGsp3hcEN1UaumBAGLg3O/gY4x5YQScoZpubp69P3v7x5+0kldZVOv57qTizV1p2f33vmv/1P/1Ktvfek/+L/8pe/93b91OO2/+Nq9myf9Zx99/OzZU1W7c+/unVu3i+r50/Pzyy2Yr66uDvuxllK1JtDInIm7TGcnp6dMadWvNv2uDJUW/UGd1FKMvXJV0sHrzklz504D2ADqs3M+VJPUxY6roKrVTGdYLzEnIVc/HOrVbnSzNGriDKbI2bk2fBIJQ9gNalajsjVWUeuJyqFgrIeunha/LP7pk4vH28OHn3za9etutX4Oku8ESSJRdnAiO/J5LFeWN9JW11rVr51iXmjEKbJZNNUCY74GobROyr5krbfN3ZNIlhThHsgSS4SRi33n6DfmjFrrOI4iwpy6riNHIkR6H9AUuUfmAGjP6CdmlpzD8puZaeu3lZS0VKs1VtKMxfCodRMtbdFy9bmbO8XWMFd6syRnItVaS2T456RYXHZyKEtamoLARy3tF2Cxcbs7J3HA4AEwV3cGMSfPk7oxweCqlSszo7gFyygkCAFRa41ycQ2h+SRhSR3kDEriFUSAqxGibYbgKXXqqtWYKecORxgMgdhAIizUkTERC3mgzNVsRkPFljaUMQZLVdVURAhwt8ZZMIXKs2nWxhRORORMocNERO4afop5BH2N/Z/U1QVqQJB/CdwCqUQ01wHa0NJ86oUvAiDnHFPMmRRGrjByBgkHUJxaAtLDDVMzM50rKhMCywHmRJyIBKqqVgjMkoDWEersc6AfxQv3mhhIXDjambStIwrBZhB565NyYuZqlkTUaq01sNJm6rC+i1oLeUsYSWTvUwC5iY1ZmQzsEe9x2mw2JydrFgFsGPZXV1eTv4iUWY0iMsDE4uOwCOeJfXoxzQaCmedZ7ZMbNO/HczsxFj7H0o2Y9lQDHMbPVdGpxcMR67t7AwTFQ51hGfF0l/vucR+d/5vS0POffAKZTO7P8Uvn+5nX/XJjPvYluk+gEZpK+tNJQO68fMVdp6swWqS6qXmNiMbe6MWPdBJRI6SeHXeg1QuXrsZzDkdYEgAL6Oi1AP65t84P4oWTPD+Y/5CvzCO6/PXFd7q7ewVaM8TyPapFcgoU1jDs5wAYgJn9ys//2vzr/+Kf+1+/9JpD8yUURRhkxxxLK7epXYO/AiDhm7du3X7lztOHjwatq5TrgjAD5sRgh5kp3JxmMgwifnP3C/MbP9r86nypc1T8YPcnPj79JZorD+5RYiUikL96+S/hhUOIDHiv+8W3xz8Zr3y5/klght4v35rMCgmpRduzzo9gyvpZfBUzfEIHRDI7HkXgD0BIsU2Qg5TIU+a+y5v1GqhVeTiM41jdBCTmPhQzs2qu5A52Z11Ikg7DuDldnW1ONquT0/XJSrrH++HwbPv6jbvp5ool92c3ebO+OBz2ZOu7964Ef+/73/v84oI7MknM7KpMiQ0Ta04Md+SPdS4rLdbrscn5uUnYfg4HZQJ6zcaKFrFry8gsu0An28XM8Flh+ojyQuw3aH6TzhHatCHOb5tHnsHWWPNZnaoqA5m63X6/2Wz6TU8jVdWHjx49fPTo/Pz8J9754k+++5NfeOPNnPO424cOLINgJgwnsICNmOGuAfM7oniIsgi5GbNZzSySO3cXCiZhE5DbsavZA8gesoovLPaIe20YJFp1mGGtx37aNznU4IiZUkqSw2njJDn3XddRAjH3fb862eSciKjPEhqVZjYO+3IYDoeD1vFwOIzDIbqxrOnZsPskfBirjNjhRkaEaUHNC3PRTTMd8XqA0aI3eNpwiQFqqEIEVR4AogkudJxXz+f4plUWZjo4S59H+kyuCLuTE4PFm/8zJTyFQx+FGsmsgyYnhDCfsEV0Dpusk0ie+opj9plZbRX5eSH8OM6LRejrRoammvjj3klT4klEQreZF130tIiiqT2YaCA7PoXWX13nfTzeZfNWDEQyvwlJtR8gEbBEMmAatymAt8CsG6KjEFDVVNWruiPampXU5/Y6dndnj+SFlWKlWKuaRG+Lwc0ZAtcyjOP+kIhPT9a3bt36yle+8tNf/8Y/9o/+7m9+8+u3b9/26PhLwkLVSg4mIphDiRykqAWHKzx7fPXos4cfvvfk84euxoA5uUk9nNTDlY0HrmsAVg6emE0pit9mqJYccIYwg7DbgxN1K8kZBNRx+PzRx9///mff+s4paXfKVWrVwzMdNK1OX3m9pId33v7ql//Rnzk/P98/e6IXT2qxTz/69PPPPrl989adO3c7y59/9PDZ1XY77AfVsdYx6BWYrO8gCZu1b7qTGyebGxtjGqyQQAzSHaf3wcfRxpFqERvFDmQmK5DAoKaHMlppiTk97IgopY5F3LOZsiClvFqtUtedrNecUpQaE7PkvFmt1H08HIZSyH273x92OwPUcRhHkGEYShmLalUnps3qJK9xslr1pzdGp08ePxGRi+2h36wdVGtN3VG9aXaKCDIVX5pb6A43aJPzjNg20k/Lwkybw8wsU+PqbHbiVMQ0Sec4WXNizczdeC4LAW7OBHIlNA8RrSk2Edi9dcuSg0ESn5rsRqBAOCAHk9edFw2VTeEgau5TGm5Cb1omYeYsHVNQP6KTxMGzaJam+yWiEKPzWs014FFEBNNGcqwwgyBUk6PES2YGU5inWmvO2aftE0CQlNQpBAcQjFFEBKYud4dxbAF6RXEX4i4lEi61VtW5BW7atoBwZAzuSpSSdLE5OVCr7T2akC11Xb/Kw/5gViXEq4TJM8PALJ3UwcY6REArQYHnCN1IYnOLKI4BVjfhbDbM9SsL7niRjrrYZiL+Cay5qpJFhrgxa0e2o1XzHTqzIidhSp0krRVo+WQnTG28YJaUNIgTIjecRLqua9kB90hpyHQQNYk6PeJeoapjVWLuVn0n7EzVTc1qLZKEJ3l6jV69VjByn0KydinxNmYIO5PV6L9CgjeaO0Limfoicp8KquDEjAwi4wqjphPms6fXEM+t8M7MKSq0KXqD3d09pRTKHQ6CiTtI4aSJ2dgdVB2l2gAdlYqSmUVa/eS0W6/X7n44HPq+X6+6Wle11lpHn8Hbk4sTnnQMqS8qKstjGRLH22otiwLyMqfLtkAC8yxqv6hTHXfcuVo1F37n8ywzcDjanR+7eS/8oTkDfXRlFu+c/8QTwmz2lV8s8ixPMqMM5uuZT2XT4Czf/9wVhnX0iRM4vg+ItvNjPLk87YtnO5qDl51/ecHNjXhZefbFnP1LB/b4hpApf+Hbl0/zuHFMbOfu7pHyEWLmObTLfefsh/Ew1rLf38q4F69vt9uX0i2+ePQpuzvUvPV3gB1kbu5MLmCLTK0ct0PVsjo7efXNB4dhP273FZ4WGQTmlAiNLtUs52Ttpn0Z/b6/+j8ymCmBjJw+3PzS/NcHV7/w4emvXBtMIiZ+7eL48Q9OfjmcT3KyJpLN73W/8vb4kh7p+ajFRbK7uvlYBjJPiY/9EjHMU01jyk1HOPd8NXiaUTXiq07SZrXebDbPnj0pZdztxjJqSpRyZ4yqg2rwqnJocGE6FwlXVaGUJZFN6prGN05uKJWee+N8760v3P3CW5/uL55YoRunn11e/v0f/HCvyCcbT51SSha9i+425aq8mUKfmBGxyKz5IgCexzk23CBlxKIsPEF1jkHsbKDQ0qXUIKkTvDx2t9jXQoYnXnQDyVR9miBkRzPFLNeZV6qZjSMncfdxHGEBnPVSiuQ0lFGNzM2EADrs9h9//tkwjs8uLw7j/is/8aWbd29cPTs/XB2yJMBIjMAiBHERVjNvkOcWkYV74gBcraokAgC1amquMCcWc0/XrZM3hhQq10EiNmHQevY+dzlnqSgaAlpgZhZxaTJhfdevUpdSIknMnPt+fbLJnbBIXvV93/XrlZYq5AwqVmop434/DEMtQyllGIZhGKoen2MM/vzoY0SXc2BaWDNyUmebfzR6AKq5zA8dyw/OEyk2YhF2hy4SK0Qc2IR5NKZvJyDYGZ7r+z3Oq6UZn6eiM5EJMeYO8/m7rrt5radsItSYiVf4eKrpmOvAuF65fekx3e+CYofaanvuWF7P5FkFTKnZkMWBxQW8/EvnATSzAAu0P9HzD3QxCO3l50Y1bhpEZsZAHYuI6MynzewkIhJ8n3Pf+PQUWtjAzDnnWJUNM2K4efPm2PUA7t+///t//+//Z372D3zjG984O7spxON4SEKSkps6U+IIwg2qVAcIA45hW54+uvjkg4cfvv/hD7/39NHjzeb05tmNk5OTzelJEuyvzh9+/P7J9tyERlODk+pZ7jLB3dVh0emYMji5U8o9rTcQxlDH3e6D9z78/m/+g7tdXndcD/vL3TmLjaay4Rubk5uv3MX2CrL+mZ/5mcP50//0P/xL333vR12tosSexoM+evjZw6dPD1Xzuk+r/uJqyyLdepW7LhTMsOot8cnZ5vad26OXZ1eXBQbxYXfkxjvf7oYyqmql5Nm8Uhl4P2pKXe5XTv04juvNydnZzZSzSN5sNicnJ123cvac83q9rsPY93m9PslZmBNzpHUopQ6w6DHpuu5ie/Xs8ROFm2F/OJRSDsNuGPamlYpuckYtK+FN39+6eZZz9/jxY3BRSma1lEMZfbPZzJfNnIqO7hrNNdp08pzdc86oNVpWqSXNo6dQ1C24Rcg9eA1SSi19Ewy91nJQTrDqlISTcKSfAYe1dvlW9/achShxAAYnzFfUafu+T8RqZRwPzCzSvHEr1d2TcBZhIYCEmcgRAraqgcmlue3OQcRJhJMMwzCOYwN9iSQJ/W0BoLXOy8rMxnE8WW+iwElTPMLMUa6LfJEbeWtGwKxyGhYqAEWJ2BInIjocDgRZ8FehlMJiIR8FQKSLTZQh47gtAcVOqc9JS61W2NFJIqJhGAB0OZtZrWPOmXI6HIacc5IMgASlVHcj94ZnUSR2Z9qPw1AHBhhOFK2NADfqJndnkXVep5TIrZTiQQvBMps8K2FrYGYC5Jy5RbDhblqw/AcZWKgLqqrDRKTvs7urFVIQKOdMDh1LCLirq5qzcyJOKbmFZoBZI6+kUqqZr3Ju/lwwbKkJMRFVN4KXWsKQtfw3t577WgoAWWSAnEmLSRJ1Y6fUJVMvQ5UkDtNo9RQB0ajV3Em41au1+iTSIEDwQgcnJcgsWLSYUxIzK6rRMMcgkeid1Zyl1qJTECIAcZRp2F33+72InK1vufuhHHLOUNJShXmzOgEMwZpGUkp1d6GUc4aJFXV3YlIzYlKCO9RoUK/O3Wr1bHu+HwYnlFIun52fnJyklPb7PcHGcRyGoZTiroCb1RmrjyniXa/XZdT9ft91K584sWyBLGkeYTtaoGhm6iSgxMQRmUwhZdtWY68lJ0JL6VYjItDCIVjshuGmTV7A87JAy81+3mWX/sc1T2jeXCO+fqGvo4EgmJYfmc/QTMmS6sbd3WNRU1N79yXR3TxQbdN2e+Ebj9uz+Uy7hWuDFh1cMQL0kttx99bf1TLl10mGJ1zEzAL90mN++i86cNdOBeAF+oS4iOWwYIE4be4FHB6gnWvuTko81FJtXPWboYzzih3KaD+GzWV5/Kv/1s/tdrsupYEqmWdJAKrWk81mHIcUjNqoNpaxHHdxhZ+end27f//jDz/cXl6l6yUcAQXZW0opun9Bxnytdv3+6v/Qxord3YJBYMmPparR1FPN2N3MX7v6k/PHPzn75SaGYiQiGjMcBOCHqz//xcOCIgv4e/Jr39Qm0VQqWI04ln6CAEJGbmYdp9lnnTxjdScjmBm7RfbazEWC5TIYIkgE63W/XuUs1EnKua/VkjD3roax+DDWfQkNPwEiQihG7IyqZVB0wlp9e7E9f3rx9PGz+ye377x6zw7Vd8YFZ7fu3nv7i/LKrbdvvvnlNx8Mff6Lf/kv/51v/QYSdf1qNKq1krNZCd5Fd5iqtc7f0FzBlLNHC/VCD0KC1lWDOEREgOPq48Y+MpFHdE3457mlnXImoqYD7MfXYc7MXUoi0vd9KeVwOBAfZ3h72+RGSIPIXms5bovCmjVQNyYWZicqDXUvOXdR98x9V7R++vjzjz79+IMP3v/0d/zMT3/9G3fObqaUfKx1LOcXT3POOee+WwEYd4dVn9WQOGchcthYxrEIKHdSzeoQqWEmgVXArVlsIp96LoQZzAYQuWRZWvjc9bnUokCt69VJ163G3b4EKVoWYmFJntgJOXWr9bqXPoR2b9260a1XklPXdevNpt+shmEQ4rTKVup4GMZhX4dxGIbDbj+M+3EcG/GVaq21FnP3nHs6Ljmeh9pMo8ubECxmIAdTY2qecQ4tEcOsXlVDqe6YylTVPiVVNXcRie3bzFXNcK3zJZJH7k29nCYNLTND69ENMpHj1DpGd+4N6RZeH2ekMPXxJALKF3TeTWzJOXbSAoCd4TzVpo6dNe2+9FjnnB3Zl1jmeWdUii4vVY8IENOWvbT888/ear+tcW/eF5illGJWmbkR1nhTfYg9mphC+TJ4B7CAIsfgOLlFrWEixCLJ8y5JSeb2R3aYmnmNE8YIp5TM2MzgYGqks3H7XReloOqwaGZ0BRHlTjarFSeptRJ4tVoJh3eqDGGRrk+3zm4w87Df3bt375/7b/7Tf+AP/IE3HrwGSHWYW+oyXE0rcRPbAgBXwJCA4Qrjwfa7i8efXTz8/MMf/fDy6ZNSh8OBN5uVYVWs6P5iN1xeXT4Ng8M59SkTbOcuRJvNxomqGUkCp9Vm7Uab0zN/DAgnSt/5ze98//s/fOXm6elJd3nxeNxdJdIscnJyeufOazfTGhfbp5ePTk5vdpvTn/lHvvnRj773H/7F37y9Wb15dtuUHz46//zh40PVtO6tODq+eesOZ16fbFKfSlE3Sut1t+oMZl5z7s/O+Hx7tR+2u+G4dV4NOlQbS63RVLk6YadNysx8+/bt+/dfXa9Purw6OTlZrVbMqe97yYnA/aojou12m1iI3AzjeChFyZ0hDCpDBUw4iQg5na5PN6+tAYjk3e5qt9uZ167rEpNXrWVkcx0O42E/lnEY99L1pRSSRIZ+Jf0qLSs3tdZApwbRX8jIw00neF6eVRLCiBCZuZoC3q9ylBibaxfNmymsPASUezKAhIvWqjUUFpiIWSLeJqLAQ0hgkhRatVutgIB7QEBQK65VR1frupSIzcyBru/MzKpy0FsQkTkzWIipY5CbMpGAQjWdmYOcQU1zzuROjnwsy1ltUR5H9oeIXI1BkXqIOJmI6tRjG3RfQJipmZRBGewOEXGCWk0McnbV1DKRzb0O23HNF6RFv9/M2UWtklajzDiMo6wlOBJ4anMSgkxqvQCCSqGBPBpqT6eVyWAnJxGu4wHESkjNjAJGDlXj2d/2idLB3SVJzjnJ0XvgRO4OFo6ubZoShhZR0DKFyRy1aPcI3a1GPd5rreQwuNXqZsyRBW1snw2LR9H+3ShJSH1mB41NSN1UlecgKM6DBh9SVSfAubqJCPjo1RatnJPBS6mutROv5EE5LzlhItc2IiYhalohfl2VJ46hFoZ0Xcc59dGqnsSsNYWrm44TaQdRnwXujJBPIgrNZ7OIdkQkIP5z9nraZT0xe4jtIZIymqRTVTi7glqPkCRhkIIBJ3Ue1A7VB4N7HdTGWrX64MPl5aWI1Fr3+/047GM4o7IxOY7HssbiZ0SWFEc37+g7LhEN8ev08bbbzR/kZej1QsjaahHTi3QkODnumq3m/NvUJp+P2V7qDbz0I8sA6Lk7XUaDbYdeFJEAuOt8kcsv/bEB5PJOJ5zM/PFALfh04Ho1e1l6nc8/j9L8vcs/0dyJurij+Zyxql687OUIPD9Wv+VILq95+V2L+kvTXYuDBeJEwpJo+TpcnytL/Ol/918xq24VcAmkrGpYcARBixCQ3NUE7garLRXFOeduOUTdqnetN165ff/Ba8+ePdvuyq2zfv5ymnMxgAVLSuv0Xj47F8nzzQXoffkeouAIaDmddw/H6PeD0190C2R15szjUIiCMCOaHv3b3a+BZHQlSQL65r5Fv++d/HuklroEij1sfhzGjDnwu75qFMiEIJ5oDKtTmkm6LCnlPvO67/s+p5Ss6iqv9rtiVkHioFHLqAaWltkkstaW2JTYjLk4qTpAqjqUmjer09t3bm5uPPngYVLZ3LiNLtWc8u2beOuB7PcffPbp0+1But5ZyKlPPNTSZAmnR5Aa/PHIx/7cSlyuC552yXg0cdhU2pvzVsvzLE/43FSPj/NivSzPcC1Int6wPNsyxgaw3IbmC6PoNwlqB7PW0xVU/ORM9vDZo7/xt/7ms/MnX//KT33xwZunt06G/QgxV5yenrr702fPaq0G3axvAAjcPxGlxJk4CXuSokYR4ppXq3BLKRXVpakn4QYAW3RgxhHcKkTUpZxSihyo5JT7RElQAWFKnFLqu9V6vV6nFTNOT09PTk5S361Wq9TlEKXoEuecx3E8FIW7jmW73e63u3EcIwAO0aMpHrs2VliYETNbJi7bgPuSDgq0YBuZd9UYYYcuvmWRoWg2k4gEjQvWA002Gem2VU2+3HFTC6fOcM0CP7/rAbHurARHZ4PLtUK6xzTh6TH6PMkjjMQxi0rzclgWfpc2/7c9nnvKP+6zy2zv/EEs0tHufo2osp0nCPyOvdDzwnvuPM9hJebdc/ko5zkQDDgz18wyxcDC4zgGS23O+Sig5b4+PdmcrOLMaqXjrt8kCrCbcTHNLDUlAeWcT09P33nnna98+Utf/8ZPffNrX7954yzg595SHsZkJBY1CcCgBnJohRZsL8ruathebZ89/Oj9Dy4uLohovV73fZ/65Oy1jofDAWSr3OWcdRhrLVlSnzsbh8TcrVYikrqc+s7BKeWU++H8KeeulHJ1uds/u3j11ubOrbPD1fn50yfD9ursZHPj7s0bpzfYefvsotB2P1gmdKebk1fvfvOb33zvh99/8vFne7WPP/7gUFyJ+pOTtN4YwZnXJyd37t589dVXKdHl5XYcagDs1Xm7H4erw9V+9+jy8vGz84vt1Ts/0Z7UaH1FUqS8yme3bp7duPPK7QeRY0wpnZ6ervpN161yzsP+UE216DCM7n7Yt7AqMaeY6tVQ1dzLeKhzvkngIgovpdRaoZY4q6qoZ86i8GpaxjqMcPNqTmzgUAGKKqKQq5bAJC4mGFHwJBgBnhqcgecOeFp4VrFTguHFQUgpM4uaMXPXdQqCVgIxSIgg5k5kBlDAP4kicccgpAibqYnfYEqdxCQkh1GDtQZPhLlNEGtiOLEIwymZW1DqeuuWcAd5MDx3HU/cjV3XCchU9/t9n1OaeoznwDNW0wwZw4TRW/r5mMDVVtXhLg0e5USR0JvQchxA3Uh0MRGI2WzqmQSp6tTf14xsxBuRS4hzVK1E2m/WiUi1KDfmCVWtdWSAmJSUwqSSqFlVVbfERMzm2viOoZzytNmGWeJZCqrx6IXpc6qmagVEKbNAVJWm2pS7m9XoKIqUKMvkW3ggn4g4KphGoYeuUd1s6C9qOY+WC08puQgM5h7FUjDEJ9JNrdE6HNgwARF7MCO5RZnZK5AAIhiTG4HcAA7mGGZOqZU4iJlQ3RyIHGR1m02sk4Ga3IeRF61B8SYi8RF3qq4gI2EDmXnXZYX7tOPO+40IE5MzJRHicGIQuWRmzpLD2tZaJcq8ZjBibpU4Jg7dQFOTlCkL1GCVibJQFqIkqupa4QhBUCJKkoUSqDnZRCTEoQ6SUjImMjZzNVJzc6ka9FyNj63hCLpuu90Ow7DZbFar1eFwiKxPbKvMWkqBMzObopb2+ErReUecsi0tiT77nde9irY9E039au7zKzShoOftTehaweTo1C66KGGhZ0NEZK3HyRf/LoNAWu7mL3q389HqwFMCCEeEpKG1flEwajaHeJnXn5wSItIRUykIrXG6Magv8vFRxW3fpUTEkLhhnzFsE+Rt/hYLxrVr1nnu83zZHf12+LcX3zw79M8dvojz5/Fpf4K+EAQ7MHH2TqdvX9H2HpqgbmgMhtPRTASxiCwpr8wUrj//a3/sV3/uz7dX3Kup1cpEIkkk/Zl/8df++C/9IXaQKbt1koygISEYKbBpYjKziPze/9GDv/Y//RjAd/+M/tS/1q1089qDBw8/+/zzDz//yXIEHtexhMSkceBgo63umpvIMrfImUevyPVhVFUwBU/yu/tfmF9/f/NLrlCFmkNUBE7CIknEwF+4/BcAfG/zF0gSMRycRLCfh5lTt1IrDo1gB15VNUQmJtNvrTBGjT7KJm5barifdqFZkggzGgPWqsvrLvd9bwYyNwUYqnrYD0MZFQ7iaBKZvW4KllJJVa24j9WebS8/ffTw2bA7vXcvcR4+fmjgLsmz7ZV2dAO3z8bh6Xb7t3/jW8/OL7uTDZyBpmSo5KDWLSvRswkyYOqon2OPmRCIp8UeCzamtCYSc7frrQTz0dZ4sBtOmi5AY6CNhdgyzmhvfg70MRmHqR69OOahscUicndiw2TNzEybqiQRUSVzraLt2qqbwbquY9NHT5/s/v7u2bNnn3zhnXu3b906u9V3KXFGJgKlVdpsNkbQqqUULzWBOhJm11pqjaKfMoiTG0xVYZYlIRbjTMIgTRhRm5bPcQ6XorUawCIZ4HGoYy3duuv6FYjyunOCi3Rdt1qtNv3qZLVed/1ms8mrruu6s7Oz1WYtQjlnVT0/Py+HfRkP43633W6vLi53u52ZlTrUOtbaqKFmRpYmHthwFpE8bh4sEdIywvRmSWYz3uYJwcxS65G79rCYWb2RiMw2MP6UZGrZaAY8yKi9cXBzZKuPTl1cQpC+0jLVMtF0EVHjJcbU3TMxWSRKhFCwmMECIbJ4tLA2iZARtb0D7ZopHLJ5U/4tNjssNpE2ughGj2twHl9M6ecKv/OZW0rCET13vojVY28Kc+/uk/+58IEXGg4+JYZs8qij8h6s9e6Ngs/MyADn3bA3N87JmbzOoiyudQSQkcl710pE675bn2yGYbhx48bZ2VnO+eTk7N69V1555d5qter7fr1eJ5bDOBx2Q1Vd9f3Z2dmbbz549913v/Dmg7OzkxyQZjNQtOdaKNaADFrbf7XYOLAbhOvls8effnRx/uzi0eePPvv0/PxyGEeFF7e06g0KYByGw3YL903u2dzLGDrG6jUwJs60Xq9X6zXAnFOSLqW0PjnZ7/effPyZmZ3dvPH4s+3lk0e7qwsYrbp1qRiKe1JIcbYbJ+uMivPHODn9yk+888E3f/o//uA//NFnHz9++OT2vVc3N24UpJT7zWZz++6NL3zhjfuv3rn3yt2xHD779OH55dU46KGMn1xcmvvl/rAdD9vDUBwkswoS7r/+rnQ5pW61Xq9PNl3Xn6xPa6111FKKVauk5ONht+8kuVk5DKNWZtZSm4kbizcloYkJpkmlkJlpsTqWmIsJJJzYXQAj0ao6RpRYhbkOZTK2UaiDQJKwNwnn59EQHLSy6s5tbheHm0kSoCmeMhr6OdZAggPIibVqLWNrQBAGkZs5jFMSSu6uKE7eVvKSWCvI8wD4LEpjUcl1q63Ll4Jp00QkkcCUG02SM5zdEahccwpOGXWHteLqVLwKxqTo6VUimEfbIKZEFRFlSSwyVG/RgxpQaUL7+oLBx4zYWSCAqyvMEQ4GsROyMxMUU3zWJHPDU/KFZuMiGezu4TFFw+2M5WAlj+IyJgo7bl9USiGi1OBuwszVvGgwRPlqtikt1e3cJSJ3lGNqkBDfKO6wqKgCUPNa6wiAuEN45H5kcm5009d7a83ctExJu5eUm4jmJGXzITjFP0JEVq2UQu4c/f1Ai27R9hkEioaOKjfTskCE2w7nEPGYMOixRzJz4wBLSUQ8gJbMClgpcxMh5zSMI+eUu04I1bRqU5wv42hMAKsZCQdFoFn05bkvmB4BqHu/6kZTr1rnuMfh7nmmSYTVCnbAnEDE4nRkVDdCRIGIvYtiCkwcD5Hg0Qo3JvEwwmQiue1wkMScKBsb1N00dBYMbI7RzDg5kjmN1RQtJxrV2r7v57RukDrydZSgmUXiZp63Pw5VNedr52j2uSlhU3GemaOLipYgqOkAADruu+3ksadOTfw+9am2fXT+4HT8trv+b3Ucg9f2frUj5GzJVznXyeP+4ufZ60Lzd48+1uwZzN8yX3SY2PhpfttzHlVrFjyur+MV+sK3fvF+5xdnt2O+vPmLXhyWF1956XN/zseiOYp+yci+5AiL0HUdxvkMmGuf43iUW9AyaO6Ws+vP/PN/9k//n/9VpGxW//U/9Evx4q/8wr/zC7/4h9psDL1ddiKYOTOXoqUMVgsAZjE+Xua3/rflC3/CTs5OH7z5xk88+m/Nr3/Av2hj7dc5pVS8vLb9BQAfn/25eA4fbP7sW7t/GcAbV/+9j07+3HOj98b2T8WvP+z/nE9AuXd3f2J+23vrX4wdzRzF1A2sRBMn5bv7PxJvM1CStFr1p6c37nzv9xy/RWQcxyww49hHYWyuAIiNc/KFSm1MYBAF0raBNhESDxNthiOL5Jwicd2ltOq6YTdEb1ZxL6WMtRRzB3LO5tXcbclPl9nBSlzMr8bx0bPz9z756K1PP7x9++YJrUqi/bAv4+5xKae3Tu7funm13//Vv/Ff/v3f+NauWorWobjaJIwAbMdeG4+K+LnK+2K0l/NwWT6q5gB8yrMcTc2yt595aQkBTFOYlxaPFpINDeFiU+ZsOl5cnsvX44vtedz1Ail9vCcyMzZWtlrrquvXksZx/M4Pvv/RRx+drFcn/erunVfOzs5und04O7t58+bN+3fvdV1fxup7FFUzdeZgeK51dDV3lQB4EwWdn+E4CNG4SEGWcRzA463V6Ri8DsNQtIpIt+r7fkXCXeqdwF23Wq3W6/XZanPr7MbZ2dmNG2eSyBS5a+lXrfVwOGzPn11dXV08e3Z1cbndbne73TiO5rWl9CMavV6VnWfycnhbVqIxsE7+86IlZ35bzJ1WWQ0i04nukZnrUen9euAnPFVog+/s6AbMO1eYF0w75ovzipltkTJ77h5EJLQPmobQ9J7lXGphPD9v5OdfzV4+D19qt1/8uE8QiVgaz71tXmLz7WCxlHxKA00nOZ6QXlgdc2sPEc3V++XNHo+jw9DKYks3r+WhrCHXNFReibp15+4ppUjEdF138+bNe/fu3bp167UHr7/1xpt379+7f/fe/ddevXl2I0zf6WbDzPuhDLv9qHW12pydnTDzqu8YVnWsqiLRL+8GJVW4ERvcMY4YDqbFy3j+9ImN49l69ezx5+9//3vPnjwctruhlrGU7WG/Hw50yWMtfd+Tm6nur7Y2lkyciROikRjbYZ/7vl9ld19vNpvNhpk3m407MXO+WI/j+PTJI1U9v3j69PGTk5Thul6fDMNwfnFZ3G+J9Ceb2/deQZexPxwun3TDQVYn3/zKV97/9nf+7x/+6Hy0UzJLLP3qzXff+eIXv/jGm6/fv3erz2RVP/98GMe6vdpfXu7Ot7t9qS5pVDVK1Hc3Tk7Pbt6eH+gbb33JgdT1KaWhlP3uUIdLVZXwJKuLFwFprTsbQOSmmbnvV+5WqyZmB1LT3LSY5tGVSkRGplDzCmeSaLV2MQ76ZLfRqjo0GMy462qtWkrY9djCAGuSzHJkJ26Tyj1Uu1vHgZG7IcifCDbnVc2JYOTBBMUssUMxyB1aa6LsZESeiBmUmQAyysWUyTXcQqLITpl5SuTEHkVaWLQRmZmVSpOETeTQmbkTrmoRYpM5tBosSEkMNulEExk8wk5mN50aftqS61Luc4eQMmrc0ce9svH5Ezk30O28VGcr1caT2dwPOrSlOvWbIJhyLfpFMLcyxHlSswekDjdjoBHB06JHawJBKUs0mWiUts3qMFSeqKXNVMmYUhjiampmLDCgqpOZhUIjteAx8pnNzLm7WXVLHCUjV60AMVEi1pbk9pCOEiIWlqjokguTuzkstei3quoSyhKkic42oXfaLlTNzYyJRGS0GipmDlc3dYM5uSem2bQl4Y674JduwlkNMg0QQciZOIuHwCeQhLlpWLupOojMq6kFoLtSdZOJMqn6NfamYsqKLIwsESYTeTEl5okN3EmEkqihOoIFa1muJAdTdIJUReUkzAJhgnBcvFrRQ+wrUYEhIva2ANyiMAMADBKJ7iIIsTAF5tx0JHeY5ZRSTiCm0b0Rg3M8VmakxABbqaqwSGm4D8X2g41JlOlQdRxrKQonVT/s9/vdzoH9fu9Q3RkRqRsF25ZVZq4amSFWVbDk3EXp2CbCjHkLnPNbCxRW80WWb1vsptEMX3F9h45HqQtH5PhXs6DAY5AvEufx/de3aqBtq+0tz4dyNs/YH39443H1yPISASF8ctQSnK7NjqVdmmcHz1XZ5b0sPkVhtRC0l4CQg6ATQQIWFQwABqbrIeviSj1IGYLr7UXf5blj6eEt/51fpykTv3x8iFoEjhwvP86vWroyyzPT84/hWEhf7kwPvv9Pxg/vvftXyqJNdxwPkvtShj/+a3/8V37uV+LFf/2//b9/7pz/0p//77ppLdWgYDI1BziJwd1c3YspwXPOjAwqy8++/8sd8Moar7w4XBFGvjYJ8z64/FMfrP/scwMwh7svHiklM6jh3d3PL19/e/8nn3+r4Tf4V83dF6H+T+7+MHbPv/Hrf1S+9W/uCdadroUFZIAGPAmuRKpwf36aOxZd8WiFVAnWeK0VTuuuP11vusyBwiplMK9dl9Rc90OMg4jUoAAAFo0IDHNAioHBB3eqJQ/2ZH/1bHt5sd9Kz5u7N57hUte5O13defB6fvW1D374g7/47/+l9z76mAjVjVVBUkxJGMY4gguiuGQO56mBaN6hX5xgNOOep2lKBhzlq9rHMUdQiwCYZ2a+RUL5eJ4pDxgBMBbxb1QHn3Mg7HoMbGaG1nN1PFsUq1VFhGjqTKLIvVqWrgyDHspq3afUKcbdOBTVz588/ezp05P1RkvdbDZvvvnm6/dfj767xLQ6WbE6qtZSYOpkBk05cRL1CnjOYkI05eyqK2nT3REOFA6xCAwzDEM4C2fAYivJud9kOTm50a83kjPMJOfV2cnp6el6tTlbb165eevm2dnp2YYEw34cx0MpZdjtt9vt06dPry4u9/v9xcXF+fn5MO7NmmhlaE7yBDmfLbx5ZeYI3Ke0zgQObPJLCLrL1mbmgEMXMV4bczvarnmN0fWco09xW2xT7ghiEwChAsnM5tWhDo9Gs+mcIc6JeDeZgwK5wyRpuh03qY0WHo7oR2g5v9LSUsy8MOU0x5FHld2Gd5iuGdf3QSaSyQC8yB1/XAK0nJlH0Na1dbRcYswsoUE8gZUiyesL2Bemxkn2lmG5tiLMiIQkenuIiCxoeOOLmtTp1OWPpt4c/1F4aSAQdXk1jmO1oZpCOKUQlKb1ui91YObTs80Xv/j2O++88+6777711ltf+cpX7t27d/+Vu9JldkA4NbXhdm3r9Vpu33LADI09BqXWkpMADtRqJQmzj4YRWlAMZdTdvh72WqrV8fLho/3lxRPC+eNHn3zw/vbqYne1NZdBrevXzrLb7Z4+OY9JUMfCsORUxzIOQyKsV6uU0uXVVeq7vu9SSjfMD6USUXUwc9d1+6GoqgiP43B1dfXs8ZPS90xURkuSJSXp0jAehrHzsttfHfb7IXNXd4dV3j24c/Nnf//v/eTT90d8O510D95588s/+bWv//Q/cvv27cRmOp6fP3702ecffPDBhx9+/OTZ5dV2uNgOt159sD45W/c9JVFiSR2vjxVgda61jmUvIs4UqTOrnoRyypVj8agw3BxM4kRJchLVYAnXlFoEqFAzJXfWVksgImGWoN3VUsrBtGTOMHWnnEWEzCTIApg5aoHMnPueAataqy7oLBfLg1lLAZq3Ywp3CyFV86mSFUHThJNwV0kCh6sK8elmBXBRVaiIsJC4JTQOIBNCdYU2OWBmyRyWTCPOCsiNx3bmEKlmwiTSeIvMjExdIAyhVhiopnBl4pylaOXJuIUkvDCLyDhaZom66YR3o0QsKddanRs4BYDWOpr1/XqmcWFmYYEjhlSoxbEESiJQuLhCveUNQUQ6JZLNIYBxW+9JCEzmlJa7aSg1RScYMWjiKgynJGrOZlZKiQfJ0R7ccpxoBIQRYc25YhGaBNysaqOnn9j5TeFqUaY3c9fg9TJ2QM2JIJQSS+rii9w9hqeZLYq2MQ5TG11AFgQqLR2OqZRFgUnLOePYkXWccHGbkY8P/tDJ8rqZuVpsY8RMzoyG0XZuMLulUa7w6sYOtDnvMA+K+ZahTw1iFHpRIcu8ZP0ptea+G0uxWhKDhUUSiIppzr0FezgTRBwBPW4eVdtx4R5dYUxoitVELNRQgBBDHQcIJwYBiSZQBbw2UQcSCBOxNKH2luENkpcYOFNXFY49ooY+MRNJSpJS25Qa97UmhqSWPKvqqFLVhlorsiceS3UkR5SJfRzH7XbrwDiOM7gA17PmmIQf49do+pr/dPQLF36mTfNwCnEjgDw6o9erHO08i9UBmshLZndkDuraNhz1HBy/dIm/fS7I+m3LvS85rn/G3a+ff3r+L7T4go55NQpztbhCXxSH3Z0g0+l9rgQ/56jNg2bTRQUuZOFs/RY3ca3we/zeReQzBwmYF3v7YTHaLyv8PrcYcf0hvvSHFy9vWT9Qs0df+ut3v/dfW77n7R/8Nz78yn82/zqOo+SxG8aUxj/+b/yJX/mjv/ziaf+Vf+tPlDKwCNTnTcto7i5j96bmlYOkvfjv/h++/jf+Z5/8uGH8Pv7cClmEzVC9vPgGIv5g/Wff2v/LP+4MAD46+eXIB707/Pxv8bb5+Jr9/G/wnwel72z+nZ/c/aEf97YPPvjocnt1ujmx4JSHWch+RBLXuVYj8iZJH+ZXtVQ1Y065dZ8QB4TCzHJKgLWtUTWBYG5Vaz2wGJNVHUsZ4vzqKKUp7ogkcpjBYt92IfIDjGED88HqbhwOZaCzm3ce3Fud3bx17w3cuYdX7+v5xX/yH//lv/pX//r+MPSbNTFXdYh5GUUoWooiMDDQkh9uHoSldz4fvLDz7s4TUUfsCJjANfOmtXTu5+oWNbzJscUjcufPWTxiuB4bj52O8qrzaZcBwPzDtTQEWuN4W+9mzfy3JIglSiCUoZhYzjmvMjNunJ2M4zjC9uPh6rDbDvv3PvzolVdeeXD/9dfu33/j/ms3VmsvdTR1q0LCzEIArNTi7tJKpkxGZl5LJSISFjTg0owdWA4sM+ecMcAJq9XKEzZnp91q0/d9znl9sjm7dXO92XSp63M+7de574ZyEJNShnEcy2E47PZXF5eXT5+dn5+XUraXl4fdrpQB0urqwaGw1MFGM2KgOS6aDY4ERcTRIi18hTb0y1sgotDymhMQ8UwXqdt2BpqQXPPDxVQ3nhvE2gTjaGI65lOmCz5KKrj7pBvcmqR8GW+702J38MW+czSwU4BLUz+tX+97P358Zpn6cRLAL8x8zG1+iz7J5QSec0MtT7Sgnp7z23MAPJN2LHfP+Nndo80BS93jVjQ/nnm+EQdcj9vihBYEQshjHCNJOqdQiXy9Xr9174133nnnK1/5yte+9rUvfelLb7/99quvvgq1GW5pbmzu7Ec3OhhgolkkUlJwAlJiQ3Wt3pRKFT5y2erhMAwH3e/25xfjdq+1DvvDsNtvL6/Gw+7i/Om4P9TD8PTp0/OrPafutft3T2+cEdGTR48vL7daRys1pZQllVLqeBCRbiKXorHm3bjZrCTnq+3BatXq9+/fPz25cXV1VUoBaL8/XJ1f7Pf74HM5Ox05MRggS2xMOh6uzMyNVn2vo165vHLj9r17N/7pf+affPMnviDdydd++mfefvcrq83J+fn5w4ePrp49efb04Weff/LpJ58/fXp5GOp+0K2WDlhvNtStRldzOpjurnbvTFniq/0uUUsdSsp5lb1WiMdaNtVqFdqIA929mruWcQRR6wurtQF9fIoXgpPAzJiBlu4Mz7PZQyeAnMHMrFbNVWuFNuocEVkFzX40+LvOC/w4+/16eAJos2+iwZO2ONCCOqYktVqNkDIlihZwrQxKQmStdGBmZlWI4BRtmiIp+pyLqat5qJYjKitt/Qbt7PSzICa6qVtV9kQMc3J1NefKSInYG0D72J4gImSurnBv+FNzaCztWJueUkosZlbGUVWJxSyaSyDClEQM0YF0tMEt78Zw71JSTFuDM8ENfESmEDuTg1NK8eIxhHjOSHF0nkS1U8S9xSFNz3aKwXhKQ1PoMrUhrgEhT1mI2eBGULOWUgN8IiXyqASEaXaYG7HGgBlXUxUIpwQOZJdVOHNkgN3dYJ6IE4U81fEhpZQoJKrIzW3O3sE8d10tTYkudDjNTVWbkdKQJm+k81pqyM0EbtIDs2eOCVbk7gaXVjqGuRet6uYUnCHmZmStImpmBHQ5Rb8NM8NotKk5ZuEYKTynrFNyQU2JIFFmp9CGZmZ2I3WrWs0sSGaims0BY3MQM0uk0RMncYPCQZ6EatHE3KXgMzN3rzpqdWaOHYKZCRLJRnGPbpnAH9ZatRYiSokTR9+JmdWYN4DEpGBmuLlbKYMzEouk5BB2B4mhVmMHgxOoptyl1JWpslRKIea+78dyOG4w7EQ0daQHlXFmJvfm/DFzuGqY3Lh5Ps+75vPmxn1JHjY7BO1XtJVOIJARSdimebEAoTDWYkIsvqt93Y/f5p+L3ZZ+8rLj99p7pteXN+WukXuOHuDZY5h/Pka/ZC82XtkMC3v5RTo7jGIkDXCGAFAPwNXkqOG39mdefm5c9yN9ETDwAnm+9NH9xRuYn8V/lYzC0i1b/oBF/fz3nvxxALgALl5yhje//fvmn//q/+Tv/rbf+Gf+xZdExf+fHD+BP9XKJy+M/G8d9C6PmQj6H/5QD+bI9IMb//67F3/wub/+a7/8z37/29//lV/86+4kIqrGnBjQ6momiQFXLSxwtzkciydroY68yHQEWsHdUwoJClHVjqjfrFarlflIDCu11rGUsaoakTZnt2mdE8AQtwA0kHBSs4MVYtvV8dH50w8++uD+zVs3T2+c9Gc3X7uHV17Byen+4aP/5K/99X/v3/33Pv30EXfRWCNVjZjUqlErQgIasCSauzZfmNLxw3NxzvwDTfvIcvM1M05CREZQuEyhy9GTbliHo8mq3uKlWROCFg3zLfLha6HCMZhZJImWVz9p12P+FnJ2hbr5zLtRfbPZ5JyLjqa1soEU5CHayQ5Zr11trzYc9sPnnz98+PDxkwfDfv/6vftn/TonymnNRIfDztXCD4pZ1i42MRQcFJiMphsoiFbrpQGxoPtxJkiSLvdrXudbt1/ZnJ6uNuvbt2+vTjbrzUZyihIGGcbx4CiqenVxOQzDsNtfXlxcnV+cP30WQkf73S7k91BVsTA+jUOA3aOZrjkfkU5tW7kwc8hMNGqlmYTJW2nlejJxvpFJa/YY/rgH7hHNAIYIQjy1iGndJ7onaoyVza8TEYPZBI6Y6E7jmfJxbsCImgjcPAnabtsifyeiFNUcIkx6oPOMlSgmEy27fOeZAw/VDPhiV/PrCdzlMbn3wewlZhqN8ssVNP9LE/h/DoDn180iwHAzgwbBxzFBzI5Ap2DCngilOcvfrrzRr1CkK+bF4k1cCgqPkkPr/o9lTZAun+Sm+pZzvn3z1p07t7761a9+/Rs/9TM/8zNf/OIX779yt+/7ZjHYzM3UkiQEjsDqUGtilpQmnjQNBRAGDePQdYlCQEzjZ1jdYziv+8thezVcXm6fnl88eTxcbK3Y9uqqjDoOQ611f3UZgl612uVua75br9d3bmVyHvbj1dOLqiWx7PxAYCMYPDkL1M06EtOaqFTzsep2uyW33K2/8IX1ycnpYbt/erk9P7989OjRYbc/311d1aHrukqekpAXGne9ls4Nm7X0HUDb4aDFmEjL3ghf/cq7r7/5+ujpzv3XiP2DD9578uTJ5eX5Rx+/v9tenp8/vbzalsRdf6PuS6mXWyu3UlLCbiyUZlaneRYFdNtKLWPZHkh66SM2U9Uk1HWrzCKJrJZIPZhVU02ZmVLVQpwMgcqYqfvhQeuNo0aXiHQpuyfY1KMXtoId7BzqtWTHqwu1ZSatRkRZrrFAwzw4QVo4jUayCKYALAftkU+r2AFmcgrN0xDuNWdydxESIWYWIDEJsVs19ZRSNOrGeg8JX7CYemMeJnFtAArAOHDgWpk5tmgGscAJZA4YMaUkoczqWiWxq7E3UAYwRcN07ApMLD4lV2upZE6giO4QzT7hyhLg3pqNiLhVxU1EJNinw2N0aMQe7kArslKLXCb6DOKJqNgAIaKQinqeCnLeI8NMRGqqVmdutMfuMIVL7II+jkV6CQImM1Nns5rn1hFHkCiHxGVAiIubMCP69omY4URQjSCf4a6kZkauDl6QzTbeArTbyDl3Aa9XJ4fq6NVzltnuBgkZEeAMNpLspbXURuip1c2073sA1kQIjioRvoC8mmuLMp3MVSiUiqnB3tiJqJSxDWB4dQbiJEJCqZQhAuNIjYbZjhyMEViOATCFaiJT7jKEx8PBivd978SmWkwBEgYxBdelu8ti2/DJEyNqgkAAyNm84b2jBD0TmGlkXyDMtlqtmEdEFyLczVV11CElEZGUOCVRG1xVJHXSlTJk4VVeuXtRN7NabDccuj4xs3CyWly1KDwREypxMVeQG5kFoi3NktyBHoeImSXmvu9DzIMphc7A5Nh5U5BXoyk3DxxZvqeDgzSYplR0LEU94tajswLBnB5y3nMsODslNAVFYGI/yiktN2CzGpbLJ9glN7UDnyK9l/w7BW40R38viWYWR3zj3G8MwK0Bt5gSqBW3FxfGCBea5hoCzdi6aSM/tkZPU715aggmhCnebu8Pm7hgIZ5mOwzh2VnYxUamdb1y+1yo+dzxfEw8XWcwEz734vGHibNg9uaX1uy5AXx5CH298ZuIft/N/8qR4f+PHN/UP/qjs78kORnw4YO/fHb7zq07t1+9/9rNmze/8uWvisj3f/iD9957T3LenJ7UsYDZnapP1LNOk29AbouG2PD7JyA03EDO5OHRmlknqesld9J3fHq2WmW5uiphqOsUOEXxynAUdqskAkcoZ5MQd3UcRjBccFD7/Olm/VG/OnNa3bp55+69B/tH5588u/r7P/jBf/RX/tO/9ut/twBJ2NyTJKtDFAPgzhzVvWRuaGRbrWNqecyrZs5vLpfAPA+50Sa1ZkIzW3WZGqw1ZvU1OZk5a+xMwdcvObm7Nd3jBE6BZTtW6hYtn/OOtkzYxStyJM16yVJs97JsHmUOWSBOlPsuZ9GJ1uX09FR1UuwDur7fHQ777e5QyuVu+9nD+w/u33v17r1bJ2d9ZlcppiCVLjFIVcMtYE4kZp5EBAkAXNhYuA+n7miInNXIDmVbrLCgz8In67t3bt+698rJ6enZ2Vle9TFKWqpXtbHUUauOu93u6ZMn4/6w3+2ePXs27PaH3V5V9/v9OI4+Ed4EvROzQM1asKnuxLDo3PWppz0u3OFmTtyUrgV0LKO7Q5io1RbtGogdQGSCrnV341oF1ci58elUJw6uEgs3qbFIX//4XOyNXmI2d25bRVxeaEdPc6N9ihYlaGrwrubCW9VGzAb45D0mZnUzIqgbgcyNIA6jdvOhWmzhTMEj2L82waYfaHHMkw9GcIbrEswfw8jMMaTLTZmIYFEqtwCjAYi00eQYsMIbe0VgvCRuipwdrVWPnck5T2VXREWdWl8i3Gop1cxAnlggEvy66z6v1+v1ut+sTh48eO13/a7f/Tt+x0+/++67r7766o2zU4czIqa3qkVE1ArMlQyN25X7LsEroMF3R8xMCPxB35HrwVyFXcSgB7Xq9aDby3p1ub84354/e/bo8dPPH+0vr6zq9nJ3cXEVMpYhuNr3fcr9yebs8dMnjx49ctVhPwxDYzhHlzU0oswP42g0rtfrTb8qxV0ZTEOxMu6fPX16sl6d9Ju7t++enZw95aeXu/2zZ8/248Bdkpq1HA61XO53qz6tM6+7fDgc9hdXq9wN47ZUVTgzF63PzPrV6nLY37x1l8Blvz/o4eGjTx89e/b0/Cn1fYadmvWr09XmbH169vDi6vDBx0+2h4MZsQ5We8mIouJ0GLPBq9ZShj7LerUuY+26Ta21lhGUAIzjgQEhNriIWBArIBl8GOvZWV+dqtfm2kX9U6QOI1HraoiFqWazN85ovj0ZEVH4/CJiRFAba4WZE6eUxsopdSH3dVwFhCTJXd3ZXZuyJAPwYNglcnVzc5vMdUoJRgxe5TTp/2liUEoikoiTUJYkQlrZXbsucQxOrZgVwp1MGEyAmKtHVQ0GEIdevTU/OSBPrrTue9MKILNAvBJHPCwkSk7RO8kEQOHs6Lsu1s5cXg2G4FXu5uJirZXMBcQpMUE8WJHdg3cwQgBREWFOrgq1WJUU1MHO7h5tzfEszB0t1ncKpEzcbNVrwFHVOscJDq06Cmea1H2Z2Z1YBM5qaqYhiTTWcRwPwWGchMaqiZyY1AmlMDOsjgdNLACGsovQiyjXMkYahms1cvgoBKvqwqWO4zj2ORHzWCujVQCSwdzgaLpP5CCpOkqgw9XMFI5xGLuuC3+HEtVazJSTpNQNQy2G6gT1xCJZmKzWOgwjUSBcacbKuntKyV1LKaUUZl6vVgSxWmEwcJLEwjCrtRqslALyLClYoGqtgBtQDcUrS2JQNSdyYVaoGkY1yUndbNEDzJKrW/xrRUFisFFr7lZjKZKzcI4EZEoJwpH4V1V1dUPLkXj16hAGu0FVRyKi6ARl2g+HHn3O2ckNHrz8RGReU4YZailEzEmIGZSIvcskpPAqpM4mcGakfgUIXASUhZVtr2O10cFVVdW6lJmSs6SUtmMtgKfVYTjsx0LmrpYiFaTWkZTYGdW8FklijdtMKBxlo8S5ug7DIOGUsJCLa236wyDKKZTPpy0/ZriZOTMljg1QY/9jYnVjFiG41kZDAnNXxlGKdopTmYlqVSNgkc0PJ9VsLukSh4iZu5uHp2KLoJeIAZti7VieDDKCBPv3c0f79onuz/1arVUgTbE3SPpaFB20lxo9Xxw5EQtOeZ6VkOYzzIxZ8DAkMRNm0jBv56QJnEnEgTlX9SlHFLAZkeRRIHFtFMrent3k34R7tSi6zqEtwciYExGB2c0mVx9oHRYmLfs5VfJb3wW52uz3AAtPqlHNmy9ONh+xVbj7xOlJnMzsuX78///x/MGJ0qqnnLjr1zdvbG7ckH51duv2K/fu7na7f/AP/t5h2N27e0/hnrNRFtauX5sWq3sCum4lpK7VvHqTsyVTLwZiF4QQLWdJfZLw5gEX9qoHQt+t147D7nBwOBEzdUSjg6qhkhOzZHF3UydiApsZOYt0krtBtcC++MWfePD6a7/5d//uR48f8ydXg7732ZPx7s3bZzffe3q1/Vvf+/6vf+vbHz3djoLUZZA4cQhrw5VJUEGtVg0YoIA5N2rrI91OWNTWmLPAJ8/D6O4SrJsTcUAk/onItYKTmYv6qt+sVp1IEpEyFRPcPVpVjGwu0AmJ5K6a7w6DOoFTw0sSg8Up7EurcJkbz1mtdtFOPJcZiUUIaJqxKak7kYqImWpt0tNmGjn+SftUhIUZ6jrshmWcfBiKg1c3blyWsvvsk0+fPv7N97534/T0nTff/OJbb965cfPGrdv1MIz7w1hq169O1uv9djfauD/sr3aHsZaxaCmluhH41o0bt2/f3vR97qbRlIpcBi5X5YKk3r61SWfruzc3r7xyqz/ZyKpTs/3uQkQ66arWMh72293hcLi4eHZxcbG9uNxeXR0Oh/1+f9juqLV3iZYS20nwZKJ1lUmrZIT5cTa3KL54kNW4ReRbqzo7BByM1vBwmo/13tA3FmlpDmHz6mY+YXVnvFJscB7dpqgOBxmFaBhQo0JKBARGjIgEDq0OIKceTA6wiIXiNtiJ2tZPTUEwYFzxvOCobs1v5JDX4KB8JCInAVGwqCCcQyZ1NW8Q0KPBZSZQ9eJwJTWoWbXon5/gWlNWqBVeIWzEAZJ0dyvqZuxEiNxZ48WJdl4ngwgEnEhyYuYmyWFEzmRkWoMzltjddZwQT+5OKsJdksSUA+/gzJ7YEfy7JClTSgauYKakaqUUAXVdT0Jaa85ihQzoOu66xIQu5ZN1b2b3Xrnz1ltvffHdt7/2la997WtfffvtL968eXMR8Ef3ugKaxBhGEjSDSq6ESvDIRxks0txEiTy4hQRlJJjVkYXGYVd13KzWZXtRL662j59cXFzst7tnjy8fPny63+5E5OJiu98fnj07r7XpionszWzTr1575f5+t/vh93942I8AXNK+7GksQBT3wMykZofDoL7blyR503WHZ1uuoxhtpE9O4vjRD3747R9859nF+aGWwdWK7oZDx2JazfVqf3B37nNfx+HZ08vtdrNaq2ruu+J4dnUZo3aCrM/Ob53dwVjd/I03Xn/1S++Mql3X1WEcnlzsLi4/++wzWfevffFN7dNnv/6tTz/97NU3HvTrTTXdX25P07EHeBjNV1kdCsqKsRSWtC+Du1ISCDuMiEqtRo07xkk4ZWcxd+n6/X7IObOzEyXOiUSLqqqQaC3MTN7KKodxyDkTs2mx6rVWYzbzol7Nu341jgcWoUR1LGpDJFI1Lo4gfKQaocZ7p7Fgw064O3H0/4d7q8ycJBNxdPJOTEwmTAASGTMTJ3evw1DIKGU3Ivd1n2OlEyBuNtHvhY2qqu6eqGFm48eUmIi0jmMtcHRJAJRSXCXY0yM8ZkYSSYm11pRDIDY8ZjBHWoC0aN/1KaXYUmVS8RURkGut7BMXYFHVkVOSlM3Mqx7qmCWJCElW86oVc4GKiSmVcRBJlNgmNsfY2cIUq6lwypxLVfeSYk+deXej25MmG+qNxH/OtAlzOPQhbcuqDqgpmFJjEYt6FIHQGBj6LA5YLXs9kEduksdxXK02M8ejk5tVcidyhnsoJcx5AqvVDHUUkZDQmA5PkrxJYHq44DklJMCk67qWLoWnlEJys1YrVYlT12d3d6umRkBKaXt1ZWaZpe/70Fl29y7lWutM0ebupVZuFTMPHBS7uQb6Csyi1TQ6yQG3puoRTdLmFkghmnKJJCEbLs/BUEPrKDKB6kHdyE4+1JJSBpGSwkM6NMSDmEUcWoqpRiq3FarNKufUtr1I1eQ+pQTXsRxqrU31iylRmuDE1QzEDHctxeAg6zqRFAoZYKaUpOW8PXyBCM4IhMRptWL1SiQpcc6ZjKpb7Pz7UUsdLra78+129HSSUtd1g2onMqaWjS6m28PezKpbzn0xLbUALQskRFnELIBdKsdutPBGZ/wVzTIM83EN/BwOaOSwY7bPpZhF6WZKuk/0M8Jz0/DSYM0+7vLrvHWLMTD7y4t//fq/AVL4caQg3tqVX3idw6UlIjcKO45WNGDzCsAbaGIRHz5/7iP2eOmmx03N9+g/psQ6114J8CDi4uAtrOY814EXR7ziC56XdhmYKrTLwcdUP8bcqbV4QLiOL52vbXKtXj6c1z7VNC7mclxwFrfjR6/+5bROkhxNTCiybxBOue9Wm/U77/7k/Xtv3Lxx7/T0bt9vTjZnXdflnCUFGNIju0FO6uYUDmgNlG6pw6EcdBzGMqy6bF6H/c61wG3cH4bd5bC9zJ2kxLWO5xfPPv74wydPHsFqnzsCdpe7h589unh8oQV9ki6J2pi43XXI2rlRMQ1AMqZ+C28FK3djRQOSqB2BVV3KsZlRc7gopfTO0Jp+KYlk5tW6X6/69Sr3HTN3XXfj9Oxb/+AfvP/++5Jzv8osouYmBGdnISg8mQ5aPSSBPGRG3REefDzcZio8GO6j9S1sWifSr2TVCYsSWUqJpd8fEHASAHByo6LFpylvZgLh6AIyP1mvftfv+l2/8x/9x/q+f/L04u89On94MHt4/vhiz25mdjkMn5yff3apO4AE6boOFtCUb8yMPPYuMMjjq9xmYYV5l3pxvSyP54zGcoGGUE0wWcR+1wgop0OnzzogqSMKDn9xgxuZL2iK5Vj4jS9oAfmSKcCbeBsWjRtzfBI/29Q6FK+rKgnHLjWzN3HDYmCCzwXqKDGzE1VyOFTrrpbL/fazJ48ePn30/sfvv/n6gwf3Xr11erbuN5zzdizPLq+ePn368ScfXlxdPbu4vNheHYZStLqBmc/Ozm7euHHz7MYf/NnWiUArSdRzHbOuUp8jssnCSShlHg97SsJuOtaDDnUs42HYbi/Pzy8vLy+vzp9dXV3tttvIdIfOcywQVa2BlnU3o0ZVNo/jTP80qeMsLSwRZQndYpmG5TieWJjT+Ve1YlYncpuEifliniHuzjAQc0ORkZADLpGTmYQpll/UvKXpdXeP1OTc0Ro2bd775tzN3M47z1WeNbGk3U5LQHJUTcR1JMBgZOEOYHmHk9FuoONpy2tjhUl9zqeO7nblNlNAH1myY1pHSQitbasV4U2nvp42w9uuOu3kJCKmYSo4TKK3R8zZc6lwCsiIkCcrpO7gQJUnlk66jlcdwbkMV1fnZyerWzduCrnWkYHX7t9988HrX/rSl7707jvf+MbX3n777du3b+cUepM17oyggDoKms68AcRQd0MwCZkCBkPRIiIhteQ1RZExs2ip28tzZlr1Ga7iOgz7bKi7g5Y6bIfPPvn8888/v7ralsOwGwYdy6GMuzLWYuHwi2QyP2wPJ5tVeAvb7fYwlpQSSRrKaASBJA5QuFuxw3gId3Co5KVgLKTlsMuXFxff+o1vv//R+z/44D1iXt84daeqVQ2rvldNTFzNd7U+2+0kpZ5kk7pndp5SOjk9lZPV7ft37z548Mrdu8+eXWTuN90anNeb9c0Hb+D+XTAuL652F5dX+THA8uypmW5O1r/jZ376o88uH17szJWlq+PgVasd6TBaP8bUEmJmlMg8qOQBmDMTmI2TiLpXdUOFIzk5QbUmUKALiQhmo6pVZeaqJWy0Tw0CqhoTFtwEuadr8AgcSo1nDVON7j1X7nplkE3an22Nw9DolyvAIq1ZIc6nqsTUp+yg6MWUoNlr9D2QzJFQc60cfFatEXK6IsBdA03MwhP3BDXflgEDsTCRUyC6tYxoNECBDHQCWWKYGU9dFdTyCYHhqsxJJMWeMNmultWzqWMRgBC5msHim0WEHQwidzAHqUy8rtf69RpeiaLuG/ztBjMjI1clYaYFj2B0IIOExYnT5N82/LMpiJBSa+pQ1YBQa3BCNu5H98aNd03cnMi7LJgItCiooSZJpwAFhQETRpcSc1LVUgYimnw1I3Z2YjATVTV3F5HUZWb2eORurZQ+bQnxc4CswkNyThN5iJNwdH5M24C5w9VkKsm7Q4102h5CAiGwKx7UTWrGZjrz/gqae2ZEFOy6ZkrWUNZMQKMB5Mj2zw0vFl51sWnvIbUKhzMdShVPy12wzZ4kDRhIJIIA+hZVB2vVJpvBcePIOUVtNTp/mMPEq5bKSRjGLk1t0x1qVvXm6Vkx1QAmukcQqGZ5laaml2SGWiu7pyRdyiwAXK0QPKfoQK61OCSYiMlNlZyEo7udyTO4T7lW07FU1OpI6/4w2KFqdaOculWfOsEAhdcI9YVNdSzKXDgJJdH9WIeRmbMcncsYsYDr6JS0jsUXfrMvXMVp+57yvlM0G2knm0WVqGmuRDkdC59v/uAyuAovL47Zwj4fA7fQ6hrn8P97x0vd6Ag4Gzsrwl0JcJ0B3kBxL3wnLeJMn/2C65F/DOnztzP92qoEzSE7HoYjsYobuYLJZ7fstz3InckYsJng51jxbk8kileIsZ3genMxAZjakSeXKM4700cvhm56LvOfKIrkx+47ADlnFjYboyyA9sVh5e1wOOwurw5nh5s32oQspaSUiqm3Yg9CMpyi058AJtcgXWyxJURO0qaMh8N2q3XsEru6OJ2sTjqYu56fP/3o4w8ePvz86upiLAci2qz6k83m1q1bWbqV9OdPz8uoRatw6KamWAsO1kA/cFJzt+MUVdWiZgad5ngTP2Ni5v2w67qOmUWiwUlEBNMevVqvpe9S152cnNy6dev27du3zm7ffeX+en3yve/+4OHDh6enpzn1AFprngMkLD1gxaq1uiSDYK2dPB4spdCj4/ZoarBjw7KwGhOnPqf1quuTszGn3v3EfD+MujvoMG7NCMwZXRA+lTqa26rvyNnVYPWdB+/8U7//93/1G9/4/nvvX5XyaF+Nt0+3lyeJy1DHA0ZgBEYGZ+KuQ+MXPOaVnMLWtS7c48KZFshsEPDCeqfr+R1cN/vXJicB3FT9ooYcO1cgu3GkGm7djxaEt9x0B80rPIqVzAJiLMhrI18MwCNb2K7RfApZgSnLt4ygbEpVIOh+oo7EzaHB5NZEw9Tckxk327DBzFarVyVCznnV5TIc9mP5+POHn3/+6P07r7xy89bJ+tSrXlxcnT999vTp00fnD9WtFiumICERpuTuV6bvP/6sjuUP/mwbsc/3lydnp9k2qY7Ffay1IzbQdrsdahmr5b4jh9W6v9zqWEopTx4/fnpxudvtDtvdbrc/7PeBynP32rDocWvHTl1o631l5mNTKh3Tix4AyJA+AnESLKylXWfwnueAN8iABU3D9ZmzhKwv0qMksa50mahdXMb84NrHwxWpQd4WulLc0tbWqKGFJRg9who4g92i5NtgOlHfnbdRUIpu+NAqAySEMCkRWaOFcSaQA67hLIXPyE5ODo8MV7t0TBtpoJB8yqW4t5IumNisNdcQEbGEynpKmXOmqXNNmwPajIs6wsx5UGAy5dRVkIGM5Ui/TnnACmqAIyelxJKQskiW3PfrdZc3YIq+SnfP4+7+/TubhMzSdenWzRtvvvH6N7/2la9+5cvf/NrXz05PVn0HQE3NRmFJDDUltAAYKI4KN44aryuKwircAIdV0xKN+1ZdVTl3AtJhOJRyeX7x+POHZzdO5dbN9bo3193VFXedV7243J5fXO72h6vt7uLyqozjYSjjYbAgmmcx6FAqVbWqNg673Y6Zx3EkEoLVYuQUCEiNemLKwqxmpdV/kIwzM3d53I2fP3lq3/7Op48eP3z8+bOLixu3bnZdDTzvqluPpg4xQxk1q2Xescsq5Qu7srFsNpsz99fv3PrqN755+/UHcLt5+245lO3lbrfd90mQMk5Okfis2ULxLFd1f37+LEv6ybff+Vuvfed7P/p/duvu9v27DKQuHXnhgcTCbiCmlDhobofBwWzq7s4iIuwW7J2Ys1eLzhSrDRoZNbBaawQR0knULSek4TFP2tYatUThbAYhbBq5mSrMZh5sRJITItsxHWHx3QKFD6bWAw64ugFIxJKzg0opCHZo0OzWRtcrEN4sJ+LEwETG5trui0E5xG6J0Qh6xVDNSvjPQhKYQCbUWiONKimEx9UDIuRT1ioAHQSNj0iWlEnEVMlcRNzJzCRFca/CqHG8Gbt713VmBrXwFtwdTolI3QBzrUHvHlIL7s6xN4Xl8NY2HH3aIc1DU+eIL8oqTM24zLtzGscxpNJ5kQ60ifhqNsTP7ejT7ljn9wRU2N08miea8eVA44RUUsdNzTWltN3vm/vASVocp+wwNTfjifBjnkDQqFEfp5pNIYqI5JSZ2QxzM1j2RMwhYmRWEYCWzCy5VNVJJYKZoztytVoFR1mkc7qui3b2lHKtpd1Fk/Zp1t8RMritQTnKvrnvYp+YKPyBqY27uBFMpCNGMdNSwVTNo/C+9IOqaeZkagbnlCSzusNdmNS1eCUVyb0I11YHJTONZnczhKVQWCmgqOm6EvPU7+3lMMhqJSAWDkiuRsEUSuxCTKlNTpEoQlDKMVTVfHoExFAjMsCoIXtbTzsRkhARy8QcbgoSkDBx2pftdjgoqOs6Yxq0llJC69isGrWkmnaSqK8aeicl50yJZjeCmeNJuTsmZheg6Q0unQC/fizdAl/Et/P7YyHEyXG9ee/oezSXgjCFDUc/48eUSf+/dMS3CGimLhEmkmndSZMcc6jXawXkF6/tRV/8t3DW58Fxd0xeHRHZpLrkURI+DsiPGYqXhcbhN2EqO7/4x+UIH73DZWJiusmXf+fcCdxofua3NXa75dVyTghlA5804mJWq5uZWNrtr4b9tpTBtKSUU0qUZL/f9tav1jzTcjiRNPWRCFHUvBJ5EiLwcNglwtnp6XB1dXV5DrUuJwbthvL55598+9vf/uDD91THbpVTSsS+3+6ePTm/eXZ28+zWa6+/nlP35MmzMoxq6iBEs4u5+v+Ltj/tmSXJzgSxs5iZe2zvcrfMWpLF2jjN6ia7SaEH0kiAgPkgQBhCgAb6pPmXGgmQMOqN3VITZDfJKhZZVVlZlVm55827vEtEuLuZnXP04Zh7xHszWeQsciTejBuLr2bHzvKc5xFTNEMjLKpWpaqSkYCJiBgwt9opMyKwmQUOIcXtdotoRBRiwyIiAty2e9KtemAihhjjdru9unz07be//fazZ3d3d7/+9a8Z6eLiwqEcIXjiFVGZiVvKBSqaghZtHXpiBs4e45goajGDP8tWMmKOkUMKYdXFdUSEgBByDZt+dbHdHQ95f8hUCxB3BIbA0bkkNCAyQt+vnz56/L/6gz/4wx/+Hof0i7/72QcffWwIE4exTodcyYA6r4ECGlVkMEbUhRK9/V0kVRH9FrXkl6mXnvAr0e/ZjDiN4PN3zsdwy3vO/2DmGGNsArkcI9os8wvzukxE4zgu6armoJg5NwkRE5+wXfPajedHgfOVHWEBaspZaqw5OQtjiD1wBmD+SJpg0unazRoVxXlUTBSQIPUrB84N0/TpixefPv/Sqk3DeDwO01RqzRSBY4x9jLxCDhyDChSpg0lcrbr1ejn/f/3nf/btb37rydO3JxMJWMGmkl+/fn173KeuQw4xxhSime1v78ZhyDm/fPHifn8cS5Zc/Ja62W+B71xsOFl1R6AgAID3ji7Pbnniy0Znq9JvMbYPVyckZIdZ+YFPH5w55XNmz9QTcV8ZTjCvYnjml79x0DeG4vLmg594Ww4hz5XZmXcHl0g+IAE1rpWzK8VlNLbmxSoC4Okkp2/BU5byNAKXc37D7C/n5kUFn3iAiAQUmFN06NdSuyZyPIcikamCV2UgEiIDGzFSRABwXQwkcJmK0EMNAAECYoyxC2nV73a7zXa73W6fPn361ltv7S42fUpdz32f1oQ7rjANprLdrr/5jW98860nz54+fnRxqVqYEKCqVU+fiTZnFQEBqoGrhWRPP9QpgwpWVSkExmhSS50yIlGMIAAiUCpQwJxtysOrWx0nSDEaomE9jsfXdwezm/u751++urm5vTsOw5QPwziNJec8DEMMwQxDYBUgmmrRknMZ81GPRNSFbrXaEE3jNBXxGFhr1VKKRE0cTKxITaHTKmM5GIdVDBTSMB0//ezlMZdhHJm7mNbEnUPqOFIZBgFgAzQTsUAl4Fg7g1pKKXF3Qat1v71Y7y5A7e72LvXdKGWYxvvxuM8TpA+eBYa3nkKf1ul6vdv22w11/Jtfv3/z+jXgxxebdWQYj3dWL/tuVauC6NmIMscwECE6NbdUpmhkaJZLYZFIiIg5ZwpMHCKRwokg0BDCYjkbMxMR0WrVHY/HZbzFGLFhIk/mEwEpcAA3xBARQnDZTkQAyaXUCUR8QjOf+CNi4kBkRogRyZoL5+zu8wwNSAooM2etVnEclqfwSinN2M49cbhgpKEVPxcvqFkqQDQjsMionp8CBSRPaLb7SUbE3pjoeTFuSJT2udsTVY1zWlZEyCCEFAKbKMzKxosZ8Q66lFIpRdSWhdCBQzjzYiDiUklukct8MLCWHSFAl6g1Mg5BwaDI4kuejO2MSqm1hlwEEZFwwUw362mzrTMgMm4pZCTGpZjmL3yB67tooI1xX6oBKBo6wtwsEMYYTfV4PCBijInRzMSURCw4s5pVUWjNRcxANJaMakxevHZmFHHuLyI0U0IyTjHEEB1hUtRDeaJGpXjmYURColDMwHSmjDxzc5srj2C05NQVJgCkEH1oq0kV8T7sOStjZmANHGpiRhz9DktrvvJqgSmAEDCgV7gEQUgBuev70PUADb3QzD2hoVYt7igAwIxtCEQsM+u6M2fXKkVy3/eIKCJqFVQ5YEixQwAVAHCSH4+0ARXQPLMFAMSE5u48MmOthQJhw3l6wbyNOUYCCmSgDitBAuKuAzBi40CMTCDibeYInq5CWfYTo2D84mb/xeubl7d3GDtyvSgVIORIyIRMYFpURAQmQo5WzaqIiM/tNxb1OVd9vimieWYKm46XzAAqQ5PFOTFvlLcHxcyFi+80598IpOdF2tMl5yv0m17IQxfzDR/oLD3yP2trvNAgeFIuRJ5jOjR1tkpf7PEMP/y1PtliEOHc0/267UFh/OzGLIxZYM5CTtiyDOf7UQA4R8gtV3Py+52qxOOfM5ic5//g68L1k5/6cGeICMBgAKj44M2/55Yin4tWen8jY0RSQxRpWVxXdwuo4zgOw3EYD32/CbEzkGkaSikcgwE4Pb4X6Fxcz/9DtEBsBqJiapargHYxsQEbrFdrqeWj33z0s7/98Ycf/eaLL76Ifby83GjVsQxd12m1XCerBkarbt2t+s1um+N03A/i8gQIII16yp3XIqYV1JAQDBAwMqqBUmh1WmePiJG7LoYQ1IyIODISCdn5Ck2RiCN3qVv1KaUQwm63u7y8/Mlf//j999/vuq7vewCgYsyMDGYIzM6Ly+ANL1qyihq5mAAqgSKg1upvMPNcC3InMPR9l1JAM1LoYiKtIqoEqxQvN5vxsk6j8nGogpPWGGMIIQHUMoEWRnp6vfsnP/z+D7717Yuue35z87c//enLl69olSZmtYggHMDlHKpaNderpwhnyAEjxAaom4cK4SzkrobqOKMHdmJZ0N8csYvFwLMqq+/1/GtEFEIKIbXSPSICI8qSCnRDjaAI0PgFzDkOFObw+HxqLFULgLY+ttMwQJdbdz/mjC7OKYiR0F0cz+4GJyebWZ8Q0UGl7q+VLIhooWFqnCDTI8LIwcxK8bSyrVIX+04Ah2GYhnEcpzxVVQ19t+q2CIJMiFhFFZTUDDADRBe3TEsHMPynn/70J++++wc/+mer7a4CYkx3x+H2OHCKV1dXqV+ZWeQQkO5v74bDodZ6vD/uD/upFu+6msbR7b+qOgTaO5hmk9HMAZg5hejy1Pgsv3AexfkLe5hEOF8plgGw3GpGAODZtrra7hlnITY+B1vGHJLhCfPiuwMAnYFAS1nL9zHHBKgN9+t1EkRENXQQgP9EVVWUGNnR+NBsO/lzxCaBYXNys12gV8v9vPX8YpdQfzkZh3U2LI/fKiQjBmgSaE1tRFEEREAMEVQBCInni2WgQBxpEQ9DoIBoVK2qikEDl4EaIiMmAzKjYVJgBkIghsCw2nTbTei364tvdf3Fo6uLy6vtbtNf7tbPnl4/fXR5td08e3z1zWdPrrarrsNNx5tVTBRrayWoiSlSIBADQchEIlpNCoAyMzphGyhYMRCzAlZBK/hUNcCSTVRLJVUEVXWStpxzXa+3KXYEgKWIjFo1GlxuNte7DRPFmKDU+1c3dze3++Ph5ev74zjc7Q8vX9/c7Y9VoajdH4fD4dCFSEQpJa+mA6ABFRUQCwZGqColVxNLIU2l+MMTUZE8QQEA0AoAJtXENHCETepWIXallGHSoZip0lDCBrv1ZpqGcSqWekTQUkAE1KZR9jCJIDMqcH95ef3WWwXx3fd+tVptVquOhiNR6Dbry5jubg9ffPY5dN2z3Qb6BF2EtNoEemfTxS6999Of3b6+udj0v/vON/a5MAgzjseJ5JTxUatWAUyAwQ0aEfnSYCJSMgAoEjPXmoMCMypCrblWr/RY33XEiDNLnSuKi+pUcpEaiIlI2/rGAA5ZwoYBBW4d+ohTLW4VENHxPahGzEBoZAQQ02l5DSGggZ8noDbt8cbeBoEZ0MOTRtYroACKpjBz/xuYSkXEQATidNCMM47JzLoYVdVEmneIYCBVgRCck9axx34XiNCC8y9C82SIsIUPDd2HOHfcNLpnNkMTU/GPCIGJ0Yq4RzTbQzCyGOOy2DWbqer1ZAIzbO0YAEJuDK2FGGagVZrlMxUA9Wbes8ysGyhqVPlgLhCLWE1UNSy2VVVdp3cJ/5aF7dwV9l4RnZkbQiRTJIZSJmh8ieaUNC2DKqqq3mopolMeENhAUuy9mGIiFQBNyYo4fXWrJ5t3AnchAEBcpJzmQMWJDQjZ3A/wjl6CyMwhCKrVqrUSQEBgJFMtMo2lOjMZAIio22MiArNpmlAwpcREruGGiDmPriJoZlMefQgzs1ZRRHfV1EkbRdAVf72dzhc2x5I5YJKNkITAi7lM0ZApRYxBtJzlrcCJfoAJEIFQl7QNITCgkoqo1eLPBBEAPEREMoKZJxnmcvnsKomKz66UkhcrzJr2srr+O5iLfRuggSw7QL/hpkQERghqYoAaOCCSKqCiH0acX8rMOcvADBTRiJmQQqn1fhgP0ziJdB1zDBxDTKkqTNMQY6zFZRjakBMRl1MDgFIKAS4IglOqHsCH5fIrOEtjn3+nRWXLTW7zBN8IgJcTWLYHXsuZX0tn+iVzJuhByXQxCv//2xDnoHB+4jLDIrRxuTXwAqERg4OTvho9nhmLNytXf99xzy/zdIvwzR+euV//qO1r/EU9eZbnnNXLzt843PlJ/5aj+3hYDgQAZoAYTklIAJgDYAAgNkMgKgCN7FFVpdThsB+O+zwch+6IFGJMhtyt+vPAw3M3AF7ntBCoeZAiaqq1EEA+jt0Gr3cXNk0vnn/50a8/+Lu/+9tfvPuzaXLIKGiBLLWUqWZh5pQ65rDfH4fDRBRCCJbQYFI1E1Mwk4bsMCBmk4rVWdYXpl9yDjSIGJhaeS6F6OYudWm1Xsc+VpXjNEA4W6FT7Nfb3eXV5dXj9WobOazX65TSr3/53quXLz0Z15aJBjEBRKTAZkSGaCLTqMZVxFlXPTGABlKrsTSWQF/w0RWDoyhLRSkgpUNNiVCUU0qoZn1XdzssuOrGwzDeHw4BqZaJRfqULrbry8vL3/n2Oz/83Xeu1yvO5e7Fiy8+/EQKdOtuEgGOMURVqWrOUU1MAAFd4WQBp7Vh1hyp82miHuEBLKoKb4zAByoXAPCw+/dh/fAUEi/4ZzpJoBNA451yOVwHyKz6NNsxbbJw0PKU597AcrZzuPXm7NBGkNmqBuBLj3onDr9p3OZEGNEDP2GxjUvK0o+u3qBlBqBE3HWBiET1bn/Y74/jNCGAIEFKBKQASqxVCBQRFQGQPcoPGLq+H8dx2B+WMxeA13d3f/W3f3t1dcXMQ55qreM0IeI0TdcX162SYHA8HqdhMDPnec61aKnevGBzZ1p7gi29eCpWnqqjhK77SvO23BY8i34frMVnudTze2jn6cgW0p6G2/kNRESntmoNPgjEdC5Ucf4cHSd1btIREQI3jumGzgFHwMQYkNnoDCVP2OrdD1veBMDAYghZqoqodyzOY3VZB93vNLPzN+b3vcvQ8YvUWN8QkBCIgIJ3UZ0uitCc/diDbUIgBCZEwEZau5B46WKZa6k5TxSaf+7XLCBugqEo9Jvdo6vd9aOrJ48fvfX00bOn2931t771/aurx8+ePL6+2m1Wcb1KVxfbyy0mghVDAuD2X0UwgylSMCDkYKAIuUo2kxgQTZhmKgktpiOIClgIZCqg2UDIBMxIBURR1UqBkkWUTbXmWquJkGKeDqDSrTYQAxxLHo+qulqtu+0WcgazMo7H4zhN0zBM9/vjzeH+1YtXd3f345jHcTwej1KlCoBVM3SnV0SJKKVuOB6LiqqgZhPVagScQifVjDgFrRhExFXAGFirXl9c7bbbi802hgQARW1/PLx49WqCWqqO9/clxutHQZUmJCJWBBcbZQxSIU/CJKtus9uteb091Jrv9sdxuLooMT7drHpm7tOKL+Kq61/e3h9ub/affxYvL8K6LwjMHC8u3vnB9zcQPvroozF/8PbT6w8++/zm9Zdb1SoWLZ3PAmuNoQgcicKCdVVEQzBprZRGqAjV1GrD1yC54XWCuqaV4hNKVe/vj2bWbbaImKfRRyAiOCaoTfDTnyXz5S63F6WMmZmCarUzKmIASCmUKSN5KEkiDABgHgN7ogdVlYjRtVpqjTESkatkeTzZOr1jPK8ELJbZIcc6tze7dfaOAWYO8x5Mqg8V5gC04D5O9WrCJe2G2EqnQETeMAneH6Goqjlnb25nnAu5805ijHnI1vo9mfwkq4iIaV3MaTOQ0gIZxEZYYjPCyH8SQqCWIDA0I0AwYGIgFLVqc0crgpmFOcRVsyZi5GvtTIpgZgqKQISmQCRmCzhZDQOyNwSN48ABkQMzmoFq9SZaMg81pVYk0EDITr0MSo18xkTE6ep9XUdEIPQGOUffqYjqvJariZRaK5gwEjS1CxDXJPeEKIKIASwLiYkKOpF5FSN1AnRqrVDusztbjwNnIBcRMZrFY8RUVQ2QOACYgIkKARo7b5h5t6UBVlMxcylgl0k2MFExEyIyJiFVA2Mv6ONYS0Ryae1lAkyaTZN36BQRZPI+gWpqRQCUiBzzg4u0j6kZBOTAAQBUDKCtX+ZLANmMNlVEqtJw3b5u+XAMiQ9T9WSvc98huNoHmqgImBeCEKsqILZmMFAAl70BcOJCAEZKIThJJJkpYS5yezwcc0YKqV9x7ICCu3cGsjhSjBCQDImBQcCwya/lnLNlnwxwButSZ8MCQEdSOnoFtQ0EM6SmbY/gHARv+B9f4x0uK/a5k+qfurqU++xLLvs8dLSHMfBv3/5n1oER0ft+4URfhD7ekJwc2mutACZzuZqXq8Mzy/jGHTi7P3/voWF23ehBvg0BgMHbdO2NG3G+O/sa8LMBGBov7YjtDlMrbCC2CsN5gPGmh/dGcH5+zK+47/MleIGazm7F6UfUhO9aAOwrnGosuUqpAFamPAxDqdM0DUi86neh61JKyFTVsOklO26J0CevmKmVWkyqVjERqLpbrVcx3r26+cVPf/4Xf/5n7//yvf1+BICQIAQ63k95yBQJQIehxMjbLVNkkapaPGcsWXJRzxaHmEKK4HljYgCoRea2JbDWWgJxFUKgSJGRYsM6EyL2fc8phi4Z2VQyMNlZKXS9Xl9eX19eP7q4fPTo8tHFxdXV1aP9/fHXv/4AAHa7HYUIoBwJCZhdqJCCczkCupmFWqyaoUfkYqJKQBRwRiiJ0yuZIBiBTokzQYmYc65lWnWp79JULQEo4kWK4WJ3td0VsTGXYTio1hjj9aOrZ8+ePH36+PGjR5fri6vNmkFef/75/uZ1z5goOA18zhmBQAxbDodQVVSJUOlBhxiegZznXll1sRwiYnzAG/fVGXQ+cZZwawkdm3FDJCTmmFIfQvJvCpiCRUCx1ovuBH4IqtKkCskUZMYBgULbmaNOVT2DCeYofCKar2mxBnZ+ejCDbU85RGpgsrPo96w/djEIDsLy5pyldcjHgHdpAhiAKORS9vv9/f0tc8xS+5gUGQjAKOcMAAnIW8giMRAXER9B03EKTJvNifG1i33fr++Ph/H5C5zJt6Woqt7bPVZi5sZxNU2+85xzqUVrba2/iogUENVUZr/1zDgRIBo2rXVk9h4/fMgmtVw+LpGk31VsCkN+9YuR8Syc52bNFInAGqhAW4W++SjmvMroJAhzzZQaDqnxIC4rUdMrYkN0FxA9iXAGjV6sJaKrjBLOcgDYsA0GamQzoH3OLRqQEYManIrPaMiuwuVpRQMvgGGTHzAQsEX7yIhdOMFNLDgkBr20y0BMIZ3uPwGQABmoAhMAKAKzdwWSAVZRrMXPvEptYi2Mqe/yNBAGStECAgSkGMMKY7x6/OjZN775/R/+8Hs/+P63fvd3vvmtbz16+mi37q67uO3juo9vCJq1p6tgBgpgFMi8h74AI4KXkpQY1BTBAAW0qlWQaqDkyXtEzXuRaloRjZ3KulatolXzONQxEyip1ZwNhIhC11cVsQokIHZ7f3t7e0vIF4RBIieepvEwDYcyvby/PxyGSeT27v6zz5+P44iINze3+/2+T50hA6EUHXOttUouKSVi4BBLrjkXZAxADAwAWCFgALBKFjgVqT5f+sAXq/Ttt95++vSt9XpditwfBhmnUYZDhYNSAZj2+WA3R8BV6mKfzIzBzIAppNglwi5wt149evL48VtPqspnX3y+22wfX12TQR6P6z4iqGaMHVxdrEOKo+q4v8WOgUwMOCVABoRHz56Ow/HDTz7e9CExfPjxJ/Ty1W57dbG5Ok1ZE0IUM1WrpIyooqWUhpoxACQ1UxEPGp3jwI07c2vDdMiXP/yqAiAYEAv6GAPwkjCqkltIhcUjOfkbIQQxJ+83RRQRNOHgsx2LmQd1vhEBcZtFCMBIMLMeOT2NqRITM7kqH9HMVCYAgDHOxNGqiEYB58pz2zsTNQcgRUSEhpHkaFRrJbQ20Rm8nKKgzBCRVbGoABJ5fkoNwTzl6rVAWygwOHkvPVEAURFRETQNhE6dhYCRgyJW57MDz0iQemQBIGBSK4ImDkSgKi61YAQi2maPxzgAjuiU1svMrvOsYE7B4OEbc2Amq+ZScM4bFZYzbqv7mfIbzPlOvz1mhsxmgNFpLaqZijCoORNPNA4IHLhlPszmBV4JwKQgYYgxhMABTRXJjbmHa66kTCCqiq4678mMwDzWmkth5oBgRKpOvwEhBK+nN003I0BUsCIV1CLHuEqkKlNRLQTIgWLELDXnjIiRmZlVXAsLY4wgWkqxGVPuLhSB5ZzrLPwgtXjDVUCaiYPBOZeNAJBM1bB1AQuYmopplZI4ERvQrMSsoFoVaWbPOpncw3B0CS1EFKkMIXQJAGopgMocYK49zrJW2q16X6R17oIOIcSUch6rCqhzU0VPeo15SrFznmdiJiAxFREryhycxyiGjoxqraBAjABkWgkxcgIAZyMNnGQOSufxY0yIgbRWlxFTACRG5lJ1GOvt/X6CAMhijY3QgIb9odaqUkyqjzYRqbl4pspLvs53dZ7VXsbY8s+qGhM3B/9hdaUVPb5SMISzaOphUIRv7Lx9tOhuP+SGPd/D+U++Nhj+x0fI/4itZdCxWTkUMJux3DTXfh27oqquBfH3xIHt5Je5T2ddhV898OK123xFqmrtiO2fS0Xo77ncN2Ngswc+5xvbA4/tYWLi/FrgH32Hz7MA7ftOQnP2U/cW1fsYsCXp2tmbRGDRKiWrircjGMtqs6LQejUdAudjOMVgVgitqJlUKVlKNqmk+uzRNYj+7Kd/8+/+9b957+e/uHn1Wqo2aXChIgoEalSrmhkFUMPD3TCFwsyEXHI2URFD5Bhj13W73W6z2aWU/Oh5Kp4kXa4rhBAjF62BCNRAjYicX72Ucjgcyv44lTxpDimuduv1drP8Nnarfr1J3arrut3u8unjJ7v15mcf/OaTTz7p0ury8lK11mopJdFKAREYmCgEUHWpGE49VmGHa5uKChhgBYrsKCAKRKSk2MbsUj2j+cZ2fd91KooBQx87CrueutVus72IMd7e363X/cXltu9TCOzeXp1KDDiOx48//vD+9jYwEwABl6lq0UBON9JEoZkCkLm+9xvpFTwJq55mU5svZyzN5wHwV18sC5zPVl2od+fveGpyEbewVjoDVa1SF2NIFJcd+sytkpdUPcyYiPMpj4izfThN8Ob8IdlD47AkAZcXgXiZ70wPIoXlt6qnph6/hOVupL4D0OPxuN/vc86qGkLytpfCploIQwgYQowhJjJSMUImUgOCpkIcQhAwqOdeI4nqxe5qmiZ/OjpzjQbiYRg2m40XInItzhWSaxnHUR6WX+YqovNcNGAIgKvgtQhwrvm++Uzf2M4j0vNbtDyp5fXy13vD2kfzXzhxa5spLbpxPhcWvpFlhwDQdZ1/4zTY5pC+lXmZl2IvIE5SjQmQzUxNCYmJQmOzNbKmp7swsBZTAVNGHwDuiii0lhsEbNIXRqiKqkWqISiC+io8gyk8r9ksLxIAIRMTArOaNFo+ZgwBFEAKhjDjNtExKz59gjWWuBgjAaaUvDWD0Lq06lYrDj1yjGm12uz69ebi8uqd3/3Oj370o+9//3tP33q8WbXSbgeaQACKgrb6FgQxczpDavlmQPWkoifQq1itWolILaMqBJOaAZQRIBEAgpY63Uut0LTfKgf0XUitkotOdRwOeZwYkM1KKUwQU1KtGELsI5C9fvXyw08+ylO9enQ9ljHkbrfblVHHkvfj8PHnnw3DtN5cxNgp2GE4dmnFIRnQmIsT2VYDqDIMY56GVelCCMwxRg0YWMlEpRY0AqgEpFrAAEKDmxCGbpW6FBTp9v5wtx/3x2F/HMain758MWq9HyZBG4uOOlC3ki1f9H0IyGBAmjBs+lWK3IW43vZvfeObV4+uPv38k8NxTCEejvebGFPksQt93AUwGUaM2gcGZCGT8RgYI3JMEY4HUIXAXceryJsuPr6++pt33/34/Q8fP3nrnbd/52yuqRmpVS3GLRGMy3yPrfajtlREF00vM18HMTIAeA7OzSYTuMpDHsbFzjsycaoFzbQlqU7GXxGYmZWJyZNWtRRUVgs1T8QEc5Ojby65qlrNe8fwZFRDI9+yFAIzg4hTXGoVSBSY9QwFyTGK1IgnH9hmTqVpGEIIITj90JIRMxdwbSUHQ47ky7eqYgjEAfMJ6ghNv+0Bag/mKLJK5ZmQCACYKBAmwkDg6NoYo4hIabhUM5OitVY6A1fSrMIgIqCuhktm5pPdkS6+K/bCrRgRVasiAgiMRAhSRL2gy6zq4F2kwIgYuhgXRg1th6QF7LT4rwgAUswqYZim9uADcWBkQhHdrDeiRWoO3IUYnY4YAEspi4pDVQOtoFUKMAcAq6rE0MeASN6SIiJglKukENfrNSLWUvwGITpGhgJT13XePeLLlYBRYOaIRE3XB88wsYQBAxqoKDODVHc7cAanMTMGBoAskyLElBxaFjzilSIi3lYeY+QQQow+BIxaRrNpShgwUogdBykqZtaIDRFi6gExq4GKVVny/YZU0ZjDeUEsdh2GRgWDSKIouS4QI2hLjhpQoADg+SFHtwOHSGqllHHM02SKE0WOHIxQQRys5sodzAwCRQVVjDAQVTNDD/HUkzSESEiBiYgYOx8bYugZK7ckPkYREUyISFWk1NlJ0hAiGo2iQym3h+PhOI7AU1aMpV/vACCPExqgCiuwgZj3r6GZVRPQqXFKAxJTrTXnHGP0sl3xIrY3P6sic86ZPNVD5JC2xdVYTNvsbSyz9cxU6QO412JHT/7LTMyjpgsJCmBLQXnXGM5lRzNzJbHFtT33UZYNHxzlq3H1gqTBs2pAA5gBeumyUZOBK2GomgkzB2y0bW+Yp3OH/nSYM6jeKaA9P9WvRJX+TTojejmvz54f0ZNUDuCBM0f54bYcvNlWIKy1muISjVfJ/lXvflnOebmExcTP999PSufXiOSdGo6M86Y4WqyBf8ThBKPKORsKJ1Rw0XYwU6KQvP+wyJTzMBwOh/vVah2xL2WapoOoxpi6rnNwznq9IoSbm1erPjDCMAzjcah53G3W28vLVy+e//IXP/vr//SXf/nnf/HFp59ZtUjITFUUMCzlt5I9aw1QwUSQrSnLnFe2lbouIscidhjGIto0mZi7rmOOvq6bmVMrhTIxs9R63B+m4yC15pzHcbzf78eSxQlUAzx++/E3+1O1bbVZE7OH2X3fX109Sin9+Mc//vzzzy93FxwCGnAMiAYFUgoxdAImooBMjCbKEXcXIccujwcoxcxKVRBFQkZUoKrm6kYGakUxoMyZreNhSKCXq03JlQwCIjOnDkPoV+vNdrN99OhRWn236yIyipa7u5u7u5fMrBD2+fg61/c//vBu0LSOqsaGzLGIIRqjwcyi56OdYhApLr3DrT6GqqZu9+Y5e2ZAHLIFtUqtshQDl/G+TC5HXbkrgEwxhuaBqSLiarVCxKKCtQjYQivlzy4gYeBqmnP2EB1a5yoAgJQKasxccgUGxzL5zxfF4FOJcplEHmzMmKgleHP3wvO/ze1QW1IptdbFNfSrc3ei73v/uddb/HChSyHF2/393d3dMAzO+RlCYA4RKHbRFAkIDEEscSJAUEVkRgKgQMwc3dTXUpBIzsxIrYqIZSwExMTeRBpTbOsmwjAMRWpV8abQqeRSS62+Qi2QN09AeEMZIDJi06Dxm1bnyC2EhhJExBCjLaF4C5TIBXvIca6tRjGHT0ToSpMPJQaISABtBswzk4MAQwhARgC1uNpKgIbfC1WLeRabWduq5pRsvibWEEJjgY9xGI4xxK7vfRA6AepqtfLy13q9dnOHsyiGSnFOFjUIMXKMHWKMsZSCRF5O994r9/eqSIhcSiEg8k4/ohiSmWUnuGEh4CWzr7WCKqXO6eO464hIkUIMxWvFol3XMQcQpchKuFr1iNj3fVr1RJRS8vMnor7v1+sVM4MqESVveQ0xpfToyRNO66lUY37+5ctutf7+733vj//4j//wn/1otwIE4HndNbAMDKAIwavPBMaIDFAm5UTTOEVGCl7InpTEHUB2zD4ZoAEoM3mLL4iBSilTrRlUdSopMjGBGVQZx2MeCyMe9sfhMJqolKnvu1Xf15otULfqi8jd4fbwxfDxx59++umnKfXcRTMwRgOJXTKA2/u7XMthOHJY7baXm/Xui8+/LDIOw3AYp916M+WaswKQSlEF4phFRQoBajWo5qACooBGqlBLiX06DpOD1XPVlKgK7HOtL29SGnOpwzCNuQ5F7o9DJpuqTtWQIRd78fKWOV5fpUBKpTCxjPm+3m+6pClhdH7ZkHP+4rPPWWS36sdhODIkUpuG681uvd5CsVoRumCiw91Yh31nIW23sNkBYx0OYnWz6p49efzl/X61Wg3j+MGHHx/vC/zXp7lopEzBREWBiXKe3I4xsyHW5odzVVO1WgsApBA9HnNvVlUbxVIDk1ouJYQQuiSmwNT3vYiIFiQSkTFPfeq6rtNaRYU5AlDOo6oQcYwRCV16J4WIUGvNIVDfn1wOb4IgIlXTpUdRVVWDxdStRKTUmmthZgpsACHwAgzWh1alaCEwIpor01RVxGwahtW6Z2gye1MeQgh96mrNLsgtrR8IxNTIxGoIKfUpj9lvjqmAKBOYkYiIx7GKJddVH1NKNFOvpxgDMaNFVEZMKdZaS8lmxgg1jyn2bg8Th0DRkxRd1xGa1gJAXdeZaM7Zu6NNCgB7j7CqCiJzQMLj8dD3fQgkzEXqNE0uoEMeI4iUUrShMdDMwmJ54etc84fuLwDAVDJWH0BOWZKROERy9QVRnabJNZrnJTmggRIiioGioar4QyIiQEVjVUUV0SoiNLehiEh2utVGKBcWp2FBNfprInJdO1ie/anoZygGBmLIc10aEZlYZyElbChiKqUomGupKxgbI0Guk9bGYOmzAhzP0NgyRMwaxkfVFJ1YFRGAUEVFrVHSeKbWnXsCBXDJAyKrM+vkcqcpBUVAsAYeAmrtACGgait4M6GRqiJT4CBV/fSmMQcm9z+mMlZ1QBkiogKYiMcHjc0MIJxx0JEJcBQRMmbgVtEmIApaM5yAXgQgqqagxI7fFjCLhEwzUoWQAI2oVqsEBjSKZDWg2OhlKDq6T6SWPIIoqJEBAwYibUqbVqHl8s+DMZ0Vrv3Nha8FzUIkOAt3l2hWm1DHaYxjw/d9ZZx/JURcys1fnRp4xl/y1XgSH/aj/i+1naIdYGvwTDN70NFK5HJfpzq2qpoiBXxjP1+d8ktAdR5e4pnCpM0V5sWbX3741fj274l1faM3isBLRN121f55MlBLsH1+UDjLXCxneDZWAR48nTfLxef/bJfMpzQEEQk5JLt1TPgNIOIQqEhlRgGZ8uE4HTAGPnSG0K/UzLoupZTATGomC+tVd7i/6WKSMTPaoyePt5vVB7/69b/5H/7f/+FP//3ti1fj/RHMWx+QMVCgUgUADQiavIGZASAUMSAhUsepLjeZEVvqGhGbC05E5MEG4klyvCWzRAhQRErOkouZaZVq5kodns0xheEwjseTUOF6u9lut1dX17vt5Xq97rruy+fPP/jVrwFge7EJkbK0Z8SJiag2ionWt2FIzBAommgpRauzsUqFSkBEsYLV4QgofcdE0XQKqStFjsO07VMhysUEabVZQ4VhP1AggMAx9onLtH/9Mj958qRYuL+/HfPEjAHMaqkAN8f9Ry9u3/3oA4xAXSQOVqGI8mwPFAyRPJEKQLOaGlhTejyBKpbZsIyctqg9zCUtH3111J2G3FmyqQVatXoMcR6sLgMSZpGwZf8ONp5NYsvfcVjw1afzsbMe4K/OTZsN5FmK8MEcafdi/iWdIWXOT7WUcv4Tz1NP07Q/Ho7TOAyDiHh6bqFdQJuDcENGCoaMntRr1ynmHPMGADHGMifufXM5BhFt5DHznQQP+wm96qsISMQheGGEECOxiyx6aO2LRIgRsdXo5swlIWKcPWPfvx8IzgBBXhlu/g8YEDK2VJ2clXyxpb9PWs0tlT9zaC+bp92rCjM3wQg6wfQ8g+CVbb8tMXZ+dPcHulXPyIC43WyeEg2lXlxfmVkppeu6Z8+ePX78WFWHYbi/v7+5uYmltGIDURfiKoa+65g5dV2tdRgGZqYYSim5ljLlBVDqiY8UuJQChkY4P1k2s6sumZlI8UyBP2YnugkhlCJjyUTkFCoUA8w1j9VqlTgBwHq9Til0KcXIzjgQQuj7PvWdmc3a1GZmNeecMwG609x1vQqY5P1wvD8OCvh73/v2/+a/+pffeefbF6sW+kYABDEwhWDgjTaGgDSv/qrAAYfjKGXoLzZAArUAOitPWxjB2Vr8L6hDQ8HMtJoJmiBADByATMVMaxUrKqXkqjXL8TjWXIgg9p0gQIgh9SHE29u7m5ubaSw1FxM9Ho+vXrzkp5RS6lPnTzmFeHl5GWN3d3sYhzqOY9d1Odec8zSVabpZd72ZgVZVNWlwAEMFUajAhobASAioCgigCGWaMDASVYN+tVn1fYw8DIeb2xsVQ8ScNU+1qgs34arr12sSkVpLNKxDefHF8y4Yaek5stgkIjWtdMV9GIZhmiYCJIZpmqbjMDEfyUreP768XCnZmCnFeLHrVmtM3e3t3Se/+s3xy9unj5+99a1vdJeXsgoc6DvvfFuJf/XZF7VWERum8ulnny82oaoEJhGRUs2YAPu+9xXQjfkCch5qdR94ga74FPByS8u2Nz9Z3ewYKM4Uqi0qIULEFVNwXOrcY8gAGkLNknPWml34F2cg4Ve9RyJyOTFCEDmVBQC9r7J9c7F+fNb/0OhGmyMFcxcZIGLgwMwNDp0shBBj9DPhRMkSANgstFatXSbFEIicw9zNlKdBEREJtWRypYfFE57Xr+BSTDOQyJvvSi1GdO5fLbvFhTdkWTpPteUHuEUPDVSV5tq1uRqzBx3+kYF3yCIigU25cAxIDoP2/jowgFDzeFoawdQUtJV6Fle4fYqNbgcAEI05IIBIZcBI0US9LOgtLg1Sr54eaE4bIgA2euZaqg8s/5qWYlpB1Cj4iKig1QQAwll87iY14ClcVytERBQRsUrRRubU+t7BgNQJkJ15jXMpvpIBQFUDAHFaJ61jGc0whqgmLggkZoFISUOKzIw4U2iy4/hMK87d04hAhgt8ksR72MAMwQK5SwEGhISMho0iMRBV8P7VMzRXDIun0mI8Qp7VflzDjIENsKqQKUX2O9O8NAzLjCLybBIQk0P9Gw0AGcySHz6HVVUEAjEBOu2FEwgzYECCEP2e11plzgL4hYiIzqtaCOyc0kxNKlNEqlFF3I/TUEqInSpVGd0vyWOZxuM0TaRGoEQUiCMHwSpgtVYHvLnPMXNOguGsjXgWBvs/VVsH4WJQvFLt6pEAOkeM8yp8hnZdHNDzkb/8PQNufY3jeG7FPCC3h1+z347u/UdvbxxaZ9IaaEBRT2sY4oxMM0e0NCK25Rrf2Ofiqi4fLRYATvbITvs8K7TOM/xBPHy6k3aeO1jooG3pHlyO2F4gAxISGRAaMkWnAVQFs7mWhQjOIHV2IGtGDMBMWnOAASxFcnAl4Tfv4QmDB8slnCcumIkCICkAIYOZAHrnAzAzpqSqteabm9ccO+LYrSZEqHnSEGspKcbNqkey6XiYxiEYosl2s9quV8f9/j/+6X/4D3/6p//5L/58//LWR2JKwQSqVAN19qg5R4MAvNR5/RY64+AZizZUsFozQAbzgTB/4vnfs2/6HnBBeM6fUPPdAAGJGaIHIZinstyTvlun1K9Wq9VqdXFxsdlsfvl37/7yl79MKV1eXiIZGVEgVQvU+bI833NlZH8qRJRSr9VqCHXKKGaaKyAoEJgYEai4viEEFZisIujdPkCfEpMRh3413R+y5IvNGoxVq8lYcgGNt6+FYnj58kWRenFxgUAKpn3Y1/zX77378w8/tA6MGZGNVMUosOvFGSoCArO5oulslRc7Q0xMxE1IfNbSQ5xxoA9aJ5bhveTslnvov2riMXPkjHMHaTXlua+YMCDMgN5mtvDM6LGqqEqMEYGdIcIMrXrdmH2ZRDcRSAa+RqPZgunAeUzgaTLDDD3B01V4T5qdxf14ln9ZfEF3Ynx9X6661pqlHoZjlqoNvO2pBDCHBswGgAipUUAiICgzA+oMFAcARZBazIxSWO7naIaiPXcpdE4BaKjzuiY6600TETGHFJMZqNVSIjGolVJyHmutNWcAMERRtVoRkTgyMzA1p/IsT7fEvTbzjbnbeTJ9SEAAZ/0gRiTOiXL2ZWICVOf4phO3os7OUWngryahxojo3JxAjZMlhOBM1wDQ9/2qX7tz1W/Wm35VVOpUj9P4ZJXW2y0irlard9555zvf+Q4zf/bZZ59++imA1pq9eu9E7rvNZrve9DGZmYPm7g57IlpvN8fjMddapmkYhnEcx3H0HiWno/E7I6IKJ+/Wu7LdQBNRZDZEM0DkYRiGcQQAYAohhBTB2oPbbrcXu13f96vVKiAE5hCImYtUTxKZmZ+AmU3DoKp9CogISGYhpa5frw7H4fbl/nZ/MMJ/8k9/9L/73/6v//Cf/Rc9QgAAsAji3qpHvtJWiwfALEQoVb58+XmKvNoFBiyQI5NpxRYAa8NGLzNnzmssUzU4JzAoKliprYo3lZIl53o8jsMwxBgpxCrGAUOIDHS8Pdy/ukPkjsOu35rhRb/erdYRUaciQFBl0/W2u+xDDxXvbj7zptZhmLTUEEKeSq5iZlbF1FVSFQDIgA1MwRSQ2Ts6RUXBgOn+/q5fbXaXOzAapvF+v69WBBXQulWKFDCW7cXm0eOnV1dXT956u+/71Mc8Tvv9Hk3KlO/uX3/yyW/2432NXSJCNWIIKR7G4Ysvn292m67rri4uTfT+/j4witSLnsc4DMbWdWvaBjCOCNu+Px4+/+A3v/m7X37nnd8hlSeE6+2T68sLunqcFbfvfWAKFGIwONznxSa8evVqe7llYBMQBCASB4ES1VqHaSoiDh8oJRs6J7cie3OlqVXmuLhSpUk8KiKqNcuvKmjg7Y8APgA8QJudZLJa62q1YuZcRqsCaswYQmLCKqpaUQ35ZMpCCJ3Dg4VwaflUI2uxAAZmJixmZgRGvOCPbIabLGUDFC1mYAZEKYTgwWQ4S+RFotWqqzHWmrUaEaILCLIgIDvWuhREqkVAJXHw6ICYtSAjMLF6VA+IjExcp6zMROy6BGAGHrRKdRKdFr7NJakqeQkGxYoPTlVF0IBtEfGEgl9q4KQ60za0wNUAT6qTiEjojMBopnPN3xmYTqt5sNlI+S/9lumc/j33a31bvmZmTs9dQTGbzouBzkqA1KBf4josBBiJAZXAiHDpRkPz4jGiIjKbuhiHZ5rV15nA7BllOnPBW0x7XsFTA20qI6DWmAaBDMDQFZR1yZrYHE7rzPvlwbOZFQfNEtZp4pQWQkJfxex8wzOvHw0UAidFEFUx1ea1EjddVudvIFSrQAhmjMBB/P0zn1wQolO6GerMCeMpGK+fnxLM84UQUZUChiE6ZdRoZgZCTE6cG4iXvAYsrNFeI5qppFpgY4BEaADggF4CVEIyE2cRdxotRCRm5AgwLYJAJ+fPQNUCJjGpBpPq3eF4GItSb0DVQHM9HAZEVq0BSSADgBeNiYg5qoiZtzU2IjhVWXwptxc+DmevzUCkonp6Zkma+ID0XNdyhnC2veGY2tc1AJ9i4LPtjV8t3/wtO/+fviGe9nxWwkanDliSgo2CZE4xtmpNS5QBgH6F++qNg7xxCcvr8wvEh9mB5Vfnezsd5R8oAp+2N+78svPliOCZeD75iIuBWgopsBSpvnJdBmek3F9JRmBLGOGbF8LEgYAVVYHMjTy2NjxNKSmYiIzTcZyOpU6ik0EBDKo157GLgded1pKPx5wHE/3m5Vto9jc//qs//bf/7id//ZevXrxUkfVuPRyOZiAiJk0xg2xmlgPvBLIWnxotjAE25xew4Wz1vKaOLUHxMPoFgOWfcw4IT948RaJac0gRETlxt1kvQgW+dd2q71d9t+5iv9tcROJf/epXd3d3V1dXMfFUJwpkZMSBiU0a648HSwhgStM0MSIyrTZr1X6koSqgi0jliRFX3ZqwVsmqNQbOVbrAKnB3f6jj0Kc4Fr2fptcvX6Dok6dvMYa7u8NYjyqaOr4/3jFz1UKEpVZF7NIq9puX94e/+/X7dwP0q06QkMDEvVIzq6CgZkSgqK6KjIRkZDPbpJkB6mmlm63xKUVbmzo9LLwDM75mmSlLkpuInP2/2bEH6yzxvC2jfVlEfCfnqAdfmkGUKAQGRBRxYqNT++gyzs/n75sTkE4acf4OwdcYPZ9xy6G/1m44xGBZMVXVQ18ACEhejgAAc8UEdYY5bBVUD34RhIAJzfu71JrHg+QdXHjGTN71PQKsufcigJiaSlEhg2rqa5/P3ZOZC9ixs8dA13UinYg4NcVxHB3hu8AlsK0pJ3wKPWwWO91eIgBgA0UQ57Va4EveGXvOZMHkdQVmTikhgpl5MBkCO/jczBzS5c1IyNGhvyGE2AUfBpeXl+vt7vb2dhzHi4uLFLt+s56mqZTSVCSYUtc51ftut/Pot+u6L7744rPPPnv+/HlK6fr62sy6rlutVuv1et33EQgA7u/vp2nq+z6lRN5RH0IpZYxxQdu1WPR49OnQtMO59e+pqgex7EWomTY812pmIcZulRQoxujKas5YVotuN6vd7tLvcxkHBcm5emtMztnvvHd9930XY1Srm80mRpZaCTn1HSC+vrv9+JNPgMN/8fu/91/9l//yj/7gR0v0G6zGtnwoeO7r4XCHRlZNd3ev7u5vnj17bKgGqlAMAqBCk5NazO78AtlfW0sPhUbQ6hJEhjVLySLVcq7H/ZCnOh1zCUKAUxeYsU7yfBjvXt8Nh2Ps+i6mx9fX637z5OnT9Xo9TVMZRplyGUY06DhMMHYhJEJXGlEpiNjHxBT8ETjGYGEZBJOOEriUqoo6oZ6KmFEIl48fUUrItD+OU54ePX18fX3ZbbtvfuvtH3znu4+uriKH7Xrz6NGT9XrtfC4icnd3d/Py1TSMr19++f6H7+fp/vPn01SzGjNShzRqnfb38Jyurq6ur6+ePHl2f/P6OI18jCJVMtZpop28/dazVdcTAIwZulqG4/H+7njY379+/cUnHwvj71xvw7MLsPTo0ZPLi2uk1PXbsGLCcXl6L16/oki79Q6ZEAnmtjgnL1TVqRRDjDE6Yt+xDDGy59xUNcaUc65Vu64zs2mamHG9Xjd5UTiTVJinv6l5Y4jz15RSxnG88EakgJKLlkxG7I0DuRAR4QPj6Uo0y0rRTCsCE1c9ZQ85Rn/NxNWUDBCpQWGaTVZqDLXohP+ECAYqCgCMiGo8p6gYgUIs1rJXAaFxJSKpWfDYUoUAIkczQ4UUQkkaXR5vNoltaleJHCIzmhqqk3ggWjuBlhXCxWGzObKrTh5EZGomath470ROfaO+2DViLcQWKiOCMzQjLkhhNGcu0D52QiDVcatI2ErjIQUqKgDGBEzBFsbjk6OIDi5yGThu4G/NpaAKMxtYlkmYFqjA0i/k12eNSt8JUNTQDJQJEBSUdBbnJAxMcXbldbmf7gHUostrHxnugzKTIjA0ZJMT8hOSNCVR9GKOqIFa03NABCLz7Ds2bjdEdPCzB01+FAErpUQiRFJVATNCMxQRmYMxbkycZqZiAkw2J6qRm6CBE+LOCFI056IGJGQBpFYzPk0ANaymhgDEDffAZIBiqiIxMRK7IUspKJCIEBMzkxEzGqiaILqsGYpWU68nMQOCqtXq1QBn8zExREDAQMSAQJ5yQacRR1BQG8tEjhyLpIgqVrVoFcaEyMyGatUUqiqIgRFGZGNkZlaA/TDdHo77cQLmakEUsggdj0jUpZBSOuTRzPlNWxXdEATMqqjCAtl3d8ozF3UhQ/cbK6oIYIRMoOqjz05ShB4KNMrv+Q/imTbsYsgWh+ZN0zZTidhcNbOl/NiCj/Myil/K6bHaGSj6f2wt+Nw+PvyAW8iGqG1SkwECetqt0bYSIQJ5xef8cn774d40T/NHvi2u7VL5AQD1jjc8HQXna3/zED7C/WwXcIshGao2EY65edmZWBSYrNY5/J8/evjvf2Sw/XDzqTkzoNKDfTRy8fn2I7XsIoJZtaoSQnB8TK1lHI+Hwz6G11eXUYOYqNZ6vLuttcQAj6+egeoXn37yF3/xF3/6b//1e+/+0lR2u93l9tHt7e3oac6mBU8GWEzmAdVuP8LcpWmnQYtzNziSeeb0PLhFW0A4Dx76kjxsuyeDhloUAMLIoe+IAAOnlFIfl8UYAPq+v76+3m0uNpvdbrfb748/+9nPYoxXV1diBoghpmIFve0CEAiYQmPNVVMwobZopdQDgCitMIQQpjrxcJCSFRW0cZebulFnAFOQodS743BzPHb7NEhJxNjHrlsnq9OYc6lWhpQSMaXNqhY95Gmzu95ePb6t8LOfv/f+Bx93fUBOhAkgmGWKQVXAPFBB9UJqizBtdh6a6T5frU1btAMAig5TP0WYjmiFs14MmsEsy37eqAwvMy5QJAyE4dwhR0S1ig9bQnzPASMqVnHVGafNxtP0dP3qM5Hz02WcvQMAZE7ReIJMmBk1Nnfz/nkfizPDr2f0UVVlpjzhgMxoILnUWe93RqYRsdPnq8AczAOAohKRkSkqIQEZkCmqy0cjMwhobThnAAsPHUQA2O12pRQ0llKdFkRUilQ0cBxyNTVtamT+QwbEkNCAmEMIfQrLo/EAeBxzKU2hUMBEJKXOiVj8oMuTXYxhe9CBCZAJoVZgAlE7ixIR0VlF1NQM/C7FGNdxDQjMwYOzVeq6rguERLRer4moX2+ceiCEQCGJCAX0KJdnZj4feINNx2nc749qFmMsKgEpxrhara4vLx4/fnyx3dzdvL65uXn58uXNq5cmtU+bzWazLDRaSx4BKCDiOAxVxMwoBlB0huEyTXkcyzQ5RaiUCgAphFImr3gzc2RGZi/Vrlardd/PjfQmZZpyLVKJiBN3sVexEEJkIjACW/eddbjuE0h13plSiloVaXwo4ql/gBjj7e1NSrHrOuIupeSN8SFx16++ePHy408+ef369fe+971/+S/++F/+8z+6jMlHOJtFD1Nxhgc5sXlz1gQA0KGEpb588RxUH13vAqGBcgCxiRf7CWrnS7Sz3auvt15T85HnjeCkCjnXnGuZdDyUu1f3Uy11KmwAAjXLUKabL1/fvHhdpiylbi8unz15en19fXVxubu8MAVlLVOptWgtWvN4PIzH492r11AFpco0mqiJlrk7XVWLipqSedRmoFBNTZXMMgEBGpiRAiGnsLrYHodxten+xT/9/e9+97t/9If//OnTx28/vUqR+5SAGXKxKY/D8XA47PNh2u+Pw7C/v9/f3EipJsM68bPHj47j4W5/P5WiUqxwgGxShzyFQG89e9p18TAO43gspkMXL1YdSN3026nWwzBYnsr9Hl68evnyZc45xHg3HIZf/+rl8T5ebN4JPcRNit1md2FISgzcpdUpV2sIFCIG1lJFBZFTwjLlWiSEkPrezFRhzFPkgEQU1IqJSMWKZIzkgT2iOfCTo8+8aEoAgC0KMERkdOnt6MIriTlyzDnX7HKq2cxcoI6IPH9uVciIwfHOJ5+Dmbz7sTVWtr5ORrIZygWIiIHJnMFS0Lza5xBkl2dBM2WiEF1ghwgNVbytvQVGZhwYzMbjwARElEISMUQzhMTJp0GRSkjR6wCsDC2tGUNACe7SRkPD0FYHtT51zBycAdmEkQmIzJBCrbkUAQAOJxddqwZiAyNABmQkRVMCQDBCNK8MKwMBkhk04qqzAowThDC7s+NoKTQ8CZSKqIgaGhFzCC63HciZoOfF2Kz12Zx8V3rgerfeVwM14XZfT8eAOZm9tAgyk6qKgRKKGUI1NLPWjSZaEBFDOG/VO/cGGBBmL4GZiZGxZUxbpQvBz5lmMmbn5Y5IS/VrdmYUAJjiomu31NyXM1+OfpZfP1GoibWg6Nz/MEQGct5tEfEHo2BIxMxmWkWqqYdwLm2vQIiKFIjdiCuSvUG77zG5s8cB8bJs55yJExrO5BMMYFVETbuuI4OcR1WNiSMH1RpDFJ2XaqCF/cv7QHzmwVJFJGs8t0hmwILqsJiGEq2AzmMUiCEQIbKoEBAyN/ApAgMwYeAAQCBAHK3q/jjsxzF72gJBkQy0iuScEVQYc51EBVTFa7aAOi8s590a/uDe8CyhNUSZmpoquI7EWV2FiFpfx1dKlOd/m9E8wz7YWZXD5oTVG+GRzUgn8LraPCGXIQpnP/mfFJ6dtvO9Lf4WAKgDCpz/7exilu+YnUTOzj9aZv3yPj6Y7g/vycNqD+KpleW3nC38g5f8sJC+nPD5BfpGFBBPFbYHZ3veJ3l6ZEsq9B/ezAxATcV9vuV9VdWqTOhc9x5t+gsOWIsTpUsBxcMdcQipT6nrus1qtWa0/d2txHB9tVutI4P96r1f/t//b//9v//3/24chuvrq5SSU+IF4hR4qpUAAchHsbVE0NmV4oIhn6/1/LURANiccnT2VsfJ4Lz5IwcABGQicYwvoRG5zoCroYQU06aLMQIoMrzxIACw79Zehlql1bsfvfv+r3613W67LooKM1OiWgwQtDaEttfZUJ201rqYRESbpm7g2K1C6terVa129Wg83N7fvBqGfSQGJjENhuOYA2NcRaQw1rofy4XU1eUl1HJz3AuCRbaKQjpNh21Eo1CKvL6/KxW7i6eHUn/x64/+83/661cvxkfXV4CBQmfAtSrMKF8MHKoCICqCGqnNSGGPXVFnkYalMHhaHcBUNZ0JwOrcqNl6xh5y/y4r5vlQP3///KM3JsgyAmG2UUTefVdVVUoV8UaXINWIDM6qlMtzXPb7xmj3nMo8ok6iPW+cmB99CeCXFb9pac0xnjMtnZLXZqA259ebSjDNrV++B6P2HzJ5HbzZHG8AVgPAmkvs0m69Xs48pbS/v1eMJWdVJWYDKy6yGrioFxDMBSpJ/KYhqCnORfgz32OGAWutdcq1lOLlawdMnhfVcW7TPdnS0PIASERSl7Ub5BSul5wX2WEptdaaUlpvN33frVarwKiqXYh9n1Zdn1LynYfUAcA4jqpaax3HccyDV5n2+z3H5Pd8mKYQ4pinWnR3dQlMoLLebR89evSdd765Wa0BYH93f3Nzc3d3BwApxLSNgVirp/OwlFKmbLFi6ruYVl1fVQKzq356v/E4jv5w2xNENLOUki+VRF7OXaXUiWkXU9d1ITR1+lprNdOauy4BYghJUVWh7/vNZhNCmMbMCLWKp3adQcw5pP1hhRBMdGkgX6/XzBwTxxgDoRqttuvrR08+f3Hz8/d++eH7H1xeXv7wBz/4oz/4w28/e4ICTE5yRaAG5ModSOQKJnNF92zhmqbp5cuX19dXIaQsR4AamQ0F4MHXHswjADRUQ2vkUqAgZAaqoFaLjuOYc83HaX97f39/QIOaJVA0sTLlVzcvX714ef/6bpomrXr1aL/qVtuL3fF4HKZxt9l1fR9DULMQws3NzX6/39/tp/FIAIwgJZsUlVKmjByqtg4CVZ3DHwME52olMFFnukaMTIEz2Hh/e/3o8f/xT/6b//a//b88+vY7oGo3r8r96y8/+s3rL1/kccjDeNjfHQ57Z1afajGEXOtwOJRSTGGsomT9epVVpvu7Q87jUSJxIhzHPE3TixcvHl1fUUAiYBEtGgOnEA9T/uSL5y9e3Wx229B3g5TPv3x+t7+/z+NQM1OwFF599gVRWl88xc3OFI5jyUXBmkiHb+vVpus6RMxSSV2gbgZ0YMOJeI6VUXkWBFWpY54SU+z7nGtKiagZxdVqBaDTNMXAy3o6GzEEgCLCSE3+VtVrgdvVhgL7fCFAYkQALbVIJW68tOe5PH86OGNMqHXHsKGaoKEtLhMzOyUhIrIzgjh3BTMYmWoKgRkJWMGoOUlELieJYKApBFQpgoGIKTJF1GpmYoIGgduNQjM0i8TuvpsaG4J4Fy54RO/rY7OBSEjeF2KEyEgMaCDMZMa6hCSIrrngAns+ryMxEalL0lpFRJtXLkOojjk3MTNfH1y4UcSqi08gzAVUF2ryvE5ze4gaPaFPhwAqXrhCNXFQORAR1ern6EinuYW1+VvilLwz8hyYHTMuFWABBVUVAlRkFTEnCGZAU5uHYK1VBZjZKHoKpFZVFESk5rGZorrHGRZEqwcxOMOhnQUJcIl0vcvY5iwFousZEhAxmomaolRneWyBjarivAb7s/Q1JsUYOKhWsaZe6U4bMpGnFjwB5G42E880mwv0vG2mAGRqXowjQEAlYiM0UUNDs6Vo5rddBQkJiV0Y0NQqmIkYSK4TeRhAXK2amRepVBkBARVQHQuBBEzAFJe4BRrlIVQpnloAADRFIp55GxyrgEimwIQBgdhSiNVUzVSzqhIF5sAxyFABAIywZe4RkVwugIiGsQhArvVuvy/VY/5YjZZ8hIKNeQIV9bK5KyXMNwGQEHRuXX5AstLSE+dVSlQErCIIJHbuKTIRuiXCFrkxLAHPQ89+cUnPTdvJKj1skT1f8N5wUr+KsP0Ht5mX4us/fXCeM+LXWmW7ZXSB0HGmONeZrX1G7souTvAbp/1GiHjul3/tR2/88NyVx9af73zUDtSvb9wrNHjoNMyFIGx0b9ZWEJ+6pG3/iISLbsG5Q788muVA508N5sbMU6T9W56OgYGcx5WIZmgyr1VmoloBlDgxMxiJmIFJrfv9HVFY7y5yzjmP4/EAxdAk4moYDh9/+Nkv3333//nf/z8+/ugjqbVfrciAQMWk5FFKqbWagoA1XgJC13O35pB58kXmWzZfYItGAL3XwwyBwKv9wH5PwZcQW268Nz64o4rGhghGBojMMXYpJfdWqYkTiBganxFXTNMUQvCvlVL+8i//6vb29lvf+gYAcEBjVDMgMgCcqylogCZiAmZoLkYYq/p5Yew6phj7rmNKkepuQ2Cva7Yy+PAqWlWqEHQRMUYBPOZ8ezjaOhHZi/tbQQgUj2XCgIZ0KNMqhOMw3g8D8er2cPjgky/+7D/95JMPv9zGFCwAJlRUQ8ZgpqiGBIRkzKizfrqhW6Q2yOfyu53lZBFRoBVezQyYl6mx3D0R8dfnMeQ8aH1vbcQSkYABGOtpO68Y41K9ZEZFj3jNDIykOp0FihQRA5j7rASW1f+UBHEGIgdPEAEsE3mmpKIFZPAV46YeJSysIKdC9BIM+9+FTubBhVuTvkUT9HFhZmja8odgCMhkAZBAVclAzWopUrKKBCI0SCF0gXcu/gcAAOP+ME1T0aKqBuKVc08gOXOkqgYk9GQtEXmLu7lMqAJAnY2YqlIIRORMSxy01upHihQXP6HhRphjjEAnqkV34xyu3IPMWbhmlH0V82CYzsyU/6rrUr9eEVgthcFCCE4UdDwex3G0/b6Ucn84mhkC74dj1dL3PTPXWg3HlBJQG4Gbzabv1qvtJufcrfrv/O73vvu7vxNAax5fvnzpRNzeHIQE3uNQpqFM0HVdCgGRA0UCVAEETjGCYa1KCrkWAChT1WqRU+gjY8g2ihRQja7elSJz7Ps+hlRNuxADBzOtOdeaVdV111JKhppiRDKp1qe46bsQAqqplFyraKXYMQIxgy66KkxEaBoie4vg9fUVIiIoA3YpxMiBOOf8s1+++977H4DoN7/57T/6w3/+/e98NyEgACogAUjTaDYkwGB4bvh9mTXHKXz5+uZ+P779jY0olawhMgAhxAaS+JoFBR1VR0SAkbwTsgIgiiwSkFprnabp7u4uj1MXOjIigPFwvL29ubl9dXtzMw5lmiYpCnz36Wdf3B8PaKBgv/eDH771jbfX/WrVd7FLX3z5/DAcb29fl6mMw1RzMRHnJwOv/ZaqrRlepZ2ckUMiAXw6i1UwIAsR+f5w9+jpkz/5P/+f/q//3X+3/ua36/Pn//E//H8+/MXPh88+GV49z+MYGWuZhsN+mI5FKveRUoxdJwj747g/HkRMIEBaiRl10UauGYvKVCUxrYhwaGfYrftu22OZJsWbV6/XxK92l5er1W61/sZbb/fbzc3+7rPnX4zTJAGrWkckCsP9sH/5Wiwxxv1xuN8fi1rHifisLaLr/NK8/JlrsZK7mGIItdacKzIxs5qJKdbKXnEiFGmEF24B3IovqbpSCjozvy+nqG5C7WFDZZjJO3FuWqTWaYQ+/QMzgEYOxA/KAIysAYEQmVnVtOVSqxkQUmBUq7W2+ifRkmFkgIoIQExsQIYWXKTcXNncqKFykYlDCKI1MlNgJkopeNo9eIrQCK269puSgpqJq6Oxikag4FhTInNYkPuXi5cO6g4XzoLlAKZSiQLiolRMpxhtLjq6GUQAdUiGkbj/SIFxdvvMqmgkRmBTrAhIgUzIVRIQnNd62TPOBaqzA4mAAUAwVUJ04m1UVbDAHFLM+djYdRBnyslmv6UoMDFHACulGHMIJABSC4nGaI0zTcyIKlStQqiFAgA6pzwazoVULyQiAZmJVikiHDAQE1mL4xuxIuqs78rOY+bqdOpdS17hhzkeABEpUs2MmRnZwyAimsqgqgroiR8iFAURTclVKOoC3BeRVd8VyTUXVQgpOqU0AsYYvVVI5m5hImImVKtZlrZkMRAFRSLiRvUMQkCIrazR2JyAZ2TM4mSgDxQv2xqYi4io1i4mU1EEYAiIYh5vGxqUMmGglIKZ05EJB1IFz0QvQw1RHQluZo6F9iiqcVSS+x8OCVIkZI/BZ5Y7MMTWJV5VwQQMFBTVG1xUgQlVnHYl51wpFtFhLAqBU2dGpZRpmkR1tVoxgYmWWkEVZg43RCQCMiJCqFBEiEiIzHsAEAWcN6VJlSzdy+qdzOD4lMVvo5MBwhnuuTijhkCGwF4xAxBTXNr8TkvZP7J4uwBNl4H4v/R2HubNZzVnqczrsQTQtEyXnyA2330p1Cx/z6sZy4uzgPasQj6DI5aP/H2nX6PGGY52dhOWPMTXX4u9cYvw5Ef7Ru1LDjb1kMOsZe+WczjPU5yf2Fzh8v89iPy/ZjMDBzsA60yXBQDARARiFZEYSdRMQNU8oRpjACje+Z9zLtOYh3Hs7vHy0YsvP7vcXr719BlC/cXP3v2Pf/b//c9/8efjYUTGZ4+fichxf1cldTERBsSM0JJW3gPgbYxwdl3nHWVLo8+DkWDtMgjUjLRVJ9SzUWa23HDEtjRRRAyEiIaGRKtVv9puu66LMUzTZM7paCcNbd8k67pfbdebTeqH4/6nf/2XzLhadWo1hVRMVAQbvTyZOT4JxNAUnf+qFOm6FSBMJkwUUk+BATml2KdIXQ+iteTblyVL6WMsVYlCtXoYtWpJfXfM8vz13c29PL7crvveAinapLkLMXb9OEwEOiLiah27y5uh/uz9j3/23ocG4fGjZ4dhdCNvIOi9PWaE3rAUnKnR3HBwMKtvzA53JRduCDIQaVSLvorjrBjkTbBLmfS8zukvCNAXjNMK/bAsPK/4rYBD3AJyD4B17qo1EEB1zpU8ocexIidWap8XC+jpfLI8nARnKSRc5gUsO1leLcs4NXLGtrmDeH4fWr+Wx+0O4Dqrh+tcRHUaGQFjREUIyEScczZAVa25lFLmRBekEGsuL1++XM78k48+7rpOmRwUZlkQm1SszrDDxQESEVBjYaSgCAwIDEYEqA7JEzmBmQPQLEwcySDnqqohBJfz8UxQzlmgmqiz6XIMzIyMYmBogfhcwTKEoLWmEBHRpBFEqeo0TUXyNBxrmXLOAQlAx2HwdHyeaggBgIZhcPfgcDgo41RyCp0h1FpDStvtLqV09eg6hJD69dXV1Waz2e12V1dXqHa4v7+7u7l5dYtoferqTH7LxH4Vx+NRWdYXFylEEetTPw4ZAAKxA9eQKaoej8dSi6p6v66ZaamqNXZdSmG1WqWUWrkFkWoFNAOttZZpXDokQwjMRDGs1z1RGMfRr3ehz+0iA0CtGRH7tO26bqzFTFShlGnKBRFDIDMrpaTIXlro+3R5eXnz+uUvfvWbv/27n9/tD9/7nd/54Q9/+E9//0fPHu/QwJw73wDYEz+ACNpagGGemK17yN958eJVznm73TLxquuRqklWyyHg2Urr+h4+fdw6I1FAYEAENNAMMJKVKtW0ggqJaZUyDFIqhpgiM9IwHG9ubscxx9BtHl84qBCR7w/7Vzeva80hhPV6zTFcX15dR+5SSsx1mg77+9vbu/u7wzBlr7KLiBnlXLy7TG3mmjFBRDUgYgZUUDCrombGiJUqUPzu937wJ3/yJ+tvfev1uz//6Y//+l/9D/+vD3/+8/GL50EkBU4pBUJDneq0P94LWFx1lCKEqGBTKWJAoc9jhhAFTdEwsanmUR2MqilUkXJ3x8M+HdL6uGc0m6Z6HJ9dXb3zjW9cl1oJ4Av76LNPIXJ/sb14dJ1zyYfhMByn4QDyDFwvZpym8chmXYr8kE1KxYwgxlRBp5y9xU9EhmkC4k23QsRxPGJIpeaq1vcp9l0U1moGlFKSWkUaZZ0HxjF4iKh4Ek5DMBAwR4hMqlpqjF2iNAzD8bg3JBedcha0KsKBVymN09EDk3KmA4wI1AJJ8wZ+NVXn2wYMSEgoUM2QDBADcyN5WopogVHndC2oVakiShjRE0emKVJKoebqS7L320w5M0c32QoCFdx7QAMOoeaCZJFQAiCHFIJqLcXzRFpUpKo1ecVgVbzNlgCZgJFEi81AIU8cewJIBRARFGTmz0MviLc4tbWaBiIkMlFBNKsivoZUk9Yby4h0Kj41uiWv6BmAqrjr4UBRzyNQ4BCJHQytAoQYQiIMphg52Jk7Cv7QTKVWBSCKpZTJat/3IaZpGpiZkGLsALSMOcaYYiqlVBFmBOKpSK3miVE02awSNoS25mlKHJw63Nm1aq1EECKFOfYopXITuwMAYyYBIMUqAmYhhK5z9IKoGjMhYEh9rVUQiEOWKjl3XY83SccAAQAASURBVIehI7NSa6lmYIgKnAxEkIACB0YkM9ms184YgGAcEykUETICimo25BICKaC3WYmaSQUgBgypCRUiIxCBEJiK2ThNMXaIWNUoKgDUWrVoSn0IQUuWM0UHUEDEWsUUQhfNrExVEfpu1YVYymQEFFGwIhgyGNZAzISoYCoIFDgBkKpwRGQsc3O/SM1TDsQhJCCrYokDIkmpzBFBCdGqqUlKCQir5Km21vPgSeIipkIYgNBEAzMAhC4BOH28RjQEZKZcMkeaFPZTvdlPt/fT9snFVJQM+hiyVJUSqGdKeRilSozRQdGMCMS1TgFslMxI1OpwZo0K9QRttQV1TGhiQAHAtLkv7lKpmXUx6oxFRFRylJ0SiJqiNZfUWXrQzDkO5thj+Wve6jGbGVt8RvNOApjDqPlDVDjb0dk2x7EnbacWmQB/9avzUZajtQiTiDzTQOB8wYSAJiByyqsRzTh/ECML1JaHN+LSZZov0b77r559cLhPaEm1AABFRXW592iICo0mDWbFSwAj8Gwjm57su/d4IxgYIoCBznT9ZqJghMAwpzBUPe1pYKbm6BdPD9kCPjOA1p4JAMSnAjO1kinNSckHs4xOKwSYy6+RIZtBTKfKkmrt+g6roKFWReAUejBKvOr7VCRzQBUQU+Bk1Y43N9HwNnabzWbdXQEcf/2rX/2rf/WvfvneL2IK1+udmalUMF1tNuD5XfAELTnXNJi29mdCUwE7PZTT8/LA5mzkAGhjWPU+oTmwUYdMuZwqKKgCKhI0Lnqm1bp34GLs0mbTmgyHaRIpKSVEEkIk1rNIaTocI9Kji93bT6//7b/+Nx9/+N5mxWAlpTiOQ+wScvLuPlcknUoxkRACMUs1U0jd5jBlUYhdjzFU00Bh1ac+JhCtUjl1u4vHudTj4W6CWo0CAhFWsZqVB8HXh90mbUImqFV3j6mK6PNXnxOFvlszp5tXFTBVSJ9/effBB5+//5tPDhq77eZYK6XOTIFampmIYvCkGJoBATueywzFa5jMRCRnTe8GUsU7b1pq34kAxYw5LIn/EAgVixYtrh4BXpNxlR2ZUYkAwszOJ8SAZND3vUdWfd8jUs7ZUClw4xGBxmBAzOQKQ7WgCjKSQSSM3BrIPfxDRMeJeWsZmM3cACc49zy6mken1nIeDGYtWewuX6M1NjMTE63Od2SIMpe7PYDxCew8JeAtNG1ZxEVOgogiBidYJiImRqIUkvMASy3MrFqLllKnKpWRnDutquwP+3OCLs0TREYKCwcHMQMBASKYVvB0WnU2EEM1y6VGcitqtbpOmIWQNuvdccqIDMimKlKBKYBN07jpV8zYdd1ms3GGqloroa37VHw1YUscMLRcA4ZIsYH6Gn1xnaZpKnUcKkipkosjzqXUaZoANefR9Yed26nUejyOHvpKqWYYQiDLqmqIoUuUQgxpyFPs+qtH1+v1uu/7i4uL9Xp9eXn55MmT9Xrtmquff/6Zi/cSB9FqBiF1nulNKaWUYpdWm3WMMXQpUOyYj/tj0bLa9l4SiDHmPLkvESOn1NdaMXDf902GhMCQxLAqECsxuYtUc4UYESAwE2LXdV3nh9bjeCAVD3cDJxErZYqxK2OBlrwISHQYjkBEAQ/jIefqVAUpJc/vdymo1vVmm7pwubsgovd+9f5//LO/ePn5zfbp00dPnv7hH/2L737/d53fPj1g9ANwXJwPWNCsNVFQcQVX0Cqq+vzzzxB0vUoAGXVCMoSRAmXIBtCAtS356EwNihgAEDECdSAmVRkA6j0SRJOitUd8fbwf93fbdVql7jgOTKFIrqb9Zj3Wst1ud6uVmY3jOI1ZTEWKl8jG43Dz6vWw368jB6T9y5e7yLeMz4f9i9df7g9j7DZjzmo41pqrCWDXrdCMzIihlClPAxhd9OsyZSImBNEKgFKwDuNqtfmv//f/h2988x34/LPbTz8sN5++tZHtD775IcDrF7evxkHHY9USu44jHWrgGKAAFKmgyBRSUoAy5akId1HADDWlUFUUVAUOFUqpgYAAo1CvepwmVdFaVl13EcKLcRhRX+f98X6vVntc1yO+9dZb2q8+ubsbp6MxcR8ePXo0cHz95XMZ9ut+u0pa7ORphK7PuWq1EBIic+I6TIdhAgBDioFEioiUPOVpXK26Vd8j4pQzE3FMhiamYlXBYgiMDXDKiCrKHJm4SlYzZjYyEKgqDORMZ0WLk3IwU6B4HCYk4oAiIGAGOJoKB7UiJZ/z+RE6YaSZQa0KJimCEVVlpE5Va9XoDqeCAQSKKSbX3IrcEpHeXeTaokScOBAgoRJWjhiDIuQusWo1xw2qpEhZq4E4cUSIJCJk1ncxhGBd9JgUCQiqoHAgqIWJERkV0FTVCAQNowvTiDrTezUxQwXyqi+oc3EHCgBWVRUMpmkygZSSiPnKtTSJkJGKqlRQ8+7SEBkNpLncCgLaMsWes0IBMDWbG8Kc3QiJEExMiykhGlFw71a91A6NAlqKNP5G3wW2bgk1n+dzfhpshv0QACAFM0N1JXAz8cBCVR3DrcYI1oTep2nywIa80Xc2NJ768KojAs+yD9h6b9xHnz0+Aez7tWl1VLPN4CszCyEQGhCaqqtQimouRasiogEaoVkjJkAnTCKUWipkkNpaSRGZgsP0iIKj6ufikzisrLn6LtprSkSGQIGRIxA6eBLBKBoGVhdkNMR2mexwIAYL4SSEzRTH6dggCyJqpggO76+e8UcQM0ND0MCUQmB00IGoACMoKgA1h0Nboa8B9kQAkRldEItCIAFFdKkJzzyBap0ytgoH+kUjEVEgCgiO/SNDq7UiMKKRUwEZIBiIZ0k4pIgVizgRTlShpRBHBqhiVYyamLUubdVmBkIGhphCbO6Uk8LNPWl4Jo61xHIKgEw2d9zZ7NLauaDUXCFUMFMl5Nnzo/nvqXyLD8utZ27ig1a6N/9+BVT81e2N3f7jN1zgzV5CWfCZD0hZ2VV7zwMnN4tWT+f5tcWf5WYuvzrPgsEpJ35WRkZGnwjIDTY2b15K+/vu4bw3R27gzHAD81XMbPMzTm3GoDzox/7qtZw/Gps1KlwXAMnBrSexeDiHRgN4OwXi2WoU2EyYooGQe58hEAXPLKQulKLFKlZAA1WZxuEesIvh2ZNrpvLuz//mJz/5yYuXn63X3Xa7NUMT1SK1VisoIlBRRGr18dnyyUsZ8LxEvozG84s9v5nel0lmAGgmiOzSHP6RaSUiimRggEaR+r5Pm5VDnbuu61YphFBKGYYhuw4TIrriHaLU04GO+0PNZbPq8jj88t2fDcPx7bffXq17QFQ0DkHMQEFVZr0D5+ggQEY0A5qKhdgFYmSiwBRD33cpho45S6m1iAhH6tcrtVLqABYVqsNli9mQhY4CkEc4qFax8PmXt1rzq7tDDN1+qEDp6vpZ1108//z2b372q/ff/+w4KsaOw0nWQuboF/F0VxHRaaAQ0chaYsZHwgxFXoyP78dDXx+Iy3fOnxrNYjwL/YTNdHougwfz9Dwf9j7BSynOUIqITc5o1gsyVaAGwwYTEQMVAaiSPRfp3I3LbHpjgn/9ZvO1n33NZo4AOxOu8I1T9I+W1NIbZvY0E81Utc6ceUuOwC8odt1ZJTksqDNRFQ+rwaixMEYKYRiG1WrFZzRakUMgVtQlq2hmKDqr775pHxxYMo5j5Aa2iqvG4jkME8eQc55yVtWpFm933263VsXlfEJgAEOEEILDXhIRRmbGGDkmb2OjqlaLTDYBgJnUWnMePZhUEatioiKmpc5quq1l2ghLKc6EOdUy+XG9ZGloiBQCx9BvNhjDZrN5HON6u7m8vOz7vu/7Z8+e9X2/2+36vj/c71+9eDlNU855HEci6tarEJgRHRk+F3KRKLZ+ZkJETCHxjvwnqoIIITBAVFXkLsUuxigiilBKuby8LGWqtQLYTKILqhUBAataLbV2sd9sVqimqgzYxZh1jIFjCKpSx1ypuIvsOrGeWvXgvNQKqGXMRURVmbnrvIaMRJhSuLh4ZFL8Mf385z//m7/5m88/e86ri+324lvf+Nb3f/e7u+1aAQK9icyaZ3hbEQLOjIfWxvPr16+HYbi4XIfoihnVC4mgBREQmRre3tS9bqBABI7sM0RTF2gBYLjYwr7qfT7c39+8fHV7czfuD9NUpiKGYGwQuEsdMQsSqiCiCwuZ2Wq9CSEcj0dVffHixXq1OgL8+PYGinzx/LO7m9v9/f3xeOz6fj/ku/t7BTyWasACwCFSjKuYbm9v7vf7yASitWbtHKwBZqYUY4wEpOXwB7//T/74Rz+C+7uPfvmz2+cfJ5m+8/bT4eLyretvvf/RZ599/vzm7vXr+7tJNULQfj3mzEDI1JYxrdU01+I9G2KaJSOTAQiCEihDJRADUjOAjimuVikgEbz17Mm33n4rEtac98OwL+MwDFfMu5TujgetXu5KokWsDiULxjyNBEqkTCYnncvF8qCZqaFqMbAYgjdSgcdOpojW9007bf4dIaiRoRSPrMZxDIRO0gYAoCLe4nnyjgzIzFjAGkofUERcNgfRRelOTXxg5H0fSExm50USIgKpRARkyA3nqGBsbiGZItZqjdwUUa2CGiEC+3Jv4NyEAIGDqppWFzSKMSTPz6oFQg7oSkDNQzZIXShVHTLThaix1fNijHP9SNTEAAwEAdfrXkVqEQJbdekEnFREYifj8aZGRMSIBLgw2pYiZtZA5mLMrNWICPUBYtnmbhorCgAhBKZgKl4SAQJGImZSA4DkeQRyXgcUQxFRUURPDs+4jLkNOKiKg4Pmm69+bTSLL/kydLZ4OIrtxOohUrz9lxBFqqoy0omhiwhc9ZaMCDmQsyaLlNbg6oUjh0WBqhgHNAwOr/L3FaCakUHwSBsAoAGhBQRRFcAlGZGbG6qtOU5VRWtjNai1IgAZojd3mS0rc9X5XqtA05tCVRXztl4IIRGRd9ghgpogIQPL3EusBlXM00uISAEQsYpmqaIauuT5dm/mbdoPiEAoWjnEc6GRqoWdNIsRQAGNAwIytCZ7b9AyMzIyUwT2FnxPVhAjE4YqSymvVfN0pjs6BTOIRMBIasSEZMHxkKq1irBiiEREOTfyjzbT3wicoFFSeaoDwSeUIbECHKfxbn8/5kpEchaaqmqttZSis3TkybWaSRgR0RDE1LF8BuZk1+Zs6WaGra2xdS17qRgbcVqLFrQhDBeXbj6K9yjAVzbPfXyFle2E/vuaGPgNn9K+gi382u23eaJf2d5wKGHBe7R7hmcBMC7nf3JGgYmo9fnPcdQyx79mzwDQ8tkP3hQ42ab2opWTFuf568Ozr1z819yfxVE9XyrOafjmfNMpEXZ+/l4RWuymAehDPi0icg4QT1SZne2tRTU087W3jYgU1K8OCSmGVb9hZjNUrZy8yiWCgqAqNo5WSln33XDY3928/qu/+qvfvP+BgWw3my6lWrzWa0TkhS9Tm8nzPFw9uy1njwkeDqrfcmMVT2MV5rvpo1oRAhE4TWXfbS6224sdkEuwBJcKG8djKVNwFkeOIk5cYaqnVcC7GGKMX3zxxY//5icKtt5umFlmhYZaq+ehvJLKjl9HRmQkQGQBSamjEAwhpLha9SEE02qQxQ65HnOZqhUMEBIiRQSxaipqZlXwMJSqQ8lMMkxZj1MQvOtTiKvHu812msqLl7eT3Od8eO+DT3753ke3e+lWq1XXVRVymiVsU1vByPEjJ840M3PaBhMxnRMtQEYMDnygptF8hshwLlk4CeEuvtGCAUZq5tdz1TPiZB5+YItzblWIgzVJBQUAdXJAQ1c2sjnbu4xSd/TcqC6dDudnsoycrx08yxiDGf1xeucrv1peL5jqhY7o3Kp87UCdo9y5Ow69OhqWI6pW1WqGVUs1FSleCuidSInYEchENOWT5mfskpiaoCp4znS5ZJ0FDvWMS6JtAVLXlrYQiAjHUmqpQcPhcKDA19fXT7ePndmLGY04GAGAI/oAgCmG6IkGXx8NoNX5zWwqNo55mga/rmmachkbvK9UqUaIVqVMWRWIwEFxGBgRS6kGhAGIIwCEGIkCACAxEblY0eX1ZQhhs9s5fdTl5eXu8uLy8vLy8vJ4PNZc8jiO43B/f1dzllpXXXIMNhE4O9PCshOjK557m4lnHQoRMqOZIrrsJSIaM+52265b1VkLIzORwTBi13WlTO4WighoNUCTimjMFCOHwKWUcRqnaco5IKlIFg5TLcf9QYGIgnkfilYf2KBkgmUaslRD5RjnHETzpGOMu91utVqNB+vS6ubm7i//8q/fe/dXNtXV1bPdZv2D733vhz/4HgOoCDO/ufCcJxnBWX+AKDR1AuIvX764P+x/53ffSV0nlisagwGSVotAgAzEAKEaAZIBgzMHghhkgoqeHIUCeYJhf/ziyxfPnz//4sXrFy9zrmaWp1pr7VZrlUqIMQIRpZSG/eH2eH/cH25uboiIkFNKjGSm4zDs93sGuH198+WXX7568bxMWQHHLGMuIjjVKsbHYey3l10MiHR7e+sTtaewW63ABFRrHfNwmLJVAAViZlLTsX77yfVVxI9++uP33/u7VRfqYYTKZrxe99fXV4qwuljji/Ty9vV+nJpOteebnGoERVWyiGAwsiJFDBgAAyp4IU6B2cWaOaW4Xa13F+sUnj7afvedb+12u8P9/ovPP7897ifTo8p0e1c4ZEAS7UKkGI7j/vbuNV3dv/ji9XsffKBAXbcijuGhmTIzBwsAgop675wZ1lpLyUgWOcTIKQUA8M4RIgJQMUMBMlxWNNVWtTIzaF6rMTOQEyo3PxMAushEJCWDq5iDZyZnWwRMGNR0oUggeiA2Nze5k8csJk5h4zVLXz6abaMW7xCAeXwHc9hDRBwQwVpr3JnRY+Zq1RDACAGQ2cyIgVQxBsSqAl4Zbc6lKogQuO1hVVOtswNtBsCRmDmQQ0RLzjmGgADQdB+Wxkby2NC9d0RiZq9GOMiorchSwYzmRY2IOPBCFwpO79iGmaKBY5u86OpqsaaAgRGJEXVuUfCsoqkaYGIWMFENCzmHiJg3i2PrC/+qT6+NmqytcP7XL0Y9bWmqqiE2A8rsHaVGDB79hiZwH4JHxwZqKubLFSGR1gkbXRsYVDJqFtkJbPHUyelrpYNhjbzQT4TBq6zWYqqqKp5+Y2YTdV/dZid+cY5dSIAAELgF5oqixdsVAMhZYsQcwh5rbVA0ATEzQgdrKzK5HyWqAFhNDcBB5s2hNzzh2hMFZm+JoXhKZotISskfnIIZYSAGZM9OYGAKaKREWE1cp0E1RIRAgTEECmCkoGS0pMNVNWdbah3NQXFJ6Bldq2hz0ZcR1QwdoO8dOwDkOV2bvSNETCl5q4lIUdVAwMwIJCYGOJVyc3v34ua2SOWwIiJPkThMzkxyzinGxVTNYeqpRLm4VjwrS89OkurDSoUbGmkhxFJAswVBCn9PYfarQeDXbnjWxffGN33J/B+7/ZYY5usPP3uWv+XTs0jpLA6cr275u/xoOZPFC3/D610+PXm0c238tJMHMdvDAu/shS7v/YNX/cYXEPHrkhRfU4p3c/3GVbe4fOHqOb/eJTj0uhoiAIQQqpZaM8z5KPSKoAERxRhTSp4M8pZ+M/EqikgVMTUFVRE5HA7vv//+7e3tZ599wgH7fuv1H6/0qohzAxBAxVNqZjm/dmJfR8P22+/esjmlUCsAkyGxaUU0IONAFGO/WfXrLiROKTiJzvF4XBibUtcRkSnWqohwfhoAEBxESOEXv3z3k08/u370iJidxavFEkTSksFqnp1jchANIjTuRmYiCpFX6/Vq22stw5CLFtFR9Djl4ziOpWYkCIkRu0pkkxloraWYlTpOE1spx9GGKQKPV1dXj6+ujbvbw5e/+uCLYfrk9evjl69LFehWMaQ4lYzI1uzbXGidMRR+hb7A6exieJMLNM/mFAo2gOs8gsAp36ghbOE8+p37gWutNtOwqyo22cYTkfJpis3S7jHGxba0py8idsIvEJHqaaq+8ZjAq8RwIgH/Rw6e9tszI3BWGzk3Nu1MfNjAQ8CInWchZ0bTOJdBTvVebJTR9uaGZiLmqWlIKa1X65SSVimlcAiHw+F4PJ4GvCoAKkCVqrNi5HLCyzmYmcfbc+VB05xocD2houK1mu12+/jpk7feeivGOI7j8XicpsEZcWqtXr4IIXSdQuVaa6umms9wFamqRhanqeQ8Wnt4UsokpjV7/ExkYKJ17jNSMDEjBWc0VEQybLTSXSIMABBj6rpuu93udrtvvPUsBFpvL1IXNuvd1fVF6lZ9n/b7/c3Nq8P9sesjYQiRGLsYebXazBAiZaIYue/XToCymtG2qioKIpLzuOpTTIhIIaZaaU5VcNelzaafclvNa4XtbpU6vry8vLl5dXd7O4yHmguz8/goIsbYccApD8fjMU9VSxUtXsrLUxWRcZwQESwYIQBVkRCCkrp7djwep1q2FxufFH4mZhaYN5vNZrMZhgER7+/v//qv/uonP/mJiOweP95st4+vrv/J7/3grSdPEQBNv6bJ6OHm+jFzggZCoLv7w5ini6sdetMlUdESCMTMedRAEBAY2SAYBCAEE0RiDIAVyqjD3f3dq8Pr168/f/ni8y9uXt4c7vfDMHSx7/u+lOIJmilnBhWR4zAMuexv76bD0USPxxERQ7jrus49yaurq6urq0j88uWrTz///OOPPx4Ox65fWwivb+4EUY0Vw/piF2JXDbqu+6fvfPutJ0+//dZbbz267phQRDW/ev3i9f3dYaqAoSjlXKnWBPJf/sHvw3D34c//dvj/EfdnzZIkWZoYdhZVW9z9brFlZlV1TU/39GBAAK+kQIRCjkAICgQiBCH4oXzhIx9IQChCNmaIWbpY1dlZS+6xx417fTEzVT3n8OGomduNiKzpZWZoknLzhl93czM11aNn+c733d8++sUXt9P09vW7sZja8TQeRVMGUQJjMiYwFgQHoKgVqBEdAaMqmZEaI5xF0T2GbNu2jU0kbJtwsdtcbDZNxO22CxHG6fD+eHd7f/tuf4/Ek0E+jZnu3x0OpHaz3XZdl1X2w8nu93/5b/76r/76y9B1/XYDM2O8H16Hq1YIwVCzJhZEg1JykURGTeAQYjVTMxLHyyZqFiz4NRMRgZ3TdkupcyZ89sp3SiMzQ2RVTSkhYuCwmEc3dLAKnWIMxEZAuipchxC8+O8juZSZmSk07Lg/pyA2M1BzPaE5keN1PUYy1xPCWAmraeG+Flm2IVvBAymwiDBzG0jRgbAZDTmgFgE2z1YCBBF0hLPrqy1ZXRHx9GtYUZE92EeqyO7ZjSmlJFUsJiJVxkIEAAIFb9woKkszrj/TUgoF9gKIgm8dxAYAIJrByJG/BLBoy9fUp3cae+sdoZmFvu9FhHKevNtuBgYsOrc+dEt84v+c9xVTLdlpxL32BlibURGtiBGWkjggxcjsZCECBsxIHAAMZtFhEcN5a4SKzEEzITMjVIRAAGDFFADYXBzXjXhwglsxUzPCSpnMxGomKIICKhwwYBADFJWyUrcHcBjBzBJMRGCGRgAGasiBCcwUxdTUShYAgFiTJOZNiwaVVRCZiAQqHh3AkChQIIRSigL6W1RV9JyiVhAFMTgHwBiomKioOsjNO/udvYpsdhc0MLsENoCllJADEQCpaUFkM39ARoDMwcCh27gwpJmZmYiCGRUtDtfxBUREyGRmqWRmjrEBRTM1rY2mBOSwHw5BVc1jVERmijFaMEkqGIYyvT+Ox9NoSKFpAdlJpP3wiBoRm6bxHL8KLMq9AmZQ417Hfat6Wm5+fO4p2lziYGJCzYJeBP7k3vYw5Kul4wXpB9UILsu1Orj1FVlszAcn/LuFsn+vYymHVi95LvnayrejClP0lXtOFsDsUqsq/8TIrGPgB694Gy/UYAAA8EEkpgAzVZ5T1K6z6f42PEcOn/zqjwPcswv8MHNhZuZFs9XXVG9bPGX2oGBlznI8I4phiYX999UZlo84i4muW4V9eJli5CZ2xLGomJQK8NOiIiYquWj2C0QAuX9/NxxPw3iMIWzbzkxytjmSJCJUFRf1NTPNBc1h97iMIAIsYfoH0ww/ioTPAzX3qnvjL9TGZiQi3yeBMXbN9mK73W6bLjIzNxEApnEaxsHdStd4UNWStZTCIRIyx/OWlrMYwv54+Mt/+S9u7+9+8YtfYGBZKHCJ0cBCtDmv6tKehEHNOTkDEjl8tO+7TR8J1aAwi5ZJ9JTLKeVjLpOauhBB0zTklzSlbGSiYlhEc4IkVEzGcnj9Tl5fTiLy/fffv3r5fswwJTCEpkUMcRJRlbYJ/oTMTMHsIZeY08AqVBlqVavCPapm4C6K74PB2U+c/NLnDFQOv2WmVbcDyes5dk411jfQjMpZpt/ylEUzMTgjY60eqxqz59R97rptzJDNLKc0T61a05O/Y7KpDsIH8fOn6reLL4WIRWqpEx7e2uI8fHCSmjiY42EAVwAQzxHLR+suS9psNpvNJsbISN7Gb2Z3+/250xgAAMY0tW0rK6TPOekMgGjOTexrx5MLMcbxdDyOR5fzmV3SuNttbm5unjx58tlnn6nq8+fPb29vASDGOOZBVXPOHrJqjFISAEzTtOqAFhHnH4JI0QRy1f0R37unkjU7+xRp8aJT8K4VNTBEceroEAiZAnOMRBRi2zRt13W7y8uLi4vLy8uri91u22+79urqJkZu+k3XNfv98dXLt/f3B+/0AlBG62LAhs0EDRqPuromcnDmROezlJIc2TFN0+k0DsOgqqfIIgVg7kEjKoVL0cMBRbIqqOo0TcMwNE2DiMPpcPf+3asXL/fHe1N1PDaAMbOpjAM5DLsUUVUykJxFJI+lPnCmkpNLLiMTUgsK6tjcyNwwhcaFDkJoLjYXRMREu80FKgYMHOg3v/nNX/6//uf9m9vN1dX19fX26uJnX3z+F//kz/pYlaXMcWNOufbRZlg3HTwzLADAYTiJWbvpPUYhZtWsYBwDmIEWMAEKSIZQTFWShABQCsg03b17/cM3r55///7Nq/37uzev7+7u9o7jJSLbMBBP09TEFseUSmaw4TS9vX13HIfpNGjBhoMBqVpKhSgwARM9e/bs6dOnOecpy2lMYrgf0tv7IbbtmIpxSECx5+ur6+Mwffbo0T//5//8v/k//Ne//PzzoCqn4fDuXUNIaGIZmCA03LQUOjMLqi0qTKd3L3588e3X0zRc7Lr9/fH123dimFSnkoeUjsNhyJMgGKMY1xhP1Kn4jEDV8TpsBrMWNyJBCNT3PTH0fb/t+qaJTYxtG5vIbCWX4fb+napNKUEXaWoAAyAL5dtx0pww55TS48ePoQkJ9Muv//CX//Zfv3r//uLxk9h0SiGueglRBRHUShEgiLOxNY4cWmpKAJhhF1Zg3nDdOWdAB1yoKjBwYAIqKgbONeiZUQIjQI8+vLGlCtbkPKWUYozGmktipBAY0EMGJQ8ltRLSoz4Q02LmlKazBTaqJbCAIXDKGck8+5NzMjKHQqgWrJvOmfI2xhgrRVSN0udYupLkwwyDggqqdbiWIQASBGKiYGRpSDXqQkBkJhACZURgVSilSBEXNyaGhoOXjitBnFtpl5CxEmNsQu8JRxFhDG3bKhQiAue7pupzemiQSi65AAD5RuxIK5zZZ+qLQkDMxBDVlXARzMQAEIgJc85CiEhSiqgiGDEjQFg2p4AkCIBYhQAdXr3aimBxvOoGo96bpCLEQBRdNcKjY1UFM5CMAZ09x1lq1fmBFYsBY23wncFmAjM7yJykrKBKMytFmCsFxrLPA2KW4kVF98sZ6/7Kc2adZoHEwATOioml9gW6TiOg7231GUmNC80MDdXArY+zibm7JACmmMUqkb6ZmEPzKeXKO+91UiZmZkJwuSkPW4jIbKYmJvOGhDULHLgCCtRAhhyuqSqqBCiqY5kMZdtsAjeIGIimcYQ6xQ3NiIw5hhDGNDhtRuC2SPLVZd54ZFUcgwFVBYiJIJfi20KgYFDMEICYWYoAkJk7roRLzh7P4+x4DyISQyMRxOOU7k6npGYcTUA0z6mymgNbPluZJOclup5450zBXH31CjkiGgIZLb6mmWElcD5DQdwz+8Bbgr+Fd/jxm9ch2fpARIAPY5KfevP6U+tP/PE3f/LjyzpZj9K8QD+8O39xcUA/cLjXjvv6/Ut06v/4e1wnwKev52/zkQ/GEM9pzvUr9bdPfsWcqfVg/vyp9QV5e7E7zqUUIFu1AAMFVgWREkJNmtZqmDMqAjFFIgHAGWqEiOh5UFMMIcyobVZVUEOFyioEoEa4ouZaBwwfR7nrwfl4BOovVovmNRtRqRhNrAABM4eG+22/u9z2fb/snaUkmCUffGdF5HEcETlGIPaw4fwgpmmKsX358uXffPU7QAxdS4FNagb9HP+oUZW88TElAHPKRncf+0232XTEmtOoJQfSw3Qcp+Np2I/TYArMbMVynmK35dAQi1gpiozBCIshhpgB74766t0byaVtGjK9v0+KYAaBIbaNMU3FiDDG1huAPaQU08UV+KlZvaT8Vc9E/R9bktUiok++J4QgImVWgq2Rscs6r47lgy4Qsp7/5m3DM23VYjZVK5SOKqCnZvTr/EGn5vmj5sjsg+XzYeBqH3ZYLPfrepX+GZgTbe4kOAPzMh/W5n3J1olImkrOGXiO8+eCOVVcbvT6XinldDg6L5SZpZSapgkrrn4zm3L2vC3Mxt8LGogYQogxxtj42DpODxG15OPxmHNeFGi32+3Nzc319XWM8f7+/t27d69fv3aQJ6DLKTn/n0s5Jh//5e5mPFQxA1SbrKLSUsm+P4p5g5G4kyIidZYRmiK3DUElmecQkQmZ+74Hws1ms724fPTo0dOnT69urnebbb/pusCPr68uLi5Op9PhcLgdji4Ji4i73c5q+5wrF4JVxwDbNm42HRMlj2SGk/M/T9PkjGuv37yZpqnveylTSknEnFvLK3un04k5ejUSZwrrUjSNUynp7u5uPB0U65xPafJ9x3Pc/uI0TUTctm0Ed88EAGJsyTCl7F2UiIjAYoUBYoybzSa0TfYMGuB2u72+vmbmkrOZjeO42+3evXn7q1/96uWLF9S2RKRFtl3/i59/8cWzzwDAxDn29ROB7zLzDc7suQqIMKSy3+/7NnZNBEgA4moHAIUQAAxYAJ02voBlzIlTGsfT/bu371+9+v7rb/7mV7968+KFi2kmC2q47bfbbUMcpehwGqdp0tamnBAxIKQswzCchhMZNW2HBmWcSsmbvo8xtk1w5+f58+evX7398cXLokax46ZDKIchU2xSUSAopbx79+7m5uZ/+O//u//z/+m/e/SPfgkvX3/917/55su/+fa3v4WSA+Huavf0s2eX19fdZntzc3N1dUVNAwCQ4ftvv/nq97+bpiGhTZLfvX8/lGQAEOKkMklShII2FjlNI1PU6tyyEqNZASxexQBjghCwaUMI0LRxu227pm37puu6pg1tbGJkNJUiSHAaBwEj5HbTbkCnYk3TTPuhSBLi0LI2XUJ+ezzJIP/iy+//5g/fcr/hZlMUmiY03ZnAEhHJRa1LYUMRiSG42eG5ijtbM4IZilX9TA7MRjFYkbO5MwNnFlx4ocFgUak1m+vbsjiccw9tsNnMLvu7+8zgRFVriA0TxQAzlSnD+VI5IKuTyTsGG82AGavxtGrulv2CV56wf7WbVr88byU4jxVR3zUiokUULESiEMhFMXRuVARFBUPzXtYYmpwrasxLweBbgGjd4uaRURMAiCEiohtJquzNARGNdT0Cy1YSY2Srkmlk59YSM/P+NnZdAUBE44BSlIwUAdWq4DWiw6+8uOf7S80TIAZTJ3yatzACNEM0ZxErVmm1EJEYwLAU8VAWABjQUIUqS0qRHIgDBhFhNCIUMyYG94QIwNzzUwUuWWHWpAIzQXNoSt1f0RCRjNDJiky1FKevZWZFUg+egYZxcK1kZzMus8B9UShizk2dTSWLmpiUDiOit3KpFCulVJB/cJZgd5yswv0JFVWchdwgICO73r2/T9UAkD1bYKYIpGRIBMakiIjsDBkIpKhQt392iqy51EORPuCnFZAYmZScTJIIVb3iZEgBmKCAt1x5hsXz2QTo7eNYfWBEduZbLZTBTMQ44GzZERFrpdrArMpBA6BrBxdTs9pl73RuYIZgTAHJWWRERLzljStpHZhoNskGBWgUeH8abg+nyRSYi2kpYqAmxXPTZia55CQOhBMV1ayqdfPzABlIXdenZn7AVfvEgOoCM0cTenWSyCVbagXAzNblx4+iqcWl9eLOg+UHAAsxhr/0sPi5ftuDwun6r388XPzbB5PL9T+47NVfzcxqK8H8no+uDT4ah4//+UHQpbV9DmBuHKivzwzECN4CvJztHI95LdoeIl7+Tke9FzwPe/2J4JXN9Yvzlxq7C4Ouqeu9FrjcXhVKroblw7mhVhjDuiEfERWh5EJEaFMIgdjrEYEQTJEMCjIZCYgvHhVlDiKCCqBQVEPgyOGUh5KlGr1Vdm/ZdOdxXKUa/cqrIuUnAAi2msmI6FGoz4CKg/DkIwIQhCZudpvdxUXb9xwjMhDRlIZSCsfQ9i0zExARqcI4jsjUxADGZiarAPjy8rJt2999/YchTU8+e9Z0raqaA4sRSxEQRQUpSkSKRoSGRMyIxhSatieGrmt22y5GljyUNKRpUM339++TjDlPqsU5GoXNCBUMmZBYFESBYyBmFaCmMYE8peMolnUYRgQkYq/h5wJGZkUNIcYaca1Xh81IE1gCp5kBzxCcr/jsT8zU8M7+uFRBPX8CAFYJTc7A9fXUWl5ZpquIICE9XB4m7kmiiOQy+Z/nnhFblv4SVfpkairZiVXtkxUPPKxW97KOznZs+YkIfsdzORc/iIHneeWnc5dKcQGLrkzZkoR7uL4Q0RSJGYFVQFVWHctV2TLUYl9147xQmad0OBwOh0OZ08SOgy26tkigOTOE5Rtllu5cUJc5TyKSs6SUvBuhaQIF3PXbq6ury4sLd49CpCLp3e2b92/f3d/fm1nXdamk4/EYI4sW36SYqjM9G0mzcxU4O/UOKSFWdLeCudgGUfB9zcyQAiIjecEJDRAioyIzdH0fQmg3/dXV1Wa33Ww2l5cXjx49evLkyeZi14YYAl1tN10bzezd7Zvvv//epX2ZuW1bNJFSckowh+uqyk1b8jScIKfBinjYPIzHlNIwDCkloFBKub+/L6WYCmgpJeUsaDIMAwDE2KSUwOi2FH8cToi93++n03A6nUopTNR2HRmUKUnKIgJMDq5umgbdH/WkUmxUAF33xJgiFANPVrg/isghNLHrvfeki0FE2hAvLy/7rlNVy0VyiRwO9/tf/dVf/farr8j4cnMZYzSDi93mn/zjP73YbQicZB2QPmLBqsbUfyoYe/evoz9O+/vD/fuL3WbTBgbVPBEbEFopaplQwTKUrGkch/10PKTTSdN0+/rN17//5oevv/vx+5c/fPNjGuVie9n0m7DddNtdt9nGtgOAVARRkYMY5Ckzc5ZJTEMIXWy6bhO4LUVTSmYaKnsTpJS++eably9f/uHrb+/3R8NwOk3FmNsGZBQAQ+r6bpqmIU3/1f/+f/ff/7f/7c0v/0R//OEPv/7NH7788uX3392+fH775rWkzE283O6alrqmefL00dNHN5vNJnY9Uvjyt199+/zllCfYbSjSPu0Pp2PTbSSP+3F6P5yGJKcsk6mFmGuPJxpBcVwdAAUOBkQQm2a7azd9Y5YBSxusDxZIW9KOqWtCbLiUBMWAaMwZEYqmYUrHYXi/H4rA/phDiACh6zebmyf7gr/63Xd3Q/o3v3v+5pgurm+SGqK2HCOd927f7tfuDREVUymZlAISMRASei/sDJrj6iiwb2gQmLyREJFjcMpEAYwhIoFUWA96rhkrQ40goqN+fD0agqjOKxGcSgkRDQRghr7OhyOGSiW8hVDT7lCpt4hQzSQDQBNq67JoQauCQATshUUiUi2mIDPImdl1gXFxs+fqcdWoI0BicpJdREQCEzUtbQzqnVu+L7gQqtecGNo2Ijq/pZmoI7pxrke6jrEPa2h4SNM0TWbWN32M0QSmafKuSN+2XC0Z1QxkmlRMAyIgqECZbU5olmiR2CNIwLm4JoowO+uuKKmMVQ2hDQGYlVBMVSQ0TSMiAKKqLkdLTvNEVFRItcxFS3K+6FVOlxjMyMwiBwIrokBMgAhCxJEDiaCBqneSCnmEDWACnqk1QDMhYJfpPbsadeP2IQU1deE7f1RZa5OPmjn3bIixaVpELFMRETQUABEjQgpsKUsBMAWzbBmxumqqTnGCnn6uWHIiIAMENHBmYzXMJasYBmJCKTLmHLBKhSKYAqgUKEg+aAgAKAgElkFYzUyZqZRUihBBCFXExVCLlshRwNY6MUCYSjGEQMwxIKKWYgDo9FYcqDB6wkRMs4LmANURQ0RyykFEVSEKKY3TpKUUNYsWCYOI7DbbuoYAXJadKQEyQqQVw4pXGKZpAiNPU1hwtgyq2aNKG11TpqWoIBQjbUJW20/lfszZmIjNwAhhxSXrDQPTNJ3hcKueMf8ZAi9i7uvS8SJguPiaOGPbPgh617/AylFb/l/d3j962Kr+tQ7GPo6oP/i6nzo+CKTh7B//9AU8hCg/+JuntVdDgZ/INc5FXfwwboSKCzinCZeT1D1gvsLlWFMire/6g8urUZyuFRb/VsfyRZ8ch3qbH31v/SvMH0RwXDKeA87zyb3ou3zWDaaAMDMxrb8UEb2M41Ox4YoGBFMwMkMVUgFTNkJRLaW4XQ0YEEhKIeTAjDZz9rpvJ6gmi99ss2r8T43JT0zjD2eFm32cswCAYAihDYbQdHF7ebG52IWm5l41F8d/bjYb37ADhbZtT6exZDUsbdMBeh/QuSy+3W7H8fTll1+K6u5iJyLVWSUGALeMTpEJAOTclBQCcSEgCk3rSqHcthEwSTHTksbjaTodj0dkDKExQ9NqAQDIVfoASJz/kZg4qmtuAWAT2s025yxJLHvbB4FX1gxcYKfSIImc6XNm/d/FA/hgkgCAfUQHtWxDZ6/lvO7Oi3Q2RPVYVtY5/lQzs8ARZvNjNQ+iiNht+lUtfWVYZhbD5Wx1lYYgIrmkUorkog+z6Ut8uzZcH5qgh3XgD6xT3fE/bsSwysVwnnv+wYc9ZjhXG3CGT6uqR6F+Whe0AERmjjG6ow8AbduWUo7H4+FwWIA/nixeHEQ/fNHlUtZ2w++UZzVmx4I5cNev0Ux2u93V1dVutwvMx+Nxv9/f3d3tdrthGLzN2KujtYZfUi5JpZZ6/IuIQs7D6qF466NLa89E3EwgkqWgIseWmbMUMwsxEAY1Q0KOUZBj07gHfHGx3Ww2lzfXT58+/eKLL7qu22z63W53eXnpGbpAkNP45s2bN2/e/OEPf3j5+pUHlq7S5EVvRDRHFCMy8zidKNM4DmZWpjQMw2k4pJQOh4PXSaZpkjmxOAwDWm0XnMZ8mvY5l4uLC6boqWqiMAzHnKVpwng8EdHFbpdzxlp1kZKzf1xFwAgBi1gk6roNuAMgNaktRqgWjYm57frg9HgcjcAjf6aIDIioMV5sttvt1swkZTMLxF3X/f53v/tX/+pfHW9vm27XNM1utwPmR48e/eM//dPNZoMAzCHnKVa9mQcW/sHhkMS6I8A4ncbT8fPHF9vIAEaSQQXaiDlrGe/u31qZxtP+/t3bt69f3L99Ox72JWcZy2+//O2L569LRtO43V722wtDDrFv+23bbF232WtcfdcDAMjgi8KwAhIvLi6kUNswAZaSLrZbRLy/uzue9sMwvHl7+9Vvf38cp35zYcgilvIEIWQpzlWR0/SLp8/+q//yv7y5uoIXz7/+9f93//r1uL9lkz//s18eH19OY75/vz/cv3/9/RuC8ua77g9t0283N4+fXTx++v79+9vD/XEa27fvQsOnaZyklHGYpOynnErJBpPkIQtwICAgMICi5uFiJOaAkUMTaLNpb653m23M0zCMB1ItORGCMEPTMFpAUgNVLRCVoG1jHo5TGg+H+1cvD2OG0wi7XUSMSDFTdzvK99+9erc/vR+ScGg2F/fHY0stIq8rSWo19MMZLJNLYaIQOIQQKbglUxOtRptDIJoJ2BQgSwnE3kWFlbMASyn+bmSwXHEr5j0XlRAhhxCaGFNKourKgh6suNdKRIqkiL4tIBqsXA5EdBjJqhqEiGAGOecYA5LmVBDR9QtT0jm+5RgjWrXSkRhqQxzwrLxtQEv21k9+dvywlCm3bds0TUQn7VcDRbDAbIGCsdeEVDXnDCAKwhyIUUtJKYFK5KZp21POzOzlT1m8rJlcoxKJ1X0EAGDmogIzY49fRLG4P4Se2NWkbt9ijObBHygRk6kqOuA+hlZEFrkiNXPGIaKglRgscAgFLOdSSglc8dQALtykQojcxFIKIShYqKxXoKBmFiIhGnHFXjNzcO6rej/ibCf+OzMqIJl6S2/lJkUAJgAyV/0gJgyIbMRIMOZp3tExEpecAKBpYwzRzIYpIWLTsGS3HQE4IFpRmHJBR6ISG2DOJXAUhek0qYJ30YCSSGFCFcsiYgAczHBKHgkCEYnVJmECVHSnxChEjgxGRVUMQxMJUCR5I58BiBoAGho2oajCwldcGc5EiiBa7CKiCYiZAIIUa9pQRACNVjpgLgyVS2ZGQx3G5L1JHruWPDJz27cKmnNmIEQyMbWawvGQFSkQg4MTfG2Iac5ZVWPDh8Mhxhhc7ApoEWGiyncniw8nzlotqe97NMd21g4WADD1j2Q0IwxWSdbiKcn70/Ti3W1WaDZbpRCU0pjCjHb2SWmGOUsI2DRRFWJsXUfBvz2lVLSIqZgCgpswj8wrUton/8oZ9bY6nO+F5nTvXD85R4m1eF67FWqrnw8/EXlPyMKmi4gL5/DaTi1uFtEDF3DxdH/q+Piv8yufjn+WclOF4C6gRJM5WDSvFH18ea6M4xYbZ4P40XsevDLbXARBhKoXWi/NK6i2OP1z+qOas/MFnL3kVYA6X88cZqwrY/DgwpZjIew1M2fwXIRnlnfaikPClg6KBQKt58DDwQLr0Beq5m49cs4xNqvnQGbCHGIMTKSqJRVGFlYTbWKYxpyzEAWCokUBSMTymAnJAJnjtq+Z4CZ2dQ1K9ctrv2Cp7fdLSFPv7uHTwQryr8Pu08AAcMXrTiGWnIkxxqilGAIzimkp5erm+uL6Yndxsb3YCUjOOSAfhpMCdZvWdWg89iil7A8HjsG/IbSRtDZE+dF1zY8//vjixQsk67pOwdq2zVNSUUIiDFmmkjIiTtO42WyYOasCV5R137ebTVdkUi2AkvNEBG0bj6MgsqqUoikJIzGHEAITjuOYpCRXZG0aZDYEYBDXe2CLLamygHgmvjanG6h6kV1cRy0EArWUCniBIgSD2vByxt8aVO05tzAAgBiayHLm5AuOKJ1FbpdHs+zrMsvluXSTuyYc0LHNIkKzSC8RMbiMkXnxc6kGMGBASlBymbQSaNXwr3L+iYCrUJazGfSLnOEqderAQ5tzDh2XOWYP+Os+aRnW3tL5FX3QkQ8AhOizSGe65voiERAVU83u4FVPBQGsSGTu+94FbFXVS77H/Z2fOK6GJcbopJXM614FzFIY543JgWyAWuSUjojowXb1+aQGz5eXV3/+53++2Wxub2/fvnv35s2bnNL19bWZHQ6H0/7gTo5HJkSUszf3evoM51EqACgykzsq4hznO4mGVV7W4F1jBiQiYhhCpBAMgJnbEDFwbDsDuLi4uL66evz45tmzZ4+vbx49evTo5lpVI4ftdrvZdsy83+9fvX37/v27r7/+/W++/OuXL1+a2W63u7q59l9yzn3bmehxHEspjERERRIRWpFhGMbpVEopKaeU2rYdhmGcss18YMWMmcJM+KJqAobA+8PJSXSJKFBENCtFUiYgEzAzBs5FkiSsqQdQVYqhlEyBA8eUSspCRDnnEYo3ujNHpABIMUYOEYnavmOOsQ273S7GgEht28TIHBANELSkknPe9hsVef7jj//yL//nlz+8BGqur6995V4/uvniiy+ePn2KiAqApjFGUPnArq63XNVCzN5v6DQzaZxO93eabkAyJAQTPRzS66Oqvn37/Jvf/fX93bs0jDml+7e3b16/Ho+DCoTQvHo1HsYYYse7hpuOLy67ruv7/smzJ6fDKbax3/DhcOg3G2Y+Ho+xaUspYhDY84MNUwTg+7tDSmm323RdN06nnPOrl29O47Df70MIMerpdOLYNm2fcxbJDgRK00gif/rFZ3/xi5/B/v7H3/12ePv28PbNi2//8MMPPzy6vr7Y7QBBrSBabFhzPp2Op2E/pFMxK0Reurx9P2F43l9upzKNaSilJLNiWAhHhTG5PCZ6gMHEIgIGzovuWdFiMuZxypEzDuMwDGMXGyRWg/u74zQWKUo0IIFhOO2n4zigFabSdvEf/+mffPFFPpwm5I1C++PL989f3hZ8kQUPd8NoEHZXse0nkabtXYe17/vlaTrqHl3C1dBF/gAgGAGgAhkIEjHHQAxgWmQsqYld1/f+6GPkub5LhuhWw8wALJUMBRAxxFhKSSmZamTKOQeiEBqfZTSnAmcXrvrMSGgCaKhFjGxdAQbELKXrOzRIKZl5myQBaBtZVVISwtBERkBTbePS9uwcJtTELhARgUp2rcGz5wBKaEjQto17yKUUFQ2B0QDZAiFVCJQxQGCGgACQRcDJookKADMCBaAoIpKSqgZCduKPPPVts3iDSMiIKuiMTwCV24KBfSsJIaCaCJqH5UalFCvCzKkUYmIEVeXIrrsmIgqiqt6VJmKq5q2zFfWDVAmbZ7/RXTEiMtU8TgUMELq2DQt+KZgVLFBAVU1LZARgZNCaQqdzVQ2RACsjDsJCyBECBTi76VmUmc0hXGg4888TEgLVDcKp2WzJvpOIIXoXKBM5uZIRCSpyoKapaoHefuraSACgxURmOjKDAtbEvkhyfnlVxSQxxhiozJwjiuRsWmbmM1JESsnzPYKHtc4AYQZFspepgVlEgcmAgMx1VtTFnYBSyYjz/Eav0RY1RQZEqvlyEyAkQCAsM0xr7XCYA/Oc4akUmQk2Ccmkgt7c8+WZfUxV2NQAdfFRxEghzhRwS1BmBipghiICSoA6d1yhgmUVT234p4iIl3ayVR1yyWqTk2CZg0GRKYpRVshmr96/vz0MGiMTT6moQmS0FQRxzn7Vibv4VXUpE4UQFkpVnVEgsHLO1hWAJYDEOV3nr+iqQwM+iHwWuqPle2d/lvAcOC2fBQBcIRY/cHnXTxA/8jj/4cc6NLWP/lTj1dVQrL79YZ3nYW38wQN9WE40MwAB45oImP/3wSV9PLC2nm3wCf/7jx9mD9ti6bxAZlKoB29eX/MHry/EZmZGn2p0hIeV5JwTMjdNBzMgYxxSsRKIEIUjd23vdRUAUAJTcM7jwASBVBWMwKh2J5rrRnoLAznOc4YymKnmXF/4dw7IB9dcH9xqIdBMq8shAED2jA+iIgBR23fXjx5dXl+YMxUTiUI6janIZtNdXl31bSMiVgWZBGrbqimCO/Rrmo4nT54kKVMeN5tNaLwrRIHQyR1UShZzCa2m6ZCCGSIqBeZAHAgROIABAhbRLDrlnKZpmIVPA4IwRQJGYNdxiLFBLMwlhOCSsECEVhC0WDFBQAwRRFi0QG21XZVtBcEUDBS0EM1GBwUFADxkWQ/4ymZ+WF33tCCtVsoSOTpNxPqpLVkMczkHWonxuKV6aPbXX2QzzsVmFmf4aLZb1eASVBWXlp05AgEAnQT9j8+t1Vf+JP7k3/G5T9Af2Fww8VdWVd9xtRnZYn/atvVdyPEIpZRxHFNKsNIzh3lLwlXt4oOLWVBCfiFL4RfmRwAA7gRfX18/fvx4s+tLKd98883t7W3OeRxHBBCRw+EwDIM70MtdzCgknNNVC4nDDJypHH2GyJ7cc/yFARhwbWdQUgQM7CLTGLmNjbNSN11LTdN0m8+ePH30+PrzZ599/vRZ3/dtEwNVCqsyDoOUUsrrFy+//u7r33/9uxevX718+fI0DpvNBgC8fjKO4+FwMFHnTxYR10wOkcy0TOl0OuWcRbPk4jeek6SSrSoUinsgOFNmFq05BTWH/1S4ByIzETNjHeyFB4FVVUEBQMD0lA2MQ3StUqdaUYXQRAgxxhiatmtaDIzIitS03Waza9q2aZrtrieiVAoAbDabJvLhcJCUmQOonY7HGOOP333/9ddfl1I8/skq/rsLIzPTamkRIM766B9OH6iKwK6jCQCQ0jhOQ5mG6f5Op+M0Ho53t99++/Xr16/f3759/eK76XR0WME4pmnMBAEp7OKuucBtmymG7e7y+vr64uKCmXfbfrfbNf0+5wxg7W6jiMM07IdjJ62ZEUDf9xcXF0SkAre392/evn7/7rakS728GIfju9t3d/v7/X7fdpsnn32ecnn99nYYplKUmYtqiByIyzTqNN5stzsO77//7qtf/dW2a59/9/Xvf/vbMQ/H070hPnvyxIpNJZ1KmoZBLYFpm/MIWDhmsb7vdlsqpRyPJ0EwCAWkgCnNEFNGMmJmJFhy4obgUmQGfChTIE2C2STuUSSb6BiEuTCOAEQ0vXj1LhDEGPfHYzYyk2dPLz7/7Oa/+M//6X/zf/yv++3ud3/4Llv7/NX+//Z//39//+JfP3+z317e4O6xDoM5HTASUWhj1/dbL7fCbHc8TbygaRbpLCmmmAFctQQM0Jw/WVFEcnIuVUglRw4hEBgUERPlWsDU5ZxzkEIcY/UxVKdp8rDNX/E++WobQUWLI59jjJJTyUr8wAdwewhaya7cjC1iSW4qmyYiolQcpxtJMqeSnbeJkrJxlV51j9ozkosRjpGbppmmwZNZKNyEQIRZndfWEMFx5ABaZo+3Pvya2w3WsUoBNW85BqtswWv32MwVIZBnIicTExHHefmbdXbvmLmYWSmuN+FMgQZV+bJKHamKoJmYc7sSE1SwMSGaaa5mHxExhOBQL2RSAzRHp0Fgcr8FnXchMkptfLRAdWs3NPPWZ6usmLR4YGqEDnPWGCMaGlR2Bx/xomZmWtl3iIgQ0KPepbLkoaaBssdURARIBIqg6DpXMEoOSk1oDUCkICKHxm0okA+JKkIIhNV7DjmLGGCIZObAMBFEUPG6rnszyC5fDkBFRWplpqaQxU9PaAJZBcxibBFRDEvJIl5GIEBnJWdjkKS0tDuLoQentcXUyEABGCqLFwaeplLzQitPqDg4k9AIvUUbZ6fNdZFrf5H59AQzKymrgYPMzKcJ1rctEY4JMBI7MS6ymYk6SjwwV6x5mSFk1UyIFCsAEClUrx0BUIsKGkZqU8mlFMslGEIswCEXOWo+Fnx7tz+lAm2fa/N6rf1anVIVg6ozebqf3HBuXWdjDJAVyJVF7IMoQVWd9Q7o7A4uQfD6nfYR5O/sOa09qBr8GiJUlVo8f3xlZeAT5/lUJPZxVPYPOZa7eBCgLgzxKxd59QZc36TZSmj0U7ewPkm9HUAD8dGYP/CgULm8eXF1197t+uL9z8sXweoCPh6ohyc5R/6V1OHjcWW02s2+5OnOd/GA/mr1oWp5VzE8c2MB2rZdAuAQQgwxVLc7RG6Cq3EiUqA0jKbIFDFA1WFRZEb0qpehSBFVEfOaZM0WQU3NPPTX53vH87X9kWOZ0svOiogmxc0hIHJANUOkru+uH93sdrsYW1/O/mwNaLu7fPLk0W63U8leC9IkaSqlaIyMTOgI4hjWJFhPnjz6/TdfO/Wrr9+aQFFU8Xxi8IbggGSEKsIYmiY0fcvMIQBCYdKcU8qnaRpP4/E0nHLOqh5EkHN/WAWJAXPUeacEVKi8mYoIgcwYvOobIlj2hELl8QdPgpAZkM6Tl5wqwFumEUEVZgDOMt+g5t3W84UAjAHtAcgADLlyAUJFVa9OVc8z96PWZiKdaT/XT5881QqKiASutpOYkYgCQkYz0zJjB2avSOcAWLyal2dC4zqr8VNy2z85pcD+XW//cFF/NFf9DfJQiXeZq+vpuhg0mnWA1cppSHMbrQAAORb6YcYTF3TSCvBCgGda9XlZYVWvVYc2iMjxeGya5tmzZ5999tl2uz2c9i9evHj58qUL8pkZIE7T5OG3FRd3rMaBXCfcXFzzLFiwujACoLVtQwQFMjA1RCBDUAZ0QTUXDGubTdcSUdu2Vzc3zWZzeX312dNnVxcXN1fXN4+unVP9YrMFE0l5v9+//OHHd+/efPvtt19/+83t/e1+OA3DEJjb2HhpBdTG00CAZUwi4kUk51DFwGrFGx9yzqXk4XgahoGIzEBhJiMwUgRFjU0EQCcD8aQNGQKoo0VqUM0YQgCVnHOpVPfsAhNaBCrYCg1dwEFTLoDWtm3b9k3Xhya2sen6bd91BuCVus12u91duEKb35TPHdMyDaOkrAAiQxonEcnj9Ne//s3bFy/jpu83rSLEEJumubi8vHn0pO02BqAAYs6XU9v4K9XCee4DABAzgDnBiP/pcDre3d3u9zfffvP13Zvn03G/v33z1VdfvXr1apomKUlV1TCLqVHbX3W7y9C0xazfXFwEury8fPb08dXVRddEIrJiIjaM4+393TiOAJBSOh6Pi3PSNW0TOwQejsM4juNpOO7vj/u7yICo4zgOY0IK1zePrx493u12KZfY/vj69VvAGEAtjeM0maFNU6Nl17Xj/f43X/3Nt3/4/dOnj7/75ts3b94023bQMk5TBm2Z0lQOZTyUrGqM0Ewy7o+jvGxj0wW82vb7KQ2nCZquIIxZBUHBBC0DqIKhmJRSEETzrDfDzFkddYOTAJvu00mLIYL7yyATKPRd03Wd5nSx2xA3d+/fHib4/Fn3F3/+T/7kZ4+vL3ZPbi4vrm4O+xN11xjuDMKQFYhaatS4oBCSKYEZN9w0jbdIrO1VUaflITQwAY4BnC9Alt4WQ9RCigQcKieTmBISBVYTBdFZId7VAcSsaxo34577mAF5iIgcG8kpixhBCIEQVFVzhfAQOeGvMPiFwOKfL9csYB57O5WUK587uhYAGNl7AdxmktNPVKgeqloBNa2EnMzssi+q5go5aMrEITglp8RATAEssDNegBe8nHkLjTxatiyFCKKhXx4RRAxIQcQcrp+npLn4+oJapassPqUa5PpcGBAMVCRn8XAjEFf9XrMioqQEIKop52p+HUxQ+42Igc1IzQk6PHRSM8tqLhkFiKamNWJl5pp8RPDMzXkLCw70dUYidAwtI5DjhTQQgYJWfrS6AxERIPLZd5xR5kiGoqKxkiQZETHqsgujoyXVBGbK7IeVT1WNsXFx5zqbRJbAJ2cxmcws59w0Xd8HAMylINWIL4SIyD7qThfpOyUCG5DkkkQioUhWAfU6LRcwMjCRkk0RgQO7xJbkIqYc2JANgI3MsJKqAEqVbgaSWkMANQSiEAFUDdRV88gIiAikGKAWpycDJlUE5jlduvYqYFZRahy2DRCqzBcIyFyy9o0K3QMxUfNMjQE6g3StXkApxdeJA7eIGIBmWFfdvmUON2Z/ghcHZfHPkM+KHbD4N6xTERVhUyUGNSMTtXEqd0MecqGmLUA5J2Bi4JwzrRzE6iP4vJ8Db5ptqH0EnV1MzNrn8GzJB8HYIh5DRMi8uFzLe86e2QddbQ8vzN+0nqK4ymmt/7T8c+31fnDCf8jxR061fkzLK/SwBfFjD/UfeCXzl9ZXlsT/x8VMnN/04evwoFwGDwcT19H4THv7wY381B2tr/DByX/6xv2bZsf8Ady377fccEBCUAJGNFW3xaRaueiIAqLV/E69yMX9d9ysogEQiFP5MqGioKhqrbSs7wsfXNjHz8s+RCU8MKFuVCMHDJxLCU1zdXP9i1/8AmMAAATOpRyGPQJf31w+fvz4888/a5pmv78bTic8HobDMAwTIs6kIAwe+6/GpJh6T2YIAQ28sYIhADgglpb2SAzBtHAITdP0u23ft0RkIKUktTyl0zAc83Qap9MwnYqqIqNvckuDf13LHy43RARCBoUQkElETRVA0Lkv1UzVkyD+OMwMVBHAq1JEVGleXSrQKqeDzWJF83z79IRZx2/nKTRbpwcWZvZvSimeMq9ukKiIePJuebOjBT6wKrVuqVVH2odmbc3MTL10P+Or4by+/j3n4ODhcvtw6s6HivBcbPE5aRUWfn6Pg719qlR6T6gAhOo8PFT1XMz+Ms5ra7PYB1sFwEu5GGax4qZpnjx58uzZMyJ6/fr167ev7u7uxnFceO/MbJqmlJLOrTSrWyatKp7gbsOyJ543SkSbm/kNEbwbXcnQgL0AAMyMgSvHVdv2fYeIu93ui5//bHt5sdvtrq9umsBtDAQYiCMjgorqOI6vXj7/6quvvvvuuzevXt/evYeIUkoF2DObVM+nkn5NadmYHKFtBUspZUopjx4bnw7H4/HoDM9qOHcLRwyupMhEAEhmaF7AwAqnDCFUfAv6A5eUEnMEANXqw5iZIoIBhZqltpkrOMbYdF1s2xhjE7umaWLTwMwA1Pd91zUAUCSlhDEGNACDNIzH037TbQPxcDw1HE5T+vLLL3/3u98B0W63CyFQCP12c3F1eXFxcXFxARSya5Q5+QxStfQ/sTK8HOK1YDG9vdu/fPP69xFgOr57+f10vDvd37ksVmg6Ch1xMKRJihFfXT+6vL6iEA6HQyDadO1nz548vrnK03Q6HEMI9/vD7f3+7u72+fPnx+Mxtk3OWYtcXFzknEPktm2dMOzdu3fDMIQQGIGZpmk4nSp5b7/bbja7m0ePdrsLM+TYbja7YZiO44BjmIbRTAIYGORxvL29ffH8h5cvXw7DcX/cc9ckNUPktnu9f98gmtkpywBCISByMktTmkRbJof9m1lW01wGyQIgAEoz2BaBzAgceiJo0SOvugZdLsQQgZFZykSIGBtUYw4BabfbfPb40ZNHj/7Rn/x823c//Pjdt99/99nnj/63/5v/9c1V94c//Ob/+T/9j9x2Y7anP/uLb75987vf/WGc0uXjx6J0fxpi2xo40IkYK1ZxnRQTqyKlAOR+L8x6vDD7hwBghiklZg5NmHOLVdfTzLIUMY0cYggNBFX1tM5ifxbjlrO7GeKgWWQmQoehSM5mFqvGjY9PIUBTJQptG5dCrp/Qb6KeH2q+D03YxQMQZs5qAQDyuNhrs07Ca4RoaM68cFYAxpljP4SgVkB8QBBVAU1EGRDUjCrapq57ALDVuFXrHZg5qTKSmRGogbqvoGiBnNPHjMS7CevuyDDnbD1tXoVj8pwwLabqCnOqqppVACBCQCL/Ip3rBnVbAUZENUAFEUenGBoVO6dKaWHdIwBAl9xTBE/HeHelp069fQoNAAIRkiiQqRQTU3UBhmIEC3XlrDNpxgQhUikqYFmz58gNtQlsZuiVRq9egqfMyEzNlIhnp0HNoJTCxgAAKOhMreAPlVVEvRhtKAq5qM5sWDiTHAKAEQITGhBiKZpyAgBgYiYVS6qq5BTZVgsCWvEMSAAO8VdVNZ/mQFoKAFEMKpBLMdE6JR3P5pAhUROwkvu+d+l2kFp+8R4wCsFFT8zEDIuqmRad91JEXvUACyAFJmZvWF9cKESkudImIqq1UsmmXWxAzSlcAcBUZpoiNVVDVgXvk5z3bKpvQDMzKOpV/a7rfP2rKhgxc+DAzD4RnRybkIpzjJsCEyM2TpxmTBRjRCxwu7+dUuHQJIAyZuaIaKCVpV0eBLqoCjlLCIHmUH+e4UrIi6EJTrHmnKh2jsYDEVktd9pMg7SYEpvRTx+Ewb4bky0I2DoWlXG3VgvPCMaPcMcPjp9yBP99HZWXfOVwf/Dta4cYALwn52GB+/zXn4qBP46ZZ13ZB3Uwdx0UgcAT8whAjqlQeNCEvESi+CnSkbXG0sfXsOxPC/jWzBZIPMyVWw+R5wSimZn7rfV9Ol/Jp27Z5vowVnuPqsCMXd/Dvr5ns9kCWEk5tg1DkDz5lYtISmMxNVRnnqwUtWQAJqUQkTMQ2mzdnAgeERCqjLvPbflU4c3qEP3ksY7BcJ6llUzCQcKIiNi27fX1ddv0BW1GZIkKXFzsvvj5n+x2u+tHjy93u5ubmzevXn+7PxyPwzTltm3PAQYKQOk3Z3mJFy+e7/f3bYwEEDkkJDAEdEU+BCBFAPPeP1CkGLnbbjabrusbMi2iw5BKGdJ4nIbDkKYxTd4YPQOEEAzYW0kAEYkRgWliDIHMxEzQM5huJkTMatOEsUopiJUEA8BxMjXSBXCKlnPkRETIXq4Hb2fVdU8KIxiRIwvQnQAAAHGBDzAip8qHuXPnQUj8wfMSOQsvFXX2YwSPiFZB3TJdl/3bzEA052yGROQG+uGZz8fHSah/+PFTK+iPfGC5NnN1MSdiUABk5MqJtaCLp5QAoLqzADSrGaec1zP8gyzD+guXu17OML83IOI4nhDx8vLy2bNnu93udDrd3t4ej8eUUskSuSGgNBWP66QYAhMSsDsJ4Ch0BVAEq+TggAjq+XwAJCecM3fHAYCImUi0ILD/NYSIFChU5e2+3zZdvLy8fHR93XXd5dXu888/v7i8JKKm6RC0DZEIUh7zJO/H6d27d29fv37+/Idvv/329evX42kQ03wyQ2BmslqdNgEBlawlyQkRAAJSWNRfmjiO6XA4DMPRiqhqydn3X2YwIBFTtDZQpDDvxS6qqfWZuh/LTMyEgK606jNQM8dQytLWgUZISL4RhBCcj7tjRER2IeYYYteEECiStxeGEJomtE0IjJ7TEaLASxO4NiE2gZn5+mIXmF+9ePnVl39z3N9d3dz4bTZtCIHatu22m7bfKkAuGiKBoefwXATDHu6OVH+4gCX4ykyi7/b7F6/f6HgYDrfT4VbScbi/R8Srm0eh6bNRbPvYNltQDHxxtdtsOjNrui0ZBCQtw+3r9Pb1m9tXbxTh/X7/bn+nqnf7/TiOHm7tNhsg1H6zgY6QY2yyTKoakCRNzq90PB6NMMZYDEQBidu26/uth3yS8/3dAchC25Fagzgd9vdv3r96++bF61ejlm+e/3B52qWcC+Ht/r6gbbYXxykzmYKdUkkFQhMIAEU5SwoSAKSkIjapJVFFS0WMQMiZO4gQuHbJBWFR5YYbAXMYJxcBxBCi89e0bWMXEmPcdH0kZqQuRDb97PH1f/6f/if/q3/2Tx/dXE7DcX/aA+Y/+9MvkPLh/Q/v72+52Tx59if9ZvvbP/zL7374kUMDFIZp9HhSxYgocMMcCQM8PMxFYJHdhKqq5AJcbQsjMiMyAFmZCgAkAQYDEdFMRAZBfdErukmpvHmmx2E0M69ydV1LM/PCYohiIABwKnVHoKgqE3j5HMwQSc1cBpiI8OHFd12HiGkcpmkyEGY2ACtGTLFS9ipIMRAiiLGpro+YF8BmqJ3z2jgijeZsYJVfiiEoiko2VQQNyMU0cENzu0rV3xHJmkMIywagc2xZTXER76Qgq7U6A2IEUbA5bEbEWjRwNHHliSAioLnehkxkgFolZ4AptA16MhQA0VwxPqVSSgEkEc9UC6knYhCBDQ0URNUIiYLLGXukMrNdzXtHtY2IkQgZWVlInJUlqwRiIBRCUslgKKL107C033gyDyqD+IMNiYgC1xEnQndUAGpw7X7D4rQhIqCqePNJrVgCAAevcFb5Cg9OmqZpmg5mZnDH1ntaYBFONDNX/DOTqWRVDRh0fnIGCBiRwYxEi0hRsAYrzECsJgg8opIEIkLYxEhq6LUOCu6UVBCveaCFqMjFAJUBwFACIyGYaBFlcrp1BGI0JAyIiAQiE2jNpqwXQIzRdR1UlecKZ8NNhTYsZTH3ogGNEExBEMG8pI8zhnk17O4c0NzI6nrT1dcCQKIzqIzZu+/MJRMpOt/62cPwR8CxETA1A5UxlwAoHMX0OJyOw5i5oxCRK6FcCAGXwuz89D03U9enncmKPdHj+RH3k5aVaXP/8HJTem498tV29iDhJ/xR+BRUb5mQa+Sb1cqDn/ATZbdPnPwfXGj95PHBOc3qJm6f+rq1G/2By/ixO/uxT1ljwgVUXGsaK6/BzOYwE2DJI6wrIX/PEbAPiHbWl+TZwfn8ONecP76d9S9L5/DHl2QrvAAgkvNXrPqIsNYTAZVUS0oF1Nq2peod+uyFym+/1D20mLGXf9cD6zy4Tv+A6HyNdXNdz+ePLxLmSuCDv87QqxkiaMzsZrCU4pIzfd93XQcA3ldpTH3fb3ZfbC8vLi6utrtdaFqObVQ9Hk8/Pn/5/u5u03UAoGJFlBld8/Py8nKJq56/+OF42i+7vomCQREzq2EpEgMQkiExIbZ9t9l0sXGdARXJolNKU0pjSmlKQ8rZU6+qMmtbe+4gGCJCMDMkcJd5CfPQAJy7IWUAjNw0TaNZYXJCxI/GUU1n1BkjKqhvS0vbyMc5BaZo5mrGNWpeogA7H3O+3JPIHxUtbabTXxLeiAhqqipzfmSxh8tH1naynkrUcJ0A/XQt9D/ccTaqyz/PNfZ6LPN5/TaZqR8wNE4X4l6EzsK580Dq4qhVU/8w8bes+uWfy/fOO9d53NYugapeX18/ffq07/v7+/s3b96cTif/4FIeWT8FWrVyPBxbrtmU+s7q4S0QdwDwfDqgOc8HMwNzQIxNF2OMbdNu+q7rmqZp++bRo0dffPbZxcVF1ze73a5tWxFpmtgG3vY7Jrh98/bu7u727buvv/n9d999t9/vj8fjMA7Fs/9QGTwW47AkUFxfyuMob/wzM8xpBngXK6JaTACMSlYwMhRVACZTJHTRHfMGLq+jLbrwzEyMjASMpCCSAZWZXTOpFAUAcD+JGHmuwyMSUdNEZqYQ+r7nGLrtJsZIRG1oQmBEYq4ErgAWGZtAkZDQmDmltOl6hz1fXlzc3d39+te//v777znGvu+nXELbVEymlNDEtu8BsSh4e6EH8Tr38Nf5WfdQd4PI7UZRAAIBnorsh2HXEkS+vLkG3XZ9T0R9v1XgbbeNoe03LTccEJo2AFhK4/F01CJ5nF6kVIZ8PB73d/txmk55OqWp6zpkquVfVY6x6brtxa4JcfFwXDp0HMaShzQNh9MxtE2/3cCUnQuw6TvnSG+a5tGjRzc3N1LsOJVpmlD09asf38ZogN98/93LF89f3r49lZSlHMchqSlCOU2GPKZUTMepFLUGKARDA0M6iRGiKgvoiDC5sGcMxSnEkBCBiThQjDESiyiodd2GOHJsQxOTKCB2TVemBAAYiQGbJmy3277tSC2AHd69sTSypCDpKtLu0bPjsDPIm4bf3b6RkkDKo0ePPvvZz7/+4eW/+Jf/y/vD6ebZn6gqYthsGy3Ft2eC6uuKCPM5kjRXI8cA6iy+aqhIS034/DZnKEREkQJ1TycjUxMiYmJFyFIWuQMnF3aS81h9YzMzICcWUqnMOMVLLGbmhDOeHPJdQLVWmhDLmgMr59zGjpllAVKd9eoB0ZjRzPNLyEyxoTQVM3WpUKrcT2hmTduuDSaAb3dgqkyetAMGo0DRicBmc0sMCKxmZkIGlcjaDaZ6fwoBQN+0UooKBPQyVOVDIOcsQCTAgCSMagjgiHExQ2Z2xmwtlnN2M+/oGpv3kUWiyavdqraAg2LTLkbb08qehiaioqKOXmNCAN9g6+gRIZGBCVb61cBI3pQsFfdBZkqAgASEXu1x8i6f9Uv+wFkyAYBmcJqqAqjnsmuzNZJIYefTcilKAgBiVA5oPkuAwBXhwcQEkRGA3IgrIflcZUkZADybGinmnEXUWbUc/s5MgJYluWhy8i0QNQQSMVdDMUWiYEvvh1lR5/m2VLJINhD0KwBwBJmK1ERITlKgeH4dlcEJwc3AnA2CkBFAaoXH/8BIpJakKLChGnIgcAfYt3kzy0CmYFkeyCA5n/tUMgBwZLWlBaAGkA4DAM80m7f4+mPlRZuDiEyLrzAicmDnknc3K/VtXoX2+KLUjDuREypLyVpK6WizbLGGM9IcxPNlZCZFypTEcMCy35/GKU05K7eGgEQGqjm7dGc17gYOSvEkgjvugHExJTYD3hhQZ5EknbFtjIQITvW2+C60UjY/h09nNZHzYXMoPzM7efyzIlx5cHjuBpb21+UPPxXmrb3Yj//69zhwbSDXt1Avm5fLeOCers+AS2H0E2/75F184hvrSR6EaugKNWbeGwao5+64+eff7W7n9Ee9thUJkBsy77+oEMTZJzYzo9oU4AsclzzlPFQwP8O1A73IJplZLrmJwYF8fqSUOLjeAKmqt/SRQWDGtqMMRhZiUIWl4VBVDRQMspmaz1gAACKKFM1m/e75QeAZslAvDpZB++n543N7HQy4EXanEwAw8NX19ZMnT1zYICdVASDcbHaX11f9drvpd0+ePIkNi8iPP/741VdfvXr1OhBxjC700obYtu12d7Xb7S6vbt7MXz2OYymFQAE0jYN6z60aODsRMwIzM8XgHV+b3bbb9AillKxlTNNQUhqH4zRNuUzjOIoqx2AmahkRCWpiwEAACE1c3qYJrE2syVAjJDZVBELi2miIGEKIDYM4Fs4AQKGK5YJvcQDA58nvNHi0GmZXKUdnlpipH93GzBkn9HSlPqCO85Bvpgl52Kkxo3nPeZlar5ayXolL9LiYr8WxWwK5dWC2jtPgo5aiP3L8Q0zTx59drnb982yBsQK/mbnpdsvFq2bnuwKROmNXRx1xooUoxLlGYHYHce7DqkNq87Oe17Kf3N98fX19dXUFAK9fv769vZ2miRhCCM5242dYMu/1hB/lBFdWvXq09ZrJ+cAJqw4WEmEIxBwa5qZpKTTMHNum7/vN7mK73V5cXzgd+sXFxfX11WaziYxoUKaRmSNhDEQMUvK7d2++++67b7/99vnz52/evHHocoUPCvRtJAzoUMVikmS0BABd15lhdeHBVAsaGMJ0PKlqKdXTEzHnUCVCd5zQy8hWc2vq1EZICIDIxIxAisCB5udFUPWcJxGZUsnqzVbEgIAuUhmIOMRooDjXftsu7nbb2DR937s/0zVd0wYVEM2Sk3dJEhoTmJYiaszTeIIQXQ605Pzlr3/z17/+VUnj1c1jVUU0IiCitm396YQYi0FRdXWeglZvcKWpvgTAPrFFARmmIhgYGJWoAHLbXD9+3KKSJXj6RFWzaIztJm61CBE1SGBihzGnaRzH25evjsfjOI7OGi5gRSyJcNtt28jM3ox6PB7NbLPbPnr06PHNTZ7SOI53d3dWZBjGlIZx2J+G4/G4PxxP24urEMJms4ld9/TJZ9c3j7079OJi+/Txo67rAOj93ZBSOu4PfaTHV5do+uPrly9ev5zMpuNBVaecODRI4TQkZC4KYiBiYAaSDRQ4QGgmMQMazQAohabYKKQUiCUAMiIaGREwcyQOjJEiAm03fdP1zWbbtL3rp+5CCybDMBxORy3CIpgzR+5CzMMpn+4Fs5zuyv6NXcfYA477tm8gl/dvXh7v78eSi9pvv/76//J//X/8f/7NV87+JAAxAJHmUpVERIQAlYoGkhVqKoswszfdoiITCwoimqlIFgA2jsoAEGMkZK8rAREFn/JaK1sOZ0IA8OByltWtyUczE/NOYQDvhxfJahYYPK7LOQMoE4lkNCAmAitFKjDbsVPz4Zw4H6Q4GYCbxrT4d7KrGIMhGczEztXPcH/G0AxijKCVj6n6RGoKEomdmYArWYcxAnJIUrzG5sxigQMzLsW56mOzpxdnL0jUkLBpANREQZWsEkvVdDgFZ0RytQUnPV48cM+hO2eed1lAgGW/MxMAq3sr1s4LBEIKc8MZqJQ5AnDGJiPnWsZzfEEz8xbWbdhNFz0gBDPHMpIrC1eQgxkF8igEED3rYOCxQn1mhGRNaA0EkFDFzAJgAFQRLYkgGAMZAioBIyNig8Ce/TD21Cl4GxZinYYGUsVp5gyNj1RKpZCOwyQim22f0mggbWw8iZizGCgzO6Gpx36ikEomYI6MRFo0q7gAp4ggE1MYpslUEC1EDBzOvI6EiAEVk6gVFTAgNLGmYTMwQ4V5xlhRqEtCxEF6yIZAdSoBgJFrY3rAiohGIRIUVStlWm+9XtL2XFGVS4Hi3efEiIDE6D4BA7BThRLVJlxFQzBVI2uaRlXMvKXdxMBEybvqBcwEmY2NzGbe8KCqRQRAfJGHECiGJbyCVdEP1GaeZDZUBcqGQ9HDaUxFkSIRp2LuWxRf0gJmVVwMzp6lVKZccUo1QwPysrWcuyy0Ug6cARjkPo+SghCwVYK6peDty692aHzSaVv7XOso7RN1RU8hr8CqH7h6/0EP+lQYD6he6/+AUOdjl/p8GPnaPZ/jU9e/OJGO/PYvJmckglp4rMXTeeRw3hg8dKtx709Hvw4n+cn7ne/IlplJRIDAxGhgs8oo4Swu77riD3ITYOeHjoiVtNXqty8DuxA3AICBdV13fX0N39Q3tM1cPAF05TAAc3UQBNxsNkbWuhDCyDSBA4o8JV1BtauJ5pzG1eqLgMw5HcCfehCfmF3VOp/LPjZneWXmdVSEpm2ffPbs8dMnSng/HLMIRO76bbPZ9tvLzz7//Oc//3mIGBt8/+725evXz1++UJXNbgcAFLltuxhj220uL692u13TtQDVRtUENmrTNOOYmqYxQ0JTwMDBsEr4xhjbyIjQ933bxjRlLankKaUplWmYTimPSVIqkwEEdBtGiOaYF4faO5zLlRVDCG0bs4j3yzBTmUoIIYTGaQ5NwMjavhtPIyqetfeWteOgJN/I6QwfMNHKzG+ANE9+VaAihpUDw8dZDQBi5POwu2TKTAjlECM9P6saqQLAMm+rxWGqLS2OfFEHcnmCsjaneXLBfxIFLZOuMNJ1XqmJGUGVkfhwyf/E8Q+JgVdnISd+82aIxf54GmiJVAHAiY6RMc8MTGfLsGT37KM0n8sMz4CxdXHYb379ZkQkrQlWI2RAjDHG2HXd48c3p9Pp7u5umiZXoqK6Ks9PZMk7uIbTOrOwtqgAXqgAd5cAFIyIIzOH0MyoNwohBG6avu+6LsTW2303m83l5eXF1WXft23b7i62bRuJCE2cOHe37fu+a5p4Op1u3767vb399V/96ssvv7y9vU0pqRVVnaZJwFpu40xN58mFJbXt1mV50Z+FlFJUSpJiWiTlnHXWi17yJo7WNsLZ5IOqktc0qJ7fkGj2ytQKIuaSh2GYxpOCTdlLNGHxKnG2VE3rQxSarkMynw/bueidcyaGGKOQyAQujeZVX8mpmBVJIQTN5TBOfd/HGF8+f/U3v/vt7f3d5mLXb9pcSmgDERjq9mJnhEUV0NRRfhrUlNSjBk+T1t2i1n4VFLHkUgwIw3FKDfROwWZmqWRDHMsIJd1cXiHiMKUnN48DhtP+kKdUikpOaZryOKaUSGzcH4c0tV2PLaICNRDaENsAANM0+dPRVpj54uLCZ6lO+fbuTkppQzhNwzAch+N+GE778XQ4nS6nsag2fXfVb/7Zf/pPby6v9vv9vUoTgo/h/d29TapTTqejiXZdd3d3O02TIGXEaRi7zdYM3p9GIsqiiBibxtXWGM0QUxGnkTAMWcsxJWRAgkJGJiISmw6BAchMEJCBvADbxsBEfRuaLnZtaNqQ1RgwUm5jsKLv034aEzNbGS211jaHd+8Od++umpuoKWjGMubT3WXXjmV8e/fm2x++ff7m1f2QX+z1L/+Xv/m3X/44jnDz9Mkw5tAwiEw5de0GKnVTNbN+LAYh5xLmpm8C31VwWSBmwMxGjIi5pFZbrwITAULwFdN2Xc45iwRGig2FIKJZJBJHDhwjzkBCVQ0hZCkNN0gsKakW5mgEkgTAIhExA6hnmlQ1pbFptzzz/y2XHUIjhi7dxMxgZqUoUdsEb3v0NRsCAZhoFvFSMc02yn1gQkR1oXVAChQIl1Hi2JipgRA1xCiiYmpgC47EKf7cywaA4TQYITuDJZMjqNQw50myABAzEkWBoqiEqLmYGYB5XTgoCKgPkSCSh/vqZWE3X6GUgqu0o4ctZsZYiaMNTEy1GCCcjnszY9cg9kZTD2yNrApfEKx8v4rQqQ1WADOYJXRNLKVkE0AXm3I9uyIiHqWZCJg25P1rGiiEwGNKpNLG1mUtCZgUEWudm4gihKAEgBIasWJixA0heScqIs1cCwERTFFMwduZQaW4ghwSmqkYQs6uvGeEQdRyqU0QomaAkbmI7Q8nJoqhBaApFaLgxJBiKgZGrIo5l7YLBVXNkFCNiqhmwaIhtAQRwAxkygK4kPoQusl055tw2RVyKbnkouq5Ad9FpkkDEjPHpmHGAsXAKNKkycFAZlRKKQaBnRKVYRbdPe/k/gpo30QiypqLFCQUK2YGogA1kxS9CK5SHSDTIScicqBgGsdt36gWqJyooAoILO4UiqgVNCMgmNlLiyiA0+aRGIgAM4XIpWj1L0GccgMAcs4ckYAFJeUiiCG2CirUpAwUupzA/bKcs/v4YlYhh2AMZsjTNKU8MgYH5AdykBl4dICEYMZmauqUICI1fPAQREzQDFHRQIoicFWmQ4QVch7YA0iofiwAEiMirCRAazs6yLJz19qvO2mASChFbYl7F5eoisuC6QexJRh82sVc4q8PXl/r6C6rF2uZd6k8zDu4WUUhgAABczyXgNSfrCEgoxOTqKkurPpmNnvpigilUs1R/elUJQbFCiLiClWDtcZis6dttbcc0Pv6z1mSCpz70EldBak1ibbugPVT+zxXVqqWzBuyDdEUz0AAYgTlUoo5+dOMNXJfVtSYgxZH7NSSqda9ql2NJC5hQwjQ932M534EYhNJIQRvBDE0RlQAM1FVVGQKJeVhGPKUQNWJFsFMi4p43oArX4ATFxYTURNTgZK1ZFUB5qCqakrEXMGfBR7WGGv/s1MimjofRilFTN3V9TjakAtgbNvrp48ePXsS+mZ/GoacFPDmydPdxeXjZ5/94ue/3G4v+u1l4DwO+1evXt3d3W2326uryzY2ornruqvLG3egbx5dxLYZhiNARZcdj/thOJrhJm5i2w7DaIZN2zNHKSaiMXDbxhh5u2lj5MigaUITBM05TeV0mk6jjEM6AkC/bUVENOGcVwFSJEJFh5oPpxEDFitWRFRCBKgdK9a0MY2TVEJCIyQgylq4i5IKZiADUBQxBCBm1WKoCJSlVBtvhICEJGKAGhxsUoqZAAWwusYAgZjMwMUbCMgIeaEeUReBI5HMBIgkM5pbmQFRkTigubIRaggBGEzM1B0VAi8rVwUdKmIUorNDuPw7AhMJM5sJiJF514uoqhZREVBNKeUpuTXzONw+1XsPAPgwC+a2B37CWMHDGu+DtWxWbUzNNNSiuTkNubsLM9o5paQ6uvWGMgfwVBNMizqVY33MxINfUDQDDsyB3ZUppTZj51VuKIsFhzIZeuMagsa26dvYNuH+/fthGE7jaGbEEJtFi77aMbdcHBiMXOR2gU8vZg4A2hBzzkUFgInYh9kfStO23vflYtfIEEJzc/0IkZum2Ww2u22/2fTb7bZtW2ZkJrDMxNttTwSqSm1zc31pZu/fv/v+++9//PHHH3/88Ydvv3v79m2aytleGQVEUNRiFEwVWNE1w1RqyngqU9M0wCyzIrQqTGNWK86mpjP1AAPiTI3j+L5aq2eXaemcUp5CVDMRjZEqUUjOoiaSxmEcU1bBUgSIAIw5ehOjV3WCo52ZKXDbxm7bxaZxpEZgZAIEbmIEgJRSwyESN5uN49dcu/U0HJqmadt21HFK0+E0AsBff/nlV7/9LUeilgsWaIAihhgg4DGdnn72xfZix2xaJsTNmCdGQwwMVAB4JvdQrRS/QFisaOQxT2ksse2zOMGvqmQtpUgOUrSMVrrAfBHD4fZt23an42kcRyIA0fE0pDwREbW8vd7BERU0EBGDiChZDK2adV2bxnQajjG227afDmNHzeF271X0N+/eMMI4jsfjcX+8H6bx/nQyQggMhNtt//TRkxZwG5vN9Y2N07t3714eDofjsaRiSbvYgeYyDsfjXlSmnIZpVEAI4f40cAxJNGAwrsQptWWGEK32tWsqRjLl0UiZGUA5gBkwA6HO8H9GAxQ0FWMikhgxYGkxkwwyCigUkwLjADrlhHASm0oGsFhykLG5e/+6Ue1jgJKHu/ths9mGkE1Dh6/fvnx7/3YEe3uafv1v/81Xf7g9DHF7cWnaNW1DIRRTBb8RAHAC5xAbd6dX/oWilAJsBKioakKIAV2OG8x53ZkAEUQRPC4zMk4lE1HfbUvRNOZSCvYNNuwZSTMb0qRBHRcmYkUBgIoChzgMExGFECVDEQwhxjaMp4OvQqeNFM05ZwWbcuq6DYcg6WxXBbgLjeSkmsGMDIiYGDxdLiKI1tSmBiVALQqoTdOAkaoyBTNXZ9LIrScEtYgiEUNkBiBu4jAcEQGZFdXlZogISAjNu7xFSkngmTszEzAVKEVNjSkiEZgiE0XMOZdJ2rbt+l1K0/F4BBOOoY2oqgaUkqBIiNQ2G88/CpgVE1FAIiZix3mIqIB42VbRsAlBixUpbkzETFGdUsp5rb0RQ0tRLZ51NMVSSiriYJBA7L6uzlUZVSymSEQtB7eqDGh8ToW2IU61RGPGBmIAYETOO0xgkZkAAgEoYYghBJCCRDEERghEAOoFSkbfENFAAAJiLV0gsKcz3ZOmGdzbhKhaAGAub/BMb+MZR0VUREZnpFBAZ+W2+sSLjJ59zKkq+gqY1f5NM7PjOCzFADVUVUQG9zippjydHoHJkAIQJCmo1UT6hcUYU0pZVRSK+masYkqAITQMiGQiuRQDUGJAxKZvRaSImokhMnGIxMzDaWgjMvPMuj97G+g00wJzrLHswd5j4KvWDLyNLacxcvCty90sX6incYwNx8oSpeidyCAqgGTBWE1UFENgRjUkIzAyQs+GFJUsJQ8z2ZgnWtgL9YiMKWXXtwJkQc253J3y7f4w5JLBhJqqZAXgmCuv7TkPgCIYIVcRBacomIzIkzqgZqIYzpTUH3hj/swdJ4kGBkKAigKAZ8WU2WnzzpCaC59lIT2iW53tARQKV5DFczXgYYn1P9qxvv3zUR8JfHBJH1zeEv4xc02FgKNcKmDGVojN1RlI626H68FkN+QA8CEE9O9cBv8pj3uOYyvkZpUeclC0GaiBGfCsagEP8kfz3CBTkzNZ2nydDxq8YTW2RiiqClKsNOdTZUQHCkJVmQuRAzmGQcRhnOl0OuVpNBFEC4GGYVJXloOlL5YR0aQkNfV85ApRP8cADyGs83z7+CDvdSnFCfl8ewADUYttpwht3z16/FTMTodjv9ti245Tvrq5/vxnf/Lssy+ePv0MgXJO43DI6Rgjf/Gzz3eb3gPvlFLf99fX124Eur4S4y0BcEqpso+po1uDGqpW3VVE8oJG08QYOUZmAi2ap3QaDsfTfpgOY06llBqwA7hJMADCB6AkEamQJDEA17wtIuIFdDO05L+5dgtW5i+GhsNkvqEaOqDaSFUNDB+uJg+5naVJ+QzZNTOzwui0BSsL8BG+11PujmQDNef5X1gYVp9iOyveGwAwc1GAaoScScvNnWPgvVgdiIgwEBVU51AkXZ2nwvs9Xjzjo/+DY1Lq6FGYF9GDdOFc+K25NjvXZ0p9M53rvVqx3J4cx5ngVE0BQ4Mzm5Vbm3PR/qMKtnq//twn1rZd27YGcDqdykzNBDObA6zQP4vBX2z+YhnWhhERs3f9YVBVbxOITcuMkbDp2qZpQhOapgmBQttsNptNf2FmMcaLzXa33fR9u91snAu9lEQMCKKSCEMMDAAvXjx/9+7dixcvnj9//vLlq9vb2+P9fpomWLFjeMoGasecV2Uqh8hyI6qas9euKl2btyymMmU9QyuJyPP1y+0vZ6MK8jfAiixwawBgTtQiZv4d0zTlLFC1t8Dz485KDQBdu9lutxSYmdu+6fs+tA2H4P5P11bb4hfjqBiYC3ppmsZxRNNcks0QsP1+L8Xu7+//8O03w+kYNy0iKAiHwAGNIDTsTR9t2+z3++Nxv932SK0hQSngTCcEzuFljoYDQIMMkDUZB3ZzrcJMgVhE7u/vJU2brlHLJpKLRIqkejocHN3qbS4Y0ApMOQEoMrlGuplIzlpKMeWGxUCLFM8UQtEozCwpj3xK43Q47qdpQKaSptM0JIBsIEjEhE1ommbb95fbtg087N8Px/Fwe3t8//72/d1pGkMI4/vDHjGrDOM4juNQpqKavY8PmQKqITNP02SEu92uTEm8ugO+8BhAiyjWXclT1DXfhAhAoqZWCAAZa24LUMfpJEoGSS01sSMKAGimBlOxPKZ0Op2GsRAFlxGbRAGgbeNms4mhNYNSVAXatpkwH9I0iB4Lff9m/+Or4yRNu7lB7NQLI+w6o2yK4qTUiEBNXcgry2eixUBEHB5hZpJrnc8XteeqVNUbgH07k9oHSyIKBCE0AGCK0zT5Dm4z6/40TQBA4LzKDSBP05RFmhAEZ8ingFoJoXEeenWA2Cyd07atAg5TKisWaBE5nAZCJUNTIARmBqySS5WY3byaWBcdAksxkSQiDVvlqCMmNQf8hwrEqF6Qa6FXVWQAAHBmMEQ0Ld51A0BVlFataRozy2RFpfJ8zt+NDCRU0ErWCZMUUVWvRpuJmaqpbw0EmFIqCk5mLKaIqIhl3hscTQ627BqKGmSmdTQABTED9aiKkIBU1T0gAASyIU1m6EwfbudnQuu6i4gZAIYQnPAvRPaO7lomFhPv03CEWHXOKgTMsL7Vgn8fqJO/sMNx0YggRibzPIGSJxRtAXSd8TDeh+G+jw8y+Qmp4r5q2A1gM2uxmUtwuaNgZKpqsUFEQmIEELGiSqaMIUmVdPf0ns6gNqs7rqOUvXHbwAzZIQfm6mWA6kF7FpxSNlVf6r6WmqZxGB4snjcZIlIVIfIeaX+GSgoelIqIpIxIIQQmDC4diUQU0cybnP2IVPF1YKQOMZ/3Y3ImZFRjcFbvs8uDgDzrRzp5JlEqY2giMrvrh0RAoKZZJQYmwFLUBDCGQMHPMXcs1rqcKhQR4iqKomZSLIMUbzg0mvWGTRTGMt7tj+/3BzEQAwUVBIAZBlrNkpm52rQ37RAzq4mqFo8BuI7Yg7t76IDCjLldeycA4AqNMFOy0cyeRXN7sJ+zMqY89BTVCtgHkaRXAmW+mE+Evh+Ejv/xj3WAunaAVq78KsZbIW3wE0Gvj4+fR9cn/+DGcW5HXH22XsDf8rLro/xb3NpyDbaCs5p3qiGAAVWCX1cpcXUGsMpEbx/co6OPfuqpuQLHAxKsagwZVWuUjSqOkyUrqZhZzknnZN7CMTybXS/2sCfmBGyZnMvA+vT0RN25vfAnR9INDlvNazDNyTNiQkYIvNlsnj57dnF9dRxOUyo7bq93fVH77Nnnv/zlL588fnZ1dZNzvt+/M4WUJ8lp128YMKVRRbbbLSL6IOSch+PJzBuWztcQY9SaXPTau0dr5AnjruvatiWG0HAIxEipTLlMp9PxeDrlMo1pKlrcoAHUMNinqlPlqSqx6+IoABCyqMzjxohA5NuEgyYQEStzBaFZIGBVsCTq6ACvDMwj+nDV63qOLQ8doIL/PWOEq6CXZ2U1mJNPHiLromC0St84Q6MP4Pwt3pHhEoUVPqeqPkO8h8ZMRbMaGwTwlKWVBeD3gORvZSerG/H3NEd/n6TevDBrlLXkB2s8BqKVE05VV1Ma19bmnI70X7BWZcmFHmd/wR40xblLtHpkfgaZl16IMbYNMuWUxnEsq8YZx/h88NAXz8SnwzKMNsfA9Z1MHKOHaoDUtm3btkRkhLGNMcamafrtpm1j3/e73U5VAaht24uLbd92HNwcYCSSLJotiQyHo99yTvLdd989f/7i9vZ2GIb9fn86ncAocFNyBnCwDs4XhjgzkHnptu5rTIQEhFlrh4XOeV9VVQEQb6ZDZq7U1YoQGImQA4XIMYZZwgqJOASK3h1ty04KAKqa8zSOozMCBFdDQeIYatqLIxH1fd/3PTIx88XlbrvdKioiOhap71tVNZsALCDEGIhCzhlBiXDyKj2Yd2YNw2BmKaWS9dWrV69fv4YQtttt00Qgqw9iZvzyJ7g/HfenYTelGFskzKJQNBC6KrgLIvlWRwiMjSgShSx6Oo1lSrtN3zQtAtcgv4siNo4jARqbmY2p2Dm543gMTWn0u/N2Te9Fz2USMzmULJ7MIFBDVg+zzSTnfBxO++NhHE9GaCUnKWORVETAGKt7zIyMwGB5GA7396fD/TQMaRwkFzM7TKep5FKKqOach+lUXJMnMotq1hjj9dXTt29v7+72Ex44BAADMBEF8JybS8ipu2HqrGjI7t4rGqBhA0TMQACWRDSlJqAqQVYj81ocAgNAkmSopQBiZEZVm6aUUxrEMOeWumFKYxFsemz7TMEE//Vv/vrXv/32fdLffvfqt1+/LrhpNy1zX5RymaoSDEYPKhwqwnODWCkzlA0AlsaolQwb1qSzlpINobEGBXPOMUbNhQEBoDhnEoY8JIqMTB7+6SwxCABN0/jz9q/xlehIfgXImlULqBGjmBTJfWwcjagqCOpkAc7/nFVEyxr6F0LQUpiZDMVE0bOLmHJVUQFGmwUQQAGQgNjQSXlxMWYhhDCn83CuJRgi4Fl21MysxixQSmmYkULRoqBESGHWqKOzJ4leD3QOIHALgWYGqiJgZszsSROvNhnQbD+xFCHkhbeF1g9uTl6cDa83VJvJKosqaqqKRgznCgIRIYKUIjNlAc74TXcJUAEDm4I4q1kM5jx5xBCJVEFUmblFLKZFhR31hYgBRcR7eojZ3AAyoUDxTldmJI0cRIpqEfPO0FKJqQnJyJyiet5LfOrUwgiBr0DvzKq7kasfr/Vgnb4LXEe3OiREJKBgQOT8DWgKRdRAgFDMZHay5wKyLE9dvfZL6IomQpXM330KRCwGVjKHDpk8dERE1wqqiVVEJGSMUDdsAxeDcQcAkUj8jitSsaK+K8lhLhOodbFxDiHEc2RiILUscG7RYTN3M5zIxmzmJs0GqOZGH+bozluAfBMyIHMkMaGB+pgAmcwEm4agqgmK74WqoKqp1BK6roOc+lAqAFVV29C7jfc4ehJNoooQmiYYJfFcjiAAAyCyWHGOr4+9KFi5cf6YmLmofODY4VwPNLO5O27tip1z9mvHZXnb2Q2q5bUzaUp1JT8V7K3PuVzqx9f/H/+wRXNyxVa6XG2110jLDr12+GzlOq9JmNY1kIevf/ztM2fgH2EaWx2fHL0/ene2vublYT08CaKnxD6qzgHAOqOx+LvkpuRhwOMLuOu6zcVuu90e5z8t20aMERhLKSqqWrhGuOS4tSr9oc7VL4GDijlbZuCAWIkhi2Rdlc19ABd5wAd17D8yqQjNjNzPAzs/68BtaEITH3/+7POf/4KYbZy6/kKBum7z+MnTX/7ylz/7+c+vrq6Y4jhCNwZJ5q72MBydHpYQ+75fZlTOGUzWji8AMHPgRjw7hxBDAAcaGTVN03WdN+khGVIBAkAwwqI55yyaBayUrGCA54ZYmvv83a/3YVHVXLsxzzHS8mYfCqK6cSyTCsnAlBlD4JwLVC+FRDLgssrP82j9OB7ON/De4GWSLPbEjTnC+UoQETFYTe2f46sF2bM8pioQRcBMS5Ph+qcnRu2cCD972PWfq6FAO3/w4zX49zv+9gbtbFfn+4W1bVklMOe3ffo8yxuIqhwOgDqqEOYxUdWaIiL6RHrI65wqoWm62Dhxhu/UNjuv8xw+V+aXbWWpgi7Jjg8MPtTMy5luPcSaLGOmpu92u1236fu+3W63TReZCImGYWDmzabbbXsiKmmaTBllVE1p8sLOfr/3zuT9fn/3/vDq1athGAAgpeRc7g5jBvD07rnR+uPDKh3hvAmupmsle5tX2RpsoqqRaoOuH7XJH8wAm6ahGBy4yPORUtJSslQ6KhEhAiMkWtWQiTwjEGPkGJh5t9n2m800DQJGBklERFyqNGcR84oc5VwvrwKzEdxu5JyHYUgpjUN6/fp1Sqnra90vhhBCUIDAFGNULSmNbpaHaTydTk3TtCGiAVKoeXGZW3AMwDs/ERAJAHOW/X4vU2lCjLElCiUPx+OpRUvHUxe475piJWslMVqK7Wql+FMzy7mqSdfoV0TM0jSqaoyxbXuvsxMjEjBzkTyMp9N0mtIEiCpZFIYpqaoajjkNw5DLpJKH0/GeWFM+Hu5Px30aR0YEtePxmFSmklNKAiaaM6ioEJC5QirA46vL/+w/+y/evXv31Vdf3d7dQUADKMWy0w5ZBROlIjFyDbw8V0KgogLJEIM7wmgmKipWhEIwUyumNiZKDGiGClRUsOrcICKpZhVFg03TgkHK8ub93Zv7/bOU74Zpn9M3v/rur77668Rw8fSLt/c//OE7ubqh0PYGDCYAgoZkBmiIxEiuAmBmMFMEl5Vh+MADLKW0sVkSjoaQUlKqsrRm1jctM0ttEJCp5AChpZaYVGc0HLBZ8b0JyK1KAADJkiUZIjGoahZhBWIspKow5cwIQEyGYAKgCMiM4zjKTHGyXHZoorKLp3lEKEaIYBSCd8P6Kne/z9lGVCzE2m/C6CBQNRNgopnB3WXvFQFAQ+BSyMcEmTyjl6aJu57prJmEM5bEOYxUnRrYzNZ7lniwjVpLTyGEPEslizgrGbl2RwhMFND9irlAtbiRtcnLFeDt/PryHLGaNzNVp5W3+bmYaSklNB2iY3XVy1e1ouBsl5VM65ylDVqylx/EhKk20w9pAhUvHruEeLHiFP+IZiCExIxQDMmAPJNYMXhm4gJ6sDRLUpgrsGBm6FqLKsy1+mzmbONMAQGBAzrWzqfpvG8ZsfOPqKr5RokBU1WcA2ZGIxEBQAEjDAZgYFq7nV0ryYF8dVsOHJAZXBHXnFNWmCk2EdFERIqqqfd8w0zPL7mknCtyb+VHm6GZErBUAIBShT4aoDEgMVEkT417S61vPKCKEV3byQ9fqL7K0cjzvmgMqNM0Ei4LxvMuAgAIbCro6S9vHCMAwsitIuYi7vQ70o8YkLhoQafVRUwlg/k53VZWAYklAa9Sb1PNF5ExEQFJLkRUAAuCEWcr2RRCNDRQj9PVtI7/bJWslsescpRX52ZeDwoGpgyBiDWLGaiCGTo2AVbeqpn34MnKhTp7q4trpaozY+cDOjszq+zK6FTfa29qXdskIlItS6gJKyfv/+/H4neuL+cDR2fZA5ZKuJnNwE6cY3+oRbh1ePCRdFD1Duff16HR33JAzm+bg+1P3hQ8DEho1hpSNacOWqiUEdEcE+0cBFhp0GHeH9a+bD3zJy8JUcEcv/fgfrGW6XyXBTWfTmYGBEXlNA7DcNJFth7DjLQ19xcBoIjknIvkZeTVilpBMg4o5aNBrqICq/FZURWbebK+lsIwMDErGDbh8tHjm6fPYr/JpcSuj7FpN/3V1fVf/MV/8rOf/ezRo0fb7fZ0OgzHKeXh9vbt+/fvTqeDaAYT0wLo+sVooqBIxg7ug1UKSYoRzYkq4BAaIGddBmIIkUKk2DARFCtqyRRKGUvJqUylFE/u+dQqpuRYXwo1C44KCwql5vhNihdSPAh0AyVzRAQVxqVnpna3bNg0pUjRoirrZ/5wotoqYNDKlkGEaIpAVQv8PPLrVBo8jACtns5ZoRDt7EnoqjBrtYcc0ZPlZp5z9ADZrXoModpCUHBG6vrfh7cwK/F9eF8IaB9O83rJn3rxfPzto18AAE8Zr6JfP2qbyQxnrX9ecbaZ6hx4nCOx5V2IzuUJqDbfYp01vlPP/EWr+/UVzByaGBywl/Oyi/nzrcCfuf95YUasF29kinN64ZxANKt5UiIKsfHXm6ZxtMhut9tsNk3fPfvsyc3NTQhERAoynoYpJzAhJATN6ZRSmk4DAJza9ng8GogTIL9///543J/G4f7+IMmO+1NKSUROh6GUwhSl6Gp4kYHIZUpqZFJNutdpzRlsTLMUddSGVPLIJU05jzPVmBnRcW1N03inLs+Y6qJiBF7C9DN4VFnSmNLo7dA+s6vOkJsjJgrcNd1ms/GeZ/+6GEIgzogq6nqd0zBkckAmCeIw5jY2OK96Ld70rs6a5hkNRNzv97e3t95abOcgPxthG9qmaRwdimRF5TSO94c9Ivb9NhIbUphHwpmxCVBhSYUUABiGPB4GE8hTcgO+f3d6f3vfM6lIDKSGSYpnBKY8eQ1cRUpJvlOMeZymoaTa2Vk3Mqh8A4GpCUwUmCNHRsJiMk6n/Wk/jKOIKKqJFAUFMGZUmU7T6XQSEUQtJb19/TKP03g8nU7jcUhTSodx2o+nUUtR8SKwPws1c9w+M0aKXdvcXF02gd++fLHf76VCSNS9smqLAGanS81m/HCBYplDENKiYLnCKIhCaIMSoJkITAqMCmqo3nEXFaoZDM6ASxACpdMAqoY05PLm/d3vvv3h5Zu3Gcp+On32j/7Jn/7FP2uuH331Ypr+xfP3x3wV2awQKJIRGQGaGjniiRhBFxkkAEeS1mMcRzNzeDOAlVJi5FQmRAQC75VVUAqUc2ZmDIRMIK7qDsuzKyqlFDTgoGTuRZOZEWAkCu5rgZRSOMa6Bl1Kdo5iplzayE0MRARCIlkB0DClUREWVh0/pmkiNDNhwsAMHk0xBCZcywW5vDgWL4yChYruVsw5mxTVErgV8KZRrwX6nqBmQARAZABaoWSERMWUICCxJ/q04mOr+gawiYgjPlUVqxy9G2zGwOYDCtWJVDAxJSBEYsRiZ190dstns89eHzVVdREcRtQi0zQtJguAQmBEISITYGZnfzRDQEJGZFfAMTUlImSCeV1jzWUrMRtqKYJMxBwIFBBUBUzQyH0gKxIJnR7NEFDVmM2MCExyKQpUiImRgIGZFEAkg6feCQGNkRHNPGae3fG60QCaqbeIEJrT//pniVhn62zz4fvNUjaZgyVFjNVxQTDRZUogEBIVz/uCgQNYDdRZzpacEBPMlInmQHVVqvMgMIEZAuVxSr543eF1+iYFC1zvCMzQyNmQVZU5qmnJBUCZgEi9yi1aiIGYPD8EWIiBKBC444jrFsq2jWhG5Ch2V61DAGDAovqBWKJvi1kkzC+GEDhGAjVCU5QiikqsNe+CGiCEgKLZc7ZVj0tsZlHyNDyvS1UfHPOLtMRUBpQNjintT6chpyRcwGqxFxHUi5CFZt7TD45qrFe7RdXXWlc2cP3V88p5CISGGRVmKwAbrtys5Z9+TqqhiIMlzvn1ZdWtP7j+9r9lsPfv91i+dLnBZRZAjfgWV5N8J15IUB5UF1dnm8f2J+P59ZfCB0726pVltcKqnP7BOz8477/zZpfHMd9WMC22CpvNbMlK2LkQtyoCf/S964v8YDzNIKWk4I0u9XA3gDmIiJRiJoyEhJJySskMxnHMOcE5RD9Xnp301LclFSMiEH8bennHw55PjvAHI7b+pwIgYlEBFUBA5hADUwSC3fXNz//RL3dXl0kkNk3HkTk+ffLsz//JX/zZn/3ZZrPZbDoimNI4pdP+/v2bt68Ph/uURx+3pmkYPUnnKoUVA8IzwawfpQgizFMLiMQUmNl5bvu+D4EQTUERLWu2VE7TaRiO43SapgEYfY9UdbQRzwo0HAJ5uA0ztWa95fkQqXy5/lcHrdXBQZ/nLutAAIBGMQcrUvKiAFzn3Woanw3FetbhbG3sgxledQ69r7huH+en8yAWNVXPn56P5Wkus3RhbVg/+vUO6PbQ77eao1XFGKpv/WB6z/vs39lGfdLa/7H3z9HXB4axPjj8SViNfxnNx/KazVVZ/0kYPnCV4CdsLyIyYNh05O3xqkvubJ2zMLOZUhqW96zLHUuqYvXIEJfm2BA8+nV57c1m8+jRo+uby6tHN48eXbdtezjcHw6H03DwoCillBKnaTCzNAzjODJS0zR397dE5Owyh8PhdDoMUzocDnkUpw/wwku1eiFI1QU5719EhFw52ESkmEavgc9JnHMWW3TZyj/YEP03X7lt27qUBhAuHbwgZ0JvD49zzuM4akk16psz155JR6wpvxjjdru9urrabDYhhJQSAHiVSXJRc4kxKUmzFDPbbDZmeDqdtEjXdU51OVtImabJFwhTzGW6vb09nU6upSwibd+4VCcgIVntXQBJKaU0juP/j7o/bZKlydLDsOec4x6ZWXXvrXvffe3p5mAwjQEJw++W6YM+iCbKRFGiSQZxjIKIhSYQEDhosHt6e5e7VFVmRvhZ9OG4R0ZV3be3AQhjWPdrdasiIz0i3I+f5TnPc767uyMiVZ+myRClFMECQLiDpVtr57aYayEsy3I6zefTLFR2UymlPHv24puf/81xXiC84+zf1mWeF52ZytLObUluYLNUPQo7n8+tNbivYPLM80uhjD2IIUK1yjQVIjke7+6Px/vjcTGN6DXKAKNIxmngk7pFl5j28+n+9u07Pc9NfTnN7+6P56XN1u6XszNZeNOWM6cw56PbTxNDlmX525//vLU2n85hauAGBLGUKVIW1AzBtXOvpNxrQjgJkTRRqWUQg0TcAK+FBVEAYQhx6ZzLQsEkpUgtVUKNGkRkX8urZy+vDrvPPv7k66++/OjVB1OttUrdTR98/vFnP/rRVz/5i9/enq//z/99naar61eB4t4gIGEe5SYPF3eujMSgunvq69LFmJzPZyKqXSu7L/C03jxA0es/802t7DkYibNk3VNVBgE1M23DSpBZagP3HcS8kZd8TVIKBg+reYijjKDQen+nyVRjEM6vwz6eT1WYiSYpnCLDahGRkmCCANMAGeXbkew2vWxafV2vDYDUeRb730sG/LXWiJTh9Wmaan1mTbeRfy78bJMmooti5PB2NNkiqYgQQGauraluGL0AdFFDASLM1VWtHxiuaX81K1kpUTrlGs4bNg2MXbjWCUCyNROxRBD3vht3T0xrF16IcPep1Gw5FpGU2M1bKLupaua8awHQ2qyqoBCZvOeGggBOIsDCXS83ikjuW2PfUM0dYp0cTNlQyjwEl4mQDZ4RXEsBXDqXZhBR9raO3G4AnSUpnMIp6Wccl37gLNByqZJ9ramdQ51sxn1ZLX63PQnoKRQBBGdj7aItgjIxEpRtqWhuHmFumjorUihVhiMW1YjIBDMis6rJFCQeahFJJp7VAM9vAgAspoJeWKAAIyBMxIWLmQV6P30eu6m288wIDJpPQgEX5sTENwFkdDh6bjtkQZRgL2bmIkHklq4qMcKbuedqpwhrKVeAFDqGW2RvobsL1yBf08MYN4IhqilgDwoLVy1Ugtgjmsc59P6st6fzqdmS9F+r10JJDfrYB6KhGJFUvaYRCZxn0kghQATTaN/rTEj5/xgNPEGyLVSuXuN2dY2/9lwX1oA2zDvLQ1/VW0sUD4qosl7zT/As/6MeTzy2xz5ijERSNyLI0scGIPTg/G21PLZXe+Tm4uHTfvq9jz61HdAfckfbf/aRu18KMsk9AiMQIwC3AS1Y6bi3dvPpkGgbKuc9T1J2hcqDWmvONWZAyJ0DMLdmutjSmjVtTpCpFhLv+grBpSTh5MUoj2gHcGu9MSw3UU8d3cvgfG1TBJCNWZf+Vb4gF8EstYLIg/a7/c2L55//2dcvP/4oBU6l7qer8vzZzVdff/0Xf+8vX736gBFTrbe3b968/uZ8un/35tvz/Z3rkl02hetutxMqRFxkiggmELG7FyksdS0eMpdwQgRLl07N1t9nz67S3zVrqs1JS/W2nOfj8XjMqOC4mBaMvt9UfWcWEU4kDgJAYsJ1TuKiUbgbN90D42BObbfL3LNO60PM4HyoUgurwhWOC4JjFPzXiTEusl1H/Z8+gMdJpxGbybPOksuio7QvNK42koDdY/AujzeUFWMQGa2h1/af2/g/PYbBCHX5xtzb5GHKuI/qsdDY76n9/gnHOhnx0AgMMzEQbtnDROy4FF3Rn+EFkxIw78rZka8pyNf3tT7wrT+0HpKziFnDk4hFUoTDw8Jps9hjk1ZDMBEL1yLT6h9vrpyKP535crfbBWGapgztUlv4xYsXh8Ph1atXZu27337z7be/fffu3f3xVlWp9AQxB9w75qswn5gzIDzeHpdlOc3zvJzOp2WeZzNo6xGscF2tRFfoyMfYj0KdW941nM0ydl07pSOChLvBJCbPBL1gkGL0aV4kb22aJqll3ZHRF0VWBYKFRTjC4RrWsiTraqtZq9PEzKXybr9PbqHsBC4EbwuHR8Tp7vacEXtX04ZIJmpC2+IWuswcTnBtHhHn8ykiCpXQCA3VZZ7nu7u77377jTflwyEiMsxIu0oMM1uWpZaJiE6n++P93Xy6X6Z6FqaAu+YNIjKjYUSUPF6qGnByO90f56YICvF5PtdaX758qR7n0zLPLdgNc5iej0fVJYIMZhpNZ3fn6CKuy7KYKQEGB3rCjii4Q/pZdRnz0N3x+u3r8/l8f77P+mRmcLhMTqxuzFSnCsHczqfzPZro+dja7Gaqlvj5nCpmESACCxUiEipJVmFLcwPIdV5++Yu/naapSrm5efX6eAzVCPRymSmCcy1FBDunZy7ERWiSQ7OZSJgriiyC+bycl7k1VSnkgXBGMFALVxZm15hF5Hq/2+/3tfBhf/3q5vkHL2/+8T/+x598/PFPfvKTr7/4/Orqqs/w/R67Am3YP6tnAkqglGnnEWBC8rOu8S05krt2hCDZ97eFlMWohSTjD4As2iMfOhszk5O77/dXQVi0ZaWXiHp7r2XNyQJBRI7I1s6xsqBuvjgAXDKh4dtynWa3i0TEsijg6atmkFpL71C7+KDdUhExOaGpAnlJp7BJGMKj0cEzHRCDsCMZEIS5VI4gKbK0Ob+9r/dOqEtc+uawsu0wF2YoZcAHcCG6uJVLOw/KgMsDJoA4MfKr22mWhNpxAdqMv3ajum5zNKhqeKVlSY+dCMCC3siZUaFnjS4GbS2Tp7uQQqcjggMFC8XYH7Hu6MISNDZiqlzABEapVbKJvNSdux/nM0R2u9KaIcg9ehenO4swkjgBFCjE6LzIyOR6WlUzs7YAqKWIYN2x+i4lUqiA3FW7QWdOdydS9haisdITZHNsJjk8huZLXszd1QHzpD/nDnL2bdACwOCcjVkREbHMBnKmgszFmGWv+JqNSLdjCYe5hgdzMw2Cg5ZlWU5nZj7s9hFh5pQd1XxxaNxTf6+AGG45ycaORUnMjY7kVqJwtlI4wGqX7by12T3JFWCWKD8QwZ2E4Z5ve20Mywc7WnmXBcA0TSxwgy52mA7MybTWfUai6JAPIjPLGFqEiUSbO7XIuSsdCZG52MyQ0aiqRYSFw9TBc2AOasHN3Ii5CEXSVCM7wjmypZzXgGoNPHIYXZ7HehovT/Ah9Lp6PI9CqY1n2V3Y3hAyfKYYtYUV2bhdFEQPgJ3b6I6eRLnrgN8b4/2vcDwN4VZ/bjyZixNsQwcS6FS9sWEdAOj937G5OAZgY/3eRw9/HVUMTc73nvC77+J3j2H7RnpaDY+nwWpM8dDUjofz/m+85AI2d+dMz549S8ze7eVMisDpdBoiwFjanBAjEWnt0lLha4EF2agzYISqrTVt5mGllAgYfPVTs/ZO751awXj8CwKGahRR2U3TbreoqVmZpg8/+fijTz814lLqoR7C6dn186+//tHnn3+elM5V+Nmzw/fff3N39851ub19d56PPrpwa62lFKSKgKWaWq/5RERrDehWrsgUHMn2mgWfab+rVUopETYvWa4JLhThTefz+Xiej8tyNtORug4CgUmAIlJKocg2HiPmaZqY2RbLXU9VqbdmrBKOQRBmxmh/cPdB/zsSvd4ijAUiwpJUWsgw+OmMSMcocV/c2wcyAOvVV6ALp6UN6XYGl4n3YNZuQmt/XzF/fMWlHLGe0/+6+Xl7wnr57WxJY/o0JvwBCPQfdGxv4fcej76aNq1365jHXTzO063Wyd19kKNiwDfCN/mpzfXdHwfzF/cjXFVTImK1h2FOK7v4GiK6M6c8p8iGdnG9hfXn3KFqrdfPn+33+xcvXnz88cdffPHFxx9/nDo93333zbfffvurX/3tu3fvms6n0ylbfEUE0l+nJD9TUMCFi5mdz+fT6aThqpo1Q5GqqrYsVEqiIt19JfigJ8d2vjlipQFP1CsPDggzc9OUd8ojfeKsgWS8uqI81pSxqprbpYljtPuuG/S6reTDKaXsDv1q6xWOaskq710H60JAyJWJY3+1j4jb21u3ICIlOh6PpiEi5/PZ3SeZ+qWO5/P5+Pr16/v7+4zYmanuana6MBOYI8xd63S129WION3fLvOx6aFpqXMP/jMnJdwho/M8Z/lhKrLM8zzPXOp+vxdiFpTC+/1eVd/evvvu+91efF/BZKf5pNrMXEox1dPp5O7ZGrrMc/JhxXDS0v0oJbuuAoDqks8zHOdlvr8/nZflvMzNFEAzA1BLLK1Z+CQsUwXRcT6/eft2LqK3xzBnp9PpdHu8M8BB8zyDOVsxBYQgMxMwRZRS3UwtOGg+vXn27JmamlmtO3a01ohgDvdwwiQp10JMIA4hFqFpmmqV3f55zijiyYKW5uemrbX53Fy1zYvOSwvVFgtrIZpnZ2m6m/2FfXDz8tOPP/7p3//L/+zHf/bV11989dVXn332mUxTZnKRIzgus5nNt0V2X3755VTqmzdvPvzoE20O4mgeYLBkkEQUtnUXySMeZEtzZmY/o6oTUWpkIh1CdAdp7QFWM1Wt0iu3DlD6jYIs4+XLBCCZrxs8w9EDM9vvD1jbdjgL+bbjWquY2dyUwphRJKnXw6wBzsxbg7bb7XRpLJUoFlVKC1AoLNSMyJmLwZL/Q4iTQs/dTZWZZWwWwzXqKWai6PCozl3SrFMF1eh8H0a9dspSC0Xf5iJidf7XFGFObGYOCiERER9cG0R04fSN1XAhwpklqYfWt4aNA5/DFr7QRQW6Tttqilf8DoA0TesLdURdx7mxTpQ6wMxZSxShUmrmO4q1OcJFpAgF86SldZAhQJ7xqgsWI3eo6q7U/YsPzGLWRuFEHMSM2E8lESAiUureQwtx1gdaa6XQfrfrOTAKVYuIUjiZA5OAjikiKGnCiYhZsjbiQRSdvd1bS64sIjjDdRauVaZ5ntu87PY1IpZlYWZdkOnMxMYwIFxB3swiOO0pmETEQeqewl+FOB9gW3SZZxDtnz/3CBB5hLo1txKhbmY2TVNSVXlnpAypBcHNDG4J8Q50juRSCjMSEyXZIhzGQMA1XMi3W/zpdCo91c9SwJ5t/+EwCqMwA3t4IlLGHJqcCMJlx+7a3MiMnAtVa1qk7up0NkWEkABgeBgsfJommUpS+0gVNziit9CkOmKEqjEnIwINVDYxs3A1c1U1Kkv42+P57rQ4FxYRC/OeQgaFiISJqhKhkHh0GAQzh7mp1rqLoMUXNQsNGaIOay1h4wMxABGs0f/qrLh7Aqwz3O4pqI5HIO9Z2NG2OjqQ+4q1i+/1yA0y1dXPMF2RJ5EPBxtncat5+8hpwx/qTT4FiHec6cO4LlfoZZFj4FvysQxMKda7yD9RyTF2i+MRHhQe1G9rXDwi6SRs46qm67P1bscwHpeF1wTE5vd/nC/efVyz1fIOP6+L/XpEtk7IGA8zF0ZOV0RIb2WlrS+LNUgmMrPE9uQP+ddSysuXL3xTK6MgbVpY4DG31tocnuJbvRQZEb1/ngsBZB4gYYmglulDtXQlIwKa/BlLb6VTncouItxW4fGe2ETEFs9PRNllR9Q91+YGErCQ0H6///zLL3/6D/7Kd1MAqu7BdVc//OSTP/uzn7x8+WK/2x12uxc3V6fT3Xff/Obt96+Xdrq7e6eqZprisZXq7nDlzedlvjrs3d2WRkTMRVWXZQau+hzlYmbMUuuu1tQL7dHveZ6BYAFRqKmFtnZWm81UhPeHycwgZI3MDCz7aSIiVQ3rYBkRyYeTP2eq1N2XRTtuhUr2LOSTJ5JsHu7uvgcLJ8tlDqnuiISXZdG5A3TWZM3KDNQTIg848zzNQvLwrJCttXQWES1GWJ1Og4iBPbpWduSK65y3PCL0cAQjRGpycKStS0g8RrFXalmBrGZ2Op3O53Pp2o+xGgFVzfwgb9p50GubWQH+Q6q+72lK+cOMFbbjoY0d2AZs2FjIJIxZy9VprNbbiQd2QwDww0C0L4SHiOh1JO6+mPW2Hua0+OgOVh+JiMQYJA3tse1djFcQa5WUmXe73eFwuLq6ev78+vPPP3/x4sXLly8/+eST6+vr1999+2//7b/9+c9//ubNm+9ff3s+n4lyuycwmXlEFJZpmiYpDakf5suiSIr10ynnauLI2rlRhMiEgC2WFKLrXTgBEQJipuAIV0JJ7mkebEDMvGKVMxtepZRSYjyBtKiZXGbhUkqWj0opZar+UGVqmibAsVIZt9Y7q81dLdPiCZzOyHaq9bDfF6YIb+fTzETA+Xx2a2uiranO8xxOXIgq3d/fYUP4UhOWbJjnOTcyY4uI83m5u3v37t2bb775BkAS9ZkZGqap5Jnqnp3MrbV2nt3a+Xh/9+7NrtRQxZVdkS+IUqbWWimTDi9cCGZ2f38sQiAHvLXZQIg2TbUUNrO7u7vWXsKUgoRdfTnNJ3fY2WN0KJyXc0Qw6HQ+1Vqz0pD7ZpHiiHCDu3nanDK3RZs3t8WWRWd1S95UEjaz43wu03UlmeeTzbNQvH7zTgITfOe0nOflOLfFDFCPuXmABZxBWSo5Bblr91PMFOC5tSpyd7x392T8ipQJDQd36TIzE2EREQoirsJSqBS+2k8314dpKpBiTmXaXz97yVLPrX337Vt3nM9nnZdlWe5v79SW68N+VyjCPrh58ZMf/+gf/ef/xV/9w7/88rPPX31wc39/W0pZTmdWBaBmuUwLKIKU4vlHr370xecvX1z9+vU7bSciCSeELIu5+zQV5ph1TttViC95ya0PJtxMoSaS1ObFXS82J7yrmtWacUqv8GV4xkzuSztH1lRLQe/PiTBfsmSdLTA9/gzuUrLKA1+dF3dALTjbJz2YKwhNDYimJxYI11Gb6WZtmqZlWcJ1mqaym9wdEbWWAkaYuokQCWcyDxTNDWYsVIokE0bS2nAX90aC/MwGBbyTR+KGbNCJ5KaWrhf8ormwerw4z7OZ7aaJmZMvqZCYmbYEwxZ3LIsSBRdpFh7EtcCRhcbdrmhzCgU5EZLHOfNQ8zybmaVAnbmZafOgFNniGHlQZqZgN5tbiwhOvyvdPxFmNlUa5HlZLRhOGnp+vJZaKw963UJEcF/6SdSWxRyCQoEiwlw8KarVwLIrleDMTAGj5JMgix7BiwgzalKemgDOIDefpOz3+zXlMJVgJjN/iA0DUxB41r5DdKBCBDxUbZqS7g993ySUUkqp5kgojnufzWPzJnh0AmiPLuk0iuDrRFs37O7Ze5hFKb0uzSKW+KLe0Se7w16Ia6kZQ7khwokKOD9rhfuMQRKdOAGZ5hcixCAyST8Igl6chppdWKCxkklksSLQ2U7B6Of3Tdw3vWFr4nal4xJhcuo014Zklsn2gxQ3S0S5u5uGWfj5XMsuhnOZ+aTVvbgs0VF/BtgRVKaAzPN8bDYb1OhkbXGQlDpJMWnnWZfGzKUUi4sB2kZWwMZh2nTWxSCSicFujR4d6TowrI3cZkIlxgG6ELqubtbW0OCJi7YenTLv4Tx57we3v3kS9b3/s7/3oB+oMz+IfvvBRI/PfBCd5r2MAavpo4tEwiqekIet8dijAWzd3EcfeTK2P/2IUSl49BXb668vjofoRf7xcmsXn/bxILdvZY15nH13mHa73TYiyKIH+kQNdzA44CkDmEBxHmLFEYmPoGQQMfOhW+uywmeI0vHNyuqY6vL07ogI9PiNoANbIlVeFtXd4fDp559/9aMfPX/x8t1ySpDY4frq048//fLLL1+9urm5uXn16tVuV+fl/ttvv72/v727f/fu3evbu7fZw0NE07QXEbMg8G63Ay61VqdOF7mObaRCRHVhnlLXlCiIQwhAAN50mduZxe6Pt3fv3s7zDB09vea1N8t0Wj5Xo6DUSnH33A5DIx++qa/I5zR+q4MufarTNnyNiERuhwdRJKuiqoINeD8QeJ0669JL7MOWaCGeCDX3nSv6JCQi84T4PsC5+CBK6F8Uad5zMO7uaztWjLa0MtV1JNmiuTYJqypsFRuQDHHzQT1erT+otP0f7FjLXOtWHpuUzVNr0POMdAl68dCqPDrW0PfRbzAW/vb3HS09jABdNpF4aAsuaT7uTv8AcYy9KV9HPuF8O8l39fnnn7969erZs2e73e7777//2c9+9ttf/+oXv/hFChcdT3eZ5RdJEmgh4Yig4NYMhvX6rbWIbC90VU93IFJza1jj925M683GBtHTt0X07WZdqtuNYL19JxQiSAd1Z+U2mf+4XIg/3J0oWBDRGyM7kmVp6oauPgqM+Zkl2VFN6jCK8/mMCDO7vb2NUY3JcrdpsIAEVEYBx52ZSyb4qGS5GMAAr/qynM/nJc1md0gIWRxjcK2VwohIdSGSeZHT3e3Nzc1yPp3v3yGMKYCwnUqZRgpY3H3cnKouRUhVozUzI+Dm+bOXz68++uRDLuXclmYKmB5n+Ky2tDYzF3V409Va9slGPYm2qJpZyXfB7GFEwVmt1Hyk1kyXualb7412105tx6fTiWshIIje3p/il7883t/eHK4PzDovOqtpEHGQKENqMUUZNkqHcxjp+aFzDXb4qNniCtoLRCDmEeFEIrzO3u50pnYXMwpzkdgVrrsKkrLbPXs+XT27kTL9+Muv56bLueUTSHGs8OXV1eHlzfOf/NmPf/rTv/+jr754dn21qwWCw24COSDgcARJ0lkAzfaH68rCFN4W06UKREikWvMgljolbBkEZqwQiK1FWn/OiIDQ5Qx8kKHmaSSXSumyLCIilIoPvNptx8Xm55PkQBDUnd3hD1QDVgPSIXEbZGLTjriEFHdfHAHjCCIJd4dvb6G1Bg935b7hEzPMojWNTi2ECM6NmyWSsCMQQ19gTeZGb7mywGiqym7h1UleHWOA15JADmP4/J7PZ92b0trkf1U1AtocyPBTM52XOCwa+HP3IASEdTjw2dmRPdsrGq6Hb2MfY+bwQKq6DXBuNiKlneHoW4z28n8kRC2pdRPZykUq1XmeE/QCpmbGhCBQkZK+DqlSj7Ix9rOx049tIDPcx/vjwLdYNsTLZX4EE5deXeMOBiQTSe3aYAqHeyijwBzkvlGpiuF1ZjtiouABJCtdAYeH+pCRMGcCcfFl1uiuCQcExCzu7mEekUKE2d0bGbFvJmWk4kanR5PwUFe4AZVIpDCEQRZuqhmDUimFAs2tCgGwnjoLHtit3N2po/QxTM8IwFJjWNZlK7POESEU2Ai0ZgVhvMksUyRHFwnDIxJoDSIQSZkEaOqSzGO5bNEDRwRxZlAiEmZsmXJzHXmHrN5MzJ0XPgZyDMOnYWaC5J4XncQ7RdJ7s/9ifndu747zubUW3G2CJ4913oYBLCLLPEekUbb0LihWubkRdCEinJ2B6ACITTC2LtfI8vLGIbg8wKwkBAVlO8LlhBgV+2FxkmT1Qfi3XuqBA5cKwxvRlHWFr9enzaf+jmHh74qBf2dovTXHwxm8ZPg4eGvyABAjIhU3iZC8gvboUo8H8L6ve+9f/4DjBypUfUCR/8No/h/D3rxB5iAyWCDifbWs949/M05eORgoSikknKRWfXzuRJRdu5kVYWFzTzRHKZOPnWWEYeQ2ZlqQeZgHEacAmi2LiJj5+TzDwCzh5J0wfy2cZ7XfNwNOG0tZ9HcEc5VSs5X45urZl1//6KNPPg2mACeh9M3NzY9+9KMvvvjiww8/vLo6RJhqfPfb3/783/+7719/e3v77s2bN621wkIsMkmtOwa1xSgi8cYJOe7qoWbn5fJMsoFimkrGBrmzZOsyQokRYa2dzvMdURyPd6fzvarWfl8REcwTJ17RzB3wSGxTqUl6ZO4IQzi59QQZDdwUAPcswyOIB26WmR9QCl9WugiTsxVqLRvI3zsrNsHzxQh0aPTDPFoea9bDk+YvskLfw+9cwWkgaIQrPWIhBpBKMJS0C4MFVB8SouTP+deE2iJ9rIS6ZZ47sKIJHiUWf+9aeG/t9486RiIyq+q5MC8mcft4tz+Pe3zQPZaZkzH/MVZEbE6JrWnl0ao6RuKeu60Hcq9KZviuFnIZwyDSWaEAI3kxygBr/Mmj9ffq6urFixevXr364rPPiaMIEfy7b7792c9+9s0333z//fcJ1k320QjTLrNppUxEfWEE9AK2VI1kmwkOEvO1cRfrt8c6zgCkay1eLPkl6RahZlmBAK2JwIjIhsicZp37q1KZujN3OBzWqDXjfHrY1G0RQmLe4BamruZqME/vuwixEzFq4cN+2u32yfinupgHlaLk59Mpwpi5nefVgGt4BrEi4rC1drfdl91gZpRkS+2S9b6/vdPBDZYBMHcVVkBIQpiJOMkLqLUG02U+nY+FiKZSmYp7TJOpRWs1PaIwJOdCuJ+WRURIkLLb6hrAy5cviejN67dvb+9eXE86H9tyZLGIEJCamesaakZEUvVm/Dkvs5mxtiYFnbaMRukisjXGwiPIMeRMLWlkwFyIAeZaJIqcT/ev75vZm/bcShCZwyM72HPfDs7OsyTBcbNQ9eiVMwlXcw1FJSEiLkUCFHLY7UXkvCzqTZjiwq66cSQswK62nI9KNsP3MlXnxRtV3j9/ftBGy8x62BWZ9vur6+vDbrdjOC/taqrX19fX+9pOp7fz6dXLF7UKRGDq1kiIhDmSh7tzIzLK8e3tb3/zm/u7WwelwKm7I4SpBnu4g7SIEHiNgvLhr2ojAFpriZP3QTZZC2PwvFOn6qcIyvA4WJjZKSwyLAgLlVoYJcDh3YwQUQYjKT5Bo0ePA4u2iICnRGvCECMi0YYkgEd49PkMQilTwGRUsPNIRw1g9ExZJM8yIdRdWEgo7ye1XuBKw254FvQjiCJbLjHCuNQxyaPWambhsSyLqovU7FxYE2rUpQoi53beRwZ7idhFr6s5M4NJ1SiZZKUA4TCMAJU528vDzcwaSeIODB2PE6qd+bkrH4QSGQlEEOwiAnMyjRSBIACoMkizoxNTAwSKWoqAgikQYZ3YmRhY8chuupy5iOynUmuRwVzFzJIpIosIMImZNU+xpt4hE65hHqQslYkEHgCDmIO5JAW8hQezULbSIxmSBw+7ZK3GvNFGniSGfxBMUktP3KZ0FXXpzzW7lsvSwjmc0HOTmb/M/B+Gz7rd83zth4rLkWVhH3Muhhxz1mpy2oZcoia6NPqO0L1vuxbBTiiUL+/SkDkmNJs2olSQFqYC8k4qtixExEzAhQa9LX7Y76IHzysUmTWUJQsFaKYZfmb69nSaMzzMuU48XFhrXCsiQNSZbLOznAuLhLm6kzoz3N3C22Jcesc8NnYwIZoYCTbuzO8EksX87jy/O55uT+fZGYWn3Q7AcT4vyyIgRrKaUzIJbXdxDAqciMtl8y301NqoNuf5qwc8XspFKpOIWMT1YUA13vVjg37xpfKJPQjk6GlR9YkP9/SC29O2f3pypd9zbEfynjE8vGBEAA989xjJy/dedl2Dw9Ub9/Kkpr1dbrR2txKtX/Ho5N99U+ul1tGgpxPe8/zzBN7sxOONqcgOm+h1/RS9L18Qm8r2e8eZF11dSanJXQXztp6TT3LACzPk6DVJIvEEZIDS7YjOHEi5hRChlKkUZPN/5sxWdHoPYCwiwkzXR/3e0abHlzMziUybmyMOz59/8tmnH3700bTbzebTtEdr11dXX3zxxaeffvrhhx+8ePEc5Ofz0bx9//rbb7/99s2bN9kncjgckvM58SDeQsOyaVVkUDMM5IVteqsS0cPMu12ttQYMlGW95tHg7tGaHrWdmi2uCzNPpQouQGLqglUEZgoER2UpLMxsA8/i5GtoJ1KJKGkt+1y6FB4ppUyYEraXadOtnR/vV8QDMaTQxzzcRFYPnnwA8Lgo0Kwra836i1y6ldYT1tWRR07innDK3DwL0Nu5y6CJSkseo+S7Xiqf2LoKmB7P50fHgzX0mATrP/yxtQwYNvnxYh9DxQ8Yt3WBj5/f/13rCbyBLj/6az/8QQS+jmcM9fE3rhaAKItto0l1KNnu9/v9fr/b7ZrO7969S5fjt7/59pe//OXt7e3d3V0WXbMZD0i4ae71YCZwpsMuFeZwWndSZraVosK2ydnL8+lzaYxzPdb7Yo/s0GeQ4UGSl3CxpaiUiOWsae/3+/QAeVCmrheM6A2KZgP2rJaE0gyEeSGOWkVkV7rYb2YqzcybJuSstRnZ1LAkS5O7ezJgZV6pqRHrOs/Xrz6flogonFmh3irv7ufz2cxKHZBRoj7leJvg4FqqCDVdjsdjKWVXapn2rTWWJV+LaUREV4fqnaIrQQbQ2ws7z+3zmxd1N337q9++fvtuP71qzVSbBFjgqs0t+2l5FJAykUMeqqpuicBSsghYcL4dbb0myUHBxFSSqiwr65n6IBFYqHvLBplS3drt7OrvdlIr8SSlCjmRhyWmpFIxRHgnFQ10djg109Cs6kdwKYVKthbKoVxp+N3x/jifLNw7RVlEJHcbBUjhFMHkNSQsmrd9TNWrsB/25TARy24S2vNkoba8owNdX10d6v74/Vtfltenu0kwX19dX19/8uFL7Pc4Ht0WS54tBzNRhBCkFCwz7adf/OKX/+Zf/1ttdvX8+W5XT6fFnbF2/MlY7NaTx/Gw+7ebgQ2cYWtnttYyBsVD/sbdifptRw+7W9cKo75GshYVMaQOh5GJ4GVuxBC64DJyVhRh9x7kh2uqbWfMwcKPGPuJCB2KbGYaYaUyAJgiPApHsJl6oFYhEafcTKNT9ljXScYAHzFzShavCPC+c6EnSoDBSLIBS+a8NTczy+b29FjUlnUnIqIiEyhMW1om6qVaqC0pv7orexFSeGvLeAUpu9VH6K6AbAwvY3AlciJzN2Y/78tWfqx0IzztLCirxUzhHgxPXG4nDYnM06OTZiEiirbeckYQZqmViR2ARcaZbXUyItzNDocdCwhCDnAY8lLOCIJTRJhH9EHAs5UtQltkvpaoGdycmDsEAkiIHSI4g71UoMoiQAZzIkhRaCZwwtbNncC9WkhujEAY3CJcTVMgLjuLRzDA0dPxSbI1FsBmjyRIhFtQymCaKXluIP02MfaSDAhT1s2QaSdnqW6NEYyBu4InPiFra0FBQql4GSCQ1N2U74a2iaslqqw+BFGRvryyRp8CHKqm6qDqHGCW4m6Ww0D3lhZtbpYkHLnrWOLySdQMBLdQd0JUZnAIBJWZOQE8oRYctlEfHWjjFH8Kp/DCd22+O7dzMzU0gMGJo+CAm4I5SVGTomwl9nDvbcBbGMnY6CXCnYIIFJRSC7mK19b5YdRKsqFdTN76GC+Z7NxMHjhDG3MTw0Ht9YAHJmBUUC82Nfe34fM98LrGP7aRTPyQN/cDx3sdRDyMsZ/8Ceh16cf1q9VxWn/jSWkYl7C2z1PahBb95L5qngZm6UI+vOk/PQZ+718ffenlh47eYXDP+uXUXl1wjNDCKaUpH9SO1qutU2h9lcw87XbPnj2TsrL4AoA1d3fyxOdWwJe2LOezN6tcht3owhZMaBwAabOVOzwreEQE012pU6nClalwb3HJWT2qYb0tJ3K7FO41Ls62RiIQE0G4Lst5f3394x//Z3//L3766tWHVKSGM/Fu2n/11Vd/78//4qMPP3j5/MXzZ1d3d++azq9ff//92+9fv3v9q9/8punCDASzlFKqoKQDt68TwGYhJCCQsMLcG4CplNN4JldX+3WluLsUBrkIBTg0ms5LO57n+/P5fm6LmYkQMblquMLBwqpLECh5pRAREAJxaHNHhIU2X87z+XzWpdnojBvpKooIDzULZukTGES5veUqtkYeTjB3DESoiIQ5noRY8TBA2k45Gawh6594EAWtxzr5I5KtdFWLyJ4lA0YDpo/Jgi7wnBonETQq2L21JP9HJBHUKzm92znWQGiEUg98u8sd9UTeDxmNXF/v/eMfd2yX7TqER4bo0TdujWfSW64Xww/YwPU6tEmNPbI5WQr01dhvB/ZkqPQwOGRO/Qhn7nHpek7qtTKXiLh98/bd29fn8xIR3377/dvXr1VVl8XGnY+4VGgTUHU709GA7u5Z8nWAktrNDAQLZMd49JzmxjxSVqtAzMkHF+QkJdM9mRqDuWfTckJFNuVcztSdSBRILSJSp2nwSDEz11LWjZWyGN5UQDovSddkqqbN0qMAQkNqLbWWqe73+8O0S8prnRdvqq0t80xDTM65RUTT1pL4KUBD22nb9+4dTt9jN3dnakQ08JDFXVtr60Pu2iTMQCdxcBihwztd7Xw83d7eish0uJqWZZ7nACce8+rqmSGampnVJLsXmFvqKp1PJ66l1mLhGv7xR5+++uijX/zsZ6/f3r+8eQb3ZqHhZJFwOXMzN4pcwwSLdGgdTFLLRqLm2OZ+v6PJkrlIF1B1s0jpygS4dVJXs7nrmkrZk6se1Z2hAWMyYgofXTbsIFq75CSbM0jD5+VERFKkTEVqJeFQC7Npd7W/qsQsxePOF23qhiwcAwBnSBgR5N7Iz4RTWyZrTrZ3A1m9ZSb/4ObDIrtaYp7bu9vb892b27ffFsIhuIIB3FWJ+XpaIVypuaqtWXPKYiCTFA1yTET7f/bP/8f/4f/zPzLtD/vnZuHw7B/S1iiIShGuGakKcbp4WTjZJsU0PEtyNrqatUUMnZ9E5lCwkzOzh49SbC8l5QmqFkEWPpWUbuWEF4Ip0amEhBUFsn0aQoWB1bvgy5qCe3hyZYMpG6QK2AFrl5x7m5dwJSIBqiR9latq06VKbRaOMAshKkEIZi6wJLrP92URjnxcriLZ2ByRxWdPWh8Vkd1uL1NNs90WM7OpZhYti8mKLCkTmbsO1XQNRKCAQGKqRTqyFzCAm4VakwHiiAgj49GkJkLqFnAphCDVXk6OTIG5h1MEWVAY3J2GAKKFc6nDuGFZmmMkIJwCHQ3fVHMHDiaQEPOKh/YgISmFWCSYiMkQJdGnY61d/GZhYWYSVlW1NXNpJARzRYro9OKkwwNGFIUBoPNEh+WdFe6Uy+sX8eDAJDgR+UiWOJgryCOdHGRpSLJISBGsqkmPTJSRcEgtmYzJXCMiiAamEYmHSAQ0wvN5PdhNt/trooDWbS8izBJU2P3j3LMMxMySuQZ0IH4W9Nfyb2yODMlksLeHwylULauXtYq5emAbxXHZmxNWAkzScbGuBkbELNWjIxRVtdYpItxsoK9ztzUWOAwk4XFuimCRyqWeT/eO7GGABTicmYQ5H5BHb2gBQHSxKest5T+MuHHMSzs1XTxICoEsyNVVF4LXTsEX7h5dNPhyHWxKmjxYNLBJ9sSlQzJFCx7kvGkg87f9gduhbn/Y+k/rJN9OgBEEXaSA/QHi+nLedvyP/vRex+3RZ/8uxxoBYC3MdizCe4awBlRrfjEbAkBrqE/rNd0vla6Hesvvd0bj0T/zgYyB/dAR8TQGfv9fs41srbZRd3R44zdHbs8j+KdHF1/n0mV4m99HXNZp/p6Zd7vd/rAzsweLMQkOBgOwO1qzZVYzr1MC2gTpk1q4YwAxuhNMCKZM+BaO3b7IfDqv/ZwRkVqU+WLXZ94BLw+DMXcnZmQjBBOX8urVqz/7yY8/++JzJyzapO5c7eXLl1999dUXn39+tdvtD1MpDPJ5Pn/33Tdv3nx/e/v27bs3AA6HXSDquLKZCZi5RFBES0dzWZbT6TS3JR3W9ZmcTqfnz5/v9/uApXMOjmQaUnPV5Xw+Hk+3p9OppYChM4BoqqoEqSItQTodD5IzOVTVgizc1eZ5nk/neZ5pcEysk2SL++ixMYANbwIuiCG4e/R6YG8K8YeMg48m7Woc4iHkIYaZWsPgy3rZTLlM0KyF19W+9erBJmYbS/JShMRIKLTWdof9OoHX39NDrr40j3hqiP7g4/F6/JOukD+soyW6mNwH6zFFgTe2dzzY/Pj7r7+u1vWDa+UzLqnthx/x2H48HiJiaGhvrO/x6fUxQqyVESd7ZQG8efNmns/n83I+n9+9e3c+n9H9Jd6+GqbCzCyIzVxN13Mt6ccI/bM0BDDCaCPRt52B2wPj1UcYcc1Z1893BK+gqqDhQohILYVFaOJpv0tc9/XVdbbSAVj9QFysUD6uyy6cVgLmRCSlTLWWKQVci7tj8eam89k9tUCVsh+e+jrtbqz3HSvneVZi3d285bebJWtUba1lGDBWbpg1d88mxn5fVVgkeX3cPSjBouAujGjLsjQP02jmTZ2KBcx5Ll3IY4A4mbO7s9QSBFdUkVJ6/fnw7Pnnn335z/FP3729vb17cZgowKqNpYN/MPZEIjBRVprcnQidzpMozJtbMwcn5I8yKBEauFOEe1AgQTGOwPCWS8Z4zFwKyuRNW0ADqtYihCipiQtnIE1dPYXzyYdbo8JCIIaFUVKk9y5JIyiTSIn9xMSFFQA6JDjTxIA7eXiELbp4LFNlR9hB1Yog2KISF9kxTXPT0/HYzN6++Y7dPnl2cyiTiHzT5u+Y4e3HX325Y0dbtJ2X03luZzMFea217CZnCcE3f/ur/+6v/+nf/M0vy/UVy3R3fyxVIE4eAXWnYkxSEL16jizYxGNrYGbntki4u4twRMgm0d+bzYlWu2pJV7byAlCSancmM3jUWgsPDrmIHiLns3y4WlerEujgBTNL/GMiQVR1Wc5TqQCbuW5MmbszJEIdzmCAiEkKE0+FC7NEIILdUysoKFyIUAqFhLmqj4xZhhuZFez9z7SxiqtnRJSdkrGWVdf1HmNIvuqKp8PQk3Q8Ov+QDs9YCyQiwlMEdUqCYBFioZW10Q0R2bohqhFOrlmI4r5j4IHuA0ZtPGLLktvZEwC4Q1IIPQBc+FMCMQ2uTQt38jLVUkoRKcNWXiTgk0UtQRjc9c37ZHKLCHVvzYKIuAgLh4MCFE5ZpKXkGnAGZW+3CLkD5iR5e87MiVawrnGZc2awI5N7ZI9pavOAGM0apYogCAQuTIRkJxaR1ubsVs8nUadqXVInYxhYdCwbwB0+HxGjO2i7Qbp3OeZVngERDGHi1Few5FGs0hsJKPfU1ATyHXfFplhzPyAAPaXmIcLqUA+z7PtwM6OHHkCte3LzkTRIFz/giW5wzuy+iAi4EHEwrzW9TXEudz526iG8qQMhzBZR9wcu5Gph2swWWyKsslSZ+md7TYVlw1Hed+oR6gRgDiVqpnMzdWEpDp7nOTkNchvS6FLhTild1a9WBBGIpKvZ1A1S3DNnYyqbEUCpsZwt8du4iWjsO5CNc7Auj3VNbmPXdGvXzX78Nx3o7gABMH0MOc5j6zDlb3hE9ngScm8/9gfGwKv/vb3I5ZePTqXHlnfMhPGb8Wx7YeFhBYxIMNANa82BRv1hHUY8vDX/O7vOv/eIgRikTc0HgBP5ZgJwICIst6BNDgWb6PfRUPNmtmHVmj0ppWTctf5pkhIcWRd1e9BiFE7CyfQXmWR0h/YCUqm1SC2Ai8i02+92VZi52ZvT2/v7k/tK9y+5HeASM0hqkkUEBjt0RJI/9Q2MmV++evXF1z/65OPP9vv9cT4DEJGXrz74yU/+/Edff319fT2JRMTd3d35fH735vvX332Tfb8d9zhJYQkN00g+f4KYWXY7J99ya22em4VtScUxrGWdhCgF5MzDzMN9mefz6Xw/z6fWZrMW0XN0Y8GBsie6L0bbWL6Ak7mruzVtrXOPDYIookGDYSu1r3Qzm9U5rPQHRLlxD0lZYGz+Yxb9UF00hgnqxbPYHI/8hu0P68GQiKQ8eLDW18/SALF3pFMXdeCMuUpJ+jQliBvCiSD5s1vy1ntWZC4D3qitrE5YX+yXFf2DS/Xp6vhjj0c26n1n9IVGvViCwU39O0P3BIdTLxCsGUpijtX12XqNMZQgVwcX1Osy2Q7U+/0C4ZHV+SEUN+bV5W0SUSoD5cHMqnp3t7z+7jdMcX88Ho/H29v7eT4RiZkxFXg3oxFh1piZjaWyRSfLGRPRk8IjX5QnMY88NlAA8maIe9BPRFQ6o6tFALHyPXJPlHcvikcm18kBlNQrq1VKob3srnaJ6L7eHwC0ZTGztKBre4KpZkdbuIdrsvnBnDwri5ycq9mz11qb29L3a13cPSHQneyjO2JZ2SYicrokHUIjRngcPHxrc/emqt097IRVNjrk+9bA0XkBPCzCPYyHJgrSbpQpLsHGstRFamXyZdHb23tJLht4BJqbEABamomUWnYJC3fzeWks9bMvvqy73fHU7u9O5VklZnOQsLtS6SjNTFCmf+IEDQ83AMnLoqrNFKV0cbsuDEnJ3yNS8+5j3ejTWiIiVTkI3oF0lDnsJE9SRGqhC8EDGgYQLJiZEimj4a77aXIAYbaoguoklYU54Mt5Ng9atIW7CAVxEEaOhnPDU3VYWJDssmuaTkvuD60QV5mW07lBze7mubXWTvPcWisIub9/cXV9/fzmfLoXkfAvTRfM8/nuvtmibTZtHgslQTKZXD9/c7z/f/yTf/bf/9N/4by7uv6AipAuXS7IBeTkYk2Ner9SPmFG717emqOeBkWnZGutcZ3CzDLkUychKv2BZ3ULwVy66Y4MFSjSfvZnQkFEHDAx6rzKPQFLRDIa2ocFo0BY3yM9E2qLe5hRITOT3V6buhmzbK2osOiyNG/uVKuk1k6twtTJa3OAqqauBFSWrHwasiU5qwWFaBn2pMcR6W4Uoly5rTVTmqbparcTEYIniDcdgTSINNKOnfYJUNXZrBAnQi3dGEm+8IIYEr4cPMAcLgAE7p68eu7eE1vUEwpEgWR0DiJiJ4KAqYPI3T3ZpLv0VEqgd0d0cGr0P+TchwclSXEEHCQsBIe6mUGJsv23LYtHZFgjIBtSx0KxuJq2AO+mmgm5efZaii4IciKSWpjZws0QERzsGctk5o+9MKfDngYuc6hJdZ1TgQoL14hI/gUROunRXd0i1a4CwWB3necmCaxlFkmDn6CCmHq/a4hI4gZ5u0cmdjkoEEwS5uvG2ScR9cmdg8w1IxHkuSoQ4ZyyXWXK1VVKSQCLuyYBTBDc1MC+cQikq4cJE/VeXxBRdDVguBQOt4DxwyZ40xCpROqRaYxg6ThitcVcI8l4mBGZbkCWc2m0KQAAODg03CMgIlwsGgdMI0U+kzELAMjdPMLBorb0SSnJ6yrNDBextb5A+/+EDQgU85jbsmCadnsK1uZV2B3NFaaOKKUEgVpg4wimVdLB37s+N+YEVPTf9JR/Z7aL2JR518x0nkYiTkZ26f9bDcqWHH8Tv/Z/bAvL628iYq1mPD0eO75PdGXf/8E/IAb+vf7o5YQgGuWsNT5c/7uNh/PIrNKgGiV0UAYhgoRBxAgnp4Bh7Wjq9/L07rau8w89pd9zI/hhmtq8i0ufJ3LvyenNkVi3PJVTAd7dmQsQCAYFQQi0xqvb6AVAPHzOnXUzokrxtlxU7MYhImZqXXiJC1dEZPOYZo9aICI06SmDpErdH3a7XbYF7na7/VSrlPvTm+Pd6XQ6kQeXC2Xuo+nKPMAIg/tGwxO6nj27pZQPP/zw088+u37+jIqIl6nIfr//+3/xFz/9y796+eoFuRPH+Xh/f7xt5/Ovf/3L3/721+9u35xOp6S7yMelsbgZEU+lEpEtpt4QobogKY44CpVHAfDLly9ZcD6fS2ERZqG2NDVd2vF4vD3PR7WGQXHhHh5eqEiljLG1OXNJri3vQrlEEsl3ZWrelDwYVLpEq8Ayk51EGEFETJeyOY9C1foQ+/N0J48OSA4KD+7aaA8Dv1jt0nbxxhBY4kezfT22074vtz6MpH3OqL/DBIKCKBw0kPk0gpaclkYkpTAwYThkvXlp7FAgz8T0dhnmtoWR7d0EwBmR/cc9NmZzfSCPnxJ1U8JIVDo9KNRwr5a9z+7Rg/r2WvvFho1se7q7y6aNcz3W1zdGexn8+mzzlHVvIqJSuJTKzBG2LOdlOS/n4zyfCP7u9j5le9f9Qk2JOo35elsiMmaEX8rOfQwZoEt4+jicNzDAz5cR5l2vTaoQJg+FS3fKGwB3EhGpRQoJF+JgEg8lEuIoUqd93U0HnpgLHfbT1dV+t9tNdXKzlg11UsY4lZxUF7PmrtrasizLomYW2hsFU6Qnb4fXidp5pzRjYACh1tqsqgEvI6qICIANkVeLoHBKxikI1lpZ+sTSMxQZ2OTqtoBEhELFs2neDMFJDTgq/K0tzFyozrosrZ3mM1ikTGWaLIjUHLHnfS07Io6IrEQTUWstu+faYqFGRAU8TbuPP/r06vCsne9PS9srT8VVnYXNopCHd5FFRGQuI6kLsqO7y4un60J0EcKwNAHZZNFtF/UWmF7P3O+nRZupiwgLWyo9E2t0OTdQIc6yeWhEEUKnFfTubRJAuD8fd6XWwp27NEJDCUTR7HxeVNUCUqQUIXb23cQgydgF2QYcJkaECpagOKs1bWUJZqll/+33r3dll7Rei/rd/bvj6VSJq9n5dH99OuW+88UXn33zzW/2t2+FSN0TQASmCLXm4TbtX/7NL3/zX/7X/7d/+a/+p/2rz0TENEopS2thbkBhIUh0x6BGmGeIyrTmfbYLH+YkpZQsGLp7KGKtKEYEo7MJuLuH+kij9RdGwUUyFcYbHeDKJQu6Y12Pq0l11yzbMBFxaASZi5SIABOIMoohCElVj+N5drX97sIB5EHnZW7LEqETFzaoaZLF7nacEO40hZ7a30Bzqx6ZQkozk9k9VYzsGPdrR0SEjqxca2oWUig7e7PruUN+x0UGTIbcNTPLy7Kcz2fh+vzquZovpupO8qD80BHNm8qiudEFj+2eeR9mD4pQ9MrkyBYmMzY5DW2qhEjkW/ZxRGSoKCBwuDUVKaVWMFmWF2EUfHc8Xl9fXz87TIRlWWad22JqpwI3IOAOBJOMVEYQQgASMcDVdGnuziD3KNNeKlSbrT0bqqWUcIeDQVwm7gR2gLB6ioCXYQJyU+z+AlzTJQfc3A+1nhdVhLAwsWdLB0mYO9lumgAsc9u6BekQgYsnxN5jac3M6iQsRZdmDnABcTMTsHnvKOtVAY5SiphEhIWDKYgdlDN+nk/TNIlM8IBFJh1DrcNnUsqCA9zB2A4qMlTg3S2ciDi81AogXEko4B62qyIF59ZKybTLxedeAeFZNiYHzDuPBuAOAlWZwhkWIC61nI63wiiFIBLIRQoiDnECBbF6RGBRL9RqrdrmcJp2ZarFjGa3IBDHVGprTSNk2qljmWdm3k87EKmqCE+7XdIbGrOLFDnMp7v7Wc0DJWafZ4vFmkHCPcw5wCmuHZiqtGbe9SkQhAgkRp0YEQ6OLP9GOAlNtepiEYGwrBUlGVj0xHCC7SloiujdOCKiEanekuYmPZTu9dCDvtOeiO09sEScTe0XbpIQSxzS6o9cPjsKWjmZU9msf1H3zAIAb/pvN9+6+cdDd63X/S7/HEHsCNgfu3eU9jqRt3Y5n0tmKXLUlOB2M4CDOkAhItB1ZMYddW4ABJAUiZy93tnkSjTyRSC3dEdjg8MkuuwciOg1nHEjmyFfPOCU/3kaA1MgnMBcuXLv70o/ecnzS8f6J1kdBUUpnDY6300AAQJLT2mJZKtVL/YCqlr3Ozdtbpm/3x2mqTBR7KZyHCNpbrVWLjyhmJEuLayFNbYQIW8LsQhRy8uWIlIURHWKqfJhv9vtyOP5s+tdqbdv3jLk9s0tOV3trxNmDHmI8OkBXUZocFdhNg+pUy0CJi6Twg/Xz3/y9/7iL/7yp1zL6XzWwPObmx/96Ec//vpHH7565a5FZJo42vnOll/+7b//5je/vrt92+bl+rBXrcuyCHiZG4OkViLSPoYwmGkLslRqyVDZV+G0/nr8/v4kQs+fPwPhfD42XUBqrXnXC+2eRO7EqVPiISCAksieuEip4qHLciYOZgTDlpZQKNcoVLgygNCgpP0wL1SUXFWNrdaKzFZ7pks6wye6kjkiiCEIDg9xD0drCl/hp3FZj/RgYaYvOkJKF+bUeEwHonDHnG4i6PWLQyiZMJN2gRN1RFKIEq3gyAq2QERCLSg1E0K9lcJcKJqd5+PV82chsfhCoBZttrmUwpY4QEQEPOCRNGVtXhIr/kPB3sNbw0Mr9KdXgIdZ3YbBsVnrsRlDIBydKfrReGhEyZsxcYwMQhb8iTgS35xe6KOUxAgxVj4bxAotE8leswG5ZhARSzbhl1G0MdchaRGFEdZy7rou97eavanLsizLMs9NNeGB2dfDBg8CUyTYIdMfEVnnB0FyykQqc5GEk2V7FkkgYOkcSwJJZEj1UkCopDkmZqFCxMQoTBSgiKwbpWhNhKk6CqqIs5sZiZQqpRYqxBMfDrvdoUzTVItQ+DKfEgLGCF6RXWFmYd7MW9N5Pi+2aNNmZggmLsRsQcRkEe18tnCRWkoJj9bOSX+da8ctNKAp+hUxAByD7bKX3KkN+WIYTPNdF3dH8Gq6qaOfoqnuCrGgFJEqmQlhARFNdV8KO6F5g8Dgiy1F5NxOB7vaYX8637v71fPnV4dnQtBldvdas4vKWhgzm9n87sxElQVlN5Wa/P3PXtxc3dx8e7rViNl02rEo63mptVJzi2BIApuzRzpLvqFJONqXhoiAncwIXlhIGFFy+16aUTbVwbPqnq4NSGsBEWl4aHr/JcAeEaUIsZTiERoAQkjUjJzygZi5aSvEU5EIauFuXoiFYWGcpSCOiC6eEKRNW1AlBnOoL8zCld2BQKmTSEqgLMTCgVmN1Vlm83cvNHT5vlCpkyzqd6ejuqFOb+Yj7mx/vLt98/bli5t3t2+++c2vXr78QIh3+yuZylnPIuVsuL198/LTr377Vv/3/6d/8tf/4l/5JNNeSg31Fo7KB3WNCHAV4XACw8JLqYYI87AgsniICrHFIEIdAi0sUAuOYC4EWHiYcpiZ7upkiS8gSkg80lsEwsLhcGj0Eq7qgoLlNO/rVAqbWxGepKSiFTPnHJAJZt50EYITSs3ymJZp5+6LWqnTonZe1JsSXzqMZgNLlQNRaPKFE6IQT1IO07Qs7XQ6AZxUlN1IuqqqteahgiiV3Uk13TzuvY6IXvUy87D9tIsWIvz8el+kaltUtcgEgChEsvqgQQ5UsCyLjtUN4jLtDgCWsKwpKnQ5zRGRwBlKMWEbZDoEcAjJ3JZZVUAAMxCawBJGSuoQ6rQjovnclrnBos33VYoF3CBSiGkxC12maTI1dYtwdhCyOJ8+bYze1yQfFQdRsEs0CmammjrlBI6ykgoI9fjXEZmQQQSQMpdwcFt3mJ4fiLV/KcWBkpSGR+dMOJobRQ/lVxBj/+vYdLNkvPp/BiNAEkdNkGQRd+vd5yPdmNepKXe8AQADnMAb8+bNKUU0wOQeCREx5VGE84seTAdcrVsXAO3Gt+YmBwdFjLZDInCwU0iXWFo3eacki1ZtHQbA0Ahmz70qH6G7egQ5iXDAE928LoBSSjMfubHcyZmCWXgx5TJxiEfWkgGQLrqrE7EzPKxZD71KEPpb8LNQEapcwQEP3e125ovOZ+PuLZRSpmkKU0dYpMxIoSLkrBZM6aZniT2MwIimfvbWzB0MGWB2CSrUzGAO6xgSd80IN0AR2Hr8+SrXQl/+UkTMzKwN+FMvkoz2gAckJZc3GMEc2axofNH7IeY1sNx6ZI+cpwHTusyN/BZjXh3qNQaOUbujJ0DlfsL7vug/6rF6vURkD3nFLgXqrD7FZVfO/7qnLFme44jx301Zcpve27q8D97COLlHFX9Axfu9R6ydJZcLBq2v52HtuJdTiEfVLtdpb6BaL7itGtGou4qIlJJP5urqSkS2gmQYWJVlWdKhSZR1YckeAHVrTcMpiJ0kIljqYb8vdddMIeXZ85siUgkCurm5+dU3r+/e3VpTY9mOavsMt1t4CsgJSyI/uQgJw/zrP/vRT3/6048//vi7t2/qfvfRzc0XX3355ZdffvbZZ9eH/fF0D3g7t9evv//2t998//33x+NxnufW2ooX6CkQ5kAHwKQgpqup6XI+uwVzEQGJTNM07XfbEab4UTJREYPYWlvO5/PpdL+0xT2NsCWlM0g0NzEws1jYVPdpqNVUVUGeZAHh4Yrkm13zAR6hqgQk1FmkiBTzBJd0aPOjydNrp1km8W50owuM03ZWrx/Bw5m8TpVHUWUe8b6lHSPtNRBGnbWbglpCsimBTpdXIEJZfibiZCuJUMBbqsp3xcFY72hXNnrRY0fe/BirRercf09H+Z/s8M1/twc/+c3mSK2SC0XzGve+37Sua2c9ed0CLr/EWiW5dCFv/4teWRVgdlezpGJSs0gvMNmDt190Ge+agsyKUP/Gyztyy1pKFo4gIFubesiFa+oG5UW2RW/05kDkjMpNDZkpSGhy5NywCDZL9ZRgZhGapulw2F1d7aVQkS4cFG7m2pq21qhOZtZ0nuc59X6XZW7zonNfpO6epm/FhHvGtb1RoveMUGGPSOpYNR2ocm7p3pi6O2Ubi7tajOaFy3667sVP36yH9geSYpuZ9XUOhFRxdw1UyHhoQSvFAEcypybrrdpSPImvPYLX5Kq5nuZFRHZSIuJ8Pi+Ycbgqcvjg1YfPrl98w6zurenpFGSNycMMRBzs4TBvoQgKikTPO1Ghzk/GnEgly6+L0T1H1OUVc6Qe4a45B6QW1ZYYRBCLCKEYyDRKqabhgDqICheCIeBqFgEhLiLBRrILCiOhrFMTKdKyhoBB7h3FAPSUN7k3gFWz3c0BcYNSZP+dwJo2dXNU5grEscWip+NZyW2apl0rFn5qc7No6mhRU6u5lsPV/mq3Y8J8vn92/XxeTuzT9Ozq7fFu8Xb98qO//e2b/8tf//V/+9/907/95vajT17dvHpxbouZ1amqugi59TExJ+8b5bxKOHkZxnmdM5vpRO6NjTsnJYqI8EDTXCYbeYr5+QhJSt2vlcas+5SUrfZEXqh74ZzMoREYmOvIZErAmZmFahEzU8v0vRBzwvKFq5SplEmmS355cd+V6vAipVCIQYInYSFuy5LBPNb4xVNNl5orB4qAwe6usQCTqolIDEarQpSSZ00T9aDEA/2qFoEuO7qpdYcjXJstMTpviMBSRYSynVM7lV2dKoAwX5Ylnwlt3gIyjpFKIwUGp94gQWaGgDvBYIzClSfswpVimqbJHcuss2pKPJYyLabdISxEwRwwdXWvzOpOrZEwiInZwjVMaglCM+VgBAtX4yCiYpZePievU768cFdtADDamgHvbf1l9H/3Ko0TERN7pGOxloK4g4oA7s3m3SUNSqyybUG/GP3GizWWKoWJiKkAUPXWBt4m68GdCJkoGaFhI4q+yBSRZLWnZa05PDy6A0QilLVBI3Nn5yCy6OPJp5GLyt1LzWhW+9KiXlQkIo4MKjKXgOxFSwpD2hDMdrD32I59dMVEcJ8VxKmPdLH1MejskmMsEG6MwmtxMtg0EEZU3L21834nBLewXJmllGRyIyLJyH1c3t0DlnwJfYISgcgimhmN+qW7F6FadhgNjnRBi4GKRMTiemrULMAkIkHsRAKuIjALSKyXS6LsyHrsAzzqNrJaQ8pEXKuqcOl4iFQL3RzrRwbbUAZHwcwpbKiqK1Jr/Si2oSnRGN6GBWoDMszBJFD1qeMWPxD9XhygJx/5D36sz2H4hf3b19uJAefup2VPaXcCN3ihMDjRZkWGj/a5h0HCeqn1zDVCeDSYiIc18z/p2E6P9b/bkfSFxu//ovUGIzIE6px2GCwseX13r9O03++lVk0I2ebufCUpTbJ6ZqnF1QCUMhGSUDPNe93t92W/3x+u70/HadrXWq8Ohx2XXZUd8S/+9f98PB7T1GSWBw9f3/okR8ZQkIHfmmospQV2h+svvvz66ub53fl0vZs+//zzr7/++qMPPnz+/DmBzEx1Od/f/frXv/72m9/e3t7SYPfp9TZKZ6Iz7YWbqXpCHD0ErM2ICMJBwlxKmZgK0JN0hbC7vqJCZq3pEmGqy/l8ur1/d56PgxeQsmVaRIi5tRaG9L0TUKDmnirJ5k7m7m0xWHGP5i0QzEKCcHiEhTKXZNTpOVaLZVnckRnEnNTuyXOZZJLodH3m+e68++w/SIP3aIKtr+bpadsTHrw+dBgIEW0SNJdrEFHZ9kAOkqEMKvLWRKT5A0FgbOiaLhP7oTHc/on+4HX3h5/5n+qgh9Hv9vdPz0ybuz0/6D0mK498dOn+rtmxfKFJTpp1vDw5jYBqNwWrXeoXB/ghO8Nqndw9LQ+PmXDxoPqUy8+tCoGXoJdHMWp90bYKJvWPR8qTEiGoUce1uXf5E6pMh6leHfbPr6/211cBiwzVWstIfpm1taaymFlbzpnpc/ekbLbWo7VcU2sZo8+6CAosrWWH1zRNrIiIThydD2r7QBwR5NlbZJc9/enr2D7GfIZm5qEBVJfN07u4AdEb1iiC3KHqCAMturR5PosIc9nt+tJQ1VJKxiuGUgqDyCwRWJR9tmaq5osUP+xevHhxdXU1YiFqrRW4FFHvImsgSaXkyNaOzkzPjlVorQuKIBhJVR4EMmSCoC21VhIBqFO81FJrZS5Lax7JBFaYJ3cwhweBOSOXKkWkOkF1aUYRyQKc0Gs4ITWg0ZtfPVuxBcQi3hqGV0mRlXbqfXMsDg6wkwdLJGEDV4c5kniGhbE4ZtPj6SSEadH07VtrGl4hsiOqOxzKvu6v9gcp5L64RuAwz+18fxd3RUHPbl6+fnP/3/zf/1//u//yv/3V93fPnu2vrq5WDggfXY0YmrTEBShp+B55CNsj16mPDFpEr89LT02uOU2c5nNEcC80bYoxgTBPsvh1chKRcDoG2dQqqr64llLIIiJESAi6KCi6uB15qmIRkQiION0PJZ2miUEPpEzcm6nbQkVE0JoWOFMxsyBlKekVhHcoJXOUWlSDA1KJQWbN4T72a0SEuboFiLk7fq01BpVSFlV3l9ToVmXmoBTXdSLK/n8HCdd8F95bXIEIZiEy7ks4vWs3V3NER2QPBsceJZQ1MiLm0fyfKr0lSTsw2tbcPZ+eqrVeBCVNsZusV0UkwiwigmlD8sU9QnUQCwVl2iLvLrsJknGqlDIRRfbO+aAdujiyG383wWw+6M5yPq18JL16tpqw5CfgmqaZB8Vl9opgZGplw7pMREkBn2nv0Roh7ro6XvmRLPFFhC2ahOA9vWgWYZlXY2FVTRAUws1gAQRtK0LpuiOxEMPpzGmP4bpHf9DOAw0fXWQvIgsPQZE008IIBiy96ny43A8Ice49+VGiC4S7sjAzLj3wWJYFqXgBjlTRQBi1tThJSQXlbEh+cmsWhQf7X1YTiFS1621KjdEtxgHiaK0RhzBDOtV9LkghChImJgi4FJFAT/BkR1Mz1QiJAoaqNecW8ECAwULEuQUJUbBnu0LaDkQYIpdSHj6OzRzrqXFej+4sPgh7+ooajtHWXbj0Jq1IhBHrXpzFJ2XJ9cpENN5+j5Eubmh67k+25/WHH7LCv/t46mH/ycd6nfUJPPolHqEethWS8VcAoPWXD2pr61OKQClrH87YQzZX+w9y0PveEQ2a7vVtjju6LO11PGmXLr8ZZbP1yrmzZgZ0f9VVMZs+JNfZcAuByNy7ucjkCRFz5fBFG4inaT9NO3AppdzcvLq5udlNu2eHq1c3L2+ur/R8NjNvbbq+pgF8yOGtP2xdwByzRyQghouU3R5cdtMktUz7HYtcX1+//PCDTz755NXNy/1+HxHN2rIsp9P9m++/ef369fF4jIhSylT3nc2SKS1VXy8BxMXJztxQrTsRkbpLIzyUQocdprRg8GitzebtdLo7z8d5nq0L9HGEpw5qJgk7wXzid8mXNq+Th7m4ujVvsxbJgH/7loHRKdoH2CnuSJihFwnHyEDXUhtDxvTo9agwjJt7PEUjeg/w08W4rqP1W9apvp2fF4dptAA4XSqbMYg6xsyMzdFnV4/OARGZpqm3B45T85cAQtuj8GmzBP7o4481Vv9Jjt9hXt5714/eS7q5sTFfGDs7PDJ1slqS9YuYVx6g/qXdewlaG7O3f12N/3qF/G+KqMHHDjJu6Ok4s6sdfsFG8SD12U422hzbhxARycySv0zfMXPBSXlVSqEwJprNltOcPcy+EaR1d9Nlpf81UzNPucdRELvcXSIHo1NMWRrSzBe4u1nLABhIzuOxE20ypPlDGxnA9V7yWCPtR6YeiN7fBUf3mXwFEayPZV0REWHe5vnEzMLV/SpxGOYtDBxORIUwTVciwmy1Yp7nRRtKLyVD2IN2V4erZ9fhpOpMu3B1wB2BDLA8KDwoUDycHC0c5IyueRbojKZFauYuEk+XFj7CgGTOy16qDuZs6u5sURwASXhdPLJjxzSJcDkijKLUidzMKcDNHepqlv3wArISnTgLRIN2j5IoCUJETJKrYhQ+ufN3E5vDgokpkr4QxPVAIsHcwiy4EpHUbMbIpk8Y3MnA6qTH482BSpn2u2pcjst8bCdUOr/59nReFscS5ePPvr5v9F/91//P/8N/9d/8L794e/XByxcvXpj7u/u73X5PRebjsU77fLnuvYsgf5aprvOEcVl6eXSkIUe67iLi4/dmxil7UAozd6edcg6PQCBYqalaKcLMEejC0SP9tHIHaFtMAzsWIlWN4IiwtnDnR0NWYFZP1cyYuNa6LAsz5z66Djvd41WB3iylSDnRlyBEWPKL9/VIIC7ca47pDEVSRkVweNaGGDA3tGYZKKlp8rf3VL5IRJzPZ6mFKDR7IggRMHOpk4hk3N7tZM4VMVBktWmeZ+9CbJSEyRh8dZ5qVRHhvmhLuiJJASAEM5um0inMLLyXHJZmgohIlGnUUlwCbqpaCgOkYezAqJ46UXhwEeFq4S2ZqiFSy8aAPGA/LbtpDwoPjM7nSGG8ml1MGaD3LwARz7MRSKSrYihp3oCqiZRslIoIHyZd25w4IOb8byeKMGsZykaEeReEZSdmRnAiDoAUNwZTqXzZ45PQPD+YliXxEGoaESIM6cnWnsMIuMMyaVZKAGre64VJPG3OzEHcOb8TEhMRqegWTuERyKRHKvhJb5emLGumMYkg4dKWcwDTNEkpZrYs51LKtNtnDSIieav6LuXuQUwkj0pYERajSifCRMyJ+6SUstFSJg64hlNIZaksRZgiPAgODg+LMFUT5nTGyNDh3R4GE4IifHF3BVMpE4toUxFiql2sMnEw7gTPZWkRUCciAzvFWePcbFZrHkTItsUwRySap887jCyDJydNbm+BbGPD2OO593gFEEI8lRrdNb+k3zaPaICWR/V+65FstkP3rVjID9Rz1k+leX10HfRmvgQxvs/xinhUL/3Dj6du96Ph/a4/ve+E6Jm5Bx7S9ruGc6Drn9YqLiLQc6b9P3jgyQc6nWBnO89MNvX27Ec30j3NHxrn7zie+oiPb3wMaPscVgfo0SN95DDCo1uhDeXMNE3X19dmZt4Bk3k4BvMzkxObqbacxQJCEWnmCDocrks9yG6/P1zX3UFquX724uOPPhKhl8+uP//okw9f3vzq5z8/Ho94mDG8DO99FS0myuXjhFoLFeFpurl58ff+wV/urq9U7frFi6+++vrjjz/+8MMPr3Z7N11mXZbz3d27u7s7G+oOGZpm5ySXbFD0VT4FERRMTt66jZqmPacuPJcgJIhn89jtfD6CzKwtNqvOx/O92kIchUoAvUsNhZnMjMJEhIVUs4QOa83dSwLx1bx5aLjDycEkXCxT0N7hJ8KSqWIiRlwkH0UkzD3DEgv3CO3Q9/BBw5Ch5VMIx5hCD36OwOZ1PF1E8TBOpkeRc1KqJ/UMJQibkTQRzJTkjJZBbyRMc3WMMn5Ixay6qRh3n3Rkai5T+n238Hvtzzrg333af9rjaUSEYfDHX99vGda6+OU32ZdDFLmnRiBATEgM1pMjX711zOqDjGFEEplh/YJHdvupGe9dcNFFE7bLfN16uq/EYJbFtVeTJRlRk840Jz5lNAkATEGd5nu9WvKpJpC+7ve11sNhd3XY7Xe1CLXlfD4ZCbfWTqfT+Xx27QzJ6danoVDVBCrnzyIVF0dFiCipv7KWAkA15biZUmXE2lAX6sKE2IghD4Wqi9XJatL62PHEdK+vvptKuVShLzPEnZxFpBALiIMKSaGMeQhdEt6TbuB8PgNcp11vSSNhKkxFSiV2AMus5uaOIiLEpUyllMP11YeffFym2poB7M5wRBgLmWlEQEiILJKDN3cQikAgsZWUTNXDqPcsGBGl6Mm0r0TkYT2mIm7aOQEDhSDMspid5nY+L2ouUveHwzTt87sCDIYHmcui5s2YPYEEIiwZf4EoIdkggmfbPQNCIVwxvP0xMxkBD7JAkqkAcAJciEhKDSIzV4/ZXDWEK4cTByOEAHFP+fhSb539rj0Pet781+/e8aE896bqLSDTtez2394e//m/+hf/x//rP/mf/v3bm49uUKamDumC1yldw0OENldV5gsiwFEemYtHpdSIDkPM33ChiKTTgjuVwiHdz2ZmFnYEFN4Bf31RpBxvbOAGahEIVycKdcADxCQMkJMnpZ9vGh8WNWZOgaW+HMiJiSuXwtZ0uz/1zJeTO5YwtWCmgASiFLEgNQV8ksIi4RoRizYmhMdpmQUkJSgQzShKMOVUF5Esc5qZCKU1cY9mVkoJFlVt5kEqkuS7DKJwpEaQwYguNY9IBLh6zjJQp4sPStKsGNtpwImyuE6iaRbMF9Uq4aF5zrI0LoVEIrWEONnb4IhSC6gsiy7azGHmlObRPXtbMyxiJuZKAWdONmyQZEziifPgC7eojelURGqEBRKS0WunzNwpsKPDJtZJNpBalyQ9e1/JIiJcg+BJVx0cAZG6olx6YiMryaN0lEU+IvJENnAxC3dT1SThZCq19lr5IwJPZgaRdz6eixBf+js5/7zDZJIzeWs0g4XW6RiEGOW+bpgS3gCKARXuZj0yCdT7BtcNyI3cVbJrd7TKpHUGYN56qzOtuUlbXZ8YydE8aq0BBDqzYmIWYAgYCROMQcwQkLuKEBUB3EMz70KUqg/MRTiloRxEvbRuqpmyTSEIdXM3oUsBOplnGZKCHKHmjlp6h4VwlWos1UFBuJ/nU/PZXC2EAPLQCDUEhSUMMbxvUh4R4Rzw1Y1bN+/tk19fsYi4XwLg3Dgfb36XN57V4Aeu6noOb0rBF88jYgCcL5DsrAWtfeZ9tT/p1Xzq62B89vHv/4Djd/uj73W4f+jkp3+NTXGDB5InNoWLR1+xiRd526G3PgpsyykP61l/5H3/nmM7K1b3aB3telNEXelrfZV5rCdgEzCsE4aIcAGzxG63m6ZpUVt9u/XYXscQQd0MgoWZT/dHYnn+/KZOV829lOn5zcvdfn84HJ49e3a1P7x6/uzVq1cfffjBL/7mb15/+916X9uXsn0F681GXDSXIgCSFn5d649+8uP/4h/9o93VwU/nVzc3n3/++atXrw7TRIS22PF4d39/e3+8XZY5b22e27LoeHpMJGaqqgxK2HN3cAeAEKBaq40VFxGq6ps5NU1FbUm+5tbO5/mYHJKJ6ElAeMIRU88wPEryi3a2xRLmZtbUzCz7KgESsCN4Qw+xPivhjhWSwm4jE5/sZ2s1L2t0GfGqu3vP8Gxm5fYhv3fCrVMk34IPpMn2CsB7jEz+k0eVD5mZ3WydeLh4U6yG5EEAvObXH1XAfEi5yPZmNvn1R/dBRPGk0P2/uYNGQLvOhPz9ammevsRLIm9zkYv12MyF9T1uz++bRdcy7IZia3+eXvzRD9v5kO8xSwi42E+sNufpOHmjQjy+d0NmsbGBw4BgHV4apVJZRG5ubkoptUqS2C2ncxK3Njd1W5YlWxJyXg066/GoTWNEsbVu4AkjX7BiU9My9ASoezav+uYYm2yvytKo3T165gDifTHwo3NoZM4zWpBevEQ6zXxRoCFmVtVmtosgomkqh8MBiKbzeT4yc91NRCFTFa611nVI7k7CZZpKKUQsLNNuNx2usPAXn391dfXsfLo1h2QFC2AuzcNDBRyJwBMCgigAQXQ1cmIiz4fQ6SS3rxIjJarqKZBeaYIAhmk6nBfTxWZd5vNymps2BGG/L9OOuRNWCSAeBpRFmzY3A/UvwgQCFXdNkSYXEUJGaAwUwAwcWScYUw6UPGThZAhQdwNYSoBBBExBEuxBtJie7CSQiKDAVHgqQhRh5ggq+/t5+fXdu+v7o++nevN8maYb88PhsNtf3Wm8fv2b/+Gf///++v/9L1+/O9arWvfXShHZUhe0mDoeJBxLKXSBnXVGZX+o/LK1BsycqJyMICQpn4dViEEq5L2uSxFd4nHwXfWSb8bhGJwgCYpcrU+fMaWGqYhQAMjeHwBM1IPIZr5e2QfLjMZj7vfWmgc300Ay4LGDuvQsCZAP10r3H1jdyAxCnlxYwA7CFOpWqQAI733wgJuqu5Zy6M3MQ/O1qboZiXgnds0MbjIeUThZ2BqlZ9upDxEWZoiQ7HbZJOKbxgeirse7ojVFJHMx3b1hCnDyKgUBzuum5oR9Tb1uVes0GcMgoCufDvUwB1FE5WruZhocpRQWNrN5XkopxFibUdcNpTR1jM7fHPDW4mCTocx/CrGwEFGynHTDHRAIQYhStxdBieTwUqqrIUDBUlYkzGPXVvqdEXFWq6lWGfqBuYsEM0kXvAYiRBDCIaSLUm/OJWSl0YOGQkZ3j5gZnH8l6my33sFQ5AEaT8TXKvlgDmdOysV+qbxul7JMOl3mLBKb2lJZpObd9GTJkCBLLnXigBtGsF06bPgB8w1R9jRydD/KU3caAIFKKRwCQEODu9jjkpz71IWXgSAYE/q8s57tXDda92xWIQYTVSri4FTy9Z7i9DQcGAADgMyTKaEEi5rNTZem6gwSYjIEGcIQlrDqTrWabztZpNbddLvhYYMneexq5KtlwtqNOxbPumOh93I89g9yM+6z62luPnNHvVIToEEQnVvv2IZX33fr4qxfcbkcPa529vP/SC906+j80LH969Pz17GtJv7R9dfxb/86kPY9UiQiXPicH7HUjMtGdKVNp37rQ2VmjOfhg/0jj/UVY5jRLOttb/xyv+vIHr6azIuhpwk3wXNEOnAYCdcqJYb83cNqZ6hbLbvI5jl3B2dfq1uczmezqEW6nK9Uqbtaphcvbq6urq4O1x9+8Oqjlzevnj97dnX1y1/+8vvvv4ek/O+D2bX6u9g0hhARgrmKlOpwriWYnr14/lf/+T/84OOPgvDs+YvPPv301atX1/vJWsxtPp3u7+7enc/nZVnmeZ7n+XQ6JUVNKVMpKfBLZpHrloJCw7Q7akyFKjFzkLgpYOABwhRbdwcp5EFNtbV5aWfVJb3S5CR29ywOZCaYqZB4RFi0JLsCOSX55py0W8Fg5kIQY3caXbsEAEkeYX22JUQqpcLJ3a05nMwCKWVq0UNfR+IOAVBCJUdYvVqPp6ugz9UnoY4/hPqvb2drcB58hDcePF92ir6XMgEQithsxmsSJK82TdOapV5HGwmGX9eFd6/OOxvRZbFERFLG/1Cl9A9ZgP+rHhvLuT0YtPJ1Px32ozwfgEdAqm7LVpOYe9HWRDxMpa3PObqiMBI8RJRgNLoQdo5vd1y2gzXFRsNVpJ5ZDnQ3tNf+ur9Oo9tkvd+Njss6x9ZouTv6w7Z3C/HIEmpEwNvi4YvS6e7ew5KZ5rzMi1oGWhceL8MmANhE2tHPXCvhgOa3qyqN1HA6EoMkJSI5hCzXaUJXcpjiBgow92fY1Vw68ZJHhI3o4rJ2xvMcT4Mj3AZdX5ZUMgD2XquAqhEKTyUc53YGhZNP0+TuWeEGfBV1S98gCM2cA0TkQaVMUlFFGFRZuEg6A5998fmLm5tv7t9GgKRQELOXUgwRISMAW9ApTpyIgim7CtHVai65D2Z2GCgSk9w8ImBBARGeWHaRrFMxzcv5/vZ8nltrSbkFKUQoDnFiJnYwAurhIDPf7GkUBAtQwJzcCR4F0PwZEOGk9smOPCFhqelxBTiBmSkvaR7MhVmSDRZggvB0df3i5nD9LKR8++23d8f7+/v7o5pEMtYCjFl2dXoxl0mp/Vonftu+j++nb97sprLb7d7enf7m3/3tP/uX/+bdHT7+9NPDtTSiUmqp1RBNGwkzFe4k8UEAcyIxEbmDPzDL/tTfio09J6LeCNPXcri7KQ2M0AUQVxL0TJxdgesCJOpzrKkFKFVpLJcz8dwahRGRwzw61TmAWgUe7mShGMsfPdzQZXEaiNc8Fm07SchxMHORK0HfSOZFIRIgJzKPZMgnhgNZDO108AgghCtBghAIU/VQIk9hxdwrRgdr8dT3kUrMZs3dmSTIzT2CmNkT0pWWx7M/wtx1mgoARBa0mKiLXKcUaddwlE6YZ2aOvHciIhvt+m6tlIJku3Q37YnsNBJL0/N8bhb7/RWLOKnq0qHgve8XgWAmQLpoDDEonJiCLOm7mZAAj2GO84WWTgPDscIXw1dz07mIkoCuv5ulN7gmjryUwjUTgTPcNZSI8lVxtltv2msZlAlvdy/Ja5oBTM5AIALsfeqUUsJJVVWNiMxMREoRH+qIfbcYQiy9tBXB0Xud0+0x62pNiBKEtujKYRjbSMZTiacPdbvr9AB4LCHewBjWbQug7HspUnZTLYUTQUQcFFBddrWUIqUyEUFDfRsngAHdXLC1llRhY/fMaQpm1uR8C84NjIgIZK4jiMs08CAxDuhiu7rflbo+NyaqtYowVwLcECBUZiZ2d4K0cLIoXVc89TaJKJLS0Zidxc1O5+XutBgzSCSqc/JbRiZ6+3btWYd3Q3i4OvZyIWRab//y+tyTRX0AqAazVX9WPQWATQ0tRoknXR2z/n6BLibcc04PIDQXR2f7322oRsMx2nw7Hpz88Hh6hf6pPzX2+0Od1Li0Lz783sc++vaO1n8OU7g+w+5mAJ1JaK0BPrpl3tLMbB/ak2h83YH+hCew/VIebQ7rTa2FESSb55My3fZMPOz94AEaYeZaSn7c3QuXXCnrmZrcj9KrcM0URgBgrurzvOwP11dXz1gqSb25vnl2c3O4ekYkV1fPXrx48dFHH3326sPnVzv2+Pf/7men29s0mNi85QeGaHVe+i3INE08TRS+2+9d6PnLm5/8+Z/X3SQin3/2xccff3y9n4Q7OD9rO8TBzK21u7u74/HYWsuiljtUlaJbPxapUjQu4Leus1FKB0DWUjOJTlFrBXqfkmo7ne5P5/tzOwWs1rroHNHFaM0i6TaICIhaK3o9SYGUAlIzazonUIi5iAjTxKGAR6iPSSVDfTHlB7tRhSTcUcPbrJz2ZdSs3AJrqJ7TOUtXmZXOlOLDeYKt37T+JlfKw1TIo9m4XWIPZixd5nB+y6gMx2UeZq1MXT23trI2qkVEqVO+tfU6pZRaK4/keMSl2Baxcg1uvvfhHPvfxvHEVmwM1IP01g/d15ra31zz8mq6PY/oJBxE2AScYwiX8DKePMOnJ+dwUvphPT+HftmhMhQcPAXr7Yx77Jdy922CY/gelxDxkQFnZt+Ux/s2ahCR77//PvvLzueztiX/2kwJrOHL0qu+zJy1u2HPRw8op3ahL+1ca+VOV3PZFmlk8Zg5EX/MPE0FHBkA+2g7Grfs7k7jxY3NBaXy+uLiQUL2cZY5bzjz3/3BZpWIOtYiokfWIrLf7wGYt1JKrw/BMzlbWXb7msg+mLoIFEYhIrVWJgJFFg4KC2dj5HKqpbx69cHz58+/EQEJIrwrFZGIkEcwZY+JhzEnnp2IxKy5OXqjXALdk0Y4JePJww1ETiRFinAQU3FIa7Y0vX379ng8z7MRgYmLAEzMhaQi2A0ECpAj3LirTZGIoJQSiV0PUosIMgfAsACSu4dLBIpQUISJSDa8jFZNaqpmIKEUTrQAmM/zWcoEYhDv6/7DT778yV/85cuPPn57f/zlb379i1/9+u7ujjyYUUuptZrTxx9+hND5+Jb0+Nv57c9+9u392++W+bQsM4DXb5YgfPT154EJQYVpWZbmVkohuXC7iJAPBsokkc25UQYyEcAaa6zLs298xDwYYbYGxAedcp9mwSlJvZqXEIkApPcJZ4ia7kFTBTDVmt8CIMzn+TwVnqaCDX4E7tM0eRgAgnhojioNfrYg8MMCGIBklSM4C1cp5tq0ZdZ42u1S/UbDOZgIE3MQaTQgWEqYmlkwV6alqURl+GIKVxGaSi01wwc1s1JKrbssaJe6czM3cguBgfs8EZHwzBJeepjNGvU20ogk+Gru7gzhCxqXucOhYWYOqFsQGNlcCnVTCw3f7a9SvtTM1LItmUX4eDoTCUmlcNNQU7c2XF4g9akA5kLCwuU0z7VWSeosd4uE4e9IOE0ABiVEslKXRMggSARSL2CbXGgyiYi01rQtCaOVWogKdSZ3BnpOBT1s88TKZ/bC1JiC4Rg6oozekZNeSIz2knyOWXINc6cOoi6l7HZlWZbD4dB9uxGaEgUTqdlUytzsdDqBuKtWpmxQjwGCKFmaeuVZA+TRI7uOPFkm6Y8iN4bscM6ZraoiVGvFoIOutaYrxlxEeLANS5FpMLUMv4dJiEWIEWYmjAij3G8CImJhqgZQSnVfVuMw6ACIUVjgZmYIavOy7gEiElyS81SKlJLNAzqejxC5mZ1jASAopZTkoREpHgpETzRYEHnveXF3g4PScqSjtqgC4F0tUhfH0uy42Ny0mZyzaRaxaNPF8gZGLpzM1V2toyCotZYgTOCy5hNPTp1ynHPqJwgn2eRoywhiue3RpmUFyC67yLJ9h14PxYigrG/SYKRIeRRmwDtCfMW4PgzqVlO4Hhk3xWAB6VmSXDVpXkd1ND/JDzGQ2+18+8+nR2z86d9x2g9dbWV4XksKPvAqADIv//DbsnXJPQKaiguUEc3Tb1mfz6MdZZ2361V/97ABJGPwe/8CEPW2yYvPL9R7q/Kc1XcEOjBvHRIQzKBwIZBQlg7GSyR3W6yVUiJMhK73h8yMqmprhiSgH49mdUAJIlzVrZmFk5mx1GnaF5lqna6fvXj+4mZ3eFan/c3Ny88+++z59dX1/vDq5uXE8cv/5ee//vWvAUz7XSllnmcQKEkT3HugNVxnGvkFApt7KVKl1v1uf331D/7hX33yyScffPDBs+fPXzx/Pu2qMAI4nu7ffv/duZ3vj7erBYuI3XTIZNnxOHclJCsiZTeJq4mIM3OdDK21tqvTNE3zsrhjf3WotaZOZj6l9d2cTifzligjDzRbOh2LeUTUWoVjMWcWJo3MG5gxBTOra2vNm3ERBEdQtmGZmcNTyh0jb5XLvJkipRIM2dUGT8JnFyIYUYSpmY7oFxgxKMcovWymFq8zbl2OP4TUCEvMSc+vETMRd4xT/6GjefpC4PzBKckQzLhCuFKPBHJFu4gwiuuqGTs86YELyO3Gh+ZfDNzpDyyiBLJcjECuRPzxxd74owNm/v2nPDiekgi+p/a73gUPJBc2Znlrdh59hJ7c9facbZk9f78sS/5pE47SNu9JowzQn//TYPjJzNkm2san8nJwdx4pudwsRCRTUxaWd5Vjyy53Ikpd0lg5LDeZxywkAFgRZ+6eNai+V7ouy9LaYhZE4MIE7v5PBJOEhYamI7H6foXJ19T8hgOfSNZvx4OH0L+utcbDi+ls70CSVKdflM3MEpybyzpOos4pk+4aD/LC/l54/S4Lc0hk/FBKSXE4InJvqtr1RkbnQqYAKpfW2rt3754/v9nt6t39Oyry7Pql1ImZqVQWVOFp2pWpqi7LYgGiKu6629VXL29aa6b6wccfvvroY/6bf2NmLDRRKSUosCuii6na1J1G1JIo2TYVAsgCRBzwaZosIryF92WeOs4EF66qMIU63H2Z59NpPp2XZemYp0g2RKJCIlwz1rVAeFC4dAEfCqfMLJgmRjG3T4wUHBORX36GexAJMYPFg80p487FlgjyYDKKJF9wLIs2dWJfFi376sS//PU30/MPv/jzn7784ief/vk/+PP74+3dPYBdnWxp7+7vgvj6+jpM3373Ddr5fP/m2//vP/v599+325Mc6tV+d/3Bc+aiwYCbBUVJZSxNeRoisLF0yHE61/lyOamkNmz5hR7bor6DdH1fRHjWjHEpxVNy93ApjohwgIkJxE29tbafdqp6d3dfd1NOUQ+XUjKbMC9KRAxpiy2h4VYYy7KUUiJgy1JKAcvt/b0QcZeKLiQX74uLkFHoA9vu7qVIKWWZT7fzCfurQhygKuVw9ex4PuVXiKCISGEzDXeGJ7A1sXLEHCQgNFNE0v9Qc2tnFe3Tj1g0YOcld9tlaa5Wp7osdne8Z+ZpmpxClxlR0p9lZhqLK2O6po1JWCRay7rn0poleR7Dw03Tx+PWGhdZ5oWA/X4/1Rrz7KGVBcLk0ea5mRaZAtGaVimLuQhxEQTmZXGCgIKDwtV1klKng7vP56auh8NOdtOiFvMMIWYGSfq6XKbk8mvmIOPM8AFlk2NODuo1GMiE+qVdMP+0qAl7LfzITDMSxiwWkapxdTfVSfZFWoNZ9M1/HPvdzpJooWtmBADyqFVQ2N3VO5xcpEREytNl31QfjJnmaaO9tPeHCDMVUJI/WwSiMxEKgqwybRKNYyUUgFeuYxbalozyOQCNiCLMva/GdU9KH6WUwoirqyLIwWTXBBgBYm/au/ZHmQ3oGV+MquZ61FqRXdbkWdNooamJhBFQXaIjWERoJ3IU5q4RxUxC4hKUPezZI+LO0tOxTk4cXaN6IzcfThYB1ezWXrvOnIAgBxSkECMxlPPSWoDWmhVfBIf6O4UQBZAa5cGRLDF9Oq1h3qOXMuYklSJm1ktL6XWOAv6avcvn0cdItIJJVndn+64vruomDb9NzD8azKNRrR4ADx4jPHSBIh60cz+6o9/xzz/xoHU6Xf71O75lxf2uv8+PmGr35n4g5F6v/PQZbk/wcPwxxx/roK/O5eOvHr98NPK1cvL0jnqDTiCZGJ/xczOz2SLi0XrEyIWllEFrCoCpiNRad8Sle5dSgxksUsqzmxdXh2fPnj07HPbTVCT8m29+88tf/G1WIWJDc4pBjoCHL6XfL3FqAWdW9erq6sc//vFPfvKTFy9fpXD3JATgdGrH27vT6bRYFyqd5zkzhqqKYKLIEmJEeFxc/Pv7+9Zawn/SIyfu7JQRQRQiVCoR1Ycvyj3rsMLNsOgcnpY3IghBqQMsIKlJxpLskWZmrbXWFm8GMHnPhUVEciskGDphzzFAJBFZmU68pDDYw83M1EJXfRr1rPT8RzsemLX3mQgiWsPOi3NfpJRCHutu0i+SVroInNY7zbLAINro7aDrpcyM6GKmfmhi/12OP3Y9/t2/7geH33e39/w5xj74hx9Pn9LWDD7dfR596nc85EeW8PGlehrrwTW3H7m8xFFaWc1C9AxmF2xbr7818sEOoLWLk8a4QNuyihu9kYjC4dxrINRj7e4KbwNg3oC6sWks2v6w1QpZuTmYhQkblpOcnMPbXj+Obm2IyJ6yQD952tsHsjRflkXOZZqaipD4ym2T8VJEmuiWF0+4TWvtPu7evHnzTD3A+/3er54sqJaEAAEAAElEQVSJi7bFzHa7wzTdHHZVap3DlWZvbVlQpZdD1ZY3r19P0/T555/+q8Ohebx4dlWsmc4RvbRbWLq0pARLaa0xS5IiS9nvpmLWmqk2hzAHGYhCEAxiJpjyeVmO98symypMY25qmhnSwcwHIVDKo6wmYjwcdjIDJQomRs2AuYuQZqSHkf2PICACHMHZnUhERBVAOAc5oRCDfFA/GANBQvv9nko1C1U73p/b3Sw//9vn//p//vov/vJuabOHXL0glPt5XlqYPN8/P5xU51N7fWY70XKsMz6Q689Rn03sxBHQQIedypiQGNnAnBSXmcMX3yNf+zo9foc9pJFy2i6gbZYq1x0PmYPLUyVp6jEKmBiVGRpFuAwEeuxDlNRNo00dHQnLHCFhbhGgKIWEa+f6jjDViMCo5eRRa816WG7ZpU5wI4ClZq8SCScNnplllaLNZyk0CQeRe8CViIRMlwCSCC1JgwBKso+uHUgQ6m1rrOzuhgXmKGWiIbNcypQCvP115AQBEaG1Ni+zcKm1llLckNlbIs+Kp6fTL+KOIDRVIkLEPM8EDYITzEKPJyoVTBIVYIuWoWUQWbg7OwLCRDlyCBcKOBgOszAiB85NmdgIHiHg7K9wB8hn6xJxHs5B4HBCRBTiuNQaN1Yo/a3smO1aTJSBrYcrUEQk3M2MAyiS4V+yBLM5M0thAsxauMGDCNwbb8MGrpWZpy3bByFciBxSmltDI6IUrF6aD/eMDTbWcBa4wJfEsGQDckTYSlO73pV3TdSE6FAiUrKGT6n456k2sQbDAgGFuiUSO3MenVyFglJq0iFFhBhuTNKshbaE70dX+u2NxERA7yZGBxVkg0YQbWioRLrZcoSNEkP6fkIlnAZMJbnjiCiSDh6ReUEHuUQy/RGSLzIQgKH335gbUXBvM06ig2yUZ3B0yvJIRJQTkdSCILCo46x2anZsPpsRMYaSBxGJkAc8wkaOYOyFFGFOSIAERgp8tVZrxmG796ehMoR0ZrkBcclurvFak9vOAPds7OyX2l5tGFNew9Vhmy7yM++xnl2+IpXWCf0VYmtAY63aPfUd4zGib/OXP6io+3c5Nnd9OXiQbiOiV18TmkWZIh1up3e4D7byXGNU23e0/aK82t/92D6crWf56KvX95Vb43r+A7c1Yp2c+cJiU9zIjTY9hsPhwMwWXmTiepH0FOIgzp1A3ZtZ5n2nqdYi037HJPL/J+/PmmXJsvQw7FtrbfcYznCHvJlZXV3dVd1dqO4GMRIEREBoDCRASiL/gIwvFPV3NDzI+KBXmkATKBIwiUaAACgjBCMGAWQDqO7qQldXD5WVlfMdzxDhvtegh7XdwyPOvTczqzMLbeK2tJvnxInw2L597zV+61vcrVabzWa76jdnZ2f37j98+PDR/fv379+7WAmnefThBx88/eQxJt6OpUU4oxvuPi/PPAo12uqvfvWr/8Yv/+Gvfe1rjR4fADBUvb55sd/fRsR+vzez/X5/c3Oz3w/DMI77PTJxBRHumNy8VU9wCkxySR/bPPUNFzlbbyOi77n0AgQLpjofANjVXbcqjK7WUdXdMjE2A9UIzZqJiOkQAR6U+Cbz8CAkX2iD58AQjkgeRJ4Yj90NTgwRiCRdAhAWrqaj2WhhrYbZLRDz4T52j17Sw/szj4VpThPuhu/gZk9HUvunB0uc3u8Si0GUHREo0VKx4LKihU+SmS4Ac2u95ffOqTl8Bnny+xkv3Zk/9qVwJyiZ/8PyLn7c23nJOty9Ei386knCL96eN3sIiU7TzHke9tLRd2U/bbqzVsQLmEG70PxxgqeQQqsdYdhpANVMiSisIYqj8YbypHAboY67F0buFjObyvI5SwgiLOvEvXVG5XkaQgW5SzlaSWE+C1MAE4fKUSAg5mrqyDZAmN2tiCQryZNPmKTxMo9iWf2XcMRjnsKYbbbUyGnyLUsJuDVUzW2f//ChhQGm29eu69oJ6rtS+oWTLBHhVUP6JoTDXMdhRxiIKJMCRHAK02F4op88e/b05ur63uX5G2+8cXZ2ZuNeSkcECQU0S/6ywQllfzinzfpMVffDbd+v+753rVWrKjTSCcnELIXBDRqxu93v9+PtzTiM8EUpayvcyIr0aVvNq517wJOIY4qg0VSMlstOEfAQ6cIj6MD+iCQiJs4FDicPEJHlkWHhwFxMZ6lDLfZ1X4oCXDoiNtO4urr68MP3sd6OLOjXTvurq93zZ1eF5Pz8/GG/efLkxYunz188eX57faO3ty+exX7c3ju/R3ZLvqMY2ZWRnKOcvW2Jg6eYbyTpTxL2tG0gALJdLy9Kn2YW28OhtJSyWIhfbnqPso1rOOq8npMizuPPEQFiaYIa5m1HV2+MkhyHx0FE+VeNiBDPkj9qG5mzSQ08C27NzEOJyMJFpCNJyE+btntEdvSUrhMHzFy8lQqCC3GQiLlaHaHh7uN+t1512YvVqppVZu5E3MFgZOdpOMKYkUTgEy9K9sUiD4KBSJLrq+s6J1itRFS6ruoAgMMjWOGBSJYfJ6gHwrquY+mSGpPSVA5CVg4TOWjqeA/pewGpqgcxcVjs62juBRQkTnC3UU0tPHy9XmcM3JvjRAA8nIg92xe1kAAFeDTrGJaEmKAAE3LPg2e8CYGQbZgoEBOAPiJZhoFDffbysFF7n62JE+qdCoGZO5a+750w6e8AwKVrAPf9SB6diPQloxpuQYhQA0EOfGztcFfXDG8VlI4l2wmrqk9C0Bch9uwO2zLiHkhwTTiFVK3NfYuMC0JrNbOyygU9OGB5nylCAXL3mPyxTMsIFzCZ1bYaAiJOLHSREhGZDGFQNRuGoepIbolGdjeAOB0MjuaupvtE2capRQNOgsThM7EJEUl+MxExFacs/FF3ZWbmjplL6YFGwZ6pZnMDlLkIgblIprsiIrKag0mQPrYv2mW7mYiINO44d0fAEUWYgpxYzcfq+9H36oOhlFKq2tREOiLSaTd3aomdsEnNU3ASKs1P/MSNpIVjSURg0vBmWbf0u2dk6EQfRwscN57tpU49KI1FzBsz7dC8r455UOYf5meQn5poA5gmaFzbN3fM05PxuSzUz2Fu3rlum+3EnfiaS81WBRaZ4fzLZE/E3UQLLcIWJ1/xhVvhMY15t5w82XwcETGTY80PYt5R80dyY9lypzGVUhDe9/3l5aWIVNUkb7TFHGZPY6w+N+AppaxWm75bUymbzdnlvQfbi/PV+vze/Yc/9VM/9cajRw8fPrh3eY5xRITV8cP3309OkfmOePHzieZu0xYGMRdxoC9yfr79xW9965vf/OaKSaNR0Neq19fX+9vdaJop6kzmjOOYPmStVaae2/N6tq9hKl2Xyh9MqtYQPUUuLs5Ux9KBOca6t1bR11ZSvW67TUTsdrtaFQ10kshfzmZ4zMZEiZea1zCTE8xFVoTsY2/uaNpNpAWYmiSZECJtfkQUDI8aGmqh5mpRYRamjQojd/TdfbjcsZ93E55s75OHNamvQ45i/iCD5qb3sw5lZvdDvN+y2m2xS2PifI6IzAYv4aB+nCE8+MxHVcypF/Nyn/d2f3JjuuW0aeLkbz+2D/yaMZ+1E3F9IidTm2DxxF8z/9dsNgCgo/s8uVTbSEt/+TjAh7YSDZ2BqTSApwKBqUE33L0T6vs+Imqtw0DZZiKv6U7uGhPDLdMigkOnIn05gfwhTZHlxjs+FAfCCdVToP7yXo5/yBDey1evfe/xcyGirlupjmiJUAlYRsWPQhjTuSiljOPIRZidMJGHMbt7NqfkvpfSccR+dzPe3ljQ2dmZFGIKr/XW9vvhBsHPXzxd96tah7Ozzb17926etTO4PjsLH6h1zczSJ0YUdehgxEK0Ji7m2A1KKKVf2TgiO8p66N73daxjmMV+V2v1sSKXk5kpmQMXIaFY3ODyWaTpk8Kei1ArrwYmVLy7M8csJY53LGcQIYKcVSCFAeZO2CIy+6TqDmenKOAiJEzBDIKbm9++eP7+uz/0rjt7+OaKZTcOV1c3qtavVgD/2q/9+rNnz2wMHdxG67jv1g+IxH0XMNhYghEERwmQECUbzhwrMXPXo0rdRZ0/Mzc6a25mZRxTgWAKXC1F9HypaBXFB+tultLTVzsK+pINTRtOyhCm5u5d15WkyJh2P4hSazUWx+wkQpGWO1rLn2SgVE8wZsY3pqRxjkT6ZDjDHNXGMAfxoCaSeKhmspobEBTRr1eldCwUrsRSpjBZLoYBbu5hjCjMQSyHqR6OvCEKSyJG7VAqexp1zQar6SdxV0QEHllkQURmWZEJMyvc+NVb7apICCWPd4vftvLBYC7qiHA1t6qqhwYQOuPAnDPDQsRqHgF3Nxgzc+kIHEE1WtOzjJO1pDGBpIDTPuAIOKVgoQIOIBAevtwBMQxDRLRnOpkjAPpubVGjjpiSbF3hrpd8P4CqddBafLVer4XR913GclgEQHXL9WbO3Q6LBmLODUQkgKMlTiOleDqfAJwmoZx2hs0W8CwbUqI2au9WfxPuBnUzDzZkj6TsiEsHNVO6juARZuGtcTY81DURaSC2VmTfnCmRCfGDSL6q4DYfKsJdMuHZ1CiYmk6FZY8kYpDDbCAmYZJj+spatZ0Nolb36AjAyFyVKJjmxpIZCnWCMFiEKChprSfthUCUrEDz7GhMXJgScZKtFJicsuuvAj5RTaC1TQy4QcndffQYzGsgWLh0YEYdk2hMVTU8grJ3+olRkyW+7p5ZWPcj8vf8RnAr+Gm7kaiJp0YWeZo3kMm0oBZwyrLMKZa8bJNDAiQF5Ym/0QQeH/cH8oku5cQwCvPZkJ2PaCw85Lzk8lHetZBeM15lbL3mAyff9forLE3tifIkZU2GnXMxMpfLgZghu9Nxaan32bQiOjJZfv9jaSotl3de9lnJzU8Zxzy9R3YtDvebh50no2EezLzZbFarVSTBKTjMZi1aax3HMemjrDo8Sil9v16vt+v1mktZrzeXl5fn5+er9bpfrc7Ozu49ePjgwYOLi4vteq0Ua8TV1fP3fvhuHfdLDBVPpW457SUICi1EJYaQXqQrAM7Ozn7+57/x1bffIkAIjqjDeHNzM+z3ZlV13O12seisNu3SwyObXUoiakmIIBIGERUpIhAW4fV2VVaFSnQ9E5naznwMc2Cdc+v63lJ9gbuy8lCCBCzcHJpsTkoU4UwwM1ezqtn0KMN9wgIOOAWTwxNMA4ACYY14LJoMABDJ5BwBN/fqVt01yMnUW+43HzGd5GbvZkePEA2fOk7MpnnM+3+2mfLFTiStyZjgQtnpNzP5U28BiQiHLQXR/ANPFAPcuPdbr5pGK7J4c/vIl+Ao3r3TL31ES6YcXqEjD35e8N/Pl9x9mp8qLZe3TzSRjn7mWZBHM2mOYyVYenrp2QIUjXA/Fv8uS9iJiLN9ayakiMwrZQAlwkF1tNE0m35nvBgHOYmU8dnwe9KYUG4tYdGOD1LmOyioMYA0AcIHwbnc8xSQAzPlcmkOp2/5+CYRNAn2ZuzRyXticmtnVR4RwofNn4mM7PCZJyUZNxo+RIilR1AdNRwivt/vt1vtioSZ6bi7uabAehsWqOqFpVut6rBjrEzrbtjVWkvhs4vLi4uz7XqjY92enz14eD/G277v2HndM6FzrY5wRx0tDdjMwnSrrvShNo5qJJsG9ABMXUcdRh33th/GOkYSB0Y+oMPzqosuz+3/rXwbVJLBfzLOAfiiFG56QBJpXE4Pi7NmePp1phhViwhnMQlH6UQ4SEgyp+kUQUm3xUBhAlEwyMmUah1Un3zg1PHlOGwfDo5CFmT+4sknH78/fPzksZpv1xd9v0bPm37l9Wzcd+Pt06jVsQ+tcCHyuWNcISYKASGcM/PnCX9NOpdsKBLM5PCIw4mOO8e58d1OkdfF3mvGBAFCpSWHg93g5pDGWOQeFkYSDjdzZF0isTCPw65IW8b0z4SZKLgrgCMdJxIHBzHcg2nKRTEAEu5L6bquJr4jfKzjctoaLkUgnCWQhQuzBGzUCgAskf1uMrkNIg5wcst5EIQkALUDZUBiPxMFF5ROAeVE0XofggMkEjAN132VQhl+G4Yh4hD5nSGEQNRqROLkg1ophUpH4RYKIlWn8FW/Mteqysx9v+YgU/Oq41jNzAnJnWTRSk3V3CxAwl1x95v9zhHwyRyNQDC1bQFDWMA92INbs+qkAmLzhnLNZkiOoOahZ3ioeZtlIZcBTC1/JrrCeTvlM7YItyz6PZgRZjaO4/X19Xq97lYrALVW09GUqZS+7zHx3EQEpw8ozCwZWmAPTJQGIqIWuVnd1NRB1AobkgwpbbupbGxhPWRRCjlc3dRNpETUA7s0iLkQTaGXhZydk72ldJknjvCZf0WrRUTpcrOTu2VuKGHhS+3IzF3XaWhXOhESSSA2IsLC1t2aOHnFm0xPCHREEAcfm2URh3AdM2dpHTyyltYtpLBIYjg9wQhmxo2kQgCacUEgcUe4j3DyBkkkgkXMLneLP0WCjVtiLWJmqUikOAEUxOY2mO/VxqCsSCOAAzNyiYijCIWDguxQKTTlRg7aazLQj/qsnthbrTYSyYnus32vVudnN/FCNwUxo9eWwi6Oi42XhggW5gXNPQ+b23w0n0kz+dINm2un58Dk8l5eZT5+IfbcfIUTk46IXv6tr0iFRXONEItiLaS3iYPmOLnOvJJ3L/77H7M9dGJyLbOCmFCgADJu8tKVP/ywOO8tWpxQjiJZHJuwjrzsMoxcSpmCdCEiLKvE1xFE1ZhK6Vci0pXVZrO5uLg4Pz+fOfMK8fnZ5sN33/nRu+/oMPSbTSZtaEGoNj/E+Za9VQSQMfrJVV6v12+/+daGSYEA9ub7/T4jjymOdrtdVmdk6e+8z92dp/URkdZGIp8sZRfxtBVESun6cn6+7Trx4K6Q+QDycdy76ewA932/3+9rta7r+tLtdrtSenc1HsJkuhdXHRE2jsN+v1fV5vsSMXOtlUhoekxGFgiyjHmGmmUx5AGOlG1Z1L2qjqqqoRZprxy835ecpi9wT75qHIQJJTYqMMWNMwwfMafIkp31UPrIk0E/k10RUdd1+6rzDlnexdL6v7vD8UWIlC973BVZhzF5g4c3fEFPbz5cP8YH53/j2L27u+wvq1jOiMxpJvOuslhCkJZ/WgrA+ekvGdFmfEEGSkbTpJB1jyxOWM4YU8AyIlJRTsruqNvfQT0dtOchF7TUoSf67lgdHMnheScvle+sqE4+Ox2o09V098TrWmtI1wJQc2n9vBR5wWyvkgYmUesh0igSqLUuF+m0jskVXCMKs+qgOqrWdFrW23UdqtnYdXJxeXn74mnf9x2BoyZZdhZWBTlJt+o7Jybwze6WCOqs6qX0+1HdfRh8HMfd7TAMYx1hhnAQyWStfNZiDWYuzAyyRUkXCTvBELA08O2uljm8+c6JyI2UBmUQWsuQYC5gb1Hj/TAIo0MppROJVcfkEeP+9vkTCINJ+rPd7fjs6dWLF7fjOJ7fu9xszs62l25UFc6yd63u6IRoJbGyGMKNWMIpwksRIppAfJTEtJQpkMOOarcwJdEON3ViccWitGQJH1v+NV9MOzOzvmGUzggmqpcZkhPRd90p8sK10ddNwnxZHj+lUtw76QpTYtUjiFjABMtgMC33ekQEWkqmmpKHiHgLV7RKQJ+6uiSpnKk6O4fDg4nAAfNaK3e9iIgQCYv0hAAhCdQBn6RTnj440OcJgpjtg6TvZbKL5GT/8NR/J+t7s4h6Xq5kblrKq4iobmM1VYNHAstHUzWLIJISQR5BJEwoXREqow7jfgDAVFgETmZuZqEhJZtVQzXMA9Uy4d0VzoZ12eQcqUCIq44LfeoRIcQkXIBWHNbeSS391R5/xpZoFpRhFsQspZAn0NVzD1CW5xcmLutYOaEU4VZ0oAEQFyKSQgj25ok3f2bV9aWUjPGY7YWByMg3ApCkFkhflhOckJF1gCkxtTSlOLLATE1FJDgbUs9AICYi07YwzIzWDgQAwjymZFdERCJ/czO1x8wUpC2SFEKspmBPQUKOzOvmO1PUYwrnNw70KX+FqYI5GxBHRICXupUaZ18wFQhTIJt4MJNwW7cUYqBWjDNXMRxkWbT8l1MyHgSBMgjETDB3n5GlwpzVF94JL/ZtdnwjysMckdmXoY47jeqceNEIJwphCkiEO4iDHerwaOgpAgDDrPimQyIHw2LhQ86i2d2p9UQ9GJEn8ismQEgERRgL5XFballVJSE6/vgkocinTSDHltmJubP83uyzNSd/8rnTROkxvw0tcfrKcaKWfrzxqiu89OKzepgkIGZe1jlPSIfSrddNfxadJ1f+AsfJVxDRRMdPNIUqfIEvxWJXLK8gx7J7aZPVWos09njOTILQstKPQV3X39Z9Fo5ItqyZyIq6rsvscd/35+fnb7z55ptvvnl5eZkO5ziOzOi67vHjxx9++GEjJJxa3SwtyHnO80GICGEKYg3vBFLk4RsP3nr7zbyTqlaHwcZKHgFTqxZKgnpr7l7H1okkv6vWquoxt5fj1KBwd0ruCvcgdF2/Yu5X3eZ8u+65Vjbdq9Zah9vdTfgIPMw10XBr+kJABJas1GAuZtb6+4xVrdo4jHU/1tZvkIiSvWQcNbJVJjKZ5SBQkdDkxmY6Dnl4uJtpVRurVlN1U58bELQAViDjcbSwq7+QHXiyeZY7jY4Gw4N4ArYtM1pNsyCNuZxmAEvyoRQsZjYzouX2pqnUk4hswjvkaELmixAjP5lBr/F+cZQBbqu3+BlfkMCc1c3n+khrct6kZM72+A3zbO+8jsTO3KmkbVo2ljGvqZz1ME6jt0tXeS7DwbRhzO2wyCxYYgTaLAJZLRAHdzcLsfIXjoP8XK41p7EyafAl1vTI1j/cILVViZhz4BFT5gkAsgVQ87NjuZLHzj+ARgDbau9aoW/pW5u26nWWqLSgbddag1jEicjVxv3gEoyWyS/caR0KS2EK0/3upu/XBKiOEdYVBvkw7NTo+uqWKUTkjUcPbp49dqtpOaSAyjo7ktV61a82W5Ly7OmLy3tvvPHGG7/3w9/70fs/2Gw22QDp9nbY78b9flQFrKUPEFP9EWFSx5Hso+EAHfYbJfiYgigAD1iELzoeUulWIPUGNkx4OLlDQEwJfsorthyQR0A4CWAADiIn11CKBsCO1qog3NzhVIQTPshUGMSkWve74eMf3a5vbnb7fbe5uN3Vm+s9RblYrQFlcY9xqKiGoFqjdhvxKmW7lqp6o7ZDqI6j+ljPCmejTDMjitmnosn1zX85MaXC7pWonQu+I1h0olya9+pLDUiagDxTt3nOGuA07hrMwAGKappGdZmI2XNO3Ar0KDRmVzCxG81zZqG5/kUNFAbzMcy0ExbplsDtWiskm/9ZrbWXYmZWtRRmZk/lG6FNOyBtYCJCMFo1dSEKJ1azCaTUIKBmOlptsNyWJyO0vgZkZhNgV6bCw4OwwoyKXowABxxEAa7qQ60RIQIisoihVnUPJkPYMFQNNzARSdIOQM2qeeGMYUE95ha/Kd+qWaSTPBUFuLtro8kopavV0osGky9ANAEEwRDupslCRS6gSWcGMUq6WvNNEh2Ubtv/RIJWRU6epKCrIhRqWgeGEwkR7l1cWrgOY3UjYLPq+m7toeEWYADC3HWdByWpL0/9Y/KLVHUcdKae6kop2RAPDGERGrW6s7uPZq6WWNlZ9NOUKxCmMAQVb2leJqLsdN3IgTOznbISk0dEDqZ0gLlQhAANlNt1MmV+SjqsETiIaocUCbJJLXFyKALkXoWidELhZrzb3/RFimTPPemkEJEJ+ajUGicfTmYpZT8ORAR2inCniRxSyqpXHUcd09+alIGLHE64e2RWl5kCLHAIEYRibs8VueNbahYJx07890F7UWvRAg0YqULGwKA+mKshjc9a66KQoKnzmYoQcQhaT1q01Vekrzh3mMgU1lLn5Q/sU7qPkGLd1ZLMbPZ55pEvuFPq1aUdySTzJlm8mWbMJBHJcccgHCvgxYmPSHgZc3oUk2g7CuF/xvH7NOle9V2Bk8um2vND3fLhg4x2io/43rNOgu8gRufL3l2iz2tWfpZxMMXyaU29AWmRH+OGUMBh8nNe7o4Dgzkdw1RK2Y1DARJjLF1nOuA49qE6imxub6/dEeAiq2ydt+o3/Wazvbx3cXl/e3ZvfXZxee+NR2++/fDhG5fnZ+66XomPFl5Nx48//vjJs6eQzpcMq8vM0rwdc4sKt1PasAbl7Ozi7bfffvToEQBHY8WHMBWxfb3d7Wq1rlsNNE6+KDOVUkrpOwvf3+6aMBdxOnx7Er3nuRWmbtWtVt121Xc9udf9ru52u8wzL7ogQYdx3a2jkKq6RuFOVeezZeGWsLNsgjkFOue4oLvnec8/xYTBESpmzsTLXUoeEYyIsAgN17D8weA2ub7Nrk9z+/Wnyadi8M+6/3AHBxtTxUREeCh5HhMhIkiwCMCWZsUkdqqFwwFenrLlbHNxVHUcx6xGWcL22tQXzWAPUZ4vIfD02cbnbYDUxsvF3ZfswB+t+cKquzuZabVP/9RIUtJeiIOXuzzIy6tMPxgAkERY4HDYF1+09ISzOd/L5z9LiVn30URQmiPNZTvl4Q9EAmQITBQIMkwq+0SY5/CFAyx0PM+82hQinT/u1Aot7G6zrjmwengEk80WsHDGQaQfTn0+o4zBE7fgA2WESyJCq3fVQgTSAdRLDzhNQemAeai7sWQ/21orDQN3nXRnXb8qbh6BcRz3+33CD53ZTGvdmQ1j3ZfC6/WKnIfxFtWrDYVls5GvvPXms48+ePbRx8qCYCkSEOZCUjpGv95c3LtfSmHp/tyf+/O/9Eu/9Nf+2l/71X/665vz8d69exQ27GMcwhQEZhF3NG/mEGvIDBVOHyOh2UGUfekoIuDkDp/hfsHhlTAVxwV7aHjC4krACAw4IEHOVBwWDiLPFEj7+jgMd6fJsIwID+epkynRROZFblrV67i7vnlWym5wXm36ru+2pVuPAIfU0XajatLlsK4v19uuu+i92OVwtd2/uKq7293Vbu+u3oju040kCiKJsFa62bTJwQCo6kSSXt+EvTlOpU76ZQG6YZ66Zx1ubcFM2UoUJ8cEzSNsKw8g8ToRERbUShThjghlzDY2Jqc9MlhDtCYibyEFBrEjHOTuOh3JdprcS/aCmmBcVdXNuKyy9U2gcfowQ6Qwk47VycPMrAph1fcdE+BSmgkXmYfzMFevVkoJOIkcOl6QC/FQR6CPiGxjnVHywx5sxbIZ9zH3UA/Aw4JZmEXVMoDrCBIORzUNkHQlgoZhEOnDfaw1xrGtpxR2H02rmoabRq1mZt5j1GpmwzCoOnPpyopZUJjAt7e3pet6KdnIPFttlyZAGlmu53Z3t/DWZW3ZQ44gQFl163HcuzkzEWcroFj1/ThoZubNLBDMxEHw6EqY7/aDunsRJgQF+r50Ije7wd0LcwBCYApTl37lNiAp1NSDxQKl69NhkLbnQIRVKavSjaZavZJKV3jVubuHWyjBw5yJ1n2vpQSxRyDY9dbCA5BSOCIsGOiz3ng0U40gIUaKDCT8vW1Mhno4M5ci0ks6NVTSxE4jrpYQ89pL78lbT6ymLMzglfQAw1tyO6V7362dLEIBsIRQMLkAg5pbDKqFGB0bjIhKV8axEBAkXA6ar3SMwdS9oKcioOCOiaSasY+8KquOPdQM4VZY1uuePERYCAAxlQjxqrqv3EGSUMEDQCmlNd2VGIYBYev1SoTUKnms+m4/jGneFZYIV1UuXd+vd+qD+YDYOzmXoJkvGCCppmGO4I47MwNxiJiZk0f64wiku2uKCCFIESK41ogQAtzmYvOsk0y7Mx+XKwAQcWE2wNRcnbIwwB3UaooAgoMhSJt+Ui0AuY7MnNy00cwIESF40DGnq2U5bKpknhO54EZlsIjQewBx0nXAzKploTkStoFj86KJklfYezFx7X5Wrzj4cO2JWz9/zhB1uxR5tk+oZin9WzSo+SQ21VcHcLgC8eHis7U038vS3Z1ne4y9/nRA1zJbMnPD52+5GM6IIOaSxP9O4NJFhJq5h3R9JoITiuYTrj7z20SskWzkyw6WQhGZjNXw0nebi02/XcmqWCh3Uk1nrQ8AgtvhmgvpqBkIXK+3Z9uLIqvt+b3u7HJ1+Whz+eDy4v5bX/3aT/301y7Ptwg725TtiirMhvH9H73zP/1P/+zF9S1xt9qcBZHB5/idJK+DcAR5Y18nCgYYLFQ6kITD1H/uGz//4P5DA4ahPr+57lZ9SKlj3avlEqn6ZnOR0aebm5vUPOutSLdKVGSaBGTh4SKFqQyD9twHC4TWfVlty2bTq96end0bB9Ranz17fnt90/eb9bp/MT8pE2vUeQH3Kf3jRCGFxtHHbJ2pysxKlCmL1uioEfmwexq44VkA4uTk3BVYuEOYEWy1avVQp2BUggnMfNQ6eviUW8IR9LT9vNiHJyYR8JIjRq9y5zIWenCZkrKaNGUCM4SConplCmmoBHSl9CIRFOBsEcFV0dBvOlVgZldYdneNRuJlCImuLxJmAMxqQnnMascE4dtom9c1QgPRXGgGReKWDrfKALLoaPnKq8a0Fssze1QGdTrSKTn9yKeMl3lcCSB8uRs/u0Z3PnX3S18+jbvxpruTedmLcZLpmN87cXMc/+FkhrM8bPmIAMXMPu1x4JJIpxLR2lUnVixaxd3CV084HxMXyea3eY7MK0/ttarWPJWHK+PgrhIQxgRKCpx5AABBLfVjzHioNCarJ6JiOlTzYhLNjiwogX5TEvvkeREAsJTUpIU5gtw8ECwipdEXYXrQifjyJNEEkhqprd2MGzeJ7OtogWruYAEXIg9XNRgbuJCgqFlZdV0PFhv0Bjtfbzrmi1KKafTrDhxXNy/W63XXlVGH0vGoBoIT74fq7kEuheG2U/WxVr110/3tnvsVc6nEoxUArkokb9y7//Dhw6vr67/4K3/hP/6P/5OPP/746eOn5PC9xQrmUWitQmbk7lnWl2qvVdVOGrBZqXTw+QnRiheDGRJORJIJ5ASjmgYiYC4UJImKI/csFPZGFsNZ9wprlLeeoEQOgs0UiQymQhZmDCFiR4QZzDtJHlYQRLO4L4HoQLiO19fhuHxjff/Bo5vBWHqWldSwPZ6PN7zuZd2JOKy+9db5N96+/2Al99Y8XF09e/xkGIZ3fvTe977z3Zvb67P1WkTABGan7A3AWQIa7qaRUdsIH0frpDAYNFW6uh2DJ9zdWZgkO3gCRBZuyjF1z2oOoCkHc5SsWZncb2pYqSxRbr1syFxFilu1Fo3i0TNBBXYUFmq5dbh7bVRbPtRx1MYupOZEGVJzGAs1QvNZBBERB3VdV2sdTVelo17SISylqJuaMXPXrTzgqqomItlAAW4WmoZkENxNiAvz3BeWinBXIsKIhUtrNEFERKmyKRCed2MJFM1dQMl8Vj0Lpiy5rALEUs2qjUQk3arWSpJMWZq5dDc4wP0qPEKCQhDkQepuob7oDsiCnkqE7fe3QQALpGdykc4cwzgAzKV3KUNE6+I+7dxRtUucSJM87CBT24/jek3EIRAkTNU9Qx0la2IjIrVdKQXEzNz3h1KKCIRHQmTDsoGSM0GQrYACHjf7m4hY9T2Yqo2u6iKlFHc4TVkykcTj8VQCR8ec/kQEMMFImJjNa5AzIAwESwkJCSaA1eHqWmspBW7krq4R5FMXeB2NAgwxuFWtmeNiru5h2ZapcQsTRTCN4x5TS97kwWemQkUYoYiwWrW0NtDhVa2lWGMxcyD7VRQwOcPhFvAgAL7qikjHQUStX5y7a7V+tXZvlF3zAcj+Rp1w3xeQ7MfRga5rBdVgYhYKZtaIkl37RBhws4jQRhWQIOcg91QokeyCEUEk7jaHEl2TRDfgsVqtboe9jmMU6UvX972HDGPlbg2iMK4+jDUsPPdJzbBSY60Gkg5iEc3KtZnMx8OY37A0TQ7hmZnob2pTlO9192xz2qo1jgP5J1du15+/Ziqd8qnkA0BHfACUE9GUN26XTY98mkzEnbRApFj2mcqViMCc0/MMutwZS9fxpeOzer+vHYfZNtHf+FteskTeJODyq+O18zx5/eAJ//7nvRhLybB8xPPXzT/woiobLZ/WWrgBOA5DBNo+tVAC02az2W63XOh2qN2qw3EGOBvcIShiCC/SlVW/kb4n6oLKant5du/e/ftvPLz/4MGDNy62Z+u+Y65nm65j243DJx9/+OG7H/zO7/zO/uqaVys00AUDrX9g40HlBAcuzEEWcFJ0Utd1Dx48ePTo0Xa1cmA/DKvVKgpH9eSLqtZQFW4xDo21i5kd4qrq1q+3VQdVhRmR9H2hhpiSvqzKijbbnhmB2gmvupXqeH394urqyt37bl0KlrwPHOzm6chx69rLalp12O12wzgGPDtCz8BOZk46qFnV0YFH3d2dRIS7vl/VajaYpZGoFhbuyPbGNnitNQljpif5Ex2nB5MckIARsr6EZznAzGBBMLO0XDuIKKb0SVN/kk1ZvJ01InIcgNA8iSMiSq4NTOLx9QJknu6XskavdaS/vPGZbvnLnsOJ9zu//vq5LRoTvET8viQ8evrmlBg4psEnIuFG8D7HYU8vdfRv+pUHco/l1e7O6rNtsTZicoRnxER7faH6l9/yEk16/C+mYxNTDJomDn8Absh0FzN36V17Bm+dmkUZEcZZSxdKEUyZ/2xVe2Y+7of0pqruA0VjZG/2ccbcm/02+u3t9cX5dr+7Get+c7bt1ys3QdDtEGYShFoH99EcVf2tt77yp//0n75///7f+Bt/81/9xm8CYC86+Gq7GeqeIBNX6zJKdxK+mQB9U2wvNdKkl1KczgC3qU9BwoZBGWmJFmhL6yUpBjJTmq2wnCjbpE782BlvICJQmMMDjELshOxcBYdnlRmIiLOYBcJsfHZ2NnozscyMmK/3Q70ZNv12te7PzzvZrHhTuh49rb76xv1vfu3t+yt+tF1fbNaqbojvfPd77/7e7z5++liA9XpNRKpK1rZQQmqnBOyC3zSVZyDhr3iZvGsmHDOAksHaKe05b9TZqJjtvQRdSilJIA4g3CK65M6YwarpQufufqllO4PUWv9RC46W9gO8lxIBdZOjEkhR1cj+itkeiTmplLj0MRVBJlw3zGuthZi5CEtgQhfw4txFNiF1TknSCjODIjS8BIU7uSmg6qUUBiV6PLPHRGSDJtwRwe4WYSQls75mWtUTpp5HU0SqafY6JCJTr2pqiIi+K61uFghQTXI+goOCib1EhoRYGsede0RoQLUiyBIJAY8y0YOV0nXNujOzvmt4TEMQKJnMV5t16boUkxUoxCJSpm43Pu0qnwQOzJLzLcsW2H3qjYTO4LmPABSW7CrKXIhqwu0AqJkbzILZBdSx8NTLYXYwZlOVlsG/SdkHB3JRQAwwSy80juQarmbmCecppURYyhJGpM03VUQ03pfwxpRPNKFuwDQppEnAhqoTM3EwJy0XpcNeJvIYM3NiKV3yAWSkBAtXKr+16iCeILjpKSPgIZBCTBCAiQQNYUVwjaxwoINVQU4cLBAO9gh2EFicaWokTXQQB/BouRQAU3snZm7uffLgRSCswQ09u0YHFeKkkwyPBAsEzCEiSWo1Vs3wBAhmYUFVdRzHcRydmYV0snFzpOyZf12qsYNkuSMjljpv6eTMPy+VaIJJMmrjcwnckjDpWGkvtezsxxLRTFAtjJw6EWHiFl7K2Zjbfh5P9UTMzRAaZhYRJRpqDbM4Nhbv2hlf+HjVV0zTPkXfnXzqM87w5cbREsn1BY0ZmHT3q2nhn+dmmOE6EQGQO0Ra9fhCOWWKpn1KStf3fXb/znNdTRHWT19HTgRKsBmcmEtZrTbb877bnt27d3Z5+eDe/a88evjGgzfeuHd+tunXXWHhVVcKRbdaW9AHH3/ywQcfwKMQz/sEc8abaXkj6bQnbQUJo+8zMMfMnYgB6qGq0nc1Gs44o0J5ME1jP+yrqpSy2qxtv7dAdSt9p16zgrThryLMlKh0q7LedOt18sTLet0T0eMnHz978uTq+XMggzt2xLtD7pPFRhxE1Pc9qu92u2HYT9lmmClTuCPr0IKymxSAxvlEDfU5KSQuhdjhDph7kvyrqll4tVqrDjZd4bOOV+3nz3US7x75xo4xF2gc21IpnQoXYvYJyZa3yUD2p/GpaIJaITVlUNrdDzHiKeTKk2jNcrRQS8hdZtciwrNF4uGI5/aaETAZ2/08C/dljpeK0P+/GrOABbCILc4a5MTFfanvuhw05ZlPfMgZL3oAXh7jdLDYmSevHH/B3RPBnxI9OZ4Mo2FQX+roxsv08l01tHzb0hhY3sJ8xDIeRAKRNFGcJjJETNZCgMNdw1AIQl5Mh3Hc75lKNjdPGNcwDLUOUxs2h4e10s3Moam739zuLcII6/Ozsl2/94P3S+mLdADc/fzi7N69e9Ktnr24/ua3fumP/LE//lvf/+2//l/8lz9674NSeg0MWlk7JN/x0s553RIfjdkWOtk/MRldkXwoUxVbQxbcefScgbHjGrKIqSKOWgPeXMc0ITsvcJgZAuzMxCTCJCD0HQfXvao5EehmGOz6hazPlTruy54GWfVnF5fnlxfb9Yqi7p5/fPXeu7tzfnD//PL++R//w39ovTkjLj//9W9899v/4u++806tdb1ei0g6mclPubzl9PZnq+DIKuMjITffYVq+RK2GXIgQB9q5+W1EPtvz8zWpYa4RCAvnBRm6p67iyGI/IpiFyDzPg63LrckIIpwZzJAJNuru1TyOn1G61swchDCtdcgUMQnn7YM8a5dSRbL02iLLhmyASkERXddRsnJN9QRS6EA8YYipTSk5KLwwTcWn5t7qy919tVmr2mRxT6hODvUY6zgHcM0sGzHWmiWcRIBlF18QEdUxm5hyRCp3d0/ERzjBzNUNWSnU8NUwNOYXZB01cQAR5NEUXuOoSo57ToC5gJCEzdkIXISqqWdLpXTLYe5eohWWYGrHxGmdTNuidUUCICI9k2W5s7uAhDhdGhHpunOf/Juu65g5yUU76SIC0sjB5t2WD7g5D7NtGkEpc4iDyYw4MNccMCLJUMgNnNgZvt0PrVs6EZDkZxFBwp1j0fPjUGpViIIain120hoDJ5wcLglERDhg1ohkZguGyoGDMRZsxmnWFiYhZwETFWYmJFFpekZwSTBAlgoTkbkiiJkLl+UB6KSYRfWRpXTcQZhAdVS3gHgmxqQ1r28KgqaBZkZLMGn11oJj5kSIVnFHRLnNOYiIAVEL40jLO3RUDwonhBMG0xoyqI3qDiLmYHL12eEhooY4mWTxwuU4xNXmvn8nQnm2BQ9yJ5Mk0wOcL3jqYN/51FL8LX7GyWSy1c24IB/CQshOMNrFdeggE7FU4ZO+8amUcfbZXmU+/CQNPiKaoi0HVXGkM+7Mio5JPl975dPPfuFjuYuwyCosLQC6k+maN4yZA6Dgk4ughYaaFTDTpo3j6AjEwdlLtVKruRGLgHuWrl9v791/4823v7I+P3vrjYdvPXzw4P7l/e3mrHBXqF91hhjdAkzc397sb252SERbU4pHSIdZFnnSfrQtJCQsfZ/JYVXNhkzJaGru4VZrbVgD93yDVs+ee+v1urqMqg6EU40IFulXHC7SESV0mTabzb3756VjQEtH6/Wama9vXnz00UfPnz8fhl3XFSK41ZNH3I5lY3LQhFotCDCbYl715XB3SG7Ldr9JlyUifd+XUuBkZtVrijIB6cH71Ygp59MMs8+035Zb9LO8/llGHIfklqdpfqCTTA7AkgooIphbqXDuybY/vYUwiAjSHOnEueUkk+96dqEtptifLzC0i/t6qVT8MsdPyKn+fd7I60XZFzk+27cQneaLpk+/LIs7B+sXG28yqduuy6vd/ezdYzv/sFS4y9dPReXJBefbTEG29MSOr3P3Lj5VZSyvNv/qE1MRFiRhkw/AolyKdNwFB7UsdAQjDORkHiEhlDxTkTCK29ubVb/tOgZ5Ngwdd3swbdarapWZs+ldREA4yKuNQx2fPHt67+JSQfcfvfFTX/2Zf4J/8p1v/8bZ9uLi4mK13Tx49PbDBw9ub6/feuutv/yX/x0C/+f/+f/9H/7DfwwwcanjKNHvhqGsupOVeelTe/2YPV5MTuy8Q1qJxnKRJzKh+bvmz2CRiDp5BEsLoRBHKbAgj3QGo7ktTIWZpQA+qNYRJJVu9ka9gcpmvd2sNqv1hi7Pu3UXGK5unj356J3ffef6CT97T375F37m4fYrjx7eO3+g8IcP7v0v/8yf+gd/9/9NRMkuOTvANnWzj4n9mKYwscMpoOGMLGc94nnhCQkQmYi4s/LzNku9kpuLJnuepkzJtHUlIkzDw4uUlnWf5HDhrhTOsziHRJfagSYS3OmkcCndPAtbPDUHFylAakzk7VMEibC7mZoZcVg+97kk27GogWY3A4Xth8JUuGT9dM5BPOCRGW3XBEhDiEEsJTyqZ1eh7L9jJlLW683Vi5vbYSASjhIEMxrHaqyJvQUw9UmLmn4tEzmFRybPCncicnt7m0EqJ1IPy6QYU9UahKSCAiBdEFE1R6PRjQSWgEsweVDV1lg4n13zwqQ42N2cQMIWoR4Mg7MHJS0OUcmWElU9wssEJksfMjJdTwwzk3RAHFlJm1tg3a8cgFtESOsqFdN2cbeRiPquo9LKTAoVoCUVI6Jj8cwzL6Pm7nMwBm5wz7KPbAqb1HWZQe9ERESdzVHdXBUekCYl3ZHNZSN8orz3mFBoEcnaV4haJ8YwCzcSTlqFgBlCjFiIWSJg6u4uQkyULcKKgEi6rswTjqRoJmK08mHmYCYhFGFGWBBFCHPhLpAVfzkZi/BVt4owPtYXFNxLX70CRBBmJi5uIHMRmfrcOoMoOIhBLpxwSjKzBAgHg1zGUbmkr0tNXnIgoUQRGfZgCGfFvzlzcUtmBpLSMbOCq4UxjRZV3SIrSUoQBTjiENSYWLVfoolPbLW7f737niYLmqAOD/dwba2YT33dWaTRq0lETl9y18mMADLocsQWOA9rXsopaml55dwPKbJzCFEwxx1OkE8dn1cdvuqDJ6oOzbh5SXIAL/MnXm8vHmyyY5fgix2xiHcskSN08G8NcKKDIo+F6x5TdxlaWE6zIeVAhDUGFHcdzcLHcSRhXsQuyMnUtEaRfr09X222JJ306/X5xb03Ht6/vPeVNx+9/ejB/bOL837V9VIKFcLe6emzm8ePn3z40eN333vv6dOnAAq1og9J0FS7wTjcaSNxyBskhA+3t2cX533fb7fb7Xab4ZW+7wetrlVVLbvrmrkBwQndSxsim3IHMRcZxxEkpROCE6TrZd31pbAU3pxtQB4Blhh02N3cfPTRB5988pGqdl0nkn0U9ejBcKYLQIzwcIub6xt3G/dDuBKcGuuOt75LaNSDWGDaa63GJiKddEzZyy3S4OBAnYodpi4SU/Y4WmICrWbk1AF7/fH5vIeLIqPLAUzNUpenJkvsjiNdIiJcZt5maSjM1BeLthxxYKuOOf5Ljd41zGni4NBxzEgHEpxlExfxyw4pHWDWTay99u5OXzlOSOXa3pGon7lZyxcyPqdguSv/Z+n30kv9QXHgZ3PiNX9dvC0m2ahxHA3EKzb5UjAeVAPyaUYsGKGXn8GdS+XvcXjLIS0ZU0eGz3jj7o2cZn7ba7ziWZfFHDdkdveMIfV9T5zEPbBoZgKmQD8REURAHE2SmNcYw10pKhU2H8NiYB09hDiCzCwZki282riv42jjbR2C4uKNh3/hz//Fr/3sN373nf/D7c34cHP+9W984/x8e3t1TVx+5Vf+4h/5I3/sH/z3f/+/+q/+5n63435V3SAyBCJcpmWKFBzRbIq2qvlAXr9TFtqt+XsTtD07GS5ZAGlK/fCC6CTXI3smL9ErywfR1hxIgLWAwEICnWiQDG5OAgGTE6gI9jvUPVYb6qVbd5uzs9VqdXGxAgzj9ZNP3n/ywQdXn3w0vHiCevPkntAv/QyL17oDLhB+Xvqvvf32at2FH+zA9CyWCZXZAW4pkKXZ/LKgEoMCreKZJzk83x0RRaNILsC0tah19ySiaG1LpeXf3MFwhzF5NHi5TBssnwR4ykwiiFNBkEWUUoRbrzJHJJV1mFKjwD1Mm5lrrVl8LiLZ74bApRTVhvyJiNEUqaFIRs3WPiRCRaSdBLeqY+kKUyFONieEhQtan9Ps00JBwQEnN3M3H8NptVpl7j3Dtdc3u5vdXtVTsQUhDGqhoSTk2loldV1HwGjK0oDWGq6etZhsiGrR4LfJWulpkZJZBNLtYADqEYGM9SYbrwURspNsa5idT35iv8yHyGNYeHASL1Nrl56cnMzoWCSVowgiCFK6rpu310TLclCu8y6crDVKGWfHByYixnGUCW1LU0BFRBK8xcyNhmuWZQtP42ATMKNaUDLYkWQrdgBAaVzFiHT42AtQGX3fO8Pdq8LNsnqXKNkDEBHE1HXZAdjN3UwTccZJIMIdCcCsqgHyMPCB+NbdZbpHnwC0wrkRdb73JlASyMcdqALpnUa2KgtIHZXJuFE8SDshjTMi3I86+5VSvJpISRLRagGr+XMpkrV47hTecN2zVstqvKl030GUlPVEZGQckcEXAHbIo5IQcSTJHqFmT6Mi3BGREQDhrsBZrY5qZmEaRppZtTkZy8wTXoCIiBeKCligBP24UdBCIs/ya069LuWaTx38ZqwXcEdnvyzAPP3tNNt5tM/TOF3WlqTxOjVq8mOA2UvHPMl5biIy4zU/pxn3mcexjTJP3l8224iYWa+xCPYvNcdn9BBe/rYjMf77GjSxgC41Hy2+9cgqetmUqPW/zUrLQ0Q2JScRzBTwTTnbbDZENOwHDa9aOaTI0aXMYr8ft2cX6+3F6ux8tT1fnZ1vLi6355dvPXr09qM3vvLg4XZV1oVlYlgyw/PnVx9/8uzp0+effPzk5uqGCCLEpbDI3P0VwGyCZ/lGxAzACRJ2ID3ee/fuXV5ediI60ZdFhC5GHAKRBMDMbKyqCg/mwtzklVkwgqmsz7bb7ZphUgIeXb8ex9vHTz55+snjJ0+ejONYsos7wi2jrYcF6brOk+cvFW12GtDRvOZ9mZm70hQSImTw4mDmZuI3HxRPjV5KKVab7NKx1lqtJt08jYOqHhPc5uM+3m+fcfd+sSPiKN5HU31vLDyNFIAeeghXt4jMgax+mU+b3yPSAD8AwhxTZ/XloDsIiGR9f9nrRwZu0KdZ21/C+FyS8IsVm/TlxOlOvgM4OLIHX2WBW6HM1L12npggRbTIfM6J/Tmc5wt1Mx+u+TonN5tW3J3X4+SD82w/050u9/8dh3m+8iyoTxTNSRun+Q2HwPSxVkpNgEVsNCLgqLWmo5AWMlmoeKfRbZrZGbCIlueIMCKMdTdW1OhWqxWLgzAMY2RP16Bs3+gEC02Ko369ur692qzP9uPewv/d/9W/93s/ePfv/Z2/H8FV/eZmh6D/xZ/+t//Kv/vvffjeh//Zf/Z/+43vfAfSBQFFutWqDkPwyhe3/3k34pEwkSWCucFtvEE6j5PtJ4jrVycblk9tDij7lJ3ixluRkN2pWYxJ3ke3KiYXsjkrm4v+7Fw265/9+k+vV6vnjz988tH7T/f1+eNP9k+e4OYFyED6+Mn7spKz++fXw+19VKFS6+7xJx+FGri4+xzyS5NvCXj2xeg68Ya0Pdpy7WebKtKztU7+OPnADWPMRwvSbGKi5Ze6O3OJsClQ2VZywn0Cc7b5GLAwT8lax5YGYD6cNddCCBE5Ih+kYT+2KhiORlbq4e5BIAhzS/gNUTmYIURJakJdusvmEcZI6lMhEgKIIjvX1lGZmRqXGKXnn2TpJVB1CJ8pXV1VPWi3v3aHcMcsqqHh5FTDhzqs1kWkQ/o1wqq+H4fCwiWIJAgBjkDNGHqWamcZVIQl2XnyNhNISilAkAVcwxG5UolbB1EDeUdI8rmaRSmJOE5v3iySkkMsEoYcB4AMZ1GxM8TBzCAvXS+1unswEUX2YrJp5yedkrf2U+6q7qrMksDUJCmfHRpmzkQ1kRDCrBUywQMtrtaoDkUku/tOdQgHN6ZflapKBM9S8WhTKZ2gYbMd5Exg5p5KqDGLaXD2MEtZGRyWFACcpbwtSG+kWjNry0RSCpDdldtb0Xj0GTGR6LSyZCmlJ6LpGBzTpocLN5pZ4czxBqIiMyVEVHwcLII83GwCMIsAPqpFOAN8FMtKzjUCkQdlDKYICXfhkZ1ggmoy4+dZHoYhyApFRKT9lZK273ukjrHwyGhxxNRDLM+pt9UhSFFVKSRUSMjManWQRC971X1GrogdqoOSNBz/AcKHQyyg8UI2HXaQ4H4MIMSJbpvGLOkweTI2DY2p2vh40Zqoeo3aPvGTI5Clhgs5hUlbJwmNzD2doxVwNLKiowseRd/nOZ9o/R/DNP/xzLXZFomDMlhaNqcXX87t807yrsn1BY9jsykiMuwy6WMnehkt2cJAbId0oqmYrQgPiwgR7vu+68S8DsOQVRvAESMdBbsFQfp+vd2c99vz88v7D9548+GjN+/du/fw/oOHl5cX235NKO2zMVg8f/ri6ZNn+3214HFUVe27rggRY4Z7zHcRE2G5LNqGpYzarHphEqKLs7OLiwsCxnE01WqePMvunn3yUq0yBVM4oFNZYESEeSd9+9YOIrRer7er7abvyppYPFTNh9vd9bNnT3e7W2Za9R2Q6Lm2nkcGG7e6Im8kHAMwFySrmbo7B4RLrSkZHIvsYkQkVxSDmkqM8HCAVUeY62i1mlVDonxq2KgHMMVRXf1RY7PPsKU+d8Yvpjq9TBY4DiE8BiiCgzkYy/8OKd8Gdsdkd4pIgsAjIsIpgkExmfvJ5jIfKw4IKEoppVht5H/0aTdLdHC8abHmySjbSjle8ml+xfq8Ig/8P8vxmb2WI8U0W8w/tqicL4KFe+zHnBp3/ZxXXWf6pXmS86fwmUV62kvLvfKqD969fiz8q7s2wPKzyxBA/hoLQJMbVFVVSilRw5KslyMoSmHyCW2R1MdEBoNj0IEro0BVSynsfrsbpKNSils1qxEkEEijeQ1EEklEuJkSxyePP/rVf/7Pvv4zP/uf/O//d288+Mp3vv2d3c3t+fn2l7/1i//Bf/Afdtz9P//m/+u//Vt/G0Df9xbOpVut+lrHoMi4YTuZn1nbHhZlyR07m83uXrXWOgd8l2/IZjxp+S9XHndsgLRVG0VGhidA5AHzXEFmdiGYCQwZueQWUN6uN19769HDr/x0t97SajtafOuX/pDV+k9+89c//M3f0v0eamCgK9KxmX78/MkPP3n/R08/Wf/w91bb7VuXbz158uTX/sW/3O1utheXxJGYI5oyva/aIRETBczB8T/yPLPHaNo9KWlPXPrGoZDievp4fi9NbcaazeDt/DMXCxBRyXLTaTGB7FkCoFFVEyg8jUyHqiWlf+vOHLVWhIEYTrEI7tZakVlrN1PPN0dzICUJPcEEDwSpg2GrfhPk4QjCqEZhQDChMNcAqiGMHEysFqG63W4d5m6RZyq5mkHEUrqVqo2qQRRO5smtTUGSaYNaM64AdfXw0bSIgCkAVx+GuhvqqmAikIJTUs9FBBFTcrYlCtsaK124kLqFh4iAUDUBGEycuPus86dk2wJTBDwhZUgoXxCgDRgijZEyQriFBqRIutzUan2bwVJm+oRSyqxZD4mvuUOjSB6wZP2gFpxuvgFPQ82YaLVaBZOqdCzZInLp4uauyrPni2BV7sL1epWIBWZSdo5DWVR+UcfEIhZe3SIz74wISmY6BLkhIrlDW8l2TP/Le4ETB4gpnXBzTbAfCceEEY7kCqYSaC2iu67LqZrafCYbC1wcWvMJFWJKnjYKA0FYhCHMXVmZuaqZ1alSNOvBmIgKH86tBqQrGXpJCDeLdNI5fLQRTf0UcIi0Y1xrnYzItqTpK0YELNy1mnk4UTBz8NSDHUQs5hzhhQqX0pVuHPemtV8V4T5Eq0bdDaPBAsRSuIhTtTGmLvD5aNx9yj8TEdmEVU51POu/g7RdvII7anIhhppXeRI5S+fzRNnetTAO0vBuwPU4VB9Lm5UoWk67JWrc3dKKfYUdM89/3hvzpZZv+NRxYrj8+DbTUYhh4dszHb/rJdmkz/iNB4vnJLLwRYym8xaGfEzxhVjkB7DYKsvNwxMpdLQwyuwATwInwMxdV1LD7ff7Wutm1XHpiY59PRaAz88vz88uN2fnq+35+eXF/YdvPHj4xr17D87PNpfrfkPZVjsYrHB3+/jjj589e7EfqjtqrVZrIacFznA2U/LX7K2XM8zdzlP8Jd2ezWZzeXlZphXY7XbDMMwnwt1VFRECCMgDicdIC6bWuulX3JVV6bp1t1mt+r7vuq4UhIyr9Wrc1ycfP33//fceP35MHgA2m02uSfrnwOIpA2rVrLrDXXWswzDs9/txHOu4z3CYWXaIYJoWv0Wvp6h5VnZZdcAKcUTUWusw2ljDoOpWLQkLbdRhqBxTyyOiDGfcTTd9eeM1HsVyzBrh7sdbwFRYRIhKPq8MH2ARL1t+pKGdFwRvrpqn7uSQEtFSlE7/xpw+jClz8ZJbazkk/gkt5R+kEYuA4O9zvErOH57U9ODQAsEHXujlZyNOVQAWwi3LCw+/miWoMp/soctlwjhfO1WaAtZYSvJZnn/ausyuxsm+nXXoyWh2wJ0yqBntdaIu54/ML8a8OgulrBXauZlxYXdnZSokJZETTXhKx8yldEwRIFMbqpJe1VLKZnMJxs3NFY9Yr3t3NVd3Z+pW6DPnUYRZuKzWqnq2XY+DXl09//73v/ftb/+Lv/rv/Pv/0X/0v/0fv/mrH7z3/ttvPfq3/vif/Km33v6bf+Nv/Kf/6f/lyZMnFxcXFi7UVZi79n0/Q8WXa/gaXbtsN71copN06JwbyLDurFZmvZlbb9pCPv91uf53RRwRJX56TpnmAwcRMWaIJQIIK0w/9fbbf/iP/eE33vrqg0dv3uzGn/35P/TeOz/8e3/9sX7yMcJlvdn0axB161KpnN3b/s6774z/n//+n99/8OxXrv7Sn/sLj58+/8G7PxrH8WxyOyGY7erZlMy5zR6HZxce5tl5ORG/zSyfU1FSalZ3TztqSg8Gc+uMdLKf/ZhtIfmok6cw6PBXZrAXgDNDRsdIjVIOUPN0r/LrwpFN7pckuNUiU4+miGoMIoaAAFStednmeUQQhQftdvuIYAjgHuZapVAvjMLuOngVR8n2xg5ztXD1qNXMayHuighz62LPgqiDVgK4k1KkmgXIwnWwquoO6YpQUbd+uzarwzCYI4IMEU5cOhchIgc5yFpWis2t67os+7WIAGX/mUD67WoWHIIgVYQTFwSgFgBCIrsKm1n2vAFzVwRM2YSViCg72Iq0svBA+laGKMns6w5p/OVqo7qV/X6f/m1i1bZnWxHZ7/fzIySi0nGEeygz1v3G1D0M4WYBoNF1EBFR16fn7BxNSJVSysSr5tM+k+wBPaH5pe82m42ZDcMwaPXWXo76vqibWRASUOxmRmAWMgszTUZyU42ZNd4DxF3X7es+95mnjIADQYy+dJlzmMVHTOi7ICB5cRKQnLT5CGIJZClbOkJkagxPjmhmcid391D3Ut1FqEhBuFZz1/VqtV6vI8Kt3X5ympKnX72OCI/Igu8calEbtw1EZL1aabh6SF8IrmruWkpZrdbuOlalVo7begM2gCUTZYbWTXUk4a7vNHSoFZPjCrAAwoUgHqw1sZcSHPtRmQEmJ9IgCFOwmu9rrWat0W54BquIyLNb2qScCK0DjarOHQLnMTsAS7mWv05sBEzJPDsZD+lRt4hMKe6H6DXHsfJeSL75PXf6yt/x1pbyFaBJxea/bS+5Uywo4riRwJ1811LDvfTnzzg+0/sXVlT+2OI+CzXg7jH1JU55Pd/rrC1moX9ikcTCmb87n5h8ks91X59xxOTa5SilMLN6BWBm7rTUjrOmAZAlJUQk0plVIkLwHHCf7yUvmI9VStevukTZlo45Dnjf/VCJ5PrqdnN+2ZXVZr09P788Ozvr+36z2dw7OzvrCwEcDjgRC8vTp598+OGHjx8/YSq3V9dPnz7N7+773kV88uNy8TU84QazyE2BTBAmhse66ymiMF+cnSsQEbe3txnyTx9V1YlIRNyMPBhE4TYOodZ33eXFxda24d71PcG7Ujar9fn5drPZmI+j2W5/9dH7773zwx88f/qs1iHbeJpOuNyYm/7VeU00lARwH8d9zqHqONahjuMsTgWCzCEQOzPzFJF0ApGOFtEYC50oAq5Rq0kwAhReiEf3cV9dTQDT3HvZtjHSeP8ydt1LN+FRwiotPz6EMNoOjGisoEQOnsNnzIgAPISbVMmoRUYB9nWXRzJrvcyMI0opXjWIUUpEdFL60t3YNQDAKQCSpTyJCCLJ8m9mdKVTq+vVahzHsABMhFlEW/kJuxlBwh0EcLZNobBsRXEUqp72QEzZvpf49vnDifW8vMJL3/8TG6+ayWcZJ/7Yp37L3eFHcPfW8CruBDvmn5kRMRHiTEa9hzMV4mCibG+IzPO31ki83AmYlNcr5lPRZCYShn0i3okoYqaqROEDfWmrVZy2RJoYxGyLolwsWi1gofUOK7BAg/NEhI5ZbU3LfrID59fz1toRiiAiVR1HKkX6TSciGhoRDEJm2EAovcMaoycHOfZjCHcOe/biKcgjDBzqpevl5ubq4uJi1XcIZ/Hzs0tm3g37nomF3f1s1cv9e7vr3T//H/+/vqt/9a/8h//rv/pX98O+lwKP/8d/+df/z//H/9P3f+u3zjZbouiKqKMnJjgzTG1mZgbghGCCxRyJacGo1FPzA4zAwuevbh1NtivB3TM1VYiTJbAkGHJazyagWtrxSNGn3jx55/yU0RhYSCZcpMHNdfQxPCAlADcVSN/JSnjTlbfu3/va24/++L/1bz54+FYd7Qdn66999a33vvddDNWjXpzfv7x3vr23XV+s1vc2q7P186vde+99VPd469FXhxe7J0+fU+nSvWweJmB6EL+Tt+9mDrSib42DD5+Rj3m305TMM8tUZ6iqTKS2kS1CCyUJSCQLRUSy9bcALs18sZGw82oBs1qtFOIOjqbFjI1NMyNFiTiIMItkjiDQMFYAXddl7U81Qx0I4cScnXymMdSRGrYzIYdgcHiYGXWSzpZ5VFN3FxCB66BERO4sECGwpJ/vBKGAhzicqAQhopptpnLaYdQKcsKqMFj2gxFR4Z5YhmodkxDvxz2C+vUKFKOphWZG0eBXV7fgQJRgYRIWdgpXo6CwmHBhHk4MActQRzNTTdIvDiCIDKGu1UbmEsBYR0QR6UY1dctSTlNnLiQdNQISlq4QoZoB6KSkVUvSNanGDCLLSCAJcSEKDoZZJknBhQsVbirZ0qwfhoGZh2HIntcAzEycUlsXIZFC2SDsGNuDxtmbQt6ZuRB3fRcLll1eYLPSK54zGLnFu64bhl12wU4JNztCoHbgI0Ld1B1MklXGYCJhQDiGOqrDzLKAu7pThEcwYIhYIJPylDNzoZJWdlD7s0wcrRqx4hLhrTFjK5dnwDvpZ3oFEUnfjzw8wM5BSIC2O4MkS71TiATBNVs0EREllRQDJIsEi1uGRYIoCJ4c3R5h6Z/ErDOmXhjR930qqkj9lNlNoHQdBRyWOIRAix25O5FYIEgiAjh0P2sPK1ENJE4wj9FsrD6OOlZVh7VaCQsnD80nLnwQ0w3mcBzsBOB+ygq1dIMjjmqhgVYTf6LOX6cpX2XoLF+/+7a7r0wpGlowlpsZFu12DrNazG851TjacT/ZkTOcw5mTse525KLPgxZB5ViE6n88w/ELGXScAV76G0vrKrfZAe4bsci4vGTEnAwHssyVmbOGiogcpiRlcdc3N7tq0a/W69V2u92enV1s15u+dMmKvxYpiR8iJrDBr2+HFy+ur66uh9vdOI7v/vAHH33wIVRlVUgSIsE0WTAAQMtCuGVOJtx9PZ3rUkrXdR4x7vZzkKgTyV4gXddxoI5jJ4KISiTETpHZYESY2Xlfzs/Pz842XdcJRSfgQh9/8OzDxz/64L0fvXjxwqyWUpJ0sA51sWKWPZMWj8Z2u51XT199t9v5Qs6nZI0IN4gcIGQnpsnBN7AYhmEcRw64hpnbqKquo2l11/hcfY++jDEb9Cen+8Smn3Uf5l0IYJG0mbdrvjciSim26Ckwv3++fr6S6Y6781n+msPdzSszLi8vOik3N7e3t7fDoNpSzSgC7joza26SO0gSip6MN0fdSacxv3BHLHxKpvEP8qDMaH3541WyCEvNtXhlZvKd17Dtsenng6R7Rbr1C5z5pwpSX8Sd6WXvwSKuuvzg3Yt/qtJpx236NT2iWrlWZeboo7n2HrUaTDebc6JQVXNnSnsyiKKwBMwaV5bP5CUPHr3RdV3HXRgYHGYicrHZWhAoqlvVEdXqMH7327/+67/6G9/99vf/0l/6Kz/701/7zq99+7/5r//rv/O3/9sfvvPOql+VrvWhBCctEpGAwDDMttZhfIaTMssZ4KA7MmQ2jzBnyuRN66MzyxxMUmjp8c5yafkVaK1lDmawNw/TDQ72rpMoNI6q1YmjdCyMrvB2Jfe3qzfvX3zl/sVl33nf4atv/cIvfvOf/uP/AcGXDy7vP7j8uZ/7xi/8oW/0Z6sHbz28GXefPH7ym7/5m1fXu6fPrt9/570PPv5klpA43vz5oMdxVNXcMgmiKV1fCCQySbPjRpgeGYLNOxUW9eWVD9fnxtEQS3F3ItuXUr21KoRE+PIb50APTb53ZukSodm+Zc4xlA6mjlA/boMEaoKZQRZElL1wgsU9maAiQwHhbuBC1K3WByoNhlkFERXajYNbZdBKuAcpgolYut1QLbSqaXhXCkhqINxsNGZWbq6ZDQqgakR4aM0gXJJFKTTIQQIGURdBDoQhAkFczS2cWtkSB5FbqBpxqIcl92eEISLIppuJcCaASxAbYOEW5BQZUlA3T2x5kQQiRMPMJeMFzJ3dqNXFHUFy0r9NH4jAgINAwmW1Xme5eW4gNcuIXyRZy5R+STgehBDBQlN303TGQAR1Fe4E2e/Xw51Fsm5MJh66pS1eWMDhpXFEz4o2AyRB2I9jNSchECxa+SWD3Z0QIAc8E7aW9Q1AJrqyR+ymX7t7CSg3nimz3ODpCMdsqjFx4aRIQ0yVAMwMBOjQN4iyvjehDlxk7hdFre6CA5niJ2YSFiEIJROMA+ZepIDgPka09XO3FZgSPbnQxKNmI6WkriOPcIRHhDoxiZTWiCgT6SCm3EOeSQBhNCY6pmxfGkxpBCfNajCBxc0iHAiF44AWABCIYGchAqCO6l4tqtpYq5l7tPqaLMg1nzDhkIOwWIy7+uxVr8wy4kj2TRWcnrzwLUy6+OArsqxHYjRdpql3Q358KorLaMGxmg94aKT3K9KJJKuMqy5VyMmnllHbwF1d/hPKfjRTafb0JpoHLCySu9b2Sy7yMtPnU22UL3acesA4uMHLnTaFJAin7St5CnYd3XsphUTmcGxGuBKzEOaxiEYNtRLJ5eXlxf0H5+fn9+7du7i42K7W29XqbLPadIWzpxlIgaHa1fXu6vp2u92WUm5vb9/57fH6xTO4s3RmBilMlMW1GbrOsFE1RWJzDphJAPDQCHaX3W53e3t7dnE+jmMijszNNGq15nSBzIzzXqqbBTOney8qvF7dv7jcbFZ9X5iB8N3tixfXz997/913fvR7Tx9/QkRC6ESYJQ4U9wYgw45LMF7VYaz70DDnsQ7DuGuNphrJHyE4CNEySACmHnKTQUZG0BaS1GEcbnet0YWFjVoHrdVsNBtbe7/pUbanDRynS778DXl6FrISi2KGVOT2DCc3SLa8oiCPrPlO59/dszsvExsQ4aUUIdKUn9EEyMG/9QhzB6XGmK3eu/Nx9zSTiCHEZ2fbr//Mz7716OH19fWHH374ySef3N7eDoOpI9yCTIiDEUkE6obJFSxdN0G1kvRgstTb8hoIWDQVI365lMArsJ0/ec6t149PacO6jJrmC59//rGMVtxBmb70ncdBh9P3H5yE9FcWYvBVQvtwBdCsQiewfOBAHMyLPwDHgKD8bBzjaICmnV96g/N94c4b5oOzfNvsb7zqOKcrhyX1g3nQVHbhDfnUFH1ErRWW2eboCpfCTrDAqHsqIiLSlVJ43ffb7Wa16fv1Gu5wEhEo72+Gq2fX7n52djGO4263u7q6uX56/fzZ1ScffPzhB5/8d3/r7/8Xf+2v37t376MP3vvBD34QhlVfWA4RK0pDnUIAIg4hJ6c7vBt3n9rRzmwLjQNpDtMiDBDJ4zJvBpqSxgTURd8gBlG0amASnrEDOQdDeDgTMyXIlPLZelqnkbTGIV2BU62VJpoer+paO6Y37t/76psPuzCz3Uo2lxfbn/65n8ZZjxiux9ud7s7OV7/0i3/oW9/65s9+4+uD6e+888M++lrt6mb49q//xpPnL0rX5dLN7STnzWhmtepcBYA5EEBpx011vMfu6OGdiEYenD4ckD0XOEBTK5m8Zae0EEMCEV5EkkvIJ6OxyXPKDLmwNGvQ3YHOvWlk5mDmBt6NYKIihcA6YbDTy+CAZoXdNDRdWXc0qAcKe0oeRwQHBzyRIM1xdq01nS/iUEq2RWUDF1FT8hAhdsCNQV0n1ze3wUnNhQK2ZGV2jOqlcEy0PuqZoWRzi2pKau7qiiTYZbg7iAmwcLWwDJoAAI1mcO/KSqRzd9WqbkTQ8Jjydh7kDgsEcZB4kosQqbuqDmNdr7fZRsHcVWs1K5Tb2CyhYxFT+24CUa0V3HYOMyHBIEA0HrKQwiBM4WAqpZTsG7k8DNkouTXampJdbXijDSLKXXdUnj5t3KlhVx077mgiiDKEu+fHdrsdTREpTIjc9LTBh02cL6pqTAhhEmbPLrQeESJiHlq1wt0OitnnMt1MZcIBjKFNFjeR3UJDmY1NhioAzEgYQyDcNBdEEhZBlORY6fwHwp2npQCArF7wCAERl7RaRnWikhRw6ghQYcnzQkQRNPPLzffYYgJOzJyef0gQoytJQn6EfzPLYKZHkJOHIYm1LCh0YCpEyDhVzcOZDaYtpiRMimknKpk596nfSMpSjxhVRzOzDFYtypDitA1D08eHWEczre46Toc3T5qbjlN8johsPbcAUU+64PTntnSLmSxfjOXPk2d46D+wvEJM14nscNViQNE2C89h1HzfqQ/8sgnc/fVknLijP944WOERd1Fws3kxv/OwDhMZ2IlWvmuf/dhz+zHGPMmXfu/Jih05IYv7Onkzpj1ZOrHGxO6qWrW27Ud88o0isj27d+/B/YQNX1yc3b88P9uuz7frs/VqJSSIABTYV7vZj89vbm92Qydlc7F+dP/+716cuxpEVquVByUPPCanfPbpW5MnHMgXwomYh2HYbLdM/Pjx4/fff//NN9+kbFYcVL2xIjVg2Kiq6hb7/X7YjxbeZYlzKWb14cOHm81KbXS3rhQiPH9+/YN3fueDT9578eIFEfWlszqMZtT1EVFKNwU/1Q3BHgvKm2HYl1I89Pb25vZ2r6pCZdpdzMTc7KekEzsKq89PJENo7q5Da/NDwWThGqqu1V19Skjg9SRMX7b3e3fEFKRYWu2xrI9Y5A1SYsz7swVMSVwNrq1T8CIzZjMBKcv0FE69hZdOiVoNlJxtNl9569E3vv4zu+ure+erN+9d7Ib91dXVk+cvrq9uhxpBHuaB5Pohm5rDa50y/3NyNO9lFneL78PLZMKrDPo/COPzzmopML/wybxGui7Py5Ggm4VDZohw6nBO2/KVSKiXqqcTDf6qWS0vwotOp6+6nVedypPvWiqju7+ejrYnTw0JMzMTUfECBly8oIDJBqOOSiGhUgiFuYRItIrHjrteeulEqISSDr4qtNuNOtqK1xx8c7N7+vjJ9fW1mV1dXe12w+3t7YunN/ubnY6wAdzJ97//fQpTNQqcn2/7vldVz9hSsm/MNtCrQxuvGkfrMNHCL22kWLAiz3bXUhBlem1Gm1NWq02Gz/ziySOj9NoD8LAISRqx6eNhKCXRQnC1Wodah48/+DBU33706HKzrVoFuhL06657sK311kgv7188fHj5xsN7f/SXf/n83mWh/v7lAzK8/96Hv/3bv/33/8E/GMfx/uVFlibN904TnHumK5pXhiNTVsHRkhl+3IiLJpaimB9Ac4gwP4a2Cd0BeD6rubMugWdrcPKiM1iUMQXiRNoKsWNihcwBYMYyniyyx8wOG8zQiOZMTKNmhWYjp3WKUAUH8syztJzixMrqIIaHQSNCnFDIs10AEQjOIkCALRypaqwJkEz3WSRvFpK/khjuYUBHrOGwkL6Do5pTmIZ6VQ8TEelFA/AIV3NUj4TROgURVQWCwKGuXl3VDBFhjkAkYSgnM5YFZd7YskzUxUFqno6xT4pVWwLP2FCYwj1gHCBiY5cEnaERDh0O2oJ4JSLfZunYi0gZtI6m7iilII1IcFY7RNJzIZJTK92FoHaqW9Aw7ze7YVDATURW/QqA2phwV5664JB5C40AwzCUUkrfEZG3thkNgpt82emeJlEZYSogaSy/0+2pdd3a3IxdiJiEIaLZuqwp6Ny+TNx1QiLjaEDmj2Py8YKEKRLK72ZOFD0KceulNAudfEycwGlmosg8sABEwcIEccr4Bty8MOAtZiksDrYIRBEpXd9RmntBAgIdkUCXzAtQYtVnCAeJUMLfLWNILA6y7C9XCksB4DCram7uBqZAHuKApctHCMrIiTcAQbrBUcARJNJ7REkBBE7edLMYRx1Nq7k5kHvS1NXMbbbqYkKiYk4i3NGmJ2HNk0HTyF/zeARa7veI6eUVCjLJXDhe956jsRSX0f6NFHNT0jjL41uXLxEhStDsPO27+K5Pnefnfc9r7+DIFGgLOP2OY2NijnMdXnyFJfSvdywnudwhs+5f7i5mXtK+0OQML98TC/cjxdGMHKu1mmvWUxGFW/XuSIluzrar7aZfr8qqv3d5+caD+9vzs4vNetN1PUEQBtbArvrVvj69vr2+vX3x7Hlf5N7Zdry9ub25AlG3XjWtSa0nuzQnJwJIQr5lARaDwayuXSmrstrf3j7++KO8QtLjjTombDsCtVYdxmxwqW4JFuJw4sKMUnrphTrqhEUEbi+unn340XsffvSj6+tr8jjbbJl5b7Wp6gCDpgxTM6diwX7srqX0QNRaG3Q8WvoXaAyYBGFqEJhkiYjJdo8IwInDq4/jmKgKBoWFVffqXpNgMpFKIEi8pAl3LMyYl++f3/9mzj7Ak41/OOaTcqVwIl7u0GYDzcUgHEchldwALSFcyKoRZau8xrYc5mYe2feCBUCY0SR/MkR7LGIIoLnFlDu8ah1Gq8rh4nq5Lhc/9SYXub3df/TJkydPn93ud0+f3+z3+2oQgbplDrgTNgMtvIuceEwOVXudFgLkOLP3B0B6vAou/+OyCX4RY7kbXzWN2es7SO/pdeDkiRzjPH+sydx5sbkDd9+8/OpZtSxl7HKSdy9+9MpncP9ev0pMkpZB5jIjAmAiH3d7IipFZCL1dXcJ0epz/sOC4CGlUasKcU/dqlsLi456dXvj7vuzevXi5sWzF+NNterjfn/17Orq6mo37K9f1BYxt5Q9IALMLy7P+36dRTTjOO6GcbVa1VoZ2fa8UQEDgHvG8SITEs2WBYiyJnLy7l+2KERIaq+u8NStwCcGLFUNtYiI0h6BTUk8nwIWcRyeSwPYTEUEsiivmP5DIjndIqI4ixQCCGy1AlxKTxC1MUPntdbvfe97//Kf/4tf/qVvnW3Xfd8TjGFf/5mvfuNrX/292+sYbs/O+zce3b93sbl3uS3EQDy6vP+X//xf+Ge/+s//9t/+O7/1W791du+y77oIcz9UlBAkpoZ/PhWgJW0tJsobbhmxBmVfLltL2FLC0cnGw7acQZfR7Pr5CRxFdmLKLVu4IwgJ+s20nZciYDCxSCCpaghgcoR6eHbwITZXTiO2jUybJUcy4phR3XJzUDAo4Q7TSxaZAGZBdtfx4AgiYxCBzcyZ3MjDzI2JhttKRBEEdwP3TBFQtdVqBbgh3K3WWqvnw2YITKNx7sDcw70YRbiHwcMBC7iHw6MSQdzDNBwUzoGwAJgzT0qgqmE2WvVwEpEG9m6rTYaGR3B39VC1oBAuIJZuvRIfasXUnpck22jAgdVmnWHhcDckn4FHoJMuN0XhVrfYaqkPYOkAElFsBJRRazVlyImGztM6GfktuixSMjM/K3sAzDTXsM3lTCICKkQUdkCDREQHQLiUcnZ2xswZofEJQ8szw0HuWpDBMj3JhdzdGimWp6nIzKo5BxYGuKibUxB51iNPwZhAabLDfQ8wZ+1qym7maJAGSqIqomy1RRHBXckfzJOWPZiFOFqVPAEghLV0B0d6mxHhCAMzgYswJILMKUtKiYnQMaEUG3djMBcmOtTH5ZELorbU1Bac8iTP3VExtdFL/Bum1jAuLoRgEJFZgNzdR6tIap/cGU5BNndjjlbp4bXuWTrhNGhC1cdxHEetpqbTZljEulQ1s+Mpr+ZdlCmFmOZ9UJPHrunSalzeEVrPg6YOlpsTr9aOhw28WMnlD4RX6umTkeKREvZlXqNGRNd1yc1LpdGnz8mZhWV/OplP/6IvetAMgW7r/+kzOakwPFm3f21jmsm8SbquzHtgRnm86qPLX2cTLUfWoje2qZZdgVkVuXM1puCQUlar1Xa7fvToja+8/XYpZbs525TCCR0ijBZ7tcFiX3UYVbXq/na8evr+D3+wu76WQiBZlvalzqaEyc53cfAmEvrB634NICnor66udrvbYRhU9XY37K3W0apbrToMg1eNyAb1CW8j7krppZPCDJAz02azEaEP3n/3X/3mb7z33rsvrp8nUfzMAdFJKSzqOp9HEgYMBl0U55vZfv/CRnO3DAZlL0ZiikC2AiImjwNcjYgMB7khC1ZSIiqluJqZj+Ooo9bqpjPclOOOXT7H8wF/TXL4Ndvj845AI9156bfM//qCBbdt0dYB8hRegcWezPzMXD82a9IWWZvaJmczpJdOL+Mg7o2TZRh2w2433N7q/oZ0LCLrvlvJpu/e+MqjB0b8wQcfP3/x4vp2N1Tb78fr21tTuNVV1y3Ue4ruyctdYFPjZZnGPwDe7yvHjy3HvjwB+HmVRdOvL9Myn/dL5+f4WVThcmIxhRGXgKxPv8K0f+5+6dI8+IwzOWiElL1mEWwWIqP1XQlmKcn4Ss7uyigOYg9nkl5AYGGvrq4jlGJ09xfXz6+urvb7/bCvddDrF7fXz6/rYDC4TtGGXAMBwCSlUImI84v1ZrPa78f9fr9er9fb7W63ux0HZg6aGzDJXF4aJ7d5EkV6xcrPf27IzmlgEjI+JXxskjaYpActioFnM2zpDwMgBPMhBzM/ZcrqPA9nSFt8b8w5kIgwDYKsVgXQjz766O/+d38v2P/EH/ujP/uzP/utb/3S/ftv/pFf+Pk//2/+yUd9efrxhx252v765vkPf/TON37m5zRUnUT6Z8+e/fZv/zasUpFSSjQyvyYSCXMh5qHFSf4gUgBwVo74S7bQUumn/8MLi3e+XyLiZnYewhC5XAnhDJhP7lMAFNR1XQRaxpK9lCKFZSIZpQXdw1z7Mz+RGRAUEcwty7yk4bfwAxcPJ54f5KAk+c1fkaaHuRPQ/jUzZXRePKrqSIwAEsKNmjaACMjdRJSIPO1W04hAprKEFI4IdZv5Ymw/RgRaCT2zdBnLHsda+s7M1ckCHmTtZihjPyA2y240JFwSWJv7XZM1OrIq1YKYC4e5WhCBiRFMIkS1KVYCE8vkIWqyR0dkSCp3NjVo6mniRCRzZ1lLlPH5pJHmgmDhjigpbXPyHBPwwCO4SElCLMr6TAbM/RAnyrCUuwJEIMDDqodR6yDSHjxN0C8nRMRms4lYEG6wG4KIONCxGKiqjmYUJNwgB8Kc4GoLFyIwl8JjnbAfOIgDMyulB5DQrXSw89cJaphb/KgEgpmFEHOWCQSgSHH3jDLMxpy7537NfDS3uE6Akww0IrIbpwW4gEhYR88vARVTG8M4scwZ0rJISsY2PCycmeEId2ttbBgAJGkceC4x5SIUrKowqzV5BlvSGUReB6BouLszSUJBIiuD0bDfWaYPOMjNMpPDQLjXwbx6Ag9iEiVJleJhltnt+VQv686XKm2p7eIVydLkIZ8N4vZd3EIAs5xa/nwQc0uZhyZNIgAL3BmnRsaU5sV0kHi6pGVddh4nh+Zn3RNWysfGa8MgtWr0fz3j5eb+sYESi8DEZ7ng3Rd/ombuAbty2FFEQXOt6Z1Z3b01StapO29j5q7rUml5OBcCIMsCbwCAE5I+l4psVqt7F2f3zs8jYrPq+o4YUWsdCE+fXz/djbdjfX5z++LmGmY9xZOPPv7hO79Xx/1qsx60iohHyFzDPKnhRanScs5MIiXbobnXWp8+fXp9fX17u7u9vnl+fWMMNwxaa1UzS2Z7DwdJty4s0vVS+n7d96XwetOtVp3b8Pjx4+//zm/99u9+b7/f9X3vjnAfx5GIsuoioQ1EGZrNyBpwTGOj4353u9ea9AcHInEqEg6GiHSpQSQF9qIBFXmE2pDxI03JCVXVsVr1ccwWS3e3QhbU+dwa5DNWY778UHzu0TB0p1fLPTmVeOS6HW0ed/GAw5vZUzApKUybkEE63+H0qdmEyr3R9z0FhHiC0KRjfBq0ikkYZsiWPDoGSMPdxwDxti/d2Yr7ftP1u+GN69v97W6/G8arm91uNwx1vNrtqnqK4vzqbII6G2T5dU0UT8boPIdPW8U4ldb/MxmLSMGJzxkLX/TuYi49xsh68NeO+bm8bipTDJonuo3XPLilwDz9ljs3GMcN6o7eM0ny08+eXOjT9tAs3omoURC1ACJUdRgG4uioT1SGqzEzPMKatHAN9RrqCK51p/pc3ffD7fMXL66urupotVGtZ4kbhLhwAaGadl0fTKqOiDCuxKUwglW9mu3HUR2rzXq12UJ4HEcQBSQophAeg50WQdjD0r12zE+fjlXe0TpPazJ5AnR4MWJJPbp0m2drtl1VDgwUFs7E6YsQmITBDCbyKMlx7OGASEmL18OkW/3m93/rZn/zm7/53a9//et/4k/8iV/5lb/484/e+t/8uV95q+9/6/vfFeHtpr8dbq92L0bUjlYuuN7dXFycPXr0cHPvou9LKVwHMEOEs+U5TV30ZmRNG1REJGpVCmECTzV0R5uuGfaYvMpOuhMLYVa+d7fhvFaZiSYI8RFUc7mYmSxE8LT+mGK8KcYP/BeJispfqSRlky/VmdYMSCejVaKDgiIY4bDpdAca0DUAdJwlSE6UdIZTLaFwUktkC3t1DRBTK0HN724UH80RBSw4UN3Is2EtJ804Nd4hMAgo2T42YO5uwRZhDgvK2nIgnMINVZ2JpRQhmRLp5JFOWeMmT5ZfLkkqZhGkDnNnMHMxWBjgHsi8tFnYfp/1kmiBGwaIGQfk/JyXSnOxVbynu5VeJVEAJZiz0xmI4Hp49tPmKKX0nZhVM/OEDs8pyBYokiQ8Y2ZI6/TdnKLiQWJmYTaHPQxhhgQQBDVkl/RdQuZ1GLuuI5CqVlWaKMtbWVQpAsDZyRkUBBHz4ChGQQZvTzwIyKMi4agW4XW04HAi4YZvpUNcMjCa5Y5FZDTJjAjmvNm4q4cxJRaaEOYeGsSO3A3BQlJECMxhCAQ5eZYVuEGAQ3UrA6bq46jMKCKl9BEW5nU8hPZFirsxiXMAxFQMQUaQjGAwEeV5dkQ4BXORfrRx1PAwmhi5AWjjsmLijqVLeR1ArS3MxkmbQgAHU+l7Ii4AzBIoD2bpOo59PQkx6ISxmR+3TKiDPJ4HMZH7zqaSmDtj1gezaZivzOYeeftpFtCvdICzrnpKei6FHRHNLnr7ulkHUeu5l2j/9oaIQFDyJrQaenJ3rNcN0ZChpIggynYRRgZFxJLG48v1h5cWEhaxWyaySQUCS/Mc8yvzJXDs3izHF+Q/fO7xCrMse0FD5DTpx8c1zwezMkBw4rK8i+QwJxZwNlQbnaKnHnDqCyJ8kWeLOUFqOi+vmVFAgACZ2c0wPn78+On17eD+7JOPn37yse1vH5xvnj755MP3fwSrzFtV3W63424PouAJDzyRYLWtNcX7mQjMJBxBdbRxpVc3t588eXq734/jeHV9W2vlVTcHkksphdjdVauIFBEuVAqXIl1HUkIkTPcffvTe9773r77/vX/1/PmTy8vL7Xa7Gwf1dDi9SAlTbVpK1avqCAsWUq8ZmM+ho7khAkm9VKRXdebCJFSE0WLzRBRhrfgC7VTneg7DYFUB7qVYYNzXYRjgMI3GNh2gZCJsT3Xenz/hANMrM8wHA3ThAAdZqw3KUDjMndW9TF2RPA0XRPL0CBVnjaCZYiAvu2SHTi3sai85EXPkF8hdQwcn3LPnQC8F0ug81NzHQcfasa3P1/fO1tUiItTj5nr3/Pr62e3tfqg3N7thGEZVsxT1wVNXiFlQAw3GmbmRJmmTWesV6/VSzoVp8O/7yf44Vzhptfplj7veL44Sbke50JMFd2/1VHmhu5f9kgT10ge++xW0SFF+lgncVd8tOrBQVa9x4H3qO3hQwU3du1nsdnt3Xwdh3XUkwWGmRORCmkV6lqQJcPeb69vdblBVdXidEjrUEM7MLFwiyCw7lbJqdhMk6fs0Urqu6zfbYbiJiPV6HcQRoarDvq76zXQ7PLU5ighiOVg7NGPd/dNrtufVyzEjRJpucm+R+ukwLlcsIsg9jhsIz/ttdpV5SgO4ex1GLpIBu2lvYvqnIU2467quq3Xc7/cBf/DgweMnH7/77nvjOP7LX/vOP/kn//R73/3tf/vP/JmLzeaPfutbv/D1rz16+9F63f/O773zr777vcuLB195+2v7scLj3/jlX/zaT//UP/xHe1mv7m4Vdxu1mpmqQdWnRutZktM8HHchKcQisvRQ02EWYjDBACIWZLIzYBQMTpgxhZunX0NgcHJicQDMjeeZCBLElBzC7s4M5kzPISJUjYiEu8VTi9npjQUFdESIgEiI3CyI3EDLCqOWCkKQh6ZGCIejMNU6ilAphWZvjpiI1BWAq7LMgFwCQpitqiKKdMFw82wgVOs+PNJLymu5moULRbgLFbUI8/RrRvOkXwtf9CgNGi04q4lBHtBw8/QCSh1HmFdzVSssq1WxiGG0IESQG8yseiNhJ6Kx1gKowS1MUo+1klinlHwOJg7Okgc3SAFzESFpx4iCiai0aEJyjbbQU2ZNOKb1T78nwspozkwIctPc3ZmVzUbtDHL3/eBVh4hY9yC0PLYpQNR1K+EOAen6Wmu4iQiVlmE1uJSyWvW1DrVWaRliKqWwYBzVW10xzV57TC5LxsqicA2MqhYhwVFtGKqGl74DeFT1YBKCN0nXCZegCGOO2/11KaWsilNQCCN2u92622abvcSoxORuCUjDmUhK4YCpgUvXrbTCIEEARaa9habOJxl79GBhluLBNhqAJIAOGAcXyVx6rFYbALVWh5FwhKsbEZlaKcIJU5zGMKqIwKmUVcccyfeajn34MFQBQYp5syl0VCZSg5T1uuvMbL/fA1itVmZBVIjAAhCJdB663++JOyLKswTP2t0MG8FdQVnD4Lmzh2oAqg77oVrGloQoivuA3Ezt2Y2CFE+RuPHwQAauwimQzasO6MpoGdc0+2Q2AReOq5tlFDKPdEQTWMdVvou1a8TdQUQhaUBbMLdQ17J6rXnDnLmYA/4n1QOmoPWshwKqygwd96qayBYwERVhgofV6ogsHY9Gi00nXNAv8d5PFd+n23BL9SacCuxgBWegNH3g5MSMmfMigSnHadVYgDaX1i3ayp6i1rEMQ9yZFS3oK368kVZBmwhlYsGIigiV0lVTjcTwtG7y8CAiNW0tTBGGFtLmVhvpcLW8u0QdM5kng++0WwICFil1P5DA9JCC7FhWXc9EfdeFuavlz+uuD2BEPLu9/eH7H+1q7YmePn18/fTj8eZ53d0+3r949913njx/wl3XF9lu1+aVV9I4FKixz3lkXzRO07fBpTwcyY7Eq/U6iDzoxe1uUKB0+7FCZBzU3Rno+y4i1AzufVZGhTO4CK16Wq25FPQr/uEPfvcHv/d7P/rh77549vTsbHtxfr4fd7VWKVTWYoZhHEJrKaV0HSh2+10gCpc6DkQucdiadR/r1dYsaisBg5AIiXA3nb6IiHHcywQsIiBMVbUOtdZKwb30ZjHsRlWzajq6Dh5Dxixa9Ao4TfU2mXfYLXjpkVnkV042Ix+/bY4fnbZnax+ng1tFR/t92mNMTRnElODiMJircuOZFS4iXZ8+bXXruWcmr2pRg5mlK1LGcXRvOBz18FFLKWl2S+ncYI6uX/N+dPckYoywJguz05+wua7XPZmeXVycXWyHYRhvdr0EmSk5EYVaBJXCm15q3ZVSulXnHqV0/GCzHy+f74br3Xiz24+D3g7D9c3uZrffDYO7j+No4UA4WKQQsbqNrjRH14gTWxTuCIY3XtokhjRPJh7FREpPi+roqdFHRhP8ACaa8AXzU1w6ikdPqj3ZOUPyEowALTJjwFRE/nlkVaPpXrgZOR/HqWDPwZP+yO9t6uBlLm5e0KaWE4f7isDUKcMWrstyTZZuc/7+aoeqoWEOK9/W86ix3+Jc8PFrAMg9wX2YjHscojB0IFhafu2cAZ5AE1N2rk3m+EOB5TldqicPRetaPS1UnjsRM4MbwKV4YQr1CKMpeN1KlqZS0nHU1r9mEQcmQljaCSASRyS9ckSwiHseN7gOgSj9msWGYVfNzQNonA4R0bGE1ZanbKKeyEPDVT2dtDDXLJ0jInllANoXwZHMBmU/PFsUpDCzMQPORBE8tbqYljSACGLK7GOrmp0CkdKtAMCh4UTBFiJgmZiKpT2szIlTULj2fc8dRyR9UrBACsGgg94/vx8Rw426++88fed73/2//jd/+2996xe/+c1vfvMXfu4bzx5f/6N/9D/82q995969e+/+zgd/9s/+2T/5p/7Uer3+B//4H/3md35db29XDx4IwcIjuO9781FEdrsBxDVbltAhCxOq4zgAsepXETaOY9/3hQV2WMm+dMzMwaFRIKXLtikGAs8CBs4sEaCgCBhiAlSTwUTE0vFvkE9DOIT6XszUXIWCQQ4IszAnzqvLkmNIw3USiMk9PCJZrAHKOk/3EOFabYl6ytq6zE4tyra5hoE7B8yCA7mb4cHM29VWVcMUFlYVlAYqDcPe3QlQVQpfdV0wxmGnOqbrq16HgywKV6Ui4TFoFfCuaoxWa7R2AIm+90yZUFAZHRGIUPUMwrCqtrqqcAtw6ZzpetxHBBhoDZNcHRqIyBQudf2ZtSrfLjsTCKYThwZ8bnhzZqES5gLh4FAPERGKiGFvVqpIVwQWAXIqwoHqCrcMXRBRx11JviSn4oSksQZLWDZ0zcI4AhpdWETrRQPw+fl2HIdxrETU9auu68JJ1WyszCSp6jS6XpJI3Q1EVEoJGM3s6jGR6IIse1pT67cdzKqaNGjSlWBSCyeoRcAAChZGR5DqVjWYS3hjigZQSmHhnkpEiGQToLTGDEDf95IxH6IghLVkpruLSNbkpTxmNOc/HBBiTqpwQitqBxF762KFCFJtblRPMjmBLRSUAGOamK7NrJSyXq/dlUHS9zZWjyjSH85tv86ZmMUBfkBCQhbBzOYI9VnxEomaAUzUEXWZ/zP1YTBQ53HAsDkrwF238mRks8T6IBrOJGAKBHHiNIu1Kpu5IIEb01tm8hGhztyYvfnI+eF0WH2qlA0nR+Qyz+DkVMJLa2b5SnOVA1NZ2kERnhhAs8LOw7n8A6YQcZ7w5ceJyAIHlYzsRzU5YXdMKMquIfBkI4gILkIiTAQhQaGk6Eg6ijhkr05mG19ctH6pONs1F6b/ybfQcUock/Vz8ob537zKFzLPzzvu+tvubq0I7vhtCQHKvuKTJZ6fEmIPo0hTJpIg0BAwlL4rhbtVXwozd7SAsscxX866X21Wq+12m1wjIrJer1el6zraDfaj93749MlHj59drTab9XpTYOxVYNvLi93t9SdPHu/3+5bBcx+rrjcbzK0spluIBfDBp7ICZi4sfb/abDbdaqOqN7f7m92tSOeEIhJTBiBialXt0UvZbFbMMK9ScLZZrdYSoe++8zvf/va/ePfdHxLRg4f3G1m9e1/YKZvtaIQ5QcPgxPCgrC4axmFnZnDlw7KTa5hlhQLMbL3aprNnZmpjGiEBq/VQAetuSVsd5r30EeEp1qtrRWhEswH+NSAOXjZel6+cj9JRyUaGjoPNK4PBShEWQt5EaKLanGCqHs7SgcMiQJC+Y+ZsF9l1HU0VN2lGI6OX0vHMPz/NsQmZKbpn4Rl949YdkzkRQESF2JjcKgECDooSlc3Zo5ALIsLOV+i71YPzLYgtsB91P/z/uPvXH1uSJD8Q+5mZe5yTeV/1fnVPT/c8eobDnqW4pCAJWmkXC4gCP/AvXH3Q7ldCwEKAFhCk4S5XIofUikvOu9/dVV3d9a77ysxzItzNTB/M3SNOZt5bt3qqmgMFCll588SJ8PBwt+fPflYXrZ89/Gye56XUZVmOpZqZKYqC3apbY500GBsTPDRQBRmZqruKiKm5e7TC7uG3MC07+4Vzw9vcBm8/EUpf8N7Gt7/g5K98nW3d2mt/vH7rUxf3mhC+9YI3lchXqEeu3XrjAD/z5K0LfeJ745aw7nrOtSd9rnq5NhW3zmQcpq0DqVZf5uo2I+wHLYEct80RnhROQ1qNhYg4luWIKXT33xqmw3vBFykg1RoPyBhkVLawhJcZX91URpi3lHA/CM+fg5PZ2B4ns0EER7hhERHezhu6ooy+wcMcBWBDG1H0BgL1mpZwNtcEQLfxzIYNHHlDZQ62f3AD4nrrMeL0/e//4Kfv/vzO//iv7t69m4k//PDDJ4+vzs7z5x8//MFff//Ro8dnZ2f/5//mv/6z//A/v/zS/SlLIuwf3CEkZ7p39/xwXOZ5Til7Q5fU8Uqsx5Edq6gkOykToFbX00sdQU7W8ydMjoa1ghsRww2UQBbClMidw5dzAoMMFvyojMYhAmrSf7SvW9vd9XcUR1B2rTNpZBS80+ZOgpNe9xrg7/XN8YivujmTB76TIMxGBGZuDGHNllfAkQxMzZcGGYPMnVRIXbVlZjjmIkYPwEtVcQBallrAYkwk1Ty6Y9joxUPkTIw0lzl4sEFRoYzWbspJm91ublDT2lKv5EYe05iTu7tRuDAER9SiW+s7rOZOjF70zjzI5+Hubg1vHpY4QCRuBqKGVTN2IQS4KlLlUeAWRkhk3RIpubqyEVGoMhJfi7kB9OgjyHKOhk5ai3FqtfUQFkIphTlTwyhasmTkWo0kVVPmVmUeLZFKUeudHsysasvnmKobSqnF1IU55+i2KKBDVCWFb0mBp49ICUAinJPA3ZlE3c0gkqZpr83rzsGdmZL4goY3i2y3cLCEqbs0DLoDxiwtL2rOva9UGCXMvTDdCGgdkpiZORGRWNuN7s1jjzU8zzN3XtBuM7E7aq3qNnyztrwkh3iqWkspAOecJUVqyEg4uu+mJOZeq4pIIH/NUdXcwZKiTteb6xuVIF5rjW69zKSqbqTuPCwQdyZyRzB1iZBagAe6ZGRmY+vFDU0KXgt++9ogYZRueEM6nOhX9A1umySku1v/e8ivpvncqVcSwlFxStm//bkqBgOMetKTIiYX8ILhgXgoj5NHuKloT4ZnTmRqpkTJe9FDY/Qli7S5mbq+qGb7Wxw3Ta6ttbR9kHhk68WHQ+1tr3PzW9tPn/XPr+PYWktjVCckliN3EcsvSCzihPgqh9BkBGXesLsBAMyIrr+d4pvNVK0YgqXgev7hcHF5vtvfPTt/cPcetB7m+dLs848/+vSj9z/79OPLq+XByy/fv//gcFzc/fz8/M7Z+eXFk48++uhwXCKUhk7sAZxA0WCOXt9FIG9wDCeBix+Px2l3tjtjAPM8z/N8797+/Pw8KKka1aeTSBKWyp6z7HdZhMzk/M509+751eHpxx9/9Bd/9uc//+nPljK/8sorLFJKKbVy5A28dUejxk7sqqpkCmeYqS21LMuRHOd9TjrIKrAbcPc8hTpAVY3xh64Cu8PJUat6Vas17DP3cLq1LqXOSy2qi/+m0c1fcHyBa3HrZnF3VK1szJxkki7z4015J4yMKco5j/BoSgksQ65GdZR1ZixVNasB2Nka3HHL4Nlos2dODhZEQ+AoAyIQMydKAJg8mBNDlAFGzmbGrg4V951QmjJJUqf9pPWMFP7qy/fjvdZaD4d5WZZadV6WR5dP1G3ROs/zfFyOS1lKNYBJSCxNuVa4ughhSqpK0jSRO4iH9jjpN9ukNBkCgbJKOUcT+5vM3fq2WmuHdWJWw+7Ulepvl758W98XwUufLInbbnDde7mRer32R+9ByWfJ55s3+OJRbu5Cp+cP6XptPNe+dU259L+v/7v53fHgm4+udx6++RVc8wVu3LTd0R1EZjbP87Isza6IUPUNwTLUyzpyhKeD9XabU8crAMBBHpEzM2uvbtu+wSHe4zBq4an1KTZv9lkPvhnqSZX49uJjMomok84asE5ye0seiIBgfh6A64iXlY33SOAmcyJvur6sHqJNucmohoPt7rSktF0wzMxJxPP9ey9dXV19dvHokw8/DZCvJJSl/tVf/dXPfvazP/vLP5+m6b33f3Hv3t1vf/vbIrQcr7IkpglMterTp48JVpfF1QBttiXBiQwopsxMXjja0rrBgqi4rxBJvSHyqMcljM58TNbbsmK75rvMGceGbqnlVKxRgzUKjMbTDGQhM6twAomvPnB4XHGX6Lcc1wypbXSCLioWdLrBxOGAEpGBKXiYyQJiFfgAATm4qDssfMiAhcMEhsCgtNPdWZ2Yq4KdyOAyslZRX0PmBoqSaZjVSNA6qOce1iVBRkZwC1AyDKbm6mE/BVtzk0Nu3pBBDrU6jJ2YcUMsueYRxA2swRU81mp0uI/a82CrdgparDaf4TkTCRRgCtRGzJ0kIoqiaAEzQLVWd4suzYmjoYsZr28d7l5KYWZBrzNGaBh/enFlZiCAqda6lCIiOe/CmoxNIpKJxNSXumTOZakpcZI0ulbWqsyJpHGCBSNTrXWZ513KImIEpcB/I3ArbWao+TldEqUoWN3KguBtjzaY7Mm8GljEvBoBSgD1RFBnAyOiSNRw3xJhWGv16DktAoKIRItgosZd72hEsoJeqQVzwWgdq0MMlVL2+30Dg6lGQSkza9GUWJi3gaui1dU4Nep2corfLWJUlNyXYKJXVa1HN+ScAy0WuWgiERbzFgFqGz6mVC2GugosJ+LmESWeVNUJBrYW/WLmZKjUCLg0aAmIiDlRIneljYYYAuhEOgNEDIJFc69T+b5Z+dcP3jCjnrgloHX8nSbh2jVXidY1Rr/LOrDhBV8//ARFdkNtA+5ozG+yCv1oleQYeTz6otD1b+DYmji0gvHaP8c52/PHt/4jJuO2Ox19qCLi3NNiunIq4vQR4mh/YYpG6T4g8I03xc3qPCtzEBu6qoLZQMwrJ3tEtUtZcs5vv/XGG6+/SqaXF08effb533z/rz798Feffvqpge+/9NKU90+ePHny5ElO/NYbr3/y6aeffPJZjLCaZvdpmjSKtdR006IdwJCfmwAZhu6MB1fVw+EQLTfQqaHH10UkCe33U0Sszs53Z2fT1eHixz/54fe//9fvvvszInrttdemabq4vCylpJTQEgIabZlSSs37tVKWcjxeeVWHLsu8Rdz1MTMCUyNJVYdfp50aIAYmwmamtZbSGnUAJKC6FFVf5mWeS1lqLR6ld/RFbudN5+GrPf8Fj2vL0nsUL5DUYUg7rwE+IKYIZhbCNj7agkQIreVeGGTbOQ95Eo2dSzmlCGvxO4e3vpdZ6GzKWRKxS6Ik0oKeATdjzlm0lhH6H9uHHImjbqJaqaVoNYeziJztdobWn3O5U8PwLarH5RUjqOpclsurq4vD1eG41GqPn16YmeTp8uJwcbGwLSxd/q+hLXNnVwX1pyDqZA8tNOlrbcrtidDNccPLaebsb+TYPNVzjq0cxm1S9+YVrutHP+ls92XX9q3b4daL+AZrvT3nxe/oN1xrPNujfs5Ftt+9jRB+/ThWkdYKIOqlTxKstPnfi89bS9kpuucpIuEAE1FZOmqlv1Da8N7j1H1lil6sK2fVeMDnT8v2IutU9EcYQoOILC4YtIPjGbuLfuszD/uKIj7OFB4+aaPOGuaNb0ay9YUA5JRajK9HBHLOzFyrTdN5SvvleFgOBxaapp1qcfenV5f/7t/9+7znd775zd/+5lt5Su662+UpZYDffPNt4vTRRx/NV5e1mteo9uMOwyV3r2ZT6vBO99Zs6nQinUC9pYu7w5Q7A3Cbm9bsg4iox1fiAYEbyw99NZ3sygCnoKHKx7Q074YoJtb7W7NtF+soIAnzuB9m5tYUSstYMMEbpjKosIiiCrpx3jCEiBzEo3zVyZyIEqAOIod5rcaRa62mDLh7qwT1lh4HJED/GoQDFJ1jrlvXfVocBFMnqtWg6gZPkondtAaljsebcY869D6p4/8e5GHbQhRyG+zIvUy1LSr0F7NNIXiAq2IvdNtwJN66pYvxLuLgkbR07+AJjvUNmAuYvCXoiTS0uJtWdWZJKUFYq861sLKi1fkISZ4mbmzdPOUzBYqac0S4tagSkQZgwh1wbdVw3DchT/tdgl/OR62qCBpnpDQxs1BqnqWquYmIpFwduiwl3rZIYgG41Copu9tyXDQoDYhrW/2dBNrdgYgzECeQWPCMqUXlFnNtlV5q4duIUERZiIhciAjO8QqDBk6IwQDD3T26mXWL1okABntHHYOZeDdFbhlYzZpSreUThblXxFkjayZt4AB3ELGAxYnStHOjWmvtnZwcpBbJ5OLuQSobRoJFkImZmByB+AjguxMR3MjZHdGPs6ipm4iYk3rEvtSbO7qGheIvRADqxuldvcwI5ljr7LRq1iEgcEOst08dDdccEENdDce+DdouMzNpTTnX3Ds18bTN2NC4UfCKX5N060bHiUUSeMM16w3ATFWpEDk4EYkTwZMIMoS9qmnpCfCv5dgqzvGwOFWu46P1/E034Gt6+u/I0QbTOql2U6z/ZO9kZT3iPkBH24iJufMmw9CXqUbjcZLoT4CUWSSiwq1Nu2wq8nPOQjylnJincCaYznb5odUnjx795d/89aeffXb37v17T58ej8vjx4/Lcd7v8nI8/OynP/38889Tmna7HZFEc6Ap5SBAarWsPB5LzEzVNfrosYikWN7Rh6yRGNU63MuoB2NmtZJzSim50tl+yolyzoB98vGHP//5z77/o7/51a/ez1nO75yllA6HQ/RgZ+Z5mYORkgmhQ9291lpKmef56upqnmfAGHDXrQpUA2AMyZKmaWdmy7KEymFQYpHewLaohgNcq7EjYlVaTavVpda56qJWHBW9COGF1saX2lBfdL79Gl7SuODWQxiRbDJ0Ze1W1cloChIeeFXLJIlNaZMqp1qMHUxJpEWfwySjoPwnk0Q7znwht3tZ4cqCCLbL8uD+vfP9JEBmEUEQpIXopChXk4QEmBM7UwLg1QEkEBHU3bSS1hgS4ChmphYEOUWZecp5l2nHORg1DefLg7tF66Jm7p89fHh1PC5VH7KxFzC701JAxNwyz61q1xrLC4U5NYrz4MGfMcwldMWtG2G1MZtwXVw/62jr4csV/37RsTGzvrJLbhbtjZz/r30nHjb8s++7vc+qOLbjeZENeKJQonDqmnPiz0moRwR5k5cjCtPxlouPO27H1jXI5n6b/7Vv8+ZzGglhu/bXzWWYuadBmsODzeRwb97DGw3STiAwgsUHvvaDfSFg/9Zw91PEXKiK8dTMbHAjXWsj+jP3yH93+dB+78/mSmAOKt2mKikgr0QexhigquHZDkwTO0aobtge3cFIx8MlQTxwuJLNtRRNKXFmmN25d373wd1pvwN7tULku/107+7dV1957b/4L/7Lw8Xy7//dv1+Os0gO+rGYeaZEnIiTuXGSkZR2MoVvq8e9vVRp7WNUc14nCic9O+K9MICA+/YMbZsnJmmOLq1bPeyJkGZgImLt3EkAqhuBEjEza62R59NuuIaga/EQwrYRcFWHOXMzWt09YNnuhkB8wdxb9aISEcVdwpBGeORhDkdxAAUblLanZBcQq1VVsJMQqkVrbDbTaBBb1VWNTSUabkDGOm9phZa7BjPBoQ51M5Cbs3lZGsI3SkQVwQpNJLE0W0Fo9xrYOzIx3kQU0cQyVbNWdxCxFQhIwO4UTO3hfAVfGDuF3y3OFKZ6K6qhmDUyJ+I0/OeWlY09IL2NUq211dS1+k3m5lknzgwiiICdkmQCYGY1dn2SxCxaaq1GkJwzCGB1kILAid3diIncSbt3CDgJZ2Lb70vRNE1B4B1Rc2qVCdbsAYqKKjU4SErRUQywNfqHpFD1arFpiYLXWBrjZow9NsY0TTyKANsDU865jkiPUZBtw818FUneIbsguFFBlTABRbYisqPHW6Fyc/mYmXlZjrBuMcVezImdIEwOZ3K1RWvuue7AGKIFfzhyR8tcjWAWFk7AzMydRBKzqra1n/Mu5mqe5z5L7IMbiSVQFcTCDi9aTdWhjjztnXWxBViwOSxW5w0/qi3l/lIsaoC97WgMEXIaKB1uT/zCQIMCntTuBr7hJKsZVxORUxDcKpSvxe3iX1vFQ3SihW5e5doFh61O1iCO1AOlRNQ8E2aflW7Rpl+XPzyMxWtWy/aXsW59CLPN+bde82sa7Qsdm2H79U/aA4xVd+L9wsdC0v4I2pj0Xb2K8DRlYo+dGngTEMF6wKXdRWutl1dPj4fLuhy8zvu7d++fv3J3yrDygx/+zXu/+qXk/ZnpvFRJ09nLZ/fv3K1FP/nks+Phirsf69y8Vg4LJtAV1iz+TaUAuvUQAoFrrVZaJySY55x3u93V1VU8b56EFbHeiJIkTFMS4c8+/+wHP/j+D374N4+fPtrvp3v377r7siwBDkSvU4qMRZNwaqq6lOPxeCRywFQLEaXEdlpaH9KMnNHEkQ7PfIw8NEvRJcwJFogLOWnVUqpV6KKlqAap0zBZX2ytfaHJ+Kzzv9q1fG0YIZ2w2eYhFtydU6sBMzPqb3lE/cZ3mRkkqjqKyrpf3fIeTbBs7973BZMnIQbOznavvfLyS3fvMFUXSknC7A5dZzBVykLM0XKThMXMgtfb2JuBD5sE2orsdJmPwZHIAMFgRmWA1DpvFdlOeCcC4Sm/cnU81Gov37s7H0sxf/zo6dPLy6Ktt3wtHk22hCmKcCL0s/otTFGfNizDpkrwvEVy2xv5TRy0yQ495xgbHM8d28lHG/0Vd3rOyUPOP3+oLzIt18551o7bXu1FfLlf4zixDZ41BjNce65A9g410ZNO4zuIoHy/wniW59yLiEQkqvmCnGU88vD6BjZtO/5xcb5Wwz9U23PfyJCr16ysdseUuHfv69BcYHOXE/T1Zkg4fcuhodo/rOXt2nM52GHUAjG+YTaOkbQa1M1fQqCJSK06H5daKqdkBlWVnHOe1GveT3k3Fa0XhysRuXfvjrpdXF397/7z7/1n//n//v/+f/t/PH76JKXUnEBm55YJTClxTu5VtWDHiVJIWmLeKu8hNsGtpYj3WBIRDaOPiMKivmlVpnBMeTU/hvm3mcDt614XUpPeTUiTYq1/dEKw1TRoNLoXDcRkcm/jMpauwQBSVaEIJYUjDQdcUUiTe/i57t54sqGErGocKGsPwgkEJWx1cBB+EZubORNBFZXAUcHrHEzRbpTSSmHdkg0MCNeqEQZpDitIzXSBqgYWItDebcEyj86k47noNGnhPXkVsHD3zQxEQRC8Qy3j5YpH0IFB1OhMtlsy/GhmtniStfpP3D3NVYFgi3HAogBUHdw0X4swhbbWkBhMapFdiUrgRt8Loupmi0LZXQgyL6ZsnLPB5qXknCTvVN2jM685kYCbtyYSzR5sqWoRMeQEIiYWoVqKmdMmfWcGF5uLSsqScgsqRF8ph0gqpTrTbrenZQmwPjNUK6JzWaCpWQCDszq5k4PBKYp9PbxwB9BoOlrQC+5wIxdJgaywAEJzYqaqVQGOjFOAzBhwkKRw2oMUVFWrOpkxw6MWauuMsdRibO5EIDaK6nNNKbmxuQX8xhBd1rNq9NQ6MadiqqopWAjUysRDRAOSciyXtjZJiJMD3kOC4SpUM4BSSpRSazVOgDOBErmBK7MZ4BF3WWX9FgbZpOomxNW1ERD5l816dW81xE2IDCosoJnqZMTOrbFZSDWnDjhxr70WeM3MdO3Xp7d9xN56kfjp33Ft5O4nfRpoqzYI5pWqmqVVNETPMbJRbHxNw30dVsK1Y2REcTq92MzzgOuMDOr28bug/9qH+oKHR0aXo+Nb07KBLOrY5lNbMNoEPMPQpPAlMjtU4aXzIjCv3nIcqqVWca3kOmU636d7OQHYv3Tv7j/84//wF3//p++9e3U83Dcl4QfnD1579dVXHtz/8P1fXFxcwMxo5ZAjYmhwixrMQgTF5jc1YWZp3BiNQMUxSZLdtN/vj2VZliUiaGaWc2YikHUOgtbSjNyOV08ePXr03i/e/fm7Pz0cLs92+/1+ssZGV0UipajW2QoAAFzKXKyq6nE5zsuSMoNbuwUSgZ7kSlrawaK4YymlYMMcppv6ZJARgYVVoxbIVd0MpZRlWZZDhUYWAuh847/B49fJ/cZxbUcPS9Fb3Re5r4XfY7tRx3F1WHse9lNKOcX2dJ+mqS5l5ChqcDQy3ImSQBjUO7e5Bw0uYCwpJc5ED+7dffP1V++en11dPUqxTODMEX9OHhQjvRIbpyHI3szdGM5MiSOc6uWoBMrCzKxNpqpr3adcTFWruxEZjF0YTtlxnph2093zOyK5Fn14fj4v9fJwPC7l8vJwdXV1nItqFJ/VnHaFPOg53D1auBG3hmEjqgcAJoD1NM/m9dFJi87VxA8D9HRpDUn4fMfjyx4jFLH+5Tb586ybEkWriWvmNfCcZXrjgxd8qFtP2yrNEy3w3JOvDfVZFwSaxj9J+35B4CDI9Nhvy8peu9P2o6HspmmyUYHf9PiGV5y28QV2X33i6yMP1oNIOPRCtsjGEUC9Emfcd3zX3QE2QyMuWs2zZlrQ819ZsGozsUCk0dptn3EoRDNTN7MwUI17/YW7w6IEyBtkL3ZEmHOd/Z6IyMKtMgsfLHiIOZqrwdVAgDQaLY/qwFL9xhOFmwcA4HCAmZlF0CpvW7761Vdf3Z3vSVC0Xl0el2XZ7ffTNB2O81z93/37v/i//nf/3aefP0qUyrIAwUNEwUaWs8iUAMni+/1EzodDQctbrZmklCYiEmIJ8nN3RwKZedRUopd5nXQhakZRICG5FaRQ88fcnRzEzm4W2tsbaqBbrSPgHjhtd6imlBDYVY+GQvBAVZklYiLXtVUzqqP3zqLRQwGNp52MAAKZEwMsDjgM3kfg1jw3czWLCtcsLGB1NzcnJzciqlVhlHIwMTm7AaTmpB6NOBBEmw4HFR0knd6KC5zZvTpgHsoCxFFdZubEEo1iuwFGTiBn1Qomt4i7tlWjjbxrTa97sJOBVKsiGr8SSKyxlhFIHORu3HC5/YDRwOoziAnMDpAkIurYVsQHICR3EiEWCb5+JicQuaqbgMEJ5ERcXetSiipPuyTsxLXOZpoS76eJQ00aLaWYYcrn+92ZV7uaj/NS70xnZn4slZlTmmDVvJGpsQgDtaKYGsHcp/1ZLVasxkY19VpnVa01mC05AFcQdjc3EuFBvBbFUSmlYAqptabdtN/vRaSWqG3wKZ8bvNaqtSrWvu2t5lkkpTRCL0Cj+2cQUQPfhsqRlFISclKtZm7mlQwahGFerff72iSmInAVdHDLsixLiVTwtD9PxMdyHBtgruqqRJJZnAlG6hYDdQIz93x1UMZ7NZ3yHj0IZ2bFlJ0osS5KSRJnhcOgcFJT+JSzwlG1OjLx6IEeERQFSrXjUpeqJIk4OYn7MvBo8UTk2djcSy+rWcE53kXAkNREJERLXbuJDnFzU5Wu2ndztZhDbmFaCQl2zXPbepvPUtvXLNetFTi+vv2J4QPH9tt2YolAKUBGpT8+u4ySyGsa8WRyvtaj3+Pm3Iaq3kYorp3vXTnEv7/2od52rKuiz1hTqynRJs3IG/YR7wc2rzVI5gEEawLBmdig05SDt0lNzWqtxcxS2g/W+zGSlDknQCuzZaEkAOrTq6dlnjlNv/N7v5t308XnT0opEQfLOYvIxcXF48ePQZ2fOQS9qm7GFk8RJ5RS4pdIqLZHMD8cDnennFJCWdws57zf7/dXk01oQUJujS2YE0HZ5k8/+/xHP/rRz372k2M53rlzRkRXV1fFCgBmiMhut3P3WmzwDoS0nMuiWqtW83p1taiqeWVvxIm0CVGXUqZpko4S8k2TwyGH4wjGQnN41bo4FFbJ1etcy1xtAZoN/3clzvKCxzUzd/xxBJ62B3ciq4hWePB8Ek0TuUn8nnNOUffrzMze+i/o9vpBp/wsx4Ngk0w5+727dx7cvzvt5OLxkiQsP4iIpMTMZQlulUaDOXxyT87My7KAOrGtIHEikLndvXMWjUjcHG4Bop6yzHNhM3OVsAzNFOYGUiRir9WtJnBmSffv787uVNBxmZ8+vXzy+OnTp5dXxygZ9lqUwKoKJlO0iAiFZG3P2/ZRGEA3MTp0MhvbCWrT8/UfdJs79xyZf031POfKN7VkfOVrUiRb9287yOcM79avb0+45Qr+RVju9unWorh9qGMxX7v7SC7ZaCDcI6ent9gkhzejajd1b8TB0SJFZKTyoszwphoK2div0AeA1nFle/EvMAb6YIbWGwG18UeicalwEx1xd2tK09nZe7B4oyWvPSx6soHMrNvV2MTHzWySHAJfRNAtnKHjVs0VzFitebjnKTmsHI+Apf0EYNrt0rQ/OzuvrvNSp2kveZJ89tJrr9Vaf/Czd//7//FP/7//0/9898FLTx9f8LS3UqM3GjmIwEJTEiK//+D87GxXF12WRYs1P7UfItKYa/siIaIKRD3tWD/MLO1FRAijudDrkurhdV3nz8fk0PoqiXqSnEbo0zwC1k5rRXoI91pHteBJkS2ctbqLs62TSb2UL/JrRi7DyDEXEmttTDh+Gpmb1WJmJkQkZHA3qFcAILOqRAQlZlcN7CiZEXXqwRar7SSOWRrtsYMje6JuRuQGNWtc0ADAQZct7ugmQWQSq6u7W418XzOMo6B12EjobyX6iBZrUWMRiRcSr6wnFdzdBRJ3dvfdbkLfb7iJ8Qz8Rbe+iChJylGCumiFmhBSSoF3VqvunlLSaMcpWVg47UFMQpOwWTXXasZpOh6XUkqinGRaqpZ6NaXdtDsTnqoWh0lORli0tUViZ1NdaosVOaHqQkAxdyd1FPNqpk4O5iRUl+i4GLaCgR3qgNbWmnmaptii1uJtSfLODWXRhl42pDQh5aUWIichUtVqEX7YnZ2pBj6fqlmtNbNM05RkMq8tF0vkcGFJKYP5OC9T2qU8RW+3nHOtCydRLUQMJlMlcHDV1MZiDaiTOVPa70VEKCWWVGo9zCu0mCUvxawoEju7SNrtdnUpc9VdysRUtJZjcXdKEqXrxQonFuRSSlVrfV/MwVRKLYCklGUieNBQGcL0BwKbUVXJ2ooHWHIWT6rHquYmQZZDnTi3NFqy5tZK9ohuuQVK3AzuJ35p6IyW96ANTXQXBIEM5E5IOGAqWwU8LAn34Aj1m/rQu4M3mMaIKPA6t6rwlauugevavQaekxp+u3FX+M2QbYyCjNzNVpbX+JbVJfqVt1t0t/P59sTNY2tFbe/+vEudzt1WdoyZGXqLOgJ/axmEMn1Bp337sm4dy5d6ZB68Vt104F4Tzp1jbKwfVR1AKXRvuT1vhxKpaTTlLKWkSVJKQeBuXtUNTAwuZXHINO1tg1bQUkwkJ7k6PH346NPLy8eHq0fvv/seOV5+/S1m3Lt37+LpoS6FieZ5nqZpmqZ5ni8uLpBSpCBi46SUZFs9NfLYVadpqrUuyzLyhNS1xOFwIPLz8/1+vz87Ozs726XEzgQQmHa7bGaSOEm+unzy6eef/ODHP3j/l+8rNB4276a8z76EoQYRUbMAQkfJQC31MF/N86GYAg64EFfzMi/MnGRSVeEssr6+lCbmpFUjI83MZpqSQO24LAHYZmYwRLJZ9eowZ0AVZS7LYbl6ulDwTVqra/iyO6IfX5Y5eoMMvGbmrgfji47tBkSXTmYWTZ5bxNOd+uoVU29BcydDIoawqgpLhEGHgavWpISIRAWSdKaD+ONut1sOR1hrkdvzExFNoV1Kr75873y3O1xdnJ3vXDXM9KoavR+n3Q7k8+FKmKa8c/fovURJHFwdSdJuJ+6uVlQruzFJXQpzqqpmlqbk7suyjNDzkJYgglk1zZLnoklSJilXs0i+M022LGe7Ke92E/jufuevv15Ml6Wo4XCYP/70kycXV9WaJxx9E6ozGMHZZkCtmlI2s6hs403dUE9stR/jvaBX/AIn/K7bNXBTaj1LXm2zl2uz4tPFAH/O0rp+XHM1V7n3jNOuDdJv/OXmZa9/5dlB4fHUG/t+uHDtTKJx2vZSfQaav+Do+fCbTukp383q4m4xYlvHr1MXXvfDx5iv/WVb43o8HqdpunPnjpnN8zxq0IBViTSvj5mZ3bV1VBpKM8C3Znlq2ZRhyTBzFImER1OrDx+1T2ZjSB3jiUirb/reYatzbx4b8PM40JsXUG9zoKpEIiQG4zYchxAzsbG7e3g7zHCXgf/qYxi6ewgiCzbpbh6EsmDmQOeiF76O8Z+dncX0EhHnVuJXtIhInsStNtSGu0ebN5Kcd7vp7NWX7p+fnz++ePz4yZNSjKf9/+If/vEyzz/+2ft3HrwyXx12d2g5HPP5Wbm88iTuKGXOch9eai2ws9dffe18f+cv/uIv9His83L3/N66HtREJIkE1jGaHyURDTblBGa2bj/M81zdcs5pQ9Rv3tqImHsjwm1VqT7c/jCGEyUROFNwoLK3d0dCIrzUCEC3DszB1AOmLIM8bLP2CWpmGpgWcgeBJCKjlEqdXaskcqHo58U5wSiKRuAGDjHFxKxWSdiJllrVSmZhkRZkJzBT69oOoqiYZqlmMCWiINFqoAEWA/d2R2RuoY5ISBvXVMuPx5p1p1JbLNicGjSXW4mybUxiEk6STT2ER5jqgUplMHMKz3UNfBJViw4ClDilxO5ei7JQzlmdVJU8Ys2RJVB3JzO1VtsmklkSiNQsPbm4SplTSgKIJCIUNS1LSkkYzHxclihQ3ef9tNvPtRXvBo4dTu5UqxFRSpmQjdhKNRCQ4MqJnKLXRtXq7pXaCmjZbMmNiMusmgUyK4goTZXcPTK6geA3g7pb5HPcnUl4haM098yadBhbOsQ1M4OphvgLk01VVdmNB5HAps9V5D0YYuYgSymJMHMWEOApTWZmp/27RHJZFo436lqLVtKMaRgK4+Itf5XTUmosoCR5I/aYJLH3cDi32nwgyjDUSlW4JBERA2gF+ZC6cRKhaMhshtZyCWALZEGES5jJzQnxHiRcBeZaKzGTsBvUyQksmZKQgXXFndppvcfIvY4HDLkdQYatxH+GkG8KuOVPNj5PEFGjKyqiRsgenqpv4C5D0Y6rjQ0JM+ru002D4Fbb4sbjdK91Y2Gs1kbHf7K5s5O5UQ85n2rom9bAix+32lLPuhSdNmbYTkvfFC+UPLj1tOdM2rOu82Ufud2CQmDJptkYj5XAzCmlsEXGmrz2sO0XHu0wnIRTSmk3EVGttZQ5ahGJ3Y0ijoYNAW+pc1I+290pZf7kk49+/JMf7nK+fPpUiKc7d/b7/d27d+/evZqmqRYkkXvnd+7euVOWZb46QJX2lFKapimEu56acWN6V5Ben67YQxTRyWXxHjDOOecsxXR/tmMR4qi/qo8uLn71y3d/+Nd//tnnn9RlzrspCIpA3kQZsztKKUXrcLOtiw4ENwGbGak6RfN292Yy8poQaNNSSoSQqYdjVRUdKNU8k/inU3SYqovV2ZdDWY6lkYE0kpuTK///x+HjCO6TKDdg3QY+QsZsQRhj9Qbb89bo70G8YaHqtV0cyeE7d85eeum+JIeqJIGAiNyo1sYHR24OC687PHRmZk7MrStYzpkZajPMRURCd3QUvwFe1Bt/TOj9XgrUHRih5GqZOHMiEkKBKtfqZlfzEcLu2BHtzvcp74gEwleXh9dfvl8NRevxuDx58uSzzz4rWhdwVXetgbIjIWZUs5RF/VrNZ0sBx7+GTb8KYRrEeascfpYY/PVE9Pbtv+AVbp75gpL5BS/+hX/5snd8lhp61kVefCq+wmN7U+sMHVE/7xtirYZ0aKHSVaGMnRhXICJnj9B2BOuHrtn6t0SbnrqntcHjUkLCzOqVmXUDu33xw+ykIQ0zh8MfeawwFImbvWTWWh5zL2N07zzrgd3dJhU2s9dSvlGM2jWFSEu1XXPIaSR4WoZwjeaQeyC3RagGqtjdzLIkdrz88qv/8B/9p9/7T/7+j37yk3/xL/5FIXrt9bcXI+fpG9/6jht/9smnH//yo/m4SEq4c65aiXy3z+aLVdy/f/edd976Z//sn33/r3/wp3/6p2R07969WlaMYeQqEjElgrkTaq1RoWbN6WyhxmHdeQ+INDPJnKNlXLSSi9fNfKu+dhLri2dEylZdH9MSSPitu3sCGo9X3AU9aMixcHPQgG+J2hejio3ZuWdwnNxYML6/HSGEIQy0dshE5NwrIeFArBC4c6SrJQJK5PBowQQhjvwZg9xRixphdEIZD+Lo6QpmgKPNkpmbr4GzrSE6ysQQRsFY4SeJn/VxxrIMFTburqW4e+pIDe+BjJby6awlAHLO0zQldXg1c52yEAuRq5qBilpvMuRu7gQFuXoNGLk5MwQEglWvWpiZOIkkUzgRi5AI2KtWYg+aUTXTalEiicbWSw3Z7lprJKYEnBxUDbWqA5KIJS316B4UqSBhtRbcHQYxzJ3baxaRyOoQBMzeCwUdbubevkfuULWoYe4eV3L3lCQlcIiVJA33ADgomMfgpE7VQO7MBBYDVXMiNxA8HDMHC2AONkdUKBHgjtqjH0GtGilokrRuAAexEDGJuDW6L+LoNU5mHv0kCaLmIEhOqm7WFpj07lZgByTgGE6srcsIEZE5wMKJYDWmzIkMZCARAada58hHGZuYAexMELYKkIGMAWE42BoT+yrlAXirqW7G95AUQ9S6j/K161lNnKhSYx7SpG/VNdausa1pu53IejagW5enQIj+XQYoOEW3cuq6yBjalFsvWfRykqHniMjNnGEIpGiAlGz1wDcHbbb0ix/XzqeNg3fL1focxanbyT95ots037XL0Ok/v9SYv/AYAu72jwBsGwZ0eRq6JxyJgcLtFadArweO6oOILjVGR2td0UP2AShaq62VmSAKRoIthadZddeLiyeq5d1337175+z3fud33v7GN7LQ/vzeYvn1V18jk/Pz88vL+e7du994560Hd+9ZVSwFicI6maapGgAfum08oxE6z1+TXWBikeB5IBaFlzq7u1kl9t0u7/ZZXJhZa3HXUsrF5ZMPP/j4Jz/9waPHj9Tr/vwsTbkus8FrFDGnpKqlFCJiEEuqdTlcHr13Sgvjj9iOZQmaPZEMtQDuJk58GmyKb+Wcib2q6lKAZt+0FmtBDmfVzU1JK8rRynFZjlqP5o34yluxD9Bzs1+cff1KDrp94f06dz8RBWvk7Xp7c3cHrBfdETvz2o8M7jaanBK1fr/u8dMDVc7MRCySIw015AwRTVOeJlEtd+/deeXVl5lBxLsk7tHEKzrbRefDRIyUuFsaIpBwDMw8TzsRAalbnyJmOOf9ZOokmVSX5ahuLGyuDrBEZz4vow8CcSllYtmljNDX6lKrwycG2FVdzVBF26B4Irx893zKe3VT1ePrL1+9/bqaX1V7enn5yWefH4/HuZRKTkIR3g0LbHMIvNm+Pl7ukDAtYLpKzpOK4V/LT7u1uvhvc0E8W87/GsdXLq5P9fsz9Np2AH1+rmmZk0ttM72j//Oz9cLNATx//s2slBIpvsZlQ6aqSw3m1/AHYrQeHEtRpAYArU1AbO3mpYwSlVakeBLUtuEDd/1F265I7s50o/jouUdcNipgw+iPRFF0DYiJTZyD2MWjfpdCjbkQGzW6RQhgRrWV76JTwnSnb3XkWoMWgsJ5I8Ros4+uJaUxHJgk1GcqvkIwZqTMSblUqBmsVqVpmtz9u9/97j/9p//0937/9/Pu7Cc/+Rnl6Y033y7uZvjt3/7ON97+5nI4/ut/9a/++i//anE9Oz+zWrLwg5fuPHhwj4nefPPN/8M/+Sd/9Ed/9K/+X//6888/v3t2t9ZtG2AwcyKO4qcobDUzbgy16hq9CC08Q/aUbV2ZKbi+pT21YVXcBDi3iULklCJh2SaxxUQM8GBrALCycUeyNTyS8BWvdwkJxThuJ+ShKHykkZiCz7lHbywqq8kIwTJijSkqWKyCLdnCk4s6x4bqbpcI7zd4nqxvyiB0i3ceBLZQC6ZkMyNngvduBxyXCJplAGat6bOA3EmdBlf2upYQehPuLfVlxMRM1n3+NpdwC5KrNaxpSswUXZSJ4mGFiALFZkAwnLiDPaHNMHE0LDAUreEhp+n8jmoxtaWoWhWCEFPOicWFFncYSBILVbd6rJyytmx3Wxh9HwgRw9kJYEhKlMjMTU24STeQen+vIqmqV1WtamYKDY6oKWU3K6ZFq5pFzCaSt+y9TZmIMEGZOS1zQFBaDTARkWTJyUrpgW0OPtJaA+uYopsuBqdZd6gC70oj6YS2/ngw7JkFaxe1/pkUPuo4gYgjM1yrhaUS1GSRUaFefzJcuKrKLE7XNYQ7MSciZ2IiIVr3XhSJRdvxIJJhTrvdTsSJhbro6ZFNItqkbpy34kFEcsqgHGsohDszQ1jdDst8XOaqxqwVHvkB6oAcEWEQM9dN7f5YnVjT3SeRrc0D+rVvdZMOm+2Bbk8ON+8W+2BrYgLmUIxG26NEqnvCN50920C1MQTcqfY9OWGjcbduJACYQyjYxhxgkN9G6/NV2SXb2b752bO+dX3MX/KOX/YrX3yMYTx3zLWHoq8Nwzfx2u0fQ11QRKYJDA4OptYlgRM1wgaFM0vEgFt0UIRXGwhQ9VorGe129vTq8oMPP3zzzTe/+93v3rt3L8ke/PR3v/2dN1978969+w8/f8zMb772ek7stUKQJLn7YCZnZjIfGLm24Hv5PVpUftPjjuCEjedpRJ5TMItYrWVZjlWXhw8fvv/+ex9//Onnn38CUsmZk5i14o6YGBEZsD0GRaOjUkrU0hNRjwOilHI8HpdlOTs7g8PMovdTLddpQmK6yD1cawDwiMtKf6Vk6jD36lbdimqBLd5pn39Dvu7N4ytfyTe9He/HNgq2jfQ3SHnwwrQunWH5uJkRgtkbtdYyz4E3TjKBegK5X5aImJGzcGJUf/XVl9966y3Bsc7KgrKs1lWHZxIRcRZ3jQK5xGyKYlW1pjSZBaMVEVF07BSeRESrMguRqJtAWVDrEtwcWJdEZ6smGSSRicFwhjk87zKEtVhVEgKZVld4MDoSmKwUB+7tpvv7lzjlQ9W5vvTmqy+VUg7z8eGTp4er+fJwrOaqupSt9nHfdH0lotBqoQxsQwo43s72fW1f34v7J1+4Kn7tT/+Wg/mqtMwXXuf6sn8xIrtr++Wmxn/WAL7Uc8U79pOd0mRO2BtrgDesB7NiZbjKJBKKwMzMqp/2OW8ehK2Z3nFx77nQ4f1iSHtaJUMc9LxXbIPHetyil4XaCFxSZ8S9ls5louHAt/XfK6IxqqYhXlU33WtbuufUSBijtQ4dYl5TfFv9tX1NI9/OlMLf0FrNjKsCmFJOxHfO9nfvnN27c/a73/nt199+5+U33j6UcnFxce/u3XfeeWefp/l49e67P7OqD+7fS0KZadql3W5H8MN8+OCDD/75P//nf/pv/8007Xfnd0opwqvublueCLCIMIZd7+7wlr03qJl5Q9CAqLUTZmqo0WhF2z6KaTGLPgh9nmM6yAlMMma4maCjo293gcebbhW9zBDa2ski4t2Mj2UwHse9MUK5t+ZAW7FGRHAJ5wYAgc0rsMZu4tWoqlYDDI1dqsdwjSLDiFZE0lhmA8sPre4RLaAg4DKHcKK2MChmEt1jwjDPjMZc0TZ01VmHbi5+IgrzILo90elK894Zoe0gotiv3lwPd1dgMUvELsMXcAeQUjLrLSpKSeaNlxTurJVgIjIl2eWp1mWeZ61FOO32EzOPmEdEBBwIlB6LmMPUzU2j9NTNtJZSUutvT9HSAE7cPMa2o9Rh0YuWExFAVFRrVVPnlJ3IieZSp2lvZk5ReipuXtWhBWhto0RkUDS1CWUKUq9WfU4CQ85TqdW7LSgSteHBHd9SwWRu1loD1aDYluSABzV0DzbkxsKdJCWvNVqlR7o/8sAWHYmIHS4pEQVLiBFDuPF4mLXc75Y5xhuJwsBmr5CMiLWog4BqXtTYlLiGty8iilpqdW99m2KI/fWv0tfMom3K8BXhwbfG7r4sZZ7notWJE7N3HGlAWVwCxTGuRS3f27P5PmqZos8F97VuxltZv4nHI8KpG6IdcpD3Inhsy4Z7dnfdLU7Uk38tlddkyypWtg7SEEV9rQyfcCtN0DMG8AjltWxeW2NmdEpRgI1vPLZcjOwZ6u1ve9CNcmKiVph26xMN0bw+4Je1b766B7l+qViftx3Wj6hZJUdrPWpWa62+wrpOLn4aZCEi7+wUbTV26AFB4nQiMvOUKMk0vlsWzTk6AUym+OijT37wwx+//tqbv//7v7+TTESvvPzy/bsPXn75lbPd+eWTp8txfnx18fDhQzhyYEBczSqIWSKwGirY2wokEFOt1dyCnB4I2eWAAUE7Ku4uid2NCO5WawFsWZZHjz9/772f//znP12WKsIpC9jDcQUnYtcAYNRKRJH3PlxePH36FMButwsuaCeKuSx1qfPi1dkhIOIc5I1wsrrOZymtkmVZFvOGCRx+u9Zi1iLmUGiJ/1yV4hPyULHDXgzTsCnIr/W4tp43x1fgjYduAkKst0tG3/lhARjIZcykUQQ4CLSyELq796gHEwlTEh5/WS2eBolm5sQk7O5n+/0bb7/x6huvHp5+7jYXLcWUOVGSRNw6Cbq2mG+LFMJJIHBVJyEiVXWUlJmJVeGukqiWWkolWpEXzgavqVk5sZ5XFlzuKCQzI7gIA5aYLFoICBF5VB2xgcCVHHDS4mWmXnpay3E3Tfud3Mn3RGSp9eLqpcNcD8fl8dOLwzw/vbwak7+fkgUyfxtyJcKzqnkb8/j1j569Qp7x0nue88t968sI0i87pOceth3AbVfeKMdnHP6MKaUeaD45+cb1Tr578zqNpfnL1vZvLjki1LTWMAOkWgBxYhK5e3YW+YNWCuuOIFpXJyII95LgBmFTLSHlwhDaxsq5j3UYRMAaxDwZl1vrN9nPf+FnWjtKRDuTZam1Vq3O7EiNQDFyv9ZddOrsuO5O5ty7D5+MCVbDNxuWs/WqgVP7oV1Hmlez5T6MrImfKtzNTRiMJFNO5tVb6sj1zt2zn/7kR3/1F3/2e7//O++89eYf//0/+ta3v/Py62+A09Onl/cfPHj1wcufPX54//69V155mYBEuP/g7tluci3M/OD+PQB/8id/8ssPPnSjBy+/lNPOVNPm1lEmCWECIkmekM28BslCEhGppqUET060GcHWYKt1CT8CBGKOtcXdau7vGq3tkDsRhwcUkhmAkSvcBxpoBESo1URTxMBPubs88OrNTVIiEgKROFHkjM3UvFJ3C8tSAA757O4OEw09EguPvPUSJgIZWq8gJYIHNUq0ezJi6V0wvOGfY0ZIrCErg2mbyAhR0+tj7QNO3uqtJR7NzMwD1DECIivntnf497BX4wQM21ud4nbr0mUiSq1dNXU2R2rBZZa4pyoC44CoJE5pFC8wSAjuXkpJl8cDgMwSzaa1eJTqmh09GuuIODCrTiDmbXijUY4zRESWuZjrpsWuu1eDRucmVWVuRc0A3Ojy8mBBRc1tU8c7bsB8dxJmyWHmqmrvdR0JW1ezRSs7pjS5KsyYeZ/31a0WCzJJ8pNogaTs7hDRHobnlo4/6RnD0dd5E78RkV4x5UEQZ2bTNCVKanWUILobU3YNAHiUi6i7Z84tm0zsVs0M8JRSEnHg6ljyDVlJJEQSi184ec8ciHBKeZlLLSoiOe2ZogdS9JFyJzKF1hC1A72D/jjNjWwYnijcMieK0v/GDFFqnWsJLxpCEGbhBi/t+42ItFaz4hYwmbUuZasGWpqC1rUOXl3Z1grcPXyb1Wmh9e83HTki7stglbbr0XvZuTc3wHvk6UWOYRbcbnMwBbI+xjNiecMg8CBaCJM3frY40WZUfcwvNqIXGvNQUePnuNF4opvq9tpfXkQfP0t5/1pK/frxPLsKoE6lNpR6M00QSIyTtHD7ZcTFuPUR7yKcEeUKzOGxaPVopJ4pZc6yuVpKKcl0LHNRX6rukZ48vvr5e7+Ypv00ffKD7//4vZ+/l9JeS3n88PGTR0/rfPz4gw9++f77MAOZUGvSOGyFsbqu2aDrEk5rzbOBp2kKdgNu+hnmlcivDpfvvvfzX/3q/YcPP5vnWUQk8fndc7Mg06oACEKkIpKIaq2qLfAZtkvcBEC1oqrLsgziw5SYmWHEEFNIw/asM8yd/yNaSoRZJlFHGsWrjkSplFqKzoe5zrUc1Ypa0GZBsI2G069v7/4dOW6u3q0wHBHr+Gh1I7fkrjhZFd4LDlPvvGJmo2AkrhObIiVJKWmd93fO7927Z2ZViwgRJJ/v3EkrqtdWxcZCRDCtlawWVXdtAdOmnd2IKaUEcXNxdxGGs+UcDVAIEs2xVfVs2tVaw2+XYM2xpnSIxLyq1TAQhQhMbgUB0bPoyA2tYUQmg5MxexWRzB4QBq6ucCsFKQunu1N6+d5dRfrs0aNF7TCvUeMH9+4WtavjsZQyKIKuSd0xaegeGRP7bSLrywq0WwXs37WDbnNQv8R3bzu2y/72GXimX9T+sloL29O+JEzpmfNvzfwYUVRwo2giot1uF0MKwBwAqgh+xLhgrCVVrXXBqaURl89ht2yeLh6ni3Lefit+dfatFvjCx6RTHqyAlHRvvH19ZN44ckR9DKF6rOMgtnKjXd0xGGqGxeWbbPYYfLej2vvS3gwpTmO5zjnSh8+teCz5LrnnxlxwcXFx9fTJx64/+dGPfvqjH9176d4ff+/vccrHJ49eeumVl9547Xx/9+HVo3/9r/7lRx/+6p1vvLUc548++uCO7s7uvPTg/t2X7z/44+/9fUnpv/qv/k/HZXnj1TeWZTG4GuomFiU5caLWQC68ChHAsGH/6i9qxa57j2ugvz70NEbMkroR1vTjdkqvhePju2tG9IYhqlajcPPaSz/hF1wXiaIRH6qqOmzzalaGZGZRa+13R3Zn+6RmQmTMIIijFy27O/Gq5Zsl265Za+1taEEUBM9OjlZU1T07M4s8MKWMkVhu66S5V31Q67z1+eGRRRsS4NoK3Gyl5sR1DnKOMVhHSDEjEftpHK1V/0qKzejuSQ1AqNjcsuRq5n5cZiJPKeW8Z5C6FXUhE1C/cZS0koPKUhWk5kJgYSf0hAC8d7tiRlRmA4DbYZlTmoSDUxvxLkFctQIskiNmoB5J+A5CbmA9mYgiuJHUo7gOtNl+aI6QgWOeuNMVzLW6WY/3xz5vtmlYGyKS84SoEeJw/2Q7+7HoFq3TNJlRrbUtBwc1ziliMKjNQGBAXHXLIkOdKiDePUEI66edcG9r66uqpjQRC9hgDnBKU0qYSwl2HHWKNpsAMSe0EinyzpobS2RYY8OEbalmCJzNNUzkWmur3eWFk0TldAxjjDMUiq0Y1AD/BiNiZW5FbtvMcIpe1Ru7ZPP1E08SPZIa/bGolYOSWzTH6Nm8HuCKIMpohkFEIEWUCQyJ7C0/PG40VBS6lDndZrd4Kd6ziJHIa7VkIS2CBN9iKtbWhdd05Fd43LzgavP1aMJ2Vrfn/xqDeb6x+DUdW3U+3Al0YqEgL7GmBE5HFdunR1LRHAYeIDd1i+Sbe0Mr7HZnOe22+QpmccfZ2Z2U8tn+/Le+9dtJ5P1fffTw8yefffLpL3/5wdXVcb+7e+fOneNxXpbl7vmdd3/6048//piCwAoW9Zwiq3Jtw+vlZ8M7sl76M5yiWEhaajRvq7WqlWVZHj1+/MGHv/z+97//+PHD/X46v3MGQLUcDgcDlqUsSxFyEWGi/X6/LHN1W47HZVlgut/viaMxTxMIg9UjhI8Qq2rUq3o1JxZKmzlh31hd1sstUuQcWgzW3X1Z6nJclsNSimpH3lAXv89PNH09h/dbf203cEej7my2N1bFD3SNHu93NE3afBfoS6KHBQOxCbM6GHrQm0NIWpnnX3rppXv37h3mq+Myn2WRxEzZDA6DqYMgLJJYYLUllM0sArWM1gJwmiZC5aCTDclvPkmSHQ6z1loR4Aut7GCKvr8AsxtFbN+dQOCU4DBTTk7kDpPMtlhQmLtHAJoTWWSxiyqjVWUKOWAErfMRTKyaJXrUky7HRf18SmeSHtxb1+T9e3euDjMRXZ7GMeN32cxzdxCaQU/P8JPHy9r+/Zmyzm+c2TXCix9fqyDdXtw3iulvf9OTeaPrn928exOAHrQsLzzDX7Rz6TYf2HuMzVtAXCHGzJdXhZlz2u12u1YwEojiXhwHIAwh62BUouB9XavHh3XW+eVO9jLW6aVI8AC3FOw8/3B35rbTKfadaSiC7jOc0Iu6VwYCSE6urspEzB2nQARA+6wQEZQ4yvp6AyRWO8FQnDr2qCCBkvomqNeid12sbQSdWLxiB1OmhFRrhK0fPnxY6/KNb33zvV/8/N/82//3/+Y/+9++9dYbP/3RT3/8w59897vf/d3f+67v5N/923/9L//k/+mu3/ujv/fhxx89vXxESXa73fe+971vf/vb/+k/+Aeff/552k1gUvhcS3T9tY1OCcCzwc0NbnAWd6aUM42AiMGNMIqevOEFQEQGpCzE7EzV1MxVR0W0B30gnb70lrMRdqx5NRbZrl1b21ZFjrRGVnMM28yG2RbFhgAoyF91LSCnKIyl4N3IuqLTAQqAogX9UcutqhNcEVSc3XY2ok407c1qjLGZRUhFACIr6u4OBmhQBTORqiZiOIeOMTPf0GDcXM9dzzEc4DVG0xz4buS3c2g1xbsNiBx6M14dWcR/RVqhaORo2dFmpt83JidcX2sUqk6EFMVv7l49oA8EJmdJkkuZl6IkLCLWZoiJGqMXR7DAfdZiVne7nbcCMK6my7IEX1jOU3W4GTsEwoxQ5JImlkSczL2qGpzdhUlVQUKc3K1V7RoR0exqZl41KJ5W+LuIOAykqrXM1Y04SU4AnImdA+CCKAI0V1VzD3nk3KpP27C7Axx7WM3IKOXkPRITgYZoa3Q4XOac+wZgouCFJwjX6qhVRFiyCCFAZe7CzIkjRw9mMy+qKeW5lLjvukpErAWThMnNURWqnkG1xrJMAFkjlWUiyTmrWinFvWWZQqZvmdBCjJqZas15amrI3d2Clr1oZebqCBlYSqnzUtQlJ5EW0VFVdG+EOanXViBPBmeww+AEU+MAxpjB0AhbgpmNKLquDaHcJIWvnipFyC1qKsyCho17xtjNeGMyjqOa8Qa+0nYObSNsqzdIp4gUnJoF1zhvxwWvRdBpQFfMrSe0Qsf1TfuM/MNXnS64xW64Ee7dmoAvfuWvfKgvclwzI1aDNVqd9WqW4Qls4zLtW0RMVE0HRCIQceEz5JTMncwdLGBjE2Rmnvb7zHlbj1COpVZ7cPceO9+58+Cb3/z206dPf/KTnxwOh3d/9nOo5ZQu+OrTT7EslUGX5+fv//K94/EqTRK6mYii424koKtbAkdlwKoIg6LW3ciJSFeOXy+lXF1dGXy+OhyPV/M8H49XP/3Zjz/++MOHDz/b7fKDBw+WMs/zzJzMlBLlSRhBj1+qKjNfXFyEWCuluNp+PzGl6rWU2WmEEsC9QSJHS1jrq+U6GxlKKXNZmDxyaFtWUHZAvS6LmtWl1tnK0Wo1aKMiOfE6tjFaIviITr7gsYItTn8+c2U9w+seX/nbYqG3DpWZEVOECX0EcXojGSLiLOgr3DbrXFUj8384HOq8jO9aLdgkhSCtC/TxeMVkr7zyyquvvioU2SqB6VJqFODt9+dhuLh5WcIGC5lKEHenxHlKvCzHJMnhrmoOEXHFUhVUgESmZjUCm0KU8t7UyIhI2M2J1JzcQE7MeWL37F7Dm3V3JtntWKKVqPUWxx51Tp5aR+skxInJqgF+d79btB7LYloZEJAzEtFyPHDK4LVUIbNMORto7hng0H1DFA9DylpbO3JXQEAGY4cCAn8eMW/4P47157Ne/Tj/6z7Cjfzi074K15pu8zCfdzw/tT4i2j2PGR+jR5lPrrNmLJ/Hj3VzhE6b03ukum031WjoKCLU6rQ67KInjUMRhImIjl5e3Q9Q0cbjGp9tpGBYF9ZJ/tpX1Mo1AuHnzR+YAt/EibmBEIPOprUuQ8PN9XhZoJR7T5N+i0Gw0sbfNSpZK3mjDZusQcMY3ppD40gpuVfpEiz+yMzSObTHXuu3a5BYghsPjImnJJfHw5MnT37xi1/8/h/83p39zt0+/uSDX7737m+9842c+PLJk5/86McPP/vsd//gu2++87ZBHz15az/tXn3j1X/0j//x9/7w773z+tv/5rN/A+csExG509XVcUp5mnabhaPuMrz9IKdImTNJsbpEdINpGHtmJ/nbaKjlrZqbzZsLACZrT8fBlUt9ttkRJdnu7nVll9wMaXiY3Z5xwmnHWncP8k5uPF7JoTA2szDRiZhkkIlwXNLgUCNhGKu1zsLUYxnWyWi9920CxMngqO6JOJSxUqTNBjOSw4W4ydLmqHtLgoYrYgCF/+hmCH5eqZv11gUv3Bu+uK2QbvbESH3FgUekiYgAYRCBKei7ADgTJZlkKmUmZ06pB/GVg9vFzFw7H0RLSJr5NKWcd4MW2gnElMAUvM5LUdXCRMSylIJpcklwV6ckmTk4uKnUqkVZQPBaFl0WkXR+fkZMEQNY6hLuHIFKdEbgRETVPWDZTIkSEaoLK3ipRS0mH7Wog/NuT0Q6z3BPlJRDDDGRkIhTUEy5gOE4zMt+vyfWqkfK0ySsqkbh/rI7wVkyu8MAJ9KqChdhYo5iCaZk5kycZIrij8B2gIhFSllEJKc0MCFmllLa7c7cSdV2u7NgKwn6q+NhITEQkyQmCph++Mzmagai6NXk7JCcweRV1etWj1UrAPI01Vq1UkoTiIjFkSAo5ehGKaU6cByMq8MR4IDLNyOKRJJoXTai0N0NHNXQdlwOKSUnc6C6qTpJ2p+fXx0jUVSYhNlIjchgGkYTOwzsagHjpyS6lEWru4pkJjiZurLAo0CAWiY/ChwXXayHn6SZIyBHUGpFI9KIlIZ8qKWBiEEBkPBGn7NB45sZA0IkzFotBBAAdhOmoNrTIEgjj/nZgOBWodOgJkCkOJiZOr81gEjBwTy1snfxEYhqTkK/aNR+e7hmK0Jpq062dvazrZNn2fF885xVofZXfaKJx603gqnTDPR4wW3BdbthEXYluu3Aufn0hXN6t3nsN06IJRcdLJJYSDQhbizEkblKRE3ZaHtqIUnuXk2ZuRH5CFfTWm3a77wBHxzuanUunqa8m3aSU1GrtlSt52MGqmaR49V8/z5dXR4//fwRSC6PVY2R908uPnGt5H73/M5+v08sLPXDT34FLxVZEuec1ZHzTigxmDIHeQWNLmJqZi7CTlRqZRFyuBonAlFKWTiVUjjJo0efz/Ph449/9asP3vvww/ePx+ODB/dEpNaaZEe7NM8Hosoe3I6mWuFmpvN8DJBInStBpv1eMpuZE4PMoJSInO1o7irEDoRd6GRuzDtmJ9vQ3V1dXTBzSlx1MdM0pV3ez1eH4kXAVxdXWowVh8srLOSz62JWHS02B/doIrlddY3tMab8dFl8oUfKCBzG9uftR2cFo3DpTz7zhiKyjfXdW8fdKPE8NYU316CV6gaAw6sxB3mUiLuXUqRnTlpWR2FqIsQsTKRezCynZGZknllokpb7V+iywJ1zYk21LoIkOacdO5Lp/Nbbb967d6fOdOf8flkOk0ypEX+6u0WjgCCUyCzMQi23AHJOxJIoIanNtbo5h+WuLedUpt3ZbhK1pZSjTDmnvZkJ0lxmd6OgkBEj4lCRVo/FlIVEdmamtc7FIzmRJEmOlvXKvFYYAZimKeJZklP0isgAnd3RqNwTJlNo2bEvx0vHcX1VwVljzs6dOEiJe6bdLKUUXR7MoKqmcGg1OBQV8eZ7p1JPsuoX8JrxMHdEZ3FamyZiUw5D3JgsViwhbUTk6sjFv07CrN5iAbfEZLFJaA8Hoy2/GxJ3fLot0unB5aapIpYbVukgvSeirbIiAnWIr7mPJmcb9yayVcAIDW80JjbwZu98B97LQMLKb8WT8E5d0bRoQDF9TNWQF1jJHQKmem2zh0vQ5zAaPa7wHyIih5tTZ/qpy6JETpRaea6YWQBZQYgqLXXjoDPsTrKZC7VifgMDkI7ZiQBL+FTk1GmVET29O7PD+nK9BxwbVLHfwgPV6GxgJ0FvVAYjGFlVIIpBwztjI1KN1u5REchBr2jeukBRBzazrnVhtSgzh4DzmFKmWitz45/vS87CnnF3M/JFg7ZuFMtYMTDMjYQGL2ytlcyFOVoVmBklYk1Qnedy96UH5vyzn7/385///Mc/+RGRX11d3H/5pU8+e/jZ54/effe9H37/R7vdbr/fv/3OO588/OQXH75/9/z8tTdev3v37juvv3O8uvrhX/2oHvSt1986HA47nkK46SZ4HXVErlWY+xNpICvBEgLZHOzUMInhDu+41qqlUpJIxjaLD1RM3UkokXsQyiaRREEnBhI+ApIzES3LYgQWAdGxLCkFugWAkxkTsbBIRtHiQYyxMajMXI0oOJE5CK2ixQtJjvy+E1ZOKmIonITIl2qCwCQkwITJGzF0y7V6L18yM+3tJBXdazBzaFjjuffHUVUhhnfFzQ1g63B1ExEEwROJQABUQ6xV73WgzBwgebXKzCTk3kKg0ZayaIuhW5d5xI4eSjCAmIWYmUFerZCAhIWYEy21llJEZJ95nueUEksGhWXOItLEOkltLUGIJROzuacRJW0gEKIk4o1OGuS+FDUc3aMXVPJqQFBdFSKCiAsvruxunTrSmRUgQFXzJG1WQXDXCiJlZnOQetSPhWdlbmSkDqoVTmWppUTzbiIS4ezuTurWTDFmgBM4VZCBSBIJUkoQVtVqBkcNVdfLr6NgukvJTSRvdDkbiKn++5T31Gs2wtsJJkDeFO6qaq3e8ps5RRPR6PGj1vwzhkWeM6WUWChOCAy9SJbkG35mzlOszkWNKWXJk+RSajUkbklUrCzW0ff4xEwcijOnXdUFQM45pQS4uqXEtRoaTwuDiSlBIJJUbVnK8Ti3xhuOCDfmab9eXBGgR3c3r2DiRGYcWfOgsQ29GIjVBkphYqIgwNmK/ph/amW9RKdZVqIRwOuJnVMFvDUR3J2TDAXsp9p6vC/aKmazrQFLPaO4vSw28V3upSDbeW5GwLjC5pf1Rv1hr135azrGMMbtfjP3/WqP7eCtldE2x75hmMOs6HJ8THK/AAO6jQEQUUq8z1PUiXgLfiOnHFgjM/PTd2RmVlWhF0+efvLJJ6998tn+7NyJUt5zSpEBSCxLLTvf3X9wV6uXUkAAt5UfJALCvRk4dXqMhjpr50CxeIvO99AFLXNJySFUyrws/MEHH4D9/fffNzOQD+O+1uhdpGlHVctynCPKa2bLsixLi4JJP0xN1YkjLqnBKaqqQcsUBhNCTjLcaKTs2uuANgPSSLiTZjt7NXVoMV0URctxsZK0GIwCI4q2I+wZvX+fn7y9dYnwyS/j5+1FxRwhYScnaloghIFuH261qY0o4IO37J1fb0PRpqIPwOhKupUb4QES0WCwbEKMG1s+N0hk5iQGXZZqWt5+643feuftaZrq4dKNmDKctVGXUTT6ALAqGhIRYuawp1VVrWZWBglFt3sngjOmBJ4EgJLtpsQckAEwcUqTiptXIihcWEjgTstyAFADGNzaWpCIkDmcvXH0pHj07jn4sLmjDXIpxRt1EDtHkoLASAQmOJ/sUxqsbIFCZKbmqMKZdvuzll6WTGiiQ2NZq2qppRQvVVXJ1gbLw5GL31dS9RY/pH5nGgvI3bd8BNY93RNtdaN08JoWu/nH8dF1xRTXu6F92viZr32XVz/zNFndBW1/3PZzG7q9Nubxs+VyI/V3OmA6fXC/DiShayevg/+Se+tUvXqfQ4oA7vbKW00xZoA3SYJr10UPf49Y3al+ud7qjHpBaT9zUPi6CI3ir5tL97Y5YWdE39CtOdEgDHHTztscBY9Nd5h5Enb3aDFAMNUu7hqjUC89te2VAYRgHGlq6mlnN7DQ4OKKsaKrZtkEjLbWdY4BgBxsBjOoplKKpnx1deXuZ+f5z//8z0H6O7/zre9+9w+/9e1X9ru7T548/cu//MunT59+85vf+M53vvPGm69NP9lP+6m4fvjxr/7ir//SS/3Vz97/kz/5k5dffvnBy6/84t333n///SllZr5WBsXMgU9ydwSZMwgQIhdmpBQFz7Qpqurz4IBN065FQxzd6lhfLo21Z1HG2aopR749JJuI1LqMeRs+CIMKxu1u2QvNtllFCAGtuQM6hrmJmHiu8PUAghicgWoq24DuBrM9QHMECZS8W3V36pnYNbVzW3JknYQoPOyDDL9iGMbWeXzGcrr1Chg+Qqto9CAJ02hTDwKg8KCA857GBZsrWzj3zN5bMLo7gVufhRC3Qk6kna6IwUIgosScmGGN4pMDvxbRvpSSkZaySGlFCMxoNb6AOZhYEhFzqSoC02aGtjgWiHgCbRAirR8xmFhYVNUBkdwo3T10nFlgOhBBFVDQRkpE5kAiQMBIKDFIuERWnWAasUwuy+JNfIcxx8zkRObOlEAWRCBBz92dWwTVaiyLmMdWc6WIeDgQURCPZ28Ux5TMrFbNCUkk0P4+QrMd1kZZoCfqqtnuhJSEOQXLwliRTAwyYRv7SBW1LsUbyiDMcncHWNVTIoq6aG/9wrwTMkVrr+hiFHlYlgQvDtLg3+70ZkQ0l2WpDaUDEjNUrWbmAQDq6tui1h3uphStswhq6h60440KL3RRRBeDp98bfCwuNKToMCxaI7YIswa4ZrRuuqaAt8dwSlN3gL1TFMbvJuK9913bqD152299Pe7up2YKhfhwG/daVbv71tS4ObatI3ft05vP8hUe1+wqYOQcvsabfuWHbw4iNhuvJtKJ1cxy3gFOtL61jSaTiK6HfJymabfbNa3CHgwKkhMLQskFl+K4O7mSJxFZliVaB925K+fn52HWP7l4mhK/+uClWnVZapLp4umTy8sDEATIVbl1BfTANREiRoOuHuJTRWvNN/STIUr/kVLKOUM9pfTo0aPd2XQ4HGqtbpBEKUut1Wp1NxbPKWmdzapqiRq20QYT6Lz3o4tvkl3alYJynKPXDlEgVJoPPHKApZZa7N6YE2rynKnJwLpoKUUNMKrVtJoX1erz8WjK1zTf13s8l09rUMg3n4oZ0WUh3HsCgA0p9a0XXP2gccZ6/du84qGwV9sRiD7JtCF1U1ZESJJZtbq7RmB6y8jgHLKXiJqyN1t0gdVvffO33nnrG2TEHgT/Kaxe8sD3gmK/iKOnGyRo4JgrTD36FmQnJmnhWzN1EEuSxGWp7pazgN3malpTmhqk0xXw6saM5FEWmBAhoHZEGDupLo0eolmBsVVNdXVgwp6J7gdwJwhJtpGvNZhBRDL4lO+ZItxTayu6JqLAN3JO07QDk3DOOe/yPqVk5qUUooZ0nee5HK6WZfGqvqIE25W3t1k1xTOctNaBoBWA08ZhaPV7w8sk76qwe57bpqGOjW7aIoy2JzzjGK7mEIZND4IiDdtC0ZH57gZuC5b0prKh2ob/v93Az1JkwTTsNw36zoS5Ks1nXOeaa/qMY32o0+82Y2K9Dow23VNwGmy6edOGiWj+UugIEPOtBcjuK8MoRoihByWHJI+Tm51ZbDRGbpbD1iXo07xdeyRMwmjIvkZ/1fPtDiILi7+RzbQaOUYATFZXCgHQZR6JASJq1YLubtbKeI1GIDnGEAg7a7bZ6t4PvpUem14dP+pZpe4IISCZBAMbSYIuvRxPP3v4+P1fffCd3/vOW2+989qrb949e/D06QWAP/7jP377t77x5jvvvPXWWw9euXesV7VW0/k//MW//+s//7OrJ5dG9n/8p//k5dde/2//L//tX/3NX7/y0ss5T6qrUAh9F/MtRIbwEAHioGkOfz0coTG91AM6IJKUtJaI9wXtL0ah7/aISsVOfhEZ1PESh9uJ7b6wqD11Z3KHnciYhiiJ1KCMnYX1u31ttdUUlxWs65CAACJ5x1ffXPlDJVGHKMcX47RwhYZ66hc9CQOFDho3dXfrofZusN1yU4t35DxiJeMRKMz/3jWKHImFe43buJq6E4ej7d05jbfZSsmYWFr7G1WzJOuWBNxMAReRFBx31Fteobs3khKPNdF9CTVjFuN4ZldEY2sFMBEbolkvqzozJ0kkDYIeQ0TvmRb4kPFIwrJu6U2oIIw2085JgFF6ykSLmakbiXit8cUaqg8IxGBKSSjQ6mNLsva+hcMWJKLoBTImdyN9JNz28RXapIjjnJZR6Rx62yWFjoQRkWmXgmBsJJPbswsTsemQ3fEgmtKUkhPFC3IzM4UZDmVJKSWGW0wgr9RWdB0NpQ15xO5Wq7nXVotl3NRBz4EBrNVU63E5LMviHSAxWHajqorbBguB23jmVkNxEzi/ppzG7+OEsZGabt7y8q1fs4gv31SKt/7FW4SlLxJet257Nacb0rt2R1f2vvn7OK2tnmayrJCqa8f20dYTnqvIr4vRr/PY3stvGCJ/Bw93HwJ/KP6txIxfxoa6tsaGjWEtDgmhlHPOOUPYtaKba2GNO+BQAnjTSDAOs7osx2Xhq6ur5XBl9x5kSeGvXs4lLfTKy5MkVcOy2MNPH85XB7QI+0Y3tP6uJ9D3sT6jpss770WsZDNzp6olWzLVnPPhcDgeF0HKIgCC/sGsgpTYCahNW7u71xp00LpKNvOBXgmdMTCiTEINxDIY96OsxwYr3hj5IEqIvaC1WlGrZtXJGQqvXkqt1cpiW0N9u0f+Ix7UI/GhboFolwJ0joDNvvhyNck3FyEGSKQ7aeNkd1crTC1obQ0Y3qRgFPupaqM/aaZD67WYGE7MAlVjIKX81ltvnZ2dzccLItqlHbnNOu9ycnftDds4yoLQiAqqWTKQW2OClOQBTPIUKfuxCiI/bGYpjbYfRqwEkUbv5mSN/BnQnJK7s5mTBPhQO4DWO9nsMJrdXdVyziISbOSN2TNl1ACaRSH1qm2IKCXZdOZCNJvQiBw4RDyJUJLY85ITMwvnCIFN0xQ41ciHT9O0S/nIxMx1XjaGu20VHAPeeVK36+Sasmsvd+MatV+esezHHa7ro/7NL152Ny4FOhnh+lH3qL3/MuzOIX9ouEy3BXavqYyhK0+e9PQXbNTiTY1zUyaMXXPzOs8fzC1/POUEeYFv+XZC2tc2unL7IGZG5LeajiFmt6ngW7K4m4Fdf00AYtkLDcrG7XdbTOT0YULLoK9bmHNseb4lQucn+YdxT6Les+BWC2EECMbcDtVM3eml/nVmNq3BKOPeun604FetvNv1b6WUpldefu3lV1/95jvfgKdf/eqD11577Tu/+/tPD09Z6P5L9+/duxO0O6+8/lIS8sV+77u/+7/6X/6vv/27f1ir/ff/4l+qNrqicsrgNRZnEgEQvBvmBEBDIMea3KRGe3iUwa0Opb1BIndod7rGiu/fgRFKXdwh1Mqht3DRcf5Wt243znbIRuA+9E4l20Lk45ytLdQ2e79+0zK0utVD02ED6xgeTQPDNPALIufEm++2AqjNTo93Gj7aGAMA7wyO1vnetvtu+PBEFH1qDCfnjNUVYQiRtC2QGcZeEDCx2wYPRcWUHUYYyKkRihqbV0SAdWxpLsXdEzMRtAUdqFdlBpcckzCl5ETFzKsDnBIHtWlt+VIhB4iTZGZWq1WN2EW4qAlRAxyyI/KBoGpaGx5dIiJPBCI2sqo1ZjsmCDB3U1BTgNGKMGWP/Kdz1BgT2KsZKD4lIpEsLERcq7kTnAhiULVWjWsRCm/1D1wa6zI7PH5nwW63GwxSw+YD0Jg83KP7bpg3y9IZlYPEvHdNTKkjnFtKN8JhiYii6tV9NKeNhUJByBxJZlMPk9WNTB1CTFKZFEGRIJxknue+DymIt71n0CUndo+MUEoJIgoowlRheMOk1Wq1LsdlOR6Ph+MSIXBV1dbQMxZHDJIBhAMMipbQrdFcTGg0a20WJVYhOwR0G+pG6NOJ0dlP6BsWHZe4im9VEK3lNGPn14D6EHVDcovkidzN6BR3TW+N0dyiFYiotVQDTnUhBYXLs0Lat6n88d3f2LGRQeioUbotV3b9LzfH2c2Cr3qIN+4bZtCN+L30YdiIbYnwsixDHyAgTxbkQ+4Kcyg0vN/BCGK9nEyhQhKSJlbBNpDUDB3VuSyXl5dPnjy5c+8lIrpz5/ydt7/5wSefPnz48LgsZ3l3fnYnyXTx9MoVwplFcspZchs/m0vD/zdPnoKg0711nBvQiPUQapYEM+ecYx6YebfbSa3OcNdqpVpRLWrVtc4jhuVG7KyAe4T6ipZSapIpHF1iL/MMh4jsdrtoUyeEWmvKrQ7KzGqtZnVbB9toH4nBouoWdf1EZjB1Uy9F52OZZ7uxmcbLtXal39yxAkkMxMRd/jgACMOdW0w+QDSDcUC/aLdun+K6e0BhrfaA6cbM6uzlHCicNhxjIoLBq6l6BSMymKUUq3W2mcld2nkEZxZzf/WVl955660sciyVI57r2E1T2GscZDkhQkHuXr3lkSqcAScnJib2ampu5mBhEmImLWatdgtEBgUoZapGaioeFFhiZqN81Z2oMymmRJJSAKzNbJom0yB9JGZyh1IbG3XfuAZpojsDqt5sqtailYmIohF9D0r2eVevhSWTl4gcEQV9x5TyFBVAIpmZI6UWRD7zfAQFRV4dVpF7g5oTe+PQ7C9uZP8DckgbN2m88ZN1wIRghoSzdYMZQKcGQndFyEGdFRlDAD5j4W3V1joD15JIN1UPEUi211yv05JO3nR4G2bX102urlcaDlI8IzPHyzdV9LU9HmS7HcYkt1vYdY1zU12e2sfPn5D12ddHRit04lNVcutF3JWIhcjh0VAn1HsMZLO7Nwvh9Nga3JvLnpRN3Yyhry/C+3qgKDwNDrvmKvRA1ubpmpkX78phfVFFRLjCyeIFwWHdqXL3ZiDJ2qipDRWNXHcMezgSZmZ6XRjGYAbfqplZKaGwAjBsZq5ljWgIc06Y9sXUaj2n82UpH3/06eefP1S1jz/+9Ic/+PGf/tt/e3b3zsuvv/beB79865vvqJbdLt+5c37v/p233nrjznT+xquv/cHv/P4/+E/+0Xl68P2f/ejx00cySdol9brdBQrfMTeWP3IKxkVCZGtBTgxyMjN2MLNJAy8wcw3AtxkR5ZzDe++l4QOIQQiWrDDQ+4Q4NwiG9/Bv2gQUopuwd9AvIXibtlEb2v7XXqyNOvroR9Q2pMMcJqDIfxER4MQ+PEaPrwz5HxzGRNKHZNqaM3uLkMbsjCZLkUJw7n58LPK6Ka3HgBgEUHZDjrOu+TBdor1UmDR9wkb2ol8wPFWmhnIKrFBiRphAZhYNzMzMVYnBKUr0jUikBzOcXBFdu5kaR3RzRYma9dvSvCPZCwS/Dzmho5BBnBCoOaeyGNh2mEjgCAYzgLhUZWZjFpm8ejXzamxIIBZ4b2no7i2H1uOjGjg6YXFqvM0axcjEjRaSU0qqjoCtFmdG1OUafKnqBHYMbCEzT9PUglgtl1IivgEgIhZjDxMkSaJEo+Zhk+YlJiEK6MT6lRHOYeYBbONe9B/hiq3oH682DuouGTMTpEcKCVjzTkkmAMtcrfUrSp3lXGTaQcQoQObS+JFh7uQU5EsYyWQHV7MdZ2KrlczUCKm/cQBMyagyJyJxX4rWWus8z1dXVxFlIaKoDow0RX80R8BpADBsk/qOuz5LwSBci56YxUiSnIpguu4Ab47TvMpNSNK1qb45AO8o9+05J0q6a4iTYdPo5+aro9U/Ojn/NMR+cwS3juo3cBDRFpPoftPb+rt1dF1z/RjRZe3ZsK1RZWZuXaAZrWSzxMwsaWJOqjp8lrHwAHMmCsP6tGMZAsThzhREaMrE5+fn3/rWt54uy/d/+IPL40zO6aV9ztOylFbni6DrolsX5Fj23tEuPggKO4pBRKwGngqTpJzSPu+zJBHRakQw11qXZTmqlVLLPB+0LvM8B4XVNE0iUlED27yRbC2FCzLmXSml1hbwEpHE5O51WUopdSknBuuNwQvEzVy9luLVtZhX02K1BuRkZFb/7h7xdE2qnwLR4vP+8xaz7+ZefpbYGXCnyOuuNK393PGtGM8wkbk3Q3L3ElVbTGTUAPWt7xtef/31t954c0CrvBqTTznPZcaqs9zd1VwblWhgVY2MzGpsBOtdRJlJop+GAJaW5UgMc6+6OJmI2MDwj5w1ETpaR1VNVR0SJDHszCxAEtLekyieN2wT5jYzAESCrgLBuxnSPuoePIK2LSTB25cSw845lyBEFQ4OFerBo5xzStOwduAwU/Nqahos6vNcSvGNGzxezTi2UHbqSRjgROX5qtc6cSOuKxRs/LSeTguM4y3poLEKry0tuv7v699aB0bd3qKTAY8xrCq1r2Fqai7A8xGfONGw63W8u9DdFuIOShwv2no9oXdsS/vnxld/lmZ8cY25mdKxr26xRrZwoZu/bN/7tS+OcdImfH/zhG62nWSGt+GVdbb7p+vdV9+qqYA4gNugZxsLql8H5HA4u7d+NwCCCFp4XGrcyDdQ7TFaonVLX3vwk6k+hfaMl9tfbENH9gVQxySEiV5KgRHAqvrkycWHH378y19+cPn4p//D//Avf/Lzn/3BH/7h1f/0//n8yePX3nnz6dXT4/F47/6de/fu7XZZhPIuceKLy0dnD+796Ec/eu8XP19KCYFop8HrtklbA5hO1uIMgJIIsznpsDyvTcJmL1BQDetaUn5zrsw959xrdOEtbRbOnm+vNnZQ+MncGwWPud1yM3nvtclMZuu73ho/tBFE27d2ssE3b2pEqeIm8VFLzkel4umr7wOma3+JB99e3Nwj07aVkO7RKY9dV/M4EtuNr3rDCdKGITxGiEakEqnEFtrczHDEEYg9EaVV1flw0ZHTLoICI6ATCa0UZMVJUkRe3dWJAKnmFLB2FgO5uakbzKkVJMRr5pQRGTp3VeOqgEUbhGhlBSJwcpJSq9dm2Lm1BpXBAGKRSQSZOjw4OMJHF2vlQFJ1kZxJpJSlWmRsCO5qCmFTq24sCQ0dLu6o1rpNUVhp3griWXK8nlIK0Djr1F1yjpXBzJJzMKkEdCOIA5kaqjZi4SziYHMq1dRAJCSti1JPTAkAg6obs/jqG5LDq7Z9Z4boLrzZAGHHeDMym8gOosF90aVqAdiJwWROIGLJrQsqmZs72jp2ePUaWE8IB6DR0VDTTsGeSSQMEoDnuRznEqw5sQS1uqoryljQRNHtsyu2XuXbxHFfxO7eqeV6lCgerZ2MBvnrhS9E5K4AOUXY0pnEgzcRjV3YvO9qaiHMddIAdLoDOxXrQxu1x++jes5xTQ5SC8WFzKJm19uaU1ov+FxtfVOnft3HVgh2O76FMHpX5JvUu9vJ+Y/jrq+336jhoZPinyFbo0SCIA1dHFyF6/tlZmI0zsZhlFStzAxpTQ5ibY61SpvZkFZ8pQBqrVdXV1dXV9V82p+d33/w29/5nbnar37xvh6Ox8NykQ6Xl5euyiytlmRorG26ilsbcOudJ9tKlWix4AjyW6J5vnKfSknuPs/NmQk7I8gqVLVqUS2q81KuyryQucAF0Q2PkdKwnBILT7uUUhCjCAunVGstRUspHHA7QlQ7z/NcykxEnVljPSI7ADNV06pQr3PVYstSrZhV10Wtron0rRDAiQH6FeWBn1n3e+Pvzu7Y9FxHiPfmRzK594tJ7HHthcFhRpxezOn6ju7mxY2BmHcEDXUg9DBNgqmZtrYF1CiwwY3mbSlLLSWqedVUPTA+TuZu5Y03XnvllVfcPaVUtaacTUvgk909cEnNKkBQ5lMUP7t79AVlIIsUcyIEw391c1fAhQlMLQ9opK2BEJgZJOTBsaHTEuVY5A2tV4MP0nrRsgS5lytHnktbkzARcZCqG0FEkiTu0DWRSdECKQKP1pHQIJPecA/2RcVMgfLgnFJKklJKU0oTkQRWaxiIqrWUgogHBMt2hJ8iteI1xORwcfv7CqhaLxw4RYpuzcFmB9tqgFqPLmBUCGPw2SBKtN1pmM99fbZE30hEttRQSPPNQuOuZNdvbcR3ry5uI6RuogyjcPOM6IqeYErdaW7aUzeOXIzCWuEfAE4CIk7CslI3YbPD7TS+cM16Hs/yZRXltvr39O8+nhqnrvu1uwzLLJJ04wTf6NA4GD1Tv0l0X7vgsPuHk7B9cA6C5xtPQS27uH4SGwoSEYT4bwQjbny9I2uiamz4VGHxiAt3+nsismZzru1nqC9uEDsZMcGD3ZfhTgSuo6SdcPru0NVZmOVxqCoHP7AwcY46CjgToLq4GQjzUvNS92qfff7ovV/8ckr7jz77fFE7lPrZL94vVj7+9JOz989/+ctf7vO0zxMTWS2PHn726fnd1199XeTzw3K499K9vM9zLee7PZ+unO3qGpI5yp1bTyO41cZxg+Gjdusd4Tbd2OPtnbbUasvIVjcwkTPQMvFEBAfUkAjoBbvbowemtnImmic7QI1IBxbI/PbqeLuDuA9qZKHiatFJyeDREwIgxkncx3vAPdzhSCsAIAgLA2icWI2TQgHEgypa3AoAoRWPBeMtOpt0d6SYOxY6/qVRehYS0hSDJrBF53gEfcIwk4DKNL7xcKpNRILd3SLBG2qIKE8hB7hd1YQ4FqxTEhaQeelNZykcdQ9q0JzEvNZaStBRGJFE5auBGSgaWpokp5QymIqaUKt1XpaaswQXsTtFrS8zCwtRb/Zgpm4pOhHHWxAm92qt8ba3KG/sIg47r5qKsQFOmHqv6lKKEQSobpwTMy+2eE/NlVK6htPT4l7iJIfjMuJStWrnPl0DJ+4O55QygFprShzdVsbSGfVvAyUSye2cM/MupeSu2y1UjVTLEBAjom9GcZFS1F2v9Qrrsk+CfafWmtLEkh1aiqpqkinq9wGYh/FPANzcrWE9HJAk5k4OTgKPEL5u99u1XX1xdRn4Sfe2VgKOPobk7h0J0eTwtWEP4QhEN6N1fQuR9907jPJTB3gV5UCPoGwqioceopOqilXTxDV926KdT+RFCObxyLh5+GZ7b37e/MVPZw8bafuc45ra+FqP8cjjD//RHdq//RH+wFYNr0L/tollZiHZ9PYgIjJ1IueOjUGzzCJ6dGJcjIVqVo/Hq4unj588eeROd+7cu//Kq/fuP/jGb/22LuXT9z+4uDqg6uXlAQaKbkJA0PAEOz2AqjoilD0k3bpz08acGpEa7vUtZrYsC8ESszAnIcmToywFQXlVdVmWWZdlt9slmcysS0Ie1likhZk5So6ZeZ6P8zwHgG1/tjs7O9Oy1H5EKJdPIQ8xpa1oYlFdqgd7tDMUdVGvvswl+kyFhTFmHi+2R77GY+Odnu7um2bxKpAi9u23edlb1QCgEVD3u4zF6b1Ga2iB+FTNqJ/Gm1Ux2qc1uksAgORUq1kvTI2lG52bHzx4cH73fLm65CSTT7spL8crcuTdzlWjE5gHJD7KnZpK0nWlpeg4Kcbw6lZr1aplAZBSitxsYOEGeJeZl7kSBcWrhSaNbTjtpja9Hl0SqgEkghrlMfF0DnfKiZlZclh2RORGrWkKUZKEVseIHJlidiLyJRJKp++CyQiUJFHKOXMSEck5T9M0TMNxBP+5diNgeAshXqQbpuMtx9Fa0XSbdajRIYLGIo/ahrCGu8pbI7C06Ui/XXV6EnukcWm/9sfNt7YXsY18P1HEHsXdvh1zk0u9Zm88vveUCzO71qa4W+s4VF3t7JtO3JiE7WYPiXpzMn1LfHJr2OjFDne/JmS2n9Fp8e0t59y4mgdbzWlQwL27L5s6Yb6Redv+3AbiueNCxzBOx9+yZFvzwF2JpmHDbFGywwIBWn4+/j4yhGSdEd9bJdH2psNeQuMlBTqvTVyqJXK8pQ26cQXTzcu90b22pb67xDMLutm+Z4MbyYiIdrtdtJYhomWpl5eXFxdXtdprr79Cebq4Or77y1/VWnniP/uLv3x88fjxwyf37ty/u9+Lwc2OTy8/+/iTT1766Oqgb7zxxj/+x//4448/vnh6JVOWbXSTycyinjD65ii3VkRjGqOCmU6txLaRiQQU1SIe9F8ABYFuC460ryiF6WBjTto7VXO1ononn3UhYOMXw4lQurkkaJPqhLuZZUneXrRtPV7fkKSsG40Q32rsS02cSIRExkioQ3LCMFh5rfoUcU9QtyW0iiUqrb1oUwc9G0u6gco31eCEjsC1hj4gAMIMINibqKMemLm1RfLmGA9vi6LLzAZNQBtOE7MVt8I9XEBEMBXOQI01H6NaliUZqKjV4xyhHmJxdxCbtR4e7tCiYMp5JyJXVweKrlPuys33Y2YzYubEMqUMIKhHmVk4lRoKm0Go6tWruVtKQXxmbYAjrAl10+qlKhEgrObLEpSYJXadTLlEh1xm5lRViZOQmMPMQpWWUlLKMKqlAiySO/Jc1TGXGiAuMDuJOlGU6pmZqgjLlInE6Fi1qOp+v5+m6Xg8qmoSQVDFunOnCoNqNSPC+TSN1akGbuXYAnBKk494P3HKmZkJqHaAs210SdFqZtN+B6DWSsJudlwOsWgkTSAllmmaArEMZnfknM2slBqBnFiyy3JscHl4EmG0tkZ9Bft+vz8cDofDZUrT5eXl8Xgs6urkjmwkEEDDDo5NCDO4EbNyZO3XSvcTwSfigIuMDEZsj6p1bJgWVQr/99TVHPufmWONUWfokTTclRNFslVysRHb1Tjw9QijCgCJeCdd26rq1dZcPSIfT9RQCScmBSFagvQeA+2wVRfqpnnM9tG+jmN75WFhv+Dtrlljzzmom2U3bxp3fpGLbI7bc3dt5gmmGpl2yR39wplSWz9jdbXYMxkLQDCr8cfEudZadDHCbpdbTKrWkNE5y707dyjJshzNLKVsxYJ2aDvCWguIRBIRHQ6HeZ6Z00cfffTglVfvvv7679y9/8bLL/01/9mjTz65urg4HA4AgrlkjbW5UVAsGFgjCE4iWaI8JMrGzIlk8LFrMc6Sd1Pk+na73W6Xg3nhcDhwQinz5dXjh08eXR6eLOWoWqOUd5omOEVel5kTZwbBhhJplrdqmWe9PFzVWvf7Kec7wmRVr66ujsdjEBHlfBbTdW2F12IAgljfqmsxglipWqzOdT6W1tC7Lb8WlB9Qqxsr7Xm8zV9wvHjud3yDSKIojkFEneirApBwKYkRnQ2dpt2kWlVNtfsWfnKp9R+j91IzPGOPtP8iHcPMZKTqzDDDPBfOnDgFM2+3XS0I/gFUt2rKjrFuVZWSuKozMXFK6eLJk5cf3Hvrnbens31ZjnmaIDzPxwBGMZMbQYLsGe4ag4sGBwaQsLCrqno9LOqqFABKVs5IaV9rXUqpGpaWkMhEhKZHVKStCtUyzwciOj8/zznXeUkinlJ4v965TFU1JyZhVSU2YeaUQlkw83lKzHw1z16VGESwIPaASc5EUlWXuUYXVmyoKMfvZgaOvG8r+I/q34BAh2GgpQKAmoCWEvx2y6AcA4y5VUo3bdLfNRHRBnq31VahqgIn6e4sLBFy4jyuY95aj6hqFPQ1jsrm4gDBsxWoadooGvOwT4ax26WuB/Po0GISMp+gqtz53oloyjnC7sI5dPFutwvDIERocJ2EbRDGG4FTalg8794vTjUmenm093BAytkafsYzre5T7APXNUqiqq66kmzRynT9JQ++/UuxH0814FaIbV/fmFJp9YEYHw2wFDN3EtBNgGDDwjishThkwxQ4HAyrFSP0H7fe+Mzx15ZxF06pLWl2iCQFqSoyEVFNqZRipY7rwDnapI3nXSuXgyTSvbpbLyxsQyKgVW1TopxY3L1GXV6kHiNdyuzERiw9MGf2TMW9fd44jJuvklJy07APbVnkbL8soYv9ow8/fvjo8Suvv3P/lVftF+8/fPq01jqXcnb/bp7SNE3L8UqLPfrk4dl+P5HMl/Nnn34qu/M333z9e9/7o/fee+9nP3/v6dOnW7LG8NwILsRTnrohlzsxptVawbTf7yO4sOekTMUazRh3vyTeAjFP01QdtVbvG22sHzAJRDoLsXt0sCISV1WrOgxjkrBpNZy9+GC7SodjPN5+8zLMSynSixGlk/i6e1AKWC/EZWYjQ5AfSU+umROMiBjCEoTVa8DLCQbnJNU0AuJMQgTqnaa3u8YaEZJUXUZMrc3Dhnh87I5h4a/PaAH3kQhSRMWvtDRvR00TUZIo645lGQOTFNPsvnrdG8ufOdh9GxUZu5nVxeZ5nhKnlA6Hq1prlsSU0tgwzhS44lprcy4i9QdzAxPU3GFhgbV4npG5EtE0TSKthmee53gxsf+7UgEzJ1pro71HYZpuiP8TlmUBs0AotY5b5pHW7KG7aNOB6j3C4b2qc1yNeongciyqGq67Gcws54yegw3zlDlFY4YY8+Dc80h4Z6m8DKtx5EPG7ca3+gqOeASpaviZLXcPGc6idey+mSWRKOy+ZhSOtA82zoy5pykDEElBvFRU1Qnq8bylaK2aUuKUhOFQs0xEZqRW46rx1EN+tU2oejwen15czB0hgKjOOimKvkXYuZ1sj3FZv557HK9mdSM7IG3Nk4z4dZ+NlZpvDMNbOu66MW2nrYnGQX0+zczFtrJ7TPt4v36qg28+xbVEvfsqqsbJNPy332yyi26M/Nf77t+tY7M+ADRQ1iacj61QJrMVWUCxg6zHdDlJasFFhylYzOxwmKMTamIWUAhU1xPt3jS3+1KOx+NxnmdmrYfjxx9//FsPXtqfn73z5lv2B4f3JP3sRz8spQRJbiOaCBLOPlrmNEznrS7ZLuztp7EBm9Ob2V1zlv0k1evTp08+/ezjy8OFkampmREsp52qMknOOdh3Iw3byhZ6NNe9wT6t6jRN+/0E4Hi4OhwuLy8vD8fLMTDulH7bFWJmMPJqdalaDIGhUXh1rddMo98kzdULHNvYFkTSCSLCNsgCbFpZEFFvogt0fFecg7Hx4duOwbTJ2g3JMASOt/5GVWR1kLaySzt42Mw6+trNrDqSB5cISWY1NcK9l+49ePn+UspxnrXOEzNnrtXMjZklJwmeFavuHRkXO4ICbFxHjL9qyRJ2n6iqmzNDRChjGBabJ6pmmhJP05SzCFpbQe917BK9qsHRsc+0pBztIZh6Z4GmDaPRgSqApRYiRLyJHWByAtQqVA1ENOWcmZh52dJAw1KSyZmns7ybojd1eHr7/X6z8oPyVOu8LOV4PF6FiTK24Vbn3jx0w6mO0wRsmLZb+YPTXdNySM2FRrzazcIM6te1n+qwbodJc03XjFucSH5qg0k9Oi+dDgAAQQDknPf7fRge4e6e8A5061aEG/NYzEY4DNtoKbW2iw0yw2Rmvahkfa6wA4HmAN/UquPUW+f8b3WctgTfqoyt0TWeMSS/b2LHbcLN0FvMjg07jG9s3gX3Lq+pW9dj1ZnZSYX5M3T0MCqIKCVO1LzozXvpwPVopXYiYeDkEYJfjRCHbYBOPeLCzAyjYV5io4bGRvDmoXfdQT4Go5tSo/F1bZV9wBY6e+o2M/OyFLT9CCADvCzLxcVFmvL53TvmdDwu53fvvPTaq2f7O1PeQYvOWnSemH2xxc3O9Xh1qEshwu/93u/+vb/3B1eHQ611OZYxk2aWd7vMlEDsdphn5xzd1dcNHuSmaE8JQGGrbSFBchOS3xUt1GPtHQFjdjqh8ZiQtt+bA9k2cjWVvkNFxAfs5TRMo6XKKCLo/PlhsVzbPnHZRC1xul1CIlJMCejwIxjaK9Gm6WQ1qjfGMG32yPYubd46+Z+Z3QSIxZlBw7RdGMHEJtEVEs7M0QbJNkHA8Hri96AuH0KMmdFzYOHWjrApbfyClJhI3FFrVdN4wrEYVF1Ecp4Aj0xtMouAVC/FITbiYroZOhykauomqsJsZuouwkxUFYmDVQLuVLWqW7QZYM4OLL1/Rs6ZEnl0iI3olIGIQiYEEFrhpVTJyZmjQW28SosxOAhQV3cvamaemABSh3pf0+6u5o6Uspl51CuBQRIA/JSERIik1kqEoIXsvaAopSkl6RIh0jhkBU5U1D06kkvqqjpmTDyg80zM0YocACRnybkLhZoSozXYQ6R9rCPZWNZl3TaAZADmpN18ZSLur8pAzImYylKcmKUxvlXTqq6OxEJJVBXKzCnS0IA7sQEixMxWim+iPqS8XB3neTYzEk5oHCRq5no9hxlqu7HhRazotDkNgJbUApxokDi7O9EA8jj1Ol5fcUod77E5Vq0PjV4y45y+RQclI1oBRhQIdD7GuIKIWDLX6L543eUbUmwoufHRVkA0Sbdp2jTkZkwNbb5FX4dGf/axvd01L+R0JP3RTrJnrc4rPmjnteKX/wiHb8TxiFhjI4jd3RF9rJ06tZvZujDaT/LQQJLSNE2t1QqUiJIkEQqHgEWkkQ0yePATAmjl6PNy0OrVfb87LssyTeyOZTlePXky5Xz/1Zd/9zu/w7X+/IffPxwOcHde5fjWnI00FPVS9ng6DJfMIVH9QU0fVIOBi2mtyz2+s9vnPDEzLh4/efL04cXFk6JL2iUhZkZKSTjVUsyx2+1SlmVZHCSSwhaxaur1OF+FRnHo/mxiZlO9vLx89OhhKXMItyjlQDfpeLTPicNc1bRoKcWKR9FSneuyLLVoT77yjYzOdo19fcfzrt9qRhQgzcxwaZ5tazvYT2OWlr+qCAhfS2t5w5Ju7hV/Aa5LldVT6UesXnGwA2rVXTTCjAaRRgSiBrXgyyDzsHFjUGhpBw4MGzMfjwdmfOtb3/rWt74FMoUGrUOSXLQqdJKcRdy1LiWyWQ3sx+TeumI6STRJYFjLRrubWsu+EkWdkTt5M7YD7EcgkeylLnasKaVpl9y9LuXq8phSYoFwNGIgIFhDYW4mLpsAaHB2utaw5d2d3FJKKdqEViUWwAxQc4MnzimlLMzMeljG3IabZ0Lau60EGiL8EACqWstsWmG1LtHwfrZarS7Vwj/fvl73TdksuuvoUeYXRdFMYOIRLhfeOlHwldEqNNdYgkxSq4KJLQGN0TNiKg42rK04h9AbHsj276vButVBsUh4DdYzc8g9AFYqEUkikKkVM1Oralq1NoecjNilU5CGl9fh0BpWPnq/4qYuT931MaLt8u/tZ1bbXYjsGUUrL3A8I6zmN/7uDrqui8c/txbLVvvHp2E6R6cB+NqWJoy3IEHADQd4nDMuHh9xL9DbhuC3310dG1q5kYIrPYhGvafUAER8pxJBFdpofr3HhkEIQKejA5zNQdAu0iHi4UXDNx51bXSq7tM00aZMFI3+fDWBAAxffjxIs4t6iEAkoDYsTsE5N4ht3J1TgsNqDaP9cHn85KNPnzy+2E1nu92+zIecppdeeiXnnUAury6Ww1K0Htz2eXr5wUuvvfL6g7sPnjz6fKmFSN5+++0//MNjzrvLp1djPA2HBY8Cyf1uN1swXNqofAzEFzNHUJGIMou2QlBU05CZ24VFzNT6OGB1C5nYfemQYAoWTFCYuREZBJNHUygiMFsrGV1977EetitHu8LpzE5MGMU54dagdPrqOAPwRMyU4G4wEMRpNMOKOG9U6XOHWN7cC21ZkugI1lMgFNbQ8EB9rmt4ExS4tjzGrcc524+k86XFZgnDiUXQjD1wJCCThAojZuFOBNP3FDmEAZLo/UowciHQ+W6/ELe7QBwNe5ICnmQbV2GMuG9I6hnLqkSi/v9j70+7JEuO7EDwiojqM3ePyExkIhMosDaSfbrIw6WXmV8xp+dXzG/lnJlpcvr0sNndZFWzimQt2DMyY3E3e6oidz6Iqtozj8gsAAWg0aepJ+HwMDd79p4usl65YjaooNI0cnLvPfe+YiTWGdlbIFv1TugIkM/j7pOtffhgneHhJMtWVQfFxdwEljMSAEdAvI+AIrCmUmde12OEn2utItZaS9Ulki3FbU1xztpazlyzK5JqoKpCiyEYGa9Iouli7m61VCtQie7OqFayg6ggGKJKlSKalbSjggIjoaXJ0xPD9s4WRFc/M/szR+SLVK05eSFgMMLLZkI0T+LWOiO4qkrYScsGsjfvvVcz0FSEE2Uc7iASCsWQ3ns2WwIgxVL8rW0QB7F7teMTE5JMcQfEy1HN8BD+0QPH3bMjMSVpcNZgPFOcGTYc//wQ9kZEsDg2OaSv5qaNgfcArnJq3a0cZcEMguZ+xkEGLU2W71+1DUf1Ju+193z2FL+dcZRf68VbKROQD1kJv9J3LZX/23lMDunfZSZJiOsee7YEmDHs8fimpWitNaUlPIRMEaGqQndQQiDspLEfqSTTIdy2O9VQakR/9+7duXVQ3r558/rrVw/39/v948Pd9vs/+H7drO3nkfcSySgmZ3jRzIqac2hfmWyEV/mDm8JCkk5istbVWt3711+/+unPfvjjn/0koheTUu60SEYVT6V67+GI6GbVTLJk8Qr8ZvTe3z2+q7W+fPlwOr1wxuVyeffu3atXXz49vSul1M1qrWaSkJklEmeT9bwxgZNOhNDJ7r35fm7t0t6D/P9ujYP8UREpujofPdf9Mjz/smTOfM8w/g5XlZEK+4ZvxKyMxUGe5HaO7u3aZ/5aA7w08rqICESslGGUJCKsPe6ffPbyn/yTf/zFF5+//vqVmREOUxWYCWsRVYo42cM9wlTUVAKkkcSRlklVNI2/5j32vkcLoZqYqkAsbcWZtAEyiVHozrQiZhBqBFDSmUgTUGfA35vbMw7egzm1Zj552qK1II0ixQQIGfQhaWIsuZ2j1nonxfcQEVFb/X7Xe0YpcmRbg9baxd2zGVmMlNYw4PTgmC3xAoIqpkUOydhlM6zFzX0zV3ew5GR++7jwN5tN57NQXXFkxbvusLkhn23RZ/9cIwNwMhukcyb0Vjn0MvzyfDFr+gABAABJREFUxnJm8hF05o3NjOAKcF9nWwTH2trDTYaMSjP5kPl7VBnPzIDfoBLhB1Bdx9/z58iB5+wdjPj1zqNddFwb3nrXxydKM1VnAFdEzrPbyIfFxbrVA354+GbTKB015GJZq2lm7ENodM5s/HuJ2XGH+bwHnBHdowwDL2bPkQ/aD5yUjTKNOp3CbD3vs3nI0wQJwETGvpJgwEVQa+29wz0bFr579/TDH/741ZdffvLi5fe//72XT4+X3kXk5cMLEbk8XS5P56c3b9Hb559//sUX3/8v/ov/0hn/4a/+49/8+Eegfu/z7/7+7//+Rx999G/+9f+6bmDf9xfbHQAJQmXbtv3Sl7bF3NKKm+fV666m944J4+KcPVzZNMfvCeUF0HtHXiGYKa+UBq21tQfS01hH8v1tiekN8pY8PCK+yXrLqq7j/BOj2REDZLiMgE6+x6b3i2kecDrzIjJpea77Z57963nRmZ1+dpbztwX0uF5nARAw4jvDgVMxM6glgmZdHDbgAzYThAPVUsY/3xeJmO24SlIs31j6TKBryj1AWnePViAmAs3q10y6ioliBUiQPYFzBDpQTtVEIzrI7HHUPAbNEoRkixB3zcVLgDQkK45sUi47R/uyGLB0yxhhLVVVHQJ3ZnHCEL7ZcNnFVEI9krmhBEVgKlqsWJFUYwh0p2VCTgwJu41R99XDBa5FFeYRAi3bqJBRVRGED4SAiQCWbeEIGpL2DWJ2uitZhRUCNQ0GRIOy1ZqrvO/n3s9AFNFim8AGOa1SExHi7N3v7ipMoeQRqCMWiGD03C1BIpPeUWtN6ezuLSncBD1ISPINKAlodiGJ0J5N4IQj5g8AGQcwwoXwnk4uWnORDASuk5DRs8X/LpF2mHaGZHIwjZ7EkOO9NN3Y+otfjiCph/ytzDPTl2ebR31eQZECNBXD9UxOacWD/r0mcK72R7KvZdBaZZwlueEqxC3uVD/kux4tF8FNn9h5J88ZEd9Xir+FsTS6fktw/RvLJnGMrM9n/Ua7hL9FH/iwoITcgOhSxrV2wUHskum49nFvNg0Jkeju4SJIN3grha7ezj1ctuJED6fHx+ur05pVAqrUiLhcLuLRm+tPfvTixYv47NP98c39xy+/88lHqgLvqOpMhoJhh2piNlSn/E1/42rW5BjzSQxMpoqLUFjNtNjeLz/88d/Yz+SHP/qrx8e39x/d12oBgqPNoGq5tH2yUKRkLAj67u6+Xy6Z1UlGg23bem9v3rze9/3p6Smtn1KKmR52b/ZxSYV9dW1779ETBWYgvfP8eO7J/JwP8m2b7LeTB35/jPBYxmlXF8RMtzJLfAUiUIYSyf9Za4mItWoAcsfN9PgNYoXkJMMEDvsTB6M/Jkj4IHlWIVZMyXcNSR9PlogYLKIXUVgJ7yL4B3/89//5P/2nnCThw2wiU6lFJzjw8TDNJGNw1AqGSFIz5T+JRhX3AchKqyVva5Wmr5tXHSVK26nqSUnuT2d3L2off/yy9xCRyAYEvOJ0zGpAsuQpgwjKlkwoVz9FxAQ5FVtan6KB7EIcEcHuLqrFjpNTa61C8366v7+7uyulEGMnl1IQ7NJ6kkC2vV32drm4txESDUpwtOe8zS7KqMwUEw2BlbI4WjNLPGp9Ezmc9J9mqRNJkt0zas2Q8IMaSdsmbWEIknaAQ+P9AmneZzcpGW5Le+nAx4GZ1Et7+Jgw8QO/2rOvw+phk11FeFOpIQd4f/4uqgNKmlYpoYsi6wDgR0Ry4i0Om/V1N0pkqJ4Pjl8+evsh73fFwY+vkxyQiOQvSImRniMcuDJ6yLRG1pzgEITV2bP9GPdf8ZeY/CPHu7quLK8talTVJO3XcXyWO5S6LNt6hYW4uzsczmDS/nI0FJbDV0yWaZBMZQkAHU7AjBIwE4OVsp8vy0GSfDRS5uWm33iVTnIYK/iS80ZPOoiZ4usBjyJqJvDwoal93/ef//QnT29e/94Pfv//8l/986/evfkf/3//05uvv/rDH3zPW++X/e3r14+v3764P7148dF3v/jeJ9/57Ks3X71+/fp/+bN/V2z7v/13//c//gf/8Hze//W//l/WxL5+/frTlx+XUlTI6Ofz2SM55IfPX2uFhKruLc9C7m/l9N7NjCVR0J6Rv5zPkSfj9VAoJdPpAIST5ymdULNRVZ1tYFQH5zQZHvp+WmiSPqzY68ohCRTJjnDAieTRXh8fQYqxGoteZIUtDEA55PkSk7K+63oojia6mIgYYlWLaDFTZVw3/+HAXXGX112RgR0dBAfXu81tpqXWmtwQg64/y3yTusQAoBQttV4N9UVqstjxgb63YlJVnHBIAiBIOmlWE/mbzQF675cLBgs0Z+BWpvXvB+DrUfgKoVICaJFQJc0ai6KqYiIS7t0drRWtWI0csu9IxxITvXfq9d6fSZAk+U3r8ShiRhp2Zu1j9o+S94aPMK+T3LZTJmRCIMkPsVA9H6quya2YXxQCEwmJImJmg/BZtZTSWtu9m1nZalJFtfCKCop7Mm+JSDEMgTWUB8zMRAqgCTwTSvZpWBPuzmJ3oT1tNVV1b4BqEajopNyUQ/xjSdKIaLMOT62we+/ZuiDMLNHQRgsXMItzIoK9+9PT+XLe1aqCfuRJPuRCx89DJOz4+jeprKtuU8kEq9y6TCLi7/e4O+y99Yzr53zzMdJJ4aD5T/klEV0grnBNPJiqAaPgjB/6xqtKfG8s4zXfc1Wfx2jre2ir39r44LN8059+czeBX9OzH29+qfDn+/Aw/MA6eBSRoxbRbNu2bcuiLGjEwAMFByTJIQKDuEoPT47cHJkz2fceDlJEi8M3rc54+/btV1/+/PL97/WHB8WLiHj3+AYSqsXBFExJMzAexCMdgzQus2QubZqxP7PuNIY0BoVmOoh8dN/3L7/8Wd3MvZWKIsN00GLVDJIBzizLSco6IRnOy2W/XJ7c/XS33d1tD/VOhPt+efPmzZu3byaR4YwEMymyMlMhSxQcHfV+6dFDqOxC9777fu7v2XW/o0MxYOcYvSF77z3t6hGvmGLggzst/zS5AK7cocMxOPRpXL8cxR0PdJ2WoLa4UuLjEGtbxu66yFiFSOek7C2++O5n/9f/5r/9oz/4Q28d4VvRcIP3gJvZwOh4iNimSjg9OPifryapTAqfSCABVFXr6U6ocLIDSHwftcxsarTeEJkTZqS5e0gi6aBbi+jJtz5pPrLG9ThF6awloeOa3tRrpxo9LVNGqEJGcD9dTQBFru6QFFPQjFfKq0Muq7XWfe+9t3ZprbV+cW/po+ZWlyS2nJlavG9UjJSnyEIkvhftXZ+6We4Z1Dhm/4/qbK2yyE0bYB41y+14tidHuOSQt1lDZ+1cSpi2jx4ZR9/smg88mK1pI5Wiy7HHNwyZntL1KcF1Kd40pbvq7t+SVpqJpmeTefznuiWR0Tc+R1oRMV2+Zx/RwVAzwlh6gHjg0Pd7GWmJOlhrjW8KHF9dF1krNeh12rUHdRqxC4gwwrsGhpPC7uuMfFAoj01Iyi0dDK6i/gbaffzgsz22QirP3jlDeBIQGZCoJBSQCFMdh07MEr/o7q9fv/7qpz/9r/7ZP/8n/+Qf/+UPf/Tv/t2/e/PuNYKX/fLlq5+/evWqqmzbRyS/fvPm7dPjR598/Mknn7x7/XUpW/Tme/vss8++973P1z2ka9Nae6injJ3p4Ao+kgrJuvOICEFKXgAO1rtTgL13+vXY5myTswP2ImvgxBnfCm0AWYPAgJNJaiCmRdTRF1x+3fY6TccttDKuukh5DmLHDnWUa4ePLkGzYoEzuLY8vuHS2xX/OL7x0BJy3cly4AcPApUTLLNmhiRwM0vrEbLfb2IZeDiSnKiZ9exHWUQyvUsROe52LKJyILFBqirASctitj/uVVXNsuT8xcyy1Wtp3kdGkYv4OWNDB4ceoqKYPcp6EIAHVKX1yFvbI2zIX4FICwJUFUDOl8aRzRO/DCSAUwZ1ilyljIgYxINZ4yTIfJ1GcAKW44AJz3uDzIAiuubLItLCVTV7OaZLTRDBZK3MNTOTUmp6nosHS0REWVQn2Emc0cNrrVZLgNGpxUbvXHD+AhWIC6AeHhS1etpKpt0vl4tZJQXhClUpmmXAZI/o4abVysEBjuRzNJ3ILzDU1Irs+zkEWTBVShYwZ6wdQXSPiBh0W5EZ2Q2UoEdQsgOzZFZnlHB0D4MxpLcYidwklcZoYpTTLrfO3rPtO8p5j4pttI4cFt56syGmAcFEhmch/jr7a8vOgxTp02I6vNmoLm7FOg/7lSRW+UpW27vOahABkJ0MAyMUct3nU1wdDZr3nzevD71BSl0ffF0ttQ9+S+N9RfUNb3y/7vdXGre+7od1+d9hLBGPb0uArIrlFXIelnz+NTemqpSitVpRU0gaOKZqqkLtu5OuEBUTqpoIqIfDqKPmSlzYg0kXB+jlskf3N19//eVPfvLpi5f62Xe+evPVVz//EgDpxcoItmC1eNUgbBo4WJHjwfspXNJfAKCI0jTdd5iGBEQhUW17+eK+uZZSOiOL9BgSowbVVItpcffEpva9XS4XMhYRrru3drk8Pl4uFyB631e4M9glbC0BICvWdsQ2ZwQTIdHQ933f++Q6GatyyD384oNzNX/l8U1Z5YNtIYrkZBa25upZLcGEFmfGk0NVE8Dl4su4meVawxqYV77+98EY4FE4rN9HvGZQAnJmbPI/B10hPoN0ufNHwjSFc8YLu//gj/7gv/2v/5uPXrx89dWXp1pJ7wyBdfdqpUWrtXTpyN5Dge4hIvW0tcuelBTLpCBC4EBRgUpRKiMCHkFA09SLGAyrEZ2gCKnolz1dclUpxRjsrZmZjLRV4srIiBkvkAkDvFonw2bCsJCELiJUuDczKC3zEWaGTFZ0h8i2bWuezYytWZGMaanq6VRV9XJuT09P+/lx3/f9fNn3s7fG7giC7i2SR1JEJsoxb/F6CsYUiYagM9KpWvkHnSSxa/nZ3XsP9wADHtPxzerZoReGeSdTn8iyAsdyv6fg1p+OL4ZMnnEgPeDnm2+azs+M7PVcK86yviItyyTvNJPee3KdHm3T9VN1sB1kZ86iBZF4mbnbU++nL5cPzkQViog4n/cm/RWjaN9Q16OqBJ9N5sHGeP7KMax/DLEPiARH2GXNRjZSfd+KSCimHPzD6wM++8ZviPtfHbNgRpqYQcmxbtmlluudJoKgwJw9VOEODwSnf3WNceTjpY100/xneE1wspaTJlXBvD0lGKTK8ebXhjxuicwuj9ctyyJIMkvSEJL0vL33DARH626klfO7x7/8T//h5z/+m9///R+0p0djfPLRx8XksV1+/MMfPb7++ovPP+u9//TnP3/xV3/1h3//H/yXn/0Xn3/x2UcvXz6d9z//8z/3EKr91//8v8LfjGmsdyfPng71ZGZ3d3cX0kpxv1LJZElEGqWiV5HoFMUAOxySjbIKKnEIGci1MjzLPXJVoEnjN0OuMquFB3+YiWXMlKmYrntv7d4jVEEOxzkiODdn3CqedaYYmbgVZAfSGQzCIf4lh2xtfqeILNbh939enyJjHLyKpvHX987X++b0+DpeC0kwokgDMBcRa6elOFYzGLL9rc22keOyE+EHYCuayW3QFdv14hhhKREBdN/75dIAKd5nGjIEVBgSR2HXba0kYlBSgc6dXTSxOtp7A1ArRtuMxXhM9IgC3bby9PTk7tu2JXobYC1b8q2TTAQuI3EHKLalfRDuIiFWMEwPi+ht925ezDwgYmo1y4mTlHTUJECoRo+63d1ZiZ6iwyNCS97jWN1SyrbdAbhcLkvuAwA1BEJkQDx7A+RZdacIk7qzlC0ZbXKizMw2Q7BOXuXWe4LN7h8eTNWRQCL2oJD73s+tiWoL30xgV3rhgOyXy/F09Ug6TOtxlpLRCtRigDq7e0AtSCcwO0EnkrnWDQAoogIzIgLRB2ur0OhOKanGaEUv5ydnTLD02Lt5DjEPkMi1AZyT5VDzs+Iu14r7Q4QbgFOQpGbv4fivB+N4hKa5cBQNlKvm+KChQFICzL4L6tpVKg2zwLs4s7oSNxe/nmFNfXENRAEJBERK7WPinQc1NnusCRAYKLDfmgt88wjHfN0z6fN/uKEpc6ffmENkbdJrqJXDTL/iSCMCdrXbejR3b97FxEoJMNxJViuqFpNw6GjQZJ+GTIci2Px8fnyUEBHdiu3n889//vO/9/3vSfDp9dvHt+8SBZDVxSSjOyVMB+xpQOMyZoxhPCWc5HpMEhqqplaS7cL3RgvUamZaBCESGQQtZiC09+i9qZZiVcUAJaO1vffurbu3+/v7+4c7M2vtcr68PZ/PEb5tG+FJfWdmpY5TPGo4j8axHwlrAQig0bzvvl/6vl+d43zXr7Tpf3O7dMit+c9IdGCm5sQgAlJW3ASjUF4hMQ3I/OCHOeFuXYvh5j1/T8QKcq+dyZCSXeVWGeoccmDLP1oSRQiRcPf90n3/zne+88d/9Aeq6vsFM7SXROdlq833hXgVInrfezPBVjY6RdKCSQkPLWaxBYVuJOHs3pwiqiba99Za6/tOplubZhAgkZXtqsWjRdBEs/cPoABFwkRdCFCFZiUZRcZOY7gT6kK0fhGRqlVGSlxI1nqyWsQqoRysMzGbQxYtdc1wVUPsBm51ezhtpVaS+77ve+u97/ve++7eWr94a733TAiLGDQh2UEaMcJQR6tuyBYZfnzG21ZOVWdWBEBmTrz35DqiitP9NgOJuVtutw2KmpqtUJR8yGW9/p5qUaCjwRCgYpCkx4SpZlucNMVJj/DeRaTMalJO9zUiSF/uTD5XVlCXUgZKHC6HwVtQw3hxSrPjrS45jJnJJJMJLfDrVUyrA1k2wJ1tcEUHl9la0GfW+dETwG3ybfLLXB9kPdRhdT7gRa9plFEJHBF9GlAfHjdXW2/TbHVDYYL+yFkjMTOQHoDCxIBIYJG6Sx9pvIgIemBCZMnsvrUiLtfuTevmxzLFsIdlph/zr4s5iZzpsuM6UiGxslnzr8S4lQ5ApQAoVd3HlVtrreF0iv1y+Yv/7d//9/+v//fXb17/6//lf/3Jj378J//4H5F8+/XbN2/eXp721uTt4x44v318+vLLV6++/Pov/sN/+vLVq6/fvvuf/ud/Y6e7zz//4h/8g3/wNB3g8/nsLz7asmyhu5lhwkyOcnWtqaiaSJICWkgXXnpPoqcB+aGSbOHp581mtaKKbCAXTgFxmM/Ev2RnqQCSRag3d3eFIOsPb89CJmaWYUwywkmQYXo1Po8G8HII14vpKfuV8H/JHBnW7fxKTna6fBSRSal2kFSH1bxuDAbdb8z4w15SWQS3eSJ0IH5FBAskT9UEJE/rQlWz3CYk2Ugly4OT+VlEkiV03/fDN+o1Q85x5dPpFCUD3iPKlqBgM6vVdt9Jr3encv/iY3f36NkBDUpnIDj63UWEUwERBZXwUmrvjYFSNNzdqYOztKiOeclaF4g4xd1K2agtBA72cPaAboBFBChqopbt/jqB897MDKJQiKqVjSThAezNu7tKEZGACfl0ydJTi4i2N8zi6ZQQnQxndtfcTltEXPYnANBSZ1+Tp8dLKeX+7kXmNMpIjncBi5UAgTCzbbuL7JgiVsvWm4sVO7AfSyY7Aw/396kOue9pyGBS8oVa1JSrGhG0umnp9CpVDu3IAfRg2U5IqTdq82oE9vYkVtSYtbrdSfrugCgDZkWLwkOgZtl5kmHS3UNzF0LEiNIJU4X0ve3usfenvl9gEtHNBD4gCkeLV8RCoAwKgslpGQAMpUeki7IMeitmVqfCA9Wyv3RE10z6jzxuBos5c/umQnK0cKXAoEiIvoBZVZUZ3awYIyJG9mwd2pgx3IjIvhP06GxNrejIAaZmupB772bms5f14Ecj0wUREQmCFFjqj95dtdCHBhmqBDYeBkxOPmSWiULErF3/1dzgXzpD+8EvOhpzt+PbssHz/R/W2YPb+/BtMv73tzzpszt8/65m5jwDp4M7IcWoScKDkdQ1oz2MuI+eMRNKGoIMV4O11j12yHa638Rw3s8ApJhtlTqq1wSAaHLMhkOLCK7RKFAzYiRg1gruj+82sYeHhyoDIvH111+3y/729Vdvv3oFj63WuLSqVu5UVRBikJJC3BDBWWtqGVeKCEDMTCHJVqcKhGSXQiI8WGp5eHi5X7qqdKKc7nrvJgbqfrmI2P3poTdPuKJq5hFRrdzf3wNBBCUurT0+vr3sTyKop83M2rtWJ2RIxab57qbV2YWoVki6t7Zf1pRU26D97LFf/HLx3q94hwyQD5o8GWR4H1ruD+7tv2Nh8Lecl0HRSAHpw84ceBCstNP8mdIv1s0eGoOO/59tJKZYzbepxGSkJ7moPnKvZhmhiASgqg4XFzMTtaB0TzFZldKdmRQQFHfPCq6kS9v3CySK6vnpSYCPPr43E4Tvl6fWLnUrVWtEr+X07ukpeofSFDDxvZGstQpx3ncVBKN7LyZm2toFRO87s8LWHVAVK8Wi9Uvbwx0q9XQiiQwq0wkUQRRFoPfOYK0nUEe8WAug4QRogCqSTiuFe2YunYzoO3kq1TLmMj0ms1JLScOFlFIsgpd9N7O7+4enxwvJ5teen0Z52OrFg76Dp820Bc+Xy2VvvTWMpgZNwiO6e/MIiHkgoDEcoZnShGg2NBJVs6SxMuO2bdIJQEVLJsk7A1C1oqu3aAYwQGWEt57J8Ox2EXO3DFM1o0ppdSoiemSoeiUtVTUEHpG9cOghsyPosik54Lgq6RCpmMlW694be5NiQkR4Ea3lRNI7E+hL+ihKllAtTJCfQasm1n2R0NAie4MfSBaYpyHBaiRlGLVjr4rARi9tkEnnKRhJinEYR0Lm6OTPH3z/LA8t9q0iIpM9h5/DG7te45pbk6lZjsHiGOBPmcdXZu8jxVwRAs40LnRLm8HUTJm1aQwGtu0u2yZF6iGKUkD1Fu8rvbXWmZWltxCKbqraGKZGsAda0l+RJN0vCFNULaWqRPZ4hShEtVqx0GjmcA/0hemVUR6cJfhgMsmJgqAjO9NKMQDdd8I0iqo6JBnsxDK104BSa7WyXS6XpF8dORGRxSADCOG97wmRJ9N2m/xwTPLzAeJoe3v99WPfvZ3/8uXLl3qqX736+Yv7U3R/8+rd47v9clHRl69eXT797H6L8vjYf/jXP3r16tW//B//5V//9KfufPNnf/oP/+Qf/fEf//3vf//7f/r//DIn9uHhToT3L16Gxx6XrRQxg1LVikCFpRR3zQRYCp5MBQnQw6MHQCtFtbgwSFHrDI6oAiHJCpZ8V1pUXSM54DPX4iBANVXZ8rxHD5IqZqUohCIursvBvm5O2OipltjtDmgtmolfkcSMDYo7VV1tYIdkIemeZDe5jxP/SCdI1RLdB4dHLUAgy0BUVHgkG8+daWYR3T0MstmwFkCIKC3Pi4qkEyAGCMSvIIYUccDMo+rsECam09yLulUAoNAjkEFVRZKIFyvFSrHp3iuJ+/sX+ZAiUkrdtg0S0XkqW2uNjFKKFuzelaG19N4DUU4FwO47lPWuiiGrxSQienSAmslmSyN+1P+ntQZREJfLJQtxj2GjrI5zH3FeBUgoIEVba9vdnbJc9qfeu0oRK+m5Da3QXYRmKgltcsZAj5gH96envAt3V7XtLiF8AzI2GkMAWkwVjKFcAKoZoRHwgHI2It7u9h5mmmnq3luSp8VkHHEnhsdjWiw3g6puW82wTe9dtZxOpzwA4fOokxSKiEea3rTJC5dLngApDvGaOIlCku08HKdjMLgUD5Siqha9B8W0gh6UxLKJVWG0CEKhBioZEAOlZx7DR0LSg52J6BKHgJFEmkIlRKVIQXBvkiuSWOYBjzladwvlcyD7G39eumShR7jY8+ebMKLOktF7JWAyKEMwrgWsi4rO/mA4/HXGHZEoN2C2CZ5mK0lek9PzswvwnbUmIrXWbGe973vzxPJd5caM9U9WnMOwQ83P9VvGfOgMpY2bFQFgSbeA/1OMfMxfdx4vSKFcofg1k/dL+nBRC15jlmMLKTTm2QfAbIUnULKetogBKjUoJbH2IUkTdBgK9AQqA4Nd0OPp8W0x2bZtb+fHx8c3b978/Oc///JnP9/Pl3T9tlIyM5ZFOFkwRjLaCMir6oq/yophZiiHms1IAA2JaiY6eFlKKWU7sYtAwQgHEKPQWMxMRbDve9s92FV1206n+42IfT/33p+e3p3P50DUrVCQZAHZEHg9b34L00imk8xSVRx4j/vul3Pbz23fO/04YTnPWD9/yaG/MXIs/ZbrT82aQgDy/M6/7UnW6c6L6KFWcFVCHiNQnODD/FO2hVTVLPPLX+Y2HoZLhnXc/XDzYUXbJd6+fdsuF95vK5OT22hk9kS87QOGN5tMeOsRMLW6VREhHWRaJKq4PO0YQEgmcC7tlfQnvPXWWhYhAxZs5GCpQGp+qjtbD4HBVE2KlEz+JTuTj/vUbdts2zb38/mptUuGhgd/E9SGPVk8Ihsl5WObZA3Co9nWRY4ls9WkNMpWnlq/PL4LkjqCsOf9Kfa27+d+2Vtrq/EvKQFNqE6qY5FRNiy3VM+ZzmVivG8Qg2MsBEfMuiH3K6/ycZ8ct83I88xXJMEJaSLcFrBlbjlf11tyIzgporMpA0l6hIZOMnrIQO2S7v2aIzIYNJwMsPfdtlpPp1JKdvlIyFvv+7rhxaG6nn09kk4SLADJlRnT6Uq4qUxCsjwqmMGmX/eI934+H5waHIc02rjxA9PB9bQCyC0y13eti4gkZeARGZKvD3yvVhWFeoT2vrd2pZZ4Npb5AQCWXdwVQAt3kN333mKyhMaxZpvZGSFXeYQHcvlSy7jqNffukYHcNftLEKXlA6QnPOzhYlfGk+OtIsskcU2ql1Jl5ZNxaGV/OBS5h3UgeN9ffglKCLb7uy+++MLBx//4l69evSIFsE+/8/mrV187rTlef/1u21599umn9Z1+9vn37G77+c9/HhEPDw9/9Ed/+P3Pv/enGA5w1kJHRDGr5RTO7bT5YrPHkJnbtqVcSu4hTGvTCk2rWQkKwklxIagJt8AEHk8ysMiEsMqAkVBFIwLMil+QOjYm87AvvInesqrWWjFZiwGIgqxIv2BoB3hm9U2je0Sk/yy5Ywd/YYgYs7g1wrGyNOQk7YuIvrfAiHMlydGSb+t0LL0mOEokiIivSu8rJllHiH9QG8o6iWaWUY/jCcLgnRPN6IuZWBmbRADljKnp9MnXLqJqSQ1lZhBRRGeIZIe1bMMD95aINncnXESgUnJlwOIjIjTKUUIoUKr2bDEfdKeDetDa2VUyMIHiZG99s+IRoIghCPcoolWFGIym3UmCGuLuPZ+3eERrTZQn3QTs7qQINDPo4dFah5Zt24Y2yYNkWrbqna1fMv8sIqYaQEKZ0k1zd7KTRIgRtWopZd93seLjYdW2U80yYFOtV/hK2qIRkcupylqrQN09hmVwqDi3PAIKemJOAlS1fFYqMlhiRSXr6QFRTQqWhEQCs2N4nlsk9N8W/CY3qzvtVAFm8GjfO0NMxcehAikMZHAGIlJsMm0mE7ZESCJpTqeaMlDV2BHTOcwvpQYISd7sSd0MIFMnyqx+vabmhuYYzUUTan9VBiVd4vHmY7XMEAfIHAuF17QKgIxz54PlrQ55kj+xqvbTu064NNfFZZnguRn2fQ9g9cbI2mxvya2XGmhsaDkMznHUiEcZMR+/j1TP4c04aND/E4xft+sLYKC2uIyP2cUs1fAwpEhmRCNue42QdHZZiJ08hiZmJiOP5aUUG8I9tYInX+u6gUzgTNielFJaRO997y3V2KW1x6enn7/68ic//fnenYBkfzrVGQ+9Whtjo85NoaoZoB2561urK5/dRPIj4STFna21WmsGdkQElHDuPvxY966mW9kS7ePue7u0dukTmSkmoCQuFADphJuZmQDI3qRD0Q623kjW5zUnl8vlfL5cznvbIQFV8Dfkt/66xwfPoxxioL/UyT1KAyyNfvvxq5q4/djY0t0zlE+Io8NMABMdfLOMIdPJRTgqWWxZyn7ev/zyy3fv3n3nOx+VrVLiSGOW2JOtvMhvcXe4u3vQk7/DxASluyOopqpFpA+kT+qdrPsDY5CACinsTVS1Kjy8ZRcMzeRe8t0oxawEwKT/hxEQYYhKKdJFhB5sbfT9MzOgRkROfwbcRwwlOUpnfY1ka8OAMzy8kUfYVGrt3d3de/KRm5PM+I631lrrrS36zBBAZHlJa+3kEGyVAzGMiipHLehaxuXiroAvrpE4WeoubgkX88/DbsN4w+AvmY7us/050AqDTUOWmU4yZl+4obAEzmBvwxbnuF7ew95RJNvqHCKDATMk5VUpalJU1VRUr21LZuOza7gHgKwY9CSF4ijTuxLYJnn8zTPdhoR+++P4vWtrLf1+/P3Z+4+vHM2DoXYODuFxOy3b/Zhqfv+Wxl9FksUtcWr5us8mVUu+rDt09+aeUSoRGSSgKgDSyk+raTgAklXEI0YDj4kPHzw5ZIhfTZ0AqtZCjaCIiWQYjpPWhevRJns5yPCZBB4bzzHS/BoiCjURsYyQ5MSpUEAFJMDSmoP6cP9Stez7rqoPDw/b/d3+s5+K8OnpXbucX350+vjjl3/wR7//1C9/9ud/dn58SmzL7/3e793jbs1qKVqqtnahWjYkV9XeB5cYiDQASimRsQlJ2AAAJF1tD0b4quA1S4cMWRSQYRHhcKTTys7rpAO25vZGQaxIkWRsUo5WMYA0Zq4GlZYMdIUgoB7u3rWYlqIqXdxbow7WQUZMahoTVVFGHzx8o888gqSHjwLsCIECiarkM7m3HN3c/phKaN3qDGcgPeerAjKoDSmaONCREIYlH1MeGBEZHECaPb2qql5h9irOrqoqVKGtLEIQ4WpWND1qTZg9VU0G90rGc8P03NhaS5LFCANQREKjR4uIkl5B1j8FiZ4U4cOsjCATBrOmRjexIobuEwmaKI9SJKk2aASCbAEYzezt49PEXteIaHsX0VK2oKfXLdSs6G5BJSghnU0aOwNazfL0ttZa84AX28JA0ilFDMxQ7oi4rxDs2ASiSXoSEdBqdQOwd6dHFrqoWY9AH1h5MR3bJIJkLSVjxnlOTvcPvUVrI6gwjOPZgjj6LmKOqy4MEDGyp0kTgpk/DEYPP9XTUlHHXbVK7jN7PPSraTFrnp1OEN5DULTCPQKqmSUyipBuEBXrdFAH7iq9wlxHUzQlI7z3HmkZm5lPysqjg4EbpFAAB573qdrdp1gRyUvhVk8c9coIt4382xAN1+/VG/2Ew/zIATF1veCBLvU41tdxduTj6DA5aIFPp1OA7smSncBUwQTCra84AiPxnvc7Ur127U42DaBUh/jP4ziWXvzF33/7Qsxl/4A5MtbrEDMivZgV21JQYVT+b7hdUJImaqZOJ8RvOfATPTSWlFJKyeqsFn7SU+LzMwnMGeEWkcQuytxSK0QqKqN0KDXC6B/oy4RK2XsN0gcwy+R7D14u5/MlKfrmF7G11nv03s2k1vrwcJ9dFru3y75fLk9PT0+lDOiRs0fE3i77vusAiMhSh5xGm5l50jG0ns7zmpP94u28twY4wGzT8bev6XtL+Tsx1jTmP6fo+9vHBwXOzZ780Hue7TouQqwpc3SQ64zcxSElpYAEOwMC1lqB/auvvvrq9es/+qPff/Hw0dNZTTKsiuwSDMj93T2jd+3YlZQIlLLlvUUgWQJzg4YDLCKuSgz0XWYyo/e+OEFqPSXqz71FwHTrvWeANA0nM+Hs45WppzTy0knOVASAfd99v5hZrWXbtoTlAxhoOgqYNTXIJFvvXURtq6danThfGnjjUagq6e/ePYZa3U4C9L218N4DHAcky8COn1p647ju8p7rgoO6OS7f8myfJXtvFNazHTJjdOuV9Vne7sO8LAf2pHxQ3HWGHm5bZtg3LS7eTlFC56Kkfk0Kz6IIYZweHjjph4dhEzw+1JqNpeaezUm+TbNt1dCDERHCkTvKCfugpl5X+LWLiGffta6/Qg/PziOWwL+tlOb8+DNxMSCEaTkc2Hon7j3WpfGLCcChIg7og2eb6niJlB7Oo4VZ1hfZIZaf4SFm4stGlwEXZ096WAWydprLDIsIZDMCdBFRdVWN6NdHEySr4lrSsUmWbAMju8m9B5qYE3UDM3Rw7+1HP/7xn//H/6DFIPLixcvvfPrd1vrj42Nr7VRqgLXW0+lkZh9//NHnLz7/0U9/ZGZv3rz50z/90//hX/2rh/sX61u2bduslFKiO4JWyuVySd0NDI//BuhxQGKODPzlYmZiRlJ0UVjKzIUCQFB19PqUCOrkHIn54MdtJnLDj7PodI7n9Ljo17UOmfY3R9jJVFXDsqKSJkIVoUQiPY/4EcO1CFyGp7T2+SwJJmci4ZmAynTRcQOv21sM8GsHZjZ4ic1nDyLvjeNsj0mYhpKJipgWq1bySCAznemWqwpC1UwgZulNlMGdoUC2w1ApJiIJqViPJgMZ3ktnhxjIQC5/bguoGkBIZO5P1JKmtHsgQih7D2FoLVWrSHIdQmnBbJBF0NEZpFM8skQlyyccwVITTA+tmyp6uEcP0kO16O7RoyFEzbozzrt7BMXKpsre43y+qOq2bWTWEc1w5uyRlR6kWTGzEf9OUjedp5cC0SDog/24lJLFtHN2pNZSikEkgoRoqXdVmvqlN3c5bScz2/ddIlIQNF9MNkpR6KiH11LdXcUIgUSeIjUtgd4yXaw4tEEqpzu25iACWirFe+8QbKdTkHvPqJI4s2ZQKYQWisFGKCmCCYJ+FnIUrGAkOSEcJBOUbWYa7NP21lncRuYSZnZfHICEZsBwyrqlLBdM4np0SQAGSdaAxB6kNhQRz1x1UgUkczsGSGKd/mv4c52Z+QszTSXjlcmVmg97/fa0MnWmAvJU393dBXi5XFp3kmp520bORudT76wDHJF58vLs6Y7HG+/p3d/k+HDd4/uqdurgv/uN/V2TffLL+8DLLCApArMr070aklLymerK4WG11m3bRMy9UaBqpdRShomjqoN0BwLgVDdn77iyy/a+M5vImQo1JWTC2wB0xu69ef/Zqy//+kc/PF8uSSqYXvHYdVlnJUBqCAGnCly6/3heICGJYAJKOSVSy2wrZUtKi1pPUAHVI7KQMA2Mu7vNsnFq1ZBo0fZ2dncZBQ5ZBxRIliMKydZaRB8wpEz2eo+IDBmIiLvvzXt3HFig+6W3tuiixvEDMA20D8OMb1/I9/wdeMj/DkOeeapzaz1L0fxSFvkwoabRzDEpEh8KDQgm5kpsVA8d8s88ELkdDPROMtKyGaE6vHv37uuvv9ZaUtkzlySFGEIQ5/M5L0ioaFHLqq9Ngn1vpNR6UtXe9/TFIEpoMDw4q3WtFLB77z0Vt4n2vvcIsVptA/uwKsKZPYfD0/MlfRiOQHhE9O7MUIuICMXK2GNpEKdBplSsrhMkZxcZOsWT8BOn00n8Bkc5cxFByYJDRrD3Hj0hDL0nM3PMYt3rLriiT0Vkqb1nVtozwU6S8EHodGDde7ZqIjLJj6d+lLS2hixm9lIBKYMfKDt7r6/LNjIL3gJICFQH84XprLRSoUBtwMVHkF0G1mBcTbO8afCr8kpmpqWUrPC0Wkpak2SEj/K5iaGVaRDE6ggoIy+TxT9CDYHCMug3dCcZiJQ4MdFbGJXQt1b+t5y4Q+z7lxjTM1sr+L5lcvz9mTZf97PO9VHFu7tl6+UESMxu8zgERCICcVy+b7rNkTw44h0kE4REHrB0QhZg/tnHZ4CVkqFeTR9YbqIqKqKmRFrASsJGPecwl5I/DKCIk5xyCZMJWSc5E0nRgAQG/mDccCmFIe4e7KCACEwJqyaiMa3KEIRGDM8jgozQS/dXr77+4Q9//PF3PlEt9/f3L168ePd0zu3Xfe9dP//OJx9/8vLx8e27d+8u/fLxi5cPp4d/+z//25/+6Kc/+ZsfllL/uz/4f6yZcfe7l3f0eHz9pkejSD1tCy+WyGGPqLUCyKbEE81kqlpriMggrcw4HpR0WTje1W5WVVTDPY9FZ0wA8wgJ8ZAdAWbxK3qeCxwMs+Yd2XqHljsukk0IksQQIKHqFHd2hmPUEooYDEDy90qAMgg1VRN4E6EY5fpQ6eGtj9RX2aqKeE+Qx01V4HU3HnXZEHkYnSuuopJAiBRydA2Y9ljeSfplZmbZpo6jZ3mezZxWE1iS2G1WrNbNioMSAdWqCrMi2hlKiOipmAyZlQGpK/OImd2J2PB7Ri1AatuiRtGixcDEM0eulogl/VKCZNI2yl1LIJC5UvZg9FC2MFEFHAoa5OKhaoQS4hGI/vBwV4B9P+97EzPTunv0DD8DYgaR1Lg+or6mhNMQEYpovvtls9IZtZTTaTttctnP4RRTD3oWLZjmninFQiBBESllU0Wf3Rd6uFPqprXeC32kG7Vsm2aPECavhkj6U5myhllRhMCTAzqL7fSaR4oYfRcoFois+ksYwZYdBbbadx9qbHURVClbba0JM65xQ4MesxHo4BJMHVdKby2odFBgNWP5piKwIZUolXQJcza4j0DvVMdrZ/fmEKhk70SrtbZeSI/l8a4NfQB1pGwwAzmiKTpr3p7ZCuu0H+W7mY3rZ1/Bqyd7lQsHUS4kIc9lvR6q7I6a4PjVuB2c+kNELpcLRUiaWWKNeu/9G1yywzNdr4Xbuz12/lxx0HnecQTA/Oexxi8+IWtfTcvgZsNExFUV3QbLc39aKeV0V8oGoAd1IhJbm4gPuR4KZKDEJNXhcbTWim1m2V4ooApTK1vGrULw+s2bH/3kx+FuVY9nFtPEzN8z8Iaxbwesem2nI9WycqCjPCYlmJiqFtvKVpPS9nK5kKy2qerpdLq/P0nhvp973yP65dJ631OSvHjxgqRHiwhRTUzN3mbpznT/OADPPekuvffeRsWUHnIPl0uLhuz+k76GfGMg5ndu579/S7KcjUMy7Vus1WdvPr74zIVel3rfYEV6KaMlYxIUDN18DFTrdP9yWEmpaOEEsO/7q1evkj7DZ8vrWjVVEmDny0UZuXPGwYkARAXOaLNZCyndu3skj70zs4U0qBUz3Tr2dIQYFpn+ESulhAvDRGmmzj1CID7MxVl+v3ZXRJR6wkJX1a3WSvi+XxJLS84SO1FAndRSah08gt5JQQ8PCqyISjlGjUvZar2/2x4vvl8uEowkN+k3/VeXPBGIDD/tNi9xyAjpHGvVeAhSLLV6NG1vPSUm+dqyIxew6P3dIiKQwaBzVKaYtT9xqPyMCBWlDj7VD27RmLb84dlHhjC/IkHLUJS6AVpKOd3fmRk9ojvybkUzdtASgJfQmNuc89jPa5/zdhxCQljAFl7R68/O2gdP1q93iDzH+KyvxnvrMh7iNoW7dsJA6t0SvOMwM3KLSPqmW8q9sZrcyISEPHObcyFlAEHfywpMx1tVlQNbZBw9eJb7KpOPzc37JUzCvTOjI0CS3eZK+cGK47QJfTZJFYG7y2HJhj41lWTDAUaNxMF55mECr49GknT3qiZipJy2+1JDtGQ2Im84gZYi0lp79erV2zdv2ld7dP+jP/jD//gX/+Ev/uIv3r15+/GLj/AH1/na950eJgO35eSxwcFaUzMLcJAmYyhpktu2kdyzbkKgGLUiK6xJGNSFNlc4AMw0D2Tl3q+nYcr2b96fK4P6bHHFtLfGec/rEUZCW1VFmfG/SQrgSe00QTh520VWBnvwfayvmEpEr7MUafObiNjYgOMsDynv/uw+9UqgxYWJwKCOwpKreWrydOgAnVUzU6tTQoeIVDUzg3uMUlyx5KnqJKgMkWLzaG7bJpPwed1Y1sPfCCsAUJJFrZLMeJxGpRigEdE9lBYjVhkCJNIYamnzZYjWGeiRqbOiwoDTk7waMgjRPZRk6+hgGbE42zNjQ21spRS1QvEk+5ZRFiUQdY+kag0IIc1Du5ey1e3Ue3hvgAaEooRmjMBMrZS+NxV1Su8+Nb6lX0qMsuGsNrKyWZFEOLfW2F3VkhEysgSbQRE1Deqoc9ZSS0mJX7ctLRIKF/rlmtlQEVWnQGyooLJ1No8Q5EIiIqB2PA9t790j46SjQeTEThNatpO3IJBMy72HqGXhbxLNQyVksJEalFDR1aA7HCjQYbPOSmZVrWr9gNwgqTMvRBK4ch4MmqA0f+emt0mykgR5zpvGCUvQaAgCFIHEsVugg6uJ+Dze6SEQMpqk5aWOJsjIAYhg0lPpsKKuPF5LyKZlny8WVd02qG7blhDokUKcAjkcZguoGlOccqq6WNJbebVpUtkNwSiy/JnfglL/rYz/nQs9JbEYR8UJMCRI0xojHXpNyJCsZZsm/jh/EdFay9NaRj3S4I+KiM5uonawKTNIfD7vvXdP26IUsSJaymkrp7uH+4cXLz/++tIfL2cIxKpYCdEUuqqqUmTa9+6R0EQseytGaJ/XWEoGewmx3vushxSGAAqIe++9N/dL62Z2v9UMqKoq4Zn38mjuPn66180y+EnSJmtdhn5VQUFiU1Vl8cORjM7eu0TysV83cD/ztt+R/qq4gv8988A5Uqq8b01O8+Kb7o04RARILBzruuz4fYLO8tXnVxlmZapduDONpePtrZ9kVhg5gH3fRdB7//LLL9293p3wpIwgQRVCR3HttnnvHkHQVEBJ3zhm2KW5h0RnCGU1FzRaGnEYphSlmG0n4BLgbGirEOnBTpQQCifpIxLFo3W1SBAAoiXbIJEcXXLVt22bKQ4yBnrLs4aRAFBKES0A1EaJisBI994hanZdHVUZZVZPbe+9BCjWW9+bt96O6yKjoPnGi1NdwKO8mi6r/ZjTy5QcSY9Ov7qX64PkyLqIIIQRkbOQ/61uWGtB39eSnIGPg9S6eheaXMGAgzZlyLKwIwKmSDIUEgydZXgBmopt6hEQ2dQ0o/RWbDMzSx4jruC7B4Dd25E2DIf7kfcGZSAbehYejlxStpQYv8N0lAXn43+IOYIH9/hmiCyJ84uO23zvmtIrO/3BcF9viyujz/Vdx8VaLwI6mP+48va6TH9Mzy6iP1Nb793m9Zor7HJdjtbpExg6r7NEVvq3ASZM9rqHMYKWWbsOYHS6NiBCitXgzu7u1CS1whDINDAQgQxdJcQDmhs7IkRcVVUS2Ph8TkRClDo6yo6WNtCStNgjR53vnFjW0dcDuDs9qJTeotbT/VYbI5VUlkDef/ad02nrff/yy59dzu8+++4n/+Wf/ONSyhdffLE/nX/01z+8q6etnNasRkQ93e3tbJBaTUybX6cO18awmftlsvkOg1KEukAH40iamVnxSNdjLlZmtnz0SQ6ZyRCV7CySCJe5GSZYci26kIJnaJaxxJTktiFUVE3LHl1FcIAJ5JUnVzlBGoxIazqOyWeR2WlCFXQKTHT0ZUz28hkdSOE312gtq2A2C1S1QXUW65b16LTHPFjT+806UevOBBlxWRQCkkWKiqpZKcUsPXQh3ASmKDa8YTM1E1WosJgAMpqVyzh92TiAZu7eI4BQM1XznlzOlt8lRTojIgqZBctSBAwjNHq6HhJAiCIUkto+W2GHS1S1oiNCICJWSrCjFBCeVeOlAOiMUsq7p3PvHcJaK4PZBYItYCUi3LsTp7JJOXHfOxmtK02rwCUkitR6KtFoFRL6eL74/gRjkSqmIogRyhTPDLJUgUIqhd0zAJlTu4mimHpE7LuImCjMEM4o/Wm3zX33Fv1kVQx0BHh3fzfSLLWa1daad6ZJndv6dDqN3Hq07PElQqH2SJ5JdSd7BteRPfZEpPcOUlS9+2CvP0rquW9EBmdztfwKEGJqoSNAu3oUy4F2Qi1J50S1QExHF41Jwxh0SJojwd19MLMvlbwk9WrGwENYd0rg+TbBUWH7YNdkYshXcHqJPL8NvOEQdr0es6v1yTTAjopHb0OSRy3CGHAbTh/4qGA4S6mT7C4nbas1TpF81Knmj1OxlPy6PbvNP697fmYDva/t3r/b/zx+kcEDUH/N6jJQlokgh06qmJHX2YcGzhCqqmaPnt5b2eo6YoO+JcKjyZTXxxswq6Z82nf0fv/wsp5OUM2Q2YsXL168ePHxxx9f3j0CwAxUjX2vA1HJZLx3lxEfvXo1IzOWLI4DEJj7XKno7mWrZZUVCZr3y/4kM6h/d3f34sULAPv5cumXiH1vex7D1ve0Hkop5/N56qFhzWeLYCuS3QJz3mqt6Uhczo2O3jucgCq0x5Up+jYScrXU/4811pE8HnA9INa+5bPHD95KsOvFb36Rmw+uP/E2fJ6rrxOvdcz/6OS5CRfqIDUIx7t3T735ixcfPT4+7k/nHoEYgDqq3t3dnc/n2HeSNDUIaSJCD9tqdQedhJlJEQclaFZVGaX0vWWcRYKqKKUorzFEEXFnKVvEzvBMYpMhcBHZNitVw9F7zx4eCXtrrZdSajWRQZCJhC2LrUkQUZUias6gDHaJiAA0TVNIKVCo2AGpMSJf3emNHizs3vd9bz1I6b1H99nvl45VKzPtwgOPceqIox+CEX0LObiI6ZPkBsgTlz/TTyCZOLSBLSWzk/yzPYCDJ8mJqFrfe8QCrM05rqYCldky46C7Zw5w1F8sAPlhQwYZBUU1n3Tb7k6n6oxEuY/obkREvHt8+mDqci3W+qeqQjVd5HUoRAQD8DJS20jJlm+41dE341v+9MuMD5oZPFz8/Qc5fnyJgmU+PQtMjIUbCfzhORxVlXuGKzvjb5cneM8BTsdv3/eVFeTUF7nr1obJvxStuHW0MiSc+mVlXzH4bqSGyD7A8CQT3zvSG9fQ26RxFklkULqCSWeVLERrYnNd1+So5T48PuPzzXxlY1Ldtu1pv3z11Vffu5w/e/GQ/brM7Dvf+c6PfvSj1tq21dY6cJeK7x/9yZ988b3vffrpp3/+53+RsKaf/exna1Z77/enO1Wlh5rtrWnZVjmryBXGmL+MPnXZa9dURPZ9z5phJrVYRsl7X4drLpR4cK1RTFxVXjmtzWV/rvknPSJ00v0cdx0ijq/lxRKuOGQvCI+U2PnXJSum0w4RKVbcRwcHKfkY0Gzt3vvCQUSE6HCP49p0IJsj3li2y75KvIIkMe10gJek2j3rxmUJzLXQh+09AjfHYxURqgMNISomSEMrJ3Cl03M/22jGjnVIs0Qx35/nMCvgXn/9lhwyf96qACjZ9HmSCyZ9E51CUdKDgKgIO3106IOayu49z56VGVgKa87sXkD4pe2qWmrJPDBFgfAgQaF6Ix1FJSgeGo0XP4uwlKLFFIBj77uESNGAPF2a715OpYj0gFrRqialhauoR3Y2qvB42s+BrqcKMw+HSCmbiEa4ByN7Sddiou6eTYQIbT3uTidKaLWHerfVu84eLSjce2x3DynI2t4jCJEsuGqteUSLIKOUYlZBN7Pz+QwPrUVL2VvHCGNLa5foEYql8JMjJ9SyhmQdgHq656KvnJ2s0/WL8J7RCLOeeGuR1tq2FQESopkBb9FCgVChQqAPllkTnfU6oEpxXFprQcLUapGLiBjQSXZPDm1PsXuISmpE5FYcYnpKfF2ldKQVsymmr0Lz9hQBCDIiailHtQGgyDhRwZ5VuwNFAwjgt/5kGgQqloxVcuDqfKbScmJba3mqUjdErbOj3dVpP57bdWO8KceCiAR6xl5xq2VldB7HrzYOBsQhm/QLjIMl/cHX49m8va/+33+Kv238XTJ4H84qL0mKuRDTDktlH8CVaGRZe7lMokN8p3hM/oNSijCoPJ1OSBofOiVENbLIVqyW2ofRcMgwi6VdH2QEnHJXK9Sk1O10/3u/93sp7vtADjP15ZLCIgKi926QWmvASRYzEZl1y5pvfnp6EiLLLiLCrKjWzYyC5Z323t+8e6wnq6q11vv7k4hcLk8ARIVEa61H90TAJt4bUaxYtd573Wqt1Vt/fHz03pLltQOqmtToEdF7u1wu4a5SlLK3UNWtpNlxHDe9NI4Lh0lEACCX8dvX+reMLHgmGXwmxo9/XSbatx+74yFdrz17z815fM8NvnJSXEexA5MQgFhdTOaNdYYUU/TLjp/87Kd7b3Urmf0r6TlDIAzGpbd6dzrd1czjQaWU4tGaO0itSndgMVyqFd0vfW8XksV00631S9+bifWMlMqASqqqmZyfuppB4d5URVQRJkoR7Pslex/szd1brSfAtm1LPqp8nHPvsBSwIVJqzQo2AyT1QmsupioJVUthaLVo2ztDfL/uyVrr3d3d094AZMrosndVA2Lf9zSRRAQwzxS2CHSytmYB7YHEaPmZEZHYCkAIid5So0Xvk7V37CJy9Am/7goZTRlTeWHitZei5AznrWDctp3S25FJpJQfMbsGCDDhrOsmjyjE5eREJkCuldWB0a0EyYi7Npi7t4bkIhGViEbSo52f9rzmdQc+06bzWVSVIuEOtYzAE+x0JjSCnGTQyxUeabaj6Lg9Kb+c97v0xdHBEPlABf436bt5oXH0EvQ821QxsnZaJAIiUJ3zH50zUL7u+Xh4zcxb1g6kGnk+1hlfzFuYoNaE7i/vV2aod7iLmfvVgVeKuVcxfJjpvqqYiXsbUR6Ie6pRUTWtKiLZZG8tMQj0LChPIH1f1pdHAyAcbnZEZCYwb2loYVyXACMjPSJEuRuz1t0UYVdIMEZpUpNib9+9rtW+//3v/8e//quf/OQn9y9ePDw8fP7556qy7/t9LS9ffvzFF18kFuL3v/j9H//8x//y//OvfvjXP/r44497P8DXQyLw8NHDu9dv3j2+uX94SRm8PKUU0tOwrLX2oIjUbA5EMTNJQOioblURqplWc2d208k16r178i0VS4KuJAba913nJGRFVXYb3rZtnSb3DkFPT8oO1RxbjU4CMIqMWlGIulNELHOppLOnV5CGByMkBtSXZHhQou1t27a6jdAJSSGcIWIBBfrAZ2A4yR43kZ10iQHkHlgyB8gyRl3RvcMidmDAJzGF27IuZIZxe+9J5QCV1E2n0ylrrWu1u7u7CLR2OW21iMLDVEu1iEB4LQUMS9geQ0LSkvfuZSsJnDYzjci4Z+PuaWuJ5Z303qU5PApF3d17IJ1BSBapBiY1XMI8SIABOiERydmwxMcCEiQAgNQOF6fTVdU9SBTVzM2O+JBJUGOwdiTSlQhutUSwewtqMVMzEh4UK4D29BzHBhAIexbNwBxwiqjN+iglBFBqxuc0b2/E6NRqrTYXmuRlbzCpWqBFSlFK0FWRVOm5J7atul+ZN+Qat0gkoUYg08UZCkVksKGIab/sQyQmFhqjq2PZTtFdb9vejt0k2UlCk4CelGBI0Wzg5e4pTtMbVx0ZTnefMrqYGUInT4cPij6BgKoaviugidjcz0m1f3Q5Rq0IA0A5OIG5vVY0K5VFHJJyIpI54xW850wdrzccFYC8VwUEJHHuhN9M+Xh12J5V1qkIICreun7I/RuvkJwGZWstgLu7O1FJZuAVwl+QlRUEXffM24D9s6+4cR3xaxu/uPf7u3DZX8tY+1DeW4IcvB3PPrUW4vRwf//irhQTg6lR6PRokb1SkU3aOJvxCQKOuEkCpztR6nZfNoHV051YgZht9XR/R5W+NyXSTEmgTwgQ4QwlqVJFkbgfVVVprV0ul6TNExGIJSRh2zabuZFt24pobw0WAWYgKRK7uG11s9NdTVZnkn1v3Vt0isalnbs3HsBR+Yw4gJQWTGNO7HjMlB773ryFwKK5tzCYUC9Pl/1pP67PL7WOv/vjeJyPp/jXPo6S8NnXrV8y0HP8yLrJLMRVKmT06tov/XJp96e7mGSAFEyUqZppay1aFx2NJfd+8dZ674qsQ5FhSXcXZes9kHSvOXqiZ1v4kvDZXCcNpu67qiI82BlhCUJTO5/PKWvd6d4GTBSuN0YUAGQhzCDx4gDFpqYULWbJnJi1fzpYfKz0TNbo1Wrctu2lSHd/d9mfLu3Ss9UC4SGRADkDuyYVj2oSmD5TW2mJvi9nliJb9jonUuMYD8Vt1DKpyJ6t45JROJyOcUHqECNLBU8bA7e5ysgw8IF75vA24FBGmEiBXDYikgyPJDxCKAlk69oQPXz4SOHwEGoxi3ZlI49bCPRx68ZErZDDEF8TtZzC3J2/7KE6Ttcv+Lbj7++z0z+b+ecXGd73DQ1vRMRhquVQ7z0gf7cXx5GS7T0l9bc+yHGhbz5+e5F85biBcQgErJuUiXEQEQQ547Pj/YaCggkZcPfMZHLWba5vXNsy94wkY9612c/0eOe9zX05t8TM7+VdZQYPc59zmkyE+97Ij6uV733ve4/n83/6q78K4P7+BSn7pT/cn0Tk3Zu3P/vJT7dS/+qv/rp3/+//5f/3X/yLf/HTv/4bEUtqnhzVzN29s5QivBvnBNc1GsArETPtvQez42/s3ouIFlOGJ2KyFqi4e5+9JGQCHrOLr4jM9kVYcQpMqzXl2/reOZ91lfEdV1YGNnzth/FXB20BQEjMWOlakRFGIyKiqFEz5j4F1JhqABjUU3oTaVUd1Y0rHgcMci5PFPxhZ2pmKmfn0hleGVhuv7XcVlQxyKQcNrPT6W7bth7eWru7uzudTlk7PQ/OFY2VsTxgW4nfdYc57ZPMLLk6rwfBbLCIpXkfMxyfS29mJSA9mGnG3JIEOEtDqUJCqWKCoAHhPdKJVVUrJD08PUARSYKxYDhFAkGWrLkFA4MuzT28x7Y9dNJdoEVVMpOKEE3iQjWGUNQzdwzdanFvEVSFlZLKr2jWyAnFgrluVaT09NBVBDrc1SyeTgyD0xMib4ZDxFRVKAMjIAotqgqGJ2p322opG6RHc0KRAGo9RvtIUkvNzkie9ipAqgcgNrnXyABjZEQttZGMHi1z6N73kfGSEVp0Z0+71irh4S2zslJKWq9A9tEqPSLYSSUFISQ84BFZCqyq1EyXCUYJg+y9e2/uGaocnRIlshfo89gqxQBQEIBlOIMUUjJJfaiCzpJYxZXeEAgVwg5BI4Eago5hVlNSiAwBcCPQ187mQWSs/g153q7pu29IonI01RCNAJD0d9u2AZpUH5mfJgekGnpjs8oBT35VS/monOhrPI9hy4c07rcMec/B/i2MX/4bf+PVm7ytE7vdCTL/yzsRICPQ8+ZUy2b1tLl7dz+VkxYVEYd30iCSuipYpJiEQjMBe6RIaR7N/XTSkpRXKqe7h5effPLixYt6d9daN9EXd/dvzAQGKan2UuGNLhjKJErEVB/DmhzQo8SnpZIawKRt20rdzCwL00VEDcFeSrmrW9m0nEo6yxFBYSCbrffee9oYqpKFQWnVlKIz4+LuSY7Vp2iRCGbbmt67t3B3o3l3pZZSvfHx3eX8dl8dFucU50Lc1PFe55/v741r/fwvexx+a2M5HlPc/ZLH9phMOnx0bNpI2XV9fGUmCAc1uBISBEOUiMjsmdARLoDABsoAyCwricvlcrlcxD5RMwJaBJGulzJ6Epl5eLUqk5m8R4SEqWW9YgxJN3hZITBVOL15ZydchOEeWdqnKsxiY49RQ66YER9GqI4gdya3Z9UJqEx10jlyzknIlFxZZiYZak23ZdbJRkQ+qiRojWAgJEopAcRhde5qsVI68NGlu785X85JTTwa4C3NJbMLiZiqhg7/cJloS8KkwxC8HtXEeE+DbMVgw320iUo0x81+kCycy62V22D81CPoGlnmJ9lwceWHp406cIY5QkZTExxM1aUB85MGMTPHIAArpaik2Za9aVI9icwkjjt7c5deSoFHRMdy+Lt769762I2rckSVKUCuOXO2lgScHgnFnxrFDvneZ8zP33iUvj1V+7d9cFkXzy7Fbw5DXD/1IbMBt9onpUSxMtHCOZ9j49rEoN3ER36BO1+BjDGCS6R88G4jIjle0sRNIyxBf9miw0Rk0b2QCpWyfJXQWmAzMdtUs7EsnJrpjZF85EEwZjTA3SVTzUZIiJsmB9PsJLQ2SUQYRt6VwZCxsSMCIUJVmEkBUEo21MHpVD/97JN/+A///uP5/Gf//t8/PDx89sl3Nitv3z3d392plqeny6tXXz2c7v/Fv/gX56f9X/2r/+Fv/uqHdv/QW+ixXQEHhZsUq5NySUQSw6GjfalEEJnrzoSQhAfDYSaJ8cwnAbV774nKzovp5HMFdOYOu3sk+2YpoyYizftggCvJNGxIM4SQB/ZLAFBbBApUjatVqbMkhKQIc/ryj6qaHFF0INLBETPb+948VAdzvLMDsAxHwSiWnkAmTnEb6BEZCf1km+Lk+jjYw8OqPx4ocvSCWk+6Nu0KvpiZmK4JqZvVzfLB8shk5rzWGtHd2wBQjx2ip9MpBuIAEBIjVogxvePw1lqT7eJ0So4YkZEzHvHBkn6yCFTKCA3m2mjnjB7p0LgIUiz3dIo+xWgazAhmKcSogJmp18xzMh0ZMtO5Togz687NCkyBoAehT5e9lFLsZOa9BT37NdeANGcEKiQcAyJeNo4WV+bsEC2qgCb3w1w+gBSFWrWiIlw9LYfEkqLF7h5GSbOHth4whaSKVLadE8G7LGMdpRc4mErs4afTKUhAjKIqzRkMhpTtJBEGiegMh5qqibA1X+Gx67GVLI4StVHj1MksiGcwy9TnPpQB0XGKyPRwhY5gdJIemlX21OCy7MVFoJKB2ziw4C66C9JlfgemeT7291TG80OY+m9463kw1nk4xgWXcHymEp7ZxNd36rWAGVPr4BhI1jx/8zWdsKfbfM51M0xR3nvXDG2Ap5qxpes9j0+NmoFrOFYONcDrnTc3f6sv31dav/j41T71y47fZW/kOHLVlmFB8uh+c471is4y3XIqfvHe+0lPUkRECmrvvWxVIa21JS4oMNVEB6zrBGBWREy0BESsfue73/3+7/09VX18fDyfz9///Ivvf+/7r376s4hI+VtET6cTTN3pKaRHezb0FqWUrOldOydrid+9e9d3z1hma02CtVYRCFBLhjxZNzvdn2CwwsRZuTcTIT3CW7vErNaPCKFk/CjhXusgt9a67yQkHZlZ0zjPPo2GQJEiVhTae+tPrZ37coDXeN9A/E0s/W9h3BjNAH4DGeCrppizJBmFBN8vTBignZF4HK1rVdOrFjJ7uyskWvO2eyLjAFHJTnshIhTre1M1syKC8LQYrFYBqigjK3cjQGQrZysFdDhIpyY5o1FJEXQIpwOcCm9kcgJQQkmN6PvegRhEJgCzhN5MzbyztYs7dXbdA4K0iDQTZMn2cAcJaItusFUhHKQzwuPu9CBxg2+ttSKoqqWOzGfCTkc443ZxMeOTyyA7Jj3W6mT+Cgc3Zv2MA1oKETggGNci4kOYFD32ubnSpQ4dajZKJ1bdkM73jP2zmLpuoTHri6ZznqXVzyFX0V2TXx62tDaCI9aQxXDdvXWhA8jmyUd2jOMFr98ri3ZLgxHX9ohzwn/z8dz3VS0naeVxfr7F9lj75DhjMoz4mwfHN8iH9Z6jbTDm4Rfz+Y8YhOPGEHneMG9N71px3CZUMTmrrptHAKCMFpaMiMyXjtq0mYoUkdEELQA4YOlZH02FiBAZ2b90iUmmtfYsW37MMXKGJBJ7LDO+MzJ7aqdTrbW+ePHie9/73g9+8IN/+2d/Gr3f3704bcjqCd+bPtwJlY2Xc3t8/fj26dx7/8EPfv/pfH56uhxh5g4h1BmFJhKOZKHLmO/wsmRV9VMS5S7FMi+8N2/hg8WDXNWIaxvoBPSqKoOJM1m0yctWkavkHzd2PdT2Aa5v3KLok+Qs11t5ZFYbCj0mft4ymHXwsX1G880sCz+T/nNUvRKcDMwcNeTX/tjjIHAEdHLZ131mWiKh7+u2155cqXXcysCsHMjJSUfDzB4eHtYqrA2/bVutVhRkNRMzq1tZ07J8ivW985jkfQ52g1JKQFap/OArCXH3BFAV7yRFpZjVzP5DqCYcBWRZz5nHZZQVeJAOUYZqIGTUryqSWSzZqqcLtDcfKQLVQQlhxbLldDDVuWgdoVba+XLeKFIrku2QTMawCEJNRbUorPSIAKtStEAFUHggOwjCCNdrh25KUE2sbKXofI2qOum2E1RfIUK4E52QyACtKUUtIEGIE05QoGWUYiOl0nCsRMUY2FsD1GpVK5pZWzVRU3FVpROuEUFJpr3I1Ttuf4YU27LpSSSJnDuUIuadFFutA0koRUKSEbo1J9li6M5iW4uLmFktcInMSROKLD9WldL2MylWC7Q6nL3Bu2TCgRAZ4euZCy3EiB0hozjhxJXj7ipAD0d6nGSfpccABuCdS0Dc6JtjtjZbPE+ZmznZ6a4MSsx19JDmgV5pujD/4yF8K0QCT0IDqu4eNlIZI9oS6/xnbdXR0Y08CTERQc/zXJmXOZgI+LuN9/X67Xi/fnJMyN/xe+c3ftN1frO53+PGuKqoqyDLNzyP5Q/1j9RtUINVrbWQAQ0pKR4JUItYVROlRHSVYhna6D3OrTe/zmopVYudtnuoiZ0++viTlx99Ila7u1j96MXD733v+1989/N/s7f96YwInSRGFMnCBJmeZ/aHOd2dMoCcxwQitdZ931trAEupaqX3Dkb3XcpSPLOpjNDDffe9Jztrd/oA4pAkQyZtoUgpuhUzs9evvwKQiNbue6JSU3INT8s9es6TZjRbVOmyP+2Pb87t3HEoAZaRpzuotxlp/AVWNl24q9H2uzY+aNr+CmN0FXnvEYUYCSNgGtxXLtn89kzTzmB/LCNDzZLudVxKcD6fEzcbg8lTgiFZ/kNGoNY7Eel9b90pxYoSHtFFTRDQyFtkBCWSrC0yT6up8FWDQcIEnk5qSjcTANITO5BPIWKZSTEtkIwaM0A1U9GQHtnvU2z0sBeNWcNvZlmb2h2RDSHgqkWz8YToFKvpuRVKyAGpsW1btJ74WyFAj56sH5z2CRIhMtBJolTZ6jDUVpoiZqXcVa8cxkyJOklBwkqHtnhm7Y31YlKaHIWViCgZwDDXVhBZRLVCii2aqKzBWxfnxC2mEhxeEVfH5DTTBq+PuyOrE1UjWQEk8+0WoEKgSoR3bdKslmhdRELCW3P3VKLhHu6IUMBvva/r7zIEb0SIVJCZ79KD8qBnHn5qf2BseHlff/0Gh9xWH3zwDWvgNnKBb0hKX9f98NllHvziNwZce+2urz56F++/H9PIIceZDwb70BRXFpUDMSTSdyU9iz+zTU4CtjXYKTA4pJsM9qORB0mPScaEpGhzYDHCSJCtCUkploCO7JerwWSvS65jjUy0uJqJqEHNCiYpvZltW9n3c+b9Hh8fkzcpup/qnVIvl+Ye96e7WrcIfPLJp9///sP5vP+Hv/hPX79+6x6nh5swbYaTwmMkq4a3vwg4ZvKGkpXykXVMtYSj7U21lKzg7Y2z7jSfd26NxD+mpAnRQr1yI3NmgBSSPqGKjupRyUJBqIjcdlFILM/K4qxAg1B0BB8d0AFIASk5w5JxJihhGcwXLt94ElyJWS0lWl87Z5J15dHIUscr5YROR5fk9ZlnRVWyzk4TO3BlOBsH7eCpzu4xgsQpqEBVtm2UH5JuoqWUeqq1lnR6QTeTUrZsWUrSvYmoewMG839KlcwYH2nGMpBkFEBihjIlu9CQaVeVLOsYHgW4HntGL65iH0GKehAqDAjhAwEnVkr2mnJKdulTUUADToGIJT6jMzQ0XV6BwiQBfD2zwdAeALQ1Jy+1VjU12xLRDsC0pk8PMlMrhIoVGYBZTQ9YVARFkNFlursSibbyCNMxL7XWjFKT4hFszbZKNSEhRtUQyY7HMoNYo/4qoz4zXL105wjWqkiXHqzZbDOAA0mPwFSp2oBChofnJ3krkcmB+4yBvIqM0gvNtm0ouRAOEqyxt0gKqghMo/fOEKqoFJXR1SW/RWAEwrtoENHDE9SRFOFHDZfiVAYEOiPiOkQuRm+loMuBGiNmhXQek3VanmmCsUflmD+//umD2mkKm4O3M96cvPPDnJRpYqyNK1MNH29mfCmFyXNAbNuWKcM82lnLzfkYV7Nm4h2+Tbf9Tpr1a3y7BfCLvOG3MNYKrlN2vKUlpo7WCdbKYoTbzaz3tvcLheVUbBB+gBPuCx17nov2cIRcD+69ilqFmlh98fKjjz/9TKy+fvvmdLr//PPP/+Ef/eEPvvhcWn/16lU/nzFDP601rQWT/HYCZUbtU2rfrODN+/z4449fvHhxOZ/P53Pyuhtk3/eMaXo09gBCBO7eeHE6EAOjtV/cXQBRLbJlwHiwlYiZDlIlLPLnUSQcJERGl5TM/UaEhCjUpIRzf9rffP328fWTNyie57j+7uN3YafleH9H/SZu7LiZn3lKPECvZdIOxQTf5ts6w7SSMaVQEHh6enp6eiIJJK3ozc2rJQdkuBNJa4PemrfuZiEiWkyymqt1wnvv4d1bD/YE1EFInVUnae0dHmE7nTJ2k536VFSMqhlfJAyCqhrL/ZvlW1crP+3vJFxcNlNEZ1zfj1HHLiIipsWsecetWlFV0lNfJy2G+54UJgdLNzMQJU+dqtRSs63UM59nqY/FkRYR7q33TriPBPW0/tZXvJc/xMx6PVv6o/u0nB8RycZOax5ERlVq2mMho6/ySENl1m6CPrDCwPPmV3j0urvS2QaC3d0igiERse+7LyCMZy9mzaAaDhM47PDZLgWzd1TWygVhM/UrY+ssHXqYjZk++vaxvvTZQn/L4Tre7fuqYb1hXfbZ7yR1ZsDkULMKgGBCGJexd1zlMS+3Da54KBpfu+Wb8sBrblfOPw4YkPEgh6zyyLAd5mo6IVcarVLmJpngKWDgz8l0vKS1pqpmdeXWwrMwRxEF2lOqcH3BtOsOCjrWrshhkocx6xeGBzjmcGBF5dnz5sPC/fz45H1/enr6i3//53/1l39pkM8++8zdL5fL6XTato0OuGxWt3KiY9/7xx9vn37nuz+6+8m+t33fH+5fXmcVatvJrLa4UEVmoPa4vjpYhWsIPNDDEaFMUUdRg117jOV5zMx5HEqlckJMbZFIrdVfX3cNsfF5UONZPjOx0892KQCk80QrWQDjLQaLtWRLtlEcYSoZjlSpRdWvxnB+VzZnEpHovlZB5vaOCODmpMiiaVzHee7D1lNuXxNFOqvf813X1U9X0CzmNrJJ6bzv+4gOqNZat9Mpr7C382aq6ffVZIvsa3pTO5iZO9Ogyr20GE/GnozxXalPI7sJzLsqpVS/0pTnGY8lREfud/xDkBGC8daIQEaNNUQkibIEUIGJgFAhRAOqiXGOzhZugKpoEUW2SYiAO8hsGl8qmVRbrABktCA3M1HNss2IROPogGFAYSqDJS9R8ynolUGGhEhgnjGTRBnp1CJ9oKRMxFRMQI5mf8hnUFM6elAkAjAYqFDNhovrFI/NqlJOm8W1C4uIOOhBUUr4vPl0G0Vn2feNiFdRFJLePSI8EEwF47XcRTgpmbIWkcyrt94EZiWBFyGyZ/vjUaw/KnmPZseAwucXpt3DWVcAelKGkwP2n1FenV5oZhjG8ZixgHHviUrWG2NiiYBjQ7whDhLYdXSBERAK09QaOd6jsjmeQEZw9J+UY8HPFUNyEEM4fBIAg9Gac2TtTqeaiD5JYj1gKIPJkopljGbLQ94weQKYlcDXfPivNn5xrf9rHx/6UuIXsFd+veNoRsjcPM/4aTCTqFcTYeVYUpJuFRL7fk4dzwzXqTo8JFq0+RE6g4kJzKj5Ib9tWrdtK6U+vPz4o4+/8/DwcLq7O909fPe7n/+9H/zeD7776Ytaf/43P3r181cAasm26uLumG4nhjUY+UpEdO8y6cRfvHz5gx/84E/+5E9ev379s5/+9Ec/+tGXX37Ze8fIr7KUykkdUUoJeCI5IqK1S9vP3hoR2dNYVcXqmBl2AK211plQpZHBGogTJhii92j7aPIZEcrBU3i5XN69eXd+d/Y2T/vzcdwqefZG0fMvvtC8emu8Xud/v7GU6/z913nl9csz+1uOucdhSuSuvjow+d611deNXdp+aXuC/YcZlJXGKhJaitEjnIIytp7TgeYcCAWMJoJKQThxoSTLB2N0aifAJJdNxFy2vusMZ2xWtJgFkvMjk0uqxd0zBGMm03QHoDPoM3JTZNZSyWrrko9vZpSbhnMi4tdqFG1tv+pcAECwp5Uvk4A9YrTFCzIdSM3wd9Yep9IukxHqUPjN6fkk+jdlu3syCThW0pLD4sHtgnI6wxg5z5HgWfnb9VOgOfsH+wEAkpxj2mCH0PM8cSkWhVAPYWaY50QBmRYuanHLeEdSNCs3E1tHhQTFs+BKhCZER3CzomYRUI1c8vwPHLRSw8y9TYHqALiFhKwCbRkNkJAW5Lj/mRL/xkHifSXIb+gPfNgkx4/IoejpmYl1tEBuvzb35DWFOx5QriTP6+LXcdiKz75luEkkJEYa9BvufF5J11Ms/zkrzA+1rdeQx7S/pmM3fKTDVBxCD9MQElU1CFRbu1A0eXPTPhypr5HxzQRywlxbZIbxmA84kGNhqmN4kiSLiPgwySzPIYI6rOVrT5AiRVQkpMOfzu9aVzH90z/7t//b//ann376yR/+4R/+6Ec/TZbgbTu1/TJieWaqBdTTdv+9733/1auv/tNf/s2r/dV+YIYfsnSGk5i+IrnSWsf7z9NsZqOjG1SKhQzqAkIp7gz41ayVQXADjPym7AgxhUgAvszOYGd/Nm/D8xfIobHWuu0VYVmyaEY0k8fA1DSSolhCAp1OUMQk90CWcIqIDJRychlmunnAOYtl3qwzlKhJ2dBz9tJ0iTRc1gnKatl0d4/7c50kEYFQrn2JjtmLLFuljb5PN5ZzdpMd5eAKMhwu0GTVVru1+eml1MOpiYgeoSKSSWCkwziS5Ez4NzAolWb2nQBK3Ta0FjF60S6Hs3dXEY7oFTFpF0wNKt6ZojoCcFdVkaAKKERRUVEToBO9exGKFCopHVCqQUvKYgp6J9BVFWKSDZaneO3d3ZuqlmoCBTCb69JMTHVU5QnskKRlxPL0EhA+dr9CQgNhWqCW0khhqoyAbbXWiuzfewiTISsG5OpEhaCFnwb+SFO7UXLT050qhSpOoJMqMOWEbnYGnR6wIkW30B67p7/tR3WgpRTt3WWIEh3qPBC9dw8Baj3JQEMGSbEtIpyjgXmWxFspgnDv3iNGwcMIz9R61/qTQLdt661gH1wFIgbu4YlJF1GOj5BYfcPFRBAS9CimeTiznJjTfkGP5Hwc2QpBkatknyaCiIgdsNDzvbgeeBJkvKcLJQvQc0tTsiROVLN119IiMl6+LRZNLMYgjZCEGJCUIBUSTvqpWAd3V49GLinpkpWVQ9vJ9VCG4BbN9U0q9ndk3BgW3zDk1+oA/FJjSag1jfqh4qjje3DNsKkY6mnb7u+2hzuWYQMk7ZOZwuNUK0fVfJn7bbR58FnskaM+PNy//Ph0uv/0u5/f37+A2CeffPqHf/RHP/jB3/vo5Yv2+utLf/r666/fvn0LQMqwv0OGEAl3BRRqqumiUGBaS1VV7e6fffbZP/pH/+jly5f7vt/d3X300UePj4+vX782tfv7ewdLKc4OYd3KVm2PZlBIf9rPj+/e7vvFRLLVkwC9dyMzCZw6rLn33rZTkeYRJHxRVkRwprgGE4GGCkWhDPRL25/26FQIITe2Z1rfWNCLX8+a/5qu86sMXv3wv9OZHRk2jhl6Zu5ehdJ1pOA00ld0UeRIb3ww40IcDdmUgSYSMlt0WilWNZD1tEhp5hEFxYexVbq33iMii3IzBMMsP14BPrFSFAFxT7nYM7JIhMBEPAghMzLo7o/nPd0piIz7Gp16ja0DCCjIHs0IiKhZIicDzExIIonMtuzGJ0S1AkPxa2mcznB1/jOL8WQ2gDkOVVWIaslUQIhCDAnzQ6iqFkuzLDlsRSnNe5Z1zSDPsu2SQYdT98062BFdTY+WHPTuufzPJFJWbY91Z/onWMb3SGmbqUFgg4dmviG/UTgK6pgQRB31SOO7btNJ09YcLNBKaXtLE1BEEvsXwZZUXghVBbWFp0dB0p2MqEpCV+Ag20SRCUybtu/YvlTNnIcptUfjaIiagbDMtyQEN3XuioYMZ+ybz9JtK+BfJgm8/okPHUB8g/pLRb78pfURVeWsAV4XmS7BdeBg3ijEkazbKwOsU2B++M5vLvUhNx6j7M6CHYe/JnORkiEw0QQR2Eq/zyqA5UrpAN6LQho0Ak5fOd0Msw5jRobv1HsnC9AVQvEZ0r26govaFwA8XFxEi6iPKobxXKoKqJplN1qSVJEiqioQgSFMi2717mc//fKnP/7JH/7hH/eOH/7wRxFhJjDp7peW5UL3OVEvXrzQWkqx7rsVSSat436IQ1V8KUmGpKprThDg7nvzMLNSttHRMBM2afSODNxg1MuzyVk9OxYrIiI0QVW6gJNjrP69IqJgGucAfBIiHnk3I6KWshzjlAM3+3/OZ4BKVRk1E4OvdfhiGoLYu0xJY7OnET1UqCIUzdoIJShqZi2WCOJgGiIwWa9NBAhSU/LkbkmvUiehsAmS8v39Ha4iBLdaBz2YUxS1Vqslm2Ksw5VG1LZt21ZVFQyIcLQ2iKxoXpnevL2U8b33S2tFtc4aWJnIf7nij64Aq/LuspuZFOvMspSqpUYE1ASiFlQGUhATQNCrVjH03quVutXWsouPtr1ZVbVSykaVy7lBpNaTezvvvaQqkgQDZms4UCTzDRSoljxVrbWIXkqpNg5Uhl2qGhme0twMxcTM91ZLpWDvTUTqaRPC3RNzHxoRQYHVDAl3SvSUaRAG7rdqZqoePaLgdKpF6rnt7p7JoNOpuLtI1DLoYUmFGHX0KoSoiHlGatWiXVRV1JI9OgSJB9+2zd1b3x2EKRXOIGSPbJ6sfqgCbu4SYVqLFpKILOOmnUqtp8fHx8fzOeshg0lgojTp4XDAI4JqybDVMgDvCRCQ0psCMCu7N9NyfnqMePKp5gWKkGghISY2QGZqS29QYhq8YqJSxKOLSFZzE6ElbQun0BMWL2JSHAzCvbt3kSGC08kGshYg49IjvCaSzdnT9NOEMcxYFEAOSwJZTXwl2BUxycLglANZpo5xONOoGVAiASJKre6+n89CatBqUUg12ZsLotgQLUMwiaZlOeqXAiBmy5JrcFeG8gCAZ/R+h0P+bVni51r8Ov72iqlv92wnScCzcPbNd60IBclSjqRTx4t/+E6++c5/8TEja7NoJBzhSMBLjxaMUX2a9rEDjgDIoFBNRz2ryv3LF3oy12kuZwgm5FTv0g5giJppKefzOdxfvNyi8+359RExIHcPH3/v+y9ffnx/9+Kjh48++uijL777xRdffHHa6v747s2rrzT87bs3vTeI7K2d7jeq3N/fp1upgDDtfvbLvt3fjbOm5bLvP/jBD/7ZP/tnl7b/p//136S8Pp1qKWogEJfe1Kz1uLu7q/dG+r4/euz7/paMy+XR21nBaqdqxawI7O5UkxmL9BCIYO/t8fHtC3mhwhbe2sBNMTw89sbz41kzBdcogk0LQt6+ffv49mnfPQIqBt44wIObH+vnDfvxt4+5K379gOpfbHw4O/3BrfqrRX9GneP8KROQEhGR3mZKtSupW0QwLc5hIIkkkjl/5m3nHZYF8QLClPQecemX3fcQttgNAkTfM3GkSldL81gURIlOEWGxzYoY4NFaa+3yRA+yK1WkQrU1p0OtFCsIBrr7Hh1CCVUtVtXKxvP5zOmhJywvGB7dzMpmAgQhpionAFB6ZKS3i0hSsociSIQ7UMoJqntHrbVYebw8EqFaEtqU3BZisGpiwwg/rCBL0bt6uj/dvX7zpNT7+xePeyOknEpkxxqDaqhikPbAq55YTSHdPZmbBm1sekEIektn0gSi2tyztgjZRAoj5drZgZFWNlhEyEgxj1CUjB726IyIsJpOs4hAhdWSqOyKfve2k9k6QgB465m7TqodVQWRJZuYQOW5aUeM1w8IXp/NcmjwHshOV0S0BuioUUsWNRGKPLWuTlUxSBb2BUCZ3YBUoINwNNmAFYbQ8KaZVl6IhoyNqN40uXh+1p4dyduUL+bhPASdV7hKnsOe53rM6G028F0bhTM1OoIpM+Q0/TikvsvwhxzzsQfVtjzkiGBRKyai7o5Asm0DKKIIeAh7Quyzlttl5pbTETosnABQgxWRA6wp+3pERM+ieAFgZbPe2nSQEOES6XbBxGKWGwgQfdDjpQ+ekANv4S1KYdlqxOxAFiPJMTKTuoovnAItSnGGKNg7g6GilqW9oDAwYAJMI0uadxS1Atip1LJtGOmTgUMVkdEmevLIQgFlaKFuYdZ7XC7tO9/5ztt3T2/fvnn97q1rlPu66empn5/6eW/3d3ebGl6/+er0cH++PEbvfd/7drluLKMZS9HW2uXSF8428Y0MF5GMSzCpKkWsCMLce0SvpQikk9F6ZwCwmcXxFiKS3Ks6tlgRk+gX7zuy1jejTIAzKLBiMtJFBgpCxNT7RUSqWqY0c5y2jQ6hCiQ8A5hJ0NvLVvfewmmwHuHTNU1bGSHeOkJUCigRfjrd976He5aGCiF0CulhpZiVEF1thMO9FJ2o+zwyoUkl5T6kQQhiAEU7YbVmb4EEFagOAp6J5YGqZL8KFSooKBXFaEKwyP39/bZtECl1EBqIoEVLbLMyvPd6d1e0OAMIzV4divu7LUlA6bHdnU6n+95cBGJWNBQCgzMcIRAT9u6n08k6933PaItSi5WixURz6w0C0UwFZ7csoQgy5CmIvhg5em8RkYfVzKjizQMwMUCbkz325Bsc+H7QxHL+mXhcCAbJ+oArz24B2f0hAiEByOz1rYBSWbSWrapKZ5ChpQw8n4hlFU329Zn99Nw9SZVFhJS9e616krJtmyD7PE0Z6j4CPISJqqqpZZurUU49KpCzXhoQSacdGKhsZG2sGKEZJc/gdtGRr1dVFkvcdDpjd6eH1tre+zHpdGntdLqH6ejEixFnqpbe+ACM5Ui+HhGddE+awVobCdIMNmlrzrhCoCMQ4lAxsZjqwd0lOAK3TIrvVTs+IAspV2USgI/HB2XWOfW0I0QyJToSo8zXvZYChMLW/R+VylEh5cvCv8VQlmBWdXIEoq5VnTKjPnmSxxetJvJA5r+SMp4e144RqrWaCHMG1jcZ4IN5b6hbjsjuMFJv3cJvNJ9Jitz4ir+z4z2/97c6lpWzbBQsy4ar2C3/QHenBBBUEZhVEyUMpiP+N+Tr2FmaG4QwhtRyj4JAeTy/VS2llnUPn3/vB59853OHvPjo4+9//weffvrpx/cvVPXN168v7962d+9Opu/evH3z7i0yICpYFgyvNX5hMKj07iIqJvvezOyzzz6zWn78N3/z05/+9Lvf/W6tlTICzL33h48+9sC+71r1pBWId49vuz8GMlwVtaiIFKuD0QBGeKlqUHe59J1ErfbRRx9lx4osYhw1je6t9dbGtMYeIIuWCOzn/fHN4+Wye/uWFK8efv7nMcYz73eNZfXiFr44TtYBPHKVTnMc/Tx6IHjNAAT2fX98fFTV7AsNCaW69AGDo5POQ7FG/r9I9gVwUIua1c3Ve+JXp2XuHqRYoai0tL+TFytVTEjvTjGPJpyUjnBIaNXwRTcVAUS2/ZMimwGDSqonjTOzegkBZkevcEKiaKhq7/F0PnePuxcP27Z19+a9nR+1bM+Ci/mA5/N533trLaHLZkYIVCICliRDigIDGCLB8EaO6EOCqN1TKcTxFD8Xg2PVxr9StJBcEkZV0wGuVn12TiIhxWqpIpLNlquVUoolmxjph7WWA/pmabSVeeUgo+4UANno4QYv0/pNjbTMHjlLOZOJSE5LbOzMlAxZbB0M9jjZ9YAHiEj26HGT6SyRozCSFB67RQzBnBbFEcA7HgsfKq04aP/x7/c++LcP+ds+dfyK93+fQnu8wgR4HZTR+j1d5WNtTqZeu2eg44YKlN9wXzJLYfW9plbjswnaFJvQOIUKVRJ/q9RMLo+py2+0519xoy2Th0KgVIZAdKH38v0rAb7uX1U1wO7JDLpmZlg/q6JhcOol6aNb2RJJMU7TuqappIQkA04JSkBFtYaaaYXYu3fvvvrqq6d3j49Pb79+88ZqefHxi7t+YtutlMvl8k5x//b1w8PdpV8eH99CYjsVuYnFjnqfWquk65ugk4m/xWT9SAvbQfTuM+yYwNjM5epscPW+LbSmNAImo9aSNrwGMo5lCCJis0VQdojNmtjjche1nuQ18whhoBqNcXVGqILeA6qi2ZAVIgKTjPgTEZZZzUx3K8CU3ZLbJv8fKsKDraWz6dqCOru7TSKGiJD0awSisbcmppNkJNKWXhnXrZRSisyaWzNTGIJBV5Fat7u66fRlEnqgiVWZKGUzGyRQGQ40GExn/3YzA0YfA0DMDAawSoYVR7Ulp/dHVU0mrfmALGbXTDEjHwuq2sfMK0EtoCNoYIjAZ4fCFjTTyGy5IGm7OOlkVJOBTTxMAEFWpw6vzKxweNcmKqA4wO61WHI/YcraJH0QEXfvHGRugCQViFlJDDAAZocko2YAe/B3lxiiVlTFUHltH5oAcdm2kqCdYAIVtFiZwj2WlwtgMQzPACEyNpPeIKZKQOr+jAdrMbNL23NTKkStilCCMc2dsm3Hc7Vtd8tza82z8lshvfeW6llCBIkIyFoIUlznOSSSkI0Up5hVk+jO5K8ep14KGFs9qQrbk5lBy6U9EQ6JZD0RzwuO3QyM+h8RyzQGyYH2Hzc+EqSMMC0A4tC2WyicnjxmRT0O2h0zzXGcivclTqKIkg56SqD5P4EDcFx7w1/r+5+jjFIfjQaYYA9n23v4SbDZpsVMMgzAGRJLlTCR8BGz1nG0e8YvM94Xo7+DY03+r3C3f6sJ8otfZ6nbSBbzueGW4hERFWZ6Iv+5bafT6WRmcbjOwAWIiUjb3UzNigd6Dy3b6XQCcDq9UC2nu4d1A3//j//h/YuXDw8PH738+LPvfPf+/t4wWhClXjez8/n87t07ZPvfRVB0S4eTvwQJFVPtvZ/u7z765OPe+9PT0+nuTs3ScL+/v693p3ev37TWQrSPgGC01vQi3S8UNzOI1G1TVbMtK17m12ayb1hmWy0icj4/0gPzrgAEkZpeZ2MboYSjXfbXX715erf7bAXFgVr8P8CO/Q2Mvx1z8YsMjnLUq3y7SqHjl922lMCHzpHIdZ8jcD6fX79+mzXAtdYkslKzLOgkB2ItBFSRYubDuIkkqmKUNEZJjdJjV+Xo/CEgB5hWoGYQajqWIkKVkCzx1eidDEGQNFVR9AhRigpC0Hsi6EWT8znbBwi5R0RiUmK2FxKRCPTeUQQq291p9SST4aSxd9+SiuRm9jQVUICdyQCNdIA9yZAtihXVwS/h7kFGUt/NSoDlAA/I4jpRzx1gyGTxOC7yjOMLhrVhzfvQQaYiSBYAUa1lND7dtlrUxjdm+gxMotThSCw3n8yqhWz0QpLw6K6KONYKiqSxtGaMh1YFMWdSdRSIpTWZdHrZpBWWZCsREZkhGHKMV0N2bt1YJnJu8HUb13v+RkXwjQrig27G8U+/hHKRZ2t0Y2+stxz/ioPSwYGCbh26NQ6fGg2iSSdsbuNIJM6Y9WEkXAs+08KWma8eWa8Dql+WTyJKsogQo8uPil65VwgnlZGQwPcnMIX8+8+bwNoViz8+l0zcypptVVViz1qhLBQlAGRWrLxXBS0eAYmIJm59SK0h9FSu7VjIeWQ0o9O99yi27/uXX3751VdfLdfo/uFBtJyfnnx6BLXW1lqt9eHhYds2K0V6P67LQrqa2Wr2QzJTlbOCPeczaavRe/d5SByc4OPpLYNYtQA6vOLsep2cQJjVxWsJ5Da6AUAUqpIMMiKD8P29Pcs167lyKY05+edEZGPJky5IyKfIaEGRX61Ktv1MpVJtcCTFXOL0sBIuOWLZsnzO25vHsrUmjVayfEcAzbMaG0B4kEDJwJ/JRGOO7a1qqjKZg3KrJ+pTVclxWSvT25JpqGCwzpYRH1JVTaUwst8Oes+ylyzrGH1eYlyz1joUmWDkAjlofcra3zIq+WWJmKt9CVNNz4ZabB6nSSuVrWdKweKKiOSgK6dTZXTTTWUUIvv8LCmRBTKD1LB0hptAsQRBroTqKOls4d49qNZCZ10PJ17lsE4qMtjPc9v18PmMWiyzK27m6czCYCa1nrjifGKqOqiVeO2OgKktUjvqoSXsnL1R4p9b2DgIipdZczDZTRWqTqeIZD3AGjbbAK4SFk75Oonoh1JSVaiYlt7DzNI/7x3ZwMgsoNn7RUphbpGx/0S6dxErmn0gqGqKAaXQCZRfDzg26+Gv88bGmV+PtuRm/nN1ZUs57u5AyMxIkKPSYOqYZwbfN+EVD5HOqxucWPrMN4/32WzzKAfttSYhDl704ojLbTN7so+yllUANm81j8kH7+54n8/94l9Oef8OjG8yRL59/Lqe8Zm1QYoHrw3ZsAQXBs4OEkKRKNvp7m6zWqGxAtIyIBsQWCkCVbVKE4O9/PiTu9P93i5mtvd293Blkvyn//Sfn+7uP/30U+/9cm6Xp3fv9ua9K1nV7O7u4bQ17+fzGapZi6uETg3G6/ZkCGyW89VaP/7449YuP/vZz0opn3zyyb7vl/PZ3Uspd3d353ePJHt324qZXfZe9nZ6sYkWd68nW9x7Ca1MG7rW2nvv++D30kVf3zqniZ88gj5JhlVEKaqmVG/x9O58frd7BxwDbAkQLv852fsrjWdH/tZunsyi733km642DsLhldY8m4UAmhzFAFQLPandVrnReP+SfiKzhqBTFBFDygEGqFlFCCQ86HsnqWYSwZDuvahNopRs1c600PKgpoGVDNbTokiuS3+8PG7btm2biKiUZAa6ymRQRK1Ibra0IrQWAEFe9j0OTRmWWDhODvWqnsyMVkIEoy/gdXrXDGc9wnzwme6bKE2Z71w/v2kpMTEmad7oqAtW9xBTK0VGjydJU3U7ld67CJfdkkuz97Y0I3ClYrrdJ9N5AGe6AYdPHfbJfMUP93+18YbiHrhcmS6uzELlw3QJSZnSZm6ebCs9AhbpweFgFPEQdf5V1MgvrESO5+VbVM+y6XnrAz9b4g9fZ7ojcjuOthCGnTbM0RVSeT98+P7O0dkcVbLR4ocawyZ9WTpgx83PyfhNctVcrIc9vGF811WfzuTEevblJy97aVm5MallABs7M66G37Nzsb639x3Yju53yKxlExwJzPM9nokp96enp5/85CdvX7/59LPPP/3003fn0Td433e26OwuBrFStoeHh48++ujly5cPDw+DpGbdiSlJZzI7vjcPk6huvFLMAt09goOZQODeB8NcsrrG830ccwgSmBbJNM/ZNcas1lqPKzXmFkJ4kvs820UJRM39tRbCGe4UiVIst5bO2NOa8LleIYFkzlHFKGJUJLcwht+eLAYzYwfknsqC1mnAj/6mw9EDEl1bEgPCKCj3pyQfYURo9pIP0qOqcaBSuU4NSRGY2bZtZhZgay0k7u7uzKyomWQrARHVMpmP0vUBsoFzkvNicoJupZRGX95iruoEX0gGhVUVkPP5DMSCwYuIu4/s86B9nPEkEtn+hpRRvUHNGE1GOayYUmZbIBFVxugv7O4BmggJ96QTN1MxsyCzkkE1qzoHsZiqQYuNE/v/Z+/feixJkjRB7BMRVbNz3OOet6rMqu6a6cvM9syQjWFzGgNiAWJfFvxx/AP8CSTAh3kjyAc+EbMDEovm7GLY6J3urkt3ZWblJTLc/ZxjpioifBBVNXOPiKzMqqzLkKsoZHkcP26mpqYq108+MUpdIxI8ks5whhCTtNiHWGhKSQG+lXCwOeps2umLRCUzcxQphHoSVnU4iyQhIld3rVonZkSJ65b7hbfGAMOd24LB99VDHGCIJCYyq9YPDax15RVO5GASYk7EBFTAnaZpWpal1tqRugAQWFxVjXR/bB2r7g5JZOahaKN03cxMS63mRhyl6O7oNdXOouZmzimL5BYPSxxvXeHoRJeJQUSSqNR22PeCbITohmz1OPIWGSSDwwJfIsTMZVWHuzdOOQDkjE58EsyQgUGNxfRg3m+h6oheR/13nKq3uo60c3cRFKVD+gNkjWC66Wy0sAZafpwouFJsy+tGdMM768XgKuxSYGPCpo2o843qnd6YN3vbg/yq47t3S4aJgK8xCN7+t7+J+cQPfTI8gtZo0XcPLgd0gIakNB8PkhPYDG6KDkJskZj5cO1OOc8kOeXp6vEj5rRUXVb96KMf/pM//pP/4f/+93H9Dz74nhst53VZlvVycrUk0kgLTetyYebz+Xw6ndCJ+PdmBO8sFfRtU0q5mudnz56p6s3NzfX1cVmW29vbwzxfXV3d3NyAKR+O0zzbUonY3HuxZiFpEXEiN4KjBZ6tqlplSHUNezcxhBzqdVnhbqp11eV8WWsvA1aLrwBgTux8Xs/n81pL42Zi4mgMCOC7yoX+Dsd3ffTeMPaG9b377mKCm0jvNb7DfHmgXN5wWQ5myta5AExoEBUqpVwuFwCJEhEZRXOIjeO0uXlB+ZoTu7OilKJuVqsH+yOJOqGFz1PUGBYtteqUGJLA1a2rU2FV9RYlZqYI97o3ZKgF67IzOZNaNbNaLaUWNkVwHVNLa5gZnAKLFCvFItUtSJsD5yU5Mbd+fiLCO75xN4qS1LWWotXcgwwz5uVVqdv7cSCF2d2X4Pgpxcw41s10uJ3NmXdGD88OawgP4hRRDoYIMRM5mBNLdGFAxNOZWVKa5hQPGxYFAIOrm7oR6L4frsP51F1vD0Adrd8vdinKkDzxT92997GFqPNndQxBUHA3nyGyOuGAtRJoaWGRWmvYxxw5HCcnBXmgw3qSk3bxjt02ph1W69scpLf/5uuOyf6fce7Gzw++SVuzFmxKfOcxcqcS9NGA6v5ofwulqJ/2wfsv67qaV2sVwFtAYT+Nhqyh5lztXJFtIKwXJyJycmJio6A69eEG95nQDv77YIn2niENAmR34bynsB6vz7szPFwgdA+ZSFr9a9h7vf3SttkcIATlkaIKJXAkTs0afAE6Cphi14Bj+Yic3EVEa3315cu7u7sPP/rh8+fPf/IPH6/rKiLH41FmJLibR53jpazpvLjT8XgMONVY4cDFEFFvkO5ao+Sh9eOxIMgHwJAkEn3Lg/kvGIuodrEBbGF09paRUou+6b5ZhWNrea8VTynVXpKwrRVa5x4JTOtuY6hq85ndtx1j3lgVnd1MqzsHRa4M3yFooigavMDR26ftq80p0B8kquqNF7qhOXYBq9ir8eqru0eON6xr0zCCiZnmPKuqamEHN/yCu3tiseg5ZS5MwkIgOEic2Ik9Zbbm4xCZ5xRVp83jp0bnFu6PuztxFH4GSKd2bpp2fpm55609aG8BkFC0a661Tim51uqxXBQxxFo19cfdAAmhulJjnCOHOADX1vgecG9eQa2ViFNKTElV0XK5jYBbVUspsf+YEoGDoBINES4gQuN2BrmaQa2S2Ej5DgvX3NVqJHUBeMAVLOJhEknQ0UuaKNyrHdlADxgzpzRNG+6gIZJA7Gu5AGBKQgrmrvs6KXyPx4wxpPDut0REOUsprXub34/LbpHpJmKqmYf325HJbcxzw32NR6iBfoZnSFQ1E5EEdYFVVV3XAm95yyatBEYduN/FnzWCO0HwCpnBNZxbwBrneEfY705Ch9ED4/qtq0PgQV7TVqHjG69IP9qxt4GteOrhn7UXvi2p673PH2i4hyrwfiK6XcdCu4CIxmlvz8VEo3ilv83ICZjxHpLkPXaous1hyLwHyvWXjtgab5j/79/43c5w6PgHGjp+1RjTzBzqYUHGqUh0fHR9vH6cc6p17ZaZECGlnHNOMonk+Xh9PF5XtdOy3t5c5nm+Oj764N0P/uIv/uKf/9mf/Q//+/9D3PHu1d15WV69eiXkieXqeHh8dTXPs6mWy7kuMLPL5WKldCd7C4rvI7uB+yqlTPPs7nlKjx5dzfO8z8BcX1+nlNZ1nabpROdabZ7nS1lrrYecmNJaqjjmqwhq2i740ygr11rANMkEABEzM4e5dHz1utZlLQ5lSsIyy+yEWtSrL2u5uzldbgtqXJudaBRaPiRU/S9tfNtD+iuPNwqEsWkfWEhf87U3Tth2VanUjkOTTt5442wEcEmYnW1HkuTUbLjDPLurgXp9GhGEiSixhQuo4F5kZWLFPeLaaZ5E3N3h7FZLaY5cVNe6WzRejPBlHAPhRizEnA4HCtsukL7Rl2DM0Myca6ZsZmbKSYhSo3ggBFlo0QZgY+a9AxyqrVRbSllKVVU1Mi8QIcI0J3eCuXmrgd8bPD2j0uyWB3mk18cwd19/fdzqMcMaEiJnaXg/bvZce4lDOFgn2kUng/V7Y1Nq1tuWjpyM9/JC7t2V0JJ1O793J0K1bC7fwKTujeMmUPsfqqlqKwJqLLBoYEIi6vZqfAhVpV3+vC9U26u/5bE3zx4M6oWObzxle/uBemTqjdshEvhE3RH1zdm20ce7+bjb1R6YMUNNkDTD0tSGcOjf3AJktsuaYheIFyIRWevOpW/3wlBGDxcH7rzVFNEOljzKOKnDYt1dPEdrPeqpMqA3O+glDNjpaAAkbX0wkqX9gZo99hAj75HNM+Byudze3uac33vvvZz/p7vz6er66eNH+ZCE1NbTxd1Oy+Xu7i7cuQaI3VWRUGA+e/+3fWCaiHgI4bEIBBImZe2uJ3dUOW+VsfdS69vVIkwh5O7BNBkPwiw9Grgl+YlGVMvGGdmvQtyuAQ+BfXpsvz8bRqazUjcdTdszhqfXgqZuBmbE80ZTV+xfDXq8w3v4Y0BjWvs6tUjwBjGXMLuG/1EpEpIs7maDqgCgjccRZsbOkd4jojxNA1/p7gmURShIfMIhVeMUlBQRs3NvPWHocDgsywLAXdVKa2oH0rVQkkj8tndkzaqn7n3EPmmMP5wmIhIwoG6GgOy5U0pM7KSuSpFkcKLgTFdDa40DIiFOxIlAEm4PmKARigRAJBoMwXCwgJ08gsXNtahuUQZuMAeqm0Q/HbSkfCI2olqNgtBYNUFTEnfUYpwi982mip52BSDE1jriUH/LDCDT5AyQanWwE1OWROzRb4m4y6ZOYh6OdKSCh8ZiRoQiohiHmNwB9uGE9yPiHo9DNCiV3L1BiSEisiwLCExp3zzzeDy2VoraSotVPaqJVFG6uRBwdCJKiVVT0C7E8YnUtqmBKVLf5qhW1dXgas7MSSazFc4pTcoJWMf5bMeMjNh72bZFgAYt1o6Gx2/vloKJH0CYQCQcv3UA8VdwgOo99M5ODcTa7qKJXVRFxBMPxj0Vsvvc9wS+gJmJkpurYJgm++Hu1qc/DCIn0uJiSD2CbGCSzOxAHYI+CDJbm8M2n01EfpPhr7n0v8r4Nm1XH/Rqeuu3tpTUrzan72DsF2fYcJEuazuCDDAl68AkC1qZ6ZCvr68PV0d1d1Rniq5sTJLSlKcp53ldappmSbl4NUWe84c/+OEf/9M/+q/+9J998MEHxba4y83NV4fD4dmTRznnxCJMzKx1XU7n091NYlJtXaNjC1Hfww8iZQDA5OoKh5DkvGrNNF9fX9/c3ETQ14HT+exGUz5Ufan1ckwpGshHV4B5TpIwT4kooruBsquIWiyoVqMkSViIrVpY/HDV4nUtdS0thk0ZktiJIFlYF9zdnM6n9farE4L4ynkHdghKu13u4vceyf/AtP3mR/JN41v97S8J6uF+VJR2Ntl2idfWdix4vOtetQUApr4utVZj5nmem6cEkIjkDDMtTRNzEnayiqpFzRym1jHxCN6RRsVZSS06xjoxM3HK89GDcJGExBH9ctCqVUHiBHUyc1M1U0nZmnEuADuYRVKa4goOMq/MLPleaeKojYkWCSLCki/r6m4sCcylZSO7fbZ7NbXaZVnVrWiNXoYGV63sFig4dzdTaOtuVNTNLPLPgXczVwA+KEXcbde6JrhevekvoR5ObcTIgdViIZEQyNHqDDARzjmn4HZ3Dxa6oQQjTzCo6UrvYvVgn3RocYNQRZ2woAGqMThmgm7aPUqqrJvCsUTsUIpQYKPAYObo+HovKADrnjaH/UokRJFcGv6e9+RMVBJydE3maJHikSHycLK+/lx8c0lCQ03vr3D/571n8vrN0PUa7ouI0Cz7qMHr88Q9s2Tv5Y25BUGsRiymOcDUSOVgDrT6cL/nWlPspZbA390OPYO3D4K02yG69e7Sht4cyjeuwFBGwz8cHmDD+7WqyHb3YJQYRUbhSYKJY/5R/RnEZuY+YL270AmBQheqllqZiBTu5Oj9L3YrsLn0agoiTxIR26+++grA99//4Opw+OLllymviUWRhImTmLlWv7s7O7jUKpLDCt/WpFPG1loDQpJSpyHIbE5mxgCY3ElVQdFwR+CmUVxLaAX/TI6owHL3xmwc8+ZumbgH1sybZARzUOHsUnFjfdqu02rucN1v5P7SPbAVhMBLR0qS3Yk5iVBAlKOlkEQLupbN9jCQAn7mZo3dKTiVPJqfqXPwV/u+uIl2HZti5lGTGjsnHokbqzMRkanCXWLNza1qXCwwrSTsPcBHSUJgomfUklnKub19U4cAGAsU12fmqL0dxaCboBvHz5zIuNcOJGMBDTYyIsrCZpimycwc1kpRjKY5p+7wMIDoLBcP3yqhoxDMGj6aiOBWTL04pWwW4A1uTcSIov+kGyGyuC2gpW5RWh33oljlAEfF4QSTUHKX5VKpyWggalSYmBJzJWIzDRrVnDMRVMPQFG6RbGfetlFk7LCLbBHJsizunqe4gBFF7FxTmkQaq7OBOqRnkDrYKA33Xex2LBfFziIsZbVdZGUvibyD0EJZigjRIcm0rGe777YFwD1k6Mg5hxI1gL31J2z9D1yYaJ7nQtrCa73FWbVCLpISJRsxntjKzIlTdkuARNPJdt7jMN+Xnpu51h1X6tlwaG8u11uox7RhmxkxLuhbFf69moed0LxvHb5dNfKWuH1ziHd30ZDGTX2O31KLiG8RzSHRhkGAXd6+ya9+qEYq5m2q/RuOb2UBvOnvf7OVmfu5vdmq+M2MBwYH9u+ohY+b8u9v2IKOA0ycU55msJR1SdPshM6SyswpqBRJ0uW8nJcK5+vHTz766KN/87/+y3/zb/7N8TC/+vLlf/6bv99monZ1dZznw2GeGFTXS1nWUtZSllIWIyaxWuu+xjKCghQh0rGl4W42z7OiYZi/+uqrdV2fProOusvr62si+uqrr6LtmbvnnNe1cuKcMzjlnB8/fiKTE+lSV+mlv/FlVa+qAHv1RMwpnAQ3haoup/PlclnXFeZZpiiOglNZiqRZi93d3J3uKlbAQWnyYhhL3HoVPpQJv9a+/c2P1+XY73BEiceQrt9ExOG+wT0+ZOaokwKa4RSUbAAnyeZaa9UaOlTMNbKLzEwi3Ng1o9egaV1rNVeEJa29jldEzBK5o1Wr8DQdluUcUfM4TapupsxsRg4Kz0zV66qqenU1EwMezGsW/rkI1WpB3sEsOaecs3kdatTJmRMJkxGzTPN8WbWUoqoHkVprAKN6Wdc9zjBVW9daqy0l6rDCL6WU0jzPZb3AHNbckjg0ZlZtywt1ZNOe0mK/f7qtAgQxJxolCxGRcCYikcS9kGeSKU+Ss6DXLYcDHLqjlBJ3KaWs6zrUzXiisUO6GnrI20RELDK9HiKktkmotWm5l0+O+i5E1qW7lOGwbbfGUNlh2QW5aY4+6vG8AaQPde92jylnbGzqfPhx0a/Z5N9Ekuy/8+aj/caLdKf3a5zb7Zq7Lzyw3yLiajuumfiORpv37l5Sq6vvVpBvTZhaj5XXrAXqkRQiite8/21PPD6sW97/7Bs8TfcSZn+dAWqIXzVj5rWg23hq29iSMMAF1K1367gD734BtwY/D+/rasoACjM3vCU21qd+0/GunJkDUUzMtdabmxut9cmTJ1dXRwAwb86aMzPHP25vb0/n8+l0ipN+dz49WMBIBlIP5o431dtqOhzOrAb3KOhgRKDMLRSlc3dItix3K2DZ1qSXHrS2Ut62wcBU+n2auraqrcz13hHg0etuh7oPQSqSvPNgldLeqaom+TreuHZoGaQEj1beIR6DyIG7WNvQjiNTLczTNJW6QI2Jc87h/FtDhVBKiTm5u1kN2HPsQBJOKRkhKg+lezH7VKKPFuVmLaXYBzNzIknRHrAflE5qFWI8pQauidU2s6gujk8isBi7QoRFJCStdaKfeZ5TEKJE5yML6ixzVStlaec5uFVESERVZcopGvtxciOwVMNlvWiph8NhxLe0ghgtgS8MYYW7FQCJE8gjekQuZtaCwSLB+giKQgECoAY1ddfj8agKB+fpwMwlFGqamNkUBidhSa3FtpkttopI4hQwJKLoqsXVo7lCdafDLDknwGopx5xzzi1mIEREo4iGGncO7/0iCB+uj6rldDqVUg6HA1MDGU6SRJoJKyJELcobe0VE1qVeLpeUpsNhOq+LgQ22z3KS0XJZ3X06HACs65qmaWKptXit83ScZ6u1Rg96c9bqtSiYEPyZ1irOmJNwDkMEAJhynsy8lELC59PlkLOkg5Isa9FyefHsOq95nufQ0PG88JZjj3+G7UJbfGgHougMhCECaq2lcVG2Ix0xtjhW8XmI0Dj14SIAYEpRv4ue8QB8p482Q4G6Xb47/Lv4YsQUG0kIRIIlfWtUuGmLHWYM7loKiKpZPK/0QZ24xalg2CjRIfUN0ucea/R/EeOh9npoAm7jzSbIb2ZKTeuEwA2e+Yg0951gZgZDkihKfPzk2dMX77DI9aN5sRr5i7Lquq4pp2m+htN6Pufj/Ojpk+998OHzd969vr5+8uxp7Ida6+nmZkzgvfffvb4+5jyvl/OqyjDAqq7Lej6dTleH4z9+8umnn34KM5kmJkp0T75ji/s0AMXhcFCt67o+wRWZv3z5Uq1Mc/qnf/Sj82k5n88i+fLll+p2yLkoAC+lcEbsxinny3K7risrAGvbu6/VPE/F9HI5YZ4FRLBpms63d8uylFJaYScnC2JFNVa5O13u7k7rWlEibixendCj3/3K3zIROsa33f/fTUBnvzl/7Y36Lfz8gOFzF4nDAu7tA0DMaAJnM/1en+GwsB98ErZU0J+yERMZ083NrVZ/9OjRz372k3mezQGmtRRmVoOBOU1x2yiydffLciYiJmG2WlVrdJVI5tW8w2iYnWFVa4T58+ROtdYOaV7b0XMSFhbAHGbT8SqldLlcgnLF4QQJoFk1kOSiJbmnlM1scKcDVEp1lpyzpImE3ehS1lIsTVk8OYEEc5q01qprrXWapj209rKup8tlrXWtpapSyyEIM6/r6qplWWEVQHjULV890HqbVQ5ihg6/qb2I+L92R4c7CSXuZJnqNuUpdVNbRJLkSIHGf83N6mZihpwpZRm537bVuvdiOxAsUWR7mp1NRCk1fZSc9ikRouDujtjZqvDALka1pIhwL+lKKbXYHHR3o4iD0KYfW8X0tj5xu4DC9kluRblmdXTRcusb+KHjtz/jm/re7/a3nq+v8WObp9rGwFb0f+8MiO4E0gOS27cE1t2dhtO0MxssGuSwvPGvYvHQ5UD/q53jStt/48uxEyIe4e7TNMXUgji9rgpzYYnMrTC3oC8xSQJM3YQlNrAIAx1b2bCZ7WBT53hv2QzfntNcQ3tp1chgATBTg7ZysO4Sh1dZa4Vby1haq8qQvn/iQVI0ziIxDc8qS5RmusEa108nZCZVnXPycB2TfP75L5blfP3k8TzPd3d3U75q/HlMynKY58v5DrcAMKXZ/Q7AnKfxCqLa4nK5iAhx4NKdiMB0c3NjTvN8ZCYwqZNqMXNiDpan8LBbwMy2LdqUu7C5xdJFaQU1f5VbprHvMRHpVXU2lmXsECEEONR3ehy9wBtMvfMKWDBJkjQNp3pdzrWUJMEvPyItAAREcQBLrcwsBFNlGBMBZGpaopUpVN1IJScBoqXq9fEqHBYnHA6HSC4KRIOgO9zF4M5kdqJSqyRi5qLhx/FS1mmaIFzd1CzaH6uZNEIEyjloHWpKEhnseZ5TSuRGTkkS4FaLyGS1SBYRifcwsDza2ftjnpJSEGJYK8q2ePvH4zG+E74xkTODyMOWD9h8qrXupQO1AgltmS4wQZxaz7hOER4M+kIUJcesDRwRK4MeVdDSMyCbUNgRDLh7tHBSN1O3YjlxE7zeYmMczYM8Tt/G/BwR6JQ6c52TM7l7yCPqFNjcizScaZSxbT6bisPNcLq7HK88yUTo9euQ6CyhW5lNhMbNzBxeSgkCHncP/zYC7c4BB2ZqNVRsZqXUITdDSwJc+qviHpfdv4WxVs0BABFxrdrbE2kU8TskqrJrpPtzdg1OY6X2pORe3W1EaomorApmMAGapsM8Hy/1Yoac5oWXvSjvP/tOeWzFjQ+EPvZtA15TJ8w8WArRHQPvuAO8yRDcO1qvm4P7r/XP8cbhZkEDGsCMsYus6gjRWWO893DN0W2RnmFTAIK+AV578N/NIPtNJ4F/P4f3dD0AdTe3NE+SEuXpcPXoePWIJBlZqOdS1FCeHh8fDoenT549e/Yiglbf/+iHH3zwwemy/PznP//r/89/ctMffPD9m5ubfWbp6jAz6HK6UyvsWEo5n24vl8u6XNzt1atXp9PpcrkE5KEV+wU2zQLxtWWAAai6Xi7ufjwe3V215EkeT4//8A//8MWLF6f5sizL7e0JQEqprBXCZq6qQhMRresK0qqVWmuAVpwf51F2eFp3V6ta62J+d3d3Op1CbAEgWIthMdW1XM6X0+miqyNirf20/Tbf5v/vjdeFgz+o7G0GS/ev3iLQXjf0h+HOxEH+2t2bQ0pT9D9Ed1QSS98k3FuWuKpO0XhPjZCRiKhEiClxdndKwxNrQOda1uDPNDP11qlhSG9zIxICMScYmUJ4pqg+GKrWHAjWliwMIok8zhCkKSVnWUvRtRiQ0iQukpN14pl4/Iiumoa7tS1aRPS/PJ9UDWBEu6MRhAoz1hrcV1UNbGZv2+Z+30Hqb4EHqzsJMTMlCWZUg+ecgxtPurcEQKidtZF5Dr0Tr2wAZYcG1NfqDLkTlsYn0zTlnKObpVcN6hjpDS+GdhORw+FQ3cKXaEtHXJZdQKplJhndVTCrZmFW2H4R0Mq+tvQg6KHq3xsMb17T726M5doe5C3H7W1X2Gc4sct/7h9q/wW7b4R0kXsPDBiX9f6Wv8k60Bj9DdqufNrMRsR/CPlIHoRPtemWPoGG9XhtPHhT23PdZ4fGLrWwf/wxRjHq9uDQsZihQtA5oaLt5XicfRChS4+dY0lkvTmNKoStVn/15ctPP/30+snTCHgR0c3NDRM9e/xkztk9vJpGmxyVn4NyOSY5pUywUopbDZ7cWisRhDMTG1BNYUBQxsLdzEoZq0p9xfdnge4jyffbJiqNvSc2x3sZCVXsTrcQw6q/yZoVaSxF+y3askql7DZDm49qRUemxOdqwcXQb0pQI4dFlZ7kRA7aeZIUMRH16IHKzOq2riuDzGxKnZq4s5Fr5IcoNeMmgLHCnEQYEPbGeRzMhWyEWivBmTlwuIfDgZlLKbGpmDk66cYbdA8Tygd4YdB9mVnvBcUiktJGMz51RPPY5BGsifDf3pKPdUuSclUbLzeK/iQlZotdJcJG5MHUxqyN4dgp8DEgApw4zQdOQizuGj2ZhciQhF3dQl0l7hBoICqwtbt/FPEqQqn7s2fuSETOtNaG5idqRb0BvajVUgrvMfyuhi5GaV4lc4O6h6JyoxYbIwvqRWaRNNVSDGzE3mHARBjubq2FiAKErPBaay0FAAlLnriXJIW14cQtwBZvqMXD3N2jn6eCIGwGXVf3qPjmPQg6KkdEpKipWsSyW5zjEmU3TiQEbcYHup8f0VkxXSps2zG6c1aNCJwcYBa1oHknkkzCnNOEmS/RY5FA4q3Ad5Oh3SryqCjwxuRsffe071Sv0aQdwCA/a++MWq1vdyPxxtHEcZAkRKSto9rco6Lmlw8fCCjbmqBmSfFmq1fvVZoKVOs8wUDriEUtaGLaX4/EiyTv8LI9jqiPb+GRvq5jvvX4ZmW93+34TVs5D3Q27QY6IK0pf1eQuZIZtOhhTlePHh+vHxV1gq9lvbp+VIqu6/rsybNHj54cDofHj54+vr5+8eLF9z/66O7u7uOPPz7d3tzdvBLC+ebVnKd52tqSzTnXWhnmDi31fLp99erVuq5W6rqsWRreaUxyyOI48EQ0LEf3FoXzqpfTabk6vHjxwYvnT9d1DYLZnFJZ15/95Kc3N3csKefsTHsYQpizDicwuVb3TutKichTAiwRvLUQL5fz+XQ6vfziS9UI9CQ4k7eoolUrpV7u1stdwYpWJuBwj144v+QFfacv/Dc46DX38jd6r2GUvO4e7G3r/uU3J6uZ3yxDFM1I2z4yO92c1rWklCSHOULOBA41G+AJBeDkJEHJJAHJcYBAKTERWbGqK6foaCRExt6aRXrH/kTRkGoBDAwSZJkcFDgEAZmTqVlVCvra6AfmrhYgG4vmFqk1CgRzGkHkkMlrKQaSPEuT0iimmSlMJXdPWdy9qnKSMBtiFLW1liCV9F3KsTkSDSYScc7whmFm3oVnFybeSebNu+4eLwtg8+2YizBHt8UkItFyYxIRoV10GErk7FA11VJrDVd8uVy880W1+0bzoSiC24wQ6rdrTaFSSjlLC0YkEUq089KZOaccbvA0TRg1xtIE2mFK477jxt5DM2aiqvA6otjiG9tqmGRmEdc2j4pHo6Clcae3xhNohNXeqhm/rTzxN/q39z9583fG73a3Hv8a53T30gGAXtNBGGA3aV8LUv6x3XwLpg+N0NKtvntkp2DFYWYG047kzrW1utFI3dEWifDuQG7OaiQZheTBJF93rnBPEG0RqE29vpaQGP+UUXzBRJmIqFCxWqEBfWmV6t6z8cwMcNQqCjlzWPUuJI5QNIRoFgp3WIiscGwY9OWXX/7kJz/56Ad/8N577wH49NNPiegwHY/T8XA1p5TgpOu6ruuyLFaN+/TGtEWEHFoqzFkoz1M1jVQQSWqZZ4iZ70rcatjY5s7Si3ijbY13CMguRNWyQxRI6oZ2Do9XO2Nfn9GWGQ4BZWbB8LcX+AZnIbfBWA9E+VZKVQOYWZhzgDtcK0ybzOHN64ndxiwAXC0uF9chsDRWa2eioBJsudNSezQtwaqZefeDADAnEUmtajc6UgJMsQIkHGhf6QxnjAYg91Ytwu6eWc7roqpR81XrKjI7WTBFGNzgIsG4bJLEYWE4hQB0b+WVRNx0ShY1C1zPo+trAEHs4+bWPFSkqE1paNaGoxGR1pSypVv7QjMzOukZEYGj4Ccs/32X11ZZJ5Jb312Hq3toFsDInIJRebzydjhFcmuUDY/UhbMk96oVLgApYOYUzh2oEogN0XgJ9+IBWzTaapTYohOLoTMmcCeClhQk4GTmBibilDJRTmlibpGkUWLUup11ZRFbcAiIOAsjXBHPFeGKWCj41nozpqFq6+iYB3d3EhaXyNni/tiETnBfR0BrOgR6i7mVEsXaNsaFTmxIvdP0eHBmdjZQRMeZmcmhtbh6YnFwVD+Ekz92PPWs+V7o7yVs/7x9CV0NB03/Pvl/Txzfk7k7oqBddmSfG3mojaibLTs3uN/o3jd3n+9NnL0RIw8+HHt7/+d7dXLviX49N+Dbav3f80Hf3tN4oGLfeM23qfP9C52mqbi54nC4evL42XS4ZlVnenr17vPnz5PIcilaay0G58Ph8KMf/ej58+fz8fjjH//4008/nQ95mqbEOEzz1dXV4XAYdwnTvxQ7nU6vXn711VdfLcsyz/PVfDxMR4bbWmKiwC7oFnvIHuLt13WlRFZq1YXInzx59N67L66urj7++OPHjx8T8eVyubs7DxOnx9C7z2PBsajERJzYLOI2zAyizFJM42aqRVXXUs7n81LWFB40T+5OxADXoutpKRcrl4oVABonigPgFlVxfmN45b+4ffsr7MxfbQxhO/65s3i2L2AzN9/g/X79DbAr9iMiOAcGgSAAq67FVEgAKuH9lNJcFAKgUaNVa4WaVUXTysIMkQx07ygqentov9W4sgAoupS6AHAjEWJm31DEYfrDWkMOoF2cuhOFbp45EKqtmSPVrao5MUtOUyZmM1uqllLSlJs1CWMbYVaVnQN8Wdfb0/l0WUut7k7MbtGixc2sAdC7uGgVwsJ70sR76x/HeJfLZWYicW2pdUrh8aY05ZRSBBHiu0zMAoKgF0tG3maNGuWqkQHGluWLWQLANB2wE3rDsw3XdyRAIp6VUmJs5UjauvKaiDhh6iSrG8Sp6tX1cZg02tq3tKT0+G/1kZcmsdaUEcBGCeDR1eaBKG7hszG+uZT4deTJdrS/zUX2AOm+nb4ug027nNvOBuD73yf0fux2n4j7gRDYX3ZsMA8asVq1DgydiUzBPzp04LBPYrU3owjdlnqoKzcDZi95xs9744d2OYx9knx8J1hm4vNE7N1QNK9EjQZsNMsVwLGB+dsfqlnvVtgvG0xHQFDokYNFJLP6l19++ZO/+/t/+a/+lx988MHV4frTT76YDnPifD6fhfiQRNhcVdcymolG3Aft9QjMmGiaJusik5lNEQ1ZRTJBnCn4YverFEj0LLnRkrXHdCIyuvcq9ybivn4QHQ45zOl4ZBu9lLp+IOZ94nq3ITeIfvxJWCZEzUVUVWDj34mTPbars4tkd1evRRVRnMHCDFtL4BdEhKy3reuV5GhAmzR+LssyVq91Eg0PsfVxdwBG4I4gcPccDahU4TCznPM0TRHaC2nGvbZ87IThajXZFcqle3PeRFxDxISsC0oJVQ1S6C2sF+dnlwY3M4CGdxNLmgBGozpkNEryxt9sToQQi+265i01X83NWoM+dzCnYKVr8OsIAgEOUrihVV1XczQCGMl5psZEoe5UzCg6yspEEGJn90YrzK3Xlbs6SFuv5TbyPKWchVhV1dXMoguRWmXnVvi5c1mrlcRJWIgYROrhSxkRwSKdMoDHCkDSFGZKCLVaq1FP9w9BY1A16xsRoeZBiCgpXL2LMFCKgxlRZjVCYk57Mwi9CJ56XDCmpNUJxpSc3QnMZEForu7u67oQsgN1XdFOCwCYNqY+oo0CikBubO7MKc3HmXEnshQ9XS7XV7NITmlS9SC9CBHWSSCJCIHp4tYfZSuhCdk49GRsWSCY0toH8I2KuVcC7+V1RBA3SJgzsNNwm4COxBo/kPWIi7/RkHR3V3VmmJF7VIdXYFRhUWP7CHbQLWdOOyfc72m1dt3+nz4D2se536aVvysX4s3p371Qvj++S7z02+/yq1zqwXU21b5T2HAe6qFLOob7NE1uFZKeP3/+5Nmz4+Gap/l4ffXoyePrJ9cvnj4rRX/645/c3Nz9wR/86F/8i3/x7otn5/P59vZVWc6HKV0fD8fj8f333/3www8nmaKfaowvPvtcVQOy6E7X14+Px+sAIkJtPZ9U9Xw+R5o3s+SUiFnh1i2P0GFMKUgR17oK0eFwKMv6kx//mN3eeff5cT6sl+Wzz774+B9/DuBwOABUVdV0mrKbreullCMwN0s3sC6AQNQUCiQmIq+ru4ffs2qtXsF+uJphxEmExN0lyPzXspwu5aS61ta50YGWw7GOubhHTfDrv+Xf4fhVd+m3Pi97W7nFYbvFOrbu2xK8X3PNNptoqtHaNwZFM5ei61q75gK6i9KqNkQAAUxrVS3NfeoOTBgxAAgkIh6cC2peNboTESDEPE21rpR4miYty3pp3IGluHkT+epu5Bz55NpCxswc2ipylWVdwBTZlRT0OYELkySqICQmJzH1VasRal3dA92dUhZ3zjm7qyci0J4FWt3WWoPmBEM+DAe4Z4ARlP5EAaEC4Ny6NwRl6/4NNnZTtGomZmYhEkkpycThAOccBCk9ZMxNZbEb3Kp7KaVclnVdtVRVtVrNzDosmboE7yQ9oaMxtD+6bIzcFHZcNQASt24fe/s1bMqo7vEemg+7fJjmACQFR3fU4+nYnLWzbKoqa+vp4r0hoUOZBS4ECkx7bxVOgL49hPPmDf/r6A7fxZK+bXDrdQfmdV02LOlwUd54kYAcN+Mu+spWr8XQWWzwlv5xYVkNp8IJBreqpZRY6b0YQTe9EFTe1rDRoQ1dYpZMRLWse3W5f5zddbbfuhr5YHP3aBoTmbIwd3oMi8IfaH2w4RBGgD46fhUABece4GZxpozaBR0G6gBvdScld2k73Znh5BrhMxg5aq2sfjqfPv7445ubm/n60TvvvPPpLz43UCn1fLq4+hl4dMg5S87TJNmnTdvGmKaJmd1UmMWlui2X4mAStlLVLUhzI2ak3jtXNcYoEJHXqK9qBDdhi4YfGVnf4XBS1/IOBcowF61zpr5uzxDRNOXoJrufdmwGJwR3a7uOe1XNOafE0UgmJSZqWMjmoKF5HMwc3nDr98okIvG9TSy26Al1FmhmTjmRbhz10sMyGpm/gEOHJx0Cp3eZqu4u4S+aBdsZgxpXHjETS09NqephSiklhxHxdJi3g8ZubtVrJKUTpVprkAoawdSrV29tvUQkOZTMiARCMmGS1gfLezHa8KhbmMZMRDqdsZnVRI3ysS09M6Phptp77T6AMDcpjGgtayYc2WQQte6p5B5Zg2DVYiZyEIJEzb2V15I71Wpm4Ug3x1iEAA7oKawlYJmIh5cTzbJFguE62o00gDjLsCq481gO7xE0MjO4rAszogYaQDUNLg9mnqaUUw5/U1WDZDx848j9DqkhIh2Iv4ssw929GtxDBYJJWma/9UwmeAg7tl7/EzVUjHvnljrcGn3N4zFVtbX2hGujhWudlYiIiQHyUVQMD86SOLZgIzcjoXjLKXtVJycyJ0kyiUTjJWXmaZrC4WfmoI/fH+D73mBzfrsDjIZF79WPm6h1d2+QjO4QP0zPdrOl772IhRCivnw/gf1MYvQr4G3DW+l4O89xpOMP9zQkzdq4PyWMOOr9gOj4q9/P4a95ld/hlb/zuzy4jveo5wg2xX7bT2BMY1kWZb6+vnrx4p3rq8fH60cv3n3/6Yvnq9bnz5++ePridDp98EH50Y+Of/JHf/zhhx9+9eXnn3/++U9/+uNPP/2UyIMc/+p4vD4cz+cluHli3N6eLpfT4XA1TfPTp1fMfD6fz6fL+bRqWQ+ZzSwc5s440JrJhA9Mm33ExDynzMYetinocjn9/d///U9/9uMnj58B+PjjTz///PP58AiAVsyH7FYlUZzgHHFAuHOqZXWPfJuN/R9yu9a6LOfb29tiBcBaa87ZjYSaxwEjq1qWWpZ6vrtYHeHS1zfzFuT6n8e3GntDc//hg4ODhxx++1+1P3nD1ZucpLhPsEATNbBlv4u7u3Rt5x4x3GYqUTtTIbvNzILmlCCjdcKYIe1gX9EpsNFqRMKGJKKRzSTybYItkdhDxnEOHohp7zltRIdG4bV6rcWII1rf6vrIezo0fC1ytz1Q36A7OuVOFOLd+jQzM2rYuI08S0EdJbatNvUuGIye7GBOKbGkxIk5pSn4QbiTUTkRsXT0nHkppZTFzM7rcrlc1vOl1gpzVe2sfRvfqRBhH09va75FYL2zWLlrMLuEbbeua5btOuPVh5EWOeeQoqkzx7x69QrDuRLeVyrGRZg5SRo/mxV37823tt07NOlukhSkS68fhN9DLfn6lMYC7n87tIybjVTE+Cbv4HXYvaxv+LzUwc97Aa6qaE4DM3MpRbV48IoFgVankx4zMd9xC3erBq+pyK95XtqN+O14NLzJ7iIK933z0pshumsf2GykXVrV3WGtxLSVVOxuyszEKiJxMsxMiOd5Ds/i6dOnT548KaWAZcq51roSSc6llDmnaZoOhwMtFEXvYw5X80FEai3qrb9aKZWT5Jw4JVh0Snc1lZy0UwSzc2S5hKiW0vMbDiAA5mFz0w4LMJ5xBJgGdmP4YENsbk/NlFOEn2ztEbEYZsOkx1i9LQnXGHZjPzRGvVEkFS1IvdsHRJISkyTXoqWi9y1rmw0IbzP2m3SUwdgGIUxa7XdARnodCLpLGX8iXUcIKPXuxwDylCOeUtZ1Eqlk05xSSoO0qG0eppxaeU703AK7rTXYpDOzhf9oLbWAsfcITDzPc84ZGvUvDRe8j+uhS63xXO6ewu/vhlSrPw44dQjHxjYsnFhUtdoFIzMWC20Immu3GhEjCpef2DlSueZgluCFCnkttVitNfQTiwSpGFqfNOqFNsQMZ1JY685H7cFEBKYYjePJiEg4as0daMGAjf6KCLAI6Tq13sgMAWAgJ47+KDS89gYFbEvWtiNvaOcS5EkROGMQmGMjRpk1kKKWpwsX71wUzEwsZhr5W452R7gnNImISbzzeFX1OKmDCQOOyHjHUreShiD/E4EFdFuZBVHiHh45CNSMhoi8g9nWtbrl+TAfDrWcarGUpsPBO4qHIho3Xjozk+vgKIsJNVh6q+aK3uLu7uBIIu1g2K85S1+jihpjVkx8/JV25zP+vHOuvvFSQE/O9oOtqnUtWZKziIg5hDixDFQBOq9z3MK3yzIcW6uIlh/7Gof7zfDR3/J4fcH/yxpDWwxYQfxf/Nz63RGpOhiHq6vn77zz/vvf++CjH3z4wx8erq+K6eHqYNVyqX/4Bz969uxZTulnP/vZ+e7mF7/4xY//7u+/+OKL5y+e5iR+vAJQa3318tVnv/hsTODJ46ePHz8+Hq4iE3JZltubu2UpRJQ4PXp09TJns44E6tYni7iZw0mtM5gHQqYm4UXX0+0yTxPcv/riyy9ffj5N02G+gqTr6+t5uqq1FtNaKwmxwwgpN+JNtyCWhGmk3CCShMXMailWVUstpZzP5+qVmdd1leNxOsxk5ApXL2u5nJbL6VTW1WojLsF2St42/v/SDf62DHPUAGDD7rn3y50BDbQIfbvPW8AUw9Iaf4KwI3sw2t2D4hvdKDe3WisLE5EpTEG88fMHKSN506fN+kSwsRi5uQ4DTobB3R+HwjbIOUs0sYdHlMTMVWv7EhHAPSy84WjCugkAcuhZVQ1TrZinlOCutZoF5CvFg0/TBPJSoilgI8iwVpS0LVQp5bKe965LGEvDGYgeJ+jJN0Tbp4gCRDtG3yzyZg42N1jCAZaUSTJJylmmaUpTpADIXZkcgBADplp0Xc7nc631tKzruupazAzWwNjknQ8DRAMHGPcldsSLQJDdh/mxlkvMXKJPTPTkJApqX24pqM0Nk53ANI8sPTlhbQHxsMK2vFP7QCSlNFhw3b1aDWYsZmbpCSR31dZKKv4a5nDrhML+m0OLbGfB38i+8Ste8/WfNy8FwH1M2f5Qc2Mgiz6Tqr0rJCh4uQLvRmFHwEe+H/fu0pH83mlBO9G6lVrMakfn7vnYEDk2i43l7gATBQ95vCPbpfvwpvgyYn67J6WxCN4aumD3CQCvykHwQy2zPZy0jfqLm8Xm7rv0d68S11iSGmTF6M26ItUU7Wq4p53DAb69vf3Tp0+fPHkSeNp8lQOawczuVkoZIXIr1co9T3K/sDCLduXsJJKJAlCm3JkCg7PDYVqqmUXjmwfJf+86ngPnRaBd2baZMzOc3YgFoxK4nSDeihpiwo2DKoh9drtiqSXnDDZ3Fw+wF1Q1ak9CyBAloGGzI1BIQhFwZGYjOBsqiCSKPt05qHqEhZyqV4Pub8rMVst+2zOHZ0R+P4PNnfek1kossVsYhEC4dzgAmdNgBdcW9pvmBjmRlOIKKSVvDYOJk6ScWyKBSXJOzBwSyVEBMzDBjYKMAEJaKxFJTqrKZq4Wnil6YpyZbVeVvV//5Bu5GQOWUpS/0rpGEp/MTKtTomhqEMvBbISGtnerzCLETikCyVED7UTxTFUNMKLc+sgYe+9liOhWMBihq7eyZPSsOZGRAVESvnHrhbzvB7ipNybpB99Smh1BKWFQMigghprTJMyRqbcGRs8AsiT3KN6gqAGujqJ1lhz1zyItZqC9SK6Fe4HIRbuagiTPm+lD296KOIeqgjgzEwknd/dwwkcwNUZK6bIW2wEz0INJOU0ASElVyY1FornXulb3NWGaphnm62rqlohkEneQk8HMKzuCNbhcLimlKYuqsOUpH0Tm080XV3OWzDPyuk5hVOmOExI76U9ExC1r1Gu6NsnbjwkPcdHDThoBpP4mtyVCOOm9PouIpDVm3/brmMPuyptg+jp3tH8n3kIITfRsQLtZ1dEqYHvGrk6a2jUDrKner9e/NLJnv3s3GMCv5MDY72r+45h722neC/oDeYSwEa2fsuP1FVJ+/PjJu+++/8Mf/vCf/smffvgHf6CunOj29vbzzz+/vr56/733atHPPvtsXS4RgLysRXKaDwc1r6Yi8unnX9zd3LJsmaUnT56E9goHOKX0+PHT62tLxEnomCnnZC2E1VJe3IH0Fj3RFQjAiZPDRCYSSjQT03KuxfTR9ZMoXuI8maHUBc7zlJygpa4MI5um5K213SoTiYi62y4mqKrrWkopZpWcmXnCBEHgHY7T3EA3Wuuql7vL5XQpi8M3IiK0A/j6MfqdbYPf/fiGLOvh9+5yL76XGkTDXt/boCAD3pwfo53Tu/9Ca2HiwWXSzkht3SAIgBO5eVVNLd1g5jUSnaEzG/louSfltHlKqqU2PJEQKLFZ1Uq+sROrVm1dK3hZilkhkgYS3PnwAxKMboVQEEKGKxHxccC8Br+giBCzei1FwWmaD0RUisKNHVptWRfAUppGAHxd11rX8RS1+7rkDDjMzZWMmCOevVt5Rutb4shMRCkc4CjJ6bYXi0iSKbMQUQrYc8ouiZPknOc555wlcTs7ru5ObqoeBWnn87mUUqt5r69pDsNDXGtnyiUioiC2CUghekGpqppqynn0FwyHfJ7ngIFFesB7lsPM8g4B5+7qxk57zrC9mTu2WfytBI2AeVj2u/wVhjbkxlfcP4m0PHVP8bvzTt887mcL8PY859vGA1dwb9yPH/avyfHQe4wRcn0YFeu61lLcrNNBAQDMf6m54PcGXM2oYQO9b5KA4kc8lLS1RQGaYI5dZdaK+jY7OWI79xEl7ZGdddcHe/+dt63nqiagxORgAgVIc7ORdrj9ePCodR8XtK3pyZaUi9WJbRZUtQxAy4oqLl+++urnP/95KeWDd997/733Xn516+6Us1c7nS9Xc7bLwh2FGwp6m+26HuZMnAim7gon4lLNfXV3c4JZrco5aalWlRGNeduhS9bEJgAOiWFucFUdpRFR8DzeXOLWp8eh7luNaw+o3UN6Mmitmrg5A+NzEbHz2UQE5GZOLRJHRGQuIkGkF7KiupvZlDInIdpKISCciJHYNY62WjEzizaNLhCX5vh5fy+gSlFK1XCR4yBYjzqZmUYDSvNqBeQBc45K9bbrHCNI2jabBiyZReQwX7m7Vs+zmNl6WeRaMjeCz0zEmbpgTCkRwxWRVhuuBKZDNjPOUQ/sYVpVrXkXJBoOAjPXUuZ5pg494I6OTiBBrw/mlC9r6zV/mK+WZamqRCw5W+uHwBF0THk28/WyEFHiLMK1lFZImZJw9mBw9kiRkzMZhVplqBcriVkSRdXNOEK1qoPBxJSIoym1c0OEEBMnJgbWyxJI7rYJrEaWn5ncVd0AXNb1eDxO0xQaJOQ5mcMcpuEzpwRyRMPfWtfQHXlKWSKElaFWitUaeINExGZK7iJyvJqN4AaL8l8CQ5jJqkpOmaXqqrq12InYqgbazCApU2ymugIGU9pFgNZaDa7kFjneTOu6WlGm1HSbSKlkStCWAj5McyTB3K2qLuViCp9ApGpKLkRMJknEyUtZ5zQxWbnUSRLTdFkw58M6H6NGOh/ywQ7FyuVygUbloJsq7dp817oyc5JsZg4HQSPdAAQSA85W3d3BDGczNzUmMCL53QRdkxxmDeXTCtu6ROVADbQvMhESJUruHuVwtVaLEmsmrxykpUCLTyBibPcle9FKlYNElAUgWNFVVwQhW4owSh0HCS1E2dAm6LR/my8GRJ/P/jgjlhGBqG/keX4zRf76pV53S0IEvPaxM+it3NncIetfe9N7RvPrX4gFeMsd3jJoczUpGPrJgEYea17J4RAIs6OoOgPOVqtrTT37lPMMYRJ+8uzpD3/4wz/90z99/OzpcneT51TLZb17lby88+5zcvv0F59cLhcWUbiSP37nuZzm28vy/PnzDz/6J1ePn4vkw/F47+lM17KWUlhEssD9+eOnk6SbV69M1ylPWha4Bt85MySlZVlkyk7glCSl2HLmLSp3KQu1bIyCJOcjMgKdDAUjqAMqc5acCxFBmK2ovbq9eyRXJB6d92qPK6tZVS3ramaJE+WplFvyJEKSeJIJADmzWy11vSzLaVkva1kcS7y1HeS1vYmWw9mtwr3XOnb4bqHeVuPXVOC32xXfeNCerXoHuOh3fHA6QkOPrNf2nX76Bs0nwjBgZusXod0dIxpLnTVAVcGUc1ZVSlRLIWZJ2ZcKh6S0L7Ig9kjdc4iUvT3fXY32Zd8s15CKQXtjZOTuFPCekjLHs8iU16WomeREzOWy0I5a0d1LKYk5JVncQ3aWUmDOzJwZlqoZi6jqZb3oWpg8WFOcHJSWy+Kux8M1gHWpSQ7TlNdS1BXE4EAlIEqEUkohxoVJ1dzNXRSacwb8fLmYWc45peyuklIP9dqUOAnXqmW9ePWJRaZMEbplTimiqGCQ7AJV7l5r2GlsdTWt4m7dfApzKtpydHfCs2TTxT3C4yk8CubEzFHkH/Z8YknE0zTNV0cIy5RTShHknqdpSryuay1LWS7r+XK5XM6n29PptK6rGcqqRBQWoVocNEkigSmTlMb+SQ0KZ6N3WimlVZYRpTQTCM5MiSlpdYelxJEojgqp0acq/rBlrfv1pSWb3b0FFSO1S0mmaYq8GaMh5MyMzBJwuVzWWpoPjNRUn3N0duDoEQvAvVXqDZ3ou/zhTmI8PL87+X/v89c/Cn9pRJT6S78nW2g7y/HbZkn0ivfNofUWsQpfPX4nRA6NI9mT80Fz3Vr4iOQIAwBwUFVP7KbeOx+brqWxrsQ5do+075ApY1XcHUYB7zxMMyKDqsagqtUCdBoZyI0lNF4MMbNqMTiM3T1TtgQzUyuJ2HvZ1iglA7Q7Msk9AlwRWXZJKcr9MehvAXMb+Z74JhzcmPAYJFXN3VNKOWUhC6cCAB947MBSCplTXAce/l+sgLoRJe1rQY08zK0YZwt/hMVzTmpFtZS6rJfLe++++/zJ85effWWZTVEVc87ni8J0PkxCEJHjYTbdMsCBpmXmtS7V1dB48FvG3MOkhMcpC3pJN/foogYzoyxrXYcfRUQ1uhK6R2lJ7HwWoVYiXbVG6EocIPZqxdyiQVr01I2ao5xzyplIl+Xsfk+UWfUsExsD5ApF9ZQo+gm3ZjdgYY+sKpyTGBxubl4azlTYSU1RIx/rMBeRPImrLbVCTbVOKSWWsq7CnCVVXYMuCICatv4yADbOI3f3ahWKREyZEgkRRBhggxOT5BxEC1YtPN5wpiM6k1JeVYMzXC4lpZRFyrJeXz1pIpFYV3W2nLNkBqM0zn4GyEDMzsJ5Cqaq6k5TIlWD1kmyEEcLDK1OvEVD3ExrFRG4a7GgJnVFQnNXUEpZlrKuKxAE+kwkkTdH5NYI7lhr62crwiwpDvgGftiJJHe3XtXjvEWAGraCiHf8Y3EiichasLIwGiioCTIWb3mUbo6EpwQDDWJni3hS2CWqutZCROAABlhCFLigR3xDLFn/vgeL3aCRAAuAKR+i0fM4BhF6oWaNEO1wHiml6NIbgqNqkZ4IHdEgVVVb3cmsMnmj4NqNgAdoDcpoCn1cUWoxhka0HtpynmZmquaUkhio1EUrcs5IrKRqCqZEiSGEStSKrIk9TyKU4AXOwhlO5/N5uaygw/X148PV3CIaRkStltjVa609vRsJgUERueEiiMha63Du2BkQsQcv52ZM932yxZibteCG8XP0PaK+GbjXnFCP03sPSBtXoUbTvW3FnYL0jgeKyDoRRVsj64HUgCh9rbX+daRTb/ryL2kns78CvcFt/S7GSGF9O1S2d1Pmm/1V+9p3nyo0CqE/GtYNDGH4EuTQWtfjYf7BD37wR3/0T148f0wCIn90TOQH9mW5u/3kH35aFT//5PPb093V9ePAXByPx5TSYTp+73vf++B7H11fX4NcS63LlllaloUHKY6Im2lZ75ZLXdc5y7out69uTqcT3FPPBhiB3V2oufEY+sOYk7qF/9QSQs3IbhKsN58TIi+l7A26kc+pWp3YCcGqFajUsq6lFBhFLwcApRQg50mypOVyWe6W9VJ11bKUuioUYOAtdul3+Pp+c97vtx8GyE5aP/Dq/bUHZ3N/YxJYwhxxr7UG0QXcS1nRuimTm9W6IKzVWkcuJswIIsIu7vBgkfaigHaoabfGCzk+DN1TSlGP9oSBvWKzCoFkllbcoaoRJ1EtUS/c1DQ355ZUzdxiR5k7SDi7kJOjmgb8Qd3Im2wvRVWVUwbIDSIS9FcwTykRS611uVyYOYy/Wqu7ns/naUrRr5gpg0QNDuhagkoqDEErFeaZhTIHZjulZBAzi9nXVYko8UadasX6rNw9MsDmrgTxjqikXXAhfmz9JDlB2ONEJUkp5TRFxoCIppyzNG/+6njsDrCa2ZQSYFb17ua2XM6Xy2W5XC6X07IsVqoHm03vv9xeLkHdIpMfZuvGAGJmAbmqgRfsyZy+T0ZSlzrAb+u56o2HZcC1fMfcQRT2OcJ178p6o/mdpkl7j+LgGihVl7LGNYfkicns7b2xd4n9mx/035Sme22MxXl9Ar73pTv2TDxoAJskJ4r4I3vvsBpREiLqOsGJiDuT+XZs+w0bt5ljbMIxARAFM1A4k96HjMUZBVfu1pGl7ZP71FqteyckWGn6tmn2LSKRtD0RgKAyBaj1e3wwtzGZcQszg6sBLY3pEXbB6BXmu4FAaDNQdawb3W+fu9/MbbsqyJy55RvjV6p6c3PjapOkq8Mx51lLKSTz4UgEizIIYidMmZLMUa8eY8oHczJVA3NKDJQKpg3sYJ3qKMpr+9wbBUBL+93frrSrNXjDNiPbkBdQb2Zw788ctaaRFtJwli0aGUbecYxBORQrX2vlSJhZTWljrRtzqKbJNhHRUq9qiLSfN38fHrREJJAhHMIzD8cnZyH2FhBqFc+0SRLrbxaAgInDmOl1PCO65EG7S0PwsguLSK61Zsk55QhM1Vol0WGe1/OFmdM8JZFIiiRi5qRWncDS+vJYwxnZsizMsUrtlESFjWt4qxo3H1tr1PbWWgmScxbJIpxWrSLiRE4koERMRHOSWi1MS4osKdDgLkbGlKJklwhwa4mIxGByRKPB2BTs7sTMYi15Hn4OA1SKpkS57ySLOhbm8M68Re+csKmrcF6CXS/ShQCqOjMT2HrYTqIQlkWrmgd9GQ9CVgAKD6eUms+MdJ85oK8yM7NVSxEb3qFKxs6jRtDVOkSFZWDRE0vImWpVI2NOZkrkOYnGurrGl6tWM23btA9Vc7gpVJ0IAiJKwqhYYhrqbsEri8j/tJxk0Gv1HIZuG7chGxtrSkToZcogUlUxC6IRVb073+Rs18dHx/nAEHcn82FSm5GqaiA6CAJKkI7eonAgO2GVdckwUi5h9m1as0Vht8W8J0a7knbvgOchRsc/xyujjrsTl3HNlnXZabghroanMVgJmNn6u6Eu6fpLb2QD+A2Pb2FBfKsxWtp8yz/7DUzl207h3hzIIUThY7h7lJcTIUoypuPhvfdePHv+WBKASkSHSd57991XN4dPP/7kP/7VX92eVoeo+uOnFyL56Ic/+PD733f343x88eLF40dPa63RPWjPAr2u6/F4PEwN0lnN1rUsy1IuC2wiKy9fvgwHeNALNi6K7g877YPrTt4qrzyUBBBfG7AcSiJTBqCr9s1JKaVpmqZpMpBVNVOWTmVhZS1rLcXM6lpVtVprbyPMWSaODm+llMuqxcqyrmdF+W284d/Uln5w/bbDf/n3+ZfZ6ZuDFOrNbUtuk6DnoKx6i/WEnTDkGAGqlFKkedAEizYTk33LsjcnNuTVvbDbZo+2tqEtV0Id/Ix+uzB0AnDbuuxY83chSCJWGluk9VIxJa+q3GgqWw7MzNS1as2SRpyXJQu5q9XaoExwNTOFV61xu1mSaVWrrTNANy0T9c3cCQXVnYVGH0GRFPltVXUEXzG2ALG7SDocDoEoBpCSCLNqUbWIbofPMBYtsqClVgM5RYFVGAzNihjNNq3n3IXYtQqL5AnR0oIoT9M8z84yHQ5hDl0d58PhEMYriSTiLGyE6l7XZV2Wu1c3d3c3y/lyvtyVy9LoLTXYvzZgxSgmfKC8wtSgQRhbWx+dboe0P9m7vkC8ita3IqANQVeJlsskInJiHzREaIx8w+qlzsobbljOObZb1HGcl8vpdCqlEEC7ViXDQPKRavzGg+i3rVO6fHjzZPpvN/dv2BIeBSaAdOffzEAbG9Zm3A8D65vNZ9yi2zMSWZUROB6ug3UodfeuH26GwTtKRDAjYuyaHvXHvofBcXf00vfhsfDu/QJbMmk/7ebRBcl57zFeq0uwx7sCUep430WU7dbWCzKZ7wlhv7+LfDeYkqp+9tlnp9Pt4fjoyZNHV1cHVTpeP3r2/MXlfHr1xZcOUzeHFeWUaA+BzvNU3VSLU+RrCXXjjByymDp3jztUO+CUWd1qLT4ePw6XE6ObvPEhRYtdGsmd9qv+KNvK36d9VdWilYj27i4AoWCsHYGqZsp6tJqh5BHtihQhBJHXjobeICYJrCiRYN+xaedjsJB40AYxZ2EH3Ku6SAIZjHqFDRqprbOZw21vhBN7hB1tF0qKB+RdITqxSyTjBeu6OglPKUuOLRHMC+u6TNPU1y1od6XWWnQloiTRs4WIzFC7PuRoStfdM4ZRg0r7tjLhiURJTi2m6sGHHVNtS2nq7j7PcwS2NeLFQbSwnY2mF+PQbREIa75izH0f1DFQ4wr0wNvEbwEgagNYgH4LjoNDbGE4NhHU3p+qmiuxjFXe76T90Y34x4iDjsiciIhwtTVoonkrIrWR3R1Hd+MKU1Sv/QU36NSoIB2TCXyTQtmFGCSZuDl7sZTauMVFmNTIgzONbL2Yq5HRvgaYmUspYErE0ZMgbOucUgvaDlo2IN5U+LRgyTkbY1lWM+MsIUWrVXKD6xThIbKiXmtFRQCbhSlKmk6qy7Isy3I4HA6Hg6pCTUTcaV1XmPImkeOt39fK3ppmbWd+P8jeCIUay75/oV0EercUd7L+viodW44gwaiw19bthx4xGcU5IeLjZHqjEI8i7c00efNTvH18K2vgv4zxrd3m7+i2uxO9/1yI3cmjywrIA80hfJgP7777Ih/yF1989vT5o2fPn2SR50+OE+G9J88//N73rP4/f/HJzx89eS6cz3d3777z/g8+/OgH3/+QWcxgxZdlubu9W+2iWtfTedyRiHIWzulyuTSzwD2x1Gjqa+V8PltpKb6uG7aEQIBjN62vrZHieLQeiO32bmem8RZOTkmYEyWWkS7AluFp5nIkagC427JcDJ5SkiyhVMq5aK3sRM5aal0qCgLNSP5NTbfXx2/fnP1Oxs4geGv9LfDQnd7Ln/ZXwgwyuFUDGbrp572NRGigWkrUhO8v5bvEwoM57OXbXq6OH8YGCKUGYF3XcIBLKQ4XEVUyM2eqtQrx0KTTNJnL8JNDhptt8tC6xgYAgrbMgTeuzmAD7taf3G+i3vRgVQDmYObD4cDcQAruPs/HzJE5J1MQoRMGSfxThEUY3sirQg+6B1F1s7nDsgrmob3StC3MtEuPM7dqFdoZra2RRthwOaqTIBLndJrneT5SkpSSgEToeDzO8xxB87UWERYWM6jpuq6nm9tXL7+6XE5lWc7nOy11W5NOBRTrw7JFLqhnwPY5sZAt1nk3xx/ut8EY/ZO95t1smPag94l2qXPAtEw7d/Jed1W9vr6eUl7X9XI6XS6Xy+WyLIuZhXU+rg+MaLjRN9Z3vytZ4a+5uPdm8ppREZnVvfZpq91l9QPnLYZ1TuxfagDsD+/YA9R5kvZ2zoO/MjMi21ICQUC7yzw3dWMbIo92HMIPvNkR5NrH+vcT2J/rbeako2yNCO5m7mTBlVt2T9S4Xc2Mek+ZcXFmbhUEOx871pkFpkbE5jUaoTKj1vLZp7/48ssv//jdD168eHE4HHI+Pnvx7tNnz19++eXNy69KUXERmK7FvO41GiWxVavpeI9qzh0kSA88f2GtWrQCCLR21aqqtpf5wL5554NV4s4t3HQ6b5th/8ZjDSNxnjpedQ+BrrU6jZ49sr9RZKpiv/mOiTrgKmMfjv0sSdiHjbG1ighMfNSocq/kD7/JoWh90wlofeGF864kuJvcYCINk57vg0Q6rF2ZY6sSggHcfS0XVyHC4XCISqIR72uT776AmVlVMLkVM+v8UynS+bWW8IxSmkWorL6uq/SmXHt9zcxjuaIqZJy41hQ4Kjoc6lAttYaCQYvWtOythdIS5sZu5apBesacVFu1QEuVucPcYAQx8+gOFc5pzCznKbjXYpYpJQ5uOA3yLLB7a8sReXgzc3PiQZoVNM0tohywohDT6uqtREFAVlt5jFAPpTDILdxgc+fe0kok4gzMjlqqu0trt+CqTbWItIRnP882NK7DGCB4YiZ4XZeIbcMswktMyaO5mlLrKobODGn3xF7OOdje3KmVbzAT4IRVV3tdjg812bVes8NFAFPd4lLcgQSHwyGSRDlnqk1wx76py3q6uZ1Tvrp69Oh4lYjXdc35dHNzc/HmAK/r6iCWHEQY8KFCEJnnduxb7Y1+jf7bdE8f8SztpQSl2hDyzcwkgYRTyxHHIiYmp4hUbYHzcahCCI2VemBJbAfGW6ZliK3xd790/FLl9zseb4Mx0x4u9fs19i+i/axG4CZeGO5kTnA8Ohw+/MFHkujTz3/+0Q/en/KTLDbN5CgJ0/ffe/ejD97/2U/+QS/L4dEBps+ePn72+Mm777yT03Rzc/fZJ5/d3ZzWdSm2FFvLumWAoyKuLEspCwDVKqD5kAlm6xIkNCKCHcP5A9MhfhZiNQ0p1LjF1TpSiILUl5iSCBEto39JU5lw11JXWtxJFQXsDdNqxUpVra5ReqMkyCzTlMP4rZd6urtbThcYWfW6aLn0stZfwyr9XVm0D8e3JFqnHrP/ui/1ZkIAfCthoD2rIQRdFBmYI8PAzKZFpokgy7JQiEZtfd3ffKudM9Nuej8T9fro1kxLBIE3DkVqqQsxq8WKqgYaK3QiEDBYBrGbuaNzJ3k1C7BfwOmjA7BFeY47gp7DXauremuLO82JqNaVGYkkC7vGiSQiUrckIpIBaK2qHpzDtYZ3B2GKFSOilOTu7g697xEHHtuC2dGZ2TmyjtFQUeJBzUztnom51MJJVF2DmYqIicwwOnI7EzFLXzqmdDjMaHDNxDHjeco5Hw4HAMyYpmmeprD1c06iBFdTq+u6nM6X0/n21c3dq5u1XMqyrmuJEw00clgI77fa3kbkzjIdFFaRQWvvcsdbMSJr/BqIFEBYJnuHrd2CiTYvmCNvQa0+jDiJ5DQs5uEGu3spJbzfAL13vTsMnk6C1ajE7q3/G7fr73zQYFJ8S1BpfA0AkUTCK44SERmougWTAhhEzjvzOpi6Lequ+4oB98Jnb4gx9imNmUSbq14y1vAs1P/jDvfm67bKmRbWD+btZlQzs1rssXvsvthtPG8G+gimbNPoSR2i3sD8dRHk7qrV3QL53H2quv8ydS83SvqHqzmSUm/cKv0FbYZZ1D+7+1dfffXTn/70T/70v7p+dFzLEvTlOeer6+vHz56+/KKUapSZSNVNmPYXbaFnJrVaamFncA0rET00UErxaE4OD1s9sp/VtDaExX4d2pOa7dM5QQYuPrrBMdPOLWxG6VbODSUQEBx7D3BJ67pO0wSLfiQ+zIkQj8K8j3uNJR07vLqZ1hAEiR1wYid381ZJTgRraS2tauRQh5u5K1HQZTdj3t3JeZR6xhyDzbv1AI8pOFOrLWqzjdpWwCVIe8jd3VRFAqndrG6P1tlaqMdPa62SUs4BDjaRbO6qXmsRsSDWkpSYwb3T0ghLWaPa5mi22mrgnQODTACzMbO05LOaWRr7dR88iJifmQ2oRyyxmYF4/AmkszlTy3bu7T+4q/p8zGQ2qk1ahY/ZPM/uQQ2htFVWwKHQzb/t92r8+1FE16ITBOyiVnup9MAFGoJ+X1Ohu0ZkQ0CEPz+0AjO7tfWMP1HVKOyOdR/qoV9qtE0qtVbQRhlFRHBWdzeYeVTbozEf6J7sBACZC/NaylKqu1PKZgbzSM4/EBljVXPO6liWBd66FisClgnxFHELYShMVVOeq1YmmaYMUq8sIjnPAqq13N7eMjORXF1dXV9fHw6HgTdTbfVgbZ11k7D78TXq8N4muR9L2y8p7qso72lb35UkjS8MGTEilNsubb6G7r+JnvGAbvDUsabja/3Lv9zW//XVv+9O0P88hkJ9YK8E5T0AkDBjNVU3Vpf58Pjp03AeONPNzVfr5a7W5dmT55dLub25fPDBB3/2Z/+SOM3Ho1a/urpaLqeXL19eXz26efnVJ598spxXTuRJTeu+IOd0OpkZ2KtbztlKrao+TeE9hK0QIgA9uB7FG2N37ndUmAUboqnbwaUu4UjThkxBz7DpaDXBzCQRF1+rq4ac2aFd3D1OKxHVUuqyLud1PS/rpbBnXa0s1Uqf1q+6Z7/5Lv0929XsrfS5jZ1Sf3MadszbCcHyDAAc/4ADwtlZtdZwRR4/fuzupljOZwfSNNViD7zfvdR60P3iwW/3P+y1m/T2rfFn8YUW2G5IyEAeeebsiu7h2BCzQ8dhlxFC9L237cSZBQklSlFyC6yB7ayN8WjWmuZR0A97LzNptyDA/bKWcEyZRCQFpVBIXJHExKZYLqW7bk07yyQAihYjJBGh0cGSbOdbmNn5fHZvqnlbvXAj4oXuRD0zJwnKVnLiKedwfdOUU0o5Z8BSSlfXx8RyuZzMlHiyusbdz+fz3c3t6XQ6396dTqdYm+79AgA1oukt47dXeXvLwXYc2k3FP+husOsxjvt5yOG7PjCBvAd2xyAmZ5/TxIiW5JsOjZ1we3vrasuyrJfL2Bt77XxvK+7S/vsfvvnof/it/uhbj71xgte0yYP5bO9uZ9T5a/7rfjWCPDIM98ZY9sumxLxlBsfy7nfsG2e1WeBM443vZwTAocPgGTO8/+7e8NRjq+y35cgiPhiqCjIySkgSnG3uZltpg6rSDgUdFjV1EJ/tUpetqqKvw/6h4sdSClES0LquH//85+tyeefZ88M0h486z/OjR0/Op9PLl1+UsqQ8ZWZJknbTbulT8WbqjRvZJpNLKed1SVNWt9oiT956rO68yv2KAeEuPpTevLcBogd7H3FmEQkh3xLCbj6SUuPLgz8ZQK21mnLrttVEX901M4v5rOsavgYzk3VD2twIPPLPY6JEiDx8dasafdJMFbDOX3vvaI8s9PivmcWXIzkKv5d0RQ+mRKBki/QROHHilFkkkXmAZZRIpmkaxs92o6qcxI3cazQYI3KROQCzRI3RIHpCAxyFvuOkj/PknSRomPrejbHUNnoA252EWBLFdZWIzIlARuwMB0OcRbeMqESrZncHy7bRw6QgJ1IzC2RTo3i11sK2b/3Qc9tEE0u1+KtG4kadbGocXqNWSkdEq65EJCzEDXOfWUSiHVTxpvIIFAFkSI46PdRqzAHvSe4kwiHCVC2LkEewDxroZY1qqzAUmjJrATl3RhSOEjHVWq0DzESEjYEoxhMzoFY3t+ARUZhXr2puQrwvXYj93XmkYIZaG92FiDhGyDYUGXKWVgjeeJgdDt9cxOg/EaksczLA1IoVBWAKq6uQpZTiCBGklnLz6hXc3ephvgJwdXXFzNM0nU6nu7s77YQZ1Bn2faN6FwA16jK6szmMyf0h2RsEQ/xRjwLuj/cD7TtWfnyy2RO7gNn4IaVE5oNRM+RXs5PUmZkd7Ejcdcu4chNVbZYxa/wGxre1Hnbj14Ao/x60Kf768VAHk8VecjLANSrQCZSn66fPjNJq9O73vv/Ou+//4tN//OTjf/jii5dXhyutBMiLF+/+2w/+0Bx3p8snn3zy+eef393dvfz8i+9//6Pz3fnLzz8rRfOcXKxaqevmAC/r2aHTPNdSyLVqXS9LKYs4YM7w0+m0LAu60K9uAunbj8FCxAB7tMozb5wKDga5OzsEtHa+zWZ3RiO7XodjAUyCtbI+cjO1ZqQatZZzCEc9TULwUlZTr8XqUuqqgklLXS+l9b9xwBsR6G/hPd43136b4+HpcHdAd3LpntvZAhbc8jOOaKTXOhoAALVKTmaJSLbCvRbK+YMP3vvB9z/Uuv7sZz9R9esn13e3ZzMDmbuhb4kHJrj3MuDN8tuxPN4vGGkSTrscu+fmNVQw17XSPr/hbq7Rr9KcTC0KwSIpYN2NHxjunKW2iIBFjbpHkZe7g8AEJuuxYO5V627RGiSk99agONy5PM1ZUq11Xdc5JzADDOb4EtzhBmHOiQI5qZpkiiSAdzuVWo/Q5DCN9+GISP8Y67quLmqwLUXSwHit029XE+gwYHUnRo4C+3mepklySondnYWFCaYGD0NgXS+1rlrquq6nu7vb25vL5VLWYhaILiYhAG3JwA6QR8Eg3NHBSkREQuLRHY04gmVhU/VMUYMjAWhrji3iTz0PbFHmBx4uB/fWOESUJEtuIQYQMZGTRvl0tDn1nnJR1WisEiQxLfrWN6TuXoG7kzvvtOBr5/qX6KOdpvtVBMLbxMg3VKBv+Jq3pox7ByH+27NGwOhVFqkwjrJPuHvIh/7Ba9d+bbLUSE8FLW3WHBtOoqpWbTu5jXlkq1kNguIgJcLO4yI2dNuEiAAjuudIEFFLwcRTtMk3V3DMTXqvHe+sK2PRtnWjcVm1Hu7hgPRuKxy8PAIyThg76nVn8sF7IQpzst1CS63cDONXr17d3Ny89957H330/c+/uJnn+Xg8Xl09IqJWQd0cgns1wIfDodbox6LBde8NqapqJXIiSy2qyiZqqnAShnvdChCigU1cbysBSJTcfJRVoPu9YbS3T9S8V1k3h6JVhnqQlzCR77qcjmk3kt2RZ1YDCF0OVytmRg5JwXSlzDwgHNhVrbbbdTeduAkzdycKs4GISBKRe3UNAcmc0IutvEffzCuxk+9jcMTM0M2YHgeHmYm9vxoYosckRQMFkcbT2fgjezktc8T5LfjBIinI5vFO4GBuXdC1eEB2mNmITL3DNVitMZeN9xJz410wItQXEYm0pnOmqgISFrCXUq1309o7A40rS0RLGZUkHFzAHtiiHs7Z7elaqzBRkogWm5l5l7AiUyv+do7evMGGt3pA9OL67q5aSQJxwyNs4CF6mJl5pKz3m6DW6ohOvwP0j+C6jxYQQTuJZj2kdV2XZVFV7vSPImLuy7I49HA4TFOO648bea+GbafFICKqxaMbFCfVGnRih0OqtZZSTWEUbYEsGCyYgngy7d6QU7jE4ZEpaq2JZZomkEV1+AgC9dALBz3m4XDwgCgrSU5L86XJXV0VwiwmcRS8uvmy1LrczUmDZU6IhaSYRsUjgHplIvLsxfMQOi9fvoxX0xJZ+tB9baa/6U7e3RN89yzOnZAd+2fPAfi6lNxvS9985hHlUnptcO+rtHnO4yqdRfOBIOuR+/E6HkaVvsPhv4mLfjfjW3rX345l+lcZaRJ30mI1LEJmTjkdDk/ffae4F6fvf/gH3//oD7744ot10Rs9LRdcXz1a11p9vX50XIu+fPny4198+nd/92Mi+uijj4hIJFdda1VDOa1nJ8u7B+cODCulOLZ8V3BZ1bqe7u7K5UK9tsTcSTh2FnXw0LAgRrEuMxOaJBlF/uEAG1pmoWo95IO7mxpVL6XIhYxqtcVh1etwkHzgUzIDWNd1Oa+ZhYlg5ApSX87r5W6pBRS2AphADvvOWbvfOPx35gP/WtOgfWqLWhTMuXOnhit1dfWjH/3ov/lv/rf/9X/9v/k//x//T//4jz8D8OzZs7LqerkAIGZvhtGWDIxU8hunGDfei4UGeiAiYu0Tw85wDMuvmT5m8c/MosUGbU9skmhBkXMeunI40t6Z2/qv2Ky6qplRzzGKSHd0QURhnwecTCiin809C73MzJHQMIKuZZTCmcJb515z91LXaZoOh4OqrUvtswUilQ2DcOo5EICjUWGA2WJE2V4pBbTZ8UOtVN+wRdSsdmaBcGaWaZoOhylNKYyzznLjZvV8WYmolEVLXddLuSx11WVZbm5uXr16VUqxYuu6xsSouS5ubjAH7xiourIeqbZ4HeOtjahBbJj9y20X75faTFtDzsL9Hu3R+muapim49EZyiYjWtZayLMtSOl92mH9TymEpjmOCIMuMt0/3Msa/gsL6Xem4cd73P2D4G13BY3zntSxxzxoxADDtU/Hec2UDOPYN5zPslojCMPO+Hrtvj2Gy0pBC+//uX/rOPnnYoK7fruEQx2E3N3eXtCUSxj70njEbvxqvj1vTjXb9HoGVxnLca1yZObyuRj6084FHFo5f2+TcK4fjXqqa1HhiAb18+fLjj//xRz/6o8ePH3/58mZd19vb2/N5WS6FmVOak7iWAksimyE9zzMAOlMpRbW6ezh93vApZtQVbuM7ADMHOkvNiIR7FZ97izKPd8TMg1dvrM99YKmPVN8etbGdIKY0T7oW73SGMcKSp54k30vvAT6Nz8duyaPfTwQqw2gxxy5H3Y5u/L2WRGxVzW1KmXohRhOwe9xHFyvMTL5518zxcjebfOw3ZvZe9hjAYmakxClNkKraaDKmKYWrH0QPAHLvojy2R1WNIxLp7c4zaimnxnzFgR6KZm/GAq0tStjssQjRdsjSEGIx1RRvaJIEwDRWFma6nMrwy51kWVczm0bBTOxOZhrUGmbdNe0WBoNJgrPRW2svsHCtTESHw7wsC6UU4QlmLvXSXydybrwLuq4QzjkTUeKuM4hjl5tX7xmSeZ6t1svaSmSjvs47Jtk7OivnHE0GYpKqetGLmRFdmdnV1RUR1VqnaUopLcuiRiIColprFPo3l1uIJEqOS5Babb/ibHDXADmTSHL3dS2mYJpIyFRrDb0CuBNTtFAfO5WZ1Vy1qDkzHw4TM1vVUopF32BAEBSAoWr9fD6n1NpQEIHJVQ1GLDCFmSUWFjarDpUkIBymrJXc6tV8YFxuX92ulzOAQDgzkVc9396p6jzPh9Ph+voaQErpxYsXy7K8fPmqlFK8tJoZJhIO098NQ8aNEqMhMYfyCAE71MkGFNz1pOUdKOKBWN8L6NBkLKJahz7AzggzM9nspybHVXVO2asqmoIfez5Kx0eXX/y2hr/FQH/b5996vOagdlNg/9mvSXz1XfJmxdsc1mFxq7U6QCmZO8tUS71+dvXsnQ+Ms7k8ef4+5+vp+OTpi/eX84X4sBT6+cef3Z3Oj5+8KKaffvrpZ198flnPh8Ph5u7VpVweH7JkAsvt7e3d+RZMM9+LRjHzZTlNcwr3dZqyqpL58XB8+dmtu0PERxORw8zMQT6L0HyhFMJG4cZaR8yShD3oGUx4cndvDZOaMk6S3NWc8pxSarmCUjXabrPDrPm9cWYdnkjcXTgTldPdBQat7ka6al1qXYGeyPPfDJbh93y8foiGLRLmLA9OBwdHlpIIwWCRJnN3MsmJmUspTDTP82HO77///tOnT//mb/7mr//6r0+n01/8xV/8yZ/8yX/6T3/97//9vy/n1d2JX7sjeCeodh5C2LsRHN1NdojNaZ4j+tmq7HTjtDezdV3TlJmprGUpZ6Hkw+RtHg4LC5GorswJwOVyG1e7nM4CqhpsKLhcLsTglOq6RpNJuHESV1trgfk8z0no5uaGhI9XR11LrVUohSEbUfbwtC+Xi7uHKC6lqJpwznkmoigmJZ7WXvcuklNKpYQoBsKMJsTBF5bgrSSiustfqep8ONwud8HssytivGeicccoNQ0lmHKe5ymlKA02eDRXYdWiZVUrANwtaNR1sVLK6XQ6n89rLaUWOHFOpSgRC9wj78cEwAlFK4vsyWyGcSbdY/cOnqq1QiEsYZeDKP52OLYU0HdzM4M6RWPnwG318JmI5JzneZ7nedV6uVxi5yzLcllOVmpYgKUUrRUeWAc6rRuJUbcyXXsmsE3bB69tG6F26WHP8G907r6TsZ2akTa/H7DuVZcbhJDaX42kbvxh+6a5YmcfD2fGWkA/PXh9VtUjydbcqPshs/1U+zq09E/OYY0UrYlSKyujlhEG0NqzC1skkjeg5EPX19WCu5iZ6T4vHYBQx2Fc7a0Iao2xxmW2Mm/qESLfYbPbZVvCo3dU6pYbM4V7Ft2za61uJCJmGiGwB6B6ug9gGXOIasdw83KeVf3u5tYJ/A8//fTTT3/4wz98+uzx5W8ud+ePHfLs2bPr6+ur+bgupzSnzFdE95DkTx8/9ce2LsvdyTPL+XxOaRoePmUnM3aeZKol2hK7Vq0WkMWgjSagUVdGsq8BVNtTeCBJmNgQgexWVSoi1JuqomfXveEpWEQcWNeVQdE9MQT4GI10MCRDElWF0zRPZVkBpCkTUeSowlVZS5mmKaQr1Dh8PziAog1BHd2encnVQyzHngl/W6iXlpI4rJTiwfgDL7WBfWDaZRVUdV3XRIk5icQ2iL93VSVu1ZcIzB6Ts1Q3MrvU09V8SCmH7znPcyxRaCcRIbApKioROYXaMTcQxa7I4Vbc3Z0Q7FEcZn4iIgcR+5Qm6jRXI0KxDz5GTntZz63ngQQ3FbVoFjOrawNCw6nr2pB51CMTW8i5tUMk2kUKzcysMGcWGAiNLyqW3oZFO+KOsavMo9czs3QoR19DUPSKcO+82+7ORGrVKhIT0FgPzbRlzCVxa/nbvn8533XQCQNbUX4ERCkkfrcnimrv4M3tsjsZNOQC0Njkaq3TNIskEahq0RovQDivZTVDkIsUje0V77cQu9WNYjEOQ5rmqmqwngbXWmvV1bWMpnIDyUcNpm+1erTAcjdJlBJbVRFOkgThbks0kSlazcmcyaqTBV1liHXyJkNVdVmWoKFOMpmZE4Ig5Pr6Oue5lPLVV1819tGuJuMMxQHTxovY68ZBLvuypQ1QcU+y32eE3onyzQq0DaOy6Rszg28Y6PFyiRomaHyy/5N9hUNktv3tXujrH36342sMhbfN6tcc47K/haf7VsM7jHFvcqXEl7U4SRaQc9WKnH70R3/8x3/6z86XC7MsqwHp6fP3YVSWpVzq+Xw5X8ovPnv5+VcnNfvqq68+/fzT5y+ePnr6hBJ98fLzq0fXx0fHV69unf14faWqpveAYaWU4LaIOLftMiEppVIKao1ii9BztVZOEzM5NbaSFu1CizLSHi/z4J1yexkG5+hm6mAlji6MZuSYprzWdb8yI6yeUiKSWpdyLutlZWf2NEk+lbMZBhleM1z/5/Ha8FHy0PNgROTMJEwi7O4chp0djwcAV1eHZ0+fvnz5xb/7d//uFx///OWXn19dXZ1Op8ePH//lX/7lT37ykx//7Y/Hu94fsV9ylmmYlw8P5gORiJbZWy+XS5gyKaWwnkNfjx0iIimlMEyjiVHrgjs8n5wC0MsUypSj9omZiURVa9Vaa4oMj0ccB7njbL2lMdW9EXKG2bCWGsZxaMkotmVmM3QbBSI54BW11nBBIl5fygp2CYRXK7oZebB73LajLvo1gRY6YPzU5HxMT4QkOYsRK5i8lU67u1stapEGCJjGWorWpZRVQ+U1nlvf0lkNUu4AEUvzWfc6jnYZMN+l38c77bzNAQfdMsbxjO0iDiKKNYFs2Ld4m/FcsfJBZxUm1rquaoU6I6717pnoDKW+3/p94faJqb0c/rqt+9sa96bxtXoT9w/L3mbAa488Dt6DE0r3x3h9oRe+xmx4MKi75UNf2A5R6N2LjlepaqP1N/bJw9dyvP1JX1+cN7yysQ9f/3zcOjbJPnATqTQA7vsm0hye4djnTZ5E4GbXwNJ244H4Gp7JADai6yeiROR1Wf/hZz/5wQ9+MAkn4Zdf3jx+dE7vvv/o0ZN5nt3K8XhIQK2XgVcG8IMf/OB8Pv/t3/7t5XSejwd0BFZDL3LkKhEF3CF2atgd4x3syOPbAyHtjM8tpBXY4pD0e/kTr3hIv20x3U01qhPvvy8MluxYFulNBOKMD6E3xEhET5Zl6aE2CbkaorJ22pSgY9Y+mEWYHaBWDQUh6cXC0eNqc/UjLBNBAe+GvYhwt+1fV1JmFtNPCSwIBq/hJ1I3oqzDhVTVlkVVm/wCi8iynud5znk2WC2Be7VpzmiRhyjXjX3XmK6JiLjVJox3HVgA746DeQs3pCFhvVWG16hDYIYIGbGuazzFKFZhINLPItSCph2zE7KaCCNzniSJRJlE+1VEvt0dkJTZDKUoqHl6tVZ3jVWFROmqtwIlR3hxRAREbQ1SStVKVXWrSSYkFmbAzJEyt0YVIGInI7XSIBAbaheJKaUUdbscLnHo8EhdRh25b9XtZpWZ3TaoWCJmEXO4qq6FSBSujU7bIS7CBjKHRpLd4vA4EZwCCHmPKKVqgTLIRChngVvVVU2JfD7OAbEGQKqtrpV5Tgnk1TVoZXsBSWUQAnFvTrDArjjBqkYAi9zcK6iSR+9pBqco3o4CIdIa+v50vs1pPh6Px+NxmqbHjxnAfHW8vb29ubmJyNOwtEop49irsqpaVXXLsknJHcRdRyHEA6E85OmQmJus7yJgEx/u2GkAjJCbO90rFtv+ZFSyDbkPc71PWrP//m8ikP26+HjjrfGr+MDfCN3qPtKBv5umR28c3Md4+96YDCnab6eUzDwfD3/4T37053/+51++/Oqn//Dzjz/+xTvvvJNkfvrOB5e705rOjnx1/RT81edffHl3OV8u51e3N8frgwPn5fIPH//j83ffeXR9dXN3e7g63t3dEcR36xb2TZqkmDo1iTlsxXVd7+7uAMjWyo9NjcSZmIitNbsOYH/MnvZPhL4B9uZLDHdnSdTbZatqKShaoqDRO3zRG4wiEkrqXutSVc2drDpUtdi6VqvRQ72fo9/s23s4vuW+/ebj9R3+TfbwDhhGAEDOGEExap+GhYtOXhJkmeFTHg5zzrks6zxNc8ovP//ik08+Kefz4Xpe1+Wv/uqvUkr/7X/7v/vTP/3TT/7xk8v5LPeb1sYgIuANogbD+sIWvUVvSfDAdoz/Bqmk90pgbRizScsGanUjOJObq17Oq6oBNRxRavT64qj7nWlmZlprzS3Gr2ZGOXNOhlpNrdZoPWlRDh3QZEfwkYS1kZPMU44c+1qLiCRJgHvkKIK9n8nUYbaW4l7VzU1Y4F6kg4nCS6hqam5uO2ZDAEhpYt5wgGO0PdExgWSt6j6zZGEESbaWHjiOcK1ZtDkKkrmwjHUtq14uSy22rnVdG19s08VxJGObdAOPOTWK0HhZ4zc7SIuZVdtgqyNez8wknFKCbN4y91wrR7sKZkoS/N7MnKeWlmSBQ2utWhbXAneYJcZhOhpZPEwpJSqBMRK5b0I4R7nvLpBwP+jsfWP+tsYvudXwau9/MKa9fdFbLLD/Qd/zvCNFIHj/X1Rih80WufZwElTVSi2l2AOiu91E/f7nRAGzb5YSwiepo6UzHOQORq8nciZiOKJnzLB8PHhw7ieE41z0XTdaFhGciYI6fUs28P0uXPuB+697fMKcqXF4dSJqAODhKu9MOwAuELufWH4gBl837ai3bzKHuyViMJ3P53/4h394+fLlk6cvHj9+/I+ffHF3d3d3d5clAZzSdDxcZ/bzWWkXvP7o+9+/ublpLihxlmTwWrWYmlsKrEq3ovd7K3wVItJaBttlo3oGCFQatHhHbudO/fH70rm7C7GwUA9jETUOkG1BmEBkuxpyThKQGTIaUa0Q0OZQg1cXYeEc5ShmxqCyFhekQ2biqqpqQQi23agXYjOzrjXlnvIEmzXSYa0lilxic7p7ikR4lEoREHXLVphScOv0Pd4knzVkAaspg1JK5K4VQEFPOHUxQ6peqwFIScwc1ZnA4mbmJpQo52zwUquI5DkDcPI1OErJc0qSU2DqSMAUkGxvJzQYMNzVarmXX0fU3QBoSOOqFWjMZnGqU8oNH98cjkgShuCOzyxEf/w+5+yuLavZoz9EFCYc3L0bGqYa0J5+TnopL6jn8CRW3whkWzk4EC2qvWlrgIXyJCimXAEQO4N7iwcD2LxCweyJEsisKEkzDsbMY/f2LLzH7bR3OdYohKqhrmI9FI2fq4H7nYPFpHWXqrVEfX0E2QwBlks7yjgf5RJR6GFaeScXqllZLk5IKRG7llpKgXvOKScGRldhBpKrgclNwSRMBBLiSqrFrK6cJrgHSoZh4WCqe2IE0j+oMMyK2lbiOOSRu1uxQDtcLpec5qurq2o6zzNzmqbp0aNHIjLPc61V1xIwtkCP94hhpwGMJKw2eiEzgzfU6IiOU6tXeZin3Q/qEalxsFV1oHngvOd1oH1w9E3DewAv3mBvx4XXfeCdXNum8V0N+mU+8H7C3+2tfz/HXhmPCJ0DpShJ5iRmkOTH43y4un7n+bP/xb/8V6vqi7/+GxK5ubl977330nQ8356N+NHTJ//0j/+Ecv5//fd/9eknn4E95/n29nQ+n6+uD1Fckg9Hd6q1npdCRHm3wFrdAZKc0CCdZOa1RpDr9vb27u4Ojqi9NzMehTRGEXPFZn4FsdKmI0f4cxhqZK15GHVkB4MlMfdWru6+XlZObN4kMLV8Mrn75XJR9XopVo05gbyUul5KWYrW1gQFzWzZRYt+2fiGm/Nr3uav8+e/hbF7QB5NY4F4B+xmCFQqvNMYEYDj1TxN6YsvPvvi81+U8zIdswiv6yqSfvrTnx4Ohz/7sz/77/4f/90lKoG/Gc6COv5wP7fXbcTxX/SujGMvRTZgWRd2wGg49lq91kp7gGj3aduVW2SWwulVVUejR9LdNFruqGqt1ayJ6y0Q41tBkPfKq2manBBRUVWt5cScRHJ/TAtUc1SuEknOWWvrIbrfO3Fqaq1ZJoLsnYtVGy/GWOHXxfU4dDFUkVmqrtG7N9BeRCRoBkCtVa1EtiYg0KXUWoLmcjA7bu9rUKWFFcRMqtaNhc7S2ddqP6WhJblrQGbmJMzstK2nYDMawtuOBsnMHMzV1GveBkh+v69yzhqx/bVcLpfVEQwlu71E++33Nfr31xQIv/74+gn4bpMPA+D1c7SPZ7eTtWuis//yyNvj/l6C7vos7n71VonnPnyh2PDayNW3Qutwrb2xoRHdn+SQAN1Y2rzf8E3GTGhXd2FRjLpr4flgDccn1BO5r3+NmWnkJ1prysBxlOHVRN5v5I1pGMm7aY+U5n6F42TEGpu5WWsSbmQ5SfV6unl1Pt2+/73vj0LFr17eEPt5WRhWa3WyWi2crRivXr06L8vhcDger1ULOPivdFTq6sghUShqZ0CHHxsPe78uuk14N/G9OL0vfMzd1UFEqpV3PnD7gZkepHDiZXWiuyHSwwyyYPLd2cb7/bZPJrVEOpK7RuoVvdqCGMysQDVrkd3Ggdfc+JBsERDk1hwd67qqKu/eXUzMdz2WY7+NDFawPDAbUXgjwYDVIA+11oA0R064PWmDjvdsFfMkU4nibWokz7FPQiNZp/TyBvz0sZUAHQsI4HK5RG68b7B2bJPviDGCxCIKMKub19YWiETWWs0gEs1WW/w1CJA4BDzBCaYOGIMDL0aQojXg5dE3zFpvK4BA7KplOJJErGqcQjQQpEXywytPxE7d9XV3VxAzklUlN3JzrQo3M0rJI/uvNUBTOefgUVSvVBjmwbpM3N5EKYVbYfNeDIWmT2ZWmsO5be0o0hMQ1GrnZwYYDvcGPW8RvgbEX0NdqfWmuyYONyjtYqk7eWTmXqsbOcKaJji0lFLWNRBlKaUsDIK6Vy1wjnfJLIAK9dgSOdkgL4nQiIu0QB5HxKaaazWr+03TnrUjr0opWl1V17VGldHh6iiTMPOjR1fTNKnq+Xy2YkQUeLwg22iZh4DDwEYnGNN7snUTDbSfAHmUPIbUDRnc04IIT5UJPXXPiKT6/eUkelvGy30DYAfQfYB/9lKJiGC+n9kDJffrm/hvu8IvMTU8MDe/Po/R71HuF/dzOEOzmsEa3EQMaqqZ+cXzZ9//4L13Xzx78vjRo0ePLpdLzjml5LXWYmZ2fX394vl7h6vjz/7x47/7u79bluXAMydRtykfarHPfvHy8aPnz56++Oqrr1K61Fr37VWqac4CgClFjkWjZ6P7WktID/TCQuxSZ4GNxNjVzs317V+7FxpvyaMtqB6CqNY6pcAdEXPKaS5W11IijExEvTt8a5BAJOtyXs6LuEwscNRq61JLMfQYtxNamhNO3wAj8OsYu7/+ufjVxgMDC0Bbfwewf733B3Ejp+pqiVMPa0afeaKUZDpMOWUi+vDD7z97/Og//tX/ez0vAHQt8zy5eynrNE3/6l/9q3feeSfnjLfE4H6pEf/6J8P02c0ZwxSepkmci9YmYM1dwUQS7TqruUYRFzWi0Win7WHTOIAIrUbPTPLGpzJNU9WVmIkF5qYOd3UYodEslVpqi9xoLYH3OR6POUspVsoSJjJ6bZupWwfaBCgpIqdh4qQkKSW0LIlEnXs8vqE5fjlngqx1C1OGuglrCJFudYxaBm+8pnAyg1ZzmKsScVINuEQ30CHUrDdX1aprRL17nxtyM1ejTgEbV+YeQiUKjvoGKdojmGLTRZMSBECJ97+JAG7LA4tIUMFr75lJ0e2CqEfNm1R0YRKGsBHcTU2ZORnmeU4presadarxZXUNb3mapkZ7s/NPuFcrAQATO+314H7vBY/978QJ/obiyF/zgeMv2+fuGP9FT4MAe6dxf51hE+4/t54x8vsm0y+dm+1Ek/WeXmEw0msh+90PRBBiIyIGwTzy+dRaE/ODybdbBJsuh6JJDgcHB3gAXOXBvcZB4Pu+a4jEaiNLBBF2NJzg8djpm3cpDXc3tFLM2OcjsPIgwTD+lLbQsHsY1qnVTZxOpy+++OL7P1inKSjim8V4vL4yLQYSkfl4sB2Zzn/8H//H+XjI05RyfnX71TRNta7ndRmY2FJKrcrMpaoRzGAOdR38HakjO+DB9O3d4moPBNAArd9bdiCKC4xbl6zAdFBACNy1lxY7PdQOpVZJCeEWEjWvrlYAOc9RGhH0RnCQo5QSqcQgSXZvcsVb1VN0oEA0XmUjM4/QmBlo58oDOMyzmbnWsQnVNAjqsXHdBgmhqRWCxwq4O6AiYq8HyJgICcyglu8sRc0w5cwscAJIa9QMi5lp6XhMEzULJmPmFA0FU0rTPNe61lpqMaBaq5kh5sqtNieeSAGnftOUUmD1zSzalpVSWgnQ60dWVYPDlJOABRESdr+eJ2q9nmnIBUmkGjlYjOo2d3dUh4IqYeSEhajxoREx7bpgMbNqCVO+OqgJ7QiX6nQ4BP0+EblXVUUDMreowzg5vgti9adVMxuWDXrF+QhRDxk3cAhdN3ec89ZhmZ02PrHgRjOzRhzFbIaggHL3WuuqtftprbORWW2YdVeoFa1EZFVll40hopzSUtalFjadJImQ1nq5XKbEZjXmGfFgA1z1cDi462LV1nXtBR6SpHiwTpMIMdhctVSDQjgoBllA1g/1bh+0jbHbyGGgl1JKacXrp9Mpz0mmfHV1ZWaRCk6HlFI6n8/B7FVrXS7l7u5uuVxUDQpJDfG/F7XjrXkHl/Z/4oGKirDCvnB377VStO6I7+8VNt875/ux80PMzBiN4sK2WuU2nwd/6/d94N/a+I7vu1O3vyt35fUxbJdhIMb/SzCrF8tTKstyONTvvfvO999/n2qdgffefWdZ1/Wy1rKWZU2Z3VIp5XCwDz/88N/85V+o6t/+/X/+8ssvz6fl5ctXWabL5WKVvve9j955533mfF7Xu7tb3bVBCqk1ihhjMmnKEfwyM68acVPOTEnMvboN0otxnW59eTR/H7+l5ujec0SD8t7doWZMZgLqjVu11fu5M6yMtTKzWq2WkNyS85wgy7Jczuvlbgn0CUWZ4jc0Ibdp/5c6vsVJCVO477TGhkCBeySFkzqYhDlNeZ7nOU/u+pd/8b/65//8n9+8evnFL36REo7HY1mWw+FwOp3+8A//4Pnzp//hP/yHu7u7PE2vI0q+fmHvORvfIDQ2NODlclnKqqo5ZzJXGAERRG1ZnR3vvXdFPoz4lhixfl8iRFULhIisa8/4k1HgGrPlUaZLFIwse+chfHISyzlPUw53UjscDL3WwMxUI4/hAKYpaBTV3LGjO44SqP3g1iVjFOKO/zpR9BTd7O+Yj1QCVTQbrsWtXIu7M7XcgLZEgquiqqHRa7X14Wgj3MNYHL0TIR5hXI+mLM3MCPVKOzBRpPhGUoWjIjDyZswt54MtdWa9BlhATARmZScic6+q3Hl0BohxqLD2LLUAhilPkuZ5jvmUZXkQ8kZHmsSK7Dfk71xNfCtx9FB398j4Gy5y/4loR9Q8Pnnw1CNH+kvP6RseoV98uJcjV79PlgLwHTKWRtqQKD7vjuXD76C3sQEarvOeGu2cNWN9xpdHyhE75bvpKUqA9sUJf5uiiGO/PbCzqVqdPDUo78A+PNxyfWjjkmz3jCyfqlKiVzcvP/nk53/mf/7uuy8eP36cUz4ej3me8pzOd7fmVVI6zAfsgmI//ulPPvjgg0ePHn356qtaa5qncA2l86EGhoU7nhy9MWFHd7SHf/3N7i2T4XQ0EfBaat3dpVdEU0Cg3d1bT1gCfNcDBUFlD6AHHWjjVLJRI+0dXBP/LKVEwCu+1vN5ytyuRhQkeuJqtda59fv1PmeK6Mm4MgBQREkc5CklqLhuvlKkjpq9bbSfzCb2oxOcNbezVs9yADUIzJTR12xz4mo19crMKbGqO3kDWHhiTu5kFrS+qFVVzT31t8ENOrFLX42LR+7X3VXr2ORpVFQPxWBmGtincAh9EJ0TmN0qkQvBhbxTQw0qcHRJvf8n936W4ZSZkVmT+ETiVUWkVnf3lBjIiqqIXoXtf7EHRcTdIumhpuYgV3ZO0UjPSRhEUHchtwBmAURB3aa1ruhbHzqaUEWat3G177egdwIAsyBPb2yg8bvxBWDjb7SqJFG34C3Ny82LNwwB1HOVro57aUbdhVMd6kCndbTKyEJuUHdyTEmMfA9dM6vMmSi5mlsEbxxuZC5Ei6qrc0oOr3VVW8EIejWO/lXE1mrg2ouGp4hfQZhcKWJjZsLuZhrRLPPL5TKVDMHt7auc8zQdYkSITkQO81Uszt3d3en2VOp6+9VLli4ubcOi70WM7ZRuxFT2UicWfLS2GqeuVSzbFqseS7T3hB+O6ENJzgxXU69+38H2XmnzezUerNi3yQO3/OK40Ndd9nc36LWBEAfGhAQtglTND9P87vNnui6mxQCGJ6FKMFXVQuQp8bpebm/pvfe/98/+2T/LOX/vww9++tOf/ue//Z+s+nJemaQu+tXnN9f5SS3GlHKeeJciDJZFCNBqdUw1MEK+XC4vX77cAK7CIlKqObzR9zU1LhTdzs2VPKqCaZdzHxs+trf186GqE7e2B9GvIuz4q6urw9WsWi8X01KrB+1QvVwu66JmyDlPefLVL+f1crp462tAFmgKGn0jHb93W/s7Hu5OeI0A4E1jGJKhJiRP4SE22BFFxqsJfNXy7Nmzf/tv/+2//tf/+v/2f/2/AKgV7n48Hi/lcnV19ed//uen0+mv/uq/v5zPQCPJ2BuU3ay8J5kiBYjhAFu/9wPo5u7pGhTWTFWXZXn16tVlXXKWNCdTTcKIotlBwUqkqsGFETZ8XCpc9CwiIoETZEBNaylEnvKusyjB/r/s/UmbJEmSHQg+ImIWVTUzdw8Pjy23qkrU1lXVy6D7D+A6M5f5GsAR8/VfwgX3Hpx7rvgac8ChqjHdmEYDtXStmRmZGXt4+G6mqiLMRDQHYmYVNffYMiOzVq4sDzMxVREWXohpefTIW3WlpVRmruZELByxJk4pbfKkqlYXArbTREHTVQq0MjOvSh9Hm6bJ3SVxWWqcNe5ghsPMqrO4u5szs7CklEIRXFapXQ334X4rMDlGe/R/6DwipAARpJG7kPVaFtxDQMHaAQAaJViVLHKWSViYk6/K1TDBOUAcHqF5sHScnveaaE2ajRkZ/L7SDeBQXJoLrEf4EdQmEdxGV6Z9IKnYwCKSWKYp6t43BFbUGzfTTr3EYZDwti/HFankGLT4hU8fOQ0g/hZKDeqmcN93BETw6Sxw5934p3MP7PhWh4aECtk42HG+tb/gDB2Q19Cc1bsHKnpnrzjBnWnt7IlZYJwLjv4nrHSl9fVh8QIIWEfTbVYCaPw6/jQGYZxHgSoUlkB04kQ+F1QC9JLn9/wE78HktX511hDqa5iLpK08tRoZKZ49e6ZaXn/99Xv37i0zSU7B71JNj4ebquLYTqva4HMtaTPduXvn4vnTvN1opx22Vn0wkvgb7OWl8WTAX86qCOkS5Lq9RlLMaVtMp/XQk25xntIyxoV5lXF+Pl9jVZi3invORCylKhDHAnFPHXV3uHN/hUgXdnez5jQM9Bc1hEd4Pdm9Q9SC0gzEzI2NfKUHxkS4exB0m2k8lgjeCsnD0SzFE/R9lQITrxiMh1PKDIQTtueiUs6saik1aECgVNyplMJJ5qVGmYApJwepealuzubCFPTIDIRIZtPFoQ0p07gtvBv1FKFKd2cBMTGQ5nlm5kQtiah7aJiYUkrFtCwLs0tOU2KtgDkTIqVWOLurOpFjkyfDyXdFjoDYmvOgZ2QmJ3YO5i4TkcpgZqsUdOIAkoiuxHGfLhUia4n8CAAIE6eAZPcaNjGZ8fmed8Nm5ga1ypSYqZQiIErNwa+9SI/1Ol3esf5RnDMSdwXkFKxY8ZbOzFWXRLzZpAgGR0ZeTjLXYsXAlFMWokgbIu9+NQdBieCuBNvmCUCl6nYmNJdlYZFJklqBVeckIshipUjOwqSqbhWcGMyMm5ubaUpE4UpsR5qZ5Q2XUszVDKCoqeiZs4buSxXkAapxd9MQlNw3UqzmEyl/3FPbx7xq8dmM2j7PebPdbiMT6d7VPesxYeG82+22mw0RHe9cEXsp5XA4HA+LdaqtcFO5u8LJROHsGCrDEBDck6fXdapDvIaoErRzKGawlZUjcq9rEUMthtBP/bbWTiW5z4DQ1NFeBNw+dL602S8IXew/o7G6Nptf8TI/623j3j8/Ers1MyNhMqtmycYZDDPLQsXiUE9XV1cXFxcPP/30eNhXq6iwUmCVgbosz59fX2w3MZWHw0FEHjx4/b/e/le//o++/93vfPujjz66vr72avM8f/TRR5u8TVOuteacY1dG2+0ucxaZsmpxBLHqgRxVl+snzz795JPD4QbCnISTNJrAzlvTKK/YiZ0cFuGd87O2hRFwMpDCAx2xF8pZtSRYSjnnLMxT3l69dgHYXOZSitkhGObneT4eZnJmkECs2rxf9vvjKAx5NlFfOef873xbZ6AEvz4RRTmSkCsAJNSaGEJrOtybb7zx1lvv1FofPXoE4MGDeznnm8PNfCz/7f/l9373d3/vT//4T8WKeXwAAQAASURBVP63f///BbDZTvNc1oq1ezD5W6NnfGkqQqcBVihNAHQWv28aY88DzznlzTRNk1PUisC+HEmSlVaLPsoLmUJV61K6yx/M4tDAyYYOQ5HV5HCjWiuRAyk4eEZsIZ5uVTkREbEIEwM1sIilqlswMnpRB7SoM7PkaXyduuu81mpWRWSSXJND1ZlAzikZzFmIpRUhcUT5X68DOzqaWW2HyFC427CtrLg4wtCSpVt9YGnFcsJLREQ0LzOtakgizj63bhsSdRZfnFReJyImaJvlqOwdGguhw6QbWyyRMw17oKmMxEKdKpYaEwaDSBjacqHbcnWvqu61RmaOQzInlilPzLxJ2d2jVpOZZUnx7okELFCoOzNxypuA4Lovy9I8+11SxIPWSKu23v4WtpdPtJMBPCKrLeIK57OszrF4TpYccfDduJ7wFKN98QFK50byWIrayi62+wfkISyBQWnbViPU3Tf9hOr453AQK7C22xmA+Vl8C0DYrtQqfp8BVv2l42lYMs2YMQUnarmxEaCSlLo5bU6JEgWpkksg81UBJ9Vh89yKagIwCuOBguiNWNhZXaFQLap6OU1MdDwuNzeHqzsX291kqoCBkuTGeX59fUCtd68uTsMtabPbbi8uNptNzvnFi2d5M4FgTsvSMJsEUh+5pEAfJQ22s1XppjYsvXonKDhsERgTAsDu6trtXsZpITVJ1ejJIqOqSc1gU/KzvL9WpgiqRSuZO1MihrDIqVrV+HwguqkDCriLCCMkopRSVJkODI6rckfxNLYoVVNl73X1htsr1DBQkDEQEcCqGigA5qgbt8oB5haQG/YUgMYhzBzJLGbGnNwbF3ffC3AHJZ6EDE4k4OROy1L1uBh8mrIbgos3503OOUkCgqpZRhJ+bBZ3ktjDdDvn3zocOOJkqpoSwbTWcCWAnEjd3ehydzHPs6pOkohIl0WASQRVKWUGAZQ88npB6g4nIaYwOE2YMwkJF3VTZwlKd13KkYiEQcAyL1PeisjiR7hqrZISJ2EotbpENacs01TLzG6ZWWsl8sRISaaczZ1A1Qbs3GMx5SyRDxPTlqYc3hi1ShBKCbB5PoR5xpyDerrWBZ1EJGKA7s5OItndLWqdmUUfRKRWK65LtdzT/6yUw3LgJGCKutvTtJlkMoOA5uUwzzPgOTEzUNV10ToRJGr+jgVdyswpU/grQWRAqDBaE7Ui5ElYSy3LzGCQb6YU+zAlGVYcM3stUxYN2AUJUnYnl0xq5lFRSRc9aDkcl/LiZs9km8xmllISl6MeW80qDzxVBcBC5lWribCWGtvF4XM5LIdjK/Z4nE8wQnAUT9psNtvLrYhEJtjxeCwlkpqXZakAVP04z7FItWipi1sFeYiMtcYTN4mp6eoOt81PFt4xSYTZ5uJwh3FDtQQoCCFmxVrgh9GVIQe8BGOESGJiU1Vfxeg+72x7ZXP3zyF6PVnF5/e8bUO+nJV0/ucvtjlf8jt+ngLzea91dv+v2JOvYQbT6p5nmZlEUcdMRJgJRG5GBElQrXmSuRYArz94k/P04nr/4vn1r30vzXXW4+IOGGfekMm82GabS7Vnz55dXl5up7RJ9371u999+8Eb77333scfffL46ZPr632t9cXN8/vT/e00LcuClb+WnMg5OcFRSqWqSejTTz/+7LNPP/zpe3/1x396PO5ZyNmrV1eHMKDuLBA5ZVJpvC2BCClYbAO+pqqlLClHlj7XVtG3UQK6pyDXnes8Vdnutma22WyIfJ6PtVZVX5ZaSySpCjszQGrzPF8/P9R5gQEeyjd7U3jQg9BfPlljcZ6v0l9cxvjP70MJnXKd22arvzlArXKpr59lBA6OEaVe9pHo/t03VfXmeENEZmpQs7ocD8V5f3Nc5vr7v/+//OCvfjRtMjFX1eW4/Be/+dv//f/jv3/88PG//h//X59+/BAOVyQOmCu7eUdac7ASY1WTeZgfDRYb6rVrk11ECGBPsdAuweCUQsyWUub5kDdpmq7m5bAc1arXugjxlDKAasH4QsQkE5dSKCgq1TJT3m5Uvda6LNUdOW1MtdaDGvKUAHYz5sTBTstWqdZaM+fluLg7p2QRl0xc1FKa0BXawNCwpE1OJMnd1QyRawuLomIGB3x/nFtMAQqhWWehZJBN3kD4eDy6G2UhKEPcPa2iPVMKv5MxyM3VzJ0YMHJ3rWFgwFQ96DNIYO5UHfDmgWgRkQ5ijGtkNkrAQEWEJVEzbl2hREQp9I8WzxUE5TvQcqpbAEBH5JnFqnIn+xyWCQlrJFi7m3rj8nVGBTyQisFZWdqp1y2KyAksxwO7bbcXrnY8HpfjDCOGNCo9AECSSc2YpFW+3HAmqkQ1dHStDaftzoxg1TaFqqlaD0nAzcHsnVRgHex7pVP1C9otW+trfXf9rW6i0+3rYFoHoxp2t8u0NcC4FycJ5wCFd9zhTCwpWNwNIBYKOk8ndyplofM+jJ9PTxkv2/+VQJmFjqoKd2E2mId5ZQSyqGjKEluEmFmYaw1zsuUM9g47yDqQleAMZzgsKgn30jUcNpm7q5u5CHGSUkp1czgxCQi9yqmrdWbfwcQVZzW516gGzNyyjk/BEYaIgJvnlxlFNb6ubWiJQRFJDjbmprnF4BBEJlU1WFDSUSJ30uKl6CZtnz/bf/D+x9//9TubTX7y+Nn1DW8ury4uLrbpQSK/efZUl1qXNTX8RraXKeeLi60u8yRs4AqvZsWj9LM4eS1qZsRMxEwNeRHmU0gndieiLsPN3MhOBT4hHN+FYjFlBjNTd0OE6NjkHD2qZiDlNnmmpeYpIUqujqWIBkSpWmLMzE3VBMndRUBwITBTWY6umKaJIG4NwqkdnpOnidi756RGlVSOYp+lBJAtpGbQJUfAHeYGS63AblbVstQkYm4axZNEzExnzZMUdyLk3CxnkAkRAuZmZgQRYUpMjeFPjayqkKSUrJVfpWM5pjQttXCSoFti4DAv4dqbtpOQoPE++Lwcq87b7RawnCdmXpbFzAgodVZVyZmQ3EGGwXgIgNiXZXG3IMIyr4fDYYTRTuRPUQUkIsUpjmGt0qBfDaMR1aOYiFkSg4TVPcLOlZWchTClBOawPMOh4OSJiZmFjJm11FoOhM005ZwTEasWo+BPJhFmJBYQ2mpzAFpJKKCQISoUDpaOu9CghEkpVdQQJe5uVpuXwobvubn0Ijd9CMchxQbJMHVA2sDShkyJ8YmA81i5Zn4sR7AzJzgDVkoNEgJjNkXjgazqDLcK01KPROJOaxr9UH3Ui6upFiHiJG7WqiGVOvofRbQDmfCyFAZQtRCYPKp5gBORT5EiJKpMRnAyeCA8nc1rQAXi7QfA+Fad7jga0FAxROdCn5lvbm466xoT0bJIKfPxmOfDkZkDIx0zFUWV4uhaim6XJShJarVlOdZyDH1pJGMFjCFMaJFTBbnmo+rpFjGhIjKRAFj2hxUQmuNYckWPyZ2c3MMFSMMNLAz41z3a/762bygI3KeVRkY3AJiW6gSIMHDn7muvv/HAjZ48eXI4HABY1XmehSdq+AVWtaLNj2taYiVfv7Btnt5+480pby4uLh4/fZZSury8BLDb7UopWClG7kbkU84310/3+715mcvx0aOHH338wccff9jLgapZrSZRQVBE2EHmRA43o8Y7BaZgxhrbZGycVp8sNnVq5Py9Iqkuy3HapHv37r324M5+f+NVXbAs5XA4HA6H43E2MyIhZzIXiKrOh6UcS6zwADjEgU0OJ/sZoAz+t239f06HT+k5699D+BJsIJDVjUDXhz1ZK7QYN43KDWU+fvbZZ//m3/yb997/ydOnT831eDxeXV39k3/yT/7pP/2nb7/1rX/5L//lH/3RnwyGp3UkDQN69rXfSAPT1UlLAWdYJeaUknpdlmWpM5NrZ+zM7YtQVbUz2pvwzblLsPEDCFUJYO+HduCJRMS0uJMFIWePMEQn5IzBgQB3YlW1xrAVgU8OyoqTD56o6VI9CmdmQTnqhGpq7gSGW61mVMKBTj2NML0UkKxLMTNhUvORm+k9ft4kyYiNWI/lup7kvA8LZdw84lJhIYDA3fA4zUggpPpJN/IJJULJ3AOHfk7+nKamEI+TOhSV2O99tw6Ls4UvgrjIQvkm66u2hXGCaadyQfLgth3pQkPUCOfdNpNwrVVh281FyrmqLqWYuznBPJKOQgCBJMhszxbiKkh4bn9+Lrvcl7ava/2ultwZXPPzPvwFD10pfq0MVXdlEBFRzxf1nrxqhJ6m/uoaZp/XiAhw9DQuOsuGcEKDn4R6HWFCNO2yxd/Wsdww0tyd2KHiru7ONNFtn/hppohWPMburjZU3JeH9NagcSRk8CiadRq9mPeG07YWThVyU3dKYSnE8Wa93M4aW9H+LC1eHXID5oHJaIYJp6J+vd8/efLkV82uri7VPnj85OFdEUi6nKbd5dWyP9RFsQoY3BwO73/0oXznnQcPHty/f/8H7/5ody8psRMMTmYVgHXhYJHtCSYK8igbKfSr0H0TK9H5QAyFiczuTNspdfKi27iA9m94t6kBTtytzot3doM21IFUFQnsRhic1c20SE5NJyIjSkTEwiISAJ4IQniHcoCslIU7LXMXTe4RYVYlBxNDTxj+sU7GHAFgTq08GwSAsBDMuZUC9h7vNbNSFj/jNfBIpx2rjpOTEUmrPxpeBiKay1G9ioi32DLMCQ4RcvXFlwiKiUjKQkS1LiEquZXOdbiSMEHMUMyzJCMrtfS3c6s+mFxi507TlBBQK0MUqnQzczW3+VhFRECBIwUgid2FmRpTphm3cj7EidyMJaIbzXsu4hDvL0jmldzS1KHJzBaln2xJHCmXfHRjaeRmwt7o1NUq2XazIUKN41/DoVFUlSTxeUpDyswMKk7WSeE9oZk4DXfRg5OuWiiKH3hzvLpbSwuNkHgrCR3D3TmxOs/zuQi20IODJ1tE1HxZZrdTXgS1k8VCPQDYzKMY9XoDiAgQhHTWhIAHNKTJvJVEa9gGarHrZrzF+lO1LEKSVLWoEbtE8Me16gJTsDEpkYuQJJZEtai7DAMYfefT+H1Iz558FmL7tOvMnbl2IDH3Wt51KQOUPs9z3C8o2oPbjSI30Xmz2UxTIOVqWY6qpVYbBvDQn9C508ZocKdlN6CoLo3qTIhINpOqQg3uYaQZGlfbLVlvnaDopDSAjNjQNGB8o+3rHvx/l9tLmczekmFi34XqF5gcBnD//v3XX3+9lPLi6fXDhw9nrcfj8fnz5zltKUmtVk0VmrBJUzazpWhKyZ0OhxmATPny8vL6+jrn/WaziUqqAJblGBGzaCxW9fjixTwv+2PZP3/++NOHH7/77o/2+725RkX1VQoGIr7EttJvmkZ19q7rVcfMAfAcf4r9G78nCnktd+7dffDgdfdarGopx+MhMBSm6lFyCSAnOOZ5vrm5qcdw33dX/t8wou9faPs8lffl1lcbry64maoFrz4ARKTd2dwDi+B37ty9urp6/PgxM3//+9//5NOPvvPO2/+3//v/9X/4f/4Pr7/++r/6V//qj//kD3OWUnS7DYTRqm8dEuJ+e1V8weu4O7o51UnwG/YspRSrtynl3BC6OWduWOUmHgOKRp0UiuLOkegBNWuFD0K/hzcxG+Z04Hm9O9Xbgdt9hevrzEyMgUAbxkN8JT5GRAjJDIBIhUopAKWUguDUDSk3wg4ts3saD1LViEutgStElHMG5jFikX3m/a+nGY/3tTDYRg287grtn4mDHghI0ekojLNvZTt9bgxzfGuAnIciGErt+pN+wgSO63Gc1tUbRa9CzY23IKJI4jPTYgo3Co7clFJKSCmJ5FP/jVNKkiXC4SScOEUVQwCLVSIQyNGqsAbj6csKfazd8b7UY5FfdUGft691CI6e+Es28LqT7cqXPddXCoB7cDecxDIRCXGz/foO+iqOq/UbDfUJREFWyyv37pd8t1cmW6+08UX3telyit/wmUG1HiKSE7unmVnEQG01pN6N0mAYHvcP3y6tBm3d4SGLxmoxdlZAhHpVOT/5cVpoCj3GjG4/m1sAMrx3pn3LKxkdDoeHDx/WWu/fvy8iL54+LdiVynRFy7E83x9cl2l3CtWU+ebZ40flrQfvfOtbb73z3Xff+3BeKoQjm5G0pc6OMVErzq2wQowPN/7nTqIWrx9O+e4DICJnMgIBOeeos+Q9EMV9YLEyKddIxiDiyvmkcgCwqllST75lInK12hZD+OXsLHfGqlvglanpt+5kcspVMfOVVj98aiH4A6Vj6PzEgLuXMHO81WCnFWdbvLLCZBVqouadBDOnzeRm1NNLh/wxNSKq3SAnSuHccbWKWkrhlJjNam3lCijXWsFQrWa63W4lp8jKMbNaEZYcAHfKMhUrJVBORIKWTSYiPbnYiCXIMgLG0Q+Vji+NFyBHc8+isXulLI2nzjwROZkzQArnFkTziASCJfAzDFKYp5Q5CTmWisRMAuHIetLNVlyhZrAQCn7BiRLNZYkhEwazAy7C2+3GoeRqVt2ZBUQOd84sLO5eyuweXB2nrdVET+iUzOxeTpUzm18cZj3k0uipVOGuDAETwYlarbAYD1frNOPNb63NDDN3i8q9TJEj7kQwaG0c3408zcfuYHAKM4w4rdBckkopRGbsEqoCjABjMdfAX+HkyYYkspWGMU5ctSIppUQVbGbkZgRygwKmVguLN3cYUwDS+Fw6D81mvTGGrIQa05m9gqEi9L6N74b/fvCuxWfCWgjHDHVynpw2tW6JqNay204ilNKJHXEEgWNibaWBMbN1jvGhdcVXwgtuqGYt2bqL2TMX8unVuiU8BDeI1oHBb6R9rYP/71dbraIYpKCjYe71Bt2n7cYIh+PxsMyfPPx0fzw4oZiW5ZA09wAVRGSapnk+htslRS7GsgAI+L27T9N0eXnJgmfPSkqy3W1GRzabdDjePH/x3Lze7J/+9L13f/KTnzx+8tmdO3euri4er8K5A/LAzIxTpJeoQZ/9/P3GW4Yisr4YByQBppamZKWOM6aYHuebm5ub6+vrWisRJ84GS07kDLcy18PNsR49wM8UNHL+98j6/dmad6kMAGo9uQMAerTH3cNfiWmaiKiU8iu/8t1vf+vN58+f/uP/5r/+F//iX7zz1jv/7t/9uz/4gz/49re//dab7/zFX/zF8bhgQJrPqWvW2uQtA2P960nnCIMu5nT113DfUIR8KQfcNaKJXdNqRXTWfWha89AyyVUt6FrcuZTZrbYzET3DKlgzVpzSbCfbY4jctaqE1Tk11K8R/hq6USu8vNpKTDTJVK0klkiQWyfc9i+exiGARaqqrYioRTzS2p46M5BiruOAHuPfT7ehGo79eA4IemmCxinjK7epu5uegki3zIZBPvKqo8exMrCHCTT8C0PxHgM4jte4bSnl6upqnONtfgFm3mwnEOect5cX1WJVW5CHIQA2tQYSot0cZ1P5jbef4QQcIzO++6U3Gf1fT9+Y0PXPfZw7qm2okWuTdWyZr9Be/titwEkP6rZdcOvz61cbWwxA16MoVNl+k9MuG49Y3yrM+/4neECSP2cAqbuE1gM1RMfLrzZ2wUt8T2eHXa/Tk4JhZ4zj2RwRgUbEwWNJZ2EzffL8ybwcHrz9zr17dx8+fXGYF745wunw4sWz6/3FbqIVf8d2kzaTCKhU3WwvL6/u3Sz7QYyubqIOZj8XtuupvTX+QOBeB2EH+6pwtLnXLhhpNQ3rBXb6cAuuBtT07E/M3I2RU311Zk5MjYuiRa2bQKi1rgIzXbvu/rVm26vCTrMZFPwwN4f0einuzkxDXEfqB+HktqtVR4CNiABxH87cOBw5DOBheN9aHmMlmMVxU1NKRBbruQkxIiJSdxHRqC1MQRBdVRVMy7LkLEPoTdM0ZCkzu9aRvTvGMOwGVXdf3H1ZFmZ2aNjfHgOrtZoZU8rhnjQ1h5sm4U2ewow2ryxxREDIwRoTTwQilsQABCBygpkbg+OYYlJi58RCwYCsSYQZ1Yg9lpFDUF1zIuYMoM6L1sLM04ZLPQBYdGlBc0FKIpYgKYJDPZTtrlZrAUBuDCdA4MTgcOGYGszVHeLuWosRuVuKsL5bc0iYtWVARkRB3BpeKdUaBnvILLXAQkNAgEkKX5xWjxwkqu6lHDe0C63YAfVggrVkjNXBudpIVa0IUeDp2yMdAEpRSZ4kAQhMf0oppVxKYQ7aeGcmCfMeXpcZQW1mlSgJp9AKpiRGltgIGjgv1VJKSRL0Z23JNoaCFscHNbWhESAQMaAn+R2bHIBZcwCoDpMYRA7MqtSpAse+OgF7WpgvPGRUa5mP+yxEMVnwoTk1ZchPimMIJ86JhNksIgkxTQ0jwURJyKiBIgRMrLXJi5cVkVsX2wt+TU3g889mH3f9hzbaUIJvDXPMhnuofRDmlHPUBoy47sOHD58/f373zuv37t07HGYH3DxtElkk3KNWXZYlb7eblHxZ1HxZluMyk3DwPEtqy3KapjSdvFGLHpZ6mOvNk6ePPvzwww8+fO84X+cs05RQVi7tlTZjZr2KeXMvYqVzn673ttbkfFi/TdlSgnQ1V4/Hw4sXL17sn97c3Mzz0TVccWwUhU9dqx9vjsfrBRVASyTmV9IgU5dpf7+arbZkzFHYeGdb0cyglYxrApwN7gRyJoDAcL65udlspidPnuSEKeH11+69dvfOX/75n/37P/hf/qf/6f/99ttv/7N/9s/Kov/23/7b//l//v9cXV0E6CDCy+dPf7UIaOvklhncfPeN8JOJHCCi3W4XKSF9BTYTcZhMDTTb8qLrSjUZrE4AQOzz8UinsALCowO04kDmGt7yEaX0ZvK5qgVCm5mYMc/F3SU4hxmdodTNjaUbAGalalSagjARmVOtRgZm4a54SSKPnNuWp9pKvzjgqyBqvEUpxVtlznaxR7caqHiogGjC2dHiqNQzsU8GcLeBApzZvABm5jgBp8cNzcxdwwvWHm3qDji3UDSdDOl1sHelJ7euDmVxKLID4zbuAGc3C3nYnRrxxHlV4YKHXsHMItmcRCTnNIkE05uTserFxYW7a13cAwrQHkYrNPlZdPdVJtDPFv79Wo2I1oMwpvJ2T8YVevXhfuue6x/GqhiPCwclEbEDGuku1box8LU6z4FYXSdE4IRlcJzCGP01AYBYIp3GqcGzA8QbDHgE0ZOTIngMbOTuoRk27EAnKqaxK2DB/LRSVNZDSmiPiN1BCIRdRID6CXLb3nU/22XrxUNELgx3DnDvKDLWdEonGME5aFnI3WtImy7H7Obm5sWLF9/9te+/9fYbHz58Mut0XAw+lwrPF2m3S9OJBOu1uxe7TZ6X42dPnh6r87RjW+CqQR4MVLe61KF+M7PDVYsT4MyAMAd1k3lMDoU/vpgyM7OzM4I8Il58ITNjIARxwFVbov7w/TkYLWZeSmHm1HHI0ZjFugeqGa4CRO5u1FWNOYMBRgavoUK7AAQyQpBxaajH3EKAEGJQo2AeHR6saWjxd1VVLSFj0eJbbjFEkckr7IQWDYpoZNeCRFr21tICVAACudpTP1IKSwJAvLJDiTmQ2YC5K5BCeBIhYrxBRqBuRWsQelUTYOwUiqpIoIWZBWJWynE2qSJSSpnneUpZUlSK6aSgRLV46mPekTkgGRzlajF5KaWgkai6TJIYHhZtkjjXHMxOkMTCBAEjku2JzOAKdQeEnKVVyWJXZwQF+CZLzhszW5ZF3ZfjIW2m3eYCwIulLuU4TdvNlJfjTESIAl3s7CwikMgdj+oLiNPfrJqZEMFauXnjSiXAzQ6Iew/9n2J9UUpE3V3IoSBuzjaDk3BzvTMHBZ95Zd5UXYY32t3VQeRqQVdJpgg2s3Cm1lpZoo6CmUVGmRmZNA/rWWG0Ms9w5yAVg5lVWEU79s2Mx3MtClPJFG8RlwGObCIOzhcDORjO5G5KrbKUCzkhQvcAjNxNqyqZrJ3fPVZwOuiBlez+vINnnLtDmjfbdRUHiGGJfR4pwViXAAHc/XhzqJmjKmOk1A8J6xQFZmicUmaeUxNkacpsYWavjI1gtELL3hmCb32mjp+H8rE+1//BYP3FtTM1pS847vUw47KZBe371d07m4vdzX4v0yZP04cff/TDH7/7e797dXF1uRR190UXAJeXlyklJjez8AtS450qx+NRVXe7HRGJyDzPRF5rCfaq0ZGb/bPj8ebThx++//5PP/nkk6rlzp3LWmvOUsoyVgv3hpXy3RZqK3bgwfaIrpgOV3E4I8d7RxiHe+4ATBm+SdnNnt9cv7i5fvb8WcTDCUTmcEyU4VRrnffz4fposwMQIovyB2g05vRzrN+Xd/rf5HZmKnytdoq8GZHrUonFe9H7M93U3LQ8fvz4+dPPdhfTez/90b/+188ePXryxhtv/vN//s9/53d+5/rF/td+7dcePLj/6NGTdRbMF4+kn0I0bSWdVEnAyde8caGD7i42kTZW66JubpUoklmC9qKxQHPKA4g0Sk2eFnCrTdiexQIQOxQGIqlavEOsA0onwiKy1CM308vWm3RtwkVUYYwbTuacmRkaXqw5udQbnpd6VJb79ncnVfWqKSWAVNVWOZiSU7dOKVSCplOfIkwtdjqOg9Nc3Pr1ZADftp3a9dNiIeZ2MeIM4/NRMYQkwXs8uZvNfYhWauirLLR1/9ej15WWGPDT+RUtpMegRR1x4JRSSnV/PFzsrjgnI0hOm83GoMuyTNNUay3LxsyqLevHvbK9chkTfW0SrJ+hvbypv8qewvn5Pq6vrd9hAPMqTRdr/eekc7fl9aXyZd1bd08i0lnrXjmA4+IQF+jny5gUfkXQEi0EwKfX6X8907hO4isu+tm731pjL6/MfvGlbpu//Fd3ijwE7gRDMaruzoPtfPVEMyOs99eJiYYDpVzr9fWLTz/9+DfKbz948ODi8r3jczsej6WmKWeaLo7FXxzK6Nh2s9G6XO/3kGm6uNheXb3YPwsqhFvjfBpqczNTN6bEgoEcMTPT07gNqmf1M2b+FmtZ3TP24yAVQo9ntgG3Buxak+wE5cR6McR2TqdliNOqOAPJY2SQububmxmTMPEoNO3FwkT3ZkSbE7EjrCM3Hdm2LS7dpQ1WRVhUNVIap9RcbAP1PT58WoRdxKLbBURE4OEbcfdlro3mfwU4NQvlvQ2OugVn01j/PbYR1eP1eDyOpMvV+vdaqxAzZ28afYhrK6UkCho6MzJKBCeHqSs2OcNM1bOklFKwb1tkBZARwA6Gk4RPnMFh3zJgHIwRBlCkEhiDRJipnd0EpDRF15kQbHgwTcJJiEzjCBdGEmI4XIldhIGMHsyOMWaHWSX3xHA319D83FVj8VLgeRDFeZGmiZt6owQ04GHQZkBjlJkTmcchqnByciNiV4a7qpm7TpKsLLGyBahaI2Tv6qXUGB4iqFY4J+aqS1DnAR6Wdmx1bVGvs/Om6pJZ4HAzmDLM3YJprqUKeBCRx2qrpYT80xayDudPUNr1jZZFmKmouSqLVC2uNdw+BHRyaTK1sQqxggH3nX8SeeOcx6vb2lcdW82dUXvJNeqg5bFMh2qiWmPDq2paPVVAiVjDR+WGoPSRtgObf5QAFmbOnsysuhF7Cp4AVa9aa/VkrOq1UcKYWc+C6z13J44KWHFtyPtviOHp1Noq/qZv+9fYfu53aZnAJ8NyKCBAd0cTXV5ebrfbWmvebgA8fPjwz//8z7/1znfu3Hut1kqdCz3nHIxrN/vjfv8wpZRzrv20Cy7x8EpOrVrpfH3z/ObmZnTns88+udk/+8GP/vL58+dFS55ks51ogQh7SuhaZhS+ZmZE4TddKxznPpSRS3ammZ3lL4wPC8jhIpIy39y8ONTD9fXzpRThpr6YQZyFk5qW/bJ/dlNnjbRjZ6KmoXHz90F/Nhv4i/XLb7R93fXzRVvyZQXuZX1u0GL5KcZlHmKfGnMEgoQB7G4Mgvkkyd2J/OrOxXbz5jwf3nvvvR/+4F1Vf/31Bx999NFms3nvpx/8/u///s3NjQj1fq7DVt579ApVuGmHtzxCw5ER8Jn+12maWtK4h/h05jizgndKzlTJFWlCqzC5opCdNokZVjXSoLSjZFuXLAidEwZwScCJ3GFoVmvsu0grNVMnH25NM4uh8JXa3Vh5zaspkSRJTcFSJ4pYt2r4cykBBjIWsHMppdbbabREnc2jWShnA7vWtnvEqQXGYvMBIxMqbkXeoEsY4XcAvuIPDx2tozbaFjYzkBGieuOZHd411BaDCiKelbq2tpdCTV9DT19pMvXIEp3FD0frSnPgnlIxDYodTqEsgpmNTXKaNruqXms1BajTGvUnvXIkb138usLllYv/C5qfP5qG2faScduHdC0fTvsuNlPXx1p+LHAazFs7RXAqxusaeXBfyY1FKzt23bdbL+7DhF2Zo+PDA/j20k0SUWwo70HHs6/TUBPbI055CtwzS4XI1isw4j6rlBw7PzN4kD/3PQNETAxBF+fuBDIloAZBuvXTdtyku7ROei+H5yGu2GCSGmqhwhnu8zy///77n3326b179+/cuXz07Nnu8ipNO1NosZtlwfP59BTFvMx0c5O2F5vtncurq/c/WGBKKzlALbKqo2OhECoXBEFBYM88/t8teO1DdYaTw73aWDM4uVCHH5CZXY24sf0br0AHDphDzibXothvPSWe1FoZcBFzY7Kgto/RouDbRLA4BcElyG1oUKtxjrE1VQ3Ys6qSucEEJwiKnQL4XYx2ByeRpJTIbFmWWusmTz6I6DuwReHe07XOppiJiGo1ZhZYQxNJBKLIvKniqgqtG2zc3Y04Z3LXxYiIk5jZXEpKCa1AKZm6aokocSlFSw1eoTim1SpDdpuLTh8YMyJB6lSr9pMs/IUQEJlVXzRCjeTgUXgHaHV80bKRQIPjyg0GZ7gGLIkdDGOnJDAwSwSyY3kriWxy6vXhvWpZymJmu+0kcnE8HpfDgXPKLNhsyLzW6lV9ldOylgIg80677VqZOU+TeuvecOMpuauzAA4zN63ekFlOrsyMRpJJ7qVxnsXEM0ENwomgUK/hPwj21xaoicFlchIKXntOcPNaVCSnzaaUYk3yeutzBzmMkrbjpbwWTwGRB8NgTgwhgDExL+HOZ0xTMgu+zZpSUgVLJC4PR2aq8+KAGyiBnKlRBboQnCDEBGaCITEzgYkjXS3O5oGpu+3UoXNf7y1xj1b+4aTKd4c6b3KUID57XzM7Ho8ppeDravWeiSQR6ok5sG2qcBEJewB93L3nSFDLG2/urkUrVaeOuCaiqIkX2JowhqP80loir5dW88Ov3vMfQsC/pDYkb0fptONQJGp+cE4sUt04SbGlVnz88cdPnz/bXuwWXXbTJTMHw8Rut7u4uBCRm5ub+HXc2SyyHjznfHl5kVKa5+N+v3/06OHoyI9/8qNnzx4/fvyYBdtdcLMVd2XO5nV4RoeOEt5uAY84TLTQ9KGneAJWjnbQWQ7h8PdHQEuYzezp06dPb57ujzecyMzIicxNHS4AbNbD9eFwvRAxBd+8BeRNzmTLbbTvV5qKn30e/7rby9rnKz7TkYdAKwU8muTsBKvAyKclIiLVenG5vXvv6urqgnz77Bnc/fLy8vnzmz/6oz/60Y9+9NZbbz1/dv3ZZ58dj0sk6flXCP+OPq9/Pev/EL8nK+7E6dj4QEyZ2RXMHApou2cnYQ5UV5zvvpLG3o23Wivgktg8QHwm/blBV+mdy2rK25TbbV3aGTHwNUMFHDkv65hq2zVoqcVQc+EpZU5yPB4BF5Fg6o+tMYqKRapzKSWsx2jzPN8c9swcXqGXx3CshLaz3AAkOcUo1uOwDri11Mqz8rBnm9fdTZWYRQYWKRyvBLxcQi++oUF1udby0eIxr7DlxkgOFYg5PDI0LLrQj7w5GlqQZNzNzAvqxWYb+W+jEqFTs+W48Walk1eaguT29jDGS5x5xEc05+tjLr7ipjg95fzXW7bi533l1p9O9t75DZvH/6XP+yokEDvIglPzC993tWBaU1VOjXlnNTXWXCqrKX75Bb23l3p+2mg9trkKgn3OHcIb5tpJic/NFepMAasHAoC8Sgm/NVDuJxxE5LhiJQ3aD2gx8PX6N7NWSLV/fuBKaq05ZRGC2cOHD58+fvzWW+/cu3O1u9g/eOuttLnz2aOnx1mBZGtSGogajscjnj25Q2lkMcSDS6mN84hub2d3h4cJeor6xg++Mv5ja2sP5KwP7tOIhVu8B4pG8HlELwGIneUohXBeT3QMXWIqS3FwY4uX5j09xUtbvAoAiImJohhQZxww6iFuIR6vkBDFwujU4VYTTEcGMjVaBwttPNR7ySkixtRpO2ut1Y17dbf+iBi6bskz44TEaTUj05SY2Z3m+RgkPXE6BD2BWnvceMe4cTyF3DebTej81gHn0RlVTWmapul4LPHrZpupeTaNmRO5wRRmOWcB11oJzsyu1VSFWWjSUmddUkoXFxdCTG7OblW9qudwMBEzV1WRpGoEpJSq1iltcsonKvPmZSMD5sNBcmZ41cqcL7abUjR4R4SRc5ac6qLiTMBxnpnFqroTiIQoTRM15wrNc1U1Zmxykk2OdVO0ihA7oxcig+oyz8frF9P2YrfbpcRl0VJnZs7CdZmTsHCHXcHhXN3gykgspK7zsZBAKBGR1gWubloWk5wkERTLslTyTUpqOh+K5ClnKaUcXhymaeK2+hvXvgOqhQGrUY97tQGEzCpcy3GecpqmCaoEuFpRc7AQaal18WmapsSloByPm82GmWuZa60ixCJmPbchSKFLZaYkVJfirpKEQUySWOZD1UUzZ1Ar1TDYqobqRkTup/jwusO3jhNfqRpD3W9aAmJK2wfCem8ZAaponnU3N0YiDrhFgXtKyZkW7U6H2JODpgYgYaEwi4SZwz1hnSTA3bUX+56mKT6AZQkCQO2tCy8CArkHVYM3zgEQw1eou6/U1hGtz4tWfeOB5b81LcDtrebima8BoSioKjVwF3NOS1EWfu211955551lWTinWmuaspB8+umnH3300Vvfeufq6qqUknOKAG+beubDfj7s5wcPHjDzcjwQodYyTdN2s2FGTnx1dfHoM3/x7OknH384OvJXP/zhxeXmtddem5dDrUvOebvZ3tzcNAZms1prsO+AVVWnTLXWjDQI3qqqG5hBEipyZBoQEUkKFr0CD102UifgjdCgRs5Oynw8Hud6gCDnrFaSJCJiJQCkXOd6/ez6+vkeIBjRSi9bj+otPMPP0b76iv1loxu65DldGRrwLb1tXTR0XGdmtQKDbDcK50TlOIOmNE11rsR8cbEF2bRJbz54/Wq3Pe5v5vnw5MmTJ4+fvXjxYllUa7l+cfzk489GN9YGDM5n5ItzsG8p90SkUBEhEDNPOR2XGY7XXnttt9tFOcTjcpzSJmgFVZWbczDVWt2sVdSoNUiztOiKQMVFuDGNRnk/PaFyAoIYdddDqgtkWY7OrEoiktMmXtOq1lpHSkvUtEspEbMwa6un4O4eWyCnaTCgRDqZqtZa3aJkmBOBmWrVqiWlRKBlmdULEe12uzE+IrLdblNKh+McvMe1GhFZ04dCoTzpuG2ua8soxkp5knM0eAyPacyWRlbGairDo31yGcedQVZrBftIkmw1kUBElFK+JfBAxi2gx8Mw9haS8aGB4+SMDmGyRo60Ukwx4GbWMqFGpUD4siwk2YJVaJPcyc1dLbFQgmXtGXfcDf/T9hkaP0VC6cuusa9v/d6+w/n19fr3vpdefQc/ZZliWONA1O89mSsrbaR3+cz2a9GINsh9qcdWCs29xy2+mBHzlk2F7jxKidcf0F4Zq3GarHLU198d3RvalPX6F7Fg+gIOmGRbhwORNE5ASa0GTAgBZpbYBX56UyLUWsNIHG8zllBUJFUNmHGYTT3I2X0iql6rEnlKAaUM+OLJsQu0msLrWRYQE5tqEPBgpXmaNWgngONxf3Nz/fz5s/lwc+/O1Xe/g9/6vd+9/+B7P3r3/d//g/9QivF0OWbhxU3ZXVwYTN2mXfovfu+3jodnH3/40XI8dluRjsu82+2s1PUgr0FY5I2t0MJJDWNmCpqkqHWy+nCQazIoaPwCOxTsArXW4C9IOQsoOKZ0qe4YivqYaxpBLGZyS0yqen19XayIyDRtRcRKXUpJnGSaIvLpRKUUhaeU2K2oBu+Vu5dSInUl0SlCRuxuFupts6LdQ4QTUSusFdZsc8y1CH3YpbVWqpZSUvey1JSS5A3CTexcawWTSPLgI4GpKkNqrS4yTVOwPLBzSskcpZSlFiJy2OFwiFR54sT9GAqEM5gPh8M4MkSEgf1+L5w22ymUm44nb76OZVkoqrMTDselIWedzCkty9HMmITcDepmbtZY/l1VnesybPHErKUkFiZOQu7OjkiuJ8CJEwuTCyglIRgzS2JTN7VqFmAbYmciVd1sNtZTzwEwI+dcShFiclhVq8WJmTiJ+ODeo8iQb5S85mZa3CpLkojbmjs0C52Iua1t1k1KiB1aDs7MggmiqkspWVKP4WjHolePBYQIaVsol0aNRET15KMiCR+PRbzazMlNy1IrqyoTeVVnZ2dFuLrBQO7WV/OLjA1gFcA2540IkZPZogtYJE3wBnXuiYKNsSqllCRAC61CN7eU+BgyGAhQMnbAXYnI1dQVcE88xGXVYmbB6G2r+ge37ZO+UV8h+1c+3bUoBwa1PdZ6Xyf5SOMRccaZGdxYWEjCh7TSCTpoDSdVxiwUfxkqSAQA53leliUc28JiZofDYXQpSPAHv2gLZZxOzDPDzDsj8T+0b6p1Ze4c0wF4O4TOrhPzNIknnnZbSQlwMKkbqZLwixfP33vvJ//oN3/jjQdv3dzc1DrnHJsC43QP2uehOkg4yRg5S63LJ5989Nlnn4rInTtXQENBB0BaVXPO03RapSJSiZZlxor89pWqlbUCpyIpka0V69MaG7Ghs9FxBiElSlmYoVbMKjGypJwztJX41aL768Ph5qgVL2Ek/143+srbdXjutVaQo6+QMs9InCTVZc7TBsDNzc233n7je9995zd+89fu37u6uXnx3nsfPH78eL8/7veahJlPXEehdav6kO5rkUgvQ1rPm6/MsGhhwZo2Ks6cc9RCVNV6KFWXWHXMLCTu7mpAU2Kiyi567Y3oQErJNUpKVFVlcM45kguCK4GZN5uNR4pXO/gaSdtmszscbkILGTlmzNy+fg4L6nswxwnl3ipojmxV6sHntnF6Ogwzhek+pexMWkscqWa6htxGVBPn28p78CQCnmvSqVseotHVcWV1Hq0j8LfKt96yTFYfpsjQd5xPojeEVACOToYuEwIHGL0+PbDHrkff+t3iCt1Ke6OOymPmXmSqNW6cZDxQXTY4CPrLcmezj/Ic34y77JfQXt7p9FJC8kufWQ/prY3W5rKPZFyJpMpQvb5+B9sCGwfKmEpVHTOFcz3n1uI8rZZVGvD6W9YzQqnHWuMIDf2HpaEbBhbDqtJL/eRbBT5voU5OHTvhI8YAr4ar4fIAOA9heHvcxvJ2c0cTZWMuuOf/S851XohImK+fP//4w4/+y9/9L99688GdB2/83u/85ptvf//O3fs3+/rB+x8fb/bj5scCnz1PfDlNl7vNbrd78ODB08dPwgDWWgFEzbC6gmR7J04TEFPHavbr3t0rQ8KISMP2qHbkY6OqGbPciNb9pFcDMLN4OlZlFMf0jeANuXXhKW7eCppYcywmboI3FOCcszX3ZXUzdbBIW3XxglW1VE5p7A7vzM9mhpVwG80CE36qg9Deri4FgLhQx57Eg6J7zNyTLFZ1ZDom17vsU9W5llhmTOyEyL6OnizLEuKImZlp7L7hv/ButBNMValPlqp2Ap+2tatpIJ/7aJmZpVqCXMqLVVfruUI05cmFvRV5RXS51FlLkWmTOZGQmRO5sDCLQhOxEAlJLFPmzMTl2Cq+cn+NOP9yzjln1eLkEQaxWhnBLA2CqXngdUEG05ymNknB5dzzM92NzNg9ESditaJaQycI1dfcVDsQK9GUsgcZBhqICG5Qh1WHRWw2snwjZ5iC2AoCCsIJMmuod3g4yt0UpO0IcrMI+IDJTYsuACSnshw5EVECoo5Ec5cFHbi7r0OqHpn0U0CkLHzMIsICqi5BdeCtvicBEpxjrogBJGc0OgHtZZMYxHRy6sYVEoHWCJa2gJUtODtlB0THvXtVx3V6+dQ5b6/8zBCd7Wcyd+c8qE8oclICFArhSPY1QlgaASgItamjygmAEDmf4s9DH4pC1sG251QAeKiPIak5U0+Nk17U2wc7VwTeu7T6usHfl9qJdfYfWrTGvBo7sqkcDnTnMqj7NQgwuKt7lnxxcVFrNYKpS0nMLAIi+vDDD9//yY9fv/falLhKkznk0FJhzsyllJubm2mayCznHEW2rCxztRl4/vx5XY7kFSto5cV2O00yz3NiZkjVqlrD4a6lLssSNQlwxtbjLM3DHUcCmLijS7DyEPn5hho66OkD7EGi7xZWGScwkbOzmcJg1Y/7+eb5zWG/wBEArXO7yk7jvNLmv7qpTLSOBvytaWuldjXar866byIp4HPMeZpEyNyxnZZqRA5XFqSUbub9Uo67i5wy5W2+O92l999/9OjJi+sbAKpGDV0WfeBOksRrW2JotBiQmdGTV8nUtRR19/DHx+qapuny8iJPcjPPoY01VQZaa01EgACKVZZHbAQiYngczcw8KKlGeMDVyZtFNAcvizMRU3O955To6urq2MMpWjHPpb8XEXFPIvFalZlFiJnNmqIcYLzIXQpxHeaf9dwrImcS9apW4KRKkeGWc0YNHsTb3oGhsY0FwKuQjndzYjjXjNrgByop2F/VGh+sU4De2xy4O5+7dNeTgtBGuloGsti9RAMoG1Pm3YV77lZ2ppOd0CRhrJD1SqYW8WsN1FgMmNm8jrNv3HZosWPJCYPYvUc7QiEttUYpDWGWlFLOAUp/xVr8ZbVbmsNXlEJnn3lV3uwrf/aeRRUA2o4ejaWyyqKFqRbXAqvdr/HlXaJuULGckmVqL+HRN/LpHUdDP0HO9ahQxk4nCDViV4/qJsytBEdTp1a8A2M0wixB98HRams0dWtNE6XW5WM/iNvqje5FNqYAIeSopUuTh93bVM2eCd/Wbb8bEUmQTbd3iTuH9CAiV20gCCulcNpdbo77w2effmq1PHjrrU+f77dZvv32vcvLe1O6/LM/++GPf/STMfImu+pVnJal3rx4IUR3Lq9U/XA4MLOGYek4HA5tWOJ9zVtomxr9Q8TQQtuM6DS5R63aiJ0ws1o/YmLDD0iIOYjWcIGBExnTessvEDQ9DITtHU8MRn0YEwmZ11LcW1p1uClVlQgppcTBqMnMPBItPRDTaJWla13IMU6fCiN1MxM+seW32e/zQURQ5+7jCI7klFLA4sdTYoVXU49clE4MFo2ZWDiA7o0LwUjniB63MwGAOUfaMXOKGDw7BAQhg438yuE2jear8gQAPOQtWi1MIhLJtRVBYGdqbBYxglY1AvoJyYEImklq8TQIQAalnDgxuKXOGhOTG0XFYTKrCnYmKFz61DJDZBICizDDXVTLdrslimBpnSTwzGZWcxJmwJ3MVagVIoYlhjoCMA6Fo0F/MrPGTVvWc+0U3mfSs208R1mOJEicDVpmN69hHw56MQCttpU7A8QtrEptGRO0+TOo86G5u6uCWdBzmYjJyQyxXKxqLYWNIDVcwmC0ExJETJNMZ440dgJqXcq8AJgiLacTUwPNSRv1oAEjV1PV8O86JLjHXGHuqkGFQt74KiNriIGUOTNVtuW4qJVQdFJKKYmbYnVCtOX1EsXF5x1I56f1yQPd7NjzL9ooUwZgRfgRm7BXdDgdBjHsEcEYjnfuba39MHNKabfbMfN+v6+11rIAEJaY6FJKkpPHlFdt3GFs7Fe+6T+0X1AbemTI75APZEQs919//c233pprmZfF3dOUc85kJiJPnjx5/PhxO1fMM0tmMTS7lJlLnQ+Hgwh7VUmU8zZPcrMcy7JMKQt7WQ6Pn3z68OFHQCsnmHNmRkqp1qX2/Bm1wo7leLBSQWfrfN35EBRTnsBU67LMyybl8bG1OjLQhkOwoGknWk11rpIpTyQpheZqtbiTFZ/3x+sXh8P+aAaGfPEyvSUVv9Z0fLNb4EtFx8/ZTjLn85911h9rMCG4swgLNEq4VUUttEkyJdW6yfne3atSDh98+NP94cmbb72x2+0++uijJ0+e1AWSkpZKvT48VhOKl7yBX/ymLw94fF5rxSrhaqnzZrO5c+fOdrt9cbhuR1IJrnsuRYMopYGKCYMFumnPobKgu2nQeI9KKaUU7j6S4QCls+hEHa82etuqXHTgcWiuq2AXmbp3f24wawYIudaaUgpqzGNZ0HV0Jka12h9qnYilWgHAK1qdNE2bzSZNmedlPft6hs5YLY/VwujaPxM1PtthD4zzaNzSAqHZAZ/j3cOMWZ9fgAIMnMKw/WnrdOLWH24B29BxVkbvKaI8Prw6p0hGUo9Dxtk3ME0tYbVfx3lsp8vXs48FU6DWWvVLgL5/Y9t6c50MufNI5i350PYFTgRROE3ZmWkafiJ8Hak47hlbTztlbsiHnHMYtHqeLu7nLKHrF1mvz1V84iwBte/Z8DoZEfUUsxPgZbzgeLtbMf/xGXcHrNulrfbl+Gvz2PB6qN3MjGwYKmOkiGjkusc4d3FE1pXNtWwhIluWkMYRIHv25OnDTz69untv/+L5Jx998Cvf+/U3XrtIv/3di83F1eUlPjjGg64P9WJHm01a5nrz4ua1qzvf/va3//zP//Kh+0iUI8dKQK0XiZN3dnvViLsEb1G1Vjq7UViRD+2dXjJoA2M4oBa3lkQ7Js4A543WGD2iPqbbzMLE8EYsf2Z2egt7GjOz9BcJDIAaevm7gF43LIy5ubGDrGWhdV/fGfRgzMKaCHD9Omsx0kbAT1Hupqv30OtYe2N5V1ODJ5kUNbIAMkfwo72BBng7ouiyku29mrqH36HjGvriOY3PPM/el7H5ySBPPKJo7OTBeOWmepzLdrulKZEwESUkFkmEKYs0lolgeyaQqRoniRJEIbPdlCQRaLudiN0NasUXp8xglhQeKjWrIGc4M+WcppTIYUa6lGoBJxNVMHkU9fX4F/Ez4J6JlYmdBETm3CJ7SAz0skacGuCnmiUGCSWCmQd1JREJSwn244gVrybYzBzq1mgnSCLAoho8ipS8G29uVgE34yjICTMzyQnw5XgEYMH8zp6YA/MRcVcPfnNZZx1YSomJSywAMgCmZopECXAyFRGHe+CugcCNuxq1YhnhIHdJTEA8y7QAYBJhYyF3RdyNKJjT1Ao1nrOx0MP9ZO56YkUmgNoZ8HK8grprMURyONelI6/UX31mtH3LJ5wMkTFz7b4GdLe5UEPxuTu1wmQsxBJrsbpIqyrm6nBnR2bZ5mk2XzxoRlq2g6pWO6J7/rijv5hZLdS7eI+2zb4MsfgV2z/EgU+NXjpu0XlZcRK78RsDvL28+I3f+I3vfOc7P3n/vcN8xMjcEzsej/O8lGW53F2UUm70esqZRTgo310Tw0pdDkffbnNKDCJzAd25vATtluP86cPnP/jhn3744QfH4xF4s3dJl0WnnGuZCSYMaC3HAzmW5aiqoFNdihAaIoIWSuyEGeavXPZ42Ul0rqGCxQF344gNuzvYzFyd4HWp++vD8eagUXStbRN7xa7sA9xHEl93Ha51yr+lzXukZR0HjhGhKM7BZKrkCiWrdXO1LW6vvf66K0wB98ur3XfeeXOzTZ9+8t7Hn3zw5Oln81w+e/iktpy4BPJGa4zm4zYD0Qj/NhNo9fOXwEp8cJC03znQVMDJzA4G8tAGiHlQr4nIMh/RlY+1byWONotzIZzuUSt4tQJbBMwFjilttJgb9Sq7bOpRhC/yRYNKnzmFWhkqS6v8wKHSwd21tqIgwgCRn6++OBQbeBKuVRU2WL68qYaV+zsKnwzgzWZzcXGx2+2WuWjLGDyZr7f0Oaz2XTcEhvGw0vlCAYgwMYeW2TxVq5s0DZVacKw/hQDAeqA6xnX96FgxI/TXrfKTNGh5mBxHbXD1hPZ3OqeqqUOrLonS0JWtK+hRK9iNPAK9IIeaGVel7AISkFVVVZhBmyadRFKgoGnURv5lt1dKG/pZD2D3l0f+1Y/jdQ0VcxCcYWaJJfDPX3qr9UPHrfqEMhFFBTLpNLmhfam6aoQkG4NuzKNQcvcISMCVI74K+ApKqu7mziSUqOoS6WKrFYaoNcNEp6rIYckMBvz+hcAuDoOKupMnkt7DwB2rtK9YAA281cJSCJoidveqNUvyFcT3lXswxosAdVOHurljVcKA4UySAmMsIp99+vAHf/lXb7/zrbsXd48vDocXz+/fubiY8L3vvn51dfXsg/8Q9z8atrxxklL2erRN3rzzre+88+Zb7/34J8tcw8sZWn3kALf3Ijc3MihAMHNFo+7rPe/+dACJuSExiU5SOuR2BL3P4Rjxn1AUiMia6Ikz4tSi3m+00GzRlGSpZuaeUmaIu7MTMwd+Fk51WRDgR7JSyjJXTpJYQpRVrVUXd2cW74hOb+uHuBfspX5ARd+ghgavbNTKY/rcKaj43RHyvpWhTc3mH0dPTxsuRG1MiCRq4bp5KcWZmNmgzMyJU0pMUFU3Chu1umW4eNSEh7lpaVnKzKxkbj5JUGHB3arFUCEM4PDDoOO9o6Jtav0jzjknH1lDuNzuUkoNyGdh45kmgllD8LpPKeVEJGLBuyJcTJmDPyFcO6ZVJTNLauTH5FGiL46baZPdA5mtLCLidVFyrbpoKcg54PHMSVXJHRxxVSdzJ2MnciQWBhFGtgNzr7HZREDPL3XV7SarWZBDiFD8KXL6vdnUJ58KEVVdxsJ1FQmFxnHcH/JmStL077HqBVTNmMTMFq0T4ITj8bDdbjkqKkbRKO7eaNOqRmojhwpAhD2ZOWUOPo9lWYiIOTGx9hA0AJB1Xj6Oqtu1wfxY4CBQksAGqNWqC5OkhJSYCKUW1wqYJMp5SilwceY+yBXOgidjw5zJLzr7zGpjnPb8+td+25NncS0ZqfnP/OXDY31DH57RjqvpBirBPeecVtyDsf2iyI0QSinh7Y66H2Hft6kYSRf9rCKcsg7W/f+H9k219cxG8+7piKFmZgyGOKKrq6vv/dqvBlmAdjLbWuu0ZRE5HI4ffPDBs8dP3nnnnXk/W1ngBD7V4gMwz8d5nnfbaZoSsRNhe7Gpdfnpjz/8j//7//qjd//KoJvNZt0fd1+WY611MyXA5uO8398w0Twf1ApW6MqQxSklmzVwibXWZVmcIEKbzYbstB268n163+EcDZ+0wYPYRkQkubtpraEFG5FXX47lcJiXpQJEEG916v4WtL+WfUQdS/LKP60lEjPvdpu3337nv/rv/nHeTH/8h3/y6aefXWx3Ocvl1fadb71x//7mZv/s+nr/V3/5w3kudx/cvX6xmAJoOWxrqbV+2bU9tr7yVZq70wqckiRx4cgEHpCBJtyYw6yVHiMlOp3964jHuktNYe2FwTrhj1L3kJZGT2VEFDz8kWhkZqWUUcpyWZZWvCylUePAWzp0e3RoFIGOi11jZvM8AyDh2NdLmYPW2uEtIN8gvqApaTlLxaQVm8M4PqiXAOhXToGvsfVw67BbnTvoJSzh55bg7WDR7WmK/wInvXY94J836T7cf500dL1+4jwax+Lo/wgnDpsqpsPMTDFOxrin9fqlIy43QjToOn0MY1vAn7cW/8a3l+dlPXRx5eVJGUf/rR06No52Kvh19dev0pn1gKNP1lBm1grGaAAaK/L5s4jIukd1rGeO/3N2OkmY8SItAgxfPaitoFvC6my4zkfSw1JijDG79ZR2pS9T67zBFLbQF4r99sp+uvMA0QAgETeDmVeF8PWLF++///5xP995/d5yLE8fPrqYro4V28urX/nV6Y/7PR+88+0NG+yoC6y4WDLVu3fv5pyvr6832xzQmBB10Qug1ROKKxMHuDX2QtMXuQM/JWbTW3JEm0fhIYVGwupaDMYQ2GpMGpqjNzMjOo0AuIk1mHvk0/ZPxowQ0TzPwTsonJwRO71NinmktkZPWjxphXMZLQJQzDwyaXHy9YVBxCPM2/vMdBLLJ+0lTXncVnrr0XTtM346eigJGrifFFZDtjs1LpieGzJkHcW5U9Xd4wQcC8t606aSrSgSOtk1EcWeSo3QolPTBf9RZtnttu2cYCJuecZevUZV3BYuo5TYu8wVFokcaIdaYUGttizHnWzTNIUXnAjOFGx1y7KEdjfPs1phmqpqVZ2ERahWF3JyJTAzk/djiMgdFmzFDPOaRJxRTc2M4VEFpNRiZt5qo1X3QHtpreFFap4DAKoWmrS7O2Q9ggCgRtS5pEhdzQ1VVVWTmlN1swGaMjMQ16VITgCqFl9MRKLrFBHESNXgSkRM0KJaK5vK6qxhmJaZYYZTlggCA1DdrDIE7C2p0BzUaoKxI4XYBMG1gR8AwAEjcmKwtLl3VweBjIlFiDNb4Lb7QXjapafNsDo5bgmwlSjF6rBB96q2b/GJEAUU8faOTOhp0GvFwpmM4rhpLvlh9Lo3UoGTpAC4cQaG1+xET99lvBGRlnKyaSO6Ht/tVbkBpJQAM4dqdf+qUbKfr63jQn+f2+38zLGQiPnb3/72d7/73ffee+/59QvvZKeqCqubdHHQ/Q//8q9++IMffO+73717defRk8cCic+IyOXl5cXFRcRVUkqbzSYx6lKefPbw/fd/+oO//PMf/vAHasfdxXZwdQKoZRGR4/FYa2Vy1XI87LUuIklrw2rewgKNPq9/jY+5nerFrz+GlaPntLwJrUoDYVVC0QGD4bg/XF9fl2OBgcBxjx49f1kzo/7n/nvo9n+nl9stqUUrECzOx8ibd6/pbiJyebn71re+9d/9t//4408+JaLjcU9u++vyo/n6cHjy/X/0vc2Wl2UB2WaX7t+/f7GleV68lP31zVIWdzBJGE8EiSLz6/70SX9Ft0/6qEdGGbhDYJpAg8Abs/Rut7t//z76OlxKaYqjVgDbaTqdZZ2oJczOiMIysztF8mpX/UdFLkFUHlCd0oYgzK6qcEqSmZNqOZa51kruAIvkeAh3plnTyGxNwhQMNxAZStgIqTGzMJu2GvTsDhYSdJh0Na3uzpKHYUZMymeZKWq1F4Tkzpx8iryNiNmw/weBIvXYTl8DJ+CGmcYUoN+zhXoGhtwdWHt411s7/jvCI9Tt65OJvl5+/SbeCjgTNfnRsFEx7ydF0AxESsJBrwoYMI3zrpaTDtPPYkIgxYiyRHCDYB7/04DCEQW9fK216az15ya++KW1Pr7jAkX+plvb1uxd53YiOLRZIIEwg5obe1p//ZbybbVarbBTNPWr9GutEfmqaE38tXsrgJW7aqzM9XFwbnaatTqiTa8fkVvFGeK9R3ZabvAIYgfaLvAqCGSJtZge97I9vjJu2WFNc0QP2fpKtJ55DWJgmdn5xA8VIb7+mTNPBHVnN2NVfgwnXBURRZphy80kfvH02fvvv/9GSTxtP3z/o5x3SFlyznZyXv/G7/z2i0ef3XzykRlZof31IT19cf/+/ddee+3x48cEmXKOiGhDweBk+EX0u8mK0Fq7BssNGGI1nHdRFs6hpH3Oooi6db9DA0Uz3T6bCUIElzOtQFWnKY/9691tF9WAyd2da2ksP2hAX6h6SpRS8o6jJKKc8xD40SIRXWsxs0HmHiY3GL1wu3djqjv7WudPmjkHOXZqSchjZRr8zHpfza+qWphATiJi1HV5QqYUJdeIyOHLsjgTOzaZKIxdQNXNlDnYfyzOAnNzVZa2Wo6xvP2sCBwROUHdgo46HFnF1MwSzM1qZSdH8aqlTjKlKc3LIbTG7XY75dQYwF0ZxCJMq+MEqlqIE4jEaUpMRJgVAEw3U845Jxl73oVERNy1LkcR4c0kbiBOhLIUMs/bTQh8brj22pOe3IMYKyx2hxmoxULFrKrrWmqshx79YIa5UAcAALHrEpE7uigAOaoZgRjBh8zdYdATFLRhzfvREsoNyNTIljpnspQStJppoikldi/uyR3mrdpw6gQpCZRYZKUJTVO2aqpaShGQiEDNAfNaa9VSKW3yJHC4a9WKBnyHdMJ6AKZqqoYFwkkmEXJPXQibuyVGSmJGVouZECOlZMFHvTrgfeWKG32k7iv/PIjUauURU2MrUfcMM1hoE3iJaoudw0kz3oKjKNXaiF0dD90oZmKHs0OFU1uWZlF2Yvi9zIxImJXThmgpi6oulJJDw8Fv/QClwdRnA48dnRzvx/+AYf5G2ks6xO1qMRbCjEN7o+9///vf/va333333ePxOKVM5DB15/mwF6FlmZ89e/ro0cNlWWL2w3srIpEqee/uHVWdsuymvNtkmF0/e/Snf/ZHf/h//Mfrmxd3LjcumRN1CCUAHI/7lJK7Vj36kUtZ6rKkNOWU3Ykgwt3P0ovLuxmEq1vIkZQSp5B4hVaWzFCJzMzNSZhBBicL8kEAqGjl7HhKGxHhZLXUal59fzMfrg9lOcHIVw70CF6Nf/8+tq+onp4+TDaMk9B7NpvN//bv/9cf/OAHP/zBu+U4H9K1m11PUmtkmfp7773/9JFOG7aqr99/IJJ1KZ89/OTxo6dVF4AdCrB5XVs7OFdwv7RvtyylEHdmasVVdbfbvP3mW6WUU5g1YkSt0ixG2IqZnYwZKbGZJSYiVi0++uOYpimY0s1su9kAUPXjcaFNA067O1L4pMlBYlJKoV67UlVFUs5Q9VLmSATqRmngwBpBqAihU26mlMydhARUTBctrphk2uymMlewBPJymrbuXutSSnGnqpVXzrJEzKDdZptzHvXsrON3RHIoFeNc6+FdHtp8/KejOVG9BtaRVpFVhlDfcOu5WwdwThPHjcDm1oz3c+zk/zoTemQ9/HYyfpg5yimNKwAAY6ylJYsIgzxIQM6fAriqTTmLUEqTiBCJwQAGU51rMICEYhoFgVWkfOnq/AW3MUS/iJv7uRvCzAYgvl0aNlu3QNwMjlvbuesD639f8RZEZIPIfZW6GWVaSFi4kcDZYOe2SD074RFi9kVyd+KzJBIReCBFCQ4yNwI7IBQ/S7g/QEqNkYmdrVcfHKoVDWdQ4As99geFCRFWck/xYOoVpN1d2EeB3PHK3jmi3F3hZOvV2KMjKw2SVmmlcSaOXdO0wZRsWZZad5eX19fXf/Z//unv0uXVa69fP39+PB4v7m7M7MmTZQz7b/7aP3q3lqfvv7c/lKf1+v0PPv6tuxev3bt3eXFxPB6JaNptm3uRCeY68nnJmYQIVQEKztqxhU8pJO0Vwl+m5n2Cxvyio3+HC/Kkn7cFACBCimfL8pYJQ0TB5Jo7V2uthTziNKRqKTVWs8CBllJqeOfTtJ5iVdWlKEqz9IPd16PSrocvDSLsZGbOLsxRMbhq9ch16R2rMDdP1NJLx1kWYmS8/jCUvEH6z1LBh3HRSBkTNblkxSuMyODqlY2rt00RLlB1Xdf+HWV0rJWYPjkla235294D8qq1mEaidTItKUlKkogASpzZvdZjjQ5RdpdIfhSAWJZlThw1D0yZw/Yj8qoLL5bSVObjMGCmacpTYoaFv4GZQKSeEjORctKqLPVq2jqTamVizqy1pJRku5nnOWoRRwqEMNeqps03SW7qLlMy9aK1erMDAwES9d/GigKC9ItcNejyWsZUj8xUNVulkgfrttbiZHNL8IIZzCylNO0mCEy1LrUtOVU3IvZSF2Iz96UsESAiVEmi5l7VkURYAK1VKThJBFCGm56IZ5f5ACPJabfduFuZlUHs5EsVAgsTrC5zSik1B7CJMAdFCmyaJjOr82IUGBpSK7EHhIVhRG5WyY3crJZSioiYurtLzgptuDMykOlSCNBaCZFuDHfnQWK5lvX9rAZR1EZzMEkkFwAOciUiIQJx1Kxyczg4wrUg9xCw3Bj4mNzAHfFBRGEfC0volMHHrla0FJEoZe1O5i0tE2Ohi4gk2aWLWqcyV1tAVoEgmwv3R/PphiskirGTo0dfhjwK6DV/jlnxslW8YqX7SsruKxSp9sRXfNpe9dDPucNL/fnCbozXOzvVvvnGfnZzamgKOJZFN7stG5wp5Xx4+vyt3/j13/j13yrHYqXeubwq8yEnXpa9I2f2/U0tS61FHj36bFmOKW/asc7wYlrqxW57tbu4vr6+3O5Mi2D72eNPf/yjv/yLP/uTR5998sabr6nrfj5mywMTCMCtzsejwY7HfSnl7tW9zeWVK8goyc4dBCHnREmXkqYMtCIT1ZQILEIMs6izwMsyN3JyVUkULiROVItVrW3nsLi7G4ghaFtKeinFJMi8+ezJZ/O+1AUwUHwetS1jH8m9QyF7Rfvriv0OneYL/hrt8wGYX7TC+x1e8d2Ixq7aOk4CIqml5CmVUnPOb7759vMnz//kP/3x48ePS1HJiZyquVZ++uQg/KiUcv3siIql2Kflk+Pd+d69excXF5LZyUDWICVmwQDtQZoCMJ9CjqNsCdDJfaNnDfzW4Ia3bC1150RkIMXrD+5vttlq0aV4tYvt5TzPtda8SeSsVclIwqByU1fyRrohoeuZwZyCmsEAN9NKTlkykwCIhNAQxeaVuAGMDCUl3u/n3SYDXGt1g3CCo1Y1dZGsbmBK06bWZVmWoKoko2ZCUCvTDXIRrrVokM0IihUotnkb2rtpc3WqW3U0/7WwrRxVpPVys00swlzmhZnzZhtocCcYXN0AYU4i7sEWQ2JokXYmJgoSYHOrMCcCS4dfedQR5BHpCjV5wGW7vsVr+xanWhVDlW+rOjSN2rBF1s67IGGJtDOr4bkLHdmc2tEQdnH4w93FqZUXDlcgAiRPriqSg52VWik4S5JBRJwkZeJU1Wocnmbq5KFsmro7QbabiySTqpbDMfwu3cBCZyV8ZXv5fPni8+grtdPjXjqJThZyH/Zhr6LbevG9OFrCxjM3jCRMkETOVJtBUgezRKa1u1dXcqjDSaLmrrVgwOhVaDinf90HFwAc5GDiRERqZl7hPFZONRVpKZpmRkkoCRRqpqZCRIIeKWMHolKJg0mcKZgGNKhQgglaICBnQsT2CZaYhQTmqg4Dk7BLlNlAwxrw4E+K8JaWlsMPaUWfzczhTKkLJyOHEEc9UFXLmV3IijmYJQNY6qLWEhwaw3mrviIwC0IC74n6ZF5xKjnk7nATbotb1Tmx1QWwzXbL5DfXzx9+9slnjz6+uHfnWI7zsty/vHKRKU1jbfw3v/1bW6902L/7V2V/3D8/LDcv9q/d233rrbevLi9v5mPabcBymGcOtJUZu4WRBeeW6hnEXN1dxg5TZ2bqtbJb4M3hcLUK5twdFu4OJ7co22bVHdZRPD16JCxEMD9BLYTYW7w87GO3WmHGgJZaa52m6eJiB/N5ntU958zh66tVK9zdVBlCRB51E0/2Z88+haegYo6EnQj+CMBUdEksLGzWDq9Atpp5InO4usWEmlrRhZlZ2N2K1pCBtVqkwDAjeCaqlmYVGjUXLROZWjOcCIga9TzAuTlPIcBUS60OYWaOACiBNrIppfZaBuSmxBWAV58yO3wpxQjTNBl8mRciijuo+aK6xBclpWkK8mmrrhQgBBER2W037dB1M62Sk7trrdyQVlHSAMOlup0yJxnmfjiIoxAeE7lHHRB2d9diEGbJkhhO6mo1Ctw3qU6IUkJRtSmlSSRFpjW5A5FcHgvCE6GKiwdKIfKA3YJWjUGh8Zg7XE1h7lVzSkKyhIUDgnkpS3MOa4u7xjBUUzCFoAw/OhGZ2bLMtaqZodFF9+PNXGHVqhhxQLFD/3aDmbbjMLEjzrbEAkAMDD8D5zWUliIl5iQRFCWRxGWpnNjNzU0NiZOIEHlK4h4WbavSFCkBEC5aBzlbT3DFlORwWEa6WjxvmibVecT2hxfnlv2z9jrT0KSpnwfd3zM+2hww8Kaamzby/M6ST0QEoSBqoPVFIpHYDykl4OQcHdiSjg5r1cjNKsBAcveALcQ7NGcHUi+cvAUWZriWk8DtrUnk81Dk6ag7nXl/Z4PAn/v6v8hHoiNygmXNW/5QD5RtNw8ePNjtLp4/fTbP8ybLclRdZsCt1v3+JudJ1d3ri+tn+/3N6w8uLy62+7klGU6brCUBRm5MTvCPPvrgD//T/+/HP/nh/vrFdpdKWTiRme0Ph3l/GCksqqXWkiaZNinnvLu8ECOthOpMybSl7yYWEk7ERk2vAjCsF/eGbSjdQ9wcLY17iTlJhMug2pjSOYpxuLnCkHO+3O0cenh+fX39Yr8/zsfFuvwB0IPnZ56Lb0T7/PvQvHPDmJkI37179+LiYjnON9fXUQst4gMgBrhUfPzRY2ZWBXNmcjNcv3hWluP9198gos02728WsxKwHPQ58vOI08t9WP9yG8y5ylwldubEZJttvnfv3r2rO6pRpyD4VAbZ7CLOPdHMHUbmTs5MVqo1SdtDUlWr6rI4gLBLSymxOC8uLpdlXuEqI7BaPHSvATDuwRBVCgZKZg6eqoiCMAhGHRXch4IcoCWoWRIxs7qparFCs6SUtLqDmVDUl2WuWqZpCpe/rDLN5sPxuBQhlx6JsqgULCwRf46sSwYrwqAGRZozyEeVFheAzIld0IuKrfLD1416e3kG+2TF6X8GxotmveLfrTv5inV5fMWDMAZADxyNY805D5uQ4IN/VlUFUG9T3O9oIlNKUTZJNDwicCLebDbjEByVPGMBNBxJs0nOluUvoX3xlll/4Is/dqtRx9IPRWIc+kQn/md312bG3FYS+uP57IfTvx3USjTwknA2q+YWKXXodvvJ5mPi80f0zdsi03Hz9r5I4HDUWrhLzHod01Z9ty88c2enrrC1UQNgccK02aXVWzfwiLv3guHMQkTWf43nxs2E2FqSXRIR8xZtC8IqcESPz+6/0hlPg28jPaG/7biO1eYK9zQzH29ujvPNPB+Oy/H6cH04HK6m7XoVvP3Ga/Jbv4llno8377///vP9/tGjR2+/9eu/8iu/8sYbbxw//iiggiICc2J2RGYhGgxrKHhMYUqsl8p4ygktCEeU7zlnSB5aa2i8zX8AAMjkQXm9nnQRGeQIKSVmUlWYiwhYrN8S1giNq3rQCkcVNrQVQxS+v/b89hXvqZ2KXhAUDaEZlp2qO6Buzc9FxCIWZUdD1+m1crkn/Y5g+PoV1itkDIU37SaceC3dkohGoCW66e7MShQU1R7ZyeoW9f9EJDBKAJgpRY50sP01GmkqphTFxgjuPtfC2ikPOnc0gJS5F153JwcTglA3oM4OrVprNRESZk7sisQscdBaY2ojRsoRtTCP/H4w3M19nmcRIXZmZskNL2xO4jmLCNVazRUk4XBzIED2UIyjm4iSUCwiEQlqorY+MpN6JLfWWrVWM1M3iVJCjsA2BB7Ygzoy5SQCmGpAq2lZligF1lQBxICQu9dSc86IDAQzYvbaEtuDjhwr0TkCyB6h3s7AEXnqPhhriQcA0swU6ubrLUAcZI3m6sLCFFakC7wEpaSwmZKBPVwRxORVm884UqFyFgCSExYbZl9wYwjJsiyBkWMmSVlEgts67sDMg4q9i57BF3i7rfU09DBGFJ9gtP9FHbk2Ag53I9CAxIReMn5uLsN2FMnA7wE+quf5udI/gCUr0Ry/euroeSBCph4gQDJhTxVNn2hHexxL4637694++X75pm888ZVx4F9M6zrcL9b69YE8RFP6Q/1gaUkKzBze8bv37nzve9/Zbjfvf/jZ8XjcbDY3N6yqnIMRNyAneZ7LkydPHj16dHXntVjD7k4MMnLXlHh3sdntNsfjzY9+9IOf/OTdR48epsSb3bbM87xfKnlVLaUMzVpEwhrN0xbOOWcUcybvJrr0qiTEKdz1p56vwU4gZhZe1fr0vFKVtKf0tDHhrpWbGXdXUS2+3x+fPXu23+9LaanrQ0X+JczXL61Rh/z9klpXo1Ut5xSFhR4/fnyzP4JZJglSMs5JZCqmvhSIwCtiBbh7JUc5zMfdbnf37t1lWQJFRURRuwg9eofPV9bH9DUV9vOdUCHTUkqvvfbabrfbz/tx2wgbhBoK7bhI91bUgzzcuwDMPBhemdkgANSqiHBiM6sFZsZN4ZiHaCYKEmYb/qmmcfWV37TrnusbQhtAWOnuzkQi3L/gZtbJmYRZmj5lrlCWFIIoJWGQNzh3RBh8zSJN7JGxtdls8iTBF+3wftoGjNn8PMbUTwZvnEauTQb1Qf68mRphHHQb9ZVT+cX7sevT7I0Gtq35YSrcevpQZPsqCshfMy0KNNAjiOJPt57CBGFnoiScE5h9iMeu/g5NZpqmeFzOuZYC03GvL3idX1D7Upn2edP0BV9cj/Bo7g4mdKyNd14SdoTSB+9r3N0/Zxe3ce+aYWwaCBuFRuwjRNyKZJ4QKE1Zsv7rWJ29e+2e3ilaw7vkqzbg2bdMtbWdv/4KE4c/SgZJhJq7JxELYvfhyXXg3HETb8ptv7T9RESCVn6Weu5iABjCjegcyW7tJYHmQa5depymI4a7L3jvzhftJUv3+/2TJ4/euHlR5uN8uKnLnnBXVqFUBh68fu9Xf+17+8PzauWTD35aVbe7y2999zuv3b//3kcfDiv95IgCiMzdosYKnY2/wxHnfhiHQo26qdmWrW5wE2BtmrkZoJGeQESGtq5WcuZMgATl7ajMalHMCJbS5MSmVdWIKkU00Ku7K3HYOk0HFw5/qIPJvNTgSYlQPtw9cVgfbRlEhxteZqyQ7vGMmT3bV/3XtenesCu+XmbN2o9oeXwsfCKxuogI0uovEHVEvg9Dyd2MhZhlYKbgfCJTiiVMBI8SVQYmRSvXZ2bHZY5vlVrGaA/zzczSMs90jrwPe2Mpc55ERJjIzUqdN3k75VxtiYiqqpm7jAicmnqN5OYhPty1+RvMAhoe6mzLEw8mrcRWTklKqkoGYYJIzjkWSi1lsF+IiDSQIQmB3OCVrRqMyRhqVokQ5fzIAYW7wxSm7q6qy8IkcUC2rRU8WNRpJHV1rA5vE/qYrktLj2nu8sQaY+35TiZ3FrktLc3VgznT3MlXtk3OKcAyUQ0LFFnmJXDosVxSYnY2rzATiQB1EclEIbU8Or/UCnLh1KLhFAzgtpR5mqaUUqAIcm4sbdN04u20VQS4iUHcbuFlGK92euXuTxqLYSywMW6nkbCWfddVrJMBTB3ZX2tFr9EnImosIgG0GP1cbUIHevx/6IUOtaBOI2amYDqtHquiK56E1W5/xQEaxZv/frQ45X8ZT+quB6ycICN9LkTVa6+99s53vu3Qw+Gm6gKYSNNRInWNmfM0udPhcHj+/HnkzJg5sFHVeT4Advfe1XHP5uXdd3/4F3/5f6rVq6ur58+fEntdluuba5pSynmz246upTRtNpN6ZUFjVVUNLQkAcYMqDX3Fgk5mxfo4dJOgluFWA6At9VD9m5yBBMa/775whxOYy1Jf2E2ZD9fX1/OxaLUuQU+r0V+xXv9Wtldqlt/gndcD5afNHuwdGEresiwOR6NYICdQkuBDypcX7l4XhYXLllgkEmgvLy8jPamW8wzKpsKdvdrnvWl0wM57iJV8U9Vay7TJFxcX8SszW6vXAApW2FAjW+06i4qggevrLBhNdYulmHO2uQVbmDlnrrW66rIszTpqSUMhhAnAvhzR5bZ1z7qt4DnoFCkUNCTmwmCJkIpbDxT3Q+F0sMYIqKq5MpMkAjwlMTp9ZZ2qcHV1VdUX3e92u2magqgy3hkYc3rajmZmTfUEGjLWmqI/FLiulKMHQfFSNJjOr/hKjn3pfhyfGYMm3fz2laPEe4zuFMlp/jU+101PI49hmXcmMAgHzo67yjZuRUSqNYoJh14Uh+w0TdvtttZafOlj8De6fZUxjzb2+GhDxxvjs246DOCv3JX4rzM5k3Tiq64cnZmpeBWaYP1SY42Z2TCDxxZbbxms1qGvQnPjcbcesfZ6rLeGW1l/EaddfOpnt2Ej8BPKdCUiajoqn7iL+yO4VyTmTuzkfqoujo49GWS/Z7PpTswugl6telmWp08fH47XoOqoWo9e9rOdcoCfPf10s9k8eHDvd3/3d9OUhS1zeXHcp5y3lxdLLZyEmbXUsP/ZESSTazFBqzjcGFJrFUxPnaTOIWRdiPWCVadRfXmiQ1cPbX90e1mW4YEqZXFmwIS4WwrtVkFox0hDbOIkq04tOETC+Yj2fgBOO2W82hj55h7tnCZmdhZGWk0KveSmAYJYXlcXG7oqfg0DuJSiaswcnAvaydXjZvFcippB6DRgkVkQ2ewihAg2NPLE7ohBNY3wp7qdfK+m4zW1W7/unpb9nHOWiYjIg2kJzuRCbmUR5JiJalWXmd3MlEngTtRojclB7KYFUIYkkswkTFE/SzYbkLkGvExjbpgl4pthcHpVq8XdSLhhOdRBEJCwuOtSF/cMgDEmz2AKTlZnLcXNIkwqDEpMwlZ1cIzBnclJyBkpTe5mVWGBQFczI0jOYmZOsfpj8pqeGp6Y2JkjodRhCKgEEawBhokIYPfAG8fpYuyBQ2gcZwgKjZ5ualCWcPyucgASkbE16WOuFrFrhYGTuWaSaUrutCxHMzDnMGsZxhFYdTNTMy2lbDY5MblWM7AbC5nVnCWlyB8uZqRKzLi42KoVdD+IV23eEnM6OZSbVXnab9RzaFdyNkfNyajNu9qNBoT/hsKHHzTuAAUlI0mA2IGA7rmgMXUFeDulJKmx+KaURE7Wbwhc7jUAzLxFo9GY5SIdwd0DqEOTuDvmplIM7A2+tH2d8K+fC4sv+OtqhPD3DbnagvXtNyZi0xbJMrOqTkSvvfba3bt3b25uzKuIqCqE1d1LyTlXU6vOkkOHK6XknLfb7fL8Wpe5lmJl2W6SyOX1i8c//eH7//kP//f33vvpxXYi8uub58xMhLSZQJzzxKChWTNzSkwOEoZ3PBhxqw7qwZoj7hSm7xD0fqrOJQFuNLNJJiaWYKJuRebCqLbg8mQQGh7HTJvC5GplWcpBj8fjYT8HCVBTd3xkUX9BYt7foPbFSuov/BUaRrHZhOsHh8wXYXc9Ho/zPBORTJMG+JkZzOZEcBKOTDzyDZKmlKSBzqSUcjweB8l8UwLCrb7y8ow/nUp8AS//9eQqbn3sqmf4N90y0cXVVYRhRUS9mkXMF4bKDEmkRT3ImOPb6t54dwiG4I40cmbvWSR9WDqUsdYqLQ8nQA3u3V/rLc6TmNkN2itkDO2ciMiawUxEWhcQgcngqrU2bxGhgCjqb7obuYODEy4GENBSwZRSYoZaeZmENyVWC4ovyTnxQrWoA4QWsh4K0PhKOF6HNtrMDA51q30EiN19MkdXS4bGCKy1ybN/o+BfG842YifV0JzQ8dgvTfFadR5kQrcOFG/FXGmYXNpHbDyRqNlgHAGHJFEQyylc4k6EaZpyzoIWhZHOpRQ1sepSfGVKfaVT8m9A+6KuxlB2jN7JLHlpiuMOrhZVNdDRfF/27D4hTO1/gKmlHjttkRMAjcBfh9VNHmxVACCrCroxAyNp1syog5y9x4RpZXQN1Yh67SXq7zveDs7D408j7ufspH0ptuVNcdxxMop8WffVUPgIe4o4h5YnzOxq5K2w5QgjgwhpRYXdFULiyA5uQThfMa6bGYbB7w5AQMc6X9+82O+v1RbTuczXy+HkuQZw8/yJX16mzebNt9841OXZs0cPP/rxpw8fvfnOmw/efCOlNM/z5eXOYFo1kMB9ZhsPZUse7Kl5WIXQLZiTu8BkYqKGJ/TmngjYswcsTLUqQMKdFBDuXrUyy61Vh1ZJjolQawVzSuyEWisJu8INDvNOnOvW1ODa5IMCUcLEQlNqpWp6vB1AWTReKUBpRORmQqyrcgDoYXycA14ChzzE6dr2oaiTe6IHQ99VtHYmwk/FXyJeq1oBRJ78ytFHeZOserUaefLu7uzkRr0PpgatxF1SFTVCIoZExaa+Sq2xL5h5pK+GFpf62zfwDUcNekZOaVmWWutmm6dpkopaa1RnYsqdU5FZIg3YVCOzGSBp4WFrOGmi8JvqKDBLDDfveG4ik1IiRZMuNtvaY6wwJ4F7BK0X5tS8sKfEHROBkhqB2UFgrYZG2AGvZnAoOxMMxA4n4aWoWQs4W6sxQKrm6lGjfFSCZeYstNQynFhhANPK7eHuDjOvPQWAYRZcl4G+FxEnWCmchFNqGIPmyDNmzllgq8URprNXYoKTmRICRswEcg9Qe40648EQ6FDiwGOcsaqIECApM5FXLaaQRNm5AESiWgCepsTMpZRlOU7TdJybu2jV7Es8vx2aMk79sYVC61ozRYfvw/2U9nAmWU4B5+YujfheBKWJaJomYh9FGiJxm3v1QmZO0qaG3R09jBzOHWo+VFqRuQfKYHj1zOzsXX/BJ/3fHGXi83rySs3vG3809ejK7S5xsxmm7eb+/ftE/uzFU8B2u83NDYLivxQFEFCroKnb3xyfPXu2lCMzlzLXuqgqsTnS9fXTd3/8V3/8x3/0wQc/Pc43dWGHRh5jreXq6kpSdoKWujaAncCSmzYMU7NateyX6+vrW+MT4n4V0RoXh3bRC/H14Y1V17aDnyJ4GIE1g8O0uquWUkoptRiM4hQZLHS/0Dn6O9ZesdrdvSuIpdSbm5v9fs+cNruL4/FocBEJeRI4tyACERGilFPDHIPJjU4VcVcG0vqHL+jVeXdOvwAtcjc+GU/fbDb3X78nnSgh7jA0SO66o7aawKc6jU2EkkTcuItcZ+ZQsM3MtAnqaZp6eln4pKqqwnRgYaI/o5R9iNm+JdtARcRYOMRsNYN77FwK1tCVRtWPRwSNipm5qhl8mpIk0qUN0VpaR8Ft88qCKJSidMZBNfZU26XnK4G6G5dGyPRsZpoHeOQKf5U5Xd3Z11fGELXDqR9TAFqUfq1dNAO49+M8aDxCldHxsYpaGJMFAISl1RJPOU+yKowcS4qZN5sNEUHbacvMy7KUUk5VGP2vIQH4q7T1kK4H/Evk4XkAdixUXlEZjyluGsLPMAInHNu4rQ9jYL2KrJOlr5WoODXwKnk1JuWW0sWQscfXfxqWwK2b3AoRDzEyArQYhigRERWNIOkp5sxMK4HT9k+8katJhIlWbbhy1s8d9w/zaahk6DK5I1yak7dppqW+ePb8yePPnj95fP3664fru8tuk/OJBAtetC5mRjlfXFx8+3vfvX726bGWtNl+71d+5f7rr3/4wQfbKTNgat7MoMZ9GoFpi0zqVR1mX83IGAcA7sbMuhoZW9ExBL4y9FLuObfuHlVq/Vzgu/uyLJvN1HP9DGCzWqslSn0gm5fOzrCop3zpVt416q6vfGe8Omf6xRH+DZ7GEyJ6HDRjGQyJNCTYrSXflRZrEogbKbobAtCuqsRnMnaM0tgp3agW92YP06jX5e7utdZOVeCqxjW8NhIgjWIapYzHQhqd13UVQOaURYijliyYPAUvW0vuNQJZrcbM5CkOMKLEkPirOxkIzpFIREYUpXYDopNESEuVxA0OQG6uBGJ3MhO4hANKkEmoWTsbNjOv1SO4DGKEVZMlUE/q7sKUwMwEKFwBYmGPM9UcSkFWyEDknCJqmBGW5Vi0bdeAn1e3cAmUWgxNA6A1tB0Ecy3VGmGmuVaiHv8B4AGxNrSEajc3BpF5Cw83l7lwMIlrlLImwDg1Zo41+0U5zkQUgCVVNfeUUmY2grpmEZDNywEAMSUWcovNZh3A4O5uUdAIVot6VS2DhdStupNZJZI8pZR41qJldi0xCyMB2MzQ/I4vnyidbPYkrYXCvd+ow0Ypo6bCGRORGyL/PYIwp0Odmrvx3ImORr455UzkwgBIiM0tqhcO6Ry7IqIWQwa1HUXk2jA5gWghcriiF9GOlx14ibHPXz54vqy9HLn9kjqKn/OIdZB5nR2+5tz+hqPEX/CyL5+d39hDm688RNvpjdaqCQsuL3dXVxcvXrxY6ryf95xZpsw1KKWSmaW+YVX1xYsXH3/88aOHn202m/m4L6W4Gws+/eT5X/3gz/7kj/7o/Q9+bFa3u5j3dLHbEdE8M4FZqKqqnaCVVbVnFaiWaikth7IcSz2Uw+EAZ+YU6mYzEhprV1NI1kNKRFAHOYfXyBzuZMRBFMjk7qYah1R7eQXgkQRhtZa5WFFoGEW+jvzAybFyYf8Nbt/oWvp6u4DXi7zpEJ3byeFmzgaj436+ebEP7A8lEWcOUgmgs3yvCpjHFm/T6h17f7Loxva59dr+qv12a3B8xGdCF2hqE4kIYJvN5urqioiKVrXmOhHQompm2zxFGXPyAHZ3H597SpmZgy+KTxvcmDkK9bl74lOXXcm9E/bUyIMLB3EiUJCpMCid6gsSs5RSTFUSM8iqMhHlvJRj0KgKp0jtsiCzIGZiY4TfF0Cgg0bwFmpaK4EZQTAJO5OTkSqcpiltt9M8Z3Uz1XDHUwMQrl7ptsT7IlwPEaFV4zsF9odOuRZWZxPXGL9Pl7COynqopiSI0hCtG+sFMH4eMbFbHYuEt9QU90iHAwCSRJLaqmuxCglr1txrqMWElGSckkMpzFMAIHnapKqpGcxfMDq/gLYehC84gm8N+Fqlbv9+zndpZS2vv0vdhYSRbqDWdL+XTNAx2i0Ker69iVtNRyN4WwYcgTgCvFGinq2cdf87mYSvXnP114js+ed6P4dO1ef3ZOuejVWEYLkJRuo3d1fv4OV4ctDrgdy6FArYsIFCOA3TxVsearAcJVopVOg2duM9D32RCYCaK1qh0bP+ryxwqFo4oWqr7lFKef782dMnj148fXC8/9pyvJxWO+61qwvZ7A5LWUrZbDa/+qvfv7l+/PTJZ4va9vLq9ddf/+jDD0spOeqOhKj1rpq2VHCGoxOIr9ZbG7yQzHB3gwZdHwKc3N0A3V5mjkg4uZmhIlAYzNJzws/yLmmU0iVzD4SwuaNW0zpAACfvzOhYHDYOBJUgBUlyBITNQSYsIQ3Qgf2KRj8mIl3DDNMaRAi3jGlUgor7xAKDmSUWwBhEoPg34rTaaI9BIDOKUqNR6sXMI846On9LfnbbmIkoMjTDnmjZtAGZNrBTy0QzGFAdqEbCHg6axuDFBu/CM062BioKlS65u1c1gNgzi7PWqlUNeZJGG10Ox8KMSZKIpCkxs6OFfBuAhD3nNAK82sSHScpQFxFK1Ne0NkYYNUlkTlbRhj4omuqAXhiRJ04ALFd3mqakquZw40ioFeLD/lBKAVPChsiZ2awyC5kyM9w6filo4Z0FmYUoPGQqnFDtuIS3rGWHxuJqaGdKUZxTS42lFc6xtWp7mjY03H9g9UcOFswlRcxSgMZlzE5GxtbWwVqUz/O83W6ZmZwHkU+THXBmc6d53gO82+1SCr/AHLWpQGDODq2LEXlKQSyuqQefVdWJmr9K6+FQwvsbZrOIhPZ2Woh0escvbUPgrq+cfiAEvHzcH6tU4dXXT5FbplZvTURiy2FVSc+gQ5SHa2f2MyRz3JmIvHrOOWJ9vPLIhssjjpNbx2e89ld567/W9k3ScdFfhw2MlbMj5k7dyYNi3Vu9iiQQfvLscfV6OBz6Ym6rqNZqx2OSibKZ2XHeP3v27Pr6BTOVstzc3IDMbPnRuz/4j//Hf/jw/fdESBIT+XY7EdGyLBFMO5b5sBwc0FpT79t+v2dB0RLJCJo2ZV5saZ6mCK1EErJb123cQVj7Mr3DINvP3XvWtWSOU0RXlRjjTHIzESEhqM6H5Xg81hqPibqgIVfbBP2CZufnab/QZfPNNlqh1ksph8OhmgYaqAEL1cAENysFzBQBT2tlMhzqpHWZfZpqrYM8YmhyQI/lrgfkpFGdKQEjFjQM4BZASAlBoE/NV5hSMqvLsqCPNjPTqYB5mMoNyICugDK39Dx0B3wsPGKU0pSSlARA2PNRsCDWpFaLgFXOGUaq2pGMzfcff20b00xa3NhYwNSwPCmlHDVmSqm1Wmd8CeVpNHNX1ZzzNOWlHFtiWGfYmqZhNyLnbMDGebfb7bb7w2FalkW11YHMadOGV01PxkxYs6FsvMKT0k/2ZorEkfTKjbbW79cXb912fKYfYWcn5vju+iSKi+N4WptqdI6uemV/Tr800aqkHa1Kp/Mx1klm4XBWdLLJnmok1QxfggT7RbUvGPP1z7fkzC095Ivvv/7Krals4c2vK11b/OsUro87ryqdYT3vHdHGL73LOlId3nxGRy92uN/p/hGTHPdf/zxUrPWI9bWEWxftHJPoDdgLIdGuhtGKr3R8TFW9pSowAOiZl2HdsabgrekzzM7w6KuI33o2qdO+ULC1mS3LUpZjWZZ6PCwrA3hKvN1uHLx/cQPhi6vLb33nO4dl//DJ48P1ftpdTNPkjjisKeonB1MZtagvdR/K2XCs2uhWM0fdVgrtKfx4Cq6o1bgtExHV4sw21smp59Pk7uaVQJGzygyRXCJrhE/rM8YtKte0i13Pr7WmPMUqdveoeBRE4d4ni4iiFFzMRTDpxgIDr1fISiKt9HxVHbQ4Y90yc3/fUU0GjUmjdzKGSFUjcayp893PZo0ViOf5KEKSWVW9BRLPgBJo1FGuBqsFelozYXKtRairrdeSmSVyjTKwQqnWmrPklOZ58ZRi93tUvs1JmlHKgUoqy9HdN5uNwpZZN5vNZjN5lJGI96kFidytVssc3kcYImXOLcL+WomI3MpcWlQ2JSIWYSGptbnnU4CBy8JEuykDrKWqqprmLLU2T1tLUxFW+DRNAV0zN6hN0yQi8zxbWSBpymJC7sHoXGGVmPMkZdFQgmopNPjrmmPIiWhKIxXHmFxhDSU80i08Rd64u5JIcB1HzrBrNYaISGIAiRjcUqfImFbBvd32MuDscE0ppWbDU85J1cyrULrYbQIXsRwrBai8Lokl50yEWrWVDzQSRhJpYo6ZBWI0z9UagSQOh5vNZmNWpyktagC0elmCGaqlofUFJ+NwQFt82d0JwQJzWprSntj30onB0okkija18JY3SPPqgO9qXAh888gep5yoB6gjOKM9WBHQUCJyq0M0jIogRARwKWVKOag+xoZve6oXK49MYOv4PeC2b+Kvo31OVvDPxES9PlRwfgb/XH38+dqZ5tdAQZZzrm7TtGGRzWZzc/PCya4PLyI1w92r6bIsUcNDOIc8vbq6Smmal0OeJGXWujDp9c3zd9/94X/+z//pgw9/QuTE5JWqLo4tMx/nhZlTmg6Hw/X+hhMJpXu9b6paajXYbrejZEJJuV7dvWTIB+99UpZlt6VlWXLOklOMJhGho8t8kJdEcl1feyISaf+hytTOUsgjZuguIGNW1YClllLKUmGNHh89ItBGj+xvoKH5FXXQr9XWa3Wte32Vh67DIP2Tp4INMRcAaq0PHz7kJIbQYkFEQmSNIovh0FIBZ4cGyoNM3cjoeFjMmk7Q2XOphVE8+jBW++1Samd6xtihraQE3F2tbPImZNey6MXFxfZiF168ZTlaJ4S7uLgopbiam0WQz0xrjV3f7HwiYqKUUhT/C2NYUlYtXhVAJRtKuaqmlNhSrQuAado2SHPHOYeCEjHGIHEhos1ms9lspDth3bWU4t0mH9Brd7/YXTaFjClJChg5R2Z+agiLTZ5mm61q1OxpNYRXQ7fZbIouu02+c7kLN67e7Mu8mBokPqmRfWQ+UKgGpg4edqKIcvQsp77ihpAcYfa15Pz/s/enT7bkyL0g9nN3IOJk5r11a+uu3sgm+Z7NW6h5I3vzZUz/u8w0Y5Lpi2ZMy9iYTCNpnoxDstlLbfdmnhMBuLs+OIDAOZm1Nau62eSDdd/KPBknAgE4AF9+/nOb3uRmNodudyhtiJxwGlyV8eLhRzOLPL4D0N4P38Mw44my1IMHBzwOiHholAmJzN7Q+MLEquZqhQJfFiBAlpTSkjIRRfE5slEQRcPNwczDAvzDnBRXJ8L15zdrZOgY86E2Lh5jNVob1ZGgPnnhh+oiXfczNa+NDAXXy7PdP6KCdPsI4uwOcs4pOZNWD3yQus7PGkbpCIiNYEB/nXm0j5O6SRQH1aIeAmmHzMz3mcV1/msT9b4jzaGIm8UVjtl42dDW2I9x6PoSRMR7sZ/YbYgoMQuzdqvVvYWRmiEtbG5RjtlcnSlQKeHFMzd06AqzuLWb7vsOYVU19XdffKl7WSRt54uVHXgV3T4/Pi2nh/fee5/S3blY1fLxjz959/QW9GsR+eijj5Z1LZctpYRaAz4R+jyYGgrcGiB6jMkYQABhDAINF83M7Gxmu+6HOwlAJ1hGUFLBY7ETk6Skql7tWlCHlj0RpwXLcQTrAxFWeqkYb+lRrSwNMzNblIBpind19xQ8xFFklZsTIaJIY71P5FtFqGW11Fqt6jAmpQsJWkq2DYkiouDcCgM+uGWPt2D2nuvu7iI5paWYllLgLCy9MKqkdCyHmAhVrZGTLJSzsMi2la3ULngWfOZmKkuWJKpa1YL1Vg0Rv0wpUSMcdWECKI2QWtQsdoTZ45ft6XRalryAyK1qgSxLzrmUoloBGgk/cd9aC+BBqtYX43G8qQNkY39JiQNIFllG7g6ycEnHqkRffkzgJMS2bcXd2YlFiMzJ1dUGs0WsZCCyRZ0pPOKBoVcvY3N0d4GSeSQbxOJihru6ou6X2vKwPbIXqJGqEyNyR5udNttF423b52phiuvkeGNmbWX5wJJSK24UuAAishn/+aKvjpkF5AJDoJeJyJib3tuyZGP+GlUPWODNc9x3aGu1VVJKg6klEYWDoNaqc9Wwxiw3e5tu1bXRQlUaC6NvEC9ros/VhfnXYzzN3dWGdzNgJ71jqlq0NFuoVisFRHNEtPMmxA0FQN3LtrVCx3HOkRw5Pxw8qD3/Ybz7P7M2D/WNxvBPpxHRrtVrNcJ79/d3d+t5uxTdt7oHRU0pJfbZZVlzzqY9eqxayuPlcqm1itD9w3K+vP2f/qf/8b//7/8vn372a8BYyF2q7ufz+enpSURMsa6rqp63JxFikTSdRuu6OmV3X5bsWhH08yTsskjiyekDNB8w0QtkKoH2R6vi10zWG6Vt/DtNEFRVdyt1u5x3KDpWS/Avtd0oZz9Ea5pBBfFRxC52AzYEBYlT8JWNKK4haip+U99mxf35c59/Pn/iDV3VMLEfffzB+++/b2bn8+NQLkcHzHVhKWUL9Ysle7fWmlUJikBBrTXIkCDOzGltHOYYsdYUPIvIee2Oy8Ob3rZ9ptg/U0phvrYLuqUH56AwhEJVzRUAOTEdVjQRRV4cQYLJIzLBSqnUDFGJm4+gSrRt21St7sbA/enO3rNQ40opux0KKEaCmbsHGzbBW7zrNtNsGMAAMKEzcL1zfo1ADtv4AHLHLD+zokcWZQuGTFZWj4ccn4zn0owUaP8SgJxzWL/MTEmWZZGUmHnNaRx20ZaUc85ZkrurFTuoImnklosET88BSf0q2f7e2z/mWd7d9M/bjXI1Pm+yEfPSi9l+pz4M/bDZjNRAofGniEFZJ30YufrNIXWdMoPb1/dxdjQrArcX02Qkvzwg1/FYrbEz0CyNmNAc0+C4u9uz8fS2jo5iHzeq3bizT1Lqk0toBJCYeWifY43gmbJ9HJoADJ9//nlYs5/86Cf+/gcPd+swgN99+faDD3+05uWSDQTlfN71g48+LkWF+aOPf/z++x/+5ld/X4p6KQFtRQfLxJJkC9+lA1dZikNsfHIuYBwFYUNqc6pK92DOQ+wTjdnzFhFdlgMKBHd1N1PAI/WDTL1ryXFzaZiWcM0QiEzrPGHejJLmnW/yRk1s8GwrG5kXVzvYbNqFqHTbeOwt1C1h5iA+Ckoq5c5lMIsHB4ETGhRhVopGHiURRdjMQOrmRZ3ARDrRVodzAdqeFURZ8RYjB/sQJ3d3T3Dlnu5LMBhTQspspTaiLebgE3ZTuMBNtYrkZVlApKpEWJbcXs9YwovjFnRH8EoU3BmxgzsH5j08rWgR8Map6d5YnTTkQ0NlZPLTkvd9r2U3DYgXCYGY1L1ze5j1GLrVSm6pM5lVmJozIQlXDlC/MzxK8LJ7kgb5ICImZ6ZKHfjkxhQV3MwdXNuWGjRacKf+vz5x1jivPTD3FGnlauoOMoLnRDByGMzgFK9/u2dprcfuQJZS4jgjBTCf09Pbd12Z27g2q8/hahL1O8J15x7gZ5hFWeMAQq85353WqPym2uh2EMy03QiMKZx3NTA5kbNQC9m3okQhwZB2PdFU3uu2BVxcAViv3jaWkDMbkevh3QxiROubjvfALwAPkNKtL5aa3uUgV3dvfJskcbqnlKJ6JEW9jX4IDdcAXuj287jrt8pCfFHfHX/6Fkfs98MO/eKDvs0B/zX9/17asz6wW3OELWtaluXdu3fuauTLXXb3y36Bc4SYmLmYNul2rbVs2/l8fjyf11//+lf/5//T//G/++/+D59++tvXr1/fP5yIOaXktZFquDsLSaKUeLWccwaTTMDFlBLJKHtA5spB9L/XUnRUYAqVHQCBoqro7QCGaEoj+Ikzxd07t1YMQiyf7poFoBapj/tl01LQkwLo6s5AW5v2L4Q//GuWzO8rqFGL9bhnk42275kzCcQjSBbFIAkUhSEn2KFfU7yM/tz0dlY0h2nd7tAhAy9ejFaVIAEA05sP3n94eAiDML5ba43yoomFM9jgalqdEoE8Cj2ISMPEBZ2MVYcFYMxqFUSCAJXgvARlSUEx5e3cafkmZrbmxYf7Hy20lXPetu3mfaOHkpK4GMOsWstEDSMuvutmRkZR4sKschIQXM2qEkNEIi4kLFatTg5Zd6g6zMVtYV5IErEwJxYXV6tEwpzcIw2tcoOjBop4gvlQHC4Ys0bURv5mjsYFL04udUR9PMVUnSJswOElZ2olZ5tnt+k/GGt/Ng+ulWwfajcbd5UUYcB7n/0saTjfG8+fquoem9XoWzua2b0jVuLUV3hwdKeUAk/n11HQP0qjXnqjj3kPwR2/on8S3/hKR+GYppvPDw0E32wAB6QR/anUAaLeZZ6IhLhXvIanpdYqTsLZ3WtsMh0JMqv+QYADmfsf3EITSBvzW/feT1YoXQvt8zdtplTEdfr/zL2hVfgYIvdIo69OIByYFDcCyMLYCD+Yt4FnTijhPLod6hnSb7Pq9VJX52Fpf+2vtu/747t396eHumvZ9lLKxlj7F8/n87Zd1rpnoZRyJV9Wfnx8FPn0vdfv//mf//L/+t6b//Q//7+XnFbhSOocD4r65OTMDuvHM9AyvSME1ZMcLd5aQdYco4fdftPzsYw1co1Ldfer7OIwO8ncmqYaYKIo0eMgsxI9kV6x7Ub19cZgHXyGSkQsAMhh1mYogkORtQuHqh0pWmPzidMk9pnBUygiqeF3jIhMLaz0eZqYWbUxkhJRZ09oLD9jTmNlRQZypMbYvN8CQKQQV4uip6lxHISVJSkJSzE11yQComq1FRCBB+tbq0IAFhb3VsquW4kw8yQiZtWsdsY6sEAkQZgFaoURQQ42s207d20vttxDC8k5j2xV7RzLxA5FoGgCMRVjVHUf7oRBw4AePiX2KPHtSiFRZnXNJ61WYWRRPxwOJQdMWSBICoURYKpeyiaUWEgoGVWkHBgAwHJisJu6EMBUATMXcziS0JKEJAHw6lCzWgkwcqAVORzuLAC9DMqV7uIBlpvKAsUSiSSScSgCcHUzc2IS8UDSTc3MmEEk7koU/nhTrQEkG+pRIATGovLup8k5McgsrFQCjAjN/J0acYvcDoXGa0N0j9U7Nq2+rtvOSMwkDG/WbxSoGAfqgMSEQLd7ThSIuG5mVwfA2BBrBwUd4ynNfB3XEJGOTbNX52he+6E0TFnN3jXF8EjlnIko4gkh52UU8HzpzOgv9R30gG+8mL6VDfxC+/36813bD3fzF3THWF9EzJKWhZjTspDwtp0psRO4tp1E+KgoMMJNccNStr//+7/93W9/9f/4v/0P/+1/+7//9a9//fNf/PT+/h7wtC6qZcmn4M33ziiYc15O2d3V7Nin48Bzqm4wEiD4brXY47vHx8fHWSudX+RGZx3X8DVBtIcGQS3RyKwh8L1HzFSPLHdMusiz+bDvNxv8n367GdvfewVFu1agj3YYohbpRQcpTVhONNtO19GP5wJw+9BBytUF4LozRx/GfZZ12bfNc8MdrOsKYNSXjr0r/O6tMEKge9KVdhIGcGzyqpWIcs6LJGbetgbBVdVSKoDEEuAgCkcnc/A2Rww2ts0oJuRT4nHwSsQjQuYbAxOcOTHDXYxUrQQAm1r5ie6TajkpTAJVmFp3FcTSbGljVQ+ZZ07LImTVyGC65HS/5Kcll1Ko0LaXWRNFD1zYC3N+TEE/7Q8Ti66vGVL3XBrRZPLg4u6nVVMfR8YQjVA5QXuW2jh/hz3Tb3glYO2M7t2kXudmQNNFJFFnJzKL1MPY7qIDQm3YMfkphtiH9Rv2s16/3Q/a/Np4m9s0tt9g4H1NGzdBf+uYC06inYffRwLwd+lwzEQb2wkT1/SilEWE/ViPx8x1SZtfav4kiKZ8Mq5uOnA85tku5M8qkF//9UrMAIRBTte9UjgURDQvmfbXdnYfPSEigddur9481KdI+3j0eKnRpflFjmEc2q9DtZZSqu77vj8+Pp5OpyW9mh7kj+/eOaV0eljvF1PNp7u79U4400If//gnH338MYSr2/2yklqtFWpGEGpl38K32XvQdcrR5zbvMfJwgipIGv8rofkxRwQSgE43c3elAmcwzfq/WcPDtkiMTytP3AwWnFgglqZP60H6HaaCszDoagb7aB6wHe5OtyC7pus4EDr8R0QSS7BajIMmVJcwa/oMHqsgziCRZdqjkHO+bE8pJZ7sIJtkpqNshqxa49/2yIFkCIfZ7t33whwcjscmbHbED4bwzAu5dZIIoJQIGhXqQSmlQUbIOYWhRQTixERhn4ebFqBaa9RvDUiSqpZSPCwfeLN+EUBTanTY5k6mplZMVXNOKTJPrMkQMYJrQVp+Sk8TgrsWIZyW1PbrUq2oVZUk5BAiBrHAiIXhEKsmzImJUsop7bvve3XXzFyswsHNvULVUUnNKsJjGqh4VUDVKoOE3I2C/qOtWAJT8g7KbYKl7uZRayfkLejx+m7hQixJUpJYOMRgMJg6QmDaIGBAQERidyZmmJuRhesrEbs7Rd3i5ESNfrOUWmsRYhdQSsKke4162e7dz2QKU5EU0pxTLlrP5/PT0+O+76o+pzRPXbrePcfCIoYw5yTd3xwDEvXcwmccvuTB2Dw7xtBtTPIeB5tOBnd3NadecI2JmRPA0hnFmHLOsd6G1RpqXdNUxwoD9/jO0GbcfficaCwP+3b17r/mhO5X8ID9f5vWrzx82N+pfXN/XnjW93nl790mPSD80AxQOHaWZUk5n06nlJKqSE7e+RKXZVnyKaXc2bCVhsItKHX7X/7T/+fdl1/+p//v/+vutPy7f/9vfvzjH23bFsiip6cnCIuQiERGnLuaVWKUUqopDHkagW4qEHcCEoeVy2ZVzcKgJTN4rQCqB5WuDb0KXS8AYHCDtkMIsVNM3jRzVe2JoyAyq8pCQSkfmYugRC/p7O0U/mOGZ/4IjSa791vJ6syd/kL+bZy+B+kgqPPfEEXdPr8aYru5lfvX2eFzb7++0WRZcU8ejuCeBOOae0rpzZs3YC6ml7Ivy5KEEsRqVM/erdSHu/tlOdV2OiOlDMDVlmWptcKNIxeNGpNKSPvwgc7qac45dI1YOIllp32zKFiQzaxojfVFLdSJGaUca6FG4jTCfc5Q0uqqpq7LsqiTkwBMJJKRiGJjNzNJlEhc1R3MKXBXNNkmbsRgoZKY1tO6LEuSDLCq1/LIzJHcO89clOc8Zp8auqgLw1HFBod6dzVNY3C+SvaESOJdiQ47tTeGYJREPPzXLaI+gEgRURnXzEYCdVhys6RZUq/4q6rs3sxXhzPlnB3MzFlSlmYDR/SbhiOGGgYdLSLXKhGGAdyu+eo2a6L/yPadTrSvvsNX/nWo2sMeOJSaqEBiDm0a19cv2nlRx20TMRNLrygdO0sA7ZnF3XbtEEui7iQCCQC42nhilILvt+WhNzWvit9633Ddk8n+ecFBA4DYHRpa4XQxyDtWdZxfAEhHx9zdILE26IiFRgixhHbqzITsPfwwN3ZARx2wHgo2G8m07q4wc6OAiE9EWfOYJ4aW8uWXX/7mt//wq19/JDk9PDyMp6jq+fyIlE7wtGQR0VLfe+/9Dz/86De/+TWATz75yQc//uTLT38zCAIN3hkBuDN1X8+yY+qz0oEWafZx9JyaISzodZ3CXmjyIBypiw4nanG140FhhQMeudBtlsndJafQq93dQWJhjVmPr1HYFsIkBGZSt26mIVIbLLZicodrBLq9QeeZyOxwuI8BNzN1DMcQiXRkhGZJZhbWe7j24luBqo81ZRYpmTxUKUQooW02CRg3P4pUDwM7Vmeg+0yVAEIDOQucmdWtlpBMJz9ym2NQm3VGGNyKBmJiYnZHGtBTFkiiEebNOciymaPOr1n3+4JZAI4ei4hw8zWOCnLxCnH4nU6RDB0FhH0aoOaqNDO3yuCeY61A/MuAOQyHEcjkRsHEDhMmSpKWXOuQr0pEAgixsLlD961Np5q4cWJVJXeYOhGREDTwyC0D3rUaVN3VOIkQw6qDHEYT0wB1N8Nw5xxBVZgQN57yab8Zm3FsW2QOEUlMjR6M5vRa1QJELSUQO2Dm6kbmtXNNHUR86PHM2DjWNcdmFKEAMQSZG9AALUO85q1ndLbWqo0r/Fnwc+zz8U1hZqbgBk+JRKTj9fsaPraq2QFjI7WYumHgPvjfxibuPa/bR7MDa5GjghE3HpTaEePozh4zCzcRGXnPsIpdoPnwiBDFKCPPoWcMf0sNdYzhN13Ff7DQ3D9eY/hjta42Nb97TECQH55ePQRvWVoXIjjB3ADktC7LOpyRIf+lFGJ/OD24229+8+tPf/cbh/785z8Leqq7uzsRuVwu67pa26NK1UYQUMquXjtb/FXfVFtqPLG4AkpukZ4sTAd7Z/Ps9AIGI9g7aTCBqetl6KYATjv+r1xDwLHAdf6Ermww/5cW+/0h2nDeobvkbn85IiRztDa00W/YMb5mSzn+FEHgvoB5yhvkkXdKsFLX05pzOp/Pr1+9/uSTT9ZTfvc4sKzHnamHofxgDZSgfrhcLnF98+73hDft5Ri8p4ASUZTiG/tnBH1zzhG5DfiMSFbVWg6wqE2V1dGCdQ4wO1toYjBYhMCF2X1oVz23BUydGjc5I+AeZmRmTIAjpUQT4F9V1ZxC33NfEt/fne7vT3ePy3nfnFCq6nXNzPHzzabpQ5ucFPTnUa9x8XxDTMFJd0Wfl7hbHGPeSVBvvj6v49G9a8m8NS/5qnrCVa9a9OYqiS6BXiAx8Y5MGRPNHVzj7lJr/Fq6OvlcjG/a93USPb/PV93225/a833Gv+OHrpxAVW0qyf71nXx+23HPiNg6d7pjtVbuzozMhwxYK6zqAHhmfuZDomYR7J8cbrubbowL5muetxmRRJMXIGI78028reGmz1CPAw9xoinLd7yU8OF1GoMzpjU2nG4mWRjA89T4lC2PZ8GJkFhKMNNaq6So4l7GBV988cVyWt+8/yGTu9a7u7vHrZDzw92r3/Fvz+fNCHlZ1HDZq7gxrt7I1Vox38kPOEjy8DwsFCI0wo/EIkJdrigKYrmDiad4OxEFLmPcZDgfiVOMs4+KQcJ99KJCblQGRUN5IOxYRj81Zg0Ek/sAdJXEQdRsQqsqE6fJmKZh0FhkIV/PgpmOcF10dVkWHdXmZdSm9iWfJBFxGjLv04PGUHcjtuW1cWInMvPq6qYkzJIUERq7Yhns56DPuNF5dg5hDgdKKZtIFPSKNOJ93/ewZH3YSBMvYjVjOKDEJJxSSlF5lQL1JAwgstQiIJylxcFi/00pMZNZA0S1/KRplw9Idq27GauqI5BCiP9VVa8WMKHEnJa1qsHUVeGGXoIYkZcAKnXXXkFbgJyWTc165MW7byai3z0mGD5mJJbKsQCDGl0ZzMTWZMHMLaKLemXjuXEjqqGxjIdPS9XdGUQsgU93U4/860nHVSsiEjlaFBq1ahQZZaCnXDGRp5TgpqpVlYiWLMuyElEpW617rTWl07G/42rrGZA5h6/ruiyru9caUOgDizKCSg0CTUREUftFRDgtAVdjbmXA2itXBYLxx7WFfyNGB593Meo+KJ6O9uFjRCvIPO+q0T+6XBo7ZbjTerTNCOQumtFjYuGB6xARdncIdxrS6lrazjuhbvCPbN9Dhd6vigN/P5nA/3TafMSOFpMQZ+HDw0OkV6QldcpWEAknAZO6WdEIE4lI1T1Ryjnv+/7ZZ59t2zknUSvnt48EOd3flVJLqZHSBvJa91hrAKqpmcaeNhuYsY87u5lVJbiTsakGzypRCvn3XuGNAn/YKXO6M6f/072BZkbsZgZzZq61pwDAG81VW62uGmXRxyjFVtyG6oecnH/qbdaovpcbzipj+zkk4er2FgW7nvXG4bf9GWoTP6O3eaG9dFoTDaRAFKI8+DzevHnz0UcfmVlg+N1dO6mkuydiXpKqaq3hDMVkykYtsSU377uqOlQSMYO972B2KKN36+oHD0qzTFJKAaV2GDmCjiIQYm2/jXCqOdzNNbZfJkGwTpIRtQIwJgZmioEiaFUr5u7CKZKv0UND5CMBj2dKHiKpui2A1WKosAT1LOnhdKeGd0+Xp22re0FX9N2GmXo1L13tcXfzlusYZ1OcRFOBwMlMnTWt+bZE5G7DAB4K6PCaxWWBEwnmlEDe3eQ+jIuP0/zq3UOBO3wlZJ5ZpPnWnYjYB93pVRt9jmZmBhdCmDOzYiat9uy3Wmv+PdnA37V9y4fezNfQbzs2B2OlNOvl2R2+6oQONVyImbgxBrQYBCt5VQsrVyQ5m7lLJ8Fydw7J6YYETbWLaGBPnsGDacqZ5Im94jpY+sKwuDsTKTRKKzmTc1D1tszmbpzEf7gFC2k8cvKkHDj8UdlIEYjfYdpMMOzYD9kdaiPryZlDGRxzRJPPxXtoZCw9VaVi63ofQToHqpV357cf9xf89LPfnu7vfvHn6dV7ryWllLBafvt0JqK79Q4k63L36tXr3yRRj2rNBGagUQKZWask4nBHSw5pu2IgFhvxIfoeMbrdLYum4XrcvMc9MchcY1vDsRIR4Zz4tS2i2EwO5nByd2ey8H2TNHlxMrKofRt2w1TLOabLyTiwCDj2olDqowjzJGyRRsxdzm556bnnTeB20TUGLLPbrRKx/1BUADp2G+8sVjfqdxeoqw2n7X4MCdZtgvcqYj4AuJ0giSbA6e2mTTC3pFrC3aOKWlFraHWeUorIe0htxMnM6oDaRFpvf4nuEzIvuicRB2BO7Pu+E7eUHiFOLGbB8gxyDAZtgQu8el1PKbDKajVqUqUEESn13Pwu5GCHGggMq2WvZTdHODvbUgFt+5ZzDm6mLBKlU8hrFgaEHGZe3b1qS98ngSNoafpRF1UZYt15VJyPWQtj1DsjX9S3JXMy05bmGrosqEPiKEn/Si85GCdiw9xfTTwAEVIFXDlor8wJLiyqReBKQuQirfpoOFpCE4pDLTwiOWdJPJees0D1ADEpYQBziiTtGKVWfdQ71K8HJhpVHHF443OSLCJB8dZiBcGMDyL24hG/d4QIzQZvj3V0AQeY3QwcJIMOEr/mxJpbzMt2PqvqkhKYxcXNKLKtVL2XN2xURj1SMTpJKUSXVAuZl7q1mhlh6viRkjfG7Vue+v0lwwsTO9p3jc4R8PJx9b00v36vFz/5Q7ZjhAEKHFY7E3LOtNw/vHr9hnLayuVVOoHJ2SXK03kjVVere9nVCkVFLoK7vXv3zrwy3AS17iktDv/ss8+caZH0tJ2/fPtlzhkwUGTPBhDAy7YvyzK7GNyqeRFIHI6urT7CrrVoTZRi6TqgaGWlSTgF2iJ2d7MwmEIxKkD4NlE9uAmY2UrQLMXu7oA3XmuLxKQ6VDQzi8XzFX6Qf0E8WN/j3WwC6bXQS5z97bPb5U9zXC7St5p6at/e/zUvwmH9zurCVYcARLVbs1p3Irx+7yFcOVGq1z1sHnZHuESZmcwHkrbhsJiXZXl6egoftKqWy6ZaIi80fIgWMQc0/CE7h1PJqibuZIcEIT6fN1UjiiJe4dSNzjd2q1BjapSIMlN1kVB3WH2nyYUx1BRhNm5h0n3fiWPPr7CaEpvrvm/R+VoPr3HUxQ5NkZlEiJnvl+VyWmNvD4R2DW+Cs9GkvXUNexIqBg4Kq1BPWWAVPdByuEa+5nQgCn4gdiIe2likrjHBDOxRGxGAO7GgVrOqgXMZ0BKRfMSdJk1OO9KEiIzATX6MOcsSNf/ivZyIzartlnIWWkMzDnTiHD+ZIjkwc+pLg1sE3vyKGfiP0+hb+Ly6lvsNdxiC114z9DQ9kAJf2Yev9T5GflYogsCs6ZCaUssRkFIKHCNBNKQOk/MLzw5r9/HDodaPaw5nWffC9Ld4QZ9xso6Tm8nkHGj1uoFQZqT3hDU4m9pjAr9pw4DpAhQV/mQ8vYnWZH7M8IchfsKizSBqr8YtJ3Gajs6V7c3qZnacn55+8+tf/erv/06Y6wcfYGl9f/d4/uKLL4jogzev1b1UXZIkwrquacmn+/uf//kv/+xv//Zv//Z/tX3jsImCmSeMImeFOlwc1rnie3QGI7mOukSRkZm1aoiTFFkn/aYRNw5DX807dvxmTeWU3N0NrjaC0EQtZt6iyqjBsxt8S+YW5Jst2hy9kiuSAh6sbH61cfU14IwwIpO7gkR6CSLqtetU1fp0N3ar5gEYdyMiulwuDb/jsNIgbyml835uexr6FBN0cADNrhxmACkl9epOBpDQCgYnTrLXErcvWq0X/yuloMWN4R6FdY6l7ZMb2rszJaWTqFYyWLVdiwjfv7pflkzw7bKZ2eluOS1rvP+65lpryqzV615cIzybouzB5fyI2EFYQLaknBYJDzABQuxVixoRZU5EeHr3jsjv708iQjAmu1uSUqGkXlWEs7Cqarm4BrdkcnWDsYgzealFn8hpXbMZilZiLJIInOGJqZSyZFnXfD6ft/2tu4uuWZb9spNTYtFw85m6u6RFVVnIzAROyCMTz6BgZyZTq6oAU5JSlZkFfUDNnWCAkBO7U6uj43CmBOFSN0kpqP8UVt3IzU0JqKqSKGp2RUspkbmAWEiCaCpld79cLjlneCSmMxNMK4CcMyzIzRqXlZmJyLKIsJdySWlpygSRJDa3cil5FWcXERZ59/hUat22LcAONi8PAgD1CiKm5KHeB3QuBTBNYsWzIOpqlG0LIm5yraVE/CGYBk0jwMU9KhbmDgUzHTWU9oHVns+YgY6NxbpfLkj57uF+6RW5mLk0Oi52dwaJCE+Ugy3yBkqJCWLC7p5zLqnUWqtbNiul7PuOxv9+PBzNU1tx265M3OnUdPjvpyvQtwFO9zt/VZT467/1/JM/kNV0o9+7KzNHjXMjSEpGAAkS57v7n/7il3/+V3/JSX79208fXr+6lL16NfI1Z9f6+PTWtUpqlbQNdv/q/vXrB2HetrMp8iKlGBHvdVOr7gqmqhcQkaBaaQ4vdpFAYTlDosjL6LB7XTIROUyZSasCCWzq1cglJ+K01cpJKCWoEos5on5g1PokIArCV1WmRM4JqZqRNYoArSo9B9g7/icGat+Le/jpwrLtaW3NxTgP7ZCZ7+Rz+f3m/dt/6zuwpl9bIF955Xx4f+f19ax69kv3CREF8NXJf1dbw+hnYFu0r8xh06LVJ/+a21zH9N1sVLgJJpC4Ya12l3Nxr7W8fv36o48+oBZX5DZ+YBZSVTd1V62GbjarWnhn9lKaresotZ73DUBK7E77pRJnES+q1WpQZKVwJxqRw8yinjAzZxZ2ElkBU60CAruigsyoEstQ+dxRTd0spQUk1VRV676BPCxqq/uyLMxy2fdakVI6LSuA7fxkNVLIvAK1Wma6e1jiNDQ9RjQxK5E5V6+sSCwLk+dU7+6SsLteyuWyE7WyeiSQsu+yJrWe5h0lP+NlIR5aqnmgP0TC6LcuNUMpD49z0KWO1KQI6bCqhvXbBIyJACdUK+ZgRyCnzJ1BcLdqME/MHT1lgQCrXuPrjbgrTs2ocwFjYhIQo1MPwMjY1V1JEpGrFueUZXV3JudW8ClKrhIIWjWltN6dwpliZs6UeEG19e7hbtfLFsPXAHB9XidJbrRJt6zLv986PSy62/PiWJuYopRtBtkHhrbH2qZ8fm4mflgn7dhjBoMZEoS7/WLttKDUJtiPxTmcXeH86lTJRCBG5A2CXWHk7hxwv4aMVSvErQuh47m5FiUnbvW6LZCfYHdzVkopiWRTixrCHbxm3OsOBPQOZIhSuiO0yIA3zqSGuAyvbEca81FLzJlZ0MofuDuhqUxo5Cxh32EYuj0Qxsatx/GhRcmUPkE8Klp7y10aphS6GyKC7UTkTDb5HoJWB27u1lgeYz8M8xihfVPZqhO++PSzv/v//c396f7N6/eGAbybP+3l8fHRrCaGsgnhww/vt99c7h7u71+993DZfvZnf5nv/od3T+/M9ZSSaYHRup7UqdZCRMZNw2+RWAcIwoLOMjjk3MxFBK4ACZM39jsAFCxLrUieGvcKR6F4UEe/R2Nn3TWlBEIIoYhQ8D6wuFkNZw1ahrY54GTeKPe4lzVRVQJHyp+3qEGzkJkj49dMNQVdE1HK4ladoVCDenD0ErW9BQoP6qJGcBu4leB9CAEbe2BmCraTsMaFGeZ1LwIJQW/p7Ezuzn0zBbfkYXd3cmY2uIHDRiNhEVHYtu1gCgxdrFyFwtmZELuqwlxZAXICC0FV4W7ddAoYBjMnKzsBRBK7hapu26XWclpWEUmZvbGkMkBVd4cHw/XAz9g1v5ZrtdhhWtVsbwPocDcEhwezu+UsKbGI1LKVst+tmWWBOJOCkRgBjgU5wXJa3V2tEjyJEFEteqnFnOLekecU/EjMrKWqFvfiKGplXRMzM5GVwo1wydktCRGl6tW8ekCdYXByVDMmcwSzMYNBbu5M7qDu0WnehZi8lpgeqcjS3Vhe3Ujd2hz3vHC4usGJgwjBiKYTwt0RJnQkvpMQc845p1TKDkQRpiGCQDtY24Y+36rWfS8XMzudTgFrB5CS+OoNz08cNGalFIB7aZY4PgbABm3CU2ZmlpzzkpZTXiQWp8QTTaupa4GZlt3MajWt1aqGE4aI0F0GtwceCJDQEXD8iyPhZIxM+9VdraJens5l22MFLqc18ZyQCTOjhuuu6HBWoFVyB0CQcE3d3d1xTmZ2uVzO53OLBledHd5zmOhbtN8vM5OnH77uDs+shT/Jxh3qExqEkS3rHZi28/7xz372b//9X59ePZzP20efLCKZy9mFc5Z1SZenx6LVdFtSvr8/EbzWXUCqKsw55woruxIRMdxjK1aYoVEcHR7Zxi9ATiS22W3YgIwISWAEdlOYkBd3Mw0+jLai3eGucGYygqkyiJqDPJwp6oaK2pwpUb/PKHIm3FtRdOs97Ao2HTvMtxjOP+l84G8pz/T9YZ6/77tdjf+47e+xTrkrmugrPVrk3DKndeUPP/wwCg6Ffz1ceyE5EZkBsO97HBwA9r2EQp9zttoK6a3rKVSwRGzmtZqIwijYiA0e7v267W4aRm+oBKZW1Jbl1E0FdzfiKGtA6kxETgYnTpQ5R55bdZgrzFSLw8KPA0gUM3N3IXKCmW3b1gKwIMBYqAdR3FH2Uh0q6TC3TsuaWLZtUy26l2I4LUtiustsJqd1uVvztldDbfYdWFJqoYCOSAJAkFHlpY0/gJblGFW+Ww4eGq7TiMj1iLFgOoVnwYr6KBbvE1YWYG7SgnXtMbEJcKQ6UAN6tOIrXY5m0XJ3JXe3FKqu1cEl041SZxYOOlKXJClnERFK0lTMEWHrei0zOwkD4egPJi0RKdjxJ3Xu8JR6MIiODgN+MrNba/V1r4JjeOZm7ukO7Yp22fwsJvKGBfGe++ZkzGwUqY86kge7qUk3pFajA9aMWounoBvAYS0043zK+RwuVCIaNVzGg7qBCZ1qU48/oW84ZhYyyOzM5G7cs9RvBGAMXuccm0fVnl9GRKGGjZ7MT5+VvdDfjvtfuxDJ2dWMLTwUtZRgYR4XFLUv3r777IsvStmW+zvW4mYs6e5uvd/uJS1andPy8cc/3t59Wc5fmte0ZNtt33dTZuZqhbRVP2bQDAPuM4/p17B5e0C1d5OZh4mEY6qAiTZ55pGgxvTt4VuZH1qbN5Bi7qcxdG8EWAc6wLsqM34dEyEUtXTAzBKuF0fA09SNvKVgQCShAYWoU51F5L/J2PQKXSaZmSml9iLjW0QO1FpEyaUzXPQZDRGdsU7tnv3nQ7CDiHRgcEJIuj+GoACDHBAG3NELALWxUtXaa94yc6rNfKckQgFaMFerWNZ1XVlQSlEtzNnMdFcRIfK8LDGpeykEIVpEJJJ7o8heFBQzdxiFjzMeLyBBpKqr0CC+8rHIVQscbBTed7JmHApYTTkY0dqVbqVSkrCUWUDmbhpVoBOTR93D6sJY8oIg8NDqbsRiriBPSRiA+WXbvWmd5uYAuzdPG1ollIgbkTkIaMnGYfxbiOswgAloCTw+5Z2be0VdloU60yaAsCxjRsbcxy9ElCQvy+ITrVnOeeThUINmmZlRoH/7ZjGC/ktegxWAiFLmUoqpmWFZ8r5HYpgTJ631ctmvoCYhZeNccIpYsYiwJM6SMveEIhIKWjZTVavVzKKGZG0pxbHk3d1npzFd/Qd4KUKCZ7vtGCIMmvjG/rVG0ScUip0i2BTR86liNke5IzQ3bDOAT6fTXU7rukpOeV32y7Zt2+Vy8epjpb3Uuz9me35Y/sm1gQ6SnAFWBxHtpawPD7/4xS9+8Ytf/M3f/93f//3fn14/LPn06vWr5XRa1iRCT0m07KbbkhK5VS1Wct2LFtutppSI4F7XdUXwUUYREJh5tcYuCbRFNMjtoa4t+tF72Bx9Ac7x8BWSqgb8srnkmUrzaB0KFvU9ty8rdSftcC93N69qys1B20gE+r4BtWpm8DRO1H+CEvjPo/3QCv3vsU5nNQt9q4/W2SXXn/zkJymld59/Cq0pLaMs38y5GpHesY0D6OoyVDXSRlp0KKqAHA81wBjUwkidjlUY7nBQLWaGVag2eAKcSU1hYCGCuEWJdyeHEJAFTsyiqkG9Pt7RzJaUzMwUwjnKbkdZzpSSOYYB7K7k6g5YhI4P2FRQCplVZuaUYrMnppzlRMu96yt9KA48XVQ3VXU4MSI9N4b4iO/Nh+C1eBBRjz16P6jH6rxK0CU6zJvj0v632TBrWWZw6lSrdlzYXcbU1Cfywwye353g3iLNwpym71IwjRFFtimjaS+cwIj6jjpyjGOSrx4gIjnnZVlEWoqG49Yg/CfRmlfiqkWd3jaDk01rPULsXUEff/LOM2I9Eczdn9MdTQ897kwUSZhXF3cWXAFaeeF4UOcTDoSIR+FZtJADjcvcXf0gSCQcSPhe5tTCUMTI+JyNUj82E5+NSXfvUOR5Mc7jABzX49oTB/TUD3Jmus77aF/E9ApEz63Hq8nyWInOIBCUAA+m95kWi+P9GO6OYMgB1MCsqu8eH798fHfeLrhr97zs5bLvn3766b7X916LcGIn4XR3d/ee4fWrt6fT6eHh4Sc/+cn/+r/8z6imIBbrwRon8lYWpwF0B/pgmGQvn8khOX0ODlf7mJp5Bbm78wvSFeZIn+geb4tfO+Dn6uJAkQTF7iQGqVun1mecAxjRtr1WDyk6lEQiURJwAQSdoqwlm8hktAII6ESKKsG1lqCAMLN0pAj1QZqdBbN3aerGcFHNwgaAJFIDGL2KW7xNJJDWWhNgctQsoG48D99lSouZ1bm2HAHw5HrQ/9CEwA6oM7n0XBFTK+6eEqsac835Do292tUK0Hik3WOqlFmEuGgNdQ9B0tC8i86w6lWrs2BZcs4pcViwDhA7iYGcEsSJweRqMGeQmm/b7v3wZmEwCLQSZ16KKdQUuiTySo5g3IhZi9ispyxwqsHiTGBnaCW4w5mcKNwaFv4EV7de5ouOjeLWL0h9J3N37fXi530nQGjHTPdNIUzIHpUaUsWDGyylpD3Fi4hSatyM1MV6oPTG1A4N291Tyh3/pq1cjBVTiMTGrmbOYu5eSunG6tiz2lswM5GEy4STpGUJzP0YDbOWUt29GI3Go1ueTQn4Gg3+Zv+d2/MPY2uePzGzUorBa9Q+DqsjJsLdzaTDpIeEU8vj933f490BgCmltK5rqInuvhN5PTwO36jKjkX4n9u3ae5OwgivDFPQq9leXr95/W//7b/9q3/1ryraTr1r/eDNe5/89CdmVWu9nE7vPdzvl3dl20vZ6r754n6K0yuQWuRuDg3+ArbszsRqJqpaS9cnuFVLjzObc7rBUDAlokgsoQRhdvKGLxrluKKYe+ezIzJPHeXlPpIwLUJqrgcdQKxAIsJUTnYs5N8TQf8n27792vma7eKfRxtuU7pusb9W3Zfl1Y8++jhnCQRabLwA3EHcEkvdfblbYnOLrw/8JBGp6l4bRIKZoVa27ZRXAEYuIDBXcnIwiEXITbornVudXhucxiJi5PveMHtOzaM0tDfVisjp88D6JASjaY96xUkRnvSg7AqidGs0GsYczC4wr0Qkkn2yBUvdiEhLWZaUlmyqVqqZM/Oy0qrp/m4tauZ+2Wsw2BmilH1Yv8fqG+GacaxPBz9oyg0/en4NGxkrOPWI4s1fhw6ASYuIoh9T2Zm4j2GKSR7GQA8NxeE6TupBnU109S6hZHOULbGodBh14CxgXN7P7/FSoVIH/82o8dGF7J/YxvQV/ZlEK64apuPL7NmhtzR9oEMDaHKOPHts9570yDl1L9Whvg+fCHOUmO/zfvXsMb8No92NZOusMfOmNywiDGGLiXsWM8SgaL7ywByxmTEIh0AeThy+eYt5HGxytPGUUz3u2V/rarHg2raZ9/BAU0TV16NvL7oe+oKNbrOjlPL27dvPP//8iy8+w/vtqqJVtX757vHt0+MH779HRExc3YkoS3r16tUH77//2cOr16/eCKfatil182VZCVJrFWaD3USen7/R/Mpj7Y+eftUp7tSQm/NIjjubtRSnWZ9vemxf17MAE1F3khxT4Nc+i9HVyG2B+2DOq7USeV4ECO4GDID3gA/MN+eWTowj/7b3XFVTOiQW3ej1Dr28ieu6d8JguhLyAWQYziCFtzq4aLxr46WCbr0+E+lWqCGAOfOGwCQiKQs5HKZ1N2blFu9A2S9uNeccjBfmlaxxCG3bxd2CYup0amzXe1GWJQIv3QME5sA8mXOcHCJEMKs4EikZ1BxmrlpMRAjEJEROThyz05KBDQA7VytMlFNKzs5atMYw5ZQErKVCKwMcYVgQrKopOwTOSRTi7nUv3bbXqjtzY6EQDvouBsyNwCAnd69HLj65e5jVAUdpDMbN8Iod6wAn981OpjpCbUqYWUhigm/+tFczMymFez3AlJKkVGvhFphtwf2YlBbI9qDul46x4svl4k5aq9a6LEmEEpO6m9egOtu2QsFbGzW3p6XrYAMLixOxCBOJyLIs691dzhmtNrG6lhJpYWqqpZYSdaFVg9FgLD/2lh33IkqT2jq4/fQqD3DexG/WuQZ5F3oG8XzmMWutI4Yy+9ebehH1deAtau3mhLwuklPe9+182bYN9duCS+k/28DfugWDNwCvFeyy3EleFsebDz/46//yr3/5F3+W7/Jf/eu/fHx8/PSLz9+8efPhxx+dz+end+9OifdF3pK9rQqTvJ7cnVqh8sayAPjT+Z312O+A0xNFybdDgry7VNKSma9EDkzhm2fmtjWBStGya+iF6GeemSmcI4yTc0CgAwTRt10Dk6PCj2PS7WB49ql1BtZDwfrn3b5KS/h+v/Kn1WYFYnh2mJkrXr2+f/PmtRAzSIRrUYSa4gFoY51hBQ0LepUgY2YRV6TgZWg6OtBDnMyUXYIxlEFRq7qTIDgLiEldPaCBSRikGjUaIFEFE8LMKfcyGG61FgCSWFJPVAkLDGRwcCObqVXdXYSjECa0afjNGnVJiXmiIQUwGGXCCPRWraOl4IvQIrwkSdKgcUOpbcv/2gamqQ07hYjce4mJsI68DRckEtLGzt/We8SoZ504qn5Ggdl4ok5mDPXYGTpPTHjVB5zEwyiNHppLXty9IVQaEdhQPcmdAlfITKpupjFggeOLgdCGGHB3N1yXKgQSHc76sIH3sh8D9S3W3x/4NLzZEwYP8vjbbBiAr/9HxIqqZqNQxYvos+mzWVSGP+LGTujfGrZoP1/ImCkyhUd/ibiTsEYoxgDnqU5K8NxKryoyHh1VcWgyRIfQ8sz9M43A1Utdm8f9tu1P3uvKcG3oTg/ZAiL9jrgl0tMxC83yGPIzHjT/enPaOuC1hOooRMJidpAYtf5zWynDTo+B3fbz28d3Xz6+O2bfXd3ePj5+9vnnH3/wfj7dwTxKEGupmenhdHc6nV49PHzyySe/KpvvZ5bkrICTq3klOzo8mg/7c+p5jPMAsc8Xe4/N+hRD81ZVBZGceitjfTu4tSOuo754JvDesaLxuZaKIJz3RkkLuKPr5R47mbu7VzUoKBBqbXLcUXc1s5zzzWIgCJGrVpA5xFyJPWVmJnMoKQcP+phxi6zeqbpQ7/FYj7MwxEg2/C3YHQojdXfnTqGPyKAOinpim8ACRBQ+P+JRbvJYktbh1glhFqsaEdDch33a1IwkSVRNVlURqrUw87IsRIgsnc45NHiGgkNGvfRlA8C8RQBF1dRqFZHMJFkAL6XCKoMcKiQBCXF3rc3Ag5KIXFTZwSKnZRGRhdNet13VvHpVZ8ruTARyFs45g6qZuWvR6qouxCylRlYeEVyYhcjIVJLBNeooE7ixmpETiFPoEKRO5taTyMcij2ZmWl1VBx/a+Dwmo4Ebu4ux22Jsam24JsmObzWH4rSxaoezD0f+WJyzk2ZaAFarBXJZ9agAQeTVnJkzUJiFWIHIUrnaFvujR28lp2VZIiPIQ/z3UnrItzFe7XsppRV978c2gAP5gyvPzbyYx1Yy/eHqMprs3uervd3Er+4zNtrx+mOCwvNt/Qstdk0AEMTRLfeJ2N2Lbf7MUfdV7fkLfu+tj8MP/ZwftnnkAsR5mRMRPV0ueV3+/Je//Pmf/cKZ8rLcPzzc399HxlrZNlIlVwtXy7Zb3YWIUqq1hgYQJWFq2WstLU4FNueWiOUtt25su7M2cMjS3En3gN+glyKote57bVqoWdUKd2au2lw/CjIi7nG5WS8Zq8yvWzzLpq9QRxy43x6Qf+rtuQb2VR/+abXv8RWutITDs57iLz/+6OP7+/tSd+9otmnzbxujmRXr/s2eiDgz0LQAj7c0BBPpAGkngEFGRgJ2tqp0WBNOrXidddhT8BsDTaMdx1YLiZkZsYsDaBBp6pVCwuc4ap9GDHJEs93gTh71ON1ZiMCARc7wbvsYH1Vl57t1cfey76qVyARQJ5jmwDKaW9UGSWVmEjVF3wG6xnqoUGP8x4Kdjn5c/dAP65sZnH+gaSHPgdbxCB8W9fTF4ba40XejwwJqaNGrVDKeOz9a4KSIKIDxlSoRVWvc4O4OPs7HmMoxGimlZVlSSpXZrhMa/+m0568scrCxjGueT9PQc9xvdQz6+u03tJxrUbkRnvna61sdy/amb7EInv91vnmsnaGbzT0f0jX+uu/7ePocEJ4Vp5tuUzdih5tp1KoZr+kTFPHmFeJx/CyGHP8+Tz+eRmkK/wYg86vH3+PPXdXcyn7eLuOvBQbiy7598e5xq/qQuezGzFmSgIR5zcvrV69+8slPf/nLv/ztr/7u6e22PNxTklIKO7KIPmPPnl//+W5/JTlzxP6A2V7JyYwIeEFaJk01rolyj33Grxx2N09/3qXGE3EdCr5+L3Yj78idxigxsUAHwVs3Jw1uUU1nzP5YazcxbXcfZE0R65rC2gCg168QTcPvQwDIubni1AxEzOLdgTgmwlSDYr2pxTHgs641d9IcQLIa2ThCDCFPDIk6NfBebDa6FTwuoqoBdTavl8vZ3ZnvAIRfVbWaVxFhglmtatmzMzM53E3NKB07bEQDLWgllVhA4cdF1ByjyH0A3IkZZCop5SwOjyw5rYVgmckTq1ndN++wYSHc51VV97opQMzCUg3wcFETMWURJxhz9kgNVTKHO4ea69RdNjzybmJTIJi2TSQO/tA8XFUlhb8iqNnMAecUtGMchXnMHU0IVNVqi/LzxJ4YXOcAIOxMjOYsL2U/LWv4Pmj4S8hi/xERbmXHTSQBqNWZKEtyIbOoVqrmysxsrtAguCcirXXbNjcinhzj0YSJWfIS2ODIBRonbSgwrtVUXVVLqXsx1a6ToW9hwKgIN63YY4XgQFVdmcJfiR4Jnz3Q10FbBnPn4xcjCt4vd2cikRSHRyPSbC5KIxRTMV0gzKxwmAZSIed8Op3MrG7715U+eLn9IOzKX3ck/6k1U6W0OGFZ7oxRtf7oo5/8+3//1yLp008/fXx8TFmeLpd3795u2/beq/vTmpnca3HdmCyLMLmZLVmUMdziDLga5IXso2jPT30iKrXRAx6XBbVl9/sSknByQ9Q2cveqe9XKIiySgtckyhI6uhsIAAxucWb0R89KA7p6PZ0c7N517n9G033TvkZfnNtzVeMf87h//H2+pr2of/wjbziauxI5MX76009e3Z/qtkPN3YQk4Mhw7/WzTFUzZyJiolJrOPUwny8xIAA64UMX2YiwoDEUuzbyJvdeoI6IetAsk1ZXt0hQS9I4WFkaRwPVVu+amFISZ+Ku47q7ujmh58aHR99YJHji2nhKhIbHamI4J0o6c3qbg5HSUuseRM+hMhE8sThzJO0ISCgx13BwP58vTMo9rgWva7AjDBPx2vBRRfricf6gMzCN+1NkUYHmJNqbp5sbU0d9dmOYetQi7tD/0vwF8HZ09uGLeWSAEL4DYQND4Y5ajIjgyqSmGxpSpj/FGSDqzLQigmqhUOUcZGqJv7sB/EOvuOkRt2vtZo+l8G9Emu607UwzTmYGtVZg5ubIeP4ezgBZ+EZBx9jFeeEWIPxDBoioV8OiFskIrimPbILosLWEoHYf66y/QARpaHxCE5gI06H24hAN42Tuz/zJfEqq6gidjevHU4ZYThfTcBAfZ5nMVlafCEIAIUKLxUgVtijDG/zO/aA0H1mnDdM6O4W9eQaDe3Lf96enp2lyiImK1qfzeS/Fu0gw87quD1X3h/Lm9Xu/+OnPvvzsz/+f/+P//em3vzF1nnaaWUKGFTqGLrantpWhua9uBj8mKOCh7Vbx81Wk6eX5IoCmrXKe4uMd47Z27DzzZDWyq8YygG43dtV6yIN52NXEzWcBtFT26GdAjYgEHfzikSMpMLdeK9dUqxmZqYgM8hPrlONRGXt0n7oDZd5gZ98HEYlkg3vkoblXbUADM5g1DAJ1ayqyIInQfZo2Zk2iNO+zlqyR0Hik0seJFd/JOSeBqhANJRIictmeIiZORKfTKeccRQVLKQ4lopwl5yUmTEtJLC7kZuxEokSUGluGa3FnByyllITMIISUJUHg5iwRTzaCmbLQsuaU0tO+6VaEuewXWZATMy9a6lO5lH1fJDHL/nSmJExO5myclqjBU0/55LbF7mFANTNTr8pBzxSRejJQcscscIwGR3B4kM/dCCvz2M5a65tv89JFdH2IcpxngnbSDI0EgIikxMHMXEoRNJctB17abd6wug3Y/MSRfDIDJ9ydSHImEblc9lobEZfWOnb0Usq2bc2RfLzRwZ4Spu+6rikl7xzrDlUtQ2BG5QDvDrm2to8d7Nm6vf7oKqD5snewbyKmFFC3ydvkwbc+GOGCD805hjSiu+OlokZRROMpNSos7hSLRFRKqbYzc+LGAuLuuv3xnd//nKzf9XTaLhd3jxIOSTgl+Yu//Mv/4t/+m8fL+W//7u8ul0t1NbPL5SLkj+8+z+k9hqkVV2UBXLe9mNm6ZhE5n8+qUS2MQbbvGxC+qRIS212rM4S+lb4kom3f277ceygiRgTbTeHVEztzauw73kjyXZVEEouympkQmxo7tC0NBRClXzrh1lGfPQCkAAZSup9hR54wxrEPoK2pfz4y8C0b/SnYwM87OeuU376N68c+32M55K4i8vHHH9/f32/bE3UeHxwKRD+2vBV737atlELc6r2HAWxm1mv1EREGdzAA9+H0DYO61VTHkVBKBB5AJYKqBglxFMnod9prDXJGc3cm7uZ1e01mzjm7e5RUJBwAOVVXtbykVpRSzZXQwYKXy4XWdeZWJaLE0g67JCDzWqvuRJRyRtWVU5a0hCW3awmTfVJwxwDehLP8qHNzdSTN6kF75aE4X8/jOFLHv3OhwXHDWXmd3+tWpR4iQTxSAYeOEUBlTLrBOCJj3uPXVpuQKIqLzPIW9xeRxFLZGUwiw/r9+rXzgy6u36N5rWFoYbhB+9sN3QaT5g0jVW0W/hyseykT1REAy8Z+HHcb0Tn34Aw/nhInzRAYf+nOk6FFncpxaDjNq4JryekS28ykobmNqe/W6TPbjA6C4kOzmiNmrph2sNkCvHlKv8Pti4wr5z6HoM6DP510wXLPFsWPOjlOW4nT3ce8RIZSwFv2/fLu/DiuyssCt+K2lf2pbI9bqUr7XkB5XfJrf7hcLnd3d2/evPnJJz/78MMPf/cPv1I4whqEVd2juM7sEJ/HkObZDERh+oZ49Yuf36zxr5gLR1RInSb9mIVnua/Wibj82uXR+9DvrIaOzE4pBbHZ6OeYKWnRUB6dCWu5+0PBE9ade7Gum1sxi1tY48e7DyGZ33RU22qRqkbURRz7cy/5Pg6LcS8AUbWPWw2qJj8DCXJ0iYmZUxyQAWA2My01NsS4adg5IrSuq4gA7qqLJHJ4VeGUmIXo4e6u1mqh3hHVbSfzlBlGiUW1JM4pJS+7KnKWtOS9FrOqGtZdMrO6W87CiWvdzTkxScSE3Zlo33dmKuW87161qBZTSitzC80YmZ9yWoRhZFXLvmODiCw5rfd51xqW5F4rO7tZ9dqSeaqLy6WcRWRN2a0SsaRciu576Tu+o7kWAAd5lBgttVqrJmXm3ctynGcRXwVBTTuAJMAqZk7VOLF1PowZM1BrJco5r9t2VtX14UFSqrXGOhTJ7hqYlpwzC7UfmImcOwHDsiyn0wlmREgsxAdhsqoSy9PjJef17u5Vkvz23bu3b99GpQRTDWuEOIFIJK/rejqd1nVd15WCwp4CqOJ1L2rFqu773tMdaS4G6G1fPBy0Pv0phqkpTkNRmLcb3G43hxz36nOd9oNjAzZ4+wTU7HSgsdl5X/JjLSCqjTVsSUoJRNu2BUsKAEFL0g4yTNI6HwNjwd9APn7v9t0ViO8WYR6pCn+AdrOnz5+MH4I7QURoSWnJRZVZ/uN//K//4q/+9W9+99tt2z778gtm/uKLLy5Pj++992pdQF7rXvZyAXA+P75792XcsJTzgEttW3ViwEopgXoYHmXVamY5LwBMkTOLyLZdVEtIeDHdajlNb9FOh4VTlrLp5bztl2J7ZVmImkGiqqWex47cFf3jaCcO9sLqru4DceewQ+ceDjIzc69NSm9M3ylq96fS/OoVrj6ZVSh8dbDoq1SHG7n6xvZt7n99zTev66FzoBNovnj/F1Wc+AVDkw5n67SfDHUnBGZJadvr+++9+fnPfna3rk+PX5pqLRuRpJSyiA6VgtnNYn2F9VKLulp1L6U0aquUzCxAPzrXMuzhjyFpKSV2gCl8OoEMFJGgjQhnTivhqF6rEdEwMVJKRGkvXmolTlCvZrVWdWJmyZmI9vOm5qN6AglT486lWqtqUSswz1mEed8V7uHzGkO6rInAYKq1wlxSy1l192IK8zWfsuyJ0prXS6p7rSM97PmEzjM1hyzG3E0n0ZXkjKO80b1M6/dKqZ3PC6HZ8To03TEp3EsrDWrGIRVohT+PahpohpZEjqE3Vs6oOI4lAhXu7l60MnNUII+Zaoq+ORE1rCGRkW+1lFICAnYRKd96uT0/zuZPqEfPvmb9ftXCf7HNanT7tVu8wzawjr4JW8LM4mQ3s33fy1YbnU+ofV3J9pcsVcQqmzLPxzwWrcM4md+CpipZUQ8FpuGpuHGdUY8WEot4I3KNW9VaU0qqGqEjMB3OfT0QRt74F4+7zUIyehufDCcsutkzDi/uVBcDCotuGsymzjzymIV2+hNNmX0RL4n9gTsBFdQyi2cuxU0VkykYs+nDfxaqeEAt4aeUdS+llPP5PPqzrDnnnE/r7778/Nef/u79Dz6ouzNL1eokTL6m/ObV68vju4eHh4dXr63arnrKyU2DZSAqKY7+e1c45xDU1bp+Jq0CImbFkXvSnVaRrzm7vFsLfWBAnYEASIaafBgLTaAdrhZa/RjhJi0OHqapmeIwFwVkpTIo5zzy/GN+h/AwwWlUfQtcvbq7ELEwYKoVMGICk3XOkiBE0r3knEehNYpouSo5u7rCR93g6B51vpPxIQkzUGvj5yulgEhESLjWKiJRxkVEqKdkn06nvWopBZmySKnF3SWwn9RqWIXb1+CoZtBBlz9RjZkBCL+sqZlZrQ5gWRZmNqsi1BcGtm0b7qV56Y7TgdlNAUCEHBlWVSuqk7skYrRc1jiSU2JVNTdXdYdDInwq7CymbrWqWXW1yLCDueRMDtUaAFtxmKtVX1gcIJArDBWqCQROrbq9OjvMyN0YlJilO9GziFtLWuYO8IgpCeYxNYOZpFzb0Lm7hk3rHoV7r05E7j5C624q7nBnM8spPF5XTiburJ7zhwA8RM0MOMzmMABjW8xZIrqLoQZF/6wwuH/CBFL10+kk+XR/f3++1MfHRxGxqNtIFAxpsVlF4Dfyf4abJzaviKpp43tW7ZzPt3vAVbtS7ICjOh/1MNzVsaHX59kY2InFscdG2Iki2eLmIIxNZ/zqnSbEB3onybqucQrWXiuYj7qT7Ytzx8b2h+81JPs1qsCfxP2/vr2oD4FZ3RbmZVlg9rM//7Nf/sVfvff+m83qz//8l8tvTn/zN3/z6aefQk2Eyu5aLtvlcj6fmTtyARg4iyOsxdRPBVWrZhpIzjizraWOo+yq7FE2dStVGCS8ruvoIUFEyNVhASJKTiHnkijBHAQjUzS6WnenKMbuBzqt3epFj8AtDMK/R3H6l9D+uCL9LdtXdZImxM348NC5r6MN6DroJ5988sEHH4ScLEtyl769NRcnEE7X7kSfE9H90LfCNRNxqsA+l7qHH9Ddt1rMLLPkzKbm5q7WS8uSNT2MiSjn5E5uMDNvPs+j56GdmMKN+Ai8UVTtwcQy2jS6hmnksNvdncjZ4WoiLEzLsuyXc732OQZ9L0sO+pzQHNtqUsspLRUnyUvKiTahRKQOuFMMGsZpQoeKeTMRY2HOK3pwGjEzWu1emjRXzDfHpEkf0dQpwjYeN7SyMHHbdsHHodN6gmZO0GRaxP1TSiRsZsVUVQOcG37qZqfBx3cjvTwUidH5Aexyd+ce7A+d9Vs4fP+Q+9iLiwUAiczj6X6UXbk5wUd7sf9fVQYpqjoP63coFeP+863i6UdnrNW5HddEECWsTTQu6AkpMCS0c74ErDCu1OE8mgPXRJGzOWMPb96RmovqWIxDQsaSvBnqqcNXK2V+9Hjldib2P4VQDZDC+LyJnJIetS0D6Xq4SKjFoo5ZGbFAVQWLllq3gxcgLXK6Wx8f38mX/nQ5f/blF4nSktZwN6Yk771+UNW3b79wJ5KV1pWtErmF2GtlSf5MrnyiH7uVk2eR26bwyhWX1fTuVy6t0cbCfPH+89AFMH72nc0TNCql34glhbvEr6aAJh/MjfT61RS0eQwb8PbKzh2tqtStbk7Ck/Ni9rwE/qiqMvNcQbkTr1MPZbc86gDO1YlDISQggl5OLCJRjRLdW+TuYc+OV4vDwcySujmcWNCDqVN0zMmczJ2nGpVuOa9tswZrNa37uq7cvJgH/NUUzOGGUHd1F5BFBa/oE7XeOBMLgQEWUq+NwRiR/2sAE9OypFKKVWMCC0OYQcKcha2qA0SgJGCutXJUE+Oxnj2KdoLZ1ZgoxbbIHDUFiSh5ZBy3IsoWsHimakZMmYWIqhVV6zkbEOJ4nTCY4Y7mPeieoYHFDdGxxmOJwZh/wIxvrLukWgQgTsIAiYNZclNSLGQouXsgEISzW0QmOdx1o9ptkpY6rmaqrg61VrNhWU7gDPDj4+Pj46PkpPse5jQRJRaSlHO+u7u7u7s7nU7xeSnFqta97Nu51mq1qmrgqVybOTsvJHdvwLl22Pel0jOc4tcZkuTTsteoFz5Cx225Tos25Db8VF2b9I4wP6SxqXoxI3FguDu4Fxa7u7sLGH8txbt7L4Dx3tnYh+3UFl7XS+yaWuB7b8/3xx/g/j/Qbb/hvu4uORvI3M/bxsvyv/kv/6u//g//laoT5JMf//Th1at3754+++wLaPBn1kvZQ2JzSsysQc+ukUPo6Oyprg6g1rY4W+CKOmooIAGAavHm/xZvKEEWyTb3kJMzzIJDKFWzslVUR+pKANQIDo4VqWZRMTM4Bbyzvk1pjIf6SG0dkLuDDIfAO4Gvzvs/2UaTXvg1f/36O+CZSv1DrIt/5A2/PjR/vGnHCr2oXN6oGpg0UXcvZf/kxx+/9+rhcj5b1cRiZsQY5Y5afImzLNnNrNS2bYbwacMzU2CeidCpn91dJBORO6lDOKfkEkE0YkfQKAoRgVrV95SEXcygWs1ik5RlIWus6QJAzUDOKYuOF5ShYceZqHC4C4sIk6mrGRkLR0EBwFNKYGduxJ+WkpnpJA/LKZfSyptZnJTwwf2eWQrrmtMpSU4ptKVqVwjqTvdMNwJ5o+HdTNBgEiMiQNxNuCO/gJ4nSACkK3BwD5ieTXZvTJyrUWRjmXc1zo/DlHpUs7eW8IORMdr/RE6MiBNGAYuw02otc8mD8UY+kfoQeQQ5aq2qHsAutBq2cCZnCqfBLLtN8r/7dvU9LuGb/SHGdKjUmPSGyGkcirJNjTo8fQ4dzzlc417x3+F/b3sUHfuSu4a+PR5BlAe+ElAzG/RvcZKETUvU6Ieb+dcpaJhZAAJqVWaO2C8mR1Jqnh/0WAsHT83zQR476uGIubZMMMVvZoEfb9d/je/yGN0BkRvXRxsOgghv0jXrLwXNktNWqlkVERCPW8VmoWAiDI8VAIczNR1AnKru2+XIAVZVMIPpabt8+vazN49vMpa7pa7LKSVikvv7u70owJ9/8eW2FZCoa3VnJowayG0v8UDKOJG5jRzmIRFEhGtgBzebwD3KoflRtY0oGHYPZqz54Bi7/Y1Ij3nh9uyrfYmZOTLYWx3pq81q3LZNMZk7yGFwhXt3JFC7/lB/mjo1M5yzK7QdJ8wGDPeJdE+REIcZZTj05NjMmBiTnAxmbIqY+JCfwCmAi6rBKQlBHDH7R5kx61gpNkR0MDb2WitAzKLuxFSbs2mq52RmZqlDEOnoRPf/xZBFIDvwAO5OTsxs6tQQUNZh0gs1t6AHAnbsLA4UU5QLE7IwC6pXJ3jVhj9ZT8wMNa9KDCZOS+iF5gbTooZlyc6EJICERJKD3U2LuTFcJBERMZjgyXWvYGKHCsHExc3MYXXfwSkRU86mIHJVh9fEXM2EnIgN5GpMWCS5e4xIYnY1b0W4Q2rDRxUarFGj3Hj5CGiSN8nivGni2d7NPb4/JJiZmaRul4NmgWjCmER4v5VhnL9L18e5m5hbzksURPjy7ePnn3/hZCLD5dw8mnld13UNA3hZFgC1m7t7b5Hg1Vigv/HwIxv594eIi/DIBItDwJt8uhkCTR0b7rQX30AThxpRbWIXbAbwvKcfR1ostsTCzMvpFCm+I1rSR4ysTzAzZxbKNWR+zOM36u7/ktvXD46HvAXKS7I7fvSjT/6b/+Z/99Of/+xv/vZvn56e8np69eq9v/jlXy3LUi6b2l7q4/np7VO6LMsp50ywACMwU617KVVEJCcir9X2fY+0N2bhDDOKiuVjPwcaOU4EkCmyAzowb7wCA5SSgZNL5nV33bYd7kQtd86DAIdD24WAPHj2++sb/DiI5oDAZADjuYe+2cM/oO/jn0j7ruvoB1p0z9XEH7pdTfezztzoLqE11arvv//+6XQ6n8+lbOFlAa58jnHsikgiLkR2JNa2cgMh5zw9q0kZR5WQ7vKjFBlmVSsFM3SDCImAACZjB1nU8T64kHnf3KFNew5enwDBuTWA3uBI8SN84S1d5gAYm4aSQCklmKsW1UZQsu/7HATmJBmAw2x316oKU0kkRJIC6mVJaM1pEcmJF0lOiHyEeehutEYAc/RjXrnzZc+1zDgW5/TaeaLb0T9S2nqbEfS9M0dkGJOlOuvHN8ruuFK7eRTR4DhnZ2TZ7IjvSFSLAYmvXy67qlrV+Ctf25PfpvkfKivYr924h6Y7b7ZTG5ehLxmYQ28j21/V+fb59d3cm8kTuvHQgV+8SfvQr+b06I83cxyTAeyTnwJoJHNgyjmD27dmFABf521iEsLx6zCYAcw8NcyHTXszqnhO8NZN5aEd0WBuG/rY9SLCtbi22wpJYitxBE/w+FnkxsHaCpDSGEOrenk8DGBmpMw/+flPat0rTNakl7rvl+gbpySCJGRm27Y5aDndl4tp1JUAhp02otDUQyyj/OF4Ixphz2keaXjVrtuoAHyIzTP9f56mMVytJ9eRW+9I9TGe4+tfE5uh7hINrFDYLblF5qcIbduWZ59sCCEGHW+0hKOQbyOQbtXHEfhcImJ/wTK3lmxBxFenWBOqWmOmiZsfipm1V9Kh7lKJo61qDamLNIEYI+6J7lcvFUiEooHPVifiti8LSQLDun8xsyRO7lqrOrONcqsUxRU8MNncLShpRReMCCV8OTBVgInXDGbdNS0je8fNlcytqhPyKXOjQXSCuXkgGkuLbwbjGVlVtWKN5QhCDGHXdjFRFBPs1AGMTBzcfjANS5KJDWYOVwc8tXBxsEYSEbTCQMUYU+FmZmYoQKqVQRY6NEDM5qxCtdZhA/dxbvyWQ1SG/M3pEzeimVIe5432OsDeWUOIKPzizVlo1fsCqNXcNfDqtdaLqgi1RHZJUAWbqnJayCnn/Nnnv356emoFnxPliI2LLMtyd7q7u7tb1rskOclSa43Yr5bN6q6laAR+3WGETgJCzuhkla2uYHjL0Bm2ODV3mXvkXTe8feNgUwSfaeh10uwDvrJ+j1y7m8Wp3tm2D6KR5iEahoQe/nKkxAHwhvley7B8hpYwltAiSUTges31hdGNr5jKFz/+Du3m3ELfnr6vdqMffI93/qrHzU8JKV3u17wuvCz/7q///f/2v/6PTIk5qePt7z67uz+9efNBznk7n4H69t2nv/3dr86XjUlSSq5qzilrYtnLZd93tMPJzLTjPCglZhEzNktdKUE4WEaZFnijkImAyRjiJSUiYiJOvFBeZAXe2W6AZEkMKLSHxYjcyQ9O//mw9wb+iQ7oMezd0zIVAx+i9YNQiP9R2jeK1tdf8J107t+j/QEkfzzodt/oMeGbnsya7tAva6nrunzyySd3d3f7Z49Wa0rMLHutiThnIaLqtm1bVQVwl5eIATIzoZWUH3pDY2meokClVMmJRGoptRQhulvXLKnWjRFsn+xOcCKQMNeqAiSSnFMYy+EhBaOq9vqlkQSEqgA5UYr0rch+jzI8y7LEiYYWvWYUY0Zec6/gTtWqemPvFwIn8clcuZQL1FK+E2dVcygobHIhmFZ108R0WvKSZUm0ZZTNbXI82ZTcex2bmuelEy4eYcJoeejMROQOVVP1lMIV694jiiPI1lQ+Zsy5eSIMGFoYmjkOH7apII1RC/tKC+EALaTfSEC451iqmTOFTzAIYLs/v9n80sKNgZINNFUgt7VqbT5uj5ILFPUUOWqKxiB8H8vh+Yf+j7OZr77eKfRjD5frBKueIkwRcu8emVYU+mu6MbZ34jSOY+tswHNPhh5v1MqWjuXflqFVUwWI2IWEe2pbJypx4ABgD3OlTQQdCGHvEuLXrbt6X9h55qN//DtvO8PfcYgrZBStZWI3DykQTkFvHvhJACzCEIN1HfUIC/MzzpRxf+2RvVJaSZcsYmZ1eiN4X5uEw7HsDjOv5enx7bitMHKW+1d3WxVP2Or23sNr27TWvYgALDkvy/LmzetXb97/8Ecff/zFJ5/9xs+PxZ3MtJlWLXR/KJ/PDyNmnj/ibu8BV4w27esTyzu95Pkd8onnzY7DomsyzVnpfTMaMxvjzMzO1BkNm5CnzACcYd5G01v67rB1mkg5GwHUCHZ8hLuZnTlZGPjgIxzdmH/DG9pAFoEXab+jZZ1QTyy1UaDcDwB8vH1el+YW9MNnR0TqHuVpvN2dFOH9ScyJ1AN85D0w1giYGhLQhrwdVdqHRMZUcsumC76WCoSv1AGutWcBHUNPpWjykd8vqnspxQjqSsLoVeaIyKFmVRU556gP5FXVDOY551al2h0avmUXiHqpW2EmSYkZauZmVCNPwImJGYRqWkspcE+ypERm6JFJ6uBDv1uzIaL9BrcYFTMyJnOA4DBzCCEqVzPDJjL9IaDWIo3M3JANzEze/Ns3wdDnojx/EivrxipgPn4d4X4nWntaVHjcO6kjTJU591XacA6l7mYVaJ+bmamruioxA8QO3kutqs5U3ZgbFJlTuru7u7+/P51OxO1xtdZt2y6XS9m2wDzHh0REfrvIrxZ26zshUCBRGSCqVYkkScxcSulbzbFRDp9t/+/kZ/0K4zP83ITDX95jI1eJQLG3inCSHM68fd+3soc8T2uBiSh4epMkESldvcC17f3ybvWn1v6Rmsd3bTFuLLIud6XWJMsv//wvf/KTn+2m5iDw5XKptX7w/vvrekdGkpwXupT9/FSe+MnNXDTJ4lByrOup1kadrlbCmR2OZCI3V4CHUzklGQQzIqEOKnPqZUGOxiSRrdVSFgml6L7vwz3csiaouYqj9gV3YTMC4UDQDfXi2HL7L2MKJtH95yBUP0T7Q0rp99W+TZ9f3E9oatu2/fRnP/7Zz34WBa6t0yABIA7SjoaCSSkJcy3VhwtVmtM59t7O46Awi62YiFnYQG4eNRglJSdWtziaCYgc4K4ZQiTRKNs7hRYlsVodyq67E4mZ1VoASM7hyWVmaKPin6A3xszUOSO50/OUsgFISYi8brsIpTTl6pMbE7GJhLfL3UyYmGHu5MpelySnNS+ZsnBOfCmh1Bynyfj5q3TQ+fObK+fj6ebr44dxBkU93kji5Ek3TYH6uHKCcPz/COZ0YXAiVozaR2Nym2XVA02S07IsQGSDH93jzhqN7vBtMRNux715nVX/mLKv8tqP9gc+RKL1J7o/U73GNFHX2Og68Z7osHRePMdf/JCu2iQSNEXq5rj9Ndzv+OY0vEGbGnMUVUeuDGA/OtOOD2kQKgzmpClKPA4a6pCE+XAZ2rv1YsLjQ3fvKWkv4JnHq2FaArMEjlG9GvDpyheHND7RagDM6jidb64nou4wJETOEQFgd7VKINKnow6wmTLT5XI2cYP+w29+df+Tk9ayF6+15lSIhCV/8PFH968e3nzw4fsffvTuyy+e3n5hDCIk0MDC3PR22qwOspjj52tw8jwmQAvERPX22T0xvsIHZvjQWmMMeQq8U488j4uHmtEAPp02b1w8WqB0qddRowl+fOwkIUKT6jK/EUet0GknbEGp/i87c5DzATjA1UfVq/6mk+Zjfox2X1NJJKiJotAdOYwgIuj0FtQSG+PoaaCDlGIrxcg4iHE8FkXogUF6FDkhALkj+JdUQ84MQK3NYIggcY9XcymRFJdDgzSzUkqpbRxVNfMKBEwaWQTAvu/CiCM5pV5YOXKHhFNKGtyP6jBj4ha8NmcQI6pdBb0VO2ciBylaoKTlawooBdaYWcm3ou4GazHFZUlm0Opqxu5MHs6LDAK4wNSc2AXsBi9FJJseDoOxGmPE2aWa6ySIIaDS/TGzTBMRO9gPd/58zbwAxo78fAkxJ62u2sr5Rpnksdl10zeC8wrACU5mcKuuRUPa3UgFZvXx8Wnf95SSbRf0oHSQPd7f3a2nU85ZDWZ2uVy2bXt8fHx6etKymZmWXYvC3Y16pj+PQMbo880WaY2XjqMaRczvtu1RMaatzTj/Cc6AHA6aMfg+gZ1u9qZ+HMVO3fzZ1J0C4TEKMETYvsIC82q11go1YQ4nFxMLSwCk486hLM5zga84Gv+k2x9MfaGuhURl6afz5dWH93/5r/7qdHd3/vLLfa/qIEnuvu87wk24a0rLw6v3tg+Kgrans3CSla2jO5LqXi5O5AVoKoUF23yvXcmB52BmkdxPWcmZWhINwAOqcNVZQlBfeA3vD9CJhgAmDs9/2NtR6R3hxZzGsqsf7TgYhStwCNKNGazAN6ib/0LavNC+UT7/KCr479foWhe/ec3n+ycz/9nPf/HRRx9se8M7wLxse5BQ1KqqasTdoKWtVBFJzVq9PWWkYyQ6JSylJNVNVZ0453xaEszrtp+WFRopvALAYKpFtaacghqy1spKlBlEOYvTwQzkZEQikJxXC66KqsxMwkky1VSp1rq7O+C11khxYjpiniDT2lhnHXD4rvVuWSXoggAAacm1VnU1VrRAnIGFCEIwKJNn4dV5TSkvklSYR5mV27X6VQr68+m7+QFAnIPMlDpHAM0ziBbpDWViBFziyqiHHJFla7ft+j5RUOkM55q792hxi2SYmbvGSSe9vB8nmcSngUu98S01VgtJROwe6LZq4UeME5mZESUfiPma9feHaN/LkTpu0pyTRCPTMP7K1FhPmdm6vqpBO8xMUwyj6xu3+8n1UopFoehKtnXadncPHhOerE3q2eDcM87aMn8ugTT93D7ojtfjUqhqFJYdXCoDaOC3cIbDUWIdWj+UK+uFQvodwhw9ctSjD9ZcXQeqcbwXM1MnGe0D3suTI/SxZuhcXzO6SgOlIpFs3o0ij9hv9wuPdEP3FlJV1SXn6kdiP1xBJovcnTKYPn/75d/h718tdwsvREJeLpentNynlF6/fv3mzZv333//t6fTl0TMiVxBCEb00dV5DPsZDXOP1ORjeCdXxVEDjXrOcL/E3V9E843dYDx3zOZNH6hb3QyCI9hGrNOY8UjcnWefCdM+4+5hAIPDwtLg9QTB+SoRDEAIS0iKYsovmC4jRMHzLktTRZjGDHptjdMEyhi0fMzs3fkSu1ltggAAqtYdOnAHMbHIKIhdSiHmlFKxAmDOK1aY2UjEhrunZ+pX9ExrdWawSKwdP+z1yPjN7UmNxDwFbG/f9+otDzgxUkoG2vd9dxMiAFpLYhGhnERiow9PM7UcYHMncnYwJREimFeFWs45+gEzmIuTSIJg39XdlDyuJaKA/GxbSYmEc84Mrc3PYQgUOrFFhjrHynRblkRGvhvMwULEgLISC6lDnKIemJlFtJPImVPUEeyKrBpdc+XT0cax4e1Uam6JqMXExDeVclVd9RDiOTdj27eQ75QAVW61bZNbNUOk8ppVkIuIH7kBbQaZgiaaim6f/u7zUnRdV3p6TCmZwYk4pXVd87rmLBQQBqv7tm2Xy/Z03s6PVjWksO/Cw/o1gO2AeMDRcOIGSgQnWU6LKZgoSs4A9vRU9v0yIUgOqLPBxwEQRnCTAQByuyu1Zh7U8qHyTQc2h56ncDYn4ZRSzlnITa1onU8mdD96KHDNHV6qmXFn+R5X/pCNb1Kd/0TbjdfgqjEDvNciIn/xF3/xH/7Df3j1cPfr3/0ugBQi4lov2yZMBt/3PTnWfHq4f31+d96wCXGSVHUnITMClCktyYRYtfYNk4kkCbytIAW4lJKTQFrhh5QWdzWraVngFeBt6qIIEotX9z18NErssdCqmZB4ahI/FC2rijhGWljA0A7pIzo0NzS4Q1tEaOX4AEzh4z/B9uIy+V7WzmQDXLXve1X+sGvw0H2fOfJuriQicn64P33yySen0+np6UmtpMTEuJwvcOJgTIQkIjBq3fd9Z07EBFC1ltlpLdPEiBFUqAFwbX8ypSQpJbZKrqrEIBba6x61BlNKnFNCc3nXWqOaSyQbgkfO180+6SlTUk7poVitVYtWgTClZntUZwFAkQJD7I2iy8GCiPCUAnerulstZtWRfDpta7FSNKWmwEDNzUFNTXZ3gwpDMnNmEYqithx51REvtSv6kiiJGajWkYxA18c7jjPIenjAqEGviUjMatyAO1lWaJEpJXX3wP4xTSaHx5vrtRi3sNvEAu3uZG7k0jeZUcUk6mTKkqMkxMC0xKEWRnJohM1D4c6czdQU7j6s37FOvaUTH+bKN7Yf/nC8am1MXvr8xoDx66gaEY29GGZXDsuX2vwIZyJYAPzBxM6zJSkizMk9+NOHCuPMLK1YiJsZg4mMIGOoPdz3wc0e6KQwFboBTM111XCjjNBpKaXEHQ8gvVhR3Hb23XNP1uUOlY+fo4fSi0K1d+xGTmtM4ToBE3XnAjPHMdr8aAx3h7e/Rt/NLFa0X5f8xJQUAGBZlqhjlFJihjcI54g/PZerdvuIqorInDdULtv53duPf/rRcnf64unLvWx/9+n55z/+2frq45xTcgbMSvWqn/zoJz/58T88vv3yH/729adLZq9WnTpS91rsm344v8Xo1bhsfMKTicuRFOthvLuTEyWaUohv2rBvv+avo4eqStYicDHdOWcjOJwQlkmQDwagZgeamcojoh4zS4jvzKi05iql4+yO1zezFAdJSAIiDyN2pyb2hz5v5g7mlEA1fCtwJo43NHiz4IJrNgTIlPNCRGYcMQwLbA8AbmEt7nwKQWVfa02cWJjUaxdsboV1AqDBKTVGp5SaIeFutUbF1OTEAmdid6Sogwor4pKpYagUnihxZiJSKDmFN5qSZE5gXtZFiC+XSwhlYhBRElFVdUuUSilWahuyftQZjITcrLhmSZSSsFBy92xVJbEVvWwbmS/LwiK6lyhm6O51L6ZIaSWSrZhT3ooBFUTCGa6mNbRfCg7AHG4/J0CS1FoNxoLEbGRw5OQPd7JVkqgXTKJuHKU6VSHsBiNQEiZoUScTiKpHMRQQwhNWY9vb693dnbubenF1cMqrWnHynMJ4PxxXsZpzXgFyp/X+IeesqnW7yEmcnXOjrJCUGL7vOzOW02pW97qvS0pZXKtSSwaGM1HDbN8t67Ispv7u3buxupblJJLXJa/rupzu0rIQUfiDq1628/l8Pl8u+76drapVDVESMDdEHDQACjCQuDul7LXCwcsCwM2cZFlXMzud8rImZq5l3/dLKSVcUeh5ul2JYgFqq4Yarp7wn4WzLRRHippS7esMcidXIiJGg6Oj0RIUL2aQnEQgOS2nJUlCLbXxrLQDA8C6rmaWUsopu3u5bNvlYoHTYwYJSNytsae6s8i3KQvxrdqR39LcCtdb3+xxQB+EscM+Jzz45l71r1yd7MdPEzvht1F96JnzEt0j/uJNnFjhdd/rvv27/+Lf/Ou/+le6ayYi+N1pdbXLdt73zaymlNZThlY1lMsO84e7+/18efv4RcSKcs4NJ0KcMitzKQWEosYQ7qwkjmRmp5yJyMAENm/BJZGcJbGzGYYBLJSYIJK27ZxYmMi8qlbz4nxiySDSSH+KxOLm6nbArSm1pGYwMLNFhl0jjUekAQFolYGbfz2QG1HDTAMQOXKF2yB/j8xYtyI3t6+Sn28r7S+pwd+CLe9Zu5Ga6c4vJF987Z1ue94k/DaC1y5mIuDYYfpXrvQVb0CwuM9Xvpu7c49FjT3NUD3MNCIiYeLAkDGjehWW6nWVbGZCXLYdVH/+009e3Z9++7u/Z7Ik7LovCbU4kTMLJ5hVs2peWdzUiMVJwGqtp6bmiRjuBkarH0Zu7K5wTSwiXCu5mlsBKPgYWKi6mtqSIxE0RLFRMbNwykvU3anV3CznDEetldwIpGU3q0bI6+qoZJZTPu9l38vDwwOdL9t2JqL1tML8crm423pa3HeJOU2CNZlVkC1L2mFW6raXY96dw3zd9r2WcpJ8d7rLxNBq4IdXr1Mtl+rbeYc4Jw6OLnd1dTgxcRzcChBT9RqM8V1YnUg4stesVViIOXVVEAHiTkTCYaIEjDxCZ9JUNFPDgAKSmKuqG8BO1jzpzIndPeIAaIJuvQJotxNaQAxqRuRguHdfucAJ1Y1IE5TYJQk33l3OOUcVTTPKzL18gwfDJQHm2PdS945wYRCRk0liEQGBjCSnY5X1rZ6ZA+s3K+UvroLrhfN1QfWvaM9IqjgGSkODRzfJAJhZdZMp3jDgvo3srSOfR+Yhuo0VGukIujZbDi230zlSojklVrhaDW87BBqHDCd1mLrDVc3NiDklTgQydXSSOQlblAxIKXdztDhBQrEhciM3a1ExInaMlEkhRquHih5udPcuMZKYxRTVnDi5GXtUBh1lxpZSipM43ECcWqWZrZaoDUvUQsruHokEZlFwmBQOqDMRSN0MykzD6CEid4IZQWrLaSQhUcABBaUpsBGJ68JQta1cDGpQ1UpGDDKwuUUZF24pFW0VxHy5VQBGDsZ535b1bsjG/vS4b3eXy1N+Lz/606N+uTDhnfE91odPyET3slel4ifIq/VulfTxxx//5ld/88Vv/+HV/en87u2aGj2Nu3uHDQNxgJNH2bNWDAvuTpxNAwzcA5ud9bp5QGKaqJmLcCUY4DbRGdABSX62TKJWTeMcadm71FLJEoJknimvC5OrlZRzrcXdOYlwMrhqjS+ZIbEIM3ljIydmNbRdjIkRpYMM7pKi6ExziqkqMy0pWSUyhxr1qm8xVjnnAJuom7CISGTcEMRDP29kWAdRn6SUUqqmVqtq4Q4s3/cLAGPpNjWYpNRGgsXMMFetDBeCa+2j3g0KIwJBA5kXrgCGmzvMPA14A3X3mHkk6DJ6ImXIv3Y7oflmPKheGoVavFJkybX0fQYBAsksKfdgfLfvo0gJgxZJWTKAWq3WXUsVocRiXktRFwl7xmFZFoD388XNhFnAtbqRSkpMqbqGQRtshbVoy7wOtkrBQtmBbatM4tBSa2PoJouSttQw2JH5UggQTkk4sagrAh3tLiSU2EsxcgG0Yb0s0MiRQN00JG8saX749lpEqq2NACQIixxQLgBEUjXYuUVEuFFYCdYlvg4/yudGfQPA2vuHnFqDDKSIYSrMnEhyXtOySM6/++w3pZRlWdik1sqOJIsskpY15wwm9eq7uut+OV8ul/PT07bt21ZM1S307yNqTQQGB/968Hi6VqTOqsG8rCmiBPf39+6uVvZ9L9sl0jXRvYAMociZ7K0z1LX8/gHmGSYWpoCSdwBGc5PicK1REjHiXqwvKkwycVFV1eZt7aqtdxbH8/msqnXbSylx8tGUltZs8h8oFOz8kkFy0+yfGkR2npfnvz5XbqzWfHciSUhpWRYWnE7CzHfLWmt1WK01oiiqZbO6JkkiOSVVLZdNrZDDrJ5OJyI3ddOiGnnpnph1YuFvgS8igAF2t8izoimM0wp6XQOTRPLlcq6lVFev25dffrlryaHOgJxkBjPHD9LKu3uALOMgcTPgWOlDyK8HMEJWLVWGXP0HJYJ+lr3/L63R161ffimq9K08QV/Vnk339EtgzxgAWvlExkAvqrqZ/fjjDz/88H3pxe1K0XAuL4sArN7CWWZqVgMsxZEJaqSqRBFaYTIl4h59rSIinEVE1YLGJuiQCOSuZgrAgy3WrZQSayqlFACaIJAjYXev9bhgWG7DmmPmpgkRodUb7nwkaSHyoHYiErdaSkmCvRZXQ2jJks2rV12WxcymMkYAmlN4WTSnlMECMXVxTiyABwYsJW7wpk2WxE9T0I9IItgZTgEQnIzDAm0GkYV9g+stblrFA+cZCmpUMuvXtHzOBjAEQss8zrXDUXjNCeI95DJkNUYs6EWH8oauD6RhAbrTTGDrnllcPAifrGpLj+6hlbqXUsogmCRzNQ1LT0SEW/URtCDWD7Ypfff2VUt4PtYx+WSH3usHz5FduXuf3WfMcQTTDE5WjRaCQxqvjLt3CNtANQuz25QER7g5DSPH+3jWCMubGUGIDA0yHeGsSeGBkjWofOvh0C0P8/KA1EWy4Rir5/vYLEiqOsCzzNwhpnCgoWAJFP8S8fNzhBroNOhRCYmI4IQWkJg33tiyTFWJE6Y9OUxdO4q+xlS2lEeg2ygBsAru1CkUUbeLaTlfnvStf/H0xdunz1dxSuX+3WlJ6f2F7uTBi1+27dXr+/v7+3VdlpRyzggQe1CXDejtSyPmRzreFXxgvnLYVw5IHzc68IbW8fiTDHB2d4feaAhxUcODPF+ATQ5iefZxYAoIgnZ+k9g6jhVxBLnbjx7AmebsISIKtC/TAVEOiy6zeK9D6ZNyvpV9yGFTuoQTkWlUsCXthQMgLCxVFapBiDhg5yF4DrMQNOYeo6ZRRuuQ2IYU8LYMBm5/0uVieXLTACuAZBPbLbrcA4ijqX9HAG+hZzM+aC18VMfJWWIVh3vEtBCMiNw8ZyGHmrqGGU6qyoC7RlwPlIDm22CQEAtRLeWshZnDV7TkHGnN67qaqogIybIs217I2mvHD43IPjjc3J3gjgjPQlgInDj4sQATZjFxMm0IKDQLysKYMgGJEHM2eNHqrt5KT8NblimxQ0DwKFpLDLJ2gIU0xiYY0ciDpBFM5OSj2tj1AqAOfkgpocMtRGSABLjnYxCxiFhVVYN7znlZVsCKOhFKKUs+NYlPkvNi8HdPj1++e7tvFSyR1K1OAX2RXgpBTYtZrfvlcrlcLtv5UkqpGtm+FMuPhGrzf3ewMiiYN0C2nk5RWZfgp3VZ15WI1nUtZSu77pdt3zdTRSddQ3N9Uc+giMXQ/bLT6XWz3nFtAxu1SEur6Ni/wZ0dmpmXlLOkIBGNQ2Ukz1BD9fO2bfu21VqjXhcRwYyltR6I/mHaN5u+N+0HR0o/3/pfbEOdxXEA01d9nUJJdCpbuXv1UEr59NNP19OrUoo7VG3f91IKEPEWr7WSqTAlIqjt+w4KpFlssg4gXI/aXPoamYpoO1txd8mJuQGkm/oYMQQPLTA4bGV+I8QSpiScLtvT+XyGQhYxO+wT77CmJofDX3J9n0bt8MzubcM16dNtDP8wpYC/s7z9s2p0m/I9cjr+EA+PZ3nfQN0J5GbGIiAhamDgQLW9ev3w5r1XcBUCS6q6O4mZ5pRrtapHCC4xG8vlEuYoANS9SOK0LMzQaiNKZtW1es7U9rXOuUkNIemd8VFS4oF8AxAGMNRM2w48GPKbguWHstV0BkBV1QoRuSsz2qsxcU6CKLJYmLkao1pKybyah7dRuHE7hcu5+JQ54y0ViHLO5CwOaFVVJoiIQWO3T5lPp/W07euSL2lfhAuob1rS16W1tdhrTMLdyACja8crJut0ONoQJ3VXLn3K2Jy+cnWfecPE9W45zrXnjyMijnzL2DgmKY5bdY6DREROrSRsSxcvRWv14Di1Ejpu3XbryasARQyBGqGGEQ5TpFnA/RB83u0/ervpkvukek0DOEyvb4Xh8sbgIiLgGA9jxpAcdzSFbiroMhTsMYlzx2L2Q/UfWh/GUIdscMtPcPfgzenl+pyZfSIqi0AiseAwkyYMrdv00G5fwXudDgaCWrydU95TNOM+I+Axv0gb2z6qN1MQRvuIW4ynRyyxLxn3nhbsE+dWPwF9jF6/bZR6CUzNvAWEoNbxwePj4+uyv3v35ZJLsIRsdf/y8XOpXM57eU9/9N5PJa9poYfl/u7VupzW9X59eHj4PKWy14bZlpYrSy/Yt23PjnmOz4aWeqWvxs/t1brTi9mt9nLs03gSKCogzqFfOqofjYDzjSD1Hw7YfOwKQZ9kdPjCeKpn1u3cpsPctHnbGY45IhIQOQknc+0zMoxq145JCTGOnM147TFAIXrCLCJ7KdGfYekcG/HAfgbGsyGuKaak4WwBIzJ34WSq3F+NJ0JcIkKrUwl3D1dUGria6OiQ4MD0Y3KV9Y1Da22o1IBkhLXQPyGHwkxV2EHMGmXB3GvdEnMSJ+ICXVN2NXXdVK16BLKJkHMiD+91LaXUWhfhNS8KvNsLdd/k09NT5pRSO1njw4Z1gZVahZJHHk2sLK1GlZAYARqixCgGVyMgs1jKRWvdixEyCQlqsVoVSZmIOTmhVivFATP3LMm9tO0jHOwkbKYxrwfOHyMgHIHxJvkpQpGpWDUzhc57hJmdTqdQI0QEwjHmzMRMAUonojjRiUgkRd4rgXNOOS1Vi+pu1rD74TsXzpzy+Xx+++U7c9pdbdfwfXJPC6E4DGDurtYq/pZSiqnGao/N0MkJStzr9LY/gAjM0kPWRJRzWpfl1atXOeda69PTu1LKtm0ty4iZBccma88WINGwfnGtSfCBKhiwWxtGqXO3fbu3YmzEiSXYLPdSRSRAZKPPgVAI+b85A+btY+7jixvHH6rZlJ/2Q/Xiu975atP8mmuI8ukU6+LHP/7xcnf64vO3H328B+eBHmyTjUvWzLZSk7C7SyKQmdUsiTmdz2eHCh0qztAUo4ZCh4tj/Knt2gw+CgE0ufLpfa1TSkBkzSuqUdPsxdVavtNEbHj1iMHSQeEb7KeOH23+4vzhH6iR/ecg8De272tG/NqMiY8wC1tQUR7xJG87KrPVSuzvv//eq1cP23ZWVXKPiFxAf0ope1XmBG5qJDPcrNomIoCrVahEZHgozSKCfvTHGR+mDlEruz7+hEOTPvLfmJmab9DcLfTyYDd0b8gFmlr8GszDB330YDd1HK5ewKw6SUqLsZmZWlUNvTnXoqY0h1y4cfYYAtzWVfjACccmw8QinFNas2SmxJKX5NVrsdHVUAjjdQDEYdcM2QYRfVkw5rXcTiU0Nd0nt2AXA2DaV28E7Pmv82EXO2G/Z7vm+EkjXS5wc3D3qKLs7mqqdQdQa40a6W2vUyMirQf1buuke17aoamqNtiJclbdxoPRX/DrRP8P0m52eExqw82RPX/Fuo769XceKjUHdTYTAG0xui4qz77S7JUegH1xr6WekYtJftAdc6FwxOOfnw43v0deMZpDim4ErN22GeQvHDSxZidZvbJyHT6guTd3nu90/acrDc29sV2MLWWcnnHyql6/fte+moANnPCLO3L3QI8Pzuez7uXp6UlPSHf5ROvT5fFcK8rvtFhGTml5c//x6f3X26VyZkp+f3/66KOPPv/tb95+9tuchMDEw+lzMGn3mW0j+XxCRzfpWZzmaj/sn9/I56hbO6/xOKrja8zsuA3m91+vdIzjud6g1+Ni0zgFGi5A4dJvcPTEFMcrHBzg4dezxj5+HBDtiVN27lUN3rmgFDd9e2jm41Xput2MLx1BMgeO6vP0UoUtHCJ6xSgEd4elkMxBnxDvINIqE8Sf4CzCREECZZOP0FSLwFNKVo0SDdcEmVLLx2cCvEb4lzgzgSgi5u5u1RWoJiJZJDEl5roXd88pieOilRzcy+QEhTKiwwbAy1Z5zSIkxEbG5DBn8pzC94B4WijL0EombjsRZSI120uBSMoZCWamMIEwJBGDzCRyL5qIM8fZQO6+LIsT4INaIBFDyUwdHaDswNgsOjbNwS0pSIScM1V0f/PVBMuSvVYjOBP3LYCZ2AESpuTuRgVAcGDkdVUtrgZwNd9LLXt191cPrxGJuYKUs4GK2rlUFyZOcHcNA17cqVYj0qj+5O5Vaym6F92LmlO4a+AEIzRYJmFZEUA0CuptpJyjUrFXNdNXDw8fvnn/dFrO5/PT+enp7buIEvQaFSwcVOmNvaPt83AnQJinTXxa4S8oVX0NgzlQqYcXNtZQIk4cuPa0pCwslTl8iOQuxOBjexqcz978ujOf1vemEL/Qfp9Y3DAUv//2fd3WO7Z8ni8EtAbCOX/0o49Pp5O6Be1HznlZlnVdS621bKWUvrHCqxJ7sOKVUmCes5hZ1bKroafEEDszOFHk48E9zM+IA6/rWmsrj+7hOmm9kpTYnYYbOYQB5l41S3gQZfypRZ5jO35pxI6DPx4fZ2KkAPc8Jp+LGY74cJPtr8/C/T5s13/Z4d+bNmkSTan9fhf77d2GSnMd6GcRg1cHB7sOo1q9Oy1/9oufvH64286P2/mJYKXsiUXo0MxUi0claxiRMotqoBDDY+jBt98OFIgQBR0GEaHluDocxJFQT+QslMDkTrXthLBIotImrAHhC7IfZokaS971XwAsTBGJJc8sWZIT3Ii9AT7j+laC20GcErN7GPNszbRNbsrMBNnLE3PiSTVKiVUdbrVWr55JUpzXarVWEmZu9XMzU2LOiSUh51ytuqt7DTxITH0fjViFnTDY4TSoGClOqb54aaxls+a2NYeT+oRnHj8M3XRsjE37GrGdrmQDDVWHyFQO+9zd1YjZYUTuoZ554GYrimmTKPaAjxPIIqm7StRDKhXucBj2UBvMjKf6FK2IQiiXk6ElIsuynLd9CPNQrwH8ET3BcxurWH34NYKduOlQgjjvyVvFaHpum37Vu8ymCxvQZSCwoW6RMWhkHqm/5OE/0QieHHeYBjCQj2CaA1FEZFBQMye8gYp9bBXNbTMpRe27rfprS98dFoi0rcY6/6w7dBi5ZE50vDW3si/NxCGPdOur823sZs2gmBSz9l50hNnNKxGJt1PtMEuGv6jFOyKQ2EyxcQK6e8RF3e1ghhwhk/GVaYPdns7bttkT6aKL3Ffse73kxJXZpD7p42/e/kadfrTkfL/kO15O+XR/+vDjj379D2/eff6FcDLdAUzFRNrKbUaQDJdZ86cvkmJj6F06XqMPDqKsdpvBvmvcnDHa6bjjewDM1N296ajc95zWRqwVQQ6FFtelLhVt8VIE0dp5YQ2pBlCLpEe9X+oTMu4vbRMgM2cPcDiBSF1d2ynmYHOylotpbioy1QKI4ynMPgIRSa+xEuRVM/BhiFAcJYNTsRm3btwRyoh12uE/TgBT1BCjqapZyHnsUQw3N8DdNEV3+0bfEnRFJDwxsXhGnVuQBcUTdZY5MwuyaXcHeY74oIDDGu53oAGjtwCXu6pyGHccIe128MA41skiixFUs/cqRKfTicy3bYP76XQScK1l3/ecJecMczM1VxFZOcGUXOEe+GSFR8FlAVd3IhbiRFwAmAuzqmYWT8F3Qq4adRQ3o1LqOMtTZkeSnghKrYrCCMLTIqLwVsW8SeCUBdRlSxHZGiQ5m9UxntFEJBy0MSPpmGweREfM7D02782DnmottYRyQjmvzCwQhWeR5e4enB7P5/NlP+9bEOdxTu4eoLVWK7I5Djw+3/d93/ewV0Ecp0ZfvQIRSuTG87aXl2XNCwC544f1dHe3JuZ37969e/v26enJu/e6HbETPmcsNvRssXkl9B1wnGeH0YtjVw6Pdqs4jevdOq6UlhUOASViZ7HUBtB6vC5evJQSGAR2jHURy7WdKMNo+eM5v+mP9+gX283RPn+OZ711JsDBvJxWEjlf9gAFbLU0xVNERPbNLpcLEa1LEhHXPWa+lO18fiwsKYcCbT7tnh5YBo4IMDETS0vLb248V298BU20Jqza0UlmrrUmkBJpKefzuZQCgxtxZvcrYNjNK4/8svGhOW40K580XTz//Pebhv/cfq82ZmFsLM80kx/koeNx4xMRNm3lB0NjcPeHh/sf/ehjZmxPG6GVbe9fDBa3o5BJqEfMnFKcF1iWSDVqT4k0gaHA/f/J+9c1WW5bSxQdAMjIrKp5kyXZstdyrz7v/0rnO3vv7tX2si1p3qoqM4IEcH6AZDCzauou2d2bnz1VlZUZGUGCIC4DA0QkILVdmw3JFBHJyd1LKdj3uDuhbEUS9Q4FGOddY52dFHUcZGvdqLdf2qzlG3nqQTq9X4hoK+eiao3yRJyYjNycKafw5/vIkhDpXnNTMyYSkRzkTE4MIUkixU0YhyXdHPIhybZQUSsCrXPe6Rnqb/aLHMKYovEvTX5s2MfB+YtL6uanH5z1w6hYu5IHn5yioWMj9OYj2wMPoKO7k1mEFcxsQM+sqjDgl1Jte/fXsRbjiWqtiUimBEschRS8j3MC6lffKN8/nu4jn46kMZgbHBMXVsf3X318RRD3IKLt/cRpJjj2FP346JAcm2web35U68DMXVSGvzqegnqS0Ecceb7yJUZgFi3vQdbmsE31wADcnJn3LO/ki1kjCd+nqOW2eGdnuvqiqxxmu+HJAZ7dwiugVn9PeL8XDS+tD3fnEYcZmWhDd/da4mme9rdv33724cPtwTdRSzjhkZKSuLGuOH3YPjyez+dt9cSf/+4Px5eH25dH/oZvX7549fLNX/k/a60e4Y1LKaKesR9fFXfq7hdFGdOxvi/cpUX6rOwNiZqtqZiK6oG09vnj1Atk2vVDGmmHvFHz4Pdc61ggtKDDWFbnoV7azXQh7HfO/TrkTNHBBns/6mk12zommaW9kx+NL9DGVHf11N6hGeqm3lismZhIwgcZN9TQE44ht09FcThjgMNB5EFglsyrN84VTM94oXPRowvm1YG8iLsHKDdEcds2YWJKNXwyh8PNzUlqNfLEIJA5WSU3B0v0qjEQkkiOciE31bpFAwNgrY8AYM4E00rmTmxmtRQBUfIgr0opkcOqelUO4bAafaLCgOBGsg0jmLsxyMkZTi5COYuj9WJ2d0x9dM0B4aqgWsw8pEcg5v20NorFcHeDmxNAOWdWLZHt9xbnGFITlQ/VK1erNYlwihOFWPiCzShMjXB9J5sG4V2nFi2TLkSoWx1hZTMIZ1lyTknVjHBzc3z58nVRfffhw/162qqGJ8DszsSUmBORUNRpE1lvJjbY8yEJAHECSbzAkjknBGVUhz2zIyc+HA430eZIUinru7fvPrx/u51XG5IGI7Sa8l3d9/3azRoiIrJd1+v+6m5SzGaBmZEMcrwxJlVrTgy4wipJSiJG027xvf9h6QPuxlF3wxFmiww23GlqYfKpCqKro/dnjx+b8fut0a2zvkY3QYZqm3V9NAfMtze85BcvXrx48YKizJbZ3YOMiohyzmfhakqOw5LM1FRLKefz+XQ6bdvmkkoNGYjLVgEzsamVskKs6MaQxnoVEDbmqiVkOxZftQgzcTKjdtz30WwLQ85Z1/pwf9q22rcdA3vl3SByH4tuTmrwqd6szcB05M3HGD3xu75PfH7tatXfHh39637jDAv8lxjNY9zJacI+cKdRRx72Hwtev3n5+Wev4dXNlpSJXIhLa/elzCkxq7v2GqpqXtSIADU4JRHzam4s7GpBZ0jdAQY4bJ/m7fT0AkVzeBYzq2G8kpjbcD7Hlu8WFYfV4nCZis2MYITUYWVh08bHY6fH1cI3MXdzMA2vT5iFHeYGJ2HiDMAx1fu5FgG1XBmbpHi0cOqSkYnAAagnwu1hOR8OOT3k1CqnvBtn3R0lN2ZXBLEK0BuS2rQ3px0d99B/3U1bdzIQk6tNp1oYPL0ZyjSN3X4OJuldTBxwc7iFm8Ude9ms0+Da4zAxJ+PN1d2jlFc49Tva69oQ0biwqRtllgb7FzEFxbFM0CfuI9g9EH0gr3Dh/9Rx5TagG/qzgDE36MCI+7d5+bRmGI60EXoH0ph+B4OlAAEAAElEQVTnkWmD2zBcgriBBm59XCFIHbjv+Vn5A3BtDEDDthGfDguO1gAEQMNR6ckVRNqmZXCpxVwuM7pEBLKo5SUij8xdt37ce+FenzrrjYtaxCAuAhn3QzTnZvcnHV/HzNqOOwUZ297Tovcba/BatOyiEgXrNbVwzuQe49KuaE9xtfrmc+jq67//4/Nvv0gvclpQSwFXvhFPupbHWuu2VRT5cP9wKtvj+rj6mQ9UUZclffb5m5u7F+f7j8LcPFsEx9Ae0RvP3oWfiXZz9Eog2/3zhAaZVMdsyQPAXpYF99YS3cMD8Ajxo+9lf/brmBmuAAIzq5FSAgmxT/jz/mZQUE2AqLtC3jEdRBIe6/gIo6fr4m0clNTUmJNIAE/Jx6Yz7aTLZvEYcShEeGZ/zA4ujtRjVQ060sgxEDMRS++WUIM2v93txGk3BQnb0pCiC360PHJzb26FpVlYh+irapT1x3WFgaiF0+pkyY8Nxeq+LAuEzUxYRvI6+jiYGVBUnRmpuX9eizEsg0Gm0Ig3ODsRmVVTreeVmV1r0I7lnHPq/W/X1bt4xZEpjOWwANCtRBpdEtXNzufTqxcvYNFLTaI7opEbYa1KJA5SVYoMu6HUClC0es35sCyLudeqxQBupggJInle1YpW4cUJJCweZN8e9cncoGUNVd4lA5IGCV5Tu2vZsgmlJHKhoNFDGqmPtikant7MzKdYS/wQZYrUraWwI0u1m8PRvEpaUkqr6nmrVYPTnGqt0WZNUjocj8e8rKZaHaQ+gnbdAHIWkDAncHsKSjnlzMxGyCwpJSZy14OkZcm//+JL1/J4/3D//sP9x/eR0Hb3anGfu9zPKuMyXnsdy7SeGR6zMYeu46TPvRD/auysJLHnQcycc17XOr5R1aIzRHj+4ZkTc1BGjwjF/qdP+73/rx10aRQOlTJO0PkMM7jV6jBO6fVnb168uCXhqA8PjRRNvLZy/vjxY+PX2VbYFrnf8/nRvBK3gm3i1sFSiINxzQnmzT2w6M7intJCLWIaCIuWKItvNI0eehcOsBDXui05q+rpdKq1gjiLBAAx3ma9mnHMwL4ZpxByVX9GPp9ke/YX/5Wctf8zxjDynh1DYn+Te+ERem5aDlGmBQ/+P+aWeNQqwq9eHL/4/PWS5cFbE1l311LBVGvNC4ii0WDkcKC1mjqEvamylk4RCQ+2E7HMhtSwnwDz3qylV+DP86OqMF9SkhY4VTDlnBvT0g6SatvB3FX1kHMpRQdaj9mJzCylFBskFHWAkuLGJGqUgLrWWk2IhQQp6bZp3XNlZTuzdGxWMF1HIQ0jcdp0Y4e6mysLDrwcc8qt7bYDRuzU6dbdPaVMVGEUHK0d41dN0aqBn9BAPF3d4dzu/jCmvjJPBvU86pWFjZ50mp0l7FnBkQBu/2LYuPGp0RSEecBfmjkBZxAlEdBaC8wVnoghLMSU5JjSIHmx3uAk57y2bGfP+9OvSQn5A8azO5qGQF8OZu7c/Pu6APiUDzwebHAsx1XiHBmS0O0lHq4CUS+ohlKAnCciIm/fud9Du4LwSPbi8sQEdu7fcdtXsjRyca3rX49ZUKA2ei6XOnJwXGT4RZjrwKf+W2Y2B2swpTS5owNmOEPI82wMDMF++mLTEupD0hob15R431eku04crk3oF4ok8P62h48fH+8fXm8l6UEMlriYMVkx22p1E13xfv348fT49fu3L5ZXZz2v9XyTl88+++z169daNkZ10z1KMnmYRDQ7280irXssbxKDZ/a7XyQ8edYnRIQp/jjeySBXoqnb5fjwkJMQzLFe6bK/zLzQ03L41RvapXxfHTPdRQLticwMJmlPx14Q9MyiBSBQymVTEaGu0IJAKRGDOazuwEunlByotbbMMJqLPpockAcauRNbXybGdt97iHQ/XgGg9exQd0/NbovWcY2smACIxJqxma3rum0bR/UE+7atxslH5r0x5AcKUZlZspih1s3Mbm9fmBlYUkq1lnU9JQbdHIjZoap1XdeVZVmWcLOXJdWtmGqk3AiIHlONf1+rMCehbT2p6vF4rKpWqmlJKRHY1cktMbRswpxzcqgHc0bEkc3P29nA+bC4Y922ogZO4dKIiBPWbXNmgN21wtKS2VDNgh/PADCZ0+FwY4qHh4d1q8vxkA6yrqt7BMwcQNXGe5lSMndmzimLiCxCRCSccxbmNIUJYxyOR2IPR8t66ynqKDIiikbqIRZaSyklNaZNELGkHJ89LFxNX7x4KTk9ns/v7j9+8/bbx8dHCNdqzCydX9TMgp+51iqJ3ExrBXGSxZyITEE3t7fLctxqMbO0LMty4CRaPR2WnLOAmHxZlhfHm8NhqVt59+7d13//x+nh4+gryBwdf7XlkJtq4OiyASBCIV3RBNx/32zUFqjhTwbawXvMO+jBtGv5RHtDAumAEBG5WQ4CsrIxc/S7W0tpNGMgIqq1ts5erbFHZWbkTCJ6Ko0wY4ay/Aw32L/THP+nj4uj9wdE+u25qdjVZVxK2AGLQIqVtNy9fPUiLIkXL16E1rt/fFDXYCNztSVlY3JXIl+3gEDTtp7cjYFo6WmqRMhZVL1ojchRKQWw2oEGzIyOdQz5iVoPkBGLKovkwD7sT1TVuYLs8fExc2bBuq6IeD8TuRGRkYmQIJmZuu2hwMbcznBAzbmBPzFh+4nImYem3h0Dd7c41WPaR4T16SrMc/7LZFB/oFjOdsx3vGH+66de6df5Sbc7jbG4V69898/X5qbv8N2nMv9DNsK8mt89Yp0BWGBczEIPQRbUFUlSSvC6nrevfv/7P/3xq+10nwjmtm2lWCB0KKWktapVMzNQrTVqzvOSaq2ciJmttsjdaXsUyWGg1Frdd69MRKLGxcyCZLG1ZVJd19XQ+sMRUcoSJou5u5GqOkFV48oCUdW1liupXksRkSxUa7UJPGlB+u9OUW9GFGtIREtKibjWKgTOiUHmFdUIlmVfwSXlOJdTSq2hdo2Ugte2vlx1bVWEqgmUmIRAwQhKXM0DJOKutdYBryAFELudqPstIwbKl+AO7pVsRJRSqj1wMMzHDjzZVeLkn2BI4HzZ+NOVQenugXSbU76hU1qyodboHQXzsm5VKoNy4nim6ubm3rK/REwsQhLBAATRU5CZkflhyTc3N2st9/f3nNPx7vZ0OnnZQKBeTxhHp+P7Bf5K+H/m8XflSsXPQ52OiR1GecxMnPvaOiG3SPfVbu2Ge7NAopvYfn13itABWk4Vo4ixOYqBhDQiZ5C7q5U0hRKiw2UAG7nj1Zk5OHsJEGLnFrEY0tWeKzzQHvsgGlEnqCp1oICZkVUiEebmNrqHVHhQOk3tZ2WC36vb0Am7A8ZcVUcIICDJ0S5bOu+0e9jIFKjb3IojRNDsTIqSCpHxUBbpc3gQl1LLRmj7XqawgVV1uF4+omNIGAyUDfy3n4DbeX37zduXv/9Mbg9aTBYhyY/bWkvNcnTRQlWZMq9K21++/s+yrbKADK/evHzx+sX7t98+nk7HnEBOTCyItJl763zrDd4SuBWGQwQz19TY71HtKT04Mh034d9ekLQRESgIvSnEoZVDCrctH0mgSeDnU3X8POj3Q6lazCo1YOmVwnF3Nc8SxTNArwsLYtGokCdXs1ZMyr2TqxHcq5sHh384g5jCNNwhJKrKmTgn7u4uMwcsP0sic6S9OoCpUfeF1FZ3dMx1GFAsDBcrxd1ZhCiaufBwmuJb3D2lpFrNGmq3pWPBZpbmqE/k+oNaHe2Yb4QP6OFMejJaYNIGdshqJSJl5pSWkAAtWymFKQw/dqNqCriAI02ybVtikURbKbFy+/YwqwEXdsSxEJ42AC0b1ECWUhJhIjjan5qWCY6+Rh/PJAg16PDgS4pHUCiJCGUhccrNHFHEShMLmFzVQbLkgzC01NLowZZl8bgmQXIyhVF0VGpcl2il3ntqaBY+7lHneZhZw813Oe5SheD+Gd0IQyemlHb6eOaUUuiLlDMn5iTqfnp4+Pof397f39eqhB1xEYrNiCLS5dBa+/7sFvzxeEyHY8qZOR35ZlmW4+1tFilqYDoej0kWhx6Xw93NUUt9uP/wX3/5z4/vPzx8fB80RTb1MBz7vx3k8Ong8UHA2xT9DtJBX1b3Tn8626xNGi/jWUNKh1KYV8Hdc86RnY6cg5mt27ptW/RNjvnMKcdS1lprp8r8mcf2PH6+EfDrjfnGruyDX2Ywi8jt3Z1kubk9AHb/8GFdVxEJhDwLRCQlBqK3eyXyUjaQvXhxp1bMbFvX4F3rUD2jRo07OK5axLHW6tTp4slFOPLGcS9mtaoyp5zzNp46OrhtRUs11PP57FUnoXIzA+0dSX3CKfRJjH8owEwj8I8uuiN7PCa4CTMuksO/8fjNxJJ+gD/5w8cvc9uTbnn2K37OhT9xhQYq9iDriNq5YK0nuPsXv7v787/9IZF9PD+eHh8js5NbUYzFlmFmIlGt2tng0DNd2M3TPafUshZ730VzYIQOqIcSruxv75HEQ05lO1NPYqN7YmFzAK0pC3fXYljqEdgRESNYtVKKdaoed6/uwYuREs8B0NYP3F21igMwxp4BFpFq6qbM0lLoTAIRcmbUWtW11upgYeHMt8ebFze3D/X0mGspbErirq1DZwKCsTdC2BfiNJ8mn5KHccD5FEwZfwq3fJxZlyJBV9f5LmHyCJwNhBSAXgbZQsxu0qxPdgczSNAdsLAuwpPoKnFno+Vo/8gC7vE4dxGJbg7NO0LrzrLf7Y/ceb+2hhkr1fOg3R/GHrOIBXq6UhcXIYyI2HzPT+9/Xk0zQ2vUfLHvnn5k7K++JbuBxxemy9WnaDJp+jbxsdcAj95gPPn23v7QBk/Izdma4u6oj9lDjyJh+nhckjrTb7/VfbOP6oahlkeEaHqucUECwjptSBSglx5MCiQe/tmT8SLPB7jidH96+PBw8+alnoscRIsdDjeo5fF0PnNlCBGf7ewP33il87aey6MQvbi9e/X69f+EO6K5KcZ+aTtrICCmqISZXXGN7wYn79N7uYL0rBRdyUlbXPVoc9Nf2RHXPgE2WS5qWMZttKrgjgcZX8GdpICmhhCzKvBOk8xTqY67AywcAtA4/MeDDHGyucUAERFFl3ga/lEERteVmRdJRojaw7gBtabLhMhbj1oCU/Rm9+lw6SnMfS1m3zY8SvQ+2OPpkikigog9FW49stjXJjY/wZ2g7kB0eQocf0ukEJmrEBPx5u7uOWfOFDE2q4WZc5KwU1VVrRIh4ONqtm1nETl48m07LEvEw8icHQ7SquJQQBgwr3UDWZbMsOo1EafU9Hf4riIkKZQIADg4uLyTiJCJsLsF/w0zC0hNQ7kTp2pkpgiyOmc3i77BMcspJWepMDjKtsKRcwZTKcWbqxbqlQcPk7VG5yH9auaCgFMPTEuvUu3DOoYZUWTeK2zNjKOSp8nroOOGd73QNgPBmaqbcHJhOB7X84f7j7XW4/GGiCLy5Lv9ANVy2tbcaQ9EJE6FlNLt7W3OmXPK+XA4Hl+9evXy9asl5aIWQG13uFYiqtv69v3bv/3lf/3jH//YzmvdtiZC3A/LixOSe3arG/qKILnEkMW+Q3YzqCEanDvUx3tzLCLqxTUNRjJPLREl6sGP7sSmlFo8mHhD6/tktbb7YQ7SyyCja3+95KiIS/9yjsrTDOp35/R+7Pt/3KAf7Zxc3Q91fgo0Q0mExxEmZFZzlhcvb1X19vY2pXR/f7+up6I1mJ9LKa4mzACELGWpLI9bKWtgUlLwYwGBaemRL3ciqbUYqSIq3iPkb85KwuwjTBhOgjmRqm2b3tzcBOQyhrfWgubupZZt28JuQAtUkTWY4QAAXaBxpiPnIo4z/0A9fu+XVT2R1p5W4Rp29UuM75If/z5n8seLx697nRhXRsYP/0zLHE44VH+y13+RcfW8jh4laRyhzcpkljj2Sym/e/P7f/+3P9aynh4+nh7O+XhDRGpAoxjZ3OFucGZvJaMW6J4aLR4unIEI4YesCkAOdniwSPng6REA2juUElGSCN5vbhZWQZjXIA7wFIKVpuMuaXC+tY1A0Tejl7IK4ESecg6FbF6JIq9F7l5rlUihAA5jiUPP3WGlNmboaYTRk7KQc1W1Zny7NtS3Ehr6zomXlG+Ox8O5LilvXLaAaxmCBCAi042zru+C+SjZ1+457xfd0X269M3S71DYq9cb1TRFGql5s/ycDI84GnVDur+JA6JmBENlY6cwTqOoTcZdzb5WWKVpEcntxBThnIW0pYCGed27G2YRqZ0sPxwDfy6a/xPG96qdH3Wp6LuBCb0MgKkzhPVmuW13hDEyf/n0c6uGG5bbro0bwHj6QLTRGomKUCnP9CyMSl3rp8aINXTfBt248275tHQ0EVJrHjm1E4OPfFUzuKYMAVrJToi4OpRI+q2OaA7MLEtW1WY2p0QjFcz7BduM8Yyd0TED3kIAfnXY7UAwwPdkcgNmwB2kxMNN2w90d7+SiTb/YwOG9Nm0HxX3Hx7u3334/KvfezHxDDqmLG7n87ls1ZjBcPhKDpHMyQ+3mYqB7bMvXr14/eJ8ftSwRgNkPZz5AQfuGlWj36pLX+0WnTBqRhCBej7RiSixgNmfa+HB8FZaRU6MBFZ49GHhIJ/rjz8mc7+xIZlhC4Uw8IXl7Xt9L1GTQCIiEia/qEInIrfG1DMSudQ6MBO35LC2qxKMrPWxsOZbeacxixMhwpRmFoUVqupq5oA5GETEAU320ZeUBY2qNF6Hhp72qFBlImfZn8gbkCHy3ikIE2g07pjkNtrRXtkKY8x22PRR9Zb9ZhFJAaxyD1MyCmFJmMzVa8SzBoTDzMLyNcWqtXXgYU/CVrTUImLkSAhn0s0srJF4nlorXDllh1XdMouIW9XEHHQXDg03laj1Cu9fmqOeAl1EmFy80V1KIhiponfE2k84keSAOrsQ4JqSO7NDgcRCiVIpQY0lxgoKLJhIppbVJ0T0yLDP5MS2HbNMc6BhmupZsseaoSHWWr3xvGuaGwwA0QSBmt7P0ti/3N09pXQ8HNxdq5tZcYW5TFoy8v8t/ufuHdqUc765ubm7uzve3d7dvXz58u5wuAGRuq3ren48rev6+PDw7bdff/23v79/+857liBub1Jh88PuM/4p43c2ItokTFI6v3NeuzbJ2Hl9gxylLUpH13AvWWkhBtNBcAVqDY2jADh0TWuHfHU/v4T5/nS7/esMmmJ+Vybgdz/1ePP+tknUYxuY2e3t7fF4PK+Ph8NyOOSPHz/aNABLmbNJpN9t29TKup3W9dzhHrYsYZdbpPED3k9E6mbqxTQgRgMy5O5R5S2JXEm1gsxB5lprqTXzRMkepcIgUi1l1bqVEKcumETeUE8Y4cL9s3vg39ohT9ZtlHkqrEOxfSr7+ZlC9YuM7zVGf8h9XknOs+//NYT/u6/59NHmG+s//5S7euZ7P5Fc6m/2QYtA5BT8wY4l58QQMiF89fsvfv/lF7DqqknokHI1VC8JJIclKCGDOpEpibB66+E44Gojok9EgcsLTSi9C4O7uWmE+efba/HoVoPD7jJIR7uGp+mfJ3jgbna0gw/i5M5U1WqtCNYTkXVdTcHMWZJZ3batboVSgjWqE2ISFqPKUdzrqFMNsNrOQuTuVdXhC4sQqxUiS5IORESsBjN4woub28PDumRZUnZTsyhamoWT3ZV6wRGciQyXJzWe85AxnVaYVOW4+KAIoYnd94nIXN3MU7HBOBJxab9Rjy5gP9mN3Ld1JebGOzKlq4JPNDqdjm83M1ewNCTnTmsCjLYl+BfQVJ/a5g3GNh1DY6KGXe6Xyc9Pfsfcq6K9EEfK09WnjgGOldXWtufSRNkXBS1DePWGZq70Bme0w8ufKNLplBnhVyLy7gmMfUrdCh0PO8doesaMaOo1Paym+PjsBDajpYfqvI8x2+MbxzzjWsdeiC4zm9b54z4NXG6H+IhetVW4ZDg3xfnhfPp4srVqMa5ySEcnVKabo7PVdV2LVZFUfCUiJD/e5sdvzuVUDsf0uy8+++abb+pWovsnmzNzz0jvxvn8UPQkF3KlE+ZpEZCDRkbnUtx4nkxqlb3WMMhT15grxT6E+epmfCT+J4d5rEj71ZsBM24ypn3HI0yqJjUnq4IsGNm8O4dDtjFFXYnak477G9eMT1nVisrMiRmps7sREJXeFC3dGqxJhA3m5nEf1RpcXLXOEsu9lZd3TOuY1ZDkNM9X/I0vNWPcYRd1WMMVB4icKRiD3dxFg6VIORGrE6qCqcCFWtzIHLVWh5pXJzGvFSVlQVQbuav4krmUdhAGcsmJU2RCyFRV4Ii8OLNrORyPgFndANNJcahZqdUMyGAWmKmZq1mtFGlluBEE4q3WgqLFuxPcwZTAYk5HllWrA4ec3bh6xBWEHEvKZmauDGQRhm51r+ox6ll4yMgGR8gkszC1pjtMxI6rEYomRGEIUzfgw/iosdnj/cKsGjxAIU+aUloOCyVJSzb4VkqnFfFaq5ZKJGYGVwaIWbjhQmtZl2VB9xIjRVu3UiVpymXdALNS18ePQSZEST4+3H949/7h4WF9PJ0e70+nU2tAhYb00s5o6iCDeW9fN5xgj+qPOZIHIJAVRLgMpUfkZuy3cYC1nWlORNwZ/2NXx4oOCbcphBZNnsLvjVr3aOMYuPMg/ACTmoUDFuGv2abBpSq5XssfM3wHgP+Qd/OP6+Aa8Jaf0fT1QrH+4DdfzYl3VtIoH8k3hzefvWLGuq5Rcgag6mZmqiUOG3aQ+XY6nx4/lvVhW08fP358fHwERZzUJKKJBi09oj+du9bxBCRCwuSqqhGMHakt3ksMYFZr2W+4lMJMVuv5fF4fSykbsXtVkOV00LpdnujeadmIiLg3KQnr00bIZ0fEjYmy9ip594QvMirTnHN//287nvTJHOOHyMPPef9PGJ/8istd8PyGHUYDrilnftSdTwrte9RCOwPmaxOBTGQRuJC/uD3+x3/798/fvD5//HaODqm6e+npo/Ci52Uy9uTuiTg1YWxnv0gAIoq7ewRt4R5+ODtxkIzEjTARaakOt1qiBYG0pu9odmnssSCjaR3dgR4A9dZq0YlI8kHVo0iSSM3demWgxQEdnJ+BeRNhSmipXY90jcHVTZKQYU7QGwgsHkHnODEhsuTMQhUP9x+WZck5SPXU3Y5Lrnd0/PB4sxQ9OLCZwU2jjU2gMaPTjbXOBRQMuhcbYfdAiKi3AhqpqpbL36dohHxHdgvd/ovpUo8MemfPQot0XwnqZLZJxGpjWQnEE5sRuYPIA9TW+mQK5+QOF9cIpodVwYj2PXWkH5gLS6KE7NSBhdwLrDinwIjFXeKXiAL3Gf1xF/m+LTl4YpuTFlWKddvUiloZqLNYWnT8rY+IVTx4mh08GnBxhjnQeIkG5RlIzSRQF2GANJOjda70XgvAvYS798fbHSSivfdvDHoSs2vbqjeNDpOJHGbkgJEyMyYWpSZIEcTpxwx10viBtgvqDSJKtHdqbSiqNufgne9qVowXSQj0Kw/ZGO5TbfnSKx+P1RU9bfjMEnsvLt2jkzru4ekoa6nkjx8f7z88HF/e5rvDLV6Ze4IzqTBYalXdtIA8s3ICZ1IvAN+9uvv977/8H//3//O4biPMxMyqFhMSmFMN/DYh7GgibtvfQ3Lacd771fmoM7VgAUdXK5dWhMA9eN81iLubhhnp39mVDVkiGu3ozN2ZgmKwe26ARSPx7okAGPaJuxEHDeDe/DcqluNbcquvIQCYSmYM6ujlNhhPxkmWuDIzM6fhAJeySk7ByNPkv8UTmpLUiJMGgKWlNEFEToiSoAjRLMuBK6tFNTwJkRvIDVaJhEDkhpalCI9MYkeFRjD3QFGnKzt1SB5d95Jp75oBDwNHGgeGdQpyT4mIFK7bJm5L4pQaY56qRhcdT+ZVo8+B9DSdmQXtllmEGKGqMIWwVSUYiyJRasl1FaE4HOec3uQahfy1Ogh3bUTbcI6dbB7A6sRcTb0GMDsJRA1WdatFluxqMAiLR6mDeTSFTiLOXFUJLomNBdjUAZK5EVU0M9VGHtBCp6EfRn4Sl4dHSgnswQZuZuj80kSU81JKCVharzYkZqrVYwvGPIctorVSEhBttZy3tWF+qpqZgHiIhWNw/vS0W+vDxL2OXFXP53PKLCKZhZKQeTE9HI+11sfHx9PjvTtlpkTYtASLOAZ/DzOFlNZWUoHJgb+QMHfsKQgjSrExaIrrjPv0kVLfDQu/EukR7xwSzhOrYbi+27adz+d1W80s8PRElFJalmWAz8PeDDK1dvEnR/UvZQT8mMG/qi/01PC6+vWpf/u8RRKBg3hzgIqY3el3r1+/evXqfD7nw5Iyv3337YcP7x4eHhyotRJA5KpFrVYt67pqKR8/fvz222/evvsmJV6WVLWAnIhqraO0LdZr27ZIDu8ABIrEUc3CIhJ52ZRb0E8kE6RWnU/fbVuJKMfpht3Bbid6lGxGizpA+zP6fkJPwezIiRGC2AOXSR56MnH+pP7wnzI+uab/kuMneKoAnk/P/vi9/MnvvVRKXV/R5PWOUD0AJ3JyeFUl9br9/vNXX33+OVxL2ZjIqq6ns+QF5lst0MqJiJBzdvda1bQJ2zgTh8SG3luWRVVHiqXfORG3vo7DZ4vPHg6HYLWstaoVTLz61rhFRn94UE9nD69p2BWqre08MwfBfnRcD7dKeFEt27YF6WhKCd4cj+hbYWQQZhOz6uGI96EQSLTmdAvqY8CNgta9VhOJBGYwdBrcGZRzXnJOaZMqRErDiUVY2xcI+NjBQ9/OO3f8MAfggH15xyT30+c6L9RMF9uld1dZl1eY5KfBU+MNQ6XMtzxfrV2maiGztRlDmYVzAgwVWioJB7cqgypzRmoGQ07B4Rc1QaUUWTJHZd2Yh70c+DcaQ9Lwia03vKxZzoctOuv5dgW/uNpMe7NfbZrkebYv5nkPsQVWQqf3t/0Y+2KunPepS3Dbs1e313XS8D9jb8Tf2UHOo8uYM6WURrUONx4sH6qmbdr+dHHpOAtt2vthNzeir+ntzcilHr1y7070LqWX6mUy1mzXRfsVL+PmXfi/R5P3NmLxC+YIoNWKQqfH9d03725e3d6+eWEF+eZY2GFnonw8EhHVspoRJedMIEsZL+/uXi6vHj8+vnr16vHjo7uJCE/grNl0dfco+pgzOrF2w7UbMHL0fdpkTy7M2nHBIZlm3b3s2Htm8QlIH5cNotarzCVNyWHrOdImRXZxpjcV1FtP9fvfXSqZCYzCiItuAy0258yCxsG33xUmTRXapkXQiAfnDkcTI5ZREhzUS8G4HpgUb4YWJCDZ5FaVIlbakHMttJhSImqpWTLUCXpAvXtc3ExYVgnXRdgjaGHj5/5X2pe/O8Cxn909cpLmrqZqvWzAlMg3tdhW1kPQgVdsRUeqaDX3UPXzWkydo02RsxkovsiMYNWNSQ5LdldXS5lVFWQsLS0X4U4QmzslYQiIFQQGIZOrcwFVYWJnOKoaMQtLFqqllLpJIvfoNgRX86rizA441CHEDqpqTCxwEFMi8xpt2cwSgSqoAX2FiTCajzP3QhQGERKxtH5x10NyCj7tJj2EQYKFfilmJuwROBExqyKhsNjdt2172M639PL18TWk+bHxQXa4dn1qHerMWJakhcfZQJ3bIKUkWmq/nyQNkKFm9+8BCSh/JXDPrHsSckrqYI72b+RgkJkS2IP4r8OTIm0dJPZKROSx3WPbc+PvJaIOzG6pdaLRaA+NS3DnRRyBA7ocQwVU3cyrVY+msuu6mtuyLGlpecjhAOOJD9APua6sp2p7+g184E/n4n6Z988ffQ7dh+97TBrWAyKwfhFNj3+JmURevXp1OBweHh7+4/df3tzc/Nd//df7dx+CPNZ7qKJs27ZtWqpD13U9n8/RqqpWc88gF5GwzlvVorbEr6pGj2r0ZG+s5lCvamqmS47GSCUlGUfUeFozc2iSvCyLZjUzVUs0avI7yPM7pqI/dcRIZ19o2AfjzUPHXhlnP2D499oKP3Ww/2h2m58yiOhnbp0fuvWeQ0OMlbowqXvV1rj+U3vle+/p6vbGEsfzjhLPPWEMY4jDzasQWdU3r17/7rM3p/uPbnZ3dwenUiEiyUmLSZKiW0THo8jWzIiie81glLCwxYc5Qr2eM35FJBFhcMPUJiN6OI7m6ubVaxDeGACX1l126OHQ6gaYWbUd6GuAm6kWACBRi0CnBO7DoiqMpBQv2qkridXNjdStmvKo9CEoXGuZ6/2qMagynIfX51DV6D+5LAtAtRpQXY08yDXtkFPOkcupaJudrvZkCERDrfRw6oXYPBGMsZG9B3P98vQZW3U/rS4vu5ubF+7rhUImolbeNwXLqHW2j84XDS1Fgcs1NtdIKjaPhUBspBoEY0TEOSViI7AbkSgaMCotmTqHC0V/ypyDECu6DTfB/pEs0L/2GIf+iHqPCbeRk8d+ljn2mCMRRfIEU9fJcB8bPSqREDpfGkCt5hxoJFI9/+xjvzeTjXYnhydxm0+EdgpMvXCblwpyd2nOc6xtqwRGowIa2I0uhM3A43CoOaiWyYHdQfKA+3WXu2cs42YlvF9m9smliWu3zIRdrLt7oFEoOrAMUoPh7s72w1iRceLbZFBdHZEAgucFjmZHTqvdcRptWPW0YD1tb7959/lXX5CLbs4bkacl30jK1ddNiyDVs251XSy5KyUmgXpdlvTmzZtv/v6NRpPRC2pxYeadLCIy7eHfXN5s3H+0XGci7pWxV1J69ZmYgR46DLeemAlmIuzoVnFP+M1X4FZSgf2UQT/ehraPQt9prthB3AJws1SMHWQ7b9l+alDygDVELg+NRJCj4XywHQ0JjAgaIhcdHZbNPDi0zVMSSgKgtvQeiCgFzNbM4BS1nGbFVKuTMLjl1ZkYzCAXEvMK17YzPFwQ7ruJbFToEBNRipNPIAi/bECIte5H4BS/iaqbrmqb9z9WiwCt1a0SolGN5iRBowERCl+ZWRhmlhIzOEIDHNApU68ubCDyrViHmhAoZ2Ent0oEZpRSaykOYWZOMg5yNLVFZkiJCewOaDVigSCOfAaRCImpReKUmW8Oh63ca4nlTJnZhFNKpdZFEgTVjRzMmci8eC/5c4nih1LaJFCCtW4TTnCjSkpuoUaJLqLFHBuZL9QBmjfrQ3RGPLC1djQLnHw0hHCt6kbCgDAnTimLGaHWuq0lbSXn5Xj0SMkyKOruVcu+GcBEfjgczKxuW3gXfblrTwgH5IPd/ezOgojZm5OupTFvW93cReTlq9d1U4OzQd3Zyd3VYGYs4s4RuWePgxYAnAMiKoCBBOQdn8/7QdVMgZ2SlFPzQ4ALE6Sp2h4rRe++2AIHRNUNtQIICuhzKUWriOTDElkUEQkHuNGZmklOoeOuWKZ/Zg+kn/Kx1iDqN4LC+hMf+NO3/embCdUJOFFEwHPOvOTb21tm3tbT7958dnd3c//+28eHx7Tk0+MJADOr6uPDx8fHx3Vdt9Pjh49va1mPN+m1vdy2c9Sn0ZR4MTO1Gs43M4oFYakH/1y0mABMFSBTDU7vxd1LUaBuW5mMDQCQRLXitJ6zLA6UUqyCDywiATps53fn8YhTUBpUhoBWORiHZwvE4vmZvFK2dGmczW/7tOAYflEWtDF+bdP22gj48eMH7qaZt/Y77oQuneEfNnYumafXfOrDPHNvEcRwOIJKIh0Oibh+/tmbzz57Ddfzw+Pd3d2S0rqetrNXc631cLhxCb7JFpJm5JC91vooaEa8hUqJveomsseGVC3OGVA1NXdPnFudp7OZnc9nd49uC+DkrkRiBK1Vo8KRo+iU4c3oiKsyswgTJPxfIlqWBSSn0ynaiS1LOhwO9/f3RERCIpkPqFWicYWDHaZaSlkZbpWISK0sKddate7ro+ogNzcWI+p8LQzmlNxS4lJKLcWcUlqIQcSbbTnnQ8pZktDad5yHSek9/RvAcneDg55TcVfH93gRQEuO91TMMP29Z5O8W7hxZnGSq+sMd2i+7BijG0KzTdmDlLsl/7vJG18T4Qsi6rUYjJZd0BEcETMX6V5HyZIi7S8lUZLD4RC9SVL0B07CZgr1Odz5a47v2DsxrvwBDvmLc7/zX/pz/GTes3bDuo3KAlyaZ9c2hrQIPvX/xQ7urgsG2xk1f6ZxtQy/TtE8meo2z16PULSc8PjqRobbDod2XQ/bzlhNo28CgLCO1S3Sg90phYMkYaS+Jsem9R2IYu/xIro4iQhUQRCQUTDGNSvNe63ypOXafDAzSRoz397DCTB4kOq0yTSzzALYwIz0/fEcmVywxO1THq9eFBRWK+K5rOvj+4++WUay1c4PZ1pwezjWVD+czqqaU8IxQSkdluNLttXLVlwf8zHfvbzjnFRVIL1ujwZBrLvBGk9tlE7YgM4SiEj7sRlLEKS/g3XZdh/1eUnm5uAZAJYWnoiqEIVSN2sDj90EXoibj9cADjN2MuZTVcnBzJGNirjehUTF+3f0/QUtFrdAMbvv8c0hh2FlW6nc0QRAS2aIyKZbWNqpAy2JKKW0nc7FNBmRDMZfrbXmdGh7k9teHGIZhMRq5k4kDCczr9Bate81rwaii3SCu0daOCgSUj5k9ermIATjtDuY2IlYBObh8aaUACulkGsccxG6ivAiE3vV6o0r1YUUzlkWFtLKjEQSJBVwkEDdzOtmlFhYSIiJ4aaum7nyIillEiczssqURSQzA+IUrLAlZ8lZaq2HwwHmxIF+oqoKOJGzgx1R6WRm7CYSUGFWU4dX31Y1lpQOB5KkjpRSXpZivpUKYiHP+ZB7t8NMQM7BFFnNtmosrO7m1dxBZMROxswZxC04BmWou7lLXtKS3Go0XiM3LXVzy4elmDJ8AADaejuTc9Sd5pRE4G4EqVtdDsmq1q0sy8LMRVtgyQEX4cMi1U+PD+u6AsyWEpbH9XzIy93d3btv3z6sH4/HIwtUW07Y3Ipu1Uq4ta3Nqfu2rgjp3DYiqnUCq1TDWgBEzm3aAuKQrSLnBe4MTq0ne9TQguk4VBsMTPBGPBLazOO4itZVAMiMonmwu7XMxDARWKsDrRMd1M1dOEcMbsLwc+gREXGmtRZVVTeYOuF8PjMDTDd3x8PhEIiUCH9KFkpkwfuQRJbMS7ZucjGzWXXVqKhp4J/+R6JGP+CfpJHdvZRL/ffUgphYE2czi/BDvd+fUfcb8YmAmvt0A9yduJ688nZPccbNTMjOwQqYc3bXakpM8fLd3c3hcLBSBfTq5Q17/fD264fTw93dnZ7Pj4+PaZFt2/76178F1fPHj+9B9XR6BGBuW91QsSxLVQ2O0xph0d5ELS9sZOoqiQ5JVJW8MNFhSa5Wt02IJXEtJiI5HWqp0RaiWl3GBIgkIoXkfFi5brXCkChpqdE0OA76kdgNfAMRaakGNLpUr63ymcytywSBpZF7Sk9Q7IsWm1rx9PX4HgCXArAnrZ8u4wy5HEvjDdL5zPg+mZzHbpxdGesApGUIfTan6DmHob/wc2rUMb59tCedH7apGXrmeZrdPANT293quPL0l08P82GQ9Q+FMUFMPCY77sXdQAIdEEYQwSi6D4BzpiRqBrd///Offv/F78p6L0Ln04MWWxIBmoRz4rI+ECdxuLEZIEk4AVxNyZFY4Kot1AsHmGnbCuAiALlbNTPnRAJmglCS5NXWbUspieRq6sQpJ2Z22FoKYHeHG1eVJFo1DIa1VLCklKyG4ZVgpuoKE5EkR4KC6bxu2/bgoxRFoW5ZFjhKiXgrgbI6dFvzglI3LRvDmRqVZeIskJwOMq0FaTWoMsTlZjkQeS3FTNs3uHFObFAnd4obBDiLJOG8yLKktFauUDXAhGWAZynSepHkqw0H24SGKFJvzlAoAyw9OQYFtXIPIhLe1z6ysWbugR+mVk4KNHihTyFdAlxNJlZcAgXxHhMnoYDzdVZNUDBYG1iYBYOUoBm+QeTD5A7zjkQAmZnCxQXwUjYzY5AEwk6gBi4VSms5H5ab4/EoIi9fvgTw8OGjwamqW3Uz7sRLMb+RHjBvrzf9EPuUAIB7jmjeid+xveL0H+8OBDGAtt2JJMiCRkqGRChRBC6IRIQdVs2qw5rfhqhfIRgczRfg3VFxIlAUo0Ujzua+gpwQEf/gXWfiAEskSWaG1hfMwhYISk1nx+QswtF4Y0wbOI9gCKReOD8ya7DIFRHIizM4lE1kcuHuMHeynuxDr1IUYq0aLSUpylbVc06JJfqFxNnUih/QQtU7c01Tzq5WWDg8K4PCHExmvRlH1/F9EcnduLtSBDAl4p57J8C5lXgCASIO8EKtZtEj3MnN2cEsqk1Leu8sNShk2jeOW5+GLEm10no+36e//l//+ebNm9eLsC/idDguABR6uFmYoWs9reta6kGzHJMzEqeXL+++/PqL2//v8d3pXGvNktbH9ZCjupW0x4woKKAtFqhIs2AbxEBEhEcZnYYV6j1v2X3oCyfYnEL/RCIqyFzjOUWyRn9HAhHcVJsw9oibVTCzMFMiMy1G7iKcOPtgPSR2jjwBkkgijk6lbuaukSqKO0Sz/VDKGs5swy13OH3ZtoiEwUDuOdRm1cSiqrWszBzM8oBHvz3qtNKBz3f3ojUaRFbTcN6j0y0zn7cTM3NqXbvVTeEswiIKdzMnZhZnUvUKU/W8HLh31ZYsRORE6kaIigCCKdyju21Sb1Bs8u5aGAFt6gejtKoSwbxKzxK7B7eFhRtvwccYQKcKmLrBiBOTMYON0eqS4WrknMTMqhs7izAocWtAaKrYXNmUHDmxM5taaTQDQWCDlDiL5CNLyrHwqhphAtBeru1TH8II2Kmqw4kp8aKkIAHYFEWLqkbPwJzEgx2ATBDl0u5waA06r5TYSQKdBYAzcxIU3SLSZgYiDc8MJpI5iSwSGphSHHaeRDhR7AeiCx+l1srYa1Cjx1N817IsiaWQubfG4jVy9eyHw9GZPn54WEtV1UCJAvz27fvz6UHVhfjm5obbvrIpX9E92yn8M84kn4ArT81W6uXv8SFmVAORWYKIpCWNxlfRaEE4mw0A0gUqSbW4GxGB3a0zPFHrpQHMWMFuZ/c43AA4Wa+i6edlayJlvVA8gHlx5rj78Xh0dnZAeFkWCAt2GBiZV1MycvdDyvTiRVnrVDvE5g57BgDrs8PxC40nk/+b0yB937i6w34eNmfAqhq09VEgHG9vPvv8dyJyOj2kxC/vbq2W+4f39/cfHu7fPTw83N9/WMt2f3//9u376MVV6wYxYnWnUtdSVxGplaOGcHexyIIfy8iCGYiZhVii6UvYStwaU497pkn4deL65iQMYThz0qBOmJa2t365ePwBPYgLKrx6sOE953v1MR+BVzNJl/H4nzCe3bw/eXSvoBk63/3OX+pLf8IY09V0GnUT6VfMVn3/Rec5GcvaFCwZOxsadY2qnsv5ixfHz169rGWt60YBcCQTbk5PdSFCURVKnFmrB/+zMwmxJ0/E7mxWq6k1HDQ30jWPEqkgkoCwGEyEUkrFal03M0sJZsYkobQjPF+Knc8bmBrxVVQsExNQa9hnwfXBgLsFIlprrYEZ5U4rnVIKNHJA7EwRbOjMzJQsWd3OIri7PWLC+9VarVR3kmk7HFJW8FmNODmTq9Za3XUhJsfhcIjSX1fatJZNiaRoAzpJ5Km45cnNrAVdoSB4QDh6oIc68rLn8QwA5hzddFfzK8/vhX7sXsnDfJ1hjM6iMl+TLphgI3QzBX2mmBcQWQp2d+2nGICWjJpJjBpBkmnVSE0LMoBo0rEsiwOHw6HeVnffsFk1JhplR/sZ/ZzYf2o7/ORx9ZgjZTqFMIaHYPEI3/29szm0b89Y7/2aTJlAFKlbYnIHO8AUlb9R4RCJsebPOBNd4XsxMnjqBt0PjqsHnO95VOCPqTYz7Z1W5nW/+rh7oJaIyJA4+a7MnfZ3BhiVnyxiL1WzkDL0/KH60/pzoHcY7Q/K/bzofYNbrND799Lcm6p94TOV7Z9etUv9a1YBIiWvStVQUU/ls89f3716oYtt27uERZIULWtZVS05FRjgatXMgt/p5u727T++VYdQEsnMrFosEvE8PE+PGEyoxEY3NYWG0ffULEiqGoiPq6cbZXdPBYCA6KBO1HVvdybjwma7zDOzRVcmNWOQOdlumDYZo0b1HFEUorQjpvvb4g3WS5cZwbnl5jV429pqBtoYTKBhJF9YWUSSE/X90ktoAQDhIncLf9gVcVJEBo7CEAviHofkRJzUvWgBk3DO6eC0OXE1V3NYw4HPc7j/THCzhGm3oLc5nkERYzcSgYkbM1j7yIXivty07u5qykgwBxUhTkwaACnYwmyuze12YZC7wRUwI1Qz0ppYAjRdVKmvMUBmXkphlwiTxZft1aos7rqkJRinI65mnXNOmEGS0gImUq0GM69WGSTEWRIJK7vCy1Zdzal1lWBC9BOOOTnmQ9HqRQkgCExrbUl/l4ZgqxFtJs9ZSKTWykRLXoTAcOkFFdzrEsfaqCqxoCMcpPE3RtzLrC/kcPaYWVK6ublZazSR3iKOviwL9cbT7h440pvlMCnTIAnDWONAJsQJgXHERor7OSDKZVsjqCprI+JaliXnLMQpJaS8pGwHAzVf1CxCTnvNvaoElzU68yEzt/xw2/x7ZQL6Idcg3KAopmnsdr1Dg9mA0+gs6szMnAJsIyLkIGmrH5H1JR2K1lqLmVlVdRPim8MxsQ5YOGC11rqdaynoKd99gz2drOfG1Tn3qfEDD4DfbDy9n64xgG4ajj8AEJaI+4qIAQ6klA43N072uJ7u7u4U+l//+K+//OU/7+/vt7qeTqfzejqfz9Gw73g8uqvDJLNZDbVA0ZvKShwAQPQkBND6T7QsPQwWmYbdYmhHSMQaCU4wM3VrnArTiP2eFiaj1iCa2uvuz2AiB2/KMEmhFi3NqYVxrzMe49dZGJ7dbr/g+JkS5Zdm5bNX+5Rs/wbCfDXD8S8T2XeRhv4i40dGKHxAB9pv8Z9AgiVCqfrVV1/96d/+GFQFRMRu2lp3epyGoU1B5nunr1ZaUquyBMlv+HSGFr9OROG/ojXzkyxCtVQUaGBbxiN1cqZGeylcV/XttCyLt1aQbmbgptsBeN0AaKvJiw60aqbAHpEkovihlMqduG7GqhERsTC1at7qtSH9nCNAP8+2Edw8mOq8aiCoA30dwc8W6CfpO06JyKJ5IhOEg+GJrVnz6CyprcwBTpFiIyDeMIVRugvRMmfjrq6cmWvJf+Iw9+zKxbYKh/zCku4/z1qiF6jCR3Y9yLZ76i9yN+6Obnq6t9ZREeM3KHcUqTmTV+bIMqm7w8iZXVFLgXvO+ZgXHA0lmnmamWnUfGLcSbOy43C4iAq3lN1P3YqTfUKXsOd5Pqmr4qGQo6HDMDym67m3224fF3A3jaCIxKN7b8fbq01lpD7ZEcT/6FpdI69JGe5eVVWdjXrCOb7Me54wvt/bfQTVysUqj7UOO5CouVg+1ZAP5Msw4OcZaBekXbomKEOzoGJmeCoevlL1uJTAdqT2LMWVqHNzKCJZasTsUU1AQM9ux+HbOGnr7jjNSzOv/HebTBci5g7zyL6cz+fT/UO+f4EN2RKrJ11e5NeW/MPjh4V9S0wAkXgyMK2l1tVevXn9hz/84e//62/Bji4izFSKBR01T+jiEJVRLj7Pkg9i9id33pNzF6KYUhoh+LF28R5t6DoOLdMntrFAI4JW5mZOgqFg0dRY99X7rmn3P5kfzDyKZSYhiSjqfqPDthHmKKuM133KRXMfDh4XnMzvi37XYb/5xby1yoXhJzMRi0TvTO2+Z9M5YKbWS2w+R5go8d7aLT4ixB49VNzT/ORRETT61vqUT4tbiohgBFYBJDnwIEm/XHJEx22OTQVDUDZF/Nf7NjOQM6jCYZ7ggHFAneANvJISGQWFcsgfJIk7M8zcrDrtRIiBLAcGv3yDnnObglAEB3dPLMagqmRuUC2t2x2FpdyelaubVrJwiZiNmKsHD+bCTs7SFT2DEosJhGBEAkISkFv1dig6VDUlkbTA1d0crFrYhGwnaZh3RZBRubt3Y52ZtXfGlYBasSdeRERScvdt2wAEtaY7lsMBwPF4TEIfPnwIAqHc675C/IYYhYGYc16WJZoDYRL0WamM/X2haPqIS/XIH1Q12DIOKdMhAFGNg1FVzfbKECCkuBVTNCHEHJG5gDXO+oWImNio0fH143+PHV6p7P4eca0sJEmYefT7hfnWa6GtM0U3VzmyFhRoCtRaTw84X0WzfvD4blX+rzxmgwNz8rM7wPNoio9JuHG5cZaUkpmdy0oJkui//v7Xt2+/+b//x/91Pp+rlojT11pF5PbuplnMDFU9n08AR3/m8/kMt8Ph8MzXAezmBPYm4R5rRKF/WmvEaC7RwBS1woYaaSPiI5KSbrptW9yGERKz+e79Pj2kfYpSXf3pciavJvBiVp+VqZ8gab/BeNZMmZ/rn3Xb+/c6frSD+hsMV2+V3t66xcEJJowsnLD89//4b3/48vfr6X49Px6SOLSBYqyzMsKESL16UUNiTmCO8zFMhWg5GUdwhAivlGHnNWEiLqVsWwFAkCgDrrWilfXaoBuNdEa4053YWeLYGpQcgfGDd9L+Ztq3GhN3H1yg7tfNQmPc3t1arbVqFK5ah7Y2Wq9pMWut6pUymVlRM6vMvCxZjM+lPD6eicgUy0LMqaGBHHULCyeJqEjrbsDOM6mPT1u0N3DqKQtq5PbjfKEnOn12Cfzy9Nw/cvmeee/Mu2Y+8nxy/Pps2dXXIep/JNarTXuz1qgRCWiTvZ0qH0NFmubc64FLZefKgakhEREQp5RzPh6PZrZaffYQ/FV2fV+R3QfmZyaQaBz1uwNsT3I847ii506u/p4LN3v4kx4NVZ4jbaI5BgoY08i+Xc3Js7/ut/fksrvD4yPtT7s/89xlL/7aPTfahbH9NsSpHVv9S8frw6V+eoezSTb+ypfvpJ7Zk97/FmiAqZjkpy7i1fgJJlPYEg8PD+/fvXv5+8/X94+nw2F5dXOkO0KtWriej1lIBaRicANM3Evd7NWLuze/+4xz4qkJNjPXaCA6TTX1R3Aaz747rm0t6GLS5qmbb/jKxB0J4bE3DY2t2Tp7fJ1ammHiFW8Z5s4gjU+cf+1jCMKdJ9yQ02lOvcMoEZFnScTcUM3zbQ+FAybT/alLrUQkkoYDfCWxs0qkOVfR/erowQZzcy+1Rs8lEvGJjmdsvbFeTT9OHkG8ksZNi0iLHvXTp9YabBYRGQ3VqVHTbwagep21MIjcB1SvoSScCB7OLphjj5m3unyk5p2qamHiNO3fXXUhHI/4H6Xo5ccgU7Pq5gRL3ELRkaCGwa1ytCiBBTsNE5iE3KtD1dyAWBgHg9ZSilqSRT0YwolGKNTg5pyi6jlipb5tm+0IB2fynJJIVgNHFwYzYUqJjShAmGnsBzOJ6IBLNXB1zjzb3MuyaKnuHg0nOBjKIp9JDJAkAVK8B4C7mqOs68f799u2LYcbIiq6+gnrWl68fnW8uQHRcjwYHMIEWHUnuLXj0KLjlntKnLMwoxevmnswm0y7IrRoUIPYhRIc4gUz87qqlfMajRP0eMzLYiM+RODE7uQp8gN77D/qhduvQu6IrsXuLUDb9jYztdaXoZiMwdo3FXOsticKqg5QAPQ7hKlFnpiWlHI6MHNOOaTazLZtjdpvM1N1U3Nyzq1aJvLkQR8KqwBOp9NogUMTYPVTp38/fP71zPEfPJ6xbLw3vmzEqTSe0xp0WNRJMt++enl799Lgj+fT69+9WI75P//yP8nx7btva60RiFvXVUu9ubkROURt5WFZ1nJ29+iS0o6EBh9Qd6cuFePelpTMahzu5gZrrVOiaAfo7FnRP4U4H6LggEcn4MRN9rTUdV2t81xQt5zagTcU10xw1XdHu4g58W6zhvnSQgazn+zRzIXhPk6jn3DwXw2aDLifPyYb6NpMxyfu9pf66h87Lu/tu1Dov+YIpohriqMYwzwC2uEfiotgL1/c/fmPXx2TvH33oFtRNsAj9cNMnJgZUC416ukoKgzh2mqBeqdACyoBhkNdnSkNEv44waKmLzr2WQA4KcpGovkfxQlVaxUh5uYPG9yD4Xm0dWF3spQOAKpDVc2rhz9lFjX2EW2stZZSRpD96YQwoNVLrW60HI9MaSvnuhX38LHTTGYWKTn3Chj1o1bVYW6K6IPbHZx2DjSyn3DlOe1sSdQ3sSNuI+wmACBrbc9afBZhnDXGHwA7IW4Qpdj8ROOHceOzzzDeMDtUmPI2+8f3uFLYTJHc3seFy+EM5/AzGgurx2EIo3aaBoeCd1MV7ug9aIc601KdIAIW8arFNldj5pvlwN751ibdG+GmqKl95rD4OePSWRpT6IGe6yY4cJGjG/xIV/fjU+Pl1mg0Ws8jcsLkTRe7708X600WJbBNpQffT3CJOzGh91gN3U+cPAjDYm6eTMmw1wE0MZLdTphdkf3mu3PVgv69xy+hs5AgiH3cvfcLtzDCYdz6wbZUweSe7WLwfeM7VtbdQcQBJvAmqwQ3dkI7vxXm2MmxeLpmM9Imd2U8+Q+VqP4UZrat6+n+AZvhrEdbPrv94tHKX9/9Y7Ut8x2JqsDtzAwykajM3ep2Xp2JhImZmIPvXERq1fAdmoygVU3vuUBuqTTqAQXuBd5ku6MYiDPCRaykVu1aiLl32yYC3GGtbsV7HIyJSUQMTNy4AIJ/07z2BuxwdyZDL+r16PTeewEQCzOHT91r0TGyYtHBp5lwQUXF4PguFzijYb1DrcwOcGQXzLy6EZGj9aAOk4y6Z0QjTEDi+24GgdRanWYTCTM4uUMtoHoyKz1rgAuSIDWIKpid11nbjlNr36GW5uOnC1yTMDMzbfAM9MwycRAAsqqrqhULZ+BqP4zUYjdMYQan0MORJbeY6CwEEzJNLClFg96miqNnYKYsIiktAMyg1T0BzLEQAXSMr45nbhNaFVNCfDxFy/j0UJZwTiSbKGplVkmkDlNF4KOdl+VGSw3erKCbEJGFpaqLcCIORI27AxRdCRNxoehkxUkEJCTCzMuyAKaqcCORTMKZo+/z06ST9EbVRHQ4HIjIqrq7lRZ0iHgFEIcf6qallNPptG0bcYqr3T98ePfh8c3nv/vqyy/u7u7uPx7O57OZ5ZznGfPJIaSOgp7P5UkhXumW6Bd4oYzGm909RJCAbV3X8zmlxImCDiKlhfuIMudhnauWUkqvK4g9PBrNhZvT8gyjKJ+IGEZE6s3w47B3ev5hmB3exK893sxHN7ZA+L3Tz+25FK3fWqy4WcsbH4/HSJir1SvD5amW/mluwDiZfsJnf7txdXvTrxxVhq11kNzc3Bxub6rXals6pLTIu4/voaZWzFVIzBAcg8OCoSh9qXR7e7ttNcpCUkpuFFSo3gMQ2CPizwSUx0LH+taoRQx+FObDstCgNAMA1FrNkBwBo1IFA25EIoAO8/hqjC0wm6TuThDQ6EZzkSMdH/wN1vhn2qOzHD691NO//vZy65OrP3kL/yrbZ9xeA0O6TqlByiLMLAx2++OXX/zxD7/XUmGWhRmgnbAHrkZgIVdykUSUqvq21aLOzJ12zgBjZ2fiXn8VX9Uo0IKZ1gkaXjqlJM16cF8WZuaGsgYwoV2qaVFPneGTesza3aONvI4AE5EIE1FpyGThyeATkSwpVOjsuTHn9fRQigLRPUC1eq3xOCC5kD0RccdmW0qcU1bV9bTVsmaRyAFQp6IAAKosgMZmI+98P+PfK2hu5wFCMIM2dqNYSmo25bS6038miRu+CtFT32df/fHm+ZVP7TiR3QFGxxZSzxDOhxr3vJ+IhLurcBmasHFSzeesG3vjbQGAkaIXZrZoJmwWQGiOxidmbmvAza+epc/n9Qb86frhSfaMiKynb2hqCzK+KBo+DoPw6Zd2TENbneG37MGFaRG9G0DzAvU/9lxZwDUbh05cYC+JvOi39CT3FRdhp+FVzPLT3tP5tNAzRjahAOaPXFho2KVC4dSa8qJ3Nom/xjuvs5Tz1Z5q/vFK/94oVwLoopekEEfFrJmxudL+keap90yd9ZLWy5X/wdISMehYBdWybh+/fffms9+9uXvz5y///GHbvn17Om368vXL4o+eVEHsxgIkd4WSllrBeP365YMTKaqWoibkzAI4zHzPZO+0yc8u1vAq3XxYNbaztU2X6Q7LuI7tSxPFJlODXwJfxrWbtMSMVg0bfayLmfkTLHYr7L6ksxlSNCzeIQ+RBiCCKYJC6MpuaRiffofDqQzNPKeLI8Ha1PIUEIxPizQSYjBREmY2Q9Hq7pRTZlFDUTPTXtsSDuA1cJUnsPe8xdIQyphnVQ2Pvz15ZEMmhtKmXsFOhoED2eNG1n/l+HmrxjAO0jdygGRKx7tHCDUkwJnZyeY02lbUpTFFBYehOyocnf+CmeEsTBFXcA1QABMxC7t7rRW6CxOYyUI5xkmAKI46HA6smpZli+yju0GNSZKINZoLgOEuIsKEos4EUCcr9qhAckfKTE7VtMbZQa5aQJRzUnApJZFwEmdilmyeUsqcZKJjVdUsKWZ2bA8XFXCpVEohcuaFpTVbKaVs23p/f//4+EhEoXVi4T5+/Hh/f388Hl+/fv31P/62ristF1HncR7ETuPe4q+B8qNSnzlqaIdcfdJ+7kI/lGj8YKqr6kpEAkgw42VunnBiToFijXum7o0A8Jb7Je/5tOYAb2V2gD1KHwhM0hiezbw93S63USQgFOTjTERJEjgpXGslrbYXCJETG7HCnJyYA2LhAWBQraq1IoDQYF6WZdwJP9e6ZtYp09hpSH7I8EtN91uMvYdwO6au/j5rKwANFEz7JzpLZ/DFO+BgYhGwF63pgKKleq5WtFaWiFQbEeUsfEj5kIh6Q+CyeofEhGnCzOrq8BzcjFM2gMiJybXCldCiS+6Nw7IBH3quxlmchZv6spkEa9tC/+ZStGw1ns/Mmu3BZKPua2ouT04MwhQZTETG1QB4D81Mo6ncy755P3qxfuT4RcTph5iw/wS5BXCZKBgG6He8/+fP+KcecxgD8S6MOQk3iqMi0IlaTDtLWpjY6D/+7U9//uNXVh+zCLM4amwl0yBY9kj6QKFWQRZdFZMDQb2vZ2AkuAggIYlgfbesBBg2B1k0eWACs0HIKbJ8TlZ0c6K05FJK1coJkYooWhMlApu2qpla68P5RERhlFDrPuhM0E1JGNqMvOCuc3f1jkGaIkcAmFPOMEMpCijgImLmtRRxucjmMzOTVHE3d2JOIh60QyxsUGJGrarKgpSYiIq5ba06WN2M2MHRYlB18w5Ip0hl9DDcMCe7opmdMWmr2fN7I5T27DaZhXMWoed+fV7xck/iRmJotu3mjxORcMo5D2pfd49yqqjQC0PcnWqtEWr3KNOawLBGGOk4C6ffQMbVjZgk58PNTVG3bfPSztzwaIB2+5/SAz9cP1wdN+NTw552v4Dpxnui82qvUlYzQwDYJv0wdghi7bpFP7sorWY1ouHN1THu3RWF2MzIjYl7+EGoMzRrCA9aTnl8o18q/KGyBGRMCHFrlCbxv0vtEf8DbHS0ec5d5KkG+KJTbmAN5NoCGbfhk1C1h+8Tjkmq5wnfp7Q/E8M8Cv/MmBtdk8MhICYy9qBqh1sHoF7dz6dOw+fDKtNjtLdVXdf18fHx26+//upPf2KVF4fXrz67ef/hpH8nMqzl5MoCWZa0kHAmqqiH4hsdbm6+/MPv19O2PaxmJoTqJiBtxY9Nxbm1Av7Lx78ojmivEy4wI7h+ZJpcKgDVAz9AzMzEkcIjIufkgWLttGZxKY0Mc2Tf4dzboXX2tuZIE/VuNbHZwxjqvIbzzI8E0thi7g4Gt5rEEarAePxoGTcLD3jAmN2Df9d53HN80LozGDfqjmhwY2G/Obu3O2/vYzZXkPvoah7pLmpxwPhPY/nxrswHIYJZmqXWej+aEfTiKW7RvXautWotRBQdPqBeSulKlsYcoUHjYMQBT21BRhbmiKCoO8wstawsIsNs8EwpJSaYqVWvRLJt1d3ZjTk7B7ZLiF21oBW6iCoizR0RpsSirWdsgNE5GFC67oSaq5nCSq3cWWTRFFPzwWrdzFpQsOdLKSgxg5YK3UeNz1arshwWzmctVKySV9VNqxhyzjGfwsKUAskgzJGBnGVu2zY5MABznXaRU0rLsuxwf/bWtaXW8/n89u3bx3V9+fKlmUUN8OFwOBwOp9PJzG5ubqKrLTOfz+cl8UWYbT4tRMIHRg/2cwNBXGie7uleKr5LJXilcB1m6nBY1YINTtiDLCmyqTnnPf7CTVuiOVFxnWDxbRngfUP2KK+aem8+4e7cIVhjs/nYte5yTCTsakWrR8uRqgan3lBuRGjgXlW9ay1rrPFRoE1RJtCoWS4PiVmv4WePH24r/JaD6BM+PzUbVVVBxtH4TKJBOsw0Hw/n831KDJh6dQ+2WM7c6g/N6rp6SMW6rmCqta5riXkICOXhcIgiYTMb5e1EHnGyQC9h4pM0s4g4siRmRo+OFVNWpl5mH8PMtKim1g8z+uxa/5LxtvmXOGwusD0tGCRBveMDBd3f34hz/GIaP3Xq/0uNf0FpnMes2ejTJQm/9vjUtm26d7eEIkZTKQm8EuqXX3z2u89efftf7xPgRKom5MQpfLMRkFTzbTtXR8pLzoc4putWQNWJmMTJyDhYJwGAEhAMSDa0NBElSaX2lrAd+bVtm+RUa42ToW0EsBNJxiBKUG2cgsAgtvVZ1NXM4Il2CE/EDdd1bW6JtTc3ti2i9XRalgVAKequOWeCqJYIg86mfPjYjmXbHrdtG2Fc7rksEbEq5rXxHroqNJLY3ePrViZzjQ3rzYZmkPdeEhdHGxF13t04p3Z5ayvzjDBQz0Xg0z7w1c9XwjOs6nF2h+4Lyw2TwzOeaFmWw+EQGcs4YWtkQztFAjO707Ztyo0jypzcFQYyV3gyqh5mD9wb4aSZFa3MDCbJKfh7vOq45zax37cRftS59nR+bEZQXKbU5rka1vx3fNeQWH/y4rjaPuduA8hG04g6Sab9NsIkNh0k4vuV5zMC04oLGtDj8m7bBvnep/jUjO0P6B4oXYxQztCT7TzqJ9eg0fLnL058cSfjU37lNfVvb2dxf7ppafZJ7tf6ESzQV0OIlZwcprqdzg/3969fn7bzevr44Jt9/tXnf/ryz9+8//Dt6dv7+1PFlg92yMfD4ZDBUNhDOZ1rPiy3r14adC1bdG8hI7iOfoctVQN395zyvJpPsQbXUtSneTY5ZtABADdXN24tboQGUfaU5xwYnIkyipMkdSWgOcAdHcDM6jXcaTOrZqJOHgW3fHXbETbiXlAQ99bWq+Uh27LO5ZA2aPa44xTM3ZWwtxMTbuH+yLGhV02P88Ldo6lvWHe1RgmGpJwiLazqSkgpZWaN6wTmyNucAAjf0tRUlbuLHl9aStmbEZvZ8K29J3sZ+2nUEi/RoJWJB41q8EKoBgZpPjs9irBbyj1Q9E1xKMBsxczVWbIwiCSlBDI339ZNK45LYooAV6vuy/mQCO5eSmHBkpIqVL1SdXcGJCqB27erkLy8e+FovGHCsm7qxA4ETkfNjZyZVZVz2mrdagFMkrjxWdUhkoScippqc6d7uLTlr5ecQoLNwWpxewZj5iTkUDKVRFs5OwkCEiAslNyMiKLZ79UmqabU+Z/HZlHVsuqyLFElC2rFVAAeHx/v7+9tKn1JKZvZzXLQrZzP59vb26LVCfFvtMONjkDoDoy7uzARH+9uN63n85mS5CS1VuqVunAPrzViTfDnj64hZ/OL7g7uZ38EQt2tuqsyVwCV0rozFkp0c6YewQpGxoZB0FrK2lRJ90dIuFoFEwUEvYKIAn+ec1ZVqI2gF1NrNFVMa9nOZSNzCDOTuUONkhCCeN2diX0v4AsVINwoRtw9LwHRt/V8HjFod7/M7n5Kic9MnhcR7u/V+z/KbvjpY17K5wyy+YaJqGUym08XH/EIoHPmw80C9k03TkSC5WZR6MP5YTufD4fDsiy1lpyTmtWt5pyX49Hct/PZe7kvgbMkt5BAL+t2yIuWalYjEhFq1qqSkCR2823bAr5hbkHMdjgcJGWNni0iER6ttRKDpwaj0YXv8fHx/BicC2BmciqlUMpmOpszw7bIKYWQ7AdkpJ79oqPY8MmTLFf7xd39shTw54+rq/3Mi/e7/f4MMP4ZgZsxn2NPuTv6Jv6unXUhzJ+8+Hic2cYdpj4RXWHjp28cl/VePOVwR4uiWs6HY07nx49//sOXf/7jV+vDfdnWTG7umcld61qLuRuRtCRboyVSh7lrJZacOCUu1TwYQ1ngbGY1DE3zlBIHUE09qDLMTJzIm9kd6dmwfjpbVeuPmHN2ogYqJV5L1fMqknNmJ4DT4bAXlbTGlWCA4CScAJjXUnUrj9Sst+ReFdpyjNRKadVRzUVYcoaJarWqVSs7VG1GWGxVWQzuzKmq+1aFpNYKtZRSzqk1HTEPKzvuPZj2SinruQRO1WgP+yYOu4iJKHLm1vHbHoysg8uB9rY0dFmO8VTYQhRp8tOmvU8D4UI9GRKYtDmJNwR7FsJgzrSehI8GhABIOC8LJ6mmh0NmZuYkIuHHtqaA3pb45uaAw7ERcELNatHNqsKDUN8BZpGiyiTGEGEjgMA5HZdshh4fgTuG6ThjatoNx1Q8v70+Oa7Ox/l1M/NAvsURALh7ZrFSSyOt5FjucZz5ZYAMEROKIlk0Mpix3O4ODtOxiYeILBFddXjVShh0Od6TWqpaIuo/RUlif0n3RkJtGDz1zJW7B9YoSfTKtrCdqAGUqvU6UoSPAcBbOga9rLvdhj8TQ5lP8/1UEu5HlTNLTNSQOu9m2wzNjWEdKD7r2xCAgPq5e6nFtCFjg9ty+PA7axSzWfgt+6IEd8C81t9rFI2hqhAOy1BE7u/vP3z48PBw//7D27/+r//5+vMvswgjvfvH+6/ff3vz+rDkvJ3qSV0ON4eUj8ejvMb5oeTj4bPff3F+/Gs9re5krlqLCKdpKqJJy5wvpMasREMYMJEdtNURCbXDUxI+sbgIgIjvO5OkphOq1ZSSwlXVa91VhBvACwsRaa1NPnOjEDbd05kaADeOthdK0QqYRQw69S4K72/c5xJQHUDdpXtYAGqtUaHpRpxoWRZ3X9c15QwE7wuBLeIDQPPPWZh5AE+wo01Nh7MdZY8GJbrg1o7BHPnUcCqjfRMLMTmsN5Fx1ZaxJGq9lK2RIq/r2mrovLvaV+ZXrAqmCFZsuT3mfAkt8z5rlxvAOYIcnd69XQSWU2JmcZOOf45nrkXVVYiXZbm9OVK/E+7dfZmJolrba62IA6lDBxsGOx5Se99XEDkTgx3ESYIuJGD0AiZ3g5ODUhKSOCcU7opE5EjqMDVyY0aGVENYsgC8BUX685qnlJylwK2am4MlnpSSgAnORvseIGYzjWa/8+TvSrAqd3bicLHTkhNxKeruTCLCZvb4+Pj4+BjhqDrVr9ZaU0rffvvtX/7yl6+++ur29tbd122LmPp+lvQkME/YAG4lZE0qep3zHnIGuovznEoaqrD90KKL0rm14k27KtAGnJgPdQbMCGDn9rLsN9kJwJiZegUUGWucE+GW+35YjrR5l0NLRKFKvHF/uLqRRicuU3VobSpM2mNKkiB8b6XmaPELM8vHY0rpcDiYWVnrD9fRT8eP+uxv5FR8Ijsxv/jJ2yYCTETUK5jyIimxw0jo9vaYs8TS5JyDEm+IBTNTamzPZqbUAOqxI2KDB2n58XjsXG7EzNRacRNAtVYQh2WCJgAgouWwpJQQid8a4SQieNEt5zw/ChGXsmn1QY0uIoJELZvW/k/UmgFgQlWMLWZmrZyh1z6NZ5zzEgDmf/HbLO7PHr+xZ/ujxk+5tylB98MveyX/fuk8f+o2iIiYvUPc2qfImJCFf/fZm9999lrLarWsukZRbXQajUbltaqZO1gSRcV8MK2P2FPg8wkIGkogesx114sMTv3QJsBKXZdlEW5hWW5bEqYXtY7BRGLwtZSeAAv2uNFkaDQacJu8NeZdvGMLh9UVf40Tp3FKg5j5eDzOOgFRe+VBf8hXMymcS63uZKZOFKwdVmu/Cyd2sJCpA+Zk3twb5kTJxMhRFVRTTZYAmNURWiUIRSH15IN5Bz3NNnqbqMhCfEI8qA9ceL8heo4n9tWIhF9d7Qr2TJ1xZxgAIhLcPMOv7mVHDDR/PiqSWloJgPU2nmRrOSeVWKZajVsn2yE/pOF2urOAQEMGTNXRkFNXDszPGReO9LSnuEWC9hlDX4gRZRiZq/FZehK6bemsy+sM85j66+MjrU9WvHO6n/ZF3vJd40V0UjQiGqXjFxecoGphXYz3U9MW4X7sCKN56XeLa+SxfL9/PFFEVwf3uNrVktnUV2VP/0yCOtdwzjPWTKlWoBDufVc3w4u+lHZ0d2Fc/Lusi+8bkad1bZRIp/PD23ff3L9/9/HDu/dvv/WiB07bqX58fyqmRDcvXywmAtAhH+gVvd0e0k1++dmrzz787uO3Hx4d5NCizeMwGtRqRJRAgR/E5A3NDzs/0Rg8KvOnRbHuyCCK/JnCmXEHUev3M5ZstjrG66pqcIMVVekpp/1mJnK+tlJ9s4z3YC8moLG+oevH01mSob2p55+HqLQbQzfUiVrZTPypyb/7pQPSP9hLFIOyNGrfhBVeS2He81Lj2c0s9ayymWG6JrVOBGpmo8CTiNLwZ3YlfHlS03SeAYiK63h/5OUBBzxlYd4Phv5RaWDULhBJOIomfSiPxlEEQ3NRWFKiiBVRVdUS/QliWtRdqNN8qxY1kLhR0FT4nCR0bw0SWQgNnM2ysGuUBu1aSd2iBVQEfV0RDWlFxIm0KBBAFwELVSNTiqaKHQIR+k5VWRJYDC5uCgVF9FrU4QQWyswEgcM6T1ivF5y0eQ8XBY1PnDEECg/QKKIjlYjc6HR+fPfu3YeHBzNPKSLHwinHdZaUv373/u9/+9tnb97c3t6mlNbT2cy2bQVg5grnCUFh1aNfo3BGasa6sDNV752Z0AOuJka2C/oQpAvrr2m0sV+5nQEdYzP2MQAndQdsMAkb4KCWNYMbEemUr25fOg4VN52KLjheC3xUbGYkjG6WHhZYUTePUNIQXGbJrqogSGaRbI0yWjK3onx3d6hZUJy6ulOQXatq9YYAufYb49fvsgauFP1T1X91gH3qIj/kbT9qXF2wuZhPvuUZntvgpWSCghe+ubs53B4hIEE+ZqAG4VnOGYRaS4his1LAZgHW8Go+KeT2vdzLyPvZT0PNjViYG6FXEQMBXpEAsCD45+DuLsIieTufzKo7zZYrER0Oh9PD2u6JUkT91czJhTgQLgPOBMDg0SLP+gBATLD9xOq3dNFJ7v/U8YsL5E8bLe80YzJ/5gW/67laRnd+aTZYEX5pP3nd0PhYzcn17rD893//41df/K6ePixMgEhKtW4KJxII1WrRrXdEe9HiyJ3oijjn3Dvgtv4WYahxcC46PHhI43BVRae4dzX1jQAWISYNcmlmJzJzdSeHqgPsUWQAAUXLRwAUbLfmFGfXGFFZM/IMNAiH+h7hXhPUXAiGugZ4ohM+mEOZ09XqtbI6ABHuJxbu/QUI1Q0AR3CU2OAKIpIwGKgFzUEpSzR8GgYrjSOsVwMhMt+t1Kzzu+w8KWhRfiby0R/1U2IztMEsIddixDzWbohQmz2rAAUbavxpgIHDAla3hMh7pJSg1ZNIXC1aJUfiz6GB6AQi4gwWZk6SWaODrWrddNs2rbtPEnwtvaCRiDkdlmW72ba66tnMmQUehPs9p3dNw7530Hx2or5rTCcsdYd2PhoAoJGtkpmqlaqbQxGkHs2AmFekmeXDV/DJr3B3HmzJQCOic3LvIdAm0uLu5BWAeXW4QIiowogoAhbRVRWTNminRuvk3KbT4T5333EEORsFAyPciJyJsCce0fo47jBvg1sYzZOAjVmypm9Cona3TSO7ODnDzVPwizGLMT+hBAJIo1cpRY1b6ksjkRz0rniG6Y6rL7hEUvzEEXNb1Up9++7d11///eP9+/uP7/7n//j/LXev7m5uX96+PN+X+/N6Xot9+Sq9ziu7JMrpkI71+OKWnetWv/77N+fH1YuGqgj+HWq9YBp8J9xUIpLUOta677bH1eQDu69MfB3OowlAHoExorZ32EEgJevG9UXQBAw3VzN0JuBuM9FQHfupM2a8b4HZvkJ3XFV3/TNLDhFVb7A4uOuT5qnuDkQelEQkjDIHCIxGy8fMvG1bSinS4P3GjJlZsgNupdbqZilJUG+NmyciIdZ4Ym1ImS7te0ovAp1b0NH5XqqzF75ax9/HbMSfR8/AebLGe9q2BNHAPHe4Ak3Zf3JFy4OPth/iVt2hcHKqDtaGfco5L5KXxA57fDyVsgnx7e1tCy0Qg4mZhEQIzFBrHpyhdR0m2pkMAThBe2sIkHdh42FxCnPYAFbVvdUxtyclRKQtJ5iTM5mbxPy1Q7R3nB8xbzKwpJQM7jxyQ1yrBnVXSokggW1g8oBmjQkfixqviDQIuqpGgL1sJdQQczLDw8ND4DoiJ9nwP7n1sxXOh8MhpRRvW1J+9epV3Uo0uQUAC3jGHrm3zgsdz1Vb266gX9ujgNShF2Q0PjLU39WhPkQnRBKtL/bkBuOZw6yHY6bDfuJzHtPlPYbUfr2+iM86aPSZt9HdNzMuec69y+GMdIokvBCPLB8A7U2Mw1yjHkKLX2fF/b2n+7yfr/40776fYiX8zPHMuuwxC59uaT755ifvSt554cNhubk7Hm+PnpAPSbLU2vqgqKqWoqpRuG41jttI3a/Wyq1FOj8tT9WGj4+PKaXAGKuVWqtqS16NPpZDZQlxSqlorbUG/39mqa08BjnL+XwmotFZuJQiIsmjatkDO+SkTBludBnFH7uDLqvIfCq7GrtjyMwwLOZ5/j9p/FOe6Gd96VV47vuGP/fO2daZ986l4Qj4MLg9MMJEdDqdXr5+8R//9qeD8IePH71uh0WEiCRBo0UcM0gC1iSiW+W+9dyquXfq4wRzq2oGZw03Ndqtz5sC0OhRMSMUxomw609id6iaWYnddzjcaNP/+0kxCflQ3r3wRNK8BeLKKaWybePF2TqP6JirgYxD/1sLlEeoa8x2UVX36HBERMEamptfNG86qDoUZlTN1RGoXZ/QTO5BtoJu2LC7F1WYMdwbwKiRHZLB4GniEJnyhB4B3/14ujJ/P50WRj+8hgHaDtyuMXbLeL7tKd+uqtRPRmYmEnc2jZAxxRuKaYDnDYFSuaKlUW4975NVrWzMXIvNOUBD5wBPlIhBTLek0eBKi880CbiI8l89+LOvf+qdc45l3ll0OdDzLtTwdFXDznySBZ2zxEMy52mlDmzeNXY3O8YazZs9FiuspnG7RDT/PGuD8fNY9HGOzM/o3qyXecbipLvaOzF8ZMZkp4Gc3xPP20iGsSN1G1BxOrNmA3XczPhZOmvpmEAiIopDubrb/Fei3q2t+8lPN8K+CtMX/YThHjEFuLuq2rp+++23H969e/z44Zu//fXzr+TNmzdf/eEPL/+fz/7x4d3bb08pHRZZ2Jlv+JDT4eYoD6d8zLd3d8vxECwxkhdyo9ZNbRdGdPbjsWTzbIxH21Ui7UfMVcp9AOnJ3BlwCDWW4F2we5T+SibbxeHqFgB0iirCAMNTJNj6Fm493fpUd2HuU9cueJXN3ud2vn/f167Z0lO/laubHD8PB2pe5faNTKqacgbJWoqasgnndFwOa9licsAOc6bWuaxYyTkHFhp9G8Z+CYKh8RWB+kx4ooXHDsS1WmEA1RRMIJgZWkP1/cCb2f27XvAI9Vh3vl1BjrxIJE3i/GMSV5MeAGjhaneAOEk+LKWURp7WVI2FHxvNCDzeyZHHbZFsZo420OrkHvQnpnFOE0Pg7iwCcHKvZjV4KNUAEhdA1dQZkkRcqvladCvVnZQCtN2IzsLzJgElrgYyMEccomGkiZloP6odCjJib5gQb8w98yp0QQnEpgBwcNCgETHnlBJvp3N4v9taJWdmTmmJflGllGpYhF6+fPnh/fvH+4f379+/fHn32es3j4+P948PO08vkTMpPCKk1KKcTVupxnaSgKESaWMfiT3mLmhNaGalPFTqLtYdkMwcPax3m4AiZnFxUkaA1duPZECQqlscuNgh+gE06p9yIDXJd6DFxc07J7VXVOo1J7VWrOsxHZmi1DdI1LylLICcGkWcMFJqvlbg6SJeALV49rHn0fnrQ9rxfCb2Oi/0vfr9h9sHP+RqP3p0i+H6ys/56uQMb3RlDkWPigNYluVwyCKUDpRuFl5yLH0OGgJ3gFLKS1qEJLB0bkFpwHAw0bJk19oNkhaVaOVq3uodqm6qGrdGFKjHdopG2wKIRdZGVa2U6F0Wl2Dm45KuzIu42uNpfXx8jBpga9Ca9sgI+eoU0OOocPcack4g6SVSI0bgwXt7wT/Xj5yxOR3fiRf41x8/SnT/tb63pZR+1m7y7gR+ah2jr1EzI4jAkiTlnGgtX335+//+H//NajEtVjZejmVbQbJt1RSUJE476jVm4ddEYSf1SpNSioFG8iCk0d1bq9+myeNMBTNDbTs96g7aDIYPpHxwj7wZ3KsbIUkSYc5VtwDEiLA7he9cG5NWGOdxmqiqWqnDtmvTHMe5WRDdBaFji+c2v8Ibwa27WatLVLj6hQPsjnCVidCQvHFACxistZpHB0Woubureqm7PSogRmSEEzOTiLmGD6x+LQSRvAgasDB7rO53Qq2tlAJ2JYfPiuWVcXwlPzYVU8yv7walecCQwlG37vG297l3Du3NjHOKcjOL6nG4KyzQZBFVAdA4k4lM2DuxGYOypHQU7Sw/1hfRW+Yw0Hcps6jq+Xw+b+EAx0b6ua7vp97vPRpC3bGf3zN+HSfy+FT8B5fvd5KAZu732wwxtsb3TWHxBvqVWpEgEQlALR6yRxCCGqY2fqCoyG3XfOakbhNLDR7I5olJaAckeTd32mcnB8PczaODfKME62fv/oC7Vzl9JSZxGn+aQ7fzgTi8o6sLDidqBsESkUiqFdEuvJ3UOwlGt45cKDAjUynQfPGfY9KEkFN3ZxLx/bv3//jrXz7++c/5eCDU42F5/eqzP//7/2f7y3++//jh8RHfvF21euJ8uDkIUXFb64Ysty9f5MOybg8wF4KhNdalhhkBddae9t3mI4c7e1JgQgcXtLpugk8HBHP4FQPR4yMvmxJj2nrxiHFNd6+NsR0ARuVpf1P7d+gNoyDYIXZgEET31BQROe/CptGTkgjxQWZ2EEGVRh7C3FNKjO79upNDhPcOBEBsQWsih652Wv+XkIGeGXZzlFLjGwNQs4tOV0JBSBZqUIjdNbgh6yTqYSX2apeOBGQG0957FpNyGYIY6mHHNhBgGHcQDHixmRvbAfFIpnljjIhrmhBHO/aB9nWPOC0RmBPAnCQ5tFazYinzIapnCYNlOr6oNtb3BtZiTr15BJgEru7a7GNJbtTwAJFycaLEwmzV4GG2woEsiUiLupk6OFbLotsVPMAM7AY4M4U5i06fODKTzByNjAOz3oASLOAO8e/rTRF3DR3BwknmCFB8NmjKeKKJrqapzQkR8bZtDw+ndV0BBO/lUSSl1BtnJQju7u6WZXn37tv3b9/d3d1EQli1nc1CiSai72Iu1sQ38mzaeiA16ySGTbD50dR73H/IRlBDzan4rhT2bT5+8ev44gi+mDfYzx44DQzQOMGmM6zHI3puzbH7nx20zMwcvAiqSoXqukE4s1CSHKgvYgiXc5ElJ+KgvHfASt3WlSlJkL0wixGA0qOAtVbv9Ww7hO/7xs9R7r/F+ISBcoXY6e+ldhAG09tu2LnDmDMncVd3C+rl6PTbBUaiGF5YSikimQZDuLc2dIH1SIkGbHjMXtRKRS9K5nCf9zB8+xa1YS01tlJ3KzUOD6CFRQZ5TAyRfD5t22nbtg0A5xxtitHk9glyiYl6McyoF4i/mpnMGjwibkToDQl++jL988aPNWH/6eNHzPP3+b8/8Nn9oiKEphfdHa1atJmrDcdz++LFf/zHn7/44gurj4cs6ikx182KBhkjJWMmJJGqDjUGB5NWoD3d4xSCKyj63zgbSN0NBCB1BXV5P8TMpZRN66i9972ynVoxFyWwMSeSVLTOSJmR/q0NC3ch/Kq6btvhcOBJe0S5KXfGoLFl3F21Hg651gYMh9ZIwfLERLrPMkdZMktrbTq1uGcK7gkiYhLKqai7FUADAJIlqSmrCyE5HZYbJS5Yy1bIPBoFMXNYpvFE7EBrCXldvzC5GRf1mbPYjNrdT4nT0BLjCleZmQgB545mjAe9/PY2bx1iCjNiygHQiYK6JnhTqpCIxoqjoFgJ8yOgZSJySMkIgtb/NHytSB0QABWSVErJy3JOZ9SWcf6+LfJDR3uupy9Sc/lme2PYNiFaV0k2XOqBZqtQs9OmmNQzmauwNxSehMn3v1oj1cbYC4PeZeyv+UHGGMIwm0sjFTXsH+pDO3HufKnZ0QLAk+RcBGimWUoU7LtxdNO4DbqUimGeTW+4PrDGNWlqY8l8keJr4ezLp27Ogu+wgus4xc8ZF8anW6kbre/efnP/7u3t7e3j/ft09/qQDr/74g/fPpaHDQ+n87bdn89pyXL74oaYnaDu6bB88eWXH7/98PetrPePnAVd4rjXD85z0qPk7FNXHerz3N7T+3hftR2POCAAEQaTm7m5RbFVB++glzdfLcE+t8CYW3RSqyZj/VxrWsU8cCrBlUQdCd9WExdhfQw5b7029sw/Ba0SNYdzrO/c7andWxch6sGpxurSbel4saqqGwpFqjAlSSlVs23bkojB4Rz5R+87jp2i7iyI62mvmd9XYexTIU6XW3qP1VmjKb84sH26aVxKfP9lUj3BM0WI2pKI56aUpD1zJSJ3qzChFgZXBJW0qioLonBXVbetHA5Ln/pgPDNK7O4siZMQRQlwFKwSIFHeA2+5/qgoBhzODIIbucLJDeZatUpemEgANYdbWLECyjkpRVIURJRSImJjCSM+LFjrQTIR9pSrBl4/dv+OImtpw2AjieloupvIwdMh4e6j6HwcblFBwQY3L7qVUt6/f386neIg3NZtWZbb29uc8+m8ufty077u9nB8T/Tx48ePH18M37UZ+o2NrWlnEdFSzVCrRaErwO5Uq4mgmzg7hs3M3AozR2+MeFHhGEFZYZ+gEQxxt6iLnqqjbGywLlpDs8eh1YB5HiGqrk9DlcRFGoXMOOHau6MvX/8as06u0AwLM9vOKwlchKswxAlIOSWGMMHJLRFcvZaipaqq5IypUEFElHnbtlgyLYWIIq7EzPq/j0tzZYpdvf70HBr68UqpfeIKDuGU+HDI+XigJE6ounmE9RTMSCzMTNjDe6pKPeRMxGa6bVtOPLzfOtgOJ+odZhaJV1rL+Ign7qiQHpgfP+/d24hUS9unfXjf3SFczBzSGO+PTuIjY+bu1JjR92B2xIa11/uMB0S3OYDdpvMrZ+l/Gwn632D8UCH/keb6D7fSLr8oVFFnMOjCIETsePPq9b/96Suv5f7DxwAXnM/nWitLTrSYOkBmkaFkM7PRRzeiwxYMFCBKxInAre7DjKRlOIko3AbrbbGDRGuKsZKIBOQB4amqicSpIW6oVYtWtVFEw0G6gSjzmwYAt8blEKo+LPjYDqWUZVmqqnaK6fDDz+fTsqSqm6uJSJSLWaO7e6YmjYiYhZigxayFn+AOGEfnDHg7nIiYk7C5V0x+BY3WxFqacRaRVSInMMi1hvXo7gQjYgETs+0EY2119xNtYiqaJeHKlNoF4omgDtvs8p1A5P2skRajM1J7jwIHcopIzcwIC7gUIxd3U20ywKzMXIPfO4DWnABEU0DAzKtXrYBIXZaFBCTMklp2nomIzD0eXjdYb04hIkHGAAL9Qnrseq9dJs9neaOJ/6a1TPFL8PNkhY+N2WwxYGjkSHdZR5MTWvg15jzMPx5t7KZs6rixFKGZJhsdLAaMtkMAolyufevk/qkpR/s8YHSzp93RigAHz6/TYJbGdP0ZaDBLUb+H2BJXs22XBXFXY9Zm4SSPOR9ZQYW3hKe7KbXU0iiSamgEKNyc4JGBbM/e7N5PWCA/ZATaYWjbMJUPmR7ff/z6H3873BxvXr4ucrTj67u717d39yk/PK66lbP7+o9vPxr05auj5HRzd+tirz978+bNmw9ff1tPa7N/4q4CAYqWn5tWp6UZ521+JRtoUblnwt9NpIcF0jm6gUamD4C89c5tgt3kZLyrFTmOHTHWfcitd7xZJF2FqAvVyM/3B+lXpl7/b26JUzWTWPGu/bg3Y2tiBQCjZRQBe3Ovec+6+2imFQZgGGnBTBBvNrNIMqWUmDqQ3pSYokKxUihsSOCRsNMzezDew0EYVMHJpxBj+xanIfGdfTdyv66j2sHBIEfDPEvX8qMGmB0sra0R7KILXINncCPmUnCl2jRTQw4HZU1oCiWixEwOJhIiQWjdJEI5ZweiGDiauhM7MLoUGHrprYiAhXTnM6CWm2XVVsjKSUSYTKOkO2Dzt7e3a6mnNSqMyB3VVat6cN/3JxMRkoVEuKJnjjlCGpuWErjNxu6zd6atalm4qGp0aJhmaXQypJ5NOi6yLMvp8dHMHh8fHx4+fvzwYV1Xbtzx6Xi8ffHiFTM/PJwcEJCqns+Pt7fHm5ubdV3fvXuXc24128QisqQcSjbAY6MI3MxUS/Bnu0cvVkspBXla3GNA2ho4g5kD5GlGdhGHbpLdtn1YQKERuB8GFOW3YOJwiTBOJiAa607uwTUerWWC3c1ggBD6W9S0qZBe5RuP1iq4mM0qkcAtDC83cvcgFk4p6bb1ndPIGA95Abt5Xdfqnb3DzKKie9s2qxXMi/BgR/OrqPMPHZEe/yH//rrjykQbL9JzxxJdOGzW4esw9mM+HG6Oty9ubl/e0cIGrQFflExEIpx6o92cD4fDQVuzuyoikojYXKs73LNZVXXV4q1DNRM5szgUyoD3kvWo8iUmc2DbNkTrF2bAtk07osaHcRA2dMAuRrHIuq7sUMCrWjWnoszkLELoaRB0GRz/mu/ohqjS4I5jGskrZtmj470VKYBIjP826/v/nvGsxF69wTus5Idgn6+8FFwGL777gxe7ScAQJ5KUGCQEJvvjH7746g9fQLe6nZJ4SryeViJJaWF4hW61BHc0uKeY1AxO5E5QqMEdyliiyLXWulV1d8mHZVnMC8Z539w0EmGrtkSn3+jmKky+O1TVoo8UA1CrpVhg/rjVqWopbVeOLXw15021doekNzhoCpl6Je3ITp9Op/P6CPNlWRZJzSzq2TmeiKAb4zEQjVYbugI2UjS1Wq0Vru4U+XCnln92H0cDsVMiXuPUghBb62MZ1qaTttwHuPMAEk0ZAHd3G12RBkHjlQDQJ7ToMFWvPmK9Ku1K/LSRNl3W2o6Td8o7sZozlWJkHv0wUWqnbW4VPdGEpislhlVOKTyHWmt0bFwWY+aaWnEwpQEsJJA427B9mVkjv/QrBYL7BBJ7IyG7NDlSRFjMTC8mdtwP9QQRdUguEMkUtl7QFG8ToMLZYYiyzFZaE9U3QB7zNiz1nhLQkXkzM+a98coe/QQEZD2nF7ztEVSAmwJsYciEGO4ZaertS9Er/vvky05gvk9Vny4HLotO2zc6RkciIY7GaBFF2s256wBN42FS0zDbh1djVdeyySLcmZ+ZiTuPpWq0xhkOWhMSHvBSs3GHPFH2/OQRh/sxL4n53ftv//GPv332xefn7aQf3qHg7uUXN4fjMR/XvLo4cb1/1LV8+Lz4y7vj4fZ2s7PxPZKwiOSkruRUXQFPDq+eosQPrUhzl1CQXpYHYpB5fmK/R109BqmwmZnlIPtUDYUWdEjuzh4UcxFWIJD1njjBKHGdpTAzj7JQtPZXrUaQqTXjITIjuVzoOYM9jBZmDpYWBMMeQbUQcUQwfXIt42eCBNI7Ou1RX/1Y6pSAGerf8xlBx+futZa4ziKpY707p7Q1tJG6Bhc9iZCh9Eqf0PPRsXz0EFHVlGWJdDZaw9TLdl4EECxa8gWyyGo0ySYYMyWOalFn5kikcz8OgnsDZK4GGKcEkPZwoKkelwM5BfUUC4cbxDA3ZQ5SNRehIAIPX1MgDCdnNS0kRNVsy4vknBMxCZFTdFrKh6OIEKRY9Aol1+72kDMRe/Io/cx88EWt9YWXnKBatIApJ9FNa1EyRFvazEmItqLqgHPMGDFXt6K1ngtJWhLDuZi6VcAzmDgZwCTspACzhK9nUtdSRTjL3GUWssiRFmYWRiyCu7pVNwZqKWspp4eHhw8P90S0pJwOR1kOy3Isa02JE0vRjRDN2SoEKfH5fC7rliW5GoPcA4XK5qbmWhqxSi1tBAlb+IyA1arBZzDALSIkkkJjdoOeyJkMZlbWQhH7JO45AUqUDBoawrwGP76k1AIWIc8jL+EWBh7A5haVnCN66O4eibfYokObd+QFAAwOEMDDGSb3aCtuVF1VhZnTkgN8q6VGT8goGOgPtR9s7trL+huRZq11LXWrYTsI5fYgxAwkkEFrC+qDSNpcoR2zeFok1qPLHOCa7//3yfg+E/zaIGvFId2mvPpr66g74URoFDxP52LTcYg2z+5qIuAk1d1hIikf0nLMsmTJKS2p6Ga1OkALlmNOskhKbGa2QcEJqtEAy7SU+/pIRMxIlEq0hXBmgVCkas3NWLKqBS6jVWM5wI11tm18VPUK85TYiprWuPHZKBHidSul6Js+AznnnFPlup3OUCQhuLKw+UYi4QMHDJGmhhMR47SwKqIYxgFQVHO048HVeg25erS7GPFvYIcZ/qjxTKj+VxixI0KWnpr4XYaBZx2AX3U8dR6++z0tMmf1+k09gfIdF7+y7In29hJXgyckZL82wR0EVUAAM5gecloEB7Y/ffnm3758o/WRuVLIAzOIzCyq6JZlqYai1bpp6O7ELjlB2Lz1oSlVW5kiS84tOSOMIYct0B1VAGoC7hHQ6sG8QgTnWm3btnw4qur5/JAOR4pm9YplWRJzaE6PsE4nP9fqzIGMay2Hid1U3UzigDdLIunmJpxns4CAIZowxUOJSLFy3lZLlnMWplIKQWNC5kmutTJTURWhfFhq3bQqM1f1YEUxMwKnJABvtRCbA7LkhaRU457VC2iJiGDJtVZTN3MiBiVHNTciBrOzV7d+slDklhszyFDsT3IvYR0NIxKTJwxgxKBD4/W/NAxq09XgyO6QmxM5BNTaH8wCS0RwC/gsMVv1YipELpTUA8cE15RSzkgpwYicYNR6yFGUA7mTVieAIQmSzrWUUg6Hm5SSmPNWU24QMCu1gRJZcl6CSNJcx2Zq5YXP7pAfNojTlE7R6Hob6InQliIs3OHaInAuXmq1sqlbr9zpmXZnkpzbWb8T34Tf6B6cqeTRZzEJMySyBFH2CZgIW0shtNSLgtoViFKUVAOqxbyaa6f+dKBbNBQUGI3ImwACu0XJo8FZzSEUFqOqkQW/rABERtIJwGENINfmCYKWo9JwuqILTThU5C4EFmZIy1o7oHuqykwDGBU5GBEJppgmUR1UHxWQrcjAqqO1OFGtZJRYQLKVyhQ7N4hmkXI2dXc1g3p1ppS5VKulMEtUKnHrvqahTyM+3sAO3QjBcxwrs0a2ST8LiIndaimW0/Ltu7d/+/ZrvHz5eTp89vpNraebxV8es9abdcXp/PF8ws1tMivnM9/eHMxJ7l68/Pzzzz/ev//ma6015ZyON0U3cyQw1rKkrFN1AzfKKhJQtQZ4AWDqgKeUssim1eEsJDKVoxJzolIrBybOkDktkrWU3hGFiNzN3MJiRkqpmlqjCgYzx/IZjOBQd4Nij0VJTrX6ppqdUmJhCdXlkUgyN7gIJ+qst+4EkmAQDuOaCUApKiKA1bqFGwhhF9eelXUiU+8k0lGZqARhJnau0cSPhDlTA8620mQzdTKDujmDRSTxsgN/WhdgIiGzWk2rbswMNgoOfzMYNZp6D7wzp24dhcFfa03DusXkdg993V6kCNY4zJO0GWFmwVD8XY93uevrGISU3s+C/Qs4uJTMmTmziCS4drSAE7HDekbfAATLgwdFBSW4A6RmcGd3QdBS7WUz7tGGyMzM0R0YgDvhjrg7xJmiu/n/n71/W5blOLIEwbVUzT1i73MFQIB5rerqknpo6fmK+uL6jemWkZkRqYfql7l0SWUlmQRJXM7ZEe6mqvOgZuYWsfcBQRBkZo2kCQSyT4SHu7mZmt51aQCFYuEwywdb1FrDbXNziwC4iEameVjGl8Es+Qg2HgFhZPC5CjI/W8zhVjUdNq12iCISAGNhwXD2jHG9Xpu3O3sggyrq7pfLx+v2dLlenp6e9v3aBGeIUB5fPQqV5Pl8rrXuH67COJ8WN7j74+Pjd99997vf/S7Nua9+8eXXX38Nj2wGnYuTOgdNzBK4L9g7SgMImNdqLiXKcPBERIRYE/kY7j0RScODHZ0iWveqRKpI7j+0SYmgZ55/ERHp7Ru3hjRxq2XGS9VT+EMllM9vEhHpL00gq4iQnrrDyQ2JSU1Jw4YjMD3uM1JZut8rXVCI2KsPpJb5fP3AVJvl8CP//3MZGJ+Y0ksq2vHKd5d5RAfmiczrISJUpHA9L7oqlTWq73Wv1bymAynInoqjSzkxYt/T62zunv05Mr7lqKuevQaJZSlFGvh2d8pE4vKFeUh3OgqiVdoerfb2fe81gS0I3HyUkbL8qNQCoKGALKlQSTYBlkyvDjh0NXNmo/kpTdHcgFaio2kNByKjui+J7YEMNBHqv4Z//1zjOQHzLhb3CV4yLvgxZvbzH97zKFIEboEIuCtDGAX+2bu3//7f//35VC6//517FT1K+67Xa2b1U4UNcSNxB1TgniEpWiCoVKigAMpEI45eUACWrGxECESEEWJuZnseFKQ0JCJCgCJ62fY8a+ta3FeLjGrEspS0GPN8jXbx6V9vpbstmyNN4gbn4b1xYH6eRsjgtw1SRLXWo4Etetk/yeu2q6pP5zT9+td9d0IhlsDOUoQS9A8fPqrqUtYeW24Gqqra1a7Xq7sv5bSSHy7Xy9OTxQwSdpBHEAENuACEBo4uNUDqKglV4D0xNWZtakiKO3roSm1/StvukeHSS/J6YKlPRrIjiD8jy+cPmsSZRJgmhk9YRjq3rWFrL8uijUwiHQIUnpbVijvFI/Z9f7peHFxjXby4O69eSjmVhaRb6zOcDM3N4A4R/BxB4HyTfL27G4oiuvqXnzTNNopZZC0hJgcEtE1p7HK+c1IykBZyW+dUw9gSQ9KzehPiEwl0fXWQN45Tb/GH+Ea02pmuabfHS6J/jljoYFzPbxhpxLJH/8Cx+11Jj6HOA0cg4WYZA9ljttmfUxWl87g4elnQWOy+OQRNQtrTpp+4tyZbEoC5hEegn7JDb8TEitkze28W7bnu96NHRGzbJkW5lMt2/e7Dh7fXjxTTEg+Ppy/r22+/+fDtt9/aZkUfIXT3Dx83Yahw4VqWeHh89fbt+/df/OKb3/4uJHY384QC6AgIqZKP022RXHSkms8LAkCRPX9v8jsSCGEQc+lorCICz1qDIywho5EbEi2wEwyFdKqQDkJ6onULCKXwyVQQkebjASLSnxTBzBn20jEjxkbMuQPTnjRDCHR3tKJIj4jonZKFhGaEFZngEBIwCND6yVmmLdBVlUJV9QZnO/XiglJkSGiSLKqGauYRWiTgIMNb9nj6NEVmTnj0qL+BPI0jPHWTON5BOpj13GMhsqMC3N2tCNi8Au2HItozH1BEVVU6EWiHBsuFU2UazQmhFl0W5IltEbceeETLVk/0prRykcm66T5LbzOh7u7ogSnNMuPeemQKtSfqU3WHCKWVMYiIhNZameCQ0jgilC4aEcbImwfh0jilMBFtOhJakqYIi0aEhdsE9dzYkMfoqTofVJ+BuDPZyWzfr9ftcrlcPn78uG1bhuv3fc9kaXQbbIYSWZZSa318fBSRb7/9NjPQzufz559//t1333348GEoH01Gms0/H0RmFRFhbE1rBtRZx8A6yhjaP8uNJM7TxekF4yis73cYvYjd4Uc0DS36G/MCPWeC7Nvx8ugyIQ8ERpYdEHvAQ0DpYrufk4iuig3Cs7gXRd1fcGMlAqCEgFUPTsaJ5u8Ez+2b/AuyfPxZg/KhMYxrxqpGoqEwW16LCzwgquv5dHp8WM8nqHh62AktZV1XdMpxd8lbuW/bFlYpQREtPJVFC1lIKEw234RcFhWRqE5EWWTbNg/vmstwtPc6i97Wm+md9xZqIVQo2dR3gL9harLVfhVyfXra990qVBxCoTaFIsHtLXP7daxSo20C6C3K++kYytPwhQwFN17EjfvX8Wced/Q8L/5zRfMnP+LFPWU6BEkQpYgWFOXf/PUv/+d/+2+Ierlc4DtQvKUM0z0QEIlwh0IJBAiEewfLSYdbRG9NGW5oTtdu1XhMHsxItHZKdKswKKRIWJiHCNdltYDuG/sIh4iclgVZXBAopUjpijZbI3QKQU9DysNTNTn+a/I3zH1JVtDL+90i8zFJqqxQZIR5rxXNdaVZLj1WcsACCdXBMA+DqIpordu21dNJqbTIBkmZb9IKlnqOUiba1cvlImXSRIih63cy6J0muwuybW6kWXWThfGcW47PvXfLYzd0Z2rpCYnHGP2dxz0pckeiQ37hVtYMT/Thj+jrVqtk8whVNTPHddxQiZLgkCIU9QgRWbR4a+qR7U8s1VwRIbKqDqXosixX1VQoP+lS+mkjDqF8I3ZDBsaSJcu1Wms122/8idN2DAEnU/EqmnrwAs7T7R+dpfcPI0LQMIFjMjgTiQKA8N6hP8xsHLSRUz2Qe+LWBo6X9J92lCV336MhTrfndkWtP6/ZP+K3mcWN1ocrv8smsin23qhrmBOZds4ObCvJTSIQCI888UyljmiQ2bMFxV4PnIufdhG6UjFrSmOjOQvQHxzPuXo1kLYCdfdvv/323bffXT4+Xb//XpbX7968/eoX9R9//dtv/YOuJ1Hd65NCt8u2q57Py6vTo7z7XK/1u9/+/uPTdd+vAZCe/VCBAFx1mR0r6FFo9tPN252b5f74cNBk/nMo25Q0IG9YFifHgczogPSWvjOR1lhB62nzh2rXETnHxe4gkXkQY2I4iL8l2wNoVFNaVmNmUDKhARKQufXfo6VZnAJIMtRNEaGifeMOCXdPazGXgsP11KKZrdNK1q6Ax7s3HGxEhEuWrgQiopQRxo1osbcAeg1wf+GjcHk+Y4P/jtduy83MZb2hZqA/pAVYBkpNAL0mGd6VUXTXAwAULa3Vb6/BatMQallgqaCGkmxR/iBKOHZrAiN3dFmWcThERKgq2hK4U+Z1f2BuiZlVs3Vdo+UrBkQKFQXKRcQKuLlt7oSLaBRNv02yN5PwpldHRJSiRaXWulV3d1FdRQ0RVt0TV+pgAT5g/ia2yA7b3bA6ezFGrf708Xq5Pj09Pe37XspKaoSpnmut67ouy1JrfXp62rat1rpt21Lard6+fVtrvV6vEbGu69u3b7dt++6777ZtGzUwEnKtm/fU31n0dqnZ/OIDKMiD8ynCxKemo3Lvih5bQ7KpCx0S3Vv5sYOhYHyiguhPshA4tV3t4mQ0NLobfpci0Y/lfHCerwBaGPAGp/RWyP3LGmPO9190/8sdm/7U+ntECEkJNqiDspaHV69evX69Pi66FEiIQLL/2Wnd992QQHVN9GbV9Ol0EoWoUlo3tUCrOSmldI9TG/u+Pz09SR/peG4crhew5fWqmu3Tuj4g0jEMm98nc1vkMIDX9QzHt5dv9y1TSg5EkJ5DcEPz+bcWRY8AS0IPhCOCqnJ7OmT6GxOARDSb+V8itfwLH7Pa9AfH3am807o+ddkfO6LjKN59nkqGFEblUnRRf/W4/pu/++s3rx/s47fhVbo4Vmg1S4gmc3cPxORLoTfNO+sG3SN87wRYWAIVUG9qrasuDnOHR5XoJ2cFQmqt3lmjW3YNXBiuLdAVAi1MlAN20yI93dkC/dDRpZ+jsXrjdYYgSFGSJzQtiaGNmBnDe91+O8vJgNMhPm9H3d2idj1Qat3cfaEGGaFFz25h1SN8XVdEcd/qbrW6iC7l5LY/XbZt2y6Xi3tllBH47YUqadkO2sjiO7TY+k3YbSane5oZBHbQ2A1DmFX8YYE39sJbczoiMjVUJjM4uUeKszmshMkN17y6nfW5eyIBt8sMffsAikBRMn+WonJqaoYPeGTVkvporfW0Nme6qq7ruq7r5XKB/zwuXU7xgLvRgrSczAyS1LpvPh29YSoMDTCmqM9Y575HL09jbEESJIbfqMctnktJdhs7Jd1M/4PDz0Jk/HMYSLhVoiYZFPODPLMVb4LlnG6eEcrZq/Kyj+9Ok3H3uOlVj14FloiSplNK/5DMKYgTLSPjflCJAMzJ5CBCd+npWrOj5I4Dz+flJ+t+feNyI/zy8eO3v//917/5zR768N322Vd/v5ZWiUX3UHXHXr1et7L78urh8fHh1flNvN7Xx0fRYts1SJUi4UFURoQPt+K8j7ilLpmUxrsFz5FfZT+XtABTh9EiWpZued5whmEPo6s9nv55q/CQYMhBJ/lgn7wJMww1h4/eD8KYteX+4fF2d0wpWUF0V2D7CQfNHK85XmRMjL2MKJ04Xh0qN82lIgAsolsEIrxasGUXZLFMXjRm3qRnz7AbZzMPV7kj+oiD574o8rPBqzbrdz4nrbgZQLSMiOQ7nrkUPRDiznBKUIAgYOGbVTBUtfWmIyCM7lYpaKaRudEb6FkRIH0TUIejQ6FFsDjDmcJJKSqKTMtMPxVJsiCxxTQIQdAbwlNQq9uwAAVMxlq0mIFp9ril+9ckEjK8CHc3b/1KkenR0QxyQiJgIgUGJmp4QkNT0NMbMjF7LLK7r1rutiCq7Zfr9nTZr3u9bohAaRSzrAq6lkTxpCOerpePT0+iuu1Wqxfwzbv321a///77dT2rLu4g9VROieVk1epWa63REaFnYXAQU6hbuO/W+zSmzy9Ffz9AAJtAah5ryV6pBOAMdPeKH4DwkOj0Z1mcmaqWjHOHP3FM9gn6+YgItH7ChHuiH6UaN2qu0vWJfv1gWVkVlpeNwHXGuTOTO7LaGAmS0R4dEQOzMd/72UT/WF3hZ6v5/IFFjh5DyH8+Zw7sftwgqEKGEyBkWU6PD6/evH719o0s6UFwEYS0UJSIeK0IVy2KcDcBHk4rybL0DE9EhCmpIpu7rkqP6nuqhB5e931OM0MrfANjwPF3rKnOwIVlonBGMFMBVQtF5oKcdV0ZLT1h1zrykSxj2QkX3wrqQI/seTZweu7E4ZB58+FKxfRW92o//3kDJ3/R8c+UyHAnsD41Zpn94k1+Is+JT5zHxshubGD2QG6hhFr4tlC/+vz9v/27v6ZtVvd1LeImWXxVFlolZQ9r4B8eEZbPS8MywyduxsiKVhc6lYmcwfBwEygl6CaMbKoBtwgHVFV3r+Z7ZEo1IrIgdtuy2Z6IRCYbI67X6/XjXoo0XEp6hFMCHmYWhLChRI2kBpJ1byipc5JRRCSQPjqOzlBWsitBN/CkYxlKrTY6rPSFZ7gnvCMpEWrVUte3gJal2h4WWkqWRl+3vQZ2y1C5RMT1en16um4Z6I5EAI1g9poUtk4ELcoREaQ03j56vjFVupxRKpkvGCoxOU9vbBEcH8xSeP4kL5kJVe4aE3b1er7nsUrMxGBBhE48PyuqLFQj60tTqDULOVJKBkiUkrBXAbTohURLZOv4qSAlFao2gQj8jIzsUNV9YDI3hS3jt8LM+mND2awvqrKp6WMyrpLGBu3lH7crmZrtwbq9VhFEKtIRgdYxtTGQ0T6EVDgAm/axM5kby3ya3fGqvE3CAsaJOCY//bbLuXS+3NiNMW7ad/8gEj88PhhBvOgpA3ldTarMJrBQZ8AjTyjQ6D+a6Svh7RTN607S+qqjaw5twd27kXAjO9rbPDOJh3f+U+O5BmtI0Hw3s+1y/fjt99/+9msP/f3vnz5u8VTl8vFjuFvNgvjiZuqq66n4umBdloJ3799/9qXJ/zvMAJGikiptUaEYWiI+0NCwcn533rpxqFNPxm1UXHtTpTH/Y62GJ1Gyaw2QOW7hRzQ4kyhTPco9zqBiHv6Wks27Lkq5q5GZmI3XtewNktpR/RHRMvVyet1ZP1hQqiyZoFqmfIoqjvB1WcwkJPIOOfOw2rD3+0wiIjVIknA0rdizsymQPUcnX4l3sJ4ia3TDu3HCKY+jzbABLYCBMjbmuUIwU89xaPscx8b0fbrzeXhWECwy4BCz8U1uDMx2Ldna3iiJI8/s1CmCOFJc2uZXs0hW2zuPR4QFVBQOilJERbKFUq6+SAOp8im4LWCqlZrg8iHBsB7NjgF83V5EL5cnUV1OHd0Onge7LKrZhJkdIgzm7uvp7IZqRvLhdKJqrb7VneZZglVKoYiZSTCE7mlJ3qx8VtFERDUDUERTRXh6ehpMuYMUeiY/J7Tm9Xp9LOd1Lfu+f//994+Pr/e9Atj3PV0gHz9+VNWHh4fc1lLKtm0ZLm5srnmCOY5lTBo5O1ceTCpT/meGPq6POBKSB2nJjadwOva9h+H0c5g5P5nT/LKme48R/YO/TUEXPW88MTOXZRmVwCPQfbxR7yeZY+Zrg2GlR3yUq/EnK9N/wTHPcF7YuBUhuPXYzYNkZhVDMyvTdNHzq4c3714/vH5IXu0whENVRYEQkWVpSlIpRaFmJmDGDToLZkMORMN2zk3JWFAGgszsdDqNF8lzASrZUr8SyaNZDLeaNwD3myDAs5UBgu69gL2/fhNgLXTCxNgJIALSm7VkXjyyDKd5Z2/W7flKDnq7W/Z/HT9mvMgT5jGLuRc0qme3upOdP+Mgs1QAAAFXQez78iB/91df/vVXn23Xj7Y/FWUYPDyColJCLYIeSilFHLaZh4dq8+PA3M0DjS8JUwJmeEYiwTJFqKzVioiqWujIiY2Ive6pzhbR9OmZue9bEQiECK8uBKkCFkpESLfBkj+2/kOJUCqHEMmV96nkCscB9MxdskRu76wVwGh6109copbUnPBsAIsUMwMlgm7NU585Gu7IHixlkWwfsu97rd7gGA21+r7bvicQV94ZYEOvTe0FzVbJ4z8mL59yWXYtRUbEZtZxY7JvMVHX7eeTUtumMe59JIjOJJrDp8at8wVtQVDHHeb5pHCLCHJYaNFakCTZUCSL+oAiKkWFUWu1bY+IpZRlWRxcytLqsS+XdCU7GXX/Yw7Hp8cnjmE6KOeE8Iio4btbQyOPiE5vybClpSUeKzBu32X9C7nrdx92wXE8dCBvRwTmAsOBqndvA98YwHeidr5y1jSer0Cb/2TSp+xDOA8z+Lh5nsls2djv/8LNh6bXLfAbM6zVOyXzub0/mgU4kfTsOGhb0vF6Em46YvRBPF6qGSAvvOwfHM+PBskAa3Xb6wgp2estqnz9q3/47uJP331kywIT6skjVl8+e/PZL9+/ebVI3S8i8v4XX75+/9nleoVVpdCdyWkQysOemjdrPuD5hffM9tGgZJ75HGzwWS+N+2yFbiHlOrefSMM1QqZxZMLdoUsLB2qAoIV/JbqxOyZM9rDx/WpHP03aXvbgM8IXEtfHFodMpkR+1f0RLXzUVyrfQkpiEiWAv+SMCSR6EUuvB3bPhnBSdMiKPlcMrW8s1Ph/mUXI3bwBMBrNjvvJtPod7C5UFZY3TawzRGQ1sIsoItIBjW5ZsUc2cl1Kw+GPWmsW0azDk4QmmFW0QY6yIWiTBChUY3ggKKBGRA2Y+YoWxxORMAurpLKU8BiVNIggHYluHVEzrYcsujYOknm5YPUwAagiDCpgIuLwcHiEx2RgiyCgYVRqNs9tnmQDXaUsSwEyo7gKpHuAbpjOqSyDniIibdTLx4/7vgMCSClrrXWvdcQqQZr7x6fvyyLr+bSeTxaobmmJAbher46A8JtvviF5XlZEFFEGvFqkfZ4tJBqC0ZFv88w80Pxwr7YkGGE6SkUI2CxxZXD5fpI6K4xId0f3Sk4jZ+JHBugRNLuV2S9Kgh+Cyz/O3rihB6YXBJkOiejeUBHJNtwA6GEGoiGfNHpkQfdA5wxbZhkd8FJKzZSzSJdss4pueMqIGv0zVv++5EzNBUGX+rfq5k0tU2P6RJqJEQHy4eHh3fv3b94+PjycAt2hRykUFRXlsixCXTqWVcKS5w1fvX6ICHdzd3gEfHffdwRlr04AFAUDgoii62ifEOHh3RxPmZtlFSLR+GQGTA5dBw07QKUD7mOCZN/3XV2u1+u+7+Gg05FuOBFpaZBjb3F7XtoLJ8UzANToSJuJWtHov8ku4mDTP3UbX/7tizrTnzx+tuyDf/Yxa13z4EQJd9/k737sAz61/tTEQHxYFtbt1Wn527/+xbtX5/3jt3W7nFTCXaBmHjRS2JA8QwXuHnUHvKznWmt6wuFREn2DYog0jeGWM1ahEAHXRpfIWlcL7ImDHV5EpYgIEt5YVRLhJSt6Wv8SVEacT6erb2FRvZJESLhnPcMA44kI6/XviKOeLYaeQjIb6pCokX7DXBsRQWko7hncbnlxjpT1NvHLrieIWbv70ETzvKcJF2m1apElGJWUiNSH27DI1wwt3Qhs4JWZfpb0IMMpCshcihw9/uDueAHkf74MykQ+PcJ01issZiF1SN4mlaZz55FeynGNu2ct2Hj3aakjIhJafr6/iKTi2D/39D5nql+ESGuu0ByRFqGKBlwsyhIA1nVZ17V6iCDz0c7n9eHhVOu2bfZzefLYvQnjuDZFVhccBSkqUgxh+z6s3/vFb4usvd5k0vu7sfc8Nbo/+sAzSQYv6cRq6vtoWNFOvbSrWzMtJO+fpnP3joP+4wCVPLKmc7+Gn+juh5pnLW4NbrKbQ0m9HjFA3kZE8eZe1Btk1nGUkDKrRdVCRALiFD6XBdJ8J9Erh50NIA7CyBLhCO8NxNrr+EuU0hXBaRptWi9c/OmRS8cGnWP7tn34/vvvfv/7x9dv18dyffq4PTminso52zdoUYi62+P51d/+1d+dlb//3a8vVV+///yXf/P3l8tl++ZbeNrtzaqPgvaPQTZyzHmmpGjmImXoIn2MMzv8+wBkKUIJj1S/U6EemmTSSSPm9rYA0DwWbITJ4ThLKJ/2TaoxhgSy9SNw1SmWo4gMgE0+IG1ZHofbIlpHPR1zYyutFwCbZbsZKFu5ejJYZ6I5gZTZfJWblsIj++aYnlCEJV137tl1F8j+gNlcxt3dNTmn35f1l5cV2WfeixHp4py9k1cyIx73lcBA0IGOl5rHkGSERVAEIuotGtNStGvdoOlSgQijY1RERFlKrdXNzLD73jouKRZdYDQ3NQ0GqWz9ezpnF8lM+twS6Z2ROYQGQQYD1ZwAVVQlI6I1cH54Vc2NcEv9niJi4fu+V28Y01GEKkXPEqy1CkuL39YaERYjcJxIJJLOkyOxpIumeQG3bcskIjP7+PHpw4cP9boByB5FjYjDRSRLf9MA2+v1crksp/LmzZvWaHEp2SCx1rosy+vXr3/9j7/69ttv9/V0Pp9LKafTKYk77zyCn3JbfDKdtCYbzCxqte6jyh0k6TOClx9HdDDwOWoaIy+9d85wd9741G9SRue79Z/fMsEfYIlDrtyKfxxKUgsFkyxyzFMmdK5zaYcqN3eszLB+b+ZCSinatZDb0/Gp8cmQwp993NrAvP2bkwHsk5P7biMSjd3hVJxO66s3j4+vzrpo0FVbzbxKwtdL6TZndwA3bIN938tyajQWIVJEijf3upkZQ7SQVHdjiKpsl71PWESaQzrlZkSkQBkv9GzmrYKRZKupm1KgPaH4p0KytpWdbiMS4ScUEy1pyyhpS0uwaQA3Y5CfNNCRw9l/R0v/Ol4cL3CAn/STWenEpw/pH/usTw0Oh1HXPh8fVr9urx+WL969XgXXffPtGuuJjCJaN3N3FYnGJ80Y1fbr9rSokmgV5oQKKCqiNQLmpBkqLHP1lSHuBmHRxeGe7fwyczVQw0mKUinV9robPLIXxvV6terURSjhft3rvpuUouSl7o5YymkgbZZSfLIQYkpfTNikRLRKqZHn7unpCc2T77PhUeuRIsjmeAoAs0J2rKoUZv8Mc7bK5jyPNTNEdrOUg6fTmeS2j6Z5mvdskAQRtVpZZKQiDptn6D4kgU+SShd2nu5vdKob1NW+vkVaGb/t19/IX+Awu8b1ueZ3RDvCR7PQSV2o9xg/Jtnu38X97OXMrcwrkz+LSDjVHSvcPTHEsyuEEO6uWrKPIMllWc7n88ePH70+6zH2U8e8XHH7eXRDq8nxDhz3ouSNEYe8de7fqWF9Hw/Qk/lus9w/9ujZs+TZneOlfccUBrh761mDSg1t1KDNgvhudKlNklmBO7/miECOHb+Z/xRJHqJ/TGzWZwB8qu4jz8hMnO4+1G6ydflr82xwmHZ3h+fbd3Pi/pCUPDQTMjqsTUT4XrfLtdo3y7K8ev3m/fIARKE8FrmEX+oeFoWyruu+f1zX8y9/+dfvHtfTSb99+nZze//5F7/67/+wffMt3OmhRYQt+xlx89DM/Mr9Gi+OEYGXFiKb19N7VX8ue7asA1DDl8xVnPY34wrSUfRzucfp6PkIYICelXsI7z6wOekdIT2kFBHMuoaDS9yv8w2FT91zc6Qil2/dwpANAvYmqBYR5hYRWkZ3VUWvmnH37ETT2BdLztPdE2XaptTrxk69YU3NSw2MNqg3vj/JrCE+s75yT8wsEMOUz7OnHWcs6UgaAmWzf+DWBVWHhYuQHh/PJiJFsl9I1FqLSOsP5k6ylNKjJRSREDWzGk6rS+uMJu6+uTlFtIjIvpt52LaXUkSWWqsKSKaVmJSU1iyAcioiUt0ivJvcNSDLsmxbRdqQZt6iOpQsKNLCCDIQbuF1Nyf3vQJc1hWiT9uVoCyL7TtJ8z1tYGE2XEkplXFF1m0PQoSndQUStdP3/SZBaNs275iN1+s1mzTkZR+v2biIEH316vzw8JAiqjVMEnH3Ist5ffjmu99fr1dlIfn09JTJpYuWV69efffdd8tbNbPMOWsWyL6XjOLe8nFpJUYNztgsVCUbX292GD+DpuvcNhZEhE+HJ7vJ0bxz+obUJt0tNp4thMeNEBo0/aL8iFsl4BjNXDncbDfHIKl0ljHu+75nptxcBlNKWdc1YRNLxFKK+b1Ua+eW+VshC9Ssc7H+CER8OrH7LziaEEJfn9vRZpuCU0ZMI2E/Ixku+hI1S1WpRaCw6ufzw2efv3v9+rEUWU+nNIBFJGDKBMvx69NVipRShGLRQi5P1wuAvaq7gwK6mQG6LKsjlNytmjkjCStNUIq0TIdxHBwtA1MLM/Zbiq7r6u7btqHjxCzLQkqtla0hKGzbaq3DAl6WZd+3/bqZ9ZaqGcgS3ayOZYzuHsoCePSSKraQQCSDLmWt4fQYJTlDhMtQZpOSXxA6P2pP/+jf/I85Xjzvz9XH5zIvflBn+uEF/OHf/sG73c85GoQgw/fr5e3p9O//7b/56v37D9/83vdtUYU5A+nBTOMxqgtoEaA/PJ6Wldt23esViPNyulyusADCosLhdYeKW2VAtRBRbRcR1WL7FoSqsmgEwwOM5SgWgAWkN0tI7geGQyDqiEWliCrDqMtycvdIfDioA9frnrjG7Wig2cDuvl+exmEZrGM4XtNd3iIefeRpVdVqFs0UkWq+rut2vYy1NQcZ+75X31VEVN3M3BSUorVWEu6+225huhQqatSt7rvVFLJtc60mUF5UM2lVS2Zm1lK4W3wNZGaE3dNb6ylNoiPcx9BlB33KRB6H6Om5J7MCPb5KxUhESB0k1CKB882FIo0594TAw8qF+diXpjETnkgeU+Xw/HR3dwg6qoto0z5Pp5MUJVmKnE6nVLQADlSzWmt62D9+/AjzGFmdf+gM/vCB8l6WJa3TaVuHUkrJjP8pp7R1yWaLMx468YHg1S4eGtSLzx0+BXSlqC145/Kpp467zfpJg4XkSAG+8bVNl8XzD4d9Pj4cUx0a17xf4y1IBgyIrNGRohmIEhFAxhG7m21EtNy3rszMVsS4uMXWzBpWaynz/G+43OT9UjBTMMYZ13RVNLXrHux6rAKAOX365oJbb2bcOvFTvObGA/DwUsRq9VwHlYeyRrXf/dM/leXhzS++fPfZ5x+2+M03T7HtlIXwcL59+/ayXX/961//9f/6v/wv/+v/5f/4f/0fv/v+2/effw5wu2wPiwo0zJZVL9drppn0fq4Ithnmq40oCzma9HQfxPRqGYbR3lVOlpI25LAUxqbEiMZPqLpoCTWt/5wqRUp64CPcW+k0MyifHb5FJKJ4uGSFL1o2jWRSp5n03AFOYcXkzCKy6FGjnqb9nuG93q5JesVy9Chxsp24xfmbxXe3bC0bc4WjVQ5HmJkUFc33qQnDB5HdqtvROs47Or0Suq5pz4LUDm1gZmWcnOd6wxwDHKclvRGDTQxVvh3F/tuu+cXQ8Lqno7Hdsswgw/2JpIJgbdiYylJKFmR///33pZS1LKUUQsgIp7tf9ysAN6u17ruYmSwqIuweu8NDmU0OPDV1VVWbwoXLukbdHYSjX8zQsjl2zw5GbuFBpEdlWVYPqi4uWhY4xD22atkvFMFaazRLnu5eMoTlMLR0rqw8XNc1euRnHk1Nj7hcLtfrddu2qDZ7K7R320uN//rxo4h4+BA8IvLdd98xRG9bjIqkW2sXEUZ2V9qHH2Vsuk8jIgY4xCAYEdFSwnb0To9NXnYueezuDJZm7sTwiYwj4XGMg3Pihzx8s4yZPu2Mb3x1azDfXT9TfvQ350Al7bkc0lOgZ80A/cQOBjd/2xZBWiSiPWiswyff658vC/qlwRfAOYhni5Z/uzvDvUZZypu3r169fXV+WGXRh4cTOmhKKafT6bSIXi4XmJd18aZNMiVB1rpMioh4VHSbtnrzp5AS7maeoCOnZcVsYAiz7mUQc617ur0SnhQ3HSYsIhLRJSLDU/a6Pz4ZfeLDlRF7abkcIiIKJnhPc6Amc59qeNh94XocjVw3ByCkdm/C/Ar/Gv+dxyHvbz/5keOOA/zFxsyI4tmRJxi1LqfTu9evzqxfvD3/T3/3d794//7p268LGk8JCNnhslw8TIlQKtgQ0kXgnp0FGDgtqy7LVt2BdSlhO2EUwhkwIRiJ3COe7q0WnHNFOKWoJja0IJQRAg9HeMKXw71WdxwaMIpEhBuiN4Ngc0LRo+UzR8eCJrksS+rN3rNI0Pr9piHXWG4e21S8RpQ4P8kAY9w2qAPSw1XW8+JPZnv1qAyIgER4lFKqp1NMIuLp6eO+18vlwoavuY9ZhbszW2jcMDeSQecNEHTb4mRc43VmJ0vmbN+JzufkcUcznVqGRDoyxWbdd2bCmFgHb2OS8ysM4/MQairzhG90MuC674wIHgw555NOAdboHpOIiFLKtg1u2XIBTqfTuq71utnk7PvJ4+DwfYxVZTctxpC5sPb2+M/veK+u9Avudmcs7PzhvO/jiUMTmOfcCIA3Hz5/r3md0fUi3O7L3f3vfj69V/vqjlznB83vjh644m0f45tFnjTVvMNk+dyPSZeLSFSjKU6AcVL6LRPix+XZ4nRH/POl++HTlGJ0ogcCrkWWZVnXVVXd7OnDR4e8++x72d89FKzrSaS8uu7Xyt3x5GaG6/XpaXty+rt377788svf/O43b968+/KXv/z217+uTx+WIgXhe5U/dLRnVtbsoAll5u6ljn2f8M+eP+LF1YjGPhJCP6t8gx3FMNs7P3+QiPRoyL33ba8JEHsY7REx9Bab5jNrLiOUbWZm1czWtaTTDbco0J90TMdxHAatjjOSVJscLP+ZcI6N5hlNhN5iD3kcxk5prQI7twXA7rtUoXu4GxO2hkGijlxikazhpIuIZLpyA32JhlsTmQ5AFIpkd97BQAUUab6SVmTPrE/KtnNAwEOVJZstZcc9D7M9vJLhy3KiFllKKVBJRjzur23ddxGIFFWNAbYuHdwoWqcsitit3UFqpJESDd81IgDpMJ4UqnndturSM88iVMoIQNV9B7WUwuDVjAwiKy4C0b3izeN2P9xdSKu1bvt+3Xyvaf0CKKXs1SNCdBFdAlK7My/ZUwry8/n8cDl/+/tvzuX88PDAQFiLsT+ezquWbJWkDRIvvcUlMxaG0dtZpwAHz5p5fSmleh1H4qDmXrg/S5Qk5ogDcr01s+mvnE/NRe+cC+OCpMr8OybW1r46/r7JxBgTePl0oSFUN08Nae6pIng1i5b8rKCA6SzQ0votU0KSERxHy53e0ksAhJAuFFdl/tc41vFSXdj+KUbvn9lg5lRV0tYTSBksqRBklnLCsreah/N5/fLLL7788ovTwykkpDBr0S1DBFDV5bTAT+EaVrfMPEjnVMv8R7ibgqpa0WsNAum6b0llQNYQAaAKswSRecCIFmqwQDjcwt1C6nXhkh2VpNArzSyhgaiAhIqWUmyqWWMgCwTT7J2VgDR6h/y+U0rmdcOkUZGE0s1gBMBFRBU1vbljkclniEH/kkZS3adqgF8oYfhZxizgf8bb/pzjNnAxffyCcgYghLZXwlfhF+/e/v0vf/nm4bx/Q6V4tAJzDJhlD7iJUKJFAyISixzCBhaylNQGnIyiUm1bWwYaUoESMhgqqJ4SOnEWU/cVCVT3MENQVYPIEl53J8U99t2CKGV1+L5VFcKC4UICUt3JPOwevYSh4YNkUiVid6ueibjN26iqwlJrtb3OQRIAe90BKIgIQ0AbNlcTNOWmQnvkqXpUOrWlstHDIKzbFhG6lgju+77ZHnQpxYndbBSnISeWos+cxJzODTCLnNnDrkO+kOxFvy0oMMnQyZbohULkjZcrVYHodX2zMoPeC3RwhnHnuxMx6foyXzzT3fhhdLAPkeEit9ypJp68bVBrXjUbMLC91kBRVScMAbbelu512y6RCCNk+uht29kN0WMp/vhCjwxw9c5DyeSziPrGG+7usXcXCf3gxGT2153XbV4xn+5Duel6wFkd6Z+4uYi0VF4IIEGHtHQzhkQz/Hoi5FQRejeSoobF2BXy43rp1Wfzvg99rP/fu150FNSMR2TYrelO6XRGc/5GB+9gMxQTPzLQUa/zPg13OKTfoKllGVScUYVzj7RnMkVETHbXOBQRAQ96DFwmTrG3ONxGn3ImzrIm+hbPc0jNESLMdhLCFjoSl7r708ePZvbf/+t/dXeonF+9X7nIeVku/v1Wt6j7Ft/Uy3//1fKrf/qrL37x7v37959//vkvf/Hl3/3d3/36//yvX3/88EAF6du+LGrZvvwlbj8ik22dge4Z/6R0yD4p0hfKzORAR0KeZfYjedDAtAKq2gCJAXagX3Zksjy5jXUkBlBTUZPRZal2cwveRnEJgWqJ1tFqKLZJIZ00lKIqmR2c1fhCoLv/s8SVILgEM0AdAfA4oTFVjoCOBsrX5uxxZGmPt06zt615s7u6KzaXcTLyy6c2IKbyhvFlRiwHs8iWADfcYfzcGYDTV6gotdm0mfKXV2YyYd6fWZpCkGGqSylqvnt1kiwUkbJmMirc3S2GK4LksixStJSi0trVbtv2sJ4Gp0jDG5TEanKEu7e8C0QgBFYdSI22KKIMPhXEUZiXyxLZ4DQL/xBuoRrSHhUD7iwCyEJfhFlt/Es04N1zphE4FvPGxZWcLpO34/CZSWQiuEg22SNptkfvczV+lW5Xkvu+D6d7HvvRLnjfd/NWBDWX+kzzTzq+SQQYM8xXyJpJ7yB+wyh9bgAnu52ZqbS3vsl8GPpHe9Dx4cuDP/jV+HaKKB7zv7tD9AcNDSNfbU6FeIHUOx0mAY+LSXq0zUqkbiNrrW6IlOL/4kcMn/20LPOSkqPPUH9xYSny9v2b91+8f/v+bTmV3ba9pwqDdPeP18taawZNd9v2fT+dTqq61R2AkHVAgiMfPg3RDNpGizCIsCVStkAuyKbbEQziUKbTVh/5DsMqADgyKUiu6ypyUwOcIAKllwQ29I7WaQBNmPEA9svFyVKQcW7DI3tEyVjGdvbbYroP3eWHqPqfZTwXEP8s42eZBv94tfunjOngtH8+21NKnNaT70/1ejm/f/XXX/7i1Wn9+O13NB9Hrv86GZBroYjEbpe60bKRAYeSmlaxhWf7xMTcWIpAWHePcIWqwBBejUQHASLSuSMIqzCPCCUCLD1eCA+L1uhIWZreyRCyRsXNKfNweq2BEMLBxkcDKY+yGCTF00BSaA4ysxFN7TpfK7vIsSzLUrLQ11+UStfr1cyERbQ3dCA7f3Bo5kO1TFE2MIt9r9d9v/bUZabDl0zsd8QNZFHyukNFI9Hqv6adAiYrpVNC+2q68r7GwaPVlU0R4PaNt0YgvJWP86zmOfB2TOL1EGGzmOsMR6IVk7cV1oToGSonkIuTEfvZLR4RDTml1syfkk4VpZQ9+dvPxNbmMGm3wzLEosNKTH8KP+GgvEvXOnSVaV3vmPD8z0bqAneMpWnrzPtWF/O426Px6P7H8W1TX7XcTO9WqxmTGR/egWONr154376SI/loHnPN892LD/Vmjjbf/0Fv5pa9cE7nGc6KFoDniU/jt/NPjin9aEYeMeCgmiLXSh0Lzey7b35XVpWir98/vX7z+ePj29NZhVJsfaob9u1y+fjb3/7muw9/8/r149/88qsP3/3uV//4xau3b377ddmRrV1l0dV67sPdyw6SGIGiQa53Hg1MynPy/5HqEhHezac7DdZ7LXf65HNIQ7QJUhrXSC4vrGYjIJ9WQGKW6UHODWwqnk2vfT8Vhw8BdbdHifDSwrOLJDBKKoqDzTrbPA8a6L47PDtEQSIiWwxYg1ELwKxfZrcZDWP951hCjEGWgcNx96SmIwY0OwD0sa7q7nDD2Ne8VfZziHHAjqerFBYJIIzhWQGYSe3IR8CDkPHbsLQRLIvL+/EIEVl0Wc9nkoBLeDj2/apKmJvZkhUvCDPbiwRCKCFMoDlpixXu4bSWp0+ae91M9KSqUhYY3QS9koTmEaCEdGkVDnqoksviLgGY8Lr7Xt1hhNi+9zh5uO3VIiLq7mmok0Sjb3Wiume+/syG8pX3PqxWd/dqwdjDAjydl+W0ljXBohtKeEQUJcn9ul1FbXdl2Z4+srnb0SKzXs1Mlddr6zkBiWyUQcN+3Q/mSx1whTM5ug8eFCPVHBHoBzUpjt17OY6pk9mTGQmONaDzenfFzj2Z1/Qftu9i4nopdeO5afxSU3tM3BO3DNSHNnErCJuvLhDmDoP0nwhAuCA1GbOEkc5yU2aldP7nHAE9LUVEyi4luIVv01mbKouSq/CPjZj9uSLAQ6rjmeowXzPLJ6GA/ubd6/dfvC9r+Xj9WEKD2H2PmrQhAoZzN/Naq++hh2cOCSFOF4eIevMTWs8iUTS3U0M3UVAzwad5+Cwt0abDRq1BRatSEykRiZRYI2zfMzuokIm/0Q7dtl/P53MpMtIrL5fL5XJB6uW32Y9kLy1Duw2QMZzkn331mtenUXIw8RiFS8ugds/WMgcUzZ3I+ecdL2py09cTxf7ZYMznOdxvwafHc7H9Z1/UuxU4ntfUr/Y3Ei6ORbIDmHz2/t2/+du/OenyzW9+K1HXkpSpaJVb7jB0iGBwKCWtKB0hpRQTd/cM4wEw86C7G4NWd3dHxxHZtlpKUVlAuCMy8RiIIDyyWSBbu+EgZVmK70ZyXVWkVDerrqqKEIa5hwdFGkMF0KJBIWAN9zCCRcu1azljJLVbr+/N4p3o1lRudX6SbtadNDcltu16w4uI6rZtW2Lvk5HJHUU0rWuWRbIA0j1A87hu9bLXp+vlcrls21b32upUJRiAh7uLC1qbBQLwMNEGWDHSpIaoQZPdw9/nnMVWf9uXKcePXNA7VXKwx2xTNIC1OAXD54vHit2tM5rsPqRj65RrEGHALZOrBrB9QEgnWypCQwVHRGxW13VlUe/xLgvfr9v2tDUfxAHfGsuiTz+XU08CtzH51OxVRVWLtBaGu3nnzO2yu9tE4qz2pcujhFbx00ZrCcnnJly2dw6ApZQIJmxnBvWkK9z9E95I9narI7Y8xz+Ojb6N58+azKCN+ScHDXiAiO77mV/57pPU6ptLd3po+3aiupubNP+IsL/pfB0b/pMTDS3DMnGr6RLtoTiCH4khFMj/htGVkn/GVXqJmHE4N35ISI2vPCJLL9HVFbKVWFjdPn77zdci+3ZVx0Mpp9MrOevqet55hYvGdfv43Xe/e/f28fPP3n31iy9fv379+t3bhzdvL9/+1sMeS0FmSczLPm0fuq6b/0zrN81O58sTRmtkna4QKaqtCcAzB8pIS4ledJFfWK2qBLOCP+AhQkkw/KQiIsCRyHaIqEgO0BKnh5aFvE+AQXfXdsCOnRpafR7N5nlsanAx29MwSIUZFG1wzT74J265n3eP0oAqSBpDL52LppS20ljtmLXV9+FuCMm05hIR8F6x2/6N+1j8OFTaI1rzV+6eBkxPuz32bEYxJSmhkJtDlRGQ7E9EUiMIyW5TJLJT7r7vvpkIzss6MsgFDY6IDbeA2W8n6++rmXlFrKotn8d7btWyLGQDyEnaIZlzoEqEo7pXK4sYogeHqQAb5mYUhoVo+r0Jd5i7gA5ue93MTegOUE7LitYeu3l3aq0KiMh1t+GbvFkQj5ZWMh3gzKAezlTvNOTu1bws60ACdPc0j1uCtBaSGeNK4zYrptZ1PZ/PuZK11gT8qLVeLpeM4g6vjHTU9elo3RiQ0T3TbBk7OrLoM4F55lwHn+qWQHiMLladeyLMcJDSSDJKZ9fkvx0/me75fMyfD6qe53/zw2cOTumtF8dvG8JT3z4yWzQ1t+VInidv3JdkhyzlAUAXEbB7zLN/yWP28h6SLo5MtiECAaiSq7797N3rt6933y/fPElhOa26lEhQTotCWXRVSljUuqs0DrPVfTfLhAJ2aK7oUOoiko6tkOFDRSo9YW62AxBFAJm3FhGOcPMIcz+QDmZ9Ige7k9XCzSxTTHSKACfI0LZtAQPEvbLls5AibnVwFU5uxC7aiJ6wrY4gdmvMNvOhVFWabtBSjGJ2h/8LsIF/QLH4C48/dib/zKv3h54eEWTUur0+Lef19P7tuy/ff75qMfBUTmY7RYTobULMo0aEXSFFzS1lpXcpkJCQmexDbYmX7lWKBCxc3M09xNyzIVlHhUVEdkZwdzqywS8AQN2jWg1HiAvpXhEYPX7cKyAexkinaiC1BSYH93BkUUPd3aKqLslOhjWLjt04OMmshCTn+fjxKWMIA15o3/da62kpQ7XKkWFYb65njbC6uyh0KQQaOAo1k87Gad22bd+3WmsCDXR/X1O4o6uBg5YaP2yCrvcd6RlYuVOdAI5mOS9t/Y8izrgdRNYb35SePv/J/P+Z4+U98ptZwHUGLpl3P99h/HyoXk25jDprDma21evT05Nd6gDozj8yfeaQHVO45Y890clmh0Nhfv3kmTHtWnRt5M4eGTHDmEyIccHYx+PFcUOceZv+qxAu7h4dVcg75M/dzMkRDoi7z3P0yd8YxkBrrTS/1DyT55vVzOlbl4tPUYH54h9Yf5sAtG9I6CXvVXT87fExAPd6R6UzDcwznwljjnZG3KZLTE+dVvBTb9C/nzZXGpermQuWkUY37LFf94/7fr1uT9v1iR4a/ubdF2V9fPf4ZlHa/tHq5bvvvvn6N7/+6vPPHs/nd+/evXv37rMvv/zN737z8ePv932nLrPmPK8byYa5M9Wljyu7+XeMERaeV7td6TeNEkl257sc9kXuSNq6Mh+3priH0wZVg6IKQAhxCHtEk61DW95Ze4kNcCCEA8dhGu873CL5jkOZSZTDEOJgv8dGdzPzBgXNQSdkoh/PGrfIYugWzXaIRKBDi2Wia0RI0Pq7NNwKHBn+eUaGAXzPU9gtjXFmGEhPqrtL9xREBDrO9rxTJAuzbVW18ETaSMy3ofKO+7ecwKA7VDlsVKSAnMSVmcXmhSKS+BZcluW0FK97rQlJlxzZxsp6VnX2w8J0T012kfaW8e4NQwqNkiz76KbdHIxepExSozoCtVYzZykCES0P59P1+rQsi3dqWNcVidkoNd3PEY52DFo2+sGv+zCzBILOOHDUbkFFBMGi1FI93Hd3j3AQogdK2X655jYsoihl2zYsS1Hd933ftpg07LScj20V0W6Nj/nIFJXKregEPcr3e73W7Yk9Rvq2iRCMZo795Lfn+PNyRyGBmChzZqb3F09q03z9i1fOg2lrkdFSz+7t5FnA9JSSrCeHewuGHxNofSYbJ1Ayi4LDHQiRKKVg8ejKwcvjE00FXpr9zxxwey4Uny9Cfjr4+FgxEZFVH989vHr/VtfFwlwZgrDqirDMSXMDTVxZJBgB2zYpslu9XC6ZvmLh4laiRHjz7TlJGmOzqiAJzehqq0D2QOY4OIWAOxFwIMCoDrqlYqGqGfGwcBaGhNORHc5a+XksKmZm1cce7Pt+uVzSqZQFrSKiSrP7avN53dIAju5SZYYMmMkjLWeb07eNraQ6xf35Df91zGfzx1/8qW/v9u5nM/M//dwhxYZaCSBxa18/PP71V7988+oxvJ7KsiRMYKt2D6EEhcYIF21V9yRFiodHMN30yY4Smjgz35a1ZA2U00XRM+49iGVRFQrDGOw9w9xNE480Ou5DNQ940DyFRVgYsVtiOBq27VLKuij3vVZHhEDo7lAxq1ZrD4J5JmalKesd8TViDhccDi92W2tYy1OuIEgk2MlsaYhg31sdYxOLALpNEkGvhiXRUDNQTgADUmtQRQqzXJKc0rGjIaJ5wwqgt3A7usJwZNzyh6r3yeYrbZpiKoLPLpuNhE4waVwd8Lwzf56vfM7Jbz9nxLDKWsIzO2dNV0u7WDh0AoRABSogC8twTARx3bfr9bJtm++7mWVmTXd6Wia9N3vmT2Nrx3uRWf07s4WeCsd9t6h211T2Zkdu1AmZrZUb66IbrsOWy1jTWPY+GQWZ9S6G8PDUKqWX+0V3g/ZH5Oc34ns8i9OVwA3H4M1NDmthfKi3GWSRGe2T2TwzHxFxRiozIGVuV0be/X+QopLI1ICmZveKVrIXEh+RA4FqXy6bosXj0CGdceYHJs5sg0yvMq8Upnn+gDh4pqW4hfW6y7YOGUQCUOt2fQoRKBj7Vi9Pr9794vVyev/qNfE66Jen737zm19/+8uv1uUX52X97IvPv/jlV//wq/+2fP2QnaZ3Nzxbt+yqm+pFGd1kB/0gns9/mLLe+yRFDzmQir5Q3fQieYCcY8Qvk2KXQje3tPJEVdFjXfnUSIytQLhZtnI8iC05W1qaB+3FNElO828H5LZ9BW+x6AYAVQ5voPrjfN2sQ0SICqjRFsOOLLx27poNfyPNIxiWERQVSVvD3CKYSe+tasEIoCSPuPEYeeMsuehjTdnDg9LruQUw98EgwFRVs+FtrjgYadR7MssiKgIJmJuACUyVRJMBeojqsopAKea1XvdSymk5Z19cKQLQWo8GLiL7vpWje4hllmMut3fQcNHp/CM1hjCzICCFKqWsNUsI6WgQ0Rqx7/u+nCXcEwoTJCCOCMO+G7WURWQpy3q+uu3Va61NwfVoTVZOaynqwYcTLRq2sPTSWfUqDeU6qJOnSiRlRosA77WUkkkIjAx8iRLuoYSWVUS2/ZKIVpfLZXu6sDe0WJdzxnvdPdGk2U/U6PETA5KulErPMLi7A0ePuL7Cdwe1zEzc3S1F6622yiGhAwLU7IxFSMDJwgxWPOe8edodPVl9Ph93Z2UcfuFhro8zeSfVjgmjRYBnBYLdcTVf2e+m4Y7MAMCN07MzOx/SOev/c4EHlmNqDKWUTxjAPwEx6GfrG3zPfgDg0O3QuYGMUpOImIpbQoWLPr57tZxK0EX5+OoVRa7XK40fPlxUdSknJa1GrVtitG770/l8gnDbNqq6+3a9kuT5nJNqSHtUiXQql7FB7pUkIn03ABC9pl26KsoGvNfVA9KsmkUpJQIRnmWU+YoiQkitdd/qq74C2+Xy8cPFzNIxEaLaQrW7eyxlSYdgO03uEgx6UEkHJLPjWsOjBG+XrIMIb03jkj5TgaBAPEgy86p/QLp/Ygx4Kv95Aaj+IuNHUfKLhPpzj5+4dENlG7VF7Z/tY2dLGW2fP5xOa+zv3zz8T3/3t29fv7l++5uotdbrw+tXjrAICJWQEEI8Yj2dqpnvXY44rClVXmtc90spBa67W5GylBJWs+hHWRo+iQeIogVkWDrmJEhY1LpzodcIQrkw21WkqxReIGDULQGyioIe9Xp50kdZ1zWixL47DA6zKKWVxSqFRRIgws16JviNFthjC10lbbAXYeaPj4/pC04w9ohYlkUXdYuIwE2/buz73mDDIiMXRYUBbvVSZDGP2F1V6+7X63697vtudc8K/8zj8KYfHKJGOiUIEGC2A0R3FjcDOIOcZDosBpJWk2K39NFdd9MHgRhkcyim0fTIUa5MUiDBCKshFKgTi5b8eWrZiX4/q203T47MaD6E/mxEJXNvfKprrm2noNFxGfJNU7sgNDPn923ftuo1tq26uypUNabA73PtYTZ1fuQg0jtszZAOYc8Gz0zAPsMXlJW7Z90Gab2DgcHdAxZB0AEBHa3EqS2FiCCb2EUI0ghMcBdt8jEQw1roqvlBT1NC5Z1qff+yZBAqOmzFOWg/343TuLP50XrP53/s2lnb3EhgOXQCm342UrGOyfQldUA73lVmw3pEFjSONI2IyKJDc2MPTs63ulO6PGr4kQl8t1nkTdw+P2r/pN/ZP/NoJ7lXJ7VDpAu7JqOqaZSty9m9usfT03W7/ubjx8v1ur+/bhb428d/+8Xr9Wru9frNb//pV7/6R5JS9O3bt2/fvTmdTsv55OZ139oSz68wvAbP9i63z+46Kvffquq+75gCRe5eo560JPjqYCyOENKqDU0smY5mDquwRpjvAlWlFCXF3Du0EY4SXnevpnKkAyfpO0H3mgpLdwx6b5IULaR1cKp0z2VHjLRquwEsAPZtZ6cT9txmkdanumubt1yLCcbXfJrNOxCRh1Qk02I8s7u9Iba0y1S1pMd0h1PSG9SmDI+IkgUuBI+C7OoBX0qrLwVAeFEC4VEXatIUAAYW7emFESRU0wwORELAYVm01ghzAYWU9irQIgpG+L7vOyNtQkq5mq2yiIhZdvtdgmrh6/mUa0FFKUvGuLe6Lx5XeOI8m8W+m9LLsrQS/CQVqcLsXiCge3UHl2UJyG4BT3e4UGWvVVeVJdsjx+m0UBmkXa1apUrRJePaUKluQRHVGjsdKpEtBFVLqIdVs1o32L5bJNhViUA6AqyGmVNI1DBTEZt2/cOHD+awPTuSOhy1ulIoXFacV1kL3CrhRQvgdd/3a4WomWXeO4lrNQCvzqfT+fG67dW+J2mOBMOs1UXK69dvuwscpO67NZ4oBGhRa41cW0dUN0RQRKDdGU8p1KQByVxvy5ztFvxC00eQDDgQNM2sBgGye4Z5NHj37LZA9ywfogh7/kMmMo0EhiOTPHntJAAy0eRg6U3e9OQK9k50EQEVEU1wF2RdQj9v+UbRiiNYtEhZIIyghyEiFRWzpolu+2VZliLihpaG521QokG4WUMXU2J1NzOrk1k+Wkr+0XHdH1DW728VXTFHHlrEgQkxIMoaTwCQodQ2xYxpJhNh4cBPA2DZzeXLd1/8zWe6kgtUF4WqnvR82rbtzXlx94QE0zX2fa/7tda6nM6X6zUiVAoCsDgvJzNDz5BsfaqrkL6IFtGecJno2mrm1grpmUI36ZfCYHhSTiyAWDA8KEtZSjJTpUSkOlsKs981RFRPB7qs7ZXAvvnpdAJWIRGSRW6nZWkHIgTJnZaSyHhFS+aFuWfZGgBnYC1FKGlHW/cBk5leIhHhCAs6xCEe/rxB2p1G9dJ2R5Zi/mmekZvi/099C7xIrse3SUvR1Oojr7ufTbv75YvawP0Tb8b9059PeHwyqVw3z511kv5R/+PHHcZx5wIAvQiX2j6mZwhAF3hAFU66xeNpXWL76t3rf/PLrz5/87g/fV+369tXDx8/bBa1hlt629yJWEWX0/njdg2CDImAmwCrCoDNNjfXVctSSC3KcLpL7ACTHLy1PxDU8LXobtUzN8cTJAVFYLaJCgBzs+oEi4qAu9led/OgQ4WZzMVwOZ3c6vWpZqV+AMKyLOKOUtZSAGC3ahYicjqdrlvdLls4lmVx0VqznQZ1KbXu274DKOtSq9UaEgHbl7K44nq9BoRCUJ10j7Kuc7LMvlUG04EFxCIajJqaIvW6VV2KA9t1CwdYwsUqIqJue8vv8EQwWjphWTZVLq0Wu4mGiCAUQWvljcwA4MCJYKqKCWiQeshQc0n2Or2DMlNVTvoTYTANckTHyGzWUKavZJ8C7yZyegclO6J7gM3fmjcWFR2ebne3CBFGtFxTEUmBSNI94BWASmsFC4+62/l8Tg+1qrJXmBTy/PDqtJwS63u77E8fNgnU7FPt7jXTGlmrb1tNPdit9ctiX4cfsIDvTKbjrAYBSnN0KrXVBxbVsijJ63XfbfNwaKL038BxNy7UIiWJ08Pevcghynw9IQRZd+NwSS6RLVWAcM86KG0oE4yw1KIBNTMYxr6TIaKJ9eAN2KiBhjRK641hhq14GPMGtqJvqihbYNC9URdH5r+nN6LZ3h4R8ABdkg4azUAgWY0cnhIdHbj3cMy55wa1TCUAqkIiwqmR8s7D3T2EKsgua4aoNZi5n0CSqEirCW4WXNfWoocxU0cKerqQazUHord86IoKI1rN9iCEBlGu8JEm2NoQTuaTZrTYa4QmJDREllXXE1SMlsGwcO6bqZZAPF3c/XLZ3KhP1w2+P5T6/he/WEWNBfX6q1//dwjff/H5+bS+f3z9xbv33zy+/e33TxWqZWHrq92dO9EdHH1nI/19zf7K4GSz62bib+RqHgFDaxqnqtH7J4MyysQsN0wkLTgRChjhtjtVwkldNHfTm78js0o7Q2oSVjVhE+GR8eCsp4UIs+XvOJJOIGqGBlW1yBoRzfaAk6zhKipdsYyIDKdlPyCCkq7dNFm3TdeTu5PdCE1Mr2RkNJLLsgALgMS+UtGGrm5ppAcJpexmWgjV6g4/ajQ0M6EQNUKESqlu+17LCE+jxXgyCXwYGAK4sGSZroIINAz1uOFQ3dQxgoogBeEBMqjZ7KhXWjMQMImSaUKUlkpE0hEqxYOJ+gQLFErQAqU9y8GCzFtwdzftKeXLsmRZVERYDZSUrJoiPzqExnp6oGqhQNjYWsAsKFnsIZkhQbKUEsS17oEQxSIavYHy7l6Wte7btu1eN1KpuiynZVm2bc+H5Uam+g6he5AWIekHd0O2oA+/ACG6LtMByDQwCw/IUk66BIA0n5bzSonw6m5M8W/ue/W97q2B0dAyNXC0O7feOzH/SMzbxn364pgZi0qI5+ZY+7bVNvTEgyFO3J0dCVxEYgosW63ojpJZqW2w6Wh5d0Jials/IrbDf4NDbnWm9tw7+IkRfba35/z4O4vfhhSZL767j3dkbGlMx9JwijB20PZ2ZIjRJ6ydiP44dqcjgCiGlnXvuF2iP+/oDc3nt+vTOywBkkCWEkhv83Z8FT07hSoBBCEPp4c3r1+9fbOcTiyW/qx1Oa/rKYKrnC9+DbXWCTzJUlPRIHACkFhu6Nvh2aTFg8lwPAwNYjSnkS02xqzSIp2mKWj9gqOpkoisf3NHBLSou5t1lB+ylDWjysnWx42u1+v1eoWh7g4xkQJpOHZmu8iaBMuGFpN9W3WQrTYnZtdp3CIg2oIJh+9m2GbS/KPu7nafxfejR0z//wvES3/K+DE0/wOn+884OiTfffju06OdoHjZGh93aSYLAEIKl6U8nvT1w+nNwxr7dQeFRBiEu1cIVSVCwi2qhTTsn4gookGYuZk5HUKvO1TA2OsWDogyZDfTCHqmeEoHHgwFa62cylvoUC3LorvV3fcm/DMMRlnLqiykSfWNYTUCm1Fr3UmqwFLSO+G++RZk0bU2VHbsdtSFerAUASQ8o0PM1KQWA2UW5rQaZkGWLjf05pJxBkRsDeGiTMpuREKxNhVTpKfGMCJawyS3BnLcDbMtK6ciQqR1Z8BgidFzWyJToyMACfFxnvNQD8kSEpkWlFI1Da2OLYO4yf69I+wZ3DV6CDj/7y05+RBMGTBIxmEAU7EQQaabpoOt3X9yAUekdEaT5DELu2Fx5Xxagh8knBkyyZy/pKCeopm3xb7Xfa+wsPBFy3hWTElPzpprhR8t6YZgutEfnAQh0RCqbq9PRSUD8n/g5t3IG5pMGo3hRjIkQ/1H6Ww7JrknaL19cqtTRc4JSM967jHPGIufKiuL3i1OPsLjUAOawoaQ5uE4IqX5RxpU8z+TBvMpXdZECm5mQ4TmEj1EZESEwXm84wTpc1DFbCCMN0rrN72zNTxqDFcUmfWlfeN4T2ljHDIRlgkMINFrRMc79/uQL8mCl2vuxtB0gOSECNJFM8MxlTRKwBO5IFtCkIQUoep13z88ffj97/5pkXCvr96919PDHvH1b/7x+w8f/p3/O5KfvX3zV7/44rf/+O773/9uiwtMQMsMLqR6yVQAGBGtgwsQk9w3s2jH7dga70j43a3fdJSi4tUoESHRM3Rb3sGk5GfwIPsOFZ5zpSPznCctN3q5B/oECHit45Ox7K3PGcCeyZ9JNkEi3MwGJhSA1kn95uQ24hknGl2pRivDjOi5sQeFiyjcItKvMU4NM1bkHOoiJc1pIbmsypGTmNBIIw8lAh5H3SZIskSvP04WoKpsqqKAB1hRA3lma/DbabeX//JI9oju9Uwum+jNIy81L++8PSQzRUV7fnigrBFh6T3qi2jmXDOC1NaiWXoRTlpQb0ti3N2zHAjIemGyJf/s+w4pqu11VFtk2tyhzb5N4A+zgNAskGciInBswwSMBJGS8qa61d4VRqWERt13Mxc2NHDtbSeGabrtNucJ5DCLrJxxi0XLqgWAyy5FT+upaLqoe3lA8yQl9zuoymNzd1taklhih3g3t8ZCHawkBWSAzIQ7NVqt1SzcvVU0Rmb+WnIeM0tjZlmWWXYCTZloBvAkYseDBpUnNnoMuLbpq6GfjZ+M4zE4CJ4x1nkcR73fbdwhhw8yG6vBVuUPj+FNDLjDgs5yBJDnhI1xiBLeHC1fjjKLHCJGj4Ted6rW+geY+J9ndBkJQNLzFQMvZDKDCQTno91cBhFRVCGsEaL68Pj49u3bV29eL8sJUossp/XxfD6XsoRB4H4ykTUx47d6de/iBxBJPbhmwUKrlqWgVeun/MgWL7XnL42odURT/u5FbMq5BOHLFfZm/aYqo+g4QBLZak0AFFm2bbO6j9zKfa9199FTJW37lucjbEygZOQHQEP3bTdPVAOADIWQrIHhCW6zhwEchZEkRUlKrXihKcT/gCMiQL9TfCP+2V7tRz/655nh1KVojEZF5/V0WuLz92+/+sUXp2VVVCq3bduvGwRyWtbk3hFhnVvutXpdl9NSytN+NbNSBJQiqiUxICw8CCmSvbcMYSEsRYlW+KOqNUuKdImIWt0jIJQ1AZP3NKgEqG6OAC0T61RVmcGBpkVwKnRHF9YW7plQGEfFBJpSYks5ObjVPSyKKtT3PaxWVZWE7zIHsk5qR/oZ0VUfIKK1JRMRnzwOqRhRJYjwata1dkF0kKrh8M0ugFtmWI2maJmDE5ieFd1WxISSehjAAEDP/wLdXMkfsC3ImB9wfDIriDNBRkRGcCdqsezTii6hmj4tzJS/cSsORfZIWM2Cr0mN7m1LZvK+0y/Hy5FSigBBTwGaRVihZEZO8sn1evV9R9oVpW30UC1yhiH0jhQ1r8MfODu3Qn/8wclUw2SnNT/+XmGeafDPHejjfftq34xsk5ux7mY6Nlu37cw8OaCVbnkct02Qnp7kyftn+RGOzlcYFuZ8Gabc1PHAsde5N3eL09ulkOJNOUfwVjVK4pxBjHpHkgGJzYOcJqX00LhCEchzpyDB2nLrWtffljMWIg3cxwcl9HSDOo5AewpLttSYd/mY4WRE3exgKphx8yHJmK5skGatXgIAC2WEXvuaU0S6XpDyV0hu22b75pfL5XKpga9EH0Nkib3W77///nxaXr16FV5fPTy+e/Pm64eHBk9lNcZep4IXIf3UZWdECYmOlJZH8s4Aju7KkR7UHSaxaoa1mNV2vV7jqERDx5dO64VsDgVMx3wsF7pPys3Cfd7ueS9iusO0QccmGrxo0ZJ9c2K83TCb0Q9+mRIcWhY9EcIRwEgWkbcWkeohMfwunnVhhYKeDZHmXbTD6O5gRokdykzOSN3M09HQKstSkRMtg+iHj3aAbuXxYeu8nBpk+gxuvEQ39IejaRLRwmKZl+HewIZE4BXuVUbX+pZKlO9QVRfp5pO0PsYta8LM73eaiIh930kqZenJz3nrYaaq6rKq6LJbZEdstyCdUkQkQIMLAJV0ZLZI6cRj2/qC4aRK3WsD4RBmMGuru2/Zo1hKKVAhVN2tT7WUQtAqm/NRMt9SSDDuOV3+v9Ze/hEQYlmW7FA6s6qxGhnRGmp0dHmfx+Z6vWaiVx4PdCk1iDtva7dtXZnJJ8N7fdBGoBV3+4hqYgpqNRroHs0XpV0Xk5+sBcqXGS84c+c7CpwveIHpv/TPcat5Bcas7pjF+NBsnLQBfILc31pvOPtY+SHwxiM4Qa8B8AMp/ifUfP5xg0w38P2Czws7sb+XkVQAhJAqTgh4enx49/7963dvT+uDisqynJbT4+PjaVkjWKsl1WU2hrtbVDPNO5VSTHeEeOiIObvXAFWUqhGlCy8vyuW0ZuA9NWPv6UPZXpej/8QYveoDyLYm7R3NWpYHSRhESvoUT6fztm37vp/7+4a5iGhJTJ5lWZayLOnQV2WtCbI3OeCkM8KO98DWvpPsvGmsJHs4HcNz5C+kPf+PO+7o51Mn/S82/qznK1qC1POH9DSKYDoui6hSiuBxXX75+ed/81dfnU9LXDcN1LpFZJozUneRFoBrJ7Rue+llbEqsZaFS6SyaGSXVIQ5mASGrT5D77j7j7StohAR2d9huvoM0NwYhEBGlhfu+XUDNet7udG0lfxEeCHqQoGT7bSpG7BTA4fFp/C0TgJDlx3riQuJ69VQCqxt67V6tVVtPh9j3PaNbNoOmTCdlMFuS0tWj6NCGd5w8eyx5rysbHC+6Y31w7GQLJAXa21X0NNZpjJuPyaQjrO4vOzc5GTzz54dLepyUSXk9KG0aY23ZbaTDmG862MHe+Yw073Xi6fPcoMMx1zsb9eYaTcXati3119Fr426GMdnDdwv140f/SeeyIqNymj1l7GY72MFybj0Rz1nQzYRxrwzMGsLdXkcEQjIWetxcmq5I8rkPzW/rovPDlC9jne/0nLtHt/2dDLZbTUYQDdQK0VCpSCc1ApkigWFmTNPwW/vn5lmz9uUBoFC9v9uIbolk54P0eLZ+QAMq8n53XiC8nNjNZmF85BG3NMO0JeJAiu7B0BueMB5aEeKtC+fwE+Vhb3wsEuaWFA2gBaCuVzNb1sfQ8uZyff/5Fw+PrxH8/W/+6fvvvtkv1yL4/PP333zzhVv9uG+qKo3FEjGT1g0ZSIcslgxEP6PJoYLOKrojorULSj/LvcbbvI2dQgppfkPwd3+3aYz0RpGlJ0UOohqq6fzzaNZ9gAi/cdzM23333JmGDTF6BsnRMu1AQEhGLJF4zmitJjOuHkFz81YFQLQ7JA679flLN7bzMgW89xhuZrBq0UKRlu3DbGfaqtqSsQIIBZtDqhVEtTZoHG1qIhAmIkoJhHvmqUurGGnPDDYqzgppKEW7kyhaj7lE1mlQEzMYQ2c3brWmaV1Ui5BhEajhEbGo0oVKAqdlQfcItsU1KXRdlhBxT5xMMOiAI6p5KQuj6RmeRaOJwwQQLcSUzu3o8XkzcwuM5DK0DmiG8H2PCKqWiY16hIdF0L26GUMXUcsb1ak1jgchAs3+LFdzAKeyrCVh3AtFkKpHeOIuDqSQiGDRjKpnLplSoEUpYR7uoKjKw+lca90jzQIL8/x2SNC0lRgQMN3IvV9L7gyB8LDkei35XI/j0d436zSOM9PyUofekhAK8+m9Oy0jpef27B2XcVKtIkJ4ZOyMy8Yxnnnu3bf9rW8eMUsgNM9c/tEyaaVjG3TBllUl40Eky93jmGc1O2GLiMi2bdF7RfxF7IMfCjgn4yZ5XNay//o6MG1OBRzC0+n02WfvPv/i/cOrB1Vdlod1LefzelpPQta9yfttuyzLkgnDImVZOldSYkcEBEJowMJZjddtExHVkpCtAESwLIzWca5JmHTAJwYnwEyY7HEnJnNPj7WIZEaZQzMbVLWcl4WkoQGtgZJZ1ttW79fkWaCm0cxShlTPtERkJktIwNiB23Pd4iivyk9CFGhVstY4M1uGWTTR/qdQxKd+ewMA8yfc/8dM4YDY+VGXf9IHNEpyfpaRfro/ozHM+e4kWOA1uZ8whFn/Ut++fvfVF5+/f/2a9WnfrqKhqm9ePdZozQvMLIuo3BGRrQQ83BAujOQiWViEPUuCi3jsu5mBi5QiWwsDdE00wMBaFgBeLRCSgZEIt7jWPVHevFpDrfcMCUfA0qXeVg+KCBJuu1UPYZYINe8qWSJqQndGCY/EfKNK4skpRbSfo4hF1WARkvUOeUZS1EbXtlrPJGH0Ep65QCDfrkYNCS2FpO9mbgVFyNrikAhBNd/datTM+bq7w3MKzOPt7gxSW43cLBTuOAOaz1peyCH4w4afDdO3P2KyhTpiC8HIQg1OUcEst8k90kOYkj7kVDpwh4I4q6Tj846BCncrItG9vRIgGHpU1vle63VLx3rJOAcC9EBQATtmnpZGuojaiWjjh/jPnawHehbVrQ+RLWY7dUW+NT6f3+dTjxNSwFRpZp2hZxA0GZ90m5leAFpjEWkRoOHKbA9NlWesw52jgXDEEarq4zkbbJuVjGXqTvz8JzlBycQBdpx3HI9ANHjOW93Ghs0w28PoMUCSKUnzYdbjwCLqXokYOQIABCEoPgUn7yitq4jjRZoBHLN3gMxS5AZ4+dx1Iq0r9ItbPF88fl7ARTTTKrMrZ+7RoBwGLAIeYWHKy7b/09dff7xc3n/+nYisa1HI/vShXj5u5qd1+fIXX3zz+9/99jdfXy7b2/OalXXJc9HzRtwDHVAwE1KTp2Xm111Ht7E+g57HGlY3JJIis2Ndc7RFPdqsVje4IcwjtJyG/Z1rMVxFd4/LOJZvO6dc5dyiefXufhtZWR4BN9/q2GVRiX4COT1lz+ZYg2/3EGhiZUd/kCMGvjQ9eglG6zru7lbNzNK0KHro/EId5dYkw1F9N7NlWQBocyKENd8oyhGIZ/cgortG+hzTnURSUJh8vTlq7ldQKO6O/HlCVo1TNDwiDc+6iEALgTDLDIo0u1tyqUeFWwJelUV7+kcjiwH65wbhff4zALMjr2CcqOrQQN3d3SEqEJAeDMa1GrSCauEikvFbSYgLJDCaChi17h4epuuiRPPHNIcSzGzRZnjv+x7EEBXJXxzzwrYCUQX3Wi+XbabIFPallIhIllpO63o+W9R8WkS0gK+1gui5ncM4Nl7NYeMr732PYqr7nXlT/s2jMV3nHXHDWXIo2jEevxrnpL81RQQTYBU6XxuPw0tjzOSOhX1Kks2sfz7A46u7oO7xph2tdKzbrRS5n16nw5tHu3tYg3T3nqwycZCD78tdsi6FZO5C3gvPFvnnHT+8gIeAvL34GCSQ5UrubsuyPr55/e6z9w+vXulSICi6rMu5lMWdrUduBICnp6ejakBYdM2nVNui5xySIhRH0HRdTlpEqJ6wW3BCqMdaLUsibYR7DRdv1YNhVtNpNXS+SKcURFTJXo+gc+HNUNzLd999e7082XZ4oxLl9RmRtOypRMvMXtDtmoiIkKxSywKQyGBaMP11L9H8nVD51Ln4Q0P+7AbtzzQ6vb3w1cuKzp/h6TOX+Al3uPstSUCzCvSF25Jg4o03virAArx/8/jZu9cqbmYqEMSiIiKLLKnCIEBRKgvocIivtjYNNWGLs4OdhyXmhaioezWv1anysCiOJJTBlxrbqXkki4pAIREoSJ/Otu9mVYoKKPDqYSGIGoCZB1SgqlHNvJpVo0jWzLJZPzdjZAah5ziksK/Vdtszkdv3GmWYMQEWApvVs7S4c8ummdRxTCnQERHSEtlmlTGfnjlidwRwm5okWYUolHiu5DnZg2kvvppPMu6T53fiIfHS341ODnI6/vCe0j2fDndvQCrTto442BCFY/FJRq/7GD/BxPaZKWlyzH9oDmPFWDS1SQCZRo4jj3dcewjZVDN6pO7ZkfljTjl7nHC8zt2LzFe24FQEXnwGebfU8z2j+WUaMuV4xCCY/H+GMiIiCFFl74cyh6MBZLLSwE+bA1PjucMOnL91z1ATMNFVO8hyQ5+D4BODM40WsK9YMFqfeYoUQKMrIZycIJgY42AX6BpOey8PYbNOssPPvP7zvgPwqJmLkS94F+K+y9VqL6JHtkibYRZU9qabz3LlBOJh/VTe5sbPi8MRID3kfm5oTxUh0arXQI/Mu8l5fvjw4Xq9knz37t3DadV1Oa1nCMWdLqXlZorX6l7QOsaQ04KM+WT2y/wu8x9jznfOKXaPuap6+i/uNNupFCIaakBXgV5Q4lhKGapU+nVGTmLcqtAzechNOoDMXB2Tj1KepXzOdzjo4fYRw+Jo9f1kjORnQJrfgBUOayXczknNm+Y5VmyQ8fEVUDPNB4CwMOuwG6BWEjpKKZmgLQE06I2sZszz2d+5YeI1PFUBNV1vrYCznb4pKM15FYSU3lolc6fQEzMs9ojQXgiaG1yUjJKR7vQT714lwNLw8TL3If1S1+u+LEujS3dSIuhmHrKZB7GuqqpBWofgyy2pbkUXqGS1plnUEQnLMCGVIsICDRKW8HQqI3l4t2pm6AjGGcP01kwiIoNRisgDGZ6OoRQkY5OOXKbMTFiW0/m8nk7bRhElfDrlkk4yjpSGI9GG2K3WNHQTK7sR1uWyTVXBzDuIdBdVJHIf6FQQpGWDmWmGHJvVcAJ1JFd7xwDL/ztzu25M30Gpd+fkYFi3jvZxMl8kcdzy7juO/JzFj99Kcrp8k97GLTdOohV2JWEmI0m4vT4jG0dXut4RvRIY0+LccMCxNyRUwo9UDfCPwAj5E0dEcEL6nRWjcUFkIQO6WnanZwhP5/O7d+/evn2tqwailIVcRFZxMd8Z0CIsxb2u6zqywRmqOidoYIhJMlQlIpbT2grtrRdiQcJDKVkRyLtVteEU55CqaDETE7Bo9gUoMhXxojsvAFTba60fvvvezKIeu0AeftssZEivbZY1tC+ODK1Wnla6f6N/1EAaCo8CcuCgW0xUmro+JxXtjxw/8KufK4L6Y8dzDeD223t95Q8Z8D9DHDj+4BFLI+fHt+O+D+kMHpXKd3eyZKJwIEXbq4fTZ2/efPn+/dvHh+36xLqVIgmjte/X0+nErByjZOKxRgPaeDidEEJQitKACCJUVBPlNELB07qy0CUcQc1gQIDQQvF0wDu9Axgiu4EWF64JFhWVcAvrtbQkGbW6RY267wSDUpRq215rNfMWwmqhBnNnHNZpKwYhG76xM8KZJ4eBMHeBma1KlWUD0ktLsta6SVVMFZU41L45odcQDGThEm0vLI5oaSUaXlPVS0CcIMeWJSNR4EZPimeiJ6FtlmXGBMoASF+fCIaz14nGJO/y37PzdybCG/1sKpIFDhseIQBjUmZbyCQ8JqSiiCzYRraUiW5cjdXLqHvARv+Svm8pkua4cZpwSD1XuuBOlSzZYL1uAM6nE4BaK+DVWxZ0RAQ82BLO+yGZwI1yxV4+T+1dblfm0Bzy9s0vQiEY5sgM9mowZ+tU9Gn7+plekXcWgBGHAtZrY9uVBFXCvVW/u/tLD5gpZyxurkxOSDrgP4DR/GeQ3Byjm+kkuUlb2h6Jvbts2JloRlhM6yYp/jwOtsxMUJpX49krdGmFoeCxizsBG5xxk7aeqiR6C1kePUqHbXxz+ztVLUe3oKazdhjGMtpMRVPAOlkdCB3TfRKkwDzVAgWzRiWVtFKKGG6rHQ9HlYLVoxRFhJl9+PjdP/73/7Zvl3fv3n35i1+eHx8E9NhV9d3rV+/ev/36n9Z8EQMISHMRICIo6Q9vil/0pc6oe9co7qlIpiA8SRBlXS1qw9+JyLoTEQmhdWzuVFREFIB5SMA9SFhm8QIerhgelhtTvIMNz1b34co5FNdpVjkS/zyTgChiduRUWhyOD0lg7rYCucnMOGNCKaTZREqWwsl0acZWE9JctHhGa2/LOQMHu2ubqCoiw5EHgGFsYW0tGcGIvr55karmS9OjxY3bZCNTH/vS5P+YPzlWZHYMeKvCKzost1CRXipsbKlQkmjeQQmvQoqgaFmLiLYG4yKr9Kxxkma27/VUdDgFI1on4vbYybXg7nAGZVlXd4dQWKhazRLmaV3PoiWqR0QNLxlLB6ojoppFYiIBKGWlCkSaXZnl49CIMETUfdv3iDidTtnuddiB6MZ5ElVahWOr5gPAbvoOdpah4LSm3B1xBHXnnzeq7fZ8rkmW6Kjquq6jtn52yM2HreEh+8FV7zTUuw/p4VMW1nBczU6gGzGW4BDPmPu4eeRhBQSEhxbx6bnP54Pbb1+M0OKliM2gjfFP7wWls1dpvhiTeBjaV3MfIpHMD17ff37jqfUedmf3VuRXg9PZy/2Bf75xp5a9tJ7zfs2fAj0bmpClLOv68PrV2/dvHl6/MncLX5aFDXpACFfFuiwe1Wx/+/Zt16iIltSUG9Byb5JJsafiKKVWmu2klgJyQWqHbCGFdFaMtHERQfYNojfTpRkwQaqICgu15JWlFPdWBOjuHh7OWvfL5ZL9t3F7GAulhhM6aCMf19IHujId3XwVEdiB6hl9zdlSnA9tYIiZ2nPgAeiEG/T/9+P5wczxMhH+HI/72e95c3/iZaU748KUgAlwUnnzcP7i/etffvnZm1en7eP3vj29Oq0Cl2WxppqEgJ48LWKPcDcolkXhzFgSyWyOXQQOrbVu2wWQdT3rWpz4aE8DRbNZLzgqOddSghhJQALue+Zpu4JBqW5CFdFlKR77VhM+KpFuxEuptUa1aF7YjJ+kaAdJyaqfFuppeYwkq5mZCddSSgIoJnRO1183dx+x1uExRI/kANi2TUSmMBjMDKSFu3lP0rxx6rl7+E1ALzo4Yub5zo8bt2UPQuRHzYxvW3rohe3KCY2pub9fojfyXktj9x2MiU3SJq84IoG350WHkTNPZizNLOIBtCqzNg50opaClP+cwnrpfLnhY4C7L8tSSoF5KSX51fV6JQNO94ouiH3OSe66Ym7l82V5vkp3p/WwHG5DPeNBqY8NC/BTh33cZ6zP2MEBSMlubSZ92CQRhnM/L5wJJnqwFDdUcTw6juPQDOA7TWkoBm0Bbz0yYyMSYIK30iScw6kaEWipkU2BPFSOuLnhnSriOG44PhwUU1SRZltk0qY4jjcK3OSYRDc1Z+00mq1yWFPjLcZK9pschBfT6QAGhIq21ju9/0gpRWYDuKjXAOnCMEcES6OWVImzz8gg/jGf5gSJMLdSimqJ8I/fff/0/YeP331rf/M3716/evX6YV1Xp4iuJH/3u9/94397lFp7hzKMmsFZ0B/WVq52h0fxlwhsqNPRQ6PsOnIPXLFoGTzH9+ruM8hZTM6O4T0h6eapbiVCU4u03Tom2A3gmb2MheobfoDdjK1E92DO25dHaYBdDevjLvQyH6VGURiGZHM2Qph6WrSC9iMuPYzBppaLSO/vOybP7mbSBI8EGeGqCsmkEZr1OpbmZJIkYZEsnW3AEsjkFqKUksWRPiUYRJiFIaSUMmptRETBdF+5W/XIbwlm21cX9fHq/VQgkCiRlGNNU0IbGBaI0EIHwmPR1tPYwmPfRSSFR7qJtm0r60lUa63VnXlmEKIa9FJEl5OBEdEaJLiikxopEdiq7dsVUppjQ9J9nJw3EFLSie62bcaWwNHepeRWmatIiJjZvu0Arnutk+VTa82TmFATyUGSXhmgsJpdr1f66GoQ67ru++6EqKZyb+F127eneuNBASzxpb11khjekaTgQqm11qh3zEg+UZOgqlluNAzywUx5O/phZlocqRHmuYwmpJvIBZBJEKUUi3pntnKgF4wjOsUD7VlUDROvv/tcRDx6bQmawAA9mdYINUhzwrjVYFkOLtml1KB5TFx+HOlkBHlixyEfYcB93z2cRekcmbczr5nZyo8fn/zJM81jXDYe1DLW8gUjoWVa9nIAEMpSTg/n88PD4+M5Ha6UCLNa6yvVIqK6ZDfOfHGRsq4iIplOXHsaMMl1WdydoO3mHufzqZRyvV5B0SLVIrymhIgIYez79eF0jgjzfa+VpOqS+q53PLZUtZMVFdHrddv3HSFnXSbsFidcMkpQre6+71av274bgKiHOni5XEh2JIOUjFiWxZ37KLTI45AtW72555OHHYx+2sf8RKf+nHnzPM6211kffb6zP4YAbjUGfCpqGp+wP3/e8WwyPzBmn/enosF/XJr33WlCsyvRG2DOd2umGoDWROQT4fRPvUsk0GfeMxIbCgAgArcEk1hLOS36eFr+6ssv/t3f/726v344V3XfdxevNUSoIpYIgG5WjaWoSgQDsV83evKcsmrJmlglHs7L9dosw6LqEdu+16hoiDleuBRRgOFOUCnCqGaZ45UZXOFFVa/Xp92MQJib+3ou2WAAjnVZii5Pu+37XutGoJSyFBUR87rXHaKquu9VVCPg+x6UZVmAGVwQg3/WWmutZdXT6VSrXa/fuzd/uqq2mv6+kVn3Jb3FYDmScZDNwEVkd9vMoBpCgOGsuxOKwPV6EZGw2La9i1QVKYlMe6SoTLyd6ag2o2gpxWqQEAVJ65M69LxeWiaSDYQi63KTYlKnweTsvuO9uA1MYsIgnOmtf3h8Mrt922Rsn3/oztSoYY1y5nveeY2HdMt/uLuophKSyc/RUV6bs7IHBkVAq4YOyLxZrVcLR8vNM+9ejOfxrvtz9JL3/G6GmEyjdV0HzGe7v3dD91lgP55Z4LP4Pp4SweEWT5Lo7lf0ul+fDMgGEJexuMzPvJ14RHaob+lk0TVdmTyeJEsuKoWBLXZMpAW2rFC4htOy/QyZs0FErTUnKyLEMIGOlYwIoFUTmNlSyqFm96UQSiq3QynN81hrnbtPNcmlXJYlSwyEjbzbiyVSU+v+g7FfEWHWjKhOn01K+s2BOCRmq0+GChmdk4iIJ47mjnBDSPZCHgv+y1/+9a9+9avrfhEp4buWkjullEVb9msNRM/WDI8scl60hER1MzBD9xnwL6J133/79T+9ejxbrW8++7wsp9ND+fyzd1999YsvPn//m1//KsIXLZkXs67ZW9FHbITdTcMRIJ2Ck3fUkpfNZLltGxRSSikKm+SahwTYCAfJstydssiRVD8hkAtVl5QM6dxZtIjIfrlwUu/dPTG0h66SG7EsC+C1ViXXdU01D90/WNNYe5aeED0hJVWm6mbeWmbmT9pq5Olu7TAPhT/76ibp5k9qs+Fl6E57taGP+dTDtfY2S9Ihe5sE2XdLTSw9CqWUBOk+Ds0wZgARRhjQu3Kl/yC/jHYURVogDBmdL0ULW60tXEJuIiItyYctQ1ZGSpwzCK/ZWTvI1LOTdJqDhMKiUxE5sxhYei5Tviw6v1bVUpa9HovScvF79EkaiB1gvlt1C8+U7zjS6JlpsVmYiGh5RP3UKqLCRnvSQfEA5vk3rRduVt394/Xy9HStt6E/mwAV002eJ2dKHZjBomtro6oH4abfrdY6mnSN5BDvMJhD/x40WiYQqVkJGD6qwS77Th3sanDwWXrJbT1AJlnlvKcPX7DKhovpTrSPaQyhdaclzI+bz97ds14Uq/NX8z/bPtITluv5HTpHbqng7E4mm2o+vVdrjAU/ghv5FOGRQPlniFbxJmfwfoyZcDjsyebhdoMKiwphEUGsp9NyXsq6QBF0RHvxjx8/llLWdQVwvezbdq21aqHqsu97w5pC7Pu+7zXC2WuTmiF9GxvRqaMyANFSrCYAmzCWpWNEM2tCsl98ptBkXy6qlvNZTsggc+mkG5Fn0Xs8Ocys7vsO84iWMNkeGrLZlhEP1WVm6yniZ9rNQzFUjUkViHGOYnKgjIM2i+15S/AJA+zH7PXPeNlPHrzVX/mSOvsXHX9MYvMfcdcX/AgBgJECI1MSQuC6CMNh++vz8le/+OzVqWi9+r7RQ4usRaTFlCw884RbpwB332x7WE/uBTaYg6/LIoKnpw/bxc3ttChEzX3f61Y3OQGCpPyRSFxKsb05uYqqS6/V3HZQk+MXUQgNdN9rrQ4tpWgpAb0aVmAPswiSy1IC2Go1b/1pZ22m1pomcSN3Qe8Qx8zobjLRMP62oIiKHPx8nCOS0aO7EXPHkybUHEc6SUSoNlN5xFLSn5463LquA+6uM78XAl/ovtmx0TMHOHR395ijx/FCHsc4z3enYDCSO5UxB8lW5TgxjYwtHctyJ/WeuXrbSpq7u2pDbBl3G7J7vHt7r+kt0rpLHW/btkweHKqFkLoI9q2ENZ1EogXZABfzyE433f6PoLyEE/aJ9ck/pAHeZGxnuB9vgqgjwpma6ssMp9vAswcTQEyex5n8GmxKb8HFNGJ77s/Mz2P6+XPeOq/w/NtU8Nitwdm/gEnnOQhvajuKyRegOpoptEfk280m6GjoJbfQ2W3+HYAXE7s+9KimmiUHyoUGOmZNQsdPb3cDMzifmn7ZIQH73h3CcV6lVA/uooVtX5B5NwEAKqNAHcB/+A//4fPPP/9//t//H/vlcjqts4ZzwIIRk44Rg5OP0y3UdgxC3H2/bk/E//n/+f9GsCyLrltEnB9fPZzXV68efgtsZo2Hd21ftcHDcvKCyRQouiOSESYdE87LPIMQvQdkxtU8PCJ8r9pRVQOHhinaOqhF99TkPbtp3QJIg8bmSuCZdcyb2LgofDibZspsz5Jj+8Z6YsLimY9t9NL3xjeG7tc/BzBy1GtkacvB94b/bt64safpIx2kvm0bMCIlUS7XrZRCkbrv4VyWBVQzy1SHJqryODGbI2RGtAAilKAxEvDQZIp25lxFJLyGqYhCQtL9dTD6xp4cCDgbBLkwouNAHnvf4ukz7i5b75MgMhRTCCEtAu5rtpAm0pAFUMoqoEipzZdGwBgmEVL0utVlWXRZI8QaJhs1uyWLSw3vQNCdmNp+uPvoRhgREoG+1mn8ZIZwthPI9oOiXJal6S/E09PT999/lEkDDicaEixKKet6WtfV3fZ9V0EmldVafc/opQ+fSqaC7ObbXmut9TaiOBjcOF3j/4P+zM1uIeli6AUicpuPNlj+fIKHNjB2rdnije80Xxt6D7fGiSZOmeeyc+UXbNGx8uON8GzMH/ITWnhEgx1t5J2rhOaSaS+S//TWVhruQB3VWeM+zU8szR0+s1reKUzhQWR4J4sfOpKESLQemGOez9/lR44f95MbmMfj04njtSoq0WyZ5uEUOZ/Pr14/6LIA2LZNLxeRBInz/Xqp24Ove+IQhoVXI/hx31IVXpYlIFl/zu4zjh4RxUieaTMpqkeP3GVRQ9S61VpJLSQSODqiaHFWk0ZmNz6dUkQKodUtC9WSJYeZ73Xf97pVs9h3269bHrq7AEXEIfiPobKoeBDRGJUkXqAE2TyO0ZtnAwAlgGWqERheBhERKYnOEBGthEcc1J8MajURzx9t4s787U8eTg77MPrhPsZLWuIYSYh/BlivNIM/EWH+FEv5A7ds73jgkBGTet8ZoFKUdS14/+bxszeP4ub7Vm1TZMfoLtfNgdBSBOwYHV1nlUBGVtyFKmC64fe6mVVVDUp2v1hOK9VDXbN9odMsBBRV1pBe+ydEtKZiVcqkwiNhfcVq1NiX9ZFaNgt4SITSzQ1CEbH0qIYvyymAre5psXt24OzpS2Z2g9Lf+X+wK0YJVeNN9idXQC9+BKJ/jh7mmjH228li+uQi4zaSYbFW6mWR+Ubu6b1fwjn+85Y1l9GeifcG4Ymr3BHp0XCCm4DKuY6K0+5kGaoYXrJp7z7scnPQDmbyuc1ZaCTVfyl3DcPvhA6lKd2kZJvGNJCyoShR7n44n0hPZGkJIZwesKxutKhK4UIVXUtW0klxLafVI6zWbdsuuNRwTZNyWSppNKRt1RSwP3C0xyqxCUiJW/tkLF16TuDeCn+76zBuvSSHOj4ZhyNaFbeMrxktkzIwTymAiFikw0CMOHCzKYaaxCAglHghD3Nac5IUMMyNLe4nIgodes54WRGJ5pi+j/znpjWjJeb0tBYsiQjI0DgAkB5IPF09DP6cWMwJ1RNjHHl2QdApA3ENYt5aIAlAgg1laswxWkO49u6jcBINw5xzDulkR1DNLBoGi6Ap2M5ht6uka6yUddz/P/7H//h//d/+t//b//6/w72U9Xq95gEangtrhNDQziBE3GT9jFgiCXiQLdT5/fcfTw+PZVlev3uvpSznkwhfvXp1Op3Se04SGbJK6/2lDAsRcSbSzY0crOGnsswUflAM2drOoTNF9+gOiOGmcXcQotr68gwdJAHMMjOp3eJoyRLhOhml7YG4Ifvp9B3O/fZSIc1fBoz0daCHJLutdMQzkCXM98cBEYwGZKQUxw1zG4QhIiM8Ft1Ubg6jNJnJVFmHwECPfZZSlOLhN5kw402G56n3LRqqPAhQepEIQBQJiwiVku0YyGN+IpJqLiWkl6V0MyBBgND7DEEoQkHAwxBBCREtKgJKR3HM5BAAiZ2jpYBp/hURpM948A4MSABHSl8LPrx6yLhr2mFeG0BXoscCkvkahUIKMuuMAQTdQpJvtz7pOFqVHI3gEhsBkTkkyFc1RL58MpdopiDTQb5b3fa9vBBOFFJ66EnRoMDbBRmxEpGOa3Xcf9/3fd9TJCiVo/Nb38cRohzkOxwkdd9z0eYLBoWMVZ2P5HFQp9qhmCLwo3R5fpwD8NYAOm/2nMqT+PDpcadARESS0/z5jTz/QctwSEHeasAxFfbM7/virXLjhp9YpMyCcw4JjmUci0+F7/X5bect+Mnj+R3ub9s9HZh2FgAzw420MEecH87v3r9/fP3aEbvvHz9+DMa6rroU1RqO6/VJNTxqEVVNd5Jt2262B8XdRZXMpJoGZJJpkFkNCOB0Ou0dni3ZSK7/outy1m0TYDPbSVKULAmJmR7FrEo/3BpABDKp2zouAJh9ZXzf98vlsl2v4YABXuH08Jkac8uy6GaEAoCOdtVyVuYTMbvJJnUfHAT2fGuGkY/uhU1HwOwQ+TEjptz7fwljnsnzWf3Lmefd4E+ygb2r3cd9AIQ3X19rfO9F+eb14/t3D+dTqdumtiu4lCaFhCil+F5FSvpJ3a9ASNHTsmYQrfu2BXCz3T2WU/EwkCHiQQrX5RT06lcjhaKqcAIV3jrVN4YffhgDRRNsAj3goFBVpsXr1dzhzqgWHghTunv3F5uTkIADDOyXa6YjqdJ6mp+ZtSQtZA1jw57JgxsCFRWWELijWqSkTnoexT7RIVXuFr9rLAMaQztSLtn720fzxiJzZVvBP4CJq7fjwxupikl2Y9DtFDvqDlCJiMyhG79qj+j/Dx7i+LmgeTHhI6Ln3E3OrNQ92CNXz8XcpFMe/HyEiWZJfRBwC+kcxt6IPRoiPKxXHrV6S9LMlJKbm727BhhGEgY9aq0D+dYA2AAO++Qpm4Ump+EdlnJmpBGRGW1JZswcRnzy/jyc9/crcMOv7pY6q9x16Ake7hmRhsxzPGxI9DhtUjiAO21+bEQP+rW/B13NAdWhmJHEBNU9M3x3G/uL1qog9ckjUBa9zVhynCO8fJsJn/cfGlHXUo4i+RF3jdGWbCxXc3ZqOrBmz0Xu4J2LmT0aKX3g9tGQMqhx/jYbqTTjR1REMPUB3mv9h3/4B+w71vVa96H35kiSDj/kcs5t7JCIKJvDzCKIbDzccph/9atfVbO/+qtNRLZt++7b34fb6XS6fHyKFopn9F4tMiUpHI4Kd+cNqY/n4nYctCUHTfefREQk3O9Yf7IfxDRfZ4YQ4e7rskS0hlXDfQ/Aqh3PGkyv15CPSc6skt3gyuScef7R7QJ0W+yOv7FVQMZxk4kx+kC57x6rBGZKh+mYwETkbLikOKJunZAR2fdoepGIKOV0TtOcUoS0QNdNk8W7uzkiIZtJ8XCNjF00OGgBI0xVBaFgeAzBoMpFFPSeuJvpk+h40ZxiUJJcxNytVgEmwAu417rvLb29J1aJQlTD0Ro/D2ixXkQe0SAaRbJdYhERaU1DO7xfhJBKFGEqEwhF5N0ARA1nuDAsTz7IVsRyy8jS1ScJ28MsfhCIC+CEuUUW07ecbbcw2L7vH56eNqtOXOvcecVFNC+XxEOuhoAyfbdON4kGrpxe4V4UrmZW97QBCpRRG4pnAkIflKdCz9LuiAhCVARBA9OFN3z0I+m6Hb/EP4wIwMKVOkit44s2XYTkaKqckbDsg3yQvqQNfCOCxmFgb6aFm+9v2D2mXzUSp8QzmTfOyWCp4xF3BvY4GLyVneO8iaQC044WAEAbVYuIFFLRcbnH3IbdO//BabSnfyKp+883oqvsZPZtG5G6PiTLF4IAF11LefPmzbt373TV6lb3uu/7amtEhNf9eiVlr0/XLYCQZW2BoLD04wzxr4XhCKsiJQMGZpboKeRRxuNeU202M0CUogIJWWRR0GABz/y7WquqBOHeUNtzzzGCA/AiC0lzmO2X66XaZra77bbtEa3HJlISTFvfXIa6tsNIRjAb0LC3eWNrCZmFFcIWNuhk3M3gPDJhXYmJQ7lpE4ZmQgxJUn9C8HZs68Rdn6mAIw34pRDoOEr4c5LfC3f+ZFT2zxYH/uTIw/4nJUsTkJjA+puXhGuR86qvH09ffvbui/evH6V4XAPo+lJLMYW0uFYKQtAl48PelFJ2JLZM24k9RGRZ1xpx3Wo6T7e6B4KRHXRURFgKnULd4aIakQ3IPRVHgQDuHE04UIpCuFeP6ruF18qiJbuRwVVp1VLykGz5xpFYHJWxJLp7NifLNKlseRiQxKNAMH8SERJCwlsbF9bqZmFDwfXOkxPMBgj3bWbR3UlrVkViWRYJRDUDRNT2bKGc3Wt336tZ2PZy9V3fsW4d9RPRrJTpaJBMM9vz2KaADPEjHbrff9znB48Vb2K8h7cuC+HA42wCN9by3YFt/5SbVDWS0pIxmwkxxNx4WTNjp66MUEU4/RYlSCWjmqQwwiLSk1hr9WDHyQ+EqCxcQ0SigQKae41Mq2qn5NNL8ZK/rLfEAklRGflWmBhXtCh9i8b88M2bGTVG6pxpCKVS3lXn9sM47sARkUgQCjbTfFyQqd7PK4EP4ukjzAEO423oKlKOkpnxlYjAKeSwF/viSDWfPpl1oXkSGZsBSXR7B0Dvjno866jlJaGyiBydt4VpVjkBomGj+AyM3eBt7yhzmK93ilxEGsntnQ4dCSoU9A/HfuU6WFDIBIWSA5+yjf/0n/7Tf/7P/xmlrKfTdrmeXr3yapZdViPa+vRw3tBjk/NHBIhC2Oi2RoHQg15dpFyetq+//h2phnjz7q3X+nhaz+v6nUi9btBuB06IsMdSRHMuGGLoFWPaA4zgzsyLCM2YeQBA9mcJQRq0+XH0hkbZd6uBAfdtkF50QBWY50nJ958YVQzOEC2IN3vTDuVZVRGtq1PzSzX9JxGXImC3se3j50f4Bxl1z/S5e4+5u0PThgQJbWoS9m1PTFJ0jtpmKwYRRLhb7c6glHTmHpCyrAqaWXUjWTL8klhW2T/HAiwMD709zMl69r1SG95jJk+l6d/LFDJZOoZbtJSSaD8RkWD6S0JP172fChlnzZ3ZY0jgqprMOqEjB5Uc5pZIKcUannUEozoYlhjU1vKPMXhUzmfbtkZVgGg2byI81lIyAdGtkkuC70UNNMMAhMPCwYBqok1mcDkTGDQp2Gu1UAEk3BHQokE6abVjU7JxzgTO/fbD99FzhsfGj5Osvb17P/ax1z1zalpRxMShWli41mxb2hRuROmu0H7sj3pgOyATj7M3drzzqWN6zSsy3w2HAdzOz8iMbojOxyvPLKDdgZyxxGOit/4KnxRgg6eMqUaE+Qs1POzJIXdsaBYqhxi4/Xt+6PysF6c0bjgE8wh92MAc7vBXXYDe6NkiErc78pcZfcvSB9ye3jHVHGaxlFcPj69fv358/aDrUv3IFGgvVaOiLsvivpBwj0xDGAV46Zh2d0ha3WYR0hFoo+uXEX65XE7nc4wYQgvgCBqOQM5W3M17fsetK23kL7RSlGNP6bVul8vTx6fv2Zt0AIjmSMvO2wSngvyQUkRuG4SgOTyAuRbrpdH0ciZ7hztmnSyO+MC9/mpmbvYTDNAhvbqc/eEhP2BbzpLvp435kP7pd/uTx89WAMxbB9knnxfp/HOyZFPS8/n06rG8ffPw1efvvvr8/XLdd79erxcz10IWTZd4KeVyuexWtaws1FKcvu91LTpaSfcwVoiUgFMEKrZvl33TUpalOCKORgMxxCiaTt/6KLZ9IQBc9i0ihKXlsAUJhQecUasHFlUqdxp88xBl2c0dTevaas30SFWNzHrrYJZI7NZwAObiXt0CgPcE7Ijw7EnZzkzJwHBMMK1ARuCYKTZzGClTE7smlCfIzYw99ypHrbXue8JMDhVTpojoDwy/ywPK//Foc4hZcWw6+r1HZwjHmZCOZz+fQ7KOW71w3MdqN4ZvHwH3EOFsxvdQSETk5rbMVdzIwYibFjuH+jFu1eM5ZsapTjtZfSslUzUzr+bucBuL3AIAAwnZ/c7gH+O55M2oBjOM0XP9ZpEtkhAyxLS88hKSXt+6oyryuFXf2GOR8z4iAGpP9RcRClct/VfHVuYYdJKyET0mhdvayGkc7SfYLQR3HyDt48P8f5nAjdjr2lQ10TdG7Gtc053LJCPzsOIoL2NK2HYcJsffAHFs+nyPizii4+XcOEwPCsTR/ncWbWO2AxRgrEZbuGcR0Qa7RY7NsqkBShE1s8ybG5remMZ/+S//5Xq9LudzKaU8KkcirrsTiYuNuIHdHrsGtJbumJlkwNzN6rquaTp9/fXXu+8R8fr169evHh4fH0+nU/aA4BTVHEd+vF305XtO8OxAcXdLEf18NvdLQ91vEx6HNM+1mW1mKxcRQQ9ZocfY023KyeBP0tfuehgsV7tD5E5FaX9kn6VpeuwAh9O7xzhiwlb5Nd8tRt9jH9Ns89zcNW2KZDLhKagMoeMc9XPgiH3fpZT8u1FIaSjZ27ZF726TKYGqWmrmNd5UGYg7GA4RTRYaLopEt0u7jBA0KDbpAB+NdbaXjNbO3qt5GD1kSjshKcyUP7QOwBALePgaiVuty7IQYWZpNmembxAeDknw5tI3r2W0U1pflFpr6T6wg5oTRaImdrbDGVFkKSCrVVDNw0EHcqYddsO6R4oJIRFokbrB7JgQA2xHvQgJeRVrDQAASChJREFUbhEeZoaMPLdWTmZWK3oBw7btl6dNiuI27UFEJKjIai9Ef5yZ1bqJZMA5tGMzurtIiaB552KAg1Zdpn3FxHYHvFDXJA4pTjJCxiFlEZLYbmAY7s7kTMp5t5HSSTLrxNgyVWJc1kUQgYZUCiCy2ddgCt3kvmEBt22W7pjvzfm8neTdaNyEQCaXtQx+RIT0dhEAKATpt40i58UcZxgZMIz0XMDcImpqBkMSjHefb9KolFBV//SEf/KYV+MHRifCw1lLkqUEUZbl4eHh1atXZdFaq3WYDbNat32nsCDfblmW8BMBsJUQk7TqBoNGWvgARLFqia26G5mld40st22TeiTRHWXVsLABzBYWlkWPYplCnI3M81txd7NdBbC2+Ck4L5enp6ePtu/uNRuHpptGQEeUUtzTHj6WTlhmB02TKCQJOsLFo0bEqEdid/fYVOFOtgZyASFlDsKQDM8YXUR0wM/46U2hO/H8DCQUP6sN/Ikrfppd2tTOP/6H/FlWhp+0gfN17nG8tRShkXz9cP6rr7784vP34dXr1phMRHRs2uQ/khn9EjycL+25MkVpegxKPYaOS1Uty1J8N6+lFGWDkMk2mJjEzdAas7deRMMmcI99ryqEFPfUwoFWx4WAB7zWWpb/X3vv0qvZkmQJrWXm+/tORNybj6KrRHVJPUFCotVIDJgxpCcM+Ql0D0EwYAAIMeIxgwFiwKDVQpT4CYgJAyTEgJ/Co5Pqznsjzre3my0G5u57fyfiZtXNuplV3R2u1M0T5+yHb3dze9uyjYRRs3lypYHTzI7yrsKYqLqCiDgBTKpb5hw9O1Z7D5mZVce1yud4kjJPsYhzecvJWKmAXlDwEZoJyZViph79sT8eR++92aj8vGglY/UvvJrnusuAQvIGLc2szANwuduGWWXVXxmF46WnUzxf9EaOvKEfXjobDe/EU+x3acbG6V+7Ph4oP4FKk7kevSni89SwGUAVRZ+zusrZctmORVai9wH5a6YmM3MaJ6hMD5l5EU/fd1QeRC6ffkW9sspJ8u0ReVqn9bMukWoNH0SBCY159t6z98Kv4sUAXjTz+Tn9od8ICghKgj4Rj9/oNvVaLw+ovjDbteB1y/TYlsBgEmW/Xy3Yi0XP671Ido0nrB20hUm2LIf50nIxl/xaFvW6uJJQ6vBJAhunl3TNJy9ROLv4F+ZiKjEq6WWVGkZpOK04uVXpVZFPYGyT5xRK5ekjWAt4dRCc16vcNE/qVo7QCgr8dVRh+FMQAsDLy4u79+MAcL/fH4/HkssYkp2ZUNkORpvRm8yRqKUKtFaFMIxURAjcj25ORn99fX08PiH7L3/5S3EUbA+oy/Fdg+VyxThnUxxNd94bglxbfCWJ2iVJp3dhrp3NjNfiAwsceu3prMU8tXFceMX45AhEckKIXfjGF8orAEhVhTt8qQA0GkwLBRhOtmGXCdKw02bId2WA6OKmLzyF8fyVa2GkDy7ECRWxzNqhwp/cMoRCJUozY/PCU1rr0Hv3mZonaTTGLDWi2YDKqNUCQDopog1zNwe/s+FDylR2wkEzEoSMBucM6CuRaVXfWz6kOB79cRzHKvImR1S/1vrIMIPZJmP2rOla1TVBOXlcqYr7TOsn2dpmUCTUo/fgZmZVVtwMlA0WkxmYMP2Z1U6RmXn0XmXjhKcNPRVA9uDG9UGZmUqqWds4oPIGgxiGKLh5K/N+j57M2sH7/ZZQRAXbKenxeHz6/uNxHD7ytC+Otzis3YsBurdGI3lERqTJyq56I0HH52TxpXHSksRAIBgKyuUsPfGdJUgmBinfcKhJXmetoz1npJzc82lBqhGUm40O2+XCq8Trxc9YCbjT07+eCSaWv+sq1SR99hXXn6/8Yd111QPqaZW9g8k43pzzKlHmyPmez/oMbuTNjRFRvW1JVk7s+TnPE+OMAC9dRFYld1P4/R6HBopA/YzkSLCJjHa72fay3by1VjlN0ffWmpjN2HtEdTqCWfPjeDwe9nq7ufu93c3dIgql+egPHcJmJBNqZvf7/TU+XdWUbSsE1+N4vNJNmYLc3LdRYWIb85j5HZrcYOHaR8/M1lolvBzHwc2pKm4vtOd+HHuFmiMUPXrv2dN9q/oKEzKeuhBlishtuw1tsjY0EdlJbuaFhQMMOUpQ5cggLFOEshi/KBbQd/F0PHt2klXjoFJSSq+8muK/xZ7ic6p+O36nZPY2l6Gk+E/08N/6OT+Za4nPujVVKaclFa5mtknxcrsrFf1xv/3sj//wD3/2zbtf/er//Rbm0rY5zaRQZrUDFOFb26zRratndtv8drvFcfhAf7QhpwUaCFNyu7e23cTm7uZ27DBv960ZW/YeGdXrUZI3I6ge6lFOfgc7+bLdjkySfe8Rh+gbZQYwW/MoEYbB8NVHbIpgdSsysJEyZpXwhkgHJ2wH1Hs3a4WRgSy9oK5PGJWEKgSBVEg6jgCySg2KkgNCGWbEdhWaUs9oGnVGEUfOHpuljUk6Mh79eDwemcnbk9RY4mw8LZ9Ap+obJUUGOaKKWSBYBX4nw7xdM2XUgcizsqlmict5fCuSBskMDIIlXCS5j8jM9RWSzHGJxl3lyyAisHh5QkYT+ulPWXMAoEsMhFfb7JKcKSmOnj0eNHenoC1ba2xtMeFbgO5x9OoJV9LN3aMPjWKscAR6L1iGLx7jL3KtoXe/+aWUmfu+X0R8aQuF3l26kAtPWdxrrd6oFiKQiRT4lLuc15Kloez43KgxTAjAhC4hRseH6uRb8DhmtSXnq5eB+sUEVIw0I5mw8ETnXafSdaXbldO3rN/5wHp4qTsj9fWEYNFocy8r81VaUV+z7FGUtKIUqIanZcZIRkSkjYwDm91/JWV77m4wt7XIOMkJqFG3kW4eSiVX/7DPfYyc0X4pe88YcCGnFbSufDweALZt+/T9x2rgsrVNo+Htue/XWOs0KJDCiiLOcye4NxJujbZHZ6paw/7Z//dP9n1vfvv194+PHz+uBqVvCPUklXkQ/JntrE10cCa3clUUavgCLAkXBzhbRd1aG8KgHAxm3gjMEtrMfaSFFr2xtS0zxTTIMNSMxV5O2xKAzjqRNdX6/88VDElAkBaRZuhlg2UJnnFBpQ8U36zAF5BSVNmgzRB0lu58wndNE7fA6w2cPcmYJaIQmb6NPjYjex5Eao/eZjlARJTeTSAi2taqEHT4OHOgmpLWSMtQqkp23YTA4SKUCZUVRo7WXfe2ucHLEAYpVKTDTciKxiSAAb9Pria0JGOeeTODAbT90Ov+oFD1JH3yoqKGSl1essMNcfT99bFtmzt7QqG22dHTDK0hpehhiAol9eN1VCRmIsLp0UVacz+iqlTptvloTtX63mlIZ0BJdCniwexx2mOMCBEsp0goGRSmthwAe4+Pnz69vr622/39+/dm9ng8MvHid2ubmVWOSo3NDTq27ebuTBQz9WAP9T1aMzc/+qMc3q1tj8eDAxm6m7SZP/oB4b7d+tRRJGam0RpPQi+zGbKITKZ51XhUh3N4aViRQrn8i/5PlZxmpbiAKlO/UlXE7HmQBD0liuW0ktTxQOUDVC160oZnPVV8YWhTM8vFAGfFEofDuNyoMZDJr2K7mFSdUdIqPfuqZMxnamg0JXeqEfWK76E81RfeVF49WuGlxrN0GR6ylKKUVxIZfcd0l0gx/ZSjUuV2u+3Ry+YhETkgkTfbxBRMC0OvlpNvgoFXo+U3R89WnGft2ahLAkY50wgrgRQKUh9uknotTEaov7x8+NnPv3l5eZGUvcOUvSeHuwepOA6DS9rut0g89v3Dhw/WKCRMx76/bC++tcyMHl1pjYBFxL7vj8ejojERoVuYG5TRj1u739+1UGbfM9Bsg9AzYRAqRUdtM7qO2GO5/5GfPn3vTtIjjgNJ8tgjE3nkvveq43azLiA75ykuXD2VeXzREXvvbkxoa+5tQHFklUQ5socZ2EYbuap/CeXRj3bb2m3rvauAMqscGmFbUU71n/MQj1BrnhlCyCpnVo1wQ/+R9unC1fyNF00wsIp5PN2+FOirzPuLvPkHEZV/M4mWyDyv/0Gz9ifKXv7BGuMfuPxZv8RnPsS3oywcGZAJCiOSv93a/vh0d/3i25/9C7/45o/+8Gf9+HQ8Pu5t2xJgWjVxNC9kY9G43Y7Y1eWbGxjHg6S7teYUItIAb97cJbn7IaonqQ3mMCjv3gi+by/7vn963Zu1bWsSU5TpSJnzbrdalIgwEGaje4fJNuvxiKODlrlb25r7/nocoXbbiPbysjW/f/fdx8e+t/uNzYd3qbl6GnD3BnpP5JD7cLaIGHEVFny0RNz89uhH9CSZQGbIcrr5jfBrULR4euboYDl20bdGhDIzeh5SWKNMPY/E4L2gp7j3JNkTEkULRQii0VlF+oKutaBYVEoQSHWEkxzA+FBm3+73WN0TUpFJZoV3bNHPCnN95nLlSolk5vp93TQYlJ/XpwFVss2QRmAJ447RWrKHNTZvNGVAAgpbrGJvcIOdRcQSmdVQxcxYkb9UKIAwQ2YvyeWtmfHYX/3lJfruZty2JQ2j9wy01mDOzEab0XiFtyGLrZn3VO/78enTp4KF0jTEuHBfMAQ3yaqHL8xyN7PNaMt7WLq7iT7RREZ0iSvwmpaFPFOKgZkNODokJiecu8zUBpYEVCAiupWlWsoC3TevspEcMOBiTqSekUu6GZHKCEy93zCTO4dppJHrz1ayxrwwossAQ2afwYDGVCqW0WhGd0pJJyAQRhcg4eiBWcVWx4QAzZSlXhEodPQBny4glveZ6Dk+5InpSVaNFpAphDqprRmEzMBIFU5W0R9HrrJXuRLczFCQGSjVqQ5+utUajTCpk8pE1FdVXN1yRkHM2OpjU+SYY0X+bJYgVTJXkeLiCctr0Fpjys2bmSId5lkzQUJ1bxlMiURopqcgMkbpbynGgGAp7pkwEk1Qgo9Dj3/8feav+3E6JljxsxQWbp+PsFzRaJRabaukdIzN3MuOUBSeCGmFlg8VVgQqHGpmzvGN9eWRGZHMrBARC59MHCeMbvRUvn7axwwpkwYwtBtJZecw0THxU5b9OSI6y6BwMiKOGfe2RkmpEJUQiYQkJFTqFenKMMoGvrHKgVLft+q+3TdL9oxtM6Uqj8m2bd/3eLzebjeaVaVn4SQBcvd2v73GUQj+WxultZVErOot7zAIgruXa6aN/IFYXH5Wt3Ece2ozqhLLzTdLcLW1mPgcpcojAUvPkVRaceDsWbpR+WIBUNGVm3u73xx89CNnC/ue4dZG8yC6N5qXoLRjf922zZtXuCwi3NrmFkdXIvuotAQcMDbrFRgvHDySoLm3bYPCZKdhOm1vTeta051QxuFKlKpuKWm05jFSOFGXjT5LpFmLo+fx6Akxt20reJ5Px2Pfe0K+NXK0Fz+OI49OurLSDC5tkJjNfRYvBTCaLTvttt334wH0St/Y9x1Lfe9n+6J5wpLwzNBU+2wANKqoZ5WXTJdPlTST1VD8qfwYS1Tj4vjhAMXVEleJQARQcpFm5lYIdczsFTlEFrdkZmLQ3sSavzhDUXGUs5J4hC8g8bkjAi5uy3k+pzE8TX082cuT4DnDUhcjWVJVRho4YfQ4RJitXIunNVmcV9PPVKcZE6yx3suR/R54dt8u/iJzM1zDEeN7/5w43o8ZvHzU9cOJITNrZPZE2/z+7uXDN+9eXl4qsjo+t5U/Mkej9Mio2M1ty8wjoyujqixaq/5R5X82sw1Vf4bM3LYtIkoCHX1/fWXv++vrx23biC54Rk91Bo+ziqkSa6qatmhWS/iRtNGNUGVUZ+anT0dmFuK+WWu87Y+Px3FQdC/IBEVGdGXugLV29hIkCj/vLLlPTuJBtS/OBcdPMoqLu41vJ5eaXrxo6MEnokOVyABVdARU7mfkEXH8dPHSL1DBX9C0/W1HqVxfNi9/x6/+ycYX5/mbJ7+gGIFcdo6iv9y3b9+3P/j223/xj/7ww7t3mzMMPXbC2kT2MZgiRYxOC2ZAujuQNmrWqkuPKmHBnZUAtrXbAn19aVuxKbopAKm5v9zvJnPznkKGxEbAnZmRyRziLyJ44hTKvAJZahtJjVKFZM/oPQDrrx/N7P27d2k8olfxG1Lbtm2wnugZeeSRPcSENlSfSimrBBhD+2obAhEyo7UGZFfu+54BM/OBX5kR0a+oqhfE10ocFkIAL/HMcgyvWtNx1gjQl4BY48/d3KeNHnJT5LZ8ymtUlibeiM557t5kV52k9Rn2ml1k3NOVGrl/4psuSPNdlftdSrtsBAvsLYzFmhUmd73OjSnNCqbGkf1Xvwey6q4jouJm3tof/PxdKU4vLy8RWbXWAKrvXWbPrHqWzdgisT8+SUIMY/XymV9YNzOTPc1zTbXUwtq/8i9oeCvKGyWgaly0rtezVC2hP43o8aTLf+tGW7t0hbhbNtiQ8ZitDd+EziRd4o3r664fPlUUriBhPWZpYuVPN2tl4dosKbrefl03Pcf0rl2vAIQOkoJYib5T3oxJFJQbyiWP+sZ5RTY7MdamUBwZrSTNh/ceLKdMkg2AIQEfgfk6jvLSv21MwMwpWalcq3ISdYkNENbZTaVAesiBjvaEgTrvJBss1MYLzmO4SrRSp35YdZBiLtMA00fAlV8AEJaIyvoswT7rcOdzRiIlUPZrWb9uAvrsNnp/96Jp9q1p1xdvrWU5s+afzCxjZHJghi6KMCreC4BA5HAjSqp2sGh25z2yyJ6Z5bgIzpgBMJPV+URLKxNkfdeiJdQuTtobCbCnDraizSMXqv47PFxMKXrSUPnQA6hcWbzxxip6dTvyuOw+hyg8Ox4VsFJhIvbeq5rX6HIbDFBmFYkys8093Y+97/te+mIbFKNxuCVZZZiPdHO5WzWNTlaONM706PpasJJvUXXkg/9Y4eBOmCgVDZC1+koyCtGSQvkcHa05wIhApl+SvBdNG4yiRKWk6EoDCxTkuk/btqlH6fi6sDx3L5jvYZyUE5Bpjn4E0rxtIqsAS0mYSdXHMmP4xZuZVTXwSRyjcmkIokz0njBV4fDjcXx8fZXYtm3bWmbuj6P3/vq67z3pHsJwwMzRlfd2L4CuzPIfxXgDmVIqzCyVgnjJOOFkUqsz4GKCS2AQiZkqM0GGbB6kwuueBevTDHuTYfJ0Vkvw5OzTACiKiq4F3ufFqCaEBgx0lkxWoBSwUUU9yugrrQxeeRDiQA7PkfY3tntt+huJ/vbni9OdPAUSKnjLsW64eOjJARIzcLA5dA6N563XvV2T69vLtCp3qF0cK0a6VehcVfQGYNU/zDP/u0HDWs+s6rVqKcdp+ZLmqNo9c7/f7+/fv3z48G7bPDFkDmZ1WbkmvIIQgQIhcMkjIkIDKhQc5fNjYd22NFa1viQhe0YUal900RLa+0PcLKIqG93cjQD2fS+FQNKoZSh0MZzNXTClQkTsjwdTsWdrrW1bZfrFoX3f972The/vdb4SnNLniYQWKn4dBHl18c0cLGI0RJvSRZnYtluzjajSkCHeDG7WAVTWw3ARDvSckbwHgPA8AcD+AhHd33bw1NB+J4//UTP53c3j9zeYLG17GZH1aUYzttZu3rbmv/z2W8uIPZsTfXBmdz8T8zjMpwLSHWlTJkyUAZUjyZ0aEb/mBvmxd9hAY47Q5k2miE5h85ZDUCqzA0a3Ro9QKKNnEnRLhTTa0wEw0GhJVNguIxSJQFTCi3Pfj+3l7m49eu87DVQx9C7xccQRPWW2ucSIXq6iAYYHYBqoK0Vt/ebIkHS/vVu/qYYFVnUiz6WtQMVy5M3L6psGxyjcRDU67hFH770v+Ax8ZgSPpxXP/3yHpxDUdBXWb8qhPGfyNJ5ZOt78/IbDf34QOC9bWuAALxKmi2QJpcsdl3mOF83YxufvXU++TkCqgPCwOnDWKxYRls5z1GWVUkfydm/7vrtvLy8vpBU0tLs/Ho/H4zH9wgGgx942++47DVxSchWUYUrV66yGOg6WMcZR5gylmHLQaDHT1TA5KZCnaJtK0Rd3ZN1SoXAAmjXAb1QgcgKtle5+2k5PVS0k8dyRXlMJub70qr2s519V3/rnQn5CFdYUgY/457lEV3N97f7n34vPCG9pj9e+rEkksW4eSheYKiAM50Rv0QiZz5RqjrY6OYvIbAaMBrqe1RurXtiEmX2yPB2XNbcFc12kOPS31DTLgYGJ+6bR0XKIkyTSyIohm+MpZcmITmDAFJVrrMRyGbzzTJ0bN3Q5fcZAKsjB8e0aDXQseozK15lLb2YwOjmQPPFEGNOhP+GLR/kuvJkZh/IxMGuEnLpEqe8jHjccH5JSFaG1zMwMKX24GFCRibVWml7FnEW4ZTVU0M4+I87lcVghHz57pngxnjm7ZqACe2N9rIyIzEp9R2n47jQQeU7MyNYaHKpvcwMsJGiwpgzRnTTCUHaiQKK19ujHcRwjmwaZCvVsFXfVWwO4sjirB0OR76j4DeOJj7S+ajQWYh2Gov7RiVgF4CQBhwZeKwlrLsPHT59A3e93N9/7w9JeXl6quI/zFb13g2Yj3JGoULSOzN77y3bT2N2RRTkYwcW1tu4qk28xhUo8mM6nytXIkBiC3TSNq8wU6E7XDO8QQun3YDUcZNW8hLO5bbebesa+7/tjACBt251zRPTH41FVKzBmXOwqANVe6LYBJhHGmT2LzHxUIpx5713KbdsMrFKHq+giCdBIVc3ScMYMvl3UFsNKGUn1PO2KcZYHUU4u/EXWycuBv3LbcXshABsBuBd7UoyWdG6XGptuiVCBNo7I5MA9Ql786E8S/TMfti72cFHmOngryVJTL5KErCgvUC7i1a5mvmU8c2WKnVjxTxKrCDUnXNNkuwZg30+0ZD5jPJ4cZxYVITKzn/J6LfLsvfETjMEC9NlvYGZwI5Ic7SVu7263l+1+vxfgXGZOFI2T2K4+18xkD2+tYAaKxiyV0DYvKyTQJEIZqkZHY7XNrCSmO4+jgyfax5ps4a+U4C/jMGOUF66tjzjOi1OEb5vfbreqewEk3YnCnw7AmMiAmW+bOU3CG3SWtWvXTceleP7NxSv2qwv0uhcIaon/ADCgUIop58C9cClYiO79Jw37/wXGF1+3VvX3/N6/VuPKVf68Sz9LsR5Acm1zd+O3797/wc++zf2xP/pLpThVBnKljE1jGBGleFWCg0rjH1opSW7uTsuJdlP0U1Kyme+ZSPnWzPnp02gKMHiO0d17L2SdSenle5w9VFjqiaEgIYHsUvZqkihQ1ZZka1u2ZGqPfY8uyNwz0XsH2fvx+jiOyNv95Xa79YGkVc4+kq7hpcrjOI4q8/ENwNF77x3GbdvWISr0XbLglvwKjVsjz/JIKrL3Hl1CVP+kQoSuFgmlDwhxgcj+cWNo5zlgcp4U4GnILT3kiyPzMzqZj16vqIcMo8eejCtJFbYzMt44Aiam6/U513u/KMqvBt7pm4BI42Lyl48Zdp0qfdeXWrWbV80Ipk3CCzDvRFkru7HVX7/77rtPR8c05D5falxApBYY4RLTq+3FmxW76glvGPj6RpmuyyKMnjiaR+66v3jrucDQyi8m+hvRgC8m0D1LkDePvf6z1K95XrjI4AqDbFUjfFm9N9rLm3W4XiONNglvrsRFrC+1Kgv5ljM3bvU+nr6+HK1vhsI09cD6JGF2sB0vGv+97DIAWPSAExhVTjWnyTQG6hkuIkkX1NUSu9eOxAPqddyWPXOw0GmkZD65DzBO1VPYTMtN/EyeXxSLa5FjRjPGMrkJiMyKlNPNmjezH+IDOVvVSFWaUMCAb4hkAGSX92FRYCnWRvVCc+j9GIBetuittQamIgvKbNSDm0IaLV01MJl50avnnp7/XMUIb/RAXHTjwQkv9wKoqMOiQ0yHUf0zM6sIXCec0Og1sNjs1UtirZWSXO14NPQuApWGb6213vvr6+upoouS2ue7OARJNXEubsWxtb0HZ/HmBH/LhSNezU0WOxEzqkBhnueuMLJ5lYVEQFK6OumBiAw+6L5RGL3UI6rEzoAqKh7OJsDcdVnWNSLChLDjzfGo9TqOQ5msB82s4953eqtUTEnHcUBxA44jALT7LY4D5t6aCz2SwMt228v3Wa4burspQ8oIVa53eUgjhv5NeIGALBZ2ZIyYJ1HNk9cw3zR6kUHGpCJ7RI59rQCUDD1GoGDeO78XmemgZnGymwNQj0p3K3fOcoGTI+k9U6EB8VdgXVcDeFGwppsRAJTGAQGc6hgSYUL1DmzlqHYaLIQwWSJDBBCWiBDCnEKaYnrvB3NUJKeMeUP6133/gVP65D9eT9BKOOG0fSefGo+agqIeldMnSpyOlTeMAM8Mkc9j/DWqL4kgFT3XcNBBaPgkK9WwgseYPuPJgf/SkEXjpYUwYQDOitDlT8w0Q7vf3r2739+9tJuLOXoEGmf8/JpSfpFsVS5NV9e+99vNrKgLVpVQNkohJKUhnQB1HI8I5Exmzsxt2zCA2DMzMuMovqZeYHsaeSXD09CPXNxwecEy8c3LB5LHEeXsI1kYAt9/d3Nrx6HoNXE2sLEiS3kVS4u0gKorS47LSgsZyA1Lt7A5gBFQLinYaDKO2rFBPKVuJWk9YtZumXLU3iyMkN/DWPP/4p9+4zR+G5q8vu7NwfktnvZ7GH/BiRVZjp9LPxFtpNHz5x/e/62/+cd/84/+ML//lR4PwK21lMqbXXxcUkKtGYwRJXdDZonh523Tv1aZRwNyMrK1Zg0AzKyDoLyALczrXvOCGneYgiFFmdzuBAqIDw6TLErlAp0GWVR2teTum5NOwfbM5i1v2o+j90OUWcvM3jMi7i8vJEPU0QFkL8WyupgoU733mKqzmR0RbtsK6Lg7m2/b9vHToyo2rbXK+xrG8MCAuNBehjePLncza+6KlLKAeZA4IEUeUeXB1kpfsotTsnhylSFcN/v6c516jmi9WICjqDw7YWXQDrXPdDk+b8To53TFLxlvA0HvMzNp6Vr+xjsjkOw2YikrCa7CWBP34TSE1sSeRBWGJaMKpHRhAB8NL24GyoMOmXk5RjMiblVey9yPV+xLv5cZ3Sub2yMCzM3urTW4Va577Ht9w2QnnF/PgqQq6Wtu16kuP/71DJ6LnEkfK4LFwDXsE5KEnQtTuyaOInnNQONF8SArUufXd1VgdImAurimVOqTTSLn7MmkSw78G0q4vIskL2C0WCbBUjmGlLHSRE9Z/GZ/39DeeovqU0nMYA4uZEZyqKZWqz/SmQNmaZCJxbQkaHZ8PXXRCh2PLOmy3QituGjVpc+35Si+GiEZbxPyDcFZ/X5ZH3xx8NLmrcbwvMRzCdKTj2A202mo8yKtdi5jW9cZHHqPho4BgEOYV+BQkQkyUVgx5blB5d97a5q3q+yEmkMmL9nCY57UqBMe/cPaJLCzMWQ9vvrGouDooQk4IAHKURDScxSIVb4EADMvsHMr2JcKbAx/a4p0nfPH5PxLv0Keeu8R52LZ7CZV4ERXqlvbF8ecCYYRNqAEy8FRzFqIiF5ur9FtoPfeLb21NtrsbYWq64UFCTpqHUIVWJAQZS0mALTNBGb4YkNS9Xm+eKR4oYyKCNmTy4qSCZnGqmCf9AKiGvPMzlSTgSbRe7+1rbWqrtaouYeOfvjmkEUEqfv9LimPbqDZiJNrWDs0s74/qvXWyIYaLp82xMw1QWhavLj4MmvzIg4C1SYLKZlQkDwRL+/bkQkwjp3eyPvatop+m5sUig4z9xezqIaCmSk6fXjSzCEbvhMYHZ6ZJu3xSA0I8oXUBzAzqwD8KmXv93sMD+LYqiMDVaZ+98fjIam11qN/+vQJozYgVlx3YCyDFezVymQeHrUoyKW8oAVO5bsW7WSxi7jXns4zOs/9zJdeF4yVjyhf/TIGhklMt7GrkBEZCUHZfFMUmEIqgIgphMHEcApeTtp1Z68TkxauoVZu0vrTfAKwnKk50xKeRdHajvXSRV1Xa2ddsNDIr4R3PVyDKU3iXE7xGfYcoUJ3N53J0vU5P6ENtGZeJ5rTumZJLEkIo7PZ7dbu724fvn2/BMeSLvqSJqdRE5xx9MpuaGUNb83Njh7MAVd6VP9ewgytNQ0MQM6j3Um2zSKUs4fkcAFm92GCj3D0DLfzXC5g+YOdiwIr2mAFnQXY7fZyu+3TBZYFlr4jEUkN6psbNGsvn3XQ+fMQk7ZaEVz2ffxpKp0alYG4NlW6HB+WMuVuwA/6hn/acaXkv/xlv/UcflIa/6sdI5ltgUAXmZjy7vaLbz788d/4G++29jHSoW0125vBX6Qyk1JUKCKyFMrKIdy8kbT2lB5Zo0p7Sk1BqpnJG2dtPKbXf/GZGVGBU2xmhkwvQVNaHVMaPR6z9+h9t0oNtPGRiIy+24AIsq1ZJPpxHMc4y+7b+/sNeDz2/ik/VVuZEn/Vek8aOmtrN+9VETHgQgAEtO/7skxqcTnTaOpb3E+y/Hf/zf/i97fJX8fX8XX8tR//zd//07/qKfw2QzpN2VOLMBvFuosl6hSdSxCYmASGCTJM1jd+AQxtHCSgsn4HgNnQoK7PvNSfY+rV671L0S0j4qogvXld/TA/Z/hbpn6/1MhZd5n1/GztS4qHcdYBEUYIPYMzDdBg7lv5h1WtZ8ur4l5N8jSzh0YKitnEy0sKUQ6QyGytuW8CEkljgfHVJMvsLdO0IHpBcSbyluFEmzUS04tUGaShRODIKJSkiECkb7TGrkaN5uqSTHBzs4u/quJTwy9ikuCO0ZS43JMN6te1XjRUa9HcuWy/SjkNuftxHI/H7tstM5vBbZCBFDSV61qVQc1+7Hv2yB6K7NETnWkVF2rmheAXWcVUmYqjdxGt3UQ8Hq/ffXwt8KryKZTte9V3B3BiBDXCxWOVavJS9i7pSPXhr1IMW4kSWXkWHI7GXFWG89yUhVCztWmmYjompdO2udL9mh4vmV3LdiRAjMieynQvHOwY2FZkAJ5HBwjSm7OZyXWgZw4UmNGSUCpkIeVwn1ZVw1gpaTZP+A16cxmcuLi3L7+/HqXTah2hwPIEXU3c6SVeK/LGjHyzSlctk0pkFuZDhi61gZBUfcXKMCtz3a0q8OE2SgAGzECxiUE0P/TRP248baJVRlea837fbu9vHz68++bbD/eX+6M/MkpBH3AWAAthe9jz43Ek2SN673YcJP1WXkBGV9/DSTgoRWbvXUQ1PVpzKC4vcdu2wh2tLhlTg0+KEdEImc8Us3QfhUErps5ZJWGFoCgzaPNmzY8D5U1s2/3+8h589J5gB6lKLetRWdC4LM46IJPYg7NqIDViC5iZqHXNzdu6fYgogUAnaaw6SZy0xjLYJZn5zXzfNnwGl/KX2usfKFP/y42fzET/nRrYv8cxoWBWOuLwzojky3372Yf33364v37/fX+8frsN5nv0LkSlElyq69PMzejk1pqZOdHMQ72oWilnAQw6gAOp7KBBgrKZmdnjOAr90jFaAAja0WlwmxIOAyJJFCBmTHdTpNKyScoelfpSHClFWrOMVPq2GeVUZBClBoFk3w9rBSBXnxMgDRaFVVKd/6Zzuc5X5gAEVhBAV89Mb/flj6VVGG3oghGB/IlY4dfxdXwdX8dfj6GZdjAyP1JEQbJXIk/11i6gBlEuaWTgDtRWAijbauGtzsfCMMELUO2gLA1Z6D9Tfe0SgAZz98FjI0vxWykqq0IYnwUGhh/22bVdPzSvmOsEKSSjwnWXrpAiR/tYmxnrTG8sWChBdMtAoXmJhSYjP+vMLUPmJNxoZQb34zA2eEaGhj3cgDy1tOvqS4reV4VwjtIgJytgrwI+r1bgFWcsqG9ygKdpdENihW1ZafSyyvcT5e4l7cxMwuvra2ttaw0rvK+oUBg58M01Ky1tdV3vnZKvnlqFMg2Uub+cIsssiRj49pIS8lGILRHHcRzHQ7SIqJLswmaYAMYMZlbez/H4GIXCBzNr8lBmKpmkXvtuVIoRRwihXvHY7XZ7ef/Sj/z1r3/93XffSWptAwftItGf03hswrixbOPZVW+BeO37HhGtNRMGjMTcSl7IvbkfK3WhdPRL8qrhberO1VBcyT/raRdjcbzMp6fqJN+huA8bvk5aqTiksgerGnjb/NZCKaKacNSpFWBwleeJw1S4egdGnM2GyVrmxzqHknIZvTiP35PJevE5XYnkKYJ3Cd5eD/CbBy4DuMCZqv6El9RxZL/ewmk5rUWrtgfrAl16LKGS3osH/CX6wV7H1f5fJTjJbN7EJGE3u3+4v/vw7sM3H959eEmAwerthsWVzWzuexnAIw5biHxk9XTZtm3bNqPFcRZIu/tIRPiM5zxtinzkqRkWidLRZzW1TBHnmgwF+rKSJI3W2Khp9BqXqdlaa+3We0YckJEwa9nDTG5+cQ48GcBrkrVN7qPJ8MV6H3+qLmtX0h3mAbxwwYACJVXtQqHIFKO7b7fH6+tPbhP+bmzg33J8fjD/mo/FJP8Cly5P1fiFUYTe3++/+Pbbn3/4oOOjS80alZhNLA4cbJW9BZK37WbNUwPvioIiEoSX4x1IWfP7/d4KoWMlW5IC7rcbyb13EN6acCInm4wcpTFWkKGR9YRCkvNgmmVm40B5JcsnBSViP0K8vdhmHlBzf3DvvXfIttu2udt2ZELKHqmE2e12Y/QjRr/W3jvpt9sNQu959G7Wj57uXuJ5dFhs9HarSpzBEiv43KP3LkXvvTn/u//1P/v3/u5//rvY8a/j6/g6vo7f8/gP/+Hfqx+Wtoipd83YIorLq2JNs7lmVZaNiy66CmfwT09VgaMCCwCq0Vb2Ubx2ZiMWAs5IO39jTw0reuLwL1WntLVVhnaNcGgGjSvjr1TIyly9by9akaozc0pR7UJnfn8S1Tpru9+iosBTIltrt9stj5gG7Gj3PHAxhvEcvffVpbmiKWUlozJ1zQywiPBmq2Za9MQMxWWS3Ky5wUVUHxIgE1b1FDAzjRBqJs0VKtQXzlgNkGa+7zuhl60ZGHlE7yaYteM4Gs0KR5jJSkGkkewRrTVK+75v7b5tm5G3+/3x+lp55+4ObBHx/eunl5eXjY6lHNcquB19QM3tjw632+1WqJvbtkVmAW98/PhxpTXWe/uImvbIbIQJ5pasPjC185XEqJ5dCRoQGdEB3u7t9nIjdfSHFIWU+OnxCeB2/9ZA2lZ9Vmr8B3/3azbX1/F1/FWO//6//h/rh3/wH/3Pf7Uz+esz1pr8T//V//ZXOpF/+sfP8Lp+fgGAV1x+U2N5RJefZ3++YAc+/sDzr79/+9w5li3v16pG4B0MuAP3H7jv6/g6vo6v46//+E/+9O8fxxFHZ46IZag/+kH6+/fvX959C+AYDjVeXZycwEvVQ2cE6iZ2fV1Z0TgANz8BL++37er4tms5nbHMVXdvt5uPHo1X/Da3auFoBfQ9kJguzmJ5M2gUvvMS2h2JNmW7kuZuZl15vcCqWWMq+kGSjurUU+m8M1mJFT6s0q3ee0WAffXxLkM0ExWefNOw84LAskICKwPZ3W00i6pmK6O6Tav/77CAq8gxjkO3Vj0O2jTjs97eSBkRIGlV2gPs+zHwmJuvJ4tjcQRkDI+BxE0k2Sb2c2FYy6xVDMebz6y8KYeF5ALGg5IJGmenmwXAqJBZldXXpHn6IaAsEH+27QaAPUcqe/VgplcMpLkB6LHnQESST/CDmktRWAHBrlhoOR6KNGuZqpRv4d/YpXsy3DKCUqg+q4CzNZPjSWsAPn36BCOt+a0ZPbThcdC076/uG2lObm6dUjIVkf04HoWuAWMzm3DqjIjvv//+17/+tcy3+w2MgqaEzN03f+rP9nV8HV/H1/F1fB1fx9fxdXwdX8ePHRxWiQVioFdXbZSNtjKZiRn2w3MdYpmO7hejg2cYc8U2l7GXmUYqEhI1+hLhkjpUYLBICZm9a/Q6WpNkFVHGALLVCvutCZTlVe/jaC41UP3dPVDN1VNiajZmvqDG2uiU0Veq2uycLUzwzszx4WUAA1iOUk7Ek2vdbz6XRr75eT15xX5t4sPXReOrntOkeXalUQE25erAPD+/mgJUidFpgc/8U82IsZlpwsZdV3LdMgzg+g2xnl955CzA2kLNCkhZAGIFm81Zf0orfGqMyDoqN3ZkmYNS0gtDbq3QcFrY6M9HmhKFEFmBXEll39eu9wyDMgKAxJ6oXiUC9y4Kt3urIsDWvBYoxUNBEoUlKAGWIAYEkzQyaStybeRY7pEoUCQJTygidAg2m5qklCl2wMt2NjIhZR7Ho8cuWLPm9Alrgmpj+Hg8Xl/37f6ubc0MYkMQkaTdbu2//V/+03//3/ovf+wh/zq+jq/j6/g6vo6v4+v4Or6OrwPAf/w//DvttrXWRl/cKGQcb80rwqnIyABGc1pJACMTTLL6X6M6GFYSzgKWAljlqVdkEGCgmdpnxYJVFgXAqswMKGBzzE49Es04IRBUoU4zk6nKpp4tN4zuKiJkMoCWxIAW5Qi6xoSnXUnINcbENKC7JY2u184KVlZsuEqJOaq1UPCExlE3xyoSNCrO0ss3b8EFf4czQp7XplPWADjLFj3N1HI6ZMFZjGHgwBsHDEk6Gi2rLi9GvD0B81bwFSQL8ipHNzG5u7E1Z1ohsZiZ8V/5V/81TaQs09lbyXDO22nm4wPMzCEAVn2WBaSI3LbNK8mgQv8OkiY4xNHfGDYqnFSEcmtmIKKrWjInIroQt9vt3W3LzB67u99uTRPNMns1C7HKWAZABQCn3W63mt6HD+8z8/X11cxQf3WvBapCu5HYAGVmlQJmlZu7WWXAV96CLCBr7Bn7o3fKrB0RPTA9RqZkKGUU0JU9j9fXVyFsNAL1ancUidvtHrRf/aM/+9U/+XVrTWRP3G4vCCjp7u/evdtu0ymFWsjMHpkVWY7ovUc82ENZdVCjZ3JtUx99qDNzuAY0HAeThlQeJpvpbuUDq3qq9fPokVjnLE6YaFywnQKn38jxWfUsCtA8q0CXE/Sco1ezb9t2u918a601v/ntdmu3TZF7P/oxcjZ674/H0fdDPWLCASt7AWgDy/VyltpLgmSX+ns+JfZdinh5Htq6ZjmE1u81++N9dnusGl0uX8+sQz7ditOjtu+va180mn7bQjwqDK5CTRuFo3Gc1+fJ9V5uN8yuD8dxREQB7rzhO3/ukKKwWKszQXFYmF7ev3zz82++/fZbOsBszasWII4BosCJtFzAYYO7wc0ME5gdZh8/vrbbZq3dP7z75S9/+f7bb+7N3b0fhyKr6YJmLhBSN29S9J77/grANjOzVBi9di/iKBJtt/vm9nh9RYyEJTNTMkKZyVau2ipFHrCHRo+Quo7jEbmXay9Cx3H0HoS39mJmve/HcXz8+N33332HyOzx+rr/7e/+7R+1sP9cjf/9H/2DH/jLKWsvDOFHjR9b626f/0pfqnb+7eZTKWnbtt3vdwCPx+P19TXzTC1783BJdJME0tyb4cPNfvHh/nf+pb/1r/+df/lv/vKb/dd/ZvH4cL+9NO95JNWabba5GZOt8Mpbq2AFDZI289vt5iMZL95UpLd2RjMqAarQtUq/CrBHFHa92yZp70flTD0ejxDabStgqiMjupxMWES89tiPXq1ySc8jj+MofMReHNjtkF73Y091WRg6vIcikeT+6McRkSAZQD8ylHR73TvdAOtHPHrMUAdLj6qWd5gO98zR+3E2KQiuPsnA+ckzAxCANZJsBQz2evTes8dxHMdx/OpXv/r1n/3jiPDb9u7dfdu23vv333/SbL02pFhJvc9KvimQTISZWfPWWmlqVcg/isVKRsQJmpqXfu8j3OReConZGXRa3HV1PltSZiiABTI/Y1ArHdFHO8qTDktq5IXMp5wiv6Skrl9epdjIVzSr1tBwa6351ty9UiXNN00s8fUtx3HcbreXl5eXl5cCYSm0m7VTHPDdLE2jJOBxHPvrY9/3x6fX77///vHx03EcZzekVQFO1u31QylES9Qu4Z5nE4shr2tdsJaAZ+M6+rnIGNA+J8R6VuEeSbL3XuV7pY+txUz18+fLhK/rvB6+VPxzLvPegV/z/CcAo6s2ULDnvXegUEvHkubshjBvsaKdeWTOAODCQ+KEhjWzUr+XsQRAvLA1OwmmlnVEKuXrvFSXhVh6C4bGmERmthG7s0WZnPFSzche6Zo15zZo47juDlm22ei1ESqYJez7Y//4ad9fN/MPHz68e/fu3bt3trW9H73vftt8a5Lide+9M6pTEOBWICCAZYyTppm+uxKeKzJZmPalwcYExqkp5cSxb6xTAGVv5vZs9UnqGqCzpfZwFqZmZkEmDZX/CY7njC2XAbymIVTnIC0b7aR80lsD8OjHm+0G0Erxy4iIWla7IDzLzqc1XlhWrsJd+UR4WYQ6UH7mjVee+WYRxksuBnD17B13zX4IXLnTRmmgxmYFpFmoMA7SWvHeWvkzg7oQMbqS5IikshoARbUFqTOLKSUbRFYlcwFUgdWqymcfJyASIirWThNsaJmVU9+rgNZRPYFR3eFNTlQr07QJthMVZJbAzExLu7nLCgsXYCEeIzMf/cD0j3RlZrYJfAVjOWCKuLOjbO+e8enTJ3e3NtDPGlv12QyVpwcmr+3nlA8pHr0fx9HazdhAVv9ewnPBKxOShsdAYqQyjTb6YaGSuKEcHbrMb+OgDrwxujvh++OI0LbdSH/sPUD3TSk2+m1j89I8UDnrKZ2GZdBEB0ns1e/rwkQCgDKRKapqtoEV1h8Z7OP4EMAlkWOwyNTkQhWNn3xq6hnFPU8qv6TsFy776N+FYY8W7wQEDlRlkjTAGNkRQtfGNIOHEJYdje3WhhMlEwm2JM3zOAopJY3o5eTRAAcjcWHcs2/uqQ28gTK6fjUugv/6s5ZDAU/jfKzGvhTTJAfiDSfSwJUlXVsUmpmmepeQETZbq8nY2g1Axmj+vvQbAIUIX+BPPuVB770fqfyx1gIKVNlGZn4CtObt5t/8/Gcv7+/WqHKDbSZTKq1yG65eBgTAiCJCREZBWAui8n7frBXHlhRSJN2B1mzPLqr8Vvt+RIbBM9Ppzbxbjwh1sZV71YcrDYUDTwW6Ukmj21RiYFYtwDT6qbRVCtHj2I8DaAOSHWruMJBpaBstAxGx73v2g+Rt2/p9e3z8lDkaZX8dP2a8NUSv5+v3Oa5n/C8/cnaWjoj7/V7VNN9///160Trs6xbCSSTCya1xa2aMX/7im1/87F1zdPRSZA/3VDUqkqHKZRoJpCJCk9MCOADrvYqBbm6IrAYYhZzZM3rGtm3isAQCSmWjWbUfm7JgKCtCM5dwu91DQ961dmtAeBx7nMVMVXPlm1nzraxEkIR6ZipQ9q0Z0ZVHJAQbTRYm5kr5s0Qr4VI2nmFajCRthixIl132jiBpSChGjOKyzsuwLKfq1C9DOEgURNZxHJnV4Sxjj+P1eDwOIOEWIXJ4JJcs8+r9pLed55YwkEqCVqer0Tik9slHo76pIw+I1ioQO/XFJ7tnGpy4HBbSribcujKUs8nGZyR6kXOa0v+6kJgFjrwYxm+OJ2dm45pSbYohBbUhEpM0Fnh5q3Ubfu3htcl3Umk4Z0+4aTqVVd/Kfssc5XwENKWeu9/v94Ko2R8PSWKOQFdFvDCbLC5vxcVofCPc58EszWZpO7VIyNGWunq5LwOYy1QGYGgAOJeSa/8sgQniqJMPlJnSM8taXqYUZ0+RVGL0feBlhudGf765z8zMypIEUM20p56AmidRtaOnurJ+qBVeDouL/qah10tZq6Rh2JCUTmIYk4tMRWKk4ApC9OgCUI51q4iqmUlJKMqpZQRGGS6tFHjNpNzOPpGJx8niSO49HUDXU2M0Mx/BmHKjXOh2AeVqgubm6CIrsbrmTGcHYV4dplE9ycs8S4LEWI8UiOJLAwbZBgUO8iRkGufjMtt6zoj1ETGM/YFQm5MIG5sgWOntK2v6suwjg9WMQw3LCjXPqLTPilkJzyCgEGHNMzN6ADBYbTTKeJ6LVhZERYVoIglimL7PVDRcXW4gIyJ6lEn5hnTfSMZ1O8mcWjRBxgn4amypTPVimvPoQ5j52GYwL8ApmvVe/D8BUNpGu1U7IuHmmiEWlUk7w4oOAJoNgs3QrrRlZ2p4Xj7A5v2cRH6e3nQok0CKBaY12mVjtP2gtdHWoIK8RoBlaoVyj16NNwG6s/nmYcJw9FY18piPv13o4f0thoJhMEgV3uk2E9mXa43k7XY7juP85LIEMvfofrsXO4hQdJGqQupyPCSLZYy3mNmx99qSotkOIbPieJzn8DgiQ37btnY3a58+fffp06us1HcZTGlSt62VXjX0BgRJx/BxSvKV+j/XfZ15qeA/J87z1RM8yW6t23Oz4cs1k48spjmW7sIu69OGW/dzMTz2hW9/aWu+1WG7bKdyGsmd7sxMi/S7O5C0UpNg1u43lzpB8gBaZhQf7SsRZVjW1xdeV+aNAfzZpPHn/vX5aecvS12Yd51O1rx0CX4jpIve3kjruoU22lo+yqV9MYDJsgY5WM9UTgEoo/94Xd+GD7V0grR2e/fh5f7+5duf/wxedSdyd2tOSh1WXcjmKtVnFq1enYtLjbPWRBwZ/Tj2fW/7TjI9G7SE6Dh5UDNTEDRSzlZQc1K0ZvLRD8ZJ0CKZmceRG9vwg0qTMbq78uLjKLnYe+89NFU0QRHHcQxf65xz+dTMG2neWutmB/be9//j+If/xvb3fuzy/vMwfjj8+8/gKHIqPkzy5eXl3bt3JF9fX9cveakHy+FYUiFKULi5fbjfvv1wd+jYP0pphkK/p5ui5LPAYUQVu3X30GgJKKkrG2YzNoycuamCq9zbmE3d6pK8eMemGI11WqvTlxJxBFIwuDtkYdXNsD7LjVZpKrMjt7l7YxslWCUm5Ga90o7qvcdxlEM9U7335YLN5dSbaqK7p5iJrWI11bh+5uDw7GwxDMtTH7hEtyrrb4TCnORYfIzYIEju+16JMys6Z5ew4ZjPJTz1A+RQZsOp211k8iXDaDJ2jE4e5zW4ZNOsrVn/rW/h6Wo8L6jsyy9M6NKi8/oo/IBo+Pwhn2urF/8FR9beiI6O+cxlX+1JUYFf0stkKsdiRMc0CjKzZJwuIPnXNQRQBnD1/jj2HVN+L2pZn7widbiw/bVc60o909v1N2tPrttHKvpJIdeHTDXdUPrr/NPyg9tnwv1c3ss0MFdgMY23Fz/H0DQpuU4fLkfguu/jWyYA/VXBwAxs2iXAWNpLRFyJWZd75+1vVaACbSJlQ49l5egB2GyguNfUL5+ga6Bife31FJTQNlngbFzKy0OuVAe4X2IzazFX0Lt+M1JIPjvL18firQ6pp38ot5tDlljHwQJncMLs6fAKox9pGSzVyh3GaqU7uj8IKEO/qHpkSRpZFt+pfq8DAjAzMUxsJnSlwNq1YadUMguREIycXK524Xp+y0SaizycdwAoMz+Pz9r9ofhxYhuT5ViwdvZrfEN1695lTl53/EpUl831K2GbWVUpLzvcqr+qxDM7Wuu9OVOdMT0+aw6LNtZ761A0jcUkYJp9KSs3YBZaj7ckSSUIDkjoEYylGaiRMlr0VF47As/HewJuKYmAIufV0hEQcWvum3KmykQoZn/UI0PGyKI5ZWaIsR9uw+VDcrvfs8K35kWaKbFWJIe/NkXBVHW/lUPU3HtgkKIDGUW3CVJb2xLKgCrlBig1Y+ycCsusstBHwxvCAGZG9KFtk77v/ePHT/sj7bYpQTSj749ujlbnqjx65WsTYOrKUGbmrBMYm81I9VAEE17lAEuKjzScIRsE6dlQuVLn1Xm2yO5zGr3S7pVe35yQxQiKy9ehqR6tmT3iqGNcSHqZab0YT53WbWuN1gYqeylGNdu+ASw3frUTAZOpUJd0NenrtTQ+k9zTJ1+l4DgzqKDGvHHya9f5vbhY9nqWjms11sMX2xrpSTbv51PP4SSkFEay3crBA4af73y4yYwZI8J82nyNAOJHxirPPSJs296/f//tt9++++b97XYLHJJgHDmcEEwmi94xku+oWbXiTncTEYX6UPwLnr0CIAJA03B3gply9yEJkGbY3JFUDhdOzS0DAZmVqM8sr5lGhyazkX6CEZQb4XOUDZ064jh1I1Y9jAGsTBoRiVCBGYS2dm9tM7M0mgMIDJSIcRD+z/jTl/uHb959c7+/O/ZorY3rZ4ftmlDxn5XjJI4E7IiICag4nD4mplob+Iom27ZN9IgYLuHsAHJ//D//1//9Z7/61W/V5vQLKcE/6aiA029yJ/2zNBY9SPr06ZOk+/3+zTffAHg8HsdxfH5DhkCwjRzSbz68/5M//oMP7971OI7XX98pby17hJhZsbWTh1CF5DHZrJ8K1hLGXIZHKTc4bbYVcAQQgyNVMu8TdgvJnhlds0CG2Uf+IoB+RO+ZgvsmRBciQokIAcdou21GgvIeiMoDbE2ySv5trRV8h5R778mRzp1HrxBWoT/KvObYexTkZK3zsJPL2ABmbqmG+syGqSBGyVtlzdCct6q9GnOsnLLsvVfWd61AY2tsa1UxnZXXqOlvEIWnsJU0tW19NuZDzqetB16l7Zs/6eJP1KV/4XrmKXlLyZKEM1CznvRGXtdK1qQXVV8/dokVTOHFNYTrHIyVr5dmvN3v7l5BiHN9ZCqrKGItL4AKkZ7BFRlYedFmo0MINnNE9t7btmXmUHON9T+SFUzrM9uOPCsnAVSvufVSpargawZF49TcxiE6jaspNfiGu1WB29ojTjP41A0uYv1CJDiNNI6taa3F0XkZX9yLRRsAStxy5Jo+WRSLTswqTM1JjbacO1eiWkxmzS0zrTF0wvAuwpu3nybN3H1WfZgbGgEoTAZkgKTTDoWk2hUAZu18WhUukdAIgRbrc7EcPMksh9F1KRYlX1WX+tM60TYHyeluGEfUzKosAj0SFYmFw02GkYMgzmK5KOAliqPYlTRTaSnL1zlapVp95nVuxco1jNyR+whU8G/03lyHt+yNSLmxIt9R2ZpGksWZWSwC5cVQCmYtoMruQSWAVmYIRz5FZiZFI8Cu9Moc9CEgMtMIM8sROzUM66/+mwWXTLKvYsPnIEfmSDzUxfuziAQXDnZlX+cBsWdex3OXyfJAUoVi5agzD1WXokrlSVlFkmwxP0gkspcMsJnvcjJDSVcU6/mxANjWOclM06k8lcfIzKitYpIkDS37MfeOUxMS6GY0kEgLsnIYAAERUVXCVUuEQKUWA0hiMzNrNrzL472Lb6pqHjhaAy//6NqVI8PNS7y11u73DcB0h2uqyFm+inkOR8LVOvC2NXc/otPNn5N+C5TLNyOtanr33iOGm6HmEBmhHOUBTKVfz6QkJSPi4/ef9sfgff0IEda249hf2q2YeM7040lVpwDWtKxyIoZXCU1RU2WGL4eHpJkccbV4K5Vi/PyGjWKKZAC8GHiXB57UT7LSaMcti8++URemg98MpA/NfuQGIDP36FBAmwkOPuzhLdzvdHO3IJjTkZa25KskomUmK66g89RNz+OFXT4rNOf5nIHiYpd12/X0Xpd9jbEdz1+5JNlFZgxrdniYbmcpziIMAOUImL9XRScWy/uc6a+cn0Uk1aXtxxrA0mgozK3d77d3H96/f//+5cP7kaptnBvdRTif9DBWciNU9l49cOiO9VGICNFtM7/d7+/fv3///n2dlP762LYNqcfjIcW2bTRGFPqdADR6tjbn0IpgqgtcBV58a+633He7VOwAg4XWHGQ6T7cNzIaIALs3bNu2bR5H9p7kUgJ6RBQUX6VpapJus5Gace5+cYZLmUC1Wb8uxUqSWZt1HiJSKsJQZrq5+yx8uCpSy2P1A1r4X934aZpR/1M3bJY4lurz7t27l5eXFSjDhVe433oeALZte9navennP//2T/7kT755/4KM4zjevdxaa0dkqkQVMFPvlurNmQFYxF2nz2E0E0YZlaoYh5cAQmZEJzm6HhR+Zp4PBM+o3X5kxKNHr2LPiOGurZjtcUQaK9lVPXrvL9tL8fzMHO2rCTMwvTy/7h5JZJjZdrt9/H5390qZdoBms1LLcyZoFABBDx7HYT5UAjw56TICKxEM84xUDW1mAqMoVBLItrn0wKXMrLjBCv/qeVw1jcW/l1DTl07fValasm9xg3F+L4ZE9DM2wos1eJUX11HaS91yViZn2nY2iVgTPdfqYgOXzW0zNfHNWyqEcl3kdYGZVZB2UbW7V8wDn0lDSa212+12u93i6L33x+ORCQnGVv02M0c0tfe+GOkqC8r5bZgoLdXCZNu2x+Mx+qhXjeI17fDqsLi4CYaCOq2gL67t9fc6Q/SnyVdy9s2mj7zrubXAiBnmxW+7ZlV0WB7PgbQkjfq7oU6fB/Y6sdMvcDEkODO/am7XFy39k3yj6J9K8nUR1r2YeZE5K33Wjs+y7VMzvC5XnRhy2B/re6c35ySwPjRJknTzde7e5OvVrMxBecVsan3O102zcxlatdGprBUuMrh6n4qizDwiKstm7YJKocy0i9tLUhmEnE6i5xUrOjkjyaVsXznD+eUVOHGXMnEhszKlzbgkRcVm3ZymESRDTZike3P3q0rggwByHPkCK3IXzvWP6O6OSpwBaNaVeWQgLpZI5RuiThkr/ATMysFrMEm6aH3XNcG0AsyM7uhnFO16+9qgRflv9v3zd12XVFLJr9Y2ZVmakyGTbtbjfOn6wIEBvfjtoLcx55UHYZd9/v8BVk97LYKfRvgAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 21,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "Image.fromarray(origin_RGB[1])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "id": "bdf84a2d-9460-4046-92d0-7f164e0b9c9f",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAIYCAIAAABymspaAAEAAElEQVR4nOz92bIkS3IYCKqqmfkWy9ky82TmzbvVrVsFoLASIECyZ0a6mwDIXkjiZT6kv2Ie5y9a5mFkZkg2KU0CXJpET4NAAVWoQlXdfcmby8mzxR6+mJnqPHiEh4e7R5zILJAiIwKVlJMe7mZqamZqutmGL//yjxHx3/4LBgAA+N1/pABXzyX80T+T8uH3/rEGgD/8Zw7ugt//xwAA//qfbX6KiIgAAAEj4r/656qR5ff+h7x8+MN/Ef79/36JAiLyb/7XXvnyv/ndsRcGFgGP7Fn8H/+HJ+Wn3/mtz9j7bHr748//bvnm7P4fxsfv63iIiIj4xQ/vle8/+I0bAEDEipjyJyJWz+XDp39+Uj58+2/divjyff3vJ98/LRN8+Js3AEBrJCJSPQDAx+tku+AXfnvsvQeAT//8bPPyb49KJD/70+PyzS/+9rj6WlFeh4/+7KR6ricGAAcCACRQkojCIoIiaAIR8QwlPkQgFABg5lUVVo2jyuYyyllrAUBrjUjOOREhIutVaALvPXuvNQmC95a0IkARYS6LK9uNRES2uauCTS8IlBxYsohHU0/QWX2o9Q5zN/421FGVz/Uu3lVQPWUbTxuISNZQ5iIiAPBOCAWABUkAfJH7xdQuJzYdeZujsEIpeaPEQIACBECMAAAkAMAIzOBXBLB004ZS9kXZHUoYCBlASjyABIACjgDKxgcAALV+QmCp2oRZAbC3abrIsvFsvlxmeVYUi3RpbQ7iRQQpEBHg9UBARGWUDoiM0aE2sVIalTEmREWICKIbNDfaH6l8WHWr4xVbIiKtWIUBGNFUueo9gtAUNauWAV8vdyMTyFQiARGrcsu+aPe7JiKiUqq4ktsRiahiwzpTAYD3tkpf9Rcigq8E0boTy5EitCEauaoas0NUZQXLkY2IIARk19XxK8kECpGc+DrZFShoSr+OZMjQ4vxG+qqhAGhNMwIAbvdI1RpeuN2Y1RjZlFwrboNENp8qMqWWTwjRcSe1zJt+rOMEalRnQ0KjNVZ5u0Z9S7lQVbt6iZU0QETdasfdgLzFDa8JZdllcf/wH/P/+s+2UP3hvwjLh9/977N98qwFbaHT/tmmpPFctUsXnp3a9zu/dbtX9sJ3f+t2vw5ulwjb2rSETk3cmb6dIFB6VbXyNyIyAKLPl4JKmYCUQlQg3nvPzprAAAAzO+ecF0Q0xhij0zxXyiCidR7AKxWAiHUOSbw4JCBZjUBUAMDeV1xLACACUup+tap4uymqZwRERAZEEpCOBO12K9/sQXs4S3R2Shvtfj29h4Bq7K0Gck36iIhSih0Ki8BGOm/bixucIgI1Shu1WPU7VU1YCumVal3/V8v+OgOPSBNpIotIlUYU8bKhEzdPLaijqt50dNbGXCPEskGalIgIQPmvox1gR6UaenE7uWy1yzZLVKTWOxRa/NnA0Ci3kloH8me9oBKIaCWaoE6G78RSZ9dmQQd3+q4W24a7FUQnnt16fSfsGqeIWDEhtAZF4/1+ofFa9LwWtdUzNcaDiIDQ6l8bdrgvdSjd32a+Vlv8g3/kO7P/0b+MXqvOZWOVXsXhUBcE9SHR6IxGV+3HA11s9At/e9TI8t3tN0R0OPE/+9PjhiDbr30BwFnrnWPvvffMzMxe2LHXWimNAMzeO1cU1jpXOPZ5nhdF4b3XWsdxGIYGgK3NlYlJRyDkvFjHlXPm2Tqbep8DsnW5tbl3drlcOsfshJ2Id8xOvBVv2RXeOlfY8p+3rvrHayi1hgAxEoMGIYHNPxZkKX1BgJqaqZ7rdW/JxC1odFz953612s64J3GbKugS6BXU3SNELHmj0tmdteskoN4sZauu3ncRK9itfTuV5eqhdLykSTwAADAgl7KirEL1twMhCZKU6beeEZEqS6XMRdDqqXZ962n29A62YE1hE2cDbSN7J/J2czXeVDir/q3K3OQSAtnI54ZWINLboqPJDPWMnazSqE6dyJqN2IQ9NW0luHsQNeihdTihs3/bSDoHdf2hjudOtdro7jeGPa3UsAAQUTcS49oiIKJ1FLA75vz7f4DVoN1hjGx6vdNBqXSwiP/X/0tQvf+jfxH/7n+3PLyGDR1WCa92Rzb6u0oP2x32nd8af/L9YwD45PvHZZC53Z27qGrzeqmDea9f9Qu/Pf5o7ebugYaK/VktS6f2rdNWgoiUUWfLzIKCLKgQFREqChQAEVlrC2vBWQIs25UQ2TrHTApirZklzxbOWUI0cWytLcOs3vsgCEwUEhD4UpV6YYFVfHQVKQUAXHtjVaOxFQCQcviRgChEJQQaGFYRbOAtz48a+rXeR/U+rfuLjX5s8y3uiIVU0Gkt4e7Qd0PXViO8jr1eVqUs65SsnkHqRCFiJeIQV45QXbKvxUmHZUkAXIq87YpvqoOCiAKgZPN1u00Q1rMMJRAKAIp0h2ob4l6k0xKoo99qzzVt3ZlENi3T7rjGSO9MhrX827lXClJhR64OqrskTCNBW6OLyC511RabTbTrwKSsQlCVY7ddjY2sXucrf+6oyC7zrjGmYNO/VCN487Gb5lYpe95AVyN0wh7x3i7lQD45HPbomnahVdfr/R18yIxvleVf/VMBgH/wT/ZaSeshVE4DVzr49//HAgAqNdxRmZUUbiInItwWi/utGNkRPNyjYusvP27Fh/eMydI9bTjBbQwlNJIh4v7Ic137/tLvTNo1rgypbcuOV1FdpRUoIbVRzM6yOGItIlohIoEIMgOAIiC3KIrCO5+XDo1IRGS0IQQNIMjCznoLltl767xRJMzeewFfzgiW9lo5kQw1s6kU30hCqFFp0QYVAxkhAUFAAgBe23qbWnIz2rZirXJibLcabjRyZ5o9fdrGdqdQrierSqzrjCoBIjrv10p3i5NFBMo3q3EEIoAbG3hLR9YrBYBQqxevowdUG0u8NokOr4hIVZyIeBG/WmaAvCYdYa1lq4UFVTW3UTXJrouqPV5Oo+leSzt2qp56e8JdvdyWUVh7pkZUvCa4qkg6lbWGrTmC/VXopO2QycFOVXdIo1XGQUO91QdLE3mNng47C9dpALZ6oWwNvqOdDwSszbbClq2zma5q1AKaA+c/F9TxN1dA/NE/97/7j3SZ7A//ma3e//4fqNo0OwDAv/7/SF3Xltq3fGjr4IbYakwA32ng/Ns/PPq//P3bKvF/+PdvbWE+2IyC3Y276/2nf372nd+63YUW15Ky1LWVpqyrz4/+7KRaV1XXvr/w2+NdFv2d0NC+7QR1wV1quJIqItCksFwnIijCwiLi2XnxBTN75qLIkCUMtCZ0RbZYzPMsizBn5qIoCsdBEPQG/TAM8xxhsciyZZ4trc0Rsdc7SnqDWJv5fMHM4vzKJSKh2mSViABRqYLW/hMLKWUCMjEGEWgmNIIkftVrq/G6bjCGLXFQr3mjKXZZpm0rvp5gF0NW6nN/KXu+durgBnOuFVtNdqy84S2cCBuLFrYFypZkqXlvIsCl9l3jKhu2GpDcRTBsD9LqDRKQAlKAvuyZ9coXkdLUK9dAdTbanhZGLD3pllIRKhcitRu7HsvdEqPbnvQBspXXZGxZCQ2FXe+pO+22XRy4/bNbU23puT30I5dfNg5uywl+Lej0Eetftwpv16i0ZIR2pTzQy2zYaqvn1xyADSSNv51m1ps5wRXCBnvsst5ERLendf/onze93t//g81Kwt/7J/CH/3T1XCndOvzDP2hOS2yVuv1uvRy6e6Xi3/+Hi2oh9H/4Nx2rmf7O3/kKPMB2e5WzCJ0IYYev026mKgoNtVVXdfjOb91WVlU1EfuzPz2uHNlf/O1xXQfvoqdB2J0ga2VfwU//01E7WUVGObVFSq1dHAYWYZ5Px6WwAhFkLy4HduwdeLeYzRaLmbAzgCievWV21I+NMYMoNEEcxj0dhLmzyzQLYNEP6SjUwgBAWT67vbjKc9vrD1eNjCzigYXZiUivNxDm1fheO9PA7LMFEnkdqjAh11NhDDpSyrBHKRcoEiJiKRUFQGQT8qob8sKb1Y9tVXrIANuvgNuf9osq2B7/Nd1QKsYmKq21eMvOl5ZRRUzbQ125JjUVXjftS6dzpX2xS2CVEnI/05WidHcDEq3+lV70iqMAShW86Zp1LbrEcfmmyiW1l1wu9F1XmBpKqqaTsG7W1BNwix929S/WNFgZaKh/3OUxdzab3BVgr9NQNpFAY81zU6XdyWZV0VCr6S42vhNV2wKr429/EsZq1r/2maFpx9xBw0F6tEUJYnMNQzUl1AiOVrKis6DD9e4uzX1g+qosfWeRv/9PTLnQv3pT18ENqGnffdBeBV2H3/sfs6q0//YfTP/tvxp2Jvt7f+/rspEbA7shkRuAXcEHbM387W/QD3/zBmAni+/p4Ap+8XcmANs0bCd4YxOshNLtBgDLHhEVoAB454oszfPcW6slX6338c7nWTqfLObjIk3zxVxrbTRp8JmzGuHkeHh6fLJk75xjRyqOlUZm55mNUbPLZ4hQZEvnCmNCpQyA6gUBuJxIEBFKF9tbb61zBbJdxZwRlVJKlatnxS9mTAqVwaJQhVXWqtCSMtr0wJcDDEvHp9TH9W0edZBOs2/3eGu8v7PvGhrokL7ekX2lOWSNrQSttbfkRWQ77lcXMS1FtkHe4OqyQSoA2LHeipqWMUBrKfA2MLty0hFRSvkg0K0jSwXc6ba22qQ5SQ8rdx1wvV9GeKvLcO3ntUfiHvne1sGb9x2Nu1OYVEjWtmaHam/kFZFqnd12Le4Y71UzVkhalJTTedWqvap0XDNbC2HDw97pVnbPCDRxymYr2yZ9V11EpB6Vqb8vp8xgdzOWfdSwYNpFlBKm7oxVEr5zzHKr7nuQHwhtI6aBU0Twf/6//cc3LuBv4G/gb+Bv4L8Y3F783xuKp5KnurnWoRJzLG2jpOmLdHt7h0M9V0PItj/telmvzo5oweZ5E+HYnjcV6rbOcHtutcLWqfD2GAS7Pu1vt25bp0Zco2VEpKwUIpbLuwiQ19us663kpe521yqiqLbuTCqjE7fXNmLL9dpFeaPWSqkOmkVq6xqb2RsVLz+9+b7ev4G/gb+Bv4H/knD68H+SGkAtctDQvntgt5/3htAZRHld2ENVpW8azwfS0/7689e3rgUPzHIIbe1SAKBUq/WpBKlO+NkiQ1oZV0A1aPugh1Neh3rGQ3iv0+2GchHW38DfwN/A38D/n0JdE7e/ViK7Ifv2+Kmd8FpKaxfaPZ5lnbBKxDe83sPpaRfUTl+1zC7iD4E7NdkbqN5WfEIQN80CtfndnUYAMuDOo61gu+53WhLthmpkb5D6WtBUwL/7B6Y8trAqrwxdKGw3Skc4ZcU3Uud4kvopaOs1X2V8YF3K6qizusO+WpXAK+OC2ZXPKF5EhFdHN3jvwLPPFqOrL8fjF2RiiN9Ohu9hr1+3j2p/d+3jdNvJOuZIOjM2Htr9VDVZO/suhLhaBdoJDABEGghX8SZBAHA2NSY0QcDM6Xy2mN64dErsrl5efP311xcvnluX5eliOh4xu14/Rl0I+DzP00WBCL2kF6igKFwYqiCIRISQvVtGhh6e3SdQ/fRGzAwUnJ5+MBg8uLx91U8CECoWk2h4pHrnxw++g+r48uL59PbL+ezryc2XUe9BL3mYJH3vchNqCgdg+uOLzwHw+Pj0/v37YaizYpwXU4FiePybJJkrJs5nSBopQFEBqoxQKUNoUBukAEkpZQSVJyDUpA0pjSpGHaIOQelyUhkQEYlxdRKh4GotxqpHakt7qGtOtw6dguwQT6uRvakAALBkeyAR9EXqFiO/mNp8yq7wtiABJCm7eM23tfWSuJFBqyJYRHyjOBEB2eQiAYHN1oZtktZnaGxEEiMiIxE7EmDEcjcZuMIuZ7nL58v5fDlbZIvlcu6cE0HvvYBGFKrUHmkgpZTRJlFklI7KoyiVMqjKUxdUNUjrxDfioscP/6c6lW1t2jVesPrbqX2hpZj3jrvuhaINUmvjdyeHHKiVG22yiz+bqKDZhp2F3knVf2HYyE/GkgFrq/tlrdiqdq7ahAGxHnleH1y6NZUvtRA0rNm73muVZ3wgNNzfPU2361OFocMDLkeDx5WOXB8WKlCtiFjhbTLErsKq2paSsSJ6l/FVJT4kPqCUYpZyYY7WGpUCpWQ9q9Nl3XRuS7g7evAGCbYGwH4UhxW0BhIRYYHaAhs0Gsgv5uN8sUCX03L26vNPv/z0k0+//Eor5b3NshSQoygKAs3Mw+FDZnaRcz3HHphFk+klkfNZEESIOOhFgfEauR/GNnfUw2hwSgEdPfzuyb33i6OLpN8bDO5lr9jK1WT61fj2JwHFUOSxybEf5+PeYno1m14qMvdO3wmDJ0lwWgA6uFgubFbces6GgxNjDMGRtXmQ9Owyz4rc2UwbA8jeQupZR4ZRoSKtQmVCIGNJgRAaJaDYKyFD2pF3wA4ocEFUshmREkIELA9jRGFEFCrZmwWq1Rmbc25hszYKKkPtED78a+rWTeJyCAKggC+7+3XFY6cyq6/t3TNaW5RsfS3xloZO3catEuB6oVf5XtVMHAG/3vq42Rq+hXz7xOy18N3G39KmlThq1wIa8mdHZfc0SFVK5/u/Lr11IJ5OnXoQix5wiOE2PbsouINtOt//PKZAxRUiUgWisTrTBmGDH7kavxWXNCy5NnKoJesk5ucc/m2oI1wp4L//T/S/+aeudH+r9WmCm/NTYFtxIeIunYLYsTF3U89NmnUpd4XOKyMFQJi52hex1jzgQQDA+9WtCSTgvaeunm4P5vbzrh7aVaMDR86unm4zaJ3ODsYlvYoKsJR7ihAZAVDrxXRCxdLY/Olnn/34+99/dXFhlI5CUxQFKjw+PUGSLMuywiqllosgjAySZVmA8jpgRO9pQWi8OGFZ5gyIoCF3uVJq+Cv/9Ttvn7v5rJjOnn32g/nNp6+mS8NDOC2A8+VsXKQCElgUCBxrOet9UPinmbNZbi+vPn/x8uvzt9598OSxhrfOz3rGmPFo/MXnP4oT/eDBaRgZW8ysS8WXW+AIUcWxjqMonc8YHDIyCBITF75UphwgIlpEMkoXbArlEqWj0oAGVEIESgMJIQoqQkBAEQUiQoDI641Mu9hvw+8Njujs3A7Xc/VTdhTRXAq7zsudHFUfcQ0DvJOSOqtvv9zHsfuZeaX8VgKuJulQAXgo18oKIGIZmeHymBzZOkIScTUnh1R6Hk39vXqQ1Q6HsjU3rUZQb8+6aXKIHbwn5V0uZjefdEr2PagOeXmIs3sIHKI89jtwnekr5G9ASVsM3iFvV1ubAGXrTNYyWakO6inreDpH7S55e3hddkFr4N8d50BEXT397h+YLXKqkVC+a5XUaMo93F//0hBV6+7fHYTZG8mR2mz86hk8isB6iWDVVXBXK78uux+Sfv9g2+Po7/F4SjuDUBQhlGcTCgLw1fNnvYBmVy8/+ss/++LTT4rcRUniBQDzKAqcc/N0WhRFWSIX+SL7ZAhDRJUXNgxiRXGe2TTNPVyyF2Zml2vN/Ugd947OTu5ll58/nz/VIEZwevv85vLF6BIUjwdLPD09fnD2xDMiJWFypnWPgmhx8/T+w1+bLMevLp4XRaYDf3n5+TcvPw9CINKEOs8LRWF/8EQEX764+ubZv+yF5rjf6x8NkUxhUyYVKMmyDJDLHUuADDowOhCN1i7XTqtmlStjwVjUuYgDRCElpJQyoBQorYiYQkQEYkQlgoAr67LN2J3ddGAvt3XenXmrVJ0lIiKgNM45qrRglbgK+cDWsGqWtUf7rt93TGvB2nGuK2BmZnabKaKVlaxX+0EFoDbZg6gQV+FBxNUhz9CSVluSgTtu4GmkfAN38PBufV3olOyvm72O4XVR7ZI2e/B0NuCbyck75eHBAha3QsrbuqNaA195ZRuPbgv/5ujbRunYspXhgCp36s6KOQ/seqy89lrpOxdhde4XlHWkB1sxnzthRWWrAtD1BlsbOteCYI2qUq6lxb0OiPH6CPvKStjFgndYXm8K+xm0zfH7O69tOa5rLc45l+dZusiXC2tthPjpzz59+vGPptcXBjzFwcK5eeEnk+dFUYhIGMZhGCKiViYMguP+twF4sZywny+W9ub22trcGBPFCQDEUQBchAEe9+Mkjs/uPbx99uyFvegdBSiD4dFb3373l3qDfp5ClmXHx/cG/ePFZOTzW+PH46vP01dj6Z08uP+9R+pXPngnz9JXaT5++vJyMrcePDMDMAIJKxCdxENF0cXLn3jRhWZMYgxYrF3anO0SJQAFwGzFOfakrNaWjKZy/tuzgBPvxQN4Ee2RWRCIFCgSZZQOUBsgEq1WJ9srICIhQgagTnOwu0PfWDK+FohIKT7qdKwH+aHGe8X2dUWFiERlTPtQaGg+qf+t6d1VKKostBnqJAAi2ToMYfVXQESU2heRqv9tQGckaUPqdme1e3aX8H1dOSAbedgs+rXgQDH1Bsh3mfivi6eN9ufEsAutNA3j8qVfMXAzEI0ApW1XdaiHcqFWy7StoNLfUBsdu+k5NEiANXv6QGgq4KokAgQEQZDyEl9AEill1prou81MAKimedZdvlqc5sQBACCQlHEmkXL11ia0Ve5oqyqvhETYiZCgR1SyWjDiEck7NDpaikciz7nWxMxKrY7B20iH2rCU3eHozurU7R1ELK8Dgu2xtwtDHer9jduH+FckERGgWsni1UwvrKbNWCM4AGTBWWqX0zRRcN7vffLnf/yD739fRfr83XdfXL366tnz2XyeO58ER8oMgiAyxijSyqgg1Frrq+VXk9Ekz2wYxoaUZzZB1OvH/ZPH7IqjwXCQDFzmHp2fPX507+rmWTH1yxxmFxeR+WY+/vL553By/PDJW986xiJ7+uXcLnOe696J6b/36Df/r5T0TEHsZzYvaAm9OFxePD8f5Ofm+HmxUNh/cfGq4OL45P5kKken/f6J/uUH7y4WBOGyd+/4wekHr57/1Zdf/LszGprkHfGgRGtRoTHacOFnPi1AnXF515JzSe/Ie1egA045H4dhiDrgQjwZDhP0EQOpsLxgh5RSrDRQUN6SbIBEE2gDWM4ZMwqTCKNu91rJ9m3LqZOv1gm6d/ohIiIxOxFABAHvvQV0iJqIQVsSBEYRFGRA5/0mqCMi1SF/pUtQmqdtDgcob9JY/WRsnRi0ppPZ1RiYK31PwgzIREKI5W1VRGBicLlSxhiD2cIYxQ4QqJQKJbOiViwC4AXAAxiKiEghEZFae+NVWbh98HVDO7ZtjsYgqsZOu1M2A6qGcN3+q+x1hLJ9emLn6K6LgvI0kk4PqZ2+kaYuguore9uJ643TQAsAuDqHUmDXvtLtfcPbwpDXHmcrygIdndL5HrG8NnqLqhXsWIyMm9nNrfTlfb21Flg3kZDI2vsrF8QJiACV+265PCuuvBkaPYgGqqaHxbPU7hmD7cELAERUbx+oddkus7ueuDrqHBGZffmJaINKNmNTELfWN+z2gDsvigGhzct9+qZRw10JKizlmN0TcN6FpLxsp5JNcHA0oPP5wCztEXUnknonNfB0olpbefWvAgCCUGQ5u7yXJIqL85PhST/+j//2j378gz83kT46Ob64uvziq69mi6UJopPB0NvyymcWESSw1o4nt/P5HIC1DgITKwpQmTjUxiit9Wx+fTzs66CwfpQVy6+fPXv6PL+6fja+mPYSOBmEAUYq6p08uH/+8O3hyVkWoEG0eXEW9RQXkSzHn/z762dfMd36zPmCwwS8grfe/Sfn7/7iXD27//T6evQ1pmjdkc3nOb/8+mcfMUe9k5Ok99bx/TPOh1cvrr/5+sXoZmRAYlyEJri6elbk7nh4TCo2Ojk+feJ4BgDeSz/uT2ezMOqxWygTKtLFIvNKaROA0nmRkg5NGHl2RERaszbgNaAj0kjaAYEoEETFKFpIBIh3rFjBmoW7i8cOt8NkhQRroMuV/cIMUs57bUU+OlmuU0bUUsqWjumipI4Za8EtWZ+4RES8FvF14VteybBySlaWdKMpSpWrGiqkUSjUJEZdL3YqrYb0b6CF1vDc1SOybbLsSr+/Q9uC7kAGgL0CpKrj/gW6h5e1tQtgm2f2N1STyL2S9U7Bewi8oXDGUlyq0lfevuXhdaMazd5ssMoegtumHqwdrYrh6x78vn3AZak15/5uN3H1XMt+N9HraeAyZ/sowSr99lBpIq8r4D1E1gfMIT3daXi2BNbdULeaG6jaz4iIK9MP1zs6fNlEhfNxFGkvk+sXMeH06vLf/i9/8vKbp9PltCiKj59+vlxmURKfnN7LsiLPrC1sGIYAtFhOsyxjZq210iqOjqIoUsrkmV2mVsjFcRwhIEbszcXLm8VsAt5p8krlzi8+/OBJqMMkiqMgjOP49P6RSaLb9Nbczq4mnzuPx+//PSjsV8/+03J8eRK9Fd7/YLGIokTfe3TfufthHC/zj+azm8Tci07PP3jwKC/gy6df+AJniwWA8tfzZ1/9IGX/9rtHH7z/a4OBMvhL4IJ+/K0gAD41gLkmvry+ZT+zbE3ojA61DvLc9uN+4Rwig/coJM55q8BrJMNAoALnjcdEKaMDw8oAKVIB6IiUZtBIGsQjGBQh0UKIoGV7MRRu285tvupklV0p14k3t81vbo/ZBHV3XllYf8lViHUHSdiya3fJl10Eb1T/lv+08izr0z0i2xWspWfm6pAgWU8nYcshr1DhXvu+AZ30V+XuytL5/Gawp/VeiyvupO11dcmujLjt29XP3F75l8h7uKKNdhedr9uyLZl8CAJZO8f7+nTNt3foo11O0Z2tgetYy8Yk3dY4dQIq60o3UWyTh7wZRXvKht1jeA9v1eu2p1Z1RV4OTGmYq9vDGLeh01huq97946TRPZ3hgV0VbJfY+bKhmMuOxLWkFpEyyKONYbu8efVsMb56+ez5xx99enl1sZwv5m6CRIgUxBGgmk7ns0UWBEGc9HNbFIslAChlwiQ2xmitvef5MmPOAAgQqVyti+BsfnMzv7l+mafpIImPBsmgP4zi49lo8Cq7ipObBw9CCQZR7gs+Wszd9fP//d7Rd46i6OlX/y4I+/roNz78lQ+Do0Lng7n7mUi/sCdh7+Lq4j/J2JyG9yf0ldHDKDDGLN99fOL9W68ubi6vns4XszBAAkjn/LOffiwip2fHgx55R6PFwnuVZtliOTFGRRFO5lfXX786PjoJTd87+eC9bylE7x0Re8taKWEp8pxImyAC74q5RypEERealCEVeB2SjogUqhi0JggBIlQsChi0gCJ1x+TQgV28p+tpNQNdcQ6CiFKKhWQTU9yCfdx1QNQH1xGjOsJO1VV92siLSg6sh5XIuiIKiAgEiQTX9zSv/fuVw4pdTjzsHgKwY2BiTRzVhcCqlO2lMY3iWlqno+LMzWZsO+sHwoFZcNsrgpYo6MTWKXDa7my9vo2M68tAt6kRWrtAr6E691gJh2jxBrxW+jJkjSsVUJKBu4zXnVbCmnPaCer6spPUQwT+LhUje0LQtB5d1d/GtWVtOERgtUnZGhJ71SFuT3GXsoCISue+/r7z1nToMoLeYFytMu7AsItt63H//UWvmlFWK7xXZyOst/yGWm5vLsdXF6+effWTv/rZ5fW1iIynEw4R2IvIbGadhV5PBSZCQO+lKBwRJf1hkiTec5YWy0Xu2DKDUiqOe0EQeG8Xy8lonDk/1gRawfmjXqACtsvJdHozyvtHkCRH7739y+8++lADLhavbsfPRpNnBQVzmIUqOYn/VhzHs+XNbPyj2MfkjkP+MNH57eUny8KyRatGUwgpOg2iUy9CZD78pQ8Nnf7i93g8fXV99Xw6HX/99MVoPs2KVwyQeStwlf/sx1HUv3/vsS0gMv133n5/mc6++Oyv5tmN88B2HMf9jz7/9Mnjx5pgtf0FFYAIEIt4b0XEOWcUiEO2iMqQNqRDpoBQQZCQDpBjEAcmgTKIgpsj635O92inVq5HljYpt86O38WaddrqyrIzWZ0MRFyvLWiSV/6/xrM1kDuRl7sPKmDmupNQcrms0cIO7bsH6qu6OxNUNTqwg958pB+Q8UCR0hZue+wPqNVuv5lyp0iBWic2mGcrS2utHGyzAQBAuYivo3ewkb5d9CFA0B3lPiCM0NyGtL9TDuzWtqra37+NufwKKs8Ytt1iXc+8h0ReU4Ab3XaHa9tA0mgOqT9XFat7q9tHurT4rDvCUDHEG4+3XfTDNlPuFKw/XzCqhYoBkAAFBJBBhBfjbHwzubn+6GefXN/eLvLi+fObKILpGKIITk77w6Mgz4ogiBCVtTbNbRDGSZIEQZDnxWKZiWAYxIt5enJ8djQcivg8z723IIWwjePE2xQBmDHNnQJ1enwaRjovRCmaLcafPf1TX6TEXqEG109sgso8n30dJ9+AWMqBvlKDoOeGnOa3QRAhcVEUj+/9tvHfnuVfJr2/FQyjMFTOwdLzxcuPnS+A4xAexAndu1eA9tMsSzOYLooi50Bb59Miv1IUn52dXd2MxqOX49k1KHVxeR2F/WXhrka3gPj+e++B0iiFF0ZQOtAAYAsr4IkIOPcg4AG9Fq/B5UDaA4lNlQ7EJ1ocSrl9nECpRmfV9NydXbbFKrsSePZt5YS1+FWpoNcsLW0pth41HcirryIC0gzm7hD0W3fJVeqtzeolhYRaKUW+fp6JKuOWKxlUQ7VrvFRGRl0Z7B8mDRO202tp166Np07SfvW2h5g90MDZlH41UV7+7fQZdjFhJ8077Kr6OQpNh3iLqWQrwZ0zAH9dDdWAQ7y4ZrnlGrQa/yAAACPWsVV8sjUXvhNnjZhdhO1k6TUldTxYC9LU+2unB1zvQoYml+/Psoe+jq+1rcB1vbsz13YIum5TVAq4sxc7h/ch1tmuht6VuvP1geZYzdQoo5C4WsyH7B1776cvvv7ms49+8qMfP7t49eL6NnNu+OAY2L11Gmf5EsSEgY6jPjMUuYtCE8QxADDzfLH0XoyOwzAOgvDo3r1B0tNaT8ejxexmsZwpZGOUzaI47IeBSqJIR1oj9XtxEKr3Hj0CKayfFtmosBbEkuTMfDw4Tu71tJxH5lss1rsv8uXLBaiHJ2+n10ecxMPjJwM5HgxxefvToHADe7V8Pp75fDyeLxeTwo2I8Kh3bxkMo9icHT9yWbhczsnnyPnRMRz1P/Tep3kxGPQLXj59ftNLgrOzs6vReJlaK0vnfBzFT1+8ipLjo6Pjo0gQoAypM7OwE7AESgAAQcQDOxbFvlDKIJJIwWwc5AKemRUQIWkAQFPvnXZ3HzggO3u5BlxJBASFZURnt323RzTAXtW1UVp7SZJWDHPzjJu9f6upX1DVHHAFwuuM2zKoRM7Mq03AXcYEtAbpLt3ZWceGaNsvyuttfKf/2skAh5C0K8F+CdD56U7rZH8C7HZj1lC7XbvkkfUek241//PYJYeoklqajae2A2NzcSsiIhBCbQ57jUNEYJvD91kkLco7a4F7Xe3Gp42JsKa5WwFXGry7znvpa8iOXYQ2KrMqEGDPVBZ27bKqGKKUBb4VN2iQdyf9u9433d/XdGfrq6A7Wbk+QnDtkVTJnHfWWl/YF198+slPf3p1ffni1eU4lXuP7ptIKZJilhsKCchaTyTM7Jzv9XrsgYi882maE+kw0UEQAqooGNyOJ+l8wb4QUXEQRqFOkshDmMQqS6fLdIQsbIvbsRVx33gIwyDq9YZHR8PhPR1ExpgwjB0rkACWz6/H/08ldnTDno0o9/Sjb9K06MU9a7/fO1K5t7MlJMm9o96/FA7unZxaP51PZw/uvQ9AxqAXHWnsD3uR4aOz86vb5bNnRbEsvhl/mgx6iOIAXr68VhB/94P/ej4rTPSJB//i1QvUCo0azeZ/8mc//PBb3/neB0MTRABc5AUzK/Qo7Iqcoj5COUHJ7BnRIbBSBr2Ud8x6XDAaUaGm0KMipev9UvVUJxu3X2LN4O3kh/KMqI28W3u+SilRij0hC242/nYIzbqaKT3dNgG4tv0r8upnX2/z3lbeemXX2VcqVinFRLyCVSx6Q1uphkWgVlAFzEy1xLJZ5dCEXTq40z6AlqQ7RJ52aqxDOrdNzx4RfEh26Kpv+VCfG24TuUtBtqGRpap+dYDgLtraLLcncYdd2MJ9oA4+HFbYSpSlH4+C1EGPbJ9XswthVRep3bt8oOWxq7mktghrZYkibhZhVdl4HfXi2qHkiKI2iOrvmz20SlM3rRrUVQy3jpVzedTPahuXVJOdgOUW6+7eql4qZQDJQsEKrXekFABo2hJ/bQr3t+P+4QS10Bm0OG+X4yKbI/RK6bQZaPVCN0VbxH6Qp9BH72QUxCfFfPLqo3//7PLLby5uv/j6hrWc3ac4BEJM07l1aRz35guLWvd7w8GwF8ex9S5fLL33RBSayPmyCM6z9NmzHzonQUAKUWttdMAMxoRafJEVUdg7efAwDEMRUUpFUeQX6WI5Ueitd7eTsdYaWZIk8Us/0gxKTPKd/sm9t37jraR3KhDE93vDXuLS+c3zp4vRq+Xt1dXzb0bXl98szO31DP1So3/v7RD95/3A3Avfdv5zNx+Os+WiAJb7D8/7p6d+NBq56WI0uSJjssv0g8e/cv7WOxCz5/G98P3p7Pb9J6fzOV9cvhzNX6oAPn/12em9X378YGAQlBSKnQCDItEGy320ajU+GcB7671VyiALFUvlcsUMgEyEJMCZMjGp0qFmRABBYg3EVTirzs7QdZobrg8QWHdxbSqOUQAIlSB6ZgAgBRY8M7vCogOFigE9IqJCASEFKB4EEQnK06ZKMmjNPrLeU7uxsjd6l0q28742z0db+ml1GcNa19Jq3zmVE8IiwiJMSCACIMaYwqNdZOw8eDZh7L04x8i8Pl4bERUIoAABowABKgJCFBEST6iFhJ2v3OhqUO1RrvWvlSxqGBC13mm6OHWF1+6v0tZpCA2R5jrqcjn3SkDD2nOosggAgGNfvw2+Bo19w5U6XOFsXPXTlj919bDGw1ULNO6jhR2yrqUpfQ3zxndc593QTLTxkrCm88omKGc6t+ZBa4evbU5lleYZOFXVBLYcjw2omkyu9zWv6+s3eEgAmBFgZcLCShcQNbcb1OpF1ZCpjJ769YV1OS8iSCJCtVaqNUsrioM1i7BeZWbeeRDHLthlv+wyahomXsU0bxjCaBPDm2mkRhH10vebh40EdzZCIxfsNev2DIBGrvp4UyE6p5gXGbpADbPZdD764uZ6+oM/f/bs8msVw/m9h1ofT+Y3aX4pzmsd9PvDMJbh8Oje2YPr69sXL14IQrpYMgMikjJxHIdxAohpnvV7pyJSTgAHJjk+OhUBz0pRxFwslyxso6g8U4z11GfZeDoda0VxYpIwcI4IwEBw9FZuC+on95+89cGgf5Llc5/Pw5DyVzeXHrJlbtOlAtXvD+nt86OzMPRWfe+kcEEwiO4/OWNSUfjEZr0TukqXFkTdjyJNwm7BdvrgWD9dhPMXMr4ZO7mx05vnV3/24PS7v/Ob/8PF7V+dDL/94vLlZ0//dJqncXQkIrZY/vCHfxH91m8eDRKXZr3YEGrrvTJ6Na55ZTqttBYiAJezH95aoZxooSgEIYpjcdZ5FCQhUUopMqCoflDA6/KJHDDfcSesuHvtbW7QbhTBG8PWVUgrk6KSKbh1/qVnS0RRFDmfWe+cy6ttF6V9uSd+tlEtWPuxnn5qN9GeRpNN0Ig6Ne7rQkNe7aCh5ne22vwQGYKb+MSW5GlI7U6pUjet1qW8eb83WuwQ/tzw3xoDbDdXXaH6lvnSSNbA3Kra+tOdZL0p7BHdbTJqAh/+WpRYaxtSNwV7ePEOqPNZXUc2cFQcKdVPaBoLu3RV+43I9rmV28QcSP+upt9DQ6cPtKeIBivXszjlJeNebHIv1oZ2+s3N84/+05/88Itnnx2fJnG/n2dqsbwinSVhlAsZA5PZglm8g+lkOZ5OsixDRFIKFAEiEJI2WmtCFQaRovD29rbX7987e0tEGEgEnWUPN3meAkAh5nZil8ul0tTv901wFA5Ph/2EQBSR1lRk9npmb+eRIhB/9dHHX2gqerEY5dln5ydvzxdTET8YDKJkqFXPmLfM8L3hef/kdEgE3pF4Suc3uf34evSZmWgPNog1hyFIiNIz5kTj/ZP4NHp8NuuPRjevJuMb7fPl+Muf/NX/4/TkV7//o//wzasXOQNpSN3E52AWoR5mL15dGP2oH4W5swAQhqGzzhAKIgBu7sokLGeKQLyAoEOWBQAZVAhikZUWFShSpapAEfFeypPaqonPWqd3H/FYZ5K62IUuBVXJAiIqFzuUI2Wtz3ZaeGu0dwl9gK3FohtLGBsCpW0gljQgIsvW+c+ru7lERBixPFiywsNVfL0ulOtUVW6iiHRYFV1QiemaMDl0UO+HPSr8QPxt07/t59UVzC6Ru0uwtLVdO+9+wupvGpK5zqh3VnCTTLZ/HtZW7YpIPZLcTrmb+WFv7ZrU7kbSmawTf9k/jTLX3fp6dnYzBH3g84GAiNVlCXWB1VbqjVxVHfaz2gozIK7ngIlImhGkO9j9zip0q9UDhsThxTWsBADIC06wQBZUMTg3ufj64x/98Jtnz87fHgTm3OaUF68czzT0jE76fVhkKbAnZZZZvlyOvBMTBiKigkjWw6twfjKbi0ie5xrw/PzRycmJUirPc+99GSC1DsLwxFqb53mYHD98NNRaF0WxzNL5YjlfLLVSNsuttcP+4Pz8fDmfCNgim9l01oto2L93/vDBsNeP0Dl3bkzPe3h1fTldfNMfqpPT3gC+lb16EQQ0Hl/MphfepdlyiaDo5EEcHSW9AaOeTBezxbTgW+fcYxOfHx8FKjOJGgbHs0U2GuXL+cAVz8/vDwen8e1UpvP5ZHKpFTx58FbUX97e3oZGv//uO0qF3hYICtkDAbIgridZAErdy8TIQiACwiCUkyAxeCdsQlaICDGQIiEGEWGlBIFwbTgd2O93KpV676+HytYQx9YCiDrjrQV211T06siafVzXEr6bMOB6s/Jm2qWkLggC6wvn3Op2EAWA5bxS933b9eVaUIug1tvjcMm1Syzs8T73Y26Ii7aa2S6x5jLuOKlqNw27Nl5vqecOzVSV2KEh6nPe+yrY6ae2eWYPhq0T/Wqqty3BYL/0lq2JvJ3JNmXt84HvZJu/FvtsG9WWhurUEYe0w84Q9OHmw50JDslbN/H2kFtDuDXSSg6oW9PlWK/Z6VtngdYJ29WCDQuxkesNBvmOulSzIptyAYAwJDXLclRhL5s9/fyjH37606dnD+9J2J/PltPFjWAWJ/eQj7J8VvhLUsdxHFtrsyylICw4W84XvV4vzzOllCFlTEBEaZo650Tk6Ox0eHy0zFJmPj099d7PZjNttPUGiZJeMhiiK+zV9Xg6nWb5UmtIkiQwBhiTpE8Es9ns+9///qBfPLj/5OGD9/vRwGiFKrudj1/cfqmczOZjJDvox0nYOzk7PR0+isLhx+PpxeUnQWgfnL51/v7vHQ0ee7+IEkdy/+b6q/HN59PRF9cXL0bXhRSoqH+Bi8EJPHh8cnr/8eWVHB/psH85mn18pO+De/Cdb/1KOIzmy7wfnRbp/KsvfuCEFovFy1eXivTbT94Ko9g5lvIgsbWxBuXV9OupkJW2A1HM7DLOQcCiUgBiWcDkaAIVRtrEilCg1E8ITLy+9RZBlZcc7OcK3PJ+mvq1bqS2Mfy1hOBwywXf5W3UVv2gICgEgPJGc67UBCmllNqsgobNacbljGB57hUBYHsqtF5NKVtiNdEMILKaNRTeE3ZsS4m2o9l4v79ZOlHVST0ED2x3caeo6ZQQUouEbTPJVt52WYcLnGbX7yD7daFS/+XZziskFX+VUY2OQncq30ajVdGO16asdoxr3Vna5UnvN+mqh13NeCeR9Y/1efq7Q9DQMnZei6fr+9vqlWkX1eA86Y57Y32j9kq/1rRs9bJhke2wOu+Atg5u59rVGndaMA2EDTsgVJR7l8QnnKd/+cP/7csvPncYk1HjcZ7mN85nCoe2IFA3Hq3nQdTv387GeZ4755jZemEG5Zz3bjgc9vp9Q4q9B4BeFB8dHZHC0WgkIoPBYDKfOeeIYJEtAg15Pk8z75ybTqeL+SxJkvOHZydHJ3lmF4tFURTz6bQoisGg98577z4+e6y1zvLli5efTaZXnjPn87yAh/dPTk5O3j1/cv/shN1iNr64uPzjdDkxRt0/ee9e9K0nx09ub7/50z//V3meGx2DvhXnlVOKsQ/9e0+SKE5QGX8+/I1f+f1+8OT5N0+d/rM0/9pNcxnDzXhEZB3AycnDwdFp5sdX1y/SvGC2y0V2czO6uRnd3t5+54MPHp2eZqkHVd5aUDY5MoiAIAsR4mpNHDI7EO+9QF4oUuwssKBYpAgZ0Zd7mah06BhEWIDKc/s6tO+dgnvN510v19lq8n9f/LnOQm8GIoJrvx6x6yq07ULTdGGtRVTllSfMLMJKKfCl9t3MJQEAYqmeNwZxaS4L3U1xW+DUVOxOebVLEe7CWW+HViltXdhUlm3y2tTWnNQOsusLytZmYkP0b9LCthDfhl1zrmrH+w2dh4jEqjpV6pK8+pGfWwbWboV3p4VxCByunvdptx3SeFf2XfoLAMobTw6nbd9BHLX3rbhWl7/YqMAeU7SNc/P+DhOyWWL1tQLYHkV3xrWwtUW6jR+6xlXdva6/bCeGrnboLGtjuPiUfWIS8/KzH3z5lz8cT6aQxJc3c8+8XBaGBkHUW2Y3y2IZRPFw+O54eT2azOM40pGZz+dam8gYzxBEYa/XC8OQrUPEJAqTKO4l8fXtTRwlg+MjZnj58rky+uze8SJdKh5qTLJsPp2NlTp698l7Wus0TV+8vDI6dI7juHd+/tZg0COCyXR0Pbm6Hb2aL2+QhBA0DI4G75wcPTw6Kxbz8Y8++qHNZpFScZj0w34cP3hggh5EL599/vT5T25mk+v5MvNKKD6HrJfoo6E2iYr6/dPzt/onjxgD7fVnn/z5zdW/yPNFLx4eJR88GP7to2B+Nfurm9HXV68+unzxTOmwfxqGcT/uPVjMLrKCrYd56mezZ+D98Fe/F4eB0xq5vDEaSmmGCEKrywRq3MjAmQfNyzEEVperI51wAVYEnQMVlFcqSXmyAZerK3XlHtb6caWDKg7c1pTdnm4Vp6lciYb5W76VNZ46X9V5b9fgx/VS1JLX61phVeSOAE+lGMqCmNl7772vBg6iIAqS1HZBMJQLtlehy2a0tlKiVb22P93x3MDTKZTuVCq7hup+UbDtS3SQJ13SoBTcbap2ue/1l7vEUZ1791S2Yd+38TSEZ91iANjyQ1otU+462xf/b0OndjikvzpRvbHpub+4nZ27dvwOKWJ/pfZdxtCGO3X7lgu743n1ZvsQ0gMbEVsxhLVYwJXwIip/dvL0gUU0qrMf2mx3p76vY95VBNt5kLx/O37xyV/9f3mZFs7fZrcM/cnkpt87ShK1WL5apEUSPwjC4HryyYsLThIEwvliwQJAmFsXBvHp6Ukcxc459n7Q7/eisMjy66tXx/cfaa1fXdxord968l6WL8ejMQgJZaPRqCiKwTCOgjDPp9NZjohR0rt3dj+OYyKaTCaffP6Fd0Wep1440EqZExQbGIoCvcxevPr0U/sTIAQCOBqok/Oz4SCOo6CfRIPvfu/h6XtvWfP8m4/k1V8e37t59s0Vu+zowQAKqzG+179/1OvLXObjp7nz+fjTIFZUTAMKo+Sdq1cTFZxE8dBYPeidL+EK1UQpdfECTXz/N3/rO9GTk0fT2YsXzyeTyWJ6+9VXLxONf+vXflUpw8gCHtcbbQgQETznIgLARFQeeoIIgixu6QSdEFiLLg5iCUArrRyL1hoRCUCIAFiEmN2Ow093Dj/E7mmtDXvsUIRVsjrn1MXBm0mxusVcd65KWUNEULNORWQ4HMpskmWpMCqltFbM6Nlq0Kt0DS1Fm/xSAUvZDatPXaHXPdWv64MDh1UbT/vNLoS1Nt9Y3nhXgzcU2y7t26mQoHYbUludH15N2N0ynSr/EKelk/56KSstteM6QrVaQ1EhWfEw6j2HHR8EbeJ3G6N3MFgjZb0LZDtxZT2+riXQXIRV6/gacbJa2SQAKBZWXFU/PGUnW3SapWW2VWUAGNezBaX4W/ULAm3WbFZnz1aFrsd5TyAl5TRqbxnUjIJBgIGQr52aSY0gXtvca5CHa4CuxYG4vl6q0XQiAkK1i3S4+lt3L+pFWCENqJmdc2BQCJ1jTcr0H2TzFzc/+RN7dXUzT5/NVeaC0L7qBf0w0ItlPl2ijofewPV4sljQoB8jQrp0QRADMJGOwiTLsiDoF9Yqon6vpwAXs6W1FgDHt1fGmJOjoXP84tnz+XzO4nq93jSbENHx2WmWFzPnjk/vD4NQKfXg6D6zTbPZ7c2r0egmz3Otg8HwNNQ9AU/okHyRLWaLmQI8u3evfxwP4qNePEiiXraYnx4lg4GKYl28+ubjrz6Zz0bLdHLv3ikG96JwYfrq+P7pIDl5eP/x8SDpx/Ts6eeRKD/L4PRXvUgQsTL65OQ+02w8Wizn46B3zH3M/XwyS8NAH50MCOLF7fKWMIqOfue3vzef3ATKff3lT58/++T/+Is/fvTk/P69x8PeMTM4C8QEmAMtWSAM46IQa20UJd5b62ycRE48SIqOlVhCiyzsHOhQRz1wWnQiJhBCJkFUqILVdX0kleuzZqkty6xiQvZAiOVeWyIURAQlTGwzEUHSgALMxAyiPAvqTWiLEUhoFQkVABFEFuL1znkFAF7sanyUwfbKQRSNiOtxxetxjFIbaFitAwMQWN8LggQgzFwe5ZFlBQAKMhjJ0gxEgRhFsWcHa/e6YnWFBAC63ELqHWmNAsxOk0YEWU/3loVW+1BrA7YmlFnKUUmIlRiHckVdl53tpOMaUBZRa03aGNcrNYBYn8hkBLVlYa9ElIiwKpFXH9fyc73IoO4pESEwrruskmBb55ZUlFTdUf3cFlP1WY873Lh6mk25NTyrLa0siFge+lDtx0VEAFU1bMlda14CgM3NvnVJWJZCRL52xCmuj2cARLe+nq+S6khYbYZutwPBVs9W9LTbp9N+2qWDGwU19Et1gHPDeEJE9lgGBqpalAkaR37uoaf82bEI6y6rqnN3+RtG8HeVewAZ+0pvoWqW1c6yh7BdxXXaibVD9muXzdW+lwjKZxFYbbhEQEUMG1K9y25fPp1NRp89e/XFi0sdnxlkD+rBo8c3o+vxZOIJgM10PE7TQmsThFIUhVJk86zXGyAFy2X+wbe+g2jDKMzTRZqmSRgVzgLggwcPAP1oNHr6/Gme52EY94aRtTYrllEYp3k2nkyDIDJhGMe949MT5xyATCaT65uLNJuHWg+Hx2EYE5FzzlpmzyBCOuj1TuMoSuLesN8zRiE451Mvy+vR8vPPR5PxWGSRJNG3P/ilt5/8ynw+e/b8R3lh3//Wt7/zwe/EURgaTGL96vlTrU9R7PAoMb1+7vLLy1fXo6uvX/10mWciMhgMHkf/zWIMgyCm/ulochH3RNToJ5/8UZ733nn7vZNYA0A0GHz4S7/y9vvvPHv21Q9+8HF/+PmDs/v3Tz88PXnQG4IwFdlAqWI+X0ZRpCOd5Ys4SuI4vrm5ieMYwBMXLIiAxKS8Jx0RF4QhGUc+Jo2iNCgtSIJaEFEIcL1fDhXVbOU2h69tWqgOOujmqJqxWP/aOUY62RUrb1s6Bm9DQHdm7xQoFWGI2DkLXi+i/qU0VKV8v6vUu+BOL60EBQiru8brrzuy1tVw6/0mfltVeaVmaop8J+qfD3YhPLCg/bK0ocI39kf183WkcdUsUGuo6usWNsKNIVMZIrB/7UGD5uZzVUpbwnfS32ChRvq6cdDOWC+6oVZfCzpC0O3m3oP3TubolBGd/XqIkSJCtQ2X5TMDwPp8E8LaDakNnHXmuLMKBw7vrno1FkFU2pc7EdJq7pAEURD8+iLCfDqdXz/79JOffvLsqlBJgOzzdHhydnV9nduClWKRwnkR0VoppVisZ1dYGA76s9lCkf31X/uts7P7eX5zcXFh81QrSov87PRekiSjyfTZN19MJpOkN3jrrSdxHE8mk+VyEfWSeWq1DvMsO7t/8tZbb1lrvXVJHH/1+RfOF0A4HB6HYYiIWW5tZlM7B+BA6TAyUZAoJGNCbYLF3OXFKE1vhbPFbOILOR6cvf32d3/5V9/1NhiNb//0L/5Nms1/8bu/8d77/6fT08C564vL5fm9+1pHUV8F+sRm8Pzri/FH/3E2W9zc2uFR2B8e9VR0M7pNl/MfPvt/nxyfHx+dm+DU6GSeTse31yyKZHnx4rPF/Pb05P7o5Fgp9fjx+fC+f9/Nr14tP/vi+ounV4N+8tajX3ry+K3+kZc80Eqcc2FowtCk2TLP1fHxaW4zABbw4nMC8CLABeuUfAAYapMpF7MJQBsyIXnxJgYiVFTdfVAelQPrFV4tZkPYsQxio7Rreo4bkZgae5fpcSe/UrWweYedWgaiutVPJ1RpSnufiPacaFilJCIgKh0LhNXJGQ1b9hCXpVPCdtoPbVXaKSulFeWqumDTwq1rCndRWI9vdRoue7yFO6tw5/tdiesRuDaeBgm7FM+dZDS0755cdfW2p5sOh12qtP2zE9pp2lyxq7hOYhpV21WpnWdBd0oHAFhf3dxca9fZlG1ya3px9R4PsyA26hMRRAE4RNycQwZb1r1Ac4K5QtzZEHu6fE+/diZGXJ3DBwAb7bt1Yh1UHjAAAHgs5TutTo0hArZudPl8fPHNF59/OrUYDE/ALpPYOFbPXr1MerEyETsnAGGcGOYid4Vlo4MkNqPRPAjM9773S4NhfHP9YnR7kaYpsB8MBoP+MCvy5y8vXl3dKC1P3vvWvXv3sixLi3xwfIRajUYjo3tJ0j9/8Hg4HHoHWgfe26+//rrwjohCHQJAlhfOsS+YmVUYG1JRFEZhqEBsXiyzxWIxSzQAcJZlaTo7PTl57+337t8/7/eOPv7k61fXPyvySS8+/faH3zt/HBT+8uLFURIsjAovXj775tlPhkN3czMaj6AXwNB878Hj+w+e4DJbzNM5GI7vRUI+cFfLxcVkZoPg2PpCG9sfmMubuQiIzWbpi/F01rse9Pr9pNdjxuHR+7l7KiYfj5affL786pvvv//+8/MHT7773iMkDQiFs8DeGENo8jwvj5RAYUQBzwgMYIEVewIMvcvAR2giNAG4hI1jAaU1oUHS5eFsjIiyNY622Ax5vWxlvbmHBGnlDTQGYPWzLuDuFNy4YdqV2drUOl25YFtqdHF4NZbLKwjrc7FbViYithXjyqCA9b3CtYJ+zihauyLtn3XJ2Okh1StYy/sa5vhrqcb/YrCLqjvjH43Erf69o5R6z26xH6KUB9Nh/YZpUXuxtV/e2dqHO5N35q2/r+rV0NOH6Ig68rsXYe2guLzCpbtu+zvpkBLXdn1tKmgjy6g8uXRdcw+ymk5YqefyHowtbFvE1Jvpr8XAbICIHMLQm55bzSiTiCgUEszns6uXzz/99NPxImMVjmaLs4TiXv/jr1/FSZwVHhwHUUiI1lprLbCE0dAoNZ1OB4P+r/3arxHIj370p4jgC0dEg15fKXVxcXF5fVM4juLeg/sPjI60ivq9aDQaPX/2yjk3GBwdn5yFYeStG40mg8Egz9PR+LbfT4bDobV5lmXWWhHRqIMoREQdxERACp23mc1dvnQ+E/Z5Nouj3snp2ZPee/fv3wdxP/30J8+ePR304HTw9r1H78eR0yacj+IwhtP7eY/vj2dPs+zac/b0y8LnCRfLQkBOvng6+ngxd6MRWA+FAxObIErIpkqB91MTOOsxCJPB0T2l+99cXTjvmAXyIoy8IrJF8eD0zDmeLkYynZgg7h8X1vovvn75049e3rx6/Nu/85v9Xu92dJlEJgjjbJkxg1otIChtOQ/smTWQRgaQDIqCbYDGqCDm0KJ3zJ6CCDAhjYIEQLSXhRARpDxRtuSBrV0cr6uIVqpuzdVSzikKAFbaUa1n+2pe74r9Vi8OH7a4HmUAIOvBCLXAXTvL6uoGYAReTSTvruReI4N3uAcbW/wQGS31tror8bY1s8EgtcP6O6HtCUFXvUSkfaTlIWhf69PhyAHWDVy6SdWnvRHiRtOtKr7CUMMJsHJTDha/jWZ8LXOt0SB3GSI7ieksdM8wOcR6gDdYBb0+erkMalVfOlY6QBc3dFqghzQoIoJQOdoBEKQWWFsloPJo+1I6NPKumOp19O5avuz72qZfZGP1I8r6XAIRqW9T2YQYgQUUiQiU/g8IFnZ6c3l58eyLby6WnliceMldcDmapdYGoq1nQwZEF0WeZTkCE5EwXo1GSRz+2q/+hnj3gx//hfgiioL+8MwXlkGubq6vr0dJ3Hv//bdNEGpFYRhmWTYej2ezSWSis+OTk5MTD/LixXNCpXUwXy6iKIiTJIhC770gKROg0uJZBB0ze3YSEIqIZ5d6l6EUQBbAAdj5ciEQCrnZl88vr54zpP2joRTDXHBeZKjvKxve3L68HV2T702vv395kc/nWWTgu9+Dd570B71v94InWf40HqhffP9+EseFtd88f5E5i9rk2VuLdLZM55P5wjPdv3c8GDwo0vmDh+FoNErns9z53Lr5In3+7KXRYZpNjbl3/348Dp8ti6vlQmutByfZl89fjP/d/Dd+/Vfff/dJOp8tl2kcRnmRARAKA0K5xISRgS2IFy8ixGDRGbKaXa6cpSAHduxzJV5CJh1VO0X3x1RXthquLEgi8l3RP5GtYxphx2Cp3IhaTix1MMiaFWGz3xS2hsOhQbbKR6y54wAgSFBevSV3oa1sZezygA/Q/Xc3xSZ96zrkevhpR49sUlXPpX3c4eFtI6gScHe4C7bOOXl9aFR/Fxu0P9WNui7XvxY6XpliTZ3X0Tu7G35/p4gI1a5mKMldcdJfXxSkggNbu9uA6GKzPVp8lzkmOyRA90EcB8SEqXRQK8u9PTB2QacObv/szrue0AIARCWwWnJZDWvYLn3NizspgdaEx7Y2ba5O3F8vACgX9wFAfQl0pySC1WfUqIAYAICF0Lt0Prp4+fTLr64Xdl6IRu4Hery0V5PlsD+4uZpFcRCYyHtO05wQQhMI+DSbk5Jf/MVfmM1mP/3Jj0OjhsNjEZnN5/1ebzweL5fLR48eHh+dWg/euvlsjiikwGZZFIaDQZTniy8+vxRNcTRAROfc8Pjo+PjYsc2ylFmYgQWd5fIsLSLSSintUYBZEFEpRRCwgDAYcw8AGOji6rIoCmttHA/mS3GOC4xnRfb04gfj0Ww+Am9BGGKtH701+L2/87d/5zd/61vv/sIw6Rmd346+muQmDgMlPL69nY2Xg/u/6rxZLIt0uTw/P7u4ejadXYcRPb949uzlR0kSQRGf9I9C0jc3N7fjmfNqMrfPr2cJmeNTOjrtn4e/2IvfHc1eTGe3y3kiUfHVi+k8/dM0cx+8+wSVyoul1uQZEJUCKY86rgw4AQeeABCFRSyzFXbsrfYOTCTeKc8UCpoQwMj23pt6v4sIyJZyKBl4Fys2jL+2Q7YTZOW3YH0NxMGWe5uq+vtqDnj9BmDHuFbrOeAVIAluxH2jlerC5E6fY9VKuxNI55zx3lq3oe7i35msxHgg5p8HDpGZ+3Otydu0P64NvoZIb7Rzlb6Oc48Oa3Rx/dN+w6vNkK9b306Cd5WyZwzuyXhI5LkzzWvMAde6aqfZ9bpQN8PbhJZfu0inavKpyr9WwB0HvtSrUzPbm7zSWYVus3cP32+2IdE60Feaeg2TeoVJGBEUiF/Z0iw+z+aj0fPnzxYeM1Znkc/zZVqo3sl9zpf9fswi1jrHnh3rwCilxHMQwq/86q/Mp9Pnz172+8NAaWe9CXRoYDQZsef79+8PBgNrbbosCs8mdPPZLDQqSSIkPx5dMUOv10PS1ha9wcm33v9QEK6urwW8ZQ9e8jzP85yZNSljtNaaFHibAZS9hEEYh1ohMXsrrG9uLp2fsdherzfQx2E0zFIbxfPF4qaY2nzhJhOII3j/wydxHP9X/9Uv/dJ3f+P2ajRz6b/+3/9nhbPJ+Pbs6P4wund78zKbX/dCms/GaVpYB1Hcn0r4V1+IK9S33v/u6b1HhcMix8VioZEX87kt8iTppVlxM1skveGg1+vF3IvPQp2YgHr9KO5FwpSmX1vEs/O+y+xf/PDH2XzxCx++n0SRzRYIBmjTZSLlKhwhUkhIIgjM7Lw4BiRmEmBvGZSARtQKCREQdKWcdrMTl8wLUF3k15ydLR3lTulWMSTAQd5DXQFXe5PeIARaf6gT1im/GmTLyvromKxZG9KHzqUdGBJs+3wNytt2Uqfds5+A/6y6dhf+XW21vw1xhxcE6xoR7URbT7YH7kjAW0eiliqfiPYdQNoifg95d1LV2ZvVX+nSO/XBK9sHN+E6+NR5NjjunlRa7wPmKk61zkDN0b7uGIDyjNeVyEBGAFDAGpArIbKGbo+8VJWyjvFWrICIiAoRmJ2ICK9WqKz2k7FAeb8oOxABYAYPIMxgKCo3OOZFCuGR1tozohAwiggqACARjyQIqm6CVY2+mbEriSnpIRLxiLDeEFYdUg+4dVxcbRDS5k1ZgqxDOlVL1p5BafbZTFB8kNhFcYLhJxeX/9tP/uSTy1dam7PhaVZwKiguQ14ul8swjBWStbm1NunHJ8fHiLhcLh+e3r9+NXp1ccG2GMSRkyKIQi9+9urGMbz7/ntpbtPcziYjW6RJGBQYJGEE4l1qSZPRoTZGqyhz/uFbb5/eu3czGl3e3Fqbs3UCnoIQhUmpQGvvfZZlWiljjDAZUt57HZjh0UDAT6cja12WLcQEyhhN4lC880U6UkpNbi68IxAzODr78NsPHp6f9CJksT/58x/+q//Xv0ShJNK9Hn747ffff+dXtQpnN1+/+PpzZ2fHw6M4Onr46DRz9umLr66mtMzS3NlPnz73nge9wb2Ts0AbpKg3CJa3V0WRR1HkszxbzI4HvVQd5/PpERah9vPJ+Prq1nt48uDD0XK0nM2VMreT+R//2Y8Z6Ne+/VZMwcSxFkVICCBcIDGRBxLwASAwspRHGoGQXyrIPS1J+kAsCITIwiihaAooAkRPBKhq0oEFUBESlq52aaCR88KkkDQ4BiJU4pgJvEZV8CZMDVAeNoUiQiud7Tesu4qmQDUBDKvDsAERcZUSRKQ84LnczdgYnhs5ICjCgMLMmjQisi8ALRAqhVwUhlTBhdamcIWQ9RICAiERAAohKgKFAIhehAg1EDrviUApBSxAtB5wW+Not/iuBByu78EVEVGre2q3ptLLdmCs/aRVuEz81nqxqjgivRJ0q9ELiEgC3ltcr9/eZJGt5trChls/a/J6Y5Ctb7coY7BUl5+ICoBASMBWWgE3e4vLSX2pmqJSBvWp9W3t0dqfuprVkI0cw7Lem2WkHVXz6wU3awTlCQ1aa6jpoYqmhh1TDyRsi32s3jd6ZE3t2rNa7atGBEBcXQ5RZd8Uh81zI1ZlgQKQUmutiOGVcO60IxvKoqKtaYOuCy4vX28bkYICCOXJe6tqEMCdtyHtf3kX7Fue0Gia6k2jmJLrNs97jbI1Y1Q/BZChmrRGBmhi2FOv/cbv4SZYw1Ju5CUipcCzeFf04nD08uoHf/nDr7/8GhGMMWmREwbpMgcAa20URURqsViISL/fR8Tb29sgCE5OToo8v7q8zPPiwYMz622SJMt07pwbHA+nk9nLly+DKImiSMQTESMoAVKklTGEiIqZGcEYc/bo0Wy6ePWzn80WqTFmMBhgoJk5tzYvChGJwzA0AZb5EMtbGc7OzgaDwfX1JYuLIjNfTD3gyelJtlhOpxMTqDxPF/NpGIZRHJ8/evjg/mOlzPjm9mc/+9gXC61Je//g0YNhP1REvbC/XPr/4z/9qdI8OFG//Lf/z2iNkujdd7796vrqxz/5y9Pzv3XykC5evboZj3Rkl4t0MpvlmTsaDKLQC0kcxyqg3FoicK64un51M54ksfG23490kgzeff/o8uLq5asX85THtxkImFB76/7ih59yan/jl74d9ZauyArLigJjQsLEsjjLRNmqH2VjO4qIyx2plL1SrJUAgSjwxAEbRaSptMuwEgRqbZwJbM8T1x62GKxa7NN04NY6oG2z71Kru4roBBEhQiSsbhaE9UAjovI+hu335bkepZRiWZ3LoVTl+5arJGpQow2h9qlObCdthwilBqaqlRoCFFqittGY5ZHXu9TDntLbpN5F9tZqMpGautrwzD5U+4VkM3FXpPMQ77ahXDtdxkZ6qDHqHVS1Ixb7CdoB++tSGzU7tV6D4DbZDfLq47Q+WHbRsFLAvE6AlbPcFZff117IHS8PgLp+qrzDdsPhOhzNvMV/WBu0q2S41rjl31XMrYxtbK5LO1D17mq+9ohq1/cQAcHMipAAyXNs6CfffPHDH/1wOlmoKGSgdJECWFcejeQtKkqXaRAEWmtmzvNcRMIwFJHZ7Wg5y+4/PBLkuBel6QKZlchkMh30B0BKkV7MJiI+MBoAxIsHJ8xASoiFwSjPIM+fP59NF15EB4Exqiiy+XzuisKEIQEYY5QiZm+tBRGtdRyY09NT59z19bVSip2bTKaEOjBmPJp6tsYY77z3kvQGURR9+MF3FovFV189vb29TeczQun34kHSi5Iho5uko6uL0e0lsIXjY3jriXl8/ivpxPcimS+f//lf/ElapOxpcoVfX93ktkgtAAEFqBByl46W6bEKlEKtDXqX50tmJq2W2UIbHg7uKxMvlnmepb1+pMMg6ceMs+Gwl6f5Ind5DhaW02L0fPTiTO4nUUIJ2HyZZlMyAREx+3IbXr1nVxduAolYlqWIiFgNjuAIOPYsoIyYgFQAoGU1PiuGWf3Z4jeStTO0MSWrg+ca8vcQcXkgK+7OLIiEsNkLi4hSxpYEEIEEuFwgoBR7RtnEk9bbf9We0fFz0XYXhnL4HjI2u2XOusGVanqQe4rG9b7tutaRLolay9N1icJKaq3L3S78cO1b0dDOcpCMbhVRb6uqmnfqYNgtTvdQvh86+7F66Kpyp3XSQUbdNOz04/crxw5WEYC1+uHyJ+FKAcvaNpft1Luwd5gAiOvz4KqXuFqrtYOg9nvETQRlVURnPL2LtoqMzXXh4hE1ACMhAIp4xFVgqd1Y25Z4N/I7m2K7NZq5Oo1r9s4rA4QhQDYb/9XPfnRxdTnsH6feWu8d02y2iJOe915rDewFoNS48+kMEY+Pj5VS19fXy5vl8XHIIOyLfJ4RQrFIh71edBwhqSzLMpcBQK+XECF7KyJlVIcRiAgQrJfZYjGbZ9Za0irNlovlHACIaJD0ymsMxHtvnRMB8UmSDAYDZOn3++VqaudAEFVgtNaFFZEiChNAnk6nRofn5+enp6c/++knzudZkQoXvX446PWjMERGEwUvLl4Y7c7O7n/3w7fun95XKrd+Kv42TwMt97k4stnS5nZ2s3h5MS9ULBBmi8Ui5yCiKAqURlLKC2nQCBrRadSgSAC0EvHu+voaGJ88efLdDz94dH4vK2az2WR8NQEWIrp4dX3v4aPRzVUv0j/79LNhOHlwfnb+YBiEiBoBHKIKI81F7ZBJAVkLd00EwsBLcIXPLQITewh6EjhWRnEsgZASECm1EapVtBBlFY0iREXkNwy5sUrrbkpz6G0z7NoiXan4FbO9iZitoLQDGIDWJwUCAINIeRnD1lmAAuIZEMtlEIgKEYXKIze61e22WNjIiu1kzRH3usK6naUtmtcJtlaVlvYRAFS3Ce0SBa0hv4q34cZTXOXfQSOt/64iwFi7tuFO+fNm2msXkroc7oRmGGZ9T/Cd3nn1qd0de+h5XUDE1XrkJoY1SdVq5b1k7C9iK/26slzVrur3Lve90ra7Q9A1r7xhU3QStObU2hLlvWHbqgINi2MXg5aSpYWhySgrxet9japNetyeDK+NjZ12WQcZuz912piNvA0NTUSCBCI9Ul89//qjj39inevF/aWzIFrE8+psOAUgwtzv95fLpcuLOAh7vR4hzebz+TLtxarX6y3yTJBFhEHCMACAMIpubm611qHRcRx78WmaBqH21gVBoAMtIk7YWlfkjhkACBCNCki8Lan1XBRFeZIIIxGKCQyAQcSiKDRBnufLPHMCiFhYl2UpIp6e3nv8+PFsNnv27KkmMxj2bsbjz778MjKB8zmAUwqsFJPp7VRIAb26yRSoQa/vXMBoWaWBCaLk4TSXb2bum7/80e3NxfExmUAWMyfYy/OpB/AIcR9MqD0XtvBaQ6D6YRgaEwQ6iMLefD6bLuYA2rmUGQrrRuPZX/7Vz378E/CcJpF5MDxJogAF/uHv/rcff/75MjSffPqzbD5dBNfT7GJePHjnyVtHg2Nx4gohVqTT8rArXi3iFSjjeJ4BGNiDcuUPyx7zlOICTEhiBVi0Bx0CKASFtDnHGBHLl+V0SU3vsoDgxmjessFXvL3zWroGZ64eEF5PtBGtjoCuzr1lERYh1FiKXWAi1EgeUYSV0kjVLVPCwgJeSDRGjVG2MizeyPs9cLSuU9b8lS5fp/5zlyG+6ZTtZA1nqCHl2vKtvr4ON9IbRXg9vb1uJREARlWLSNfxbDsSdxolFf2tBqo9tnybNtQL2uO3dKY/BDoNtf0Y9mjrOxX5a5G332iov+xwUMsJdoCqg0sneK2A690pK9LqddiHfaP7G3Urbca7vcB6gir92kbY1azN93VVKisvpbzZDdcLHJrB50P6tR6/avNZpzXamaaz4ohIQAWzBiTvnn/5+fXNSx2HbCEy0WyRz2bLIIgUmTAys8nYFQWYyDlnjBkOhyhwM7rNrI8i0+v106wIA8PMzG46Tc/PT/I8v7y8AoAH9+57dtbaoiiyPDVB34SBMpoR8yLP8qLIc/agdTBIBpa9s3me59YXRodaKRANgMaYOAqMMYjI7Kx11uZx3EvzyTLNmSWIwv7g6N33vvXoyVts3cc/++ji4jJJ+kqp0Xhm8ywKE0Jrs1zEx0kYGiPeG1RJkoQROguRiZfZ7Isvv5xORwrVeLS0+eLk9OjoOOof9bL0VgAevnU6SM5d/l0PmDnJLVv2RbaYzW/ybOGNY2uZdByEoTausLPlorzxt3D26uZ6NJkaY8IwDI3uD3rj65dxELz18N6Pf/KnXz17/sVXXyK4OFCzggqB7Pl4PMkfPzx/fH6vF0be5hvLCZDX1/OhgGeLBFguEfGeIRMRoEwjgw9QLABLyAoAwSAJMyKBAvDrkVndhtAwE1fe52rNf82+rvF8JyN3uDWvD2vDt3zeHOmstSbU5XArV50AlDQyblayMiDiel3irtFRjVlorYU5kMI3cIh3e6IAO+Y4AbqVdFsINAzxgwUIb9/yu+tm303GAyu+P/EeqdWGdstU6XfJ1V3WTCNN2z07pGd30dnp7YjIihlr+3WRSiNJtbPvgtdy9PfoCMR1CJpa55XLjmuk9nRM+f9WAaDKS7j31KHB3w3sWDPepRahomr+fHtKmIjWpnq56LS8E49AQMRJ12H07UrtGjxbHXmAmDgkTYlLkZpdXX7xyUdFkcWDU15qYTefL4sUer3ImIAdi/cg4L3v9XqhNt665XJpcx8GFMdx5jyzFNPloNe7uZ2FsZrM56SUicJQm2W6WC6X1tqjo0GvlzBAHCW5y9MsK6OIzrJCDJSeT2eCQIbEOxQQZwUEWKIwNMYgS5EtASAIgsAYRLy+vbm6vLn34MGH3/7u0enJ8fGx9cUnn3722UcfM/vT01NN6ubmBgCipDedTjVmxhilEgTMUq8AwyQIgtDoIM9mFpeFzeaTpXiKQjOdjQeB+NSmfNRPzh4//JXBYKC0KIWXk+vxZDGaTsaTufc+CNEYj8Asy0WaEQ8NDhAxNHRyNJgtZ8UMRcSys4V3zILGFraw6XBwUizt8ovRYvEMUPWStwMNWskHb3/onL29efXi8iJdPgsUBw+HijxIr7OXhcq9AeUZ8wjs2ANywcLgIi/MCApBEDRG5XZxQsUigoKyuXSFiBhldUpBqdZWmq9jDrIxmPcolU4lUWfCvQKXETcXddexrZZ7AgOAAmQi8FJXt4KIhLQmvu7DrbJ2SeeW5H3z+GrNQ9iivHOMw7awbmNrZN8j/eV1Tq+socKVbsDVCoAt+bPlgm8Rf4gnsLfc14NGrror3NV90Ejciadq+TbyNyCvbTy1U5XoV+m5oxk731QVvLPpGl2zWv1RGgC48oY7QtCwre1eBxp7ALaWaHZWozEM6kP0ENtHpKkgCUnKdR+lDgYlqx1BKIyCGwV/SPzkDeAQdqnXDlkgIK30xfXNN19+Yb2NiJD0YrJcTDmOVaADALi+vg4VDHsRDQbguUizbLbw3idJaMJAAEgrBCAVXL0anx73wl44yZaO/SDpaaTJeBQHIYMFAKWUIM7n89FknKYQJRCHgXOucCBukaYWAOJeEMRBaIxSSqNOorgoilI9kAJjDDNfX1+PRjfJ0b2/+1/9vffee18HUZbbFy9fffL5J5eXl/ePhqWvvEiXIuK9d3OnVRBoTpI+iErT3Gg86veMxjzLF7OMtJ1lk+XcaghHNznR/PxRdHr0Hcuz/knc7/cXXCCxQX11eVHMp9c3M6bgnbe/JSLTydV8fusKD9HSLiXWBiBgj0kchYnxnGZ5wIV4YQZ07LM8RzHe+RxvJE8V5+L56Pg048VyWdy/d3K7eP782ctXz264gPxe2I/ihOIHD458baMLycpOlVKPlpf6IQiwCAN4ARDPJJ5JKTKgAqGAUBGAUMDsqaZWK8NurZYQcDUZ2NYWjZf/+aAckkTEgMKV9EfvvaznR0Wk3LuikcrDfEUEeLVXGsALougO0wHXV6fUq/afG3AT4N282S9PD7HaO6FaIl5BW+Wsn6W04GqxZQRglpoWWZMsIo3C90szXC/0PUyovl4vlOmr1b/txqyeK8xVgs5mr3hsO/2h9HQq0TsrtYuSNvHYskQr27der/pPIiqXSjSpaq+CXhfGlQO8ag6q2oJgfZxdeX957biC+grPUoZw497cjW1SnQGCXOMeYSkNvTLmtpkD442FgogaxJX8bMB4so49K3SOgUCsdWpJPCg3/kLpdRAiqnpDrCUdw/o2mFp/d0SN2q5wZ4ftOht22+GoLnQCRynaxBTZfPrNZZ6enzxJIvPx5HKRZsdnoTZBFKvlcjkY9B6cPUBEa/Pr8XWWZ0IwOEls4S17YKLC5XkmwPFQW+1s7qIoTpJk/M1LhxIOIjPsA8eZZ/Bgcwd5rhz2DWkxdu6yDBiAUaJjbYyJgtgYQ6AUIIFiJ0HAAC4IAqXNbLa4HU+Pjk5+4zf/7jvf/QWFuMyKZx9/9vTrr2ezmYgf9hL2kLnCujzPcyKK40Qp8t4PwiMGcd6ZMDTGsFLTLF/Mlr4YETISPD4/B1ZKqUEvRGTLi6Iobq6KF1+/ELbsijA03hXMkffWGD2VW+uLPLOOvRByoYwKBv3TXn+QLXPFOtR0Yobc14s0yDPn2As772cmilSoIIsDMxQRCe1SYJFlaYYvl+n48ip3C1YAOry8lolMvvXt97VyPZNc56AUmfw2DM0MEkSM/dSCgXI1VRmHBQDvQQSJvKTWe+My5MyIBzJeJYG1oolJMyJigeIAGUi5nJlLmc2rRcZAwlheDlFbPFI6SWuHszwykzaDHzcBrXJwVdsoq6MoBWq+YS32WZ2CJOWOXtlc6braCOt8rg1oR4Z7aZYrZRAyIvJeyiFWXnOMQIQKyZBWAMRAqhw866tKBMt99qWyaR5jWXNGN+Oo2vdZt0BwfT93+zZWIVW3uYHXk3AdC0pWaXATVN/ozl16orKZ6imJiARAVrtm1xdPIACIr83lY71oXEmGdWLmlfeOG2FVbweP5U3SUrnFiIiwPkCjbqgJgPDGkqvWzSEitPb7ynbYoG4XVvKz7XbXZVptr/amSeuNBiv2qwqsQ4e8LRcibOoOUtXRKL22BaHsNRHPLBUvyVq3rQ2vDTuUI6h8r1SNZrUuGsD5Yl33emhEqHYv8qY1WgGSuj5eK56VmhQRBXj3SVjrtuuYxqizZFeXbC3E7yxoD2A9+HyYW1mLP2O1G7oipuKkNjZpvWq0HbZatj0s38x+916C0CxG1+Px7enpiXd6Mrotch8EgWU/HA6tFwA6Ozt2zk0mk+V8pgMTBFprvVxkxhjvvVK0WCxNgKQJUYhIa51m2c3N+KgXRxrDJEYGzqwrPFteLHIHoBUA+Dz3YRienQ+01o69QiQFChWuzqh2ngvHXCyLXq9nnX91eeNFfv3Xf/1bH3yYpulXX3wxurlN54s0TW1RCEAQhcPhEIQWi0UURY8ePdJaz6ezPM+SJFlOrsM4imJTeMiy5TRNi6LwzrFlz3A01Ne306P+0HsfnAyE7Wx6CQBBHIeRKTJWOkqX+auXzuM8SSBOCspQEIgoUIFSKjLDQRIj+8nNdaCNCftK4dFwGBz1b2+m1/a2sFZQlNYkZK03apEXYK0HYDKUFn42z73PyUQIhXdc5DkyXIH76WdfnQzej2UhFJvAIOuCvUenlfblLh1s8jkiMjtBQvHCDlzhXc42RQh9oMgbWc/eVtHFkocrD7imRw+FtaB5A2Z8DSiPFy3nLyoxtBZPFZT+LTWOyK1PdLZbrO73tMutG7htDdrwsRBx+yrGKv0dq43aNOwf3XVtB9vKo5GyU5FvCdVW1HRP0Q17BWtqrWrJtvWALR+ujrCpVGpE7qJEWh5qVYvOouv6pQ11ud1dX9ySww1tV5fVnQTUf1Q461enbF0C1Gr/VTtzC1sbfysy0UDFIHsUMK7SrDBR9061HQV3kr7j0z7OvlP7lsZapXHhjfR9Xcw1dO1Wmtb7N1O69UoFJgm1YeTbm5eLxSyO73mvJreZAAz6Pedclts4jp3j61eXzjlXMJEnIqM0a1ZEeWGLwgICGYrjWCm03qVpar0YQ8Gwx84XubN5ns4ztgAAzECJMmEYaK2JkiRJksR6N5vNAtBRGIahEfB5nubFsjy7Q0At04LT4tFbb337O99VSv3lj3/48uXL5TJXSiVRTIhJEgVRqIMoThKXF+fn59qU/hD0+32t1XK5jJKImefpopTgRZGxc977KB6Qy5FUfzAcDoanJ8fFcnZze+OKSZbCMpr1+4MsLUSUdzrp2bDXS5KYFNh86dkyMykaRL1hfJpEYRSiQuddkecLQRNHPS9u2AuBj6NlmNvcAiOgOD9ZXIdhDEDWumzh5pn3PjAmzphRBZHShE5EZln+Zz/98t6jo9/79V+e5C7LlrbISaOJlNYqLyRQa0dmxYFrESYs7IAQ2DqbSjrX1EMwTDEAlIGZlaQQLt3Buhg9kJeoFrOh19e/+wXinly48vao9Pk6h8Napm9t7ylVowhUZ8fuESD1pUl1L7leXN33rWuXOkWdEnkXNOrSKUmlFvFqmOZ34m/7Kncm20VbXQPVlce2+qR2lnZ1GiTV8bTNnU4XpfzesEhgu1PKF4fXFxE7Q7iICJvl+d3+krQE++ZTq9x2xzXo3xTUSX0X1EnCNUFVQbqebqsjVyloSwcDYG1xVqOpOtmubRG0yXozaOjmVfyhVlA1Eur90ejIXe0OuxnujamFpmgQAPAOMp/mk+vR7aX1TjnIMmcL0AaSfo+ZkyRBVNevrpk5CiIOuMjyICBb+DhMZrOZF/Ze4h4FgVEKvXB5YnMYJb1ez4PMZotsUqCAUaAUidKh0qeP77vCAlujyWhyNgWRXhL0VSAi4KwXhwKajHVorTVB7/j4+N69ezown3766Vdff51lWf9oeDQYAkBoAkGI4zjp9wrHuS16vSQIAgLO8zzLMu+9CButCYLZbDaZz0rHXesAULNiQeUATBT2B72rq8uX33ztffH40alwZEKXWxcxhb1jYwJkMTrUWmf5Ml0skmR41O9l6WIxn7J1cRJxmvcHg+GgNx6PlPgwiJ31mrkfBOFRkITBMs/SIs9zKTzEccgMRWELxx4pCE3uTOHZBxq9AqAszbx3WsNXr+CjZ6NffnhlolABgzHee85TgAhbWqS6NQyEETwyiBMGJgw4mBlt2BEiIunyEEVkL+ARhA+Q3XVYXQtaSRlpDcvDOHPXz12gtVZOKVZEVJ5GW/dbEBgRVpOaG8eleXFLZT03CKi71HUhXk/QHp7Vp7ourJqj61N3a3RK4S7JvuVtQ+u0sl34d31qf63Xfbe2687YoqG+QGdFZF3hVn/XX3dRW5eflSqVxrmHu8R+rSLdKevs28i1sRK2NW6bQxqUNHz6difu6a9NKLvGk+WXBvEHWV2twMNGATd0TKcOPoR7DvN6O7A1rZXDJFGDbBFh4Y4LGVpkrHtibXvuDTjA67f1LmoblqBSCjyPr185mw2Hw5cX48++vCIDg0FPRMIwLpx7+fKly/1wMJxNp3EvVkYrZdi6pZ0vlz6MIE6MUkBa5bZI05yIBoMjID2bLRbTpUIMFACDAKE2YT+JBj2fFeKtVhAqIrC2sEQUBQFiLiDMwI49C6HpJX2lTNyPjTHPX76YTCZIpJQ5Ou09fPjQCM7ncwFWqMsgucfSEVdYzuGLlLYReyfM49u5ZVYU4up0bSalo0CJoiCUJAm/+ebLgFQSGcLw+fPbOI7Ozs6dc0qZ4+Nhr9cb3d6mWRo4c3Z0OnzyThwErsguXz2nIBoOB3GgXIHL6TibWQD3+NFbJ8f3xuN55vI899NFBk5rCiKjl2Sz3JnhoywrlphzXnh25cEdubUipAFjExldMEIyDGfzxecvxq+uRudnx1oBokEAsLkAEZm6YKqLZkIkARYmcehFXIouQ07ZB0opYQ2E5aZ9Wu3d30A1R7jnHtYtjpJVoYdbivsl1/6MZQJmXp3IsR5V6z3SWAqc0p6vYeu4j++1jIBOy7iuBasGfC27uSH6GvJ6LfO7/bP9CA8B2TGftWWstH7uKW6XkVHXW3U7RpqR8F1eRxPtKkHr8obVe5ZOMrowb0HTxlJUGQmlTVeabrKdpeO5VXp7gODaMZOWFtjVEa8L7TmPMmrfcR1hV7vQ/k1pnWStse34VJV18BRvve/b7NVQ/6tLzyqRVupmbg7+1xokJXSa3nBwx9TtDADQRmmljKJQm/F0fH27QIDewJw/emiMQWU+//zLLPPn907FCwA4kDCOfGaFeZm6JFE6VDoIXJEWRQFAYRAbY4TVfLGYzbIYIYpCZk5zi0aFvVgFpvCFmy16cZAEQahBmEkBs3M5Z36pdWB0HCZxQgFhAEiIKi+WX375ZRRF/d4wTdP7989OT8+ub28ni5kIGmOsWLQq7iVHg+HJ2SkisvN57qrVMc4WWZYxA5E2RjnvPVsERaQQKE3n4pdzXURx4LMiy/wgiR4+PPreL/xOnESvXr26fPlicj1eTKbs3HDYOz++fzwcBkGghNmo4MHD2XhU2Dxfjk6OBv1eL4poMOjFcS/LHYEMojBE1kIB4TKHgmyilO8pSypRSWKsXkxGi5n3nkihAu8dkCr3WxdQ9PsRabi5zUbz4uE9Jb5wqAiVRodsGQNRAqUjsBn4K4lZemEIDILCBbgMXIFUCGtkD14BIku5cJobcudwbqyLorrn91rwusOh4VvA6sysChiJyuP+1yO9nDAuVz42pU3bgi8zdgrWdXEdGLZrUT/RsxK+W57xIU1xiOqtWmOX8rsT2hn380NdK69Kr506Un/fwIy7/cLyJ9UWc1VfK9W135VqU9hZ086fjeTSivxjzTdrq8n9hdabomFv7cpVb+HtjHcEITrxbCpypwdcdkrtdpHVoZJbg2FHYZ22WIOCRn/v51fcvS0KcbPZqcLcXhPfrH97vfgO4uuJ6+nbq50PF151erJsGQLbLBXPNze3qJN33j8CrbTWzPDq1Yurq3mSKO94Mh5rpCAKveM0ywgxCtVgMPDgCl84YUIMg8CYuMjtdDpzuTUIw5PjZZpO00IZPDs5DiOTLZfFIj8dDkygEF2aLby3ShmtNQGC6osII0U6iKOBY5lMJtPJLLfzKEq01ov5XGmjtUmXOVsWBO9sadkcH52c338QxT0khYpGk2mep3EYMvrx7SjL00BpHWpmLpzzbEU8KSXiM1f4ojg66vsiReQilW+9+/bD+/e01pozLPjJveNHJ31gKbJlGIYnR8fL+TQ2SoHkRSHW9cN48MAIOx2oMNChCeIwICKbWQQ4Oz2ejkex0aEJekk4W9A8XQorpcOC/SLNZs6z0dCLC9GTnJeLhTZIohbLufdeGUjzLIn62SL70x9/9OT85Ow48aiczdF5AIHI4GamprZNkEXKi7wECBBRULxnizalYADsgJ2ABsRyVT9WS2rXPF+x9x0cJVAZsis/+EBerBjyNeeASzo31/uu1OF6Z+B2ABOxOgS2jmGLzPbwaWtfaAnEzux7hElNkt5Ru873e3xKqK0ubid4Q6NqRzy8k5hKAXfrNmm+6RTINVW0pbyrlIj1NBupW6EvnZ1DzJdDANfQqTuhFvCAFsM0NGWX9bBJueuEuE6+upN/2hgaJiGsidnaB/zGzbS37LssoDe1FqEmOCr6K7lQnQhdL66hNUtegZUCRthuh/Kv977RLPs9732kdqVRhhTj9fVltsh6vYFPdZHPCMkYc3Fx+fXTmyiEOI5vb8eKIIoSNHoxmzgRLZIcH1trWYl1jhCjKNIqzNJ8ucyYwZgAUZ5dj6NQDe8dDY9OhN3o5loDv33+cG5TazMQC+gEhdl6J0gSmMFgMOj1ekVRvLq6uLm5yfMC10c+jXMbx713Hj0Ogmg0njrHRVEQ0cnx8OjoJAyioihuRxMAsMBRFBmti6Ioj71k8UWaFS5TShExgGP2AMzeWWsVI3rUZFyWPnr08Mnjdx4+OP/mm29yvs7mcnp8NgijXjwI9P0oivJlev7Wozy33rp+FGuCQCujlYgfzV5664PAGB2kaRqGoYmC6XSaRKGzwqA0AUKiQPLCIQJxqiKMgzgw6MaWvcQUDgO4tROjlfcQRCaM9XK5CFVIHq3SptcThan1CiEOlBNwwgq3OrrUvlBbLY+ICsSLF2e9K4h9+YnFoSgEAfHVIiyoNm4eNA6ahqZIuX/p7lzQNfYPlAPVcIPV1I9weQ503TWB1d1HAHBnFK1el8rGbQu7GsGbstq30KwmPlqLd35OaOikBs3Vz84EbWxtbdpI2cZTQqNetX5vqca7fJtGKevsm5Zsq+H9Lma7iENEaDtBJbQRN6erlbgazbXLT8V1mERaIfeynI3iqM891xayKaVEpFzqXw1kEUGkduNU/VJvq/KBABtXHZcZdftVmYfZ1/JzDdEmpXSV1GjWlj2yVVbZCJuLS8t9lCUZ29hoLdCAQZAZgFe7hIGIrM0ZuRz8qLUXpVjKwzgYRJARywlJ3xw/UiLv2LjWHtiIWN4nWtanhqBhADbri4ggK1TMXDKViHjvg2jgLr5RwezZAieTnHGs6FQbcbbIZosIwFjKxzkB6tikmB2l2qdOaTg+OfbeLhcLhRAZo3uRL2RRLIvCeVceBw0iEih9NBz0enGxHOfFYpCYMIzn+VQrlRcpKUaALCsIzfHRSS85GvZ04ezTbz6/GY20DlAYLCBDYSS3+enZ2TvvvBvH8WQyFr80Ckzv6MGDB2EY5nn+8tWFc3YwGHjvScQufCGS9AYANJ/PDUoSGNDKO+cLZ1A7m6tQETkKfKwSrSRd5saEw9MTBn755WdHit558l2tFbBTyCDWFVYUJLEB5xKt0RiAldPnhZllEJ9LYL23ucsCbQiQc5eEsc8LIkZhRoiDUCmV53lRFFYixcDsT6KQe5GdLorQR/diejFVhjxb8cZZUpQwkw6i23RyPZ6ePjoOC8dAniIiMeAZAwAm8F4cggUWIlREWSFGBwAgTgoSJm98EYpllwGhKAIEUCLeMTOsWHh1JjRJGW5jRwpXfMv1YVUz6ktBw2t2W2nuUiKXQxgAALk64Q5Ro3TMWzf4FhHKLY8oQsQAnpkFjfgFAAsUSgNnopXx3msDRVEgIioEpPL0G0WkhNiDUoSIhAhAIFJpk6ZA2B6AuKnNqiKyfcH2Oktlgq+GZilsO1WCiOB6H2cjQSVk27lqbdLxFRFLYd1uTGzIiFqWet0budYSX2222BIC8srPhc0RY1ViAVBY2ym+FqSlQdZu7c7GX8l/EFSbBbeyDm5Tq8XKLMLltbq4Sr52aSoe2hTEXU1UdbfaXKJQvmEQ2E7Mm63qIM5vbhKSdSSTsHaLlAeAlV2CsFpKXJIGaqUysBw7sn6PZQntntq8odX+a9xefdbYJrexRBFxfTmHqtV3KwRdH9W79CUSSS0IsItT93DwnYDrAVQvveYwb+0PrkRMZRuKCLNT24Hlql67iruzRq9HfOu5k2uJqCiKPEtH4/nV9Y1j34uNt0xkFvPlzc0CAIAwdzZOgjCKrC+ub8ZBSHEvsdYul0ulKEl6WmvreTKelGJl4XwA0EuiLMviJFQK82wh4geDgSEqL1Yq8ny5zIxR3vtHjx71ekdx1L+9uv342QsGSV1uAjMcHvnCMc/AA2r9+PHje/cflGdg5XmmlTJGRVGfvfvi82+Kojg/P+/3EmutLYoojqMoStNsPLrx3mtNodZ5miqFKtCIEbArioyZmT0SmChkLnRgnC0uLi76Knh8fDwMVb5cJqdHRkXsLYBKwiiJY2dZlVvYWbz3AitviYjEs5S3mjOUJg7iaofuyj5db1orrxBPUFsviIX3PjI6MTp14pcLMOg498IGPYhnnztxWsFkkj5/9vJRokDp0jZ3zjK6wE6AEJVBpUUlrLQFFCaNkwY/lAb1erZXEFZXC5OAh52wR1bCXqdkF1QWfRsV7FAz9U9lieXyq/IrMwszAq0PtoFSGWJLhcJdo2zPYGyrkENQdeLZIxCqnqon3oO/7dLtSb/LTdxNeXeWtg5DbB7Nu0uMd5Z4CDSavdFTu2rdaOrKwOqkobPZG7xacW+5/W2Tt1a7zk4pz/RooG0bYZ01ao8RWKupXYx056js3gfcaq8tpI0yGnS3ieguecfiLKxMti5UIgTg1xUjRGFZHaSFRES6arXKmGgbuZ068k52PJBfdyngzjUxiKiVup5Nn11cT2aLIIjDEAsHWgVPv7kuBAaJcc4rBb1+krs0T3NjYDDokVaz2QIUHZ+daa3HN7fTeRZFcZZlAHA6HOR5ervMYgPss14yFKA0tb0oCoLg5ubm5mYkDEUB5w96Dx4+OD4+vri4eDZ6dnMz7/URFRmjwyhhkGWeMUjc6z148DDu97JlOp5OvHfDwcAYZbM8W06vX5WnTB/5wi6mszCIhv2BA79cLvO8MMb0klgBlicZklgRYSeyUoGCiEohKq2VGI0FSBToOAmjOEiCIMuyIksh0EYTCRVFYbQmIq00AJSudtm7BFiau6thuT6/iYhQkQiUIQEvq0Vhxhgi0ga9l1xp7y0JsCAvbbosWIEHQQUsDhwLeyEphAOtJrO5tTYKwsJ5Vo4IwjhUw1Nx3rlC2JFnja6ky63EIlRrkUq9Rd6SN+gZlIgISXlV9c699pXQqX7WBYQgdB77iq3J3YZYaYz0hvZtjY7NnsvSLV7dhbxedeG91yoUkeo2blIKgEU8gGlQ/mZQn/PbrtHOLLuK69QZu06yq0NbnUBLHR5ORuNrwzfdInWrxA7BW3b3Lv2xp7g3o7YubOuLzxvZRTZ389Wy71TVjYLqb6qWr+nglXPdKeTbVubKxW2V2G6QRrkNzJ0/d2n9zpqW0DwLutMqaRe5W0G+nhm+LrHjPe6Z6F7dxVCGrMtpMwWr2xcAQAA3519WRnh9trhdr/2WxBuo5/2WiqzDDKFWt6PLp08vmFQQR95nJkAnMJtlkSkvicXjowGSX87zIIB+khTW2iwlUoOkB0jjyfxmmiVRnBeOBRFlkc4BpBehCdTJIAF2ivBo0LMuv7q6yjIbx2EUBvfvPexHw8Vi+YPv/3iR5kbD6Unk0WmtQRtELHLLIslwcHp8EobhZDJZLpdK6+Pj4yg00+n09uoa0IVhPDzqi8h8Po2iJAiCxWJBgbLWEmISR0SULxfMbAxprzLrbF4IglLGGMXsTaCMMQFRtihQ/OnxURwGk9FIJcm9s6Nyf3MchCLinENErXV5tJ7WWpBYfOkKl97YWgGvVDMRIREoxbWwZMkVSinJCwQkEEAKDR6FgfWwJNQIAkCK2AN5MUSAaNk/On0gTN579lYAwtAAiYpCFR05m6ucfLFE54k9ApMA19YDVqqH2SFb8Q7YI68DX3t5rFMubwGt1oHtl7ydUI2OavjXJV1noVQD3AIl4upjWkSYHam761gXIHtS/jz6u4JGQe1yG7ZO20k6UMPtgroi6ZT+65bfeMCl3qq4ul16p2VQQv0Ak3bKLugwBaUKLLfw14/43VOE7F3uugfWN41tzshcy/quK7FbsNHB25c0V2e7CnC9R3aRsT/NLrW4B8nWQRxtXG0Vtb/LdxW5i6ymtd62JbH+ae3qwGZ+mohkve6jlnGrnhW2zhHeSf8hgmA/7DKaGvTkk9vrV88vLm9RKQDmAqKBubidB4o88HJZ9IbGRGY6viWAo8Egz22e51rr4dERkLq9Hc+XaRgqa3NmFgEiUoq0pjDSYWjCQDvntApQaDqepAubJFGv1+/F0Ww8+/zVV2lmC4CBQa2BQZRSQlhKTaNNEATGhKhoNBppTUdHAyKaTW9fzGYEEMWRtTIYDKy189m81+tpra21URSZOIjjWIFMp9PFYkJEJjBKKWZvSBERECqltCZCM+z1e8NeOruVYgkeucjzdEFZ4QKtNfX7SSk+CFWvNwiCIM9TVKSwPHoFCVB8bZWEALN4D9XePhKlAdeKuXyz5nAQjUqUYhRUBiP0Qnk/OXJ+slg6UMaEJKhALDMq45nSNL29vU2KPAhDSPreczqfD9IFImgABHAKnRgGAiDNWeWfrg1BLyLoHbBbO26ECAIEhLvC0HWN2GawFZQLJbZ5GHFrS32n7KjLtYb/VC+uUtLrNEoptdEEKHXvsSbmpIPUFtRrtyd9t4MF0B1i2pEFANZnUO9xnSuBgw3kjdIb/QI7pCLU1G1b7jVUb+15U6LU0q8VZNtV2JxRvAVb06LranUgaBLcia0t3Mq5nkYnyranDi1ubCCsq+dNlm2VWT/0G6B5cs2GANl6s6GKO0rH7SmSegft0hd3G8Rd0E7fDEHv0vDdtkxrlDaS4ess14Yd3VOzVkr5Ve7NUAJu/RWhvPR3fS4QrsN9JcK14NtnnjQa+s6WfS0NLSLVdVeVHVCy0dXzp5Pbl0XhwSjvXai0NjSeLsUzEcQJBqFepjMiPB6E6XSZOT8cDoMgsoVNs7kvrEJAAOt52AtERClzcnKEBNbm/X4/BJgX09l0vlikzsH5+dnR8GQ8Hj/7+kWaMgPEgbo3GDifKyW9flL4TClDpD2LeEbUwi7PfJL00mwxH80BmYiCUCMLs4vj3ny2VEoNBgNjQu99FMYPHjwQBSRc2MzZXCENhkNEdM4B6TBRAyyPmS4IJDbmwem9MA6+uXk1jJICYTy67Zng/mCglLK2yPM8CIIwjLUKUJEoAm0UCCACC4MIM4hoJCKw7KEmzkpgZl4P43LBXblbl5njIGJSRJ5ZGQQiEqWd47esX4wmGViKEwPGFYWID4IwiqLT0ziOY5TyRAAIgshEA5eniCjiGVnYg7ABJFR+wyEr93t9gICrRDwisgAjdIifHey6qRoA1E8holUUEvbo2teHhsBFRL+S/ysJUC3+LFcMleN+bTRLdW+hrGFXdRrvDxRwUve4D65OXXc2TP920XdSsq01cZdsrMb+LpwtQ6FB0h2kSrW2oBKALfx1DLtqVc+4h5EaJkVDvonIalX81n6zMvuOglv4K7T1IurJKrukk/Lmy+o4th1Hd+3SCLuIrEd69iSWulNXveycA2532yGM8vNAw2DE7S7a6vtSB5cvZOMKI64izVWW1ThvMWtnFbBl8vw11q5RYiWGSpm1uH2VLW7jIPQEWlPAZrmcF9YbBh1Qr58U4ry3/aSHTmzqdS+Me31X2NH1qGDQChSgz/3jB708z+OoF4ZxkRe9fjJIetPpdDSd50Uax/Hj84eojLX2xYuL29E8NpjExjpbsGeyw+MBInrvfOERFREQIAsSl5pURrfXOlBRoCyztTmKKDKatGMqvBv2+kEQKKWOjo7CMCzYKlQ311dFngJwr9cLtMoKywDGhDoIBEhEnCUFMkiS87PTNM3JcRgRKlrmWXltTpouEI+YGUnHSV/roHAWCMI4wf8fe38WbNuyJQZho8mc3Vpr96c/t3nNrVfvVatCoMZGNHbYEAEKkGQZBybAdvgHpAjLkugjLEfYSCAZCCT4wLg3BCFsiQB/ELY/wMIGC1Go6lXVe/Wae99tT7e71c0uM8fwR84111zdPvvekvxVGfueO9ecOXNmM3J0OZq2BgBQGUzsxqpt+IIj6CBQEwAg4MrLRTWIFyGImTzUMuWpfTbOXyUQAoi6oEIooOJdE0LI84mq+BCsmLquE2WTGioeQPDqG9CSQVCDAUVwYe8WIwCQ3uhKsbNZusNj5hBCjxAuAxoc/X5gH6c/bG0H4DdAdOuj/c/hEewGNcW+tZV2CkEVQQmJe+OMrdYQUb5M3K6+vFU8uPvpLhXs7/TZlt7ayKGnh67vWXZf0bUIsa5wiIof6rnsI9hfjRuDTSCJMDA8iYDNGd7bnztw8pBFG3IzfYU+wpKI0OBhP0V7v3j3gLZq7m63vmyzPjui9pfqgNltdN87A5Hi3qD51WhYnM+t/ux0rzv6BUDRbStoQBnasuimSudQP7+URPsVyrBZVY2nlcysvg5NmdqkRkmSBBu6uVkAmcSiiHjvFdwoz0lgMS8vzk7S81PnXF031hr03gVgo2cPThWq8bgwxjLhaFyIyKtXr25v5xnS0dFxPsrrulnMb+dlrQqJRUZOM2sFzx+eKyoRXd3epGlGhp1zIWhi08wmRNS0TVVVJycndduU1cKJIyIG9qF1bZsUaTEaZ3lhrc3zXFSXZfn48ePFfK6qzGzJEHfpY9M0RQ/MVrUB0CRJMsOT0ejk6KhI/ezsXP1S2vri9Oz89ISCd60LKmmeZVkWFDR4ZkbmpmkKZgDo0tRLpDcCAJYsKoUAGiDi0wi7W3DVIwgiinESkcCCRURUyoOe1vX5yDatK91C1E6S3PmwrEprnyRJEkKdF+mjR4+ylJtWWheK6iaAIgqjEWtEuQrqRRIoh+uuoDTAGYpdGhZFkjvhrofSLQL2dlHicIO4GVpu++k+HNRRgp2bK5y4OktD6ENvxHPiYeP3xPt3o+97bthtfmWzD1vIfXd639rVLdwynLf+/rAPh1DQW/uz+tZ2zZ5ixfuGeNifdTc24yWsxYyvBD9bo447/e4665v6liUbvrXG6kFIAQAJKTpfBREUJeahPe9e/mO4IvvI/7aKYqcC7L0/rL/3lUNdGpb9Kui4nIMP0BZ3joPfEXEMeY+hr/DeLCWqisCIvdoK+zP/Pi2UEqCg0kqJJZ0nlchKzwJBVZWNhoaJvCpZE5waNCysEAAl6r5Ao4Xs9qbaI0/0AtNqLLqpUOp/0gHljRw4VEFEIFTBEARBrSENrbSVaFMKizE52qq9JS7auqBliUdYFLkXl5DN0Djvj06P7GSkTXN7fVXWjSKghclJlqe2LGcu4El6hMAExihdXV/PFsuTo8JOChGZNuXydqZeR9aqD8GJz4MQjo8nQUNwbdu2BlTaWkCZjEVj0CCiE+fFg4Xp4koV57PKWmPStG31aHJ8fHEMMdG6ehVwLVlrE2tvrq9dtWhdnaYWmcEYIOsaj16qaqmmSIqTDAGXN5l33/r6OzYb6fJVhgR5vpzfJolxbTvOJpU3aRAKKJSRLQiVxDMosFFUEUEEsgaFJXgfLXJVAYjIKDKIx+DBBxUNokRESCJBV9cB1RhxoUlIAMDFZ8HlRk5P+YPq8U9+/FkiNrPQYJUGLG1xklpfNw/ef356fn51/Uo9Gs4kNDWWAIDAoC7CiQEyCIAQQICIgEgVgZSMQ0w5Q7ZIpAbZoKqCQ1VO2NZthShIrKHL4grilQzsbGZV5QE8E6yhFCJa7oxU1vlUBr5Oa6HoEHECAARClEhzFUyQeMLujVXr0XKS2rxtvaqKKnGi4hEYgVEE0CsEwBiR0vTx64koKgC7Hu6zPT6EB7f2Y4+gVzUHytWu2jaW7GnVFjcWr3tf3q1IF1uhGQdt9joYGB4F9EeVW3NLIGuCoWskrhQXrFuU1f3hSV+AsBoaaZ9FapvwR/2HrtW+3f87SAIA0GGwiEP0ZvNGFyjqAB1CRJH9UNQtbJ+zCFBBRWQ3cAoO9Ctb/VFVBQISAPAqGGNUECKhF9mIhLi6lnUS602YiYlDBlrx6C4xTPeLwCtBU4cxMDb2RfecBvBAiBiC36qzlyfoL/a7IcFgRVcvbDMR65p619nVIY7vjsP/u7lO3Dkwh00+bnf99jZ+kEG7s6w5stVLW98aZova/DCAaM9tqaoKioC1HCWE4IPzjllUNcugbRRNaxK2xNFz1yRJVVXNbOm9V4UsT5M8Wyxm1bI+PR0XhkVr4lzFX93clk09GltAP7u8VlUiCqqiUAUHCDa3jx6fAoBqqOvau0ZVmS0zGwZD1gA752ezWdVWbNlmtqnqPM/G4yLPizwfSYAkyYzlIA0CI6I4X7euQYzt+LbJ85EPbZKwQWqds9be3t4eT0bLuhE02bgog3vvg68dH50uGz+dXiOpKB4dnYiIBFiWi+D8cmnyozPyPoRgU4sgqiAByFA/rdDRiWh0jKqqQqq+203YYbp+PxCRdgex6ts2SudExMxAnWo6BZslNku5WrYBk4gBUmbv6mfPvlFk6bKcM3PMImyV1e8BBoiOOkgQY1FCDH3NaBIkg2SJeMUVgkESIvHS+/bcDYr3Kbgjcg2a7a56tDysM9wdK80BfnT7h+LN947/bVUNIcSUwP2HIvZR1UgIVHUY3VpVL772p2ML1as/Fy9okLd7F+3ePbS9Ne3xP9He/oWtygex0ObTvXMebw7psW4YUg1bPjiH/f2tbFe4wmD3GOxQ8fDlxFbElVv2vrKLAO/uzJcqW/O2xcTsll0a3FXeSKU1NNHfGMhW/3uCNRjRIXJ4F9XYW3TniFP3SXRDorkFaaoH8gH3Ne6g3hs3vyo1vWd93OfOuGYVt1QHHd5dPe0mZWOODm2PvZ/eut47A+uZPSAZd5sWAmCMSC/d4gVp21o0iCiTJUDvPSIkCRKRIctsJHibJEg0vblxZSCCPE8BcTqdMuPZ2XGaWmB1TVOV8+WiLEsYjykr0sViAYLWGJsmRK2TYJMsTdOiKAidc65paucbVDAmISImI+LKunStR8EAa84xS/MiHwEgM4uIqLRt3ba1QjDGWGsRMU6tMZSmCab5dD49Pp6IeucCIb66fJ1lmWtaEgW3LOdlUZj3v/Zunk2upi/LamYtIyaWuK0b55ygSnBlyQBgjFmlmyQNQsZAR1olGmNpL1p1x3iKykSgKqCgKND7i8dFJOyAipmIenlFtUMZqdK4yM4m+YtmzikLeABJ0OcWNdTTWWXzPC+yZnEDRGKYBsEBevhcfzES2eiszhbIgEnIJhQpMUSLQuWVDc1bwfL/n+Unt//Q1p2Pp/8wAEACWf2nhthtsE9jOJS+0KOf+vPDFvJHfyJetLd/4RAphdWuSU7+yB3dG2I9e/xPAEBy8kd2afBW+2+lRrjPQWgf0thPgPd2cpdCDFsbyoKDbmzL0LAjhOwdwhbi2hIM9s7zLvHYSzb2lrv5xa2nX6qdLayrqjFg4qrbG+5Ye2nhxoTgUGOxLsMJ2ZgcpTXN7u5HZUAMsCW6Pjrar8vZ0+bg555sSLvXw3d+i5FV183eA71s7MwDFbbQVARNVaVN7qhHDXcDyj37g7h9drJ+dGhcEYw61dAqRgRbY2JEQK9qbZKIJw2iCOO8AMIYLzhNU2Ns413tQmZBsAuPFQKcnp4cH0/m82lbVgjsWw9AR0cGCGezRePg5KSI3xeULEuOTo4jvbm9vdGVCZthZmYVcBJaVy2X3rWQ5zQajdiSqgAKEIcgquq9IHoiMiYaLYl49f25DnNw7ACTdDwqxs4FZmpdPZ9Pxbtq6Ra1TxKTpYYt/tTf8kuTycRwNs4LH5osHRmTLOY+STJxZZazFw+EaZFneY6cIJGoV0RrrfpoxRYpW1TvGkWEVThlIlJFJQ9qRLowy6qrIHYrfINomCWehqyUUYZISHye2Ucn45t5aa2VRlS9FXc04nJxc5KN0yyx1jagRORJUdcqytWxSzwbM11gu66QABIaSnIyGZsMyGiPI2jD3EZVV0z+Qc7vbnDtECvgLobawglfbVvUR3+Kr/8ZVfW+VQhEvIqAGPvdqXyefuffPNRCcvJH3PRf30uD48Ve6ruFW+MwI/XdKof4mJ60bEktu+Lg3ncH3z00so2v900N/XF7UW8v8TvUh25mD+CZ+/S/f4SHYxdvVf4K7OCqKexHNxzsoQa30gKuOebNV3pa1FHVe2guVy/epVta9XP9863wg6R6t/nGus/bzMFaAt5d9S1OcMBxHNTSrH9ufPVgtb7xuxm6u4tuybubyp/dTm5tXRhO5b63urPeKG0PvrrV7LCdvf1cBeOWVVsIzAawKMbjcZGly8prEGkah6RpBqDB2hS9EFGSJM65pq2zjIySCLRtmxX548cnqnpzcyMiaTquqip4NJz5EMp5wwldPDhTI23bEkBW5OMszxiXs9lyuRQjHANhMBOgCLjWhaCoagxYg2maIEMIAUCZmdh6H4ZxF+JBjmHWGNqJyFobw0uJSFmWo1EuGmbz63Ixj1ljq6rKk1R8yEf83vNnH3zta23bCgOKdyEUlqDTXwAiet+K+NPT82j/rEhEJIYxCLKFEBAViUA3ogBHfTKsKKyqEWgVAYA6J+EOBXQhZ51zvZZMV4poIpLWpzacpmwwtLWTWoDDkbUayqNi9PDiZNG4ZQhJkiCtQUt3DEx6MqTRRQiZwAJapATIKhEhAxCiR0RFjF8PYbOFr5RbEAYb+Svj0I9n/93hnQ8u/n0F+dHlH+jvqCqAEBEKRqvUXkCJU/H85//Pwxamn/6p43f+1PDOVse+LJ9xN4XeW+6mN8Nqg77JAK/o4GLYwgYbMVSHwA5p3MU/sImj7l6vQxhTDxCkLT6jv7gnYLy12i5evfv1O/ieA9ddDqHB57jXGcDOkO9Y2V0Nwd469wShSIPXAT12XhzSl93JOaiC3uru1lf7wqs7b/Wg2P55wEV4gxyuKuxu0X48WwsQafk9eBy9zzLAAcjbeveeKCPK4H0HiAjRNE2bJFmSGFuramjb1loqMqkbV5g8pgj03s/n81bavMhc6ZBpMh6Nx0cAUJalCjIzinG1egfe13WQ0Sg5uzgnQ8tmaiwdF2PDLI1bTqeL2ZIR7CglImYEUAkaYioDFSbKmYEYmeJhJBEiQJraqvK9xWVk5EMIzKwAiGASm2WjNE3jIwm4WM6TxMxup2W5GI2LuqlG4wJRz4/Gzx6efeP991zjFMlL9eblR1mWj0aTpmyyPCnnM8uynM+PJsXZxSNrUxeUDCJbCxIoBHHcoUMFgGiO11m/x2GAYpeYV6Nf8BrX4HoF+9PWHqJg5ePPSWG5OWJKBeazij3wMRzn6cm4uDg/YcSyLIujoyzJq6qicR6XlQaKvgF2W+1VQEImY5kTQAIgFQTqHHWEGcUAtLugtUWD74OgN7oxkIAHElhUAGwo0O4oXz/7i7gypPr62b/74XWnl5bzP2PqP5KmViA455Cswion3ua+ePPDP0YmMyZdvPgzTKbXQkeN8S5/jPuUz1+WPO+dq0ON7GLzu/f4Dq+/UWcXc6pq6BNg9PMTG5H7YqS3lq0Wum4cbnwN/G9r9j7VtroRP773JHi3WVUlWgt72qkZNtrEdcTDtQS/t6t3d+8OhuB+OyvK3yuFM3Y0WCEMwb7HUQi0C10AsEdhvUsvh+WtsQK2yk6kuoNaneHTYbX7w+WXgt3+c7vTvdvOChTWkLHVw3uuNyISr6QvQVUNjRpjVBVRmVmDJCkRQ2qRCIwhAFgsZ1XdMKNNOM2zosiOj48B4PLysq5ra23TNC9evK7Kxnuvqkej9PzBBRl4c/0mUzpO8twmrqpur6/KsiSD2ShlsgDgvTjnvG9VAzGyIRUARdHgvRMJRIiK3oWYOyiEEIJDxKIoRsUkSwsisibN0iKxGRGFENrWt60XDd63X3z+KYCkWTKfz49G43FepKk9PT16dHZW2Hx2MwPRtpq11e14dMJkAUSlda4OviU07z5772hyYjhFZCYDEDkYEFjLrKsSYl4HIgAU0BCJ60YWsx3wU1XmLpxTD6gi4pwDMmjoKLEnecotGEekWFh6+vhinKVNVWVZlmWZMYlJbMzrsAvkRNRby2M8oiYiZDQmfrRHKEgGkAN2TM8QPmEfKr9PuWO7/dbL++m/tfWtqDzAnbB0wzow6H99+S9vVejXMlY7JNr22zbW7I97/ezfuE/P9+K3+7x4qCeHnq4czfdUGw5ziPT6KdoLq/dkubbegh2xbLBr9jsTD0kFbpOTg+O9z/23TvUhUB/cl606e+fq8Bdk+Kca4t/B6pGt3/3rPrR+EUnjEdJWT7bWems+3yIBD5an5+JVsVOA/M3Y3nhYHXH/ovtCmg0b3AXHXUDZyyINJ/StLQ8LqQbVaFGBiP1nJ5PjUT6KdAsTAhRrLSCkaSLBgYj3UlUNIozGOSQmzcdKWC6r6XwRW7m6ulrWYAGshcZJYuDoeOJ8vZjNs9w+PXuAiIty8frzSxfg0aNxmqZt8E3rRUA0AAitNpoqBXFkDBl03jfemRAISFXZMhFmWaaq1qbj0ZH3frFYkDUmSbIsS5IkJiuL459eX80XUyYI4pnx/OS4bX0I4fn7zy6Ox5PxGIKIwM3NzfWbT1RroslyufTOzWZTUd+28uDk5IMPfsralAwnJuEk0eCccxwNlYMHAOjCTsUiqmq4c5rR7gBSEVGZVqGbttcLBugpBsh0X/vnGUAARgCjn4Y//Hd19f/VP/e3oyiCNk0DoSmOjsqy/jz9Z4ABmh5uAACe6b/YQ1E0EXxFf/IJ/rnPwx+DANAATAEAvvPt30CiX/uVJwdAFZ6O/zKsbbvgi9nv31Pn6D/Yvfli+Qd2bwLAo+zfhTUruQHFe8H242mnf/762b+7xaw75/pr733TND60RKRBASRK13fQ4LuRpqrebXi11aab/utwANfjTqgmWElOW8RvCw/0ZH7rc1vbfLPC+nqvMY5qF8V+9/W+63sRyC6s3r90+GpzwvsG98aU3iq7yPD+1Xqr5n62exZz71i2WjhE/rtBKRFvL9P9ScbmrG4/unueD33lAGBsT07/cyN5IawE1q33RUQk6t+JgAkYkYkMAAhAZCGGZClmVuz+NP4NS1ANih5I+zxxvQ59q/frZYNBZeoSTCJi5/eJhsgSWgQLSr2aAhUYibALDMSbeX9xUGKbMaglKqACAfZ8Rn80GEvvLBjf3fX2210tTwFYAEACqhBhDFTQ0rHklk1YCM0bxVFxXORsCjbGqsPUjGfT0is8f+9JVpxYzZF8Xc5dUxni1sn1TTmvgS0HBkhTsJiennCeVtUyT+jZ+Unrwmcvvvj8xcvRxD5+PAmgZdMimNC0Kt4YY7NUrW1FnVcFXkqYt23bgsEso0I9ey8iMCtLtGmAxGtSNvLy6s31/KqWhU2TrMjTNGdgo4jeV7fXrz75cDm7sqikkJBFD/WyPBvl33r/+RmyDeSUbhazNFFf3jZlk6SnABkZVy7eaFsl4J4+fP53/91/X3E0akxSeye+1noJ3iVoUQBboUAUkIVICSSACoEQgwuIYJkto0ElAkZgUBIgAUJkBkaJqRC6PNEoiqKW2CC5r/3zhxbxf/In/kpR0MPMvL5a2LNnlGR0QG37Of5TqqqEAbEVeEl/EgBe6J/YqvYb3/tOuNP4IWjw6gGEDuOUL2a/v4dhRRDQLxb/4KHKr+p/KGoEGdRES3BQJEDa2AsR/oddU2VE7pQ3RGSyIX0hIjJWBJwLErjjwQgBja6SIEHcLKSKQcAp6ranaTQR36EH7fRfG1bbFSlWr28EgkBSwAAY+re2LnY37AY22FCB6i7SODDBQ6FKhx/tsSuIxvnu0Ito/Bsi3mEnBVCRgBDZkLFkGJli4pldhmPIPQyvd3Nm9J+LxhmDSKIK0RkaIeJDgXU6+jtoWxw1ojJj/IvDi5ur/yMFUkDpDBWH5hcdkd6sv34RBMSD+KiEUw1EwAa9b+PPftSEhtAIdNqv9ZhFIQgKxz8IgILxjxRQAgSv3kHwBJ4xoDqQFgUhCErXvThvRITIAARAh+YEt4oGAumk5G4KREnennsL3saUbQHu1tO/6WVA/Po5GoYh3Kp+N6XcLVu7aO8G3mKKdwvu0/N0jzQr8uMiG6kAOGcRUjLgwTl3fHZ8c3tlDL337mNVje7ny0VTLptF2VZV07bRYcmkaToeZwihGGWGYHpza4jPjs8ZkxevvnC+zXMbVabjfEwK89spSGDA4Hy9rKV1CVtG0y6byWSUpqkP7Ww2m83mrauDiqIQmaqqymoh6hTaplk63yZJ1rYlSGBW0Xa+uJnevFmWMwk+TW3b1lmeZnkqwb33/NnP/8x3DChzjmBms9lolIq219eXiWVCTOxcaiqXV1XzZpQ++J2/9LclaSttDvHQQwMEUR8kOPEhBB+kFfUiXtSLyBBH9Oz2VhmuVL+X1lyjSAh3JOQFAPh9/8D/7Wp6+ejpg7OLi0/dH71K/9lDNV/wPxNB447WfvpnfvD9X/36HRVeLf9Q7PYXyz+4V/yNZfjoy4L3Vy6q+hQ70li8828wUlTmb6GCrW2yVbYa7F9JT/9of38vmdm3uLtngWu93W5/hp28m7rcZ0q3hnz3K1vkHPaJR3v78FYquFXzPp0f0pVh/b1czlsHpaqyKt0dQmACJiUMoD7GScf1HuyHr6vovP1AttYoXvAqiKyq9hk1hn1e9VxQZZUKM8bu2FA7r16Sgfy4p6wjROnGMGETq3+FfRdfMVu/9X52znc/2uhld48GO6QLjtK9ez/tR/eVHSmeGAIoSA/BgqS7Bl54Py3KqksbQ9s7Jz3QwL7tfaDZ9VKpQqcyTU+K0XlRjCzdiohFYDSWrB0Vs9msbdtnz56YhC8vL21SLObVwgXvxbXei6pgxHtEVFYlIRTWVuUcFR48fJCgvX51iSSJtcyMCnVZiYBzHgQVBRUsMwOrACr4xje1X3offaUYwabWWqukIuIabwx5V7l2yYxFURR5EeM/181yOb+tyzqIT401hJyb1rXHx5PFYooA3/za+w9OT8rlfJSmYLAYpacnZyRy+eoVgi7ml1W9PJqcvPjiw9Qm73/jZ3/uO79wcXZa1z7LGNSjKgQRcACgQRRENQQJqgFEVENMxgASXW/XWWKGi761XswsoNplzkNEjFijX6/w6/+cr6bWHH16+9l//Msf/aP/078S7ycf/JvHk79QNesAk98Y/x/KukqkVlUF+VT/+OqJxIiMQzB47/Tfs6MLSidkj5DWu+87v/TS1/PQLqUum3L6xfXfuwE5q/Ls+D8ctvb59O+PF1/Mfv+uLvrp5C9BhF6VL5b/nXjzVfnfe1z824eg9J5FVY0xbRDww9sUjfjkwInaxTf/5ZtPIl8CxcM/udUgrnSzQ28iN9vwHr6jrGzu+hY7HI0HRIwtQrW3whB4Dn53R0d6N57ZRSZbFG6LoiBtaUe7fPKHOoQDXXrflIgM7cO2kOGu1nNoiLA7xr0D7JWCWwOJ/hHD2Y67r/NW2GXR1mRi3aV+0hARY/6zfn52lfkxwKKsK+AgLvqqwTWIRm/MvjOqW/h8O8Tm8KO7S3n36pNC77KECgi4xw/4razTYKhr6NEd0rjTRR5yqfehhrvj6anXVn96LTd0/+5HAVu83GDSN9zk77ORht0bvnh4P0cDWRqutKomkwfF6YNicmSzN8EhOgBEywkTT2ezs7OzPM9vZzdEVNf1fL6s1ACAKiuAoiKgk+Ca4FtggqauUeT8/KjI7O31m8W8PD4bERlmBtGyrBeLSgIYQ5ygl2CIBaBu23JZqwIzZFnma+dDCAhS+6rx0Vw3N1liCFEa5zSAY60BqgVaaxFAVS3xZHSU2sT7tqqqLE9GRXY0GaWJmYyy4BtWSfKs9LO2JdILV/nLV7fL5evF4sVkbK9fNAb98ycffOuDX3j2/MFiOseQLeZv0tERQIiB41QVRTu7ZnSoKiogGu3LlbrNo90BZ1dEQFUBRSHElAzGmB4ulRAAFSDIhjufxJBU4vOERin8hf/53/5H/mcdDVYfLq9f97rVHy/+0b0r/hL/6Sfwp4EH5LP436I5R5tRkiPZVTAvAIDf+OXHAI8B4Ovv/GcA8HTyl76Y/4HH4/+r3OmA9PToP7hDMh5C45PiL74o//D+Ond84I5ChnRIfqXTpu4QvBe/9j968rP/m3h9+u6fvrtVc/SP99eR+t5bttg7jv0awn6/D28eYrL3fuyOyvcXhnaxzaE7m52PaGxDabxVrb/51iHgIHxN/Bk5UeQNzeLWK3vb3D8nCAK6Cnje0QxFQFn5jsaj8VV7QcLWJMRvMRKsooEiBF2dOBjspeF1vFUAAFhpdwcxJ2GFGVZOTZ3MBgAqgisPGu25IoXurCCeoQsIAiKrKu+NqKX7s4mqai+KDmkw7ErAe8vuShz4xltlQdqnKerqH2r67q/3od0QOrNSUFmnZOkbX726N+EkHBD67xjvfTbw9tMNaaxTodjx8eT8Ij85A/sTCGgSBgAnUi1nD86O89HoZnrN1oyT45988iIot06ZGRRDDBurGoXCUTqumyWTOTnOxkXa1DPvqtOzlEzinGsaJ16894RkU06SBDKVAC5IXfllHbxAlpp8PBIfVD0AM7KAqndoKU9zX1XeqbGQZkgEEkJT1UmSWU5TY40hRGQiZpPadJRPFEsiGo9HmbHSNmySSV6Eph7nJ+cnp5evfrKYz25uP2/L+WRyPEozTH1mv/Po4dPn716USw7qBV5m5rTL9KNBgSjG+gdA1LVPFwIoIcXzJEVSjYR5TYQ76IoTHvcPdgt/0AgFVQU0hJAkfH5Ey9kabutlXSTp7f04yKFylE2GNgfOgBPmBBh//ne/+dX//MHwlQ8//T3x4unk/yKrZH/907cyhXv7sEWbhqB4uNt4NzyLyGdtRyzdyz8a6zPbyOJ0/Vzh0Fe/8T9+9J3/9V1f7OS8jV7Zoz+6WzNS6C9j8Lxfiu1Z5+HTXXr2Vplm63P3EJrfop3e++JWN1S1z6a3VT2qr1ABOxkrRjI4yBzgQDPUK4RhYESmHd16ixw8zAe8fhEgJmkYVo7idWJ6+hpDI3R7FVeOC8PRAnRRzBE5kleEgMBKOIw8OCSo1Avcun66Ir1rO+pe4NZV3Lp+CVZzEmIgW0VEYFIADYIAO/bLK5iHvfeHMzakwfsVNLs7cGvl3ro/+xKNXwam3yS4wQLs3RiHerV73Vl+E64MpABJcSNY6AZPcEfP33r//rzt8N3BF3t+PBr/KAAIQ1YUWZqDBxW01gJD6+skMaPRqKwWAprk2c28nJXSKnuR1oc2eOfFB/USBFQBq6ayhh6cnx0dj6pq2bbt5PjIJlm1rBfz6ua6vJ3WQWh0fDI5PUtHYycoiK2HqvWgMBpn+agIIt63fnV2It55AWkltE1iIEsosyahZJROLk4unjx89OjiPDfZKC+OJpOjySRLElTw3jvnKGjGtpovptdXBBp8u1zOi6J4dPI8lO71Fz/66Ed/DfTNN7/x7OvPv3V+9HUIJk2Tp88+MMkZWOQsYZNPjvIViPaA2rnubM1w/N/KEwaH044rHn+49Lo60ekJ8NbiWpNmWYFkijx9cDo5LtaPJMBoNHrr0j/FP7N1h23KNkebgUnJWGaryD/7e272vv7F/A+99RPDsgucw610CK3fv/Gt3ce8BwH1ZbeF17+5TU3by3+lv2bAaJ5zz2KO/nHdLnuZioPhCXb72Q1wx+EkmszsbWSX3tyn3HPaV3O+QTD6R3s/t0X++zEOwH4PfzA8fOmp5hbm7Etcpt2/nW6vGvdBfNAgIBotWwmQkbz33vsQQrzobTj6bmzB0upk2Ud/Q1UFFNoQZFcvQlCI51MBpPMyUvEqHrqLACoqQSVo8PEPVOLN9SMJKkHEi3jVAKJd+h9VFF0dJMvO34EViVa9q5npZ2xbAt6KTLa7WjCgZHA4Q8NOGci+nYpgW1g/BFW7ZaumrtncvhvbE/GlGt9N8bh7MeRr7kfRaciM9woTDd41jatqFs7IkhJJsAZGaTZfzFsnk5PT+aL8/NVN4wE8CKpKWDUYKQkSYYBwfDJKUght5b1ntt6b2/mimjWqwIbSUV4UBRkuXd00TV1XDOSciAMiANG6rpumRQBVYAHEYAkmOY7Ho3yUGcY0TRHYuWCMKYqCGZ1z2ST1rZveLHxomTnLMmutQcviQWScpQBS1/UozY7GkzTNb998+IMffi/IYpIVDy8eHo1Og5fxqHj5qn3na+dPnr5zPW2TnBKYkLmYV5fMFpRi1GcBQFAFAg2oBlRR40kSqobIRdNg8rugEyuQiCQ6knDdOfGK9Xu4CaBIxkuwqKMiyex6KSkxzq+1r+/hv+BCyyYBQAFSpJgjZWjrEAublE2CbMCksGIVQennfu+CJPhqWpXTD3/4c339l4s/+HDyl/buvq8gCm81gps/91b72vFf/Gj6hwHgw+s/9M2Lv9SzMKpKZsADRa2DCMbcS9i12XdRVQnx6sd/nGyXhcJwZnnDQDpWC9M/z8d7BN+t4mf/xnafN1Vb/ZHwfcIEbkzpvup4IGoQbGK/+yzKAHluHHD2CGqrkRV6GWZ8jtGJ95+y7VLcYeO7PYkUJcouMf8pIiZJ4oJf86yypot0WP+8xaLFiygZD8ymuv4EEVypu3WVTjhKqFuktyNMoTewBQSzbm2Y3gZCzDSlm4432FfYUUFHQg7QU6UdYhdlOQEiAOW7gUlV71RwwDClQYTQu5Ix3AFPW73UlSQBe3Q7X6X9Q/X3vhXncc1DfaVTrS1SivfSJr396YH6qw+hkLrlbFrNFgmYxOZaey9tXtiqrJxr8+K4Df7y+tZ5EASvyAQiMZ88o3QGfKj49HFxcjxazG9YZTQaz6bV5dWt8zBOjXMhSdKiGCnA9fS2cbUxJiXbth49JISIGOpWQAnh+NwUWT5KC4PASGliAMSH1lpr2GTpUZaNAKBpqrqunG9nt3NRDyDMaG1qWQ0CgB/lYyLwoWma6ng8ef/9943iJ5989uaz/5LRPn/8wcX5s7b1V68vxxPz4ubjX/hbvvk7fvH3Ltv2+Cw1fFpVNyEsDT9QuO2nbUVrV+mPOlWzDkGu29KwYZ3RMe9d1NbBeuk6vXzUlfV0VUSQMCimhsdF9vf84/+v9VsWG1kTYO8NG4vQ9OefX8gfB4An8GfXkUcBAIAME1s0Foh6i7zv/n+OAeAXf88swvA33v3Pm3L62eV/ey90bTGCv0Uy/KXKVk9+PPtHho+YyBADsB9Ykvd06/HP/FsAcPPRnxzKUsnFH9v9hKrK7C8gosTlVlLVoVnWIeXzbkDb2N87JmgXicFhfHXHi3BYdXzP1++oqTsjuD9DpgPblOj3vPcTK8JGMb1VFH9joNluqWg75uBeVLwVlCp+zlJnGx9CiC5E8XNpmgJAn1BLV+bTvGLmhp9DxBBkbaqtw/HipmnRingPL1aPAAA1YD9dGkDXR8R9ExtzSArQRcglBcWAwP3cDte9Z33u3pVbFbZjQe9axPWfWfE4a5X9RkcPHIj2u2KnVyaOWXEVrUgJVIF8r6EWJNQAq/M7iPHaEFZKeUYEFibOBBacNmhSBUMGQRNRT6oQ80KSICJoH+5to4dd94KsmdMDXHA/TB2oLrdm4NDuQo1UAdasGBoibmoHiZmcjyYv+fXNIinOWYjapVdiawKa+dLNpl49pMYE35gAEHMLBo+AqeHEgGG4OB7VdZNxzpTMpuX1dQ0EJ8ejWrSYFIjYuhCCC3ULHiyrc6oKoUs4qkVuzk8nJ8dH4paJSVOT1mUlisBASfr40ePggJmd86+vLm9vrqa31yCQZYAIowmTsSGMDOSoBKHJs0loXVAvvvzWN99/9OjBq89+cvPys1DOjo8vnj/+5uPzp+KbBdycvjsx2fhvefZ7k2I8XVScZkEwBE+ASjkkAStWFUQgIkAU9aGLedUiYpelVUUkQGRsiRBIgqqECLdsQDWEtg2KSAxIwQcfSgwOSZUNkgQvIejwRMb87L/Q/MY/bUbS1PDgd/87/f136V8CP3BuBfic/8l34F90YomIyHzqO7ryAv7kY/hfGM57qq7JUTAj5sQiKRlk+O7/+zg+8hAUgAFVkTYNL72u8cvn07//2fF/2Ms0vRX0CsY2QG4Q9HDD9oKGZ2x9ljrpoHdVdGtP//DNP/jNh/8+EzHSlhGu+ECdVXl453f8OwDw+a/+w6AIqqDy9Bf/j7Ha6df+7M3H/xyTITRDK+gw/fPDT3e4mBEQAAXkLnTWK4e3bFUldGuJq4ABQxICK34LNsXQSPK7ednSMK/z/m48IsNbIgf07+/t753nesOmVh/infqiqjxwxB7i6j7ACGIMlK6qEoKoayeTSetD49o0TQWwahtmJkysgQTg0w8//o0fffjJqxf5KPnd/7W/9Rtf/9bicqpOsiIVK/NqcZTl2jhPCTPHPUhE0ZaKGSG4EEI0TxYRw9ZwIqAi/rMXr6az8mq6vLmdLRYLEX92doY2GRXFk4ePzk+OLQbWlqRx7SLNTltpiLVuhDDVAImV4BbIGYIBVVEAVRJGMpE0rydNOwtNBJDQ7TrU0D9VVVU3XHRYHz6HLibd6swLEQEIvSCikKqQYCCiGD2AjYGYc3u9NCQILFtWRivyfAAg3h4LeqsM4ewOYPpqBVcWaLCPou9lu7ZYnmEnuyVZbW0AIMSgbznO2WJmtxicrZsbW/RLHgLFf41JVppbJig11IkxghbYStvWQZraBQ8OgEWNSUJoreG2dQowShLxDQI9e/p0Or1M01yCzGczCfDg4lQJ67oW8Yvl1NdOBIjIeyECpAS8iPrU8tFxfnSSWw5ts7i+uSmSo5ubm4uzB0mSINujs9Nls/z0ixcs4L1MZ/P5fKkKWYp5YfLUAjblnEaj7OHjzLKiz1JD6q/Gk8dff/fZe+88fv365fd//TdCU+ZJRgRHD79xfnqxrKvp9dVPf/ub5w8fpMWkceCcgxDEOQaMxg4RhwgbAIn2ZsOVxW7pYxisqPwIqkrYGZIIdIwrAKhu41MA6DIFx6gxHYRsmESk39k+xP0a/6u9WfJ7/Gc/Dh0V+VT/KYDtM6Cn+GdgM/ALkcGVVLEFK7/2n50CnB4CmCeTv/Ri3gW32iK6sWy5J8WCBAeA/UuUr53+ex/ddC5MP3r9D+xWSGf/bCCj2iLys1XehWc//29//iv//Xj9xa/+I09//v8Ur0/f+1/utqCbmqfhhd4tWQ6OZneJWU+seqQxbHzvbn0rEvsbguW2yt2M+6Gnh7DNppzQKVoR0eTjedUGFWb2ogKY2MwYw5Q11fLN1e1f/dUff/f7H1WiPpTf/cH/4+/8O6u/5+/6Pe30ddUuGItRdl5X8yKlEKDLwmIMKTS+cW0LAHkxJvAQo7JYDEEv30xfvXnzk88/mc6WdSvOK9sciWbT5ScvLwWQiCybcZY+e/Tgg2++//jRqcnT6WJprKIE19Z5YoKK92rYBlUBD2JQnRATKpEgcowCuyobYT0gntd19CFETk4Hx8YbnJMqYEfD48+IEpQUAUmMkgCQiBCBAovISo+9tlxDhd48+56gcq9QlF/20Va1O2Bl9xHittHmVs0t5KUQosIfFLuzt+5c8Ev0c+ujd2+JYbNf9kOwg2LEOWvSp8+fXV++qloXFMeTiff5y8tp68K8rJeVI0Pcqhf1ElJrl63LrDVEVdNMUn58ce7rqsiPnXNV2VZli4iq5MRVlfMAuQUE8AIgYhnSNGHmoNXF+fjs7ARJ5rPr27LOUzgap2jsmI/OLy4Q+fp29vmrF2+ur24X9cNJDoTOOyJIs2SUZ0wQwBk6OTuH07MjDWDUeHdzc3Pz7W/91Ld/7mcyho9/8P3XL1+d5qOL5+8kLK9efvbs+U8tZld1O//Z3/EzZ6ePr6ZzqqvT83PECpAVGCRGOo2zRGotIpIECU4lxDS+pMLMMbJ95LCIAJVExKtQxL/Kgr6nwUCEilFKREREBgyrQ5ueAN9Fr+zHfwy/8T7CWnJ6j/9XH4c/vrfyU/yXEBHRDIVFNgkYS2iIWAQQ8Rf/69O//p8eH/ri0/Ff9itQvMPjaC/13Sr33QU75W628sz/SwtFQhPZu63Wes3ZHS34239t92YvCiMezPsZf6wvNyNfDl/cJfC4o5Ldy/T3ZZd+bz3a+8ouTwAronj/oocYCFnjw0Md7llLVUWbBB+MTZIkadsWVRGgWi5/+MNffvHiVQD7qqxft7rwQECJs3/5P/prj548/bmfOvPXSyMEAUGN8y0gGCQRcW0DAMycjMdEJqgBcLPF/LPPPvv08xdl3UjA1rvbuq7rthV0XtlilmUNZi2Ba5o0TVT5zbR5ffOTH3zy4v13n7733vPnF2MRh76VtgWu1IkweSQUrxwNbg0jIWOMq74yWhqIYRJUFcSrqsLKYkt05SI0kHqHACO6ipsWIQQAEVAFOqkYBQVj7nAgAhHtIu9GVn+dImJDEf12lu7f+dN/BQD+vn9osgWOhwXBbQ+ft3zggHEBrQFFhjp9pWho1M0OqSisDeRW3IzXVdgUCU7FqCzBlbPLN/PFR2BY5V08eZKlBRojitFyVkSoi6u0R3anndC1/V5dS12b2qdD4917v3f97rd6LNyG6dWnV6++/6t/7T/98MMPkcbHZ8+ms+p7P/hxC3RdNouFDx6d10ZFEAGEkVAFAcaZPZ2M8sygBC/m9va2KZ0xjMCtbwOAZSqSdF5VHmAySvMia9saULIseXhmQlDngngBpYST1GbW2mSShKBN7drWT2fz11fzQHB2PvaLRZ5nZBNVZUBUAQ0A8uD03eNTbKsphCRU9Thzv+Pnf+b8+GEFze2bNwUacXB+/ijNsg8/+r41+N77v/Pq5hMw9Qff/HYIWZafs6VFNT8apQoUFJFNtLRQVRQVIiYE8aGuVRyrqPjgGkMcglPpc4JKPP51YQW3UVOtPi6ceBc3jAqKSBAXo0n71XpV7/yTd8Hxb5ffLr9dfrv81oqp/vewSQr3S8B3aH72UuU7xFwYkPO98u6h9/CtRhRd6excEBhXuQ6GrLHG5BE9E3CnTL+XBu9ef7XST8KAm1FOrE2L8fji7PTB4sFU1XoKby4vBdAmmWnUucZ5EAAGTBIbxHsXDMLpJD0qcmsIRZnoxatLCYAIKqggjMwMzFxWbWGLrEg9tIvFDElPTpLJJPG+RSVDrJYtpklSpElhrb0ub8qy/OwnV0lOaZqSgclkRGQEofGOJKgqKTDoKE9Pjs5Qlok+mhzlwV0ePzr55jvfPs6z+fxTTkcJQIJ8+uC8rNrlonry6KlrSiv1/OrVo2dnCHJ6fFJVHtiO0iSEoKCIjAoU0wiBKimR6WQZJtROqRrZKdV4AiUcY4VE7+BO5FLlaDttOGqKotuMIKggIqFRg6rKCKq6fLYdqPm3y2+X3y6/Xf7GFp//Y1z+74akZNsIa2/ZfXqfO29p8E6CDQfOgPdXjqflfYxsRKBOao5nwH2bCOuMvLvdHmq5t+7s1r+nhmHvu8MWvPgkHx+dPXv8/OvlYrosy+tlWzmfZEWj6L2oAiNZwFZDaJtxYTzA2enoeFS0VS3Oe4Hr60UbwBAaY1QwiIsBo0SDAW5cVU9LNFBMzNnpODFQLWaJOSMAYjCMbMhBPZ/d1m1zO29FwClknDatWJPmSf7ixeXRsVFAEUiYDaNFGKXJJM9GyXiU0+3Ny29+49nDs/OXH3/kjiaPLs7my+VpMX704PFi0ZqEHz27cNWiIrh88dHXnj85f/LEN1JSaWxeLqZpxmSSTqnUuRogACLFKJmqqshGxfsAKKDIoBpVz0jxMFdAlQhpHR5WVloWBABFYURZ2TwSkSoqqOB+d47fLr9dfrv8dvmbXb60EdahI4evfMjUP1qTtMNnwHcI07uvrE72+hM+WP23p7yVoO490bn7zlvrq6qSChnRPC8usnRUlqVzzqSJV2gXZdN6ZiJmFEUFZBhbuHj6SFxbLm4Sm7Wtv7yqvUJi0TkV8ZYpZhHmxKSptaBvrkuy8PjpWWKNqysX8Lg4rR2wIWsoqK+aetnWy7KuWmhrsMYU47T1oVy2eUKu8XnKjZMsMcZwYk1u0CKkxpAPdbk0evPBNx+GWj/+0Wfnp0lRmLa2R9k4TdPLN1ecjh88eZJlWav+1adXhtyTJz8tNGqc1o27OD320CacRr9bQkPDzNWATCheAICRArCKU0UmE1MCE2J3hAEBAUADmc6TEOLRw9ohEKOCoJ9+IARVlXYvLNkP/5QixBABVTk7PT9+8v6jGlxOG/a2vWZFIB5dD8MmECIyoBJzfmpPnprJU0iPjc2tIa+GGABUFIBYg5dy7spZXc19NddqjqCAJKCoQAgBqPeV7OF5eJCpqqiDiA3YeahBFwsJYsewix7QT8MqFePKp7/72aeoJMToPg2AhokMAotoWNy0rlosr5umXCxn09lsuWyYTPSM687Noo6HmdkGskmSkUkRLHFibcrWqCAR46afaNwaoT9QjtFDJ112wrD41wc7aD2OGBpQsDO+xlV0iKEbcAcHnWrtLRnMdssd9TdOE+9EFAob+QPWyyeHbEq2/VP3Yqr+xT79HwDgKjczAGCQEMJPPv70l3/lry+r+hsffGs0nnz22Wc/fnHLaBbL9vW0mQUNwAyI4ADBmMQ5/82nF//DP/z3PL/IxTcCCmDEhyxL6nLxX/3Kd3/jBz9svJhsdDWdIWJiUwUznS6nM68KhpPStblFD8rWxBR2xhjnXFaMq6oSEQb03jsnhsEYMz45fv3y6qywv/Tz3/i5n3oo1aUFdzQ68r4FJmbLlBpjiS2zZbLKDNBtZRAv4iU4VQVxcR5EvPbxsFB0I0be+mRz78IhYswZRmSIDJBBjJn3jCLEIPzQbf/eZYsBADGGZeQYnxEA/Oh/sBdy3k6AD8HTW0ng35CCiAAb1Hf4NM7w6hcNcxp2GbiI4jE6rHTR9/xo/6G7eYv77+Hdmn3LLiiyffrkfS0vjeGP3/zw6uY6T08E1BhjjLqyFYDJOLl4dHacmqpcVItZaGXZLBTo+DgHMqraNG1Ttj5Ibu1kMk7yhBgYlqOTI7apKLu2zdJRaoyvm9K9YRdDVXAQdIJekyAuLwpEROCmXKSWk8TeXt2mCXkUjTYIwSnbNEmOi/HRuLDik6SoZ/5m+vE4HRv6pvri7EnhF9XN5XU2njx6972gVFWVQT09On599WFVNicP32NFMf7q5ipNskXVMiuzEkPcUIDIzEBrS14iQuboW0BovLqoakag0BniBQBkZkFRv8pDh91U92vfY2FEBKWhJ+CwsAqiCQoJMpisWZaGOCUQ3/aruaKDgAirD6yPVFafEACOFtqhizwtcCACHQAYYzTORXei8OV22QB05SCz+SUbjPPc/4ROzd/FOSEiEQ/RygEZdAPUD22QDb5hxwW/n9jd3Te4Ew+UNtBRtJWP7Fdn3HqgD3v34306vFU6LcuwZrxzgEB2IeHvbHOj/b7pHhLixSAmxJCKDG+qrvkzJPPLf+2v/+BHH9bBJ+lo0YSFm35+Nb1ulgSgCFlulwsXwEcLwRy58T5Nky9eXf/H/8l3/+Df+3dIWGRFcMEkiSWi2WJxO5u64MlkApDlRUzYtlzWs6n3AolJE5t9/etfn85nry5f+aAi2jQhTYWIXl7e5nmSZXloXeVawwjGlK1bvLpi4lkVvvejn5yd8NNzw6qurYrxCIGADQITRR816CN4CURbohBNrkQkGmGtLbBihgZYWxfpTlkxgn2QbYBo16wE4AGIVJRRQSPACyqAidAr6iHSXej2S+emRXI4cQZAT4BXoPx2teqguY6tvqPyvtd74WbtVxcxYPfA0+q2qAbpUZt0frwAAFG06fz2LGCjqgSJsURoggJSjV7EiqoAUic+AgAjDLe6rrfOcP/DGu+8hc/o0UH/76H6G9aPqAqKBKCQOJbct1lC+vzoSZnc3ry6us3S8xu4mV/PdU4Wkxbg5IF9cGS//rj40U+uF83txSj5Pd95/2efPisyQ5aKLHtdzb//xcffe/3ywy+WdeXqekqUI4WGk8IkoXLAikky9Y1WV9Q65wmMbX1gRF9LVbl0lKd5LnVbVhVpjKwNvmkBQIUyw5OUfShFQYM9npxOch7lYlUR29vr6fHRgycPn2YmOZoUTDnmaMvlg4szY5Nly1zYHPj6s/k4O/euce4ycBZaTSCB1mdEikygAKLgSYwShgAoKKqCgNZ40eBaNDaILnyVKDIbF1wIIUkME3kfjapsCC5NjHq3uJkH12RZlllulUMIogpEjCQiIEoYEdwa4Ecv/9zy8Z/IX/xZZwsIdZ7y9PqSrQEG11acYqvEhmJGJlIgMqoqAoSuC1RNGMdBKqDQgiRsCVVdzd6BQlBCZIlurkgIqEogq6hAwcXAJgCRc2RAQUL1IRpOd2AZ43oh9eHfu5+qECVjsJthQFbuGL08DMAxblVsEEC1C5rfcb3xcEcRkbBLkk0oMc+3MlPdBMNJWc6tTRGrJEnquk6STIJGwqHgAYQgRUQC1qCAwgYRMYSgQETrLbZF/zqjyJ3NpNhF16fuQGkl6dIqnpF0Mf+1V3oNGh9s853Tpd19uppYAJCYJGAlNyNiJL4y9Llg7bFZb20LAChrKTa2s4Vb4p0tZNJV4KFEG98CVaVNqTdWFhH1wWZpCNq41to0BJemdnY7/eTDj168uq61TgqbZkfXtzeX88tZRccmq6pGyLSNMxBtTTgAEIajLF2WNbP55M0XP/zsRz/7zUdS3/IIXbN0dfvJT3784vUrYuvVGwVUVsWXb26bFoqj9IOvff3Zu+984xtfm765+uu/8t3L6RtxIWGTFCaIaxs3UoDaeSdAmDJ5L8G7lMknBUqQtiqX7fd/8Mp+6733nj26unnzcvqG2KiiKiaGj49Gp0dFliW1I2zFoGVrSoE2NEYCSwgQRIOoaIiAsSI3a0hS0IDdSikDgIJ6jCoTBIZVxmTAyNi1igLAgo6ICC14AQoKhNgHhg4BIm+qKy/spFMwrQoBimpPN7fPgO8v0m2VewrE6/bvtr1aPe83595u4ZfM5XKf0fXb4O4R7W3qvlqBzr1CEVFUALmpGwbKiqKsm6Z2QfzsqgkObCpVW5+ew/Nn50+Pz28+uzzR23/gp7/ze3/mF8fPHrrUWjFMqbf2acAPnn/+u6af/ubnL/7Kr37865+8nlXLi/NUlAiDMdYp+ABGTfAZCRvAugnLpSf1IIABKHRCIjNzDO6oIDEmEWpRpGW5IIYHZ6fvPH5+kmZWa/C1sSaE8M6z54nN8iw7Hk/AqXeNqj86Ow+cBYHcYmG5mZaifPH4ic1HVeMCgUkSYxA8avAmSRFREAEggBJ00XkMWachQFCNWh8GZackCqLIlCL44DVgQDTITIgaQsf9M0MwXkU8oDW8ijqpuk56xmyHq0ZoRq/+FQEiJiSoq2U+PprNbvMkY2tVwyDiG4bgo/sNEceACUhdAAskiEnQUBsAgJUtP4NEq4ShWAmbtGENJtJngXr7CchvveDm6c/bGHEF6CKxD8twMiMhj5WJaSstfF9nSJDWxPhQHsG+Yztzclc/f8va5j2kEXTY8wHp3fj0oZbvYNYPvfVWGIi8Utu2EeOH4AzhfHb7yU8+fPn6VdO2p+cXXr1rgxMoa/GBHSkaS8CjsQ3zEgMCqEVqQjDASVaMi+zy+urTl2++9u6jBItq0aTWlOX8xavL2bzhLBOBIKLIrnVHR4Wx2dnFw7/td/3uJEu//xu/8YPvff92Ng3BG8Mi3jlBhiRBDBSdFEAYAJgRlRQQfE3MNkvKtn15vaCPX/34izdVOXt9eRsj8EbDnvHIvP/e86+99863v/aAKGDQ1teqPjEGA4h3gqGLcd0BQDdFW+G6VHXlnxKZ1047BiiDsLYSPV1j3D0iIyKAvXZBem6sZ7AiUUdE0CCRnG8uk2onau9JRzgEjuEa/83Y81ufg31w+XZCuA95bde5x5kxDOj91v23lkH/938IcTMb4ypWohpjDCccEkPLefjBDz969XrOKUrTBg/E8N43Tx88OTs7Gl1/+LK+uvzH/pt/x9P33jk6f9C23i1UjscuzZa1f+BMMnr47iR//OS9yfjs8cVPfvmjD1/dNo/GWe0dkV+WdS0KlLilS8gGbb2Kd2AJWUFAfeWUPGeGmQ1CCIoExhALsqVWXEA4Ox4fjUYWtSmnNmXLyGiMtUfjYyJiwMRYtqgSkCA/ufBolTCFhtp6eXNlsiI/OWebemABCCFEHYcl1Cjp9vOziulat42AKiJ4L86hjyHUJYDxrQMAQA0hIGpmE1LyIl6i5RqYNInW1LFNQVBCUhSReByFRBbSMIieSGSi4o4ZJYDzmliu2sbNXdt4ZCCLcWsREaiJ604EwSsRrWKdQU/jiU10UCYJELwGQRYRASaAlRC3grQDwEbQGe+v6VxPfoZwPdxEMATdLbJ6ODIwbvZkd/tvsrwCK/FrmFkdYKPml2LN+8p7xeL1FHQfUehPeXWLYH91ZLWP1vY/BTbw8n7SuIVANtgLvC9K2durQzdXcNhl62EGiyTiU2uvXk8vX39xM1s4sVk6ur66vL5c2iSpaiBjmtYJgoqyyQDBEHjxmbGKiQshK/I2uNF49PHnL25mH5wfT/LcsPqyuizbwEnKyahtWoPYuOBF0ywjsldXV9//3q/bNPnhD384m92iapYnhhNjjPdeIRhry0Xdtq0EEB+UAJQIFASyjJz3gjgPIKWYOSyqWVVVVvJlVQdQRqOqXyz8x69/8l/8+ou/83e++/zBxdOzcUriQw1euAtQpZ3yuYuEtVLYdr6+gl0YK4k/4xl8WGmCAADXIRpZIDrfKgYW8Ijd2fBKyY8AvXduZxQcT4VJCYkUNwlKt2gMIHvOgO/Jbe2FgEMV7rMJcSdc3PD+zsUeUr2C9QOM550M6f25UTg8G3cUVV3lZo8qkajpUC+iTiwbQvnBD37zv/yVX58u4CRpiwROHkwenL8zOp60bvb5jz7C6fwP//6/+zvv/tIsCV/UTTKvjEArDRR5wVwZ8unE2/MC21/4tj57cGxS/o/+q99czquqapM8LRvXBLAWqtZ7QAGPCad5wsxaOxDvgwMkbSQEL4aCCCMYJjIABEjuZJQfHR0xQbW4niR2lB5ZMgmn4/HYNy0icgJN05yfHldVRcxkE+QMwEk5vbn6olrWk7NHaDIh09s7B+dVBYgb74iIGYm6UKsxKQmzNczMHBqqq0a8X+Gx0DYNM1triJhQQbWulmKMCiAqEnOSIpmYHLpPAB6TcQ2AfJOmQDTjQWYMrSRJ5l1pDC/LWblcnl9ctNDGpSRSQorEW0Q08snSBTHGVZrMjvkVL6HR0Kg4EI/CQtonLQBAjcrYKB8Cr4yi+s26R4y7/57ahduVELnN6d5tJNFPGgIoSjwDxi6VbCTDZgXq/dfXjfclSjG40pquY/wOBqgHBkjQienDoaluHRX/VkWFbdF22BMc0uC34Lct1mGLQ7pPN7Yq93O4ZsU2FewhhJgTTMSjKkqo5rcGpBgXlBYecLFsL699NgqYggJxYlEREY0xozytqsYHENc6AASgnBHkycOndbX40Uef59/+6eXN1fTqzeef/eT1zbJ0GnyzrEpGQjIisljeRvObX/uVX0VETiwbBOW2bb0oGySGpmm9b401QAZdaL2EAKoaABFBVL0PaMgSKnNAZjtu5y00ZQoIyMhdqEhCDa37T/7qD7/zjan81HvvPBiljM75gGqMVS+4iiEBALBK1oKrMLI99dWYbhyHiyiwNuYgwICK8QCICEA6/AKRl411etYWPCAKEMUAyEyqdyw23csK+k7q+xaQ2oKe/uI+ADjcAxs4aGC4oZuVh28N4RK2t2iHR4Z92+X37xjL4fsH0aL2OLkPmSaAFkMLKXOzuPre97/rHTx+NDKJnaQ6mRylBX3x4ifnRxk09d/6Cz/3C9/+mctZRZ/M86aBifEW6M08Z87Go8UkUMLWPGgdjo8fPbX57/yWTqf+r373R/MGCkZK8xFLkiSADULKZIUEDGsQSIksA4AxRtoQT9gIwBi0CasiERW5YeJ2WeVFXuTJs0fnOVNbLkfj4nhyNJvNnHOptcYYrwJMaG0bPLO25UJnN/P5PC0m+fgosBERVUnTNE3SwNy2rV8FjJNoPBMXGQERnXMoEkIQ50QkanoVqCwX3ntrLaKoiIgXkbYu0+NTIgoYY1mSoIIKASJhDJGGCtgzwIoEGxGRQggKgIiuLYPzIlLWVSN+US0++fTTs/MHxLSKFN+Jwqoq4olMp3eSdf5URBQAUgji1TXqGnU1cQLGoNoVLK/G25nnrGKMq65F1U24290+OxRoEzjvQar36H7gLZm+eoqyUuzftTu2eOv4OhF9NWLZU6ZdEfm3Tn3v8XnB7eDT6169pWgccqdvGOAEgk1tyK4icM3BHC4iEs2MUQMT1E25XMwJRJCchOlNVbbiBZo6FJlZlDVTIISiKBjh/PhoCnOLtQgYD6NJdjTOx5NMXWURf+1Xvws+zKvy8tWn5XLWhFB79RAUTRAtF3WemxBEVSaTSV21dV0fWetVk4SNKWIAKe9D1NmyJTbGWjCta2rnUEGRiMu6BYAiScZpWlVNNZ8WRQGuShEEVTQEH2AlckYS+unL28QQw6N3HxwzUds2cb76xYJBjmrq5J9u1rVnBDfw9pYBIwJE0wNcRXwjUT9gjzoCjKtbihzPhgUZeY9fT9+f3ghr2xZx/fF7UZ27qg0bH9LFYT+G3dpteUVrt+XdrvJq4Pcp9xnOkPHcjGA17MD+9FX3K+vg+MwMBCnDxy9/cvnm5fnFwxDC6+sX1KTHx7ZupkzTm8tXF6PR7/ql35vQwyP9SZO2wYhNTZZYb1KnGtD668rMPsuPFi47gsfvqLl4/gR+79dfffzZm+blTVU6o9amKuKTzCjaFLUWrwaVwNrUgDrnADEx1nu0jKrKjKkxqmospayWbWrTi+PTowKLzKJzMRBrCOH4+LipquPj48nx8Xy5sDZBTqRtjEg9v5a2SUbHR+cPlY13VXdA5ckTBhFFNDbjyAsiehGAwMiIQERpnnvvm8bVZd0uK3Ft5erpcnacJ6jg2mZRV8G3RJQYQjZl1SRJgoiESkQgoAIJM2EXlE47obcL+r9lRdijNxGvbBbLsvJwPZ8vmmb64SenD999590jZu7lkKh6FdG1y4fKClAiniXVgKoSmhBK9SWGzKgVTdf2iAPAG2JYVVSBeJg8tJ6FobaZBpHaNoFsSzhb77j7wehBbLDaCZ1vEmK0CFNVUOwzQqjq7iH3bgHArQQwHX6gg2fA6zorRg2g/+xgk/aKxDuU8zvlEF5a4+yuTicH7yWHu+Rzq/FDn76D44EdJma3ZVWNqYe8bxVCzolzThGC6nK5vLxZvpmVTgGJRIWZCd3Z6YQArEklhDQxobEpgwicnZ0ByGiUE+NiNk3StHbtr33v14JSUy8JQ1Apax9ADLFvHQP6Nhg2Atq2rfONtRYRUdS7aJkM4GW1uCAizMiAjMhEqipIAMrWioTWOWNIpSbFPCnyBBoHPkAASBJmZvUaQgBRi2Y+bz/69PU45eM8O0pBgyi3HUOvEmPPrg0S1ylKBu4znXS3ZoBgRaqjhlqVEAWUYuTjzjKr08J2FpEdTwmgFI08DRKRBlVeAelqEddLNpCAdSUqDwnkLln6soC1W39V+UA7uL7ulAeHOT58mxHWb50w7z5dXR+qfwhxYG/gDiv+DBGda1mprarf/PXvTmdXEsL19U1TwXvPHud5OiuvRmkym9Y/83M//ejhU6l5+fmr+rzA87ENqQZ0Iw6pZaQzfuimL9vpa98289GRnZyOjyYfPH/nF3/6NoTw0ZuZa1C99zWgsR4UQT0I5ykjMZMBcm0QVSKHJMw2hoAkRGIukqTI9Gh0fDo6PhllI+O9ayzAeHwU+cLxpJiMRjZNybBJMjZG0GK71HpmfCM2zyanXIxDCKQVoQEAdXUtXoEpSTnNNIgiiERZGIIIs4pI1ThFEhEfgpcQQDyoIF0uyiRJRMS7JmGTZWySzBjjyxI6JRWkxioICngC8W106jXExhg0HN0WQMImgHWnR0o2gJ25ZSs8C7j0uCjrX/vRF+cXJssKY0wIATpNoEYnY4oMeZcMGJRQOtWLqHqQNvhGfW2kBcnWuHSg+4pCPxFpd7AUgYURQUE2t+R6Rw+6vjajHZKcLpJJ39eDMenWgvuQr91hPeO3ukOviPHXZ8Ar69+tLbOrqdr7c31nU7m6fird3ManA6ZjS0uw5o/XDAqiDhKn3lF2CfbqTn+QtMLgupFvYwtJDuehf/SVWPaNLvUe4VutRaY5BN/FmVFFMg8ePW6aJmmkrmchgE0Sa1ihYdSjo4LBp2maEJk8GxeTh2dnRJwYuyiXTe0kSF23aVoAwenF+Zs3bwJSVuSirWsbIAIBEEGFPC1myyWSZ4YkSZIkMZyEEKxN27aNAWIRkZmYrID4EMQriEpQRkBDPmgbfJLmzgXnw3xZJgklRQ7Gnlw8uL6+zo1BxLbxVd2qQsY2zROtKrSmavyrq8XVeZlfFMxMFJzrQ0B3WHflMLYOpay6Sn6lCqzas3EovfcXgYCSQIipkBE4ujv2kLlSUWH8AwFU7NIHCwt6RCYabFftDToYtiTgrwYfdxBmuGO/6frOECnsbU03T6ci43y3KmZPN+4k5FtwfGhEw+00rLArZ+x7d22H1V+zQVJyTfXZJx/6pq4raar6+bPi4ePRrKwSW5S3zcOTB9/+qZ/zobmevnLp6LQt7NSWJlQpj6wpTOIxLEcF2of1AgOqn35ywo4U8pOn33r/1evr2+vSeUxA2ratVKF1jsWLIWNTr0E1ABsNaJOEWVUpzzJjDAIYJGvt8eQoMXVmUxRazpbFmRHxyNY5Nzk+Go9H1tpRltetXy6r0WTSOK9gWYJf3hZZ4ZIc83GjkFqTUZRoWwCyNoUkVTZOgUQUIWKNIEEBvA+CkKVFElOH1u18Wc1mt/NqPq+Xi7KZTCaWkJmPjxJL6bz1oWqOUhMzm4qII0KvwQcR8E0V/ZQ0SZjZGIOIgiitG64jEYkEEblelG3L1/Nm6RYLD9dVo2p/85NXv/jtYwAoijFoZ/EYs+cBJtFUigDiCadGYg5eIZ4Le5BWgxfxuEk1h7QjmgorUYzAod3N6On4dobyS22K/pWezGzo3baYzs2Gozohail68+ZOJw9D8rP9LV1xONEelWh7RB2jcGCkPa74CmRsL4Ny/1eGN9e93ffWUIyO4/1qRHf3i7jK3buhLUDELjirqkIIwRgjIo1vmenR46eLxaIoW9B5nllK8nLum0am07YYUz6yx0cTRpNlBQIbsnVdByRRvbi4+OyzL7Js1PpmOp3Oq9JpUGUmrcqy8WKMUScSNLNmOl2Ox5lNuGxKY0hVy6ZuW28ZvANjkBPrvQ9BjSUBAaEgITgPQIatYdLWQwBfVybhxNqqcchWyE7LZjw+5svXBkCCQJBxikVWSBNm1bIAMmia1r+8nL48uzkfcWpdaCqbZsMJFBEaqDOh0/kP12vIsG5MPHaO+9EuOqyk2Q0a0SvDAIICQxBFFQlIBnb0FqraOU30/kuR6u3sQVjlmhjcpy0KSgDRG/EQgujvrNR9KAAQZA3WhGvRMGZYUIjWjYa6czuSOHLtR4668rVHZg0gKkDIzKpeQtP1WWLAQdXVuRquRM+tGdmV+/fS18Gdg2kN+9Y2NiqDbH4iPpyX4dnx0auX303ZL6YtEmQFXBw9X85hQsmle3Nymn998ugsP7Emk/nyKMMqtJWQOhmlwOxnHorjBwDKo0lisZne2mXjw5vk+Kw6Kb754GvXj25yaL9YzF/OqusKkDzYRFxABVlUeZq2bdtgPR6P6rriURRlSIN6146Pj06OJ64pwY68l1aX41HqWkUmSVjEjWxajI5awYUjIksSVBmB2F23vsXsqI2E3Decjbyq2JGTShgMAaBXjwhASEhp8F5EQpAAamzK1niRZVXXN7evX79+/fq1aphMJibLjfOcwPX0tqwWRJpfZTEm1KiYjNOxMSYEB6qZTRiARBM2AZvTPMlQckxzmzYBRBlQ2DTSNGuAh3xW168ub5aBvrh8OWvmV7Nr15Z5mja+Ubh8+fn4a+++V1UVADCTMaaua2NsjIUFnb9t6PeGkO1cZ4kktMZVGIL3wVhBRSIVJAWM5MyoaQN4LxAUNCioAgEKAKpwBC/AqMeTiCj2eThEEFeAHozXsMrxfqzWydmgojFRRSd/A6gCCRDF7I6gqoTr0FGIaAyBAPjQ1rVJrDRVCE5CYMoIFFCIUMEoiIKIOiKLaBFtR6NBkLTLYtVP/kr0RQSJc9jp5NbIMgaM6oKebES16Pq56mQ3ZNnMGtRv7V0Svrvrh3R0UHETmUJYpxweNhgQABC28ckhcWWYx7evoF2cE+nCOeFaXT+MeBVLJAAJgERHYWODa/Ms1+DaqkUwaSJNJa6qkNvzU/P04uH56XnpZnk6AoCMU++9huDqtg6VR//y1ZyMr9qq9nXQxreSJElbN40QJbkl75wjUjJGEMcPTNvWaEfHk0chSGo5G5Nzjk3nCmQ4iWdDVb0sy9KmTARNXbdti0YBnCF/OjbLMkAQVCisYQFtqiQx1fTlZMyTwr735KEBNUk6uXg+b/Tzq9mbH/6wbua5AQ/w/RdvzKT4+sMsQ/CVS4vUadu2dZIkRCjOW06CegBa5zQDVQiqgTvnok4NGzpXCEOCIoIdtIgGBHFIBJTApmpEQwDEwBqtPMEDKwAQkqGB1Z6qIrCCAoisHYgPMNdbfN99GPDdV+4WJYeVYR9hW4Hk3V/ekE17PhGIFCke+N3x6b33Vzvhrqews5d2P9TVVOmsWlb1EEBVR3nWtvVssQwhNE1Tti6xmCa5OAXRohjXiykfmfOT05vZzBDF0H4KiqiqQQVNlgEbFnG+QYXjyaRVqOsKs3I8GvP5ybe/9QFmPJ7PJrNFkt28vi1juilUUFInzqtX0aqqWu9YkizL2rZFhePJOIRwdXWVZUl5eXV6cpTkI2MSZk2TJM8yCa6bbTQd6iAFENWASGQNAxpjySRsU2ZWACYq0sy19XI+a+s2y1NkapxPrBEJzrkQgjFWgnv9+uUnn3365urGWisizrk0T5ixruurq6siSaApuSqDuPn0pqpq17TMDJm11gJA27a+daxQ2HRU5M+fPMVxOrbEqJhYtiNGbNuWklT8mgAvm/pmfvPy9s3rF5eNhpc3NyEEUqgWYXw0EpKXL19WVWWtdc61bcvM8Uj4IERhZ9DRJSzjDoEGUAMoQ/MN7FIlDlXQogEUQhDYpH8Rhg7BJGxSmjt0P4PKm3VQu78VCRly4YgYRCJ56IHcGAMQ02N0NswKnbvdHeKm4qDxgTYeD5C8Qyzy3ahpV349hH92m72/rAx7Dqq2+3CozxtCzkAvOKx5COcMi5ewivhIibFVVeWJ+da3vv3p//c/U1FDMB4XWWYkBAAxpGcnJ3XVImJdl0UxbpqGE1POq3l5rR2fAk5cCIGtAYBilHjvnXOqHlGIEEGJ2LmQplncC2maMrMiZHkiGFSRkIkMIorIyE4mx8fRcKCqqnKxDCG0rvYC0vosy733Tet8gDSRMRfWWhF/PMnfe/r43ccPGbVxOlsuprP68os3TdNCjH8nvq7k8s30xMijY8sYM6URs40BX3qj/cjjwZpaIR52Ot9aqfUSdAFwtiyTovckEZGAR2FS1SASnZ132iTALx0L+lDpweUAQRqK9RRtVIcVdkVGAABcuYbesYE38Qvi2kVyq9x/i27efAvPgYNDpr1trlre1pvF+ozqWu+dIKeubcuZ5hfonWNOpS3Hk+LjH3/y3/rZR+oUvagLkqQQBELLCCqsCFkxCWQTG7RqQ+sFxTftYjrj1pnRskA6Ozt5PD/LsuTi4uLi7MF/9Zs/vF3WDqhtxEtoXYgpfpn5qEiTgp1zjFQUmTHEBIY4SU2R5BenZ2eTUcpgNGQpWZvUzgPSKvApcpedqA3eoQJTAgBAxqYZsg0ARCb40KhHoCQdueA9AguQMa0rQ1BC9OI//eSzzz5/cX19XbVNlAuyLEvTZDmdfv7xx03TGGMqK0SkIVT1sm1rY0yWcNM0oa3LpQuqqECESZ6bHITdYnntKtCj8fnpqTHG+TZ6MHmPYcDyzar5Z29efv7qixu/aFxoWJMkq+ZVW4PjZat6ewu3t7dnZ2fGmF4ZKCLM21usk1Q66ktIlk3KJgNmROz1zogY4+SRgqy8JmKgN1FFQBFRUOoclxXW5088/NYW+EXJaYVCt/H76pW3gDSsSe9gUIiAiEwUqOM/vOs00gBIqtKZlKrqW7ePDjxqGCCs/L9ppanaUuC9VQbY2/7wxV3x9w5C3m/te3Ltb73fj3dv/f7fXdFliwfaOxAAaNs2zTMvIiJZltXi58tSvHvvnSe3N/PXl8sQ2iyhcT4uslw1gBgVYWtVdbqYzudzVa2aOkmMiLjgtfMT4xCk9q1NgvdeVW1iLKXeS1O7tq1tkufFKB69GGME1DlnrQ2iIXhCMQZDCN57Zs7ztK1DlieTydFoNA7Ol2W5WMy990mSBRGkuiybEMQ5hwhVVZnGpe8lVVVh8GyyH/7m9z/+Yl55yA2nCaecOGTX+levbwoOR/lFknMIAQiYu6CdiKiiSBGlS/T5U4jhh1D2ecGoKmi03lrZCYLEU/+97BoAaLTrFCYCAR+CV3Q60FOpKkAAxKgDP0iA7yPv3vuVvovUKdh1zXH3JHOLhK/C6sFaalzX36bxW1wtRn+4EJAIaE1EtwB/C9HAzlbELmTJusIdZXf9dm/u4U7EZ9n4/NGT5++8++DsI3GXZ6fHRNQ0y/Oj0U9efGQZiizXEILzIOIFMQRfLyi3ALmysfnYexBpCKRxLrS1C5JlGRluy0WJSZraSTYW54+zrMjGl2/eNPPPJkfj2bJ0rVQBiJEZvW+NTZwT732SZlFvgxjYEKlOijyxNloSo0FjktRmkoR4AkpsmQjBI0jwjQZHnLIxqipkgFMgEkUiZJto8AEEmRFBFJ0EFKiX8xDC7Ob2k48/u7y8NCbJ0oRQb8sSAG7KeVs3zFwURVLkdVPelmUIARGDuNa1iWqWMRapNkvLfJTnROScy5J8MjkuigLKBSolaZqPRsamjasRPakYZfTrFXl9+erm9ioEJyjIYFnn19U4hWfPR40vA8Hv+32/6+Liovcqds6papZlzrnBig9WH2N+RUabkR2xzYgtkgHEqNUdwrCqAsrAUAARgChum7DLDm4D8AZSGMI8rsH7MBQP8TsiwqaD1hb8M3OU6Vd9EEKVQftrUFfEw7GvYbB/AYY6ooM88ZDf3SKue+vfffMu7cWAFt4HGb4VZ+7M8BB3bbSz1YddPuYQ05BkKRG1dY0Oi6IoioKRyuWSgMf5uCxAwWZFcXx8atA4F9hwkiSiioYvX33ReodMxhhi0kAMiEyWCICapimrBiEQMVujqlXlQ9A8OxpNjtrGR82TKiiCa51zTkTIGAkq4PszV+/9cikApE0wqPG8JknzszRHkNvpvMiy8XhcVVVd16rqnIMgmKAPMhqfXF9dffrhjz/7fI4IiQFitYkxlkmwCTJbtG+up+88OT8qIARlVEZUFVKAlYZJVaDP+ILQxZPZhAKNAc9XuegRBdZa6wCAKCvKNVgORJQYoAO7wLEqHoS7kJdxsUDiQVCElrvSEe5lHuEegLjVzP67O4og3NC6DJlo2d0kg52/vrP3+lB56868u6k7uOb79wEAvPeQ4Pjk/Nnz958//3FVTsdFZi1XTUuQzKazIjPjomjb1jmHQiEEbWvflEk2MsZyNiJrSYJ6ZbJMxoNRK0maEZFfLL1TQzrJxtV8wWgfjvLf8c1vZohv6tKCqxMcZWqznK0pF3MidW1zcnJCgOLaZFyIl7aqipOTUZZaAA1emeLQjTGTYqTqQ3DGJlGQEwkheJVA6YiMUUUkg8zAMTwqQRBjTNO6sq4iQRXFsiw//fCjV69eTW9vCTm1NsmS0XicZcX7qb29vV0sFiI+Qq21tiieLsHXdT0ejy9Oz9q2nc1uowdku1wuFouoB7PWRvV1taxO8vzR+dnjBxdsk9Y7ay0TLBfzRMxQBP7isxcv37wRRNP6FHGSFY9+6vjpg9NycY3p6Pf9N37f2cUIEefzOSCtfIJBiZXWZHxIQwAZmckUlEwonbAdkcmQjA5wsapqNIWTIQVdYwiM3g57DBE27gx3xHB/xYPczn0ZN+rvbWTFAWwKW7A2hIxIqfVeQnxXGMkY410TNiXWXbltewjUZe/u34oe3HszZMC+fbfBtd/xocO44m400t3ZjrTVV9pjC3Kozb6TW/1cofjVkm+M6EsoKVUVja2aCgCSJPHea3DIhtiKJAhJnkzSbJxkKZHxAWxaBG3mVTmfz4FwUS7ZGiYWhHrRcGLTdGRtGl0E80yKkQNt27b13iPyeGwNZ0lapGkeMldVFSKS4aZp4maMYzEmBowTZmuMEYEQQlM7CaAJd0+DNE3VNE3UqeR5nmVZWZY+tIiQJMa1Zeno41fXP/jeb5ZlgxaaFpBwdDSyFFSdiCJBUFg2btbUFz5DUBJSiglMFRF1FWBSVVfxsgBWpyQ9TRluooEKZE22dRBqBgaEEgBifDRSRgyqLOJRzNBWIW5tgM7P/ktnQ/ot1oy4abDJuxd70FQNmyKuDCXg3Z2Jmx4O/dzFhQSi6Ckcv/1lR7RHYD1c9iKCfsGYtkX5WI2ZyyYI0OT04uk7z7/4/MOmKYnLxMJ8dpmmYJjyPA8huCCGUL3zTa2qYKwdn9jRkagiiBCS4awYSZY3beskgApkEmYL79FmaZIk3jvL+LWnTyZp+ss//l4Gflb5NhAYQ4btpAANTo2JMf69q5aLUZ6OT08nRT7J8yQxltEwYnBRDZUmifoQSSMggIhvmyDOmMQyE7AQ9Q6d0WNWxTchOOeSGN+qbqqqWi6XRWLff/7MP37Sti0ipflIEWbz5VExevr4ScI0m83apsnzPM9TVFjWLoSASgAgVh4Vp4YZUWeLuaomhpnZe++9VxAFsNycn55MxhNi4z2ICqkagnZZArh+RbIif/DgcZIXZ+OjJw/OziZ5Ru301SdHefK1n37/5ARns1l0vMGBPWpd1/Fev7DQ84iAyCknI8qOODuCpCCTg0mJDOLqqHQFOn1yQERUEQVYseB7oTP64a7F5eG22YDDg02s4RYAFWTzvnbB+fcVYgboDEJXkUlARJSiyg77gdxNgLtEAoi9CBLr98ZTcGDDbskGd4xuH4exp6mtV9YLcb8z4Fj2CsG7xFg3Ncy79Hj3/uDm/p5HatG2rSpGH9y6KQ0aVf/6zZUXZjtiU0dCowDLpm3n1by8urm9FRHvPSc2eEktusYhcZIURTEybL333gszj0xqWWfLRRlKMjwan2ZZEQSb2hnLIQRFIJW2bVXVJFkIwfsQQ8sHCUHBGMNsiW2aFc45733bllEvTcTGJErqvS/LEhGjYRoRIkA6Of3hR5+O8qxRrhwcnRyNyDjnJ5Oxq+dtXXsvwAYQmgC3Zd1OTJIY6OyfO6qLnfiLsOlEIxK21KP9MlF/4qPQJUDqNFsCiKvFGKyvYPcUGFVAA2jos3F0dbqvKuCBWNBfofTvbsHEXgh+K5iuyso6+k70sfWsZ0/29vBuiXYX4vdKCbvNbtUZDnzr3+FEqWqWZW1LaIvj8/PvfOc7s8tPX1x9JuBBK+8qBLh4cNr4Js1zd3NDjFo59Y4NU5KYYkw2q5raiHoJiIZNxsbgGCwpBaXFXJYLZCUDk7PxfD6vqzm35VluvvX84cvUfvFmelu7ebWsJFjLQVwxOaqWlWVjGUPTZpPR+ckxgoivldMASMiWyFpOU5uwEWqifEVKIYS2bUV9mqYiItCSyYg4hBCD8GvwaZosl0uCYK0Jzt/eXM2nM+99kRbz+RwEzo6O09HIpjmxffwEQgghBAnh7PSUAEPrnG+CiARXZCPxulyWAMDMTVktFovROAVV8j4lPBlliiIiyJTkZ3mSKgAi28Q2del8yyieZAhBF4+ePsomSTFOksTV0+tmOqbaJe3jJ4+efvDObbnI8yKunXMunkZHejzIYjbw6kFUYjYJpwWnY7QF2Vw5IWMAMdrI6uoIJnofrYiZRNrdxe1RXQV/75j0eKiE2Ie8hCFQ9ZDWc/QDYH4rOZHIB2/5aQzp6Ir/MMxMaGLUe4xhTvbgAboj/WL/SrQM6Tvf5/HVVRNbZe++29v+sP5QvoEDOGE4gW+lvhvb/H5q6uFbw1k9RI/7bg+J91bf+lVGJmYS75q28t5zZn0b5vP5x29uXAtkrGhoQ6tAN/Prq9t51cxUMU1TQGabhBBUGIHYqgvtslJD7L147xHRWmvzcRGjcyzLq6s3SZaPiqMkT29vZqIioTPNY5siMqhBiPmnu8PHEAICG2OilGytxcT41fGNcw0BOQlRfR1CMJYY0Yc2CKSprVuXZZn3vmmqLMs++Ob7N7fLti69lxCAkIDIB7meLqtTm2UJEauriRERJIaQXNkzR8Mr1XD3EsecdX0gDUSN58FygF4AoEJAYcCgiKCsGgZW/Nvk6W+YEdaqf9u85GCo+/nQLZEfdgXcOGVv2w9bnx6eAevmefPe0u+3Q9zo1s1D7vzDfbL7aHdczjmB1BhbjCbvvf/+zesPmu8tL2+9b+u2WVgLAFAUxbIqi/G4fnMDvg3BpVnOJjNpoWya5YIIgRGQnBOvPqQJJyY4Py1rVy+sGlZzdDJGVn/VVLPZydHx45MTEPUeksoBTJdNW4zypkEQzdMEEYssOxqPJqMCAQzxpBizQZFABGliR6NRlmUQhC0DKkZrPx/EewAhIlAJCgRC1MloTOiCVvUcxIfg6nKpzpOEcZaKN8uyzpI0TXObpAosIoLBq1ggQ4wAwXkR9d671jvnZtp+dvX69avLsqwzm1hrszw5Pp4k1TxLU0NoIW4ByVN7dDJZehqN8rb1rRebYJZlofZV07ShNulayJtX9fS2LKvPxoTnJ/koqav66oN3H37w/L163ho0guKcS5KkzwG3Ws0hNh9KwARk2FiyiZpUOUGO8X+66lEDBisCHIILIdDacipCyyoOU/+JVVLePjDyFrBtYXZdObHA2hXyHgV735h1s5HxD0F7z5n4KHpXh00CvCZmB74wjAXd30GFtW5u01jsDmK5t/2eXO3OxsZAVz+j4+VWhTv6v/utvY+22h/ejH2Lk7n7Cm7y8TCQgPfiq95xNM/zpmnevHnz+vXlp59+vhREtLm1jfdXby6v57eLOiRpooTWpo1zTLZqmjTNnYgxRrUpy1JV0zRN09xaIiJjUEHUB+9bkXhErGU1n86nVdlOjkbRBX8ymaT5yLXqfWhc1bo6hGAMIUII0vjG+3UqIQAMIoRoDFlr27aN3ivStBq9RhFExBozHo1ur6/UUlu3eW4sw831S4UTCYRgGAAxQWIfqtm8dG4UAT7EVOLR7+OwBURn9Q+R3PZnLX0EusEeiCsWzf0l0qY1hCjG2FuiSqBdTplVCghYDblv5bAb0gZfRmuGi3bokcbQIKvcJztD6xiNQYPb9GkIaqoYtW6AisgQD8Ow8+GJQ0TAGDYYgQK0qgIgATo+GoUFgGOQPlQA0ZglDgBRg5fOQ2lzc4r4HtmtBw4wtDVd+3cS7lLZ1Z2gm2bYiJFgMwy2d49PkwAVLj3lNnuYF/oL3/mlRNu/+tf+yufqx1lSLWomuX5zmT85oYyMBV04ZDBHR+Ov/XRlOa1vR+AkJFxfzq9LV+HRxaNSbuflNFE/++wzCk16cdZKQA9oJg8ejNuj6es3n3vgk9Fx8e7xzWx+MUpc8HUbZoIwMW3TJDY1hguG09FotiyPzs6yfFyVs+DbrEia5YKORkjGiydJpXWWK2PSFrwyGbKhDaA1WcsYVDwiq/dBxACqQOOCtJ5QMUshS1vvxIXzIwZEtInzCqqJSUF1zNRKI41r5iWrvbyevpjOPnr98vPXb27KZlnOggACFAaOcnh4kr3z9KF59AQpqLHEiaWEbY7GtsGQwcYFRbGspLX3vmobR8lE4KPpYvS0W6y/9P/8awRQeDh9nj+ZpRcj+j1/2+9496e/edPWqfHWl4LGWrvFNSKioge01AXKiatrFZjSAvJjyC/AnlqTIyfADIgABCIKAYBEISh4VR8C2xSCk8AheA0bOmFVBQirvIcaz1R2efDujoKuAY36iIyDTb52vgeA6CYXQ/loNGnHGAzEIZIqaqeIIgAUUUaDqIQi2hIZY7JltXBBrO0O1gS6pAugHpBXFNUrECgxGUajAAYgevRH98kY4Q8kBv7qGRA4VAZMz0bpV2donT6cn6152yt9bgqpoqqr8JbxDgGArlTlFLUgCioqELb8s3siSpsdQBDQqAo5RH27C2JQDdrlokBFjDIiABRZ3kQfPFBqyzQfNc5XC7+o3SefX3/62WvA3BirAFfL6mo2K6tKydjciKo1edu0jBQ75pqKAJ1Dk9gkKeKxkXNNIJNlhU0zHwiYiIDZB+fms9J5BORRNtIgAppkBXLqWtUu1gqpsGEbvENEZtO0tYqwSVXBuRCTjoYQmrJWVVH2zoMGhWAsqkoIyJQAyLIsOUk96OT8WHxYVm3TeLRlXZfWYJamZblIElYGB+LKulwuktNxkmfOBQwBCRU8c4ZrtVBYrSapcIw+AdCnWBBAAGVcQaBqPGkDVSU0kbTGcLbdehGgYrScRgKgaBUeRNaLG32CETpjrnudAX+JM5DfQnmrticW3NRId9OHuslHDwLRbX6ij+K2wWEcLluc6YY4cKh7hxXdW59GgMCpUYe+EgEanY+fmbPrL05OTpbU4GxxPPFZwo2viIWJCM2yKYsitVkeFEDUIjZNPZ9Pdf66RsNnF/jwOLy5Wl7dqnfctC0rpTFjEHgvZCix41N6Ui6WogRNODs5Pb84XVbV1fXUmryBBk1a121G5nRyMhmNsyQfj8YSXIwmg6jGdlldmRkDhBCCc8IMGojIWovMFP/IIJECatRPASwXC2NMkmRAXTTmjNM8Q8LUuUZV2ThGUnWz6awsS9vStClfN+Wn09vvffrxJ69vZiUAwJmHjODBg/ThyYmv61Atq2V9e3v74Oh0FGNSet96OR4lSZYCgOWMCMSrD158kOBJwRLets3//b/45X/w290CJaepCaHgZFGVl1L9/De+9e7zRyDOsDJT24ZdxcdqxXkDliLPisS2MDYnk0bj5+jjKzG/fQRdIEImBfSWkqRulneD1luha12nF5VoAHWbwL6uf+irq9bWcuTm5/v7RBBDIHVtDhhZ7QX6O/u/O9h7dm/v61sa2q2Lv7lFaW+Pt2bgbbgklj7hHQ6NgELr8zxXo/P5vNIo5GHTNPOb2ezjz5ZVXTl/Oysvr2ZBMB8dL5fLNkjVNq1zggCqEhBQW9f2UgEAeCcIYIyxKTKzMQQgIoJIIYS6rk8mZz6QqykeDDEyWiZOnXMKGFSCRu4NmSwixNRM0SkOEYmMTbJ44uuc8x1V5rheTdMkSYYAQSQEH1S6YA5ETBQNUYnI5Im1lpFApGrqptGAakZijSWiACE6IsfICpZNjC+HpCuLij26WMS1y36c9tX1KnHOFuSsTnNWqxMrrdimVZysrgx2XZ9LGBE20hH2W3SL3mw93RVxV3X2QHbs3JaeBO/UJO9t5I7qRDTglrnHEcPXhzR7GMWt3+Rbe3UbkX2ZshdL7muwWxqHbDWAq7wwJcfp6CwZn0yy4qRNyqp5dHKhSDezN00oExp5TrMsTcdFWhwBGWh9tbieX768mbXjBI/ee2oePvYCvm5O0iJN/JvFNJlMbJKWzVI1gJCYjIxNx0cq0LZSlQtCHRVFkhgi8/DCvL58hYgzU56enp6eXQBAQjYzdlEvvWsMCKk1bBgJVAkxzTLfOg0iPnTqLyZFIOJ+OeLQ49MkSYBQlVCREIk7E55SBAAMBnFV1VZt297Oy6Z2X1yVc+dK1B99+uLzL260gsdEx8W4xMU4Nc+fPnn34aPlzbRezozxFw+ONUjbtsaYLMmTJBFQAc2yTExqkDwQS4MSEIIBBdUfvvzio8vbfqU8NI/H4/zodLmwi+vpJx//+Lsjef7+Ow+ePGnaBmlbY3QYkkmJiFK2YzI5cEpsgU1krhWRkVAF4gaJSG4l0KxJ3SCC7ABlf5WtNATLLZXm6v6gzc0XB/3ZaG21uNpLikQUwprUdaQXEWI86+6VdfPrqHor2WL9aBXpqWv8PoPcV/aS4bfWHw524y2UCNUAsPLOoNX1pmh7iEnaRhEH8er2i2tUHFTQMk9vbogoS9Msy15fXl5eXk6n0/m8upneIltjk9vpsm5Dmo0r52/Lsmzq1oWYi1MVVD0ihhCYOa4ioYmQGF34IlOlqiJKJKree99wlaS2KIrg2xKquhUJEqT1HiT69xjjfSuKiensnyMNHgJJ5BUi/Djn6rpGxBjtq6lqJCVVQySiIhJUIIAC9d72ddUaxuiIb20uYeFqrcrGGMvEhGRMkuYFMYuIsGLMygCCSLoZsXEN2LgFgT1oHlqQGOi9f9yLf1uKpaBKMoguJeopgBBG7mRDAh7SYD18nrEFEH0P7nz65Uq/TQ+hmH7zr767EVEIdqT2ngb3KGO4T1R1U9UM/QJsbsXhSUyc6OGO3VZHD8tgPlfkPxqtcEBEsnkSgjS3i/mb5eUL8C4BdjY9Pz+9ubr64vKz9+dff3hcKBJZakUNguUU6mr55nW7XI6LSfbsccuJmzYpZSMzaYug5BN+lLF1zs+uLvOiGB2fqcGgoGjzfGQNGM68b716aT0FFQ0PTk8XVWmMOb+4sCadLxdRYY/Bq2vIIoJkSZ4kFkAQ2ZqUqNIgwbcqnoiILQBELlijEjKeiZICQJ6nLvi29RIkWqoTBh98Cupc1Taz68uXV1dXt2Uzq12gZPLgG0/SfJSP3XXwVFXUtKG9nc/ohNTy8fFxkRWUB/UOrbTKSZIRGSJjsoSTVIGCIrJFTrSLFsIYWoWgjYr305uXzcAPOFU4T0fLwPmoeFj4B+e5Sqm+ktB678dF7tymt/qafV6ziVHcI07RJGAy5AIpFbIEIAirc6E4MyoqQwK8d+MMqdZ9lDerrbHiLBXWwInr3b1XFNgpQ1MsBqAVFsP+UdRkxPjbQyy21SAPfhEqbqK8tyKcL1t2W9vlIXbLPsywFZYkRvfqb8oWJNw9kEOYgbc8l1bPUDuDW1UCEFEVUVBBpcloDISffvrp5y9eXV9fKwIRKeUBUvG6qNuyFbaZsqmqZt7WrfMhBECKJhqRBkPkdUJQVWJiZgEwxtTtElFFuOebo3pjOp0+uDifjMeGkWessvTeQRAAjpmCkIAoJltwEEREmE20VRSRmPHei6iqMYYIY4qUnjD72oF2RkuIKNiJla6N7sKsAE1dB9/NtjHJeHS00IV3gQKoovcSvCZJwgwxmoSKSBA2YC0NjuDvIFK7Rz+7CxkXveveeu+r9nwliioqimy4IYlTjmcvpBr+BhthdR/eN7AhXOKdQu0dfP3uoxjAc8As4zYKiCT53tZbex/d3aWNn/F/u2fDsDYxIwUVEQiqiq5qIDFI3Jbt6x9d/eTXpp/+JCGe5BmS5En+qm2vr6bT+fTJKSBTmuYNoyaZqvr5opze2DQdP3wUJmdh0WIFNDLpgws4LtrlLTvnq3JZzWZX03FejEYjR7ZthACdFfFtkiQivpzOVLXI02Xp0txMZ01ajERkUc4BNEkNqJPQEkhiE0NUZFmWJAYpklciktBI40GCTTNrrSACGSASiAoHjUHNUKVuOoquGj2GFVVQgiwv59dvbq9fv7m+WtTNUnhWQ6vsT6qHJ0ejR+cn7zyeLGfh9raZS2hcEGFLxXgEiGkxGoGOT8dJThObjMdja60IeMA0zdI0lUCSp0AkiKrCaNGTiLjQahKGvngnJ5OT0weEiYbrn3n/W3/rtx6cH5EHBZAsy5wLA05LBzqoGGi0BzlWYmBDSYY0ApOCSYEZVimDEFCCUDSvRAJAZgZjwNq2HYL6umM9Jdjku99S7qSyW2B/SIMFQ0K7+rc/4umCoEUOQcQTJT1B6i8wno8CREeOnhKv5Y/BMLe6vb2/7sF87Fb4rZP2DeJNus4vhwKgvZdw/9H7qNAiQlgNFncXa9V+105MyBNfzLLko48+evHq9SeffeGCkEnIsLQBrHrkRVU7F5AsAS2rumkaJwpMBBhVxxRjSGrMMbBKjMFgiYPT/x9zf9YkS5KliWFn0cXM3WO5S2ZWZq1T1dOzApQZITbhTiFF+AKhEKCQQv4APuLH8A9Q8Mg3EgKAEJJDkARkBjM9w+6e6a6urq6qzKpcbubdIsIj3N1MVc85fFAzc/Mlbt6sHqHQHu71cLdF1fTo2c93qtt3GvnUb0NVwbRmyTWhhZUROed2peguZ0U1MTIlMLSiRUDJ0LMDJkAkNWZVYJdVFNnMUsqllGoii+S+7xexFcmlJNEMYMDkXWBmTSnn3HeZHdbzASjlkvuubWOMUZyBQN/3BrBql8heMQ/e88H3X2PoOFHd0f4aP86l72yhv+WYKoyn3vMKiGRKA/ufn6kAhcDhqUttrt3v/zzIIv5uQZTTqc6/h4Nd/e23Onva+OXcBCc4t3Ur8zqrGp/e+ehVwOwV4bmsRTixTg6U6Lk/EcRATdRMAkve3T9sO1h/sfviT++//GVU+vEPf/LN7RY7n7PkDu57uXm4dYjsvW8ac75drFRyt7m1nOLzD+j6mRW6bC84thJD8oZb1dsir9db6aTbsrl2eeXaZRYkLcHIEHbbbKZqhQCXlxexvXBv13ebb0rpIi5S2gFgjNEB3N+8kX6LUJqwcgSeiQBNFYHFMMQoXZF+hwAMlf4cMwOyIaohkgIAqBgqqFQridAMVFPfbdfd9r57++b29uZhu1HRi9XV9eLqibCgLyLp5s3vUn+7e5s4AaeGSnCwvF48u74Mnrpup31h5uvLy6unq+vQOudEVVWZnKIzYPaenENEEFfQK5gagxEabUwXF/sVDE28zZsdpKVsP3ryo7YJ7MDF2AuqAM8Z72mY44B6CMmxa9B55FBL0ivXA0Cr1Y2mcGjaHtHS7+F5nYu9fQx4+qdS3+zk+fOO7nN4YwLDfdeBub4/1tyzQy3HuRcjuxtZucEE+Iw2IEUfTvng87uV48f27PzzY/6zd8vvI817pnVNF8qcyRgMS4mPlE2fzvGIAT420f1QjRDHhjxgf/bzP/vFL/6yz5KNFHD7sDWktlmu129FRMRCbJt2ud1ub+9v602YHaChkZnVVAZDYPTM7NAhYggeAJTJOfLmmZnIDUgKQNVU9RR2uw2ANtGvVpehab3bbLudFy+m2y6BZZUeQbF2ohdDQ0lCRBUlil1AwaxgZjWfsUZeAICZi6pY9QcpgKFZ0aREnrkie4AO6kLVWXLORMCMMcauS/2uLBf00UcfhYhmaJgNFcmzc1ZyStkFP1/lQzI4FL3DApynE9tr20P7gprSVZ0V88U1E5pJcYMMYGTOjNDgAAnr3craY7+eldm/32FjxdF3umq2PY46TA33nNgmztnSbJPPV+J0pr/3jGwGYleNPgBANbUKDjHkPnC6h5sv8+vP+vVLUUW/iGHh8SEsmrff3IH5BPDNm9cl975p+rX1WpZgUDKkPoSwfPq8v3gaNvd9yQjsgNLt/c0Xv+2+eRU1KapvYmift9fPSmhTKi6gMwR2RoRFbBlXy8jOdQlyzv1mEx2TSmQKoem2D73Kbn1rJt67i2WLoI6AQGtyfDaITQO563J2xKAmRdEjIhvAkIyEVfkUUwu8MAQRUVOGgmhWSt5tMcbF9ZPl0w/AhRCXLrRFkNA9lXiz618+bCg0lx9/kD58st6sN9sHLdsFls3NK8rWP3TOOdNNt7l8+nf/YRYxxNC2gZ1kTQVicJCVmA2IlbSYJNEsJvC96x/+A3c9LdmPnz1b395RukfbMiiAFWDvgpRiJS/atpN8nrMbzQsMKvwksUPniRmZKqAAIg7eeSI0GNsf24Tb/JiKWWv53p8UccwEOb3V/MNZUp9tqJkEHTnOYKxh9aHZoZk706dxeEo9cArf4D6rBUHfUSL81+EkZ2d9JPPe8dCz1vPowdrbvpNvayanzw9+L9HPDQxGATwxotndai+suiaEI1TLl998uSu9bxbr9ebuoe+zATrelMWyMaGq5TzstvcPdyn1MQYiNlG0IRyrqoaKiISO0PmAzFQTrcmTmdRIXTUzzCznbCaqhZ3b9Z2IMK3ato1MZSnsKeXOzAhqorYQGjORWQYks1ySEQHyIDVTUiNE9N4TDaLdOWqaZrPZAQAwMXsCMzPJkiVBDM45QiyloJGIqJmLYegWBYbsALSWS/V9nzM7j8w8uEdHVa9GuEfzab7Kj+i7j+3HoboHavVSJXgzmwPXmNWGfQawL0NSlcopEBHAfXs3pMdUyDNjfb89M5L4t5/2rWbxIFBxf7xjJHOtFhGrGnVahggn3vJjznJ+OnuG9Q7WdqTjk8Grm9tm84bXL9L9q5TSfeHbmzt48RAWvrSLnMVxVIC3b293u128XHjXbqU3M0dAaFlLZ/ZQcOUFFl5U1l/+Nn/zxm23DagueEHRIzIjLy96dhjZI/pcshTnXOpTSQkARKTvEyKSyiKEPvVhdbWM4e2Xa+9gwfyQSxPCarGU3Ne0RgRi79ddF10ws1ISh8CAAOCQZPQQ1PeHdburaQb2nn3E3EsRRnd1cXHZ+A5Dzpl9S+ycC2zQbXegtl21F3rhbtqPk242m0LwavPmq5dfv11LIN3evbxYXocAT6+vHOn1orm7fwhN45wraswYmhaKbrcdi8bYEKKKasp52+Wut1yewNOfhP0uWO1yl7qfPHuyuvwISgYAH5pdL+x8jG2/3WA4H7XB02IBYiOmOeLRPwABAABJREFUQ8q0oTQQYagSGsRZLexA59IotN5BvUe0enY8lekMJxhMvOZIKr9DsZ4eN1tHRiBAtrEOvvLoqj0McBzINnrLTy1aG+ugUAX4XfGv+aimq36PY74Zv3Wy3zqeE+l4zM1O7ZDjD+8Vdz+dAh491Hm/7buITC4g626TkO3p1eXdwxvvYoytIfbdDgBiDMRAwKVkNIjeA8Cu70WFiLKKGXoOMACbZzAREXZhKikeuaUiIjo2lVJKn1OXemaOMS4Wi7dvviHiPrqUBdEq0hwAeMIaPAZEMy1ikPqu2+VSo7/inKu4XSIqIk3TiGQpaCaMgAZCWkrJuaiqqSJi0zQK0pVcSlERZjKDUhI514RFt3v49W9+9Ql/VBF9zCyXrGjRcYyxzwlG/LVZCOloIfbC+HR/ndLA+H2VskOOXo3JGIAZzulXtQAggiIqQJks4ClNfICNrTcf1qDCydqeeuzYyj6TmTI9by4dq0kOAJMbCw8hhAZVAoZnSS2KRkSdNOjaJW34l8EXSYj1tsQUi3RACpYRGwBXy7qIQNTMGGZ8YRqVqk41YVONL+xTyfdveY6/cXY3GiHoPk6GQzGksToM1suOkby2phmh3Dy8bDda1p+X3a/WG/v5b8pfffOvnn+PsL9eNX8bIbDpw+buXuDzu9tvbt789Oq6X8izu3Bf+iX1bdoUsfzireNvaBm067d3t/evvm6DVxfZPw3NpW5eCYE4Rh9Dyc4KIJfgad11Xed9IOKHh3siaBrahPtSOsl6cf29Tz7+8a9+9Zfgiosup7RaLZ9+8LRPOzJ1jkIIWSBLebq67h5uPLvg4np9R35xdflEmGoghExNcklS0TmICCIaFDMgBsBg4gQbJY1x0SCaQSlFVAWNlw4AfJ8ZbbGIwp2PMecMxbnL1Y+fPHl4WDsCM7UYYoAmXjbtM58eNG2zj9wu2UdGQkcmYlpSvyUjTb2mgsjOtwWAFwk2+8qfn3z8/IdPr1aLRjQFgOVyqaqk6BCAivoBU26kcxtpAFAcABsKUs34NVBjF8w3yBHBGbJWmwkRq/1BQFr7+lHtkKvFmNlqO8Lqd0RAg+p8rJYzAIjZVJHi6ECxO6RtshHKwCrYFgwf6pY3q4i4CqBYURWGLTnbHcZmgFbrG01AAUABbbtd+Hi7s+B8dNuSS5YkzGy1BzAAqO3dt2hICsBMxB6IBYnACLlqwDRTXxARaGgmN0xq5rZ63ENwnv+cstez+vF0TFLn9CqcemccRHxrzGW0qEb7XmGsNDNCRAIEIwLMlud3nnI/D23u+rk66lEBshYCY5Dcd4hucXHplJbN4tV6C64JoX162eSi2/UdmTlnnjCJ9qkYuRBbM9Pdplb7FKidUBgVzZC9MavaTosys/cNGpVsEFJKSU2YGIGMMPjFYrHoHqxplmzl7vZ+s7m/ulyFGHelOM9geL1clqI5ZyJnZn2X2XFAVCvbbY/OI/mSpHWLtuGccyq9gAmIiooKKJgVAANkNTXVCvDqmAhdTVF03quZiDEwGmoxBRQtgqVdQDIrAG/W8udfvPqb/sOku8toC9869veb1C4uvUMTBVVGQ09mUrSIWaQ4k1B752VVKOfaJCIhIhLXcnUbXTsIDoBczSgfAOoIgQBpLoBRFEwAmNCIRhf0EVnPVPb/fz/O2wq/T+iIxw97JgUAc+/BySVnPg8oIgCjQ3Lcq05KSWgamzZ36WF7423XWAL89Ovf3oS8+u3n//x3X30Zl7C5cd9/8vcvniwfNpuuaEIig11Xfvfq6x/98IfUNLIu4bYvH1z018/6bQebW777IvcXfd8z4mXbFNXl5aW7ePqQgMOH5e415V0gTP6i23WQ+kXZddsdGqTUI6KrCcsOt9sHRP7wgw85LG5v30jpFk0sqS99+eijD5axJVRHFMKigugH59fd1nsf2MfUGeJisXLkTdBIEWrGhtYWXUPgD/eionozh5Z2o0XFSMw1xFxUdRGDqSKhuSb3BCrXl1fX15d9Lw9to1pS7nMRA1TVkvroW3Leee9cqGutolqS9tlxRahGZgbvLbMUbr1bNe20eszI0TFTiC1iEZHgmXHSSg82xpyOxu+xRgePNu27D0ScNO4h22Wg4X1B4SlJj7R6BOA8rzI640eFUVwd+mweH9uQwYKIQEQwutGBIeeEiKUUAKhwvlLKOGmbfKoIdPz0wwFP0u7sGxst+LNz/9cQ9joz5fN3O3YyD/MEmSd9jr8YzOY1/qr6+FBPLLDhEFMAijGaprzrAaDv+5evf5eEBIJar4KOOUaPJJr6Xbcj9rrdbro+F42LFkxS3w/osCKllIrLhIiOoBQrfVcctG0EgG67A6AQGs3BgXfe1R5HpSioyzsizio9gDABmJQ+OSRichzIgIiEpTCZQM65aG5Cc3XVXFq4Wz8URSDe7PJm+4AUgGsulVVQaCKKjU8pVeWwdk6QIlBKKcW7AQCn1i/FGImw1krVhVCF1BfnKTpvhDd3+atvdvRR029333u62uw2xL5Pa0JsgxfVJMWxV4ViGGMD5XgfnS7QXM2d/z7tfUSqCO6jkjeQ99xsU1UEJciKCAXOuKDn9t9ZQnnMBt+Tz/u5eqZxH2p/361KGCYTfLy8sovvdotznr2jb97x5/zzHMoOAUaN2ASVCEgppbTLW3CZ+k1+/eWXv/7nT9uPP/3q1zfrV9dPLhO6vrPYkJnIpu+S3glpRjD47PXX/44kjovUPjT3PT57lj7+gdv2u1df0YvftE9/qCLee3a87VLhPsbeh5b9s/7uddncp82Wr6+adqn2Nq+/yWkbY1tyIebADlBFNO06cs3V5ZOidnP3Nga4XF3s7vl6cbWKSwYEAec8GqUkYOQch4Ycakl9KoLsvYtmFdW/DGtiBqoITEhkpHuNEka2jlCr6uqbGqjVBFC1mJiKmKiVnFOS3BOiI5fLzpupASAjA3HwbVwuGnLRhRhiG2Nk9iZFS4EiqMVMUyY0QhMwdC6gARa9vtpnYTkG571j8D6IplJKROfYlSxQ/a5TKPQ45meAMJeGp1bU8P1RC+9ZvhKc8z/PRamdOj9nTQtglnMw5LDsNYbvAON67qiZczqG9oGcK0mJWceinOibnDZT7Ljedf5CpqnNZfBoZxwnoxnu019O0femax8ziOEMQzu46luZzNl3Ml4ls+ZIB7HD8QRE4PoqFIEAFGRc5oOY92OscvrSe7/Lpbp/QwhNuLi9e3jz5qu7Tb/ttReQnIJjR5hSfnh4WCwiOk5FzayJPnhWETKTUmqpmIiAKAARswFEF13bElUNVpxziKxaHEQzMdGsSRVEAdFU1bmyfdiW3DfBXyxbIlIVAvPM7LjxwbMjRCJAta7rCophAoDlB1ddzq/frlHT9UVjEIqKmBYFdITKItJLv+8uxcDIhiCKhlBKERFijjECgIiAAAEKk6nVqvGKcOliRMA3D+n+N28Rn//hT77/drPzzK3HXbpf+CV4ZgUBZWZELrnCX5/pagUzWjqnftlMWuJU4DetIKIhGcC+wShUl7BVHlmY7UwzhkcMxHcdv4cG+u5Lqk1wpKp/663GXXzQUXWewj1xuiORf/olTEL028d59A1X3E2cvU9ESFBaCt5w03cpb1vK1K93r7++5OUf/+n//W79+ns//Adfv724vfs8LB5+++rP2/5jW6e7lL+536QHW6zcb9+8+t3XX/2dH/6d3aXAN/d4d7O6+hg//vGdZ+vuiiIRbbcP7WLVxrjpdvfr3zx58gz80rqu3/Zf/fazeLe5ev5h24ZN11LaghZGQxNDJbA+94T4/NlHPoay26Hl4JgATOHJsw+8I0QD5lr/XiPYBGWJmFP/cHuzuX9YLpfAliWpsUmqvpohDwtqnR/v38mM0hiGloAV+RwrwpsIZJG+JyKRlPtkZtH7Usrm/j4Qg/elGAE5YgrNYrFcNq26xvkYQ3Q+gpqpgQmoeEATE1NRpSr7gRGZQFvvxtofyGnLTZMEiJySTrlRE5HMu/TMCWDk6HvCI3JEpKMWPBcwaPhYVHNoPqFjxAX3V8G+ZGVGtIeXv6fyOlfhcbC/D8TVRPnDDXG8+WCLK47Rbedc1yshMwgazb1ndcxzaTfXlY9e4NGBOCRjPiZ9v3WyR2L46OaPXfsOuXvwEw6N2WGoRpvWacwD3wN0DN4LG10CR7c9WtDh6vGoDgZEdM6r2Xq9/vTTz//iL/9qh3i/6/paUpC22ajPJWdrlisRAUhN08QYc859tyOCh4eMiDxDeqo1OcANkwcsfepAJYRAZKpmtBU0VS01RZmd9x6YAZ2A1YBIbS9YGUJgx4yOkUlJJSCzo9CymIUQisH6fgNdumxc40MRSyqQixRxyN47z66K2OrRVQAGB2yqQ+5hxfnBsblhzduqfZaUzHtPVmPYWLKJlNWTZ7l7+NNfvH57u/34+dX3P7ja5W1s4rbrDSEwMJrkwsytd5UWHlPm5kszO2eUqfMMZxNEmjtQK4Wo7qEGVDKgEhAj2BwJ6+gB/790QU/6xVzdOBwYnlrk41Uw7oF66NEO/67DOHzutxxnN/nEO+opDGAGbKQqAD4iiZayef3w4nf3r77+87/4f24ewv/yf/sfvV7nf/mf/6PXd1/m2/TB05/mbWdd2SXpRb1nF5qX9+s//tUv/87TP3TfW+b7G331WRthtXxKf+Nvstmm76zbys0rv2iWcRE23cOrr7/68tPWNxgXbrGUlDdf/8bLbfujP9DVZdjddd3O+5hzNlFgrO11Y7vY7fpSNIZQwUaapmnbpdoOecgQKCURkYpucuf6LCWVtGu9Wy5bdJhzTy5AMcTahROr3EUjNKipr7UWoipZYKAASEZECKimWopqAcmmKn1nRApWEYSZ2URIzaAw1QoYD0gUYtO2zOw4OGJCBDXTYqJY1ExElYjZB1eVgJzFRDMy+RjaSQCbFDJQtJSSawYk4UEVI7KTTgYzgjnwiAyIzchz2kA8JuNKKvhOJ/Ds2jPfHNwfDhTweVLngRgcv3nnPedS4cDIq0fN7SilMGMNzuWcK6zS/iWczOJIAE+Desdew3GHH93n7Od33OdbHzSddt4OMTIDOOj+Ozmfj6XvUWp3zaM51SSODKbHxkNYk1Sg73dffvXisy++3PS5d5Ato1NGB1nM1Ae4isRTcraZSE6pSynXNbExNIm1kyYSEXXddrsrAMqEAJZSCcG1IW7zrmanMrMObipVNRebJ0+eOCQGY0ACDs7HGEE6BnYgpGCSRYE8OwRnsAqBHLMYGySBXdb7rvOM5MAjFcBSUfAcoWcxFZFc2yqZVbcTOYfsnHOq2nVdJbMKNslTSjMhCYFhKaXvk1t6AVtet7/7avv559snly/+1t/8ZLVwT1YMyeJF4xhKv0XT4GPJvfFxx6BpdY7cTo+pbiOBHTmrBamCqMxPM9OiZKAn3ZBOyfTsLj0d2dn7/DWPx2b7yPfHPoTz/GXmQpyfc8RbT3nlY/eEw8kSkBnZEDk2slr1a97I1DrZyu4mlpvy8OrLL/7qd7/55avb3f/mP/yP+p7/1S//Mwwvckkf/eAPia9Tv73rH+53fevC4klkz3ebhz//4suvfvr1Rz/4qT17cv/5l92Xv5XLLXzvk7K4bK6aHu2KnnvnFPyTxSVr+vJXD7q93aXkkBwm3b2+k/vm6dO0+LBxJCK125JVKw346dOnu66AUQy+jQ1g8UR46ULb5NzTECu2VHoCVJGUUpsEmdrYcPShaUVBzJxjGCFha2WkARlCxa+e3jzOQpsESICAhCpgBlJMlFWLSi7ZECqSTkpJi4QQttsH5xyxj7FhF8D52CyJGEFQwLJJEQBALTXJA9ijD8QemBkQiBEUDRTM8p5yWOsqk6kxcy2TEDVCQkQRZfIwybNRfpiZc2QIU3H4fgeOPQawQihVXbJeOLNiJ7oaQAaITGsezxDLsMfo+UDXPiTsseL2LFuZU+8pUU8WMGKt/8VBQ2IARFOAsZa0nklERQGIVfMIy1d/roije7Tho6MmYdloLJ854VB0zSXW3LCeS81TK/OxP88e85vszx/8ETQvo5quGEXvQe3Q/IZYyeCkuzKeLN/RYILzqeQsyXvvvQdCY7e6upb+wYlTKWZiaggWQqAQ0bAN3iF0XZezjgnGsghBVWuHbDJDBPbsnBPrPTgkMBMiiM6H6Ji59R8jIiHX1Rly0wiiwybGSA5MHFgIPgbHjMTeM7cxOEZQzwhN8ITmKZZScspRJUoxxdj4y/Zqk/s+lV22rKhGpRYpmmVRIDCDAiZqUHcEuYrVZWbOORypE5mrkjtL2AZQI4Tt5qFp/N3DDgieXF6t79d/9CdfffLx8oOn/mIZwMVnlw1wURA1qRiaZ9flUSIZYgswYZECVKftaA1ibbJx0LQbAGqnTTM0MaOTGLDt/a6Pumi+Vfr+3sd53fP0nLna+N0d5mcPg33ZzPDF8MP5SNKj95kzOzUFqV/61BeiLt11t18u+1f9y0+/+d1fvnj9xbPnF//qF/+yUHrz9jPt89I/u7vp4sXm7ZvN2+1W+hwEsCURCRx/e3f3z778+b//g++Fqw/4Q9O3rzavv/Sp3z65bpoGuofGQxGCtuXV5feuLq6eXN6+/OLLl2/7tOmltyJYwIq5khWJg5cKg8cMRLFtvPc+ZO9aETBTJBHJRJQsN8sLm2CYRAnRsJARO0PnQxMVqACZIhk7IyM/voapgJUQx8zQgZ3NfXoMgCBqqqBGBmYgqp6dkCoYAgkoGBIxEa2eXHkXrWgIDbmggOxcLhpNBUQFkRwz44i/7kJL3oPziGhqCMAuoFoqknf7JStFcl/IMTMfOmmPaQDx2G07P47OPDqBTrXFcxfCzEQ+cknt5dD8KXDmnLnEqrrB4RaG+YdHBzPg1OuUq4g2ePB7Ecd+B6lCIUpJYITIRKC1LZIWRGTGvT/6RChOX01cpWol9Ws9zIKec4mzvOLdYvjdG/lIj9l/Mz0dCFBngvk4pgsASHPHCE+nner905Dm05n/KKWAWuODY7pfb+8e7h82269v7lerFbOgmuYMCj4E7xoBCEzk2DEDQJLivY9t0/d9XxAQHUDdwshshIAaAy8WCyLKuWfmi8WSGPq+90SqSgi+wpZDIYLgfLNAT+yJGw6LJsTATKCaGrcgA++ZCUwcgTpiA7lb31xfXj27vu526WIRBfGh61+8et22EcXAIAAreQMqKqq62XUEtdkTIUoxICRm10vJOaNBjQGnvldV51wRITc4qB1Wz5c4hww+bZIZPH/2fPOwLcTSl/utff7y9uoCXt7c/+ST6x98cLnwlFR89DrI90fdQmcWa5TBAytAAzh2ZZnZhNkyfFMre0zU1CYUviNPyDtMz6Pz59//a7F65/c8fcqp/jttaRySRCq03zGg/FkP9tE39qi7//zwzv8wNIEbxzYNMPUJtUDvsOvffvX5X/7JNy8+j0ve5vs/+8X/27nl0w8+/tWLX33x+s3zn/Tdna3v++SxbSL3KaEiwOXq6uXd63/56pf/ky/+Abcf6rOPPRR68fnFbl0WSGBc+pJFI118cHVv9JD75dPn0dEHTVw5dmDbJL1SDMvNw10l35zEDBlQREJo6gt0zuVUENm7oKrkPCKqWc4Fh56yhGaegnOcPBKRxUaLAZAnRhNNQJ5HvmqT9CWiWv2ih/3bBwEjY5JIxR1QM7OcCzk2tV4SIjYxmmpKiSIjk8iALguAWFsBmoCpGpIDYERCBiwABcCzC6Ehx1pEuk2WklO/bC+2u7tp9TwHZiZmRKw5K0Nh31iZcMTK5zvCZpIMK8QBsb6T3U/3me6q42GqYwpyff777rJ62gTReiihAfapFcOwv1UgzekZJktVtHZL7PuemWuo0gCGJm61xyBYhXSYY+G++1lwIj7r3uaT044ufMd2Prrt+1gO73jJexNn/5DJ6h1sHRvdbPUkRDSEmr+GJnDCas4+fThBjYk8u7c3b37+85//7suXnaAPUdXIHIMoqg+8Wl2Qa7Z9ZyapS+Q4hKAZxBSVDbnrtjXB3seAA1eSVAA1bTYSQogxRucNRASYOXAHQG0MF4smOK9WGCGEoCV5dosQlzEGx46UHTBF67GUwgDOEMg5RiYw49UnH1qRQNBcNATlftctIn3y0dPbzcYtY1TfF7jfpi5lA2DmRWySFKeuK9nMCiioARoRNU0jufR9b2beuYrgYQBEbKgwgB2JgRKjFYgczdnrm7fLxaphFp/f3G756rKD8unX21LS6qIl8lbyyjua5TnOk5bPLhAiqs1xDrDueAAwGF3ZOHmbca5vj2ZMTcvTPRLWjFeCqlSimSvaVRmfiGMuqo9o+pDu94bCfBwy0xHpcHzjbYcmpgBgRtVsISI1qRlnBFgRB4EqaLcDCgCkYkSKpIgGaGNgbPgHH7Hsx05ShDCeMvBcOHzRwwhplks5fW9mjgyMBEhUBcyrmvSW+4LWhbtr/d7m5h+//PSLl198jgo5LPTlNlz/4Cd/8NMvf/XPYlv+4L/1k+RX37z4Kxdat+k3BX1YRI3kYLu7v1Z98TL90y/+6n/6o4+vgt9QC9//wxuRBiD2u01O7mIVmlhuXiwWC3A+GcXrD/z1hzUVqOk62qxTt4mWBSyXHByJqIgh+6KA6Mlhlzv0QEQFMgdGNCJMuTCBAzPpQU0Big8cfNtc1IQpREUEI2MiMxPI1akMAAaIqIisADUvlqEuIRGRKKgq1SxHAQJnVkzUATuOGEmsoOXAZGSKhI6jD8moqDrPRAS1JD/1MQRSFEOovRB8Y0QWgcxicICkICKAYMoOYuMYXS7OhYkKfGNkEKDp7YE5NO3KEEQKUfWkso3dtABg7lBU6wkCkSdTgAJW1LqsCUSRDLWWoFdTjgCJkVDJzNQKcoaaJE/OUUWus4puCFAL4G0MKqMN5bwDydFAe7LfPgMmtc20VZv24JGqDQO184RnM/40CC0iAlDAiuTFMKRZkWt9v+mQnPNxs7knolx2qc/et2ZiVdMHJUIiZuKsPbMH8pVjiFgNjzG7qjLT3s6EoVHF6Peda9M4xurqlzRUYZ6vephY01xVqp8np+W0i+ufdLC+s+cevM89Q5CTMsWBhcKQ6YcV9ai2Z0fW6XyzeQMGplhKIgbnSKQmsRMAFAigXev008/+8he//qu7nWV23LYP243ncNEuNaD3cSjUSdSXtXNB1bIkNPI+lJK0JCxFxIwIg3fegyMAbwAOXQiB0NAEAR16EDVTbpct+4DYkGuj8863kVFlFS4AFAGIes8uuBpusNAyUZjgWWbvWQpCKSWEcHmxisGXUhDx7mJ5e7t+2OwK8ZPLmKy9fdje3K0zLcyzEiyWF4y71ul225mqU93tdkmKc+ScEyuIGBpfUn5Y766ulqJQSglxUaxTVS8JgPssLvrtbrOITSmFEH3Ou83u4gK+uZX/+k9/+9//d//ex6sAmzeFlwCA4Ebi12qGm9J8WY9IBQBUyn7RFYim9cWhcRYeAJSSKQ3t7dHMDqAoYeaCRhziT7bXnY+J+92K5JGyWdWEb9Xfp5sf/fvYQVQrnffDrq/mfPXuO0d7+qwjkKz5XoVzc0dEqRqxGUJF2gMDUnKSbi/Sx7dvN3n9G331RzclrRft5fp+neGjD42xv1r87Kff/+TG5X/xV38W2EnRLpXaKzNL2j1scuoRodPyz178+me/+uTv/fhvpLbZUYlbwJx7KYLojEQUTZwokrkBOQCruoBEwK6QAxWRJNXRXIZ1HgLBMMDrE1WXFQAqEVnJVJvoMQIAkWNyyBXcVw0UUGlwGu5JFhEHyTF1ijx8eTbgGyAYIHA1IJDIjBAdAiCyWBFhVVUtFU4WgVu2UgSKmpmoqhqyGCHF4A0JGYkcexcDOSYiKf0g6Z0L3qN3hSF1tttua/umeqgAepTRTysi7A7UYT30TM6JB09yqciGelichIjuMRrBZH4TG92t+zdzSmHvfRwqwSM01SPOrUnifqebH+04ZmZWGyc110qrICci3O8erBHletbRgBHPC9TpINhHuHH0ObxjtGd390zbOOBmc2Z4ev50HFnqR6fVTHsYLaHTwR1dOKKJWc5iI+iKFDMTlXRzc79aXv7kxz/77MvXX7293a3vo4d40Tjn2BEiqoLkhGgxtqWoVcBFgd1uIyKGEGMUkSJSk43RcQ0qL4IP0ZEBqDlGT9y0bdM0zrmI6BUW0UfvnIdlcGy8XDQAgGgMiGQEaKYE4NnPN7jtt4lW4LwqrmoOs5m10dtq6TgUgaQYkIhWTeCbh25Tuk7KdrNmIDRyjrIKAzdNgyWLSClaOw6pavCeKG02Ox8CIpZSovdAmPJGVbSAUjEz9crMwJx2vWds4tIobbbpz//ir/jHH358sTCZCT5TGPxqf12f7rD1DqAoFaBMACxHFvBo3tHk2j5DN5NeOffqPDaCo5sckfvZC/dc4z0cbmZm+38O2Nmc7nHcbfDIpprmNVffvnWQR7eyQfwYmaEpiKiZARV0S/wRxJtm84sv/uIfrXfw5MNFawlvfgZXv1u6RX9/28SHl2++/mZtS77cdhvnF8xFTIullKXLiZ1bxdXbfvPzV1/88y9+9eNnHyybKyNwkZC465QZnfMGrAIiwii1bpWZ0LCYISCzBw6pZDM0ATGpkToEZnAACOTMZGCXw8oqwuAEBYDaVZ6IiZwhgilVATykMxOaAFDVQ3DsMjYLlQ1EXjkOAiNXekNU0QHymAedashpD0QkkksBNKsZUQ4U1EwVVMgq0pJZyZ116CLH4ELjYsMhGmKpEIkoYgaqWYRUsogqqHMe4rSITOScA4TauqikzDGOQmIfuj1a/Tn7tsHFJCMtKY5JRFirYit4zojvNBd+VUTWh42QlfMtNng2p9Omax8XqwDftoPOX3Xw5ykf0PkJo/Rl5/YAVoiI6GpJHgA4Gr6a7oDoGMlmAvLw6XVexw+eqnzMrGp2+7PPT2cv4yezfsYP9kbCkTw+ehVnpe9ZI+T0qkG/HJj7IwMFJaJKKlbdm0ZmZbkI7WLxJ3/8R19++WLRXD+5tFdvthhMLS9CdMTeOSnKaFl6QgDk6hCsAOMiolYA0IyKiMjokwAAETF72O5ijMH56JnQIQiUDIVXMbSOA9CqCSFQ8LRqvQPLQ39f8sRIQGPgz05i4ZPiVRG4qkyZksKgFIyhcT4V3aaSRCPTMrY5bRYL9yysbu83JcPDQ8fkilnKGYAYuJiqKhkimpoKutVqlXOWUsSK975t2q7r3KKBIqoZi5lCpoRM5J1sjRnTLoNHYPr8y90nF5tnyw9MOiZfLdXZMh2YvzDbaI/tuAqMg4hHPcT2bwZETWGEQD5IwlI9cAXb4YPhcCOe1RlPB3Q4uPnnWZxjZhm/W5bvrzp0B5nZOxjNAZ/SM8M+3XsH7+Ek7DcfwNGD1AirB0OKaTEgAUNkvt7c/fqr3/2L//2Cn1z9G3/3/v7uB6v/7j/99P8c72JEvu/uX379y7//9/7NH5cP/pt/9ekbjg8dOufNStYsZuwdAu96cUL36/KPX/z6+qMP/gfws6vLi4cG1QxjZDUGj8CFAQRUs49RBCp4J4qqIRGZc5gDUQYgFSFQGkp1jajWMEx2f31vQ2UbT0yf2YCLgpk6qnIXzLSmQMApqzIaOeAobCocvGJ1XCMiExkjgaKaQRmySJHVRhBarBUH4BCJSHMxAwRix4ikZgBkyBiiX7ShvXCLJYcFeC8KUjLstlhTgUxKyqbFRJCJ26jdfsAEjGiCGoDNNKUUIU4SQpEeIzMEriDJU8CSAMAExiYLU0E6jm7To+OI0uq5CjWZqV49FxXfbh5POuhMDJzhHY/p2fPPFYURB39YBaU9VlVHx8kg0sY7EOIQVGOoAR3DmlNeO6qSASoSHQ2ADxv8zZz+0yY9yDl7rAkR4vw+e3E9mM0zyTwpUOdvdBSZnu5/7kwckw0Vj9f0UVZJZqpEY92aESAQUSndL37xxctXb6TAbz77shdqQ/v1q7sPP14umrb2SDAQQtWSkDn3VoVcTr1o8YHNKOUcQmDnqtYrIkUSCTLzh9dPgnPB8cVysVosmYBMvXOObBHcwrnLRQyRmbT1RCqR49DUS01V1bKZkYELzSR069pXPRNnqjyO3Rdyzo4xBofAYrbr0i6XJCVlgSfLbSkbyeoJQlz69n7X9+veMaqYgQV2RqY4hF1yzm3btm272200A6jlPpmoX7baZy+KomCmWRTNGyP7nNM6966hsPQE/de3u4+e27UfelQQQw03jWztEcL6lgU9k5o3HqpqiGxgB+0IT6hoL+K+ZQiPDMsOZSSc7PxvvfB9DiJS27OAyXQ7e+ejwRx9gENlHL6LD+pQpZjxJjA0U9RX69f+xX/5bKHh6X+wy+n6yVd9Q3n3uohjuunub/7eH/6P/+1/+7/3j//Ff7WID+vsP7r44M3N6zcPt12fjdBxJHKagBUaTJ++ePNfxD9ZAP+33U89xkIGSCZqWZjZcxj0RIWCioJqVvcLIhs7Co0rGXFrQ5y7QmGPburZBKcp115giITkazjQho7GB16HiSlWZGHUymeHSsgazR/PpkkrQqwRER08GUAjJsdgSAEocC3KsdqDti9WXdcVypKQqus7PL1yIWBolJ05ZOcRAR1ChziWwyhahfwmgKRpngGsuaDLLtaGT5L6nmyp8/6vjxxz0WhVvJhW/HFQw9oAHcdaK0C1Ib3LRtDn2u5+RocD5tTQ1u0Rhe/I9JtueJZ0K2t/x/hnnydipvklQ6gWcXBgzI7KfJmwKkaTOkvIhIPzoHpOiGicqBI4nJIFZodNtUeHArh6sY9bSiAcZSMfDdhmad7j3nRwwgTOMp9B9xqNkzkbOcup5icwVJDv91GYtHblq92KzIpj5x2/ePHFn//8533Ji/bqbv3q7e2mKEQHq8XSOZe7HoZUCoLBpuXR8XfgpRBVZubgS0lFEgGu2uZitXqybAGAwAiQTT1ScK6JMTa0CqFlWrXeOVQrRIpgvrb1BFBQAlWlmj1QqwQnAVxtX1W12buatDQAYAURQUBD5Oi9w1RgC6W5unpI6Zu7NSD2KTV+EYhXTbNLu+2u77pelIpqlqKGxqAK6/V6sWi89865Uspm011cLHIp1coENWZQG9CyarqWAqTeMpa2pa9fbX7wYf/8o6iqBmJGlW2BkZpMzpL5yzy77maGSHNPwHimnm660UM2s4CnF3eWOobv7Zhk59cefX96t/cxc6cLcfTbnLKSI6Z/frSPE/xjSiicTApmInk+eBuTX+ZXDf9aweq0JSYwMoWSTTJ+/dsQfvDsw//551//17988eLHf/s//PS3/5cL973nP35e+vu/87f+7pMPvvfP/ui/evnNV01YPnt+XXo0ldIXICRqAJ0pIeqb210TGrrtPvvVl/9JDA+5/7c+/MHFB9fmDNFIhRTAYTGyPuPQnVIRaNyUCC46crnvAdksKxhpbZslZg73XlacbxgzBCRERnbjTEHNpmo4rB4OrMy3BpJ5uBBq8QYgTq2rRjQtIkCGIQaGZjXJSJGovuQRCcPIGAb0DgAjdg6V6qoYDhD/QGzM4AM4b0RAiAxioKqeuZSKu26MhIimmkpRLeT25lOxwuYCAYEvICmlKqdHZla7sZ7VL0c6nJp5qJnMmgyS4pChj0N2DugoNoZ8Q6wxZuSqTKpVX0o9e5Rzj5AxnnhlzsoSs+MP819PxPBg/gIMUcnJmX564XRUQpu8a9P3xMBoRFU1QxpQWgaz+Hiokw0xsPvxL9t/OTsZHknDGszk8aL6uToGhvYJ8zshHov2SRcZp3xYr4VnXzIA1ET+EZ6wXl+1uMc5X43LICKAMtcGHPrbr77sQLqct/kBQki6yRl+8pOn3ntVBVRAJPKGAOS0iHNUShp1I0s5qwAy1foCIyOixaJxxIsQPVMNmnp2TGBayFxg38a4bHnhXABjrn0HgNgDlLkiguydw6HHQykTScxN4dNXNHAVICtFtO4vbBwzAYGVpMv2oo3NLpVXr2763IHasm12IZD2li2DWs2ORkUCz67rcilJFWKMbYj9NmsuighqTFjAGLFyuaKZHJORZctmVIC4edht36x39PESoNQNZzaY7KaPmp8TB5hUzxnBzA89/XL6U7WcKUOa5N/eTwSjHnr4mOnkR2nq8ObzP4+k2tHEjv59981rU1WcfQNmuG9qtP8ez7ygR5MpTgc2v+SxWddSGAAUZDAlydpvpH/4IJXXm+6rX/+fmFEa+PS3/2hR3vqLfzdeN9+/+rs3b776s7/8J19+8/LJ6keffPiTP/36ze9+81fbPgG4trkCcimX+/v1Zt0/dJAUWAEf4Fe/+hTv7vFn25+W7188vWrRGUBJiI1j743UVIHHiTORoYgQMYeo2wdgZzIYKQZSG4aZClE1Dg6MBiQ2YgA2RANCE9WCpmYkgNU1SwAABMiAXBsS7Dny/m2R2SDeq5CuwU6rEVZCAiQjGwAxBr0V1AwUkQEMjQCAat8pm5bCExFyHVvN0DAH6ABRpeRsoiZaBTDi4IjTIsEfrLv3zKTOCnBAtZz7s2RwjiwJAHRMNhur0QTJEIdkRjC1mjE4wWvYwZ1xsDjBCEFxTO+f/zrR4buUyDlreOy0d1z+ji9xlJaT1TXJ1xoDxv2GMrCh9qxGDSfvFBEBITMTDa7a0xeL52QbwEG29OHPj1jAaJP5OwmIiXu9/9wnTLSjtzEP283Pr2OrXZ54wuV5PLHOxuoX1YIISNr1u7u7m2/evH799q2hZ+ZN36GDjz9aAmaipWoh59QMVXMSplAw1UUvkhVMB9AbBnMxcpEkBuzQO+8RtOQuJ79cUAw+cMO8iCEGH6P3jAHAG5AJKZIRsmd2ZuTYH8hXgNrbYc5+RfbZhchDVnld/elaZlbnqCLnIxJRoBBCKLvclXwR6WKxuGr8/f3m5e3N/e5Vu1hBy6RhmxSTmlEyE1ADubgMItI9CEPi2DpHqReKruaR5pSA0BTQQJO6y0CEpWQ1YOdT0Yhw/7AtpdTgSPVhVduXTiIjsyU+COKcFSJTAsThsa8IN5vVAR9tA2Y23P8Jk2A7ZwGfG9+jdAbn+NecWezl7jkLeH/O+IFmvRTrDp8PEmcwlnPL9VQvOzuLIzt4//STjTfOMBO4bGhAZiglSbcpm9ue17tP/w8XgXbP/r3yq39686uvfvq3PtjaLxbh3/vyxV++efn6izdwcfmzm9svf/niL351H0JKIUSipstarBBRYH+v/YVbZsnbIE9bd7mV+9u7P9+8tK/tB9o/ay5do5YKRx9CGECbR4uNmUG1mCEResfskQiYaooVEoEhUXUqC9HUQktVUVV98ASMTABUMZapRnJr1pQRmCkAIldTqTImIpoilzDdDmuW+LSOpqpErkYWCRC1KgNgZkxeragOmMqgVuHsNRWzWjsBZgyW0RDMWZEEvXYpG/rYtcsLANCcSkpoQERYYX3UHDE1nqzLskdqZe8cYkl9aJcAAKKDB9EeJdfZn5NwHD3DemaX7i0qIEOd3xknmAsckTeIK+7UJOeONsO7Nsi+RnXYdHZ4wulV73fo6OHYb4oxD+soFxJxSNHyVV7jaDpXNaUWoc0Hc7TLTp9dPdMjNcxl8PnpDPM/iuAespqzj3v3n9M3j35/eAKeQDQcHaWUivFUK6pVZX1/8/kXnxm7bPDq9cNimchHQbi8Wl1cNt0WVY2ZU0pi2uUcm8hGRTbEiIqp78HQhwUipywpJXbonUOynDMxLRery0WLBDFEZiQi51yM0ROqloiNA3M14ESsYBU+tuJVmRkRV62qjl9KjwCqBqaAOjXpQqCqWwzUa0P2ZV+yiRCiKVaBTegZODSmXQ7sAPnJqlkEW13yLpfP32yai2UMerct1Gfs2VIvOalKCCHnHAIg4mazQaDgfRnrdIsBIbha3Q8iID44yJp7McWbm93zK9j2fUqp+gGwFunCUCZ5qmC9+8BR3TriD9PnSdM6EMD1pKlIlpjVDEYUiRqhQcBahAczwrVzInl69pFhXbMih0GMP0ANDNpoDtD+Wpt5MxxP2tPg+VEwQyAx57FXAXOGpIbOs5qQDXeqNZA4JGOMgcaTPf/Y+zp72MhuqeIsqhlIda96u9jKAzehvc0J3663f/VxDpuri92f/CetAf/wfycXb37zn5b7Hlf9N3Hxs6d++TJ89NXDm3W/7e7dzTrcbnlhCWMUFw29gZV+V7Zl2/fG4LDXopzgLhd63n60WHS3m/Xy4r57AFey9pFie6chS4xRcIdNSxwAsGRBxIVjhKT99uXtS8BCRGIOTc2QwKQkczCKzsk0ESIz4AFOQaWGdogdsPNKA/72YJrUP8cQXzFEhUFyDJk4hISMCGw40DehMwMDdOzQIJWEhsxetRihZUQkj1G0JMmIyt5lTQ0yAq27bfGuicGVnnc7EutMOi2WS0qyNQDHFh1zdM4hM9EAZUcGVkQ91dhbPeLlh+vXn10v2VzSPjfhou8zL13WtAwrS1JOfEojVWZEHOO1hYCIMjuQPdUCMBuAGJkhVcaEDitiFCISKYghGxAZiAkDGZSjdMopNDrKYw+oaGImUF3yCmZ7l2xtK1SvlbrMA6kj7TM2AYFMDRDGpHSYCh0BEIAUFammszoDTKJErlamGWgpmREbxpzT6Kyu8rGOUtAcW2VvBQypNjJWcTy4W4732Kxr0MHedAiTF+WgzOGMLw0AxLS28cUxQxVgiFrQ8BoBYAAnr5/GxT1S0Pf/TuOa/j1kfWZm3ntDMCCttUgDF9UpNjZOauwfrNWUNXIh9ztPoEUcUhtaLXa94t02JUnPn4SLxTJi0yx1s93u+oTsQNV76vsbRESIfdebgXdN3/fr9QMRsA+kOacKt+49+cvF9XUTJO1Szs1Km9Wi9egxeYRl0wTPjSdmdo7IMw1QDUqsCFyNHoCahzVWnbEzM0I2JENitNGXMxKqWfU/AQAhkY0l9SSOyExUipkBUfBcVBBMi7StZ7aWcfm9T7bbh/Xu/nkDt52+fJA3WyN2/Y5MUvQmBGmrktCRGRZlQERNeUGkRbMBRaKFp5R3mKm5Knmt/W4FmLbhdZY+ba6ffNR1HYAxu9T1IbCqPhbaGLfOgdtGtZzooMcETGBWNX4zMHs0CWtGeY9iV7zXteOHucw2O9Pf9N33wdk87SB5R/dSuh61IuaR25+VvmfHfPTnkTJx1uwAgOh3KQLDrRC2aK79kVt+4D77z7rXd6s/+Hc++Pjj/+K//I8fCvzgbz55eJsLLD/7+uVXr168Wq8RY1ZMCk27QiiEzSbpLpWcIWdJJRuADx46A1TPSJ6C8845BOi7tO36GH0RkdLtNG92u7ZtvXcNqqUtOs8hItpmvX7z8sXt25dPP/z+fDnqiiAaEs8buA4vtLr6VXlki3ucxgHcWUyrf7J2apMhXcaqYEVABNrbwky+YrchIhgBGjNLLlI7D0ohqj4rl3OuTRB0QGx3BlJK8hS6bcdggZiQpUslQWTfffmSF7HxHtSgExAtkApIaaMEH0JAH8k7ZAJkQyhdrohO9bhoFzm2VjooWocXYyxgMbCq4iHlnCptqgqgPAgu0ndWo1dm/Z02wmP3mckhHFOtzpvFc4fElDH3nazh+ebF2QGD58zD4Nio51RNjnGymBHxxE11OgabwefOf8H3Dk7VY2oOMb8WAGzE25nWcfz+ux2n7GIa3t5XPqzL/qfT+4QQzKCU4kCJ0ESk70rf9T1Iyn0xALi6ap4/ed40Tb/rpOTtdpdFwfm6NwHZsTMgGbFbXQwNqaqKqhUzhqZpLi+unXkoueu2TaSn10+aEC6W7SKGyOAq+vPI5I6tFODR9bCf8eE8xtDSyKIF985nNZlPfbzP/N+Bze5DFWY1cZqEGSM786kD5wsF4Nxm2TF0SXoTZvbg1QqIDhaSaE0Sq344qMDjAATgiIL3LMmBU1SwYiPeNYz+wmnM37ruczG817bfY1vhvAzp4C0+nor12E3PEtbp1prGd9CtHg7SEx57+sFWOeryZqM6i6OH/XgYx7zyaFSPzWuKW8DsFVcaRIDalQxQ2aA6xnLfaYgBtrxcrMRtNrwRli//X05W3dP/zv3DP/E3+Q/+zT/4+ksI/Wbt3nz6uxdv1ze9lqvLpy5zFvRxmUvH6It2uz5nGYr02Qf2se8eVAHJiKeRcE6pAAqROUJgzZi0QO4z5N3brXPBeQ8Au93u7vb1w93bfre9fPrRUAcyOAUEamrSMG8FYDMj0AFORBCJam7qvKTXrKYOWq07QOQa/ANVMyOTqjJX7gOEaA4MDQ2AsGLEDHvaiJGMkayYASqqqRVEIyQzKJoJ0TkUsZx7R85URQoyM1oRzVlBnb+84OCBSfquMDhi79l7RhUDI1HkbArkInlicnhgR0HrwjI0addZTmDGzM6FlHc+xlIK40G1yyFDrzrKECJHdEABeExGq3rGSITzpF+rOsrvq+ROlPn7Xf6dRW9VGmb+7Op8HkLCNDfW6y6joWplEtS1DQ/veTyc25KPKdATszs7hVPed3T+7GRDhAmiGbFCBp5nrO94J6d8D/de/4NzzoxkdmHlMdUPbEVT1/XdVnNnhZvoiSQlqVqvlFxBaQDNTExZFERRFZWo63alFCA2s1IqUiCWkleLJaINOBiQ0bIP/vnTq+vVEkE9QyDzzAwWEKMPgxAePYj1IKrNuw0AjtLOB4AaqmmGXA1fqPnVg74FxkCjAwltbNtakyLG6rIDZciMADwzI5IpR2L2xEZEwOw43O/6jujNZpc7UET25Pze1V/vNtRB1T7johXU3EpGNGYwBZFMtZpm39Fhn3yKcIa6bCz3mKhlvr524hU+S0KVKo77Af/eO3m6fHqDcyX3sUOPZDAAnNta7xgVERkwkZI5mGnZj48QpuHB4zt5Ok5PGE8bWQwZwhQy1WJxaUvWFToVAIfd29/+0frLXyyefXz94U93f/Yn//Df+F+tH/7V26/vO86/+vzWZRVQQ9j0yRMzR+cIsu36PidRBTMgYufAiGsusxkMIGiawcwxE7ou5V2Xto1bxsa1jSOvZrvcoShzQnI5dev1unu4C0RPr68lJ2auYMNVOg7RyIHDAkHNIKiakqIN4Gkwgp3O3sYh2agBmKmRVUOs1Go3GkFJzcwEjBSRASckLCVAdoRqgqhFBM1UoEIPogGqArCCaQITqxWypqXvrTgKCzQSVWBv1XXGC3IupUygCBCxRuUBFMy44ssiMcd2nmpB5LyPuWPI2QVsFq0hgZEVMwN0ZHK86+YslQgJDQGBHDrPfmnAyIRIOnaYx3e6lI6IsFrJ7ykl/5r79+wAzu7iIxYzplkxso5mxIl7ALHmo1X7CgAQDUcgjtPnftcxzxn3/NCpQdVs8PUagFGBHsz6c3L03JQfe/rBhXZsBpwdrY11JaUUZvaeCbAvZfNwbzmt2ubh69emuW2a1cL72HjvRQQJ2KFXTqqllCxQk+9LAQAITSRyOUmfe0NiIkRMWZarSIS537Brlo1ftJ6dofVkgMBawEDZsXcusiOcUE5tGvXhNKaOyIcTZ5z8j4hoQ0cOqIB6QDQERFSH8kIgQzFD1UJjb8Gh1mGu5FFmQEY2YyJyzhz2zkr2EXFpaNssvQmwEtWtDpOPDWsZOxMDo6JJUStWRN3gSl5E8N7DYHlPS2P1VR8t3HzKZ6lioue5SH6MAI6hKM+SyygZ32tvnyf3R36FugLfxjiqtvjIOWfF/JnstXfv88e+nzbwOcY05ToCorGagSaXLozvH0jx7ZrgKt/Ap//pDlc//Bv/s/72Ly7d6s/Wv3nx9fZ3v/2stKubrny8XPpAu92u6zO4oCJaBNW2qRRAYl+TZsm5rJaSMDui5IiBqjmmROCdy1l2qV/0HL0LHsixmQmKC4tSipRS1JyP7eISLBu6WjZQu6rDQChSUysMhKwWodZkhFpthNXGQzTD2cYjrKC2sC8GqbHe6nYwMkAVYAdmqDao0CYgZGSAzDyw4wpfXHLu0w6k+MDMlEFFTLUAomnJUlSLQyjpPpdetWQVs+KQgYMP6IGsL6zexyCNT5RQLTi/zTsiRzHEdgHem/fqPXmHJcvO9mUuhBRaCm3ZrpvVVXPRWsWgF3GOa4ngnAb2mq8SMQEQgQGYGjF69BHYzWA4K29RQPcOcq+sblIW330Mt4Wq3Lyv9J0r7Gcp/5Taj0xS55yVPP062Q02IagPP02x6rlrbhoDDKHcE5cy4pktDOfYGZxoQkc/nc7o4FkVV/9IMB/Ofe4AOzuq02PcVjgZukey6khjqBlYZtalnaSUu57RXS4vr1ebbrct3a65bJftIsaQUiKCLAaEqrrrBdCF0JhiSsnHBoHNsJhpTS6ozbgN0MBKLqUQu0VsFsE5kNLJIjZtYM8cHccQHIJKds7joW+l1tBN2VVzjw7AVFc/SimAygccUUXjQkUiIgZVBYNR661I48O7VS1DmpHuo2OVkrxTQyAFgBACNIoESJK7Ao5X7OnVww52CT2JiGSYNBszU1UFc46RyAhAwaQQGhEUgODwesne+3F99wQ5Wbqnx6lLY7/u70kedd0fO8MO4Gy+8/GOa0/HXdM8HttCp3rH0TiPYsC1AObovc3Z2WM6y7unczTyCluMVZs3RVMDARXEu273ts+LpuU+6cPLz8Pu5R/8g//Fk2f/o5tv/vOb3b+8tW59m3bp+s3uITyBt/c9BiqlNMF78jlLhqJMu1wKRh32cE2LQlAZk/vAM/rACKo5gRTEpoIEqWoufbXlQmiQGsSMAAxQk1dz6btcGlW1whUunACsvnwBcKNqUfElRU3RpPqTjAmMTUt1oxoBoQMQI1fbvNSkRzAiMlADGDQn00LkTJVAKmyCggIwUU3ZcjY0aVAiYGZFI0IkgtrviJBADcxEQMUAcne/y1ld4NiiQhZFEB/Ix6WIkHe8WromeCSH1LrAD3cIgOTIBWQy791iEZpGS9revIKHYaFzKkwuxMXD/av2qqXoClj0PuWCjooWogM+DhPREiKiqxjAgGYoyMBh9GXRhGSJiGhaAcBgRpP23rv39zimO5/Fsj465+jL6fv5B2Yuo9yFkc3BTKjg/pKjVjDzAegEu3by9Mf3+yOjPctA5jc/FfPjSXrkUD3VP94hg8960fCc+fsORQEGs1BNIcbIIWDnFErbBCuQEuCV1bK7mmdARKRE6KYkRwErpeRec96WbEmKIXjPqppKWbUrQCWA2IRldJGpcRydWzrfxiZ4ZkBCcAg8iEYDgBoh2C8nHHmecf9iayCJ3IxdEwAweaJcCgIADZ3HzWqVzf49kGEt1vBi5ci/Mu4vrkzMESABKa4CWXQp71rnrmJTMqBah7oFKpqHgl4DkaGxkKoCVlws4Nq5mxGAPMr1Mjrnqq1VbT06WfEDbftxYngfdXb+5WEW9O+dbfXdBXZ1MsxDjkcaL47+mfmdbSzuPo4BjxkfU9OYx547/fQ+Bv3RfeaXEBHg0PG0/mQlg1kkV7D3Fz4sGv7m5esvPt0a/DSEX/zV//Fan1r8MXSftu3mvt11b+2rP4PLq0IRmsa50G4zmiGGdpe7TlUtFwtAhAVFpFS/rYIKFBAPFEIgwlx6NUEVlSyZUw8mpp68gnPOqBAReZ9MVZIyEjggYqwggDY0SJtM2NogfVDha3feomaAAmMJm412wiCEwRB17C1tpgiKFSULJrgkAwVBQDWsablAVVBVdCsxEDQwInTsApuYoWXNZIiMqii11SCYSE5dr32H5P3iguMFZtQuiZaU0g62IQTfRFwu4GLJPoBiX2wR2YpIVlVNJYtIZPKe2Uea48GJevIZuFmGDz56KmxqhUcrTrTQIXrrbBOOekt1ZJEnjkAegYyYThg6TNio8KhEec/DziZhHcYgz36GGXN5XDDsb4s47DoYmez8kkkVnj9iL3LwQHaayXyrnjLcUzX9eDzz586+PxaHM2fmNDYi0mHvjk83RaT34QlHx6n0HS3pk9Ge0sDsWpERgN25tm0W213pk0pCECZYLeDp1TWwAyQzERFmb1aIyPtQxHZd6rqu73PqJSUpCkToAhM5cuzJwITMLi+Wzy4WSx8b56JDMr1cXdZAUU3/NjMAowqJOS434j6oN/dMDMZ1nTUAEE+hU4Wx/BcJMRC6oYmyCqgDKqRoQ+vGutwD9oXKUFVstXhJzQDMTGrrMMDq+VPTwLBq3X2yLNgCXTpvoQHo+mLmiMdE4zoJJTAAFUEXCBMKUCVe0dDy09WCmQdRbWZmREPZN8J+j5+hrpN1n59z9qoj9eK9sqDx/cTVfKBHo/w9KPuxwRy9AiSq5dNEI588sS3m2vTZ8bxDQ5nXbMHxSx99NGZqBVRRhMpCFpGZ3zx0q9ffrF98+hcPd7/5v/7HP/jJYnn1H/j2737/6uv/xx9tHuL9+m0k494KCTGE213pHrardrFwyzf3D4ZYBBSNgQG07/tdLkAUKAJkkeqLcd47QmVGrmLThAA9O8+O0ZmiYiEkBCM0ZiRiJS1lgAK3gbxnpQJDXdARnKfWHxARQGDGOg0BdJZUZBW22LIKam0JO4PTIpSSiRwSASBgbfCuZuacyzlL6kxURAiUCVUVtdY8aM4ZpJBZSml9f7soEq6uwvUzhQU5JF92D3e7bXdpy9aQUVJ5sIzttW98ZIMt7MiRJzJR7bTk1D2ISgaKZbtH22h9MNH7rlw/vXz2vedvVQBRRDwjEDDhSfe5Q8o0Q2JmAufJe3bBTgBh9vSDx8Hgx2Twebtt/Gk84fA+7+e+PpV/7xjG/hLEiqw0z1up2vC0U6bnjzX68++GX4Zey7NHn3362d36mAw+HfBcV5gKUkeRslfr7fGo7TtuPn8DR2Me5fvBsB8zgtkhIQNgFjFA9q5ZrBzBv/Xhc+/+7O3dhpEedrsxi0pK4ZRyFkVEVdtsNtttVwpowVLqPJ2ZiQgpMnPbxNbTso2MpEVibK8vFo4NjFQyIsTog2cCGw3BYUHn64KIhJPreFx3YEQsMCAxIPCQNgkAgEXEIXrvAWtnCK1aBhWzgTa4UkJV8esEQSemNMJ6kEMAh0wgWqE/gvdMTxg391qSdqSNK5uMqkVMI/v90jDxgA5rsY2aOgQSqT3PsPH+erUkolEA7/dUpZpTgsTJL/CYanv45SN3AJhbwDqWIwKAodKY8Kmq++SRI121apfDeQfwVXtCHMyD4Zzp9PmIbKwbRUSzPfAfIu8bnRKqmo1Gc+32BwaKouoAUTAhFabY2Q45ERSDjIOMrN1nUczo3F61w+Low8nOPIcw6FMAsAVY8s6lZRHO8S4DIkSHb4nudpufXSw2H7z5Jy8+/fPP7teff938/M+6n3318L/+99/o66tffr3K7svXvwT3tI/9JdIDFHh4u/MNuYDrsu7W6uhKLQNpJzlZRmJjx71Ytr5sDD35YJT77p7ck+XqWhXMFMipuiTmQBkFrBA4Z4AmBkZgoGYlgVlANssiWJsPukncIgooACiCmiIyoTMgUzGVCqZgWJv51t2tzhEggNT+pfUmqircdwBgQMRUjWNVQDMPZGoiUnOumI3EACUbWjaU7Axc7dRgxK6F1OeuB8sNSp83D3c3fbf1BvTJz0K7IvBaBNhxaIKDfA/bdHe/exu62C6i3MntLzeSC6i6EFaXV4vLK4wBatGyQEpr0NzO2hHuqG9QGtanf//v3XSFiTwbgBUUk9oLtxIkKQLZnmbIowoAAlHM3EC4RrfKgsE3lYQI0JABVE0VBJTQqKo86MhMs4qCecYEWsCqgVg9FISVVdkAkjdYHnWHVouhcrGhzlVNmHnqDAgGg/1RN/pwkOLe/ataPcpQGRCPiaAz2U/DVgIAQMcxYcfOb3ZrQQDCNjTbtDOsgeGKGko18FdZNREjMigjAjAPgGsKcx1lcIztecgZpnbKZBBx8kXhPEYAAIpmgFPdXHWs7pskVLiuPbwWwmO+6H3H5emlTQfM/BA16Uml5ofipOCq7gtdBpoBgDFJuKq3ZsZIuaTF5RXHZrPZvH35xU9+9IOnD9tXr28Cl5yzFEWmzfatWSsFdqnrrRcu3DiCBot2XZdFKZSmCTGGtmkaHxZeiMGzW7StA839pluXp5cXhJ337B3VzhE1lw5AU5GaWDfMFBBMAEZwpJpAZ2pGsG8zwoZoXE8mA0FVcmBIRQnMIRu7WKTPuWfvoBZZmJpl06JSQBXJm6lCMTCsODbsEBG1R0QQtSHn2yq9P2naaL3Jxti6G71sLvrkUfr1ehNDdMjEBKiihT2oFV92W3XZUkv2sIHL55c/+NmT1dDWwiQnYgSzlHs2CuyU91RYVw0H5cAAaJCYTGMC6yx4PBJGrWE5R1Fg837ABo9q2e9zPCbqT87512kQnx3D6ZePzf/oy0n6TseRYTH7Ep24HrCHTNhx6n1pzFBcX0rjcU27+83d+vb+5Zv1/foBAeFP/li/9+TP/9aP/kan623fOcLUm6QeUb13AFYyKJr3ntmLgogJQK1pVjERyVo7EQAhA0/2KyAiEUzIU5O5SURMQ6h6PI2Q2QYjVefT2c+djidceSeM5GGDOgNQ7RcdzR01wwF7DwCmrsBmZiamUPWvVHsbsiNABrGiWbKIcBNQhxYwYGYmorn0RqxF+5x2lrs+7bIoL1Zt20KIzDx0tgeu0IYuBHf7OhKxpbK9u3+42z1sSu5FZKduuboMyyWFeHF59fT5M+dc13Vl0SQtkyIaCB82m49++qMYIwDgHhYGAfYeMzOjfQVLdcEJIiI59AFDA6F1ceFCCyN0djVcYNThzCaVbmy5jTinVTObi5/xQZUZfvs+Pd5iVrGFbdQpD7yy77Ygj4kB0Qbcf0NE51wuGQCKqYgwkw35BISIDqk6Or7rlp9e2ukYzn5PE2M5CnIferzmu2Z61PxPPQ9edjD+d7+0s6rDtJoHczGDWZrn2KATVLWUUkohoqdPn/c5wcPOzEopIpalpF1Bu+jTQ5ZdiMvAHzKVrT4I9p6WAsVSMtNSMjsw80TQdV27iCay2TysvL9cNMumqcU5jpkIHRISDDVjAFNp2UThUI0XGlJ2hrlUyF9kMyFirKVoRkhgYAg24OxxbTSiiObJMyOVOtma0lnR5qAWCRERGNWUAjOr2SEjMND+tVc2kdUAyHvvc4nB98mawKkQIpSSFRBUEY0ItRgYpVIU0DnHULw3AHMEjnhQsKhyO6q4KDA24aCZdBuzQIYT8NBrcipu3w2ndcYFjTPn2JxwH7vFYycMhD6H0zzZBvtrz3mZpq3yrbt3evqeXI5/PdhI8/PPTuFb9Qm2LmsjLjq95W7DnSqGbObChUsot5+9+uovvn778Pq+POw6Jr7r5I///MunT3+UYQHUXl3xV69vd9s+OGD2alhyIjWk4NRyql0UAIBUxVTnL0AMyayoiKpoIVBEDo6CI+fcgDygJpARkXBfx0xEtboX1Go216ibz9rc4h40rnKNun+mHjtTzLKmPg9+HhssAAOgygPZTSaXmYENcI+GbIqgyUo2BkQzLaSmKRFxAZLawgGKllQkA2tOfe52WoqqQoi8WOJyQRSqjK+6KJoZgo9BPvlhKkVBvPeX3//B8xCkpN3Dxj1s+lQ2Xd9ttpvN5u725smTq6urq5JK7/b7gLUsrtr4vSvE2sd378CsTRlGu9Oqb2aik2IIxEgBuEG3JL8gt2DXABEM/Vmng4YXOQndkeTmBVF7eoZJ8uLE1t9HVx4XZDjfjBCHhstz6VvXaJrIY5Q/31mIqKOOj4i158RIRWMbq9k4aWQmZmYIAsj7CpZJUOJEcFVHnG7y+ASP1eVzn+3smTQs47xweZ98VI9DvrlnINPGeefowMyAZlCjeIYL7/U5GhDZGElEcs41Ktwulv1tRmRmT5jJm0fsU2lCa077h7Tdbn3TNk0rku82m66/BQAXOcYYHDECWs4Fwgjbx4DRcRt9Ezyb8tDKGWlQZgcarGr8IHltv/rjqlfts+KrVEBKBsJadWtANQ5FCGZCSDimTyMCIbFzBjIkBFptIE4EBKhmoqpDCGzoGo5zy2hOn2YGRmgUnPdsbeM6yYuIpVCMmLMCcE7CAQM7VfDARcWQQ/Ak6pxJSSIiUirCGuI+SKFSUf0Pjpl02Xuh3yGcTo26Iynjjn54H6o6VYoBTuI7j+zhc4rh8NNf0yw+mti7b3b6rCPedzrHYxWYNgwfsDRFZFc2RuDIc1nebb55kp9tX//ii8//P7/98vnNxjDas2c/5g++3j3o777WTedSiqtL82voekgZXFapFTpgJVt2qBXZH1QUtPY6IAVCNQAZWuaqWtXWicAxMlfscYRRHJqJSAao/lUFAGIAIDOBWnZbf9AD5jt/LwNDhEEe65C6O6yi6cBWp7NBDYlADQ0QnaEM5KdW4WHRAL1TEDMBFREjNIbKfaAYm/mCwkgMhgQs0vWblHpJhYC8ixhbiK1yQ8i1oKfyt6JKhC5EryyhygNJvUgpBEwY3fMGRbyhiNzf32+32/vcBWtdsrBopilLt778+HleiBeZKo5m4opGli0Eg9vTsIJKEFIgt6JwAXGJ8QJdUHJVpR6M5Mm9qVgTSkZKs0kvnAJXNppNc/XxkIDfRwbUyyfISZ7nJI+Ege+QKJOUnf8JY+1vpcBqDdc7oNq46kbodHQbMFllpdWXrpM9NduLc15lerDdpn6/c9SUg2noNMf9SGGW9T17bwAAKjhOvx509GZOZPZ3wASe7N3pi9HBrVPn4vGdHoSozUxUptxFANhut/f3m77vFSxLMaRaqLNNb5EWiE9yXvfyNjSRqLloPlznVwCAaGgZgInJeQ6ePBCAegyXi+ZiEQMxW2ECT+gQXAUZHcUPzNgCEQ+7fgAAnwyYGlkYMVgAANmIAGtZIaCh4VC2ZyAzRFWsSKAKakoAYohgoEA21AfgRGgjDhKWsoepql+Oy8YA2TnnXVk0YZckg8beLlbt+r4zxFyAxAhYJDMFowopBFbUEfY573a73Y5Xl23dKTbau0Nna6qz2ZPE5BPZe3MPzcVpN01rela01df7riSs95GIE8XrQbfw4xMeu9VcsE1nnojSv5ZgPh7MIxvyVEc+nchc0TCKnIuV11rWiksJSy6JuwfZ3DkT6u8fNummE3MXz55eXIc/ePu73+4EPv36c6TgF20oSYFzEQDYdsUAfGAFSAVYjNlXo1cVRIzIas9AEWWqEVgAAiJgrl1oCNFUtUjiEjAgO8ShvnqwMyaL5MDgmCngg96H+zdgI0RTtXQNgMzIDYV6Noh/Hl6KqI3GEGp9e4MpYyCoNVXNSuoAtLqTTCWXnIeUkQiG4JDRExqqaBEr0u12WJQAEdnQEwdyC3axRrRtEmBUNw5y2lhJiIhkWbL2GQHZ7PXOQhNjaJxz19Ff65VK7rqu1Y1bXUEYZt1EaVqWaLjbC57TLVR7K5KB1WxKJODIfsXxCptrikuMS3QtoAOYIVhSFb371w5jhvApoZ4S/SR0J+L81q1xKlP3j65sepzjY9J3/nk6s0pXGOY09Aau1Za1NZmqgpGxTvQkagSAqIBa/wUgQ3UjQQ4Dm0zMR7x2c6t0PrzHXsX7fT/POznWusY/D56757Ozq+Z3xEnWoo69ryr/OXIr7tex+ipVpCKzVg0ajFJKqR96DhkSGCRRKYLEzrXX19d3m5vXrzcE2+urj0J0AMCMzpF3FIhIFUomHyK7xnF0vnEcHDGDnzmZ55oLjGr3NOyZoNVJ+g4eW2QYK4DhhG6JeNSNpsRPMANFMEI0VKsdGeYqC4ENvcSn5Rqj0Xv/JZuqqrOhoWlgagFjgF7AUYkRYo+YMTPUGiQRZdCqHogIiiGRFOm6tOuyXDQ8rml1Lo8K0rD85+jnwJn6juP0nOmbM/2A37G3j8Th+zz7fQb3TvH87ZfPE56nA+yYfdSz5pbukVF7dlRnp2hmoqsGd4Bftw6Rvlf6u4fXfwF33yBevt786Vefffb5C/d6+7bABd5dr/HTF19IYLxNv10tnzfN9cPawJbC906taDZAgkCi29JZbXHAYGYiNRvCrJiIlKHhORkqIjCzIyA0M3Ge2CEaqOoQh7ACiMg87nMBg5qYM3GNo6yQSSqPvbVH6TvKDFVFUSQyNVUlA+ChD2i1x5EIASpilpmBynCb6Z4EaqJWszdVzJgZXaS4HNCU0CT3/W7Tb3aS+12fm6aJiwWRE2TjgEBkXq3MmRci1iGVxvV9TadkcySJtn1KqbturiRJ6R4qBzFNULKadFgePv8Gfjas7LMffYjLuNPatvaYVEwRwJAMwVDHtBx0gAy8Qn+J8YriBcYWXQRyCLOejgPo2MBs8YC/HDzlQPCPqEITNZ4V2OdoFBGnq6rVVZcRAYZOB3P5Nd89Z9xZs7HVPyvlDBnOAARYHaeMpAA1EAEiNrJ3FJkCtYhqIFLNIGSbjaQ+GHFIhjrlDI/tWZt9824edTSRyWd+9P2BngSgWmD2jibMprMPqq++BvrHn87o9/VORy4oHNNx6gCIQUS6rsu5mBkCFwM1ZFwV7ZK9UXPsFk3grtuuH75GJO99E0JsfGQkMJRCphdtc9E2qxAdGBR1IQRPZko4tuBDnBzMAODYz9npLBg8gIgOFi1y1ZtGII6hZYtZbe0BEzOZCn8rETpkA1M0qmB4lT2BEdWGPdUDNHKhwzyVw/U1RhOz4Lmgtt71qTSONqlvPJpBjF5MsxRVK1aqF3DIo0ZGgFQsC6oqEBEBGezzwAF16Iy0N8nqu5o6uNRBTXgdJ56Y8xbp9OGMBVyn/BgCCMyGcnrfx8j93QfODNPH9v+3Xf7oT0e/zLfZfLRnJ3X2GGZUVLyaQ1+i224evvpv1i/+6bIs28sff/3FH3/+1e06XYnroEC3w5e7LwLjsn3uQlfMa8pJdq6NS7ayvi8KImYmYpYLYOqdGDARUR6KPUC1Nss1NVUzQqCaduQcERJYcM6P3cFERHKpW2YC3QWzUkrtETrx90nP2Atdqj2DazffoRhOzcbEhFE8S3WEg4DQCC9X/Yk8ZC6pgSlWJxRB9bCbKamlIqrIRN45aijEEBryrZYksoOS+s36YX2fUkFEHy9d2/KiReeRmNATOQRkY6vq6oAAjmIgqWzvN865pmmsl9yLFWswNs6V3bovGQCIoKR+83BrJTvP7arNeTctrn/+RLyX7c6RmUnN5h1W3AixOtNGd6IhAhM5Yg/hgsMF+kvghVEAYkIzKwTeUKs3bq8yIyJRzSWHgfOSnJENE70d9D+AGfU+tr1wUF7n4mo2gMFfVZf+XSzjaP/amJZoYx48iMpAvlLGVmNGQ5dJUBi7hCqAAKqhUg2xDPn2OrUEnob7jp04R8w/+P4Rz9ac383Z9/g9zXLrqhk3/HnE7kUGATx5XOeq/Pwph2/SRpAyGN/5Gc45yF0zRGRmUSulVDGwXt913TblLiXNSYSzGJrSrt8J9l3OXe5jxKuri6bl7e7ek3fsaqcvAwreLRZtdHyxWEZm78ij8ZjqPbqXYSQMqlNExKlp2KASgFaH1uBhhgleBoa+8UhGQ5sNRUBRIjJVBgRANUM1MBmsoOl1GQAZiBkqgaoV5jimix8IhZnwtmlxzQxAiIDMmuB76WPwsc+LGO52m+A5ZYyedllKUeYh95QYrKj3lMwUcNeVLlvO2XtPvFf7cCy0gcNdML2U/VLiQcrUe8qReuz7AU94YO9/8XxMZ79/7IZz1v++9/9uQvnRY1rII02Exu7iJ+efv4+jjWDo5Cpszb3+zcNn/zdZ//ry2f/w5de//PrzF+utYfsBw0IlhWgBrvL91rvF1erHRKtkNy6/MbBOtjT6OQzBMXk07z0hb7qd994MAYaUPGYmYpMOAav09d6HELz3zh2sfaVRRKr4dpVrHPr09kQ8vwSgvokJl3zQjcxsDMaY2VClB4NRqHvgxLpVq3zBWoiiCiOYsyGYlb4vkogoxjYsluCCkkdyytx3OW8ftFv32/t+25MPTbO4fPYDIcgoguSC96FhDFi0pEREClBUEJGRQCSrLloBkJweSs4gxTtnIt12qw5ccMV0s9uU1IEX47LJW7Lw0YfPX47v5a4IGhNGgA4AqgwGAIQhQSUXAVACq6zDCIk9OO/aFYcLCq25RobQL0LFG5l7HauwwXmX6sEV+Q6t+fTLidG/QwADABjNA4rT9zik0O2tinfve6vS22wywYlIAESk5utOyZ9JChGhopmVmlVUn0uD6kY0hIGrU2QSwHiYhPWOkcC5c+QwRruX6KN9Oefa8xdydB/EPaOff6hFokfrglN4/xCGCEcNaVx1HTs9A8Cjs5sJ4FKrYkIIXdcR0WKxQJatqBQB8k2z2HUv2S1aXJIrNeNfBZhaSTmwCyHE4AJBYHJADskR5b6jQqvlsgJK5wJtGxHhaOTDn1Yr9Y/tFwDYpzIgTl6iWqBYc7IMBKu+jujYI2bVmghfCYCISEVx7nhQUxO14qmtsHFqYxtT2xOq0cCLxuJyKqVaq+a8564LTJ6xiZ4JoucNFRySmSG2noBMOqagkIlYepNiuy51SUTEOQe1o845oTv/c6SfA61x/gLnZ55d6+kcN74+nCc3ILDZ3jECo/irRXMn43hU8h9RJIxVhpPFvt9Os/IpAEazqWESDUZYTUCVmcqONiAojkorEBA7ZFFxAFiZAg+bHagidJ+31E8xn/d60IyB1va/ZHqHeOXj6ps/7X71x2+2f3nR/EHJTz97+elnL14i//Tpx98Llu5/8estXPa2WHrewIuwbLEB1c6y3t9269uETcBA0bn7+x0Fb4jeR0VVkOunT25vb0vKpUCMHgx9DKUUzVBg6wJrgYj89CIylYetXK4ucs7M3DQL55xaLepxNTOrvhzvIhCXlCX3JonYo3OAWL3WKsVMQlwg2JDzr7V7CCBjBkPCWsKLBgxjmxvR+p4r6wSi6soZ+CFh7WCoZmqiosS68K3zbVheZMSkFr1nA83rfHdrSZvm8l7u3TJcNNetu9gxKHrBJraLtvGp9DvJ7eVFSYu+3wQGLlSKinMhBK89APU7JVgoZHNJZZfWtw0RkJTOg0QnrZl0/Xa1WnXdfYOhzMjAMdKgzTrYu560ZmeICrBq5gLOexbOvQiRW7TPjFfmgnlWx4hsdQcNIhwIKkR0xRwSQEAiFSVkZs4qoEK1KbALJXWqSqaACKYABKZIY0XmVOg1a5QmYKNPsML9kWipOxcBK5r3nNptuMJo9D3rGTZStwMbohHgmAGOwGDkOdx3XbNoklfcBEnCzCb3Kr7kAgDIQ8q9GRCBEqAzR+pUCUUVARwRJy1khCNgp9mQAI12wLwmYzPr3mo/YjIw43c41uvTiTN53O/HOc/1vVZariCG07s1M6YBxK36IFWFwIgAkEZgsMqSa2Y/mCkqEBEDAUAZPUxTaKwGiuoeIiICFuuZay6DB91FR2jdgqB38b6D+74QR9JuvX1AdqvVj+7ubze7NTDUQiJTFU2LxjMjiFou5J2PLoTAnvKub71fNaGJFdTceGgaOAZFBvCrQV8nmgBG9gQxLcWo3omNFrCN3jKzUkEajAMyCIEQmCqAgigg1FARkoFCjZAJZBUGIu8aBahl7gQEJKPMFQKXS0YlREslq6lDEsKaUOLQ9V0fkAXtum1WTvNq+XLXNResPWIPKFBSCauWutjdi4sg2AQvl7grG/h6nX/yYXMRgpXeOarhPdPsAQRGSKxROgwtFav7ZlCp6raDiuoHk3o39uSck+jko64m37cjYR0dk8St2xvOCbPT8+vxPibvu/XfRx8xK4r4Ttce3AQAHrHOR7sBrGJeqF7wZb775u7Fz133SgoBryhsXtz87tOvt5/84GPn6eU3my7ZrnQxOAW+un5+cXm97R4ctwAARkRkotWYCMExs6oaVlvccu7rItUghHMOALddz2Cxbdhbzr2qOuI2eh9bRNzXIAF47+edUIepIQAhEQmTFVNVVMXR9Gdms31G65QPOfyrA2+02sDEhnxWHCK8Uy8rQx3Oq1/U17d/jc6DC0akCMrIzjlHKnLz4htPbE6/ebN+s0kF8PoKLpZ0Xe5Ce2luASABfBNXwo5865rQ71qwzIBdKllKX5KQt95UoPEe0bq+R/LN6poVXm5ul83y6dPnOW1fvXq4WCzBxJkuLxaicxEMOAvCndIJkQMHBICkgMAcXGjJLcxFZE/kxqRonPvQTo/RmTDzQ0x8eeDU9eLz+uLRgSeBm997I5y7+ylQLMCYNFRKMTMRSSmVomPTLBtrww0RjQAcQUEwUxVnHhkY0BQrYeHgAVaAIV1wAlczM5uhY5yK0nqc1l8OnGp2n/n5j2U12xR4BEAyHbHMRaXSeI1l1njKzJ88GYVqM7Tk+RK/+9ibhqrVuQVW7u7utpv7rNT3uz7t1GzAiygldfdEtFwuixUx5cDLZXTOWSoqYmbe+7ZtnMOUu9zrxeWTGFyMPjhiRgc6OdLH+O4ZU/joA8DYdaG2Y7PZGg3N00aMPJsWEIlqAAURSQWMKnjHXn1EYCDBMdg6PgvBGFAQwcaa+xoxJiIbI7Xex1KKmjKgAQZAVVBNq+XyNhXoCqNr2kBWalFU0zRiIpC7nBjQR8gdbLdd0aWO6ZJVazUjA3ksEvuItXbGU3u0E48ufF8BfPYuRx9Od8WgsM/2zFnB9tifMArXs+MZ+BPiGFw5eOgpyN+7QXcfUxRmOvUwksocF1bu72/yzaugigQIxXl6s969ulda31CHn35+uxMqkEw6g0bBi/GbN2+aeGGQt12nGUwVnHPOLRbI7FPJtRG9mUouJkVVPQKhU4CckpgpwNPLCx8ME1xfXC6blkxqoJfHGHAVxvNk/dkEsTZvFOTqzRj1XzIAMpIhzrtHpBs22wSIVss6Rz7lbN80BWup7Kgkj/8crksI5CISG1e9WdVS6naQkl/61+u3f/nZb3H5AS+eP2ys3Hz1o5UtLnvnlyAQmaJvKETnm7hYynZTco/ekfMBUVKXpNPmGZatoPPRU7NAh7uH3c3t3bOP/kbuy7rvSEtofHS0fnNz0SzCwm1TPqQFm2cO4FFpllaHUBEzBWLfOLditwS/QBeQIxHbECH7FlzDyp2PSBeON9d5QW72e0aL5g/6LscAGVgLF+umJiIpWttqmVlKqZSCZKomOsFyUTX/VZSMTIEMTAt5MlVmBjIEQoVJ+qIxACjsBercOXckaKfpnGId1NN09vnw58eSvGAfoFFQGr1rZQxvK7KzCa7fzMCommkDr5vpK5MAtnGcE9ciIjzkMzSi6zBx0zSSu+12WyR7vywmpSSDweMqAuSY0bKYJMtFCFVFeqPoPBM1sQnOl5IlyTK65eqiDdQGDp6IgMFq7S+AVqQ6Zp42+3CM8HDHAniCSAOiMcuvVperGYIZIQEbDd3aDBWVYYBWLAhOVdDAtAZwrAIKEDpjqRn1dcUJnaGgolJB29fKD0AFo5OG0CFYRZpjR2xaJ+iJl6FZ5D5vBRVCCGbWd6k0FIIzQhEwQyTuk7y52eZ8qTp4YGC0N9R0yGQ/fAM2Q06c3lL9IMOf9b/Z5xmtzv98VAC/5xY9ZQSTLjBfucf01u90HArdgTOOiu77WsCnqsNeeTmnH+y5gNlcURR9Gyyt/LIht5UbtNvS7QifFd59+ep1n+833ZJj7PKDpj64DwibIppSMuxVixpLkeBc3ZrNogUgqL4cxFJy5SlWIATPzNuuS0Wd89/75KMnT67Xty9VimfnGB1y65spRgsnazdXg2CI0BIHj7iPO9iIb+UOXqNViwCGUM8UklCwCtRsSlQTFgGADBR0kMFVFYChXM4IzRCZiZmdJ0TQGokokmVz8zbGmMtmk279wsWrp+avtnmbqDQ//Ps+tCayu71Z375h7RdNG9vF+rfrhaFpUUdqvCDPULjhdXLeiiMAIiUWJFR4umTJsmpC369TvjfNb9+sU58++eRHPaTmIq7374rrFqzK8PTSbBZtwSpDzAAD+xXGC3MN+YbYG+6rPOEx5Xl4s6OuPb7/ejCz1TQfIoWDKoCzG+30OFWFT9nEkblsZsd8Yjx/HON8HArAquoYxaSUVG9bxBTQNKnOioWQUHHMtDFgAEVDcqoIaii1Nml4t2MaFCJOiFRHk5Sy34+zGc2N0SFWffYtzV7FAUeav6JxH5mAwQjHhNUtbYSgKDwFrGem3tx5Jke4AtNQ7eSb2Wer8NrM4L0PDpm5sxIcGUhRMbAsAs5rLqZFbEh/GysIDUBiWBIgoxFBdKF1uAiuCb5xECM2DpmAmbzjGvIc5e3ogiauejyOCG5HSiEYAdL+vRMhERPpzEkLALVPg1VkPEaYrebAdrQycESyEaq2ukNGDjW41cSErTYxHIuQawH6OOlJ3ABazYoEdujZNT4sPSSfd7u+TwmBCaDrtiGuQuMlh5xFwOoaDt7HoSfEKL+GgMJjFuAZ4jm3rGfIYDq+xQI+veOBdTiO40jE4uw4MsJsqg76jrJ4LnQfm8zRg77Tnc+a5tMUptlhLVoFS1YQO8Jyv9v2WHzZvf3mFZgv0m+3Ccitlle3D5uu2yqiX6hbLXMWJFMtBRR9yLojAQMrpSxWFzpiIlAND6F5H0V6AKhJLgra+vZ73/8ERFJKLfNF23h2zqTKtTryCmwzJSlMZSA2NCFCq2g33g0K/Dg7GJSMfRuG+TtRq22Pq4YAiopoRjg6ogzUat+vaj+j+Yk2xjdJhsA1b6WAWRn2ci7W9wnxYXvPzH/7b/7h20388tXrzfb2YgW7pM1Fu2zaGH1a+Sa6drkwdpd5t3vx8u7NG15dOwy6Ses3dxLEGyKkb9ZvJBfnmz6LZ3765CLRClvXddv1+lbAVOHjH/4oXl3clm8+/ODDl91+3cd+LAe6457SiBEFCNEYw4LDhQsr8gslj+gqRx6K98/R1QGJvpMg96e9k5LnW2z+xPmWxJPbfpdDRy1XRy8xASjNYplmooPwgCL9pEzU9jiEJApgPZsHqv7oUkvYCMTMIfLosZI98wDTczM/QG07mNQB0U4e5iMOdsi9zlrAWJ07EwqSmSmYO07ErT+e8czPnovTE+eqz37k0wIhIpGCTA151DQ4ru7uLKWIqWouJeeCQKnkQdw4brwrpWguwfumCWzQNL4JMRAFsmX0tflg23DrfQyOERyh9945Zwg8GL2uArvWD0SEE0A6Hthxdd11ZsYQEZJDLQBkhFhdzNWZAWMXDgPTolA90WQ2EZWBIYAQOYBihlQdwDV73nSAnFZANKUxHfvQfBoZnaogIzJTML9YxPW28whtDD7IelNIS9sEUVGtbSGKmQKhb8LlRVs1kaF198Dk2RkdOcemWZ9K32EwhHvZZme0cD4k1O8cAz572KH6M//+aIgnzMUe+/Ox4z1Pe+TCM8M4Pe3sCbO5VAVuZWnz5vbXb15tS8SU8ouvXr3arQsEhWga+9Lfb9bEYdEuveei0m3vUtqSg8JOkBWg9EUdGGYExlq+o8bEzoEUXCwbM+y7rFqYODI6AlW9v7vr7jcfPltery6iZxI1EOdaAKiFScwMY7xq7xuAMQcI0QhNSU3BagSuwrYCTHVvJ0qc4piRNBYLGgGqQXV0y1D0BxWSxcBUDZFpuHZMjR7wK4rkIgYOPDpmjiEUKyG2bVw9++j77b22Ib55Vfrt2/vPfhl3a1le3m83RfPzTz7xVx/2yh+09ublpovy47/zD6+efsBvdm+/+UouaEmxpPtXX38mKcdwsXvYpPubDWXdvP70118oyNWz55fXHywurj754fdfv33VXjaXzy/hiyPCUER3lsxsEGhMHJEv0F0YR3WExFLBCfZNfir83qO0WrV2gINT5jFgmHQXeC/859P7v/9Oead4PhMDtj1d2ZDEpyDFigwe6dpLegRiA0AFLKgkbGymoARSay9hzBQYHoYAcNA0RWdD06mt4cjHjgc/aCFjbOUccqQNIWc45Y+qOjoeavNMACQ0AxM4RP8e70BnlvgQ8ergl5m3HM/p/c45E8g5M3JKKcTFtigROx/70ouplpyzeGcp9cXAOceAaGBapJADDNREh1qSlILOliFeLhbeaXDkB2N3ANBAQqrdu6gKYgfkYCZ9zzBD5uoPMzM1RKTaWJQoAIBVJGcaNjyAErlaIyaDmjF06TCueXZVVaJqB6vqgKk19C9hBRmbHiqqVl/aNDZENBBAG2vczcyoBomLtSGGXcn9TiS3S9LettvkGpZcgGWQtQY5565D1WhmtXZO1BAZFIaUuUND4kj0vmOXvVvlrb/+tQTwfHkm7fvIfjqRze8yC+Z3fg/F/9FfDxxKjwz4sdsejf9UpTBTU9EM2qe7mzevbrsHKq8fNnd3N1/2fTJTakTd/f3bruzacMFhmWDXPYglUEnkmqyy2XbBR5Rc/r+0/enPNVt2H4atYe+qOtMzveN979Qzu5tNSpSoGIogGKYy2V9kIEAQi4YEWIKSOH9AEsOBISPwhwAJYBt2EjkfTMZRgkQBEktA7DiSY1iiRYUySZHdzWa3+nbfvvedn/EMVbX3Xmvlw66qU+ec53nu7aazgfd5z6lTw649rHn9lmqMYsRgoAIiyo4deZ1471xdt6qtmTnCpOaI6tX68vyi2UT3kEANRafTqXMOLHuTu4LYNAIW3iFYhJgZYxfYYqoJAcDQAHLB4bHaN158AkZd5dBelEU0JhAFoC7EEXo2bIrZUgQA2JUNMUJAEFAFMzZEUkZWJOZ6/RbVQSyX1/V0dnR6cvL4aPHqk+eb+ub6+fMmfbxa1+CZDcpiWk6PX794G5ZhOjmePXq6QZeg1ZOHR194GJrCUXz07EM00hbKi8vm4pOr1x999J3fvr7ZPH56/PDps6Pjh1SU67AJun78+DG4Peul7RY93bUDA5kZERPP2R8jTY08OVaGTuexvOjUrLM6fGZDzIlJOF5se0v3v5J2P0seFv9tG2RQf7ctj9UQakCOISIIIToDyyXPwTh71pgY0YGxGYIRGCN4HLxIvd1FEbALYkoHfdh28jaZfk/T7YiPSm/M6CzpBr3adXAHAABDBpP+CENfwcIEzfqgQzMw7hRhhEE66UavhxC/h/x23dsl4j0K+7YuTgiBlFerjSl6X3JIzD6JKGpMYdOmEMC5NKv8pKwco0M8mk7RNDT1xLvT46PHR9OjqiwIvfeI2f7MRATIhuDIuaHoAjlENswx/D0F6Ls7DBEOlIEc9UKYAnnyikCIQAjQ5R4CgJgxEpChMqAhMEDGAmKjrmg4IoARkIJCz7ANM/c1AlI0JCTNzDs/pofKYMYoMkit2HlwUVVyVVZJQUCKyVRAm6aRIOR81hIM1ExihPW6zVZHQDDthGASVVTo60GN/w42kEOuvJsMd+cCGBbMzxgF3c3LbfJdP2Vb7rsnfsLI/PL5H3rX6f0euOOqz/+M27jv/j7P7FcEVWJz4yNoU4nYm/VLfPsGDa6jW7d1WRz5Ynrd3mABm1aUW7FVs04TKk1ULa2b9vV5csqdBqmIQNnBk0J0gI64qsq8qpjZcuFVVc/89vWbm+vrAuFkcTQpyoyjnlJi8tn4bGaqyq4H6wEAs3GNI0QkJGQyUk3gwCwbeWB3p+1OmfaxJNT/T4i5/BESmeXqEVv4/y6kkLosLrAuUkPyJY4ZAAgNMJgEk9nUo02Zj4KimdX1ej47Pv7qw1cXLy6urn3THhcTaWt58enb1Qp9uUl1en5eLY6vX72Ik9mCmWeFFFipNZulyHpSTCXZvDJNyxff/51lSIsnx8XR8fW6oTKeTBer1evFUXl0ehLTth6wqmaClLTHidxVcJjJzIgLX0ycn6mrwDty1Mn+AOME3ywJ3brY9lYm9gx46wPG7NX67HX7UzXsLYo/m9i+Pc0ANfeUcui+cy6xl0SEGd3IAIDQGaCZMhWEROQQHAAjMpEjZDVTNdpWncr2yaF84I76CwC9bLTPgCXZwM7z4e4fyCH9gV1VYXwfohzFLZ2pwyjfwbrgrzsGxwYevB3WQfDNTKYf8H2BflBdhpRiM2Nm7x0i3tys3r69qtEL+Q7UxIyZmYqF86kPgiOiaVk6xw6hKPx8MT1dLI6qYuZwxlhQZn9ABF14ZjdjBaEREaEDZAXKEiMCmd0uAGWUHmI/8m0xIgI7RswOqexsysxIVPeiQfuRQTDSHvZkl+wwQIbq7vcS5ST8DsxgPHHeOwUVFjRz5BBJDVVjVVWr5aVJXCwWtYvXm2AKR9NyuWkzEIgkUVXvsCqsmnSh3YTESMM4fx70iYOl9dPZnHogDhyiQgAA0EC1o9QAW2B0RDQa6Zd3s/hBNBiWV3d5H3yIB7ajsdqa9atB0BidiZY9/nnOmNQcaEKNZmbokCqgwoEmrMFOwTyiICa0yowAY84cvovN3NITKwSWpmmGs/b6pbWfhvWNxHJexo9++I+u4qYNrx4XJ+ezsFqnDwt7VX7perU535y3IqFtQOs2nIvC8fxRm+qIZbsKdUNTdK1EAyRVVW3Xa/Acmubq8lJm08cPztYoJZMjalNy3iOzB92slpBEAdRDQcyawHNtYcpT7zIelRAwAZhGUyNiIERLqEzZ4UsIwEBOJWdUsmQzDgOpFUCmAj0VGAakkw67JNYMRte5FjXHCqJlqpufAmrscnx0NsUCIpFRBsUCtc5LLZZjZn1ZSFMaQoK141LbNbBPuNGiePDOO85P6ssbjoJem2aTrgKyXF9+yszXb15c/a2/NT06vliupsfHv/SnfrlcvDNFaDba1m9I5PwnP/rhH/z25rp+WD02oMIdM/NRpdq8buPVh+9/UxKO7UBd1rLmPufwMkFAIjIQVSWOUVmoArewasJlCVSJOkDskQO2sHR0EBy0/ZuhutWICKyTV1JKBpKhswXQFCDHlVM2PgzW2h2b8LA1ELdLN/vs+9A8BO2yPohyzZl+N/Xq/tjmgYjAAASGpkRM2aJuAA4RiVBNkRRQYxRAcoWDgEAUYiLy+VU7Vzp3dCVJ69CTOVIjIjQCBQXB0iGiGqiKIRAZMZkik8soH0VRjDephu6ljbrqIyqaJJDrsr9EJb8rIhI5IMwQ1dBV3iUzVFNHmCOeqPMfdkHOkrrPiEicI+HEQATBI5lqDIlm00birJhKAva9eSlHQndLHvrM5s663m0oGyBusJ+OfIqKJUtQ+iImiSLTaXVz81baTVn6aj59e3XjPEwLvw4pkGtMod6YARhV1TS0NYACiiesjicPZvMFwgzDBMETU1kic4EZjY4cu87sjyAafLnIuRVmSgS5eFLUFsoCAKjHO2NmZpeSRpXT01MRaZPO5/PValMWBRLFQi0JYa47hIjoXLnabAp2DhmAxNokasgKTtFVFGOMJDkbCkUTELrCJ8UcZGMSNamiAROoqUQialV8VWEbvNdmvXFGQQWNCbQk18YkbXTIKRqQVNXUVi2YgCZLEbFYN0EBm7SZpLlBKMqQ2qnEqCmogImyJzXxjiBj5UZDt8OVuv114HId1OJh81Mf17gngu/JIrdrwLdaX/+I7VBbv7/dc5r1yxl2mSWgQFeW/M7SJXvh43sMfk8uNjOVFtg5hKa+Xq+uIInjBRdVvbngYmbgJ8UsoZ9NpzE2bSPe+yjSNCGpIBCSIngkXK1WCmKoIepmo5sWEKDwJUJsol4vb6r5DBHn8zmCpRgVNBmm0AAAMypqSMlEC0RDyxhYzJ6ICscO+XCutkaIbv9D/7V7X+xdMmZd2P3w63i+7p8dxOFMGFQPzJ7gPnwWRxzdDDKuIiIq2piNQEc0CZmtnyYFPHlwdjQ/CquNtGEix7Ftmqb5An/QNE10UaLUz8+p3YSrm99+9ZrnhfOkIIyu9IXFMJn62QfvWu1qbR3SpPBEtK6Xz95/VlXVYcWx+5sZEHnkkpwn9kAMyCPZdafds4N601t/2qBP3LHszQx2F+feQh1z33t6YpYNn3Z41T297RnwTlOgHDSuSVMQEVOF1KVQgwKamWiHB05eTEghsVG04AxIEhhiEmY2xOzqU8QEqqpRmy4EKUZTHOpVhZAQt+m5iKZgqsoxAoDpMICZ/wXcMRj20KqqjovMgPOwDzCrRJ0NCTrhUc1iFkAdI0QBQnAOCFJKRS4itI107AZrNCm7PgXbm4jt4DvnJMUBbyvjiyFiWU6I6pQ0xA1EizFZUXrvJZkpZniWSVEyERqgQeVd5dgDFM5XVVEUflpVBBhjW1UTIooxxhjJOe88EklWgImSQRMlpWiiiEwaoyRmns1mbjo1RQHCAibeXa/b2WxmlqJROZmnlCrvk8h8Nm/rpqnDZDJBxJBkOp3Hpo0pgYpJRFAEc8BKFkRF1ETR+vJHW9xwyEDrmAs/mRiaUWEIIJDEgqhDQucLV9SbGzUARGV0WCQABLYYwLRt67IsndSOcDIpN+tYFE6DikoK0ZW9mKzKbtAVrZv9DnRln2ENX23XuHsft7p9N3VthwGPVNtbGNJ/tfz4/ja8pPUYeNBvuTGTAADoqyLDnsJ90FkcWaQ/g9KNv1J0WDjETXgNEJgX5fxIGNGknD9sEyNVDlzhXFGWxgwBY5QYEhfO+yLFNiZLYqSUNAazoACE3oMYK4FE5YJdWUwmk+VySQZtXbfOEVeSRCUyYVEUQZKqgnVaVVGVRTVlZgL0vnRKhrfb2TpvJFqHD5BXN+x4iFG3QEh7q21nbLf37S/cC8EdxJoB6SwzYwSCLiQwC05bRa0j7ErkFAGZmBmZc0YKSCoqIiIoPJU+rNtUt55dUU2smYUqOERUacPaVKKEm5sbalWaIEhUFCWUzi1wfmQQlFcYSFWmk7IJGyF99OQROMQtHsBnrIRcAAjMM0/Yz1wxR1cZFUY77tu9qw5XWjeeB48bkfC9k7fMz+4QvaGb6725s8NFPmbA497eL28d9nCEH4kpqgSRoBI1WF+cw0wxa/FgZkxJDZxxQmBC0U47J5ww57Agy8bMTAFj2lTVFABQTFWP+z60Keb7q6r0zwIA62xJQ/F26/BAdt49WV+NqoWU8fR3iAaAYcfIETGDmquCgQlIoS41rS9LCG1ReI1JWdUz9rIn9ub9ndHuf7LeYzoIBOPTmDmqCgixQ0QRyXrnzeWyrYNDMvJmEkRCSHWIJTkDzactJpUnmlflfDYpGUrGCfG0crOydAU7QjBzzgGqZQAgYnZFjk/2bhJSXG3a9aZZN00bUrZ9AmhVVdPF9GJ1uVytinJ2dvaAXAG6QcTZ8YxJmxidc76quHRTKpipmlXRtUkTEzv2ydRXpaYgUYgIzDSDviEmYnAAlBgJLRfTAzBi7igHAiOBGZqQmWb0eHYe0CipgQKygLqiSikZYQwJiRSUiSIkIm6bDaJPKbCjiaOb65YVHLKAxBjLqjTLmIviHO+Js9kgnNER7t8UewSTdOcno/2r977fqQHfJWvf04+90+6S9cZM9Gd40OFDzQiM4LbyMtvbWvdhgJz8nI8jVlBHkEzbqnLePXTz03VaVkcP/PTI/MxB8t4HtWpSaHTQtvnlCBkAJWGKCdATMxiDJUJ03isiKphZMSlEQVTFdDabBaR2ubq6uj4qGKKAWuFdRi0ARHSQBASAve+xrswToxLSFrtqPD4G0GvAubTAltR2qbpq0oUmgkGXsHf/EI3lPttWCwGwrkQx5rMQEHPBkxxprQCjPKUulBIMAB0jOIRsMyTkvCfVjECaZGjolBFKBAEyZHPmGYILzQbUqurIJFVoD56+k67WbWwTGPqS3QSBk7R1o4g4LXwA8Q43cf3ovSdYkGTM989aArC1OYHRhNyMywW6CVCJ5HIR8sPBgRFX6zWwHXllHNvcy/77O8iGD3ty5x2z0x85SCAeuaVhi/6xn8J0T9s7gTLqrwIogqIKRrGYoE11/yJERF3hSQAJgo6TKaEBd1UuALI4CJkXKgKhy50UsRBCvsmYxrUhDQxYEXI0jpkx2ogB24CzMei4mexoh2RpzJx9MlugXQAza1MAgL7AQCcNWK5fzRjaNGUnQcmziABTx8XtFgV3dxl0hoGdkRy91yDObmOkEYuicEWsinI+ATGOXpScBC2NoUPMUVUtfVF4mlTFyaQqsJ16tyj8YjqtqsJQwURj8pNSopqZ44KIO88q88XV5dXNzfn19XLTBjVRijGJiGd3cnJy+cOPr1fLswePiip89On5fHE0rwpEvFo1X/3yV47PzlY3V4pUhwhI8/kcIBnpZDZPInWzns7nEIMa5cQRi1GlVUuOiF2hpAjeZWopkiwJgCOyXKTJcgaxGaFJV3AFiNSEmUXUyECs8kUEbIHAomgntThCQ2MHbOAZSQxMurAKAe50ElSDjEdCNGQfdCOfp5KZBW+RYu9hNB2VOOB6d7XbqyHh59iQ97dD7nvXDcdC/Wd29/ApNpTQ2rn/PlTsmJbdcZ/bkHQ6tVtSrkVEHpnVMCYtwLiaHT18J13bYlqaSxiL61fLfsOziMUUkiTvy7Kat3UoigohadS00ZQMyfmCRUQRnHMppWk1CVA7xwhar1e5okg5qZAoaReEjAaCQM7n9ZHTcnHkc9rpf2fxHd5aMzwvQD9qw7hZX17wwLbZDdEofQ3vcFJkMTYLjVkJzr7K7nNXg6AvqwKqYAiKZMQMVJhZJrjdCxkCWltfTuYL9NgE9QUuykVc18vLK2YUbQwiOUqqIVNwVsVoThEVYBPaNQAAJMcxgjHg8XTStCs/de+8/45khJFRwDPcxixH70hEaG7CfopuCq4y8tth3BUx75MFtwPaBw3t14jdb/fsi9H5nSEbABBJ5JbiBF3HPkvkxdsMznttcOWYmSEpUBJrRcBy5V/AXAJH+wk1BgNnaqCqotLJf5bNz8iZGRJRjwiNMUQRKYpq/NxN21r/XCJCppzWOWBH743kwIAhL7iBHHH3oYNe6rmZ0c7iz2RZVZHIOxfqWh2VyD5JRKnMDeqs9SFa98z+cNtRD0eGUGY0EFUDpByx5jpxhBXa1LZJmih1HdtWnSMzc84RQVUVBSmbWIqLRXk8KRdlNZuU5EkE0CwTB+dcNgCIApBJSprko49+sNzU66ZV8ui9gUsmSQWAPn3xso3RkD598aZuPyXkajpDTe+88458HL//hx+9++zpe+89fefJQyLCsnjx6uWjBw8nR/Orqyvn/WRxtAltoSzozKGhGbAIADp0bM6RKqjk5aLUl0Do/s+CVfYyogF65xQExDRJXn7oCtEWwCECA2Sfgkd2QKUvGmlPFvNlo9OquklxWbezeQHirutNlnyzsIYuu5x3tDJEvEcsxwPL846k1VHTfWyMu9otDBhxJ0TZdi0nHRhDfxBGpGrnDp/V7me3O+KkjeMb8xPHi5j3icUesPzh243adkPekVKP6pAMDdnNpV2bNoCEoiHGan704L0vvpENkp6czDnQxy/OL66u2hCQARgwkeOuYJEqBAkSLEWxXMwAjFTWTSgnk+l0mq2vKSUxLZhUFUyr6WQ2n69iVDBmrzEN0O9REiEjCuIO4sb+2/Vroz+mPUT+iExkMpThbt0tEH13k2mALAFsjUgGTICYVUvGHPSM4+w9MwVgQzA1xAEzi9UsY1V3chUAABSFN42pVQR0XBCKK6GcexckSSxL78hvVpsZF+T4+vq6KCaA0TQAqGNWS5rENGLBmqSqqmVz8+yDD4rZZNOEW9XfMa8a77Q8yuYmUEzRl4ZeiTKIBMJtPo97hcu8y+3AGtwz9LH8aog7Wuzh/Ycb7rzFbftrlwHfYrL6PJsXADoPb98iaDCrRTw5zT60HtECSBGRcuqWEgJmmK/sF0loHfJDj6FtZqrgfJlSijEWScZC0qZtBEw1p7kREOZYLaLMq2Rv2HchKrdxnVHbgUPDwaQPosUQc6MILgUJLTVsPHFNcIAeeFEWe1PW36eHL75/FEdXETFoBp3uNHXv/WQymTSxTdpqAjJXMCcoREWimJpZWVCKDZZckFUejmfT+XQycY6pS451zIwuJnXsjcwMiJ0hnF9cvnz58vXby6Ri4NATKgPIxDuuynqTUojeITlvUhezily12WwA4PlPPpnNZovZ/OWnzz/5+IdM9q1vffPxs3frzfqGsdkUiMiEmmRWTVIdiB2iR7CkCE5JJaMFCUjnegdEcsSOiFKIAKCYzCxjWyqaITQxAAAwJSB2LCmoWhONWZNqVC2qKjStc94MGDmjC5xfXYOqY3RExMXyqs4TyogpCSEIphxqmYPDs+aW6U/XgTvoocBWlt2aqXKa54F/4Z6v43KEd8rF9+zJg2V3l02s7+L2nH0ev3PySIIYrhp3fSs85pCMzpp532q/dTPcLwcAAJFHVAErqtMmqtraYnBQgQKX85OHH7TrVbx6UTqGOlgKFxdvW0Ngj4jkCJkMYdM2phSjNCGJGKNjR6qaQpxPJ8S+bVtXeO99MamWN1dNkIcPH4amnU2m5XR2fXklCt55CQkRGSyF2NStgKmZAGYKttfzXeo85EGCmeSKHePX5l7khDsENzw4MpoI2I4/bg9in6eUEyzy146qZdhNRMxFN8kQmLap+miWc/qICxdCTCrel6q60UQI1dGcEhSIEmJdt03YVM4zFQVKaFpiTSkSUVE5VWpSMCq4AmssxM1sXp09PG1Si8wage5IxBtLmdY7PIkoFRU6D1yay0XeiFAJVO4AXtgbqDG7tdtO2JVrt1MJuxtkTwbfa7cz+12pOv+Po/n6/A0RRaJ1kdqWREKKtcQmxQay7EjAYIb5MxGatc4ZoQEJoeRyswAgpszZIQM48gEzBzNIKTVxB4xoWTcAkCxrpoiIGYSLnO8jmQeVN3+lIcIZMacYmZlJX24k/5TlVzOQkLJsMZKHGBGCtWiKZtC2flptQqx8EXvsKsUumndvNg8mZSuNjSWk4a2xr42cUlTVsiyPTt1yXdv1an1zvRSjqgIg771a0GiqUpUUYuNns8WkPF1Mp1U18aVDQATpAiQJwMA4JclrOMZ4sbx+/uLFyzevCSeOq3JSlcUMmAldUVSzarJO6Stf+UoI4SeffhxCWi3X18ubB0/OothyudbQJuZGqCwIUrx6+6ZkWN7cuIdPqqpC5Hn5pCiq2EZMgY2ACRE9M7AzMBNF5xCR0CkpIJJDIAJESN2kCliyZClmCe9m3WYDSd02hC6EAGptEydTCyG0m/rkeBHVgCmGoGAOyTnMkLcMyMyq0DTimUOOdFNDBylGQPOeM4LCdr9kgnk3a9jTfYcjAhm+A1ANuqTNOzeXmd2HBX0/Z/o8J4/lyv2vn8ks79aAYTfYpD8tR/QL3EsExylV+UOPxbMPMpA/sPkEa1Gd+Dn7mnQdwxoUTMCMJ4sHj9/5wuvN2lJzc3XdbuoYRRDF0FQIzLMz0xCl3gSgzuIZRDSlzGO8976oWtEQQtM0IEpEx0ezo5OT9XLpiwkxxxhFtHAZYYPMIMbYtm0OwRBV4Lt9+Vuz5HboLJd37Cs35MBjAgQCGWHkjgUg2/VB7vBdAOgkRsXd2OadBYo7l2PGex3CtXJyMhIibpUWtE1I3lclOlUwQOe9mTUSAnL58IzbtmjD7GTa3Fxu1tfllF27LKZeJLQxGLVJhao0m082KfnSr+qLr375K7PFdCOp8KXGOwPmxyt6LAsSe3QenIPe5kAGYAK0X3vqjtt2W8Cs9xDAdoeOScB23LZe21uMN4etv/fnMof+zG3gagAQNbaSQkrRdFMnMwNyzIDIZmSAaKASnSETAhozkhmRU1RWFssV6tQsEDkjNDNoWu99xl8U2b7ppm2yftrBswLkkdcomWkhZhhjNDMRybVvsxyAvcqrqqJdCkCGUx5eqqrmZqKa1FJnvgZGxNbWbOqIgfFYF4kYkZFcSgkAqMscpS05umNqxr8OMlaeMhXBrJ4axKhmVhSFmJRlOZ1OJk0ZQoqMbduEjRVTx6rEMJ1OPaZpWZSVL72blKX33oEhGRLGpLnOBTHlFF5ReP369Q9/8uNNXU9nU0fH0+n0+OTs5OxsWs0IXeF94SuriIiOjxdf/fKHb968EZF13X700Y+T2dnJ0dvX5465vllqQSeni5uL83fOjo+qCcewWq3Kyay5qi7q12K6mFeADOxyvYec4CM6RMBRLgOR08ZNjV0BmVZQkqhJkoioyiZpiNLEcHl5CUaqNi0rMwsYm6bZLG/cpIwpFOwEiZlTDFU1efjwYbxaXVy2ImLgypIo+Y4BIzBDjIKIRemGtZFN4JkFE9Ht1OHA07E92LtCsP/1cDWMd64bH95SVQSRhH3rTEkHTOtwSe0dvEf7NqQBvDCH/nSP6Oj5/vljsDEEAOyyawCjaIsMJgrIxN46H7blfEoQA2TALuHuDsm0VxDNzBQgFwvNcMqGgiQcrS2nM4nAchWlDmC+WHia1i2YYbtZXS9vaknVBK2x08XRuhHJFV2hNa2dLwyYqQCyCJGcdUNYTtdNMy3KEAKBBklY+sdf/NDqwOgAYLVaaWgZILQNF06SqwpqZH0DzUbsCCYo1lJiKLuBxM6Kku0wyRQQiTiX98g0hTqIVkVEY2BwgqgkZqagaEBAqopq0juLJSkiMhFkkHoDJENElU6zZugKlUAOLyNi5pz6C2BM1MXNsEcmM1NNGTsWhrKaiEDd8jfu5qtCAosqAQwBGMyDGSWbmVibRMQAhBzMT8vqSESKs8LMUNRrBItsSTRKilMIV3FlJR89fSeIc+RA1LuksI8SkBujGTkzNBTT1gDAH2t1Cn5hOFcrwTyAZsAnAw+3La29NbwjYmf8PQNkUhUjBBkWeB9PNCoCg9qxYezqs2TKoLotvAPJ+uPd+YC9YWTIu88JZ9Bba/u+oI0gSAkADcgA+12HOOzoLDk5sgnxdQJJVgQpQoqKuIpFlA2igYSQshxAhI6ITX1KgBiJhGgbGOU9Z16uCAiMGPIIsCubuulMlKNx3YRNDJIyKBVQSinns6PD3pjMFqzP5aW4Wm/HfCQ1NiIDA4YM2podseu1qiIQsAMjEVEQRMS25bJSlJOJTmJ9SrGOXDlMWBZEjoBAAdkIzYShw1UwJMvWHwMENtqJscqQW53ApMxEmB3kKYC2AhjVqcZmfTF3vpSZh9DGzXRC9XVarWJBMC1nqU4PnzycH80hhqlzBYCmIIVHJBVlAwACsnVTL2YzkXhx/vri4g0Dnh4/nC+OHj19Z1pW86osfUEEQGIIQGpWMuJqeQGoRzOHyEdTezj/8NXzV8WkKr7x7kc/+lh1+ub1ubTr2dHjVbOaTeZtas0MwmZ1/gJULIXWPfXeM6gK9NTbyCC1DSICchfvjKgEYkZmbaibTR1CePP2gorpx5++XDUxxOX19XXdrJnZTOp6AwCTyUQgPHn0AYq/+tGPf/Hnvr65rCFoMdGg0xA2JcUjr5OEE5iIo5VXqWFS+boVabUqnKlLEMDBonKi0TtGU0vCzGCQzKizEuUts93OfQI3dqDjPUo1okNEwGEFIiGPgzT36IA7PHoXEdlj9ePVvKcP4Y6peb/hSLnod/WoA2awCzQwxvMbq3H33HD4nPnBz6YD5MtEhIgNSc1Sr5RLaiZ+YdJuVm9VNyenjz69Wb9ZNq+XV4R2erKYzGfsUh3Tcn1jkMqySA2igeJWdiFyzCgqRVGgY2whV7VE5yWm9XIZQlDVummymIaIqlqUrjVNEd5eXr+5Wp1VZQnkEBUUQYFQsyxhZGhqwH0xwf6hNFD58Ztm+dTMJAUYtCgz6sNYbIsheqfiBQjWMw1VycQcEQG2FHxvhLMOmbvWLwBStEEeGqLW81xmjUUkoUKOvtEkoAkzk2CJYZXftwNbt6gWxWIG958dLVzh2TntYDDunP2xHpnZJaEjcsBMjpEyYc22nP71f6a2d2GHLZXBsHow92wwunUdjyXdvNpv3QswsmT0XxkOYk9u/XqXYKGqKaUkoqpJoU5pU7di3W37ueMMuiapzTooERGlAf2D0tZEbIS4ddM2ZqZgtguFdXHdJFWznENgSbo3WqeQCwmYxWwYInLe+0GgGd69l3G2hl8bh7lIUAXTjMCVXaZGRNQKFTnuGo+rqhJsSSJb69qSnHEXLQU5juFzAP2N5QpENFAzUNMcVeq4ICJV3aTLqjpr1smXV1DXEgukara4Ii4IXVVMABU0aUqW8yD2URA6K9diNouxXS6Xm03juDg5msyOz07PHjnnysJ57wEgpQTErijIl4WfpZTEknMlE6aUMIoHev/998/PzytffP1rP1fX9enxiapOJpOQalAxkBQlgbPCFd5j6TRFQ9CegHTjjKwxoKKZCBghU8FojAi+4Our9cXb88vrq6vr9apJb65ublZN3a4ArWmanB8VY2rbtg1ihpvNHxzNZxUdffs7P/7WN98Pq7jZEDokYnTmC2EH1rSCBRMYSggxr+yQkgICWIptTukEAMz1MwGgI1njLYNbXnNb2v2t1OCQ2I4vcYdHuy19W2LoPYtpzKRt14N7eP5dvHz83J37Y7Yw23Zt7cDsUgYqztUYO5TtgYIgImqmYDZCKrnrVXDreyMAjaIOCcBEQcAcMzN5BAhcTGIrNw6D4/L1ZfPmZlODOMPFpEKkqqqosHW9akMyYkQGQGY0IDMLIWX7WNIwrSY5O15VkcwXxWa1Xq/X2XTWNI2q5uqBotqD5NHNOp2v242Si6kgdCiIyECAZEhAaAhC4LaksBuMwzkdU9sgMRMPMrB+EnsuiLkKGMAW4WmYPu3dHt3s03AKmoGZEDHRIJl1aUiZAQ9ZNtZH4PfrB1UyJF6+xFBJRTSpiGS6IxJNxczABADatsbO2SwAYJBUk2gkRCE4fXDGhQemXDDicDUOn6XbeF0AFCIBO2QH7AiZ2CtBJ5T0AND3rqt+eW3t2vs/bXnAyE8M2w21b3PKMzIwTOgtYJ3xeSu2W//7lkDsvayZbcEkupWwPzhj9gwAmGvggqglMY2SNiHeNE3TYr9Ccmk5IVJmr9YON8GuWAWYWca76wTEvphjfySjle9oD89f3+QdGiSp5NckBWhFiGKWblPsIK689ynEnF7SS/ndX+yCojvhpns+QukwI4qIAYAgAjMyozYALglAUcT6KAZ2KUKKXaUy2Fm0gOSGckz3t+16yONgambEzjlD82ZWtzyZT+r1JZJk8wYRVVUVAgwQCGaWUuCp85zxYZVMc2VMRIQceSGpXm826yURPTw7YzetZoujo+NuxYkqALF3vuSiIl8kMSNmdMagBsCGvkQ1hvZ4cdQ0DZHOq3Ly5MF6va6q6uJyxSiEiB59weQyPwVJAUHZzIgBkYk0C/qxBaCsFgs7RkIlBVhf3Lx+9eri4uLi/KoVefX2WtCF0J6dPWyaTeHLEELbNkSuKHC1aubzaYzpk0+unzxw3rlvf+8P33n0UNVxFDBGtsmkXEyKt6s6JHGuENKUoHBkJmLgHDLirKSiJFAzkx6ISwEAbyupnv8KyIhTbH81s96IbR2ZvC2RaWj7vsPPSUfgNuPzeK/+tHc7bIpAu5EjiGhG0L259Wa1QX/S0dfBRrdDZQzlngpiI6LD2NkT2HtGU9BIHUY5AZEnWqfkgUAgNfXyevnm/JO63STB2KrEpNoAlTl3l30hmuF+nPMFK7smtW0UAURNllJKYVPHNmSO5LzVq3WGwjEAVQAmIlIzIk7SGhL7sk74Ztm8vFlFpQc8q9CIjdEAFQ0shziADdCheyN519QUzomIWu/WBVHNJX3YzDIQdOZwPTPugA2x58EDGepUDZDM0BGxr5nYJX6MYEGJqNuNStlvTdnkg5gTPKXncTl3V1GDqoIl0ygppBSSxEwKszY/0FpDNYRWEhAuTk+IWbqSTaZ71H3UsqUXc/YhoiEjMVIB5JDHrr4s8dJhFP1PpROPed4wdNCt/04IOLzfbSRgR8Aa1Kztbt3JmMd7MOPu6ueWDHEXfK+qSayJugmQIvRjn3UvUgNRlRGXyhmZfSeH/Mvubbp3z/wPqEPC6JsIIEJSDUFFgYi7Yq7KQcRyHQUjM0pmoQ4Z4CNfS/nBiGBAgCaCvU0oQ3Uysykh5HrxBkZIBkBm2TiMfYjJVloZ0g8GXXNP4zkUdg8PQmfk6C9EJOJs3Dw9fW/Kb9bLl3zpIYpIHWPdbBigAy2vSkYDUGF0SEYdZrtgl5/ftabdiEbHRTUpF/MjchWgk6gIERGJuShKx4URazKRNnquygqYQmiTJCIipyklrttJWabQNM2mKArnuPDkHc6rsiwdGJmzXMIcAMSAIKEhmORUksztQdRiIMpVUBAsWsQUTC1dXbwJzVpiI9pqMkI9Pl0sFgtVPXv0aL1ebjab2aMHqmm1Wj06Pm7SlcnpzNvN8lxkqYtHjtpHDzGsErExQVG406PJ65t102Rl2xgAjdSUEBCpKvy7j469I40RLGdR9njJuO97Hc9jr2cO09rlg/RfsdeUB08rQHfv7cK4Lwjr1oN6h/F578NPrRD0n8eareKQ4T6Ogu403b3H2UiTy2mFYIpdJ7eCyd3v21n5xgYHAPDeS72k1BZciJ+koJYSG/hFAcgWitSkevUK8dJTTCutSkfokH1Uu76+CUkns5loVHFA3heTNplzznlPRD7HQse22dSMXUI4KGb9OETJxYSISLRHZCWXHY+bdfvxy7eO9P2HC65mBUJJ7JlB1UwxCpoCqxgMAB3Zl4+jQkmHs0BEoAZklt3JhoyYzLJ82Pk7sgqRcnXBnqYggIF1RbNhSK8EVO2nz8z6wK8sQkFOtyAiBMrA0HlPjld9Px/WSUWWHS9ZTUqmSSTmsA6RyFQYAjrKUgKYApCimUVXlbPFXBHEOu2KOtzM8TIYuT52NGMCYiMGJEUa2BfknUY41nj2xvMeTrxnkhktYCQiU+gZ+9azM16cd7Xxmbc9lQCwZ8MZnVG2/TmQqm99Vg950V3VbV7oNi1S1/FOrjCjLNAAIiABIXT1CVCJDGWQYzJIAoBZn31kgCMrtOcOPJUBmQiYTCGqMRKgqSkCEm/hJAvknaGwDtkeXdf5IRLRzJhRRIdBsJyznkRACnJApiDEyAxEBpgMhKmAPrCLwXVjMJQUG43c4YzsyMRkaDlbD7sUJjMzK10xWczP5tPzoi4IPUAkAlDHhmamwaBQTQZIjCYJwPfmnVyWt2uEblLN2EVEJl94V5qBqXjHZoZqEkLEiFQ4X7qiKkgsbTQopJatw8Fwquzccnld+mJaVnW9iSHMJmUIYT6dIGIUNVUAy9DlmL13zEiEXSFcU0kpJTA1jYgEhpKyEh5TSqGpc8Xi+XQSkh0dHZ0+egqAFTszm86qqqry8KrqarV6dfW8XuP1sk569MknnwTRdb05NUdEhhrFnOP5pFpUxXVTqwg7VxRRAgigGGiKReWenhwjKpKZgHXxYB3o+njx7+xryFMEMMAOIUIHAIOjUHy4y+qaV8g+A97u8Fsu2TlnLModsuE/SutoMAD0tVAOWGc2Wh6SmH01xEBwpAfgrgnunobA+cy2WcXlGwzLYrJgfCAAZk7BtamxBPVytbk6f/36x8v129VaReBb3/r5TR0uV3VKEmJk9ogspuwKpgLJiYSYzVaoSRkUYmhVlbuYeQspJlONEpOoKjARsqFmBixgiISSJKXz6xtJzao5DVzS08UxzBw7JkCVTs5XyVWOMqxuzwK3XuE8XzSSmUyViFBNWExQNJkpdRiYpj0nGEZyBITbQUt09+yf0guFXWDROBcslyKwHPWBAAZdLsdIzYoSM35CprCWVFJS1Vz1QVVFwZCIMzRzqQpMHhEVJFvWTJEMIthsOi3LEkcOOiLSuzTAbMwD7LgUIoIHdApEW7V5MLPvGFru2rTj0241QcOYmXV6YDZkjfOFxk/8jNU8vOwtO9TItuFvPGRAjnu+x31HNMWS5PpAmLHTstSLiBoVCYAkC2fW3QqYM6MDIsTOdqI5rAXMqHP9KnRVD5GBEBAAZS/2W0VEUuoKDoNqUhMBs4AInhAANUVTIwRmjnG/pHoeX+oLLm8lxU6msx6jrbcbZTMOJYVMRzQb3ge/shlKMiIlM+zKA/8Uxo9ubA0QINctAFBQAxUygaglzN45fnYxvzjfyDrOiZiPbjSyGRKIpjYFA+HSF50j08ZTZoBoCB5K9q4QiaIZqhMAySEzJwlqRui8LwFMUiMpTFCbug4psXdFURARIzHzUlvnnKqqJCJis1xSl3yRn9aVJEcS6IlClvAEDBRNJCWNATGBkpgkkQ6eTMVECLT0fDSfnx6dCthsviiKKqXEprPZLFvjZkfztm3X6/X8ZP747OfrePP9H3xk+l5F8598+gea3OWFezifofdNUBQrnT8qS6aNmaLzFVabqGCQTNlgVvmFEzSibRxuziiT29DntqsoD/DekSzJ7czsHdLwZ2jAe6fez1m3MuPdH25t/Tnjz4OtbHuaIrASAgAOOQNbPRiRzQSRMccr5gLOY+QmynS/K/F210vc2r0Ym1Rfweo1NjceyFenWkxUpMC20I3Vr2N9vrpZNS1Ggy997efeefbejz55vnpzuaoDIiP762WNiJOKkDlPj4ioJU0aI6AxiDIAgIqAIFiMrSTSjvyLasbFySpdTFp6JzE6QgB4u6xbw+tGLTx+5+HJew9PziauRPRgCF1Cx6ANDIOsqoOqh7tjklmgGSBoUut/VZVkfVhNl20BHcO2kUqNhJCLAhH3PJ6oC8zmHoBwh9Bnsm49z0akwcqCmAssJhPJQGCqmi2HCVARlRgckrkckg0AljoPhcYME5HAIoKq6mw264SDXvGlgbPtLsi91YCIigxISA6GeuM7l/AAKr233+7TRG9bb3ddlQ05o3MsH7nLrHN4Phwo3OPnHmq69295Zo+YTXQZM5AcARqQdwB9Sfu84TqAlo4Xa1efrkPM6H+QnKGrfWeNO9NxjojavheCISADE4qhiBkCOWhbQATGjO+Sqx8BoI7T3RG3q93MskyQnz8EJ24tOmZoXUCFKuT6sdAn6WV4COxx5bYpxZ1OxHent20dNDvjq9gV3TJDQ4YuUX7Kcw7xwdH8ZDY9KttXVzFJNDZiYegy5pMEACsKV/ounZaMjDJKYC8QECMQOSocETlVNRXnivVmSURlWRZFoSo316ubm2Xbthdvrtk7I8xwH5m1m9mj9x8fHx2lui28r7x3ZSmmha9SSs45ZkYmJFMVMCD2hgSWgzQio6GppagSCBIAiViS1I2EiqkuZnMRmVazDA5YFD6EGkWq6VRSm8fn5vqCmaeTwszq9dJT/PK7z7793U/OjhaSHr58/fri7euZO5sVD5kKNCjZJmVResepjZoKAu+RiRPrbALvPzsuXQ3qEJGYQEE1h0TwYBk6bD0d61dLL7Fl+gqdCQc7ceoOprPVgA83/BA9fBcFuVXSx1H883DhrTz4Lo1hTAH/aNr0KHq218mMxtbr/fN7m2LH/vOHsvLsKUqd6sTTUz898+UkiYblsrl+/er5t998+sPz8+vrG1u38HPPnlytVjer5c1ytQmSgDW11zfrBw9ORMwX7Jzz3pdlCagiMcakUQig8M5UkxgSJdMk5gGcY3Sc2mgMjrtsDWBiZtEWCA0xmi2btInXJTSb0DpHDqaLko3JK6OZc75nnF1OSv7q3EhzHc0wY2csFFDVpJopKMlW5Ndx+XRQHUIVeuLSCVVmfSxDT+nMzEwQ3XjSBwaMiDmrtgvKQs7xJm3bBlFVU7VcypCIYkyI6JwflPKuD07MJKUEKXuOBdCy+p1jYgcR10S7VJt7G/beHSIy7DCbEHfijTNB7T4fcN9bGdutwYYwioLONXJ7hLadXTg83ezwNjtPv3WHbm9nBLi/+4ZFMfx3az+9KxwXeeYcQa7GA2a5NpSCACh2KThZrrKhmLv28RkG4IgBQCAvF6L+BQwQCTVrTaPn5og7QABylixaMkMicoWKWFJgBvIODVNKQcx5N05Z3iZFiPTCqJkZEZqBKJAjHlRh6NBViICBgQxQiRyhQ2Qm75xHVCLKviEYLemfVgXGXD/Suh4SaObBVheb9acFhwKms8Kq8mVSUawUm8J5yFAnoEiW+R+bG9ZnN+wAAMbORTURRSYzTZLQoCDw3jvnzOTVqxcvXry4vLwufXG0OHn8ta8/fecdX5Wv3765uLgAAE2yXC5/8pOffIp4NJl98xvfqFdrUGXniJg9E6OoiiRVRWDvi6IoYhaRzDKBJQQkQIQYxVD6NATNiwdNDCiEUFVTiUlFFFoHMJ9Ng9pkMlHVEEIO8shpzSczCGEBJN/6xoevL89vrhenR2m1uVitfDk/Bfas6AmrsqwK52Js2iCAvpqw97XGk+Pq/Xcfzoq3Ykbk0DpMYsRtANJog2z3whCOOm62QwQ6fmy2x0J1dKbtRkGPa+XSKA7StvvWjT0yBrfq6PdrvffrBBm1GwAIGLCzNJqBdQmlgIhGALKtb0oEZqQq2eiUNzFZSbneLDgwQhQ10UQ0YEePOoOYM9I6MBrI8mhWuewpnTFOvdSXWKQTvdLr5duffJzefv/Nq0/qi+efvHpxnSg6/MpXvuCk3TR1c/6ptrU/WTQr2LxaH0+rTaqdK46mU+ecLZfaNmkTkhoYY+V8UViSFFtFbJOoQFGUMbQAwAau8NDXwZYkZNDEpvNcKcy4QAMU/f03NyvyiVyMZx+cHZ1MWDk5YmxbcgzMQAxWOiSkABpVeUh/70YEGZElB2UQEpWeEDlhaFUVHEJKlgQNTUVRyZlj7qz+WXpBAIKEgogZlIN462JURTNDBlRxxN2WJRIzUfHOG4BiDpNhADDFpAZYYsEFFim0KJLtB1GSuS5TmRQMRDtkYM5AoQwASgaQgiKQ98WmviomBVZla2IqlWcAFhF0uxbOXjshSJjzEYgAS+PK2AELJgAnwILoDMjUEI0g7WnM0DMzkX3NuIePQFVldgAgAGiQUobfQ1PscyYzn0bKJBagRzXqQXL3vfkAAyCXDhJsZzHq+I7lMKJh2aOhIiIp5/rN3WRit7kdZNhUoozqA10yvcga1RNORC+NUxITdTGBSktEnD3s3YaVfscNmRHcj4YJDLYZztQKAUw7/2sXWDnyARfsBCSIaIoG6BAjWoyCTEAAZkkMRLrliCApDXNBBmCQTeeMBNov/F5tIIeWVPuwKjPQbGUwI7Yc9t1NDKhaiKk5wqmZJUsAysqMjOQUDJEzvWLMhnRDysnOuvUpjJRkYTIzRI0q5BjBaZ0m5HTzwhptAJp6tajknaPqYh3ahEKTJLUoVDR7sjh+93h+VLgSZ8AChIq9kaentiqJARyhSExtQnZEVDfrGR0vL67fXl48f/ECXPn+V/8YV9M3F5eb68vv/OijT1+/XUfZhLhYHKPh8fExuNOjAuvYbn7v977y/vvzoqw3l9PFrA0GyIRsxgjonHOcc8/AMaekgAigISZCjAbITlIiUCILIURVZkeexLQqPUIyNEDjcup8tWljQV3BDzWcVpPQ1AWjqqylVBB0LUV7dHS2+Mrs05f+Rz++qVfn7fJ4Mn3KSMmaYuqruberVaWQkkmjtpFyCl96r5hPiN07EmtUA4Q8b6qCiIxOLI02dW+9UOihT81Aem5CvUcjH+B++AepMrfOF5P/fi4TNHwOK/TeaYfS91jjuZ8Hf+YJ4zbyxHRB/IMhqMei2952XPlkfPzwSEdDAQATw3RWfVHwXdK0bK9urr//6eU/unn9m/W6Xgd48MC9e/whlGdti+v1ZhljSokB1ut2vUIzahIQFlU1TSqxjiGEmFJSIXJFNSnnk5RSFPXeAxBwbEMMIQx2xrGsgLj1X+7JEHNzF68uf2+9adtWiJ7Z4sS5uUP2CKo5hAo4ILsOY0JsuKf1LJgIBLJdE4GsU8ccQwI0ocyN1PJCzAkYQ2Az5rN72aa3NA5mmZ3RFpGMU8jgkBn7rLpBMDQz6Bk2sUcDpyYQcogHEuYgn2xqNEUANTTO6Bbs0QBzvU811aSqjpiIKAOGEA891NtWGmKOpEUwU029tZ7AHPYcbm8Wtir4gdK597nXgHeXZa9yHnbmrvZTnXxw1dg6BdbhYNzSzHZAaqHfHUlEteNteZkwOe+x6YA09rtnB+s2fx7KE+2cZpgD3fLgjGFWRcSsH6oskhCiQyBWVUlbzSPbaboUte7O+xTJzPYSOplpjDI02Jalq3cMPfpcR2pyZION2tjpPlaFb+nAwfh0V1mvqhMBu5OHj5rNjXeFg1AVxYNiuqxTlJDApaQeuHRYeHIMBhHvzPLoQHjA0FRAVJnM7G3z8vWrt63Yg/feT8jf/ujHH33yPJpetO7r3/x5frT4c3/mz777/ochxFfPX/yj3/qt3/+t35yX+Kd/8esvLl6jvvralz+cLR6sN9fEWUJJBgbWBcEhIrqSnHOkuQeY9y8iE+ehE5GkXYGWEFIy8EwAyExFWRhwFJvPjyae1uu1qUyqanl9hSaC5JCIvErUGGMMpowIk8nk+PRE0zk7AAyqjsiI2HFVlWWtLREESwh6fASLSUGgoW5z8gX1JUbQBo/YmMz2a7gPkttbzHvsZm9aDxuOgTg+s/0MPPiwc8O6/Hz3+bwd684foRr1ZGCb/2odYf0M3o97DJiCGSEcc0Ea6yhRJtPi7PjZ0X/fAUsNoqVAEVJ6/erjc3n+yfkVO5pNJ1dLrZctJMcIU3VtjOk6xbbZbDbJFB1Pp/OTszNg3Gw2DCgS2zZmZDsAGIjOZxgM+nefqG9BX1+ua32+AfiF99//0vExGYqa91qU6CEhoiIaoiD5zLQMRpE4RkRdErpmhcADAJsBEEMyQwQFRVW1nMAn0jNvJgIDGIKuzAZkos6Eu+2wZl6bE5qBzdBYUQEx5y8iKAIpKAPl+FZyjLmSK8QcHEXmTFGz1AqAiNyXBUQEckBKZGCqMWRYBiqdh4wa6NhUk2nhC1Q9HGFEJHWKaqAAnZCLyIQ+g0XkQOLOvtST1b0dOF7wvdo0psu7ezVzjAN99p6FCoey5P4JAAd+nJ/GJd1LS32y1nBPHRIl0YiyB5SIiNmbBTNT7WKM9yjUeDT2SMGuuQ/NRgGouFUVRQQAzdAsOw0zH0NQQyPCzqi55dAjWrQjBNhtJvoDwrXt7Yh6DDLHNvQBMRuiiWjskTkc0nu2MwESdMHCakaEzGzVXECW67aqplGdXFyDo8WkaKMocEvGZtOCp5UrHKFpth6RgXWpaxlsDhRTl3IA0K15YzC7Wr+dnEzqVfjd73//9dVG/OT4nfe/9bWvfeVbf/qd9z+Yn5xiUThfLmbz/+ff+tv/+Hs/atX96EefvHrx8p/9s3/mxfmqmpw/eTCfz8oEQazLLOoK/yEiMTKxL7JVP4W2m1RCFRGJKSXRLMc7RDaLZTG1XBgKUQXFtI3169cXBZmZTKfT0LSM4J0HTU29RioAlEE8gBIQ+fl0enR0tF5eIUnO51cVUEUFoqIsATHUkAqG95/OHx7PCkbRwK6kEVQIHkiQh22Pqe0up7G4uU8Wxiv/p8sDPhSHP7PdKvne0/Iq73WB8evdfjIC9Jg+3FeVom4I93vO8Lm7MVxlrJpUMIBzSsb2YOF/qZp+MdEzDwpx1WyuLy9frd7+iBdwwmX5Wh8+PJkEdxWXaG0NySv4YGItaAohxDaoKrFzhefCDTlC2b0RZUCi6Downt1MuA8oVyZdWrgqoVyv2z/88SttJb73znuPHjwoygnhkSGackwgQLlSyhjSpC/Lo5qQezMLIiFCdiEDsHF2vdngw1AAgBjbTHm7inLWdSmbaLKWOWYVKj3ifH5gfjURRCZiGxAnzBiHHHYGAGMHpoSZ/CtIDk0mwGxsBs55z0iQS2gQMyKYmAZUbc2894yUTLDPprP7hFN2iAkNcjEBZKaCsNIc67urLxpmjO5bRM/RDXH8YcyDt/R9dPI9jPKnWsN3XHu7dWpoZECjTigCINDARBGRrJPYRnUJAQa+2z1rEBQYEAHzKPUnGyLCVrvd0RhU+gO7MSxDlGn/N2NoDFGG3UMH6bC30OyM21gCGP9qo19hd5yps8F35vSB3Q7X5o1MfQn3O7nvHVNHRNjX/NgqzYTHZw/XVxdqOJlMEMtZebFsIpdsCAkAkDzxxPtpURbO00ippq5AWb/qTLMan1LSZABkok3TvLp6/fzV1fM3S6GjL/38n/jKL/zS4uGDyXxxcnKapG6in5bHhPE/+Y/+w//ob/8/mptz56rT08fXl6//9v/n7/23/8yf/sHHn6ie/fzpF9rQghlLZGYABVRER0TJcrk0zE51xbxtMaOoxRgVrTf1E7sCu5po3DTNctVcr9YGFGMUiWYWw6cS2+Oj2aPTE2c2qarUBnbGDjxiNEOEonCL2TxspiBMDgEFrRVtm6Zu681kMkkpIMJ0Ss+enBxPXAE9YL7tb1IYcVmzbvb7X8nu0IAzU9pbWrcvhs8ZBf1TtT8KdRjuMGbb27caZQNvz+nWHHUcJUOu7w9lP4K4H524N4LQj1zehGRgub4AI2JSwSSO7DEVD6xKbbwBXK3rczePi7R4cnayPD+bFD8qHx7JdTqaFbMKVmsgSptNEyR4YtEICs5xWZbMnG1ZdV23mzpHzRWO1CCIOtwxdd5vygCAlk2lQcS5K+Ky+e7ND6+WV19pP/zyyZMHR0Vif1RQaeAFWI0Zk1PsbJ+ZD4GZolrHBfsBISJlx4YGoha6cekqAltWc3uKug1QwlHypaoOep2ZdZnrZmLdRkQlACB0wsLsyKxLaEFGgxxNrQAIxOyNiAQkxQG7AQhIrEPxE6BiMgAtKYBzrmCObK7wviqRyWIHsp/903cNaSYWiGyIho65JC41S0vI/TIhRAXoIqoOF+et0mcvMOGYW1vvXbxrfv//17puHOjKd7XOv7hvYc6WWOl50kFpkwOetP/6sB20rP4O+3GcY83Mqiq5Qnve69JDZ4+477a3o/h/HPH4ccfGXcKRsLtDQ2yrNw8tW1C1bxk8ErLeeVCfG+6Vq7BXr3OIvpnmeG9jV05mR0fHN9fnYunx2aleXNUhODAyY6CCy1kxKX3lqUTxBtuFRzmRHxERBcAINWrbthKV2bdte3N1/fEnL66X0fnp4vjhbHG8WBwxl2/fXjlP1XwxZYja/uLP/8Lf/8//M7V0cnL08vmbo+Op2fHl1fU/+J3f/rN/8udfvn7xxfdPrShMolmO1VEAMRTLseWjYUNERN1KSKBELo8kERI7C21ZTd+eX7y+uH749N2K/fWytsLNj9+JsYXNaurozasXb68/JZV3nz5ZVJPCwIPl5DT0ReF5Pp+tr08RCkRGVSAFSzGskoiJmJpz8Ohs9vB4UmBEjexYTAbXJWJvSAGgO4us6G0mKEO85fx76PZOENawMhF3TUCfo9118khk+Nz3uc0kuNu3fUPf/t+cbYFb8jf2cd3amb3bbm8uaODRHDCpBrVo2KgTWSNp1LYNq03l/KI4mVn19vzKktCUyaXjuT878VcxJoSmbiIAYI7J724dQkhLDSG0bWuqnV6BBAZ+32/fdWagWWNanw8GVAJjA6dGxE2AT95cXIZ4cXLz5NHxl549ePfs+Kwq5ugYkESUFLuY3i2av5mSdioJ5zA8A0ZGRsSJGIHV2iVQ5jQSIQZVSZJiMsIMMVISbe3PmSIP/mDmHhqzQ3IgUCIiU0UAzbFDPRQWIgIEAM4cvaOhyESimPp4FjUQkWimmLAsSkVEZFUFzdUak0Gcn534qtRRkqRzLqlkoKvxOoB8U9TOHIhMVIErjB0QEznoyCiNQEPu1Hr3ePAwd3igAR+uzF422tkRf3QBd+8R25XWK6ODHTyHhNKgOAJkjylizrTpYJwxI9Gj9Aijt9irbIuHuuVtwyAgYp7eQa9F5Bw4vWcMNDPVHPnR6RmImB3B0BlVuqcQEYDmSkp7dxgPuI1pVM+Ax/LuaLvt2JzGz7p1bG/TkHaktPFleSiw70YWRxRsvV5D2+QQcm3bWVWezOe+betmI4rscVaWk6ry7HLoHGSfDHc9J+hqgBIxogOgAlC8MTOxD1H+2Df/2Kev3kZwjfnv//5/+b3vfvurX//FX/hjf4LMnyweiODl+fL//H/5v/9Lf+Vf/sZXfuG/++f/+S88fnD99vzo7OhoMvkz/9SflJsXi6Ppan11cvzlGBqNoTfnaQ+y0303S4hG2QaiIYY2SY73JMu2FSIARPYff/qimh3PHk6/++MXf/DDH/nJ1Ply3XzUNPXDs5NHZ8cPn3xQX18R2O999OkXnz6YT/zJonL5jSUBkiM4mp+EhASoIIxGBGbGANIEQjia89MnZ4uSOGUFiwb+N5a8hpXQLwbtdTm4ldHeM/vjiR5/vU8DvusWt7a9JX54fO+En+rO91C3MYMf4AMz6djfaTmy4w5GPhzc3RWAACBkQCZgpsjCpISmTfCMkXg6nZMpk2CqA57PJyd89uDo0XR1uQbHF/rJq7fgwBcePLNqEhFLtk5r0TUACFhVVc45kdgPHRZFkWI77udIObDDAUREilaWpakESc772fyoifH6TfO9q+evr6/Ob5YvH5+9e3L25Gj2oPIThokrIQO3mOvWFiqiwx6aCgZ6kz1e6FABDYxCjuxVSwCUVZuceyBdQR8k0iGEYUy5tq+jin0VZ8zSb4xIhKZEDJgImFkdOtFI7NF8N5MmKJqR9AGBsEsfBVMwMQPt3I+dhmJmAMqoj959x03KqIKOEVBickRouleQYRuAAzn9ujBg4hm7qTmnhDmotQO86VbaTi7Qlr/uGi1u3RSjVbcDP3LPmYcrFm5rd+nSfa/275AreIzThIdQoENDvYI5dgC0i/yqg/rVOzH2tOQtLbtlBPZty9lGvSsidKQcACjHEqiCqJohI9moEhxCFpM6jK18/NaAu3GXDt90UHaxSxDa7/+eSDEc3K4B3D2yq/rD7goZhU102oMjXm1WulmfHS18TSuJx4vZZDJ59XaVRImK2cRNK09sBtH6kougZqOZQUTjUlXLqiiruaqKgUzFzaazavHs6btBZdmGL7e6WsvzT/7wP/zHv/Xsa996/O67X/jGN7/5S3/i5Q8/+qWvfX0xmR4X5c3r19PF4u2LN2cPHvyJX/6v/cd/89d9iE9PXFnNzEDU+uyZIdlEwcRUzATBCFQlhtC2bZvtBNlmwFyI6LquV6tmcfLk47eX3/v4xTf+5J/65//pf/bo4cPF0ckPf/jD0Na//49/9z//L/7+1JPU61/4xjeOHr336fnzR6fzauZnZQmWwMAkmeh0WmodDY0k1xpniy4FKJwUFUyn0wfHc41rNHXON5A82oBUf6dIdbCY9wS1w1/vutNw/DNM0D8Vpzy8+61HbuWmn3nDsfC491PWrjJ+U2/52UFkHS5H4FsLBiPuQAmOdhcgKqEyJsXEGtXUrEhBadqkoKuErnyUUlIKrVy1hXv2zhenz9558PTZ1cs3AfSj5erV26uCJjGuoqrlKpgOLafbe5eLDWR3iHPeOReTDLkr94zenvBRWIXJElgiADQVYCtnbpKkfnO+vLi++tEnn77/6MHPvffsy09OHxxXlRU5/ql/BCMSkoEkog4Qb/wIU2b2OTmFOUEXp6VJEuKAYwCpq94aq6oa+jZe0ikJ9F56NDA1AbWUxICZKXEXh5pzhdlUIwAQkyqoCKohCFhOT+6tiwRDtT4AJc7+SjDHYEiek/HJwwdU+NjW2RMsMe2N5+HUAzNSYVCyK8mVwN7cYHzeb+OdsseDb52v4YfMfTMDvj8I62fYiXe1QwHunoiunW73HIXZj3qb7fBiWwvt/lPGkJzDrcw6kI3htC6oOCdqEezKNt21zNn2YJLyExG64KxOhslrK7cBYWNEDwB2JnpnHBxvYxcQcbBgqwgZ6oEJevigfdmuLN10kBqfWwMedzBTMEVUAF8wqDX1+mhaCKTlsiWEtm2JDS0Rky/IeUMUMzAS0F4zs71XYwBA9t4XUVJqIhKWUy9tmldlwlSU+M50Tlh+9f13VejFy8uX3//O7/2Dv/ebf+fD6eLka0/OPv3xx48K3AQqgEDt2dNn3/3OH15d3RyhPXzwGJ3PRhGzNH5H2zqrDADQNImkEADAe48ZvRIAUNdNfX5+OTt5+r0ffSLl5Jf/7K/8U7/y3yqPz9S5VdP+4qNnTPB3f+MfXLbxctU6if/pb/z2V7/y/nszqEVa0ULERBCRGD2SYKRGFMlQAUjFhRbbhhYzcQ69Z2Zs69o5LEonkhzZEJBP1EkRZjYM48BW8lK/O9p8nxPjQd2k8YbqgTh050ozIx4R/dFK2S0OtgXi2ZP3R2vulmCH7U2767PZSvLP3TkI0NtPLEc4Z30GDXGQLvskb1MF6+Dscn4LkRKZaQ71xQ7fU4bNvy+0bmX5bQSbMZihsgUTACYsCCBBNB+9HLfpkkzNa1EuSEkVjqenKZWnswcVFXVKq5t6kejds8mbm7VFTISKpKoEULgC1GKIBYG0jbGjolBC0K40qUR1zgGR9TDwOe6z510DNewCaJWzo5QdMAoaCKIKQVUWpigiq1X63ub8xdX6B1ePnzx9+M88mZ3OcFaKJiFfME8RvDNWW+Zom4yDC4gGKiIOCZgJnCoCkq+YXZEk1A2mEFUbxA6YSSSoahsioSPnlSgloqSOkJlFWmZWRLCEOUtSVVUQjKmIde3LCRc+xMagSMKFQFM3QCvvPTuHBCaqqkIFEwhuyMSTU4mmsZrwJVcz53R17TVOK3h1+dqcfvOXvoWTSYyxJGciAkJEKSUEItoBnFPygIyOJQG7AtwE/EzcXN2MsfJQSJ8kijjAHmE2Vh8ocNstMNqNfcopsKJZznnvYtEsGTjjwGSeTbrSktaVzjtkGPtSJtzWhtSA/Den6Pa/6da6bJKRiPPME7IgEoMbNni2RSMSIBpGjQlMDJGdRvCcQwohWAdakofTrItwGXKWAHDgVVnu6EepD2hGRO7gHDNNlJFw7L3fNEEVrNsJ4IlUJHEO2LMcBtXVEe7z0Zl50M3JgCDHGppiB6+KOYDTMIgiITAmFVDLSC2oFh24aEBorojEKFgiY4URdMZccOGQkB0yESCjSxoRsadsmURh787GHpxEYeBPBkRkSIimqghGRHUKj4uCrMHC7PiY2+kDsVdv31DS0/KD8+YPpsV05ubzSa6VVhoIdbIUQqJMGXJ8OqTE5EwgQkRy0xmLakpJlcSAoJi4AiIhytGEEfHRyQffsg+fv327ie3pg9nPP/2Ty+svFZ5vlucgenn+1qyZ19//pa8+Ojo5Xnzw9SAUEQ0dIpKKJCBULPNsJ0MDdiAh29xQAlo7KZ+dXy/JhQdnJ89/fHGzahDa7/y93/7Wf/OfW3zrl/zjR+uC2s0rBu+oLFT+7f/1v/W93/ndR6dnq5tl29bVvPqd7/8kfPFhUR3NXrYP3j/aYB01ztwU1srMflI1TXAArqS3b5cJdS4QDZ7OT8+O2IXLcn7EJQZdOxQGP4oH7CznhJ0QZiZqQ6k9ZnIpBdxG9XbJFyO2co8krWY0eER3NOAxTxp8wFtaP5J/4YDjjhntPT99ZsMDmff+dihcYC8Aj75uTx6MSJ/z/gS5XB6Y9ejHBog0Yb8O5yarafGhWLVp3jqCh+98tZbvCMZvf/v3fvO3/tHLV29UwRduceRWV630gEqdVK6KiJKroPZUHajr+X705lC0D7fJatCDLUOftoR9lMcwd+um9uiZmVyhlm5uVj/8qH3+8kX4Yvjykwdff3z2dD4vwFtSsU305soKMqq9iiRhJGbH3nWgbI5ZgIEBVThSJOcnKXXpVU27CTFm1bjZ1OTY6cQJZHIjhJ4dOp+Tn6ICGhAhARsSpBRSBIAoVmjJzLFtnXMhsCIggphpTGiCXS7v2lJMqWUk5CpxkYjIF3MJRRRBa2Ndh8DT8vGzp4/eff/tag2jBdwvAERyOx5WN8GcCUoO2VExQ666QoTkgPDzr5zx9O0pxJkg37MOO86ape3+yFh2HO7wme1WUaALWjS6FcpytGHoDoV/qwjuft3Z+zsE4cDoPf48vnyYmr0Xz23QdGGIqLLOaTJoq2OasC9nd1ei9lElw49k2XBvSJTl/kwEMzabqjnnEsaYE/2ZiSi0CYpiUIJRlSgH2N8ZQDMmp3pLycJ92ML1ZjObH6kGcuXp/LQGu17Xp7PJYn5Sx49zZ8yMiAkIbMecMF4zpoaQgF0OTmZiQiNEzWIcahfTYMiICgQqRVW9++yxKBhhiM2ETzy7GQojPpwfM/P0aMHeUemJvWw2DtAYUToDAIDFGD35PkLNwAzURCSEIIkMm2ICzAsV3oTrJrbE1T/93/vzP/df/5Xr8uSLv/Dzj05mv/sPf1MaKcv57/3Dv//97/6BR5j6MvJakY5ns2a1+sMfvn0ymbwzOavrNVdgTClEkYwj1+PKKcYYRYQJj+ZVwTQpiqooRUSVytKHdLsgu3swS6fDHuTDKf4ZiMM+Ax4tkZ07HpCPnS7usd5bP+93bn/nH4RNAnyOstb9zQ88TGPfHnbWg89xr9ta5n8goKhkgKBmcXWxbDfnZpJrhhYlILka56/Pn3/6+7/z+9/9QV3HJ0/fO0K/+fTV9Wap2kVrAiKoilnGqSUkGFU3y903swwRBarWc2frt+YgZw1EcIe27o5zWZa5bhwik5AobOpQN+1vyEc/fvPm08cPv/nsvS88eXBc+ZJTAVZH8cyM5Jh9X2Zc1RBTFhCGOD9CRygAUBYg5bSoJptVsdls2lCnlJhJzWLbRAhZaCiKglA0OMRBA8gQzggInhFVy7IMoQltzcxN00xnM3HzrMEIgklEM4fgibUN3nvPFmMb41JBHTOA+uZG0EJqG2mnx7P3vvTB/PT4+fnbopzcMq2QyzduZR1yM2AHTAQFsydfARfGFbiC2AO5zyke7nK7201BwxHEfXyVgQGPrxjER/scS3mvA6Ob33rttmtjkPDPfMSQDpsZ0tiCfvez7myH9C43Gt2mTz2nwR44XHJIo4Yj1v+Xz4Ve/OnuP7okJzXlGek92QQAZcmxCRFgzszsU5IYY1UWo53YTdshosl4KMZdggOr4d56MLNERqbV/LhcnISmBXbzxakEcs4BADNnQ66IOM65TDukuBeSTE0IPQIAEJHrg3uJCjMTsxxPh1kuIBBilVR7VxQlR0kAlszC+gY2bROjKGjhWu/OFk/K2XTdtBiFTEBMUjRRZMpIcx58BiBD7YMl1EzRcdm0N0j++Ogdk3R59frienV89MXa7L/4zd/88I//qe/89u9Op8XZ0cknN6/ebC5/8N3v1Ter2DYfvf3ByYOToihE5MGDB89fvXp9ff3QaQWrp+88ANOoNJ0uQrgBgJwpp2YxRkniHU8LLAqoSl+WHiCCIZEDTYPKOpDTsaiEiANoVRYTxy6VnAR7+5q+pW3xPXAA4hio+faRtPP4vdWz18z64mK7nbZdtfjuLX0LcPnAcO4nN4ebcGBX+zfEn4UHb0clMwpTkKQptGGNyIDc1KvC4bTy19eXP/n0xQ9//KMf/ei5GX/xS1+sJvNP31zEIG0bVTmJGgARiJmpUc5iYWQmJme7qrkRgUgXlEFbQ1aP6jzm2fsKxzAUln1RCiIGfd6gY0+E7SZ+vH7z6u35P3l7+fUP3/vak4dfPpu+u6jICAQpMyYiIEwiKUmGjgYTy/lSeWkb5BqfDsk5V5XT6XyzWS2bplktrwEAQLIYpSJNHeuNIBXMzOw71II+4r9NAQBCaDJoBiLGGC1FXxkiGqKagRqbmnNGaNW0bqOmQBAcR9MGgmqAml0dw/R0/uF7X5wcL1xZKPFsfpTVaxjxGQNARAECKrbTXR51HmiaEDM5D1xodgZnN/ndTOWQ6Q5/7Q4NeHya7d7qc67Pe8483K3YGcfydqPDfdff7bOf3lmi+1RgROyzv+4an47N3XfPEXPCgU3e1jrxZHx3A8jyKgKYdcGBBjJyr2LfAwMQNETsTstONwPoNVBCZMOu2hMCIjKjGOQNlRMIRcw5d7jp9iPyDno+/nV7PBdA31VmTDGRoFnpSqRq3a40JldMKp607VJVnSv6PmQtVx05G164JxeIgDkYyhxbNoJiF+JGogpmudRKLomBaAjQxiYm7TOHUmqaptnUztAAZkeL6WLuq4lnZ8mgEScSU0xtbRIRjaAABiIyUetSOgw0maYsT6u0jEUyvLm5enB2+gu/+Cfenl+8Pm9+/+/9xuLpe68/ff3+N77xwVe+9KZZLc6OCmRfMJJNp9NVvbq4uJzMqtMHp7PZ7PLm7bre1NG3LagEUItCsTAEZtRgmiPzTQQUysI868SjI0XQoiiIUJKaguFIGh7NVC9Ujmd5f7kCQK4GdMdqvb0hEBjsF2MYS+WH4uRdDBg+z5a9s92m+44eQvYZPHjb7YOln8VM6zUJIuqLVHze1uHIgJllqAeIsW7W18QRdZZiG5s3AS/1Tf39H3z329/+9g9+8HEbYTKdh1aa5qZtknNFVZRtncZPzVSAmY2I2BGS9iJ3/1TKKHrbBZGjMHuY4L2dv9U+eq6cP6aYw0m6nBkDVEMVnQEJcGjloxdv3yzrj1+8fvXhk2988OyDuaeCjBkspRQkA0eVnrrIZ1JT6PMGDJHZ90mY4D1nNpxLo4S23Ww2oa1tqIEIVmHG7Pbo+oqsAADgiwIR67pm5pzrycxtGxs9zxOMBozAzC4xEbnNeQiJiMqKNu0ypWYxXZycPKgenR4/OKnms1aTqBphE1qJ6or97dGtcy6JtwzYlUdIhMiKFRAZOWBCYkOGg0Jj41uNRdW908aK3Z5Eu+3JgfBKHRZaLxn/lNatrfh7i21txHqNepwp2qUytzuxdtjDuGnOLvuMLgGMdEEyAFDZJt3qKBIFB1zo3fGknOKmJipmRsSmqNbFQW05z/DEW47AoKgO5aspg24b9MBeSIiGWxt9CLHyTKSqGmN01bQoivvf9/D1h+7l96Wxaw9GOsfolZu4OapKEUK1yXRatzcW7PGTZ+evflhVlQi2bStSuqpg5BiCo1sqzNrIBYCIiAydu517rEDuytRoJ/o09cZ7jyApREJOKRHg6elpa+Kcq6rpZDJxzoU2tjdLEXEFh3oT2w0jOOdEBEWYnYRI3psqgKbYWopgSkTXV88fz782m5+sNpc3yzfezT/4wqPHzzaXL5tlqzHc/P5/+h9/7x9On37xC7yYP3n27tHRzHt6/fq1GVQTqkp+8/bFxSWezarjAo6Opwmay8vL+eKoqqaG6pEQBE1UlZwnQEaoSphP3MliwmQxBr84IrQYAzPfU6UHdldgvwUyNdhO6Kj80edZCV3eww4D3tOo9q4ZL6Nbf/1MxnabEqx7n9F2yBx9Ppfwoeh9KHseHvk8jZkUMmBjRgFWDSFsVmFzUU2PCuc39YW07cXbyz/4/d/57h/+fjl5XE7Lpg3L9c3p6YMy+XbTrJZtlyEwEk6RCYiQHJFDAkzSleEjRAAkJCIl7QIBeriWIb1nvJ8P37E7AYDIZV2ze3JnVKAGY0VuopyCrt6uvrus39arP7y5+uWTh08fPnj/yeOzeUWgoCkjy3dleUjQxKzjwKiQVIjIcwkAqslUvXfew7vPJpt6fXV1sV7dpJQ0p1iISIxmJtgmogw4x4xEdLVZTafTtq0Rcd1QCGEymaiZC1ugXWQCJkQU0wXXSFWI8Gq9pgl8+MUPPvzSt46OHjd2bohLicxcVmWMCTXN59M2BtjFWupHjHGkAYOfZoAOokn+GZCtH0y4d2vceuRwgmCrEHcn9NOy3YBwsKR3j+cLb1muo8cd8t1xyzw4xxl3XGZgkP0lHRu61Zi01/Z+6nsy1ip2b4O31GhDHFuM+/MP8sS6gMqdq2DLaPY8Xf1OgV6Yzi+J1uGdd4OVIVUQiLcAGh2inoGCESFIZ3wadlP+0Pk4t1Wi933e43YoOvdHdkU362wVRhZVSy59OYlpA6DMaCCbzcZ77xwPYCBGNpT93nZju8DIDB0QkcOunBn3JELFBBkExHL9C0MiKsvSSUc9JHlEns0WsWRmbuvNql6VzpMapeABU0wSgqZYFI4ou3oFU2JmUwUzFdGYVLryzGcn881y0wpzod77FLCpk2D7+AvvpE9fPjlafOULTy6vVuef/vjNxcVzhU/r5eMjx9EHSWXp5/MKEU/PTs48Q6xPjqrKuEOjdY68Y1UmBVBQI0BmLjzMSjyZVsezWUhr68phmeY6adso+ls375itjmSmHopnNLm3z/t4xgeoc9gD4hh/Hovte6tnfMIhXYDRRjpso/W3Jz3eogffqXF8jjYWKe4alHv6Ob5PNsj2W14BFUHT9TlQS75wCqJ2ffXJq8sXAVxcBYU2xjCZerfCi/Ob5XKJBBpzPZAuWdIz5UJgSTLNwByw3ZVQBQDcoWWasYGYCLbBJjAaz+2L7GnGBiAqSXJCJBHlOK+ohGjeEJGdo5j05aurq5vV68nL9x4//ubNzZefPHp0NJ9777Ljs4s/IiNkyPWVwQg0ab+XkaAwE8kIG4CT6WJSTSXFGNu6bVab9WbdJFhZEtEkoiJiJoRGRHVMgJaDks2M2AdRIprEAhEFQFRDtADaqjYpfru5Xm/eXl7dJN383Dfe+dIv//Hq4dm6NgU/mVZeY7NZrZvWe4cIm2btXAEH+OkAAMbjkiTEDskBKDrOyb4dlm5WiA6Siz6zmd1i2vpMURW2PsJb+Pfh5z9qsy3XQeTeQ3oLWx3aoCkOb9eDoPWd3zXW5fcYOPGtnb+V5sCuPcy6OETUXTbT9+RgOxy8Qv4ZAFC7EO1hDMhACbNig2qEnV3SVLkgSyJi2UJjfc7unm7U79g7xnmXuo5Rq7CTh/ZOZnLarltXVqq6XF6ndhlaPP/0k9VqBQDMnPPpU0qIsSzYZLjndsq6r0YDqreZISkSYSIDQ+REAEDaJ/dNJtM81EVRGKDzbMjRAKNoFBT1QCgJDAhERZMaMXjwWxB7SUpEgEICKmgCKgBApqqaNol8M/FH0bxE9M7QwU0Nby4vHjw8vjh/8+Zlc3ry6P2Hx0+m3mI4if4rj2fr9UMEuL6+nM1mp6fHy+Xy0WKuOncMi8oXjhB4EwQklESeHBEZBAB0SIWDSeUYzSSRARLGGJmUiAY8/L05Gm12HNJ2+vU2TBbvVf35jLbN/EQYM+ADuWnH17jVQm7juOOu7zHmWzrwM+UW/7RtvJnzvsti9f7e/ix6imo2lCcDQ0RH6NnN1C5ffS8YT/wHJvrJy49eXLydnHz4hUfvvX776mZzqal59frj6xUUJRaAddtVOVNVJHCFr8qKmUPd7D+x2/I5P6J7F7PspyA66H+eJhG9Y2o6DwwDAkM24ElKpZ8jagQRBGJHohyjuwl/GOOrunl58faTR4++8e47X3367uOTk7IoG6mJMOvl0NELANAcDRFCAMu6tic0VY3SOmQEQ2JfVkU1mS+Ok9nm6jqloCmJxNg2sW1SCgayWCxCimYcRX1RIeOLV282m801OSCnYE1KyxTXMa5CswntupmtblZO4OlDOKvD81fPHx2fzv1ienLWrJaMOi2maiFpUkJkRtvJwuwn3Ygcjax2zB6YUMmYbVSdEwF7V9bnktvG7S6l53ApjimmdpUxt7vpZ9g1wx2Ht/6j77yBPHXLcqdtjajDQ0fdPny2joDYdq5lRN0nggCdU5OYSU0BZLhqLAqMSdktBZPNTJV2+9K9FALk4hO9TYIzlIdZSjL1HlFCCCmlYj5xXDRNMy+nwx7MLVtx7dAgl23do7xkHQUt41aP73qZL2zbduF9XTercJ5SCKF5+/Y64INpVaWG2zaAtIgLIlJRs3t0FsoSJEg2MvbkUbvyZllcB1UgMENGa9u2KDw5Xm9qclhW0yamuWLTNM6hL3wIIcXgGIg5psTeE5NqUhEgxizoxwimZkK5HJOZmorI0ez0YnMBtfP8EL1v9YagcDybKdmmPZnMNuw2cU3imNU7eKd07qR6+6Y5OjqyZ6fnb97OvT575yy14fThk3WzDm0bxSaTsiJ1VYnLhpnZYepXETP4gkLT1JuV9+y8SymhA3YkIq5XePZ22SBK9pLVwIC3y2ZkvVCAn8ITjMhDHvAWSbU7glvxdgwruDfBu0LW/vG7Tj48YfigsNU2B0XPALJmpHkEwLrNooaGjBBTNDEDVkUm0pTQDFGMzEBEgHIlaOAcizQ8dCSz7mNE5yYijOgMk5kBJGDlkvzEP35PPmm5vWquvy1q2HJl8/cfPZ0fP7xetevn5+++++HRUUqvX0IIZYoA1NTaJiiZymnpS5fTc2dllVJKEomJvc/4skSEvvDkBCWFCGaMZKiassKM0OVj5IBGAkDiHcOgUYewaCQGXZw1QHY1svcsEnL0DBlYjACAvhDmM4B20/xoc3N+03x0sfzi66uvvvvus4cPP5xN54sqpNrI0CwlKKnQkNgbiLGqsRlawm5G/uf/bvpr/7IXRQCPaEaEaP/GvyMAjwDgX/1LTZ0aYE2qMaqIw80SJ3h1szyObsaL/+yH/+Q/+egnYTaDNYSmzbEkqhpCBAVmLG0lBljRTaLrTfG973367tHx/L1HYclV6aOmf+GvvMlT+ev/uwegaCy9SSXjVHdIC5EaJD/Me1IicMjwF37lPxivh7/xd/4iGCBgIuMevZIOsIVz+9U/9+t/4+/+pXs2COZ637u7XcDUDAtnLZohETGgKAkYkBGQbfnx9la2hd1W2j5Ot/btvIGyYgpGW8k90/2s+yogWg676+KQDMAIwCgjCQiaIbpcrtkIiZxaIhA0RUOHbBDZmYghdvVwiHJleAM0465aKAE6QATOnlhPpKo2UkYzxLOk3H8VA8TtBGWemitQOuKk2V5CUQUgF3xHAASz7PXw3nUoGf2uNgIFLLDD5AEzJBqGlFMXIyI54QEVzJCB0KcgCdU5cg6TpkbaSTV1jtVMGZXQRDWzWEx9SM5Wr0UytK35ChFHcwFq3RZFRFBTMOt8wrJBAmcsq+b66uLlWwRZVG+TnlU8I78RAtUiaJw6gFAZCzMTYAaDJHQE2AHKEgGiaGRBdEwGlsTImYEZZScod4EHoA4JWQ0saekLJiRZT03aAEXpJUQ1hSSFnwRN7H3pNIVWLAIqmOXK3gyAjCgJAcwSgalJDA0T1EGn1QPm0rAOacOFJ0WWm7JapCh1XVsIJaJnAISUkitnEsLR4gxUPPLTx49DkhiSd9SsV5X31cSBGZgSmTYbYGMBL1UL4MlZ08wZHEk1OQPkybwEUDN0XMZYFyVrV1SrczhBz2KHdNyBQQzVrHHrPqDe7sEIZKBmYl3hbUbkHdQOFAAiw1yH5I9UjOFQhIfbuOxd7TPViLtUDcStgInYQQgZai7o2HEguL0be/ccWW5vea+sM2dxNR9HJmZm7xu/OH7nCxYu3jz//qtXL1btajYvJ5X76OPv31xdz+blo8cPNiFermvjMHUMHK+vNnWTynJCntoYJEXnSsi2oSw7E1ofcTY8dPyaMAIxGDrfHRm9oyIMpbV2X3+rbfSSx1hHMVVNbWDvyGGT0o9ePH97fv7izetnj5/88S988J49OZuVU/akGqBRRpj4YCmXXQHVjDxLiv/Kv9UAwL/278Z//X/sugKuon/tf7MVcf4Xv1b9q3+VbpaXaFBxcb2sWxeLpb3LiwvEv//pj3/rk0+uL1N8c40ORAARCiYiqtihQ8dssXEGmoyA2jZIml7drN+c+//Zv75vx/uL/4Pz/OHX/vrpMELbBSCqvJXJEPFX/zv/Jzhof+HP/Xr+8B/83b9od9s5AeBX/9yvA8Bf+JVfyzz4p1VbhzxXG8ytiIZ6j1Xz87fdlTNOLN759fM069ibV1XnXP7LDMP+G0TbkYbX5Zzt7q+DF+uFho4fgR5Ga+fNkWEpbWSWGFvpMKMLj158bPww22JLZnU0k46sCY53ECKOi0P059vYGbw1MNw7YrC7qe86bXyTlNR7cwScElk0lajSrpuiSiGEEANxmSSYZVhQ7YLSO2MPDeNro1xNM+Pe3ICaI936aOmBrpoCulzwQgVyvqAiMBuqmimzB4CceISOkJiIBLoAOQBB4AHMQFVBJaOd5g6ICSqgKjkeWfUwhgYRi8KZpKZp6vUq/zBBBTUEJTBAIMDSu4IdsTnnmBm0AyYDMAckkLMeDEBFI6IWBVQTVxSuqqqyLMwkA0T3U3z/tNw7reO5owE8a2QKui3dIOtIt/iAf7Z2yH3vb9ZhqQ896yIz9xjkbV+Hxx2o11s3KCIybH0eBl1O5c4jtnaY24y3+VciQtxuckJUdkSuPDprHTdLmj10X33wtePHb9p/9F9+59u/24KLbaqq6vnLl8v1pmnEjKWBoiqrqQIKOp99BqomItjHvwwsdvx0zPWIVLMYMBaf8/9j4WA0UCPb6cG8DO8FB9ZRM5sUEyMzpqjQgmzqZvXy9SfXq08vL7723vtfe/rkSw9PT6eVoYto0dQXBSWETF5H9+9uCIJkYESIf+1/RP9az4P/p38lpJQKx6Ft15tgah5IU3wl4Tdevf673/7u5lKPuFJQR4IjULYc8Bpj8kTMnCSZYgwSBa5vNowKcAZ3NkXcDmwnfJiCbhkw3YKNsN+6Ie3fcnRD+Au/8mvjwRyo9iHZ3ROwthagPs2swwZAwFw88TO79bnbPsn43Hv2ULbO3tC8RPt8pJ0HjbQE6OTikQV7/CFv7e5z94xs6Nrf6XlcBsaX0bKQduKPsG/D08ecMn+l3iw0eHMpo2jtjkeOVx1PUE/ot/iae7M5HtieFt9O4A9J0PA1/+R9QQbS1tA2TuPp8REUk6i0XjcxxrZtJ9NZ225mszkAKSpnkk4I2t8zUy0wM6PMcTvGA4gokhG7gCAjoXWqnGfPqISOyImIdolElFLgogBmNcuVPZ3nwrvQRlMBVU2imhDZWAw9WeaMKcO9ganqMNRdORZDIEAyIGIBZeaqLCaeNg7q2kSEkWK7QURGQDASIHKOHXqH1BcPzr5ryZi0YGZkOSoLVcWzWQVFmWfEEFFVUjLTZCbs4KdNIrp/Ks1gqAh3uPc7CQ+R0N0CxHF401u36OFuvPUmnyXx0ciDvdVd8DbdF7GrhmujI9qXxtMetseyFwfRBuNPR20VRnAce0t/jwdv6QIjQEbM6I4rkCCl+hzFyCpPjxjw6aMHv/zHZ8dHj3/jd/6/bWyco8ub800Ti3IWU2hDXCUUIGCKMZoZk0dvklAhbd+358UAnVPGGFEJwLJRSsGYuvTZ3FkYaE3vyFQEAuqQChBx6/Yeq4Z9+CdCRu8DGGB3MSVJIuiwLKaq2qbU3GzOr1cv3l599OCTr7/37OsfvPvk7KhCT0SWFIwdkoFoTjbUbUC/qoIaogHuZExK26TYqIVNs1mvIpK/vG4SF9959eYf/JMfrVY65QKIkUlNHTtEzMU1yFGGHMoTTkSqYMSi1CT9N/+3Xxke8e//ew9F5C//Dy+HI3/pr17/2l8/Hq0HNDOmrqJsbn/hn/ubw+e/8Xf+YrdU0H71V/4P+fO/+Ctb8/Le4vwX/pl///A4HCpeAADAd+T5QA/fk0ePuNM17y6L9tO1z8l9tyzzDu6MuV5w71ZHGjhTJ4aNbtV5jbb1brHL/rac4JfDA3dFTwOD7a3u7mQ3qoOq2umZ2QaOiDoqWKR9AS5EBLHx44bP2VHRfcVtJaiO6XZmyduFp1t7OP5t76pD//SY7nV8EV2KTbtewmZFoZlMJpOjh7VylBdNzQBAIDHVpnPD7RoxM0RWUu6MgtyrZQCZCPaoGxmvEgiNkIAzBKMhEDESMnkgNhIzQzJNXLD3RQGpbduWi8p7FpEk0ja1SdQUVdPA3QEgSYDB1JFxvlVNgD2IgpkAZqgTImBEU1BLIirMPJ1UTCghAoC1GwR0mAkjMYEjZueM+soxKgCgiKoxh4WDETOWnuvUICkjIIkv2BecTQUAgKDsct7jzjR9pj55F5szM9gN6TLTXdbGHQ7lWAPea2aGdMuzD/nxoeB2V4/van2y385N+iH4XHYBRAZCVMIupRFzVGc24m2LqZkNgL3j3vZ9vl3UMLO+G5oVJDMEpHD5ialajCS23ARRP5nMnj760i/+YvzOd76z2WzqzXLdRN0sBdk5t2kRoVB1OVKFiVwuy6PSEw4zPdSZ0Agztl0GvMfR62S609FrpCy5Z0egIYxmcIf1DqNqIztkL6dDUFECQiIgUEBBggKoUE0X183V6pPnV5efXF984733v/jo0ZOzU7LsX8+FFVQAbOzZUlUBsAwsD//Kv6RempubVbs0xXi+vIwG6ovlevNSy7er+tsfv1y+Xs/KmVa43mzmahvGPJ2aw6jAcjUGVlUQLrxIInQhJbWtp/Df/F+hSHSu+Pf/vceI9pd6f3DmwZ1q2XXRwLYa8ND+xv/rV7FDRQIw+D/+v//FX/1v9F7h3mjRb4fDq7eL53NukLH8t0+y/8jWqb0H3aV13dUlGCw0o5bhSmKMWQkuisLsxnosyXGvuwv7Qrndwe1Pt9gG8odOMb2DwxGREaDlUK0eGPq2++y9UbdlzCwn1I3kDFUdrPF2YBxCxIGvDwakewbw/oa4j+lyOB2IiOycK6CYaGxjbPIRVVwsZikeS0xIopLMEIAMBcnnjAVgIMjLN+cxZqm8S4POxaSA0Lkiv5IRAjH0tfmMnKoCMRBJ7hsaEZfOi4iK+spXpReJzc3NcrmEpgFU0JAxrxFRwVRVRYggpxtnr7yJmllKSdXIZRli8KBRwRQ1inRA3AyWYbtnk7JLSNM8ES5TPbP8oqZEqlkFyBUrt/JN29YA6jwQqnOMaCkFpK7oAnZA5W4gvD8tF9uVq6RfPIw4fN2r9JOZHsE4AeOA9O+w21s795nE5Z4FuvvTFhkAb9N94YBwdKpwL/nm6qE2TAzlkD8ZdSx7hWlIuB7J+Flv3jcX9FIzZHi3jqMjkGNfVtNq8eLTP3j54ts3N8/XmxbwARYf3KzcH/7g+69fvyXnEhh6FsWYdFO3gIuUzFSJnZmmlBCJ2SNxltNVu1yjbnySUHbV50cT0oAoszWmjVIPe0Gj477DrNmYlGxLBI5Iz86E5jpzmKHjgPqqYojsg8XW4ieXy+u6ef325vmTZ1977/0vvftoVhZTxwiYNOru9ImxWMwouyqSUoqhiSHVKTQprhO0DmOCpVHio+++fv7Dq5sp+rJNmxCpBGPnLRdHypjuaklQTVVzSRzqoNIhBvm//c1v5If+1b/ynefPT957jx6cPAhJTd2v/++f/cW/8nxYbHlj9NY22bc55pZayMOOCHvap/YAF6Pr7lJ/4bZ9AbDlO2PW292+RzYhIugyNT87u//+dtu2Ha//LiBs++cz+z/iUojonKMcNtYtvO6EbJTGbpq21mCBngnv7vUOthDAkKyDjLvFTTx0gIi0C5fe8SzkdisPHl4ZDghaNo12O2gURSH5uO281zgjf+8mACPQUNx5+q29unWQu32KzGVVOE4ORAS992VZMQhN4uwkNW1MKwBVITAybAjniNib60hMcLTTu64Oa88yyl5Or2flbEjLM+pBxBAJ0SEDKIGJqSaRlArvnSM0uTh/u7y5ARGLIVceBDBkIlDoRCglI8BeagXIVCg1NSBDUZApsWfvsyMDHZfkVJOJggqzd8yIKBLNTJNkA0pWEFWFnOt0JwPqxDHJopVYTCmlFNq6gR4mCNEALUlwSIhsqmaQknjvx4Pfy5H32TaGqdyd/fz/YHzlPegnRUAjA1IEpDs04J+tHa7me8/Oa3k45xZgvMOG9/qAxyis2PGQHNJCvR67kzd9v6TTMWDLCHuYIRUREV3hAfDRlx8zlzP+yQ/15Yvfe3Xx9qb5J8ua6pYRUcxu1ikhGZVGZZMCdSpmP6moZiAShyIKO1Y7YMTedNYlJoJAZ23fG+QuRp23fd6jCHtvNKytgeZmfpyJvFpSUVCjLsqEEqiYOkVDmPhqo7pexx/Wb96erz9+e/XHmvefnpw8PTk9mhQOEVD/l//2enjiv/HXAcD/T/6yoEqU0Ib23/m/PvrLf/7VsknLVqGcBaLLTfydv/+LAHAC7/7yBKDHbP7u8tc2oD6m/x9zfx603XbdhYFrrb33GZ7hHb/5zvdKurpXsmRbBjuYoTBTaIKh7YYOxsjYBtpNQzpN0lWh+4/u6k6qi0qluvJHEyqgGIvYCRAcMA1pIEAs21iyJUtXsu587zeP7/iMZ9h7rdV/7HPOc57nfb9PV7JSlV3Sd5/3POc5Z5991l7z+i0lEkRUNRGX0xi0GBcwiE8ccVN73IzpQnx9aq3VEJxLkiQj2wOCbrCfGuAnVcbzCC/6on/un/wxMPZP/cG/2/8qLlfDyAgB4Ed+72fPXe0NXbb/FpomVt37ar/qsB06VrnBxL+F8WQ6/yAnnB3a9HFumu61AKJr/iRofI9rd9lcirUduToNEWPhF1EEUu19G9Og28gVIhJ1CTibhkRnqm46jVUBe+2f+5yUopHSnM89K1kVuhtBu5W6CZ+7pO0sN796MovvdmiQEACsWnUZpJmxiXVEIXhAa3Jn82VxMszSdibtxOJDRNUHwHTsNk5V27IjREQjSIiExhprgawhC4Q2zeq6BhZSUfWkIsFLXfqyAkNgaVEtQ12cPnqkEhLrgjTCGVCcphFhAACSFk8+vgsEIyIABBIUNXhfVZVVIuvQOERRUUAyxoh6AXBkYmcrie0zSFcCoFMYIz1oEAnKAZRVgrTNolXVe48AjhwAWEfOOQVJEmutlcBksLcFG1p5svTtv6CN09o0vvW3D2tCR1b6kPnWk7Ce/JPfinPmm5qDrFp0NlZsbM5uHuO+PjvtJ/gcENEYQyioq55oRGSS1O5eG7nh/u4z1/Y//qHnrz88ufu1919/8/o7N96LEBNgrDV2PCsRNUcYeH/qbK5IdV0DcJImAFBXgXnFI5qbQkRiIiLqWG/MoVAR0/bAQsRYqAotQ1mxj/OdFquI+IbnDXoObWAxSMYgADBoQGYkRQohSFCLNIAEbBKEH0znE5bD8sGHrj39sWeff/bC/ihL//p/WZ9dxr/2GfPv/2hRFcV/8Q8uA8Bn/tHlP/L777DDRVWxSxjd2Z8AwCvjH3vz6GfUKjV5FRDhoEGUjIEUSaHy3hjHHPpde0Jt5768d+9eXc53d3e3t/aDXc0KETX23VMAFItrEIyf/ewrn/70G92fP/JH/tHGrH72n/0IsGjXe0pX4WEA+Ll/9WP9PCw4w/pXi3/meeM7bSywVj2KfhGg36oM7t8FevLmW9j43VDVBnQQsa5rXYei1CZ03bRWNbCSs2vMIZqbZ5yxrVM5pgxtzL9ZVJGVC0x6hZTdQ0U9pvMYrWkAbRJW504iWluc+G+UvjHHW1VYIMYXu7FxxycMbFTwnrB/TI/z/nBJUtc+EGb5iEQyA6q6mE9YRcSAmhACETVNBy3FJjSIiGAUV9M7excTc0SsM4gY+31ZZ2xC1oEhBFIUBo+i4Fl87etlVSwQRFEnxeLRoweO0KDk1nG1EJNJYOYgwIQ2jVAtaJzFEELUWogIECLBoIKKhKr2vLBe1NqBTRTBJRkqiASD6MAZQF+XVVUhGGxq4FhVFQnNyoBUYIn5X9rcS5WlXQpo913wHDswQlt4whoQSWSzruEJQqH/Qs9I38bKAoDoenxcO4PoWsAOgmBDmCNi7O66umzr5elykfpk2pHgORv7MTZx13Ol9+05cO2rFYkmoigiqGgEwokY2gBgEBg1Ep8hB0A+6lwxaoCqKKjUtTjpi6j+jTaOq6piLRBVREJFFfCihSjZOtvdA74k7vLWzocvJPXz3/Pgtx/cLE/NvOJ/+E/+5Re/8hZhYoyEsFSpnR2IiGowBoFcYBURVgGJCPIG0BCACgYCAEis9SF4ZSW01mIgrjGwYkrCgBA1AxNUIjw8BkATy3qxzadCJTTUFftr56lTVTLUVYtirMhQVAYCowqhIyZpVBlGgw48SHxxBs1WPgSBk2N9bXbv0fHy5Zee/sizT/3kXxh+5r/cDKn+hT81P1r6Rb1iz6y1JadiP/+vn4PHj4/u/9gby78j3duRmK8BghAqHeY51LUv/NLrTFZO2oolS9LCy/3DxWzJW5NqkGUAO+33ZBBZm1QRDm6tNFyqn/nsSz/26ffOnc/P/sIfAz8HMiAGjGUg0yPg//pf/uj6TiMiFAhduTBqzMgAVVVq2ut2soGa+g4gss6mHEJHk/1snY6PNxNecQojyqtbt71mYZ22u4uoUkPgGMuODQIiaMReRyTAWHyNq5y/3lAIFgdep4ABIFVElykZI8LGGMRVfU5kI16bzldIYOJkRAGEFVqLtsnfaP7H3hApIQfuPRd4ieXvpKqKykGEQVtoVIzE3xqppt3OGz58VY2hT4CY4QzQ5m+iSmOuIEGLB2KMMRoktVyDUUrJgbWMkBsnwCoBOSChGtO+VBMzgfucUFVVA/SwMtpQEQKAtjIAW74bq4SVxRmLoAxgR9sivKh9NtoaSDZ94cLhr0z3vK9rBUy3TDj1OymF2FeC0YMSkgEAr2qtBTSCROjUEBgHxpCBwEqWCDE2/QRjxBo0FNRTapxqvZyUk/scSgQHYpYgCYRiejx06INUQZLEeAUHVImoqrOJdSSogGxSUUyDr9MkUSFEIKKiLoIGlSRQCepNbZwJh7ffeubFV5P8CoeFc4mxjplVWAWcRQLDzNEvLY0lTaIkihZCrHg2Coi2QRpEQJNW9THarFwYRVLDopzohTxDhGANKYuqd4ZQwVAa6qqJXa63HJWo/fdsmPg5hNCTeh19alf/rbBSmtdSrJtcAofgVM8gd3+z4wNq0P8zGcSIeO5140ZvUvE6jUEEQfrzPU9/2XwiC0aDsIqN/QcIyUBChsxoMZuQ8ng7E0/lsh6m+y8//6nS3/iVz//60cnEC2MIzBpLDDt+1L8vkRFp+5u2bsgoFZkFAAySQgOroxqjHNgx8S6OpQ2YAPau017zW134jcU5G4RsYINYq7qs/IP5cnHw6Oi5y5f+6A9d/sc/n8VzfvxHal8V07kXUISVpUvp8KQs8iuXuyO/OfvbfTXuY6Mfi8d7/V9hZfs0CxUAQJGYsSxXNm5VVQRkSMTAQosQZErzTgAfHj1IXWITlySWrM2T3EvV/ZZD/RN/7s7j1uRP/+A/+ju/8AdBDZITYEDzI//2Kmsa1zGKW0QLjOm82MQxEGRTuW5slFan7okuwLaG5Nz5fEP76XHjHJW8OaLQFoyuad9nRmwLyMzGGOYKEauqquu1cFdf9lCkIFRqgQ6AEGCVn7KpH5zJyVjNs/U/a7RiAQFWbuqOQh5n+fVP27B7cBXh6v5sqY1WwXER4XYgunURqwqgoudsmPVl6VjBk1loPE1AMEJSN9lnRBc/8b/+D3/ic/s/895/+wgNTsL8cKlbzgQF7Grt1u8IAKgA1PR90iY6wKhNc9AY3EEiAHSKvliGZaV1pcrMIXLTlNAvy7oqHBnnnEmtzXLPUmCpRlAZVY24nJKBHTuTB4VklDmkuloCB1LdTkcjlx6XFQMCorCUxSLU9WI6scm+atOrCQhBCSia8cY5y0yKIEJtOA5UGSxFjU1FFCIqDCoiB+9spsZWfurDfDgw4/Eu6sBYNMYQ4XrJ3Ebe8vlG2sa3Pe2qY7nnpOadvULzS0NE37wAPkvQH4SAvoWhvzXYvEb8nAk7PfZePcWnv0McGAaIWBMIEsSLKpIi+yy1yraqNTGjC5dHZVk+evTo/Zs3Pv8bX7374JEoUqP/I6IN0m3PZn+v3W7FLCTKaon6OGFEdGuMpMfnXsZ3Kv3Ukd6z9E87d8+f++xrX63fVBCiLmdcLmRKX947nk0W5YOj2d0rS4AmH6pWE8BWHIII88rQDPlw5v2v/vyoO/Lx8Z8999V0wCOdrdksIyqzASBQU3uZLleIniGEYCwmqECspg7Sz7J69OhRktgkcekgTdPUYHDJ6uu+9P3pn3kOwQgCkvvxH30rHvwzP/jPP/sPfheQU5N8+gf/f93JP/vP/yRy0J6qq60AjnyvXzwHrTLRf9KNV/Dk8QEV3w84voWrWWttorAA5xyRT5KkScY/Q28AoKrRvu6EmCA0gbEzzueNG22skrVWmoZgrS9BAc7kqXX8kR9XgMuKnauou/WmbQrYGi8t220+9yPB8UZE1CjBgLB+5Y2JbTzRhrDcGG2pMYJqlEnGADnYeuV3fPnG7ec++X1v/Pc/e7q4/vzzH07EOyfeY+fYQGjAyLpn6YkNAQAQJAqgCMKINhqAoBqEsSiq6TQsF4ZLDjWHoMAKDBxmJ0f1cpGMxyZJ1aVJPmKkkQmL2dSHOnd2OBqlgy1JhhWlmiTDPOWqMORSA8K10Cws2RgDDEREaYYcrLWnJ0fGbo/3d42zaByIIApyiBuITMzQVhJSZQYliUwpvvc+TFXTLtXZ3GMd5ASoSpJxnm0hYkzSNWu+idYRuE57T5Yavd+vIfOf6Sq2KcUbwWQIkTbrgL+F0d3gcdM9q1l88PEtCO9uXUQkRucbf1q0XoF67oK1u5y7UqrqJTTNQYwBAGRDoEgY0+eIDKbgZXb38M7NW+9ev/He//BPf/X6jZuLwqN1AEAUqZxQOs10lTuKiEzYYA30xmoC7QciEhNFcXQm46o9QhstljOtwFE2Y4f9Je2rcvABXuXZoaqKbI0xNheRaVHNlof3j2bPtwL45uHxcJDbJI8GS/fDB5Pla2+9a+Dpb3iLRllsGDdqrCtDZGUAIbQqVHkta0nbn1RVpcqZOLaxHgHUreTidL40qErqnEsSNxhUSdrw7r/xn61yqT7zt64AVwoASMLV3/7s83/20zfiV5/+4V/6mb/7qR/7336pP88//Qf/3sbMu9jwz/7LT8OaoIn2xqb01fZFd29E21WLdPztFboffPRY1dpg5hBCVVUhhBACancyqjYxP8RWHkCXWQzShoMVN/f4Bk0+bjLYCMh+xG7z52f54/qN4tXOfEHNXbrbxQ/CjGckbuyb2eF4wJmd+7hHiBxg45wNzbj7EwlaPJIYSCNB/a7v/77X3v7ny3tzGKbOIp7M0sH2McwyGHaRb8JennZ7s17Pw7ipBIVFAwaLxiOiArEwzmaynEm5APASGABYWSQkQASSJW4wGGA+YEptnuXO2kWlJDDKB6ORGw68zXA0HuxcGF25nFl7cPf2/OQoYFBPgJkYGVZDv6yETGJTtMbYfDJd+GIhsBN5HJFFUAAD6kkRUGPjMoUakYwqokDbgLLLhomvEBGMDXUtXiuydZaDNSmoNTY06KgNfWAEA1Hljf6b3dU20vTOnLPWkKMl/se5lzbJAL4tWdBnRdc59tOZz2d7h7ZMZ7Op57c84pboPGkISEgcYY96Gy/KxbMNUBsfkWFVFNHgo3ZjERGVMhmgqys5Pj69e/f+rXfeuf7Lv/xrv/aF1wKnxhiXZEFX1V/GuMChRVfouZ6UEAwoKDYliQpNBbZBy00WX6NcG2MYQH2T398kgFCf28RQ2Dpb0bXHedzY4Hdnyah/pK+yqC+jQkcAxjhmv6xKaPv7/cpXvzoaZJYavCSA743Hv/z6G9ev3/pQCk8eX5//jAGExgBQaLuYQrQrmy4UHNgEoe5iLMBCQRBZS/Eth2xG8BBQRaSqK1OG+fxRmpkNSNbPfuZSCAEaeF5mUGH96c888+M/eTueINXsG0y9N/707/vsz/6rP9N1QWkW8JsRppF6v4kfPHE8wYPSyLaVnDt/8wKAADAzWsPM1piYWdMXdudK0I7Imz8fd0Lrsj47VWYWjkXFaIyJ91TVGLKBFRtpeMi5TRcAAFA3HrD5thXkEX6y05VFANcJqT0uK2ysJn2dQFdV+JtOr8fsQj2TUtv8qRpDGDEN0ygKqwj/0n/3X0xO3jx6/R6WJ7yc40BdNlRgDY2KH9d5tWdBUBiMbbSHxhkRQbFYAhF6Cc2aSwimqqwEAS+hFBFjnSGsQp2gS5IE1CMikVUyLKBAwwtPuXJbuEoSh86KQUJAXxRFkY5GzqXWWqkDh5CQzbMhDutCq5oVjAXBxGSGytzZuipV1QIZ44CQgBScRRu4BCUiq6SoERRFAFlb7QfRaFvQr6rCwByCVgAhy9IsHSRJQiYW367eBZ5TpNtb/HXa2HACrr1fAOjyEHrvVM8NMawgGn9rWNDdbR6nrj7u/G/2Foioa37ExyxQ7zO0hR7tHVdQqJu/Om/+K8IlBCVREFAb6x1RJfjgH92/c+/eozvv3rj++S/8+he/9NrhcW0NbG2lSZbE/E/jjK85ALAKxJa+AIiNyyNu8PbWK6kcc/2acpTePMkaINTAqqIaeZDELFBVRXNOVeKGyFzb3r2EzM7G6STr43j0WQOaUEUYhADRETnj1Kx8DG+8934SE6pZEfFDw0YAv/XOe0XB0BPAry8+G8OKDbBcq2FEz3OT4xrh9VaWOiKpigSVWmTYXsorkkJGlqxBDcIacOX9ZlUTgUYUA+N8fpKW5C6sPenh4aM8H1trrSVscF6435hWw+Jv//QLf/bHr59dpbPj5/7Fn0JhifAIgC0i5vkn970g8XyKdegCZ6n0Wxhnd825pyEitDXgjzvBGJMkibU2SaL7cgVu2pGKtqBIGpuJxbiKtqXXwn1d+CyVPm6ScWU6Wcm8yu1AXC8rOGNnxv9Qz2zo281tTcWKe2JbXhGPd+I2RoKJnGmH9onz8ckXq8f8AO9TWxbR+KIFBEGBjl/7pbsnN7btdkp+umB9OltadqUD8KtbgOoqF10VFJRVKSo3FFMC27QDEYHA0SCmECSUIiVL6dkroKGUUmcthUqETGBdlNV4AHmaAaEgHIWFTRBDUtY11VVukyTMcFEcHU3CeIsk5HVNwsLgq5LrioNYl2HmjOYotYSCCKxBUEERVEZMoj6EhhSV0AARCEdNBIApakNtmVq0lhS5cbagcYnWISC6xA0Gg4E1VjRIk6ix9poUmNDgOkmcS3V9Y3f9y7XWnBt8cv3k1qQGEPzmBfC53PkJMvhcVq7fVmzbc0dfHq9uumb4Nn+cRTnoMwKu1Fp0RABqjRAsF5Pjk+ODu3e++vXX3/+1L77xtTdvTWZVkuWXLm2rsqHEkq25Sp0jMgHFOetrjlBsK+VUGgda5ERduiY2DKuZYQsS2cwTEYU0mn2qMe2AOn69sdTxuMFNuNrHsLNzFrD/K2grd6Ic6jqZB264FWos1BWRlWQNFTCqEsSdDq2QVNVRnnzl8G9+54U/372FmG/VnfCJ7Z/42vSnV3xcQXFF/YRJU3tKDKBF7SX9uf3qRwDgS7/y/Z/47Z+zxiXOERoV//M//53dlZkDOYeIAggAgyznXhJWHEfHB3lWpmmaZYlzzsU2i72ECWQPKP/V37qGxiIlikTWIRiwyaf/5BfjOZ/9hf8VoVGTSPCIjRxvO+9GgLPVrnncNul7Cze/+jaNdSG0uv6Td2gIQSCCmWMIQVXj6+vrcJ0wxqb2MVocgLEwHwUQfS8lbe0Ze8/XPx65XCsgm3CsCDi31qitUwL0cUpGu8dUG3wNBQCEFsapdYn1AJUAmvt2S9Q9bONsb3gwnqmr6j3WY9SL883x9lHi9No6awSDl6+M0lEyO54e1UU6vHQymabbmEKGPUNN+0MEEGMyaAP41ZSGNOBeIKrsRRRCxd6HuirLuQ9LIEOUoUmBrEEQ1sHWDoBEiObEGu+9VRiaeZLmyWgQQracLmM7o2Ga7G3vQTFDDlW5FK4NqK+LEIL33iQJWGcwd5pUi5kxRgOj94AE1oEJSjaWqMVERMH4NqkJLDbr7BF78EpgECNbMCwLQJ/YcZZsISpLgWiIuMUXMqAdbtCmWN3YmOcd73twV8aPSL+zy+q1b7xZRCSy+K3FgPs79huObyOn+IBjNT1c4yPN7njMxu7GxoSNWgsOUatQVovZ6eG9997+2rvvvPGV1758cnq68GH/gkmHMCuKyhfGpgnmLrFIkCS2KGsRyfNBVc7bYENzi9UmWWFNIcAKq7oD5QeAVSKJIWuSBul0fcIhHlHtuqI3AthsAhE0JHVm0VairmfBdB+a0oz+T+L1nIulSSiKKoBoeyn33/Hxl6bT6XxRVFVdFqtEZWZZhPrjn3wF7jZHPpr/6G+Gvx3v/uqwAWH+jq0f//rkp6FjQu2jxf4OHBiRjSFFKesqMOy3qtRXf+13f//v/Q1AYwh+/h99vLvvD//QFwM7Y9WgQzJ/8289DwA/9eOvx29/6j/4dAwD/yd/7eL/8S/ezPN8OMqHWZ6maZIkf/4vFfG0n/6blwBApQYgAQEJaKz4AsiiJt29gl8Q2QYAGQwYQTGxkzw2VUA9e7d9ZU0tRG//R8uF1jnC/0xDWwnzBDsgDmNMBA+y1orUSZI4a/M8nZ5U2lm96zHRxmIlRI29+TY9rutTgd5vV6dFcSsREbb1FcXDrVsohvRakqFzpdrmZ+3QaWIAyFDbvFJbDK9YiQDQZl3E1xRCCCbEYtzGu4F0zgbbWOQzc+gIfGO2XZ9vVUAFQw3zfndyOpy5YinF9rA68i9lWyMb5lLn0OAE9NXuDaVBV95ybPpexm8lsLD6mn3FzD7UrCFNEusyolRQEQw6zPOUUKYnp2VZ1p4X8zkR1fffOJqVMNi6+uLLF68+ZTPrq+VcC1ieAssgTwPWZbUUFB9qa62BVB3UrKzsnAFjnEsBoFwsjedE0SpSgkRkiBCx9oJNk+wWxBoUEUMoVyGAdtEQkYWKchagztJxnu2U/pSlHg72BLvUyIYsI+DakzXdsxshooZ3f+FjPKnnvlPEJgW6Vwd8RtRrP+22cb51CGfn2Nf9n68dWX+Ss1PsS4tuftDxgi4mFL1D0ASoBDSCJAMpKiAYAVUUIQEAK0mIuXCgqIpgYp9kVW2Mfl29hojpk+KwlkqxRssiAYAsOVXMhqNqMVnMHp4e3719/e133nr95s2b0+kcwV698nwR6OB4VpRlZuoaAogmw4yQ8sSKiCWbp6Ysl2gBeMVuCEBRImCcApGCSufRbZUpWqH3WSRVFC/CgUHRIgkwe5GIlo5BGAiiKsuqCNCJYfGBiGK2SyNcTVNfiIiGGsfLhkRv3wI1rEeVWqADiC2EQbveEUZr4KyQMtmj5SmnRQHb7aXu/8AYYAzwsX/rX7x7Mqtal+3Cw0df/thLL350efXG5IvPx4NnE6G/vvg7K4LBxqeGiAzKyuQUSQkRSyYCk6z99lf+9XfDmaFg6pAAWtXws//NS/Hg3/jpV3/qP9g88z//68/1/mKAovsjJSyKwpqELHEI6SCfz2eYpkSs6LvTjJ8SGo1o+MaqEqDx6NHEZgAxGkdA6JBUhLm2IGX70qntsAmAjKbbaNgal1EpskQxbQI01lZYAAgClmoWECQxqMoggZCTrqJJ4kUEKcoxFZsokwnGWovOKAaA4CQwJYiRSAnIAEQUQEJIivIYEUUAsAAQxKz2B8Y4gMCiRJG6DACLhFW76mbLm6ZeE33bkziSKMbEGsR++lQPyx4MxWREiSiVSgbIEAcFaNDc1ngIQwxqcBPUgAiiAk35H8SWeXH3GWNi33EGVQ2R2oEQFJCVlfMMrQFjQSGw+Mr7bRgYmwiZIJIgGVAAAQPKgL3EMwPIjUFrovcx0ggoYFsV1DzgulpgjG2QJQgptksnBdBwfO/Xr38FzTIxCemocpUPO46X0qJeRXReQgAVZbA2i2uvIqKelBpg68QxBgRBFRRm79lXwVe8PCUwYMbgxpRmQAgcEAwmWIliOh7uJMViHnwx3N3e2tmeP/X81snR0a33b7/2pYc33nrqxQ9tbV/W4EzFAFBMl1VZBF8PMmMgHN6/x5xYa0ej0WAAUonUlCSjSipyCaiXukBjXWKJXFAJQRLrNDAQIDNAg0cLypZSgYBKrB4ABDhi9QjMjB3Uy9LmWOmCAdN8i7FGNaoKKBFhi9kDqjE2Ime3TUBXOz/m2amyKkR0wigvGsDtjq/EGvJ2V3aXiOevST00QIlBQ2As0hoWdP/z4xTtjeOPU5DPnnCuZvG4cc5dPpji/43mI5YsN0qtxnArGTAWvRxblyq4qgIVOxwODclysTg8evPRg7u3b7xz5/Z7hw/vLRdl7gYXn7tycHzklYq6tsakzkZ3aJI4Y8lRs6VV1be4OaCq0rcJaGOnbTx+h+zTfouIaIxhDhYJrdXG+SYYYzyi0UuM2raDOWNgfcN17tawPb7m2T5rPahq8LKdj6eTo/H27nIp5eL49//u7/jx/82V//T/9qB/za//xh/4o7/7y/+4FcCfvJq8+lT+wj7cf7A8vvAL5vAHz07j65OfViQOAddzg5t/22UkQhUIKkb0YfpfXQ4/ce6TAsAP/vEv1jWLFYTkbNwhjp/89Nc/89mPPe4KAPDX/h/V3ft39vb2vJRhISZxfu6ttXWxAGcNrWqd0S8YUNCjsaQONRWygA7EqSFDgGBUAYXa3UpKZsP1q5HnrttT7YswiGhNUnNQYDJgjGGpQwjMbMkoBFA1jKgEQkZTIguMjAGwJouUpkg2CLJAyqekZK1DUlavCkioJkHEDQdaNweDxLSSndICU/XjP9GIhPMo7Vw9vhvGGJVNA6599hZF9RziXHPzaGx7144miIOgqtaaPnhWW+3TIE1KF/9uqY5ABYRZRSQEQTTGmCS1fbMhjoaHI61WIe7ED1aSr+dlYzXTbjIhgIhUME2GQYIIsPdFuWAed4HtTtvu/g0hIGrM3MZVdjTUde2cAxAfalQlkLoq5tNJagwlLh2OKckESTgYY5y1i6rSWFthDaWOKvVlNT+ZjPafgafz0eW9nUf3pvfuHd28W+4XW1cv86wSkRDCcDAYj4cPHt5/eP+2MXjh4jPW2iByOp0BalzNGCNUloAB6gKIKFEki0gKpCRRJUI2gkFiRX0vGaodDURgl52O0MALoigY7fsaiAiACGkDCKWjnz4F9mXZBvVuvMQniKH2q8ifz/QD3vhwdmN8s+PJgvbcR9ogvidf4fEjAuts/jbGrhrNF5U1NAmcyHVVGhwMs21EqJanj07unhw9uPnuV27fvvnw/l0NfjgYX9jZLQt/ejTNBzkva1BNrRlkSQjCKnmaEwGRiqKgxn4gHGO/gv0XuYIKWum+a8/epE6sDq72efTJROkbBT8QgUjU5Tl2ADSA2NRKrXOwtbE+pbNOzhXr7GFWN4wvfnbOzpfFaDsry+IV88OwC4dfg//0aw/O3usff+67us8D/2M3vgo3vgoAewZePXduH9v+8fMn/YRxTluj1fiFf/g95x7/cz95vftsXf6Tn37jM5995expP/Xn37PWHk+SoiiqUGVZZk2ylVpmJqBRlgIAa/jM39j+yZ+a/K2/se+rKaFhM0MxwDnYDDEFytAkIBYsK5KSEbWxGEEa5tFE2UFJewgcZ1lA/LfyrApIJCI+LFXFJWYwzCY1EjiHZBFIAMGLVMClz8WgMeBCzfXJVIK3hp0hGiQEASUYY4GMoAUwXoyNSO1ONg8AAQAASURBVGqNDiAQHTYICoxtInHD8aVpt4xNEkPcuWuJFx1fO8twWlLsqVm4Ori6RJPM2EunaMgV+4bvBn+UfrBWVdaj791nETHWqAh185RV9joiiigCxU3XybaNV6Oq0DZhw/WYl6riRgoedlrLZtzxcbpFHC4dDgbjk8lEEAdpmiTWJUbqxmulrfO8WxZqq2O7ypno3CZj6qogtKkzIfByNq2KhUGw2QCtQ7JI1hpSRVVhDVYNqwggOGM0U1X1dbUMlT0NRpKEBhcuD9LB8uSYSbie+cDW2vFWzhxu330wn88uXLqyv7/v0hEz13Vd1QUAWOea3tLa1qr5UENpERKHiTMiAEpAgkJAAmIARFQNCoDE4lKNqpOASlM0JQgm+nFXjRobYJ9W0+1SIzdNPlnVOJ2vgG4cacng7AlnXNBt3F2fnAXdUfPjbtk/8xuKyQ0yPXvBPjWfncZZNbzRds6bTPuTc0oAjYXY3IiIVGM6BwGA+nyUZRZhNj2cTR9NT+/duPG1d97++tGjY2fsMM+sHYWap4u5ik2yLHCFqo5wkDoi6z2XdUBEQxqxj5pgVRNsMADcqaUdYIqI6DoW8bkLBT2eYtq4FxEpoXZGcAuxpCwiYgAxxhvXL3vu4ndfdXbA2a/OLnLDuaIhruZD5o+fe+b/wsdPfPot4NUusDZFNH/uz76HUtYhxOTtGLApa2tYbWrV2PsPHuV5PswHy/l8MBiUZWnB2sQ5ZxJn/+u/dYkj22dFrQGNEANXgAmaHG1qyHGwSAYoUbJiHYIRFuaA4lG5H3wBRFWGTUpv2vEqRUUTDTprrWgdgp9Vxc4gFSDxJEoegY2GRMX4cbFT+eOa77qs2rk8vLBzaTzYT83o4SRUy3m1PK25JuOMNaCoYaWtAwoqASmAkDbJJigK3FRSqqqjVugCQKc4NnhVzdCeZQYNIXUnN6NlBY95ZyjQVHDqSr/U1cbv/1LWr9KFWroP2jOVAAAJiaiLKWpruDILWFIFIiusABAziTBdofk+lsh6z7XGxnA1BzpvP/ZXCTuGLBLpMsvHOM1AvbVWgEUCByEbI3Wd3S9EFhGNbVB9kCJOCES0EIpFe8YLS10slss5gY4GQ82GihgttHhzZmHPDhNBI8CqgIaMs6BCrAVVqVLiDSjVWc67OzCfhuOF2xrWtfcLLyJJlj5/6aJz7vT0VBd1XdcA4Jyz1gYvKuico2gyESgISNDag7FGLDdUQpF2AECBEEVh9aY6JqmqIoGBO8+ZMRTV89Xaris6dIbfQo/L9Uk0fj4rDVtNtIfc1wbv108zjfsTzaqLe/em+7x4k3TOpafNm+nZb88VvY9TK55MxpsUfPbn5xztmcKKQKyswhiCEFnClIjIwCjJjo7uTSb3J6d3b9946/r7b5+eHInIaLAfuK49+xBUUYkChxBEWYggz1LHgEYGdaposCnGQC8irD46uwV1jX328yPOL+9UVWxdZy1baZwqK9WMsAtfSWA0puMjpJtXi+SxplmfsXfPivx1pSfSQ/+c6LKrbGoDf6OS3v+lDgRQ7gUbiRSdJWMYFD2A7zFiFsHpZDkcDstyuVyWy3RhUIfD4fZ4y5nE1DZJkiRJjLOEFow1xoBYUFJkAVH0SBW4RIkEMzKWTIomQ00VCYKo9xAKDTVyDeJBFIGa6NIKJRli6zBVQDQitXMpomEfVJCMS41T0qUXEEaZoVSolfEBgVXZmvdHW9vjy8/tPvWhwcXnIb8KPCg9PbW8vTx6eHzv+vT0nve1A3LWGEvQ0m6sxmm9vmwAkZoWNAANNUfRRaRd89+14NdjolGbb6RLStBO9vRZRzzWeqF73sKzyn3cLJ1gln58fYUT0ha5ISJiCGFjMu3xPm4Xxbl1P4ycv7dhG09AZyF0NkHf9j338c+yUGg92FFIsEjwXkTGo63Al6tyRgIheGa21kqj7kNvTQTRsngFAjQESftMhIh1XSZJIhLm00lZltaZNE2FkBGsccbZuCbMPlZudGsYZR0aY1xqHIawsJgSY83KiUsHu2k2NlX1aPJwNBoBgAa21pVlOTmdWWtV2BpjjEnT1FoLAERkra3rOsJUaewZKkG9ZySF2E84xLcNAJHZtwlYaw4PVQ3imblNF2iNEezhw+g6QUb5BSAqKCuqU1wLCmjnj+kDymp7fi/M8Dgijx1Oo1aE+HggjpaqnlQL+EHGuYK2v2AbkvusbG7k92/JHd2uGmpVeSJriBCMMwYRQijrsnrn3q8fHty7c/ut27ffOz0+MZoYGkEg71XAIVkGDlx77+NWtGrIGosoKgBiLFq2gJZIAwOzeBZmFQaNWZuNo6N7UgKgpg74jAu6W5OOXFa0orHrZhPO0S4SjOi9b06jVfhAe5g7T36Puu6XO/tt768VOeZJWgWPlLSFAPBX/6/P+vrtfLA/2r0UgE7v3eKjW4nWHs20VJNYFg2+DnVZl0WWjynbeng8f+3G3Tfev/PwpDTJGACkrkWkDmxbJE5t3HdNPJgUBEWAlWCQuJ1huje2gxTTbHt3e0u5unX7PSH/7LXLLzx9ZezcYLAHIMGXPhQI+vP//afaR1mrGRERahC/04QMkWURFi8iwKyqpVdSICIJXtSr8MGj06I42RqNjDFJkmZZ5pKBc2nicuNSIxYQAZRVRYMCg/dCCFCrdcoeTY0mRXQSmELwfq68lLAQDsrUbO3YGwhoTV9TQhBAUalVLbOgKECEFFSulkCF0tw4n6fZ3ujSzujpPNkuL0A2fAbGL4G7CoqFzjGf0agG3hmMWXYLDdV8diiBAWq0KmpWbljkaAbH1jRdlyKDG9KoC1KsYijR6dOJoSfQ4YrIOppfE8Daua9EBbFx23jVlZrbZT5HRr5GxpFNKkvEDG5COdA1LoxO9dbiWZephCjBN2quNYm1tr+n1pkYdApIsyb9tPA1T1OzO89dgc6qg16dEjMrMhJl+VDEA1dJSkSIYtpS+ZZ7ayxfjMp0rGnkxoJUQUTnTF2XVVnUdY0GTZKoTQSRjFGUEOo4DQJURWZmreJcUQEVFUgNCeC+MUvQymGSpCPKNPhKtXBu9+JlDVzXJYv6qlKRpqzPkHNOVb33dfDOpQBYlxVag2SMjYECUI09GAwgqihwa9DErkfAwtof0sJ011yzBiBiUFBBRWaO+XoNR+31Stpc6nOiJOc4nM8yzLP886z0RDBIFtEQGSL72Bhw/07dVc7y5W8omx8rMtfDHmvU+Zh48AcZq/k0XHVTzSR0aZIaIvHe17OymBw8unNw+ODWe1979ODB6fGRihAmYAySoczWfqnKgqDKzCoCBgwBagshIwoxCKGKaFBUWaAOHLxIhLdSBVXZlLLNC4sr23/2+EHWl73JdG18kg2zENCYW4miTCIsiOiMNcbE3iamw3xpr9MJ43O1nL5fLv73cW9n9ScAUVJWsy6asSjvJ5Be2L7oq7KYTaCY2tH2YLztxjv7JhkMktlkcvjogIul02AMTZd1XU5zq+MkmaTiFZgVkNDGZje9lelNmZwF4MAsrM7g3tbw6QuDcUYBk9To1vZuudh9cHpwcDIdpoP0wuU0q621xjhV1V6tnq5bTiJtBQtZY8nYhNnXXkPtVRkVRlkiUtd1mToMvqjrpTU6W8zK2fXEZfloOBpu5/mYbRbMwFjnkj00ZIxpylSUlAUFAQKoVQxAjk2FYDWohqB+Kr6UUAKzslF0gAgi2vrSEDFiuCACKORZVhY1SJWlaeLI+6KqZnVdXnXFcOfi1lOfHF5+jnauQXYJYAvEZnauTZbeI1DMg8DUQxWqyYHxRQI0tJkkWRlqEQnBNwisomAaEqI2wKKq0fw1JoKtRn3RAEiUtdiy7kjC+NhI5zn+uu51n9VQtcF8XCPgLtkKNrieIRGhBogNaJUd1lB7mzu2pu8CtjF51Vi3ghS3JIUQAEjknE7Dvd0Krem+mnwrRzc40vn8rVsrkV4rlygLYyIVaWwB6b1HCUQQQuDQYCb3dJd2GYyLcStQ0sYg0WgDLJeLqqrSNE2yLAB6xCTNiTAKMxA1xhAZDczeM6lBopiLLcqAQiiEkyroIEkGwyTJsAo+1ILgsgxKLMPSmNSiKRbzLEmyJF0sCiEVUoCIEECUkLEGGBhN7OSlGFEDldkSBDUEIsoCsR2hckuBkb82DkKWENiHEBQ45nZF4pOW30LrAcYGfFBa5rZWvvWE0aztYzyX3XFd2T+bP292BqL2LeBvKErPn0f7+XHzPhtWjOfLE59z44Kqje//A06sndu5MeABIlVlOTl9dHp059GjG++///qtG++UizpzgyTZAcEgDFZrXBT1Ykg5xHgEs7AgG1Q0RGqNFx/XN9bRCagBiJYSs3ppNFBANIB+7XEQoNnq0anXPWZfI+n2c5dGDRCNeSQiIKSwZroFDgjYaeWqKoS0xt1WN9J1VtgtePehryWc+Qq6q5WFV5O4XKEtwLnz4KuvvvA7p8l4enwEi+nOhcvZ3jVvx4RJmtiFTPKrl67tPOtnJ352WhaLank0DxDK0hAMs3xawbIoCNXaKGw2PXLR3A9eyIEx5ByMBvnueLQ9zIcmQOos4DPXLnhZnizni3kxm9R0IRetVGOIwLaNLwEAvLAxpstd1sbOpiBARM4QEYCychAFR8ihDMEfHt7f2x8vlhNfLz71PZ9EhPLkRl3PF5OT2ck9xDTPtsbj3eFgyw3VWuvSzNkEjRUgRKOCgDUqC7BighQIrbBCYOFSuFKumaXJzEREVGZFMEQK0cGIBKgIpixqArBJAhpOTk84LC5f2nrm2Q+5Z743GVyi/KqaHa+iMkU5Uj41s4yl9DwFLUl9Egg9oCcIoHWpi4VWtRGyREIYI7sAjXxCiU1OGdQwe4lA27F6p2muG/c7ak+/1HXGtKLAxwahWpfyeUwu+htFoakI1VaCNjivm21t+qhYRATt9bu+EY261Z4WUzKJCFt666VCKlJTVRLt5hCCtpXffakf+RXiqsNV5/364Cy+f8G4EaIwRkRrbZ6n5HCIia8XxbwQDarqrA3MdJ4BE81JUDUGkQwiElpEnE1PWDwZAEIBIJuIdQGIvXfWWkuh5rooo2pFRAwsIhGGGQCQjFoDhLy1lyk51VBWHhmH6BgtS23T4cjV1RIUdnd3Q12XZZnnaY0+CAOQzVMAqJmrKmAs9IgqFgdmJjWgNSpZciqqEkQEhVVVIMpg03NVRAvYh+DRoCIaY6TH64hIWlTyRrtCUOBYab96j72l097rWFMicY2prjjk+rKflar9l7uqA45XWqNdkA5VWKFN1Wsd4n2m3M1s7V9obNwNQdtKkfWADayCJa17hAEaMxNi9VUEYIpNpAVUIUYh2FiRQGQRRAMbQIy8jIxEGD/SIKwMqclzN+DqwfGjgwcP79y/e+vmjffv3r3rS+/cILeOkDjUUV3CgKqaSFYEJEKAiISpSgExifuAFIiMaiDW1Nnasw9cAxR1vahqDiqAgqKqYNCS7QrGV4WPTaPytZVsXmRrjDKoYuushqaKUVWBFRXIGlapQzCx0Bm0LgulOk3TxBnmmsmISkyBjBX3zfs3pKoiAUGgca8ZVVUEQjRgRBvXnCKhIWh5sbZKXYQsUIRUuFzUHf5zCte2rl0zoZbBEEcDD8x+lqeWlZfBJZhaAQSVdFAxWJteJJke3y6ms3RvdDJZVMdHTqAAKpMkJUFLIqKhUWWalG+AwpZ7MGLJJlKV1jpnRkly8fIVw0WaZamjpy5ffHD/3v35sqhnp2E6hB0VEPGgtbErAcxi1gnUAQTmKoMMAMzgwCY7ISSjC3B0wsPd7OTmmzysf+w/+ksXwrO3j/59+vC/e/Hq/2tw+h7PapbD2eyNB/e/+OjOby6O78/mt+fHkGUXtvZfhmHi8NI428oH9ckkjPZzrQcai2KkVq0VSZmFNRTH4oP4SkNQQQGL5BCdEiNZkUQxJZMAogozBGMzS7WfLwCmF6+5y0//nu0LnzLbAcwuGAN+FuaH4isTlrg8lWICC4/CidSqFYUafBXqQmqfzW+zVJ4u0eiipqH23tYwtsWCHCBCREgFRFARAgkOhbSWUAnXZbn0viJHniVIFVmLRh7StD91EAF8pUmcjn5lVUXlLroUWSi1JkIkNgbtg4BajCw1NpcFiOa2CIlGFtsxlmgaEZBFjE14VQFaAH9wqIqEpMAA0KKqqQJE35a2gavoTBJp2GCaptHjFcS7ZKxGRYMqK5IKYuytK7GZGSOYVfwrOs168P2qSp3rsmWHtF5A2PEE07BjVEAlgiS3itVytr9zdaIWILfWSVHEinON4AeqiqzACJg5V1eldRkBqUlq5kGGs5NHk+mjPN9OB7tJvlMHJqMW68RxyaasKiLy6tFgbG3jyPkkd4syzd2xXxKZLciTbDwztGWWdVE6NwZPKpoNswKKBZQjSENdppAYsrFtpUuNQO3AaSwhEkA0RNHbLIgoQdgrKSJYAFEMimXNahGEQggeAFQEGIhsGWbWJmVVqEBd10VVojGB/Lyq0zwTsgYECAyKTVMBIVWQBkG6SVMAQhRSA20+V+uliBLHNTgIGrBpZk3Cujp53VgCjLm9MbAVIVIJxHUqPhpD1imhANG3AEX5uPHBzdMPeNqGThGPSIMAoStjkUsUBTUqFFgAVNGHhFECKvgSIdjh1jjNYDE/uHX39ZOHBw8f3nv/3Tfv3L3lq3KQZXnuom853lE6zUiVG6VYAESUURXUxDxJiJZtbMhDnoN41qDsWWoOjexqq1W7DfXk1esrvJ3nACXCXrSarKykNbbp0Njs+VWcSDWGngVamJuNd1RXFQAgqqEYJSKAcxTnSKE99WjzEVTVe4aeK+Xpp58y6pfLhffeOQdoQW0sujY2gmiiSzIkywJMYmH4zDPPHJ8c1A8mi+kUAAW0BiWRWsIgH2KsNOC2ChABAKygNwKIJkgo65I9G0wcOZe5JKnrcm93dzweHh4feF9N5pPtLMkTZ0gRTZ8GmT33+DtLZRwZshNLoPcH/AzVy8x4WFy4OpwuJss8rf/oT/6ftl/9KxXceaF8D1IAZF+McBsSc2n/0qv7z/zhVz9xVM3uT0/vzKcHN7/+T9668aVLF543ZslbTxd1ng4SXl4QPDbq1BCAgpBoYBEWBuEYL0aRWD2jiojiKxmP0yBcVRNrHDkLhFmSpDSdHJidS/TUix/f3v8eGlnG+6Z+eUGHRGR8RbPjdHoEi5lUIXgwfIJVCYsJFhP1CyEvRtTKbGtUzWsfflOWO8ofS9zl2i0O/TDHABHhrIm+q0FFMF3ctMtRoDai1ZiYbei2pRldmbbnxbnO3RSq2u8oAI18agGSe8cbZbEF+Oxu0SVVNQ21CImMtjwyVpICNDY+CtIadFbr7I5IJIBBtP/g3b3WTJe1rb7yQDbnbEYEe189finWfoKIiEmWg7XOIALXfkwiImKJeP1MgIi5pnVgMgaAYkDfWhvquipKMXm+vV9WWpfLNB8C6mw2HwyTUPFoNCqLpQmcJWmISJYitqh2knQ+mRJJkhBX5aMHJ7vPPlWU+ZUXXi40jEeDh3dvPbxz+2qW7iTZHaMmT1SIfa3gyKCIUZFYTBzBrUKotMWAi07vNjLAqIAITEgsaoz2GgIwqDKHEEQghKACbTifG3UKccMJGjW8lRXbiReleGZnF61eSi8mgmDaX8Hj3pIxRhWFtcvHil639ZcCXRedb08zho1NpbpKf+yOf1MSujG41z2f2CZ5MygBKCAQWHGESoY8CBOwgLAL6Cyhik0SZ1Lr69ntB3cePbx+evrw619+8+joYDE/TVI3yNK6rkTK1GXctgtsd3LnJVNVVmUFaUP4jcBr80FQFb1oYPFKZR1CCCISU1XX1uTxC9j/0KOPlq30Yc9YAECoEb0WgIljNpZy1JclgNhGUK9J3+4Vde+rwUOSCLCjqorWxPxDbZECFZhgPWmkx0ljmjcrdPjPRTk7OrgdPBGRcymhITWhCtFfaF0mwsZaBHBZaqCuKtzd3b28d5n8SVF6QkACL2qEWSCLCLCASBTzLwAEDKVsPAGC2hD8fDkpFqWMCMQ5hwASOM/Ty5cv3rl3u6irg6PD/XyEiIPMYYtl13uWFddiDjUgIed6nLnnqlppGFiGquAsI7jLz37vzuU/MZVpoKHLdsK8lPSWe4qrU1+HAcjA6I7Nns4GL9n9w1F1Mh5fqL7wc9O7k62RfRium3QnG+iA6nyEzrkEMyISJI1J1iGosIhX9sK1SCy3DYJGPHBdsQQN3thMGUPFwK6sk+Go+Ohz352MX2VKKRvIMgnLk0zvm2Im82NZLBeFx2Lhlkf58qQKBiiIrXWQwKWn7KUPpZc+jKNrtcJgfgJHr9dHdxdTLeXYpCVkRjgRkFi5B91GR2HxqjE7NZa7t/6SjpZhxbxIQUl7u7jnylvfFucq6BsHW7Ec393mV90HWTFSpCbmpdrWCBC1XAUo+tigx7j6xk3kA0TRSm1AfKLXvc/3uiucfYR1DhY3ckdyMRa7qYJvzAHWGQgiknVkrDPEvhyORn42Y19bJUDq/6pdH62DDPNUBcg4NM4aLBeLqqoGO1cDOpOgc66uSmNMko0NOqVlaux0trBAxfT09HQ6Go2qqnIuOap5WdaSmAIxVVvMF+pLXeYHb9+69JFn4JlLZOCFV18+vXf/QVGYna3UJaEsFlVhFAAtKyqwatUpKmgIAZTFe4+mc3gIiABoDOYZTVRVpPEMahS6qqKozBEbn5UVJWgQYGNMF2VoFMCGG3eF1400PYfewOjqBbU+XKV1uMrHEt5K+VKNLFb6DZcgpoPEYb5tFvDGPM6Os7voCdfBnkMbWpWja+WLaASYFEARIGetApesQTmgKopBztgvkgxrPn14//rJ5PjRg/tvvfXOu2+9nzh0zuR5jqrMQmQMEgfVyAQVgkTXEAKgiCKtIH66DDoACBoMYBAQJRaoPbMCC9Q+hJhm2BRtrB72rBHcPeBZC5iRgUVXtq8AkGCE3BCURiITgSVEQ3Xwq+JJ1aBiGtjdc/Y2IibGiQizRAx9ozFvCzVml7YnQtM1ZS121XEZVQUWNC4UKwjGr7/15kdevLp/6bk8G+b5CMFw9PoYH+OZMUzlQyBjTZovTlWD7I73L29vDe3RJAAaik+OAFUdDBJhVw4TMUSFxJYhWGtRtC7CyWx+tBxNF3M7GiBiklpfFk9dvfzWO6P54WQ2m5VVlWWJiFGSHlg1ONsLXzeeA1WC5GRi9sXm5Wx2Mdsugtx2/AmQW2/e/uWPvvUfPfvKfyLbL85ny61xBfDUclE4vU2GyVYAjECAZN0lk15Intl+cf76F67/s/kswXE6L8RMaW+wTIvtNE0Hg2GWZUmSERiDKhFSQCQGwDSwRHRJRIO2KqZkIDMIXAojgjEBF7y4tr2bZCMI3k9Ogl8igEPBU9GKZFrT8Y3h9JYYhL1n/bXvTsdbkI5hdBlG+zrYCc4WqAIMuJ8PT429kFRvz5ef94sT5B03whoCRcjI2MdaMdpCXZt6bPJQGVufXNM/BAG6ph0IK3xkXQW8GoHXMzK0t1+gDcj1MaSYWURFsM2+aU7r0ItW2w0AAEwfWFskMhFscXBaKqcuE76rAG7vvrIfkAjXGxh3Ieez+7r/5zp3jhsUY0nMBhdc21mPH4goQAiC1inX+XDERcHMaOJ9pWsPAGoAOYakDbkgYhNH1hmDhSoi5qPdcjlD0hSpqBeeETSpMSwXk/ffes8KGJVQlHmWHUxm1loHRgOPtneWi0pUxfBulheT+YiqMZrFV37j+Ks4uHxx+NLzkG+ZC1fCresmz8OywOXSJomxZNAkae6DC6H2vvLeS8TuJkPWSIjrL6qNEcTqPdcZpAAWRGKQXiWIhLhKEfqNRUSDaGAICsE2OWcxWVUi9ldcHGyAerXFY2h0lPX3RefWiWnH0x8zmDlW+hIZ1ahBaL/3LhoitEAEZL5FC/hcLfW8uf5WUbT6l4KV9G00uwhUB6lILRgsiktQDIlYjxhqWz08ODg4mjw8PLh+88b192+Wy3qQ7zhnAECDr31QVWNcxCEKEjptFxr8P+gypBCRyBCaJlCqgogCEIIwYmAog3rFWoRZG/8WRQ+WdnrQavJnRNrZ54340DHTORoL0QyhFsQDuHGfNRXbwUMDIg8xFwYAGNT0mnL3b9EFpAHAQLSnDSIycy9vTxtIelawK8rrqZUAAEGYzOriD09OXir3UdgSaO1FPQvUUhtnkNhLrF0mEXEutWlGztaFJM69dO3itRt3Jw/rgGgsoQ8AGBQABAkNEiCSijRAAggohGwJ66Cn8+rRyexhliSIw1GeWltWxXA8vnbt2v2DiYgUtR94rjlYFejNlqwT7u80bJCbL++eFDZMt65evbychcXiYJn/9Esf3Xs6/95b1/9bS+9c+9Tfy7efCf7UFrOBNR62DCFaBRBWAUgUMzDOD2fblz/x1Kufv/71u+PwnSKOOJtOTxkeJUma5/lwMB6NRoN0QEQAYhBjaz0UFVVUBhUlNMDKSjYBNeV8YU2WZxkwZnJwaf8VgC3m4BxRtUA/18V1uPNAF8convavwss/jNdeCcOdgOiGmTLUgUTUoCRcOiwBfFjcI6lAErM7HNlr/tQuS6zVW1ZEBFJEIrQKgoAgYCySAdQmlhZ78hE2PVEjyZm1Dbv5+Vzi74uf5jrrXttGIn+jga1xfVY0xtFWFbSOR20Yrq5j+3QMgRkIVzXE3eifAy3Tw9ZTqeuXWpuiUt/18g0fZ8MgbovniJEyl6X5AJYFEYHKylu2crSiklVVQSCbmCRBUCSTpnngOs3c9ORwcVr70i8X4fhkCZgW5dwi+WI5yNPMGitCRN57tW68tzMYbdf+SAJ7lULEOfewPjSVDCFJSl4cHM3fvbXz3NPHxZJOj5yzla+99yZNhFCQkywbbu/axCZJYlPy3lfea/CIGOsURDiukIJKCCEES5mhtFvtrkGkqMTaUGYWYAYOymjAWhsTwqHlme2LPn+FG5O3l54ZnTZkGghhROyhjG1EEnqEHVP/kZBAG6OZsOeJJLJgiNAiEcK32wI+O56sGz75V2f/BWhwrzUaZqClP6RgEh0llIlIqI6mp7dPDt67N31w787pu+88uv/glFXSNNvZyVhq5qyqKgBI0xwAyrJU5SRJVnspRmpWM2nqUogsNSDPqCpoUFVDCILkRava12rr2Pi3bZzX7VJE5FURZMtfOj9zBIhHbLICQBGg0fOjMMcmgCWg0C8o5KY6JVYmxAY1UfQa4xDRew9rTG1zPRHRQCxOaPL4QVkUsO2O2dRDtabGBhcAAGVY1svUroA4KqFl4ReTKbIE31S+B5UkS0mGwYYsywxaYwyrgIpLspqMtfTU5a1nLgzfeVgzC8USBSAWAQIUgwZRlBFVGAACgVEximoJEf0Sjo4W9/JkK3EuTYgq40xdVlcvX8mTt2rW2XyR52mSkhhIe0RYVdVapAAxcBmkOvG6m+3ubfvi0c37xb/83T/8nR//bf8Usu8Fm+v1L91/8OmTN//+6GM/gfYaDCZsS2OSiPodovZjjXFKGPLxU1T+Ox/73rsns1+4//5i7+Ke6LwsPVIiFftQVCWXZT0YlEmSIKIRVUEAi8gYjSRgEFBiBRAPIAaZnRXx89PT6XNXZGv3mg6eqiXkMNejBzy7O5+8Odi/oC9/n1z6RDm8RMKGF4k/dtZUkx0jZQpz0AJAINi6dnVNIzz1wbKeEHvxl6iu0d+CktUmgIhoFIBiC2swgCISgFkkRLmFiEjaqXnYRNp7QE7t8T5DwIbmz+EAj2MUxhgA5EiNoq1jfNUeBFt0zAYMMkqjnrCMlNU1mGkYSXz3cUa62jK68nJLt2XiU2xkXJ87zprCa0fUYLt6awr6eRJ347KIChx95gYQXZpzWbE06yEigE3KdHSokgozR8+FIIioTbMkzVnFWRpk6eHJ6Z07d9nbKljP5XK5/PDLH8kGaVEXFiAf5ovTk+3h4KlXPuUhQF1dGGSnh0dmkNWefcXoh3aYLGp2Ke4NBwd371W337flktwIvdrAqIrAHkSFq5Lnx6VxlAzcYJRmwyyzzgepgu/wh1QZFRUkKNQsRTFHFCITg/qqysKqwszRF63ACgwEKGpc4+VtkwW6FRRcYXt1YbW+fOE1GbymRa2S4xAVzvNddy+rqVpRBkPG9JAwm5CwATSgJPTtS8L6gONxNt+Tzo9ZaGtbohmIOKYtBDZaS5jPFpOjw9u3b75x/857X3njzdlcfJVYN7CkZVmWGFKXVGWRZRkAFEUhImmaElEItWoEO2joXlpLtdXiTftVq/8Kq6LnoORYwLMGlcrHrpVr6GjQ07xw3ZHbf9IN8dzjF4gR3LnxZqy7swRii7IksQCNGMbIMeODSD/pYHPxSQEwkgsoi6pGNqrASrY5QVhUUW2fI3TPVZYlY/B+JcPuHU8OD7bydAjCvq6MwTRNg7DRQY2AGQOhkCGbewmgnKbp0po0d+MCLo7cVg4HhaKCBSgbbzqSCoIxjZZiVDWQWhYUqQwppeh1MfUHi/raskiXRQhhe3vsvd8ejy/uX7p9/8FkNh2NhuNhaoikl8pR1bM1swxqxgXCwk4Jwd48WmbPfP3H/73/S37lP+Z0eQJEMNl74Xderv/zmf8HtHxE+UVP0xmkOdZEgEgOHSIqsrAPwLl9Jtkeb8Ef/8h3LR8++BfFokzTARpCzICAFYqyruowXy5Sl1hrB9aqKnJAxQbBtHWMI5KvAqImiRWZl9XCpf6FF3+Hhstl4Dwt4KA4vfuGZrPxcz9QfcenRs6Cqi6Wy8KzDwTewkJgqp659OQDiVeokYIFXjIEzQIvsCpgatICHOwouCkcNkxIUJBRiUCUTAgh5oVG2dpzqGz6WgBaFK2WDtckWUvMG9+uiBz07E7BhhKaSLBqX2MGaDcbxELXCP4sTdw4ghp2HbhB2wTGVhum2Eeh2ebSKrjI2qRAElFvJmfj03038loZaOT7ANCzfdfSfzYeE3pcor9uqooi0Qo0xtQcnEsCmtAg5QVsmuh2LAURWQWTLFeEiM+R5WO/XGJivOhwvKMBHz44FTDj8XZVM4u5ee/RH/6hP3rn4H5VLF/95Md//XP/09Mf/vDux77jtDwuDw9EvOXx6MqlWqA+KfYeyeDCxTmZS88/V5VLr7i9Mz54/3oVYm0mBc8kwVhrFesiJDZdLBanB4/AwWh3vLW3OxiOB+mgCj7KNhFQbWQtERXlxDpIkkxbmhBpSoHjCayNy1iADWFbgN5nqrF63qwvc4seuDJhdUMGt/Djq8BoPxLR464ATcQ4qoMCbRJf/+U2mVytpvdNC+BvqPR1D3yWgD7gLTrZg70/kaJl0Ps2XnA5rqtHi+W7B6fv371/6+btg1vvPbh35yGaHetcPkQvFUuwDlTyqqIk08qXMU3OWhOkkggyB4SC3SbsoHDWp7bKRRIRVeQg6KJURkUS4A55J27fTZ33zPr0F6fbY6oKqCpNwkh/Jdv06t7aasMUIiJWvKAxDQdh6Sz4tp/3av6qwgqxbyNQVDIkaK9EsrN8O4yOjgrjBLzULnO+XIVR7z44nly4uDOZE6qEIkmNsyKeS4YQZMtRqJEVsnFqjEGAxAwTl0k+txgGDse5OSmYFKwB5ZiTKgxkVJHIkEECVS20tgIs4K2QMeC5qngWAjMvlsvEjADAkRFyly9fuXvv4XK59N7H5ZFeSEah5p4jULROMk1TM96pF/T++Gn3o/+H94FfgDRIMbyQgUJecO0uX6LFd7LLDICr8x2aoO6gCihDCMxMaJwbgUt8NXFbmONv+8irD08Pfv3z//TBU5e/z1PhQ7CODAKzita2hjqpjTGSZKhgCQyCjUFHUQAOgVPnpHkpfjp/mGf8yqsvpHs/UKZzqV19b5acfG7bLvDp34uv/u5gM0GlconFwXBxCr6CUIfAeV2ASsWyDD7UpfqS2FsJjAmT+DrhembMTUNc6/ZcOGv7O6kyCgKwkkFRACEi68gZSwSd0hmpwvQgCKL0XeunsDKL18zfjR3RiMB1AdyV8m1szcYzHKNVrY2rCtDkUjSqgUHqosWdLRt/gqiIwAJE0tm4oI1Jba1lH5hXTuZunmdlcH+PbDxdFOErBT3S4LrtC+dwnrUR140wYrZRXXljHZIF4faxVSCgYKcrgCgBOueavBI0SWLR2Ma1JLS7d/mjH8seHcwOJvNkMBgGc+vgwa2HB3tPX1sspsne7guvvFJ5P0+Ti8+8PB9ltx/ev/rC04MrV9XmQxrefO1/tNs7L7/0scoNcV5+ZHS5uH3nmY9dXdanEricLWYnJ6GsnDMoGhaLBBPKMLEw84vJ8WRZVFt71Xh7B22cM4l4ZtHIlMkECQBCBGityKpc23svIhHMUpW9eu89Gklc3lQRQIxXdewrWjLcLEo8AwXAbK4yQD+RFltnfg+747z3Ig06WyxMb/Fz1ggbwWiUMl0zBjlDLtRa3K3/PM5gFWDAdrRUtKo3B4A2yxr7TL8juTVJs2GXpbUv2aoz6DAQoIAJInWQjCiAVKCSYIpG6uL49PROWT44nkxv37r33rs3b1y/e3wyJ0zyfD+IeAnaFHWboCriVRVqA9BEGpg1QkJCowhFBz6SirbxUYYWEQKAgSM7YGaltCiWNk980MnpzJchIKEg+6bsIYJnrNaTGtAAgAiisFrGLq+y23uqCiIxcUIBONYUqsapbyrFogDqyAkIN2EHqsuKI14SQyODU0OkAm0RRafOY0cDQdv2bRICMsdAhTEGjGENSohNQ3BUFg0szAgAFfR9LMsFvzn1l3YLJEbEIMZ7dgllzs+WBwnBaG9frVZVZdMBgCk5cVvPzAq3a0+u7aXOsYWkAmTLKQevxIBB2TM7MRmqU4OqwyQP6i1CqkF5oZmpDB0f8O3t5UfzAdZ14UsxZkxmN03zbXdyXB8fH1/Z3yMyYPvJ4VwuVj0Eay1e+djTCJlVu7f9xYuXPgX3bkj1ObAHR/7XgV66Yn9fnj8nmEH+fYLbbBasNYYRQK3sCRAJGBGI0KmCT6ioJKXRmPz3fPJjf+zeG5+5e/gls39trOz9wJNBLDAQ4RYiV+GQaa9ahszlu6Otsl5akkE+CFVtrAWcgefEQTW9bHY/99t+118ebf/l4tHf5fuzUV0sDm7qeDf9zt8fLr0SsnGuJRSnMjvU5YwXS17OZXGK1dyzeGbvfajLarEg6woxlI2dLKeLU5MgiZfSpNYMhvWFDG/76pJDB46KtHbI20pBGYaEh96njLbW4KsExQEsBa1CQGwcSG0GFrUsqNVHY7QVotjbzBNshZ+qtl0p1jVYjek5iKigrCRIgIzQtjwCVRCBGAdQRexHbVesrOegolWzL9t2FYtb1dimlzB4ACWbCENooqGcIovUCCY26vWIjoAiPBQgNJlWALHvpCJDZ2hFEIMmorQWUOxz9j6T7KkLjcyI9b4iQmRFQpLaYjlNMCWiBiiShLB5FgaovdpllW2l6IBFikpH25eW5SOkvAAUZ8bP7M+kdvN5ivnSnVzcGepkCdthPNo9Lmtz4UJYzAMXbp5kw539yy/AlQs7o4v3fVl6zUf79JGP2/zaEM1sd+bx0XBen2R48bkfsNVieuNtewczk5RlSFyGh4eqvHvxavHw8N3f/MrW1o5Oygfh/vTgfjJ6fms7v3Rl++B4mSRJURSsnCQ2xWGabNWKLnFc1cbEbkc1oYkONkEIqoqQ5glaZK06m8qQbXOeoUM4a4yO6OlUArLtUgsStrJZWOJ7JIkJ8oSqwOItub4p2P3rTCIiCoJAQCmSQbQSc3PiO0UrgAYtWot4ph3hBqF3Nzj77Qa59OkGzwCCfPAh84EzQoaFq6BijSUSFk6TeVUkKV2GBBeT68eTt09P3z86vP/61+7dv3//wf0D7zXPRrs7F30tVeVjl5iNWWELzr7SQFviljW9dWUhWWupl0i5GhyB0EQEYx0+R29pdwI1q/CE1YN11rPOJR6zPv2Euk7H6XxfqiHUQSHm5SM2kKdKiMwQQXRXXd6aCWyo892fKtpdRyFi8ilaQoxMByxR4hJAE6vj4yhKf3g8nVwcBhWEsKOajV1dlj6ITQ2LFwlGhQhAJQgTYJZlIc9xtDUajXeHgxtYgRIyaqeCKkLsM8bAsXd2XAdDRg2AUVIWLstyssDF0I8zl3DzXIPBYGs0Pj05KqpyspgbM85X2wHqIkuTQffni69cni2nztnLw2T38p/ZfuElP86l/m6SGzL5xfsHf/Mw+cyF4i+Mk99pBy4NB2j3DRAgBG6galQFRIjExKAkXpVw2yYHZusKXPq+Ky9/4d6D19LDccXHJjHZIPW8KKuC3BjtVlkh1PMkybz3dx/cu3xxXwAOT6apTSlfpN7TvqnmWy75pVc/8R/aqz86efDFjPegvjd9+B65C+bqK1WaiM7yYhaqKVVznU3qkyN/Og/TWT05rBcnvhZBG+PqoSqdS+d1IOczQDIiCpXn2F95MV9eGu/sgp+p2qMTd22/Igczk17c1ePT1DkynmtmZudMmjmcq4KsPHmdydAIGOmTWfehb1BqW3+/sS/6+4eIGhOuiSBHibuiZ2xDLVHfFWn1gGZKa4EeWM1wzbt29l9ViKnT2DRssFFp7nYNNJECUVQR7bupz4K9PyaAeM5YbcYzbAF75yghkkVj+0lYIm0uRcQc6cDCRJSsccYoYGUAIHMJECHCxYsX0bujB/OdvQu3JjePjg9OivnFZ69u7eQXd/cKMvP5rLB2Us3NMBvs7xyczrafe7oueVJcpaeuFDIs5stktMX59iI8unjp6XQ7rWjn8sU948ob7914+jt+p7IOdCouMduDAe1cWb5gND28+ejunclukqXzo8ncTpenNoVFsUySJM/T2lcuTU2akSVrLYhCAASDYDiItLVhAGCMsYklRxKq/qvpLeDjuKusf0vt564iZOXFwZ4F3GmNj3t9sftC/wgiCkLEYDnfBf1kMfBkkfxbHAl5FQfGgVGkqSBKyHw5dD5NTZgv3nx49PrJ6Y1bN2+//trtW9eny8VJkiRpOnbOhiDTySKGQrkND8D66mgv3rPxjKs/kdqAQQP935QxqgKgKoCSKBNAYClqCIyBNYCKgl2xkhWXkXPCr9Cd1lFJR0Yd03rC6F58x6QMUWAOIfjACoqAgmgAo9odMWyhwWNrFAXBVZURttAfXaGztvI+uush7nMFjYWfKgpqnVPqQ0vBsuZ7D4+v76aX9sdDx3mCo+B8XUsdcjNg5uBrdLWTgOpBEA1ZYwbjrUp3d3b3r+0evnZrCQEtk0cAJUOqAKyAAjWpqlgkbNrPGZAWKy1oLfV0itNxGGXBlXWahkrq4Xh0ef/C3YdH89IfnU5s4kyadLMlV3Y9AwAAM5gu76rcyy+8+tTVC6OdHwIewxAAX7k2+KNXr9Yy+5phDcXdav6wKEK2pZQlgVFNihHmXwQjlYQaEBRrE8aGtgA5bO08/8mPvf+V192BwN6F4M3po5lNZXtvXJbz08V0a2c7lK5cFMYYIjw+nUaMlOF4PICqOE2yXXNY3/xtz/yOK0//xePDz+3RsLIuv/ARnM3C3gA//ALsfTJXhsOvQUi1WITTw3B44E9m9fS0PD0pp6d2MKqBhBIyJrAaVGQx5KcnUzfK1RlK0iQdiRYH00ejq+Orn/o0L6aTyZuzkzcyh264j4clUVUH3+YbKAAyM7N3zkTTFKFP8dIFhtt/18hY111irYFCAC3onpzPi1SgY1SdUzpu2Q4oWERbPSBea82u6DZfN4H+ttoQ6kSEuuqkREQ2BuwROzDOqODGABCuZ0Gfu4URoL37Y/f4+b9VANGm7QQhqgXrKEm1rAQCqkFUACsSuqgnAqhqCAFDMKlFgyporQsM1pIghrpOU7e7u316PHHqPvLiS1/44q+/fePBX/o//++u7Oy/8/abxWz+od9+9eDRg3Q8FEMnk1NUC76aLIuh3ZUC8p3cixRaaT4yTz83fOHDRbFYMApZ2d659PJH8quXd8Zb86N3J5B86Ls+Pr1x66kkHbjtg4dfcJqASdAms+XiZHH/ytU9EX/l6mi8s316epLm2244REOoINZ7XwOAkomApYgS64OiRYS6IRSlix7ieiHZBxBkbTLf+sENatl8a9h0PQIlRIM9ByE2BwkARPUcAXxW9Pas7LUj5873tyqbbV3XS64RDKmmDmxi8mTsoHxw89bXHhy8ffPm+1/4/FdvXT9Mk3GW5dvbl0MI3jOiEJFJXAhS1JW1DcobQJep0VeTV08at0GrsXYnmIj+GLHzeqC4qNHBJMIKnqGofRnYx+rZGGLsRbzkG0nSjhG09vSqM9q5528c7/OIqI+Hhl4w5pIwqGnB7UIInaSPzxsjx6bHoGBtlbBv/WNbHCcise4uqDhriEyvrge84umseOPuoxrluQujKvj5fIqIQlgsymFS+6pkRDU2icIXrBfO8iHj3u7Oxef2Ho0GD6spkxJaR4LNkkJgVWRGRIjZg7GfmrCqOjSRkc6WfFrU44HNiipNSyYej8cXtvezdHBULI+W87wYxf5ocRjYLf2s+/Pu0W+qCap4t/6nz+MndmUMjoW44gWYrIaH29vfofP3eFqH2RzwfpJYci9huMx6P8KhsLAxBjmID6psh/vkpKZjq7t58tv2hw+C+YU7x1+eFZOL29e2t64Jp9MJoEsB9P7d492toQqWXA+G+el8vrW152v/9vs3L+YXL12sF3dgIHxh+6nyN//f4y2E3d+fbD8L1U14/sXRhz4BL/72IoA9PTCVw8WJn5zUhwf++LicTIrJtJ4vpfZES0XrUZTI+5p9XVUVOsfMFnJyuU1HZVWwqqgbj3ayF3/Xu//TP2SoRoA4X2hWpJDJeF9PbpEiKQCLAkjwKsFEGonSt6mYFICYIA3d/tJeJ7joYIlba2WhNJYq4hl2FCvXOWIuSFv5rtTCLKxtqLMadmcBr4KjZ/bXuq6Aaz9vuyNAG3VeuZq6QUSEzLxx2Q0dvC/gWwv7nC2P66b5alZCsdiCEEWNEpNzJsmlKFv3AAJIbMnX6NOkIizeo7XoEkRSYYPWa1BhMBBCYGEk2NsfP7p1mo8Gn/joK1Ux//t/52de+/KXCh/u33vwv3/uuY999JXX33qTa39xd88rmCpcGo0Xt4/TWhLPoFIsK1FDo+2lGIDRIMzBz3F86dnnL0yPTqrTarBz5VO/6995/d2vohvsXrkS5rXYkG8lOaYX959eFIfLUtNsYCxs7+y51KR5NtjedfmAmaWummWPoQ40qiztesZvwLO11H+VqtLKgnOkL668ntr6DzYs4E6Ed3VrunGRzRcH1FaOExnT+S0RYzOL5urfdBLWEyzjtdt/q2LY8xCSWZYAUQ7lQJdVubyzXNx899ZXbt6682uf/+r19w5Tt7+3/SHFJeu0rodETSqgLytVMcYkiQlhFZAGAFVgFhFp0tMfs3wNnTfHCWDlslZVRNNEbwREQQSKKiwKLr2IoiAANs174vUF1+715LXatNfXM/G0ja8/QX2LMtg0cOYd0MEqewux4Rfaa4aKiALgqM38hAa3HRGhQf8BBajrmlqTp2GjhAaMIgKR7c2ETBpUbx7MkGh7lG7lCc+WljDLk5rDIlm4LHVkquUpIrp8qGS95zTLgfN8NLq6M7y4RbNC1IMlIo29F8EKsaoKCgMDhCDGRK9QzNcAAiKCqoTjZbU7Sna9iJeCQqYwzkbb4/HByXJWlLOiKnopYwCQpKslnVVHAprnGd9x+In3gcpA2QxmmbE5pLlc9maCNER8VmVS1DeqoyJltflRSrsoqiIEYEAhVKEukAOMdsAuFCwWGcwf3D/8x9lL7128aP/E7/q/XxnvvfPVd3/tl7/ifbCiLPX+9tZiUZgUK1+TtzYdTKZza9RmeJLeX9w4BH/zO77n5SwdFydf2Lr2pxZbpWFXue30w8/Acy8HyDBMta6gJp2floeHxcMjPzldTk+nk0ko2ZmkNgVTwkYEyFcL9lTUlU3SbPuipAklDq2jIMMk8fXpo3tHgy///HDwvj28d1JUW4N9A3y4HbiCbWNU2XvPzI4S5xwA+FCfm8xyVl/vqP2sQ7bV9dc2RTe6bOum0KPdF32JK70ewNhLqOxvxn45bxNoXvdV9i8FABI7ARita8FYLq/qvU9NTH4UZqWmpggkdtE4T6Y2R86phsCNc57AN1QVCYFX9gOSRSNo03ZVA6oBiGnqTOTafCQFYeSg7Dk+XlCDJBIQIbWp914N7+wP6Ygns+luln/XK6++fev6wZ37OBym4/E//vv/3XuvvvqbX/6qV/iuj3/ncHf34v7lrb3dCfjnt/KjxaNqOsvz1FZMYJI6FFU5GCToBvfv3qqrsL21dfTo4dbF/YPTYzTw6NGji/tbD2dHy8lkfO2pAWSIOB6PL10ZDkY4GOT5MCuKRZIO3GiEzqiwSCBolLCgCqpBhSUwe4WAqMaYmLUT1bDekjbr/AFFWPPDFqVyHdWSuuq7/kuJC6zYFL8hoiAZROjDm6KRWCOHCOcK4CfIjI7czxz8tvmlxTDIdlgQamnhXlE/uHX7jXfeeuOX/s2X7tw64GB3dy4I+aCPCHJfDo0NwI3e6pwVUO99UZXWpLAentEm70M3ptoZhasnAu30XFzlTMbmPAgKIlzWUgVdVGFW+BCtshjB6h6kDSz1GcrG6HONDV6zwQ5Wczsv9oCtAa0AZAyRhBCk9bZDD6+ncSkrCKgh6koepfWS9BlfPzaGZBEJgFSBRUQUqcn2g3VCRGMQoFK8f7y4clqMstzWZUo4VkhTM5ueDoe5MQZKKGkGaGiYElEtzB6IaDTEp8fp7aNi6YMLYMiYCHUfUYBZQBkZPQdVa61Sm5WmygS2rMPprJjvpPGdBjLzsnYm2RvvWnpYVjJdFot50c3WJIsLV/LuzyAsomW9mPLwvTt/b2fr3863f3zbbjGdFst5ikr5xUBfreRmLV5hT8MO1KnLCZhbHz6CaKhKX0xSi9Ojab6zQ5QiTGF08MwL3/vCK/+uzf4QgFZ3f43oYZK5yXJqARzifF4IDcvlMsmTReFHWVaW890tJzx/8PaN73lx+V0/9Cee+vh/XL/7fnYhnSbXBnhV4Cbll7OLH2LkanZ3UDuc18vpQzh+VB8fFUeH5XQ6nU2mi0XQJEkH9aJUZIGlBO+LeT7IyLp0MDZ5bvI8EDBXAErOJW50//bD09OfOw2n3/Wpf2vvyquz6ZT9ozxwlm77CkHRGGdtEqklus1bqDKEpiVSxKNpQ/kN9Z5vfW4Qf8RDPbsFABrZprFEXhEJY4vJbkOtVQr1ZaqubZw+79rYhn0B2Qi51gvYXV9bX/TGD/sx4Cc847lsdt0sO/8riKwsIqNTbNyCig5tWJ94x8cEWhZhYzlWYBUlJVVNUuu5rmtOk5FN3ZLnomFrPJjNTh3S7nD71edevnnwIN3a2rpy6c0vf/XXpvPnL149KZbvfumrJ2VhahagT/2xP5Dlbrg1HKUZ+lD6ymbpaXU8lPrmI8wcjJ3f3917FMzMZjR/cHov1Fxc3Rskxnz9S6/tDffTZCdltyhOd/eyCxe3FerBMKuDBKGdnR3TZOMLKCOCCosKs1hrwIvnuuISIFhrjDHW2hYYdUMGb+phvVe85gEFkPZzhNGQ3k+i6XK+J1IBQFENUuN5NmgMoV3D+sGmVh0eZwF/y6J0JQ/Wp/XBR2IA1QBCXRzfuPdrX/v6r33+C1/7za/eNSTbW5dSt8XihVnBB10guRBi6ZsEYVUltEQ2TVyszu7Pqr+vNhTeTZtYsQ/JjogNIxAA0BAkBCmrUISwLENReVZHZEE9oAp0EO09Ydbl2/WWCtb3yobzGc/RkVfPcvaDAnBbs0jOgop2edQxjY8opqWQAnQ9IqnLzwcGFRVzxp6I11RLBIiiIQT23gvHNrfoHKwTTPSEK2VLv7h7MLOsWw72MosioE6Yi+XSGONytJxqrC4wCSOjF2PMMLfP7g6/fKeYEWSiSqyKEEkaEdSAKChrE3dURCRjQDkqESR2WhTLMg+B6yoEsvViedGN97Z3UmdPqrBY1rPlSgADbO3sJGXV/KGgErKaVUb061+E4dZf+jgt3fDPUronqaghI6Xne1U9Q700GARPp8tlKWF/uPeRGLYEAAm+XM64WgwHWZ54J1Mu8wADO3opu/whACirh/xQxR9U1fXF4i7oEHCrqr1T43kZUAdJMjmckqQ7W9vF/Pbxyft/5A986Hu/7/8JH/lBP+Q5Xd/Z/kOD7ABvHiUXUlnelwMyy0tZWfD09XD0CKY6uXejPFkujk5mJ8fTalEZawdbONyyZgwg7MuwnIqICphkmA621QMBVuwFhD2Xx3Nr7HDn0t3Ddy5uPbP93PdO7h4YmCXb2+Zo4vaxYlDFJMmSJBGpmJnQGnJIHrpygoaeY0oB93fAimC6yI52SjIAgMRKWdRVP8D2hy29Q1+QC7f9PeMuje0jYjFfzxLthPFGMmO3y7B3t/V9B9Y576skcd5758aqejZDk4gUpfWjb8aAuw21uu8341Bc0wwMgqLiimOAIqhpVwChKW8OIhQtZhEBFjBKrOwDEQESoEB0QYsyszGWDHj2NYR0N1cxWPiLo12pGbNsazCcX75aq54enOgwefrqtS2pkyJMisXr/99/9fa//uWtS/v7Fy8CQ7YzfuGTH8n2hrsWL6Tj5enpu7/xmn/+xXJ0eTRIbr/57vPf+ZRF/sLnvjBIB7yoU06L2WwwGI9y2h6nSQKs4sXXNWf5aGt7r6giRrpI8Brqui4DGgawyAyepWL2aGLaigkh9LQi6BJ6Okr7VgRchFrVppiz/976F8TWw4GG2p6Fpt+MAQBBY+kNKoo9e4lv1/gWpC8AoB8V83dnkzevv/vGL/3Sa1/8jXcWtY4vXNwyw7KaFPV9AAq1M2ZoDLCUIUTcbWvRqEZ0KvXsE2sAuurVbpOvwrPYoISRAsVA7yrxCmOzs7ifY/QXo/ocO2947+uaa+YqhMAiQJZIWLFNQZTexjjHafD45Yq/0h5X2jit06zPimdVVUIyxkKjkUSErKZmDlAVxIcIidA2fVpz9KmqtNp9s1yq8SKBUFVZJT6+iBBYJYornK7abQGZOCUrYA9P5mExf2Z3lF/YQl0i2u3t7bIsyNI4cSaK8DiczcChdfnAXdwaDvIJVOwCelUFIUCLFhGVpMUqQ5HAzHGjxRW2aMFoVZdl7b33ZVlqYn2tmmxv5cPUOi2D997Xq/iclyMxW92feZ6cLPxoRLffXG7t0v7lF93oDygNC7yf0LZRB4sZz11dOpA5UWCfO93f3hqWISCZWHjG7MuiML7CYcqLa1C9SQYwf3ZuPINxnGEZhrl/840vvv/OF3yxJNgu6wpkRsYzjxBxUZRpmgvDcj49Obr3wz/0h77zB/6zAztx/P7OHdrXBOTB0Z2vb4P6B9tZuueXd5d02zpIxOtkMn1wffLojp/6+fH05Ph4CbXdu5BujfLh9hLIGjR+WaHU82lV+QXPaxjsb9vT+ngm1bVnn73w9KXDhw/mi0lZ1kM7O60nJ299vcAjhGlS71SXnp6UsG2SOS988KpAaFObEpGv65aE+ySPrboZ39ualimyFpzrKH/djbzhr1ptis5tpL0T+rtGpCn9aaVUZ6T29d1uB60U5b4OSkQqbK3lsrLWlmVJRJHLx3NiAf65GvPGaB+w/zjdvM4/H9en1P92tT6yOtIXD7oawMJBgawjFoVajLMWIaIBohiTMrOIt9aSye2ezA7qclYN8mGq9pm9Kwfl6cH1m5cvXjleTJ99+tLDennnvbvJle35bGIH2eXxzsHBw7sPDif53SGkpa/e+sVf2bmyjVuZFsudPL978+47r71/MpsenjzY39++d7K9rCZf+cUvSfAvXHv2mWuXTqkmO7tw8ep4JyOskjT1imRwOBwrOgBGUZDgq1Krqq5rcClaW5aLOlQheAAhA7G+kgOg61s4nXEVTaFNsBcAaJU57Tmc4/HNkAr2zN+zplFDUS0GWewfsEHAqxgftJK5f5L2WDMAtK0NmxM35PQ5qhm0DxKvk2DgQCBEVgWZBQCstQBLYSIagTqW0jlPRFzidPZP7t87/JV/88XP/eIXDg+muzsXru4MyrIs/CkiguaBFQgEAgcVQYOZCvgQBUpDhg5NEA8A0C9RiA0VZAXSHcHcmj2JGBOviBosqMaJIQCoxggBeGHPEJiKGudsa49lbWtRRl+rVxBLRgBUISblYeu8MoAaYnkZqkRYSgAgASEkkbDSx1Fi/2FgaADGN+o0bONxjVgHMdeDiAyRNFUQAKTGIACSalCFCJQASmhsaoGFWUQ9KLfIWU0cS0HZGYiePYgKiUFAAEINqqrKgoKohGqYSVVRKWJLtYQqDMyQUKHE07LmitjwPCuf3dOUy2UxyAbL8dY2yNDhwFkIvnLJbuLLw5RZZLtMnxlvffSF+aOvHUE9AKfel4M8U1UWydPce449yxCMr9lYNNaSteigBEDG3GwdnfB72ezl57JBtUChSTUVay5duHh8essX1dFs3tFpofc+/Pyf/PrrzZ91XQ924PARP/Mi/OW/+pNG/z+LZZIPy1wvcajUFfXJL85PFuDBpZkPIKiQyVzEVQdeRy4bh7rS5UkihUdYsuH0WCXJ6rxeTgchYLq9nCysWVYPfuPowf3D09GSBy5RlFMRq/ZplJOidpAuWDBz7v7Dg+/97c9/53f/Fbl3ez8bEj2C8i7408Obh8lsVh8+0qGehCzZegrToc3odPpwfvCgms2mk2JRBhg51DQczdPaO0qXASRVNMRe1SQ0GM8XE5TFyemN+fLivLjz0vf8oY/+kb/4zp23RZK0eNeEg9o9OwDz9m98Phmmz7/8fK2o08O9bLsQSgeepwMJ7GFaAxlnTZON1/ABBjUqbR5WF6qIbcSagJzFJOq4kctoU1ICZG0kehHtW6sdjyKynr21NoTADF0VfUxG7nhRotRxI0QUE/dl7CohoEoIHYZBl12FbZQXWm3AGrusyjSlugrjq7t1Xe+MRkVRjTLHzKrWmrTRJskCJAC1AoNQDEupCgECaiDVXneJnuNttW5nH/YsywVRiAXKnUuUgBITyJb11BpFNSDGmlR8YBClxBjDCHWoFcGlCSLUdQ1Nk3ULCoaCgAqjQKZusjU0VCLPixqcTcz+eHtbsvsHR7ujQfp9L3/Ps89/4a//N0/tX4Onk/lX3j0aldde+ujD2/eG3hAH9JA70oeTYlEOsvTew3uXL1968723Sqk/8vFXzSA7Wt67/96drctPjzTbHo3KILmRi5f23Z4VK5ZcXVYsMBxtuTT1ogTC4jXUiHgyWSTpSFR9VaH1VVUGgDQfk8PAJQoPUpTGNxbXJvLMqLuv4ahAp7LEgHqUvqor/wVWjdclRpdQFTxAg7ekHcg/QCy5ZlRjyBgLlAAYNJsSUwkIQaNP+7fejnDNc7s+4pHg0TQZ10yUGGORBCDUITXJgNkjzlI74MIcnrx1Mvvqu6/f+Nwv/+qbb7yXZ9tPXXt2WVTTyXwwGPi6AECJEGxAiLG1tkRME10fsFIt1iYJ0U+DjcUUD8fXQhQLrRs0ZgZoKmiRCEAVtangBlZhlbKsy6B1XYfAbW+Y6OyizvELraLd4kUiQ6SBRo0y6+ns7WQVYoFrz1veaW199ahvIrQk0uRQQRv9Sqzt1gSjYgEACIYacM11rEroGmXFCBuiKpIgqCKzCCsAGeOUNMb4Qu2dc/1QhogQoQaeFsthTssyBJlgytvGjRMm9lXOIIaIfCi4WqAb2XTIbqDGsKOQk8tpL6GdFIrlEiB11gEAKRgyANDUvnCIQATMceuQtZYIQTR4KQtf1j6EwMbVtQ8639ra2drace42i0aI7DhmJ2ma1z2qBYLs4mXz53/qr5ry34M0TYdVUbphVlrKTx590daiaoAo9lrHBhoTRUWDD3UVfKUhiIAGDrWnnEXUCwtAUVRY1xCw8o9OHt24ffvmyfGMOQX0iBmCnc7nqLW1IxYE0boq8yR/6tI1mE9Y5woXfVVl5dHs7tfqo+PTh1OcL4PhCvJkt6xNQgkpl1JU9dzXbMhZFk2Ge3t2wOCWyyXmqbFp4MBVAMEkSdKQBubS1zZdWrd97+71h+/+qgl2e2f70QO29ThoCSyhrtGVxXKRj0dKVAUfQgghKDQ6HEBgjmn80IfuwRWVdsS8supUFZRXKvKKbzTJJv0d3VFXc+W2qpUZQpOjek6khgC1vWNkeU8wT1c7sLdluvsKKEBsxNSoxbTurxYNItRGIhq+rNo45FuzSb9BcdI3M7DnLYOYyRH7JCIjSGSCgqKK0Q0WRwgeY2lEC74rMUer8fcjIg7Ho7oMZCt1yrUPZe3SZDTcfpmy4nCq/+y10xcffc8f+P6qqp75yEv3v/+jH3n7wcUXnlkW1aNbd23iZliX5XL28GBweqiqSsNg8VO/4/tNNnzqxZeu37p99/rrAw4GcZya/e0BJerFZyMbcbmCiKgSmdbHEFCYq7Iuy7IsWUVDQGvQmIgo3NmP8QGZ2ZDry9mOErvl6nNXbWLAsnJWYve548wUSaMjpHikZZ6N/UExV0ajukkIpoerD90Fm03xrQlgPc9fjedRNiJaVKIEIBMJrJWgKKsIIOyEME+dUU/z6Z2yfP+dt1/7/Oe++Euffy3LBjtbVwDMsvCqaIwrigJQQKntB8lALYZc28MEoMVjj/ttBQkJ0MZlO2dXu/oIq+oFgKYudvUcCmwwCxJQWVVD4KBQsZS+FDUSc/FqLxgAmuaF4GzDknRVHg6IsQBCOxQM1ViCAQzYOlXj/5uqRzojXwEAuu6Uj3018T8dd+hfIb6j2FMptoPR1sPW+tvVEMXWEICASLGgDhA1iHIsskNKXDQLmNmwoKgE7izgWIaSJImpQRXJuvnSF7dOd+3Wxd2BoRq0El6AVFUpxhlrAiIWgRIaQrbtR9vDonpp11/fmn/ttAAOiXMSGEgJXQg1kUVEtCbmnsZFJozNmg1rYOE6cFH5eekNUl0H8GWSlIM0c86V87qsfEf309Psl371fxwmfzj+ORjCjXfK3/P7XhwM/0pVUxEOBm7fGQI/hOIdGx6UpQgjohOwikzGxJ6eqiJcSY3saxAf02JD7XOpAVwAZePrmhNUJ+Vs8t5b7335xs3byyLkWe5rRho553w4NSgO0fuAZKu6ooBbg+3Z4X2TV+wyVuTZyfLB3fL4ZH7kkW1ZnWRjs5XRXMLprBCRxKSSjMHPjEmq0qt1abo1m83mJwdZXQ9oT4B88BbRujRxWeBFXdemPoHk6uT4/vUv/w/XnvnuZGdbjFqbp5SK93VZgedyOh2Px+hcwTAaDpfLSY0CMdktBBEhtADhgzCNbo81eL8Qo2vYln+s+vKetf+IUElhtTvAIMhj+E+rjp7NtFrzZiNGViDQ5VFi1K4Ami0ZOSb0Z9V0O+hV6ykwRvzpx+zQb6P0PXNpJCIfg0siAIjAQKKCQYMCqDZ48nHnAhGRUVWOKU2gCEjKQIQKZeAsz3VHlmFeh5rAGSUuuUwQr23LrCq+/u6jd9+79smPXn/3jZNisT+6cEgMW1n+/LXRML8yHFTT6egVe3p6T1WNsxzUWvvWW+9NZzMLhIcn++SyUZqn2XiU1lCyqhunZNFXniUY42ziYp2kKljxVbksikW5WCJSULFoAupsuXDOJUluTNMFVCGIhIhN2TH8WFPaytp1k/QM+NL6om5KOlVFMNA73j+H0DYuQzCAxhiHZPt92TvRi7FSe2MeZwyy88fZx1iptBtHaAmwBZIj1ICVwQCQAw6sE9BRtTg4nb19+/ZrX/iVL37x37xx8GC2c+GCTRwzVFVljMmyzHO9mJVZkkbpyyqgCAyAyv3CuPaucW9t1OH1Zt6ZuXG2jZ6NhKpCDQ5svJRAtNwFYvatZ/GihQ+FD0xGFJiVfVBEEI1ZoRJYrBFjsMHfIEREQwyAEMEFoCtGRFEOEnEksGcpaCu8+1Zvt6o95rX6EJo+iKA9ya2qWgeOGALWIGKr6SmEzahbvDIJIWJTV9e0lFFF0MDQJnlZa9GQiCCTEcPMoaqh64ckzCJFqPMkWxZllmZEVPhqXsAk8dvpHZwOslzRJI63B8kIwNRE+VaaJtszO51SQmbw/NbVly76tw7fqZdsbOJLb9BgA0JEgmAbgEOFRgC0iakiSKToyiDTRWVACQwSzOdLABwPxifTo9KHrhDYJOMv/sZbv+f7mj+rArbG+aJ8MD398tb27wAKAGXiBIrl7PRdrbGuVNUZTKMjFU1ibQJoEJRUVCoVD03FGoMIhkrQBQhiGIJ1ilIc37/x1ddff3NyWlsao7XeB2QhUrIVQFoFX5XsUuO5hlJ4ESQ9zLNLy6VkWVqUdrD9IdEis+znFU1uKuWEzqCH4IUJwKkwkWUGX6tAA6Qn9ZLJ+4woGYN1RMmqJQCaui6TAQ+dWdx6K925MOc9sLnNAgD9/5n7s59Ltuw+EFvD3jGc4RtyuJl551t1q4pVLLIpsliSmmqJbLZarUbbQKOlBmwYMgwbbb8YbT/4L/CT/eQHGwZsQG7bcguy25TUYjclNSVOYrFIFqeai1W3bt0pbw5f5jecISL23mstP+yIOHHO92UV5aYBB3DzxndOnIgde6+95vVb4GIKLemqu1rL7RYXFRBqzG3iAkCfCexdWddCtAac5BaM4ozGfXqAEj8E9XdMY2cuAwAjTncyEamCmWYsGGZ0jgCgTbvbHvCEPaaU9WGAqb8XEXPTswmX2NsU+8Prt+d4DC9og7U0AR4BHGXujZb3iJx3IxLx9WP6UqM4MegzojP3S6amwogMrGQGikaAIBpJDMwBgKqgUX68WI+VTaBKSpAQOYg4R8W8kM6BCQQwU+3iUhkI4fbt5fl6fhW6rz/8QK5eXpym21Zz7Zezi9UqgoLDy+3V+dX26N4rm83V5flTsHBaVzMv2yc/uHr0pOZyOZsf1UsANEhAUlc1e0Kw7NR0znlXEhFoElNoG2nbFGIbk3cFGkSN23adUvClY09GhoDOkYGzdNCraizCsjH8gX15S8/r9zLzDzsB7xKkx0jbVFDuoE4Qh3MCQCIHyLnN6979jCDnyh1YwDeSyMHxZ7lmb+xYqkSAhEZotVmFiIhJV1cXVx89u/jeH3/1t3/1v/ntD99bLxZ37ry6JOO2bVWBvROJ55fPiWGxnHWtqIFI31J7yAu37OCGSZO+fmpsTyfotQ5A6pv87lSevua/byRi2QfTTyL2uRWqkBRCgk60S9aIbJouxhQlASANzl1EVBENKpiAkNAZKSJCAvYOifb0JrWhJfeecB3E7aHun98F98sbpjK4V8az6t6rFaBJMkPDHCXbzQZThtYDAiPTgTVlukScxvvNLMY41fTzTbLz0VTjJErX558nqxf1tmlDFDAqvPvwo6tFhycz5jJtunAiVgIWhGrRo4bL97vV5fOn7z87+9BWmwqqN146/mR799vfeopmONR7ZJaISGYZcbkXumaQa1JrX4hpNGujrptYe1cVDtViSMhueXyKj5+FbjdaP+PVepeEtV3T0fHy8vwJdr8L9rkidsgGcavtI0ers/NoxkgM5DOoNzmfAUXADFVUE2gyIEUHFk1Uug34eWcBwTyWltZnj7/z7a/9yQ9+8MzRrcLPU+zMUDRpaIGCiEMJphQ6MVLGanvVlrdaMudTS00o62V56zVMtT67PP/wncpVz88fN+8/DhBMkbkIoW3bAJZCElAD8iLiymIJpbXr2Gxms6NyfuwIu4tWNBJRXdeXl1dSPl3MlmndXjz+ztbfB39HXTRxSOCqGXShXW+3F+vC1VQtYoyqGSLNZREYY2yaaXr54THohXuGyFTvh8E2HTRjYEDDPeFkA0y0gakCDTiT2nfH3nMa5ztcH8m4WYbr9xoLHvANAEA0SaqUufYu8Sqb/mOuRu60pH37AEDcA6HEm2z0f63jul00NZmMgIwgV79gGjoTmuVmUGCaJIgyi4MSEioCqyJ57cElNBf5ZOCDuq7b9UZU6uWckTbPttKFWTlvF6UPmjy7z77x4TsfHDXyidn9bbMtHj5/frGC2rVt+9rbn4DNttpsnr3/iJ81l1fn0cK9e7ehXZ1975324mJR1nfu3XfEhS/btunaTbUsj06OQdEwAQA57wqPjs1UU6ci4eoqhZAlKxCaadttrzbn5JgcY49yjwDkCYV5ooft7OC8+DeajpO/p9JXzWjHnwdqui59+5tk+U6MQNnzTMSGe+Zy/3ODHKr4c8iCvm6lTT+HtAS6BFgT1gi3QbzEx216fPHwg69943f/xa/9+ne/dUbF/Nbtu8l025KFVQ6gphCdc/ViHkJ4dn4+K48kadSpcFIg5IlXeToSRzxoPTtNBxFH1HVERBquACABQyDOZmS2/wyANEMQAyaFNkEQ7KK1EbZNm6/MOdhmkpKKSIZDUlUQTJBy7zwbCvLyJHMvsMXMkIduM30M2bIjPYvZ6wr4wQ7efctEI8qPwdj2h7hHuEQlEwMwzA0bhjT9/G8OEQGAMObEq8w+DPtOc5ICMxsyZfsjW/YABsDOVdNgGAg7rnzZxbiYlRhyoC4Fhc9+9rN/9d/8onOBVObVcYibJ09+0HYS7203m8dXDx9ePfu41bU2DQbXiTt2l4wgKQD0IOrMbLlFUH7TPpkOVFWTiaWKy2SqINtGNl08ksopqog5A4PZbOGYN0FGttzGjdiuDnhWHz87e/L6kV8/fnfJ7wRdlEcdNLC92ohsk2yZ7yJwdvEbMbJH59mcmoF1lMuQEHLgHDSpRHQCoCDsAZv1++98/w/e+e7D0BblolCBmJGzIIbQkoMoqUQuXb3qNlQKu6LZhtSdr599NL/7UjKY3Tre0rEVdwGdb5+wcLi62m6vJG2ZPSE4NjFNElXVuwKcE8PCs2JYbc/Zoq/K6uQWgobNM0P1jnw921ydYdpKqKg6eXZ+Xhwt2E6iYzQBBC5mpiHFsLlYQb2oZ0vkynERqfdAqCYDyVLpxhjwfjRuKjl2zUUGuZt3K05bgU0Jfti8ueE6iuTci71IzXixDkKQ9nfORAa/EJt2+sl0/DS03x4bqOzet+cqPRsBm6oFiIg2eOb0X5Pd3jgP0Ffwo/U+BvK+ZO/VFNRUScFyTJ4GhR8RTZMJAakAAPLOGZBNGlAVgC5kjyAh+qos5tJpaMK6etJeFfQSl/J0+/m/+e90zy71Wx9uBecLRtLQtPe4fPwHX7XKpyaeusoef+sYNKp8/N13sCzr5E6WrxG6+uioa5p1u+3arYIc18ez2SxGYaeQSxnJmZlJlBhSStv1WiyllMBQREIKTbsSbefzmgiSpVw8agBDcCHTSJZz0MuLF8xqryrti97D2YZe0PYzjwBjvyLEPrVrLF5lQiIgVIRDII4JwpLZf+skrOkQb/wwSee8I6pBFPS8a1YffvSt997/+r/8jV/+1h9fri7x7u0TLrVr1ICRN1yUPcNP0qWOgyJiWSyjqKiJ9A2TNZcMmWmS6wMYbNz8ed/2B/pdtCs/oGzj9ryAAc0Uc8pEJl0AABMRSwohWhe0jdpEC7FftmzjEpGYGoKCOHI0JC+ZmUq21Ek7MVQkA0RFZDfYAW5EmYbsfstnthvzjUnzMP0WsYemh7HAEfsguCOOOeqTEirlyUHXK2WIOLrRsolpSEPZSH57lZRUU5/cpaaQNYkxW4uzGTQOiZmZSZMG7Tw7QvJMbYQfe/vkF37+515548eb9dPL54/ZzVjDarVdrVYv331jefc+Bq2ZFZrL8yebTTNP/NIlVLVrm+QYASDrNzJCBJtBbt8EAJCxQS2lpKhA3Ilumq7tZqUzE+3MyJEBel9aux2tqpQ8uO1uPimZwfkTfXLxX92e/yducQT8CPC4DR+szxu2ggg0z5VzQMDsCTOzUDTBHjeNlEANVQU0AgRHhFo6g8vn33333T8+P0+FX4pF1U6FmZxCK2Ya58aSRIg8kQvWYIKulcvLx3S0pKpquYzVLDUQ1qsStWUUQi69GEoAUYvSoY/sWdEVTsk7YmdAiUC14nrpHHHhqa7RBAvnHBEgl/71118HNlcsy6PjwtnxfAYlBL8kbIIKcQk255S6dVtsmsWtFMVENKUUQhCN3nNdl/O5Aly9iD9MRchOV1bKptpAzLn8I/vw7cA+zlQqAwJUpthMv9eBL3ZEcu3I1a+ZasYrewmlmbCpLykYxCgzGZgN14/+mGkpcP4cJ6rtOJIb52Q3Gzj1iP/oY7xhxmbPvfQyAzBkQgcghmp9eklO9d69abYHUJUdj481s6z8KyoAhE1bliUUHNqA7BYnS+b11bPLIzzqSmovLkjdD37wg1/4H/ytJz/2Xjp76n7tK5DaylcOsKhnr//Ejz0+e9ZdrqurACnNF0e+qo38pgu+mJV1vd5ehbZp2y2xLpazovZCGqUDdUCsQEkUTE06CW1stl0bgUxEyXEbQ9OuQ2xmta/rOpmaCTmHhL25nw2cCQT06OQYk/gO6eTQ7bz7dhCxU///DQjD49wSGhEyM2abiIyID64c2e+fswA+2GNmxn7j/B3oTq6uPlivv/7w4de+9Ftf+tJv/8Hz1fFy6R+8XkiH7RoAlF00wAQ9zrChA9WuSwjsnFNLIqIC2fDtE8oBphmtg67dTzTu40wNSi6MxG5DTmY//qF0yNBA+62rmqKaJAgJYkhd0i5ITIZMIxieZY7sHQBpUiIiZlCUlNHpckeziIigZmjEjAN0s+0nbIzjNxlZ0s61MOrpBwSU/1WA3HV8sByQiDJou4kK9P03mNkBRtMJPfUijZll0B5zXYhqAkm6V9g+ePjzbBIkU5w4+pAxqaDCcrncrjcxxrLwCPDWJ17T1JaLYtVIm+Lto6IqT5vt2fl2bdGpv1ceFaUspX3WlAJeanObS53NNjGsmL0oasa+UskZeXns46QRkYmFEKj03ntE60JqunZRlY44N2dUVfL7YReoBT4a/1xvVkTQNe7Jw9Nb9/+3d+1/RVHb7iHJ3PQ9kLs4KDtERI6ROIOtExZICSghohGPISgRQYnEBSiDxIvL9x8//UFId8qyiOlcTRiOY4IoQQUJasWrpukEFWtvANu2i1Jvm6u3376HJw82Wm1CXBDqxdoxPVsLu+A4bVPbhYbdXMkboTAg+N6TBIi+MgRCrdkktkCu79LGjpkJAdHu3ruN0bvjesv1or7l03Pnu006njsMCYEJUul8vd6uqqbV0BGy48Kx9AjkKTXNZrVeEfHNMeBrMmjcOkNz1h0xTy84yGfKwiMlRUsiY8cU02tOuPFWOx6aP9S9a6777cZN1w9gsk3Ucrvn3UFD5xJVNUOzLNnHBOmbDeu9J/63M4UPbmUG2ZenJmYg2QGKlC0BMkY0ARFTIETlHLIc3lqgrzmluiwMUZIiMDF4R2A1sb17tjqKlcOSPa+/8p3f/ej/Ur/+YPnjbzVvv3zx8Uc/9olPfPzNP1V27/7gg6qcHc9PzooCTMB7F9sY2uWsvFhdXj5/xqaI6jVVi+r09MjVnLQzB4CoCoggIqYCKaXQhnZt5sEsqbIvUtd2XScWF4sjX5QaGlXIoAIq0bTvqQp7cCu7snKYcLzpuk8mcieMs8d07HI3kKTRpNQNbMr/Rj1ssIv2H4SDdpC/PRTA487Z+2SCqphSyo6XTHM4ZtsmIcdGJOgM1CSysfMziJfb869fbd//4OF3vvSlL3/5d75zccaz8jO3lpcA0G7NMEFJZhyNkqj19aam0mPLoUrqVBlFQa0HGAMAFdWoBRcwbCRNO8AwV2S1VG3swpu7NSCM9p2q5vYmSGZAOWNCFdAoZ1mrKoARuibGpk0J2HIRi6Wu6+uLkFEtgZJDDwCWXc4KZgaUU7LFALx3OTMWAAUB83cAhJrrwvr2PtIv87ixc6nyuGzMvi9Q7j3ovULXC35iIDATUyNEBmohomeEHrEcCDtJEY3I9YFzpExkqhBCKtgZZfc7GAAZmRED53S9UcUZmR1bYibinYrnzauKqo/r5hj8FdcXaf2LP376V16qC9dcpHD75MHqw++GwOYf4Pw19h9cfPivyvbtGDUmNQrFooL1Om3aH7v74AubJ78Rrq7Ow93iqJ27K22WhqXyFSoBomPIagei5vbkwNqF0LX18RxmyyBFl6LaOvGya7bs3enR8snjq9EC3shHhb09Dv7u8acePflB6BD46vyjZ6/6FmkJ6fH5+lHUZyf+rZYLZo/OA3owcjxj51XVVJwrJSGB8wZgDTqMqgVdhOaOc1C6sL368OLs0dkj8iUZRLAaVAUiWCIsgUBlGwOCoyasi/VM4AiO5N2r7Rd/4jPdg7cQX/KppfZ7T8/eT+FW88yKdTAsL69S0AKqWZC2LCRFm/EMmFKIwsDOHAiYmWMsjtKVaPu8tlsbmvnbd+XJuw6MXG3urpQIrqjLMmFsZqfMXFMMXSx9mfOdxBd+dhTb2J49v3X61lo2JJ2XOVdB7GkFJfpNr3n0KKVjuSPlhK9RRJqNRm8auVO/a/IhmqHZAHQqo5hJRJhRQL2npGpgSkDRcmqmTdgcTpIxBWxs/AUATJiTB2Ci0SI663V0AKDMMTKjiKaIjJo8s4KB82IqIpGgBHDQx8IUkYAJMENxDfzTbADqMNpjsCNvNttJiNGYwQHYa8rDx0/MDBVwytOJcDnHy/N5UV6JgmMIkiRhWXFyqkkhJoyOnOMaAKTTvo9ZTqNgcm7MlKa+mpGzIzOSo9li8Ypgu2q2cV1aPJ1Vunq8+ubjy+/8SVUuq+021s9RsV4ei6XYbnQ5r84bItJN24Wm65qUoqkyCAAlS35Z0txpZZ12JVYlkkYsfO5JHlWihNhtY9sYMjbdxnm82p63Mfi5Z5x3hBJbYmTnSA0hOSRgBVCzbPmM6VG5PZTSTTk0ZobABgJjy+r8E2DVEZENzHKZOACgyiRygRkGgRAdMAG5XIBkigAEyNN+a4AZegbNCPXFUJQjEYxmYj53zu0Ia+LDLOdOI0pikYQkZcUg3eX5w2778KMPP/7KV/7wd37ndz/68ON6Pj+9XcX4VIQhp+MC5VIEyQqz5T5ivfaZKdNMNWHupiCTulgFEJBxMIBASOO3+VVGdI4eowp6xcQAcpQTwNBQYRdAzlp1vlhFRWNImpIG0S4lEQlDa7+pBj1O0cEWms4q57DVJHQ0qPkDQVD2UuMUfGBQ8/uy1/HDKQ3hBJcDcTcG5xz2jSiyZjAGpyxbA6P3a3wuEjOSIeS6IwBAohz3nL5UL4CJgQ5fExDRCYNPwJ1sPvnGnb/0hZ+5+8qtW/cfVH5GzXZ7dblYFEfHbrNuu2b14dkFPH1ez26fnDyoq3kQixzYB/L02v3Zpy7n32w2KwtlG2qMgbwYOuadjaIGgwtdoyKZGkSVruuajtpIahJj6xyRYy78pCgAzErjXeUMeVssFudn24tLd3r343X7R0v+N7uGEFxKpwEdU8nkmD0gIeW9QIhWll5DCNol6cTQICkoIa7XSYsPjuDNsjg523zpgw+/v93E+THYAGA+JgEjMJE5gygRycUkxtRst2bVfL7oBJCTgbQXV+3Zs+3VBmXudfv07LG2VwgJ0BC9YUUeEnpIARlynUnUCMQEKqaA2m43zXarZVX4sp4vod0aAmpAQAJicIYut+1TtWK2yBAD6FyUlADatn1+1i2XD44Wp+tmY5JSCt7VKk1RZjyYkfx6xJ/pNplS0YGJuXcwkY4bZPexjilYw8744fblDz8O6RZ0zFnN1S8jjUEv48arddySNw5gb4Pn5e0//Nce7Y3zM/1wyoJyUtK0WDGzBQaXc5fAUFVVYs6gyOnfA//suT0AEKGCgQFaz2kZCQhnd0+o9M1Fo51GjY5sVpa+LJOYSbh4dra+vKyqykBD6rRt48Uas78SlRCIIcTQtls3m5WLqliUxdwn1Yze7MgT9QM2kxRjaNsYBYFX68YXXkFjSmdnZ8e3jl95/f7V5gJQoFd9YHCW7AjsYJZ+eCgAEYf48eGc9zx2d59rHA+u/5BwsIAPwM+nV/4IF/QoVA4kTT4fi0fN7PlFc3p06jlRaJiruI5n599fde/85q9+6Uu//Qff+9OPl/M7d++8LWnbNVfkgsLRcBuVIenRzCC3G7LsTEWAbBxCUlBDyXKyTzdCAJQRkkStX4bcoxtk2CG9zpgBm7JsQuxzPLKOiZib5qKZSa6H096DIQIxpigQDUJMUVSBRQJiDqcPhI466Rm8m+XxRHMhfA4XZS1MrYdyNZj+apTBkGM82q9W7muajZkbl38oO9Yd1JeZIyYD6yFqAXIKWJ+rkNWfQecf+I63DINlIqIikBO86LC6Y9D+dmgDPXkQMvgEHcS6ZUik//YXfvzf+tm/WFS+WFY18Ga9ffzoY+SwOH4VSWdHy2RaOJ2VrvYFY5kwGhTqE6K+cW/Wnp+crdMPVl0VaMF0ydCqVoMNmxX1cUuQA1AXQliv25AisR7NvS89JAQgM5zNZovFDAbw56Zhtxj+AGC25eL44Yfn732wuvPqs7P1b3n45ObqifEj5JJqh1wgEZIjYMwgDwhq6BijxhA3USMSay7yBqrnJx09K3jRrbeb7r3z88uqPo4xkvkRMDn7WRUMCSmhGWtud+ld2zRmWPgFASkqgbZXW3108fzRtuMywebs4ftA7H2JvvJFQUWtxAmAYkcEQYKIsPdl7dixqvkCUtjGbiu09J7Y1dt0CZy6zSU6nxuLASL5grlQNgAKIkTkmcgX7EvrumazPb94dPvlTxZ+DpDQoneLFDvivvvsQM8/wr36Ihk8ci4cK9eHQ6THM4LeE7afHrH/vB8imyeGzuEYh89tyN+Efdm7u+xA4f7/xXGgZx98Pj59HCc5h+w1hb4nRlbyVAUEUAGz3a8iAhBBTZOQ4x450cbotalmfwQiZWaakacpYdLKuYVPEFMbJIQkHbdczpYOYmxXZKkAFYkMqKFljUCgap10QaMhGGkxL3HmqmXFlXNlEVLnnDNFUUPKaD9gZiGETdNJjIy0PL7ddqtHTz4IqelSt203AGTJqICenyONPYigZ2Z53XZtBG+c3nHqABGAhytvgAQfaSbLqayxAWRP4ujtyB3z0DKm703S1ybnbrqcL6bF3edTC2zUBYhovny5lUe1A6YqrM+fPP/G737lt//Fv/j9b3z9e4vF0cuvveqQ2vZSVRlLjd7Qsjm7e7ssSRVVc6+xPuehPzFQ64Ux6C6VzHLW/+CZMTVEZMBeEmvCMciqimSu794DIKNvBxGR3fCaZtqjfJiqimIbNSQUxS5aEjBDMXa7xcY+kNyL8musZFxmxEzpYKD5J5Z1hb0ZztPSu0rGXTd4rva8GTcs064GEVBxaO+LiL2d2uvyaIPKYvm2WQVCUNOcEW1mlqQPpRMA8qBe7pGEmKDxtKQ842QRGCXXaXzpXvk3/uJPPbh1dzOrUuocpNCuUwoXF+cicnLr7mLx0z5SwSlGi0FTBFZXVVXXxJja46r61P3TR024krMkjDSvUNfcgighZqfHlAmyY1JLCZNaaqXpJBmj8xBDjDGpkPOuKEYB3G5xttilEVyumkW9EIF3PvjwtU8eHxdfneMfbluN9YdUvUGziOYQETRvdiBgMALLAJy5+tBy6AMUCLjt1lS6urzz7Px3nzx5993vP3f8AHrPC2W/j2quaAdEsmSKKECGkEGJtk18er49xo91npwmu9o25+3Zk7OHsb2QVXP59GR5vKiPj4q585UhkkNBIEPRFE2QoSzYFYxIZgkdSug0NJFaUh/UmhC9z0DzgqaqCgomJmwG5NmJqqFjUiV2RUlWaNc+f/5xtXjZQYUAoIbqwTimwV68Rpyj6+9AaB0wtekuuOFeUzk0NkqyMev/hiunAmyqO+Kui9eYhpmfm0a44H1bZwcWu6cuv8ACHp+OiEOS2Q0qwmSWsvDbnec/J0m8e2r69Q/7d2RHzklsASjPuhIKKEJCsFzWBWoiMcumGDsPnr23/CDFHMLPsGYESMzoXGaXagaWuGC/nFmRUhOlDTF1bZLtpjUxBo8EQZvQtp6diBhGA4gmnbbREhe+mtdFVWrhyKOgkiXnHKETMBEDDYiohjHGro0ppSSSELbPn87mHFJztb0UkC606/XVfD4PaTVWfygCZxAhgIlmtuuNAYAvlMTU80mbZilP3asAcLh4u1sNayGTK7IFPPTQO1zu/pMXWsD7hs6OlMeUvzF7tuf+8Kyk07hp11ff+d67v/3P/vmvfvl3vrVa8d27nwxx3bYtkaopGif1KoVgY+PRW5MAA/RrUuiTGoaKk+yRlZHcc45BpjLI6eaIiBlIR3Zoqzg4DxQATCBRFpjQN2KwPucX0y48MMhhVZFGqA0SE0giERNRQxhr7qeC08wyctR0T9qg8vR5k+Ps9cHsHc7tuNUPtjRi3/MkfzVAw5iqgk37labR8IVhDhARRHvWnhFuh3aEMhm2DR69fNb3GDcY6xZUddoeao9OjADhYMBASFZwyWHz/C/+1Oc/8+ZroQsGFRlutk/Xm2fFvAyqQfn05L7pqaeaTVdXz7qrp4DryhHzDDSFkFLE2y8df9Fs3cavxHDV4NyorhjSDT4iMxOJ5LiqipQHT6SAKgbIZlFFDGnaOkIVU9wlAb3//vmrL9dc+udn8dHHfO/Ou1fVlxi/kOKtsjpVY4bsuhDI1gEa96oSETKhR7CsQYIaMa7D5Yn/DMQQ0/cffvDo6rk/OgFXuGTZ701mlkxUwNAIGUSp4hiFiZIE59zj89Ufffvdn3rZ8enaROP55vGzzUeb5k9Xz57rhlPc+HTHaYlQEKpG0MielAGIy4KLqvTeC5ik3D4VQmib9RXQkfLS+RLZI+KmbZwvuVIHnOtsyDkDKh0bFsYOQA2dIRmSGW63m0ePHt0qivaqa7rQdVYUhaz3rLGpNjrqpjtn3qAXXycqs8H7eyPJZfHZ0y1Zxqm6xql222eUxHbA1vYuyDr06Iqb2j0AO947qubXB3/IDXZW0WBQ/zkd10Xv7unoiDkK5JTg3IoqSULMOh1RtmlgqGZO0YgycJAh2VAmO1TYJxNFMk8sSArIqgxoHhWRmXjmWLyIbFZbZkqaEKnTdpM2hbmUgqRguUinotnsqJiV7J2AuYpjjERsilVdp5QQuYdoQJSU2qYJXTIEZBJR8umjRw+fXT33tVtWxyGEJ0+ePHj5LvQ5Apx/mO0uBtQbqIt3xtj+vB3y2wNuNpnz8ZPcZav/CmSY7enFamY9uPSL8c9+hAv6Or2O5+O/+cQbNetnT8/+9Hd+95d++b/8lXe+vV4e3X75Qd2lrYGk1PsHiAgQojWQY71g2YDIupeZqZIqiJjYGLAkM9M+Owlksj0UrEA2BkOCDIWhkOvKmYZ8igHXKmu7lhFrhkkEgGwqi9puBtUMQERFNCmIqgpFGdSFPssOcBIzmC7SVD8dZ2zSIxoBwEGuajAVnbZOQkQi0l0fJ1CwHNgeiWP3+oORMMai8n3UUvYEjC/OQ5IUDgACyK7HyM2iNxf9Zm6h1qcejH42wmm9Qv5ff3/Htl9kmUNHlnykrvbyV37yJ1ThqlkZRI9wefHwavUcySFTFwSwiChJCweY0AspkBBaxsEpvHRhMz86efuVl8439v3NBx+uLrw6X3rNiRpZFxlrQ7M7HzIyOvdIRSlm/ZaQgQHU6nI2oj93XZdiNQ7+g/ciuyslVoxPHqeLt1bH86/fqr5Q2hszfkWTNxcBDJXNEKFgyyYvMoEnn4hDBNUEKaIlUCnr6vbtt9vVOw8ffuXb3/xgeXSfPaTU29wyQCqJASgmTB6ByIERmkESYne22v7et76Hl6k8PTXDeLH+7qOz99rNoxgNnbklCS/JJ+K+J7koloWvZwDADpk5qaakRFyVZdhG4FXXrLjaQF1z4dkXMSaNoTKsUwINpMTKmEDBulbMMVBtQMReuFB0gN6jXl2esa+fPb28CJsYq6J0vO+dQexNv7xtpvS/YyBwuH0yGduovF7TR7M2Cyr73+zu+Wc5rA9F4c6PjQYASNbXgw69/vqdlXNCeoec2IBCj5MDbtr7f8YDb5LQN4rYHyJ9ERGIuCg77Ou18iEinDvBmCG6wVeGoGop9IYBIxDCTl9xiGaisYsA4IqZKwpCYnOWa8WYAVEVzQCNjsoTTRZCRDVEnJeAapQwBCTvXOHRITsHng0V1DKGWlGWhA4RY4xD9w1WtRBC27Yiwq4whDZ1m+b87PLp/GhRVrPVaiNR6xLqsuriTi4S9AlAgAgpr9eUHnQKODadcMwZ4NBr0gijn0MR3YSrv5C6zMxAzBAsl0lmp3cm0L1hmPWA5D37PFjC6/c9ICmbgDb07F5VVbn1T8/+1T/65f/7P/6lP1lflK+89lpV2tW5+llIISIUlNtdWQJIBkJEOTQPfU16FiGQrQfRHIRAsF6FGMoMenf08EooaGakCoxjY4YsVndV0rlm1cwA+i4ZozMbAPJ6aZ+4CDLYzmqQDMQUgFTVEiAiqIkKMwVJU25yMGnjlI4Hkxtl5/SHRLRbjf6j3DowZ1nvGqcImJg62838iHQDQxdeuMFtkoPfOqbm52918NPo4APP8CCgtscUEZEImAhGTrpnGWjG0JoKYFUF8jo/jx989rX6Mw9eObvcrNq1254VBs3mIoVYuHJ2tHCGFjsuQCRpt4J0xRogqSmaMnlXzKhLm6YryuX9z7xd/Wxz1W5Wq1Wo2xK8jdo6j2n9AOgcDJjVqkkSaEqgRUoKkFAgiVZ+IoCbbWzm4+CfPEE/uzi+lbzz5xer5+cwrx8h/i7zJwslj68mjaYmgAxsZiqlSQmAoi1AABNNoppMO0lbgCh8qnH98ePf/N63v/bko/V8fttQkUTFmYkNsgkAs9sGEYMkR4wSPIAgtsrvP1s9P/9WMS9LctrYs6a9cBEcLc01wDEos0ez0DXsGRgdeuTeIaJmiuRKV/iyKCogZ2HbtkHipu1qiAEMLalnYkgStmGlsEFwnkqvZkSO50eIZOi9Y/Bl6gr0JSbT1Kyb5vK8XWukeQ0WMx3KwPhVbaqZHdgQUxI7uMbMdCiTQ8T9IFpW5fudBBMxf7gdbxJUIzMdHpSf0vuusBe4/WXEkLHh+4aeRGpysOOvS9+Dl1JVoJ7R4WCj/9mPqU4/3vmF0jenYQ89nfpYUm4/IyBgRKgARGg5oxPMkgkmYYfgqG/AAmYmZqUrTKSRbQoCikSEbMCFITATEYnE0LUYBJEYSCSRo+xlL30tGp2Sh8p7T0RJJEqQJMzs2QWLRVF4LgAghqCqKQVyDAlCCM22y7FOkbjumtV6fbk6I1f4YtG2MJvdfXDvHsj66ZPL0zuz3WxkcwthKNvJwjiHJm9g1NOZNDMAgT3IjF2Xgf5kn4ARcfAk0kgDqom4zw0yyLWfdB1xclzQH10HbGY7cwdgmviXpW+MMYTw9Ml/8Y//n7//q//y48Iv3/hUGTu4uCAC6Nqgamatpg4AuCgRytB1jnTMp1cks3HTUs52TtnPCmMBQ6+KytDhIPtUYxQiQUQhYEQcQLfHGBLmBzAOmsQe7BwM1yfKsZpeb0FENRDLwIqUUkoJtG8CHwn9ATcZZKuOLqx829HtbIjZ3oF9bzMP2bzZoz5mFBMP9UzDKuTorCOe3BnGpmnO8RAUGOLHk5cd/x03Zw9XSQAGueUCZD++jTF1280zM+vgGJxIfQBIKaEBGUExkK2Aoha8CB185hP3T4vqotNtbGbtVddu121rER3yraNTj9A0l4WjkFq3+kjDlmMLggQ1oUbfkpkvu2bTFkf+7qunf3H98UcXH371IdiFUwpZr5mCYZn1FXnM7L03IQY1SRKDc2WM0dRMdHm8GNEiVIKEnV58/txmJ6k+BeexCba6qJ7NNo38k9nsFeTtif8FqGYgaoBiiAaWokk0oBA2KMFEVAVM0KKmTZs2R7c/8+77X/32d3717Mn5g/tvoHNXV2FEhpnOZCZyQYlRKleBGBWuQ3FV1XZwgYxNMzNMjaa63KAuDOCqATdXk8LQYggplFgZOlFuQue9d+ic87OiKHwJQDFG52usZm3bptisNxfYbAjAuSJsniYii10qHDou66q0snCO/ZFzmBASKDABkpgpOBNjB2HdaERVrkpO7SYGGHP1zQwGlnUgomwiGq+HNgbFzqYAF7v9ioOzuW/b0HNZvJYnhdes53Ewkw/zHXaDzOxuvJKJ+9zGMaF1/xHjyY1aRX83tcHJRaICLz5s4rgeZ2n6lBcpMeOhqpb9uAPnJCIc0O/z3sz9u8Qg2z45J4tQUXOGDBmqKbrSMc7SdqsQwQTNQK1zWeUlZEdmZEBITLRtQ66KNjNVZTQzYU8qGFNS1Wx0Vc4DoqlVRVGWpaopQtd17JyIiCWL3LZtCAGA2GGX4mazWq2vqqpKSojl/QevvnT73urq/IP333UundyeDz4Jg6GUAwAcIiLlpkZmvXP9QHE5mOdMCdeXYPz2xmXKtxnvpmZ9XXu2oS1D/U+JsG80ks/3krCmj8kFs+M4xzNBjV2cFcuUgqs0btqHP/jmk2e/80v/8Ot/+Id/7Lg4PT3tmgAgRWVtu23brDwyGAlgaiNiQmQxBlBAFc21vwhAYNR10czUhtitabaPd0HTAVtuIGUENURw5ARyvw/IBSKTpgeY6+MR0SAN2ON7XYBEsccTMwREEwjR2qAGLgok9dFUkik6cxhAnXO7zWBguQ8vctKdY2oMyqqqaiRi58nMNO1aRchwMWc7Mg0xXYSUEiK6wkMv56wuSk25bABQRfvMHQCA0HXOOcesavkaIiIkMQFEZgLgGGPUHmnDwlBmPRAAGRBi8mRmnCH8R+Rn0WSGub8mqFn2z4uqWgBy047RwNqh6ooeg8IXPvfjlsoUHuHl+5zub916u23nrAim1W04qgmjkyWgJyxNWu+qJjZJN64oCHhGS5RPwPr7hbQEL7/9xmc+88GHH56vz7ZNbd45MIvCKMCq4BBJEgiJiGOM0qoE7xkACq6bZIBeJTrnNu3FONrYdSHtwJvaTXr4EIqjcr6I3SVs12Cd//BREPio+8Qfw717LzWfNlwv5/cBZ8xSqsbLwGUT4VG9ubNdPdyU69lmZs+37cJ7X5x95589v/zecTU7Onnt/EqfPSYQcnjVmSPKRZhJc2uRpFFTQECDThqsUBU0AimRoypFM0uAVhBLXBqDucvac9g8Avh0czGrX91W2OEW4OhYGq3qsqqreunKChVMxDR5YsAY/dzVRimVdpm6zWZzmWKXtld3XnpQHC+oPq6Ob/nZETgPZQVcGJOl5NAkNsE6KjxKsNrB2gmtLuKTwp1awiat5q56GtusphHkenrqNWcQ2vNwIiKIqCfXo1hobx0SEQD5jIEqYvtA+RKTiIkCAaBzahgkiZjlxEkdbz5onBOha7ATaZZlFNHoWIYMgWmctWTHiIApdrlQPwqQkUfPoIUrUxJVBYYQAhTllHnaBKUhAwJb740DVcnQm5lRD+6BPMTsisPhHr08mCZdTqZuVx+cufNonznE6FBBsOnq2byJIYl5RQFBIyQ14mSJUlbE2TtL1mknThJA5dGjOUL0hZokJeePb0vZiogglIUzNO9KchUiCXhXY+zWTbfxnplRRQwkkzU7jwDJo0cAExUxiwhC7AExwUyBgUMMW6SMW8ASqe3W220kAoO42eqmvVw3z8n782722ssPXn5wL4Xmg/e/EbvNclGDpmdnq5OTRVXXXbtJKRRFyUwxRqOdvjWRXwomfX/AvlG0gJmZ0Ni/dufQoxuVnH7+hyyaDBCNiICmFsmVBAqaNCGTywa5kY32CRkomAGZKdA1II5Rtk+Tg6Ynhaqvb63Ds6OT2+2jx9/509/4zS9/+R/8o3+EcS6it28vY4C2SwDABGWxSLKJMaUUgByRy0/oe94bau9zNtUM1gSiO7+0mRlkUMYMq5ZNQtujdcqi2kQkG365kixlx+yoawBQf4dsxGXPFYJhNjINNWfTiKmpSfbcETUxScoJrr0SSUMO805fmahH484/UIpVd5EAGrqYIWLazyqHCYPokWbVFIwmIc/h3Xd7EsYuucMxPnr8IQASUXacmu2s5OmwzYyY0ADBxm4WMHmjfI1O+qFO9Lnpm0LTNLdP4M6dl0Riip3jAsXabYOIWVMuy5KZTcXMoK95MANjZttFByiZOq7Xz89OX/mkVrd/4u2ffPfsq88vnwEWuY0zGSkCY26svvOeE5Hjoix9dopmt6iYoiJNHKPe+xDa8c87t043cP74UapP0Bt89Z225eLo+Gi1Xq//9LttvEV33z3mn0kbQXiGznXMic5IN9Z9Qtz3F5+6XZ6vLy6+esHz6uLq0erXl/bT1bL8+vvf/ODxs+b5bblM5XwW4T5zO5lGl3scEpGNgL2W4/UwoCxl4teR2HKGBJLr2vbi6rI7uufnJWJSwM1mU1d1rurNc8E5592SSSSiwpeCsWna1eVVbNuy8C994qdObt2ezY/Rl1xW6Dwwee/SmD6Ikltk5uenCIMYw7L0wuycS6kZPGS9SjYalMw4Krsw4Srat5R3MEAy9eTKhL3Xd/T8AQA45wBUVFRBQQwIEZlpWjf/omPfYN05hABg6EjWh6qnu3tX2Zhtu0F9n+6I8QAzgBemOsNkw944sD+XA9kR9Z2OBjbDpgIZgTL3jMEekT5KhN7xSkAREb1nRIySzKwouKqquq5FRFVUtfIlYJ4DJSJXlt6BlF47HShUVTMDNUSssz9bEwGqCSBlgioK5xwmIUmWkhJhSqnZdl2XDFeMp12H6+bDphPE03Lefe5Tf4EAz589XV2dF47JF81mzYxxm9rCe3aEDEDbri2dd65QDTfO6p/9w/Gr60tmtrfEU25vJmaoqtmFCsBmhhOsN7PcMVuzWrlrxjD9d7pPptwcAKQxXK6Qjy7PPl49/aNf+gf/8P/2S79Zv3Jcd8Bcnp2tEWCxWMyrKnRNEvG+CMlCSojimBEll4UxuYxLY4aiGSkCzCwNCDIGuYTXVFUg9yWCad5F36rWMCM4m4kZCajLCdWa4x84yuAhuJtzLfrmP2ZDAhFlIa+qKkkVUAAMcgfivLMEEMEAyRh2e286gdMtPU6a9S5iNwpgMwPY2+QHi21mSP2tRMSGtj85tHmdXKaMYN/LvcPVy13jHGEvjSZ9jfI48j1yslV+HNouf37i1t4x0FzoprbXAjbHm5PG+3dO7ty6HVYhNQ2phdSFtkMkkeiKsq5rJm/SqWrupqZgYj1amQIhMhhU1SzNbl1cnm3bs2Lx6qfe+OwXPj778Or8yXkUBUcOESn3MEVQ3rU5RiPnXVkWzD6KJOsTMMR2XfgA4PxyezzxgiLMnjw+f6la1IAG7dlZe7JU566OPKSL86ff/qdfuPOfzu0etI3xhyq12hXP5lV8CfxVePDFsnyrfNPw7i/Hb/4arY9PPjj+Q/jNh19+322OZFU/3/ygOHljGwq2rXPOeuRCy3GTTOI6oE+MizyQxJgGkVcTFQEBowEWbr6czZfz5FGEnStqMlSjoU8XApIjAEtBmdg5zzWBVZ69iODiZLmc+5O3aDaDqiJmYBBJqEkZoc8t0EwPg2pEJuiJVyGxK6u6apgIc6D9BkzmcdzTz3c8x2ga5BqzonpTQ/d+R0R9odeED04343R35H076sTTIU043pS/DdHa/p0NKFfuASGh5R7YuwTJ6RN7xffPIE3zQ3eT8+d6WJZv3qnFXGFFRAQGiXJnnyEdRIEITSXzSRCAhEgREZGdc4AkJl0MogP4EhKQgfYAfzn6g5abvUQsS8qFE6oQk1LMepM3SwkUDJkRRBSAGF0BlHKtUYyakgJo1zWbzYYcVP7e8/OPFJPqSROen9zBW7c+49EePvyga1sC65pNSe7k5KRr2mSaupSK5Kuy8JBSMmRyXkP4YbM0BnSHaPEPn9WpGLadB+UGPjywHzFlRCUU1XTQ9td6/yuCwc3dkLIAgGvmLwC4umzaZlnd+/Dq1/93/8f/za/8l48Wt+5EAFfNTHTbRTIl7mKMDnE2r6JyWZIZhi51Gph9ll6DSzkHd0kHJCwdiFNAAHahXBXa0w96fMx8AQAAU25JhklBwRgRFYhQADPqRv551gtzqMAUATE7gfvMLjMRFQOxPhEsJ8hYXyy4m2vmITgEAJPZu3FHmZn3zqy3ZnDCSQ/aC44H2cQJMQEEGHc47q+ajbZpjgFTXyCLI5uY/Dz7OCYe6EFoIaoiWQ+cCjdpf1N21l8zxKHHC4jIkbt/+6gs63TRkErqYhdWnpyiiaorXFlXRpQa02TsCdmDc5oSM5GCSO56DUfF/GKB3D1fPfng1uz1an7842+/+s2n75+vNjEAkCcozAJmxw6yaQTArISaIQIDYZ/sxGjJYFLLDgCETifFe7OqvDWfPX94uW2gLqFZu6dP/a330luv0gmX9z794Hj1alkkYSur140pSeMpdKtzg+/gK9LOX9/I2h//d9/6S//uk1/7n69ms+rj913nvvPuVVnbjF+DiAEfdzCf97gspBlubKxqnYoTy8IGLWeODgpWBioYjH1WiEVd+ILR+6qCpsGua50vUQ3RyNQIgZicIzVLyYbeXPViyUWJyLPZrHOlmHYxeGQWFDBCIEsqAqAqEdFMkmpf6ktYEGHTdLPZgkvXokXpibBX53YHEPXZ91P1cZBYbDC6dvbcrRNK21FXSik7XYgAgEUz2e8FVg9k7fSecMhMZWCmw3isrw9WGBDOKff5oyFxcWf76tDibGoD9cu614+217nHMVzfUzd+nn/6gs9vPhSIHROzIcpYlGWU/UBqaH2ZiAK4RJDxZLDP5gnjjDnniYiR1CQlIMfs2JG3aMTsXAGuQGSRDrVkp6YKgArJbEgjBzBTlSApmhk5RnSAiuSYOWpISbs2JsEkJiIhRUPzxWLVPOpEfbHs0urk1umrr7y56a7ef++7BEggjOiLMnZtWoe6rjFJ13QiMp/X5axkRjNruragfTY1rEJmgdctn+sfAtzMzGHQ/EZJ3Gdc5Z8AgooRk4lmFApmg52JYjnqCGgmiLwnmfee3edkj9/2o1nj1cJ/9vLRb/zT//r/+iu/+n6a35svus2ZrMrGzDwx+aJpw1bDfDFzyQFgUc4BfZJ17DoDgYG/SB8VJwAUxWxr6sSPajo2LckeucFN2WMjAwzJzIhogLmLAvQmnQFiZmy9tB9MvdwCKVt7U3Wm53GACmiAueO4GPa9v7OyPPrDemSQnhf2LIdoRJPJEizzJOjTUgaZaoA4FgTvpv3QREgCABnuWHJY17HJTvs+EHuQPbIDcHQub8nyHXHXmhQRiVB1QhPT54qOxteANtGL9gNG0087ZiY/Ac5kQiYAffnubYeuteARFThiKIgjmQKw946LaCAiMXa+WEBROV9LDAPwgBGRqbqgUhU8L2194boGZkcvvfzgc/duf+/j8OyiIyJEBymhiQEakSETCiKqWm7YnBSA2SwC9CqXTjxCq1W69+Bk/LO7OmufbU+O4D/+qU+++TlvZfrw7Pyjp82zh3px1vzcp99wjy7i7CzMThLfF++r6sTEnj792tPwGz/x+hfc4oJd0Rjo+uPF7DPLL/yHn3//P/iTl//eBv7gnfdWoanvLF+dF/MEj7q2KnyFyNmzB30zCRmkL46BQIAMDjRuCsjng/w2ZLx167SqirVa5avNpgGw1LWSAmjfvhYAkL3zlP0ArTRRk2dXVDMDTlR4aFJMJoRWmPfgWNlFU4LchzuqicZOYxIRMXXImjZN0yzmR8GJAUpC7yc6xH5cZmSF+djJQjW7SfZMZOQefWa96vojfuQx7pdh6mC0fbOSMKTL7u/BAVhfZYe4j/uNsf//6lAwx945l3D0pCGi5Mwb66c7z4OYoREaQO48leGx8vJE0aIooATnCnZEzIhsloGNnTEjOwNCK1wB3vvYXmkSy0HWjGSZkqqm0ERJBlj4MncIQlRwCtFSCimJmahC27ZJhditm21K6fbdl54+uzg+PXnw8muPPj5DCgURESUwUHOEWBSaxMyKoug6i11siJ1zrnQKSZJheej2GP68Ucoeambjb8dP8KYa4omF029JYBgAdhCMzWRMEOvvYznDMPuK5IVY0Nc/zHfhYplWT7/2jX/0//jPvtSlV9zd9bOLuHT1ttuaWSQqRdSSZ1KDZxeX83peluzYO1/ElMwsN2xX8NaD+PaJCSnXNpuBUZZ3CiNQLtAwO0MT+/7o03rZzEjRUBGyOCBkw8HVDNB7GdBAs2ZLgBmffTe/iv3zIcekNSbNPTmGBOMcKkEAGLtw4wCUkY/M2kePbn6wQfYt4vU1xmsrfbD2rve+g5kRYBqZyIRzjRxhsrvMhtDvyP7yt9jHzNJNaiDgoN/kWcq4mONgptJ3+sNpRDmfJw0v3z0FtSCtl+Bc0UqrnUCRM5QLI1Qh0SjRShQsalc02m3A+uwwZkjJDNl73pDD2HbPP3Cnny/97R977a0/fu9ic7ndxgDEaJb9OcieMpIo5kWUEFJIUbzLjFvAHGCayoZJugMAHLH8hb/0if/Of/Dv/cybryzqV9i/Dtiq/+azJ7/7B7/+X99+/gct1sgVly9ruwY88vZvhDZcrN+bn/z4k3cfrb/8n37yi//xsjiJH36pOv35LUf47Bc/s3jlf/nKl37/W/+v/+rXPjq78Ffm5zOXtEE0wmKoP8/6W25YRaqSqc4AVUVEcphOARUHLgokChqEZ7CYFVXprlbbGNER186vU5IQYwpMhEgK5pDRMyT1FZpZDC0gkvPoSleU2l2adKqopEbq3IxdgUz5eWoJUtIUkgQVUTFWaLsVQKoXRwJrDIroisIj7il21tcaIvGeAToRh5lm3EiiIhl6a+y+dd17DGagajoCBdBeDHgwdF542CQGtDOPRqirXkXo+0gMoxoV0F71oaFdik0OHLTV6Z6aPPTFMcU/p0MAkYm9w2x+5KwIQgMG6ZdmBPYBUMllmcjYj1lijGbmmPoKW1WiGTEagCRzZUW+dPUSfaFqMXQQFFUK5xMgRlE0pNwbFExT9jEQcZ/xZWYmlmJKEkIIMSaRruva0AJAURRJ25Nbb1ytn965Pz9evPbs6WODi9SVdeG3603uwRxDqKqqWBSbzSY3Qo2JASCEhIjsoGA3QHBcJ4MfnSvwomNvNceTfvFGCzgLmdEIRsRgey5oAQQzzoGvG7Kgr59PR1AEt5av/JN/+jtf/ZbcexOePHl6XLzahOdJuSgKE2i6JCKMCakARG6DiLnCF0VhZl3XdSmoai64zk5CowyaiGZGRjJ0W0czUzXcbRjR0RiFUewBmAogZp+PkiARGloCAwMeKvB6cgJDAE9kvWe5b9InfT8TETBRSGYilouDp7N9kJTYT/7+prpxO2UG2/9qyFA4XNT9+aexA+Dw4X4F9g0Pwv14xnhzVe1hgIYvuUcj6p87VQUOsBFk4hkcdb3JOA/ZX2YxCPjyS7d7lUkSglcQNlBVZs/s8zhVNUg7QzVw7EogBlFERVTnfEohlLRA62jR2fbq4r2qfcPq01deffNzrz189PhivYqini05YujbG/RorogskkIIbdNVjpGwr2RjHHtIA8DCu7MnT8c/P/Pa67/4Mz85u7r67rO7y8Wju7c38/oll3767u3P/fxf+/zV2TefnX/DX96t2pLLFdV3ntHXztonV/bktZP/WffOb6fFg/U3f7AoCl28TV0Jrgy2rt5+iZ/+zV+Y/+Uvfvq/+Vd/8A9/79vNN967dfsoJmlMI1JBVIxZLaN3fFzczOuTqA2x6szq1ZSIPLtNt/7ow/fuvV4XrkIT77lZb8jPUwqpC+gKYhjKvDmY9TBphIAaNTr1QI7nR8Qt5RwHIER25AE4WkBTCRElSgyq2odvJLbdar6oy7IMsLVOmMqRlvbo+aYAW44cDbS819Y+U9ZBueP4Xf58jAEPnt0d4U0HkDfJIWXuQrb9MPcmnCkn6WVfHAEMnrfdg2zIQxx0iD3d1OyHJWHBGLjZ/fZHqAv/eocRk0fHMOjERJzDUso0NeIykF52QGafCxmYaUpJVX1VeSASU5QQArHzRelKhLLiovb1jMtSVREhSlBNSB6JkIEsmiYkADSkglzySEjEvkQiMwshSYybtgsxtu02pJBUiBjZI5cP7r7yvR987a03Pstu9vjsu94VFmezqu22slgsu66LMdazmYhcrlazqkrSGQAzG0jbtil2VeXKalcmCtek2I1f3agY4aQpzg9ZoyknH25iZgmUBpLcMRxVxT4ianhQB3ygaR78m09Ym9/40j/6x7/yzvLOnTacH/PLIX5sWjN4FVqv1865uqpSCpsmsENW6GKotJrP51WFXYqpzXZwZzkAjMzMRJQb5oEpGuEQwAAAUFQ1A7FJETBODrMcbECkzHktC+58WQIbZTAMDCK3qppuzl7TRgYD1TQ+KMd6JyvXqwJTBmG7b6eus719papjtAiGUCzl3jHDcbDwo1GLusuCzhqfDUUUNlhPaUAasuEOiESGMKDhjFY6TAIKL1K983AUjODw+mlp8iC18YByRGS5WN46OQYA7z0TxSBGWhVVp4mIMmwIYo65J1RVcsAOkRHT0E8CzKQhPhW5VZ18tH4W0mVz9bx0d8rF8nNvvf6Ndx4/bjZbMx19EkkdmKkigiMUgJRSF0PoiqouEBGAELM7uj8kJT+pBfjcW5+uE7t1Fz/+Ct359PPm8fb24+r4LUFcvvn5xf1/66XLP756+LQ7/yZ0HxThYgM/wHL5+c/8re3Zw8fw3duzn+2qo+OqbiI/X3z/VlPGut48TfNF2RXz+uRv/c37f+0v/+yvf/TOr/yf/4Vbr5oUtSgLIkoxqQk5N+h1PfUy9cntMcl0rXLkQlXJmBCb7ZoRiKDrutnylkgRhUw1xsiamMz6xFeoZvPQbTESIZNhFyVpB94Xx3cIGlSVGFLbikbAToHQG5ikFFGDimjGByYyE0ntfD4nosJ5o26A4Bg2hI10iAiY9xEOzpKdpDSySbrDSGn5br1+vU+kOLQhokE/tkne6IuOUfru2MYwhj7lMN+BCYkwd4IZd6Ua0ThynR6wz4twXwN+0TAOPrQfZbL/2Q9DMBo85H2XgNypgIgo0aA/Dd7EXD3R8/l+XcREr7rL+WJRzUoAA8kmgPdFlURj6DpiViOAlGIG7lcjIyRPiowpigVSAEwIFZJDYiVEQNUkUds2NE2nFqPEGDsgrKval0sE9+Ts0ac/+dPnV0/Vnpf+aLu5XNSkwt5T0zREVNezzBvn87n10LzABoCkKWV/ryNOFscV35/wXpMaJvxH+B6uq4A3HjseqGLEkMNEIGZIRqMfF3pBYDQs+mES1u5JKNnbipAhzdA5x65qn/+zv/9P3nn/rH37FXe5jYRAoTLvpBNJqfAe0WLsEC0lEzWAovI+il2tt95zVS+j0tXVGhDVFMkxeTVIUYnYOacqaqqSk54wVwEzOxO1Pvux3zc9SZn0xc9iZOiIFc1MSXppRETGMAJ254aNZDSiBNjA7BUB+i5MZGpoxKZJRA1UrRfZfam7xthxD8amYOC4QEQVA851yYiIMFi6TGTI474HQlUBA1V0WBoY0FjcoGaqpq7y2VfP7DG7ivL5YPgqAk7kYo9AwwhGgKqqDMiARjCkxRuSUY84phH7ovW86vkmoupckdkKA471+/v016t10JsCZhaJJ3Rs1HXtG6/AyembENoihcBovK2Ta6V1zCYb5+6DLBljaJ95AAelIJqrivlxt35uIo5MxLyvvaSWiyu7AnKoBuuHtDxulw/u3L361Mu/9/1n7eXV7G5VtrqF2XKx3caqMiORDnJFk0IboJ37KoqSEZEaEvvRYE8eXLN7u1tcrEy2aV1vl2ePPp7PiJt1uW6L+W3ppJxhe/dn/YOQLj/Vnn1TVx/6TZiDv/r4o83642O+U20fFdRdtUszPwtOS4BuUfpSukS+Ai5T/fZs+Ym33vg7/+u3/w+/9au//0t/tLradne9N1dHWpsTygSXJR30kQJEpJJETIV7DHMNgJEYOzsK8aO/9tN/Ybn8iUofNxHC1Ub4CCjF2NXascw1mfNshkgWjNDVRY3SblPYMqpxpzHpFRWFR0cdIAKBtXHTOASqi9A2JgLmUL1jJ9pE7Yq4QoNifhu4NNsQKqOAauFJFUwh9wXtC2BRJWVXNIpOk3Rskj3Qd0np9aShUy/ong2dpPdXydB02wZXyuCN2klEgJ1n+UDHFchSCdFAh9p9IgIwkwRmjIjO5bIINSgLTilFVV9AJ0rsRYzVGUKXYhSfK87zS04U20O+KrlkYN/4nh7jlfkeo6J/oKAPYp77PuJIZoYGHFY8P6L5yebJswrVczR2DRvbiN2joyKiCCllRR8QUUbbhhB9er5+Urbl6fFpVS5003RBaLHEwnnntFkhc0zJORckmaEz9M6pmMSgEglEtGvbjczU0xyhQAMi0RQ22/byeWPl866Lm20o6qM7d+6D86vNWiScnJyuN+cESOBU26LkoDnCaK5woCaSHBFi37DOkAvPElUteV+IpBRS52I5K5NEM3GuryVBRGY2833l9w5iMZPJXo8NnHhTxj/VUpYWiIjQG0IGBmqAvf/NUFGzWFBBIZAEylMITEsopmhkDlT3XND7dJDpaQBO6iW0vPPOO9/59nfn87ptAqELoa24aCUROxjwtywX2AKAQgiBAZDMg7M+fF7MZrP1epPtv67rEMl7j4ghRRogjWDQfPP7C9h0gkaZkSQ5pNEzrKq5b1A2hIkIUG3Sb3eUKOMWtUl9rSmIyqCGm5gmEejlUL+XcqLTXtMMs5RSHwcdavDhJk14/Ipol9S91zxiODIKx6i+ZTfvYGH046dJc+/d3XozHcaz60LUzHrLXnT67YsUvQMt8uAc91MbciDzwUv3qrp0mxBySW5GejWw7PcHRRJCYOfRTDVZLihCx+xVIkJfuGzCzFxVVarrtA6ryytbXtb1naM7t+7ffeV02T5cSafBTCEEodx3EgCYMJcW7wK+6NgZJTGdJNroAB6ej7IsIyUGLyIxWrMVsEagKJMv1Rsh6wcY3jo5+QIdf7I9+62zR38CIaIl3m6r6qSSO9i5hBsqUXDRhMpXTg1RxFgcK7NkNUuP/if//i/+2Omdv/t3v/zx84+Oq2X1ZH73jbNmVWeRkXN8EMc1NSPIdE5qykhqqCJdu711d/nmm28yv/T0/GIbsSjKWTHftpvQNTlTgXfL2tt6hGhEhM4wI2tK164Lq8k7RgBmUjCQqAZtTKLUB3HMJOU2rZA6X1bOcUKzlMWUTMhjJ0V2Kv1IYxPTZEJyg1nWJ1v0uIg22fi7m/Q7Ihd+TwkbJrsAYAy1XDvGCw7M0T6xY7SMexacN7grnXNFvx2IqCiKKRu5Ps7xfHzfceOPA71+/f7wdixr+u3w0GSQ8wJGxuK6GIioqioMTQhB0YBcDxy2aziIZn0t6pSBwBD8Mu2b07RtqwqOC2QK7SY25r0HAMdFVFHf2wmJ2InDodBDwZDJFxXKkqhLegGgFPzFxXq1vigX9OGjy2o2v33vXj07EoOUurJwCta2jZkhGRMQFZD6tjv922M/V4hDOG2ATOC+BYOBWQwisC3L0he5VkWy41D7eOKBQZxvPAlbTI5xcYfzQ8fhlHOa9aLD9sMQ0+vVEigCiRkC8AsFcF8X0afUZjYeVeSdd955770nR4sH2l0q5KRqN+kTD9g3ju1r+1QliEAH4kRMCysYsSzLrutEVGIQJeZsoqGowF6Oxp7lviNW3onbjL/BTIOSojm/WCwRUR8Tz/74cW6GMoypAM4JpWIqIgpkhvl8pE5E0NGhgcDspkMSjSJ9ZsaOlBFgVOQRRofVOOdZ+trgthtbFOfeNc65zGVgwO7QA5gt29s8A6MeKWzHFwa2tVPEMgRmD/c5VPSOxDTlJlOVHBEPshjMhAh1L3eUktgbr79aOBZLScKAMpE7gEfLOeGQFNH70kLoUuPdEpDYO3bOxJGpmRG6HH/wzHVRr/Fqs13hxZmbnVTHi9defv3V08vvnJ0FgNocA2npJAn3SW+WF7NIKcSYGB2iGkpukTuM1XugNEmRIBSRAOoRSCEkhE5h2wlujBhJb9e31ny2qUJRnbrTv/zq/HPN5nuPzr7u6SHIRew25E/drHT1kauOAWpyhQIKGEoUNFRKKaXQOVxv6i/+5Cfav9P8Z3+fVw8v7rzWbeJcJWSicr01ZQCGBqDS23ZjbAUMUlRJ7XxRHZ0sNdVlO5vpIimypxlhDG1KKjEVgGPHvgyLCuiIPRcGAVRFk4K1EYStRMeD5AdDkJQMLEMHmKlJBOksdUFCNZ8XdWUpQgIzUwtMbINTGEYSvOmYSN+RumAk1375JjHXCb3lK0YuMVUxAfe5nhlk8BCY8N18mY0b0wDHSgozyl6uUYNFQAMiTGo5MgL73HIUwJM9svdV5p54Uw7t+NDx/OB99zbv/rcJEkDfsBIw+80RAJKAKZRl7YoixaaqqmQcjSGF6UN3esyu9eFO0udqRmanANu2CSFVVaWqsWsJEbxHZCoEVVHFYgIALVggcZ/3ayC92xpkZQCovN6ktlmTixHOv/+D7z549ae9K4+Ob6Hjq8t1spizq7Lhwdg38iNyJnk29lpf0MjciVVG9oiMzgBVLGy3hMhU5sTZTAqqMk0XfdFaXJeGNpjCUwF847oMNJYFD5gZatqrr5O+754CEP2QdoRG2htSiphxttSSXF6uEJAYnSu2TfRFlTojTymORauIlB+BAOjIg1EQwagxxpRS9tYeL5aXl1etCDMRYYzR0LKeAhOJkt9kGoVF3uuHONVQxkk0G1DE+m/7VFNCRIMh17rf4FkAA5IhmJoYZgS8bD0gUj/p4+Y3A9z1NqChPyBArhXh6fLkJC8R4QFAHiYZy2BgIJMAAfatOGwysKGrxEAEN+x5GzSDYaJ6UjCAMSkajMacb0REJlKySZb4cOjAQ/sL88lAQxPpi70+QUQySSwWiQDw+ssPHFiSJCIqAiigBqAIWcdSgIToinKZYCuWfFYC2JPzmJymhHnLMYH1OqwvSmlD2q67i8euopdO7711/+Plw7OrjRRYmtoKjfrlxQxxAQBBJIQgdamGIgn2N5gZtHHHmwy18AWmJKaGHtEDeBUXuwB0Cdpdtg6WDjoIKTpYHM+P69mnbhVlUrraXkS7cMXSVa+AOzUusWCUAkFIVVJncRtVUhdSCqVtLs++K9Xnf+Yn/xdm/+A//8N3nz7DRblQZUTWYSXMzHppgZmP6C77nTSDtimE0IEm70tf1toIEBeewCilFGOcgaol6oU6A5AikXNoAAVAiGIRQEw0dYKJiD0M6imRy3aDqkoKoJFNvEkDcrJc+opT2/aJbyjOFYjddc/quEkHuTtRGXf1sjjhZftm77Vjuh3y025krL0T+kfFXHcG1jDUXXvTgU04RyLWdSFDdPXJtzEWVO+sn/0HjaqwTRTivXTFqSy8iem/eALAcWFDzAr6DigAAMwuhEB9Fz9RzoGM3ocxztLODLDDwfcCfoyBi0SIqin6jgArV4IUiEgaVQFSTDGaGYoHcpqZVfbViZiZ8kXcltsGDS3IxTvf/3qU8PbbP3b80pv5QV1oogbVJBK7rimKasrzRwaYQUWyajg4gREAvCuDBuxL8oTZIxYpBTLXtdHMqqpkQhExE3acm81MZnm37gdUMcrjfQ3pMNHv4PrpV2aGKtnGGqlTLWXGSyY7F/TBjQB6cOPelYz5H1BNKaVZvYyxcwpMnliTMoA658eFNAUZenX5sgJAADVCMUxRTSMz13VdFEUISQFE+kILyw06bNyAO5WjH9zE6ZpM1ZSZQScQUYjYV7Xt3LBThpDr3gxMTUe3gyGACAz4l5IdKWCAjPnh1Dd2zCMEMJjAMeJQjYCIuXjXuNeUEftS5qxZZ1nWd4HCoZBxkHVjmisijslfPLk/M8Okf7jZhJW8YLsOq4kZ7gCx1y/zD/seSlk/nND9Ps3lxIF9HjHETpxzxEq6Y39JQl3z/ZdeMk1oQgTAoKpIRojMCOqJyHkUoFl9EojQDTPAhOwBGUhUKHtjGQmIlT372imhxrh6vp7Xd+eLN+7efvnYXaybKDOHFmKcQ4WEff4OspEHsDYGoJmAJVPHjojHWhlfQLdDooQubItiFkOkghVAkBCQzDSKWJLUhSQLf7fyRVklV2y2baMwq2/9TLH47OzqSbR2vjjm6sSQgdS4S2sxA7VkKcbYxq5JsbMksSu8U9FvXcw+9cXP/PXL87//d7frdgVQmBFYD85qQymAInIuzxvcKARGiNx12xgJAMg7DKSAyEU9m8W4UlUQkdiZJJAEPmMxc59/TAV5doRkQEQgbVI1TZoFjlFOTsaeMERVzAQtt5pI5qCsl+D6+BwiIsrY5X6MqAybcg/adsrXJvXlO3rDXkXLTa9xWnrQY1xABvcAogFjR/ZQPsZNnw6arxzsiyGAMo5qdDAc6Lg5PWWi4477BqZ/2uB7HDdm/uSAlU/HMP72YJzYW+Q7P0D/OQAidiEC9HCSWTBksx0438pm87q7Ak3JgAt0SkPlxeTVeifnaFdMB2OWebiagppIwzE44oidDx6MiqIQEe99jIIG4Bn7EFIfHE0pikgQNG5jWj9+9s7Ty7Ojo9NPv/zFun6l082sqmIMIUYg06SqqSxL5mxvYC4VyZxpf1p6jNIhrYeIXK4vtmzMIapqxXWMMYWUKBVVwZwbkpJi2vOT7NeM/BDJev3DKQ2MdDv+mAxyZMAs4cTGMhHlkLtdELgbkLDyHRnM+mjq8DzsoZVNfdKOE1X1vI1XhEfJeuSs0ezK3Y8BICYlBueYOduuyMRMpCKzujLDq/U2pcjOZZVtj3CnLvhegvWEIrsdToimAgZAbH0I1gygL2zrN1iOeehY27PTT/MjcntBMBJTVeubPLNJTNP9n/H/AFEUARl5aOfnOCvSGhSy/516QhleZBf02q1W71U2yHJ18r4Tw3o0hSFj3k501QnD0gFEe7g19GZ/bhoxbrAxNKCAgI65L1Iyy9td90Z4QB4Dm9zhWiPgFFgKAEJs7750fOdkqTGqJgQdG3shGgMCeYecMRiKYmlmwgkRDRmQgQjZqaZse4sI90cBrrIgKQXcXqXnPixfuXVUvnZa/OnDdVDro8wqObVQDZkYzERTF0OIsW88BZbzG/LhPES3+3PTXEFBJuKwMICEpiaYQIFERQQjh6J7RnAF7a365JPqj1prOjlDZj6+y1AIStIWHaL5sCkctSACKpJibLbtdh1DZ6IpPTP31q32Gcy++ejug89/9t/77z379b/XXRZWsgmAk1wVP2bJI4tKElUBRCTO9c5OVUNIqlqUjrxj59VBRsATUwZNsUnSUXTMbAgAzgj78gelvlcASZKACGBKhGAKigZJkQgUQBENTdEUQC3FFKOfFa6sgm6NIyqSAUIamnbvs/J9jmYTC3jKcGAvXwkB9ooUDg7LngDo3TPDlj88EPs06ReJOsQhVXiMfCVD7PvGTn+ViTyjs2e/gnp3YHZff9OpaJ8ytN0V+647gN1gxvODKc1/Vr7oLxhdXAxosF5vZvO6cCiMaMbM3vmm08wne4fX4GDLDWRUM/74ThKbmUMXB13PEDQmFPVsjaiLCcx89JKsKIqsD2HK8mGsbrCUQoxxE7Sz82fnP0DGN9/6yZOTVwFrLpGMVKVtt223HQVtUVRZITPbJWpk/2VGkCFCIshZ3tR7FPI75qwGBwAg6okRgRwlsabpVLWe10QUY3yRB3oqfafK2Q2r9gJ3y0BOO0cCDsYfThKG1AJJIdAjdrwQCaunbDTJlmJubwJc13WKRgWwessZNciApqLTOwxaLaYkOYEKiAgcEzGzd85MyrI0wNClrfY+wIMo6TgwneC6WW+D9hORqahfMwExIUJCsFyeJNY3fsh+XUSbxHumVQRmGXhLemeOkaKp6HQkQ7+WrOOPfb5kEKv7gnOAlMr3F0tZ/ew9pBNxO74oDHkoeUtNK51owILeV1AOVbNBQA479zC8tEsAyYINEXEYsBHSYA1MF/HazXcmeL86AjRpxS4KD16+fbRcptimGEavrw3WABETEZBJMMSSuBLe7gBXgAkdsgczI7N+iY3Yc1FDFzU0SbZwRRe2LDx88s7y98r1OpoyOWaJMtLeoNyrJNy0TVmWgBQk8cQlEiPEtMOOWDcrV5VHVWVMRqgglqsazczIFMPFsxpu86yKrgn67uz4VlFV1lGDT7xbeF6oqlr04AkdIjmECJJiSKGNXRebLnadmSn5uP7Wmn5ssZFVfDQ/eenzn3jzree//d7znPY4LB4igCWTZBhCSikBEDNj7g4ChogxSgihKBWAuPBaQFLJqTHIIJI0BgFi9YCGrgREIodopgSgqIxmwA4lInKvR5uAETKSioJk94lqRuXQlMLi+Jav6rDdYh+JMOLBP74TKyMQ3AGJHrK262JmoqruZRjkbZvhcTIMvOZ+c5OfT+9MfX/Y/uH9NbbzCSL2OcCDCgqIPRxNvpkiIKGI9g3G+irHnXJ8wPem5zv9+EcVSk339cG+m952FJCqbR9t7T/oEQLmsyPHbr0+92hF6bSLRsmCWnHjpu57PuLQ1n24uWZkQgPIAREFBgNJZqa5t4kzs2TlmFmWEjk2xRhjMiUCtRRC2ITnMYbl6av377+9WNwHQoV1B0+r4mS7XW+bdYwxF7YxewTPnOBaKyCzrDT31Yl7Ajhp4X3WtJ3LCCDmHKkIIyk6lBhCICJXZOyBFy7BD1mgkTxGb+VUdkwXEXbkp0Ni//5ialIiElBEE7vBBW2DawhwaPJlRkMo9OjoiMh5b7WrL7YNechAo0kmoxzEA2TAKRFFMWRwhuCQHTMzkBEVzs9ms6jShQSm7MZ2tJNhDNLiYISZdEQk9zWBPipsiASW/WLZUOtDrvmCXWODPjLc34oQpUfhAUBQBBUVETd41QD3VPKccAUAImpD71Izc86NIFm7+Fa/gXE6RX3KFggAac9vd/5yU80WmyTFPoHeUhLmyXpO3EeOe9aJOy/TntcLhzSQQcabmSER7CJYewQ3ktcho9wzjg2RVNH7HSERwd27txZ1tW23vUsDFAnIMJdCMHpmT31nYsfshQgmYN1GSEZGrKRFUcTQqipxUdaLlFKbOohGod00m6PC7p0slpW/2OR0Xh0Ig0XMTIxS7vjcxYCOGaGNcZqsM5uBdX4c/PPzs6Ra3n7Ju9rMFJSQFM0QkygqzLi+eLIJx7S4Xae0smZ9pPe8Lf3sdWm36lokx1CrsXKLtE2xil1o21a6RmIwMzBCs/kFfTi7LfxxswZ3EejWYvPKm3/lo9/9/llkY82tvHEszTQRizHGGIe+aUNzLu1Ztpj2GEa+ENMkwUwQQS2JRhPOTgWHiOSQc6pkMmQAUEBCZ2R91ZMCABDn5pNoZgoikkwTDZAC9WzGzhsaO0TILoqMJTeyqf6/UQDfKFSuZ/JPDyLaR8K54SbYl3WORL53cR7EdSf0dfE/7F+Gfb9xlt7MlGvpmcl7nxMkp4/D68+YjCHvPuxd67vrRw4+1a0Pxjnl8uN+B+uIyHlXlK6qqnlVl6X33tflne+/9/1nTzZvvnJ3BunDd97tItX10SZ11ofMcHcMsLXT+09PzFBMJKfPKERVRUVFTRLVRESH/uJtt3GFB6O2bZOpcwRkyYJAevOTP3779HUFp9ApBjAkOtluVqvVpYgUjmMUIjerF4ikGTrVgu3gb40o92132LMQHAUwMntfqEWRRJzfCFzBKYBIZCIsqmSp6zpDqOtaJdwogpFu9j9PV9ZG22nAaTj4Ni/MRGmAg+ntL9MESCgKPEHCGgVD/wMEAwQlRjIzFUMG753JDEkkFhE2RclRSuRg6nY7zyCrKGYmkuUOYcKgFkPaOtsE5SYUztV17b2bnfqAun32jME7LgPEHkMcAPoGvTA2kMvkSxNIIDYGAO1x4xSILOvkapzbcvUaOmdmphbADI1yrUFeYhXWXE2s/WVohgqIJNaXtI95IYiIQIomfb2Iy4unoqoo2YZWVVU2j5R9P+B5ZiaUO05k0K7cCWqy6NPNmdsMMfUp4paEiCpfZLV3SitZPAsY4ECUNiopSAMkW269CEaGYGBeEBUU1MCACRFIDWXItwFA5Bxmk8ygM4YlAPQ7JJusSCnhwm10B23RRXj5zh2IrCFCiqVnER9VkAycEVhEWFRzCFARBFhzBS6WjtGQjZBdpc3WUkREYw4xcTmzEFPsCkYtOBBtEiywi802hHDC8sb98sPVc7W6lFpcELEMCYpoDGyAZvq8kVcaYDAqq1a0Hkb7dFsU1W7wqZVET5/Ks1sP7qsc1eVtdnMMXkiAE/m0DeicW68vu257fLLEprmsH9aL2jWPi/pErE4CziOkRpp1wdo2rZkUIBE1mYqmmFpNKpXN27UXrxhb2fBGToHbV/7qgw9+/eF5LMsacSZdKuElLd8luWuwUSgDmunKJfJ2ZMhGzZrsdYQKy5a6oiis8+fxccnHm9XKlVUy8d6HNhalg6blotICXe5ULmqaCE059z0yRDDscacRMEtjT2YJjJwjAhLr2qhbYl0cvRpt7b1qglYu2xi6LS5mKgaAgDw0YkIEAjDNsC6DvZU7Qe14/XA+CmPDMWxse/yLSSOYc5xQRYyZLSXtk9QO7VFVzWEvABBRRMjlcKqKg7s8Z7GNvDIODbnzJiViAFCRhIhIYJBS0phyYyiRSImpJmQSMEYmYLBdh5UsfAEVjMwUADvRyheOEVKSDNaPaGYVzrvUGSp7BtRsF3rv1bymyJAcJJUOrVvOiuXRfLm8fTqjwj3wWBSysOXsXJBafvRHf+9rX/nln/7Lf+czn/y5737j/z2Dht29p9DOkY0xQm40A4TOCAkcoDITqmKOkopYCClISh0iIzAiseVaCSVG68wwEAkQeLKQOk0GqsnD5UVXz+eLW7eQ3LZtROT4zt27pz+DaMqCKJBCQUXbtsvl/Nvvnb90787V1eXl5fmdO3fKomi27Ww2Q0CJSZPlyG7mykiDxUnkvSfqMQyI0ciSCiI5X4MZsCImBVAQcsRWikYUEkgSdSNNvfC5+VJZFAAQYwRQ55zsOztxSFib2uKj1WEg3vvrWiPlNlM7f0auTUeYaICqiQgQIqgh7GcdH4zAcoJ+joAOYT/niJlslEhmg6qyS9adppbtK5+oqiEYUZIYVdV7LorCOTebzVLUruvQDfBPY1Smf4O9HTue4KTtJQw/UVWYeK0zQtY4L6a9PxoOQzI0Zp5q34Fhl6g1XmyDBTn8am9I48odjFYlwhAYwL66BGBIzb4++TluqqqwV3A8Nm+5WVOGwSbYEceLFPPMCmlatdy/+fBOWYYxDQAFByPM9/XeS69P9F/VM7h7545BzEDkmeMSkRlzz5IKdIy94w92EF2IiNTjogza5Y6XMeVyJibHzCF0AVbBiKG45ahkbBPOoTfQhpcawhMAnt351eXdo0XhXDNJu3prSW+/9cnxz89//vNte7HdXFw+PZ/NIh7JbN6anxk6VQItk6QCyDTFFIDWvt0UBbfbyjm3OIm+vsXFzAmktJHtRWcBeA5ZFU29aEN2jkxDK4asakCGFCWVhTu9decn7tbvt9EnIIyGiO5RI3dqaEwxpdR1USwUyEDCPnuS2XaNWcTAGMk0OeeQzMwR70BSFAE0mYJlwHTp06hh4uPNyjcOjQcHzySYqqZAIDF2RVWQ8yCi5FWz/euZfQib3U3G/XGNtwx7Ol95eA32r5PjO/m9rlFvzw13BuFY/newNQ645BhiHJ57eOfx/gff5Op2VUUZnjKYAWM1IEy24fWR5Bepqgo0hSBkwOTyixhCqytfe0VMKZFQXR2BYmgj4jkZeOL5rDpZ3jk6WiyPFlVVFRv3XJdltU2p+ujoWZWAHn79q1/553/y1e//lb/+8/dfu9eF1b2XXn9Ef5qkKyuetuBE6GNPCKTWO9igz7WkoiiYOYVohqI59mAiUVUVhLEAM1WIKaaUoO8vSLP5fD4/nc2OQpKYdD478lW5WMzMehwFEWH2bduenJx+97vfreu66zoAmM1meaLKsiSiPsVhlzrTT6NzznbovKMjYUQxgyGu0UuKXKxsImZOQExRTQ3FddndzaZokNkp5CLvg8WanlwXPSM/3BMKL7ChB3Ml/6GaLWA0Mzt86uRG+4MY5H92nGpOD7lmzI8C+EaJjth3FkrJBPpU1dmsKopqPp93bVyt1jyJU+5eGJGAAXdofP04FWEaOd95U42mPx+8GTa6eQ0zyLGZgdHQQ6lvFXKgR48be5xrVe23n+4AbclgBA4cfq5Z00fM8JpohGgKiH1LQgTaKVb7D9opHNJXb+7zlwONZPrtPk0AwCSREBWzETzMzOHaDc1zABGAjfo8zPyZDvhZkzFkzJDdQtcFvXTrVFNUTSMsMwEBOkQxMqTKOZ/DSwB9I/qR5Y2vD4MAVhVgIqBsh3DhqeEkJvGisXmt/oF384KuhG6NCPIHtAdMptvtVo8XplJMGgD/25978xNvvjb+uVgs6mVVLxfcNG13dXH+wbYtjk7vzJb3HS5FPBdsgAoWJTWbttuKL0hCxwWoQlEnLmbMLGGr7RVosOoYgcE4JU0JRNAMDSwBAZkSowGxb1Nk5vnR8U+//saXn3374zN36smx2/KlrI+UNRsnMYiYIQmxIoEyZJx3BTRwWaISoMRWRJCJiRDZiA1JwCAFp60Jq7KqguaqLQNUgaENb08/BqBmOfitakYqmiKCdLE9eekOgjMgIhIRT+ycY+eSAhGY7vGsPRV3oNIDhjUl5t2q9ULy2moiIFHOFhzZNEy2xsExSmgYNi8OIDbX746T/XhthIeRGtt/teuvcP2gjKQ3ZpCoiQqgqeN12zHBvKo12ebqgtRmZb1c8unR6a1bdxb1UVFUCF7MYojbZXXadSEdpWW6F+8//Or/6Y//6Jv/9MtP/sZf/ezbn/hLG9y028vTxf3Z3G22qkEAHeQU1Wkh4YAnuBvecB6JxEzSCLyJSUWVsz86p587V3pXLufzuppBVu+ANHau8MfHx+hytUUqijKlWJZl7MLy+PjJ02f1bBE1rNdrZprNZvmhOXgHgw0zzOeu0mRYi4nkG7wj+Z89fcqob/yHxOQBWUDMrG1iWXlmr6oGml0U03aWN1LRdfrc1d3sEwDynl8arimg+aUMJYM8vhiKEsBy54Kh4CRXQInEHnob80agwYkyCg+YCI+JSDBEAsIMTaI5WSmlhGjM7H1BxinEOLTsyFh2NvTjHrzbaH3DsPwIHJMIYFgH61OcJtqD4di1MAOXQg8Ck91Qe3M0/pWp04bqo+nkmJlDNrOpFtzbaqhgRoOfdhTz7HgYI4/r9UOWeSpEkaYQNj+UW+1/gpjRQ4aE/YzGkBu/Dx25AdHQkEzBBqYGWZFUUkKYYn4BwNhCKj8xmVoSLtzIyqrSH1WlaDAJpmIgiITEiIjGyIC+YlcMJSu5sIrNbHRg2BhFNEPKmXRkRgIEQMwemIDQdN0kLOXobsGntX3UKuZ2WBOfEAAAKIBJVGESEwkyK4vR6fxvfPKteV2td+9H7Ir66Kiq5zOZd2Hdxu3q8qptbDZPdXXkyDQJivRhDzQvqBEMpFk3bSSkBhFROwtbSI34ll3p3RyhUAGFDKCoQOTYQ9/F2KcQmy4Q0b37n/u50+/+vYu2ETzx/gNbLmUjZYUSMcczoK9HCikhRklKDhQIc38vRTLXtBcxdZ4q8gWxI3LIzhDElDUqCCLjkPl+aP4CZggOAICcYGgGIGARLAJJkrg8PiJXiLSZtmlofzvRHSe75hoaR965oww+IOApbeM183d4wsh5cUjFOLxPvlVWERB3aYzDNTeYy/t32BuPmZFhTlAZ+gIfSuvdc1985xQTInpiAFLpa+4RyGK5LBdEqdlcpG59NKvu37t75/TkeHnkfYnISaDtBIiKoipn81g+Wtl9iJdH5907v/d3//nXvvcv/yj+jZ/77F/7678I4ZT9hVAbQ81OJW6r6lhjGkWXDdBDhjLmsowvnv/lXEasucV4/xMR6Tph74uqpsITMaEjIiJnmjabTZLInmazmStdjF1KOiuKELr5fBFjLOv62fOL9Xr94MEr73/0rogUha+qWd4FgCoaCR32NGMZgiKP0KxPpyVAQM1NFkep3IvqPbIZKJeQyaMqKalqG4MEiKDsgIgRc8TS7JrxesBjJxpA//f1y16kAh7cFkHNxBBVXwzEkbngQWMcAwtxq5YcFkSEml9gIvYwdyIap2BSxwaQYYrzZTnJEiCJSIyR0RWlm8nscnU11Wohm7mI1mOdTsvY+y4fN07ZZOtmtzMaAPaNa/OCZXR62NMJ+wePhjbhTTV8B2o7ai88xg1JbLnNe34QAKCSZSiofaiN6zI1n4wlwf3/KFNjL18sD3OHi7Rjc6raF63ndaFr/G+cn8FtQESQ88jUdknLfVI0jIs7jk0RRqheBkZEh7vM4tPjo+O6lhTUkllfTY5AhITkyDtXzsgXipPo9MTp1+eXDpOZ22Hliq487pwwaeRANHvGjqry5aV/9zJ2AfrGhD2UIyCgGQEoKHeQOtPaoUcYBfBsfsq0W1kuvFlCwMjeV7N6eUdEunbbtU1zdba9fDorOCUl9mU5A1cwewUXhQAtoXlGKjwCgqYUITZKbuu9WuGIs7KTuTZpbz5CCC0iALskYdO08/nrv/CJH/vS1e//4GExByl06et2Y+D6FFxGI0VMYojivJlQXRfe+8AlMwIbgottk/1sxM75uj93SERoglnoGg06rfZSkxCkd2UDEJqqWV/+q4lM0USTGGI1m/myblNjRDmXPqUkpuQYUfb41rVddcDpxl0zEtiYYHyjojnYRT1GM+2KGvRFP/n/+pgaFSaC6DwxkAKADI8bK3Gn+scPYcRZFTCBlCIaeM9MCKA1WtesurCe1+61tz/58v27delT7MidBBEEYl+UFatAJ0m6VKf74tbVU/rD3//f/8q73/2V36K//YuL/+Hf/MUrV6WWS89d23i/OL115+mT5yKLcUCmmFmJSTIjRD++5tAUx8zMe5fhGVTVJj7ksvbIDpldUSCTKYpISF3XbpPEsiyLqnQORFsDKasCDZm46bqqmq2b7fPLi+Vs/vTZEwBbLObZ7UzkTFQ0ZvD2YaL6ecwyWFWzvKRdgERzBZT1AYW9de+R/lRhF6ABUHCuEhEIQkhAbJYA+o4OE1m+W/1xMOO/u4U8XFkE6NESp58c3ApAARjUAAz4Ghb0ZHvkSKlCzkLKhTwmMQVVRer5Zq5MsCGo00dK9rMWRwEmkgEwEYzGBAQASiklSsxcFIX3PsY45gQqkKIiwkQTHun70PzP4nkMwU4k4pAybmi6+61NtOCDMHbGfJwK+P0b7oJJZLuv8nX9KGnXhAoRJQUgNJedsbuM7twNJovTCd8BoFELGXzavYTac9EfUMaUeobxjCH8/OP+GgFDA5nk8iGAUd+Ntw99525svchHhD6zxiyDiec7IiJPIPXh/kt3l7MC2pWJYm5+mSeNCRDZFa6o2RU2+NVtMNHzdssujYHtQb+gGTCMEJUR2LsyGakRgEQIbla9cTJ/58n5k41xWU0nJDfHBiDHfhOaJobTxVEMuxiwktddEjQYEHsPQOpIDAnKsqqOliipWa/PNtvz7epckvl67quSyIBMVDUEghIRQdmBBwPimkpAQUhdimC6BQo5QxD6tCAzs5RSlOQAnHMAIqpbtbfe/OLPP/r6f/5EnrfNXItwOtPVpePZSHhqZpocO2BCTcfHVVVVwl4LpAYJiyCJmbNL0IiVCJAIIWfKW/ZpoOKoSdHQq5IgR2mGLuKkqmBikrKtHFP0ZenruofrMHOEAJpxRn1RmHVwk8qXF3e6NANnGGvKe6N7l/uBiIhquudZ7LMUcqEBTDAurrPE3Uawa6WME0tmp1kC7O/lyaFqNBQH52uk97Xf9LaEU7/C9GBAE9WsfxEAWkytxhDS1dF88eD1l++/9KAuqhQhBFdVt5RrkqQqgpxbICNiUSAb0UcfffmP/ot/8odXv/4Hs7/97zf/yX/0378KiyhcOZA2maJBPDo6LWfb821TVcXUAu61GBOzoRwDd97EzM8RCdn64LoRkRMwxxUQWk4MUjNNpmIW1GJRunrmAVRNGZgYGTDGtDw+Wm/bNnQp6v2XHzx7erZdrZdHs/l8jpj9E/2KM/O0eX0/Q1ljHQ7QjCuVo3syBMiGEudd/pECGJKJ9WE+RlKCyrkYo2gUQSBFBCQ0QJiUX97ARfePXmG90Q1pAgPE2UQnmDjlDBRyS2BB3Y8Bj3fMitxY8zpuHgBIKQ2CZagfzS9/Te8b13Iqg4dthROeC6oaQuucY6S6rMwshKCqhA7ABkQenHZVHB7BU/t1OgAbjpxAZH0KPo3u5dG5TT14iuWOwjbSJ0AGcB5U2z3/cH73KdR7nqNxnyMikg4AaqAiWRaqy/Zvv+wvOibC2MZzzGXE146DsU3zwgYUETaQ4cN+GfIFu3z6/HP22uNygFF2Aff+YMzCYwofBiCmSAiiI870nVunBVHorXzOOelGmCG9iEvnS2IPOAR6M34d9oOnIQlrpJncmU5EiAjIkKksy+Q96wKlC9D4avHGreUnlpePVzjqgkM3ETXtG3KA8xebzb2jeeWLbpg60cZN2hGSK5DBLJIKETGjobYGrqyO5q+euteeP3wvpOiKWV3NRCylBJZApdRSNcd2QBWYXOFnvmJdr1QlahRokYnQofO5yV9PQn3VOrBzptLpanV85wuv/IVvfPzHf/i4i8GHjhFjhljfyWAVyrg4ZstFXfli3adMugwtBygZ1twRk3eoan1VIbCRgZFxLrcz7XUb6OHsB90TAE0M1dRUlTShgYjNF0tX1FsRIMthftHoPAHoAGw+2RTXeMLBn4i7hZ58vrcLbjwwt9tEBIBpCut1NjoVsTiYU9P9Nd3dqoYDZs6O7HsL3tQM95BwhkeMJeeDz+86485c1PpSSXbOmUkMjcNUz4pXTl998NKDk+NbSVEEuZ4RV52YpYCO2fncDJ1AmYiRNh98+Rs/+KO//8ff+NKvwv/o373zP/3b/+OP4/1qxk7N0pqhrAreNuciBTssqDKLMEk4MctZPJRSmvQG7fkhAORwCfQOLEJCRfLAZuBd4b1XtK7runYd2m2MYXl8BxEJMOWNgyRiSYTZdW0syvrh40cPHjzouiaEdrGc5SziPBiRPmfWTMbm0L3c3QmgnWU1mU/eA8edHKpig79UB/veISVQ5xyKiSQzYc8ECIRMeBMdHgq1cd3NbljiGwX2AQ2bCSDn7CEz3CtDukYxE1ceYnY9phR0QCsctUUi0gl3GGuhiEjHpMH8+JHJIiJYZvWqKgaahBwWRRFjDBCzCBj58qgNwL6vYXxnGrDJ+u00aXpvkyjvKCAncUbLArX/IWbNth/2kLKxw8EYVQrc32nU1yXHvUkbTsggd3fU3gmQo0rZv3DospjeH66xkoOVni457vyuAzExjlbv9N+MzZahRo2AhuaG2UDLvoqMxnp9bKNa0OutSBOLHo4WMzTIWWc2/hYxc3kjQsfMnCayHJFFFXamb19IleNPnig3CXfIiH2iZiwKTOKka7U1f3xrMXuwcK7y2ilM12XQRUKScjlfNefbbXt6787lMFpPUcMOC1rMwMj5yscuaYwao7HnCrhUKoO5Vz79+e12m2dgc3UJKRgYmpgAOSq4QC6CpZ58OBFXpkH/P5z96bMsW3Yfhq1h78ysqjPd+c1D9+vu13MDDaDRJIiBBAWJpESQokiaEhSS7AhJ4Qg7wvpq+4P9V9gRcnhQhIMhiyQoU7I5gCAJNIDuBnpE9+s3D/cNdzxjVWXm3mstf1g7s7LqnNcUnXHjvTpVOezce+01r9/SZCCgoqSUKSMCeSkhhKrSnLxFMSICLR/l+RPXv/b1p7//WmfHp7S3PIWDGjK4J5mVXXSr9yuQ3MTAAbUvsUkFFFNQcZWrqqpQNVl6AiFCFQc2Yc+LcBpwiIMRfKis67AF3HFkZohsCtVsHkONgjHGzGBmKXVmmnK3Wq1gZE9XUObHWcZTnXcqL8efts5Hzz1xhgAOn1dk9rjvbKL3jyWRADDCCajKx1jMW4MZD3I3rKqDsgwn2xhLmr6d2Vbwbus+RFk8aVFT6lPqDq/tPfXkrU/cfN7MJCMShTpkooQZAkcxRMmqOedAFDholy7W69d/8Ht//4/e/ePvwl/6Tfgr//5fzd1nbvPysWTrkdN5MEjSL2az+uad9oc/wWrf1C4PyLeYz4kNzn+v6YaiwopPSC4LCi4427ZdrZfL5blo29R8tF8DRdFkhpEDIlsmM6tiE0Jo+3RyfP/69esnZ6ePHtyvmfb2FiKp7/uqqt3liYgcQs49ESvokCAydFwA3DStcc2JBp1ps1K+agZDFevAfQvSH5ghoEsZZk4pKRnHQMRiOuolO8bMVHu78tg5YUcoXElLqGJeswyDC/pq5JEwU11xK3GBF2oN3GR5s1UIPA8gkAhjhzrLmnMyQs9KgSJ9x6QhywBc/vTeJGqIkkQIkSgAaM6KDH1eI1UxzOq6zirnq1Uza6wXBiTgDNmd3IW4Hf4ORHMRnIqAQEPyCPB22NJXVERDFQbObgaGWOqGy1zTpgu3u2HHWMLOFJfvXTUmQ0Qpju4hKcwIYOM3lgpBBbKyEiFTYEBSgtF5OxrTRTsANvX7E6ELSzQkGluP+YVUvIilsBKVN2r+oHMUEE8q/jpvHerBcEA0Q9PRg5NzT0Se+qRgBAERxbBCRLcnUR1diImQMJuysuhqTLS+sR9juJ54Gao6S2val6RrdSDoTlInUSg0hgSSgQzcjIaMYgaEcZZzFlkyKhjlPqNhEyu17KZO1tRDVde6TjwnhJNHLSxuP/GJT374w++v5jdDQNCldch1I2SQ0wxDuz49laP5TKVbr0b5C72eVnEx/ql9X88JNbXKRCEggZm2LaREs66u69VyhhYJzECJIxBDnxqqtKqQOaWOCWOswKjXZFjVB5TXKL2QBjADAQUBUlEOseaAIqIqYJxBQW0mVdWv7z5d/Xn7+e+9/YPfXt07bI661vp0vL9/8/g8L1cwnzUga8kK6SjBer/aWyUCW0Y7EDqphRix1K8DdDlBqOv6gJmz9KbngqCQyYCQEYg0KgCRiJkCAtBgAmYzSzkjZgKEjGC90enRjaeUF2AmZ6uo2JlVi+v48H5UFrA6Vn2fAaFo3gSqSoFUxbMuRiARTxFg3AQAZPSOucfI41A0enGco3FkFDU2UJUspYrXt/ugmCoOrmkBEK9eqyIA5CG2FXhiTrmc9n1dDbFDKM4YVc0Z1Kyu3NKQqol97rJGIEughMzAkQIgimWiiCApYVVVAKB56CkCgAgJsc+waCLmc+zuv/zc05/7xJe1bzoWRCYKhAEAyIBUQASAzquDGh83bZ/CLNT16oM3vvf9/+bvvtJ++/fu/7kvHvyv/85/jPWth3l17WgvnJyEuDbbl+4RwzrnqjUIB006WYZqYei5cgpkIOJvzUiSsmZhZqKg2UxEyTCgivMYYgwBVDWLrmfUnF6cXqxOswrGqlkc1M1+BlasqnRagy6t1vqgjgwpVTVnrN5/7/1f/wu/9sorPzp7eP/G/sIDFgBVjIQI4uoIWhY1oKwZIwXzviOawRyEnokB1IOCDsmF3iIdmAgGz40iAZjHyBQRvQKPCwgQAELFdZd6M2jiXFFT10lKdV0nQwAlQMQRzRABED7Gw4oMNmDEFH7vzsVSUAOeYISIU+BblwW+vqiCiLsx4C3RrQPQBCoMFmi5u8s87wY4aryTY9RWiAiRwFCH0mEAE9HxfFM32ExVU87EGiLVWq/7PvcJEQlZNSMhwK5dOH4ekKRgTODUQX832DJVvfjM33UT/pwkvttYm4uj8N5SqK9cj3EwG6k/8RsDACMjBvPI+sApcPAZ+MjHO+ClFZk+evimvDUCIZkH/9GxM8o9cWqD4o5VfdWiY7H1Nw4ALBS0UfDLal9VBOXHbDZT1b7vPYNj6Jg28NZiqmwqvvx6HOr5cHpAyfEzK16JUsNnHNnruRmAgIyRFw0+eW3x6hIUhJAoVAyEqAiMpgR8c7Hfri8+eHCyd21vHO3JMS8OEA6Hv6MoNSp1iGpmakKAHKoQiDCoQmAkNEZWxBDrOBNmYSAYKiVKDbpjS6EYMJcCxw40S0rqPZFNRRNqGCghMAoSR84dNTcTrG589Rdevv/d88enF20T9ppq3q47EQmREDHGABTW646IADxhNWuWvs/Qg4iqbzkz0zHvARAYKZgJ6Ch+DNAQyMYuh7iJb430ryCEmHMGgBBrNWRmY069eeaOF4+GgFNVdWeP+IIOG6qQ0HhcPnmQjlebkliqVwvnkatyvxBL0oPvMyhp8Yhbj9oaqtdGTonfL6giMnPf9zlDTkk17jANc+dzgeXDqoq+rykUhGQVSyJCcHQwX52fBms/9YmXn75zu+tzXXlGLm7eGos7o+PV/lmycOt88f4R5e69u3/0/X/+j//k5Fv/4vHXfg7+l//FXyG7RXDrcL89ffz+0ezaen3u7ZlDCCml2Wx2sH/UnS99p5VJI1RCT3Ef2zKakcMMuLrT9717g1VBpEW0EKmp6nuP7qfcAVI9a2LVxHoWIotYtfqgb26cIe9TG7ldwlE8OHp0770O4jPPPPXNb34zpW5vbw/A5vO90d6bslyvSSm+UZ3Qg41nAgCglb4DnjMolsAbVBGZoSp6Z5+mnplZ9oaJVjxyfp/IwcwUFMR7yKDXATuRjDHKQdxcQcnbIx+JpHhnx2FfZrCXj4/vBwxgJkiIPMBTgHqXThERCAFLKAXLXoLJ0AFQHZeOmIoHeKB6M1V0GGodBbeC5exd51JVNTVCk+qLi2VdzYBAc0aK03GOvjIi0p39pGabUgEb5gfG2bg8iVBA7zaMYDt7++o1gG256J953JMgxb/sIzA2NGByshdVAqDBWT0OazzftoMMo6d6W9Lb+POmX+ZkVEQ05UvbDG4XT9x/LdA/qogDXGVJk77irX3nmBlOEokPD/dFk6ReJJV8bAoKWBbGvFmZMGco1g8pijsoHYRyTAbx3L+BpotwdhkcmVJGAFIDUUXK8xieubbYe9B2F61xjbFRAcmGAU0gJWkoRKxSTOtJ2d/jk2MF3b9T/qSqNg6iRiCAAMCKRoDZAJNAEsJIISATAsbZDEPI665r++CVUSCmalkggINaJyNkJmRSzt1KMHsCpEIiARmSeAmRPFpAkgyqNZ0fPvvlL3z2F9/7yW+/IVXquYqq0DRzI5RuiWYxhJyZmU2567reWs6iWSyLGQKSKmSD6AYB4OAaiaqskBxSHVERGcCyFVXJC69HDbJ08FRlZBEBxtjUZgikxJByj4geR7RB81M1oimlbTnlhpDclgyGjz92fpaSmwvgaTalLRlsx5JxjOOOEd9N1mTptHj1Q0cOgFPlGNwhJABAAF574y8OVQU4HWN5cwQVx9Ym74ZSOuJE5uXyURPl+Seffu7J56o4V7AclDEA0CT9DcyrbtQiysqOq/rp7t4PXv3JP/uDn7z3L77z+FN36H/xH/71O9eeNZhB1V6sZK+6afk+aAIFkwwMq7av5jOXxM18BoQKZIikKoK5N5EegceQ4rDvZMibycW8CyiaV22fc17nFXNsmnkz22NmoAAqJrlp6ovzR/u3n1lJmGkK/ePTk5OjZ1++LqcnJyc59yGEvb3F+fl5CHG1Wnk/x2lw0OlwiBHYuJpujZCrUh6YNlPNngmBZCqF5hkpxtozq/vuAkC9ecNgmCoASEcF4jeJistyE8kYGcfiHRBERCBV2Q6v7fqiRzrZ/FkgHKehW5sS244QCTs/jK9dDWHdMfTNhGCiCqKey14olZlUeCw9Gu9mpb4KSzTWdx0hlMZGo4/IAjCAiYFkCSlxDMy8aGbL5dJjpjppJT+8wPAspi3MjfIbTLEnbDADAYApuvk1XqKqsN2BwCZxKdw29S7P4JUzO6qxAIUxjXkiJcY8eDbIRQuM8mU0ESainZDGXGgr/EuHpuJ+F9gs9jiYXdN5+pnD1b9O6QYNSlIfbvQX3xKbhQ4EeSsP4trhoYkCKoK6A12h9LUszg5RkwwmgFwSHQHdk+gvoOj6AQGQevsMRK+XGkP4TcV94kBRVDMoaarI7hzU1+b9B+d9l6kxBJFsykCkGPcWea2q2mZ58ODBrWG079797vnFzc99qvzZrRLMKUTSjCGEGAgATNRryRFRTQhi5EBVNatqAFhfrC9OTtEUUM1UJAEiKhIzEmr2FmAez6goOJyFOTqjiUc9wAyFjA2zhQpWF3KNuuN4+xO/8oln/vj43sN7x3W6HqipI3XduhdjNJUSQOlaXZ2vUlx7QxSxXo0N1f1nZuZtCbmoXM7QGA1KfpzJpugNN1XUiEjFmSYgGRly7kMdmmamgyHrGXyOQS1TVNXhDptvShBqsqEKyseuINyhSduG+4kxInq5FCmAiNmAnTpeayUiu1UTMd6hlAJvJzeMegBOYB9GyQQe8DE3IgEGPCJTBNp+TffWWAlDuomcVKnUa4H2a5DV888+/ekXX8wt9x1W+3XSJVucsOnixgSwOte6P0v9anb/w5987/f/4bf/+J//8dntBfyv/vN/51PP/uxqWcVFJ3BRxZvQkZiYZjTHjVfmmFISEdGMDIiEyEBoxgCmJGQEQzHLqKOUtwulixoiKlhKXduu+r6fXdtjjlXc41iLmKZkkEXSOsRrB023OtH6+sqQ82p/b6+qG7l4dPfuu88//zwApJRijEBEIdAG64pg4qQsMzlMsht4ZgZAiDr0yEmq4nw7ABITADsOvErKqVPVeROsgDF4mbFDeetU50NERDYVM8h9rqpIkUXSQC0CqEM3uV3KJNqqRtnQfGmktSGtS8fILdEMfhoU5ZRkAxIjgOY+CQwt4pGQYeglcumqokJOvZfFjEMANDUALwsmIyR3gqH2OWFHMdYxxiZWYqYqw9telf00OCh2/jstH5p+GF1t07RSAPMkW7enR1MYLvlXr5yrcTDodatbuXClUMvrBxDRkD2MOpZajcfOK5TrcWMcezbBUCMEAENr4Q1Im9nw2Yvox8W6NBtXv5GrhwjeMdIboGYickKcDhIGRUFNJwYPzOczkQRgWOC/ttDfh1UzECXyRHccKaTcFVixOCIAxMgNbK+YGd4xhkgcOILlJFlUguX9pnrqoH54DOteUA2ymQlyYLDj1cWd+S1G69cX6SxPcrYXF2ePNrPdrpRMq4gUALzVgQAAAwEgKnTr1gG9K6JmvqiamQH3vaTVmeslDGogYJ5qYMiR0UohXNQAKogmmSSrqqF5eZbioGsoh0qzpVqOW73x6c98/Vce/9O/d/yg6y4gUt9L13Uxxjpy24laZ0QXy/7k/Iz2joKSISFBVmMCNXTcD7EsEgS3EqNGbX2kcHOrd5vLOAwDmICAWm6aJsS6x2AmJSms9IkjIoqxQkxllbeZz8jyLtsQ0xM2vxqamsfzLiPuwSXL2Clxm5Bo8iuOjx7/O913m3kYKHy6PQEgBFYBFdAMfd+bzAPF4AiOZgYCEAAIwAbsWA0hAJI6ahQhWoacrW8//eLzzz59S1NGiBxDSknYSLQw0cleMgOV+Nh4H2fvv/J//8MffO8Pfxith//yP/7q5z/zpXWXD+9cP10zwZHChdHS1vuWP3KzKue8t3djub5Qy7O6EhEjYCIEZGbEGhFDDo6GlIeGYDYcfU7MjGh933ep9+Z1i8VCIrmMyVmlT2ZCbGQAkruwB0QLPT9t9fonfw4lP3j1WxcmTz71hKpWVdW2bdM0ZkYUiKb9JzaGx7YJATCsaBJxqAFVzWKmhghEbGIi5tYCsSJCZDOy1NumCaAhUSAmRBQ6z1k89YyZVcUNmtwmGUrtxYzdXT/2t74kAj7OsIHJ/rpMtDs3AfgYII6RsfLQDYmZgBBSf3GxclB11YyogGg5G5h6qBk3xpARAiBomWLd1PL6jiqmupuy7oI0Q8zZTZ+Kqa6bdt0nFY5Bs+G0jejwdgoFymc6KZ5yfOULjxg/oO612vIPuOfZ/G7ORzZtKT/W/N1SCIY7DX42MxA1ZYqIqDiAM2np/rBxtyL6CUWBMIAhtl1+AlMY+i6X90Qs8tUD1lvvMl3KUXBu2R8b0plY+YowgHqBqKiiV6TR1ZNQapYmgwqBJAma2GRm0HO2AjMjkJmJmZIV8SZDCsxk/hxDsbBUvZTDqUYKGIiGSgPLYkz05F71ZkOPe5WUg6igqGa0sDffP++Wq7PHz92Gv/Rzn//jb5b7fO2rv/7u26+Nt33njR9cv/7s9ZtPLo4CqmTvDoToua+aMgftFSRJn0WJ1ShnlVKGiOQuczUjU1UkDOzTCwZkyBgiWi4BSzUFIFPwRsVoikSaFWKk80QQl6d850t/7sWf/Ml7j197ewlgoDUAEbKpiXYcauO47qxL/TxCXhNEwgoMgkIaJY2q5twTRCYA7+87oVszM0UfOg6+eRqS8/y1AZwSbLZojBCQVTqArcpal8dEglMmUHblcFpBB8SB0ra80Ft8bWOI07SfeUop5+JOUgB3yMGWiN2iFNPsO8jb56h6LGyA09sWwNMPUy1zvHMgziQFUFe9/VQ0ELHi6CJAJsLiFccsooZVVYFJ361M8vNP3XrmiacjVV2vsyYSwLrvAzFo1lJl770Q0dECqDmkfnn++A9/73vf/sd/sup7+c//9ld+7c/+xsVyXs9nZ92HzfyWdEfL5fHevG8dXhHAq6WIaLW60NQHtgyAaEBGRG7mhxAEkYaWhju1LaaaNatZlt5MQ6hiM6vqeT/0oAHJZgKoBGTAKwsLMEvtueDB7RdCCK++8t0bFS5wdv3wqJdsCovFwjt6AWxCYJslMC/FyDbRAkeThggN0A1fh+hCNPaMMSLmwDFUVYhVKEwXO/Ke9GY559x1fd/nnJumGTufAoCZmCJiMBHpzTBxHAoDCTbx0+0DEUfUzOmXbmHskFPpBgRXHGZXtSMctkcGrBBRAHFIMeza1eNHx0mlWGMMZiYiSEPK0mDmw0YVGAc3OnUNyBNv/Vs02CRuJDFE0WS9pCrUHSZERmREGTfltqTBsewdB2QMRMRBcOJwSWE6G+QsHTa8AQCG4NtuvOfOlO2I3pF5TWdzRwYPyfSIE3hxBQNCAnJDe1JIvqU6OV3AyJXIK0FsbPqGJTpQ0gU3oCIfr53tCOPLSz9+XzxmQ3fXK88saoEZbU8OFWkl3r+dKCpMYuElA9A85oAQPLtqMHMn2gziJqQOm5H4i7cAZkgKJgJoCtCJVEC352G/CeFCQBRMDCWpsGKd8axvb17jv/jVT//qlzcCeP/guZc+fXB/GPzdu2+cnp72aXlLn2rms6ppmEgH/z8iBuZAhAaQJK+7llZmEJnzVm8ypVJCR6CG5CW6/lJkyEBMVpBvtydfjARWQSMYLlTOVypPP/PlX37p5MHZm49P10ihqWYpdZI61Rw5JIhdL6LKkfoLw4pDHSBEs5WgZBNviaEKaqNkHD0WIwbLUJRUKr2LA9bVxCxCCJKzESwWC3VxNpTCD7HVwgouEd5IGLRTsomItsGf3li0wxzi5sQJ+yoxwkFsIAJP8pkHHX1i1G7k6a7lPbVsxn2hl04rNxdFZCoaRqnbyTkrjmxkOnjw9B0RAUJCS6klzUeH808+8zRpyDmGyEJiuWcEzqSg6MheBgqIQKCIyIht/uB7f/S9//6ffG9179h+/Zf2fuNXfqld7c0WTSfa5UC0zO35waxZnp6GsJaEqiqmgHx+vmzXa5VskjAYFkA0BvPqSmIGA1QtMETT2eDgneK04opDxRwNqety3czFEpgAGpVGc2Sm9eKwP73fzPevP/XSg+OTR3e/8dTR3lmu9mfN48fH165d67QnZsjeEXzTfrRQgm6WbHtHuDKwgS7WnM2w5LUZHlxbIDBAyIrrbMertF6v27Y1WodIdQyzJs6bUC+q/YOaCM6P16GqQDUnFZEC82MWQ51zymARgGtSVAdrvMw/d0jo0ph9GkdAr6vLlEei3BXAG/a3LTUBAHJq2/Xp6WnOGQdECJ8eDjyhwi0jySWf0QYpu9SDTu1OR28vmoKZoqrmLE0zJwpUspnK1th5SklELF0HgaHs1o3/wd9r+KCbVQconmoDAA7BdSsz824hMNmWlzfY9E+bCMuNvJ9ENcZsSbViWPu3hcdhQdPGEiO/QrpvJhPJUGFs44A0qq6jiBvWAnFU9S+N+eO+nI58SFfx9br6QC+Tol133/hh/FOHrlmqCpZRFSeWM+7IcERARjQ1ggGNdiqAgYJHkL0gEMjhmfmwwcUshmAkGJCESqcNXPcM9ulPvPCLX/z8UwebLGiu6xldhwGA/OXPfvadu2/86NU/eOr4C7eeuHP7iTtV0zhVeMefruuRIYQAyjkl6HoiJjBkGnrPWnFe+CSAQ+ihgCkxZGJmtKCqDs5c3htNQcnQKubzruX9feA+7oXlB3j9S19/4Y1vP7o4/dP7adUT1UMyL/Sp7ZE9OwYdGNqUERFZTcfZLcqLiQ270N3KtnFOAFgCHADIBhksIqzuYVLVjIhVVfkyeEPcEqUrVizmtJFG0/9CYV5bDnDwUJQNWt7g/r108iV39vBSqiYCJWXmUvBr2AL+updc3MNn3aBDb1HveHhaWUXB1GHIwKvSicgD0gXJp9yzVHTYqCITAqjmNKvomafuRMJQzZLWyTJrD5jBCHOFUcwA1QTMSvN1Q4TzD19543u//Xu/f/rDD7pf+Pzsf/53/hOjwypUajnl1bXD51YXJwE/ALUm1F3fZVPIpgoU6Ox8KZIDI5olkTg0X3L9yVV/KdBqlYsNVRYRMxVNMTJy9N0FgAZEyKBkAgbipqoXTSGyHb8/e+rlwyeef/+1H890LfP5UmBRRzO7fv26iDRN4y7oPqUsPYEnYY01q5u4QCnb3SJdS7lzV7kpRmZvK2kK7330/vnZ6qN7jz+6d3Z2qn0CcSh7mIkmgFwxHO7RzRt7N2/u7+3Nv/jpO1WszUyhU1VnXiYaiZe9ppw4EoNDkSioeP3YZdJyBNbpIH1mdxS4yzx8hxSvdkGbmTBHNelWzNeFc1ov673D9y9e+dE7BzcWZ9YlrYOmOYLyLK7XK6iD5xUNPlU2cXINTsUbKjfUbLhJCYHSEge9WXjV933Sdm82V5DQUG77LD1zVDFF4IAM6ESCCuBlhaOjmAruhKcsWlH1CQbfs+ZcYr0GXkHokazcZgAgJAFTUx28spEDFoMgl7qCcnneiJmJv9vG8n/zxBsgDGoF+TggOS/OJoBAkSFJ8uqOECgGdFezKU/aFJqZZUHEyEGyq64lOcilS6CSxGRWupjCIO95MjbXMp1cRkQCKI7B8TOAp7ADElIIYQobNI00GwAiUCaZr0LXjKS0T0ervKwYk5IYqQiRMTFbAENT9kRrg2TCWnJKA4BoISDwUjxzoKYhxOCCwUAFOrFUMUlEaxiUcA0sBqjrtMIQn5zPPoj5flqlUEckViDKZ6g8w1958amXmv2LcAPgBArltaGmUQC/9Omv7S+eun/vw/v3vt+376O+fOP2c/P9G13qlazV3BAlU1FijEQzhEaUMoZAli1byfpGJAPpACgF4BwpREAiqNSb7KEpZUBko8msimjGJXZzrHCVe6o5IC3S6v7R87/8m2+99qPbxCdtite7sCZNcM50VJmwIVGoY+pXTa57rXiui4vusTJHFUy9gSkhiqioVKEmA/OEiyEO5EEXZDKKOQsagPbeGVspQQ4qYpoZBa1iqAGk0rTMvRFK1+/PZ3cfHmMdrQexDAQixl5NbkLEqJQhIyIVYDg0A0JANBlqGs2MSncygOLy8VQXlEmWXwFtQDJUb7zksBy5RDw2nqtJQYvvBUUcvhz6f1zBH5mch3of9MIlmZLlGIMZZgURq+LcEgCRO6JnzAEsgBmaaq5CWFEboKpyzCgSU8L1p+489/z+nTY2yQCwC2aQAZCAIcNaYE7LZPsrpUXd52V6VO0/3Z6+++rd//dv/8nxt15tX74d/qv/6Ddv4fXzdn91lDhjFWfdxUcoyXSeJIsmU9rT/SU/bFd5Trcsv4f92SxcOw3C0ikixjlTEN/BSJYRowZmyCYiqgjq3APjoNlDKaYFQiNShQuFDIiIQXIGBARTk/0nXpYkj95+JVqfwZgwBGQCA/T0mtRnQs5JzACMCxGoqYrxBDUF1INXBGxmkjvRzvH6AtcxzJP0F8vThx88+vDDew8erT68hwGsJpjVeGuvOTicVbOADPv1rO3T2Xl3fLI6W/ZvvH32yptLAfun33ntyZv02U/dfPm5Z4/2r+XzvFydqnXLSFztRZXl+oTz+nBxUM0ayUsDBtgwQDNzPN8tn8pEoG5HrgEh7NCYJ3uPZ35sM4bhbHSjkSiA5ePHp6tVO8QMfNYEAIlIt/OeVGXEnb9sPo7TvbHbNrkP5eQCPThcNSqqiIzgDBoYMA/Y/dujHqyuyXTYtmk+/TwWGwwQWEBQjFGvC6ThgIkpNur+0/fa1C2AgI3NHgY8RS24jI5/hrixjscYOQLQpRqhnQHb1pJvjWH666ia7fyEO74U2j1h+pobI2LbPi7/Rdixjn3N3WqEkQ9uO9h3DhuKDbaeOLREGU7atlEQmYMfzGyGJshsgWl/MV/MU2h7RQUgBQGwymI1n9PeQiue1IIDqehkRHtH16oq3Lhz5/r7szfefO1HP/rOkycPXnjxU/O9a5QbAQZMiogkI1map3IzkXqm5cYFCqAmYKAmDu7jJlE0NpNu2mx6tPlcUggBmSkYIyADInzu53711x//o//m7lluH8uynfVVd81YkyRYrfvT1epa1wWqyAAM61itVQE9WqYiQgLMhDj06jBANDJECohqEy2NbLPWUxFlZt67bkM8pfySVBUNGKmuKqLezLE1x5Z/xaberOwkF2GHFCe0BzB0PLvCuvXETwRvS6gDnV9mNRuIocGPY8VHfZX0Ha0ZLdhI5ZyJSe2o14iIBBgKZ8DpyQBmVlPTrtomLqoYT8/uP/vknevXb/awCZ959sOIpCvW8uIipoOTftUudGa3Fsv+zTe+9Ud//PiVHz7Ya+C3/s5fOjp4TnkWZ33XM5O49wDUm/6UXmddt87U48R95W62EBmYkakUTxOjoXi0WoR3pkKLJg/D7OsAAqiqVdV0XScq8/kiqWWBg4OD1K1VVSQBQAiBeeoUAzMjgFwW1SO9DkJe0KzGAYs4CZKq5ZyziBkxkWY+ubj/6NG9+/dOP3p/fXZhdQWH16qvfJGuHR7duna0P6tjICJDBmDKbRdC4FCJ0brtTy+Wj49Pzs+Xb/94+fCY/sfX7v/z+v4Xvhx/7kufvH376XTWtOkiyT3Ddq/aR6r6bt2nJXOMcWCn4CDPHknZEPNmd1zF2a4ksOnnrTrgnVuYGSIDCqoFriBfvP/++xcXSwQGILPs1KOqNIJ+IPp6m6K5Z1K3JMTOxht4NI7fj6nwLvlsyJv1NhiMNICTkO9qK+Xko3jG7Tcqf20maFC3R727bDmzqZ8cHDiS0GsizWw6yKmcuLQM4yyjW5albR0G21Y4CuAyIQDBKMvViIiJ8sdjXF/+PL4LTLjblHtuvenk5OnNLxPQ1v1tSFae+o0BbIzpDofr1ypiZoToedroMEjbmXpmBqZQMq28GkGLHswGSYd6DLPyUPdNEyKLlHchcgO6L8qZweGiuTZvPzzuejVxDzRi6EGJ1wjMHPOk/afBtF+UIjUHR/X+4WKxuP3ks2+89v27775xfvLhF774tRu3Xji/yKEW9KJuN+DAJX8gJcSomgFgaLcsYITgOe9cEH2AgAMCIreEAwwajuSEBqRgoEAEYEqmCEqI81uf+c3nfvjPTn7w4RvdtcRdU9eyPF8qNmEtcHze31y1sKhMuVdg4JwzKnHMRYMUEDFGMknupnZHnRUwVB5p3sbw0HZ005dgbJijplSaxJGn1ZhZCFuK4yBsbMSU3SEtM8OpRJ/8pKo4adexWS8qVrIhljJ3mdztUlhXS67J4Kky2KlCnB5lR+vWrwXbufRMNmIEdigpIYapAC60CgYAUcNaO6tUNe8Fev7WE4d7h30q/U2L9N3AsytQp5y70zQ/CmesvOLH73z7+9//4e/90enjx/Af/daXvv6zX+J0rRMCzDWwec2ZZtWMJmDFrE2py6Ezq2WI4quiJ165LuP1BYOfElQjIuVtdATATVefkaX6hIQQ27bnUBPDcp329w/mi/2Liwu1zncpM4cQx8D8lKt4cbGomlnuhYgQySWG6+tmFrjKWdS6yBwiZbHT07OLs/PXX3n75Lhr17C3D08/M//KzYPDgxuz5ojiSSBiD+e0vaOSIiITS58TJERoKj64uf/87X0F+/rn9P37J2/dXb73of7BNy/+4JuvfOVT7/z815+6Xu9H3afuMK87ozbOoKoqjqSi2yslCJsegLuU8/Ghup1jpK6fZgErGGMw6FW1jk1ODz98/6P1KsXYAIxJ5CUGAxOV2YqO6Zt2VzBMPw9/blRjUyhQLFkVlIjACLxCw89RVANQQ8P8sWPfUl2Hqdm1F6caA8CuJeffhBB8nDrpwGxmQ2nnYBsOB/Eg5DaxLTWz7ALJ2Y3Pg5qZYWDEAdh26PxCk9FuBjOR95fF51BVWWwpgII/eXlOdgTw7itP7j9aLYjoibvTqYOi2GLefYqIdGDT8XvGckAiZDJkQgQjBRjcMQrGUHKdin0DhDvwRujBXkRCTtoDEMIQBfYKENA+dbNqsVdzBbnLYLEyhICYrc8dPjo7sfWTM5HRSLU+w6QbUp8lCZqZhPr6k8/P5/Wdm7fu3/so9/1qdVHX+6CSVYxyZQbe11OBSLxnFHKwqT8GtaBaSyq+d0IDMrDSrQidmnGTtcHBIJtBVgWRhKai0Vjg4Nkv/txvXvzkv363X6Z5OriYCVZxthLpMz666G4dXzSxMYuQoEBioVGoq6YnhpzNtxKTJz6ZISiiiZEFpEG3MUMy1qIiEVjxbA2QMkP9q5miWbEvLbsSnLF4owYpVBJtFAG87ssmVDGVlLurPBGQtp2G6r8WmUuICoomOsIB7UrWgQInAkbRbMg4uaR0MqCOCvpwByIyEVUD8o5WpiBmYpgRm6kqP3AIoAyzpknWSrv83DPPHs4WqChM5CAwLnQLfxAAUG5lfS1bWxHO8/Xzh6/+8J0/+MaPz998//TP//Ktv/5v/1u43s8sPUgNDdkqS0YD1QyaTQ1NRbKKeFWRQEgpORodANchdpAK+/JSYDTGoGDISgjujvdMMM+JnSzW1q5X1Rhjygk4HBwcEseL1RKIre+AkJFC2ZFkZgpQlQ5qZX5ExFRtSN8rLAVK9g+YgeQ6ECC1q/P79+998P69Bw/OlhdwcAif+fzR0089sbc4YAgmIJKynLMsLJkoEmDFzIG9jwsBuNaBZIhgSTyKzHv1Jz554+XPHJ1ddG+8GX74kwevvLb+7mtvfP2zL37u8/vPPF2vz/j8MYEiwFq709nshkdInZMjes0g7+gW/38fV3dD2lCsEWAHEBCipIuTR6ci1jTsQK+qSlREBQ257AKDjTVozTvHlax/Irlhulrj+apKQAUV3g1W92Z41tKQDALbkl5LEZSNbzTVAHZmcHvfjh92mcW40yYnb87ZEY3jg9SyF8TKmPJdZmiTEAFWlEEEAN71Qk/HvCMIr5zV8pNthn3Fr+XDT9Pbhofa9NUmnNQ7NmxGy1hyfXi4s5khIRIhB+fi4GYrBdiutLMBxMCQwWjqGp0Mhj2Gh5iJiCkwBSIhMATOSbiGeYSa5GJQ/ghNauj69f17Dx/dfnzAc4CShyUpTe8fqtrMVDMEOu8S8+GzL/zM4bWTnD2y1Tn9qapoUlUgASBVnWQBeMLgSDAediDzPmoeekRAZPcEKALtTj8pivt2vG9wtkyrs+UTL/2t57/2o09+++/eXx8ucRWtsXjars9afXDW35odH82a+eyaG45d6k0Ruapncy/oNA3qAgvNMcpRDQlVM0AoPm8oEg9AYQIMN/Wylv2Fvt/dg0UMnjiZccwxnJIYYAnwwxW75ip5OWRSlnymzdSMfMKd08OXu1UL4wYZIQQ2NxmBdf9NPIdu99hwpWoWy6NjdutMd/yaMUPbLo9m9ZO3bjNQLyouOja8QsbLJROtGthrz87yLVm+cff3vvHOO996Jz37PP3tv/lv78/2Zb0nlCkuCZJeiEIiAAfgRxNVURGRBOoYL5hVk6iAAViIlISQmUPkujHvjWJEICVLPwIiinmLXfENO27J6TsagmgC5sViEWteLVddSrPZrIToAhMxWtFgwpjfoAZqJiop55zNDKkyhxmwzA6QiaamaXlxfHF2/8GHDx8+TD0c7Dc/84WXbly/E2ZkIJLWfbcGrCNXYKYpZaXAjBEQLMm6S9kZTKyr0sY4CYBVIdRNnFF13D20tJdyFQC++PKTL3/2idffOXvlJ/e+8eO3fvIWfPGLt77y5WvXn1mc3sf+Yn7t5ixZdoQyANlCD3TF2XW1KZlcrn+9kpwGqtsAcUwJ0czGih6DniCCQpKLrktgiEAi/SAmwROvEUtZD8EQoQHzhbz8bDNTMDcaAEE9vue+ESk3dQwf1DKOnJMG9ikwBMKiUZdhb6NR2lgdUZ549fuP/MUZymgB2+bFQGyAeMTtADDCiDJduAURAEjOg8Qq+3+4Jxg5VNKmwJ+ITAf+gaiE/r6iWpL1LynpeMmCn7715XfEHU/ytvzeoYbLx3jJDrsc/1Qw8ZyK4QiEgSAXtRfA0e8oADGYO52IKCAFJEYKvko4tGsx80wmBmYsxfeb4YC5scYF5BlL8IMogAiAIIdAMAs0i8wJBIDBwDLXoJ2888HDH9746EtPvjDecZqMBh4MAEMkDGRWSw4XnSrtxUbIVm13UYd9YNftsmhmZSABRQEr1SmeHlTcQs6hS+HEoKzCEEZCQELbOH2tWAMFKBsVgV2dx76+yI9nR8//yt85e/AvPnjl5JVFbJfnYcUCfcKLzpYXXb1cUTzg0HCIYNTlHrtV081CIMSoEqJ38sGh9o1woxOYuMBDUZh0HymkTERE3pNHVZELYyUi9xL5isIgXUYL+EqKmv55WXEcHwqT8vTp+WaOLO8cB8gKqsqVtA3g+AEAqDBsTEQbgNe2hjSKnKI3Fueckc+ZASDY0O/c6/I3OR+bfWFmJqSaugbshaeeQqPSclP6ko5anmIIg5sqLSCs2pz2qtvHb337R+/+8He/c0y4+K2/+Wc+8fQnlxdtFYVxH6nt248i3HBL2kDQTFXATDWbqCoqIIVAWP5lMzRjDMghhIpC7U8FlyABTTNDBEJhGWEJYBvZcPyQDYF4f3+fKJyenhKGxWK+Xq9nsfGqhDKZgljavHqWtYmIpJz6vlSakDERohGASer6Vbter9fLs8ePiWDezD7/uZcPDg7q2OSkbdv1q0ZyYzon6sWOu+4xCKI1yrnrejMlhjpiiBwjh0hd13GMgTlaZapgJGYich1fSnCR67VS6FIkg5efrL7w1MGX1xff+saH//JbD15/7fjPfP2ZF5470jXc+yAfPDGE+QFK7GzoajOdn3+jY0qfGwv48r0Q2QUrUjBDlTUBGqhoFs3kwfzSvS4TeaI6mZVeszjAF29T5xXyYAzODueaWQkajYnH6JHGIroYyFN1dYrVPjWkdgzEnZefDmzDaIZqG9/jZJtSjStOvnT/Mm5HpvbGw2hDSAIVNws2mhSjpUQGhkBEwmZDe5fpRI2PKPq17jrQihoxcSFM39rGoohhnFs5Ej/VAi4PYtyMCDd4/Tzwo+nDYDAri4Ak9qx9AQvEiBVhRRQRI7jy435ZgNJghBAtMEVgUGsHvrn1FOYo6FKeiQKREhkAhapRg4psXofQSjYxLPw6anzvZPU7b78N9QHAQRkhsyGMaeDaJ3dESJskW6zryBWwdMsWAWdhTxAcihoApO/AMEQmRiila47kMrBoAGQyMxA1UzDvs0umog7M6ZwOAIbqJTMpNZKICmoZzDArxcM4v3/24Nq1z734ub/+0qu//WC9us99gEohZVt11mdZr9dYp3oPMXDTNL1In1LbtswMaoEcYwDFjAgJ2SUKIgIxDEDHBjCA8o8KvhMXSpa+71NKGBCsBIBVlZHAxJf4Mkca7uTq4P9Ur93kudsK9GBwoANfmau5OPEZb3MbX9rCYWxH5l6pv+Jwvh9UIs5AxAoFm8SQx2rgKwcvQbDvnz66dvvghij1RgjAIGOS6Y5sqxRS3VJL1D7+47e+841Xz07vwd/89U/++s/9Sl4RhSZBh1pxj6kXwGQgqGaqomKqZuJVJwSMyL65zCXHMDUIbMiEQYgAlECEET0hHLaqFRFRVLY0sDGJhKsbN250XXf8+LSp6qqqUpfqWCNVYKWzTrnGzMyypoLenSXnnFJynIaUe2QiRs1JNEnf9e2qb9c3nrjZ1PN5PSMiEVt3WUUMTW1t/Bgoq0VNM+33AHuOeb+pPcuhbqq6joiokkQkUCBgNHI9ahRGWR5xYIPKTBnQM8D7jp9ZPP30X6leee3h7/9u+4/+x3tf/dmHX/7i7Wu3n277x8wWItOAh4+jhrLxMm7o7V977Jx2hQVcjD/3ISuACSGaokFmikWXEeEQhsGwhzGcpyuWfICCnSsbPNXx/mYeBxxlxiQ1ybteD/iFjtdBhMzJCEsrvU2PnMme2b5/ETZT08230yV7bipTccD0IBtc64Og8oRSGMqQiOP4XlNP1NBQ2gDASjzFEBEGl47zqYAkIlmEh+QsMnSOXCrPPEJ8SWXZ2brjqlHBfB/n2Yb/7iZzjUPdfPkxZvSUVpzVTkmn7EmnwMkCaEqS8/Q0LN2fSU0VqCTPYgAc8IlBEWUrAIKIFIy2oCqGpwEAhBA0hCzKnEMIIsYKzIrI3kSrCkSQ/RKzDJkWzf456Dfeu8f4OsALfp+sMjTIAwAIRGqZwBpsEmcDXXXnqpkIGmqky33IzMwxgOcJsgIAA0qBZB0V0GGKCEnNSrjUs1ZVVZhGe2wEjjUCHPBhvNbS0Fxcij0ymmmdgF/46m998b0PPvzWPzibzdoWAdbrbt2mlELf99C1ezOjwM1ivuq6PiWPBTJSjFFCIPaks9G5QkObdtwISSLzzJ0B/gwHbdixhQvakCIODbNVFdECFoYPhgSOXosARDBUY8MWAU9pbFSdd2gMEeiyF82x9MxG03RsrzYlWkS0gpMFwxuOevDwunj1kMp9ZLJ9yNBstH6ISLf9jQM3MTNIIAumJ2/cIkGITavKmiuCZFN+uHk0yXnL1c3Ztde++Q+++96733lTPnMHfutXv0Lnh9Vs1RHV84PV+X2wsKieXLcfkUZvauJxXzRnUDnSDC0isHu3ywQykHjGdgBiQgZUBgLSDAkUBMaMrSErWzYsHQfSAICnnv7Eg4f3+nVbVwswSL3FEAnJsx9MBQAJCLHUQWTNLnc1i3jXBMQQAkhOitZJzj1BbupqMb+GeL1nCBjNQpdMRBACMgKhtCdEMfXcp4sQlwc3Z009N2sqclCvQBhEVEQCE1e1h/BUs0hWy2bZk7SlAdJQa5wDAmivfctZ92C2OgW59aXP3L79zPt/8Idv/OGf2MMP46/+2pwxAxCxm0wM4OC+W9bX9MO/qUk8ZEFD8baMk67JAIBqMZjlvKwpMd7MYZ3NMHCFddeu6qoC5D6nWAd116rLGGAsyE2loBbV0LyUbMDa2cqCdt3ZVI0Qg7+eFT+ImYkKUHSFFqEEIsCBi0VxcJiUbUDD1cOeABDE4iV1BGgvEjJTQyBm9Ni6qg5QPoZlp5EoOoqClie6TbPDLzZPVzWzgKWSyGGSCal0C3bnIqJ6XktgD3OqmRazqSTlqljplYXgygq4ODUhxLF5MKgpgnd39/FgSe8vTHXEoPanD/Y5jZCz5ZkbDji+UGmTbOAGuRChZQUzZjYwB0Tr0WYd51k1CnoVVmmZsio6biIVPRsisVpCAzAGZCYzrAAAgNW8/iWzA1RaVgIJFGwmlCxl0R6GOmdEFu2BDBxbmYKxaAZg6NXq1q5LODzYbx/fU0PDZk0Bq2RyWkMM4fAHHzx4cdwAJ6fh9hPQlz97TpCssdBSJ0A5I1PD2hu2vfU444VVamC9cl1xrIkZMGdDgErH/ceEFK3Es9HQICiaKSiqIEBEYCBRE1MkBxRlS6ImCgaohDb0n0JQAOKYZuv9pVjCrn7pmc/+7c/e+ycffNh9xAvF5fmFdsv24mZ1u6/2HiZ9NsY510dt9zCiWb+CKvRkoZNALYc9oBgoEgZDUFQ2xZwxBg+QgJiKqCQzBTJgytlqL3BKbVqdBE4ZekMITWjPEyNltdAs8llrrGzQrZXIa2SNGVVFyXMCQWHLE3PJf7sRhwwlW0LMTKdhAgVAZGJjAQQRsawKgIGmRUeughsQezckZ47oKhwihbDpkgSeyQ8AAAI2tgAnRMdCCoFVM0JQBSSNkYlBhUgrRJvN6m6deB5jPetzRzFSwHD6/nMvfSYcHHYYAkmEnCUlQBU2zSEQgLnp5kpJa3BE+x+8+eM/ev3Bt1+7X6/hb/77X25uf1LqVoECknUXFdd9t5J+SdCorAeBZwSl6SpRWEpvvILmU/n87kGAlYVgvILOrEOcKSciARBGMALfWYjAzMCqEohUvGmyF32oABByPG9lcf2Jn/2FX/z27/5TNIhMaDp4ZkFVTVYqgMgx1gaWU5v7leQOcjQz8IQJMzBT0JR704zIRFQ1NdECkAUDIsYsRT3nlDW13VL6DgAUKdZhcTgP4RoiEnm6dcABuF8BKDBH1wOQ2D2yXqMYxyIQNyREUhIhwIBhJpw7kSYRdvnMnqhu/Y1ff/oPr//wX/3Bo7/3P+hf/RvXqT2YSayro0f5tThnzgeVxM66wT3q3NURCW3snjQRDTA9aMtavJSENVVIvUBV1MAIKIZqtrd3BPCeiDjCcwGhLA8rZp+LNxvRzJm4CEVABM9AdJ4L22rvaImOf07MO8qWR8kwngmjPX0pomkfo4rYaF8AIG6mYxr02plBGKd5ognuDHu8kEozg8EIniQywLalPj0u31YnVbCmOlY7XIH2V67V4UKjoRnxziMK0vVVpsaVI4FhFSaEK2AFThYGv8L4dsMdeDQydudn1594KciNaNsdylzcAmS/3AZEw/EcciCVAq2uaIKBZ7P6AOhg0ZwuQXM2I2YFIFIQwWX1gBHRAAEAAElEQVQ2qMoD//FHH/2CMVwrf4o2bLm1BGqgxt7spsCrerocuY2I7qpwYN2hWQ5etsOKqonF/B061Iq6hQEAZmAiBXR6dGF42+BxurpFas5MubN4vrr28sufP/ut+//o/7LMcra3sPX7F+/fuHVn/+Jgfkz54DwveL63WCwW0i2BMJsyFcSZK6i6vKHtkAQiGjCHnohTt8aAdV33neTeEudAbELMAZlUs2oWMVOvU8pTSAC3/hF39+zIEHf2786Oxu3SDmZWhSxWaNG9SwQ6IRuPA5WyhZ03Goh/Z78PHlPjEJzUfb+Nzi2/DmDk5H4tIWLXdYxsZll69/mmrjs6PJzVTSBWMUPDohkbExuyqohkAECmISY6t4sHj04+evXeex++o3/uSwc/+/k/J6EnCDhEnTRnUAOVobi3jA2HeQNHYkfGGDOiiBERMqARiePG+d3K+ohhFalvu75vVURVc+5TSjlnYAohdrlrc+IYbt26Xc/3/vgPv0GTMMK4/RER+hSQmdH61bpvu/XKpGNCHeaQCGOMAJBS6nOqBhAxpjDoZA5ik1Pq+r5XyWCCaM2sijEaxhhjjCWYhThgjw966sicS6c+j9eWGSJX4soS81BHpOauvRBQyMCwinWXVr21v/JLP//MM8f/7X/3R3/3vz79a3/jTqRPrlZvH117ustrUD3vHldVtc3frpAdO6Kh7Ouhzta/H/eJgkeo0AwU0MB0VFQRCIBCqA4OryNiSllVAVkUcs47RAkAgAql01kpvBnlh9uaAIAGzuPGf16gPT3GHYJbNUtmV4mQHTFw+RhXyM3ZzfbTS7vxkjcfN5Vz/xqPWanTGPSSQWxsRPjO+dOxTc/Z0JNZwRSbZEGPPRt0d6RbRDDhFFuPvnzOeFwe5HRiR861sxxXe6evWpGdusnpJTsjnB7u/0HYvbDsYWYeUDkiETJQhFmARUSUXs0TFJQMwIwExerxDr/9rR//7g9/NP4pramSVGBZQA1B0UocET01a3MAuiuiJA8nR7culA/g/YCRPMPOEEsDLne9iOlQ424iKUuvmr0F7Li+w5IAAPRwAR0EOqy6i2MK11744n/6M5/40ktwLBfcy8nZ6hgvunWNF5XIaU7rGKtmNlNEU+xSL1lTSn2SKxN3wRVQ8ATIrfQCRuVgSXpkCtx0qy53fUPEEFWAQgWEqplMVdUgjCL9ypXa4gPkoBC72ud0bPhTckpLHZEz4rG33ZZXebKvd5njVpbZZq9BKZLxFiPgmJ0gxTVrHmFQ9eIxQERGTCnRkHAUGNEySr59485isR+Q0ATEgxBemZsBRCQrmAebDNGQ53Xz+L23vvWDb7zywXFj8Fd/9RdvXHvGKvAOvmYmKakktowmKrkEVidi2F8NA6pACEEtZ7EYI7ExcwgVcij7CBGBHXCXMJh3RxHxTgle28KIOUuGIFDduP1EU8/ff+stXZ0V3o6efOkw41k1BwVIXWrPU3sKec0oBAxKCkaB61lTVaV4lYiaqmaKgasQQmQMBKit5VXuzs+X95frxzlfIKW65sViNt/bm8/nBwd7i8WsaZqqqmKMMdaOwIMckAMF/1dRqDAwBq5iE0MdqhiqGGOsqppjFarKT/ZuexwDBQ4hxBjn8z0y0pT36pml/vGD9555cv63/vqXmwj//f/r+FjvSz0/Pz2jbm/dPtg7uj41b3ZqfS6Lhp3PI+2ZTQCTp5fZdnCRKIgYQjw8uAEDrbvq6oSpuOkoufECkRFvIBoQcewqDwAAWmI3oGYCpWHybm7RVInA7dwiLA5zx2Eg/+depp0Z2bohjQwdx31osos5MLmw3NaTb/3DlbnmG3lpZmaOpDHyHTByoicMCDz+ufOC492m8t5H6FtuaD+KRjhKXxxqZ8efLr/IVFQb7nK6K4/Lc4ITXOvpsKcCWMwBkbeu3WJ2wLjFnWnot4FTBjoMlRERiLFMCBmyN0SbiufRCCZEQTOSmmyfgVTVe4c4JSbTXnkyFx++dvKPfvTG+GfVrtVaEUFRAi0Gh7gKH5gj8EaKwIA6MgAay9hNvUzy+BxCZPIXR0Qre0fM1KAIxQLMgoTIpmiGY1hOTGOX2wpz3JuvU2rfPg2zl57/8//B58PhdegBZAntyfGD9elDBbVUr3oMPNvbr6qKq4hAQEORyYRlbx0gsGUEU9mtFg2IYjBkA0oprc4f1yFF32sQxNDMAiMRGbGACYC4Rk8ITMCEzGUKtnWvHSG9TXhQaiO298UgGTc6MRh5Rthwz4n2RltK/JXPmg4DcTNFm/RP/5UmkSDXi2xzLREpKqKhZcjd0aK+fni9iQ0AooFpRjMkM1GVXi0riLOEpA4zjtLef/udD77/xt37H6a/8AtPfOEzX3ncnVXYQMGvUJVkktAEwUzyyG9tWyc2UC9jVBUAjjESKRgW4HQv06Wg6KSLbd9bcdebpl5FEJE59FmyIGB48qnnc4K77743r8M8cDGThmI8kOGfgmpBycbATTNf7B3N59fn8/lsNosxjpG7QFR7U2dPcNOcU9t3q2552l6cpNQz4mzWHBwcHBwd7u8f1vWMQlU1dagiBUam4V8A2hRBDK/m7xhcDAeuAlejoA0hMkfmgMzkkjlGv630qaoCExHwfnOQLrr18aOXnnvib//Nn08W//5vv/7hw8dVdQRwf695ou3HFkE8jd/tSKiffviZHwvEQUQONYyMZqRiVV0dHBwUHBBmT64bYjhEtCmsLs6fITxQ7sgOg2tmBmbI0z2ztSdtG6Zj5/uP20I/5c1tyCIZPo+CTWySHjydl3FUZSRbt/tYxgHbeoxiAX8GAJuWH2wPeHzfrfuUOPnkK3dhhgHX2pVzgDE3b8imBRh9/iVtvqR3mVmBfPy40V9l0/sHEXEr0zzpxsz3LSHRdt8LVUUOmov9YBudxB/uJ9PH+OMJjDwj1ykNEBWZSA3Z2BAyGZclwN2jpC+wxTruK95aLN6v1u3aLEtGjspmiJqn01pXh68/PBv/7NePm7jX90NpkGcgIDAzcUWxIUiKgMgUvJLKvfFoJoNaZoCCwLvv5e0ZjN0Yc/Q/VUUwKrlOpKpM5BUynm6bh+2z4OaM2dLjNstMVm1ar/c+82+9+OVvfflP/+Hvtqfn8eT9+/e52T9o9tcIWAlZjJEpmodJswYm73vjB4ICYOlZPhTWbxYdEQGNOOg8S2pm+9JeaGgxy70P3qHa9o8+AwBiJIpEgYc2Y1P6d9opOsfgDBzdggMW9dRm3RAhbcIlH6fsGnge9MAobJrugN6Vb/fC3V02bvbNft+MeXSPI6KaEIFAYXnlQWqqysww9FBJqZsR3r5+WFWz0uPcScIlMZQSZFUFJs2567omVoz8wXs/+uHd995/OD+My3/vz39JsdIZBokZ1QxMM2gmTTBIX/e5+95S3NhVBAbGnvEXuOFALbq0HiIhVIBCfd4cdQBVUupyzu5STn2vSqGpbt64fXxycn5+vmgakMTeP9MNsOL6LXPYZ8QQQxWKvw5jHecx1kmXXbfu284nKjKbSc49IZvmlLOqmGZUMRBiO9o/CiHEWDNzsVg83MO7tkqhmal71fVybx4OgGVsSjo060MNQGZm6kj+jIgmYpaQSBXm86ZtWwC8ff3ptm0ffPDgxo3rf+1v3fl//N23fueffHTrr+/fOdq/WObWukVVjUz7f7rQhQlHLSrIzg/jf72yvuhWIMQIjNnUFZxRHBKRDNnCg7ZoZsXbYla6zimpweCgc2vkYwatmqcGsVsVA/ACj5buaJWWajwwIJz+uyxlnOB0cNZPj7CNvTxu6fEml0frmiABOsjbxqPuA5jI4F0V1Wz6zSXDuvzDoVp6OrdmpgoKOFrkAATk0zLMGCqgIhl6jtLEHzhAJG4lN+4c00mYvrh/cCtzqi7wxJ1QVnAIe16e0nFWh2fRqD8OAtrnHAs44lA3jIPhWQLME0fwVPoSURObUEVgiCYHgatSm8imbEjMHCrmsBntahHmsBj//NZbb5yfnJbwzhBJIQKu6lg3IdbcNCHOuKqpqikG4gDMwERQ8pon06VQai2HlyUG8qKpwKEa542IKFTIkUI1mIlshKOjQlVbDVFCrcddEyPerLrTY2xfeOpX/4PPfeLWDTiF9PC0vVger8+Ol6dnp7nNXR8whBAcpkpSZuQQSguaqZ03kiR4LpKPlsaYdyUZgIIAM88Y4gfvvvMnf/T7H7z/WupXWc2wZgxW1HGZspEpDezsR6SrIzi7u8wHM+npFrjyDjzjWxT9YSvbf1Nnf5mkt+58iTLJgIfYXnE/gEnBtnZVd/daHHR0kWyaD+b1jf0FAmcVGXKeDcQ5P05MC1UNCE0MuWvfeve9P3nrzbvvdX/xF5751LOfWuu6rvYkG4GZCORkksHUW8KMhu/ohZ5Y7UqhETAgi2GmqqJr3QTdPM46YCWhViGY5q5tU9uJZgDIBp3AbP/g5s1bDx/dX12c780qkExEbZ98frhUhhMP/7AKFBgoIlexnsdmRoFFtVte5LYzSaAZNKtmlWTDB483mxnFMJ/t7e8fzGcHs2a/ig1TROTiNwk8SAGkKw8M3ssHR2xaRCgnBwyD4woDc/REWofFZmZkphBmswWAYhBkyGqS0ZRncXH84OFnXrj1V/+dZ49P8Z/981daOexhNavn7mcdal6mFGsTb+703xbhjVeNWNCuvpYTBgw5JCKPDBFT7tZ3776dUqrrGsCy93IyMwWk6X1Hx6ia96vCjanmv1FBoTUnaU9BdKIcezBc3pMj7e4Iw+men26zKReYsn4vTMGJqrEjbmEqgwcNnYhgWyCN5083lRtnkz6noFig3XCQLduP23W6joMszAVhvKq4EwyJyI36sarKJu8+pYjptNhE+YCPOS6zzsufyx3MACDnHrZKikFELpdnXGGMXLr/eBoiXj7bu4ggmVv3RqS6cWaMO7MOYa0tSAoicw6zGEMAwhA0F9w0RpmM7jytrvMGi/IffPuVi1X3tc+9dDBfQEBFMNTAzCFgDEiBA4urnszAnssOgGObaRrKVNXKwNiggJ75SwICjm2gJzuTiAAKlgWQoDKgIJQSvWR9Q1WEvUymwiGEpd3v95/6mRde/o0vvPrffjvf7+3o8fqJ5vjRvFtEPlxcnwWcVTNJiRABqKqqOjYKaTLbW2sK4PhHO/OeIYjLErKIUOWV3f/ow4zf/PxXvs5xjzAyVTklRgHyYPlmd1ghO/NcTDMvqKUB6mKzm8d1HPZRqQbYIQMtFfAlpu4ljwXwbvM6V8j1kQ9MxefOzYdb2fC5IKIQkW5ENaCLMQNVZYz+LRGllA5m4c6ta3XFhmwqSAYENgpiBJXS4Q4VybSqajZ9+MF7P3jn+NV309O38Dd+5RcED6pA2uUWtVLT3Enq0bKZafa1gKkONSLYmFlvOfIiiyAZxdinM5GEGIkBSi2NOZn5HLJp7tp+vZKcRESMqKr392ZH126+/dYbgehgUaeuZyIFUMCaB7aJW8pNcEvMkCjGGBmsa1fdat2tz0OgQGSEIklL7iGZJvN6dIrMWFVVFWMIwff0qFgTu09iDOcVUYU42LtcpG7ZfQPhkYWRTsDMjIy8iTSCIaOOSCwMDABdys1inlJnnJu6AkPNqppnVWwf15957saDnzn+1nfy73/nu7/69Z+/ePwGh9kgFGiHSnHixJ1S4A41+q+0c+X42VPkQwju1TPUi+XZO++8k3P26z0dd3yMXpXUAGPV7JA3Ox3idPuN22PU76Yn7wgMmxw0JHlNX0wnmWY7F3rehxZeUAz9sXXPdPAbgTfh75f0na2x7bzU9BiiFJt/O4HP6Q0RkXf6iTjvUO8apnmYIt0Rsf76o/YwfZ1L83HlUKdaxfSeo/4x1R7MLOc8Vkj7kbf/vPy4LSk+8uiPmTcrLsGJye7JI5O1GF+TiEREASlwFeN+M2+axrOjAwKpdLlrU15PMslnvQhvmiP9weuPfueVn7z63uspu3+s5L4RESKpb15kIC5gmQiGoIbDgvphiOYGtK+y4ZZ7AwBMUYsbENVh4YC8w8j4Lh7W8j9rShJzazdpnUBPeXYjW/9YH9985pN/+SvPfvoITjp45/75vbPj49VjObk4PT5Zr1sRyX2ybN26zV3ftu1lih2/oe3JLIVq1FU1DWI7MM33F9cY6tffePv84riXjFQRVZINEQcI/l3qwqHIcMfsVr1ixWFrW+3myXshMrhbYuwMsYVuseVt2qHAnc/T2ZheMaWoEnkpKWqydZVZwYpHoMBZpaqq69eOCLyzX7mVmonlCWvi8XJGa1cXb7/5xg/ffXR2Bv/ubzz/7BOfWAEzLGLucgSHXTBJYIYFqtbGW11yY1jf9wAlsxqM+r5XFSIKkZ2ZI6KZQDHaNaXUd12WBJ4bJlI389tPPPH+Rx82TUOgaX3BKIWjUhznZHpEYsBUBZzXVR2i9bm9uFifn6wuHtWByQBETYQHr35KnWpGtBi5aZrZbFFVDYcKkOsqeK9fQEUSZmAGYhkXwnOvRrY/fuOeuak4GHdQyQ5xrus+bY401AsBITNXcS9wZZBigwpdmy7qGYdozLE71X166ud//nPza+t/8a8enZy0dUUiUy/mFQQMl0Th5cPGbkhwyXGEIVTWtulwHekanEA41Eff+c7r64q4IhYRsMzEAECaA1Of0/R5ioAYCdGSgMEIz+1O7KyIZFAQcQuMn78KxQBFrvgLsKiaGk061ZMDWSKCmQNQmBUsFx78/woMCOgGSZkoAQCR7LDEjgypA7RWNh0QqPzfhpX67Kh6slgJ6CDTGOAcwg44hofRKwjVVNWpxAeQzQwKFiBOluryoTkhQJj0M2ZmI/J9B6oOtAZQGmrTsNvNexCNu33I80IsM+rVxJtytO2QtkxlJ42+kJEqvNxCFMy3QQAU2iM539yhakMXFNlECY0IiZXQEA3JxISQ0MRyViMKYEBiEkCK84TBPGSGZKjoNaRkaORlsg4rJcZe2EEEFo0BRdAMK84NxK6HOiLHi7peqSbUBYVKUYGAiDY50ABxXuV+I48bhR/dXfez0xvzx9cPm/39mrAim6MFZe15jVYjMgEDBBxKRADVAAss+eByHHBQvc+HAQ1Iyx7UwwxeWr1pYGBmwCZmgopo5DmSqKCgGWvqMoTHWjdApKuTQ5yTyjvz2a99+mvf/PLxu49OPujhjY/uHV7/pNm9ZwgurMXA2tSrtp3FkHPuu9Q0FUAwYDMAMQRUgkwaFJg5eEEPABowmiL2K07QxqpCTmotEilWEBbdSdddtDeOmmVeruS0D4I86y4+Ioo81B1qwToGVTBwqCwyEzRAYAAjkgH8G6xAx7peVTzzZgaSbdKToxTpikO4qhlyKavYWNVlGbaUSPDAhW+QsZZv5FcC5o46JUheLU9mBR0MTbqa2GOtQGCKImYIyJbXHc8aNJILuTHD52+zSmf8HMH5WNtE6Ja6osGK87W8iMKndoaxCXDw4YOPfvTBa6+9efbZJ+HXfu7PEgGatHBezxZVG5M8RgBk0yyOZeF5aJpb7z0OYJ6q70ZFUJFqwboXu4uLxeFiyZ3NgANX1dmyPdwPkas2tcQBSAWlyZ2s112rhhVQde3ocLGYvfv6G5SXRhQ4EFVmhEQIFAljjMWgstGTx4iIFgOTqnbLi3Z9bpoBYN40CjSkooCqgRkjMVdVPeeAISAHZGbCgBhMEbmHiQAzc15bKSgQKhTP71igiKYIgF4V6OqFK05jiTkOrjV0PTebIRgBBRiD2QxmnYhG3kczZY1Vyjkj8oobXLx/dtxduzX/jV974u//vfwP/7//4j/7T7/aPXxY45318mRvf9Z2tdq6rkW6uVEqg7+SrQMMQXQDVMQBQ35ksqM8VxOwigkYBawGk/fvffTgozNE9ySoKYqIa75Wiqu2Hup57cMUbEzkTeiuNOHYaHMfp01cKaXGC81KLxSAjdbpTHCiIYptBY1cIG8ePT7oysfh9gEbfXmiNl9SfHCi1vxrX2f6UjvzMH7p1/oEmlnOuaQdXnJ3XB7J9LnT+0+/vPz0y289TmnOue/70UQbL3HfyWbwZRXyJkw1mELDs9xdMSXFcfCbbOefPnXjzACT1xXEqqrrug5NFSJS2Fm48UIPQY1/EvHFRX7rzXf//ne/8+B0HROv0nJNbbY2r9ZMgAhEQAw4xCads++mIBSw6wAfQyo+b9PUdByqIQHcZ73lSL1yayhCEFkfPPcbn37+xidhbrA6gz9+/cM29R8+enRyfpGSMDADpq5v2xYAkuTitAAbngM0Sfc1h3gcVoQZ1aRvkwpynGXjk9XqwelpzjCbzfp1r6qLxWI+n4vIfF6PrzhlKT9lX/uy4CSjbvrKReW9aqGnJyNOPXAbX9v46LGX6HDOrs9s/HKSVLBF+ZOan60glxDkDIyEut5fxMXsgMPMcEurMts8aBbmXX+RIFVVFfpZ2529evePX32713X+5V/68uHhYZ80VPPAVd+uEJKXP+ilYzt5wmyTlc0GqpKQoklSVdHEiO1qdXh4GGNct32smhi5a5fWt49OHl2slsyYNc8XdWT48P13ATIQExW4TSKKHJq6ms9m5A0gspgOGrOJaY4I7Xp9enJ8sTwTEeYYQmAKCiKm/s8rrziG6HZu2GTFIyJMgBN2ltjMHKxpyMkapK+fQDh6SnzzAJQaBNveXyPzdFAw/8b34GV6AAAgVGmJ9qoZnJ/mTzzz3EufPLn7zuz3v/leM7+27C5m872uzRwghNCulXnzOpdJaIfs/UWuxoJGRICstkBSxGRao/Rv3333/kcXVTVzScDMKkBUGvYR0VSSweCmjpFhQrKA4F19VWF6Jo59f3FroJf37fTwRzBu+be1BAcmcA1mxSzZkk+IiIY2tLWYvvuWWJpeMr7IyF/GMY/vsj2N5cP4dBc5Y7gCcfee0+eOv47DmM6MDC0Oi61wVbBhBxpihxVOX/Pyr9PBj85YGLbH+A1up5HnLEQkQIYOQmDgtrgqKLKay2BCVctoBBgKYCCQmQwZ6+W2hgwgzlZtMmYi8kanQ+qr50miKCEhBbFAFHgWq4qzcBwSc0o8fkMt4l2bysGhyv16tcz/9Pt37xze3muq/QVquDijLkK81ld9HBuVGwCaCTr0Hmzxi839hw7BMK4yggEwkhKpt6AY3J7gt1GwCbSZom2lKfiDh6kInS33j7708ud+/b3X7r+7engWq49Wr994+Oz1JyQm4/W8qmbVLHdt2/arao0VIyRmRgT0jeNOHkIAEC9cB0Io64CUmxhyhj5rMl6m/uFq/WgtX/rk07du3VmvEJEli6r2Xe7zGP3YomQrHRFGkXzFLrviw1UUuyPRxz0y+WaL1K243xCKE8tVqCukb7nV2HV0q1+ht2pBQlSUKSuXSH02Nm2wvXl4ba+5RrjIkFFK3N/BaKFkWVpU7sl6WkXbY5h/+NGPfvLen/7gtf752/Arv/hzTbPo1qFkmcmabGWeoC46ggHszMMojAEcyBRQOqVeqJa+7bRXEERbzJrz5fn+3q3Z3n67vEjSUm7X52cYIhKtuvaJJ58WkYcPP6qrsF6vq6o0OHKZF5mYmIeU25EJOAdWzX2b+rbLfY+IMUYmUtWkMrImX5rRY+wCiHgD9Y9ACsYcNxbasKGwKGhjiMcrmBkRvXNLWV/YiAxEHBF7EMHL4hA3ffNMN0zYzBiDs3cvjHE7EQAidpH3VnKe0/kiX/+lX7z9zhvLb37z4gsvVRyziGXBquqZQiuVxQTbTPiqQ3HSd36r/GYkRzMjBoMIoCqd2By0ffveB+slxeg57htwYB/oSBw7GuVozQAAWMHMp0mgpSwAGhEwT6dvc1z5SmVddfO48Usd9tiwkDZuGJosatlyhCPuwfSJl5np+OX4uMvj3LnP5DedJnOOcfvtGuirs+Z2HjEdxpXCe2e0uH2MJ+/cuXxp4Hnd0wTvSY+KonsNYZUrBH+SDL6xNkatu+6HRmxqqKaaQRTU0GQyM67Xu+pAONaOl3RoRmB1fxMH5IhMYwUIIhMHCByJiUhQiWDGccaVTcY5nT2AAbNwMwlcV4ummq+X8P955bXfefOt9rSNy66VVc9Cp8uc1pJ774K+41bxRXWk8uJwnySqTJdnYCKMSEDBUz0dfh03orzgtu7c1tPCR1svWBQ7O73x0m+9+OInXoBzOLjG9KN3T++ft6dtXnWWenX8EHec9jn1kj1O72HNsrKjuWCOG8IAZEAKoqoEHOu5QHxwujxerbHBO7ee0JRBLRKmvgfR+d5isPquoNvLR3nHyX7ZclCBXDZ/x3OmfqzL50xpcmoNjyu/LcauGNvOna3kjrn3DgCo+P8kGQeEKOvl0R5eO5gxzgEbsX4cngMzleZvCJb6ql4IiaYQsH/1rR+8/e76rM2//mc+dfvafuohNoucIbfShJjzBV2lJQChAomhFNiDydMUJK8ZcwsVSJc1YSQz1Sx1Xbdtu14v6ybmtF6dPA7Wn12sL9bt0eF1zXJ6fEKIqLa/WHjANcY4q2MdIzMjmVqGjavA49OpT6u2W/XrlUqqIs9ndQxBHRoNYIzdxhhijKMAdilMkwPRmImYd/5xCMRMVG0SaDyJeQjxFpcUDfY0MiA7vMlQOzPlgYMUJ3JhX8QEEwWmIcAMRIZsyDWriBlECsvl/f6FWy999Rfgg4f5xz/5cLF/bblaE0a1BAB1tS+SriCmqwjYzFSmMeDLJKjoJUBsarGG7vjd+49NKyLMWbyk0wxUjchEZMQWhuKoNEQMIdgEiAMmmFljm8KpSMNtV6q5r3z7GO8zPRl2N5WN+NKDh9MvVpHBYiqdVErLo+E/O0/fSJ3xs39P25VLO2x9dzJH89exCMtT9PLm35INVzouJsb06PZX1aHC131tG0fu5Vt93Gj9lYlhmPOt/zKNCfPlQvXWxWhiApPZkGw0i5OnKwGB60DA7I4HE7RgpmqZjNEAyWPVpXQNADZ9LICA1JNPC3pUaQm80UJ8kQCAKATEEEQqqXLYD7HGLmvm4hjfMtYBwBR1wudzzozUS94LizfeP/8dfuUp5K+9+PTerAKRZbdKncEmj4YMyAhJCchRfsLo6inpY1NaGrLWh5lkJCEwQx6Tjw0ZQQwJOaAlBARkMHC4CXBjGj2hlRAxRLDUP5rf+tzzP/OXP3P323dP12e0PNfX794zrpqq8qZvaMBMyDHnnDmLpmyIOuYADlsJAQgNzCnVDIGwbftIEUJ93D5++94H58v1nTt3QPTs8Uld3wSQOvDI2GBigxZhsUl4uOK4LACnpHuleLxy40+IAXDSL2HDcAZdfxBUG5f1lIp0sIDNzCWu31MN0BSwQKWKiGgSEQUOpNCvbl1/Yt4sxMjN5Q33AJmM3MCSwSyEilP9+OydN95767Wf2IufoF/62pdIMSmGhjTnnBJHypYMgtc3WgGz3J2rnSlSVUvLaiad1ZxPesBQV3ltraRmxgm0by8oB5QEJu3FcnnRP3Hnqaaq7t27l/q+jiGnRFxVzMzEHHwGxpCImiCgB5Yct1IkmVkM7E5N1Wxmoua5Lw7PyVvwNZPERpo4nEuXe4bSLASH3eMaYYCBtgwAkK0k9vJgY0FpAwDFEDaz0s4OeEAuGP8E154Zo6qCw4g4eTAjGA5pvEz1sl02izot95Bg+Sh8+Wfnf/jd0z/61rsvf+qZerbPYGoiYiGElN3VtWsQbpOvszgvO9ou+MHNFkIVFswIFrDCSOuz99+/d2KAJfq1VZy6uXxMcxgpw7MBR/SiYUw04h9NSf9yGHh6q/GtpuOkKe708L2WLP08KtFehWxD1jTAmF5bjpLOOiqqk39jqfH0y8uD2Z3nbfEwXYDp+Ze30M7l41TDJUf0ZAk2CvLlW8E2HVx++s707szweOaO2TEyuDH04EdWY2ZA1okM3tQVoaIO+I5mqGoqOlR7m9kQO/AbKhSTbOP6RiwQ+T43YGRAOqSE6GgnRmyquBdDBOnTSq9KzAYA19ank4OIImaRG6H33lv/zpvvvXrehpZ5JefRUtumrtW+s5SK+a6OcJRM1C1jn7ABEQVH8DWiTbleYRZYShJtU2ZG5g0WkZFD2ThU/DRiA+jYEGwW6kz39k2Wd176d1/83NdezB/lPAd+eNp++PDkg8dnj5cXy5wxRKTQ93ly9KJJLItlNfMoXVld9TUgI8zKzWwPY3zv3vvf/8mf3nv84GA+e+H2kwHMUiaVfr0MYCh5uVyGsJUIMm6uHaVnSntTvjF+vvJ8P3jg5dtkvOvb2CFgs62945bDzrabboWdHXFpgxZoCGa2bKDdfGbXDq+FsGdIBtn7M5pmK6kPeURJ4xjW63WAmrR/9Z0fvHNvdfwI/sIvvHDrxm2khnjW55Y5RYTcZSJyz3PpIzQ5dlgoqqEaiKfmrE17jftRFUKkEAmrpp63bQua5hHPTx6cPnpoki9W6yfv3GoC3/vorqa2iQSWDw72Qa2puGJmMgQBEwUxVCBjBDTVnFLX9t1aco8AnoXsSVKOsRoicUADQUYKxDE4KmSo2HGphtXisW8xTfHshsM/TzOuh1/AXUJuvCKVOwAThgjsndYCYiBiQi7VxBgQy8YpJQb+D9k9z0PqbaluAEKketaE3J3U/BTVcrY+3a9v/dmf3fvgMfzgT+8eHV03yGDRzLKseNJcfMpXd9hvcbkjImKY/jAlMcRo2JkFhGDBTo/vPjhZM3kFpKcsYgjVCCYFE8nPpVWwF+0hAo9RYHSDZpN+7GrO+POmv+9GX9k+xks2gkdNhxRHF6WgpgXrZCMm/eQiMwaDEQtkDvFVoutKwYaD0QnbEmv8UIZxpR8aC1D4aAfvTLttq+qjPo4Dpvlw8138+o2RP0QYdtbl0hzuPrGcfHm0AIgoWXZe1vdBUjHdclSYGYZY0lnH+qLBO2mixgZmqGYkZuwYYQru3XJuV1IWAWADjIUFUpuGntMj4x4cYmYAIEhqYGqoIeJhHfdrDgEgwzCQraljilMLmAiqGFKvCfoZ113ff+/9k8OfvEU5P3/7GjVkfSKDHhiMOBpyRAYENGUgATNQRPJKaAcIBUQ0JrLN/Ph7IYCRgg21v/4rEAIYAjKQmRGYGSohoRmKCGJALsqsmQkoVHvztH4U6xde+tJvPXjtzfceHj9AMn50fEFogId1E+omNkhd13HgzDmlRGAEOvhVAVXJY9JmngINCIQhiXa5fXRy75W3Xr13/OjmzRuffOKZpw6OLF9Y6mtmqOJJ21WR0aSqKhgbS01sWaeEcb/j5ISd5ZgQng4NTbaOKxVWp9/xWpwQ9rBlNjM/3SxTeh7+O+wa2Cj0Thi46ZlUPKuxYs5scPbE07fmsyOjhREpdKwgOtQd+Sr5SyGIzhROSG6enr7749fffPOD9PyL8Ve+9DmDyGGRkpmeESpT3fc9BTRTEy1o0jDsJzAgxEsQxP6yIl3fLqu9p/HYMNaS2yrMlWRez9rc5bXUlM7W54h8884zAfX111+tAs3rZjaL+4cHSeT6jT0UBSMBE7GUNauYgoCRZVXNkh21Y5SIKWffnODNwIbeLXVTj6IU0XAIyjiYzsjcRoclDb0Zpr8iesvqrWPjcB7DoEi0Ydc8utOMrGRnDc5HRC/jLgzWoLRzRTRFVAAiLpNpMK/224tznGmPGBapP6m//rnP/uF3//j733v3Z7/wAkVJfYgxiK4Qg9kud4VLTH74BgG2/YpTfs3UGC1N2AQV03r1aN3mqgruYVD1qSQtnQwUcSNRiAgGVNWRiQ87xGMomDcVdVTEDBkiybabZbznVE6Ybb4phUA65IwwYXko2BDeQ9pyak0FWynfMeMhTLizvadSZzq5Y67vzuRuKAYG/LPhVXb0ho87pq+8c8/pco4vMnxz9Upfvu308glLKt977GBHKgNACLxzt53BjD8JDG6GbUIk96Q5PK8NMhjEUyHMRpliiGND+/G2JcvRwC1iRSIDAiEKTKrMCO4xFcLBUq8CLeq41zTzhXanQ07TNsdPKe1uGFTVjJq7HC00JyfdN37w6l7Mi+vzp7rQm6ARQu++sgBsLkwJzIyMgBSACdRl8EYGwO62nHymEWrAAFx3QQMib26ppTehmU4daWXhmthwXqVGMb/w4r/3+Ge/8ebv/p8f5YMM5xfrEG3/oDpZXTQB69miCbVIB5o1k7BlQ1JVMERQ9EGYqWIp2vG2lfXrb/74zbuvnqflnWfvfPrFl55sDppOeBFE22uHBxQOH73+E0ZA0NX5xdYLfiwxDisNplpMGSiomNOtDbgLclASD20iRRFx88CJgB8pfELbJQnrMtGOtxrt760+nghExQk2wnkCABEFY5D21s1rgWYGDXKS1KHFYZ1ks8tQwaBLVNVGOTx48PaH908/uA9/7S/d/tQTz1xoTJm71NaNal5HYAHKWad620YhMAPDEf59tNr9HFXp+nU92we1wFXfWcNVB72KzKoaQI9PHtdVfOqpF5TC3Te//6lPPG1ms6qe7S2SZCCKdQOdq8XQZ123fdunLiUT7fvOJSuMTlBgUzNCZiaDlPusGsqvUIp6y2yXlyEqBe9EBLCV8JxVC9be4G32i+Okv9awWIA46fhOiDCuFyoCGhVHJ4q38sWSa1hojCCYpfI5sIkClEZYZgbAZtblFtr6oHr6LL8H4UkIq/6kv7X/3LPPvvDaa2++9957n/zE3noJTcNAImkXvOEqbl8STv2P3cDe+LmX0woPgC4kV3Ps1qm/eFgDrxFrRM+3hpx7VUUkVbABlkjVvNMWAAQvnnPG58yIPIcGWUsNKyLyBIrILAHgaOHsRGimUqRUBofBBapWoPDJARkMsfgUXG8sDdcYwIwA3TbxGkJvlz5SFQ7+wIk0HRnlOEvDRjAgmm7m4qmFgjwzVgvoRJLiaBBWXA1SUDY1VAhjqaLZxponmmBr+0qOefwCms1EmDdjnjx94wzZYUwjifh/A1eqilo8BDbpNwAT+T0SzCzXPecJsgWcd9j2HVK0fI6QGfayIpIwdiYoXCEIohCTYdZsFCITOc2QuZZq6KlaaogZzACzD8aAFLIamvdBDlFVkc1yb2amSsA9rmeMVd47la6ltqa1tStsZqZKomjF/Tus49aGqeuZmnAVV0KRgc0ihZOV/OPvvtlm+bWvfuYL9fW2Dufa76dQcTinFOuqVgOYAYKCgBghIgdGBEMj18JElcyEQAEBUZXYDEEIjUwdNkHUjAlMUdUIAMm4YhD1UKNpJhPLGahSQqAIHFJ9YomrfI2j9cvHR8984n/29Yt/+eE3Xnl19qSuHyzbWaf4YebFrBYO/TLUe9VizmDaAmKgEEkCMaJEI0pdDwCL2Zw5HB8fv/vuuz957w/7db+Y7X31pS89ceNWQIKcYVZX7fFpxY+o+fzB7a8dPvHPz78LexV+tFfT6alVRKFKq7qOS0iA0PR7EB+g19cWMw4QkXBASx44Mxad1YgYQFV2ZWRVh5xURByBzERUAQzIUTANxkZk/t8x6DtQ74afbMh4/AGR0aD0pApqllIiMTSgiG1GsRqbPvU5QK3yYe5vXODFp56tD/cXuV5A6GMvweYn8jAWfWJE+GFQROBaz95Pq0/3F+989M6/evP8s9fhr3z+812cgUSxs1lUzAF0JtIBKCllTQglE8vdi54VHRGyR19NAEDRywyygi3kmdPzh0e5enDr03j+nVvhc629HulaRzUFjNi98OwLVfOspIvTBz944cmbxVmFhCaRyQy17yyASiSc1XXFobXzk9QuU7fO2XOaptmFAggRyAPVgRyCylWZOAkWqEtVYte3DBmG4HAo2YUAgYvHgnCaCD0aGATkFioBB3BvH3IZEKKnvIkqBY9EOn0xgrhA9SwzUwOEobk4EoMZChgQhshqgoYAnFKahVmG3EEKeo10JeuGK7vXf/QbX9p/9TX43R89fPHlm0EfazfXuFBoXecuhThQ9IIN/wWAAtGFQAogYRQaO4Q+8GVXqbRt277vt+4zBNLJk04H1NORrG0AgoBtAT9sjNL1ekcYjE/fuQQv+V39ELCpJ8asQJ5v6GM08q5604k+VXybowqD28f05Mn87DociHZHOJy/o8HtYltunfwx/R6cb41PZ0QZZo8uWfA74eGpGIZBNk/P9w+lO+lEANuQ0nJ5UcDLbHhLhuWcq6rKyN77djzRBlr0MiRU9fycYWDowmk6H85Sd8ZZhoEFaggHaB5VAUQAcf8+IBJRjLFpmqbJ3VqLV3XirgQA3H6iu3PMrAZgM1Bx+JXjM/jBG/c0Q/z8J2/RjWY+gyCdtqElomodw0xUEcm0JDGBAvCQNIZgDKzo/l0vtULYzXVHBhADNLTiAAWvsnDvjCGAAoYyY2IWEGCxupbrvq/ux3oBcHSxv//i8/3/5md+/L8/Xh4/gCcyv/f6w/0v7LUPHj46qprFbL8KD0/P9verawcHmRBEIVifcsU1I9Z780B6fvr4vbtvv3/33cePHyPrk3eeevbp524eXq9jZEM0BbVVOJzR2Xz9UX/4pD7xCy+sH927+NM3w7qFECFVUTNS1qaChAwdtx8X4tnW/7ZK8obG4btbrOiD6leV5RssabDtePDHxf6nlopNnlKiZq66+4MQ0CCrxRghGwA0TWMIYhEpVProxuGtpt5HCtl6ASEAAkZVcNyYrRROXery9uLFu3e//ZN3H/RL/cKXbj/z3IspKyCgCSAaiA1Qz55+pQVjY7BzwZcfjHCkoOFXAowC66qR1eru4f61+w/mAc6tCi3UR1XX95KaTx1d2+uPf3By/H5z9DysT4aFKBNTnHeETAGMVFPfdyl3OXurpF2uONk4VyfG2hBdnUYUeDQUNpFXPxQRHdh5EN6jxl/EMrimVAZwhcXpv5Q9NCx3WQgrnksbxKINU+ryDrYZsl06VFXADg7nd26Gu2+fP3rU3t6b9b32fb+Y1TlnMNqQ7jiqbfIzKPVcH5sF7XLXI0Qi0rZtSol56k/YEreEW5rmuCrTfVcY+nZs8rJQH5d2etpl1l/WG8FgzIqCEXe6nG9b508fAds8/fJTdrb99MMO8V2mvMuTacOZZgZGI9VNIaOnD718Q/+TxvTa7ROYeQTU3Pnvzmxv6P7Sem0u3NZ1Lk/+eAjsakVnFxfMXCAbISsojK2BnKGgYhZF4sCABmoKOg2a06Yx9EBUw39hmPzxZNzgs4vIFvN1D1gVQ1OFk1UC8424bfWSVwSWI5uSP8UIQdAkAAeu29y9da89Pf+QFvDLCp+9c0uj9HU9D4tolFrUIGwAAcx7fysCw5DYWTBjjdFUUcE22urYvpAGfxshApSJMSw+cy5OvtHDaoamCBJ0BpAy92y1QDxtZtefee4/+9lf+5N7f+//+i06XVYH0N29//rNa5+6HtODvfnq9Hwxiw3Es14CYhMoVk3dMGl1dnr86NG9xw8++Oijt5fnjw8WzTPP3Xzi9os3jm7M53NIoiLExMg5J60rxkZOPjqd3YtHn3juyS9enL/z+snqtQekKWPMQsEyzjIx61lcs+5S0fDiH8sKYEPnm6sQ0RHSAAwAiQZBOTFn/T5XZmlMaX7Cfzc7Wg0KAfhVg2e7FZsxEGTL0FQxpZQ19pLvVOdP3fhiVR92wEkTQg9asQazTgeIUWB0Sa4qPcNtufaTez/+09cf7xF8/ec/uzi8+Wi9rFjLmM3jAKXh3yAXDItb1b3PpZocmdBYNaEigDJihgBxHRjb9Xt3Dr80339O0gnGa4dcX7Th+s3nqtB89OGfKh4f3brdny0NebrroSB1u7gC1b5dr1fL827dZTHVgBOdelwpK6baZFcRjuXXiLgdz0Vid1OWBoI2QL0iYqnaLjHgSardRFoTEGwX0Qx7nidCd4snb3i+6siFtwjPRmGPODiziWgMbeAE/EBUgODzn7v93r/84E9/+OFTv/R82wuxSkbf9v4E3GgDVwgv/7AlgLeEyqAguKrojZpjjFP2N0y9mJXm0jtP+inyzFG5B960udvOhtm522WZ5C3NCvu6/OiPl/EAMI3R7nzY2ag7u/envNrWsCcpP4P+5AnoE0vaIecRpjHCnWftzoMBDmHSoQHe9NGbF1FVhxcu15WmEICEhDQK7PE1bXAA0OD7H6dKFQbzezJ2KOm4Uzvj5OQkiyCyAannSGwpkgIC3j7UG1qZeeOBzQQa2PabDbQxnEBEKqWxHUyx1dA4EGUAQq/+IARCY1P0XCnYpSozge2ZVwQAUgIEIMkGUGENcZ4tH7f6T3/87pHuPREWhxwT5xzpQOqmj4ai3lAogBl6rBtQCSfAl0YemUIkzNmRUB07AcAUgJDHMwHMkVvNoCjUhIgByIa9qWS4nJ3OaFFL3eiMoHsQl92s2n/6i//lX3xD6/v/t99tF9jqh3Bv7639i88qnV2vmqT24OS8aZpnn35uedq//s57SHp6fLY6v5Dczmq6efvpz372s0d7871FPeNDBCYgrpARAFVSb4QNrpLun/XL8PjVwwrD0SfuPP0LP3/8P3x/Ye8/hHUHGIVhDRbMFCzDJfKGSzxhZHaXztzlKmVzI2JJ4qMxyW3CmsAMiD6WAw47vTRxmN55V2wjmDjen4iCahZLhLOuv3jmDty6dtNs5htbLJkoSdCCs1fM1uL7AeRq/+L+u+89ePTeR/qVzxx89pOfvFglrqNlcTaBbvL6CAej0QhdIXECJiIxGSz1YVqAAYCZY9Os12rpYnl6cnh459HZA+uvVZpvP/m5dXtxev8PmjolvLVa0lGVz/sWEZ2NDoKHETGbAljKXdev+rQ2M+YAxqLrnTkc+PZgiQ15kZ6fpSAFeKqkLg8yuOCcs19QxC2XtAnPySIide89AIIaDt0kBrN2XCCXvpv1GtKDxj+3yOlKp2NZewTzlE4EUA9Re7qPS9/x7dbr5Sefv3FncfGjP334q7/0KYU1A/aiFW/TNipcaf4Oo9oSwDvyz7Z/2npb3PrJzDYIMhNRSkSeYvrTN9VPEds7A7j8GakAyDqGrY0JLZeOqSgdXnBiUV3a/KO8v1InuCwdr7wWhlktIsqm5ROONltkImy+BRjaRUzvvDOM0q928KjuaAzjQQPy+7g60w9XzRMMlDjc89JbjxeaWWCUQRD6cXGxSmqAwQ1NMzPv6jMIUTQAF7omqAQcLk1m2Yc+mq3lHlxSV4x5svcQ0QgJiBkDApWYIqCBgk0JxNzvND548OQLMbOJJRPB3AVig4wAj+/aH4SP5rP6q/HWjbDXyrmR3IhHKqzgfVsRSUyRiA2wlIHaJIXN859tt2YfEd3k9WHBVOeAYa0ZCYAmc5C5o7xntpcDzWl9iNJyXB5d/8LiN/8r/e8+uPjhP/r92TOwfniasbn32fPn1wt9fPzw7Ozk2rVrivPz8/OT43sHh7OaKc5mt4+ePFgsjvZm1/ZmNUETIxZFmWKIgCapB8JY1ZpOAuxl3m/T/frkB3bra4vrX3l575Wfefaj5eP0aDlrtK1D6oEBZjFfjE6Qj1Mr4dIOmqpf4/eq2QwM1EWGT1I2BXHKLDHgjZD+mMeVswEQYZI6C2qEUNDBpiowR1bNdQA16HIC1opn0c5eePL2rD5aCwClQJbNeumieJ2HgSkQUqE6BIAmLO7f/6NX3jrLGf7MV57a37v5eAXVQaNpWXpsb+vEqB5TMwCwTbxm8xaIiMhKSK7/gYoCwvUZp3Z5fnDz+nx/VnXPSGjP7/8k63GugmhzIEhAx60EGmbbC958HhADkHppE2gIhIjWk0qxl3Z0GkQEEIAhfEs4lgmNyVaDlly2J3N0oV38zKPJPIR+HQrDjSsAMGNEBPJxXqIZIxhanruKviMEJvrW4E4bNC1/YS+1R0LA4tQrQn2or4FJyRwZpLw6OJw/dWv/R2+fffSgPVpQTjlUjVkeBzZly5MR64TfaJiS+FRsIJWcclUl8CRyFBGX2TgoO2bmacw6Yc2XOObWRPiHnZjl+G47jqPJOdPy2enODOVVfb8YKJYUSnDD2HZ8ES6QcHA8la9d38GJIVh0CNi0WPDr/f9iV7SgAnCfE46LPrwLeg8fwPFWtLsw5dvdibp8jGoEedmWMw6YcGss/c8RSv7GzlqYN/HGQtxFR0PPVhsk2YCgZ6VN79YYJiJcdbtGoEu9mQEFcCPYMe5B2NtCmCEV8DzVoXXxSJRGNsUVHTsElw3h1OVvyeANL9ATdRQdk1nTaM0wcROrpo7zOuCaPD1jZzJ3XGpOhgBgCkoIkUwETUGUURHhNuz96P1H59wa65+vF3MLXejPm7axGgSJkFRcJQFQZMLMWpQOKMlfo42FSjIgZLpIAfERmom37HTuAuCVwEDEiGVvOr9ayB4aaEznVQBoaptZstPYEdz6xItf/d/+8gf333/8rXfh+v24F+7DM08k4aSyf3Rtvnd0drFGoNtP3Glqaip+9OjRg4cP23W/vzjc278TNAeA2LQAICJt6tGUGQmDmQjNFnndY32SKR/fvx7vzvdfeOLpX/yZ/nfevb4+bxESYABlBaTo/O1j4hoTstxeiKJk7h6eoW2DQmsAlj1lYes02+ZIH8eIdliNJ61MWZMfBKgiQKgakhqSUs43D+XZJ59TnGcAtnVUSIJqWQXAvJWkp1OrIoAFRAiS752+88q77XO345c/80ybqK5j1+XK/VVDhSRMDBsz9K1qZqYF937K04CQSn90iMjrfl2H6xWrpPX9h+9UsVvk9Wr1IOuDQLaAJ9HqJBemZwQZIBS5OanqMTMw8QqXgCTM3oMtZyUeHYQjE3Duh9NjnFJj9FJ4/wdISGSgU8N3hH4bD0Om4fvCFFGniO7eiAwGJWwid4rediX//DimipNM8tFp6vlcMBFPY/Y7IvZZ96F+5qnwvbfhuz/88C/9hU+uTjrRMTMdJ1iHV5hqZuKTd3Ud8IS9es9Lruu6qqrVaoteRxInoklYC6YnEIYtap7oHZcHN/45lZpXvsDmHAdNMcBSXF8qfGGCiz3evfA6Pws3/sipEjDdmVP9ZWcD47ZlNg71p+/zy9J3eslUFowKynS6AADEJjAUm9vuDHu8jw6QLtMzL6tBm2uH3JYr1MztYxD8AAAxbvLYc84ettzJj3BqJjVD8zgJqikqi0IogSgwQwXzNNShEmpcLJyoU84yHBTQRl80AykREHDJcOSAdeQqOLyOONLy1rEDjFUUGKxQmFCNhANqQDODhGChDtLB2x8ufy++fciLLz//VLUI7ayPHBHRJLkzFFXFlI3FmUhxhIJCaTdEaGZoQyLewGXZIGFhuz4gb0QryGrGXvlCzMSIxEhU8azjniqr2DqjmMMMUhdEK1jf/sLX+Nb/Dv5P/4e/v7j3+kf5A/jg6LWnbr10sNfUs0VdN4RhVnPfn9378O7Z6aOmmd++/QQypNSqJbOcQXPuiIiAOIbIHBn7vu3aFGDPuNW0FOClHlYPH0ao8NYTL58+8+qd+w8vVu8/DmSZzcA6DQTbLUMmtDolsK39OH4/TWz0bkiuHyq4SgtIgWCE3Cl3GO4MV95TdStmudm/gWEgfrKSmQGIKApqIpY1AjFSyuuLF+7sHxw+uc5BI3C3AqlMwECyJBtYsSKYqQIhAwL3J++88cGjByv7a7/6xNPXnroQaSLnDNVm2KOEMzMb49uTTQToiHhQeBoRWanHtIYWPZ4bLjXNTNLDB3dZ110+5v15deMmU11d9KD5jJJa3sO+tRJVJCIcuoyboWmWbCllb78kktQECUKINoSoJw25S+Pe6T8HqkJGB9IYnbeIiMijk5loFLSAxYMx0Qb8ewDEgJuEatr4DCd1a1Pf2FR2bshiQgDuoJ5oeAVvYEIPRQCj48wPCarqDZiNZRWefZZnEX786qO/+MvPxTBb5RTDmFo7ZchX9BTxD0UAT3MCC4Ga0rA9mIsARhxSyIpy5upASR6eoLuVc1TVkbN2uDxMUiRGsef6xQgmsiPeJibotiA0A1+A0clpAGDABa5hctWuvBxN25HcYbIHymdnl9viEGAoKJsclxWFj/vGJtazTbzPU6Vkqg3svPKGL7hlNWnU6LfcDHIQtzu6yPQRU5GMiFrGtqWNXWad0wMRQ+DR5ePNWwhorPYZeGFR0Xi4k6oimpGBWXkpnGRsTadl0JamLHuibA7fEIWAWVhxgv836LZe9I207bogm1YljZQ2J1SEDoCoQogmaoCKeg9ODmuqAd66e/LP6CdVjJ958uZBpbZv3vpRNROxqe8oFEtEgVEc9IYcLX97RXyfixmIFVHl2QOmhmY5qWrw9DE1dxMyBWREwBxsBXiD6pnVp5YNNRrNw6xVbOzg7I7+5Z/9L/bT//P/+A/qt96X1Kbzs+O6aVar8y5pxRWSSH9u0N6+c+vGjRsH+0f37t1774PV0UG4cTBrQkAmj5sQkqq1bfJN2nR5XR+p3lsYK986Of//UfZf3bIlSZoY9pm5770j4qirb2be1JmVWVp0dqkW0zUtSGJmOARJYGYwfCEeQIIEH7gWFx/5zD9ALj7wYR5IYIHE4hoCCwSGHLAbo6tFaZla3rz63KMiYgs3Mz64+94ecc7Nau6VdStOxBa+zc1NudlnJ6Lv1beeuXXpxddv/uLdo/DJWdOi2QlLom7pabZpa5436SjFpYrg1hQu2jZqI2ieGJhTRZ/kEDRi2HID3/uiUBNPzDOJDiIQGSHh1TNlMQ3EWLIpqKqaip1p1z57/Wlf7a4Gqmem1krHwaBOJayZZjGCaAl60WDGTCeP3n/7w2PzzTe+8tRufWWpHEJfVbvo27QMzayAvI6tcW1a0clALGMD0cQTKGDDWt2+9OGocfOdenb58qVwao3ccwffrNY1Ga2pG3BchwCrjkPVVPEOKanYRu+WTURkCCFoLLVwjqvKOVdFX1hEojDL6nYDy2xUrubi5ylRI52JjLbhuOSKlCBJCRE9rnoluDE0vWnW4wlyyYrimHGibYzvAVF1FPzAGqvkyAFhlC42FvtsOldNM18e91ee5ctX6kcP7O6Du9d3rnHlCdtKhIqIbD6maG72gM85c85Mm95CU1uFgbg+QGMwkyFATUUld2sREXKsknC6VTUvhrRhMEEVOp5qbygQURHvyXOWxWXZdiMScHyl8SYa4zORIwlwjOKcUt+YWRKzg0zaq1jwnOsFKRYST7Dy8dljyXJCbJFi0ZZqQOPEqpmZA2nemSg1fakjmSJiixLFEE2qy/I29TbXYlJFbOTj5H+mbpupiBnGmBJBx+zovJFjZiajGpv4L5t7lUuxDLCDwRQIZkbwGxwyquS62uv6U66mX0/uH6JyjrVdesdz2MCOCE2/HhaNCsUZV7LA8GbBBGxivoqmiBFiDU+Ej5aQszTZCGwaYA5ExH1MMjVUYBCT6Vpk6IOZeWGQFzd0PSq3O7/hHr3NGALYz0wUYZiSH8LGeh7tv+CcDAHmnVO43pyaCMQ88zAQtB4QfvL+Q3I/t+pzX6LLOltW9aXGDsLgvChXolT1QCUBpqysNABs5ECOHRPHxnYU0xfZHCEYySCurqtWV23bNRU7hrIyqXeoqqqqKuer2OuNvCMiJdqxWa82UMfkhgoBDoqrioc09HR5/vTeH3zvv3/l4P/7f/mzd//LH9tJ/2Aeuh1XaQ26dGVhzVNPP7O4dvWFvYP9vavr1fG7D/7NUX/28vX967PPVa4JMsSaqkhr9p7VsWEpRwin7Jo2DNrdJ+iqa+T2o/vXXvrta5//5P5Pbp8s7z6Y8fwAeqxqGltrxK2BEbUKEGhmyyl3gYhVJeVL2HYpkYjFKv+KfDCYSuQXjfZ2RoQwM9MIpzF1i5nkaYxrFvIhug+OFIDELc2keJxzTrmfrS89nh1dXXayPluG/cuX7MvXv3iM64tq0OUy9E6prYEwoFcaWI10R7iH7NKs9fTA6efX/p277/3kjn3hRfv6i18+bBtd+Fqp6k8FIYE+qkY1SKZkGnI/mzxyMrPYDRmlAUfmiMzAfi0ns93Ls9Plw3/13/74qas3nr627/c/R9DAK5XehsFZJeRAmFdu8FSxSw3K1ZghxoCt1zSEABoc9UO3oqCzejFf7IhICDF0k/G0mbf9NyJidr6Oasuxw5QmmTOcbfSVp0MBOJf2vCJOAycwamdsWQUoJuctqQlC2ny1RC5X8EzmLgAMCfEHg5FxDjOpITCzKUQHB6cg1UCAkoqKqAQJBiE2MmOzNXcVsZ7xraeauw9O332Pn/nu1W74RGQRIRy8945Sh8CSPog+R95H+KwypLgSABgkdrGQENCkn0encDIk879RGSUDp3RTtsKzSqBJM209nQv1uTW28ptS/1l2ylFox+0LU6e1iafLG1KO9ihhbFlfvp1NXvL005MICIMD5aLkSZ9v3dYKR5xGmB7diGmPVzk3WZpbhCkHkz9vxGTya3JELtugZP5/ZtbRxSyGqpve+fR9zgwc7zDI0PZrRxxzOEXEFFXlYgr9KGTZQJE7Eu5BLBTOxTgXvQhtVB85IpUiLsLM4KqqjEVEjDwqVGra+Kr2vmIV3nCmzxNt60j5JrFBfcK6Ux/gyHk4771W+PjB8Y/e+aSm5ouulr2z/oAa38yFSVlAMvM+QDUo+TSzBMQOpDnDNU1/stngnIv2lmcQIKEXGYi4amZV1VS+Zo5toByBkimdE1tSNA8MQHTYmzVn5o6X9eXZt7/4zef//s6fPv3UP/tP/7TrgLrGpVl15dK82Xnm1qXrzy1u6+7Nxayp/O7TT9/s1vOqqpTEWGKjuDgvkQMiGzjnTclC4gcjUg3DwLvtsr/2uS89e+dXh3ceHKFdH9PcLZzokFXImNSd2XKL7JnxJm+sPFKdet5UjvuUyXzPscZ4lapGBTwarKN8UFUqylSSKbwZ0xp/TQax486fzoJfY9hT33XLr3zl+Wb/SguIDCqDiqioqWgYVAbHdRATEHElYFVtyK9Xx7/66ES71W9/6auEWhkWJAh7VhWYxU3/hAiW/twEiimHN7o3IyWJSHZcdbJz3Lp7s2e++w//zg/+8//jS/OOdm6ZtSMqSCY9K4+N6RxS9bqJWTANYai8H/r25OQEwMH+Za7qtuujB1I59sxh2hNNYWSeioh8JruznFgV+TN9H2e5UMp5Fv2kVgqkBM1cY5vbY1m0luxkACHZc4IN0ZeygkpKjrNcflN+OY0wb+epqpjVLIbq2pV96OmdTw+BiL2V5UbBXVs3L5/+RAWMKYxuZtH6bkI4M0sLcry1FZIaWTWP48aEATttzwARTboc0KRuiZLjmL6h6eeRNHSOjiUpS01WHkkCjn9mWZBeYjtMAAYF02gKxOzKhOuVcxrPkzW9KoF0Uv+ZLS4YLbDhHJfJ5P9/HbQ9C1FDT5qy5MIxjFMq4MLCiFfFVKmcFELTfVDoraADE5VZvoP06365v7jkvXfi1FjFYETMqmYkAFNRHJxgJ9ITXY5Ca1lmgMIY2g6M5OXB5s0ZSVpylIVUDCsys9lgqlC9SMFvHyaaVp2EzOMEgNXPqhqiRuT8/NHxyQ/euqt8cGDzA6ODmQJ1jzmqPQJT3ys8EQmE2Tgmd4OjtweKeNEc9zTJWE3ECBJUlZnMJGbBzBezqllUVeV9TXDg2AKbRguTxoM5SrW18w25XUjnpK+vzHc+/8ZX5HM3mpf2/uv/5P8z/7Dr9q+ttD3Zn7965dpOjxd3Ku8Ys93dV15+XcLZtcvXvffEIOJp/immcBoRsavEyFhJHZyHDmKqfdsfPeyuXnvu6Vd/6+PH91t59xEbZk2/TDVrxboZTbH85zQdUQGXy32al+QIJqC0ghs3ZFx2d6FmyOiGSJFGtQgKg40nJtlasPe4aqLC7pzuh8XRLDRDNaf1t15+DvNLMcAXQjAViMjQmwwEZVNTU1/DV4OQWdh19vDo0x++f3Zpgd//2pcHbaRiQzAxoTBq32hCbL1OlpXTazI5jWBwvKEwBt+oPP7k7t7r//A/euWV5+//8p/OZkctuzqoidooEYyjQEsq0wByEaZGVYIEx1gul+vlCTM3TUM+QS6TwRGzZyKqLG+LAkGFyFNsBDDt9RJlj4EjHHQOOPME25wSnrlYznmlT6ELyvvEGMugC0UQu60lXoquCzkjgURrRrN42Vzj27uc2yJ9VPZUHIltlMz1YfA3rlyq+fant0+6rnNWaWI244mft/t+jDdR1Se3IzSIiCc2MwLFno6xrjR2fiIio8lRy152oQPgYBtcbufMjeK1U2BAC/hJbLDcBbSjTS+QCgcLtiGotx43DSPP5XatVhwTwTJgd7kmKQfTzhsBZZFvesoTBh//3WqggQwBT7mANv80/mflydgUFunUDQ81UE7kKEdbSDqgmLaU+zeNKFuUuOBlAagFAkRs3Jrpg66GznHF7BHYucosCIyBQcW7Cln7mpmlKhdjZc1GGpcDuoh0AIhcuZ40rVxn1k92mKqqMVHl2TswmZgY0fm2bltkAWBqMd8nUCq8JmY1I0++dmEIJgPTzPnZo1X4yft3iei7fO364lIjw9Khd7Md5Vk/DDMiZSUzcQByO0k18zAbjQwzBpSNJTp5ECZSCWZSzef7eweoZ8575ioyYlzYcaREtGG1kAHUzZV6twOuZ6u13nt8trPArf1n/9a//d/50qWb/+j/9k+6X37czG4cYv5Xjz99o372pQNaWxD21dVL17y7tjs7gLJhIKQ6PxCgogAxqRqh4sgUbBA1iOpgpkdnj3YWFZrXv/rUnTvy9ntDZUedG/fZn6B9xy+p1IvTKVsRi2QMUMajtaJoLynydPLGnafFey6wdJ7HSqFhZn0w9nAeVGMZ6PPX+KVnXmnNwyQMrQxr0kGHELperXeOLQgRG9cG3+nQeNeIvn33g48P8Tuv7T9/9fLRytnMKiNHPFhw8OMIS/pQ6kkRN6a3409EZJq2HeOX7GbH3b03f7nc+fXZT/7y/3zFg+1a0NNKgkEpmyxKIDCYGMRwBiawEtQs2hE09Ouz0yEM+/v7s9ms7YNIqOs6a6UI14y8M0gypDIEImI35VjFAon4OfbwTSoz9j2lqfKYtlCeIjp58aYjt0dxbaQAQcfoYjS4JikK49iGgUBjz9FJ9hbBsyeKm2IiRq6Imq4ymJ11a7+3W13exeMTPHx0cvNq3evaOXJgTdi9xrEV4hPu/FkecJpRxpRlWjRvKEc2DguZ100JNK2oC3VVef55WsRkM8qxRzzB8R1NLWBDOdm5hZQvINPN6ga1J5H/vOVy4Tfbr6mTBUBEnIp9p6hAeZ9Rj+Y5ziR9wpAuFBlb7z6+3egejT+NhCqRrokIeWXGkv98sSVMjCfEbfK7aISGicdq3T48PHnlEpnZEIaKFRH3OMN75P11A4TUpaw5i/UVAucNQuqIRhiPPPj8wVK/ZyUiydFIU0rpQkzOOTIEUbJQMS3qqq4Cdwlhk7eNngvIG1FqEdNu2TynLJWepaMhZv5Q0JmrevPHx+t/9vYHhNVBNbx84wrNxNDJjOAMkjolOoKacYB6l0IAYECJPQG5LM6cc1BHcCSDqBK5+Xyn2dkVqlIqaZqpOOy4F+gmzknTanN0xE1nlZmB0TSVqq3Qtdde+Rvf/d9d3fk//T/+X2/99P3ZHT6q3J9fs5Pw0rO1m5uAqYaZBE9EUGGmnIQAGjNFmSSA2DFgJoEdOGmCtZ3trE94/vytZ774he7t7x8NHx+53ao+k4RnvkXxLX62c47Ikw4zy1Hn7bCkZXk8SpOR4dPkFuHELUV7oZAyMyHs4/LaHaFHmPXfe/Xpxd4LK3M2rMOwlqEn6WUIIfSAEmEInat3LG3ZmveVLU/fvfuJKH/7a59DEOEKJg6eHMgcRkg/o5jhbYoxRZOULG80aBaKIzw7ABjHLBBZne7uX//aa0+//0//r6vww5dev8p+gfVDcAOzMR2XyIFTIhSYEJuD2thcx85Ojryjutlh5kEkrgURiQ4DUcpVHMs1a6qTliVHHNvae2Y2SieQ4whajMhPnMxsIofU49YRyCBJfeSZinOYmlPlrqN5H8d0TDA2phRgMwARnT5GByYmMUNh4mQrjcbA5WcwW6mDiYiJhBBMZ+auXXaPTuT9Dx8+/+yrQ7citej/mklsG0/l3hnGNLrYmyYP4tyRJE7UcP3Q9X3vfcaORi5RNAMgsNj3N/0H1phRkF6Ty/8sNVp0+ZvpmPQBYJurVUFGbMRgN34Au62uvam2tdjOKak2PsVoW/K6c0ZQnLoxmatUXeVSvUD3W2qdHYujxpuPb8fFUU58aUmUU15eWzbF3Hr0+HnjcjWOtQAgjgaZMdkWQj2df3RxN9n6D9Dxv1hmVubZn6y6d977uJfg6xmzN50Mlyj44mEaclVuNOBlJF0x+O30/c2pZCtgV+KaHeNduf+0Ok9N5StmN5UM/oYUWWRbajRTYjteY3KVG0zMs29mKqJDqAiOsVoOP3jv03/yy/d/cefYOrcbCH17ihBCLyKxP6aGQXQQGUyCqcTGYha7VqsZxEwtiEkgNROF8Wy+s9i91Mz2qnrmq8ZxxRxLu8VMMrBt7LWm5UQsTq/w4JYsp7UL1cLXjn2rfOLElm71lS/+h/+Lf+93vv16uzycf/T47O6Dn9799N2z00cmQ+1qpqoPqb9JynPM29ZGE+QgJyQjz1Sxa5i9EYOH05Xo6X1/5YXPPfeFP7iB3Zkf2n6DzzenclsFnhN25bycPwe51m6LhwGYTYjo5T3jT1HZ5IoaHYs4tm6OpOzhpVkH61s8fzl865UXV3wJxhRaSGdDO/StDJ2IRL0fo9ZmQqoCZebj+0fv3bv/9IH/wkvPLzug9hDFIEIdm4vCwiJYK9SSwMtEH0eS0RmzippEaHz9Ga8XOy/cuuGOfvaPvtD0O+zOuju7bh57ElNxJrGLU2bkjF0M6afGw0OvYagq1zQNgGEYzMyNOFSUBVwyGYm8q+uqqrKNuCXTXOH7ElkRoAa7tGIRJTkRXGoAnquEo8QrlUJk9SxIQkry1WnKzCIidzRyJ3WGz9SyT+Ku8vsplU9CZC4HunSwa8A7Hx7Blf1vEvrQ1iO2NNFnhKAtZusAMNPlcrlcLrdUYxRnsuUa2rQFbWabzuYT5V28BJSaNxjlvFykDEw8YXN0U1VMa+xJFByHGuuWysXPmMp7AIy4/dP5SHbqkyMWxetMherxyo0xj4dzDlkxUN6i/gwq/YaHbsbkzWJ/+0lVb83LRLHCktig0qadsfUsAESeWYimLrDrVn711oeHXzu8uj/z3oehc0RMToxgCmdmxipKRFCQOiK4VJIEc2Zi5og1OXZFpCiTiCinBI20jj9pzMcUqOoYr3PELmaAQ1KS+5Onzwq5Pwrlkr2dgMkR+6iIVIf42MtYHB+d/eU7jwRNL/7Vm5d39ufONUrOe4VzHNeaKZMn9qpsBMr1ezCDiIiEoTMJZKoK56qdxX4z3w1wCTXaEpgtoqF77kVGKoUwD+7EUV/TDCJdf8Yaar9XS7tmOq3u3Lz19/7B37k6+xf/+b/52ez+XO2TN4eevPeXrx1UVaUwIBgGwhwGkMEYpEQprsWcGnUA7FwFQlBRVXLzZdfW9pG3V27e/PbvHoUPH73/owFxw0DHxh55rIXQPCcoctraFkvHDB4tiqXPM2emxlTpUGpf5JSr86IWiI/bDvaamWjLBJvhj7+4eP7pZw8DnAaENUIfhnbo1mEwgF1VsXkikEof1gue9zAo3b/94JOj8M2Xn9rf2T2TuTprOiHzAw8+VEZhsgOKek4yaKIGlbrW0v6FFOMkAKIwka776NWX7JVnrg4W2u543lzJoXmLKQIp35FILEJ/OSMLEiSEoe+lH+ZNDZBJSHrazMwq9sKaG99ZRKqi2C0kYRtQjGRNNi4TFxrXRg0Ud6CJiVwMdNEF6WaEnGVmY/QuYnVmEiXbq8zm0ZjAlqzSJFGZAE8AJGBTX4wMMKnYvPDN4qMuANUiM0Oj1DnMdnfm6o5v31+drpazqlJVMymSiDe8iFHM4jcqYDPTaJOLrtfr9XpttlNqEiIS5BzJSQGXIWVn+htiSpOWSst740uzC4D4sakYqFjJ47PKadtSz1uvSXE1W/JZYx1hlNJb0zOOijNi1wWvs2lxjGYXFVEOM4vFsqrqfW2FqqZzWGDldFgRSbMpDnmOnhNkXQy5Gm1GGkbFVijgyVYoo/qxeJdowxctDQsF3Gb+qArf+fTR7U8+Xbz0dGUmYi7bvyrwLhEkzml6nZgtGbNbU2Gw4Vybh5GeRJsJOERgImUiZecoTw0ROeeYB0/wjlIp4eZozz/CkrPuRu2brFoCgVwb/Gw+AO3QN1zVtRukC9ov1Nc2Xy/DT969u25PjtpnvvrC88+4a21tTGTMigAA6pBkh8DYWDV2KUhCJbBBDVAjNa6crxtQtWqHymlMgTERmMY4xmhujbZJLAkh4uO9ew2HXZnzeg5AfDewH7rZY5odNCdh1Zy59rnX//h/PPM1/rO/+gVW+zg+ultXO1yHvb094gXXnijL9zLAGzfFHacAhsXEVidxofFuY8uVp2b1YO/gyzcPXvvdm2+/w5fXH53GmZVx0W0q4K1ZVk3ZmykAOc1ORC1ktdSsME6pqowbv5F3s6S4ePekqqpxGSbdVL6jIVsa6XKnCLxaMPTK/HtfuF4fXG9X7UwGG/owrIduvV6vw2COm4ocuVDXNUw0gJuaHUTk6OHJcYuvvnyNja3a6a1dGDxXKwwaanOFI74pATYQIuIS24wiZAEScz0WXJ1x3b3+9a+s+7OhrS/tXeu7ZU4RKI0fB6KI6MecNqGiByxDqJ0zYo2t/dh7780shB6VQ171UYeCozk2bvKzgaPHyeQ0B/yIUj0I5TTdkQcwTpex2TCu61JBOjchJ06S0GL/NCHkYkUYTMyMY/6z5khB4VVn1TDxwygGSwMoHiP4xhaL+orbnofQMi7VdU0Vzlo7Oj2+tX/JIkTJlKNuXKyfkucnBXyeR2do1iwU2Op507557/7R4+XOrmsHcWZmUCA3eEJ88aIULAoukJlSNX3PQNanZptdwyKNVK2KME+W29BGpFZmmxpamWZ8RADMLMkniIEfNbM45XF1IQviUcW6iC8Z2R1mMDCIxxMoBkQjqxM4oVxSgkQRs6DqN0vfxvlLjjsTcazBj7VtjnLFTFrPzsXdFAsDJl5UimVzgIJDCKmGjJIQojLsTDQmEkcXZRqPpRo6AES1xfYdANglW4bA5Cz9YURqY+CIgFiPn1x9Fx/gXFZIKlEJRjYl1ynAXE+s2TRHy/6f/uqvvvjc3/IsqwaNCAWzObEPQlUMcBDAlHKSKHVvJqNg5MwGMxcXKZtDMhcUpEYmZEqS8escoaLIa6SOdDA45yoXRIJ6A3MV6sVidw+ffCoIOp+ReGvPoX2MrB8x8VPAJbLN2DiEiNSzWHBEM09mfVBjdqy8GpbVztyMHi/l5+8tT44+Pj7t3/hieLqa+2tXWm2d9zPfSNuTzAAfd1RApBCYsoqF3sKQ2E7B8DU3oe07fuwrB5gOxjGdG6nA1VUVTBD9jhjnUMCIHBY6M7EOoOosymgzmFvt2hB6NPOr2g+DtM++9Ma/9Ye03/y//+z769rf0+Gwst9bPH/APqgbZrUzVYWQkaNYpe4AGJiop9y43pSGYMq1q9mfajsb5vYAy+ZsdnL5hZe/KF/+W6c//0cLvvawPjtouwGXdLe1sxo7K7eMfcFLbxPJrYkudoxKTfJrNqu6bhgCx9VuCoGJwFe5ZCVDqMa7ji30otBJk6jatYP3Hsamxswxw3QYBnYRqptzNMyIDGatw5yqR13/9Vvdd7/wpZOj5xe7Il2roV2edSG4fqjWXRv6k+v11b4dFkxL7xfzy6fLle7N5o+P//XxL5/aw/MvfOGkr+r5mRPqmQPO6sEpnyafChuq18xC3F/g6LMmNcAW68izME3GdAQpFQRb1JdlCHCDwzCsWyNiOAULNCYzwAwSPFfkKkcMWJDQt+thvSKEpuY+OpDEjoigJgMAxxaozmmypDHlAowpqBGNfYq+rrH6UTJYdHdzOTiqogrPso0nxlT6KqkulFJP9zghyCJdjV3QTDfN0ssxk4Q+cxOSfIjOLRml7ExF3rFSjZFCAApRlcHMSI1NPVcRckRFTGNtNqmgxbK2azO+smrX+5eqPYbCPj2Ul2+iPVw3vNAArsEV9ethVjejCVX6V0/Mgo48Ou7GSd/dfXg4DAPi/nLhEU7aE2lO8ucYJaQy9wGboeCth446DFMTeIvMV56A5GVmlzfvYyerN8etRmsrXrhVLTe+ZkoIopIuyb6MZhY275O5fQPJC+fsmnHs8XGlATVp0OJPyvs6NiIl5uzBbCFuUGlrsqYJ+Mxja4R/nTPPg4UZTcorriUzK0VkrDd4/927f/n2u19/7VYVd5g8EZyA3Dl6jo+c3mW8/wVDo6R3YwSLlDlmFZBZSkEap09VRSyEEFsUVy7EJMktHO8Lj1FSowiOxbmwDNsL2FgNX1XeQjBCVTVievvBGSQcr+VbL159WmV/Z9Fc2lW2no1E/LLra3appojM1ERSzZ/quOcX61uGgdXEVRFEi4s8mhxcmwxZjThpUBt3aketk6pIrIcosSlpH6Sq/K1nX/v93+dh8f/8q//2Ch8cPl788+Gdr7/4yudZ9pbHQ7OrMSQUVKASBR87s5BNtByTYGYztkYWILNLKw11e5vmT+1cee3lW3ffWD78dedCV+3X2vZnRhgqaYTDJs3HOR+FTA5+ofw+npkSPwlFV8f40+RhE03cvsVdVoQ3IngCJRM/3adcIw2ACk3l/kdfurrYeaZ1DUnHq5NlN7Rtv+7a1XI9DEMIYbVqF4uFa+bOQtvCNdro4u7hm4+PTp+/ubO7u6vsRESThxQRsrxupjuUsi7loeeWDBxbelqxY71FsRQd2khV2eBt9sjJz6IAQaRv16vQruLrhwljclPE5dlJG7oliLMbqwrZODV1oFyzGrOx2KVIEhC7ipTzftHnYuyTCM248VEUb71gIV3L1ONCeitG9xaYPkd9rIXvG9luDFWOLBRfh+GRciRCVbm6ga3o8HBldCMWsHAGSho3sLfGGW/4xBC0knp2auQdlu3xhx8/1BBc41KqzMZmKSECF5lZDi1GRRh/vlDd4iJdkh+NzZgXQFM9av4ucdsUJ0QMiNCoI0fW0SImqTA+1+5+6oC+Ed2ZwrzRDR0HzOcwlsf7FyF0O/+ape7P3/Mmr2wrpFEBjwts6z4oFMN5YlJRerE1hq3zR0ldPmh8nQtPHplVi5oBJu8YD+8f/cu33n3xpVu3ZvNBh8GhMhYihxBjX5Q0WWD2RDGlk0eCX/giEe0nT6tNQt84ujmSdrsL6ZtPqyv2jjhKOeOtO5//XAivCeTcLOINJQXMuZOMmjpQMPMgZqdaHXdydqe9v75/f3nnu6vXvn7r1ty4na2trmdNTUF0UCLyDirJJojwKCpCYAILDCo8DOTgzaVoB03mJgGw2Bxl0luqIb85FxMa4/yRP52SgsnXrh/CspWdav+ZZ7/wR7Vv8F/8/Ic4eyB07Qf3bldP2eea+UyH4KqK2YEVjpgZpkE6hqdYIMNE5pg82BTemqFqXcf7a1vtrj4NuweL/Rdefu71P3j88J2+W360mM3aJYkj7qnfGerA212htg6lDY4obdk0RTGu+IRVduFGBoqFMyYGoli2+UKMWmAGnMpw6xn5e1+5Rc1zgTwPa7SHfcddL6t1v26DGYYgZ8vVrJmrqyuzM+Wm0rlUb9774HSJP/mtV5v5ou3DkP1yVYUhl/JeECpng6pRgg4HECs/eWxZiII8lgKzpiYQnWw1OEdkGkvPGSCjSsAwNueUIGEd2lMdBu89OT8Eja0DS0KNdMupzqmoIW3Jp4IFJiaGy/DOGRKaPUfflxAzQLck2Na8bIigzXNs4xDG1jkbUrckaZZUk8aN7vWYhTf+uzULJXuMEWxHtZoYDUH62aJezGGP6dM7J0EY5ARSOVYzyv2jLjyoDEFvEcJid2M2gp2eHb770QOoELmYR4Gs/0aglolYwBgx2LKhLjzG05JJctFoU3PyaMjEqMLIeWopRBkFlFp2TSLk8FhKL8wcw1rRxRgHlLWLloIs/+QioIONEKyTDiakyGh+zRTvKN/sN7ullt3HmKlO+TX03LW/gYZP8GtLw02zJTjOy3j+pGDc1FazfJvJLwME5jZhe7eMDGaueP7Wp/ffvX33hRefG6hTCJMHe1ONL2xTibcSOahRwi4RkCcV22YbBiTrVwZkvEHchYzhYhn6FDdhBpwZVRU1TeMx9mVhxsXW93m6lcX7uYtnLnDMAcN4ZoB3bMTQIGyuqReDyuGZff/DMwm3/VB//qbs7jXVvgS4ADiak5AMY0J+RHdVC8IxlJM9YDcQE4TBIGVgwpZTsxQdIgNyk1GL8FjCAEZ8ImaftvndTAxGypXnRkPbn3YKpZsHr/3J9/6Y8Z+/+TNZPcLt5V+Y9k8/89qs3jeGMcGcc945UulFhKjKlSFssYmfOiIDhQFM5Dy59bCs14c71c7VS5/76jMffqn95EcPpReqPUSdyRCzVy+eC0v1KmYbS2HktSwZUzDMporqye9J++uFWN+SyHGLJ25XTTLQ2Aq1TXAgZeLTQH/wMl54+uWHuAZaS3s2aNd2dRAaghPyTGQaVqs27Id16A94xpW2A/th+cGnD5zH5555oRtEbLLyiUjVgsmoUkp3DYAZGKRl5boaYEWeB1C8HRvMopcnyEKSABv7B4PEHIFiVQSxl9DJ0JEMDAE5I1iu8dOcRGyTJnZEqcFvumGyeOPeBEAOlBKeiTLyBmXRnVN0n7T6xhncSKZJ4Hwapb1pti0sNUtAIalGw8Um1JEoWuN2Y35Q5qJ4kMX+b/EPmJrCKLfFKxVzPoVBpiSq0jjeXdSA3n+wXq2FnNdhAFRCTFO7OGEovukTPeAA40HUM6S/9+iTj+8tmSjoFlZ+mXtV3Dj/VA56y8/YWgkTqYuuKelVN08mm1QBbxponGtZSsVf3sRsSp6dxHdyFKJVER/lRqMh2p5pUnNJg6q6TbT3UqXl1f5ZKnN6X8oEyf8AANwYA1BVIHfNPEeuUb9uEXb8RovscaZp+2CMnZb/lh+S4TYhYnJ0eKLAjBCsbvTENmfQzGpXPzw8/ukv3vrW9Wv1gXMWPETgbdPkyuPM8Q3TWLwHACaFkh5fmAkwBGavGgwY0WCiotGck7LFb5WL2XXnDZsLjswPmFxNiKXaLWF2TASFqrOEjkLmG0VgDaRBRT17xyQm/TD7+UeP27U96tovPXP9pql0bdVUNmeTQCGkWueUcx04kSVRMoQQC8ici5uTEaDAUq74KItZYSAVmCXjlMQSZg6ZkWqIjgtjh0EinSKwr/3CQYOETrrT3dnX/+h77Om//skPl6HVRw9/7Vmu+9d5Z4+xY2AJ5gTMvvIzM4IyEEOY0a8SA3vUZxxm6BZWrbDv1oeLunL1Czee+urfPPvk/uP2gzvYrbEG1eKlGShsBZzy58QOFxiUllJet4NY8Wca70NjWGtb4JSSAZueDSyXkUCJEuIEkV/1NN/3/+Abl8LuF9fSLOTT1fJhS7xqh7aXTiwoEVEASdv3YQghDLRr85Wu5/363rv3jq5ewo2DG12Q2B7I1KKTzcwhqFkRGS0Xo8I4eeVPYtcNaWlRiglIi3geBwvEPrWZMEvpJMRd3w7rpbQrmDmGqBoEVCkKFGGa5CHSjkPSvmBKEPbAWANIRFZUsRbvkjZ4y7neEpK5VioBn6YmTwlCMsV8IaHQqRe7HOOk26aDl22sHKxFCiRvSKTRwkM0PBJ7jAxjZtCYAimmTGbzmWPoyVJPlv2VvVpCl61zIoI9ec/rySFopkrgnEMY7t77+OFRW1UVMA0022f5tUcpH0c/ejeb5UMl01/8YN7svwsg4hNu7Q2M9HIMs2injRcykWZduP30zBFmKYWBDQTYxgOTnRFpH0VjujNi1/TUDWnLwihfLdum47yeb/Iz/Tt+V+qb84bI1vfjURoWKRY9GYTFMIo7lzcpBx+dBiKaYhkWJUWmIROyWFSKzSSsHHYSI2x+wLvv337nK48/f+nmnBUC0cGlhqPTm8aK9EiI2O0HJgbHagSxFGKJ6y0nhFoE8fGqUWEzwGoBGRlgHIlI2sSZ1Vy5GEoJho0w5m+0k8Ya5fEb5hgwxmgaM7uhWzNJ5TxEZeidt5ppMewu0f7y0end/r2PTk6/+fxTL1/evbpjrS2rqmJfMfvkPZiYxu2zaVQiIoMFWO28+mwVRf2gSqYW14sR29iZxACo60kcMcMxLBVvAiJDcI5hTsWICcwkBrgQatjqYOf3vvutmt0//tXP1quT1UO8Q+QvX3vqyo1nqtleMFYRImaemQxgNXVMqVxRiQF13FgFhDUZKS36/tGwOqzq5/yll37r2vO/OLp9+6FoYEiojFtvMeVwXDiFPc8TkO8Tyv4opd+SmUnYmMctdTuuo3PiPjnBkeenhJVx+zG35zqz/vdfmP3OF792XN0iXbv+VPrTDlU3rLo+DEGDElQUhphzwNQp1LoZXXr8+M6dk+5brzyzmO916J3zRJRTLFNIp9x8HMUrEcUulRvseu4FseExG9TIxNQodyy02O+SQBzznRwlHAjtl49D36oExwSqowj1zsWWLaP2hfOWQk+jTCUD05h+hUmWxdNG4ZuHlzXbtqOyUQs6SqVkTBTrLolBldjG5MK5LpgjXmnRDkMaYsyx3fCDtSA6aYq3jJOxUW1RzIsE4RSy8xZ43jii0AYcPl5ev3Kg3SnImBggGIMuwDOIt/Ll3xvcyUQGrrx27d17Hx2vbVZ50nHDplAVMaaf08SnqjXaaHY+3v+8/hhnJf4fiiJgovSWLmGfTGcntUFp34Y2vMmNl+StjOVpdiJBk4sT3yUTQRMz5BViKZNr4xW2DItR5VsxVdNzN4V45s4JSmKT23R0uMcX+Qy6ZU1ZUHLjKRhvvaV9iztMgazJcMn6W6dcngnjbJRcmzV8DCB4O8De0Wn7/fc+vPHUlRu79UCixi65cXlyU0hJ4THiU46vk5bQhpkyPijfgYgo5ZhPpSvF2GKMcVb5yg/siJS3rK0LqTp9SRuWb2KOVKuQaQsz6VWVvYPzogYydmYYemnrphrEf3L3tF2GVTs8vH751ZtXL/ftfL6zM9/xvk5xObZI51jHkZLkzUIIUB2qqooheGcpVK8SzOJ+OhBdXxiZi4V1YWAWJc/KAiUl5VjmF7xzTHHn0auKBohCK6r1qcdnd65e+dK33+D1+j/76MNudbp8hLchZ87bwdVnXbNjxCkmTARLGwGcyk5U2Rlo4VWlXutQc0/anPQ46D+pm5v7V77xWzfa9x7cf/seuxCIDbrBq6WoTRkdxUZDmn6O0H7ps1lsuHvBckt8O0KpbOpgy6a4iESAp3wtYcIaiXdWgKoG/9PvLKorXx+Cm9EDCmC1dg01EhA5D0gIvSPqdeiHzgXra9VBK+nf/uj2mvH5Z18VkJETjEWVG1k/+Sj9GhCRUnJLIikUVsibSIjCUh8BXqbyUzaLbXajKmJ2ILIQhmHopD1DAoZkOGawkWOGZUlIzBZToYmBMe3K2URtzjJGCakymMgY6ZFAClxFt5YSt2/M1Dj7TyrCnMpKk2qK63JqbVc6PMiO//mlHSVP2tbV0doxNrMgoz1tmanG4L9N0B+xpF2psqDm3dxkmDU1c6uCw8cnxM/HrF5mD3Jbachb7/VED1ggUGNHw9AdPn60bsNsz8eF8RlqwKLbnuFzwUSbQMrl+ed1wDQNlK2mTCNmbOhgm6SyIhY8pfmhzcrjLR3Jm57fiA6fF7BGSPEk+9P/Ug+NqICTxM/wbKN2nybvrxPlHN8jWQCjTxa5C+PERyWFwlo/T/ZohNBFlk2BzJJ+iwophHDeINj6xsbQQv4zzTIVG5GbRB6PlnDJLR61/U8+/PR3vvT564uZOSLynIE6NyhAylOxXHTihOCzIL7Ad0krIZsFzFxkvo5v7c3I1JqmYYcMqQPYb/CAzcy5XNZSWI1EIM15QGqx2DERLXSVB9fVoNyZNnUNh9Wq5T1yq24Hs11/NYj++IN7n9y987B9+Vuyd7A/MHhWmRmRxeHR4JScY59LJ1XVNKjKIMwMl3pLaKS9Glgt44FRxCQgABALgGcEMWesUIYpkfMumDpRNvXeVcQVPDx8a41i2OGr/fr42pUXvvfd/8m/oP/ynffuS3fy+LEpu8F4/+rTzWwHpegkInPGQpraDbXAPvEZzzrtL2MddO8s0KL9ZDE/6Pc+/7lL733h6bO3H6O2AAZLPVqGpUIZ5/38ERVwkapoBohshPi22NLOOVuUu3ghprma8cY5aUEBiJEGA55/af7vfOvSSfVK1S4bPgnqYb49PrNojzATIDAyCyG0bduv1jqbhY6H4eSjjx9phWeuPrtuW507HYzYqmigDYOIjFw0KuBxnBRNnVElJAChzXShYtGrKkRHdZU1Edg7tZjJIQynqkPXrtZn1bDmqjKu1FiUU7tVGdjXAJABpChvAzPzCOwDIC2BjDoxoeSkjCsejf5ycQEYMRppUyDH/pHpecUlkUoONsY+y/yM8bblpG9Js3SaTrK03AbOqGix+iq6wxgzmSbtls/hTG12lZlWjolNFaerdT4zOK6Rioa2PeBxYNvYziNRKnGhWrtQSzi59wAOldNgKeiX5pwMLpdn6dAnjUtQgUGMiIued+UjyrcaD9oI/lgCVBmBqHxlQOwPYxZRv83MTBwzU0pIdWaqFDW3lg8dOdKrRTQrIoJjZLTIymaqqhAjg2dyDiYwMFwIQUidc7G/o4g4kPOOJlZAyUyWvEM/MgARlwtmfHdVda6K+RFmphntCIB3LhcFwqUOZcZwuCirM75iOYBpWtPcMwCy6NariMagPiX1hmgmowCY5VxIHjdIUtmAIeW3U1oVDupgJmHKghZj0K66FQTz+t6D+3/xq5997vrvzqrmsVc/MCht+XrvVFVUfFWzptU6tf1kMSK2AQCMAUsdwHMvZiIi9lAx0tiDwaCmMCXHVZDeUg2YAFqbn9mZtR0Wl7t1KBphby1RBpQolyqlsjqllLrNORUrCoIonEGOgxjDWTBHYcYKCarUNA33zpytLQCBAzPvHLX8pz8/fHB8+qWnhy/e1Mu7M8xm7Opa6h1UQKCFM0gQbcixyUAqtVt3rULnzJ6cQUU0amxrh5iiHxnKgECxwLEONrAxmbJ5ODC8QSWwEpjBLGYrNQNBwXOarddncErNfNV3l5+69d3v/O2d5vt/9ZNf7dppr7fPQgMJi6vX5tWBp1loIuQQnJGHI0/DYGrqSc5EjLR285U69t2MaNnu7h9/3F29evDM1/+73e3j1eH3353RyuvuGS/hmMU4LmQwqfUiyhy3RSW6XeP0qDnilHalpMHMFETIVe+TXTjO7FQokc9JU6axk4/FiYx5fIMGbyCuTIcrAZ8wDtzsLrX/h28Gvf7vMpT80Ha+68MajZs9tjWBVIXJmOCC9q104gS7l84Oj/arvVN59JPD029eoUU9nDQ8qzypEFInRSZCagDKiFs5BmTto5qaJ1uShaQETVvgDMRNytgJSKPv64FeBgShdGcSmDFIBfAVLxzVoQvt+lSHsxp9qBYuWaZsadfT4F1s8wvHZrkYj5nZAZZQnJWQSvnZ1JT9VJQUcc8MZhLrgEvNAoqplEWeTcaLhhFZgJmqxD2TUTv6WHCepSuQUOtHBZR9pVGZx0bQFAvMkLU45xw3ptSwkEwdSCHOE4hkCAjqY2KFaUggsWowYmOX2/P4pm1Pm6pSXYVedg8uufohD9W794P3soB2UlktFQZbE9zFsAM8Nld40lHYZXbuy9ENQgFaGUO+CU5SVanQN9iM/pcScLSDSnFItrGKxnPyDaPPd/HIyyfG1RWvDSFYHjfHrmZ5bgBNAB0ipCGnFBg7ZC4kAN6PLvITPd3P+GnrV5GiDOOiFoqbxxQDL6mBXMh44bNGmJjyGB9kNpFxPK18u+gxQzcYoPz3wpcVEILVrjoT98HtBx/ce/T6C7dmxkEHz865hDeWROLmzUcBStNOxPRryTBx4FQcyL5LXtupkddsNqucJwoG2bCuz5MrPyva/Imlsy+Ryb7BwDZlLWj8fKFZFs3n+NNPPnp8smpPzlavP3Xt2SvVfK6Db4/r3gfzxoAxsSOwGVQxYIjVHMyqjtiILMZgXI66j3WHkWmJjQwKZSMjYSXlAM2mKhLG/Ri9DEOw6F+RUzAzX79+/Wvf+K3Gn/78V2efnhwd8I/a7tXrpzx/oe4XjgPM4Jx3lVMZurbzwM7OTrcazDmDRC/dNELV6knbVsNhtTi4fO0rX3j4V2/Nlx/2XPVuUKkcmM1IDCoiquY9S8FUZRKppF195IWwEXss2WOkf/nnyLeZDqC82xElzGzmZRWCOtPhDLg+m9/pmi9eb3/rjb8xW+yvA0CqGmJBW9f1Ee2FiFSNmYk9s18v+65X9rMgOD5drtr24PKVup5pVSHuT5iSxt67cUOzEInnvBLJCMRAwv4kytujY9XNCKAoIYaGopeaeNVIlLxjMxlCG0IwiBKgnKqDojmZMskdMcOSX0sFcNVI4a0toWLpFeM+Nwv5c4YP2pQbyaYqjKeEB6RGlstb4h7QKH/yULbUU75dmlaU+mXSXgnoIi1JKn6K/+Y+eFvjjCN0zjlXIWIDqcHEExj26PBstR5cRPxQNWjsAtVvXj4ef10FXNA7ImEbxRYdSYga6eT80bgxZnEjeuMoX+mCDxuPn0acs1dLXLbPqq8qebqcVBHJrSdzaDFtw+hoaKsqkcV0vrFC30TH3gwXKuBzKm1SYOdnsfxzYlZyW3GV8695nmJbT986TAlP0Debl0zqPL5ajPmcv3OpfREBFc/d1qJjoVS5xknz/seHP33342efurnH9coZIr6OmoQQN/FDP3DtimFq2oJSg1NYzMdJUR8AIEXsx6LTQ9O8bI5zVMCL2byua6YhyEYY/6J5McT6u3NvjUkLl6SIzJY2N4rZVDMECePYUCyos3X95oP1/dNPPj48/cZzw+vP3Njdc+aM0Sg0loYHM1YzMQtKNckQenQw71xSH0o0Ah2Mm53MBiVVIaKIOaYBYCNyYI39iQFlZqMJZ6ppGmYzDDYMarRq+9q5K9dufudbf9fv/tmPfnzcn0D0o0Pp1jpceeHp/fmBwiQmgxJR5Tkho0WsQm9sZi6GLURpZXZldbdtbi0uffGbzzx8+/EvPgraP2LXwByLxgQ6WIAZmFkkUnJ74eRN0+25K8XryA8jb1wwlWXEkqbLQx8cAKqI2tbDr/1Ay3/4u/zq699W8xJ60iBDTxAiI/VqBMcMCiLOeUdgqper7vBoOV8sVp18/OmD02W4eu0p7+rIw2bCmnBYI79xAe1HmxpFCsArAJb7nY66Ip0cASxFVUPkCwBqZFFtETFVRM40dEMf+o6ImL2Yuey5JhecXUya0DRUonG3KQWNS1py7IKDFGybjoL+5eYaEWIUOeWU5Ne0aaKjRUiW0kTUyGRaNuf8QGwe05dmBbfYGPzIWVVCYpqmQFSVOCndqJOB6HFHMmzorPinEuA4hslMlQyVRwU6WaIL2GHvqBIE1UCf2XLws5sxbIR08rPjLtTEsqV9unXy+OXWbUsVtU3EcdkUudAc64Cjgow9Hqe7laVQxfTk5DfKBUYRdTLH6yZlmewdnpQNk41IkoN03ntHPKZhbwWTt17t/GuWZ45UHU8r+wGDYJaTP9NVbrw8XrWF4lQ8lDMBNmZAEWh8OgCyjDE5ZYmnZ2/e1rKAiB6w5yeBN6ZevMUTDWZK6okqokW1c7xe/ezDj7786gu/9cKt3vthGMDsItRg7F9tMbBMIB/NdlK1MT6eneALlOU09RNIZ7kyiYiZqqqqHNWeneNepWJXGnpbHBtJMt6NKDqTo9Fdnhl3BCKVprHk5MOUN0A5I4xz7zYza7RR1bvLs4fLBw97PRL7yjNXnt5rhAfnHEGF0DvnlFP5tqgRjFl6gyNziDsvGmujjWPBTEQmISa1AeTYWNXIsSpTDP050lRZ58GUUUHRDYOaQgWgqml04D6smbhvFt95409uNvt/8Rc/fHDSm3y8c7hC/8X6+efr3V2umy70RDSrGxbp23XceSGnZKLqYqSbzDqudXU86Kzafe6565/7rWc++PXp8t1jOK5jRoIoKoZzMINKDGNE/2NT5CcaJr4olv4kTC7WuFtMWzZQKhhYgxEzrPPMbu4OT+y1p4Z/5w+/Q9XVbq0MCzqoBrOgFubN7mnfspqBWAzkyMz5ZgjD8WkbqLJWPvz0/mrAzt4+EZlo7NdsZkhJUpojiNujjcIthJDZmGNF6bgNaWYUC/QtbxUVr5+LWdmIYFz7mVgYhtXQt6rBuYqd8zwDUxQyCjA5kCNQzI+fhBhzAQaXPRAezaNJ+Y4EzeKrjNIRYWq6sKUlpgAqxZhlbCllMGExLcyu7WVeznjmiWiRAKlzSXTggJhrE8vgx75GEs+JW8JJ7uW9603WK16QSHKFXHy0J55V8MAqYNWH/bqGssRNRhWVsH2jfPzmfsCFDp5sik3aTaRJyS8pVL+hj8fpvFjvlk8sHF+X0S24iFJSAYe5pTme9Aqj4EuGf2EIUz4nfekwlkaohdhSMPdfSZydKpE2HcTS1MJWKPWcXVL8GRVqNMDiqFKhHjYFSuRyJt661cbg/9rHSJDyLegiTz0ZWDyZArbp4p8fj8LYFA4iXVU5b/MPHzz81Qfvff7p667Z6bohaOC6hmPEvbeKLbG7wNKDWGONDSX4sjGrkyYTZHMFMmHKOCuJ45zzDnXFdeXWA/JObvp1076cFnji+6JyuNwTOXfVxXxYAtFZcay61a6b7dJsJd3b9466XvpV97Vnnrq2VzHXlRE5NS/CnuAc3DAMBgdABETmPHnvvfeEVC4SK0J4PFKrBjZyKIyARCXzikDmIponmETEeRY4gnlfg6vOJIgoE+jGa6//bjPj7//4px/fWQ502tIv737cXX3qqd3rT9Xei5oIyIydMwSQA3uwkhNVB4iCRFjYGnlsdFl3br1+6cVvX/nF0RkfPQrEPpfhejCRs2Bx12zEzS8icOnMDRuLiCTuoz4htnF+djZ7pkznL3h2TG2FnnWuYWgx/Pu/615+8Y1uqMhJDQmr4Ih7DX3o2NXOCcGY4RxgCMHqZq+nthPYeghtf+fRY3Nc1QuK+U0WzAJF70oFiB0GL/DxsjyYLOxYKxwVcNbj0dO12L0jqmSihGevCW7Dg1gt9N26H1qYxKaBIHa+0pRZ6ohjB3uymL08jiGZoymsxTHkA5oiyUSICUjTHnAB3he9pnQyYdTNBfltNLJSEfMYcxaIqgkyVOQ44TFMRQSTbZ84bflnam4pII46Ol1RwKzlDebxAaXW25KKRKQSc0GIjEiNK9QVA6EDHh8tb96sggoxyMC+0gvimuk+v1kBl2eDyOKDp2222BoBpOkEYGJtSpGNyVW1ZIhMJNu4P4BNx3c8l8iRUeySCiDn/Np5uZd0CZfGF0q9WA6PYimhGYBgAYS4N08J/0R95YmmYFHsx+mc0zAB9JcvUi718cvz8zeeFjFgY4jVaPvX4pL8LsWOUWnNnM+Ozvw3Jjtsy7JSj5Y+3ziG8qXGZHoqwHUnap8zL5hIWNt+3VCzqGcny/XP3//4a6+8+rm9/dr5tBiYTV3coY+GPABQimqrKhnBOSuMpGLMUSBMTtD5kVA0pSMUpces5qZy6MdoNsoLi6lJtyx3pnksqEh0c5ZBU4gIxjHZIRoHOi57AuvGTI1PkQUNYb0QbqpmJfLJozOTO8eDfvv5mzdcfYW9r2Aw4QCoQBxSDaZqTLnJBl/apCfwWMOqpqTJGwZyVl3cqnTKBDZWIg8Y4OGMjJz3viJShF6CEEDsamU7sIPT/o6rm2e/8De/t3vpL7//w/c+fnDPHh10bhiOLw/LS9dvNfOdoKJQ550FTZUizkEdyBlgZMyuNZ53Z9Y/7mfPPn39c2+cHH5wdv8vHqlJX7nKV15EJe2ga0zMsRhELcTXht6FcWrqQbEF+pPWxXneKJMWNybIcRAcLNCvaLkKr96yf+/3vybuhaDcUK/9ali15DhYBD3hGHpxIDgz1AZuFk7g1kO/1KE/7R6froydOY6TpTqYKZmM2aIxp/1JCpgcq6pa6toCwJQILuaOjGlKJkKmI0SwEYnF3GwmQEXX62U/dKpa17WrvI5lI7mpCUCWMjOgFuueoqOavI7IQ2lUUQgQAcQUW2PlZITCIzaz2IUzzhUuOsxSIwQzy1A/SZHGLvMR1SvV79pU10sFM4yG2jT1ELUJyN1sjPwhnyml6NhKpI/Nvw00thkuGS9OG8fFmN3FqnKGgUGHj4/rZ59tu1PmWKLH8mQv8YkKeJT1ReZIVFe+bDWcDJ5sMsQxJviuTduhVIfIMYeNx22ojQ2zBYg1njAQmWaw6A1f0MqA1OZSLFXayOFp7eWLlHRM+UnTD3hKpSCpxM3lOAxir550w2z4Ufnocvy26TKWgyy+06nKLpMyX55h5GKjq02PauuJW38WYysNBc3gD+PjN1zhrVsxswShFOHYUOG5bGr7EqdN74NWJkGaqjm16t1PH/3Vm+89+9TNqqmJbNCBCXCsGkykzHQlUpsKsg0p/dMBiFheo4E6GoLnDybW3N+SiJraVZVjNtVA1GxN0ObgDVH7XhRpiNp341pLNCFOVibSjCMzzwZl4r+z2cLWq06CN2p8LUHvni5Xn94N1n+uvfFquHRlxzUzRuVSHaj3cVuUGcxQtRCCiFTOM5tzZmbORwkZs7FiHycd5UUilPQmjr0zsxgMMjDI9WrBDClyR46ca2YVqtXJ49nO1ZUcPl7qpSvf+s53F37nz37xq0OhhyeHJ12/khAuX7tVNQt1JGSOIkM4I7FUpgUFarWliVo9b3tXH80Prrzy1OvfOTz94Nr65FhEBu9mAjUT51lJDLlt49h0oaB5eh2MEUfbZO8NUl8gTJ58nMmqNjj1A3oH/IPf23/hxW8v9ZJiPYQVdSsTNXAQ8bXvVsZGtauMo4XKrm7IaFi2jx/dp9qvT9a9Qh1VTQ1ARMwGAKSS3REyo00E+ukwM0tAZrlJcGS2lDRatGZXJdMICkdEEqUJgITlEvpwymDvvAOTOmJEnDQCRSOJY2kvONUZJ7pNko3giEC5pyFFx9cswvTGDPYkurJxSkRxZwRAWe1ZToclVL34p8I4tnqOXQVhZvHDBjJgeYdp3ksFPGqoUjdT3gNWDZhO3oCZ3CD+qM43DwARXGNUOs5R3Xiiwbnq6OikrmszI+IIsqV2wf5dJMtnKmBcoICdY1UyC0AKF6BwMdNJyXrVmAVd3nD88CTBNL48nwsSmeUq5OL8kUDnX2Ek1rmb0PY3iEHmnK1qwRkxM3sXwhBUmbnyFTFrLAM1eFeGwScdcF4jnp/d8teIYJyGOmnL2O1now3AeO15ZU/nVMWTDiKKsdwtg6B8i5LtRse3yCQ3Kgx2Sv0bt02ftMhnRGfBW1W5+cPjk198cOd7Xzu6cuVK1XgRMUeVd5aiZzJ1V7QJUJAusgkKagBEmGwgV9BnIhERfAXH04L87GNknPjoGO6jzOdWtJg1vaCcPTJR3C1jN20lbEiEo7VbVP2eW4VQae/ZKXC0Wv6rtw+X3drbgKt7l9HUqBx5wIKpiingq4ijYLGSG6zOOXPOVw4GOGcUmJk8I7eOiFImRRqCEqlB2FViRjA2b868b4J0AJyrjABREetCz5ctrM927ao0w1JP5s+89k1/cG3xr/78p28ytf3Z0eHdTyRg/+pTzd5ubIkTDUmQAwWlqORpWJ9Z7avqMovrl5/Szo3dS7feuPr2v2xnb68edmdgDkREDHIanbaxeogKBTxZEglGfwxObayIFIYnSlQqmBzZcNxiqvhvy7qPar2WnvSFFy//w9+/FerXmRrm1vqeIU1VrWUYVFxVGQkTkfdE1CFmNlUAumF4cPig2V10y8FVYPjZbJaIz8oTazHAY1n9hUIsglSXI8/t4hP4o5nl0noDooamcZtGTUIIQx8cqfcVU6XCIShXHg5Gyhox8xE7u0eLjMgVuOsJCR8pssUAI+b9FYBGjt3Wjmkm6bTju0H/rHQLMa8Y032SG6xRFhgSNNMWKeLaBKJNUqRJI63+UXyN8s0yx9i0uxE7DyYcpy3pVw67PGIoe1DlpICdrypfraXX4+NjIhIRZ6SmHqz0RBfY53nacM8BmLbi5zuOte0OaVZbF2yvMV0N3YTcBgOIQcysOU6ritS30mycuvwOOtKG3WSVJFB3M7NY82MpppdWmiMiJyKmMKsqR0TB1CSAyRGNMKqlaxJiv5FUs5a3rtWqqgohaIF9k3KILJI18oNTswECldz0g8WUYwYuMXGKyQAgjDUBBsBT1lIZUyOaKeRiWXBs7xyyCammPlbX5UtSniRSB1/Ktn6SMJyMmw2eUI3dS0ZBv10TGWcDiDktMYM25r+OjJFCPDqmLSD6HqyqwzD4ykdTLN+SHJiYAiZLPA2GFAR15hUaqPdOZDUjqmd7b71/+C/f+vXf+94fo+/h6o4Z7TD3vkMbGySMkV4iJWZjyBCIiNkRp3pQUwKcigDOGARThcKEoEyi3tjUgmiICUFqRoye96+7x9ercLdu+r4Zg9Ceq3IbSTXmvDBcStxg5rECkZlTOvaoaElNo/3BBEeIhYyIBX4mMZsksUcK9jlHRK2sVKyCq8mbE1UhUxdoNTR/cefR/aH9m/3z36BnICR1Wy+4bhduzjIMNtBstqOEtbZU2yDByMibQjXYMJhzlffeWa+xzMRVyFFx8iwxidLMVNjDzMyZgVjFkYPzqSSFlBhVVbmOhLSnNZzU5C0Ev7/36tf/2O0e/OznPzk6PGV3dhweDet7155+ZbF3JTjnyBN5M0cg51QoqLRUzR0AnJ604VK1z33PzXzv1e/97fv/8f/96s5PZelWwZpZ64eqxY5dW/FDdgRzomX6BywIjNRMLPG5gxlMXVoXqkoEU2UmZxTrQAhOYRhrd5iRKh2IiyxOMtsPkHqQBfxq5+/+/vq1l7691KuhXs3as75DFxCoDTJ4XazbIBBf86NHw2wxp9qR5wrzuw/ufnLvrVlz7daNl+7QR8PtS5eu0GWjR8I1xKwy7QkKdsZViK9nwSRyFSEKUgGRYzhobxH1H2wwhSqUYD07NucEpAptYSG6EVqRKSAOYBU1aTWsVNfs9sTYHCO2B0gh5tpy+JeNIgZhlIBMXmFRADnySIl7SR8rOGFbOh67xUYrNRaIxcC0AYiu2mRzJI2tJkQOYIKnuIltChI2ppQSpZQypwhEIiVWZ2YGM8WQxz/FQwBoEEJuZp61qVgwSxHvLBvVjI1SP4xxpznepGLXSyCKnbujS5j2C4SC11pc6Lmz3teCubN24AMOn6wvD8Te98T7Mz4LWNfOTRCSOWAYHaHPyoKOKLohtF07xDcfS1PK05LuHPN2i9/Pm3WjSrDiVTOOSpohOlfdazFZLWaHx6jauHdetBosjZ0RAQrZvOCIPhBkyiE850lf6LKPYxinf3xWOqfYtx5trvGSeFqU7PmSXG5kPNpZ8cLx3yc2jC9i2iOFiaisw0YRO6CCttNkRWN5M6C3dc/zdzAzUY1lCkQUmwKcN+2KMWRaZZIBeOvdj9975c7nnnuGhlXN1PhKtQ9mNW/PJvPkxSIDv6TkyAKV1IpjtNM3RwLEmnd23ntHkC32Ko7CapmyZMesTjOLO7Gb14BoSgwbJ2i83zgkysvKcva7iAAWU8KYwcx7ewvuzh5+/OhPl2enoXvj1q2r+/XQG9nQrdtmVtV108pgouTMehlMRIKaU608U0xcCqFEvxvGVxOxuFXsyBtggrjfTWCBkjNoNh0ITMTmYSBLJfJwRDC2Smu89oWvzxd7v/zFz+/duzcMJ8v1cHbWXrv59P7l19UPxMGsU+s9EVMNVKotkQ69Mtm6H5gr39jeYv7qq1/+sr75YDW/u1pfc7Azb/MwhMNycsv4LDObggBTu3AaJ46JV45uTeaUtJc+Vj3YtDQIUEJQo1Bfv778d9/4HWm+0ISW2GI9UExAVk35mMwsojduXl6tWhmcgxOEjz/5QJRPV6cnyxNXserQ92EIbcUGVYVjrgmBiHILJOWcfISYnZXgURKav2WPMXs4SmogASI2UYANhgHGTF4COeec5xBC17c69CCt/NyIyXmK+yIjYhVxLB+NRFPi3L3DtEhszh8cxSSfFLgu1kesI0onplw/AAxXIGJOE2op8AsYcVKbYhCIJrAdaO4qYVlTTFL6/EKzjBlZitxSW4/CLb7JRePZOCKdrbjneNr4OTokkjpAUiwOFIEEDSGkvFoluIt96Big/qwQdExTCLpu1+q4cs7p0JdTUhJCix5b6XlpG28k3EbHiZHpS7KaWW54On5DKDbPI2hcno7cprCISm2Kv+znXBQQvuB9zZCRmaOvAiCbfmOWE2NrwJGhJzWmxWcrXjbkcUbd6rbuM95tQyk+aXrymIuRX3yUd/uMa8/bIuVp45nRvcj5tNsFSOUTkQF1qQgRM/ObH9z70a/fffbWU47BZs7TMADsjVAGEmK4O5ZLGk/fj3IqkcvMEPfQMBq/AJA6NEQKphlxzlUx6rGZR731vhF3JOKabLGWmVHM12YyHZl5s6+UJoD3fO0GMxSrVyIAETOZObVgZiLm28EpdQM+POrCx58OAV9/+vqz1/dsZl3fciUNVRoClCrnLMDYQsi6qKo8QzUa11NSNI35/2axGIlIwWzmOGaiwykTy1RaTVHVAnA+1v+ZKRCIQR6OqF8Or7z6Ve9nP/zBnx8ePrKwGlYPVkfqdW/nYGe2vxCqh2AhCBuxi1EuDqY1UbvuKvaOh9mseva5r33z9P3bJ+t7x056NwvaAx2rA6e0vNQUK88rs2XYmXHiyiUQ7aVC2D5x7Z831IhIQAQ96au//53+jde+fYynZnpEfS/FMcQS0sgXXD18dMeT25lf4sr/9M0fr9rTR0fLs+X68Hi5u+e6sJpVta8JTrQXrXYIwcEZxIKaiiGFUAymkqPJBlWJYEwGlvhNkvpQFWKJAkJ1MBkM4lxMVKkZMIhoH0IrKrWrHVfqEp4zkctLPTYzyxkMUbumXeW05ZTtz8KIJMROSlPmy7jOLdXMJrlrDELpeJTak8yA+FpsZjAxFZDKxH7xEM2Is7AMxxlvWCxem+yrLPkvKnMdh1p+OWrTLV6K9xwjuOWxxVfxhDraN0Df98MgFLdI8uXFuRP4P9FFSFiUN1EgRkRtd7w8S5nrepEot+xlRtFsZmXCW542yxgmFgEKHG9kspz/FxjJniQvYg1y3q7YmP7iVomIZZ0fMO5k0yYi3XhV4jYYGceU7lyHmv9TI0pxcypccBRqcrQqSk2W/0yJRZZiL4g7ZUDIuireJsFPltbMeZpfNGXlORvadGNUmYeYp1/HmzyJmBNLFNqoPHnr8xZ/j98z83LNP3vnwy98/pXPPXeVJAxBjMlzBRFTM+TFNq4uM4oAZaQAw2IxnwExgD8uirxVRoq8mW7T05VMOUkZcb/BsBnzV0bem+ZUoUScJKQm12qk/aiDRx0fs/ET7xV0iIj5E4XNmalBZLWWeeV39vcIj4+Gf9F+MAzdrn/5ynXnhKwbel6B6xhYtpiPjaBqYTCCKsOxEVHk43ROqmpkVo6BQWGDMUHMnJljZqsahTghiaDa5iJT1q4BBQVMA4yE4i4R1TuXj06Pbj7zwh9euvTjH/z5B++9Y/3y+P6yW56065u7/bN+fo147tic66A9yCkUAq4akaEPyt3ae+9mN7944/UPH//w9tmV9z8d9pueB7ZGSWhUCoW9tGllYeN7TAGHwq4dV+I5YzHdqCgtM6ByzSmt9xbdv//7z4Oe87Jei5vJWQh9CEGCSch9iM2M0PZ67eblftmFVk303ffe8buLG08//9x8dvvju6vurGnmTeOrqhl68QrnGyhEw5hjZmYGiZlWOn0Z1bIiwhQnJCjSjJ9IosZsQiJiIsbGVDmqKq5CaDtZiXbs4FzN1Bj5WPJN5GLRUbJTppVLOvmwDAZMMuRWrHBnbIDgEhEZOaR2wEypYjRjZilbOQvFZfkFM6SxRqwZTYCPOnUCjnFPG0XuOS9lIqDZFmdcyCVbX5b6u1C6aZzMDNPSCbLiEeycc+zgGQJmhnofywrQdUM3DM5VQ3IVXdl+LVE4H78BiENEzpaPTo56IopN2Wiz3KUcGV3sim0+ewNDY/ugjbjBhq85yn3BxrxGlZ+vmu6ZdhNpY5LMYmhtHDZGrTQ9BQCcmuhm/IHZE03cMGZEb9Fh1Prbug0ptgMgl0BsX1jSocgMzMN7gsL7jYcVKg3nfO7zg7/wKUGVclVr3LJBTHV5sm9dhDFSFQMzEy/evXP/B7/61cvP/cGcaam9c4kJjYnUZajYuBemzD4m9JKosqWcDkAhqXdYXn4AMrNl/jEDJC51z+x8xEBT26okLgU8NIrC0VhR1ZRRhvHeW0QDEeU2vLkORAlsJXOOGiJeGJPvhmGIfEtEzjnHFeYIEA4247pXe9Ce/ZzvL7j5bbt5ab/x4mQ1uLlXtvUgPkEzwAgIqhqcS8hfJma5FQoUxMYGIYt2pgYBCxszVCDGDPJERA4kCscgM/YUEX/Aljr+GqgCkTlTpf3LN7r10Wyx/61v/87u3uLnP/lp16Kuj06O27bvFvvtzv51P1uYeROJsQpVEqNYxy86qHR9jSvXv/7d1eHt9d0PT9qzFouBGQvSNVJOZ+zVkw4RUZvCNsXqLhjvwkBOsepV1Z1bQJH5K7Ol4h/+4eKbr/3Jce/3dlc6LAxDzDnXdCCYKkhU63q2Xh+L6M7e9fc/+Oh4ubx2sPfNb39nZ3Hw4/qnH378i6E/Ojled91Q7daX96+cBqdDpyImIblzZqoYmwHEN4kL3mI6sEGhOpa2KgFQYRhDTSRuKFcwB/MiQ5Be+kFImNm5irgiVGCJ0Y1k/RsjwU0kTyPx7QRcyJGSI5EjvPMk/pOBxwrl1E8JU7YRaYwiM/LSnLxYmFnGschieXrVSJJtnWqbn8dvLpSElLOdyxU3Gjco3Ojxbpt6JPMDs+jFEL/I8T8mBjsiqxtPUAb3Xej7sJg5sxgF/ixZ/VkhaGYyk7PVo9Vy6vwzDsdsY/8vPeZcADn2lUznsI0AK+VeKQqpnUMBpXpjABKz8mgqzIpjcJs416Pmcy7OaUqmzIh9FPrtSPiodSJ3jygimhCOeGs8MSlsjNtk5ZoncpPc07PgbFQM6WQpnnveHLl42i60ciwbHyOHnb9wSx6N9Wsb52BcLlGpTEdKvwIcYGYSkQ512iq94JUvsjAa35ysz3727gd/8OgbL9+87kWFlVWQ2wwXBkz0PeN2F8EcKYzThlC2hXS0kc2EbQLG2ySsOUeNr6rKeUZf0oe2jNONuEXKO2Mbs6DhYDAHp2rRVjAmmnCweJxWAnNuRsY5GXBrkeehRgKSGYbazwdyQZd+MKJFmB0d9f8cn9Skn3/+mWcvLzwUar0EiFLlTFJWmBrFfLhYICfB4BBiUiyZB1surOW8r2gRWkFZHZMNzAxR55yBHUel5UUGG+0bi9nNtZlKCKu+q+tZ6CSY/9rXvv3UzVt/8f1/c3J8hKFV/dS51vGp9pdrf7n2e+SXGgDnh2AOGIbBmRvaVmZHmD/1yo0/+Mbpf/zzM7z7biPorddUxBkpxBvi0pLPSuU3TzrSb9nWHmX3hAW9aWiuQrtY4D/6Wy+hfoPDStTNZHmiqhbSNgFIFJoBmh1JP9De7pW333vvwePDL331m2fr1b/85//i2tWn12fr/Z3dcK2aXQpNPe+ETs9azBqToKEzCXkLNsNCAxHAT80AltTF2QSmAh15h2BCag4KExORuIdBZArtu9Nkz8HF4JGHY19JflkAqcdRJB3nrMwUWEoFitEIoIwOrfnqmFmbi0CTx6zQTf84aodtlbk5iVnOJEU7wewkNi01qHF0/550k/OTbjhXfEsKGGxzwygfI5jrFMuO4beLQtmIkMZCmp0pM6ucJwKzH4Z+COqctyGGHS4cYqL5tgIunTbHTlVX66N2LXF8nlk2RzOOj4hG2GFKUd84uqzq2LYeUZxZ2rO8edo2sNS5a7eBMON9HGKqpJXylDlBSVsusBmVB6U9zlR+aBSNF2Z25cZnjCMSkUx7uhsKeOTskjhmEUwr8wYwJp6XBC8vpCI507bCyPnLrQ+fcUzztUm98m7nb1iqMdocffqTJki/0mQiIlWb1qRNj6iM/Gz+yYOHP/zZr566dJXrpuvO5rErfJkXNio0wxiRwmQelI6vRlQ/Byq179bhiKvKzZvK+6HbtB1LAsalOLZh36KhqoJzfEJ1jJVtzp1DjBVlvTsRs3jQiBCyaf8Z+sDOGZuyOuWKfR+Gk2X3F3fut55BN27uN94NhtjPLhYdxPx/jggdqhCRFKUHG4zISM1chHdVTRobZpI31YxNwfF0cebMIQpmoYjHm2KLsYmNMuo52lXXq/mq8ewUsn/l1je/+4c/+P4/O1sed8ue5G7olnV1vNjteM8ckxE7rkQGJgzDUJF1vTYtdYv9Zv/GF579/B8ufy7H+uEjQ7eCz2ZcdKXyMSZhjUxFcVznFkEkeKbtOQN0tL83GeAQ+A++ia+99OWjsJg3bbvqK2k7DVWaNVVVEY3NZJWYTJp67/6js9sPP/3S176xs3vl12+91fbvHx0+8uy9N7Lh0qVLIK2qCuQ1dNAeNsDElNWcqvFYfgFTmGrMEyTkgHNM/IqgnpHvJdYryCChZwzOqyhZCCY9HDuO5VxMVCF1BkzqEyNe4ShsKYuXnGlDRFMBBhHYuUxDogiDRZucDzPZCEKklQggRnG31aUljhrVcE7GivIZUhpYLgIWbSmdeH4RHaHCOaEimDpON7IA2dK+qooCuGkS2panJY9k0s25IkNNyExNI4oJwQVFCAFUj8me2yK62KJ9ogesqnCVSFivz2IWtIq6i2yBrfcvFGf0IC8ISAJTWKmkBXKEpJjIHEBArNHZcF4tF6RTzjcZb7i142vnKu1KvYKxx9E4kklhY3OcG39uGROjpjz/ILiICBPNhQRvqBYq10w6rLgVNh/0ZDqnc3ijrnFSrk+6fCsCMTIWP8Hzds7F9F0BXLGPHkH/+dzGhGrmyEnKWZRbTTM/Pl3++Oe/+J2vfe3g2t4wDLuzShGjuAozsqz+SJNcoGjAugvL9S4c8NYRNav3PnZZ/OyTmTnuy2+ZO6oKGJuL9riqqhGx03OosaNtN4a2NHcGi0pXZKqwH79k5su9P/HDirrFgApVRxScn6l7+/SIbsulmmf+2hzaeGbvpB+MyYHGpFw1HQYRAbuKfQxaGABmBZhijFAtl5hzxPvkKIs1WzQWg78wM7iRsZjjjiAAYBjWzXzWrtZtsEU969u1aHXzmZf+6L9X//rnP3vr12+2p0H65TCzXvouPNo/eIWZm6o2CBygzMxm4vu1zI5Pav/i9d/91t3jT577+P0V1b0Z+Uhk2xSC55Owttb11ixgrFkv5wWYgIAKiaxmtpj9L//wmuElc2up5jg8CQthncJ4KjAzyUnYZGI6/+Vb7x6uHv/gpz9czJ9anS1lGJq61iBMWnk889Q150hY+64jFtKBAZCpxIAbp/0LShrR1DQ2VaccsE2YSDBLTW8EQmYmg2gPGuIlKuxz7hpz5X0NckZQDbEMckxexvmFkwzEkUKE3Okofld2KIcxMYFdTFfe0nxI/vO2ntt4WhSBBpBRMcFJLBsso5NwLh+7cIqn5xaPQ+FplBcS5TTurCAs52fE9DfkiMh5Ab71Fjz2FIiRpdRlAAAUUC3E77l3L46chJXOoJzJBqgGpXp3/cG7h/xwxVddh+DPuK9to+0ULK1PFiUmEAlipp4QESqCjgYLZa2pIQRfT4XVZdf3McM2yeu4UpmhTIYxEjjSouSnsiVf7jmXbkyABLEEmq+AeZ9aXUbR3ElwILClMmbHRKYanEtgBqo2YRMS+aZRVRHRkDLU4kgGjY2ji1hGiqOVU0gZ07yKUJSlAk48QWQY3XSXpIaa5ZU/4lZmohW9E5DQQig3+ttQq6mbxjbF0tOLE6kA5wohjClYE1mBWDstYqPHGMvzY1ENEYmIGBIgDtvSuebk+JLtv3nn7F+8+f2/c/C7l6vrJ3bqZWCAvINyMHNGzMTMkIAJag1mhkIQGIjZi5ipiQEKBxYViJKOVhpE1BmZ92xDI6fLeo6Mjq7nTJnE1UQRph0+iogUE4qJKiIiQdTIOaaiWVsmIEd7M5gyRn/NElMAEUmyZHjK4ZwT11KgXaoN1gIgq8BkeGq584v2ZKgfNbOdl22otLX5/rqaLYgVgXgwDEHgXc2EIXQVbDBWdd45T4ip5CAOfeeIlIwMItDomTKzrpXImJh9LHT3FiF+A2Lsh1UAyeAwlb8arHM1yHWDGnzld7TFcj5/9itv3Lh8/cVf/vIHD+/eRXdWI/Srk8cn7eXrN4fZAdc7q6FvPJ/0672dqpXmYHVHZ8+dNjdee/Vrf9g/uv9w9c+Xi2vdat3smmsDhbb0E8gN0hFxLJSvqrrtBiKOLiQhVvumuZD0P0LesYTBTNnMOdeKLGqT/oricO5xxjjtr/zPv3R49fN/ZH52IIvl8nQ4WIZVO1vdPNFPDX4VEJQHjVWwVb9a7c3t8cmDh8cPjvvVaX/qq0/aZbhx40UsFq5VpZ1u9mklaHaeptV6PfMzcYpaTEWQ2ieoqJFCYFCQCkIUHWQEijgZqhZgYtn1NoOCTU0CSSCAHFPljESImbw5NscxVhy7Jkhh5aduhc4zkeVyDDNLXR5j4lssvidKvmEWpkkrkiZQ6JQ37TlBZsZG8Ii5GmxQDHHNUo5vkZmZkCEMWtdNGMQA710fWvbE4mK5MyLUc0r6EbADVDXQaI8ZA+whRM6UYmjCzCJOjRa4vhv6U4cswZAjehbZw8A29vSLXapJLIQLDYgYDyaoIzKpiEJ0q1TXAO6H5lmzubbGTUXSb+nfXHttFs55wAn43ogiCunw+OjUzJxzauSI8ub5KKrG10zbt2m3lbLU2XRTtsR31skYmaB8VdvwZc/7yqNGv8DJK++wZaAV90nfcAblG8/hHM8MIZQCmrKzErtUcgFlkUCqmQhU3iqq2hJKfIsmG/Qs/ixOs884LXPYlEKJjBpDRBQbS+jG65dvVJJr6/OTzsHmhF5I/9JoHVc+EREE3AzDEEL35ju3v/ny45ef3q8GJvZsAMV43PRKHFVaupXZ9Ohpiqmg9tZDxyMq2qaq6rqmYXqX87kII1OVfDLSrWTCZN2qxsBeQYci640mJhwHbEVGdElSK3YZyncxs/WCLy+r+x/f//PK9vzzs2pxPPQ75IIQSOBIiQBPCvLMVIUQ4raRiiiBmV00ZH16v2j1xvEDQSMrmzcTGJlAaFAjJg8YJXz+iC4NzeF05pTkycZqnlT7MMDkhRdeuHJ552c//dG7b7991LV7i7m507t31lev3VrsgZUc+52dy926tZ1lE3arLlDT6t4zr9z4wneOfn27XX7wYPegPwuMrmp2Q7fBXYa8OXzBNs3WVI4/nWfRmW+6vlOc7Fe7PZ312L3sD//u975049JzvTZBHpGtm6HCoAMdM2jZtmROREUHMxqGvqoqrnlAN1vs7N68+tHHb6/X/WoZLl+Wpy9dCqfd4+Ojqwf7fd8fnhwv6qr2lQ5h9J4zC8GSk0cZZy8qAwVIVQUkqTqYzMhiWpBFqWjOOU9wzhGzT9LJwTFFbMgU5E0hqqSAM2VKaownZbq5vJC3SY0LpERGIzMbt+MiplUsFcUoiicJT2ASE4WZKRRBhMwYBTJgsTS25hp5/YsIEZg85aacqrFs/QnojzTtaUbKx0KsNCPIYf4UfZmKzctVaUUWhYhClR2cc3WNboABXdcRNarqOIbNLhaqGEPQG4IAArCBKrauW3/86WOYMHOvQhazxS5QqBPVYrddJss1uyU1R2E0Cr442+P342rZkndUBB7PS/b85UYS8sQd59AH822nm5hNEY90Q5htdjdCdk+JKOUOxkwEJoXFcgmXo8djWHK8/xbRtt7rSTO0NezpffOtMukK46Z4r2TplTGci9TteaLlUU2O2kiB8oQy7F8Sqvw8TpOqMg3sFhqGAPvFm7d//tKHt5667kBGLlIwJt4agUwsm8Hju2+SKe8BAyA9j11aKuBgyqCm8k3lsHniVhoBNm1BGpuTFScwOzhE39GixfXXnsF0W2xQfmvM2JxrAKfor1C9bLs3bx8d+Eb1+tNXd/bqWtVA0TauCU5BQhYhE8wgIqYqRBUDHgZYIGV4Hi0GYqgCIkOKnSAmSpD2SkRV3Ogxo2yoGMWm4D1DkFJ4nBmTmEDZAXDrYT1b7Lzx29++evXGW7/69enxiQvr3Z2ds4e3H356+9azr5jtdlTVs/2eH/RSNxbUlrrz9MvPfkP604/lrXsd8BA6kC9aV8Uj10Nu2/efqSG2vxxCqBYNh04pmDUtzroBf/uL+Btf/3pFl8+sCvRwToK2sV5aegSr+7ZjN1MNIkLszczV9YOzs5+8+Vaze7BzsCsfvuf84stffQVWHz64v1/vOEYI8vDewwDHdXNycjrzMyA1cgYTYnYVUvWNCoJpDLumyKhR3BVWcxLD30ZA7PYoDDhfO5dA2Bxz3OqKjQWR7P4pQpMLIONdeIwzx+9ysDlyYNqqyQHEHAubjEy2jF5JRMh7tJQVWkxnZaNydmhcAtNCizBEwSwCJ29nI4+Xp3WTevDmiIYZkHNCkzzcdlpK3hhV1RiCRtJHGQIkyWpJMBs2CbHNkYySDWlWiCrHA4Gh67Z39R6wZE5lSk/a9MrUJ9toEEWqIM96sjz8+Pbj2CU0pI4jF3uxaXC5unSME2JTppRkLd9n67TxzzFAV157IVlLQbalA0Zyl+Qbj1RYkEsMyrkxM6QCjI3/YuwaSKXs8UFS3DNOiaaUCg0XwfZ8xv3LTLQt6XyeXKWaGW3YMZI//jt+g3OiqrzVOQ5BeeZvPAc5YlEq5o1phYA8N009mx8e2Q9++fYnD27Xro69FgQ0olxZsas9rWFLOZhxt3gkIyUrW4wpdjJRQvwvfhYIoBXBMUqJvkVhZBsrPjFpXkswmZTs5STLMkkntPctcl1Iq3MLeGMeL7wVAGqHZeP2dq9QV3//k/s/uvNgfTqcLZdBWtVgolBznCLnBsn0T/m6wTQYzCgm76gi6FhUE/3kBDJhMoTQy9CrdCqdDEGGoCGYiMlgQUzURKFBNUwbacSWQDq4G3oFCzyoeuXVz3/7u7///MufU8XybEm23PHh5MGHj+9/1LVH69URBw9RpU6xMgxu79nnbr3+nWf9GzfObG+n5d05enEb1CMiqBFFPN4nZi3gnN9WUl6BPrQzx1WNVTgx2oM7+/t/Y3/34FZ3pg4VEfUqq0FEiYKFICiQmc3M100Y9Mdvvnf74dFJP/zs1+88fLx+8cXPf+3r31r3oV+uD4+PQug9aN2Fo+W6E91d7ACsuTU9EY25xAqIUda+bIY4KZZ2A9hipCeipquSCkyIyHvvvCf2xgTnjRCrTYwQA81EFHP0cjmJwSiiLIvpeVZMfMgMLpCUSt3MaeMzqYOsOiiujUyfUqWk1VRIHiM2glisEQAAdhfUAmGSHjkL2hLGThS0kc/TbqAqgDEZaGvSy9ue/3JcrKOoUd3Iu7ZNXQMzT+xjOXBMwNHc+4SwXC6dcwIjclZ4cdiUvdhKwioFNMGTDYdHD+8+WFWOzSxAm5wkXrxMcTuXnpMmgAiELQ9yehDp+F3JAaYbiaPjkFSfGJ0rBk8494Zbb741u6MEiciHVpwcM4LGJK+towR53x4PRXzsxIoCQ25hdKEKLL8pRXYiSAzXbB5EaVeyuGHRuaG8Z2R9HlnWLHmuF/jBW6MaSYpzUYTzE7H1Iluh14JnrNNANdW+CTP+9Uef/uq9D1+49rJzpkpGQ9zCY5BFAbLRSCR6YVGRp2VJhoxnu7FgqIimEBE7R2QVoUribuO08c+RUA5OTS3XFEVsaIqFSdHWt2gsR2N7glNFMS9EE9LheSptaV9kS3yLwvHPGr536MxI/Xrd//Lh8fWmfj3sX7u+09R+sF5VmZm9A4IxaWrVqGbGGoGoxMwYTkklhROUjS2V5Zrk6A5zlGuO2EsYjJmUjTlmOgIJ/hwkpGpgMyaQcU1Efb9a7B8M3bpbr2a+HoLMd/e/9e3fuXKJb3/40eP7J/OmYz4DdUeH69nOzqx6zvxRO5s5tWp976R+AVe/+NXu9vLkh49a+WnPInVTUm8znqyqRFy2rtoUCBe7xWY243otvZpjIa2GYbj09VdP/+BrX5HF02EYFqT9UJ1J6KhtHFG76IaVr5qz1WAEUQVp5auHh3dvHy5PA3381jur5Zpgj0+6P//hTw/P1l989oX5/s7JydHJ4YP1ev2rDz/Z29+97DkXMcf+lTBE6BkzOCMFuXHAYiSaEJ3MDGpqgTSwqkEcg8g7gqt9go0jAhODEVs0wiV3KOczKyUv12DglE8X2TDblPHfVAGMxOPJSkhedtRS44augtjU4FI+vQGAxg296IYmmnO5Km1sUiQEMqioREPqQk+RihSw8z9ZgQSc34LKypRN1XvBE86HSFEIkK2bUK6Noajh4i/RCTaowoDVqjUzCTZU4guYrZIJ47G5B1yko5F30LPb9z5+dNzXlTMz8swGSRHBMTAYV2MqwS6lLaKUpPRUGqPnhb1fmiGUHLioEUfpf5HueUL9dUnxLQ1RKshR9mlGMFTVaDxEZJe4PaYwl1PHyvuPlyNicuVoR0QYs5J/80XnSb9NqA1VGr8pRfBn7XOX36T3tY2I8XhmWodJVSdPMv6Sn0t0EYMCm/GRYlLkXOVPFOJaLGlsrAE32KoGY8BisTg8Pfvx25+88frRlcv7HAUQg0xgoLgbNL5aHuc41Gk8YzNt2zjK8XPlPLN3XHtfVLM/2XNNyYMcsTXMjIiTcRWrjKaTkbhmOi4WFigm2jYbBY4/qW5753F4StVM6ETOKuLLtLj/4OSf9+2OvbrY33FV5TkM0nNgRx5EEEfFLEeHR9QMsbtdNHEk0Sv1/1DKdXlGaqlfoTpnKo68S8iy5qE5mkKmlgPTTGRMVPlqd71aO/az+V7frSvn5ztN27avf/GNGzee/9mPfnR4/w6JunDWHT92dBB4Z9ixMLsy74zRrfgy7167cfObvzPIR91P7p61D+4u9vq2nK84HbEfHOnFfY1QLHnkVbDxjaqrEAwuEM0Mw6P/wTd3b978wqnumHsMWWEggzdaD6qyRjC4qgrSG0FAahCRjz+9d7iUe4cnvQq7Wofw5z/8+WxWP/PCreNlf+35F47PzkS9cfPOJ3defeWFuQXyCwWlWkcpcnEJRs5YzdgUmiOfooMpqQVThQWCMAcyrZxPUKYuTlnmc+eBGPBkAmfqUOSzuDMYsUUjrXJb5Kiqy4Uc128uZJ2S2DYOg8R6gZTIrdO1sV+QwigmRMUbq40gzwwLouZgQYe+r50ncqlat5CZWR4aYhgg2SgRsURFbIxF5XWvebVuDDb9mQAZkYBlsgCIHk3ciMxP5FjeX3LOxmq1EWCRY6KoIxYQEUIIUx9Gd3GWfvzVb/2NZCMQsQ/r5Se3Pzw9G5hrVQgrKUXAnElwGJeXbw201LilChz/zXJ1EtZjFOLC4ZY3KZVW/mlj2kodXEzkpP5HJ3X6MhVpTMcY1DUzm7KcwJWPSRGIBZhECiNLBf4WW/imub04GvkkG2LrBUd1sqVHt4jJuZ3i+Hblr/qEWdgaz/kvL2Sdv85bjOGg8RWQakhmcKcOc2vVLQIvql+8e/enb775e7/9NQAUE0TMGUlEm8WFQ9JovisZNMX+Y9R/Y2tnHCEzCykRGl81ldvaSt6i5/Yb5T3gTFuXyTm6sCCe4KgRxdbIJ+eoGq8ZG4Cf/7U8bZw1ITeHOevFOeJal7gztH/ZPJovmltPV3sLJu2ZeyNQzAyNlXQ83jDVnoFT2+IpnzIIAE7VSnnHZzDjiJRlYGLzxszMQgMzG3tij1TuMoHwA7Ruw2KxbzJ061VVz02HVdcSYR1ocXDjO9/7k/uffvzWr37aLx/PGr86Pl7pe+AbTTWfw0LT+P6hC/N+99bNp3/nj9rHR6uP/nS5evRoY/Y5gVpH4iQIhQul7ZY4KpdAQPBAcLQTaNXhqRv6b3/lNVTPt23bsC3DqQWdqVIIfdC1iRiHIURISGXHzp8t23uPjm4/eNwJLl+9ce/eg+6s25nN3Xzn7qOjcDTcXZ6dHj28tti5cvXmvUefvPPBhy9//SutJJ6ynKytaTM7jjAV3Grq98AahrgfaVBn6lhd3Pny7L1zzsWaMaYxb38EDhozF0p+joiSkUYMQywHTcZf8mDJLDcSGs+kWP5nrnQGSGPhJrJZn55haQosJ0iOwrmw0y0BXiqbDNIP1jCzA21M0/gvpdDX6NpiQnslosI0P5cKgvE0bC63UlCYxUAEqWxQafSYt8LjlC2ksS8MReEDYvYKBlMEifLeD5tJDONIiGhUwBvIA2ZGQNetHzy6v2qH/dpHfjAx29yPQcHi0+DidGZReL5IFIDkhoBEG401IniQ6tgR4YLMoC1tVNBl2xsrdfDWNxQtwlK/5vFbEUQdPRXkLIR0a06YNSObx6hp3mqO8RnTHAQYL9zSDVtZuBP9z+X1lAZE+U3igxzlHpPuRoGLPJ781I1hbJHoHPdf8P3GAC7qx4CUnUhbc8HMSrVjc6AwmGjXzHc+vXP0i7ff/uZXX3MxlTNyi3Eu0Azbr5yAUi721NPGJixVpaTa1/QWjuHZneeQ8v46BZc26AyAIihg4k/imK/BG/GubSpt0ub847AZsBlDF1vUm/tFh7MGppAzFw7mu7Ju//XtO7eIvfd8vamdOCeOCWCYy0lVMac8al8CBEyxsVrMoEnBsQBMODMxppeTISAkzlg1ZlEzm3nVCFcZa/1ieX4qsJrNd0IQJtfMF9qv1aiqKjMTxboLlfPXbj5/af/yu7/60eMHn1RA1x254Uqz6tXRUC32+9O6e3CvetFX11679Y2/vXr06Gz532DnHMWQ5SPGba+tJTbZfJsLh5LnQRq086GhRmz3jd8++vqt51vZnzl1s2rZ9yarqlVuBR40g7W8bnsFKYzY+bpZPVqt2o64qmbu8OhYRKt68dSzzz88ur8K61lVre7eI+2wDgeXr1S7+2+/+8Ebt57eu3ZTA49+i3FKlNJcjZngn0fTOWYnQdmUSLxDRXBEorliM0otJhBZMBtLURJa1Rj3srQJGwWLRR0zHSWrUq4aSOSyicJWdscppEopsbeWUp6LyfeNQ06J9YiZTuJAnliwbUBngY9yMONPLhGhQPtnMHPRvXBTbG6K+vF9U/hMKWtcBk2S/0IRPS5Yco6MVEUHaGoYVPS481TGvbc0V5kFrUjJeKSmTT1fnfz63U9JB0Uj2Gl2V7KiMLfGUk+OFBkgIiUQHC4aKDsbGwxEdZwVLQhGMWTrvaqakogqhVHvjqFzIkKun4iiYXydzT2zDaEZDZC4WRuhd0MIRkg90vNtUtKQcyACe2ODBI0CSgkuBh5t3O2Pn1VClNLEqS2fZqJqNhHY8wh/Ne4lP2k6y4mhCUoz+XXxO5qgOmGSM+qZAXiFqUnaPyUzipVkI75jmo4cJthoZGSI65aAfNPkyY3jGe2eqP2QjU3Hboubp4qHmEBbbKKbmWnvdbc3sYWRcL0ON6/s/8Xbjz7/yw/+ra//tgvdQ2n93gKnbSWDn/thIMBYR/M5LtxUJ6YwNQI5Io2wz2wBmvYxNIbGAAIqs6HZUTfMq7Drx+6c2yFoNk710wyQgcBMFvtzAAaE0FpCzHWAxm02DUYbhshk5JlajvAoWRwuzNS55MbFrovZWkXyP1AgupASk8qajOH3Q+gbdcthydDLHf3jB8s/uXT8e2iuzRAOqsG04tUM64FneShRzlrcwdVejYwZYNK4eCFkShoTF6LfbJ44lfX3jtnAHEMSSuS9MHPERwARyBwZcRI6QQITpTpO73LjXfPqmYZ+WAd0zW71+te/8ejezTu3P626j619L/Ada1717XyNMKzoilm7/5W9+Re+vDz6O49/oHw2LZW5um5Og8ierla6b1Ut1dL3rp8W0WhVA1CT9GJ5umHmgMfYfUFPXd18ot3iUv+///0vyZXfPrFmn051GSrxwdXrqm9N206GIRDgve+6wTnoeklN9eaH7z0ys/Wnj5fu08PgPT17Y79bP/DUOrFu1l6uLz96cHSmZ/LB8MyNg+Nl+2fvvv8/3LdVN5/t3+z7tbczbY9ENejC2YpdbVqJMeDZmaIXCY7IVAm9g1ZEjhxco0auNrGQzSLPzGJErqK4AWxIacwGgRrIcUrCMlhW/zFlKqpmyqiTpAQDOxsssggzsYPjiIfgVJLLnrx2QkQSGZlfdMzu4aL6g/IkJLhrgwRz3IDIV43zO6IazCqiCIGAmJIZd63BlDM8suZzTB5A0LzR6RhOCDCzYEYosFOKLVgjVVPNuy+j2xn6FYwYFZM3i56UGjR2ogcIbMSsImAyAlvt0HR9bxLYMauBuZ7NZ6FbqrRBfKDBYYe5l4FRFyMokpyehIRFRCbDydnpo8MTZibD0AuJeMebSnH0XbNYz3bQJIAwhdose8zxc45SFrVhm2OgHD0mIkwQyp8RPywetOmITO64y/VtCZUyIZLHKzXFMDWmN5N3YB5xSs0shpZzBoFRmWycX5A2U46RJMLF0d0LVbLF8jJgxMF4wplpnX0GsNN5ZZ8evVnx9eQbjC9eeMznarI/+8Jy5M6TWd5lMFOVEHoRefP993775deeubTPXYdBqqpiim01gRwGtm1/chpPGUQpjGyMV0RsGh/trGKXwbaily5ZD2Xom4qY9WQngZQ2nIbyradrS1IAKMg4roLzczRO+vgeKcHSEg4DkYupZ9XQ/+Ld9/b907/90rM7Xah11ezVx307q+uovDmljOYxiEb9FIicEZGOW6gGxO17ggWGVybaRqwbR4Ig48VpiuOY47YfEcGUmMiIKzPT0LNvPCMMLCb1rLl+66VLV59a3b16evLpoEed3vOhotVVM/H+BO27Uh3Mrn35qy+tjuntkTI1OVf1HoIwG+pWwxAGAc2B9YWsHmtlxtGbGRMZYW7rk9ot1t39ev8/+Obqude/2VK9QxKGQUI/DEMYhj43YAiqIUBBnqt2vdrfu3K07B4ennxy++66s8Vi7+/94R9fu3H9pz/416uTe84v6lrM756u7NqNl4f1alY3r7z4pTsfvfPpe8e/uvTRF1//zvHJw7pxfQfwrPbmhqZXP6jFqjEAICVSdsIKYsCYCalhG1Hm+titiAiQCUDngnBjyaIMF4EeNvg2zx+ytUjsUTSNYQOseEjBw8iRMAB0LlWqZOPN9jYbQdORu2RTg+SbR39hI6EnrwsjIo7tnYxUNaKXu6LML25SYDNAnSVQiIW/Es2QaFekf6OEZCpE5XgYmwYBlNhM0j3Dkzs3TBdulmA8SQE71vD4+PTOg0fe1d5RK0ogX7GFcb4m+sb7xk13MyNMGsjy3tgoc7NgjJ7Jdj5zqZZQyNV8pha00HPCf/KbiWj0vWzsB0dEzo3cR0wQ1ThOSUAaKRSRFSgV2nf8MFkGNsnKHMWIm2Ube5+ffYx3QCFwMx22Y9cXqkweWba4YcpUTG+RzhRYUdR6ger9jd+MU/8Zr1by6xbdkmlplnaEkZDAf/bme2+9/sm1S1+o2Q3d4OtGmUVD0Yao0Jo55fJJY7BN0hMRmLyvm6apfTXd869hfGwd0zrM15ldaBikO8u4FxdB0bMRmcO5kz7OkiKl/W1pdEJSbePrxfy/uh+OWL9/+9FQzb711LWrFtanbX15ITowM2nEUHNRPFlCNFSAzRQpNs/ESnDK6iJqjAGG4NQZjUVWVDiXACL2HhuLWdxuiPUYMB+Vbww9RP/EYMpKjpxbmLqhb8PQeziu9i5df6HZuX5y+lEbPtbu491mRrLoz5ZMn9jc68HTt17+7T929GeZFGdru8K99+hVG5sZt6tKq6BWSIyJaKkmNdXajvNGgKegnk57vrK//p/98Yv+4PUgNdatyBD/i0VWYioxGsHctz3gazcberz93sf3H51cuXHzpb1LV556+X/1v/7fXr52/T/9T/7RP/mv/vGDh/f2dg86Xa2D+l7qyl26ul/PPJjYu6Nh587DT57aP+jabndv52gFGSx0Zz32yQKz1rUzDEPfqg6s6sFECoZDQtu1qICd40mQjszpDIhLnIC4y5rTqMaoAFGRf4oMFRw1XLYpyYhByHkOBhPk9jSjesxsmZ++idE0yqJCphUFe1TMSPwVBoLKiA8xhVTNzCJWc4oVT1c5MsAobq+YQTU2btxKzRufq6apmjql9JgqVLXYRSotbwYymuzUJ54AI0bU9MwswaKiD4NuPlEsmybFUWaAYoSipJxmpvEpLN3J6erB47O6mjvrgYqcJwsYdXYhhfWcx7mlLc6rohKBb9RnW6eVa8lBNxNu1cw0V/gUehpjjkYZ9Y1mu3Mu3l0st20ys5g+LmLOnHMOZM4BiCW8UViPD922g8wQc/A3R2ubBLHMNaVlNxKnJMLWu2/eE5Y9+PMO2fk/yxsabWcN0OYclbO29dw8yOmZ8ZcIJ/AZCvs8rVR17EOMyHVw3jGT3n10/OO33n7l2VvXL+3K6kwosOe4hZ3yOHjDc00bvWXQo2Ce+CzNkHiRBERUOeedq4oOWn4zWzLvkD2xunQ8WWmioRU1V+cJEgnO4/0Le4g21UZhuGzwT1rzlAB0x+0lAzkb/PzKp49Xofvkej2vLlW+W1/emQcKqVGYMZw6V0XzlNjHhauqSuZAqoGZnTMoCYFYOeldNoJTUw7j+spkljGqFhNwLcfGmNRiByaKHRyiRgBRG9uTc1U1RKFnDYOp0dw31dMH1f5yVaveVX/PrLH+kmsJdntd27D3ws2nDTkPqyWEDlqjZ6nOMHgfmjAfuuHCzR1LApBzrtNIZAUWituu+d+80X7hlTeO2kuXq24lrdkgMpjIkMG61aAwBQQmfXvp4Nov3nn37Q9un3bdK1/5/E61u9g7uHrloO+XzaxSWO38/u7i0fGJqd27f+dgd+94ufiLn/zk9PHhrPa//PDk6PGHv/f5r+0trt0/vLNz+YXVo35/dzhtybFzDBmWy7Pjvm1r3yzmO6HtcnAhAoI6AiclGCmPDP4Yc6FzeDm9LDGdW+yRyyy7d8gKuNiWSohRefmomWBqDUHGyWE2UU7G4NS7fiPqY5MMGbl6POe8xJMEhBlNhwvWHbakqMIgY9c7QEsowvHRln2wWMidA6KjxhmJkwgQjbf4I+UgAbIBGlPYoxFDRGZQMiPXbxRHFI7HBlNuLPkyC9pFSsZSZgqr49Oz41VP2IWoERtMQs88bRuPWhObE1y+OWesNaSNsTGSzCOdLIGxCQh8DkIs6/jYmXTyfY0QM2C2jlIQx+LI+Ccze+97ldjAS4mgZKoJDzl7J+V7qaofFbuVm81iKOp81JDtQs6bYaVNsCWUz8vo819uWo42TuuTGNGy5zTezc7r4IvKmaY7PNmbHN+r1HKZ2hfczcxy08YYzZ1ehT3R2KIgIa/CjED42Tvvf/m1l29e+XLjq05CVVW53AVjavpoSZT29fTKU7bkpJzj55DgYtUTqoLHzlsJaaD52kSBLFxU074vZQciCi+7KPi2YdxQiUc6Jc1NXwGqFveGbTMBgpk1GBGZKufEvZhrp0ztadv4na4Lf/nux/Lcpc/dODh7tFrs75gnU1IezAgQZmdmzqXdOwLDVGKfnNR3mQCKEWTLkCeiQkrEWkC7mCqZCKkas3OOHJMaTFWUHAFicfZzNBOExvthGOLGCsXG0jCGCs8GHXi2uDT78jDsd+2nbXi40+xq3wQ+q9YPB39ttf/iqIBfuWmffgLRpvG+q5eiaALbOct4IjvSBgVzbnQHmFnDWLazvZvr//CPXgn0DdaF9UtisSFCkQQRCWp90BBMYW3fE6NpqpUMv3jnvY/uP1j1w6NHD9xlvnv/V3/63/wXvdrPf/bD1fIEFtYnh67badu1s9125d796LGZOFDXn1Z7BzPX/Ordt7/+xcbz3tnxmXNhvW4XtfZ9d/To4dnpce2ry/uXHZruZO1qjnuczKyUEo447ezH6Dpl1Cojc5Nq2/AckteoCoNmb3gjWK2b9ItMPuJYIZpvJrCIHT218Sx12HR5IYFHNi7jnVvqYxyqc9Wm0ANRzEil8sILnzUeSSlmVCWMK3cMAYnEfKu4RAm5y0hug0YJPcxP+8cbWn+Cmo65IiBE9CwfQ7s8ig6JubnFcH26CTYVcDl6IqLQHp+tO+WGyMWEJoPpFOCdKoaJKLuYpQos6WJ5K5eQ6X7eY/7/MfanMbck2WEgds6JyLzbt7+13qtX+9Zd1dVLNbtbpMgmKdKiKI2WkTzjMSzIsDBjjwyMMePBAIY8gGGMgbGNsY2x/9gQNNZmQ+JgzJFlSiSbFNnsfauqrr1evap6+3vf/n13zcyIc/zjRERG3vu95iSqX9/v3szIiBMnzr6oohDTeBJ3Cfuhtn4BRg0WC1whtQfOCTHkCRWRLgcGCSGCgACByJEmE4m1Rm92EsKsUEAtcqmmk4iELh4CpJJE5C6hLFuX43ZI8Iporv/mdsgET4DWXJNtCkH0kSTIEJxBeJZA0X6f8rKzEfKXwuqmnMmiIF/pyusz9MiH1dHq2kUTvRaLDRjVs2v390/euv7Ry09eO782WjSNByGtkQ4azCyM6vCWQFLbM8wQ7LfLQZItIyYUJwTQt6ZXtCvqPgHUaqdp2h2wtPnuksRBwGjwzyGQ0K8djVBbRLTHoasBJ2IB3a0HPclAKlC2dSfIYGF95dZ7Fo396MG+iB8MRo+PjKkaEVQ7nvdaWCP4tAAgROlJwAhGciwGIQQYggRxl2KwiiAAxzR9AgBxtRCSkIAxYDAK/MyMaBBDoJbCAIIobBBJBNk1zBySDGAdikOxtbgNC0+L9FjGczmyIqUpNxs3codHvXMJhv+95/gfT2G+V44YZmtAE1ir5KjoGd8G1uWXBA6l0jsKxO6KCMdg/pdfM88++4W6fKKQhWNAriSWxhNBYfSMnsUDAKMgF8P+pw/3P97dv3c0GWxu3rv34P6d+/fvHnz6yfVzly574Xo2Nk1zYfuxh67xzdz2B8fj43LQL0rTNI0x5oNbnwyfeOXxi/Dhg+vPPv71ixvlwfFbpdvcvf/+vdt3RPCZp57d3Ng6PZpUrtne3Jm7uQp5ogqLYMrFCAncSCDCgqHCRiwhGU3AeTkqBBAJOTYd9pxXK1azcrA2ISCihpWyCEWMzylM0LD1bV230JKl55G0Iv+ACCH8XqfEIh1Cmk5H5As+iFikMjFpfHDcRl5iwAjAHlQaz4+hJKbTbRCeTrGXZBtHRNTuRwyBi4uIEyekPZyXhe8z16vXMgMWjTpDA74+mUw9lERkBRGNR28zVt4h7sH0gRA1hQRs1eMhLa99NmkhkaOv0KzOXFnSMWdmAUEUMJTnX+ZMa5UCijqrQINbNQFJywsCqPMjIBdgaF6s8dYesoYh0UAR0m9CAnaI7xUAgBjdmnNi6Vohlihs/jlfsnK65Q3qWmLbQSRwvPS9skmtcNqWoYkHcgnOabZncuL8QsyZ+NlGV8SORpjf4J0IiWhhpUzeKqRc+MnbH330/tOP/9zLL4MhJ9yDNuCrAwQEyQIAOsiTv7RVvgUJEKWw1O+VhaWzqXUaLfDCdpsSf9W3EBEIcZbIkQvI+a4Jdll69ha98vyNfPcxCbLMUZoUADCASgsYNI/ADAaWZeGd8bR2a2/xk/K+f/4xA/VwOARAay1kvlvvU1C0aiSMgkgCaATZYLANUUh91oMQGpUnwOpaSQgBPXj1AQcVWcO4EJmQSBtCICLOFo0te0VRoBCagnoFcAXimwWUvXXmaeUWhGUxuubc0WKx16MJu010s61yj7Isjt988dzd+uDbdnpyj/tzAIAFiFCB7OBMpDWdTvEU8+ZmTp5/cvLv/vJrjj4jPeF64n3DVePZey/sgRmYkRmcepnAMsC84Q9vPhiz3bn6zJPXrt359ONPPv5o2KeTg4O9hwdPP/fUzsbmK888/aWXPvtf/f7vVae1Yz9r5g7nVFNZlhaK2Zw+3d9/9/0P/w//63//paef/cG3f/+99743Pq17WF157PHLlx+3pjcZ16bo9wa2AaclIUNZVhX+ABHRSdSCM4RHNDEbJdlgY2hLlneUg4czfFX6EL4XR2gBOKrGIYUpZFXESGoMOYEgIktCaKcLRHdrEDFFtuZPxBdFRTNyX8j0a8n/E5UnlMsETqOeKWTRALpEbPVPFGoTllrtKPSOw84pBsioQSfVWEQErCk8N8KCSJqDQgbAtyGhgJET5QQBUlARwDIDztV876bTacOhoYX33nmxeJYTdMn6kEO0JU3p5kgQuytERC3PkvoyLr0lSV4hSx2BCMmYpAEDQM7mJOrBeSiW994AivPB24HIzE4YtEIrkSEyxuiZ9d6LZzBZwxzkJbtNvrygzAmnIKx8m6WbDpR/zgWUxLwj5rUW/pBMRiikiZwSyHuy769cUWjo/Lj65yrdX71f3x7h0A6++uYlySPNRL8vyzIdAEMZ0jdEtry3O73+yccvP/uMWeuJiEH0MSHnjKWlNz5idbmwHI4lChEYhCZ7oDP5uE0plQIjL9ertazk3H4Fqp2pZjw4dXaIUc3BAKA58RJz59KYkQWz1j2y6CI0UPVabFD6UuGCaNgz6/Mxf3j/AEd8fmeLPSBiWZYiRZqetdpankT7eSn7FwAyiCgxaisE1wdCzpB82KIzB2vDmFqlSZdgrW1VJwaWttASlQMg2zB6z6J2B0b23lgnMkCwpncCfu78UGDd9pma42Zxciy+6eFa3cL2i48/+deY79LRH+/Cs/M1R3irPx7V0+izfAT2qnIQdF8kgVMo/yevVS8+82Uor502e0XJzXxsGHzj9PJMjffeiXMsCNzQYG24e3r88Z27pr/21T/7q9cuXRofHp/bOfdLv/DVq5cu/ot/9S/Z+x7ZVz/zOeN9DYNpRaPRcG29PD06Hg0GLz/7uVuf3qrA3tz9cKs3+uf/v9e/U/7zvRt3XQOvfOn8i09+CcECWBayhdHeFhXXBfWAMGbziwpDSCBebdCUAqz0X0PaKhFiwknYwVYryGTEKKW3FCB+QPEC5LU2YGDh0fKTKFWcUkDtDtjD/0BdlpJd4VCs0KU4CibB4sxcfOietVDbi4FZJFRhIETwvsrfqDTHey+xkzRGKTIq3gYxk6fDRep5VDkyn7wIEhlgCsG4ahvusvCWCS8tMSNNKQjLMzORJbECVsBIdXprul9McTDoHVBjTENu3vCmsS6neAhGo2FKW0prvQlUjIh8UyOGmiBBQDHabzQxpGgG8dk2RyIFQWjVLG7RiGU123ov3jfGGAERnwyzRgPQ9eA79kCouarBc4aIZGNDHE+GrbD33lCh2ySind0AAMQE2BISGUIgH8ilVUs0CxO3mxfMd+3GM4aYAhTsSIJpLxOmRlZKiJRaggCEcD5mRmQiMsEsKmQIgMTHzgcmhl0kA0D7goC1kbVrmz/9gVmN7mAQjWZLRwRN2NaRFpMdO34jSwJYyKvGZJcCyTxJ7D2ERVrSYhvoQXg+gk236abHv/fBJy9/ce9rvcePhqWrSqQZsIvoBCRGwDOzFtMNkhmzpgIQGae1UYxBAPReE5kQESrxhRfp9WjQ73OqbUjYCVP0sfZoYYumYe+9GktSlcumYWstESaJBAGEnS2Lpmk0ak/BGK42PzxihbTbshQtjxl6K+SoTd9EzwDGOi/WFq5uEMAzu2YB1Ct6I3He80nRAwdr795wptn7qhmt9cxUFtbUm64smExRihgA0UpYEEVuEQDfYNRiiVR2RA9ShiAeYC/QFoiV2jsSLrQQogLNe2b2EBs5x4bMRBaNBu9qbRbPAEhGiIAK0poCTAAbgCLGAxQk5zwgWVwTmY1PJ3KYNkie/B9+ffCv2H9zc1Z/5ycTX8G1Ph05BmfnWGEBJfaosgLI2LiyEoC1CgH4YG14qZnNvRXnpnBu88rB3/mVp8E+edi7MKhuDce9h74u+q6e1sziQWrX1N4zIBAKS1PwmpRvf7p387QpxBZFcVgvmjlfvHblL//ir9/64H2p6rmdT2v3O3/8e1AW45Pbl3fWFhNPQoPBwPRp49x68/GczeDCuRdLmn/r7e89fxFeffrcq9deurL++D4cBwTEZCRGCwUZZTCqaQYFHgTIOBARIREbklmQGaBhQgrh38EJKiJoKGoISEAU3JAMYgQBkAEQgUFi1x4PaARFwMe+e4yg1QJQmEE7L8XwWyQyYHPzM7YWlyZK7R6QY5UEISlShmpr1xQJam+gLEgxRpKww1kgwsQ668QDNETsfVM7D2KMKRCLpqkByDeO2QG7qp4hosTGhUBW0941LIU8Ey71e1K6rfnHaNCyOGXhRrgRL1KQsPeexBAaEPYeC+9rXL+yvjmW8QAJ5mKG24x7OXkEAM1j1maf7SWZQjOvF9N5IyJJ7UM05qzYbv3QNJUuzJiU7eC99zHOCs68VuWgMyWjJFDIypcxOKj9OtVtedQb0wclkJGGc0aA2nKYeVJ/QJ2ulzqfT0d46uq4qZh4mrZ+bp38/92uNLHVf8+8lnSCJVqvyk84YAnIChfsLGFpDunDiswYH5HO21d3mYVTpW0BAOeryoOherx4893rz2ztbA3PVVwZElKzK4gwC8uSk0a65n3MLsggnCZARJY6Rd/grMeXgJas2UsZ3ulK+KMkI72UWcMyQzIiaVH9WPYovTFBMuFDEL/ilUx58W+0xgIAFD1rlZ62A4rInYfO8q4YurZZyOlsPhqa9e2qgRI9ooYpLxswdRWCaDMouqQrQEjh0O8NkKA4YRsS9FmUKGuRRW0vL6K1FQmEqQbt2RBkuxQ9aUlYjCAiEItHBkcsAH0UYnZgGo7p4ACwxptH5//aL3ypt9b/PXL4jXfs7vFss7d16qc9oZ4DkaoxFVhAtlJRnywV9URoZ1bPpbCGqYS95uA/+43RtSt/BYorAofgdxsopBkizUXmzI5ZdQlovHhmx1CUdjw/2d27V83HC7f44L2fznxzfLzfDNw/+xf/7e6nNxvg4XCNsb7+3geVwIgG9RDN+TUGZw7m9Wz+8MHBcPux/cnd4/3Dbbf48pObv/5nPn/p3EbV+CNbk8uCW1VYlw4+tL8Gwwy1qouIGlEFRWVIyE46AMQ2ssIiyBzVE0TCn0GZoZuZ0o72CPyHjCAsH59MCg/HBNp6AK1sGgqyLVv1RESluqWbAaChU0N9VxfVVBB7gx55nk1nRwZ7ImKtddBU9cLXlfNNURhBNFQAJvQLeTGJ8i/l3cV1xVOHoUxeOrNEJE5C5UNmS4AI/YE1Gn2vMZWd1KaO4bNlwJHmMgKjSN3MJqeNiE/RHyiC9EhKn+KNc3IsaqLPTAkpeSMH7iOG7Mw4Jy7hTwzvlTa9EgACq/MohKR9OUJrHQEEYPCppkcwSogAtJFQ+evSDBMK5nufz7Cl+NTaFSGrZ5SmnWzL8Qm1AaaS2kKynM++is3tPCPMfwYwzzwwq3f+d+HiIp22M5FVt3bp9H2W14+ZvQsAMYjzwlmRJigIBIBGQ6z8j9/58NXnnv3FnQu18d57ITIKKREGoWTVV6iKQNYHCbtXtrRoaTKmNJnc2ZUpQ4QXBOdWDpy42E70SvqgDFiT1tTbZACNCRpFGqrFXuk8Disnc+kKTg0RlfyZmUEI0BgTtAMUbQOrj++e4gmfYJ8GsH2ppMo2XNQ96atfFgDJtCYKRBMSu3QaHLRYRBQPFAwvoAUKiSLdYRJATQ6NwJZomw9B32H3hVAqYQ1oJCKiaOpHKcB48ByacABodB5Ajz0gkjEMJDAPcLj58F9R/4nLw3/rF597ygz/HqzPfudPRrPqeAMtA9bgKwESGFoqBeuGPRsooVnwBnAD/RHSTQevvuj/5197rr/xZw7NvAfHVrihI/A71YKjrZIbZufRsTReGHBU2A9ufHI8PtncGh0dTj+68f7pfHKuv3b/8Ph7x29eu3Bue+2CE3748KhaCFn7+Gdf2D09mVSz5vR4qyib0eD2w/sTBtw/+exLW7/2+S++du1yKbBYuBq59pMNGiYcCFltCBBjDxANYjRXhDxCBCFGio3IgdXjKA0CsgQWnsbEYPEIfIKIgDS2eFkyTvgIkGUfiHQFwJ+FtLKSHROOagzVIKJQWjo8RQB+iW2nofRiPuMwAgDS2myxAF+XfSMeppNKGijttuPjxWLhGl9VlfdeCEVYSEo7QESyxpgiF2pjXeSMF2S2q+Vli+YiaCEpapiR9NQDIImv1gc9BPCejUEHPg8xx5SCIQAdBhwbXCMyAi/8bDxWo7ADIREGBiFH1GaetHQNQM1uubYRKGDmNk4925QAPWrzJMvCVDB3cKhdSbuFHQIXhlB7hX6vtIYhCODqfuuogyENHJQxJLtt5gBe0vwMqXEZCDkEWgZzcoJDqGqs00kFDNqRUARi2ANDrNIbAq1jTp50F9uBbeT3y/iRQykn9AKRY0lbSTRk4lMKf4jnx0NXsD1j8O4xyy/lY+EpTkn00XcNAUyRAQsxC4I3pZXy5v3x997/8AvnHoOdICp5QBS1xGjadWiEob7ddCIh5vPlWxbmpk0bQMBAYduDt6xZxu1L+d9R2s14Z7YjLVgkeBPCdseTkZwv3ns1ymqIgKubFvdWtPBVUOdEzSdfDyJ4r2EHQu0NiAhUTpvF27d3B4378rXLG3NomhO7Ic4VxghqpcnoSgjUMejAzIhF1n7RgDHqZAlHsKPlh6QW8NFyLhgrEyGYFKbIUCMa3UQGEtEsNfIkyBhy5BBBUBDEIELJIuCRaGAzQ91isd9b3L2zOCG+9MrGr/57r317IKc/eA8+feB6AAOCNQuVh/mcPQESOJyXzhbgTgszwoV3a46G//FfqLcufHWGUsn9TW/qZquGieHJ3FXM7L00jp3nmsGLASJCQ2TvH+xTUfQAp/N9WVSOm2PfkIcrzz7xlS9+6fqND6/f+Kgcjp586sXFdL5bnY6K3rAWdBMzwLmf4Hh8bbjxN/78z73yuSdHg2o2G09qLO2w8LA9Gs4XgTRmGy4iQlhkSEAAEJrPMghhqmsYQxZiEjYIh4QPQgm5fJioP2kwZkduXroIU787Sdw3Ow7L2nA86dH1DEnHojbMFgxgiChs+Xw4RyHAt63ICoEfMTOyuOC/COpNwnPmfmGh4dPJ5Ag8G9MDKut64XxVzReN894LWtsrSwAoytKYnuajKseFVibW6ONE+UNgOFHo/r50SEkrJIZSNoKRVDZePNRrQyPOswcsyYM3Z51oVbMyVSBxPRYRP6vGp6eMhgSacEKwcNAQLJem0x0ypm2ikNNrBKO8NrUlAICc+y5dgaB3P0tM11llNYkPxfcSrDTUExFkQQ3Vjx2wl6IG8rUkEKdJJotxS3a7Ola+6nyaGYLC0k/6mdpCEGzAtBBaGW0J13Nm/CguuPRgvrrOHukBheXJ5yOsLkq/XE2jolg0+1EzCe81FGzf7AG4h4jWOuGhGbCbv/7+R9efePbZc08iGS0ogwFYxMw+etRFECSWOepGYS6JTcjE7LV+U9nNNc95MCabG+aQWR5W8gSGzCuhRyAx2hx0JK0stdSoPN+RR6GQJrFIFLrZGK2u2XhnwIAJVcdDpTPEsmgKxNOJ/+H9U7KjL57fOr8mTX2CsCkSy6pT9DuAAWQJ/WJFRByzQRNa80gStYMoJCJeUq4jRx4MwYSGQRwN/XUEhYRQQByAYQpeH0QUFA24DoUARDUyI+DQEIIXsF4Mc7tfG8ZMmqfqyQdSfn/aPP2i+fm/9fxbhb37wBSw15gae4geecLgkYa9ix4eyKLsgZ8UIgyfcvXrnyn/5lf+HKx9qSrH63MwFc5q77kocTYtgSuoHdeeaxYPJAhEhTH23t2Do8rZ3vrJ3kMAsz5a6/d7s3q25uHc9s7R+GgymZyenr7w2ZevXXvy+rsfNp988rmf/1Uw/e/89Ad39u5tWPjLX3jqL3z+S+c3RqfN3nw6KQfDimy/P6LaLo4OYbCtWADhnAbIh65EmjGPCbYhFxMRIZabR8TEKCXgrUYIp5JHotYLQUjdM3NeuILnkfq19qPl4wBdOsDCqp9JZ1giwmjaReFQ2VKLPkFLVwkAvHPxOGN4tdagVeqNACLg05HH+eIhCbEDKyMh79x8Mr1/Ojvu00VEHA03wVgQDfuB/qDnnMPoalTkD+c0hgsCAGAsOQcAYCCUVjXRdaLFTEUy9Q/ROKdV0MEArA0LaRrEAgyBZ4s2OVGWDnhiwJEGoQAwAR+d7J0cVUQE4PX0EVqAKuXk6O3tB/CA4VDqZucSXNuzKcz9TzFB5xxF+3KEqNH8huw54ZZdJSUbMQQQYOyMgUF+RO7485WFhOi4XC/R96bA1JzjJvqbLyE9pZtKMcpXJLTlgtXFRkCo7pvM4zme58wSOruuyW/LMFy6f/VKM1TROY7QVaGym1dfsTT+o3j/6qVhwBh1SmYG7wGYC2Ms+qZB018zaw/3xj+++eljz10ejkYIRsQzkMFApZmZgNKWQbZruRLc2a8UHUZU2Ezu5GQmAdDs8HQMuzlsS4tNgy9tTc59Nb7IBFpC4XUcU0POgl4uJOU7EmuShJoMKcweEzOltqMDIgosSm+hWDuo/A9v7W6SXR9tLaazNR5ymWIZCUOFYW7TBZG0l7Bq2ETEoBBSyxCzJxKx4hmRICA2oxCAQdQaRsyihw+BhJjRmFJ0eURGGz6jxmeh41C/tpXYEAyLaDQrghXX7tekuSA4Lqhn4PkK/HSweOzik7953DeP3/hhDe/vIdrt7bK50JzOajee7/f6WEMFhka1P/IAa81/8qslDP7MgSmQqzV3DvyBp2PvTOOdgKkZnUcnwqKOIO1cj/OFu3dwfOvh0WzuX/n8F9bK8nB392h21G/s2+++JdD0BEf9cjw5Op1us6/WSwN+trd/vz87/o0XH/+1r3zmlWuXmtPDg8lpb2D70pMK+kDT8TEzb23vzKpQ+z3uOwTVIxSrCUFYmGWIJcRLTiBBCSWBECFImaRMOug8pDuUDEuyXPYooXFEam2RLolKSEsQuvI3izCKD/GwhKFeDcaWd2DUqCYi4rV7EyaCnXCeMiIf+320bFLaglY+kHQPVb1AcQSyqCYHp4eLqqLCeEEBqhlMOIwk4l3jtZ4YhuIYGrTBRMQ+upYi901kVkRClySJPmBE9oxoPPsUyFLXDhERaNB360MCZsI+y0p6lhAE/d7DI5oxCIIcHu2fjGtrCUnEIQMDGY2vyyeXmzACROIVLFRR8wsPdvnKmYQb486kV7S3PcLsnOosAgS9Kjd0SBQpBQCRWPtfrUweVvgKYuLd0qGDyyxnOYgmY29hnNRac2W1HhHQJ2oecjSSyAlnccQ0pVRMbmkhf+q6cu4Ss9xavr48x5Vvcuxcemn+xvhrZ9jQWSH64JUBz52zKFC7eQkIwDV8+/qHL1299PIXPgMQUh51FyNfxaUdQEAQn9AvcalEI7R7EhEVWRCWgW42EYsGUmm9WFhBtiUZZQnaBtoQel1h8LOlm7v2lUcBNv9T79G2a04PJ4IgeGHP3CNiBAhFOwN4UYSRFkCFLQfM49nsjYcHUJrL66XFBXMJACKFMSFug8hSJ/jTpJR6RCMCSjq1u7BmTCAZRGBkismOIiIkBgwiIan3igE8CaFG1YoIsDFCZBHV/eDZuxy2bZAJE5DHUBM2S81as/3FekV9DziE3qI/kvXFzz1XvHxl+P89/+Cfvbv/07sHB1NYB+gbsNaxgyn5AUNfzCH4v/xa+cs//3mH21jNjGXPNfhJD2gCMm0aZnQeambHwFrggp2gkMO9/cPTeiGWNjZGzO7u7Qfjgz3si3P1vKrIAtZ+c7h2//ZNI8KzxcN6/q3vfPMz59b/w7/4yy8+feng5O793Vu90RqumdrDsNxCAcdV0bdYlIfTed/qpngVAoURoNVjgoNLfQDS6qaCyrEIEQQIRZAiw6MOxWhVE8nwZIkALlPXtqUBQPAHJ4qajJ3hT/DiGTnqpqrBa6O4s4xwyW8EIKG0S8Y+EsWV7pWyidK/1FABMJsfH5/sOfbDzQvb558B2ydfVVUFQgxMhtAie3DiC2M0Tl9tzoQSQqG1SylyEghap3lkUxkj0HgrEi8C2rDELxYLZmYw/QH1LPHCE1ovTjplTtoLEQH4DAaslqWTyUm1EGstodeVCwpnmtkSpUjsJwFRmZDPaoHmopN0dnppWp1LOi799svAbykIFGmA0F4pp3oYWxXFO1tICql0ycLUbT2UJK+UK5Kv1Gd5sWnJ+TL1Si5kytKQ8iXnq11lk6ugUNcFxyzSn819f8aVH7M47Qye2LETrPLX/PMSI8lhFdd79gSYGULfTmYBYh4gCYlxuDFY++hgfOvmvRdefo6IrGlJAyJZS+B8ci/lr064J5ksCBBr9CAgoslgZrqJ3eK1vkUwWUiU/9KurXLNtDzFFEhbLCLaeyc9zt0pnSUVLUEpfaPp7M77EGqdrdFzbJAUk4kBgLHfEHPVbNii7vc/ODicN/XXn3np/MABgLFoDEXRNnrpKJK/BC4RNXaKeERt66fOwbbYqiBijKoVIc+CyKj0KxYJQmDXpGMSvMtERADO1yJCoayDii96XiyjEi/O439M04wH0MehzE6r0WEfNqqxmZzfXMPP/o0Lt77y9Pu/8/Yn/+27/NFh2fOwXtU9AyfWFJVH2ijh6O989TG5+kuuqnbcWi0nU7oplQN5zPHRlBejauDYa7ZwEHREgFmkERKH4rgxWOwf7OFi0TN0UI83h9vPfeGlqp4dfvDR6fHh+vpocXwye3hQ7tg//8qrv/HiM9sDt3v0ge/b9dG2XZTz4lBwWHHRuMoWwFwV3vTtUKCGECesnZslKK/gU1sCdcOsHqWIJAhAQUoKLUGDN05WHuNQmBbhEcaYRBDaP7u/Jh+TbrFnH7ogJKKUEdx0AtI5Ysm9qomsE1KMq2XJlR9lvqm2hvdeP1ezO5PJrKl5fePKhYuP9Te2HGLlmWTBzJYK78U1lYh4T2VZ1nVNpCEKBMgJLNHC1OK2zi5jPe08dAIFFhFQCABN0zCDB28tATpxHi1yKCF7BoQVSIkBO4I+zmdu0Adax/E7N8dYuEYsVdQDw31bS92MZL2CJpaJDbwsGAdqR4hkbLDbh6RkQ5STSBIWEAAhJg8Yfe7RcIcYAmMBonQWl+cpvTHMHgEQ0TU1EWmLAmYOCyYkMr5xkjFv7dbiHGpnDRCS3BANpIEM0WQBIuIbZ61lFhIx2vyL1SIvgmAMaQHtFDIKAEkcVdqt9a5FRCiaX1r5VXV9IyKp/bx+gYgIGFpLhdR517ISDT4C0QosiKGqSLa1rbxJ1khMvoN4HgADSQXE0FAEISb15TjZpmOlQsYYz4skP4KOnJ5jjwActi+Pm1e24dk5ACT2dTUTEGusZyE0o3KtqWrLOJ6dDteG54vBH9zae+X6ncdeeXoqzaaQcbQwKMYX2q1K0wcDs1QbUQgkS8KZxgZ6713hSm9c00xc40wvzcmLCy0I9SoMI4IXRINokL2wAxEDpYYPOO9135gh4CmoDwy0QiSqFYtVNM6k5uAlCUSJs6iuFt9CzciwiRqOqzewF0S0ZAGAnWfvCRCQGEHzFwlIgpESGaBviGoP5CtCERma4UmNf/DprdJsXL601WM206kZ9KpeYVyzAQX3C3YMJEBIJlBEMuRd6mgiwigALIgEHgUBjDYIQSQyyCisiRIsITwLwACBIDIJiSZ5ulpPovdc12Isakx0PKRWkdf7KTICltItYM6m3/Ms6LHsIxcVM/adbWDGN0X6Tz7+tX//8itff+onf/Te7T+5Bz96AKNm82J5IkC3YPrnv7b+y1/+mr9j6MpGXZ+4ppZm2xULVx+Zuun7rYVv6nphqPRNY0xPWLxrirKoXXX/dH9Q+zkYLHs72xdO6GQi8tz2lXOPP/eVl1/57jd+t+QR9/ze7vTSuflXfv7z/4MvXkFExtmhZ1NuF0DipKK5lQ0gAFiUFgQLA6V3CMAqZUQioP4Lzxp1ToCIPkTn6llDokJEQICBMOi4DCAMNlTsxQ67jgnfEpJ+EzFAg7EqYWpdDQAYykYLoKCkVi4sQiJMKNboN16ERMCytm2NehojkUUwGNy9wLG3OYRqbq1VI8ZzCALIYmaH/dpr21fQln8NN9QTrOeFk7peW/gCzQLd6XzvzsFktn3xyoVnrtnRtgeaCxtf97nxVBgDejDLnsYkF865YW+oCwHFzkjWtLpz7Hoa3AEiIuIAlh2C3nsAmrqFiBQCUz8Gs34ys32sD2X4taE7P+zvjbmwjrkp3Ll6eNQ+H96oKQKYN2PAwKsQwLn9vcP5fF6OBoY4GSK4Ow/s6nyB20HnniX7dyToUb2IMgW1VspOmof2lsZojIGVK706MPL0YGTtCtHwEyIhdRzA3bUsaSdIqfVv8EYQhXRtL5xHZrXQ66rs6SelxYiY/H9h5isZR0FpoDbPL+3Pyqo7kz/zyuP3VrfsUVf+iATbO67+msMwvxBTlDvmoEi/eufZOa2dRESeuaqqxWJmjTHGjtbXRHixqO/de/DRg7sXXniiLMCxp6InvkEB1zQ9KlP2QnABxI1emknYmiwPOy9nJplZGLIiGLJkL1GhGCFnkPm/oaOoKgexay8AaPSHInBCYxZBMqv7kgCeQzVtwRL8w53ZGiGz+rQVSOLlnJvX1XduH3yVcf38oBkgNeU69XpWfNmwJwGP2sJXQJ1xiG0z7AgGRgUEIBF61KJsqOlHibSh6rIYCrdnGZyg6m/4xF4ADBUYc5m0qiVAaJfYacusYLcGAEVIS1WgV4u7UL+ZzOaTarHZty+//Lmrz7z4wkd7137w/tvvz24uYFbyM77+j3/5md7gIgzoZLEYSQ2udk3VNHXjqoYbJ95h4wWAPQB7XwEZYwFJxuPxwUnZyNrcHW9umaY5cdODJzc3cDEzJ3d/8K17+5PDWV8OTudfeeXiv/nVLz23vT6rxzlJUcKYqERcvmj+RCcbKAbDYmbi8kH/lIC9K9EJLQG0ZxhX8juXvsnps2SI/agHI4Jl9mcQANT+cu0I7bmIvgxoHbpRP+m8NyIHuKqpPRdFURSF804Lr07G08Jso4GaHpbEszE/2H1g+/6p5z/TX9sshhtMxB4QwaARzUHNhk1LolDjCFsenB3AM0NH43a1RjgAsNYKO++9D8ImVZW68f32zkZo8AOAQohtAf8lMMKSDxhRcwHE1dXxycyrxUkPZkhPkFDjLJAtiQxrmWqEqUfPkgZkUHwQVbbKDiW02HnGLOEs7MkRNCfxYUzPyKJLRwz9sxjzeyB/ZCmaF6N2oyqUFrFTChTUHDrjvczckuxli6WsTnhphM5Kk7SbfY+Iq5MMj5xl1YQuSj3yaGWgyGG4CvMc8o8aNixZ10UCrQGRAUBLwTnnfNOUhSmKQktUrK0P67o2aAWhLPveN4IwX8zeuHnj5aOXn7iwPZOqKUkWUCI5MAm4AABCwC4ypGXRJ6OAImgQl8s9QlcGwmgdS8KkQkLQo5huFbAOJBMDXvo+cBSTmJCIiDW2+2x4KglMeRD+Kl1QZPMcgk47mJC9FzFFZokI1LW7cdQ7P5hvDnm7GJYNGNdwWVmsywgT1qBm5DSZuN2YzM6IiETBvRJyfgMDjkWLAQRQ05KBWDCl5DEjtCklWhvcRbEG1aQtIoZQLdiwVPzVgAiCAIIFMaEvmXdSSb/XdwXOam4q2C7Xfv2V0Wcvjb5z9fbv37r/rU/db7wCv/bay2yuNacDZz9yzcA3DTSVuEac997Xrql8A9hvvCdLlWuIGNGQNccn4znLZFFD4/vCfjz28/mi15+cTBYPb/V2Rp78szvb/+5Xf/GXPvvcfLY/dftCfUbQ/N2IZwQpXgrQg2TBPoiIwm3mDwAEExRSd+812AHU9satSSUUacaVg7yKOWciDOiu47J0Ll3j8yrSprAMBiAwITQSOiE4aZHpQWlzk0CyhjoIBREZdr5xi1nVVHMicCjb9Ni4PjyZHq+Z8mT/1uH+rQtPPH/u6p8th07DC8A5Cll/No/lkihO6p8GIRYAyTm0QHv0OO1CXCMlfQ4AJHgKEIC8iJb2Y+bJzLOAwOLKlSebxguCkIAHi+CTELtypfIrrTxOBFU9HU8bwtIY9OwBqA3G8y2lUei3wg4CRMd+FkgUN1flrWhsCiGpAhClePW2er+swYQ2wF0BpEWRCOocpZCFhUWNHgCiWqshJAqpvszJRRgm39ZN7HBKAK1N3643SENilrwgug0ma7EJGQNOMItaWhQ1VlfUqmU5KNLJPDMhPlU4W9GcojTdGRxUuUhI3+qmZw7eShFnHcWffak9LENfsWQMoANREzEgGmMGg7733jvmiK3GUEHle/f2b9z49MnNLeqZChoDUACFpnqgpWmMSFspaWl6kVmQ1iAFAMEQn6nXkuAlEiI9IARqBfmdgQksx6AS6FITaPe0I01CtoXZeW7nln+T8+D8FUsD5t9Ld72dz7GsnvNerca6aL+Qt/aPXNn7Ctpra64pJ2D9OlDTVERWndiJRmMsm5Nm0ephnCQtQFRVGAHAM2rdGyStOUMAoYyHCKRqvZS1qeU2EL0l/arBsABih3rFvG89XAQEwiDI5XzdlYDEgkVd49GiGa3RufNrf+MXX/7CXvW1N0//7Fe+IBu/uOdc4RfnBsPxyZ734hrHHj1D08iihkUDzKaua7DohYWRyNiiz0LzZrdfNJceu3SwdzyeL3YuXzwSd2TErOFzo/KvffFzn3/m0sn84MHpJ9DQRrExQ99uGbaZI4SWwXlJJahI+XKeO5l3EsyEQwzmQAAQYmrxAGN+jJylBYUxGTJ6jBFXMUnfYTYCMXo5xi5AriS337dCIcYNE4vgBdI0gswFWcSAPu6hg/OYnSPvxBiLiOw9c1MYawpqFvMpPxifLoqCHu5/4manj7/45dGFp+xGfz5fEDB6j8LGGPXLNAQ2Roe0VC6QAs0k1plE1QgQUMOqY8YjgAYbqi0mSAyYKmmiV/XXizCTsY3n+UI7U/Gli5t13SCigEdBMpz5miHubNSk01cceiMyEszn0/39U+fZi2dxiCUBAZGgA+monhnSRJ0D0ENOZTSRTbT5HIiohyxYVZawJNNEETEo0NJ+n5GGlh8LQirsF7gvM3LsewIAwXRMmCJWlDdlFK0lo3F1invOeSKK+cOBssBKEvESTDBLA4Wor4Q1dtcrWaGP/ANHBrwM5xWGHaXINiwrYwkdcRgydJTMCiQxaBzPskBgNAnGm9O/IdhtlSUvf4Ms3H5pjCmKQkSstSp2oTV1rTXDqSiK2WwB4pkRBfYn8OZ717/4/Atro/WFawyAcwxRsQMJyUj6GoLOizG7wsRCqmumAS8hodfGA+hj2ZbUkEWo9SMsY+CjIZCxxEBl8vmkm5e2NUf1sJCVTckRIH3Z4Z0YfQAh+QRFZEB+f1a9/dBv4nSdaWfDSFlO6rJkZ4xYa2OpKsWHKOi0FeQDBWYvRAgILKLFeYLyxEoKtFa3mhFQkNq8EURhEePjKwCyWEW9gUKlLIjV3zuwUvlIq31AzEbD0TrXp74e98tBf1TMapx6t/Bu002e3bny/Ff77vxLdeE3oIfr1eTBSe1PXd1UlatrbLiouWS24I1jqWouqAAxwlbAGuoVdjTqy3zmpezDYO3c5s6Vx899evO9NRn/m1989Vc+/7lzhTs+vV/1sTdcd6cAtTVDnS4BtTG9AOCEowoVEDIzEVFQR8Ln0Ag323cKiAS5YSkkLQVgxkpuicW25HRFNu2Q8TTIWQJ2ulOyxSxRPNDDxSboWhD1DBGKXtQz55ARJSEydV17bjQ9QUTq2k1nixkd9/r2/u27RW/w2Mu/0Nu66ks6PN3dKtZR0FpEYUOERAJIZFGaM+nh0tvTRwhelHSzTwtdmqEEXSuqaoZMYecnTe1A0K4V9fZmwXWtlmcSA+gJyJ/xUoCVUpRB55tMT05O50DGWtu4xhCCkAcQ8ETFmYvhzBDRBrWJpICdgEkYssRi05QWOnoILRnOaDoiBosAobBG2kssGqGPM2JIdBORGFUrkosE0ZqXzHGrgFhaUfhTIHHBDP/izDLCB4nprjRmz0dWNM3/5MyvLl2xpss7EwfNh+0egBVGq2R4abERKTum6WySSReB/JtH6b2yKoqFb1i7SsR3xNx2FvXzFcYChAqmiMheQ+4tkW0a7xoWz9YacPDh3d0PHzz8wqWNARhAdp4lmLmiGUEJO3NaaFo4xI0KOMEdP65OIGtsGBmA0U7k+pAHFEHNmU2RwngGqNNcQCTpB119InzXLdq6SpUgQznFq9RuJGOxmExHYY1Ze0RhBwCMoR2h2t+Fuej5QVXMpvTWwaSHzWtmY7vsHyGfNwhEGF1ikSOyCbCiVC1cJy7ShqFxZLoAwW5sCTk1gmFmVIFGF6AB1UQiiFxaG5ff2QUG0sqUooJY9pNatOKfHoAB+KSc257Awjf+BD0h2tKWFoeu5Ons6hYM9u/+uPnejcs718qLr5RFM6+8b6p6Pp5N68oZB0O2G2SGAL4wRESWShZCME3jq6qqp7yxfs737MLWx0d3t8u933jpwte/9CuPNbgoFveaRbFxfp0JJg4LHA9931tmjsYllHTegiASyCAEwkhBlUDU1noMLZEDAAESAQxpSMJIyfWgBuIcc/Ir55SJIS0RjfA5GlTOxMn4TSc0uvO6UFe6FWhFhCVkhYZbWDiWisunBxlvs4Vtqpn3ngjrqqoWjemXYHtmOjjcu35huHn+4ud7g6fn9Wx28PDq1s5c6pgIZ1gAmRHJPFIq1WOIUUTw7Rw6RCBxXxFOniMvMXJbgrJKxhjxzlBxMj7UeP3HztlhD3guWJAAAxXMNVIJZ12SdUMSCCkozOyms/FswdaUtsDGgXhm4WAKbzlfd4cy6tMCFMFE1YdFVI6mLtMCxHzj08Wa4pb13sGsNHkCKyMEiYvFe68MOFlmlCqEWtBeC3WFFA5eKVm+Ogfo5muGHdGA7VjNO32fiOASbiXiu4r3Eoso5VuS/3oWb8ujhNotoBVsg2ibSkPlP0E06Xc4x1lvjB9g9cLMlrIKNwCAWKkQETWokIh83aiOxezEOTBkvNez4I001YyInHPAnsAM7XBvMvvRhx88+9TV86NhxZ4NAmu+UJJKlvOR0vRymMfPqa14hMzSUwJkCIHBO8/MEuKQgSQfJydtAJDK+mSQAcigswL/9rY0YM5xc5MPdHXilkPHn6D7IdGa+A6TWlotnDcM4PHBuH4D/LA//Mwa9cg60QQnj6niPCIgE5ZxTEoNoHKET68L00GPgE7ISNC5w2Sy4oMpMIeIkpsZYlJEgAYaESBgEJdDTI+ANo5j9sIs4gBc0zhblIibYhwWgL4BZl64ireknFbnzp9ju9j396ffpcOHm1vXqpn3dd3Mp25+Ml9UC99rYJ3NiEYbaAv0DKYkQGvtZHK8t3vHgm1mJ6f3P7m8Vnz+y0//6muvXBmVOJ/uDtjW9Tb1SYrTxcJbWRv2i7qSkPkfRMSodrQueaDQdk8Pclx48JKg8jpEIsOSyXNAEsz3FIZM+44EXUDl+LOElrhCwAM+r3yDmHumJbKubEBERHQgpF7tIHhFssZCIYEKJEX/BMkpTkOEOeQXLRYz552A9x6dMNqiZjg8Pf3Rd35wcfvJ4qknt3qmPv0UXP/SxlZzch8GQ0H0ZBgogBiZAIWWD0V4XduurlN5qQWX+i8zVS0sI/wZbdDRjCEMHuTo5FgAHMBTVy+UxnkhRmTkgsjJgrC/sgvh8U4lLEQU8SxusVhUi9pDISJNUxEXAo6wtNa6zEe7evIlaqIq/QkzeUrCn8QmqjmhSbuOiIygqc1LGLNU0b5FFxGMb5RQ1SHRjtCCJt3JzM45a8vAG6ST57pEvBKCqukMURKHM4aIyMVq8vqsanKQEdNuRY5s8l3LzxKdhc5JWDoOKiR15NMlogzZ0VLwOvbQPW9xhu3nHJ55gFL74ugnXmLPP+ObVgKQzk+FtbXzAGCMYeda6AF4L0TinNtcW1/MpyLsvS/M2qmbvXvr1v7ewfmidNzQoEyBCEug63CyJVMPGSegB3BptqtLSAtn1rS5kPPGAOYsixYiqh4dcacNt3Eca4OswCpnYPlLcwach18tUUzooh8iMgSUExEyKE6YOTXHQURjjJXh3DREiDXePqy/W0yKsvz8cDBfs957kR5ZMgat1ZZRS5GJ7asTwudzEwm18BKtwqS9JssEAICRmCLMHgQ4r28T3kgiWtrwjERVyRbuhD2w24F169YXbLwVZ+YVn5bEZa/sE9FkflROJ2B6273Z+KnB0c0bi9k6nyNZQFN5P26q8XjKk6qopNc7d3W4tmXMqOitkSn7fayr2dHxflOfDrj+2ivX/txrr24PS8f+8PC4GK5XgMXQirhJfdrb6nkn1WS2ZocVeoD8pHeSOzQ8rRUgg+EgpKKCtD8REUfrPZEVCqI2hZJOKwzmbM0ViOwSrcCQ7s5LEujqCEvAT++CTMkREYFlWTYyQSAIU9XbIFMJRNpoXGZ2TcUitXfiPIEBwtt37n3z+2998BC25w8vEl6ZH3/22ubj28WeR2+G58B7IATLhCF23jOgZzApu+8smPhIZn3gHr4FYLqWpI0cOJqIDBB6DE8nc0FgwcsXdozWtQ8rN951G/gu0SX9P4fVwJdTMwM8N/TT26d7hwfSHzbTMVsckhHvUbgWtunxtDAM9er05AU9IXX89RLyCgR8egYRwRo1AaQlBSerBWEJFi0KoWoGELhtnhq4cszXVrcucCg5iYiFsawtWFBrbBsSEPHIPvRnNUTcbj8C244mqr3lEBCNWGZu2COiUU+wCBooVEiN1iBWJz5CEUWbPIpV3wiKvEHyWrYtp+0JF7OElLqQe4BhZpxR50xKzRlzCEVFBjFhykEkykDXMUFj9Md103WwxUjnkSjPQ1NoSKxTka3UgkZUMms0ZKDFgETUeEe9QhBrETI9AGAGbkIcrK8bA3hydOwaDsZgmZV9e+fh5Advv/fyC8/5We24KTE2TA6BEh4ghdyTkIAXwfCfQr0BYhEEJgCX+4Cp25GTxIMo1wwx82Iw1FhlQGYokvsDgDE6iMvg6gvdypLnT3fKCRMRWi3DyN6xLYywZxFUKx2z+l6RhJl943zcBRFh8P1+HwCcC3WjvPdN0wBAYSkETyEyGADWDmbsDZIlRGDRptGgdQx61lcL47lfrEvTO7gzfQPEv3T5OSmkqS3XhS2pt74QAuSilAHbFq+ANGBKRIqigI6YpSosshcAEAK0AWc9AKKQBm1FT7iGDRVELI6B4m4RaCyhsPNVYQyiASbmNg6LwYgIiMeQV4ogBWCxMIQ4wxKAwTgeSsFSN8jADQy3hlrMSzwNGu8vD7wDfx+kruvJbDI+ORofncLMgaA9Pj3Z2tpaW9+ui7VyuM3z3mxv79o6/dkXrj3++OPnL15wDR/N54hYbmyIyLoIOscAfTuSGlFEClmI8whgYg1nCaqtZ+DQhQK05qEGYSEAG+DWf4ciqCUEtNkUAIFBpELF/2DWys4vRFWVI0NU1ihhNPEgZFQ/lFYsYJEQg9yRWUXExiYiefQGojGIzBrKDqEauHgRb8Um6q4xxRJWbjUABDF6ppg9Nz2yC2ZHRAymZsMgwJWvrDd1s2DwTHji+M0Pb3/jR9cXxRafO701cyf3qtff+fiNnc2vvfzsE+eHLz19vmpOyBpCGI9PB4NBYQwgeDGExjmPiNaWItI0DTtPROoCQDKI3HDjvWdgoliHQSSmvJBoXj/U4gU8iUdhEg/sauamFlpfg9kReb++4PlRDR6sh8Xnr2A9sXXpUXgIA+emhgrvpi2FCRQ7JG1F6iNW2LBHQIb50cP9PedcYSwhSiTJgsAsyxXOuuOCJrelP0W6YmBG1qMglu1uIPdElAQIZFG+nTqi5ENBiFsA9qzOd8UhL5xsxLk+bYzhIKprUcJYsDcTJlTwQQZSD42+RWsPwRl6TA6N1EIkwWRptrBiy11NE0r8Oxdx0k/J6hglGVwaJ8EzjJNFj+fzWYr+Tb/+jNUtfRNExJU7Rdrzt4Qh7Stye6wIANTepa73nn361TNZAc/uxt07H9y+dfHcutR1zVKmotlxekuATUtOSxNhRHLsvPtZaiV0NiuQT0lmiQwMKO0IOfw7WUOZawCzVUu8MhC25nq1Q6RNFxEtIp8eT54RZk7WvORvTrNKdt+0s67yBgyiOG4cMBPfH4/xlr96/qp5bJ3Lpm6aLW4GaBeODSKYFoZpQ3PkWTrFCWm9zyzqAQ1BtHkGgAYiNeytQGwLiyIMjIAqWVNIptSy0glGzABCMRI6qpKhAzwCgFahINLGleLVhCaEFsGAIRAi8Gi2rJHeoCn7l6h33ODhZP/0+LSypXtw+sDYB+vb53cuuZ3t808/eeGzz1wi9GhoMp6JiDHGlAUAOecYJVo7sE3QDP8Lui8GV68EVtoiWNtLNLK/pMJySFEFQDREIm1R5ezYd3EYNeRVhcL4XWCKQWxPFuD4L8X7V66IoQxn7W8iFaLSo7Q2W4oheyLC4lK0HadGmgC155qdGAsMnmsryOQbV0vlG+96a9uHs/lv/+4f7s2xpnLhsWTaWd9Z1I56xb3Dw//6926/+PjWg+MXX3r2wuZgMALa7q+xcwYZLQIhcd3rWWZeLE6bptEibuKEpCfsxQkiWkByKEIAWgo6pvhDm8kTKJL3zMDRNA0Axpj5rDGmtAVMptXpGJy4x86tra2PPDsRSYUTmMUYwxlU00GW5ANGRkDDYAe2cPXp/f0j731pC0IVadVVmbOoll9GWEOafdoJiQxMUrA7ImZVmvNB8vkZpGSyUOk6qx3aRRfPyGKysqaKaRCdE2E+nLiaj5mOgdJ5EPZtkF5OfCOPR2ybSEfTojAqiYnCQizHdzY2txx0hWClQ5Vu5thcOQdLhOey0SkfbfV+zBPSsX3qTD4r0dS8NIi0Hu7OxXF/V1+9lGufpqpwpygP55cHEdDKfwKEmqRUex76AqG+fn//jes3fuPcaz20XUGvTAABAABJREFUc54K9s4cP/8un39IBET0jIu6WZ7t6oUs4AEZQEBsaDIkoIUOJFhYOy9Le8Gx60NLLlOJuyjDScunc07GKrYnY0+aYV58NEcYRRVmJrIxor7dqHBe4msQABmLohAQ5z0b8MYcVtXk3tFV33tlfbSxbqduWkC95k3hGkN9v3wiVBhtY7JyOMe/1CRuWl9yRhMAtEVhIMRgQuVKFo8ALEzCACgkTgRFAJgyTPHepV2m1ISpLeMTLkZAMABegiWdRO0faKkoRHjB0ngxgkV/eHF06fxVetFz7fn04OPx6SkInbv0+M6lq0TWzefQLMrhRl3XIk7RkhlEUgdG5a9a/yvwWiWbMQeE0jEKDefTlgD4juDbCcRFRG1dBYZQOrELLZ4u+zXMypdBdqRWyYui+VIwZoaOkl1x61HRMCBhbH8Z2XQsuBH+F55SfcwY1Ztd6L+OEfVdw4jWoLCv6rm4pvGuHG7+9PrNP/7h26cNHDuE4Vq/HPBRde3a00LFex9+MJ5UP/dzX3z/7dc//aPvP/1B73MvvPD8xceeu3hBai+ugVIqcQWWUDXee3HeWluWJTNXVSWleA/gBZU2EgtrnqQa0qJljVEYOabBeWD1ejFqGzeyRPOp9AsPhX94NJ0vQACeeXI4Gg1OTk4AhMiICKJhZo1cXroUREmttJ4AwBRoZovDh8dj8YyIhoyWniCKiShC0YjUcjdhblse4tJrApYsdTLv7mtHjQj0RSBXTIE9JP0vU7JdVRtjtMqB6rKkXbxTDDSrqU+PLKITkhjhBRAyprT1WRdxUQBDQSAAaHtySZJpdQ5erQKpxGQn1iZ9XuWmEfJnH6pH1WTBjma8nBOcRkvEWlaislfn8Kjv8wOm7yJZvpmU2HVXISJLqnHOTlKtDNX4EJEJCyq02IsQAbOJPYUEiNiSGRzOZz/95NOvfealJ86tL6pTxg736r7ozHV51ORVY8fz+sy15xBQ+Y2DfyEr6ZcUlARYZO0AmM9BLyI6o/GRAAZTrYb0d8Khc6Eh22jMaHQbzI+Isb+3cgJtZS8AQkCwslkCAFQgibATcIhU2IIbqef4J0f7w7ujL5zbpg07BYduOnAGG9+YKNF2cSNH8lW4RRHBpOC4HIsYk59ATfQIqJXYRYOrAZlBOxDz8nudB83NB4RsZzrpBAAg6tu0RCmJE0R0PhYASluLA3bUAAOikBjyhXUvvviyb1zTNI2DZlHX0JSEZb8/WywAwFprbemE1SBhTZEUxKjjYtSg4pxjvhCiARCgFBepwp3CECWbfSq5LyACmkBJkLWLQgBN9IZwoCIhFYCVwxhIAcf6EyLAkgJWlhrdK0kHUS6aByKFdLyAn5BCCxKWBs6r6AkA4ll7G4iI98FBI5GJEJB+y94t6sq7pvHO+0bKtR+98f6337wJw83PfuGL3/ze96VpXOPQy9bm9ouvfOZ7P/rutSev/tX//l+/8erL/+p3fufjvcNp/ekH9s7PvfzCi08+3gMoAGxhGyjFeQBjCnCeF5MKEU3Rq5pFG/cnAFoug4Ccpvx6EWGvVY1BBJn1T2h3WC/PhGXD9cI3Dw8nDAMD86evDRDF+6YoCqXhKhzDWZcCM5mgyYNnD+T4+PTh3b2FCFJWsADRAHjuutkTsVgdOm1nqJxLBJhLTGf0EtAfOp5zCaW9MQRRLxMmiApHUG+ILCIY4owKpHsgS/9IGkY++aRYUEDj7txA0oQlNlpvr7P6uucTyHWl7nPd2oeZfpOILMDyoVq98td1RnhElHKa0aNGToOEU7cyTBqBukq/RtmBdPgKxHg0TdFuXQzJR0BxW0SxX+NGqTQGHAMYRvz4zu57H9+6svWyeBAT6Bgsi3yAiQlkl7AgUuPFizmdzJaWubQoETECIuq/RMqaSHdYr1rbdPnYoln70mhyDEOLSKzQmXMmyI5MysHNN6iDSKuialdDhQjNtBZpW0AKG3HC4gREDAI5YW8JzF41/cmDvYHQi+V20YO6FFMgNt7H/h/YtrB85KWEGCIb1pkEcQEYBA0ygkEiRm1g6IPlGbXZaoyJBXRerEFGQo2XoeVXAIgHjL47ElwK1xJAQgEh3x5/4CivADMbMlQY1PZw6C2iRfNwbz7o254dkNECGSgitfeqQjFz7R0CWVMAgGNPIQYCU0BnNDITBFVBopyZTBPEkctBlL9yIq2o326kJoPE1KOl60xCuioY5R/SPUqJASCVRA71vgE4T9HJcbVTHi4AH0MSEqcGCiBeiyEZKth5icn6iax55xeziRHs9/uEhWMPnsDbb3z/7eu3D469+Tf+wl978qmnrt+8dXh84FwzBn54+HD2+oyda+aT99766bXHrg5s7+pzn3v6maduffLxb//gpy/tHXzu6WvPPXbBzF2/qJuqFuetoYKMDeSogdpZRCD0IAzeq6ATjiNH1suxcLW4oBaoMCQM4tkzi0dvqKx5XrE7nrAHs17CC09uL6oZINuC1Hee4nXy/cr5Y9SAARidIQMsp8cH9w8ro7lrvvVdhZyulTSbhND5rnsIQhylfJ28PdGSrpl/NpQ6sQQqw7F/bLBvaw3VsP2msBreTERFv2dt+NOWRSDsAiEoR4MGKVBnURCwiAgBeoCUPRYoR3w8SAJZLcl4kFpcb/sh0p96EqS79jZvPW4FYvDthVdHkg0QUzjO5Jpy1vl81LU0t9W9WGKfqsnlGrAQipzRT1Qf47jMpVmp907pE6c3YhuRDohoWkpfGnLOIVOJ/dOT+dvXP/78C0+vF8PGu9X5ZxyoXYsuxCAwgGOZVtXsZ2rAcSjVT0AAROuwqCqTybOUEaZoC+pKXSLQnQ+28+yYgiA0X2JDnfLs6bM2IxWMkqi6PkLkHUb7OkJKx08mwUjBAYAE0WjdeTRQkPpZnRTU327cBzyT06Nhv/+cL+hiWfXRzeqSSsy6YufSAKxsLoYCMkqUc5gAiEcgQWN1bhg1dUYGQBC1fQgjAxKzoFUxLXRMaVm/BgdFC7yuV6KEHiN9Qj4PYNQ7RUSYQgEvEbSyDoDC2AiAd0SFLbAwtLkzrKvprK7RYFH2BUm8Q66990IoSMKMBKgmtwZUo1VVNZNSY7nmFWU0jzkWzK5shcEqEFQXo2otLJuRzr5W+44HlNMeDAAgsUGdaJ0tTQkhCIHB4Uk17yO0vDnMOdt3Ea0H0mHSoK9IF3gOXr+W/otI411h7LAYHB0dPTw43L5waTKp/vD3v/PmMXAPaipvfPrJ9vlt75t6Pu/3++tbw+/+8Ce/8LUvff5zn/3koxtvvv7G7/+Lf+nZrW+dO5osjh3fPJ3vvfvRT9766PNPX/3cC8+/dKkY9HplrwARYAcAzvtqsRjiGpE2E/fMAsIqajhTSiiCF64oYaDm3y6hPQuDkAeZVjBZYA2zJ5/oPb6zcbp3GJqSYSfX7oydyjVgEQ/GWdOHOR8cPNzdrTV/P6RBhmJWgrERXppHe8I5VHfsbDtk0b/BNoMAqVL/8mzCmLE0KGqpd5Cl/Uv/IiITAhkS6iJzmJK+lojafPB4YCCOYAQFIHUlJUAITTE6okZOenSOS5PPoXEmuNPH/PtWkDzrm7TYPE8jAFxkdWJLE85/XeK46fsz2eTS27MPUSQHgG46wdJKl5AkGTaU3UJ8RCmlmhp1iMDRCUHJGDhPbKjXc8K++ejewxv3H37piau6Y/m6O7NdYQzGmEXlQMzJ6cmiajp5ed07w6eIhPlPncUi5xHj+m+edSZB7+/uFACIMLO1NmUipkeYGaHVodNLQ1JfHORMnAEhIC0KJxDK0LYblNgVoSdAgIIIBcRTA4YaIwOxJywfn8y/Aw+dbDw13FhDbLw3jAJewAtYYwwhsXAKFEiDJ7il6bFHpKwRCKsrFx0wMQAIEiOKDwnKJCgoGEvEozEloAZwo2TEXVyosCMAKeUJgGOlNgmcQIFHiFACCEJwSIMBRIOCUjMYop7pkUVEYGHmhsXLAoCLwiBC5eZV4wxwz5qq8cYY7eMEAD56rIRb1SDzVJxdT5SZJWT6xif0COjMEhnMJCrMrA75WYaVEx135GzWrCFhOfsMOkNrq4hx+wAha2GF6EUxJ0O5DAMDWnabCGpTkLT8xNgWvtkejO7fvo+2eOqFz3z/J2/cuvngz/3mb17en/zuH31TxL337pvC1YMH94WtwKCu5xvro8cuX7ty+QpCcf2D9wbDwvaK65988PBob+F8aftkoILmg72jqfn0+sfTy5cuPXbhfInGNRWiDEbD3mBzPPeFQRIgtEhkUEiA2S3miwhlnWAQGhiMxPrBIuLBexAPwoJVVUFBuweL8cwblFdfuWaaRhjLXk/jB4nAey3IdbYVGrI8YPbQWOhJXR0eHNzfPdkyfWwNiZF2GEo1tJOKBqB0x7ccJuMIGb2IPFVVcmlRIb+896m2s4ZWrZIbyEieEy6KInSdYxbviEilBx2f0vwxRMBEShdmSYh+Obk5WtK63DetqltrUy8Czwm/c6zNGaGo0SlbTm60zCYAqspDRuPiyV+tS4AJqulkLk0vcI4MgEvmxLRN6Z7EbHIOeua1ujtLv+YD61yVSqiyrzhkjOHY1zYnOQa8GCBrqfKCZvdo/PHte5+5cHEprCFbeGDAS2ijKdGMZjKZNSx/KgMWWRmiC6tc3xFhDTOFyEeXRf6k7XQU5U4V6/RS6OJbaxtYmSEza4NCxDZiE0EQxZJBnUkWtSciBJ7EMqMDESMOAQoAEu/8Od8bT+o35ABHbueEthiaodWuq4luJg60ig8Jz9sdaVeqQEBEEEbPDOA1HDksBMRk2CsC1hQCDbPToMz0Fg2uFvCh62d4I6dahwyxzi+iCAqWAh4pGFwQUWVs02MvrpIFMFprqbDACF58XRlxDJ6ZAW2/RyAivhqNNpumUdevJtqtnLXQKTkuP0EDU7yeiEAbtYmIgfvqX0HgBInLDQc7bmuHlwsvc9+IOWecR0T03kMeFRgVDAzG/yCyiohA5h9UvTkQLiVHWX/iPNCyPS6tWEkCDTfRpaLtNQNjo9Icnp6YfolUfPdHP/6Xf3zjqWtrL3/hy3h394dvvkn14uT0+J233+gNBienNXlLQiS8v3eCUN6995CLYuY8grMlnpweoqfN3rBuFoJ2f7Fw49N9Y9997455586gLEtrAdiDR0M760WvMP2iGFm73uut9WxJJJ7X+wUiGmNCJg1pSTLvG5+Ct0WEtXGH955s0zRFQQ8fnky9bKzD889enh4dEhXW2vm8MRYNmbqujaHuRnXOY2BUxGibkR9uIX7nj28ebDTbdlghhm4JQVMHkMYFQskswa1iWPuYmtDOgTRbNPjwsPEhqlMAEDgJhi6WqzKtb0RAky7jFjoQAQ8IYIC8hBIfEP0WAIzQI0uC6JXTktpVEFFf1jQNiXYCRmZ2sbkpInhoEAwgOHE1O32rVXcLkDJg0cILQS9nzQSAUDIiOS0DoRQtUBMauAYCypk7kpk1HCw8EjE+4neHW6vkyCCAQV9vPANAYQqdiwjEZnysZokUXEBk05+U8XuC6CYTgDY6OjaAoyD75iiSU1UkTUsOqm+waFC7HflJ9HHfTUooDHQE0Qd9LjxmyBjDzqOEwBKMKjJ7rsthXxa0OMWedXZ0elTduHVv99XnrvbWGNhz0ytKP3PWGCHfYG0YREhiyJ8ggAVgrp2rG6gbczp1k8ViPZttRzJhh4iEOJcGgJBIkLwgcABUZAUIsbqynk+xkSMjoKGk+HpuQDUjJvFOtTAy5LgBtcSQRqogIhVlT7zWOSa106jjlKxt2BsijIkQiIiGyBiy6skDiCHHmiIdQsopJXhHAt0UnllD2NBhDwtmFmm8tQvwo165WOD7n5yOaP3rW9uPVc1hb7ojO8NqyAtxI98YNlz2eYC9Ksr1iMYoljJzQaXyambWGQlof2A1NjsiDUkGEQIwmuOrGY7MAoAs5EVcM7Fa8YpNh/FQLUAghEIaJgwkiMBiBBqVjQkLQAon1Y+1DQsyKhFFAiLyXAg0FgsEJGcAgKVmqQ2WnhHAIiECsQcRS2gXtUbx2DZQNvgCbJSQGAwl+R6gMICayyvB0A5CgE4b+GpqhSE0GHEp1WhCRIgtxhvvKYggJIDAHlDxrdBy8RTPsoCgkMZBiXgK/FtUuScwICgCPpIgEWAWIw2G6BytDYCCJYBBqQkRtbyVtGmBCIWIF2lEEKEA0DYG2pQPUIA5pJEpivXcUEqsoAJpwNXinJDxheGHTc/gtHJ/8M6b708W7un1D0/q3/rGn+zt3//xg+m1frGxgPOvfuE/+rv/mz/6p//o7/+Tf3Lu8hXB+sdv/LgozM657dqNr129dvf2rQqLQVn2bTGbTGdNVZTkKu4LiJhf+42/+OFHH/zgBz/a2lojovH4FBHfvyWXr145OdkviqJZVGujkTQ1AfZ4+uTVqxe3N3bWRtzMR2VpjbG2FLCI2LjKGlwsZpbKulkA0GR2tDG4dnDy0XzGCPDlL7y0sfnEdLLXK3t1XVtr1d5Tln2lAgmB8yAnTD5gImLPRqSZzY6PxlW9GKzb3HIdKTvlGltAtciD9NirharFIRMSrALGRsueabugC0BocwgiJAZi1RwRid5eWbLcQiTTHYm7ywZ0XYFmAaY4rPRr4oUGiTsdLsErc1aNPEiiBLH8A4qgWbbchjdm9C42CwOIFbXSG9M9q2Js4sdLi8UldpisuMwAkCJl0u5CVIwedeWCWIfGdQ3g+Q0tuLM4zzMnfMb89dGIi/nGSbfZxuq/VNi6YTRkC9rdO3qwf3x1sI6x3T0brar7KOtb3Cmimn3d+CXTGWQwwqh0tuG1iFpRYnXwvJ3I2VuW5exp+gBAiOE3pg2+a8lulrcdno1vNfH7IIlHEUyjH5bi4YlIsuIV+dwwtu7NfhEA0UoIzgkRNWhvPHiwXXrzxKWNadkYdwhjIupJUXpLIIJNKwd048Uy51m7uaAKXvZNtvYYHckgMXkwnzB3Ie/ULgigbixCQFGXNnTgFruTqG9Vk4KC3BqzpCCUwY1zhhhqkyAW/ZsiIhhk4UDCeBkjEI2Gc4ftTlFWumsSKgAKAqStjkATiDUcV4IDVJiHmJuKwYxHHFVMyI4SCAfJM4UoM2sZFkEOLXJRQ1YlSAfLm6K0l8NDUScOkwE0VAiItsGMz3gRTxKsGe3k9RFT1yLj6Xww7BXU801tLSwmJxXC/bn91k8/effuZP3iYy888+yNj2/+V7/3R6M1+cu/8MW7N2++eWf+2lNXRsANEJRU14umaYbDvvd+UBbPv/blVz774o2PPvzGd35MRXl4dNrv99b6/UUz++JXv7A5Gl1//4PdvYO10Va/17e2rKpqbW2TkZ979smbN2+SsYZKOyhOjseFscjywJSffHTv3NYYfb02GBiU+XQ2HA4v93ve+15h19fXCUTAIwsRVDgYu8bR5sPpYd8OHjzYn5werA/6Tda7K+cyq1/qh8SAgRFKbI7np/sHEwFPVLbh2pHKE1HD3mQeIFE/iyEORT8hxdl3HAtaiSYinFbLkhWSKaimlQ5OBE0uNjBvsSQz8SVWF1A8drUkIs0QX7X0BpYbreLMvGRTk5wXanSJtMwjJzo5iFfr8+m1FB+bFrjEgNN7w7BZeTfTJXZL08ifEmn/hOz+fFarDCNfb8s28vsl7Fx6fwQ65yEkSjNzb2jLvBHZP8Kd3xUM0z1aOMzYwldzQuj1+3f3p9dvPfjS5atFzzQsXhgIPQrwcpZUu92CzILGzqt6uqiWWl4ugTRZyRAR0CSahwBaIo3aIJbM8taFW7o4dBkzbYJ8rG20tH0SHeT5l5ABKt2WokQgBj+mAqXMTN1ElFUcw8xhkSYszATonZeiALL3jidv4MNiffRLw20eQF3WgGzcoMeIJI4aRBsZP2nkbEC/xHaWRCjq7Hj2Qd+eynGEixgYZeVw6LCKeLr8WKIACUCLb6gdNtQeB9ByzCFjGISFRcAbU4SNFKcF99XcGgtFiCBhGoA4CW3sIUotnQMYBAUVs1QCQCAICaSCBIiafwWIMXNRo3UA2x6mAEmo0wBMSlyyEzYvap3MCFpIJ2AfdR39MuEnhDJtiU6K5NJeNrjvSNodyIv3XkDbEiht0TtRXFt8I+K4AEAtM+/NoF/OpwvnwQLNJpOywDv7H//Jh4dv3EOwO25/vr12eDKdjXv2v/gP/vZfunztgOGX/qO/6w4P3v7mH/43//J3zl25CovGe396erq5vnbz049Lw5/963/5cO9BVdWj3nBjY2O+qJ946qneoN8b9KeVm9Xum9/5noh4xkUlg+FGURTG4Pmd87du3a7mVV35Z555ZtBfPzk58Y2z1Gfrdnenly6c375w5f333yWyd/YP7pxbc3XjXM2ORcAgjEb9jY2NtXL48Nbbo0Gvf27r8P78zq39g/1b57ZHtTjo0rczwZg+RB8wCwAUwvunx4dHVWFbDvGoFEBIykGQ4EhAkJKr0mvdEMMAIhyL9ZD6FRCQUTAaPFOOQUg6yAupLBXFDr6HQEQQWSW+JBMgYvAtxiq+0dErEiIOJPJmAvKRAFE2PsZCKABikjmUWTFY3WCpQEFC38By4kw7vrdOcmRHlVmtvZwDOZycjKTmwI9b0Bk2HyGdsT/1ksh9l+QJ6FIZrbieseH40m6oJECUxFf4RyTT2TIDZ+Ol2/RxE0LyiIpSREzZm05nN+7szl5ebA82CIyIMBEAGNAmWyG8Ni0kzgEF6WRWTebznAGvFjxRT1UKAtWyS4CYKKBG+GMgw5LKxJwNVTCQ/G05gLhFcsh2swXLytbElustSBnb+qyQ4QwzYxdP8l/TnuZv98xFYZmRa2d6PUfF/tT95NMHj18anLtYDHtC7B03C7S2YCKPHhP0coTJpMBlRE1fpkcksMbwpYau6LnHEPQQjLgJGjFrIAEhxFVoomnMgQJECuogB3U5HAQkAc9aVFQ8BkbC8VlWoRcAQ3A2Bthl6bwSs66V1QpE72g4DsFp5VAohHbqgSGDkdAIoUioHoBLXDCCMsOBjAIrwiEbpBQ/pZagSCpVAtKWU4hRu1iiotmfbQENgmCGRG3Ol+7BbD4c2k+haPQk6mY07d6FOmX60kZAfO0bt172jsfHjKZY2/rumz/d3ixfefULb++9QeTmhyd3bszssPBV8/0/ef1v/U9f+a//0T81Hr7/B3/89je/1euvj/cPvPej0Wi9XKurhYjcv3vvH//Df3D39s1BaaVpqqYpiuKZp54+Gp98//vfXx+teY8CFhCKQVlV9bUnL49Go4cP79+5c6coirquyeBkMqlcM6+awWCwhXx0dFJ4J4tJyU2JMp9NBpYGvmd7o8PpIVf1aDgkxMne1B1zddmeNE2Dw53NgZexQTMalnXtBToBs5CR6NWj3fIdr64vV907fHh4UJORhr0T9iBCyAiMoNFf6uJldddokhM9smoEAJAKfC1DjYlV0rYOTIFzyC0FySNZlkrfrV4RUTFfeSIxmJcW4tCXJVaX7LC0UEOrpdqiC1+iHZI10F2Fr4IrHCWKGSArXZWgS5XyOSytAqUzyfwI5Xuc4JZuO3NfIGOE+fzz0XJQL710CYfyz/n1qDO/NP988vnmprVop3LnXFmWzE7EFwO6/eDw/uFRI0BEMW1RZClfIg//EUEwHuhksZjUjX9EcRLonJlWI1+FjHQd33mIcgd5IpdN+JwgvzQyrBzUJWBCLOEbymJQCC+g2LMh3/czr5/xEwCwQQeMat2q3cisGRk+fDD549v3Pj6Y8Fx6NUDja+AGg+ady0xpu1ffElkpQLbp3c9aC1okUu38MwNKpwIUJYYUbwNmrbqcwoIoDctAIARAosX1IGT4qJjVNNpUHQFIGJiBvQiTgGFVFMQCgBdxWhcNiZEYgYG8oBf1fyrrDbmawqhVMDnGcgKA1usmU6Ap0BSEFg1B7jsQAiFAg/E/MFbIZJHV3Kb6COXY0oEYO2GXqBx0SUq6lnAPACA14PTMrgEFq/7nWQsOgudEx/Re55xzrq5rHy/w7LPrdAau4gHKdP8eATe9wTdev/4vfrw3NS8U/StQwfj4hPrWbmzUtXt8p/gnP/zRX/3P/9Pycy/8o3/w959/5RlA//MvvPDK+fODsjAgyN57z+yn89n777+/u3/y9V/42m/8+tcLafxievvT6zc+fL+ez91i4Vmc517Z917A2MOD4/ms2ts9unv/7mQydq4yFh7u3ts/fEgWK3YLqaSHvgDpmSO3mKNbEMOwmM5O+r1iOOjtnNu6cH5nY2OtIHP+/PmNUbmztb6xuX56enzlsYvVwpdlScXgZ5+ypXOBmBVYLosSqtPbD++dnjqg1mYrGavgbgsUtUFxt0lZeFAgtAHgzPJsQCvDiYiw59jeXABSdSSUpTzIQNE4pT8hpBin3AKzlICbcCyJkwHhlB1CGxGtEjgjogCqzaeLqYgYIrwgeJSZuSz63deFi0G0GiUGf08nHXaJtyEis8bBJgNUtOp4wazXPISSMqLx3pH2dRzGGZ9Y3rgztr+1RAWghvvpURowJWE5dH/VvI6MyuTTiLbB7ksf4ZNGROhq+ekqyDiQhqUkRPG+cb3e4Hg8fffurYtPXF63BOLRiLbPSJHAGVfT4kcCAFXjxrNZ0yqHHaClP5Vg+WRjDLvGACjQ8R8zRr0quujgLGElMaqQwSXtrua4kYOi/akVIMKuEYaIHj0cYf45+886jHWnpriVDoKypHBYDJna1QWRMeDrBpGoKJxr3jreH+6Zc+bclfXCDoxHLyzkCVETLdSt2JEXl3Y2Sgk+25R8oxERiEAk1L5L2Ks/EmKexOFZ9c7EigQ1jlOtFCErOKquqq0SxkqiIlogIvqs1BlsCBCNCLB4BIuIusvcyoKiXSkRDWiPeQiLyVFfKyUE50J4JQQd1RCSDTp9O/PsaWq7I6EGb2YbmCzciBLy0aOLCgBCSx9gENbmcJy5k0WEYx/fBLdMXOuedM/MTsAX3Xx0idY4dl5ErdAIwuKFxUsUwJADcmugLjP3ywFUsrt3uHPh3P1Z9c//4Fvv33dzxN/+3p2y79d2LsxPjqpi8PxXvvbm62+48Ymbn9ya01/5t/5HO5sX/1/nzm28ZP/Dv/0//t7rP/zf/9ZvnY6Pt7fOvfbaa3fu3tp9cL83XB9PD9ZHwyeuPX7u/M6DBw/ee+et3mh4bnudnQBRXdfHpyf9XgkAk8lkNpsBgBe48vjV+Xz68OHD4XAISLZnZ7PFtPFr61uLZiw0PD2t5wspy7WmdjK0k8LNSzYGi1Im9aIZYu/iuj/em40nvZ2+JSiQ13pAAoJ+iXJCZlJd+l6vVAvao6FmNr754PZ0zr2yY19KB0kpASKKiZqHmlAosc/W1UV6IuIIYgRiRLYAMHjsHkV1GzBz6zdW7OoqqUiYBMBUBDHZeCXWLrEURT9ux8pfRxKLBgRTQKu1tLchkAkmbozvXpL9lwCaYJWDXVTeyPoV5tuT/pU8RAtBRAyoqQ8QUaO7I11KdB+W4NPC82eWLpIVa3MaPA24JDqIUBD3w7spJmh2eTCy8DIfCotKU80V67PM3fn9RJbBu7oqCTxr1RR869Ynr37+5dH6sCAEDvMIyJPlkaflNM7Pq3qyqDxAHnqwxDBa/q3FhBEp+jhEvLAgEXQVaEWMNEwCaZg/IwCpKBUZ+XIvP8hwJpokEwMOh8KSwXicwjxXwNVFrTM2N92RMC0t2TAxogdvjBELTpxhK6VpsPn0cNxnnF/auFoM+6YCZ2rTM0ZASO072iZAJ5KOT0t9ukLG0mGJF0HbchUQMVgYaDlMhNvaUspCTFwsKhVQGVtZhkYZEYQ6dV5CWS1IjwCBkKYoiwCAFUBEC4KMsT6kIEsDkPHOVlxWPqoSDwXZHgARDfYgBp8CaMRY2928hU+70W0NZ47RUVE8WqU2JMCpYFHQvbP8BRSWsEBFFbGIXosrBu8vgLpsUsolIngEYBTPvoFYax0xAkIERBp2ACxaNpm9MAgIC6sM0NJaEdWARaaLqiq3L/3w5r1v/OTd4xr6a5uT/ZP5ZvXK516bzSY3v/vN2Xj8zLNPXrpw4R//w3/85Ppg/Onp9/7VH0B9+pPv/PCrX/nKrXuffHTzukEYDAbrGyNTFo8/8dTW1tadW7dNWbzzwQd37947Hp+Ww8HacLhz/sJH1z+2xlRcb25uNk29mM9LQxcuX7vx0Yf9fp+p9+yzn2nq2f37DxGNc03jF8YUA7POjVzYuniyf4Iom/2NZj4fDIaLxXR2d9/XjROgC6UdVzRxH7/xQW8E1m7anngo9+8//Dd+9YWdjZ3Jg4/NYD0/lYkmdLev/RzbETqHzlWnR3v7+/VCRgPrJfCz2BA3MuD4OS/tjVEcSzzPxwbLvV7BzE4Yo19eRFi8IStJrmdp7dChSk6atKQo34gNQS3Oj3euP7VnOvaEDxXAMzEizvwM9hDIVmwsE/Jx49z13XlxE+xerWhJeSPrMwywnXPY5YX5/nVEbBH2PiNwHUaSQ6BlwI+0ti6zCv2w5ItNH2IQDXUVuDTVzrAAmGcfZffj6kul+y69UpaXr2ZorKGiqWejocXaMfiiKG7ujcfVnNcHGBx/yQ4sMRylnY+IOMfzqppXTcikyqaUhxC3hmJrdBoSwkoDtqBKe4ndUnsQlgCrl4uti/PNXQULJCSUzjcJhdTYLnGSEmUe0dxcDNDWIKwzhs2An+NewljwUlrbQOPEm14BQhU3TvzIFA+PJ9VsYUpeX6cCAaXg3gCgUfjE0plJfhWM3ZwyfOjgf46ouXU0QQZRM5AeFV2P0FaRokAN8sg41fpABDwLG2OVOTGzBlMhonhQS5qI9s0MgVCIBgSFDAQQq5pJkZgErouICAYRWeo4//QvCaKJpj5i8a3pCLpZ7tlmd89y/jmENQRtV9cOAR0l0qUgVWTSZz6OUF5CElbIRR69GHy3TZPwNqVri4jVNEh9uWf2zNywOIRgmUvz1qNUV6e2v/H9965/+/2b+0yCfTurRwCT47tHB+ePT9nXbrOABx+//eDBYc+Y6gLPP+b/4D/9z555FjYvDr/z7R8cH9x/+/rtU4Tz53b29vbWNrYuXrz4xBOvPvn0s7//u/9y+8JlC1J7X1XVE889+/TzL+zuH7rKFYZms6k1xvvmta/8/OXHLt67exsA6srfufdwNOhb02tqNlR4D6YoJ810Y2PDG/HWo8jczW3hdw8OCWEw6F++dHH/YHc+ryrnt7c3D49O0MLG1hWPe9N5gwivfOYpX9WljVWR2y0Op/QsNAZJQVgl2Mr0ptO3bn4A9UgMEmf5LZIccojAwcAauxV5CIqvFRBm8b4J24wgAHU1B0IwlKZCrGlxDACa4aypKZoz6qTRF5lQiktZbqjqrvI2GK0bCyKofTWUMRIRIaFBydQUD+IBlS4QatSVZnACMKCQOhVE/FL9ZyUtTeUAwKjuTRHtmG2v1DPp2HthQwYJWZtmizjHmjaKSQ21iAggoaY5pGaaGJA+bZgeAG2/mEsDGk1ps2jhqEzqWzriEeYuA9217LCJgOhPIiLeY8zOQjBEKq8QEWLK7UZB1vh7IJNYDnsIZXxyQxbZVGdySekHAM5MbeF+aYlCogv6mZnFWhAHALY0VcOABTD0yOxV5sN3Hj7/5TXeNLPG96DoGXMKs6ErmNCRZ2b0LB48SCPgirWjk8O69q72qbUlACB2ugcSGN0fr14HRgp1DoWYUBC8g8AhNL/FazgeFRY8B9aoiwIBNHp8RABBURnVhswrApP2+YGAaYQxHpuI+mVPRBx7g9Q0TV1VAGAJy6JoHABASJ1XnS8oullYYSoKgVC7miAkiAOCB2YSx1wYFhZkQCBARhQLYhjLBrjfPxT84b35wi2++sT5JzbJuOO66BMacL5HBXjP2NCwqMEV1Ff3qh6fxANULiUyiMTMjfOIWBSF903EMSIyKmNIMBoIMqITbFMWwavhHxBjexREAfRWSiACKAA4yIhCiIZAtMQvBN5DQBaJAMF7EBaLpNmFSsTYe7IAHHs1EwFZNAakDqdHIPJxD0CIBQAygoZxQ7AHUBJ+JISNeREBL2B8EonU0I2ARLaKmbsApF2ro9M37GlLw5G1/zgjqF0tYEvTeG5MCG81qAUXgxDDTmuWx7NGaIBFWMQYZBFVKhCELSCRAQKf0gE0ElePpHc1MyMZAV83s9DomsjPK1MOPKJDFl6Ad1g1XLuqR999/eM/ev32+vnhYDGfzuaN7S9KKIVef/MdYfr6n/n5k3r8D377X58f0I4vpw9dPbDPXnrs3/tLv0Es/8d/+M/eePf23/3b/85H7/z4//zOrQvDzTVueFwvaPb2g+vF4PwLT1ydTqfD4XA2m188fwkbubB1/vbt29Qf9IwlFK6b/mjt6rWnWbA00uP5vU8+WNQVEX7u86/cvHl7Op6ALGReSW9xdHpUWotCBoqDyfTzX/7yZ7/4yo+/+5350QFZ6K2P1s+fr5tFdXyyVWwI7z48mBTN6OdfWlwqqun8cJ0u1NAsUTyAZfdo/mugRIx9ceO9g92HhzN0zhWGZTk6FLpX4gDx35iN3iqaHkAMmVBoMMnduUEs09JygT3JieFLtalQTOuDVDASQ/5uOOTcSgbd/rgt0meTV7cqhPnEnxCSnUhifmpKOYEoszdNo6m3yTwdD1UHSq3I/whNNBWsyEGaYKJd9CQbLcHtTOVgaePTbbhy29LjYdisAGf+EwB455bUlzQNEclLgwXe6drYt6Wh4Cx0WkbZdM+ZBktAYHf3/r3x/Cr1SzQIAo59YWwoCBC2QzVWEvR17eZ11dT+zOHSleKkuvVDPEQhDLJYh6XtiHrM0qmRZDMI+6tsoLs27OxzBywKmTAxCkFYqqg75xCLJdyG7iGPclqApzEm2Cq5Dc62FKKF00FI52ImTc8MLZv5dH7j/v21srJm5/LI2lnjezQ23jH2iciJbdAUJg80SyDNhapWctTXnbm7iF4DhIO5vrs6iE1h0GjtCBD0IWtHYqe71vyb7UX4wKGKn0jQL+PRVvrlJQ/7QvE+y9jJiR4iA5jQ+lCfIAyJIYGCxOBrtAA+U4XUj6svIAbR1g/tDAPWhVaMqwsR0OItcZ6xe5jRTu/K2leOcxa1EEHI2qxCJDQs8iJsENl5iEZN9QAnksis3fs8IlogEPDOUX/IzqNb9NCNp6flcP2Uae6KP/jxT96/WbseXN+bPXHt4jMvP/n6m2/219dnB2O73rNof+2Xf9H56s7tG+Jhdry4+vxjX3j5S4Pj8XrP8vrwxsn4f/Zv/6W/8It/pvr5V//J/+r/5Jz55Ojg6P69DTTj8cmw2Xz9zZ8uFouT8fjCpcs//elPiexsNhsNeqez6cawd3hwsLO5+dYbr9+5c4eIAPxwNJgvFnXTDNfWFot6NpuNx2NjjBeYVQuj7a00WFjgS1949a/+9b/+o29+c3I6HvT6TdM4x8bg5npvY3P74YO72LOLxeLF518oS3s8bbRXaQdXzwpLzK9YsrFcR/fJrft37+5VAzRiPLhlH9XSuPlZQkRVfNPBw6jnRONQa/dQQ1HKETKAkgXKSzSutTgnhISg9Z5BE/xAYxw6TbzSxFYsn/mcgzQdX9UeS4A8XCXNNpC/mKZIRIKARKqvGKNkefmQxAAOHY4fxUag6w5MwETU7j1xZBDRYLHoBVzihdDd6TROWihIh3HmNzMuY0kmTzB06U7IMdMAk3inb4k8AIQ+kvk4q/Dp3P8IBE1rj3OmPChtYMvbuw8PppPh5navsOh83dSmb1pSEbkagzDQtKqns0XV1ECYx0T4boOvkFwb5bxcUolQDVaKfBUY0sSz98b8JBEXZYEgp0J2TPJt0nctBV6ctSkJhsDMxi5z3yUIY1fYwsAtPJhwPEGAoY3pXh6tLL0Ty2yo2KumP7l9F7Cha49fIsZSamHg2tq+EcCGSZAtQmZYDkyOmQRAhDE6eiU01lydebwoio6YOT2A2QEQaiy0SPS+C6OoDCHdVRhs4Rl2igVi9CJzKDug+MwITEZTGSUEaWlwn0hoAtGStTAfIBSt1AKIlIJRWEQNQ+1Gh7YHaR/PXj6KnicflOZHnA7htoolcBAjiIi0Mlc6kiKyhGkYG6LojyCsoctBYRcjbaW9dhO7Ee9h6SykBf6cF8PNYoKuBqnBNdOq+fDe4Q/e+ujmHv/SV1/ceezC7/zh97/w+a8+95lXDo9PP75+fW0w6G9sHh3ufvTeW/u3P11z7qTx3LPPPHatGA1ef/st5+o79+9trhd/+IPvXd4ouARLts/9YY/2D4/mgKPRqJk2P337nfX19cbzZDLp9/vcsK+b09n8pReffe1LX3z9Rz/86JNPvStvfnyjLMumqau6XizcU89cOzw+eeedd6y1LCiOr1x5/OD4aFFXWxubi8nUAJYI08nJ/+ef/tbdT26u9YvJ8XjiYG3Y+/rXf/GP//UfHB4enj9//tLTT37rj74/6JV1Xfd6veWABUg78IhNbJsx2JFM92/cfXg09ltlT3CRoK//LjGJnAEHwhHVFdTALI3GUmtNxth0K1FCW2GjXVF0a7NoqTAytNWd0JqkIIMARqeOov6SjJyjDkQapFeoQLSC+gxk2oliWkoKznc6W2YlkakoblxUEPO1QFZG9YKs/SgWfBbzBtDoNgyOHM3wIyKDncCxM8n0Em8T8ZHh5Kbf8Dmv1RWfYQBBSD68aFPN1FlmVmhA0NGX1W6S4HTIV5fvxeo8cyP8mSACAAQjMZqpJHs4nt7cPbhy9ZxBYmlEPIDp5l2Rxsx6cfNFM5nPG69lMdpXMLNZ2RtEVCNqSLSTENUpIiYGByR+HMcJ6Y+IGCOlW6EOESFUXDqDoi7BBxL+x0tEiqLw3mMMUAQAouUk5jMBKCIdgcNrQU2DiFpRQS/TInNnNIOmaRrB0vZ66NzBfPHegyNP5Vcf2zontqhrcFUNQGSBoeeMpiZLKqIhJMFjLQAAPvNRR7J+JoVKZxa62XTeB3wmImCK4i9pHasEDUJ0wVMbjk/ARgyB5alShIggmrZkvLEAwOK1pQUAhDpQJjHgsOERtmm+GBiiEAgw+pAKrz4aZAADwMIGkt4fREwAEWTWDOPwS3xPiilJKBf/BQxNXdlF9R3VAiyS3wlJ7eleAfLswPtgL0wibwg/z3LDwKe9iLYf75tgFRPP1XivMD0Gs5BeXQx+ev3mjd3xwylvDi88/fSzv/mXfuXCped+eP1B1SxYmse2L2DffLL/oGf5O9/813/ll79uLe15/9Prn77//n3cHR8v5OjDu4NiUNP6+/cP/4t/9tvFqETYGZ/sL5jO71yYn1Tj6WwwpFFv2xRFD2xZ2OeffwGAP3zv/cViZoGfeeIqz8cffPBBvyinsDg9Pd3ZXj+ezq5cufirv/5r3/v+D65fv/HC8y/duHHj6OjkxRdf/OTWTecvvvD8s3/0jT9omurZZ5545803Pvzgk41+jzw3DtbLwtre/Tv3xcvR6XhjfTibT0e2fPzqJe/GzjVOHBTLcO6izfKVnGFudvzwozt7dSPUp4ZDZ4UlQqmIC2pok/CfbjDH4nYACNiqs1obCzParVuv9fg51ZZKGlU2uWTcbVEw/YTB2SUrhqxInjpxUkvZ6PE9ekKjZIcAIDk5VvRLg+j7JDNR6qGFLvVsZxi5l0jHj5VfycWePRUE7YT9zJyCws4cZPVKRG1pB+OiNKkin2pUAgKpEuFWhgAAi0QYcr51TBURoGtv1IuIUkPNpYklY3vixPkcVq9YfTkoIm3Uk/MLhvfv3PviKy9slRSynlhvDc0T9UUN+8bzZN7MFq7xgmiFOyjtl95s1MabE7tl3T2bNkCIvn5UxBAkGHYwuatYLxHNJelKRNQhp4WeQSVOQsQ2xn91F1rASvtqxTRF9WBZkeXQ3DQ3RJS5I2saosY3hrFHxdFCvnfzblH4V03/MSSLzkHtS2+K4QDaIETRGq4pLDglREQDb0R7WYJAmjfEb/PlSCyDFXEn1fHQ1sIJDgEajiV8D0hauRJEQCC0wYizIwtRFg2MCQKjxHB0jSi9CzlgGh4RY7dA1VEDoFlAQtoko41tNqAhImc1Ds8+SCw9rxaVTlJGB0ocRLmQJiUiWUmWFjRhpKABhOgN/d5riUCfjGohzEtrR5s2rI+ZU0OqpmmUnPrG1XUNkYIV0CwqkP65hyfV7/7JnzTWvPaVrx0tfvTW7aP3799Ze/2Hv/W731iYzR9/8lYzn/WKwni5cuXq/Tu3f/Ov/eYvffm1/ttv/ePf+Z2NjY2PHzxYO+1h43nz0v3FdFLIxnC7N6+E15vpnLZtZZq7d+5ujS4PcQ0Wu9g7f3B4VBb2/PnHp7MZIZ5OJ0888cTjjz/+rW996/333yWix69dee6lz/zg+9+dnJ5urK/tHezPZrPRaLRYLLZ3Nl8qXvrWd77/8Uc3rj71xOnkBADOnTt3uLd7tH8w2BjubG1b4Mnx0XBQmnLw+BNP3L53WwQuX7qyubl289NPtjbX1gb9+mQfEY2xDH+Kk2vpiqUoYXZysP/RvUlpwBsDrKljAVkTuRQRs9JJUK9wdMEDhnT4QOeDANjyUdAkudzUlhtIw9ExEuN4wykWF6ekvBBIEIWc5hnnhCOb3c+gTctSIYXALtZMQIwBvprOlDlOYqzE0lBt1HH8tbXf/owNSJJBPk+Jlq4OiCJUz2RamXyzzDZyIUMyX04iVRLK2nWniqy5+ZiJ3hg9rCm6imNkeA5zk1XGSi/Kd2GJ+6b5L7ElgMQbqOVhggBQAPlecfvg+HiyuNTvAQAY652mMftQP0yEAb1I7fl0Pp9VNbMgPbI+iW6H5qyYjAAFH7CKcWpS7jLglmsyArQ/CyOgA4jJ1sp6EQBR6X8GAVH6ryaWHBoKKyV2qp+pH4RBVZM8qvYMzFz6XhOj47oEABHEaBm7s2QIS8YROhL0bASMmNr7heC3P7oPTa84f+7Seo8IvPc1Ngs0gG3CwtKmt/jA2rlE3cOyuunhj2iD7lwh3tIk5i5RyIXUghwJAUP2TuDKeifGvVCffTLzkPpxRUR8o4dMgxABUf/V2UgYP8ieausCQgCjvFhjDiBEOFIEOIh4EELkZP6NWxz4HxGAkJZ4FPGiHT6086Nyz3huMZwpohD5rf5bQgFkxOhZaI1+iWFn5g1mhmDU6ZSGxWiZV9EuJQUkQxkKECIBOgQf4m+QhRHtHItv/fidGw9PPn7YXL48vLt7enQ4+fkv/VyvV/4//+FvTeZS42zeuM3tLQGum+bg/sQi/MEff+fLr37hh++8s3d4srVTPrG1uXe0uz4q0E16ldsxdb2YOuofTxYDv5jO6pHwn3vhqZ/c2JPBprfFdDy+ePHisD/Y3d2dno5FfN34nQsX17YvfPij7+8enhS9PppiOp1aay3weDwxhf3G7//BwdGh7dmbt2/PJpOLFzZ3H9w5Pj1ig6fHJ0T0xBNP7O/v7+7ubayf/8xnPvvO2z89OBpf3jp/dHKyWCwEwZbF2tqav+8NyMnx0UB8f1D6+meR+jOvwICtPz3cPbr5YD4snCPqMVWx3VW7hZk8egZLCxVu0ylSExSGIKwMFbBLbZfCMBCR0KZXtLG4ArH0WQiqXypAvDQIQoeEpQHV84SBV2VqZRATO6tq2VWQnFXXB6LQbDjEXZ/B3aUlHcjLdr3s4qxFRD5hLeghXf0y76qxSi7zncog3KFiOTNOl5KZdFzbiLDUqzTCR2IeTjtbBAbBjBGgSm+U91RrCfGZzG+V7p8l4nR8wAXYuhwczWa7e0cvbK0TgGdMRakVYTwDMzfeN+xn87punAIXcqcideLj2jiDEHzX4q1kiLQ0z8gDOn3HEEzwJIq0eepZfF8+QoKP96l927LynWCliKr0kcwZ0ljaxPyb8CJWVYnRkJaiSykGy8vRBwsjzhWeCzJkqPGOgYa2d3w8+andq7h6pTz3eNErgAH8hOqyhqIo0o6ntaByiujRpyiiteBdCgsHL1Hgpix1h8hq7q9maYfZIpOoXUPTlwgQY1QoRn4MIMAs0TIc3FuMJIgGrYSALq1kDmSMMYUCDBCxBVGIOoYsTDVuny6WdVwAgVAfP8SWS8zdVdtYPHSemRECP40018ew1jM2JewjgNaujsZHBAwhb8jAEBPq1IbHJJnwDaIlSVgkOOxZixuqzhGrHSTdIKb4CgCEGlfsBUEInXeLqhpL8aOfvvfx3sRuX3rh1Ss3btw4/PHbpzP4s1c2rz7+9J37hwfvvLc2kO3RzsnxAvs0HU8Gg56R3ge37/9v/y//193ZiTPk582gv72+2T+cL+x8v1fj2oBsfzA2heVqvRw+fLD4v/0n/4uvPb3z97/7w9/61+9MYWvHmi994YvM/Onvfbq2tlZXrj9a2zs6xk9ujyvpDzePjo7u3L0/mUym45N+zwrQhfOXRhvr4+nElMVkerq3vzfs9QnFu4X3dOvWrWeeePLZp54+Hp8aVx+fnjbCleedc+fWt7fefffdz7z4HPjF7sHpe8e7gk1RjtZGPVsVs6aCCssBrW7W6hFOBzwwYN+cnh6P947nBfKceZA6HGUE4k8dNEPHrrWtW7zCABJkXVMkG5xFTKsfQys/ion1fdRVohwxNfuDbJIYW8a3fCuT7Kw1ALG7Yq53+p9lOhCRpe7rS2cvca/cmofRp5I9vXypxqNKA2eRDgAgoYwA5gt5dDhXvAGWFg75rNKvHJPxV1hyLmxJm06R08p4A6tFWIS7uKGJCp3XPbooZnoEutxaLy8dE1wa01V+gY7APdw7cE89bguDCEQmOasCckUpvmoaZlC3bsfw0S2skTY3ELK8bwFr201cPQtpr7OFBQuBZJ7JhCpxa5ZRBQCca3EyWfsBoCiK1vivsiOG+ad9WQXUKqjZe0RD1loUJmbnwTMLo8Glm3UOp75aB9tn8U1dF4i9woLQvNkZXrg92d+7N617M+vPXy0GtFbWBTrXKD53QCeB9bZyACJmFpf2rjSBuClLkoSadgkthuBczc5j4FCdOMQXR8kHAv+NfA1A+bqJ2TsAqMxYEJG5ICMigsYWBZH1HKZuYosCRDLGEIa+hLGSHSBi7idSX3uW+Btt1wKt/EesqCbMXmI5s3yxUTJakk4g2bqAIYadx9Rcj4jMEsqKCQCGkg4RAyI6h+JVIdw8kK9IDSS79E9luwaw9s5779F7EBCs6/pkMv69N+4ez+av/cLX7WiNysF7H3zAjTVm7Y2P37y7kA/2J816UQGfnJ70dy6McTao7KLxzLgx2rh1cDi4tPWbX/uFH3/jWx/XfoDl9sjs7c8vPvXMzrnR8Xhy8OD0IuwuJjNP5q233vrzL/+cd3cH0Axx59Dv7+3vzmeL4XBYLeqmcSxw5+69Ow+PwFV9S7Y/OD2dnDu3Xc1OLQEArK1tvPzKy7v7eyeTk8cee2w6nXDjZtPmmWcv9dY33n//w739w9Fo1DS+3+9fvXz10pXHvv3t7169ulX2e71B//79+9euXBitr08Oxlefvjp7eOqcQ+/QYH8w8FD9jDO4egUGbBYnP9l9t6qGIzvj2aRaXzPomVlVLm19jV5QtDArKt6jFooTr1XUFaeXDjBEjguxYXB7xpQ4CosElyoDE2tDZEQiIXTC2hMXYwf2rlYeJcasyZ1WUde+oGRNwl0RYBCN3IPQ/l0zgEVEjMqJIghGj6hK74rrAp6iBODFMaNBYmbvGVGz5IJw2XhHAQ5psUFgjrNXK1rwLRsxIhIafSPGtNEz6jgqNYEVmpWT9SQKQGsoblugtCBCLAKBClnUGGu7s7DzETcw2jEQpfbqyRdk9S15Daf0EDumxctYZb5JnkhqkIiQMBGlNI+wKQAEHUOCBs0CiIiTxKJyk0xZ7eBwsvAfHp0+NPUVceTspCj6LAIWxCM3hbHThWMeTmf2/kk9r9mwGPBN9iIr6DLZS7v7FYU2XfYcOmJntR6B2rp+khVaBWpjawAAQx1+Dra/ABDN8EzSp6K9BnyJSNM0BMLOowAzI0DqblLVzhAJeiAEQhY0VBAW+WnI0SZvPibYBhBhSSLMjgP/MUYE2It4CPF3iGRCBID3fiQkKHMEMQQMUDMgii3HNN8gcif04w/r2ZO7X7t46UkaFHjg7UbjvWmcRePFNwBFvygGfV7UzILGAJEHz8IWyOfl4TTlNbHnWDnAdLtNIxhQhhpyWr2ABxY0Pe8bEW+CmZmAkcDkcalJugIWNiUaA4ixrEmsQ+AdojWmICpACNgb8IgoWBK1MaEuxDBjQaRmBA8koYslGqDCaD69j1hBWr+PxQGEajYxVVJ0FqDFrSJq6ZFW/qikiBPNBCmCxcmI1o5lAfHMjRpqdKkKI2YQYQKnNbE1MpbZC3jxjkxPfAjjaqkKgGseGhqS7y/mUpQ952ZQNI2feGed9Be1IVPXfh/7G9/76PSdj+fv135D1t577/65y+ffvf5tZEZyttf79ObBGx/8Ud/bz7325ZdfufZ7v/3fTKrDHdxZjBa9iRi202m1APfnXvu5C49d23ryuU/e+OELX/ziZz7z4ocffnj39p0rw8vny8He7v5Ctoua7Zb5L7/3/eu7p+8/vHNvPhnYOU+Obn18fW19syjtYrHo9/vU1L3+YOJqWxrxXE3nf/Pf/nceu3zx7/29/4dzblafevA3b9052D86d+7c8cGxYfReip2NacN8PBkaMxkffXqrtgWeHkyuPjscrK17gsrNH977xEozmy4e7Jt63517euiG64+Nip2NZne3WCOcU11ESpszu5yyYbJXIADEKOiqmu/untTzhd2wVmztfSiykAVPee+dc/1eDyChSYz0O6v2DUR0Wf3+Z136Oq2ozABGyzq0MuDSwhKzyd/CzG0FK2bR04WExqb7k4TOsV9KGCeeAOz6KdN7MRbBX1U4JGvSkCFzZw9U6kwX5WbwrmKdg/FR0DvzwSVonC07LylsZ0Umd37VZ0GyhSn7p6U3njmfdAPhsolmCc4YLd7h/ke0dwQy3nsPcnR0PJktYK1n0cSZOQho4MSzc24ymTjnOGZ/Ls0zR9Hc/AtRjc7B6L1fWmyGlmcYDM/8MzPwtJd+SdEXm8yFTdN474uyT4gqTom6CrX1ue9AWGIsQo57OZzDFaJ22mx7RIxBAJpFeoYCKtEwwMyePINhL4vpfG8fdovBuriiWayPTGEt+lJMqbUdXEOCdamMlgio7b29Osl8Y/T/eWUV0D1fmkqjk0VMI7MyPGgl0dbKQoYS3upPad+NtSIoqMWBWBAQrTHYND4TqbPUSmxhFQMGQ7nRAOmUtHOWiSIHQlteTSSX31uwJ2ErQ1oWj5xMUOqDEUmWyyDzx2LOWbZn7vVPc5AUHGAujCcTMtNyaBo/q5mtL9mvzwZVvX+0SUMw5Y09/vHd924fw9T1C1uXdfPBjffd8fBod/YElOVw9O74aIfg0mgwqWp0s1Fv89nPfeXNH79ejarFSWWhYPI11Feu7PzgW39y9OxuT4SEC/RXLp5//+2fjk8O797+dD6fE/jJZDGD5jeefOKP3z789kfvnXdu3VVmbej7w9o1n9y6vbW5DYTe+0XdAEBRFsDSNFVvMDw8Pqqqqmqc9/7czvonn9w8f2G2vr5+cHAwWhu4uhoMBoPt7dnpZLEYK2CrqgIWU8D7b71zvL836NmToyNLpj8c8Gy2sb61mM5dNT15uPvE6FxdO+2lDWVb4ee/2xVLAh2Pj+/vnjAzYqFmisCcfIc2WWu1wFOrPEkS4jIzbJd2J8zLiVH+b058bVFApiKgZz1vQo9kD9C1A+fRzqv3JF0TMuyXFS4FXZ6UzxxjD7hE5lj7ewN475cEkbRMc5YBAOIxO5NMrw6yuvCle1a5b1gItPAJXGUlKjvO54y3KJXrRLe1+t4ZBtgcbkucFSH4pmCJuKtBNb6DMURsJl6VgKMfGIUIy6J/dHy6f3DyzPBS35LVnzS0B9g7EYTGu6OT46ZpogmkY+dfMvuf2R0y35dExFfWuwLJgFdw5v2t5hfvVA0sBKeKwHIgmBoEgr2RQiuyYE7PC7kk0TB/aSbl6IQyXbO1T7Re9naErisnghcLA1bWoVdT00ynduy56TVFSY2bs7fEngqw1hJZ8cyNw6KQbgDgEmzPAPpZ+TMMQKwMBTFULhNt8ZJWx5ojq6uGTiyLwoeypgiYOapFRKgABECKZg4DpM9IUjYi/FBEGBgQGKhNSIoSW1AAsuNARGjyvhQZQYtPnQmWdMD5rBsycidtm4rs9KGGB4qIZKQVQEKZ6xZjk69wOqN+b4CwqJp5vaiIitnUsxh0NSDf99MP7x6/szv+ZM+bYlhXs96CawNooDldPP/sC9VsfvvB7S+/evXWe/fq8bzpw96Dm2+/3n/9409Gtj+HxXo5ahDY0i//yld6xD/+7nfff+tNAbOz0Xv7zTeq2emnt24Jc+Pmw1E5Wut9cDz+v//v/vYvbZ37z//fv/vP3vuoArdJZtHwabX4m3/zb6It/sE//Ecvv/y5+/fvL+oGi2I+q4xBW/Zmk8kPfvSTyWQymc23t7fH45OiKM6fPz8ej63VYCNTVdX4wf0CqZosROCp558aT6d7D/fWR8NmOj988KBfFLPaoUEi2jl/EYwV8nXdjKfj3s4OO8/MprAu20Ts6jPZlRwLAMkEfXC8d3Dk+r2CPdTSWOwjkmQ1YhDRGGMMsE82bt2zsM1avzAdrUQRVgno0uRyLEFEtEYpQYZVywh3JhNaurhxiEgSc5kAhUMOFWSkZGnM1QMQlYNlepGjLAAE13KWEBxzGLKlpVXnnIyXidHSTBK4/lSa9bPB8rPhmf6MXV9Wlbx2cyEmjUosOLb66pzvrq4oDYXRd6WKjUQeLBKr8a+gsj7YeBkUprRmtji9fX/v1ccuFQSEXm82AM4zCwNQ4/3xZNp4B4Qkyl8foVU/4sr5WbJwLD2YwwzVCRfJPWTYIhG86QppZkkc0QL5XZOAOaM3IubzyWcSkTCfWAR1AnvmrcRg4gIt8QudMsvgneSbld3vmkbLHsNsYY4qPzXNem+IDpld7RiAe9Iriz4ZApa6rhnBoJpuJbS5OIs4hFW06Tfd1TEyxNVpyBBaTWlExJBrGwsmAyCKiGcIQJU4YEjoT2DJAKuytQ3iNaMweA7tX1ogpLQIj5rTBUtHRmJFmpi6TwLALCGRjNtBJIi9CQg6raU9DSw87mkq+9J2RBENGjlDdlfAxSWiFr6SwK7be/RnZcD9PrhqIc6XpgeOgcj5iqyhuRw29IcfXH/n3mxj6zz7Xl1Vo411HgwNLBZHB3/h1//85c++9HD68IVN83f+4q/88t/6u8e7u/0Caue++8PvX7h6UZzvAT929VqDcjQ5dovq4s65AvsLqXpbG3B6wg5u3rjJwv1eb2tj+9qTT7z77rs1wCv/f+r+PNi67LoLBNdae5/hzm/+5i+/nCdlapZsy5ItjLGhPGAMmLGIrmiKqqChu4imTbSpoiGiKbqIhqAKDLTBuKDwDEY2RiBZHqTUlEqllMo585uH97433/FMe++1+o99zrnn3vcybaL7nzqR8eV9956zzx7XvH6rfeGBy5e/8z33f+FrL92M4SEd5Lk5d+5cnpsnH30sDEMAfuaZZ2az2bdefjmO4zRNc1PErdZoNmu122Tyw9EYrI1jnaaptRxFUZqkCKwUsgBqiqLAWru5uWkqE3A3jqy1NssDBciSJnkYd9Msy4qkO4gjh3GYKTVgKIKgk5rspMvjtGvOgysNeHiwd5wrJADytZ7LfK/Ktszscbf5BOLFwlWTlXo5m2pifc8J7junR8YYgBLYrSZ2iMhcFnxujmpp65SD82+sdPels12597gpK4iImxdVhGb7VJnOGrRSRIQbQ6uJ4CJBOSVfqJyZhpbJpwUZnex5fc87RTPVzuPm3M7f2KyUUh7gpRfNDZgnZ1jmmhxgs1AaItalD3HhkZNcQUoR/pScq7p9gHmpg5pcLtCR6r1elGIGFrq7e5izagk4VygdINo6aNOB5I5neVE4yz4uWRZGz3x6kFdzGk/lQM2nsNS9lteraqcpf5Tz2dSAm5fWWkSwqv8hlSpMRAhQibnAHoWaMNAN/24lGTCzUqdvqtrhUo+x0q5r8c53suzaybH7p7Qo4yyJU6CMpfvT5GgWbHa6qFEs564o8qKwRUs4AtSqIdhpQBCp4JebIeh+mhDLuEFobJL68lsFPQ8r1X9AJPBMFqCEjANViRriubmUniNfQaHiRaUwMUfq8Fk2c65c1QHFqq/lpFX9obqD/nUCNQUpCxCDf58TABR0izaGxvjL9gmg9g/5oobNq36Q2eNFgy/7V0YaLEIDypI5sC5yM2e0XiCaG2zq4Gc7GwNjGIbWmMlkFrbbs9wlk+yV7Tuv3hwdZfri2YcdFxAVQ07v7R+l7eGl1qC90r+fzc6GGq8eXe5fNIfjc5fPHWV5OOW7h8OPf/Spv/5X/7u/8bf/p7dfunrYGjHb4eHh26m5hUGagwStg+l0UNheHGbGIgVZ6oqcA90a9Fc3o53/x0/+qw88+56vPveF8y146ru+/doLbx3niTk4+PoLz7/wwvMuz2fTyTPPPPO1r33Nh3EAQArpytrqcDh84sEnzVU7GY11iFmWvfnm251OJ01zpVQURsw2UHo6noWKdBTfvH0XAKIoYGOLPHMOlAIiyK3VEY7H443NzTSwndbqdJb3u0iggkBZa2lB/nn3i3w4XMWAx8Pd/QwcMigKA8oqdGIuqyExc0nz5gdjAYXH855TaZlPdT1JyBrkvmEO8lv7RHXY+uTXjdQb6yTLQe8v8a5rYZCKhNXViOd5kL8nHahutkkQpDIr1cR0aRLqSNrlt5yQkk7pAy+cpXmb1atPtlxTjfrzqcLKiZO/OMZ5eNT8WNbjr5OR/E8kAFQy/qWcsMpV4T9zozUQETxFjqsBO7GC+vXLtJCgVfdfay0O2FkKwqNRmlmmdiguZQgBFQM4YSeQO04LmxlXFEZEGIFPvH1plrChEjUntr6hObHNXQoNuapenarEwsIqLEoeiA0rqAMpk1eorL+hkJRWhhnnj0ONA9xc8ebuXNxRywezeZv/VMVDAKCbNyuLi9pUxTAUMogSU1womBRmmMbIioKACaVwbGxuS3uviFM+6VYRUBXCecIfvzjVp1MyUj6llYUtgA96Zij5FlUoGUhY1rrXSFYYkAmUt9oD4txwt7gQRFTBWbg5VyYf1/WOlFUBcpVq6JPgAFiQy7woYfEphR4qs4Z9oYbZxAv0UGmjUkIjIJb1x8tpLylwiVgA1UZtVv+qLQfS4Kj1Vq4qtlTc1zkIFgB/fKwPM4sJo0jPZsPMFb2zm4czfuHaPQMhb15ct2ft9ixu9zOaTmc7Wcq/75FHP/nJ9/7ql7709avbR1/7qi7c81/54qsvbt6apNevX2cVnV1fP0qGq+srIdi4E/bbnXE6+ti3ffu9a7f3d49GWeZY7Gz02PmtO/dSVxS9/gApGE0nt2/fu3XnDoCsFPCrt2489/aNNsAHn33gzz77iS9H5/7tV7443j3YvnsTETdWu3vbd379U7+S5EWn243DwDmzsbE2m82UUnmeB0ozMyiIo/ZoMomiaG1t7eBgzxhDRLNJ0uv12FjS+uDg4LHHHpsORy4rOoNBpNVkMjHGEIGIiwONAKTBFDwbTTfX121ehKHOJlnYiZxbELDehbl4r17JgA+ODyYTE+qWR44UEaWUD1Gua/lprH1LtfDeLI03F8ChQWjqD01b3IkjN//eW9tqw0iNM+w1g6rrpwdkLTULDTpYf1NurxMXUN3gkmZT8oHGKGpdudROapLdHGY9D7XEOm9wsYfN1zXGtSz4n1zXJRllaR4W7my+SJZ/lYYCeupL5/cjwImEKlmMY6pmZlkPbk6Ib6J8CsFH6wCIgkotq1n9aeoyAAQ6lIIVEmEwmqX7w9m51TYqcCyAitlaFgHKCzNJ0llmjbXNNM1Tx9icFk+MlvjZSfODzIP1aFFZX96rtUhUH5Pm6OYvtQIAXGFA1JdzlhqnSZFSSqFStZB3YmOcskzzFal+9I8R+bq7qs5frxereeia0+UKYEwck5aWqGKW2eEY08RGg1BpFVJkFYgVw4ZM5pwLJERFoEiwEs6USBUHvjSfC1vrNBNRAypZgahKBa0CjokUKYDSZFVmAkB59BAAUZGaG/8XNgALldo5gwiVJdD8PDWOav2ZbZUTVvnuy8yoMjjZc18nDlkAGHSF/isLs4rNcLOGYaBO34I5G60Kmi0uTdmdRhGaRQIHCODYVYlbiIwiwhZ48fIUsrCmAG11PJXg/nH+Oy++/vbO+P3f9vGL589t7718kB1kM57ZNE3s5dX+f/Un/8QPv+f81JoXr39qTbde+soXpQ1vF7P/8f/zsysd7HbXxsnu1trgxRde/gf2X117644Bpyk0SfHoo4/vjV/EVpTt7vz1P/cnPvnUoz/xS7/+2utvXrx0aTSZjpNZu922YMIwNHsHf/GPfv+rX/ra9v7o8CD/N7/8724mh+nRUaBwPClCgGSSd3vRbDzsDQY2z3bH4263d+XKlbeuvo0C169eU4jtMHJcWGuDQCul1tbWtrfv5oUb9OL1rTNnNjZHx8PcZEwYRYHNMxTpDFZ67dbK+tpbb10NFRFSoGl8dAgKZrNUU7C13jXGQagBlp1BsCi7VytKDZiiygQ9ngydBGEY2qLIrW2JKirIMayMWt6qp5B88ieWHheogv4WJC+oDMjelF13ZYnoNE5UdeCd8/YvKUGl5wkJS1fN8+A0Qu9hs1AReYMWES+SpJoOcgPDvfnr4ovmXrpyWmSBHHumXmf01t2ow7VO+pvLDzgfSFOCOTk55SM0p+PNpk4y4Pr75s0i84yaJZLqv3SLoJh1r+YCRDP8CgAWSwg3OnOKQNAkr/NHylEv09km9T85G845NC5oxbmY8STf2z+wD2wgomUmIi7RT6SwbprlubVSljT28tOCYndSeqhDUaCxMaQhb0GDwPlfS4zxeVRX0wPSNOwvrHKTzznnjDFBEJazJFC1xsyslMKGTcV/Cw5Ilxm3AAsbaemU1f0s17GBx0S4IDLOtwojErh3yI9H1EEIaJEcCRjjYDaTdJZ1uiGRVoHWyCyGnTOmsGgBELlMP2Nw/gTBiTTf+qqrAPEiS2Z2CCzM5LGfG+xbRBr2OQRAEWSxXpiB2qJCmioAcx/TvrCgzqGu8uoQKwgtJ6Ca8U3zT875CCcAQG/Od4ws4BMufCI+MHKZMdzc4s3Vb24JkkaqejWi+kn/21zTahJVkhpCtbnBsCpBIZXlj6SsdeHr/i7xYBGBuLh2524hvbduH147mIxU4NbXn7/91stv3T1O7kWdQkvSm0iUd25n43/5xV8/Pn74M5/9wopeK4AHG50+ZKNx4iAIAMzBAW3F5jgvJPrMl77VMra11TOT7MZb1+NeZ282ok5cWHm4Hz3B+ff/4Pe/8M1vHA4PO91+GOlpNkGUw+H4u77rQ3/r499996PP/rd/96fvbY9ho6VX1cpI3xsWf+v//n958MEHf/EXf/E/ffaLm+cGSVowQxiG1pqr16+Ox6NWFEdRaJIMy2LVBNZMJtOrV69evHjZFNnBwd6zjz2+fftOkiRAaK29e/euMbzWbaVFLgDf9YnvvHHjRqBp0F9NkgRFVERQyNbG5sqgDckst0UnbDWZ3am7+uRVMuCrR1mY56ajSdt+0XNyLNwCRFHl4hOAoF9ycWLFNsmrx2Zz3jBUU2fnHLD4wvQVsAdy5bkRD3clZX1hpXWZS6rm4A+ASvwRFLYeErKOCxVBRUqRFBZ9OvJimHTNZoiowtFFz5IRAQSrDGAA0NgAcZxnc5IAeHkAAKiK/kCRObslIiCFgJ7tznkDolIBAIBjD0ILpxoJG1Sv/r5OmWjQRFUzBuSSNnlc+VI1h+W0ovoV5G9ruK+kLn/kqXxZ6tsPH/Qcd4KBSn8Ws2gdVqwFmzHVXBWNbr4UK+FsSf1GXCB55f1cliWt+1neoAgak7PEIZxYFWvMXByE+xruD6cwFdXv5NYgCzGRUxYJdTRNisJxiAE7ZilIkWogaskifQcHhKQIPZqlVBpYzeSc99EJAIJH9PeuGSXktRIEkEZRTipLBzJWieWeBioMnbC1DpB9TS0RIaUUg7VOAFDr0kSJAISKyNqiWSadkcs8/DIRfyEfTKmgEiwWTCxKKeccg5Aiz4atMAKSIgQEUcwIHlzCJ7gXZbp/zeP9cHRYWNNVmgpKWtiWlA6ORtcfDs9jHgeBYBCQskqZPGNr8rTAdkSQuyJj0w50F3RgVcGQWNMKo4AUAzAiCSsA0kGomACdgBFBwIXsDmEkDAR1GWCpAJARFDOzEyLyGJPMDoAFAwFAb6ZFRBAEJ8DISIBSSyoVQgsqQCIW8YgoWvsdKiDzfHoRATZQMk6Bsr64gOPSsIjIJgcREU/EPCwXAgAUtg4Z8Vu6pnsCyJWjYS62MmKpyosXlqQKshO2lZ28qnpYAbDXlLD+EwMBIZsXJAQszhZKKWstZFq1gnE2gkgZSSErBjrmJL+Wkxlceerbv/OVX/tMO55h6kZFPj5KNGQBB0Wqws2zh7Md18paCYxv3H5uMjbsom5r4/zFQORw9148MB/75Hf/x//0a4Zh9cAqC2GblJho0J0cjnNrJlkOB/sbnZ7dm1CAP/6zv/ypT37ss889399az22WHSQgNs+KjY2NcXqQ7O98w+m97Xw2Ogxb8sGLD1568KH/SM/dfvvoz3zgkdXzuPPY1u7dhz/04fe98Ntf/fqkWA9gPB6vnz0HjsfjcbvVkjCYTCYo0O12GSRNUwfyQz/yhw8ODj796U/v79ybHu+7NGXmK1eu5I7vy8HK+cv7d28UcevuzVvOooDWqBGg1euKyH4x/UMPT1c5O2ANql3IcRiSNZ5YlbR8ibYDAItt5rtXGvB4KiBKKY92qLRSJXq4J8BSEegFzKNFMjqPN6lID4KCPM2AhKTM+/dYDgDA/s7ThAWRKqTQqxQI0kjJaEp29QdmRikrAVedm+8/bFj/fJAXwDyJyLlyUAv8ey48lhI6UVUGwDO2RjSsLPakpNSuxCpx7JxzXqhdIveyCLjRPDn1DGPD9lWf2+a//gPpOhNj3pl3egpOWFNPCm44V3RPuBhqUB1cnrTm/e90Nflo4/4FjXlOgN7BFK+1KvEuCcHiZDZNbUGFkA6wcj9ba9M0S9M0K8rcM/a2wkaTPlijvpi59CmeSNWd922emeMxlBc6Vo+i4rg4n7fGbT6DCNGXJJLmupRRgc7V3fBhMSLiHTHOuQqg9x0nf0leqa/ao3TyzsYsk0AZT64rkyk3TCNKKQErlcDEAIJsGGa5yYwJQ6eIUIEClEAhgXMqM0ca25HqskIDQ2IkiQBbUiJaO0QvFDKAggoAxWcVNSMGCbCCpiz7XcaXNEJSamFapGl7aJxQICKfFlg5jxY2wMLNiFXINM9PetPEXx5AqQBaTlwkPm4bl07iwkI4Rqhtk+LBcQBL4B30HmJ2XnwG5srQ7S9uGLTnod21EI+IJnVEAo4E0TrJC6O1E0JpG2eyyBjIbStuHTi4yXLr8Gjj0nv/3J//ry8+8eTP/Lvf2DscIZKzphuHkhtFenNrfTAYKHG3r42uXNn6oT/yI+udVvDiq5/+0tc4zyfZ7PDg4Pt/4Aef/cAHUMlvffozNssE0Ng8sQ6KfGtr86/+qT82MuZ//uc/nZmZJVSqlU3l53/hM5fOXkwmyebWxnFxnGdJN4jSw+HlzuDNt+7993/nf0on48SIbrdfvnH7znD65hvXi6T4qS9+8dkzq//p3z730IPvBd3Tjz4gz31zpiEMQ2OM1lprbYwZ9Pt5nk8mkw899eEbN25kWYYAR0dHN27cQMTMmUmaEXO/21Nap7Nxf6W7urpyuK2Z+e69e2EYZkmSpPF4MqVQdToDHA8vXjjnyorUjkhZ62BefmN+Ok9S4/r7ygd8OHbe7CQgYpAUQl0rTKhBBJd8TnVDqsSWKndzkzEgYmmmhiqOAATIw781Uj+bnowSc73sMgh45Ckpa47NIdOU90z7ooT1ifJ254ZplBBrKFoRX9lgfuiqM1X2ohxaWYzslMgyWERvblIvEvDVU2xp9iQAsOwaHvT5ITxV+GjS/UrteMclfPcv5fRwp+U+LzG5U69adKCqKgS8AwXHEyb3d7/Knjd4efkizwLfAcNTGElEkAAgAD0cz1Jr20JsnVgmx06wcG6SZrM89ykX3qOxDP68KBKdFHeW+8nzhJP6ELyTFIKVfb6eqHpZrbUVby+xPEs+zdbLmj5hvf5sjCUChSQADkqwzzr+AKqyBIhlMUSWOSRns0v1wvl4pAavQu/FxMY5bPZ8aVwCgGX2ALISCyIWjkZFuha2W6zJEijSCjEEEUCZjKeWyRK3oiBQQM5HSQWgnLWsUBCFSqg3wwKkg5IHL607lBCPJeCEiDAJAJFFqYot+Agjfwss+5jBm5d8lqCUAd81PVnahHPmzSUiG1TzVbfnRWuu22Gpp1pEAJwXL7GyxlUNVBSyPOPNhVjeRwDgLXZQGiHsAvYco1RB80vqdX0MAwqNMUWWBUGgNKLGzJl0lgWBQwsxtQxjYqNbo8ntovjmjb0//8ln/85P/W9v3rh+6+a9gJQSdq4oRuM46hVF4Xf1NM0A6d7uwdUbd68D/Iff+JxEnds3rxE7k9tvfetb3/dDP3zn9o3cFCa3jz352NrG6u7+3v7u/ZV+d6PdcbMJCRsl7dVuluRSuEGrgxn1w56dcbc1ANGZyWbpNMkm2kERt9Y2toLhaPfg8OXb9+LtfTZ0oTv4e//Lz62Dmnai+PorT02Gr927HoBTKkySZH9/X8qaomSMSdNUhUGn3zt79uz+/r4GiHSwc/fe5tp6YZyK4oB5miazO7dTU3Tizs7OvdE0Wd/amEwmWZ6sr68yWyRI86wVD7QtLp8/k+b3QVBJoHXoTAEn6O1pFGa+FUsGPBrnAOiRIC1ZriLy2CN9U+VqZXFLjqLqauYj+m3i36FKCdpDQtYccU7CGBYKRJcAEX4fYrn7mi86OR5/IBcqcwq4ylxW6x/+UkRchgY677rxN5QHw2fBLHLH+tDiYlL/fIqbdgYBD6JT0jgPb0QL5kFokMImu4XTLv+q+jY+zUcLsFDTQioZCE9weqwdsQ2Aeyj9wiACzRSdJvFltp5kA4AspBL97uDjzatJ1xYmBKpUSClzt6HiCfVcNR/x0pglEAEtNBwnx3nRhhhROWfYOQEsWNK8SDJrnAcK9hVbsRkNYK318MJ1+2WlgEU6eOrqkJzgDydubsZGNAzRzREB1rBMiFyh8Te3BNabuIJVBw+MQ0q8gFobhNhXIsA69LU5dSLiEWMQsQ7DhSrmRwSR61AiX9dLnPdc4rwLvmYBkRZy1RiBwRQMR0M7MW4FhRQqZNCKFQGLBgrCjTQbZsXQSrsta5HqMgrhTGOIqISZFCB6XiUAoJQGx0giixSNjSUibiCZlCX2XBVDIFJam32HG0+XNU8BQMSKmU9LFRYtHrpZSqt72ZqI3/EV+Ef5NUkJoVxLLHW6NjMLWE/C6mMmIr5079K6lBq81Jr3XH33u2weIe9cFepVVuOQKgRaBEtfXY2QVQdVCQOAzfM4DIIgALbJLCusIR3GUeSmaaH0RKu3D49evf36W3fHYb+buWjM8I3XXr9x687aykqWzLjIW3GYZrOiKAjg2vUb1hTT6Ti3bCx86tP/cbCyoVtd55yzud+W93d3f+qnfura668BY9iK08IYgcHaajab3rp241/++mctwUe+/eM3t3e2794OARwU3Sh+M7/d5SjIFWa2H7c/8MSTN27c2D88WN1c33zgytmzZ1/60vNGQPc6s2m2qtsH06P19iYqfWx3zqJcf+UoitqmHUc6mEwm7Xa7cNYYw8yz2azT6RxPxi+//HKWZQCwub4Rh1FRFEVRfPR9z77y4jdno3EUaOuEALJ0ZtJEBeHG5pmdvV0dBOfOnTnY3291Wr21gU2K8yvhWr+dHTkkjWxJhQDKwakxg9L83LyhJD2zzCJpZqtQE7EThcJQiokMQMgCIgwOG1eTKea2zN8tf4I5D252pVYcm+k0XAG7SuURaR6b8s4G0MfS28v7qxbqCg3Ny+/Issp6Tf2phHtwUIZRiJSGH6ywN+q43JI3LDLL8qfqJHu2USJjKyUVvySimmmdvJYYc7Plyqgw57UnRRCoLBCnNi6LDKx+xbswzKV+li91LOJxpaseIgCWlomlx9+FHy+x3sZAFvboyc8nZolAcodiGRXrw+ns3ni4tboed3qMRpAFyViYpUWa5kXOLSK/zXy8aq0XEelFfundn/MC9XAa9xURNd+z0myweU/tj6gbqWO7lAqajg+p4/hQvO0EKyu6f1wh1bkxBKW3hZm9uaVkrjAPEHv3+QeYVwPzQ1BedSyV6TJXxp+2Ov6u4gGAiKg0qRpHWZAYEGYpTQxbQI1MKECKhAAdArbabQdpMkuy3AEbp20UKKUQjFfsvFkYqEKUYgeAjMAKFVAz5slUVXVrsWl+ZE7f6qelR9axCPWvfjWJpOKIUjdbfuP5ffXKypQ3j+RwyFQFiLAPOfOysVfKmd1yyTjf/vJhXKBsLKgAyNdsqLVnZ0vTtIcqFxFBBo/Sz8y2ojYMYq11zhlrkWK2hTMWHBMqEFUUxdR0r97bfW3//r0kO8xcoaCVC1r4Jz/5v5w5c+bs2mA4PHYgWtH2/vH5rY3jvYNOu/3IA5dns8n5M2dHcevw4MCCOpimzplYExs3cu7M5mbG7stf/mJPBa0oTvNsMhqfOX+u1w4nQWSj6Plrr0dK/9gf+WO9Tnfn1k1RSlrhzeP0L3706Y997x/4mV/+5dfu3jOh61xcv9ALDr+Zaq1ff/3V7e276Wwcx/GUndY6T/J+r7fHYpKDn/+rf+mJi2f+9N/6O/szoymazWZ+rnwNCWstOM7zfG1tTWmdTKaa1Hg8/q3f+i2t9crKSp6kXJhIBYEKinzWjltFnmqizmAFFI1Gx6u9/nQySZKpEPb7g1l++L6HzodkDOlQa2OdZ9u/67VE0GoG7DDUAkZBBOSs9R4VLqmlR5710ZhVUYTljY4OqvQJQARf11mYMC6dagIgxCyla1kT4Dwa08MvzI9EQ6P1o3KL1XLm76VyKOzrtQvUMVxNrIOac4s1jECkCIBBGNm4eemVmj2UJH4u8gIiIp1ytpeOTYiKKyciKPIBL0g+nu3U6/SsmLp9fxLrP5cAHJpk4h3ap7lRvXHVUce4+FstidcUZ+kV8/U6TW54l/mB00jhnPwtsu3T6NSSFKkFgJEBVEtFqeR74yHABoMIEgNZhsK4LDfGWL+Upb+WBRxD5fk92fPaEbc0QKmNt17lApGyfPoCjBFWIRi1CFXv2NocQkS1Cw9r8xJWXK8h5zUMHiV6YsXIRRwXUkStuLyhwX3rc/ROY6z31VIIgv9AoGrQBq21j2Es+Uodhu2gxHCQAEGUEiSwGR2lhSlLEPkIJUGBQCG0c6A+SjtNs8TMLOcMg0h6DnMNgogawDIFUGvw7BkwEVGzXFVVhlSk7EGp19LCEObD9CZrP/9lvT8EACCap/qIiC8OJg1L8uKcNG+ARYNTtWsEGo5Zbxcg0oglJJaPvoHG3m6ekSY2zJz7loyVwXm+3kjRrt8qyMy148CrGeKjuaAsGu2cQ5KsmJncEukgaucG944md+/vXhvyMJntTZNC60C3gkA54yDEtdUOskmOjwKAD3zwg3fubwvhaDLZWl//ju/4ts3N9a985SvtXpcUbO/utXpt0bEqUpAiarcjUSurG0eT43YYonPOOQLa3T+8fDk7t3lx293I0jxYxccfvHJw91YyydqtfgIAYZxN9v76n/nTm48+trG1+l/++P8Qhnh0/35xONGH4/GakFb793baYQQKp0fHa4NViIgM5i559D0P/P6PfaSN/P7v/ujeZ17oUbhvp4PBwPtxWq1WEAStMLp161ZH9cejUZKkcRhGUbS3t1cAgKLxy99KJrN+u5tkaWGdDsE6YWshzw4PD0OlbZ7tT6dJZs6e25wMJy1tnnxgtZgdOwgRQIN1wqRKOW7pxC38KdQwt1RBWElmKQhQDDgAKkRCqGDfxZczwJKpnNya5X6tDgCX4ho3vF/K40r4eFFhFOBa051DkNMCyfbw4XUARglnXJUkEqlSDlTJFdHfUzEU8oJ1I06YBBCJ2RIgg/OhxUBE4mCOB1QPsNLUGz7v2ijV1GxOTrTCOTCsUsrnGZ3KrhDRuXKWlmhH85umv7lJHerbTuEiizzj1F+bDPgkw1vqJzbx/efwP7+L8fnkuOqrSdrq2+qxNDvffNe8NUFmFiJkDlQ4s2p3NALHxrJDQFIMkpkiz401rCAQr/EAQCXMNTqpGp+RlEIEj9G31FtpxEPMd2DFKZtTWt+/FDNR01z25VfLuS9lTyKyxjbjDX1ohXPOmzeXIFrr1ccSO85fJAI10OO77I26V1Iqvlzzs+ad9RhLiQGRiArGUCF4sLzq6JkCjmZ5aiy3VUAgROgAkRUQKxO3WsAtyyJiGcVwzhYVUugTwZkFrCNUSgkpLU7QoXiT1bxPqmRnpbBSfwkVElxjIb122MwVnItEshgKUKauyzzEpLnxEFGc4fnN80f95qFKCPM+O0+LpDIINyFHsJn62FidStKqk99ctc1UBX/m5o+LRWjghNua61dWQO8wE3HCzsfssSUiFpVaGY5Gtw4mO8PZ4WSW6phVCKErZnnQAstFnueM0KHB4c7+xmB1Z2cnCIKnn346fn/05c8/t95qP/vM07dv30RwRwe7h8fj1dVVY53Jp1GohGU2yza2LnQGa6nNooRs4aZJ0ut0egij0eib3zi6d+duO6BO2H7mmWfvXLv71W9+w6oAg5YkedvCP/2X//ov/8RP/PQ/+1eRYD/ufu3rL7KVKNBaq/W4O5mZwjgjfOnshSCI7uX7axivy+z+61f/8j/9x5/4jo99+fMvbrR6xuYell8pledZlmWIqFdWgyAoimIyHve7XVsUeZ63u51BHJ05f+7+nZsOIHdGx/GZM5ePhsdgjQDPZrN+v3v23Nb2zTvtQLc09buDw8nozBpcWg9dNnXUZTZEZEkAnfAyvX2nP/1KVdWQCosUIQozO2vEsaiKILKIL+7XqKq3zH0BFk2sHrqRRMSyo4p1Uo2y1ExFbnQLEUt/cGlJLmEfGBbcqLUdzx/BZn14b1arqUXzTqxoXLlbhcvQLSIiKooC5+Hj8y6xm/vt6h1f++EW2BgiIprCeLQday2CUoFGAWttXR+32X7z2DQnYem2mvzVw1kiEEstLD279F5/p9IL+cowhwqBUy+NZGHh7c0Dv/TS05s40YcmD4YGOWzOQ5OlLfIeTwdZhJDFWN4/Hk6SWbezolQA6BioKEyWZcY4a0mBQyLvEmzyGK31Ulrw7+WSSmupZ9jXMVzqMCzitNQrKCJR0PbSJIs45wTKcniecCCiNz6XQXzWqkBXlJUdsyCRUqoRwt1gpSAidAL3Y+lO79Gfy5ECTYhaBCXgUMA5640lugyz92wDylpDiAQKwHrt0BZumtncu2AA2Yd6MyogK0TKUJwHBTP3FCiWWW7ut9UZ67GyRESECLRyAKC0EmFfOg+XqYXX/Ahq2GpAWNT4T9/21SqggFNcVln1Jo3a/ODTDiv+PZ/YxqI3tzs15JgyYmbpqnTTk6emucNrFiuyQB0rVu3qAAIfNu8R1sRvHitVWjBhFbXovO4rbJ1j5pV2dziZ7h0cDzOzPc2v7U+Ocpk62GwXqxub6+fOXr15iwXyWRYFQbfdWtm4cLg3GU8y0vrGjRv/zV/6b//Vv/iZQMO9u7d/8ed/7uKlCzeuX0NSBYOosNXtamabpwoxbnf2Doa7+8cXL663W9GEONYKANM839nZzU3W7XYQ2MLg2s0j6/QwzXtrERQzPU4uA/3Du6/+8o//5WR/ur6yhVPc0N1jO9u6eD5VsH39boeCoNM/Gh6+7+n3HU+S4a1beeB0kW4J/NrnvvxLn/7yYysXjinDkC9dujSZTKCq9RmGYZZlURQBgEYSkSiKpkkSxtH6xsbR0dEsz7bOb630VobjycrG2iibbfTPsrH793dWVlbSZOociOIoCIfDYdxqb6zqlY4aj0SrkI3TSgDAifVG5WorNiy1i6ev3gZVPWClXT4hCrmVGzMIVEKqVRYOCgAdQUkLyigQESEirTWitzE4iLQwgy9gXVn8EEB7yZJFfP2acrdqVxIvKamoCCnQpAr2ioVP75E6OHYJSKveu7YwnoN6clBxFXCApJTGUn4kIitsrNWKwJfswvL88JwsogCj1PmaAgDosXZRuIrdkarCgz+NCCW0vZe3USvy9W69BdI6INRa17kvdSllqZw0NZWsTy+JT9NCAJEqwgwJldJ+UQDnbuqytFzDV1c37qNt8QQMGSKydTVT9zdUceyNreKD1AABwFYCeD3qShQ7BaiBmVWZQTL/0se1K03eRIZYYvJCCeZXkyEvQSkAIELmAipdoSE8SR7O0KgetzI3m7VMhK380ExVtGp0pgvHBqyzVo8lMkEQ5SJKfGkOZsZGAJoD8eULy5kn7YNqUKMw17lA5VyJECoFNQw41n5ZKfmHv7MsFgsA1hZ+bkslb47W4hz7rYtc2RQcmyAKQaB2tYpjBAh1YF0OHvYY0ft5RNBaq3UoAIBc2k5JysAjbgrHVc0yZk3gUd0BQIikCvUXAkEBpVjKyHOR0hTt4Y0Lw1glizvHkWaTuSDQlhKFZIwKwzCOOM1xMi3sQAkJu4AoYlFWLIvTKoiiwHUtgzGpBWhHwSAxQy0q0lEUhIzIwojKoIhLFUKEWgzWVZcBAINwbkAvz44AoREP5eVIGAQYiDEEIuUYqvygUrwHERCy7AUddiwApWmNy5g/8MgwvhyDiIgoCkrrYsNTJiIMttqZiCW6lCBiaUDkwoogsHDNxREAypxxZoaK6ZYCDYPPy6o8RAYyhTpAEgFrTe7rmWulrWUBEDTGMYNGBeI0woSEXW6L1BVpr92zmQMJNUbPXd199frtg5m1FF+8dHmwtb792pvdNgitbj3x5OxgrGB7Fkq80sdJlit1+ZHzyd72wa17bZCDvYO//w9/Mrw3zvJ82lL/3ff92OWLZ/6Hg4M3b90MAXqbfbHWFEpRmLEdFdM+qr7lvVuz6OKqTqOkSEW7KNDamjCIcuPag95sMvzNr36hFdBa3LLHcmxM3OkyQjAsnHPf+73fe2/n9s1X3+ZZQkq1H7gQ7hxMNIsy6WQy6K+/fu3GcO/ej77v2T/7w9/9E//rz9y8Oz6fqh7Y0XRX5+6JT35iY2Xw1a9+9Wg0VEQAymQ5tuJJMouiwLAjb0Qh7Ha7NksP7+90B2sUROMsnaXJ7p1704OjwaVLx0WyMug88tRTX/jtr/U68foZHuVkudVieN/ZeOxaOZoYcwwht6JBRKIlwa/JbksyWMZRgUeiOVG/0Jf9gLm5aen3pnTpj7FXB5FFCfDinbBo7Go+2/yrRDxgMQBSgdxSCY9X9esdnJ1eCMCGklE/XsrGNbZRo7hTdRjqk9xw3VVOuMWrrsojIAT1UzDnYTU8BYCnWdIcHlVROqdKEv4brIJiHMDyvDdmtZaemvPZnPDmpC3ds/TTUgeWutec89+DWrvcvu/T0vdLNgl/J889ynWF5hKvaq6hLe5GBUhagw92I0JQaTo5Gh5f6p0VJ8joGGZpPpvNjDFaFtT9ZoifWnTn1a4TRapp56g77HfA/KqSQ4jU0so2J7+eT6kcw9AIkG7ewMyey84ht3wRFK9e8/xOxOWz8E6rsHjoABfDI2DxUANALfX6sS61ubTBwMdja0BEK5KmkmYmt+1OUNpICYUQFCgv3MVhxC2NzM6iRqJwkCfpZJYabVtxqBQCiHO2QIwUqRB1oJoeAz6BzCVYuvZ9EEglW1QSU+OA130ul65ahXqxpLTELN/ZvAAWtFjhUs8HAGBEKRFyuDRpC7AwcI2qzVUeZtVcRW1q+xZ6n0UZthkFLZPbaZEDs1KKlBYAMWJSJiIHjCxEaMEVphCAPMtiFbSg5aidmfCeSV++c/fO8Hh0YFMHOUKWTXvOdTutPEbVaW2trd+4fuvw3n0UKKZpp90jHczSLNsZ2igK49iAgXx2+NbYhtBqKwXODWTPDlOyJg7s2MKoMCFFKHErPruxfuPencnROABoB8Hh/vFaZ+Xpp5++ffu2JQLLs9kMo2BlbXVUUF8m2TixUXvfjJ9673tvX7sVx2mv1wu7g5mlld7lKey48z05OFjd2b82nSJppTWpMCmK1qClAH74R//I926cufzTP/N9f/CPnHv/EzeHu/mt/XAQ3rl7I9aPFEWhlDKFUwHleT5JZu1W5zs+/rF7d+7eunVbh+HK+uru7o47slEcepF6PB5zYQ9nB4rocH9/lme9WBubd7vtNA+GxxPVjTUogmIw6AMXSMDMdeKOLOI6vMupRPRJc6yXTiAiAhCCqo+d107qTatQLTFg3xyxiIjPovAGKi+Sq0aC/II4UBFcgqp2miA7kEYVvxoMoWZyJ0eiGkkd9WEjIicOXJlZ6E3riBBomusW8xM1lwaWqKfvof+i+uyPqGu6gesRzedw8TNAWXawRBson/JgtnO1smncWqKtS3O4dNUy09L9TbmnQWIW9sHJppbu9LNU33hqB97pkiabr7xiUpnymrdV8laze642Dtddqltz1mgMrbVIgAJKqSS3+6MJXCJwQKgdqmmaJbMUWUijxdMNzWzdwpwQIqmGjrU86nqpy+/neB0L+ZfNccGSCFwd1PnaNKKrAHzS+pw1Nq0IruQpULuf63OBpZfklD0gIvWGfAcD7eIGe9cVbi6EiCjU3gQFgAI8m8F4ZpPc9SKFzjEaJdaDalnHCE4HQUsU28IAAIowtTp9Dq1J0+ksjaMgjgMkAVGWnbXWlI1X62Wqet4e0a66vCkNhEHKdC0RRgUCrsr+XxrpQpkhOLGxq0Nd89kyknSOJdB4vAqcnq++/1qEgQVQfCQKLYq2UpJMBwBQhU8jIikvpYlzzuUFIyAqVlQwiynAMTOjCgmxSFNnCx0GTrAwjgE7EjkJ9o27M5ld398+zMyd3QOHBCqiVpBOZqDg1p17iIhRd5K6aZHf3d5tiyKB1bgzOR6udrrpbPri117qXlh3WdpuxTuQrsXwZ3/0h7W1/+CXfv0f/eK/3lpbvXrrptNhF+i7nnr2m/euXt3be+jshSuXLhfO7jgxSRbHcZjZbre3tXXmzTffslnR73ZDkWmRRWFM8czd50G/v5Mmzzx65rmf+q//7a/8wt/71y+x0scHh7vdXXB6WlgVh2G3e+vOziykLDOrKytMqtPqrKysHG/f+o3f+s31P/kD25994zGMfuIP/OHogc3/17/4p1//6ms5HL4yLR544ME33nprMOgeDY/DMGoF3SRJ1tbW7t/f1WEwGAyiKBSRKNBxqNut2Dpni0IROWvCMJpNJhZl5oq33nhzNBx1gmiWTVpBG1K3udZaWx8YmwFYdqIooBNnZomAn/zVs9o5A65z+Zv3UWPXooAwSyPtobzHn3wWrgv4YN2mtwov8RLPq2uHCjZuRoYmi1oggrKotEmlTDT/bFIXESmjsr3iRSUO39JJK/mTtd6xuDSDZXBLFViK4I1H87ordSOeDJXtN/R+KYnagnA9D372/yxyI2iojk02KYsabXMgdSD30iydSm6XWMsSz1hi9tVan4Jlfeomq4hLPc/YYAxSCjFcsvRaxapTrWCZFM4pWvNXxaSQjCuQhK1FjKyD41maO8dOSFMhNClsUVgEgEARS4m3Umo58+abnSei0hDBUof/NGIPpU7TrDpTiwjL3HfeYIPE16rn0kath1a/q3YoIiJpJTxHPiqnVNGp4rZUtpl6ZRf2iZx+vprfN2d/YS2k0T560EdojAi0JicwTXmccr8lATBjAeIMONH+6AFAgaiDgNixs0Yw1EGk47bROp1OC2OUAh1EyhdFZYfGBHpuqPOuE1REQIJSm6CAEYURqAxWEgJ2gEh1WNPiwLmBGFVTMywriDd3BXqAxzIotZ6QmvFjQxsWYVcLrDivHSZMQn7ryKK1o945FTJuqRv5X51jtIAKHIET65wjhkCriOL9dBSJzoopOAZCw8q6wIIeuuLt27ffvn94b5jNHLTDNidq0Orss5HCdXS7MInMElKBc67V797Z3VFKZc50o1aWZ0pRxjaK49VeN5nNeusb4SzNDPQvrP2B9UdwvfPpB66/uXPr7Rv3t86t7x8dfv8HPvLnf+D7v3jtxR//2X+T5fn1q9dmk8m5Cxcmk8n44LBF4XQ6vXr1aqvVolZ7MhrHcUy22NnZObdyKd6Kh3uJPk4efv+T8OHv/76LH/+5//QDN/Zctj+5lb08dYUytj3purh9sB7A/fuh1iRkCut4auOw12799hc+/6nnP7+RQHh58Jv3Xru42x3uHfQH7cTxShimabqxsXFwcBBFcZZl/Xa70+k89/nnDg8PiWg6nkxRkEVpNTlOgMLCGiQRa9pxZIxpx6FDELbDo0M2HPZa0wySJE0P9p/YOtdpBUeHw0gHAoxS7g06AUD0LmzY/1QzYIVovURaHktff7CKHKqqpJzOD4iI2SPUNGj3YlRz860iJW4kl9i/BMC+6EJTLm0+2OQ6zQ40U3ubryAihpLrla05YVqYnbrZJl1baqpGJ252XqR0ZwMscKnytDFDNQ4qQzFFYVNdLrvRpM7zy4eqVd8tcbuleZBaCpGFG5Y4mTTW5eSewMVcTzhxISLA6T+deknlPDi5LlBhmc3Dg9Upk9Do+emv0KiUCixZJCeOfbTcwWgyy4sAAZDGxkyywlomASdlKSEREYRGNhkopRYg2JjLamDY0FDn6QDeK9zkVbUcdopNBSpxc2lcuBhS54TR4zs2AG2apwkWZVipJDestK6TMhb6FKB61IvtnHr/fJka2h0tbqF6dGydpwmI6JzVWpPGSIfCYixMcpcZJvLJPmJFxDIiMFu2FiFQWukAHNtAtbM8IdStuNUPgmQ6yoqMwYVBEAcham3Y+RivshuOhVAhCnp0Ru/FBiW4NBDw+gMu7+r6c/O8zCcJvX2h6bMgkDIYpWTYTc0bQRrlj8plZdRK1bOIIlzjbFTP1qEDvg91cQURYZ5DwWtk66yx1o/PMmdZZi2HWjxCNAVxquPdYXZzb3/7/sFb09lsDCGBcxAA5UVuwR0nI91bfe/7nrn25uvjLOl32qPJNIwjpSgKooDU/v5BWmQR6e7qoLcyAIDJzr60Alnv7R0fXQjC6e2jl/f3377+2vH2rg61KG0NFAYOZ7PXb769s3e/H4YIvLOzk+dF1GmHrRi0aqHeOzq+dOlSq9W6d+cuEXkw8zAMz2x19o6nYywkim8+//rs67/0k//wHyUHQeGmQUjpZKbb1Om0iuE0GU8efvbp7YNddjA8Gq6urR0Nj8mZLE0DgIdsP13H4f7oX//WfzR7ycDQMKJ+q3d8fDyZTFCp6XQaRGG73Y6iaDweuzwny6Tx6OBAIWoCdNwOaTaetLqduB2Nj4dGuLAu1ipJi9VepxUFsdIagAUm4xlYd3aFwMtDYSQC5Qo30lWWdtq7XIso55WHo9wgnkQSAs8ZLSzyIai9er72tIcIqA6BlwJPdgURkbSIzAP/iJrMu2q8yVGkem+tdpQmJwApYRPqCkUi7MCfT98BT9eoaU6vzmnjJLxL/hYvKAbI5Pvf1Lxhnosip9G4ahJ4seUFAjHPr32HtVsyxVcLxdT0Oi90fuGcAwCWpGQOEFHbvppMfanbiKeM6F2upqBQNuLzsRahJb3UVW0EhmWCyM12mh1g5kIMKgAi5ZBQKaVH42RSFCutCIjGuZkYK4woYkGoIUA0wZUc89J4y0rMTcVvfiC45ovVJpqjnkFjn9dMtE4za+zqZeNEnTuHiIZdQKrMFS5D+ZtAEI1FEeEqO6/x6lpwW16RentUnGNhF6lGGk+TN9TWrJrl+Eest/QwggJmBhKlMAgCErAMaeEKltjnJiOxA2FWCgHFsUFgVJHSRA5skfpCLMbaQOvuymqajJPJOM8y7nQ62EIKCmdrOuWcQ/BnGZgYBUUQKmkDEMv8nHJcrhLpoWStlUiH1SSUQysrY5bp+gIWYSE5TRrclxvzII4bM0NQWrNYhEqNl7lK7BAAYGSpFOWmtsR2nllUlUxFAMiQRVwZ+cxsWQoL1jFmTrc7qZPto9mbu9dvHYwzHWQsnaDt4tQyGman0FoXaJxZuXRufePSuXjQeuErX9k7HqmIMikiCMYH0xWlIk1Bt7XVXzWAEKjZ4XA7HbdTgGlmQ8VZ0Q7Dv/a5X4gz02OJIAgH8TCdUb/3qy+/+uKt6+NJqjXMmA0jW3Pv6g3oRM6YvJi1w3Bl0N+5f380Gq2uDEyWa6I8SycH4zvjW/t38y2Iv3Vzd/Cxv7a1fuHZdvDoY5e//sK3WmFPSXg0meYoP/Lxj/433/cDf/s//LuvPv91kUBECLhIk5WVlTwz23lqp+aMQXsrmRIQxmcy1JdWZ3tHvV7neDyKW2GS5leuXEGt7ty9szIYHCdJpFrnzp1LptMiy4TFGHYE7XY7DMN0OsuSfK3fM8BoCyI9m02lQIqifm+wN5xu9eHpR88UhdFICks5qDpHrrlnmkes/qHcixVk9JwBz1lSGYZaEQVZMJssmdTmLSry7lGpEHebMvUS3Wn0UlUEDyrIiObNTeILMIdtm5OSpXHOhwM+kqmUNHWZLjzHuGkym4qrNU12lZdOGulGWHJ3qKRd1wQX5Ia5ssl+qp77Az7vok+LbpjCvFurHFpjIeEEZW/O6iljb9jclujmO4sF9Tyfbrf4vTPfhXctmRNEiBq6xeIm8US10dIy6OZCf0Dl1qgAlAiSkGCgo/E0PU6nK522Qz3O80meQ5neg85WJdOJFqKgZcEoQv50zCm41JNZb7amAt103566RnNFf9EgXDZVpvah75invBZRc+PVpehTfgZCaOQaNt/l/4+VBdubUpa2U4lwLvMMKqndACeXD8CH4875TX30fPEiAURkKf0vpDAkLeicMFeJDAiBAwQoS9MTiE/wRZIgRJPlcSsEVFlqwELUaXXVAABMMs7zXBjbMSicg4UaZ6kKaCJgJCIGP4XlVFQm4nIsjA25peKE1X5uLi4smYIWeXBFNxuYZaWnosQn8W3Wy8HsPR4+LLrkpijgqtob5S8ipersQKp8Xi5Xn0XEKWIrYJ211oE40hJEEAY30+Tu1Z3Xbtw9ymAmoFvh6sq6mc0kcYP+RrTS66yvHRwd3b52SwADhXdu3ojjWEfh2tnz1mGaJL1+5/7h8Y998uNPP/Tob3z9q/cmw4N7e9SKxge7Z1v9P/z7P/naa28Mb+8gQDjojMezx89cPnjjdhaTSovRpGgPeuCIOvER8Pd850e7zF9++8392awTxZLZwrj1rS1i1w3jl77+Amg16HdMliJipx3v7x0d7x2t93qf+OCjd27vuv3skTY9/nBvYlfPrPXXu+vPPPa+ZJZ/5fVvZXneX18Vcf2VVtQKHUSzvCicNcwf+ui37e0fvfb2K+e7g+PIHN5NNqP2fpr8oQ9/vP+hK/ffuHn9+vUnn3z861//RqfTsraYTpLNzbV8OiWCIAqfed+zR8fDe3fvuKw43N8PPDzW6opSKtR0/uKF3eFRf2vdDrPjyR7nEA2wu9WT4Whrvbu1ros0CXQkjETa2kJrYnAN5XD5NJ28/FbRzfvqfVnSmUWRGQCEGWhe7WGBGRCKlDF+8s5hHPWD7Eq+29y1sqj1NsX4mgo0aUHdtyZd8/+SIgXI1lnroIyCFmttELfK41GltSxb7cFDyZZqDZXQ6lIPS4Cl4uuVpxCprDtcBYs1lkGqY39y0gBASZmrg5XeXBE4qb9sDv9UqzVV1VXnLz0RSLUo92DTpNycwFP5es0A/n+/NFZFYauQARHxao1nz1hG4YnIclBCU55oxXGR5Ijg2CgXMACimqXTUZIaAXBulmVZYZxjTQoRHTsAUFiGC82nLtBL4y0FBaVPst6l+cFKvDpVBKzvoeqChsg4D0ZDxIb52o/RiPMZfWWKHaG1ptlmuUFr+a7qOTYspX7Flnbd8qsX5bnm9yUjNw5OG6AqU2+hjikXYBGnSACZQRiAuay2yEDk45OxlOCdM0yB1sHKIJqlibVFEHYCHRbGKaLVtY1Mw3g8ns1mCrEVxfV7/Wmdp70uDYGQqAo64yYlWbj8xDbzx+brsrAZ6hYIYF4LoZ6pplwlIgBOZB6LB7Wc7n9kf0etC5W3eYhBH39flVDz5RSZWRJjwTpiF6gAkCZpfufunb3h+CtHSW6kcKq3uhYyRAJhBnZvnGz2iulxJ08+duXB9bDnJnZaWAsYjfavvfwaheGZc5fObVw4PtobHQ+1gysbW9/2nmffvHPzm1ff0JaLVADhwsaZH33kI+1u75f3/n0n473J7G/8H//s/+mDn/znX/q1/+u//pUHo5WIbJZKC9hIsTqI/vi3fZtudW6Mj+5fHwNwrNSsSC9eOv/eZ95z9eU33rx5K4hUEASeDCZJ8uQTDx3tjr7z2WceuHB+Y+XOZ3/z8N5xZ/eFXb26/eoLvKKC+EEnXRVA2rLwm19+ft/a577wnFA0TdIrV871THv/YCd15mgyffLy5X/0Z/7iLOS/+elfeutLr8Zh53Oja7/vm9m33n5DUaC1RhQWmyRJlmez2SwQu3Zm4+79g/v7e6BU4ZwK9dq5My3S23u73QEwA+nQCY4ns7MrK8PpgXMQB2ht4Xfd1tYg0m6W2zhuMzNRACXgknfkz/fY0r+nEoeSAZNSLBipUFyhCZHFurJupXNcUngREChNrw3rjd8oyAiAhA13rD8FpLw0iuzQwz4jCoLjuixilb2EDCKKqoLk5RYERFRK2cIXA1Aizpub/EnWPl3ElWmPvlKZj3m27MpsV4Ay2ZdQrCNEVEoQbGlVBAw0mooqlTY9FgFmpjKK26cJlim8REohMrPzkcyOEaksXCPMFUEFb2Itoe+kYuwNIgbAMGeovgRZWbZRL/NCvxxWrEhZgxYACCpfJTWRgMqs2hqRH6gk2QJQYmVziSdUai6uYZn3RNw/V5VytpUmxDxPLJ4TvgU2KQAecK3ejIQlRik4qdNMBaqYUoUk3pcv7LdQgy6eRAsCAEhMqrQAKIKWKBCVInOR6GRmxqI63W4yyjDJQDHrQKw4Y5VSon096kYqi2NapNFC6OvsIkJVxpxdbaJ3NYKV/1d5Guph0KV5/kSkMu02k6+arK7Oeqo5X9hIf1JUZg87ZgJfDYyREEAEkARQyFV5qNUoyqnTqqrfXE5m6WYGYp9sir4YkpfqFFXmWakdAV4DC3Xk2PhtL6gE2aEoRaFCZmGQoiiUIpvlGoIojrQgYHQwcZt9M9C6HYSJZQhCtAkgeeEWEJQWBQbAWA5DDRpBXMLOah0SBuwwWrm03k6H+ztHRwcr3U7NgXMHYg0FRUhB5GslsyIgp62iEITEApHy5l+lFlKYPNMEKGNWymGCA/CAoOCre/hCFCJloWy/8XleJsYBACEzO3asKHSu5JsAQORTkdjZUsxitgSAWIISE6EI2EbpBY9UnKeq3W47ya211mYMQmEwTSYthTmSxN17B6ObO8fX7+0NC8gRqB+vBzEczuzoKImcTWFioyPqfOyhR65cvvzVLz73zee/2uuv72/f3bxwjpWbTTUXhcmy/d27Z86cmY5HYMx6GP7kZz/zpZs3du9eN9bRIOq6gIbTV+68/ne/3oPxtB21w2J6juHK2sCo5Hi6vxa0sgAMkiZVsOlgezIpfv7FlwpjMkNbnfUkTQ9surq1Nt0/2nnr5rfefu0CQGLcJCI2PAO+fObMX/jI970lR9967otRWNy4fnWAzEHOaNx2NomgcNTu9zqIMYauS/cmR7tf/Dxj3KdWG9PNra3d3V3O9LXXro5sduHCRqLy9zz9NP5aMuq5rZmmm8Ofv7F9pd09mh49//zzKtBbW1s797a7cUsy+/Azz4QB5bPJ/atvjIZJd7AyybKn3vNkuNq5c7Q9GHT2d7bXBivDg/3A8MGNO+RsT6MrcDjL2lmwolcunxWwMamZ41xr5cSi4tw4RKVQcQNUAOb+vuY3WBFJEalMO8JVGZSa7i2Wz6vY7QIzbxKOxV3e+IwLlXmksj0qpUR8VkXZLUKNtKAK1NKtVMUGmo1XZh862SURERZx3uFSiuh1zCgzswAQKkSgEjeznp2lEdVlfRERqoAaqUzx9Z010aRAz+eNSkbl7VHvpCc1ROZTflrqT1mnvjLUV54trIcOTYtbXUe58U3JGEAt9WdBVap4pAPwwSRYmYubyVcetmmpz0/oP3bqMH+X60RG+n/2pQC6cOfLcOfLDDAG+OCD8EGoKXd4+kOnTnvJUxvqb1kZb9EFAw1LsmFHMk+cq396F8tBc/6bahxWVQjrP4lI3LxOLZdRUijM4DGiZa7WY2X6bhyi+S46NahwnsuEXoyeq8vWWKlqgUOp0CMimsIR6SrfjkDEWpdnJmyHjtlYzo3NCmhrYmZgW/Wh4odzfu9IKURiCyKWmZgIGcXkgVLrm1udbqtIknqiuPADJ0YtSgmgQ+tYSFFFXaSKh+JKeZ3v7XrIjcUmgGZmxHIevFelvTm/sWc8L4fGPJcI1R7nhMSHaUsd3+wZsEBBqIXQWmcKJyJKBQFFhbK5yUxS5FkW6EiDLlLbC/rbk2JnNntj9/XX7k5QQxCEDNjr9otwPDocBS7IwnB3nJ4DCMA4zi+n+J7BxujSxS+8+NLeNGFFBzt7WKVHb25sBFG4v78PAN1uZzSdUWGf++aLmxH92O//3kmkP/fZ30QAcnj9m9/s6Yh68dFoGgL8P3/uZz915YFXr7+lCW1hur1unueBCoBdxu5zv/nbKtadMI6jyBRFqHSRZtf2r9+9dXsb7IW1XudoBmPDm4N+oB9cHbyy//aN/f0bN+5uDw9HeZEzhCzCTgGsBK1AsYnTNDFpYgIM4gJW0I1CzSYVNndu35jNZmLzdDLJXPqNt0b//qtf/Dv//J+8sHv37ANX3K3j4+lkazXO0zyOo2mWf/DDH0KB472D6XTa78Tr6+u3bl4TgeNhEkfR4XAoAGmR0hg6QXS4u0cCcafd6XTu7B+cO3/WZcV4dBSHut9VvbWV0cH2YGVTkHGZfnot7x0tYfP7mrbJGglrac9BI/VigS7D3ETTJENE5E4jZPOjNsc4BQAWBlWDUfl2T7g2m2eG3wF7WUQcz01k9bMi4gpDzeCHuUuycsXVyfHsqdVyT5p9K6kYzkHxThK4krGFwRwImoiILDPX2cQnZoneIejp5Mz4n/Ad5rkpuMgJc7cvblFObKkTn/46qXTf+nsHUntGPYE+tQP/O72WtlYpaIlUTlgpgVSlZFRwWtUpqbwD9XadC20gzXuWrnqxpHGsasGzeRYECIC5NBmQCDoQajgOYHGr1L7MpcHiYvebp7ju0txyIcLOkZrH7iIhAQKLZfBVE8RHoSCgkyzL40ghY+7cLDN5mxx7aHRvk5bFfhKAIDkEAnKI6AwIGOcQgDWEQFqFrU4QIY3nHXYgiGDR5VCwc9pphUohclSBY/oVbAzntEO9eENjtlFJqShzM9zK16ws7+FaAsbKgAFQOXerwr2Mc/A7YWZ2wA4sCIlBJEIVaW0tF5lJTcHBJE1zwiBot4N2vH88vb1zrzdY/dzXbk9RDgrnIr2yujE6GKLjT3zy9730+uf3Z8fWiFPB489c7o6mx7furXfpt/ff+NrnbuZZFnfifJgpIKUos3mgCAAff+LRBx966GvPP//mG2+L41YQxSxZx57bPHe2s1JgYRC7OkpN0YrYmSw1EsZRp4C3d45uzfKeQSWcZWmGkhrrQZD6g5U8zw2YtMhtlkthSatplqyu9sMw/Ev/xR/ZPb7/+d/8TDbOutPJD3zf951dX/nc7/zGG1f3Hzt/9vbxgaWw3dJRp71zsPtDH/vw/+2P/8n/7d9/6lO//hkTBBNjWpC1w5gpDAOxSUYIR4f7AalYKZcnmiBc7/+LT3+624m3zp2/f2dnVbXb7TaCSqxRQP1Od3114/r16wBkLIRatu/e297eBnaXL5+Lo+7123eMK3Z3dykzkhbjWYEAzrnxZCIEH/uuj339hW8yuCRJVgZrB8f7gx5srHRzl1NpooTatwggAvb3Qh7nJ65mwKUgX4USlga4xt0lTReRRU1O5pACi03Xv1Ysq9qNDADA4sQhEpaCparkVlZqQQmGBo1YMnv6b9iegjcEAFIV45zngRARUh02Kt4E6m2AzpeQmOsu84F4mEnwKKzCwB6LriZwRNTMuWQQbwb3XWrIJXVVokVrAc4/N+dO5BSNWWSOyldK3J79A4As+OrqxpqE+KQePNeN6nlbdILNH5wzg/n3zbIBrxW/8FT4Y/C/q+v19OdOCZpAREQmBFdup7LAl4+AXcQAh8r4ocLgpBseFq0R/qqYrqr+qjUq/5Nb4qbV/keu+AQgVGU7T8HeOtmHhZ3VSFc7VSMsz8Wc85SlcX2RRKrsPRXBQC7ROsEACsIsLwyQVjDJXGbQCoSqgrpkwSo+s8bBQGIEB4KkLIAWRwDWsVXCDiIrQERRb1B3b5YeKR2GYcSMxrBjYK0CIQEHYGtfO1WFp5jfAfENVF3wAEGJuDKGdBnJpEoVc1iujg9rJynngSt8GddYdEBrM1/uRUQc+2qELIJh2LHWOmONyY0xhgWBUGkuVqI4zBxdv394a//G7cPj/UmhWzN2lgUGnVijTnf3YmaIaPfw9lpn/YbbtcyfeOjR/uWt/Z3tu7fg488+Ownw61/9xkovCkCt9XqjNJ25XHcACxErs/Fo9/5951zcCsFBVuQI8MkPfvu5bv+3vvjFq8cHyGgJXSFFUXQ6vdWonc3E8GwFYkqog2pWTOMwyLMsCMMwihxzlhsAojBa6bWz4VhQnOXNjY2nn3nPzs7OtVe+9drV13v99vufffLlr3zj7dffmJ7duHd//8/9yR9ai1c++8LzX3vtLaX1+GD30vnVixe2JvdfffyBB4rP6jDq/PAffHJv+86XXrob69XVNieJMWlBWpEKITPGQbvbacd9urDy4EMPDI+OJ4eJAWGLLaEgCFgky7LnnnsuSZIgCJTCxx5/vGDY2NiYDI83t85mmQ3DcGtt8872ncBAIRAShnF0dHRkrO1G4VuvveGQuv3VwmSzJB/uDb/76fXNXis7Gga67TVJfw4BQMAJC9Icnv1dLlnSgGtNrj7wdeIazkkAoICvP1pfSwd+aZc3f8XKsQqVMjon5WVnHIBPmwWREkqaWXwpYqkgEZjZRx5WOvop6BwAoJQiAWDBKjkam7QDAADY+bBMQCLjKipWncHmbAii5lJ5ZhFsmOmWxi6OEcnntjayRxZyOptTVEsbS1/COyhDTTtYU1CgEyIILCpYnlEv1CdvkOCTzP7kVTW7gBpRF6wFgDfsL9W9rWOFRQQWCmUuwoctLtySbAcNKMqlp6pnlYj3wYuAy7J08+L5T3ziE7du3Lh58+bh/mGkIhG0lhEdIno/nlTV1BGRFotk+GlGRI1Uu8XracMqJq65XqW+SyWkOSCQ8uANIsKI2rPYxvK921QrFfjqNUoRkVewuJw2BvFQxAsHdr6LcNH4UW94mCOzVrhL8wlctkJVlGF5B55YGv89ijdACwiLc5gkmeVAE40SnBWcO1GKkC1XrmWsH5QyccjrjoiBUiLE7IQdGOc0oRIlgtCIRp6ZY7Jh7FqtuBeGEYF2jkVAi0Ukb56o4t1QFrHVli8P2V0WXvT+Na62G0v5cBkizmIRsbKWCQoSMEoZZlE6hCsejKhMYQE8bLuSMrMIrLASneWmyFJSqEMdAGTGFjaZJmp37+7d/eOJ4b2ZPbLAio6TogMAAE89/HAchC++8A1C0Fq98PyXO9IfFfwHP/Lo91y6dPNw+62DO2EA11+5+sijTzx5/oGb27evPPTwd3z423793/7KA5vnvuPDH/yNt9569bXXb9y89uabb85ypxWsrW5kWTaeTVvDbHc0ff14J59JL2rN2MQ6yNlwGLZz3ksmAVGH8yDNJwE6BzrAMAwL5jRNSakoihAx6rd6YctMZhlbzznefPPN29s7VsHaavx3/8RfOttb/R9B/c6XX1h584Zpwa0bN9z6mSyZra+vHe4d/Pc/8df+6t/6q5/96X/2Cz//T7/19mgG7oOPP/k93/adt66/8dabu+uXLkg4pZyMPV47d4GNHc5yBtfrr0hqbUDd9ur9WzvFNFGxtsK9sPP+93/wjbfedM6hUllagFAQtQ5H48La8WhqnL155y4IxXHr8ccfnyWj46PJhz/wgdu3b+/u7geEhCjWvPnSq62zm3EOsVbTSdYN9UPnOh3CmXFhUPNQqY8hnCBQ8LuR1soEXcEj1DlBtTeLFkED6kZPitunvpWqKF/x0FFlQgKgDmR++UAS9DCqsECUESpUjfnBabAZWsSDXGLDDOURAQBkRlWpuRXvJymzQi0bT2qh/NkTHapFdVdV9D0pUPOJbKgSAISFURCRfEnl06ZrgQ81uWPdzUpDrWamWulFvkyo6nVpth+QgkZRBASowE8WO1wp8fP1aooC6AvC+5c1LCInbJiNNkVO7MXmdaroVrfWYDAnKuEAQAMqHNkng3nLIBhjZ+PpdDLL05yZGRmANKETqmGO/ExTZek59cygr3svJUSoVGzTl6yoXf6+k6VjuGF5Phlgf3K7Lu1VqOxJS96N5m1eOmD0G1QBzc2ndcerfxeSuMpoakRZPMhLa+EfhwYXhwrooyIIjAIKyZVRwaI1ISJb5xwjsjWCWlKDk8SlBRoLEAKXugJ6AiAiUGYJQpWf7Uv/MggxoBNWFIgrGBRByI1iDL3VjSzLkizJbd6O2nHUDYKQiEBIkSByGS7aEG1l8XiW31TCEwDUxY9FsBlEI1WlBC9KQUUJAQDFh3mLM5V7m31Alc/xtUjoVQVEZgTnnHGWnc8nKgBZo8qdneXFaDqdFVmK0DrT+dDTz6ytnbu3e3jj9k7h4OBomGTRrYPdF9+82ltdTVstyXOduUhH07xQIbz/PU984pHH+IX0U1+ZWQf742mbk2c+/tHh76R7e3vHBwedIHjvU088+/jDV4vs1Vdfy9OcNPlCaHEcx+2WWonODtYmih9737PDt+4jQ9RWxf4xCiUmHw+nK6uDC08/XNzYvnXvfveB9e5E9vcPW71+QIqZ89xohNlsGvfj4XCYFYUgnr9wYfPM1tWrV8+srqbFWI+ym7t3b+/f3767PRj0QtYRycwUrV5/b29vYtyZtbUf/dEfAWsfePDB33nhloqiQUv2t29++Yu9/eNhodUE9mTEYJ0i7eWGJBpZa43jlTDan47v3LwzOh63oiCIgqNk1Ftff/jxx+Ju54UXXihMEbXizBSFM8fTsTWS2qIVxsfDcZbl58+eu3vz1uhwjFHwyFNPHE/GjnkyHmtBa4v1bicTm09ywaS/fjYophc2Otlw1GqvABYAXrUgkdNp1O/lWgh98cesNBRVJ9BjXPgMRZQm+G2DAzGDOsVHCxUZrnJLvKjgtzUtHQ8voLNZfrzKrK1U8yr1FgCYWeE8KhsqDuRPmGX2WfCeJjXTIr3Fyr+ypoxcutgWGEAVW+GjQEu5BBGFT2GoiEg+PJVLwZm8SHHCKdvsav0mwQUOdLLx+l+RBWgebhB0RKzNDFhxdQXAcx8wQOP+pdnGSmaqf2VY4K+1r2GJri1x9GZc2/IrFu+sxKOyW6WuWf3Hi31cYlplbTYRRFCoNVmxcrC/PxoOjTGh0oDMjjUFteTHDSQsRDxRG7jC7rYORJSPIaw4H5y2iP5y7OiknbNhAm0+Uve/KeXU3zS/rJlxaW0u7yAAZBRk9lHWS11qznOTGzGzD6Y7KTMtdKkhAzkRFlZS3cal8gsE3h3j468Z2CvDiIqZjMFJYme5yy2g0kTA4JOey27U84MVvjqCAJZ2XqWRkExmAFJdVvQur/7qlTAZJ+q4yKazbGpMHkfdIG75qGMBBSA+WkMEl2ZjYctVTn0RHwJdZfaLWZgTH80vUCL9+Y3NVZJv6b0CXxTLpz8L+51Ljtk5K4TiGbC1zjkrrEJExGk6ORrPZoUNu4PVs+efevy9G2sb7XY3mSSrG+YjH+44wXvb92dFIWFw/f7O9Xv3ZoPB3Zu3kiwDMAnwmdXeN77+jf40e+H6jVYA7SDsra8Ws9FLX/0iFpnLs89/5UsHk/Gt5z77lemddDcBgCBQReH6nfba5paxfHdne+Ps2uoDF8+sdu9/8xvbWRr3e6vrK7v7hyQcRYEOwvd94P2bZ8/cHpt7xeQ9Dz15cWXjuS9+effgUBiCIFAos9G4cHZ0cKQAdRgwiEVJ8kxE0tksdjoC+Nu/9HN6Jd7KwzXduT7d+/Ynnv34H/j9O29dTZ3tDQYHu0d/7+//gx/5sR/82X/8kyv9i9PJEaSwu7v7qbu7KfDquZXbN2+3LESijMDh/i4AADCAHA+PqNvO8/y1116LIhUTp0ezThhfvX4tCoLZbDaeToMosixhFLe63fF43G332qojzGCcJkUCt2/dCBRgEL/+6ht5nr/3A+//0heeE2cppOPprNNXApIbGKyuTXYn/a4qCiudEG0GgFBGEnkAVEJ8F3vLwlXtxgYQR8ltiBQoJcpUaYjNAzw3HC8e3VPZxvxXAIAyHaLW8kzhEBGpRKtHhDIievHY+H4ppXxsoYgACClVZ3fMT9Qi+SOlPPIqsdTiP6Mvo+DTm+Zv4RrBSpaYDTaLDUPDgtt8I1aICoiokMoIc78yiADgfrd1afDKsvGT3LH6qfL1Vkpxqak13lD3ChF9PWOoTCT1AGsFrvpQaWzeB1qWR/MGxorylkRzWVVtNtvoZ/lrk6C/0/BFRKzDKmW27qGA+LrUJ3mY96iVqiw4Ik0oSqksSXd3d0ejkVgbBLrUUbRgIzxCKgmlKbotXR7T+6Sg0FR8mzdIlThQbqdGqeCFl87/rmMCKsO3FwjcPN+UmX01yXllpIoFQ6WWN+e/fiMi1o3X3fZXGAfNPtcPMteAGwsMGCvniX/KVQZtrXV1jhjFBy6BDpSzzA6NkZRtljtjhYE0oi/ICADMVkQE2Ke/sQFs+HMEGAkJKC9yENGokY01cw6cm3YYBXHYStPD2fgwy3JGaCsyFkTEMTEHAIFnwEopredQB0sLPSdcHkO6FFL8+aoMFTVcqFtgwLKIQMfeAuDnBjWRMs4YYww7b2ezzllXGHaFmxZJwQ6CqH32/LnWypne2rlOf922e1lmbFpYQlzppIHK8mLt8Qvn8qTd6T320Pnx8eN5kt/YvnuUzG7cv7e/P4lUcbQ//pXj51tnzhZGfeg9T4aX1nZeemVaZNs7k8ff8+Dh0aRdtCPLt770RhHRAw+cB6Cr1+4aY4hoPB4WhR3vHP7Mv/83g8HgeHvfWUwymt7Pe9324eExZInl4uvPf+1iOLh3uM1rffPm3sv9A1AUhqGz7IzpdbrHabq1uqq77YP9fR2Em2fPTNPk1iv3VtttWxSHuqUF2EKnoFmSFZB1261X7r09+g92cve+Ax2gWltb/2f/6md/+hd/9kK3hbqjg9Zgq7uztyMITzz6wIW19TeOvnWAlpwjgO07t6JW3AJqt6KpTQ/TQmP8oQ994Nb9O9O97bV2i4LYWHvtxg0RabVaRVGEcZQVec42bMVZnnv0+KwwD166crS/Z3LbH7T2hpOj/YM8SwEg7rSzZJpM7fp6P81nIatOHxxSEIYqhJZu7+amr9lXbqmDKkqD0e+RA1dXuTsjSmaqG7EZCceUGwvo3ahEXrjz/M8JBxCRVlimuDEgklKklIO5YFvvVBGhEiWycvSCMIOr1TVQ3jblHxURAl9o2qsbiqikDs4ZIlKKAIhB/HmgQKOrDhXVuEtIqMB4jYRAeVrmGbwohQ5EEMpRWCc+ygbYQqW31i0yWrbluXUMiB4y01kn4mqABSnzm6GkkOLT8UmQSxM0lFYEx+VTTdLf1HjAgwsQ1QRRGgZA5xzpOTctyUrlzvTfMDMAKkAEFBYHZcEo31YdqVvGeMIc7BcRtdbG5KWYJeWqNUi/pzsEQH7lsQw38/KTa1pcyVsmSnQwrDmTiCCqyn9fwgQyCwVKAIRIKotLCWP4DgwemUHEiW9QrC38a8GmO7fvIBKSdkIAgAFYEAo1+2D3Ko7BARh2atEjiyjI7LFXPdszxvhI6cqqDIhzxGbAMnvP4ww4PzsV5gY7R0QAQoREyiMcVWbPUs4R8etXWhecdUGgoLI5aY0i4lxhHRBRoLRzDoSJFAM74/NKpRYBocGMeY5aygBlyeclUbVeF001DmLZOWZwzpGwrvYeACgdVruOUUBpbYwJAgQApXVhjIh0jDYFDDt6J+NHCqAslzCjoFvHl9VMEQGBfFp/5d4pFWLbDiMmsdYyQxDM9QQNx+xE6Whl9VIQDA72t/N8RjAKo0GSZkURtlodklAHgFBY51B6TemkFpSNM3U0pQgQUFl422kkscZ6X4MKgsJkzjkNLWetiANkz26dIBHpNJjmqW63ZkWiFArngaQa2Ux7QKJ0kUo6KXLnBZXChhiurJxdufhQ//yVoDuwDMAWBTKLca9HRJynANAKw0G7bYwLUE0nibV2Zb3dvrh+5dEzRZpZY/bu7xhb7OzsIOL2zv3ZSnA42YXX9wJNMnF9Bce3d0VAG6vC8OEn3kOt4OzWJgGkk2zn8Hh7extRBjGY3NlJdm9/2u+3jUkfWnvgiSefeuGFFwGHLaumDC5P3pjM+r3oTL91Ld3Jd7OHHn0ky7JxMp0UZnW1Y9IRrnTWt7ayaYKIKcssLVbDuEjS93zg/d/2/ksvfv7FF27eNUdZrxMOk6yVFRxFN9++uha2NyQ2oyTTfObMaqDaw8PZYJO/54MfXdna+A8/+yvHefHMt398LYhevHOd7g+NRsN47uxFC240Pu5GKhwLUvzEU49/5MPPrN/of+5ze3awEYWdXlY4m5DAbDqN4pgZ2EEUhs7Yro6M8LBIH3rysccefuTtN+jOW9dMApHCjTMb1+/evn7rdr/TH+4ddbodFXdaDnA1AGsOZ/e3Cns2jm/P7FpbJFcl/W3Yn1mAoIHHUKVuLpIvzyU92kMjCKupG9VSs4jUcYBEBH6bNiR0qB6sHYdN9UsWA4WaXVniPfX3VWBt/eXcwl7fxjU8pKCTqn0WIioRN5ibaT9STZNUQRPNq7wBpET5K4OMSBrO3aV+1rSsPtU1za0AiryjDoVFfCp/HQm12GA9+SfFczhxLd3TXDg+kalVDa9M4lqyFsBpEE51D5d+qgfeJNyndnJJuzo5LvJ168oHy4KDtXGy2UN5BwGlaggBvEcTABoZ6s6XNgCsnKBcFlhdeLyec3YL88bMCCAwLyNYrxeXtWsAoGkyKU+H59M+xmm++SsHajWEha0OJ+z2IkJENS6/F0wRQWvt2DEzNKcIYSkJe7Hl5W/KPlQQLssrBcuTXG6DRmGGhaaqIge1U6b+yQozklhJ0zwtDGNL6+Bky4uf2UeblK5rIUBGhRpIHCz42NgBUlEUxhgdBucuXEiTyWw8StKxokApEjDWFQJKKaUwyPPM68HexmYrQ4s4j6/BYJ2IOEVQrrIhICcCtfzkgIRys1NtGwWgETUxOQsjtc/axWS65ETUNC9m1qFWGe5plOR4nDsXdtaiuBu3e2c3t8IzD+lWqzVY1e0eKsXMKKKJukkaBAERsHS9buOc00pxEK51e6SVcTZJkjw1IqTD+Pwjj4LjCw89HKjw6OjosXv3gZQwbG/fxHs7x+mtNE+cgHOQZsWt29dnxryOcPbs2STPdNwK260iTwVcK5cks3GosjyXQLU2+lf37u4kxxFSkaQf/+hHBoPBV1/42nQ6Dh2kaRHp4OZbV9udDszMlfWNbPc4ytncPz6a5AVbVMT391uKgpV2flw8dvHCg+eeOnzaffbq3aDfyRzGxDrSQzSzHDDUQRAiuMwmPQymo6FYo5POantl9+BwKjnE8NnP/tqjg5UVzrYdAMiZ9bVPfPu37xwd/PZv/2YY6YAoLVy/398/PH799dfjOO62O1qHJi8SU2jBVquVZpkzcO78+bt37nTbncIW02TGzo0OjsyFzGVFHMeFsZoUsiilglAdH04CQgQOQhVj//7dnUvnz90ZjdfXVBR2ZHRkilSfXt30P/uqkLBo7pH1J64mQP7Y1pSiBigAqHLRG1fNYJZO2hL1rO9pHuzyyzoNiX1WVPWMzNtpPuKLJJRkzoMVOAZm0n5E9fP+hCMsQF3OLx+WgYh1ZcfSHqsXIBHqZ+tgGV4sDFw7L1WJWwKuMZ/141hpt0sTdfLDqRN48vJFKaiySXKlm8EJQlz9ucxoa9liqQNLsgKiH1/llTiFmAIsrmzzwspFXdlypbkuTVr/TiKa/7Do+2x01av0ZbmFErNXEdVy18mlX3IQ1PPQtOjUzza7CpVN2N+vAJvVrLGUB5qm7IZ7ZXHS6gEqIuc5glLVLM2FNlkUSpQq63bXPzU7fHKkMM8gmm9C/zjLQpGPhVPsB1i6kOazhIjM7Et8en2xnB0Rb3QdT9Jh2s641ZUyw/GkbDfPAhOBOsURHbBXVzWjsJsvUF6kUdwmTYVlJRi32kEQkAry2dgYkxRTDxXXCrsIAWDANEMQJ+wTmEsLuycwIh7vs7QqEwKwcVaBYudEJM+NNWyMAYBQXWB21mWFzVgKxAwAWKylrkA+ms7S2XEQkkOecZ5nliFwaS5Wr21euvTQezsbFzCKwziW/pkgCIjY2aKYjvN0ZtLUumJjdW18nOZ56tE6tdbtVqfX6bio67ylB6E76He73TRNk1k6SnNm7sWxjtrrW/Ha2lkKwjCIjXvv/sHRvXv3kiQ9Pj7e29sbD4dhGObWhkEwHA7FFeNJYSfTxx9/aDQ6PrCjUOvHn3n2xrXrJs2ufutlthIUJge5cuXS0WR0MDpGBUnOIhKG4f7B+MyZzSzLNtc3Ll24ePXNt2Igm6aZuKgdWQGlwBW5LaQw/JUv/va9N69dP7rz3ktrB7MstdiOO8ez4zOr4RPve+K3vvQtpanV7mkdprMs1LrVV3uT5Jd/8zeK2GEvmh2Oz7Xwx//0n9I2//F/9rP37t6PVbC/s5sV2Zn1jWQ8KjLGbvyNl17udK7v7e11u/3ZZBSFrd2de6oVqCi2zlGgV1ZX7u3e63RahLA/HgaBBubxweFLz79QZGlRFCJCDvd3D7gws9FkNh6BiEYQLg5HWW/Q3jq/+dat3SvPrgqoKIgJZu+I7POfeS1owOg1BymdmjAnf1TG5VeH3ysUtT2nPqZLDBIa0dRNCl4Tiya/8VeVT0dY+mixamduhlJVoi1hWTGGpAQ4RBbwjtiy5Zps1jS6shCWntTyR2FpSBN1n+ffNWULbADqQm0MqD6X7NYJgACCRuIqYOrUKVrsXj0zNW/2xnOomH3QaKccY/0vNxx4jOUYF4hpYx5gkRRCqYGdQrVP3nnym1MlhvrVDQ5KpcVhPl5u6MQL0VtYuaiXuC8iujq9u7SYI5Rai7eNIwI2+9A0jy90WKvljLKKi3h3rDdvzIOhFvOI5vPpGmWeGuVyFi0Tc1YKlaxWC7mwMGNKBGuzjXO1DcM7JkpeiBWy1clxSUNkrEPaTt5cP9KsUtVcyiWUEoCqOov3bYovyeCqz6hIO2AiBQ5miR2mdmah5aTO9lraEvN3IYBgHbzt0CIqYiClm5HwIsyu0EEcBcoyT5NMa93qDdpxdzYbJ9NxYbIxs3OuE68EAWodsAPLohSgVmVwsgNk9LIxc2UVYwAQa4GdWMuKwBgnKMZYAMjdAQAAeRRsZa04Nsxsix0DhQFXhDaKO5q6PYk2g67hPGkVq1vnN688ofpb0cpG1GklyZTSWTFN0+nx5GjXzCZsjQiK49nddpYnxhREpDQiqDAM4zjunLkQRVHQjj3asIi0BFotDUHXmBwBgAuwTEqHodYhhtzCtdXVXldrXeTpeDxGdv1+31mbJSkQ7h4MDybJ4Szd3d+7k0/7g9WoE492dmKQ40nmacrmRu/xp5+6c+fO69feRIQsg60z/Ueeevzll1/OCb73h/7gK6+88vbb10yM3fPr6f5+FLWnWQrDKbOTgID4jMM/9cd/5KW3Xr316ut/9I/+wY889OA//ve/+vWb245Ntw2/87/+ZHFw46f6+YHVb+9MXnnjTtxZUZEubLF65sz2/g4EvN7visBqq9dqdyEFAVAKj4eH97/4BYOCWmkECtUkSS9dujQYDPb3911hRsUMeMhsHn748QDpjdde/87v/I5pluzcv9fqr3SieJpPlKBhFxGNhsM4DIIgQEUuKQ739+NB5+joAJgBIIoDVxSHw/EHnr6SFGko/J7H18fTLEAKFDnrd+PygVpQHhZtiicvkRMmaCJCBiL0SXIy3/qlM5hIY53b6h+kOfVs8ph3uXAe+7PA1QAqc+0inzi1hfopalA89IHHhLXZai5aNCZo6XMlUnjWONeSfZqpLPrY/FX7BZs9QUR2Qr4uoYAgI5Yl2eoXLepSy9wX5mu2PF1LLPzkhJQdA6kLuUPDFNl8vMG837GdpRc1BbJmt08ytvr+U2WOpooGJcah/29hzCenZel7v1iVm7PJnqunwEkVQNtU69/pLc2rVrrfYX6wsVLzuZqvafVNc+fUG745n7AovUFV5q+8H4G0EhHrnKLAA+UsdMbXpF/sXsXjGx0+jaEuLWUz1Wd5Kipptdw5lS3q1PkhIicMwARkHY6MjAs3iCTWddcWlnXhzzJAHwEAFQP7JF1Weg5uEITonGFmHcQK0QkYZwV1AHGnG0RRO50N01kyScYA0MauYIRlCIUS56PASEQYQYSEGUExCIuwYyuMzolYY0yoA3bidLk6KpC0SE2ROmWsS/JiCmhCTVF4ReswjoOw200NZ6kM+ucuXnhoMi4sweqF852tswkgi6Tjw+H9ezSbuSJNp8fZdCymUCoAVMzIyZREYhQCRIPMbBIpRPbv3oxacbvXDcK4sMYYE0WtTqcTdtaUUpZdGEdIKKhbYejEuUkiWaJFtFMhUdyKrbUmTQKQ2Wi/3+s9tN5/7+OPOhXc39sj+FhWSJbnO3u7B4fHQHhwcOD3Xq/TnrZbtLmR57laUe12+/rrrz96+fLf+pt/85VXXlntddNkfPv29clsasTNZimLWmnF4twf+5N//LWXXnzflUf+i+/5/etr/V+6eptQ3nr9tdlouLEyuH/r+MI5DdZcWVl/YnNz3+FDV568feM+BMHRZNTpd+Fw1HJwfmszasXZ/ujm3vFf+af/RLgYJROKdJ6bx558Mux2X/zGNzAIWawmJFT9fr/X7h0dHYU6QKSVQf/8+fP3bt1WCokomc6CIBgNj3V/ZW1ldTqerK5vuMIEmE7zvNNtgyIHRVEU/XD1+DgPxKs9Ytl1W21g+/aNaxdW2w+dW5nsFyws//8xPwMsmaDrw4CIzlaIPPPqa+QF39rqBd71yyKLDLj+jA0b19KLuQE/u0iaVZO4L5Gtsh9SJ8gKaeKG+ivgwdSXMj2krlLCzDKPSSq9dKXyAQpAKnGbEAkBea5pLSiptSmv7n/ZT1+WsZQIvM3Op5GUNzRH9E7cFxrRttTI+8IlT2bjWpjtRkbxku4IFcX3secizbmVBvt4x7f4FIyTlmpY1K4QFeLSui/Zq+c/+slqcutTuS805s3jXkAZVVXZUZk1BTVrBwBARiCPmYyNq9EnaM5pUz5YSgGofpXmSJeEA+8CmGeyCTjhOvCtUnTFW26bLdctOCdaV3YmICLFPiwRHBGJ+MgM73g5BQsdGlvoVPGiuV1P/rTUjoiwz/8GIH9KuDIdlegZC25gEQHxsiejEEMwKtwoy8+3l5G+57sd5jRnSeATFHasELFRPMOJJVIg7GyulNYqECS2rmATBCqK20SgdWiL3LliOjtuRb0oijTFiOKstVzWTWEAr/wiOxFhsdZZ9oFnzuV5boPcOaMsFkUBKEly3QmBbgVBX4Xr/c7lOO52Wp2ZWA0oxhCr3OSDrbW1Bx5UGxvdZCVsaQtu6opI6Xx4OL190x7sHRUZsxW2wA5BZw5MUeTG9oERQcD5NAellA9MC4Xzo3F6tKvCAElba6cCQ6Ug6ARBYNm1Oh0OyCH1VlaNSNtpJIl0kFhLgSalAGg6HrkiB1cc704ACIoUg3gjUGGoJ221un7uiUcvh2E8Oh6349bw4DAO9NhY98EPxnEcBtFwODw8PDweDZ988snz7Va+udUuzNH164W4yNpWp62DYDpOru0e/+gPfu8n3vvsweuvfev1lz70gafHt+/m0+K3vvTiw48+/Ma96aDb32i1jo/Sv/L//p8vR+svfeOr3/3d33XhgXNK68PpaHV1Jc9motVgff2Tn/iuwtnZMBnuH3/r6p0rD1584IEHrr19tRNHDz1wef3cuXvb2wcHB0R6pR+/8tprB3u7SmGr1QqCoMgKETw8PByPx71O5+7t26PpGJxDpCyZJs6wsYmTPC0ya7Y2NoIoOhoeW2AdtsI4ilptKIow1qJ0EOs1pZLpJMnMY0+uQ55TFGrnjMVm9MWp7O/keTz1+/JgKKVqmGOeQxcDeJWUFoIs5uezYbxrvuadTvjSu2uCu8DDVFm0R7znowTHhCXOM6dcDrz2RA24Y0GoozmqXs3JX1lnojFrAlAPGU/ACUlT8q/uqdMqml/6/4nPNFUIUsImeGVtwWJ/YtLqLlYayZwPNQWjkzOLVSowlqF1ZTeaDHGJuzff3nwpvPPanQzyan7ZfKpqcN43qRTBRk/mJFXAAQLIcnGI+sGlxpsSW2UYmOdxilLMFssbGKUM2fN56kvzj778XGPEfrqFkI1tGp8bbz91enx2Sml18R0p/fEnTPpLckbdcyj3lU88nSe9iPjqPdzsPBEhLY/o1BnDhgZ8kvtKdZ2cfP92FWifHujlwUpUrcZI5JyrQ/xEhBmdZhRQokDUJHPDNDdOndxX5RsX8FHnH10JUecRqua7hZmVIiQAZrYWEUkhKTJYFI4cI2HQ7qxi2+RZWqSJNQmIdTZHUuyj6wINqFCcK3JbGN+4tYUxxjlHwIZdnmfKiXEFohhnSAHqR1YG/d7qWtBqkQ6AxTkjjlENbSHWqk77zGAw2Lzy5ODiA1PL7a4JxIz2j0b7u2aWJkeHdnLc1irPM2OttbbEwxEiIk3IoJRCrUMAYPYQBiwiIRHoAJitE1ckxhjxO4FSnxiSjLQAYRBkR4c6CHIkAIiiqCgKQRW1e+tnzmxubhYCs8P9doA797aP9ncHK2t7xwdFlq63B3u3bnc2N9MgUt12yrPWVkdrfd5qRLTW9nsrG+srZ89sCFKapm+++nKo9fmNlT//X/6pIrdHk5EKAmvt0d7+zuh4vde+8dpLj145f+eLb/2Tf/L3YZq1uvoHv/8H/uxf+T+3fuJv/Mov/bu/8Of+1P3727/6O78dUhcT83+4dPH9zz75Iz/4vf/45z/FuZOpOZCstxLcPdwbTcYKqQvaKfjE0x8o7OTGm28T8Cvf/KZ66+3R4RFb6fRaeZ6vdjqmyBJr19c3AXB3uk+K33jjjVgH4+MjAMjzLA7CfDbNjMkLE0XRNMn8KXrkiScms9nBcEiEUSvUcURaDbobICKKWFE+Om63MAo7jzzYczPmUEKlbRoBLFQ9mp+aRthmfahP3llfcw24Vhq84FuXHfTnrm6FFxXlKrdvbk+uiePSYV7qysnqRs17atpas+pmOgrWdNyxZ7Ce0omIr/PFItpziwWw3IU45LKSa/XWGmEAAeBEhFuTAftbwnDuhK+t04joPPACIQogkvNpVAgL/P40rbRJB2uqujSlIgLvsJzNZ8t/SxK5IOicpLNLDOldGPBJWaFmwFjZPE/S92bj2PCdlz9h1exp5hDmufq41CYJgGNwDCJI4JdT6pIJ7EpDshMAYWatg/nKL/WwyYCxLARtfHnEaurqbvjN2Hig7E8YhlChEgJAhVCBll1D8ijf7sP1sd66DVcuam2MYQalEKrCt6RKRROqWPF32SHl/NB8zqEhUy49DnPLgapvqLm41NINABICl9n8QOhjC7HSgK0t83b8lz4nwgkkRTHLyLl4WSaYf5hTnuaiMHvAV1j6NYoiWxhgp3VICoFZ0Aoq1AacYofMCpWKdFu3gzhqpcO9PE2n7BBUEMVhFIEN2AKCzZPU5Kk4RgI2Nre5c85nxhmXCSpjUwqAlSNN62cu91cGYaeV2Tx3GREDFcalbe6OsjTsbz76/o9K2BUdOyxsnrj8ePf+Tr6/B0mapmmSF0mR7toMkoSBQCsdhgqR0IaIkVaOBkACCrXWImX1S601CrQRPYwgoIjjoihMngZxkEymrSgu8txkubKQHR21Wm0IdZZl0OvpKLTAk+ko7HVXojjodldCRUV6OQqn49l4MtxYW52MwAbWWJuPcOPcOQU8Oh51Oh0GPCaNiO12+/7kELWSCAhJB60Hzl4JgoAYkkkSaP1o6+HZbIZEWFxRGc/S5N7o8NzFtXS4F8d69eLZ6XS6FuBnfumXzwX6v/qR7+0M6GLSefrS+f08u4jdV7/ymRe//Om9cIACs1nalvaA8/t3Dr549IWJtR3AlohluHf3+sbaahwFJimGeweFOmTGrbWN4+MhaUIFIuKszbJM66A76E+nSafXno0nkQ7SWfLEU0+MRqO9IhfrWkE0GKycuXB+OJ0eHB3e3r7HVqxlBZBbY5w9Hk02VjeT8cSJjKYTN5r1g1aSFGe2wlbYOSomQJooOJUBv9P1Ljy4ZMDddsiFSTaT7kF30mPMAqjyeokIQc0jotjUUjCyADvw/CrUZXaciEbyljFh9gXPvTG5Ig1EDXzmprzgvzTGOGe8+b7mmGJckw37c67CwMcYlwNkQfbKlnLOH2MnVCZ0+lOtW1HTss2lHUoQBXwJ4TquVdCCbw+10rqhNyOLtVYFuiQ6UJIKY60WBEVCyCKlDxiEGAiBxQGRDzYRFgWolTbe9Irg6/kCgAA44TozkivoA0AWYcUE3vLfTK51TIpKgzIicBnY26TCtY6CiEv5oE1aLFUx4PoGXeJL4Jyes4NyKRHn1ag8ylGFWBkA1J5j9IvjG/X6LkDF1BUSETEwcFlVtWYyhFiwqLr8sC9d7iFi2qFjduCQUIjYF+lDCKUQZ4zhUJO1HIWaPCMuUqUUqkAAhBRUUQ6KCBYBI4XZFUUYhlIlv1KVmiwiqKuUXfYOZl8cmth5pI9K0fdg/Y20Ir+Lq6Q+sSKKlM/inbszBJwtEERRKbEpn57gRAiYGZ0QoE8tA7GoBD16csV3q/MFDhwIaCFCQkACZMdeo4Um/66OsqpiB8qOeDA8RcDeCIziM64qYBZU5PsGhB7Ywb/aBahyB6EymEtKKcVHCeZirTNxGINjIWAC42xISIBOHCIiUOnhAkYCQqJSAgMPRlWLPAozCgUcCRfiHFAIgs4BMCoE0gjAwHnuckTUilY2HsjzNEuneTEzRWJNqgAR0VqjlAoCLVqKosi5EIQgCHLHbNIIMXCIEOdGtzbOrp89H/UGQGDBKY0Rhc4ZlFDHEXCKrc65R57C3plkmpujw3x0PxvtZ0fDZJZPp5kxRtCOkvE0y9v9QeyQdBCEbQo1MwgihoEEARgKo1ar0261u1GrG7c7qBQAsSYdBqLICYizwtZmaZFmiOiMVZoUks0Lds45k+d5fvRWEATM6Xg4JtJx1M53707TUXzlIxC2bFiEHbfWyWFvF3utzfPnklF6pt93zjFAkeW9TtcYo8KwE3eKorC5jZXmzNg0B8cBIHciaLVY6yiIKYyS3BSOFCgTBgLAQB+8cuWlb3zhoUfPP/7YUwdHUziPqKjIx08+82Cn1c6SWdJuPfHEZTeZ5mlWWFNYszab/oU/1J/kaWLy46mK43gynh6PR2leHB6MxcHNnZ1z5849/Njjn//qN1sh9Fc29u8fjHYPMIjdbKKJwjCMO13Djh1MRqN+b2XKvGrViPPBIxeeePzRezfv3trda/dWOZluXr6QW5sXiUmm+8OxCrQGQI1qnBxcvRYrGd+56RR1z25Ndye9zW535eLl7hvnWvF4MosHKyoZMS4ARjRNgyLeqFYfeTjhtMK5olcz4JV+B2kmjD5pUilF6ASAWXwwS+UGndPupYureqVNQRsq5XhJt8NFkbxJO0REKYUoZeFrIhFwzumGzD5/KbPgPA6IGj62ukGsDNq1UlW/rv6ANSRCdXlGA5VjTypFqcxXJQRc1jilCiOf1/4TQSpVc8+JxTEQigBUlZArdOLlQDZYcDoCAEhVDQJK5W5hCLVQAgDUmOeTvvaT18L3uDzRlbByomrQIudu/oqIrqkxL00ReklmwZjcSHuTerFERCvt+QcAlFCgiMTSFOCa82atEZFWK9SkogjYOWZmY1FpQPFY58iIirw0VaeM+6ve3s0cJKzVVihRRby/ox5f3eHmJNfi5vLKVi/y92AzwE2gzq9dWiONij2cjJTJ5l4ZZeFmV+tXkyK1aLFodnKpcawsQPViQUUkSnmIl8+Uq9BEqEQaKS0EWhFqJRqEAZ0GxNy4zLL1rmuRysyPAMRc1pnGqkimf1dj58BS3JmUsoEgKQBforsMVkeooriq/jOCI1Bx2In6HeiiB4w01jnpR0FRFEVRCHMQEwWBKwprLYFtd7sCLsuNjuO1rTO9jbMYhUwlKcVSxlICAI4RMQ4wHx1Mg1aWFcO93dHenXx6ND46yjM2BVtrkSCKgvVOWwPpXh90ELZ7rf5Kq7cSteJ2q9Npt2cm0zrQWiNp1AESiaBh1wIEQivsLFOgQgrjOIae5U4HPBSrtdYWChABnHOmeNTZwmbJbLhvJuN8NhyPjmaTo7Xhfv/iA9HGeavaOQROtxACsLa7tqWCIE+SPM8B0BKCCp0Ks+mhc86yK31tJITASMVoZooYtCIdqCgEIAUSkmI2WgWq3T44OMgsPvH0B1PDnY0VhISBojaEQYyIg3av3VsTtvE5zc55is0IKgpBU25MLDoMw9ksnUwmuXHD4XA0GQdBdDQ+vnLuyfPr/TAM293evfv7O7t7127c6l18qNfrfevll4JODIDHB4dbZ89NpwloN3ZTRjBF9vzzzxfTpKMoGx3HKrj21tsOhE0xaHWwBXtHx1EYpgVv9HtOiTib5SbLzTMPPLR78/7FcxeODybnNtphHLlZapOMFAZEzi2f0OpweUdNfRL9vyfwbutz7f+31m8BWjbAIGKdj39q0vQmQT/5Vqjyg/1VVZCdn/yTL24SC6l8hETkSnOfsh6jSpEIGmNIBXCC0okIqCaq1Jyjl1ZJKsV8T+lcZdNbejUiWutOhh+hz3Qq31SxN09STzMqeEKGiOiLOJXlC32vgGsVAggBGMsgKAAAbM6q/3wab5OFWLl6HhARG9Gt5QxUxuGlTjZXZOl7ACj7X8loc8KtGkBL70DHpWnFn+uxywFxUHKZKr6MF7YZ1LjcAABAHgWfS03NV4NFXTL4On+9sV6Bk1wE0jQLAm0KE4ZKhcoar2X6vckg4nFcHbkl2cJ3wLrlqOB6IGVgnkiZrubBN2hhsU5+WNrwSqsS60oprBAo8cSumq+mF1urDjbaZF+suBZFEIXUwur4JVvqUjmWqkUPg44Nybh6Tc0469V0takfq+TgehVcYciCBUbgUHCWm6OxPRzTelc7Fq/qAiD6wtbVMRKRd0G0Z1qkOSio0Nc6AxBf/YCQqGLjKHUpXshdUakjoFALCWhFSgoWUWEUawR2zpkiExGtVKDBshjRwaDbW9vsrq8HcexANOlK0EFCD3mNTIyM7TAopkcTLlzh9u9ev3/71mR0CEpPpwVgEIaxiEQmWO0FBDgjdeHc5XMPPNhb29LtnmUucutQaUkQ0QE4EGbw1kTnXJJnSCSkBIAQNQKIE2csUBhqEmDrAIhQkAVJJRAFca/TW++ubmKeFLPh6GjfmWJ266VZNqP9g9bgTKszwGLGoISVSCzOxj7XEZxNUma2AN0ABCEtcuscRaGI5NYiomQMnJIKSCsufIS5ZpuLTVHFq2tbr966eubshc5g3UwypdvaoQNxDDqIZmnaarW0CouiMO1QHIuxJi+QJXQEQnkmTIkjRxEMon4YhpeunC2KwjnXiiMFMjx6iICJKJ1lgmCMEVRBENz+zqda3Y5jmc7S7mDFWP5nv/rru8eTVre1u717VEg3CDNTdDut48lUK93utimKnHNZmiLAxsaaBcrFtsMo39+L11dXgtb2jbu63QogvL9/77ve+whSKCrX1rmIlOE5MVw85u9wzUO2lpSWSgPuREyOHDnlXWgiDQJaP7D01ubnpWo/ns7NadYiOWDmRrSzNEKIFDgrwiJcSsYsCOgdVEuS/hJpQ1yopFTSMinrwvk7qaTgi6yl0WCTszZZwpzK1xocLYzXo1iiLNbfFe+7EQAQRHBcQnfXcMfog8xLviXiTZS1uXLZhwoNFlVH93gVZME33DDwVnDU4GGUsFSwoHLtLSyiiAgQAMpcTRHfd2kQ7vpNS0wFAJZmr2pzfo94fwHO9StoJBRVW2KuiYI4z9Zr14AQApRBat7AKw33NjNrFWoVBJ0g1DqjzLuZkVmHgdbaB7oye07gRKTpBPbYy9DUShtTJCKqgWaF4qMDpTknzZsBShD/k8JK/U3dbREhWg6NlvlV3sxIXo5TvpOu/N5f9SFdxrIuN8L84JR3ykJ/5lWzqqokItYv2RxP1DofxV2f7qZQrsELI4iIWhMwp4VMCzCWHUjgM/jLAEPFzlXZyc2zjAjYSIBcoB4MflwKvfbMLIDAjI6QGZQGAPHJPJ7fE7AAsKtCxsnnhVmXKwAR55wxxrAxARFFoTPirLQ63ZUz51uDgREuEMIwYAZAoBrcRhQiKETHQaC1KRJOjc0LtInSnBeZVe2VsxcHq1thp5NlWZ5mUdTrt1f6KysXHn5ksL5hHOQCljEtjHNZwEU5QI+V7VhEgNkppyFUSiGRt6G5QkxhIT0Updg55xwBsimctVrrPEnCMIJuJ4yiOG632h3obAgCnLt8uLc7OtqdDN/qxXGe5wIoSqO63mq12p04z3MAMCZvtVpa671JHsextdYJq3YbEbkoiMgh/X85+7NfaZ7sMBA7S0RkZi13+/bf1jubbImUSEqUZEgDz8AG5mFeDA9gwH4wMIDhN8P+o4yBYcAw7IENewwLlscyIMkSSZFNNZvN7v7t337vrSUzI+Kc44fIzMqqul+TM4nu71e3KjMy4sSJsy8WOyAEcshkCrk0h3Vchypt77fvXz+5WX/587+sV5ed3l7UDglRDECcZocBEJqm2kkqG8TeoQE5B4TsnSL0pogokrfbbiiHDLZ/+zZ1LZg03knf39++J4DKB8pt2/c/uLrM1kfQmyvf5/snz55/9/Gjb3/2Rde3DtDXdQZEDq827e//nd9r+/0XX3/pEHb7zjm8urroJXfbVq9qvb/zQIYIJt98/tX6xbPbd/ea4McfvWj3PaAtybUEknboD6lx8/M+2V8AYCwxBHCWtzQd6YEBXy4cOfNYZ4+ogGR4HIhU/KaIyLNgVZsFhaIY4tDabziWR/mHRy82s2KCO2FyJehGRMy0qBQiggjMLIMcfpD0bbTlwmQnHOg7ElER7ccK0FbuRxwKFOKZqfBDV6E5BGMzHBw8qwUQOHmvT8zXw8oPNxQbHdvBxFcKMdAMAlPVTwCY6kjMQYfHCsr8KpxjCLQ+qq14qjGPM3xga+Z7cfjmISjNKf75IOWOw2jHAeRwbDAvl4DhGMV9gAEA5LEl3MjKh24R9vBQzJ4ZRaTyXgG89zF13ntj8FUdQhCR2Jcaw8CAJQtlBq4hvXsC+Hxp50CYfT7cdgwWAkAAnCMIzAIsYJZudz7sfGKIiORAs5qaGhkisFqeM9SZlHMqN58Hsc/fOJhkZouFWVrB+UVDAoUBHFpuw3A4CBgIgA1ZMQrc9daLqjEQHSH5IOE94NGYDE7l5+m9AsKGVuyWiFhy0EoNSwNQReCyFkAEZCqJTMjF6lLCCFTVs4okkMSmgJJY+ySaIjhYPX60fvwcm1WPaMiODQhL6cqS2qCqYApAyKhSZQUkV0BxdXPVLBfowvv94h/80//k2SefRaBeY+6jp7p2lbnQrJb72G+3W0ZAU+lbMmVwgy29oJmagTCAKiiISZy6cplmM6TcdfvY7vYlcnu/3cW+DyFUaXOnBuiV/eLienV17XxdNUu+/OjZxbOb+9evPv8l5rapKgLu+15M290mx07AmqZh9iLWtrs2U1YwRc0AraBZjImIYtqZFbXTO1+RYy1mUXExyy9+9hdPnz5989WvFND2d0lzixRC6GIffB3qSttawS4uLi7rlWg2NPQkqmBJFQjFidekpRwFZCPCqgrIpOsQq4VpRhFGf/2k7nbb7eYegKNw3EYi6lPcx229Wu+TNVEu1+52m1/cXC4eP/n826/v7tr/xf/yv/j93/7df/Vv/tXdP79LfbffdY8fPwLnv33zaimatlm7HIBSu180Sw+ged/G/Olz+Phmfbv9qmICVFMgT/ohujcccBgVjAe47/ypSQP27MASiNexl/iRYgGgoy/14eEGyq6mePizHMlpTtOJncxZcMSuQFVLl5WJvI5cn1UzDGTOxhUCjJUWHqDFVGKCbCoINZ/ng2wDB3pwYMyICKoEgMdVOIa5AdCoCdmYCiVMRgiIqDC3bU7GUgQsvcwAUUd/bVn9fD4nbfIKGM2GdCawoZ/aME87cMSi1syIMk9APuaaR8xjkqVwDHea8ZtRmz9mDMdy38F6OecHc3DNbzhPKgM8ZTxlHJpaOOso1c12YSorWMQOM/OezazrOkBlZufYgNiFrLlkuCERMqGpGQoAHicWTSA6j10oNxRBp/whU/EKsw+145zXb5lAirM8cjjGxhMZa+KpWawsUIsMiacK+pzr41gMDnHocXl+1oZvDhM9CD5H21Rq0agNzacQCR27o8ow88mDZVESBUTVLCrSRXh3n/ad5CVUTABqoKiArlTTKnENxVJkAAilzhdNp/IowdxABIdqfWIZuSyTBkKgAKgARAZACCYimaBkDJINUn5RMSMaAGQDE8sZzLxnx4ubJ/Vqjc2iNzEj5wkIU5TDVhbEKKo8GLnKNAFylpTNwmLVrLxyvcjPLp5+d691r3lxceEWGRQFg2nedr1qbpqKVHf376XdMHPLh6wTANAh7QsDcrGFjbtqQGwgiSIw1J7ZIQGG9bJtWwaULcm+7bqube82t29vX1YAUFXV4ur68eNnT5587BdXYtbu7vrNe9xuV4+fee/rxbLtut1un02vb26Wy/Ue2sr51PWx7UhNUo4xImLNlrqoqqaYVIAYAFKK3lX39+/23a5qwt377dXVVbvfdP1+sbhKprnv+91mvV7v7m/FVPu9REiSnXO+CsjM3oUQgncKZKiGQMGF4IAJmNWsbROzYx8AAFUYEKtljz5o9L3THAODA85dH8TffvOrF5fX/8P/wX/8X/2f/ut//Ns/ck+f/PyXPyeC/9X/+n/zf/7f/e9v7949enQtfey2O++rbdci+2XD922bkwLpo+UjSX29qEhts9v+sx9eB47O0HvOXYY9YE0nQdDHx2oek2UARyL+yVMDA358vSYPaas5gCeSlCZKUVTVyaGYcz555XSwB1JoMPcXHnjbjArDsYlvehZGjkujpExEiHRy2udjEh1owdzrWfiuEdKspavOtIT5EgaKc1aorzxSVKKT9ZbDLDD0AYBSHmRQkRGGEtCKIxOev7F0I7YpuHegHDD/bKCzJOYHronPmRkYEB+SjG28YIgZOoL8g9f04AkdB4DJsH+YjB2R/ulmnIQ+GGzdwyMj/A/fzPZ9+ImONvcwPrJNId2j9MeGMmuWXrCUHItIYZChck3TXFxc5JzLFmFWLfH1AKZIgAKqCkyEegSWOfTOQaSqB+mvvL3s2QdKXZ5w33O55BDlPiD/w0FbhWeXmH9AGuQ5EQSGwQ40vI5warJ7eO8wAoz9p47Hn7Zmfh6H+ZMzs0llNwNCAsAiENusyPmIA2SG5J0DpazMbKj7TvdtilmbQA4YQKGormgAzixPcxi3/igr8hiuBgBKqpYdcAZwRIiCQ/lYMjAafDAIAOxL31IpbwE0dEaIlFkk5aQx98kAF8v11c364sqtLpPkpOKY2DtE1Hww5psZIBMN0FBAzyCKhiiG4CoDjkkvrx8/+84fLZZXr1+/zTl7xpR6IiJMKj0yee+nlhKAbER5NIIMLypNSpD6nACIyTMzEAKSmSiWQhwQnHfOEej6yjTlGCOjy6mP7X5/fx+7bbfd3N++3dzd26svv/rFz58//+7q8bOLF8+w9tg3iyvPoXp/d797+ZarumoWN4+ehMWiU0Xp+z5LNkMnDMDeN01BUfPZE5cGGxQqF7yq+oSfi37/J5fXT58311rXq5TatttqNjQJ5Hfb+z5p3/fk+N3bW8zR8BCK6JyrqgoRIztXBeccMrEL1aJBCIK2rh0gxSTkgxrHlOrrm09ubr79yz8R7S31XRsdCPeb/fbNt69ePnv++//p//x/8uaLXzxx+uf/4Y8pwkdXzf/sf/Q/3t+/v72/Wy6XrMBi+7sNen+9uvz225ePmuqt9uvrSxb85uX7H/3kR5v377q4+Tvf+17MdxUyoWVndfSddp4O/UWOUNTclFr5m+ltuWc0QV8svWfLBoQOXcqCxwrNRCZOztsBY/RIAR34HA5BPdMJn1OfByldKeyOSEW9KBVhJup2ztdnlAtpVjfKoPT4hsI8FUBFRJWPic4cTIiH6hzlBXOSdMKZpuKXfEwlByuRmaiAyhC1Owv+OgANkRyXZiwnfLYweEAFmDzlI10ufyJOGajl57lGhTNN7oAY44RPhI8TKjz4sOc3DLcdTX5SEAWmnR2sLmWaPA/NP2YGNqrsE8ROdmE+w4wD0x02tdiNT9QiGPpTAYBKTjmratd111ePBKwKDSJq14smAQAkcszoAMBMicn0KC6vmCjpLE+9zJyZeUpNNrNDW+UpHeuIcU6oe3I6DistWFT6W2exWaDD/IQPDFjFzIhdGUFEcPQfT2MeBAVEHH3nZlY6OeuxvXqI8J+F7J2ghw2aHyBiiRqbDubhUM92QXIUQYOxayGgGfZRuj7lrIOUcBB1R74+286SfDjf3PkuDKszI4BSNNaGptWDaa3oi0MqmFlWQUSYGkRqBlMD4exFFQib9cXFco3NwkIdXdh10XliZgORHBFx8F3NSsogEyOWICkHmUCNUcE1IfR9irF/enWTgqtW9WW8bO/u2ve3ObbL5TLLHrw5qDJYylmz+nqpWbb77YqdlqBwQDPLCoiIhuhLORlQQCixeI4d0UX9qAiOqY+SUlMFt3Attp10lQ/rq0ePnysjac6bu3uR9PXLz3evXr779vOXX/7s0evnq0fPkSrg+u3nf+V8uLm8unnyJBu5AF1733Ux9G1KiQGHclqeESmBRueM2flg7FMURMrIAlRXlTjfrGoJTVTsNYTlsrl8jLGX1FeO/e27EJyJ1IvVdrvtNm89MyL2bde3nUKUXScxIaWwXgvhrusNebFa+qpBphQq8qFNuVlduGppAKKaVJ/96PdA8ref/0r2G5QIAhdX9Revbj/6+Nk3rz//rR98/EzDJm9uP13f36aXv/zrts83j9e1d7u7DWS7u7v/3vd/WF2sdrfvurZ/9uhRuFi//OUXzz/+OFxdvvoPf+Vr/6NPPxJ5rRnTrnN1vQr1HtoTjnD0oSRITBUOQOFMtTtlwA4Bue8XTWOc+kE9K8OJzCRoAeID4S6aw1jGnUYXHhqMaaNmGLhQGS1hWaNtc6hUQGhGpXoGERMRmQ6BMcqGoKIlXGgiK3PyZGYlD5UR1UQQxwr3gMg4RoHp2G14cBqVjFrReUCWTPxsglWx3QEAgEgyMyLnOBB6U+ASqGSl5e3ApFSBmVQVRV2hfGpGoIglY6HkvphlREa04uAEHU2yKjZkFRMj41jQwAzNdJhKCVoZ24OP3HGI5Rr/ZB0uKV5PAHBIMCuEeYhpmjhrodeSEMcCw4PVF+mQLItF8LexH4YvmcoGzAw2Fo4gKkFAJyyfEAdBZI67CMAEZgUBYGyFi1gEviKKDGR1DM4x732pwVR8FiVaJKUEXW9jJs/t3TtfV0ra9T2UOFkiRchqZgnVChmdu2dpSHvGEuxDE/4UEDGBaM4ZCkzISrAfIhBM/UFtcJcYAIAYOOcmdJ3SdSRnGK2ak9SITKCmoojIjovQCACOWdCQCMWSmEo2KlkDTvKB8U8kQEQMEiKWyu3D8TEyNRlCgo3ZDYIUaukWVRLKYZSzS6fk1EV0rMf1vAgQjUr4gorK0BQSTI3YMxmnXgH33kiFI716D9+29DFw7vahgmSGoRYV0jwWbxsM3QBWKFc5eaNkN395qXYuYgmAwQgxZOAG2YBUQWHIPARUAwngTA0gl1L2ZRsEMHOmuqJQudBY1aB36BwwBvTlaUIGGBpbzoXXEW8RyTGy1yZrJyKeKSZuk/jLG1gvr1aPu32PlHrbZU7CFi2pASZnKkQDLcoxq4rz1TZH55wvCXaaS+8KBax6yASRCZ1vVsuAnsQcsHb3qWt3796m/caB3mfpc4fASg6AyIVmsQx1Qy40zbKqqvXjy/47P9i8f7+9u/2rX/zlx7z8nd/77PW7t6uPPl7WjZnd3t8TQH6fc0zMjCyMDK5yy6W6IMAhBDb1MVXLuteIMVaW+k1sUZvr69vXf717//LJox+3m60jB9DCFpA4GShYVgjXz9h7JDPT5WK1un4iKYtIyLFOPQKoSmw7Btv3raacBEFjexd7fNeE6l22EOqL9WXf9dndGTterZAduObOmueffNzx+uU3XweT+uKR6/6b6ubp/ldv4/vtu6r69Nmzj55//Pr97Z/92Z/99J6397vubm+iTFgt67eb1+n+ZRfToyfr5ara3r+5eXH50fPHP/uTPzOzv/uEjSrdMSCxf8xevr1/eeWX/cBfB37ERGCoOubCjoGlA8k+y26Y6PDAgKuqCiF0s16hc43kIFwDGxwd+Om2SSUCgMmDO6Hs9H4pHh4zKp3UzEpDlWmQqTfNYJ0YXYPz1qqzYzDoajq7bWQth3umVdiosgwjnFCVmX96HBsK+ycqp7HYhBVgLCQye3543QesDhOnh5Hb2QQ3tWnKMKr1c+5ldogQFslwTHDnI881oZNimfPcsKMHj03BD05+gvyUE3z+yPzZM9ieTu9kGiff45FxHsgOk5wuhDFc/8gfQUAkJYhArXCRKJJi5NLntxidB59CkbceqBYJJcbnIVCMSWjDpaowN6UMUlEx3iIA4Fm+4LTGE+BMcCtCZOkvOSCzHRpvT3fakE1w0FxxdjGXghvz6qcHVncSA394dlb+WmcSQ1lXiXxGHduNHEY+WgUAFH0b0QENRUK2bd9FhRoRQUUsZ0/onEszuyuMB2qC5LlhHwAIhmbbJUxMQMwslzCrIlaMGdKDwIFqJopmZACkAGBEdXAucKjJ1xi8MRsTEMKQkXG6qAnCJ2ekyz2gkndVs7pe3gA3QuC8v3v7CkBz7Pt9m1MPoMrkXCj5HYRgZiq5+KMB4DIss8TcqpSGSN4hO1JMlauaumIkgsvFIhC+f/ny66+/2d2+kxSl3UqMDEWqMCDUflvXNaF73XdZYbFYLZZr51xoHqmji8c3jz79zqPv/mAV6v2b+/tf3T+q6W27b2Pv6sovGwyubprlenF731b1woUafe0d18yOqG3bbrvd7d+rWbvfPrt+lCUq0f3tO9huC1XMInVTmYALZGoO2RCAnHMOadg6IlIjF1yNpJpzSgDqiM1MATUnh6Qxpn6Xuna/20XVi4Vr2/buzSswqhcLAdP91tdVF9mtnrD11sOL6yvvPt3tU2X1er2+f729uLgIRLfb7T7Kqln80T/4g+ff3H/56tsvXr3fIawul1dXN+22ff/6zScvXhDBm5fvrq8umqYKnghVFH77937iGp+20RMjOjMNzUWX2LCfNNGRXB8UtjnOPHj8p+vAgBdVfQ9xaDCGJDIVOphFl0yWo9HMe/KyUWI9evEUZzSKsoONclBMEXhMGbIS6jxbRDEtIeJ5kuLIhg/cd5hJcZ+OA8LsVBdz55zenTOSEw5RYi2H6OKitv5G4/6cMePoKi7flOnSqGvC7NVDrPJ4g9HQ2/jkNQc69QE2Ns1tclrPF2t2YIEH6jkV0B4I7uEpmoH6EEQ2XnYoxXyglXNWdM5Wp3nOpzH/9SCgTBt0HG44vZTZmZXU1dJCgxCLGBpx3IjURxMVySCKJY/8bChmD/NrzNUpKKd2qFszPVuApRNWmYGqjR3dCQaD5zDeQ9bUCZ4nX8IsVhlxevMBgCPiHJTCB1FiDtvxmIzHzk2p5BOoGcYqrVMoXMFJO9io5yMf7TuNvZ7Gmw534xjXZYbbLm3aPi3rYtE1EzOG4wCxcuvsWbP5u2dXiWpWADMwNQXrrEdEMkZIrujTpgBWasJJEXcZDQHRGZCrKnPevAPHxmQlT0+NeU4WDht0vC+zDfWI6EQ1JqksNM0VoBPVq0XjA6fULwO+ffs2du3u7hYAFCyEUFWN956MSsY2Iu7bDtHYMbjGueB84FAhkVRNIAiomOL9V1+8+urXu/v3jhC6zJIdgHlKKYmJGuaYGazrusGGYXK/eff+9rWqupQR+fLqJoq6uvn0B99vU3782aOX727rJ49WISBAXddXV1dEtN1ur55+VlXBVGPs9tsNagSRu9t3+217cX21uFzv+3j79m3bts3VZVUvtlFWq5VjL8gh1DlnH0KMXXB+zFkagFrWm1ER0IjAKCMRYiYys06IHLmqDgvz6TL1LYatqmJ3WwXIMVnKTiV33W67JSLWvsdf9wtaPf8BNgtYLVc3VXz86Orq6i///b/b7/fqHAI4RskRQH/no4sffHz5crv/2Rdf/uqbdy+/2hMGDxS7iIieQ+z6p09u3r19/fz59aK6bRZVSr2vgu4To/YxIbsE7LG0684FSYgOffPO0fU3XCMDDqGuKtSeiJCyoU75hTBrvgZnms30PiI+mDdn7kkaxWcAGJgoEwIoCBCBFX6pNAZXyyxpZdgxG1nzA+cQ5/LqxIToIRnWxjSnky/Hf4/4wfyews1L4vL4/Ug1ZmQOZ8TuZBOm8WHkFSVfC9QIS5pq6aJIUzp1zpmoxG8OLjE1myd3nnNcO25sV65S7a7co3iAzIE6HwsfOBrcTvjlh0ghzCo1zqdhMy/vCT84H2HO0ecMvqDc0YOExQo/FOvAo000MzIq/TEl6S7vyTEzO/KAo0EF0AzNAA1PfI0wykyDSHHcAgTxEHUNI6fAMxgqwkGmBJhHd59A4LBGOILVg2d4/hQRKRxt0HTDGQLPjECzcQpCIh4eGYI8ZugxMEQtOXZHEzMzJAPUYsgZG1KVkfH4hQPEenGbXYqXXgMwcxFWYorADzc2/xDODJ/LnAEJQAhApWi8AIBGZEPkBwBIKQ6PAIRIDpiIGYGFEaaaZmp2kId02txz4J9PEskBqEjuY6v6vo/IPiATYBvW63VVPbl88eLRI+e4RLe8fvdtTtp1Xdv2fR+TSCEsVNcAmoGACSqiOiB5IA5VIInbd+/uv/2qu3+X2h1YStlYLKVUCnJnAb9YrZoGgJqL65QSItZ17ZwrTYsRMXppNy3GnN9v/HLlLx/f7bZbld/6o3+kWRwziMZ928YkKaUecnrTI3b77W63bfdb0uQdt20LxtJUO80oEkGb1ZIRLGUxvb58HEKgErfLRM4xVEQ8xJIOmeVqBqoaQsg5lyNcjJ2iGlOP1OSsLaRiogdf0QodUXcni4sQ2+7u7RsSNPbMSIzGblk1b968+nb3lykD5P773/vOxzcvJOXtdrNarSwlyNl73/d9jB02HGN+Wi8//b2//+o725/9+otfv36dVPf375Jab/DserXf71XzatHcfPdKbu/+8qff/tZ3ntWLmz732eIqWMZI6AwEkVWzyHBCzstE/gaiV67RB8zBe69ZRoFXi5PPYOyOW3RHONTALMdx4kB6RsQLpYBpBuMd4/2KqEQIWsRnQUQi1llNqLnJNP9NujzMaNDEMCaZ4EEuMtEUeqi02JzczKkJHFNMONgDi1VgoM5zIjp/qxEqDiUtywgMY3m9YaWKMk51mHBJ1Ri00gdptD00q+EnBECEwY2KAGPFvhEcdhQi90D/RzgL1p2gZzQlfw9MC/DA2ObzOb9Ovp/vzsRXpoUcwDV2Apuz5+IzNrNSPbkoZGKieYiRFlUjJCQrlksDQiz+45NpDPnrE8RmgDWAIewepzLXxuNPD14ntbqORnvorI7BxjZCfUTgg6hR9Iiya0fCx/TBzkxhiFii5aY+S+WJg2z8Ae8AEhqCnogRox58vkHOObMhhllVTQds2SW83ceUF2JGQFIEYiA6njyOs/1QYvQwz7HWVWk2aWhahORidTYwMAVkRCkm5xJKRQoIgIpE5KjUZyEEQwNUQvegM2KcW6F2Z/iZzUBQ0SOgptze58Tsnanf5rhlaprGzJbLJTOTo88+/gjJFam679Jmt91stvv9ftPuVFVRvAuLmpvGGXLOCt1de3///qsvN29eW+4Asc+QVBtXWaiaZlktF6FuFqt1qZsBflXXNRFJ6lWzZ4dkIqIg97sNV+E7VdXf34Pki5go6/aP/7Tve0XIpvu+y2AlmwD6jYjEGMs+knPr9WVVVUjeTHIEZAr1Yn15ISJt2ypxtVwaceWrXnMIARB9CFMUBYAQEuAgoFc2ICQ7VlIyEBHSqmLuTUCSgikhO+dqz8ErPQuh4r7rgR1h6tssGQAymCpcP/9uXfndPjrnMEdfVX23ldSvm6YtASXsnCPPdac5VE3s4+27zylUf/iTH/xg//yvv/wyo3t3dy9qyLzbbfp2B/ny5rPrsN988dXXn774/urZ93b3b1glcCbbJlvj0GQAx2KojsbC7+fn6OTzdPYHBlyHUPtQigqBWumsNj5mxw8fWM583BLzMxDl8csiqpcqUdMxmxycw1RwEFERgXnIPjAzOrDs8u6T5KpBEiCHeEz8yrMyGsrgWAmb+6px3iPvQwx4VnUPBpOkFEcazGJKzWwIFMJxbvP/TlfxMxEqzGAyMUIcWLWCuRLTO/QDMAAYUh4ntfxYkpg3+EOcZ6EcOOUUe6xg86RP+PD1oV9PAAjHdR4GhjGFes0GoVPrwMMvOnDiUVaYVMmynBiziJRQvukRs5F8ADK7qX54zhmcJ6JiVT/g4tl7deJzOMYE2KFiFALY6Ha2Y9V80puHguQj/AkfTpn9EBAMZmEICANLQJxiFwqDHi0lE54ddrNck7FkmiQOc2YEBByzXgDHfD8GGMq/DJAcVfrxyB/wHPGIjpwwyLLuA09FRrT7Vjb7mGwQMtR0CKCb4fMcSg96f+dvoaHVcwHyuB2l3kbx6RQCQgeDnIKRiSgRZFZRAlQCzADEiEBKSMXSNp790/rn5+tldilnzcKePSOgmiiSIFGOfVYrjRPatmVmZmyCL9Kbc8FXYdksLi4uELEyatv27fs3r1+/fvfmczKqqqoKtTmMuy1DurxaitRdn6q6vnr0+H6z9b6qlqtmsXBV7QlTSklaittdd5dzzrFPfZTUpz7mnP3dhp1rc+xyNAff/+H3gPWnP/8P2HaFGscYiWi5XCrCfr9fry7FlACa5cqQBdEtV+RCVVWVq9ar1aZtFxdrQ1jWNWaFKw7LJQKzD9ApIKtmREQiKBYnUEQj4iJgSt+BGTtHQpJyFCEiRrJ+bzkREZohE1hWE1RGXnSxR7Crx0+aKmw2mz62RCQb8brd7FK72T568czq5R//y//HP/jH/yS1O4l9p1ktO+dKtRA0rS2krFhVVRW22+3u2y8b5r///OnXEq9XISxWf/bnP+v7HDsQv7/99uVb6r77w9+u1h/tUuPqxwHydvO1tyZlQQIiICJTMFNR/U2U9IBGpWht+WMMwgohVD5MZl7EMZxkJD0HgnikF55YLw9H/qBYnM3KzICQbHCQ4qiWwUzMn5XbHUk2n9IvGhqwDBUDDgy+nMmBeA6fC+dCwDwjWNMjcyo8pwKIQ2KSKdqQx1/UAivBZPOhTlRemKkXBYyD6jC5l8bZig3OxqnOF9LQnRnxiMYhoo0FeOeyxaRmnS9n2hk4NpifbNxsT2cqmp5u+vyRgUxPEbwzMwPiUeTq/F0fItnndZrm8t98QDMTMFMsoWk0JKoWqwOq5aKnOmYau/laqbxGxzxj9IifTMamQtgfuApB12IcUi02zBIEXuaJc6/NGBx92MGHMtoPmzKfz3EwGswV/cNmHaXwnuzjAxrbsPZDoi0ilyi/crsdHBl4kDwQi4RdGPMBo44tLvM4gFGcAER0zne53+xjnyQn4mq+vyfbfQDLg9fsNiIDBB26Pg+LRYDCfEuSAuFo+oQiUgyxW2aaRxFR0IbWIWY6VQM9IgLHR2Y+Q2MCJWU0hSTGSEhk6IobxBErABDHGAERUDe3mcgBU6kuycwueGZ2wlVVVYvl1SMxs7vbd/dvNqqaCerKW06x73wVHr94Vq/WPjSrm+dGmLL2OaUutibSd9J3/eb29u7d9u4e1AhNUwZTTyypcqQX6/VnHz3Pnmx9Yev6+9/5cdW/v39/2213DIhZu+0Osz75aCFcGwgzL9drIE4C1WKJ7OuGIGrwYeHq5fWlSHIpS86Pnj0jZudCEg0hDIUIVZk9opboKzQAKBAmR1lVkYrqI6VJGiIkAsNiuxJLAqpd1yFiWCw3d/eqWvsA6zWKrJsq1FX3KNhtXkJD+9uXX3zByyfp9e0i+m/uX9eBHaJ3VdbYpozIxEzCllNOKYM553xDmGRzv7u4rG+ub7qUv//82Waz+fSTj2Lf5b7D5ZM/+I/++/s+t9tUOWZ/HRcOw4W7+1k5EfPzpao8i+3421wDA/beO+eKwZkIiZ2OPbTNjg78FKRzcuZ5zE0kotKYfE6Oy6Wqgzl0Rq8REQkQWQHEBoMeDhwZJ6VN7MgkdbhoOPmFY9OoepSDdBIZNKeDJbek3KCqiIdKNPM5FxZsZqMVWhFLVsmBPZcBaTStT8zYjm18WAzyiAKl2MvhGkjVUNUHgRDGvNLJB2xjFYiTDR4DxAbbziwcpvzM0wwn3jBn3kgH4JgZ0ZFyM4GiMLPREH2kpsxH07HC4nn5yYFPyAOazTlXnh60KaJ+FM4ESsOcIYFnbuM1MxEjKsm6JCIiRkTs2Mx0jCskIoLSwsDsodMyoPdJ1a0CH6by4MApT/IF5pM/tn7Mce8EMnP4H5+sA1gOHSTPROEH/5yw4lBDxo6ktOk2gFMrwnzMEiZ0MAwUX+qYTjYdkvMHbQwKHVK0yfd5aDgUaq9EUMqK0ZTpfnqgzvdl9v0BRIUNEw2J3UOFDEBCJnJZExTZvlAnALJSolcJjcAYqZQ/t6ECPp4355iuaXem6XXaeY+BaxU28ooe0RM4gAgA5NjEnHNJwDk2VDRPRIJa2gcaQkjBe59oYWmrFg2yu1w+Wdex63Pb12FpJim3fd/t9/uXr7+l9+8uLm6gvlosFliqQzFL3Oe+167LiOvrm9X6Mne9ZnFgJppzXn56+eTJM1c3t+833WZ/gWt4u8ttcs8/vnj2HXsOiIjMhcw2TdPut6iCBFVVmVkSreoFEG42r8mpJqiWISZhh/u+S30My2a/bclRjO1iscg5ew5JYjZ1pYmZJYMiLgIROaS+TylJoYrFXKWq2WESZDNAYAUyK6pavHuN+z2J7rK2715GEXCsqobV84Xu6eLxinztP/rRDzm/ewuy2947wr5rAUgNQ9WIpBS73ikBUkYXJSmA89LUyftlFI3d5WrNj27SxVLTvsEsLv/kn/7Ti48+evOzv7haXe7v36v3L37wB52sJX/d921MvZlOxY5myP+35cEDAxZ8/iRs1V1Hbc3tQ3wkTgpBF9RSFxpLey/MZABok1OwpC6kAdG55C8QESIX65OOxa3Yu5mLaxB5wBDUDDIhw6DvDqbLEs9S7F00loUyO7ItU0SikrVhAGJMYFQS/iZYiKThZhps5QaF07CZiamZMcnc6YxIVJKOhoa/JVZg4DEypuGO4rQhopRgaS2tgA3UoHRsQARCYRQABiQgV2xlBmaWYo+IyFjq95gplmKDPERfQ1GzJhY1iibTFuYhE5oAEIhp5LhDl6FZOLSVRjazxcCM9I/DYs5DpQVyA1MXK+XEjiKrbawOcbB2ECIQFO3w2NUx5zQ404PndVTmdG26ZLB3To8PWVtquYh8hlomVmwDrpTjn1r5egdjAUuaxlEzLOl0D8WZD3wOHJCRWUlDNzCznDONNcxNzSYGySMkh5VOGGkqQ/GPMvqEwJ58ltLnwHC0MBNiwUacnP6D6QSTCCEWmxUiZSu5t8KOhz1UHIqiECKRZUIicggKAgKgRASOIJvaAG0wGgq94VDbFvHQP7H0PO1TKk73nKOWeBmirBpCGKQ9ABkPtZm5UR5SVYDS9EOzpmoPr+v8Zdx/J35CW03Xu4zpWpatpaKUlrlPqDJn6kfZdHqk2dugyE++ZBh9B6AgqoKHECBTzTrQE/UabGiFosWGhkpD6wYs4vishigCHXIUDzHkAGC4NHvtoQJeJdcnczVUHttECyQWQiDKRI4qtazJfJYkIgRA7JwHQgRnSmyillnNAIgcc0PLtdZg4JnIk1a5u8i9pf72zeuXv/5rZ3znfDK9uHmE3leLZVgvlk9uGgzL5ZIAY8ymqDmbWRUaM2Owd29eYbh+/NmLd6++fP+LX2y/+ravAnn39OnTy8vrx9ePwQWoF292b2sS51y/7+/f9o6YGCNgCEE2t4pMRI449f0+JeccM95+/usQwu7+HaG7u3+7Xq8N0BO17dY3TVUvbtu+WV+oYRJdLpfS91zXud2jSkkpdI7UshNdrVa7+w0Hl3pFZgO/2W7Xl49QUGJbOdne3xFDv+kREcy9e1l38kv59LcbbKnrlzu9ePLizc//3JNPkErr0T7HlBXQs4ohgg/oa845pWSSFsyt2GKxfH+/Q8ScLfVS1Xy/21YAbcvXz3+HiNYXj/ebd30vKm+bT/7z+2//7/32j5fgOV9mtexzhLyEuhzdSay0g0kJCpE0G3rU6lQLummWy+WS6N4MzTAlUcjlSR2NpWYmYJUvhHuki4gw6gKFwpfWS4XFlsT3icof8oIQp66fc9IMo1cVh8wfmA7zuYhR3j42OyrMZoifoRJf/YBdbqxINZfoR5/0nK+cPDUy8kOAzEGxmE/+uLU7wNALwUq7j9n3AGBjG75BhzizhMOxivngNf10iIgZi86Xi/nIJDLN+aRbzpzqPSjBPehQn89/vjXnr5t/OOHicIyjJ68+Uc7O32h2FBgIAEBj9ise2tLNXwfH2/ogPCflrKy9MGBmziJl64fCW1PXTpp7PU9x9QSqiKijdQS5AJOKXDiu4mDbnx6fwwEeumjWPmFCqmEO6IwMZxtBRDAW0zgg28wUceK6JqL5qSnxItO75rOd7h8OpqKhZVXtYLeT/aqvHagQYGU2GGAKGZkWOAHtQ9h4fs039Aj+RerCwYY0fDkaP1QVVHGIpy6RW8O0T2IVpvWOpGmYocJ7x0/JYrI7x48q90RzatPeOQIq8epDQyZQNU1tykSE7F3wQJMbhYwAswmIiYpoxgxGAug1KgIVKQvBN8vnn62fffzZL3/xVzHGuN99++qlgIHh1dVV0zQh1D2ziCDTarVyzuWc+z1AEqrD0+cX63rR3W6Ilhe/9ZP449+O726/+vrrv/jZf9jd3V2tls+fP795+gy9I6svLi7QJHadIDGzpnyXI9Rc9BYaO3BwVTuCfr9DFRFh52LMd7Ev8aLNci1932apnUvb7WK9QlHQ1KUusHOeAIhMcwnIQ1su1n3fC3KoKgXOOYvji0dLVcCwWDSLdrtZXlVIsHIupayL8L3Hn15cNp+/vwWNX7z5PNxc3Oft3d2d81VVVfu+zzkboHdEzDlj6aqtNup2xgAWgkupY6fEkFOn1tf1JSH+yZ/+uz/67/2zPunXX3992VTLxdPNZkOOM77/+OPfvXsV3r/8y5rEhZDFAj18PM84xWBPxakQR9MsV6uFgZgiey9wpKYUc18JnZhGnBuvpv2YsH985bw6x2mtZTMrPVXGd6lZUWPGo/hh3jOR4KnnUiE2KEWnPsR5nVPeGQ8YbIlENBYNPmWB02ILWZxO4JxhzClvIdYwZj8z0xD7cxzWO5GAUrJxihOBkYPO1b45yzmP2h0GHBtADZSmLPDYhTyH3nmU6ZyznrOQY/feb7Kjls/TPM9n+xuu8+3msR+zyiEkuCRo2eya7s8qBdx0rHTSkSdlmrZNlV5OpqGqNpZcLntaTKlTn+ATUeBBqQKOEe9DsDrH0rmYUi5ixpPRhhN2iD6YOA0UuxKIjSrx9BSN9tXhXI+LpVmbswF0JTB15Kw0mN6HVRR7/pzbTfgJZyikAgaQEtxtbXuzvVhVHmo1QpRz4J+D7r/VdTogHlk5UA0GKln8vgqqiJmErHTgOSu/UtZ8fhjLvjR1TruAmmiZEHzXkQ/+8vp5QirETS1rFtBkIACazByiZzJ2iGhkCGiEzKhKYARudKkQO8cudmJQ+tP1UbuUvK+cq1/86IeSsol0+zb18e3LV7LvXr15p+3eOZdz7GJroGZCBN77qqq2Xb++uPbkLcIn3/3u1acf99qvbPW7H33/0x+//flf/sUv/vxPv/3TP1021XLZLJvHFxcXzaJyxE3TNFVNjI5AU3YOUkqCAxnpTYgo970SSM5sAXOOsa2qCgB605TVOVfViy5FTL0RQ98aA3tiYjMTMYSSHubvtrumaS5uHqWUEPjicrnf79u2DT7cPFtfrJbv3r9JXU9EzWrJzIoguf/qm7uf/+ovfvBbv8N3b29+9OPNu7eL1RIRc6vFYpFTTEnYOXI8FmoEIyLvh4r9mu/vb7O0IimnHpHb3X676X7v2bNvvv5S0dd1hQ4BOAMu61XWW8XnFzd/RLS4e/8XksQDS4zmjoKFz2ngiNVDrcnRB0zVogmgEYAcV8BHDeJHf1JJoDwirDqZ9A7EUIo/5mQSp2fDTnkkzETpwZODB3Q/uW0ahhkL4yxtUocCCQboHixkNEoMAyAQR9UT5+7Go8N/oAUTJyY6VStPOAGOhalhZMBHcLBJ3AeFiXCjmY2FIE6jb04I/cmrh19xFjMMAISFez1I43ho54LjEgHMAAFpWB1+QJedrrLeI45yzFdOfh3vKTUGi643lovCQUk4R5XJBnBgRbOWG9PkpnfZ/F126CprM352Crez64SzIiKMglcAZzYUTbQBkkf9H6fx52z1hPvCDMEeZDPn2HUC9vmfOApdUBycg1PEACZ8KDYnBICh+9AkPcyV+DMEG5defh0ILg7dyQ6PnM5n+BInSR8AiDUJb/bpLrdPmQMwGZrF+btOIPAgwn/o+hCEEUvy94gVYCBapLch4VKVkYwEkWAoE3ZOBM5EilHOSH10nFzwWVyGuL6oXOU3/d36yYthhJQFOssGasRULRARlUqkdiEmDEgpq4iakUMysGRCiAyUicWUgMlxRUEVBKxLsVQUcT5cPlo33j169CT3cbu56zf3Xddt7t6LRhEFs9z1u939LzfvOepXvWXjz37yO9f0Ufv1F87o8ac/EUfXF5f/5Dvf/+wHP/7lX/z0689/3SrdvXv5zfuX3vumaRZ17RzVdb1cLoO5pmlKTjMHyjnn2CFiVVUmSVIUNM059dkBmJnLknPiqtp1LXl3+3JXNTUzb3KKyyUXTkHILvCiYcTFuokxIgaHgN6Xka+urvb7johakWp1yXW+vLxMKSkYRkXaO7/+0fe+v1pfp+4XymH7xRfM3HVdCeDygfd9J5LqOnQpARAY2dS51UopCmTmnCXGLSIGHzab/dNnn/zBH/zBZnPH1WLRrDabzfX15dNnL+73LfrqbtuvF9ePPv17yvLu65+DdLXnBKfC9IcRVWFiwETULJjICBiRjIZwnmKCNh2dkUPk6FEkwvAmPPiBzARmLZkO5GykSnM17oStzsNn/zZHD48zcMwM7GC7ng9uoyA/uS2HChI2ejGPqcn4wSbyRMfZFw/NxJxzgwY8hl6r6sDpywSOS2EcadJDYeEj2g0zbjE9dc4aJyEA1aDILnxkJJ/eUu6kGUE5Wc78FYeXfsBUC8cThhkRPCep5xA7ByPMiB1OtaNnwtkEtwNNnI3jx0bZ9oEJz8GIpylsh7VPFubp+znenvDUE0Y7H+1D5/B8nBOzyuy2U2nsfF2ISHgoGkY2ZhYA4Fzcm12qCgcL/eCSONS+PkQ7H15k45TmKHcy4WlR48zHVSCgwmaf33d9K5XLyaFLlidC8SCG/y257zlMph3hWVMNK9Y/MxAFgpLlR+ZsNCLMXm0AR5LrhG+TvDIEAOoyw7eOry2vdtu3gNVV/Z3QBCmCGZPjgOxy9JoiqnhmVc2mpdkZIw06OjvEoWiFqZKIoiKS+aVmEQDMgqCBkIgEslHDiF3XIdm+7ZGJ67Dgq/ry8grxWU67u7v3b1/uN/eWkqpe3DyxmNu+u3j69Pf+yT9q2/Zf/fP/pn+3XT7+i9/6vb9789GzztQ5970f/XjRLN+8fp06F2M0s5hz3u4QoerivovBhszmEELT1GaGjpkxb1vmqKoqMC+CKyJNqMAgp+g893EfNTaLhe72BibAhmCGybH1vSJE7UVkubowQyTOqe9TlrhfrdciklICBCRJuW271jknFIwSrm+eX3zv3d0tNE5Wzb69z1mzqnMEAEnUJKuKSM6pByMgBnOlgn5hBxKF0TkOla+YOWfabvv/6J/904I5dV337U4l7/f75WVwofK8JNq36Y50ef3076Zut3n9V7ULpfTsHANPRLeCTXBigmbm1TJUFQCAZFPNRRMqEjDM6yoYgZYmqihQjjCqqWcCV/LuCsYXCbGUUD6wNsQiFz+U5Fe0bjvYD4d8D1VV5bPuNOXPyfRNMLBeQERyAjLEdkxaEYKZMRw0gMGXo4OTb87nhiUb4LEP9YSjn3MdO1jayw1HBsZSJnOQR9RwDohx7tOGnbLA38jDbLA0GgxRPIiIdsY4T6A3H7x8UF4Cfq8AAMcASURBVDuiOycrPZ8ezN20YL+BVZxMeJrAMPiZqDRtR/l3CgMu/6pqoYDlmQOsphgi/SC4/kayjkUzlKnsuQ0GbKNB2pzJHJMydI4MH1o4ACAP4fvzAQ88eSTx07N6cp4f2lYa5QmzYuA6lBWDkdFNgyOeiuonQsAo8ci0RxODtzMZegIszlK/SgD/ZLFgtF2f3u7DJtGiSt5pRsQZkn8IXB8SYs7vn6+o/HsogX5imFGzodHWsN5SKPoo9mp6BABmqGizMxKqxbvNu+2eFv6m8USy3d/faW3mdszMvnKhcsSeOLNXFbQScz204ijx5JpilkhGClomRQRoqJodN8yAkmO37/a7CFI6tQLWdV3nfm/Mbde52nvvvWOsFzFGYLp6+uzy0ZPU9Xfvb9+/ffvpenkP/eL5IwH9sz/+d9uXb71kaLzcfvWLf/f+P/wpo68cUnn7syc3GK8L5mSJqlpVFTP3fW/siDl2bSsQu54BgxkJJTXEXPuQ+76ua0DsclbVvuuurq7atnXOyX5vZm3beu8wR9kPBpWsIKZ98GpWV46INl33/u7WcViuL0IIvcD+9i0A1IumbXtEe/9NF4K7vLiAFKB7J4v6rnNf/fTfkHOrXWu7LS0vKmZmjjFaTlXlc47v3rxyoQYiBCanyJ7ZGQ04EXPa7VrvKPhF27ZA/smLT97f3cZsVb0CtcB0//4WyS0vbwgWwL3irk1+4S4evfgxWPfq28+vm/AgNs6uI9530IDrxjtvli2KOAdZBhZFCGPdW0BCK51eSrRUeQ2O1ecH0nDAchzq+o0WWpwHNNJ8NsXTBzOiPOcK8JAyMRBuyaCKWNp3oRQeQIRH8VCH+21c7+S9noHpSO2Ynp6omM142/zZObE48PIhbgUREQlBDWd92GbpUqWg0jBLHItrzgkTnVk4T+CDY1BPoYAwugZO7jwCph6+n6/CZnTq5JH5Sic6frQdZzmpf0vSeTLOhDCIWJorD0yuZEzpaVDe/PHJZE12+AkNlBFxiheY8R57gPoP03hohudIeLKQc/INM+hNQJ6b1mG2rXQGDYAjUe/wrmLFL3c8YOoYguwIYCziAYisOOPKsyHnAu6AdUPkx1HQQ1ljSgmPUeuIBx9PZgjVAY8Wu95uN26zdU+qjJ6VKoZ+hPbD1oLztf8trwHUQ7Ws2UqL1+nQF8amXqo0c6ifXPMzOIXup5S+ev3VP/7H//Hl+tmvfvEX9293nL3G1tjZ/r0AJd9A3Qw9ldXQQEoFkqEApxZ1XMQqEiQDRdNMRORYQUVk8/oLzcKmKDm3u7briIGIVKBzruu6Pqecs3NuuVwiU6/knFuuL7lZKLrFqllePn704tPbz3/RCoSsiKa9XF7cPHr65PXd+yrq+voKq6bvkvcB1DBws1ysF9c4BseIpKL13t/fLy+vRFNsu6GJgoj3XkUyWIyxaZrt3b0wIGLfRzNTpKiWARmoj7EA/H67YdPeRLMEXzvHHskHB4Rt26aUCHlVNSGE3f19rgIiQk4iIrsqqawXjeQ+t5tdu9u83nfvf/VS/qKqXnQ//9e/9Z/+Z2Hf1+RagJSSmZXuy3Ud6jqo5pKvCiAmTCRjh3Fw3tp9n1JP6Ih9VeOPPn4eJfYpsm9yziiqbE0d6qrq265uassu+KUY9KlbN88vn8Y3973kN3iIGfoQDy4IqjYx4EK3S8oQMIQQtu9vnXPMjEx26ER0wOwTRE8pTX+aoo3y+3SwVdXwiAbBLKN0lDIP+rvNfMDnHGi6DXGQBk7YzDlZHw5bgc4s+XWI77WJOB9xmpRT4daqqpZt6g9zPJk59SkM+Kjco4Fnd3TzoVRy+eqUD00RbTiTuyfCfQJ8KyElNKS3YqlmVlzjD1mGEY/K7h9BHh6gqnDcJGCaSVFDBwlA1XBQTE/4Cszo8px3Tl8iHtKR56ub6PIJZIpF5EQamMY/GRn0UEVrDofpqd/MU4fljJ/hONm64AbO+jzOh9Kx9jiccaaJAU+2zfJ5rN91JF7o1A9xWsJs5jSeSpuxD1V1RIPMKEOmFpGVElSj+fRIkz7BrunIjEG/w81l+Q6nuJDDRk8wPz96mEFRs8Jmx9uWYoxNzaq149ENbIf7YYbY/x0Y8BxQDxQGnGCldhJyZWazSO9TkjJH+MJ9U0p//w9/8vt/8J/tNu9+/at/e7W+uWg+vktdC5m6rZi13S62FbkakAGIkYQJseQdq6qpJElJUm633yKwZosxI6JzpCAxdXr7vt3t0aDyXlLuYo+I5Jxo70upg5zrEHS/i/12t9tVzWVGts2uX6zNh/rierG+cE2z/MHHV1384md/6Zz7vb//h5kgxvzR937UJXdxc8MubO83q7oREWUzxiQSY18CDxmAgyOi5XrljVlztVg7QkkZTYLzfWyr5arruuVy+eblt4gYQkixd8512w0RrdYQY0fZ73ebUIX7+/tAICn1fe/ZkUMACE3NzqUIVVUZSkqphCs7pO12WyNULqSu05S++Oab3fb+1bdfO8K7ZH//+09++Ls//Ojjf/LT7b+Hp48+//arHasnUlXvvWfY7ZIZLJdLIrq9vVWFJCDFvwpJVZPkrt8ki+wwq3Rd56r6d37y233ed31c+ub+9q6pfL1cpNTfvn0XFktfhSpcdd0+5bfBV31egn/y/d/5w2//+P9SWN48mOkEgRERxiCrgQFHurzCa1eBRjBNfYSmqRVMShVVhwgIopAPnfgMAIasUjBCNyuqbiNam5mUpMMSCmFgojCQjzK/MqGpJ5yVSvrTETxQbaZitVNJqlpUS558M8aSldmCc9m067YhLESyamYoXRRQzQwUwJkZSKGnpWMqAcO+2xMCMOlY66owGfIEAApDJ1FEJEDQYV2Dec3AdChFOQgNTFKyiEuVkeOoYwCQkbbMAtxssAcgwiAPTV3ED0xlEmiOWD6iNwADHfJJgcac3XnP4+lmMwPHYAY6aIqKaAgKQKMigjO5BxFNjyQPmKVvTSxkyGkppTZGaWbOem1mPyhw0yzl7wlNpxsGwp0Ezbj4IwocbAiNPpRdHXkD0dDPvLDuYoAooeBTJSecle8QMJgFDAIAiA7OexyEo0MDY4CowgZgh3yeAhEctcyTxcJMMigfpzUylKQfGx1mRABMNuT3lb7LQ3BDSRTOSIxMpmQipMWPxIJFBjUEmRcsZ5rleQ9yAgEAGRe9S9VwtkfssJjDJ2KhImZGlVcAE5VSGBNLXZhSvaK0LtMCgjKaTOEUcyxSE84oFAJ9c3f7pvMJPKgyp1k6XJFYB+1hWPtQKuCwP3N4Tl+en6/pZprkMMSxkrohqIAiiZmYESorZkRE9qpWShuUPRwEFyRAJ5qcC4SomgOZc7AO/jsvfv/tN3+yuX33ZPXMFgDMV3pF21acgmYyY1PN+1waVoOhYwTyVb1oVkicMxp7FxYI3fbutt3ep3YXt1tInUdjQAqLQAxqOSZEa6qgqmoJjU0ACI1dm7IBgCmtlm92++C8vN3J62+qqvFVs1qtrq5urp88tvXqk9/5e86FPmbPoVq7LnBtFHNkk6T9u92+qepu2+WcG4ckklJPVWVm2bkSeJUdMWKWjFhFzL4OGzFcLgAIqmabpHn0GBFT7iE4CiHUC2Y2IKdqZpcEpvkiR960feo0i1qOuzbud+mu23X3hF3P5DgA8U6AQ5Xqhpk/f/urd+/eoeHLb1/3nQE636wfP332ve8+e/a7PzYJr1/921/dwz/80d/76c/+j1twjqDy3KW99lqo+b6PgP7Rk09i7ruu6/o+JUk5l0y0pZcvX78udfnfvd395O/8wbOnz1/fbbyhdp0Aau1v23axWCDafvfekEPomTnwMqes1LrQOP7s+tPf/foXP31ySVljUjAOkJMHySNOlvZrE/YefMDee+99ZiaPKmyWwIwBtQjyBiJios49UKpN8eibAxmYfSiHjA4pdIfDM39urjPNR5uUiYEFnt2MxwOp5lIj26CQm0J+AfxkgSx9zAZC78gx8xC/pbNDOw45n41NsbhTZgaAjaHOwzXOFh8KgTlZ3fjNQBFhpmgCAOLBoDHx3RNQnxOgQT3iw7OTsmJmjAOjgsmsgcjHz56Ad/79fKUnbywXM6tqyZ7ED0SPz6+Tn2aqzygxjDAZDIBHySWnJuJRzjiYeSfEm8O2lGyYL2Faz1RrZb5GHi0WOHvjyY6cAm12TE6WjpPIYsVZP5RrnqRmHCvs2GQCUZ0KFBccfrA72emK6MCAVQ9C3nw6OecBONNpYiaDLieetxweGzCXOZ8tfHaw59AoO4CMwGCaEiYhFTRAHo/JVOnuHENOlnMy/vlROr9hOqOzQY8J1MwCdIAbwDT9bne3vrhA5H3bO+famFTpoxfPEIJkMKzDis0sCTgOjy+WOecYu9x3OfU5ZwApknZUUZEoWXNiVyMyMREq+bBYrquqsnTZ3d+3m7vY7fs+UhfLRtFgbil1NIddBQCVDKIlklRE1pAou77vNcW4pU71FuB1VX38/X/A65UtG18TuOBDnfad7vf99k5ECG2/3wMABF8st9umLlEXbbdv27bAMITgoCAS5eI78740PmqNQuUAIOXMzN45Tw6yVkzsvBFKaYqARsweAz1fupwRkRglJskRs2qW3O73++1ut9OUGTHF+Prl1/f396xt27Y5a4y5WjTf+8FvPXn+yfOPPkZwm+2WoIl58+jJ49397m5zf3l52bZtOUeqKpZNUZHAYLfbABgiNHUVguWsfRIRg7S6ufrIUCVHq6Hbt3/+0z99/slnESx3HYeq73vvPQJ0XcfMknpBI/BgBppVIWtWompxfXnzrN29Cr5IhYnwqOzhCZU7iP/eeyJQVUYcQyJponcgirMTO1GWkcocFX2cXzqvXXxU/O9gLbOH839ObaRmhjb4UcuYpakAzYiOHuRlHf9X2Mo87PfodWWfXMFuQjiUQAYi0hH7p2mVIsBsR3MbBhyb/RLRzFf88OqOwDU6n8wM9bDwMVr7lAnNBxn+lAcapJsZ0pDrWWQFHAwNowl0ZNtFpinKykSFDvx+9qITBnPC3c9neAqi+ZzPGNI0lE0a7UBwDvcMjoy5VnQ87MTv58x4+jCfKjyEsYZHZoD55O1Y7iwfxj06LfRYXqdn7KSMozCvdDmEDsAcT1CnmohWmHNhCIPsUOrHldi7wwLP11vmMp/Sg6uG0cuAs4RpRTRRcDQUgUPEMXTAZDrvD8RzzbfDzEANObCiKqRod7t+13FqXDkqZQvxuLPTh8tBPjT+3+K28vH8WRuln4EN4xGGw5gluF7WOfUxCRCHsBBRtUyu6XZd1Szr5c2qqQyg6zoAYOYUo+Ymx076vm/3XdeV7nvBKEJOWXOblSN7D+SE0AOxq0Kognd29Tj1nYhojndvXqlqjinGKDkmVS2VOmJyziFikXGZ2RRVLEpGlKFQKJlK7ruu3d2//eL/6q9Wn/zOjz/73ncJuH159+7V68q7r+/eFoeCgQTHq8WCmTy7+AYXiwV7F3wtlkutNM6xePuYWQWISFLnqwDKqU1c10QEquicEWdTM3PeqxMiEhURITABQNN9zmLmnHPgjBxW3i0Y1MLV40tfal+3Grt2v71pnzlm6rq+7/f7/f12s+/i5aObLnev3nzz5PFH9/e3zz56tPm6/+w733PEfR+b2hV+D6I556wCRmaoCKlPqpotm5kalvNEQFnr68t1lP1+c7daLXLOf/bv/8TX1c31sz5FRsp9LCdAROq6TrFDKDULB1tRsVY1/uLqyadf3732DhjMRMjXWQ9JQSfoOvmAwTlm5pQ7Vp9SHiooEQ7BLEXvnNskz87znGZNL5vT6Pm/420D9y0Ux8B4bDR08JJOtKAwBlEcXb9yvCRFoJFwq+WBWIGMrXwJETMcatiObyEwMykOeUREJJ2UYDqKzDpcONSnnHVqoyN2O7xitt5pnnOwTN5EgKEx1Pz+OU+dg/H8mswDR5OcUcYTxiCmEw8bJmxQbPvTHE7eiw+pfeWon7C06ftDoPJMEz3gwKhw4phgOp8qjrE/BjAJBGND34e52khPTzk9IkbJNAkyE3cfg4xOhlIwYDfKOwAAOmp+gA9bGqYmiXMgnG/EAXqj3UFx5L4G06zmb1HNxQUDo65WuC/ALD/hmPvOrwkm58CB2cbxzFICcmimNPkdivY1dQu1A2yPsOvBV5gqsSKZqfY5vb/fb1uX1r4KBjBEax/tKQ5KHvxN1/yk/I03wzGi2uzCSQ+e5ODj8RQw5hhCjYj73QbU1nWNOTLmZc0YFsJOECr2hAqa0TFqbRKk671n5yl2vaqKWK0+5hRTziCgqJokm5AvfXyj9wCA5MlVGJrrj6rib84xmchQbMegT11pppliVNXAzsxijFmJmcmxc845ZyYxdjmlfPutc25B8Pm//eN2t68q/3Z/n8iu6msRMc0qqRNt7S2YEFGzvky7hhw3zRKZ6+VaCVRSds5MHVGS5MjlnMUpCJBo2iUg9N6raS/ZDH0IXd+Td0QspYIvGBERqDNmM+cckCtkodQK7JwzIMkZyC+vVs36MsYYvOtvNz52S7PHZm3biulmsxGxX37+q5zj009pe7/56PvPQQEd55wBwExEpMg9BqZaiK3mnGKMXYqDfY4Ikbs9VLUT7U01BLfdtIHDxcVVkggAKaUu9lVKlfNmZllMRHF08Kna6IbbCzXNdVg+0nzLbKZGgAlOKRKMB/YQBR1CqKpg1pYvRgfbQaOE42M214bnZ9vM5ibBOWM4tMNTLXWvDgg+Nug7Pyfz6RbX+Vy8P+iQOEgZhWqIjhVqAWzI9B0a0wwPDjyg0JLyRiWi0r1ATMxscBifzKG8LklRqhlJxxCqkxDKw8E+M7GejDZ8MyslOHGOE7Y3tzTMefOcscGMEGd72DdWan4iTs73USc+7l978t6TaU93Ti89Wvt4wYzYzZ86H+fk82lM0IzWz+PypgnY6fVAH8A5PAlRzmZyAs+jyasZny7z5METOWkSZyZMG7gvTlVmSlVIGFplgADO53xwLZe1zKOKEE4B/iBI5/M5uSa4STY3uYdmkf/FDikiUyBxgUORTAqQj2b00PgAoJoBhcCMYNv1m5h6zQ3IKHgdadIfGmRa5oeWc35NMDl/ZI6TMDLgySmgqlAIDCIAdEmIK2aOqUNNC195THHz7u79t8gamivXXDjvmZjRCSAygeQMKpSInPMVoTOztN+hJ+eJmbOKIYqisBiTjfHpAiaiVgrfKiAyeCauSq97RkLE2pH3ngxSSlayNNX6vhfzzI68I+aSl6i5S32svvvDlJIjr4s314CXN5cvNKvHSwMRSamXnPv9frffxK4XEY9qZvsu9kmcczbGo4TVQkxFTS0PtbNTVNXgKtUsSUUSeaeGzOzY5xghC7KnEqhhQmCEBl0qPEPAcs6IyN6Zor9Y5s76LpIPi+ARvJrEzLa+sFh7YpV0ffWIVD752AXvWkl9u68eXS+rGoK7e/s25rgMgcBK3rBJAuQSAiSiqhlAmTEo9SYp5RyH0NrNriOHtat3u82b9/c//rt/8OLZZ7/+8q9DCCJZsySI2+324uIiZyUurFwBxqr7iMzcZfRNuHz0ye3LHVkmUBg7hTyI1YcoaHZYioeVPsMTwlpB99JraK58zLUrOsbymWp1kjEyfX90Hs60ipMzY2YwWkdNdfCnzcnNWG3PzBQMEBCYqMRdTfOUub1uoNCjAsqIROTc0JR7/P5gP58oYJkrzYgfA4JBaRR3cuDt2H57fjEgHEKlSh9Cg5NCEzPyamciP46290EpGZ8oTx93Mji6aKyRCVBKrBS6k4/mB4U4jgG3Z2yvaIjTG6Z/T+AMMy5yNDoejXzC847eSEehv9OYJ/BEx4A46i8ERRwEIOISDWdmOBTjOqxierzYuhnARslTRqcrAQ51yuaYexjktFTnNM/5JA+SEyIgTngLjrCkqcwtInbo6Wujuow69rTGQWE7BykcG8ZhzBKcFnhYOI44Y5bLI+WnUUQloiL1wihDF+nhQUY4x9iTtWfTAMKOPYYIeZ80pjzOrXBfGsx4eNjZB7nm+a6do8HJrMbZns7wZBz7sCZdhSbnvO9a72ixvrh982Z3v3nx7AXcb6P5qknrC/F1IyLOOecoqSEopAw6dD4WZBHxIRBRseSnzGqgDlSp7xKmaAgmIiql54QaZtMSpmdmYESSy9HInipVz84QjYgNDCARYe4ks4FPiUQSo1nu+9i1m75HvPnoxdV3P0XR7f1WY1751X0A7z0iNs43oMuUEFFE0stvACDGiIgpJed9zhnMrFMyQ1IPiGbeiAXMsJc+hECOcs6SjJlzyve5dwCorqDW0FQmg6FR5VStdLZRyAgIIkmzvNkAs4hFw9fbDTA7Xy0v1tVyWTcNANy+f29ZUcQUt9ttdbl0RLuuR6MMADG5yiEaImqWLBEAiECHlh0URQHBiIENJQ80CTKQsBP2Lkkbd5ld+M53v3+3bYFKOAgH51WhbyOsTETYDXGgE3N0SKpG6GPSen2D71ep6xlzsShMSKbH+HXoEICIIQyRzIQOqeiOU/XnwfE2sco5J5izBwCYzGswYyRmNtelD4iOB9sjItpk6xvvHNgkD+lQaAeWZmAwFnMfXgcDT2Us7RFt2AzNWEKLB+t1YTalRDAADG0EiYgcA2gRygCAhvBpmHPfInNMBH1YR5nYcWuq4acz1+MEq5L3WcroT288YbcnnAyOKc7I6Q3mBoFRsaexffpoL0Qbi+CdSwQMR3kpiDhE+XxALzknuNO/c3fmNO25o/RB8WK+umnrcfL7Do5/gBnnm6QMGDTXo4ItE/8eY83Hd42DE9DJkSi7jIhWKh6U6dkpS3iQUp8ehGNBYc6eC0nSGUswM52FlBfvzPRnhiMTvdjMd3M2h/OJne8LzDgTAMx78OEY3A4AzshmPnUd5YzZuh7mWEcLJxpq8hgB+y7Jvoc+GRjZ4BKiidJMuHGETg8t8Dfwyw9dJ3KbnRqt5vsLMEfFnFRyVTW+rr559eZf///+dL+L//AfXn2yqoUJ293dfVcc5fWyrqrKuo4Yaej1ZgBgCpqzr2ozIxEHRKyqJqpGtlyHNmDOoqrYS8pJFUCVGAk82VBAl4iJCQBBlQpHVM0592OviIVn0WQGQAyoTAieJUHs7taXFxDvX766i21Hauvlqr2P4hqqjYisIucCow91JSLdUwbQSiSwi6kHtb5vASDf75DQTIgoZXGESZSgFAgrojqgqqkOUVeelZU0GxIAgWSx4kYxEAVRkywpFyqdcw5VHbt9SkkNU4eIKM7p/q3Vy9XqwoVqWQVEJKhyjqkX7fogEOpmvVihY09MDiV15BeFNZJjQFSVksdBVDrySelVqpoBlRB3u5YdiSmYI7CbZ0+unzy93XchhNt3t1XVgGDfJ92p99wsF87XhSzMworNzDxIjprZ1ZdP9nlDmhHV4KDVnNCHgwkaEX0YiBcR6Uh6bETTIb31zEdox8ro/GDgzIdUfphuOGg2R7TJzjW/EsBcCA+Oa8DRAlY+H6Cgw2VQaL0w4GTHIwaQqWwTTMI2APSaZnkyQ4EtHC8YuchEDIpQYzCU3j0Q6LMzf8Ki8AxW4wWTFc7Mppq9MForB4Yxc8OfbMT5u+AsFXWCHo4MuBTsL6pdoTkn859oFp7JW/Dhpgs6SxGelvlgrsgEljljnu6fs40yFE3x28crgoEx6PQUzmy5paLZIN6Nj5fl8lH105mGWsSas0nO/zxf+If438krCigUZ221ZmlahbHN4gNs1ihpQsYHZgWzQzED/nxiR7OdBjxsDZGbbYEcyoGBjf0weOzJOEdCm0/rbMmEziQpoACLaddLFjxovXPoTUr5Q/A84aAww8wPAfzBnz7EuY+2YIa6DBpTpqbetvE//PKrn/76VR+1+5O//O7r8L3vfPLs5mJZSRXQVbht45vb/mJoViEA6pyrmgUyM7GWaBND57i0wBIRFXAYQZ05BoBA1IL2fZ9ybjc7LI1yTYmc8z6E4FyIosJcHASDqOSc996cUzXjAMiGCkykYpz9i48oVMThZlVVV1UGc+tFBymYVlWVk2bCBKaqGSyaLC8f5Rj7dsfBMbNj5qYmorhcElFMCcna3d6QLEUkXuWcS3c/UyQyzZ65WS076REAiYDYzMBIRQyMS7VNUUyGSQf7V5JtbtVycL5yJDnmvktdTlswXunyHkN1+eixMCtRzBE8mmHbtjWSI045W96JpMWijjKkXRTqV9itI0IiJgJkZyiqImyaVKUKiyQp9bJcBhWXsvYpXj953N/ry5ev6tCoWUpJRPb7rlkuphgXHM2qVPq1mHU59okXF1fdfYDYApjm9GBMoU1R0Ltsl5f+mdT/lmiZMAfFRKo28SQAGmW54QCUYPQJj4lARLLZwapphgZQ+tSqgZFqNlMGIzI2xKGZIIiI4NBtZipDPR6twQCjXRoYkfOAKIVX0NBPQ9UGo6tNjUETAJCZoRKRL7flPDA5gNJ7W61UIzAPjhBBsykyYxWIlVISx85KJYcR1xHROVcySksyj4kSDG0Mksrg0hsoBREAGuSSwmIlinBwk4sImishpqU1GiGpqWj2XOExDcIxCfiE6hViUYRQmHGyAYDeARxMwwMxOlS1Bgawsc6DzqR+mFFVMyNyJ7R+oFI6SD9ZFZFKJJqqMkCx1s6rr8BxoYz5PFXz+KLSxmJK2jkU3Ch1NnHGPkXyAJlhdAGPVHhZFjUDJmZm71IfZwLBgSQjHMUpI6KYEiJloJLvhlPFJCm1Nh9cSx5nMt1Qzo4gOEQY+tllJGeICla5KuY0AcZMCMFUXAiD8GFWqoANloyS1pUzGLmSW6sqMyv3gAbT9IxUwNTQcWmKPIypMlGlsigAIEJUN+x0tkx5GtDsUHrCENi7Ms6QZqZ5PKIoksy0qHUAMOcNBEi635PVoWr6nJLdx+ptR591kWpgJpGsqsyHct9pUAAKAZnJbUxlAohYvKEjhh5JAwccgzyLVDPEUcfIaoTIgoBmCYERkUvbPwAbmyUBACIzYi/qFqFG+/Lt+3/x81/dd+EC+V/+/Kc//etvv//lDy4vrx5fXf34B9+/WNaPr1e51/td6wMTOdPcWYxtDsGxQ2yWhK4kc6pqQWB2JGL1MpgksAza3Vw1aE1Kafc6d3283ezvdt02ShsViKp6YZAZmdDVYdk0DRDurSWC3uhyfeG8JUS3bNi7/evN/TdvBXbPnr2oL+u+ol3fkfN515kBYScxNquVsdvHxMRoUHFIfQsAnp1kC65qFvX97V3bRasXq6bmHGOMj55cAZOIIZEn7bouiOYU95utmbF3LQBjlXMGQ08eTGKOgORD5dHaHA3A1V4ZY4xaUrC9z12GnHZtT4B9H72vctJls3/39ats8O6bZbVYXzx+urq6DqHa7zuVDndtW1/euJuwWNSqEeh++1aLST5nBA6hNkVVZapVldgceKMKeAE55ay1ps4SeNQ2Xi8uv/ni5W63W37ysY+X7Jtdu/fskIQQN+1+JTfcJUNtmhoZ+xjRMLhKBAzWFL5MiSu7Wa6e7m7vAgaybsLf6bSWIs1uQmvvGueA7KAQHA7eKNpOtuwR1w9SZMkjHPoVjEoSIaWSHjNPNwXAkrY0suqS3VYwcu6znM4SDFasM+EdD71cpmgvRkKCE1/mJP4Ph3MYjQZybJYlooAIoQ6VxInIOYRiZFDJKYlZkRIOeYXTUZ/Nisb2R9OrTc1obgwYk39oKL5qZuXLD2VzTbxqolDnN8wh8xsUgg9dM8yYQfj4w/lVqLlMfTp0IHcnj/y3VVCm9cIxg4ShSj6UUqbnK1XVEqsy1FKZ4dj0rsmO8uDbR7KLQx75MJOhgJTJwdI+p/jnUtEw1Im8MqW65aLdHg4LAhDRFFV+0rxz4GREpPN8J5y2DGfXtK6CLSJpssFPOeUn0KYx2RcAAHU+zgmIJnhiqXM5esIKuNi5o7jL8i8gETseYQXQp2gYBAzGAi9ERFQq6xR/3VzWPCIIcxFw+vJBS7jNNOnza/64qsLQjJVsZqcfAYrE3ixlwS+/fnN3t9tvMxpFtlfd+zb9paRch/Cnf/78atV8/OKpQ71ZLpeLxcVquapDcFQ5rrI5wkaSWB9CKG4OIEySnXOEXhSYPQGHGpC5cn6x5PVHN4goSVPbbe+3b7998+bV67bdvOtTStL1ichVoWZmZvZ1sLaNPlTeQ6iq9bIPnpM9WtE3eKWr5Ubj7e3rfnfvQGvvVot6X3+EQKkTXzvvK0REFc3SxdY5h4SM2Ode9pLRllcXahhjLGFfOWdTRGTJmZkInavdcrlcLFclTE80Q4SsAgDkycw4JgDwjrv91q9C0T1yTM0SSlYVIKtlkxxCaPdbZp9zRsU+twR1pVbXC1V99/rV5u42hPDi40/YrxPI1SJY7mJvXbvLqWcK4BjRnKoAIvDQdy4m7ytDSFFKzHYb++12q7t9FuPKlR727+/vrq+vNWUO/g//wR/9v//5/3NZV2bWdb2vYLe5d6saESWo98DMoIBoSKjQIzgiVs0ADbkm546Z53aeObmY1YKu1qHGcjxUBPUoDVHHbnF0nG4xXWPeAuEsfPRACwaz3+itLCzJjmhoOVp81pBzIiUAY4uE0eiNdgiUtRNKV9JLEAHGYHADnHndENEMh3zKQeqd6BowM3hittRnIkIboq8dEU+RZWZDdtYgVQxlIsb3lmmV5RvooMDDpH8ZFBdCIV6DlDJb7AkEHrx+A2uchIMP3fAbrhM2PBG9E04DJZAYDnCDovgiTo72k/lPI5yxmMN7f7OEMfxUBJHJEotDYtg0j2FHxmeP3M+zoPSTd5VfcTAezm2zB54Hx4b3YUw6GsRGacaNranL1OEgrg34eRgBhwpM45SOZDg1YyIkwqnz59lOwWzTDYTQT0tAHKthzYq6zB+cB0vOb5jWAsem/pxLWhcb5PEeZqZzTB0lBeARq5l517ZRl73mxo5al8IDPpzT0eaTnK6/JZ4f0A9kphmPLhJTGmnByXhEBOD3vf7yq5e7bZQeNiLauOV6Dc6pUUJ6dXf78v3br16/jH3rQ1gtl48uLx9dXFyvller5tHF1cV6dZ18yr2rekR0gUMdzMSIczLN4ggdow+Vqho6ZC9bJueIrG6uF1f8+DP7XuyyKb+53ez2797f3d5vbjf39+9vY9ejD632rUJOKamJc+zcol5erFbN1WeuY+fc9eJZdf0ZAKSUmL1rKmI0M8uCrCDFjCwh+JLmaUYxdl2PiHh1fZ2ztvstoi2qOltWQ3aMQ8giqUJmBkfF+0Pqfd2wKYCWFAbXGKA6pLC+KkKDZkkplTg1M0spqaparqoKmxURaVIzu1wsr/oWcoKcNbax3+82d++/fbW9e3PhoX76vctVo4Zvb28Z7PLycrPpickhCBgpGtLIV7Tr9n1OhA4Iu3bbdn2pmsKB9tvd1XL91a++evL0WbNcb/rsgTPg7//DP/pX//L/s6ibi9X69ds315cXsXdElJNaVdiKlNwnIgEJzJY1Il2E6lEvXzD5B0uiwiEIC6gKF82CihgLoieHYSITxyragbxOubYlH7aYu0RG6nZMgkv9h7l7cn5wj0Xv4RVUmuEUv+YsAvkkXaQ045u708wMjAaefVxFSxFLZf8h/7XcLDI2ZCLDkngKzFxBMDPCWTfDUrTg2NM5ENhjGleWMuNGcyKiqmPK7CF91s1J/DT+HIYnf84brU+c5kP3w0zftVPXZvly0mAGYnQSIzN9zg/yUTvynuKxnvogfz2f3oN/Hl5d/sUDkpZQfCJXJKohiGHw0RCgTK+mIwQ7nrkOIf0TJ2NmMzEbXAaEaDAkZcDoy5h6kUwPTiMf8LPYpRFg0mXBgGg8H6Uum7EbzMU2hhOWa1Ardabq4SjePQQ9IiqJ9WO5+bJ9s/qUf5NN4oTpHkA0hMJZAb/aFBldTlAerVnTRpVTBcbAYIhAzrV9v49pF3nZBAAyU5E8IgYRnaT4f8BGMn4movPV/GY0U1WAjIiASkPhUSM6CPcnQwl0dWi+fnP76m6bewOjDIDgiJyImaIg7fpskmNK+93GqPJ3+6/f3DU+VI5Xi/rx5eXl5eWz1appqqvL9ZOnN5dVJSmB6r7vPNY5R8dkJoumSn27hZ0ZqsbgHBogwiJUzpEDrBDf++CfLJ69eHFj8vbt21//8vO3377qRVXq1WJZh4ZdCE1dr1b1chWaOr78ddx8cdtFQ6zqBbkgBgAQWu+rweuRCHJMOWfvvaEiMnlX1wuPkC33bbp/99a5ILEnxIQkqmaYAZAc+yClTlo2QzAiJkaHYkDIYmRmhoJMDK5AOIqA5hKxg6Zd7mOMy+WyTx2z33a981XfR0JKMe7v3plo3O/6zb30HWi6v3v/+vXLThLF3eqj959+9Pzpi4/RMVDoo6ADFERUMAVEs7H2s6Wu3ey71nFQhLbtY0rOOR+Ygy81v2638R/9vR+YYdq34WK52e6ePnryh//oH//Lf/H/Sk29aKrbN6/5yQv2FGOukhIXSpgJETCaLoGzSHS8cs3jrvt6Cjw6PmKGUztCAAhuvVo7RDRF4BK0Mhw4IgYbGM/xuT18Hlw+NpTJRURVFVVy/OBRR2AwGKtB4JysnBPfubYhM9p+oruQHSzSRRQ4Is+lc92oCSkOYsHAhwAMRHVsQFsUfaMhGsuspLonFSuJyKWY0SyGeQCrmdmsxMQIpTnhK341OPg+i8WPkHiijNOSYUYE8QM1bx8A77Ge+pvvPJJgHsowOf9mtpaj2U73TGkw85nMb/7Nc57phYeR5yqaHAi8zeO5mXjMCBpuhfm+jJtdZjIXAQ+vLjk+h0nObOB42q7unMqfQJ6GLMFBGpjYM5IbBbXftEHTwnmona6HFIOHNPjpqYOXFwSRB3eSZadso5Y/wQcAcKwxfoASIiJmUaOBxdqQJmuAJ92TGECKgGKg8/kMqKuGZkkVDNBIAdsE+z71ssiqUCovA00FpaHUxjlICUfC3DRPPXOa/G2uaYEHqxcI4pi1dXazmRKgYUSrfv31N2/bLqXMSsCEZiRoRApZRVQgMEs2yUTBmbqYuU8xpV5fqw8v67p2Od3cXF2vVz/5rR9+56NnF4v62dPHbJqicWicZ9AUqoUaajYR6XWftZgx4C4lMxyQtvPKBkzomMS9uHz+dPG4Dk1HEEJARDN0HCg4cJ6C192TNy+/2d1vc9/tN+9y2xKqSSK/qKrK+8pXIdQLBcyqoa5cSV1F9lVwLoR6YSp5z4n6yrOq5tg755RQRAJzSVgqQlnxSYkqM0uKgyxYmsYyA5qqITmRRIiOWZFUldSCI9AMmpXMTFDRNItK6lvLbY6pa9t+38a+zTlzqD/93o8++u6nS8p58TTuN/so10+fvVmuldiZRk2iKauYmajGGFPKqY8igqYp94SuaarS6MmHuottXdd9ypfXy6++/vb169fRGJjWi8XdZnPz+Onv/J3f/dVf/TzG9nK17Lp9hbWkHGMMIRQdhYgAMyKTSgJzrmK7BFzmvPsQKo55wADBry+uKuccAqJjGOPaT1B8zhjmfhcaGpbNBdMJg4vmOhxpMgCEYpHXsW3c/GidnxYY06d0itUdr4khYUkkMgM1BCBAHHSTcQlWTMQIADIeaSIyhOLkNTNVMUFFZERgBiLnMMZoMlJhUTQDpqkSFo3a3nSqp5nPgUZnBG7+50guZfp+zmymb+acEo5pvc5aJf53oEonAJ9P4JwTH/3JBHqYTFkRjXqaDRaEB5jufIrnUsJEfO1QuQwmQmwA8/wRBZsMGyKCNrEKsKF7jzGOL0U8Ju5nxszyuC+K7xiJPRBolnTkH4VR3TwRUKYbVHUIEaSieQ8S2xBpiMA8qc8IU++HMo9xqAHsaqBWNO9yv858t+fXhCSlKQVMevZ8C86szeNpHa5JhLIZvzczGBpLGAzmWSpKxjTmKP8MwqpjzigqCuBUTRBu96lXV8yPJbSCqJSclwelipPNsg/LHw9eJyjNTKOtZ6gYXMI/AQ/Lt9EQbWa+9t0ufvH63V2fJRtmweCIMMbkvUcd6iUI2H6769ueK6jrGoEUICmakQjFNoeKd+9u//LzL//qy68frdfL2n/y7Jl37sn11cXFxWoRPPNyuTRVh1RV1YW7AqVsUBKKM6B69FWgEFU1aUZE9JiaKhFF1Kprd7u7qMZIBJBSUuJqvVyIr9GvHn20WDQxxna32e12d3d3Qe5zzl27kVxpFmRS4mSi6Igoq7QbUITV+hIRKUdRuri4AJAkQs2CnAckh5QlIZGqKAKxL21hmRmkH2VWQ1BUMQA06Lu9mZH3gKwxFY8GEWmXyFRTWjRN3/cVY9tFsqyaa09sVeU8+RvnKx/q0NTrywtp37/fRWafU3/95CmHqu8So6ikFLuUMwAklb7vY4xgrKrMHHwgdKWBCTNnRRMw0Wa1vLy5/uM//+vf/UdvHj15vr+/u1otyfvXb9/+7u//wXLV/Ov/779MWnuRQnNyViJFLOS71CEDNEJEwQRYO3+TdtsP4ejAgFXVYbVcBWZWMWLOKZUTOp7JA9GfYfypcnNyMIhpzByC0SuHCENVgeFIzNF9smWdnbpRGz8VrocmS6OKMzp0x0vNxlrKpVQF4EEjQRxsmGamZA5H3ajIBWYAguycc1mH8RlJp2rUZ3xuCEeanXkYSyVwGUCVJrZtpiJYwsFL0z0AACvJCQBHrPcD23ekdJ6wxhMm/be88EjA+k1kbuC1s3zZAQg2RNWVR06ciw/OChHnmza9F+YU//gnQwcA02M66cE21PIeOlSeI8yIKtPI88FnjDwdgWLc67nGfEzQeSg/+xDTmrDFDIZ+Bjjiw6xpx8muHR00HVhdcXwP84cHuH55kWouiq/N5drjQseFLI7XvADI0ZHEM+MHHiqy0SzXi4lILeLIteaPECHkITo6qijA/abbdabL05ozJy8alj9eNk8TksGThYizTiIfvCaGCgCzKvED9RARKKV3RylkPiXH1auXr9/ettveGAKAADIRiRiI9H0/dLUiB4DL9cWu78QMUipOTeecJ0LDxi83m42ae3/ft50wwl99/hIRAlDTVOxw2dSrZlH85VcXl1cLDciL4C+Wi6tmGQADsa/CfagZMcc+xw4RlRgch7rpdh02ISzrEAIlxe0mSba+ff/u58hOwEe7XD99dOEfb9pu1fWh63ebbd/tNcWckqoAmIhkkVBX3nvnXBJRifv9vmu3THXstswMiH3bhsWSnE8x1qFSU5UMiOQcFakLLJmpSIlLBaDiaCBAEyWi0g8t51ykoJzFUgJCQxKRHJMhEKhz3OEi1LXPlk0Xy1W1aLJaTOnt/T5IorBeN4y0vX3/lkTq4NqtSjRNg+uMADwxhFBXy67rAMiHWgDzvldVJAR2dd2gQQjBYG8IOUfLIqm/v72LOT15+vSbl98+/ejj3/uDP/x3/+ZfvyBvqwYAiujAzAhoBpIpUAJDIpdsb9DU1XNzX/8NPmAQNWXvyQiL4xYRcYzyH+p9zCjLHKdhTu4JbRaxycQ2BCofOi7YyJfwWNOas/EHTmPpNXSWsnkymaG7QLF1zK5yYE/st4XqTHSzvF3HMkPlMUZmZnCWU8JiUwUrYvtENQZWRIcaHBNVm/KRDt+MZr+SAsiuBF2bZCvWm+nmA6E5tvGeUMMBPGN0NI6B69MunN98TlJPfv3QT+c3DLR43BgGJCYimncimnb5hM7OudSHJjZnGHNkQx5kupP7mbmolxM0iIgJNafpnnmeWzadA2iaXukDPVBVVLPBAkx4yEaboD0JGedQJUAjMiipkDj6pxXoQP1HjjUo09NU5gOKyIhyNPcEjX0zDkONUCpZPX6wSpkUq9DRG2dAxjnX//D+H2QpN0Upq47p92bGY1VrGyvb2LDiYjtl50JKEZC3O9nte3xcwZCyX24etkyP8ssfYMBlNhOCDbl8f5PDZVp7UXkJ3PzAqirNNOAD0gJktdevbttO2lZWVBkkUXTGhqagxkCBCahPadvum9AI2kD6REDUk6sMTa3f7O/fvPdVZaQ+uFA3b9699d4vfdhsus397WKxqIPTLN2+v7i4CAsvOaLkVR3WC+/JKsfr1QJ3+yePHt2sVrVj771fNovrax+adfOpu1z2DJvdfc4tucZVTIFk9YNHj667rtvsNrinujKv7uJynW7WVd86E0zt9u5d196hqZncb/diJikJCCKSc75yTVNDotS14D151+2zAoTlMvVdu9t674ko1FVgUtU29ipSShcpAhmaSc4KoiM/hpzz0KPCeTPrus4jSrZq0bRtD4Zd162awIbN5Q0ASMoVADNv2y5KruoaCJir9WJt8f5ivdxvN3Xl3rx5i8qoSOQdMJARVVaZmfVJ63qRxWKMAuicy6p9HxfrpYhdXFx+9e03d21bL6Dv+1//+peN9+/evUPv1cx7X1X+Bz/84bt3b9599XWzWvpQk6lzwXtCRGZuU24qA2AEEmjRFqv6OtfV38CAkbd3q+rG1mvq+uoJ540RjnQMYOjbRqoGfEQQi0Vr7Gk60IupzH9WwYPSMz3ICDzUJcNDaa5iM8mjCW5kJINDS0pLpzHWFA1K5/lSsUJLjejCBUu6yGRoJEQCnWiZKCDgUHqeTIQAyVAUkBiJh16gUhKrETFnVQMzzwAAamDg2aknGAoqAwEishmoAqBTLXVcpWg1QIjOSjYiIoKaZjNURAqhRlPLJqoIQ7ysohAY+zDlesOMJU/EdyJDQ6qJlT6soKalQNhJTajpmliFqtpYCAKJsqqZBXxAw5vGmSaDY5I7GrjDi9TIBCRLhrH/B5a2sSPh40EE0rHLB6mWSpxu1KWs5ASX+6uqKkeUxoT64SdRQ7CxJzXB2HA6ZsTS1hNUtRQCJCKiUuVNAUrTDQJQQAx6rETSUCMnuKpUSEUAlYGdO3Ypjy2sJ+UekZ0TVZhyBHAo8ELMhzCqqETEiEalBvXofpaB0yiIoamgUbEMoZmhGRqgInge+t6UnB4xADCCSRIYkES0FAEWoBI4Vhp0GYCZgk5NswYmNGh7gMQlrgps1EtAFA3UHfHCgwxUOKAecIOHMEYuXgAcHCsGhIAkCKDGTPvYOk9s0PXwVW8/7NPTUKFJz8TMLgoiRxLUSXKVEzyc1wZBGthz0sNth9kCILpBRkGlkn5RzOYYJlkf8RAWgJDB2MwRcrGdqmpVVRT3P79//ybmdUOxu3MYKnKJO5crIjaJqU+Mru9jVS+6GENTazYESCm5uuor4kUgs263p+CzSlM3WeDduzvNIJq36MjYh2XslZ3zi2a1WIjovlfEarfN7+97o5xFOLDZto7s3dd14y9WYbmoaodX68Xjm+tnjx5fX19eXq5XtY+6zxIXwYNA1fglpevHl/31+m5z//b2PTruNGK1ZyJDx65aNp+s7TNJklJax1d9TtvtlgFT7EmxUoZdatldXF533d6y1HVYLlzf3XsCrwFRl6uLXd+mQBkwQXYOfAZmBgPJyTQ7RA5MDNtNTikFZEcsOcWYnXMOSUEBLUu6WF0kyTuwHtl5R/22lMFW1T4KkTaMoK0hQ1hZt23bBJCeP330brFu6fVab9XYUwN+DchiXUp3KW/buo5tbtzSuxX0MdT1tpXHjz7bbz5/e/t203YX19dxc391sfjzP/3Xn3zyafPxDz3g1dXl26+/evr82XZjQHz10adf/+Kvd5vb5apGCF3XVb5GkJS7ylESRdaczeWqDn2UGP33DwgMpBYJzSGZTBowkGNf18E510ZlBAbUSSedi4THrX8nPcDmFx4dgxPqP5m94PgqeT5F+J1IfBlLx24wOllEDcCAAFNOhRNPgxRr0hT8VVxa02RUFMbGL4XUTu7Ew/TnBljEUoNilMKHHrelk/y0rIkwsfeAB35ZmAqSZbHJdTmlVKkI0xEYAQBnhRUnQE3gmtJppi//NmFZ812Ys+15lYxJh57eNd/S6ZsTVW/qAjRpKuMgMC0BZ5cNea6KMDggEIkNSoP56V3nEJi+KezUlCa+PsclxQmARTtTAcuSefRjjDcPCnopKDE9XgZkZqQhjnqCzHzVeGy8mX8/H8pmxf3nJ2Ua4egRI4AitM0UzeG8DfVMxs0wM9OJZRzbEma494AmW0SZSaChMVBOJJVUYR2trzjLOD+ZKo5aMp75CCbIj3/SVNv5BDgA0GeJiVSM+EBBxiZncHLztBfzbw4hIDjHw4eftdHJAwBmiEN6RFF5B8uzqo5xmjJVg0HE93ft3e1+t42gTOizICSgOhDRKBjRBCUiqusadUgnyTmXrrdZpFScwLGN4GhcRBEpGRlY6rqblY5szrmUxMzIeZiN/4r3BgYtcA/0RiXngNgs6hX6ugnBcXAEKIu6evbkUVVVdb95fPPoxbNnF4sVqbhuhzGK6fryt5AZQtDAua6gCtK43Ph1/G2XY3MlRMAOun7bbjftflt32WG4WC99VblQ9SmhX68uL17196tmsXcu7zlG11T1RXDb7VYrZ4IAhMYAXk1Sn3LOAG1OnZiAWmkD5b0zM1Y2s7gHjJGZnZkjTPsdLy5taEWsxL6gnKpe1rTb3KOBJ8pZu33LgBWQX3wq/T44ArJ9txHR0Fx5vV7F6JuQorZ9m9t9n7u7u/uvv/zrd/v49bfb3/7JZ//5//S/+N/+l//l119/+/m3bz79we/c3Nxs7+67fVvX9e3tbZOXj54+e/Hixc+YN5vN5c21ATNJjHHsJo9ZhbEktRAAGLGv6n5EQmZG82iKgGI6NWNg7/Fiuaoqf9tm7w5nCT6QAwDDAZxO2hFdPmHM55RgIquHAc3MjN1QkWfw4QNN4SoAMFV+hsHqZUNkSxlkOn40+KgUD169oa5QHspqSgmvEYVChmZVdXDSDwDQCMjGCBpQAFSFoRoPlOQrRSDTQefDKQx7ONGFC5di02QwJWKWBKixQsL4JZ5C8oSCnBOy+Q0AZzxAT1nUxG4HYWjSbgvN1Qe2Gz5gyoYPlKIsNGV63UlBRxvpHYw3lTXNeC1PtUrO4XDgxAZTKDvAIIQdMYkj3imTHDa/TgB4/hkRS0xeick6GX/a6BMRZ+QmY8L6uGsPsepZ1NsQOnMqUk18EQAModDmaaZHUxo6agwC6/nlnJtmCCUKsvR1Vy0mE1CFknxFBlngeJmHtYxC6wl2ARRJ4qRF0uxEQKG6kAXafdwl7AUWiEZqmhWUBlNSYah/s3B5TEjOfz2wcwQ6/mkIJUMVQ0JwQ2FWGKgLEahmZg8AX7++u9vE3IMBAbBjDxQQjAD6GIuHvlQXduyAcLPfBeKAzMy+qjA4RIwpFVfCqTmnPJsFRIpEW7T8QAhAfb8XU4coU11CwoYRyA8YVjq3C8Te/XJ/X/lARI5AUgKT+pdvRQT7vq7cetFcNOGyCpdNddH4RfDifxpCWFT1ul5dLlbX64t1s/De98+eqaqragOslmuq1svLq5x0vaAkOWY1cFzXcd8CEqwvP7qrybv9ft/UFzlrB+yXK3Je5F5NQRWoqMIoSVOOi0iaGZQYLQAjIAmp5sjZDFJMKfXe+3q5YMdZkrV7AcggNjr7VAf1yTHv2n0v+vTZc5PUbdqLahEpJG1BpXJcBddwAK72XVZp3+/uXr69DYuF1uG23//87etf/DpXBKrw69f7/8P/7V/8+7/6SkQkYg+ckvi6yl3XNNV+v885b7fb1eXF48dPv375tWQVNlexmSFyCASEOWc1dM4hqKgQEPl6hoSKBojFFDgyYBNgcqv1om68vBVkOnhtjQCLUKZmSGPtC8SjczWMjqNgPKL4gxTqwSN0co38e/hzDJMbyp+aqQ0ajMNSMlMHto1MRNTnBDPaNCnlOPV4n+zbJ743AMXB9KSqZhkV0fHo/1YiUBijoHHgNEaDBD4uefLSTQo/8nEENyICDwwPxxDK85jhBzncYV0zHeVkL+CM+U234VhLBBHRQKdka6IHHGC/0bV2HEEz8R3DmSQxFRgZCDdisR2OhHzQ++fST8nfAQBTBCMwUymvK3OD4VcoqdozqDKpqpoOJcxooE7FYjEOrjjqK4eo49kCdCxkPUFAVcfknVMOqofMtxHmc4185omfFlgQCY9DouaixvQ8jjFuqmow1FkdEBkBoKhYB7Fspno+LKXNubWNFpRBWJlS4QfTLig9fGin4eavK7cOSuZoVBr+P0bLmSkoiYkBKMJ21296nzKUOjlDdORgY1M4a4ABMJUWGNeLAGcYPl/dbOF89MFGVC9yMQqAjAaLAtjExuVQiMjnr9512Qo7hJybsCDPUfqArihwAJBVJutdgchAsJjBIKW03+8d82DCmW2KyBBOBgLMRf0lBAV0Xdd1XWcGmSRKRkIzzCmFrZBHQxQVYGeKoIqSb1ZPmEizmAkai4hGLxnJ3WxzvrvL8q4z2AFkJiOiy5Cco8p571ztw7Jq6roOzn227up6cX31aLm8XK+umKrV4sJ7//r6OoTgw1LFKl5AXZmBtpLWwXsvlL0PlDMidtaHVXDvwxgkwR4J0XsDR8ZNdiylYIiaiCTLqqoZqaoqrgMi5izb7Xa/3+92u0dVZaIpJZEEUzSSWkchqdSrpQv1ttstvL+8vHx99zqFbrnwjVuhEVvqtWvj+33cL5mXF9VT/2zf65dv3r66a7e39brRanXhg/v2/fu//q/+6/V6oZod0bu7/S9+9csffPd7Vd2UOLvA7tW3LwXs+fOPvvzm6xgzYfJeVQx80eQcMRK54pQEtGxms+pSo9TFiGjEYxS0ICAuFvWiqVTuwVypMQGHuMGHeeR83OmbE3n55P4R7RSmxm6FO9JQ2QrHa0JRIqKHTiMU8jEwYAUAMWXDEgR/eOlM8B1kT1VQIyDkodvaRA0ViQ9rPlhlFQxMcDQB8fC6YjFjKNRqoA1FLp2slAhTN4jRSKslTJ+GbuQAIHMudXzNueyMixxZ/06AM91TglOm++dUfhqKRh6spSDJQ/s1s/U9PD0reu1D4tScGtJAN4lw8nQCaAlqPu7+O4hHY0B6UdMLOS+BVAgnppUH6jCd6G0AiFa4LyIC6ml7sOMJD6kRRRQrLeLxCICHR8604eJ8Tal3zg3JbyKFtTPzEZBmxgATtcKLyiOluDlCkSemEN2yGBkBPr30IBYAIWARhMrww/T00OJwRNeZjl68OWZGZggKQ5bgCTuHkRxM8uIMGnN4zvC5tBpDLAXiwVABdm2+72MvhsYEpqiKSiVkY3Zmz4WJuRjxIOZ/WGQ8hCaU8vbTN2SKZFhoJaoZGggAMfNut3t5e9embGYq0TQbZkM2yKVl+GBoGa1NRMQhoGhpCI85k2MAcMz6/2/vX35mWZI8Mexn5h6Z3+Occ8+9VXWrqp813aQwbIoaQRAICdBCEBf6D2bBHbWVoD9ACy205pIbLgTtBGgnaqWBltoQlIARIYGkNNM9011T1fW6955zvkdmRriZaWHuFhaReW6TAgckqArcOpVfZoSHu7m5vR86ygiNgHwApkq1WpzQ3jyaAX59fT3PyzQdZ2lN7HhXFTbPrdRaDweFNDUl8TINRHQn1QTWhAwmrRDdHSaZir5+4lr4rqDeK2xpbZYmIq/Pj8z8gWwRabhomY0+gemLCubvGH9zf2Cm9u7twxdv79+9e/PD5fLlF1989dVXDH339vHhePf28YGZmX7w5U9+/FDs9Px0vD8e3jx8eP1Up4fLF28Jxc+CMAOKJtwuB2NubZlnEQHMpEfwXH7+N1UqKZXKqk1kYRC1w1N7MTPRRZceEeKJhfWuXJbLQ303PT4sahdt0/GAOt3XuRa+vL4ss949PB6mu9d2Iea/PtvvfvubX/36w69++5F4+vqPfnb3/oEuUG5Up6Z6ON4tTefLDOAf/8f/jz//4z+6v7//05/+9PLyAlJZ2vPpfPdwPx2P8zw/PT1JM+YDUzG0Jnh4fNuZq5mJEoOoNG3Bgnt+MxsRGYUGrASj+/v7+/ujmQC1W2yd9wy5v5dHYbZRNP9auCZPTUjf5yNktvaovz42RKTbpFLVziemOjnf6hKEgeD9HXurcA+8glMlUw56xCv/AzyDdxQu7jUTiTZqvU+ogIhImbtpvzMYgxEKg6QndArMrHU/MWB2uwa1p8ZSQIZg7M0VOoTDghpVEq6ZbgZXkPtgFdfc9+blt1XilZl4sG43XlyR2qst3m1Z+j4T4m5gcAlk85yBCEpW/BXq7v9esMmLwwSd3YkXwThaax5f1KcdnEmFEdxMMWqzlDK5A6GzotGC2g0qGT68Teo1JVNSAXpiFaf7uyrWuyzdQvi8X7sXbb7pJcHXH1RXIdLM3FULeJiiYVR3zUOxdwGJR5JpZDvn9Z7494ZvlcnWyMmEct14CwQb7szbd6okJ27xs0VEBvPUmsJkSm5huMz68XSaF8FdYfSItp7wMJKsriGZJ79+Oera7jUF2jyVRvN0Qm8x4wU42CsAWE9c9bcbM7777rsPl/NpWUitFlLDYnMFHQ5VF6PCVFg8HJXYq1uLKUQMBOZSivNzSkw3r4tLkW6vgq/ce9guKsuymBmY1Igr13IQXVRVwGJCRELwktzMVpguWCYupVIh1kVV9UyXiyzHSYSIhc0DHI3ujcmm+c0M4gk4ihUjBhUDYB/kgdVsmdkmnU+Xl8vf/PNvAZyPd4X+diqlMB4O5f54ePf28Xg88vz0wx/84IuHN/dU//BHP/z6/Vc0y4+//vp5ksPhcDjcVS5gBilUWATvvj6WcpiOfKRKLK3J0kop8g/+28uyLMulMMsyL5dXaTKfTpO9934zos2aW8NMVSeWw8O9qB7UKpfzy8vThw/lWGQ+EpWlyHnSVzl/883z3/zyN0/Pp3/87fPry6XwUW06FJ7k/N38RDQ9aAWVw2FqpiILiB/uj999fP5n+Bci8nC8++Lu+Pry8myfUOrLx6d7UxF5fn5mqtN0nqaJmC9tmQ4PRDoVdtbpnNOSOEkenNglW12DsADc3x3v749ERFR6f3ftyf+Am0cppN3MFcy2GucW6W/THUti/9B41IyoBPFFou+7Y2XDyBWasf9PI8JZbXDfPhml8SBRJVZSdOVvBY1f3mRYia2TAhgZGTy1hnt/d5hBhYp7IqEedHrN/K61h7gUhpF4CLh1HN09SrqHQDIYZpPm7l0Z7Koay7o9K1EZhUqok9S96pC3I88HV9duMnH/vq8AjFRB6i3puyEw9YI0S3x3kK3rxeYmyuiKcvd5JwFudGM1yVzQffPfvwTreSlRsZwGU9jj5w3Abm2htqW5zmFjmf4VtlyzH2DqNYv9G4wIHSOX/MBbhnotP2GLJ17qMlYXd3MtDiv3rDuLzXiTuXUWUNYv1z8Jln233E82gK5xkgeqL3P7eNbTMmsKRiErMDK7uAXkGrx5JrhCyKsdcYOz/2TJykIDyOw27xhWVCsdvCCp49K333778XX2APPSitHCzEy1FF4uC5jA1JZmhkrcWuNK9XBQWwqoFCqlXM4nWdp8maepwIU8Zg8CZeZSOwMOKsrMTbXNixGzR8Uz11qpcJsbM0+lMrHCKk1sJkLaGoPkoYjYvDRSM21gokMl5lepRFa4sKtRaqZESrNciMgdcSBU6n3m746tNW0k56WWMgkf8HBnZl/QNC8XXZSm8nLRp4/nX/ziSaH8jtrf/IqBSnx3OMK01vr24fGHdbk/Hg/TnQc2MghQg94d+OHh4f7+eP/m8Ys3byuXwvxwPB7rjw+Hw+PD3Rdfvr87vuH6SGzz3fm5t/Lo2hcASBORieVyOhPw5s377z59OpYqDw9P5w+HL7783YcPv/64/OLb7/7y53/7y19/q0Z3d/f3eLSltKYMOj2ff/7t3wjw7v7u+XDQ50+vl3MT+fLLL3/78q3SUqbjd8/P7ed//YO3b/97f/EXDLqc5rv78vLxE4611jrP5zafT6eX+/vjdHdQlWW5QA2Hw93haD2PB6WUzGUGOVRji2YMhUDTNB2OU/DWgZG+XqVUIzefvR0DtuCN+WykMxMMGIm12OD1daoxZj5arTVnqIO89gjD8Kb02oSFqYdSSxARDPpFRKrCZa2IG4WBOPJ6ncypWhe4vH8gE+s4x0kVw2p6BWAEviIEweqgvXolERGT5+pCE7NJIOWykptMU/zE7uhOUKVVhlhLOO35RDyiI4yBU05zWAJ2bDuboK9Hs+3+5tv6Zg8ewC7TqIK0S4YeimorVAPFPPppQEWHdQSrbXPsV7yigofo6GluPdBXstGFegg0EXkJ9R0+Y2jGfvNYCwVq77aMiEb9yxU4GYdDbBqo7uw/Fbkcn5hIXczdzWoL3uvdXFe3fRDbS0fKe0BgxASZmXlkg7sk1J3oV++NbU2kBMHi+zYIehJX3yM116hVrSeOM4Faw2WGp5mRL5EKgVjpc3mT7rvtO+PWFefTW7abUDSXwg5o6DBnFZh1A5eRKUDmfWViHDN7enr67tNZ7Q3TtCytCaa7UsrU2rKouJguIuThMuKJru7tA6Bl9OuthS+XS5RtV9VlWUoprjB1WIU8bNZaiyh9IuKp+otKKYvNIjCziaZa70xVG5tRXQAFLSieRgVm5ba0Y2NiI4CKeYaamCj0AUfX0aSrMCQKUplOldp8N92JSKnTWc48VYXJ8lqZtYArv57nepj47sBEx4VExItpz7OayfHd25//9Tf/vJRS5sJnx/suA5GStDJNbs48HA6FcCz1zcPjxE93d3cPx8PbNw/3x8OXX7z9wQ++qqV8WQ9O5Zn5MJXD4eDRSHQ8fv3VD7/57W9/88vf8TSZtV/8zV9ae/7F0z/9j//Tn3/zXPH44w+vb14L1Ule5YVefns43ovZ8e6gQqUUFXpZ0Oan4/E4HQ7tcvn0/Hw4HMVMFr27YwP/5T/7qz/56U9+9MV7pwDWZClSCi3Lcj6fzWh+83DUXna2LUthlONBQLo0MHEpgXqqym61YOKoBc10tkO52B//+Rft/4yLyMFYRZuRMZVC1IykiSqmaeqNCkwgDdrrGMwy93ADQNfoPjJRMyugWoqZNREUnqbp8tpIiQdV6rEqlVWBUp0h9ALLAIiqkkdaAV5YVDtLYFf2QVzc+E5IycXeytcjnL36eJ3ErImYFSKjUlSbTSqLTnUCwKZgVlNWrbUsixCIR4oUEZWextAACOBF84kKV66laNuTDucE1Y3Qg2EIekh2qt6xMj9mFmg3VXmHHABEXCuloCEL5mdWEiEOFlJKgd6g1z4BI0ahAjcHroynDx409Zael8SCXng503R03kkDu3xpZmZ6WWqthSaDuHzUWEWkWkkSAI9Sw4LKns6LAm9oR9rdbEoAoXmm71StGkQ0hCGmYWaGqtZgqGargAGSYmVLvP0XFbem9uCGUgozogBGhGit1a/IMvBjH5tnJ8Oj4If6yFStAM6MFOa5u2RGAnEuz+bmchAxqmeyu45bSvEUZ+uHwUAGYu7qL3fJcPCbTb6ZdKSyygz46xdGMa1G8MPM3tZZVVsD15AkYoPMrIfvc+9IaECDQa2UidWMxBO74UXwRQFWY/Kk4AkASPTI02++W775w+nr+fTjh6MsIlxn6IFF1Gt40U6EUJuJCvWMFJehm4qWMmUsDXlFZbSBAlYHsLH2/llUqBgZTMwWUUOtj3fl8vI8PX7JZo91+e708v/5sLTlTSm8yMcKqGGqhbgR+FCqGolI5UlELtrK8c5qaacLABSu9dBEPTu+gIgnLrUxkykTHaeDmL5e5rfvHtt5fl3Oh+MRTJe2mCoZrFkpk6jWCaXQcr5ArTLNF3jhC1Ft84WZ630xM9Sil0UJRkYVBuVZD0ZyEFBY8WAGcCFirbWXXLXFzDySpUzl1RZUAsTYIGcAuixEdEF1X75IO0yFYCQXVb248cX91wQi+nh6qg+HqXdqX7hEuZVS69FrGZVS1MSkNVBb7Pn1Wy6T2Unkk5mVUqZD8b5nvdcA7Hg83N0fTFSWCxkeyb56//7509P98e4v/v7f/w//o//oH/7Df/ir3/z6r0/0i9dfn4AHmhd5Ltbuy/E81+nd4zzPmLC4xufkuljlqo7wTa2p90YUgSz3L/J6PNr/65/8P/+t/+H/xGbMi560sR7M6GBUTC+XS1N7fWmHWpZyIiKzuqi01sT0OB1bW33ArGITcX1zeb3cH2ktRQmrx+Px4eEhZP8uqqMbRpxMu/BuZoBSIu5TqQCc3SI0D2Ira4pbvKurs4OUbw4YrWcuqQfWA0GtS+jxVA7a6nlXSfNAHmGwh/zG+Jxr6nJZvegjXbKXM41HmD1oQ5XclctkEJHQkIJmOSHOjNB4CBefseUCHj8zTOvb6cawddDTa0VnM9StV6yb2D9QKFq7p2K9uxcNdrJ5S5Dp1cmwSxKtRQkw7QlahStWjW9w/VWH/tzSPGI8ttXMyLxE6DoOjZdmCGTeKSIonO2cYQzQlDu+g0NYy2OBAHi1zWygtCt1jqGvWb66l7ows21rqYYYdCuVL0bGYK/dOEBJgd4BcPy57ojL02IaRaZpZO7mUPCrJWzwqjdSKC4iJEFwgKiU6kKDB8FhIJwKLvPctIitYfnfj8+7dRGRfeYRM1tpwgousjXcG2YSbdHJ070c25WaLjZNz0+vr6dZVdnTysNSDahqYTZajUNhEsz4kC8G9egZEW3ChqlWFJ7nGcnIJNKWy0XnRqO7TeyFDSV4IN6af0yrzLlerrdQqdcgunm+MhHIv8bbzVP6clFxs0grWL9MYhBSskCcnYH6bvyAK1Wl9kVhWOm8WhZzJTIxPZ9PLy+VoBAtzE8T/e0vfglVk+/+k1/+cpqm/91/8H98+/bt87cfvvv0pFQVhYjckOD+F177T/ezLCK9XnHXdxDRDwYYlcu8vLyen56e3t6//e7pOy2YybdJzKxJe35+BgCtbjBTVX+jiLDb+iIIy42k6pWIbHUImer9/ePbt2+nqUCy5VZUERJ0JgT5WK7AHVYhMkBGAY1tcePg4rptR2Nm0a3IYRQFrUaUjWM/AuHC35ypwzWjzV+OcTZEkHvqNKEwb4JfiG6Z2rLpmIi6niGKLcFKs+pKrAMmPOk54XVDJQBYlKpIPGzwmN3xuF6yX9cm8US51rEGQHS17l6BLr8rPkcSS/5pP5NEhbxAirtGeGRX965AqzCRAojSWvI0dGQSm7NeDAWRNpAcHGU1/1LyoHue2WZ6fEVHEk9V1VI29v/YYtWWR45Bgqn1v/o/FLWXuRt3lIhqrdBlswXGBjEz2+awjsO40bb7N0MEGUCLF/etsG7PtqEZrgb58V6K9NnYlLzk9RANokpElZiImm9OPGuEqMsP179WEqwqi+D13C5CzYy4jjDvTX/l6+24/jKmkb+3lFckXgBt67JJMO3dXpy5ME8ioqJG0++++d3HpxmezZocND5WWxZprTXtFQWYmd0qt5EO/VIzhRXrm6pL81NQaxGzWkotZZqmw+FgjXRpZSKZxca0c9Fcjs5pyd806lEz3CfYM5oMn0nuH9Pbc21LPDjDvK96SNgr7Ib8aWY5MJCIdBsM6HjeWgN7I7iurhG8t4gtuqznlAhgMoGqkdU6EUxkaU0I5tE/3346390dHh/eFGaZl5O0b3/zTfvbbx6AyoW4LJd2uDuiJ7KSl+be5YaoKhUKAxLgjTZJoBMRl+Pz68uv9du/+ut//hd//t8i2OP9/eVyqbVePBjZ8Pr6ejweK9O8UOXSWFtrNpwIAHohPsC4MKnIUgiC1A1bmt4dDm/fvp2mCaLOKjrsIF4L10nZDvX9X1dq8wHoprluJFspQsHKggLWmz3OTMLglWYrF9y6Ql/P9ltmFmtr0a4hFADwc7LFv6EEM6Psy3EAJSgUPIJg6Gr9qZ41oOgNUXrbnLGQTqJKn78qRYkutdTcKQe1wsydQjHJzQe1ns7tIBpnxZJCtq5uQHXHV3KBgrhyRfs8WqYmu0eGwhO7FkkvGg/mOfQS/oXIQ6/H5mXBBUg4cD2B7RSGP83IULAJ+PocAG1oOdM05RKGSORSdSM/rSwHOpK8OzPyF4luxg+8Iq4dINyJDACzLt2j5+asq7tmIR3C2+1QNyrDmgXAxtnZJ4OtW4DV0rNKD9YDxdc9GnP33NQ1vTCgSkRY9RkjNaIR1zmkh163BCAqQ53QFevIYGpm0vB6WWY7NFAxdhvG57X9AeRsU9n+dL3pcadX9L4xojobE0IhM6hRMdUGY0L97bdPn55nE1KGevBgYS4FzDBSEzPycDZKYM1mkp7GZmaG2MeugYlYk8UFeCIRmed5nufLMi/LUsE8+ru4LugaizsYOsXLLjz2onI9i+pmRN5mEzOuUj4jewYcUPVYZrgTLWWseOj6xvbiQ/EaqNFFTw/DtO6GJ+JCDE9RqBrgipcSCpMtTWslJmjvraQKM7Uv799M0/T66VVVHx4eTs+nn/zw6+fn53a+HI6PRkWHYU9MGdV1VmZ2aSaonBIVwAhU2LuIo4BgT+fnd3xfSgXVb7798OHrD8fjdDmdxKzW+ipCRKXwsiyttYWpTLVMlQpLi4gWE5HDCs0D0Wwq3mg82hH26nT39/fTVJbzjK6IxxYqbNUL00EYFoZkFUkRrdE1Zd1s2pDaK+G6sKl6IEqfmyGsUuPfxP92DDuGSjkMV7xnozj6nwJDYbcbuOmA1Arz0qV4ONmlTgnVX9NHaBoVrMJSlAenyOYCyMQzEFduc8UdyT3NNpTgABSwtou31SwRNUAyPIOQXo9/88q8NmaOWzQu/5nXe4vNb5NlicSNH8zsphU1AAUk407mXsTYL+aSB7fBgI37TnQu3i2vnQGPo7slMehsLweU5dSd3RWPxM27x3fQy3QqHjQ1MHnFLiJS58FqxGzqQhtR70QroquJ+3Pwz9CgIX1ZviJH99Z+jS1bkURVTRS9qPLaNBPpBF1ztUzBQwohIlPdWDzGOzcCX2+HRsy8iLxc2mIsyp7uBzMrqdDXjU35LH++hr/X3F4PGrruxj3hWdgcZ1byotbYiqrWemhq33x8flmIONpYOZvt4kattcNL+q55rOA1EUjA71cZrSjVrDBHwP/lcrkss7ZmRgXFevWatQ68hWUuLdYvkZ59DBsDqgKW1ZeMq2EYDmrvJC6OW35LoIX/Kd4peWgkV9vk15r7Z6uBCsxrcFnPOyOMAAeCprYlXXzxaAyNUmKu21ubl/OFiB7v7tXsi7vH54+fANTpfm5aCpWpqgqgpRQjTNMUZlfL9jD3+TnfsS4TM/Pb+4dS6jK3T6/nX/z6V+/fPPx3/o1//XQ6NVNvgCYiVIqqXi4XbQu4TNNRRM7zZSrVGco8z8GAjQ/AzKZstHF+mIGI7+/vD4fDRV97pARWhw3IiFaiNp4KhPAOvL3JD0YQkIcURgqQdVutMVcz6mFTyf/acXcIzYG+OzyOS2EgUPHT66Vd0URK7YJhPO7/lqHBExEwcHooEG6BFFEaAarppTTUOQIYvZ8TiZc6UQORs3AEXRuaFjO31iIkG+zy1iCjvvBxdbq2MrNB8pjyI2a9pEHQwQyWxAtX5WZ3PK47uOUakNs79yQvXpdv+Nwe5YvV+sGHigjUSim11rbMWNn5KsZdkwDHwI4g2st0mJkwyghEup6G2514lABceXC9BgIBcAsfhgkZwb+3A2fsuv4Tg+ibGZhClMuA6gjA5ibOUkB8wzyRuN3GVoR0OjrK8Xpn8NE0oVjQRgwt3aQpblMINAtvXD6JNPQcHmXggNCgNEh0sAh/tE+eVkLv0enP5/kkchGZSiUl25jYvu+6KZpcX2beNnkcMQBmTJ41CDPxY2S7C1IrP728fPz0tKjecVF44Q542LMKxMRa67qU1771lAkuTNN+qj7dMjDQq9ATWS+yRzBM0zQdj8RcSpm4kFi7NCVMPDkNMTPqORqSFxjQCOXHqx0oeRbAzl+G9G/sKZDoxo6q7LY+WLinTBOQswBseAyB3iU0AJ8IRdAZViM1UVODwlqPzB0avD97OEzMsGbcDV0AEzNTQWtNCPNkqlof6nJux+OxvbRlWcCHiesoMVjMpNbqZz+rvw4V0l4cHOhhGaa0XF7bdGBwme6o1I/PT4u055fT8eFYa3VxuR5KZSzLYkJ0ng+HCxHVWsu9d0RWJLMr8WTqTIiNOHzARAxmvru7OxyriEzTYezWbVmYiCksadsNy4eWusEubb+oqVoK9AgcZWYN/x9WD1NGZWbOQVhbZFrnsDlKV8qZ37yj0oFVlbzMRqL+W+UykNJs8OEOq43xxFIclkvMqSiXDv4XGoMLod1a43fu1k7UjY/rRlwdmHzG4vEdqRo3WJSVMDOM0NfrR3bnMLYY2yC4zH4+RxyL9uJX3kPKl74La0Kqr+TjlzEYjWc8yDfsXZ7NbNQV4hGZ3KMtdlPaBZRlIGfROEtvwY1sWxl0RbArWPVtJxYYbetDEGAjc8/M1FrcP1A214LyKNBrBAYAj1+HJWe8IdR6oj2SxyQj2siJRViUAzNjMhmR4k//EN2vew9yZurGxXEoBohktGFKUXKOvHy+tNOyzEulCgK58kOfQSGnj3SFn+OY7m34AdVcNnzdOHNF0QCFGkrYHhQwLvju44dPL8/qyf8mKyJ1pZrnuZmo9uENpMwlCCASofeXMnUbrJmpqce6w3MCF/Etd1PzVCeV5tTOn22tQdXzKaI9paN6WB97H6pSXB/xslvefSvjf8JhCyTPhJToBrlTVWbrCQ79OHRqI7rWPqJhiLJB+ZHIQgILmGu/T0lg3uxoyHc8Dl2dptJ0NiMvSGuA9KDBg5wbMTcVw1JrPZ0ux+l4OS+FuB5KqWQQLtBuVKPgOzuk8lomcZYN8MKvh0ogFsXLaT5CPhz4w6fn+zdvVBfXHMys1lpKdVVTRE7nmaD3971bMLRtbGalmlDpSF5rngcRHQ6HWqtqi3SUbBDLVClITVDJIFKxKo8KVlVnq6NnJ+Sqp976rG0ku36bGvXUJGLmgkQaUkBNEB2i4eG/oq1BCDNtIiJLJTt6IVx3RZQMolVBDJhyQU8sJjXjuTWXjHKUnatfAExHbpVrV59hAzGT6+97FMawY5m6FG+OCrh1BbZds2QXZ1U7uY+tzCGX/kgkR8Yu+Id5nild14d2Pxl0xknEVEhNRASyyzLvL2XmpsI8Mrg2K+pJqzSaQpqZAiWb31drX9/QKJi6fnk1crx6ZwpGwtK8TL+h3Og/3SHC6J3+nKoRzKBEh+5LGzl7vQq/th3QBqrfFsiYWFUza0lkdD+ftKGmAxSlMIOkLant9zjFxqL72I4OpVUJBgBX2gpxa/Pmpf5G7fWwCmdN2mFfL0u7zG2W5mA3Ur3io9st2H8TW3N9/2abMs2JpzBEmK2i5iLT08un0/ls9LD5qTdgZ5d1zMBUR3OVIQEP2uhnynyPzMBUSrHKSmSqKp4xZPf3d4tdyMsxLhcxRZ1UdZomkwagtbYsSwFRLVxKa50BY6Cf40/ktRP1uFVV4xS4k6lBQOMaryjXPktSl4gSLUx1kNxVgo/Th8wp0jjxOu2JMKxmlboRpXgc1JDItQ3zGFVmllmYuYwW3bIsAIjtqKVQOZYJxMt5ef/m7Xw6F9SF2t3xTlVbm2utROxEWKQHS8bl83F1EqvGxZ7AMJ/Oxwc+8v1ylqbycjr9+te//tmf/nn4kv1fqjViu1prpu3u7s7MZFlamzeYScXMmKqqah0m6Iu9FEzP9ct3XN8dTlLequo8L6paa0UhWsjUQMxDBvEaFp6LicLUtLsknfWGG9hPJgCPwfAmXIwyleqVn7TTOzOb57mUIuital0UcZ9Z9BGi5IcjoihMAQCkPV0sVRvIGnYpRS+XkQCjzMUWUyUsYJZDZddXFkjT5mnvRs2DLFSVubJXqGntiBL7Z92VQk5jFD3lvb/f3MBFAHiE2AXWljIN7FxDHImIKpuZ6Zoa0rG8+DiDQY5a/LY1ZfuSmZmaEnk11vGliyko/ZCogjywwkSam2hueO7LiqxraK/aNE02rqB0Ntr8dXaem1tMoV0JRiCu7+M1dQAwlVWe6ztuYmoFxQ9rgxJzccCqKrGLzKoKMjCrC5GpGUMmPXXoEOMtPo1OyFbUQqcLi8zdBeU7xahlVUQcskAP0fZkK00VT9l7WBOBe5kGY09dM0UbGDIIn/ZSOmYmrUW4Vt+dWogIizCKkTUTmBUubOSFfsZ5NHRx24/jWGMpTi7nuVnfiBr40zeuEBkNr5F5yBgMqjbV6qZXKsW18zYvDbo0MBe3IpJTCDIu5inG5k2T6xBwzY4mZ+NvZv5XSKm94PCmqUwHu5JD4nI3U4sIIyICOFU1KesWo2x9z/0BA5osxMwR004EUrJSbCE8PCsmbW8v+NsPl18q14vJA+aXxZoATGzTNL1ezkSksnTE7g3cJmYmIyEcayVAmwho0UXI+FCVyZhYbL7M0lqt9VAnAKenk8KOx6NxYaoHggmM+HI+03EyJlOdiKEmIlS4HEmtQQnGzFVBRlZKuaPpcrkIBAojVGYwzcviHeNdOyciGPcSQxBTL2NfTY0LOQn1oFrPnu8b7ZYS1akcAFwuF1U9Tp3rs4GJ2OE4Dj4RccXqfWAyMIbvzg1b2gykQzcybZ3yVE8ahwkWU/PEXACLqTUBoXCBmhxY4D2/rR7o9fzEhUsp3LAsF+e1oEKAB15FolicbncJiwhRKeWgqnNb3KHaZJ5Bd9XO54+q01LKMp3/9td/9bMf/sk8AWrTmwcFHx8fzvMyTVMpViqLLER0Pr9C5e7+wLXM83mlIefJ9KEcz/P5tfS+gwOPQzSwUYp2HMiuEIgIbXyooMFLopTdWHMnSTzSP3zR/lSPpPPo6LFVxoQRWlBKUTdBE0AEwjKiMZkZNGKRmKZaaRR1ClxR1cPhEFQbKVtmqtW5FkasATMTjNgDUhnopfg8s02MifpWBbcAYIsGnQqbcCUSvpIxuzS6uYJlBuE2Wy0BSMJ4XMGB8gjrvt5qmtR/6obvnnAioTuuBs8bJv3dFQtH2Bu6ALHR/GLasfvAxqxtt1TkvGr/+nrhu+lpjDbk9S6vlI1RIcbPVsE8siQLYX7Eg7/ySv1ZpsrE3LMe3WDldtXbkVm2qlzInpPMsMfGMRJ1GMeFBt8wVcXW44CkUjA2C3QMv57SZqUJnnn5+dTAK3x8Zqd2MgHA07SW4sao9ErDJhlvCWEIosuiry+Xy5nlUB0jtdk6xi2o3vx8c42fq5BFXEck2goxGyG4dSqFyuvl/On5tbVWpkdmLaVYrWZkZe3PgUGUAu2HcShs75to2yZSawWImS01JSylmIpzPrc21VIqF2EhZnL6U6sXmgbTImICryLvlmFYMTMPx+3bROv0AKiaavMISOLaJzmi/fM+WlJ5LflK/PLGdD1tfRhvWpsz7tDq+u1kdkA/jJelv3X4kfr5ukrki+n1P7e7ma2wnnKio99Jr7BG1DP+gVqrymqs3SFGQCBwu6CUYsuyqNg0TaDltODlcnk6vx6Oh9YV/cGYiIh0nmffTRFZlsWHyOX2pBkwythwXYOw/EOtdeguGJxYSY24Szouq9CIAmQzF9g3JsSewrUeWhu99jI2GI3AQq+/AYApSgb2/OWwCZfUQS9ZrePYZFDuqG1MwzU7txWZDnOgb6SSKdkqLZCTPLWVscWLYre8Sm9EV+W5ragziN1u42Py13hAW7VsBWziuztaiS2bWek4DY+j61RulYJRyt/9HBXLE44lR9uGeKmtDGO9olZAAM1PRTZO5A9ZUMuQvF4+0sG7nnnGiq4SX92TF66CnFh3DWck/Ik/YxWW3Py7EeIqHr7YnRrdxrsau5AD38iDU4KsJFD0Ejd92oOS7Va3w4cMsWt4WvoVaSv9ygJ0fwoS4bTJRuIka/Bj9s4u604C7NEiO5LaHy+6CF5e59f5oGBipqFN3oRnXsVNvA0EuKawuz+9mggiy9Bpdy1NF9NS6+HpZfnw/KqLVur5o56/ULgSUeFJR8wHp1yg8a7Oj7M9aVgF1vmYmQ624Rk7vTuImYjI0oKQeljo6AbriU9e07/b5NngBc9X7+Gm3AqpejMuAu16p24+23CZrRYsXi1YsS/OY9rSDUUhaueDYN20P/aaKHsAich7TxGKJ7t36++WDmCLvZSwwoaaNK419TEoYSlFbeUdGUN2+MDM3lS2R853A5KKGLiA7aKNBaeL/Orb3/zp+z/2EeZ5dhHKhskqxgwA5hddmhQCjJkqM298wA5WtzMwiod59/kNQ/HufqJNnWcAOdkutk2woeNEBGnDZetqtIBZCSQbckBqRMSFUajXvuDutTHAYGg9pA1DX2BvbyDalUrAI5YBEKi1ZTVxe2xFAtZ4b98eVUWv+TP4cQCUVzzbbCr34u+W/IWB5v2evP3GI6MBRBWjO6ElTMXVFS/dsStL0UOdJlIxE1LTrsBBtkIlEbmvNFO9zKJiTN/dq18FWyoZsr8l5h2MKt1s+csNRm3zFzPhXr9fNUOgEyYjNfDmEb+YWZeWp5EYz+hA118x0rVjEKLNcb1FsGzU7o7FbpeDAhLYaErg3TwSg7Euknbw+dcaQDaA3YllQ1q1taD06hvO//bSVNuLkmB3DfaMyehQ0B06EatZt14598XGFDz6Kysh+nT6ZjF1CwD1emUd5YhgOF30fNGGHnBBOrgKcK0K3zwR/0WvwAHt/xQABql8d1bBMpd6/2men86LNAiJoJmIuV5Si8Bqrd4aj5LEH4aiTMTytL1+ZK725d83lTr6gPWJNVHVXj9AVFUhKqJKELFem89PC1mhwtz9z6sSGXZgZs+yocJEHHVVwyQb2+1Cc4bw5tBtxbsVIVWng8ciIMKbDR5ltil5gbRqouQpj6pZW9Y7zAlJ60gB/GY2Usz6qPG9K5098cEoklMyy9ueGiEyYiqlFOs8pbWmolOdmEvTZZHlMJWz0a+++dUf/fGPYcIwXdo8z2U6eMhwFlivAQhgXmRyPy6Y1DazIWCaJg/nYeZlaWbmpaykCREdSp2l0a2D3SM4KInETMwssi03MVSxzTYA5k8xcSlR9IpSOCWSjYiShldSCbQd5aWt0J2/5967cDBg6TkqzKwKZt2JGvlQOVqIChGxbSiXmTEKDRYUT+2Mh3njgZ52NhrkuQcrYPl96un1xILzrdsKAKyqgEdtuIuqJ/B12F5pexkr+oeR5rhyDgKwCSXPU/XixvE9DRUwjZlCxIlyBfwdA94NcrVC24B0s+M3zBLxIVjLNbkxWy0ou/3KxpUtY84CWd6yYbs2hHVHCbcrQvgDPbBipwGMX3k9YhjiTkw+E6+YT/4z6zRZmQgytyGXLtSbedJL33pSVcefVZLjnr09RsPY8U5iiaA2ipepdvO4mbE0onK54PWCS9PSmpkV9Iap18D53HHYADCU4O2X28fZTL3RqhMtc16mppAKYpRvX14/vs5QUjZiAhX1VppMbVEaEYgB1YChqmJ4l1ci4MenM55V9PRDMU0Tl6Kqy7LQqIJ0rJP4hlPXqYmoxxG4fD+W2V8NhAUbyUJTSvFILkIxJvPEdCiw2vOiWXXGhJAn4qR4zI0N07q7Zs08feOGWpnhHwfDIQDL3sk+GQ7deKv4xqG37bABedsKjj43d+56gzSkTjYxP6ezAFQUEKZN6qOvS8W4MqiJQXRamj6fn19fXw+lE8PW2sObt7I0hjUPKxUhMipQLbp1cklDmZhQQLOZ7TXgWqt7T2MGvTVKlMpbsTnUSwDwoCkeVh2BUs9tpkwXSM0bZ3YEDfcAzAtucOEozhApSQIzMajBbd0WFb8J0CiguD1mqzE2IwGNrDj1rfQDYDYYBid7IAOsokSw7hG3YFqOrNpRZJMfSkTESdnyadySJTPDgAUP7ivYkUKkEeK0x5870+56c2jStqr7ke87poGMdgG3/F43ScWxjCo7UZA5P0hEpdQYYaVKmxSgvfH2er/yQjIima1ln/1Pb7MShQfj5pgAc8yH3HMy/tv4L2JA2kpg63tpNRH7+vuEbZ9PnCcfG01uPc42mz5lptEEMLPe8XbpU6Wed0RERmCvWjCe3+DJFopZ+FjBHtRvO9u4bf3Veh2KuM10lXvGwXEvtRJ5SJwv3A+rDgo6+qCGtg0rpS5iL2c5NzmaVi5IZcUyHD73JTZnZPfl7bB86Qg0DE4Dn9u82B2Ohcnwu0/PH1/OhQ6llCaDpblBBcaGZZHsOgmAqCqXvbHQry4ADdlFVb1Ofi1cUgQ+Aep9n1M60KqQFJbLzCgGM6XRnw9k20jD1AvOQyfVFIXEtFKhnnWSs4+u5rn1yDodCMc/hjIjIr0JwMbuYkO32uxIX7jAOgkiMzUj4kx7Ee/1Kxvn9qTgaq+d+0ZYuIFds09i657BoxRglchrrURmELPWFl1sme5rtbLMOGORB/v43TdfffGGVYhxmU93dz+92JnRE6BFpLVGBpGy04kXIS4MMFGB4YYPeJqmYDAYpoyOtSIe/UkjqqIL68lX5CSGh3ST95VHvSIzo8Imax9270IaVY1Mlbdmut3BC07gnnakeBB0jfyzmQxpzFHJxQwoEe05rNGauZrZGlLv83cumccMuDlSZrhfq9Q7TkMpUMu2PrC89uR7u3F9z5Id2ajHbGvZ4O6eQO/+RNpfZqbCoeK7GLRby/Wfu9NCXSxZAz3y58yBMtx2j+cZ7k7U+LAJyNxBY1hWb7B8G8pTmtKgmNauURE36P76IuuhAj0HlKg3+A3iSKM6KQCs1bu3gjMi3qxrlp0MBXivFpjRCeu7KN6LsTRsNYm8KZ5p08EFSeido7Lh3kefNciUh5BCIaAbqBvGaYgLZkYEprq0+fkkp4s83uNQuWhp+L7ze71lm727pcpnyOzGsT5N6522yMxM5uXb59dz04mrGqlIb9RFxPXgRelaa0jIEC8tpTg/CsdW3PO5RbXW3DqNUV2rzYuKeqEYG4QJADzpcRhprEv83jB1uJCdNQ4/tFe8MQIilwHG1os00PCU5SBTrIidEAbwrIfAFl1T+9Y1XtGrQc1GfbM4U6MOARO5i2wV7HaoyFcC8fi+JuCvQO59+bqbpvNsj4fKW5AZn2o3h3B/XGkoVmY9w9va1ORCKh+/+/DVmwdiKsTLZZ6m6XK5MMgrfJmZyLLoUhfehanOTZhEtBQjM90wYJ9ij51R9YLGI6au69pl1xVnLICZgzeU0m0UZuYJAvH6YOrKBOv1xjrWggrx2V/n5a2IjaAEU4XoUG6GPYQZWCMOIgpgbN7G+JYxI2EA0ShGmPl3vmo9RJ194p4tg3BObEuC2KigEmmFwy+yFoUfiBjIvdbcJtRc4GY71X7Fec7CaRiO8m39QeYubvuRhJmZwOqtmt6xideXNRGNQgSrUDIV3kHA/wxA5fnnUxQ74kRqmias52rT4WrDD8azXjTORpZJ9IzJueBZs2fsJei+2G5PiZ0p3s9Ekvydn4pGtUFxQny5yRWCjqwgSqQqg2hQolim68QD5qMO2m7AlcQHpbhF63fEFFsGTElyvZ5wz7wUWUZ4rR81ol4JyItsxAEEFFaoT2BEGncMBzP31pkeW7A0M5rndjotl/mhqZhVMyMU3ADnf+Ero80WFDfuBFC5GLU2X2bM5zaDSuFpdqPuQIFSyiINZsuyuByetRwnobOKJS+pXzSMiNYkgOxsbzjspFfYAAoIpVhhb9TjGeIOwxUbUSobCIWYyAg0L3MUa4ztNjNT5Vq4lFIrCkNUVXQEYGPosjtKskMbX5HrPG58TiNQQp5UY1mX6F+Sq5QP1rgBjhOom0Q7wOUcmoYA7T7rAPJ6TEfks2+HjejoEeTRmcmWdK0WcjMTaZfLxRomnlBY5ALhyhXCyyLzcuZChbnWOou41uriZQisIlpmqrWWsmLbPM+MplpJlaMZw0R6WaxMdrl79+OjNFSeSFWbNCMc7o4OdzIW1VJKSQHSffqqZSTFdpmo/60Ct4kTlYmYVVUNtIhTQXQpntWsNbEwfRA1k7GbxkpcuxkBhQuzEWYRz3Oljf4EM+NazcIoQt0EhuG05+LCrqpCmqkubAIhLua9kqnX5GMQUXUMNgWBYWKqBS4i9TNmAHMlKiiLmTRXCKxzCCo9Xj+qcNgoQzCq83c9YeCCCNbzEFJF7G7G0R3+5e8BNPdWEYxIyQhUQAUbFcEj3TBsXNjS7n7wkJRySYYB3kst4wDsVV4Kidi3gNzAhgIqXNRpdPcvKGAKIVClcnVoQUTNjS9MZKyqJt34VmpnAyIC6RmuRKamw8evEUagqodDyTJH08W71pY1Qt/3zCP3rIwYwG67MZhXsGNxe+BYb5+2sJIXzjRT9Rq3RESHlLA+xH8za57+Z+G6M+5nx1hEhHq4LHNVoClKLR67n/3ZZiYw72lGg7D5DzJU2EM5+KH2RHCjtVSnmbkc4CERTWYXC72MKxlk0TAXERXmNSXvWI+qKjBmEEHEtDUz46mSigFiIoP7ArA7vid8utivW/2d1p+IVpO5FrIdUx+o2Cuq69DwudeoX903ERdGbnNd6bjFgYKREBGjAjC1UVkNZzrDHmq1y/NZz/enxe6n14PWRVpbVFRoqnO7GJfLy+tUKnEPUVQvAc2sZh7Dt7SmvT9pVxjMBE24lJmhrIVgqk2VKx+mo8rCVA7TpKrSxIidDBIVeKVLL1YPa+dLqcV9g0ZgLs0U5h2Ue00YI0R9tGmajNFak7aQUjkwKTUjUUwHhmpr5o2bF4FW1FplmdUtFUS9WzWRmc3zzMzuXiUDjWDpUiqSOOgHrbVWyoGIHCREgyeYSTfwrMXFTBnEoktXbUxsrZ5mpOxV0kZ3bRAVIngDOiLybj1eLtmFkR6bTCMXwwmO345uog8CJZ13KDNDMbfZzO4O9+flpZlWmsjeFBa15+mOn1u9LB9+/cvv/vDrPzjwadFTm5fCh1Iul6bT8UBEUKFi55fXh4eHTE4r1+ePy+s7ffcghdaQsJ7tOk3T8a4WjtJx3bXTj3ey9GZZu3OUkRQ77Hd+YDaev0FxVgtDMJX4k5LgE+SbwxTDBLPO469Yxee4UXyZiZQNqx6IpmkqpYzS3yMZvO595MHmRRfHSUqhzqoLbdvVxYPd/59qM11PKa2iUJIWY7RryFz/ubu6ZjlYpnXlfK/xX89hN//8Ob9RBufbYQK2aambtdCKHzbMs9eryMJHnqf/m2xleycfDU8VeLPAm4DaLZyZNWFvvmEs0HFjXV0pxYwUAuOojUlhBR2GXPLgAy9wF0LqWEJgvqVAytggpxjM7DwkKt7EDTeXFuuyW1bZnWzEXodLNjHtZuYWCD8RhTbndAyyQVHryX62Hzk2WuFpCuN+AlGttTV9eb3MX0xmxpXQPEPIgLXg6FjYJjMbw556dej8Qwi12eS+fkgrhXmIiRpVOp3PT8+vyywTwFpcbIpTIyJmwkQejBnbFPcULq5RmWwCxUspyqSLQnI1wD0BdNHHRttBZPwnhIgWL6XhWsJILMYIs/MdYRREsl/rLQ6naVLPRlm9eH0m0zQ5A3YYuUQrIk5P4NKwrYc6hNrYAqf50a0u0NuvnWtpR0P8e5cUAaj1SiB2TQzR5fiOUaAoE9Q1e8DMSikuJXnY0dD6vo9y+i7XwgqItWIeH14M1tTU0HRZlotY02an06mW41A611yykY68Dns6nebL5cOH+Sc//PHTh4+DwRi7CFT4eJxIdW6Nap0CZOoJsbxPlM5kF0PssnFMPBBr3BbCdYde3pghoO8LO8QrqBQ3hnv8vbVuXgjz4W5Km2ev6U6mTVveFhclbRW55zYKYErNIzmYPWiiOOEp6dU5QKmjXWoRxuO2MattJY0xjbwQS9LD55Dm5vf5p34SvCjgBs4IZpZ/uQnVNBPNt+0mvBvED944RVvVOQJM0JHBq+rIVbPSMQ7lAx/j5yGZb5iv80WjAfs6MtPnBAKHm0rzQ502iwGD8u4Ng0BkpON+PlSznTBr9kgokZEnLN7r4L6uzwhkO59Z/gk+4wEW6zMrqhoebubiehtv8vuxQ4/dzBHh2Wm2Wcbo5izV6InSmi60VCrPL+0333z89MX09oBSpjI6hXw/lUxr41Xx7Q8CCTdcUQ48iUMWyNz/1aXNRPXu4+vrt88vhkJUUCebL85WO1L1CvuaHOFqSccoh0lpg7qJHXqoDgPSaR8Rc404ZN8i9z647cSGSmBmGHFPAJg4M1qzXjHKq2UF/gPQpsRMZRVqiagQRx9F9+IzA6QKq06i02GnVKYJ6YzYsAxn/3FHsys3WTbm7XApzvJ4I8JkZWbTdPDcd4zQ+mu6FFMiIjL0KOhe8AEERCH3zcyvaMiGqTFURUUFdihMhGaQWeeG83Ke5eRC9fOnpx99/WZpy91hUtXK5VKriUzTJPMiiaepimqrXJZlMaO1GYPHSUzT/eObw1QVSAHP5i0Sb5MkkMKUeeWFHlFllkNV9wmm8XimKbGFA5Qpstzn6P5UG+IV8bIyACClneTi45vt2ciYHkO2kSHip0EDG4CQqrZbRYbeDZQZLuu7Su+CJJKisE5mVG9GmnfEJK/kLPkvAylx64qRrzFys/CAOSgYzzU60ioQ9F91FEa4ycMqsaRgk24hL2zbIDhKPHszcwK+V/kOYT8vn5nd4DJWtyoZMWEz23oR96fdhln7GlZmVrbprenfPA53gpCeHXduJJhmxjYqeNvqx8LAt93EdheAzrr8nuttSO+6/iZDj0cggKaKELHpUbTZto0gV+/DQIwa6X+hewIApLuQKOJOO270LIMCSJf1DICVMjFqPfAyX55OmBspyoHhRu+MumMbfdpxXnTU7FkRbEtMQUSZGPxd50hJFMafTqen82WajoVYUcycBDDXwhH7qUrbdKMYP1RGqFGyi1zmmafKzFQKG4ktvisxK1d1VNbCtH2QMXhHHleveeSr+fiGZek1van7TIbRESUKKfvctIn21ESicWoUNsyT1G2egHnMbim11q3Fa2CNqvsHAwKaIh93RwzwGu+tn9lxiAdKBDBHHKyLdJWd+8pwMMNrTpT1vfkKigRHda9jgc8qvoEwNoLR4tVmagCBlZjAqs3UXhdc5LK014e74xH1/PpcKs9L132nWu/u7i6XCxSttWNZW2OdXp6eP/726x+9XxY5HO46l9URCvR498UPfvD28f6uXQQrTVmDYLX7VIbpOEhHUgA6YU1rs2FqBjDiSlbua4PXRrp0ftZv02618OTxcWcqFZJvDgaGW/pETJKZR3ZiJ1KanKBuZgzs2c7WF6xMk4dNqbgqXCVphLR9XeZttmYZrf7U8Y2X/th8H6/OWB6fM4Xd3dNJZ85T8tzlYQyPx+OGDKtrypK/AWCqhaghgbdTkz3HXZc/JNz4HkMMyluZf72ej6qOc+uUvYtEeQkZN7YJ+5my79XHvP4MWBqGtTirSAbMgAD1SY73KsTJKEZxcA9LSGkqPCIqkti3NycEZg5OsNHUr9H7P+cV4G2Ot0xANSics400FScrlOmjbYCzmy22u9afWl/HPfzSQKXYorBqwMsFTxdb1CaRgj0puHkF6bj6cqBrD+ZK9yTFNPA//uRapsYQPF2WkxrTATKfdTZQASlQ+7kxVaUmTdc+6E5SevwtxCBm7gPuTVeHE68C6gzOBEbdi9ypkFIEMYUmEGpDoEc4ZXe7EFG0lCNhAU0FjqjrGJ1Dl/CLD3NgKQXNTb4dsXTjdBjQu8KigH+f5C0zDK7QdffZuhdmUzZgWRYblBMDCetVQEx8MEP0S4BXq2autTZdnSzBLHbkZbcQ7qaq0nOUmRVYzGZZLu30hu4KlXk+E1mt7v01FBzujiKyNI9/inbAXlV5JpW7u8Onj6cRBQ02UlUcyv27x7u7Wp7ObaCvYeUWPEpfMkZtvDHdzKhQByzaTn7dKnKZmO4Wv7t88W7V0TF+M6FUkWrHG/L311/GHsR+qGprXfBUr9kG5HxQ63IiedlRz4jr0SgwM3Il0DxdnygXgic1IkT7Nq9N4uc4zyqsg1w47FEZUSyJ+Ug4l0bYfBkHOADuZ0zTN/EhH4x4KY+KtfFlfkoVzFRQelPYHlvUc8DtMzz4+qftEj7DFPPh9+hrQxfQ0bN9NOUvst3gZ3mZAxjbGTo31w1wkCiXryBPchT9d1zal5piAzoWEXsnKBAlRp7BkPc6QJ3wOh4ZXyWw3CRqnwN1DCIwA1Q0vWYNRrVM+iUtLQFw9zr/EAjTbY/g4WQpHhOJrt61ZVEiU/DLRb99Op2+OpTS3hwPNkTYq8lrgAIgV4R2+7hbaYLvGiJ08+ZFBXa8XJYP58tszCgs3UWKhP9mBhNPev4cYGPf8v7x5LV+SXQ2EVFBKeCq0vVUGtHWTLWUolgZYd8UM1WtVEI9JUBgrCA1rw3CzB6at+m1RV4L2g818cTaLMqIxrSZqhFLm42p27GxHkJKVjEaoiAzR62IvNiMe3kXsn68OdTbgjwJkgwaqY9pI2jYFvZbT8S1iEivqEYUx5m6582xdyTfw2jEagU0+iVG1QMKFWZE7L1Vmh5nlcv8LPIOWttykXau9QDrbu9pmpbDpNZKKUhrXM4fCrcv3j/61qxpSAYRkVoeHt/cH4/Tdx9eajlEY7IE/BAToKojzW8VxIK89qfQ9YYB+Q3b0z372f+bqZi5zWdQDSB15buSBPOWZMrrBNQzanxjA9iruSOyKQCuZGbhQLLRGQlee2TYpWBRY2B9YyJS/fKShH1pG7vpWGUAOiXRZ9S37Zgb4pKAHzcMA9TKsLkD0HdiuOwdTQfvuzY57lB85WFRsWvY/wG4onBzhvvZxiuGRkVx8AACXGLNe9pt3fWGhmRDV9hN3uX9a55EtEbTjh0YndtHv1XaNMwwn92G3xhj1Hrbs8ARhTumtEmEjNtkMLZsi95BbwAZIoLhvw96dBu2VwzJKRZncz1hxMp63mRUvFp7o+bHY0prtkLqDepkgVKEy5bO8ghhw0j9JPOmlGaH+3vVl+eTGnqa+WdWdvsi7ri7U9Bis4h66fkt3d9DaWl64PpyOj+fL4thasJmpVBr0NFuT0fyaymFuORzGrFIlDJPOhCIKJpOilivRsjmdAnFbLXZcCpL6VCVNvooeMdrU1DPUPK4GJ+B5+nGS4Mqqnm/5lEy022ERIBYj9o2Zi48AdSaqvRuRTFCPlb9+A+LiJkRr2iw8T1HJ1Yz854TZq21nbEzCNftgFxYjuewbB+6RecdDdjjvxwJCoOojYg5u+IXmtzDm0NHBWpuhWbu5dnUbG5lafNlOVsTgyrkfHl5eDi21mqt5/niPho3SJxOp3jR5eXju3eHh/vDy+vTw5sva7zed70c+N2bt2/fvPnFL7/x54cZhAZwqxPnYR7XLohzz/UJQHR7Gk88Qre8R2+gxQ7KAYUNfAOyak16/hl8MwhcCyUkyAdpx67iA4+ia77ZGBvseFPrhuBYiAirWBSYVM2kLUZspRSm6pKGDfFqRxxjmZQxGKBe6XeDRpaCX9KdlJe5YzO80agSy/egtiTndu9vXQ8J0nGNYKgwh8aRyPwv3jvteuQZM3MBIr3qesK7xQ7x8LbxIzAkvz1jiJkRdfzUXiLREVNJe216TnVRKKmVzCy6Sbxeobr9MnBVRGJjiSjqSCfeGSMIDNIkyHRHHu2G8nTge4jNLsJl48OjlYp5x3s3wd+28SXQxcZlsPtk8p2lsAy/4+CspqqVV6EwJuzuz8gfzVu8HrQhw3WB1aN5Q14fWzDLzKIKAsrc8PxyakvPNQrE3vHI7f7YAPgNjZaGRXdAYw+fGGedeeGpTq+vp6VpU8GyGATHjaM355g2WQsWraeIqElzeJZI9CeKY9UDtUph5gZT1WkEYWU2YGajLJKfIw8w8ezOZB7InCPMzkoRgdzB5K4EJlKvdeTd7cxMIJ0GEpGaLcty9HRh9+InuTYwhKgr5j1Iqh4ypQqskyHI6sh/2xEoS84vGoknXcPudkRvirPp705dy0dqr75h59arOve+ol6+YlmWw2GNbcqgFlnj6ZACsD1z1Ea6FA+d6zzr3KQ1zw6gZnI+vx6Pb5el1VrneRahZVlcLHl5eYn1/tmf/dGf/ewP6fA6L9JaGxqwljItr/j45vXdn/zoL37yB//Bf/pPJjOK0PPL+UxEyzzXafIUz3HGSmywq8PWd6uQt/3sQUkAwFxds7TRL3bMqp/VUoqYuipmamQeMgI2aCHmyomxkUHbGkrqYREpsvQGYSUiFSUqlUlEqKmRETHzJPMyExGVqDEkomzw8vNxIgRmZChYdGFDYT7wRAqFKoEZBFYxRWNmYjj+mBmVoik/nULxJgphxkHEI1Ixk7y8kPxlHNSea9gzwfsvgMF6QQBWhtMqKp702CPaUvVXs15/W4eFILo9uqtakSqKKMxMJsDWTDOXFj2Cdo1lcAPJOEtk7hMrZgbuKngZMSMAjCNPQFVRaw89FRFPky3Fo5/cUupgcQTrxJoMzFBQV7tUyTsSmZk2By1KF+M25CBKXh8OBniHOM8mZzLAVEGjoBiIbPhEmMhaV4yYmcxUvSXUBACiYAMTCqMUA1jFrY45OtQPEYWIM3L/THXB6ruykYYHQJKYNyyzq2ZAvXJwjywvRACreTkRM3NvL01cVBpEyNUgMmgjosIsZhMxqdkiALgUAi2mh5GOYiYY515VeXJblROsIZQQ0BZjdnZMQK39aNui+nhklUN7McUvz/jLj5/ev6mwB1PlAiJZtmf5OsOtr7vnBDPgMRZmUOIFRp6nZCPoWEW9HzaoO79G6iTpbMfD5dev52+e7941fZmWj5XfnImtiIKOE7hiXoqQlik68DF3ZdQlBxC4EajXSe5MyMiYuBaITmAjXpqoKk31rhzPp1MppUZ2OBkzMZc2LxTF5EHSLQgFRfqRgri/1FRN3bRn5HlQatIaEU3T1FrHTgqTMqHWKqYi4hAVGEOY+VBYSYngSjMNocHMhjXcnFU7mSqltPlSay21mpk78twdfjgcXAJjZrA1XQDUQ5lf5/CrgghmDCpcWpu9UbXZ2sNDBTCvhkSDRxqgRiTNPNpZVTE8viJSqaKJERV2b6kfTEDN/yMiHv2Z1IxMoU6PjFwPMSEzL2KhQJlKKaQGqBKwoIm91fr020+/+qMf/4Pn86cPH5/fvPkT1TMzoPKLX/zi/ZuH+eXD64dvSZdA0z//V39CvCwLTCfRZVPbmWFgmw4PX7x5Y/YtoERrBWCEOnV1DdkrmIGfh1BDxdYcgE5cgtqGFSvoyyqwdw5Fgih3uuoufrMLOHEaLQXgZb61E5GGnLo+GLR7c8+QHDHEOh3SdKUoq+eFZKmb632lnYuDqAd0ZuDsaEdeTg+f3uqL8Q3RWoorfh1zWwM9sx7j3g+m6qoaG9xaHDOJ9e6Bn35dhZ7Eqjt7sP2Ebdg/MDTpXsTDDLaaktZHvLRZjngf+w638l2BYgfPtKE0TO4dSRwTd5F0URkMI9lphyfBxS2e0t5wM47AZiZX20EBf6KIs3NBrufEDkfGTpDSjKgZgZOkf+W56O/lHg7eTXC+1E2UYnr0Ggl3Wz+OSJcXR9AUcS2Ve8nA3apjbkMpXJ1qpVftX2/x7ysXWDE1oJq1ecanl/b0qo9HQ+pfsF/wVirFxhKZLx7rzlcKkxxQpf6NeqH4y9JmaUSl1oqi8YjASNUr/frCeCciD6S6noqnAHkGGol2sypTGBKuF2VbZRFJuSQqAAEMI9MQupUKqYjXkCbuoVhNJax98S5VVVGua+lKjEQjZtakIHbscuXVciOQtS4QpUrLwKa0AwKdwgBy5VAjotyGYQeE3Z/5G6/fGd5Df2925XyOnLpglNcY+Bkv8p6qndh58X9T7rTFRIQrCKTayHCo0/1dNb3/8O3Hl6cPD1WfP/zt69Pv0E5fvv8ihlW7yLyYWSlcyhQMWGCVAGMcHt789KuviH6eqa3f1h3yt0CzA1N8yWYEggxP5ICFJCKb76ch40Qr8+thA5QxAiWTF4Y5CFsq4wuhDYkBbZEsFuK3FeY2zIP9pVhtFJZMfJ3eM6t4nYEbaJRBtMK2K3CBNJtDsg7+vXAAYGtbiw2/8SYZGCUidM2S3Cw5nyjH452pGV2roJ43qN19uGPb61BDtiXioiP9mYjGael/ja7PlrxHSPPZyXzJ3Jc2K+112pSRB5xSDzPEMPDtJjxHkYEuP9FQknw6g5lasE+g11nEYMCDkDnWdyXROtOlYfXYUCKNWGefns9nuwu7K7dn7jQuSM+WmnDnyuPOrR0lvoxzMeBgvfEds6Y6rDZsJHlfiMh9m+P7PbIRFVrny2bGWrRVVTUQE6vIy9me5vq1KnVXlzJtj/Z2Ezc/mXlybbx9tJYKpVkNq6jqUCcqBg9XZgCXpT2fL6fzokqVSWjUJ+FuTcYW2WICTgR6/tWoKZuPMDNroIH1ICdKvs+8tI5dtIFhIsVeA9nJJMMLUKAQW+ZG3rXXzLiU3tchnVMPU4rDiDHJ65LDK31IXobdFoSqxlw5GiSbhXGbRnIlvN41equJzpW9PWLOO79SmZAOXXyf2VOA+vrB+Dz8oQpbnY/oj2w2N+rSEFHx7g5q3jwDTK/nRRpmnU/nF1EpBJWziZosmJ/19XfP3/6Ln/z4yz/8o5999dX7mLHa3CvJwFQp0pCUUCpMaKnHd3/w5ftSySA0YgHQA4M3CYv5DLP13e2cwFYhMMFiBYqFvTH5ZmiEb7DXmtsCGolexLXLAYjvSbu3tUPfxn9pwJB/b+z0LbHLzEKfWBGCeoX9wXxWvuX2UreU8uhTm5HArPeGiu8jSI2IdhPLML++GAWj6l4ETYqoFiuuC3la8nbADNU+qwiGoquT0KMtnJahlGK9idt+o7G1BoMpql1qPhK6yh+xNUSUktv6ZFYacWv+uzOWwRIYlc9k31yvTrX1onowJDb4UGgTCOab6Jpl56ogmDFt397n5mpnT1RVNekOzpRWRLtAsO0IN5aclrjWnXMGYgZv+bwt+ZIJ0w5EQdECmPmcmJmXZfBET1fdRY1tD2q/NFW+A/a4MU5AQmwldZ+kGYMW5eeLPTUTkdpjweQaqtdXp549eS/oKYKt7qbpmDdmIqMfhhVQUzvNelqaanXBVXo53JW+h6ToMRNK3fhZclEBNfPWimPmBpBpgSmbiXoKEuARVZsU1cAt3qpAsVMrSm/3NKaXv8mnKaZnQ5GIp2xIjTcDSvyRyA5fn0qhZze3pqcsm7nA7qfCVXNLyrSxV9daKXxegvfx7YOs1jJalsUnnPrJ6u7xvPaNC9vMFOBV9HelY9ix11Vj7AITgcDMNLHOatSaNZHl/ngkac+ffnW52M//2X+mp2///I+//Nd+9vd/+KMvqOB1ueSZOAxV0GT4gMFguiPRpSyoj3/w/qvjsbbLMsrDhptQbmFzVuE3ER/bXVEbBTS83n1CqZUzRbGSgBO4f7ljRRm9kjt5/fLmN9dY4pBVVfYj5orEYMGU4sWc1MZKOxP18X2FqimMQrI8lZn99fx3U8ov3c0zFP39AlMUrr9xFNaZQJT0qPUA797oVxcIqM84NtRNbUqAn3wmUniYxm4yuxPbVUkZpXyo24jQayJtUhds6MFIZCKZtjaiSTyVwUUrwbLd0lYESFh6k2pQinxmQ3RvpBEnvG759qnNwpNwEP4ZT2DDOEWxa9vjsBlNYBFl3b/Mr076bqiWBT35OCAbQMjR4Bm8eQuQkMQJU3MfEhN5DLAK1Rr6tA8W89oRvgzS/iJwsPhCrVEjmNpsUhaV756Xb044LcvjdM/ENsqaxnbcvATZCyPdf/gZzm1D1xnSwDp+rXURmoUamIgYJBCiMsvFVXddEbOHMpmtdR8xRBBtstnKUWqDRuMKMbOmNjpD07aveZ7qNR1AuGmYTTcRwl5yeceAO0NNqp4l7puvNIcQOgMz3RMcqkzfbTM108y2sSVE/iepRZoIGZq0WJ0/G+/drTcvwbZcOUbAkPgzHQiU3sBtwJ9ovMXIFFHCMJ7yAWutzcOLvAUFl6nUUsrFZixoUg5oIst9nT59+O7l6Tffffrt+zfHP/tX//SnP3hzf+TT6cm4oKwljU2L9RUV5lHuCqSkB9JlZpTpzddfvH18c//N6zeTHsLWOiZ9Y7d2n3d4H3tJRMF6M+3bjRM3AF4ZADugIwWd0qi2Q9vLfcM3p7duW5qAiJRE1jea7u3ViTNj928bEcE7K1DWZ1a6RqS97D2CH2IUiEi40uew62a4vWevtfvP17QbQEHx/rNegAl97z2SYAOZ3eCZY7GHFbnmZ4a1hyOomwfzmSEi8mzYfkbVNIHa6ZqNrlZs4NHhYAyyIWefQ7PdSvP5HJvWucJKj7Y6OjPLsseTcbCJDYB2DcPIA7tXpN3MYd2OPo3867CyIzK+zEOGCICtvWg7qP2psT+dQOel5VJ8G2gMrI1fGBtmnQ3+GWh5/Pjs39dafQtaPEKr2pQ3xR+ptV4jJ/VMvYHq3VpEAASixMSmCyZmBp3n9ukir/NyvH84gEwJtyNPNtd4aajL+ZnrbN0eq0E8GEmP3iIAl2avszRjEExFVdhQSkFdm1V4aSpLhIiZy+Ak6kFoNuwELrzaJvrdIZl3h67E7l3AxI6uci+/x9zj+IxGbWqnQVm0smHJz68IOuP3hN9XVTOtDxaAbVmra3Y7zs7mmxXBdI157JAUlS6TdoLA2+YuMU4G0Ya+pf7EmRlfn44MOiIiqkSpFUR/du9y7fWPuVuAYGitiYjUBTq1xfiuiM6V7z59+u54vPzFv/LV1z/6wVfv3pyePpxnKKiWqW3swR1EntPUGbBAqlUyKJbp8OUP3759//797379O1UtZWrNTSziDT9wyzSxI4WrwldgUSVuyL6+1EQrN5LLOk5C0F0cTezKDimv9wxphN34+cpw32HAbi/zIH7MxLNxQMzUpMXhjxUlK/tn3xsM2JLFdTdb2kpAG7zUPdZ2m0zfCfYcMDYUd+8w7ZaWnb47WoyIXnU1iwCDEiC98fhunmZWsEpIUnpUSk+YTpZnUrOewr8CQVWvJ7An61vNe0dWaDAhW3WdDGSi7eN55u7ggfTy+yurvZXykyjCjf72SAplzJoIMA4Tbp6YZV/ggKirXJQKg2Q08LKv67uS86Qko4J5+AwpRVbMdgmZEuX5d6xw05t2fK7UW1bsCOKOJlhqK2m2MwwGYBlUDGKGSodD4aU9Pb/q83l5fGuTY9dnaelOfOyZ9UQRQEJmre/O6Dy+ptoSYY3w6HZ6MzufLy+XpSkOzGaLopmVOlVvfSfDw+rjczKWZNJERGzD5RmeV3apbqUM4Y+MZoeZi/Co+UxDqY0HPQSaigcvGWCgtWFzPg7+uhKOz63m40FGPrh3uutTkiXfRquRVvIh9Zt3mnRmurxhxqsPGOT63Fo41gA1q7yG/eYjvzvg8Q2nqKvkhOZdsGpcW9tAiYiB4e4dFGC8V4ZLpcNfevxKuWegCnSaipkc6/Rwd//3/uzrv/cnj6+vr88vH6bjBCI5X6RdciBL+F9UFdAUBU1MagLjMr25f3jz5iEOj6q6qVFV6Mpqcesk3JBcAIAU2LOQcTw6QIt3lPIxkTDgFrmMX/2n2EuMxtH5Bl+zFyvfjUBJiekvHYRbdav3DGwoierRkOkKCMO00i1RCvRs9M6o4uj64yINKbbIttw3H8jdhDOEaajs+YiOAzyQWGAq2kOjNyNvDsxV4+u+HBEve4LPGG/zEgBADWbY6vc8YrvWMzlisngEQQYEboalrM/iNmQ68aJNaD0NKsmZQzgF2fZj6I9oxjfbBrVe78X6ZaKPfcmiSljlrwG8lQvaaG5tZobNtnZ8GNbd3V6vi008eP1tC5MwUF8HnWGLTjuQes2E3iOcbW9ZTVMNQhbHzfXOjofz0tvDAcxTQIzLhFJV1XQB2IxPZ3z31OYmTdEdhlfLuV5CmpIBoLXtyWpeHKvzmlwuAQSOOX9gAIvovIiai7BltkZUXIBoKuo9HEVKKSC3a/UqyjwijXvWjW2MN352ODf4GggvIjXR6HiKUywk0Shf31/RAK85z75SkSbSzDZ1Y2J3Sq2S0iDjBk2MSkcOsYgg8TNgY/MI0hF0Zkem3Fc+lrnHT8fn1pbqMU0xSO98vCGPMawpuSi78gtV59+99OZWLAjNPuMqALVNhmpYK8fk14X4v7UUERHRpjMzFeKp1lLKRU+C9vrSljt9WV6WZbk71L/3sz+an/+FiXGpVI7Pz5/u7g8F1pY5t2MAwKVL7SMPWOZletFyfyc8nb6R9z/7N35s/1ezx/qW7VUJpbWl2FTuJSVEx7KJyJs8m2p34hIEZrA6CnKWUmQIGmuETr+6dNajQMWU4F1h2YwMUfMsr6GjQFsIqCMZvRMqIhrlXXwbCgozG/WuT+Z5L92xZ2SmNNxLUUECZIULeSKYmlk0yCQibUsfeZyiptIG66VVKGse6ihLK6VEAcIwB0knAdSaBtcEYLZIzxOtgy0ZUSk8qapaS2DU3I0g46ILHBBVU1dHjEkYQsRJzIzd9BOe3Tkrn2AvBOE9OV3DKDYKGvsgbKDB5NxH7MW61xI8hrl5Pt8aY+mRoF2uNIKCwUrwSj+RAUJbmcMrzpDnZRm75XNZlgMXMZuXViYmZpWl1OoHK8rnDnyCkqloLstcCpGaNqHp0IV3hTGYWWBN5cjVrVKeVSKunhJbU+I+DVWVIIJlpctl1ZasjlrH5AqeEsFrLCTSRqtlfmWNZqWL6j29cT0a7Jqume0jNbrdggCP0Fpj3sw5Vq0HMxERkLIRmRYuxNYWIz8tYxoKE9OSqrYR9SxpAOqVLdEPtVPz1hpAxiilVmIXOolJVReyI6hZ01pe6Swqx4kvp8dvXuSH7UTtwsI0raV0VTwmO4txNvhusrgrDA2AaQF5hwmzFDhmNKKUBwA9vvUd6Ldn/vZ1Knqx6TxbJalUXsXKoU7GUJFaSBtBtJSpkXAtIEJhK+xmIRGxyxlMhGLDcQ5jKlSOdTmfS63M/Pr6ysfj8XiUpUWdFWIrfZKqspiOOCxVNxG7LktaPWPcgKiveajT3NYOS5Rk4kV6uiYB6NX4VSGVirkXiaiWglJBVErF+dXNlKUUrt6QWFWVuPTUeBo+FJcb0YthoQsHQwkpRy5wbszEXp2GiJzzM3OZqnksalMiastCKThcnXSZYVK3a42+U12lFlXi3qdBPYvPndKQXn3TlKwULp1olIok5Yfeor0QB2ikaJqOtkvUe1EApqpiwsTT+bFNz09WII/H+gIyq4ff/O5X7x+ZIUSynJ7f3t8BeH09393dhyDWSa52uT8qYYFVVZsyK+F4vL+bDsRex8RlWGJbtKdsXxtO4ZUYB0OlkQa0CR7ZMlF/b5SmGwx1nArXQHvZpis9Jz5lWSkPHuIYJWXCzIxHkihR9J/HgLtFhSygm0dS/K3j9e69uyvkQSTD0Qr3dYl9kjmvNP8U4bhE5AI4eRbQtu/6Dhp2JfSpeqt7MqauyRnwGVN8nsDuzzxsZtvbf9c5SLJGUDJy5Oo8u71zc3Q3Uo0F6tqgbZ0GEYUl0QePE+WpezKAySBVlXlxi0i2LvgkyjazTlV5NPFS6nq8hzCz5/x4pE8kS6gSUAq3hL/xb4gaa0hXxJemYChmju0O4rXbi+wOXL8Ea4qi3/1680rRLpvRNOqxMzMIUBGBaq+RO24zs8j0zYuFN79KERsZ7XfbF5+JSHUtv+Xfi+g8z+fz1Fr1GDjTvVVmh7wxK7tC7M+VLkhDrfTBPzTRob11Wun2MEtXPs7MTINKMrObWdV72KOXDvbGNcTssSn+Lp+bh/hcHz0aPvVs2IsJE5ESeq3m3tdB1bR001xQUAyjVQZ7cpHuUaYbDDqtphtbNj6H0Yow4jn6T4PRD6RdHw8wrtQJ+de0oVsUzZ/znZz6MeQPoeF49lgQHFVdy1oxh5gYr4g7/WpNcvWPKA1ZS0XD5SKXtjweuKnK0l5e9P3j0cyoC9urJnaNcv7vaoJ2+UbMwHx3/+b9F2/vjpMslzopEZfCQi2f8x04SK0rRh5u4JEaTJQqOu2ujM0r+Ia9IoM+cmPi0ZV2B3CHs2Fohb0WT0IsWjfR66NAaY1L6iwgNsDz0rDZEtBIu7ze9YERUWYK/WS62TkM2ttI5tJL9O2vVBycXLzxrzXBc6DLtQN+3WD1GiZMHP2Y3TYQRqENL9+ft92xX7d7Nfhs7sxbtu5gF12d6FQXpfMrtNc13Fi9HJl2mBO/BgyZasQY55lULkQkpmywoUPY1v4/lrBZshv2uo+cABipefoqqVkBlW7G7RmWILINY8u4MWpRbE51dtStEMv2hu0RQzosO5K0HgRzB/DfwYMz5uRN97PLzG7i6LLU6JJmeYYDMuHIWAdsVykMaUd21HZYNQsRkRVXWIkIxiLy9HI4zaQ2VSLTvzsKK+9+RtG/85EMMSJazObWLkt4QBlgteIuJFWFKKMYicAAG2UZGNuSmV7M2bmvq8IOEA8YNjMV4VG2KUvtm+kNzA72tmIvA+xsnYl6iIZdMba4f3QdvHlpjhj3VJe41Vap2PEtQOf/8+CebKHZ1PmJsKGMqESUBYs4F7vbdn8GfLK3yy83rG6ox+ALuVIKc8WQE6ibGzc0+WacULwummy21g6VpwnSYFZAIiLL0paZmB5NBQVEJCLM3nsji5CrnYYiCKvTd1JVE+Pp+PjD9+8ej4f22rS4I7MwexU9da/3jmQH7nQeVrgQFy6aqnBlDNuhyHpppyNlRGx2cNg6QsDHkbujKYHUVnB3FqO9NJWauxFiu1dsQC8xQcMGiyGREFGvPeiQM+i4d+cUWdflVACw8dnlEl6RgMPGm18XQ21IpPYkY2wtbDtsxhULXG8z8wgaY+/I1ONx+obfUug/9zlPL15Na5GEbe3rUUUhyys3SIwDljk8seTK+kjxChNCPm9ENLohcVAcMwLYTFtrAjseJyJqF6FSDodD2/QxhRfBMaYdA46gEhlgtYCtAWqYRpV8NQJGY3nOed4ZdOb5106DMLpkJrfyAEIIOjfAvls+/nNcGTNvI8b2cstEMu0yeW6ri6D5QT+m2mvnui066qvvNE4aHPGaruX3Dh4zysmBPp3kdRYbNvi4vwd/BciCGmi3WhGRJU9h1PrOqEtbzwtWwkJidp7bIj322pEKIDD3qhFK5KYCkI3gJjMjj9pTE5FlWYYZ2Y3PBaxO3IiplHK5XLxBnj87TRO208DYcd1aknYwdFUHNJQWJ4dmzpLRQbUS15hS9/eZOQITGUiJ6gB0lObYq8JpQ5MEM9Kgo+SGru0DwsvRP7hL0Zup6DZ7xYbpK+OP/6vbb/yyIdhd43khbp76WNyeAyLiQlFpOOiAjdignXlsuPBKLDneQkStzXw36dxA1bjNbQGRBz3EnEWMyLwWSl5UzNOiGxJzHVV+TRSl3L9/83h/PHzUV6CqkRqMLSJWsg+vI0fiwca9ZxaRt8ImgDSQxWWnzalIZJ3XPva5yg+SKpapudK24s/+cJIH3Vp0+jHPpt5q2OhVTy1VkL/JLbo3L9KFE04MbIAHxvfQDHXZszdApY2X18zW/JyMW0Sk4lJRnL21ecjVMTSitXvSbihmDvhoT6XpPsAV5gkUG+/sLfHzJhVD3kJ/r2/Q2E3qeTUUUZ2ZrDCztR40kesNYYv3gQBmRsZIoDMjr7l/uVzKYSo0CvEA8G6gpQQTExEDaq3TNIE3Gy1DL9Fh93QAZjuS9U4PK4h0BJfeYJBqhZmGvqvaKzOJrkV2iCjCslrr7eTy1sRtu1cQkdqqVu5efRMfbpC8eJYGKDou8UpQr3TrdUCsecM7vMQWtXY8eACERs6Oa4eFiFT16SKvl/miPJUpLfHvvuItHVXihb39jwuzmwygmBsRzULny9IWATOhp9/4oSWi3sLI+wgNn5vXNAJzGYY6Fal1MnPpq4tm2kMLVyjFWetViW8BzQlNLlc5Jqw9n0Q1Ni5v6y6M43prdtfuhv6AGzITJ6aUkhtSpEFNXfoJU1B0vlqFCUqcLIjh9avtMyTxeqOBHnRCQ27FxrgyDoutuQwiQryWjB7N6VcSt4OVl9G2EW4dVuVlEVJaGs4X0Tub2+VYHy9ncTe9dZNY162vQ7JjjSsD7ppWZTMCH969vb8/Hj7aSymFtNtjTVlHIbdMFhEHmxmF2QxgM9OlZbhl6OelmmUn2dY0ZACTeo21K0FeVTcJ7Ewra9mohmt+gsC6xx6Jf2/p5p6Sph3yw+DZgzuC0hFFjcjYa4irEYxpDb7N6KhXKfyxajPPi+N4inpbgWBImUF+VgM2s2Kka4KM2Yg1yybQvN44G9dD5U3MU02LSncy54BcwWqEz2RifZdbPkaM2/V7EyiIdpyjh3xBVa3ww+MjgCazqJbDxKDz+Vyno7ez9XlyLXd3D/dvHkWWnDJuTVBAU/X8A0pRfWBiggsKvnlOm8g9x9v2ajdnfm1I3B2layqwXebtkdcvB9i+h9gGBcmvBiC6BGxp3Glmh1ID3wY5g5lRKTRkEY9brMTMfNU4YZ3wbtr+52gQ4OHBjbkw09LaSfhpPl8WPB4ATPmpa8jcQgkEH/osLDqs1geJ6Lzgddamxr2B1RiKmIzZZBTrDo3DNT8A3ZFfyJikl7JJ5hWv3izSO/LWWmutoYFxGUFtn7FbxEDDZNqXClEauT5d2yDaeHlBwP5QB5dCjt9k86p9/hY1A3vYIEU7NQ+gG++O88hN1gwoT+/Jc8774t/LLQ3HLDw2Xc1b6VbJRvKNMrD7cwc6015mGgkxxjz74eZttzRK8sGOFtkIKKZqzawJXk4zvS+qWqb6/Pzc2jvm2nM+V2VmL0LGsJ0BF1Az9YmqEKj+8P37N4/3bN94IUOFEbHnCGXqGUtNWl23//AoBL/b+Gv0ynRnFajVdGv3uH5EVaNUv/Vz4h9gxQugsZkpQU3Qy0wDWMPbMnFR7dGerqRSIpcrfjjiOR26ddEYy4au0/9MOQA2xOFSim5BlHGISIlgGnkUXnGmmG10DhtFQG+iu4rCPZqdIpgSGBhFiddNdJy79h6ta78ifG66ya+zdMU44dTfEeLtYsl5HTwKvteJhGxTboJHRPswVUS+qZm9/8FXh8PhcrmYesKVMTF7RdxRBGd4zgiAVaac4OtnzLpZxUNjjbn7MwjWJN41pt0jCCxFSOQbdtDwD7tgKLPb9Ci+3NnZzKyrcQO2ezz8DBPO25Sx7prWbD7cGkyH8jGKd+8P+24++RwFBPzLUqppU4VTt0bLWej1NJ9m0nrItaB309u9Yj9tgG5O/Yrvhlw4L3aZ2yJ2rH5OhaiAsgxrqgS1Lup7dO9aTBjwcy07d/ho3bhGnq73q6qN9K04yI5a+Tzm+Rc3ZnkbLj8jKekjY90uLDTDx6kHYGGA6YHTSq03qSai0eTO6YkG0PrszczLa4+XUv9uPQUZ5v0R3RmQYo3p5h392ZldKRmK8qICAn1KCltdvD7s+vgOLPl1RFRKWZYln+LAYS5eufOwNFXwLG2apvN5XpbleDyqgrl7GK+MqZs5jzQksGc0MDMpMdd37949HNfof3YH9Gg+6PZc017Vj4hqqU1FRNRA7gDuraeX2IkAyg6lAuGISCFxcwHcBIPEJgG3daR0ujTI6NoDOAn1blMw57WGff4oUSjAJiJKK8rGXvbdGub3QRc/w4ATf43FeojpDj+c1lyWOS9/h0z9Awmsu0wi0WV3/wYI6VnzZoBgKsMmrKaEXIsbSSLehaTuJpO/ycELfVEpsjdrul7dJiNi1sMc8hNxbJbqYMDEN2dCwweJdFr8eH/11VfPry+XZXZ2Pi+zlXp/fz/Pzai3TjMzMT2fz4sKpt4pZH2FqoowF3K7mudIKClBYVDiUpjIbdfGhZi5QJc59n1FErNpOvohdEjQ4JfRxWultlfK3CaoJAhKYNfG2RLwuaH+XuOJRt/4MYGIEtee2tJPgSyNmS3ncxMRkYQPuBQ1QNQXRbm7znYO198gSSoi0pqWIp1uKF2W5TIXuQcnmjV6W+wv3nLfWF24PHb/3ryISBpagxlR5ImREq8b2g+/qnXabsyFhkkTgLe6Exvhz9vprpankXTrPo7QwAYnvCFMbIQk09INNOAhKELNO09TN/tZUJqINcHwAQ+4Dbj6UwMOXUd0fxl3njqGdbAgAi0NVku1qwvRoGtFgJVuB85bEhQCfcNV5yddE84Ejbo25KyUqlfo7BMmgFBEBat3vN/nT/G2/UzMcFmau4FFBLBIfVTACk/lIHKaWyM5M3MTtNbu7u7MTJWmiSMt/ia+WfiAFwiXwlTarEYoEy5U//tf13/8cH+e3jy8/kbKI1t5ovNhE89F0fvsvMw8ospIzIo07/tbJ/i+EvO6DaZo7gbjkbFuXu9tOEV77rYZxLyzCJExg1RJCbAKAhcdBzsIk7trAK+oogAKsZqqNAClVlWLXi7R1xrgUqaJuZmKqWpTVipUIgIzUZCg+SEhEg8fEl/ImJTIuFuG2LiwtpWGBhqJSPHq4TDy21M4WFYResVKZtHFQkcfwQ5E3Bbvo7n6Pn3XmwvoZtTMtMexM7OKcGCzs7rebc2YeWTP9Q4qpZainVa2AeROKOfLykfHwSiFl2VBKcQktnTuUwqU1LzRbAFg0kKgljVcXRlurYAXkhYRoL9uBFuBubp/vdYyMk1xf393nk/z+cQqTgcLTUuTBgXBGy2DiYmLFRFZXs+e/7pidCkALwZuSydGxWmCFlAl0sNIDxNTFZ0VvU6Fi4uk2hAUk8ijvbKs3c92bwwZyTxdOvEocTMDRqUh9/DZao5L59nFQieCgKf/umpmYkyoRa2hYSoAHU6LHT8TUCxLIy/rwMF4iIiMTT31e6CWu1VrLU6gl8t8rFNTq1zcWwbvSRC6jqfPGYGKAQ3GdQIgIAahoBgAFD7WuwPMLqe5NeEiHy/Hi71lOx+PSTDFxQwwHhn4xbSYQXrFK2BLjqPAhVkvxuXb6bHr2gsNAFQAMqOG5TtMd8L1KCel+8P0en5heaCHptZgKMTK6j1J2KDF1FpBQel5FGJqpsfp4AfcC3T4NrXWRvp0T45flkVVp1IP0xSCSBRL4Fq0dVpTa6XRaYCIhODFCzzaHybwdt1bkbRvrgjXXoDCeawbrpbLzIfaRMCkZKKtcp24zPPcvB4AuuXHesdhScEQTCUER7bR4n1UCCHqPoVOxBwaRORd4adp8m+QdHQRga4xItllAxEdP/USbypN2uHuPgRcwBGDSikiTtrVGTWIjBqRVy5g9Woqg5C6DNTLaLtRA6RmbVmmqbqQUriakpeQ6HgrtLSX70yX+tW7qS3LdzMdvvlgD2+WqZ6hx3khqqW181QfVgS2TVTyWiQ6X2b25u0XRDTP5/vDY52m8yKMNnxeN+6Pz1suNZpRJ4HOAyZzcVZKfsdNO5F0QwvJaz2KoKQS5X/z6+Kz/xoOvyE9manYUK/FM2H8hBrWbNPxRgzTkCUmBz+7K2/tthQNJSXlv8bS4pyURCPCNJ2BZinOftc9NKuVuXx0DJ6HDTj0JRRm5hKmezOo1lpKKc3UVxQrVJdNaQRTEbGtvs8dJqiqx1LFFgzGs94WwLJkub15MTNGO7n4PGIFOq9CN4LZy8uLihCRqLi3myJkN80QFrOS3buGOXydXqZoWUxmDjawVdOTknZ9Xvp7AVjP4h2Ys/ez9NG0W21w46ClP3dPOeVsxqWIiRnMtHJ3zl3PLZsTrrfAzOJdeb06cq8zrubPzoAB0NrNZr1HO531LwkiBDDz8XhsuFwWez3Nr0eZ+JCmcmV1JFgPrLxx7Uz3QSJcByRSLxlJXZ7G+dKWpRmBGWQkTRRGDBCZUmoVEARnZ6JYTceWKnsHkKkgGE9MKZtSaXtqKGXiXZPZYFRBN27SZwDSzGwlehjluAlciium3cK8SJNkP/etz1Qr3p6tXF5AI+YW6oHI6rIJzKFRwH83SaLVm5OxRbepCpm2b2FFvdVYf1DWx7mrNq0tMYcYzUY0+H4yvc7PQPjoh2UgQin1WJja67IsZ1naLGQ0zy0CZolIbcGWbe02aMOAzYzIPIPk4fH927ePUzXRRlQUgl6NYHP/1eODbF3dFlTMP9RSr1V+M5t4ZVTf864+zi0GHEDPdJMSiY9DG+8Gupauo1mMmTFA2yJ21wQrr67/iWGuGRQc2pOJdvPpSLw0IsLIMjTVXmIpNYuOpWVWHVc/e6OuejbLEBFNOTioG3mMSEHMvXKCt0I1wC3dxsTGK40wQ4GY8ki9dxepucmr3Iia9qCS9fvBkcwsnE0+8g43cIWg4/ssRZGZEXv8p6c2KMg/y+llqbVyF6g1d6tE3qlhZd1tq4+fmc1mc0dwaZ6tmbXWPADwatrI42f8Jype4+cadfOr+5dKeeQ8W7sqZeA3NODATEZTmc7LGVRVhAttLdYbbpqRKr4fGk+OByzM7BqnY+micijVY3Yoj9gf8f/rJcCoH7v+o3kRRzcHeOVOolJ4vuDlZfn00toXB2xcfTtC2Ye9NkwHNHZ70SdoAq8RaoZegExM7Pkkl7mZmQtWXu2dCnol9KsN6gckXf7GiFEIIPufkZ6XB6HkUIsJX79oi0grF/SLv78GcpkA8wI2I7WSmGtrjQqrqNLo0evaAmX6Y9fTcNqDwfV3aJnXtQt3GEDb79Hu8UzNbKS36Rbb89nh1Jsu5uYjM7PtK0ncGCQmE+qK2e0CL0QEVZAxVzOIwmOTD2V6fnk1fQ8jM+LCYlZ4G4+6vVKbJDPyfGpSg5Tp/sc/+eGbxyoz5rbUwxE2w4pX6rm+gj7S0AFtWE4wsCQA6saKFcOSaS5/H2Pa2slqv2d0FUWcUWQHawCelSXW50PmWX5uNt5UhzAzl5N349Nn4oTHHUzO4ElHszl43sP1fNZViHoAMDNH1ft858rbmgGeHQmAGIUikw+m6hDuYffuv7HB6nrJTzPrdap150cHcBGdXGzISvNIxJduFUb/MlFtfzxYmsXqehc3UzNVTHVvA80UJ3hzDBhKf/gXMAqAxIOBM/2DKkAlWkp3C7CstpNckjBFgY63cJw6HzZHfwQi5cmrqlcfNqZeesPvHPeMOe91XFqvTRGSK+RFNKzNKuzNKfWFAA8Pd0UZ4IUaoQALme5k7u3C96eYiIhW3x6AsC6adsj36vkTiSivU0pEzdEJQxRLV4xszBNXKC3L0lTQVBWnCz6dbLZiNOH/18u2zGwFK/fKwmYME3ONF/Z6wWnpFdwLVTOhtR5o3rve+ExVaaSBAz20QlWJ4UJhhwH1PwOAmW2bdwe+0lWY19R/G8fWf62l85sdotwkevC4sFThIEyvrc21sJnpKnWtHi4AmXdkCSAfW0tRymZmtDZt5FAas1FE1XtHxXwC8bJQjmQ8y1u5PxuDlvrHDMDxs5pxGAkQitY43UTkWTY2zAlxLLn0AMy8/QYwbFkWLYoFIsq1Aswory+vczMXSZiIxEpl0hXxdyaZ69PYJ1Hq/RdfvK1oAjVFPdb59Ar9vpMQyybq5QsyaHY0IkzBvvjYDGlr/+2bfPTqjZs/dx+wFV5iSlFihjKl6PcYbA11ScaDzVuuZtX/jNKGfuyGvH+jyYGLeMdp0tGVz0awkqp6orplvuLD2oroOwgnmKx/5iiA0PJF5Mh1QGA9TwBk0AxNcTr5XYiD4QUroIYuJ/bl+vR6oKjRQF8ohkRyg0bkVXzumI2ffMAIrnHBscsfh+nopbvLKKuiPRxj87rASfaSaAl6vm9MHEdxRyloEzNM/mcbyapJWYVhrU4ybPhALw/UO1WAeqkWD62dbvWFzfgZxgAzz9zdrCuuaaIfffXFHfPHDy8vL6t95mYEUzDU3SC2FzQ32dV9XYlAG3eNXLMhmjsG7F7qkHE492kUZmFRaSrHOjXTT6f2esG83NbqYpLf8/21aNK/H59NI4yEAbq00pRA1tv+UClcwv8O7InSTaBZcjkFttjIAseWKoYcfHMJuyOTz35mMzF+XvJ6ZnPo9aDwGPFNfjrWJOlU/3WMv6EAMdvMXPkzpuOyja7fXXnyHZKDYOYbmLm1tjL4xJujWefY1n0dGI/OGfNppRywvfq7aNP6YoDFon2nma1HDzAoUDx88/l8eVPq+Xyux9JmzHN7vC/QFTG+h4VtNOD4rCp1eny8PxA1U+Xp0CAiS8V9rlyfH7l5dIlokeZ6GFEXEjUF8W5fqqrKCbhIe7nrwqSjsAZt5Z38YHx/zZAQNmQdZeo5b3mniAZq1pg4ewT7i4aQtK6//10AA6mxeTAR1FumtDR+N+x4QbowtrCx9+ZT1WnHViOsOmn8cYNqd4Iihc4SkYi0EbmQNyjDyn9wxzwAHZgXG2RmEKU6krg6gAi9JP7efLqhUMPl5OibT+9Yyg1yFpsekWhINn+naFHRBp0QJPqoBlELrrniQNrEjEpXBIKoEISupmdb5Nz9FOCUVBxmN0J82TvcD/YfI+8+RKwfwEP37R9sw/v2zPJQpx+8f/vDx8PftNfnEz3NzXirdm2vLCDG2cFG+++SQdceaFTaMaPCCgN7Q1mPuSes9hGMaSeA0AjgGDaDRaX0hkLFw2EWwWm2WdA+M+tYsm3he43qAeF4RD3UQ1lhBYWoEIgUlwZB4VJU1YU9Y1KIGZvB8wcynrPX7hr9NpCOVeZGK2AHb9thURxJbI9D9PDOL82riwc7uTNea/JYVzYANG1EVGtdVR0RFSmF195jKEyM3phrIxPcBGk+INv1ruQlota7WtJLGK15EBgnegBt5e7Y2pyvp3F9cje/rqoQhYXJC5BRiosc+LyxosXaRWQt/J62QFX5cAAVAC+X1h7Kssj05jjP8+l1efd47JXkPR5GymZiadpXGjCpW1Gm6f7dF2++fP/4+iR8OFzamRlkxW4FcVgqvIJ+HlYKhFt4U4eGlw3uIlK43KRZvC3UjCsMRkL9eEuAcv8g4EDMWgyRqcSUO4foZQe2QuU1NEN+hJJBvZ+TERUjb8SS007iKWZu86Kqa+1VMx8qIJPjOCgpo6tI29doI+9Lstk2n3a/t3M1Zq+f4MIGA70ctjNg0fVZh7soDSpjTN48KicxX8MZg08HLjCzDXXTzHbaWKY7G9iaIYnngCOb5qdiedrWKMrYxA4020zSz6GIMu+PsZl5eBTzqvMR0XWQC4X3btezcM9HN3jofwbPi/G5QJcWdYMBWGpD5NKmf0gJ0lkDTRRT5O2x/NHX7+bTh5PI068+wgrtXcAbaMfcsjF8yMpJsTA2A0o/9d79IkjwQO5MKEEppgEY/NncA2tUmNRaE7PVZ6/aGvR1pll3pCAocpSK9MF2cUOb1WF7doCoAeDSQiEjNYPg9SRimEoxLKqqzYxNtBEfu1SStExmeJWHDM8d36XkB6XU+9KSxJZ3YTdI7hZwTd/iUKznLk0mMxIj78Do9qrBctFjj0utPKI7uRSPze4P+tPbiY1IiJ3paO+33nl/88xDBc8LD4zCsBW7cpIbDsY+Oh1TXX3tANZqP5wpBpBEyYB8fm8bXdriJ1VtrQUiM3OURu+UhGhRmWpdpPF0EO3hok8vLz/5+o5oE5z4uasz4P/L/8n1s2CuAgjwb/+v/mf/9vc8/Pvr99d/w65/73/9j/6rnsJ/ydf/6N/8r3oG/+VebnXZ1E65bbf87ABdQiBCQXHXPQBAsCzLvJgZlVJgEBGvktlUD2XlQF2KJaRC6OPtFmx60zQljL16FSTls9GrsBIbpvL8fWZCvC1xyp1/rF2qMvWvEzv0VMSzg2qtVFjEFFZKoZ5EpDAsy5J9NkgSwHZdG0U2pn0T/HlWuBI1sLL2ja6/ey9co0xg2bP8bcHE8dmFj40yk2UaZm66eN/rnWLDpUSxQs9g8z9oqgAuc+OjLgIwz205Xc6qdnq9mJFAzcCFSYR5FRvzeu1zaUi/v35//f76/fVfw+un//r/4V/q+P/Ofxf/zr/UF/z++v+DS7fB+rr/1YYIeJX89Pvr99fvr99fv79+f/3++pdx7b0G3/wn/2H8tvFeTMf6zT/5d//3//6/97/9v99PMLAsr6BDlByl5GElIsJEI7zCPavca5htwoLWd2tEsfYWPRg+ACQ9PT4XZhu1lgD2+qtEBFmDmyw587Kt35I/1Z0KRMXrSET4UjlM7g4RU9UbE7CtjchTopM5pUs5ZeP92ueA+mTaiPnfhPtvA5GyqwO97KE7ModrMyWkkhdguuVJ6tHUkgJ6Pfd3ueGTJqJlWSjFbUYlP3f1RaZgwDPvrNcjzPPfYAgRbXyBiFYklOpFD1h1pyMb8phKfdd6+7x+rXIkjwQzr0wUU4UoUUJCrH3giYhQ/ptnfP799fvr99d/rS75F/9zbBMH6uddxHw4vPvDH76birRGhwPPZAeFFqIUrxE2dJXh/iAojQj1q0IHCI/I+Oz/9z2T7pxgjdUjpVGc1Kzugr9uOADWQTLH4hS+FBFkzKxK0cqDeu1rXxZS2MtnK5vEezNXMzPy/Ffy/mQUpZ2iKwBhw2mgmZOtYYV5OTffnrlvB756DOtwnBhyCDG2Kbb5+2sOalvH0g55dg/e3JHP4VtsgSUvEVEv1Nzfm8odKVKgX95oH2SE+WRY5TlH7TMAMAbZ/+J/8z/1ifT5gDzSfTzV0zSZq6Wim/4us7XrJzMz1MNY8rno43APdSmb2ubrv2WIPjuwW5J7MJKdzExTnug6JTMB/Zv/QP+X/+N/6+vHP/zPfv7//r/95c//0T/91e9+p3coStzdWszszlQzL6yRZS9/3VQOeePIu4ExL8ulz+0qwd3MchB47741CtEYIVLIlCIMh416unmBEcA0Y3o8vz7/2Y/q/+AvfvSzHx7uqsu5N2qVA1Evuvv8OkBIiQ9IWB0LYc+9nxrRxHJvfCp39S//6eUf/dXTt98+Gw5EvCyzqpJRoQPYWmtDfF+PYZ0mZvZCOiJiTVQE2su4snfOIZIUzetit4hIa14osJSCkY9E4yR6TUoeEXm8zeeh2lfU1QUzWZqIcN3ECVK6giDkPCKMQG4aMYYq0lqTZY4HxdQxvNa6LJKUmcWDir2uZAIyrdKtbZCHiHy6pewF9KF67ZG/q0kq6PHmbF6e3bGRp3WF0Y/CrNaDpfDJICmtXYjI+1ABKKV4+JURmfTqm94YgwytNa05HWtNtWKQgXFoECoz/+mP9Ou37adv/vTLL/n1+eUPfvL4F//aD56fPhwP79VY9PW60pZfN3zANMoXlOPbH//g8fFhevqohQl14mVtaLxm7xERke9EKYUKe/87VVWVw+GAbYl/CnisGLlRAW9e8awxETacYHe0+v3qUeMjf8l6TmqMk6i3t3cl7xcGCJF3EaTdK+JFhDWhw7YShlIPWwCRMahnAvfMGQOIeWIGWK56KqyIBHgX0RFrQDbCPdG16g3umq1FsvJh60uz9fs+SdWcApQ5XwpDXXVcbCpg7KMW1727Jf3ES9f5rDO5LS1he2YCsHz10zXOCPbFa9ig6vETCUOi07jt4mg2u2lplzMm5LJXXsUpYMiWQ+K9YdENCwenL/O/cU+Qy/7qqyVfPxWrJiLi0i5acCrcvn7/1U/e/vLrt4eP352tmUFgZFQZUHJRmGnLyONDcP+xWWTJJrED/vrNBm7IRzOm69wmavLY2JNey4LsAC2lPC/0MmORdlcKuDDtLWR+SeBVD+r3Ds1XAe4xqxCCx0gqWETnRUSscK/wU4h95ZQCdnBVtwQJyX13b740gOapCrGDIuJByJxOLhl6o4+gUQngLjk5TegrYDLFjqSs9yddKLDIzKZpopFdmDliGNiQiIAPvjEdJUQNuqEpO9FJGNsq0lHKP1wp6vgzuiTRPhPEOTd1oogbIVeUrGjXSJIJ0e57IpLWC2UbvCT1Bla7Z+M8mlGhqqZLUzOb22J0Z+DT6+wlOHO/4XWEVF607vhHzGkxJbr76qF+8e7+u2+eICYEUgrhNtMjMwvjpKnaYKgG85rXcfO6qsS/N2RuVCfYgImISzHPEdtuv8qNIuxE5O0WMsj6NGJutgGKKWhUwooGzjHzPHm/sgk0FpXXQr0GeNo5WscxYhpplLvB88Ktd87i6zsz/PO1p8ii8HK3Pitv8mgw1o5DsNEi2HpPrKRs5ROy28fNPP177K98RDMwd/fgKuEvvcjQSzGOzSIFm7dlHNOg7XjraedRrmsHqPQnbf/shbE+V13Y57N2rXYiQ2Tw4ti2yAJSsq7z+Ty9GIrLEKUUrqWdTlcz6X/eBPLVRq/f94LSW3lRVdsF0j6Bli/fvv3pF/yjR/r5hLnF8948nMRsVCO9wdjWFKlUjWTHDFa4b0UNjDFtU2gJGHIq5XtiCN8+JWuNmV8X+3Rpy0I0QayUcYiup2rmZdd8Q93SsP01T9UKjR7b6DPUpUlrI83Xd9DpPNb81KsBmahQx0Zzja+H8hpgbL0CCw8+3jFTRLBNKczggm6oduZzsb8OTTOLrtU5F/Tmwq+3rG/l9emgoipm4uHeGAV8OAr4EHkK9GbaqV1KTJuIvGF3nkmuBzAgwBkR8pjMzCV69qzawmZDB3IFEK65ZmZAgUK3/yUQU6Eit1A6j0xEAlMVBZblIlaZ6/mil0WZWbWBDmP3bxDter0Yv5qKleObu8MPvnz7V3/1JG22qUDNeEOLA5q1HtxmompUS082heXapBuSnWpxUII1rrzF+dyOD58TvROLSqQ/D4VORCQP4ocwnvXzE3t/DXeMNLV8Qm6xxm0h+L6+LgYWIiqFREfDxa1NZtRSdkZwvUF5VratT5TRa+QgJjTqbM2uJ582YbO/ZhZF1XdEdgvkPZSQcDrv5m4fiTYlIogoJhwaLaJ4QpJ4YhrrbNMuk+4Ux4xLm7VfHzDTTd593LajlUOuAY32DqreqayYrdJnsDeL5oZXfV4pDCdm2OZB5kCBIGqBZgy2bak1IoLCBOfLR0W7Oz78wQ8evn57+PLN8uvTZv6KTuv55mSubB7x5Spwp5d6XqZjVwIdYgnGQ2CyXjg6Ck3kM83MZgxpROXc6OXsZsIqRmwbQW1d8lh9P+Y25kwbNF4/uy8oEZ9mWFTMe5dmzAQRirdYz2RkQ6PS/sJsR3xiKCJCgkwAzWylkzTAN5BNonBEDEJEjdUbqZJt1pUzWfO1Y3jxb2fkyb4dB9bHiy9VHRVrKNM3c687xNIcMhwSAXFNOf6k0U+Fssy3k8vX/R2f42g4bOOn3AQinspg3I0ZpShphIqAWUeLpyDM+dx1FY5gsAYQQWxWvacyiZwu5+XxvrRFS9ngwErhifC5wrB9TmV6uKtfvHvsgBjW9gzHkItbaw6sWivVQqMVhjdQjG2wVegLXCIPtOlWnXUXN/1QxZSIGI6vK68qY5AdLY6X7sBtvc7A9sRvPKC98pymfiYJt1Z82h4wC4BsidLeiG2dbBsRVebeA+uqtQMPRDQzGlo7D/dtXtruDFC6kEp+dpl6rHIn88bjzCUPGBhjZtGjaXeY42bb1FjebEcgsePDWML69iuqsWeKHTK3NK28Eb2O6CCLgRvLskRMHA0DspmV4vV+b2tU6WyvBOv6pf7eWmvphkR2l7Cq+uAYQoaqajMRqdvKbvm6tiLGZ1oNYn1rguftYAJgYpzbCWy18g/e33/59vCDL+g3v3sKYdxIuqvjFubkV9vWBLrL+8SW7uc5UMc1cpeOA01HmT6i3nbKjBS9XaC3o+JarV2AMqvOzUyZafQTTFeCjP/k/iYaVr5RNexqc31efZfHQvZmGIgXRYneWZno+Z+5hcLwVhpta1AACOuXF0bNW+l/tmUIZOHmHP5mSo75DPBeNm+o5l5BqWzpc0aqGxCIq+tLnvosvordGQ80DuNfCNwB3gGflYY4THwhEd9AaqheLzlIPShZWTJS9dVJX+lOENni4UYn3Mkiw/W+x5y+qIlba4AZensAIxOVQnVHHNJGkKoZmRenIobH9TIXW6g1BVPUrYqjQUM89UH+v86nwra2bZEIAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 22,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "Image.fromarray(origin_RGB[2])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "id": "62744e63-5e51-4b24-a534-13f1873cd37e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAIAAAC6s0uzAAEAAElEQVR4nOz9d7ht2VUfiP7GmHPtcPbJ5+aqW7kklXIwiGSMTYPDszFgUCD4ObRx28+mbQwIBJJKEkgyTs8BtwNuE2yUAInQdrcbkxokUZKKqlIsVVLFG09Oe++15hjvjzHnXHPtfW7h9733+vve15qfdGuftdeeccyRA735+7+NiEAEQAlESkQB6lTABGijohrABIAUTgEARIqgqkGVmVWJmQEAYAWxAtDUiIiIAAQl+xOAIKgqAIIQkX0GoBryrwCISOoTTE5EVNXGEhFiaFBituEABCgAZrY383MARMSKACJSAGBANISgqpVzIb0m1gMozSc+T52wqooIQ4UkLoQJygIiIg7tkgM0hADAOSfSqHVJzpamaYYgAomqMhwAir8mjXubd0adc01QImJmIgcAoqwgRd5/Sv0zMxEB1jOIiOAAqBJAzHmBwTbHfpUaC8EGdioEKDXWeX5DwABIAyA2kE0ygAAoOO5zsY2qCnD8NUA2NwUxguYJI8/EfsXpfEtYymcKgETts4jEfSCFxBcITgnEoqqkBMDF7U2zorh8EWEQETnQtEHPe0BExGYbQHG26XTKKSmaEk4QD5sBth1uV213IQTnnEKgxMwiUHHOOUVtm5kBOJ4HnBq8kVrfSlCBqrIdt207qV1V+8oxx90L8eIQOSgnMAAAZhAra5ybqgIeyqSO4BpuPDFESZRt86mFT4CUyYHSVitxZdN2xHmXiMjOPR+fwYZqADwgBuf2pgiY2a5wfjMfkL1j31r/+d8MMwYG9gIFkS4SsHVLEygvBEGF8vVpz5QQP8MBAAlEI9ZKCJODCkEJEYXa7dIIVKnPOEmbUjuTYlZBGzsaRbBDsTMiuLgzaVBmpoTf8g4XHXILZiRpkwFw3Hzl/LKqVt4bDiwvlF2EtO1ONQQVImVG3A8xJMxxDgQNTQv1nYMusQpUSeJYDIgtFsp52gynqMGiChVH5FXFsCqAeBCGDRAAceoEAYASq6oKMZEKEQcAAlXVgBAPHWCJoKKqdpxpwnEtIYQMexmuVCXBJ9tsjU7Z7UGJgpxrt9GAXpQVKtyoiBLDOSJSECmxenIgdLC8qgJBYQhYWUUoImMlMCXaRi0YiQTAx7lCVNp9z4RBVUkFhsztdBQJRIrroS0cIFFNEAjtccbDMEybrq6N5RQBmq4u5RmyAgpV9UwRHYoW+9t+NqqhaHFffqcEJkk9EznD9qTIe5J/6JxT1Uii7Bp1KbpRHVXNhBnSbtrMHAA4l0mgqCqBiYgTQjwR7u2RoXWV/Hp+ofs+CTTdYU6AooZfWjgBwCREFCSk/cjDGRbQtC6jtXlFmgcFEQmUwAaDFB+DEjYhgnRQQ555CzOimSdrdx4MkvS6AgwljkCU51n8N+FiKOK/rKoh/ZwyjuMuAs3zqapKREIj6U1kECfyCQm2w9u5E8WrzsxKtvnFqaVjVUMj6eeG3xmspCiANg4hBhbGSySyRHnxAgKUrWMDDQBGCCOWg5CdPim1iLjdzbz/ROSIiwmXn6n7uUTEoi0fUyLB9ncFRqISuspWgnrexhIMNEkGmf/LFKLES0A+1S4UKShtrSIQOouyH7ezSXuHlvjlb1v4KZdWNmYGSBVM3q4MAGYyXFpeV1VVKa8bdTuU4l3DWq4dVFtZxf7NfN4MxmjxfBJpiNTuAhEpEplQApOIGFLhNJn5PtNz6bDgcUMQByKBCSHp5uQ9VFUoawkJBIAFmadH5AgBJVHjdSj+wAbidJcM8cwfxPyTgpRoBu8stBiqgkT+zXclB9s7SuwCETt2DMcAaeQLvaoa826/MNCJYKdiF5wVkmAignAGkbQ80QCQm4Owkk1T1STf2QFoPol08EyimfGc2ZSM7yJvSy1Yl3eYjUt1DIDj0RJSn8ysIaiqcnzfM4uII8pHVRBjlXZuHdgCDItJItUMKCkp5zlrurGSeyBAkICspSUBwB8//xP22m8+9yZVZc6LKkHZmFBrGY5JiZj8a8++zXr4+LV3pqMnVXXtQIp4hdgwoM3tFetvemjnPS3QkcT1JHT10tU3oWj5ZdU4n+IE41BMkfOI9JYVAITih/hzgiNSKECOkW6dpjXDUKO2vH/+LWd0ykYvUEpRFFmO9AEqgYg5MnyiiQuMDB+nfYm3RUGkQuKQt44cAMck7fxtxASTQcU0BHkColGfko/P7o6qKhMzM1RsnUQGaREnAjACnUFLERISQbyfxs51WIqIJ6hEW3m3CQplIlIh038IMcTUXlAGgUhVAwHEUeQiOAJTYik0MzXpNmXQKjmPzIwWc7MXuPuQDA67INRyPEn5EaVtgICQf9vpSu2CQ0UjzMxxekjnO//ztM+l0JMkbwUQIqFI8N1iAyaoRq49AhOV4m/emfk2Q/MK2cPkCE6UqOX8TuwrT2mmT1WOJIJIVEoGwva23I18pqTGH8U1Kkm+RURMqgTSxOiIiBHm3HOJPzPy707X7mAHFRT0WGC4s2VfBACTN0w7z5BFRKAIqkRC5EAEiUevSVYsW8vntp2YRqGjbEMBD/mA5nc+T1aoe6bpf8wU6uDYRBkRoywkqko/9IPfXHZXUAVDCCGiEoKYBBwIAJv6Uxq0R97RbBBRoXlLG2FMJRGAGjKzjxGR1V1VXgEiWcFoBJgdiYiJgCWUz1yhmc1i5rquTTzIhNx4vXI2GU+EbieabpohmsxGJaxNcAW3kUCq5CfixDgKsl937u/jBu23L70pg2/WRRO73DMTQZkVX3n2HSf28Aeb70wEot0QQ5oS4oa8Yj0S14d23gUTv/PNIXrFyptO7PlTu++OvbnElCRSIHPYJ19vgTpD7Xkf4m4TOS71FrN4oVD8AuCIolv2y4iBqprEwFReYABQ4fbCS3sczvjNmUETurKxiMhoQFZszswfQAg1kcv6f0AUjWqA9pExCwBI0rHMilCSVLVZmLMVxW1hsZ9otOMYwyzSxS7l3NpFZe1jesgRwJnTfVRxxEoUL3pGBqo9+yVLlg4JjindnYyz7FueZS475wiAyGXhm5Lw2oJ3upWxN/ZIUlpiv6Rcab59RoCZ2VSIeaVBO+/PnBq1NM+4N1INGckAYgc6Q7Pz0JnAJEY/AT9TlkRVgxZcUtlb+VkJKmSK4gIx8jz2yD+c2TEqKF+5TPsqhJA3HEYYCtSXP9MMP5S4QFWNloIguU8iqkOTtQ55Sl2bUZa/k42DAMDmE0eJwpAQESmrBiIVUFb2EpGaDdS0flH5ByNMGQZCAjAApIGIxM6RxMbNiuX0rxafW3aB2WUDB4oWt1dbnSu61CeBcaQeJuyTgm31TIIWzmH0lLroUkQ0iIYwA6kZXosZz+qFKBJdSf87iZ3MthAJrHB5JpndYLT/O4Gna/vJT2auR/48/wSFSqG8TvnP8vPztPa3xV0u+58ZYuYJkQk8syzITPtj5//+/EzsjjKRMxGJ9UbUF8CrNt7ChYGc2WxLohqIlVgz9U3Ta9k9ADeivgBetvLDxvkWsAhEWbTDNnZXDUCpixrIEJYomTEbXRBQZMObYTqSdsSy/7jGpGEvZ6uq7IyFF0CJHKEiVFCfwazsUJmyICsESUr7mXGTGpkAOFdFcVAj1TTMb3tORIbKiUygZCIn8YX2DhvCMtJbwKcjcomOtJZUIuLYZ+c6kNlr09xs2+PrrQ4tmldbCyvHm6uI0qOCNdmVbB/sc7KWZk1MRD1mYJ6ZTzuFFkhaNiu/Mw9giQo2IjJ/p8pbnwlhOdwf+mcLeHyjy95aoGcmOYNzDGDKUzNIztSdSGf2pzzfcsmtJ03xmeau0szWzSxz5kqqUskBAC3L1iEGSY6/0YkAjMQixG2ndqrzP5mbLSs4SyzRZaEAISIilWxbLXijDnUvceY8hUovRMeNjDfKgWZ+PnOUuYugasgi62zjtxQp+ol7aL/WuZZ2o2M7AODnlyHJYIlWiGCV6NwBhyACEVfMyRQRJ+6GScnphhj7YyoGIiJQdAkoCRFRtvxlOyIRxx+3G6FEUcc8e0kSbIA6lp5Z7RNFHlkVUYDKR5MBZwZYTxxoRuOEDqZoTXfdW6Eg+rpz/6Dcq9++9CYAf+x8RyaeQVUJl6mqsNJXnvmx8uWPX3/7l516W/kEYk5RJhNwRvXMrUljvpF2dJuf2nx3dKwDXrb2Znv4spUf+fTeu4zOEE7oqtznyKgy2aBUaIEYBAVJOjJpDZMECoieaFESRebxu+oNjbYWKjy58n5nvYsqGETMUFMkBEFHbihmnreay5ubFOQZueTLRVGHKUmtTUTk0c6WVY3/LegBmMCqph/NWMAl/tX2QQkuG32IOgt3hFkhOO2qUAGNai4QUcdI8RpSu9XUXhAARBXUAU5bH8nUoaaTTEsjJSZSA6ekIgJmLwW6wJz3bh5aiKiw6apzcYaqWazsUFzYjTXdr2MQxdWiIwDMXOH2IZH57RBBpDPDfOI2u2xxzPSjXUtyU03dRsSgxNzSeIOr0t8tMmcqDTuC+ShRpD82f53byXmILRdV9ox4JFqSc+oS6ZlTKGmeFMQjKfmJ2RHRtKlZQOSYvTQhezKWPUecbzZXm7lEyONoeuoAA1QLjBsVHnE+UtKjtHtsJC1OmKVFGtm3QFWJSU/YrRNQq3WT9yTTzlBMKD48aeu01dMozHCDSHNVVcUunjgiKEGViFkStc77EHsUVVUhBGiACoFEHSgrJaTghTFHxbMorGYJK683mTHhhC0p19OZVdR2lpgLKsIZfxRegjP7W/5rrdNPQrVlA4jARuCzAbWDKVr7nB0MEUUW2IFYy64AoGvtOKH91nPf/1vP/aCJd7/z7A/m53/07Ltn3iRRViRBsOVb7rt278evv52IPrH5jk9stjLxK0+9Jetv0z7F9rJZAZfTtwLIy1d/qBzVnhPrp3d/vDMfcEl9u+s271CnSW7rGnGjjAugdaPt6tbsKwfyFMlqZrc7l6fDuWv6n73kCI6pR+KNThRHr/lcEqRx5NOVONoIWjkyz7ArnlLSBCSsx8ocfYCBqBOK7ytDGeqh3jAXOa8U8ZhzrbbTZpJ22NxSKmYfh87iVbvkdqbM7Jg1mtQz3DIpk02tQDRCEIIgOtWnHjyYlV1Q4waY4q8KiZZJ04hI8hO197VD8FTVNqF9uf0c0L1cGQwyzMwDRvlkhhqVfljlwZVAq8bypBHTPNsZlr/NpD3RmOT3S+nnZB6JEGrZVkoMGZ1w9TtK+0jR89UgE2aCaWIpocqZJdDztvKaWHPMphziuW8LhWN7oLMdRi4eqhqCOUVHo480IflRc1Khl+RAjBM+8SCISMBCXOAlyVv0POsFieHZ9uAU+Vq2hpXkpI054lL2bP/NtL+UBpVaUSHkEJ0ujiq70m6Lxk0RQfxt/IkqhFgLUMjd2W1pu4gRDekuibkYZFtXB8rT546gHdUpFCfUKpSAPMViFdIFhWxBDACMsy05uMSUdXQg8SfdvSbq6AzT2cQ7ZhMLiW8Kxf3k7kZHxUt33yNiJDjnmZm6SogSsmPj2ZNziYoT0e9e+iHMtbxeTVJUZ1bd9smtd7ZDpdaOTfTy1TfPD2GQzcwlx/CpnR+zM51fRYlJC7SisAAAQmkvmb1CqRn1nVdkZUilBCozU7X3M7Rko2n5DhElkuMzITHoIFaiUrfpmFvQy1tKiW8gIs+OnQHE7CjFosxkm+A22yxhumVvKuW8hDSKc64qo7ziC+RbRyRjeEnzYo1SZnSaEc3MJjB7IoIywaWQj2KH01ECHKfhnRlf88Fl+aZ8P35bzjjhQCoQAjqYYbadCBL5cEUkxFYTKXPn/RNJMgpUO0OEcnMWskJ5AplR6BhKlTp6oPhVt8u4P0kCVsSrnTBkx+t45kPZSWKtpEMaC/tI6a58o3XNTrX4M9sE2yfkQM5RhJ7ZCxgEQP4WQEZQhsB7vd5gMGA4VWL2jrjkg7NhJT4phRIiShqOziboCXrseTgBpeClcjlagBxAaO+5tRmKOEsjg+Q2j0Co6zKtXUFifhrzh3LiuojIEXsTFwwkbKoRDpztICQ0FDGFNHXtKg8gabc4kLhkt1eNRkEUfGXGYjbBV6y+9cT9fWj3nSLmdOqyX8Ar1t82/+YDm/eqChFMRmHmV2687cGtd7xi/a3d197ORDMPy3b/9Xsl02+i15w+Yazfv/qWKF0k+gPQa8+8c/5NAB+9+qP5c0D03XWuUlWVAEQP8ei5Bvpj56P++TcvfT+RCzEYGzPegRSJAThJ7rY/3vvyXJmhKhGLdu0BQYU1Y0Ylci9b+eH5+UcWR2FxdQ9uv/MVa2/59M67CU6h7MzFSVAMKiLOVdlaRtx6WGkWYiIqD6bFjJEutqvJq7RdCFGOs9KkLzF2wyVFXgQn88ZMUGs/BiJUUBaFo9+DMgIRiQXOspiukIg9SKMUmPz8ARByx6xCcGBWVXM50agoa32FiAhaiTZJnnMaN1xcdOCavYIMpxqkqRVqsq8EI9IwZCTaJI8tw4/m+kwqlLzzSRXKdoHFJAAGgTyUEQIb2wRSw24xYqHWaIxwRJScuhvPfUGdPFQ9QEqBvARjN5M2nhJiNdcSi7+g5DpkMbBmlWBmhUEkmFlUyRy5Caqlp5VDdpUy3Gmxack/iEHsmMgZl8xmknMsquSiJioygoj+JQYk3PWY61wogosqAnuf0AIhITL6jIJcWcoDAOYuHp/bNBAj3zW9TExJWy5Aqe3TaDDoODcFcwjIHhiqLNK6LsY1FgIPkhNTB7+rdkLvS6GTiJACo+2hguOet/Sp7QpQT8vyertD++4DCg2qIBATe6camkaaZqoUZ8owF19Q69ilK/pdtim79L7kwxz/da4K0buQAIWZNuCARgmreOMWfh6tSw1bXK+qruO7Wqave7ab+A+SVuJABDTaEAgKZgKoloAiikGTUt14piLCE5zUUY35HkIUytE4G5VLRr7L3bagvXhkxJDoEWpRNj4jpYT2VJJnYzoY828JqioIgqAkpn4xgYZcZNhFG0UwTqTguFv2ITMa+cgB3Ij6Anj5yluMu42GgBu3V27cm0FTRF658TYA84TWnj9PK7Hn/C219toz77RVZM3DjagvgK8882Mlg5kwgyZMHXuaH66Uy4moVOWhvRKabTldcbbzpt2EGa1Xvuqptd7pn9qd9cGmJDAx86d3f9xYV+aO897MzNvnmfq2IGGReEJExMrMznWY7rxwSQanmeWcuMbcuGg01/IFpawz7NoOqNiqmbGoi+9mBjW3mjxDuzXpNUdETD6+nE6EYBYTSYr30jvXUKGARIJZkbVcIBGJNu2FSlIYs0WEOEfOk3PxuRIaSsEhEt1r87qY2WVRW1LuHUuMkw4umjkdMbN41xE9854EM1eVmxCaBEKt0aHUCc+fJuZ0G/krg5ZIZZOYOH9ASOy+duHH2olP8vYWB5qPWzMeywuZIeSaNHkdV9452XT+STxNNwPGUZAof8I8q6VIzEn80zk3A/OZVS1Bl0w6P+nylrtR/rkor1vS1y/L6/PDpfC6ZXn9Mt7AzBrEEJT9kJntPneuPNEqvnNFvyv3sKJvWNU3rOobZuZQnlpmXzbouwGs03fYtjjmbFlfx3fhxm3DfVdeaVCR6HihauyDgnVW0C/heWZKWVnLKmb1MxOSRiZPqMA/uQftKjlm2sy4oDbaGhkLJIoTkvnKIDIAwoz0VTuAahBpsuwLINuoZhb2PHsH4OVrb0Wi3K/cuPdE8dda+ur5Onxg8+3PI/4CeNXG20zSfM362169dsM3v+Js6+X0hy4BJou0SKnU+WgMaJvXtSpHPw+l7PH7u1ejivhrzrxrZogZPFg+LO5kO9WWY4cAOFH5jCiLFNap9gtBchshopet/Ig9/vTeu/I0ymvf7TPy75nwJOMoMhZq5YYu7kCBjObhO702i9wLZOeKzwVaTI6v8xPuoLPuKrST8KujjY/4XIVi3DxFRTdcTjsVV2p4n832LGCFRf5E2MhuRwxYwh2zjDToqsrNfswMImVlVmb1hdlYwArHyiSENvcCCbGW1mWR6HRqPELaMJfsa7bAqWpDBdNW7uo8MGcEnZEm5gjA85gbZ44jajILO5z1ZjhIgCapDVsIOZmXPoGfOwE2uqszIpfWGD+71OILxaIYLS1PHzq8dUl90xxcF5A07xUVMN8+R3J56U6+XNT8GVFxy8qFZ96IuvfuRm1RXtf2WcQsQDrgsSxvvFEPq/qGcpRZ8g+s4rvL9zldnOeZVW6XJz+Nwq1BzQrAraZw/qzzNEr7brkWl5yiKHPSGl2HMYe1SjgsO2GOHKz9RQWr5IvxNCXiiYgmnXjHTizSEBFFFIZMBTOUsIsqDkQf5tR7Ifs/sPlWRIwPtAQVL1t9yx9cv7ec/QOb92Z21QhzHg5z4PLg1jsoScblNw9svj1PVERec/rt7dYU2/3Ja28DYG6fAvqyU/G1rzj7479fqJetfezKj+Qd/4qz0S/pq87++EeuvFnN705LOkHEasI9neR2G/cSgNlE9QTjU9wEaQGi/P0f2bj3k1txwq+Z413YHCtVS+r70M576ASUFD+Wrh95t1+89MNz798gPr3tWYhAYvx71OyydnKNaRtCd1JX6Kia5ndv/oflFp0gTJS/15TLMXKQ6UuykJwZ6n7iQNH7N03VSfYrTvugKqqcLwsRa9SB56srKeSx36VbxvokhN5SU5tt9Lq0m6fJ0Z2IJOb/4pyCBlBAoL7Yw4C48GSlAyfluRkIEG8SGdmm+DaEmQgsxrEjWr9mJKETsWbHXDfrr9u2GBVNAFGpCobxDeXRzzOjSSY+YfTuyefEk1nq1UI4znPjNvWjy/1Q5Ma6q1Dk+aQJcBmTmS9UCzndNjPtLvi1AJxvQb445fzzy5nUhDILZjHCjFJhFL69HP2AP6CqS/r6ufddzsCjlqSVnMkdi83ryx528N5VdOhxO424dzAbEGMWBpCIEOYgZEt/HgX9zkyY6XoKnoyhogJVIiWBEqMEUWt56yQFMbYXU0z9XL7OrCrJxxno4Pn0ofWRanPbKXLUMgECJYvzi5BEBoJiWWzaoLDW4l24sGo0A1tKBCKoiiaKWzK/xRRnY15TzDs/uPX2TINnbk6muDPtlRv3Prj19hIzG/UtNqLsJHb+B5tvZ+Y/2Hz7qzbe9kDxfjl0viH3XXvrl59+R/7KzMDtDqRgf1X92JUfLQXltN58Hp3j0RPQOqX/RoaAdHYsGEIsvNAtHObj19+WGYV5ultMJpDQy9da6vup3dkg43ifjQy09tb2hZL6fnrvXYi3fTZi3SAqx8Bw4r3NhMm2Ppq9Ue3+dKGZoJkw5s7t+xMXS0XwADpXor1UOSclEVm6NyEl441S7kEisuif+Xl2J8yUgnPSmzHTmb0gkYRAi4wQankKFclrSUCWX7ALFRQveeSY4TTSP1JBUjIFI40CVijICGhCMUyqOeSPgExyTIiPbrpElpILREzRfBa5MUZlYdOZkSbTh5G3bE1q7BTBNrVlpJgo0QNufc3iFuX8DPkSnQiNHUg4kX+aAxubIhXfzgBnfCdp2uPmgrNHXp4SCnrGXHrq2vMZQL3hhAHjvcLMw5k1zhCGDLHzO0OKJlsfcwBIQdrznpQ8hB2HsZUn0YzOKAf8gfLzorzOPo/Ct+/T+xORMl8qJhLMcTx7/F5VhdIuvQ/Air7Bnq/qG3b5/eZkwQlSjfidwneUPQhBVRyInIP5GxRzjMADhIL6anpqVE5VOd5QMQrVteu3W8FzVrb4ZyKE6VvnELO5lieCTjvZPti6zaeFKMHHQFWTfU2TYDOjctR4bbRw74YoSLMVqB2pjYRrQ2BnGyu12c9nifXz65bLRc2uMN1nIgJo3jPrVYkSP7j9TsyQl3Z8SrFqxXwB6rqodtW0s4dB1H5O71tGN6dziQg6TGj0AcFXn45S9Uc330IUnWUibYj3Lc7/E5v3/pEbsClp6BOWOReDhJcux/Cnz+y+R5PXkBpiVn5J4bf12YP3cNcInfamXRqn/aGW9CmSZFMiTfuzvAyUhK4yGH9m056HLp7YWnSW+ozpwYlAmsNsqfw/0R8KiUQRj6ebAS1ybpWoPBLa+BhGsqGOHEp7sEpo0S4RkmORaXbS3bYvTZadCAWQJfdgpaQSL8gDASl1gEs4zOgvs6b0nCDAJZC2PLqiCqi3Ow0QUr7KDPmZiquqMfgueclmeiAEYkJI50stYc7nOE9jSpI8c+6UZOICtObMtInvQYGyyg47exSHaIlKl4yRqnnolNCQQb0z/xM5v/ShNEZ0RH/VVpOBgi+hk1gTAGByOovl8+RnLhQb54WoqNB0N2dy5pyMDNMMSxqc3ix+pQTWmU4sLaukIh/7/IGl0PZQcgCsqooN6lDfdqMJnlSkpUoAQJGgSk5DyzGUxRKhl5tgShclR9FwMbs6Tc0YpfhD0zYRYHrHdNDxiTZEZGV4YldmzUnJaHPnxNCAnG68hBBS+HjYrICUsbkdjrKAj/INqOYUpdCQs0LGfYuEPJsPZ8+1gLYTNuX5m2mV5+/tTP/zNNjaK9be8sDWO3AS2Mkc7cyv0Q32Z37C3SdW/ULNF4bm98LSlCX8Pd8VK1lOOpJWDVHez/u33zFjxjYf5vLNPzQWObeXrPzQ5w7eU07nnsU2LOpzh63onC98BCel7BucPxerJSLYS/NsV/tG5DDQlg/oqtfSWdxw/nlMgmvh0FqqwDGzGdQ1RphmdR4xCaVqYPYrJPdXUSIPKJHZcQJFww2UOOmQZrLnMNSZltgqbMU+WYkQq+K0bJBSzL9jRuUWOwOwmF+xXFWARgVDymMQ/W7JmVwekS9FuLJsiwqlZCoj5EICkVMAbAlMBCIHisHOQM4tnhA8VDWb2FVNHCdVdYWJQYztKU4cxVbP36b8Q07uypkVnjmjG93EeXKe/1yR1+OkduA+iLhfCsDKmmUxrmz7/oMzoy6F1x1Wv7DYdNW5/v0ARvXrThwOAUe9X8xzU9VR/W3zbx31fnFmpTd6E8CR/4V8hYwSI2mkiMgTCcFCeK23TGL36f2gyJ7MH0p5pymnfD/p7EoO+8QZZgy2fhL1pZTW2/iHDf7O/NU6vivyogkUroSfAwBjfkUDw2VR0EDOcM/cRPJVKgiemWk7GF7Rilzm76zkLN+GcZ8CJnS4pZbWRlWLXeZ4DgbMnjnXjeFyx/MPyvyZooGLUL926qqqxqRne1uehv0cFlmYZ4Z0xcsR8/u5PRjtmpkT1MQ90cy5WkbZwlpDqYd3xDEJr1x7W37/letvfXD7nSfR0RuwhNJJ6t0FqQ6zUt6idqPgLft2irAMv3fth7/69LsBfPXpd3/k+pvtRU75dHJjdg4EUeWUL/YkRttk+jxts8SnLpTJEetn9t71kuWTPbDK9tn9dyc6CHSp7+cT9Z3ZN6KW94oTiMF4Lcm0d9usQDdAnfmgkQh8ORAwiwvKmXe4SzhJiZNKUFFVh1ScI96NznkBYGgM6imsd6Y3KsdL8A9EYt/ExNIMKCzkiUAqxqqCUmY3VSVikINacBoX2edNuWzvgLrxzdlFnsiYczAqJagGF1EmKxs2cciV3/KE4cAClKp1xyBiEm2rbBFZGn9AOJdXsWtHxIAjcsSl/yYQZQWIKidgECvKBAjUOQdViy61Uay8ha2DCh5r/mRbiJpLt5R3hkFMHEsxpm+zxiArbEpODqDlcANyCCw2335Y/YJqh9dBOOHNpebbD6tfKH8IYJ4oLjavP6w+gBs3kY5z34ltYfoXjvq/pKqZQVy4AfUFsNB826T/IdsN51yMHCPJWDfb49HdcGYOOl+woP0WQFZzEJEqiTbzl1HbzFCz6NTwmOveOwCb+nPmBR3HMvALqXzIjdtZ992Xws8yMSSFlnX1EMVlbadXfJUuJtp8OKpq5WuztqHN38c+FOoKFLq6dMET/gchU0F7SdqoRJ9yVSupmaZgUJ59prgQhVyUr/PsS1TocmUMAEEaRK+zWDzA4l9TnxpxiCopv+pUG9szs82avMCABgApXrFxL7oW33KLc+ygzdCsvw9tv8OYczMbZ5lYTwoTZMWMfhmAEgsDc2qfNLbv/EWUmZp8GEUQXjqeIv+miwg1Fpf88mTWBRDLQ0FBIJcSnSXlKBG9ZvWtSIHUROSdB/DSgtA6ykkV9DN7P25oHCk18YsW/5699rn9n7AJl9qwkvp+dv/d89c1eXua7iceg+ZKxjHxc7oMirxqihJxRDda8svR4UjLyMV0X9qAjRPOwYQtZ/bFYEk6ooiWTO/OOS4vJxlwptDV1NhprJVYHASRBdTG26TiQA5o2Ck3QswCiDYSDYS2lMhvgaSRpvI9VYarIGNQIyKOKiLfSMPkASauJViQrqhazQxVBHJOmrFzFXEjItAeUDMPFVMCoJWRvUahoszMOiEoOUQPFFTxHkkFEk6e2CIiYMuAn3AlqTgzWBFiwpgoBsacNAQgNAC4RIukcBrPDWAhWK6HhOjnHENMOZE0mS2rlCidK4DNDl+hJDPFg2OdBmUSaBnlCWMAo4Ou65JeVpWTyWnRRvW37bsP2A+Xbkyq7c0D/8Hn7+2g+oXFG4m/AIDF5tuPer/IzIPxtzzPawuTbz2sfiHihD+siYhzTgQqoZWK0qUSEYhQkejbmh0ZuhTlgN+3KG8AMArffug+mONwAASVVDNptmkM9u3cWaHoXWXc8FrhpaVUdV8TZg4np5KcbefdX7zc/Kwai5CpYlqxqgIsIFYBhShoKQMSIByLeTgJHQmKORdAS9bgCPPmt2GlSwmEJCPHxHgcNW1WZpICsfXG2jp+APDUdT49kQMtvu2kUyk/z1yunL22sM201OsVaz/+4NbbIo08dW9+/sDmW6k79CvX3/rg1jskqbpfnoy4r1h/60PbLdk+cQ7Z96pkrvkGoYQAXrXxtvuv35s5l+wsHd+kjmSafqsAgTvP7SvzU7NxSzEusTSSi0sDeO3Gj9+3mXXI3Z0sxL7XrL0NQPZ2ztQXwMtX3vLQ7jtt9JcU3lKf2c32WgaFxASexJZaWU9mK6ZLRC9caJNifu7gPZHFaTczXyqT2o2e2e6pQLtMKxtFcqkMlJW9K+Et3/bu2lsuNXOQM7s9i9i7Wzev1S/bPDB3ZlJuDxlB1WSHUVCjaAgO6rgK0waOB6qeuCbSAHLUQ5hCGiUwU8/3pnWoKk9AIALIOScig0FPtHHO1dPQNMIMii6mkR9nqkKoe72FehoI4rin4ohFgqTSlhlrKKAcE8ekcofE1G5GzChDBMDFQJRUWX1+Q0TMrEVZ793Z3mL/KbLuJiWDo5ZLVS1hR+sfYJxf7moW5xAA+JM8+4pT6Ex4xiOhc6BpIIraTpdhqez/sPpAeymAxSRWLoXX7bsPMHMm1kZoVZVImXlh+u2dyXebaYxVNWGQ2I77v1SufWH6F07sZNL/UOs3S5QJ86j+tuP+L82A/bj3S7mT/iS+Oaz/woQ/pG2Cv/Y6aHY1L2bS2brulOZvSvyX4jHPTH5ZXr+D99q2L3f1/HFFCiJa05b6XsfPl1rifHDGc1/XnzcvrWv6H40bFhFzvDrn/6L95Jz/i5fqn1FttZXlVIGUpZI47ondsvgDitJsYu/Y6gMUGDj3JiJqifgQfVskcYRxIBNjzI+iWLhq55Q9UvUxTekX83lrEjoyHsSc8nMOXcKMf4DJi6QaY/NnjucV629Htz24+VZKmuSHtt728vTCiUbcJAGfgFtjxFUx2vOEFBPRQ9vvfHkyl7664AZy++T1txpmmwkNsn2TwrMOxbZQbCqiSKpGopzdzqnq719/y2uT9P/lG++YH/oTm/fmrctW3tesv+3+3Xdab3+w885XrcbJv3zlLc+zTABR30pmETDOq6PgbRlV5ReOvr/soRSFc/vC+B8neEum33jWvlFpQ5I17R1RCJJ8XyixKMUMU9Pk2zkPYDNtlvObIRLmOm6ic3oxsaom5HHqRlXjHSSi+fIS9r6ImKswseUOsQRJPqBhp66qSdBIBVHmRnDktHKuAkJotNcbeJIwFedlMBgcH09CCFVV1XUtARICMxN7EQmNOld570SkaRpAneemaYiYYKmkGQjOOW1LRxtCaUyDw23ADMckf2QRzEXkqCYWKcn6iUn16beg5G1EJi4Y5tSYVhsnnMjskTFIWXNNxBmErtmN7aTdpoTZcy7MUu+dK5t1GdwTkBIRJVfkzLSVHi8QpWwgANFu9cGV+mTKOmPZzW1Uf1s20Fo77v8Sks5mBk8NJ99qH8aDDwEYDz88OP7myfDDjI48lP1m88uZBs+H7ZWYZzr4cG/8zfPfApBUwSZFhFuuiTb5LgqepnsBy1OK8VciAo62Evtij9+b44BX8cYTpfSsg93oUt95lE5CKsrEwqrAdf35LM8Q2io4l5ufzTTY5q/PxzokhY6lwSUCcnlWQkrDDMNQczxKgCLmzUxkJg2nqq60xGn0XowAUHLz6S+2DAM5O1L+cZ6EPZ75Nv8ZEwWUtzQdVUnC/9D24OaPph7iEA9t3ZBqPrT5joTtZ1sZTDYvIpfN3LjsMJKl+YR2/+bbiCghnva5qOGzAJL5XxERsXqO7FsbAF7kKM2lCG7UPrl1b7GlnWbJpFJw9w3bZ/behW5aagA3UqQ7Yvc86t2T2gsG32dpFNvI9BgPCgeK6WMSYJTg0dbmY7b/2c9Lvju+b4nYFFos9kZQNUMSYpEMhSdOaS9P2LHOE8uYpTT/chrTkGI21xU1DKhXTx2h0jAJckxEngbkqwBi1+/1R3VNClf1+2JJueC89/3+wPGgV40G/SVCLzTGenuoI/Ssb++tDIMSK6GKJ6n9jEqQ7iwRVc5VzlkVCqgvqG+jaGIiEY1BHlGWl5b6xkxeKXU/KHaVQVdodiczkcuxZzOHOF+m0GYbEkxaFpIZqavUguabkgkDdzMYM5wjnx8qEVICDcswk3liJJG0BBUiylVDZkHi/4MWR0xrPx58aOaFwfhbBuNvGRx/83j44T+0q//GQU/EuiVit7jdGVQ/75aYj9X+zdHAB/w+RF2LqIbS58b+3eP3/jdOtWyn8B0b+sYyEukUvmOD37jBb8yTlO7Vv+GeFAnvaK5Fz8eMiuESOW2XwGhzIiUyJ6oakrHXcQVle96Bw7mUfG3Jy24avvjg+/7uH89/zKyCKOqd0CG6If82PTerzEzvUSQybqW08n6pfal9qX2p/V+qGeklImUaHv75E98xGkxA//ib46/6v5QcGiIlyBLwOHWYX570P0SFMmAwjUL2cfWLmSQn8XFWJDexZ4RMYjvOYkZfs490IsARvUvXNpHYOFoKHY/xHXrfavIhtzQaRB3r7/O363hfokGtx3XJapx10XXrueZngA4jWC6EQanijuQeNAg50/rMS1OtpiGk6pAASFsnxCy2qAUyJfW16bYzX6uqjqJFmQAoM5FX00moyqxuuZPkpV0PmW9pDIihKLbPLDiuzZjfGyXT+FL7UvtS+1L7v0Ibjr9lPPywoe/Jwi/n5/2jlhibHFyi0VKkuRFFmfmT5vSOUXaMwSyk2lLpAuEzIEf0gQV9HYBFed2h+2DubX5co7g3krPtwx6/FymL4nwXFtK2Re9blxMiu2balr7PNCCn6Y3X8T4za2axeF4OzuQwk+r5vRJiomB+oUTOMjyWonzr6pF68KCAqL63MiTZ+WC+7IeqoutnUOo7ybwQgLboWLEYLR/OrU0o0fY0JFsCZE0x190J/X9HmfOl9qX2pfal9v+/zYjW8PCbkGgwEU1HvwKgd/hN5Wvl51JzPtMbTnKMmskGCkCVTElshLiMTSvpU/Tjo85XuZ8s/gIwa/o8mc+fzQZcKqKZaHku3lpVQXTdXhNNzsbI8b6b8h9b24HiFL8RwCm84Zr8x+RmFKlkFn/nt2hmbkEbVQoxLFjV6BNTKfo2RS6dGVWBJj8pgHNGvXKvsu3ZnDFsGpZfr8MrpA++nWKX1t4gN28ksclwk2qqiHjvs09E5k2Y2wRvZXtg815Qo2K1WqMXjDmJMHu0snU2bycBX2eZLxFxGeaIkEr5KnXCaeYZw862Zo/KwohVOp1r9Fcyn3sV0QTotmSzQikgEvPbCRCLR9lyvLJCxBwH2GpbKQAHjs7SsyVXo6oj800zkydLiZCuQrYgUPFBAZUaYDPLEimYzHRRXlROyQehbBqONAi3GX8o5JxHGSkwc2bX8v23HQviY3YXTVsZf9Sq1E5S+LQrNVtKVqmVujh73toFC2NheaC2xmizTNc7TyBAVbXiDriWQ1CejDJFZ2CGb1Qqq0pFrCKNKqkwvFPpMUZLozMLw5W9g739g21mcwAbhbp38ZYL27tP1fV+j0cVLVnNx2mYDgYL29u73vN4cri6PjrYI9Ck1xv23UrdjKfhKvu650fEwxe98CUPfu5/OTzYHA7Wjw93Tp06dXRYB5lYkqYYBMhqFbdUKssvS0RWwsWyPUtSP9rqxHL3OLZwiBm0G71AIyiUduKCMKRUG3HbY21F1iJ1bVD1OcSrKAOghdMKpdYKLi0KZJs5wEgVITWHuhVUJySUF/2MEvqYuTgZSEbJ/RjAUf+XTORbSB5SAA57v2j9D4vQoOP+L2U5KWuAARwPPkREg/TERN4s4xJRJrScnOnn8VE52/7xN0+GH6Z0EXqFuMw541i3ZWDOT6xqUzwdUSnwG1HM/k9E0WiYAioX5XU78vPcLetbjmIflvSNAPb5fTYEEa1oNOIuyxt36X2WOq2kvjv0vuQcj5zVOxKgeJztKK17l2jrBJY+GwCW1PdS+Nk5QbazG0QEmM+KIGa2iP4CRKQIglRu2KCxSVsXbcPRXmxBl+URaKIHlXPMnMVfVVVRJPRFrWcAVNW3EVbtwdtNgyZql/oPAFScAmlfxFLdOFeFkAN/KU2emPnEcG5mFmHnmImSohysTOREhVkJLmnYiSiCDjPY2b2VNDcnTu2q53FhOWoLBiJ9xQXAd3g347AsDldzLH9MGgREb8SY549h6fg05VyI3Uh6B2akB2loA7RDSuZHCoTWuJ7DhWHB6ZRqr6qr2BFEm4DIynBZsI8Lam37R5TSJ1jVXSIix9Q3PyxBY9VcQcpgUvsMQdDoQw8iVQFxrJ9YEkjTtbRUtoW5FM1phA1E6gC46KzDKYth/CcW87AT4fZ6qHR5/zyu1Qshic6JtvWqBCcIxr4xO5FYKMyn9PpWFIWYGSyqEKsUDJFGpGH25msUELNLMEl0T4sXDaIKCb5yTdMog+CImdSr9huVxeGgmR5PZDocrkpYCgGVc9cubderC3XdXxmt7mwd7Ne6PnJBm8FC9cUnHhn63uLC+jOXnh4tHYTpArysri4//dQVUWZPda1BcDQdh7oZDb2Gq7u7+wx9wT137exs9Ufjxx9/zIVTA99Q04wGS81ESFwF74BaG1IiJtVG4DV4VjjPIdTEDDhVYXDTjL0bRBAyrjElktVp0Fz+PbGe7ZUR1SL9lqrCeBDvVNHk4urMDk5FRYVzds9UIEKBWOoyw20Ef3OKyem07PIGpKtkgzqFagDPcOfx+phvapsW1zCm5VKxcE37Tu0UKWhDXW/Eku5aO+7/EsOcdHA4/NDoONLg4dybACaDX+kmq52VYcrP1cGfm+8BgIWlTRZ+OZPtksC3Yw0/HNFNN6hSk6q5jJsyLylIobNVKSaTOR8AuhX+w3o/lvxb5e8AZnmEfXo/Uta2peTDvBTesEvmw4w9ar2gY+KwGSHShuY2BiKSN0eqQVuMahNuIsdc9HK6d3JRwuean8mMXWL2IlEo7LUA4CLG9ZwYSwtLUSUlgBGswDYoF8BWVeUY1y4i7N2M2tmOO+afayyhLDkiwCkUGkiZNWXqEgFXUPYzbFRLDJI4mwkwUcv5FlvZIXIZAvKfpW+XFV14YPNeu5MEK32acqATKeCcU6Fc0xspqoEKAmB/qqhqo9QGjtmVA1uQl5QTy6eSSEsXGlKusvJhXHsBq+XoRMQzKTSLPbT87mn3qDinGV4scjkOJJa5lggxURFbiFPLynWX05kPUY4ERZTI7SlDA6V4eetJVRViYjil3WvZlzTJAsfFVcSHOQmI7UTKJJWXmWcKFNqutqUAUSSOI/IoaQ7WRflLEiv0FlE/UVRfKVKUDISyGE7URlslxiYiZbaaxJSC/S0hVSzNpC1XASjQENT3qnoaiPqV79d1raqgyvWlGUvduMl4sL5yF3F1GHad7127fPV4gmqik+Pt8cHh9Ws7vdHKww9f7g97p07RZDypudna2tvbm9R1xXR4PN5fXVq+/OxzG6fPHR4eP/3sM7fecuf+4XhpaWl35+jK5WtExA7usafZySkdCaE+CsuLZ+u6rqo+u4DmYNyMGw39fn86rQEGAoJU3jQHtmnEDGYOIXjXK+5792yYOuc+Uy2DibrxizEDQwiqMAYxyrWWwaObYqlAIzMWKU4s7Mkq1mxEJCLVdMHnGuW0/oZktQWhfJcjIiKIWOUAmh+0bMeDDyWhRAjOgY4HHxreIEXGZPArxZznVxE/14u/eiPSC6Be/NX8k+noV0q9dNmmCx9icqJ64uwLDik2c+HVELG6JmU0EOvzUHHdiID+jSaIXX1vCvUuGLVi3BM3oWzbeC8SGqHETBc9WIqm+HJkL8RuO641//G0/86T+y18rzIq69KpFt/qPFYiy8ogAFlyLiG1KrEdQi6aFQYqOoPeUrcMxARwnYBmQ6FRye/SfIj+zt/6o0DO7lF0h5SrKD2gpNPrvmjlXmLinzzdzIkQ0StThOuD1+8FiXl7xUKPKT1y7s45Z+lJC+0HEZHrHlVcsFJIKfuzst5qaGg8hnJrnq9pCjfM78cJhJh7xMSv9shM3a2Z2MQ5CBXEO3bLBSh02ALLQ84JWwlFTJeXX2rSylZQx84TArIC33JOEToTyGsxL/wb7YapK+NNtvwtUeNXwrQYhUhwyN1VU8pf1O25EDs0qgDaHZyZkqakZjdQhcW0w8wuHZMQeSKyJCeJIgsRUXBEKe87xJwSTRUPwGQCSp4XAnUszFzXNVOPqQdQI02/XzENx9NGMFTpbaxceObJ/eFw4fr24+dvufPS009NxvX+4XTgq/On17e2dg4mTeUH0/pwYVSR1sujxU89+NkzZ8+Nx9Obbjp3cLD56le/+ud+9v1f9uVfubmz2esPP/f5R1/4ghdv7+2KyNHReDgces9nT687Hy5euHDp8hMLS4PV1WUi57jaP7xa9Q8QGueNbeV6MmUfvPf1NLD3quKca5oGSbQy/hkRPtsbyq0NTAtUQDPHwTFlZMJBBUk1hhEAyLXlLuIp2xkxknJxBksajLXnS5n5LiD8RknoUodwrBrtiBkIVZWUk3FHc7UcAIvjE6TYL7Uvtf8ftaf3fxqtOsfkYwbYI/IjoGQPiBfMRVrU6UaSYrbgZyO4iyDRgCjdzlM+u1qZN1Fu5Z6E7qV7hRBlIyDmXiuk/hjKZkpbCDSaL9UQqEuXbY5slzM6iWktsQN1y1TNsJ0+mrgTpST4LisTANNO59QGLfYBt+YGQI1+i5LGlAGtuwR1yr/E1Wsp8qasR5GGU0obVTIryZ2BjQ9jI05pM2O2rJJqElFOHZ7sF2WfM3tIykTRKN7ZaSqmkXk4RZin/+WiADCoM5miU2bWlC5VowIeRM68AxFzHsHHMswB5G1DI8wYQ0k+cQAZFBWAA2moVJnUi4bhYm86bRiuroWYlkcv2D8O4+nRU09tPfTA50+dWl/fWDncD5vXDkaj0dHR3ubulTPLo6OD/f2j+tSZQXM0GR9Ozpxa/fRDn5pO6+lkfLC/p9hw0K2rV47296Spm+PJ3t7elStXTp1a398/VKYwbaQZ33LzzdIcHezvrvaGR9uH5zZu2nxun7wbLfTXlm+mamsy3qvrI6twxt5ZYYjhaKRBJpMJMTy7uq5B7IhFG1PEl8cRjyiVd6VCmikbmZVG01Vtby4TlUGTUV3hEnE1N5DEkxUSIRwTZys12nFzbaqMW2YAr70LLXhE9XWHoY9oLk6MYlEboqxM/lL7Uvs/p11c+ktGgwGYFtCk/7Y6t9EP5NB+8zIDUOD9VntltTVISlgv71g0RZykMqLMjhbUF4AZnIiI2Wo0CaUAfjVXkaQljrpiUiIXtMkTjfpuJtZZJFKS1fQ8p2oHTIpK9L5t0sH+iJjbBs+W4U4m7pSWCCjISalXMbqbJ8MpqTpbSqAcTy0dCnoio1D+GTW0RDC7J8QRC4RAqoiMic1KstqvRXMm80OUPNnegzs2P/PoSkfMRBCx9A5tNBoVbvAoCGeHaWClpL14nuXYppVG4pnXzA8gEWBLREvIBvSULiLmeCA90eGLHUJD3R1uxwpBHPe4wnTauGownjSLCxvHx5PaD/a293f3DprJdDQaXrlyuerxwXEzmTTOTaVuRsNK6vHkaH9ve7/yfmnU39m+/sLb7trbPjy1cWZve3c0Guztbq8vDbeuXj463mvCZHy0v7O7NxoNH3v8kY2NDVavUt9y0y3He5vac8sj/+wzjwn09373vpXVUyuro/pYw2Rw5vwyh7A0HAjXIQRHEkLdXxju7u6vLg5DCCbiV1UVglkiPGZVlDMKkviRkk9W94bmmjDEznXgHCAiBwrEnPKM59PP6o12IM3yd0e6TS84QGIKESCnJysBgFJr0VdeUkermWaoUFLSNv3Xl9qX2v+ZjcwpyhIRRthWn/hWTSgMc1e0bfHCmGhCgaKAYmi3dUDoFtSc1R1pS1kov284nZLuGgDALlFoEXHRQ8Rlkx4RJc+hzrVUUqKOB1ZJACyjUBaDsiMAcVLP2SWX2eW3nWQdQJYDIuou2PNkXPGR/W/p+qxSoKuLo0TfZA79xfdPmpWqotUctMSGs/CZzsLOS4VgGQATDY7ecBSTCLe0OfpKaHTLz4SThKJwmWXWpMRMOC+jyHRYSnDJ0DhPcanzc+Qa7x22KQ9nMAMrwUdCROYFDErZFqNDggJKTDlGLp4bdcBSkXTjquazRiyMKmjT661MJ8q0PBqMmqln1J/97KeXl05feubSmdMrx8fHB/uT3f2dyk+b6XSvaR599NGzayN3y9mjg93t7e3l5dGYq8WBe/apJ6QJoZmG5nhvb3+44GjUu3rlMjOcc9tbW6rkPF2/vHv+7AWInjtz7nMPPLCyvHj61AoNl/cn29ev7Y9G64MhTaZ7h4d7/cGFZ5/ZW+j3Dg+n6qYbGxvkWHTMjpYWXT09GvQXp9NpXU985YioaRqiWCI35zgsb0fe5Ey3ZkAUmT1NGpkZUFQiTkXVops6t8faBeYOJZ4ZC4AqlxObIbHtwbUT1vLf4uU0KMHsfCeao8bDD8cadGFW+03kINFjmYiS6G8CSoB6AAaBpbiS1UV+/8/Yh2bp18pVzHwuR7R7hYLLn9scTTV/7M/oGSQiKhCRppEQ1HKaNo00TYMgqhqCqFJKtqhsyiEAlqIypqeD96YZTWZHjiY5s/Jz0m8wt9mdUgaoWf2iZrX/nBHBMjnPHGJ7dqlnW13ZsR1B1FylxUgUh6xrLSEc2RrV1YCGhCpVgwi7pO5TahN2GhqzzjNdi65Ykcd30d/CZm0aPotwISKim0d/OQOSkACsQkLsoETqu3OK/sAmNtlxz2b/MjV1FkMz2jWHmoiirXQBabqp7d5lFeKsPHrCO1ZLR9MeIQvrluhDAMAx53ycHQDtMtzluedxC4yC/NDCaLKYC1PrFriGy/dL/TaBtJWzSCMMuUSz2zeL1sVuZJTRQJm6kgEVmzPfSWQpYnF1IB4QaaonZLSZlFQZYCaTgE3USEMQiwa7W6oaxaOUVLhYmOHN0G5xyWJknNc9AJpTh5R4p8T+uEGbEYVz/jVVNVUmiKBe4xTyUTCUiEMu+VfUGbS8x6Y8sE0mDYCqiLqKPLlQ+54/dbCjy8sbjz7yBVLa3T4IU97f3VtbHl25fOnS5WsbZ5a2r19W1arfB2hvd//g4GDa1Dv7e/cM+5vXnr3p3LnLzz01WqiuXbt66vQqE7zvNcf1/v6h6/X3DvY1yNbWDo2WelVFKiTNJz/+0ZsvXFgY9o6ODlwPD33i8+fO3Lq4sjDe3V0cLiwNR5tPXXKuOlgZHBxev3Dh/N42HR7ur58a9gYBTWgaqSrq900ObpwHSwQnIzAzCYxaMEuAFk+HMv/WEk5K4WFl6lIyrVr3yCg5B6oSCYEZILZKMu04XSBJw2j3Yfd2xw8ZZih6v9v7SGxW27MJvrGO8VyLfL9SdJOFJDJMAMjFBEaa4JzImHSKgTRKiHn7I0ibhbwkn8EKJlJO5BQtLPYTc6VBq1y0TUvqoqJF2pnIfCS9IadLJBENQUMIEhCCiqgZF1WhShpEhVRBKkFVmuT2AAQHZqYAK8JHRGCxqDUiDU6ZlUidIyeOHVntFiswKrH49xxQSYwv6kQYUy5FY5fU9rZr9c/lX3UWvcRNiG8JjJRGXG3OpSccsU2srK5LRIBTDUSOzfkGYpgg/wSxwmhXv2vnF3tJIo6hxqIoHBVAW8481uYyjiF3Wh5zyYi0s3fM3nXfbAtYmucUEsyV2blmtoBMm5mcOCindVWwskhQFUAtnlBVoeTYM3PMnsxgBpGymxFj8pZ1xiq/zZ60WsRjGeGZueQAzJRFRK7IZJtfjp9sHaSApM9tOlBOI+QNoblqyu2eI1VPYlK0bGZcTjG37HFa/jzGIvP8gbZa7XilycVgEHTWlY9+5kF37dR6CwtB51OfJnfTbjMWuDNhOChbJyqkmW8gYmbn3EzXllK13AQix+bZH9UYHEN1wSIxmpljQUwy+Emxpa1jXTeQg5mZHBORdyMJFNQtLJzavl5/8Ynt5569VjfHV6/s1pPqmWee7ff40YcflWbcH2B79+jatWvb29tgf/nq9f5w4drm9v7+IcgtDNc+++lHKvZbWzvHR7UK96oRsHD29LnNzW1zkpqM653tvdFocWP99M72tfXVpS8+8fDC0J/aWHrq2cfufvFdv/m7v7m4uuaq3ubOlbPnl51vHn/i8w9+5v4r16/c98kHRstnJhP37DP7q8s3P/fM9vUr1yHBuero8JjJDYfDImNtPPEyEre86tS9Pkkg6ABqgiWXy3nF76MHdMyl7Zxj7/I5eu+LM3Xl7ZiFn3x9uoPOvzD/VYaf8oJQkmCATskBAJOFXwUwHf2apYzO/JyIkV6e2Z+EL1vS7pzPY80MWk6y3bfiyUwRwBstama9SAyQSJTJjPraJJumaRoJIYQmVgJ0IGbP7OL00q1P8688O4Zj9p68KoVG6mkzndTTSV1Pmumkqeu6roPU0jTNtKnrIE3TNHWwlkmaodV5OgKA7FJF/ii+HxC000KBfAhmxwxCojMp5RFZnFm4jQnyHZcIpJxGd/9z4LtFMjq4UumixAqKMrqtMzNYcclAFMeYKMW8ZNLuTDd3ktqmbB5IPj+IgUCkyAphVbWCkaQWFFNWXRZVFlGCY+bKZf4z2n7TSjpE0iAgTtxkaY0QZpIzVGIov0wVxI6Mtw2IVTeM18nQnGv6EkW7oJ08uxReXFxkVYXzEIUoEXkrkh45Z2qjHhWE6CSa9pXKgObMkFFbajdNSWK9a0ohPpnJpSQlW2kAmHaFxacQK8NnDHLOBQ1JyLDdAAREnIJ0kUoqI+0DWbAsx5BHjeOSRZ6pKqDsnE24ATVqRC+XtwSIyJtzkzDBGawpW70d2xhYNVyA2FPpw95ePCJiRsEwxq9IQGRRwvZVCqTjqOtIIrUW4YwWF6iiEoSJOZVetmASWGFRchr1/1ZvMdiwGRYBIPSIayLUNXnfI9JpPa38gnJw6FfcV64bbQDP2giPhcjpgPnss5dkMj4a9Y6efPjJ1bOnn/ji58+fu3V76zDgsJYa7Il7XifeDY9lcnVnZ39/9+ypF2kITz31zB//03/ymaceueeee46PtJ5wgNxx5217u9s3nz8XxjtfePyxu1/y0kBPjo8PJ8eHN1889/ATn3vpi++uN7ePdw5f+Jo7H3zo/lf/kdc88rkvDPzowpkNOZy84pUvffbqMx//6P0BAx4M+3s7N998C2p+5JHHTl84c/XKk5XUA/a1hEEPrK7iqplOe64noQE5lYp4avfCzkYJBK/UI4zz6QFqGT0kFQhqitM0KHWeVNWs63bWPgpDAmO2TDqQVo1DSYuiqoYtKSnYSpKQb5MmljGidmr94dOFio6WGR+mwBVz72RJNVw5R7t11eYMmg5/lbLkrDZhirK8tvy0mvyY9idAQUzm+hctOw5RfgITCbe5X2ZaeSkkY4YE8y7NMbOkwcpkEWnOdBQauzfSaAgSZd8AVZJQASAwc3I5VIZC1BME2igEUAdVYkCDKmlijKDMcSEhBKhqUKMhxAgszKyVqgTx6pgoxHqaTM55ds6U1RQk+mLEy6xqofhAzMBBRIpQEEWXyXcFLkt6KFNUQ4gABHbm9Kow0dSwIjlAEp7L+GGG+kZrlYop9gD1YE0JeSjZUk1Io4T5nRLMrcjkQiExkqkclTgZwCx6wsW1BHTyTgAIdtegSpI06uITb5Bh2kLq2mtQ8h0Fg0AtZdWoKkGhuY1UUjsmYILLkfKtSFfooFSVKRV7gWfOHDVcpumFR5PMsY0Zsh2iUKXxYWsWVQKxhUin6536KTXPNsOcTCBf3ARUrcNR8WU3NN4InGn8WkbBTjQSUEa83nlbEPm7XFeRCHCM5GlkXFGqOlRSPjX/ZruoppRldg4kafnGJ5peK20/5pr5S1ucEpFCRNQRG6uVI60QLccnCE/AbAnu1HPS4yV0rPEY7RlHFdDMroqqKrMnhWa995xPVTyXYN8IE0FZM9AogSjI1HnHrplMJoPBMmRhXO9wHVzfT4+h6PWHS0GOSJzvuQqnHnlk5/rW4flzy9Oj4ycff3QwqAaDhc3rV5vx4WDojo8O+4P+3u7h7trE9Y5Xe9XK0uL++fNS0zObV6nX3z8+/M2P/MaXv+bL/vPv/JdxPZ3W9ZXDK5Vg2Kenr8pBPXaOzq+vryz1hytL44n4Wm47ffGhz33qBfe84ODq5tmzZ1dPr3z6d++/8+xN29cvvfIlL/vCI4989BP33XLx9qee3br1pttU5dZzy1vXL40nu75/4b/81u++/AV3D5cuLtNoMj4GyfFEwZ7Qd55UhXga6h7xlDhAKxXPFMgF1SMi3wJSrltJiTYVm1xeBE8UI74QLGKeiDKpTeBLaBFj+9uyN5ozRTnndI76ljel8P4DiltglNIy9RiglyPOjFIA5ozip32IOBgV3lvESdvXFa3SZADVIFCe8y/LLOYMkOd+Atq4xIgrInXMLocqAiWTgFvRM7MgHYZGo9tHthAbw6LmtW7pEogolpMnsmAShXOV8cGx3lGjwkpEPnh4q4JN5NPkHRAUAFnlQE70Fkg2y07IxswHxABOywvUNqLkQ1AcbgQYRLqTt067MFbSr/hDKzlZxH+b2t8J1KTJjskislOzAEMSEx+0WapOcAC0jmZQlKoCIVNEVSVi38bvFaCQeU90qyERATGsoHwfAGkBMUTRGD8TCFoCa8LCnVuElhsKzJycvEDkco8d6gvkcEbrx4ESWHV2H2CrZQGBVb9rXafIuBnrgRHz8bTWr3LaeYESMzdFCMjvtGE2cV8SBQBTe2ZAEs0ySGGGeLdjxQcttS1MypR4d7CSRh0sQyWGbRG6LimCwEpF7E0kZYY7mTmyKJTIP1hiGe8U82PDi3bqZxXBY7akmX0r1qXR2gOaQSuAcbwCy99iIgibLSiHqVjct7jEfEbLJiVdkJKnKgO/RL8MVkLPj7gZiYiEUFXS71fjw4nXRVd5z3zUNHVDvYort8RVf29vul/75y5tNTLe35Ewnpxe37j83JVweDAhd0iT8bRZXx0d7h8vjxah1RefffTMxqknHvmDU+unntm89qKXvORrv/lbz99605/+1tcvLCwcHOzBMWnY3d555vEvog6f/finprT+8c8/dempJ/d3G3VO/PTinXeOw2SlGvWo/9knH/4Lb/jWTz/8meHS0qXLz507d3rQrz76+5944cteNZkcb5w9s7u3f8vZ5enu1uc+/cCF2++4tnmtFp0Ef32nCZ5VmlOnV5twtDAaHR8jBPIViTRwEwVYB0QUqKbIbyOFC7Ut4wUUqMQVBAkAaSp3b+qbxHCzxhPRlO2+zPeSb6sW4NEFkpkQBhtFLdoQmH1/9s80mKKlcxnrd3vuco0taezMMLYE5Bplm3kWPK4upHgN6Wyplagpe8QMbpnH+JT9UrVFxQJVgQQYDRYBlGGG6LwFII1fkRZFNplIYqIJKEik8OQwVzIjzhzRmoiINqIKUiIKjQqzepaKOZCISKUOQUOlZulxQIEGM5tt2pSSanKCq1JVkHdAtcUwmmzhBIkqMQ2GWjP2nE3aPEcUkQQb87HKk0NUkGj8CFj0qMYMFwXEFll652QLAFHyLGGp863tMExqUcCRkreflYk4soCSIQCZGYzx8q0rQY7lpdKmC4szBZKYPt9UQBxvSBdTG4TMOCK2VwLFBYZVEk8MIyvQ5p9q529DeMQP5hBZ3hxlSkWeyTikCHwnSXjWkgnNuO2C/LSXvYPOHM/ywifS9bzVJfcNQ4PGbmsL3AkfZde7aDJnYgdYej6JLEvEgaoUJMTtio4q7RxITaPDKdwzwJgkJhaJJm44QFOmF1IydwnT/4DM3qba8TY1emzcG3JuysgEcPIJgC1eubWxBUn5PineHVbA8AqZ472LtvMyVywAS0GoQLASYaBpXRPU1c2k16sG/fWjXXe4r00zXVxgHkjf98Kk2d3eGQwGVY83t/jhRz8XMFle6e8dHvYU3Hebz13dOxqTHyjR2sbpzWtXr169fNBMXn3nuT/x8j/z4pfc/XVf93UvecU9wyEciKWCCtgVR0miROwnk9r3AhF98YmnP/KbH7nvvt959JEnfv/37r949txzm/7iyunt6f6pW0/X08Nrl549tb4BX5/eOPuFR55YO3VBeXg43a6DTsf1rTfd8vhjT+7vHZzeOPUbH/nYTTffvrqxvr27v7m7c9vNFw/2aGl57ehwn13lGE09GS4Mm4aaMAWR5fhUjFV6HqMaE8Q8eW3aZ1YWEXBMCmAX1+6dUafSXcXWKKWyqntfWnwUNSut3DnzMhFJCEQUc/nFEyVLClO+mZG1aWgSMklOy4UCrqS6M2PNztVAFjCdkkapuvhObcFeslYuduICQkZC84uaedjh1Av52IboEGP7bG5KIioUgoiQBKi6qLKKJqxEbITU/J+CiKiEoMYaCKX/qeYcP0ZYLGJRodBm2iTpQqwPS84TNDD5EByLcmAWdhpcIM8Qcc65LicnIJ+8XdvlROzabkT8h9DmftcuEEX3giQdxRdOku7ybiMZa8snqZ8btBjOTq1yudunyx7k1IqOJKpkpRk6MagzpE81kBCxgFLKYrBPtL2lwYaIW1CeBRr7D+fVl0CDyPCYLYAoSSbpzTbzxowPUQGFYjlzsjaSEHM+5q7S3Mi2DInE5g65hPWCyc0PKQn6eb3Z04RggUztPpYHMDPh3AFan1JKdDRuYJqS4bvQ2U8R9p6KGRZ3Mnqjp0EiQcne4+WhRNoVzeiSRARVVSKnreQd61bFGUZUojmyy3jYtMDW7bycBdKSYp/ZypxmZPYYdFtCYcaNp2ugCgRWR8khJY+TVHz2KOYMjoMKgohjn0tTpyMWUlbUMExEsRQBg1XUV5UE6g1HNHX9ig/2Dvc269HwdK+/cHx8vL09dhhUfqGqXBjL/s7+wR49+eRj97ziHh8g0zrwuNHxOEzEr5M2Vy89tbt9/e577vzbb/obf+xrv+quW2/jUX986enH7n/wwZ/+3fH+tUuXnw2NXrr87LVLO8NhXyVQmK4sLR4cHFT93ste8fJb7rmjP1pavXj+O1/32u/+K6+fTPjxxx7+P37no7/+gV+9//EHn3rmue/4+m9/+qmD5Y3zx8eHZy68kBwHgnLvyaeePXt28Xi8O+i5oedr2zvL6xt7B/sve+ELHPevXHp6sDgKIezubjOvTY7Ha+sLIke+6tW1oBl6Pg2+SjgmeBIopgXNBcGSohIAB5fNtoSYqSNS3wTTqvnWRx0VJV8VTl6eEVwzKcncXpfklNRIVZl8KRUkq1anppsx0wZa2vaMzBdw+tXztHyVNMXUlZeLjB1NnrHt3bGYSQvp6yrwiGKKN9ZZaXv22nYXnv+cobzxPynbatOY55OaUjjeJ0O7qlDW6IFoAf2qSqpk9BjIQxDEwkmcqqq0ph8RtVAI84ESCaKNqorJx6xEQuq89FjUi4o49SSu8R4icCKAd46MYHOmu+agPNfaQyxxONOM1jqX2VCV3E1pAuhstUYV2QyFNhwoKb+/mqVPFTnlQMeNv/VShIVpWUiWeee0YJM81bvUd54DKyEcCgIHFe+SMJIpThw82qE5ZZwrOQdilx0X4hSz7cHFi5cEInShmTLtI+rKvvlWEkXRjjnmx5DmBLk+3xZrnZI4xeoztSj3RdGlIoBTIEUF5187ojLRfLmPOWKsuEUnkuoE8QjZ5pm+7cJcd5dUYnYv0/yoJKE924ABZnYgC0BA1ASAWFTIKD2zRjuoGuukDFemsycVkLDaaZKaeB0kqtc484sa9dSWqMsOVlVIyXG7zrThrDDHiLwic0kGAAkwT5P2CDSBpv0Zg2QQHdEpBAVZpQASCSTC5Aq0lVRDautIIBeZIQiE4FQq0MDzKDAqz8fHW+zDmfPY2+H+cDgc9vZ2jsbHe2j6m9u7z13aPHvu4vhw73h7b+P06UtXnl1a8YfHxwvDlaefeMSPRm/8m3/5r/yV73rlS24N155++OMf/59/6l89/MQXp9Pp1Wv7vr/82Ue/EMi/5tVfPj5a2AujfuhNZazajCa9Jgy++JnHPnX0+Kn7nnzoYx87tbhy+53nbrt9+QX3vOCVf/Trv+ebX/s9//1fu3pt5/0ffO9H/9Mv33ff77z6tX/suPbn1pe9q2utt7avnjl9YWNl9erV6xcv3uJQ7Rzu3H7hzsGw2rp6nag6bmQVWFtba5o9x8tf/OIzVXXbYMH3+1W/6l+/erBx5pTnC+D9RrfIT5z0VFkxzjG7VnuAYhZ6YmVADPlTsqhE4DE3vXjwEtl4ZuMcWyZv7saV927uyrRcdvmt0gliJRXBIYV0He2JZbcd8WiOOywR/czcmI2MRgYzKduSxbXVhLV4TGMMpldV1jkJrKMt6wxa9mPKCMsHUD4XsduuakKUxORFkWoLJaU0S1AVjfXXYoCAiZ1MBAdT7zmKZWSTnK8qghDUESRI00ylMXoTJZSGG6LAoRIPF5xUvlJSBdtwPqh6QMSruSHHmWYvtky30j6SWEYkAlk5lLj50iWuVMiHpT9s9mai9v0i2W2MPSuJnyZ5JQBQqBCzIRyyJPyzhgBDX5Q6FCnwZ8Lkbb7AQohSdP1gTP1n+oDouAfvUmEsQEudaQdkO3xihHhun2Regyj6Lcc12CbnTlwyFZfwigLiY5hQa1wxJm4WXiOlV9JM77WVkPIkpYD1ebKdeys7d4nXdIgifqs665Bw5UK0TwBhAalZIJ3dQE1BL2lEQmK4MhnOHAbFYxXLnAWksGATCUvZWJOUYlUcoGppPEiZWURMI6SSchBa/waaxJHPinG09o5qiuoDkOyvrAQStdio+B3F5KSFkD2nMyAF1IEjyxXF366CHciFHUvVvRBc1KJHRTUUySIoJRQ5cGjVMhzBhu0mCAmNFteIvEjTNLVUw2H/1PHkeHzgjo4Pej0PUpVJU4+PajrYO9rZ2hsNj15w190H+7t8agXhwFXrD3z68+dvueN73/4D3/+3/+oA9ZMf+T8++LZ/9tCnP3vfQ09c2+cX3HH71t727Xe/eGvn8Oru4Vd/9VdXQz9YXTm1P33y0rPq3Oqps+trp69e33zNV9zRGy5cevbJO/74N7m+/+z1rd+679pdT3yx+fdvurjYP3v7qT/7F77pb//Fb/rbf+uvfOazX3zHe972wP/+idHgRRcurIaJOOLFYTU+OLx2/dJ/9ye+5tknn1hfXlpdXnrsiSf63B8NBtcvXV5YWGiOxqOFlckkjBYWr1zZXF1bEOkNhm64gOPxzqC3QQzlbbjAGGjj4CckjpASQROyjwkpAGd5z5BlS2EDB8flpQBrcOQzL5Z5IbH439R07mISUQKzdPQi5ZvZG0yTJrYdAiBikcyiRoGbiYSyNugGsaFF5EmUFyRT9IQoiDS6NWa9qNHkE/TnplHKxriZ7BPz4toMZiOioELRDhRdhgCosjmWhRCaYE68CT2a5CCKlvpCggm+zpwS1Qyfqgq2EGdCRSSRjyfrXgCINKpqBerNszrJwfFWBpuch6tUfBNCEHVOKudN5+clNCLshcWLc+ycIyF2JkUY3UmbQPHfaMma2SVtQ4dzy9mAkCh0+UrGqzO/kwLNQhUiyPn4AEEw9p2JzAOubGbaMDlTTKsppOBOGU2OyWdUszo2Mhyz2UfIqZiorY5ERJLrY7xnZLY1hkhoUWp5c5I/1Jy0116VhIijE3SLT7PaOfFtHcbTFiAixC1fKcGooK+l9l3nCyImcprLbnW7ipxqyZmmzzmuoOR0vHO52J8rcEcp2HX6L3RE8Yojio855qE7JU3RzrlbIiads2nZJvSo32hDYPOdECXLXlZrnWIR0+hEFCUVRE9610YNqTbRbMbGgSpAIo0GZtdCsCZwFxFSJaZkpANZwlHmeCWKkszRnD6jZ2sxsuGvrMZJr4nCtS76RkvTRmtOgmi9iYiP+dusigflCIe8dhsrcoTRLShic2ZAvYChVb+3FIKi3694eHrDX68vM3M9VQlST8FYRGgODrehWF4eXbp6qbc2VMeTafPwFx47Mw4/8o53/A9/5y+7q5c//E/f+Xv/2/9aTxeP+cx+s4jq9C2nA/cH1eJwuNSfXr989903nz+zdjSeMPvHtq4ehfqWm84fbO9t1/WZ5ZXHn3r4i88+efHixcm0tyor08vPrFZYOLd6xd/1zGB0+frxff/kg+Mf+Yff9NWv/ROv/9b3/9y//sLnn3z3j/39h37nY40b3fOCezzp9avPDQZ+tNJ7+mD77lvu+twjjy9trC2MRtevb02a+tT6ytWnnjl7cW082ZvWR04HIpX3i3Uzrvq9vYMpeMv3atKKdUUFgqbifiNNB1xVgyqrOooBg1a4OhIVKvgpwOI7AFFmjZ5KdjRMbL7oMaLJFb4dBdPpSmJs0MTsgFg+gTUgiSZEiffsxDchQxoATbWi0yXoSL1hDiumoWfR0UwrU9caYQZ0BmXHFXGHySibK1J4djo3hiP6p0QeIs5NJARREQVZPCqbF2mauXlNmbYZyjF/ka1IjXMFw4NESNg5AM7FfFim+1RVDSIaRBiY5oNQZlWvElQ11I1Nkoi0UgQJFUFqoZ5DqFDZlHKuBVa1VMcWi18ST0MrMMNTUgqW2xLlt6SVQZJ0o0Rg3qWSqa+FJlluMuPgZzF8BFXza1GQKGJwpibfoZg+KwAzJT3iVI1sJvtmSVnMjYVUJca2EJLis+PFF5WRsWyCRgIcqWZ8JyUX45wAqeTaVJVdSp6eMb6loeAqEtegRl0NIToqqluZCxjA8MRCBO0CfUKpSKkSBMQEBsQTR6EzY3JCivss+EoTjpM+vMMMpX0s4T6zC03QdEZGNjSYTUiSu3KclsJo0Iw2KVI8sbqyRORKTUiccqtwVlUiJiB6IbZbnXgdqavk5wVVo7AKYvLRV59g2mA72uS4xMa12BJI1buhEkKoVdU7YZUAdZ5ULCeWRE9hJiiDqQcWjcWOVQNFrbygISqUB5FZMR05U1sl2SoyGCOVlEyJTItaZHeiuUg3ANRWG7TEzuaPrRZpqkSkltOT7VbCqflzgY39J1LnTK3kAbHs1yok6kCOnQs4ro8XWVSOxwfBjSdXrl/Z83y6WvCbm3XP10f748lxdbhTDXpj78dXL2+vV6e3tw5++4mnv+N7/ur3vul7V+qd//RDf+0nP/xJuMHamZuHS6vXNq96zzVL1Rs5r6dX173IUr86f9vtxwfbw2rA40anRy++6866ro9k2nfDZ558bKHXGyjOndrYunJtaW3DV6hJqZ7uXXp26qqLt9160wu/8ulnzr/7V37tZ379t1/2fT/ypnv/H//+3/zoF54+/Ik3v+vjH/vcyvravpvccssdflpdOLO2efXgWj2+dX3t4Pp1+HDbxdNXnnv64PDgppsufPyjHzt35uzNN5+/srX7+JOby6uLi0uDajp1PSiEh72mGTsoRB08PBNRCLUVoQYTkUMQcU5TvW1vMNaCvRWSVmYLzvYMCiZgmQVRYwElJNdII1edfDiUgYEzBkiXlTySPTrd4Eh8oy9fZAJUAYZLHv/eOwVEREWc8zOyb1mzN7OSnCym2ZQWMRYEGjWMkX3O+eEVQOlxZsHIkXQ58iLChQnasg4IE0mL7rJkGUeUlISyzWigCpBDUIQQFMxM5vYcSwsKq5IGCUFIEcQBLio7oeTVklBCVRKvH1lYUVW1JAQigtCEQCEEh4oZNOWJTOCCkgRlqgEhNCosQYRqYu/cwHvuhboxJxISJVFlgicFe3JAo+DKR/LHrBJDetWsY6wAOUU0QjOEXKVJU6iqogEkIEhg5tYkhkSznSNVNis1EXIqQFYnYnHbDEjUAzARBVUKqmSpGwWAOoVzrBoUQcA2r3gu0S4DZ9KjsqpaZDYSShchOwlHBOdFRKHwnFXfqSXjGoMAR+RSWoaoBsirMuKWoTBdicTglDpCw67kM6CVL8+0GOUSX9P5RFYFJbIDYyIHbXmZTG4zJShHVG3zW53IZs5MLP+Q2qQQqSk5QgA4sWCSVAWRtygU4wU3FN/OGUEoNbveRpstJY1aogOFJr4y6ZRsmbBM+uV+igYHD6II8aqIHiJGprVcUTSGQZQIzIYOCNE7HaSpBjFldY+qBgqJlkuHlcvcZ3EKrAgWsMQWr98RI2wOiZeaUUVw8hGLapWOvwQY6kyNQ6Sl70ZMYcedgEEjBvEFEdtdUm2UAHjnHPvpWPp9IlTOL4iQiFQ9euaZy1VVeZJ6vPDUtadYV5uDbfHT4cLquL/56CNPnz23/P5f+emXv+Tm+977L37qH/3MZ4+WvuZrv+bJx58e1810c+t4Z29pdQSStbOr59ZOHR4eLo0W94YDklDXtR8uHB2N1xeW+o73tvbuedGLPvPQp4hQ9fxXfMVrj8eH62urB3vb9fT41jvvrKdHK0uLFfH+7vW97auD4UJTr7/6T3zb8fXLf+fNP/vaD/z2d/y1b/nX7/vXH/rQh/6nf/xP3XZ15603D3C8VbtJdXhqZbS7uRUa6bN/5qmnDydHf+Zrv85Nj+64eG4S8PH7HzyYisLfdJavPLl9y22nRlX/cLy76Ho9OOeceh1PA7MMBoPI+1FKkOIdIK6I/VM110DOcifRCXdq7kOMwoQhxwKqWwFFZ6/z3N2NM5h5jWB8XnEf0wtmgpk3+s40zl5bc+OaPtkuUullEiloencGz2aXse7EDQdAi/KaGY9pcjhEcZE1yYs50RUla7eIqEJEVQhCVkUNgEtJ/TKJNT98nxJEqKpL9uyIMMUyUnmLOGqaJoSq8YGmNJ1OOUBUmh5Im4aobiY2vRCCTlVInRJQORfEGxZ1QQkiIcAEIqgCLmkU2RyzSGaNAkSkcFlEbg8iOedndJG3pfNa7INU7Nzbly2zrpBEJQHa6NDI6GVpKsbZUXZhyWPBFDJFooI8ZFQOKotqTpbSKqXbJq1jVyIovuU2U7FOZJJcQGRLSLrU13A0JQiev37dZsBh+s2QX2tnSQbtEUEn0gUisvRY5QHMtJmHnbCHdNVV1TmH7gFTYixyP2lWls2jvPCm+VBV5WRFN1fRkJafV2SNo/xqNWmNHKkWnG9lOELJsQMgKhqF2xbmiMhbLmNVEkfEoIZgBp0EiydtN5SAQOLYMoLF6vXWe7SMpBpUakgGIKGUYTQFLGlyQmh9lSmqxEUb05p0DDak1GY5dbn+Zfo3ZwUJyLF+EpKZj5m9xqSSIJ0IUYr6tq4JIMQbHN04057HvEXm4+gJyk4FAvHEoRk39WD/4MA5t7e/s7S0OPQL164fHEzC+OixEQ22x/s7R+P9Wi/28fATj/69v/s3//4//rGr9//6v/jOH7jv85f3Fy987Vd85QMPfnI6nfZcf7TYm2pdh2ZjZeVga3t04ebJ8ZGGac9x0zSjhQUmOj46OLOxfrCzvbo42rxyeW93+/yFC8trS6PF/rXLTw16/WeefPqeF73wuK53Nq/fctPF61eujhYWD3eO/MJgGg7CZHM8lOaFdz409Y/8xPu/7MO/9nfe89av/oZf/rt/5fue+eyjr7j7ZnZH5HVpODg8OLzjjjsfvO+TS6PB+oXTd91zx+Vnn/u9j3703E13XNk63DsKL37xyy5f2aqce+7q9UbC+trIiarIdDKFZ2EHweHhMTP6g57dMOdMNMyMaRs7nrSk6fKaxlVbUlzygvavcx3lc3nXTqTfZQBJ+RXNPXm+PznlcKZZ/JDgFAXltl/MlDyPX7r0frsKAjoZMwjgmOCYQDEbV0uHiVyWQqkrIRiRQPTSVFdwlxETqcJIrDJEo3YuqEr07YhXkJxV747KAG4FEp/q00QvCUN6iqjMEjHrbwi+5rppGu/FOXLOSe2m1DAIYDApAluFEwQR4SBaMyhoMmhZhQcJUAg7pPR26pThTV5NS87KiG5yw+4BsSDonD202DcCRIWL4N2OQSGfIqulgjgh1Y/GCiLcxnaTTbSoKqSxOgNO8ryz2czMP7NNebZAiEAR7ZbkOUFEfCOzJXME1T6LIJNGw6d5uJkrl5+XG6Gq5KIIlriEJLza1ESJkrJZNaXDa6sknXhdixUi71EJ5TPkduYCxG9jHEX7UIyAEQHwDNWY2EE1adVSxnBPHL1UJIVqEJVccPQ2N24a7VEROFMvyycbd232OMWBmZg0MiiqjV1NpLhEdFuB5iKvQ5qTgCd9u9WYiqhEo0tNSmLRBhwbeDDlNDLmDsoglxBxd+wWOxMRUVmDtkSFrQqEySUbnrGoIQI0kzPP6RbNASQm5Fr+AWMqzFbO6hJQFRcsBHaNYrqzNyUXPAdIaOrx1uZBmMrkWIhG08lxE46Y1xra+cgf3Pcvf/LH/vpf/0v/9R+/5d/+658Nq3eeuf3LVOjq5nPXrm7devHi5ta1peXh0tJIJHjqQ0k1LCwM+j1/5vTa9etbKytLRHTq1DqTOkZVufvvv//2228Pod5YWd472BsNeuPD49GwV3m+vrV95+23TcfjhWF/tLp0am35qWevfsXL7lmeTp57+NG7X/KCzWeuVYPV//xblx7+rrd/3/f/jfd9+Of+w3v++X/9yO8uuTPHk2dBvLa2vre5fXR8ePvN577+G/74o8888eRjz/VGa74abm89u3b63BeffKSR+s47b58cjLGOelz3hn4ynTrHGsCe6+l4NBqKNJPJxDnX63kLdrGEVAByubN4jkA2VWb0hILxnb2nEkU8KswNRbeSCXw5StlDtAKmqmUxh6Ui6X46L2d+gF1UNbXfnsyrdlBEB0fPibJAaxosGqeEClY5ddYFNSJMU3cBqqZgS+r61Fyhamqbee4UusB0iZiIAWYwkXMgYTBzzm5ru23UNyffZqKsHVUNUJOALfVV0zQ+hDBtQlVVvakP06rykwk7clP2zjua1nWQOoR0Y0PQWoU5gJxz6h0bzhaokrCEEEz8cQTAOTAzw9J5nYiH0/LTeUXN7bzUlP603I2OCqm+JNL5TRaFs1q3OvOCUd8YrNHS2oTE4GYAMvmwRDOcqnFJmp2z4hmVOUYQoNmBR6xP316nLqDMky7Ey2PyYss2JuCjGIDS7o4pC0tHfOtTEtaf3UqD6sziaNL6Ap355N3NHzXjenTa/EKyvrc8SyIKYv7GksONVYi0jIsVRJMPEVFUjHPbebZrtZMs5HtK9SqUycdk12LWgvxaKIwfJaOQWFclJN41SZYaN5JcJK4zScqiG4CAmF2MD4kcujGMEY1yrOclzN4i/LOqoNzGPKvIYiC61ZQbPrPzWkg59jHT4Axpqhoz6ES4DUQx8MCuU/T9jlpuqKrj9DzRYCICWIIwM7m2nG3KoxtEhdnv7O6fPbMYGq/Su7p5/blLh1MNF8/eTmE6CC7g+hevP/eT7/+Zb/yKe/7Rd33bb9z31JkXf/1+mFyZTlaD7jXN+ZvO+4oXPa8P+jzuw/PqqY2mqb33w4WqV/nVtaV+v++9FxHveWd3e/3U+pWrV0+d3jh/7uy1K5cGFT9x9UrP+9Hi8OjoaHd35+4775o29RPPPnvuzNnx9rXl8ytE9MK7X37p8uPrt16sp7K1c2nlgjv34jP7++O//Lrv+MG//u3f9u4fXP9fb3/rX/7ei3fes6C0trDy+c9+emll8ev+1Nd/7KMfHZ1a297avXjzbZ/7/OdXRivcHPUcXnD3rcMFN8Lq9ecuh9Orzi+7qhek6XnvnPfDvmqoqqrH1fHx4XTaOGdaJ9t2Lq8boqhB2qrpqDzQGRjg5LjnIg22qpQdypZ6bsfKMFw6fc7cqSQmECXpxEiMpkwWRiZtVOuhzBMxhzA6gvIMPSiwDoioyPvRCUlAErgp84udDqMsDTMnRpa2UKcRyjyIJkXFz4GSUhcqRu0dyDEcq9WBYOcixY2EltlYZKO+Zsh0INVUCAEhbZVhoF4IIahU02moG6mquppOq6rydVVPx/U0TMhNuWlcXddWAUlUNEAbFVJp1DmJVRHM8blRWI5rpwl3GgVh1iSxoo0bmzEFZoji4txnPrRIyYKwb3CC8fSTkZ3MApf7oZYxy9xN+y1CzC6QHkp0MY6kKWPpfFikMe1xOzRMeooLERVO3hNR95G3hrpMWbuMtkPKzr9EhOSfn0E0/7D0JTcthQWbUfLAoihGpzzjUdsOUJH1prAPzVDZljAYvM/cz9YMYMkiKJdDmTmbqAmlZH9XDmQMRfIORXQBM8QvkKQx6pgEZlTZdsNK6oUCQzmQMUVAq0wuaVj7L6AIKuR8VmswUTRRExGaueTIcVsgoZskarZxFDWtBIVmd8USPzIQOLo7tatVQrQBzaVmLg+i+JfLAyz9AMo3o4qFQUQSDCG55MCHAtAF4HSfYu0scjG6OnUVR6yDOApc0fH+dK8aS+2feOwStD+tN8e6tr29uTaodw/2ntne+tCvvP/C6fFb3/iGL+wsXXj11+wcjLcvHdx6Ya3uTarD6XA09BSqlcXJdLy8unw4HVfejfqVSrOxfmYyPhgf768vLx8eHvUH/X7P9SoeTycb66un19ekmd5y4fz06HDosHHq9GAwCCEMR0vDQf+5J57tV54Z483d3p23j9aPjvevnj291jCuXTk4c9Mt5286d/n65sKZ9dXbXvSP/t2vPby98wM/+RMrP/Xv733Xj43G6K3R9evX/vr/8Fc/8Gsfunjhpt2nLt9x5nQ9Pl4ZDfpDzxDvHR8fS9N86rFPv+DFL9rf319YGa0sLHqaioTJ8V5V0XBhAGg9HntGv9cLoSYYwUiQoMn3Wc2ln1Qp5ZZpr+b8vwCcc7C8Wqoyn8i7ABvtgt9JtjSDyCR8g4hIpIiGMM9fu1Do9FM+wRwSmAfgmc+ZBuc94VhWJuVv0vhPwU+0E1YgOm3kDjW6YOhMUXPlVCagFH9JBBorNXkTpxhM8M6RI8fM7JlT5SNPzMzGInvnYsRmdKs0w40AlW0viTaWcENERPpVbzqdNpOpd66qqqpXV5OeH49rx1VV1XU9nU7rUIsICbH5XoQgTRAGoyIIKlYhFQnO3Eq8iCKkNHxdjWYibsBMfvtE0ugGmhWRhggx/LMMdQEVbFA6gq59waTFMHtQkbErczwYgoZ2WMOMyKKcSNRqibr8Yvs5IyY7CRGPk5qaX0xGhdS6aLUib8t3GFy19Tgj1xndAbjstpyN+TekjcvngRjimWLvgRY6KTlXz1/Iedk3L974QfO9bXkJFP2oJVIm87iz752yQhuy5I4tP47IIinQMh1ktLvrJpCWljiArF6WVB2BIsEjIi2Ao4Skzo6REJpkLmKFs3q/UIk1rRSp9pFG2gPz4nQMslTsCUhyBGQ6SgVUICbUMiClGpzIqQaO/AeQEVnxbSryyZmJtNUDnBjb0pckAGS8LxWeI3F71bTwavWmMiNnXxgba/A2g0NNcJfsChHLzKjvD6fTA9erQoPD7WOv1e7m/uLa2nJvzfPBwbTZO1ia9BZ+8dd+crD38Hd/1ffe9pV/cv3icPvqngfOrC9WVW/AYV8PLpw9K02zef3ycX28srbeawajnj+7sT4NTUXw/d5Y5fTa6tJwYVxPx+OjpfWNS1cub5w7v7W1pfV00Kt2dnZe/apXQt3C4mg0GoLd1tbWmfW1c6c2Hn388WGv1xxrM9lbXDvd66/vHm2vr3OYTmvIAP5w+/KY91/0jd/4U//hV1/5ml/6htd/47/6tz/x4z9w729/4ve+4U99w+NfeNQ598qXv+Jzv3vfY4984dY7X7C6uPjYF584d+6M06rX6125eu38zRdW1td2jw/Hx83SElm0dK/X8z0y5XO/3zf6ClREGnOeKxcOdp3LZRVWyuuXSXEJwaFRINaby8kWKCVVyCis7CT13/5ZnvTMuWf4USIk1bSNJUXQ+cy1stzvBm/2CjOnSId4DbmVE9I1NPi0DbFfGRkudHU2nflJhq7bc97JNgVj1hspi6gkKqxCUfaN3UeZ1pF36hxzxY6ZXW4UKbGpoz07VmgKwtIY2eU0xJAKJe1x9B63VrFrfFXXddM0VV17P3GOpp7rup7WNXvmKTdNU9c1ABUSEWmaWAyFnIOHi0cdgoIDIC6FnDUqLoskhfiXNyzluYvHriEJHgVdVKil+I2a51x7GOan2SlCbLTMPJbTE1KdjzY2iHdoDzx6/itiCiDV6JUaBQhWClHWMo+/E/OvZdjTqNMGYjlCZBmrfS8rbPI96jK2XBRICABIHRAizLUaS9cxzigDYDYZRVJiypZEJcLDKXdEFMeILXNptAZ37n+aVbeHtsUE0QpYpBfnFyKJShlWQWR+AWJFqFRJRJxzkHivVLVQ4tfxekv2D2rJLTIaMl0Cc4tm0leadQg2T2YR0VThiclnNVH2GnUgl6IuxPIQmdk8umYX8XCpObCyeWC5gGAJypI+0eXlc1QMM4kyOWWN6exiKSfDmw7JP8sOXihmuZHsEhYFfi189CASa4AUMR5SoCoiUpGQ+EfmE9xWbQctatEgX03BFocv8sYxs/deC083AHU9qfq11Efra2uPPfy59bWlvf2t565duzo+uu30zc89/djGbfTLH/y5vYf/6//z3f/6ztd827l7bn32i08try7xpKnr/V41XV48zcFrzy2NBpU/R0Tq6Oxtt25eu+L77uzq2cn4cGVxcWk4nI4niwuLg6ZPSwsWa+G999DFhdH1q1fuuP22ixcvQt3B0eHNFy4cjcfDfk9EdnZ2br5w7ujoYLy/efP6C3cON5do30/r46Zu/OLh5iXu+eb65O5bX8i+uXDLxX/7r97v1nqv+YpX/cuf/Rff/T3/46Se7l+9+ue/8U8//oWHn3juqeFo/dnLV5omrC0uV8Rnzp/ZnRy51cWltbXr29vPXHrurrvu6lHVW+jVeiSomZWqnmNijtkbQt24yhv/Nk9IZmQLlDJrJsAFAxfvTUpzkQ+LnGtRUCtfntDmqW++7C3jO0doM4Yt0Vco+pmRCqI9sWsDJiphtcMlkHJ2f0lU14Ramd8fgjC7NvRIoSmpYTK4ZOqLVvWsmq2/SVZUco6UCY7JO2bH7Nh5dlZ32TtnErCRYQAWpkLqVdWSFytArJRsokailCIBVpXK+yBiwq5zjokcc6/Xm0wmbjpmR977uq6ZOYQwCY0qpAlBhUGBYqimr5xVhGhs0CjRKUVfDXNlE7J040Qac+5Ft5VYs044Fg3sAk+5t1rkAiIiVgQTKth4fY14lSn7RpXAcwK8KcAapCE4bumLub+l0ycigBQhVgRQJNULENO6ltCibQq1CFSe2CWa15mFY3ObsFKRmuN9VQXsGAo0aplzlLh1gXQJCzuog/oyaAkUUm2+QMSWvS6WY7GtT7mOk/Yg8rBAZPjKe6XmLwvLJSISD0YsMjUry8m3UV3mAR+df8lTzGgDAMoNKGo50+kyEXllUTG2jszCriKqHuZqywwVyxZJlrTLFSI/oLDcQJKqT8fNTYZ+86YmIpXgmENASmsQzBF8hp9QcbCSmVQTWTSsF7ELRoBLoiERkQM1KoRKFVHmdoyY2qWKMwQUIdggBCVtNKTawza6WAoRETGbRZCG7V6LqAbAJcWBOb4FIhBD1RLlOuccYvnrkt/IXItT1eRVIACUkeu4CdiUZnYiQLRkOFSqaoGodg+I2DkOIeSrmLExgL7jICPwZO3C2D+2/uzTV6ZyvLU9HiyMtg52sNp77wf+7XMfe9+//ecf3lx66e2n3N5zz60tDr33l5+7dHrtzMb6amjqwelVN6xOra4c9f1g0J+EMOxXF2++qcfU7/eWFocri0uhmY6PDldWFvf396tqwOoH3hHRYt8Ph4PFXrW8uHjT6XMSXL063dzcPPYVr67uHRwsDRfWVlauX9vyfX/1+rW+54XhYHJ4uHV5azDoLZ/ZUFUsVRvrC7vbe3fednZptPyDf+tdP/lT/+ylX7n2c//mx7/3r77p1ltu//3/8puf++Ijt91y+/WdY5CuLi3Wdb24unI8me7s72ycXpfp4eTg+K4LN/dVHn/s4aWVUZB6NFw8c9Opo6MjMHNPgzTMUvUGIWhhjC9dLzHjIpApHiVRNco0qRRmTM8eS4EXRD3UYHKWKV0UHBVFyd2oI+lqsgWmgcqRQWZbNlKYU2FwjNGjZLIt75NGRVFCKaoIwswoKW5XaVxyFUTJCl5qg1K4v84PBtIgjtkU0SlFFRgUSy0lpCGpDBET1SEmYJWgUYiAIzjH7OC8wlMkvd57571LpNc554mjx6IqF+kZMn88U7TYqC+ApmlqCSJi2mxrxOzq2puEzf6Ix+a3OZ2OxTlpQtDgqQohoCZww2B1lVrW2qAgRaOBgzJxE4TZWX1aZliJZcDFEDgHUQWrKEiI4U1RH2L6dyIi58AkIhSDo1PBNiYlCODYiYiKOvbKEGkC1Bw6S7BhJaiF/nKTNyNJgI4Nz0RdhyqJBNUYZ6ba+jMDYEh2cCJFro+R9rYhcpxmZReko4IuYT0XnE1axGxCNwdmV3AErATiJK4RJ8OeKupuMrasT8o+HS3oU1LSEpGopsIsrUuUFqYjSi4GKsE2IxXspAjEcRsViHyxwZu2UpEAzsiIEjTlwyCyFBZsXCcpHHHUV0uKnyEiYiiDWNWRBiGx4D9H0R3UIFsIMS2zxdZnZW/UXhXQT5yWFVVSVHiJx3ccQxHDNIkQs/CY6tfok2jUugFAgGazRN43U/uXCUmIO+fO7KlFQHnniAo1Q9sbzfoHmjoaAJngXapyiFKBUjObCWAkHMw92FERpQSCUXzhFLgQO4keihG7cdKIGEa2h0V+A1MzwrlB00w2ls+Px2trtz6zebjLvLCythQqbG4++b/8b7++88hH/sl7fvbCy/9UnwMf7S+dOz+ZTJYXl7Z6m/2eHw76/f7i0dERe1oaDk4vLU6aSX+wcDg+HvV7Z09vaB1IdHHQ89xvBoPRaDRyXqBQ6jmpqqoZ9U5vnNo/2F0YDBeHA4Cbhvq8djxdaEJYXljgXu/ZS1dYcDQ+dCory8s+uo3S2tra6fX1Z5999szG+vb1a0eH41Onzly7unXx4sV/+ANv/tGf/Kcvfe3d/+bfvec7/+IPf/TRp7/+K1/9+U89NnHVsNfb2d265eabdHpU1zi/sXLq1Aaru3D69OKgv7u/f7xzcEhYWV9/5IvPPPTp+1/96lcPhr3j0AyGznuPYBqLkI+vBMUyVWSE5uTenJ8AKFR5HSfntpktOQakWX4NyXesq4c2CtpJQVpy5PFD+k8JltRhrNvnZTwJ5bjhYplzsN3KqeWH2TmoEiVrSB7LuZkf5BVSgtvye2NYGksJqT4xAYaBXYJ4cuy8Mz+62Cp2zjnPzhMTUv44VgdTGcWwWusgu0MTkUmZZk1vGtcXaYLUEjy7ii21M9XOTadTIqq8r7w7GvMYyoxmPDHpua5r8wvxJjfWU1QRrRtTwcKs2dmqw9shZgUiItMhR6GOCgNovOAWlyhw5NTQYGITAxSiJX6z7NmmVp5XfhTeV4jRnunQW4/09mgKPWsCDZ1xvLZBoZhNxIEWzDT+0OenhkznoE2jhxqBLSQERHCpIqaxsg5goqn9yFIuagvwM9fAAK5VZqYv08KsRkdLNktg9WX0cPHD9IIi0/uYvSEzwingT5nLo0m7ipw/sug65puRGCsb/bCK9GJMGhM0OiVhcTHVZBTiATBC6XJpOCzrS0mjjr3EKQRjbhTJm8RWFnV4CXAtIptMx66UChDZZrTl4zhVmNBUSIbNj6oAu45bChxn/kmVWFOp9lIF19qzC6czanVxMdk7JZlYE8cd8/pT5OZ8QlASS6pFzxqNXqKEwlbdesPGLtpribSHWkhmrXu5qmp/YaHqf/K37+9Vdx/LUX9hWB0tHk+On3z6sf/0wZ+WK5/4mX/+wTN3f9Xi2qh3cLS8sbyysryzs9PzdNdttxwfHzfN9NT68qn1VQnTCji1saZNEMLNZ08NK19PJouri9PxZNiv+t5prxoM+sOKm6YJISxUFKQeLK+MBtVCtcIKz4EdGuhwaaDaPzqeHByNR6srLgjVk2mzQFBX+d29w4sXzmysLjrnJoeHQ+cqkUlojg/3+zfddDw+PHPmVH167Z1/781vf/cPvPhPftkPvecHv+cNf/uxzzxb9Qc7hwfXrjzzZa98+cbqcPvatdvuvIO9W6rc0vLi5UtPP3Hl8uHh4fL6aQmTJ64+e8tttyzcevYPPvHJr/nar+71PKDSNKraqwZN06pSuxe2pUYdGjXXomNAQboyVdbC7T868MNltFEih+ICdQTi+cnMTLXNyEZZMMXMr8o/c5vpf+a1di1lDyWysuxa1PlVS/yLyNdc3ynT4LIByFyL0XUoE8cIQNMwG/XtOe+dd+wq53vOO2ZHJsAIEXl2zlIAdVNY2yTjn6RZAg7OhxCaEGoJDbuanQM5wbHlb2I31rH6CgNh6BFJX/s1kdSNqpKoJZGmwILgKPq2mkgjoiLKEFAOVWgXGZQle4rnvdWYNyLrRxkxa7KmwjAtlBZaZUo4E1aM6Qba5vJYXUYyRIi57lsdSfkmRQ+CjstVI+I6GOkGY3HMn+UxB4XxYApqR9xKokQEbd36o3NxNOFY2kg2dE2UchSWK9QWcWcIKyFepLN3yE65UUeeqi9Y0CHMQSqLlcYhxT9jDylIC/HCt7lYDU1H/iXz5tlIqdGez0AM92EiIkGjObonqu4pHhfaFXH2Dij5J2MyNNl3UhhN22JuaJIkTCQvg5iHh52p9IQVIDHCqxpS5kunGt22U8Uhm080r5oXFBWKcmMYNTMxrBYXCIAdF5mZWw0kkU96kQzrMfFo182KMtnOG05cx/moJcep4lfGSJkighggSSXyotqhzPQgmZkr2IgoECdIi2gw7vxgSlcvb4dan9t+/Lfv/8SrX/TyjaWlz3z+sX/xz/7hXRv6kz/xczS8i0ehOd5eHi6CehLq22+7Zev65trq8tLiYDo+cqxrS6Nhb5klLAz6np2IjEYjaKCeJ08DB0fELEwANf0e+8oPeACi4+Pj0Wg0nU4XhkNpgmeuQ+g7Z1Dq+gjT2od6fXHBXbx5e3drf3ezGg5XlpbZ+b2D/eFwcOXpp1UG/WGvbsYvuPuOS5eeHfTc4f7OaG114+zFH/2+N/+bf/kPXvbffdWb3/1Df+M7/seVs2d3d7a++rVfdnZl8eqzT54/d0qbo+FwLTT1b/z6R7b3ttZPrS2MTrvh2e3d/aO9g+0rn7x4552vevkrPvXQA6/+I68gQFQdV03TcNdbtXOX51qOIYnfKiPlhEpBBB0MGK94x/M/1gGZ79wuV4E3OpS4TV4Yh5thGtouiVoxaIaIlhjzRNkl/6snLCTipUh0BQnrtJuTNQRZZprvf4b6dv90iU6xAzF7D/ZcmaqZmT27HnvHjok81JNjhiPnHLkUDpA94KwxM6hdSxv15HxQCSFUTdO4UDObmCU1SwgMEglEYE/KEtAEnUJDIyEEUUgISjVIFJVTJhWwROYKohpEsxPMTOOo1megdGehVj3fbhczawiqsd6boVIHy61gLiBRP5dDe6hU2xT7EK2ircCAVKki2cIi6jY0LK4kiKkbMQikKDfMQFE632CMiHm9+pmou/JDyiOoiUcjRHnLciaRkiQ5QyJWJ1fsquTontiS4UeVUnak2Y0oLzwlGdi4KiIwOYrFrVLxHHVQYUqptaDRjnhCVDDnH6YhIqNANFstpaUiZESeNeZvFNsWAsjShkR9SIwVYPPv16xJcZ5EVRsES4tsaolM1ViLZUpkL4r7HPetXU/Li5HV8IrRvSke3FloOCW2kiSXu2ozg2hMCKCmlqEEMhQDBBGNtCpxn2eZ/RJzZVxE0Zs922my4ZbaFDM2q3QiBRUvOzS+h5RJUwSwphccXBl+XZym0WZFUj+U7N3icPDY/uFxqC7cevbot44Gg+Fjn3/4L/333/RNX/ean/hbf7VZf2lv2KeD/SNMlpdXF7xfWVrsOz69ttw0zdrG6sLwfHN8PGBeHQ6944oA0d5wGKY1QRYWBo1OqV9pEA3inIMq53TozJYYq1dV0oTKORHp+x4RSQgIoVf5tZXFOgTvWHlwfOjOnl5bXlsfjpZ29w4Ioa4nyyuLq2vLO3t7p9bXyPlTG2uHB8fb27scaiwN3fDCj/3IO96+8mN/7lu++WN/86F/9z//9Ov+/J9txuPPPPTA7Tefq8fHR0z9heVf+y//eXN3fMedt/UXV4Mfbo/DE89du+uOm+++85bf/73ffuKJx77qj375448+ds9LX1g3CdxuIDGU7FcZvG6EMf0q/5bMKWmmT0Mds3SIZ5nSDgOX+f6Wz5ulhQBUWgihhDrnX55fUQmBJfx0uXbMvGnfxIfp+oS5ZF7zK5pZVx43EcKWAGdbI8MxMSsxyDlnFl/PzrPrOT+oekTkSBlUORORkdMIstm3Eylu4zyLmYiIalACB42235T6WAiNo+PjY/a8sLBQ1/XRWGvxvcGgERFpIEyQEMQIkZKGADQg54TZM5vVFiEkZ6h2BulkW2LTpV6tMiDhh86RlWdkgikAQFRZUznBcp9LHFvAhhkkDa1a5xF7moFQkuSRh8uyqB1TQaTnwSyhO9Is7/lc3M0Gy3GZRNHSySlqmyxPW5yfGltpFDphXku0nlYoUJHOGZMAzlKVJc/d6EKFUg5uU2VYTcEoSRERcn2xtty9HYnpryLoZwY54m0lTgygxBykUayKsntksCL709Z4IFVBrGJEEAmabOMqAanGF0EQNVvRDCZWE9tosDLICsgnywQJUeStNChnrBSZJxDlgPHE+KGs5EiFj7w5XdqeRPsZg1KmwKjBJhVlpxCWFuYylMRtj8+DHbQp9C3zmXM+w1YCYrZUWVbELHOapZrN4v4TaFLsU3vFtbFw8EAkUD+D6YCYazreLo5aDSVLZx/15C1w2SpC3IGUfdAKwtBBM1k8vT44XPmDBx++45a7J7Wu3XT+b/2P3/mhn/qXh3KOaDrE5PC4WV1fqEiqYeVIQz1dX10B0DTTgafVc2d7hMqOCXBMLIGZPLvj/b3+oOfZNZMQQnA9Iu8A9YwmhEbV8nJEj3p2CGoJT5xzQoR62u/3tR6r6vpg6WB7e3ju3OrauoApyKA6fXCwNx0tTMN0YaG3sr6xvbPn3R6C9PtnqBpMOayfWv/sc1vv/Z9+9o1/Y+GHfvjvPvCx39u+dml8cHjxpvOHh3u1VDRt7nvwcytrZ1/6sjsWR/16Oj04nBwfNINqKLR4eVu//k/+3z7zqft//dd/4+aLZ06fObW2sRpEer1eCB0bcHk6+c7mg4v4JUt4xQ8xx1mmDy5hBpT9twgutQRIKABsdmhK+LusR1Ti2ZkllHq4PKVypeXP5xeeLlAHAmc6L/8ss0zcaFbtNmpebyvHs7mxKZPE9FfZQ8pMv47UqtZUjqvkQOWcQ345bRsX+ajT0AEgsQxWUCM3lHSJqhqgNamEikQaNEGbqqp62hOgaRoNtQbWYNFAQiJEFEIIpJ6V2SHlYckcRszcrkjoOQqpnBBRihTJhoOOJECJFuaDE5FgRuLWlt+mVT6xFJUJCZRElIwSDYEwUQLn9CeRakxqpHMVATI0pmoznShcIrKh8pR8OgZq/eIi7REGxThdIC6DOGVma8WaBF6eiAgMVQsYNcQ/B7UaRTIiMw5RNJdYV0rESOlCOnttu0zRPtjWqSYpE/MTkbmL5dgDan9tYOfNcTcKSbA69tzpASkTd3RiiuQtBhfC8m43UcGcixakeNa40aoxZz0JJBZosuh6ismnAKAhscStTCTJjcUGapUBSEkowGaQTr6MSd/LyYvMAIUyxyjZv8Pc0ZWjRqPktDKym0E6CVh55rX0rZ27nWapHEKCKDsOTqojJXIiLYUGmNgobCpNQYQk3Jgtl/INBIhjTSjEGbZsls2nvIqGgtN8ncqEAm8e7fHi6tHVa7993+/8yi/+h8/8xm/e/4kv1EtnFyf1yvqKOz+8ebi8dIqDXxyAet6xQLTxjga9yql4uMqzKkkzJedTFoUwGPY1aM6WJ6IuzZFTeIFtlPdem+C9F2lCCHDOCpCFEFjB7ET07KlTTdN4clW/31/F0VG14HgyrY+nExktHdUTJvWOzp8/3wj2r1xXqarF/TvO3vJfP3Ot+Sf/5G/+03vf8w/e9QPf89decOddezu7/dGwqtzOwfGFm26txT325Ofr4/HycGlxZWW0vLK8vr607B599KHp0dmXveo1G2dXH3rgvt2tnXPnzh2PxyF0qo3N3EdkzDT3rTWFcFvIiGZ+m2A7QXjSWyT4nCd7+dBPaO37FP8phyvh9r+9nfj+zMP/t/osN6HTA1OqLxZKXqSIo2MikDpWWJV5LpwPHbEn9s45ZlIwtHLOMjk7F4lwSYDzTHJLmNwhAaoBs3MuhOCCAYLdVPKgY8WhCBP1ej2QkGLiJt73PNcNkQpCEGhIugAVESeMIDHREScnd03ypMYlI+rHJCFS4w8iDOpJkmv+MyRIVVVHqV5a4WrHIEnlYwC0fieIqu8k9aa6kO0Zaek/SGlOHUhOM4m03/ovwZXbKBtKWnZvcfTEJpFqFoI5BQIwWwAYaXQQV4CjeY+AQhXOzESQRkQaKJxzzKVGGmRZ0EiYCCkJV3k3RMQVUTxWC4GTdnIWagFmL5q1AonykAOQ6wTnrYzLUdZu1XciRxS9PQsupjMQiYLEk7NkoaJqEajU0ZV5gEWS4TxDiZDxMxaZ5i2NhpoxQLnIFRZ/JR19gPlQ2XFKzAnCzGwBexqtsykCl6L8IZGspfmnQRQgjpBoizXtjOUfiMwgYu0QJRBibH55XZPcwBozNrQtXQExB3sRSf4BBCUJIA6AMQIWfu0SymxAiFlCiDh50TnjSSMEOFBSfmih005sAxTEnBxJbFx2zsP5sRyzjqYHO33hg2uX/+yf+4bb7l77wTf9u1te9Y0Hh5tV/7Tj/oXVhcXRQLka9WhtaVWnTUUIcM65ZjoNQlyRCEIIlXNkgfCi3jslRVWRwg88EYVQq3PKVnsuEHnPrEQaRKEi4r2X0FQ9r6ohSK/Xq+ta1ZOKZ15dXm6mtao2TRiw536/cpjWYVJPD8bHjYSe86dPn26CHo7Hh+tLZ4K7tHUw7k8vLt38mWce/o1/+i//xN/7oe/+v7/hP/3af95Y3ZAQnnvumaNpODw6evrZq9v1dGVheWmht9bU54d8qqquXL60POhv7e09/sSTL3nxXcuj6sEH/+DFL34xEQWoL/D1zO2Ln7u3MqZZyqxvYoKYY8qLNgV/ez814j9quyzFR00KrRtROy2duU5qN/phCdhZ9KQsA82J+/Ofb/QOMUsIM99659pEHPbz9CtiEm0Q2k40JaVSbc3JZEjawlmcc+RjuqtIaOGIjPp6dp0AgeRW3v4XAGDK6bJIY9wHKzQJouRk5EVCxT0hZZoSep5FvUynViWi53riG+973qfUHEoaEJxUSqopl0U3mA0tgJSKZZMlWmEUgPeu5EgSee4cXHkKTKxMoVElOHaqqkGCCjvKMJs11hTtznMcJBNSfoJs9UA3cGteaKE2fLnTW0KbBgJRA+GFAFiOkihTgdTHFEscs1FBo3XeguqcMglZxlV2SlByGhpNW8YpAamIoJiER081AIFIEQRERE5iiSABBZNNASVWB5iqVsUuqIvxNiQm/gOABDujeF3JhNLAsDhUAFYnNO4AIGBJPr5RNkY0G0vhbWiuQM58MQEIAikFadI1cGppViiXiHEEAWqNqIdVFUmyd6Qa07PbVJzGIiFQ6ZNYdUyBQlOqNiKBOsRInqAqILD2YnWXYFDgXdTxBiVJm+/yLcpwaTyJGD0kx8RCYr6JpDHJY3Q+h1PTnrPpAJD8kEVSeUTr2WhxTFilaknwkgmZVOtk3WiivsP4zZZl6VjIBEzRhpDdxwBDrMrJPq0W9tcxE3LE+iqWlj4GY1Ni6Zpp3eu5qrd66dqVldG5R8ePH1H9lne+6Zd//Ad3qnMvWloeTyc1HQ+H5D0akQVWCiSTiXfUr3zFFYlWVPXITUPjBd45BlXOM9lqXb/Xt+Gm0ykgVVUFk+MELMyewrQhIuecKrmqrwru9UjFvJxMF10mDyHHBGhoQNrv98GszRH3B9Wg3xsOXK86Hk+PJ/U4TFd61cEk9AaLuv/ccbPTW739H//8fzr/otu/8++8/jf+9/uPdp777ONXntihjZFuHTc1+AU3n7v77rsXhsO+rxYWFnzfry2ecr2qmUwPrh/cf//n77r71mG1Uk8aV3lPx9C+ZKNmCGWgTgtdWeugyL4FGm1MXdrWFsBRIvLEDXK4HUdVIMECUCJ2UzXrS+5TVSEFX8/E3lGiT7aHWuDoUk6aQdZZBV2i0cwxpPzS1gnlMNOWyqZPJUqO3jcipq7Mz1VVVImTD45yLDdPKsGqizKpahANVh5XBQohNexIDgoJ6qygiwhEnYusqmOuHFcU1c7OeYs3Ygs8YiKFUyKJtV/MocauZXmIufXJB6ik3PLm1VwJS+UaqQaDAZiappmoQj2TMqYWj8vsiRzQSFOTc6hN3g2i1Gjj4B2pI3MVS/iWIFBnCSGSoTS7D+VwV4uPaLdc0tdIdMeMhmlFpvYWkdBETohYVazfSAQoKdKoCMcCk2XeYFWQS8BjaK1NsSAiIJLkuYakFtZElaWYDJCTeUWDvEGdJw3GL+QrpIqAUJmcRsn4nCZnRXkQVYsgUXJsNYwKIOboQsas87xnzLPAtjZERT+B2LnKmbQmxntZaqfWZJ1BOUOMdmwYZiRMkUmRu8pbEPJlSTxK2eIOaKuMjTuOxDIVXLm0icDiSCGdKKcXWJOK2FqH6Ssc+gzLZG7YFmGpbQlEDubNY1FLiPqQOUVW5qkLtFiMGKmdafdNYkilnOy1MkOePXHZDYEi/9rpvHg5Rht3F5srIDGiB/XJYQCxq+g45looyhtEkp3pmTmi2v8XY38Wc8uSpYdha4jIzL33P57pzrfqVnUNXdVj9cBukk02xREmaVMNUSYhESSktiDbD7QFCJaeBMM2DAO2HyQL8oPhB5m2BAmiDEokQJoiqSbFbrZ6ULG7uoZ761bd+dxzzzn/tP89ZEas5YcVERmZ+79FJm6d2v/emZExrFhTrPWtYnmPPqRRxQaFaFGaxCoUoy4B33nvydnxg8sPP/g3/pd/9ebbv/4P/vu3v/Qz/6M3v/2dFx7dXyxaIlgsFqt20Xru2oZVnSP2jtTOekAR2LFDRqtfHqPhDAGAHZQSUdu2IfQioqBN04YQNPumnXMxxqbpYoyoMOz2RCkyoSg0aYQ5YtNOjs1Ka5omiCDIsu36MOz3e42DZ2b2y5UPYecQ2rbph15g8X/9v/21/9NPfvmv/jv/s3/9l375hladdx9cPX54dPxDn3/j5YcPNre7i+urbrmKYTCZst1ug9ALD14Mg7z99ttd1203+/akddRZxR6tVuqQnstl1kZNk9XnSTElyOby6CCBlJBDiAAsZd/haLLUUn/8BgBE41hUO31fS9NP63ZFxukR+ZTIqbHlKoGviOfy5+GclCspr6VvSpj8jEnDLV0tOkHGwzLjHguOP2QgSsxnwBbkTBlHAad4n2RlggipWhPjIrVJihUPl5QIli5mNnhKD9gHMYPbOcfkEa1qFjN5oqGMIqrEPhLRIBEFRYTUWURONUAGAJxCrVkt3oq9G280Ux1nbD/1OQNr1LqUajQbAMflKz5hKQAGqqoqRRUz7pGYslb1CPKk2W2UDGKTXZpjiaY0M2eJmPnhSFHOUbY2kvwGSqFDKf3JsrJSXwGACdApQIrKUwFRNDDCdCJOlE7uShwoHHQCYARwEICUBUjEKlol75eJm3oGsCTPEWqs5BGpAhKBAlE6XafZs1MRUr6spiYWaG8AtMpBmKLMxij2Mo6ybJg5RX6F+bRNhWSsLGxIU0kAojDf8NYTZlO6QQWBBACs1NXhsXomGq7zmBUhC8U4u9nqIZYcc6ozgo0lUvIPUyqHqQDF1VwzrFz/4J9VgQQACnQATImyegTrDYaz0Y1OjCxuaSLy67ABhwhMJDHno5FE9PHkk6frZ0+uPv/Zz/+5P/n7/vZ/9O8dvfajT5+u97fr1r3YOlZVAw9CBQ0RONn6MbnnJGjyCBU3QFBlZiSIEA3lQCSYn4AdA2CM0jTtfr9vmiaqAlOMg+1qK19TMkBUVZIqjpY8kL2jGjQoRO8a1GhVqmSx6vcDira+2Ww2l5ursF8vF13X8sdPP7kd9H/43Y//H/+H/+Df/Q//gx/787/01/7jv/7TL51+8ZXPLWi5vt3+3uPf60NwbTeIIDkQbJruwfm93dCvL7fL09XDl49vN7fvvPNBe9R88Yc+O8iOmaNUhVEr8ZbWrlaIRwqfnM9ZJCVijn3IoQAjVYzPaXkcEE3BKoE06aX1wYcqVLKn7l4t0u4kzsKv69sOCRgRAaE489LxHFZPTWXw3VvAEkhq2i+R/5XwSF3K2UAWEpUyDwFFhJFAlZhKxoSZslS1Wo5UDWNLaZrbObkoa++oGWhax3RQAlAgRcmSHrhxbhgGR+xc433s+946ilM1S1WjBpLBCQaJqOSSNgCohj91qM+NUe4AFpA85dJ0+EheHQDIOL4wsnRBAwOqHBs5/isgImYD93DpU3aJpncD5DCfKtakLH3SdwpedZYNh70FUCx41AiOUSMY8FPGqkBERMGISQ8CAJelJjrzXmqKSmfELEVGDgsTA6gSMEyUgZAKXpI5cm2+SNMSIrBChAooe0K3RZFUTGD9dsZQ7iZML1ELpCo/CNUaeiUPEIt9ySWRBqz+ICAoxnzGn5+CnHZBGb5KENF8R0WDK/+aT6LY2ZBAp132pWnykAOhHSKAKqACisYUa6d3eROKBKpSDNUMbAPITJn4bHDa6WYtZ+RUYsKT+MvS1xbMXCxFxVMtw8e0JlrUdwUU017L7JWZHzXWvHwz5oipRLT9nHKhobAMtQhSwlRMraCh5PYz0kLykYaQOqjU+HbRnT55DI8evfjr//BX/51/9X/1/Jt/62bNW3Tx9vmya2+uLwmP8Vybxi1av/BeoyR7OgoAknNFjYsxEnnKqPglZmK3252dncUYU8AzYN/3VjfGe28mwjAMFxeXDx8+BETvPaR4DYuNtHzuNIoIEEJwzhE5G1TsI4piFFBtiM+Pj1er1RDD9e1aLuTmtmmbVQT48pffuH/v3tMPr/7e3/r6H/+P/9//23/v3/iHv/L3jlenF8+vn4aNY133OghI7LlttutN49qHy27dy2a9Pj5GL91+v3/ptZcXx0ch7n73G2+99sbD5XKJKT6Djcwo86XEvOoNVZhOJaTTDgWEAmMzOlry7Wkhi9QctS7Nqv14P45HcfatUtloo05Tf57RYd3HO9VH88BMbi7bwhiFjoRX7imHrrMXjQM5MJrr7k0u4ySa0P/tHDXFHWpySpj/GbMTRaPkBH/L8EFFsVgNe6MgpPUrb78LrQkSnWf/PGBtPCCiZx7IMQeDnrbjCdNJUsKSxWGIHWNHVScCEpPDOON4mZRKIUeY7YeRiipRmvinQHbbp/+VyYLpQlSDkoRCWPXf3IwC5bQRRSb6Zb18RUvDbCWWGxAnaM+COVPjrilNjYuKRnuaAUlEMGI6xcw2TZSh3lcwUj+xCgugWrSeAIiQBJRclWxyKD1TMLG6KBUYECMghzSm1kytJbVo9TFSvTzOVceSp2WyS+f9/1TlFJJEsYAphanHO7VgBTjRcuGJlBiQps6TZNxkL2J1Kd5xcdG/COw/qx5i9XwAAJCUJ63dtVGNRqfTCwVsK79IDbcLkqtqOkySZHvm82PBUnairEIl4NNcSYSZoIWkwVTbFdjA0QpDRSvlkRDkx9EBACiNh8RaQe5Vq1xIa7b6+U9jWMApWYsQmdn/D9/4NgMen5/8oZ964zf+wX/t7//IR+9+sPTYtu12u2XmZdt1bctIqKASGJAVUBRB0VpLSq1qzjFgZnIMADGGy8vL9XpdTnMxm7CL1RIIgRCZmPnewwfGsHJ8zUgYRjZd13nvXTKyo2H7xX6w+4moca4ht2zaZdOQBcEhPnz4wunxqSd69vSDplVgPf3MK3/7b/yNxUdv//v/+//db3zjzUevvPDCyw/jsHtys7nq4zrKJzfrXuH84QO/bHb9tlst9xI+efr87MHZF3/0i82yWW9uzs7Orq6uVNV7b07IGCNmIOiycZJ0yKRYdtxk+9xhVipUyA8A2UKe7qB0cyZ8veuCzPHLaVxNKrO3H3Kk6YYFSC7IiWU8YWWoZcemFvJ/8OmXGaZly2Mxf+fbZzRmjZsTUPF8AkAd+HmnmC9jrDasFkYa89BMYKcvDy5JklOilolFANIo9YwxplhrOxNVVUquIAn9EIb0dHm7SeU0k+b+mRSPGdlpvS8AoKRPpYlP62X+uTFufHxLbiS1C0BmTYmgqoWtWSilqkYVqq5DIiyUQQqqUSSkOcwBAZ9G7bOVrW5J1oVDYItKyuPB7CewByingSVTEFUoqYCCiIYDXcJnYFRXBVKZgZFcKJvnmm1EVQLQXIY6kw5GUJ6qlmWdRqtItXzQQojFoYqVvZX/HHGaavLNM4sAdnhsNpwZUCRaoqKYczlDESF0toVIVSAVa1O15DnK5TYBUiyRmmCAgysDpoxfQFrYcgoSsQKBwsq+LKMg81VMSCHNvCAbXnQ60wHJND2CoAkmx0OKGB+da5TCoVSL/l9qKOUFEludBIlWJj+5OhAxgXnl4Wg97VApsSOLqdmlYK5/RZDDa1HH2L6UkFeOrAAd+UTJhBQphHC73RyfLr793bd/6S/88fU7v/n4xp+d3fvo7ceny+61lx60nbt///7x6sh7LxL7frDDOgZ1nI4wRCSd4AEgIjNlQJik+rz22muWqzEMgw3QDn11gGIiWCKIEsYYy0GLRFWQaN5sxL7vY4wGOm/zkNrRgJjqYg0iKAIaZQhHi+WD+/c3m7Bzw3a3dkSfPHl8dbF+9fP3P+H+1/7m3/75v/hv/pFf/HleX15ebW430K26qLLdbpzjRds9f/rxUdd6doqrzbA5Wd07OT/5rd/57R/78k+2DT99/uz+w6WIhBAQ0XtPRDGEvu9NyUihcDou5GRlZ9wnewGLHomogGOkUsa3TYrsTJbPfbdTt2GJDJh8OTVoDjdgnZgLlTw7vLMeV92r8n15JIu3WJLj8/0MUBWfpZTvkFnE3B9eWjPPsFUHQMhnSPnmmDlM+UY1qrKIAFExyFJ+rTkwsmkrdyFDpYYM9mCu6IhNNRERmVBUYmCHzjnYg0gAAEZCTSomhQjOif2bEvXSyHKo/KgrVJM8klD9U/lcLyimsJ9xrWdrUdmro7ycUEjCu9K6M/lZnrw9N14igZMrPa+rEmjGmOAp0apGayKh+oGoogN2BJBzkOwi83YQkqQAqAljLeMkBUgR4yM4cMlAsOCdWgDXPljNHnkbFY6QyGJBwvYAUQ5AqOgek4WnAgUTaSSgeoWsTYuZTROaYZLHyEsoDs8y0nFGpxuPKfN6652NSLVe/oRElpdB0tQf6KnT/UxTrCgb+KjRIyCWiMSJJ3yqApd06sowtVNsADt+S5iU2XmeQGJy2vjYhWoyufyb5t/SgZIojPVjpWyIzVq9bXLccsbd0vEtqBAJ6hqcABN9wpQtKq6/sk3z6texEkbD5jVh9sYtPvzgg29961v/4b//v/6V/9f/5d7nfuHm6rpt/SC4Df2qOQKAGKOGaPqQb51DIlBkIiRUICRmysggYvneIukcwpMbhmEYhrZtYWRtAACefQihaRb7/d5737Rtv98rkNmQKqVKVq1EwpBQO6KKoAJICgYZhmGQGGNEos43erwKUW9hCxh2uzUjeOq2m2eNX158FOiVk+fPnrz/O//t/+bf/jf/4l/818+6R9ETilxdXh917dFy1fiGADe7frN9ruK6o8Wyvcfkf+iLX3jnvXfPWr8fyBmyv3MAEEIIw8DMTdOUya6IHxIvMK1tGuADlgCfdpOtnghEYq7PAmveV1YzEbyOjOBQFuamUangpd9tjs8ar2jsrpdODbLSQv09jMwap/2XWXrPeO6WLI1JToseXGQVXlWKQ8skgNUAE0lV8EKMBBiRyMkQo9Psx6pqyGMuNYGIxSTVjNxZj/3Oz2bz1QNnTJaoRWORpwoFFhCRgRFQo2AUjRpj9JHH14JJHE2n6+jyEiZt7k5KmPUKi7hFgFFYTK4ijKxNc+RMms3RHuWbWmzOZHlxMtsjkg/17UUZySBXe4fJlTJGjFuSgqJqJDvkB4DkKMPEPkjJqj1XtEsAZOXwzLOniqgEggy+lgc1ddK8Gza7UON+GE9Hw+J0TGyB8z9oW+YfxoiysQMmWXMGeu1GmAT2pfbvgMKpv+FUBWSuAeRwg4mePhU2BECEBepED1+ExYaoW0ZERANqUI0GOFVOVuYzOVXooKY/q5eooFpq8yaVXEQq6cuaDiCskeSBKT0hwAkZTFKfKbuAZKpATDx69doVZICy3RJBj95mglxDiSrXdelVejGN4XWFKSPaZkZGcsTZHa0AstvAT/74V5vh9q0PnnYnr4b9uqctEJ/fe3Bydupc0zSNOaYKTHbQpAAJaASNqoNERIwx9n0/DEPyIRs3IzSxpNk7raqu8ZYTeXt7S8whxhiCREDE4i8lIu991zRmAStE83Ghign1GDVGFQlW60Z1jDkiBQzqAL1j34JC9L5r3LFiE5Xe/t4njyN+8Htff+OV06/9/M9frreN86p4/+T8/OxB6xfb2/1m2++j+uXJ6cl50zSb2y0pvfDCC1/72tfef++9V196+fj4mJlDSMFlZvjWXOnwSqRRiZYcIWUeIyxJDenmGvI3M/GZzl2/Dg6uGX+oN8WMHdWt3TmEwwfTh/LfgTifCYl83WHLzm4b50fHol75Dk3JKgmQUImhpv/ar1u7jkMIQwzjn5L8ycmZDFpcyuUaHxyGYRhCCFZExP4VkRiH8cREk++6Gqwa2qXRZ5q0vPoaRUQgisbRLTzNjx2//7SlmS1KvaAW01Vf+bBmLPRXOIPqmL5YvFlwKFkI8a6jkMmZEY+5kdEiKHNXp7FlkwtTmM3IyhxzViLEvI8IgMyskKrvWV5lMvRF1RWlQ4gsZgcKWkQC7koBOwiWtFteb9OdQ2zyuTenHGfNrWlESBhVduSAGWQqLwyoAKZT4RRmDNlzBWDO4AhWpRAI0IECohAABs1sHgV0tOTSHpZkxeXTCMyEzuyLGkgECj0YIAm5FBUpqkqOIJqjKIXpRlUhBUEhQoCSRqm2oJCs2xTJZW4fRFQ1/NVUFXEkSnDJNpd0gpI6nzwkRjkpETOCeMSKJuan4AwoKFg4F7BpFNZJIiJ0mvxGaLnwFm2Rlc2I4CCfNAOAgoJGOx+wCS36BwlQrsNlI7F/bHW5Niw0bRpzw2Tqoawcp65KKlSc4evMzatCDEoYAxEyCBPvYugirv/4H/2Dn3z/262eXF4+jcP+y5//0sl514k4gbb1zNx4kv3gvQd1g+w9uxgEGRwxghAQBLJsVZMZfdy13gNAP+xXiyUQKlFUJqJBBivP2ivs1tvWNwig3kdmdUqQUBrY8zAMjlwIwYZPwJarLSKOIIgAguh+ENjHrao6BHaujyKK4LzAwMHtL7ab222QuNvcDGFz7+Hp42fXbXPyK7/13s//K1999zd+5Zf/tX/pT/3Nf/Rzj17tb0GG0A/b25vbpmk8d23TeO+R3Gaz2ekltXxM/uMP3lssl4ujNkiQCIROopiKYJ72FMFLirbvEg2jecCgnDUAgpIEzcGPKX4AFBCZlMr5XbXsE5OlCH6jPeSEXlQ2Ra2bxmTRZWO0JENWJY3vFIQ2BEAESSe7tqFKDjQIad6bI0liIj+tbP3MSWrTJd0sIsndBqAaCRAsKJcQozIgAMbaABMl815F0WjzQaJCrBpRUTRK5IFRgyhGRfKi0RlDEaGAzvPASkqsrtg80UxoM9pETMqWN9ZzkrESRv0mSFRVe5tFVzhsSIMn33Czw50isHfUetn3klbVplQjxCgsIiicfSDinCNIaauI2VgAqs1ZoxvNrdWX/WpwCFHGWKsMnzyuiLUvGiwGVFRAgSnhBenMk2GyCoGM3QEQMBNHyE7tGEjUuB4hpBxvSmfkQKBWMbHyzBVVzViihag5C3SudStEZMA4gnIlTBKTwpDSOgWAlUasD5cclxY+XhN3bbSNlrmqWixOHnbWg2rPpH1FSAcHqNY0jpryqJKnL626tzGFdBAy1qYGgNr3MrL+3PLsXWPnxyudcVqZ5XGEKVK+NGM0NW8NEQC4Qk+bXaWWH6NhDysgKTMXCsxTZNBREafAs5B4Sj3bWH+wf2OVF4FJSRzTbHR6dDSdjbnBYX8aT0nfVAzOoEkB6gyzOyc5sc7y0iyS8WDr1ZOZLiIi8ObVTdio5JQahfbqcvMTP/rFd775/+tptVS6ud1aiPJmszl/cA5WgXxATxRCcI6ciUCkYn+LiCNnKb8p69KyNQAde1VlYkVEEtOKROKw7wGFADSGAOIcxziQ6jAEO50nYqK43+8txIQQh2FA1RRRX0D5C1nkYumABCDMvCDa9ftV111cQt/3683m/v37V+uNU7dauPe+9+HOr27e+f5P/tIv/OIf+elv/5N/OgyD2fqnp6er1YrIrdfr7XorCIvlkXNusVgp8O/+3re++KXPd8uVWfCImjR1sOznVBo7qVbjiUy2M/Lq5G06P4Ut++6QtOr9Zzy+UGP9IMDdAvWQUagaSPrk1Xdeid6q5Jfk4RGlymNn+na5/1DQznbZhFzTKwA011ofz5jSxURKpOn0SlESzp0B4xuYmgCYkWqyFhgJNICwAxiENDCzAmpUUmJmg9wtM1beWwevldmjKqUCELEqmJHupHKCK0QZWgKx65a7fu+9l5idQJ7GUhAJutXgZCHL9zw5dkBpghYni4WIIppIq0RLmyU2XYi6nzVR1XuoMOfykw0Taisca9k/ns/VXEtHiwA1Y1UIIVcnEbW38E7O6YgMaqNyCmkKeM/rkXaR+XYpFrUonT6nl1Gh9fHUQRBoLrfAknwoJ1ZDloU2ds3nNyl5HCnlOOdEzxQuND0jvKuScd78Fc9XxYiqoCRafAszpgDVNlY1cBqdi4sM06IGv5Rr31IuNozIOb0nJ0jPL9vaJeVpJDUAwPJMiltO65InbNJbIARlACSqxgIJxVeg5AHPg8YjJEtixibgDqqd97DchuPNCWAt+zMowb7aFk4JfDmTqjiCqukocWRQdRJESzKI4kQ/KytYzvyIiMDFKIjkvFOFfmcp4e3DBy8veXfx7DksX7q+XiszoiwWjrwjotZ777j4ZFRjYo6gMQZG77wPIQw6eLVyLoCoBBSjqKpztB96D8q+YYtaVZUQdjKgDo48I0UFkBj60HjfMO1F2qYREQD07Lz3w35PIKgxxmi4EjAhb4GsD4mIkoqmLA/PbrFY3Lt/frVZn56evv/xxXq9YVr2283R6v433/3w93/u5U++83u/9Gf/8L/19/7x5159fbPbAsge5eLpxypIRG27OGo6Jm59N/Txrbe+/+DhSy++9OrHT54uu4X3HkkR1TkWVZHA7JM3xU58bb9WlFPRDBbluLDIGSGNe1Dv4Iy1wEBMCWw1fMfhNXI6HKvCpayhu1Gm00+gOaBGRhmAigKZD2JiWj9Ait85D9VF5q4CsBh7gITgZyn/wjAG4wCAI5KUnmv5o6CqokHBC6jFx5lgC3bGCcqAIs45cAQQga0ODKulnmN2xmqqzishW8BmdNmGLTYDKSBpikFWEA3m67MsGAI0Adw437ZtHwMCHx8d9fsgIt57SJ6/Kh5WE5xFNSfVIXfRXYy72mQmKzNJyQK6DpgAMWoKgYpTHdJbTU4jwwcua6qVoc3JFWLxMqrIOH0QRl6Ekqgn2vGeolBVKhiyWmNTXfQDZ/sjFwfMslOBMkgwYqrDg5oChUglZd2l1HJUBAEiGQdp00o6OQJWoLpwggXZJj0o8e2yq9PYSv8RbQVKDFHKCrI84NRaurW8YmQKqWVIcysZ4atekrJnSBPANGaNNfGHOrCLHKR6yZCxukwYKJFThBJtUTGaiR2vCZqA8581RZboNK18AYmXzUSgZv3DCDTpsMCCmiOe5iflABA0pHjmqrkywJn+aDHAcNcZG0k6pYpVWoXRBabA4REcu4yRUMdA7oKgUfEdLf2BhFBnjA8NiB6w7m0dgaUATB44IX0KAqm7vLh96aWXls1ws97u6JW4vxKg9fqmWS6dO0NRR8mNL6BdY2YuxhjZgWOnEDebNYB0XYdACjFGIXDcsDEDEUGQvu8xiveegQmAnGNE6VNNGHBkQSsaRZFU9fr6umma5XK5vr4e9nsCVSKNkhynkIJQAYCZg8QYQoRYsA5UQlAgot1uc3Nz0+/2qOCITk+Obte7J598+EOf+0IPzTe+9d1f+Ok3Pvr2d/7Mn/qz/+fXHkEAjRJCL6CeHTqUoA0bSpc+vH9+tFqtbzePXnhpfXt7cnKy2+00SNe2zBRjZEfMbQg9AVc7exLHUFFyDmuufp2tdRG9UMg8PTiGFBwK7DvdITVJzL4cWe30wZo7Z56OqTvZxLenpggad7z+zvfe3cvcJbOpxXJZJOR2Jq+yPUYxR1eqpRGhYATRSAARYkrLseNWioCCwaoSJZNABSKQKqkWwDjLLBKIUWKw/KB86grVnkJEFrL6hoglJ0lEAoEgqZ1Ps0MAcOi6ZrHZ7GJUchxlsJAPc04xESmQAmdrOMeOWKYuYbZs8MA3iWjcD1UNn0hTREsqa1iMKKnLzNQnuIWWptw+ixpQBYhJsYDRXMm8WKfrO11ug55KiTk0vh1gbrlNrDsASDXycnP5fDTTeIrLSj1VgBITPTqfyzlQOaattpZMY3bMiEGw810Y54Ly1BBaPSVNY0/6gXF5VoCkExgYQFF1ZVS0E0TX6Noad6+hOqYtl2VqPaFlN5YI8qz5Hsy7pPNjgJjd0TGDxkVNTdXVxxLASG5Y6u/r6sjT5TKEE3vRJGVi1nKesSQxbZqK1lERaJ6loowA6EiGE7Y4Cuz6HCUrAphcvul7hzROIJGWsupKUGVgZxO24LRAjhg0AyT1jNIxzFirEVNACgMkKKIJR84zIBJ946NqjINlrzrvP3n67OUX7j/9+N1tz0LudrvlhrqF2++3zrnlqmNCCb1brjyxqoJEQXSEw7DXGJjAPJC7/aYFzspRJG6djUCswKYiDnHo87ZXVOiaBhFNn1GFxvt+txeRIINvPDPvdjvV5OXod7uQk30BxEKfABIAZzZ/AyNHq+MWwu12E2MElKurC4fUekdxt9/tVqdHe5FPbjfHz8PbHzx58WjZXD7703/mj/0//6P/9Hh1LCp9vxOR5XLZ+k5VYxyOj+6fHy877/jseLlYIuz7YdMtGu+92drMjIAShakFLYlSkw2eVTdT5UcqLUFDhQ5HUqysZM0BEFMKT+srkjCiy0+Fl6XWpnsIKx9vuaZK8NSUwQkfKN9jDVGJY4OzHk6amusisz4TQDRru7YxbJNgDlI2ek6vTPjPxjZj1ADoQxQgHQy4XSMAsCYxF2P0hMzsgKOK2oGHGxlClsEaRCxcKwjILEIY0aUQUHVElN2iWtCPCThXg1gsFiGErmlCCF3XxDig8yKBiNCRY+8svHZkM9nvTkoZZbNSpke+PRV/hQ1aTDHWLC0dnwnKpO77SDO2jhYKCskDDwoxS43ECxXFwH8Kh7MJK5NTHVEjZMQoJOCYbiZN4DBjvyurptCGK3Shmk92VQUnlIwKiqIKmCDNUg6S4NgcBMjRMQDFkFKdaMcp1io9lAva5D2lia0XDdB6WZzPpivh6H5UJIOMOKByrGVVGlQS88lQHQ88Cis/0FgLWkVRQuoT9Zj7nazPsQNo6sC4OMUre6g7qyAxlB5WmVqWi4yYyxdmLw3m23IL1rMJZmk6NhOcnzEjYn1GoMkQt7+VpodARQzDlGggi2E84HFaDmPyQTLAaOOW6Rq3hKJpXJYeUBopfUgBCGliU15jGUu5s7x6VKE4xXFEhd12+OqX77/33q/77tEHb36feTg7XYW4O2pPl8vOEYKEtlsxsOdG4p4RRYQIYowSonfkGZkxxiCAAMBEIkEDRSJiBATHzuJZhmEAiU3TeGYRGfpI3sDaVPvgF4tAFDU65xzxbrdDxKPVarO+2W23XddpCCBiiJUahclCS8Ztn/TaGCzYruu62912v90REVKUEC8uLu6fne0iXg6bvr8J+so3vvHBV//UT33wrX/6J37h5/6j//v/57il7e0ABMdHx961IqIoLzx6dP/s9Phkue/XvtEoA0Fcdp1zbhgGIvLehZDgtUWEDg59DrbPqM7OtKX5n/Wh610tFIL5tHs0J4EcdsbStCErbYedrIcwGU61VTFV8xtPf+/sTy1ia6Z/1xAqaCbMMILj9hSydFFEkIRqR1ry7zTHb1oFLUDEQUEYUUHEEYEIE1FkdOqChXM6z8AS817OAlhEhhwsPUiUmFKbQGPKTCFyRI5QPDEgG3SiWhVXZGBmdsSRNQxrR+w9e0ZpGna43W4tWhiYLEI6o58nsZ1FMCAgGxAuYobvnVsOd66djaNko8z0MNTsNqzWZc7Kxo/T01I7Qc36Yf3+aiknLF1VSUU1+SFVJ4s+B3AAAACHZMlMBKmlFNmVqy9EQpfdMaIjVGQS8kmNAVSOiGql4kY+CDDFOs4O1QRmN9cfyZ4gnJV8ImCAAFBrFJKq95g4IXsdZwfCLG5IwdwEqli1bP0s7Hv6vQ1RIXmJ02dTXSddyxSSJhmTK4kScFxWQZIngKq1SGumYl4F0/o5q34esZj+tj3rEfFoQyfFZ1RsoWjTMpejkKk8UyEWTRORRONE8Zqyj7IlakYTAaCAypfbtLKGkx2MGfeYUJNWAjp/xeR14/kijA9O+1O4eZkZQ4JEYnYeAIh4v5d9D/dOm+9+LwR8cHvxreMH95n5xRdfPD8967puGIbQkztaJaxdZia0gOrWd8wscdj1+1Z5tVpwQABwnHKjEYHJQQZ1Cv0Q45C4oDEmGaQPMWjTNEAxABBoiMF5r6qLtkOmIQZkPjo5FQkeMfS9iMZhEBFi82QYlhiqJTgVmMAoIqFBbjw7os1msx+GF1568enz67jdfHx1ebzoTk/uff3rb/7lP/9Hv//tN3/8x1/6sa/+8FtvvnnULI/aRde2OcdXhj7udrtXX37pwf3zoBsEZ76oEAJk65PZ0BUiEcOnWBiZvWOO9h8tm1o9gpnMTlAKePhr/S8RxeQwmcs//AEiOmvQCocK8CHtKcDIfxCTSxELg5w+cqgi1Jxk8hkArMJJ9jupgf8qYMJwNQtcDewpwpgrn4QzQ0p5sa0XowgogkgvSBbq5CgmqelJlKNKo55ZA6ABdNT9VFXLphtiCCH0MZSgaM0+XvPHREcKrM5ZYrJJAQJUIiLHLIhxtVr1vg9x17UsEkSw6zqDXAZCK59IDBaTRUQMKdiYNIF7k4LqVApWVyaevKDZkUnm+zUWpKkwQy6WAPaliR0AIHITfIVs/JG5vowfQ+a6WUblm2t7kqpVBQKMGlQ1paFrGo7UalwKyhkfBgBnqY0w00mz08wcIgCQgXmhHEFl0PjMB5P4FsjuwRmBAqQqcsUoKiUYEah2OmmJbE66LefezxZDrVamoXEwjUJdK33JumhgW6gYq9OgOiKjdDi/K4X2aCVLanUMkhQBSJnEaZZYodTwgqx0M3C8Q8efrEXpQBJgqfRCkalUXksJ825ic2jWikaBpAg6RmaVf43KLCuErOLjAaOEkTSrQM1qiso82JeEqBpTVRNClUml1dxatoeyT6emEGOs6e2JRKYaq4nk3Jp5h8ZB5YE754Y+amZzi251e3mzXt8yD7fb4ZNnm5Nl20e8vb196fx00SwWi3bVNU3j4hC4yTUwCbtuSSqE2Pc9oVsuvYZhs9mddscxRlDK5bQoUSYCADCzZwwhSIh72QCAa1oiQhCIYbftr6+GxWoJjkNAxCjsGF2MkZxDxGG/LZkzESDKoKWWlCqIRhXnHBIxUh8GkEgCrfMnq6Pr242qDjGsd/1mvwMZtlf9Kz/0QqPy9rvvffzes+b0frj88Ed/+ie+/rvfPD1p9zHsr4cQet/wEGNLy4f3T29vb5lRhCTqEIajbhFAVdWwJy0BiYiiDKQ59qKCtSqrUOgk5SvPSspMzGWpy2TVBKZVMHyMcfbr7Cpk8wPuUVXROi8yP5h/tf8vDeSBqE5p9fAthy81mNY6zDcFQ2jC48NinxkgB9biNrGskNmIAcenbZFiDthEi4JIBMFgnuIUiuXQR29AzTHGpvGoyopsJ0N5BmxiY4whhmEY6gTitOWBrYVOnb2fmNDKKmXd1/zP3nsEGIa9c+y9WxLCjkIIMSEMQpLADvOp8Fzztn8jqCFtzaZ3IkemRAJV2PasNaiUJsuizZwySRDMaQ6G4YU5XgzASr7aMTtAxt+A0Y9yByWoKjAl2SLJfTv+WhnjJiEIwC0WZ/2w0xishK+hrCBS9jZrrlxbRhVsYVAZqHwpZGVkOQEOg0bVOKvWDrFAZ2rW60BVBSIWGQCRiFXNEGZK0UwoytlUFUQEVDQBg3WQc9JTiEwnqugsy4M6QXvqu9baBZpVJCHyqhFAoyIQCQAygR3NqAXNW8tsJptp2apRQRCIiFUximZ0z+RGtjNsJFUAS/pE8ERsecCUYLCK2Ct6qzLxdO0TpRoJMpIdEQFWmMoqiCmVy9oSERAhQqXMD8xRTpYulMIjEZHTmUrONlYqMKV2UmVdNcVALcJTEEld7jDmg1uwzMhScqGSpqrJ+412GmoAGtn3XsR4XbzPkhwmEjoJ8mvA09YfKW6HGNeb6+ur/mQJJ8v2wwvd9FdXO1nyHsOSlL0nTkcFJGSV0RCdDxKJUIJ4oGW3GOKgCM63+/1+G9Vzg84DgWj0jYthIEZS3zp/O6yDKjL1MWKMnq1uDGoUVCECIhqGgQEQFZE942692+12RHR0dNR1y/3t2nmvGsU7IJUYLUdRAJrGYwxE1FudBiHnvKKG61sR8K5l35APm0+ed+Q+CreffeXh+bm72GwpuHeefPylVz97+d53/9yf/Mp//p+c8vbmedDGtc2iIde+9PABkvMnL+yxeXZ1e/+sFVX0K+EBZcywZ2bTbBy3ElIFxupM1PRC490x8VATQRnJdBIul59Kf4IAQAkdqJXdIv8sGLDckHTNpFqPGltqDwARY5ygYh1y9rqppOdIlgGo2W0zdedU6izepaGiKBKrKtX2nCgABIyFYdkuswilBEtJ6UiTiMRxDAMQaIxKjIKpzDGBgsiQei06cGTBHO9KiIgcIcbg2TVNQwARcS/Kwo3mIlw5CCtIsnoHif0whNiHEOIQLECbiJxzQG0v6MQlyc+IpKhA3ioLsbB4RyrYOq/tQhV0v289IyoLRhVkSxBXAmQFRlZFIsOXy35p5KgKEhTm6ruqQgW2mL8xhUXMEkM0Y6PYG8kVmjgMmumCgkoKqmBnXogUozUONptg582afIf5BJjAlANM3D5lnyoCACOqilMAgKCYVpHnwd5eQQkFweqTkhIZABgRxTh6Ly1aLUZNYBVz46wQbwIBTl8YnEM6aa2maaoblpkdgxrSPKXbJGZLXxEQNQUsT5RrRCwJPGmba71pqdopgAZhOOoK8+1nV4xhut5mjbFYKWyI9TEVKlTlcicW3tiyqROWdkYEKimpd1T2weQ3pJQqBUjFfDBFmY2N3/kWmzDbcyKjao/IiZ2pgXBaPnS2pdCYi0k+SrJ3HHvMYx/PEeiueat7lZiXjOyMxljEyWEhAKBBahy4H2ZK7qHxVAvs+sFqckD3D4BvRF3DD25vnj48P9/dXFyvN5tduLxY++6Bqq5Wy+Ojhe/c6qiNMbJbdssjRxxFvWNV6RoHKjEoN05EmB0C931/tDyRsHfOxTgwsSltjllEetkbZ2NiCQOIgCb2EkK0O4cYVNGRJ4CU9wGp+oKt+36/d0232awBgJkFo4IikWiEbOARUdu2AGA5oNvtZr/fm9WyWq18t2JevPXmuwv2x+fnqrJcLn3bvfvB0y9+9rP7oK+dnx51Lsb+dHm82+3isN/u+gtUIvfSvZd3tztQsvxzIggSPXlb0DojPMZYk0RtIOY1zRYJqrGbeWQvYsUhS0PjHyW1rCaPwjfKopcOFDqpReOMQmZCFGDCH2uRbyKhuB+rccHs/vr7ihQhE+rsIcB8RJiazYOFyvNXAGWJyKwEiSnkUw16XdTy31QRRAOISXqChJzFBCGQOF9mw2DagsHqQeLAaciiICZ7oohIiDIE83Yge0EMITDzIAOJt7Q9q9oJZCq7RNAYByIi71h8I1HA4PVYrSA2gaAQAzESoUODcCpFi8U0UksEgGqnTye89kBkQ1YIKnsUpvwBcuA0lCzW6rdMTjZFI7ExkEKCFDZK0lSGCfNiTSLyNFc4Tpyt6s6M2NIvxsVRBMANYZ8rI5a7pfQGlKbVKgCUkBRADiIG6+PohPBkMmRGghb7R2CgerlxLQRNiAyaqh/lsn0JhmY2qmquNel+6YgaS8t15DNMz9lTeFUlcvJwxmy5okPhqLcKjKIXqx6hKpUz4HJh8mLZy8dSVtaI4UVUCviEfVSDlTxenAUL2PEW6vR+ZLQE67yyWKnqmrU8yAsOmEBbDDvMMs8q/ILM7/KiU3ISxzwJZWim6pST7EnxR8zeL8y2e95pWq9mzTpni37IB2e8mJtBoSM3XF5/EHerb/7WO995523BRgSXq5N3P3gSY7y4eNbw2SsvnredO2lPF4sOwSE5JSYi1ggaIQaV0PeiCDFXgNlsNiBDcEFjH8URKlsVL9Vd6BeLBQCE0McheCQCDPse1fV9T0TRmYEedb/v2iUgOc+IOAz7YRjYt0REzu22e9e0lp2JwNx4i5RB7RGFs1pjLlkiAsGgYuXNVqtVf3079H3beQB4+vETv3RNFyL4Z8+23EAP9Grb/ok/9nN/52/9XdoOvmHHDkH3u92949PtzTo+uNf3MgyDqrSuY/Um5otKSklXLvRwKNJwtkZIoLn6bxaxo5RK5AXzpb/LVp7sCz0QbtMtMxHe8M+6ZnI07ZSxBMn8mr39sDOHMtvqBeFUoawnrm4lJ++VGCLRFPUIdvKPyYq1ikZBc3SLqhKau4LEJTQogQR4QqYY5VEJjIWHUYGBUQdTsDAKESGLQ3IZZtKQJu0iRMt3JxLnCGJS1KKKVwmgisjMwbKWSBVFSZGBGYmIkRgJzI9qpJGqj0/Qs2eLknoNkKeidr1AlmzjohcGnpfE/i+Fl9dnH4UxQsXNESCMslAK18pPlejIlBw7VScBAOqQI82tKwJwWnA3DHvEEhsOSaZDLFUPYaROVVVMXuRaQhRQhVTfBcDipWmMosmTCBkTjlI7lEhttDsdIqqYaYhpEJiR+OuZTJbxTM9NQsbey7ULU1L/ixyq1SHmdO5bGgxi4EcIADnLiVQnh7lTdoBZD5BcUqm6k0ymSSXgscxeTQRU6YCTIafluEMZn7VQ/iREjUnlyrKzvkEIIKLBFSStLFXwniJ05rlN781oI2OEQeqYKqZktLngVMkOZKsIWwGL2nY2aqZJNWLLu0huxtlszI6RRkLVW3btbh/uPzh783e//1u/+nvvP7969IUHYZDb29vG+SHsl7A8Wiw750+OjlkQkfsQl8uj1jFpdEhhv7m6fAoAorpcLpl9jNFzE4cAhA3EpnF9DBqGtmmGISKicxD6HQA0TUOAEoKqOuZh3xvJ9WFo25YEdtteBZld8M57JxKQKQ57JWeUSejIUbY1BwF1jR/6aJH/QQaw0hGm04kQUeyH5aqL213j+eTkeLMdvvfJ93e9cHt+cfns+PT+B4+vnj5/fnRyjjdXP/qlV//6f7H//Kuvrvv1+uby0dn9kwcPVk23uV0/euGF87N7Ua+Plst+tzc+bqsvMiKBICKxaY3zs7faci1fJvrRaYrrp9Bw/W/NFu3fcvQwbl27M2ZQ+9TfaVjsXR9m7y2fNYpmbqkyobQpP0zfJAFW0/zY9t0e74PbJj8lDQAiknmyEhDW2IcRMFIN9K8ETxk4ISI6xwBAjjkGEjaLNtlqtgqExp4R0REpM6s4bWJU8CBkoe/ee/beFwFsOMaUEu1AFVNtSuecSlRhFYrRi7ChlsYYJSiCQAQWZkQm5xIgPBAQAyKpAR6rGrMHSCk2qgq5znpe6glhzGoO1VxFx4yRUT4be4O0ZAqgCaY0jA2mVdAJ4SWOCgYNK1rS8VVz6SAEyOAqBZ+qWmIiElDIMBeG0uEsBhIg5VNln0CNwYuZFwtAjl/OIgehFH+dQDccGr7pp6JOlCBJHH+16YYUzFy7r8W8MTCGs9kjXILCKn3ENKnqrPfOCyuMJYBiwaeJK6POZ5/TyZwr43k5AYE1uQ0mEiIPEPJccYlknqhdaV9B0ebyxbM84B9wWQR33sZiYi8NiZLOYr0VBMopmzk/bF5ewj6IJNlPOi5xMVNstpNtZKtas1EZVxI1F3Yuymv6jYrjrjAjzeE/I/jaXUxwMsm0lBgb1zbN4urq2dPn33nw4KXPvv7yer2WGPt+6JxbtE3XtCdHpx4YvWu7zgomhtATwXa/efLh+/v9vl0u9vv9J88vVqtV61qA26ZpQgje80q7xqOCyH4Loou2M0sRFSKS4d8n52uMjW8RcT/0do+B3Z8en4bdLuwRUMg5AGg68t7fbtdh6JuuZWarbGgih9gb3AeZ/s6iqn3fM5JD6hbNZrsFiY3j7e0NQCCHEvHp88s+bk5PF8PA3/3uOz/ztZ8Mu/3nX7vXLtuu6673l8vlqg/DR48fD7vtcnG2WPrtbrNawtDvHDuIqjnmkpGjRJP3tUyqBc9sXeaCrVLXZiKt/n4mOGetSTaiUyP5aEllvj0PW7ibYMYdBzPKN0MTElzVzO006qZlOPXnO/uvqpC5P1Tbu36qVhSwnBuR4VqP2nBUzbVCkk9bRGIcYiwYAEJElkquY1ALjXkWBtCLJhjAIQZUBm2VAnnRnoica5z3znvH7NAxOmZwzBldEsr5lYj4yJHYM0fvAUCZY4xepI+DSBAAZCZPSMDMyACOgRQoe0nRYn7STFo8ZKxipmrOMFusw9meyE6YZdUAZCFifMhO4vMqSEm4yDpOCsQFVcix1prL96HGLIw/dSOkLiFIkmH2kwCoFbVF1YxliYjJkrBmpAy7tCiYqufmorAAMLpedfJuVB2joTT74jF51aHY3SNRIoDGqeZo4CaY6FunxlOqvFvCyrXusBZGDxlOGO3Mde5ZLwACiBqsRFRVfmei5iMiUszJAKUBE1650kv2hJfZh1hL8UrqjIsBAHYqr9WpRjVYBwA1ZlndgQk/MpGZ7GlAtPT9RE4pDcmyvasig4AjjGiCsio/5WXOlZvV5sFowMR68sCUxZSkXZUVxnxB3vwTAigUUykiox+yctHfsSL1s4QUfN8PwzDcf/jSbr/u+vWj89cuLi5ijM+fPj05P/WMx0fL4+XKcwOOYoxHy2Mm2N9ur9YX18+fDfv9vo+wHdbrNQMOWwG4ub29Xa/Xq9Pu+Ph42TbLResYF96vmmajsSFeLpcAYNVmrHiAxgiEVj3XagoBADoUgZv1pWu81TLfbDZErg/ROdfvB+cc9L0xWUyHDoDkLGrPAYXQ20pZsnLb+f2mJ4Zl11xePt2sb65vbqPidugFHDnvFi05/8nH18Du6uL6Rz73+huvvy59H4fgvb/Z7q7XN6+99sr/+M/86QBbkaUqErC1b9YDgVAuVF4WYsb17JtZlFNNn7VKmQzlKhdxQsaffiVkEjggG84Zd0kbnpDTjLru7GH9Z01+6YZP6VRlitWqw10yODuZ73xj+XeiXypRCt3lCONM2isER28YMpGQKgURFI2qJBSjSBCNqlHVpZatbAZnPmlZIY4oCLRIoBQxMjsBh8iO2HvPzjnHnp1nZivQmT1kxgqYyNL/nKUWOyELwyMCAA4UlKMGIGWHgkoExAxIgmMKJmagpbRSGT6+XpEy/CKPM3rsXAbP/sQsyGOVgITZdyI65rWrKqIoJn8K6lThq03hFMlBhenVDOqwDynOqlpHgOz1qpkjJO0sIib7tDQ02V2ZWdennnNumD0J1byYdCCkeb5XGp75sSf6jrklpUYzrjZ2BDBqzIaj5bplLA7B5DJN8y4xzTWVoc2TVgt/OVzXfI9mKZhGYaWPcK6JV+c9d/ECTWD0seqDILo7/XgwulySmgRgbhtbLzWwgHRnUfEAkQlz1YWoqApIlICgc7Bh4Yx1md7yUgADeS7ODygaGyXPQZ0eJ3AXJZQFJcQx6bMCB5ytbN5gMqfPuldTqYyI+9gvmTpq9sPw6JVT3yy3N3x7dfng+AEgd8vl8cnJ/bNl17XOUR/2i8VZ2yxU9fLZxXZzfXPx7KMP3w/7fnl8stmsQwgN4UfvvnN1cQmEQwjsYLVaAUDX+rOT49dfefHF+/cd4/HJve0QQLRxDoAsi9cREru+71Vj0zQA2oeoiIoaYNjvegT23gdRZoUwRNXj4zPVuNntyXHXdeap8N7frteq2nqvyDGmmlSqyog3t1tidEKR4f758Xp372qzjlGAsN/2qrFddc9vrjbbe/thJ+IfNexEnjz95PTs5OT4/nq7vlrfNL77yle/tN9cnBy3q2Wz328dMzjw1REJZPYnIsmVUqnCML1qdjmj+SzSjK7G1fxBhdwqQVjItXh67rz/zs17522TPy3B8CAmo1ifdWc+TQvJKu7kJ6kIezYnkI8SoLwamEEERCaxHalpIERTrVFUcp0pdiIuBIkxomhGuiiPE6JVnCVvPgxSAmRIgEpOlYiZXEpMUgEAh0TOOWbHSVnM4BmTkzJVtV8bcegURXvAiBSZNQoiEFAQVBRiRRQiYmJkMtgosFxeAVAgNn9DusjyryDixCSrtfmYOeHouvvB644ZPb7EvpGWw/D540FSPBAkHp6agMkKMmiEhFI2kSAT2rDnlXKBZwQAVzKoCr9DMLNmIgO0sjwQOAX3pGgsMwYTGZT1Tm3O3eCYdcBaAGNJKBaDAlfEnMqpCqIZd3rsUEK3UBjySiS0KYtFsMo01uFgMeFpmFAfpwNMlk2z4WtcRlEgR/bWUwGgpdas3Z+mAlRSOS37NZpJjYgFpzOfonG9QrUgmQmb8nm6nElBLnoGmjATVdTpU5RBvFHyaiCSeQGSgw2rss0qszfWxKQJ7BRLCjWm0+4K4QwnvvcZFXEq253RfxAhB4XW/oZ6ZqYzf4fHvnA0RGTfQCDQYdffnpzc/yu//K/+l//Z37p6/nH3xdeHqN1yISLokBwr6WLR2Yn2dru7vd0+ffz4rTe/E/rhc5/7HHEYhI+b5bBe68I9OHs1giLT+mbzwQcfXF9fr5bLzcnVcHtz8/Dp66++0h6fsoqKQABv6YQSRVAcOkd932sUchxj3A/Drt8j9c+fXyK4xerU0Ka8903rNtt+GIa+74Hw9PT03sMHzHx9eTXs9qoqy671xj9JAsUYVWWx6G7D3nna7oah37GjpmmG3XC7vVWhs/sPnl08f+FodXl1e7vfeWgXjGdHq4/kw6PFcrvebvv9g/vnL7zwwuOP3nvh0fF2e4OwWC6XQ+wDKIpMQuJHQoV6FSrKnCxQvblqqradOJdSFiHwKdwTs8KayD+ORKIIM4CdYinN+nbYZmm5fCMZLv/wWZ1buuOXd7Zfj8VY6yE9zyg5DRMgqKoY0AQrAiJQshnsaUJQILJyMAAGk++iQhwCREEFZmb2RA6RS11zIiJi79i0aYdcQmadi30MMYwJmQBADpnZefbOO0bmFLqc01bzka0qEymziSAKFJwEiXEIqEhgxQoisqLFiBFF2/oljS2HYpbpydMiBW/yQKpRxi/CYnQc0s+Eb1QHpkXpqQjA/h1rUeTDdwIAlaj5To8AQISYiiLlYF4A/lSSM2g/AMs9MZbrJIPNQk60tzJrqrn8DgAC5IxeRSIAFYtKEuDRAB/TAyjnTJiPvPB2ZlBNAQ4spDhCYSgAqIgoo1er58ZAbF5rD0AAARRQSQGQnPUnRxWiSiJCzNlgziKhEawqhYKSjnMtko5s89KPim0SkDmzVtLsq0iAUmJIlCmlDyX5FNMicaXGAiSgLKMOEVN8KKtsqdQaJC/6KLrqvPKahubxWSg5sbjAcWPepaoAxJBmhnNQtAJRQvBMzZhTgpBSGWBEJEtpsj6hAiUYMcnNIwJSMl6NVBI/NUlfd3gmy8fOK0gF9QwwP3sudxbLYMLZEywagqlWKTQSHcAAQQWXzfHuZvvSZ177Q3/qD3//++8+u9zsgoJrb9ZXj86b09Y7dL3ywjkl+OTxk08ev7+5vnzjjc986UtfOj09P1l5Vbm6fEoEIfbb/TYMcdvvdxfr+w+Ov/nNb25u19vNcEVh2dL15arzHR+fs2/IuyEMBCHG2HVdDLshim+aaEjhDBdPn2+329ury9vQX66vrzfb1q0o8vbmetF2eHZ6dnpvsVp6du9/+KT77ve8Z9W47Fa+bZ6gvPzyy4vFQkSdA1QFcJ6JdzsgcugUqG2WEolC8O2CugXEsH56+7mXHn3vvU9kr0ybELovfOEL/+Tbb3fr65U76sh9vL558dH5137sx55/8j67YRu2Hvww9A07RgVWkQHJ2c4QEe8dxhgx56oDescyBATIaIKTxYKUpwGWVpt+1Yk8y8s6171G9owIVcFspKI1ooqMCiRCQduoJcRk40y3lVb2btQq/amCZRotMHMk4/hg7am2dqKqSiSiOog6+WM1FR1SyMVikwcreUdJwUrvmW8sI6UDKjChlVkFABCyuGdyTICMiAoMGFTUeYgiIozknCNmdg6QPfmWnUdmYoQUTQUAVuNHQDw4Zhqc1NPictCVI/ZMyGRxqXZMiqpAFAQiCTODaIIDcABqzmaEiCLi2QGSoggDECWTSABAgCRNGqqAECTQDESDIqKMOGyn4YRIgmCVnKYqnRGLJldBZY8WGoQs5lTMSsRUC9iMJXvMoJ1s4jNELgFqspoAEfv0swJGSjliBrSgliKM2dwaKUAkWTA4HoyOVaPLpM+0PKN7GwViDk5GJcuJJ4OfHMPrrfGyeajCeVUFxZRZLDFBP1c7pLDdUtY70RoiQ1nvbM8BgKLk0J2cSIdkidGSZJ9AhUZSq0L5X6mCyLROYk5jEUEUc7lkHYoN+Hfs8YHdNnqT8lTESqGeGRPlc/3eSR+m99QibcZBTF2TLPVNwI29Sthvc/dXohW0FDOEDLmOOeSqNnfGB7MfZpaqO+N6sxdp9rCVE3J7pITXzl9UFaKpOalWppKxY/tg683OxRhB9erq4sUXHxE5Iur7PkTq2B0dHVkqrSNmhw7o2dMnjPDTX/vJ115+5Nn12x1ub/vdZoUQwsASQWEfg4q4Vde1r5wcH33vu2/utxuNQ9s12+36vQ/fe+GleO/80T4AW62YEcLJEC7dEONmuxWRZ8+eecW333xzsTxqnP/uN99UQd82m92tDqyESjgMwyuvvNI0bnW8fOX11643AxGg46eXNz/6la+u2na/HZp2OYjG2LeLxc3mmhnbhvuLy87roxcfbLeDuvb62cenZ6dPPn52yu16vfYLP7A8eukRDdEr3u62F0+fvfro4bHD3/nt33jl9ReOz+/dXF7dXt468uB5IGRChcjEIQSJtFweq6rKRmLfdF2IAyD2wyAxtm2LeV+MGuQkR39y1Xun3hez3VQ4Uibw8fuqKRKRUcVMirLMdvSd3ah/ytokQvbR1Y9Un9PNVRxiRbSQLDm66206qX8zfps4bF0GG8yDBokH20FQOkyn9BUyIzEmw5RtFMHKyKNBjZr5a//WH8qJfi73ADFGMl8sYRHAdotjRntRBnRmQMGUvOCAbc1YVUA5AikF04QIQFQkgAlUMitOiMjM8Jjcc0jEBIAgmKRvlaJU8ODyxMaKzGqZlZZA66k1qVatoOG2SIVziGLYCFDF+AIQqqSM9SxTC7+aralOyKDy8FXXmK2e0j7UFd4N2f1SAh1Htm5cXEFLUCSYmY4EVONRwLiLbGTCVTWkrBWDAqijGXXm4KxRS0hUjoZhKQCk5htAw+gAK1RQzbsRqU23BxBUAlVKrBkALcV17Gr+nMLcASStb2HuKX3IhlNzAanXA/LsawV7i5hAI6uZrMI6qj4cLtVc2pllSjSmz09/quhPCTCV9rQvMQGdp0bybTNppyVQoSSHVb+68Uxh9G58mgUwY52lERoFcJ4WzSD3+bZJ5IudKJc4C6zfMq6RpbtZf7xzMYGpRVXqhwCAr7/+6ptvXywWi4vn17RqNEREbNuWAId9LzCsVotXH7328oMzDLt+s2ekYX21396aRHGIhsrmGLdDJNLT48WXv/zF3fb24w8/3GyuGQdw/W532w/roaejbsEEjlFCVAVLQ9r2WyLa99vt7naxbN99/OFeo+533/qtf9pw1y6Wm902algdn7/86iuKfHbv/OHDhy+++CjIsN5utte76/XNfuiPlqtvvfXdR/fOH9075xb7/c5RKxBb70Psu9Z7FJI+QB/6/smTZ62L9x7cf+etdx+98YXbzf7kuB2GPca4bLu+7ze74WS5+tpXfvTFR58RbLBd3e4lCB11C99wH/aMDpGYm77vEbz3tNtthmFofdN0R8OwN0PDN6zihhAMJXt6ja7jWtweboRCUXPhNOWw2VGU2QkCGG5cTnpUTYiGRfrWAv7Oq1bmUiJewdUyaRMrhjuib84ZcWmNiEihrslj2yYe3g0ApZgYpFoIZWfFrNCYYw/MQgSwqLMUAmkKZgWAL8zmk2ckc7PVQjfJYMCcUkQWa6Sqhiqjo/GfH8xRV0TirMGsBiXIPCTNS2+cPIqgoLICWaIUAIoa9C2BpbokqQIgqGy6FSEKAkZMR3qFD0RLASpdIxDBEhT/g5Y4y9+czaiJXQBAgTRXjYJQRSFgEi8YUrQDRElq0uR8N8eKpUuw5C/NC9wRpBNAK/sICITkau3yULYX9mqR7JBh6Isaoao1Ky89S26Wqf5ZdgwhAoFqLpCQQ6PzzFseOlZHA9lOLb6BdDyPmsImRou5rITZwqnmUp6lT9FnYwajTsUBAZL7gsiJiBnKSQ/RqDo6V2E81v1UTR8AXEp8pnHpTJPF8SrSBQ5Y1Z1/1jcX6ZuUAMAC1G3RHwwZb9YemXbvjkTb3LjFTNkDhYSL7nJnb835liCQJv2cvLk8dYf+oTDLoayfwomiClhVJ4z94NpGU8E0OT05fn5xTY5vbtbHy9XmZrtZXzv3qndt0lQFmODlF198eHYc+l3Y3+qwhzAo9OyoH3betVEGAWBHrLRcNLvd7mqzbpqGlosXX3p0e3XlnBOMQ7/Z3K4ZsHPUth0zh6jMbK7Fvu8LjVxcPL+9vn708MHV9e3nv/TF1erotTc+51dts1q05BaLVdu2x6sTkEBR9/vtZ158dLMNUeTx48e3200Qfe+jx7uhf+31l7zEvt+pIKHz5D3Fk5OTo6Pr/uPr9dXz1i1eevmFb/7et++dnEbQm3U4exAb1SNH6/W1QHd+fP7qvYdvvfXWq6+/dkInzz66OFq2KNGvFhIDU3vctoq+76OGpmk731CU3dGxrNciwKK9ZwcSJQIg4DRiK9MSHH5Z+IIceIZmO0gTec/ps1p9QDTAhDS/yTsFIzerd9YPvspWEkjQF8kArJ89aOaAzhMkLNx1kKRa7bbai6MQLfFdU40BAIxQPKucYy+AiEoQDFrFQHQ0jVGvBXAxgo2fGwiGPYiIhKB1+AWpFdm1bjGmU197hFgckmrMrAARCYijVe9LATHEAIgYAVgAgBQpWBVvQkKICEQoIgLBzC1GssraVvSpAEApgnWuttbKGhU74VO4+sEjCsW9AcmutsUUBVJFnahTYse2YMqJnXkJ2PEGyoSitIT0ThcdK0ucFNUOb7MtBKjOVqU+Ca7FcBHGI4PLKSiavO2QXdOjKLGEm3T/lFhRgQSAIBh0YsrrHcWJ0WEZfx5hBh8HIOBsqSUjexQGtnIp3ioipsggAlHgGuDr067p4gkiisFLJM+HJImfe3vwyNyZDNWerKdxXJVPgV4rU1r/qQdpHnXfa/GGeeUxg1wAWLGRtEys+YzceJMlBRJSVb8jvd2UvnTYNxlj2e1zSzfh6E5uHjN+lWYsTFVHtDJD3hgn0xWoMgCIuYJFQkaEsSfWFBMPIVi1eQAYhqFtWyL68IPH333z7aOjEwkRgbtu2bQLAAlAi9Y3C7/f3sh27SWE/lZCz8zHx8dhEO9bxjbGgQiatlMZnHOKEFT7ft96bhyv19ctMIiE/Y5cO+y3AzEgMZNEdM4CoUUVdruNagzD/uzBSbtYLU6PT05O75/eb7wHAELnGwYYfCS9uVj4Ztl0/vgIiI7vnzvnPvvKixc36w8+fDwE/uDjD7jFh6vjYYhdtxQNR+40Ap+c8AuP5JN1fLq+jbx48uRZ49rVUbfb73d7jH3sum65aEVluVx2q26A8OjFR9/+1u989O5C971HUkAhfuGlF5mx61rfdTHgcnUSQbf77elZtzz2fnHUeHx072y3vWk9M0AMkdAcDzOpA1Dn/U8pfEbthZBGJ+0BP62kKSKmoGXIhk5Ft/PqtvAp3Ln+daJE5j1b47zajZ82ivSs/qAXpWHC6EwnNat74k8SCSIhx3Bm2zyH43CyGAGt0C86InJIwASQbEvbIFkAZ89z3jLJQ4pQxDYRxaJbcykJZCwULXjKZPYIxZi3v1NSwKhp6mwCshSImDCuMek0mS0woCojxrySaBYkkAWlqEFcIxFKpYRhSm1R1doTVq9v/jDhvZrdb1ntqzya4qo7BVDSWafZgwaTieb2ny/3+HYEljS2OxZeBOwoE0E1Wpivg7tEiKoW502FmIGYIdFKkYVS205UzN+iUzMUpl1J7FIB66nJv5ICUA6wVKxPj/ODOZBKNOcRYVKCK5AXVeWEyaSQTE0z/yz2ahInlT+PeWB1VwnEkCrsXaU0hcSJBnT4AabCuBaodVipVjCZ9eN3fln1tszeHe+dPG46ZNai883pbIUhIwwoKKZykFg3mOV1iTbMNvCEaUJF5ZD5Ysb+MEi17NLOZxazwTJQ4qQIAFDXzJjUXtSU8kVJ8UOcaioShZm9477vWcCxh8YR89nZva77ECS0vhmGoVl0bduFMBDh+uai0YH3t05D6IcYdm3rd3twXpumFeCj1UpETC8UGNjtgWg39Jba66OuuNHtrUQIQVqPwzAE37vGO9eIHW8TKETVOPS7MGwfPjzX/UC+ae8tFXnYXztdMLrF0h81zrmm7/vO+2G3CRqUuQ/7JQEId93ylfvnq7Z554P3ic7ee/ed1Wc+Z4XQEbxIcK7pWjo9Pf/qV0+CyG9/6+1hr+dnL8Q4DDLcrnsH55e3N+3xyqNn5Pc/efzBrschDiod6OsvPDo/OuGuEaSrzTUpEHZtx9e318uj5etvfBaJ9gPdi2f95cWjhw+ATp1zIpZOQlSlHd5pdI4mYHXbZMvkPLjiL8tPjWQ2ZbiQ7jTLphgiMgYvjHutmLYH16fJ6ULVONMZqzs12/hQ1NwyNP1BXhzKxhLmZycagMHSWbaQYbrn8FAAoOyJJmJGMtnKzJzBbrO5ggTISI45oT/WnirAkn9iTMlla6guWmqmiKMMz55iYdNlAoKRQr6fycxZFRKzgAWMmVs1iTSnAEDoiIJKtEq3RDSooJWVNYmdwQkAAJFVo4UEqfl6p86VQks15cy+sa8BtCRAYjpZxkJjeZHM2p2ve0qoQaxbTv8miZd50VT/S+ASOlb4AAAnGhGROFmT9kOUaLCfRaRhLm87svw8wvrfmVSDiqUWsoMkINPndDYppR0tQllVKSFAKZi73/wSkLRHxHL4B6O8RuRRtFMcHdSGQhkMBH+mN83WqZIr6hAFwZiMpWBVFuZ8XLO0rpk8hvF4uwj4lJdVKP5Qobarbnn2a/15XALMmkrVspbeFhdKrtyA6YhimveZc3zT2wnxLo3tcB6ygj/mBxfqKv9iEecjjgrW7VTDqfQMcw0eYKRAdgGpiERgZkZg5jAAMoPwKy++8tZ33iTqvffdYhlVvfcqoZeBZCthu7m9jaFnZtc5vzzFpnPLtmHnuyWAGKgQAnfUDEFAidAFH/cBPLV9kG0UlLggQvbMvnHeOQfMm81msVj0cXdzc+McNY56CdI13XIRNC4b3xB7lUXTdL5Fcoy0aLsYZblcSIzX66vl8VGLcPns2a69Wa5OV75746WXnl9csMizq6tHbSugi8ViGPaDRKYQhp2Kni+P7q2Owcdhf+u4UWVFHHoBxx8//6TXsNvtuq5l77SX8+NzkP6T7c3ew8ovXnnlpUePHjjnOLbLI//5L352ddTee3DetgsJMYQATCrh9nbtiI2oNSnnI1XUInPGFmbEY6zDAiJnZD+7cvGSee5+Kvll0UQpd/wO4ffPlL5G57UgBJl4bDCr47NhatYaZt/Xb0HEki41qrkyd8xpcVMxmwc9bYFkCBOYCaSEAJxL7TrniMiTLwLYZiMZwVNYoVnfSp/zYllFDlRSNCQBBraAmwjF5hxhEGzqABlQAKWOJMd0CJgYCKYzBQDkVLzedjvWAfCq0ULPFMHaU2SsMYiUAKISFnE4/gsAiJIPsWvZVOY248CUCccMlFRFdSnZ600qqaYDvHFcyfJDBSDNKksVITgnAFJzgxW7nJEmUdAl/AoAYhwo/5oYIloq2yTqrxArMUMleEZKqimeMhwEKkUF01izGLYKDIOKU02JMkmkISMMIpjipgt4k0VgIdg5JdhpQ3Fos6rGpGJSQUnMZVwVpqpNTsyVIvsTTqS5b4XM8jfLTEQoIx7XXOCQmuHgKmqKPVhc0JxVj+ReEK1n2Fq7Kz2psKHxvZBnBKCYoYhVJRkCjLU4VCpIewfSfRLGMg6taLKfrgqkd5EDANRoAR9SRaFo1WeJUs9YnlvMdm6tfMwja+o+E7M6CjEyM4iEPnSLo8dPnn3jG99w4K300Om9e227sJm+vbqQfrvdXsbNjQ49ATK3gnBy795qtWpa17be9Co2lUWG3W63QtCry2GnALpYrHb7XlYhhOC6RbvoOucNPhcBVHS5XAQZGnbOuX2/JcLj4yPxDZOPMjgERiVykUQIF8TMHkQFAuwCARz75eby5sPnz5tu6QBuw9XqhCCEs+OTk9XqyeZ20w9HXdv3W+/J9bBadg/OTj/54H0dZLU4utg/ZddplPXN5pNPPtl/4T4BPn/+fECIgLjrCXR5fvJwdfzVn/jqL/2FP/er//hXnj/5GAPEIbRte3p+7/T06OzB2W632e/3280tohKIREA7PrQgDOSoQpWkGvVvndMPVLujMP2EVzrqcHDnlfHsEnGXlpkt5jzgFEBtYtLgXH0cO1moV5IpNrvnTvKGwgCrP62aITo+HPWsnWKCgVXXIASyMkHj0TiBqKKgGNBC6oCJRAACJmQitFNeZnbAACnINkn3dNYLmfWNTFsry77MGyICCCNbzQDbfHbsZ/VfyyTEet7sg1oVenNkW+iIMZYcG59PMMlqfKkSpDwjCz4jJspYKJA1KpAIzIpI+SASEvTgHIIUK7XPZmquToGkEnAACONJB6qYrxCSFcLJRMcpnRyGr+f3JjNhPEC72/1TeY9VEZzRWhKiVfguEFuuDxIpwBAjAxFxCesdx2kvr7RdrYIeawqUIgOIxAGavJQUhGUS1RNCUpPyUitJVLYT2SrLkNCraJQBAJDSnhFQyzWPuT8pElhANVAG+ijTUfofY8h7ocwaj/9allUees7fU0akjA4vYFbXlMozZY/TK6hm7xIhUwyRiEyPS3m1tjhwaApjgYYt/SfCRO3VWayaCw4AmZgp1SOxyLfsx8gshrL4JkhY37Mylsk5T+RUY7I+0cLbSFUVVVQoR3xB8mFkAa0gYcgDhyiIFVaoSooytULIOXmOVEtcW0ynNglvSzLlKpErGkzWLxQAI6oTYCAJAky7YXBAl88vv/P2d7/6la9RUN9Jt+yaxnlo9ttdv9nstxva71yUIaq0bXvyQNv26qO33llfbfpeAjfN0fHqZOlhTwPAhpvjF2nZtyF6iXslRUVivxTpCRt2S2q7SAzQIRDSXlVJyDEv2jZIFPTqPMMq6Ia0ixhW4Dt/1J94hEWP2jS8j+F0cUKiu37vQFkjbvq43coQout3oW9XRxCpbbpHR0eX+80g0ftWhh6BW0Je+M61691tv9+22gQVQHezffrRxcusMITds73vsOu6rlcdNlsVfPz43c/ePOCw/sLnXln9yJdPj04//PBDJiGirutAh2XnVaL3PgxRuR3R6xUAUKMwkopaUulEKzWk4lxRKrGCqKXUqaqWVCUNGZuN5ps0kaQqAiWxX3iRnQRntZp0wqCKihbrmGS7LNkGsNwWRXBq5VjqAeTQwlmMatRQasdyLlGAUAq8j69S1TjWMzb0peQ6UFVGl6CYytQRgmJMljWoRmJMBbkRmRgRCR0iEaAnZmKHjMyogKhoaUGpriK77DROIldEEIOSR8PQtVBXRURicOjy0ZjV6aFskpLFanC2OEVVVRhhr0FQhEEBNYCIggAqClCKByZJGg5C2qtECLFo5MmzHc2dgACWk5NCCggNuwoQMYRARIRCSIJgmTsljQKSPhcQkZBjctpqkXKIqRhwKRKlGi3QClGAICFQE6lCMlSy7oYQVRVtqoAtNwkxWFEbFBddQGSbTJimaDIgcIY0SBYhOs1AiKMotXW6S33TaQbbnbpAufMH/Fqa1uKSLZ7qEipVZks1Y/HDJDIWBaAEJc2jLQooY5JdIJjrOxUtqe7LmKE1tasO7yxjT+uWUtaSACwGXglDy+zDpp0zkUxszYOppox8MpnkwxWBZCuMN1evA1TUKRHU/YGqh7bZVNWOhab3E6QNayqRnRknnGdN9WOxGixhRmlXqTwoaQRa3WnqZYKksfbL8o8TcZfZUY8CivNZS2SAigg7jyhE7r33PnrttddjHLbb25dffunk5LTrlrKP+/5WPTvFEIbnw03bth0MF99989nllX/48tnrnzlZ3V89fMSezlyDLQ+k2/fef/c7v/nB7bfvu0Vz70xc57ewcLxDB6JN0wITMy8Xy7ZbLHzTBxdDjz202vRh771H9vtelLckOxhQfbtfLldHR+fHtMBj53xQPm9X0dOzDz5aolsPw55aPjpZb25B+kYUdntCpeXRs9165RgRRSIgo+Ou6/oYVDGKnN2/vwn87O33sPXO89XV1dX68uJm7bvFm29+mwgQhEJcNd3pcrGR/Ze//OWrq4tnTz7We3F7e+sddYtGBUUDIza+ixIkml01plgcEJLUy1Q+p6IatU5ZBW/WJ2d3Pp4hYkbaMHjz2SP1bpoxNChm88wWz38d8oHECkRHMpM5EzBo+iT7MXuYaQoAmBtMsDNS8cYMUJmitauUTotjVKsACSU7GREnVRIRx2wiIkqWMU6ZGGYpCKo5bFURmSMLpS1GiEyYIPOSeACySBokC4uyKMipDWN7jTIqUBx1oaKLgx35FdNQLQ33cO2QiVFEyEJSyBPlqhNJWIAqMnsAQXOtZYUex7mEvI5m6U4I9ZCFYk7vhEKWJPngeZLeojrmiMNINrHofoX9ayXE6hdZD1NGMgICpFAXSxse76uIxr5hzDlMmsElMAFu2Buo2pCzzTkb7ZyCc8tJP4ERxyO1gIIJDhoPJzFPRzpiLBAkADmcQxAAFcVc1nBXXNysh0XJrboxTkgt5CDHakP6rJzZRHYvVZuzkriYtQ3bq1bfAhEFDQhjTK3JfbhLm8kZzpXqXF6UND5I2NE6WwtMZiVUozEMs0k/7TVgu3PE7RlP21HqTpbGSVUKDEit08ykbyIwHf0dmADpKP+LkGuW2lM06VvVlGUuYDKtmqbZ9UGFEdz3v/fexdOL49ePv/ilNxYLWnSrxndD2LQNS09bgn3U1rdDL/sh7N3y6AsvD/70u994f7P5zmnrVfbB64qbMMCXf+xHHrzxw0+fri7fewwfrttmw2cLpCPPXqMEFSa3WCy7dtG0HXvfdU2/ubm+vBzC1hE714ioA9kHBwLgaLNbXz7+6IPt4E/PTlYvo8eI/XHnmkW36I7k5JR1aLf72+shDtFr6Pe36khQuO9XixPR6BypknNOkdB72e0a13rf7vf7vu8fnJ99cn19cXERJIQwbK7WrVtdP79oGxdjXHaLZeMvLj555dWXf+EXf+Hd77/54OE9AlwsPAGqxBS4akcAimYAxRid50QaSZUeXVP17oC85a18ocZMBtmhNKOcdL9ZG5/ORvL3Uqgoa29pG2LW7K1wst125wHwp11jx/L/a7qM+00kHEwld1HID9sswS5jPRIQyHIiQeWIJa2aYFCDJsyK+4TNIiITMqUcXzRwPRBItQwMhYgAUqI9IIFEMfs7jSYKoJhplrqY7H7FrHNj5akupRpFwTxtkjZoKS0soBblawJJkKKkKq6FDR2uu4m32kshkk5MiZyCZgDn6JwTAVAUDUVC5dUZg+dN07Bsquq28eitztIemV4yjUqaz6SfivlQL1kfc5/KGMxLk9Spepjla0FwFg2GiFKkae0+OriK+Kn7rbWmkYlD72pnfDAptNWvohkLwja9IHDReDPHHxl3JqC7X0GWuasJ7kPALGY8DN84nKDDzxaOEKcmZv1ZVdWcqZ9Swjv55M2LTWPQIzFrFABUwtIhJIRaTa5myR6bijEGAp2isoFS0TONngAUYAR8Ly7cvF4pd8h2z4yBAoDVH7Mc6Gr2arxcKmcfmlC1phZqNQ81p64mSWoPRybGWLpRAvcog7iUFtL3rCIqqt63IUiM6n37/Nm1o/YnfuzHkeT6+pOue3R6es5EvQyOZNl18ehoD9v9dX/z9Ok73/zeOui7l8/Xl/Fiv136xfZ2t0MQBJDdkQL/V0dfPD/qjhf3j9tXPnvv1Ve+MFzC8v6uW93z7MIwOHSOPAD5boFE7aJxjnabq83NfgCJQUWB2XX9Zn3x9JOn188vnsTI7WufW529sDp+sTm9//Lp/SfXT6/Wn6y/9/bN43dfPDlePrj/4PTF5t7Z+uZpvw8Ysd/cdAuGcOvAATWOiJiVnIQekRdN69sFIi4WXR+AiBy5s5NT730f+WYTb9abtuuISEO83vf375//lX/tLz19+snTp0/e+OzrqLBadCEOqhhi9M7FIDEqszNiZzcnciRQlTGxptpiWl0ptwEn9xiBF1Z2Z65gpuHDL6G2pgrdWhCgwES9rkklU+ok6a7wlvr+Oy9M0ZMpJrb236nGfHo17+1I70kMR8rKOlaTYvqyUbskE10BNeGuKyFk0UhlEwmBIzIT1nDmJAcraz7HqSwzUiUVFFEDLooigKjMrMX2LS4HUc2HQGkdpSxpCpohhZAluqWiifkLqphVTTJN0dLMoIx4FMqFLSiOqWtEJJXg1Mw8swRID3OFc4LIlTOmvNw8auOk6NQAq5qzTCcLAcrTNwmn11w21y4CAEFBO7W3UK8c02+X5XxKcnOkFXeqo2ujJpeyf8pWm7HLWlDZnynZ9J+PiO2GiMCm9Bm2a/lpDOW1kaeYrLIAxcdRveUO6C9EFZj0GbGWH5ORlg+zYebJB1SK1ahnO7YkxsweLJ9VUMHqP48bERUsrLAIXzC1dRSBiFNtpugikCtEQQ4yxOwPQJzPvCAUK+FQ/8j3j6p9dYPl70OC+yYAhRJQOarGOW/7kOWNPb+LGMpPOCqekPf25MG6tZlyWZ6yAcYYmR2ibG63DpfnZw+ub6Tv1xqGk9XRydHpsNuzineM5Bebxh89dH7Fevrhu/1v/cZvv0exG+j8+N6/+L/4y3/tP/9P+t/7ftM0T0S71ZG/uln94h/88htf+frf/Bsf/d4/1j+sP/77/mAgEhEi13h2zhE6Zu98i94FjTHGrl3Gfh/6nfctIOyG/unFJm6v11ePL6+vBj7mDz5xn1x+1L5z3La/ofGNH/nKw5MH7pUffe3H/8Dzt7717pvffnf9nfuPzs9fOFPAzW5oF77XgQJmu6dhIiEUJedc13SOKMa43W43my0AMvOrL392uWhlufrNb33/3Y+fPDx7sLm8vbdYnh2d/oGf/PHPvP7qO99768GDB8yMoP2wN8hcZhYtMOZgoeDeudpLVCiq/ne2OgnR6a7VP7w/65k6u2fU5+5w8c5Jzq7x1BkU7ureYQdmLN74KZFLCPmliwKAZp7ON1Shw/p+q3GXxSmU2bDbZmzTYj1ojMm26A0FUIXijZdkL4NAAqVgixfNGyZJEcx5L1ocZWUU9Ujz8LHECWc9eHZzZQCND5ICSJ0FLpDAwhMWipYpIY0iBvVv2X3ZYwGcQ2oQ6pRoYVRCEBEmjCBEGGQONQUADtHOjVP1NmCYO+FIp4ZvFibjGNNqVkMe7x6DnFwZFyKPoj6GwrcBIE7r6tqq1qIh5wEfME2dqgaz63CnjdKo2maHLWhW9zBLfaOdmguLFJdjPooA0Fw/pzRrc5Ety7lANWGgACXWEOaSeCIb6gunm6G6Rznb0fUslU1OE4Ft/6YiUbboVsOiSMfy652CCrPWX143kW2p6pNaNkIB3pMDcFDrp+UUImKNkVY1W4hpLuqy2E7RBxbCiIiW6sf1cRTBncC/UxE7H2Y94ZiqNRddJP3qJviUgIgoEZQKYi1Yxna2j0Fxt9stFkfX11dB6dH9+9eXH8X9frVc3Ds7f3B+JvvNfhc69rDvm+YIj3lJMb4kbbf67I985b1Pnr73/uPzjT+G83/5l/7SX//m//E0Dj/UueVmG1547V/85X+rgXD+xqtPf+0b3/m7/98jhJ//83/l5urZzdV64RtG17rWcSOKbdsBhrC1TrLjDmiLIA7p6MS/83zznW+/8/b3nrz44z/y4Vtff+fdx+/DgvzWR3i5O95t1h3qv/ALP/fZH/3h1370R4CunnzwwbOPPnz10Yvt6iQCLnzLTJjyT5jJKapzToCYI5NHRJGw3q4B3PHqaHe7aQEcLb779mMQUI0np6dny+P7Dx8IxMfvv4sqD+4/3O+3XdeKiHMOgfZDLyLMHhHNPWjZz4eAMJkxUd68U5ZS7ykTXTk4EevIjCr0oZZqJQy+vgegtDlx2NSvTmer2eiZ9RkrqKy6/5Ptk86q44wtGI5SBAvf0cyL5M4XwXQ/pnsM1wrnvLS+OQH+GYIjGhyh4UEkyApVIiVjjwpRR4AOM2AsMQ8BRQBKakHFLaupAzELVVJSpJpebT8HTeeiiJhCliEqiIJ5xZLhW4nnFBUjqIJRQYyxCyoKKkRVEgmikh7M6bXjDE8E/ERGjiwxEVR+xHxvIgICdiBdmZtaXZl8SoMKVuZec761mVNUWSww52N2CUDKUUY7d6vZ2oFuB0I0OkhcWiOYm2v2J9dvmqoCNbOeS2K486F0SF5Rtq1wqviXymMgAFWn0KVNxHScilg0mKmcGLcHImo6otZcjYEYsKSuTUnw05Tp8RXVnGSrcJoRxNkSVYAZ4DNmszWHNkzyuFA0CU60dtBCnUsUIiKipRZkwYk4enAIUEgBxgJaBCLFl2CesrJS6Xyd687neaD0RHo2AU7VGzUfI6XAhFSr5cDUzg+OjLUWwLP9n/ucFw4Asx1dr+anLQ3mfYSY8wmVEDHEYPWf9v3uZHVERP325uRk4bv2My+/Hoah325YIiPrwnHnYtBjbqIKfX7hnzwN2iy8e/Pt9//xX/8bv/9P/uL/5Jf/8jd+/dcX3dGyOfrFX/qXj24+fPzd311dB//S2Sv/07/wzV/7b392+8mjBy8M+8DKFnhK5IiclSjpfBPNLHbkGjlatqry/fe//d1/8r2u+8pP/ZV/6XN/9Kfe+m/+kfyn/9nJqf/2u8PCNxuVzUn3hZ/62t/69d/a/8qvvXrv9Cv3z37m9//U6Ytnl8N+1banx2cxqFusGu+paTVg69o4bAHJ4JOOj46GYbi4uIgx7kMMgzw8PUaJw83uve+/s6Sm322O2hWQvvzGZwKvv/+d7/y+n/+5pxdPF6uuD0GjhCCOWACInJVbR1R0zEj7/ajZf9r2me/H6hfVDClAc/Y0zbAdfxrbyamZydNcEdWdPVGcc6T6r8NHZtpD6dKsOmFJ28tyO0VijG/Jz08GqFO2YJ/VUHlrf2lS0wEUUUkVEAUiABGoJgAKex0Bmgi0upGkKkLM02DWUT/JFrAGAKcAKqoiLDEiSAB24CTBbrAxLK1mKaiyGUgIVbwpmBUbQQUURZMFFUWjVaGPMCL2q5qvFFXEnNZmNFv9o8LqE88s7GIqjM2XbilJyYCOUw+LpewX83e26FkA38VYdJbenBfLlu8Oi7K+B1NwfsLR1Jruy1jqzrj658NXzlqf9ObAaJ50qvbr4qQduznGmFAwVY3hSs4fgFzUj+qMT1Oi77BKEyXWkrJo1gIiEDGJF49KZc8f7sPDIddzMk7f5JFUSRCy711AD5+1b3Jg8/wtmEmsmh/U4kpQymHJljKRCkOVxjDZfwBZ07dqJbk89B1EVqL+yrgO5mSa/itIyFXyJQJYKc/J1Ono4JrQWS2Dy59lfnh656yrNR9P3wAjoKORf09UZoOGZx4kkohzFGMkhkXjt5v1o0ePXnjhBVLQuNcYkb1DcuSlY9FAQc5a6lfcv7i89/Ibi9Pjjz6++Kf/8NcwyFd+7GdOXrp/7Nqb937r4/ddc3L+6hdfUz88PL7/wz/1E1dX77tmR0SmhyGwI/Ztt+sHT4ERHTIixqBtszhaHT1/9uSjf/qtn/iDfwhe/KF3Pn5bvvXBD//Qz3198V//6O6Tz66Ae/idbfiTf+mXf+6P/cnvfOVXf+8f/Mp3Pvje7zx+/r3/8m++cW/1B372a+2rr+yga0/PY9stuhZcKxpWi+VeeuN9VmD43unp/YcPLt/98OTkPPaxa9rNev388qJbHr322msXl08a7zUMx8vFiw+O+pvLJ48/HiAcnRwHGYYY2qZDYAYgoighxN57H0MIAM65YrdNl4Zmi6V693ZIz0aw4CzI1ItoXNcEXnVntmNqWZ7MvQOmVt6rBfKt9FABDrpXelj6WVPUCFlT/rWoJlUAKJlFUyGfi5rWTHJa16s2YOxVUNN/ljdlszgiFatHAkgpIsmSH8fxlkq+xGM2bRJXCoAoaTiaojzV+hqTaFYAYWVkigoFE2IcQnJPptrGh3MIFRRa+in7HjRJXlWLKzeoYJCcTZZnMHtAEVN4t4jYiZKqELkYI7lSwqDylGRhaIgjIhbUAjHGMgk61f5rijQlABNSZzL1ASb8DXEMtsUyLiJM6GMEECH74eysd0b0SZBVwS6uCmJOCJ6CAESsqCDZ8UKWIzrzMY6DnwqzQnkyxS6umalkRFDIRExkoGtGOpaTahkvhMggoeyQnA8DCGwhBKUDs6wVRsoVi0mTQpLBAkYNTgBU0WMFY2ujtvI9400VQdu4GJI/tigBxXorfgYTvVjh6ZTCRJAsYNMuaqXZWkDT8mrVyRkNVCYsKSBCrNwa5RFCKpp7vWR2YCkSIMOJpLeL5gmtFktUNVZukzy9hESMFoeVIEKrHw8wQ6Daq5AP5+zAhjKjHPfGRB2pRkQ5FqSk9pv/BGLG8WqQKPSDAu12u9Pjk9ttXEQl7/rL4d7ZveWq2fe3LrpF20WUCF3TOg0xBG5Xy91u8+D8ASPcbLfta49eeeXe+osvfPTBe9efvL3/+K3ngC+//GL3+uutk373fIGtyGbZDLo82q1vad8fL7sFYBz2/vQo9Ntu4YdtZNcEIu9cAzqAXm+3V7f7P/s//3dvbq8/+Pa3v+hAbz+JS/oLf/Xf/u3/5h/LR9+8YPen/8Af+tmf+QPv/sPfvPmd3/vSKw9//me+yIvVZ19/9cHZyarzbLXbGNj7tl14dgPy1c0lACJy03QahhYVFg05/vxrr93crnchvPjg/scfh+329uErDx91QKvj67h55ZXP/9BnP6N0g0TX2+H87PR2PZDDvoeb64th35+cnHVd5xtsnNcgWCBIixmqhW4RECSWE8osNhUBEmq3HVsgZzd1nX2ESQhUAgkzxULmlqQoFn+LAA5GCRcVacruNOfbMI5EfrcvpdrXQKOEtx5CNhhG3p14Y3WwCtk/qWRebTw0mm1PicKYdAQABdZ/skGU0LRZRg5mpgooCiCxvVMCIKuSWTJMbJnHptDkvB1N+K5q/sUUVQyiETUGcoQW8CkEBn0Yo4oICwNPOA+AKS/JJKaENq21Hm+yQ9JReQwyKKpADCqiwSoiRZWgQRGIIKjmsNBEKowJTVpVFSIpocXWYIkDR2a2QBwVAVWlHAyUaS5YCJgKAxb/syZiLcocju8BAUKSRlRjEFWxElMKoMhIkuPscnIyAhBpRFUCNGypEhqUE2JMfE6yZgHZcrLFIrHMeHMzpfJAlayex6IBTL4clawDy/hOKrd7HI6SMiewj/KpyGa1GlE1YN7cJgABAABJREFUNo3mXBlMxyez9xZZVcgaJlpvNhkxnaKnQyId0xUy5aU0nVpslHflrViNjhAw1dPIOCTjwRVWU2S4ZfZTAZaZzRvmmhPV6LhgF8CBXXs47VkPmOiwOs5PBgZJMASAiEpaWMP43olyUE0yABCCTOJh6m6MXG/6Zf2NfajLSU16O1U+6tWxvFJExITAljznAgqgzjkFiRJuNztQP+z2x6tOh1XjuGm87AdHgKi+YRJkwKCxax1iXLXNHqI7PztaHj27eHa1vlk699mXXsWXXm3JIUDTtqfnZ865tm2RaLPd7/sdMnnysZXd0J8sjpfdAgBkCHsZ2mYRhy2IOiQCJARid//svov0Yrc4/uEvvfP06cdvvx9/63df+vwP/cKf+xfA/dnd5va973/3W//d3yWVN77ymT7gZz73xdce+KPj5UsvPBr2WwsoGCQyM4MalkvTNNt+sDnZhbhcLklUQrx+fh1B7987W99cfP5zr4c+4l4jOt92rzS8u3n2/PnjxVkT4vDhB++fnqz2271rfNO4s4ePHPNuv2eXIgCcI0IWkRACM9crCAeGL446HIy1XvAOCqkV6KLjzhT3vI+iWKr6wf2G65W/S08xQBAxGQyfskdmqp4Y1sPUFMYqziN9n406rPppjDVpHAdvzP2sL5lR/UxnLQwXESlVKKpZsJ2e5jgtUJEQk9aikFA5k6AJkqKjM+Rjqjtr3mMHaOF1ROCcm3R43Hpj/xXycW89J9UA7dcIKiKioqBRLYEp2mPREE/QGE5qJ4IhHiWGmNs3Vg/5Hi2zL/lYGqqXjlN3MJ+TrtZLrBBTBTxroYiNKKqFFrVYgPkY8/AVRc7DVPqOb9eReyNicUHnYPpcSMsO/Y0rH7Rz9zWTwfW+qi8sJl6Zr4kiOZ3vsfUMk5bFFVb7pObO9fdlEorctDkEs85ziEPdsXGWq7HIgcSz+KnsixgBMMtGtR5xRgwvz1uDo7nKKWm++tXmB0v/xyDG0SBINnqNdzqb4cNpr+XZuBBmJ1jJryn5QjWiu1ezwoGbzVg9h4dXWTULeiwCeEY/s87Una9+1dE8UiRPMUZUQJXG+R0Lkj89Pjm6f//xk49XqxUTKYH3TI6GMBx1C5DIjgGUEZR00bUralf7cLZaKICI7PaboU8ZIwzofVupBOo4OkfX1+uG3Wq5QudjjBqigLarZehj2O8ZiZxfgOV+MDrYDVfbW1UJzTB0R/7ZLX/rzW98/I/+zsuvvf7N3/3mT//Uz+qyoVXz2Tde9Rpb3R+3jZPh2ceP7z98EEIgzx4xhJ6dFxwggkcSgaASSInIEzfO6xBwiA1zo9A5evHR/e9+93tfevVn//sH3/nWr//mn/vjf+T65tnl08ef+/JP7tbNN373d1v/lXv3H/Z97xof+mG73fhlgwgiKDFYwBEA5JOXUYDNyAwASqEzncYl1fo6IcUc3FdTxYHKq4VnYE4LmRFSIqHMUjC/v4JXTJ2qG5fki72TSCdJStbhXKRv1PutOTpwN95J/JnfSXlpuaMedT06ycFAZoRYq6qKpKn8jIpqFEUAZ/4BSHs2x+smPqsa7fS2cqsayj2CApESpyzFScxa5Yg22z01ZhK2dABBSMczRAWIoFGDVTGJKQIrBhWxIr8SgRNOAMBkX09IxYDm8uQU/zbm+KHk1pbqkLjy3s1aK6IhPT5NK8rxaKPHpWphXBECKiANioXoxrVDAFQSjAATYsstjOxRCd3I1KomamKKqlRS7Q50uMMXlOtwcxbaql83ay2Zg1YPA1KMLSLq1J+Thoo6i2kCc0kkgSv190hY8EJShjgAABU46oN+ouZUmPokqYgxqLZK6iQWBzcAQMK9tBGZ635q7H7a7CGim0VyJS5mI7MRJqzQcTvdNZ+1goLp0Kh+kUoOHsGUE1V6PKZUUqWywXST1AqHfZGJUA71mPoak8aqOqb1nT9AhFehtpW6CgBKIsEzSYi+8cMQu1X3/Pnm9Oz48upKh/7o6Oj2+sarLrouhNAtOgRihwQQhp4JOBc6bJddCCmzOXZeBaPKfj+wCgLHqAjknSPUQUIIfYscFYhcGAQAXEIXVRElsTOVqBobYHBMiFFdXO6P2qPl8mi5PLv38AZi/MyTl8jhvdMTcG0kWLZNvN0cL7tV1y7aJgS5d/9+jHFxtLq+vj49PXGOhmEgx30Y4hAQkQRiUAReLBar1Wq1WC4ftAAQ4u6VF192FLHfeRd/6U/88b/3j35ts5eT1SnG8OpLDxUeAoZvv/XNr3zlKwDQ74Jzzi+aoIhIjIDsC+Uzo8jd+7ecLEzJLC+uHQAmZRIUD07JqocyjY1SufAHI+PMBO3uCaYVGhdTgemZVE2645dZ2y30Vt9zuFtnDU57LfX3c/5gDs+7rtmMzbo6bsoc72tGhAUZWXycYhREEZ4NxPzXans/JHR8VcUkWU0lQGYG7wEwqkCMBNPNmG/EVPlKIdWIT7HNIFp1zhAw1ArhWKHfaD5oEQHLHdbxTAtL2mSGZEaw5I55Gcg8JyWeN9fXreRldXPR7Gdrl0siGHYPqwYAQSRC0vHsXFUVUvXFEk5FucEIgAQMVfLxdP3I/ATjF2O9BxSwRG0wF7S52ZHsBASVFDJKSHJljJSEdq6eAsLK2O4887tTB7RHyllpfaeF+yKmg4YKE3FiIVVfUjEHMYE21wbxDF0SIUNXlp6aKqQZwrY8W6Lza3lQQp0A7pYr9R9ZmUoqwp3wAuW22VQgpgOtMWrDgiYAig5R7dcc/lXNZN3aqGMB0DQLrfgJyzPFYpBqjApQB5PWr5i6uA/wGapZMjdgiY+rOd3kT/O4VHHwh3SiOV0ER1vEss4SOI5ztBl6VdwPA6JqjP3V5cI5z05EiV0IwTsyBx4RkWLXtBL6xvvdboeE6LBzHWgM+52qMDlFZku3QIYg3ntm7neboNKHgYUcOecaDxRVLq8vTu7dp8a7fi+gkmFSJMSugabzR83Jer0ehtj47uHxg3M5jhT2Dx8xt957MylYYLU6pmZBrnXDmpu26do+CBKvVitGjSKeGQDEqQ6iIkjsaAikxICo3nO/2a9Wi5PT887Rkw/fOzo6utw8ff3k5Tce3d/stuer+99/953vvfX+g1dPX3715afPPr7dXJ/dO1+v10EZFYa9Q0R22DTOOa5sgpqA59eh0Br/RMt5Tet4p4IFOU6wPK75uBGnBkf9lgJyNOmGAUxMia2+QfWgPDWM4cqF3g77Kdmpe+fwc5cOJ6fOMhgbs5fMBqVaANIB0fx1ZbCxbHxVFAkAROQUYsxHjDYuk3pRVWPEKJavr2rV4SWlLIoBmlpoiKHuj9aLjqf1kpDvKiSOMtKsXpSfYja3dXJBkn6qJgdsninjcttfZSq0xGRBtjfqN9YznNfoboK0S6pHVDV3A4sGAAC5ElByEliutSKmdNksRIvgr69QqBQBgO60M9Fi6UQB1EHJbcpcOKfvjNRsp5uAONZmzPeVsRUBPNuch1uiMOVqvtAGVuRNwRChYgZVRlLh4IiguS5mfVyKWBvfk0DI6tnCIxBABSjLuDSDdjRRFZ/A4irBfHSqRcZoXtEib6DMKADMt335IDim/tRTlPPX0v9g9KHlZ8fhaPXF3b6sOwcOyfjM2nfeDIedBFMFcPwTdXJP/lyIe+L3q0/gDlYfoPZyF998RnKrWXn9bP4+rTUiJkwXZYnq2UEcmq5j5x+dnT99/rbe3gi6zXYtISph0y01DBCFmFE1YasjxX5gQMfY94MyoAoiNt4x8jAMMvR9v1ssFsyMqHHYh37AiBqhbbooCMqDBBD13iGpxEgE+34f9vum4bZbwn6PQXzTQOxPlifb9ZZCcG2z52XQcMohhr33rm1XMUbfNs+vLheOF64N6om9AFkJjKZpNMbG+dgPIQRERIKhT2BE+/3e7vENDxSZ9HjRPnvy8Xa7Pb7/2n53c/+4f3HlFw0u2rZtFh8/fnq9Hfbb24YffP23v/vG5z4nIo8ePTLEfsjyT4TM40eMWMWI1tt8JuRGZmfJvwfOxkPBVtGwlgYOJVn9ClWlVKH97mCCT73EzORKJT143Z0axl1fSv1rxQTGL7UojkrTeOG0fUw05saNAyd8m+R0wBxTCZryqQFUbV1QJIgVqAIGiAo8CloRjWLpRgARFQCZiBAURYlTSLKh8gGP4s1w2iHHSJeaDrOrhvksQ0ixamD4dJKrJlhwS3FiASSTVwHAAvTG5ZA5gaX9nsXGbC0kg/hWszrOcJrPg6XLPETy0cVY71gAIeOD2tQXsAfM2bJ386hPMboQ0yrbn47TEirWPp+MpDo95DaVYe5YnsndGfUjjkE69d4oaWoIWuYUYHTSYt1CZZmVduobyxfTt0+8T4gIgCIThwFmxSMJQRQAKv6NqXk3ab8Gu8B0dp5zwEZlZjIEuIsgtGR9lyh6U2srSFIENjUVsMQbaz3heLAoh29Pu+KANyUVuxi5JtI1G+YHIrxus86YK0SZpmfmwqrYbrm/YIelM5UqqNXuQFP78n6eviLflSt3F+cHEQ3D4L0P/dC6Vra3mydP3bAFcvvtxjkWDbv9bUNOBSCAqjpECME7t9tvm8YxwrLxAKASgohGjRAAoGmci751npiDQtwLoyMGbn0E1aBRQPoIS1gtO0gwdhGiSIR9VPau9SQCHlwQXrQDHuF250Wh0z4yaLOU4yNWINWmaRD17PikbY4cNc2Skenm5mZ5dNR2ftjtnfebzaZVjAqUkkZQRBGEVFChceRIj1crz/j8kye661ugoxbh+nrf3QITSNyFy373PNxefO0Xf3ZzexP6/eXVe6+9fm91dNT3PSqKtMXZWLDJEGhW8/VQ4k72Y5a8h5RZyZuZIJf6p5qMYbqPcpfsgHY85zMSTjSWvHbJHqtJWvP5nz2VsgAOWNzYt3xOk95r1XvwbsfyoSBXTQVOUVFHK7MEo8zHKKBYpt2kLykkP2meBDTpGxEpYkBkxIhCCgJKIAKiLBhFRa0+uDk/UzFJBEBJ+buYTala+qqaRKgs3fTj6KIQSAfCeYbShFjaUjaCs/kEMGNEmr17h/OGOspUS/QZmU9ty2ZK0GkQz4zAZoRUkSWDHYmY5ZVrA4/rTmhp0TGpa1y6WA5EYBYxc8iUUQDRwCms0XmJ5vJKrqB38xSLwGQAeVvm1cjrUYtDvYPcK1rE4nSwF+WcuvxnPa3l8foenF7lXUSunCxmSVZ2uOS5EEREJnJsKFFWAtkuIsIRopyxOqrEXH6k3JzqZgLm+gGjilh3dbIWWbE4ZGSqCkiAVuKaFUGRRFmUJ/MJceaqrfjXhHPNsrNsRPXsjXrPXdZDGcXhPM9eXWbncKTlA2JWt6cOxkNyLd+nSeZUz0pEkqMigaPl16EIUgjivR+GoXFEQVrVk8ZTGG6vr6MMCjGEPsZhu7uV0O9vryEEiKHzjlUcAaM6UA0RRQnAMRKDQiTCRdOenJ/5pkHH6FgZg8omRGUPTNw2t/seER2x9ZAJdpsNIi4Wq6gswN4tGBiU/Iojku9abMION8FT27bYb5vdPm63QQHbTqg5OTv3C4rcIwloODletp4gCjNL1Ma3cQgIEEI/DAMigmgIAzE6Ys/OiGS1Wtw/O/+xr/zISbfcP3/c3PYfP7nYQrtYrKiFR/ead775m7e3t1cXlw/u3Xv1pZd//Vd/TWLs9/t+2A9hE6WPEmLOA8SDCOGaJHBkDpMASVs7uGtf/OCrZi91tPy8nSrJPj+icXxuhN/BCZcYdzGI1jRZvwIONtedY68fuVMdRkQQVJ15cBWSoLr71Xe2Y+zmYK4kxigSbMgxRottFhEQxXTsm3m+BAiRFCBKjDHGiLlXINXETa+yFiW/9s4+G/OaTEj2jU1yz6pn4YDP37FGGSsi3TOVsrMHR146e9FdQXeUqifFctwJAKoosUgN0BEWDETsv8nM2KFvkYnzMQra3AIAoBAAKbgIinmyBBOgMQCCgipYkanURSAkFAgqSFlyqCBY5IVVbxRJSUUGSA1AzMVKKvM+HgRCibJGtshf5eTvJkVMZ5aaa22mdtJ/rKoWRptnEWnUChNSg+V1GXa6iDikFNGUU2xBLcOPsoTmUXcRAKu7CaOqjmiYFKQZdHvsGN9RO68eOx5k5riMnVGTiPUGAQ3d204M8vkzlnuwwlEhhlyACHM6WizsUrPvqzrZHT3f9bmsjp6JueAsyl1S4SsPTD1qzP55KBFZFedyxKoWqWje5kQcJfkBMjNCA2E/CHnN/cHkKUBksp8UABxEYdwBeO8xEHvHtyuGeNat3r59ArtbJ7Lb4e2wXS5pfy2ugybEfQwxeiP2jtmR09hrDIToqIkYlfMEighC3IUYQt8HVfRIgOjBbfe71mm3WCrzEMhFdMA6DH0YmNG3Tde1fd9Lg0HFD8htA46OgGCJV1dXm21YuiZqbEAbjU2/R3ay2wNR630gUgTnfQjBOdJ1H/Z943gNwki6jy3hgNJrUIShD73oQHHBOETpuuX5oxei8z/ys7/v63//77+02z/l3alvglw1/rxpj55cbYbLdbM4+vDi5ktv/PCzm+snH35w/8GDoACm86liBfRtaUiFwRV2XDajkRLACCubj6iyPZoCeEVEKOtV0/1Su1cQzGRI6DIjdzOmBwDEyYdUXNZEyMxizhgZj5Drt+Qv89YgTGHSddgEUYzRFPji2EouypggD6G4vMqWOagSRoASU9prEd2g0UrtCihpgik2+AQrdKsA+TBKLSYw5vxSVbWiQwhKBAjOQPQkBpSM36CoQawuQ84/UlRgBVIAjSawQR2hj0SNQwICEcWUngAAgIq5uu0gwKCAQkQiIaqoYlSNEIEwRhRQgSgpZFoMfBeUVGK0DGFUVOPBlCam+EhFwayFIk3ReEQ6lFWLhUpR2oCAVk+YE3NLx7c1r64NevtGRBBIBJwjEQFE0VBO/KiyaRARIYKQRYlpcp+DiDKwqtYn5QQAwMF8Bpg95FNtz9wvERCJAihoZXGOtIITDcGCywu540HNAx3nD4iIoUJlO8goqHm6kcjMJV+ZlYzIJlEmuT1Te2vSeN1Syk4ZTTciGpMXNRU4rK96HsojBFhHZDBgCbW/c0SFK9VLXlo7fIXALPaiaHw0dgOQkaz/zEyUZqlusO4SERCB3Vw6A1CQhu646lEcfvgBg5ovQe4w5Qunl1bX7O3le6xM9tmk2aUHV/kykjhGlkii4LBH3Q299oKuOT86ubi63EBc317gdr2+vhj8EKS/3VzH/aa/veYYWwYECbE3wQI5R9k5R0TOOQDt+z7Evu97K3VHjhViAIkIvcQQB0RkRpR49ewTERli2O+HEEIfBmRyzvV9rxolBI1iKcWn9+9R63bRgJcZAIYY+n5nYgpEUCNJ7De3GHrZbEEGB7K9uXagw26PKqEfNETvXOgHVb28vThCfvnRQ/f8Mrz5nZc9fP7h/R/72o/ff/Do0RuvP3784YBDg35/uV09vPf4/Xe//+6bTAHDXh288vqrH3/40VHT9cNg4oc5wZeaiC2I+TPjEmD0YZWlxNE8nSzfbPvMrsxAEt7DPyf5lQeN9pJpEqP+8xncWnl6yjd3+mbqq5BrfbPc9So80DMAABMiwjyjEiprb7RNyw1YYBtVys9VuYi0NDHYNCalNusNZvKKhhhjseHMYs7fhPzK0eqVCjf70DK2/Zc340EAcBrtfCnrtSs9j1UhlllJq/I9EkCVn6lzuYBF/7tzsWaJ3WkqkcbiPUyY/aGHS6lZ+pYW5C76wVmygFIJoyJgQnRZSCtkIxhxHtqnGVHFWsAMRYyAaqG51gIlvBvMuuudBJcarNNXEJFSPLMF32TSAshuxtEgS+MrfaTydfo7V1e0x2wFSlQ9IhhyKxhzz7MfFWFKB4jIgDGffKTqwjQ9GLjD0TH/CRELeZQ5mSzSXXzEkHckYslUzkxNDm8GgBTVPyUVVfNCJP9JOeTVfEwybwRylTWAHOc+aQ2g1C1Jl4xVU+abhKtXjE7pscziRD26czciomYgwPr4o76/rEX+UlWjSe2oEZGYPHMbbvsjws1+H4e9x7jZbptutb1dDxwXzMx+iIKhj96vY1wul23bQrTQ0eicA8L9fo+IfRiM+zjnCIYwDJ5dH4btEGOMEINvTgCEUJmwcyyiZ6fnN+vrGAMixhg1hqbx+/WmPTvebXdt2wKr83x0fvrsw485CCL6trEZM7EXwoARiYhBoJfN7Q2Kdq33pMPQx32vAnHYC4IQhtBHCQ1olH7ReVyEFcvmg7eaFv+7v/OdP/qn/tiDePv20189Ol6ctott2D56+PDRyw++99a3f/xnv3b19PJmd/OZz7z2G++8++F3v3/2ude3m5333lQNZjZL984jhkQPVn4sq+BEBIQMoHGCyFaeIipgTXccQCgooI4A91lQHYrwQtKzzUU5m3eEPvp0v2796tkunlNmYbsiNDV0yiVYpfvnnGOQmGNTRMQSoBKqJACRJn5mlAyqoGm/adGhK+eUkqKgKkSIosBqSKiAOS+WFCxDV8RgoxVEDUMKQWNlWYkIxiEEnau849CMlcYIwKiqdqas0bKhxBoTnCY6mqEMAArZGFZNwAp5HREPd3E6FLMja4BUrbJe+tm/9iHmfKSxHR0zkRAximgCi8xOzWRkW3Bc6nw0Mx7w7mNpxNHzUTNnTGun1ayWpyJoIsWc0Q6pHGFhcJhoSzC5UMo7xm2jOuoahGC1M0ChCDlIPhywEF8YDeRDErfLTl5tia0nXI8teVRpROdQqGOe68Yp/8RZMtM0rbmmKjQ9SAkABEadqzSFiK5Apk7rtMzeW/2riFDXu8jKDU4fyTyF0wzRdJaYPUyvmYSDKZuo08BqLkOcElvrt0uFT5l6Xt5OI5essQLGyZ8Bph9I37EbB/2vO1w/dSh9658w563V4QJ3s0XEhFDnmDVyEIpRVbuzY33SnlzdouxVZYv7e+y3l3vtPMhu04OgW3i322+Wy6VG8Y7CMGD2X4kIhbAf+pTkqhJjBNUYYwTowwCEhE5QloujxjUist1uO3WNd/tBt9vtsBt84zQKI0UFjbFbNPvdzjUeRIZ9H1Gbxr3w4kMMEkKQKCFE5xxIQAACjGHY9f2iW8R+xzGGELZhGIbB+IupawBxvw9AGFRCdLuBHn32c++9/+H1k0+6y90HX/+dl09eWB7xZrP8zuPHujp97vjei2dvfvOby+OTzbNrcgwAzCxD+OJXfvjv/xf/1b/y1V/e94PpcKoKhBrkcB3L4hZmogRqDKQip8liYfVnrmQKdxE5jNsKAVi0GFuTR2R6PDz7s8R8ygGcQN29ehTlG8w6aU2Txc6k/HbI/CS3IFCd39nN5UOxWgAAUu1BPpArigAulxCFrMUDQNQkegFADR5YQFUjRs7Q0Mn4U1sAQKUo0Q4grbS3KKCYr7tMwjh7jCgEoApSol81s44U0qwaI2jyJGJOLyr2l4kUA6uQVC6xmkA0P7bpCYUBVZxKAQDIyj6MUlbVjD4tmCqH0ndKS6P0rYdZQrjsfkqS0SX0CMFo9guaD3TkZga+q1ASJjH19VPCk6vlTxBpiIiSrPNihleP3bEFABEpAx0zIkwd5eV9o5vi05XNaopT3NP4G014embzXFRg/Oe+ZlvULi6huQfwXvz/5+zPo6XLsvwg7Pfb+9wbw5u+OafKrMqsWaXqrp5KLSE0NJJaasmWGhACJISRwAiWkbG9tAxmMgsWxkz2WrYByYAZjIRAA+oWQmhq1Gp1q9Td1TV0dVXXlJWVmV8O3/imiLj3nrO3/zjn3LgR72VJy7GyvooXcePeM+yz5/3bu/eWUqVe577rSr3qWd197XlfZe9upDrphTbL6hmrQlCWQiA7r5171T/3mNHegEcripMH7a+wb43aazdrb9m3SRzuvmttTIlBdlceu/Sw9yu/4rrZUsTuUmOiV179CUm4Eo0ZUkohaEJabdbLw6MPfOS7lrfunV5eBgmpHy42q+hxWF/26269Xq/6zSrGxxeXq02v2nhfWhq0bTubzZoQ3D279N296zrAN90qpSGltFqtYowek5oczhcwExGKIIRoSSmeIIBHi32COd3p6Lo1LLWiPvS27pCiDZHRVhcXse/bEBpVuvcXK9v0HBLigDjE9WW3XiMZkvXrvlt1683lMPR96gfE5DakGOmdp40Oq8cPnnn21q/42Ifa2cLnzdKHo3Z1cxG+vlq/9e75cj4/PT+11bnTnnnuxUf3H6aI2eEygKunF8+974Ubz9z94mc/e+PkeOi7pmlCCNkXPc26GPc0d18fvRSceGX9Oi/ulFfsEU+laBtxDKY3meYHTB2/U4KcDsyLMbAlvAymXP70bdnqlN7Ktxnrd/f+1d2a3BOB7JzfI8UsX3CFBbv79P6y/dU+WsgIIrRH3mV2SMjmL8lcqkqnOGhGc5QyGjIjD+e0rDi2CxyHZ1WZ9ivuBHcrkIh1vvlzpRfsZh991+PNzZFy07bpgpCs8ms398y2KQLjQk1sg9L32GWHBZVUmN0OGBnPa28Xdn9RBS31GubpUujEHUa6kFRkvGTsv4Q1TcbA3Rld4cN7P518UqYZtj0DqujN9b0l4j+xzFAMyhEXc6tm5hylalrTc+ZCAbvZMYXGLclyd0qy+T46muFAzj12L2VR9fptcHR6h7JthOz6SOvAARC17Iykl4D6VkMfe/3mC0b0k5Eod6cge9GvssF1Pd9L2IwIVmUYVsZA5kSJ4kgYbYKxbn93vlK1Ltsb2HQ9Sc0ksneMPeucufbsSogFu8/a+3ZvNcajixx4q8u9cwx8p2Bg77Z7n1zlWePOjoOfXrk364HeAiFJcuuZMGvQNnbWzY7vfuyHf2t89avnT562poP3Q1y3hoFydHQUQojmy+ND15y7E9zhyaINEgpGAd2jxWEYVBXJzFK0dHaxWS6Phz5ZjzY0cGnCTIIcHC4MA9Aw4uBIMmTHMAyADd1GKbN5UEG/Wc/mB2AazL2PeeoxxvXlahiGNjQ5ItZ1m+hD0zT9ZpVSyuW+AEXQbfp+SFGYcmgW6GOMKcXLHn08sXBrfgOvfGzhHlaP75gvW33t0flptAfvPvJ4+dzd5Wx28MwLL/zS3/rcm699+6UPvXL+4PG8nZ9eXH7qB3/gZ//6T374E5+czWaxH6glqpol35Soql9UAHiKzp198dKLepfCKl/YSoQrThSSpVyR5tWW3D/vu67LPZIY70xyNCz2CAyo3ulqIk9ushVLu4+zcT5jk4bpRMhJXeH1896hcMCKFzAjvYzRFt9fonJ4HaVWcGsHFyc2HKC5FdBNIuP5GTJjyaCGZhn3YC+UMF1VESUrRqDZFokfvm39C/MaqfKi6uzYoAqm7Y2zULGaurqdvk/SYLKSB9RuQjn7aco9so/RkQ3hqZOV16Ty5eXO/mF4xVyYBs7GivYdCTph2lMGe5V4dpfPfCRF22H7dUPLDYXMOmTYuaJOxd1RlzzrqFsHaaUfevYMAyXZVXz0p08yHa8sx/bfPclRMNa3AeCtoHWvXbipo1AcX3v3yXa+coR08HJ5yd2V6QkY1ygHcqbl8SShrL1K9vVQd+yxoel43H2M9NQPOcp+maicO8MocJUEkFd27McsgJXUx1QHm79SXhGxdd5lVUcC9d2JjOO/KqGvfX91wHuLL7sX+NSP7dvOrPWasa59HPA+cY/HJt/h6o5f96uceqki0sVhvjhcHt5Y3T/DgZ8sDhbarGN30M5lsw4aVwZ1XSa32Cl4cHwcKH0cAIRG+81aREIKIQTJyUekmVOw2ZynNFyu1tEwnx1sDKHhXBsnGDQRpiGZi8B96LtBgjaz2apbNVCIvP3OO8/eudGqqIbN+alB5seH3dCTMl8upbo0h34QWD9EWIyeYgjRhtHyoKPveydiTEl1qEFWM4tuw8XT2WF79vjR8Y2D+eJ5ffdJHM7aFEmenNw9F3fxAL3Y9DefeWa92cwO5o/vv/2Bj3wwo9Kvzy7vvvDCzdt3v/bVr3zs4594+PhJg0ZCE2N3DXmUfayEZluGSlJATLqaT364T0Ljbo4f1hDANuw5+ninWc2ym8a/R6iVEeZY0vU4DKxJBuW2I+FOp7mVT7skem1A6jpOXQZfdYE6cQNgSKi5vvUOhZqnC75/VItD1XNqNWBW+Z3ncTqy8mM0ggIlwOpsI9mgZHeGIKN1zvz7qmQ4LReVkQ7LIL62bUdWmctUhlXwB5tOXBzuyqpeOOBWAK1hMoI9Zm5fEuUNOdMqd3QAauMhoRfX9FWONGI4jruTO8ZtRe+oKGz5fyl3ruOvlncqgn4rTXeycEZPavZYlGL07LoxgtPsw2l0PEFII1XcmeuZpoQ7lVFZk5pAoBVjcSTsXMGNeuhSNY6/Q/bgeDeM25+rfSbCFdvTqGPRah7PyIinF5PExFs5kvIIYikipQZmsmHje046CTq3Txm9x+Of28dhfyTYHiqpvw1TpnA1MRjYepq39DeZ1/jKxHSlvhl7/qv6Tfa06PgfIAKdfLKdzvS198l4qHR3MON0rt3f6YD3fjKhY9+7YOcA76kmk2+/sxLaklRsvHeVQPXe3CSyuffsUfD0wtHBAXG5GS67IfWWoprgYrXK+cOr8/P15UUX+z727j4Mg7unlLquG4bBim85rNfrnEHa9Ztbt26JiErQ2cyUETy7XLnokFIzWyA0DNouF6FtEEQ0JLoElRDOTp94GnIy12Kx6IZemmCSu53TyXY+k5D9vcndxbm5XHmK3WbV9Zfr1el6c+a2sZjMbBiGGOMwDEPfp5SGIaYw1/bowvnc+95/8+49X8yPlrdnN59HwvLGTTe/jOuDg5OH3373uQ++/Nbrr9+8d/utb31rvgiDDYPbTNrHZ2ff++nv/+Y3v+nJZk0jIrEfmqb5zlsw1mqPYnLKB/5udjBv+uj13ft8en5H2igaya7fe++eYwNB7sqz6diuhjbq+NPoLB2Filecir0DPg7+6qQmTGO3lkTGee2sT8IOs5py4Mm8tm183L1gG1TjtbyvblfP3wYNIeRoQtM0Jc7SNCEEpYxRhiuPs/GT7S6Y13UTgNMs3+lKFpYESu2eu7cF1x58n/QGng6mrEbuLjZuFrn3vOngp4u/N7D86OiW4Am5qCsDFG5ln9WhTsdcYii1fDx/xhpYLAO44tfZ/XkMRbhYQQcdu0EVHa1IEmrGUc8IkflGrIkPQUnGflDVjGaYE8evIqxW73EI2ZEyCYd4TtirEgXgtEgo0864wNvbTUQjsqo3fikcmzQWvwkAQmR7WjhpiQgr5nGToz4pr15VRbQW3lVnAKuHqjwsI3WikD0Aoyd3EdHa8WK6EFM6k7ra44KkjJJTjG8HxI0KuKjXtonTGwY2gw1TmsuLVS+Gj4AveTaUqtMUChnPP4pHuiAtl7QjgxVrPJNiYY7JBs1hAsuuixHM0rzgpoZc2perr8laSWkOSClJkJ2zgQkrnO7y9PBfu55l+hYsmBJwTSJLd7/oT1569mB56+k7b/SBy7Ts1c5OrYVuVo+WRzcHGzagSN+E0A2DKn1IBEIIbtBGVXW1ulguD7t1ZxZ9c+bCy8GPjl5Yhpskl0cHcdNddGsezVXSsH4aPMyaIyPEUxe71rlgO2gKKoE4uHnn4aM3jvvU9htdiCG2TaOhXV9e2qZPKR3MFynGxmnG5fJws9kITFWenD1qWo3d4C7uSMYojClRQwiNUdex6wdDMp3N786XN9r57flyeHrWszlezhJjkIPVk9cPWswTEzw9vTwMM7d453D+5uP10meqKkFjiraycPPkwx/+8Oe/8Avf970/8PDxozCf98OglIYSy2kYd6ci7ctOVsHIQPfIfrSf8kZLpcJyFs2AjIFQaxwqMkGOmOQ4j3tJhBHRGIfxXE+JZFc5vSL4BQIiN0x0RynAZWZu4+xUG6TidjYXhTtcaGMZzEiZha2oGk2uPDC6SansTaiQWgWsitmCIQj16lkUIZlT0BHEEginEBQxjLDGFAclNyrKvy3JQ6AnJwghkwHU3GNcgohoBvrR0GTjV0S15o5QSjqOuZBIJuqARY9WY8C1IaFTKHQ3BMBpEckAUMBSTZRFiDqTR7dEQBiSl/ooILMpz30VBRjdqO6WvajZz+/uGS84228la3jLjcsu1Pe1e2P90GvMdKRAp2dycqQxCa58S2Rnecaf8B3Zz+KUIbkVC3kYMtW89rh0wYKyrR7pXtsRGgs5TMllSjwj+ys+9ImkG2k91aDpFmJw6xDYjmkc2VRVyf+Xg0yoPhCSFa7hO/lFr77cS9F8uf/EITT+cjybO3wEGYebVZBsk4RLklRdpboUzirMMhlJNbJFmGP7XpnCOFPdRXDEzu6OmzX+zXFrsoiflhgWgT1B4NtbqHrnojxMFilLv511mxDMqICNn/vk8/ERJZ49OtWvvEpxPHJ2fEJBeAa2w77qWJuqjbvfjm/2csHGDy26pczdkhui0iTdmh/2Z+frzfmNg8X9R+dytCCZYCkhpUT4Jq0CkWKct60XYRKBkJXc9Xqd+w6Z2XrY6GJ+fr7G7OBwcWKpXx4tB6579LOFpOEyCSJjv9bNZt0uFyGG1AxDP3S9z4+X1q8TcGN5s9+cXqxXN48O+7gxJrfEy6GhdBAg9X2fYszu5BjzCnmMsZBWUDOLQ4Y2oDtc/eL83EJAaLJUCzHefen5D7z8gadvP4jnq6ZH7Nm+cLd98ZXLv/BXP/XinbcfrlOHLsb1xfp9H3j/269+vV+tz9crkqpqlubz+YN33nn5lVd+9md/9vzyom3baMndRSXG6FuP31YSq6qZjar5uF+jJJ7Q5BY6dHofrwlWpU33SLBEbV62CxVJg4tZmtLDhGj3tbQ9StuKdy9FBFahJyYcj3nWlo0EN8soqpJ58Y6RyqpJcNtjqVJytnD2nFUYg3iVJXiu5LjCNknhCF5RZbOXloTjozNkZNbawUkoWlS2PNkBqKpSQhAVqkre99Ebl2otn3tiqRQbTW1kYJOyRJZGRl0ZuhPM4Bge4AnuKN6C2jSycgQnOV2pEqn14k/g6AxI2YAqMe7cos29SlDf7tdIRaxJ6TGlbIIU+pyuaiGuUAEmyxi278udOd4z/yLnQo2Lv330bkbbzuPGdPFt0ESqcSbMMrjU/+yOL989S6BxoPvEHRSTIeYHB0raZ6w7+cwYD0xly/SickxlMzAmeHHv6VcHs7tS4wX1L3NMciu2x0x38qGY9a/JncMkyA2AzMboVsMSyfK40nd2BlVqGAdTp5O1P2h1WExHq3BnoCfk1Ami1tAToFYf/nQN9/NiJs+dLM70w/3uVfVW+ZBnwhqVg9GQuI58WVI2x2dsJTQNGZC2Gvm5eVfO/toSgOx0w5yOauSA1+711csCBSYQWop06S3N5jpcrB+dPwyHOlxeBjedhSZI7LqgbRp6J0nt+z6ozppGKQJs+m6ItpjP+94n0sHbIGebbh2FIfTdpa3P+46r5Dpv0xADPK4u79y6cb5Zz+fzy9OnTUsPiRJkFQ4PD7ugLUMc2kWzGDytex60izYsn6wu2sZsGJwNIMMwxKETWErRzBhIkz4NIpLMUkrdkPq+B6SZt2ZuMYa2QWhW/ZCdwMtGX3rmmaffeq3tbH5yGKM9/+IHjl66N2zO3910N5554e3Tb1xenvlJ+9mvf+m3/fYf+eqXP/f0/rvrNLTtPEaDAQ1ns9kAu/vsc6+++upHP/rRzcV5aNrkZsSeLNk7dOMnea934Wb3dm4HUpGwIj0yKH+1Id3LCeA1lJtvvk2P9Qmp1ENaHMVXqWtvHBqyUTO9c84zNmRwzdwvbzQzJ+XpOy9z3wNUyPlCO5NFHaRfrcvYG2HVwqunqiZPcjzsqPZZqfjxkWeW3SmMbStlA0REMn5f/SxfB8nQvHQvraHyIyqimHlG6gAqzIDnph0F2V7gIlRndIqImdeMbXGUAinPlUSl1Mhz18IM/puAbbvCvXht1vYcyBHvnSq2ul95ia5xwVYjpvKbqf5UFnGy7HwPnANOnjG9PuUcsStnob6khJO2fQ0s5I3KdwVhPnGxbsVpbdklxG5SEmvgdtSI80wUzFF0lZ1x50UxiF6bI7hbM+O5TzxJ38mz2JvbtbNtRGsl3I5GbNcpECOnyEPI2zH6F/ak43iGyJBToqb3mYqKIpAnr/GabG4bMYJz7c+oGM67I6xbI0gJ7j7a8dcv5t49d/91lkj8VVCF8RqZpEq9B9x84QE5W5VuHL2L23uKE1KYYK0GnObpTP+82iF2XNKpMMYV27cwCVBEEkEywKG6Hi7waDiPq8PDxebdx+sIuXMy1yZKRzQp9U5K27i7uQ/DkGYNQSelCclMVTMgYIxRqJbcByyXx09Ozx688xYuH5vZ0d1ncePo9NHDxjGf6cX5A6EfzA8O5wd+2a/7btEueHiYLqBnaw0Hi/nxbHF4efZEEMOwouH23Zvn56fL+WI9RHdPHt1Tsux5S0yyGaJ5okpKQ8wVhUIRjTE6JTqiOyQZXDWQfO79L77+1a+Fi9UnP/4JPHv39N76cNDHDx+3q/4sHG/ON888f/NbX3732ZvL89dfX4aD+XK2eXS6Wa3nTXu57ptGhxjnbXt+dvmBD3zgFz//hcvzi3nbRvOUzc26BeORd/fcl+ka8TjZ6KyEuZc0VpI5HAYghzzyrQTIYBJjJhBy5eU27d+Ke4wOH7shFED2Sh5j6WlBBrqGgEe/N6q+O/nQUYOslgEUhVnqenJsJfr4RrZsPXcl2j9co0fwvZ1GQNVQUUTazjjzK8fXcmsAIOPzlbBR7nefPepk8BwpzVU9EJnktUzm7lXJJOBmRnFhzfp0c5qXgHgE4CmDShpQkSUneOw5eKpwCiIEQI4M+wSsNJkDZk6aQRRwcSdpewjX9YwXMtvlBhNfoE+4VpmZu1llKyS9gjIVEiV9Yp567Uezt867CzXN3trZEWZvxEQSXd3cUU0CtvcMOXEpqwT5y/JfnfD4gDJL3bp6phGOXPKY3yvIGjR9r0a4U4EkoJR9EmzN/2or79Qg7YwHW813q5Fcp3rktbv+AlZPRRWalVJho7G6XYGtoBBwLB4YAUStxtHzlTtx7nEbxveKa7RyAG4UAtUtxq3qt1UmZOLc/7vgerv337k4e4lHScardyI5yv5rn5K/qikCkh2D45oA6kgESkHKdTf5DlMYn7t3TWEYu3frUx9Ca54aEU9RNZxvHq1Pu5df+tDbT+7Hp6tHXXfvE69YI+qNdyA0V1IkOOB9HDabTaOhnc9mi3ka4qbr2qbJ4SSDJ2q7PDi/7C5XZ3E4P33nzZ/92c+++2Tz6d/+Wz7x0Y88fvdtondE9zTTsGgXK+Dm4T0J3fz+W2f9hkfHB0c3lzeXs/YexEPbffWLP/uVr3zlN//oP3B8+5nz8xUbjymm2KcUbYhN0ySwH+JqtUpmGjjY4DRSs7zthj65zQ+PYj9YpKoOQz+bzaRtvvv7v7ehz7TtIYumPX16+sY3Xvv4r/0tj+L68KhZ8OSX4wNLWL377sWTx3dv3/vF9XDx9PTw3jPivQDShH6znjWzGOP7nn/h7fv3P/KRjzw5PQ2zWXKTXTt0lMFXs5CuHNvCK7/DdleyuUIhtZxtVBO3X5UgWmatmVq2778DjW05yaT2bxxD4Xr14JGuo7tlYmSN2mH+mYD2Hr2xxyds28HtqvW7Ey8hrT2yB1AOlwOwaiqUE2Fu7hAkMiv5As8Hu3AWipMOGEiDyq7nLC+i0Ius9eRIcM9trd3zJqSMss+JP4+kEMyQOU46E9k6hlyOwRDFcvZZSmIJZnQkz2j/JlkFsFjy2koZzUT0IF9S3HgZwChPZBx8mUIWO5XfQ0S8OgqmnGRKD7laxOB7RDJdma1et0sm4yJMOdLfkSFnrP5t859CYTUuQq91vdf9uNyCkOytcDBZTkkbDeg8gl1M1CKNZIvEDTpybTx94i2ZhH4dcIdegb66bkhEydAu8y/VbDuuBh2Hl9e06t3lPqm+cyqqBl2tQEyP8/gHSUDzzN2NIqSWoEW1DyarliMBhRa9pq9v5zvJcufOI6ZLL0RuEfqdfLN52J6DNlcczpPri2j30sGG4sXkzVr0lHD3H5HVRsLdFKFSjJaZ0mo+V75zGpMs3mO07/nak8F1f/eR1kUnhSbK2A83bs2+8c237tx/m3HVMMwWIQJ9oEYJIgo1s25ImAW4eQibOIhIb2nT9+IcUlosFuu+a9sZoFFBbRI3qyEOcBwsrG0fnj/67//Uj7/+vd/zqe/62Hpz0fcXdAshqDZHJ8/e/+YXP/OZz//M19661fB3fs/LH/2ej9166VcujuaHJ61bfPb5Fw6OjlM/dKs1cpE4XESgNIMRKaWuH6wYHIrsecuIX/moiAIIbZOcyY3kYj67tVwG54AknlqozeeXs9X7XnpxPdMvfelLh1j9+l/z6ftfvd/OQneG19/5xvMvvNRHrJ9e6AsvmEd3ijQmSnJzuT6+cfLgwYPz8/NZ06Td0rWJTcAt1vo1joqCzDg5ibUuaGtnpHFbYfvkekXZkumtOJarVdZ2HUVZNTSuIS0v6YC13gaVUsvDcmpo6Vgzpi+Mc6z/vqe2XZI0Zfcrqwt1paFhVilsUrM0Fh2QrEcVgJNukISUPEm+IQGnIcFAFziCNCRFsoGbkruGkNOMs5sll1pvTxnyGmY4FMsMxOC16+AI9VzsNWHIq2R0Ildagp7L9ghIyp5rzT5ITfBsxmej1szc6ZpQsYMyhKg4MiNKsOykruSU3JnFatXn6rohs2nPQhzO5KWHB8m0bQ20kyJXGMhE2Zos9dYEv/bznQ8LZMPfQcUcCWaLhkGyIkEWF+jU/BUvIYxR4Rh/ldXPDIEm08Be+e3WxToloPLGgQyd4dj7ajvnGssYJ1Y3fv8n0yqmEQJ0l3Hv1AyMN3D3HHIYu1uwZAqITGa6c5ykqIrujq1bW0EKxMfCsu0zMiWOUSHN5XkqOa+rYoIWcYb9J5alKInohRlN8rnG6WxZ2A4FFMi88Zqr61zVEQFESq8Kc7jVgmbsvvY2WnY/rw+q0Y6tWmY07KHzf+fX35GOp69WZCiAQG6E9d2NG2H+wuEv/MwvPHtyfOvw+LBdpMtNCK1hY6KNVDgegk3QEGDJVSAcUqRzuVz2Zhqaru+b+SIlIlqr8yYsL60JR7c+8ekffPajm7fvP+ot3X/8dDmDJ3abPjQ4Oj5848FX3v3SO+dRX3j+Xnz44PUHm2fPQ/fk4bN6dPvu+44Wi6e93j163oWe4IipN5IwywrckPpNv45DbkTJ6AZIiil5MjOqtG0b2uZ80w0uLqTKfD6nY24Jq1UTFMOwDrZRbRZLPfG3H79+/xd/+Vd85KV2hvlsfYO3ju69/xe/+Lnf9bv+4fmtk9NHj5MWFTgNHQEkhLbthnjv2Wcu1+sbN270fYcQrt0FTmJmWzqpxmNpKDRNXBL4lmNslV2SdjVj+TtSCJmFa7bgcOWMT1/fwTq3LA7yAZHJEJTFHPGcDYOd44ZqDZfjWVEQprK+nuqSPVT0D44dzK6bF2FmOvHKTniRFX6QDf/aCG+U6KmkjCW6mIu4B4Scn+4OSEgpUWCIYKCLlUBfPbCWEaHc3bJzfsx7BmCWKtNjdagmgpSQLbK8Zu7euiUxAj2crtkxEJFaTQOJRIM7zCzlNG4J2RioIe3qRRutX4E73DICp29ZEEcfbdmXcbN9lHZpwjBI5HTbXQWouPzdfURRraba3h4VL/SUAbqwIK0we/r2CtKMuw52smZBTyV/flKxLYpjJ0u/rRzcobw6vvHNViKK2ASQfCt3J7JRi2pYWkiaANiCSW1re7MeIDtq73TFtwvjPhrT9eLiotlbw1HCeQ2ej1oHi+1oeZO3OkrZ1EmKdT5TELiZJ+RjUEe9XZO8fjvuJhsR1XZnUOBsxunsKAtUQ6pueXUkye6syX129e4pjWpNh8Y0rDvuWh5w0WO81H1IVsY5usJ2+Nfo/Brvs7fC239zLmWNyl1H0+/5Gs/YVBsd13anhHpIniOURHJTac7OH7/0iQ/K0/Stn/+i335OZ8d37MWnkA1I1SDBaKJw96aZGV1U8nxjsoP5IrNUaUITGkpYBPckG/fjg5se/dHDb7dHN4+1O7lxb3YwS4jri4dts1iE+ezgEKE94vJ9P/RJbcLTt9/W06eGeDGfYTg8OTkJqklseffk9PGTGbTvUzsLwwARtxiH2KuqWUxIYa6A9H0fYwwhhNCKWaIzNG3bbLqh6wadzZu2dSINcbFYLNv2yfmTy6dnH3r+FQ54en6JdX/79s3P/c8/uUbv6enzd464PHrQDXqI5q3HEbz5wnPn55ceMq9LQiUcKpu+c/fFciFg3/fShGQ+dUFPCa8aJTufA1tIgi0SUkmHcVQWOdLqeCrtSkrAVCu9Sj+FEmx7h+9MV7tHZgfPWUchm8dm7kLAMKaGTOnzusHsf5Kj1w7LMdPqk9q7rC7FdkZC2aYc7yKQ1J8kB82jWe476LWXkdCppIibWcIgJESEwXMRupnSSBdVohajFk6SjVhzN5TM1Z2WR5yaYVmwCykuVKeQmsWTQNRdEikYYDQZDBShuMcIDskth5c9aw/JzJMwsEQ76TSAapq7GZb0gazESG6isLWAx1XKCc+5SrmsktCTbVu8T1zQY2IKSWS5xxK//zuqgVsBLCJghNfKuv3knmoUZd6VWKApMskKR6GVL83tlnPsL3dB2frTS8JNESuZqnLCVAbo8BIeF3Ccb57eiF4JkRYoig5yYEAswQNClWpg1ciwK313ZDxD6Ssx+hAkh7Q5ksj0VxkmqUKtOimWQLYkgKR5aUCYEaKQ7GGfinOSIQc1SxVgjsYaXAh1SXkNWBKVR9mQG5Xk6FGpoy1yeTRbi0pR9IARWwCTp4ulspRFpxsFZ01uyp1NAQGVTMx6XmaO7hChaEEry0u9U18vQOm6SgFUKZaT80pOuGRjfWw2PB7KIELuhPyn/JTMrcidEjjSNQvXM7pkD8QV+pZ6K2bfzO634+d55CQjUxAdkhopTCZ9ikd+/uCFT330YtZ/8y9/8exb7/zgJ56J7Wyemjhbd50qfRbmjmRm8/lSBK4qMxUohB69nbelJV8QQ+jdmkafuXnj5sFy3rRPz54sFr3OlkN32QSmw/nZ6SMHZLm8dfPOIhzG2G+6i2g2zJYAgoWPfuyDxyeHrSoGX85ncnTcdUOjQcBeLt3Rtq2qrrp1cm/beS6kaNuWIkMy1cCGMJhhiJbYHDR0GZDM2xsr7W/GbqltuPW+p6evPrk4Vy67iwuxQeTuH/2Jv9bB77/56M3XTz/6/Z/+c3/yz3/iuRffWT+Yud++cffB2bs3sHiYUpS5N96YRSRV9WRILiHEGOc6dyuwJBMdt57KZN+BZ3n2S1a6QDZE9hChPZElhspdEeXu5sVlnX8vUx3671qfm4xnzNLa8of8fmzDVU5fViCcNa+yHOH9InUgZcZSHXCThwkBYc0d8lTd4eamQvca5GLNv3JjLjomdcS8CaUQNJcW0GiA0xItuWPwCDNY7teTUZwGJDrVKYHiboX7U4BAEU8pelIKFCIiXixQKcq6iUjymNwApzizn8AIBHdC3ZihK1UgOahQQI0IgwnoCjeHQSTna5rLopUksY8xJksJ6kygw3qUTqwu9CAmIKkQONGbJTc3cYeRMSWipYQSj7AERKPDa9mSM2MDZ+YnIrmvunsyOmjFJnIXC8WLUCVHju5lRIhMINXlyalVMxJPOQuEiIxs8DqazFg75Q4hh1vGRG73kfXLiCI1otJcm7KbyVJ2UcGqDMVuev3o4pikNNdficmIuw1UM/OKzjuS9XjksluWLMl+vvur6W9L+p/LWMM+uWcesG7Rw3LmN82ry3dSa2iTXCIbp1P3CWMG9HZNdlsaZ+2G25j31Mbd2bxRNo5foz4mh6PqZMtTLfeckAqE4sa6lzVqsr151ay37vpSzFFah2Wesu+ym87r2jGX9Zs4w0dYA5+2vvHckNq1Qp3uJaL4xGsxetpHpp9G0Q6glC54o00yIyWlqEEd0EbMw8XF+sYztz78h3/0y1/8+gXsqKPODzaOgxZpGJKbEMnghGojggiquYuEVksbNtCjM0iripZGaTQ8d+/u3Vs3E1O3Gbp+TXoaNrePbwRRVZ01zfHRrRDk9OzJ83fuWd+Jy/MvvQgJs1lQDZlImmYmEmAOY9u2AUxDH4KGFNow6/tNRGzbNh9TanD3IZlICEGGvjcVqEjTwJuY0nLob/jGLzezo6MPv/Shx4/ftrQ5PJhZu/jFz/z8L3/xSx+8fdsun7776N17z79458bRW2eP2+XiW69/6+RQL843McCDzFRW/SYVGwQuEs3y+Rm6TlXiBHowb0FmeSGESrA+Fc/T1+6HQtK2nXLgLgQNGeGhdKMqB1AFKV294dXXlEu896N3xPZ0wHt8Zve+vmVuk4/3JjUen70hZT0Y5rmgioCPUducGSPFQBYGCmBeSucZzGKG3JDaFpUCRstZV+4u8MGTWAaIluxByF3kVdzB5KIUI1XE4QYzy8Gm3POH7lL6wsnWYWUWcwq0E0wGGGACBcU9ZWQrMyNTQfiSbdt0EXWIFixaE3iOxAlTGlmlDEg0yxVPIIxuARKYGkpQZEhXJ9SMpJknM5fGXHtvDOqmZjBGmsJjclAGdx/z0sYtyJArgEuFdihoRZJrhbP6gRHJeeo3rSCUdHelZAf9DvO2nDNDE/gVY2KrpU2cxwHVI7Slj8I3EaOPHd1Hzlvec4fnkqU8KWcNXif2AWDbH9OLcz+b7SWTvlQQZJ9GdaKPz4WUYIlX6q/hnryLrMF/e4/U4u0ntFohN4agsg9pWgVd//+K+B+P6OSM5cfthXN2kAH2jigr8mVtJHdlra5lH7KLybJz5DWrzlJUqC0KWhVjGbp7x31XH62j/818qzH5TqJ/vthq3Hnqu8sNzna0oqvT4ZQHVX1vvMledeeorVy9VfkJC77Xtmo+ZzAkA6EhR/PLvNLQPuqXN2eysc2v/DXf/fTNy82TtbA7xjxqT4TQzgVmFuGSfTxgMHiCN2SfBpLqYmRwAAgh5GMmWGQMyJOT5WZYqDKl1Khkvtlo0NBq4MF8FkB6mjeL+XLRp0hJQgkqKQ6qGmNEgrjPNGR5IxRVNXdSF8vDrlsPwxAtiYRRO4kxikggaN6aDh4shM1mdbZ6dLI5iher5vD4aNa8/fbbpN699cx/8t//SXfv4zBfzm/fvn2wbF+4fev00cNX7j5/9vjh+ebdBxcJQLQE8RBaWEEwAAqQQgjarTfNYsF9wtgmxE0JYHJ+36OMrZwiAeA5IJidYqWJgE3vk9LWzePVgTulQx/Nk/d47X25wz2nJ6v++Z3YyHWf1AGoyFgCsHPzDLfgrOWVZRBwj6BCSKrRFCELM8SMH2dADgZbaYeXezYQRoMNbu6guyFFy4q2MVsacFfQTRxUIVRJwksyNEBxqIll+4TFUsjdGorHl+6eas6fk05xownM2BIOaq2HtMIMRFCtI2dBDLMEcYOoMDFFMhkELg5x6yEGJhFReFBrGQOtkaTCIKZMLqXExMxiYpLG0XSYGUIyDokphRQNniwlGg3RPU7hHPJcRgYkJlZsMbdSBJVDxtm/Me6voDiWWR0iRekZSQCAe67iJVC64ibfYeB76l3+MGSwMa+BtD05kVlDPlrZO7Gnf47Cu7pVd4wk2Y/gbOUTK2TmaJDlLSzwLRw/zCybZVNtZw4ka64QCsToRGHZO13YPWCjcK8H2csijjlHxcuE6cpMn16KFXfNwS0A57aCMac9X3N09zSb8Q0nc0D9POtrto2wlZy4cSFG8K/qwHIA2YfluWd21lCy438/bJy5J5gdTDTxERubI/XUM7ZdjcliFoVxOovpvFiZ+N6+VJfle3oux0j19KKR4Y6el/IgDU5L1hGaYmjbmYFuc1s1756dBz5Y3H97uXy+PVisn14mhTslNBKUrqLCoF6yXIVKN0b0nky1AYRQJ3NTekojgqbRRkMbGscQmnnQlqQGpiHScXSw7FMMIaS+a0JoRGEpDbZcLE36QIlDr9q4e5AmMaqIpegpkowxAhiGAQCE2oRoqQ0qItFASrTUbaK26gpLdGr0ND84uv/Vd9792le48dnR3eVqfb5Zrdb23PMv/xt/7D/7W99+9dk7Nx9cnC/FBaZzWS6a0M1nh8vV0/Nbz918+vWLzdOLZTMbPDlEjUWhy9qle/GEmgXVNNHlxz2dKpRTSbYfPKgv1r33Gtobz4Xv3v+qdJ+SZT3MW5vl2uv/jn+OnDqVnn7bp++N3N2xreawPIniQqoq/t6PvGjroIBeRAFBEcmedVJrKA8UVZAhy4JBcn8cmgBmMacBJ0/u0Twyd2U3Es7coz07TBz0DKyTNVPCXFUTU0HJIo00EdJly1bVEUUEMJqD2S9vIuLU7BwmcyemmKcsWhhvllFCqqgLaTlDm2JmRDShpVz1QoobXJGMIgaPYJqFpqHNNLZqQaESQ2Bg1IDyIMDg0ZrEEDFrORtc+iRCDFQwWhSDJEtuHCP1jpSxwLFbXFolWkb5LOKqoIWWiICN+4YiIICsLG5fudbGs+aUyxo9i4eJ//cqCZEMpffTJBIzstQcx850vIXnJlCrpsb7TsThdgvzLKcDZYWwdEBr/le1GsdbkBOeXlHLx63dOSdV+G0TFPO7abR4OvnJr/J9QGZwVuZyO9jEIM6ZErt6yc5pJ3O+2HhoszgnffcpZUjbQzjxRUwrN8bbmu0H0kaX914a2jZINvkQNZwM1CB7ne84rD3WMxlhJYPqJMjPSck5YY7bPa1NkMh9x8N2BSYayjSFhCXDfVy9a15e7zwV9vmeeZVH4K5MXWYwWo7EGHUY0mqzXl2uHr7xzvEzt55/38ubyzc6H3wIAfPog6oKJZoLEELjTjNrQuMJEpREjDGIAkhukoM3QbVA3OWQDwOD0bNZHLQNqmhSSimE0Mwbj2kNNE1DchisDcEsmsPETp+eHZ8c5RaHMfakuEcRMbiYzyU0TRMtRUshhGEYmqYZkpsNEMQYzcySu8wCQyt6OWzag9kvf/ONb/3c1xDu3rw5NHc2m97OHnX/2n/943/lG1/41Evv8816M1+uTs/CfNEuZ7KQy3dXJ/furZ+un3vp7te++Ojt++8cPXtrtbpsZ0vSR6i/TJaQEEIz9FHnMmbxTdGCrtKV56YFuv85pnrn9uoSQqrJImXrzWLGaZqU35SbewaGLKxh/8j/HV97l+0kmkzGORlgflLhyyKOYpWU2Hb+xdVscC/IjjH3ebPKo2t2dAMGZyCUAsk2Y8lLzo2MwJL1m0wizRKSeyKTwpMnGukuriVdyqT4pQv+tCH7GsXdUxCJbjlAK9tFM0XtEsE+Q6oBIN2FpRTXBxHJYkB1mymeRQMLnqVCtYRyVXLGVXKxBDGIiVgiAtm7e3SIUC2KUIlWdCY+E5+rNWoavGmsoUGZZZA4nZqkTVh21vaukgin5yocV1MmuLOB0mN2kRpLC8f8P6k2iI/DJtqcJWdIhauWoFZywOEZ3cs9C2aOzNAAVtcuydohuGzxVWKbihJgzHia2BDIRW8kVYdhoGYYEzEbxiMx3rEMtciLkWirsJEdGtzKGIAoqznS/fTk7N0H9RiPEnpXvLHy452nbClje2UpM5tmFdZuCBMJDYx2HmV7MScvG2GN87PMJ1lz07qdCW7JvrG4I658qvjvnvk95O39xd9d+vrbHXf3VjxXM2NXbdreuZqwmglUHIBYoRCfXom9HSpPT8S20hqA1hiwTwoZ87TyPMdBvqcMnoRMMFmWPPIa1TCpCVtuzhBSAsmUsJgfzOfNN994I741PHlr9ff8xk+8+/hJiAjzufRDzLRXXANYbzaD8kgPxCON7haHQTI0ljvo3dA1TQNlinC6qviQUkqzRZvjKYu2USIlhw2AzZo2gXpwABcnZnNNNpjlbAeZzWYZgHcYuhCCx6F2GCx+6RBCSmbm7awFuiFl1ChnrpFrGBE1JZWG0fIqvP74/DWGv/zqm8dvvHXuQ9DZz3zhl77pFprZzRsH52fp/J2HMxUeH3rXHd48Hk7P33ntjVc+/PE4DMsQL9erY7k306bfrJtmhlScbhkSNbmHtun7Hlcs3T1NfU/l9QkU1VVdDaWE1AqJumMHaWhs0p513F09r4rEKWF8B1q6VkVAPZhTBdEJuXIbinMLr4dpGlcdqlZ+ckUGVyQaL0E3deRiWRANXeEtRIAEpJzJo55EEYQ0p0ciQpwGk0iLjmSesse5wChb0UUdyYzuNEuSXDRzdYhRBM4khLolczI3eTVy4lBjctOcQ0uSRpdcSRncQWzr0EiWdksyUZFZHZqo5dXJnXSnJGfKSL/aM+aeEBSKqApnkmaSlhqbMDRqTZNaSSouCs3Fb2wcjcmyxwxJPeZeGozZHSFCowjQtB4jpfck9GQ5T5aWTEDLVo4jjXWnXqypVCuGHUCCS8lRndRZoCij22RCL+9Zo80JGbk6ex92KHPv33DVK5izjgAoGElhmM1nm80mKzOjhVQw27ILn1uaLJ0JShB7h4TJ3JiRJGEV8aMkN9XxTdq+Tk7ddvR7b2oZ3Ki01lIfqwmKeY1G0zkfNs8OW6kOXid0rP9DcTVkndHH6dTnZuyMkrpUo+1loSdp2/sJa9PDn2kUu9LlWsYxVSfc/doaR3fPWRVwL3FiFK0otyqpN9reNu/79A71X2KKcTA+tFYd7xujU+k4ecOpo2c6nQw6Bssex/xzm0SR91ZsR+Eo2+3IDaPGB2W/XHa+eaSQaITucEuuwnaejk9keJq++otv3Ll38+Mff+nRxbtd14nHoEFElEIymVlKBLuua1V6TzAP8D4OjWjOWQ0hUMUShhQFDCIRLgqlKKQVWRCAbYauQWrV06Zv2zaBQ3KSfRqUMIvuhNlsMU8piWAYBiWSxaZphhRd6MLYR0vJgNCEjPLYDwMAdyS3XJvQoHHxGNJ5khhm509X3enlc8++cLpsHgwX7dkwuzV7Z94fY3H5+FK8h5jMmmEzHN++026eHt44Oh+sjb4ZuuODA8F5362C6qqL7SwMyeEmhuqOo1miKlWRDNWoHXETuVsHPKWEQmCTzEpU114hyOoqy11uOOnfIJOKzF0d7prXPn3+Xby+w8WTKWxZ3+6rpOxi65+sUBJXrveSlCssqB7ujgwxBZ0BQobCCdxzlo/CAqk0iosZ4ZQEWkrJYYkmSPCUkz6EmjJCBcSdBnHzjN+sOapucBYZrR6tdGeyJKAbxUUk1CRkh9JqcbBmm1ylkRKcdgU45tiKSNG865LWjNfs5QazhWrqMIOZm7oESlccuNIImgYzsZmmpQ6qfdChCT6T2KoJG22SC0l1Np0rXB00c7gMlCA0SAM3BTz1VJFEUfGQ0gBJgJkYkOjJPblkLQ8oknmYovpYjSCk6uYsEo+jkM2OA3ot4SUJ5Zje6yXhZj9ncEd3JMOYRp+pVqYWnFkILcjDw8PVapXzG0djLN8oR5uLEU0WdCcIR3tRduqA8+dKsQoYMhH/zGpT3b+dYv9pn1FMjNHtIRGfCvw9KZXN5EyDo7DPr2wEF6qCs+JgAEqo+TCVvp59cgrWbgu53vz6IY3eBqPolumMKHSjGTqdaSkbqqnqNklG20P4mwrscnMptJHL8rLbhaP7mjQWlNhptur0hleTwip7Ks6G3ScKJxhe9U0tlMwLuhM1d0uJUtyOpAOSJg6Z8VYTcZ5vY1nQGmt6JaqNwpI3QnMQCjHYMKQQgnsUCRad6F9+4eCvf+1zL33wQz/1P//c4qQ5uXniG7IPkrtP1pzFpmlU0HUdGkaHMrTzWa6XdDo8sYuSgjAkc5DRonuatbM0xCY0SkvdRuiSem0CYnRw2LhKQ/exQieE0HVdIj0N7hZTH4TRkptRJSEDUJuQQl22TRJsum4+W0B6M0tDn5K3rfRxmFEtJW80ujfN4sGjs8cXZ7c/9NKd2cHFOnzrrW+9cuuZQ7ZsFwMuuDxpnp6llE4wY4IFObl385efPD64d/zc3VsXsMWhd+enadNrO0tM6nDZceGkhORJREtbsEkkfo+Qxj/HHOZrrdJ6EkrYjMzd9Hx6NEYrc/QPX6unTj+/Vknd++Tqh1MVuYzBxk8m10xd5pXMyzQguezAvb96jkgRh1NFGy/Z3WYOQQNXSKi6TC6hgeZoK1xgWtLCWcJ/dKMLEmE0y1kAXlUFTyUvOpthFCTvHVSDi9McTEAUMCdJmw2AIXmQIjFEQvCQoaNBFbT5nJlFQplhzQrMjo5Qvlu5Wzm5UCGofY3EqeaS3FRitruUYkiqbJSN6qLpZ+qtWqNJ1JqQFppaJkEjmkydYW5GS5ocqqm14JAm6WDSUHMZsompBARznTENYtF8AAelmfXwCOstZ59nBkg4Yg4nwSRuQyqa0k6lWda0zGKxuIpnfmtL+G5q7LWvqRQLcewfvM0aKK0mHHAbnHj46B0VMtcHW/XWZf1OMx8stnbGa6uODCUZ0o4ATm4wmlAnPQtRQqf50WlEMJ8Kp7oi+XBPzg8NEEGuFBNj0aQzuuSYUllqW6t+41tXPpmdXRaz4Js+lwRMqVvhV0p1kxdxNwn3ioh7UgSvKFxbGSJVYACJAJlT6GR61GuZk+STubtbo3SfyuApu0k+mgtVowJcqDn+47mQ0UfIjnwfrfHXEq4QeqM5iUPrCMxLP7G8XbtMMFU/eLWZXUZvxFS6j94IuNMzVlgJIGrOf87Z+CPSeFU4SuOyXJ/mwlyMCChp7pY5fymNFpLGJnHTqFlKhhkkXj5ZA4s7i8OPfezFz/zCL3/oAyd/8T/9C7/nf/9PuG+i9uLqngIkiHTdxkOQWSOLxWZ9cbQ48DT0nhgaMw9BNn3Hw9mss0aGuDnfNHKzuSnStODAQYdh3h54F0VnenDo7phJ06U1XRdL6TpKFEv9ai0SYowCG5D61MswNNpGtc1CZNUXo0NUFk1KqU9DiiZKgqrqBAaISIwxOKP01MOIwVwoyyenb928e+/Ondunj9dvfv21djaXxeLImlOE5kZ7uMDR+1584+H6Ml1KjNrMFXpw5yCt16vYH9+8e74Om2E1D3qxOW8494CMJDSSWZO7bRo8g73HIWty5h7dc7OWqQ5XaFKzmputPXjxzRZPUuaApeLI3VFwkqs43Pqf3R1W8JlHhpBhQ0YsuSm3QTXKxxN05ZriXZx+ng+ceHanWfFYsnY7yAUs1fE9teSLEBInjZb53jQDpqE0Iq1TjcyHymkWPFKINiAJDR7pSYSBsYGrDuIm5ko04kESOCTriI4pikYMGwDRBZx1KYohmgKNOz2VNU/mQKDDmWBZVjCB5jFUnzU40IfBXESFbYwbYwgMZIDB0wA0IgFsICIKzXYxGpbOMkJVSqj6lwFUaaQg/dGEDoWKwTWlRBdv6YCsqENDLBtfaL/wppHNPAwtrWFsJDUaRehhpdq6tC4KRSOpdMOmUhtrG2lmnSmSWqIkNQb1FDym6Ckl82hpk2xNuqXO0qWnzlIPy31MBldJ7jQDrMQkK6ZYqcJlFDpIOMVDEsu7V6kIEM3gu1OSm9JVBmiC7+BEBdb858mlVl0lCaJF5FghtG0pZ03vzjGPvYbG+T6kXAWyyUoSiJp0N4XaQA6m7x3g6Rt6lZPli5IaV6y/bWZyTkes99kOQLdvt4J2/3G7A+Y48YlWOxamTld5G3v3aqZ5vX8Fksf4RNv23Np3t+4NYLxmTyPZfuh1ktnznLlDcRL7qA3kNNH8Z/lV3rzscPeaFA5MB08A1Oxu2WNVKKb1uCxXredrkP/q2tgWmrtUTlZf5bigUvbRJwMTsvZCu+K6T5ehmffDJrjTLrS50RxuHl2s0d773k9+/zvvnL/5rbPZd/+BH//Tr/3uH3nx9LWnfrKIyXKxYQ7HmplEKEOMBvMhuaj1m0sJvUHs6VoOTi5XnWh7yNlZvz5xef31d9Plk8bcPanb7bt3FgcHF/ffbqnrBmpycON2OFoe3jyyw8WGdvn4PMxnXR8t9p7i0PdrDk0bFh6iakpJRFS16zqz5ERKKQ4pWtFFSIqVfGP60n1Aks6GBuntJ+/KnVsHB/d+6Ys/9ROvvv4bXv7w8bG1t09uXXQxLePq7Mnji/e/9MKXf/mrbRsa9Reee/7nuqHV+Nz7XvAwnx0uL1ZrF1UJAGJf5Ou4a6nusJvl/MEY4zaR0EuIYdxuL+K6blBxW0zIYM/izESyYzvKjoSbDGaPwe39ORoZe6f7vU7Z9JptKuKoOvsk8Dv5yd4AAMsFBVp8RZOJhDmkVZllACcTLwLeKUI3igTBQE9iJEzcSVM3cQuCRkwZhQmIYDQmoREDkRwGKqgsEsTdQx121mJHBlAc41k/R8XMgicwCVKJuzFaNYP2FnBbGpFfKtR8SHddC9VIq1m0pJQ6Y1WoGi3mdOaAJIpWfKacNZjL0IS+DZuWXdN4E3pKNBpk7lq67CkdwhAkUJCCWHCb0Wa0xk2YmgiFte4pupkhxpjSkGzW2MwIi+uUWovrFDeJ62Rr26JtZAe+VVLUPI0Mn5BLNLPaNLZ1Gg2kQpzXEUlZk0r3Bd/bHUCAS7HXJvy9GoLZp196fmXjGxBknG4GmcoAJbxWxexu286AapZddvdiklIx3dddnp4Jh+Mtxodm3Xo7yGKh6lRKeaabin5VP1eaZ6f09CmpGuXjso734cSk2/scE66RESz2LtvefwS2HpeuOrimJ3k31blOxN2vxMBGItAx17jK1PzeqkuEtci8MI7sGWAxQTxnwVQftrvbBAs3u7Ldsg6x46abrnZtiFasaSBBXMZuEBBSd4Mi29SGcRltqmyNd659xYxQ7Fe3TRmrBm6GM5VDhj70twfEo6O7sj6//+13/Vn70R/51J//ym/9t/+tP/r88k//vr///xLZiCEZAjx5yYyylNxspsy8yeKgylU/MKWmaeY8gFl7fMBV7B4/fXLx7v03Xn/47jt43A+Xl6apcR4eHh4eHXWnZ9FjhC9v3Dg4OTm+dfvGC88dP/eczJfz5Y3V5rQbNubJMaSQNsTMvd1EBDFz9yHA+9gXAiaSe0oJIrk8TIQ5KpzoVAtprjoLKVy+u1nO7yzc33z91Ijzi8enD2+uT9/x5pnjD7Qv3H7J47c+/8Wv3rt7cnJ0MAzd5cVAah/T0Y2T0/Xw/Ps/0DQzhwwpqmE2a2LcLaPEtjkAmfshDiJi2OrxU+LPrBe7mdKYbnFVHLcu6CsvL4wi4bozVV+lOnr/U9txie9JX89enBrhrqTo42lGZYNT/W8ygm0IZu/O6UqDX9EjyIwIFM2QBQCYUJJIFEQUUNyESRGFLojqUWiNeKtJmDN8k8FAc/YmvUjfCHt6Qo4WqBc0Sku5HYIrzHNWJSvkoaMMPOPcmRs9pWz9wLc4uJmLCDPAJGRsG1zwqXK8kSoy4dhZeJOscVKqqmX54CKSHTxCJhU0JNzn9EVjC7FFsCZYG9AIVKMEc0ki7sFcI9m6GOEqRneBWxRxoTXqjfoM1ojPIprgiwRPZtE8DhZTn2wDH8wsxs5snYaLYbikCga3aG4VzXA7d4Obbw02q+VYwgnjGr8t6pfVSvQJ1Y2LWfBTskCnA9gKUUzOTLll8dPWr2hSkqjC9qmZ5+ZdAsb2vQCkRDN3rNXxMJBiVWxOlVmH1Jru7aimAi8T8/bb3Xa8e9dv7wCw9Ouw4i+VmsVTVEMCpZsPwTSxU33XA5zVdm6XJcszkdKde8uwpm988uf029y+Jo8hYev4HR+9J5ix+5ru8ZS1XX2/s0Qogn07iyqD88uqMpFRPrMpXJWSbRb+DoVVGzaryaN56uIgzDLLBqv7fe9lE9a2w8FLov92CtMCTRQbpdIqkaylIDUr61rYpas+PD07aBe35vb4rVfvh3/u//HHfv7srT92xosvvHXx7PG832xUNQ5mZgKHWCCEPqSeQIrmPTU3YkkO40a6G0gPLh7G1969eOP1/sG3n379G/fffffyKNy+e6eTtPTGH3ZOHJ0crxo0YXH2ha/ok9WLL75495UPHB7d+OAnv0ufv3PYLLxp+j7akNzSgMSmnYd5H3sAXT+gg6qqiGVLVwVGEUkpWYJqZmEMQSxJZEpp+fTp0/5S3//hj371tc+9vnp37rf94EYX0tPTNOjbR+H2/KTtvtXfvfvMg8cPXDgMw/LwKMza+fzQlIuDZXtyuFn1IiLaKCX2veesDhZvh7uP7l8zQ+Z+5gYPIYzO5+0O8pq9rhu+S5kFB2n/+gn9F+Vw+sOtXJzI1+lt3VNlAPmr9xzMpKTQKV5dQRx7flMyAp5VDdvdoZqrJDI88uh2zrgiOgXfl+YYMoMJVYJLSUWJjhwMohFRraeZ0AJSixiIBi5MgYOINXSlwyy5A9G5gfSNxEQJRHIMrkomp5lZUi+o06QqPOauvMIgcEKERncgWW5LSNKloGyQoiHXv1jWF5SqqtIUgObMxpnFLo0WamM9lKyM8pXXDpWs+ZoCp4CqIkmV6iBkLj5Ta9VnIbaNt4G56NnYe3AGBZMES0gizJlkdBOXGUETdQhUvBGfBZ/3aBse1hxx9I31/cZ87p5i6jX0luZJ55CWBTDFJG7c4B5JCIMTZtEsbn1vGfKTtYbEU7V4q9ugGlMj0/Zdtax4HWqhTLZXg0oDTDq4mdcGYbXBXjHOTAvY77QBXEapE5Jee3SP0o+u3P5VvqoipGoJ1RzcSqbdA7jdbMsXyJ4Mg+3aqeVfzQXW08fXJ26LZMonwmkj0MlIcrlb2v8cwEhN9XBhXOuqYchkVKM9rbX+bzvrqcFaF2Rn+te4ua57+Xt8VTLUvUjZWgBRf7R9HrP7jDsss3R3ya2Lp64nCnLXvByA9a1KWOB5ORIc6yLAx3SnXMc/cQNMA3XjrTARyeVzF89ohHku2bouPzF3iZvIJW0zs244mOv5ZTo6OL5cdc/dGH7u6Pf/2//Ogwdf/pfmber6w5/83E/8od/869/82ll7uHRHjEPTKIQIAkIxF8CtN7inwc02q9UwDGsNF4+evPvwnfjtR92Ts/OzB34wk1/9A3fbxa1n76xD0sS0GkTD0c0boXUaZ+887h8/fvOdd0+/8rVnb9w+PT+78/KLy5feHxatWJqbM8VoES27g1l2ITllGPqZap55yqDyuYf56EFQydA0xPJ0ONf5/OHZWZzNuhYv/aZ/9vjz7zz4+k91s+e6oX32cHn/4vL28XJ+crDexIcPHke4MLQHi9XqUppwuVk3i+Xq6erm3burB+d93+edUpGY92Ar3gyZ37A4n4M2wzC4ewjBql+6iGGY12SGybbu5IWORwOjIsidbye/NQC+XyG/c+X0NVUFpkrq1Svr61obeuqRVk5OR2GAPrp2x4nU0h0IM+I9ACDoAjrPbQE9tzgwA03NSTY0epTk4vMAVx9aVzoVSaUX6QO9IYV0ccCRonHjWCsssFFCBIIWbARGT4ACgtygzinSipgQVC99gCzAnd4Cg3tChhcnSSFzUa66KJ0QFQmUICGw2LUK0YzL4UVngeT1ySnrYxedUi+ys90AchZNowJIIOaU7IJuQtQQRRM0uSTTyGAenG6ujThcnJKb1ynYNk41Ca7BNYDqGizM2GzI5NKbJBNIJJlScCRNmixYVEruuVL2Irkl77yEeYuZ59nD4SWDoeid7pnfZb6eZY67185UEz/QPkN2YIsfnIkksBb5ec4+lym2S+HeqN0nULtEjW6Z8eSUEOko4H38cDIAKUmrEwg2Tnkuipdye1q4lWdTFK3t0ZLdD7PgnEqx7c1dmAvh65Vbti4F1zC7Op0Te66UKk3O7WTAVSpMTOE88Ym723bFp+xyIFYAzjKqURGybe71taxkOjWyYM8xl7dVkVRUsOzi80JOdcw+Do+7QpelKLOgZFxbDVn4pjmpU5Y13orbK4sWgV1XR0Zj9ZrUf+28xm93n0tHGuE7MtceJXB7KOtOFNGCPt4082YlZ3Iyf/qGffd//DcWD7/wRxq8uuEthf2tn/zpP/jr/xch1NTTTB7IkU7CQq5Pahv0/WboL85OH16cnz947a2zt9+R8w1X/tXHjz+Tuo9++EPhm5e/8gc++lt/2+964503j+ZLN0PQk6PDi37z0rPP/9xf+2ufffunTl76wLd/+dVv/tJXP9FZ3+E4hdnJ0lrM5k2rMm8Xs7aJDhWaezNrMxaDARpC7KJnfHnPhq9Gt4x50PWrVQopLGeh3ax474Vn3zx/9KWf9x/6V//U/X/m773x9PUUXj63TdTBpFldXB4dHR0fx03qjm+cvPHmk8HS8ujw6ZOLg+XRo4dn3dC1wqAETcMsDXELjY6JMZAdNm5SxkOviM0jh0UhwJ29mwQgdzYa7yEap6K3CvXrtLRrsqvKBVedRu9FaeOberfxcE1+wmyqjOOhb1NhxltlUqRQwGZ8lmqjohAJIshI5kIz0lMAlcHNApWuDVRdNVEhSiOtkdRk7FICHgVd0N59belCSfGkIkG0Ve9qeUmRFoW1gaLU7ClO2d3nSJJT7csADQ6hU4SSmzeoUiU0qg0llOoGqlNcFBKKYKaiRh9s6pAcV7imnOZ8LzPzZPQkCtIDobSWqdXUagoNRNwYKe4B0ogHugpBqsCzBQ0gZUxAcRFDgNMLpqXCoxtp0RiInsjmZKSbiXs0p1BFWlVDm6uBxaxXSIprt5i8IJSoqiNNCStT91hKM8bUK4vbmijXaXnmLjKhMXMfUwerY6GE8Vw8JCQ4CEhuNW/ZAV3iuNnlvC0MraKX1FKbtJUdqIdhhFkp0WLb1ljlZjj5dG3NsPr7fcN3PBJZt9Jq63oe7ZjZvZWRo1SW7ElIqJhV5dMMD1ceOoJuihRJnDFDkue0I5ZujUXeO2qUujSN8nKD7f3rrjCX349pHrUmqRp8E7lyhZT3uMweK7meDVWGWNZHyhi2edZkLV8o19edw2iOJEJtchN3H7sWvkciTG2KrqUjS3bRTDpiuheseJsocHjv147+UftkjKI9k76ADkXb+WYR7VSPnZvDcPDWmX/8v/nqj7z2l/5z8Z+2sEAygvffeu1vf/Fzn3zl+fXleRNUQIsugUaoljCVO8ziZuhWq1WMtln33Vn/8P7FcNEd37n1qU9+/+2Hpw++/ej+6s0vnT/4s2+/buJHs0Uc0v0H77z4zLNswpdPnvmxv/4/Xr75zkdv3Pva43cvW7z92jc+cP+d9LkvHd44OnruxnMfeeno5vHz9+4ez+c+9KYqooQ0obiaUvTi1ssxFAkkkQwZm0GkMweX3cXQdE0I/vD0zl/+Hz/z4pn/w//+//QT/7d/5vzh3xQ/jht/5vaN97/yypc/+4vvf+n5xfHh40cPum4zWy6ODk/euv/QzJfzBYDXv/GND3/X98yP5ptVN29nQ4rvtSMikrxACKOojLoF1Jtw4muFK3YJ2N2vK+G4Jud/77V3UqZ/Xj1H32EYO1+5jG6Vcfzj3byyL+QajN2qpHL4CaNs8f6Aliqk0zRDTZZ8WYdTDeCgYnQoqEa13HeMuUK9UW/oAZEw54bYRHaCleq6ER0UahqkTTSBSUbaGI8q2YhIUAorWza6k6G0NqKLlBQzgsyskCqi1EZEKUFEIeLMprAIM1S1FubhTGBh4oDvsy64u1kyc3OkZCkleB9gqq6SGsZW4kxSkD5IciZTiBrVXR0KESK0oBZTEYP7AImAmWekTSiMFh2BngYkYEjCwZTJSVHRAR6jp6QOjUi5DYrKPASzhBg20Yk0OMw9Aok5Fr5VJrPBABRQ/Rzlz+lQOXlGtrHRq+y7vGrqrhdPdiiBjaLVFvPMnSIBlofpkjPZshVYQyA0yQnIOWptZuKleyUmEsXlmgMgUuqnWHywRb5OLK2SzFwnwr0kjimyI0knd8xeIDAYp5gA5aZjmNpH0ZQdp6P4BVhZOya28nZhryOv8RqyALtYrQvKygpta6+PEScD9hpM7adoVQN2/OS9drbGn3wqkEjmhoHTxUfmINO8Ytld/O3US+nWeEMAudSkzHRnnFPpux1zKurLdq32+B0nefh7nHr8ZHrDOi9OXRGoOZ/a9b2K2Eyh5++uDo/nq8Wv/jNf+nt/4pfe7e//sVaHIbXwaM3chsV/95f/4q/6I3/40ZOHB5wFuJsFaSgMouKRwuRxGHoIFwfHN2/cu3lj9at+1e84f3h+9vT02cPl8cGyPd3Ey/P+9OHbG//2u29+uz+/8fyzMTTv+67vvXhy+vTy/Nb7X/qHfvc/+rg7/9T3fv9/8x//F7joSX710Ts3G9lcXLZnszbpsN5cXlwcL5dt2yIiBEkpuVBUfLCu67N3l8zARshJs1SklGJcRLZU22wuu3Rhh4e/+MW7urx4/W/+zE+2x7/9X/kzP/H/+qdPnn7+K2fvvPrkyQce3D9YNk8vzu69cM9scHdx6zeb4+NjVQ2U2WxmfX9xfr48aGaz2TDY9CxvfUn1FA/DQJZeeSklkbDj+7hO2mUB4O47+SWAE76j5G37LuzJ1PFXU2v7KuXsvR8F0nQwO0eDNcMmx/ZyuBcc8xPG0iP3rUcQEKNJbVSHkqCQE1nCFI2nCZk7SvG0wJyguDqC0JDVVQYnjUxUSoCoUYQN2Uh2cg3EIOgMg8og3qu0jdqQOEiuFJqPbDPBPWP4i4gEIUQcpGSwEyYxdx+c1cjKYTLJnRQaVSXDtiN7zWcWCSimlIwLMmmKs8ugaJ67ChtyFyMzppQEA2DK2Kq14jP1VmIj5rygriWsGQaXzrkRkjJLurQcPs6gXYi5Etpd4Mixa4o3njO6DY4EimXAJyeFpjRPOoPBxMiEEt0Xh4ouJfYJAehFxJDcBzcnQgnqly68mZY0Ky6lk1Vhkxm1e18FnFBb8ollmFcngLmXH3LCtVlxzCYkJ4Si2Ja4iAgQxkQJKZaNYqLwesnT2UGXHF9ZoSOYE9rHrte1v+y2jHV3IqYa9uZTLTABQEeu6p5Sg0LzGapHpaofgHgR2O6ePPc9zhx91LhzDVXWEBwoEfbC5gEDCzphHbNk95qElJJVc1/M4YlW4gFW6jFyZ4VxQ3MBFQGkiglXFhOQqkRXlrQDvDUuxrg4sl8HgvF9qY323EZFQKv6lpeQgUtmNkYzuCMBIjnPyV3JkuNdNSd399IOuW59xUHJj8QYHKvFgu6DMNR6EyclIeW0OKmon6NXE0DWmDMMS0oRQIEop9GXaTCd9f0AJWbNJg6HUVoOq28+fPKR93347/m1n/qzf+PoT37m3v2E5et/8UJeHdKRA0C0NLThxi995ct//Qtf+4H3v7R++o4v1M27lBaLZr1eLxoRafq+U3DZzFKD+Wx5fOOWbYaj4/m9WydIIKiHxwt9Ruzlew/Pv/uDLyN2Z5dPe4td3598+CPdEFft7Pav+MSDBw8uvnL/H/nUD54sFs+99HyzmD24WCWNd1969q1Hb1ysznzo+35opZEmSNMyOC3FGEkXkfV6HYf18vikH5ILhEZPMekqsbdGw/LpxZOTZhYOjs/WH3zTFw2+6IuD+7/81T+xbH7T7/9j//inL1792Z+/cZh+7P/9r/3yGw9uPmmf+8FbGw9PV5evvPKBo3vPnVrs3NHoYnZwYdFjmvVYaU/O3BGU/bCmaHLPmGUOCJh7JJtZCMFY6uC3JOmjLDZ35HwKd7cMXVcpPOdtlabkkkllx+gc71dK4ArQm3OMLvuW2AoRTsTeSJw54Holyaue3HpSnGDpTzdVJWuRHEAXeCnHgdOQZPSHakkiFrCRpWrThHBenzSjU1wlsuRSOTxRGHL9uoGM6kncVE1VJAX6psFAN6UHSYIoIN0SIpo3adEsJV1H70TnmkII/cZ65yyhM2sC5lQmbyOgNMlWKzwbhbDGSkOkRsVyRwdh7uarUIEGiriIM0CCaEMRZ5Mt9kSCuYRKRMQZTFSFU5gSdx/cYNmXE1NCTIwpGXsFAtlIbLluuZ6hF3SUSAmpeAeiKCCNqUACqQ4nzUszKAJJMCREiBoifCBUk5NsnIOH3qIgiSKK9IbOvU+JbQLckiS2UIuxT5YFqjpn4IIymG3cIrKXwgvCp7kzG+M0t1jxkVBki3uBeawB3KsKH0l4Agik5CWrKUgBY8i5eFujc/vvCK8yudF498nF16ufUylKcsTAFgadGjQ7+Mnj0wvdj3CvnLxkMsPKr4u6t53PlTEA0MlZtWrUshQYM8MuZm+Kk7CpIY7xWaxJ1GP2k2eWYUayZqTBheKBW7DsKimJCbcy1PYWJCuLy1PbKT4miV0T+Yokvl739/Iq2+TuV/pawY176OGkbnsVFXG4vXP1VU+itJME52w7lHGWAwPAgwQfFQy6gYIQo4UgVYHIeQmp2HyW4d3Hb6s+PihhEi7iejYP0kt/trk1W3bWXb76Wvo1v+Ef/VXf/bF/57+7/+Ov3riwc/Ph6TtfhHWkuKgkMUsDBjD813/mT3zf//Ffjmxoqmbu6NdDC+37IcaYzEjOZrNF00KCqsosJUE3XC7aJRJWq0tp50eHy+blmzMXf+fxc7dfjPSf/emf9vuvPnN0bGFz+tOfff+N48Xzt25++hNyeHR22ffCYzpaiA0nBwewLiosxovL8+WiQHu5e59iSilZSjXHOC/CYB4NA73rbe2dOxVIqaMuvvXuMDTH0UJIqXX6u4/+x5/86b/y+Zd/12z5G37ok3/g//zX/tA/+j3SfvNX/sCn3z5/65k7dy5WXRxO33/vpD87VxN3v3nn6PDGydPLy/nt5bDuQsNkS0to2mgeU5+NnktwUcnAzczMxsSOa+nQaoRoL8equrL8qrjF7rEtFDxCvY6fF+rd9rTOeB4jwVRi3isvroRZRTSr3n91/JjwOi+4HHk6JdNTpMDn50EHSqOiIs2kBcUspOLELQqm5d6/gDM3/6OpuxiIJHShaUoBM8hZ0CfqiS7CzvyRyplukiAqUwDpCABhRBJBMfhKK2Wnsmly9o0w42IJ4YkMEDJbpwRdi/vSzQkVrQVDQUQoIZvRIwveWUeXnCtgE35UCAN0g7ube0qWEt0imVSSsgvcNDI00ms4F1m5biAR0kGjqYu4K0ExNtmpkM0o9wFMwOAu5ACoMJGAJWeiR0BMuzk1SGhcejMh1aHu9EbMtQVJDgHSuLQGI1qiBQO8gQ9jQrtZcoyhhorxKFLcInm/a3wzgyj5xMP3Hp4YIUuH+Jw7rqh4H9kqLZgd2YisQKy44ucp1idJ0myLNZN356oFTJLQbDg1VUSV7ay+6O1pKa9yPqefMNvl5coqs7Et1xuPInZE1/Z2OzMiCGRQcnE6DI7kYzrWqOn4VhZOSbC2Bcye3JwWnlOdM95yLuaZKjEsqVjC3RyjiTYzpoGUXSR33LNZNl9d3uu2vEBtj2nGe6uUrXDLQBvTH44TtWpYj37pSWJVThOot8Xuo6ev4nKMVm6S0jBK3BBaYCfWODLQbGMVV2d2rKXk7hLc2fQ2w6zzdLPFks07pw/k/tPDH/rtv/f7vvuZP/L//OpfevP5tg2bizdpN4ZHrwZvHEuYEjOAbnNtnnnt9bO/9Dc/9yO/7lNvffvrx+0yMCSknn3TKoDZbJbTjklaSiCTuDay6Xsb0kLaMMNg66dPV4HtUbNc3L25ovoQv/t3/Mi638immy3mHofnX3kZZqf33/GHXUSfxLUxKD12h/PG02K1MotJVVVpFlPyPGszSymZJRXtus4Jh6bom4RNwkU3+GxJH9StaWWT9PXN0dAEl0W/vmjZLfszhNsHr33tP/jjv+YyDsP68J/83/xH/8Mf/0eM74rq4dENX2/eOu8++aH3X5z388Zmoblx87nmcL56dz23RYtuE6PohcyGzeDCRtWt79uwnATHYGa1s8a+9PJ6QMaKtz32pMXjtV9NW4BKfUdgT++fDx3J0jbUtpS5JdFJYAjAtMpz+riqXIrnXJ5rrItxAmXG9YRKcdlSUSuhg1PIeSMi3jTbVZppR5Wgs5w/Q7pkFdRytyiID2ImiAIDBvWOYRDvBB4QKAP8HDynX3oagkSTlOgDLQDCpDRlEuRegTsLlpl8xpMTEbckpCCZm4h4ApCTXF0E7kmzt5oqlAzxYRSjoLqe66u2FpYtaxplcPIMFRXdxN2jRYtZsFiQGGDKrtGuEQsaVXtqBxrCijJ4iBCzXMikLTiTgjOlmds6evoaArHWSTLABziJTgiHBRdnq2AAhVB6EDZB1RFcVFQEysaRLLkFYRrIATwwRkc0NyIBud24AxzRGo0CmLCmKldO5UwwkerGmfC9kXqzhEKWEtlHFMQLbrMwjIYzxenb4nRMRC+3+Qh71euc0uso/qaVcCi9QHjVbgOy3TnJTK4npIJdy2hRZb8ASQEtJ/2D+7/aM8LGVdg9RhhFkbCuVoYfKclW2LnDvgDbMpqtON5X2wEYih/5im9gqsdfLe7ef02Xbs9iAKbe++2+jHrDdB2me5QBPAqC5wirnwHFRptmF6Glrt42D4tkzboaVyoHLnz/iQixH0AXUZGcUuBmEcjNIaTOK1cz+TAMo1ej0B4gqr052QVfzjAbmvsPH61O1889/7Hf9If+V997tOB/8F+99uNfv4P5+uzpI108w/tn7L4dhBtPGNHZ2DkbhJv/3Y//le/5lS8vjw43Z+fzdhGH2DbwyDaIQwDLaSMZ0mGISG6i2veb1cWpWArRDufL417P2otmhtnsIAW643A5t+V82RzO1R+99hpWF7NWhhAv+pW0jTTzhESqRWtD04v2SBoyNnWKMSa3aJa7Ahs8oUQsYvI+eZd42cfBVUBs1vPQNOqPz/mu37KZEWG5uhweyHC3PXvr4l/90dvHNw7scvPMneGHfuQTP/sL/9TZZvnyXW0XaXXubX/67PLo1tFmg3B6tlmpWWoYu6F7FPRAbAhYmDdBkVLn7k0T3I1eioOvWopbGiZKYJVVoav7Op6dmrS1lXYjAZe06qy8CnNnnoILWO5fWEN+nzWAUYBn7jNVcblrPwDI6TNTLjfNu9kT5xPizGdKnUqZIbthySwihGiFswaqbHT7+FZjzoUqL2TwHMuJg4IoSGAURvgQ0At6wcZxltOkyN54CQw0dQ8qg6iLmiZXYRBXMVHnEJWtlBxbZ1BSUkqhmRVtniWJyAjPHftUBTQTwh2JSs9AhZP+SeriUCdzJQtEMsiG524vrEHwIoo0lYQ6S54sIWVckGRwV43qQ0BqMLQcGnbKjaB3Di4DZe3aQwwKiGfIYqfCw8itHCYwZyJ658YB9wAjkApULZOI0VtyaW5KCcJGENUlUeEqInDlDAChzibXi7u7I0aPnhzoqvhgdUmOeQ0j2RMVo8rdya3rJRP7Dq2RtaHhaKt4GMVyZX9ZHQpT2eOFtgsLJjkF3K/n58rDrqY0loxB2ePL2+NRRen0SJQHIHEEXZrEOKt2utXKpodnT/rujbA+A6iV0MyDkKo8XJdVtHf/ccXHbxNKkDV3HSgbaGlXGyrLeVXcTu+2OwWbLPg19u7VJUUO59RlRa1umtRmlDozTHakDKCWBG91hIzSVo1gFBidcTw6HaFCpxHBjMcNB0WTJdBU1GwAIGpTM2er3BAgC/+t4NUiksyGYQjoZriXlv27j09Xp8+8/Mm/74e+73ueu7H5kz/Jf+WP/LUbn/rw4fOLN996my7HkAcPLi0+TiPuCwbQxN2GBPHHF5s//z/91D/xo7/10en5uj8LoXXMQ+rMgrvTjY2LCF2G1Icw7zYbt+ieEuJgadWtLzeXTwZbtrPV6cPjw6ODkyNhEKpFf9vv47LzoeeyuUgcgI26SzqhN21L+qbbiCCExuDJbYg9IQbPtm+MGbO+tIg2QzfE3nS1iZd9QttwM7Q2HBwcWOwfrhcP4+LgBE+B1UyCn/tw+Ox5/3t+5/fAcTCLjPOPf+jWn/1v/q0f+x/e+D/963/68JXvv/PJ504//nv+xp34zln/0sHDk/gZT986Ck/eQtvhjvlpy+P1WbdYzkITN9EFDeDuHRGm8mx67nbPyPaPKVVnWiKYahnalIC3rNwdY37SPpHvt1vdO++eG5hiWzDpvtflMP8s285jDsuYf1DMDPdqtdRBjtJXJJBzFQ2EIKq4MDVEKzLXJOJBt1yxZRRKS88VtMy3phcdwZN4pCSkSO/JQdgRndtAXYNPgTNYpCt0IFcoeqkHMVGKQdQludKURiYpJXUOuJVqGRoRSAg9p3qBZDCzUn0OY45OE2SLbBFLKLFPaG3ixLpiOR6kzEG3sv5iZuAIF4FknpI5kngK8IAYZAhyHsQCN6JnIitI79IhrErLBEm5rrmkw5ZtlYJp6u5MRHIksMuesrL16vDkGIAenIMmsggWxFXdNTmgRI59Z5N/nkuIG3VVFSE7gEwD3cS8p4t7csSMaTLWZFY8BY4xuLEWYMLAd9XTrU27pdOQM18mJ0dy3kdKewJs5LNFAI8nhBwTf3YsYGB/BFpqeX0U2NuLc2UzWe8/CketzchSPiriY90sMaZc284B3j2Y18iqUS8dOf94RB0Z3KMkD8mkH3DRd/ZrU3f8BAXqvHbwG0c21t9m53mF47hGTRlHuzeRyYLv27J7s5t+JbKtoBj52h5q4OQ3W00LyN4LgztIt2u85Veeuy0qpJVa/JHB5StTim3T9F3sos/mM0dMsQ8N3Wg5ZEQFablOUiQESSlue0OZubtqc6Czp37/21/lhz7+W/+Xf+A3zqX//C+c/Rv/0flfeivY4dHNjz77xW/3CxVP3OB0jstznEUkiNWtmQlgLkpFw6+/+moXhyH1CC4WO+9yL66UkhIxmvvQaHD3rnsipMWYknfDIICH2dnZOST1bz+wbtUCx643b9y4vLxsjc1C0cxtPk/rRtqZKo9ODkn2UZtZSGlQ1Wz9t22bd8Q8Djn4a9WHkSyX1m2ibTpfR1v1qUupCWrD+ubBbLFsLy+HB/3xCrgzO3gKR6Iu/PSx/vpPzG5/6OTiHO3R4ZMHF4NvDg/jj/yOux/64B/8Q//Xz//FLx58169+4bOn8ad/EYvmE7fbX/fxm/ftzS/dbv72sb7e4OaGl83Ck6XUp5CzQ3NvuT0vp4witlBFJouKaLpFSRsJrbCb0gNuGwLL/5q7F+Chcvy9gO7tQ2hdPSPXfDumbF0xCurpKBBDdTxbWTt5M7JEdaogCBsVbUQbmggDYiMp0FqRllTRMLFKZtqrNIGJqipN7S8CRxIH3IjoFp0dbANcOjbEGoDxknIGSw5ConjnZp7US+shBEIFKhbEA2PPXiCUBB+GIZFhrrO8xiPal9fyIfeKLuJJRTRvMeBUUASSO91U/CKFAy6E1vZxY1gtI6ZJbreTXRVZu7KU3CI4qKRAD+yVm5ZdKwjaqWzIzjGAPThAoqtBM5Of4IbnbJjiM4hwcfbMhhMF6CBB4PBkPriJ4xCIwEDMKC5AY8oEagTNE5lxvzLcsngn88y9c0lIT8YYJK3dBnrvLs5IB91yB8DREK7vt6HfHRY9ASR13zFT8zWhnoHxU1SswZ1+sfUH+wJjlJVe0oil4ktmbzb3hdWYYjTVWH3cxa2CSiCjbE0elPPMfKxaxqhN72q+uO4Q5itt77LS6ZaqOjH2ro95Y4KPUa+5xpQXkZJ3YIbd2C2wY0Hubcnea6u21xt/hwmOV45vpj8f30wLfsabXL3h5HOOBWPTWezdectYx6dn4Z0DCwBYC8a9a3Rpxm4TQ5jN5u0QLQ5xT4cbH5V9sEGV1ScpEiD85lsPh/C+3/Z7f9+H3nfnM3/1q//VX+dffXp8/PFn+1dfPbh38tqpzPsHm0SZzcSbFTthMG/BOU0dCl8CqqDF6LJBY+1MN31sdG4xskWMFBFRES0lcBkCToJUP5O3Ibh7aNjoYd9t8OytYT0/ffDwUexefeOxqvJw3q6Xi6bR4eIozA9nTRfYBDQMpOcoeBskN61xiyEET4gxDsMwDElELKH0F9KUDJvOLjZcR3TJMhQ9ZFjMD6XB5bp/0C/RhhA12RBSK83yQJpn7vZNDM0Bet/ExGduHCGxt+YDn5j95f/0E//eHz/7b3/6a//pH37lfc9zMwwP1/O3H7z0JL7/m7/0UX3ryy+Er8zuXR4f3VufJmGjmoZuNWsXXT+otGOSR85lnMKoTc9MoY2RYEbxXGCv9rXMKaX5hH9U1gZsHdfveWrGl9l+e829i8fDMgIA7RHzHm8hlAAlqMxUmjZYK65AI9YQjaBBamVsXrR91kw21CEwgCowQA25Z2gCAY/wAdxQe+cG6Jy9o4dcwpN5C4kuPRnN6T6nJlVNyYKwEc4UQ0LSFARKEyZlBOmRjmTmZsZEE7PcOME0oy4E0kjN8XZxJ+EquXMRCCpcKDopcpXpfxNJQ/fxjLs7U87BKouWAnrFoDBlp1gHDiIRXIMDNLr00Oji0EQBRTNYCClOzXAC5Vl0ILl3gAFRsDAQFIDOBlCidZGAhaEn1aUrXYvZ0iFmtZ0jRJEjrRDPlc0uKtpSGoZGuxDTwuNlSp2lNR0OyyEzVMSrVGcrox0MsgQwd2K42GW24yugyrYJg97K8KltV//NlkrxB5LMyW41PbV4CdyKrc6JFDePQqkZPFsb1ydP9HpEUd9US67EeqczKRKCGHGypgPem+rVJShTBnciP/vz3fE2l1WeuA3Go57HY55dGZJSAhBy4j/chO7OvQ3Yve1UEO5N5//vV7axxsIMjnmfY3i+FICXOqu9RRs5VPFdTIa6J9HrL2riOukuU6d02UfElIYQ2rNu8+TJW3funty8tej6lVkSEaC4mPIKj9CG7p57BLXN/HK9evDw8Yc+9fd/76/41E/8lbf+8I/90s9uDp79gU8ev9Ri5Zdf+tby13380enTZTzsFps7TzfnbZxhvvLo6IDcNNiBdUyG4GJL1+HscgXMZ83J+dnpraNF7PsmtDFGcSFElACiJYspMqlJIyENfRPEPA3DStW9icdsbH77+ORW38fQtk6kbkOihQQJzaztgKW2wQD0KvN+2DRNE6M3TVjO2ot1T7eujyOkVEopRVcRj6mPsevtcpPWMawGcWLRNG5xuQizRmXGi/PVWg5D2/rgHl00hbbhnfjHf/z089/+27/3h2//wd//0sGtRdcQ5jMMkgbw+F/6fYcv3U7/4O//mZNf9YkP3Jqd9G/88Mdnv+bT+sE/8PJZ/Mgvfuk3fOOnP/to+Fvve2HgsNismna+6IdNkCPzDVArZisqiyMLYkdtT0nmJB0fZZvvUpFc0f/Kt8JqV4wiMP+7Y0lPqRpbjuSYCOlrFdbxh4Br4ZUANOb6u93xVMosf5IkRKXRMGtkFYQN0dBa9QapBRtJ2WwMk4cqN6SoLpADlZZI1vILABGIFAOiSwIj0gBE+FM3EOKM5OAQsbmxV3FXa1SgFpUD0KjHmI1TqDjpIlRlSogxqjQkzdwMWUI4SMv1kFQVh5tH91yPqPRi4E5rulAsXZ2aQADgVUl1d8/Y4FZy40udpalGlaQSVXvVpNpRLkXWkB7cUNfQDuK5KBeCMTcJDEDDMSk0ExFTAVP2hgzJO4JuiQigEwF86mzB3tgBc0ErmFOkReOkQ+CQRChSbqvIGdk4G9FZ9isMxBBXA3Jod3CLnjsUFuRKwUTRLCjDLBpoLfqQqQWcpd5IjVnUBtTsrmprbrnqKH5GsjbLdT5alBxH9k/mMmegJAKThBa+LFOjG5rtTXdsC3WQsl7LGnudHBhzR3a0lEMlGqb93pnBI2kVI9OvVA3tHcLt0RWO2rcDatf6pS2HClINBGWp5ckkA6qCKD2OAIIitIw7Gr1CfZUT5rVB9lQnqhszyrNxalffj3/uXTAZdHahT9kHVVqMKDf1TfZLb80IurFkWjF3RZo82qlls3P0og71mjEUV2FxYUwVF3fPjtYY1Tms42p+1KxW9uZrb5+fH77/5fc7OrDrNueDscGxR0/tph3IOBvUgvVk9PnyzTfeuXH8vh/+nb//l75x8vf9bz/32afP3Hrl4x//6M3V6fricRzckTxyuTw9G1ocbOxh6HHeNW3juA15AAOBYGnwHhKbGCLPdUibZP3wYHEg7PX07PLwqNn0Q6NBFyoGEUfsGw3uFjJEuqCdN9b36miahaWUXADOoGEmKeh6s5nNFlgsyyp5mgdZLGZNCE2jTdMkN1VNKYqg7yOARbtYrVZMfUzYdNHdLSX3lDx0KQ0prtbsh3Y9WPR+vlCkQaU9bg7atlWGs7cvH1xi9kzDiw2SDQgHi6OLNx58+Ac++sU7R//+z5/8qb/w8//6/+6l3/DrXuzVutTMvHX1fpV+3+94+UMvzP7Bf/Eb3z7/+HMf+dhf/JnX0v/n67/5mW/+vt/9vt/+u1/+vu/+jX/zb73yuZ/5yY/dfdQerNa9NOHAUiIxIJlpcA0CYw9ETU2CuFl2XhUuoQJK8mi5cWFOkMwFArkKv1KLTPD7PGUi5OjiA5LD0njqRgYFmLtOjAHWACQrwtqevrjLFljR64w0sdESKGwklRijwmJ+KKURVQ1JtRPXGWzmqeEgSCoxMAX1BiLq0ySsxjskRnFBoM7JxiW7ARLN4WdgdG7MVuIbcg299LQRqmh0dAIzBxFdDG00cypUleKJqfdOiRC8nQ+dmcTQCpKmlJikGwZXFVBExCSvVUsk58ZEBUyeRFSgOfVSLGyzSpkrmAJFQcnws0XSWK4KUwcNBitxg8FL1TWJYEaJyk4RG3jDvuG61WEuG6A3rJxrhIRgUHF2DIOJQITSUpJjBp9RaIgChSNHImrvjgHYuK8VwTkD5/DGPEAEdkjPwvwIPCaOjO4icGtz1pwKGk0eZlEDZ4SrwKkQuh0TjTLIcC4i2DTiMkSLabCcOm4U8ZRxNcTJ3KVT3MXchQEUyxxv3wXsIuKp4NuUGi+vIBRbwfAehvO0qG40a4qdOtF5p+hXU2dRPg86aaxbHvQeuU4suOA7aYouFN9aYKzYitvxXPHN7i5B/cR92gEtByoBTuKYO3r2VkBWM337uHq/jMZXPq/NQByWLOVChWlzGL9iWE+nuffccXbjQl3Zo2ss/mnp0d7KTB/ttQtN3sc8zisD27/53hSmdDK+2RuSmTXSQKVD3HSbu7dvrueb+2+/9aUvfPG7Xvzg8ftP5rdPbtjgqTnvV3bZDsfB/LKJ3qsEtm99++Lj3/sjt57/oX/1v3z1v/zC/du3P/7KM82d2/PLJ8PTy9CYzeN5pK36lXivHmjJ+z7FHi3DwTPD5VfIucPNV3lyiY1AnRdnp+vHj1cHoV0eLp88Pju9SEdL7eOgAyQoQQgEDkM7lxgHJG+aJlloVPq+V9WTk7mZWUrZdldtZrPZfD43s6ZpsgO+ETZN0zYKQFSloJxu7V0zWw+2Wm9Em77vs7o0dJ1RztdD38umT9HVMTQSgupyPmuCoGHqL99doQuHvu6fXJ5y4354GJ+8u5wvH8nBzfP+9kfDZ4dn/vn/r/yvv/zZf/oPfX9su4vkhzAetH1/+au/59kv/Bc3f9+/+dm/8tNHH/nVH2qev/FXP/fWn/u3H//aP/3OH/0XPv5DP/jic/d+93/757718fkXju69etmdqSzhTSsOcEiraJ16K5wNpbueb5NivVTGgyhKOWpa4oSEQJMJ2VylnEJOxXDb/nZKWuUskmMga9Qyr9Ln1ZtXMh4P946DOgFZ2pCa+WZDNmTLGMQCkkpqNAWkRm1OF+lL3c/4kg4SgAQEeHQKXAGnmyOJdm69+1qko60da/hGwoCUyIEg4OICBHiiO0P0jN8XEAytozUkSXOuorYxNBbXA2fqbUpuRveNm5mLOZJliGkXJKDJdo47NTCX/htcM45QtsQqv3V3eG6yJK5ZBgI0h3gSy3DglhG4EsWDuDAq+0b7RmOjQ6ObIBfCHtK7bkQ3rr1LJN0lijiDeuY+RTRkE91hOf9LkOE4iocUjo4A0BMDsDGSGbUKgVjClkTvWIMX8AU4dz8EgkIUoREkkyh0SGBowDZogsEbAMSQg9p0iXCgM4vmRkapHFVIL8D5HB3y7j628JmKvx3brxi0Oz6Sfbk7pcusKopwDIJ61Uvz1RjjdrsCb0/lRK0OGh9X7yxgLi/aygavdfd7Nl+pW7vS/2eUMKXG6jovNN7jkNcs6LGiyf26+2M8nTouyzaOtfNEOqUYnduZOiD7Bu54zve2YG+oUxm8I6onELrXLMgVoZ4ftweYtTXU7Rqbuy5q+WyvQ9S1zx2hQ6eL7O5DHJTNrG1iP7x5/1vi7SsfePnG8cnPfenL8fOz93/kzr2bd09uro+fO0pzPDxdHR8cNTeP5OIbD54sf8uP/PN/+bObf+E//MITufeBF2JvTzE/ieHk/OJ8PZx70CRWIqbi9NjFLg5rpmFoA+af1Mu/4boCcxwNIrC0hksIEgd/+OTx7ffdPVv3s+XiyfkFL/vlcrnedOHwQJzr1aY5akl03WY+n3tMMUa3GGbLtm3jMGgjWbedzRYiEpM3TRNCE+MAgA4NuaLaJEil8IzhmnJl8zAMg/mQ4JBhGPKKdZuhN3T9cDakvhuobUrD8eGMHJaz+XIWDhbNMHQqm2+dDun5mx5X3WYd+jRbHA+enr9x+xzp1q27Z197cPvW4cl33/0X/9STV9/48//uv/nD6t06HS4cThtSf/RM+rF/97v+xI+9/W/9mW99+cn54YJ3vu/mZy/WP/IfPPl3/7n2d3x69s/+kx/5z3/8w7ff+TPve+aX0sXS2os0uDktuMihRHHraAfQTRGQGXYq+6jNTcnsSTKTAi6fXUqWK8lHUrn2zKLkEtaOXruklQ/FlWhI4Ud7xH/NzbcKbmlXske0ZA79eb4EKlkSzugthoZoJDYSW0mBseXQiotsSE79f4ZTIEeHBR5KWqY4kYAEeM26yv9dEmswunbuJog5B5e5YSlzcRAYHM5g2hhnZoaYrBsSOut6D2oQU3E3T0NPD1XJVoIIIpDgyJ5qrShhpBTbgdvXWDuV8TUFok4x0B2W3D26l9CkwQEjUmMmYgEWJM0kNuxaGVrpmtCrrk3XlAFhAx2g5mq5lwIpTkw1F8/aQY46e4A7aLWeW1haORl8A2Ron5jFP2xOHrgtgKXjGH4i6dBxhwzi85azXPSdnKDPXMwZSRcSRlKUVGVHpkZI8zik3mMSA8RH0CoCQOOeSloxtKxjxpTwPQG85ZROmFv4DorhlC63TUAk5IA9J3UAWQRdsckAIEyTjGpGrrnvBBYmQvdaJQDA2H9pqxaIsMZiZVdC5yum53k8RdMAzwj/bLWVkAOkc9L/x0egnKJgl7rkCoSyVZ+5+8RxtDmZv4TLJuv8nVd+/1X7k+beSeWzGuTau/bajRiHtPdmcg3JUg+MDEhSr+RYT1kLcYEx5LPDqqarPb1ApPBbaUKMvbvfvnNDgC994Sv379//9Pd9+jf+5l//M5//3Je+8LXX8MszbcPCX/7Er2ib5/vDh5uf+oVw55P3fssf/Gf/s/RXv2iHz4YX/HRY3Tu529y4u3j86Gm8iHNr2G+GOHAz6JB6G5DSuluhH6TrIGaHL+GRGgaYuM8oi0VzkmZ+4+TmB1786HPPv5w8rVZnAGaNHB7z4vEwDOfL5dzOztsmHM5n682mCdK0AqCZz2iQdu4O1YYMqjJr2pRS27YhhBBCXgKRZd/3MGvblp5SGkQLinLWUTLmRgL7ZGbWxWQpdV2nqjHichO7KKt132ljQHCfL5pZq4sWM8XBLLQzPTtdN0t7eAFrGkXgxcYDmpQ6yuXBUTCEvk+PL1946VcM38R3/6aP/t9/rOf/4W/9O//eD6jauue8DRIlJkDiP/YPffC3/4705378jb/6U/2f+4mvrGP/+OCZ3/tPrX/0N936/T96+E//A8f/5Y//8Gtvr1584VvxyR3O1mKmKSDF5K1LKzw1NFZqf7ljBzuyhm1uCgpgnqFXSrbm7pHZ9aawfHGVtn3XjfQdkrOufV1VcHOh0njBJGczwQousoJKD0iB3jA14o3ERnLPotgiNZKo/V5+peMxfKG5B5ATLs6Cywkkt4EcnBu3lXtP9JDefXA3MBpSxl6qWHao9bhGhSrbgJjMzBKb2Fjvsfd+5owQN0luKS7gWVWvvA+iVM+zgjvdmYEkij+0StxSdVL8etkf6eJGy5gXyJbvUHuluwiCpFaGRlKgz3RopGu4CUxBhoaJ4kl6anJxF0DhQaiEJKPkVu1GkdzhYOxz4KHWWRDQwmqoIB0RnsBEdO4b4eAewAvgXWdLO3G7LUhE767wFj4QqaU7JULdkluKwhZiSgvB0bjPAaTo2pCwlLrBes+H1QZn7geslfbGkOtokwC+nwC4Q9iklM4q9bvrrq6aRg2liHDs3lNuV33Q5Ve+4xDeJ3nZeQpJn2oSE4u5vPF62ZXjd+0rX5Z2BXzWsUu+s8oWXpEgawRoV0fOTn2aj82oWIPuGdnKan3qOHQvdYdC1FZI7mOQa6LRjSUYqIJtoimPgn88+7u9RXYkqO+s5NX14XU+gKsbvSeMy59eHNH1AtbB5I3QHRDKifTde7lnL2uZYPIIIVK6uDibLdsf+MHvff3b73zm5z5z8/jk13zfb370kfuf/8xnLt49O5kdfftbj7pv/4WvvfX0wz/4L3/tlT/4U3/ion344Pnnm7OLdXdwFA43R0c3+tN+dXoZLXnu9NKGlEy6OPQbRhu6roVLcoKLZz9w+dorNw65OLz74q1nm4OFu5zcvvXC++4cHDzjSWbhLcHTw0Xbrze5Wujp06fdcHF8eBCCJAqRFC7a9snbWcugc23oEGDZtI2Gtm1hMYsDbRsRyTBes6Z1d7q5S9MogE23yoYvySx9h2FYrTcppa7r+vXGzBL0ctVFby7WPRhc0TShCZi3XMy5aMNy1i5mIa67+fLw/OHr52nhTVqfXoQBEemM8d7R8ZmdvnDnztnjp4s7hzzsNt0Q+sNP/9rv/08+97XH/9z//B/+e39Pu2yHXtEMjaHXWZ/s9qz7A7/nxX/89+DhO88+PZ3Fs/Nvns5efxz/9pcP33x39Y/9zoM/+Wd/+Otv/JmPPv/48uIu9KEguAe0Fx5P4kDZ9t9DgnvJyfTsB3LP3NWNbj72PXXS6NfU/2SjtyJp5b/2SXr8VQbjgu/EvPaauOydkWsotnySGz1tFQhxB1ypShcmIUQonpOfLYi3Yq240oQ9xaFWkmbHweApfZ3htAFUQJjiCHHrKIkcHD0QiQhLDgPMPVHMLRWWK3BEuLp45mAQiHgT3MwpkaBzcBEqVBvRTuhrVQIpR90pCAAjHCoKiGUDRERFs4EUkKEQBFkGZ/wGZw7eD1m0WIYPS8lzOBZ0E7FAbxkbDq3EVoagQyvrRrs2JA29h41z7ZpcEyW5JlcXJTWLAs3zEQYCJUc2v8mrCAAK5MoBdwQiZswQeCScSO7RPYKJdLBzJriaN0QCZu4zZLcrtEHT0oxmEhuX6BIpSSzmZueiTbNwiwlDSAdN3Hjq+rSmxWyFVU94lr7J3X2sSC7hv/26o/qmBLq3gBucxPmyWGJxb3ot+SrW4L7xVP8e45tTipdJJUHRVVkq4Dj5MM9jZPdbIbF1g+9LDs/4dxNR4pM046of5S/gWTkp+Bp1yCX9Gu6e+wtmhcKLWpol9NUT6jsy0beeBZKWqkZfwqhXaof4XlJq7/X/I+y/421Jrvpw9LvWquruHU68+U4e5RESgxISIgqwsQk/88BgG5Ntgg2Oz+bZYLCBnxMYfhjzfmAcMBhbgE0wYBAG9BOYIIQCCMXRaLJmbjppp+6uqrXeH9Xde59zr/R67ufMOb17V1dXV9VK3/Vd/RjSnS7o3c7DmNxudJ7Zd4YWbj9zagD7Rs7cuvsWdTsqgAHwDGBTGNtwYXfZes6Y0aDRVZUHE5l7wQseCE178NS13/+p/4Bqcm5H7Mr46FZ66pk3j4sXvejrfv4dOy95+9s+VLYn9ZbUy1CNL8hkevWu/fmJHR7PImkh5gKJeDCOSxfnS4qBoxbRBBbJGKaj/XNXP+XFDyx3d/e0SXWqL1+5uL27NZqMW8xe8PwXFyd88OSTFy+eh7YahMV2draee+66GbF3qqvppNKY0KTxeByMt6uxd86ZjIrSi0tNSwrhUrq8SoMakalq5QsAMUY1ytlHqt3STUmjWtS0qOvZfNnEkFKKKbZtDJEO501CUrD3JmaFp+nYC+K49KPSj0dVgiFpLDC7UT/b7EHUm81OTuCJg9bVCDKuQB85PJred//ECilKp+HZML/7Nff8xvsmX/317/iB73vFuQsTWnLjSLwKYpqPl14bcXsXy/PnpZW956sW7FTrk5bms/qrvujyz/3S533wsZ/Z2X6mRKqKHSinuiLXptLxoDcOcjFzom1My8z2ahni2NFLAVDrBHaeRZ2nb1guOUUG6MGDWZXXbmUPa/B0MYA7zPY7q5sAjK13mm8eRF110kwz6KCOomcUBEfmCSLqOAmro+QkghM4QcwsgcJGSwuzmqghiGYehb7oYZffqgGUBGZIqpE6VK0aDJpZELoAeG+jEIjAxGzi2KtCzMraIxTQylI0NXUpOktRU50USTVFAwqyxJBuCDOxYvc75SpcOV2UWTq+D8rsV24zuajfPHNI0IRMWIWSp+QpFNR6xIKTl+ClLaRxLrKrwQvjBqLmzETJGZyS6yJzRrI2htCl/EGt57jsLYFun2Egrr0CUJCaBbKgFAietQCgHEFz09JMiKdmCvVkBaFxKD2SsSNTU4psUTWQChmREQmJY/EwJ650fhxTLak0iwSYRXSp1Rn6I+i5wSmnW5DQpsDqCglThhGQwZK6NOzLww90odD+9zXH8mbgcHMeZ6/FJv72jqaqMZFtBkWAoTRCL2DPtH+mlU3ZnBnXB5esDU7mrH9s8DvlLQBmRJS0g1FupuavBfsaAE1DdYQzgiqf4b4baSiAuraE1x1bN7zhKM46eienzxAUfHTbNH86MF93O04PSOke1+7Q5ztK3LPjvFYzN+za3hF9Wh26w2FGZtrp42ZZie4enztsdh4Vggk5Zl4ummW9vH79euWK8+fPC3bet3xaD+Pslnvkxk0uwmv+7D84eOjrf+XR9MR737snbFa5IDwuUunvObc/b1bL2bIMiSPKwjXt8mh5MNrZQkHLg1t+u1KNSDEJJzO0wSpL1eW77jmol8dJ6P57H9jf351MJimNLuxOz+2d/8hzHyllkhQxNsVoq16ejCdb5y7sHx3ODw8XF87vtpG8czGZGhEEYEdODJlv1pdeQ8zUvixCxsYZssk5pcaJmFHUzvOc42V126ZkTQxHJ/OTxaxt26iMpKtV20QsWo2atrYnxGFU8GTkSqeTqnKso1FJRKoxGI08nryxmE1fVUZvZnF1AqgvtszS+aq6de0mFdvTaqc0DUYrki2/O5+fTF5y4X8/XX3+V/36D3zry1/zSQ+USkhpHorog6paTCfz6ljTeKQ7o2K2SkR+p9RdN6Km/dLPv+dPnviGR971u3HxvqNbSw3LcxcpUllH2job9OoPNdVkBGZOaY0PiNYFVwbXV64+A7MN9W7d4MBL2oUJqV8Xm2w56w1hvQQ29fKPMoc3YRY0AB0yEb+CGRBSgolxQVQSPJmIerKCreRYSCQJJo1yzOFJ8Gp9A2pByEksHa0SjECZk4fhYEqw7JemHOOiZBbJNPvcNs2BbCtAYAYSsEEcVBNREjgHKokSsWGhIEhBjY9R21gmFEgRKHLQUjWQ8yIEWDJmBQuYnLGAzIhzrJdA2fzNNweSqmaBRwRAncupz9Fz9jOHygXHqeyxV4UEotZQKzfkI1wkEXJqbCQ57Jc1nVxbl8wSLGZyRiLKVJF9raHOpdm9/xwjBobkN0OS3M0uCSopNSQtrCaqYWwULQVBIGs9VzA1c4mpNQSGM8uwN9IO9A0unFTMFfOIqDRq1EgBoUREZIy1eZcdt2fTtzYPRofdQi7GMMzR9VQB9dG+7rzeKb2HexaL21vYnNabf3aNmGmn6p4q4zvYXsOC6TjCzTa5t7pFuIF1RA/iGPq8BgH1gecsq8zOYquIqMvrPe3szQk5Q5ubz7jZz82cYDMT8UCHReh1RDbrzP5uTDY8DUTDtD4tsG+LTn3ssaXTV1J/DARDm3vQWok5JYZ5w53Rn6RT97p9NNYtnO7j5naGDo+dBw2hDqHVlIzh7r/3/sK5xWy5ohsPPfzp7/ng6nh5/iu/8uWPzia/23zW7//+gTt6co9dVIiwK6bF1vji3iQkHF+faV0LqLWQWhbHUjqell6oWS7G58aLpFaIF8cMSSFNS/gH58eLrfGle+8+P55uu0I8Tasi3HPP5evXn9neGy1vLclNy8qfxJkvMJsfMlc7++cObh3eOpj7S3vsXYxpfjKv9orHH3/83NbOvVfu0iaYByiBkjhnyVTVOVf6EkAbo2MZChlBLcYYY2yaJqU0X6xCinXTHB2fzJeLJgSD1HXNXKxWKUnlS+89jUq/Pa68s9JL4eC9MzMImVpjdrFwzx4vqysPLWdtYyktTlgBaxtXloz5E0+lK1fGyiKUhAtF7ZWio+Nw+aoc7Xz65/9/HvkzL3j2L/0fF17x8nOju7amvpQEMNp2xTWFQ22XR7t75yHURB+t8WP4kF76QHH/lc9+33s/fTS6tZh96O2/+4djfu6evfMn1pLpJtvMMB+6iScbThqomWivO8rGdFoTYw2apRpA2tVg7wLMakpDfcxhfg6zH6IaT+1sp5fSqWz+7hz32iIBZplY1jQRcfbImjnAAY7IwRxFEQircGRJoAiOxg1ZRRTBGyVG8r6r3CHOOnGqnA3/jigfpqaWiCmDidjUkNAVF7fBE2umBCUykHUsFGTC5pUNUCHSBGngiYyFlblug7nItZqaA2pNkgDxRUqpMXPOObCxqVFChl11efn9aABEnF2spGZKnByZiBHDSRC2UqJQ6ykWEgoXC1HPMyfRy4q4BkdDSxzZa2JwR8rMBjUIwRGEKOY3zSoZtUgEYtOkBM0Wp22YDaSuI8fofdEEVuNMOWm2ANTggRKkQDKOZgpLQDKNhMSUhCAJQvBdjvN6r8sbFzOTFM5VIgWRJ3j08qRPD++C5UaKrqSvYA10ADaSe8k6BDH3NQK6aUe90DVol+XaK5jZ9t0MqFDvNz6zI2fmhA3O4Q1D2aCmzjkIIUF6y3MtDzqHz5DB0w2EgKxTtXjY0PuJaJQJINcaUdaUaH3TXvxoSjQIGe7kk3Wc7xhCumfkOg81BLHxNAZNGw6xDjzdfVtEzCxXsrIhxQmnxJRtZOLeLncHuT4kYXcTwtYMZafE7cYrGDaj4X1tzgAzy5Vchz0RnXeA8jU5Njn8jlMH9cE4AyAglajRiEjA0cgQgEjRs7RkhcIlIFPEOVesIiaubLUtS9c28HK0VVZNe8Oc+6Q/87lX9l73l1+wty3F/3jz9V//ler98yer1U1w2aRUeO98OZqOxlvbdcLNgxu0apccyjZ4EceUEo2rcWs6Obc9f/8HF1e3fIzBOWqTMNWjUsRWkwu3jouXvfQ8F5OLF65sEz89O7h85b7VwfzK/vQ9b/2Tsg6FNXUh0rikc0+UoEDa2tqaLxePf+S5S5cu7DgUnHTZvOmNP/enPudPnT+/37SzaRJn4r1vGrVMSmPYGk+EOCVLpnVqk0VAQwht2zZNmC/rNjaNxibh1snq+KS2ZCHGJmiKPqhLkO1xOR5jawzvYqK6snHFWtK2IysAMm0SCRml8LZnWD/O8+G8anDSshTOsUYaYdEstBn5wtol2SQyUjJ2SkRJuF5UU9HRp378T33wsTd++6O7q7d/3EV9/gOyvTepG33uWvrIs/HEtrYv7Dz40I0/92nnPu8zz5cFSEvjOjXFtFphe/FDvzj93Nd/8pd/zave8ub//c4PvfWFF9OCp4UtuKXk2SjQShyZOWeqMKQQM5ddAmlix51HyKDRupxfBgkVajboqiRGnAthURaF0I6ekzs6mQ0zYFC1EfPZtTi/ky6btyzAAFUNMOnkHCkhA46YEdiYjEuCIxBHo+AFTPBoPRohVbAJiBzB2AW1ltCsVw6tjJDplwAADubMyCyBojDDklkwGMNgERphCZwIZlCwdiXMtVeduct1VFOIiSqLGRQpRovOygJlhKixUAImTtomiNMqJjJtQI7ZkQYgMTNZgkZiELMaCCPK2JRuZ46ccdFsZolJmZMQhNWJejFv5hiO1XMSaiqpC9cWPnhaEkdwUN9CGnOJBMpk4pMQMVRgORsWphaICs7YtJxMZAYsEXfWlkDnmOz30lykTQ1IykqIaomJiBMsQhmkTBFo1K4DC9Yd1YpgSsGkUSQyYlYHE4tsKsQZp54t1ARi5hiQEql5oACVJo6sNQOtq2ObIVnUATGeZ2Cmx+gmQCcCDKTGlOF+gwWcdSvqfZxEfHambm7lm/bNGaVy06jqFaezjaz1lw3Bc1YI9UFcMqQ+MkS0hvPka/k01HA40tofvvb+0p0yVjtlua+6uHkePWPAptTvFYt1tzcE9p2HC0NYY5g3G1bpmS8O/Twznt2te5fAegjOaAa3HcNoD7bv7a9ySH8crjkjvDeGBRhAp4S0EnISjYgj0VKDY96iMlDcVg4prSoIs2vZp1a3wIvjqCTt4vrxKrTq0/H1jxyc+4Qv+9rfeezCr765vly4a83qd9452x3PRW+ZH0eLRVFV1ZafTIutrVpDO1/wql7Fdmwplo7qGEfOmhSa2vyIx644qjmkxoxiAiSEUERCtOJ8eeu5875MJGjbZuZlMtkal7x0IiG87Td/9g2vf2VSSyvzjmIsMocfLPmCxxjVdX3zxpE/f24VGq/zj3vFK8rJ5Pjg2DsskMqC2tRaSimlvFHW9VLIgqEcVSSSi32FlObz5WyxqmOboq6iHs8Wh0cnIQQF1bUpFMYsNir9ZCyjihw7IS6dHxVSVftuEtkgLCGkgpK56Y2j1ZOzC+PqebfsjyU0UCkNcVTuT7fn126JoZpuHdVNRVsjQkxWFC6NEAO1y6YNtRndc+Xy8r5z4cbi95957jf++DnEQKX5kdu/+57t8/cfXLz4hLZv+ZX5z/76o9/7TQ9cfN6yDeOq0FZHDz8//a0vKP7y9z/+4ANX/vWf/6wHHvy4n/+FH3/xXdfJ7Sw5loqQhCpetnAazczAZspMITZF4ZMFM9/Prm69cwes7QtQGqtF0iwaOAuerkxSDip1lQTuEF7Z1FDvuDCH9TucHLCfa5ePKgDnvAg4c0wKMeeCQOYoCaJQIlajCDJQYIqGQKgN7eZK5E7ByNY/OvxZXkzdPsBAUsrprh3EGABtsAblQ0TUTBVEyI59clBYoQYHqAkn4cDC4jjAjFphE7JoKRmrFmYjI+7ARgwmIwMZO3KZ+QsGMrjOpuGc9cIUQSpsxOpJhc2LOjFxK0fkKDhKJTfe1aVfOQmEBE7E0ThBjNiMidmIGxYxESKhXO8B1LkdQdng73Up6jhtz8qSjEJlQI3EIAQheMuoAlWY5goURsbUMKlBFE+BgpljQwfgosSwQpAMwdASBCa5TGRM1vtD0O/8zGwmCcymlpn11rGOU4lwdLrPnVUDEGTAmJ8qaYI+4tvnBnS+9c0JemoENnyMmwJjc5c3XqsA3GPH87e0p2o7JU6wjjRSf6Vll3UOTXdBplNMm8MADX9uisbN3t5+cfcpd7vAEKA9IwJvF5MAzqzej3YZPsoYfrQ2cXo8rScjw2mtZbhykOGD3X9Wm7nTLW47TiHshlYHYdw/wqnRc2WRtGVqVcEylQIhLLO0sZgKKRYpiXOqVgqn2LSyXC7r46ML2+cfevHH37+/e0/CuWvRiPTjFzfffP3up54+ubpHJ/GmybhItfgtV014sm3leBVtNZvH+bHENmlUknGDBaxsE4/Km83x+YOURhydlaswjrQiC55SiEyENtlYnq73hJd7e0VSV1s8t3uuDcv9ixf/5E2/tE/HjmJIJlooN0wFc2AKyVoiV3hJ0bVN+MjNk3Oj8tAW+3dfmacm3bi2M5oIYykpl1UIIcS2BdSxVFUl3kUNviqd901IJycns1Vdt02raTFvj2f1wdHhsl6K9875BE9ELFx4jMcYVVoWhRdX+cqVqSx8snlBVPgdStE517ZutON+721/QPd+zqqO0SgtF0yqIg2hBG4dHfrtKcDK0qpJGzwcCZzj5bJNlgqS1DTCBR1fZ+Jq343Kc7ZIy2a5fX5vvLXPk2LH434ucGHnfSf7f+l73/XDf+vK814wRhti4SubvugB/KdvlC/5wWdf/b1XfvKvXPi6r/rqn/zp/7I1eWZ778JyVbNZk0LpW0pFjME5p5oAIUhsNBNMmZkhgSinJ6S8rLjzxQIpw0QUZknB/WVGAElfIME29MXNBb6ez3nmnxHAWe4YLFfdwZ12Bsobr2M2ZhVRYXOkDnBQZ40gEkdQABkhElqghWU883Jjsad1TSfLFeFsA2iSkIWuMSFpVzAw9RHQ4en69OG8vzEZmApYMJgZR/bkYVAVMqFEUFAScRS5kLZ2bVTTNE4GQ1BEYMqsBE/Z2GcSgTAbWiIhUmZIrvsKBcyRskA4CSVh86ROlDgVbCKt56bgxnPjOQgnJjJpQBGSWJI5VTESM2FyBsrR31xyOJNPdllg3X/U04CQkkkmiQCderMK48xKDQdKsJ742TK9iGZbTFGTtEAy1KRK5LtoPq0gyywOPTkHc9kRTUYZbhqDaswkOehoShlKAumjjKBB6G3Onc2wRrc55xkouXsEJpBDRmwa9VCu7uI7ypE7btyDfLqjmkkDSghATnPPE+820Ts0sl5IvcWYEV7dR5QrDOkg4vt2TovkYR0O3Tit7Z7RGLKv9Yx1iI38qzOffmyz9baBWw/RmfvecTDvINd77/Yd77u+DLDTZXrPXHPmZZ1p80x/Pto7HT41M9WaHcUUGWwxqrbec0pVK8uRJ2FMCreo59rixqJuI/z+Qw+98vWveOXzfAlwUHhGTeb++H3P/KdfOnpsyUV6crUYVU5WFBXjkZtaWWE8iprq42Obz5HqOjXOOWdYNLU6mYzLtoTNFiumyYX9ceFxuAoXd23VuhA0pehJ1Erjw9HofR86+jNv2L1xHD15ZjZ2XK/e89bfeOh598xnR+Pp7oiIhAlMyWBggqYIoqJwRHSymktaLSiNxt6T7RcVIzLDYnLOee81xbatiYisNWIOcdUEm83LsmxiOJnNWtK6jccns4ODk9UymMF7z85FjQmYFOOicKXHqBIv5h28Y1cKRJxzYqkwJzgMTTXenh43i6mTt77fhwuf+tz1xyZFsQjqFKHioiioDfPVfLy3paum8lVU8x5CtFg1IOedaIirpoGmlBpnOwnBdKlts5wvRzs7k70L5Cbj8TgpDji4W2myTzcuPfwV3/FH/+MHinMX9pzBUMdGHnronv/57Sd/5UcPPvMfbf2TL9z/pm/4az//kz937cPvuPt+jsVOnC2FpVESKc2iEmIMpSstZWRAGvawNe4ElOPDRkrKCZ2mnoEjeWJvUghlAKAN5bq7tWBrG2LjOMPNZ9hE7IPNlBKRGTr2JWbH7JiFKGYjSygwJUfBgTwHx5EpgoJRNDScPc8ciIKhvm2xEnquhlO5A5apoTO/gJpFpghOUBu2uEEDJs57fiaNgILFVE1hUBYQCwJiUkolm3Ii8y5oEUcu+mSabBUtZCNYadGzVnujyOSYnYAgkD7rV6iLMQPqmCXXHkZyCE4gHIW05CQcnGu9rBwnpgiKxgmugSRjhUvmlNjMMTOUCrADOXB+CQmUAAU8zh5mSITOU3KbIQwjNVJormHfxQ7QUYwJD9utth1VMA5MS7OckOFATjmIepiJFQ4mZI7MERhmZiklix3RpimxcVTp6B67V8ZDuhH3WKXbupl7kU0kHtyNXTEGnGXSWsvCj21CrScuD5weafjIzATr72dzfrOdBBsiwWfat95ZQwA4OyUGV/LGmumLHGSKrcFBPdSjpI1Koh/NlD/10alMmzvoHMMo3bGpOygWdFqM9aQcH+24ffyHSXdn2/2jqDIf4xZnBPzaYbCmKTvb/kabnRqR8WnqoLEdu+2UYkuRyy0NUfRoR0aL1F47XFgY7WzfO96/69KLrt519/13X95yFQQhJFOjMkEd/+AvfPC7f8jTfZcms2soilDIUkLBI5bzUpTmxULdrubx5IBCpqpXatu5Nlr4seHJW8+er8q9UblYLabXj+qtwjWtFUxwoWmZzII2MYbVnCbFb71j9lmf+iCnk8l0n5JOz51/6l2/h/rGZPtFt2aL2LTY8qYgTkjGBiJRwFQdk3Hcno5WRyeNpnkbxFItqyNvo6kfyyiGEzNVi2wQodVqxcwX9vaTUWIQOwPVKR0t5wcns9VJ3TSroijKcmTESYmIqspVolWJsnCFF+fZe+8KYp/Ei2JR+sKM2lpYONhSZHLz8Vu/c3x/8eItPXqiHN11EqKhTTI6v7Ud2lqZYhtGhajGlIpc+yGFCIgXlyjFBLDFGOGcJXPsG2Xy1fTC+QZ6bmdaVhxCSslT4Y+fumV7565d2fu6b/n9n/mxT/fKIZQ6SrGZ33N1+03fSj/1W/G7/+vire+rvv/vfsmH37737nf9xtbeM+XO3as6FanO7gFXFqq6alcixJxg3rp4ETbjKBmIkEEkml3VIiJCG/EWsz5nqVO/76TQn16qt6mw3BeS67AiGDAOZgbrzCGwIxZyjk0oCZMnEzah5JCYEnEyakGBaGXUgCJJk+srfJR1dCZwxoyQPc653B5bBJJZADnaSP7skimhxJ1fQMmMoEJMzgQWC1ASA3NgBiUDq08hoghuVWgbbRzSSHUUjQxmqIh08AwQGVEkIkKXgMSdjW5MRl0ZQnWsRMFBnSTvlChV7ojYPJOwgRJcY7I0aUgEpMRqTkmgQiRkzMYeRDkdtouOWgIUakBigAZCFEtdeo+pQcnO4HYN6PDYhkRALiGsKRJ0SCI2Y7ZkmhhebWn2LCdFjuDHQglGDakSXE4ncqzCKmvWCgY45xAxC5NPaxxRx+V8ZnZ9FEuJhtwkA0PTEAPOn50yE283B2+XOmckdD+DT33lTD+sD+5ig/Xwdkl/Rgaf7clAXNX/mZte5+nkTFnb0Is3rNjb1YvTS1QBZMi7IVcPWVO600YM+GM86brlXO7iTqHqj6HlrJ+Xu/d2pv+3NzKcySlAOPtezg7sHW5nd365m4Zyd2F/ASOBXR0adsSkpnP2LjTuxvVGtu558OWfePW+B+6+a+ys9UKpbq/dbGYn0bCK6Vy9XG1tz3/qN46//3/KpReXzeEHT1yVdHsiwfgCleJIY+E9tDk6audHMS5UY2y0EKfkmhjH3i2X8wrxeFkX43J62M4Pj+75jFc//tt/tDVvlxbgIIk5aatKhJGmZ5fyG79z63M/9e5Zaxrj9mT8K7/1pgfvOR/UOefINLKykZmKIxinqNQnWLHYiDxNtpbLVb1oY2hP2hXScjopxp6LopiOyxjbkC1gsvF4fPPosFXzZVW3qQ3WJLt+cFjHUFohrmRyMaRk8N5Xla9GrrRYOPMCx1w6X5beeWLWShRNoayzpincVlmulvPy/IXiP//i22/c+4/GRwfa1g3dSO0xjXem43OFK44Obkx2z8+XTUqh5eQVWhtXXFXVYh4sUoZ3tk1AUozGQkghrpow3j3vpjt+MhptbUUguDquVstVMIzLm/Vdu3e945b7p9/12Hd8630ovUcwN2lrSDX94jfgS98Q3/g78Z//+OqzH/60N3zRK/7o9/9X/cT7dDob7UxCaKSUEALMOWG1OkJZc72SU8SltpmpYF1qXFTFOmtx8G99rFCL9fyUoBx/7VXb9QUpf0prn1xGVZt15fY4l15gmJCRgbO3FMamno0p555GQ0toCA1xCwqGlrr6JcNycgDrxl7QOwe5u69lQRIBAykoA7zV1t3L8c5+jNZJpTAyI1KCKEMAr2AvlJghZEnQyipoGbUKiqS1WkoGtRFzZsFkzYHmPnnSYhoyvohN0OdVIseSU/ZCO6dOlEVLCkRGBOvCvQFewQRRJWMxEyDbjSJgRge1zuk4jH6/VdNTexAAKFnYVM6wsZkbcog4rVNLeh8vOtkMGCMHhUmZEtDAaiUSLWCl0YhRQBaCiaMoxo7gAE/kKGMCMg9Xx3jFVDAXmqm8Lb/iniPltJTBGT1rA73EmYCFMgrazk5i2gg33m513dEC22ihWzD526S6OXJrFq3Thu+m4nC7hNANiq8zxx103rMW4Rnc1qmY7vpn568C1o78tS7SBRQ+unbz0fqzPnNqFP7/jOGpp6D169hIOT97nHn9AHdvVdPt9u7pcRh0r3T74G+a45sj1n1KKAJFX4UKMa6oDk29moUxlS/4hM/6pJe+4K6iiPPaPvDI8l1/FN71qF5fjU5qOfGLg1gtF/Ot0hCrZ68tzt/b3Lj1JPM2YbYXm1hNpt435rgchbggTVovBVEZKVlqQ2AsqZkW49ViaanBYuXu2sHJyfHBred96qsPbp2MppPl0fH0/I7W9dIikrmUWqzckqYXr77xf/zJwy+9/KIX7p/M2ltPPPKRJ979is949dPXTwSUEJONKq9NSwJWSsQgRCQi7wrnQ5tc6ayhpMHMmoTlIhweLyytqrLc2hoXXqrCOccA6tQ0q1lMZuLaNoaYVNGmOB6PCxYwxZjYc1nxuBLngdgUY+8cnDfnUBTOszgmpgTzhdtlJJYTpcO2Ze8vPnfwoV998rUXvuiT3v+mnzt35V5vzuYhQFEirVJDPD1/cfb0s8cnRxfYTHnRYuK72GHmGmhCbJergiCSKqnagIRyvH1pPN7fuzCeN1Gi+ojjW/NKPE+Jtn3QdO9Lrv74E+H3/8of/fUvfNGLni8P3F/4UeKloEotF3/xk9L/8XD4rXeWf/LE1kOf8hcwv/Xo7//C4x9572TidqelSNCQyEjgN4uQDaI3/5VJxHLq0bCdpZRsXYTYBrXT7mQbnJm6mtOLb6M6H9aPGXUhxbwNEIg9cynshIURmZlA0kUsc81dAhuRgiJRABqjWhGJkiEQhMyt78XSPaB17kaj2K0iMOVx6CStZmYLI7UOltRXroXkgo/aca7lQwxmQgoTp8hB1ghykGiFAMl8QrAYUpMS1Ao1ilgZAiOZsZk3KkHRBtpnpk3cSSbQJINwy6QsmgUwU2RJLNkwDSotXGucwEbCRIW5wBnpJTBhIoAdWJjMcloXCKC1OpHzzjShIzPUrhBWpyoxoLDOEZLDkT3XWiICLNc0dgD3pT/M8jMiGcGQACUGxbnaDTIGCrIS8CAVJYEXI0euYClYclApWGJzuRSjiBcuTMZmtRkTonXhDiLCkC7bjdum3Ow909IpZkRErksB6KbxR4PnABtS+Y7iZ1gkm5YiETbJ2M60n3GhWZm9fVVkH7ts+F6Gpm4TNqeO7tba29kbJ7Gx5DYF0sdQLzZiwDRoJGdKrJz6Vh/yztR6m7e4/dYf+0HOPlcvfTdHeHPEcn/739eSuLNUgZ7WGmYg1p4lEP1KEzMdwKXDjW4bPUNPwqZmsaoQmubaIuh0vP/S/Uv3P3z3PS984UVwePK6vel/H77zseJ9t9xyPOGpK8YprZqjaj+s6nsvVm7UvO/9t9zO6nDVELxZ8thtxygoBGbx3swEIaZW2dgV3CTPkJFnUKVWpyimK03ju/ftA497dpcffvFjzzwzlur85UvPfvDDR2Exickn1ClxWJkzjaltkkzu/4mfffN3f8tnbp27+/f+xy/edXU7xuSQlqsYtN2rtq257mUSYq0xwMwJUlIkGFMhvNBmNHVsfnUSag3iXFg1rZZN1NlyRharwovr54kV4rluWxKuSu/YisJZqtvUOFeKc1VVlkUiWjguWJyIkCMpRDw7LwRjBTNTkRBXoOPSNe3yUuRy7/6Tn/y/DxYv//qTmx/CbDV+sSyuH2Gm5aXLd730gcPff2Ry94W0tTXeb0ThidtGA1HVKhVclOWiaZW4qEqs3OrgsGgcU7uYH473ppNz1WRaWFIiOz5erBYoCTwp/bhyrA1sdWt54dw9HwxXvu4nj7eKk7vPHb3+yvI1D+2/6hN2967UQBqPtv70JzeL1p5+WsP23sNf8BUfd+PWBz7w1vf80a/fdddka+xns5l3VUqpyy/FenXnKRdjJCLqKWWzLSsiSmltVhJSyo5oI8KZFXFmcXWTubObN5bVKXVTyZi6Si+dKAILkTiKDHI574eEiBwzkeZa2yYKRFBLlIzaLCuJCLwWwMR9xuoglTeUWmEHWE6BFcoySQy5jLjRUBeZiUDG5BhmlIFTAEhypVckqs2Mcj3fRMTkGKpUxuiMJDVJW4UzlBmKRVgQPLKdRDCkQd/p5SETZ7WHAHVOGVFYmY0pmAXiSBITKSjCJXAgZ0SWY7rG3hics2SZEzFYQITMNGmZaaCr2mrGEILCzBSJu8IIZpYImZsxW7SZhzm7qYnMuA+VmxFMMppA1Qipv1hzGNvMiISNjQx0pEawbdiU1RExW0lKYs7BhNkLlU5gRkQRGpMAonAiHlYkNVN0cOvhrZ3SDk9t6UIE4y4I3AsTt0nYcbtgOGP6nBFUZ2a5WW/yr2c26Wnrk4iIWVPinhs2dW+6Ywaxwbeuaw2XqK8N0C+ndZlPgGyoDm0dP8uG6M3ForpllnWIjYU3yFQMHLOnDfYOpdnHYde8FjlAj46qYnCAMHF/zammugKoqmbmHJsiV5i3wUu2MUR5mW5+lG/F1FUGy91eZzcCKWWkdOeWyV9R1VwM4zRJPTOTWchzMe9cXbaVcGYQSaYsTLZ+yzE1nj2rtMm4IrK6bQq3XS1vPLuk6V0v/Lx7n/+Su++eetE26FvfcfTzvzt75/WtG9XF0X4a3xP3ki40HQa4Zuzb+vx2tThZPvfBA2uTpug4Go8llxB3E/VjllxnO2obYtto2xJitIgQxQDngzNfp2Vsd/e39U8+VJbF9mtfeuORZ6Spca6c+9bteroxp/GojStvGgyjNgZCq6vp+fF7/8S98Y3v/a7vfvmPvvMtn/rgldmq5lKWy7qIIi40kSUkAK4oUwopBLAZGuYqQX0SZ0zVOITkQ6sxSFlIW8cQ2hTIrGlW1oNUiZZlWRbioElQKDgkGKFgLgopKleWWnhPJp6lqsrSF2ATc54FiCSOCnHiWLy2Cym2kwWTuL0nb/3VD//iyWfwwzuHb3l3KSVKf3z9Wjpp9j75Lr12tCxl7ItxWdHdVzmxzWJxSZYni9amI9ISNhJ3MxyPCmfsQ2z1xuog3hpvb21dvLQ9HpUks6Czw5PlbC6FH58/V4wKhrZNmp0kptKYd0q++zUXUrpwcNz8t2dWP/XoYuvXT16xh5c+uPXqF61e+fJiVNrzHzRSOT6Kj44vvuTjP/9F97/ml9/yM9cPHnnePXvHyyjgJEuvDhQtwMt+TUcRq5HuJmnMLHUxVKaB5C6zMlOfDU9quhao0dTMHHFO7bUEQxyWNhFB1okYAEKKmdOn5y1wppGYkqnCex4TlwwTi4AvxMSI2SW0VVZopY3cOlJiNogRw0wgsJikNHhYtbHsshIv1rM0AI4NqtrRN+SPc0xUc+hNug1G1NgM2sGhSWCeYIZEpBBoLklrYJQ5Ms4wQjSKuVZvYhHFSIwUEUnRmgLWNDoRAcMla7MP24jNjMkRZyCvAEy5MB+rNzOKxNklDeKWOAIgV4MTsYKTMSBZaAtYmVmZjIWEN2rLZqgQw3qIN5NpArIrgh0ygwIJWeIoSYxBZIYEcx3oyZRoBRBUlFrT1IGATAkRtCYGJ05krpsqlt3tBqvMPOGIdSuRJ83KVFCbkLEX5bIYJeOCzAo1V6o0amqBpYSOYQJxUVEIq0XKxb5SZGZiMgPpKQRSVpWGsGneotcKGu7sv+1Ewh0NzU0ZBmBT+tJgY29wH2/IaWTeKdq4V+r13ByUHwTJ0DGitXc4S7JBRG22PHRgsKQ76pnsscgrrdeI1zrHRqY3DYCO26z94bk+msNg02qErT35PUNIFtcErIXoHSr3EXijavKgBg1UoGe6ZX2e0kYLdKbNDUUqArk8kaEPkHef2lojsdQTFuemSt+uKpMDEaZQRlBZyfFHnhhdeN2LX/FneVTcd4n8Cr/6lps/887VB5bn/YWro0ty2VITi5PWsa1KL9Vcip3FqJpcf3Z+89nrQiCqQ6ydK5LAuYJFWCR7blSDtitbrUSTWkqanCIJL5mIbKQ+tavJ/qj5kw9Oi2r6qoeuP/FcubO9RVtPPPrI1v6en4yWhyc+iMWoMARtqWUOVctzfaK4svvLbzm878d+/GJZx7HXk+RdcEGXcXluJRBHDEeZHBjWGgtMibmrQa5KZuacm1Ql2rbVkBQpGrGxQTUPLDKrrsUUDY4ltLX3Xpx3jGrkqlGRKQCJzDtflr4oCrNUlaNq1HFKi8vkS0naOJpMZrGo2ojSPf7Yc9/3O1v62V9+9Ng7VjeeHV+9uJyfpA8/LXvV/uzgyUfeM9l7/mJZV/t+cm7LQgxxxU1dVMWt5Wy3HO97XpmW6rWuy6m71rYyr21STiZbo9GEp5MQ9eTmzdnhcVVV41ExHRUx2GoWTk7mk8lke1tWTWqbdOtmFI/RxJ87t+uwy4p3J3vn4/jRPzx5yc8dfeOftjd8ytVgy919ffVOeu9j6Rm9+AV//hvf/4dvfc/v/tTVl3nXlAhMMqmbGYmPMpNoY+zU1DqsFdjbtHxkVZuoY8HSzhjqll6CIfX7OzZXAQ9OoM2Wh0WkqlBKMCNi6griMhsTMxRQogx4Sgw4sBDYHNDC0pAuq6QdVgkO2DRvpF/LMjAXZoszFxcYAEVmxpTtYyC7pSHEPbSj727HE9Jtcf0myZLrFICNGFAGKytBFUYUmZTYmOBMGSYTRDATQrc/shGcmQGRuoqECbnyCiVQMphRsuyhpEicOke6A2WHBZMxGRMzgUlIjIiZjMSs158w2EI87JqdLOir32hn9gC5fI0FI+lRxIMzr/dEAgLKuOZsTXXipbslKSzPi1xyEOCc1AyTPs0mMpIhOlIHTaSOrYQkJiOOlgAESsAYaCMnQsXMmmAcCV34W2DGlulRGFjzyJzeqzc26i7n+g7HbcL1lKd0c6/PZ1TTmQlNRESSTPmjN5s952d62dWB6H/mk9JZsGvg1UZPUueHoS5BroM3UAeQNtw+DmfNfdjm72u1oVvVm+h36rMmbvMKAKdEY0+kzH2A2fK2PFiupy7edEQPPrbbxnkwSc9oG/k76/OnXW23f9fMBojA8K010wiR9c+YT0oD0CL5kWgxb+Nktzi8fnzuvj/14k993W5Vbrnwjt85+v/+2vJttrd9+eKl3VjDHYZopBJTJRJtsoqLnb2xyvipx28tT5qUUh0OhaO4giClc8JgIhFRsqAxWQxWw0JRiC5SawFV4VUIGoPWMblzY/+eR5VjeN75p9/zoUKKRmmelvvTHYqahPx0VM9XVeHqdsVYtDF69Viq+LGOFbTzr77v6b/+OQ/71Y3nKIyjt1HRJlgz82UJqnMARURYQHAxGJlJBoMiMcwxBTJQcmJJLIrmvPzs6sjKpxdBBuw4Z6reUeW5KPxo5IuSRMQ5LkvvnfPiAK1GI3Fslpidd8KcaR+Yfdm2yQsij6vi2k//Qjp+zT+qj987e/RZLFcjP8LRjJq5PH//8NlnVzd9edWV4xGci0z7e7thNq/r+YiqJrQHxzrd3vZeNNiY3eHqFicTkdH+7u7Fi9XObhTMD46Pbx0KUTnxV66cn52E46NmfrIcV6Pdnero+DChqkYjYQBY1GlVt8KwGKbs96YFHth+fLH1Nf/l+l/64LP/8EuvTCeYpVsPPbh9/3zxK38oL3rZ6+97wdVf+O8/tr91fHlnfFzfoKoCmhQikQsavKe8nfTT99Qa6dZjV1O4F63UlWbJW0SH2Or5hXoj2DZXzdDmAMKGmbBTjSyenV8zD5sRJ0IUUlj0BDGVDo/riFpQ7NZRrinAHiZgD6wtHAWzMeVyasxdpdje4Z3DQjDuJTEBhD4JQshyOC73hoiU4+a6zssYRpqrvRGTmWYzj406zYGI2VTIQOYANmUmhSVDJOQwL+fKVEMFORAoJwhRNETzgsz0kW1rEuQQuBBYjBNyPUPJ9Rsssx0rAdzxCg970uYva5Oms/3JWMn6/FijvqxFLsKWeToGn2jGr5ll2z9bykqZHY0BkLIxMpMIohk0V8phIfNkBRKDIrQhK9mcoPICT1yKJHXglKBEwmSU0XYRRi6mRqIDYCqmq2xCMsupnVzXTILZK0Ob1imRO3X1xiw/9Wo3NvHhmxv7eKfA3MYCcYoWBBsb/ZnGqXetfkxhttEI+rKQa0O2Y5LsJiKtMcCd7oNT6bybD9b1Ku+razf4htjbKCC4KZhvf67NM9S7iM3MTDMJSSffN+JStw9vvkl2NZ+pb3rKvD79rWH0TilM2V471TEDwEyqa+Vms83six62KusPLsWblza0Uu9ut89cr/nKZ3/6530aY/XB99/6Dz9z+PuHlTxw+Z5JuTqpryfntB4T1HhhcpLMSbNbkaP2scdWx8dzTU2KczIleDNflCMSkBkTZ5dXsqgazZREm3oVSyqjF5LomeZt4QvepuYdH1DH8eLe0RNP+8ZkMmVGMXIsOjs4iozp9tZstpC6cU7aJJ5iDEZujlTjhOfpwF+457/+of3NT7pR+apeIcUlJ6LtoglwObpoiYiccwSvKcTYsmNxHFMAGbHCAiOqBjJ1TFHIknaIn0waoyREwioWxZEnLQWVZ5HErM7JaFRWZcmM0nnvfVm5ftomAIUriMiSCnkUZm0zvaq/+hPLX7/ydZNxU7//yfrGidutqCznjz1FSR+c7i7mR8X+ubrSC+d2QuUmidJqlTx4vmoLYrUQV9c1ufGOHxfNyVE8Wbg2unFVbW9jXLrCzef1tWvXyfTq3ffsXNy6dmN5cGvOcCTmKzs4OoLQqCzBIcQE9WSiJBAQpCkltW25KvbKcP5Vl3/lucUf/pPHvuXzz33mp59rkMbF1hd9+uwt71wcHt/91d/4j3/+p37k0af/8L7nXZjPGuIRkVlsHBd1aN3GTmB38syZmQJs3VzVIUqaPyWQdZVDN3w/Z71H/e6x4S4iqBEgbC7nMpJpVsVAiTKEhwB0dfKoFwmUr2MDkZondgZhWme1ErkMPWXrAZKd3qxKnIs0ArkaLmchN/gIU0YaZRHVJQalvoW8jLn/i5Bpgw1komZgByW1ipIkFjKBMRubgYxNoqkzFEwe5I2cdaQW2WPeK/KkltOEnME8kJgb64g2PUkLCYbELGAogSRHDYYdh4gokyz3zsBe4ALUm0jUlUjutkc1Y8qClMxaMuRq9GaJAOsqRIE0b5Yxi+Hez8sGPl1RI4fwEsghA1pZgALqYb7rj0U29axK8EwC8eIhTglGAYBaaxZYfGKh6FXIoJrIUoAho71gRkbZ47EZgKWuoFM22SU/9ykX9LCn3y4LN48zMjtPYrmDJf1RRfimDbc2hTds0M1v8cZ5W4vV/iVuCo/NBjdlG5CrdpgZemxUrzh3Irx3Za99XIOSsaGsnRqBzT/PSMQ7itg7Hh9N7aDMx9ajOWij3supjcYsR5XyB+umtHN/39aBwQK+Q+eH0hqD7B8arEMrsGTV2NH1k+OGXvkXPvvTLCz/4xuf+um37q/uu9u/iF3rlwdNaiuzZS2jkEKbmMymrtnfdqvg3v3hWZrfBCXYUjilxKZFVe6oOivhJAMWSWNy2RnXpNQsQsEcjU0ciFR5ZzyuJjff+nutp7S3E68dOUtaMjX1iVe5Fc9fuiAnxxzTsqmL7Uk6OCYn8BNqWXgVQwQb11rIdvQ3b9QXf/Zdyy/4xGuNnpRw7ORgNR8FSbJOLXDOmcKJqJpqrIoiRgpBAXWOy0KaeZ1CtJSgCaamiXKhPVWYkmMmZmBUjgqPwtGodOW0LMvKe++9zy+BhXyRbV8uvHOOvQgRCbGUvvD+xizsXh0/8tvv/dGbnyuvvnT8yEcOr88AkXNOXVtMp+6lL7729LXDJ9++c/nBu+/+U0clO9Z2tWjZ2AnMO4ATzOrDZVtGHpXFSVrVB4vC+/GlCzu7u1aVTUizazdX88WFq5dHO1s3npvdunks4mNYOUlJSbyrRpNoM4J5V0QNMWTCeviC6nrlaJR8O9LC39T79ieLc1e+/pfi5/7x9X/65RO/3a7C3qe9Mrz3A/Tm30tf+pe/9jd/6ep7HvnfL3gAemTKDUpu0nJMrtWzq+zMoWB0JLUGdIiKnLG9zvJJYKy12E2bYXPy2wbTXJbjqjAjs0Qdw6GSGamBs3zRHN8zUA/z0U6EkBgRwQOe4G2zJA5JT0aZ/cbIyCBAODsrmYBcn9GZJctbn7DlW1va3CaMXCcyhp0HAoCR2Sk71DTBQb2KozQ2FkJB6sgy0yTBGI6hTObAnrkwsEIsJ8iuN+fYQ+QMFggeFI3muawhKHD2aiOaEHHKxrtlet+udFXX69xE/yuyzWNmlP0ZmnK3N00gM0NKRg1ArIVRMsvF7HK1MXSKcia9QmYIZ8rVks2UlHpnA4FAkkF7kAw798SVqs9uc3Thc/JMgUUgJTk2MQY4Z4QrEVysAyuxswhY0pAs1KqJFNpV6QLlLCO+nVcEQ8wARG7Q/m43gu94bKqTH1tOZ4T4pov7dnPtTMsYxO2dmjuzcjZN4eF1nVFph6Z53e3TYdH+O2dudMpI3jCAs2o9SKkNIX3q67Zhj3YXQ3EqNfc2PWbo72BsZyemdR7vfP1mJQZboznWmgTWVvqpo+8n93lhPERQdIhnW18MrtsOuoE1oDJZWVuN/fHsxq3ZJ3zlV39hms2/7gfe/Uhz185Lz8dVa0cUDCtzRqGw0ayNCYUotnza2SsOlvrhx25ARXiZoqYYmbkonCklC1KIcZkXkmlMahaTpiaGhlLSpEHNl55TomkVyJ749d+e7Iu/eqF9bsGucgZRbcY8NRY/PpnNR1vb7cliVTfbe/ttQtOsuJAUQ1GOqmKnjovEB22jtCrLsnnnyUu3PzT/lCtHh0Q0mlbmRglNlzKR1RokNRHyJiEmIvNC0bkYW+R8Gk/1sjFV04SEXCidDVBzQoVj7yGiZUVFIcXYFWPHzCKcBTAze+GicMxQNRY4x9576aaQY5J5PNwfX6w/9JHv+d2Pf/YTH3ZPPr78yIG0SSbj6ahojmY4tzW9636uZzpqyr2r197z6H2f/4brT13zxocpVdEVREe8GMvEVq2aIKws1nWzaOuwf2m/3JpIUfqymF87uPnMs/uXL9z74NX5UX39sVsRDfu0vb01HW+VZSleVKM4SZHaFWKIoFY8M5zFQlJpZUjG8wQqEBaxBD/8cdO3PFF+9T++9d3fUD7/xWrBXvgi2d1Z/sIvuM/5nC+o7r/8h//jZz7hBc1z6jmstqKbu+Q3/GebJsGguw+TvJ/2DGOmztFMREg9xnNYAvmjj7K5ndZuWVWZzBBhRkhMSlCyiK7VzrNlCPkGmivCqAdnqe2sqxE77BzCxl2UIhuCZNkHaT3DLlHneWZjs3VyMhi8WfXdjNhnukXqSLE6QuIuqYX6dGWqiAu2wqgEOVCZfeemDLCCCVUOhRLnDjMgMM6lHrL9ap2JT0RkCCACBRBBV4o2g6RBBErMAUhGCs4u7zwodyByGAY8m9fZE3Dq/MZlCiNKyH5KVSOiruAW1CIZyAIhZlkNs8x/ktk+cwJpBqV1YwUQQS2RRQBGTMIKD2JA2ImYAzkHcSRmDHbGAgazy1CAkKPm4ETmEROStkvT1jqXDMwSiPlUFhI29uo1aaPbnNNn9us7TlNsCJXNK9k4O967droqsComeqcWzp7pb96nYZ/yzbIhmvId02dJBu6tO/aZ+gMb6/mUKpDdHTrw4GDjc+2ITnJpjsEjvWEVnxm3jbqkQNZB+uuoyyc2XsMxzqo+m38O0v2MeT38crvOtLlP4bada/MuNvSIYDqYxdZ5EXijWQKImpT8aKtePH199uKv/YYv/OM/fvxbf+JauPAJ0/v8rRuHSFNX+VlEMIGmWR2JfOmaqmSZ+CeuLQ8+MiMLUQ4RYkoqKCwZOV+MiqjMjswKaKuaiEw1xtiYtoYmVCJ1GI3HbdPwpT2+NV/8wXt2X3qvTkfxuQOMCmEqeBRCkPmiodpInApPx1b5PTdq2+B2p/Mby4lUOoGmBKios3BexhHNsk0jfz799nOfeCH89ktehJIktrJwwYvn7BwkSykxk2p0jg0IoWUWERJH4jk1KEdVWK1C0Gx0AMQwIiVHQuQE3qGovPPkK1cUQkLOORFh5kKc88IMIguxLctyNBo5phBCAqpyzOyakIhHTI99z38df/hl/y89fHz2kaY5mRNRuePgxzZfSuHD0eHx4c3qnpde/PTPPnnPu55709smr37BE089fff4/AGFRKnAiHJl27ZWTW2Q4xs39i7sVDu71XhaOh/r5vCZ59oYdy5fCgs8/chTzaKupm57Z2e6PQEYjKZpfOnalZlySiYQckwgct6MIwNtCuykjOPaUYFQuuduLO+5Qh85N/3yH7r1Y3+VX/Lynfny5NLl7S/+0pN//aPxS//Ua178NRd+6D/+8MsfasoTn6gUWVnqKDIAZDE2zPAzk3ng0rVOMhI6D2P+WDs/0GnX15nFu15irGDfEX2YkgEajRLDnCTS5FgJSSgZIkiNQi9iMlAk1xUQI3c7aaISEYlRjtdlzTZ75rq4WHZKE3FPxg/NKC2CmYAUcKbRzIidmTErevPSNCvr2QLOotQDlaIiqohKIqfsIU5VYALygJCOCWydQx1ELODOj8uCDg2Wq9+yGYOiUcjp0ATPWMJaswrMxNqxgCGCDIhGii59NA9SNkFyiHDN3d258UnyfkRkbAKQIlJ/OZOBcllIzU4Eyx56TQRkzmdDghpZQp4Oank4sa5B0HGekCUGDIGgxkZsZAIWgCVnhBN5cAEyYyMWiHRepMo0AMrWZLFAlsSiSonYJKQsSmDMxL14OXVQzw2Vd+Y+H+m2YxAA2TmzlkgbFYE2zzMzkQi6ehHDBac2/cFE60VCNy4donktZs70RDsdc8Og7K/vxIZqxx1zJ0Frw5FuVwZOmc63f4rb5FzGLd++HXQ/dfBe02bLp8ZKTo1wVvGGY7jR5kBtPM76suEra0w4er6aDTfyuumcMEmSvdYbD9i5E7SX1vkZMwV5rolYVdXN69eurV7xNV//Fb/wpsf/5r+f0X2fUIxc8+wtkt2FFMdNtHbFzaxZnVgCBw3J5g0+8tjhyVPP+bhwmnzwKUKIiGM1KoTLFKqyOE+0m9hbUcCLQcmi41iyFhqqRK4ql22zt79v73nq6I8+cOFTX45z42pZlBfPF3sTtzPCdOzG03J715xXYqvTsqnH53bnhyfOuZp0srNr7XI03rGiajyzP898XvkcJvdW43M+btmlS79841WL6HeqFBCpqJwrhD3Awp76IpuAescppWyIeO+3t7dHo5H3bjT2ZcHecVm5UekKJ4XPeCvnCykKPxqXIlSUTrwz7gDtXcmzlGKMAMqydM61bR1CcM4550IIKVlVjt2k/Zf/efTml35lrU8V7z+qbx6WIs6JnxYnoZ7sTvy4tHntb8zPT3fDtVv3vOLh8uqFw3e9/8Hzl55bHpcJnuBSEFZjYU2m9a0bN0px1fa4HG15KYjo5NrNo2efO3f14ta50dOPPjm/dkhFvXN+Z7qz06q1iPMwT2I3T+Zt26awaJtDtSVIUzKFtdaaRu99GWK15MDpWLlNqZJiNRtNVUYvu+8r/t3JO959tDv27cr2y+1v+Pr0f//cwSEe+La/+ffe9+7dmV+Jm2twZqcU2dPT+Ow6NTNorkSVzIwsT2Cw5So/6BkYblv7G8ttaITUAFWNmeAQUMkQJlh215Kl7JvqsMFATuejnBJkrtv92J32/wkRWYYGb2xuuQt2+uiEMbGR5Bq1RhigpiRsYAMbC5GAHdhlPBdY0OXaOpA38sQj4oowBo2Yx8YjkjHJlGSb3a76HSt2UWyb3zK/pW6ifqLFxIrKXIViROWYijEVY/iRuTG5LUgFGRFPSbbITSBjyNS4UnIgBxKwGMGIDcwQNiEQhsRNsxzdXoeXgcwtdmYcBqusNw+SmalGs6Qa8/vK9GTQpBotrXfmQaZs5NJwp6Nkz78FWDQEkGqOJffCizmPpXlARBxxV76XxbnCu9L70knlnBcpnRTCJXNBlMmzpUNB5wJVZ7JwN2Zufvu8mQcMQCACYcsRbGZjisrJOFl+546cQMwsalAkhQG8QQRNPXEXa0KHtsepuw4CKWfW50mpQx5tj8bK5zuWZ+0dIPm7vec5k7nnphScjDKg8WxuUr9o2UmuMo0+G7ovqdmpC5bfjSjYjDS3ll9qduoQg4UGCTp8mn+mFPI16APSGCK4Zql/ipRS0ggyg0KDdQzsfSQb3fiYWWbEFeIsVruedM+OQb0a0pMUlkyTaTdGcsr/T2SKlLosmZq0QZJkM4rQIIkihElT8gjKKZLncQXWZnHt1tGHbyy2zv3pr/3qL/mPb3z/9/wsLjz/Rb45Pq7nM3Kr1UrqqA2aVld1tNan0DQIi0V9cvNGU5+YIFEKWqcEYhPvfTEyOBJxpUsIxtGQxBK3K0pHlG5SPDBu1TlSOMXu9uTovR9Yzo92P/HFc01SY7WlSaiYbLnRlhtNeDzC1sTvbm9XY9oegZy1ae/c3vHxUUpprxg3TKltHQu4Yi8yFR058azFyKbjMUW7+Oq3vP8ujBpeVQ7WeAcgSnLOTa0qmEpxZKyqsNSGFbFV5VgTgZ2vymp7u9yaTLdHpScnVpQ8GpVF5UbTwnvxZSHsR9VW4cdkXEjhgo7FV86l2BAl51gcMXOghWlJSq6NZOb8nk2Lgh7/of8w+/nzf62twuLpm4taCm7bmkbb+/DGCW5v37M0aGV7PNnd1p3RwdOH2699aLWcL6/dOnfunB8VUXXFElcN+3GZxs/dvIXUXpmcKyY7cZzaIjRsNx5/1sPfc9fdzeO3bj79RLHjr95919b5nRotQwsVCjI7XrhkYinFyOQTMflCCq9NKHOlwGitogWg5GK0wE3r2mIh9Wh7WVcvvPLX/6M9+qiOqrYJ4XK59Q/+Rvnjv3rw2K3z3/Mdf+vJJ1/+bJOmDtBxC22pcMEzs5GnFJ1WzA5gM0qw/K8lDUSJwd4ZU4KpkAoFxJZT1ByXp37zPWU9J7OUUrdTQYxgSpFMM5OEJSARklMtWPOeaNoQInRFUgNKmoA6F10gY+7KQpSZkiluGMF5ayQi6tVkIKOggVyrIHtJSQic5ZOZ8draETCBPKiEld2uy4VJYewNTuEUDlR2rM00Au9AxiYOzlkhEGfEJk5doUVh4nJuLpiIhdgTe4gncSYMLomddqxXhXEFKck7FM5cBVeQE7AYjyBjZSIaE8ZqJcwTSkbJ5IkEQ/w4qSkTPEEyIckQPGSmTOcJKHEChhIdHubyOJAm0wDUsJYMYmBryJamSW1laMgia2RrTUNKvZamllKypGSco4+SiNAmqxVGltiWwBJgQQI7kCcDQ0CO2LEnoo4BxnNkBGbHUrF451zpq0IKkcLEU1GRr5idaXLC3rmO22hDvDKyW6IDpAnYkfAQz+hmJFLCacUzlzUg4LQp5tiLeOnL0w524RDEHYzr0zLg7Mkz+uyZT4eTfWy7/1Z//oxGzBvq5Lrx3r2T2+5f/B106u7Wva60ecvb9PF05otElBWRzUe487OcOp+LZ90BrjU8wnCjjzGYt99oswVsxHpBqqqRfEo7ykv2F2tS8GpkBTXLaCiXReF9Ubh6+ey1xbxxz3/hw1/8VX/xb/3ZP/eav/Hdf/DDb93f+/i7ZvXsxqqklcaoFlOMsW3btm2zFRJCCE2tobUUNLUag6VEOcmbso9uQzMw05jCatmEtoW2IRERGzi0SLVtiRXW/OH7xHT64nuaw5PlbG5MkqwAsZqmZKrOiffesdQlSERJV01Npa+c5zpcl3ayuzdbLjyLcy6QkZNCHJxPhWA8Tt67XffO9PF/+NRWuU+JuGibwu1Oqp1V0FD6gBg0sGjhiSlpDBqCma2DuN6Px+PJ9tZ0Z7saj8Q7EhbvvHflqKyqqiidLyQfAODFmJbNMnNBqMVsBHubFLyKznhvC66oyiTp1r9+45Wf3PuKydZz+NCHad4s482Wy3Jvz51DHXRrZ8+VLrVNO2tGO+fc9lahVIg7vLa6+PGvbp64NanKqGa+LFYRzYx08dzR9b002b58n+1ueZYRV87o4OQ4PnV9/65Lq9I+/OgjPsQLVy+Nt6ar1cJSgNpitarr2jlXlUVo2rZtnePCd2gdZm7bVlWbGDY3ihijmfFysnDNity+c5O7iq/9N7Onn5mVJYVYX5m4b/nq8Q/+dPuOZ6tv/jt/vj56+bVwPPHbRlTG2dwholGLUST4ZbZxdYNfj5GJEtdBpc2lZNaRC6990reZBJ3xgJR6J1anr3e5O0REsAQdKJqTWSJLpsEQzJJZ4q61nAEsfeNnaY5s7QMfoGG9x4wMpKlf8f3aXq8U63kFBi/j0IoRSLI9I0TC7EgcM1NOKzA2FYUYHMwZOLugiT2LZxESJidwnsSbOBIHcSaO2JuIkQN7sDdy/YiJsYCYIMROxBEJMpMJ+b5ML4iG0TcbHuT05n96c+PN3Mi8WW28q97vmJkpLRs1rWmEBrNkCKSJobLG9gz7cx+Jo8130ZotoCvYCpYyS6V1NrlSBqM7ByC7AzcnDLEndsIu149iLpgy9B2D68bM1O7gd8md6Mo53OHjLlPNgM42z2Rs3XvNellfczGn97ANEogBSP42bouBbIz7GaDQkMKkdAe5OHS7e5sbb8h6yiEAQzcGM3G4XT6SKrERdzlkdvqCYXyzrtS/grMrdmPG3EFkrnueNTftWK02LzstOAea74+1iWycOSXgN6fvRps2/MumsHX8br3DDWmEivxMk6T2pJAC5usQox+j8jqapaOjw1tHvP2aF776a177+X/p9a99yfUDfPHffvtblg9efPBifbSYK8wWkZLGFGOMbRvboDHL36QaLdSI0VJEirBAnDrhw5w1ypzslFJo67pdLiqNabWolyuqU6pbRVqujmnKtFgcv/XdzU6Rzo0XTz4bD46rWX18cJgWC10u02ppIaQQoGopqCpBdb5oDk7CbFnXdVVVRYAppCr81ni1qitfKjM5R07gpRqXMULcJMRm/PyX/eo798NqLm5SelFXU6qTrsypCFdV4Rx7Qem5LJz3ngUiUlXVaDIuy5KdGIG8Kyfj6c72aFSVlfeFVKPCF+Jc3hBNhMgAJ3Vqoqaq9IUXx+KFY9t4L35U7fHucrkYjUaiBz/6k6OfGH/hZFoc3DgIC4srLYpddnPei9omGW1t7e20qdY2aGPbV+5qxEmbmthgGS9evNuuXvjI29598fI5zGZVE/1ofHLt2fHBrLh4rnClK4vWm6PCmNqnnoslXb7nynPPPF3fPNi9//L+9qSNjYA4WdOEECN7V3rX1MvVakW9/uEIGtrsG0ywrElkIaJgzZw70CYVMclslqpdv7py+e/9iM2D81TUrd69W/2Tr4/f/ePLuj33dd/8ZdduvOp6fGbKzmi7knIVOVkj8DFBqQtFbU5+BuH06jurUveL5QxEo780DdI3w69UlTYWS5eEQ5FNJRc+sGTawmpKgVLIwiDLj2ydD8Ly1AaxFvZDxsFaJx52lYzIzfZ9NM0kitgQurBueQ9sFNY5vYWIiR2IiZyRJy56X7RjLpgLZt//IkROmU28SQEuiJ2JB3tjDynA3qQgLth5Epf/DVoDOvWCQUJcGBPEgTzBGflTcnRIu+o6m9ATCK5fgZ4ark5+bDI7ZRAaoiGQRZiqRst7i0VYMg3QZIiwYF353vVM2JwPii7LC9YoloYZdKbUgpKSdto/9SA0MrOklhSngo+ZaMVYiDybJ4iRKPvbbaTNP3sX9zp6e0rd6M8qurJQOPOpcWfZmhkS8szMJds2L8vfGsTw2UOty/q17vehxif1Fm2nAxqGbpwRxuvR7KXy5r3otufffBNdU33MeNAbNoXZ0NSZ5do3e7ozRjDK0d/N9X/m3eO0KO0m3u0P1RNAnrnD6UZOPdfpdGE9feXZ+dd91q5MpfBjRm0aFUk8SNp4bXl82JZ3v/DjXv/1L37d59714N33buNtv/fsF/+fH3rywquu3Hu+XYQjpaCyWIxO4nGK1qzqpqkthZRSClFTxiWaWSIzgjLD5TKjefJx3j1SSiG2q9guQ7NcLG6hXlWLpk0xhLRYLd3+ll07PPiD99HVfXIye/K52eHR6vBoce2GXbu5unGjOTyIJ7O0mNtqofWyXS7b+TzcPK4PTyolXjSrxara33XTEQ7mMaTtC+fhJa6aoiiUiVhYnGqYVBNVFeXpqL5VvuJtfxS2ttDoqJHWYiiVLCavzhGbkaUoxKOiLAvnyHVeH2bHvvSF974oPDkWL1L40WiUwVaAMoMZmc1dhFJoKGrlhA2rk3mzWhDReDpGo4m4YWxtbePk+NvfeP9P7H1FtT0Pjz1GNxbaLJy0bRv2RldG01ES2rlwgTyzhuXsZO/K5fH+ebBLoTGzqsLJyc3zr3xprMqTd/zx+XvPzSZYPnL98OkDd2V/VEmsIgqMyUWLzbJZPHtzcu/lWuPRH7xvcmH//F1X6tAqkmlczRdNszImEbEU68UcqpPJxBeOyJgshqApEVHTNDaEkBRmpARVbQUFUxM0iCzm7cWd8CdU/b+/92kIoncS8YK7/T/6suqvfO/1oPJNf/1Lnnz2gZZipKXNo1RspLFR7kAeZ2f4GaG7uSLyQuliSZ1xe2o9JrNoMWpflJCcwg3+u24zhGaODJAa1JBYI2tLuoLWpjWyyxTZ1w29A9SkX5wEY8pLoDPv1mL0lHV7WngTdRKXFDRYyfkjgNioM9wpb9He0PE1EgmRI+misyDJyTZdYSewUicVlXJxIkam0eKMisoQLbG+4HqWAhmuZmB0YLWejJNyjY3OCAYLmE4xMn6U4+z2S2cHkcgYykiEaGgIkRHzn6SJLMECUmuaYCknhnO2yjpJnA1czaYTExEr04ptQTY3W6nVZIk6w4vIlKGagmne0GA24Aw6Cu4+xNulFesG/mbTIjr9nKe27vWbvqOdZwOFU38Mk2NTZg+CExtSCrepAOupdMeeDa7//rIzvTor9czSACdTMyS1uDkxuwfoj766lm44fygj5tFDkM6sZNJTfw79RA9T6j9WUB8k7nTTdeeHV3K7bD4zJmYZJX1W1dhUI24btPVo3Onongsb8zv/3joRR228lWhkXJXF5OTk+uJWe/EFr33w4b9Je1+qu/tXz8tdO/av/9MfffUPnvALP25nVNY36uPVrba5hWUjaVGsXGxiCCG0dQithlZD1BAthZSiaY5tKygZqTERCTuYadI2xDq0yxRr0wALRu0qzAIHna3qGMf75+cfem726HP+xfdMIq9WNZVFVZQiwm0T21VzeByPZvHwKB4dh8NjPZnbbJ5mc2kTEzXzZTR1oOu3brpLe+WoSiGoc3sXL4UmUoKREDsvLnoJzty4MIflrOV77n7L0y+u21uOgTAeu53STUm9iJCTssxFacU5zoarEJtRiqoxmWoHBQqhXq5W88VyuUwpxdgO/qvsumTAqbKmWLeLk+MYo3OuMxxHLHGbpnTy1HN/+789/5cuP1zgoH7m1iLouC4iOaNtGSmmKdZhvH2XH1UGDYtFm9qtq5dkNCpY6tQmUx+iSqoPDp//6a+7dv3o8A/eu3PSzNL8gp/sjbaTtAltBFw1grb1sgmats7vHD/5rM7r8/ffC7MaKcawmM9CsyIiZhLCarlcLZejUTmZjphZNZEam5pZ0zRN00iPWTAzTUaQoNY2hNhIKYKW0yjW7t77R797c/s7f+TGFNaG2EZ+9UOrb/oi+Zp/zefOb3/TX/naP/nw1qhIYbywesKcTRZKqkmR4YF2m2pLPUv8mUWxuco2g1k0VFwgNeIcW2R25LyISIZRsRORTlihtwosAS1ZbbYii2SBMjUk0Md1cyRrY4Wi24WyKAURGMQpM3flKks2aAmZy0JYvEPHVmV9PI3yRpbRuxma0z0OkPuYjLq9pNuwMg9U35s1m1ACQGroO0z9Laiz6UE57zkH3Ls0V1Ya/OFsneCRzCOtHQNGlkxnMCjrMMBwfhM3evag9V7dS1CDBUNLSIwESrBEmmAKS9BEFkkTkmbGr+GmPTgJ6CiZyIY8JluRzqDHFmealtAAi4xIFk0ja2RVS5FMrcelmpkhDSAcPjXBOD/e7Xs1kxCYuihFN/POBBi4/2kZjSUbDs8s5xQJp4Vo1hOHuUWnrbc7yAwmErY+SpxHdiOkOqicmeyt+5n1kU0zV/v6JwIaII69+Jf12jvtDSZav4lBFhp6Bfa0ArHOqjr9OGbWQStpc36ckp13nlLDxdrZzRvPY5sqAE6LzFPfve387coThgrSd/IHMHN00Vog7Tq/pXX9kSeeufLCN7zwU77xbR959dsfbV94X/3w/a6y+d/5jt/7l/9rq/rEF7UNFsv5TSwbS1N/5WTlalusooSQcgGMFNsUI8xgyUIIbZ1SgCWCwoJpIk3ZU6IaY2w1BesiNylqnKUV1c3s+KSVNHGjk3c95o9T9cqHvB/Fy+fKvf1yZw/TCU1GcWfipPDgdrFqZos4X6bFsj46jvOlJG3bVkCjsgxtwiKMa9R1LbtTGIcQqCq2Ll5YzleemJwYi5dtNbLovPfzGHhsz+w+9Nu/z7s7NbVBKZhThQVOJM6ziHjnXFWWVeGcwAmXXrxzWTbnqrGjshqNRkVRAIgZjts73nMAmBnjohx5Nx1X0+l0Mh1Np9OiKEQcKY8ns5uPn/z9X3v4f9/98O4itjefaeZ12dRLl8xHIplsV25n4iej6f6IEWO9Oj48Gu/uFvu7Rqwh1m3bNE0MYqkouZhdP7z0ya+Vhm+8/4PnDq5ffu3zDnkFcT4ItaSLti0oMoqtiY+2vHnL33tpZ2dnXjfM3KzqUDcizKJeKDb1/OjQF8V0OjUgWoyprZsVE1kMy9V8UpXjqvDCqhqjhqQKSqpeaRWAqJqcRVlSSofurpcWP/du+W+/cliNkFJqm/0v/qRzr3rBydf9X4sHnrfztV/9t//4kW2aSLJoycCiVJxRZLFh79ppgpoz62WIbZ3CuGSgYhejYSVOkCz6ej7nvE/KsL+ho0IMrC1bbRqAZsNy4LwjDXXXTy1SomHvNFKQgc3yPfN23DmJmIbiw5umjqx7m9vP/r/1E2Vw9lBGvjOylchSt0NaZ2pn6U2Ug9yMju2LeogYSJmMKKf4di6rLJ83I2HrzJRuK+PhozOo5q572JS+GwKIuje4ARu2Hgm/kUhpITuZyRpYAwvQYJqsl74gzclFWSR3SLa1zdMTUWnKGf6m0XRuekB2wHYEnZMu2BpYCwuUWkFkDaRtCm3Gc1nS7hcz1ZjlFrQDKROJUA9GN8hGGHZT7g6b9uCdP0UbOcyeU6//tDv3zBTfxAVgQ1CdmYLrobzt2LyRnL5sOENdDGgtnARdxJd6T3L3Ymkte9aLUHWw6TfO5LZSnpSKPtWdTvmT+/7o8Gn3LKT5nyIp1pqEWVeMQYfk2mHmbcjdLmM+o683eC7PjPbpoTobud8cujx+ADoIum0siY0h9TZxPqCaPfnM42W596lf/DXveuqVP/zvZi9+yclf/Qvb91/1Tz9Rf+lff9ubnn3J/S+/zx20qZ1FYLRQbvXWyQ1ubwJtvTrugVchpaCh1dAipBRai8FCo6khy7pkaxpzuoqq8qarjZmcnJMJpmMZlUVRzN//RJFQvOpFyaQYT/xksrO9X+3vl3ddGd99z/jyla2LF8tLF2R3B+MxyoqKKjJp4fxkXO7t8ngcC+9Hpaq2y7q9ORtvTautCSKalCaXzpXjEVp1rggMZ+LFkbrY1KJ1WizHV7f/54de9JGjarJjrUR2UjqAvONczYWzn5lZVVtGlC6N0UQoA8GcY+dcMapGW9tFUbiiKMtSJBM7s3NcFK4svRKiqTgnrgA7Zk4pnT8/eud75Zt/5f73nXvInZycHJ6kZXQxAaj1aCuOt7bb6Xk+XDY75y8nV7Cm+ngprtq9fNd0e3/ZtnWMUHVA651K1SqcqrWL8tNecvfnvW4+5fDuRy7fc/kw1k3BlpoUa6xaEeKJ15PZCbUXr16sc7JH21hIGlNCpteL81u3UhsuXLjgyiKkqGYppdDUMYbFYsHM21tbPqPMVLPGm6IaS4hQ7v5wBWLtol9hSVdfdv7bfunksQ/Pq6pA0WrEd375VnTyL/59+9KHzn/yG77s8Q/IeDqjpBBWq/st5tTmrh0r8Ho550k+BALRO8yirdE0QCe9kplmymjyBGYWZie9DGYT6wq4dIuLDQSotdCGLJhp5m7OG/EQUDuDgaE+OTnvNiCz7E6GAjFHmrtUIlk7JrOWTsIsTMy9CCOwaC+PSTiHjTdr2dNQ3CHb5hsbeOeiI6DLv9B8ZSeDs9O22zWs35e0VyCGfeyOZS3WNqsSsq0MnPYnrz3neTva6PQdYpYbe29HLZHIIixqJ31bQ0BmwqIICwTNyLjBSUnZEd1nQBFAa8M6AUvQIektsiPWE0tz1QXSEtbAWgotaUCKmkJqGw0xpTSAXVKX8JY7ljnHQSTuDkGE3mmaNv7lakiZBnKwk7opkpAr8W0M7h1ik7ef37xgUyhutrNeIRuUy8ME7b6gXbkk9MrchubaZXYP6bMw48y9TQqIUle84cx9acNV/jEOReJMUbIhCzdVCjPD6aHoh1tPT0v0LiAT4jx5N71S3TLY0DPOdG19i7WOK2f6P3SpG8PO/57xIMqU2dj01LMTCePkOB031ad9xufevHXxm7/r5EWvtB/4Py+5ygnzL//6I//4R2+G533G1vnQLloL48jHq2auRj6WCEEp6HweaTdlyKsRAymTllPWoJOZqrYkgTjnXEW1kCRHEjNHTlR2zo/YTDROibSsDj/0aHFlb3xpv372eDyZpJHzrfJkNKpTSDGUPCpL2gZiLU2rbQhNCzVmcixmJmRISURs0QYNdVO7ZV0vllv75w6fvS7T8ZL16r33PPOBR8utSRIrNYDTKiUSFIuytjDZaZ+992U/+2vPfe2X+dUylQ1PvS5iYXbsqbLCkykL2pgYkcgYSVOImgzW0fCqxqgKU6VCPDOIJMbIMC/OMTuWhDSaVCCpxiNXFqpqhq3R9L/+yuzHHnnJ8vKWWz3Ht9KMWMwzVKElX5xvNcXeKB1P9h7YL6qdk9VxWCza5aqcbO1fuJyiRdVl21bGwcI0uSCIIUHianV99fiN4Msrn/JJx7/5touPPH3pnouzmyehlLrwBSYjw6JwR/VSmMr9adusHHEb2sVsXhS+KBzI2qaul6vt7e1sY0VV7ikyQtPOZrOLd13xTG0IHXsNM4iCxgLUsoq5xG0FWiSrWLQe1QxP8eL9933bjx7/+Hcvkk18cWSY/Msvmn/5Dxcv+x184Z99/uG1P3v9kZ+/enXr2BYu5Gomna25yXODDS/0pvZ82wo97XXSbM7mXHcWcixOxAmLkHNszJIjpAxhMuZA6ErGE3p6ZKCXDcjLebj37TuNdSZdXtPJACNlKG1kTqJn4iOiXFbB+pqLNuRYKtAhbwDSjdCVsWabkQxKJLBcxHAzCsvrLBBW5P2Usqe6Q0wN9jx6/kiy3ned7d4ukff0IHecgTlUL7BIbNqVwkVvjBrMNgvXD2+jb66vjLTx7rr9NtOqaIa15n+pH9KYVaw8fv0YJaNc0ph6VzEZ4sCRYlCgFnLQ0nSutgCNTZeRKzVvVKbYQonApKYxxajRokE5QTMqCzAzthwU4JRMcpKqwkxxWvz1vCJrs9ah03U6nujMXY6+nPym5TRM62E25xbNutIBm02fkdzD68kLYDifpSabaF8qO2tQ0vXTLEdDRAYODcvaSxbWhGQG0s7S7wiQgRRtQwGxPm94s0unnug2u9yQusciS6awU7nFxPThZ3/kgctfd6bNLPPMsttHcn1eUwh6gsdOByMgl7dj1TgYqZmsNHcspfTYjR9+4MI32KB/kDCzDeiS05Et6pPBADLr0qOJCWmkRfDBQkpw9vi1H37B3X9nFdrjR5974fM/8fmvf/VPvvG1P/2b//k7v/Pln/KwLZITcf/+377te37Fytd80jlv85u08EmShRSoJYQ2WRSsYtM0qYxaf9ervmQYtH/0Oz+T992kCh+ZKGgCAUbsCBbZkrltlSOLUWWbJFG5YNVvf+kX5Rb+4Zv/w6UHnqdIJ/OZeEZTJ4pwJWJMMPaFB8TxP3joC/L1/+TtPz2aIsdQVWPbtiJS5I8++8tx5ni4+/+/ePd/33rwnpsfefbc/oWaQ8mV0DIGGFq3bFbmpxer3zx8/V2/+eav+JTR4werOTVbpDUqSt6Lkfdt205G09nxNVZidtPpdr2azWYrUCKBpmgpiHdlWVBskh+3jC03ZYhqRld6k+hkHMjGZXHQ2PbEV6o/+LP2c+3LRhemOo9pWSeQKBEEZmC0vjm/dV5QpAvlTjFN7Yw4Nsvjpcflu+5y1WQ2m6W2dRqjYjTaisCqnosY5vP6Iwf1qpmcH9PR6vJnfcp73vw7z7s4jZg3UcYY+0WKfloIHz35TLV7fmu0dUMXVZNCXbcUxiqNpTEVi8MDYdD+tOQi2wDMaJpV4dzhtRvbo8l0d2fR1gp49q0G5yQZEbl6qaPCPFxMshJitShEpMIc1F3dxh+fVD/wE4u/81Wurivx6d57zv+1z7nxfb9YfcLz9S9/9af84Pc8dbD843KyI3azZRROmtrEGSRCCangnI4/lEJbV92xjayQftVsbPuCbLmQoSDygJj3RIVQYaKKVBocFBxAnqklCrkkMLGaxUzVRIkpGlwCO8uZ0FhpnGRujM1bmwFMoGRIhtDbPAJitcTdTmJQ6+kkgZSRPbxuIX9NcmSNyQBzZB3TiGW3sCXQCihhDChxC6sZJagAA9SqtoSKZEQUYIV1pkboBCcLdXm6AKAEITZkpuNkBhBlZrFMSsWgpEqSsVzRLNNlx4Qomds2C3HK2CweeO57LyFRLguoxhQ3hbp2lXASd9S5HWQ339oyU4pGsmTQTPDBnehLHZOmqvWcVARSa5ldpvglNI4FKM0i6YriAWNMPAEihTZyiNT2EVE1JTMxBLU2JmNLGqNTQC0SRYtKZiky57rPyNQsmyhbSzr47we71PVypZfJgyTZEN2b0lQ2Klr3033TLwEG6cAF1VcE6kazK+EJnJbNpz0nvfpIBDMwwSylxD3ZWw5Wd9lveppseh1oWbevHePiunLDqYs3jtuNeOuLNAx/5o8ee+7f5p9ZBp8CIRNoSNHrK7TkP5lySKKDkRtMobQRJtg0jh+78cP55wOXvnG4++BRGQZq86Oc23NG9VG3QFomTMTzo8/+EIBHnv6+l6Xv+OTP+azffYre+sbXAviSN/zl17/kj26143Fcfvs/ftN/evKFd73hBThe3DykqoSfuyUfamhjTCkFSi1pSDF++yv/Ek4f3/X6P59/+dbf/i+xrUXESy5CpRojcYSkEFE0RAUKnh/y6rte/JWbLfzTz/gaAN/+ez/hqjI1tUFNtW3blNQX1bd9/J87c8fveOWXAPiud/2c9z6lYOLYCTN/28u+EB/9+JaXfdH3f+AXl8fzZrEcbU9DilJWzsJqOQMjrqLcYn//zn9//FNe+Ee/8fDL+LkTWXiYsZOmYN/GZlwVq9VqVBRt06hFjaFgTEbFarU4PjkS09FoJAClSOqKNlqs48iq0jspACHUCcZWb5f7R22858L4w0/H7/ntB3+vunevWjTzVgOCsYI4gZkTQwvZ29pKBK3cxcuXFqu5hTbOV4l479ze1s5ujDGlVNc1s5TOOecObtwsSvEeN+fH5mg8HZVl2Rac2vDg6z7h2m++7eprHrpWz5ZhUYMdxbo+ik8+W7zoeS4oxRhgzXxZkGghAorzZThZpP3pdDpNTWpSEu9Wq1Xp/GI+DylevXTBNGUKvjY0RBSamp3XLn2QjDq3NJmVJAyKMcEW83b7BfePf+ztN1/3cdXrXjVVWFgt//wnn/v9Dxz+kzeOf+Sb8MV/8Uv/xf/16KvvPW64EPar1dx7b4jWloYoEiwxMWPDL6X9Us3Ld1Nb3dwEommmFia2DF4n8UKec0HO3nhizoyMJBB0ZqUYZyGkUJiqWYR6cC4PQaQJxtgsoKBGeTtiAyXqEUZ5gRCxIpeRIPS1umGg0/wH63Wdd3HL6ys7wLq4IXPmiM7loAyUFIGoMRBQ9tUr2EwJ0UiAxlBkwagG5OoFSsZ94SIl44xQydUOkmliRGQeRyTTLO1gnT1magCJGRuBwOjD0mZqaiBlxLx1AR0gnMxgSRNn0qP8ppgFakTcbY6kyPKfDRqBbBwl5ArKpoakHUQOUBif2tLNEmXuMJh2lqcRvBklq0nnhBPFIduIIDABi+kkKWmylLJkTzmiqKpJlXskIDMbieZHNliyPgVo/fp6UZudkV05zVPRxNvJlnFaaJ3Z9LMRPpiS/WQ6leN7e4PrT29D/K6pr7Jfhbs2k3X5rOuuAgwI9QnHm3fcaHAT2Lz5+9n72tqj0cX9+2s2n3dTmp79+m1tAsiZTn0eYYcooD6MY3dq4fZ2Br+ZDWCTMx+dlrhn+uk1wCYk47YOQ5tXPvkzv+r7b33+lz42nHnOKreYf9O3/cF/vfWS+179gtm143YmrYWby1uNzcI8ahNSDBraEFchNN96m/TdPDQ1ZGopagyaQg8wSzHVZPBlCaRoq+962Vfe8evf+bovB7Mfjck7pIw5T5rCHS8G8I8e/kI/mfjRtBhvFdW0qLa/58Nv/hjdA1DHcPXuu5bLOrbBV2VRlQCqwscY0UabrYpr8+auu//te1755GNxi0NZlyNtAW7bVogtRaZUVTSqHCMe3Hzu8NYNJisLt7+77UVODg6Oj26t5rOZtiEukaTV1aw5rMNSadlYmpTna53WRbo4Hf3c/+P/6m+85HfG957nerVM9Sq1jZmyJmhiU2Lnp1vbOi5tMrpwz9WZtnVdN0cLDTEo7+zuO+eWy2Vd18nMF1U5Gs+OjmNotrcmoa3BRt5JWTFzaVilUPhy++UveO7dH5Sm1dVMF0dxfm351GM8P9m6az9qcMTRYmpab6ZCBNTzZWzarb3dSvxSm6ApM2xoSsc3D8bbW8W0SimF0ITQsAFJoSqKVNfCYCdmFg3JyIiSkaqS0sRNIq9mrVy6/4G//1+u1yfgqDwSJv9S7FEAAQAASURBVP27nyfvfXbxH38t3Xd19EWf9yXve4ZdWYQQCj+GBk2kFoh9SgQK/SJf5y30q4OG9NzbiXm7NU4gYhIhKYQLcJGZBcHrxE2GAQRjhoMRzMEcetpkoINGkxqU2BimdKeMBqy3lKGAUvaOGsCDBm65JqFQpmjULsmRBsdeF05m6sr4DP+6CHHH0GicDK2hBS8MtaHJKbdERpxAwdAYWqIGVBtWTK0hWuZozEHW1MJaS61ZyGwVmfLCkIwTKObcXCBmmHTPACFEwlQYCkUBqyxVqpXZCFQBFayAFTBHcNhk5jGBucxMmSlEskeW1lH/BIqgFhRAoUPskuakWNJEUAxQgI0d1cw2na9DDUQAOZkGomYL6DHS3OKC4gxhZnGlYZHiwlJriEQ99Bwws2iabKDKoPzIRBk3nI2+s/pT5qqU3nDtquRuYtmHWXJGGAx+zvx7z6nQ8V6e+WLnbT5NiLF+eFsn+PYjgLWv9fTRZcl1/vZ1T7qDTwnI7g11Lo+zxx1WA84in9dX9oGHfmmfJacdbnrmzMCiPLSpqmpRLWa9yXBKrcnbhVkH3bu9h9Rjqe54x2zf51ewOUo5rUt5gujD/Fied//wldf984Pfal/9lj/4jOHMeDH/qm/+tXfgoXte8uCtg+tNE5Y6i7rQhW+WibBKsbVQa2o0xhCazQ78w9/40X/waz+yeeafffpXi4JTHgqznCRNCotsyxbHgcPff+iU9P2+x06JzO969ZcZOylH7ArnnIj7jlf+heHTf/HeX/xn7/+1zev/7v2fAVe4ovRcEByb+55Hf+t7P/zb3/vh3/6eR97yT9976uJ//I43Nk1LvrjreffPFkth37YtF55HhRIYFJb14uBw6/j6h68+71+9677VMbQc1arCRVWOnCtSSpmDQoR293buu//ec+f2LIZmtdAYi6IYjUZtXR8fH88Obx7fOpifnGiNrWJrMrngJ/eMx5Oa7dyWcR3++f+6/P3Pvn6xdde5Vb26sZTkk/ha4cg5iDmmsiiKQpXborz0/AcX9QoxuTaVRDXp7vlLO7vnY9RQh9SmyWg6KsdQOrp1MJ1Oy1FR16u8DhMTqsK3SmqH83l7aQfnttKT12k2d/UKN26mDz3hLu5MR9PDWJPjdrEyS8KMGCzp8mQ23prub++0q+UJggHJoogsjk5S056/eK5OoWlWMQRTtaQUzRm1TUPAqHAAUsrUqgJ2qpaSAbyKIKK2AVc40HPf/e8+BKdNyzHh7ivTb/4c+Q+/XT/2bPjMT3vZC1/4OU9cX423XNOIsTEVIta2DZNLxpkG5NSyAnDGYABwlnw3m2gCEgV35MlwAzFBXl8MIjbpUbtEwlwQioGoGaqkiTRZTkjtFE7F6WVuhpzJyojcuWS7XWLtR2SG9EKfaP2vz9dRwDpjd+3ust5W6UBbRF3OK7Um0agGZR7HJbA01EALa4GGLBJaQ51ZHk0bsgZWw1awFekKqM1WQA3UZLVZMARQAiL1abigBLRmoeOoyp7hrPqYh3mNoslb9EgFqWcroKP1v1QiFZYK04LgiRzQ/1PKzuYM6coW67AHEhSUOOPIkKWvQZWhHVP3emx7ZJH21MLU4cA7KDxPmTwzs4FS4hgRI8eWUmuxzamSjiEiTopN2QdACQQRKYW9iOOuxqAMrzUfRDnXjDrCKGOGOFLbnJHrN/oxvbVYx9tBdxSx1Ne2uxNiaHPODR90A7Quy9UNtPYyBhsSfV2M7M5cXuswwpme3/5ot/dtffGGeN78ORybUhZ3ko5DCKpHX0fCBoqKupK/p751hnQzL9vbGuWNx8zjY1nbX5OKwIwajWLN+ML2PW9/5vH+63fdv/s/v90mO/Yn/6s78wVf+abrL/kcX9gzTzyjXjiE1GrLrGi4XTmjaA2Smraawne+9muGnnzrr/1ILs/y93/53wD4l5/7Tfl8ComFhB1y4S8Y2ERAtCAL3/ayrx5a+Hv/5TvveunDftd//yP/D4C//YJPz+dHkz0kTa5Op23ff/beXxL2pvgXH/gNMH3LC97QDxQRe+uLTbleI4FaIdXw9e995E2Ek6osV6H121tb5/YOb93a2dpOThNsvDVtZosILRLPDm/u+vbx3U/+d384/huf/PbotlNoElg1llXRNCtmLkeVpeRKN51Ox1tjPnSWQrOqibgab80XC6cot/bcuE0sq1SWcTkKO3Uxvujm7//Q3r956rXvpvt33KKs56umUlpyMiKZbo/jonWuUKhURTKLRfng3Q+enJwAWF6/6Q0onFfsX7gSDYv5kpWqajqZbqdkR4eHSDrZmq6aBmqpjkKMwqu4UDBSSgQ6XIWtUf2hx3GzjedG2yog8fdcdpGipjG8LZZEZmKiiItVOFlMHriXiBbNCkjknIhLq+bo5q2t3Z1qMj6pl3WznJRbTKIhQSnGaISt3R0zrFYryiESRVQ1U1GFQCBG4jWE2l953tYvv2v1ue+av+7hczE0S/Nf9Gk7b3r7Mz/4v0bf91Xtn/uiz/yBf/Wu2eyGL43ZNe1CeOxcSqiFRmoB6OyNzgbo95DBDLl9gSdV4gwrYaFMtdgJwix3mXSwcImEIcxJyBEGUdF2FJUAEAisJswEZwa3aQCZKoGNW1g0C5TDzxjC1bmFjetJiUjBXYpyVxs8Zxtbxlj1ckWlL74HDNDOHvhCOX6noMYAQmNwph5WEBzID89r2RLtrM/uVj3YhpB94gbO+zoCtDFEUIBFo5YRoSGzdKsBXYXGXCayJ6A1heXaR5kFmc2UyMESMiAdgPWJ1JpAMIt9LSXNWS8KZfQhcKhZymnopprDz3RmKDeOXsD9/9j783Bdtqo+FB7NnNW8zer2WrtvTn84wAGRHlERRZSIvTdGoyJqYtAbxSvYG72JQTSKn9FoIgh2Sfw0mBsTG2xAUUCRoPScczjn7H7vtVf/dlU15xjj/jHrbdbaB8z97/ue585nP/t5V71V9VbNmjXHHGP8xu9n0AJr2u0IGUBhmBsxIgIqipBGgEhAaI6RlNgbQVIL0MbUG0QTAmRkh5b5rFQ1xQCiCBEO63+4aSIfrY1gmJm7vV5t1p4w1tpuVJtpBrTfUQIHtinNdjTZoUGPKQuCt51twS5y+wLMAV/pqmHxYnQOm8IWgHhkHWAp1A5TzPB0xXTotxbbVI6w3ZOwXTsscGW3udtP1l2w8IbPogWz9cw0DX3YSNtRKCAiAhz6CTssjDq7eDvs5bfnaeFdrWYDM6s6ztH5M5Mf+274/nbn9/zIsZr9pf35+Lhx4QUZ17rfRBAb7CotNWHCYWIK0UktSmKmCiK2YA6/9/d+FrVpO1YO+R8QJSXXmAkNgIkMUIU1LKqUv+a/vH7j/rtsoxuGjZhlvjP7qsj7qhqjRwk/8OQvSBtf/9E/QGZpY+xsAK/7+J9+3/0vfsOV94hMmDkgOkdooMiohkSK8Jr7PiMd/i8/9ocE2uksDfb3Oku9SWjWT566OqxijJR5zH1OrCIQXaiqoIDblq/v/UXvBeX7wj953t9UbqWfdSbVqGmaouigadM0opplWRNrVFw/vhHqpplUEnRcTYAzccqh7rs13y2jczHrcS8uWfPHf/2UN4ZnD8tuVy6PhmqDgD4W2K3JHFJTBcoyBV4q+oN60j2+fufd908mI56EenTQ6XTyPN/d3T1x5iwyHwxHMWqZd8pOD52fDPcG+wera8tF7ra2tprBiJXAs/M5mE1UcsoKxcoaj97uOAVXbiyXvSYY3nna9/satABmEWgaIgoaukU2uLm1VHbz5d5IwyjWPWNwahKb4bAej87fe7eZadWkVaCIEuJ4MgkhHD95AhmG1SCK5p2SiFXBRKktngFQiKGpxXJtBs6v3Xv6x3/9kf9431KRUxZrcfStL+t84384+JN3r7zo+dWXv/wf/tpv/OKTHhyMd4HZgzqgwJTHKNPp5+jLOHsv7PYAdJtHQ0xXg54pZxCcEii3IkimNGWETpo+RICYSJUdWwOooGKWhH4JHakJkTPERSZgtAhGqAEwmoq1dTozPyxdkCa7YGbJAKfAecLHtvsQAaBJmq/axb2iAhJNc6TtLYMioFkyY2QoCBGICTyYB80RvdjMveFUOgEA0+Q0oFHrDySqyJSgTi4fRIUGQMAimBDWlig7QAER1QAcAIE6MEpAs6m3JABmVLWwXwMgSEQfmJ5IMsbpVBYQKKlmILgkTagoAAaQuD81OXsIqod5BVsXJOWLp+HVNprR+seUQGRpoUPoAUuFDAjQgkGtkiEJgjEaMxk6MKcW1IAsAzNAkVgJOOSMEQyQDSRWBpDgV0epDqdg4+kjQvcEri3irM7ndlvVRptn4rjT/0V1xuecjLwRHjk87ckLHBqL9myRPjrV1V3Z+hV4onZ+4xth4QW7vPnmJ9ztzpPfDCZH8GWPXv/3t+95/vg3zwSX0g08vvnGC8dfeXHzlxd3u3D8lQDw+M35xku33gQAF45/8+wGL26+8QkvJh07oy6buehHLPqsW2ZbHr/580dOdceJb0s/lg5IGx+78XNP3Akr/7s733/HT9RfdGsD4GbaeEVcbEbez/1CKuLo+lbEaCFKnlXVVWvMEYFTrCiLVpOCqMUAC5KOFoNoy50pMZrZa9760z/55d8FAD/+ha/6vj/4OY2JpJYdGKoAqiNqFgbU8vpJO3l8tL1X5J2sLAHxZ6687zvPPhMAXn3n89/w+HsRyVOc7c9FEdW+7+7PAYDXP/wONECjNzz2l+xRVZ1zLSsvsmlkZlWdWV8AcC7X0AhhVnZiUCALpicvnLvyiceW2DOiEOS9Pk2qGDRKoMGBQs4n/DvD8469L/uSZ7xvUmFR5BoxyzIJsSyIKK+bUWYyqiZ1aMhx2etXoyo3AMqojpEdWx50BMXyuumta/kv3HruXzZ3uZJh+IiMuq5RIQswcdqXzGm0olNGMe+KUd2snDi1fsfZg/1tcyDjoYtSLPevXrl+7sS5or8WBchnpS8K3wF2o6o6GI46nWLtxFpdDQ+uXx/e2lleXVFmZu4gMXkTCyKU5TAZl/2l6pS4WmLPMRoiVxoBIGpIzIYsEEKoD0bH7rkXHVf7+zFGn+ViFmOc7A/6nW653K+qSia17xXRIgmCWBOqXq/nC7cz2I0asqLv0KW5FwwcE5GJWQT0DWRlPopCB5ivxCsHZ//LO/a+/mX9RsoMwzMe6H/hUy/+0p8cf/q98WnPueOZH33xhz/+6xfOnmqqGlhMMYgykx4iE9bZK6/T1woOf7itESTxN5pmMRNhKkASHGBMrBhGhEgJvOvAEEAsaaESIoglbBEiYgZmwG72Ayg1AANUAIoYpy4EgoLxnIACmdBAQRJoF9sk6Mw9mP76gtAZWGvEkhITLMwqszggYERMzmUECACMFAAQdbp0aXkbCTACKAG3CxZbDDNOufEtgekCogGKJS5LswQCByAEn9LkBg4Q2jz2dCoGRLSstYKWlh0GJoBqAoBRIUGeAlgSKnYAtSZ7mYDebXXyfGaYP9+kHGkCibAk3X9KenKyaDIFEc2ejSEyYG5UInQAnLXxbkOIiOaYvGNED4oGHgEMcgRFFPE5CZoZmTMkVSAgNZCoag3ZnPU6QaYwJTWQEiaRFgmYFkbwE7Rkn9pS4qO5jfbPJyZ/vu08KQ6+uERtw+LQ4qZU9fLWWz7ZGS7dmlvcT2Z9AeCxG29My94nXPweOuHMaqICajKrR6xv2nL7RgC4uPnGdBefzPqmY9ssss054sxssfdSe6I49qH2+M2fP3Lgp9j/sb1/++cP5498fHhr/WD+E6ijmJ0p5rPD3uVHh/XBYP+gaRodDmAUs2BYDXRideCAk6QPbFEkLMDaJZjGKI3EJnFswMKaH0HRxERjE2KMaoEgVqK2kELO7jlNg3EPS3Ca6CqT9U2tiRHJy4LH/N13vuh7725T199z74tee9+LvvdJL5pzejB4BIiCEkHUIX33Hc9f7I3vu+dFP/DA54ta3umCGQaJKpS5M+fPHezuZZy7ohSkzOXFUmE9Dt1sOBnbrRvc2Xpr9cDvf/DJMdaT0QARm6r27FwrCup9xkWRdbslIjrnyrJ0nOV5LhS7eWfQLaVYWTf3l1t3/uS1r/pzeIYv9+zgIu10QxhMoM7Md9gPfIYROPO1qCNfV9X6ubPn7713d3efUJqD/YPJ/urpjd2bt8qyWyyvxEgClnXKotvBzA3H1WA4rkNz6tQpKmln88b+tes+REbCzImEzMApIbLLisTdMx5OXFEMGLKygFFNRAJSowqjMBpSRjwaDBEgrnUAIG4f5IpSkMaIBMPd/fW1Y5i50WjEUS0Bhhl293YQ4fjJ9cFw/2C4b2RZVgBACBJCW29jZkFkMAmNz+ogbJAh1GNZO5v/l79xezuYZZNxFKfZ93zx+Sth8zffmTFMXvbyF0N4MIQ6hGCmAARYgzHME7SLC+55WGu2/QleNwUVS+MXTBOWB9QQku/bnh3mzgkAgCmaIYiCCiRehSgg0SSCRpUaYmOhmf9QrE0aC5WFyqJAFFPFFFIKocWIWDRJMVWAVKV5eDZI7JaKCkwtiwgYMKHDVICUHKSpv86z+6W0niAxENUoWkUdiI0Qhgjj9E9tZDYwGxgcgA1QB6jpz32DgcHAbAB4kP4kGAKMkSrE2nAMKASCKmZmiiZk0YNmydU28waZgVdzqpmKB+mhdUF7oF3QrkkOVkIswLxpZpqZOrDM1Jl6UzLlhW5IfnY0aFWBYWEubfkuDk+DrXVTEwlz8qVEJqmJyQUBc8SuUQkuJ5+xd96XiOAInGPv2XvOcp9lPi985vPMF1mWZVmRZbnLcu+yJCKOlBkyAKHgEVbwhSDtVMF9Rgk5G50p3JruxERnXCjpHpwxpUKaRMRIeDsOKyW1p4QqCw5TwgODmBmhOTA2Tf/jNHyBDIh2bffX4H+hfWpDBQCP33wTohGimT124z+k8qEnbFe2fhnbhdITCUgBAMC59VecW3/F7dvPb3wTfErrm1qbtG/5RgwAkGxWoDyDoSWJ4k99qoub/272+fGbP3+7l7zY3vjWzpl6776nP2+25WCneeaJ4id/Yr52afb2w9b15uBG2NuabN/S0W6o9mNl2IRSKqsZRTVKlEZ0Mj91FBuPuWmgrinUGCPIfE0aVUJCCapJE0wgBMG65o6f7fPaMy+Z1JVxbZwFAzk8YFGxDnKoTO2J2ndceP5kMvHeg1rih20kRojjZviTn3jH7fv/wAOfH2PDzikST0Idgq10lk6fPDgYZuZc5rWfqSvKrB87RLl3gSbXh1zqr8Wn/+nHn2LBQu2UJcrE56wOvOvkbi3PS+Q88wVhJghlP+9kvNw9PSpo1Q3zYf6bV774lydfcZOhU39CNisd+xrGYC5zTnM07RSg5DPjzJMP4/rkPXf1z6zf2LrWYBX3J81gcub0+UvXbhi7k6fOTDRi6fIyy3zZDGDr+mA4aTqO7jx13Lp45eEP3fq7D/LWQZbn0mFgIJ8NnKtJ1LkgESWGycQadeaBKI5Cv79Um5BjQuC6QRClxhCb4bhYWur0O8NbW3WosizTWoBob3ef2bszG7v1sBkOR87ISEzHB6N6Uq+e2Niq9nZG24Ta6y1JtBiVpAU7mUGjPKoAnSdRjghqE4BKM0+6lZdv/fMaNMuihWjra/gtzxv/2nvHH7vkVlfoZS//okcu572ek0hsqsaNNdbSTSSL1fLSqbFGA0UCBsUpZdHCAENUBVUiygBAYiXiAYVQWllwSLWDwUwAlRKplCICG1ljTYSgGi3WGGqME4wVh4abYKGxJuKCAQZVCCOUaCogwbSG2GhsIAaUSDFijCaNWoUaUAOpgACpkAq2xElt9a2qqgokVpKkpCtCII7EsKWVBjJgIVZiRWrUoiW0FAagmlgcB4QxugnwGGgCMGQcMA4IJwQN8AHwEHhINDQaGO0bDoz20wegIdAQeaI2Ep0ARtRJiiETMBoieERv6kwdmEfroJYoJUpJVpAVALlJDpYBsCkhFKi5aQGSsWQoZJEkuKkxztgKhgLMGbCBN3CG3oDJAMkSTTQBOUAHyIAOkAQTHVZ6dm1FasKXJyWh5AWhJkV2oaiMhErmzVYBS2amrOA8cy73VHhHeVZkWemzwpdLPus67uSu67jIuGDOM1863yOXA/tUjeoWpq60goM5XkcJExPWJ8MqI+Ii0SOizqCF7Rp2weimbP0cS9V+4MNnnp58nrHRI3PubbbnzNrXIyIaGMKV7TYofenWm8+tv2Jx5/MnXgnT6DcizlzVRHazeMI7TnxTu84gXIxgX7r1pnPHv/HIz5/f+MYj8Zxz66+YeedPaI8B4MLxb55FFGaG+eLmG88dS8HqKXWttWV+Zi2EwmbR//mpXrXYOTNbe/vi48LxbyfLjIeq4Ch7dBqUvjaolnrW7FXzLj3Z+2+/+fv/8mcf+vkfbLeMd4eIZM4CjIi9KZoD9oza6kNbo6AR1BbJuiRESMVRlrwR0zi/9lRWKCEiESNpFDGNDOVB+L4//JnXvfQ7024//PQv+zcf/z0IZiD/xz2ftXhHkjGD03i0AOn1D/0loXvNvc+dbXnN3Z/144/8JTOj1jBdRzKgov7EQ3+aiH+++77Pne3vXAaMQH54cND1Pgzr1RMbJjDYG66tr+5WA2YPnnNRQh43E4esm/tLqyu/oi/IH9MvuO+jgmvOY23Ncd+ruIneuF5m2Q5ZnDSlUhNqQLdE2eBYZpe3Hvxvwy//aB+7g+tu14wCNgBoGTtFcEUmagrqModIFLVpmjNPu39paenG5i0oODsIw+Hk7N3nN/d3qSyXl1bBrECCuvZlHuuqzG2p1wWPCs1w68aNDz9af/QjsjeglVW/0qFOEYNaFAJENXJkZjG0vRpUsqKoBhOdTNiXGBXViJxzPlS1icS6WTp+LEPe3j9A75ApNE2WZXE4LorMM1WTsUnMufAIoY7Dg8GxY8cKx3uD/WY4Pn7iJAlGi4meoejkPoNxXdeiyMwAwVSUohmigklTa9Etfv09V77q+cfLE0uNBjT/DV+48TsfrH7tjzs/8or6+Z/1wLv/6qk3dv/weOdELTk5hTBByswsxohz0ubbIs+3LeRM1VqeeCWIhtLW3lAii9K2AigRI6eQaStN2KAFtqgWSVMUOvHBkXEAdICq0JDNgzdajQEDeUBQIyMiQwGaw0OUUm5K21IIEUhq64Qt/53JjOJvYepjaDE9CVkEiVezvUFM8zWlmRwAwAisnXfmXhOakaHNacJS6LD9ktp6aJwSGCxOPrOov5lhm0V2AAjGYAyaQxJTSgEDwETtpUKIRi7Ra0QTA1AQZQwGzdRKRENBioBNumybw6ZStfM00Xv0WSsoKYjRVFsWAA+pIs4fCwCnLDKBt4SXJgRQNMep8pun4ozIgJQxM5JUkSASRiSBWtTSwFBkZpex5iC1SVCdOySHO60NqNDt380+z57xzAZPSUgMABLraYoY41GPH46c4Ugzs0VVpdbAt2pFAACnV+c0Rld3fvXK9q9c3vkVMzt77BvOrH8DAJxZ/4YjWgatwbP559Qubv6ygj1h6Di1sxuvWPzzaCFQkhOYBS20FQk53BRAkx88/dE3Xrr1pku33mRmF45/c0oSXzj+zS0B+sL92sLFz27kkMs3oyk/el//Dg67wghRrQbJwLzYQqXQ8vnrGd6keQi6uvSBb33NW9bue8FsiwNhbHDcSNVADNrUsWk0NhKbGBvVGENtIaJEWKDStRgNEruzGiSC07mx1CZAFJwCpmIdYhMd+cw8++7rHv4fsz2/+/6XveaeF7/2ns850q3sCRCTJvas/euP/wUAqNLrPvpXr/vou+c7myNkx1lGmUfPxpDABGYiEsPkX33w/5pfm5gZErneykqI5n1eVc3pO85r5rb3D8qyT8v9LC+508FukRWlIUQJzfZulu//8vgz3/zQUzjesNxlUo4rAWBU5LzkbhH9yUaqrpXdbpkXfKxz+n2Pf/abD175aOHy7c36IKrUB+MQojj2QcXnmZq5zLksI+cbgBjjnZ/2FMr9lZvX1YHsDMKkuutJ9129udk0MSs6rsiRKDRVmIwGo3EMA8T9UG/uPPKxj7/9HQ+97fcP/upPm8vXucy7F064Y0vADhGBXBp1iYc2xhhUhACQ87KTl4WJQgymiogikkZpU9Vm1j+2LJN6tLsPnoMKiGpTy2hSrvQcoY4qAXNAFDUOxma2urrSTMZ7N252fN7LuxiBFWJTmwkxVEFGk3FUYecIIJhVQJWwWCSHIQISbOLy7/zlHoKCeichQOd1X1X+4Qdv/O1FZNB/+NVfPjy4J/LAqObIAIVM7dY8CLmQU7OFtjiWZq+ValRVg8QzrASKc5FRQAM2QQuAERPuVyegE4AGVZIwrcUgIlGaGBuJNTQVxRrCfNXLdc11DVUNdU1NA01DMWJUlIhRwSJpTLzyIBEkmqUSXp3CGhRMVFvW6KkYTDKxqUSJp+SUM7XgGaSZ0z+bkv+3jqGZtq7hTKqv/Tebpgz5SKnJ4qxOoATaiigl69sW8mZgHqwAzcFy0ByhA1ACFAAlQAnYBeyaFaqFxY5ZidYj6qmsgKxY7Jv0QTskHYw5SmbKYGyGoNiCjWyOlZk+xzlLoJlA6sxEaZzslLVc17QwMHB6y4k+ytArkXKdhFe8y53LCB2lNWnmvPfOOZ9nvsizoszzMs8LnxXscnIZsgN2RA7ZGfGRfpuFmttSKDV3e5/CzOIaLH5ri0BiNSNMTkZC7IEJTXlHblujHW5qYHBblP7vb1d3fjV9SDb46OukLZ4t/XXu+DfOXNtDjvLGN7YvIs7fy8UbX/zFc+uvNAvpeYHN1lJH25EQwmJL6WQAOLf+CtVohjCtMbSFvNQUX9EGqI/EXGdzByKe3/hnl279wu1Xe9eJfx6kARiR9af0a23j1e72lU51fWu25Uu/5odv+M9YinvzfTxFkH63HFtEZmIHmAjcxEzVEIIoJMmRRV51AQO1OAXl8eLiRCQ4IkBU1SQTW5YlV/HawcH6hTub0eQH3/Nr/+p5txFGLjS0SAi8gDf5iYfe4xObH8NhiD2EENxUdsg5JxJNI0AEMERrQr0Ya/me+z/3xx/+YyLGSOB4Uo+7ZWcwGFx48r2f+NhDzWiCq6WIUCePlfo8R+Yg0bMbXN3aWG/ehp9x8LfFqz/tPeXK/cCBeAK8VlajBnpaDUrvas87Nz8Kes9btj7zvUv3u7CV720NpMGG60A+Q+KiMsn7XWI2UyLOONvbO1hZWTv19PsPpN4ZDPsR4fpWsXHM3bnx+M2b3pW9ouz2OzXa3ni7ORjG4TjEUTaJ1cGg2r9pe7dsMMAanLlw8nR215n8zHHIMmiUmckxEKpCE2tEbHWZ2BlhHYIvO8x7oWmkrpCz2FINU6wm3W43W+4dXN+EGDh3TaxLdE3ToJpf6oYQwmhiAEQU6jgaDJfWltnD1s2bsZqcOH2qjoJCMdYmUnY7BDAeHIhJWXSYyAE0Bo0AGkVU4KwRHo+ajeWNn/3Dv/3CF66sHy8AEBp44M7O133O7pt+U5752ur82e5zX/j5f/Xnv3LhDDdRcMZgQThLloHaIn0spKwtwiLhnCVW4xTXtYgp6caCxpQUzROrggG2mKAIJGCN2cR0mNSQTDVV4iVOLERBYGNA0ENQqVAhRRA1AmBCJlMGVmRSU6CWexfIAbY6RUmCFgAJEdQUEVDJGBFVBdsaVmzzxel/VJzrHIBOp0RMMw8AACjOZ3JIZNBT6NmsrxQOGV2YzkJHrO/8a2I0BmWwDMGD5gAlKCNkYGRICN4QEdgAjZVpBkUWJSVMRkEAG0Nr9Zcha+lKFACaxOrcykLOrwEXcXbtfK5GiALT5KkiUCqdAmjRwVOWyCmrJUKjCXSNDMBIaMZsuUOnSAStmhkyKyAoAQExO+fMctWIaqIS1VhrRQfGINRWQi9OaOlS0x+iCrf1crsfzsdxK2BpBqJkAFMfLtUUT/dPdMY68/DmfbFgCdAATVtXeqFKenbILFaMiGfWvv7M2tc/4eVd3foVuN0AH17nHmaamjexFDBa0EE6bMUP0bsDGJAaqplO5cGOVOUunETPrb/y3Por4Yna5a23MPsj7CVHJojFcx75jIhJpWRxt0U7XckkCAJ6o1o1mszreZY6k+2lPo/mWz4UvnjjKc8w6M22RFcq9+ss870edju+2817HfKOiBjNQqMWTaJJjAsQKjMxjSrBJIAqaLSFDLqEaCDt+8/c63XW1lZGu/u948eMqd4fooTve9cvPWF3AcCPfez3w2RgNhEdzzYWWemcA3gCBpjvf/ILQ2OhQYmI6hh9Kj2c8qIAAP3o+//r/PKkVquNrNMtnXPj8dBQD0YH5+88XzcTHFRlr+uyIssKKTx38jzPB1Cvc29/NNbJxffVn/2mD3yB6BixUet5Hh+QRagxZ8Nuxz++xS/9lRvf+ZfHP901+zg+GEewRhDYFcbdLjjE3INnYYpA0Xh3MD55+tyFB+67urU52t7LdsbjzZ3yxIY7tnRw9WZUNKBOtxtCqAa7O5cvDi4/vvvwRwYfeN/2+981+cB78NGP6O4V0wqPrfAD93UefHJ25ix0+oy+cBmzs7b0wBI4Q2KjYORYwaLaOEZksqaZjIaIiI7JOzOLTSiW+8a0t7nV65RFlpmoRqmrYMxY5HVdT0ZjcI6cH44mQtBf6Q+rwe7udn9lWRHqpgkqoapz74qMx5PRZDIpsrLMcwIANVNummAKzH7S2HBik4nlCNe6d/zSbz0KSs1kQqxB4X9/+drOweAvP1iADj/3Jc/tdp5cVYQZAEgiYU34UCJiJACQaWlcu+CmKfB49gapqYAZtipdCaTa8g0jJfiVAYKhGoGwNQwNWYU2QJ2AVKK1SJ3wUyIhShNCiKGu66ppqlDNAROxqqSuLERsooVGmwZihCgaI4hCMIim0UwE56ginOJvBKAVi225n9qwcYswnasWJVOTbpYSJRbYVEUuvTJJFpMck+Pp5MuGrECG3P67bXadvvJPtL01bTj1gD0AAzBg1mr0ISumelk2x4bO0BmykgdXkiuQMkMv5pAyQAeUAxYIhUGBUIAVpozm0Cg5vjPd4tklpHl5JilnLdd0skEt0BgXoqTtMaZT/bqANkGozAQIjQgpA/JE5CgJkbbTNU2nHUSEJJzFHtmj80jOkSdqi3vJYNEKLfpRMyasQ8G9tGnOurz4lc5XkQCHzMMhA5pua/6E6JMZQqJDC5n5KvXw0002GBFn2d9P3WaHX775ltlGWTjn1a1fObvxitlrefvhi5skVaQbyFTABA4jvW87D8IUk2Vml7cOxb3ntJ22iE5sVS9gita2w8siS7mx6efLU/f3yPVf2/ql0+v/FMg30jAVTTWYfdXr0qC3dGUy94CXn/a06tZlXJ4bYCuLblEGBk7geGYw0yagKhqoKoqoqsYIcQHYqQEVpllhBMCfeeXr01ff+R9/REFjE9jMmJzjupLtqjLvnKfR3o4nNkKu5V/8yS80oM3+TtLb+Omv+hfpDJOdm67IOc/ZZ/Pu4IjMBEnSonXjZo0wU42vufe5r/vwe5wj5z0Sh2AxaF70EfF7HnjJbOemaYgBGLIK0FQIRtWo58oQxhfuvXD5A4+wGJcOy04pvh4NOfN97wbVEEPQ7SycvPpH/IC8jV/9xZeW/XgyWWV/vd4vzV1qhvbOj37Jf4ufc3l93Lv5CV/FCKgQ87BauFDnlDSPkZ0hiSE7AoALFy547x+/fIm8G+7sHIdy+fwdgy4PtveYfL/o9Ff6VWyGg+3di4/FnW3Z3bPhATdj82IcI3X47FPzc3cWS0tZr/DZirq0xIvTekrNgIgoz/xkMgkhMCMgqqjzHIMCgEeI1QRXLCapEKJYN9Qv67qWauKXNzQ0bBZVm6aBMuMik/2hhNBhDo0MBoOVjX7u6fKl66Ih73aaKOj9pKrItMh801T7+7uInGUZCCSlIY1kYZLlPmPeH9Wi3Ovmu9rcfW75LR9ce/kHm6c8vVQQnQRfum/+Mvzx39554VPXVwr4in/8VW/8+Z9+4E4btRr001d0ikDBKRd94q3AGZJ5+t4YkIETIzZqyZaQiSAJ8jokQkkazwCKEBAq1IpwDDowG6E1YBFNVU0RVFHBTBUNgfXIzBeqmjg659ARAQKDgWCKG8GcJB9Q2mmTCKRlM0alZMjSrWBit0kUeMYpxpp0FxZ/cRZlgxZ0g2kWS9OJTktwAaa0EDAH28776pNjXWcOAKqhUWLhwlTLBM6ADAmZAFCRDR0YG1Mr1o4MmOjxTSEiAqMyK0gE8ACNgQNrAEwgGBAZm0qKyizUK4OBkKlaG9FFTQI67USOhKAGySOGpIlkCGo6rW+e3oCioI7ARoRjgCVARBAAZjRBQ9M2HU8kStNYGlErrcNEpOSACWPKAlib7jlcYpq6tK0A0tscZAC43VzOjHZ6kk+8AlrwzGY7HDHLh0dG6qJWsnFqmeZMDmZ2dedXr+786uwkZ9bb7G9qyQnGw7f3hFb89MYrzOz04UTv4j7Xtn91vvEwdZelpG9bFR4BIpocqrQ5VLNLl7d++fLWL6fMuJqdXX/luYXE8KVbb2q7kVpCUeJ2BTNL52jSQjnC02lJWMsWVxJnNr4VAE6v/9PZFkdmZkEzBcvLuZmUcdyFzsb9F2ZbaPuhIutIb269eqsb1nHYKbnT404PXC7gAFkMQlQR0ygQIsSgCzng/88rf5rUWtD74aGDBg6QVNGMybwjNh3u71GvK1XjwETkXz7/G//Vi741jqvRrVtyMKx39+pbt2ZnqK5cbK5dra9eqa9fm28c7cSwbzgGDOw0y+cD4Cc+8Tfo8Aee8nwA+L6nPK9pGosI5plK7/s+62f50mzn133sbUTOlCXE5CflLscIw8Eg1E0l4c77797f3qomjTGaoS87kGckBr4Lfom8NTs3cLz5B/37fuhtZzbHjnrNZD/0/KZsnv3PH/2K/5h94bC8sdpsOZIKC0TKuNMsV3WvoLzsc898jr6grIzERa936tw5Mbm1fcsQdq/eOG75sXvObxW2d3PHu9wV5dqxJQmTvZtXtx/5RH31Rri+ieNRu37Hjq3dWT7wvBPP+oyNJz/YPXnHcv9slndzzhygmUUwI3TsHecqrXp55th7P8MrFUUBIqX3YTIxVWkCIZooo8uWuoP9fWuieZTxGGIwEKtDvtRBszAco0gGOBkcsEF/pT8ZDka3NrtlkeY4Ugt1nVyxwXgkpkW3g0AhhBilFqtq9Q47DKG2pmkyxzlBLZlvdPn86R/6rZtkWptAVljwn/uMJS73f+kPR4Dh3vtOf9Znf/mti5VzLrk+BEjTCg6YzzPzBkexMNwWbXDmXEbesyNm9IzEQAyIxqiEgiSADWKNOjI5ABwRVmgNJHECS/LsGqctNNI0TdPMMTj1pG6q0FS11I2FCFFQFKKiKEaFmJxsRVADAbWEWiIjW0h2TknlW2CptlbQAFph8kOeECaRw0RWjNMULyiC2Gxib6mO2u6aKtotInIOvdeHgpZJMjnJNqS8bLK+ZIkEiQlcBi5HzokzdJ44T4Cm9M/YG3vDDNAZ5+hyYAJ2gIREwAQtSbLOKLrSZdz+QHFWtiMJqT53OKe7tTSZi8cCAKZeBwUcoo7ABiATEDVoEJUIKJWNTmvDkh9iIsl8QYpNIBkhIIupJVwMqGD79ZG2OCCnrvRtX8z6evZnqo2xOXaqnb4xIfqmxtRagUZop+XDD2/xEcJhCzqLKJrNy5Bmjq/ZUbN0pF3Z/pX0Bi4eBU+0Yrhy6y2z27y6wPVxYu3r4hHC5ymGLbFrJ0jkJ3HpYebvXr71JlgAgyzuIzoVewBIkPQjre2KxdPe+g+zV+La1tGA7WIHXtr8DxqUHI7D7pVb81UFSjygHK7Pj5rQ8QA+K07MthSdk+XauX7RYZdneYd9zuydyxAxxqiq1kSJsS2xXWhmRgapUPIN3/STs+3TF8dUwutf9tp/+Xnf+X++9LscmCvKelKZyY+96Jun18dd8ojMgD//qjmdSHPz5uTKpcnlK8NLl/6P3/qxtPG1T3rJcH9zdHBrNNmqmt1vO/G02f4+06Iz740fePCFw8F4f280nkRTamJ89V1z1HTmy8yXjvNO5iNBQIQgHVcQUS0hVJMdHd/zzKeZxjCoxHOTiIA7Rc7MOanLGXsy3MuaS+/1T/+hP3n2jcHS+ip86KG1n7z8+X/YuyvwVqh9HMSJ5uijlL3YLbKy4zueyn7s91yvrz4bB1nbOHXmzLn9vb1qONBmEq9un10+tvKM+x7Z39Td4erqMdfvLS0tj8No5+b1g8cvNdeu4/4B1LUxQe507YxbPdG/61x573HsA3OgkprccZG1BW9M4Ns3q1FDohCCxqiqTdPEGBOoBAA0xJypGY80SoqSNVVdFIXv9vZ39zRE8AxRNYqZocSik0MMo91dNvCG9Wi41Ouiw4NbtzDIUq9HRBpjrBs0y4oymo4mQ2Bi74K0cOVGdFLFInOedDIcmcZeidg0hYaDg2ZjzT26lb31D26W6AiiYkUu//rPWP3ld8Zre5ZDfPnLn9lffZaOlDllRlVVZ3KEs7cvvezThf7RdygJfTrnvPdteLatrlRHSpiImZLgvYA1YDVaDVABRgMRELWZRLvEKDHGZH3rep6vqeu6rkNomtgECdGiWBRL/SmiaWVviUpaDITa95toujyfDW4zM0rsV2otICvZ4PmcsJjmm8Os7FDuj4iALLESL+bFEFEXrMH0OojcbT4VISAjHY2kYgveRpjyHwMyotNESEmcwuMpiMXekXPJ1iA5JAeUEeYEJUEXrYPYTUulZFCnj20KtpqusnA2eU9xNpTqlKwlYYRDHuYhR9/MWopsnZjWpgLQoIUEzWFHaXSl9ToApGetCon2f9ZLgEmcOekyxSPz/+JoTPs7nPP/U9q8mJs0BHOEiKKtgmOSpQIASJxtRAAgUQGTAkYy0pYEL2Fx1LR3O4u+4mKwOgVgzAyAAezM2iuu7rwlffWEwecza1+PgEdoky/vHN3z5MY3gAEbgNmZ9W+YmdtFrze142tfg3QIzg4AjA6mdjE9eUNZBGLN6pHOHPvGs8e+8cr2m9trPhx8nu2DoJimh7QCVU0q0alLDRmJzfDIY7u0eZS968zxb4PmAJ0H7J5Y/eabu22l07XdJ+D54qxfu53haDTfUrBxURTzFW6WEwAHWkIUMAE2V1I1rGNsGFXqysBMokmFFl7977/1Df/0F9OBb/inP3P7L37Xr/6QWcTca5Sf+eofnW3/ia/6ke/703+LJjKZT0w/9kX//PYzfNtPfwPpfmwiUEZESPxdv/iqn/7WfwcAP/KMr7p9/596+I/VV5TlP3n1b15z5llp4w8/87Nv3xMAXvexdzJZhjl6rEELZ4jWNI0ZdHtL1WQwOhj1y3wTttfuurD9yBW5NeyudASjcQSHKkB5AUEssI5cZtev9JZ+9B3Pv79Zf6fecbUvx217MlxtbOCyvMw8YoERjDuZzw2hMim9m1RqzCfvPJmxe+zqZU842h64Jq7cdaFz7Nhjj93s+5X+cr8i4dJVUA9vbY6uXKquXcZqpAjYyS0rIC+yottbW3HLK0YFaAetk6EXMLSJ5Z5qjsRmFYGYYxAEqJrA5ApXDUFUwANw04y0KHOyIhfRYjIZZZzVVnkFWC4EGn9rx+VuPJmU6MixTCpyWLrCG+5vX19dWhs1Ucl3jnWbg9Hg5o283+FySSKRQ20iKCBpVdUAVPhMYuMdhxCYXaxi6ZuOXxrXOmnqouNVQTirVPtZ02xB/qTjP/XWj7zks8/4QlL++gsehH//J+M3/0HxvV8t3tGXfM1X/9aPf7R4oG7UFWKxUKcRQhYzRYlKZHPokJkJIs9C0AgFew/syZXeFV4RHZIxW2Rr9XodokfnsGJoyCYEA4Jt0grMGVQGAREDWJRgSU0lmhmrqWotC1V54yZkSoB54o1CY0cG1mhE44xUTByiM03Vo6Sg02Q0IoLptIonMUwqI+KUsHDKAK+Q1NIh5RKnDRGnyS5TTZJ802l6gUFsWhebwrRzHeJ2NQNmkcBS8TEAapuNMwfGAA6RU6jfkJBSJZIhIBAZuFS5C+inrsYUowxg6EwNILZuuSKhCQVQASAyD1CBkYq2C6vEUpbkkkgsAIqSAgACCiQNDMSkCgmEAKQICUOLRkkwEIFMW3yboRIoWAQ7AFgiHKgWEArjEVIGkKEaUTAbmwJYHqNF0xSJMDBVRQNSbmQhLq9IyouVujbFLLddijCXgl9c+7TPTNt8NSuwAqZk+mH/dXGJNMNqpeUATaHxTzgDzn/l8KkWdnmChcNiM2vJqD/FPiePff3cLzcDgFMLQezFdvrY15M6iJTU3+ZfkIAFlVpiZdoYRiBUglNrR7G7V7ff/Pdesyd2lBhKQJOSCJsoxYSAIDYEIRUWdZ/qVOvrXxdjBN9XctFqUju39s8+xf4s1pHML96W75VlmWXz3Cp7R4TAgGTOOVSTqrEgU34fFQmg0cxSEcurf+5bPsUvqioRSYgZu+/+jbkB/p7f/fF6UiUurR/8o1/4ZIe/+i3f48sloNzUQQCpJI6bcDD4ZPv/0B/82/1Lnxhdfby6cZl3Lv/0w3/wKa7txz78bhCOASeNVYE8eTZvAZ15Rx4AncvYZcOmzidxvLNz+sl3dZa71e6BQ4+QOaTceYyRPYeOExA7GMXxZDPXXx/3YLU8PgQZFc5V5DtUmoEj9rZUcu6UUYm7UFQT6XQ6p4+frMeTq5s3Cp8Nb+4u9ZbPP+2pxfLqlc2t1Y0T2cpyzdDpd/pMg8cvbX/kY/W1TTdqvDKjc5wXnX5/ebU4vQ5rS7BUaubRZ4bAwLnLIi6pkZGSc0CZp5wQkGKsu+ZcI5MQBbJMvY2qg9wcKY5ErInrG8eaUIkGNApinV5XJnW1P+KiYCI0gxiaGARBUYfDA9gbc+ZVQqfM1dNwd6duql6vFynlJ62uJ+TIISS6qDSTgCia1eNKQ+wUJQCMx2Mz6/f7QWMI4ggjlGOMSwTX+Ngv/ur7CzJVGodRb9n9b8+y//rh5kOfyA31jnvKZ73wK4/9VeOWuAHQiUTIYh5AoJmGZ+cYJT3E88rkmbxzRevcEbA1DJFJM8KMkMkIBU0BJbFYINZoSQtPAFuM4Uy/1gSSVxSjhcbCAm1c02horK5CEyWKJJfZptk9UwLDNPkoJCUGmwaHDWARz4NkiU9xHnBenD+tnVdvw8Omgw9vxFZBXiGlsNMZ0FrBvMS9DKoJjYySJJqAcHoUTH8UkwShEQGhph9iakG7ZEQJTJxgrJbsTfJ3iYjIEToiB+wIHTCnPzHh0IFhgUhfLZqZaUy6W5CYj6dRjvZmF6LTtrADtOsMg0RHOV+KBcTKcGiw3zJ/2QisJguogSyiBtNoGjUGFJklG6TVfJMYo0YRERUzg2SfDktvzdvM5h4qQ1p8nGCWRhUYpFLOtv56dkvTnVtAuR06dZtsOAy0XhwEsw/TPsKZE3xt9+/HW/2vUGXduM3N/aRn+yR7Xt36XyLkSu3vhYk9fuvvocr6X2xb/0+uCgC++yn/EJ4C1z9/vuXHXnBUzfc77/os+H/YXv1z3/SGb3/TkY3f8abvMzNmiCJMpCEurmcsy0gQQEXMIL7md9/wky9/9ZEzfP8f/0K5UYfxEMdDDZWrJYZamlo1fvuP/yMg+LnX/qf5z/3sNwE7zh5Gl1OWY5btOJd3+z+y/Ws/cluB0+sv/hVGzLyaQRRUInVOY/BMQD7zKXcY816W9XqbVy5ZUy11upuXHj127kSV0falG/nqEju2uva5a1SyoMBYk9F4Mm4OTmyclPHWpJvFSda12opMQy/zPnpCEcudQx+GdZ2X68unLIubO5sWpRdh6/q1e578JL+ytDkckPHKsdPoXBPrsszVqpuPPT547PG4t0WTYAiaZdztYFlyr0/dLveWfFmgc44cm2YAqAENGWuxEgEdjoBiwEyUGYOHfRaKdciRRUIl4vNCjTgK9orR7mDl7nI8HjFzPWpUISvyajiBUeXvLIOoKDBAtJiXXS7c4PpOMQ6Qc2wm3WNd0TDcvMned/tLIzBAQBEFzTJkMIkNgTokUFMVIq6qCpWKzO/t7Y/rJi+LaIqIznPQOs/zgQybvd7GnWfe8HuXvu5lo43zaxy7wPiiJ8f/9OH6TX/cf8PxwIU9+xXP+R9//hdPefSxD59mm5QQxxVzAeqYQZVnc3cyE4Yzv4A4Iy6QM0/sCBDFkzo0Z0IgpNGRMJkHATSyyFAz1IA1QjBs5W81RfLUQFHVJIIqRIEYQQUgb39LaohmwOKUVFkVVAxa+JKBIWmqfgIzbZWIjqS75tzGbUsqSWqSIot4G4ZnYbWxOBXPPlurajcFyxoaAKGmoksBaNG66TzM1NbaohyyvmaABETJMidbgGhIpGaAhoQGyXIrtOx/qHNnjyA5tMaIhoyoDtipRANSQGypmylxfxoqWgQ1nJKAQkJgmSVelcU+So89xVznY2BqwtpYrNFUGnJsug/UQSgNlixWABPGjLgBI1QA8ygk0YKISCrLFJGWWHRq+nGqonhUSaFd9CQZJwCYoaBvL2RVBDcrUU3dlLIKCwJ8OP12Zkef4Mee2AdOkYojJhkB8H/F+v6/7f8X2hu+/U3f+QvfZMDsCnI5oJckdpUKzZEyJFRQhNf+19fL1oE7sSK5IUPi31QJFuP3/F//BhmwkxM6ch6BMQf0mcsyLAuTiJNK60arEYYAsVapv/0nv8ZAvLKAqQ4BQZmRWAkNCbiszIjdqz/+/dn6sWJtoyh73pV1iY6GTL4N2nFSAVMlB4ioAtDmUxTAIJy+cPfNSxdv3rq1fmJt58b1/tLq6QfueuwDD+e9LF8qY9MwWN4tm6ZxCoHQx0xGtxQYUDs5k2SsseBMYuyBE+Zq1NT1qL++vrS8uru9E8YVmTXDycGoeeZzXzBA2a1iUa4yOHTYNPXycr8Z7uzeuLJ36dFm5xaMRo4d5rmWHeh1fa/v+v1iack5x87HxBCc3qkEitNOF9GIqphnPovNOEM2zRqwaBipsazhyC54p1m0sYlaJ2tuNv1OdnlvJ+OMlYDQORf39ggQvZOmBnKOGEQzdkgyuH6jkzljZIW8l+3v7zd7B2t3nFPniRgBmxDEkWdU1dgEn2dIptMa/BhjnnUZoa4qQFpa6iuImYUYXO4yAhe7w1ivQGHnP/1f/+JHfupf95wqSHH+ns4LTj723x9b+s13yT96aaej4we/4x89/O2vu/vl+IFMloPrazOiXhkOGnJtgqu1CofiVIQFcYbkiRyBEQhDZFMCI43IiiBMgVHIgMEYgDElaC2FswEMTabEDq2HkuhqNIDEuQFWAVBUhRR3TJEkUG61hSQaEZiYUaqfQTVbBPnP1w2LgkU4FQU61KZzbwtzbuFUiLA435IBEJi03IhJPzbx9k5dquQC40xvkdBa0BFMk7AAAEhmkQAZiNCSZTUgNDIwUBJCA5QUOm69ZQRE1QSewhQrNUv1IIpIiUX5KMYWTRAENLYSTCo6BT+n+MOhBUh7NgNKwGMyQKAUtueWfiz1BkDaYiZmE7ARQkVQg0bTMbkCoUn6WKZR1ZmoqomISSQAiapiJkkwLvnhqqp2GwYoyY2nuExaJsyoKNubXBybCjCXTEhWltqKmFkcA6YmuS2nmYc7Ur3vIa3DI0Yebco+clhi7/9t///SUMWgpZUCMNX2nW2luKI474NGiSFzHAEIGQnRFNoBGk3Au7yeVM55jUIuR2JmxwWpcxBDlXWoqX3oYmy0rrWeSKghNEEUTIkBVFQFYpJPMZM9RkODsK3N1WK4vMJrx31vmZaXi7JblD3nMmZ25BMHDmZdAGXHqYCZ2YnWABDENs6eG+zdunHt8spSbzTcz/POg8968PEPPjS6vtNb7jG78ahCxx3KKWrN2HAny50bNYr1hH3p12Lc954qh8Pd0dLS0sod50IzuXXtEhUZjippYn9p9fgz79mqmjiBXt4DchOLaNLJudnZ3L/8+O7jj8nuNpuAJ+TM8pyW++WxjaLXh8wbk3qN1igRAjlHjSYgIiH7gBPk6F3WBIWiJ/UYJTqHUu+gYYB+BXVeViRRg4c4ycrOZNw0k0mnKMBEgpJz3vt6MCIikwhBuJuJiQVhh9jU8eYNW1kLTb203FWQg0uXOVq5eqxWyr0D1cbMCB1QlFCHOusUKT7HjEGimhWlC0FEpG7qybguejmAIDGjGkZWVxKMJnh8Lf8vn9j4ug/cevbTjtd1nTN/2fPO/PXm5D+/n178jOrkKt/99FOTr/3K0bt+j542YCpERygC5NE0qdi23o/iIWvFnNB/nBSNTEyigQEpoRIKoyAIWGQEj+wMURmADRWBECORqBoRsqpOhUTNTBUlWlwALKqCKmAUjWiOjRCmYF1KHhiItfQ3qXqXW/BvYiBsXaCpaNJigdAMezWdPhccGwMAIDoihJd4i6a0xPOthgrIBoBEbbYS0AhEjAASZgWmiU6yueOkxAlc2m5o7V1r9VKNEqAhiiEDJp6PlJlFUAA01MRaZ4ZmKu1KGMBAwQQNUAVNDCOYgEUyMTOMSdBiGohOd50eObQ2GHWhMmlu1A0Ukms+jcECgCE0oBPEAcIEbGzgTRvEGhK9hiXRYk25DDMMGiURnccoMc4wWZYIDRdQSlPF27m9AwB3xEAeMYE6DWq0q50FmC7CnPFqHl5vh0WroZsS4XC4tXu2J4RP1s4e+4bZaWHBeNvhkqfrO7+RPp8+9o9TNyeLnoIsaCCpQgDAJe1Fk1k1++L5W04ZE1qAoYFaUxtxjr7wxXKnv9ZZWuv2loqi4/Ilx5nLMiafRGCYERGBNeVfbLriThfOIcV0EtjKACBaQrd7EI1SSQgmdYzjUFcS6uFgf3iwe7C/1dQj1UgghCFjbbRLbgKaA4CgVEIdDn4ybMrnvK3+kt/+hTfv7tZrp05neVmtLjnymAcqXH9IP/vfXvvv7nv+25/1LWd840pfR7IoEmPTVBIbaeq6GqFErRqZTChECE0Mk/TixBgtzaWmoPYz39FGnk0UKZGgmZHRlHpNFS2qIQUVIsKqNiJHKGDeZ0Bq0RjFDFiFDKRpsDZyIh4p9+iYmJHJMlcASRNQDSXGaqJNLSFoiBImIIoSUZUT6VUMFiIwSpyABjbBamCjLd2/2nQ72j1r/ZXY62PZ9d3Sl112GZGTuiaiPM8jghkwsaERUR7xQJru2tpyr3vp0Uc6UUITr2o4+ZwHhg9dvnrpcv/8cTFms/0w6RYlh+DMRa219BaAHRzUu0vM+9VYqsH6qbN+ffnGpYs5AXUyubbNeXfjjnuWTp26sXeAyGWnMIEokbvmg8DB3vbDHxtevgz7+zloMNUiz7rdbGnN+j0sikjgCNATUJl5apqGmUWkLElUzBQhZOTroORiWWSjWrtFSUU9DJAXa+O9gzJXJK1qQwlgY0Ln2Q2j7d28uX7XPfu7e6NJ5TI2h2E0RkcigmYgGkQYgb230Rj2B3J6A0XybjE62B9fv7V0YgNdrkhOoYlRzFghy7LhaJDcgagCxIhQh6AITaxDDAC6vrbOxBoUEZxDFK2VItR9LncoSsN8du2/vvPWs5+G6qhp8JlPWvr0P37o7Tv3/M4f7X3L1y5lBvd89VM3/277Am8/Mn53mfUylagMmEKQBGCApAiLc85svkZUAiWI3FalRAQhjUjCII7Ut4WuCOzQHJhaqxyceJSm4qpqppT4alWPCrssZu4QE0sGI7IhIyEQETlLDLUpWZq4jlL09nBRKSIm2CwCzxkA0doJEKb527mXNKXEmULEU83jEado5gjNk5IGADr1rw4RfGr6FiHVxqQ4NFqbcrdEPjWTeEQDSheniAg0xU1Je5GJdBMtmgok5DlGQk0U3GIBTMECQAQNaY0DZtRyJCVscJvpRVObKydOC8SnLt6hR9B+UjAwFCQ0FYTacAy6h1CA5agTwobRkzGBGAQzMyNQUzAxiAZgKqaiIjDlKiYE5CNslJQC3gnApAYATqfp6NQ45TPMgNDApmuc9pHM6MrmeICpKzzT023BdtO2yN2fyq0WH/hiHOBQjxxui8lphKMkIQu7zU8n1i4eEhohmdOjmt2H7DoaKCUCHeMmoIIjcsvHTnT6K92l1by7kpVLedHJsizLssRphW2naDoBoSkxQxuNmglBAyi1IkiJj8YMU4EYJsVcs46qoZqqxhBCCMvHgsS6robDg73dna393c2mOailsuwA1TFwoFEMRc/xOG4WZ5/ztotf8Js/9eZBM+qevxAY4lIWeq4cO288Iu0iusl4tzzX6TjnzASaaiwhQgxSjaM0UtdxNIQoKIIxWNNA04BGABOLKEluIRro4iMiI1WzKMaRvAdASS8akQE4dhMJZafUvVHjKIsiKsRZ4UpwIKaNTUBio+KyHBpQQxORiOaZyAEjos/Jh1QubUbeg4hXFRGLldQBYkS1JOIGMUjdeOQm1mCRpZHxQMcDOJjAwRD8qC66oexBp4v9vu8tuW7PF12XZUAYfIbeoy8MMkO1aKiuY1YFaQjOnrlw5dFHnYqPcWt7dOq+O/NOfumvP9A/fsxWSlb0dQicmUeH5Fp23SAyHA709Ma57h3H9kfj4ccf7XfcaG+gO5O1u+5eP39+DHZrVHWzPkatYm0OkaNNRuMbN7ce/ni9fRPqiTMVYnWO+ytcdrnbgaIExxk7ZmeEhM6jjwiE6Jk7Wc+IkanKFfYgL5eqUO9u7Wysru9+4sqNmxfBudVzfb9Co/3GWeY9GEGswEziRIr+8njvYMVlMUZFyDOcSI2TyhEoaoPio0iMzCyM9fY2xmhmmfecuerqdUQqNpYlxKxTqEnQSk2XXKlkk8kEsWU3BZAgMcaYZVnRL25d39rb2c2zbjcrNKiADAeT5aWuQmOWV1h3Kb8yHJzcyN75eHnrQDf62YQOAIp/9Nnrf/M/Dn73xtoL/6568OnUXS783Ut3x6e8v3ew0lyZmBQmSphmYEUCaIPfh+ecZHERTadUh0YiCHWyvoTKpAQNkaAYEIK2urJgikRJHYkWKj7MIBE2LQYgU2SIiJEJCJEcskMmJG6LX9kbeWMCBuREz9j6w0Cty9NOttCClY84MDP3Y+4eLUx0U/9KU8L4k0yhrd2dOlHJ/CviFL87dSzTD7Z7mJFKq+WAimhKhgiGieRAiQAJldrrUAR0U+lSJIg0OylaRBLQhiwqCmBMUlRoAawGi5jKeRMgVJVE0cySqC5omnXBwGi21mkT3mY2jZ1Pi4lT0VDqjaR4gUjkTBW0Np0gjBEr0xqwIso9aKOBjQmUMTfmlpaLyIiBMBVxAxACEzrwmcn8MRBRS3IFKRONiuCmEeZ58KRd46RQ8yIuOpUC49EimWm+YSEksoi1W1gDYiugpDNXOy3TFs9w5LRHtkAKWbSRfgOwM+v/+OrWr59a+9rpt9PlG1JUo3asIi4sI55wzCk3IBoFEByg98VSf+XU0vKxsneq6PayTtf5wjnnmTyDR1ASonZRyYn3BBAAhYTbl9oAoV2zIOqiMBWkB4VmZhyQyQxjEqdE1pxEXBO7pKETlpaWj68fv2s82t/dubK/c3OwvxnjgYi5wiHUcbB3+r4X/Mc//7S3vOl3+FR/9dgpyMvoTiwtozBjLwJxhvVx09ya3bWzvRwzg71BkBilrqSe1OOBxgai2KQiMYkNSrTQWIxIohJjjI4Y0vBGhYXyfDQksBAbcJ6hhCnkIS1L6hiMERG1qmhtKVYTLksJKmhpeQjee3aTycjlmZWFYrvyAwA2ZGBK5e1MQJiqMimx92rg4KmJaegEkUQZ6KNEkg54oCwSgoNcartxY3LpCobHoRprvW8HOe50Y15wZ8mXXctLn2eaedfpYVYAuyzLiCAWnWgA5FShcu7EXXdsfuJRoIkdW7n8iUdXVtee9sWf+6F3/hVc3O+cXD3wQtgs6dIEzJhUaLAXu+742XvWjezmzq6BDJoh7Yz7vdX+pz+9s3F2v6ky8hSxJlS0zDnvbf/gYP/yo5PLV+TWTQxjBZEs47L0eeE2juWdbrm8rEUeDYhd1skxZx9tHIZZLw8RuVy6vD0yyESxG/arfIlo50m8/dn3rb/9g3/6Rc+746X3P8m58MNvef+16g4w9TiSwKol6YGqZoRW5Dtb23dkGRGFEDr9bKKRokZVUVUCp9qoKrPmLg7G7JCj+SwPEodbu67ItZNJjIXzoWmiRRAtC1eFJlS1L/L2fQfQGAAty7LBeBBNNjY2CGA0HFLG5LgoOkAomqNBReA0eI5aFZN89c/ePfjKl66WTRF89uCDay9414f/YJD91gf5yU+qOO+M7hD4k/HxF3/d5AP/opOFUdbJg9iUvs9wqvw6NUCYomRgZJawQyaKaEzKCISCEBgELTIHtJi4H9vAlhqQgDJOvTpKBbUMRBDN7HDQlwiRUv1uyxOJzEBo7Ii9srNkkomQpkSSYGotTY+hodERFoJ0J4tT94w9I72u2IrgISZ4l9ohhv8EW1ogpW/PCoBIZjKDMOEUV5uiXAv3hYmCf0o4obOgp6JSiv4m/5NS2TEkQu6ZW2TW+mxEZCBIYpDqeyJaSCXRYNEsACii4lTBCkTRsBX1NbBpDyyur9B05q3hAmk2JsqR1FGogEiYpaAEgAP0ZtTyL1kAqxACY2SIZIIQkdCTRwVSUwBWHzUAzNxyNCQkT6iLxOMxRoPZ+qZl/nfOeE7YjWgEM9Gmxacy+yTRsIWq4GwxlaD4M1fYLPVvsqCLiXSZ98WMAWoB1XV7m5nMRo2TyIeBSTq2XdecWvvaBfOv6bmSBgBSIAB1iIgGimpGwACqhgoGrEiNWaYxAzFkZy7LOqtLq6eXV073uqtF0eOyZEdZ5pwjzzjtKHDTa6ZpVCc9Xp6qg1mLe2gvEo/Y/lnHsgcANMsoeeimRN457wTRq2QhiC+t6He7q6sbZ+852N3cu7a/tfUxqYcOZenJn/7Lv3Ph13/jHd0H+v21k43Lud/pdLsIvucLDMHb/nXuPTh4bDdXW7/fazWusybsmIRYT+J4jHVNdaNNjbHRKABRQ4OhBpNGBRIY3iCqEBEAYjxMLQLAjsxqtAqsQGNmxhSbNi5AsQraS9gbsmGFSorsugUasYISL5085bolYKZRQpxoiJbCZYhITlSdz1MfZt4BgFp05tWJ66CIiMUcMZEBMjtHSOyNsPTeEzuE8cpGfew4P7YS9raoGaNWKhVIIfVI9r15bLgkLussw9xTt5DeEmddcANBMO8x92K63F+68NQnXbl0KWwPs/X+cHd7HOo7Pu+FB3/7yI2PfXTlSaet7MUi8yZh7yCOJmfPni6Pre3t7TVaxcGourrV669sPPXTe6fPDEPQpgYs1YTy0Ig5ERpvDw+2bu1c0kcfsR1V3XPmMucm0BfQjVNPgpNFz/f3a6m38djZcyuw+9jjQx+xXCn0xHG9evnc6mT7evy8B+h878Amw3/2tc/6r+/8i/e8b/s//8SXgMGdz/m3z3jeya982YNvf9e7b16/5ZfvaspKZAXcjijEoCSinqzn8s1m78alte6xrXBVsp5LuUzSXGJuFiGiIddQgN3a3XfeGqaNfhnGAz3YL08dh4ppNa/CQZyMBRzlPuYW9oZVqHqr/WgBxDnk0ATPXGS8t7sDQdlxWZZGXpPKOIbRKCJkPoPS8nGMWGPlrLNkf3PJvhQMKXNNQO++7qXH3vXmWx/w5y4+rhfuD6ur3fLxj97KP61YewXv/oJnityY5UVV1zkQqqgnH+feYRByWYwxyx2SYFRwBCDRNIBmyAACVpFFxAmhM8tUFckAGAAVGCMl+6GkzKBCLS8NwRT41TY1A4cAiuiAnFEKTzpAL56BkVwC+hASGaSECCQlJrMIwIgJOmSqNRCn1C4iq6KmFQAzQDvnt45VmtuT35XQWGrzYui2EFanMKw5lYeCpnRlYodIHFuGYCoLDiWCJVpdEFQgh+bUGM2IIE0ljgtAnrJwG6QsN5niNNoKoBTBFETQopkaNIANoBoZUg0WAABQEM0E1ZSSCVDDCACkFgEEzRhYLaHcjKdJdQBMq3NQQc8GCtrqs4FRuxJIhcIQCHN1isoAS4ClIUEEQhWbqBTG3nACQs5yYAPyIoKaYsMcFMwELBqIoiITqlP2My6sZDyISNUASAxMxM2s7+1u6GK4P/1hZlO1eFzcJ31cPIRa8UiJC+7yzPGdebeLA/SIDV6ImQAi+gSzB4Wp5U5GfPHA6QcEACAPKbZvEC26JFjMpMYGwUARM7RchUQDWFDqLy1vrCyf6S2f7PWPZUWRFz7LHDjvCJinFgHbtG4CKy62+VKrBUXAkbYYHpj31TSRDgnyhsBgCpQ5AiNDcOn1Fp97DLkvc7excnxjf/XGzf3d4ea/+pf2jo99eOPZd0CPOF/p9dd8J+tlBbusrmuH8aCmIl/+zKvv/eDKnXbqOA+3JpNBtFoOJs14JHWFIVpoYqgtBjNDrS0G0KgqibEOjKcPX9FEF1a/YgJIqgoIaWIygFRnQEjJjsYYp2ozCmZhPEIGI2P2qpF8YcyRsJ91alebsHZERCRE0ETJm6XH3Uao0Bw4RFQlVTUUQmVOfU1ogAzksraTVaOI89ny6rqyDW4UeusmVIQQLNTWjJhYJqiUA2ZKDI4gz5qyy1wOXdlZ6lOnwLLEPN/d3im7nfN33Tne2r559Ypb7Xfq6ubjjx1/9r299dWH3/nukw/eAWibN7bW8t6dz3jmrWpwsLWFk7q+dEtHzcq95088/WmVwWDYlOaGGXhtwDwG47B/sLcpw939x6+Ereu836AEzBmxU5Xl6ax34smntsJ2vvGcvau3Xn4uO/MA/fZ7HrM6+/lv6Zzort6qr33vz17+2X9+4cs+/8lf9o/f+qNf+aLlVffGX/7YHSc/rd4Zvv3v7Gff9PZXffNn/sRPf9vTLvQ/+pFPfNmr/sxfeI6GgZSe2Zz0CQCacZ3m0TLDSTMej1fdChTeg2vqoI5oQoaqKhFAFYydmXGI41j32WPHTx6/Feu60+k0IAQmIYgERAQGQquaSUvJjy5C4jO1bicHk1DXBMDMTYxIqAhZ5pxj7/3e7qiqA3SWE8UjqvU6+cdv8KVL+3ed75vzk1jdc/7k1zzr+i/+dfWOS/jK+9HyItu7WB1AuPPpOHjBkv0ZwlIW8qY7tqYGOEa0p5LPUm4GAtKySIqJQ1BrzIRA2RQsUlLTIjVwCoaoyQy1yTAAICAjM3NoEdvpPMU46TBREDOQIyJEIuREE5W4LpM6DxkhEmPCEgMgKiCBCSZ+v/lkKNPVfuJGSi9pwuvgDPc6TQMvurBgU9ql5Avh1NzCNLAN1nq6U9Ezk2TFgdp0osX5UWmaM0gMmYiQ4E/JkyRQIAegiGLAZile2LrXaemOKVkHChiRFESRzMiQknEWAEWLYhFBzcQgYMLSoJkJkGBsa3xxZsLS5bSUIPPJF2BadDSdjTEp+aXFDii1mCci9mpMkCF4YAIzNCOIpJEsEoojiACINq1wS3IOiRMcQFsJIiKHMCejTD+l2rKnpEIzN+vKFFhO5ddTvNbcbMwHEuoCGGseoD58YzMK1qNGCA7Hlmcm/5N5wLPdiKeUnG3sPh01i0XDtH/bwaHzuEqy1em2RdM8AARqilEB2C93Ouu9tTv6S+v9peNlsZIVuXPAPjqHzDQnOk2aJAnb8MnS1bPOWbz3w/2wGPNZXOVgGhEIlIp5MOVQAACNgV3uvSt9flBWa0tLRV8PPip3Pe/xyfnm+qBrqyfKTo+XijKHZcWKsC64mgD7cD8Ud1z/6/9470vLDA/i/oFE3o86HFk9gboBCxiDhRo0IoCGilRRIpkZKUKiQk3xMFCNiw/VQBDZVAE0xujy6ZCeLk4QMYTA3iNiSnywaBiNzdR3e0xgCMEgc17B8qz0zKnAznyAIBIjEdPC2Was4wiA7LIMEU1BUnUECJLPICESFIgcqAFlnJscP94vunW5XG9ex+rAyUTrAUogYpIKIN07WPRWVULeMBuPuphnkhfF8orr9YahDnWzcWz1bHnP5Q9+bNzrdJb7Wx956PyTH3iuf8n7rnwou7598sSp/tlTj25vxarW3X2+eXD8jruL+89h2am2xxiR+92asFMHQA3j/WD7e7tbo5s3aXMLbt1y4ZYYWwnA60t3ntq6NvrxH77/a776OX/wp3/3Rf/H+770hXf8h9ef9RDf8773XJ3kX/Li53UK984/q65tDkaNEeT/5Guf8bt/9shXvOjcb/zape9/LTyyvc93fN5P/O6Hrzz833/ix750MLjyWd/+tu5Tv8q5G4P9kRGxKfoQJqJ5jQ0hIGReqzqMR8XxzBypqoUYPeUqiCgSXRK1Y4yxsdHQYpV7rk3qzW1wzgg5AySJdSUxqCOPLCKj0agoHVqCYbGoAUCWZfVkWE+qTqfDmU8oA1NTJVWMMa6s9AF1Mqzrqk6LKRDYJvvQxe7580OCFQ+ZcfNVL1r9rfddfOff3fONn8dFFwZ6gAdwnbF391cdPPL4MbdX28DUMXKkoZNScU6TrqoiEQBMgqEaJydQ0ZRM2RTAkATIDBmtBohIiqamEUyBmKjF7SKBI4iYPFjwhJEOL9K5rRAzSoayzQSnClpLhI7kkt5AQiMDtatYAJ7WHUmaiqaIZ01xdGmrlBAAW5zRIg1Siv3NZqipXZpa8fblsjblS9Da1dn2NqudXrzkQLf7o5q2VcigZmiISVZZABXa6iM0CMnugzEYgcn0PCmTnQDPkqTLABTIVAUwGjRgwbQGiwkZBwkFjTExU8BC5BmS8QMABKRDUCFF0NbhRUDWw9P3dMo1hESrmaErzTKArI0jqJEqaIPGhA2gB4stbb+qqoqEGfg5mUVKi49FuSMjQaW29soUwUzd7Zbv0Aw7s76Iiy7pUZPyBGdIiPLDLjXCotvbLltgvs+Rnz50rOjtVFOKickRpkMHZyuhZNzQEh11CyFII6a9NjBDZr/UXTq3tn7X8omzZVnmee6c8x48G0BKQSYkWnqudnvJ3SfrvUPxg2n7FJH2+T4pU9F2tSC25HCMxOwCwEona+oJID347PzCg91PXKI//+D+R671qSTLhcjFCmJQR4ZNHED/My9/6OLuRx994Edlf9BMDKtxU4+4aTBEkAgatKkgNknTFGKc8pULTQGV0zEuqrpIDqCo3gwMFEBFAA0B1SCKOOcAEYiiauYdkkMTAJAgjtnqEHAsAJ1O1whi09TERdHxwA5Q0aHPxEnTNIu9lGIqLdzPGYgacgI+EjlmBkciktTo1JQBoyEQ+qxQJehyvsHs8vpgP473gLskQbXWaW0HggKwGZqCJ9HRAcdC6no8HHG/l3V7mB9c3Ns9dd89J17w6YO/e3j30Uv5hfUbjzx8/Oy5p59/URgNTJvtnU0ejvzlPRQ7/cLnxW4xitH2BpD7sltSkKBBMY7DuB7uNOOtvVvbtrVLW1dtMhYfnTmwk3JyI6x08v5dv/Pft770K+UfvPgZ3/XZmy//uuXMlv/sz/70XR/yX/DUszqZCG5URlTmN8cDAXnRZ95zv9y38+jH++dOqzkn5a1Hr/QfPPVv/mLrH7zjA3edy67vrbj7cfiB8ZDsWFZiSVLjpADfODX1PssRJ5087O8F0n7REURvCixW16piUaYkCh5MsKlBaldmsQkyGHfKPALmniCGZjwCVUOfex+qOoTQXypVFUGNSFWzLGOw8XCIot7nRC5YqugmA40RHdJ4WGWlK4oiVCHGKCE0lbqV8PYP2Bd/ZqcOIcdsArHo2WdcqP7TH1//4KWVp7j8YEfrWvdEruUrp1e+THZ+PrplH6LlhA0Hi4wyywHHWCW9OTNUUzgsrpWqKtRMQRhSaLRCaMAUMOlMo7FiKkVFQwRGQEwgHGAEWTxfEl+kaTwWOanSGQBCikdTioWmitw0EUy9xjTzKFLyR1t1uhnciqcHwdzD0dZMpvNbqvA1m6I02gsCoSlRSTq4DTXN2IihLelJJVPT+UstIcSUklYcQUovK7QZXDEQNE0Td6vN0FYB2xQgm+C6amZo0uoxW5t5RRPTYBABGsAGNYBFhATdShyWCTUDAC3tPCpQWwgDNvWEpuFSXJx7W1vWPpe0feqYAhmwoVNwCBkSIzi0VDwZExZMwSk6sUyELErLzDWFKKUALCDPRIenAwBtqgShU4fdpa5Mwgk0RTDRAoHq1DYkcjGauZsLT7odrrBgdaarttsCtbOFlC3kotvhfhhfMMfjteAIIHtCA7ZwqTDDvLUHmpi05hMBEDgoIEVAM5c7v+aKU93VC921k2Wn3ymzLAdi9WSMlNSmAHWG8keYI6meAFG9cD23b/zULv7tbYp0MyRDowToR8DC6RCic+V617o68VTkF+TE8toHHqZ3PDZ6aJ+DhTxzJWUwjsK8BN3PuPgn7zx2rjp+l914XIPgwaSpJtzUKsGkllBpaEAiaDRVMlM4BPVoX1k1BELTQwhSNcMICM5cjMEksnOgFqeyGWkkMLOkF97A5XmirGdmA8RQiUXSIuSAjYF2mF1yeR2iK1yMwQyizpSyiFo4BaEjpswQYmzMDMwjIlHNSAKC7XrciBgRM/AN+NhnyFwscxp1YFzF0QTjBFRUAuqM3IcASFAAIITgDI017uxU+/u1Y7+8cnNSHztz/swLnrG7eeP6O9/Hq+PLDlZXI2Y02N4cfODh9byX3Xue77mwPar8KCy5XIu8iiImAUJeVUGrycGN+uZ+deVqcTCoxzcl7pjlPi7DxhpurPfXjtPaaqeOly3kcTBu1n7sdS9soBBUW16qwsXPe5bvdlYfuzz6whfdeWr018v1/R9638VHtsdf+fn3v+2gSVT+q13/z7/IP/fpk+/4u+L03SdP3Xn8pZ/+3t997Kb0qGzCoHYrHtb73eeWB3+2XWZ9BRAFwzJrRpPBYP/U8Y1Le9sdRohNbBqOoZV7Q0IjEEUL2NRcOK2qZjjqZMtA5pjr4TiMJuSYc/ScDfb2EVERkg1ANVXLcx9iXU1GzOScE9UE1/DsU/aqqStVJyFGjYBaeIeIFk1C8eho9PDDete9XgNIQ2WWnVvJN7v6yEV4allo6JknO3Cbeeye+TS//0CXHgFYCrKfS6/iiYQMfDuAY2gYib1XQSBNhMuWZOISSXLrO0XUGnBgNgJsECNYYqtAbAd5y5A8A2GlkOYh+0ttdQBiqjhKkkHzYPYCMeJ0Gkn+bor7tRPpdH6bcjgrQAtrRUCFBVHGtihnNs3e5t60T+TQxtlPa5rDBaAtLkq8I21wrmWVgmlkMbmwihANCBEMEC0zignchkBgof35OdeIYopVWjQV1CRHoWDBVAACWEALibQXLBiIacQUe0jwphQ9TrXUbey3zXcjgi7a4HRfhAQ864XEI9Y+kXaRgZrgckYIqd7Mo3lCR0SkiAYmKtoAe1GUCCLBRK0Vp2qLg9Mi50i5jhmqqk0L0dOwcVPrpQwpoA2KQIRt/hqRppB0mFuF6Q0sJF+1JehIRwGATQvODjOWQSs5iVMbbwtn+xQecAqqIKKhzLbOeUIOBXVh+rsz1x0UzJTNEKhB7KDrG3WVVn15qrN0orO01O34LGPPCClSMUdPJz5Wa/8/XDk3hTfMsYVPaJbx8Ch/ol0W+ufQiiRVMs2yAGakPcxUQbOIE3diGXv5OPNLOUCWTU5+bPyx63Rp7CZFVoJrIt412e595I/ff9eLx02Io82mEQHJG6hiApqkFjlJfMM0ET17UmkemAEbpyO1vcIowkLogBAFLDTO5UZMYiJCiCLGzEAIiMxOESCiKwBiVDWR6BBjqJtqjGXUsoGuMneQPQOlN4qcU1WavR4qKawBoKDJ9CKAMVGSFUGg5JEYqgEgE6EzM+9ydJ5KZw2ZR+6VMGnG+3scljQEbWqLAS3OHkFA895riDHEJN5GBqQWb1wHt78nNrRw9tyFc1/wsg+8973y6CY+Gft1sffwpad++rNlbXkIUO1W5Nh8Xht5Y+cIzVhiMxlu72/Gva14axh2buBkx6QCzLB3EpeX+2snYb3j8qwXedjb2Lv2OOdrP/Yzv/Xd/+wr3vb77yq7S8dP9spPXPzs53/u5ev7j1zZuu+u+1/y/GVf6Oqp7lvf+K4v//wLd5068apXVIDhh7/9s/Iye8efvnd06+Lm1r23rl0MllWDSeDdJ505948eWP+Bvzl4qYy+HP/2j5qnlH3vgIZqYoYSh3u7K2fPOmJpKh1PAAXVCBK9vpGBhaaRCrXm3I12B1JXTMvGxGDNeGwhAhEzA+hkNPCOkwq8mYkIEXvvx/s79WjcX1oh5qCGBKoKKlPlVdSgRI4JR3UjIWRFT8D6wAOGP/rg6FX39kOyj5HKXr2WbzyyW0yubd3qLz3WMdtDMxv2uDzxlfnVf62dBqIDmiBk6uYU6LGpCZBB1BAcQCoGNgELQAEhIjRkE9YK8cBoD+DAsGnVwQ340PR16F12BIGBbXGuAEbjKW00Tj2M+Q7pRVMgQkDVxPZAEYwBAEyTx4gzM5PUHmd659ZGE5PDZyk5A9CS2+PMz4M5isoIaGFKNzNAs9heTmu1FEwJbZ4nhqlFaK0JQVJrTehfIAQEYIOAbbQ55YmRDA0UlFNCF4HT7SSqE9RoGlNdo1mNUqsG0BqhAWsMIloiwFJsE9MwDfpawvokWJm1MTtIldstGzO2wTwzszYCkczDrCgrrTIUUBPR5rSMesZHTUSEhgkgZxJBSJW19X5bX5SIzNAATNHQFt3P5OxPs6GtqXIAwMlugYBRwmTNVkYzw3bEOi62mau64MXD9GEf8n8XAUdH2hMGbA8FZnGWdl1kYpsl1efJgBSSkZQNQGIEQFIzS0UAro+0Bm5DMAcuXbna7S13yl7uo2NIr0fyc021zb8umhwEu83I0nSf2QU/YXd9CtML7YCYO9hTMMWhDjQzEIce1I21oaUyCwAZ58cddLwtL6/cv4GX9uTdD8H//KgeeH+wUj1442Yc3rp2+mn1aLMKAUfRTGoZggiqqgqa8pSPLNF6i+o0PQNgkigOTQ2TisiiKKQGA0p1BUQksXGmDKyIUZUYVZWcF0MlYMeMiDmbGTjynFk1kaihqgy1GW9Kp2vS+E7jii64TI3UlNEZIvK03CLVMBCRYd4pmDKRECWEUKsGREQhcg4dG2ZN04AaMjOzGoihgesUyxnlNR4YuzxjG9cQIzQ1hGiqqNJOcmaNKLmcOpYCXDFGRWTfdWVn36rlqtq6sZWdPH7/F3z+Y+/6m+r9j8XAT3vOs/ZXeoFZq+gpd1lOQpJhNK1DpaGi8cFg/2Zz80Z1edMGAwu3ogTnlz31cPkEnCx0qeOXVjJfjaDRanjHyb6YVRP3fd/321s2/Nev/qKlbu8HX3P/U+9d+cP/9le/8tt/+7LPuvs7/tlzH704bHbhEx94/NU/+D6uN9//cfj9d10f39q3/XK/W9714NO/4HuvZcvNIJ53y4Pe+PSZIXz/PQ+9/nfcc++6eGHziiueDc0IujkHxszrsGos3Lp+rdfpjgZ7MImWe3SMkmg4DDWaGZIiaO65OhiyCJA4T7GaNMOhB1Mll3Foqqauyk6fnDckiSIAZVlGaUbDgUVxRd7m5wgZUFUtOUF1xdRp6kCqjCBoqhoBQRot8nc8NPymkeRlFgEB4N7zzk2uf6Q6Zv/fd8rSHXsSe0jB0/bexG/cVdx6Sdb8nuOVhsSZVhhm4zfEmkBrJfLokSNwqmkFasxqkJpwjDhgqBF30faVx5BYPxdIpMySfyo0A7S2MU/jheLDNIp4mpudRnjb+CIZgAmIJtQPgKGJEZrEFElEBJPY8lxMg7kJ/dRKNqSZJ72ulIxHqq9Fs1SYO7PBhKnsGQh1ga29deqZDAStlc0AaX8zOdtTKeL0Y6ZtiJosJJ8vMWehIgCbOaAaQNCy5AMhMlAEIzBtAwntkiKYRlQBjSA1WQPQoNVgNWiNUANEhAgQQQXM0MS0fTEhOV2fYm6dShSjkR2OyN4meqNmiXRIECRF/pNrn1Q2ZngrADFbVLRPACUEZMV2JUCHIsQw1cK0RWPneGpfRcRU0+pAwRi59X2SSz61wYv+2cL4mz6R21KeR4zOPKR8OFf6hMce+hOmlV6tM5Q6UqYnbKnGpmcTYAQDVTFNdVVESOA80ynhDrrSMCe/VJTHOmXPO0BM1lcJVA3MjCAJfk0vb8E6AsxCHbb41ZEuWmyfevnSBkEwedKKgNLi4NrVBrb5G1EfyRCtwxmAAVldcm5esK8lc5dXTqzbXUvNp61M3nbx4O2b9T0XP3ajzK51TpTb+xVADUMZqyizBBEBkfQgVTXVG9B0kAEqtmzdSa5aoWVun1d2s6lgK7cJlGAyamQMZEhMTiUStcgKYjYE0eicI3TMTpGAEl+B2KSqmkabGleExaToUJZTlqXgVmKNMTBDICJ2lNHKwcFgb+8moq0dW17qr6qFpmlQKaqKRSAwQgNSA43CZMzOAqGgJ7aSGj/R3GORY2g4lhYEBFREJShIxxyAMnOoawAjYm0a7z1nvaLjy+VOzHJhrA6G15r6SS989tWHj3dXliZFNhoNMrOez5D9xNRlTBqj1nls6sne9s0r1ZWLNtiX4VDrIaBgsU7LJ/Pjy9zv90+s1FT2lEe6kvXzvcubX/rFxzKcfPGzj7/4R28+2Dn9scf2r169+IkbW//q3/3Zx//n1nsPjn3bD7zro49f7RZ8srvyef/ku04XO/3i7Fd8y7ljXWvqg/uPr4yDLK/Q//a973jX6JlLw0evX5O7n7Z2bPCwvvsvvmRwx5evfuCt718f5nRnUQ5QLEQusri5V64ubz90cfXChSoEioZFwcxKBBAVQCQVA3MtlYYQQwMxHIyGxwAm41E1GbH3psiMTV2JBCIwxRijCpD33vvJZFRVVZ77LMsSJSiaMTOYIjpTjSoIStMZUkQS0eN+Q2ur7qGH4tZefTLv5JQFrp9x31Ne+LSH99436r3/+kMv+TwwX9YwcuOyyG80dvzc87of/ethfyzk+g0qjGchaA1NBAMjhyDRRcAIQdiUG8NGYKw4BhsojYmHhmPCJG+EAIkAuc2YkoEaQUsUhQBtHfBiYySXKiRnsKF2pZf8V5nCjM1MEM1A0VBBqOWUmobEzBBILbZz8lz09xDoSjFpp2ILlVWZ8k8ApvLYVOmbgrAAimAgSEwWAQlgmmwSSCWc0DoJlqKb6UIJkiFXQDMVA1IQFFRkEFEKDB5R1JrEW9LWBCG3STxN85qAtdzZKsEsOAtqATCARYP0f8v/DCCmsWV0SZjn1qy1TCVtvHDqJ9mUrWt67/TEM7GRQgRQ0KgYwRqFmChCEMBMFFw0FdNo0cyrRZCW4rKFXym2A1X1CbmijhjK1gDPOJyJKLnOYEiARC3cOWXxZ0RXcNhkzqPQCxCA2bfTEXnoIizVXM+GIM3P+ckorixFS2Y5iWlkG5MEN0IaRgjAmLjJzAwlmmMCNlFPfj3vbRTdroPOsLJJ7IRYLnVXVlaWiMQxO27XlSlkkW5LD9vXaZsKiaTbPFToPF9b3O7NM7Oqmkn6AMQqEBpFxJiKyQgcoXNsJkygKsSQmLbbzD4xKikogibadqaczJSgUO/6UGRWRMw7mC/57vHm2P/cW//T9/7PegnztWbySBibTIIGwZCoXirVGkzbJwCCZBK1zcREExMiIiBVdSn4aHIoqKI1NmjsIgOkyiOLRhyg0eB85nDSwMqyqkItUjeu1y0AoyZmotR9nPX6EQxxPw5lNGhQ902bMvasv0qYoamCL/LYSFFYU0fBfjHZsRsXrzzrjq0v+cq7/8Fnla/6Pz/4nk/c2T3RzaLFLBRZEYkyazouZ2iG7JcGsTZ1CC7DoOZcZhlh9KSlTkbBeROV2DAgacysq6oUwMiQyfc6STausK6ZWVFaUfqsAwQ1SA6hCG736tby2TNVVdWjKucOo28IHbuCKFeNIjIZH+zfGm1dH1+5HG7e5CYoQAaM/TO0vo7rx1bXlq+F3vc/01985ODnq5Ov3Ign3K2fO4Gv/0v8+d/7vdo2ztzz4FPvjX/yl0NP+MDTX3rnyj71up9dlE+582Teu79/rLuCYeNYsX2z8/a/ufKk42f+/EOP/tVb3/uqV73s37z5d1/xDz/ngfWtP/rwB3WpW/jOi9zjd3ziI3DP4Ps3/qQY2MXwpD//st03/eG13954qrdhLDpWTibadNePH1y/7HIXNfNrfXWkjD4Ii3cdDJOgmCFs6WgcY0VxzwF1XG93d9vFGh1z5r3D4fYwkZqpVSCeIXeGHm1QD+t61F9ZVceEmANaVGB0WWZmGtSRZ6eeXWyiCho65wiQLAo4mYSDm7vdM6fAIqgiUPyKlx9736veCssr7z15Bx/E7RyWNFONOHYPr5zDU1/U3/zV0FsKpo46C28lhskEc9cACjeojSu7IEONA1MjHgLsRKrZj1kmRACBicUwIaUIIYrFpANvCW+DwGDOoAFEtkUiJAVTJFRVsSxDa2mPk8ySGSqhAJGptn4LRgElANBIiDKbVdAABIFSNVQyq/PcrYWpMU40xyk+jIZtWjf5KTT1jebFk5oINdsLdkYwTT7JLLxnwK3Cj8B0GYJkAGIihAYKmOh5VAxrsojWMVVMDCDIAB4EASK0eeNWRAQ0QqzNlKFWaxRqswlpZdAgRIWA1hiEBGcmkBSHB7BUr8yzVCC21jelc5moNcxp2QHCxDhNGCoaAiERKJljUjQT1hp1ALCruKQ2QQhqzkRMDMWbspkFnZgVorVGr6pRUBMfl0RThTZ2YKLiZIGIqkUlpzB1awrd7Z7Z1Nmas5/MzMmRnZ/Q1Tvy1aGM6YKDOPekF3dbCG/O9pzZZkzmfJqKmF0MA8p0fCiioSkAKjFFERUoe/1TG6fv7i1tBEOZsDocHwQh6650ipLzwoBqogygVdK6zeL+Pe0JvdsjZni25iByabRLY3XdNLG9U+89EUSNzOQoMUoQgBGlOsVZensWg5o/JiLyuSAoaywyJjLv0JVdV56/UD/tv//7nc39rSWQbBShtjAZCygk2JEpSDSJoCYWk7UHjQCgJinwjIiaKhLVDs0oAGqNKQMCmU9sr2ZGYExphZ5x5l2nW1cVKoIoqNTIzEQGEEwaiVGxzMpOEbulFCOsKjKdjGsj73wVGsPMhRz6MqkacRytPHbtbzdffMfjr/3Bp77guU9ibCb78R+/yD3/2nArDB/fD7d2/d7mDk7CQdSMGapqguDP3VlkFkLIc8+UKC6zpiFWBsSmaVRCbByamvi0qmPfZj0UlVWTQ5Ly5bGqSJLOb2bImqtk3BwMEJHIMXlq40qgKnUYTSajycF2ffOmbN7CrQFUAszO+eZ4L185gxvlarkhSx0al/fcfPyLlx76hYsrX3onnhu++zc6L1ldXtk5fedSt7PzsY9+19cdd/H4tc3tsxfcznV4yec8ePFm/Jv3fOTO8/2rlx9/9fdffOtvPvOHfurt7/pw99YXP+elL3jKm37qdx/ZvEljd/ET2+sn18J4qMe4W/aff/PdL8wfkrD5pDt6e7fkuz9zyy499OGdz3Hn2QuYZqGh5c1GTvRg7MeDMa91y7I7qYIjFiRjExGPjLlHmNRxyHWj0TCCp6YejTEI5mCKFqLVwRmmNbdGRTKX+dBUw70DRCzKLiOBEVIaFtQWdZgyucXyMzcltKmBUXGpf+qvPlw//akhcFTDqPbcu1buunvwyO65h46tZvtROq7LUcgrjAZDmpz8nGr4/mPNh4RWSfdnA1hAyGKMykQiYBhD2Hc4ijgQVsGB6L5CVBsakqqlXFbLhpVe52RD01Zta27NpgUfh2YGW4jVmZkAMoG1mF6DlLpM6V8EM4xIYArAZKaUgGzQ4mo1mVOaIU/n6TkzQ2RItbDTH25JpxBgmtqdsTJNr65FfbZ/TT8QzJzMKYj60C1JgoMZBJCEHUnJ05kEb03qlJLskjMUBk7XKanMN3FVaQCNoI1qEK3JGtCg1pDVZhFJk1TDDBk+B93MJltr7wpm/m67WJlN5oR4OAANc7EEgsbMJ9fGbGS2DzoiO2YmCqIAKtSIxmgxqirXEqOyKIiqalSN6QrS+AVVVSHVKPN8x6J7Nr3AqQE+ZC+nOCOcod2mDGeLfvBiQzyUKF0MUx/tpifa+Kn3n7a2Xq2Nw8wsXHriwApKCLM6UVKrVVy+snbsnmPH7+kur4LzJBQIWVhskHdhea2bleQzY54tC44+oL+3LVZ73576Xexes1SrgCGqCExqGQ6aKJbneZ45BDZTA8fGUUANnEdAZSJAMBUip6pT158XX4ZZB2ZZ5oEzDCWDd1r4vPPiT/u8bPXRh6r3XqvzjreRZyNrRiARLaI2GhpVxZZcPKrZlD60nS8glXC1lYi2GII2bUyZjLgttjaNAX1GTAYisWHirNupg7J30SYSG8w6iO18W5RdlxVCZMiaL2XrJQx25GBsZlKL+Qnk0skKsmD1ibVjbn8Hwkff/6vffuor/8HngsJIwGfZBzavV0344e+8j0OD3kETAPPGyXh7r5osDxt83/sf+q5f+uv6zqcl86lIAOB8ZgBkZOCZkNGhEaopRQAAEZyWkgM5StA0AY1Rm0mcjIOa8z7v9xFQOYu5sBL7jIiRU+GymUZp6mG9XQ0G9fZWuHVTd3djCNApqduBpZXjK+vDFe67ZV1bWmK8Ft37m2Nfdt/o2//uY1atrtT4D/9vzv477pbsqg5Fx5xzrara4Usnd26p1a3UykICgZCERLYwxjb4gg22TLC5GOxrrq8N9n1+j+fw7GtfbIMDBmyCwYQHGIRJQqCAAsqx1VLn3Cd+YYeqWmvOef9Ytfe3z+kj/N6tX+top6927VVVM445xp4uphd/474qjrXlrY9/sr388KfueYLe+Kr57EJ79/Of/aJbJ2992/xZ7dY+7Gjn3PNuOXvTLTfcuTgB2Hs/es/f+XvfdNO50d/5wW+6cbf5Rz/0MxV20Z78/vj+r8BnJ2cuW54u1XdPS0uf/dG3f+GHnnvrrbmZUU+VUe6X7WFexvbEqXD5IduOwlH7hVSV1KNFXk6sMe8xnRqsnV2sMi90od0Wa9vPZlUicVAIrqaLtgCONGdQpEpCFdqj/b5tx9OpNJUZAGMa3Ajg6qaOQAQnJXf3Iivu7pY1VK6LWJ/d/e2P3v/Xv+m0OSQEhgSns089/Z5b3nyRMKUEbg/jaHshaVpzDg9N8k03/eXlff90VB+Yj66+gdnVLLupOSfT7HkJXrir88xs5jDXliisoZBrq148nLvDSh0SA4jaSi/02hSF3YDoK7k6M2NXImYI4DADFwE/gzuJudGgQQQ4r4R2ATNzlnJjrrozQ9fZV73CwSete4Brs+Rrfn+s8hmAiiYRNibyVobLVz+7RNgrpLa7HzMbA/B+wFVjcJZORi6kBhL26FBHZhKQlCa5rHULTN0yaYL1QGbvyTpHR96CElNyz8YZpQ87kPwO6+/HGHJcY3rhG9PPg5Mqldrh/K3KCQahktq6ZbhSTq4z6IHgsvnIQMnr3is1ySZZSc16y1klKdQ1a9KULbdqCZ7NDaruBjMqAtqrs1bIN1Z224DNMeHV5bhuN24iqp7pp9fedO2tr/lMuS6v2vcaq8zkOkDny+l7puu69rhK4XqYjrv2k4VSDCh1GYgjOY8mN2yfuPXU2bu2T56TpnLj1LtR7q70Bj91cmsykRjAoIoiVnvA4FP//3fFq5XZXLH14+H4HQ6YUdvr4cFydrSomno0RqhCyXTd0WdLKQOIFYt4rEIgAGEANyIP6MGNDjFQGseRCG6IFELlcA9E3e033AV8z03yn999+NsfeWTPbpz7AmSwXHBY8MH7EgxUFDeH66Mw6ICoyE64F1KOTVh7+RPzgmZkuLtZJqnqyNAsTSPNKIzB2Zwd2rO6hIAgRqJ9Su7kCCQxjnKoWEw4etel2YKFRnW1/xRNd2rm8xfuabfqK7/xwy993gt3276bVTZJdZVzv/CXv+hOdp5pRZGPlosf+Ge/9ebXvfzPfMXtU12ezdWz7njh733ys//t/vne3l7ft8wsIr4CKDAHEYIXXq3skEIoAClgACoFhhW8EazNctalo0V2474nWE9Qt62tHWIlZndTzWxqqe0XR+nocr5wIT99QQ+OCB62t7yuw3g83bmBJlvTcZ5OTtaeW+IXnGv++73hO8/d+P94zeeW862Tu5e/6vH38ujMH6bnz01kEU/tGaczdzfx5pt38Sx+9IHDO24Lb3zN8599xuYf3791/NnKvujs/DD0R59+xw03HNp7HvrE7zx+lI7weNe+64GTB+ee/61X7v3+Z/93LMjCbogdjhzW/tEHXvjf9m59TnOw5G3lWDlamWZJvOjPnDgxqxu37mB2FJsS8xFHmBn3Mx7vgKf58iORnwU7QDvVrvflMnDj7iEG7frctaFuSNgUFClUYpYXsyNxG40mxmJaCrfm7O6KFYzjWJGMV90XERGppNcM2cI9D/HHPnH5JS840y+NG5q95yPT989+4XtfdHEfW2mkdWLN7cjMw8R8f9ZOx3vbZ/+CPv2vKWwf2w0OImBXhrka2IiJA5MRwQexLxCUXRQAmdDKLa14mkDm67zY1wnyM6J5d2RHdHf3bMambNnB0DK9FInd1QrZlrMjOzGhKPSW3HiVeJSgGD5AUQZrUMqstPHFzka59NQGPz2M9hfas0Jg58QbtBtYT8VfZcRoY96kPMWaVWvYbPDgQ/heyEwC3J0EroCAIhB8Rd/k7mVomNzJEzy594QE6+A9ewvv3TqiHpRQVpscXDoAq15vAc/QyjH4+siPs/+rz4OV8etC3j14ZcAVZgo3UvVk3s/ZLoJhNlXXzqgjSk7ZXS32mdocVKVXU2hRIXSDmZcXzJTUVBPlbu2AyxzXaqRoGOg9ZsK6Ztt0qOvS8Z9Qc8YznGhJiq8pQWMdNlLJXK9997pPr0mF168QkQ961gWro26lT8FU7+ydfu7J03dM9k5Uk7qqGji3nhfJ23bRjOKpvfGkoVFELRCi9XjW8I3/d33w5rpdXW0gIrdSpDKaz9rDg5kZTm4343FdV4VRGX2ny0Wez+fLtm9G1XQ81uzMXEe4m4QiR7ouzQ3XnLtzESJyKgrbIuzkIXrk7ZueHbCd/9IW0F15+zvvl7rKekga3bJ5Ji+kH4XE29aD3uUSGYYKCCuY3/oGK6eiB1cOtazExnBaiXdyjLntq6riqq7G4n12cVvOzNgBYSZiKiO/RETEbikpZMxTIZlF6qiSw8fPf/W5/In96d0vaf78a9szz7rxxS/cXSwXdR23co2QUqr2zx+99KU3mneIMnV++3vu/c//7uBPv04V3rsk9p12cXjpsEQG7gMN0aqaQhyYCFBn5kIEzCJsUkYc1udRYF7A17EOzcjaXufz9vAQAiEwtGMPzQQhGojcctelxUE3n3cXns5Hc84mVVQRTMf1zu54e0ebMbY80BnL1MrocnflV++6t5nc++Cjp7/knOzQgVf+6pOXNe6/Zjz6xfmr9cRTv/fuxb/4/lcfPPXEP/rR973uVS/5xT/8w4vtubvu2s6jetbesHzZ7rf9l8/Ob7q7Pr393e98qtcsfBNicxjSI5dC2rswufzU37z5A8i+NCNa6ixP6njlYm5OzH90+73f9/gX3X+rL0Ls+5kDYf8wTXZns8PJ6VOHn/h4PHfWNDE3IlJUNNH1XO2gOq1P3x9vuBPo2I76vkPfcVP1sMC0PDpEUoyBEsExM3PXLpbzo8AiIhkIHNxKJ47cNZm6D6Nk63s/u5VBTCJKTr0vR16FrRM/81uPveTuUxXznHL9i+996OYXf4bqrfn8wslwoq+dsBCILrOP6jh++iCdOPci7H9VlX5xff0KZEgrnYvQrZu5sVtwlAdF+Kgy60SL2PzavXlJs2hdATa4D4kvXYt+QXaQwQzZwbZKgrMyM3MGi1MhdAVzoa5yM7DkkliQD5jIYoepNB2P7VUZZinUS7aqrJb/y2W8BaUVzHScaQywHXJfE+ywDzCrYfHLv8cVXxsqY3zs6nywRU5AKiqHjtLyFEPNVBG5ITgMyERlErdg1sp8fyEXa+EZtiTr3TrzljwRkru6J2Idkm4nksJjWIrqxSt93iYgrnUfWBlPGiZPHHB3aylH14qMKPWeDqAESppO9eg7p9ZjD+rdknky6ZOlpL1JNk2WPLtqZ9aa9rBkuYP2yEtoh2bjeFYB03qFA622Zxwlu+erStNXJ77X/MJr9nAcBz5jUXz9gT/R6W78SRHGMhsySb/enzjBzN0QQRPnutm5fbx722T33HhaxZHDkTv0fdq/0qnqmdM7e9NqWqMSrYK4J0Z9FcXE/13ve9UKXPuWk7BmW3T56Giecre3tzceSVVBWMmdwIG5T/ODo8OD/fnOzlYVGy5oLAipiiLGCKza4RvhkZk6mFiEpXSRDBC2piHxSTdiRPrWP/fy6B956x8+NaJgwQ1WoPHln+EgbQiWy4XtpQRdVthXopvHmxERnA1OZuJqlkUjxDyEnFOIzIFCjAmBhMjdUs7k7B4cI5Eo7EGUXdgn1BBJ60ITJ5GUuvz443/th172A//gnV+x9+V/5ltenXPSPlWjWtUT5QnJvQ89PZ6E7dOxV3Lusvt/+b3z5173rK//iptmiRyyHeXSo09+6v5q7469vm+LsGHf9yEEYhYRswzYWvGNNpnUBtOjbsirpwbnpq63tjq1vl/QfF4HiYQlUGviqnZw7pO2c13Ou/nc+9RqNoE0k3o0rne2eTzFqJmGBjIG9YQRVe04T//JH/lb31DH5v3pUpNHS3o6N5HEl//nqXfM76O3P+vFP/2BCz/3Nb95NiZ/zk0fevDc9Mu/Ji2eypeefLS7eOfi0j/YCf/g/e/MEzlTVeYTj6NqK/vInvOcu2+fXn54ees3vfXhl3bv6cL2qEopN43UmPe7eye+uH7oL7//tR991XNOw5oQU860F/NszmbLWZqe2h6HKrXzyc7OrO1G9Tgsyd3RgyegrdNp/4/55AGRMI48L9DPc2icEKuquzJTTURgoM82HQeGz+ZHKfU7O7sSgxqcoG4MKTIBmtSdgkReoVTMTFU5cpEFIA+zhDynM7fu/cofPvi/PrU8e0bmM9t628ff8dofOH/U7UmtrRPlPoROl1sIWsOVXaqHZ3brbV+1+8DH1pevELOImzMTEzHBvXMTeHAz91LmDWZmmokg6gWkuor4C0lcsarwoXg8YE+vMYFWqNuMSFkNplB1ZqfsRg42goGLa0WB3zA7lUvPafVPaW0eD0Gt86JVZgoi3xAAEAMAFUgZkS3FuJWRKjWG49zR17OjxZ6vSpjr38HHLmT1FeUDtpnYOZk5xC04myO5RUcgCgQpc95wdqi7c0EPe3JL5ImsVWvhPVsHTyADMsTIyAVETAiODBYaSC5XB7+x2qtO9Ip/4xl+ZZ0Ul0lpcicTdyfNlJwyPLvlmXm77E916FqTpXGr2rnOYcmr7N730mXuLasmUzXtXFtHds2uresSuSdrNy4AlaElwKu1smeUoNeH6E4kpWe5ETFtSmF83q3cOWsTds3r5flGFeLaj129Kx3e5TV4wa+OGI577A4xTKk6LfWJ7b27dk7c0EwqCRAEB6fss3k63F9uTUZnTk6mI67FIhfVQAH9Sb9oOJjrIZ+x8XOueeXqIKNwtLKZkXklHKeTE7uTpuIYCrhidS+55AQiibGOlYRAIFd3V0q9uXmIJFLgGQOLGcDMMZu4FR1nUqIgQRwptBHx9KKvT0+RTv/Zr3nR+eXRH7/jSj1iggmZrkimqGCO/Hhwf41ZWMPqHep2DCsYyl5SBJPULJOFwsMsEofJO0GMESEQ1QhBF4dlpCTn3LUtmIkqzpKQ6xiIUdVjsqpdXiTpbtreuuslz0v4lVtv79hMc8gNNTlbQFT0WHz4w098xRvuVKbe84jqg4N7f/s98vV/5rRCBT0JG9Lvv/9TT8VzZ6Msl8oiK9vlnhUwYoIwO8wiI2VjV83JQiQUqpzVxVz4bTgwEJxHwbMdWt/1emVfu16yck5c1RnQlC0n77uUO2p7clTNqGqaUDccmshBwBpHZBg34wWncV/VYu/e3vn299/xb088MKKn6UoTAmmeL2fNZGv0f9z5gT/1+JkLz7/ljS+5/czp+tGHP9y955987p1PHn30yYuP3XPXs/0kN6950xe+/Fd/c//Gu37vk+9xh4MpjGImqtq/e9Pp777jVV/53JO+L2zb7vtRF71ztTua7/sPfeCLf/HZX3WLNG17ybuOllCZ8OxoqfOl1NlA02bczRfLMI7jFm3DVVbN5NIvmt0blxf6MH/QA9z20bVolz5OYVIFocVyaZ5J2NXcKUrwlNNyISLNZCwhZPdU9DzIzLOqMowoChGv2IWHirQIiUCK2nR12OXt2vjsc37kJ+/9wR988eJXfp+ObvrVs7dSSi7BzXWcpo4KLMTJgeyxwmGbnzixG05+O+ZPlgu4CkzmniVIYE5MIFanYIjq5l6rVSU7Mw1ETpQJ5lYiNXLXkvVqdleYAUqm0Fx0HFw31M+zwZ2hzuJi0FLDZoCcCM5pKDUN8W8RHsbABW3uTLw2egM8tsSM5FyKNDRYQRQIcPlkmdJH4XZa38pux3lX0UcE1kW/VSx+PchOsbdsvkbbrLk5AADJC5e1B3ggymSJOMCjI7iJUzxO6lDCFjgZmZJ3PtA+J0LrlIgSsYHMLa/sfHFIAi4DqIQiG7GRFxRnzDQAglZBy4CMdmLyolXHBXPqhR4kV2QdrIMy+og+pNxln82Wj7Q+m2m/SN1SZ0ufzm3Sol46+hS7LL1rQcIzElufU2eeSFugJ+2G+AnrYxsChtU0FIX1GyvneJzLMh/zlK3SLFuPLV1TlN58EaueAT1DPHi9FcQjnuGJrz3cZ7hwbAR9pVuHlfNwCi5TqU9X0xt3dm8bT6tY5SowgxedzY66g4OOSHb3Js0IMZAwxRCTOXM47oL4wLZxjZe9io5jE3H2DOf7DNdbXoSqFRWUpqlPnDjhyLGiIARXN2MK5tR31vcZ4NOnzu3uTUal5mdu5jDpFd72DSpm4tXNWM6bs0GEDCCFGaNigud+RE1be0W+w4JzW8noL3/18+cPPf2pR2YhMEsZ3BoAkKY2jKINa7z5w0pgr5slaPdh0HB1GFrI85gZwu6uqmLKXFehgYDAde7n3VLNXIhi4EC57/puGbZ2mUgYKtXIR1W9O9Oumx8sH5v90s//3REvF24UQ+jR4lDaaV1XDz3YnTzbnDoZr3gWsxjwS7/2yOE9l7/1Hz9HfMIZC+vr2n/yNy/E7S/uuo4FZdidOaiqiGCo1pXx4kCg8mIIfZ9ad1cv7LK2XmkhJDcnyHhcmaejg9T2KPqYWaXpXIITGG4EN/I61B5Go1EcT7oqWFNbDDFGgQvFrgeR97C8zK863b6S7dcfeOGbz1ETLhrgVROo7xbNDfHKz+2+72de5G/9uZ97+Hf/qItPTnU7VzVsdmpS/eBX//lzn/nwLTs3/+ArXnbwnOd+jZ+/sHvuU5956FNHT7307Mnve/UbX/P8m/D4Q/PDp6q4G+yAUtfnMY+WTz9w+Dvtl/zELS/emsxJs9aTHg8pZmGZss1rcHWIpczHZ05deO+99QueZ32XR1Z7dLOENiatp2eWVKF9FCFqPtBlh76LUapxnbu+PZozoaoq61O9PWHmdnZkKcVKChGeSMymMbKIqGrOPZHIyvcaPOdUOA5WKATvAtddV9V1P7Od25vfen/zPz3pN/3aO9972xvulX5vHvs61SMEq5atBw4urmk5pmDzwKN4/vCwOn3H2gGLELOYOwsM7E6EiuDw7IB6MI9ZnaAyzME6sTLTQGNcqI3UzQphFGz1n6qpIm+OIXkZmpRchnmMTN2kMCG7ak+Fc4azK6wQ0jENlIQ8EFwNTnFwqO5FqFsdBY5MRFrkUM0GEySb6YoDK9BygWKJWwZJodCigf9pZWNXPJNXmeIClzt2eA4UGDsPVTTPQKmdOdyckpsQlD06AkF96EArVlSGZHAkWAKSoyfv3XtGcihQNIkzU3WNi/DrlEtLqDGk8+uJ7dXxDyxgtqquF81jslWhyx0KytlLD7fXTm3ZPnqUZ0cpz1PX697Sp0d5MrfYWdX2oVVJMFUltwqZKYnDvANa8cSkvMH6ctXBr35MILJVojOECHBlWsscDVGXWXHJx+IN17je9ePB9wxULNhEfhuOCUvWrvrzbWbZCWsnzS6qiYWOnU6RSHJ2zU5ZEak6hXgbj27YOnPj1qkojXAUh+Xsy0W+cHl+lGy0Ve/s1FtjqQKYOZkG5hIdrU/idQ9rzTo5PN6ckvoTx7HW1y4zmzszIWgzNuZKBrJ0J+asah7my/7waF7Femcvbm+HKqoQ3DllOjhapt56sJNCpIrETG7GDLXelJmMiLOyiFBR/+PIrFGNq1o9b0l9y1mSu5/7lr+4+Jf/6ncfu9JWW9vwuTglBA9wZupLpjEcsw6/2gB1b8la0uOYjlCtu0MMAnjduiPhSmixvBIyhK1ibghabeUdsiuXTFMUIupYEDqdXblSza74qZP1+GQYm1HkeuvECPeFR//gjz7xrX/59U883hh1dUQTwzRsLag/OJz/yI9/8ru+9aXLICnz2BxuX/6mV/3+by5f8fJTcD2i7mQ9/sPff+eHHp7uvWS87A8GfjF3R+cUNFOsgBJZmA2MBU6Wyyh9kCBsZql3dxpa1d6bi4iaGxxVkOmEiPKijftHakbYsejVqHF3cKh3tn06VfVURa5jEA4hEAc34soXrlt5diWemNBBE8NDT05uP3vPm+/+YHcF7NEJ0o91pJHUZtvPnT76197+4a89M7r/lbf++EOjJ/KVV0nzPW984a2N7j79KJ3eTZcuP/fMdmgPXvOGN/C06V5513xhJ6ro/ZE++GjOzltNWC48qGIL9WFIu6fOLc4/6qPtaRfZJcSFNzyZV0emXX+UeNlSrH12xKd3YtNVl56a790i7XLpS5IGDpmlbhSxfUc6+HQTTzkte+0lH/YhbsXdvDxqvZ3QNLA4wrbUfeqW7Sz1/daJU1HGbNJzlsxVZPasKVmvVRWJQEIkTGYioVsmLuz0xMkI/VIxSkiRqIn+2F3P/cz3/vILPmD/5S2vi713gZogPVsk5MorMmewN0sgMrxV42Z/cazwUYedNvlY9gNXkRaFaZzdSCNx8ryVwCIHBMvSmLbsHrgCu1EhR2Q1TT2yQjPl5KlH6pFVkklvKW04YM0MFlIpYLak7MSmmYIHJXEUT07iIGJ2ovUE6xqJtkIcEZmoG5OuXh6KsV4QtEaQoqZgGQDxIPJOG9xPpXctxPA1wQZzKfusZ05WGx+nSX5s8FczPKRuG6RSRARPTsnhsIogRAnOQIATI3ohlR+GidRdB5FBV3iHYWYRBCsFUDjDM2OY83V3GAYOE7M1Hs1LxDA0zZjhRRvVfNBoXpn2wvMvcLALsnp21czKnAWJNJFaSmaprWdtXi6PuuXjXT+f5f2jvH2gk6VVh2mcNSbjbKCgwtq5wXwUErESkpJFcZKrXIMZCscGhqapBXdeFwOweoyr3Oq1Ceh1t2u86TqlXg/zYTULu/7wNXu7zh5KLjX03hQD1Rut9g8r2ioEphHJJFQnY7MbJ1uT6bZTIMAVybxvMV/kLmWC750YT6ZViMZcOFfdPTnCevjqqkP6/Enwn9DuveZXXLVDBzOYRImooC1WxRtmzsn6vgOsGcXxqA5xYHUnBGYKUu3PL6l6jLvuTIW1mcQdwrUN5RRb1VrW+asws7lFJq54Z7vBTSe+4FUv/p+/d/JjP/FrDz52KY5PG7fsS+/GyqmMSSgRVmh/d4UpkGHJLcPz1T+RDSiUsO7uZlAVVx7CNXFXQLmQ6cNDGO3snZgfHaomCjWCmIHrpl0uME+BLVD2SdcDsatufuEX/fP/+P7XvOr88+86fWAVKrOLs7/3o2/7yOPnPv3o+a/7gvEv/u6Df/22556IzbIOvaXbdus7bt664qnrw6m6efe7P/qd/8/PjF70NT0d9DkLURU1J7BWoTIPXU4NxIio0BSbuSmDLYQKyGYGKlFeOZXmBefGHEJwUCZn0xyDVFHdqOvRLt3NIiPEqhlxCIGky0pEA9qMhSkArJ2OKaiMxt5ljVUlzuO/vP+qf9rqd8gfteNI0euchbd6S/Vo2bV88+7khq29L7px788e3GWzg8kNe7Y84KOZnavy/FLoFj4G0ZV0qWmv0DaI4G2X43zRRZExN13WMA08ywjAlqdLP/noV/7Q1lcHO4gsRJRzEpEQhrsCqtmzVJlSptN3HD346cmZU+1iFOvs5jDJuOi6HeJNvX2U0xUB5cWhJtva2fGau8tzUkcgBPbOKIimNi+7strGYnBTZTDRwCU0ANSFnWnTRJQ/KeegZ1H0O1rFiK7VO7a7r3z3H//BS9/0wVE6eTEeVWCz8UL7RhqmDK+dezhnKLQXcD6GdwGI6DkkN64gSk0Iy5KpOpMTG7GB1MEuWVXckzssE7sjlaTKFTkVB4ycoeqaoapdb6pXTc0riEDmouaqIBCJZ/OsnmDMkIKGUiMqk0c2JC/sgzDpSmnBAStTJAPZZGHDgLuSDDa22I4hY5YhoVqjs4bsGtBC4AoBaCAWHOqyx1aaN13BevJqlUyXbfWwpJ0F+FumpDoruk/OQHIwUSIXmIHISibmZgOk3OBpeIBEvsKslhpzKS6v7eogJUCrItzgwMpHzHSdKjLUCO4MZxg7CRF70Vp2NiU3YjXK7JldSTO1WdveZ513iRedHS6Wh0s7atvD7ugoby1zPcuj7JJMjECiIloxBWKvIIwgVgU4wflYj+O4hc9DNETEAc6rSmZJ5Bil5QBd+5i1F/kTPM01peY/4ZPP/Ngzqp3DW77hqp3hJZQrAd7Atkbw3tAgbHM4aeEEaMJU9eaL1gRckbra0ZGev7JcdnlrazqexKpGoX2WVa19o6N81VFd95iv9cr/v/3Sq/ZAXoi3MCh5mIiYEcwmo1oCNaNRXYsABSXIQ+UJR7NFFaOUxNlhWkZvjZkl0EbD3sxMJBa7JiJkHqOIgUZIiW699cRrmOrqTT/7cx/88MefjFvb7ALuGbUxr/lQiECmblktuSdYD+vgV51o4oo5OhchaRmCZzVmdoow7tOy4EJZgjD6XuNoWjlyu8x9J01dTyTUo8uXn/DDi0ty8IlxrDmMMvrxCdqnl7zur77nf/nze2987R2c+v/tn/7KHzz1wjOvPHdo29/z5p0DpH/5//nw3/ieV57drX/0x3/7v73Dfukn39A023P0geozN51+9u0n/vgzT07vHNUjyUvpuwTvWchT5aKGDpk5CBUIDhUO3+DsHJyUFAgBZmyWzciBUGwZw5gCmWZD6CHJ1XLXMTO5aiUIHKtmNBpLaEKyVb0yEzmXmw7oQkeIE4hT3bXtdHLZo3xf94ZHRi/764e/enLLDX3OhxVqT00QtMmrC73ZFRKbbMXDR+9tOJhtXfnEe2546UtcA5gf+Mwjt90SR5ADOYrA2Ka6vTfu9jVnSpVXR0ZeVYBduXB483849dI+tjvUWKwLlSjcTTUQGRg5UXAAabmIO2dn6SPVYw+MTr1w3rfBYHmB3JtdifV2llOWL1B0nh8RUbOz3Wqytpc2hy3pTadVk5BTSm5Wx4ok9pqFqxCYA7mrpj5nFY7gUHTpMUyde6k/BxEhmGZJOVR1xzbKeGin/oEP/1G1E37i1W+60qUtirXBKk9E4qiGLiXDkEyJyBSeebGRq1U6s+q00b5nargmZYQehFI8Voi6ZusYntA5V0QZ7IRB7ouc1ChnywmaPWekHkmRM/oM1Y2ReSAroARhUeTMxGBlFfTZyTUU8ityYi1gyIHhg6nMBxMNPlOH8RsHmFczLcVJEtbDg8NYzvA4mx0rEBSmPysudnDxa8s/IMeM1q01J9uwh4PqzmD0Cmas2MHBXxARkJ2A0nSGksvK+TA5FxAWr9wlBlRSLkKEjNL5UfJBcBAYkt3BLJfVLApIwMDfhYFTTGHF4+kg48RgdhdSBrGDGDUxkYsRk7GbQ4UUrBmZkMmymYmaLC0vNHSpblNe9D5vaTZPs7adddT13Vz3s0qGgImjxkAUiSQAFYIwl5Mnm8VRdQ/MYFq3TQ0IGzMttvplxclcxynian+z6aGPmwSrt4ho3eh95k6uySCv48Z4kKHFqjLODrKBFIqInMvkN0kYSdxV2VaMVIO2ODhczjvN4zgi69t8/vLy4v6cWLe3t3LO7pGdoFCj0vwosLx1t2OIVIZWxvW36zps2qD6umahNn/j+qkPPFYBIMCZabrVjK2CUCVwGBMBYk6a0bbJCyMfM0B9dpj1neVsVVXVDBFeA/KZw1D0XtXwywhUFWTUUIjVbbSH/JxRM/n3P/6Oj3380uTEtrmk5CJFzWMY5oNnt560hyd4556w+bskGAWQOIFJCEJgh8J6IieqzDV1LWkepR4hUAiNbAE2kZCq5nD/ikpsRuNkvHvyhsOnH8O87XBFpZtsnxYfH3Xt3rRZvOilf//nP/2DP/quEbKfe+UNL9za9iv9ZPkH9+7/9W95DTXhP/3qp//ut9z6X3/zsXe3X/tnv/mPf/nHv3ByYnKU9Fk33/Q7P/3nfuIXPvI//+TjN9xyO0m/bJNIrZ5zTsghVAKoZYAdbACDyaHuICcIByIzhiZHYfYDNJdiGUAcKxmXKp/Zcmld8q4nglWRq4qI4WxgaSo4uWnOvdlQPyBThhOlI1tuhRC1Pkx7e1Xy0L031t9BJ2NzD3SHfCvpUipIyuLZbLYwmXqV5hfrhqt6nC9c+tyb/sKHPv2+P7UbPvWRh5/8m397/PvvuCFe2RmddGRb5oc++8DNz7+1rjq3QOnkZexcOnz8U/3r/h19wafj9Iwu+vF0bKlXEZGctO/7KgYlQddR5WbIXa4aphM3zB55/ORkB82uzRegJRFbd2QSONxq6bz28/7w6fFkWod6nlpvE9SkCr0bj6Kx5rbNy2W9vRNjzEIgsDlFzeq56wHyQFrE4Jk0qa+Y75lZpFBS6CK3O0Z1U13U9uaD+tv+6G1/dMcXv9Pj6TkOKx8ZlLCsZNcoFwOlRsrJGexV5j7TYiOAtvGLOT0ofAPJ0w2NyJydYUwg5WAWzcnYbDC15mxGiRwOgymM1HPO0IysyBk5I3UlFaasV8WqagwjKDETMzhDBKpgouRmrsEQBUTlE+7DNPAw/IqSpha7aES8oo10BpQ3bss17GjV7AQRDcm4cwlLBtGdNaEvjvNpH2gmB+dBuCrh8Kssm61zJLANRURfG0+Cs5GhEGoOo1Bl3IsGPG+h6R84DDNghcSxeN9hkLUQC6+KzHB3NXIbYEamNAgReulQF3Aae3AIIGABC5FAAwxAXPFjw9VgTCau5GmFm1Pqc+iz9jl3OfQ9UqJklJR65Zw0d23fd2rFvzKTkDncGUGYRFQCokjgQeF3cyt838fuwD0U3RuijXUecPAr/Rlc5VHWf7yOd9alZr/uMNLn2f6HH1t/6eDLHSuqSTiyE62oxSaQqfJEucnGXTbN3ay3UEk3bSLy0WF7/uL8aNGNx2E6nU+2uB9TYgEhMBEJM3gQlywxBKE0Qq4HxfqTt82fv368ERhuvm7DdctSfCQzUaDSwyA2gri5EzGLZswW3cH+UQjVdDoeqkmGts2XL+2LhN3d3aoAAuEpK1MQIjUVOY4JykVMjKapQoJN6LbbbjbYd/2VL/vR//D2Tz24P9o5WXHnuVNScjVTuFruyDqy3m3Fjb5JLgMBRQNjLTPiTtlUei0FGGazbH3O/aKqawqx1MyZQxXr0WhSeqIcq8gnxidV948IFTnrfNFLbOo4N/d89KxX3+b71VH/OHeWz+/PT04Wh/rUE3oEvOqFNz/2yIXXfOu7Htn9wufc0H3ws6e+5lt//5d+4svOnI6JR8uEv/Lnnv/Eo/f9yz+8cPLGEx2zMSXLgZjcLSsJw7O6sDPYMcir6dD7YGcrUiRpCCUZ7s5mBgeYYiUjKxB9VTNVWy64kljXPlbzTPBKxIpdhVtWNTdLMJM8DjWgcZk1hE6SX9J0Wup7e3rd/uv/cXvum/beG8lzPtKus7ATXWxrMqomD9/zydvuuDElPPbQ0zfv7bxmZG87kMdPP//eO6vXvfMPd0/br/7We9724IUz25N7Duw3Dg9f8N6PvOns9lOPXpm85ZsfuuNvffRdR/NTYb44PJnyomkiqj5Hl1xGLENdkeVshvkR6j2K0ijZlo/Hp+bV0/Mn7q1ve1FnMyRTWXrfKUTixJYVVLqjz5069yW8TBXHo8UcTEUOMkfYctEv5u4uMaBIyZAHJ4d5UofG0EioiMjceSVRoOqqGutaRCzn1Haa0mgSw6K6cnr0He97/xj9z7z0jQuykxQSkKIjWeVkFRTGoKjIoOxESXP2zmlpWIsxXDj71bc8+mOkRrRttKgqISOiOIjJgQxqOs4gJysjoDqoCw0cStmgpf5sSD1yQkqcE7JatqsgsOaRTJISszA7syOpQ2AKgcOJID50ndwMcLAPyUbh+yiNKwLBzVSG3EmNUABYvtKyG/7dsEurm1ZXCegQGwycmVBACsPzqsp9jJDdtMal04SNd4dq2YqQq7jUMqBIRDSorRCgGDoLpu6yzqJRSrCF4ccIoTR7Vqw+VmRFMeS7XpiXGQyolRSqxMMrFpRhIJkYHtwCTKDkHJ0iSNwiGTtTYQyFkWeCCbwpveys3Gdus6VsKYesfTa2LKakCrNscCKvqsbcjYUjQRACVVWIUYJwkIFXlYgGMcTyOzcQbYMDtsJUUpZyTeI4QJjX3vRa9ubNbe1j1iyVm+ndMz98zYubl8t197zpw0qyToxCJmbOhIrDSecd5Wn2qleaL/vDRdtmDaP6CYZb7tp8dJSy+e7WaLqVJtOuqZg81oHrQDFadM/uhLiZp5LzoDlNz6g5r9TGcL1UHp8/7Lg6M2YARK4rtm5mKhohIDDT5tWZc+66rk9tXY8mk7EEIoKqHx3OL1++Mp1Od3a2iz44jNxk2WVmJnYxxErcPdCKaFeVSIh93IihevZtz6Fs3/VXv/if/PDbzh/Mq1EwTwRzy2S9W4a2bmuSmmHi4Pj3UiASZgGV/gqYYZa9d2I2aBXq5NCU+sVhNRpLNTLmyEFBah6r2k1ny5bdkvt0d2+e+kuz+fii8ph1d9n0Lcuuc1zMl5St10BYhkxtMj648DVfevcW5c988v5/+JP3XT75hVt1d3gRZ569ff8jt3/jd//Wz/7wa8foXfr6zOk3v+m5/+x3H4ffYMhOrTuAAGQrekwkxOpeAKe2shu8vhjK7ZRNVVVIsKYShLoTxUqYYE5Gtlzkrg/zVqqFjyeI0asEVAA7k3Akctfc931AgC64w3asOtBcUXOeIrQhbKvOTp76/nzXZHHlK8Jnm0B5+qzHF5hOPt09cfDjv/vx//zoY7ffcM6ODt/f7v/NO5/1Q44v/bZvxzd92Zc8fHDi53/sv/70T/+d+x97Okk+nIv02Kk/uph++pG0sOW3RAuuT/aP3Xlw6knpOgQ27mOe0NQE2bsQqmZrYvuH5iS9wt36nIk91VZVPG7a9kp87GE6ve2dajcjuFEGEsuY4Tk9LeN6eWUfPHJNxoJYSjzS7h9Z38VKQoxmRuzuSkxqajnBnaSQ+hsVskHA3XPOuShKMbftMqVubJXUzZPkt1ymt3z0d/7g9le/bbu5+aDrm5qdBJwSkplVEHXJRI4kpIqqRwe05p587YA/wzfdcOJN21f+exdOwpdKIXJfymHugIt5UFSAOhpFCp54wFqEMvNbEl/NMEPOSAm9IiupkdomZw16DYGFBWxCBncNDs+08nwOEImae/SCIlYyZw5OhQi6xAQrY0iDPNRgc5gKMJo2hPmOk+C1sSUQbNNkDTAvoiKQULrJa3s+ZCPrz7sDurl/DMXwTTOHktQVEr0BxQwATOYolUt3X42xUElgj1HWq6nIDBS/XsaySn5kTmqsg4gDFFTw2LaawB6GrAb3B4CUjYUsEEWn2jUCAhc4kztc4HAluJiymiWjZKyW1R0ezbMaZQ0pwy2zeN2YRK+IMjmIPDCEmBGjSAhBEFiECnBQeMMBD/ix4lpsIDZbEXEARad4tdbXqa9ueI7jNvx650WNdRNy9cztqqx3uDLWZKTXYVHefMXIUTQBACdksFNDMkV1ymhLsZ1QLXvbP+r3j/pZl0S6pH12EGLfKZn3nSkum6a2s5N7zc5WM52EMQVzEyZ2Yxb3Mq17ddy3Fm9e6/5enRlfN/EFrgpZPo9XZsBExF1LTaaUIgqgv1xEahCRUR13dqZ13YQIIk8Ji3k7ny9CCOPpuGpiSSrMTDMuXTpww8lTuwVux8xmWJ0ZY5aqInPbksqsPXfTOYrxr7/ltf/iX/3WcsFgd8+uHSxBey/FZyq3kcIDKB4fPtVl/yAuPCmDnLgbB1akEMfqnLuuxZV6MvU4oSAGSAwpd8PfwiBceTdLzNPmdKBs2ul+PLTFaDSVdhEqitCQx4uTh/Y0sXKbsTv6Fz97/6lf+NzvPDyan375XuyzTVgO9TJNbzr12fNy1//0yVMn8pTqU3scWSYnzyT0xoksBIvEnbtBxnA1z0SBXW01TyW4lu2dhIuK3DCA4Vywuh7ZmWEFnc/qSClbynm27OJhYEKQSmpQIBaR4OQmoqptpGiVJ8mCUfBpigtyt26U25Z2uD2cUvju2dfcEb/45NHi9Ituk/RvfuWf/GRfnboiPD1168Vle4T4hjteNprS33vrr72xbR759IdwYT++4zfmKo/9/b/10//tl//Khx84Ec/O+n3hw7raaudV26n1cwvb+w1iZ2bwSI0zxw4cABAHY+otS1V73wc3S9pH4kXod8b8RGXNeHF4gcchBKI+Gg40de69UWS7AsvGtpzPeOKc1QK7sEDInJJaThKjMwmsCtKba0ombmbC7ETZNHgQIjZTNcBVlZlDCGbapxau0shl5e4kfdP7/3hC/GOv+vLUdqMmorLUg1Jwi73k7BaZY0bHqgooknORn92co7v/ot984ovvbh9lui/oFme3aCsWKDJjJ3NPgcgsM5tZJmVACG7qpJaUcjbNpANTP+fsqnCwAopj+5stujJbMfqs5moA2PPaz7ibBXYwMTmRCQ92tUwHefmXiYjYMAxQlP+pg5nWDeBnbisyw2I/159ZpxCr6f9BRWnVs10POw792vVk6lWkYBv7Wb/EXCaF1h8qn/eC3SIKJeUdKLXc3cqnB0INL6QfNuzZzc29dMZhKOK8A5GlwgchbykixwyCC3EgquDRLUAjMAbX4BoI0DAU9G2gVLEkmjll68w7l95yMs8mPZICSgbxEEIdTBCyo8/mhExqDBIauiTkIqFgCQuX6lXywzyUJaxg3BxEK4K3sgTrpYQ5yTHhxtoXbuajx8liyRg2XO/VaevGNbDZIsXxDtd/9UwvtT48d7cyhweok1EgbihMlZte69ZjUp7P09GsaztV477LLpWKqHrKimyz2eLpC/tPPBJvuXn31pv3zp09efr01s5UtsYyrkKMKHrzpR7CRYyaTDZuoWu2a37mdX3w5m+/7h7WKhcYUOLmXmYJlJnd1dxDCKNRHZuaiJiNiNu2Xy7btu0nW9Odna0QUQcxQ9elts2PP/ZU3+eqjlNUHKtKwpC6FmQAVmM20m9tV8a7avKaV9jT3/jKH/337wy7tVsPS6YtNMP6wsK6mncmbMZ0xIMsNm8MDdpwz2VXEQoc1Sh1876dWdiptpuUu0pCCReaUU2Cvu9zzhFNHjWzyws7NN6uOFDFji1p2g6oW6hJOqWTg0DE7Wg6/dV7llTVu2dOTbRNPlrQzLY5ZZHl0fjEzs7uDTq5MDucLuez5XY1rfoMjT72lMmXSOJcWejYxQFoOQFAaU89c8bdB0B+tkFArdSXDKrs6iZVHYwoaWiXnC0vWlQzaYJUjVZKHISYHUZSpqGm7kkNVW8ZCxflDBUAC3DQHCSQpNBc/LRjHvKdl59+yfYNT8v07OkT0/mR9EviHl339Tv+3W/5tvs/9Aftg+/7xCfD02P+X1716rOn4vLR87f79MbJ1qXcGbmhAi9JerKYxWkBDl2iUQUYOTOn3IAzmJ2pzymrjetRWuxTyjCIWkaH0ZR4WuWjvF3n84c4W4tLthadUpiTcE5LilWy1HueRk7LhezsJeSxBJu31nfkHmMk4ZxzUCsXU86Z3AvRsxYgH4GyqSpW4SMz55xzziGEcY1FJTdd6b7947/+2ze/5j316MY5unoRYvQWbbboHFQ6T5XUqpiZBg1u6InEneFp4948XKSPVaOz219+6+WHLYSJcVcakJ7cWZ0Y5t6499CJkrKNXYmdgexmltW8z4lyNlVSdc2WFaquxArSDRBsRgTK4GlwNzEyReEc58wsyMU5uvXukcBwiHMBNwVgoJ2gtf88tihesicjCJmt2mjAqhfrXpz3CvG0hooMd+z6RRzDP9YJ7uBczd0JvAJkDT5y9dFVjkvHyGizzdLp2m2X1rUR2M1AWqg1MNheKpSThBVYbJCBg2nJHkt92d3ITd2J3NzJ1M3YrSCmC2K8gjdENSySR/IKPoY1btHBhMqdix5EIdcMqEtk7XAjMlGjrAhOIxcPwetKgSyO5AiOGFuF5iJRxSQSy5iDCJfyM68wndd4gcFKrgrPV831FhdIRBRYbeh9AZsG9/rexd3Xxe5StS4tYTPbMNfDHPAwzGNu8CLnzoB4ObJrvZSvtFCMAUY2ixQDIjxItUd8lnkqNCKtFot0eZ5midpMvfYVVfBMOZlqdk3mamaGK5f6B596+vR9R899ztGzbjt57szJc2cnu7v9dqq8AlOeBmFCr84s0UvBCcRQVeZVSFgQawQ+Xsxhrdel+Gtii/UI1sYqHS97GbDeCGjWnphFYKaxoiGgVE5qqbdLl/eZ+cTubhWpFhSBTM3YP5xfvLw/n89PnTrRVGdSQ0QItC5ZCJyF2BmqHAlbDfhkk9Lem77sFY88+JnfeOuDk71xa0eExLJUN6Sa6nK3RHCAb5xRhsjIzEFGXAHI2kUJufNKU5fN62nf59FoetAddf1M/KjPI2H0mru+H012+j4TUz2KhmDMV546/Csv2Voc8e+8735r+TzcRnHr2TeELQlttbWT1UdTpfn8yWY0lmkV4DX1aTJaSLUr5orQxI4nqd93GPYn43jUn97Z7mYpBE6TaWwPkpFXbWzHWVuTpLlk4ZU0QuzuxKyqOTszmavT0HOLIswczA3kPJx6cjAFEjHteNQYIcL14Ahd64tO6wWqqg1VPY7BjckhnpxYms5bYgoWUNgZwMQgF01OYpaSmwj5NHdbMD7U5pSCu+XiEH2twTgvY9w53WDxtt+9bXerbkazU/KZS09Vj977gY8fxOe95O4ve/PXPP7vf+zyfBc7XVgQtlUPLHoKI8EFanYbtUQUvQ4hqi4pU/KQfVEZGY96OlRtK0/mMXAlbR5ZmJ3a0acvY+4+HeVLh8p94Kzo0PeuB8w90n47bx1XdLmHkJ0wDaPejrie5GxJdFzB1BEqM6sYZk79nGKTzE01VpHc1MxhbMjJGMaVcAhYJEdLmZ3DrPLv/+i7x/D/+JrX14d93qFxHs+X1pua5c7VgakFVyyhluvOHSBPWR1MVMlGWy6NnriS3nX67Dee/Nqw/9a+jsrQHEea+zpU2pIKybjPcMxhlWBUGhCwmgyaW+gomaacPKur5Kya3UAdjcCSNwFfNs5ElJ2IKWeGlBHYHACOMK00s3kvid0yUQRHFyUnAmdmFiqUiQCgEF47WvPBr5Xxlc28yN2VBmyUr6SMbJXerk1QmeYpjbXjlJdW3bGCBHJ2NyoeHgD5JsLIsOG6MbToiKgM2fjaE/PaCPbrBrINyZgB8IEWg0sTuvTa3V2Kq3V3VaixEmVyVc9mGaahuGF3GIS4UQ+COtqYvGatgRponGtOlZMQYvFr7k5GbNSBO0cHToWuW83dWayRoJRTMK0DSx1Ve9c+Z3BQY4MbsxIoUKkxViEUPTQSZmK+uiQ8FJtXwNgyB3wc0RRQ8eCGn9Hg3PQcz8xxP18B+bpeB6uIqEROjEEWya7C7W/Cl5yM3R1kqr1LzXHPeU/jdh/OZh0lpYyFERNaRlc5dawEWDLLoBQ4QRObKje8zOnhC0dPzy4+8NT5595241237d1+4zifnDSjKjBxlBDYWN1V4XHQCuHSoyrVIlod+nWXaPPgn7lu19S3n4kSX//q4UG5LwpXppMRhDxE2tmeMnPdxCpwwR7m7G3Kh0dzDnFnZ6+ZjCVEpmv2fBwHCAczD1FGY+zuTW6+9fTX/qk33fPZX7jvwYfiaFftSM1gdRwj9YnDCCRO8WoHHInIGUSyAkEM5z2bEbmxxxi1b2OM2i7TYlZXp52UKw6C0TiKCFhyzm3Mo4oqadA89VM/9EX3fHLnjz9zsLt38sH7jn7pXZ9bHO6fDCc//BS1+xls2885c3jvRWuXI+4vdqMsy/rs/mIZqhM3jXK72BLx6krEuDbzMNLg9dY0ahtiXmA0ouWy255jTsSJC1fuYKpUjy/awsq/rg8B61lVIlLVnDIAEQniasZ1ZWZSRRmPsmprWVXTsqUu5aYTTSGKgp2IQRw8dwVigEI3dyzoKsNANQG9ZjcLEq/MFqfGL5lOdyRLAiq3vpruHFzwm1//3iuP3POx+96nd154xfMun33qZxZ3PPzoPS9832fvfeznHo3jqtnqyLkMxRPqhVWJg0jnqlLguKyuTnArmnrDD6yacXt4oF3vIn1KlWHZL2NTd84QhmYSdmPLbnlOmMEKY0Kvh4/I7lmXS94jyEHXx2qr6eaHmnohYrCqEpuQmSGpGrwWoRACC3kJy+FmCORl9DxWTcdH5GxeeXNUb918dPStH3nHb730zR/DeDzKlMRr166onZMpuZsTuzuCsKHv1Z3MjHFtj2x5lEa7/sA8fWr3ri9tXjHL7xrbLsQXFOu07GQn4gongrjqBBbgMFPL2d2pUE5qyu6FBVazqYq5m5OSGJH6cb8mURRnYU+AG8NS6W6WFihHJ3cWKxw4zG5u6iC2DYvhxAWa6cg6IJmH8uVAZ8csNHC5A/CCkyywJmywcNBKbdMHkPTwqq3QPwOxR7FdwyMD1qx5xzZtsATXSu364Gs2i6ZUys8lqTneNmeIC2OmY5ATLnCfY8NizmV0U50cZgYndzaDqblTNgIFdiJqnGr4mG0kXAEVWwNUxpE8OMX1DedrUl9nmAwdTpiwc3DuWUKoKjM2FhMDGSgQiAshq5fzIkwi62LwscbM5ykM02oLNNiBtZ1ekXE/42+eueib22Z5GZBBdIlpY8/HSfbwZF3NLCEXXeWLfIichoMR8tI9yPAQtqS5NcVbUW0v5WTqQkeW4hjTMYc8Sr2ntiKzvuttrm1vXcpGiciE2+WRWaDYHHX5noeuPPzY0ece2H3Zi2574Z1pFGVvazyZNkF8VIfxJPSUJZivyEoKCSyzrC+g0grezHc3S5fXXaXrrtszn64L70RUkq3SHqEAd2oqPnFyhxmjWkIAYOacVLs+m9npc6eno/He3p5UIZCuhEP9qu83Kk0acQuRdnZGKekL7n7Wn/2GV/6bf/PwsrsslZuLe1aNLALUTuIg5mbjaGsDMxNIvMSwrmoOxGzqWeNk1KtxjMGNs6bZYT26EupJmnsyWbYW67qYs6qpnXl85sRP/+xn/tkP4nv/t19/2Re++J//78/9h599oH780V/4iW8+d0f9ktf/i3/9w295+1s//WM/9Zm/9ddenhbNt/+Vux558tLlx/L7P/H4n/6a5/3bn33/c55/+4PnZ4+fb5W2H9q/shOm5xf79eSGgysXZqPTnnVOecIT2iJb9lLN3SYgYjnWVx7WnNlXc1y0GqhjXHWiAaAMSbo7CxEkRIwAILil5ULbvpsvKFaxahKxU1WoAZktxmjEXHy8F8AKCai1pVl2GzpGyhxCdeng8nx666kztzz11D2MsXs0A+rpt/zcz+/KiWf/3X9Xff3r/OzIHh999624u+9+/R0fffc//bf5Mz/dTLOmKUdJpGBUuzd2s1xVwZgoFC4XNWOKkZJ64YoocbtEc2jfx/G4dRuRLHKaNk2KVdYEVeeAkn1469bCO0dyWJ69PdR3ey8woi6AOoTGuiWySjVQtRQhWDXLORdzKk4wL8AbJzJHNkcGITZBeu9buqwpeuwXav/oA2/N3P7zl7+SFqirCnWbuSna9MnMTSsWCuKErGbGOec1W2o5m+sLuA3L3X46M/rdSdgbv+olB59M6KKNW4pL6YEc057iPKPuVMjArjA1UzdxZdWgeW7lccqWc1LPYBBlE+PgqNbhavLGnNUtGIyzGmoVUHY3uHEiZ0ApBgjgTg4HlVk1OBkMRF6ESFcpKADnot6wDvHz8NZwmfIg1F1An8fWddXLpZUzHi5pX6keXt3QLRaPyK7F+KygEmQbDLXDrgkAr1nkSzV7VZVVrKdvwBhwW1jlwUNuvXJMG0/dUYqZQ3s4ZZi6Z1IP7jCPhFqpdp0QGqcp81i1ZooBY0YsghDugmLGjQqc0q30lws6OzuMCMJGjBByBXfJHLIosWkwzS6sWsCyXIi7V8H6Cv9Mm+H7sFSrAsM6pAgrbq+BJ/Oqev3aWX7+Fubx3jeddJmPJrsuZ8W1LmfT+16nuL2Cy/u6Bzk1OZ3kbMd7maZdPWoVS8GsDotQ9yPyPnvfVkml7hEPLByqzPu2zW3f51QuX9MORsyjRc/3PHTw+KV7nnzy5HNvu/H0XteMcWpvdGI8yssw2p5kgBw5FNYOd3cetFDCxkFePyi57uKsP7+KNI8b6p/vY5t7YLiwU+SqikDh1TK1pFp1XTo8PHL3k7s7063RaBwqQRDi1b13dfLtqsbMEIh504St7WY+r1/zRS//4Afv//0/fKfbFBQQ3b1mHuZ9AbaNloQRg9nKBVeI4z2bMXEAwOYyrvVwKSESu3huc6961FDTqTvH7BwISZWImEbC03T0wFu+9eaxUAhPfd93fde73nf/vZ/c/5bv/FI5tXulzS8+vfOlLz156Z7T//hv8nd+74s+8uGHTu5M3//Od3/D173+pmdVr3jR3qc/lf7iX3zeRz/8kS969Ze+50MP0/zEF7/u1r/07f/RceVPf8/JP37//nPv2nvokiwupF/7+IXmxO2HeRZWF7mVWX6iQnhe7gvLCas+A2NDlhEo3ExqAyOSGQuYyDKTVSKTBjBbdmm5iHWdRjMDm0NQBxroh4bzuWENc+lrOZgMECJnYidps16WWRyd7A5sZ7dZeK40EzFGL/qvv/Grv7h769s/ibMfm5/V2de8NI4besHtr/jmr/upL/9LX/zYb/+AnEx02Ww3sVay9exL+31oKpbgjFLOdPcAArOlzMzZSERSC1AIqoCxmUkgdRCH0STvzziYWSDKBHULMAZ6R09Eli8vZ789Wny3x/spJfaccibNpMoezIzcmeGWU9+pouhTmRllFSrJHauaGqlRFB57XKK3+SKm8NTeqTc+fP7L3vPu//L13/4JrU6FZIyJ1Jfmy4AaoJx7AUIVQVD3lLMp55y5XOjPuFu10qVZzKHd799/+tTNO6/fPnhrQhUx76gJ/dxZvW+yJoO5CbuwR7Xa1F2jqpnWZmpKquwqydyIjMQoOkXjYwesaNyZVF3cneGUTEmJqCfhYMKwjESlBslKRMLltjWAQcqMNdkOY1UhA0rWNiSxqzlcslUu5Q73Y+l1ACXcKZ1YDC1YX1lY28S1HK8YERW+/QJPvMY1X8uXsD6ekgsORzZ0sYeaOBNW6KMVynVFpOmrXJ02FOUJWPlJIyMz1wzNpNnN3M0clSLAI7wGaraRWSM6FmqCVUY1eeVgIIDFlQvo0tzV3JyNCtWlExVxVRB5CGaejI0yM6NgRsmY3IiLjuuAj3MqLk9oY7tmTejqK9Ddw/WcRzlxpdQ/nNahL+C+Qdxx1d5tw6kMnrv0/en6JQtaTaaWctvVM+uba76qk5hAzL2W6gapbs3VjtaTnsdLyy2FhaAjaYWSCEKFqjJ1mGIykdFeMzrkwyPBlW5+eDmDyg3vcDVxwOnwyuxdH1mcv5TPnGgmY7v9pt1bTu7sbY+2E02n47pC7eBAgjgck/Ma5lAa25uY2We60s+3bbrYtaNdu+Srz8nqqi8Elg4eZu9L3OKaNLVpdng0Hk/3drfqhqLkqgorh8GbZ70MNgyOhNgY2W0ybk6e2uuX4Wu/7os+e9/Djz41k1GtFuBQrUncSUBMtKGgRUK0Um91cyghuwIkjKjmZjnGqCwcxfLS1Nq2DWGJMBLxyXbdt4koRK4rW1a8rE+f+Ojl0Vf+rQ89evSCRx85uLzEm7/sOXff1Tz+ufte+QXP/4a/9nVR6q/7888LdXzos+e7g5yr5XOe/aLPPHThwoXzR3bmtW981XLeXn586sjv+8An/8KffRmAv/93v/5gvh/a8Of+3o37F5dSxe2dmv/lh3/mY7fujcICVibB3L1U0VeFaFs7Y2Y2YwCqSuRmVozZMIuEksWCYSAiFpfgdc1q5K6m2rV5fgQKHGrOwQhF1d2ZASv4DV/p7oXQQI3BZiogAWvu6xDnT/GNz33dAx99m1NA343GzYWLs3/9U//+TW+4Vd772D/62pub3frRJ5cPPO2330bzmd26vfyef/ad369P47f/d9q9qc9XTu6GUzfd+cSjiavIHsgyKLAIoK4wVbe8uggdMVJoyDTnPhJ16AO8bxNNprj0JKLCtMAiBUE9gBjuoOw+weKDoT2PJlteYJF127VPnnqqxMyk1FG119xrhsSG10baDAS1rNmEOTNJTTB4WtCB+GTZ8PTvf+I/Hb3k5n/x7JecnM3HE3caX1wscs+GXLKZuorMrGrOlLKVvr7mDHEpUC89ztXqNrZyFDE+kerHDpcf2vuC18X7BI+gt5EEU2nDMlrsiJgS1NQquGqOviKIMzfT5ArL8DIgQ6wkhBoUjKrjO5hGIBLODgOxAeasZmJslhJAxkKSPUEBJ2FXIl+zR64I60tRetU0HAj1rhnbxarafBzrX01UONy+ZS5oqED62keCj+P1lYle80WXPR4PH5VWsD/DcJWntjqwY4NWqizOWI9M+cp+Dq55dcwlmd9I28r07qCFXCaw3dXJDG5sDvWgiESRuWFq2Bqz2r2BVUDlEqFCxIRq8L4Fz+VuJO5eyERAHsRy8IAcLROzayIBJWdmNk9m5JmY2U0JBR9nZIUhmP5H00DrKvRxD3j1hq9+8Nr1rla55M50LBa7mcABx5NJ12Rsn28rUzflNxdZWir8ZBtHublDCX0mUq8C7yjvdj5VmiYPrfatWSchsbsxgYhJqmBgVbe+Md6heCrWh6i3ZX6gB5ePjo60T1JFNWTNtVCIce7yiYcvbJ8PWw3f/+Dlm09Pn3P76Rtv7s+eXezujLY8qHElgQaw2Z8kwIDr+eB1aLK5ONddq2dWHXy4LcCFgJNkdYJWVypEVbsudYtue3t7PKlGNcGzIzmJl9H3lYrjACGCiwxN6CCsvRL5ZDTaPWEvuvs5b/yy1/7nn/p9VFtgc2IwAULFy2yioIUda30MI03QBFOXSOZ9t+zm8xAmGoNb8hBF0C5nVT0yJ2FJnZawW4K3GHddt1vXT+Xxwf7W6M4Xvvb7PzCNuPtc86lHntqa2F/40vMn9iY/et/DX/qld0WO93/2nle+8I7zF554xRff+iM/9ttf+4aX3veJB1hH3Kebnls//tTBLWd3fuU3H79159Kf+oYXfuR9l+d+1HP9//3DD37lV7xsZLP3ftzG47FTT0RCDDtmLSjFZ3cjopyzMBdWWRGx1Tpi1RKWUpmDg2BqTCQiiuCuXkcAIXXIWZet1B3y0p3AQpWYZTM1uJmVEaVVzaqw8BE8M8FdXW0yru59ML3hNa97139rNM/GEi5evPCqL/+u7/rWl3zkgdndd9147mQ6IH7RudEH7jt65LHtu0/3F47y8+yp//fffssPvP0XhR+krqY9n+yeunx4aW97LFog/wXeEkrYwcyuYCIzk1hTrHK/wGjMFDv0I0jbdVVVMYnlJUSR3bMBTuzAyH3uPndJQb3b/6O48+p+dtH7uehW1ydPPVBzuarNoRlq0GPPQeTmqmrFxgYDLLDUrbfaziwdXWnOfvdn3/fixz/+j1/7tx5PcoJrHwdNttjPwamq606zZ6UmrDgcHEYG5SKyWYrPV880VExu2Z2uqNYLu1fotq03vHj/546wJIpgpzTt4n6rVW2Vm3tKprWbF5Yad/aci+rRunihzuoiXDlH25jZcw7GxIDDDEYouvRS4obsLuyZjzuiuaxrYcmDlQhHV6zQ11AsAUOzrgCaiosC4ApsuupnmKliVQY4lzvcjYoCmG8SEwGruSNaqRwd76V8/ap+uTZfAADT9dtlJwAAHVLqY02lVd/aN8rp8HXzGiChws1uDjNXMiU1N0XRfzSHeVBERQM0jLr8F7hSjU7RKIZcQQKTAIIh5S3Vfqizlvo2gZnEPXI24SZyx7aiEAGKco/qACs3LVNlLi4QhcN5nf5ulpA317zYkJLghpVdJgzafuX36+quoHUx4Zq9XFtJXn3l+ime4Yc2Hpd+u1nJnbAyYpun1akYwXLMEDetOW5Ls22xplBlxTJnJfTKLaGD96alZk0MQJ3IiFSYKvHqZK4bne7sjcZcX5ofHnRdZ5pAkoFkXFfBgXlry1l3wdJDj16879Hzz3/O7XfdefKWW06ePT3eGYfJyKMUls5hTJQ2Lqz1K5vLck1e+8wzsSp4PvMDVib+sBHuOFAG8jYDIDMjEiJjhlQxZ+v7vo4VE0xhzClp12ZVjSyxkhCEQBk5cFydI9SVpOwWMZ7ixIkTr3/Dy9/z3s9+9oHLYatxrzS34EggEGPjHBUjUo4BZtAO1sJcSN01pa47OhhvRY+BkuUoMblba6nNmSaTvdTlqh6BklJfmWtTOWId22fV4dLB7JZXvbjbn3/kaLHz/FuXmv/5uy5XoReD/Nqna9ZZS2960X0P3vPIm191lJP9zsGTH/jk51792rtu3a2effcN446+8Rte+q53XDIZEXg5D3e+4Ezt+evf8KpT2+GnfvI99x6du/HU1n4rQpeNS2o7XMArB1zg98g5ExGtQtoVUWXJKgZaMCsFHDNnJnAAEYuHKgMCQ87epbyciYhEtzhSZSqSdqrZnYiDUOSYiVLqXAsbMJsqyA1eNfUT3UF9atvsRrKZVUy0/b9+33c9fZ4fe/DoZW8c78/Nqxnili/bL/9tPnXj9lfz4T998+6bXhD+66te+dF3f7aOzXb97PNtp0uNJ0id1JOghisxAW5mXOyPubsaiQvn1AW4E1h9oC3P3Eymi/kVEOAZ6JU6cgUczkCEJYguL32iHr9ylub9cjbplpZaaO+aUDpkbjkl5MQWsKL5NTNHUk1EkT2qc0AQo86XqZ21I3vOkX7Hp37zyWe9+udf8cL66VRtZSRaHBhyPx6ddvLU9UQkIkIEIHd9zgrNIjKwHq1KFuutb4A+jDPbouXp6PHs79VzZ+KXTv13E5x5xGpLaWJOBjIj9UBu6pW5EtTdVWN20jIf7gbmTOwQpwhE5/r4y7giJgMx9QqGixAZVAFWOFlwU1XmglPyorjLCi8KtlZKikVmjku/BES8Ns+lAUlOK6qgwRDRVWYKa9d3NUh201av32IfapAA1OBkzACuyu/IYDRk2Ff5m5XDKm8Um8arGnmZ/31m7uEbNeeSDpYxITjMVYpXU6gOuhd5eEzq4s5K0bwCjRUj8kZQGVeBa7Zaqc4USYk5UGkgOmygtWBzgKxoFZKDzUNgK6AELjM+PFy9pqsz5F7wbSvPHUDKgJdBzGvnV4daZfHKgw/2sE6W3Y9tejGp7g6+yn1e1R64HoPV2r2v/f8z80RfDcLTyjGVhWbH9T68okzJU7Kd6d7N4xOnbbSTq73LifrFYjELneWlS8cFMiiZoayBhNjcs6aCEwrM01hPELfHzc54+9L84pOz/SvZk7lIqGmREImFBEFClbR96NHZ+Sc+/fijN959d37OHaduOjM+dUImY1Q1SUDFx4vwjKP+k7bNioqZpZRKZYw2NgxTdOZXcYKWs8DHjZMhyiEiIuHpdHruXBGWIAUxBQK6Ni+X3Xy+7LscY2xGVdNUMcpkFM2siPT4IFTsdeTpVtO3+fZbb3rz173mh3/k15Aq5Y5ljFWrZ1Pfg+iY7NQsk2WyDHOCgkwi9/PDra29+WKxExs1dcvBq3Y2ryayPQnJYlYyD6YphrEoerSdN6pzjE/T8gI19elgqb0I2rnjti2LjVBYxsiaq8zvv9Th5ht++COHnG5e5itVc+vP/cSBBD67e3BmGrbG/c72yXNnZ//l7Y+9+rbJpeWVs6cv3XjDifah/j//3sHe7V95iMcaHWWOhmxZS/1trXhdtqIgWdZfV1QzWlqURASUeiaRqxu8ALWMsgnYmNXNGZHF1fKyozgPHMEhZxYqCi1uhfOT1QlZlU3N1VEUc9WdjMBEfpkfW576oq+8+72/9Qdj2jYa3XLz7l/8Pb3Unnn94dHO9k6Lul8sf+ZjtPO85omQPvD0ztIXDeOuO2762LunLvPnvP51T1zeafRQSJcERR7xgHlOOaubqxZPyKA2JRJmLZ5ZSU2hIgLVajxaHGWyAEpOHeDuGegBCCbqy6x1Zfehu5fopvn8wnZ/o/fZzXLOohqJYJ67VpMFCSGEla2w4iKZncnbQCNKlc20cz7Mi5PnvuHhe28/uvA3v+JvP/14uj3Evo5xf5EXS8go89I66vt+NBnXMRJBzRaLRXZIKY66qytzBSbPxy5YEaeqc+72Quys5y5+dt8/cO6lr7v0kVo/19k5q2ZiYZS6RTQvSnIe4NkHiqfsLg53hCIQYyh8XOIUneMmYMJFXJjdwMGgDHZyczKzDI1DL9zVCiJ6cGC2IoZiKXYb7gy4MUo+78SlMTx8bsXIyM5URoPcialoAAzF7A2b5e6gY3HVjVub2FeZa6kAATpM0BivusjDHBQhrNqbG3sAiDYd6jpLdvdB9HD1XRvm8fgxD7nXqrw0TCe5KczcrIgpsZmrWlZTkIOVIiG4VOLREU2iWxQLRJE4EiAI7GFlitlZVuKNmVdVXudC5DFIMZmouEUTJ2OAzEuoV86Mu9ngkbUgxggAGa72fuuwphgWEmb3oUc42H0eKK/L4/XfHK8gSom6KE1I2RtTYC5wylxoFMvS0QDpuqoHzAP5lTuzD4V+l2KJaBD6WH2aycmspyDw4C7TUzdsnbptvHWqmmx55XsZt25Vl8fh6aU9OtfzHR/03lnW4MZkFdRgxuyEANREGdISxQlVNdXTraaJk9Hs8uXlYoH+MMdRYAuAkyU1IqomTbL+s488fGU5uzy7/fl3nru5W95wutneGtdBJOaqCg5Tc+G4Qrit2ayg6kUd4ZmFgdVpIDP0nXPwGAt4nZgBGtqKa+imr6ZfzKy0SGgF08UQjnqMMaf+1Imtkq0JkAw559zlo/35xctXAN7Z2YoxAqy992IhMJe2DqzMOrkbU1VPR7unu1d/4V1f9Md3vPsd949P37bIR4Eom+PqyTaGEKApB5LeFsCRmYd86L4bvHYJ+cnL++powsFoR+otyuah71sG8PQTlyZnboSq28KrHXNQgGtVqTmPAzQ106id9HW20CAvkufFIYvEOHJnkRS3mTns3XkqpaQ6TqnzG8ZEdY7No3HcW5078QfdU/rZe1PTzZxM7eGmijsnvqC2OeuWBksccw9EF4drFmIjIIh1aW1QzLLntGoGZxuaiJSL9/WBxgNQZ3JmJzMzglehhnlGDwFS4i63PosTcspwFxGou2py19TXdU1EWvphll0HTEyAW1ouR/TYg/MbX/wVeOuvxyg3nrjtc1cm94+rbqf739+x850vai92bgfplxf1DWO+NcXzR1cuXhnf1oQ77ppqJGnz817y3F/71GG1y8tZjmyRRsbOUYpiqru59dQuzUgl1sQ8Gs1nQayvU+OSPDUxzfoqLeIZxiehC6McLBtnQyZzx0j5MpyLmkd75YPjybnu4nk6N8tAZR2nkDRPnZETu+uyt52RUHT3RElAqe+FGMTZVdwscJcYi6ePxnbuKP3Vh976/ltf+ysy3kHuJqFf6NGsFTPEbKnuc1+5b4cYgeSYt53mTG1qa3emWI0pZcoWonE4BjGMUs4iAX7oucohujTSvf+gvnHra1946T/W4co8UcPzZR3Fs7MYm7uTCVPjMCUK0nkexHQN6sTO7BwoNAhCcvxd4jVlp+BwCgwCZ03C6mgsu/usGEdz8wxlIjYDoggNdFe0Ksk6ESMb8VBRJxIjGzQcS22G1qVbpjLLQ1jjcQqchIncCmUsiNb0n6DCRLLivlpH/gagNLSYQHCG2cq9OnQNDdrElpqvE2ijUmEu3ndI9gpTlNtVXWQBDVBnd3awk5kzEYwsu5dzAC5Qec2mpRmCkJzVCyUsESrzEdFIcuNcG0eBCASxyQ44mIVWrW4H1AQurupwEZA4FTqVmClnIzNwpuDZCQjm6rmMZaurF14QgoOLP1V3Lv2kDRfsq/GK8tiyokB5n1l52KwnXy/J47VbXWe6KPqWXppkZVcKZ796bszWI9+rr9OVmcPVoVB2k1VkZ4R6Mm22p5PdyXQ6asaVClfZNXk1aU9quLWLV47w9GV9Yq5XiGdMM7POVIlDFJgnzx6s2qK6c4oSqu1QV1Jth+YgXn5qeXjRUnZldSF2ko44FcGNUE/3j/qPfOy+y5f3X/L8m1N78txp2dudwKrsiMIsBpiaEgltDMMVMlRbBYDXLOMQ8DBLFHeoqqoyUwiBCCzHwsyrNNfX1YX1mdrcQkDdBFUjMMhU3UB9p7Oj5eHhoYhsb29Ppk0IXAdBgU+X8qlZ6eywOJEE91HkrfHk3NnTX/2VX/iJTz4xX7ahCa4uTArarOEZfNAusR7auXZQd+slUJZEnNPsILfnOYhMduPW2WayTaFbHGqzt6ybSXthVm2dDXJyCAJU2UEiYBIE4XHOAdSzZs0d3CQ4cyjRB6ism7u7lukThapzdylWTVMvps0o1KO6mohM4CxyumdPni1n6lXNVLgnYrdQurylokMonO8iYqo2VKTJTM0sxmiaUeKhcunawJM/NAsMpr37qkNRuPPcYebu1icDUawYjhDNrFSgS2V0GB/cLCOxr6pEtDPJ93/q/Iv+4p/evvn/WD79VDU6OKIcx1qP/YGHDu+cVHsn6Mxzm3945fL3P5C8OfNVp0ZXlvPbrH7s6UbSpVM3v7A+/drZk/fW47NmlnMmFoiYWTFXBQyK1WC6mbEwYjDVzGpMYPVMpuxIYbqTDx5HRCYi71A0UsgdFVNnHjOidp9z+gTCjbPF0wLyzKourgzp0jynI6bg6NwVkAJ7dcsKAWeWiihES21Iy6PFQXPT37jy7tPt4fe/4GvIXQS575Zdl/u2jiGGAHdPpoGXwVBLzn2/PNKcXNyNzQzmUcSy9n3m6vgmNXUiArmqKiiz7idUafGh+qabRm+O+786jqFLQaJ4T4P1dFZmdpgwOysRWNyNQc6RCCzBJVhgYBgHGL6LiRhmZaLSAxnBDGalwKxQdyEwUbEmBOJyIgjlCippUamalNJpgTLZWsptjWBiAoTdimUeIDp0bHWPrVDh/seKl8NREMzr9qzjKn4kp01zvcFFvDZN13MZ7oVbnwbIBMhdyVftRazmOQErjFgltSjFanP3Ugko+ABbdRPKshSKezaDGoyKZRDLxkHZCm+Ol7k+gHhAs4o5igXetLQiQmbqA9VdFEmlRehUiCWFWEHMTCvpg2Noua8Ou0wfla7KpmTy1XIJg90uRmfI9Dd88KaVX1dNi00ZTteGJyjs6gDWSdvqtNhVNf2V7lUJOvzqq+GaarW7EguEspGEarRzdrxzcry1NZpUdQUXa5zgJNossh5V/YkJ3XxSnt9W+3M9mLWHOrm/t4c6O0qmkWuhSiWZes2BBQyLtVQnmtGkGjfjo8ni8oX50VKzN0FYqpwzm1chtuoklKl56NHD/Sufu3RhdtdzTt944+6NZ3dDZ9OxTBoetEiKYrHbSmjhqlo9nrGV+7lpmpyzWdEkpyG8dawp31ZLNaz5NffP8VfAqsjKTExmomop+3KRLl3ZJwknd3amW6OmCQ4DlFlUlYmIfDVygyI3L6x1xPbWpD+RX/6KO177JS9462/eU9fb2Z04BCCntD4AXRdVUgvtKPduWXVeB9ZehdzSZZs95TpzqdrRTt46lybPjhyPrjzdPnVp63nPX8poZ8erdkrjushCqnpOSiQiIYaQhYM595wTmfcO9JpFnImJCiybXYg9uAkhtexqyG0K2aXXrnGuGpYoIO9NQA5KQNErGeVsTD1rmYwZbgR3sywUiJlZC0jKQnD39XSEqzlAOvQU3b2IN6jlgoIJLCjFsnJ2DGRmKZmZhghYHoJXFBiiqiYYM0tc4yJphbYGEbZo8oi19z3UvOEbvvM3/9X/60L9qTvt6MbZ5D330E9+BYXT1cMfP3+l3vmOLz938PuPntnJ3/YqPX9h9J8+nd71qaVT9fJXv/zywcmLi8mZMaDmqlyH4tyzZqha7jV1nlVzX+7QGGOI0dXVVQME2cwtE6ivJqf7K/dDCdR6ShUtkotTCwsEAh85RrBD0/cKvak9ulJvnUo+Jx0jJfNlNrVsUsY5GQUUbWZmmcgFlYj06CsnOfDEixs5/9VPv/fdd/+5t27F08xNhTYtFvMj9KmJUzG0fU6LbnRiWk8iVUiLRVouYeqEUE9FoohUIShndw9XRcklUQMAVU1IJk3V+SOyeN/2K75y+RHoAxJGlFJCqWYp2Il9UMU1AolLqempM5xYhYmDSwCJb5SLlCHCgQJcmQKRka/VktidzEkdwqREVGgWadBYKU7C13K9K2upcCbwKo1bvS5DPZjKmJmyw5nXPnptNEqNd9UZXhv54iEGENUa7UwkYECPFZ5oQ+tn7X42LNIAYMEas2IoV7QPmBkHyqBRYVJ3R5FD3cguClholX14AbA5CvbKFKZkigERXWhchAiS2QMRwOW8BZC5kDOZrMZzeaUCXkKWYQoRKH7d1pNRxVCzM9lAsnHsfct82FD1dzPD1b3XZ1r+awx4cLrqpfUbV7+4MaPrfB1nspE324pnqxwJXTNfROJkx3M7fB1s3vBBdsCMAJaq2Z5u3zCZnqlHW1HCinGEGJIdk4aasSS1nDSP7Kap9CdG+x1uafHoQbr/iB/uZEbcBTBZR2QRxBaiIwrV01BFmY7qOlbjK/P9S9YvoGEcxpBsuSfPWf3SwXLcTPr99O4Pfub8lUsvftGz5+38xjM7IY7crGKOMQoD0M0Q5Jqfds3TkiITsFowAWDmqpmZA7ND10N0/8PN3YlskAQeOvoF30LT6WR3b6uqOFbMMNPSSObVOS0teCuJncOZualkPK53tqs3venlH/jwg5euEI+blEoT9BjYWToN5DBL8J60dcrQNoRgiw5qxNn4ULqL3h1hYcuDqdSnYjXaDWce/1w33z+/+4I3Lm86yOOTYz0HCUZsRBAydc8QIZa6GonHGLpg0vV9V3qxpcLvIs6AAiQxcgiVWjJFMrOMiomzejRjDT0hBJUAIFCEqcBdAhfObQ7qCS7wXIYjbJhLLyQGJCRl/p+L23UvxPdu5uYrL+yrm8NKRc2GG5PNEqnlrlciJ1huzCyESkR8ZV8K2iubrm5aXwe+zNz26cyJ+oPvvv8t3/gN527/uacf+uyP/If/8+3/9d/8wh9cGI8byQyjr3rr4vteX73xVHz5y9qlj8+etgfe9blH7vkp5v5Ff/o7fvYd9+zt1Lnry5xVZC6ceTAygErSY3m4kUXgMGKxohNHxAaATQwLVNuot6R/VMVACa6ODDOQqDtR5T6HT9HP1D+Ey7fXE8z0sEnbnqz1A+SIvkq0aPg0lcAlJc+DXCxBmFkkSR/a2eGh3Pg37n3H7ULfdfvrIndVAGApdWopxsAibtb3mYQmo7omtEeL2aUr7XI5jnVd1zLaijGGwFUlFhjmHI7vKJGYTeEoegfZM+eEJRZmn2pmt29/410X/rmGHDWRcxE3KhHacC8zmxfIlTuTl6FaFicBBWLeBExg6OsRQRzH3CClJ7dKm65vLnwoCdvx68bOGyicIqXDKPPqV5uFwvN7HTuvcDo253T1//Nw/cPYh6e0UZLGaiDVV1Dqq13J1ZW/gpoe1MKHhGRQYShUGygc8sMts/KFQ/EIhZzD3QakwPo/Hx74hmpwYZVzBhgsBIEHeACIEEFS+mhrhzWk40QoCsGrO87Vs2/QkK1npY5//SqF92GCqyDIB0+52vnG+b+q0ly2gM+zrU7t4D7XmTSbH2Oyh7OoRMJr/b5hs+s6VoINgEGmFb8TYaX/c010YASAQjXZ2jo9anaqOIocmSQUVix3gsaKh1BOSFmsoYWhzV4lO9Xr2RPxhkO5/Qnce2gPOC85gFXhxohBYmCOhBC8pjpw3JpOpqP28sV+MSc3EiKW2OeuXWbCwUKb2Ijq+z56332PPPmalz/vrjvP3H7z5PReszfdZoW6xWqt8nR9UPR6W6fFXvIeIbNSV1mBbwF3lzVO7ep2AF2NcSciolDeNTMQRFjER+P63Lkz7hajVAHwRMwhSM5QtXXBhBmrnrJziOxw1vGk2tnZu+Ou9ktff/cv/eInKxkhw90kHtuUAM4wmJK1pC1ZR5wcvUjUvLDcmQt8ku0ooGdfsB3S7PEv/zOv/ua/dNenP/ng2/7g3e9++yfiy/+8PieOsIWmyVI5SajIE6WU2INlFxIOTYSoVARBv2AwWMFeoPuKYaGYeVxVXUqqIFLyzhXoAa9ynLIEI4aTVOKmSRO7sZFwcIETDKkgGcUigJxzqcQSiWpSK2grdXeoeQmhQdmSFXVggJwggFke+LNARCyFetBcTWFoydUMzrVzVREYpiu1F5AX9yPHCXZBY7C4Hi2yfejT3Zd/+/f+p3/wnb/967/w67/1lm/+8pd89kLaf2r/j5/a2nl5/SMPL3+2O/3iR/Ql3N5y5/ht7/x4fupzr/rCr7h86+2P3ffpG2451S/bqypb5TuKgo+ZZy0MD7GqOGeQeM4kKhZAShyie2fZMJHtm+nCZ0SDc8oWQTOyyinDM2swBFDvNkZ6KM8+QMtToEa7fW+31Zy6pS6X/SRtV7WDXc1y1pS5lA2IDNwQHc5mPbW3zsbffe97fvmVb37fqLrJlWDzdj6fz8m8HjcSQ0rWm463R1KR9qk9OMiLtglNNd6abE+kLvrZmaUAfzwOurcAwIE4M9a+BJ5yf2STrYpn+3jbKd7e/lOnD38GYer9cmWgim4KUIZCtUj6AOQloDGKxKIl/d0oQa9LhqVeUlIUcmcmHoBUpdxVmBrdSypWio4GEydfc1qVjJHJnAkFjV/qWT4IiqAIP5QvBqTQIvkKqLV5SNe1TuvAnyDDaFOBZa0zVFvV+oZLn7HibBj+tFhCW9nDVUbJG3naCox6XGEtLtALRWTxKEWtqIyVFXe7AmEVIJwWpNnKE5ZKnhtMATEagHAEZyIxzwSxAl0bTOgKBeWlhe3r8vsaK84boPHNzYYx2tVzIjcTHkqVZlcXgK9XUQ7XfW/j3LC7G5UBZQJKHZTWF9OqCKmKIYRZ7YgKddRV55gMpce+0RlefSNtOJSN10mqaqsa7ZaflEw5O4E5gIWKCt6qlA92d0IIOhZNgVLkcZLdgFPjfPIAJy/yA0f8pHES0kC9aMNKIlUky5VXJ2U0qZvt7a3d7uDpxeHFZTs3MzaCoet7Fpr3CzKuYvPEhe63fudTjz1+5RUvu/HOZ+0ebLUnd7em0yY7RYZIISi7VhpsvWjrH0iFGVhARMaln4HSKUgpubu7ABxEaCP6+ny3DVbKEAQn5ihATaNqZGZ1JGIruA5TTclSX7rOHGNkQVUFcJkLYwNYvKppe3t7d+fKl3zJC97xh589fzgPVVU0cTePhJ3MslvnumBfwhLQElFOnNOctHVPQDKqECpQl/TSnS9+7ueeePimO6df1C7e+we/vv/hx7f2v/nis+8+cdOtzYkziRtyYiEYlzl+K703DrFa4Rc8g9gJTi5BQrmRs7o7h232tsfMXE0t9FRRLSxSUVXYcwgcOZMjsxichSMLCyXKToYMBdiZIQQyK+p1vOLKOC79FaOyAhIzLOesajwMj5mvhO9KaIAQzCw4qAA3u5SdhNgGm7OCRKiKSDFjBRkAwFhjXdmyPn06fPBjj9/5bd/0si/9g4/88c+/5du+/fZf/uV4695f+H392E3S9KmeNJcm/uvKv9pV1Ue6V377n/m6N3zqpoMLb/vZR89s73hqsdIXIpJB81jNcsp95ymvxrGESIyVq4q6FmIwdyIjgyvUUttxfdJ4h+2C6cjjjKxmZHVHEM/K2FI+gC6CT3J6R39w2/aJL1jOn/DFEfXnLC2RD4WikQ+jWJpdk7ozVwWyM5v72C6d9+av3feOk3u3/OtbX1S3M96amneLxSz3fajGHCszdF2XSapJ9Irm8/nRcsEctndOxu2J1bEu2J+CX3aoZt5wwC7GxJTJjNwVLNkCUad93XE6f5A+evLlXzX7UK+fZInIPoilbRhiKoUsDP6zpLlO7CzMco0Dds/EXhqVRQV+IORwBRvIVlI1axMBH7zvqqbFx9y3jjXaBrxSCRoSr1KsBjC4FSpC92vXeGxq1wwdvtE9XEFHh/xhZXCKjqA7eEjI3WiVcRPRaqZ7xaAx7PUqTorNFG1TmmHI8oclpFW7s/yaVbFp7X1p5ffIzNSh5lpEustH3AswwFeUHYO/NCvTzCRqIKFwjBEecKhDcFAor0l4re50jdVdXwDlqcK9AM0cukF3WkQF/4QtbO7lmbmar+obw3lbFUHWzfxrHPb6nLm7FujdxgHQujxa7orVNz/D628+ZlDoEyh57q2ddZG4FoQYq1rqmrzgV91D0bByKJjUG+NFzQjWSB5XfGOMNwvObXf3PB0uql82ygGZLBf8QoCIxDjhECSGrcloa2/7yvknLj39lKoGCpVINgt1CCy5T3XddNk/8snHruwfzWZ33nH7TtfbKfNJM/KYqioSEQzuKivplet6zYKaXj9hAguMCEBptJpZSrDsIXIpL2+er82tzBRhBQFwVxZUxKqpGVXCUHUWAjib9Z0dzdvZbBZj3NqehMBm1jSRmMxcqAQGuYq2t7v7f/H1p7G2bdl5GPaNMeZca3enP/fed1//6lVfJbLIIimRFGmSEknJlBjLEiFFQiTZcGBHiJNASJwgUBwoMGLDEBJDNgLHEmLElhw7iaTIgqwOskskRbHEKjZiFVndq9fe925/2r33WmvOMUZ+zLn23ue+kjYeqs45dzdrzzXnaL/xfa+9nH7XD770t/67N8XNqLAzbj+UPafcw9fwpdvauQcGMk05k16xnrkvPXTwYBaM+t/13Z/7zOunb739lYfXl6e3n1sczC4u/unTr/e0/AN2/fH9Vz8dj5/nyX4MbYik6mA2oLKHsERmADr0fe6thn9MUsY2xOFMHEKIJnkYLA2ZMhFBLCwtT1pu2wDxIQV3cAhNMFeywJQzxL2jQgKrGbAyG5ZzGQThgnAsYmMAShLsXqg1hIsTVTNz5jLt6qpqKDRyNUwGKBhI3TCoWyZyEhBI2G2EvlulxRAiL0zRQBhilm64upxNj/72X/+nf/LP/YVv/rEvtHr5r/0Wv/3Boj+wTy75ZSDOlMhdh7adXczj175sD1755N2XP2Fff+Pyyb1FnKShh1rbTpg5xlY9k7AViKmZEINd3bu+j0wcogoxwPBsMDdYD3PTHq1g+lFfXjoErqwNSllVzcHGK+iU+MIAMqyf/sLe/utB2v7qoV8ck0dOifPUCdkNObv2pkmIWBACg3yRnzzNfLpO/9PHX/2rn/zpXzk5vNvNnLphvV6v15G4kYYMKeWcczOfxTbknK4vL/ucFrP9MJ/GSfTSVqxzGaVMG2yHtVgiax6xuE5Ebpwas4tsbd8canxjkn/74MdeePL1GRR1CqbUUUtApiQFF+UKNnInNmIQI0Qn2inwwtgE5K4MK5MODnUkh5opBTAXYlmiSjvl7oCTP9OnK2XsMaUtpriY/m2/iojgpbxfrQvG0ii2JnfMpGrjc9dMlWzV3YkLVyX72H+u12eoPWQesUEFAiY33pCrDn1xDTtfYqeGN7oFuBco1qZyu8OvZVTg2WbFlRb2KZTDpOpmgMLICp0kiussSmZlIKYkjGNXvnIYYNT8sxt5BY36yfiQ6a6+vK63mKtXhLm7ORUpFUclyLtZtv6wgws7q0A0JuC1U775vJuv/I4+YAOh2gZoRsRuO22NQrfr224/tkQn46LcuENGpYu4XGsnKdIQu8SmAS5NmEx52vJ8Mg2Bqa26riUnC8RG68PUrkV0LvOkrShaPlnFl+f+zx6nX7/A0xSNJZEbuwTPIAnOcRLatukXoZkHyDSGR/c+GC57AUnTEhmTTaZC5B4s8OLe/fSLv/Tm2dnRpz9xK2c7PSFZBBH5FzjLnTz4O+ggjcmTN01QdVXLOavDPVC7U1/YuWWocY+PEEgCYAYRAVMM8AoOIDOoqildX6/efOvty8vLw8PDtn1FRPqUmCkEJgIzFZ3i6YT254v5dPk7f+Ajv/CF+9fd2nmD8AAAdWMfXHt4AjIogzIwqCXOT5Afe3/lZhIaQuumgu5n/+Tvfvf6Wxl02Bx0frlOp+38J3tb76UnT77160+Wy+OPfPf+nZd5esBhUhJEt0rQ745GQogtgABHHkrY6w4GQSgS95ZJmob32YKmlbpmH8zdgzTqrRJizBScRBBSGW9gZooBIGuV4SrKLJ4LzWSMsWSiBImRLCsxApFlhdpII+GaMjlCCLBsasWZcckLygC9F4uJGokbVC1z4GAI27a6gHLpbgUpPrjc5pVdgt3bho2vr5r/4W8/+Mk/9zeevnZ4+trzP3fVffpg8fkXry0s7mdar6WRSZD++DJcfKL/9Q8uv3kx++of/ejqL18M37xqDiY6JEgtZHk2y9lyHoZBuz6YkYOYB9Umts1ksr4iIydXR3BRaBIKht4zwvy2L28R33M7AJ4CUyDBQ+CUnIAMWxgN0dvUv3d19pXJ/g94/366fo8nr1pPTRfA0Sxr7pEGzQNLFCEWqOsS/WM/+D++9bduTw/+4+/9seba5of5slsNV8vU99PZfiuNGpWCQbs3YyK97vx6fTRfLE6PjZndJqBBnNlNkZKRBGa+4YCFTImIAkthJROizqJSt3SZSL666n/t9FO317/Hrv47K8AEoPQWjIgLdwO8ot2p4GTFObBISdJunHBhqJUdx8QMChLEU5GlEhExrrQ8IzLDrNRMYOZMow8lL6xFhjrWSSVr9p2JXmZsh2oNVKd7KirKx6eXPpjXuVPaKsiXBqBt/FHBY5UWy9blb0ZtfNy+lbq6MLOMmIYde2VwYi5dm9Iz3XjgMQgYbZz7xhOPJVL3wqKmbtlV4S7uFZbl7uRkTA7KbgKHFb2iYmoLyxU70bZTXpwnVc073RTbq+XZjnwQwL7N5quPpa23di+1b98OGj3L+/IdOpLBd8qk1ZSgRC8lpN8ZRwWIaMsZtBNs0Q6FUJU2F64j4ci7n1dQV+7OFVjPuOHpd8IQcwGyhnWnPRL5IP1Vl5bmkdwmE9qfhdm83dvP0zbszdppDIGYAyCunoO1uWWoTY2MuAnUBlyTxibsNXJnjl9/3L/Ze9dEcZ8MNrBAsjdoKGiYrJrYOO3JHmQWHl0+PD9nMhaE2IbE6kaBWCLPwnm//mdff9QPljJlZWC+D5rPGnE0MRIhpT4GVtsOmYxJ6nbQa7dyMO6AzCGQw3L9cxpULU2n00JTXE/JCG3HjlCPF/X4wivHYqYiUrqJlpGSLq9Xl08uuqFfh+Xl5cVkekokfcruMptGU1CVKE5t68cH7ct373z0Y9Nf+eKj6fHeeth6C8oMIvAFhsfT3tfSlQNNvmJtNV3CL9G6rtPM3t2/c/tP/8//8N7s6dl5CrwHo65fEZ/o/ouyfKRtXnDbf+M3lqsn6D63fu6V/b2X92Z7pjppZbnuA7eakcQoBkiQNgzLXoel6RA5uiu5QqZCrNkIIbYTyx3llLthyi2js4DMjaARcaMMOBFnU5FAIFZQIDE2HtjIjCxnsMDVQcKCwgUdBlNlFhd3uCokCKlnEdPcChfprKyp8AQwC4PEoY7C0VQiLOEAIPXr4BN296JbxwDlomtKGoFCtS1OFFxgOSm72eL5g6//8tfo9R987ZWXf/g64eXJ37vo/6O/d/7wwRfx5L21h25YavMDh9/72SbzT75+/HtuLX90gb/0e1//wvu/LMOUJtMEbSJl7dTV3C1rsMGFLBHcA9GsbVWVpGHEgkgj7yO5OoOyc4Ytgx/q9CUdLqCd4RRYFhHXZA4KBDgy4ImUKMSHfyecft6HIT+4aG4tU0jqee6JE3vq1/26oQbmHBYQa5765TLdXr/1b77/9l/5fX/ya+vw0Zme6zWfrfvVRQnC+pwicTInDosQbOgulmc8aaeL44iGkARwF1IZhqLtysRwqAtvQt9FK2vXwWqJg0EAi6V1aqcO7vzRfmtd+ubxz3zv5T9mWyakia+vcmMBolrUztVUiUDMHJyCkziRO4xol4iDC00lIktiToSBS32PRcCRIO6Bi2VVBlhQiDoZ8CKbYGOWOjIsOBG5bETjqMgrmIPZHEQ85lHM4/DKeHTHUL10IXeRtTs9wUrnVOeUvOZQXmeTnEveV8JMdy91cCp8VcWz1fbpWFUul1wBqFI7pRu4TKH1qS6pmDUveTxAXjSLCkmYGzKQiwFUJjOHZudMgSwzaa0PMMHVLJNFFaJCq2s1n+eCCrPSIBaMxSp3A7TwmQbm5J69NJ/YjRxsLKBctBHZGa5c0PUEcFDNGxPtNxww2Vg1K0vBjA0hyI43LT+UIIVsk5X67nOIqMZbvnEbu97eR99C/GwRnG4+dtzGs+M6BnIE9WDK6zXy9fJqla+XXU5p0shi3u7vL/YW0+PD2eHh7HAxaRsOITStmOlM4G4sqAfPkZVkypNgHHU+i7dj+7VH9tWl33fuY0htt2ctOS6mRupYIc4WaEOUcLJ3sb8+vfzgaR40S5LGWCbiRkQSSGifVO896CaT89AuIpNIGyO1wbJCGCLR6J87ifTMt978LBLdXURCqJGUqhXMTOFwLjk0Vx7BGnY9U6h49uNAgKsmc+VAL9y6u390MAzDMAwibc6pCWFIKhKqvpFJjJgvJicnR9/12Zd+5UvvdctrabYfEfli3Slshf6yc5XQICf1C9c8yHqq3TqvYfby3fCzf/xPfPxTi9h/8PDCiAOkV5n25hk0OXkt6yWGid/ZzynR2eXFb/5mvFrhVU3rk/35bRLiQF6oAgxchIi8CcHJsxtp1hK+s5kQU2Azc0icTHngPHQp94rUGIu0zMnAkEA1/K/oShYmiuYQA7vkLE5cUlWiQgsIAto41ZTdMhEZsxO5Jnc1CMXGCYWWBxwI5mrgYn82d4QIJKCkueopqXph4mFxNWfaCJq5k5nD1YnEBot7C860kKcP+7uvv9j/wP6XHq7fmE2/8r/697ov/j+xjPH8vSxXjdJEDn/2P/+7H3yO/Z3+L/+tb/1nmp7ff/73/lD4/Pfc+pVfPJ/FvXZWtIOymlHtmrlnLTmTmhWt4GJ2drCelY8S5oBk76Sd+7BfW3kWvXZOdhCI468DVnT/l8Otzw8P7tHxqXmepCGltUtA6mN2axAG2ifvB1vL+fkQ/0+/8Surux/79/ZefaENa17KenWxXuWUF9NFCMEhfe5zzgeH+4FxsVyvVt3h4SFJWA3DfNFwoGzOZlkxGMgR2ZtIUTaXCQ4QAcRQufjNnZJAzTphBjVrSua/FfX5ox9/7v5fQWNDbqW51GTw6LJ2dwgzwaTMEZnXxNNr/DQ+Cm6AgxbiKvYopMzMrMKZnZlYWBgCgsCxOy1S7wAZnMyhLmNzsdwYU6IRFF2c8zMMetg43NJFHOHZYwS/aycEAHHF+W9eXFO8fx7+ZHPfNx3h0h9idnfZ5relXq/FL3h1NM9SW2/8FlGlD6m94RHm4l77wWruzhtVQSMjGLOX9DUUbHQdxyqfrEYkIHIrrNelUHUDf17IsIiddHsZcKMKRq7+bsxxS/CxIa0GQCSVnmz3S7kDLiPQjhywQmK1k3iV5a+HDb7p0W+esFPzvGHrn0ngfNPMv3mHfEMtOcq6bV5ONzeCEeAhmXQdUp/Wwbu+X3X58mKZ+1S5C2Jz52D/9Nbe8fHk9q29+Sw0gQ72Fk0bNCI2oQ2imgPARAITCVE89LTHuriFg6mdnNNvnNu31zbtJinoClkVE40hsM6FUjRetP3hZP/i9GD/yf37j87PGQ2RC7cs6qROoDDtzN57MKB5OuHT0GRCOlgEEaiBmWEg5AIy+PC3xo6z3CxsLSqIRWJV1yJUQ5JVHcJFl2g7Or1RHnvWnW9uTX2emZmFEJo2Lg72bt26te6W19fXbduG0PRdsobbVqhyyBkz2iYc7k9e+9jh6ens8XludkAVg0vj6z6dg4OEZc6D2CSE1F0+jdODta8Dhu/9/jv/y//1T52df/DwwbdD10gTA9sa6wQJIvM20OK59Vu/Iq/cCQhiMUfF9ZP4zZR03b36iUbbqeyTQEIRsGJ3V1iQpmmDR3btl1creGZidRI4izgMRrGZwdn7bui6djoxGSwNmYkpciEPcmcRcydnquQaBaEgHDlIcFdV5aBldIfM3FJoBBYAJB0kBk3BJMNBbp5TUURqWGzotZz/TXHCRtl0EAUmIhZ2V3JBBYWKg4mYiUsJ0eCwkuc0dnm57JOfT2XoX/2pz+ajw/NfeOfs+skf/UM//eVvfeHNe19YHhzs7b2Wz89jvDX95OsPv3D/3b//7uyqE8Qn+I3/6m/2OFgsFosKXXUK0hDnnHq1BDWYF0Y+JXAMRJS7nkTcrBiNzSYq5zOho2aO5g5yYhsMAPdlcnDnQeQ1D7OLL9DiM9JYd/Z4spjbMHjOwJAHJSNOQEs6oWY53M/6qYfv/emrR//Bj/3MdXPc0mXQ5uzsfeu6MFm00wkREbEOKiKz2WQY0vrqehKbGKbZnEJw5l4zO5tm1bKqxAEh2s4UEiQgRLTGSd1K2llYlwye1QVtJ57t7Zm9cfBDe+dfisOXzI+Ctr1eJyJx7+Bgcg4o6SaJg2udr6ax24UgApiYIOTMFmAxUMPMhAgONVmQMlXMtZ5Z7LUrqOoCC+DgHU6e0daWj7ExbbUiDIDKc7b52mWgqN7LZwN3523zceuVKrjES991NFXVwmxZQKj4jV0LNvqMGw52Y46Ki6JSYC8+SaiQfWGceCqZ8Q70E+5IhXveoUD2OoRQ3Za7u7oZF+GycYG8CHIIF8PpPJK8jmnnrqksqghW+L6JHWzQ6sLhG8bG6pId48Q+NotZ3+fGtzYZDbKMByk4lXmeG6uz44+JqGLJNjdp6y3GzyOiUj3ePGX7bh+ScN4No/4FGbCD1UOnMliATNwohDBruY+S1t162Q9GDjt7/2zybnt4NH3pxdPbtw7mEzqYr/f3ps283V/MF2iCEAdhhhsRk6vNQhAB4jCd6vEsHE751rn91hU61Q50RU0kzJA40oS5YSLZgwVEPog2PT44e++hpjR4E4I799kyJEuIqyG9+945p2E9sPqRmarxbBJirAJVvm1pcKlRbOgkP7wOm3HqEEqIZqZsKMzjWURiZGIpoSIzj4rWvLu5ARQ4z3jXvICzZrPJfH9qnkPkk8Xpu++8c3Z2dnJyYupcxNK8lsqjIDaYzcJrL7z0sRdmjx+9s54uNvcog9hWsB52TQgNRbMhWyOTPrimuKLk/+of+33vvveOnj1dzPbz3MTcE8cwCyQRHIgHQkje7O07ewxzoCPq0V9cvfvbSHr2/KB4hRf7RBPhQI7OSB0MiHBopowwdFrkgxxmSsTqrs4i4BCpadb9cN11qxIhN+6YAGAIE7MEdq0aJkwExAKCc4RAZJ5Fs5mpataB3W0A4Eyh4hskEg3GQga4KuAGIzOCEhOHwkVDo6Vz1TITSWpqLiZOIFFNHppI7BJCOdgl+yybRETW1/rqR5pP/4nvf0yTR0tfT+K3/69fHh4YrPv7Z6f/yv/tr33PP/6lX/h//Pn3v/7l/eOP/om/8B+98Wb35v/7jfnpreZEM2joQmxnOVkInKUIqbmZpTxo6qFqKQuImcw9BAlNLFZAYtShr7vWYZt9agpOyVo0R8hPSQyaQRHYYvTgRChj2mCJruf6+O+2d/7ldHHBMQ6y3M95Jc69psjqetwEIxpyWl3zn/rmP374yc//lfnze/Rwoc2Ds4vV+XXbynyxH0NroEK6N1tMWHB1calDOjg+yKpGWDShTNkZQTO5gYSagDZ6lBvxgRBiIHejxEPBAQVSYjaFWQavA4SiDva1SXN863/08bd+TSmQhuizxNdKgZBLfdZAxKEIdDvYqUwDbz+rmEkhIVIWjTwEDFFSYASKAesAFQITk6vSiAEee5Xmrjt/2cwib32GMYhhuYzRkMHZNqa2mppxIHjDu0+jl6smgurP5tsEqXALFBqQ4oa2r/Uxz/Nns4gRMu1EZCPthtTrGSksq8IhhMgLI9tONbaYrLJy45iqq5FpUdCDG8wAZ3f12rM2kDrMLYOMpXpNM+ObWfboICur3fbBREYEqgyTxLaT8m4fuwVg4k2daKdaUAz4DVRTFVMgKo6AiUJlk9+5gOrAtxRbldAYNx+2FRjG7j54JqXbfey68N0q9DOLMr5/UASOi8Xk1mxxO/Esxuju1yfz8/PrRw+fPj1fPz5brlUvz/LD89Xb9y6ODue3juenh9PTo/3bdxcnR9p3k729lmaIUjlPmMFic2CSJRnPJyEc484Ud2j95XV8exkGB5F1bgBHJZtkbwg6V5mJHLbNo1fb5vH7959cD64k4MDRVZWVCWb89vvn65RW/dVHXjp54c6eG7VNbtvqReuM2c59emaJNlHYuCylj4gQWEFwMyW1VMoHIgyQcDHu3/mtbiys1aJQ04Sjo6Occ85DjLK3t3fv3j03Ojw8LMOvAApUxN0b4clUbi2aT3/6+X/y1bcod9u96t2gF5wZpMkXkGvwE+5PbJnjQdsM7WQ/TKf95cNrme6vh15EEitzcEySZM4xY25xFSLFwGsymS88N8NwTSHn9QW9+eaFrSx1k5NX4+Fh27bFcwNspqYeAwcJsWmrNpk5MZlmEiHATbihOe3T0tf9OqXE3ImID8Tq0iLEqSelChbkEkczB689WiNndSZWZhEWIqKmcTUfMsgFIRCU24yeVUFVWDClBAeiUmRXrTajnj2mggUpNSYzAiyrMZIqE4ul8jSJQkRFtdSJZM6Pl/SP/vKv9lfxpX/js4Oe229+MP3Mi54sP0r/97/4W69+6pOv/4d/bfarX/j85z//j/6b9a9/8Yunn30FcZmechcT5RCICE2fk0gjIlnVVGEONU+ZcsmTHEQSgzPpkJ3JhWtioVZqBlaAWrU6PohED/ueOkKJi0Yy+jqvylRpFGCY+frLafWpafP6sLzI06jdNXiWGdnANFhDMemjQT/6/jd+Nqc/++IPsOiehffzFdaPQgjT/ZN2Mucg5LpcD06YzGYpDetuOWkjAM02bYUBU2ti6AbrNQioJZ8KGlJ2U9/aRCFACokG3J0MmZQtVDI6eCIxWFjb+4G+ffypV+79iPT/MMucPEmarNpVyORUdGSKu5NiYY0Arrdva9LggAd2YRP2QCblZ3JhFYChAQaCQLzUH23jLx2lQFNCCAOCcWkUjqaVqMzqOnvVDdzhijSiOllbcVil4Wo7dbJd2hAwCttM8YHPpK0362q09RbPVqFHvEt97ji2uoGHj7kyjLdgpo0FK/9r7iCGZ/goNTFWE6ElUqjjRmZuRRzBLZNU4pSSB28ur1RzjCzUcsOOhWQqhQdy2aU9qfEEKsSlsmWOc8BeJp2IbuaWz6ohjYWC7U2xosrEH/KaWqk73dSZK0utu+8isDaK7rm4ehBq5rRd2WcemzK1jzUB/lCHePMw59Du7y2emx+9OJ+fcohElPLgx9OUjq9euvP47Pr9h0+/9s6jB/efXq8tyOS6W91/eBVFb50cvv7y4rWXXnjh+WNLSVMzm8TZtIU7GoLBlI2cG5pEnDY+ibmdTBYP8m/k9NtrnGU0HAPzeQBRdgnTWDgW5h48ZTp9NdLT+5dPr7W3yJEEBdTI5ByaB08uUx76vs/5uedv7+0teJ85GzVhpKkCChi8MJftVmw2P4//u9NKCXBlwB2sqsNQxdc8iIP45vuMO7iu8OaUMjORuvt8Pl2v113XMfNisYgxPn78uG3b6SyaldYyFeS+BGqaMJnZq68dHU2bs4sdLmi7JlybXCPsTYY4dFMLL0lz7d1XJu3+tfvP/OwnKa8CIjw3kyYnF3MhrIcVCVrMnE8CcrJBJrG/XAXh5vR2aubNsAqG3nz44M3rwXOy1l7Qw6PpDJGnUwq5nAKoEccYLTAlHYbBhDyDrcAdjYjCZN6qOiHnVBTrWgANkIkGE56wRBCKLtxGg6ScOzCYgruAlAoFmEuRmyuDv+7KFCLHxj3r4DGJWTRTVQ3RTT2rafI0uCuMShXGHGTMzA4dchYmYnEnVXVXiY2IcAzC0Qmq6mqTtkWfe+X8xPLf/PX+Lq+ev30SCVeL9qB5/lH38W++d3ihP/FzP/2F/+y//9e++7v+pX/rD/xb//5/+dvnn4pHQdbRYLZSb1ZNPDCmlDMXEWLP5nA1AjQrAGkiM+ecTa2RmGPwgqS5kZwYi3lmp6zaxzBPqSUJZAoSh1TILJhISiqg5sSART37+/H2vzlkptV5d33WclyLUjLhoQ+24vW6W/7rb3zpix/73C8///GDfH/Jbbj84KmuDo9fPG6PdTJlqCbNOkgzjTEur85zHhZ7hykbSWTmUq5VJc08ZG+DhYCGPZKp34DF5GxWY02EwgLiLqAcJEGjUqtOriBKa33Hw1t3f/aVN/6ByDBwBkFsnBQjKrq3BjcvfUvmG7BZsBDBmHsmC0yRRThGzoE0UGJxcmWAqdhuKxOcrlwJ9msDGHUouzoIo/r80a6WdMydRkrc0fqPXdXxkqhGSLtUS1Yyo6255pGv6mZdDSVDq7WQm6MsN/toxVlvDeC9AAEAAElEQVSUveDuOy3tHSvnTmAvcHIfP7r6iLp4I0tJvVR3uNGWCtfdt04xs6tD3ct/bmY0djx3PfwmA2SQblFp3+GxLRH7Zj239WcdnfF3XKjNY6TJcsVYtmcKcvN5PlJkFH0Hp4Kk3/KblWnbskC2M9BdKQmpcHt+h4/fWSnH6BKeQWnvPkKcz/dvHZ4+vzg8bSfz0VNHgqeUTo7nt27vv/DCySuvPvf2e4/eePPR2+8+vLq8bpqGiC6uHj1++vTBk+Hjl93LLxzevjU/Pp65UyvMRCKNFw0YaIAvogQWRJrdshOxk/v8yxf8PtnMaR9YUUMunabDKQ8pN5M9CdN+fX76wrRtHq2enverzpyZBY5+GJooIcSu97feOVst0/XVrVdeOlKneQubcIwgBqMQjfJmi+363d3l2o2XiF1AgTkD5J5L/78+pDjgzdjx5jFu5TqRRuzMzILooiEM646IYrTZbKaqQ+pm1NAo2WFmAIlI04TF0a1XFs0nmkf/1J5s3lz0CWxpegk7TkGsfR65n/bvvMKXbz/92p/5d/7A5z5z/eDNdxl7oimbGNbRmQIaJs8cKGnY57Wbi1Pgyb6m5TQ0zUy0nRiE+yWGrn/8vlu23OvwnB2ezmaHFCeIjQQSYXeItAIj8qykSCQBXuGT6sYsHGfRTfUq6Rq9kVMkAKae0EhZNwpSkJeKWqBzd3ZmcnMjErCYWc4q4BjF4GDVnCEAmcCtWxMm1RiYptgO/dpbkCbLyTXDjDS7GtSGpIFgRmAxp0BEzCQcQiBhJ9bsiM4ssWmEmNBmxjxc4WD6/lWiq9XB0YlfOva9f2ivHn37v/hPf/bJ/bMnHzz9o//bH77szzN/8//873z+X/53v97s/w4dHlhobZ6FZyyRBO7OgVKf+r5HygE0mJtZUcZUbCRDwTFgM0bi8DphMnKVu7kmZUaY+3DNNGzTl2L+nUrDpeZFNKHh8bD8hzz7KU2PuyePeLbfpOTUDCnPU38JfuHJve9N/h/8jh9OetGE9vrq6UV31criJB71jTQUYNb3vbvPZrMhp+v1SoSGEis1LZxLQ7FPOWkgtyAUoiGQIWBHSAbAkL1QCpIwm0mAETTBHcysWUzJYB6auabLs/j105cPH/zMwfK/VUw8LBlSDnMmd7ixOBO4AENq8XRr0IgjGTNJQCySeGQsHoQDlWlvF2Kus99cOowu7i7uTmXq3WsLzxREpObC1VCUfYdaOuYSV2wNgdFNAFUVIdikQI5y14sTB0NKm6w2R8sE9IfrbDdNzeZnLdOmTBs/XZ3xlmaSUKaES7JXkGtM7M9+Qqktj5koAHiZOzIruGg38rEAXgyrupGrl7K96yaXVc9cNI65VinCWF3fVHM3Ho2dhWjTUKmOawRe1fFHVMRWnTczr3JP3xFyW6juqHCxVNGJDzFhbUqfVSi+jhV7YTllrlSL7gp321aSrVabbvj/eud2FnPzQSLiN0OGG9UHYD7bPzg4XuwdzGaTZtLEgKS50CZqYiKZTNPB4fx0T148WXzspeffuvfk69969979R11vAH9w4WdX7z+5uHpydecj69MX0kF/kE4O9heI/aRnyXvemMrahAQL8IRx2QpOoxA78GtXWGVoOwwWSIcmhDP1SROyp6AidGpds38aF9P26cMPrq6WqsQxSGhhK6aJGXUdPniw7Ps+5f7uev/5W3vqNvUgwYhcqAiHEZNVzOtuSedDZXx3B4ELHbo5CyJJ0pxzcjdmUi00Dhj1yMujSsaXSn/Z6yIkIqoapOnW18P5RQghqx0eHoYQiNwKEzlRAeiX+odGv318+196aY73/wHw0Xqduc/MASc0mSTzdvmN2/JuI4t39Ls/8yMv/dBn7JtfvzedhUGTRgTtxcXZe80IrXrgyUAHsyHHIczWxO3eQb669r7nZp6ocedpE9CFq6sH6dG7lFkTZaUMn872GuyFEETYs9VrlImq94UKLoNgJKQ6GIKECUMBE/ac8zD05tS4g5rsvao2zUSEylxCIdgJHEt3Ziz8SCjRG7dQI2bARcSCcBBykKqwNEw6JFU1y02IIbadJtYMy265MuklNVX2TA4beljFhgAQicUPQwQhEAfmKCLM7EZOa17sN1c0mRx6m8xXlEm75ezFvb/38/nem08jz//Tv/TX/tD/+Md/7Wtv/bk/+w++7/f8qEyO22F1SbNF4qVY4IkRQmhUUznj5cBqUlUlc2mEmQdVJiGinLJU5vpnbBNUCyao1N9U4lSHQEQFTDNmLuSjYLww1JzQOS/S2S/J4e/yfKSXDwZ9LrtPPfglwu2+X8cff/vtb77y0a80t4/kalidr5Z5gD93/NxlRCtTVXXN6/Wam9C08bpbD8NwuJh2CmGKIYKh6g4z5yF5G7kJEKHk7lqUOnePRyk7lUPnRE4wA2J2IqydlMEmBFJiucyPDuKT5/5A87UvTOOl6ulq8i7y3MyVXBksYBalOltMN0GwRC4igWIgZzHmxJSEjZmFGkIv7gwTKgRlBh/bn67uIC9jKV6He9xMwUJFOJyZ3dmsZGVCVJUWqKoAVWD1hnvfnTZvvjE429x37BuU8aLNF3G/8evmcSOoGX1VMWgbcYUyKbUhbQVQRm93KHtHHt+iULJNf0sZefdXeJ1YHbNeG5NguJuBtWzErQklMyi7Z0vRudBFc+GBMRB74LhxQOVr7nyX8hmwnZwnmarqBgJdnklAMa3bDbaTYdZvCoALL5ujzAHXCrORmW0mcaXwYlve+lf3kh+wg6jMdY8FFyroF2LmQoxSJ5qZRthnuRyUyTEA+ebMEgPPBA2hmYXpfpzOm0k7bRsWiy6WnYiaIK7ahKCq08nJdL3eO1zffa755OtH9+9ffvtbD95+6/03ny41HL/x5urs4ttnl/3VlXcv+jDko6PjKTxGW0VGOS9sFuHBAw/HGgLYKTcPJ198lC8mkc2VwpXxNfuBYV9oPbMm+YT2EiI1cjqZ7D999OjBw2GVZu0ihGgOhgcWc3//7LrLw9XZdb+688ILJynlxSSEyE6EwCCYeoDVYJMEoEL64tU0jGFjCUXNDRoCc7EyLhzIzIauB5NALHlwipHhMCuDLkZF+nk0nkweBMacMTRteHJ2kZI2TXNwsDedTqNQYC5zw17lIK0J4TCGt46mDz75uYdf/jawKu91sPz5rpk2gdEFyg/3SAd74b48lxezn/vDR++9e28ymRAJSc5qQoHcDYQETNdx8E5ns+neJWkzmfNkv5F4HfYULVinoLWYzw8y9idohuUH/eNvc76GL4MOdjj004TJjKaHyVCgFkQUmsYGIk/OyR05M9MUmtyTceBmDnVLV2xqtlSosEtvYTpTN8SpSHRydZUYWJ2czJWIJrHJbrmwU0Eg4q5N0XUwePLSimvi1Mw4MCF7E82Mm0nUAeSeNQ2d58SmiO55aJzNjNupcJmg8BBCff8S5lKMsQnSVGpZQcv7NhhPedCVdn1gUhuG3Jo+zXI0DPyRT/iamHr6/h/6HX/qf6Z//t/+3u/7N/7u5eR59QfX1k7LjEssMrSMIYt7gmkact+jTxwEwgkWOQDIXRLiltqeA8M2B9Ysc+UmXjoSmKEdkLlZaFoTsmMgMoKbK3xC3LifqUVwcmIoBRwN9/96ePGP6fkiPLqvhy+TDr37etC4evra0w9+/vt+j09X+xf8QaJ0cXZ4fGyTdmFxQL/kLqyH9eXF6Qt3myYMj64DceYQGBEBmXMEE4s22iUmaiUJcyAhzw5X1bDT6Wwi2MWyOSGzc8AstUNQBdSYtchFkmQnaXqmq8fX33jp5ebBH7719D+JYdH0kyTRiZkTSaOg5GqYoIFxQxX3vDHAmcQ4gEDkEEaUIBDBwLQKHgJRIxA2sJU6JRucMHI/GTkZuZurOoOLehrCpjNaXBCXSgYXDqhCnumFFxfkVUyn+nVUNQbzkbiSKnVncX/jAK+xi1eJkZ2sgOBV5ZcKQmnDmFh76punFqX52mfFJuulMeOtLhtWWpvFWVSWEHcYmCszCECju69Jv7srUTbPGNRbQhAigyXPDIObmHGZdHCAQzFqhchdQESVThsY+yxjF98pMDmQXd1HxfrCvhOItQLSRmg41RnEYrSzm7vuMkGWtSy6DVCHKwGhZKKle000Rl9mRb5qN5UuyydEZR/X6vnIkbsDtcXNl3yHooXdfKYQYTNMvvljjBJiaGIhK96EEkQeqpitm1loOAadTXnYnxwd7T3/3K2XX7h9/1PP//wv/7Ov/tY9aU8uLvHlX/utJ4/Pri5eWb56ePt6+fwLJ/NZS45J40SmqkEmnI0lNM7U0kvHkxxwBvmtx92yCRyjmJF7b3bhPg+BG+6DmU1pJTObzk8m3LQX54+WFw9JDoncrEPup82UjB88uFwt07K31bq/e3eqx/NJ24pIhEtADA1XHtnia4uNM+Z/nk4Gb0rERKSZi5phyqmUUt09pRxEQsHTWs19UXvADkgIwcyoJ2bem82TKTOHwCFwkO3MHo09e2YmspOZnJwc35+dAu+US0mI3OEyXk99P/lHns6bSbybzu7/9M9+X4h97w4gpYRATdNqNxCxeQohJGM3b8O8mSwsS9u27mSg0E6coMRuPpktLGdewJoDIuflOV1cDvnbrgb2WbKc01JEKbAE4RCEIjFAnkhdVZW4EPwI4IFJmCy2yMnT4KbDMLgrhakFdrJYKgQciECOhKKwWSkGyjF1hQdnZtLaP/MN4JPFCcRCJEGCE8wyAB8CEVHwSVxkHTwn09yYu2XUl5fV5joW7BZCcCIwUWycuRDZRAQ1g5PRZm6EVVVpPbu8dbD4xsnt48vl4//2Fx93+c2/+h//0I//hd//f/mL/591f7joWIfGW8meFWitKreYWUpJU7KcTXWzeSqrfymomK+7bkipHetYm+SAuIgtakGeuDmRQFrYqtIEF2Ww2nokUAOrYkA9HN19nP3jdv6T/dnjePhisq69Okt++srjd2xy60snn0BaXa7XaXnB5NPpHMm7kNmgT55cnV9q0sO9/e5qPVyvDg4OkMkCxTaiTvy7D6qqMolxHoXMHW7gQty906UxsxAQhHJWRkimEqgBDw4i94r/BREpLcHzpTSPluuz27/36Oz/Z/H93vfEUklq3NUh8NaFYVz0kW6c20JMSApk4ppwMzkzAlNAmXXPYK+WlUic1Y2IzHZk093L4Lq7gYogAVwc1QvQ5tiSO6z4q5pm3rTMvPuScVNtZ1u2nd0xScVNjwDsYHXHh1b0RHHlN6p6vlub/VBrefSzH/IXzn4jj7OdS9jVmy/norRHbpRdNy8ssGEeP5GINuEIjaXjTdoDkHkBXLuXpq/7Zg54mw2jRh6bBBqo4hDADY+248LKhzKAUGRbHAXWWAIaMLPdLITuWmSMoPZtzs607RrtljKIbGcAzck3o6t+Y8bcADxT15A4DaEJIQQhmFY76MaVGKSWxBkIk+gecs5p6r7P+ws5PqLDg+/dmzVf/frZ+Urb2fyb3z57/Oj6/Prlz7x+azA6Pd473Mu+aCZt0aA1V51EEUveBBZz0Wulq0v+1gBjuFt0SoLEYkZGaFmngSfeBDTg0EY5aXkv0qMn1zFMwOyBUkrm4DA/v7b+Wx+cXVxdrU7XXTo8mBzuz0No1Q0hFrUPIhepJFO72LTdPbp7I5g3g4DirsXd1mKJZgKYpUzZP/MOzCQik8lEVaM1k0lbBndm82mMMVSZQt99FRFxXExC+/zB9NZsu/0vJx8PcR7seiXBhdGdD6vV4dFHfvyHablclri9BH2W8nglkQhqGshJjUN0XoAPSdFDQ9ukpMTBNId21qOXlrxphNrAEVePhouz3t2Hrn/hlQM/ElOa7KfpNAVrrRFFoIAIIvfcu6q7MhFLZBjA1kwYlpm171LqNEFm7AmBlB3kBm6YArEoTFjIkd0CRIiZioS6Yoy9AYgIhJ3gKmY2tuxZVYlbIm+bibsDRsEjJjkPxeki19ZU1RAraZSV8gaXwScU1HQpQTkRSNWp6iR6yn3OOYl19linB3/23/0bekF3vv9H/849f+F3/vUk++nwcPLi7Zzuu0+zRYltvaHj/VVVmHpS1jq+ae7F55gZEdwtTqKspLCFgIiJNMFUuUgIFE7cuhrEoUUWR4BnFNtfHy0hAS4cHQSJlPv0+NecPp2nRzJctTq9GjrR5ccePHr/1u1lbNA/XvaXvF6F2axtpg5O0XV10Z8/vL5a337pFTThycMHICaWLqXIQUSsJBigLmewzycAqxKywRwhcBD4jlWsc/lsQgYXIjEYiwsImRhGJOXLmUfBQCl2T+XenenRg585Of9P2uliUHI2Q8iuTuzEYDdwoaG8kQCXzBcqjMAWmAKTkEdxYWoIJUSU8jQCuRVYp6qSO1ExRDVXNTg5mTrKFyY3cierEnIkm1Cpgph37MmOEy3F7nHQyOsVu3uBa24t/A5UZfdRXdV3lr7b9lap7B7w2Gv1kep66wjGuKHO4I5WqLa9UeOPZxO88nyqPrMEz+auNK45UPQ2xwv2Zx4wdlCVU9ssjtX5qJrFb9BOXnqvFXFdxpW3bpEcVnHlN4KPD13z9haEzcqWaeDtrwVutVOvd/fy5TahUHHpBfP+zIfteotnbkmZGCtDl76pWnzoUjm0TlK+hnoWDmWisLiY8pzCKVEQgSLSuLtTFMQwn08kD588vXX/177y1jv3BgmzJxfdL37pG2dn3Sc+ph97NeWTCXShsyZEkZjRxAbGgZg9sh5a//rR7PK58Pi99NiSS3BTgI24NyRNixDdLZDlhnqZwsMstouw14T3Hl1caeZeoKTMbCmThqXr1ZuPLy6Gp4/XH//YEcgJeTqdWvBCuwCYWR7RUvLMfdpZVRozVCNiEXYjgAyWUhqGIUqQUEH5ND42b1V2dJkbnkwaM2ht9lOMoVBXlueXDTZOEVjrV2i4uXU02z8C3q73SD3359PpnPteeUWBhnz80id4dtsevbFqQuQRN5BzLjouwlFz5+witFoO60Hj0UJp3qoPUCGICIWgQDanGMGBKDV7oMmtPGlwcYZ15x+8vXbnW6tuv5vBJoQgEzSeRTgbMUTEEXxUBKNRgEs4eJwWcjeDaRosJS3GTpWtJc7G0c1yIEKgkgCD3ElLBMkl0KlUc1rtoInEIn5kBmYmlrGqAVU1N2YiCkXmmYgKDKzcxxpKk5CqMIQYwUAFQlKQFlBYE0SzpzSgCOIOPZlTahHep9O7f/XeHiXbPzqMtwd78QdbDYzOrp8KYm7EaUVNI1pExGBZcwGnmCNn08QgM4OIE7SQS6ipm6ehEHW5c0o9TAGTyJ60Sp+6gXJRhCNnpwBvHT2gFWhCBGpZFSX1U4+AxUMdHkz1VxL9TPjgbHW3z6QHy/MjW7/x8muq6lfL/vqKsoZ4pM4hkvXL8/ffzhdLaduTu3cu18tVtz6YL0IUygMZ5TxwiESi6oNaO+EQ4WA1H8y0sG7iBk4xK5t6DNoKmeYoIZmDiWHuxCAnKyTDigiGONToHeSDV3///pf+TsAHhnmhSnGwAc7qAitcrthpYwJUDD0RV60tZlBgF/ZQpJnhwiMUsMQ3lousHFjKERYiZVQnUJUbyLjAf4wrUquMso4VW5Jq3m964nqE/zlMhc+YbhuR8JvojW6+xMxkd4KDMdact56bRmoOlNR5LPjtvo+PHnvzL6Pn27WB1RfuvrwwuoEcXHbdNv2s34i2PzMzFcabysrNu4xjY617VDkcV8BQJdYNnt3MTF0zXMcE0sYBkp1Lvfnt3J0LLKqG6rUE7WNeW5bS1SqY/eYblT88k0qb26YEvXl8R+cPwN20xCy2SdG32PTdK2Zuauug4AG2wU/dR2UdS6FvzO1KebYJgZsoH3v99nSOF54//OKvvPOVr93vkg4WvvSb9x49XS6v7n7ytaNhtT453d8/3GO3NsqgHIhCJKLA6ictvXpsr1zFy8t1F2NGIKgnd+IsfGXoYEPIe00IJpRbEGULe4HC9PLh/Qf9sNZAlMFKQ7dU9m41nF08fHD/Sde9CDDfJeZGJDVBWKyW/rzIduTNli13ZKeogPEYlbo9SSCA2cnZhmFI5kA0zqoUApfM+Ds+yj/lnIlDXcySuOwQ2G7igDRdqKzm0+bkYEvEYbpsqb3SJRwTBE+TOX3pj/3kH1k9eLeN0cxE4qCZnGKMqR84BEgPVfIQm+bJ1WTVczOP64n4qo/He2l53RZ0gQiKwGohMYvkTasciRq+ehqGFe4/ztm7rlN49jRp9xttYmwdQesxcRESiLrmXMGiTmAJYBKykkuSmnVdzglh8EYlZAkTVzUl1RBCw0TOlIFSIAoezR2EyJzdTK1kDzpyDW0KFERUWFBIXNAUZQa4mgkAFCpBVwEZWXZjIpHARbDEXaS0etQ8M/Gg62GgnHvLg2rKaYCqmzN1lmdYpdtzOAHpmlaz1F6zqgkDk1Xg4JjTImkhvwc5ijyMmSEnT9mzQmJyE4kFR0rCeUhmpindCMXqrlCDA0I1JVB4diT3gZjIg3scNf8MEEIg4gyGGBRErAqRecTjH/1x/sLffNLkaQ6Qs6urzt7Zv+vLp7Qa8uW1NWE6m5KEZN3yg3urx4/aMNvfOwwhdmdXpDkQRLVlcgfUjM1z7rvkZM2kLW6rXydNCqDRRt12h11Xa2KmViXMKU5INRf9DDIaSm+vsCSQcQ6mnjlrJDvPZ7dPrvf/1UX3H1LYy8YqCgpgcjKz1ivAFLtuity41O3IpZRZiIUhhMASwCwQCUTOcBjDywxwQs2eibHDlT+WolGIQKs9B8umH8w1BTfHjgQj+0jIXFzCjkndOOiNR9h9FB9c6DXIblaPdxJTHjuMJV8l3i7C7nuOWQFKv3gzBMRMGCtJmwEO2I1S94chxu6+bWBTgaAbdhLfzVeoqfKH3mj0i+WQOso0RE10av25/EUrSrVqiG1yR9/Neo2In13G8rJS7YRXIxt213G7NFyvcuNrNxnVrgYDKmEk7/QO/kWPZ25AqRZsQ49RDLM8mELZo0WgQ+ucl40580jpx1qfTlSIkZnQEBFPTsgcRweztD8Pp7faf/LFb1+s1trMvvHG/fXV6urizsc/cvDc1frOc/no5JA5McfYNAIwQTjOGHemwydPJg9W+Z3BhsCtM2U3MWf3jCGE3iWBDoCWsjeSfLHkEGX2fCOPH92/uLgip5yzUe6uLaWsqqsnq9/4yj0JkxCnJAMxW4PYsKBIc2/T3N1F21m67T9RHf12Fph5ISopeTAAYjeLzOEZCpixWFObCKEwNKCMOYkbzPJmHHBjfKfie+Rz1uPj4+1beddbj5Qjz3sePH/7D/2pnzt5bfLomywH5F5nxN0dNmp1JIsUyTKJnXehz7FlksOj4bqbP3/rLJ0FGEJgIEgzAMKenJyCAhIbnu85U7+eyPXSL66kSylRPu26g24+mc91CpmgTIOgZGjGIBcHERwEdgYM1DRsJgb0PVQ95SGrGbjRxp05iTeVh1JC5QpmEoqekxFEIoSRrZz7GsVW0Epho6WxwEnMgQFiwOBFHA9QzwRjDlIw3DvKlWammlSd4OrZyqx/6rp+IJhlHYaeiASe85BisCGypKQKo6AITZ8NyTqPRwP1Dg/wnMxaij5NqRM3UnM15OR9spxo5Bngiq4YN5570zQ+dJZ6ImdmEKvBksKdJRQ9GriCMqzIYQm4qZy5pSXrThyNB9CEeGCRHIC0FJ+dnfPHX7q8/t7uF/7pY37+dLm8umgOl/uTxfLx5XLpyw6Tw3axR2SXTx9d33/QNE0z328PD5R46HtyhEbWaQgcXUAkbNyte9M02ZvOZsLu52er1WoFYDKZhMZVzfI2JB2SCbMZiaDZJyEnYjgrWXQH3AAFCE4MsrVa40KNTa46ffjK725+87+mdukmxtkolCTYVArP/g2ionrunOFCylAmD4zAJsGZECv8DozCHF/rV5skkmE6Yo2JwUZWqVwMABmEwSNhRulMomDBmcnsOzVX612mm+bbqr7CzpO4wpWdQKU6sNPcx051upiU6p24cFOUTHdb2i0Yrwpk8A85haLhRD6WoQt6C8/EAzSKNYzftwYPVsWQ3MmMTD7khmtwUvUYqosssDVnMnOjWqctrro63THn3vzg20o6Ngmhsz+b1O88dFzVemvcsVFDIiIq9a5xaoV36gkbzFRZsU2NwjeBB9FuJnpzpbZ/GcWnvJYoSqdj85U+dMU8ciKCmVCvz92tUOGX2eoSm5fZ+xLZlbCJ0cZwuL8/afrp3Pf3prcOD3/pn/zGN957HMP+g0frJ2dfe//xyWc/+XK2SNwEb5uDRiumO1OgBnw0l9eT3XvaPHqiF8wkIIY7I1uDbBaWicAuUif4Ajg1i7hGCz+8OyH+4OzBg37oV3nAIN3QhciTxd5551/71kNpYq+3TXGwN50hBHExFyHekHWP2efu/sZ2UoyLtgaACuQhH0FYyd0DlfRAiUIp5APYIN3GlawoDHf3rCQ8BsG2QRCUO5NzbqZNMw/T/Xa7mwlgIp4n65DPf/YP/sEf/92feevNX54dJx0KBKyS9eScRSRbdmPjABsQ9MmSTafkaA9PurfeIZIYY1721DbMwTcjhC6FlYBZuW0S7w0cglM/DDQMzdOzOCh32h0k3UsN9dxMObRERFasgwtxQmaAx7MlHLkFwE6sQ09q2VVVNQ1EVfuXgxgyM1OIxEIhIjgVggXP6lDPJZ3QnJqmNasCsUWrjcg5IKtirNT6OH1PROZaVNlLrYndy/yXazKCW1ZTMzUdUj9YHjz3UHM3VUXRgjOH82RtOru4vt7bF/M8tWZ57U3kJDQZ0irSciLHzEFjcOqNBzOXrJbVdIC55QQzYjfXUqtkZjWzlLnonGvvrgzAXFMGMhFxYE2pcjuUg1sYhohcnFyIQv2yZHAiiGIOb2gIigR10IDYes/f/uWzP/rTz//qb//2Mv8gpfX5yS2Tq8uLPFyd6Xq5aO5Iw+vz89XZIzYN82OfxGY6Syn1q7VEpjZmTaFppTJ9wlOetmE6a8yxXq6vzy7cdTqfNZPQNBLkBo6X2Q1ApnWX2ia0TcnyDW4iRITMEIIpd0ElT8h95ZlZzq7tg9t78+N/Zb/7K8buFAsbkVMsKUXxvjd4L8mYiJEIyshA6SIZsREZj925eqLdqDoPr8tYzWlxzvXUY3RFgKOoH+88SgZcjQbqXdrNoAhCpDeSQvCI69r6rUoCUe8nOdcLJavF3nG0t/p/3uyIgqc2LxqmNjIqbj7Paymaxor0jUx3bP2OGKHRy+4sBZihVpJeImY4jCBSyNSZeNvFI5QGl4yFUi4kr8WibvgtNrZxayc/lHADyNlKa0lhOjpHcqcRHcVGz7yQiOCoMCiqfdQikGle8E3bwV/fbYyXqgKNN2rXcNNYf6OdX7c7ADdaLsUJ1JJ6hefuXBzd2K+bHwsdhJMX4r6CpvERsVYaKEXUGkBZXnYwlNtodiUhTCanTFff8+lwNJHFr771m199Z5lDRPjyV96/f/9ShzRpfBpuT+e9EtrQkgwqxDRpTW5Nuo8czL7yNJ+Zd66RGAw2GTAwcyTKoKfwK/d9woEgUGZf9JgQTeYn2ftuee/9q6te4KFt1F0Zs3Zy0a2/9sZ76p7XV3duH98+PZhNQxRHM6qZlam+ncd2oTY7o954J0KMkpJKIOZGVVNKm6c9s3WIaOQpJSKCOcypzKWZO2lBcOySZ+Wc2WaQgYIdLuabtxID6Tw3K9B+257+0I+88uTsH85nMefQhtD3fWhimU8IIagW2w1XYhfi6eWyYZpHcVuEtZGqT6bz1VUvADOrKmI0JSbUy2NilkYYTB4JV0tWtTwMVxfuLqqctJtPRZ0bC6GJ4NIdy5ZKgY2ZvFa6xImjkZZJ2JyQXN0950KkT0ljjCE0xkHcIYHMLA0iUeEIkT2rG4NABNXUl/YbRAK8FsGjiKAODIKltMML5SPAzmXsVMkVrm6UUi9DBlPKKaXeXcndhj6npEM/aVtNmoehaZrslobUxsaDYrV/3NrShtT4JLcT8kFKvavl4GuNEtfkzF3rpBwYgGm2rORuWS2raxaOwlypB800ZXYvCg1l2Le288GeXVVLsreNy73y9ZsTiMFSDLtXEiRSNrEBPkGgMGRFMzQzBn/zyeoHwvLnft/BX/nr9/hg8XjZRG2wfCcNa8/DLATAltfnnIfZ3t6qaQMwn0zXVytaDQe3jvI6MRgKEld1yhlqs2YiguVyuXx6yaazxWxxtCeTwnFCYSclCuL9MIg0jLBeDTE0NMZIIxE3KWCMRdKORWGuwQDpu6Hfu3j+Rybf+H9JBPkElMowIUtSF4B1p7kGFIai4lYzQUtdE2TYEWwtbWd2BZWGoxV7TOrmSuPUrHuVJhwTwdq2cGPnZ4/8xmzvGJDyLuwjKGrHmFRTs4HZArXsvDEmz6T1KOq6o1QiM7tb9fTmFOjGkzfh/pjD0dYoeXm38ckg2ti7eiWbr7aZmKlfn8DEzuzOOyzHNwiPR8t5o8W2efjW2z9bJ3/mo7F1hYLCHbKpQhdMiNemPG6Whes7UC31l+sJZiASIriLuhfxBHd1DlZc3+Z4AWxulQ6TFI6R7oQMROKuH2K2YlXdfN3aQhhVi31E+hDRVth5fAhHEh48TUkIABdyFphmAMSeNZeb7VV8sWwRRZFqdAd5jBGARzoOcwkW28PZ3qcP99uf/ye/df40Teb733rnbG//zdOjWTPndtEuJjxbCFlDIJgRecOzO4f6iT17cI7rKaBl1HNIJGJoGM4wKvzftGKeB5oFTCQ0vLdOOR36PMll982cyFOeT/aFAkUlluu1fe0b712f7b388rDqlndvHxwuZu7R2sDiLZFESTq4OTNrMhEhkR3Y/ea+Vt2xGNnMsuemDaGJZVUrCfu2cV74L2kTLINgbqg8HqWroQWJuUHak5OFjikHn7bttg+lmCOeRRzl9PgnfuIHDo+fvP8etzJpwkXO0xCCa7XRqor6nmRyKXkeZZXWL2AassVmDoOH+49w+2CJBGHOZm0wKFEkJiYeNDvJ4E7iCIFp3qJJ67VmLfTL+fpSXJH3aZrJU7bGICWrc5AEdvdE7m4iXGr3FkLAhEEmYgSoqWUkhzvHrEO2oY8xkkQnEREjlrYlYrWcWYpUkRbYlAcq4oQK91LAoOQei96qGZAysY8MB+Km7tmyiFgaUJVbbMiDu1tOZuZm7go1gRtjyAMYHMOgmcxFOFuGiLd5bc7eTo1JPJOSQiSyKyw4d2whMDtVQafBs5qS5v7yCjkxzFSJWjgbgYEYoxjScg33EEIWhrN7ZoKmhJyESZXduR5braVmuMBjdEt82+0hewS3sMGzy/RUu4tWWHmieOgcpnq4pkfpcnV90bzwscvf/7unf/O/71+4I0Pq0vCQr8718qxZ/EDfqfQ9ZvvOkTG002MPYbk8M1WKTXILTkBWi862TF2YNbRoh+U6L1feLw9Pb80P9z0gBCIaGOy0LUGz8zSOpRqPlNjbTGCokYiqszCJKzQ1iGZQY8iQB4mTx5fL+MLL0/s/dXj9/+3jfJp9iFMlQJsiOcdGN5ExRm5gij4ROLijoGwIOYpolj6A2Av8lorUHVy5DLwUlXaCE4TAQZTURy1eIoABJmfb4G/dnV3GGq/CpGamtd/LZT7JhLn49ZFhI5d8dsT0bzChIBNQoYEs0iVOpRLkBIDJvLQUq7sigxE4G2pNz6rkGFGBzTp8pPqoBKFEZDAWdsBtpHq5Ib9Uy+PMJAIVh6IInyQ3swxSJ3Myp1jOPpETG5ETLMBhXNSUvZwvpkL8TQb3eoUbf29wFmJjkIDFrS60UsUbFaQZ11KHERHIKg0rthFM9WiFBHh0eQ5mIOxmV+XrFVR6yfvrdXgFTG269xvmrppWj72EZ5Jg3JzuLf9IXu6i776kYi936w/QmpMV919kDGr+kNl580G7GKW6I8HmmYhYKHgAwGHq7sR+9276kelHOPoXf/lrD88uJUzefPPsK7fPDk8Xs/Zycve4G4YQRTiIkJk1gvnUbx/44UU46xRtIg+mQiG4mdbIz4hJydXhyRAlI0chauY5Jlr0py99tHvywdD1XCZ+s1LDZJQ7eu/+k2W3ur4+Sh3Sc76YNwtrYiNJgqszBxRxW7jmRKOI7GY9x5gDVNkMufA5mFUxsk3Uid34kWgs6Wx7zOMy8lgB2f5LqTSEyHt7892KTBQWOe3Wj3/wd37uZ//44XtvvjebsaelDocu3TORY7nj5iQU4GpZVnliMOQOk5N5gyfvfeP2az9p9JhSSt62efDIZkJOBjQh5JwdcDMRMQcHaSYTV4WaM7l713WC4GSBIZadG2YWjmACQqkMWwG3AEIMZmkaZuRMBs1DAriALCxtxgFhZs7iCATpi+cWKUpzRERWaGy16NAUV2pmZScWRFjR2y0ZcLktDso5EzwBAldLqppzFjb3EsoW7QPHmN88MylQF1btmb9sKkwbhjUUMi8wM1vOrgXRWdIXMiIwKRukUHt6VrWcy7Zbr9eaEjQ3O2mD6jhDVRp2tGkbOojUiULjeQYkGBHEXYnb0M7SAGgiXEtzWy0C1OW5kHYP6PM/sv7qB2+enX3U+2TXsKF3SxxYU+amZeLAkhM1bZs16ZBilJJmFN5BKPqhZ+H9xQxDv7w8W61W8/l8f/8gZ6R18igSJEFd8ibUl2CQUqskIPfIohyKuokDgcyV2AODlZVKV59c2BxZqeuRb/1EvvgHFLshZzipxDCkNIE8S/04HjH0YAUlUHJPRAOQnKzWrWtyZFRInrGZsCmPwnhlgIuQF3nA2hP0Ev+NDdGxr+dMlWyTCk0lHLsXRrbt9/pYg6zAnp3mLqiUIVFhyl6r22ULMZHBoMVpVXGBqhlhxlwFKnzbytyxYNsiSi3daxmrHVk+tjX2Dz3Ku9YyAKhgFBzEhW2DaHsEbkwPY/NPm19ppxG+6zWr2IJXeHm1hjWYRXlJIYUsDtgr+ckNsYp6amoEUYoGhQ2TtiAsG+cLAeiI9Nm9RB9vUrlYqb/XJrjJWMvfcfv0oS1IDivTwLYtPuw+4cYCuxbWz4r0Kxx446VWMsuRBmSM+7amB6UmRm5mgXkyaVQnkfbUlt//3a/MGvnSr7/x1vvn6yS/+tU37j4/m88Ojg4HYSOaUChLpZNIc+OX9vPdxt++ptwQKxxEAjdWcyODgIyYMZgP4GU/zMHTJmpHYXo4ayfeThfTdnV51l31MFd17zU5TQK5yJOnabV8fHnRf+TV44+8eotu7TdJp4ui0c6ePWcVEZA7HKq7OwY3netmY42J77YAteMObxSFvD5KCcHHTbg5dV768MyQMEwX6Ud/4rWH79WX56FXDJ/73N1//d9++f17b7VhnvocBRy6bL77KTs3lVlNyVyb6zR3BlIn7cS7FWvuAywQoesYnoIKTTa2ZySBEwrMnEmNhJvoSYfUA2CSnBXDiliJ3PKEZJDQeMghNHksqjvBKDMIIgLSqjnPwtGCkZCZQWtl2swyklpmEnclEujAHEgDMxfZ7U1TscSTRfTKc3ZopeU3N1WzvJE+d6ail8fMmnNv2bMyM9zzRoPFXHcaPZa1GtrNF4EDCBvqddlNtrblvp1jVRj8jM0tm6vB1MwMXoC5EgIF8RJw5MLcCRcJaJJ27qSayrwfXLQ4fkJtocGK3g45qSFIa3Js+X0CiER9iHBun8vpCeyMac5ymmwFEMn1pO36Ia4u7Q/9wf3/5r/+2vryrg9rH1awATBPGcIwpL7vVutbL0xT1w+pmzUTdzdXJ3FnymZOsW0a9u76cnV5JmFycHxrZeh7hUnjPDEws/C21jZjoGrJOOBsyMmlAZe5mhDYvTDKOSEbnDmrkzOEzGnd4fL2Zyfvfm6Sf9Xl2GkNz8qUvQVSAN+sQTvGmzvCPAhcSP2dGOJUWeIdIBC7aHUvLqjcyZWkURzJvTaDi1EHas919FijyTXf3RvkYBSNZtq4/DKmW9C0hB0U1nY8Z0MvujHOtTrNYyexhhwO582JcIyUWFRAkcVp1fEplAiB7MZ062ZTgQra64YT2Tjjepi4oJsMYyGQOBBKJzLsBi9AEYAqaWGRzykazs5cNWo2n7JbQB6HgNkJBbtlZqXkaXU6xwtKuJQXfHTVuPkY01gCwA5iENGWvWHnGTenjLATIt0YJ93ZV2P9fPtDMe4Fk3HzImgUaa7p9cgEArphqckNMM/qWUt5b5MxF7qvctkM2v3E4n3LM0siopZTSsUtNTFA6eRkHkIkuzubzeyXvvrO+5dn5+krX33v7t27x0dXTVy0bVuCHhYPYZjk5iSGl+f6z5Z4mtroTqQ0EHGZFSR2GKBOcCTzIGGdNJpNYpgvFiEFIpfZ3tHR2frpg+tHj1erLsiEOUNM1xxjq9neeu/p1fXq4nL1+ut37tw+2SNvI80sEDuzAFBVIfhI5LNZjfprxW48G/p8+H49szPoxpQwjaeXbHMI3QEz1aHvc87EWznCH/wRmk5Ofu6P//Dbb/9G43eAxM7uapbZt8qro393uDMpwErOOQzeognoLcByfzm/9VJKnTBPmmmvvQ8tDMqZiQVcYFzuDqKk2Yk4CCDmzojV85kx4Ka5G2CQ2ABgci3Rf91pRS+P3GFcaqdEDhHRwlhXyFmx3UIAnJ0UigxmNguipkLFgNbvqETCHErdyLSwwMOgILOsZlbYW2tznaFams5jzY9IVaOULIZ9bBLUVuTI+ep0Y3Zzg9UQ4mopfKzswTe0tEREMFUjd5i6ZR16H7LmAeZEVPXJ3VXVUkZlrlYAEmhwL30odTfLbjrig4hKZXOTJ6mCjIg4nlj+IEIVAkqkGfN9dNdiK+IXnfZB7xPa27f3Vc+sRb/UwwP/fb/3/L/4xafwhpHhSdNamv1EINPu+pocsQ2riytNmVsiV3IlZnctEKTpdJqH4ezxI1K9/eLzxqE/67NbnE0oABFkpClhxBHmIbhDCcaleARChvkkcimomjsLEzsHckMoQ+UQAkglJ3u44Nnt39fc+w2ZzwdeSs45ToOxMymcduaGyI1BhJFTyCorf1nBsIVfFVFeFy0DSUzkZGKggtNjZjMUjEjZvxg7pkQFrPgdzHXpOfFICekVClHS0pr7Ui0IA4BTlWMaLcnoU5kqUKDWO2j05KNH3GaS5S88GnkukqxUhpJpJOcw34KzSgzhmyb8eAjq99kkCQCcGFwJxcakgUpfVojGQhNk10gCm5fc+OPmaov0pm4+rebo7BsiDioMeezQMp40UmOXQa/6y4ec7+6nlJHumkuHjSPcWWvBWNi0sZSxe7nV2/n2LYkouzFuiN9tqhXf6TJ2XX79hUG75G3uzg6zvLW8O5nftuw8Xv92BKv+U20wl7dSVREJIYTFcdPqNOZJM23aebcezs9+/WKVv/GtDz7y+v3T4+Zgr5nNTCKEpSBs2uCzKM/P7Sj4wwHUZnaGKQOQMi9dAmgYYOaaxQZnuEcLLU9i0zTHyLBe9ognEh/ee6db9xzE+pQ0RM0iLMr9w9XTy9Wji+UnP6Gvvrh/cDDVnKatTKfBjaKEIJRHLPjmvpR14LBVwhhvy2YldfcO7lDfbG/g7my3byKpelbVzAILQYJMbNjWIv/En/5+svD+e19p+XnzSyclFoBMI7Nttmx5PxrbU0PAoLAsSgEx2EC0vODQ83PPDau8aBaWfU84k5qRE7v7MHRaM8AxFQZQdgUTN7F4NgZzYDOYKquaGJmpqnvPEgE41/n2KsWlEIllq4uIaDTPdabdNqB73Vgxc1fNzOq2PdgV2swsXKa2yugFag+9LKyTOxXp0uJ3i+k1MxqnIHLOOWf2Qgq/BeaMlzEe0pHOtzxkZ8hse4uLKot5ITJkEDEbnB1ayuNZbRg8JyQl1xHKo56Z1LgSz5mXQN/dTQ1UaMXGiplvQm8iqbp7dYZCzXuOC+um8OTO4IycLAC8IFNMjpUTa6ugF148JrtKcr0X6foSd0/09GB471HHltzWyycPJ4s73ZAopeHyanH7Npi0GwAvTQdXk8jq2g95//A4MJ09fDIMw+HhMZivl4OrTmbNfI9SThcX59dnF6nv8Nm6Yh+8f69ppwjRWThIjLFtQk5ZmEAxdQaipmVFcYVetJWInMwZ5GpX/bC6833zBy/O/AGhDd5kzpx6JdkgXcuDyYWcMDCUvSdSQmJk4kwwEKiIBzFQKB9KHgFGGVC0mnuZGbOPSI7txihHnkBbwcFNFF7rgtsdNYoVfsi27xjs0siuWg5OmyeTMGmJSktlmjZgZiIUVsZd21Irzzu9KxqT3XJ+R0z1WJ1jIqvAqoKs3z0Lm29arlACkTkbqLTBhWsdiqnkrJvPuvmDsctGuXp7kTsf4ZWPu37xit4oe59gxFZKs+bEN161S1px082XOYxCyOruANl3YGmonh/ihJ0PHd/Oaoy0e+ydwCVQ94qaBkA1Z/8ODrjej10TVpzojgtxaDEXqrrVId5pGLgagEJggVH2py6QWVkUIip+d1um5jZIboNKbFkijL72jbe//JX3zrX9+jfe+fhHbl2fzGazLkbhGMyNPUyiTdt4OvPbUd9YZ7RQBKIEKuwXxDsZpBsNgwaWEJAs9ZJT03AEep+G46GnMA+3X5TH9z84f3oRhEKwPGTAiTiG6bL35fDoyWV3cfH8R1+7fedkCjVCbJomhAjk4jD85oOIymrc2Nn1wGwnuXf+rruF6J2tc+Npu/+UdVlm/FPuN39/783z2JjQ3PGUKLizenKKFJOZYBPp0Vak0r3iN1N2QyRGSj6cn9kgs7vPLx+drfWqme4b4iAdvA2mJTCPwoXXwt1D0+RhECIlE5Hy9bMZgbUwVwEF3V28nYAQlZnZWbh2kUuZKedh/I7MzLBQGJFzqR+7l+Y6RsKq8pPW3TviLJgAxOghhMIHU9MUKLkwb1a1WC5FqWeIlFkIS4mImDnGuDsX8OEgvdwLG1XIil0oT9aRwWMb1Jb6UK0CupATk6VkedA8WB7IlWFwsNTxX1cj8/HcujHY2TUDUEtU6fiJGKYGczCIxFlAAmcj8/LV01WIewhHSPerdU3nUIjMDSmEGXBfc97bu/Py6223fCRk1k80ZljbhntsZJ6R1v3Tx/PXKPcr6vt0cdm+8rKqespCZEy5qjmZZZXYRqHcrdbLayKZ7x91g3VdujPbbyPS06vzD969ePx06HsWwWer3bs4P2vaNTdTlsgxxBh1MidKMYowuj47S1KWgDaCmARSbBwYTEKENPj1dDI9/t1y8Zco3MkylXxtLnUGmncQzqbwTG5sRgR2K4M6DCFCGQcqMypGxlQ6he4w9uBUtEF0jEGdKDK7Wd41AtiE3VRLnTtbyLyWs92rm1cGV6oy7DD5l+x0Y0nqy7lYkprkPENzvPOgm5CgEVNUT1ClVmUum7hcDpUPYox0jDDiGo8QiJwZppucb5t5USkABECZKhaXUcSYuY4bGTjc9MGbM0I7jxIo1xb4GOHvEihUq0sAFWjnLvBo13PXEOY7GtLN0XYGmbhzeOb+baMU3tYCNu/Om7lr1NuAgswCFQ5hWEF5gdghJKAE29yq3SjeaFtzplLXuXmpNmJwCziFqtito3R2s6rp2Ok0oArXoFqO7RAWEVXtgdIZDUMbWTMno8W8vXO6+L7v+uQ3vv3gYu3v3Xt474PHd2/P9xbtdNaKsDsLZaHAje/P7MUZZpfWaWMEcTEqrGUuqP0MM/cht7FhwM1lEjPlS+0O2okQrQcO+7dSmA+E9m44mR49fu/tLg1ACaslpT6EsOyHJ+frq8vh6mL4zCfvvHB3DyFTbAPYvcBkNo1b3azqJkbZueulabrdBLvx8jOx8+42Ki5l8xdzAhhmaYAT7VLpzufTPKTYahqCO4kEYK3Z2UOpeRmKM6zlTZRyl0pg7dUTFpHNydZXzpive53NJtfXfrF+IqHd298fHl8Zk8ODRDNvRYZcNLoykec8bM8AgTk4OZjIvJI2qTllV1IiL5DnWjFy4kpUU3CFDNkkrwTREexmRX2kUHK4u3ssOlEAMYN8XGLKWV1VYyjDhQ5xd9MCK2ciUhjgVnE0HjmW4LKEhmBicM65MHhvrAM259y3rYcNNAcocmSFpPoGFz9uRt9UwAoAkiKpp2RDhpq7U6GEKO9cikaqpkVO1U2VNDGDRgFaTz2gtVPl5EJswTi4F7FMAWUM2UCxvaPpHsDsnHHeDoma2FEgCj4IAr7ne+6c7uWzBxdxcmCWzJUnZ0eTk2/bHgTC4KtrUOacUreKKU/39ruu05TNzAnmCnJX9aztXtswnjy8n7rr41t3nULf9fN2Auourtf377/XrZfTo4Nb+4ft/gL4almWvZPn1cklOIsV8dekBFt1uQncJzi8H4bYEE1iEBB5YELpCzKcXcDLjOntH22v/nbAmmhgVaMGbl5V3jdmNxGyVKdroEzsXBOXOknixODyQxFXFyaFOY1Vvc2dLUVl5lAKVDuqo9XzPQMy8nHzVJPrxSO7QRlh3CRkZCBQZc56xsmWFsQNUowRkvWsm9m0ewE4zJ13551KaYA2DbKSuxdgw3jBtbhMGFuKNxP98T9w9eMlkzYAKIwN5ZAIUfkcAYgwMnrenEQyKyhObNLCmxXC7ThoeXr1tDe+dLlB/4LIBPWfyo02dhBXttt6V8xHIn6irSTO1p87nLa1y000UW1M8dagQOykZQ7jQ1NJo1G4Wff4jo9NARljulAjqk0iVZpqpAARb3dFjRWYNyPO48B1+fRoqsw8mYWkw2Rmr7529More1/8jSdnF/r+vcfLjz6XUlLN2WMjjeASKTrZtNHTKaYclwneZHexgpBnrgBQRTKdcGNugQkwVW7aICIdpSAU53EFyroI4W6h/jhFfvr40dXVNWc0wZS6lEsRh7/xzSfnj8761YV+10t39SSp50mcTSLzrm2l3eV6Zv1uOuO6MpvF2V3e3Vsztg/GzHV09bCWaJX0wul650MzSZeGqK4AqfZACBE2NC5rLWQRhUYH8BGdL8RO/WBuPg+ukDwMofe0kADv5vGgf/D+rbuLi7eefGo/vtVMUko5+/X19cHhkWuWGFPfhRByzsQQDoUVnSXAPYQAq1vRYaYozeJek4F85F3dfFljYebIkksEI4FQep9lUEBAhSUZxfK4mubs7hKDiJRiEwGRBe6asjKpqkgBgLBpKqcJhZBCmIXLli5BYc4ZQM5ZiIsrVbhD2TFGpVaoa1HTX7shs+NbiM3GvLIDsr3F43lR11rHRFLLg1s2MwrCJCNelL1+2aKLJIKqiK6amKpEDoeArJUaCcIcXNhVSlsQ5u6Du8e4nwGAyQnoW7+2eAQ6ZgfyvJk1P/jDx8PFt9vpYrBhMo1xMCR9+Q5/qTbX3bpuGDpLydMwlbB3sP/g6tKyqiqYVDUQa8qmNm2bnNbLiyeRw2w2W63XITbCtl5fXa1Xynju1Y8eH52qomghl8ed28d9Fdst6sg5eyyDImCJjSgwDM7Ow9oRIOxo2SybkAsB1FLocx72X9D4Gccvs5sQPAxkpYG1PWKFAAs0gDLxwDwQO7GzGEuZ7Bkhv8XUC1cQFBlICsk4jbfYKjpX3WXMQ0rC51yCw5vmYEPL5QX2VNHrtXVQHJSVSFkwOoXaPNoYhG3VkrY2vF42nq0815HlmsYbiDiwVa9hG9tFO68twfFmEW42OX1necBcHRmVsrtwhQBihD3Tjcf4TiUoeZY12cxYxihkTAs36CIHjEqv3nbeanujfPsru5cZNGwnbD/02AQxCg7qNhbsFFAq2oAwZadCXGX1YBeyFsnjDii9aiErIq/CMKuVbXcCTEGMMsS7+9kVgzAKAxM5GGbGN9YcZeTWNIEy0cwsE7mUCQFUFujsLi6qGkhEKOfkI/wqhADEG3CVehuVQ1RVJptO2m4221v03/OxV37rt95fdfL2vbPLy8vVep6TSAPjtVPb0DARvm7soKEXYPeEJ3AjM8C8CNRA1IPSxLgl5AYabMLcEs1gh4SFBsrkrG3s1nuTq9VBO53M0ULao1mDN791vczXqtKD4iRJ13TSB1y+f7HuhqzxUyt6/oVktxfKPlEO0SU4YOxBB7BAc7chJxnPJ41u5oaXZd5EymP8tBNLlQNMNP5/QdwDatZbp5o8tZ522xYDU0NwIVFoBhs8KTP3biRETmajaXBxzR6FAIumZ3r7So3BLQ6uwpmkgS7fn7aL5ekL07NHj965+oMff/K//9/9+I//T/7G8PL3fXQ4/1/80YM/+xffD585TblvEJIrFcmZIsNFZD4Qc59VOJaRaDiRZZdYGAdJc5V/Y+pzJmKJQQY10sRKRCU9JSAGBjjnnHIyMyEWEZjlrKBq71xNqxkrDBWF2Q2kZGaWByIiYaFnY50iKCIhuioAiVw4cCpxtHlkqejPEZNBRAVmSQSWQESqSlaGdL3IaWy2uruTsBWxTmImGnJPROSWc4cEGzq3LG5lDgrV8DEZOQymDFMyZCsN68iBOXBobOgciQRuA0OLNosRh2YKzzCDDuSDsTFUVm+nw085nwBrRxY7ulzeO9p7mfwlnx/41eMf+7GP7e09evpoGqJGNIPBCEMvd289FJ5rbtUkpqdxlbKaJshsLwXTlHtNTdO2yVaUjDlc2+T0GCGfPT677OzOK7dXpG7WSsyaLp6+lym88vLHGpldPFrJrJkebDewsopUK1RMs+U0bVtiDcGJaN0rNyEbjK3LYPhgOTaBQQZ1tVUOzN2RS7f3U/PzX42BUkYA3IhZw06iRZyJPVjLQkQavYm1H5gDmRQ9QXYnECKhpITmVvjFinEnuBYyF2JhGCCFnHiMrZ1vkhjWko87O4MJSk4gJiYyVRAJuDBoWTHVNVo2oJSLHACozDTCHSRsRZXYykjW6LKcQU6kRk7ONnKzkoPBYHG4mRIBFIiEzMZyOUY35kZwl+I+IAwXdyvdb+LaQoVtnbc7jJyFkBgsMAGTkyiF4CBnJyYKhFj6soYk1ASujNkFe1HDF7USYlsF5ZEVATBnhrCzj4BfIyYiMSSmMnjFBi2pdnaD7kyK3shxmEFUqCw2Lsm3e3GMRMZfC1p0bMqSb6fJNg/fLRuPTb5y871OqLmq7hrsErCwF4xbuUDHuKK8W98EuRWyM7j7kLqWW/bCrViIxELOudTiVVXHgcgKq3YaAQvbcdhynT6m0SLUtOFgb3Z6enx8uPfug/X5xfL8Yt2nYRi61FDDUkopQt4wzRuZBhJDdtMQCtOhGGAGc3U4USZnNzEXcGwwCzgRP3Zr53a5tOU6Uku6SEZNkttpJs2ZHL8W5YP7Zw/uDSkjc9a1xpCXHhmPLi9/4Uu/+cHZ08999rVXl92d09litndwOMeQZu1EAmdSDmSOIsRd8tdijp9xrrWefFNI48NV6IJGGJOvUoPMqnk3ndp5AVtlbnGrk4uodRgrGW9hFCp7u8ZGmaydLt56eDuHNpIu1/1idnQecv/eO8MnvztgFSZ7/MbP//t////wwbe+en0RDg9m3/6lX//09/6RP/Qjb/zVr04Obz2X8zW4HAmUhmixA+4FM5SspP51+rFok3FpQZlV7TSFmVnkaARyrWiLHQFHZo6xUc01c2cu1CJc/G1BxKCKupSvZmUoFlCHiARmG0nHdpediHT8u5lpCZdQeD3LgL8Xv0vm5tndi10tFEP1FvvmYNbZp3H/lxqfkXkpTLla1lTMh+ZBVV2Tjw2/emGlJV4suaqZuVnhQh6GwVJPOjC7pQTKMNONFSmasxxJGqgLDzm5lzEeGMue5SVAjh7WZuV2bzpc47kXDr//B5qzx0twzgqRjm3PyFTT4V7/8nOrN78dedJcXz2dhUAErAe6faAp8zrlbiCJPTuBNGUw789mNnRXlxfHB4d7k/1uyNPYeOofP37Q4vjOnec7DethvX9n0swINmzMVmACC8tYzwQ0GguayEwaiCYRfR5yMvJp+a5EpJUYw5i5aTHk9DTh4M7n9NEt00dx2lAKzhrE+SahI7mHoMIuQiwIbJsqdC3ZjFgJr8VFr+I6Li6AK1mlM4S7oxwBBlfK3hvlLmxT3p1UdawYu/MoWFRaQ6Xl6Fx88CZhrsd8tBW1fE1ExFzmIovTYiqx8A7n5fZCSpRcyZwA+DiQty2M36jq3SxoE2Gcs3rmUa/IGSgzgSVyZTeQCFWnDQCBuLSFMRpD3kmOd22aUdU82vmUZwrsH8JF1TyZ4QaqDug7GVh2HyWFUQL3EMbbTSjTrBXtZlz70dsrK/NeXk3s2Hqti7qzPHXHwG9Id9xcuJGupXzjQuZVgqBnvrYbOXv2zGo55zLZ5e4lcjGznC1EMTXVVPE47lt+zRtwpMJyMnJtMhUfPJ3G45O9u3cO371/fXXZnV+suyEnzWZG1JjlQrrSAPPY7jcIaySIkpEzK5OOqQ+7gEbxCETCAeGu4KWQT4IF5DtH+b7bg+Uci9b28zqg7283t/aSoT2Jp2188vZbq/UycU6rpAqaEuBPrvrLr7xz7/2nn/3Y3U9//MUXn1+v1/tHBzNoN5lMRaTveo4Nsm6+qe2MdO9mt9hxAJuW4eZpVAHGpa9c56q3OF6w1ZP7zD0i9ZJuw93r/FyFy7obec3MaihNgLtddLPffvoiN62l3iOs1/lzn3zyzX90+Orrs71bj4bHf+YPfPTozsFXvvgIZK2n87D35S++/ef/3E/91R/+z/XkQKBq48YfPVf54NLcslILESdmkLiTubo7G0Pg7sxBgripFVZ0YTIa+8E3VgwGNd0AWtm8RHTV3pmByNQgXGZ+KtuGe9FBLLuxFs4KuGk8+nXFyo0o1MNmBau8Xd4RMOOmxAFwz2pMImIEcwvENrLv1qTDndRKNzfnYUvi4ZnMdRg8DZ51PCCMseBW77VltwxVuJoZQQnKDEtK4iAwsflQASrOIIKThInCDSy+Qs5gUktiA7cnnt4nRJMB+XG2q8ned3f33/29f+Su5PtqkadmQ4zoC3DEzCa4/J5PXb79xi2jp8T31a6D0NB1cjjTzEPqWBAJ2ncRnFLi46NB0D2+SF1/6+5t1xyAvu8vz89ilNPTlyyKxNw2LQfOyQLCpgZZVtjM2VF3SGhSSsgIrBQoxjiJkVserDOFeTX0m1ar9nnSzHrKT9swmX+X09+jboFmEHcmC7QFYTF5IA6cJEDqMIwKO0tJqLKNlFIYMVAAvE6UluNUekKKXflX3yBfnCtv3fbbbexyUR+o572Gp060wRsVI4BtV4ufnWHZ8TTVl9cL3F5Ied42ZxufMZIH17kiAGNgseOivIYHY8BegwIi2/CRPOMINxfMREIQCJONp6eq5PKIzCcGBNv6M418U6Mj3iQqtvP+xQkaUP4Dlam7AqcgozHQqOl++VwvnWna+rhyRbY1LDQq7YbSvh3T3+348MawuXvFau/+vQykFoc+hjLubsRcq9teAw15tuCODz0Kwv5GzFVs6Yg2gjsxqaqx7CrPM3POQxn/cfdaxCs12EKnUi5GlQocOkaqEVvlaSE4i89n4figIfJ1r0/Pl6t1yjmrqmZQaR57EpWW8zyKXHtHHDoooIZkLkSREYli2ZfEwjoDTk2f0+EkrA7EIvcmPjlEy3a/T83eTA/lvaf5mjC989q1LFz4+GWlpw+Wjx+hszCZ5jxEYYeZ+gcPL+8/ePzWBxc/+LkXPvrRF5Lmw4OJu0+nsxDaIeVQKiSlZ4BNw/tmwloXxMbT96EzMLrwoodY1r4snYjA2cx2x9WLg6G6Pd131ny7g4k2+4oYyawledSfnqeTQGnIHGPIwyrceQ5vtPnrXw6/86ebcPBDP3E6dCFgX7BK5wM9d/qL//hbf+Z/8/0//t17v3i2nDZTo1S4WGHmxE4gK/SoYCcvtSFPJKW3BaZWVR1MTmrqrOTBzFgag7MzBSnq5F6d5WZRtCaXxboxUOrq7lSoKkomDCr9udLCUThMNY25M4cypEtE5FRqPaMtw6ZyVAxk0V+rxQyvy2i2pZTjMVMqvxCwU4SsAbhpYmZTS3lg5sCsKXvKpsmyjiTPREIl1eZ6iNTUqiCOOVxdUyAnpt5Vc4a7eYY7yBhkZDCYSQiRQiH6iOxqTnBFWkt7mq/dIYTIMO3u2+HnP/t9T1//SH/5kOJUjIZADTwROsdACN3V8hMfWx4dtucX++oPpE+e94wmi8PJerhIyByIdUAih7jT5Gi/W67WF/3B/nFsRD0Pat16mB+cTGcLnoYsfTMTdrNkcOmyYVTUTINRoELXU8r+rDBjNyIWNeREaqY6TKaTcmggAIEZURADiiZ4C792Wx19F33wxbn0RI1QDvBd3ulWvIkkkqJEERImYZLgzAzmOgvLIBlJhEhA5LY9pXAvsuxkTgHuTla2C6gOp9RtiVrNcq/00dV3VixqcQ2l3sNcnQhVC0AjfLrsXYzMivU422YOF16IJwkkDMs1FthuzGphAaAoONgG9lwNy+aQVfpFlMIoygEseTaoxKwoSl211Ts6Cx5ZJUqD2HnTJRaMBMql8MuodOXb77JTGiwRvN1Mv71eGnZfQuysVNItLYe9jIaXNnU5g05M25dsXu5eJPs2350CYMUx0061GWM44+Pyj+XiOqdVQvkCmQd24rXakcPIj3jD+u/+uk28xi+6zTnGJ4zxqQVyEi6o0U2aWxxDzhiGoRD0lBvBzOO0iJsVIq0RVsAslcsN7iASZhahtpW9eStEQ69X113fDznnKpgq41WSEeskmGhjxJKsEKIzbdk2lQDCQuiQ+floL0a7HVaHdNWGPOWVOmaTuN/6yZoHE20ni+fkjYd8JY0uTsSsg845PJfkSfeBoyN3y5BW+jQ4kyX86j/79tXF2cOz/rOffumVF/a7rjvcz7PZjHw8F7WCmkf434cKU2PNvySrmzR3DG9185JNfkmlQUiy7ZdsN6jWMdcSAI63r3A0wIq2x5YTlZzNIIE+uDxMyVs1lQnlXgkabfbix/O3fv369c+llYS94+trE4blp0kROX3xtx80cvrp1/e/8Lcv7RNz65KIEYmXXnzRcitWZqRFQ4k1jAGwFmy8GJHlDGZVdSeNBpQhHCNnHxWmaFQiA2oPrmKw1AFsOK43C8hWem+uNhQb5+6ajCQ4kfPmOIgDxuMGjqF0f7UIWIWgqlVh24zMS8OY2HkMqjZlNIyVjJ2wyYmKbBgsawjurrDSyiVPGVkpm1t2z9jE/ihERNmtirvAjdycjM1A5GqV/lMLQYcyU6mblyKgCbsLSSQFXAhWp1mHVZi/Cpq6E/tg2POrZbe3+q4fuGvLr3CYwHvOjVOCinMiImfXfnp4vPzc75j9w/+hDXyQzt7O4aXYhqbZO+9UDP9/xv483rbsKguGRzPnWms3Z5/29vdW3epT6RMSQgyBJBJpIx+EAIIKvoIGERDyCq8ICHwqKvohL77SKCIKCgqIAQICgQBJSN+nmlTVrds35552d6uZc4zx/THX2mffW/H7fetXv1vn7LP3Xu0czTOe8YwYg4Bw4edi/dFqz2eyPTbVrFcI+XnVkHPc6/NgpbfaN5Cccw1QTqamFTo0OKqJVbWRGDogQmJCYMXoPSupEHhHziMrzGbV5BAUSQ0VAVXYWc9zlpMr4mjg8obHHPHEa/Dyf7P8IitnDh3Csn5n4bVwlhE4Nu/YETnnmBQdJaXxBFKnBlYASKz1pfnugC3q3N7o1gan5agGGo1SszmCiSXQGwCWRKywQ0gWJhRT0MmCykZAgGoCS67xs/SwICYKT9KFThFnalNKVZ92d+0PS1F+AoAMj9qQoS2LAoC2paLW+96RB0vSXhZERLJWFhOTWoel2jkotpJRXTqbhHG6gIZgGaldsM86v3MUb6fAog1o7wafF+kyHTEzEkaV+i/YLHb47jJOsLiWadke0TWOhDhsUUhAwI6Mk2CB9GKKBNySCV4C+hcWwZbvE7bRyuL4DTr8WcC4zawXUtNw16CB1HrVZmSxQUQRaBptE7JkGZlDbMwMjqrfpKoIEFP/kikRkXcigiGg97AEvSYRMiboFRkz1qGp6kbENCa3lPJwDw6IwJEWiD4KAElURPSIlEoNlLqzLbN4DOn+As4WdrInay4UWnuImQQuGokeqDc6Fiez3UnTL4br82nezGyaYeyvAhBYv1flJxl2d64DALIrg0RTp1SVZT/rferJnZ295mAyn77onvvvWUWmEOpBv0jnnhJ+otQwcLccGiK25QZU0CMUenl1LeBr7VRPF64YEbEDWtMWVSm5NhTsRkxriwS3nEqzdpQzIpuhM8Zs9OzNXOqqyFdYFDQ0lGntijOnDp/+xOHlZ9Gi2f1VRUalRTQEJ3xzJ9+7PX3d6x/+uf/57gaOYYimBiigmEYIJIZzWxztQjfpUhCBBhEJPBKxadf51po0INJ4VJ4QU0cMXYqfXll+bI5CivYpbws0y2V4gHas0NGiJUJkWCDYkEZ7tdNLQRFMRBpE1+Y07TIQEzAia+fhdJFpArcNpJMV6Y5Q0AA0xgZFApgRM6i23lcURBOZGboOw4XXb+u+KmoRJIJ1uTIAJOkJ5yw0XVwmTBAlopIKsSvMe6jzVisEReMcKaNsVeuxqhrMIU6bWV3LJgNFqzJsSNaUp4YERqSsULlscDgpP+dlB+//1Ki82JfDOZ9BclnDbM3YVDRGYEeNKNLqxkYzK5ty3h/2sl7fKB8MV8DIHKys90JoTOqyCaEKfc5yX4BnynnpAUaIQCZEQILEJoyAGEUNDCE64kHP9bJ+KRyjNsFiMIlkEecRynlEx+M5jHq4DvVsxNng+Zv1s82ISCOTeToykbmzjC1n5xmJhQld6lWlNGCBkNpyYLdcucM6l7BQbZOVVOhaylcElUyjRkm0fdQUBxG0N4sIOkRTtc1quX0OUcFIMFUC08CchePvMuPOJnfgKiXKjukS0G2d6zxKZg1bMfMWLUNLHVRprCEeYXUArBapxZa6esoiH08s6Ha8oLUZ0Z0Ja6qGpK4/MMJ2fGz6Dw0oqfosTmrJKuJid23jZGs07spe0sETdS2vAAQGZmIE6Yrg3UjuXRsmy7SwCUda0Mndpt+SkYYuG25buFJW05Fzkoxad2BHF2I5mmg1R5f2b5bEN1OYA0cJPianubypgajGjkwrzJy6MXFpIyLvMtFUayEzFJGkYqQaJQRVcQm2TodN1AlHY0LSVROwasAYm1A3VWgkBhERA02ZE4AaeDPN0LLoEjcsMWaIgDjpzBEgbFBzvu+fN8QT/Wa1F3rUUCXaNI5DOa/RLO+NUSdD78F8Xe2NeNTjDAb5JJDrZaaZ16zo2/F+/3D/9uTwIMsdiJYhgGFZz42Lm7uTP3nPp8bjaVU+VM7l1PGVed2sDgfM7Dx10V+6Ja0o9JLbSN12QtiOgl7cl+Wfj4i7xAjcgbAQY6zq+RKzXK0NxAGgU1Fvq8XpEHThp5ITz3E+1wf2JhsIGhk1RkfkOKeoMNx0x+9xk1uzciLxpXVZeTfMoSfTEoEwh93pzis+757eYNLUziSqWLsGKMXBZmBI0ArTmGmMkPrU0RwzEmlQ6FoDFcQMybVVNWvdKFrSbKSEKQEkgFcXEtwMXQGpffYRgDCpVYAZtBGMdr925bV27MGRP1bVJgbsWoBEo0ogRCBJMg6tFycCUNWILRdGqIsAVNPgmKidA3ZEptEATCymIi61GoYmojEJTLbOFwkJQUTBgraePYlgG6qYiapoCAjRgUosEZEgAILGmojMhFABAoCJYoY5MBv0jFI8JqhBVSnb1ObQbNX5Sm1m5Y3tneO2YcxOlRgiICobt3oBRBxmFW2u1a//Qve7Fw9sXrmslj4LMTYEZQOq4FGrarRxzGXZ4e3bJciq7+WDlUZYKy16vjdwTV1KNQnzKu9nLlOPEoTrScSaYKszRy1n2MiA0RiAhQjAs3dqALEqQzTNcmJUcugQJAMGJkoaa4AIu5Ppzj6eI956Xhyd/WvVs3/OtuPckEnIiXVNT47NE3pH3oFz6JgYgQiAxJwaMLYtrahtqVKBOMkswKLMhx3CnNSUW78sZggkqL5blARopMmzdlzaNqfU1rgSJhXShAZSa9aBUuvCUhMQLDBtTOoYCy7QkVVPY7EwwcjpX1tGdBfKW0daau2TDdgNF5TUDIUd/nyHb0pLO+V0R+juwrgwIiIwWBJlcws7RmgKHfPJ2jx4kXYjdkDCAi0HWBz0wiQu/UzJtSMsCKcLiffWv4hpu5M7a8CL71g+L7ecBi3/bfFiS/hcut5mlmZoMKAS6tLhLqcIi88efWHXtgGJ7KltJP9ZI4ZWB6A9vAQytGICBqoGCO20rzzPoxzJJElUIooxttolomIRAAghza1zrtU2SuplKWuJKswMlHqfjrQb0UQ0CXyZqoEZRjUR7wAYldCcCqhHcIDe8J6+u3c9O7cKa74eupCrNqJl0DrGg0kELdeyUMAqCzktCx5hM52EfsBCfTZGcdDP6EQcyCAf+EGfnU73drQ2wjwYNmCOSkIcT/S97/v0+GD8uS9/sHzwxImtkUjo9XoDyJ0jaCtFSC3ZagkETpEj4OLaLjx053ERZKF4R5TYJtYqjDZNMy/LYZdCtFh2WywGhjQaFBDRWigXNPVaGAEQiOZZeWkvG5cr0TURGu/7IYBIICoDra6eeXjvMx92zlyPYhk3Rxsb/YOxlL7v572Dxx+7+vo3vDw2geZjAzCLqZwESchJFBBC06Rirpmlhm8AMYAQGma26IyQmYlcKvZq7Fqdsa12GwCoStTFNO9FiGHQVlvTdcOlfMWg9ayU5LG6tyWBmtSkBC1nC7v4DxBVIBARk09Cleyddlt6IwAkoeluPljS1UUDMI2W0n0wUEVTM0JVAIhRPCMzq0qMEURRVDshU7JF+QcAE+7eBtwGgAlhNzUTRIMYnaeAwM4kRERlh9JEkAAEoDUaWWzag0QHhCRp9ouoKrthRAOLGkzRQ7y2e/tlzQN95rKR6CAoFaZN0rLxVEQZe7c2Hc9f+oLDp164+cSTuydf1I/rplqBSjYLgUKVkTO3tbleSQiz0jsejY4rZlU1GRX9jAykyVBiVdtsen173pj1+/28V2T9Qe5WFkbGeYIUtoOiGIgVBCxInojBOQbvgjUqmKE4ZmSOMYpElVTZZ+f1/MpKgDA+xMtPSXEi9ye+8Z7bP0drwgxER0xUT5w5ck6ZhZ05h4yMaMoGLACU6MWK0Ck2OCRLGrMA3cC7tM7ArJ27gJbGz1oaOY1kDlBIyUwXXcStZmRySGZp6J4u0jvERJnBBRh2t+dI6yMBRt1aUFNTxqNOmNaOE6qmFphkAAi6a7AgNEBL0E8weQcCd95aEYiWhHUp8bAWQkOASyS1rjkJEBmBlBiBuyC7/ba26t1OJ+y+ZSnrWPywjMCmaKPN4u/0xIuuaURM+8IElesisWzdnMndGOTyNQWANg1qTVB7ZNrhkICIigyIau14u7bJh0A0wmKsAmhS8JGlWT1mFq0bmpQ2JlZDAxCDCAqaGqo1hR93YioimtIIMmKLYEnfgM2srmvvfSqYYToSSCNW2501TRObOqnFionF6NFyJgaMHBw4i8GIAaGROVKMpUoD0MyYMjEAiYAWAUUEnUNSiqgYvAmECDECbDCSiRIJCyqjMKFVD+b+BUN+ZBiO52UvDzkIKhsUdTUuJ9Ppwbiq5+yOh0hBwBxVVT6ucw1OvZaxjtCzQb8qXFbeH3mr6G8ddz0Kj9+c3FCrKctBQVWiMbAP6j/06UuH4/Hh3gPPe/jc6VP5xsZaHPVXBnmWMxoy5qbOMKoKEWASZ0Y0TTdR08VMoMLigdAoHUJgqsqmjBRig4oSm9l0V3V6JCNjYoYMmO6+gkFqQ48K6AFqwh5YE2JkR0zWRFBev7Z/Tw3go/Z9fzIfO2JPOWChTa2nN3s3h9PtnY9+cu+hR6qit3rvGf7YfML5gLW/v2PDXnHf6vzT81gUtYgg9RDQpFYLCB4xkpF2BVqClk9qZgAqEhEjO8cMQGrIBoBMiwmdiBRD9wCbSmdayICZrSvcttzwmGYhWWc+UlhubQi/WGNH7bmoqqZtk1jKQLXjSAs0kBQSQpKydJ6cShqwner6jSxF2roIookkRlVNRaRWMNOMVEXTWD2F1EgbBQhIxaBbpwYASIiOsC3WgIJZtKNGT2AC8ZVXJMAazXmSSquDEyeLUZ499fSz2XClqXPINED0LFJkWg4clQBRTVzYbXjg1QUMakUG1jQHt3ZkZqf78immlaglNA1hatqECMGgT9YQFTaZvOUr1/7FT12ttsvskS2bKTbakBGYEy1Go14+uL69HZFObJ4UF8dTt1n0aMUFV2ETb1y7svuZS4Zw7OS5s5uncDWPzvtYZEvdGf0CMUMgzLwjADbwBGUVzHwoZW88h6Fjxo0ew1CRRKRpUIGg4EETABxAJMaARFubAH18dgY2fOPJw3ds6ROYD4rCZp1yq+fM+dpxkUOTqzgQdcEYgYiRDCBxo7H1GW2uCW2jbkeJbPkrQt0axFTEgFbxVDByqiInITY0Q6A2/0QiBGNYhHeJIdvG0R1fGAC0TYDbpidEJGpZiAKpqEypAzN5ccSWdUSIpq1AYFoXkB7bRW9BNCACwlZ/IsGQYKn/CdBAIVWT06sptkRQ45S+Cywq2on7yYZMRGoISgxswICYIlXH4JDASI3FjG0BEbdXRM0I0QhN05SgFohWtFTUikBdFdQs0Z5RzQI6gdCYiFhbcusgYWyrtAZgxsuaOXfmvulXR0ucjnRrF+/osiKB9llQQtJFYJIIcq1FaIXmscM/u9jK8A5Bze52QxtsW2KQQRunLb9VVUQCqVciEU7VAjNTk1RsAwBE64SbUEE6KqiZWVDReJTci0gIATPExmpt+kWOiKIg0Zo6BIllWaeiryNEtNhG9JYY1NYpYnbnaJoUGRwaSmoKLByOCjcsrMeaO+g5KthBNJRIRlWw8WRezqf93lAtV3OBdFrZfqXTaDVCAAgGhmaZR+ebAeo8U8XeWV7jbG/7Ul0fspKw8xw0lIAuGH3yqZu7+5P9Wf2i2ebZM/FEWEUbruKImQ3NKLZPrCGkUdkd+QI6GHPZ+6Z/05lqN1cqxVUxVnUzr5t5h/YDABA5FUiyREfhswEwqTSpsRCBmRTVKwBAM5O13fpY1u+Vu9f6Zmy5mYTYFOwZ0AqmbBXw2n/+z+/7nFc9+tIXnzx379n3fWCfBoWEugxjALr//Ppjj02oIDUxiYCm1pgSgiGl6QPdQ9hVcDU1mgAk1EVViRwSAJM0gYjATE2BOsHw9JQnOygqUSTE1F+EeCS7vQB+AVBVOs/aNhon/EBC0z6EifesKgCKRI6ICIlN1DprRY5UVESBRCEmxSsGRFRpDwmPVhAAAEgdUokEOr5kOmWHpKqgCqBJ8S6ioVrU5XXaGQVNkguqElXTaHIhM1NBicCZzhpvtXKEmgq/9+1/7w3jafWSl5y7dOnSP/9nv5YNfWMVzFawN8xclGIkkylQhqihmhQb5yvwCGDQqPWAZXKwO570h30wiNw2JLQtjYsYwwPEGW6eKv/KN7r/+J8+eO/9b5kQ1rqPRj7zdQxrg34dmrKsNzZPqLlyrt7P6pVBP1ZuH5+59NTk2uX1U6fOvuCBgR4vRWuNvvH5CGJ+VEKp6h3ZnVozl3o82bm5vX3V79yox9etuQHNbWhChquxd2b1vkc3H/7itbOPbpxbW18HFGiiBCyZvEEeGuW+U60GYBtrMg29/bUv3YgXnImzI+F0zSmHofMzZmByxIyEQkJsSAKQTLEqtkTXbkElDwvYmTI0SLhdiy9Sko5ui0voPJiimIESskkismAaY9qRjtpiMy4e4C5XBlBNPiNNNe3aRRYJ6QI0WZzXUf62bL1TjQaTXlUHrmCLnmpichMCCupzRycnzLljY7WmhmyBCXV17TYVtpYfh4i6aOGirhi8NJqitQnPQVzvdlGLS33nv4sfUq8wAHGLakEXiNyB+P7vtkWAjqkGfBfasEjSl17XhCFiahxcfvcieX+uFC0BIt3B6jZbdshKS+qf3VuOftQYpXFQxGQgpP3yVHuLMVLixbg0PcbSzIaunmtmFkIAAO89IibfSUSOfdM0jhAdi5qIlGU5Gc8PDqcihs68A++SyoypRiKnajFGEY0qsR28bAYMBI0pmJEwAzovOQNTRGwQamJjDBEa0VK0idKIBgSrQ9Aqiiumytca2xGeClWM0SgSKMHckzkE6CPmmeaqXCCsOhpfv6RljaAiohIMFLnHNLhxu/y9d3309vUzL3nR+Uef12gMJjAYDHzuvOc03Nm6VvrOYbS3/7kO2CydrCw/JWYmGqqqCqEWObIpqb4Ed/jvjoRACsbJTBCAGiOiz6uD8tSteMzlpdUGkIOVQSrAHhTBrBdA6fgguzG78mz1k//i137jd/6v4TDD3ZifzIPA9o1dNDh+3NEn99E2TSNAADQEgUT3RQF0ael2I37SOWo3VdRMQxBhFmJlY1MwatPkticyrTRCVBXQJJHDgCCa2jagg6PB2nau5HjRNKkrpzcotNACpsoeKgKgpaKAiqgCtz3B3LYqmqQKQQdxp9rwnSMWoC0ot+EOpSgTQC3aIrJWVWPR0Nk+VTMNjalqiKny1wbAaeWqIauZJHFKa5F9ATPBCA0VBmKrAhOyS//kR9586ZmnTq2f/pVf/aW3fuu33Hd+eOFqwb3AUIo65zLobcXJZdQhcLD6MMvWShyyHSpqNCFumv3dnf37zq3kGktil3xHcghH0SFxL6Pbt6pXvfDU+A277710xR48gc1I48QcYJ4Vo9HBdLJ17AT7vtQIvSITY81mNin39qd7t4/dc+rc/S+fQtibHeSraz7LMDSH1y/z3lPwOS0KffpX/26983Q1u8o8O92LD2qzO7bSYCJQAbQzUio72IfxR/6FZQ8UJ1+9+sjrh/e+dO3kw2tbQ5+ZR5NBXs+qFafEA6LKFzAuXizj0aqb9Ll/2K2V3BkCkwtEQMzAnLrfMNG/U8EDHSarmOAZXNxqMBMDIeNOiSUt5yRxlWasp8cSAcAYAUjTSMGogJroV4mHBda1ugClgYdpnbclaEvCyO2jm2geuphR2xEIlnK2hDYd1XtTGavLwQCW+CXcaX21X9VVjpfsCSXIne7g+NJdjgIRkwp0cqjtgBd2ZGzoDAjIJemp7v3pYNoWzef6YFtqnbWOBHP0K3aByFFkQNz2AxjA4l7dIZQNz6kiP9c9Ozha1QYdxTIJWSzelM6+FfBEWvq6I9OA1J6Wdc2gbbl3mUWG3RgGOKpEth8HsJbEs9hUYzATM1KElB3boslVJZqmEzCzoItELabszXsPnctZZHIhBO+9KTTSkJEohhDKutk/nOzsjYNYnkG/5zPPHW0LAEBjI6FWZYkaoilYO3MPMIoooFcEgBhsFm1Wyayx1YKiSE0xSoxglPke80peiMsc94P2ahvux/520z+0/kw5BAAgYBCGijCQZoq9IVfB23CDlArN2YrxzWfrwz11LM6hoos1G6jaPMBHP3njYFrNyml44RkwUY0jHBERLdVLEHmpwffuxHf5yVv0eqkqophJjE3TNCFWos3iyoiGVJiALtdMS0KiEBuaV4tm3fxvUnKwNz8z5/UcZ9Coz3gWKwMkBpFccwAV3Thjery/mf/pHz77J+/49Ms//wX/8Vf/K+DZUMGzz1wHgPseOCa/vWurG2aGIJj8u6GaIAi1Ym9iCXEjxlbAvLMXqgiiKqhi6g1JFIhc0pNctIy3ZXLT1L9P3UVTuQMiahudlnqBYCkMTWzTRUK8fOUBwCg93cjqsauPgXEbxJMAUdd3ApiGNB3papmlto0AHUFBrSXAA6iJRkvYIAi2/b2B0li6ZKOPwn41U5OIKmAKppzMqwmq+EjBV5VWzgfYvf23v+XFj33mw9aceNXnPvzuD7trN2/vTwNnIHEiOvS5SFBzW4wmkCr0AcxRcczKHbMCQM0i1NXtg8j3DSxOAdyCbWEtwg8AEMG8o9zH3Sv7X/TqjJ69/NvXjhcwNkeH08lo9Qxng9zU50VdB6TczUN+wqNrprdn1659amPr3uP3P7hflrHyK+fWymu3XqgX752+/+Hh7de8qvdE/IJ05v/9x94Y5Yv2J5Odvd393b3Dw4Pxzv70YL43nj57a+fKze3DWm+Z7juqQEk+VV35VHnl3wEPDO6ljVeuPvCy0b2fc/zhF24cWyPXNABqgBRk9eSwfmmP/wBpbbFYsijcqxNKYkzIBoRAkJQ4usAKtFMztrYjlg20He1qrK09pcS9QUQFYUTrwMjUAdg+TUQGyfUicZJ9QWorGoaW1ECoo2pAQvYMDaTzypDsvnTxqybzbXBkqRegKrT5cVepWfgChBYLg2S8YUGMbkN2hTsMvxGaLPkqWhRnkz5Qd6Lpf9SBAinuxy4eSKApLYTT2+uDSmlNtZn90pqFI3R74Xrhs23L9rOlLbe/AuHdF2axLTvjxeZSPrf4s3Ug5HL2nXID6GAESOHYc1y9QaKqtbfDOrTjjkPvUK8leaSjYCrlxO070yTXKJREilKvqrTxQRqETIgpzTVVFVOR2DSNtKOTUhiRapzJMIUQUv04Rfl1LfPZbDqpdnYPd/anZlZkfjTsEelCz1MkaDsSkRrFRsGQLTV7gEtlgWCgEWaI26WdQL+V44ANLPa4AcGmYVMXct9kGSprtlrS+kxGu2V/txrsK1YC0ZKIEihiQGjIALBpmmLoDEYAeeFzAFj1fi6fmtSlRVEzVCAkYotRSnKfeOLybDZtmljO4/3nIwBklesPCu/yri1bu5bf5Ydm+WFq87l0AVOlMKH3dR3qum6aSu3IAStIpwjUwmWIaEkxC0iTOgYwISmiYi2QH5brvjfE3cbKGblSonGxIjah6LhwZC4W67pxLOg2HLvvp3/qN37yl9/a/7/+W1UL9LOLN6dzg+FgneoLHbNMgSQJbrXCPdq1roGlugwhG4B1g9ChCw0tkZApN0QjJcdd5gtmaao8ZImhhqqqBgaonQKjLq+X5IkXF1Z1ibXRLWuxzvOBJfCQknVQVAsgSWeAOilMaQNtQgRGaGstBm2GvNhvjJ3lTV1zKY3XiElaIo0oFkUTFUmmrxPv0fZEwIBMgwAoaqumZCakaiqKkhQ5XOiZXH/4kTf+t9/6jR/+nq//xCefHmanDuqd/X3qDVypA8gqq1cFgl/dDEhoFcI6mqoEN9iKJQAgkDeNTM3B/hwZGDimBxJtYQMJAQwdjJDGHFfSPOYHNyG/VKuRNNO8yMh5pMyxzadTZhbQlYwMe9ZMxtev94r1Y5tbcVpOXNwsRuGjv//a4j1vfe3goWNZ0TvfVNkTz7Y3Z2dvVsWA7I9tnt1cOa5VM35oEjTu3d5+8WwymUwuXrp2+eqtG9d3rgW92bgpUa0RYg3uMd15bH/7l8fvH17OH+kf+4snXv7G46/6grWTRT+rqr7b51eu6DvyrFwslixjT7XDHrIAx6RPbIhELgV7gJieiESwgja9UQBASmJ7SamZzaxjRxsqKlpXwwQygoRiM7SKB9w+dqhqBKqpZZI7NBmP/u1ALEAkUwQEI0Nt+wuSm0stwM/duvbFJI4O2Fat2/cujIwqAaUeRUBANWuVm7qnsc3Z2i6+xSSCaGqEaIqMJpYGFKW2n2Sy2v6sDs5ug5hO9WLhhpJ6D945DcmeUzxdNpJmhnokNgdHwnOYbAN2pLMU8h7tCmDZDS/cHHYbJBJWuz+8Y8eLn1UVrWttRNSlEuBd5wDdE7X0msnSOMLldx7lAcuA3vIm0TRhoUnwSJAotSoxmCYvTpQSXFWIMSb/qqrOuRBCmw2Imhpkbf7RNA0zKwgiNnWcTavdnfHV67dnZWVm/R4PC5c59uwQQEKIFlPe0ERoAkRzxl5TDBctGpoDNBPDaeQbY91UGGbgmaLhyCHEOJ9OqvHB/v6OCLIf1NSbQm9fsx3x2wqTAAGA1YARMInMgZgdqhJSadhbyYkzGGvB94p36xDrK8/AbB8JA/BUlFAcaLQ5ZfkzV/bGk0/NprFqdF7V588dB6DBwLfFElRLyp92FMLanRt0udoiYwshxBjruqzrOsTSICzfJUQUU9Skzt3Ku1CS18F2YouaASpwDOHkQXXc92eTm7cyxaARHaMJIhlOHW4FgIwtO9OvP4P9+07/2fveef2TN179/GN/cmGXen5cHkznipRRPU3EDLMoogaByIERkmgnCQ6YkFhEjJBy5MUxGwCAQjQzQ2F2wKSKRA4dA7CqMTASAhNhEuQ1EREwpjRQiUw7hNk6wmR3PY9WLwghIbak4ztXr5gZCEnHCWqZK6iIeNRoBIAYAagtBSYuxtJisTS3KYHciUWrKqJmYlF0gXpZsmeQ2Ktd830iOaakRtAMJCaGGZqoRTMBFq5LdLOqsaLI7z9371pv8CP/5Cf7PXrb277967/p+33+UIzbDtZi0xAdRuuTGxqNLG4TkkClYeqK9QYKxIgwUKuNNEwq5UjmgI4sZnvpUsO57TnoMc8BB1Wc+2aS0XQsShLN3GA4qqqmrps84+l8kvUHrrdlIpPbe6HRjdG9NsAa1V/ff0Hzjr/8sunrH1nN6kIPe+PDEoujGspGPmhcFQzEpEJwK/2NCgLa2tnBfHwwP1mdfOjsC3YO9fbk+vXLTz9ze2d/utc0NxvdjnQAFCiKHXD5/tmN9194+7+68r9ev/WKb33BG//S6fvya8dfdf7g0WE39xAA8jxHDI5z5ABOlQQIgDixaSnN3iBbZEQtgvsc/cWkq6wIBB0nWtWoG/xN1DJv0soDRKWWw4NgosSYKv7t05ums3Q7IwADhg4MBRDsBoq2rgSPSk5dJg3Q9fDcCU2DWZdiLvkePVKxTJ4+NQqmUlCnFbFILY9s1LIDOxpDQKDSadRYq32BRC3hmQHvqu8uPN/ypp1I5gL0RjPsgPoj16vW1bGs+1x7gEnS9bkZrj1n7+kH6rqN20n1CyUlJOyQgaXEFJLAHkKXwi4/FXRn9gxdu3AqMS2zoBe2KcVZ6Uos/n7XgybaoIrEhogIuG1dVgDTRVWMmTs5ly5uF4lRkvV1zqWKipmBKHLSvWJAEmli1NksHOzPrl+7ffXqXh0qZLe2Phit5EXemtkQakVFdGBkCo1gUFbwQdETgKC2isQKyJXQTqnPonmvxFgqbnhyCpNxnO1UzUFNxZrQoGz6B5rvWrYXeC9gI5BEnJDRmAzMBCIqWBYlAuFMgb32R0MR0RUCgA0/ml55cu/mJfLmvZcoAGRJHZn8rd35u/788fF0VlX3SeQTW41uQVG4LHeEhJ0K93IA1Nr6jp6zGF+B7ZQLCbFuwqwsJ3UzN1uKwMwtmtCWl0z3nEVIKKs6YlbUpjp5a75S2+50Z3/kBxI8OA9aOexVoRGpmb2zAcOa44OVk1u3Lj7v5/7Nn3zDN7/8D7/zz4fnnqfh6nTSrB0vYgg+Bouhw1JbDUrF2M4yXzyinQFLK5YMEpkT20VsiFGNUBiQlQnVJ39p0RmCMZHjDhJAAeCUf5iJAGhMJ5vaQNJFWHSHA4AZRdW2kwsgNZ2TARqwIzCM1sIzDNi2LllFRNaR1dO6sLtbL+5Yfamk17ZGRANRVAEza5UwAdMppemHUneamm1K0iKQCqYCGkEjmAGYQUATip4wBluhtay6ef87f//D/+gffN9vvPuD5zcH3/J3fvRwfJZz8Pl6XaWBbh41mInvnQ2T22YCMJd6lm2eBeiRTQ0CsCqihwCZGSiQA0RESsM7zLppx+BELEdUiB5XV5gn44YxZ+Ro1oSKZe5QZ+OpywvVGC3GUE4ndV7Aypo1YQC3nv669U9/4yvKe9byZt6fkfl8WljmKDt6fsk899GgaaohxZ63HR44NUTL+oNRVW3Vdbj3zN7p+p6XvuQl4/KZZy5dvfoYNHvjXbu6q5emB9sx3xbl4ACk0d+78We/v/PxLz7+dT/4RZ//6ucPvmarubbYF0uueePINJGamVOBKN3iNJcoLaM2KU285TaESuZ3kXoqAmvixSgAMZp24qaEmCaLkBkaokFbUzADY5Qk86Qt5KAgqG0NvpvYDbBwyd2Gi0V0p1/ELhdc5I7WvRkAqGPLtk3zi5GLqcuIMLm+pPZlLcztUm0lQaqKiZKd7EjSvtQuWsBF9p6cZXeZjlzswo6llFcBfKJbL60kAQNTA26l7haF1TbQvmO5LScqybosDKZ2hnWx67uXaop19AjdQES3/NXdT3DXt6S73MYHrSVpT2ERHbQihWrQhSeWkJPliQwmtpT7L+cKR9ei22JsWGqRwMKGGqtI3XCvZN0QMcsdU774KiJCJNUQQiBgZkZCxqMuWGZORlDE5rNqf292e3v/6vWd29v7dQxFL9vaXF0Z9bOc0/RDIjiSHiJWsKgWDQwxCGbaijJYDIAK5BvgyyUUjAShClz1XM+KquzN6n7MjgkNGx2VYbgLo53G32j8bvB9rB0BkrFj86hqMUKM0VfeexStoyJQ1hD6/gbRoCYk9SunwIGN96405cz5Phg746gBGZRte2/87vd98uBgfz6LL3h43czW1ocDyLMs1cVBRKi79XbnhoidqJaZWYyxbsqmaepmXtVlVU11yQEjOLWwQErMMFF/owgaGUVK87TVJ1JWXa7tziXGiqWIVObIZrlzpo1mGFVCL3OcG5TSO3lMfVa86EW//oH3H2brJ84/eGs+37uu+zuTk2eO5f0gMWLb5qsIYi3jOQBkaWG0Ee1imSbhAmuZFthOtgWPaIk6TU6FAZskXyeqyATGaqbp0WLyxG0fEaIjjpha9lIHQGqbTgNCAqASYaqVJDltNFATSkohTMECEZK1U0Okm6Ai2oARGKsaatuDzUQLUshdq9o5NEsgREqpFUxA7WjekVrLck4311STEFi6ayamBqAqhqCoMTFOAJVMFKJgamIzmMLg3Iv/7f/Qpy+9f2Mdf/xXfwWL52drByH0KhlhNiN1DR84yaJU/cGZ6eTTAg1wkKb22RAgR6zFpp4HAfO+N3YF6K5Cp30MqJj4cMjMES0HZ0nOtKkGxcRnYBMgzMwMQFSq2eG4l3tpasdFA9qLHkB9/5gOB/1LH3nbozfe+IKpHVg5l9zPBkAVKHCgJU0DsQAWiX1W5AC9YHYcJZIKYxnBjQYWiqiywqvWVM1oc+3ExvPnD+5s3zrcv/157GZ75ZMXHrtwrfzj2wd7NoLgXDaX8Tuv/fwnfnf7Fx5+yxfdP3onbC/snXcKwA0kGW5gQAdAgNppa3R5Z9u8ljCqtqqbLB9AKg4qgrOEDIMluq9Zeqe2Tg44IWqIHgzAxDRRC806MZbUhAtopB1VYeFr71QlxKXqLtzpLNLfUxevdsqHnePovI61Fe6ECVs68NQllZJqavdhLf4s6SzSr60s41IG3HlVx8YmFLFllqX+JVRDgsVYxg5rT0HJUYaNiMn7AiTaGrTKJM+NdLULYbrkdcHSgu6g7bN5tOVfj7Tt2nuJYOCInGoE7GR3zKCTCH6uDzczU6OFoDUcZbRtexIlDcL2DqkCLil7mRlYTFckiiwPhEobL0UmiMFCYy4ag0Cc1RUAeWJEJALnyXEWgwMnwMSZ1xhNhTw7cbEJzByq2vWImZPnTukvokVtQqOzcdjb27tw9eoTl67v1BDRjwbZyfV8pZf5LEMG0GiamaMMmjGARiNy+1HKugq+54FqFDCCBgByMEjFKhLaKS13pNHq0q27IQSznp9WYbcJjfWpv7qt2e2GJyWCiTH1PeQ5AdaibECNKUlfUFUIIAeAEMHU1AH1M6cbis4IBw6js3D7isybHPoVzbxTbZQhhyybh/ihj16qSgv2cBX9eVWR3srawOcFKhIwdPXgNFfOzABNTAhy6yZlioYQK1UNdVPOY5CDRqdIS+MlU9scGBq17JFW6IzJDNWZAWAgbGqwFRt+fLYpGIsAUcuas/UYASo1jw5ixB6QokOSpqrXTp/mfkEa/H0v+dOPXnZOc59fvd5cunT7Bfc/cOJ0uFxWjmrVQqlBYaTAtkIE0TUqeV9wzgYgPaPSHGFj6MwaR5k3KJvG+ZwjAlcRwIwRHGgEDWZimBPnyI0Ik2TgvKEqk7MMETFLQR4qGLADEoqqYAysqqCRrKVvJQE80YiIApKMESKZad3UDp2hdeOhbEHU8pyLSBom2A4XYYwhtvjTEtDtEIlIIhkIiCgImppqmnTEEpQRwCnNKeaZoyo2K0pzbrJiGKQJB3OSnFZHMbtSlAOBwEBiZhoJhchirBlBtCJwqlEtaL3fP3nfOy439My4ePBLy8m0iT2iKTs0XHcSbAKSAQng2im5FYiji07DdmUOsqGEGSAb9MFBbzCjJiBkXlGSjmJLm0EAUgVPTGZKlDlTKQYm606v0dRJPeqva2ax3AvNfEjr84HPSfPcxuPoC4PSnzy48p0vu/CSzcPpNF8bcMFMBCrqjTN0wEeuxbOPMZo0iTvjvVcki0pgOSKBV29S17nPzeUuRo+0Vgw2h+uz+Zk6VNkj7oHPe+TgmUsv/NDlH//wM3MRa0wJHF7b/q1v/8O1t7/y615zZMOLg4wy40jOgMhAEA3ZwLpqYjJt6XkQWyAbqahnS6gvdHMFFJIih4FCC28lJUeHCakmRFBswztDRCYEA02kaQM1dCQJj0zhmoAZSEJBwNphCNaSucjIULHDkFICr5aonQDA2ApvJQ1jRTSIZu2IBDAEMUXoBC7aFDV9tQohEloDQJDEUpPeIqQgMrbuL5E+k9cwhMQ9hMiYS6vtBoaKKADSlmugmzP1HL/GgEbOktastv3Ii2AXDSJ02ovA2A63j3R07GiUiE8t3RjVklgkJVe95HMX+22dIxgAuS5iWkqul2g1z92wo6AlauvS65BAkuUYHQ0EjmYOY6K0AECXj8MyLn3njmJTIwaKDcUG2WXEpkiAhESM3mXMjO5o5AAhJhcrhEDYNHWSuXfOee+JiDmNsCQJ9WQy3T8cX7u59/Qzl69dv1HWnBfu+OZofW2Q58jUKomxAzUVJAZUsyrEprFGkDDGJK9vRwX/dAIzEhDLg3MezHAWIgVELQrXa2KYSN7EbCfQQa2lGLInQnLgPRNDJGoaMBGVtGDa62MAsaU2APQLb4rNiSCSR1kDX+5dm473uNebV+gJEctYife5OvrE01eDxKbyMcZz92wA4XAIgDboFbEVu8YuVEpjUo6uZwghSgghxKYJoamqaVlONHFru83aIdVtD37qmjezFulo6cHKmHtQk+FBmRshBYmmmVgIIStya9TMiH0VwhBUMtaIsLmukFHWy/sxrm+Uh9e9r7XuP/7Mp1/56r98bECXx3PIBCyCBoAIBqIzsIDRAEgAGGqkYRNLlwUKQ6OI4PKmmPNB3/dLJMeNRDSMRAxqqrFlEWNQUfBoQAKCFgwBxKkqEpsEIofkEkBogOAYFSGRodoYXNsJCACL2pB1mTQAsBlATDU8BDiaoiqiIu1KTmYqRejtzLFUgGvNsbVJfOodimCCamCikgpazrSywMWwH5qqKgE8V1Jif626dvHkSr1x/FzkWxeufCrzD1euYdMYJ8wIxAKkMQAkpESUaiLHIZa3Pl7e/jD3z2SjB8zNmNQckuZARJQhoaKiYignPLwXqNAYIww0lIXmWW/UNJcBGCgHouHAGc4ElFNIApAePk5iEYRk7IgdEpqiWt4Px1x1BXMPmXEkpubWZGWzEESsJtzbwHFphTQ72Yv1g991/ukXns7NBn1XIeYxRiJIwst2ZyceM/vMxbbx3WKM2s1z9d5HFVDs9/uqSt4hYp7nMUbv/XA4HE8OiGBEq+dfcf7UQ+PD4Tv+9Z98xBuhmrmC8Kk//s0f/z9e+8MMl9K+PGcO0WABIKUqRcKWDVEBu1B4YayfU6yEhQ+mNvhdmOVk/gkcmJgZEmEafIBGxAhRUlkwqTRri44gtKrMrSmGu+uWyQ8ZGJiiYktm7AqRiPjZhQzbE8EOaDFeKgBb6jKy9uQBW00mUDjqslnUYxNdwShpaiEwYtcLkChYifHVfrvBcgntOV5s+UUzW6Tsy4d9VFbDoxfv/CHJe1EnmQ/dimxFNKE787t2fyfDCgHAtZo4d5aQl/P9xal2h5TwX7NWUnq5i/no+bjL27d/RkhVd+sga+uoMXcjawAmwSSaBgVxlBVZrmmZIrAnl2dt6wggWTvgwaX5LyIsGkLLkSHqBBIQRYI0MJnMdnf3b9w6uHjp5rOXb89LyfJs2HNnTq6vrWVZjpmjxbAHDxiQTU3EJmWczykYeJEapXtEiBbxFaIhlTXsqlrkMMhXHDlxbNAjHYPsqZ/Vxe3G5o2KIXsDn2Io60h0RtZ2M3T8QTBIEZ0hgaArBoOcOCA6yjNAZGiwKccHmV81Uw1NxkwiAZSod+GZg6ifAPeiRhoQM4HeIJtj6ch3emfWXjRm7CxU+jfGGJtYluVsPpmXh7P5WDXe8UwZLkouS0u6rYsb+RQrq7FHCXFtN6wVK714ac/QtKo580QAEtFhbLAOc2aOZe3J97aOV5PonVKv1LBezFD0kDcPPvKBZ7/1b+arq6fgYkk+Nw0K0YwwEVEoqjmkWY090Bq0AMA+oGANuVgZJig5F7VOOPRCjg7YUJLwIpoCiEoDRoSZmCAyBgZEYAKk6HJmb2bAHp0DZENuB38StYOkCM0AFYlBo6pGSosENWFEYh3gSqZ0x4oDIDWDpISDqQ0lWT40VbTYSdWl+ZhtLGtQm5lJTPqRSTgPDKJF9hFRm3nDpsQUVJ0r6mtPfONXP/hP/+nX5SsnV1YGv/ebv/w3vuXnoXiV1FNUBjSBOYiAOSBgVLG85/Ny+9k8n7zqNWde/tLn/9Iv/8H+zgXon2VeUWsUPFAGCM7IpGY/jNWMeMDZipS3gHK0A4JD7G/yuFHrKw9JbDDAYE1Sy0cDTORdJOygSjRygGTICKpKvrp/uP/h3dPGxmurLFabuDA1jbq2mc+n9dY9/f3tFxz++Xe//tYD61kj68eKKkZiJuc4KeqoSRrMfnTZ227aJMBiqSU6c07AgDBzmZqZJHa6ZlkGAMycQ54MfgjBGyL3T5zO/9qb3/C+C5ffd3EvAwvCBASHf/jeD3zTa+9rd0egSnPArC2LICw0Irobfnft7077rct/staXtfrL0OpLYBrQZsaISbU5IbOIoNRF891AYQMkUkMi6JrrFlLBrcJRehrTYMqOOIFJ2tFwURI+8h3LzjvB3dh1ylpbsGzNhQF2nK22HzVRBqHzB2aonbyItWeoeIdfT+7f7lCQBIDUHLLwwpaIWIuO1sSB7rDo7uIvkTQtEVdS5NvJMB8Bzl05oJsdd4ePS3eDPlv6qnhHqpnqqd0whqVIClpBcEuC2l2HfIt9W8djOTpYA1CLJMsAMhnIc+K3BXsbABc1hs8KnQOAxmC+QQsGgo674n4iuTnsmILJZ6CCoaYM2DknmQBY+rm7E0AEMep8Xh4ejHdu7z399NXHnri8s1uqILMcX189eWy0tpIN+y7LsowzRFRVJgjCjWpZy+40HDY5KjCKswiQSAJiQNw9ExRJVSc1SGUh8LzIeuRYRMkOghxGKg0mtYil8SeoaMGgUQOTaBwjmCEBqaZ7S22dp0P7RS04bPo+k1VFAIlMNKJBIY/P5geiRlhEaCzOHOUOKuDs2ctX4h/P5TUvzchrE0+dPRaUB/nC1y6eO+JOG7ztvAoaQqjL2Wx8OK/262bacSOPnhYFwo66SNZRINCSXnELMRGhSRlWxnGFcqwOx8CkZUAmNUNmIPDRS6MiMRzOe4NBVvRm42mGeV2seQwUcH+vgiL/o3c+28TYG2YY5gg9swjRgBKrRJlAFYhNNIADFMmAq525cWXjjPMT2WhcNwiNMUumBtxTbcwEFIGSfKOYiZFaI0ikHXXAmCEEyzJTFGqQPRADUgu8EIFKlw2k66OcUmGJi2e75WggQirBUBLDw+TCAcA6jcDUVtHGp6lsrQIAAu1QtoVFQGhUNQl7YDdlDY0cs0Sz5gAck2GMc/Yb5e7F//NbH/iHP/ZdFy/v1/u3Dva3v+ovf+N7v/UT//L/vpCvn6/jvmhDlKkAenEApGTqy1sf//zX3vc93/PD99+zuXP70k//u39PUMmsUnccMlZcQXOMXjUCBtMSKlBQ9htSXkVXW2Nxvu17m0aAkgtlUM0H/TxKRQRmAdr1m2wyt2NviEyBkR2RATaij27t0jMnNHeu52bTfY+V4JoY9MDPe1pMnnntrfd801/cO7XqLQ4GRQlZ3ieYVqX3PssyAwUlwjt4xe1zrpoMBRGpBFVFJjV1PkfEcj5n9qjKSKrgvEuh/KAYBq6bpskYiP2Jkw9975vf9HX/6pchIwzqYdW5w3e/93+99r4vhdbgaupxQyRt/VdrQSHVXFP/23NymHSkd1hyTCa5SxJTs41BasNPg40N0JILBEM0aznylAxx6+zv7idqYdhko7VLkChp41snmJUiGE4537IsRGqlMiBEa9P0Nq1O5eGWE93xD1LzcRLMawvY2HVnLJYMqWkCos2S7HVC15NzVUTrxh+1GiMpE6LlsADSOmuDLURUwjv6kJZuhCb/27YWHb2+3HyVgm7s6sfQubCUAS8uSAcpLD61+EIAsAjGwK6lQC8dAQCIxa7svpx9H/0LR7hrsilgZrKUDZtZaglehqmXg450LMumBO68ZBprkypKDSFYFiK7xPUGRKMjH2ySOs2lFStHZGbvfcYOEZ0jdKlkDjHqZDLd39m/cfP20xeuf+Kxpy5d2wuBmaif0z2nNo8dWxmtDkajUZ7nzJ4QDAUIrIZ51Ok87s7tQJNkUuMjArST4JLIY8svUCYCQZ0qVjOZNVhwZAs1uqg4CxKthKiOPRCaaAQKAiiE5oNZEzCIxWCGlEK3VB5IoqytMhxBjQD9njMkJEVAc0OM1Y1PYzWXqBHMvKE12pgrGmB38eL2n9rHITT6yBkgWN0Yaj/z3reyG0SEDrkT+gYRjaFp6rqp62o+n87Lw/FsJ0pFlJQTl25o1w9g3cDKVAwiMlPT2N40JjhoVuaWZXWpoXF5BmIxRsz7Fmo1o9xhwOlsTFXILMRQKqkjl3OvIcenodBtqE4ezq595vKzb3jdK373nX+ouKFWoaVmQgIQVWGuZYaZIwOv9UGfr33hX3p5Pli/dengo489fnjRRicfqfNeHQWbOoq08pNkqkqgzAhqqgEsGhBI0rAgIwZsTJwlyUBkYDYgImdMgA4AiFzX+9QOBDRRtdjiJC1L01pmWEe2BDMlgm7cRQIPVZb67JNJQjJLml9dG69FS+U66GRAAMjakTKxnHPWJw+CgKaZ5lbHEydv/vW3vvXC0+Mo44HfgJX17YPxcDSAZgo8aYdUWpX5HAVCfRDiDnP1trf9la/5xi9Gko9++CM/9//8dKgQMsR4U7VGHCA2SORgpHFGqGoTMFIJvjgVxk+IFgQuTOZr99xbigcwpjw2+0U2Qk0+MUIK29rxpIjIjM6zgRITISoShcY9cKrcgsO9wWaBTgUD5Vh5zMfKOcvkdYfv/KtfMD03HLnG0zD0yBUYqizfKIqqaZIsiXPEzHynA4YOOYsx+owJuSobRo9MUYJj75wDsMy7po7MbKLsHGdFCHWWFei81RVpLjN8wxtf9wXveP87n3gs82shBIlUzS4v9oUKig6w7aNdmD4AwDTD11owsmXhtP7p6G13bYhopG0DWqvUsVCMaTFixdZxtkK/S/acW5BFTRUT9KJJOkbafptEY1RRNQJLCm2dW0FL0uWmd2kjYhqbc5f/uzO9asNQ6wD45HtNzchA0ChF88uQgNnRillcUEQEJlIiIzJSw6R+1fqmlDV3ufJi162jRcCOSty+1noz6fJstTb9tcUG0I5bXdwCvPPcjjqT7A7ZR4DUcNCWChZvdkljZfHtRxgItNcFWvdu6bDQuNsx4BJS3wY1eDQBKWGSywOlU0rXXnFbfMdna+sGAFTRmmJFsYpNobkxsN15wgigkMDDxaG2GhoMCKCJdQWgMep8Xm3f2t3e3nny6Suf+vSly5e364bAsOfw3tNb586sbW2srK2N+v1+W6hjRqJG69DArJL9ue3OcSpkpkEtbyc8p/AyATgMqROa1EyVSNUdVlqyEUINhmJNjGbGBswu1YJUsQ6gCmYWBKNC1E5N2JIyeWIKJmoDKoELpOoqZsp4hQismVNU1YGx7X1mvr9duEwztiguG0SdEvl8MHzy6RsIAhiAg+iWrK+NRonRlkCF1gEQURo2EFWapprP5+PJ/niyN5vvGTREydU9ZyMkY+s0IixVC0QBKOnOgKNJWGOfZXFaNgEJhTnVa8BlQUMkhKKopzOP2hzu5LPDohiJMZPRYEh17no5rK2N4od90zz6slegvj1CBKvTM2yaBLACiAIzgIea+9mzv/nrP/rQg/eISRNRovuN3/z1f/JDf1YXj1CxrdIv2BrVxJsAMG3VPaKZJl3J1gBBAwpgLlGYhQjJETlAUiBCZ4jIDthZ+/i3Uj8EApSGs9oCXk6Iq3UwmyWobdEb1jaQJN/coZfE1nYqJvaFAiqamEqr+dfpoaQsysyKvGhiFDTVxli9DcK8fNlrBw8+8NIPffDT/d7K4WzHIiLM3/7bv5cNX1DXc1Dt+V4znzXNZbBbL37pg6/53Dd92Ve86tiJzcLTP/1nP/7ff+OdVmXeHY9ySKYS9hFFKQKxeS/NIWhjWjGR1sH3NhDUxBDnWt72/nMF153FzHOE2+TPInhENYicMCogRCZ0jM6hc2CJiAGiRM5itrbWvGRr913xIcr87Ebt+oXXit1gFQ6/tPqzr33lZH24xpnLM6Imlz41OPVWmAml3hJQRIdodThqZCci6ZgQajEEZZ/7Im8jUdGqKVNmbGZp/oGZiKDFSJQQVkfsFHyjhxKOv/Xr3vTOH3lMhcUq8CvDwd7SIkn3d4mUmsq/JpByqZZbZEc++MjbLKlBtbdaAAiANfkh6FR/EVNRctGSm2xy0n1sE9lEDrJOllmNIDH52x8gdcGqmUZT63QgLYHWd8YCn8WxUVKaScGEpEABrOWLHMUT1tGTl75NF0i6tVcGAUzADBO34Y4MMH2kHXYEiIBmBEaa+NadnvYRQI7QEsfuvCvpKJL3tUX8okfdrcvHl/68cMn/PyIkW/LH3U08OvJ0F4/mAS9/xXLw0nmX7kKjohFqEic4uuj2nGp2h3fbHQ9c6stYsNhSqxosLspSBowq2qDUGGqmStQMmDmtDCUCImdmPpWNEDsz2haDW81SMgNpmjifNwf7k+vXdp69cuXxx688e/H2rDIgINTNtf5D92zcc8/W8WOro9HI+5yIkMQARKEJOG/ibNzcHuN26coGowPRNGp1cVXREEEiAAGK1qYGSAgYxagxMONIwAIxKiWSCSKQIYMINCLRwMyiAhArQiIapv68FjJopV5THE2mHAwIsGLvBqvGppYz93oMPZ/FegKIVnBdKeoIAGIMg9W1izf28k886z0zErHv9XpFUWSZI0pwVWrQErUYY6jrej6fjycH+we39w+2mzAlTADOEXiDnUhpqvtiF48pmIk6NcScgUVUc38Qhplj2C/DvOIM1RF0BVxTEqQ8H4R5A/W0nk+qq9d65wcErLFgjoRheOz+3YNbD68OT62fvhF3nHO1KzCUyBlgQOSO1bKCeRUh6M0r3/G9n3fs7In3vvupldFgpvVo2Pub3/Tm84+c+Pqv+sl+/pdruVSjOMqiCHTAlajeUTtJ7AeNAAoYIACQAqIBKxMiGzgFInKKrOwMXSLztjLOIAjc5b6ptB4BlBWNOnPSgT/telAC5hYGxEQNIEis6PSiSlsTgjQHMkF4umjOSK9UTcUeUNgYLDaWee7DRz+y/+zTz5y/59jt/bC5uXnf6bW3fff3fuRD5FbEWXTE5d6V1dX6K7/+1V/6xX/h3JkT/V5uuiK0/49/9Md//X88zutfimuFHD7J1SWACXLUGMnNQCYWVs1mZhEkKFFdHRT9AQCAVUIBwvUyKPVPW3k1hopg4nOvwohonBpQMM1Fbq2mAUqa7Khg6BCdaYz6ugcPPvSBaXPaN1quOp5rc6rxb+KPfP2jO+trq9QnTxzIk8ydiYBjx9rUiOYQGlERcc4nkdqFjTIDVSMiJi8awMxnmYSQ2j3S6MEsy0QiEakKkzeTpml6vZ6BoDmmXDVaYfVu+fKXPHpqbXRrv/L5MATp9Y+cPWadZyIEAsSjnKFNi6wFDFMEd5cdTsDGXYbeCJPUAqZBl8lEpL7WTvgFVWDJSbRuI5mXJANuqdfWENQ0FQgBpHXDi/wqKUVrmzdim70e1VyWTXdSctYjJLmrfSbuVXeO3ecWLt9A2ynzCe8Bw2WRVzNDvcNVdcrEyQErobUSF4hILQygi3+xi1MXjvOuLV2cRfOsWRIHOQovANLIl/i//fidAcXy3Tpq0GoPCSD1AS9Crc4U/O9qD+0+wASA27He0JblRSCJ5OkR7Cxtirj4bCvIgqbAaS+t/j0gHGkJdTvSGBujmjlECqYGmBkZEjESiBoKAGnXQAltitgefpvSYYxNM5uVe7vT29sHly9f+dRjT154ZvdwDOAdAKyOigcfPPvgfadPnd7a3Nro9/uWIDBH0SQ00jQ2q5t6Wu9PaH/mmtoiiSGFhXSJtnclXS4FZc7QknKJKghYLoJojUUVJWPngAWdIHgmUANLtjk1WyOARo2EHhQUBNoRoZYIys4wmioCijJiiZRnQxCvK8DMruDhem96+8nJ3sxhz/VKqZ1azZzk9vuXrh6u9a+OiqLoF4PBwDmX5x4AFQSklS+OEkMIVVVOp9Px+GAyOZzNJsrCDCJ6l4obpunTkCacQFqZBAhszjSkcpOagp/VPtRNubMPZqTIK71Y1dloPcYYEQlcLlKix0nlCKYXLuHWqSJfN19norjitm/38tnhL/zi329G68NrV/NiJWar0DTOMoGKjRUJ1VhjqAKNctZbn/v8e27enI4GzvPBqdPHp7v1e/70k1/4yjf80Pe/8//9Q3+cn3lpsLHWMQ1SSw+SI0YEkQDQAvJACAKAwKgKhlqn8TGWUlx0hqzKCN4CAmVIHtgZERAqpvb+Fp6ntj9JgQilG827tNKQzIKBOUyRK7k0HhDAGYX0JhVdTBk1E0feklovIKUsyFDN0IHEksGbCbILugfZYPvmI9/81u/+3r/7Xfc8WHzoz/a+8z/90h+8cz48/vnT+cUhr06nj3/t13/u937P3yhyF0J0TE0z//Sn/vxf/vgvfPKpMNh69QxG1HPgzsq2QP0MYjBR0wBSxdCoBVAlErMsNhNYOU44UCOAHCXO66pYOTUvL8vsMM8k6/eaCCaWKuctwx8RuVXXd+qNlcUjYgZsWs1Le8X98XmXPv7YjdeNfDWF9TCdfen5J77medNiZdNDQTEHG2cFVn03nLO5QW3jHEktAlBqhbgroYkiCX9eRO1VCCGEftEDUYnRey8JHwYt64bJASIBs8MojZkRBEQfpBq44XQyPfe8F37xa1/3i29/u6OTqvXZc8eO9qXm3Fyxv2yau/QmNe4I6oIQr3dAfbgI9jtdhQ4PSZUvMoKkDX70fiVENVlgk62xXeRuqqpKCXZOKLRqSos7jyjaAZV3bZ/NU9x5qEce7m73nLbkI9JRQYJLrXtfgoc6l7u8U1uELYvdUStLiUZE1EpRLs0Dfu5hAxwpiix8x6IAv/y2hfc7elv3QjqvdEGfewVwgTQv9/5ih9S2PBADQCcgbY/W4tZ3Ln9xrbosWwCAybek9C4NBwNQYEiZGyhYBKOWoILLQUBitSEu5F0WJ9LGNndGfARkpnVoJgTY+NxRcFAQOFEiLLoJcQZMABgVgJCJNMEIBCaAEeaTem/n8Nb2/qVntx97/MrTzx4ezgScN2lOjHoP3rPyokdOnT27tXXs+Ep/mHHGnsEQIqGYCFZlmE31SgkXZrIfYiSAKCRBqQBKc8QUQQkYLM0xyTg2iFAbKzFpMAtqHkVVlM08is88gBlyDRTMgUQUTXPUFQN0o+VMCcAZKkBEAiFWYAk1ZghqIKiYGXEtVY+gyNYLqof9s1ngMwPbwYv7e4fSxNrMg4dgQOI8z2N88uLO+upGPip8scJZjogrKz1TjKpmHK2KGquqOjg4HI/Ht3du3j68Ft2hY5cAjOUOfTNJc0Bx4X2TFQUwdZGiR9GYQz73oT+2DeSaYgUrRahhY7Ah1bzXy+rKPMYAMO1lQ782PpwarsTxQZg94+G+QX6sWRuFmQ4++rvv+a2vdJvH8xx+6V3vGB976caJ44eUA4AH0Vi7uoriAh+4kNNh2Dihp+574cHhntblsd7Zj37g4w88/PzB2taHP/X0t37TD77r7X/9T5+8nI/WFDhaYyxgPZOaiARNidmQ2asAoOa45vLp3OZZnscaczKTBkGYsW5qcr0QSvPoIwj2FQXcwEgoenBImmtWiEWiCm1VuQZttOqbFzAFCAaqNWaOTEp07MjFpgFz7HKTCsGrRMgU6oYIBGqIGXvEBoGrAEXEBiACOgMG8to0wBGgNkPS3KABZeASGg+8r2trH/zU5lv+yk/6YidWM4Ph8fWX3C4vUDGY7nzq+/7B1//Nb/3yZz5z8dSJE9s7F//zL/6PP/7j99/c3vWrfyHbPDGdTJ1NY7k5OPlS3cLm2kxgG9EwOvCZ6o5rUK1SjGxOq7EbPKLmkCuTocEhj68XJ14x39/D+jOjtUG/iNMSCowWgb13iIjEwGzegXOGQODEgSkjR4tExOYPG/e2l82+8zc/fvPE5vrB1W8+ufNNLz3Is5NOEHoR2YiyGOMK5U0mjhtnPpoEEc/ASKaxrgMvZcBgbcsfs6vrxnuPzqqyaZoaANghEYRGHfgYIgGaqqnWsUmztAFAjQnU8aDWqjcsbF6+8dUv/i9v/10zFMRv/EtnZh0ITaEyd9xgn4za3BQBUsuVIWDdWktNOlbcOgrq5i+0jqElWiS2HS05pFYuKuGsXXmQDAwETckwxdndtDglNY5mIJDgZlVbOGBIXoKpTQoMF9B5kg7tnAS1TS2GyAvjjdj1clhqd0llak0qUwCwGPaTkMvkRNrKcTspQTAFsAkHBtJUkrAO1E6qzwykSetQAc1aphVyGv5GjIAAiajllxyZUZu7H/naRJbELi1si+IEIGoGoW2dPvKv0KqSIJkJLMYXtfXc9m3Pdc7JsaVWILWWPHKUoT4nD+5am1JmyQBqUQDAEBdXsPtIcu0dJtFmpHePkVrsaIGDty3hz8EE0lgOs6gSRGuJiWbgzTCEEGJs4zhK+uJkCCAtRSihqSGE2Xh2sHd4e2f/2Us3H3v84lNPX53XJiLe0+pa/777Tj76vHPnzp06dmyr13fOG5IYqCCCQhStQxhXsncQbm7Hm/tZ2fTBEWgw8Io1IDGgCIC2Ov6GIBiDAZuRqaWZlwaExnVtCIIUwQNmjD5D9MgZzhxbxuBRCYHb2SEGEoNRHbE2KBEqdY34oMaIIaIhZiYMlUQTo5KGtBIZT1azqWYbFT/kTq71q0835S0nTY21gbkYEQQQJlX9+FNX1zb82sZmv+9yv1rNiZlVNcYmqs6n5Xg8mUwmO/vX9w6vN3FsOEfKEsftziCp1V9FSn1psHicEAWAFXyAiCRRRg2sYIxN0xR5oRkDU5iWCETkxLQwVMyoV7r1lWre61+affmj9777Y1dvwMr84vjE9mN/8t+/pDh5Ega899GnfvyXm3Mvfl0zO+j7LMYIkxpiHWDPprsYeuQOmoPJqYcGK8P1a9tPozYnz/S/5uve9mVf9ebv/wff8ZEP7F2+vvdj//b7vuLL/35dvaHGbU+jEBFZCLIggbhgFEVl0qxHXA7m4+36cJIB1haRQy2Trt6iyCrScLYpxqqrihP0bFHZ5w5FgNGb4AyhcKqAII0CCLpD0z5gAIvgc+8pioJbVWCUmfde4QB1oCKm5nylpWc3F0XQnGGuoa8cgAGtsSBMnhyH0ICU/aIIDXhaaYzYBZWh2txiBKwy7TfVLvrRYDTIe6tf+VcfefPXvOF97/69f/bPL0M1f/PX3vdt3/blf/LHH3nwwYd/4qd+6hd/8e0gp527X3onZPdykV84f+qB0UijhKeu7fUe+pxqPIbZxHxA67OggkRnHFKNTDQ2ZgbkElhjSM3kyonnv3bv4lkfPjZYPwlUZjhR2GBftY1ViM45QmJFQvQ+gyAMyIRkQICsKmV5bKN4+bkbf/Cp69/5utVveCXVK2cluo2R0yiOOM30u8OaIaQHjIhM1WXZXShuMp1JOr6qqlbvTBQRYxQAYHQapZt4rqpEzKlYw8yGYpjlwEG9ZlaOD77ola9dW/1X21N36uT6q165+kf/q9vRwIFOUr8TtGLMyfOZmSEtUj5DBYNoxAkrvtt+I7aV3sR3anFWSwqOmpyZppkMCbNO9OgOfEa8W5IplUg6t9oJQy4lTtQ64XS5ukpHe3nvzm4RrZWXOaJz23Lx9i5HcPRLWlWdDroqKpqm1uUERGOXvKcwBK2VYWg7jghTAbj1/QhwF1wHcLejWX5arDualI9CIpktfXBpw6O3/W82e875to61rdq1r7g7Mv07S8rW+oKjVJ2BtNME+KzbQpa3nfX4nKLFXUfW7ggg0Uc/y8USVWxSd6aBCnpwFGK7YI6uGbT9UZZGt4KVTVnNqoOD8e3be888e/Xxx5+9cGlnMmsisCdcHeTnz248+uDZhx88d+Lk1nA0KHLPCKASgjgkEagbHZfVzoHf3rcre7I9h1IjxhoAwPUxTIkcpA5GIgNUFDHzQGkkMRGgY1O0GCDMoagGHgcZ9TM/ysNa5lczHDjs+2kGULBlZI4hKRaimiA10erAM4FptMPGDkucB7wVVg4aO1QS52Lm1IJoUCLQXhj0o2OamlkRh9isXMrGt6aNhFCR4xABAxJrBfHizVvwvpJdZnrapD5x7Hie5+xMNMQQq6qaTCaHh3u7e9cns5vsa0Nb4DN336OuBg/pJnacAEYTIzRWDhlJWa/OoQ/1DqghAuQ+WMTp3HlmkEAe1DKzigdZf7h2n4w/cz3s3PjrX7T1Sz//W1/7tV/x7d/xFkcDKODWxx//f/3td8EXvMXiPErB3of5jAprJlMNDRsDTCQ2IDdPnzlXNXU5uzUYnLt161nqnfkPP/2xr3jjh87d//JrF589/9D5H/vR73rrt/2LbOsrgl53sILWQEYaTero8xyIgbi++tjJ04Mv+frTKy5nXkcTSUEUaNSxaADQ2bz5w3d8poGTwCKu5LCGEMP8UGIJ7CEqsDcjhSh02g0YmBUhIyh6vbr09W6jsAs6BnRA0SRXngOvAAb0Ph9IVSoUY6syQwDbJ+4FOeC8YHQ6HapzACFUdZYVTVnOywqQQj0GzmLcxmwNqJf3+xbmTXOQD0f17lPf/j1f+H0/9E8uX7idD/O9g3OR3mUhfv3XfMOTH7txcuvkpSsf+K//+ddIHjBXrhy7cM/Je178vNd8xZv/4vMeet60nm1urP7u7/7yD/74Y/37Xzr7xA2EA8W+JwbHEMdqDQAjImhkQM4GWu0TqCLG6Y5jO/OCF1977y9vnNjsFb46jOYaT4k8lMrmLjUGM1BsJCdCM4zqHCUR+Ax5UunnrR6+7kvwq954P81DP/PZUHZ3DtZXVlIG6VqR6+RUCEFTGyAAOOeAMMYjLVUzSYTcpNgjFlHQ+9yU1KIGQURz3GURqbXb8jw3gBhi1MiMjlkQCXymYTabnH3oRV/++a/4hXfc+pvf8JKN4ogF3QhmIEl0RFWQAMhaYjEota04S3rLEiFVjZ8D9rY2GwAAOk/eqga0f12CRttQMWW3Rmqx1atLI78Wg3u7vaTSWlLI7BI5aEuGtvD47drHxbEd5b/tWWCXIx4dSEdk6fa4UPjCFlq3pKhp7TwCg+5MkttN4HSbE5uBGKa6ZjoMAgdErZoILAD5I+rTcz3XIj7ABWMJWwlMBTuaHfecAVCL0viCqQ4A7ZybxdfC4i4dXd67jsG1EUV6x9IftAuaoCsSL/Qulq7gUdJM3XOzPAvpf+uou70tY9RJw+w5b1PVKFIjgKgHyowYkYKK7zAZZk4ykJjE+Uzrum6a5vbt3e1bu9ev3X7ssQsXr9w+mNQKjhlXVvJzZ1af//CZB+47dvLkxmg0zPu9jB1iGvNrghYrnZd6OAm39uDCXrg0g7GqQU0a1FCpcmYmiUCLpg0yIRq1ooQ5IACINhFFhhi2crln1W8N6NhQRr2Y59QrrJdZwZIjOxDnzDMgipGZIaoFqE1AhRQgqJsHm9ZY1XZjPt2p9OoErs349tRXiq7oDXs9MBTQWV5Eyzzuz4tmvvFgbkw3nuW9OYYQ0YOxrwM5KUGfeOqAnRFFjYEAV1dX+oPC0KbTw+lsNp4c7O7dOpxsR6sIAczdhdgsNuoCreViAxmkMb2qSp4d2G7sVeBkMga1qpoXo0FVz/1k6gmZmRCjOc4DR8NVG9F987NX/+evv+9d7/m27/u2z8+KwcVpXBvQY+/806/8gSu9V7+FsmvlrTH12MaNq2qJpUxu03yioTLdJiKQ8fOe9/Du3k2vq2troyee+MCNaz4fvuwffN9P/spv/UyW8ZXP3Hz9l77+737Hu/7N//PJ4ekHy/mhSV9MEC1nVI5QzVezWz/8s3/tjW94xUPnT5Sik8msnIpaXVaN4x77JlQ5AJw8B1/5pq9/959NqSdoCPGA8OYDD2zdd+999547670PIYyntUP32Gee/PinG+htMK3Fwxvjg/nxk7T1yPD0xr0nTxajtRACzibzvb3q5q3ZNF65di2Utw3kWLbSb7xArMlWxEIG/eb2Fd+f9/o9hUisfugZ8mJ1mLmMnfZ7bn1js8cnDg4Or9/av3rrosTNfHCm4QatWlnRq89OPv6xT58797wcjkEDj77wxLnzDzx74TpSzPj4v/u5n55V416xmhXFVuFpsFFr+cwTnzbkSxdufO2b/+of/q8f+qODtWLz+XDwZIUUM4YqAFYETpKugwUi8v21UF3umjoOD29dHZ15AGDjkYfXZvOrqkOiqOIcIxMTOYSkzI9MnAMjgENkBVXLmJGwmpfjsXzuKx99wfFBPd3x+bpFnSPkEjJHzGhGxGRpYmkyuAiqmobhpr47XIagUVMZGBHF1DmXUlvnXIgmYEwUpWHy0g4MJVUNogCAQFECcqagQtHnfasCEtbl4Re89OW/8Du/+re+9tj4ygePdmWkDIiC2Mk9aZvbGQhZ19+TdI9bM3tXk0/yWAnhi+nsUv8Sdh6wJTnfwd2hRNy7e0vkhtYId0VNgG5iSSu43+kioraKmF0nNXYMibZ+eQS9pgNd6GVBl2UlULbDO/nI7xgYpFkCoqpJoxESzmqmYDHJZOvC9ZCZqZEhWEtFShgkdiXhu/DUz9a40W3WXnaUO+Wvj3wcHh1n+8OiTLsUu3SXaUm4406XekcE0BXXl4YxJMmeRcq7tKe0aRcCLV/o5Z///9zwSO8EpK0EH/UALp9/5/hVtCYkUNNYIXkyCiEgt6pykniozhGRCsQYx5PxZFxt39q9cPHaZ5669MyF67NSxRDIhkM+fWL0vAdPPfrwuVOnt9bWRsPh0GVZ8hapaURE5rO4M5br+/Wl7fKxHb40LxpzHgmQAjYmBxX2GZU5iZgTqjqgDHytwTA4sB7UPYz9TM4O7Z51vGdLjg/diT70vbEncMZOiUKBGaMSCpAapygP0ZA1U1WQqKoC0gg0QkHgbBXqGg9KvjaWC/vV5bnfUS4bPx9xz6ium+AIzWVuU3w9HtFKJFCJk+sgpaGLJhwFTJn5mQvXBr3eoMgdGWAUW0HkyXh8cDDZ3d3Z279dx5nzbWB+V+B1dDfhSJYliVFSAk6UCaNZJHBoFGHFTOr9fdBo0hTDwf7+vpRzVHGOPaJ4C8bDrAdDmUYZ5LpfPPCr//kjp//eozv75aPnej////mdt/03OfV5f8Hp4WzPMug31UTGezSd1ONdmI6djZuwAxYRc8fzBx+6Ty2vy2pzfe3df/a4NRmfKp66eOyf/dA//6f/+icf+8AnPv3YU9/x3d//oQ98y/vef7V38lhZV4AKcaR8EMa9Fz147b/8lx9Y33zR/sHsI5+4GMSOb2z2SGupc4waGrDa2bCcx6E78eCZh9+D1zJ3rJ6VJ07s/It//n3nzp2ezCqppm4w2hiuUFb08+Lmtce+4qt/APUvlrvv/Yo3fc5XftXXvvYLPndtNCznE1SrA5SloMSsSPG3v3nj9vs/9IHf/q0/e9+7H6Pe813mg9+2so+w/T3f9cov/uIvwdwPVlbIyDnnHTky09pAmFmh9uQLXyjxE08++Y9/7Cff+56rfmMrEJRBqdDBqpFrMuijRYyHvl9Mq7Jf+Do0G1vHzq+cQUQDyTOYlLvc8HD9eD05zBhmZXZya1B++uqZR1917d07LquiBKcWoW4n2QEAiCpwb33xnJBV+9tPa3/k3ejUOVfPK6Z1w30075AdcdKCdkgOmABjaDwxsfPeg8J8WproSn/lwXvvHXGQeVzNTscwI6esnJ86r1Yl6VkiSoxlSA4s0WsBRDUB48tpQapVxRjZOZFobX5npkkdTRVATSVqoocxs0I7g5yIFNDAl1LlkBlVM1Qn4OaHqP5vf+WLzvT39q8f7cxRaMWjIPEtFUChVTzSlrsLCqlq2/4KttTIYrhgCRFCx3q2o9iYknZa11nafa6TbkYwE04tG9jObEAiSOguU8LFF3cM2mZZhFZCkuAOj0LQDjZsIcwFk3/pgNEUUuK7cD6dfkgiHbbNvh1GTV3mnjSItCONQboTC+QWjBW7i4MM1GqMICIxEjF0/U53eabP4qoI0+PRgstLXpaQNKjpEf7cXX9JF6cFC5bCHUyV2jb0uGPjTjPh6KvaaUjWcb5bn50aW2W54aQ9OEQBSLOXF/Nik2O/q9682MFzX1xcxCUyD8Skg3fn2kh9kC34acEANNbIORBq9MFEBYiTAwbnKJWHy3l9eDC5cf3g6vUbTz19+cKlm5NZI4BEMBxkJ44N7j+/df99p06c3BiNhr1B32dsoopN0uiNEudl2J/I9QO4uBefupVfHfuJekdAMUYgZEdoSAEAklZPAjtMVQyQyiFWqxiP5XpywJv9cGpNzqzz1ohXe26l8ESE5MwBkjExYyQwTjyIhOhoasKvreU5Qgr3VFUMNyLOS53N4qmePbQKtyr4zKx6eqYXod9o3xNprAL0zdW9/kppWzAiNojUwP5VDfNI7NH5BlyOGvWZC1dGo7woHsxyms3nZtxU5d7uwd7eTllP2Jn3FGLJ7LWNz+56gpMGTTe3B5f/SkwkKmqM6CKNrJzF2aznfSRyRQ8ELXehqcz1M3DRnMsNzGo3dNvXATh/wUs+/oGnzp/QlYP6H/693//pj8O5135Os317NpsraZiGencnjG9bfaiH26DjhqcAJaiyDYKWp06eLefR94Nj+9jHn8L+ZlPuZcde+Gv//U8//4t+6/M/71UXr9aXr49/6v/+iTd9+Tfe3BvCRoQ5Is0Ac5h//Mf+8dssO/HsE59ZO74yWFm772z/I5/62J//+Xs++N7r09nY1BU5+IyJZWNj9aMf27U4ZBwyPPvvf+FH1garT3/mmSaGnsOek2e3D1c2hoMVuvf8ma1Nf/Xqp37q3/yNN73p6/b3929cvXmpqo5vHltdXV1Z8cORVqEOIZaHsrd30Ej4S1/2ZW9681f/ybt/50e/9+du75/Ph6t1GH/Rl6x899v+1meevE2+ik0z7Pd9ZowxhKbX66c5V9W8uHLj6v7BOOv3V0fDX/uvP/vmt/zVD3/Qo66Vkz0PVM/8bLBT2titzB97HP/Lv/+lv/bXv3E2O3QFz6dy+crT+4fXH//U9Q9+8LGDA7p+49l/9TPff/+Jh6Y75Xg+yRzC5Yvw/JfDqQf09lNehVFjCAouNSYASdNEyIbYBtwIgCL7Bxc/cc/ZIutVoR55aoKZI2IkAnbGzpBTW7paL/cmQEAQoJxVDLS1sbW1vnHSIbmBFPO63M9hQD2gqGCBqCuuLSbYA5iqijJaTH0IzRF5qtu62eFmRBRCrcxM1ISQ2n+DNEQUQujl/Rg1qXmLyELGNYTADqumMaxIiyrKeLK71cv//jc/Mr5+yRdHGY6AuQgC7fSwdlBtS2mirh+kNY5dpU+RW7+iXQbWooZLBcjFB7VDSjtLm+ZcWCvOvqD4ICy4OUoKau0OGO9ywNjlYd2RtRdtsfoXxrojY7efUV225WSk1BF97owMFr1SCw9HZBAtlcbTdUMDaEOp9iqhIphgYj0tjJIBLLX/4vIlWlyW1lstJDjwKNVcoLkLtXBZeN47+3mhjX9Si0SrkGRLswvvQOrv3Pvy9wOAa4W4uxnArf9tEexOmaC7ZogKrbYZGhh3yHmHQepdO7vzcrcOvmN1wQJdMbM2vFo27pYcPAoYm4hFMBILqDUqxdioOjCKZmjGzCGIxDiblYeH41u3bl2+vP+Zpy88c/HawaRxXDiyIrMTxwb333vi4fvvOXP6xMrKoDfok0s0tGgAqRN/FnXvsLl5YM/s8NO3+anDfBK8IyBrgrKiwwiOWDEk7XRVQwSEmJMWDKd69ckhnxrIZg82enG9p5srtrFRjDLzBThniArQMAqCIAmgR0sSb12tAgANKkgyw5RaxxMubYYxm+bO9Xt+zehUI/c07tSYzo/1XbcOnyl5RoiR1HiC5Wi04ggaRWNhqfKo9eENsAigjjCEpsjy+Xz+xJPPrG/0m6YaDrxncs7tH+xMyz3kwA66jjhN0nMJpb/jqUpHTEdKtikcU4qcbIiJYVbbsNwfMxFlWa/oKWWMHlaHIQhkHkU9EzCHechXRocf+eP+ix8arJ34yJ899SP/5I/+6GMX3rt9z+nnnZ1duqw2m1aKu/s624/jiTVTbfYoHoIeQlM55Ahq4eDYsa1+3j882B2OVmLc/tgHJ9nw4djsVCq88fIf/kf/7j1/9urRiOr5IW6e/vn/8C+/8i3f5cs3NrSvEMK4fP3rN1/0qr/w0Q9dWN8YTnf2j5+yb/32f/RL/+HTMDgPcI9zHjTEZg5WA85BbnGxlR/Pm/nBq1+98vCjpz/+oZsnT57J+sXhzo3v++4fun5TfQaro/zEybUbl/F7v+8Vb/zC1//B7//eysrKaGXjeY/ce+niJ3/j199z8fJt39MQapTs4Ycf/vI3fVHmznz0Ex8siuJFj7zs1/7bT37ZV7+1nL7YpD52/Nju7uzW9uXR4GzRm0+a6Wy2e7A/vnTx5tVrt5qmiVL1+v03f81XnbnvxM2bB3u72xd17Tu/62v+xjf+GvvjB9XV6dRCnKOsTaaHzbzOBg/+63/92//9139/ZXXUNM2zly+FapVgFcA7t17H8ee86p6t3ur2jauHk/ELB49cP7xEUuxffWbroUd2pjtFhHm4AeCAAcQpARqEJpIbICAgg5l5yETr/Wde9tVnHU3nYeL67GWNGQnYGTokRkeIlIbLGGXEzSyUZbnaG5w+fuzY6mo/8yChv0ahzvLVgtQIQQonABmiqhIAESAhMyKiiLQ9NWSMpBo7Ce12U1XnKCHPRKRInZpnSwQySeBnTLpjMUqSHzDTum7MjCgS9hpVhuihNuSbe7sPnco3V26EebUyOGJOEBEoMHX9imYACmJpiaUMNdnuNh1EQURLUqZd/oidU9EjY9uhx50bbjt8NKbTQFBMPTattICiJn9mmHp2qZWN1JYenPKJNLFhyb8BApBCWLyAnd8FaJM7QwJgMgDseiu7rDg1B0OXiy95hKMNW+a0WRIjMjBABVXAJd36BGqYIbQ6fJhA66QEmzqc2+O6K99NajfLLy6Vb1tvtbyJitx9kEkyczlMaW8xWVdC7n69a1s4+OVMxnUe/u6jYQCwFFItwhxtz3Wh6dm9WTU9triss3rXGS7vG9pIVTDJoUHLfX8OPtAy4lQNTAhFNZoEJSexUQIEjjF6ZjMr53VZluPxbHtn7+rVmxcu3Lhw8crhuFLIFcATHN8a3X/vyYfuO3/f+XNbW2tFv8h6BZCJ1EwoAiYwq2RSxdt78+s77uIte2ZHbjSKJs5MohrliKZaglBN4MA7cCzirRm45uTAn1wp7hvqyZGu90OWxZWeHxW00st7vV5OpXOAzgCEARHA1JllJg0BRktt8O1FRQBODyEAkCIydL1tGvuZwyzDyCZCw1qLLKzm6kHchZsfmeYxH7HMCUONOeYCK3PEY7xS9TSSNNVkFyTWBKSiFhV1Mp0/+cQFCdVoQJubw7ygOhwYVlmOBhQjIOSwhGUsP46IKG3TfaobpYM3RDCOWntIOqBEVZPVB2XfZ1FstLEe0SF47WUSjVa8zWsb5HQYV08O9j/+Xr++yace1GbGL/n8H/7F96w+7/knz+H2zc+4JoeDg3p221eNTHYkTjFOIMyUFOpApkYBPBHIqXu03x/V9fW1tc3tm7euXg3Qizhc7VseNmn36iM/8gM/8TM/+xMf+tDTu5NbD7/4NT/0fW/54R99uz/5KoMmHOx7WCv3EGF3Z2f+6PMf/MEffNuv/NL+6MzraxcC1giE5nu2LiECbUhUAQWeWyiOrW1luLm6UbKEF7zwJT/0A//28WfO89Z5qA/3b0wvbOc4uP3GN77myaeurg2pqet8o/7Wv/XNf/LOJ8TOIq2pAVhBKGof+dEf/o/f/p1f9nfe+neefPyJG8/sHr9349/+9Pf/tW/4QcaXfOjjTznyedY0Ye/Y2Xve+re/46Mf+hTRACwHKlQQgAnkl3/5V9/+O/9p1BvFoPPy4N77Pjc79kvVLTefSX+Qg2TOKVgDXChMZeXUxR2FHQAZ5P2XI9dSAWCN/uqXffHn/R/f8lVaWmk7n/f5r3nP7//J//wfn85Wv6C68owfbqyevvfwqW3qFzCPiKUgAhgRRYPC9TrJCTX0Oi1PrM3veWQtTnd6uS+jbTAqMgMSERMTtprqzvF8WmkZR/nKfffce/b4iVEvyzSSxqbIQWPuC4eeGD2jAonOkdxSjU3NiAkUVAFCDEwQNBCRxJhyyrSJCCJmWTGdzY46i0Qc+SiNSAOoMQqAVtU8ywozEwkhCaWHQETOtK4yR4CEM5g7GDSHjfS3g+Kw8Cz1keUOU3KZaUsBa70cJeGJtoqT9PsAIFWFE4qKrRaLAejRPMruJO4wmUYdXUgRQEEQdIFIp3C4hayw1fRNWRCljqE2DUNLl6/LCRCxqywRd7BoOpLO23RNMbZ8LAyisDShZ2E6lhKzTj5gyUfYUvHUzKzVxUq6NW20sQhEEFETPACISGbUyQKloAXxTnfb+vD0It3hm5aO4jns6G57zotL33xXlTf5O/ss34ndZmbOLBhCmuuHrTBe+nB6X1vPF2gB+UV5nNJpJ9XPNAaxLebD4jBEbHn2yOJMVZWZEt6PcOR673LAZoIGHhEUIghwYFBTp8FHEKQaUAmzJjSIKDI/PJht3z64fu3W5cvXn7l0bToNCsyk3jfHNnr3nT/x4APnz54/NVpbGY5WiqJIWgkIpNFAw6ys9w+r7bFd3nGP34In9uDmLI/MzASi0ZA5qgipkdNB048sDc1zoFMFPLCq92/Njo2qkyswHHDBWngYFljkzufgfJlRTsyEFFWj1gBgAjHGjoZhiZypImikqsQMqGnqXZ7nRIRpTLeY88zke8TqQuA5OU/IsVY7WfPV2x/f36z7A4eF1iJuSK6yjHBlVOtxjJrDhWZyBVWY1i3OM59FC3sHO5eeqe6/93Svh9GgsTofsGgVZG4UQACNO7KfLjMaVJWpI/5pyt0TksEYWDJGUfQN2GBSMs6msFJoQ9nZs+VnLmHmMsoa0AKb3Ge+soPNEC9eK7bn8MWvqm+Jc6PBcKovfzibT8dTwRk2t27G2S0o92I5NZuilCBzggCtlAAQEZiPtnPvqQcqnVbWSI3Birf8ldd/7MNXbh9MDg52efd44U7811/587/wuv/0ZV/+Ndcu37px8eK3/t3/80Mfv/r23362v3GPQqWMDve0yUwhlpMPfWibskcnzWdsXgA7IGbgcJTuGxuqkhW9eYUuVMDqzNUy3b1ylVYeZGoajlQAWP7ASegP7pXZXm3rZ88U7/z93/mjdz6Dwy/x2SS3wVR2nOsb5eR6VG/+xE/8gaJ+y7f8racfv3xw4/JLXvg5X/mmF7/jN/dCQ7U2BzPKYFuajYJzphdlayvRGgc+xCnxai/zk239lV/6n2/9O9/29NM3ezls5au+UUTZ3ZtnWNtQFNe48ax1JABtHK/Gegzxmswmp4+dKo6tP/Kie970FW948QtfLiG6E2GzPvPz/+Fnfvpnf9vx6SA7XjcnTz158qXPl8u36vpmxBqiByTIULTg5rrrHxNAQM9QghuE+eHLv3RrkB1Mx9bP3BBjBGRgI0ZFJGADNoxVmEt1Kh+cP3/uzOZWQWQSc88GGoL0PSH6GCOisicxNYvIi+4YZCRREQkCbIbek0gQVUQCQhHlJTp/kCimVVMTUQwxc1zGAKDsXWgaZhdDzQ5EJMYYVRSAEwpdVwAigGpIOs4Gg6imgQPNqygepIDaTIDzxb6YClA1jp3bUAAg09RgaxqSbW49RGu/NaU9oJ236Ew+p2Zi6mg7CxUOwdQRiyrcVU1FpZOgUlAjSL3F2tZgoaUSp2IfGSGAQKK1EsDC0yWbDkaYEC8AIGAEAGOio1mK6fhN9agcCoxg2NawTU0TFw2MIFGvOm8mlujNZoaKlDR6U1uxpH4tZFURlVbKEtkMERiQTVEBiRyQa0nEmDT+Ohy3VcCARccud4jdsuYXIqZpSAaQokMAEUMDEoOoMWm2QzcQiTGN72pvlZnJwqk9B4hugwBpWzpdwtBVFYwAEpsOoYuJOiC/RfTN7C704K5UePlPsFxtvsOtJigcnlOlvju7AoBOrM8IOQ3vcSaitUVm7wlJJFRVVdd108S9/cn1a7cvXr5x6eK1ySSKKCN7h+uj4tzZk/edP3vuzInjW6PBMHecngaNsRUkmtW6v2/b++7aOD55Iz5x092uOTKQRjXVNI05KgMqZkE5cu0sbJjes0IPHbN7N6qTa7w29Ku5Fhl4x4VzeeaYiT0zI5JEaSxaajpMncyxkbJqQgiqMYSgqiHW6akXAefI55lzrigK55xzXBQFe+c9AyGgY2LMoiHEoOsb4/MxAhYZ3/7IfnWYrWPWYA0GedF3EWqpy2xFWGc+TuJ8T2DsKDJ6ImsaCaJRzYCj1VnmDUOs01RRJCYwMlRLTxl+tluWZONsMajLyJGIsLEEGxSrB2M1hAC6snksM5weHA5WBpphaJq+ino/YcbbEi4crH31Fx1emGSKNh2XxYB5MJvu9deKpprGyY5Wuxj2TeYAlVmD1qSuSWghG2TnzPDk5v3NBCm6yeRwfcv//R/49lk5mx/uXbh87erl283hdG9v453/6xN/8TVfzrnrFXjt6vgnfuYfXviSb7h4MUQaTKZXDxo3raXPQ4+UZRRhu2CqSiAcWFRBRHJp9isAAhJDrqAXnr40nU9yP0RRQ1o/tqXzCQ1GRLlDbIJo7K2urezvj702WyfOjpvbYMfZlU293zSH4I9JLcpjZGM6KPLX/Ief+62/9c3fkmc+Yn9/b/IlX/aFb//Nn43V8fns9mCFyv2sqcLJs5m8/+nQPBBDGSAixRhYtTKC8XiMiIRZqF3mVwCn7PTm7amqUgPeS0OmaF56UF0Iev2++06/+tVf8KIXvPThR+4drKLzJ5py/NSFT7/vve/5gz/444sXt0VHQENwYuGgYYE4Obh8bPB5XzB91+OEt5j6aEJNhllllTKtMfZFKsM1LWFrq3jxi918At7nQb1nZkaXoUPKoXCKcdyA2On1rXvPnjs+GjhAb4YG7JxaBIDC+4VOe0qWAYBSJG+Wqrapjy8xVKKIxZaQhYgike5gJ0Ge51VVpS+JKhYskajTkkz/WcDU/FvXNTKLmYTGzFzmQ4wAlpGv6zKoJHdSzmYbpwvHRgDEz0UvOxto1nZ9JLEqtU7aSM2MUkYFaP9fxv402rYsOwvEvjnXWnuf7vb3vi5eRLxoMiIzMlMpZUpISiQhiRJCEmWK1ggKGNilgiooLFuAEVAgoPBwURS4RtkYXDS2hl0uDAZD0RUaUoGMaKRUppKUso2MyGhfd/vT7L3XWnNO/1h7n3vui6CGz4/37j333n12u+ac3/zm960lJgc6cr+tUnHqlckdGXoTpKGAXIfD9VJMw34UnKKnYpX1FkNDFQC0tFKBjVq7vHwgFHcHw9B2xXXWcdl2EYHvQ0MfTZhU3js7S1f913VxWYgvWohwZXZrvbZYr5v4HlUsoqJqTNffLH+4+S2XTl9/rGZAIVSb9QJhm1Xv+tvNbTIzDzYE69NrpAP3ieh6+3V9IZ4oNf2goDvEzitUYVNF0jkAUBClAnkrQOT6viBpDxRvXM51k+B9doLw3lhr/MSbG9emnNci1MKmScEKNgKzU6PLxfzi7LJpuocPz1772jvv3j85P58rTZjZe96a+bu391987s6zT986PNge1aEKjqiXPjFDFG2beDxvT8/cm4/11cf5C49wfxmSA7tMpmKuDF7nHJmZOCSyQHqjphe26OUDeu4w3djV3ambjsKoXjlnhdzhHKgMlyt1kmOMqUsxxq7rmlW3XHZtk5quiTF1Xde2bUm0+ycQ7L2rR2E0Gk0mk+l0WtdhMhntHu0554zYO+eUVY0kTyrdjzkcxEqdsxyk+/TFyTlvZwey0Eh0bhRmN8XU5TZ0C8ptSnNCguXANRONRiPnvSA7Uh845lR8+liNmEwH5ANXOXi5bda5FtkwpdDD0ZHFs3chQ2zy6Byu9jyrD27ffPftdx07no6SRou5Aq2sqcx3b7x6+P3f8MY79ysXWsRAkrtTH8bzJnofJTeMTrUxWRJFy03vBWaMQnostIUUmOPW7l62rGiyurffjBdN89StZw62bu9+dP/jX59noy0OaoRH95t65IwtxW5xtv1X/+Kf++5f80O0951f+eJX3nnnbDyTi+M3c9r7uq+/84u/eCbNLUewJOQAMtHU417kYCzcubD7xluXi+bS+d2IjjjcvPMC9MtiBAtJFcEvF9X84lG9NY25azu69+zXGf8sKREOERoKkUJAnjivXRIah9Tuf+ErP3f7mW84u3+/XfHHPvaxvf3RycnJ4rIZ+YOG3lTBRz/6wt/9//y8I2QymDiCWidipn6+nI+q2rmQuoaZn7+393O/QJcXWznngEngMN3eMtX92erX/c7f8ZGP3b1798Vbt26NxvGNN772S194/Wd/9v/9qU995q03HsWmAiaOngflqqKUTxztsy4kLVZvfaY6unP0iV/9+Of+vIapExaxSvaiBB0Z8SHkvhvXGsef+KbtnToen2WMJ8ZwlWNxI6qcUF51LOH5G3dfvnP3cDLlmAzmyLzzRGTUz/1zVYFUVQ1G5ItPbbETkV5JCTqsmKIKIKW0FptU1VJ5rO/fAkEbU5dTcE5V1dgsSxbAcs42UGa61JqZM6eqDGJHOSdRIaKEzlJqmxhGY6iLMU4qdl65dyAaXkyAkq215Mx6IjTBlK5q2V55gogAKXwpK+4ePaRa9l8AWKlXe5/LIn1fHgrtnT/Qz0PDlIcWce+Q5MiMekNB7QeShoeZQc56ZLWUxVeHAaBo8gBQ9JadayuI9UxErwjNioKO9tC3W0sUr7c4zO2sAzCGc2D9qm/ox5euQ9lstBHPVQllTSjWhwUQuQoxw85v5jFPQMREveVw7yS00RUekggbPqz3LiuQIFHpqvfF4tWhbfCtrgDwjQ/1ZrbOcai/L66Skf5y9GxnIypeG/0W7Kr5f0WTfi8Ojve8ysOwkWG9T6luZr1C/rBb1PvDtaUfIkAn1Hb5/PzywYNH52fLd995/M79k3nTwdekRmyTCd2+tfvC80/de+ap/YPt8biuwsRxgDnNYmZqbtXm04vV44v8znH+6rF79TE/WrAw2InGBDcCBCYGECkTGXKA3nPy3J596Jbe27WDLbc9C7Mx1aFzRM6xgBxzEfrNyURi063aVTefz+fz5WKxmC9WFxeLy4vVxbJZLprlsunaLGIiIiJm5pxzjka1396ZzWaT3e2t/f3tWzePYpa4227vTLdnOy5UJmaamfK0miZ1u7v6gtHI4piaf/mOnI8m3lySThXkx6inudquprd9XvJCgq4Y6pm8hw8k1DZpVc+mok3XrbJELoR3w6bAt12/VCWrXuvUrZ+rLDYhFmTvsGirs4ZHW9N6d5JElucXW1uzaFLVY4M0q4UGTm888OP0pX/4T5b1eOvebTfeSWCXvQ8YqSweHnsuzc0aNCEL5qkXEzAmKr4IAtWqmiXxe7cOji8eXlx0L370pf/sP/vffeazX/iBX/Wtd1985lu/8ZfduHFzBV+lMRsd3tz1irP55WSC5fnlB178+J//Cz/8u3/X3zu121/4hX/4iW/6gTN78/w0fNd3feK//b//TRfuJFEuJvLl2SUhU6hBCX7Mvkpwijyd7OXlSbuU8ZZBzszd9T6l2Hk/fviwe+etVw+e+YivqraRF158GloxxubPYN5yBEfwWFceI6XxhZzz5z/z+Q+89C1nPBNaehe8P3x0/Mbbb91/9rmPziu3WCzuPfMyGUsSIMOCZBglthlcfnTyoGkaSdmF6Ihv3zpwLj9+uGzy+dZuTfCj2gPdN//yF//Mn/pfffoXPns6f/R3/95PfPbTn/mlX/zqG1+7dAjKR1V1rxprykvjOcFix9BKeSUagtXmHlx+7p/f+ZZfWe99Y3f2b9Tftiq2lJiSUoZjrzPTWzvb9LFv2j2+fNNXjjRXlXdgRejmskX1C7s3Xr55987OnmjUvLKAysg7773LJsSOuSYoQU3FpJhKXWuFrNdKYmPmlDMB3vtsCmYTITY2TiKbOlCqCsdMlHMm7ySK5FjeV5OUo6qagpk1C5jatkkp1VUVQsgixT+izD6patemDDNlkuhIALVNAQfHMIUW8qkZdMgg1YBhHAi9CERpAg4QIxGAPlcYFuWykBp6b9xSEBNszZq8WmyHIm/gUlHPW0JpMWofhQl9x9FIhwGHISjwsEGjUh6U1IGKg4T10CipganHpKBFzRBMV5W2mYExcEqvqkyQXcXuAfks2iHFXM3UBtnLHnUaooy7kslQJVwXzbh2HtZocxmLWpebJehfrWkEvdK6Q0kBryKx6rosXn9G+XPiq+XxiaL5va/yC96kRzgGd6ghprLDcO2Hba3DLQ2WE1ebY74SAVkf8nDrXJ2E9+wFE73nzWH/Nok/NJxEFQElwEnCctWdX3YXZ5cP7z++/+D00eOLpk0qxKzgPNsa37ix/dy928/eu3t042A6nYa6mOBCJMIs57xq8/kqn8+bNx6PvnxfXzulx13VCZc5IFGvMEYmy8SBfDDLY2u3RvjQDX7upr1w1B1O/XQ6Ho9HVTBCyqowT86pkeUsIl2bVsvl5eJ8frk6PZufnV0en54/Pj4/OT6/uFheLnOz6roulkIqZ+1nGU1DcMHDe1dX/nB/+8bNgzu3j1564e6dp45S3Mmpm022mELpO2SXZqMp6XFlcNSIQkl//s3LU8zCyKuGnNPYj2yyr10TpjcpzTnlkcvOsa/YSEFZLaWMLF1MKzMlJlMqQna2IfiyeZH6hLvHdfrGEBExAZmjNFWQs+Wk1Wp7e1xNZ5ePzhw7eBcCeVBSla6VqN388uIXfk7Ov1yRNZffvvXSNxnVQjTbPci+as7mrvYSQW6LR8HFnILwMKAHwEzJEiSLg2LyoY+8ePNoFDKzXd48nMb5/t/+O68r/dP/o/tbh7OjVz6+/Y2fePbl5z4axlv1bOubv/GjD+7L7t7sC6+9/T//Df/Ln/+Zz/7Vv/r2P/0nn//27/gtoPTuo8+88tI3337m//rgEflZpZpVDXDgUIIwSsrlFkBDFR48fPv5lz4gqWkum3vPPeXDknkicmoQB5cxe+uttz/68e98dS4pvvv0nadu3ckXSwAJ2PZYZXNA5zy0PJi2f3bSTSYzohNYNx3dVl5Btx88ePDKhz9G5JPEO7dfKB09BBATxDObasue333wTte1zE7hQaNn7t6R7o1ETcoWJrsA722PIDdPLnf/iz/3o//g73/2zXcfXZxH2JYL+9XoJtgsJnOS8qVZ1/v4IIIaT3UKKRlVbha7d4+/8G9ufOg3PvoXX+4sk7tl3pAa7jy7xDxr0+qjH7s1qi4vLxqrdjUk5doteJbx4bsv3D44uL2z7bN06ZJhVVURETtSs6RZVR0XFi2RGrl+nRkmffs1p3dHRi/gBEBE4Nj5IjtlOecekNu4jb33XU4pZx9CF0szqHCgNKUkkop9mSgMmmKOqRURybGqKjCZuAKvqoK56rIlEPtRVccSZDaLIRAJuOdM9AZwQ4GKazqAzEyD1c3QrxwATJGrpXAdILk0G7WnBL9nIV13OG1gyQ4usaxmRqWKxqDtCCPHyv2uEZlJn+6QUj/mbzSIU/ZjouTIijuiFSqYwRErer9uMoB7YeneNQcblVtf79kVFi2l5jKYFgQOhrXF04aSc382er/PNaz8xEnYbI+ua8XNn5IO7jrDr11Twlq3RAdM/erNYffL2564DC+9F4U260Ea24SgaTgkKiaua6bcky8tS3CBna+2+B7q1/D1k+Dz5svMCI7Qawi/7+/Q4GihJVPpm8ZUrGBIWpHcrRareXd2cnb//sPj40XTZABkGYbprLp7e/fec08999zdm0cH0+m0qkbkgmhngIhJyk0X5ys5XtiDs/bLD+XVR3jQjBpSILOQGsMTNDNlqMCcqXqJh7P0wsH4+dvtnV072PK7E1fXxq4RVTEhBLHiVqg5565pL84XJydnjx6ePnx09s794+Pjy+PTy7OzebOKKmykdV2Px9OqqpiLTY6ISJuxXM7bRQzeN86dXyzeeufxV3ffPnt88fIHn2vbm/uL8c72cmu2OxqNDAoWtWY2DqY2S6t7R1strVJnP/fAlk2daURGYiGEsdZT0x0/njleManzNq4CM0Bi6FZN650aEpmY+p6zsNkveL/LtUaegZ6SR+wSFKTKfLbaT/BuXJPaarEc1yMhs4wqODPSFMe1PztfSHM5HausTrrP/sxpg71PfNPYV35v2uRGc6PgMrHiJ/tmxqgYChUGVLOqmHTQpDpxs8kf/oM/fvew/tBLR9/7a77ZPAma8d4z6G4nsQfL5aOfOv2pn3wE+3Tw04RHf/o//fU//If+wM//whv7e9O3vjb/M3/mj/70//hH/oeffPMHf88vPPPMi1/90i/cufnB/+T3/0d/5A/9Zbp82U2ORvXE+TrDBGJkhqSqIZpDTnH62U9/7cMf5dE4mOYPvPjB7W06TQpY8LWphq0b/4//7p/9hl//u9iCadjbufPb/v3v/y//7N/buvlr2vgoiDcKStk7UqnHmC7w7o2nj4Q4jLpRuOkqjXQCune5fLuua++9Me3v7063rOkIYEMHy0YMdCaj01NcXi4Ba6Nczps7d7fBNZEsLseqy1DpbHYXtfuXP7v8mZ/8MpzB3atm3hBzUoGgS0QhxhWgZRG3nItCg1iCtrAcVxnhqH30hbOj27MP/rr0pX9IsdH6pmY1ZXJ3tFkEnn/Txw9z88akPuSQmzYg80t7977uzrN7O2NLSReXYAp1DaYMB+Nghf7Iil6CikxdccEdTI3WAGmJvmUp68mMRbUZxdgKRJRzZmbnrvnkdDmVH2VJ5bnLBX9izjkSkWrOWcs2zSTGrlgmxhgVBvYOLIS20e3xtoCSgVjrsZZRKru+MBa/mLJ3PUq6LvnWj1iRiOLBQ7q8t/kUGgAlpkEForCWSw9X+Yo21f/NZksR6PU0ivYDMPjD2lAQY4huPQUHVvg3MECJ3CDD7NbtyTWL1vo+VEEnC+LKRFp6zUPj0ayvHdffDyXtYBxQCEdDR7aX4+g/SQnGSlcZSdlIGQbi3tHBjEA8tIjpCsTDZpt747qsA9nVVSi6jH11fi2I2oAAr3OIHtCgoRCxXjSfN8tqXPG81p8LwPcHt3E0fWKlMmSaV5FfVYcG9lUPfnPnBrCa14d07VivuPODFQZdXQZie+8G7TpTvG8tm4gqJJt0mprV4vzy/CJGKUBKVWE6HR0dbr1w76l79+7eunm0vb1d17VzxFDNWcBtzE2Tzuft2VLfvcQ7x/Gtc7nsalEyykQAZRgc2DJABnYm4pGPxt0HjuyVW/n2zA6n1fZkNK48s5pmgAgjcpZzTil3Xbdcrc7O5g/un7z97qO33zy5/+Dxuw/PlqskIsHz4d7+3u7u1m7Y29vZ3ppVNTOjqkLOuW3by/lqPp8/fnz27v2T2JmhihmPT1b/6jNffHjWPDo+f/75w9u3dw/30+7udhjR2AUOGlOoamxbLal7asvlO6sU9bMP55e068hJzI5AdTCdVLNDcMMpVzWPxi4EEVvkvCTyqik4aEH22JkVvR62jQXg+usKDGRDgetNfAaYvFJ1utz3oy1X183y3NVBu8STkTByFqLgndPY5eas3r0T/d20fVI3D7t3PruaTrZf+oaL1z6/fPiatY+7OlRuZlar91aPA8ZmxoWaAiNJJhEqkFbjwav3F1/5fPwf//nn/uJf/xSC8ey5phOkOTxAHu6I3ZhGjtDM+MN/6k/85Ld993ffvvuR9nLuGK1s/7W/8e9/2yf+6z/5oz/91/5fz7/w4oe+8MXPfvPHP/mX/pvt//J//ze+8uqXEk2hU2CMMPOjMWisWdHkagbEwy99/tj72mwqEp969t7eweT0XBwH0yql6GeHn/rs25/9zOfuvvjc6WN96+HF7/99P/r4nfTjf+MfIx8YQa2FQyMTcLO82H3hXvsbfsNvevzgcfCjm0c7P/vz//3l2bbzO2+8+eXKB8djiIxq/4EPHH3uc9nxWFR7winV7KrVgh49PJ5MJmayXM6r2jM1Ytq0b3/bJ7//y2985vf+yB8DvVzvtHDPZZymro1JkDKsC97EKjAxTUQZsiKXDdmRVwsAUSaq4PkCNo71ZPHGz9749t/CsnX81r8iZWPucMph1i7f+vhHn7m1544vOa3ChFYvT5792HMv3Tm4Jba05Xw8HofRzAhixswecIVez6xlXJatgMBRMvu+ZiiTu8OihA2mlawBM2Ym3RALMoPjYv9cXk3bhhBEc9M0zGwmWUVVHQc1ZaMY2ywxpRRcpZC2XU3GYzOXUibH3jOUkyaGyzlHlaWkUVCEC5MMj00dycJfVCMGEbgnAK/bmYOUrxWOkZKSFu0qIirfm9lac1f7ZnZxfiuSgbQWr+gVIvsgMcyYEhe3g14M8rqy1RrjXAfsPsgNsl1EfvgNuuI0WR/SsxY6typA4F61gIhAVtreGwd7LfZuxFHrB402O8E9xN13GIr4lV2VBOuT1v9BP3hkw/jTNXeDkkOA6YnARESOSIfCWXuBT1MzVbE+FxArjq39S6xkPv259YxekIN6tYRed/OJD3qi4PRDL6DHx9cB3w+YPfXDJ31MtzLeTXhiQ9gIt9qPYPdcxCc+vi+4N85Aib5PbK9vX9MANDGpEPd9cSlnnSCsmWDMKNQkdjodj27e2L9188ZTd27cODzY2douYzxQy6k1oabt5qtu2enZefdgjnfn/PDCNV0w1coUWhtBKWvqnAVvyMyqTKyzOj17iA/c0ls7F3dm9dY0j+vGmJMKLLExc4jZxzauVu1i2ZydXbz99qOvfPXt119/58Gj0+UqRsVkMjrc27l1tP3snaObR/u7e7PpdDIeVVXFBDBzyqqK2M3PL+bzRXr0ePnmm8df+PIbZ5er6XR2vuw+94XXj4+Pzy/uvDS/vbi1vHXnxu7eRCd1sF1mdjTPjka77S7GuhK6IRfn+bVumcRDjTyZZ1+NXd7hdO6pG08xmfrxhKvQhbpz7ERlYNAzketVV2VoBGxcOTbodbm0q39JwN6MxEarbndrtuur3Dw4h4XJaNTC4LxzDs5LGztpyOVYjWc37mC11x071z7uPv8zbyxPuYvVw7fELzJV5h2zr7LXOnA9MhNmJsdMTkSgGWo+rVYeGD/wh4HSXm6Y7Ew7cD62asdiF1xMdsHa0Txk7+LoXfL3/sgf+M//wU/+3752rtV48eh852Mf/O4f+YO/+Of+i8/9B7/9b/6lv/L93/4dH//cL7x19+ZLf/nH/9O3X3/41Vff/soXH5yfRlGvallECXvTl9598Oanf44ePXwnjJYckCST3faeYSDvSYMPyBxQf+CP/rEf+0c/+XeidPdPH7r7sz//n//ob/sdv/If/MQvvfXaW5XrOqGHp5fL+eLG7OYf/mN/7P7p5XJFHPP+gfu7f/ufoX2aZ6u3Xo9dq213qYLUpnv3bn/65099vQ8TwGBiaqFGu2jZYXtnNn98WY2mNw5eUvkpX+299pW3v/yFH/sTf/LvNPmXhYPQLDIrKabwEQIeTcxSyoYA6NJRICg5b8iAigiMjCLcruUmErlwFpqR5er+Fz/z3Pd8//nfWcjqHYesy1XAdkPtN3zHvXe6d/P5zocPb3z8mV/x1O6INGlzOaozbc2c81AOSsTmA6mKuaSJheEILnhAxTSrEMBgZme2loMYCM85Ayg1bgGfcs7ee+9913Xlnsw5w7hpms0Vqe2anDOgXdcprIRwIYGxWu66LksHKJxvmibn7JzrYpOTTqY7OWeJ2iHvzCY5pZTjMsv2zmw0yTpXsmsQNDG4BL8i6EtF4PFK9qin1MAY1msbF0nPvqgBNlIHRl9USk/7JYYJDKK9iQJzPwLKTIYMdhulKqgQeJlps5CiNcClZOjzaQJKglBiG4NJB2MiUmLT4UeAMfcYeIloJaaV/vQQI8s+yPvTgzZetNH0hBU1SjbrW7bldFH/JcFMaWg/2EZ5+v//q693Bxa00maS8OSrj/JDWdiHNiXHGwZQ1xqyT8Lg5Wvf9/AG2BqFumYmKusE00rRTTBZ+1n0d//GySrN/L6stcLtMt7s+16leNfx8ffMCm/s8boXYsYws35qyBMpx7qWetTt7frZtlvF5WQUxuPR0dHB0dHRM08/fePWzfH2LExGIQSombmuzU1Kq6ZdrPLxhbx50j1auuMFIqowwsjAacnCTWZNntkLUpbgCRWaXR8/sEcv79vtKQ6nfjJB8A7qzCjF6H2lZG3bxqiXi+byoj0/vfjaa1/7/Bdff+2t05PLaErjUXVzb3Tv6RvP3L1589bhweHOdDqeTkZVVYUQ2DlmZkKxBYxxdnB4Yz6fHx1e3rkzeerprX/1rz9//905j8YpxXcfPO665vKiffmlFJMs51sHN25sbc/HI+eByumW1Fq3aVf21X/8ruH1k68uQp5ME9zI7dYTJkRvcSzNaNyOJ9Volv1IoNuek+dKczYDM0wyYJR5DbpsvqJkLhqV1NuXas/ehGPXUuccWRNarSY3azw6M9oae+kkV9VIQcvYbZlTtmXbULLKUlxdcHPpeUeps3Cf3vp5SIjoLLVkGVaJs+VcKptFpHq0JcSeg3PGzoxCzBrDJFTZ4i3tEvHYVUuNI/BS/YQsUaWqzKhhrI5Mibo82tr/l//6Z/+bv/B//o/+4z/86a+8urc3ffiW/Ok//h//4i/9yX/0+b3f/pv+ym/8TR/7937dJ6c1zrrpvXvPPPeBe7/q12I6qif1aH86894DOtqe/dTf++s/8Ft+SnhrO23Pu47pbJ53xzSqm0p3SbIRGYmOdm7/m1fz7/xt/+F/9V/9hW94+WOvv/21n/43r986eO6HfvtL3trWhZTSctks5wvR9PDRu+6xv3F49PJHP/BX/vpf/lt/8xcn+9+a9f7nX11U4/aDL77E4j74kWeeufcK/N8PdJiF2BOyM3YqHdHOP//nn/rNv+lX3dypkR6++vqXgTQKz//+P/y3IFzPvtPPYrtq2O1qdYkE5ArooBlWgwVQuEqs4jAzIkNEvoQsyi8wLVUZJDAVubQwwdnJgzc+feeT3/XW//DfSXvfpncXX3vtlVduP+Xc7fNb3/CNH3lq/yCoyqqrRxWmBKJAVHR+EwkTmzJb8RclciyDKjPMgqtERGGmgn6FUWanKqlLxFJUBwjOlCSbcyHGWFjTUnhb3qUURa7ckArNSlS1THnmzMGVHD+m1iQrxAgx5i5dVL726lQA82oyXy29D23X1X5n0Wi09lIsP5ZnX/FGLdiIjfTqs0SLxFfxZ4QqF3EsAgZ/Ai3unijehFwKoVpVgSyWmUsHFgQUOih69eSCaDtPXESNClFWzYj7Vq5nM8UgJ01mvYmfFg18oFdwFAXApVh+AvGidWADQVHseQaViH4F56KeVbyQULoApKaiZMbaF69WEPF0TZTRzFShDqakvQQTBqoTGbjMJWFd28IMQuRVTXtiuQJSTJELpYlYmftMhUoVTqGv2vukgQqFPuNK/bJUoSVKKjmzbAUGNBKC9MT4fgiYinOGGQBXVDVBpkYGp9SLPW+8bGAwlGDv39vu7T+56Gz0+DOsV2m5xpR+3y+wrqffM2509aP39Iz/J+rp9Y/Wf1cumwOFELamftWEp24fdq05Xx0e7U9m9dGNnYPDra2taV2NHQczERWTOG+apmvPLrt3j/PDc37nVC5aylQ7b0B2QMWOyIojhwoBSY01rXbGeneHnjlwt/d4b9uNJz4Ez8x9w0k1xqyqMabL+Wp+uXzn7cevfvXtL736xhtvP1w14qt6a2vy7DO3nn/+zrN3j44Odne2J7PZJFQ8GY1DqLz3w4gBGfpeVLvq9ve2T87G9ShMt/a8G3/m01989Y13gqsIdHxy3iznTTtfrRbPP39XVSXv6c5sVAWowng6qbuu3ZnK4U5ze09PIk6tdaF2RN4qb+Mxj6eYjkfZj4U5MpKjXsFuk+PXD/n1E4bXrl1PvS8kEHIlSyrZHDQGmxgaoRDHz0izbFoZu5Alh/FICSrq2WkWZnGgmFU0syNhUVZX1yw71kXDCibI0STlCOMEjXnZAKzm3GgmxmIoRGgfAruaJKtzuQCXRXYPbDoxaaCdUmeSqKwdZIA08UG9+91/9E//t7/6137Pd3zzJ0Ta80cP3360+OiLt//Rq3l5+wf+67/0mR//8T/7iY9MfuX3fuzuwe2jO7cObtxUwXIpedmqoy61dw7GTz2/HYJ7dH65kON7z+5QOzmq6g98dPILr54780bZ89QoNumdrYN7P/nPvvbdv+qH/sCP/Mrv+c5PvvKxV+arRHVYJXfE1DQ64npE0jS8e+eoqjFfPPoTP/Z/+Ct/7efq2bevugXZzRhP/tbf/xvbtX94/41Hf9n+xb94QHQrZsDBgjPJYI7R+XD3L/5f/tFf/mv/T3bi3Fa7Yhrf6WRRj/fgZiktLYlzO4bEFpQMqEBiUIIVgwCmDFZgxDQzePNL0CPTU0LSnIi9FS9gimSrvHxEr92JXx+3nn1m/kvvxNP2wNEP/Tvf/h0fvf389q0QQrtaOiZMKmZWzc57NyBiIVR9AwsIwRff+E0WjIEVmc1KGVqaNTlnzy72N6Ga0rDC9wt14V4RUZcTqTzRQCmbKlUvgLquAWSL5dOlL4eKDPq4i11Vh2yxjZ2YE9GYO4nkQlydN5fNGcINHoe92400x8zuic8yUzZdo3+bFUjRrQAGbQmz4UvArNfgYVdoaGZmajDulZ+J16ZJJUBSDxJTUSfpP0uvVtF1CYSeanPVLuzP9r99fR6+GNZ3rLuWTxZ8tu5aXjVWr6HNmxu/+kPrp7o3N6XDZBYMSlCU86g2uDSjVyzRXsMD5kpfW8ukFYCicHoFIRgTg8oo//qEPBENzXRd8q1f5Rz3vLChK9pLW/A1lp9etyNen3kbZttoLcSBgVxDtnESydZaoBjw8bUb0nvP9RPfGoTgn3h/M6xeP9on54CfKOSHKnkAwQFmXznoeDybpls3pjC5nHd1xTdvHBzeOtjZnYxGVeU9Ayl1Kccu6cV8dXLZHl/qa/fj/fNwseLMVVVzStEZHPk+XQoE8W0Ug3nCxHdPb9tLh/zcnru9HbYn7J2aWUqdqRYgNOe8XHWXF4vT0/Pz0/kXvvD65z7/2uOLts1W1dWtw92XXrhz77mn7z51tLs33dmaTif1ZFyH4CoK7N0GBqBFi0YCqSQH2tudeWeTRRf4Tu1tOqs+/8WviHjnqmWbPvdLr88Xq2WTcnPRtm3XHe7v71bBOahjHTmdejuY2r3D6rwN3dzEe0fkTR0FH/yI/biiqo7BR+dSafugLGbre6C/moOg3XUaQy9aejXdCKMyU9F5kchzl1+kmVu+syRuvWNjD+8tZTPzzJaFR0xE7OvYLas6sNvCxKzzeenNVmQEIViGRuQIJiCbNJZZciY1HU2s8uwdGZzj8jgaB6oB5+Gcc8HZdu6iSGN5aXkJ6mCJLJsJWUZ91mki9+L3fO8f+thH710sadFsnT+id+3m7JkXnc23P/INF2cHP/Opt37qn/1juPvbe7Nbt3bvHG3de/rWyy/de+Gl5/YOtif54md/vsnj6esP3d/82z/x/L2nY5du3zlMbhesVbXbpLOsSWnMFXeJ3M1bJ8udP/gjP3108I8/9MFb9XiiMOdzl1MRVWUnzhs0zy+b1197U+O9avZyhwVMzS+cfehP/9FPMTqEToU57JCfaqHJRCM3NScYpZxbP5qp7OTk2TyNCFYn7VgrR5XSEkpiDqF1qAll2qTQZITIYEpaKanxAvCgHc+7BlKrSE/ZOdEMYsmmvrX0iN3uPF+EL76+96FvlHff/jp/8cM/8uv/3W+5aRG6ihYjcofaExGxVMyVc0YsIkTGQyAURSEvFWEN2xj5cBzU8oYROAPG3rngzYycM+s1htj1bUIlFBmrEmJV5bof8EYHschxSCzj+ElETUVE1Ri07FaTuopdItIuUdtFV4W2bdlTOksnF5c6G4+ai5sfHu/dVjyEhrLAXWF7hNyrKZIVrvZg4js0d9ZLwBr+vfqvyBwzyEyVwDABHPVOR1ei+uuI+97KigaIlog2XQ7LI9yrfTA2x7Q2/3Y4V9Q3VukqoOJq6S5mAeBhKLsUwU8c49qYoUdujayQkBlmplLaxlbQbzWUq1o+QalMTyvYiVmRizYILCkSLIMEZmDlazNIZRHrWwI00Hs3zlE/37w+HDWTYucxQNHrLpyBlZ5UFClaIevt919vWA6tO7Prk0lEfmMet3xy35HOqnRd2dmuneirJO59S9g+/UH2FHD9da2EGjgD793C+1bJqmr9VHdfjnk3ns5Skuj8uD6BKnZ3d2fT7RBCOeaUupiatumWLZ2cNm8c68ml3D/V86gRnkkVSTRKdM4bEZi09hXXTKY5p6lrb+/w84f89G4+msnWmEfBMZNIUkllIF2E54v28mJ5cnJx/Pj0C59/7Ytfeevx6SqBR+Pqzo29D7303MsfuH3z5uHu3mw6G80m41FdV2VGIqup9cS/gZtmZjCdTeoY08g8b02DI+9Q+duTcZhU9G+++LWmSewC2H/tjYcpiXRHL0RLKeeYDva2quDKTTPybntc39x2Tx/WJzmfExw7Nhm5PNY0YvEhBR+9EwaBzLTPdQolsbhj97fU+0wi8XuvXfkdIQ/Lgo5oK3eStBvXI2lj8JWkrAoHZ2pgclXF2df1uJ2rGMNP/JipHsFvWbWQrrK0Ih5zalRykdtQzVidZklmamnqxlsYjTJ5BZxjUzImDhV5EzDIEcjQIXqUwSFl0542ypiinYk/5dH47OLwJ34Kbudp3alHO9v1NpkeI9eta6uDia8+JqujumkWi8df/tLDL//SQ9gbwD8HOThmG+n4I/7ORxpf/fCPfRnt/zfTRO2xs1ujo8Omy8yHzq2K1IMGzeT8zmiy8/Unl/mnf3YBWTjA6SjWt7h2KktYJokWF+Ta8fh2HmvUU2Rf13WMSXBe7z9FJimPiE5hHSlrNnJMlEwbmEKDs4lpZ7YiFzUTeArKxJVq1rygOrB3EmPgWjKIK0ANChOQwjIARYAuoOegU7hDcbvEAX4fBpU5dAlLxGSIcIkwr6TlVv2jd37wW+79vl+//eLt5x6dvTsdEUCBgx8F9g6kdaicQnPmipldWb9MCeRQ2HlsbMrMxGW5ZmMGTBJVVaWqScx555iNzFUh5+xAZpa0V7eQnAEQUxGeMzPA1oNG/e3LXL713pe4q1Jq34L6MLM3SzCM6/ILSJJzFlVNbUpZF5ddl202bi8fb5+5R7/jez6YH70Jn9iNSxl69VxYth7XLd3NklUMEspu0MUaHqWC2/SihkxsDgQTBTkhJYChgFtXdev1eR1X7DpgWYyC+tSFNnTreli634H3Ru73eQ1VKgreC9AQR0pjFmsOlZkZ2PpgTIU4YoMP8pC7D3GPi+qUDnYRCqhCFKrIg4SiAKXWtPIRXBw3MpAImUjBTFC68jJeV/xXZe77JCg9Bazn2A8CWDqkCGRKUnRBNkDZzUu2zgrLz2DyhCfSZmJUOMceaiBcTZFQz7lyvQTVk2F1oAQMFPpBhHrdLuAn6uPrZKt15L+6LTbwkH/LtbbNf4eJl4Fo7d1kMlEkg9wO++x36zqEEIh9KVJVc9OuLi7j2Tk/Pu7eOveni9gKV4EqytG6nM2HOnZS5J7YqWM46NQLB7kzTncPx88e0v6Obc18VXO5OKYpxsiOzGy56s5OF+fnzcOHx6995Y1f/MJrp5fC7GaB797cfuVDzzz//NNHR9ODg9lsNh6Nq1EViEw0WSwMCqJr8D4A5JgA5JQJCM7NJpMQAiMzDqrArvKf/uyX2jayMbF76+1HOS1jdjlrblvI4d7ejq9CVY9DZQjUJLmV7GARl5fOcQg03+LlNCxG1FVOvFNimJFJL4d3/bT3HZ0+q7NrubPptctnZqakZsZOra4ovG2vnF66iWe1QEQmkmMxJS0puWUxX4/EsWPHxpKiOU9hzGOfIUyHxkvwCH6F1JrEoh9E1FkyXRjFBilT3kY1KhxHZyB2xlTaPNp5EaVgRKo8YpgCnL2Kg3ViGbSkzKLJQjcajVt+F90kOXGn++2UNUSm6ZbMLkYJ4SDJsY1nzouziWOTrGCn5lBNnA9p/gZNx5Obtym/5LiFzW3BiS/cFNIogavRTCQR1YwzxnjVdW5sqJn50LIDh1GIqjlHT2aOyLLPnW8za8iQQybXdQsftiCua8/gHUnD3Imm4EZS/MuLKGcyV6mmJcDeTUXEO8rSmlNTuOBFO0sl48smVU+v62NwgkYjT1BiM8mQhhDNWrO5uV34CfNEm6Yaz+LylJlViZRCbnJ75h9f/uZftvsHf/1HXb6Yn55vj1yFWmcsIlAhgycO7MA9l9M5Z0wwVQNzYCCTI4qqatKTfrlg1QZyDCbvg4iw8+wopbbnrHIvxFtw4ywRgAwIYtGYI6JNxsm6hChVdc5ZTIvzXekcm0LENIugk4ycYURtNxeCGKcOHKar5vGrr3Vb06/8b/7Ut47SfTgydwRaPGmIowbWPkb1EhyCQjOlvvS6lsiq2Ho1l2EhJkewQik1KpaGT7bqnlg81/HmiR8bKfRa9fxEe/GJ7fTrLQZTADWQkvYTQeWnXA5qUK1gg6r1w0yl+rfNldz66GsEQAxmato3ta20iIrOjVruzZEKRxxWfCzWsdplQjYIkTkuwkC5CPRsXmsipiErWZ8ZYCP8lW+vW/xaKYXXu7wOQe/36s/2FR/96sXMfAUwF3tm8/0Z3xhRKqfL9eDAtYlmNuj1wLnexfXvCIr+GhERDLLB3Fvnnmt2tPXiZO9z1e16IDczZjYmUyWj9eyBY1Oi8WgrJ2dWhXoGTypLxjSllJKsunY+jycX8vAEj07yo6hNTK6u6qB14KRoOsQsTEhJicgHMmu9yLSi7Sm/sGeHe3l/QrORq+sA4xgjw3r2gWC17M7OF2fny3ffPvnKV17/8quvXyySIoxq98ydnQ9/8JkXnn/q8Mb2/sHOzvasqnyZsqc+g+3ZA3TVSxgOXLXrugKXOedyzpX3u9vbzCySPvjS3eDo05/94vnlwrsqhPrhyUq/9DWCBvf0bDaZbW3V03o0mZFFcWG8jPtdujFKJ2fChok/H9ODEZ2OfEMkoKwCMjaCG7zYBkNPIyImhpVB8CfbBPwE/rFWVctk/sz5Vz57/MrSrQ6kOs/L2lm3jGwgJjMi72G5aZrJ1kgdGA5d42RlmoUtm8LE1d54ZA5QDx+QGmgCGbJBs8Y552SScoqY7hKZRHPViEOlauaYq0BwuUsueIVjVEbmiI0ic1CqYKc+sdnM/Ep11XYWQjCtQrxotlZEt3xbd9uafB1slFdz2ZlapbIibV2MC6SGKROydKNQhRHvxjYt68sq3Ex87ngf3JlNNdpoLCl1hcOPal7ZXuqWo3qsVkEqSYk9J41YVsSRfelfevLbwFghiKvKeaWVYpKtc7rrnWbtDEQ0BWLKHQjezUxVtKMKohnsoZJJTFdqSr7k2mI6JhoZdZYVXKkkY8eF9E4BXMFliFix39HA8Kwrs3ORDj5Cd9SNEDgmompHkMFkktvm/GOHj//s//r7PvnJ3cvTE6+jMBPkEVgrckrqfeWcM4iqGhPXQVI2X4R1iyKeY/Z1TSQ+x7TW/+tXGqa6HqWUnPMOEBEz6PASkULSLqE3DYOUw0rVg8zXglxp56mqZdEM034aOBYgOpYkXkSiZGY+n18Sc4yRwihluv/g/M13Pz8Jk2/43ls/9Ds+7lcP03yBbfOrxnzFfI2CWkx9iAbPg0EJq3ChtTQvjVz/J0UPRNaCXzYoI/Ybe8/YSA/nlgeyMKqG9XlAeq+trj2bdnBx2Pz51dq+uQj3/6IvTk2uILGeljUEDx0CsxqLAYDoEJU3Qy9UVUu8VjKQaqk7yZS0r/cgG1qVKOhBAdINrvgHORCxEjOcUXEuFLCjYnRh5RQrGch07ZpFGyenFOVrsSsMTsBqmwGocL/LcWwqI6wJ38NLrUhyPWki3J/FIToSAfBkVwog1C8PPTLQXxUC9dOW17TfNoHsjfr1Gp+ZiK5ZGWvfEFftWxXYIGo9UQRvBmAi0t5Nsu/r0Fp+XYXhvHfb275rE5C8C5RS7JosdrFsTi/akws9PqeHFzhZSJNbsB8FZInTUNcVe7LLVRvVkJ2BVclbGvl8cxaO9tyNPezM0rS2ka9UUpRkosSqqgRumu78Ynl6Mn/0+PzVr7z15a+8cb5MZlYHuX1j+uIHnn7qmRu7B7PtnfFo7MnBTExEyDvnTFVVGHzVPe3XGgIT1Oq6JqK2bUV6jh97X1VhMq3u3NwmyTD5whdePz5bmRnx6Ph0/sYbD3d3d7f3u2kTRzNTzU49IXtntcU9v9qmOWnetvNAx4HPiBpQUZ8e+G1W+PWMni3iqPdOKcA44/pt4NhdW+YGPMPBMi8fdt/1bjMe+3lOCew1L8tVIyLp0w6WpJo1w1Lu0vl9TmfgsTGo8rWfJkQmJ44NNVWOOGjumEzNgTNSq7pCZybiCASVqhbyhCCeyn0rDPNkSnDeVMkxqkDsTTzYhdgaTdSdWY6wETNS6lhCU9c8B/hSqj1Z+Uu/4IBx7ZPtcaikrsEz4Uv4ucrCoUOOWdokmd05Vns5vBbcbuSVrxQKB9/OdTyZgjpmD/XqjSsngIk3h8DeieTOeLww45QA8iWDNWKAQ6hiBLlduCVyLeHcSWAda2izZPKezUsnWcFkzKYaSzgzgZGiqotlOCHDFQ6IOO8kr6cfi2wEEwVQTU4VAilr6wg0ElqSJWCJDOTo/F6mFbsdglPMrY1jXf3gD3znn/idv3E2bc4fXc5mexUFtUsLvrZoxcyLoaTkHHsnRWHcO2JWpnK8xJ7ZExESPEAg1SQiBc71zjGziZoUgQwhNpFEKin32LJoSjmVYaT1mkZEvdsgX9GR0LflRHJOsc05q2o0SSmlriujTGoSY0ya2i6HwJmiZpeU33nz7VW7eOHl577/137yQ79sd3vKzaO3Ry5XoUKXqNoGNevlq18Me0ZORo8er+OilGmk0lTth0fLSgzA5CoGEJWMpKzym13kYX0F9fwoWjdsr3ZArdezGpgdQxU0gNgblvL9zq9rsDXnCCBo+XQy6YcVARuEuE2Ve3zdIAoTUjIZWNNmJqpGplr8VlVNteheqRRRx3Uyr0Pj+YqJBAzCt0wsEDgCE9gxORQvQrZCEh9KfxQ42pEVlZLCT6c+rGwWtgP4XxCUwZdBVddRbDDM6H+XrH+HN2hSVLRAiNyVLNvV8n51bgEULeiSU2xeKjMz7psSVtI2GtTKNra1BjeGu7ysxWvBayMid63bT+uwrf2owfv0j9e/fH13aT2hxcxGgFpJgR0cOyZ0qElF2aziENtFFFrMm5OT5sGpPrjA4yUtEnuQH/mUzTufTZ3ZdOQNdny6tFwRBRUjSltTf3vbH+3Q9k6YjbE1ccFbio3KIIhN3DSr4+PTy8v28aOL1792/9WvvnV5uUh+UrPcubn/8svP3n3mzv6N/b2jg/HI+xCIzAp4rjlrJkfZss8FVtjgyDGzcVVXIYTxpN6h7a5LRBxjJKJ6PJ5MpjeP0p0bN59+6u7dp+7960/94tfeehicF6uOzxZv3n+8c7Q329uaTEYVacWTrB1saelyZCfb/th0tV035FFxJE7F4JldEajVbMTE3F8sZ5LVAJK18t/mbLmRJgUAB1vrnpsZFMatkxdea571FOokK7/laClt5UPKCiIwsWTzAZ68tDmbOmLJS6yOQSNjZ8lHEqmSC2OoVyGiGszEngjk2ayDJoIA2XKn3dLMjPYzCUjIV8RsJuTguSIbGj+SYYE1IHcqQd1YqINlb5W0WbWFU6Ul8srTdlw10eqxqmyPWGYOyD7xeEwEDSykpMG6IKlFtbDVynvOqw7hgXYjVeH6LOcK2AKvfF01S4GTUE9VWeKyqmrL5rxBWM2yiJ9VcUXsDNq6oBqTiXjWnHN2DYIzXblEakuzShCczxQDO0gUIUPtgU5VyY19rLMlo9yDtyKAMW2sZ0iSCCrks8KV8FAeNKbKWEiTUQY6YiYLiomZETLb0myVo4SZtxxzXFR09skPf/jHfui3/oqPHh7Poy1P9w7uQM37nGh7KtQFBCFSwLExCt+KkjERCqxFUJjznkMFsImgdHlJYeacK3R2IoptF0LIMaUuOpCKSIwgzZJzzsSmqjknoCSVPZmrVGVi6oidu6Km5hyziqSYc46pzTlntth1sWuhllIXc2piIyKZ/TJ2XWzOzprT89ULLz31K3/Nt915ukLM5w/eVdh0expQmy28datUjcZl0nbzYQEVseCeoGNQ0AA996GFrC8v1387JN9aCqFe/sHW3Iv1IqwDLqq4kmqyjRhc1v/NdRXXo+/6i/XOYQj2ZuuJUi2KToVmZcXxl10PRK99Bc0gaqpspiqw3tvBRFWha2cdg1o5HhvA7KHttYEMb1bzAIhxhSYza6n5QWAmOJAncjrg7mVCwzMNXgb9wBX1Ie+q+CyQbf9xtiG5obRRHhsAvaICX8Vg9AXl/1QHnYYOiIiUIrYX4ijmU2ZW7nJ2jmFlprMMhJmoXg+W62hawIQSErk/RFzlT2TV5i24RsnX4ulXm9XN9owSQGTKJTkwVTJmYoJABhjdAO/ULObkOFQVp9SAOiLywo/PT1Zdblb06JE8bEYrQCSTVSEJqJHgYwuCOe8TW1VVkpC6PK7s1iHd2etubNPhqN6uU+0rItfFnLroPHvvk8hieXl+Pj87XRwfL99688FXvvrm6dncu1BLfPqZGx946c4zTx/cOtrZ35qNQ+UdEZBzZpCthcmzmVlyggKiGKH3FqjIka8qdo45CGzkgynqujYzIuTpJMY43ZqG2ciNAznt4uLt+6u6rpuoD++fP317frlzuVXX3rmpz6lrpFukfEb57MboMuoSHMdYoczRIwMoIw1mxOSgvfWZ9Q0CMWNWRlHA2+gBOwWRmfoBnFJTkPPsLCE5+sj95oO5fuAxrdvVsutkxL6rPPfkfs/OshAj58w8EtrxB3sZUneW00pcB7lkrTV15MWRIwNz0NplFeAgOBGqLS5ME6zVTrkYFE72hIidZwY7UjgtjJOq8hJMFTmZZIJnN1FqvfPaae4MXgieTDVlOBdp6SIZP+6w5ds9jDj52tcVMmU1Y2b1iCvzBPJQYOxyWoIyRTFKmRuXHHSbORNG2pbKA1lWRM55r9JxKUsYIOLAYuZGTjUDQTSTD85zzi1YTSsgo5SlNAIAEgWbp6JPAfJQIQs9Cuhy0XxQEaDMVfa2kiDAGjATmXFNkpkhLrN5TcJhJL5GUnKGnODgbAyQcIJ2yBFk7MceD+MCo/rsB7/3V/zQ933bt3/Dhyx1jy7mY89++yaZmAmUx54QqMZIq/6+ISI1IzEmX4zmmR2ozL8LUSxBx+focwSpguGc9gKJORC65aWIqKQo0cyiZCneTz5IhmgGyDnn1XLO5hyIVBXEIpGIaGOR6bquSxEObWwldmbW5K5pGmcws1XbrWITLSkM88Xx5eq07Q6fPvqe7//mZ+4dSFp+9auP9sdpWgdXwXQlDA8z8xNnpqSIpd5dL79qiQZzsVKBGpgHpbneIcHBVE3UmVJPATYz80PtM3CstCzOfW1a8EFShhuEooZ+EqwIThYMUTeolJs1GQaMdF1ilUlbaBktLPZKytbrZ5n1ysYATDKGuF7K32LeS0RQYwMsw2AKVTFDOeI+fzAiUy5uR8oZRXurzMBaqQJUTQNbTx5XZhCrMTljZecKcENUCFumCZaIJkwFwAbDrQPWoLNJG7A2EUFMM0wIeWj3llOi7DKV7j9yXwqzG9KkUvTyJo5b2rlrBGKjtKSNASQMcdAXtdBrA9Ew1V77iwdUf/OarQ+mj5SqPaLYv2ebH7A5CIX3xO/rZTc22fj97IExSgY2iLT0Am5ruCBngB2xmSbpCMzZ7exM24v5BHTRiionpJiy45HL0qJB6zg7JaYqZGTkrkGiFEi7qdeDmbu1Ux1sYzxOYRy8qwDtusa0OE5T27Zt051fLB8/unz46Pydt4+/+trbi2VbVyMAt28f3Lt365m7tw4Od7dm47r27NTMJPWCcGvaQ38IqsDVc8bMla88OzLjXgIXZRykQEaqSsTeBzMbj+vZ1vjmrf2XXnz65OSLKTfe+/ni8s0339zdreqxiq6Wk0nKcb5YrOJcuHE+snTgDmTX5v/WtPZ1L0DXY2DroSTm6+agNnAazMr4Pa87+sb+oT61pOWYa7Mux1Sbpgg1DN4oxWa7DL6YC6neqXefv3d587Ydn8vymC8uRCOSQpKpUSAKTI5hBDWuwEQ5ezhPjiwL1DSuiBjNwigYATayiok9BocaFwABAABJREFUMyx4KuqsolCHrJpjzplR5leUDJIJmk0jJBcDTMmJu07JRzjEyNWoGs+gAgcHj1ApjCwTcY4OriarSDpzqYCJkgy6UGrBNbma2FsZnIU3jgQH9gYugklE3sHImSOvpKqZoWbiq5GqQlrTaC5R/1wYBosC65+zIhMrMIOSwRuE0Dtp9ncR1LFJVHbBrDIjBKdIsMSpMt9Uo1lu50EY1Sh1TR32unw/OWa3V7kgZqyjvFpZOp1U+I2/6rt++Lf+4Dd98F67PH14/Jan8XY1tdxQEiLyzvsqgFlhAguD6nt/tzAIrvgUKaSn8jGboHRhmZwwMUrp4mCkOWZNErsYoxTpZk0AxHpUTERKUPeeYkw2zC5qYXOphBBEBBshJ0vbtSsTFcldiswsq7ZbXJKDqq5i13bpYrFs2m6pcXtv75d/2zc9+9IzKS9Ojh9t1zauihzG8Pj2nUQlUyvCuBvNQRoOv7x6fpAVCib1ld/AxSnoqLt6Goc/td4pr68zy0pfDIjKlFJvFLiWQSxT8MbDYBZhoNAW4eInNA2v6rzSdqLC+yAD4MrXV0c01E48rPs2rOBE1GPOfSwvtKSrv5XhGHQNplOZcSRwAasBUBGTJiIiJe1NmYjArvS5uQiBEUNJCgHcmGBkjvt1jfrycrPGLVDA5iGsf0ob72PduF6fHsjGm1fCHet/1wvp+nTi+uuJAFog6MJ8vlqOzWxoX1/t0Gaw3PjUIfgzXY1BDckugE0al73fxbu+tWvtGQDUZ0paGiUAhuh71Td1YAUUHXtAqtpGh5Oti0VKdWqr3NS6P8Flk6NEMfGeISIdNSZS+eCZnSUTl2Xs4sHEbu/x7W3e2eLZ2IVazSRny6kzsxBCSmkxX86Xq+NH8/Oz1atffeftd47bJopIqPzNG/vPPX/r2WduHB5tbW/V44mrAqG3FyUiEmMi0k0UiPr0ZZ0/BhHNOZKa1U61UBXsSqUF6AkIXAc/qmlrK9y6s/XU7e03375PGKXO3n337f39imiZ8v50e9csN+182V2KLUEL5iUoFQO3opxTTLSs3O/AIBXA2gd9W3PbnyRhUSl6e1vgnnViMNOJ7f5Svqs+jTXM82mXYk2KQb5HqRyTYwcQwUjnrY6D1jMe77rxAc0PNDyU+bHGbp19qaqyMpEjD2/KznKNnA1CPkGymSK2RW4XVLTbR6iJvCPnHbGZKQuMXWWWHcekvqbYgpnZWfSWG2QPi0yippaTyhIKFgTPW+OtVe7KkSoYNRmMdAzyUGbzYLJERgwVaEYWaIIx0IK9usBuZJxAlREbe0MgBCPH4DUjiIiJXWmu98KrqkzeNLElowTNpGKWiYcOXI+llTyoaAijX27MisVcQZ8keR+cpMhe4CF6SX7qeIdTji50WNZu7B2v9Byes+moOgRxu5rnFSzNxFaHM/cD3/m9/+Fv/DWf/NjXrR68ffLmV6rJ1NNYurbt2nprqwBtbig9zYyZBEZMfa2AftUhR+yDZCraz44dRAHHIHiGGatS0ePNkmKXUlOUmUVEITS4t5byS0TNcXG1Sz17Majl5WpRoL9cUi5/tY41bRtjl1LKOV82c+dc7uJluzCTTvOiac8XTSt0eOP2Kx964ejGTvB6/+Sd2chNq4qtrUmJxYBiGj8syqKaiDypbVqXlLWbii0vX8HO/XJHYBtmigZLA1s3+/onv2gFr1Wf2Eyh1BvslkYpF6wDSkay5gz3FdY6PJaq2UpR+d6FXa3cTxuW9wyU8rm3f0CZqi0qkP091sfdsvST9YieAUaypsER9TbJJTXoRTgJrABTMSYuUp1m/VRkX5K6tRgFmFEG0xzEiA1SiPBqYqWxCwMZ96NYV9a3m4HsWgzqxaqv2M64ykbKSzffpF5y4wrNXV/mf9trs/i8UsIql876FRhrUqsNZkxEVxRdAMx+I/ivR54IxnR1va74OO9NAZ7IDobtlCPZnFt3Re+0PKxCg1dGgaaHRMbM1DRb5oqyWW7zs7fuhKhVCLNc356ZywtphFXeOGsuJDhTBquJxLYRTi4E5whSOxxs8e19urXr9qaY1K5itpyaHJ2j4lOUUlotu+OTi4uL+cnx4q2379+/f7JYtAqMRnx0NH3u3tHdOzuHh5OtWT0euSqwIefcn0ZSbDKYhguoNmhgMYoWQWqaPMY4qwk5u5pIE6L+6TMjM4GJZwteJxN/5/b+ycnjposcQuri/PJ8Ofermc+mzlsXF106T7kRXZp2zg9EwnIJ1qlTz8IoqGgPPxQlLC1Pktrmw2ra/2HRfFEDF4U2gpOtue75qtJFiu0citbUVdT7oohBCxeCiZyycdhN8TIDHhSm1djtn9c+nIR4ccldpJREUj8ZT56MmbwPlZoTY+Ro3DnOsKTJkDotNyo5ZU+O4eHJ2/oWp5JIM4iJMqyCmeWa/NqnxYs2zCBSU4O2FkmWkKpS1OQYzqsBjs15rsZKzhuruuKfBvPgBBFCJivSu9ksI0XVRC4xj9RqUIY3JSX2Sq6kDMTOIP1eElvp/iEpKhR3SGKCMySAjJSH1BnkQUVsj/q6RgE4MgPl0j0AYAFChOAkL2BT57aly1o9hjuCGKjq3AKh8nSgWWTV0PxRxruHu4tv+cQHv/GVT37XL//QKy8c7NdbdHbx4NUvjqeTHCbLeZ7Uo52d2ruUyDsQ1MQMImqZiBxcUmPywwJIyihm8pXz7Fy/xBgMSmTsvao658gspy52bc4xxlZSUsplNIAck3eOqJgrkGMeBIrbGEtMLQJzMSXRFEJYrRZapoQHfaCT8zORbKTZdJk67bTrmphiEj2bL5qs2zduP/30M4d37kSTy64bI03G3nsmFudItK2Gadv1akakIIOKuTXBrbwUJFamd9Z1WL9mmwMbCeEqwy3E4CGxMhlUJwfgt4/HGELrUPsUpYyhECv1oxGQ+8E/YOinqg2sK73eEN1cp/rd6RMdLmuw9tXCMKg6aAVcQbolIAjAxGArvSo2vgorZkwkvTGxwFCkYYdeWN+EVTKDw5XG7bB/BZ5GgcREAYKYoXc0VIFRCeLFmqi/Sv0ADl1vKtsVNxsqlstsk6o+EYLt6rf0urIYrodhW2PGmxmYXfu6UJr8xrvlrJS+b/nODetRv8WNT7o2DNqDexv7tI6xT/CiN/dgc4+vF/4A4IhwlfNgYE2v7xHu0xRGTuqrkLWTTJOwdWf/5sU7Dz110yp4cpSzy03tsprYHPOVmFalwSDSdSLsaFLj5hbt74T9HTedUlU5R5Acc5LizgK4lOL8cjVftGdnlyfHZ2+9/fjddx61CcxwZDdu7D779I2bN7d3dsfbW5PZtK5DIJMco/WTjsONfeUQVuJvobmCiILzzBBTAItFAqB61R0wE5D250FJ+zVLKk/TSb23Pz26sfvg/oljqyt2piSyurwAJfLW5Sa2lyIJmgEtCmW05r8T1pfJ7OpRHi5VTxMzK8/ZtRxieNqpLA1D00MX5LKbkdEqnUnSSjmrSEeDBCszGznHxW9Ond08wBcfhdy5adWllCu4sE2eQ5jKfE7zOaeOKBedVZMEjJwf1VxHCpJbil6lQQazigpSTLQwco6YHBGTBe2jr3cEJlNVI2ZyMAdiqPOWiZyHiTkjHqGkdiRsMI250QtVmuyxDy6MlB175wITe0ck5pDLDe9gGZKBSFDDBBZhLTShn56MpgJKxN4sw9WwytjBMaHPjEz7hZWIAHXEwhlGZq5Y2hgAc6BcVvLyNwQ2FoDKlAAIUCsQdy92SKWmUgjgtwCIrNhP2Lakvqj8NmOP5KA5P0V87dYNne6k7/l3Xvh3f+D7Pnjv6O7NpyvJ3eV5PO0eLc/FEaxKnYyCP9jfBRETcupC1rK2CMDewTtjEuYezGQCkTlPjtkxiFQUle9JpKLlykCUTUxzzrnr2uVqHuMqp1S8gACwd2UdNfSDjimpiJiRwlRzSjGpCDR1jZktl/OSwmZJbdviRn8DL5YX5BAlL5fz2EQiupgvu6yN0faNu8/fe96N62iyaDvva+8cWbIsQgYmcgwXiCIz9+JQ17pvBpXN9ZdMYDKspqULWhLc0pwqkzeCMgIBI968B67VT2X57k3ZtQ+QVDjSQkMgVGPqlUAcD5XL9dFYgOH63Hqoj/tdJrvuuFPGE6loTPfHQAOdrF8xAKLex496BhQXxxaUu9YA7cFwMzMaRm6Fi2kSQwbpEi2/UOyfjdV03eEaHCq9ERM5U8fOqTGKaAsX0LsQWdgGPz8eYNx1MUlrp5+Nl5n1DKzrFfA6GuOq2TqcxrIoF0WNq0r4GkEdAHEZu+rnzsu/nq3n3ABQlCeVDOTIAbIu2Nf/6sY9US7MkPpd+7AnIuvmm8O/VPZh8w57QpubBggLGAZmsW5trHMRcoFV1cRbox/+0IdW55cVuCK2gJUmHvtg24EicTupLt6EnTepSQ5mBAussxGO9sKtbZlt22xSjUcO3GVhlsxMvhqJSNelxbw5O1/ML1cPH52+8879+w8u2jaycyGEo8O9Z5++cXQ029ud7myPx+PgiHLOJrncRSJpg3u5hg0KDiMELoo/SpxztiETKqONqkq8ed5yAQwKjTyLsMMo+NnM37ix1awWZLw7q0eVgWIXk++yRW3zKqVOkQA4OAisSNnRAG71izgURuA1X+aJe0hxvQmsBMeMJ3TpFJQVFDDJy0XbnlNyGUpBYvIVeiurvltMIDhmtrGE8aj78huzb3wF6o2oMubpdqKaSrRbzjW1fc/DAeZMiny7uUKGVGfk4bSk68itdh5M7OCZjdjYUaEeDdWBYy6bIAIz1DHMqfPcV0mCzNCoCirjV5a1W5GM1BjeExszkbE6o8BgDwrEbJqNEsQZi+kY1kIDKBIZ9RLHAl7C2CxAavNjcIBW6kyTEDOzL3oSAJhL2t4vyqRk5IjIkEChLKwD78OolxRGmRsFmMzBrDBLoMrFTpU9walGHyh4axaRUhW7S++OSdM3fnj/f/Fbv/37fvnX3b0x5cRykVZnq/lrj9tuzqZ1XY9362q8Mw4+t0vvTTXFGIl9WffYMV3JG5ZTy1asBxwTlzq4n6oAUxkcWYv2kYqpamxSjDmmtl0u23nKnWVhEDP5qipGyKIqIjEnwJzzMSeAu65hpsXyMokQkeZoZm276rqOPEvqUkrr+/fy8jRpMrPYpWbZLhaLbrS1c3Tj1s074/2jxjmRVAfPZqzKDgznHQXniAUAB8+kjphZmA1IBoFK8T0F5V5kqixcIugt7zYr40EBsUCGWpgZDOulbwaMapBvHJ5KtmGEBEWLsYeoYVzkPsyMFVZoQ2uJK7rG0l1XhgasR2b6p76n0goAK57BRfJdrDdx77Hj/hBKUrgu4UAgvpKPt7WyhWOzftfN+k0xcRE/6Yvovv1bvuiLPTbf84FgDEapZcFELMympa/NSqxWypS+3wGUdm+JZEU7rD9wDOgFNnqsej3t0J5tThh2rP/B1VQIivEEMcr+9pf739b95SumNBWvBlc8iwn94RmoxI9r3CsqSm/r+shtXEkqGMJVKNV1wCa9lgiso6+YOiLeYCSt8wtsvIPeFmN40Xrvi4+0ARpTG3wtDT1/48UpRvPl8cxXSsLSMkXn1U1GlRuNa94Ly4Mqv32eHy5T4VzUdb2zzTf2bHeskzGPvTpKKsbESsTsu65r27hadvNFe3a6ePjo9J23Hzx4fKzqjbQK4cbh1u3bOzePZkc3dna3x9uziWfknMlUmfuZV1ORPMTccvuVhbKfGAvs2AdDEs3R+sfBIEUUnob5bAITq6o4cPlRNtWciG0UdG+7Sjdnprq7PR1PGD5RFaIskkqSqJaNimcnW9+SRpH1HK5hf+KB8v4ApBTo/OoBu7qabDAFBmuR9UbMxFMtycVuzonhfIduxAzmUt8TObDnIoEEMDmnyT/1zOpLr4bzud85qKNligDLaOTMjFQ9y9JZl9h662sRiXGh7ZJMCEoqJekmcqRmEKRLpUwuGFWZiR3Ml/xX+yfbkBRm/f1v7EDKrjJ4aDZzvqqEvYn0VSMEaIHSa60VguBgBHNwhYBamcW13IxpJumbRUAAQKwqCRZBycwgGWSwDPLGFZyHBXKO2APDCJ9BtCgzG2NtZFeuixCcDtMnvS0NCXqfCQAluSZCsVJn7y0mZwBsUfs6r1IrX3juXjiaHM5ms0989GO/9ld/9BteemqC3cXZ8fzVE9Wlxsnu1kycbm3fqEYTQXJVje4iS6SR61J0wqQUKu5yMs/OeSYi7UE2MnXE2YwcEXvlUpfgaqQQRfJASRQpIScWbWLbrtrYdk27bGOnkthA5BUwJoGlmBRWSuRyA8cYATTNih2aZi6bL81tjHkVi1jHZLiBL5uliC3b7vhyVY1m27eevfXyh8aTaSYfzYyNfVAyhYrFnpsoQOhZu5ThK1/ua+pNcdQgqgbNIKENFjSJgrL1/BXt51f6oU1T6kWYiaikTgSF6iAxaOvyWmEY+GVm1ldAQ1uQ2QMlWxMiMuKSBGENF5eNUG+uI8j9CsA0JHObLyWiYQHgwtmCgmjQ0SQHCIxUB3CiZ5P1uYKpGKG4+rDRhruGEhyUCime1UwdeoqemRUkufTabOApwayfyinwBxEAcYCQ2/S7596BofzV8O/113uri/XLqAhxDFXQVe3by1r0tJdSw/dtq9J0Xrfynoy+6zdL3rAOdlduSDTMBZVrs5aaotIDHlAF7ruvVJTf0U+sONO0eUjr/rFeD8Dl9gLWGzMZmNJPSA2XLazvs9KKX5dZZv1oFhHVoVouV08fvXj38G57er5djyvnW7Suc1u27Xnlx2lr5qfVZNvd3Rs93Jnk3Xmat8ZEo5Gva5mGph6Nq+BYRaMwg6vKwEnQNMvlYnV+sby8aB4/unjzrXdPzi9grEhbW5Pt7dGdu3t3bu3sboftLT+beaKCiYkjFs22tpGwAd4v+R+pFaFXLlVDMFHnPJiyiQGSjKgUNApSUxIQgcHIMRNRgWKVIGpkOqrc/s644v22bccT74MqtYkk5VJJ9WAGgajgSBtsPSLX8xT6m96ISjJeftqf8LWS+9XVNNLSRioASnExNVPTzvG5dMIywjZ8E0G+DSPS1LseB1eFMs9dmP3S+jSq9Onbq+OT6e6BOmOjpaJyzkaVoxl5clXAstM2SkxEYsiWWnRLswwY4BgsXKAqmIhaghl4DAsaqKqdG9zBipCLikg2y2YiKLZJxAATm2cWESN1vlZKpaFqZmadCZmBmdTY8cjMAQyqiB2RUzhCJlZDAomjTtWZq0yzKRXpACJHNDLN0ARTaGtEQGvmiGo1VmOQh/PEvjDdYBV6jib1EAmoh3D7QxpQjAHD699UM2IiJXVEGiXDEZRH1U5z+bVv+cabf/x/+2Mf+eALt6oq7G5Z19JxbN+9f2knUYmkGvOt6ojIMxKFra2cLUWp5ITA7Ek1eWIh5XqqsGpco2l7aLTMDBbResaGqUyPDjpmAFmkSAaSkWWVNlrXkUmW3LbtarVq25VoJCiZIyZxSjmnnGOMJQlr29aGAVQRWa1WhiSSYupSSl3Tseecc8y5aZeqKpLWAfjisj05n9NoMr393NFzz+8e3ZrnuBCpCJUZiSgpHFnw4KQE9s45AjJIg6PAgTn1A6bc99rN1KAD4HxVAZMooIPve6lDdM0Pol6Ms7AiCuZX5mR7WaurcmhY94cb0gBQj+j1+gpr+Y4CPRPWhCQqdwj3s7zEJdYwlWJXrQdpmD16CKP0mLWkqDaUEQRVGCBaUMwy3kT95BQVG6JNgcWCrK9pmFdALqPU08RmYFyFjI0KkAwCGxyOB8ULAERigOsNAIs6lhtq7PKkDKobQ2v0aiFcR5FyX2r/jfYiIbpWngD6c3l1zjeXQe6XSdpAat/3NdSf/YwWM3tj67vjQjRk3DC4UqqXCmkjng/teqxJ8gZA82D92yMHZn0eFrxHHP4WpYdvAFWuzKtg/e/16wUCo5hRlDNC6nikkj2LFiE7H5LEyuWLy3Rn697Lh6+0Z5cEgRcHqpIgQFiD+pGrU86TSdip0rTaH/vFdpifxlFjKrwKtQ+jcc1mlGAA1QSnK1qRNKtls2iWbXdxvnrw6PTdByfnF/OoEgJPq+rm4dbRze0bR7Ot7dHu3nZdj9RIclYSItNeqbWIvAwgf3/2hioQHNSJ5Fab6MkHHkhQ9l5PEu1XVGdWgmouyFLOma2rHHywMFHUxi5zAIhUxZDKZTOAyBWEywyO2dRARn2KQ2TE7HoIyIbKWMyk5BC9FRptiuUwKmaTxuvYdBSDUN245WTq4sq2Mm3VcgpeZqEKlH1lSMF5ZcdV7X1NRCpiWbJpqNViw7s78Z3H+fh4dnSUxU80qjkyHY9D9r4jF4vtNpsqGwdwhmuobVgJnjNFVq+azYHYLBNSVFwGJm7K+ScLjhlEprCMzCRCakowcSRgNSVmT+aNk0JADuRNMqQjVbBXKFO21EA4Z+FQkQuUhciZcxoUOffCCewEARxgAkugRGSgYMZmAufIatKSKAhJMotGES4wM9SZBeKKOZgR0KDQEYoIIVMB4shRkTYYkCyQmEGDdAnehbHoBXtTNZCaAC6TgatRM//Sj/yOb/uzf+pHebVqzi+Z5vH8cU6di+KqwHmcVvNpAE8qRmAlG9U5kNWoHLtYF438EjfZmUk2U4u9xgpRT64BkwczcdGyYjCcK0leqRM9O4GCIDlbTLnrTGMbVzHmZTNvu1WSDmrM6CxlKCvlJKXvKyLL5ZKDjzFqElf5tls1eSUaY2xjjCkl06xJu5jbts0SsyJnfWq4f08aOXjpIzeevldNtoxY21Qh96UIe1CAKZBJLZCxKoyIez63ORhLYWYAgDgwO1ZiZnVW2HK2AUFr26+CfaPxGgpdxoIIwAbGVIJvaRlvRCNg6F8CWgx1SjQkkCOzATYjIjMpz2sumGV/TZyVZjz68SDoUJ+BqKhhlgy1H9Qt8uJmlov35xA5ySB+XVcPvcG+3iyYuSMTM5OyEWYPg2ku88ol8DGYiIxLY5uZKA/bMSgVNLu0sDdCIJExC6xisJqRZYYSTIptPRXFalJiIoKB2By8bqzGVwUGkVAp//uFVyEKUVJHVvheqiKmYLPCGTEpjOXSSCzBG2rmeb16P3HJ+tEMwPpJMMDUry/3Btp81XF8YitmPet8XS73caUPDLb+2xLe12Yjm5uyobm7cTM5QHvcZeOXS1+obDMkT7VklzshRxXBKKVAaC7k+dsf+NDTH2qOz6sglswrgTKbKpSpt8r0jmvnRp5hrfeTcU3nTXfSrC5izJYcSx22zTPDBMWMVy5iN7+4XC7y5cXi0ePzR4/PlovWmMZ1qOvw1K2Do8Pdg/3p/v7O1nRc18E5BmlK3fox4432tiMuDCVjco5cqJwL3gcPsHBKXUxt06a+4cegoblerl1fOpiZrFO23g5aNKXcZeucs2rkKRWulgGlEVU2QutrukYmiNnAKlYGcxWmOQ8XiDehES638/t2hXOlpObAgCfVduIdnxGP80rtLIWxOjbt1EuOyTnvMarrka+rMr1RmjmkWYzAk255Vu+PzxaLameb6gAQJXLOKZSdD5MRQRFCXCxH5KCQHCzUhAmXVdxILcNUxXoHQ3jIMnWkRpUZszNU8ORC8B5ERAIzMsogZ+wgBvJKHEKwzCSd9ZL4TtkbJajBspZMU7isoqw2XDWi0jzWsioqcwUApuod1MMymaipUUlL1Rhsqn28EgBQ6c3QkEFZ2QHMLpAZQdUGtW4yDKo+akUnoVBwiYiTH7uUEM/YTdSEOSJXoIta6+x30uJn/tTv+8Ef/eN/pP3SZ1yUUAVUPiB77w2U2py7FMiHehJCIGZz5NkgHZQESJrZ1rqH7NmXThlM+sqh3CrszFQAZsdkcKwo8vwY8BiXVZ1naaOlbJKixKZZxhyb5Wq5WvaEZ4IZRDSreKvMNMZIzuWsyci6nJK0qXUJ7WopqQFZ16ya2BCRdO2yi8uUOjNVjW3sFnF9977yHd9Rbe90RpcxMTF7DkIEh0I2Xh8hAeYIjq2Y5imVEfi+GmUiZYd1Haxgg7qh0u2fFM3EsFzi3NVSicEDrYeAr6/GvcXkdZ5NyafWW2ZGQTlK6dPPiaCoIvd9Th4atgAAMXMFMSljFZvN4Y1lp/924J30ODaG9sHVnl8n+qwLKTPrwVxatz6HTj/7AmMOYECZhC5WgsPJudroZubR4wHlB/34OympMvX5DlPfebG+dzaM8dDVgkx61e4t1y2/H26sVLS6rk5OXy723eoedKKBRp7fr3bqN3VdgqP8rS9zV6Uu6i/O0Fi/nnBR/6P18BNcKaYHCKUUUkNxPYw32ca5KwO7/Rkc5rIHHJvf5/DXohUAM6ecfF2lon1G2Uy7ZX75mY++/PRLlw9PnUbWWHnHYiJNP9Pq2BF5ZhZ1EIVuBR+gE1Q7zvYqnEZ+1C0ul+edsLPKmDvJzbLtVnHetMv56uRkdXJ8dnnRdimBrPJ+ezY6ONy5cTjbP5ju7Yy3plVdEZWwncFu8w5W7s8lkiiRYxcAJseeiLwj78ws1C5ooIZiKyo5xSSSiMP1J4HL7bBxUUoOlLOknFNCyhxVs3IuBiMGMWBtyQUAViZ+idjEaC3u3UfcXicTOkRf3nyQ1gDOxk6RkWDFOgrq4jj71rZRn7mLXV2oe9bZxHw7souc0kqdC5hiVyo3Go+p8pSzpIjisMZkAmJPlSc3CsvYnJ5NnzoAeWJzzmVVOPZuTEQIIarlriOAXdAwJqKccmFTgai46RXhdQCqoqmFBfMOIRBg6nLPcCHr60hm82oqRCAmduIYCARlEIkqm1hxJjbASJJpMmJoVhO4jFCZGbNfq9ujwG65oERGrmhuOJMMS+C6wAtUFnASaDZ1sIzeirSk1gnmQE6hhe5TgEMCCI7W2jp9Kl9ydTMzRJYKgFCYu+wlW1Ur7JkcL9Pqn/7ZH/k9f/CP/t75p356OtnjmpFS5qIoQl3ObddYokk1qccT9pzbFdUOtUttG7I57xVqqgPP1BUAVCXlnCvPWqAwKnsLBSmInbNSZEjf4iztLXVCRpZyarq2W8UUz1cLEVnOz5umMYhzrihXigoRrbqFqkLMm08p5ZSaZpVzJHKrdqWWk8SmWTWxyRLVrNOYuyQJEFosV5cxTQ5vXt3Bo60mwcgq74lIs/SmfQPXgXqctqxATBA2c8REuZRCRkSsQygqz4YW4SljusaEJTPT3k67L+9kzewpPCVex+B1zQMMah49X9UKK2ktCn09BOrggGhmSjIMHQy7sC4ftXfKuxpTunrSwQYpkohruYV+nScq0R7o5bbQjzBeLVbDYnG1ctm6MbqpDMXYXF3WRB/qG42bPwPA7EwHPPrqeLWUaQXfQ2G1GMCFp05lLrCEq7XYKl29gJJMXOHMWO/KcOBkRrIhZ1EqHzcIq9j6LABg4sGmoUTUzXpls6RZH5ofqlIqcXxd4+J6QqS9HuS6o7mm8vJmSkLEDkNZbsUAcnNgqQ+zJfka/koB96S78cZul/+6IFDmBqwaaqQuaQwfefmXPbt/++Ld49pMNIfAPiuRFrnSApwyk2eCCmtCFm889rWv2VkxpA2itVM5n1/YymdDm7XppFnFi8vV5fni0fFl1yXJ4ojrUbW9Mzo62tnf397Zrra3qvHEey8g5NxjsyRPHkiBgJjZMTtP5Ng7z1zAxHKWDCrE5r1XR5zBXIbw+xyRaE3aU+srVGdmoinnmHJMqcvatalNks209FEM6r0fJvCvK1gpOepV6XscRZTRt+V8n2ANiWx/NzxZ+5aXB9W1LCVWKx9dnfXdGzqZ3/y9/+Stl5LTncaWeXyZT/fDhFA1LKMwIl9GbpxDpbHLJiZwcC5QjBzGWxQX7eV5vT2txtuZlLyjpMYF8QpExPUoaw5GLDVsouzJJUjRjDNFhmUQm/necyYJ6UrIjNiZoR6rWRGLyFZqrPI4sllmJh+cqBETsR+aWUISjJQ1wwAS6seepZBlxIy8GhUvxrLOFoJZNpgyiJhdAa7MqDDsGAxTEDkQG3uQkSaDwDIoo386iEAmnRFBnDGBHSGADMxa6M3rm87YIFByLousfF1pR2ItJkGzzxdvYOu1v/Sjf/h3/97fvPj0v9yabqc2ElIOnqQVMTOsFm1sc+Wquq4Iomnla2/QtOwq79mZdY1XG1JrVi7eVpYl55TYhbLSqSoTgx0zEXsMkk1lHGTj6WCNGYokedEsosbT81NJuVtdppSIyHvvXP/7zNzlLqXERkSUJYmkLjUGyVHb3Mac2rbNmmPKbdMw87JLOelyFRvR2eHhB55/YevmVQDOxiCCQa2QmQG5tlBuhC43VDlCRI6MoShSNr34hpQ7goiYIUXDiTeUAIkIBGYqjzQURjzIOxRSAgZWNFEfd3UIGAMdawhCG5nwVbS4XsQQucK7fOL94cxDqWfzkj3B/t3Y5atzQQBUhIlsE1ov98JGUNn8Yi2Ghb63NTxrVnDy3uNl/Rl2LRCsgzQA9KZFZmblJPcUXivBiWFFGQtEzIPi5tALKTs/OMEMz/v7nLd1OpAVks2IxXTghF0d7HoaqI9iRoNGd9nv91kvN2/79cuvNfSHz+ZywtSMe4FNy2qDtBAXqFnX981QLfWsKzVcsxqkzfO5eQz9hb/C4q/h3hu/3P9+slzTiGB1xau0chi98tLX3965c/H4YWWZVD0qTxC9hCqCZ/RDcGSAEQOOgwtMYiQRjsd1LZKbpplGZQ2RYk4xJbRNvJi35/Pu9GR+cb7KFmE8GtXjUbW1PT7Ym+zuj2ezemt7PB57H1BIC9Bikr0GnfozwAZmLnPAxiYQB2hWMlEDSfDea1TRJClJWQKLClLOtpGJlVsPBEWRMhdRTbkrfJQssU1tSrHX9EA/XmPKXDrHm3VryW2ZBixwyOWGZ5o2IB9eJ3oDy30T0gAY5tokY2vb+nbMr9/d+cZ38Lv+2n//Ju5/5cM/+Pyry1NH5sPkzIiZt4IvVnROmZnL80eAGVceoK6upvCB6y6exHzRVONd8mZmkDKzZsrK4DAaB8+cc1IzGYODCxkilqKxsUbTiEygDFLKycxMk0UYOeZi3jIi76w4kZGtpx7ZQJYsJTZPRMIqpqbSt+fggGwQU+mlf8zBQFz0dxTuamU0IgIrC/r0xRRMbDBP0OLLZOLAMBUUUiqBXN8wJsuGtaFeIarAkKEEywY1KiRSBwP6Jl5hnzLYlDuO47yc++nU2i2cncBe++7veun/9Gd+/OUPPh8/9+m62hfzgR5n8xD1yK1Y7Cw35rkKkxHXpHlFQTMZq6uyR9bsxSyHLsJVoH7sqcyDOHbkApmjXkwBqgryTA7MthYEfAJaM1OlLmPetefdKsXm8fFDl62LSyIKIRAVa4beXz0uUxM7771IMtKkucudQtp2uVqtPHtJebFYdSk2bVx1bSsUptOdey889+zT0729qNYl2fx00kI1LfRJM+pv/nWhQIAZiImZiDOTFd8tWCYjhlif8JUAw7BC9CuMo6vVlTmUFkNpFvZtwmGBdGWp7Id6dY3AlnUEwACvlnSNDGughc3eEznXays2scYNnHMdUg0YoM31SwnETMVUZaNd2v+0hIleUud9Wpbr3zTrDYiIyExhgx8TcEXa7bdhw8LSY8UgWp8dM1uj30Q0eDGBmKgQOsgRnIHNOVNm4twv+87Igdx6n3oCSFlZbWAWM4sWJye9AiXWD5X22tSbx7jWetSrw78CJPAe0wsANvDSy0ksb/r1INp6qX/vtdxMCUvkNzO3PkGiWjR7yl6I9kjpexQ4NndozUcnIjNZIzNP/H7vF0UI5kXyqPJt6szGX/fKJw/c9urRY2eZEevKa0JsO8/Elc9JyiwEgyCqkkWEHTP7oEkBMvUk48BT76KaNu1e7VImmCzbmJaLrl1BUl1h5D0RTaejvZ2t7Z3xdBamkzCd+bpidqaaVIVBqubK+GNf/ffX2Kik/yyWC6ONStNVSHJk8mU+uBgxqGqUXAj9wxgcrvlymAkXDygTkZRSjG2UmCVKjCjyFgZVLQ0p0oLtv88lNVWmsoIaFXyNWTfo66C+kbTx7PEAXqxfzACca+zAxzfubH/fP51/30/8K7gvvPuJf+9bG2E/GdnpO34hs8lWHjNxMBGThOA9calug9XRYiY149F0lpVyqNw4yMVZ2ttzkwDplduYfBlcClWtwXuIMjIIXYJm5pTJUVDKTMqZCBbMEgFkqZi4cO7yasFlMpWCqpQDFx9QshaotvOcWgcPB/iewQ4rvFZV0p6aXhZqy6Ra7LPLjAKxK4OtZKZFjdmMehJwIbwYQFxy5lLCDgTLHukgD7BRgMkw72HkNlxrDEAiZAKpeQB9L5p693Mi0k6d8w430tlXd8b3/2ff962/9z/44U984sNydhJ/4Sv17Ib4jmOLao8Wxz6ENratUOzY+XoyGYWxp4DSHHJRjCjXgUPtoViatCsbV3DMjpz3VlwCycg8ZbNCQiVHRAkqRp7dcEcPLJC1SLxmZReBRqRL8eT4/uNHb49caFP03ldVFVKAaJZUFp+oGmNkUM7JMwRWRK8abdIqtvOL+Xy56nKuw2h/Z/vZe8/cvDXb3q3radt1y0VH3jnn17dvYO5LyrJ+Kti7Hpsd5m6NilvxZptTCp8PBDJlU0fmGcy+uC/oMPJgm6o1ZVSGgazG6KeCpO/z6JCY2IARlp3idbRYr5w2DA5hmKelJ38fGCJVKW0B5uKY0iOk/T8GVSuHRjSodpQA0xsnDxyhQi2CsRvGUnoJ4KHW22h82nXyUb/i0OBGtFFN9loIttFOBXoBq2HibrPi7LOBdRFrILjijtTX1v16RY7clQHaUH9QH0yG52jjJWsM3EypTNxDwet4t/79Mo67LqnXGypiI6Yw6PvihSXHoKIhSv3Uj5ce9yD0Y0VX52u4b66SViISkf7ZoivdNFo3EYflob94XEyjrvbg6mK8P2xyDa9eHzYbIAS2NuXY+m/9+u/Y5lm8uGCLgdT5QFBPCUjkXUyp9h5986YkpQq1Ag4SwTkvlmOSnFLFNJ2MmJnRtV3qVHY9bLea7vm4L51Ykq4Koa5r7/1oZFtbYTQKoWLAVFK/j+whRawB6Soh6iOfajZzZKFYGSjIhpkMgLMWVZdrpKc1rFEeMC0Vk4qZpS5liaoqllNKKXUiWUSIrUR/FSk9t74UU+Nyd/L62eYyTV2uIJfJtsEa0w1f9ELsfd/XFFd7uHmN1CfVnVE+qaef/Ffd7/+Jf/3z/OXPPv/KC6sbT12ePpyE8ZJ3lvVJ4pMx75tlE4sxwgdfV+zA5JVVScUi5bExRrXr5qPdg+3zT33KHexzvQ8UIV9VEDkHBpk6qtlrFQg00lVr3RIWXG3IyZK37GHONMNC4UuadTCR3BHYuDLnwQzvRMQF70LISYm9g1lr6JYiCc7AnlxgDutbsawjhSzVSwJBwEopq0bVzK4uIxxqveRY4auzyfq6l6SzrGS8KZlD659SWVmIiIqbgDXoMyqCGopsIRlEeg0EtnXPiUCTeqrdaUif+t2/4Tv/k9/zZ176uue6d8/8/UfsPU/H8GwUZGR8sZBoXbtq1NjVzDQaj8bTkTkRza6qTIQ9k2eahtzFk9ffkWV7dPumusoFRsXkCNwz402VAg/zrAymMhZWIi71bakSepTIGSHmlJUzO8dheTl/+6tfPT17PKqCr2qBS5I4QrOklFRzjFFZVZUJIiJZY8yrpmvbeJlzThpCvXPjztM3jiaHB9XOLDM0WysWVyvnXF3XImL5ajY3kbFnACLCzOR8mWUpV6EsXQxQn9oK9YORSkTOBSLx5B0Zs9FgE6Yo4RVE17Sgr0imznHpzanJwFIu5VYvGbXZUtBS7JUp2151EihNJTP0gz19EC0FbyHxEK+Lto3lxVG/aA9kbNdP4vc7QSi5uzGZ6Ro7U0LPbh4QOTFb62vwxhbQO+NhOCrYetCUika5rhmmwzPFRagKWI/SPlk22ADFA8pMNCxHvf6GkZY5K2OAxciBioaG0oC5DgVkUT0aQnvv/osBjSha4mJ9pN4sftaL87Ud2/iawGb5+ijwk1NJ5UPXX/vhMEDDiKTrWc0wM7mis69zlqvdQu9TQc654huLJ2D791S9GJB+GtIusyLTM6Q064MxFAykbHXk6LxrnNv6tk9855ZM25PHoitfOU42riepnRNa7zWKI3I5Ju+9aoYKVIjIOXLOGaFLlkUkqSgbvEAoWHB+O3OdHKqqql0NvxVUYk4gkZmqsq+qqgqVK9akzLCczAr9nMj1k1JlUNt6HXwerlsCea+ayBdPJLWoqqK6eVGJnPv/sfevwZZt2VkY+I0x5lxr7b3PIx838+Z9VN16X1VJVSVVFSBKkgEZRdMIgRtkWd0OAkdgHDjaP7rtDloNYWMTRDTQYFqYBncDjY3lwDgaYd6WoAVISCWpSqV6v+vWfebNmzfz5Dlnv9Zac44x+seca+998hb//MPR4RUVt06esx/rMed4fOMb36jMcSYi4liCnxKamVnSZGbIOuYxpUE1lT5jEImUzu0yrJiYQQzTIlJPNYgqWK/VaZo7qmERU/XdJEqqO2/3GL3gP/y49y1HILH8SNpbrx7/xD/82V+Z33vBwXd+8GOf+voXT4+vdd1J9Bldhu648bFBDGapHwZjWTSRhIk8BAFHc9i6CTwg9fP5Sdi+md94yZYf0OunIiEK5VzsBbkRQmy7I6NNwkgzEnV4ds9wJm6colMANZYTLJMz6ais0AxT0lFzr3005oZaCi2FCAnwDHMJgZuQmuDDUrPCCNy4NGBx4SJWUOxbIVsVHg20gMMRqhrMJBJJkW5OeYPigMu+LtIDRGSwKd4tIS7IUZouCGBy3VE3eSdb6EzQUvTNVcUFoTapmFU0jZmZh/Ov/eaP3Pqrf/6nnn/7U9t7DzZfeLXp3Nug7YbjdWS1kJGUASU+68cg3XHTIVKzaNCCRrWUrW25mQ9BG3J/8Gj74FFo29OnnvbQBYACgdVQinnCoFDnqpllzWrMTMJTsUl2vP1qDUoGFmW7HsZsKen9115/6YVvNjOAW1abkjBoHodhGMd+vV7LNmXT9dCPpiNTd3w9Hp3wydEzb3v69OYT7fHCJQxJc0qeS7N0ltKxkq1U5l32UX6EkBLgPPUNVPNfNkJpXYUWmlxVapxSkULKEmFhLbBmEboiKukTT0Sux4/Ji2Ong0NFr6hoUV2tp07pbAmXi9hScROV7kNWGtcrebYuBqbDtzOzHmgpFyofsXthRXHV+anPhfbXCEyKDUClK3qZfACunTYl79Ir3TSHBWowoFomI/lOyWvXhkvFVNZSpjORWs286/m7u9fZUthpkRI7l+3jQsTM4k6GsnuEQOwEh9Zoqthh5/o9B5714KHszrh+5TSYAcCkTF2nC5t7chMcuLBDEN7K1Mb6bA8f/RRe7y+tOuDyVGlyt2VQMhPBjA7GOZkZSxlc62bmpUJAyKb76jpJzYzdoFcblp2tMFgAuEip/Rc5GNoV5+uLt3mMHAkNk4PSUjGn69/7/o8fod1sH0CGrmkZCEHzdok0ghsnI83ChCDso7kpXKJYrsOvyK0JYCcVsewpDRykzr+Ns3BjNl4OR4vrW3pzjcFNZ5objtUp7sM4glv2bFUzv8jBuxkxM7LhIOxxdzfypBry4ZMuDg9ACWJEIrOBgqqygJmzJpRo0gG4maVxk9KgqqW/ZXqKleVFRfhgit+hTiQlwzUrpC1M8W8JAsq+mrQLp3VgXuaMQku/G8NRuuqVZa6q4eCBzvujzaznvNrc+v0/89VluHe+uXv/+R/8uHWz8Rv38Szk9ndId9ZI2iZZmDcBK7go0A8eAuatSpnzQGSLME+hma/XOns6bP/br3fPfGe/XLeroTlpE8PYCB4gY7bZbC4Rw9J4y3nozVNzfJQ9QxV59BSRRFTFRhv7xAkpszVGBB/NBhqdA9tIW8IRBWSEwNzAJCZfoHXOnL3FuASv3bewgWgOBZJXmc4KPSl5Rp2+onCFGixzaDl0bmSm7A4IUXLLrgmWa3gTYq2lASgtLM6AwN3cy+zVnaQDAUxmKbsrS2lYVNgIjxR6l4bzCFqY9jE659vD5c//xL/zu/7EH/8jeHh389WvxaNZPg4mIkScAmL2aGFwzuKZ+n5chFl7NGfL3XyOSFk1xBi6dgvt2i4ut+sHD1l9fu2OzNpRzT2zt8lziC4OdRIJgI6RZAQTFVCARJhjme5UbTHXpRtCICANo9Go45DH3n39hS//8rY/Bx1fPFqbXYypz6ab5XbYZvPA0razo+bare54cf366dGNa4trJ23XFYM1mqrqsEnmPYgCByJ3OHlXkNJd4VeuwMKoxX3mXblxUh+qxldISjISWAI7M2IIgTUiN6TMBOfACGKOkQChAM8QhpvvvxZgNoeUOAsOGImzcOnRN9WqjsVEFGrUaz45HpiW0HnSUTr0GeaGXCvszFVgYsrqSuhQBTCq7jQRxI1dLXMhQvM0chQ1OzQjEuxkCSbTXJiHQLXiVMroTnClXbG5lMwxAcpguJtamT9ac2+UzLd2GNenURp6regGFjddLkvMMgNELNM451yqyM6wWDo7yAkWGcyw5OYIoFDcLiESxF3ZIgUiIp3UOgzF4Zu7GQFg5mLksjsBZmQZZZLbXho5HJT2dg/C3YUnlasreXB92VQgmCJwQuADt+xTTOJqO/2mqRpSgfiamBffX2gYPiltX60i1+7eg8MnFZ9p0RSo5CpGPS2qo/Z4GLZGo4ukEZ0vPv7R70urtNwu2UwYZKO4wEaYlZS2TkZWJXeDiUidOCEiIvDSvl/PJKs7CYAgUdgbltHTbMbOEqWZM0zRWFY3ZmYKE4zD1YLUqVD1at3hDjMnOwRgsEMKytx7mmS4S0QGQJi89K9SFRk3BZkV5CSbFlaAWrIiQKAHtcByn0sE7TuFY5S6bxlIA/CuzF8WV2X0WaF07YCd3Rlz6a2QSVmlpsLM8J6cjfYltPFo5XmM1975hfTx1174Rbl45bgZ3v7Rj3zqpfvunl4/W3xQx26ROfByo09cT0KiZFmT53WUpmGS2DCLhCFg5vPtetlcPxq/9NWLvm+++13pwXB+9uj2fMZd2zRNztkMIhFgEeJA3ohYkIbapqGcxYzykWctgJT2fU+X7EHiMfwR60g2qm5ME/oNQZjDSCNLBCKIKHCYsVu2saO8hUXyji2qultR4pv0E7yU3qYCrVdIx30EuWa4K7ghYrOMsr13U+QKRUkTAJQo3kpZ6IAGUaqMxQeTwVyxJByRs6UNaCSBCJNSSgHNYJRCamZH882QZP1z/+l/+O/+J3/kDyw/94Vj4nBynECzdmGpL3lDHkchh2u/2gzny0g8a1s1hNCCSUEcYjaD+ny2yMthOF8Hj10bLdu4XBf9c12M5oYQBnOJ7bgdGglhMIbCIIRCQyjNOw5yZqiRuzjZVFAZWPtez5eXx/PFP/n5X/3Ff/GlO7dvjcPD2eJ03i4WJ3euXzt54sO3Tm7c7E5O59euS9N20vc5bce0Sdv10I+pzymrFiVIYmbyWPlBNIX0U9UPB6ShnU2sRs8Bokm3YDJgREUqXGojvpaAm5mJFWW8JnstbgrgTFy0IeuMyCu1QLICmFQRMy+63nWWItf5Y/tW0XruVba97s1icvDWo8wCBqZlNn2nY0qHgOKudo6W3JmYp17PqzAn15GBhCmxLJ0XtXrlcNROYqJpTBOjBg01s9gbwnLXdtXi/SOYhvZO5WCAnBjs7BW7q8HG7uOme1VZ6bCSy/hk6Hg3dqFcvVAZwV4yw53dnVqndr7TKueqrodKt1Z8O+TPdvqGjwEVwIH0xWM59p72hAOfHUxL33TZ9kVLsEQ0ewClxFNcxNZ9en+ZMVG97+5C+PCqDmu6ZZXQFGjRW5jrh6cFoF/3EAoNVuuh6278lg/9lmE72GBBKOs4CxAzTtl8MLM63cYQpMxUN5pY1nXOQcrFceacdZpfFttmzFobkFloyDHGbVZmbqUFIXjobXR3hZrXmXtG7vAmyO5hTZdQsBHs4xjauefKsSjrsLTRTcWUEhDSNKF6f5hr1qLdbyUifuwukTvgU58bgCIId6V8UhoBeaopM3MZ6xEoYN/4X5Lewh0CTUx4oPDewSA1BCYKJfGvx5ZNdJ3af+PXXzk7uuhXr7/x3t/x3efdXB8s59w+eu3ureHhrF0cz48vL5bnm82dtglgVR+GQaNYG7oGBAZTiIxMCDI3e+ETn731vR8+yymetKtx2283R/OOSmipaJtZ27aZtGnIWYlbmDuDOAuQ8kAUGGSWfUYyg2+j9qOQcB5o3Lpm16WmFbEIx8QsGpFFYiAOcENsvGnJOuhImUBa1ZVLPWsXZE6ZewXdioslgxt8NG8gyhSrnP3uiZQXw91Kv0vdd7s+sULTKH69kH1gRZxg5tjCt6ARgOc2W4Kfg4/aUQdEb8f1+b3rN+zP/8mf+AM//tvOvvD5dkxZAq1dZvMxJWka226tSQKlvu8fXAyrFDlCICH4qMoGFnfK2dq2hdr2zUska0ITAixld28lIAYQCdyYVZoW6uutRBp024ZuzImIpeFih4XBJTSpkyHgUCI29zEPfR5X697M3rj/+lN33van/9Rfbtt5O2+yJWqYg4w5m+s4jpt+O4xpvblYWUopZdPs2bO5FmITTWILxQkRMRjELKqKqh202zhXIv4SjO4SSqpEKKf9rgK4QPsgKvmxT0i/MTwQuPRWkYPJmErHTMng9tav7j71qWRaHBlBy7oqsfPh5gUR2Gq6MyXoV8LlKYbYXfvuCmWarlCqn3BCGfkwXfj07hKzm++UgKf/Uk20hHaodYVKfRdb0ASZTxbQvYz4NUetLNaVXTQIyKci5e77J6vmB+YPNBVKDQSCI4QGsD37auc+apXZAGYP7mxgeGCITsgqQ0pbsB80PT3mOCdryYAe1P6nGtABkjEZgKth0GHxlGoRj65C0I+defnNXkdMJs5r6WRLZtOrH2dm+Q5nmDI5IpFJwQOoDPxyK/kgYarXXGoJNQ6xg+1wJQO29u8AGBVNBwP+yef+Bv6nPZq3/Oao/v+N/4m/6f9vDx7bpnn6RXz3g/X9fP+NGPITH/n+Lz68m6EKs9Vm/eje/Pp30dGcKfDDFR2fmDCDLGVsh9g2ptCWcgg82KNx88zb7rz+d3/m5P3v0etPhIttjNpe2vn5eXO0cAmwuj5EQhqcOaKJoCJaC8qZiIKNROTQpCPl3HQdN7Mxbqk7on6L9QXypavBR89BU8MxYuy9EedATC5sjXC3gGeMo6kRcomhbW88MAlioM78g8MyysR1UgdBHQ5nrTluMUmEHeF5CtIrzdS9VCj2aFbV1INVyJoFNBI1wNyxQSZQG5rs/cWos26x6Lev/+D3P/03/ss//czt4/z1ry7oCNeE2IRJAwdxSsnaKP1GN6uzu68/uvfgbc++ezZfKOuYU5ToTam2hEA0DGnc9K1RbBsQgUkZwo26kpAxhYFjCNprr31HjvUafb9dppxz07Tx6Ji7zgRwuMDMeFQSVkDdSg0rZ0ubfkjjxfJydXb27NPPdDJXw+XyjMT93EZXB/eaDOpEg45UpXmIQYE4wwPcGONBS8UO0XFHEdKCF/+zS0cft4mTUeVSo6wZZ51vTlzS+NI5ByOHAFKVsSAMCcRcwkgxzmCh8qDLStjvFoLTNIyvdjftowEmr2ZzKtyWNptddcj3cwCnNbQvQALYjQ2lKYggZ6uShzX7R0Hl95fs0zT7whlTADwJvGBXLq1tPIXmZ2W64Z4oVvy11VJmAXV5grSLIC+Zu2eCe2Wg7Orj00OxXbKy7z7CPq+DFG2n0htt9b9EVMbGG4qKiUx5cNEOq3Mq6gpw36+PQx5UzaJ4L4l/WKTYcVR9ar29migCwDR/GYCZHqyrvfrV4S8P3x5qg8fut1YbInc9J4crG//Kw/RKtbm2RbhPoyZ3v/fJ4lCtq9fhjqDHQor/5fif/7HwNclvuL85Cve+qWdvPPG+p/3GNXzuzYZsM+bFres3ThaXY9+dzJenc7534U9lO2pJGEl9vbUgvphb2xiZDOiuzx5++vMp4ImPffjiwTrOY14/7Oazi8vlZrmanxy7u0jLQcyMxc1glkmm5noWd2987q7ZMxFlkDuapmsojmljnq2HIwMJnqEDjYPLhoNgjEwtcZAooW3JpfdMKcEVw+hWddJtN6+m1BFQAnsHOxW8v7YnmcNgI7xIMex7maoZKFCZ7THDavLIuSpNlsSlGE4mdoOSdKAWNoPMETLcspvMOmm6/uyV9z2z/e/+7J+6lt54+NlvyTq317pw3I46zDhAE2Ulgw6DvHm5vDh74YVvvv2d746nJw4OHCz3GqikE6xqpnV+nzTB82ga5vMwi2YwI4lBLWXzTpUtkW3tcnX/my9b07bXr5/EI5YIDzApY+wEZmSEBC8NWpqS5Zz7vh+GtO3PH9x/YxHm7JTHTc5J2DXljrvgIQfSxKOrsil59sxOIDKUqema2ZzgzGUy8g59q7QhAFMuN93VK3aq5BvOO2Nd2lqq9ypd20xgDoFymewo5EwUQEKIRFQUv8p6YCJmF3gtNFztRpFghlCaWL3WFmoiU9hfBTottTnzojtKFWh0Bu3w413py6+SZAvCvPu5Tl2pZSaU/hhgSlqLczWnutBQOkeLM9m3NjG5XUnaUNpvapSxv5Xl/81r6kxUnr+iuNfpUydkgdzd7fFPoEo4v+IM6DDH3j9WZq+BAJm7B3eZzp6nBrDHgWImniDbiSK+8/sVeDy4mWDstD+uOs5DeHkfNR+ctk+1Xrzl8AP0NxR4s+S5JTAr3Qz7Yu3jn7uD1A45nNOogJ2T34VgV2sS2KfOPJ0HA4VBzO4e8o/k8PffetL/y/E/t+O1ux+z/JLf/NhLZ0NeGw933/Xb/sDLl12OueVmO+bnv/e7cw/ky24xw80jf7i6eHB+fPIMtQ0z63ZAGHzWSEAQZErdgP7Fe9d++/f0S7OmC+5hfqLjplPvN9vFyTHcuza2XWsGqa1wO+5CJc0mUxCKCgmxCZv6kPOA1YVdXtryTdteYhwK7MY0pl4kRo6tcaYgsWUngRC3C1Ylz5oH5N4skxuKBlmtfrEzVQdMhgB4hsKhu2zDPZeJgQAAdrN9+wcEUJhiV7+ZTC2AqQBZvocKeulGjgxJoDK4TWE3iDmff/Mj78Pf+lP/z6P8cH22meWhfe5pCaMOF7PYeU5YD8TI2ueLZX60efWVV0VmTz/37jzmnJWB0HWIwswgTtvtZrMJjTRdNw7bfjPGrhNL5uokMQYwBaUR/TAOtF7zdvzMZz7/zg9/9/V3vRMSPGVLlt1Ld7k4oBZMVUzTyBB2sn7s07Ae+k3q37z/uo3p9PSElYp2GxHn1K6w5iCjOcSDmWnu4GO2jWYqIw7dCBBHMnNT4VDunllBm61KXdb4Zqfcd7Xm5QeZXAl9CAQhtr2BJmJQYeYIIzCEckl/q57dlCkSkbE4lIW95JZ0kEsJM0XzBAA6DaYBk1Op9PqEEFPR89A6HLDcy1Lu2J+j2c77FqbxlavAVPct9tndaKIgFN/DlTtSxxZd9RPFEVQnUR0S10LwgX6yl0aliZlcFnnhvpUwo7oWLl6x8sEqMsq1DcYO0z8AtEOoS5Px46WBHVReHLDmcjICiLsciGlLpY5hNxkJEybvk7OvgDATFfjWCkDFhNqeiYLef9vkFVc9Yx0DdYUU7W998WOxRS3rFj3TqVhCh1f+Fq/O048OVCUz2wdMB6+8Kn+I6pInjNyJIWV6ZMm2S9ShTsF+HxSW8J3v/Z5bR7doTIzcpz6nMZIdxRAsjZueBGMeojRJs2oSplaYQU7IbuwoghVNE9x9GLd5TGZKxDnncczE7BKoCcxhHMdkZJ5Vum89vPcKHoibKUyUr95KdweKLsRhg3aNdByarRQSdrS0ImY0ie3vBU946lMqK1IP7vMUjE+YxIRxFMJOnbKkU2f64RiMafEdACxTwLVronB3CIsdruy3IhzsBMZ+5bk6ZCSaAT0jAs2AS44fWsYP9+kob166fv3o2lPvf+3+Nki7yZd+ffGu7/nO//Hv/JPm9q2nP/D+G5enD7rzYdUvxhSDSAy22do4JG1zHnl0n4flF77VPXtHwskqP2pnwblRkHnujmRzeZE2PULZ3qqWU2Z3l+qDtdCy3D0RiZkprB9s7HXYjJerfrXk1X3bLLE9R7qEK0lTI3VNlvrUN5FnHkWN4Mws3DVBO+QjjGNOI/LGLZEbFWEdCsQgE6epPBbIjUFSEt8yGqGkvAcz6arhcKC+AERFhoiIQCBxs6olVzWIdlPgAI5srdEFsIQdBV50s6wP7v7Qb7/+3//kf9G89tqbr3zr9Ol3Ne1gad1vlvMc0VKfU1CVXlO/Xvaby/M3X3708CO/6fu227ENBGQltiaIkKuP2+2236ol3w5R+GjeakbZcM4iDasNtk0B3qR+u7rY3n/4L37uF57/bT94/MEPrM4vj9bblB2AgFmEiRx5mlyU8jC6kynW202fxtV2+eb52Rsv33vX294txpvtZjZvs7lqbsMs5mhOnkeDq5snGJM7k7kQKWBm7CDnYMaQVMmSe5tjk4s63E0lZX3cUk3exZ3crfCqUAsGzkyBwUI1rartSjXuq0VPv5JcFzCj2vPdjpLooq51Qk/hW5E5rEgV5J1ZrKBp6b2lHQ0JzqXXaT8FAVM2uy9tXE3IeJeY6u4t5gyoG1d9G9JCJaOphljoxgUB3SXZE1frMacCJaAqKR2k4ijtTLUhk3wqNe5/eXhM+W1JjAGncuk7nszkhgxazCpDyhYiEoCMGAhMgUBUSKRgcikj++qpMtE0h/GxBeBTMYCIrCTQRVSJBDgML+oG3p3P9CefdEiM9iXXK+JZh89llzkQUSApITzRVamtK8jGFc9f5Vd2/3SUFhzZ+6HpXUK0b3oHJhGzWsf3ivWXTy7UXIg00J7Mn731zqdvPJWHHjwMaUjmXdsGz2yGwRqW0YamaTShCdGEhF3coIrC1jZ3pnFM43aMLMUZM/OYc04JtZQoBi6rUC0LKFsmUyYrM8cgBC26FLvHUK+9KKxapUZxIR67E1cQqG4ZgoCUiNUL1iEghU1dwoWV4O71rtgBZqJEzBCbglmjDIA9lMimAFQTz0CIptGVZABJoWLVLUxEUvuLuGwzA5ODCm2cd3jUnt33OHTCgVUjBc9O0V3UNGxmRz/yi7jTL7+Fly5uvf/9y8ViHB+0TfNw5I/81t/8pbO7sT3O52c6bI7aZn3n5uYrL6ZNT7PGGYCZZ0up366xHgLi6vwRP/uMvblumiZz3zTCKSoGYWuabd/3s5Mjt7zdrlXdmFSVHFHELLt7Vk8pUR5zGm2z1fVqXF/m1YVuVhiT5TXGNeuakCBkIiBKlBmiQw+KoUlsjaqCPcQ2EKyPLp2EIwtbswHuhFSgNGS4MISF67QLAxEJKDsxW3ZPbglQmhosnagMGy7h3BTmWhEZJSNnIWgp2ZVKp9GUXqMA3UvTFgqJXcu3U9+vNv/yD/+hH/7JP/bv+4OzYba9NbvjMqKdxbMzrMjvHBtZ3AxIaTQ7u7y83PZf+/pXaXHtyXe/e3lx2YmHABtTlEDBL8/PATSLmeXA/ZY0j5tNWMySZU1KsTFLIuSWhn774NXXP/v5T3/jG9/4wG/8+Ad/428e7p4fIae4oTgXCrVTKmX1bGQhhIYlG6WcVv12uV71qX/48MGLL774zmeej4ipH5o2DHmMbWDGdrxEaJKOEM6WHI5ImpOzp9Lby5yMjNjYDAKASQGoF12I0mtQCoHTOIFJ4eRAV3+fSxFVHTOrszQIRaJUKDCYAWawFVG9LJrzmEPKpg1N4a9PLKLScQ881jpfG+7L0yxTq82dzNmRnUWcjMhdDcWayH5oUiVTVsqvEmin8PzYRq1yGTAvcol7B7Cz/lIAIjLYrktlIlFPOhyHrvcgCp9EJA5idzocuYhCMi2Zlu0VJ8yntJgmvS2rCQrtPrEmNxW4r2nL4bMj7MSthGQSgi5TDhkWtPTIkjM4W+3+mE6+pn6PUY7cfRLiuJpt+tRFdfgEp7zzsYRnOmxKBsqX7iDex49DPxvMMoPgbBOXqjRfJTfV0h/mKBlcLV7Z7quJ5GBK3Q5bq+kvEdQ94oDDZUTEzqwERy49jxpIzIKRqVIbW8urgd0X73zHBxpXpH653ViQmcQZa7BRrR8DqwEWgxGHDHgTmzyO4JgxllmQzMhpZEs55wFlYozlnH3MmSi5u4VWIjtSiYEti8wIUSRqotCQZ+cc1BJzGcJqTuAJJ3SzEiOVP5XtR2SwEiQXEF/KfnSzQDbVlmIlFxcUXq3iPdMcByISkfrHElaXRoViaER28xV4vyzUJiylhDU2ySJV58oIheagHogw4TN1hlXBZsjcs1lkDjzFvwCqwdLAMRNycB3j9W64f3z0uz45/+Ht1sflEtvXj57/DY8eoZu1q0f+3EfePg7bR/fpqe/+0Jf+6a+cfv2lo+ffN1/l/tqsv/ewfccdWTT20HVI89XowzBst7in4/Jchos0XGA+m4VrhAZtvuD5nHN3fO3Rm/dPF2iclmMvxqMO7h6YkiGnlLcD5Z4ta+9pvczLc988smGJtOU8wAy8rWuQO0gDjkQNwC4BRuiHLOchGMkRtzNtiSQ21xdZjKCaslnhkW7NMrKyADo64MyFlEN1fAaDojGXKUoAOTGZwjMTAWYkIAZHWC7iBu4GZBTdIhJIAxPzBqwgJZ2TEppz80wa3dfUMfL1fvvK267d/XN//E/+7t/7cX7xG+Twa/NAzqnR7On69Xid+9h0r77S9xtu8sOH/MbZ6uL+i7/0Tz7xf/6Lf2HYjothW3rTo0TLm7T07ZhOb94waABrYJagmodRI2FwjW2Iwrrql4/OHq7PPvvFf3l5SR/7vh/5vn/tB/pHZwG6XQ2z0OUmexeoCZ7G1erSG3LXNnFvZvDVZrPcbpbr5d27dzerzTO3n4kSc85CbJmFRHt1ImJJlrymuWTmVuRXTaPy6AlWZgwwO1sZTWzV9RZLbmZc1CpQVRV3ie+ugWRnvg+RTkYgqqFwRf/JiU3cyIMrq7CqZXAe+uzb1OTAEgAOIB0JbiLkocTZb5WvKTOsyqhgJwermzKjjJErk8HgWoZguoC0QGRGvtPtECJ3MqLiJ6zWV8vVVXorT6zpgqRaFZme0GaiaTBamTHkVqzbrvdwnw4CvpPHpjpwniZLVdp7fMr+/aBfw+FGXlp/qpQ5E7kVLnP1Ilz1EBhaNEF8h8y5m5O7CjkRFSGR0uYM7MTqQ9FCd9T6gHNr3pq1TiBWd8DFPFTM2UuKU4c8eXng4vASixTmGDtpneBwAD4Dh8KTO2WxqiBdQP2apltt+LwCCKAole4qypWlFsKOJIKpg3iKdKbQq1Dpdrj/wfJ9HJ0GDiKj4mztgMBdrqX0jBiLqbubK5mbGkSiOj3KOo/tb/nI955EWZ2fbzabrmnG7PMZsyYdk+1GjhCEq9qqENtB+7y7l15Drz08pqogSzmnPCLEwtHI41AErBTOTZvcrGyf3mBVXGa3XanOGCtBmPM058R9B84YIAfa3Ff2HaE2109wR0VXaCeLgxpD16sw3j16r3KtcCPbc/GAnZPEvmJ/GLHa9I37/vv9asCu0OLVeQeWsFtDPrUDFrVqhNFdLc9n4dgvN3p852vX/rdfedgfz9zvPoLgxnufu791p3Dy7qOT+698/ezyqZvPLfvz07ddu/fyy+/6wHv82rx98onLl16Km2PvRAMPy/W8a/LlBpsNY7CLN8+++GXIvHnqZrxD3M63SDc0QsRnzdCtxXC+vEQTxIzHZMMwDn0eeh0GHwYf1nncYHNpaYs0QAfQCFcryKELIETCHDxILaM6uSaCOJDHjW9FJLBExMyx4dChy9on7lp4C3SWRiCBCg6W4clMiRtC9jLZcNdrT+wQWAG0jJxLKa/o3MHgNlrharoC7AiEAA+lkSUEAlEmch/QRM8OiyKSZYy5Gddf/6HfcPpTf/n/fftIll/7tfn8OafUeZNHZ1mSD8i8zSv+xtlFHjVcX50vX3zlq+NrL//f/9Y/+O0/9u+d3rxxdv+V68cnOlpSnTcxrS/P1un0+rUYGyJw6zkEYu1ASLmn1CJ2yLq8eOPi0Xqz/vQv/dKXPvfpp5/94Pd9//eu+je6WWBv5Li9HC5PbGbJ4NFGDTmvL5behLVmBg1puxyX9x89uPv6Pbf4xM23tfFUdaQy04BzkVJwIjCZqlNRZfSirXylf/QtCn8TorA3l1X1vsBVjycz+3c9tlWJIjxPlWASYZGCSIsbZXbJOblGMyU3ZdWck7ELnBjBKZfEjZxRhDd2hwtgk2onCnMPDubSQRzLRiVTGIMdajWD96ruCSqAXLUbXiL+4t2uFp4Or8hrWlwtyc7ClBfG0mHrRE7FF3qVvigwLKGCN/VWTs4V9bZ69ShUxMIcOAAYBORqmMwdTVDBzknzrrnSyyfrrv1154zUiWiyt6W4V1olS2IRBdqQz8mEIGQNeURJ5UvrkdWBTBNWebXAt0sabe879k7QD15wkM4WqvPhb2iCEHDVzF49CjXPd+EDSg14KiGUNtB608OkVuhwqqgKu0OKDBbtHtRjaL6x847iXi7sLVMZ3OECntgOZUacE4dxHBpe/I7v/y2nGQ9fvzdCjRxO17suYhjG7dgPYOIQQAxogVrIy6xUuurMFOwwEFHOOo6jejazZGqDEbFIzDqKxOpaCaqagTJ9tETWJd7cLTiU8dgAgSaNGDrAdrgI/LpXrfndsifCNMzSQequVNsBdv2L8Ep0JBSGfZm5Uj55d3enRVKudGc7AnEBOqsMLwpFx+EuEN0BcZNvPnDgVV22VgRA7kYTFaC+2N1dOUTNTStZfZzJcPf6H/vig+MFHqKfr++/8vStG2l+bXXZh3nks/tf/twXbn70432vHtvm5uLic8vhzTfmT71DV6fd/Xl6tOyeuh7bbnjzwebMdFyj3wYfaX13+OaLEp/YXtzZPro4vv304umb1EakkIfhztNPvv7Cl5944vbFcr3yzJs+b9a6Xupmaf3ah97S2tMQrCfN5FoqdkoECmABt3AGCTiQiE1FO8ogMjfFoEZOwibCDOVgDVPb0uKInUTgorZWyu6eiKyIyEIHdzcKoIZpNzudHQQOxAzr4dHBQJoQrAQYoKXZsaYozk61t4Uo5JxdjIKEmeRhG2Vh2GR4R7N++aX/8Pf/wJ/7E//B9rUXHt1fXr92x/OajhdqK0g2JbtY84M3++U6dWGT09nF+erVT/3KZz7xjz7xxBvXnvudP/5jb7764px6RgcWJsrjZvnorLv11OLGdbhbSslM5i0Lch6lGZutYIlhu3zj4m4K+qu/+mv/5B//s1fun//73/cjuL6Iqz71g26Xi8XCuH2g/ZG02GyJ6MHykZlt1g/c82a9HJO+fO+NN84ubt6688TtJ22kYRiCKLEwSL1ukQpT7uYsmsGsApjuZfR6HZJ+gChSraBeYR7vEt9Da0u4UgM+sGAMOIEdAW6TqCeKOLpZNIe5qbvCRs8DaWAlcjFj96aSZonEym53AvY9mJOtoIndQ6Wjp2RmBhDcwQpjAqDmVFDHXJyTlToFVQmjSsYyR+FK70R7S8tNaZ7hWuDy2h+EmlhWG8IAXGr2TIaiEMJGRORWm3a8tmPV8vmuyF5uPjmqd1ObzFPlFT+mxLkPgooj3I1tdatM5FpGPSi4FlvLE0ZdnlS5KBAouAs5uzdkrUtwE6cW3nD9Qp4iD662UQ5wZi6go02s9MPEid3zlGvh4PePH+5OZSTpdIlVeOdASe3K5Ux4++4vO20NE8g0W9CAQkyegh4CO08a/UyE3VhfurKCMdUdytvq/MbHzrichOUC3gNWCIU0qnqm3/zBD8llf/7oIueUGCY062JjijRYGlUVFOtihTmRgGtS+JbU0yd8P+c85pTzaGZGKKK5pGbgpmkoRCNkczNXmFoKPM3+LJlyRdS9CJryND99d5n7VeMk5FppEzvefUmJyrbXuuSBMs/uYBCyA4WcCPc9UGZmNOFmdXWU0XzMtdjsJd6T6R81qS1btJRUtJAK4CX8IqrDzao7rjh02ZYggIknCZiKIjRDMmFCk+2N8dr/5svxg8uzr73j2Xd94xsv4+Erdz7yndt+PoaHz15rv/mzn7rz/b8pMZTNNM6Or8fF9ctPff7JH35qvegWt2+cv3K3PV4ctd0KNLz5IIac0robZoNvfXjFhzexfU3vf2t9+x06vIefesdidvPG6RPD+bdW52+cdm3epsF62QzD6sLXS4wrjGtPAzwxWS6AiJW2kAAO4IYoeBQYubOXhB4OZJiXEVBk5ll9ZN1ccggsIIlEEVF4PmtCNDb1hGRuDhvIFRjgCrcyVRaBiGWKPK2KHJI4GpAByQEynXRorG4sYmK2IkYPBgkpWWAEgiZXynkbmfNa/YjiqP3qhZ/8v/zov/dv/9CDX/8Ccz5uT8HWdxvK2lHT96uw3tjZ+Zii3nxifXnvU5/46a9+5fKXv7z6hbMPXublf/Rv//A7T7qvfuGlp6+dLIf7sWm6rntwfsnHN65dv+nZHMoxGLG65pwDxLaqq2F1cfnmozfSsPnUJz75D//ZL37lweqj3/3RH/1Df3B9+XA+O6VomA3D8rILcwWNF+tu1r45LpdxWF88eukbXx23m7OLs1FjaK7deep9i6OTzXoTCBzNLGix47sxplS4y17oV0UyfdeEebjB2av23c7EXal0lr1ZwlybkrlpVsHuM3aLHAUKrWyiQETMQuRupBkmlIthdiRydh9hjAxPHI2QxAciZVeIkcApkuhhC4hbJtp3i1SUuw4lJKrDwR1c9iiDqWJfVmY8eyEdway0TZE5yKE2fczkx5xqQdcYB4LG08QMuJdeUyOipLW8PDleTIVdq3mwTfg2FRR8z/+a7rq5OxsTTSBeLagSJlh177b9rSyo3aMoOf2UR1arVMyYVbbMTl2xdPKB3abeX28coTY6GYPYjdyrkkcxiOwTNbacLMGVHjuJQ3DlMCE+/GX5fj+IGHav2aXFj+XZ9SrKeO9ypxwAQqBJm3Dv7Qsfat/DxJBCLz+oth+Uex87fFc+fPwM3CstryxzdeMyG8UczBj1iZNrNyHbywsKtE5GoT3qmsYTp6HUhDwwMSk8UEFRXUBwuGavIq5SCFNm7labEHYd5UbQMRFJDFGIzM0J6rn0EpKTmo7jyEEK3EtSFCSVCpcetQQyLZESXO9vAhERWNxB1bPu7vSuRx4oYFQNVoSmma/Yz8cGquCquxNzUXcrAYHDza2wMGwKpQqBrqbmqKlzvWQzAsJuHIo5zJwh0lqdLT81M9TGsIk4OWHkTMwsyV0RBzVpPvC15vefna1PT64/8rS8/xDnF3Tr9sWQ3vvczW/9vX/WPPOE0lHePOAwa7xzH5vb1zef+ZSdvcHzO3rjGK+H7cXy+PioO56l+68ZJ9h2zZcufUAAUsaZ9Zf9i6t0do7nXhmfe297686bX/pSN+RHFxdO0gx93iyx2Xi/paLMJQywFSCI2R0uAdJAWpaGOVgI5Lxn5lt2G0kz8uilNgZHHn0rKsvA7Nwxg6Jw03ITo58SrHCLrN+4bclMCnZgmdXV1SQwRzBTSd3qFpQpy2CnDCjtfUmVVipLtNzwIDK6IWe4i7Fzm2wbj4/UWDdf+1t/9g/92A9/fPW1r56chCacZPVh3DQ0k3GZ1g/Mkva4XMt4Qtuzl//qT/3Xf/vnt9/Sd9DpM/n0ne3Df/aDH3quf/jGYn4KWcTARP7Gwwuan57efianvmkaZxk0SSPBybNxSrrM9+6/cnl570tf+Pwnf/UzX/3WG+cqzzz3zF/4yf9rXi07DuYjWpHFSdOGtDnXvI2L2brP/bL/1ud//R//vb9jiuObTzz9XR984slbx6e3+m16dPnoeNYFqrymEv7uHDB2zdSEMkLWfQIIUQY2F2tEDggkkGefeKjV9nPdngVosrca2X/lUfdC1exnN2QiMc7kAZpq/Qtl4ILBzYPpgJA4JpixGDOEheJorC4H5jHXKc51I9fqUjUlNMktlSvwnTazcNGsBLxM8iA2h0LNyQvU4lqbjAzOWqmt7uSei6fdbeid0Z4iRd9R0piLInlxTMXaFHG3mi6AhNkrxfjA4hWOfpmcVHt5UPDA3Ve4T7Jve7fE9a/V4U915YOpSrTzVFpETGoOwyhNQuVCNXjhu1jj3lgNisWtuKFC1CJnJtuLUhz6SABE4lQbVaZRSAeTGKbke5fmXVkwvr+xAJgD7Q3oVSXmSY7t8DPq7GjgsTW6d5zlsssXyHQeuwe5f9l0An7194eLv6wimiDu5DAwl9EPquJ44ujo/msveWg8xqabX5/N5kx5eQbLKkLCwo1NE54jlxVS08By15j3lWyUAIqLAiNDAqm6Z5iRuJmxiLmnlFVduEmu25y2qeeOYSoQBYqubNFoLNdVERCvp+HuBCG/IoBSkmXb+WZ3qg9j2vxeJSuF6GCyduXol3EYZciCA4cdohUIcsD29avDG371eVNBp+sSsfJhwiyBWyVWTVNAWbRaye0AxCP3aQ6Hs2jPp2H7te5Hvz4eH1Ovs6P7Fy/b5RnCjI7vzK+Hh5/96uruxZO/+3vO7q2Pu8UQKG/WhmH27BMPfnW9funF+W94r51f2NHJ5aMH/clRfPI6PTjW7UXTnFoPBbi5nkLDNEA3vl3r8kv0xRdX91/5RnfKvYbFQldbN4MnH8ZIbLGzDAUgAd5ADcIEYW4oRmpm3MwoBOagUIKQuyncsuWEzI4R7oXQwwDMPY3abxJzE1ppA6kRK4LExUzcXOEYleCDIiV2kBtI4Qkm8GSciMQnfgAcZTYJITgAt9KxhwkadZI9cggQbBxHBEEgyY6s1gBMmS/84Wt/+Y//mz/2r3+w/+KXFydzN0+WWfq2z/l8ldQikW7y+dCnLn/pM//yz/y1X/35e0z8UT3adj7m5a8+9dSN7377s2eP7pmPI0V29o2atE/ceqLVwTUru0cJgcUsr1aiulku77/xzTTk/+6/+ttf/NI3cdyOx3MZ+L/6f/y1k26xfnQ2m834+DS5brerBurGgWXI289/60tfe/nlV15/48mPffzG03fm14+abeNO58t1E2TexZyTSExqIQQ1dVDhVaEmTpMPFtrZmkLmoJL41uqBF2ccOSY3RwbeaiHr/tu1Al89DjMepupdmTkUX29uUHIC5xFE2dmE3AMELuweC2+EvcivWxBEAsTgichZ9iaYR3UqGvt1uxYwzVA62ZzAcK1QtE+FXRAIzkpgQpksCnciN2ctXCYukIH5Dv4t0DSsOkbUvHfvgPcdsRNpiMgmVVUAkDLRqQzOJiIIkYHhnnFganajk3YJdu1suUI33n8XTSQhr9NRKwxanhEmstEEBVZfQ9MNm56ZuANG7oWowI6gGpUahTjYEInEiiwlTSrr02lQGWlMu5nevIfvpy+1UrA+uEuHR316B07zkNm3M8WHfKnpN4SDBwEgTEIZjyHvIOYDPODwJMrTqt+7d8Cod9L3pKRvtxUKzmDuXAmKZu6AmbVgHtLFerh289adp57lbDH1WK+Rk3K5X1wTaLewd/Wlc646iqJeXzo7plPfTZb24pNMNWkhH5KN4zhmmPdIveUVksFLC6y5l31+eHsqnmzOtcUNNf/8dhEMT98LiB48S8GOXuIo+Vq9X15EZ6ouSoEMUBLZSjDxWjE62KJEijod27EXEChBADETUEto5gARs0Cq8h0EjjqLbEp5y/cUOKow5OGIOQt6i7/1K/ob42xjbXNxb51WzXh5HhvfHnUn283XfuUL3Xe9f3n/wsB9XigsUPZMcTaTtz/72ic+8T0f+rg383yy4PtvDpsh3D5dPPf29eqiIdjK+rW7z+Kdp5VE84Dlm3F9V3IaHr7mfk9OrmcefLUiom0nXOhhcmQakbbwRAW2JBAFSMvNPMyPaDaTEMHklsvIRk/JMlehwTIpxbIrmWa2TOY+jsobazZoGxfmpnU4hNEEmc3Mr8MdlmHZXMnNVQEjVneGZi9NOCRUpYAmm1L4BMXgs4J5j4vubIuzBFZSMoJligKzo0Vc3f3Kf/YH/1f/7u/++L1f/9LNawuyhPZm0I3paMsctulsvVovrJst9PLip//hz/6Zn/70a/ZutG1LL2KMRtfj2P6OD70TyONqw+Sr9aM372+Zmufe87ytz7epZ4msTQwLTwnDQNt+HPuzR29G8b/2N37qE5/75hNP3kKId1+6+0f/6E/cuXN7de9+20geU9NrbNi1x3bMF2aWfvFzv/TFu9+So+tPfeCDhAbjmM/WSTRKbKS1rGPOTaCUxhijl1FioFrQxP6eGOClZa8Ylyk1AbwEwexcSjtKJgjFtk1NGhVsLLOZ/5W0mMkq7fYsEROiOruBC0iJTIBbYhADpmzsxqzMGmGyhSWy0TRltUY0So4GyRzF+dAC9+ZkxKlwq8sKBIGYykxLSMl2CFAHYCUmVCISiJNPPRjklk2IPYCUiWBlrIPXKLuUcnVqbZk8SZ2zVRGFiWgJ8SqRXNhO9WS1aOkzpgGpTkRCtamCduXMnbrWYwnfZO5IHgdBawpjdOh0ynjj+gJnd6vQdwHPrbAlygvJ4HBxIzeoB6fOsFCL5sEwc7TmUofsTb3Y1ZUS05TxT559knMgGFihXrFOHHrfg+ihxIqTrsnVwGL62H2efUWH6mASxu4Iu8+d5l7tvCa7mwNTVbIQf8rvd+nvzmxX376/9/WHb+OD3d3MWcDETKKeiTmIzKUpjNa3H51iO+p609JInLUNI/GkVMEsECvAjKtaNq3uYmJgEZEC7CwSSw2YmUlETNw9EzspEampppRSn0ZtJaxUN3ncRNC8JfJAbPCshe5P5ar3d5khB9E6qmPW6ce3bncKCO6lUwWO3a1zcjavsqu7WVfs01QNq2I6ha3FxOa6W/qYIi+Z0J4CFXGtphQenZa6PQlXdlUdJTmUMYVENC0D9zKfsrYfGEMwQdNrpaPu9pdnv++1tXz8Of71e9lTY66NNxs67+btC5/+2nLbz48Xl5vhZE4jFkwmwSOO+/WqvXU7feWTm69+Ln7HR2l9NDtajMut3L7WPfHU0LbDw4vYDvC5z2fNc0/I2tImK4uy5X7luuRh7cse+VoMR8StY66zOYyMhLxhjUg9p+SkKslBzGIhmARmzgIiD92MiDxlYpCwNJFStJB86+5cZXuKsLuajcP2/DwzxL1lYm6JmJu2XXCiYErmAmIfxfMaXpjMGZ5rRE+h2sHsxb6Vx1PXCVPpTKuI2G7sGDERKwqrhriJyUc0i+29l3/vb/rIH/13fuTur319BuRB5bjRtCI1DLoeLs7evGiOF5Hwhc/98p/5m//0f/yyofuuJgxjaoZwHaTOOdHwW37T+wK2c8xXYeyocZ3Nrl9vmxDJtDv19TKPgwziKcmQ03J5sboInfzVv/g/fP4rX3nHd8xNxtdefvT7f/x/93t+1+8ezu7N3JFcFk0ezyhn8bw+v+hX42de/+YXHjzwG89ExLxeupNyQJjPPXnO2a1hYXjOCBKzglwL6lPS2QlFKjhwEcJ2ACalpd3VzMkL4arC0gSGOAMWzE14ImfsMby6Hdx3C/7bGKUJOAzGbFra6hVQQiZAUxIKgd0YymxQY3MDUzAxk2iRNFqUFMXaoB0SIseDNiQd1MmcMhUJaSYvi6E4HggMLMV67GBzJs801Z8KCOdUMWInkJW2prr/4Y5IUCtKW0RMtQxHU/JVfbBVfozLFLWQY2euifaz2ycR7AqDYWrcqHnk3sDRYTV07yNAV4DSK89iqhY473JDL6O/qqLBNHK+woBuYKiDTeuFIBu5N4ZoYHcyb5g6oCb/Ro9baZrsdl07NH1tpRrUo6y60gJ2+Kfd49zdn/LXqelID4M5AG9dbCV22WfAPEm4+cS6nk60aIBW/JOKdoTtsqvyuvJfc3fhYGZ68AhrjnhAxa9EOwBEmiwybcUjNKr1Hm9ce3J8/aXTm8+25rZ81BbjL+KwmLJSFCmNQBARFrc8mmUjZwqFGmcTO9/MyFxEhsyDjQjRctJsgVgDm3M/DgA8JVN1o1XSnHUbck/cBpqbZ4KxBEemOhxDSg24LH2eAp8rG1gOYx9Ul1bS8TrI7CA+4jJVKTAzU20GLzVMqzQUIpEQSjdCWSsTllS/gllqNDtZqLIlikIcyJUQEYoMFwHEZOYGkFmJtwkgcy4Tx7w8Z3YJIbPTEkSSO8U683xGZ5dHP/7L4zN3bqzvXSY8nOX5cnyYdejJxu3y0fLXPzF72/P9G2eL43YFiXqW6IkuzDJdxgZ+82bqrt379D++8+HfPGcZjk+Ge2eLfiChrm39+twR5e4gRwvzdkYupzlZn3BrhtNNum9ENI40WhmNy1mZGukaJcTI0DZt5xhUkRhL5IG9R2+Zp1HdTCPGIAyCtDNqxMZMtuYGGo7Q92IOyYZM6mTGg2U61xUiNxZmoGBwMKENJPMglJgU7IhAAEVYJkuORMhANk0ggQSS4MhQL1W+arCIwJG0EESMUCubKPwUIQyCpkme4cKb7dN34l/6k39Isjz54e+htMwvvsY8h6+2NtrFxQOoHDUvf/GT/59f+exPffLBw+F6mJ9kH5LOEJcw5+Y0b+ydz9j3fvRd/djQdVmkNQbEtpl3TXbKSg0PODrpLs+GzRjRrR49Oh+G2KX//Cf/1p//RTz5zL+1WF6er29/7zvsD//+H8PZkmdMQm6jqXPaUEqXfX+e+6+//KVPv/GQ2pbcMo0gaRAiyG0QCsXK5JzZIczquVRauHSF2t5wi4jSgQnjwn0wmKGqlTC7KxAYCjJ1RC6B+IQZFU9uJb4hK9TLQqm8khUwxMyqcBI3gEBd6xyystFLRTnCc+AchMRdGZllUElsLecUR9UhjdYGbSUnTj3HLqI9JFxvMxMnYQkspFpCZGESQNgpuXFtj2Bnd3KGkxEbGe1Jw0zO5JGzlRFGhlQtLRgGtwxwAbrJHVWildxTdQaGbEYOMhdwEcRAXaF78z5JArkrVHMZ/+TuAiJmuFUlvkktz/PkbAi0G3lH4kV0c2cYUasJwsFUJ06NYuoCYjc4mXkuXJfJ20kZtOBVYiUZqxK4TZ7BbN4BLSO6uxlAERScghs5gaRCme7KFIg5VWSeYFZ4HAwpfOAqwOIgh5D3ZcFYbXdxdzgYVJtaYFy7wKx0Oe6udJdNXTm8TG7cRyRht+h3bmPyKI/Pnb3680HR0RlTI3x9GI49FHRw0EFymAHX3CAyN5fb9Y3jkxnoYkzvuX6juKzYtmQ66pCIuKzCfV97qQeZwd3IqFLLiuu1rO4uLGMeADDzMAxmJiJZ0ziOntXMXE3d1JHN0+hbzb17OD6qV0QuUoaKVeZcDTZqEgm6mgEDu9u6K0JbgQycQ41bC5okVTpHsA+FipxVUccqi8XAXC7PJ4TOvQASU/BTykGTnbLD6heDSvuXm5cWuhrBMYtQ5X0x6HBSxhSQJvcMEqeOiSEbwa1MdyFvf1G+j9Nyc7Z96PPTOd7sI2CjD8FPV996MW362ATj7TBGtoYakTBkVWLPpjF0duPO+Wufuf7qC8c3b569eRai2Vbp9tHcfM0085EXg3atg3NEYqKT4zBvUlyFtVov5Cv0KQ9rkMGCD32MMbQdB3FX5mDRID1lVbDlAWn05YWmnGeLbrEwg3EpoxmRczRHJGXOIThXmze4W18X85bYeuNLcFCG8IxDgBDYxBGyJydlqJCPjDyQcqkpETLgXqyOZeJQ1HuqFB5QlBOKXgqcnEs3J0AZJKQI3JFdjjQ7CmF18fJ/8kd+7PY7396f9cxdmId8Y5l8y9p0b6wfmB/L+Df/+//2T/+LV++ObwvNu7TVRt2lsQJgMEjJ0sW/9t0fvHXz9sPXLyhy5OPlmI5vP7FYRLtcNk0zGM/GrXOU9bDRiwePzrpj+vN/5af/b5/IuP2ddx+ucfT+G9vP/bk/9G9KT6tTa8NNx5kkaL/erFVpxb79zK9/7TOPXpod3SRmELEzmRf9NXUPVHqH6tgVd3c1LZzfiR5IB5lBxWmrvBBZbbuZUivDTmlmJ4NMRMxhSl+uUC4KQPaYiav/LNkjKu9K67hiqMGLGyi71d1hmSDkYj6SRTFhTaBWOAvlwG2gNlAbXJhb2aaMUfZfN24H4SiQEA1MgR0EE/NS05ZCvmBnuCiI3EOx7wCgblQyHQU5me6nuXmFWL1gA5MtQmlbqiOMQJBCeyaCkDicWUrUf2jBrmIHxTUf1omrKhtzHS5YJhKVml1JU0uSyTyhdLTnAdWkxQBHmZdWfzPJiAFIBjM1g2LiQZXfc8GpUHC95HBnmGQ0pOIFNBRil3LOXFB+KlXLXbmWJ0c6PX0mm+YJg8Un6nHNg6erxluO6ZdX0PXHXnBlPe8dBA4zsXDF+x58wuN+92o9+TC/Ln/1SbK6LopvV//dp39wDkExNhkjMYXZd7ztnW985YVbT9yJ7pvLS9Lx5PhGDDyMpKbZgMBqWQ1l+m+kmkyXvjaGcCyOTa1A/cyei2pzNXzqNqac+qGMCFezYRyyuSMYaHA1ltmsq5GdF8yjgM1WSFgABEWTdjIWO1yx1KS8IMalgHWVX+MT0jIxmcsbtY7XJRTQ34rbptp676AJZy4TqYmltGTQxB4s/6VJMno6pDISazZQZ3YRE0HCJFEJ2qt2TW9r3ZJRBPXwRaKh4RTVL2c/8kK6Jsjn6xe6o1vJbhA3DU4cIY+bNz73y/BOkTBqynzSNSJs1ltYtBJS46GJ+eYt3OXlZ37l+o/8aHM0z51sVqvu5lHTdTSL1G+VgyzmWVU5sIRw0tow9ELMgT3mRMEuoSMSdAxAsBA4Nh6jCTkxszIcqcZASBv0vafR1TIxzedOjMgF22GiRNEswoGGqJQYKgg6ACkkYOzz5pyFSIhCcAkcQEzctHRUmBpOtc4kToJMbj0cXmp6ZgVEIxK4+M4A1TVTNCl3fAyHJ8DEu4QVNR2yrTav/9aP3fjxH/yQvvrG7LjLd1hfPGvHwUOzeXjvUVqvVl//L/+bn/tLn97q4ju5yzoMTdMMFqGZoa5wcIALNr/n+z/mI4TAEjbLdYwzcV9fPLoxP7akAeKDZWwvbTg/X49N/+f+yt//i/8ixdPvaDZnuH5z/frP/xf/x9/z3Hc8s32DZmisGcYhxHHZm67tPl1u/5t/8Jmv9uG5jz3j/ejgomNccscSHRfdUHJYkVFUA8itAtBAdcDVDWOqytA0T6cydIo4Z9FHpymdZXKHEdV6cOn/n/qLbJJGgT9mEIHK3S3VMwd7KaeWofIOc1IlMwdoVDcrcC+xIZQ54yQdvBcfCA1rIxaDto3F4E0TW+E27L/u4TpG4TkNMYEZxEbCRGWOAEDCRM7O5CallUSNSpm7iDS5o7QPlp1eBBqKcZokG0rN0KdK19SHUnMGBzkz6qxYVT3MiK4a6prq8F4yYH/rdnXNgjFUL1BI7FbH+Xiutn73BfVJ1Y7R6tTrWZu5124GNS7Qv7t7lX4G0Z41ZOQOqMMgLMG8ZerKz6LBOICik5R418FEgtrYwY+xWVGjC7i7UaXjaU2W3N0VV1bL4TE5UZpk/Heq21cu+fD+0nRglw+5B50U7esiv5oS0aHy5PThey/qh04XAMi8bD06yIYPnuv+H5qSRDF1U/qe938wDllTOl7c3l6e5eUqa08yHnVdDpKJ3RyqnlVzdndidpHKB3AIUZ2XfZD4K4OD6KDuLgRy5JzLmtOUc9Y6uFGCGcakGriZz1gke1URPDjxvaQ5Jh9c29lquZSJALViGoiAqaC+O3YhSyVPlRAM8KKTN1UZuFIcCjxSCVHEcGDialH5ut0yKl5XuGpx+K5/u/T5VxycuGTepXfwsQLO4brxIEYmDGRWGM0cK8HNu+F9PW1zpiA3BDp4is7UbUMzV7+fHvWhe3daXwS+Fmd50E3nbR5bCQSFxNC2zeXJcVy8c/XVb/a/fXl0dNJ3TX9x2Z2vhxtHMQrnPMJO5zNebxGCiHATh2RN2+bWKSbEOWbMy0ecLG+3QMwrcQkizF1DgZxIhGwQZnGIJcU4cNpg62Yj4xbNOue5CaZclSgENJm1Ej1pF/Nkz5SAESlRj9C2GI84RhAjCpjYW15AULpE2DnSsJpoGwMV+hAKHJaJShxkVUTQndwKeLePxlHQCs+UQcSbMS7a/nL88HvfM/uu9+iL59Y8yl9/DQ9ejbNn+zfv3t9+/fKb9/7jv/4z//D+rWZxPSbKUO3aYehDO2IMRu4QZvY0vu3J2Yfe8eT6ch2bsHxzuzjq5iHq8vz4ZK7uHCSmlfdDoOH8wfab97/2//rrP/PTL3Td6ftGuzu0N/Prv/7Hfvhj/9aP/Ov9a28O82txuxEd4oYfbc3Hcx8v/tI/f/OvfPG5/+DfUPT3sxGDAxFVfcTJBhV1dnMFMTEZDCRERQuyeIgJO3YUcvjE9CnUGaq1z5L7oDQEFUiquAej/TKm+plX+4TfYoWmXxUFLjg851zLQWZj1pxzIQebBbPaec+mBBcYgK2FSLkFtyKNeIzURWqizBtLgcYouxNYrq0RbCKiUiQLjEgWhAJTiFWUnsnBxEUEU4hL/bkWDneN/U6sRUANtRnYS6NWlc3yyrjcZQh47JJ9Uq+svRv1JbuXAzW1rQqW02uIKqfYTCfjX+08exWguOIRjKoIX2XCKkDuROZb1tImagZTWGmwN4OJFXlCQN1Ma3UvQYUZ7gpziHMAN+wN6RzSMrXqwYKIBVDpDJYyqqqceznHkik9ltIWXwUiUxyk3ABXUtFbU1t33+3cx7SYpl/61abdx5ffPgPmg98CE7J6ELyQuV9dxIcZ9O6m7z6UrhKCD8/+8MI5GyJ6s7c/9ewNj2++/ursaIZxHNbnnJNhXK8vyBKaZmsw9baJzNJIYKZ9xODEXGY8TrJQRCRFYrn28puZqqpqGeCsqmMaNSmYwGzuySmDVNAezTJ5YRyU2WDMZF7TX3Jg0reSiqxMvypXWlxpfTam+yDUyuSsOv/YDXW+NLl74NrezqWjrAaeZJhAB5rmNdQ7v7+NExhdgqcyWaHMeNiT0lHDPKvxkO06hqfE/SCcAuC0FQ+Oka0laAAjQ+dPvUGNMci2gtl2O8bZ2JoMrXbXjlcOHu+lfBounh5CN4thsI1EuEVrUnbn0LYN2ckinD49nr023L3fXbsj3RwXZ/Rw5cdHTZPHfpgdLYwRY8wiHBp1dSIhMQEFpBCkO7J+DJZUM49rJ9cQSCIzcxM8iIiYCEIwFrUEGymtvb/wcWnmlE/JydtWQp2KRpS5CdAyaoMJgtAoNaoBWAM9cvJ+6/HSYkcwaiO4AwUwXFhmLYtncmGBG4iRHcpwJk5F0dCLHGUdGGa7yBvstdcVJT7cYSzLiKD5uE8J1579qb/56z/8zE88/9t+6/X3fCeP64Wcnl++tj6/++pXvvETf/2zn8QH54ueLK1Dh7FtxrOxyVkbqguJODR5e/6x73rnrdPZ+apP4/Y0HpuFB2frmycnTtERchq1X4/J3lxtvvXSr/3MP/oX//DrT/LJ2/LwwOLb7NH6dzx/64//yT/46OtnR29//vrbn06vfgH3LzfAJl369t6f+9uf/wufeO53/9Dta/65N3WMMj8Myb3KMqMElGVxmhtZLaQVNKmg04UIWl0qV7NYNSkYZu5wCVy5/BPAufPaRTuWqKa6ZfLNY7aWrjJDd2ExiB1cBwSU5u4yI6Ow7cDqMC+OGZbVjeEwhaS5GLeEVkJDQyNjF60JOu+0jdw0wI36XQ+X6KK7xBioEY3kDXvDFAQhEEsOTMyQ2hzOJObszGVMcEl3uYLKNF1Itc3MrpPztGkYDOA+aQ/75I6nf9bRLV515Yv3nSYPAoVHcgh7FvszuZ/qyLzQRYmgZBPvB0RXsDgAJbF0L4xOcvfRXF2LjTaQW1H8pv2JEbTIfJcxFMrMbgWGCIE4knTErXgn1lJoGUIqk44mEcQoEASVDl1WiihU9hkqFY2H/YI98KaTvX1LG3mB4ifB553r8V1eBUy9Qm+pdxz8XP4ZcPXwCbrnvVenggJgCqQOve+BY7iS6k0vu/rhB/9uYlyPw8nxjWdPr1+8/KoO/fzasQ1DZA1RsvFqu9Gcpe00hHm3cPUQpIsNTwR6J6h7pWhQ/XQqPG0zHbKl2ps7juM4jpY1jWOpB3MQJ1K30ZFBFgI1LjGqWRCBGoOyOxGHcidsR2U9yP5xpUN3BxmUn3mS52JiIlK9ei+Ya2nZSxIvh31vPoWc9YmYT8+7pL9TeGQF+tjHQzXYu3rPuczLKzQumUhqdPB8D1/PBhYpGAAZk3tYPZQ7F3rddOiCPNTzhp1zdGkjbvP1Hs3btf/7zNAHd6S9NtiKj5vcC7fBEmI7d7Tq3h5dG27eMMt6PrRPd3E+D9Js1qvjyy1FGjfbkxs3Ho2rliPAPdSGLbGn7YjtoHkEh0Y6nyPFtS+XOi4JGkKjUojbM4qhDPLkJpAEIlKCLg2rc9PRlw/cMpvR0Qm6mQch8oJVGIwQQCLCHgNxMA5hZTqSJSPLRqtE0WGSOxIm8fpUhKlp2UwNBPCwscQ+RqLgeYQnRwJptWM+gR4gsNSmAQq1ikBVoYk8JHKmVbSQePUQt/7UX3/4v//sn3j7nJ75nu9/4OuL9frzXzv7T/9p/4J+hzSbDY7BqcXS2jjaaYN+tOQUgASIg4Hlh97zjEIfvHnv+OhkdhyTHD/79HdyQ8Pl3QULGGem20368lc+88qv/fyvvC7j/Jo02+xHXbvtt9/60R/6HbJ5sHjPu9p4hItXLx5dXpPjfPHN8xe/8uf/7jf/2mcRnj3/7jtyHtnDEU3rnKaWFrq6972qKk5YNE9dWl5aTSeKLKjK0RUDN/Wxlhk77BCuxcRyaMn+yng8+G4WTf3a8hW8Q6u+zeG1B1BKRywQQFxyU7Bw8pwtu6khecrGeaBxhA/ZkyGlhrQh7YLNG51FmS9i11AX9cbkgN9YdU30OTxEb4RjsCAUxZlNgkWxQAjiUUiYIhszWBC5KGSXZLP2PBSqGVBbE7HTpoS5ZZ8AgMPjcZavVZdsusPqdom0YRJx1CnKP6T/TgaMp6mIDjgJV8JK+SscV32wWanaFOaOu7GBVN20MJZJFdnMIGamVXiUktbmI6iAghOBYwgdhRnJIshCeMbcikWhCI+sIizEomWKFVMp9BAZuexpxkBt8zECubNAK5GIJzC1ZHGHl0D7qt/j3vQxV1dW0WMLjL7dwnvcAT92fvsvqL/0x9Ph6bc7T7zLhr/dt5ZIAQCSKQzP3HpKz84DZQ90rZ2fPXg58hAlWOBkCBmTeBFJiCE0IuIlRELRbqH9wgIAKHnOWTVZyjlnTeOY+mEY+r7P45hzzm4OL71JpeqjhKTWLRbFkxceclnaCq/h0mRFUH3s5AKnUnwJfwqAZHCv0uQ2QTdEpLvbQhPgX5jmh3fpMIKpNxC71lxUYb1a1SoneVibPxDF3L9//4bdL5iCT3MufSq3TW9oCEIIoN4lWEphfvOV/HzPo4goSdMehXzBoIRmFu3y6Fiuvxf3erXP4WEM8xP3W0aJc1D3HMnaoyJC0jULevJmH2fcLkCZO2naRb9Z5stL5xikCbM55TEnRIJpwrp3z3mzkayO0C1m0nU8b20TkYy2l669pQ33wUU8shGkaaw4UqGMGdMNYmR331xCe92cmY/Bs+MGzTuIEJGJlJ4Kj65JoAkiHAMYvlnTlkiTj1m3aw5N4JA3I0Xn+i6hOldcII2HgCG6rH1owD1ZBhLptniPUskrNX2wAFOzuSvVVE4Bd42RyMXSdstziifp57anL3zho9/lL578wqflqH9jvPYLbzw5XDsxyRgiyEAY7AZoCR9tjOyjNQYt8+98If6BZ595tFqNY3/z2rvjrRtdezN520T3NTznzXrt2b/5rS+88Es/9fXlk19++F50lNdLzG/buJ7prdVXXz//xOf8O53f+Q7+wiunszTEzbe+8cU/+8+P/1b/Edz8+vPz/uT2eHGWuwAPZYjPlUUZ/KBwNYXmuRS/ctk/xdVWljIRCRU2BJNZ6bxhJgVYvQh0kINpFxhXjSBwHT1rtHPkoIInla13dXPwNJankh2dsrkVjUsWCa1LywhqHoU8uVPOyGY5pWaTeNvzZjX2mzEPgswNh1n0kyYsGj6Z5Vnjs4ZuvKd+15tvxraxINo2aCNFoRisCZAgErwlFkaIFoUDU8MUggUCcw5Fq3ci2ZCUOhaX7kMiJzeveNwUb9ScrPzP3N2Ufc9qcp8GF1nGwSsBcCG47rLfQ9eys7PFzBfZ68mqTyTcA09ETjZBql51LElRxHDY3VUL381NoYpspA71qvat7tngJupWxKKcJMSm7VqxhYS5+nEMM9HWOboH9kDUKImTMDGI68CCqcSEQsiYSnjVWfkua9pD6ERkdOWfhMe97MF9PgCM95ZWgCs++LAneGdvA8yJ94BB+YPhAN7AlWypaEfWskHlH8pbP3e6GD486d0pAhjZZnHRKdvy/HJ7fuNtz4znG9Mhk5kahM0lGwKxcGCJTeykyA1adncXJmEj3oV2ABw2pjSOfUpJjE11uVxutivXPI7j2PclGw4hMJO6DWojoBycZD6fF42lcr4iAoaZudWwqZx6ud0Mqk6LCaA9A9zrXyuqXGW5YOYiNQnehVfuJQ8+iHIOSsXYk/Dr8KcCvI9lmhcxoFPzenn7FYn53UOnaV5p+fxSBWcq+m3T9x6cgDs5BiJ3i8bEpJG/70H/AZNznt/RFGd5tXRls2NKyrk7ovN2Lnwd/gUeh80rN6T5OPwJsSWipn62ljRfIDYU1wHHx9yc0vVrGAdvfL64ZoPZOPRn+cZTNwZo28y223XrxKpy0Q+bVZCMpm3m7fHx8SYaeQyaaTbqaJ563a6MGoptGlojDhKZhckZYGbq5kLM6snhmzOkreuoBI4RTSRhAquDwWHS1zZntA3n1o/mtFz5RWvbpefB05i2G+KYEbgFt4RALCVFEw6RFy0kKLMTO0RJYCN5JMA9QzO5EJGBQFL7PR1GCiNHqrwAMsBT3pIw2uA6DMQcty9u2hfpo6wB62hgvC21l0vPi3G2DePGc1QMMAG7Clw70MgsllXJb988+cj7P5Bw8eStm3lMyzg7OZm1Y06vv6KrhzI/SaYvfu1rf/m//kdf2XzPVy/bbTyVvGqaJ7dbsPC2nf29z776sZtv3Prmr23vfOfpe5+eu37qH3/5P/sZ+ez7fuB6fvjg5Tee/+CbTEYhdoH7SfBW65iyiWb8GPvJK7/WtBRfavqLPWaju7Z+K9EKiKuCOxUJPZ3oJnWbMKOM7CvGCZDSDMBMV6lDOHgLuWetYk/sAiYuI7MkcphxmGeTlM2TZU9kEZadx0ycYGPGejzdjHG7DZoi6bZBP5c0C5jHsJj5UccfnL7rtQdtGzM3aCO1QZuAWSNd8Bg9BJpxEkGILIEKLt0wCWtoRdgjWWBnckGZ2OsBGQBzkXw0d8WBXJR7bbvY5yaF3b3TnXAyK3q9tZBZ0l+gzJHbJ9GYvHqVmy76BHCi2jp0YH92AkFe3bm5Tk7HDEUop/DMs2Z3UrjmMk5SSzFYs5cMOFuRzeVs2QyFBc5CTcdGMaCJ3hhaJw4satwQa5nb7GKGWMZq7UX96dCflrXhIGOlwxRot0pLAViuUI8PV/AORHws56wOtC62K9nqt1XLClRgnwqfolDRSvlket1Ek9hpO5gx8zRAkbJnoA4DOPhoqiXFg+Wu8EBi2SOxafZ5wND320vu5rP2xqPtN2Nj25RnTUzIJONWu1Vvzxy3s3isnos2MwxDTswxSkxDMvVeR2dtKKYxr3Pvmixtx56W43bMQ8rD+uxhBCe1zDT2q3h8yo1sNkOGZJZVHq/dOUkBbAjmTgQROFghJAYFHWzaKeQp992tPuUyO0QdQK4P2dncHFMwri5UeDcFhSltaFOr+FXKe1nAB4+uTiExL+VHlCFTBc50VyII2KbYqbyn3HGbFkFNLETc3TzXIYOH+Hnt4GPnwZSjiKWNNTc/e+tH7375nhzHRrOGDJEuNzpsx7bN1Mzb+fzWezevPAt8jony+NP+6rXZMx9WOqK0Ae5vZyB/asaxmc9HDddOPRwttusNZl3/rKelHQ+Nbjdb1U7mDTsRb/pNvlzK0Cd2Oz5ezLo2xIEgTWDLKY6J1iSnsC1s5ds8knETZdZm72felno9BzZ29+iLa04Nae/9ecSg52kcCVvQ6XF7bWaBhCLQqqmLkhyJB/A2J0h3lGen9vABlo8CMhy538TYqBngghbwQhZzCY4sYUZExsGZwewaVRUUYAk8FhmWfYpSBZ4IYLKGkGFmWYnHSZ+HQUy0cRGhEWHFMRBHI/aetO0cStZlBmJiN2R1VzcFEbQ1yi3JkF77X//ARzdnX3755UeE4Yk4b3/1c5dPL+589D1heaHNE+Oalq9//o/+tb/3sy+/G02U0AgZYTHmkeGjR0H4ufOj+M9e+fH3vHj9lZfaL9361Ovzv/rFG/duf/gkPZJ5sKP57aeeRT6DtmOT3FgdTFyyYHLSgrAwldiUrVZTQ+08xa4joNCdhBiGnBMzh0LHm4AiEAr3Us3UUV1yIbOg1oYFE6vZXQHxOjyuZjBX4SVzcmcCGQnAJhQouDcusxAXIXZEMSsx+QgXHZmyY8yQxJLFUswqTLHloCl7cqwVFznwQA0NsxUt4j7peeG1eNS2ofNF9LYZY6NN563YIqAjC10rwdoGkVMQaxsLQYN47LsYLLIKkgixGJMRp1DGRcCcvLiekgqw5x2mVVLMmhKUGehmBYwo3q7kz+rmu9U5gTXVhVwVPzYDTxam5CU1SXB26K4GWt355H2KAKuC1OBOpp4z3JHNs5Mpm8HUsyOr+2ju5CZJXY2yccrO3PSWSaSZdU04SuNxi6OW5g0H5yPnNnKbqYU1USSAIzd1Hp27c+kA5MP0j4iMYQpngnlwKpNnRYTc1J2ZA3EypyDkatltajzxCX59LP2tplvLnHg2Mye+qn96mI5WDxJQRmns24Z25vrxiLUmUnU8he86UGXKgA987f5Hs6kjAGgkbrfbJkQjSxqfaTvaboa4eOd73r19cC/YZpCZ5fWoYxNknRoetYtr755NioY9OOUxmWmM0YjSMFrhHbsL2nEYhnGTfOy3Y1C67M+2675fb+69/tp81rCjaZp+uYlNa2bDtp/PF8vtCICDtPOZ1tv6eB75GBGu+ta3YBHlgpm8jKeevCkX5MLgh/zyqzH4YcT0+Pfu33LQcXT4g3tVFVZ3KvDmwVe4MF09890HHvZtA0W+wwFEpOSS29CoHJm9dvIjL6zbJmu/0VmHwBFQxJCG3nwkart4Ep++hS99tNv804GOETa+/Afb+7fC089IPrWLfj7fgC/t2vXccpst3LxheVjZap7ReqCnrvFLF+PFhlZDWCxiE6lrcr/J5DxvFu2RLTobR4lt8rFpm+16cCA0rXJXuxmNvR9wuQSFgIV1kbkoTRKDvInNrCWCjncUQccL0x79mxCF3IaE0C64E29UA5G0IQqBzVsRMjMhIU+Jk28uYCNp0oEROw7kQZgDaieJOwVQcC1AGZiD5oSUS0UNlTJTwltjkEHJy1+8yiZCQNHNJ7OnDgEUSibZVcFMMGcqXCJGIFFzhge3SJKhkbjSZ8ACA1x+4wc/1LQn73rnTeL8pU999hrl4fVT+QV95v0fGM4fpgcv/cf/+U//7EvPticnDuRif9mlOjYGZZ7hZy+v/9Inb0gTia+v+JreuhbJ+pxuH9+4/uSN49kbKVHbSD9smqYrudPO1cluUogfZAlUpfl91wxalqK5UhWiAaBafCeDeRKocWY2AIEFrIWMRFW2DwWV2s3+3BWBgKq+flDGm7ZJVQwt5yjSOrcSOokdS1OYJsX1OEupHpCAxEgCh9h0c7chJxuzuWVTUXNx31JcG5Z5v68//0ZcBLkWh0XEvJGuk3ZO0lrbaBP5dLmV4F3LMYQYrGsohBgCZgFREBiBw84Bs3BgFSLi0gMCoqLNCOFgtbpUIOZitq3cOjP3qr1fOTMwd6KpLru3bD7pDrl7BXInfAwHmZ36TkLxwOk6737WXIYccHZTYzcyQ84OZzXKDjXWbGZkymP2lFF/TpqNzHnMRfNsTrGJftTRsdqx2sJp7j43FhYJHkGRqSEEouBOLKFUc6WKFL+F7OK+86Y04TSPOelyFK2RXbWCJqhy5wh2n+zu4GncEx8WLx+3wOWhuHvw+vWVXls+unT4vNXNAKUo72+VPt79GQc86seOlFLXdSmNWa1prz9z8uTDl157/kMf7YelDUtCJooxtsaj9kl8PsR0fLIIWSAaCTEAHMxJ4b2mpGrmamPOOmIc++2Qtwm2XK7H7bj1y6j8q7/4L4c8fseHPoASaGTlLjZx1o+DjgnAkIcn3vYMN62m4TBcORAC3ZHOgR1D5LBkW38C1ZYkVEpnQX1LZaoQPg/EPqf17IeP8PCTryyXnS7d/nclUDh021559lVnvTQM0H5TeXl2jwcTjz0jI48egaC8EX7qfvODD8+zStbRTRNJJA4jPOmAPHCMzJjfOR6/46Pp0z/A/quKG4Eu9Pyf5viDuG20Wdib5ynMox23TZD5sxbG87N7bWTLGq4t7qT8jUffkHZmmzyu+3B61B3NR8upbbogTG5M3DTJvVscO1NsWxwtMAy+uOaps2GNMVEadXkGIDAyWJpIQcrMSRGWroGwyJ2eA12K2EPTjW+SZ7XkuHbdLDJaao4CdcyKMLJH7odEoE6ET0DaI/n6AimTjxRm5OpQsTnQEVP1r0LcCLgTEQsND4loJCay0XS0nBzqluG1xuYEkEGLPpyAIwzMMMuF/lLK/o46mbqkJ24EZlRV2UAkVpw3xMv0ODeHwdQMT54evfvpm5frzXZ5RsEWN6+/9Ou/zMPlm7L4/Cf//lFLP/lLl3/n1efa26IDW6VGBWJozSGJOfLQW1is24WAvDn12bz1SzWJbVyndNIMN677aELaN11bFMKmrXEFc5ukAorznWL6ouRXBTdwuP5VderJFQ4AkTOYqhoiptKJ77bVwXu5zu6j/fRfqoLxh7vG3YmYScyYiQFiaTjMuOmYIxFrJvcMwMEggVCZfUdsxJElhsipAY3KjcKyq6px4TCZ29b2vSivr5qG6aXoc/bj4IvgRw210RbRu4YedogB846a4F20rvUYLAZvj8ZIaIQa4SYwkwZGEBArofzszGAou5G5BxCxu1FRIyGjicJZTsWtaLDVokfBDbSCxg5UknV2P7AvVoSAUKtwoGkeUnkVlR6eOj+o+P4i0OAl61V3dTJ1gJNClTVDzdVY1VTNlDUjKackqkhK4wA1ZHDK7sYUQ2yalmaJu+RtokYlqMRFbkZpWAOJBA+OAA+EQBCqBO3qRqnMcdrNdfUySUKItLjXx/wuEe24DJMnRun54qnseMjMndxELQTsLPyhdT1c3iVk2c1O2r+CDl76mEt4HMMpKIUd4sxXsdPHUHDzcRzdLYZwcnq8Wuf3Pf8htnH74C6bUdvaZoWEhK1xx7TJbdvz8cLMKW8vVto0TdNAeMzJGSIyjltVT2Pfp/UwDOvtMOY0jv1qvRxSvvfSK48enX3Xh79rtVnOj0+SoVtc6+bzcRzdfdScnaSNs5OjVRpQA496y+oIhEkUdLoh9WLMlHlqhppCxvKucosKQLGDmisGd3BLaSeZeZUe9ZZHxbD9LX2LvxSUbTZV3IuGF4rkf9GKPYjUfGo5ACCB37o4iChTbCxCNcvqzfZ3vpbaaJfDLOj50sZtaFtmGsdRLYlnUt3SatZhfO97Ht79PeGeI79q3RH6nh59EuE6X4/b87vaLNrmaPbEE3Yct3fvU855GOXa0Wm3+Ma3vvDsB9//youv8irrkaZZpiDzk1MjkKnmMToLoR9Wseu2Y88hGrPHKCfXNI9YiWIlaUuq1l+kdeQYGUQstVmNCRTKSMWQT92NA3v/0HXE9lE2BY2cTsVdNFBizmqS1Smv19ncnHhSekZS5IFyspCSmWT1zjwr+5xiZIwEUSYK7OAAcTf2JiF7ZneiINAMEbdcZmBWK0aTzDw52KbpNeVplTGURk7qCpca+vpOCQ/MkQxO6tSA1ElRBM4aysPmnU9dO475cr3tYu7zABnad918+JXLe49euPbM237u1+3vv/JkuHVjWJ+BFWV8MkpnqQJMIkZufBQEWR8ZNaDQIOSxdc45DUNOH3jCQ8zDFhxE1fcIUm0s2hm1qlG+3zBX2T3THqoOoGwVhbp7KNFlEKA0WInVNmMih8PAZWQIAUR1O8gkeDLVdKp0HF1lS3CpqRKRgYNECg0HIQjAZlD1iZFbtpXXzcwiIiHEUVxEOAiHwBJJWjYCLFb/tQ9BlMLonkYaYCvKQdAKGtJFsHmkGbUh+qLzrvWu0XlrbWMxYHEpTaQ2WhO8iSScg1gIFmNgGJNFQdHoDSDe6cl64YeSFHFEY66IMxV36F57XuvY9+J5yx2r0lpGh+Q1kmna0UHQX3Q/qvljL5IaVlRYKj2WMu35zErupMY5a+9B3bOxZs/ZNVNWTokw2piRMg05JKeUMSYYmFrq2jhzGT1kiLFQFFZEDaRBLAQNLkISiWRiWhF57eIqtoC5jKeoaXrtgziwftXvUmFwVR9c0minK950T+WphaQSlEw48eRHH7Oxh+lW+a6w8wc4yJYP/e7jm2Q66OBl3z5Xrg9mf4hITmPbtv12Q/Dn3v5OX24f3Xuly30GlbrA6E4X2zxL685P21u3Z9fyuBzQH7loHhO5O2fNWT27rbdrQDabzbZfbsfN5cWq7/tRx/Vmef+15de+/IX3vu9dF8vzsGhCCETd0elttnHICiJumu1mfevOc4PuW8gLaXB/Qw7uwu5Hn1CX+s8K9jyevL7lBlLVJfdact99KQ4Q/qtvEPKi87N7Sm/lu5P74dftwqcS6NUMfvd1B+d5NUbbkwKCsZtpQ6dvht94pr0EatJinR6M/bJpFw03eUgFZVJVkxBZuuNrx9/z4e1nb8j9T2l6HTLQ+C288Xfdf2e+fh0PXl5CMFcbH6X1RodBOb93sXjxFz519J3PizXHq/X61ctmyDSaMTdNq4SkqW07HVPfb7qj40GTmRXgQ2adMyNEVYVm+EiePI/aL30dyEEiTG0dpEkAM5ClifnoyNiMnMaVD1ukc31EnGdg03xBsgGQ0zBu1PxCVT0rOyRtpV8ireCjMVFOULNsSOqWxT10cypqgkWfl4DA7JGIzDqjgQEvEXhxHV4MQyE76tRpw0Sh9EUQHMhV8szLbMtcZX3K5pdQOjsoi4uTmpOCG7KiySsknE3f88ztW9dPzu/f346Xw7Bd99sW8c773htPf9PlOv/M//CpfPIspQR0DCIqLFm4JQAgYWZCzL7NyeGMWQOwK3K3ETRQIxve/5Rlz2xGoYGmqhfh396GlMMm4uluF5V9AaJJ1ngyVQ53MygzuzBPPN6SwJEXKJ7AnG1PLypD2mjaVqjin2WZXxEWmvZUad2Wesm7LWls7m5iBb1Vc53GpYCCcBBuoliWJsQUkogws5PAWCuiuP8up0ZhMXeGNEL7jBUTPAdJXXCFNYKjNY7Ej4ROIs2CdBGLJrYNda3HJnOjoUETKYTcBWGywDkIRIiYhC2wBU9lEgGX7qDJ4pdmbJoQsoKkuHvh7kw3al/XLAFsMT7l/IUCEVVdsv1NLOIk1S2biXmFoxXsRlnJHWbISqakLmaek2gOWT0bZ0VKnrKPibOyZR1S7hMG4+S8Hb3PLhylny3m7ZG1ySKkJQlNkByaHCgqA0IsEN49PmYuJPrdM7hilp3LCiEqhUJnJwFlIjnwxQXEDsS5jO0rHOQJrN4t0V1TzIELeKv9x+F92734QIrywArjYO2+9SOK13d76x/33/Ftv37MaTZb5DGxh/e87Z2s/er8Luug42CagmjvGDfr9Xazfe21syH80O/7/lU+H/N6vtqem4ZuRjGErgPzdug3aZtVx3HcrtbjOF4sL9abi+1mdfe1+/ffPHvw+vn1J07GPFw7vv7E7dv9NlNHSqDAylDiBxfnT7zt7c3J8WpYBxHft06XDtHqq2SqE9jVe3d4mc7wSTJm549xhfB8VZPMUTXQr8YuRMSFOwA3y1Q/v1hvoLA6eV9lqe9ie+zRYh/lyV6KaP9XHPyzWiafID1n99EQ1OQ7HtCzAI92FN1F4jisoRvNlobRK6E6xdD2PLTz5vj28/58GLvo56/w2S9nuuv58/zgNMbfZi79xev64jnJjGfddkzPv/tdb37is83pcXd6PZ+tT564tn00DutNnDftfJbUwRRjI0T9dqAYpGvSeiRzy04hEpEYQmwCaCwIga+QHZuNeVAlogBnClVErAh6eBuJYkYHHIGInCyPnB7qMigyH8+UddtvbXnftyvKD0Am6mWGocFQhlBqC22gI/IIHUy3ngaMvXTH1EQIQaQU/J1cwTwjSuRCloU1a+5RfIpPew5Ty2R5EkJwgjkswscij0UAKJOTeyCyuoCKkChNbyy6SCBCcCQfAdCH3/HOcWvBEKXjQGgo+NGGV9I/+NJnXzr30xmdD/3gs1Pk7BP7q2xj1Nk7EZ65YXIguTl5iKVTNHA3w+X1+SXAQTypRwmeC/ZPO1m9Kkq+76moQeJEcva90Z+oDkSkqjV1AeCuqpzJxYtAbOUKubOXkT/VtrJ7hrPXMnmeNgW/VRmirH9IAUlIRDhKaPY49oQ7FYfvrlPDowJ1Tp8Qh8AxBJGKtzAFiBHMKAM4nEdICCBPncKIygAUZ3NPZqomFtKoPdkjIAp3gWLwGHAduWtp3lobZNbwvONZpDaIsAZBI9wEl+DMFBhCxqEjN2IVKnLk1RApr7iWZquQrZeuaM0+ldj25XIHuTHz4RwFrmI+fBC0lwoX3F29dIux2k6jEe4+eOFYIWuRf6ZknBNo66MhKyXFmNAnHxQp6xbtduBtxmg0GFJGUo5htrDGpBNumhAsBVcxDW5CECKpvaoVnKiHTAvoMM857NkRkMEZpJNhZNA0frEewqzMgVipDERmr01COpW96/6cPMLVCPItADOAqshkjit9wD7xdQ4qhW/NuqY0cI+9Hn7NY+7E/YoWnLuP42gjnn/3B57urj184aucVqzJXNOwyewwZ3Zcbj/5//3U7/0//J/4OPpLjyRnb2W42GQGo80CB6+2q34cRk/b7SZvhtVqdXZ+tt2sHt27/+ILry63du2J+NSzt5565vZ80W3X6zRq03TL8zfAkuEv3r37tuffu7h5Yz30IuKad4oWVHgZB8l9fTYHkc7hBZYfysAuM0WNy+nwBThgzR2yusgPIJEiIL6HFneTImm3XA42yWG2zVUCdApHUZE4xiRVvzuTt4Zg9ff7p8TkOZCe0zvucys69u4m3MRF36+3m3OmzrM6U85jiEHTSr3RGNA96m4t0vZpX74BfI750vQZG3+VHzD5Dzifp82W2hazcP2ZJ/PLr5wvL2/+hu/S+2fUBDmez+6crF55Y1iu5WTuEiQEAJpz6JpZt0jjJoj0KbMDzNkQZjOa+DiZ2Jyw3fg4MjagaLEj5tAECCMwUyBxlsCYBYU7Vf2dsZe0zukeVlvGEx4bHdbIPbAiG9gS0DtSFblngQM2wBtYD+3Ntp7nnjbIJ5pz6GbUtohNkXk2uDMpuXEd4QYKQDv1PtTR1TUNnhJHYnYrg9ecYWYJZI5UZuPAlUxtN4ediHaD0KkyicqIeuiwCPTR97/77Ow8akIIUUCNraP5mpqjJ/75Sy84z4xhjHYYhtJxIQzUAUEAmVPUFPkkKalvEQCB8TZqsKDDNnzXkziZmysQpVFJmqhgfpM2ZHW67kUhfZc9QBi7YXNEICojNUtLdN10tcro7g4tfaFOka7IFRWzv/cJdWQ9nECl6FldIMP9Kif1wFIJExNHkejObmRcHRWcHKZAoRNPCHauSmNS5N+pYuBTDO1VH7d2iExf40QELVPIzL3ueAeyGzGrIik7iDNWCUTGgvvsbY9OrGXMAi0CFoFnAV2kGKiL1ogKexBvRYKA2sykzCZkwlZltIDWmkqC25PVHEBved+fA9kpC3GtmFbfDGeeXJdNfr3g0Wbk7gYpztiU3WmSmTTLbApVy0pZORtlRU7Uq4wZvVJW7rMPKoMhOZZJsvGQMaiWniW4RA4wmUF80skQAYtJ8DC1EBKVIIiZhEmYfFf3PchNH1sAtfTLqLDz7ijaAKxT7fCqtaxeXUodXXYRzK4rGv8KBwxgV4ssrwnOzo+dllexscM3HyTK7G7/Sg7WW2DuQ3pv7Nrtcrh5+sS73vHuR199CeMI7cd+5e7KlIbRhlHvvvHFT/7aj/zh/+h9H/vo+SvfbC1st+t+08/a+ZizAbDcpzGlNOiw3Kyzqvab80f3l+vN8mz5rW+83q/tbc89desds+unp3B9+PBhKbVuX3+5a9ueuvPl6m3Pv+/2s89epIwQTYc2hDE/Jh5WwZudAyMiVI1SEJXiU7EUAi6pR4U+gGka+EEQM939Cf+xGofKLkaecui6NKYmyIIL8S7khB/c4UpewS7Mc68JuHPt8vD9s7i6DnaR4BXN0mCSo7XsW5tv/n+M/dnTLVtyH4b9MnOtqj18w5nvuXP3vY0eiQabIFogAIKAQUK05inEsEN2yHq2HvzgP8ARfvWz3xx+sR22/GApJEfIYdmSRUsiQQIkKDR6Hm7f4czftIeqWisz/bBW1a79ndMMV8Q9d397165dtYYcfpn5S2fka+dIbECz379oGyEMZdnC1T0btUuJKQVZ3OF7y/D5y/75f5N5L/p15uj0adr+eRO+TPy2r3rtmnBFJ/dOf/gnf37vD/7m5fOLNnm7Osu9rh/dketdt+u3V9uTh/diCCl1QXi1XJqlYRgwJM/KIHWPzcJLJ85SvgsyM1JDzkhD7jqOnYsQnCIBETFkHxyBKRI7BdeQyDW7ZntI9JLSK7shXt+LzRnkRNM9LC2nK6RXyNewjqCkDleTUiStsOyePQ/wrAIxcs2We8TogSHFJzELkQt8QuaWYeYaACMOqMT6QlRVKoydMqC1Np+EKI9+mMEVrubqlkFS+geDmZzAXCrhanoSBR8u3nvn3sfvPfjhD39+kjfZW+3yYuGNhnhn+clPn/7wJ0HOU59OGU0SK1KoRDpskiTsqVHQLviSPWRkImo8qivDyZuP7i9CdEtIjpZgHB1ag601gkMjHF2IIEplJpgJbjbJx1Gm1fMJMrKtsxc23Or2miox1ANN1M8TgS+P7sLRSq8UUaVGwY9KQWbGdGFNN4DYnaAwmDtNJAPm7sSleVPRviVUbajZNGamVgINcIf7EjZrxQq4iDF4gBMrZWMjh7gEuLgluCMQG1kdHFd11T2vO+gNMpM1TAHUChbRF2SLKAtJka1hboO3AUGwCDEICStxkoAm1JTkSLX7NJUQG7u7q+eA1S0ZNYq4irpV0o8qEn3quOdAKeStj+9wp5JLVRSwqqp67ygkG0kpJcrGyZATdkZD8kFDp9QrevcBnB3J1EAGShkGFRJmgfNAwahxaYhLZdp4QATSSNOEGGMModDhHR3j05X6nfmnJF7TZKb8g7oqqmo+6hc3P153Ncf0jOnP1yiVJl62mWcbpiIip+Jbl8rESqU+1yJFQ1jNaK8sE6oqIreoDQ8GKeAzPtHcD3HRfutrX3/5y89PbO/by5Q2zGyekXsZbPvFJ//sB8/+9f/wf/net7725JNfsrli29kGKe2G1N5d7i37lvphs9fcJOp3281ut9/v95th83Tz9KefL5y/9M331/eW905WqtJnaEcBvEt7SNhcvLqI67/+O7999/Hjm9QRMrlzCCXTHTMHdDwMNUYCAKXZmbubGjPDXCgAKBXpcDDCSF9eWdmmbKwxJjutciZhEEFHxX+8bqq7XBcEY2qpVetUstVSSyr+AQuPZDTiDDeq1S8sozvuB2ouQKimOLqXtocGdiLioZN1k9Su5X5OaNJ55mtow61EhOFqI7FLEKJ2sVh4StBNH5cIQxPkXl5c/sU/ac4eD/2/w/3PjG6gL13aof9FvAb8se538e13Xv33fxFPoVu2xQa8GvaXoX3Uao+371/98gve7HLbyunSyCxINriCJSbq0bK5szcAYEJQ48wNg1dOlrKyB9pvyNR2V8Y5YyHUxhg9Z5EId/XkrGB4iJ5aZrKYPK/J96SvbAuihd1Z0elyuV2nYav7nQ47pEtPzzxdIimRuSbGABKzDjQgdbjZadtDzyTf8ZY8MAWioMxMRc0ESapSEK52hbTwYQMQIaI2kM8AKv0KBRJycpg4BJ7gCdQABu9hJXukLb1FqcgNh5f8J2aAA2Gw/t/4w7/D+Xr/YtecLNz6VZRt9lNd7M/lz3/85y/Ri9zFoBwtl/5DxsSlf97YHRWBTQyeMbA0ggYWEhuoYQTE7cm64dTvqWXsVWG8YFjt78Jc+l2WSJsxsZeeeVZyBIunq1LShdjcZeTBOehjIi8F7lIYToqGJrMR6C5lXkZGZAQ1JQ5wmJdGw2Q2J/tlmindMlxEgUbWP5KyFzKByZGVgBCIhjwEkeQYciKSAHNmZerNmUK2fdKknouBRUQu7p4JxDMFTM7IyixGJohEymRllNVLwjsTMSSYu7lBhMiDmYEThCn25uQgZUke0QXhyE1D0sBaskAaJa5pEKE2Qlgiq7A1wUN0tpKV6LULJhERA2FiwaPJfivCp3SDkCJ/vFDZu3uuxB1cesUXbkmzQpcLzWbO6uRGyVjNckZSJKXOuEfojXu1QTXRMmcbsqnBSncjc4MbtWqZiEpSgxNHCBE33ESCwGXBEjlSWMYmhAB2CQxXQVMWT2CJhVC7ZsxxDVhUhu2R66LUi6I2DA4GE0swdgpOAZQczCzC4iIibFqIC0uTpBlEmufKGCTqRo6RhWmupwsDlxV1WVK0w/GXC0lXWfdHvBD1Y2DuYs+07JE5MF/icbbar272f/Tbv7Xs7OXV5Una52bIPYX+Rillay4vX/7o01f/5r//P7n//nsXT56eEm42u6wJsUFstNfddd/nobPMhv1m82q/e7677l/d7Ha7m5cvthdXyxb3Ht278+ikOT9BXJvbQn3RxMvNdRNXXzx7kc/Xf/Av/w9Ds9gMXaF99qykKkYeZI4MoFoSt4ljj9zcudk4joZM1Guz1GXmGjm4dRDglU7jzZCCU+lgCcyQn7J5eGIYp7GN3u3YA9WQxFTbPZuY6W6qcTgmL0BW6FMTH216SrE3yeIS2PexjYvl5tkTXobF+o449dt9WDRMLQ0XHM/CozvP/8v/rP3gS3Lvr+NP//Fgr8Ad2zvQk0hJt7803dPqhLt49dmPF+98K1++XJycb5cXYXHnfnezWUg4Wdx9eO/y2WXa7odhWJ6eqDsHFxHE1jQBgFsRBALSnJwdJhwaAjjnXJiShozdTtQpuyuZ985EMQAgK6UHYiF4CADYl7lYwXnn6RVuBpL3Fou3452AvGp8TYPvr85tf4a8sX5HeuF5S9q5ZSCXHjqgYHhuPphl+Dnigr2BxUJIWojMPDKpeyiqhhAXBDPLsAwtNTjzjEUibkAKFrIAalHDqIXOvrZxKDgpkwi3AKkr1EoEL6L5g3/hqy8uX3z117716PFbX3zxk92Tn5ytz5W2i0T/1Z92aD5UBXFnTLCAyhZpPqo+lEaqwEgJQiBxImEmESUzCtdOTgsyQCJxIzWaRj6CQJiKgMuKHOMvRCAOzlT6HE0ZMRhxpwMCROIEZxrXMtVk55r9U6hs5gkQtzfsfJPekk6u5jwFrc3VnJUoTDPhtbGeVzUzbnWymuul6jnnnErfJFNVrnuwwJLzQiwHMPXfLbFn1O3pVPouFtzbSjVnyeZABQLcx+7gZoSdLzgbk4lncWOyWMmzEdgb9gYciFpCjBaIoqTAJMQMhzmxFba4Bkoz9HXE44jRFot8KrJwJ3IMFIqDW/g+zCvU3MNK4wQ1V5esnh1qtHdRdzUelAZ4BmUTg7Ald9eCSRAcnMncIW7mzod5InKIyCLEJrRt07ShDSHEGKOEyDIdB5f4MO+HIqRpJZRG9bM3jzSlgJRZRNh1XCd1ZKTSIBd+6Nc5oqcldQDo37Qgb2OirzVjAJjh8LkwwLj5fWQ0nP/2LTV8rLOPOgN/9zvfPaelXl0sNe265zAa9pfJk7vvbzZfPL3843/vf/borXcuXr08jc328tWylWEHJ1J3azlfpd6HlDY3u4ycXr58cbUZ0hdPX764itI+OH3r9KxZ3Fku752fPnwg8dz6fb+/2e12DPni1eXinfe++8d/lMk3qc+mIYbCrxNCYAqdpjIyJfo1z198464+MlxuT8ZUSjJ70xk4aOWSFXK48miEYhZ1rgNYPrJb90MjSA5UP7uG21BISMfgcaVBnXWVnMTQ9Ai1mbYDQA49G0vuXVg1IWRhuDaQNjRLI0I3QDoVcg6uBu9S5HXg4YvPEeXxd3/38+8/1Q9+DT+/xh7eLGGcwh02os1z718M+z3657LZb1/8JPVfXtw5C5yvaeNxxeC4apenK8veSNPvhsbYYiq9TUJsi9HoRq6qUGIKMUBN8xA4ENilUQq4ucZ2E4beWKzYr4vAA5XAEABwQIgWkwIRJ0rsxg5jvbThld8EpcX+8b24POUYYL5engw35932FRY3tlsgXepwSbkj691GMN8ANVUjVWpP3VeI7gwXK8CJUFDywpYIBjULkLNmywMhgQhkSFPfBiVyWHBkFy+0ag51V/fSK9qcCoNioLpdA1PjbFAbUv+NL59968y2/VsPHr8fLb33wdc/2W7jLuHtd/70H/y339sIzgQ6wN2SscSSODZeqtTrwKGEhkDEpcKtLChmEg+EEJ/b2mhF2Dgap8jYOVWRUtafO4hrPk4x8AsXhjOTOzMX5iBMxP5UYjFUQbXSMpfJSg9nJmMyqharwZ0ITGMPV0z7zutPHkKAPhYvzDdXtafJqSZFVeOgVrISmWtpzFdOjiKDQygk61U1Z1PVYRhSSjlnjM/LHNy1iPvXt+1hawNCAaYYczdHmvtysnvl8IHUQHfphRTgVsgzsiWGFWzSYeSKEEizOAIsOkWiQM6kxE2J4goxuQkVk4YilVwTJ6LKWcEOYOFKRFbj6MVfRPHr3aGmCph7BpmZuimiOzlBS3M5K6xsrikAtd9RdisJhESUaqfBkktXMlgIRG5aSMuKBGMHsbTSNhQWIbYhBpYgErnmq3MQZi6h4VLzXca5IujOs8EvFZ1EdCTAa0bjFC5GMUR4ysaaMvOPaK5HKB7HmnJSf29SEM7M414oTjmFmgg2O+oSuAVhlzIBzLOFj45bOmlSxvOexl958MGLn39657TZXd30eR+3EB72KfVX9uri6g//tX/H1ievXrxchLC/uZDG++QeGT32l5tru45hNdxsBbqx3fZnX9yoPv7KX/nJ9z85WyziMixO+MG7907u3aHlqdCKTN01pd4V19fDnQ8/+vYf/q2+7zUnZo7SoBi1hAzPeYhUKA+mpyZMLfxuIwnkRXaMx/HoH5fejidMe9jHOMrraZklS+X1scXoKJdI4tH7t/Krxy4cPlrOY8XULef46Fd8pNMCCuq9J7nT4a5obgyZaQCzAcvF6u7d/skToMtrkubULXs09rO8ud5cvnr3N75zOXTy0Nfrd/bXW/1CWPZ5aeAzy32b/3TofkBdG5qP991zv1z0+9ziWwh5kNCSSFy061WvmjPMGdmHrsvUxEZCI6BGQqw1WWzmyYmYnNx0ALGVuoMFSQdAddCE3HtX+mksPBY0rWxCd3ewkJhlIQ6OAFqDwdjY/qrvf8j2cXz4Fs5PvfF4p+H2zFvktMhxhf0S0vhwibQFkpO59YzGc+/YAHCYQ9VUYnKLJFSTPKDGcHNn59IGSAIRnIO4sYpKy5pVkzu7WwVHTEGmPmaXmjoyiMmZPRgXc48MTBRIgilDIWnhgodvv60+DIt8ikbapXq/1vgP//LzvTTgDYgbWvWpdz7ELgGM//jkkPrI7lhAGycwtQx7OpwonUS6GnwBInaZYhxlMXvpnsfkZgYSL2TCo/EoTIWOvuDS8FGXFNVaQnOlFBolW7kUxhToaObRFshJHF7bkFUH9HDQLAJ3tIM0u4eS9WauIHNmUyR3h5iVLAqe7V9zd1Wz7DnZ0Ke+G1JKppOuIiPw2I5pvsswmt0VzKi+r9QRJycBKttU7VdUekaVGDaTubMR3Fl8cC+hAgKzWXYLaogQd2S35OhBoJoC6EyAMUyIpfRiK8UaUvtxMR/Y95g5einHABEbgSAlibrkepq7ulvRrO4KL001HAxAi6CCG0E1U0GB4T62uCeiQEHcFeSWy9dKYrkio7YlqfAjg2IIgUWIQ2VfoMpAV14fXh5MpUnoFWqEW3MxzYjQCMcTi1Gm2sSIHEIHHYwxC8fHhAb8CpU3JdtO70zHBOrM3w/Tqbcl8vH79dMZW9atn5nenI7ylWSHPMDLz5+ena8Gv5HotKGOOzfovr+81N/6438LZy1tIe7e3QTKN/1mb8OgebfZpn7IOry4+WJFzTbZq59+dk3hu//Tv/dn/7v/65C29x/eP31w0p4s4tmJy2LBbbSw7y6utjdpn54+v1598KXv/K2/dXF9xYEiGKCkRq5BmIKYUCikz6qlvaUfSm//ec79tN/mL9x9yk9193mK02zQaFwdI8lVOW67uW/4LZ5V5s0d7dn0FRL88ZI4eOS3bP/jpVAL4JgD9Tfbu3/301cPGspkCzU37jmhiSss13uznHpGo7lnaXulE7EEy4k64eA4ubvWkPybX93LJl8NIZCFznYKrB1I9L2Yn3nfgL7L+dnuWfb2A1neJW4cQ+e2PF2RNNur67ho8j5pl0pvZA5MrAawUIiRQHlwkDEkgCAGYYa1Ep3QO/v1BYae+j4zqzqtLDQRIWJEbgEwByWDBEFjxaszJ9+Q3tDFzwfvI96hO+tEEtp2GR6k3PXxxrYr27TYr51eQTvyzmkA4JaRuzKgWpgItA3NiaGqS2ImEnV3YuRCps9OEQImcm3g2YY95dLNUN2UjJwKO37yoh4wn164KRGTUG2K4wQRxOZlvtytH8juZhVPDCd9fqp+vWgW/f7Jf/6DJwgfcyJHMusDPJMhw9kAVK7FMW/ARo/EpbQ5IgrCJIQmuF51zY2f3G+yJoEk9sbmeb/TkqNSHwUwofrapbyOS2sBrkreK6tGBZ/JAR0r5UoedaGNLJ/WCi1CJeOoKHY1om3iTyw4rvtYrDK7vTGVEq7m2RzOAVnVDB4VMGMzlKIaM1Ulz1m1GO+mqt1+33ddGoZSNzWa3MVUuSWg6UApNa5AApUU+1JBUz7ikjtpwR3kCi/+llbKZSsyJU69cBxmkNLqgJKBXMctX7tvuQWvdgmRCTEglb1AizzHqLzqC6eE4piX8hCyooC5csyPuq08MNUVOe9Cb4Cbg6KXUA1R7QcJqBNSpoLCSzTLBSSBFk6V0echIqLAiOAmSAGcS71J6bBatKMQy63iofJj41vjigDP/KIJDQ5MJDKYMnNNvBqrgYvKz+OFpDTQ9DJtFWU5AjSASv01JvS85ufchk6DKeZwq4/4++Suj6qUvETmcWRNvH7FSVeVc1ZxMX20765Pz+88/+VnlrdU8i8ynj3b/LU/+Nfi2d3d5YvoyHmnu5tAOfXbPvW7fT8Mw073/atd1t2zy+efvNo+ev/j7/4b//IXf/9PL370l+9/+LA9b+/cv3P3nXdNVn3Og9r15kV389KNb/b55MMPvvrd37q4vmKYZjWiWqHtzgSzDKUYAmZGLoNyddzLm/NyvukxdVS0lRXS3UvS1jQIozLG7ASeJn6akvLhOIN4beaORphRiGbGc2j847XvVotsbOB5bAAyZkjGuPMAguOyaT76i/iHF+3NydZSFLZBTE2CmLVxGU5Pu+1m3WdB0iAtVjvrBUKAMDZkJ7Yc4rp9XyV+4/qTa9+5DM+ZLhPtwYDcs7SR4e9nP3N6D3jRfXoSH6iZSW4XZ2eLdtU2i1a42+2JmDoxs67rQgghsggDcCGhxgVAZippqOrisV0SpfbuPeG2V9fhJWdFn9QFbOTK7oWL7jCfUZACEyMmC+a2gDtTtvRcL/Kg1ubHzb0HuhJvnOJyQWS8zNwqL41b724o37jdGDKgpbELDeImhX7eHKwLBEOIRZQxByIPAEqqXHGMjErqHEUHJRCRprLNCeaW4ABbxaXqfImPzlNZe6WigTRA8MUXwz95evnv/p3f/eLHv1ily9ztFifn56e7//3/6c/+8hLhTHwwc03Wt8LZABfyArTQWKNckF0p8obdUGhEYM4kEiN4r/Q8P7zXhji4uamHGfWjjRoV7E5M5jBASOrbxb41dpgBrDCBH1frjZcCSosrqfKxPLJzBY2nwj+M0bniaBqOkarXYsDja3NocRANrp7dQwlQuhM7ZagZipoGQK6Wte/73W633++HYcg5u5ofyGxr8uYbN+btw6lUgHqF3wsGyaVXfEliVbdaxwUpsqs27nNyZFJjdyJnhosCxoUuw4jI3JXhs8wj5JmfAM9llsdY1SS6K0pX5Vu1zihNOm2GzMO8h7g7w458OedAamZjqqkQsxELoCPcTQSwqGVUeXWozCyiOLAIg0EEY/IpVjGVtBERQWq+m42ymmtVMFAMr2JWHMy22dwclLFQKfllZhajNM5aIB577BARm9o8RjvTkkcesB3Pdl2EswpSKkxY85VBwFhkRHCY1do5qhjmUcnKGxeWz1a5mW0ur+7crx+tz9r95vn2xRftskV06vkHP/jpV7/9u+1bj54/+fzR6s52/4X3u35zhdxfp50RD/2QNF3tLjep23+xea79x3/r9z/89e98/rOf//g/+b9/6YNHqwd3EejV5eXW873Hj+8/fDQMlj3tnuVnz6/4rUff+a3fHIaBPCOGoGxUNWHBJpgZWjwMo3G1mdlYwzMZEyX/WWfPS8du5QgRjyBzGYyx58Gkem/TYky23htBkvGH6sDe+qh4JjUwaoeJuHWdqS/lbK4P5vmtuQP42fkf/7PUsO+Sr7IbcyaNJDD1dnG2uHMvDynv+4iQJSEmWq6W2+G6SdcvnzeLxW7Ba1o698t33wvL57uLXf986+mO798Lw+DpE+WXsD6m/3Pe/V2133L9MaUv9bvd3Xcen7T3+zQMHEQ4tlFd45rzABu0NFIkolIcAgZzRAH6QCCIMHMYQCShCQ1ce0BvrqFZhk4p1uyIIPNNQsKq0S1DnD0a1s6kPkASdIfLX2ZLEWy4gyVTw7ReOLcxLqiNuml9u/JdQyRkW7MelkgTfAszeIIP6oqQKC6gLYKYMJO4OwUxM4zt4UpAhABAWEAOc5REXqciMLRE/upMlWXBJMSu5q6FLopBZk4gWT34n/+H/9vv/9v/yd/7u99YP3jvBlvRT/+z//Qf/2/+01825x+ltGVZsAeKTTZHUhJxGDsZMlCZDUAGzgQpS9s9Q0MwM1cO5hSS6pP+4cfrdetDNlLS0rbLCYAUHk2Hq3sonUPBRChWFHRk8eOqg1GUXDE6xnAMlawrqYpXq4dGCpTAiFY/EqDSkmT8Oh0Qu3EX37aj7cCfBbMEcriYAoX52QsNaYCWFnzuTg5NKfV9t9lsNtc3Q9dbVlclAko2sDs5int6vGfNx643NDEzl3E1xwht+cGpKgCsmGfAjTGRAjEzaaHrKR68EuDO7sG9rwC+Wa0Hczek0szn0OG00m9LJiVIMQVLx8wiyEJ1JCbnrL4y8woMT0Ko3CobSGsCfLV+GIWNeiQ1ITjYADMwBak4gU8akWtlhjvNCK2ilGxAY3cei8BKD0Y2lKj42A5itMyO0Fnn0ZFCCdaUCnVyH/kyy5SRQ4j0UOF3rOOJgFoodryojoTtkXi3ozjjG77iI9tDFdxeghMj4XNdmKUcu1qRdOzyzpX/rfcLSnN+fnd6Mw0b3by8eP787p0zacPzz3/59e/8ja98+zefvXh+cnK23V+mmxsfdrrfZku7Ya/Enn1zc5WG7uWTzxbvffTX/8Zvh9DcvLp68Z/9F48eNHcf3m++/OEiLu/eeYsZv/jkJz/49AcELJv2pDl79jD+xh/8gRslz5EBzeoSAXUrDpvBGHChspZDCCBMmozGlizTsLpz5cEhEgkjE8p86KdUkooVjMNCNEOzpwlgH8GZ2QyNZOhHlV3zEw5dyMs4l6aSZLNldvjW/J2aR+1H1yx2qI+lyQv5+p80f/Nit40XNixdPBsYTUNZqW0dLNycrk63FxfoemLe+/aUl/t9LwyWwXKAUVp0K1v3g7VyznfX4C3z2/vkfPEsWQZ2xE029v7/Ce6J/1rafhb17uLevSef/Pzulz6+6TYhNJF5sVgMOZEIi2gyVQOIA4sIsnt0B5spcyiGlHlenLRDv+U2xvBARfQp49WLoEn7ynHsMSKGAmSVkhaKgSN7hiQJZqkhI2BYUPcq5Cu7SpvsLT5YPHoAYluKE1PT8MIRSUMAk+88JsqJTRVIyA7OoETcWWJ1DURmRt7A2EMDwFzUah/1Ine59LVUoKTNk9TiMA5wq7zfpTGAjxlG7jV0hgCYW1ZTOJEHbdrL3Qf/6//jp/+X/8OffRvP+a2Tpx7+4bMHm/XHGAA3FYYxfA+JQcXICDZufAEpiABzS05OxJXCqiY8YaBh6eLevxzuZFusuHe0yh08OKFmQgAOIWgBmN2J4YWnuLhRNZO49iN0H51VAICgoNA0pogTHK5uTGxwVA4sOLwmFI9waPUWCuA777aEWrB7kImluq8Wsqo7XDVnBxEk2MgEWmlJzFLOabBuPPq+L8nPKB6rZaDaDQ4t+uWw+wob86jSyifFEzAzmRgTi2QAOchm1fwofB3m7i7E6tlH7UZgHZmnyAp5ldZgPBd8SAo2CrfRFClDbqWdEgoaM3og7p7KeI4WC5nXOSvBBHcjnsfXxHiMB4DK5gK7eyYBuJq8lf0PDi82nZd4KhlcQHDXMkpMlQ2q5GczrORPEiMwwogSyyhW5xRGo9FGqODCTAbWTGIfAfdRDjNjbJsx6eMypzTmpvmYzF+wGbMjbTqtsWmBvS5+p3eqDnV2eJggGiJyOIsAKKnWLCyVXxvmCqB0k51ayR5pX5g6EYJwVh24bfuO2Zvf/+4f/tmf1jv44gd/2qzWjx6+uxturi5etMsPv/bd33316Ut2VQ79zSfW677LuU87vUbWLlkHRpbLL67bR+//ld//nSe77iw0F//wn6b97sNvftM2W1z39955NPTdTvKDj999t/nw4vnmxadXf/6zv/j9f+nvxii7vmtIgomylZbC4lIH2dkmMJaDVduDiCSXAWbh0fUvT8ocAZTwz+QEl6UCZ/dZV41SKEes1cuttrYIAVAtLE4F4jsk+tffKg5AnRcf4TgiIjfnIChcRZaZuUxH9QsIuE014O4kRChJ9qhCIZpbUFMOzsZBbLtDPMX2hw/++IeDhZ2oNzZkLLqlne2zseSTxfLVq81ieb53Q7cd0tDsLbDlIe0uXrbrMMAoLs6UdqlzHbiX8ODklGn7+S/16Uvrnmp4BxJhzzx/JlBGl4d/6P1N2/7W8hSbzz9v335vc/G8PVmh8x4pyCpwAGNwNbMoIedsqXcwodXBhCFc+08YQTUI8jIsQJZYogi1MYWmf/JKdA+QupGZ52wcZNFkN3chAiMgiLN7yKKE1BopFg9z2lNKvP10+GTj3funjz/w5pSYEFn5xOJC20WKQjEO2wZ2Aw+OXdSsZGaDd4r2CrbImkmWlBIF0aAcG0DJvXRjrekC5NnNydgNgAgR2JXVGB4hThC3IvWEhQDy0pxQ2AhODZM4DY5BkWGiC/DivR/YO3/pGdc9gXhNQuasbuyuEBA17ppFgVglMln1oqvnUFREaZtJ7sm0kyRNWuqwjbR+ksJ1fvSgeTbosgV7cHc3nWSSVf8VABeiYCiMhYIgOJkaqNJ0kDkO/RSrZCwcWVWz1rY1cCYPtd92FZoFXBIuRGdFyMkEL9ayfJ0LxCoTCaZu5kSusKwJxBRE1QrFZdZkxGZmKVvWvh+2w+5mv993GRbAmZndxXKiGr3VSY7f+i1yNZaccwjhuKtBlTAYw1qq6qXiTgtnNpW845IzZHBnlJExM3YL7GakNvW7hNdmjlYzoKZIFLwgmV4KnTzPOHnI3ODBHYEMs+CkEVDC1pUgZXIbqorOhdqgAJ/upEQwhnhlTq2gaokCCKCWUAMNhX2fieviALuZsYMkEkcmaTwUs27i4i4BFxOApb6hWULgad15IWYgCI35fO5ulAHiscfOaPBZ7Qs6P2rEV2v9mYho6c5Rrj/yk0yqd1QEoyFVXLhjpHp+TulWF275tePd12f02TdvfX++vKZBYREoQtPuuuQ9/0t/9MehP1hJV5vU7C7efvdtvhLbdh/89V//7PnF2eoU1682T35hlvabTnU/aMq9qEIdm93m2cuXaOJ7v/MHV52LOobNyx/94J33Hq/femtzt9dXr3727If3Pniv2+kv/tGPtldPVx+808f2O7/3O3cfP7pMfYjR1cwVqCklYzx+MiDeQFA3mlHVPCZIsRnLMSv7qY9PqKzL5gen2UvSYB0nrpXgVBRk8aSLiDgAGuNcYFydmCZobu6UP0tqwDQR44ujeRlDZrcXh8LJA5E7B8spUbuibtP82ovwzf4mG6Vd3OVE2C4QO+Nu2ZxfX187C6TxsDg5e7C5uUldQj8Mu2vV5J2penvntO+uG0B35m8tHiX75X/7z+J6lf6F765/+kH34qnc3KThmefHiv9e6SXcCN9L/RfY/Gs9o7E/jxcfpbdO5O79pg1uQeKSiFsSgRTqguykGUCmmlJaegQ5M1MkAbtldw6BZS0usTfac0gvX0AT+uRmFgMiWVKQSBwLFYzcDQKQMRHoLrQzd3I1VfTb4dXT66xL+vLi7ISWLblYQsOnAU4cPQSThe4EPRntzTNczQ2pczBcRrwkELhIBC+hCjeAXDMJ3N2spB9YLaERFhIjIkXhMhqtNCdXJiIKRMzC7hlweCAYiYCUAMCIlCBe6h2IzDIhT/WeDhACoFWa1OQdH6mTHZ6dHIjGqFzLll1TzhvOwikllZt8nqUp5mtpuzvTc3OgparjKkysuCdC1fcFkxAqx+58M5Za64Iql/SWmiZZZL2wwbX0ZJu5wtNOxpsckfmOoKqJi2bTQs1BtacZAa6qZtXszjmPzXTLyfOrKSrcam8UkgZ31RCCWmJm1dQ0jQ6JuXalMzOrQSWquzxIIbuYD8kEZNEhO3dSigQXx5jiNwaXD9WMh+BarTgbnT2bRgJO2XkuXmgi055JKgCjE1zveKaNqlsGAD72HRnHZHIcMWKD7iN3IIFQFvORqVS2xowFs9TrEbmNPpLPvU8aC+vH9rwVTz+I7RmJqR9+4jZbw/xWj46Rjf9oAUAnGHLUsm9YeO6HhXFMxIGxIup46Rx/+Q0Lq/wZm7jf79rY9pn6zv/23/jdtePyxXPgtJz5a7/2a8hp8C5dXsR4Tud3PPcs1kSRdHORto27595C0M63XZc1dc8u90zf/MPfV7fU9evT9ZNPfx443nn8Lmt4tD7ppL25fvLFX/7g7M67b33rr3QXb22eXlzfWz38+Ms7UyLSnEMIyXKk0HLQShc1H98J8KhTO2ktYoGVlV1h+TfYO84EzBPWiIqVOHbmHQ8au06OY1iV8/hiSlJHsQ9GrGPKaziak7kmnjOR3Zq1uYa2afWzw8kQ2DWxs5GFSHp1ufobv+gaHrZIYcj9Iqtlytq17Tp3+26/lbZxducskcEJNDAvdLe13c0wBGsW8Bfh9GSzG3R95x3Vn/+//8HZd76Z7p0O19R/8x69OMfnz3B9h67flv25dn8Jfwa+Ntv2V/855F82i/ur79vVg+U7W7n/2E6GzBCREBeB2TMHaTxrMiVVd8rq7lYtGwYISY2Ma7mpBFqH5hHxctW1TX997dsb2GBqYEVyEaZmhODIQcwQQgCyD0vVLQQYhNPeUsL2Ig/7nbM/fBQf3rdlS1E4SKA7EtYc2x1FcoaJ8QbDNTyDFJqAHUriEczQkrt4QQjZmeAOKryeVHgaDCCYmZI53FAXRIDDSQ9Co34BXFgaCm8vFTIsA2UvKoEEMArm7uYKjnAlaA02ujuMyeo6B7kpVc/HKi5WlmeJ/hl7Tk6Dp42mte3zfqUv0yNrT5jBCFZN22mxTgTCxgXupdKqorhXRCxO7mZcNILXn5sE31iAV/i/UJuRMJVWoZUHhcnUygmThD2SVDPT8zWxVnd0rcqRyBJIIkisMDMjFdRB4aXm1d1r1q1wyXuDOoqigxZFgNdEaPGMQwgp903TmGUiGvZdjLHs8jpQ1f44tKd14pEYmAjiroAVXxOHIslRjzAdc8sWVZGpFCXT8ZgUlxRGxbmeemEWcnU4wTBRqZTc38NR2T1Rlpnw+LijBgIOXr5XvNqPjLP5wW7mBW+GeUV/qdptXNpuEI4oMArpr5OXxJ7jdGCrGdyo3nBZDQdlbPUZSlcoUI0F10jcNEo0O95020fz6+5ExsxwVlXwzPsZ1141fcYsjjB95l7KYA/u1Nzlwmw9+ZtWM0PS0Bduku5m/+F7H7577+H1L37B2k3n9Nsr05Svt0+//4N7f/UPNQ3p6rNfbOy05X2XtvuBtOvN+931br/vc+pe3tyAfu1v/q2+WfuwMeFIpD958pVHH9y7/zibae4XtEirO2G9fPn82fb55/HkdHhw569/57c3cEvahABB0hSamFNuSJx5ngM73T7VDkgHYIhI4LMmSJAa1ykPPlEmHB9h5Jwsvu9cYbs7UMixZ/PiTFTI6kE1c9KJjgyx+cxZLUErew81Tlbz4w8rZr4W6aivZ8k8ZBf2iVU0SCBLfO/i9De3PSJxt9Nh03O3SXmLmNHcHziEEFyhOTMH1Y6NJUjXDbLdDRcXfnbOEocXL4erV3bSfvTO25//R//F+ne/3Z+d+EWHJsQ1WjmlO6f7q5fDi+f24hyvPvb9z8ifAE8w/CzIf2xXv4/lY+in6dPrmz0t3zrhBF8sZOUcGhHmSFFDGihnVlUzzwoGIRT+YjNzBpV0VDVlET45bZfL0Dbh8kqvrtJ2m3MiEZBIDG4FzasUS1YKLxEoMhhOIG6cbmA7yknSJr/4tNPezMKDe3y2sihOsQmuERKFpHFqch9hHnSXvQNKKVEHMmR3N6dElqxUNIInIQYikJEV2MOoeMPmgJKj9o84yuowgpm7anInN2OqFBDuXIpwUJjzyEDkrrDywtwTVdXugJoZUy6tFL1qtCLZlQjkZAWhs1KtIlBGCp6yd92QuxfDiWLB1MGqZ20zkhmvZihP0MxIQcMAORHUQGy1P1gtSCnZOFQ0OcFl1LujDCp/lnt1pmI3H22s1/bmr3ynRqUFRKGJIgtw46kUCAmLc9m0zMyBOTEzBwkhiIiZlp+seY6AQQ9lKq8dqmqKYRgK5hyYsw6uxhIP5F+zezvY7hwAI1cf+UdLCiZVApXpkQrj53QFHsFtG4XVZBwwZiKdvIAXXll8qjwR1KAVlWY0YzZuyZk21OhJLcAqiraC18f0EhiXxC1NVn6lOPvj6haibG7VKycqgTY5pIjBrcS2yw44HAU+MVMtbdnLPBSjwgGiPHEj1zrmykZZArHkByx6PhE11WumiX0WWiYih2I+42PiwpF/fDsJ33Fgwhq9sFsWysxd89eNl8n3LQsLjMBxv+3efvj2r3/8jV/+6CdvRelwUMDXT56m6+fPf/Tzl71886OvP/3ZjzeXP71/992hOdlrolzM67TZ3WgadhfbL5K9/7t/Q9pl2g4LDhrD9c1NY3n5lfepXfBm31IcRMnX3XWPSMvd8OzHn7z9h7+vp5L3XSuh8OyEQl4oktXo0GXo1lM4FcolQOvCLRqLgQJTGw5ChGY2/tFAvX68ETx4XUeWGaGaGlD92mnMZ4qc5sP+zz/KnL1+D+UFi5MTg1Uo9pv93d997neePdnsnl/m7QV0d/3kumdtW0+8S8JnZ3d0CKzkgX1IrqpD8m7gnKXvsI/ZTPrcU/7w8Vd+8R//38I3v9qfLORqP7As3Cmn9fKerCmuzq7X7XBnE14u/anQJen+EvIh9MLsPwJ+O8jH4Mt0+SkN95o7PZ2e5TuQNTyoUGBiFuYQNeWcVVVHLUMAUSAzV3UiFN49YgaHeMe9Dfn8nK63YbcjM9jgs0COl667yO7KxAhC1LIE59bRAlfeX1seJF+V8iR3B5OerjlIYE7ShiaKNAPYNyTM0l/n/oqQYIRaVUlQhQfNA0TADBIIV4yuTHQl8YZ7iWYqoVST9O4GZNSyVgIYXkiMuepvEJi8tBEoyTVibnKwE0UBIU9uMtZAKVyh1b31klNcQDIUI28MyLrBM4icxJVCv8RSfdfpcPNyWPfeLnHtFsbmTIdV7aOL6Qy22hmpUmKVPvEs7g7S0lahWJZFhVdssMLD9SJAxQ8NIGFncjjJJFcPYZqD0YkjX2K+QYBirwWlyByCtCG26sxMZpMvXqixhdmFo4iKiEgWEdUjyPHWxp8zYbkRyNKQ1usVEe32m8Wi1SGZ0mKx6odhuudx147PXsHYUpJU8AkBzO3g0Y0GjY342VFIsTxqQTtmN1hLg8ocTUERr858ydkaCzrGaKbhzWBbvXmYG7llIqmz54fyzvJvEWvz3KPZI4i7G5Vog0w4M4OiTONMk7qtnZ28oseqWuQjaoC7KFSqw1juf37vdXkAYz3LdLCBx3wrfu3TuQQmPkz89GlVtIRbmPbcdy0XCaiuOUr58xsVyRvF/WEUxjeIOQ15Ie1f/8av582Ndze9BqVh+ope983F9S++/+M//l/8r5xh/XZ9cm6wzc2rEHwVmhc3F9IPeUg/f/KcT+9+5fd+F6uV3/RNg73pia/2L17dD+vl2dkZlle2+ezmsxPt4snDk9O7/MX2Zy+e3/vWb3z00V+53FwFFleLLF0a2uWixgbkANzPt015jil/ime2m2ICjX22pnkK87xxZOb8X+Vg5qnmofz6+OdskMsfx8v7yBCr6vloXsq/VrC4oqFx2Je4hWTQfP+YgUMImRI536z+2k+eplc/+0STN2Efd2n76Qvzy700zCd+GjZXezk7gUIDcdcNuxvttrLpr7s9tlcybNq799zCouWXP/zeLu3PQhyudl2ke+FUdaDFIvnC7To2i3b1rvunebjJN7B9tj5GepiXb2G4w+m/zvkv2f5WsLO+32kactcPWZtsvGiaRcvUcCOxOLCZc5aUkqrWwVO4OTmxoJjsNV9RAp+cyoJys5TtXlLvlswHymyWoaaqzkZKUtLipKwEcY7EDUIwEes33N9Yv7VXTwyupMEfNCdrkSa2jbLhlANII7tIcoIH5Ct3hSlBSdXY4Vr9SBeQwIMVfqg6R1MZI0r/E3cvObr1z1m6e2lTy4FQGedrfIWYxsxQEtPblqIJUar5/IBbBimsuDgKN4fBizJ2dwPRSBFjBHNTkJKapcGGRN315dDsbL2KT40wa+Fe8cyCkIOECE5a4sxe/Tj3ESQstSfF2yAcWpNU65gJI8XSODwAlWXvU7nRXMAdHhk1ODffNfM9RSQOBolIK6EBC3lgduZSWVScHycCi8QYY3ZJOlIQy+0kkjHkees23EvSt5+cnCwWi80n1zkbnGJs990QAtObjPLyn/tkdgkIk/CAe+3A6KgFWeW35rfzBjE11wol97OGR0t6bslXr1fyUjpf6zNJ2EdkYuJOuHWMVVhFldF4OzQ3Cwg1UO3FOz+UTRfLcnI8ivKb8kzLz7GPnIA+P4wmXmdzcyYzm6LXXk2xw+CU5VK89xJZKPfA03zZEQ/VQWtMHTPpQIY0u71idhSX+J/npLn7LAY8w0tvWU9vsKdem1ciMvOU/Lvf/jZtdr7deN91hs3+cjqHh+0/+rMffuvv/Bvv/8Zf/dH3fvDg7fvdkK6eP0famKZo6Hbp6ury6smrk6/92vlf+Zbk4LvBFqzD4BESiG+6B/fun5/e236xUbRvvfOlp7/4S/3xz25akij3Pvronb/67U2/ByOE4FAECRRVNca43+9j20L1dYuVqOIFZewwLoSD4QTMCnkxmaivb3ifJV5N48Ze/juo4XFGa8J7ofUY960BBsRDDiJs9MJvb+k3zP3seJ0X7WBvMrN6JiazwIninaf5vec3O3SX0ReL5Vm/3ejTnwNfRF8i3rFXnJrWzu4Qtzk0wWC6936TdldwFx6wvehsY7m9+97jm1/+NJy9bb/8ItHLR1/9sg9Xcb0IzMOwy20EtkFsIevNcJK7CG6xOHVrvBXQA07k+RPr/3O3P4K+n4dPke7a0Fu/55Olnp7IYhGXJxENMWJDEoiYc4KX+mBneK4RVnMzZWYhNoosbOLtaqUhIDesGWmgIZsmTQMpQY3ZXHMpRjV4rUBoIoUTCCs3DiIakPd6/czYXU0ePNDTdbNcGXteRm5aF1aRwUGIjgwdkPdwh2VAgEQgt1jatnNNRgrFBpwCC9VUN612RAnDFcgVXGj6RjU2kUgSwOAKFBORgMDxIFmI1IyYHYCHsdhCyNStxIYdpo5UGvuAAE9E5K4lqk5uhWjTdIAOQ9ZF1++T7u2MmVVQYCR3nXc+H2VaoXeuQlMLUEk1zEMFXq6tEI+gmrILawJOSffhsaSVp5j4rxRNt7bA/Cjat1BkOkWWAI5g8exGcPYxRjiSiLOIEEcTiSSpEDMVq7fipc6lCFlv0zDUn4vCT599wcxNEwBjhllu26il4XC1ImmOXh2+jkLSV5jkyUnZgyPXx6pxVh4HfNJhxW2kOXfEZCIUopQChY7+elUeVBpTogSgK58BFcSl3qjNMldG8cJ1IdaA/kEuyfSAcx+gcIOME6QYy6IAlDqjqTKqwtPjqoE5WcmPM1VVELMSheKHO8Fs7NNxq0EhH8l/HyuAavTXqgKHHXKyJk/6aOVwlclHWmBCuEtV15FYPgKfy0e3mzFMJ46mt09+9+if0XwcJ2UWhDf7/q0HbzcUdN9F14F0u99Z1mknPvns+zh/59v/6n/w5OKzGNsnF78cNjmkPvVbs7zp9vtXN5998vzjP/r9+4/f23T7nrogrNkbWSp127TvbcMP7+7yhs7PPn77O6nfrO9+48nnP+7+4Z9c+Pa9P/prA8tg+YRYzZwxmLp7G2MeUtu2ST1KKfspm5yAsRGQVeRlfMoCYPj8GVFVWhnBI47J8ZXNo6119GwSKDY3w92ViEtlVyk0nA3/weCaLdkD9nLLLivzYRNqeJi4+vchqjEpfjircCtDr2saUjy96Nt2tXJe3lxe0/pB78H3T9h/blDdEWNQWqQXp2gfyNnbqi0Jo+8cG8ms6Yps78PQ+L39089189Ljakjbtz/8Jj+/enmKs/XCuiE1Lv06ZXDol6erdLruFiTDmeEmB+cUnXc5fCng1PMT2EvdfAL+mIadXW99c81nK79zxudnwODhjJmjBAmhpRACNLuqI1lSy25EI9FDzWbn6BTgFIIKsoK00T1TSJyZRJATKZCSkpuWXFSIgxjqoBCZT0DBs7lfgxLrzi4vBgvKULbGZNEsPbI1WNgdbhd7luSSdQP3qtLIYRlkTgR1Z4GKASWJ1N0dgpIfV2JIxYE0B9SNKqWKW63XJAIgxc5wgjtJICkp1kDpZVtKdw6OEVWufYqVT9AdRGDhIotNETJ7ME9gBVDaX1brgeCV1NmMereBDJ6sVwy2BuBMBT0iPvZHMW4lAGOeVHEfRjjavZD2Uo3kH9ralOcs3Mq1GcUokGguyjHthWmLASUM8Qa3eDqnMPm7C7FwaIgEzslyYYEG4EZ6LKznx0SACABTf26QVwrJ+b0xEUsAkUDYzIhc4TWH7lioEg4RqPLjNbpNAEhL/1OwFTik/oISsaLkv9NcjBwbHjZq3+ndWpExq/8qE1H8ziq4ShmsqR1h124HQXcrxOsGoOSajd7LYRZu+T8Y1Q0zlQSaKQsLQKWDU4w5XwcqUHc2MzcyMlWuzQfERUTh1b2fJU4QUckeK/YOF7yTyGS2ZqZnOUYZZZocBwsm5OPwLAfodBLgR4tt/ingzBwKtkQ2LcSZ2h9BcB91jpmBElkLCLHCzS2ASUsjthC/dHKXX71cLhYvX35mcT/sthszrOvPfvKjl7/z7/89ipvw8mbA1QKU9Sr1+2yaB+v2adjtH//e79x7971Xm43Bl02LAutzjpmxBufujq07bx9/9F5Q3W/7tL1ZxaWenZ0+fmf53sN00y0dqQ2iyl6yEynnXOB4IZgSkRD76GgWEooR+huHyGryM6mb8KF3gpoWWyQw6Wx6aAzgjfVhPOUc2rhxiKTUtwFwMyIBJq6POYrFs1YbZf/weLcjLlQnmM0MzkRsNgiPv+vEBR0q5cuIcAEZKNdHthiMbNGlHg0CYrymxVb43XNafP2rL3/yZB+xfHt18pV/RT7Yrt/9etouX/30B92T79mzf4qbH+Hm+wlL5zu0ugtSBzGpAdjvTIa8V4L5q6ePvvoRb/tPr/breHb1xRerh29pRwPnVeMwWAjLdx9vu8u8vWz8wSDP2NSSOi4yD0Jr6J9Dftnk/2/efAXhjxwD8po7ibsdrns+73W10sUisERpJIpFiDpEKEIGzUmtsMbDIpE5JQGLMJPwIlLjlMOSPC+Uh4TOQCAtlT4GEktqkgnCiAiWB3WXsMhnJ94RtoxhS/kKO9XPu9wrPTC+c9fQBpZwsk5tiCAPK1qE/OI50gvYlnInlJTgbNBIHFwicgY3cGIWh7oSRraD6gc5waV2rIIQTcqZiISQ4UzMxI2TFCuSahIoFX/ZCZ4LWUQRzswUvWiLsfrDecTwQea5sHWRw7Wp0kPUCeXOiKESoiWxnaZ2n4Zd2pOduvdWke0js5UY4l4qPY0qYgwi81KASxPoVxZ8CGHyg6esq/IVJy09+Xw0L6YNOFf5RaG7F0YKuiUKDzutVNoYg6OIBGJ1dUNwzu65hJZVYZm1agQjZR/TgkLQ/b7qg7JVyxzB2AtX80z1MdSTOpjFzclKfT87XNWbZqGazHNJO/f6aQXb3L2aKQ5GIBiXxk0zke7uUGI2pzAyclkh62CRIgndD74vQPM8qZHmTwrAOykJB8NJxxLqYr+50eitljtkf83KKR0s3KhAOF6vwOruTqGQqXjxZBRgeCAK7kZuAeRGVoL8oABiFoObOam5pmxxyLJKhOiq5qrO4q7mRsZS6rPIXchA0ErogRFQMfNShQ+iXGDIWuvlPoaTDa4EcU5OxsjuCoMbm4l7URATyjE1YpqqbOr+u43F+BGPByTcGrXbp8/8rfHMaNCKkZBDsiZtmYd9fvzwvUVoL57/BCcr6/fXl1cxu+v1pIBXX/3a/V/7tZdfPKch0dBzUk7edb3mYd8Nm1887z589P5bj7a7vZm1bZtzFpCIJNMojWufxPac7917xHG177aJFaQLGB6ePvzal9AlFjEzDNmLq1oNqGoGTg/iBfxH1ZpVaB0+msbEa2dn8+mJS+Ap6dGwzPzU8vVplVfqmWk2CrFYrT8pYZWjNASM3uwhTjPp4PJiliNdvmtFnh3msZR0HOw4mpUfOOBwzQRLEsTFyVQafslXT7enX1o+bL/84KMu00I+OPtt3HAa9nGz17Nf/6rt/ri/uL569nz77Km/+Cy/+kXePeX9zn0PbAkbp5vMN7ANoPHh/+jqatht/1G88/jmJ68W58uLy6vVg2VLD7qTNUeO+cYl3Pno49yut3/xPbxwLLYcB8unpMn8haOHvjMwwa/g/x1tHmD3rjc6dAtdadp1dNaGs/Nlc06NU8NCQtb2bWAnRPc8uA2uCZnVBTmrE8hc2cyYEWIMDWvfQQKkTSheH3HDzMEGZ0BVc1Iv2UEkzh751FmyGKBknXe950t1c1ZGDucPqF0NOSE27d0GHAexJMED4+alD+5EThlaioZKWpPBYKzwgAphFR6f6ipW3IIPgTE5JFi61ldST6PRIbNx+ZXIRRAqSC+k4DSls8Ih48rBEBcnGJFYZoKCjKKQw8zgSqTuDi6VWlV8s5urbXNg8nny/mxHFMHkpUS+WA7FsUINJaLUzx5KeF/DikdJdMCJxiWPSWi+LsGO9/vRO4crG43SmUu7SJ1+zsYQEgct0GTNv/VixYNGyPIW6A2QMPkxTnb7mY4OZnbnKWUJxFZ4tY5LUabHqfXQRTq517isFI+PxxqNMkCMo4k5/rPenNWPgBlQ50Wxlyqs1+95muKDB/J6vLnCczpmHxeg3Eb2jyKjeBR6OMTdyKamIzTCeO4Vcy7K0jyrQjWbsSqYQUbMxavJzHKQrvNUmDp0k7d/8L+no7zDDsCEnEECKvzVqMWkghloeXjcaaasDP+Roz99OgI8VmPAChf8Sl6P+fjqoBCGZwax8GBdE6ModTk9PL1H2Rex2V9dpf3u8sUz7bZ9vlk/rnfwW//Wvzvs9ra56cLgPrT74WWfujR4GvZPXl6s4sff/g0nGdIQRKwERYRLt8w06DIGOl3u4N94+NYvn10vmVPXC9t12p98/K4uI2cfXBsJbNWcm+Zv9lAlz4CO0pG8sjG/vrwK21ml3PEqPeyWrX30tQq2EHtNdC/piyRwL9WGRoeBneZmeqdGxw75kBPyXH+glsqNkR8As9T6koc/zy2spZIzjW4gsEQbjEPpos1r3q5e/bMn/Z2WfBGCI3YJn4Wd9nwiC2XPto2Q9nx57/yju1/9GmXr+utdf719cZOvr+j6pV8+s81Tu3nq3Utor8//8bYRW/xV3V7Brvube2ivLq8fLu6o9O3iZO1x4dHCahXfeyc3S//p3fzZ96jPcXmW7B7kvUhkGs237hfiOxpujL5P/qm+estu3rXdGTZ382bvZ9e6XsviLLTrprUFGubgjMSk2hhFN6fMnasnLTVXIkIxlGgoN1FipGYAc+723g8AGGBvVRVA1qxmhTHRDdaIU0t8rgQaoucOmnV3nZ+CNJuCzu/xyakxsnC4e4JFtNUqhwW41U3rtoPvoQmeS2WrmwMZxHCFC1GGw01AMgbyhIisBDthZNXxqfoMRCQcopOMUSciIo5l2XBJIgKRMyrddGlNR1obvhEcYGmg6mbFs2GRWhpa8ofZyBXFDfCxKN4IpoRsQ77ODbNLPipAmkuSW6JnWvA6ZstOHEYjxcR4iZpvRagKheZyb7YN59WvjGPh+AbFcHh/5Aap+4mp7i12N9PCjFA6BVYK/qk2xuqh9oYO7T4hVeUoPMNUSQJsNPmrgZ5zNlMfc4xrmQ00FL7FmVh2lBDoSFKGol18ip2N2KcAVlsrORu9ZgFMdN+H+y64Q8HbJo1rNT1ljChTJTYrlls1AOfKeBqEuZB0FI/ZSqH6KNxGUsU6rqXfopWEvRH9hrtBzYOrqmXWlFXVvVRAUHFYmVHiwIaaH1CbaVSDZmaBHYIhXJ+iUKCUSrhjHTxfOTW67aSF0qF8+dZyGqlD65i8KeqBupzJ50lYt1K25sfBeXcP0jhrVjXiPCQm5yZc7YaH7355EZunP/nJW2uo+vX22rzbbS4ufvrp+jvjA3RiYdfTxq43IWA77AK7xHD56fPPLH39X/wj9dj1XYyRmfu+b5qGiLKqiKAJeehP3377pz/+/Bu7red912fK/c326nKhi/PTrBjImQOyepDJXfhVzj2VVLrRM/UZ8A7UEPgbR+ONR5lpBnJNsXLAaoleXQflPB5L9Q+WzXSf87k/6gYz+/RWUKF8fV74PypaqogTMJIiYXTES/SCSRI8wrKyL9A+xp/Zk8fdvXdpR3nBOiRoPOHFYFe+172F7ANBTdyNWEHAatmef7AwfWD89WHI2g391VV+eZm32/4v/h+c/oz0R6TBiHPzKHRLyqkb7i9vwrBe5rP78eSM0pWv28WHd9dnv3m9Wu9/+t+n/ErWS5eHaeiRb0TvqUbHtaXsdsP+CsMN+l96/55d3tNX79jJ3XSnkbNn4exOXN1fNMxhybLkRqQwCPbZsrV5OQxdzln7pOxNMm4CCysLM4cQedVIbLTprOs05VxUmxkHIfWxTsAsde5OEtCsicjNSAdJQ/bN8IpyMjdbCggLlyBNS7ykwIkFi2W6PNftpfVb9HvXa6CS+Ghxdl3IA6AgYZiDyGWCMWo5igNU2LKquAW3JIEpGB04wr0CcKOIpNETKhqB6bZ9TswSjARZ3QNzVffkVuWuKXlZLT2Zl7RhIxEmJtOsN1kgR17mrzIx51vSx/wXjMj1dEviU6h4ptRnWmSqwXl9K/ns/du/dexNjtWXZWOymY85YlXcaRHQpS66PAUdNq9l1ZQn6ob5xqxTdixCSqSv4lgjh1S5HdU6NyAvObTFxSccqTFMiIgTqCowF6N65zpS8knJMiC4M8j0ULGENzrBVVLUoa19EQqLFE1aZO4VTGNLNAfCf+XBNTmqMnJUces193u0PMpI1tug0irLczZNRmbiWXOWyQlOlhYuYzwYLFAV8oIWubOHufd1QAGJqotf+k2VVtgljuATEF2zsSbgc0xStrHH12tHTWWYRmLu8uJ4oU6S/NANqTSBmqLc7hMF8VExk5lpTqGJahRJAschyU2Sf/M3/6Uf/4P/j6fL7U3u9sO+u96/fPny81evLtOH43d1d4VV0L7T3ZVr2OV+P2y7Xzz94nr34b/yt+Eh5SHE6O6qWhgtpnQM96SGZn1H7u3/q3/897/2ta9dX1xeXt9kNnuwzkOKLAMLA8a1NGt61On5bw1H2XyjDnuzRzvf2OV+aDT5jsZ+zIQCRunjXi2/sp5qw8GxKP4QzZVpWWO2xybwZNLHzKx6RH1HI+U44FPY+NbeMLOaBnZI3mYAmhSS4ZGc3TUrf3Dy5EvPfvSXV2eQmJ1dE2VZtGljSj2EN3nIQ2mUKmHBgUxT33fUAhSjNix81izX5/6wNU0X+W/qxZe7q894/5mkHyL/U+1bz1+jiwd+9tGuve/Xu8WDRXtyznY/6pJbuvvtb8m90833/kJvLuNKpBUjVroGBaMANEitUUO5c1xY9ww4w+aRXr3nF4/S+pTO9nxyk07O47IJ6wUvTkJzAmooMgc1lRgXlLMlzYN2KedsQuA2irDEICGwNByaHBsfesA9ZQeYCZmRE7kysVis2yECDNMBOefUiZpeJ8+5s0H73fLBW82dewVabduFnHNqFt4u8TLyTZOooexkDs3s5lBzhzPMIccL1d0LOw5pCcdVdo7SzI3ZZcHENjM1qxFndjDpqj1HQqRU2TTGIMi4x4kpiIz9kmE64tJKRFBzY7eB0Dg5E5swQuvCRJTzMOSg5TaOCYleNxxvbbQS275FmTupXqAQHIwn+K9seF5wgmnXzvfvG1+P72jFEqd+JIAZfKSLNysklBPIVMGnwklZGhGq6ryT9/Rbc97D6dGm2yAIJiODaF7LVFEH8rG3o/usy3L1vhwErnrLBUKkeUyFL9ZLwRbmlcE0paMDc993dvNks8Bw7cMzzx6dnu4gFakGJKcL0Vw3z90J9zHpGkYleaU6xONcOCCFEKZc0zyrcXJTVXVodjMzxSH5uR7MDM1cWGtKW3fU4Nxhb/jIwjaxglNJqR43jtXsrgO5x3zupq9MbCTTh+Xi/iv8vVvjNnvNr1FRjn/Nz5u+xjWlkMyMwWa+7T2263/v7/2PV88H2e80D/t9f73b726uti+uXl5sV7/7W9O1X22/iJv2JHAOfHN502+vvnj62W6TvvxHf7BsznTbhVUtPyOrmLC5xxDM1N0pxN1+OH37rd2rl9979jOBpKUsl2sXiCLnTAJzUBtCrjmIr8sCwN84Rq+b7cXSfN281WNlOR9TrUqXADc9/BYR1WRSOMaWmeO/5XrzTEIpoz7d0usaelTtkyQ6CN/bRsbxPI4OPxiqCI4eWBDZYHp34d86/cVP0kc4fey77iTGcIr95kl/lU6auB8Q4OzZLPe9GjHFiCZwIFOQkIg4s7kRtRJieufR+q12vfuN3dVFv3lmV59Q94/R/4T8Z+nmM919iJu3d9d3hjtDc3+w02s5u+OrxeJL7zTnZ91Pf9F9/gn6Da8a3j00KHtw2QEDYQ1vAbjuWHeEf2bDn0Hv0c1H/uJDX9zZnN+N62U4X8eTU1muZLkOi0VsG5MFNxSpMUPuLPVJ+6EfhsYcwjJoaEQikyzCMnC7kHaBobfdPnfd0PUKgg2l0EbN1Y1EiJdYmqcAD5SuJA3QrGmr3Va7od3n9t6DsFrEGLGIGlsmyLBXy2D1dIqUfOhck0NBNfPKjcHstWjEMVUH6ghv1MUpYEEQEnHUBmaHRrnu5FwysSZRUtrjOrzkbBFQpWpVXcwipVDezNxDqSM2TSj6KQuROA/sIA7MAU0o56tqtMGcrDaGq97GXPZNCw+Aj/kJUweC0mhvXrjjUz3xsR57fdPV/Xvoulm///oef/1wdyet5QVQN3YgWSHtlNEPLikzTKUPhHt55GHIw5BSSiNIfRATr2t6VPlTM7kK6jHa8TwaysBRRjQVZ77MVPW+xsFkrokJ7lTbD3EtWEPxxcaUEdS0IPFaanmUFF09rtck4usjXJ/Lj4oh5+7v/z/HhLpIdUmpRMSmvpxcGsZUv1PdObupW1bWbCmoaRyX6JgtVQ8yM1KxUssGoKhZO2jf+rwTBF3pviveaWbmB9Vbd83MDz5MzbFVd+wUHSUDHo/erYVBwAhB++jvOm7DJvMV7+6ROHF0GKtyjDfZ/+1/9d880/jsl3++aJqe283Fq83+6ubVyy+evlx+7ZsPv/3t6VJL5m6/u9wbdNcN21fPX16+2n74r/9xu77XXferGPepg+cmNESU3aq1ZhpKMQk8OiVVOl0LPDYLHcw4ICWLzBI8OwVJKZtTKRCcL5Tpf9Mo+DheRGOxEM1OrlpOx1yGWkjHQD4e4lszBABgdyIu8eAxm5G9NL+cokhkng/5I7cSoQuEWLfc3A5w95FxgecTemsqp0sdkCHn0UFHEDiYjJSsASdS1faDu5ePX11/0n+4bJu2XWx2F5vrfZtDwoaNh2TZ1IQE5AZSIWsSSJgEFMFl0w9CRLJciVL0tcqdtrlahtVHw/XbKb+0mx9h+Bz5z2C/RHo/3zzwzYPudM33bu7cvR/OT3G2bL/5jfbeo8tPfpI3T6RlSoP4iVMwDOY9pAP14DVo41nctu4X7P+dpz/X/oH33+jjw+HF23yyk9MQ1hzWd5v13bBaUBCODXOQRWyb1haSBul3xajOqiw5hCZQEJIQVy01mZpl6vY8DKnrddhjGHy/JSHOA1MwQ2ii80Jzm0mFsuce+548pX6Xrq90/+7i0Vvh7C437bJtje8MjrRe2PZEry58vwXE0x4ovXGKmxeoJmEdJpaI3PSQGCPBOXKIzmEsz3mDnzd1+po4B6koxxLjLu4vCZGU5ozEPJJSOU8FNilUgzu08ATLUANRoIUJOzEZzPIKPcZWsF4qhl8Dll63cYHa37PmVrhPmuCQPjOyS8532ZGDVdtIzNXImy3s458u1zSzbGagEjG0DHOX0h7Jx1YHZO6uZpazp5SzeU7W9/0wDJbVzIrQLUqUpnQyHONkTj5+xiOzxMHU5mIUFQUwYrBUO/7SSJRLdCTTiAq1LQHjT3vBjJXAcCFyIh/jr14n/ZAaVm+VXvfWy7qZsROUs/lgVFVbq7pMc7v/tQmYkx+Mb5WRqd1dUeN0pQjPHSajLWJmyTQJq1vORddCVfOoLEdlXNeMEanzZI0davBo+vPYLQaBCVYZtnSmg8tqqzXolT/da0ORUSyPTzwuKJ8yAOj4ozpp41AU+hT/FXXARFP/82nUKoUYmUp08yXTxW6zfvuD9en5p//Vn4p11/0uOwh9d/P8xfOnWN979N3fG3YbnNTL7ra6DHyzvbrZd7i5vOl2J9/99ebk7s2u4zbsPDUhWlbP2YhLKWHpoAImAe01n0nc5YFDQ4P3moOIqjNRIo+OGHif0kmz6Cxj3MBH5smbHraYPzwBYmOZdplanqq2qwdbpqRUl92ufDArjEVCpVLTbardlYlLb8wWqW29XImOZuEgQM0AOoA3gAiZHRz0461YN9j0/nTaeP88g7nMzIhJaJV4z9lYsB8Wp2f54+unl/mvNSfa7Tf58qa1FbNe7xOh1K9KgAizIFAQj7JEkCAQzmw5Z5ijz56zdNZrG1z7Xc6XmbuNsbo3aD6K/L4PLxTP3H+C7gt99h4u3+JX16/uvFg+fPv0/JGuW/nw7P6dr9knjy6++DE4OlpwZ7JH7uBL6Cn4lQdiiaBTqCHtHS/B3w+7Hxjdse37ev1VtB/mxTnW17z+Ga8eNierxdlZXJ9yXElYcBtioOVymQcd+pxSTv2QUuLAYEakJUtslm1sQrG0+532+6G/Ez3nfkNuqR/Y4bnRCHRBN9eBbixf+/4i5M40dZ/th6HTx304vbNa32naFe4HnK50uw0eMi9MAyDwoXRPKku0dPeYrV6jWSSQOJA0LC1C4yxuyV4zyQFYIQGuhexlwxMROULp8QeUvuRMYAITsxXdLCQizKEmPwcikuAAjGGqWXN2d3gAZ/dCIWNr78lrw9iyqaY+MFXtGWgstZw0aKmFPexQJrhXzLR8cbYZ54rzFsyDurPKbj7e8q+9nl+nbHCzTOxO6qV8xR0Hwtfq4qlqzjoM2qecc04pDcMw9DUATGW3Wunqjtn9HI6Rn4e89Fgfb760xqs8JAQaWb1gPrGeEQqdbkW/UA16Rk2fNqrEUDyKmRIDnqTE7ZuZrlMG5jU9cet4c6PxcvPlkwmtniZlbvEci6zydFM9cYlpFxAHpuZyMOAAqCGruVBxha3CxAcneP5v+e3K7H3soM/G7mAOmhmI3fxQjzfebb3n40cuB5vrobD5dWCZZoGS15ff4VIHBUwzXTKnvsSxR+XuvdvClY32xM3qRF8+/+T7/0AX2/sByxf77c3N1fXu8tXNy13+2t/5TRNFOkzLxdOn6d6i6za43KarLXj56L2Pc6fiJpTVNCgbyLn08yxGQhk1Sm4NS2fGFDybCRFYq4KkYA6yTB4i95YZDBlzPl9bEMCRciKAvXZZccBnHbxFpHTIBOqyAZEb4GwEPyb5A0AkTGw1lRQ4XM201rCj6mageF6RWx3x5PkytXGBzsqya/XYbDamIkmY5RIndndVLVFjIjLLzKHURFJNZjGAsru4ZOyDcWK4OeKeLXy8+uSfdReSsekoQ9iGa1ZRNyGSSMzCsWka5gCKjEhtdMBJmINp1qHTtCNLtkDeKQUJIYT2JCeztAUJRJPvIR1b8NQSDZ6+h+GfyP6refPu9irpnZftWyd+935s768/fqBvn+5/8cvh06fBT6RdWLPz7jrkYHrfaefcQwdQstiQR9czp735U+SfSf7H6N7F7kt282WL72DxLIezvFrx2Ymcn8vpulmdNvE0LJYkTAuO1tggqVMbeldzCR37ICQSQuTQkjTrvMyEXkhJ71ufVBU5p+6alo3sYxef5D2wV86DGnx/I7pX6E3enj14L2dNZ+tmuQphlSWCJD1/TkaqSkpk7MhUuQ/JyRwVL2EYYAw2EFMgbmoqjyt0InE+ALm1Y64jhKb2x3UvoDERlRCKkfjIQcEcyqJyYooNc6jrPMKMgjZOnknZnNSZolMafMimLZcmrA0P1/fvXhN7MDUOVbiYVwO6iBH2kpLLXHpceBEsXiDCovaslAgX4iWvWM0ooG75WKOwksKSxQyMpYb+mrY5loYzmSjspRejZQOD4IilKbw7lfbwqlC1nFH3temIPw9qg4+mOpFDSl66gWoO5C2Aiog5yMRdDAdxae0MrlhXAYpBRCQlq2NKgimuoXoJcJbAAZmpwqngUAYroD4hCJgpGiVCytoJRWdR5xpOdiVWH8srQai1vPWObSQVkTJ1NjJezdTqEbjCo3rCKMjsmHkXJRztXgqdIZjgjhFWd3crcWFiVlJz4+wW0FneWgqKkyCqatnJGQV7zmbRs8GzRScpmYDBkRAjM3uaVLCzu0ceCYuKJAaV4n+VSs2BA2/SZH2hEGO5lw4PbGZahHlNqfM5mFoi0iV76dja0+lhi51JpR/wNEwYk/BuLd9pKN09hlDKc1lkSH0b4p/8yT8Ybrb384b768sf/+j5py+eon3/j/5F+eC97eZyjeV0HUV7fbXxzWb76vLq6mbxnW9RkNyl2IS9DosQkWseJ9UAiGOsfsUMlZp7fiMiWz5yFD4dKEPoePrnV5jtySq28Cv2rc9Khnx604t4uZ0K56WlzVQ2UEhwiTAv0sVRzeKsYTDm94k35tnhlmF1eDQ5rtMj8qmc6fgOx4ZOYK/wFyZUSlXfj0+/dv1n/+XmWyvqxBaJOeRe4yKysESWSEGkaUnERVwaKDMzgd2cvSFmNd/vjXx5dv9eNuX2zBb75uy+77d5GOTqen/9LCeYKuwa9IrthfC2t6fo7mD4sLv6uH/1frg30ONNvr9qzx+uvnUnvfXB5rNPustn4BOsFjn30B1S47YnTm4EG9x3oJ3mC/CSeKf+Ev4j5F9g+HnAV2y1NoTu8hGeP8byJa0XzelZe9L6+d3FerFc3oWsfInQBs3LnHvrd57dBsDEyTUwNwiREU5deyDLesFkmnNct82du9btfCt6dZYvr/1mS2lL/SX6Peyl77c3+92Qdo2/49TE5epeWAzStG07rNfbL8gvLkK3dYfZUOgJeOocR25UGtCLwwvZPDPlkkwAh5emZxQoCHEmygwnDiFS7ZfnRiVCKEaAtKXV7SQvqKTnBCEmCiIgUxUvRU3GAgc1hcYZTlBYEs9O0axbLrDF9T26+fr5Muedy2gxH0zJcUEewb+OSiY4skzMvVtHzQP+1cd0/armqyF95JzNz5xtmWPvuXTugalrSYrTWhxBY2ixZGB5Ib1R1ZRytx/6vs85Tw7T5MKjtGypbijPmDLAYUy3LEY/H6s0qmxo07zcehz3imIREcBavT3m2niv6gCIVFVNBCdyIcpc04IxFmgRiMqyOIz6qHLmjh2OM2bcyPm2kJzf4Tz4NTkSk1a+NTVvvA5ARIaxFMyopkVlUzNJqtk0ac45q8rk+E7gc5X2ChbJnt1GGkuiUjeU8ziII80USuW3+ehXH+VC++Rejx5ydtOan4GJinJmlxw93a962OnkWRlSLQkoiPyRQppfRXMiIieQW8MsgLKHk8Vnn1/sf/ZEd0q//o0vf/0b7fped71bcuzkUJ8Xz9b95mrz6qUO2e/fO//oA1VLpJI9MsPckktTqrjm1iMpkYyg0C1b+CBBZhutPMJBcR7nMd1aBPOBe/39YgS9aSiMXltMRNWMHyskyglH8Q/3Ww9i1aCn0Tqy+bNP9UVTBJBf+wjT9eeqHQeDYzrrFrnH4WpEZGDTvDxd3vVV98NP1uf3ensVuXXqm5O7oT2DM0vThDZQMHN40EzUAqjdNJtmKYx1s+yWp7bvkpsEkoAejTQnWJyh26fTO3TzIGy/hN1Gt0+p/9z2PzN7ifD9mJ8KfpTTn2j/Ub78xvXLr9zcf+v88Rbnp/L23dXDb8kXj/IvP/XdVuMZyYXFpeUdckdDHwqFoQfh06QX7gHaAA8IA+Ha8Se0+0oMweMTSz+0zSldnObFeR9XWKyH1cP+/JxPl3JyLmdLrJjQrhdrV2iyNJgOKamicx5A2DIzIkHYKRIHCVEEHtdheZ5PhuFsqzc3vr3MN0vbX/BwKUNSRZ+DdUEzLx5pXMQ2rpoQm9BKaPbNF93TzzFsoA4yuJZ+BbUqgwQsFIKboTTChZFpCccRC1GAkIQG3BAgEly4FDA5k3AIwlS0L0DCEGZmYp6YpLKbkEgRv5aR4EoOIg/EJSYjDlYkBZFzcBRwepDd8PTzv/mdu6cndrXtlrxQOtp08/WGuRQGUOXs+Kcfln3RwYd1PMuoqkyakwnOXutCjo+ydedLfS4HDlerRUVmroA6EXFJ0yhilwrAXARzQZ5TSvv9vus6VZu0vvlx0pez0+24at3vhb2ktKCgo83rU94ojZSxXrkZp9EbJcYY0T2YUF7zRTiwwopj6k5kTMHMnGwsXg1OiQpdgTvGom6gOhDjENkYoZcxrHCbKGKcRz92MDA/QSYuxeOoAR3/OXunGijlfTPLZMlyypxDzLBBc06Wc1ZtVDWrqmrS7KWcqCbcMDCAI4F5zFiubiQzRpaxYuwSqJQVmJmalhiwlQpwd0VVvQCsdCibLdRpQKZ/5+rp1pnjKB1pmYMCnltnfjzQ8zEVJxJJmjxbG2K/27erZXK78/aXTj7+mkWhvvd+3+83HAIQAg7dkNrGSNM+pZd99853/4V1c7JPyYU1acNxKKm1RDx2E5pvWswMw1u3ND5Cfbxq3VQb5TC783GZXvC40Ut3zakc4mg0Xh9xMrfD0j+ejKMZKu/cWnZvmD+avS6ZDT5vGjFnejs87/EiPujj2ftmJszTkp4Gzgo3+oiH6PQsN/d+/6X+5uLm//Vs4yf3zqIv1ut70p5QXJhDJIoIwSUSEbl5lGyqgJmbuQ4J7k6NrE/vXF7dLNdLImrP1lJoIV13aYus1g2+H3Szz5ub/vplvrnE1Sdqn6n9xPxnsL+P/h/h+df96ts3L77mJw8Wb2/at1bn76/Tva93zy77l8/TVU8Eimdoeg9XSTvkng2JLkHn7A1o59gAbr4HJeSfu36FfGH0DPZT0wWlE3jL4dFAiyGe8/oen53w6d149pYsT/MpSbsKywWtgvoCap5yHpLlBhRQeCmIJIA4mGf1SItFXCY+XaBb+/YsXZ0Pu21+8Szvb3zY0MtPtd+43gDvy5374XRBFIhPls3CYxjM7cUz3FxJMCeCMEitpjI4g6AqBcAoMo0ILCLiOUhsddFojBQikwhHZs6mxdJnEQ5hXCvV6CcJYHYCM4OdzDijpBk5hMiVjd2dPadMozmszOYggziB9+xp//LZfbv+G994Z5cHYhdn46NswWkP3tq5U3u78bRZAlXBZMadNa9QwpxPZrwisVcE+7BtK+Z0yz5+o1lQMjrcXUvh/sFqRw0fadG+llLK2UoB0pQiM4GNXFPeKqkTkRgdFQ1W2stx2xZbey5ASufTo3suIQMuINWcNtInGhDm2uRgYjf04nhb6fLBADEHhxoye4kkB2iuKWJut2uC69S8LmnJj8TLgazD3SFcYY3pKygWwEG7+0w0zcOas2vOhHO9g9Lc15J5b7nLshRJmjU3mq1UJY1QdJn3UL9YxKUAAQAASURBVKePmczYrKhgL4vMZwW8TKQzvXCoQDJ3VzertU+mftDB9d6oNGo88nonm2O2tN7g/k7nlk9DcZLmz2+jDsZMpc9XUs6ZWTgGOJqmzVmz+6vFsMx5eLWPbcONBAtDP7goN4cvXv7oZ1fPP3s17B/93u8sHz7I2x7LEFVFxFLm0gCsbBL3Uocw/fR858wfuNAVjY882o/AlHVyqynJrUHREYoVkTkaPI33hEUcvkM2JmO95i6PTuzrR20fNt7oNEOjefErwYqpMqF8Ze7jHk+c3cqVGH+onHNklM20uB3QJwcTfZrfw/Ls0VvvfnZ9tTi7e3b2cB1Ptzlz05SvW+6z9sSWLXXdzjtSTewgIi3lYyGyxK12Tk79ADURMeIMSGjuhOju+7D1tfr9c8331+n9bnPjN1/3/TZdXA9XL7H9KQ3/BPoz9D/Nzx/g+hu7m7+6/fRxfHR/8eg0vnuG986Xr97eP32enr0KFqldKGXtbmzoIBG8g964OxnDV24njM7kpfnP4Y8DvaXxntvec4rcJ30BC0hr7U70ZQCt+/hWu7q/ObvTnp7G87NwdhZOzsJyHU5a+CLB8qA+KKkxxB0ZnhEICU7qgUV4vUR7Es7O49Cn80e7q+d49YXsrz1t8vPPicI+x1VsmnZlEhGWi0ePJbbD+vTmiy9w+dyMQInIicSZHWPTPS5MGqSFLxJM0thiJSfrsGysbUpEl1nIUfr9EhGYpuA/ahvW4rtMrJUMcrPBTK3PyAoz1uw2mKn2HRXsUxoEJlfk5Joo7vb7DX1+9dt/eP/8LvprSNOmnCduo2lT1CVntfPgfB0eTFLoWN9yG2qagZ5HPvR8ofsbdXzddzYZl7dEZL0NIi+2Bzsf+LeLAi5FwOyWVX2qOfUx0UZE1KzoQhrvEAAgEJbj2tnaXFZmSouIXkvSuXVQ0ShQHJ5x6stgo1FV0kUFKEx4QuxWJ17gVutrYSU1zq1kbVGNPb3OGFKV61H57xvVzHiXVUCZ3XZtbxEKTSL9dTn2ugAs8ReDZ7fBtLPcZelEUsopaUopZxk0RNVszKAa3eYYmADK5qQuemRhJMsA2Jm97pZyA3ksZnLUwlAzy265VDq55dEzvtWtC6/plPGdNyy223M7J+I4Oo9uGTtzEFO8dDRzSykXDUfAqjfVtFy32W0YBiJqmsZS8k4mLuju/UfLt+/8lbsP7e5DG/YDTN1OkqdIiRBLG1Izq/v2zSvyjQ88nlmBAkLtB8mvPX+BrF4/Xu/gW828X6EXb/myc2tokizjOzTqOQJumxF1RfoMdfCqxseLv2nFv2kcipABUFj0ynv1ZuansTOz6e1JZ4FAnt7wDvvmyx9/2YPyIvTpYrdbiu6uPx16zdmQNKfecy1fjif3JIT1YhnbRQhNcqgjqXXd0EbJ2/2yaT17VqUQhy4lDDBoLp1n3B1NK6DWVmfZOn90LZtHfPONfP0308VPbPdTDH9J/Z/L8E/94lv64q/uP3k3v/Ug3H8obz9ardf9ozvD5Y2+3GC/Dei5GbJtLCezAD51WZCb5BX54LpyPAE+U0TnR5AFOFkWyHNQy0iEF65kcMqf5P5UX/IurMPivqwf0foBn91r7t1t1idYLihGaYMyzBQe2CUoBUS4mxaCIvfIaBtZnTSrhh6u7OI+vbrobi6s2+dXN8CTFtnu3sPpCS1OmrheLZbd+sTv3/MvPh22m3R95d02aKqt4ApbJLExHERxQXERmnWzXKX1slktSdiKOhWGwAliFA5V5lWJuZdcKHJzditqw1SzDkPeeVbsE6XMpp46T71bNh/gLNJSXEiICiXPhEzDXnfXZ2fL3/mN+xhA7MjkgXAsN6qqKLHA2WIj8KRU6prHuGJnaFB5o+rmmsF6e+sV8te5MUoVy60//WadUb56sLlLZJzLvlH46PegpLrlGhrM2aykkglRYHE2M5XRG68KfbzqP6dKlkaPcWJ1eKMcH52Kw4PUHe2Y100fjIyysTmU75vlwhDtzmOhRC16dFJyBoXSdeIIi66R4GPtO07Emx9nRkUyGlXwOZPSa0bS6zqsKOzZzFJRh6qa2Xq1Padl5iG3KVvOltRyzoNGTkoMMwY5SwnjOAFK8IO/VAGJiQhzEtREpGY2dgVWs+IBu/vcAZvf8K8SyH5QXr/ytOkS7h5KShrMjWoMmEFvHJpyOUUGQbMCCDFk1SCSc+4NRf6yMcFCCCkPIuzhkIS1fv9DCxjUu/1uyaAmcDYlMnNmtmwgc5kiDUfbbEJd5ybtNHxHHbCdUUBsO4wHHVLDSxQJirq4i32I42SB6WrzzAgHDsbUSBlztKRGmsnXBvBw1vTp9Ah1XbpPWN/suzOvHAAOTEDu6n4wU0anlsZtw5itM7xWnlGvX5vbuLuTUQjhxasvfr5Pe2z2z9ytWyS7RrBuH92TM3Fcrs7b5ZpPlov1yerkNAGqShA1c2c3ZpZA2p4sKantB2pauFsa4qLxHs7iWWNDnpO7E4U8AMNZ4ACJaFsn5zXk/j1+cEe33wpXf3u7+1ne/CPu/4J3/13e3c2Xv0HLb/HnX2reuhvffqt59Aid0qur4fnnu5fPkCLiELgDdorBs2voQF3U1tFk+9ztpxicwwcUGywz5zXxYGamBt4DcIfaNtCNpUGT5U0AnSO8tVu8R8uHcnanuXM33LnnyxUabpomhCCR3QIzs1GBLHOyAHZjlZPl6YkvT4fTRbxc43JjfdZ92ly9GkhbdoEjLCgumpOzu8v1cPe0v77pXl3kiyvsdpYGsww490qRWQLaQOsVLVe8Po0np1GYg1T5UvBNKXdRQhJqqtCMkvqn6jmbwdVIzTTpMGjuNfU57VmTdztLPSObJmQFQNw4iweLYDMDO4J6hHeGJB/9tQdv3UHeuwXjbEQBt4XUIatorj8AlPjcMYczppxHHHBagJxHtNP8eJ/+CpVQlDhQVFfZSsDx7j46n6ig96XV4iR7rfTBq0mvhe3ImBGElChw2T9kY3khkRfxBLfXtxuAW3hv2fiYKafpDkvNfokuE6S2IRq1bxFodujgO5a9cnDPk0XCzOTsTkzB1Ykchda7WPlMUTgluOeJn3K8gYNwmywAzPCJmY1FGH3fuRl0+Prxn5h5xr9qOvzwgtxdzQdTyWhgnYSkeRiGLlFI0gwSYx4YouTB2cXg5iVWQe5U9Jxq8Vx9nB+SEjio7ZxhgBbGDxsh6NnD+lh6CtRmzK+vn/nIzP+9PRqz5Q0gjMNnqHkBZPAjKJ+m2mEioqQphsBgVVMzIkoplbbo6jl5Chwbi9TBJSQaMPSHS20UQXtPi7bNgKe8lngZdGVsGSYH9IpG07E8PDt8zNu8pb2KihzbC6I20HBiIZulsgURAAKqDjIw5gAfBuXWn+UnqqE+XxwFbHGb15PVW8XxrnvDt2+bumQHQ3a6DXcnOSjj2TXtNUd9utAh5+MNinYCMKwCMlobqQBl+5oVM+FBc/pPPv1i++JTPN8MG9stT5umsdOH7f1Hp6uTxeqsaZexbUwoAwNjyGrmXGpkRquEIK0RCWeWfti3bXQkUjlpmqy07XaD6m6/k8iLxWLwpHDebUARjqwdjDi3cfmwWe3TA1t3H9jutyw98+0v290T7D+j4b/pfvyD/Q/PhsW77eN32i+9w/dPVw+/0Q7fHJ486V++1Mun1F0wzIOb7SCbpD3yOewh7HOiT81fQr8CfgdhB4+M0rrt1LwndO6caQEayDvWHnjl+sL77/kV8rM7me5T+26zfl9O7u9OFjhf8OlSwiI2LULLoXGCiXuMAKIv2HQIaO68tVjc2y0udtfPpdv5zswpKfI++dmJ3W2IhWM4PXm8Pn/gj95L+13a7/r9Lg29qjpTiMwgEQlNdAouoV2soJ0SEoy5EZANmczF4UXAKdyymbmaZ9WcXN1UPaunAcNgaafDXoe9dAP7YMOGbGtSEgODSONy4iwcFi4BJCCnJvCa+9yJrb750dqo22JYKbxxDOR8q9DAb61J9xLlmizCI7Ct7npUhekHIKpyMU7lxTRD6YjYTW/t5XFLznfB0V4o161+NTkFEuaJDMnM1FWVctack9rI4Uk0Av1j2u3YqWy8L5uMhzfK39teIE2sFOUc5tkmD9UhOjyKULVG3B3Ox49Y2sTSJDeIGCZAoloAxmZEJEQZEGbEKKo1jjcN6ewYO2fAKmmuHWTjFNm49VzTReb6+JZQupUuOh0KJz9aM7WzgmqCJ6KUc590GNLQS15MhJRiZG4QhzoIHjnWXzEqU1m676ScqHSy4uPQ3qiA1czdc7HBCkd0ycgr+mLUKFMLzek+56P3+lC8cYjMLBwGQscaGpqnpx9dQlWJWHOlTfMxsDmUvrNGguDqKoYGqopcCu3GrzcZgKBJqbqdO8utk5bKOQNARlXZs1cHEGTElRb+wClaqqzKEDhcUclgC7M7ACtlZSAiESlhnuwuXOdeSgFwYZljnvjPbj24jfuq+phGDlOoQLxEVyYf3Z3BWph9yv6zDHfnkvR/aK/tMyu+NGbCHL4gwNktTxPsIxzks3ZdNYLnAJgd1UIfs1RoXP3EwQ+7q+jo4IUaHUYuQCILFJfoUufLjhar8w+uBorbz4W9eXz/9O0PKZ4P7Xph3qxOHM3gKWNxanHrXQvOgSjF3AyexTmxL3tcxaFJWT2mQXPTLc7P1y+3/OLT3VZfnjf37lH/t7+hP39555eDBDFriNcNKDuM+SzGCJIeKdNyBbNuAC+V323y31lEGnToh8vT4bJ/9ZyujK8ubv7J922hdrY+/+Cd0/felrcfh6vHu4ur7sUz6l6C4mIXurhnSeYi9IFb6/45hp+JurXvES89Dk6KDNFodgIksgFByZNJD+8ZCb5327E/c3uK3fdSt+hfnUEeUfuWxDu6fhhW67A6RxMQSZYxLSJCbKTh0Do37lDx5nQBP9khy67L250ki/0QdZdsy+uzsDgha50pNw3Hxfr83so052xwVi/iybTu+Qp0cGTLYmaaAWMWg5pZTpncLSdPmVRds+WsKan2MLL9oPuND9fIG89beLJ+r4XJ3owpGkVp1tysU7NqTaxdgIj7zpZx8c6jxkl3J/c//OV3H3XuKg5CiEPcNYm1oGkTKFrRy0n6EBXKhsmAllKZWkUhqFTS4zhgbDhAu+5HzY7c3V35Tayx07aimT99pAiYaCStIyJV1Uxm5tktq2c1pRIaDEZDLt21a6yaAnkmhRnMS8MpUwAllDw6rLNIp498dhyq/2AZcCEHECQWvQ93jOQkZkZ8YMrzsVBllBVTGVehcHECsiUiYkip8IWpuTLzGAgrclKZgkM1D3vN7iAK7upHLZOsmgckIGcnuHLJwiOh8ePieBMRC83spVEn1SsceTXTCbcmq/5pXsHq+ngUiNUtO7Fjq96anbotNLUp5Gy7IYcQ2DsRMYlZibOJeJ+SiESRkVysVtWTUWG9MnMXN4Wzl2pmdcsF1yeYe/ZCDG5FJqeScY2yFKc1RJOUBlAS4koy3bzkdf6ANANkmMelgGNrZe4RHrZN+Y3aFmL8yuQpziCFecHu61uiKLU3WIKAjTkJ0/UnI7pQ7k3VzdUpB89WzBFebYen9VIBDYBKfSUVLP0QbTXClA1x+OnjoQBQqn8V5jDh2w0y51hYAZN5ioX4gWfl6D5n9VE+87/dM9x4dPrnCMTxyBQIrvRsKcjG0RIHUKqB5+VG5UrmpR+sKoJCYcnlOtNXLheP4tnwiN+Vs0c33ZAa4uZOKydtNj1fcObMvBqAlWwErGGf/eQU2AKQGG0YluRXd3jdnWTmzDhdJArYf/HjT7/19ge//Xv4H/ze+996d333sbd583f+g/+mP/v2SrDVvTc+7Ha063C1G568oO0Wadd11yKNZpPFQtoFn63SHVmfv93QffLh/Oz9V4urcP/841/7Wre71n2//cvLZ7sfx0ePuw8Xdz/60tm7b22fv9hePOn888ZXzmS8U98DSwyn2H3m/k/R7635EuQMMGLRuAIUae+2hMIdICXujXbwBFdocZG38A72FPrEh5g54nKVwr0U30Z8KPGutwteLNCEtFpJEykGEiYiVqd+aBTQrVqw1PV5n9M2dOfNmWNp+9WpxEakIQkOAwtxCEQ5dWVdSQSxCwim5J7S4OSO7AVZdtPUp5RCdjNDGiwlSwk5QTOZp/2OVH3Yen9DukPaexpgjthDHbL0uPRwgtUZL8+obZccEhSuMqQ+8Nmjh8361MyGsPvgg8er5abrXgZZEjgPmcc9PRc81UOtnuZrlITH9e5vEhfzdeuYNwgqJT0Thne07Mft/ysA3unkkdymKODkKPQXxDAiJ3cyJUfO2cw1Y0zDmUiz3aGFq9LHTcpE5nbr57ww+DCNZFUVpaDXTP/5n1q4uKscrsq3Pqw5yMY+UiNaVmsofKp+LJypxcopJlFJUAWIWHCLzOCoUdJ8xEr7OCdi+/8R9p/BtmzXeRj6jTHm7F5pp5NvzrgBiQBJgCDAIIlZgZRM8jFI5HOZpVDPCpb0HEr1XJJtybL1KOtZlPkUnsqKtIoSKSowgjQJIpBIBAECuLgXN6eTz9lphe45xng/5uxevfY+F16Futhn717ds2cY8RvfICv9pwf69Y5L9n8Z9j91/YZwoxJPALlnjdi6NebL1DaBW01NqzGmVZuIJUrI1puC1GAOsJM5EZeFgpuZZJ4bV2YWCBG62hcqaX6CE3JKuPd9T9h2J8d5Sm/ecb/1v1kr054E8Y5zdFLWn/4TgM1BnNAxRDQ8YO4DVpf17PtQIXFHl5hv12sw8Pr1SqGsI0d/7vwKg7ftippy9bJ1hgajo0/zrm3mejRrNax9AZy7D8sn0BNYkPUYBPaC55I+ttYHvb0bxqkFQ9eHi7qgXJfTfdOT2f+7G1v+8hpJ4V0Qb21NwKhwrZJ5iojw1nNFoDUe7TC+8yDcxela7cax2t1SCi1kugBtVWedqgnLsvJ2NKG0GmHVRt+lyfHSRCSKi5tUB4fX2quHR3L91kwa9xv+2s2Dy0d/9APxp3/iaxLaBKnJycPN43Brf07jW83qdrpyM12bH1++gdvHRORRUFOINgqjZbKANh3f0CuXQ3PICIcY0940bD98Yx5pHOR29aWDV3D3mOo6xnr8yIOr/dv47JXbzXO4797te+6bnr8wXz4yf/aqHVwNoZI4TYsDxUjGU1q9qPo6tbfIniK5x+tESkYVqkimbg2sBQKsgk0BhajxPnzGfoYtsR+7Hbkfky0Yt1LzmjdPQybGM8eWhTOQrSR7FAPFiqSmEIgrOMOIfUXeOIKvlml1bPO5Hx3baGo72/V0yqMJxwoc8kZmDlyN8j4hd3hyU9XGk5q5JdWknlq4e0qpTda2ulqmlCy1pAneUpssNdYkb448Nd4cUXNA2pgZeeUU3bZ4NpGtMzSZIUxHo6mTKMPIRkhpfrjU+fY998hsa+U+nW2H3eXZM0um/UjsjKZthPqWO+5kPbcfDVNiuUqH1oJlKD2s6+CUUYTUt6R177p3b6CahvL7hEE//OXQLj91gphARAISgyVzU03Jk7kZuaaknhrTNqmSqptRxunksasn8qJ9TxxRx0l33HPbSWSoRLGDOz5aJ9YyRY6BhNESsXOYpfUN3XuS5p4AoRcvWWIyzGEoGre0P89uDgAiOZF9R88cfjKt3pUb5XBGpp6AUlfw06+F4XRudONzwjc48Tmhq3zg/iU38swrokttFxqWJk2KTdPUFS9WK5KJVMGIDVDQyiywZEyldGtRCiVhpErskpOIrEDuvuyZ7dk6rJ960cF9v4eOsnA94KGuxYY8X2/p9fWbiiZfuQ5BD3972jft/7uexIG6xcbhWV/2ZnEGd4d0/Q86FTh0wQef9fDyBTlGzyyUk9MDoPPw632dXDm6veIvAypUnpbPgJe4B7BGbpV7Zq46IDvh6iDu5Ej2L2mNAMwTwrluxAu/KE65+19h/fI+KHAH93Wimtf2xIk7DA2Z3k5Gf4pz6moYHXKYG+cyFcDhwUV9tZRLl+u3xUPfonE7E/Utd2VuWh+zI6CRNFpMCNqEVJO7T8ZoucENTsFsrrfn8y+/sdj3r3kqftdT9XQSv/MDD/+Dv//GB18ge/97HvneGbhdrNJU4pLnlqzeTudo+cIXX9J0gP22Zdm6777x27ZkXFOsWvNm0Whr51vZn9+IBynstKujmzJrfHn7R75979/+4it/5vve/f3/2ddVo63Lb8yfeWn/dz7+27ZcfOmlj332xqXlzl6qYrz22rUvPU33X5zd+5azX3f/4vJZfeXV5vYbWp0P1UJaWoVajm9qesnT5xBvEB5i3qbYOgtsTLSAEMwJEeROK5CxnDUzQ+ui8Jn7FqwlJLND1zn8CHrd/RpM0FbEteMcUeU8AU2URuAaEpi5RQQJcYAIzdlC1NujNtTtbFSNt8JsR8aTajKN1YhD3Xctc3eHWkpqrbVJU8MObZOmBimRuafWUmOpbReWtIEmJmMkatu0mlubSBdkjTdLtyXcISPEba5n1ewiz8bLiurRZDSacBUTiImw1HD9+vz2fnVxD5NJUpCwrpZha3cyugZNZJw8ERHX0rQrlggiOFsJIJzwArPhzndsqNoJDXF3rEv08zdL6718pk6r3hNCcH2aNh+9PhcAMkaXKmNxy6H9DA0rEjtPdpYiZimXzrv2tIBqntZ6kUo+zpGLRIsEODFOzjIGBDABxARzIKN9s6ns+ZDm7Cc5l9h1p9GJCKWLYn5iMctKMTRZ9/JaMPBr6j3r2HtOx+qzK8G407rcWSNQ9kzcSwQ7A6m/kiN3x5837nknL7NfSjNTUGu+NFuptZpWq3Y8Csys7prlsCqEFAxnJ3WSlAHssA78rHDNtdvBBSWIDoM7k6FQkRvBOiS8ZShFHsOmu3haLZ4Y/PD3NEA5dNkQCqff847mSW+ulm10Jw09NHCGozx9t3L9mw8dp6ykHvycz2jnCRsgtnkgUSJLOaLQ+ZX9AjvLIFpOdwoAvcn4ddj0M/8+Nyvtw+bkJW/RPatbrtJ5rRRa9HcY5AnWurRPCQ9lSnaj8wSsx5b7r27mCPIDvJ9D6k3k9dFiUFbA7kyslKKQNH7fG7Qro5bbXcHSXNxJyQLRDNUhpiqrYCrRjpVtdXD7lTeOrt9Y1ePw7HXaf7W5/KXves+5/+mn/qv7H6Dt5Kjif/zZz/3yzXMP/Kk/+Pxnn1lcu5XwUGroqE6RJ7fm6d7d+pG76w/dmO+dP0f3bW/t7CahBjheNr5SSQBFsN2KFi+cDxdG9ZbsVjs2lcOXXvqxP33pv/gL9zz6ZE3RKpPHnqDHrl//T7//h0bT8ac//cLP/dJzZ+Xm//LPvnDj0gPx8Yeap3+v+djVwzOzrbc8Wb/ra/XKNXrtFd0/UppSuEWjXXgFexXpy7481vAgeIv0gsdDQNi3DObcMhk8ujJxJE6O6JTgFXxcaPPCOegKdsQ+JzsGLwlL+LHTPiyQRkNNqJwiSQAHeAVipwiqnSIogEbOwte2tBq3sUIcczWO1YQ4OkUegyBdZpRzcx53N29dDa7QxKamreZoswtMydW8VW2QWqQWcEqNO8EJMkM1xWgq0zNxulONJzSdMGF7NHGR4+BGjCZhfv3W7au7F85Vd11sjFgptcf1ziyG8XZ108xMhSvA0GoqnWfcMyT7ZDCmP0rUHY1N4XBiD5/8+JtKk976H0qz/htDX+REWWr+trtmRijvWJqzt1QCj97VU3jJI7oWOg7XZJ7KaTuha9d47u6Nilbug/BGIHhHnNeXM2BjXtqUulewLnCnDnfT4st2orDMcBf69qKetfdDvPN18lvfeWkGw70jwrzzm7m8kvVhzix17pDEvNOKAZtitnd5h7/vF3x4E3Vv1Ru1ZUrVql2t2IUqR5uJUzQhQUQE5CoOdTPX5F5KxXJomZGEGOLgooATeQYf9xxQCUX7DhVtrwFPa9b+xXv5f9qlHLqv+RPolJM6nMHhdGw8pqOq6f90+iZ3WtpBmFpPDjD/vlfttqZ3zoonp3IDM5/cc6fGXG7FYOa+JSr1nq87oUD8B9qvexBKreGJN1qfiuJF518QyBRdKJuArs44py5ytXy+/vQ4B6M1p7XqNbO+JQYKRj132D5hGRST6sQe74dKRG7k3vfk6nPzzqCUw9Wu7sGdrA2L46tH45H6JJnTahlas2gJDemcqG6Wt4+u3Dh+4+nmxc83r3x4evadD33/f3lws5b3PUh41/5vf/X/+P997MEH4nLRvBxWdyF+8fLL5PeuXr5az+dffPaqOTAObaPzudrKAXrokW18qT3/8FPHx/OFAyuhFhOvnHQZllZrPZnOUFm1iBpu+K1J0072fTk//q0vXvkvfuRRtxTIXVZXn2+rkaYJXV36D/+nf+Uv/aU/9WM/+ke/5z/5mm/6/f/wxeNHx9v3j86Ab95a/NaH6Py56du+avyet86v3p6/doVuS8PX0d7Dqy3Gy+qXvb0OvUe4SdiSGJwZnLKpQ1qBSLGCCyCECQhcGl6pUWJWwq7p3HwJX8AXsBa4BUtACxyVzZMiIF2XKwYCgYmigUECH7lEowCIcZWkAo8ggpYggSigI+J3EiIyKnT4RARTkFFuno22T8GxaV+GayagSHHMkx2Z7fJsO0y3w3gmo4A4CiDj0RyNweJq2b5+/ejKy+NH7uG9s8smeaiTN5PR6FCbKDtT1uTmCIC6m1qaVNVKO0SVD+xFLujZQnA92P5vJqDfTC6d+Hyla6jLUr75hyh7h5QbJZtaRwesqsiaqwhdU1dXdVf1pNqurFkhJRQEWRfOZSKUqCdhg9/CrXHAtSM+yijIrlZbRAjU2yXknnUkg3OstC+E9O4rQMmpD9XDQLN2Q6IEMncFGbxocSI6LTbWvyEb6OnN0EJZryI7iUGDgiWiroTmTt0NB8uysS6nte/QhOp/aWZObMDK0lx5mrjidr4iGk0ShcZDsIwudQDJ3NnchdwVBodqAgBTuDKSixg8g349s633LXkIcC9OcGaJvhMJ5QkdvNYgd4JDn3hlUFFLGzngXiGe1mpDiyb/d9gEbXjNVzB58pN7VZQVoQ8Hd/LUbbClAFjvPL/DUE98yu07DzWHmsG58qfkSnt802lzwTdn0zYncX3lZv1cpvvJOYcOpZ13q/ezd3q2DTREQ/Tr3Flcnf483VYTJQbUo0AHHG+UkeNAXzydkzcCwMFegi5Qdnae6evT25979fZdHMZWhaRhebxsW10ukh5fbl/4vf1nr2J1iMWNurZ3LD87rrb3x3fXW69IqI+vyh/8Q6O3vn12e358blLfbqYR9tZHHtXjl1fzOdvh559bXrnSbu168EbGkwkFBT34lkvj31jOPbhFBnmIC0+WdBSwVY0pGoR1eZv2rx/HaqutEjVHe+Od5T1/5R9d/9gzH/tz3/nIB3/to//kI8uvfWTy0z/5hxegcKB/+Dt/4Nu+42saq1947daLk929dzyoz13dv7pfxYgLF3HzjaNf+eDt+9+29eRde0/edXR0n73+rF5vLF12GrGfZX3R9XnVl+HvRxwhjhECKIDgksMJW+QGauEtQXPLOAdBoqEiHiFuAwAa+BK+QjMHGtgKvoCvyLS0eC0VBIbcL8xX2UcRB7u4S65JAASIkGAFjyoAOwVAwORgUEDu70tSDFVhItJWAcADkQCBKILEHainVM3CZDfMdni2xeMJj8dSjzwAYCdacCOe5OiguXyluXnj0mNvWZyZLJJNYt2aSmQnDjKitp1FZfGmRVqtxmFEMaTUZoo+pjXFU2nvU8oXBpsWPU6HulL8vL2tUwZDAee4Az+BD55xSmQBAKSrNuH+LG/cpDQMhXMuE4V14UZY7vFi8Kxyk5I2aFcpta0um9SsLDVkDbCuaSQnIiV0ddjDc2otO0q1Z6knNC8Tpa4J5YgWMz6/iIhkaiYrbSeo83Gpiyev+UyKhEHfpa3/b/Z41DOfcfdF30hJDrTvxmdTzJJ3HQi0UO+ROcmpYDtyOAHDgMSbQOFOLKsPXLP+Z4OzuxmSW6O2Su08SEwkLVUkDUcGAyxOmflqBQvEktE5LqUc1BxJCapQL824KGtfcvKcbmKCQ92N4Vww8BmK9WZjHv7zhOG4obA7n77oUABr5szNd8bpZh2bbuIac9jf/U52Te5VubkwlA+SSDkYJROcO1Izu21cP7xzWYkulEQEqBlndTLMBa/HY13xj/RJ1S5uvB7Sqddc36F75RO2DwAg+9aFfF77DqZEtoZHgrp/Eqx/hU0tzkSlEneIdkZftABkAK13nrEz8WmCt8FvmNncAXKCMJt1rn1+bcqECQwgODmFlp1NZnhtd/7cc1/ep/2rOF64RWpvp+WRHhzy4TNMk3Pf9ifrux/wy0kmD/z3H/5vnzt++u9r2pd4jpc3G4zvrVkjcTr0ELk1je94bDfd/uDqxrvGYfu1KzevXnn53kv3L9oJk4cdFtW7ZnUdUXk84kUy9cVyux6NtuqVL5Itm6P5rcs34ujsyqa714/oLXsQo4/s3/v46q5Hxh/5uWd+98Ovf8c3PTxpbrkau+ui+Yl/+aE//ee/896L/NLlV/7Cf/1/nnniO0BX+N6t2ZmJvXaYbl22eifU8/TSrx/fuNA88vbq7ovnH31ifmG+vLbbXL+uR68pxrArzF/w9O/VHiR9AtUlCuJQAhNVxgnO7iNk6jZSZ831QSVIyORgspo8sk+03iJX0wa2gs1BK6IVShd6KytSCsUM5Orad6gXuDupKTyjW80sAQQPzkJObjmExqDgFEHsxEjsRJAAikTiFtxr0AgyAgt2duvJdtzZ48nU6xp1kFiHemzOwY3Ilu0RHS8OX3ylWSzOPvZImm1R8tqgZsLusBBGohUHrjklW5FUDFFVA0Uw0Rq9n88c3UFx5k8PC8LpI9bp17yr13x0AznDPnSVBofLu/BYLzGKJsP6TJURmIkEdmotmZM7W4dnNktqqkaqnlKbUtIWTatta9qkNjWpWakqkHqtCYAyT45TyVgPUSm52NINQIEuE5Hl3pGFHbLPFvVSQjV1YhC9ZW5mg5nxTQKNLCiyDu7T1V2XuQ7zVZS0Ka2pMTfFG2VAJ538PVDMoxwFLHOu4qxdqRjgJZR5UivfOWzbD364B4aUWAW6awYmN2qhy4SltoEtptCAjUKTD14mCFMiclMTR06lc7GuHKqAEnLdrIFzA3hikBHMQMKWU8KOvMe6IP7JiRjuvX7w/Q7sJfaJ6zOrneQAJxBS7iMLMjNV7w9PzzZOXWSAupxieQCQ93S/J/p+tGaGzICTTtYYpNTme2ofiilU42AH1NQtq5JcHiCSwVbdzoYxiD3jnsgV0qOFOwXkxaJWFKghIzecAkgg5kxrPzWPqn/ZEzuDqFT45BfeBHZmxyfX5+beGgDB1ABiiJOSuXrqNuM6/L6xNrkCubNYc+oIKMCWviIwa3PpTkuPqiCiHJrOr5A9haRaxIHDoUwEycBLECKKzWPRGSptXJDvreTAbNpefM8Zwq0XK+bbVdM2znG6V8+knT+++8hDF9/xgaN2tdr288vF/uSuH3nj5tbnfv7vPPL+fbcwa2++fDsJFgccWFctDhaYnb/41Q/671xZnHtwF9uj2weTBnGM1MgitVtB5Frb0hKuaFY6qkN1oQ4rP1i+2pofvXR0dmE/8vbJ8owhxv/6B574uU/Zc5+5/cf+qj/4zgff8eilT35od+ti/dCD5+oqvvTqTYX9/L/+/Dd91Vu/9MzBQRPDkm6tzt383BfD9naojmhypnoo7J7bvvn0p1ar1e6lr71949P2mX++eONb9e6Hxue2R089PFre3Tx/afHGZSxep/mZwJ9T3PTmg6xv8fAQwkUeKa9WNqncW6gTC7GbKxRIAd5kkla4kNQU2cjMjDwRnKxxq2FTtwa6gq4Y7tbAWwYRRydxV+cEjcwFGpIUYGNpQQm5cRllVQ3AHZmQQdwdnBMeTFQRRzMAAQjuFYXaTThMfLQj013a2aqmk1DVMpn5ZNRGCRyik0VeLltql+31m4evvsKVnHviUdvZblcH7BOlhMqCKmQSbWtZHe+6jPmm+I4Rt6okKWJqlMuRe4lZxC7zmsCuFwVdImht9YrIUAS7u3saOgadHuUSNlprHfeuEqc8cSDyTtjiQyC1u7ea4HBIDk4mQN2hxhn2lNS0MOS2TeMrpaZtV602C2DpWJKmTpwyEVlLIAMzI7nRhgbC0gaAzXxazdXU3D2sC4IYsFzhm1szIVOqIUu/Ek5QNy+NoosBxxnKy713pR05lxGhdWOAXMkVlHLWWbgyaws4i7qQ9SD1611/obUUyh6UAZk2ySxHU40T3HNt45oPXBhlutkLKDUXDnvXPuoUL1j5yc01hwccMFPW3PciKUEdLeho1TKFKY+Uq5UmqAiYmc1cxaOzmasWraRkcFdviagDVCcmZjA5wchycRjIVI0JTAqHas7+9+joXr+eaCYxHH/G//rAp+2vpK6tn3WEXMGLf7bOCvRfHn6tv93atDzlhp8Yh4BwEogw2Hxdir1HLSmMHcyldDrz+5M54AyGGtwps4D156p3o4l6kudyrE8xPhMAZ80MVl32NDPA5tc8UUrYZa/6YHuZTS4F8owBrWieqeF6lDqFIl90jb8u15RndfTlnQ1VBtv3URm+xcmmZ8OlPWHBevfNDPcb/KJcrpQCxhoXUSegORCSW5LZ3fc8dG7vUWsaVT04OgKTu68WKx/J/uIWTUc7x9VN55/66j908eOTH/rQP3nbix/5V498278bb3/4i8fXXlpU5+Dz5aIZHzXL83v197zvqY/91OHWxbfUh6tDm9dqK2e3aknNiKvf+sKt5fmzUun4wmjm8fjw9aN2GeIZX8iP/vDk//6BB995X/39P/pP//E/+f6Lo92Pfu6Li3e0/+w3Jh/6169+7/tuvHj5+Oq1g73wzDvefc/lFy//se+++LEvP/t3fuSrPvSxz79178nPv3L7j3zX9M/88Lf9v3/85z/5u3zz8Parzx4g2fSpb1g9/+tHV395ds+3HR+c8Tf+Rbr+UHvPN8nFS+Pz472nHh7ffe/i6hW98VBz+S2wZ4g+R/ol6Jew+mpPj7V1JYtjD7WFyj3XX1cChyRP4i25q9CKQiKqsymrPHF2CjVc4UraghcurdsKHqGrfv/nRr8ONgAkYM5lSOYKUvGADre4udDsTCTBC/KzYopCBK2dK4QRELwKmE2r8+eq3W2rZxLqOBprXSl8jFBLXLaNpETLg+OXX15evTE5f3b6yAMpMhZLthEzrDVGzcJhDIO6j/ZoX0JyWlqqmGqwQdsNBOL64Ll7MdBPaNNOthR38LQD1H+GX0EJsXqfh0IX2XXXzgLPRqqcGExPCLxxquBwLTX+Hfg1pdS2qgpP1q5azez/bds0q3a1TO2yTQszZXQqJnM8MNydvO8otH50ay0RBRd3z30YHQAsh+sH/VRLAJwMBCdTIFgplDGjktgiQsg4FhQ4nhc3IJcgG5U0M9yhlrK8W89hxoYMvOQ7wd7KeIYsAu6485Wl1QaXP3sRld67Cv3CFAPozkxY5VlZ+A/7MAZzS+7s7go2p+RoFQmsjsZAXVceYg/uxhIzDyc0Wy1CDha3pGZmGnKNVobvMVnWqcQ585NT/5nqsVQf9bbBV4yiD3fsiU+/8YY7MNDAZaYNuobTR708oIdBnb51f1TYS9rzhAkw/Mrgn6XIr3wlA0Y6u7Vn1aFMGrXuFbpxOJm5N22py7FIjxmg8o0Ts2bdgcxW21p99m+kmRqFPG8mdxCJiJZI4cnAdf6BB7jJN4f+ZzlRwoubOnI4yPKmRIQ1dG044etHU3fb/oq8FEyhm7R8nHxsVUNzUD1nHbFrsljddbgac52kCgYwceXiZmmVqhi9BofJWZV2rHMsf/vCub/2Td/5g5+pf+DF3/6fX/yJ73/w3X/xyuyXv/zAj97zyMsLVKPlhbEJ01uf2Dl/r1gdaHLXyzdHLli41VKzLxfHy09/+mB27rHQmrTtzfZGch/FaSVxeol+42ev/o3vfvwTn3/6V16d/cTPvfThj/3252+da2U3+qgaL37yV203TtvqQlL64M9f2xud/9m/djAb3/frP/ah5vq1v/pnd37+X/76f/ajH3jwoek9T0z+0T/8oz/xD37pU59p7rl09m/8+K+C7wZdW73881v3v7/d/mF9/iebF76QLn+nnXtXumjxwrnq4QvhoXtWl683rz/SXn9Kjz/L+AjjF739PeD9Hi+ysVjrZC41KCqWaIU5OF1FOtY0pjTy0CBE4jGVyv8ArgEmVoRtstbaBbwBlrDGzeAJ3BaokjvA8Krkd7M7k6vpOhKoTtNk181cQRIpVOaiFBAr5toSIY55vLu1t0fTCW1NfFzVHKmu2xiIQoXKKa18gdAcvfTq8SuXNS2nj9wTd89oa9H5mKjmkHRVhahJEppovgpk8+UDZ6+HkJK1pEFiABqz1qViWp/K7pgbumjZMAKcN2mPFTot0U4cxhPyy927mtcSHzrxLSc4tCeR7r61KYWKukvm4qrqcCU3uLq2yVKrLbe5887KbNWkZtG2i6ZdtmkJSwRVQLx7RPYXc0VM5wysn+UKR0La9ItK1sl0vb5c5sRgYIG6cme1OzQr4K77IQjunMlJDEAgsgJ4LlNBBBAzEkpRTedreY7EnhY5ebgZBb3Wvpt/pcEPhRQrr0iGRPR/F14H/9CpcHfbqNBa37VE6PNllI9CKa9SAjuTExykzslD4pAoJAqtg5xd3cjJEQhmauJMufERiDyKMMwJrZubGhDESsmnEzIcJrdwzPg5974zvXUw9aH5eFrrZQf1TS0ZrL3NXv2ti6lzINzdqDjy1t/UB2gp6nZVN5S8gTaYtfMWKQ7lyZT+5tHqW6CsN0LxXaV/CuVYqgPrvrm+aWtvqvNyx/56ANT5x+7okNbW4aMdmymH7rZr1x+di5w1fWkCOqh7o+5Zw93q7sOWL5s337RavNfBJ62ffgyDdAIRcf+oE1th/XP5P+4Ccv2jFUDDlfMRa1WbqXkFvubvev5oFWjfiY0CWZxUY1NfInG0ZC3Z1KPc1FsUwszwpensH7zrj33k/Dt+9Jlf+rabL/707ddf+q27mz/w8E7lWxM2jNxaI3A4y/Gu1dEXnro0Ik9uadXSOPLSlrEaEdKhLZq0qmRCdSvNSH1ypMvZ7n1/6e+/8BtfPDr/9m//Oz97e2vytmpUTaIdtoeXw2j3Qjj0tgKSre4anaPVQTizO7LRF28f8OTuH/5br0j72M0PvjH6lx99/N49ovTM5Wv/+G//iZ/9lY/99//NVz/58KN/+i+8sH9lvnj9Z6p7/tD03T9x/cs/7sd/t3nlsfbGd/qV+7fvu7Dc3Rs/OKnP7vnRfc2Nd69e/7b25sdgv4rVv7L2XuN3c/VWq2tIQx6ER5isbBFhZ8nH7ku3BdSA6MEp1WACKmcGw6RicqJawjQTfVi7hLWkjaMBEhVOKyYIU7As05lz3w1QZvwzL21cDU4cKyhM3RGIazeBB3a2yRTnzuHMGd05E2QUWARsPmG1WDEH0QhVNNdvLl59cfHalWpne3b/Q7o18oDIpI1WUgHLGKrValWzJ7LVMVOdtpvXH9u5GtjbVgI7kaondidEDPp/bxyEgeihzZjwia0OoCt5yL/c0KA5C97ZnUPPrCjT8sROYBH10SYaGLKD45DhNa7mGahkppTU1drSBUlNtU1tk9IytUtLc7KGkCSTnhdOKJAj+wAZ7+VyUsVsh0BEyoZCWA+QsRdCAhj36T/2QJypK5OHHi0PUMqvzN4R46MED6wTUJKxIwQza1WzH6IQVTOyROBchuxmMIN2bQcHnzsUIHVcHGsZMvQBDOukGACQELyQi0kfmBzIJXdi3oQKd5KaZYBY6SKLBMAFRMIRHECcIM5iHBKhdY8KUsuObADgJGDPkEUwOZWeByQMUpA6hDwLRyonLHemQu7iU4Ks7soDxNApSU6bDljnx27ouPUkbrpq+efQA3+6bKtlwB2tJ2gj2jyc981o0omBbSzP8JH5KbkinbChbABzYioJWlBHrGjuzqAuDNBBJ+9U+F2qHeBYK87hcmrR5t7D+vNfh2ngbk7WsI5Cj0JEzOauKUlnc/Qv3xsH1IPm3fuoz4mcwenlIUfXadIyEm9ztotJyyzdU9aWE7CGN/ejOmGvDdcGgHpb66TBYsJbc9xo+O2/PX/ycHnkt6+MZ9tVvQOvYpiAQoixscy93c4dcamtcus80sMro+bG4w996vwf//brb/zAS7/5+P/+oXp7Uv/Yt7rUyRKJH7U6t1VYNJd28MDF0ZKqGCoBPPHOuLp3xz9z9ThsczWaeMIUZ5zjAquYxmGPf/bpxXTv7ZP2YHx3wMIOw7K93d4n8l23XpqteIT5AWa/M7nwUpjc9mXQeKY9uEs4rY6a3QuN3fjVp8fN9ccfXR59/P/xH5949H6t2k99/PUPfOCR3e1zf+9//e6f/blHrl/54Ac/+LfbS9+3/Y7/Qb/8K+3V/0+z+sn4+juPr77Hz71jdXE8O7cdzpytzo3o/km8+ja58oPtjd9aHv868Ou2/Bi176PxW6yu1QO1tce5+BbJ2PzA7DrskEzQHHvYgQSPLaRGqFwCCbNQ4opcYBXFGqamK1jrmoAENXjyDjFDYAeBR3AeNONw5CoJIlOHCceaqdY2sFcx1KtL56Zndke7O6iqlTtAKwPY4yiEUUjBWFSOjo6fe2H/1efAaXTpQnXubILUC0TDHAunODaoOIjVbOVzYoh6e+vVd95/++JoPxPAM5tB4cLMCS1OCQrcyT4eXHBCB5+OqxkGLbGHgn6QqYE7MwvWAOAs1ocg0EwbsBFn6o6vOXLbo2SOtk1N66rupplW2zSJq3gbuXXxEAmI+XzFQutoDMqhQWQWPC4Jv/5Zd+9M2REkS/ZCEESEnDU18cxm7+7ZDWTALJdW9+rQUELQ3FVa5Cs76JmZuuU+b2rWqLWmrWkybYyT6sqsSSmZqlIyqDmSA12W7URw/k5OcMHMsmU7Yz3V1MlkAoMoNz8kgolkKdppWC6tdlNue8HMpQCzGBkD9HjR3EJEgghAOGRVBYJSSMQI0VmSG1nOX7KTOLOyEJEzhJgZbfbUzZHbllPu++eAg9cYBe87EnXz6cRD+TncqyeE6lqwb4Y4hpvtxO+pp6Icbsfhn1G0HW1eNYQ/9EPpJthxKvW78cjuO2vSUe7aCtnAVzMogbJSsY4mnAAGZQLtQtvdxaA2DnwXCBi0CCqj6rgwS+yls8oFWCeihgPO5iQGNgWXSMJJj9nXzuua400gSsXpHE5vryOHz+pD69CsPk/YoeXy7iaOHC7ogVpZBw9HBZywUPonRktGVSA6RDOL4XdW3/jMarxT6yuXn18c3x7Ntrka15MdUJA4dqbapa3ro8VxormoaCM8wniuK14c7Mi/3LnwC/f94B998cXf99995K0//9ntH31v9b4n6gcujpf+NdV4pDy+tHrw4b3WbZJad7+dPE7HF++uDl84PnfpvkXThnp8tDys2ZiYVu46On8x2OHqusj2kZkseDl6v67+xPXnebl/Jk0urY7P+7Ntuvql6sIvnX3kp+56+MtbF3YX+9uhXfHhVto+jja7f+v1w7PP3Tz+yOsHH/nch370j3zdlf0r//oXfuMf/i9/4qvf89A/+6f3fO/3//Bf+W/+8/0PX99775+Zz/5H+/I/8/gRW32CXn8/3X53c+Xh1d7tcGlEe+fDk239yFQuf3O89R3Lq8+0N34B6ddx/NsyfwdGb+PpuZanFMBwcLQlUQtqb7jedF1AIlkNGSFNSSYegks0MSIGC7giM5KJW4Il2AqSoAmezNpCqgShksLIiBguoahMGmUINILVyQVxhL2z4/Pn4/lLQmhS6423jUtN1WhUj8bYZo4By8Xhl585fvFZzOdxZ7s6d5+Nx4sm1YJV2y6OOY5GHDVVirZudR4DpcUqJD1eHd0zPvyqS4vKU+Mk7MrO5kQj4saxJFTDbdafqXzuToBT+khbf9pOb9TuQHFvLtMgW7x5Wg05JpDPkjvDzXuVvOF/D45EZvRxtaRqqpa0tZQ746gndW8FWgX12LLpWCT3zmZmIQ7IwFXPCjizPQgx2Bm5RUH5PHBmBkAynQ474KE0VMln3YnceS1FycuL518A5q7cqcOUUvfSxYjIfoV6Ui19bRvz1rRptUntytFqWrTtIqFN3Cotkq3UrWjxZBnFVuAI3UJ03rC7Ui5jK5XBOd5QyEeJypXUtYpi5vKjVMxc+hMDOVLtjsrXRR/54vLitA7KaofSISKmADMhBiyEIOQhiIRaqhoSHGxORuQSnZklal4ecmMGQyi7tkbGxsE8ESzBJTdfcg95X5VBrtWt9kyR3Qtg85oTO3YINjztlWKtI8qf1jlg7ZPYm6FtwomztEE5ufmndd/v3vA8qUS6jzOxCwD2zogDBJRL3vIbEOC9/ssUrByoe0rnL95J0/evsMZIb7xU/7N7NjzXPYZP3KkHj3jnecM8g8b7OwznTaG8BjsQkQsogQuD9WbM7bQOPjHVAJ26xjtB7Jsk1fmPinVTR5AzNm/fSzFjabnZXo2WYd/onb+z/4CNWplNZjw+un1weOswjEaL2S1UozieCscjDtV1AM2qOa7buq7jYXtEGLU8Hiltt9XlMf3UfW/50P3vOvP6s9/4488+FZ99+Dw9/vy1f3WzqWP18hmO/26Fb3yUt8+0WOxyLdqc3aur1MRK5umo1XYyiqvFSkLSEJfc0KGrV1tgixpGNl8e/069+9mdp/YptG0UiZfw+jft27fe+Phffu2zf/7y53/yrkd/6tKDz4y3tpvVyJvEHtplNauYbLo885mD40//nU+99fHdH3nf+24dr/7JT//uN7z3bV/7/oc+8rGFLT/9L37qr8ze+xe2z/+/9j/xfzj9MvFH2uNPtvMH5fr7cf2tfkZxLvKZc/FS5ItzefQJP3gyvfKDzasf0+Oft/kXdPkEpk96POdxQrUwn8dyBgquL6K5DSW3QDICJsZjopFJ4GpEEpxCXi9CQX4Yctc7LuHRTCjl7NaAcsWiwDP7gQBwE1BMFBCmcubczt13y87OCobGl83SmySxitUkzKZxeyyzSIcH+889c/Ti07h9TWYV33OO6nMh7Fhq61i3qWnaxho0TVOPK2o5kLEnXa2oXVp7uFgtHn7onr1wWwvKx1qEEWBQHYQu+202PEfUdTOjrjRIVYeXnD7Kg/PYM0hs5FOGF3hhCizcESfCYz31z+Yp605q4b9KMBN3JRc3hzorxFk8pBSDO0UA4ggskUWYSRBYiFw4c3BQ32WWh7AU4J6zMwAKFyFmJnYidH0RuhYQRROX8QNQT73xkYse8/FXbXtRvlEko5ZS8qRmSGbJvE0ppdQ0ukztvKV5Q6ummScPVAtxYlXVJnkyPYVb7WauC0LkAWY5X4pAyoe7BsTCLCKBKTAzcxCuRURE+vZdAHJa17vcX3GWiZg5hNivu3UdeJ2oqoO1iRzQHD31Ksp4NEY1dq4S4M6AJOIg0TlKDCQE90wfl+fSWMgyeXntWLmbd70rjIkIuTle2aJUciEbirNzNHu92f91cze+qQvabbwuB2wDDd93J+7165u50qf/2mvf7pfdoCmdvkPWZ+v7eD5YBM+4YsBdcl/xDDJgJk2e8VnM6MxnDEJS/WDyWvYKsjPZMp84JVWmfI9udd3dwHIH7evuAuqMxM5YA9w93eniPB7LLvjA7mZn64zKr6CDT8wngFzQ2JtUg2V22szKcCGV7fIQGdBxavX6XRIRA9nSV1shPVe965Xj4/P1NKVFuHSWtWmu37SDW+mq82hSjabwkMIqmkTiFVeH7dE4BAl7iY40TJajrZbCuWNJgV60xWtP3fe76eEzi/aBG9fbx9ozsK35wV2Hlz/15z9z3+5HLj5ycev3P7J936Xmib3PXj6cXXr4oGkkNfMW1dFlo7RK82h8nJqaxYiWvnAd1V4vR43yM0GmoTpP1NZh6w0Z/9Qu/ZvxDz587/Xvuf7077t67Q9e//C/vXDPv9l7y3PTOOKZpJuJjiK2lP3SJOKB+56/Pf5v//GL/+rXXvxj77n/m3/fQ//7v/z1P/HDX/stf+AHfuu3f+y5T/xcvOvBC+/+kesv3t9e+zWJL2v7JVs9u7z6AK69j1+9Xy/eT+f36jM7VbUfzkz0zL3xse+zy9+5eum32xu/7Ps/7fy4jp+gyVkK0aN4OoNETC84FDaHzR2HQHCOEPbFmKVyqRwEYvA6oFc0ryWgJcAR3BVUl6CIca5LybV7YXyOZ7P6wvl45gKNxu4yP5of7x9yMhpV1fY07sx2L56JFeZHN26+9Fr60rPp+hUJoT53ySe7Hkawtlm9bjKjwwQjZvIIZrWk7KzhCE2j2trqmBc3J3ddHHMVXIwFrjByronm7gt3BB7lAtPNo+T9afXBBwV40QGONnd+j8k4ocv7Xw7FHwBHAuVKJAOo59/oA5vu7jBCuOMxL1IIcDUGRXInd3IWFocYjCpXgVMAMahiriUww8Qls1gRBQYRCbGIeFHE66fsbtcAiLI2KsW7zMwUiMhQyr+ZS3iZ8nnX3M0sy0lDUcxkXQhaOwWc48+ZODqDoVNKqp5SajRhqUttj1e8EJkHHjUaUhtSOFwtiSiZMfyOQNGTIejc4pVLym0gyrjYDyzCUSSKRGYOUocQKgn5n0SSyya7zn1ZokqeChGJgVESs7BM9MFCROpuKZGjXa5UNaWmrsKonoQYOUYGWIQkcBhxVcUYIBCm3FMu12u5E1hIAtihWko4Oy8udSnIruszhrTPRKX+Fp0rLLwRmj6xIfPPDBp21eyv7DetmQXqdXVnlhI5M5emmxnWtU5hDp3OohvyCAHOFTVdhjVHSzEkiGhNc7gGgJiwKTlYkPMv2aJaGyD5bnkWLGVYu8PUSzMss7Vq7080Mmw0t1joyCe1mzwiDkKDr/ggaRTLLTybP8Ue71MXANxRwM/9vHfFA95PenmBkqN1t9Jp2NZOtm02rhh2cmRm5AqKgVYeLi1lxpJcIZgnpZ/gnLY3za2zqQuJDO8fcjs0M1ZftW3NCHThucNH9quj+yjMMW5lOjp3SVAtr17FwYHeuHa0fC2AKkkr4qPAVNcs8ViJ5XqaTsLOWaSlVqO2GkUaB9bqKLI21yu8dte5hpKZGd3n4a27qT2/DOdv3x7/Wkp883V/4+rozJz3V69f5pu32mZxqCmlJjOIMajJ5dqtepvmKyO1VZ6g6kUSqc5u0bmdszsX4+T608R/ZfKWe8+/5Wtu0XcffvJvPf+JT013fvbsXV+cbjOd2U5z54UaHyGcHa3ssbNfPGj/5r+9+hvP/uaf+p63ffM33PU3/vZPv7r7bdvvmx391r97Y//f7X3VN6y2H5i/8MvEj4p/xvwFstfp8LH2+AFceatu34sLZxfn9urZYlZt4aG91QN/pNn/5uOXX+TL/1H3f0WPRxi/BXyG1cHB6DyRuS3AK+iSxFznMAD7ZkytCEum3c4i2zECsTs7Z/KYjqEJC0/BEYUDqpGPZ2Hn0njngl3ano3GABbzprlysLp1BLV6Nqnuv7B9dosnY5Xq6ODW/PJzy+c+Rwc3PYzqvQtxsmshOBnahSZXFfEjNZd6xDFWVSBzS4amBR1x06zm+x6Pw3Q23r5vNqkrvzZXYWZnFj1uiJgjMbJdulaZtBZYpAkAgbs21m5mudde2c/u5sndkZvLuiJ318nHsKOEjEKFlwQO4hxqJnd1FZEAcuK+aw07NCtmlCCYb7oNZubIyDZyMnKTQJqc2avIAjZPQXQyQmo5G+vCHFgCceAYWVggQpJ7TVLRKMwMJoYPNfDu9iT3mShap4OYUHYGWHLUsNfb2SMP3sv90nO9yC4S1Tb/SVW7JDC1VgwgM2uTqnqrXmnyURNWq7qOi7iqV8vAS2ksWhNCPE7uMaAFUiZ39gHSgIiie6ZUyp4DZ/IsARu5WQLYVCU4U1VVNVMIoSKSGGqREGO9PZ1lyGpVVUReVVU9qpgiOrMs3zyE0EcOsg4WYmY2qMJVvVkla01HQdVWiyaEMBqNRpMRhciBCRTiOFaTUNceOIgIM5O7tmYNPDkZODpSgSEpYCszRHIWyh68c8b8ZlAbHBARM9MuDppLdnPqpMjzbn2zwKUuz1JmDOvPsLKOuk+HDuvkNbrwLZWkunfB5I2U5wngnLsTWaY1MzhxaYe5vmm5s3fUUXCGwgVmVlAm5Qo9CS0DmVsu0ipphqE5PPQmASOS7pvFlHFgg17rVJu/3mZBLltiGjLIZHKA03B8L0GS9a02raFBmpzWTxk+kQa5sd6Y8uzdDrEog+upQ9h1sZBCSufuxGuFfcf5GZpmRLSsArWVg2/K4682o9HR/s3ZZLKchxbGNe+d5apORwer2zfa69eaxbw5vA0muLNICIHhCj++zfHW2bi1zbMdq2dHcRSqrVE9Y5YRz6I10SAUXEzNDX4Uj2+dHS3taNks0sFBfbORw2NdHB81h9KOjEDCQaQXQNl2CSI0qYrRR0jmZrq6ciNeufnSzuV69+x0+8zF8bSt+RcesV85+sYnFvsfuP3Kj1197bIf/sbe2c/uTY7rnTPLox1fNstjo3RuXLfxrk+96v/5//bif/f/++jnnk73X3rqmA7Hf+CPp08/ffu3/kN4z/vOn//jt57+aDp8AvxxpC+Cfi/Y6/HgM4v5A8sbT/D04eXZB/z8DdnaibPx7rlq6663rw6enL/+Q8tXP6nXPx0WLznvejwrk4eJ3VVhjaY5rAUaghEf5LXQXEsCh5upMd1yF6AirR3iiKBAMvJ6N+zuxu3z2N7h3anMxhIqM6L9+a1rN1b7c7jLrA73700vnp/u7U3Csmmxf+1y8/ozxy98kY8XPJrWZ+9NtXioGxJzhympqbqpo5qGCtWsMiZzsaaltAzezpc3KS2rakSjs7MLF0Z7sQpX2JQoEPUBOSDryFLqeYewGRH1WKqy1dnJ1xGd9RkhglPnjXW3IiN0duRAgfY0EcIyRDypGaHgm4ANeTKUY0TEZHlHZRizuJOYkjDAkZwY7mRex/xAD8w5/szMgYWZWUhEmJED0VlSBycRCUMPeDqFk0n2pvpofBevGpxfoZzjMveqyPFOrXbTxY5k1mOvpCsFdvfCApHMVTmpq/oqIbUiQk3DzKBAJMxLyhU9RGSlCKZtldRTgc70CO1+iQdOidKaITf/fzYdhCMzi4QYYx2qGGtmztp3MpnUVRiN6qqqJBQF3Muoon2JiLk0zwYxcyZkdqe2ba211WrlCavxillCCDGGqqpijERU1eNYj6rRKMacoQfnYqtkrmYuWecwwRHYU4ZW5IZ41CGwuj228TMNxCkG4hqDCRoo0DsfgaEc7n8TuhCQDP7g/aS492D6jCGkoUA/YUvmyXJ37lr8EfNwBbk8Pu+VogkJlrXl8Pysn879oK1YtC5D9dYrsG48GYhBmReo64LpfZteMvRTWxRbHluXgC9ZAHcmskGOqGtKuNZh7u64w5E+fc57EXN6Gfq17KSPDxX/RiBvHfmHuxE5kYBKbqwPP6xDJZ0N5L4R9MgTNVku03RP5y9J2qowbpq0Wry+fW63XqSVaQLTaIso1jIJcQeL+fHtm942WB7RconFinSOdgk03rw05zHGF+Wuh8Z33V+f4WpqoWZiR1oszRsHNQvab9KimeM4LpbeNtQkXixWTdu26iQcZhhFiYIQEYREJEYpzDaV1BVXQYmdKDC7WkppmYyODn1/v7ly5fobV0M9mm5v7UynvhM+PR3/zuwtZ1PzjoPr7735ypOH8vTo4qfOTWOkihuy6X5y0lujKq2iPNvs3PfWneOjG8fL4ziR8L4n9FmmTz5/cPeNvbe/7+DVL9qts+qPhePfI7++8IT0TJtexuIS9h9eXHuAd8/FvYt87tIk3sbOZPtt95x77Inl7e8+vPVKs3+1mjcrLMkZ5gHEqYU3rit4m7M/bolMgZIBcVeWaCAJI67GiDWqEY8m9WhGk5ERG5Npm+aL5tYNbdhaD7X4eLT1+KWtc7uyJTRiX63SjTeuvHzl6MoLev1pxgFikAsPxMkFipUwCFEtx7vInBC4qmsLFQVnCTBok3Q152a/1SNpUjue8JlLFCejnXPVotk5t58q8iazFJTN1iuAzTTWsAChaN8u0djZxz4oRe2qHjoPdjMrRIbC4Yn+2Dq0J73yPu/TMRDY+nwX+XPqU8yfDKPiclikuBMqkJCj15IJ+ByBESUU1cucHS0WhOy59QAkhxBL4N70n45H7o5QQgCdC9TLUsHa7VlL/Mzs4e59gqmLU1ZmJUqnmpEz6u7qybqPKpuhSSkmtAFREBuOFUvgEJjhwYzJmHxNlYzkiXLj4my7UB+FKBNOuST2hIhDl8FkZnaOLJXEqqqqqhZiClTHalTHqop1XYfAdR17LzDrbnTryEH6Bg95g6mbqrLH1lvV4OIcRwWnGgKHiqPEUNeTaT0ex6oSoRCCMNhNEzm7to5kSmBiIScKBoGLk2XyytIbpcRtuy3RVe7227hXN8OwIk6L8by33iQN7AO/KHRAu77JQbnLWvEM8szrR5KBMjd9B7vITbJ8rX78DiXJVvaYI2sOAnUa3hTING6hB1T3G7H091Yv9eZGdKIu7URwyTrzjLuTrJmzzQdLO3ypHnA4nMoCChv8pvuXAuIEDLIm+XVp07HOIzjR+frEyvW/JF4/ff3Qjp9kc/3yFzJAwIjIc6qoSJDSqRDYsGGHK5LAYXXUhubGWI4tyIiW+3I0i20cq64IJOxwSkROqqMwndbtKqVFS61BhSVMYhWrUZxtb23vjra3ZDxO4smbtl0smuPVrdcxP1rNF40mtMt6qTDXYA1ULEhCSsnZuQ4YTTiO6q2tMBrzaOTCYJYMoyBiH3EQJxI4gwIFuGubtpSavZbvbVdo2/nSjpsFTIlk/8rkcHkGM5td/NC5i5+Yzt5+cPRUe/jul9/44N6ZF2dbqUbwtD2vG/PmWCcrvzW/gRlP5Hw8qg/x6vgt9+PMPe3vfeLW0YenTz4+n16gK3s2eyTd/oLMnya/nngu9LKnF+zWedq/p331UZx7wLYv0Jmtxd6RxBi2tyZ3PTDTB+1osaParlKzaDQltOqWzBt35UbIVcwdWpI+BHdLHkQkhJBjX423rVPjiAdzW2kII65rVNuyO9rZ3ZtOdjimpmoRYcfLo9evttffSNdeWF5/AasjMFBvh/FjaiNwnSRaVY8U2eFWQIwsI3ljDLF1C2nF3q6wOqR2v22OAYy2dsLu3ZOdPQiWEX7reKeawwdAv0F4prdNT+7t7idn6kv/S9kuE6w/X+VadpzY88Oj0329XImcFu2Zb9AxLm26vNlzPuGa5BIPImdG9h0jCwAjtiLhhMxhHgr+jQK4CiyScdBcCRORMDMTM4dOBxOE2Jl50T1rNKlRQL3rCGQv42Rd7nzqhd19KJ/VAKRSKU3uOXWo7maezKOqZz2tqmZepdSmtGxTEApCMUqxmdrEpu4JllJKSUxN1I2E2XJk8uQS52lEmU0a/jUrUYEULkoKDAocYW5ko6quRzGEgscKITiUiDOrAtAHGjucTZ4cJy5c+tmAU3c3MuYcYhYiEomxruq6Ho0mo8m0rscciJmFWcjzZlNP5MkswR1kzsIO8spJDYlzpUFOH3xFJo3emTmxi04oiBMzdofVHFyT0eEZbdtPqANdZ6YBc2kxKjfZWQEt6HMlAavnJtKdRvSNQZQ9ZEWvEJX2W0Zrf3Q4RCdj6ireyqA5txjowZBGRgNllu2p/N9uICVOe3o6aLCHTFOnz9adD/KSuGcIZi4iLL6s58r9k4fcO/ky+H0eIfNw3k8Ll8Iq3MmyHvaV56KXa4NkfK5d65lShhZZh+AY5OOHJpG7N6OwbClid9bc3BpX589Nn39h5Tf2Z7tjJ7g2rgnuMY7Cdg1neD0mClXkEDiIsWTb39ktrW4c3m6uvZjmB744SouD5vjYCbI0albiqogLMopMHuoVK9nSBSHUs9H07K7MdrweEyZcRalq7VewsAIFGLgsZ1f9apIChxU1JCyTerqLse+ZW0TTHqrEA8VodXD2SJtq9wu79/4uLR6Ztfccvvbuq/NnZjtfGNW3465yGsfFKN6wI9arKYX9NIrjemyLWdpdhXe9r33m2f3f/PjeE19LDz9+67UvTC58PaevW179PPxlbV6IvmS8Dr+lzSt44+H21r1+eU+2L012z4StA0yu23jMo4lP65B9b2Zmya1kVX1cjfMuUlUzM4IbGZzUGM4AWUmPcRAW6MgbYq7qyBHNkrVN6fBodd3356v9ebp5o91/HQevYn5giJARtu6Sqg7VmKX21ICPqfXIlUXOLpKbiYSK2MDWKqCuSKa03LfFDbMlqqnMzsazF8LurlEaV3zQHF6s51vVUZO4T9MMzxGfLCs6aWh6DjC796QZPTNhuUPujuvrYspeGvSndvPisr1LaKegc8uXB0hM3AGRmG+SyykcgDNx5shgJlfLfBccyN2DUxDJCjgKFWBvkIpZQCJC7NI7wUQUYo7+rRXwuAIQrSiYrr6m5IALCyENvQigB5laX8eo+RArGtOSfkpO7rlFNNzFzNzIzJKpqqlqTCnQqhWOLKvUWnIiMc2hi5VZalJq3RrzxlkgQzVEnsEl/fSfTKXlH0QkcmRm5hC4aMf+E0LIKd61l0yl/LcXuWvt5cj1WUzMzDATgioRmZMxBQ4CgGMIUgmRxDpUo1jXsRpJCCQsIuTGTOTmwcWiacsUnNwpc+YLgd2YVEDEDC/c+12Sr1O0fMoJdncZEFX5YCr6VzgxP1/hM2xH2Ptp64f1P/QhpuE27gbq7hDKdNvWEUKVGbUN98/gIKae4ysz0xlb97IOsgIJ794nk5Zyp5myZYQCUnMUsHSh3ypPKcMr0amykTqMw+CVB3MH8WLfrQ+8l1CDkXlHpOXrN+laFPaTAStksBgIjrystmklDR9BRH2L8uHcluGBCh6fQEQlZ0hkSP3bDS0vLyRAa0dheMN+QScprnwRlGJzc6ovnbv7obM7N2/sI1YUETBKKJG34ApyXsS5qqa2Sc1+OlhY20jb2qrR1U1r2rRcsRlWbbtckFsgaLsixIpdRFquVwFgDRgtty2G6WS0VW3vydY2jcZGtVuYjmojbh25xbdkplsyA1yNc6NPJoW37loxm7UVuUcxpuSq7QJGBqbd0UIWI0s7W3XCuJ2T32qkeuXs9IXZhTOtPnhj/t3Xb7dT+dz25LnZ9j6PZ1Pfmtw83j/Uo6P5MrLfmgjH7RHe/tC8Ht360i9u3fP2i4+959rLv6u+mt3/dcv2vXp8o731BbRfILoR6Cb59Xb5BV7drfMHDvbPYbZHW+fj7AyPaqlHHIRDIAkcpMsMyuHqBmO9T4gILACCmYiAHcIJ3uampCnhNkgNrR41bVrNfXGIo+P2cJ+Or4XVvjY3jFc0GqPaprDD420CxxgVKaXWPXo7bY0I+5Jq4oCMzxQG5+a1yitO7VzTgTdHSK2Mt0Z798QzF0fbuxpllfYrbnWe7tvdiqotkZxKsvSbcOAlnK4syLAn63fjCca9NwnarT/rrW7rEwSiwtXU+dPlUJdSVeIBe+1QLDJzjt+6O5EwU1ZLTKUgtbADEwkkiASCgCoJUvK+XAciosBCRMLZgUMgFgo5sHGrg4rOpALAsWigXpgVA4KAtcheEyQYCWDomhJ6V3loPDGz7P5mZKhBzaJbUocbJQcnmFBSiECIpWkIiYh0VBRwchsbWmtnrbaujVljZEaJOPeiJyI3ZydsaoR+LfowZSDusw8iUTiIRCIJQRgUIg/9h8EOWdcg9a+f4wn5Cd5tGjNLOfYuGZnFwjGEIBLyLjIghBCqupiGBPVSB+IkROLMGeKscKEMvS5dDodysn/BEohmRlebVC7YDKCejjN/ZR18QlWHdYPYogk6KqkMSiZ4l+np1Un3DOvOG4gk60ovOdfcKhK+roJfPz/Hody1L85lY2fKPJ79GPIaaE5l8gZn1jo+3vt0ZcxDtbrBOnvH2Rn+zNT3Ohp+y1SdOjDnxl9z2zFoQXURUMg51g5x99wNOTtUvQAc1tcCdh8rJvuJQeZCx+6XWWR3CrVLiW1upuFK96o3/7y02yFUy2YqfOvxaz/9iy99s2xtbU2mR0dLTW3btm2zTKlRbXXVkLmvDj0lT62lJrULUqW2teWSMCJypFXSlamDA8eRUwyjqQc2jiQxhnGoRlzFIOKTCUKUUIfRlLgSCU6RmKEJZgIGSJzQdTnlKCTs7rBM4WpECApmdoa0tmQDMCJJLOxYUBNsFNvUpHbuEnkkMQjbsj2c8ng+kU+E3ed30lvn1z9w89q3vH7z6d34mdnsjWq2u7cbV6/Pjw/dw75RvWrjiC981ZP7gY6//M+bo+e33/7tflAdv/yJOAqj6Z7Nvnp1+DZdPpvSq1i8GKlN9nvefAnpUT6+F9dHzXibpuepnoZYh8nEOFCsyqqosQVVdW1NV1C1riGKWQLMoV0TGRAUlFJLnpKnJbdLaY6hB+oHhMYlJq5kVDGfQb0NGTkJDGA2DU5kMAMBiVYJjbJARo6qUgbMk67UGnf1VbJ27mkOCbR9ZnT+3rh7rt7aSTXxvBk7p4WCt2czzxU59iZBthOHzt3ZwZx7FBg7dKB9GUibPrQR2H0Ypy7H07t7di7yafW/YcJ6CS4Xx5e4N6xPftGztxCcQODcC4OJJLP3oxQXBReRTGLGkSVEyWngKLRGY5Fn7UuMKhfCAugU8KQaAaCBZ4iBU+HoSelpGF2A5fNr6CiZsi2vLpm02MxMzHPXPDIXJDd3CoZWVA2imlIi0o7k2Myiu4+sVlUy13bUxDTVuBRdaTACWE2EcnkxdchWAD3uaqB9u2HncnbJOpJoXYbV1QHnMt8gEkRiVmRZZ/fuMgBmyT2KYJt+JxGV/rYIIRBRVVVVVZFkvxZE+UGkWsKTBifPDIN9Hq4zX9yKv2hmMGce6LW12CzqrVMtQ93Z71jCyd243pCbnxO/yfcJ1HOZEoGs2/PWgQKotFJkxsntO3ykOZG5Ebl1U5b7Lp0YhXenh9i5z8qQZAJxU2dxsrWiMi/WR4ZQcTECi4Imp1WHKspHF0BH41KC6kTU853miVrPXae93B2IORtdcNZrO30w3dTR7ORZX3dlKaG1E1jx3nDxQUjtxDIwF/65PuZ8YoHX87b2yPPNpQ/fed6BnVGJPsK/3h7e947MP5NM0LbR25UvHt5qvyP9H7/6zNnfvb1dy4KMrHFrMy26WbMCI3Ktq4bz0pglTwyCOXjFLEQxxi0fVS6BRxUHGfMs1abVlOJYQghUEVcWklQ7QcQBlmAIzlUOZqh4Jnhih1ppl42AprWC3ROCecjWiqMxRKcUEN0Bt0DBkJh3MTqqjawiqRia2jBHVdt8gpGHSK3XwRaz+GuTS3bmwlfdWn794RsfWNz6VBV+fTabjx/g6mqaL6e3miMcVRqRru2+7W1H23/q8DN/t/3Nl6df9X2jr/3m5TPPL66/WG/X1dZkWT2FdC/xw+3qeWAXfpPtFbOrSNuwS9Iep3CmDXWqJiYjGY2IHK7aLEI6TqnxZgFtYC08EYwcYLFM6EgEsKoBieDuLWEJOzJPLgEyc5qAtqo4aySmMGGqu+BtpteZJKgLEUbBnDSZsWlMoS0NUCWIm68aNEeaVq0dEMWKxzw5S+fuGV26O0xGEgBbtbgWK8xv+/bu+Wl8Ocq80ZADFW+2UU/vc7NUOhZ1WNMsdLnQ2q2/fkc79cTnzX554lu5zTatw4obyh4oKbY8kOIw58IYIiFhN3aIiBBHKi6vEFchBJYoJMQ54JkVsDAELiIsRI6waVhntcHSP3Hg8xERSY8mQ8c0CaBr+IY+CerscOfMlU3u7qmEJ6HqahU7UtbX6sRGpO6kxKFj/TRFCqbRbaSm2lSrUZAmxLHa0qwx9cSJy6N0UJLUk5z0SzyoX6HekSCiHEPIhZG9JkYXTFW3yOylJZ8TuZl2tQ9F1KLr8tgBo9ShBlVNIiQSM5eDE3rMRNLGVlmQFk5FcmQMtRF7KVLN8lpBRt5HHrv+AINP2d4ODMR48eDVesW2Vod5kTqqmdP7kwZ+bL8HAkTdGUbuRCS5DNU7nkizoolLQtSRgcFwZo55XnrdRkSl2yMR9xtrYwiWGSiZSUzyBOW29nlQnGvMOAOjDcJMJVItuR8quh5E3cwJEfouSaVXDAOs1nBX4r2Jgspqej3mbnfZQAUODGgg09Q44BTA5mpwkCeizIZLToEKL6ZSKf8dRuoZ7lysLZAEwDwDDPLFtvYJADgyJQmV+TmV9l+P2b1HhBJFMyUCkWZ0tHvebJYBDqUgOBtSzIG85aqmZAbn9snzem772t/9RLz23OekXbKSsygbaRBMQ+TkEcQIMVEgjiFMQYEpoAoUooQKIVAcSVWTBLCYRIkiuWYyROEIpiARHImIJZQuEV6oX4UqBzgXOgqLE2ffrwsqFBQokwLERKYuHCjkQBxgLiCzxFQZXHKROjtr7eoekiqZMnNlBLI9AgQvnqt/b/stl+z2d1+//NbDo0+E9kOTsYTtevdGdZhuHd9sD6qDnacvPXjvZO+vX/vUv1l95ift0rece+rbVw9ePPr8035wi0YVzyZa3VMtL7SLq9685OlKsEPFIaWU9AbZGRqPkXbBZ3Ux4xAoKMy8aV3nSIfQI9IGntzVCUDLPQGQq7NQx8PnJBQuUBhBJs4jkcpZUhwzIEwiwVxaBYgsiIGIKwaRs7MZsYubNZUG09bbNi0b0sa18TYJMXhrMjvbVqN2b3frwl49rUKsEuh4fitqddiuJtuj2bnZGcEcGmxK1GQJ5xsC2jmT3KPknjhjJ7WAIp29Z1DKJzDLQeRf9G3jvehpdy+ru8mrPNTQnWhZqyvqxKICzJk2ALktGE4ob3aUqgJjZwa5cACxg925qFXKqpRFIkkUiRICcZb7LBBCJGYQE0RCYGIQhIWI12A1hEgAIgfvsOL5aPddkCUQdTF5RmkUW6h9kfusdz4EwLnqxF1VcwWHmRlx48qaT7kHJnVbMQw6ViSvF4YYTc2Cc3RqEk/qUdu2izZFt1rTxMLSfOXLEcvKPMGCBJhRllwctVc82fCl4mipqpkSNcxBtY2hMJJKLo3pCmpTSjFW5GQGZjHL2TQCk5ITUWACPAdAMnmRaQ6aqLu6maq7U12PKROeSHYgKd88TyWcDV4sWlLuSEssKYPdUkaSdILX3T3BCeg8/YGMpY1/lr8K9wuRN1t/AVPn/53aop5JujtUk8Moc0ETLK9YzsI6bcR7B+U3cCK3Uv1iJRxaYs6dI0q9P9f/vB6Bu3ehtqxZyzJ2IY7Mj0Ul5WlQK+zYa+YzLo2R+sjAKVPD3TO15JAnebBpTjJu9v/sog7Ux7h6hxIwcmS2mPy30FGIg9YUVHB3cGd+wHsfnMj7FLtph/DsUiunlKtvDuzED72LMDSiMzgu7wH3DGyzbnXcT2wF96TqHsEC59wpZTTaPn/pvvlyoYe30/7CzSBGsQaNUwDRiESkqomFpApxTFwxiU8qIiGJLJHrCiESB4VHROLMJiEhBCIBiTMxsRN3AKuNV3Yv4ZMyT5lJpS9N6XpXoUxcOXUoVCSloBBOWf2aGTpeBBAY0ppaSoE4hpg3LcGn0W/ppR+/Z+trD+bfuLz55NHhz+zsXp5dlLoa3w7N9VvNjdX1m1+u77m09we+/8bvPkZf/neXb35u54nvnb7361Y3n9PPflkPF6OLZxejRV2dw2o7NXeldBXtNW+PyA+Yky4mWCUeAXWCTohikGgTYa9hU6QWTUJqyBegxtOyxJ4JhViUgxIjboEEXEEiSU0cjavsdRX7jIWd4qhjfDMu9qP18ZpEoDaor+bUKLH5quXWPdZWj+NsF9WIt7fjubOznXMpSDMOzY2b42ZhkF2+d3x2Mt4ajdI1dggKamOIoMo+cfE2+2XNpMiAeG4k5x2ZIqwDdnQ3WLflcXc2R45If0UPe7ixh8eM1hFnRmfE49Sn831zDqfUoXJXk5hjo0wkLCEEIRbKDA8SMgVHIM5tKIgzAiuKCGVYbyCCDIg4Iguxy0ABm6cMS/JCLoW8malrxiMSM5Ngp1bCCVesj0r2FnwFVoYgH19LBmdxCqlRdgoa3F3NalWNXgVN0bgK1ShWbahXUjGNhZNJ07owzNkKkVmWv5bbrnfTTuwFSEUl2KDZN3WYuxJlnWKmqpqqqmLmTN5VVVVvD7l27WeEe3/jDtbSyYXLIesSVVa1lJJ1NMbqKds4uWlYJgtzgpsCbqZuraVEnjI9BhvlrhDDR6BTL/0wTuy3E/9EB8bHHaPQTJ3adnfPwJ9ARe/2gOG8jR2lTVd+DoYo4pIT7Zb8lKZHP1bq8hn9b7ycOyh59n7hcNKihSjDbgZaJ8c8mdWUcmkMcjDccnbHNrXRYJrWNUV3PKu9Guu+sqbQK1PP2ZQfnPmuZCrDL22oKD3bBQw1lw0cdac/iCgDKgpBEIH63cydOdFLoH4vDF+NCsaqRCg3dbATgTrddmo21m8NQN0iyNkTAApCprpQ9nq8W9/zuN66IdWhJaXgTFFRWQRTDeEQa5fKRSSMnIRZLEYAxIwQKVQgdiYGR6qcoLkrCgdmBrgEIdEZlhll0B0nhQPGuQu9GXsupO8WiNBvuH5Wsw2b26qYmbvlNhZll8OZczDArVT1UeuK1rlPTQm20uE00PM742dn935Hc/Mv71/+D6PRh7cveTgXq+fmVykdvyGvLHnWnHnHY83unzv63b+3/9mfq156+/ipd8nv/0688vzRl74YiHVnZNMx4jSszqvc9HjNsa/LG6AV/LItr0PPY/qQ8QVUVYhTDkIET+arhtIKaem+9HaRtS/BnD3PnlMo6TYO4AAW6ipOLVsYTObkFEkYMLMUJbo71NxauMHalFpYQrNkOKzx1EKCxhHq2WR2buEk1XT37nsxmsYwlYoOj27S8jDpUTWe2JbUe/fP3vj8xb3LErc1LfI+ZCqdeIA163vRrz0+mQCALZuba93Mp8Rrf06JcsFgYQHomnlvBJmHluV6P7hzV2JcTmXZY4WA78TRKNWMQuBc3crkBVZEYBYhJgGFrs5IWEQkw2xFJEpgcsmxoLIgOYdJJKXTQv8sZiZW7jJ7RGAEwHJMKitghhMVMuRyukl6pYsuhFtm2IwBEskYJc51FmZgJ8+eGAVmM1fJPYtZ1dw9qIYQglqMkb2JKVRtHNWxWbZNCo1pcinxYbfUWbIgNgNgTFh7Fh0Iy93NExmZpQKZ8mCWDBS6CJy7myVViEirKc+QO5gzz1IWj0oZzN4tsbqpae6eaAozU3VVHVbiunvbtgBKWTabuZtnD9iARKa5m3vyRNa6tZwat7Z4zJ2w7VeL3mRzFnWDUjJ+4q9DkUubq99ttpy1zGvl8NINyQEj5s6gKvudhtKyOJ5lGN23UDR3YYwx77padt/0E68BoOggyk8rN6GMOMsysht4XwtIORKTq3hLeJetMHx2rg+Qa6L6GekPZxnDoDOxo+AF0AkI13WYunyxa8TUzV+f9XKsAZvelSZxbqOd10c36oPVzDhk6FkZXzGDqPRY7Ic6UO0bkYOBDbH2eodrnI+xu2OQdBnaE/mfOZDgOezNlGCMKkiAzcmUQvTRDu1QkG2oGSX2QFRZdOGRM0mowOLExEFBTiRS5WFwiaZIDg0RBbAwHE7MgYgc7LkNTNkcHdDRHe7WMab3wXsDAvWbKJvh69PepARA1q9mufgDsJztBjL9JzJBgYhwIHeBsyc1S4AKhbax45pZ2gnvMC9/QSZf5kf+4vUXH2yf/ZmzD8jWk7O96zdfrObXX21uf9H3d7cvXdz7wJ+9/dF/k/Z/9ujjr9HFR+u3vf3eu7/r1peePb7yMqfFeHeq45mEynU3NYfV+Hqz3De9DSypueYqklKks1ZNSYSr2slsykiCtnadSQfKBTmROwuBnRgdT1hPPerI+SBSJkNRHMzs1roTWeOq1jamLam6JrcVklJagUjI1dyi0NYux63UotrbnV66xKPtqp4msnZ+RAc3tZ3X9QXanl04c/flK69+39ml7O+nWWRUQFtMTB4cmTs7LrnKEqVDaKdaMjTmNDlG1tK+bhELDIIlmSGLNpvEnXgid73c867xQWPTN/tQqdnTkAtDikDKDBHEtAFdztlHhhO5wIVIMm9i/h8zefF9N8LmnOkJlYjIiSkbyjmSlg1oIipGRx58BuhmP6CP/Zazb4UNIE9mXwCWHeoEQ+HZZnGvSEzgnsr4ShmV5Ch6iBwCVyHWVRi31Uq1oZRY3C3kZoXF2878uLlEyQ2bZxMGYQCq2qYVc8hKkaO4BVVNiUUSADOrqspAnou33N3F3YlLTo46WynbeGZuhpRSanPBshE1TdPkV+7lds/v20k/BzKeVRkJrjCDmadESFRc4r6bsnOueN3cSz74L7BOrQ63zbAYdeAObQjnMkKsI9TdOShdmLKwLpSTmztzLS+dAALBrQDUOwu0cJLlQKJmaZq/eXq45WYOWAZhFX8O7oAS1qjuPpOTn8JYuzWOPjW4LmztHrLWwYMnZt7kPGY98Y45e0QD8vf+1YpAyTQgKHB0KnUOeX/nI045RZlvbplgJKf0ugB1b7f2uKk8Fb55rspu9g3pM3zBruXoSR/XfU1OMrSXeRAEc+8dT3LSKJyAHOpwssg2jiQSqJ4mGiUrHKjCo1gzcXR3kgiwMBOEs3/PhdGGc6acEDjGEJUYGRaXa8YgBCMXZ+o6VQxhn3d40+FrltV3ZA5h7zuhMlPO+bOAiZlTanJhSZAeM0IiYm1SOIiCCCpASaGJtJ4EO66alII0IJtGvBImf90u/YUbl3H9y//iwv2zerz3+LvH99x/+KWX6dYLy+Zz9d0Pn/uaH772W9ci/3x6/b3Hbzx//NBTW48+cf6Je44uXzl+4SX4kYwr1DWPx+18z3ALzVXxGyHd0PSMHt5eNfeyI4z2gEhV4GrMsdbInCJxKhvMtQtoEZwiqRGIxbknZnECFYuu6AshTa5KqdXlsWmrbYIluLLnugz3cfSVGgLPdmIc21LMrN6bzh64j6c7CUKBGj1u5zcoLaSKMjuzPR3tt8076pt/9a+/79//E/voZ3767vN3cdtRQxgGgegSQju9gtkr7RPG2ndL8/4yd18LLxue0U7V9rwC/SYZGpcnTgQ6tfoVdtfwW10rtxyLXGvcXLHawawksISMA0QOeGc4bX9nhxtn2qwSgC0fRhlNH9nMDZFQ7BImIpCh1EGtrfESjvYuEN2lrQIodSBpImIhVWNQ12k1o3bKC+ZMM7P2froISaAqScOxCnUbtQ5xFVPtcWSquXsuszi7u7oRi4HVk4MVmXiAbGBE5YgfQG3bMq1CqJg5SpVMvXE4C7tDk5J5gqQqxIKORmIWFinsH0QAd/HFTPJlqS0F9LluvrcefOhiAdnUNlN0gVpyVVJxgznMzZTd3BOZsuXmP32s9A5Wmg122nDXDauPTvg5/c8nauLNExxdw8C1At7URoWnaojfG9hZfY+vDA6jDqnOpCVMkVVXKqMEEU7KUy/BbueiETfUXjaW36RoHu7aLXe+YlO7lGxitmuyYDopC7pIe0eL0d2oi3KtJ7TAtagrCRjSbjuISXzjeHc1V6XrGQmXJD+BiXXdyWQ9D9nuK7/xktq8owZ6s89g5yFTN7qtMdXY3By9sZwnLiIYJdNkLgZn1xEtKpl67S6uRmQpeAw0QnRHn7sSFN/AqWvh7CWQQEyBmLWUZlE29omIXJ2EONvOZXS9jAMKiEq7DhroC0jW9V8dCZ8wMwUOGQhB/XPctU3MtWdlYxlb4wAcgYMgtys3IgpO5k5qXiVbzZbbbb2KDa2oxXhLD2+O4t/aO/8n5+33vX70K7uUcH2vuqBf99D09a2rz19evLQ/uu/L20/90Pxzl6fy6SO/L75w8/D1l1fn750+8vj06x+eX7+xfOVFP7jlWNTTLa7J2koXU0UFuwUs0L6ht49tdCG09/F0V8Y1BRGGBUJ0shyBE+q6trlDKHJut4ecTfViOJObGVuWLyk1K2+XnhKnuZmRlpYdnp0tdmuZxjMZTVxDuzJUo/H5u3YeuX/FtTQ6no2bdt4e3vLFUZBYjben2+HS5K4Pf+bZ7/0WBldf/+3f8LlnPynpOiTmyOfmPiwLkT0/xcbRHh5HPsXvNrhPFpzIuwJdPLATObwJFVjv6qEyHhwfHpyROwvKoqJy/Kb4Ls4bBUMEgDKONluTvpZRXSzd3YtUQ7HFiYZRN8+BsnUUh9ZcIgA0a3rrKrDKwvfhwv5lczJ28FIZzlOYOD2XWvfhsEK3XULcOZLesWGICBNFphA5xhhCiBJGIWkdvDFSZ8+kYMk8AORMatHg6mRwA7vnJprEBNW2z6E1jRDNyY09APAQPAGNcAIHUQeRW/SYgWdEIsaajYOQl74EJjtplpKlZG3btqnNFnaJNofIfZMDNVe13IWhGO5GMEAJibQhy7HoBtrk1AwP9owbFzaUvAOAAuPurL+htsKpz4nd5f0Xu8+gV+86dRiyPPXOGe82xwbcPG8+Qp8PXRu5p63djFrsb3V6iL1XXc5nBsISgAxpLvdUDE+RZPVFBqJMW0qU0UbcX1P09+Y0WTcM72GQ5fr1uKw3YCljMctNtb9bZ0kXewsF4cVDgmgiIoa6I9ewg5wBtbxxCUTZYxmaVEM5csrlXR//sgQnjXes55klp1gdDkPXZ9Q7wZCvZGQ/Ce7emoubszKYhMnjiGgkC6Ut4ciBxZwhNSqmSjmRixtxkPXMuTOzdvqv6zIWnAnE5tYx/FBBNbrCO3uZco6n9ALJ/ThAFDpua8mmnrnBhiyDzEzISC6HFZnYFY65oZDJgQSasrZSuCZ1Kq0dKFfgM4iEyeYtOfEiHI7aWqqxxJRWs+Dzy9Otf1g9+pe/9OFbs7v//WS6WN7Gsdd7swvvfPLmzYN05YtSt7jnO49f+58EqcUC6bB57VW9+ors3V/f9+D5d77DF/PFG5ePrzzn7kSjMH1IR/f64hqWb7Ad2GLuerNV4bax5TZXYwoBnFzzZIUs9qkrvUxgc7OikhXuZEYOSkvzBG3cFKn1tnFt4SmDF0pFK8gpUyeGmYyPiJLXoBD3ZnsPPcxndg+WbR24no7IGloe6NEBOU12zobJTr17z6eff+FbH8Svfmb+sWf2v/bxnSd//7d95uf/3oXdcznxhGKGrvVBT1BV8LHdn8g853Pzeqm7rVEvQ1+BAAQroNH8xeLv38mFxZ0E4tDixFf8EFEPmyCizGTAIMr89N3HLBGzmRsk43yKdmQUDhAvYDey3H2NQWa+7thmXoqRe+NbSJyoq8DpJVD3XuuWpkVyEzqzxangUjsT39cf9MDV/B0vp6OMJOtdEem84cwhKRyYI8eKRk5mZMIeCCBVM84ykB1IRAYYwyHmlLzknD3Dd4qMo6RLabGEtWqKcWW1SGxSSyQcQlVpYE4JjVjuuMCha7vuq2y0F9LOstm9bdu2bVPSpm2bplksFhn2XI1GMRYdrMpmQTInCBeEO7sRm/pK0sqtdV2ZLqEr8UQMGSwxBlK3jxH3uV6GFF8gRy82Jfmb7a6+wcPmzjR0/ZPDV9ia6wd0tbtE5L7R3q7f6OCiRHM2SjIA0+zNBmcA56AYOswfkXmHb1pDXrMtk/viGsHZihtOBgZ0cPuhPZtf0mzImt3FSIbT4cMRde+9liZrQLjn7vbZGKLcyznHYfq+gASC9Nw6TExsANTM9ESkAVgH6E/LFOst3u69+nPbFQj2SKtCESYcMtjPXZkDM/Le09zFrNCMdatpTiRkIuREgLO6CHxM6lIBKsoKJedAQixOZm02MDgbhZZbWAtT04pEyQaAM3KuN4e+mR1F63vXLD0Qsh+QockESm5unnOYGCSJyZGRFNkNYua+l2JSlSAkDHJYKhPoRGatrbIl5/BYRRHhEAG0uVSDGJrYXNu21UZTU3PVtHoUKkds0tF4taRqSyu5p8HrwD9/+B3fffzGl6EvtDQTu04yC3Zu50y78zW3r16t9h6YX/kAp4+SrNRvO52zdm7Xb7T7Tx9tna/ufsv04cfOP/a2dPXq8pUXFrdfdVKq90KcUdr35qa6WnvD0FhzjGrGVUQUlgoe4IJcTJqrxAloUp5DmMMVap5aNzdVeIK3sBaWYErkuQQUlLmuGCSgCAngcEQxhqo1rs+dPffYo0ulm1cOtnfO7+7MjmOTFkftwa3WsXfuotQ7s7vvu/na1Ufpys/+r9/6F//Lf/3//Gu/8eF/8Ue+5q13P/vL97sfb0qAgc192vB3l1wZ493GdzBgWSnl9d48C2IQlOasPQld5p0YPNR7f+KOutbdBwR/G95wf7II0p/3LHrLsPNWzh4CFfJrz9Us3XXOXM4CgSm3qHPLxl0Z0skz34M9ZR1LZ3LOWKs+okAF5SQnuIzybsgIKS9dGYhQQCdEpLlElTqrtZtR6kgXeK11mQQhBEgD8QyjrGNISSpmrUEcaUUtp9yz0YnMEDgY3HIfJc+hJHL3RK4CZIY0JKbKLDWNZ4rdUUpBIseKINQ0y2ZVUczklAByFW9evtaUGbm6usyYGkAptW2bshJerVZ526jqTNVHoxgjADC3UEdgRm7R7AaQkSbSFfL/vHFtYYlIA+eaDO+sr/UOWlszAyOv6JcioEpFcS/Yu62YoyRdinEIAkDfZHbNNBzEMnMKAB8kT7vn9ahqoHiKd3TOiKQfOpBzdeWfG0GYvoeiSreliboTm5VaH71kIlAx8cyJWXLZQrennMyIBj1/ygsPGCjLlDGImLuQT6meAjvA7uweunFnV9wIZRjF1ERmR0OuJOte38BkJbFmWcjBCckCsRNyhxIGMnhb+4rJzQiYJQNnvE0nepgZSLkWoQsikXOJIsKzwd3Nf7bWyCx5KSuMVKoJc9ZfehOkEzfEEsx1yV4jOWpJTRvHSs0uLyolrmxBJGkK2rcQwUpaS7SuOsPdOwY5h4Q6+8HuBoalBKaqqtxBMIaYuRooY/zUvQ/ylVGpZJcWklISka5moIjaCnwsVbBl4LCEcGOTarwIx5I8sIFNjdAq2xyhourCuALEG1MzXL25T8sDWu1LOye00q5grvV0Gbfi1vlqNuNxNGLS/XrRsvukHq1CpFZ3VmnBuFiNPskXzujiz1279jfPj1/F7tZq0Wo8pkUVqu377m63dttb39W+9mm2xn0ecMV5LnagSfTmkd1+/eYzH5e7Ht+6656dr3v3dvvu+WtvzF9+oT28BowQAlIkE1/NSRzJvB07seFQRhPNHOQEKCLY0Vgb3BWWQEpusMIVyja3jBBFIiQA5AGIQsFEKYyNRmAXRGrr1B4iOe9OZvdcrO66eHB9qQk7d52ZnKnrauXHy/3XX1u0BzsPPlBPz9dxfLh4Y3z8/D/9r76+Br7nW77qH3z/j//i57/+O9565q4n3/XiF3753M75hd+OSyJhITXM2I7cAgp+I/cKAJckBTupOxvBcqzLOKzbDvZ2c5E32iNiBtoRQAihp8X1Lvjs7sxh043G8FtA6Up0Arzq7vAEQCAlIGziRM6cO6o55fZLVKREfi9Dhjh5cmMWcmdSMycTsJMCbM4DHyl/U70IKEIO+0HZUfKdar28InQxo1za1YejcwwSZp57IoOZ0HXtzPIrv4W653gD3EEGUhJxawFTTwACc0MlDFSFkJqmZQuB28ihDSONnpIQJFCCqLMTnBgMctNSUUYJ1LokwImTmbqZF5cApfIA8LmndhkaqWppI0kACVa8pEDEwlEkAs1a2OYZoRxRy7LLnMyV22w0a7tKDYBktlo2zaqdzibT6TQwMbMkCVE5hKBEZMRKUM+8QtqQJ9IjuAq08AiRQyAcORMu5v70Zed09dkxdL548bWIqG8jit6oJAI472cGddzMa2nvRuBh3QoDHKzUcXlfJdJvzWw/DWR9Vg/9xt2w7t7M2R3moWmdmqZh8H349+4Y9sBwKseGcgj8DinSTcd3Pf4SLkZX7US5iBk9CwegfUyBOZyIY3VWdldKqwCozzf0l3EOq63NgqLDvQtYw9dErycGn436YhRJMc9tYLEORlLekQas8r2JvemLDMx5kpNPLP0cNTvE2bY3uEPhWlFLgcFCllhcJEKCJifzPtvuGd+faTCJ3HM3NHKCZHvK4Zor7MlLgiGHxKXfDnk3D+Ya6kpd7Vb2JJhg8Dk0tholtopp3YB0sUjVzODcLpaBRqNqpNtM1V1pvji6/uzy6tXp4Rt3L166l64+uLO6uK1379LWmKYjH3E8Xi1vpMW8idcPZl96Zfs1nPnS1jsWF98Wd+6l9IYfN7FuQqiWFGIK+9ac48WvTR98+Fj//M1X/+aZ8f6Ipbk9XU1X0rZHh5OtHXr/e27/6p/wGz8ZiBONYdcVK1gEH7Z2BlbpKy8fvLZzUF+Ui49uP/zkXY8/7rcPl5cvHzz7UV1+Ce080Y5PKqQ5Nw1HU2G+fYuIk1ZQohG1AjTO1ORZI2ihBdYcVLRsLYLcuSQ6QBC07luubWBO+6x+gKqRyZnRfQ/F7QurUC+Mwk69tXduvFWJHV55+YXjF66PtrfPPvxoPdkmptnO9I3Pv/D1O+19T85+77Xj3/9tD97/4GP/+h998lv/1rc89bXvefnzHw+0RONeAVaRiWEuQrANwdDX/vYh0GynOqyjCNw4v77uQdv5ggNBMbT4+9M0iHh9pU9HgbTxISJiypkOLimq7hARuWtXIVhUoLkRr+uhEowtdTIhh868+29i5+Hzekcq3w8ocBFAAcpSe432Lgeb3Hu3aZ1W7N/9tDwZCg3qYtMnvttfMMB1cwghBK2ktSgw0ZzjMFOh3B+l1BB67/STGlpHAjlxAgzUZi1qZHnsJVZjrmrLlISJA3MAuGVxAlMgki5Prc7kFoicS0BFstAgIqQ2eYaFplYb86TtQldLtaSWXG00qkZVEBJN7NZKECCBFK7krVvL1sBbtiYQiMECktJ42KHgvmrMh7NNHUJlHW9BZorprnbHqTizFRvUT/6h09DunrO1fT9gYCMem2OA1POAdEOzdRiHHANwPyXg/wpDVKixu91yYlt053C9WfNHequwiwj0d+5P1FD35DvQybfnkn3qwLfd9UZ8Kji8OWUooIcuqOBwd+bsQefT071Srq/I275/0UwzjY3dP1STfb69vBFlCvjB7PmbAUzWPbzQnaj+sj5UNbwAQF5xpuAOy1UQKMiOqSyZLVGmF0jMrEZmLuVs03onWGGX4eKOe2b9kU40Fv8BOZqWN3cJZHVo0wLVyTaKwpi5aVbuHmM0c1UNIVQOnU7h87FiuYQHQxQ75rTV1mfv08ZuXH3VXng1vPHFR/25r760fNsjBw9f3Hv47HRrulePK5cqqcPcK2oMwnWAsyW11WJ5tL///LOf/9RvvrD9a/qu1x5+X9i9l9umWSUW+AR1O7YVnYntvzl79xPz+JbJ9mfmc9fVga+25lJNgt2+MZrsXHrv/+2NX/09Wf1mkjncwMesgWylwsGPva2Nb3q66s8/f+OFD9/YujR54J17Dzx177v/rF4/WLz8u7de/D/TwdOkh85jtJdCHLfm7BKUlCGH5OYiseEVXGHupBn40kU4mi5MU+y5HClRCGgiPELYGs0u8d4DvHeOJjt+ZnsRbFyP9uodh87nV64+++L8tdcgzdZd90wePGejCXMVKrzy8rOHN6996qUrX37+2j2XziHRD33Pe//Db3zuKNJ9j23vnH3oePE7Y+y1YpltSUjNa+I+sbs+kj2IKIdm0SteXncJG+zq4lf4AL1V+pF4B/oeaJETh2LwyZXx1HkbmyK1nE0mwHMqA+boAjQFrJGR2etK3Cx+jLzP2Rp5RyXI7lAYucCRme+Gz+oHmW+TVW7+pVAhI3YrPUnL8N2LL7IpFamvQOn+D3eegfWjh6F7dNYKd1TMWf1WobVKTMVN2LR1SmBlUlVDjseR5Ey0u4GNSZHDlpwMiTw5EqhAtNwSPJG6QX1l3uZ3NRKAUq4ndbY1W0zeNBVgHT8ad8zABCuEJIrk0JQab1fQJQuYNEADJs5jcICbsycPRGAkeHJvyXNnkwRNCMws6OPwnWwkoi6Ae3L2ut3bSb+egYYMJ3KLwm7Wk6tu7EzONBA8TIuErqLo5NVEIM7lNN7bBXSH9ibo15UHGrzbnQibatC78PUJiPbwgt5kW5f0rmt5N9RYf0Ns7m8isqLyul9mx71Tn/mI9QldgP1NiHLgfHrWqEsGOJUGavlTomG5OqGUG3Rp424JvRBoFLmTyTfdSxUY9Xp04/RuiBvgDhKnF23DmclDOjFj1Bk0nY2ZzSgDsB2Oa/LW6wB1cigSGQAJ5Ln/cf4Ig6BmbhZzMjf3IM9rx6HzanIiujtBxYgJZeryjPXJPLiZhZBLBlMeeQgBAJrGW2okHGM5JRlPzt1Ek27eXHzyly9c+/gH9l7/xsfCV3/D5L4Ht+vte+vljno6Xh6vmmZ5VGaWmZq5VZ7I5wfKyiO3sXg9k623v+f+r3pX88df/9Qv/c4n/+2zD1y9/wfk7otHqxu+vxrt7Vl13rEPOvhkeHBExxe3tq8Sh+MbB1hODmv3ShfXZDbdfsefPfrES9CXo18wg6NxAH6cLAVKrivg0FmY2W+/ML/5+fnv7sjOY6PHHtp+4u0PvPMDtDjYf/m3bz7zC3r906ZvMM457SVwcANBkdSclHNS10BAACTjzxQRYNCIMCKqQBEcnCT4OFmj8RKfeYDvOd+Md+PkzGgmYVLNsKBmfvPa9eObr+hrz2K+kL0LZx58t5/dtvH2rNoi+OGtm9e/9Hm5dXRV7Tc/+saf/L76QLe/9wef/Ds/89EvfbF59+NcXXjs9rMvbo/nyQOUnYRZ+32ZEybumQ4UIMO6vSx30MhSr9d7bieMy6ErXGr/h+TnvZtYrgeGtO1Y+7IbivzU2bG8CSlrOoIbOoYA777e4auKAs76zNkl40DJciGSOWSNfAS6wsXuuYo1M24pGOna9awBX24oUQM3R6ePOwve7/gZOjP56ciQi650CRgiGYvkzfVsuViKC7NmjNGSkoXGlN3YzV0N0tUdQdDHCbKbm/chklPxNwE1JIeC1GnlbjA1ToDCzVu31sGViTslMyKyLu7rBKABzJGKwvHgACBZT6mbo2W4QN1bmHlz4IukwROrcTIXFyYxS0wMJ2VYBkm4q1OqmIRZRMDZA5auLIScQEybsdduw/RQ0yzAqQtUQvogsTp5R+7mBDibb0aFmd3JoV7wYUSZtp3y/rPh7l/nVgkML025+u3bm2D9P4kyfnjDTBvWoWNQKz10yPqLu5uXr/cgheENASBk27BMTR9FGVzcv4gNDyEA7xBJ7ieGmqmDS/ffsqVLTKJLYucQsRp1Wg2dIhlMAsHcaVCA341F12qbMHhxLoX25cpSUp0j0/k32NCg3dTJ5j/za1Lu9ZY1q5RsQbb90QGPOxXex8GQ4Z5koHE4nvriiCaR6hY5bkwspWuJGTRHiEtchMGkWYQSsk3VC8V1UXK23zsfqBdD0m3psjpkTdPW9ZiIVLWuawc3rSJYakXGkkx3t+7aPzq+9bmPnH3lI9929su/7131+9+6e+bCY6tqNl9Ic7Si42YuV1JqpBKGSQzaqNRRDVObIzkjTEAMTVi27A1aOaoXzRHftfefPLj7B1565t/++l/9D8+8dfHUHxlfeCjdvhKnx1uydTS+6/zq9pVGHqMb31zZz8QzvL9YxIOZ1XOf6u20e2k0v/BDdvV/IxypAxgBzL5vgLqw5CRfcKuFDXyc6GW99eziE3uLj+/cihemj3z19Mn33/uWP1xjvnzp89ee/8XjN36D7LamkWOMsEPOjgAEoHIfgceQicQJS600hgQJE8gEcYxYUxwhSB2nPKnSWOrtWmK1G6O7S6wbPdpfLOj4yG+8ojdfDkLT+x6ji/e1W+NxHEcT1/mt/eu3L18eURXGW/sr++kPPv2nf/Bti8Xh2UszPT549jMvfdWTT8yr6bXm4l2T5yWBxFonSrVIm0ov57W2Uxi8T5x06BTq9kZRbxtCYLgxCsH7Jn/BUKF2e7hsyu63ZcPxIIH6Zh91L/mUcgzNaR1VzGZE5toVLqRO+VyRlCoVMyMh9syUVJ6beZMwuA95AjPAHRx67T/0rHn5NG1aEpsRtU0bwjvyr/5cF8XbKetuYgf6GsAg7EdEYCIJJBJCsBgAd7OckDWwqobstZMwS19OYzmuQGRAjeiEBDeQG5l5MhioAatTUrSOFqYZoG+UC0EVXDLKBM9es6i7OlouKdU8wuyCE7u6qwSHGzsqThM/rsxjS9KarxJZ8JrJmciZe+CJAsoM4a4zccilSgwWztqf+00GygUjJxRQV96TQXHUkRz3pBd5udRKcIcKselgA+TKygw/pA4FndOuOQ7Tt1JAp05oqJA6vbsp9HtAVv/dLOi7TnkDT7cjd1wTfr7ZkXizP/XiPR/nXAfug9NOVFy7TB/e50vJ1LkLL528G2NtKJyo2wNc+z9SN1kZ8YjOdO/CEZ0m9vXN1zr+VKC7PD0beN0zDOUMYVPFolsR9zvMjG/gLQsuGugc/3IRD1aHUMgsyzsQ0DpHXp3j+TU9A7CLk3Jk6so9B/EIMyMQuzCvcXNA7s1ZAn/ZUSi20gA1pqXBWReZL//Lj2jbloTr0YSI2qYhEmqa6XiPt+qDy1duffSn3uYf/p53Lv/QH7v77D3vMq4WB/bG1aXgVqicmNoYHUGYag+GlMwoRFayZVON5GjMq4TaaFqJqdpyVbWicrsajXiBg/3DsPfQj/5w875nX/n5X//vfmn3D/u7/nBqbl1ZHc22p029sxX1OdB7b1z+3qr6mTOzcERpeUC0Cm11hBvVo2/R21+v6WXwbdgK2CdXRjCauDXkRiSGJtkcIBIRrIwOLGLp1fLpj914+h9h9ujk4nu3n3rvI3/of2AdH7/28rUXf+fg5S9g0fBoR6dBJHKoWWrIyCW6VM40GkUS5hgoRIoVV1FGzIHa0SigHjNVwkQBvlSfM1YEHkdNR9fT9Vt1ffb/z96fRluWXWeB6DfnXHvvc24TNyIyIrLvlZJSvVKdZclWZxt3uO8obERjylUFZaBMAa4HGDxoC0yBoUzxgFHYgMEYge1nGxvh3rIsWV3K6ptMZR99xG3POXuvNef7Mddae58bIapGvfEY9cbTHndk3jh3n92sZrbf/Kbdes5uua1rdzCLQxzmkc8/9WTq7K77H7j29BXaaLaa2Yc//di7P3j+5S+5gxkvvD186qnHF+mh2bZ94vzGC2+/h3afRkNCmmIgtJzRTu5EVm4f9aZHRBXmjmMr+RizoGaNVTUNl/VfOc8nGZ+6gacLvlicIxKi9JiZbhz/JRVY8gQoMx4Ja+ncbOYbctMYYxOzlCUdZTuBpuYAUBKHlgrjCDk7Sdl/43n57OOWyuTua6GC0RZxVgmvAl4PpDKQaN07ct9XmpAMQS0ZJLUpJWkaVbWmsezbc2C2VJNZdXR8LlmpWPkEzeYOqUKNkqmxqHGv1qsNpsnZUcFDRIKpmDodb25LQ8mVRAXVF8uCzHPtIJAIHNwfAnW03ADPTWaRuiExNcISICLC5CRLHgiU0CAEZnZe78ocSjm3LSU54tNROzBSjmZYTZ1kgBJlET328lIY8oeUAztTX0tBIBMKQA53GJNXhZRCIC6xniouy8yb5jtNPeB6GhEV6HEuGjimfvIqqHvMRu27vp1Qt1K9hSu6vD3GNUpsqFzBx1ZktumshNCd40JT1qCTJxq3GjnssdoQPN0USoWYhTM/zfSmGYVRLplfZ/JfyvQB08EoQwQjZtPchDEQJd/g6zLgP2OsTEZvnY5AyVshrV8hp2zLmwIwj5ukRB3155r9T8eBQCpECbDk1WJerZj99Ul8EGoi4qRmTr+XDMRjZAY1MJgrK6ajWgjCCDFZ27VmJtwQUd9HIhEJtn3vxQufpd/8+a/iT337F/evf9t9Es7pnu5eX6a0aqXfPGHDMBuSNRQ3WBdGgVj71HYt4gqsg67CdujjPPSrWQNubLE8IuN5s62Ifeik3286ahocHoaD3u644/bv/o7NV777F//5f3z/My/57u2771/uH7Rb0nI4GsLP7Zz4lueuv/zMqd88G+bnDxLPut72Irou8dbDegC0Z6jfs7Sb7EhwAB6AYCmYaYMVQSNYk0ROpBH9DBQRlo1KOjh/dPiuo8dOn5c72rtfvf3w60++5ovOfelXL69fvv65T+xd75M03DTSNKEL1DUmbKTWdCEECkQc2NvkBREhJQlkDN1fHFhjpMkO+qPLV/aXF/HME4iLjTvvnd9+r3YbzfZGEg3Ddru6+tz7PxhjuuXVr+zO3ibX+m5lYSvtXtj5+V97/EUvvWNnlh563h2PPXG4kfiFd51+7Ao/fXTL3d2nhnSmgSXZM51Jqe8v+0sBMCgaCvVdNuaMpko6L+AsL+sanooRL2MgqcE5RV3Eo39YQi+5pZvltJMHTo8DQ4qQca8971iv63XmVM3VhW5SQinrUSAXZ6qpw8aUkaWOJQNrbmd73Owu7Z1ABq/o861aXqNArgxwAFah4SimMvKt1/iu1zTrVP1OfN7jh8tJEZEGwSiCJFpoVVWDKRv5s2Io+Gx/n1LJQkSQ2jjKXIkocaZxM6hqsgBKSa1TDIrBSEs7nhXBiJKHyuGU+DCDmncDEGNic4SJMsh/Y2IiZkpC5m0iA9CwduhbSAOI9WKNWGBrWCEixsQcxPvFCFFovIlVYSOBiccAMoMKZ+qeqgCyBh4VBUDT8tcxN8owC84JWgha1wZc2MlkKkCJp3XAxYfNfnBZ9NP4KnCDoXpsRifrLBeSE0/P8YSLV3jKMZ3iaix3US7QpDSNeE9CW0DuUFabeU0exgmiFUTJkMt/PIpAa/10ganJXMqTsvtoGYJRUIhTy8M3jH/i02hmbsRl6vmp5VvGTgq7yBQglv1F78DoLfqIk3lPAl0bYfLoRlMve9OdlZ/KAyzjM/DkW2pKxiN/rO8vxxqeDMtAg1EDEevVNBGLsXiZmRVyACJy7lZSEyndJw0Ky7gEoiwivSJ73Sb3QLQ55hkGoOs6IucwoL6P0jabG1sXLlyIv/yO39O977/5+vDwqx6y1cmja7tK+6bEjXVMYpspGqPfJFKdHSLNNKJr+05Xqe/aEIzYmhSNU0LbDbFvE8/azV70YHUUKG7QNmZbq2VKSPNTkVfL5VFjtPNFb9l55Uuf/sfv/DP/6fHviG/8Bh6uR2DeNdfS/b+x/cl7j6585rZ75FT7zLWDeXpm2a8odu3WxrJvqbmVdZdlOdiuLXdDum6gxACGAQZVcv59NcKMKCldQ1RjNlqB0GA3xk/Hx3/r2uP/6kp7fzjz8hP3v/aOh159786Jo4PF7u7u0f7hitDMZ93mPLRtgxkHQ0Ne3kMGz8HpanXYL4fV0lLsD3f16KA/3E/LZXd4vT19n547F07O5tIRZmmggyvn4+O/Y599z3B4Xs89f/dzt26cvOPU/Xc/+5nPnOIW57be9/5nYr/XtdsvftHd7/vAM5dX9ODZM2mj/8jnzt73/HOHuBJSk3STZUkqNRRUAzPka9/XsBqQUpboUoLK4xau+2Ua2aoBpyqJ7AZiXgATk9rvKLnkCTT1GcazM4CZit4qXjVYSuS2SAdj7+mZNQUKyVplK3O63JxhUVXxnueTjcm5qZBRJq8c8Stmzv5dbGgu0JSa/i0XuXHXuwl708/97abhaw9IoESezds2CIs20lodajGYJjUrVVIVnkJejm8OUc5KF2JQJiOkQr2lFqIpIyVjVXQGBWmCq+cUkgLJNJpNWb3UCJDSToOR1CUic+MjTGQEacQaCQJhcbAIh2AhKDfMwUQMbCScDVJuKDTkNOqNCAUS7yLmNUjsqYS8Mpip6GAzY28OS1VqFaC6FCxLNSI9+2+EibCdLjZyKkDKmFwjGDjcxFUtX3HvpHBb5yuaGTFTJbr0Na0GqJ+pRN6XhohY5JgP7BKWSKyouqkHDLc7ygNU7csTqCTnvs0K1WSZlFPFWeRy2Io95WqSadl984/71Yu2cpBcVQ1JyPtWBiDDmImNiNlENZJaqfSCMcDOxUiW1FDC7D6sTAASwZsTwJIlZZAvLamO4BgLywEjZ74zZ3+yXLCfCV09YmGNmXnGwmiMBakq1Dis58JzK0ZWdT4voyKwHK6shpS8UpPYWBIaUQGd42cgr1hY7HRlBBFWNGKGzFHL3gGHlAjExkkUUOR2CyAQMcP3GQewJJggY1TMrDMMLTPIBk3DAKjMZrB+o2+vzdIMTYxHGzvz1DdP/OpPvv7Sf/reb9t67WveQCnun7/GfM3XIgtTlmSRiQCJSZFiUERmVmVVViSLRMwBcbkUZ4UPjZktVysR2Q5zBAy9xSGJkDHSYKztxoz6ftlfP1ptnvvv/sDZ1//Gv//hn/vI/ld8H8+7vn+2keGTp3fOa2PLZWrk9ts2duVEuno17O/2Jxs736I9SrMTSWdNH4YuaC8kIEqmS6QjBhmimRk6Q/LaQMDbebamNkCFN1WZ6DlJz8Zn33v1/L++9u4Hm7vfsnXPi0694HW3PvC81fJgsb+vEda38URspGnABu2BlVk6WvLhdR1iHJZpdTT0i2FxZP0qGM1kZg881O6cxawdgh2uVrL77PLCs7bURvv9o98BK/ZuXz75ueubG7e/8pXzW08eXtrdPn3ro89eePLJ1e0vPfHw82/75d/6yOF1u+Xs5gtPN+/92N4bHj63GVcAsayIO5DSup4zM81wYxAIrJYLplzrcbVCp5pDs4Y1y+0X8p7VTA2b6i3IkPukmXn75CJMmIhkZNyrNuu0/q2p6VEXICxsuSKIc2jbSAFmBanFROwkQ4m8EE+ziZnFr7ElNaGaha23Uo1mkVlg3vVoNAiy9gVNHr6AkMqlpw6GOgtWgXdmeeXENeqk9KVpEokhJXVIF+cGbCIwI+FgYbAIDsTKQkwJEiS0YFLVplHNWGaYmGXADYM8DEze4SwzJThW3LuOGsycpbhJlh2kaKqamSHNLIVGVc0rjP2TEeHLKAQtmlu9BFAkSMgRPhXKjNbMCIFFhAOoUQqgwBKCCKMRCYGCMDEHUBASltxXwz3ZjILmovX8AZTcPWMAygnIXdd8Dbq9UHxC70lB1YIycnOznDBZAO4ruvRG6bOZPeCbqOGi+ern4w7xf/o5Xo5THiKlRC7zPs9B47FWGFCVx8gFc4Nuntwc7skTk9aIjuUtO22jorkCGESll05yhoqxQJZGSBrMkIrBmQersMZzgcfl79E4blTMJVehzKyAea23G40gj01ndsFil/piIyLUghyYdzAtr78WwqqbFpbx+RlQejP71x/WQ9B+Cyt2gtlYu+ZzYR4eMNrqjk4fLI7QUhKioJKg0dgoecdoT6uzkVdLUQgBxQlAiYD5UERNyXnTfKwcKyLbGHZXRjT0JBjaWZt0xif3w9CYto3S7I5Ln/zo5rv/t7/4xfvf9ude2gxnd69eg6XN2SzGGGPsus5Snk2no/Pp5xKjc8MiN0GLCYSu61IkIlZ1VjLv9GrexK0sjPx1Yg6BE52Z9df2Lw4vev0jf+e2j/71n//+33zNn3jwgZcNV54NzWxBLRvtt9ewCufOnF1d6lf6GPo5tztYPqtdK4EHPokVURQjAw0kRwY2XRh6WAIRLIAaQlIsCAPy8vC9w2pzTg0wgC4Z7+kTv7X3xPbeu17QnnvjzsNv3nzoZXTnae2k2adFir0OIkMLRT9ESdTRAfo49JYiDakxohCCWGBKvR1eOQ9KdnA9PvtsOhrC7Q9sv+ils7Mn95/5jBx9wvSSHjx7+Ph8f3vn3ntf9Nn0UQ60oPmvv+fpV77s7Etfev/W5qwfDrbajefdtf2L73z8sWd3Hrmj7ffivG17HlhDdeyoQEZsrSnIWujreFKoOGch1y14yMWXEMNI2fO4XPOrnv1ysVE/pRJSrhUj9WGmBJNFwmT55zcEMoOgG0cpY7qdZb0QTCF7isnGxkxmOfLtunhspDZutOO6tP6pJo+OC2Gm6QdWDpTuYeM9mJDyBhxhKJbtFSv2gHo/Xv8yC7OO7BDCnBgiIKUmeLTGNCmUFYbMFklgydsmkFQziD2qakQAZz/Ia4ndI1BNCjOKmg0eK82GNZtcvk6AzPjDZp4HICIyxDpKlPm8QEQi5G2mQtNQG5SFmiY0LXtz5tBA/DmZZFTAREQ5Y+YLI5sRZZWWhAXYHa+qO33BjSsmQ1xT1VZUhGFF1U3nLv8ymd9xt0wumkMxY41UoUSHc2Nmo8/cwKwVrjVDMV1q67cDKGdYRl1yw1qcbmBkNpcaLDKqfP1+MhfuizJsPqtucfuTwVUUZWLJ/L6kRZMSM3ujR60NaGkNQX7s94KwKCysgAcAjMCUmBEVqmoFBac5bVqvME7JBNTgGyY3WFeNdf7MXN/6Y5QUV74GM1MGwBtqIdjkgakOJo03dbFHQM6TA4BRImy2yztx7Tm7Q0nd4IMaZffaW5e4MZztnCx5PHtDmbiTgBgjN20WviJOIsMhxHhdYhfjAu1MAoiWaLf6tKKIrY1TF3Yv7/3HH/p6+dXv/x9fefvzX3P1uQVwbd52DYWjo2XXNU3T9H3suq5uHiqZMJuyEBhijMwsgbKjP4buJQRfn8rMmgqYrgpGfxE+5HbrhC6vX3pi85aX/M3fd+Fv/ru/9K6j//qOl33Jpavnu6btJb312t6js/aZZvvMC+/93LvPb/BeYuKo6JO2bRu2elmAt8AGWjpzEUhIV2Y9MAAdWdAcOFgYRRiZdYkS6AiIAJM10I4URm2SI+B98eL7js7/KH7toeb2N5y577VbD7x068w53jmhcWXDsu1kZenQFht9HEgjU5JOE9swxNXRKi3C4cXh6EldPGerPTRtc/IF7famxrjdnGhe901P/9I/C7pvh9dX3YUnP/NhOXf2zNlbry724vzEO99/5Y98J+67Z+fULacvnL/yovu27jzZab948uNb37wtn9qGHiWCgpm41i6O25knVft5Im7c/FnA+M51zTkRfHl6lSATJJdZaR1Uvmh5sefgHCYm+XHll52fifcDMVjGq5LDitxPNyJiJe9AYAqlsmRSrrj3nsJZyTFProm1381smtXy9Totupw8Ht3sCl6rsX5MOmeXlZzj52alJAmwUo1EY5Q7J5cygzQLJLBZEkEQsZCawIhIBqMgBLCzN4uI93XIw59zoz76LokFgCZHO3s3XlPzroCKHHrM76UjS2jBe1aCbjYQcXEkslbKRRQIoTEyZpYmIIiJmITQBjBzaFgE3psBQmPhr9TiTHOjqZhbVYUhZxOSVS/L56W4v/WTzDx/wzGxOMv0jQ7bONef11UVELQA5TNNtnkfKP9dkMVt0bXjM02NvGNs1GO5Wzlnqmas5C/zQiK3MfzK0xeZjBLlRA2P2gdkIIMxMURzGsEndw3gWFqkgZx52Elqs39fK/qY1pCTuVJMtb4+3KX2roQEISNBRUlwCSbdZJKIYBSJqAC0qHA2Z6rHvESK3eDxV7MSL7Ns6edCxlG5ag1n1Zku2hFe4K2g6m0UK5vVLBDu6i5+aHGrBSgt1BjKrE1lFnTv3LcycvmEJw7WbD0RSapN2zBzGnpmFgn9amC1lRyGpmlTWhKDmnY4kO6M7Gw+9uiv3/qe/+ff/rpb3vhlX7+MzcULixn1zKFfrqRr2rYFyJhEyMw0kT+S1wqnweN7ntRiELxjKDPHGFVVOPgCExEijjEatG1bb7eSdBCRlkPuEzpYBxtMYzPb5jsWaR9y8s99K37kp/7uv71+7a4v/Xq9fnWTu9ND82cf//g/uPP+T5/dvu2+M7sfubgx3zlYfRroIVuDHsI64yXYSWoE6AD1GowCawxOw2BogCXQA8baGhrjZBADMzbMevBAcdPQMtDyMukHhmcefe65f0bvvj/c+rJw12vb0/fNdk7L5rYhWNyIR8t+Efv9vXRwRQ+v2OISLS/ZajetnibbCyQD74DuH/pW9rWZHy3aZ06+7IXnP/T8tPtptUMsr9PexnOf+NBDr/qiK7tHNp/97lPXHv/clVe98OTJszuf/uzVt3zxPe3GXObtZ58eWizveqM9xU3TzNxwrDa0TUohxyU4OSZnFmOdsjgsBuJoVgEgZb/q9MMs03J3qFGwmGVqwXJ2OqbSyrPxlHjLzECsBjIT5ryPzdk3OKeZHKWUddwYgnavV1xDEk0RMO4SZaQLlVYlJfhV9eK6+zG6Q+vPLIYBE0i3FRt6jP/fNFXscqmWU5O3QVRjQmRwYFZlVhZmVhaSREHEAjFDo4wtlbh0PybX5eys5Vk4TEQBO0c7LLNgU7LMdFdtjsJ3TIVqF6jkPZRRylyFGJNbQ9n5Fsk80kTUBkhLTQNmk0DCDogmIoKQsCsjf/riN4CcDYtLYLdaQsxE5Jx+Zp5SyDBsogyyQ366kXh7Onc3LLY1FeDnhKmYnh6jcrJxk6xN9vHZHW23esLooNTZWL9IPSE3is8R2ez4YtwhvlpGVT3BFVSvhTOzEgAPxHv3WZSWA2pw2sgMeqw+MgzqMVkickpId5lhZmxsk4HzjgzZwM95iuqVEpWsMIGpzSinYr4cGzF/WgdZFEtc8pWNWaY22jgErtgnu4uIyEob7zLxdVrJEc653r9aRQSvYazyyxgwMZiCz2xdmO8/eCRbiZaUNgCo5lC8jb3NxwwHUy7StwxJSGoURIjF6bK60GhKw2ppyQaxGW80Niwaa+J8U8JyZ3U49Ff+/T95q/zKD/wPLzv94AMHh0fzfimBkyRENI0Txupy6Nk4EItIGqIvOWchzzuQyJVrCNw0TSthiCtVbZpGBxfuWdCrKkrQicW5xhlmzGEYEgsl1SbMNF5bGQs2IdeWuvXf/r5HFj/5Iz/788vnfcPbj5577Cfve/jM8soPfOJj328vuHz//c3e/v5j58Fnw2Jh0gdOKx3IkR4EIIAA0gyjtxZwPt0A2iTMYUeGfaIloYE10Mbh+4oBWJoBWAWoAktNgDAh6CrK7w4XHx0u/PiKdo7ozihnrQkIA1YRcYHhEOgBb4+iCQOxadowBKALKmlxLe4/Ydt89aBpVstzX/zFT//cc9hZytFeCCf06QsXzj557tbbnrpyZfdQP/jxy69+eOeFz7vtM5/bVcTu1GkWPDE/9Vsf/NzXnr1+/uX3RI3O8U6ETAKft7yV7gKTPF8+UtZvxa2rdmcxrafy5DihZJH4TDVk5ViL7I1Z7fNNgPsba18fH8M7raQxEUug3F2c1BM+ilEqVFlX4y+AJvf9OJlBE5jJjstcMycTXHMp6l/zNSeFzlMJcFMxkp9hvcSoFBn64Y2lJ0guAgzuyhOR5WAukzGMKTl3fmBORiIirA1RJIezMRNRYM4MFpJz81byqce1QKj13LmgU5VUiSATP43ry+Yi43wlqXDW4CvE1wYpODvByKVEDBaWhprGREiCspgwsRxTwFbDzetjnp0fY8veXF5ONSjtptKI3PEHzila95pGd9myc4LPE+gZr3ATD7g+U/5FKDelAUjYWcC5LGm49cfsnVeLk1VXp2Hde0QJUNTnKvU9E1fYL6LVErnRBsytdAyutbMCU0BqSS1RgZp5h203pX0+Pacz3RvEJNXUshKKdE1annWsTZpaJOuBz2zmGIGEQeTohQrYHDcJ5wRR7nfj9B7ZcvUWwmJmZSxKUqoUJWeF6uRIJb43TnbRRnCLjr0XuFUBByLn7UExLZkIxGocKW7Ndm/BtcO0QxLIgtpKUwQJIVWqXvK8M1lpoakjZRjnVjAioqpsakp9vxyidt2cQT2nFLfbaLy1fzQ7ffjZ60e/9ve//1XPfNfbv3p/sTg6vxdmtmwsLIg2zIyGYYDqbDYTblhgwDAMjsIwsxhzrJ5FmMg5/lSzTZRinikWODl8SknEc8DBm3vXpU6Zbj0x80Y7X9DAzUk52J03dGQnYjjcO8Cf+Na36o/9bz/5M8tHvvy7u4PLP/LQS//4wf7f/fAHvodfhocfCU8+cTWsND2O1ZU03wmDJpkxkulgTEAAEUjBiVTNVkAEKaghBKMGJKZ7AAEDiIAO1IAC7GoL6jFEVpI5x0aN1dBDkQKoETJKq4TPmj4hvbKtBtpkRCIjmiu2EXaM5jBWmFCCXk+2NCyJ+5QOV/v7xjsHs2s7L3hB86EX4vLjJker5XU52rz66SdPnbn93Klbnnvmym9++OJ3f9MLHr536/2PPn19wWdOnmpONUdnTr7zU/jqJ5/dfvXzrl1XtL6qi+o1AylQfSMuoa5MWABaKyGy8l/OxQfFwc2bDcYBPsFl2ihLHcmXmQZ+ILqmtI+1GQORaLbJlA0EKddwMzgRcp9dNYUQq1kpQaEcvMwQqkyGlS0LtkkjwiIo3Mdd06/jX+E4EZqK35tq3IkFU4SJjb8ZShq7HOX6LiFz/UYxgKzSNni6EyTGEQBxIIrEaiSQRA499bQj1WguC4vr4Aj/nKd+Xn0A/8WVjaqLZTfix1ZXeRc713R5faJcut1MOCOVGEwZBwtWgrOIUGiNxFgkNJFhJCa5TAXExgTOVCpTxos8pMWK8WcEoAkgRSa0KHEaRqnbyDQy8NoW8oWX87PkuoaPqa2bOLFhGi6YnrGO/gEqPU1OKuTfK+7/eC5zXFhripNqxNabsxf1ZROrhP1FS647t2Qqm3CM5XpKklJVgZ6y9386fVcxezXXaQFUINDTqtz6MuWfMDMwhMgmZJ9WjFA3PXxxubLL6wwJlGF16lMiBoMCoVwlOWCrjJKAAS9XKFFcz0aXRBGNcsiIArD2IVVdO+V6JapEKCVbTB5qqe/rBQZOrZ6vQOJw3baz+2ZXnl7crtyKDTEolNjT2MbFzc3mamkdzWYR3lUtd2OTPg5t20Kxv79LRPP5ZgItELea9lAO52hSc+fnfuMXX/3Jf/pnv/3sw298y+753di2TRtNU2NbHWHQlRG13Yxhq2EgIqagFlU1hCYXzitPjDATooYDAc4mTUQibRxiE0IGmyT2QCARxVhWdbGoRA2OCl813RyHhwc8m/dxJWZQ2rTZ4VX+3u/60vM/8kPv+cXlvV/+jTu9/u+PfOsDV//5X/7N9/6Zr7m9eeRt83f+m0VnSFH7Q3BbgxWkwcUOiZmH+5GABBvMIrilsGmYoZ8lHYAloQG3RC3RQm05xE5oI1lnQzAQGrCpptjwxqCc1JhVWUBNUq+kJLUBZKAWvAM5JTIXJY1HRkdKAWGeSMhgy8Xy8MJmmF/fZTs6efbVX3zhpy/bHNIAy+u0t/XkRx994LWv7k5vv/vRy3sHuOXMBlI8OAz337p16s4TR9I909r+/mFr0qBzjDehypXkhaPwAEkBJFsJmehxFyHHIAMFA47xZkw3rO93opxuGTntiXhsEu75RSrlIr7Fxq2eULHHYqRmxpV8GAovZ2c3H9zfgiJTo0ORRxq5k6a/stcweNJrzdvOCrh8PjUUstxGlaHVG7npUcUhTwlyq+M1jXW5CizBZwCamfVyT0VjJlVwafrI5H8LJCABKVgssbebVVDIT14StNkZ4gZgplydMBFcKTsaPDZfEQ/YuiKYaIdsfuRoombvL8fzshmd/VAyphws9Rg1C4fGRNTERJiFhFTIwCkLt8zmuB4+nAQVRoFZ4/kYSUlzI7jcepaJvCjESjJkgsOyosHWl1oJKpdb5A/XUNDTwyGjlukdpC4dYiA5sAFlsDKQgZkLbUbRnTdEUMd/MNWIeV12NinG9+Etvp25hebfVAJBuLrL2ah0SnMpmzwKxD1HIyWy5G1wDSDBhGqOvKJVx8euT8KgiFyfB48/jdFXjy8QEeWxzrxPxOz9kdzzRgZr1PfOOKVyTWMU/D1Bcqq1tlUoosSQHJZCqJj5vEiKSzyJ3+X8cV7K00mlktkmUiImC+WtfV8JVAO3t84PaLEg2yQsFSFw6yW6gLcFzWzj3tALKGqYsgOglGA0m82HYTg6OgjMTdMoQULoItnKbtnaupz6K+/4q98mv/Lf//k3bp6+7fD8YrOdxSESmsSicaksHOfE0QGPq9Wim8+SaYqxlVBt62J+qKr5miq9RaOXGbdtW81wEWFiI9TO0FQCTXmtCrzWc9kt5ke8Je1SE0k36LBp26vZYiV7e4vtv/L2b/+T/+vf/NB/WD7wRd/A3af/xpve9EO/8R/+zK/+zF/4hq9un/fq5fs/1m1sL/vI7b4iADH7HCRAMLQksLQiNLmtgvXGHfNcuElgDAtoTySglrEJbZE2jfpExmqElmQzJiiIm05tIO5ggSwGQoInK1XDCiakhjQ3bBI2lWbGipkiWujbmAzouUmEzhY6yBU7wcOzJ2576PmXn3+XPvGpGE046tGV4SIuXrjt1H13Xnz3xSee3L3reXdv8QcP94Y7bm1PbW89S6c30W4tZimlRZtmoxXoG4rLOI9xrFr+C4DQlMW5pmuHjDvl+l3/eptRDlKWXpUtI3pDi5fphrVv8OqNHUPHqNWW4Qyk3LPLcRRWeDxqtAkpW8AF9Ol8v6SwCS6s4n6nUvWmOtXMO4Xzsb+uOa8TzV1XrK2dmZ248aXWA/XIocCqji0DEXINBRGZeXhZY64mVfU+xUYEFnAyzh6e0eQ6+cGEOXFNrmIE8Aqa/JDOYUm5AiV6hKCE6K1UqeSgPY8kLU6akYkrXOywUIHfmlkIgVgSsxFLaIyYiCmIERIxmZdM5p9cZcPmPlpdElYWZ2nA7M+fUxtWhtpPJvHl53ZG/aKZmZCYWfKs5vp011vkOSIACJPlWGvYM/9DIVEaVy0ZJeRSVMp4xawXKQfNRYu16AqAJt2WvDzJnT0ldfAYG+uICoNxpELwbGbJzH1KU6m6pKSV/P095lXZsjm37qHO4OTacKOLUJT2RMuW38fFT8VhNMAIIjQqyHVqC2Zy/W7Z+2QqIHQyCjImnJhrvKjq2tE1qrOoFN0irxyyNbNFpWyIM2qMzDxNnh0AkWBGk5Ku/D6q3vOrqN4yTqx5w+rkZK806GM8t73cOLx8WWeBNgxJKCYicwLKnMHyhUIRaADtVyQNpGHpYAlRQzdb6dXVlcNmY0u7JqWmI4tBuxTs5PZTTz2lP/ODf+7NF7/9930TLXYW+xe6NgweWGFjg0aPKfYwWg1DI8RBhlXPglYCEbFQSklEGKQxBWJQMjNDQjIQCYmCQicDNJG1xKFpcp9h1dCwaiSoRmXmKs3VIgvMdEObFBKFQAszGEmAIqQ2SOrjMvLs//Gd3/Lf/sjfeTJsPfSqL93f3vihF73+r//aj3/Vhz7+zle/ZvOjv36QHkfXauyIBxfIIGYT5k49JistDWRI4APAQjyRKNhMwQGyDUuwaBaSMEORlKBkYnRCaQcICAHcKRpIgLnWaRwdCFsljdAFWQ/qTcTY4zBM1Jgm4xDDCroCiaUh0RESbOD24OQKVw9uu37n677k8Wd20RwY9kIK/XJv+MzlU2fueiak9zx+4Y++YGfYSLvL5ekTeqYJzZXdrbRsTm1yaowXZFWhZvfCy3C5oqoIyFE73wu5y031nPyQEWPvoqsEzzQSkVK2xicLnTgDKbL7VXRYNOPk9Pe5TnBSueMZYkvZsAYrqYByUNc4QaEepoIl94/ZYMpEpmQ5queaHikCxCLkFFY36FSoZY+ASJG8/gJZXmW3yErermQ8c9oYE/FtCoc+xKpOjMjAzJYiV+/TgQ7J+6GyeoeVYxl0UGLEREQSiHuGkQqg3ARBTApikCiYmDQNgQXZ5nYXlROMCzEUm+vRUo1dJGZ+JDUzMksgEurGYal2NDvyN3fwIAqG7OYRwGW4iDJwCt7mmUmZhclIjJ0PxMic5aL0vJQAgumIFSWaVG+auegDUCuhAKQUKUgdrzqbMaXcRc7nNDvnBPCQPHm0BhQoG2LMC1BZNwEslZKi/E1KXJM8LDO5OTNp7hnBVPDiWVn4mHkidZTpk1SrIRA0x3gsZW/JqO4ZMEFL2SiISn6IHCmAClUfx2L8bn7H/OFNTzBMjea1DZ/tu4mJsmb41K9nkCTVvwKUyTFc15aG4dMnoRyNGEOd5fy1yDNKZGna2qi+i19TzSuaSg7cgzREyFkILuA5Hz4WIY/tTM00IqpvtL5CEIPCmpMh3ttcu7h4ABKZekodANWIXEmfxUFKKYTGTEkaaQJxUEtC1LRNv3h2tUdha2YBpIu2wyKdOt0v9k9tXnjPe2979K/+5f9q8zVv/PYLe4eb+swmkVJjk6NIW82oUSXKeAtWMqSxebAZ/M8EiEiMkeC8nlAYMsKRUkp935uREHtTd5RIQx2ZwEIN9X3vf3J3uW3Dsh80Qk0lyGw5p3a4fLi/ffbUX/yWL/nvf/LvXNjCqYde97tnb/lXd77oT773Ax+9887Hv+jN9GsfYyZD0giQwgbwSikBrRLDGtBpbQ9gLWgb6VpMF1gj0knWHbWVoTU2omC8yYhKjogOoJa4M+4ggXlG3CaeeVmGUevzwjqYDmq7lhYUlzCD4xuy7JqbKQlZWcGECDbth3i4H7rt3Wcv3vnQ806+8MHrn/hQ220tVdo0v3716Y2r954+d/ZDH7yYvvqBOzbbi0f98+Y7G431i8WD8dKwefKobbdWrGPwGUBpeDQJgaJkYotRm0FbNxwFIwEAPBYNCh/bxX5UTXZMRIxNxQrnw3EGvvVn4NJmtLSNyA9jlmkpnX4euUeE56O9C8kIEFHnnLihiEgpl1BaTb1ZNkQmcPEMtD0Wv6ybDiheQhVHNzuKl5rlhyaFaoXrahHxjEBQ3wSRc288b9du4xrJkLT6AGbm5NdUql3NmNQgqOUb8Gkaa1pQnAhCCT5TiWb7GxIRCdUS0HKRCZN8ndmifYTZhIhYhZwakViSgUWUHYNXmvn6IE74JywzN2SJaTni4hDcEo69QePkuSlVn2MbDJfnlKuE6gBM1xCAEm/MXwnE7aRCxi8xOYBEyRfkqEAmymdy0HSMuOqMNa9RakCfrWgpKSdkZgmrjmneQllMZMU3HQ7K5uE4r9NhAkqW1N/ZnEu2WMzr0G6MF/TPM/aKbNxIdaOaz9HEOhmvY6XDLuXOg157d2NZWH3myWNPoxHF2qVy/ZIyJycKz4n/wm9FRKi2C5vXP9LEoFkfOi07nLJLnddlNDVoR4sXzq59cG8xiCH2q8TErJqALE9HBakqwonURFgk9f3mxnx/d/dwd0mnN7dpnuKq6U5q6Daa1W537tmf/NHXH/yj/+mPf8nZOx++du3azmzHNGElqUlmajBMunfkTZL3ACuUzBhe2ycl35E85kwGJgaTaW7zSua1BGak0gYaCGCosSAly5fXaF6pbBlI49cx4pQqsQw3QmwiIjHsQ+VMu3m4v3rVy1/59s8+8c9//V807bn5vfi39zz8lsfe8x2//a6/9sVfhd+5JcT9pAJK7oPAGpiYCZEYsxlBT6BhMPOwD/2c6jVaiUlDEPDMTCAdUwttgQTrQA3xDDIj2TDuTGZEDag1DuQkQNwQkWmilKAdsG9pz2wFKsXyEgwBloDAENOoRrAkiKAZ94v+8Pr8+tbF3atnXv6Co/PPpqN9hBUPiybp4YXH2luf//j5axLD6bOnrz92afPltwzpKs6nVy+uLW+/7wiJo1RYp62Tn1uBSQI5GFccvukWHA1N4vGTqSqqQuCY4lnby+UB8r6o/Pg5RcrHvmijJjAQw+tlKrSE3MrL5nvmEURWblUBe7rJ93AJUB9TwFr2+9qjlt2kpddxbag86gkAQCoaYny7/OJrpisnTUX7+ndZHctNROQmRP5ugkeeyZwX0ZNnzMaklsDkhI7OXGsJYDL1vm4lcZaUmCGoZlEVDv5fdvBNoS1gZg8vS6XDXJd+FKgUleTPpSjgccQyiCOvKGNSr0gmgNhorMlU77VIlIAJlcL4nKM9xGs39dNtgnexoj7riiS/5Eh4NtV0o8Nzw0Rj7BRnFggyVaw8YgdIsw4LVVepk4AWuEE+s6xTFL/K4wfIsLnxCXhq7XpvovJHLfUGlqtekTnPAK/h5unQ1KtkPvdR8U8iDJKty1GXm9GoaehYXVP1flmq8rbsbqKKgOmKKSXK9XM389lQiPPMkJHDdXrG0fAnLV27XWeX04xHb9z8WUrql0r4aZzYuqspa/2cq3aIitd3GVGpaIQRUTKjSciuvkVjXRJdxnjvCb3t4qVn7ZzYLGKAemQJqt72pWSt1KIlaoLCTIf5vNvdvZ5Wy9nWGdXVCv1sfmqZDuaYH0o4/y/+wnfOf+F7vv+rqLkn7Z3vhJbxamcxzbZ18BCQ57M8v25GMIOWQndHXftzplSkjBo3IEBVwYDkkA5gMRtnRmoJyel7NCVVDx46vD9vwcrAUvLBZEwpJTILTCShj7Hvl123mVaRQhwOjnaPZt/+e7/ulz7yj5774G+f0sPlrS/+hVN3vP3pj/yLa2988nlvXD7677BxQuLCbAlbAcTamW0bbwIthSOLc6I5Nx2H0yk0WD1m8ZpxIjpLsmmJAFMkqBaQub97YzQDOrNOuYMIcVBuwQEcWBqyZEkpBaCx5J6TgyGcvFdMPZ4Ew9LfXW0Qw7DYM2lSe7B7/sKZh18Qbrv96HOD8Cw1CSkefuBDq3vpwitOLCndcvb0pWeuzxjzdvPs47/7wHa8fudO1MO2bRyEtbbQARRaWdzgtN3UgTMzGsXZWm64eColAFjxVrx+fSv9tqVSvltufjDdPPlhuErLaMqFwN79GEP2fOuzjcUJ9ROb/p5qSGzaZLy6XPmfeqwudF3H5PDY2hCZWQFd/R8M4PSvCmRAi3k4NjfFU89uVtCZCyEOJAMxW0rkurkW/zCR5sbFVbv44drXzErRbCk9YCZT30yuYZy4YzoO9d3rgXUxW9yeNQVcdZARE1P2UogS5fhKQjJjs1q3AX+eZOVlvW1X7h0BgKf8plgzjMxHycZJFFc7/hXLqw7IGcE8QzxdGTnp6xnV8iIAw6ujbvbjA2Nro5Ojl16DDXK4qyPTQyUEGb1yOi7fa6QImdIq/9R/+vUxedvsGdcfLul6N2C8nxQ7UkDAQhLAHosI9fng0QnkGqEbfwAmEjiXrLH/EGTtNHD9IRIu1/dKWBImYeJAHAysru05iDQhBJDc5KblwcwROuTsJl4QlW/BHCrmkFnKriVyrAExSkjHaEQVjknkvIhzowuHmq0Jgsn2NjNCE8AL4+0ZHty4sBgikbQAkbllQmSZuTLPpqGwYbRNWB4dLo8WIbQhhK7hrtla6u7JU5uHA579sR/8vnve9Wf+1B9JcgqHVwIaprAxnCSZpQL9EMl9OtdeTTWqARAR5pBMV0Pfx1jDyP7kCZbc8uBsxedd5M1HY0Ixd2zCeCAiIuLqXJgZFFigNgyDpsHbTIiIagQp1KQXhBQZ3YlbVv1+G5rv/sqXpas/e/i5z8iFT/8GzdE//ZbHPrl80SsaOiUpZkhq6ikuNR5SPOK0ZFPYnGgFjWawOdvmvZg9guYO0JY1HeQ0hQ2SjqhROyQNBMXYolsAZwAFG8Np5tn59mBtwHzG3Ta6bbQnKGwTd0QNwIRgTBDvLtOStJn5Ui0NKwlooP1iT69evfrspbtf++r25ClCOxzsD5f2v+frH/yXf+mh5545//QFuefuzeurlQouaf8Nhx8+/dD206dPb6ws8YSiebrxcdy9+HySt37o7cHUyNSDE/lnlMJOK1YOLSrLlCqJEgBN0OS0dFkEr+u5tcWTikFWdFLZI0VCj7walnv3jF83jZqqXWg55InJvY5rTZscAMYAwZrG/bzH5ItjVGD6YXYJlNTMK+6cDLKc4WKWlRgkWeYzGWeBpgQjF6pZ4gFsSlHhV6u3q79Pn4FMoak+Xq1c8rFlRvlh72skmWVbywmF74OMyAJT4LxbaxJhcppUlUxEJOx9kPy0hHFMXEgWYQ4lGJPmPgLjGosj5+iY0gYAcMGZHpsLUkJat5mOneNy3o1+dVIwQ/DQFJey6AmDpY0+6HGT5Ca7KKP9J6ZhOW3q8/mVnaGGUOrV8uecMc81LAAATJnFfRKWKVfLGC6aPqTx1Dy1EmJCGRHPkiInclDjJuDCv1E+yyY2xrDzNJZbHsKrdR3+7Z/b5N3dAPHsBghhys9e7buyeXyxOlHO2K++Dl75yjgUeUiZyFv0TsZBcySCjRRGa91MaRpJcU6SPLIABsQQg5kOurj/BG/s76Zwcm5NdFJyZPfXN4b/Jk0ILA3x6vDw+tWrJ7ZPEovJYlvOHdLq9ObJvevpwk9+3/e96rH/6vd9zeGeLGW1QZvc6MKGRq62qePYahjyiqdcTuhQzLrHKil9VvxqIhJC8NJd1ZSdISZVt+bcpDOAhJhDZsJqQjAzmObwsozjbEopxbrIVVURPVYzJBWmrmlW8YAttKBdmW9Iv7u7/zUvf/nPfPBjj37u3TrbePoQH7GL9z316zvPfz5ufeHu+ffwDOY5KERYVBAYjGjpLCg5lCehwWxTcIJ4R61XWanOSS6wCaIk7Hqm3y1snzRwQKZbYVMGB3bVSo0JmwSQMUw1GhhxRRCjRnPUjSEMhVFDlAzBjISRCLRYhTDQ0f7hs5e2b7+NT8jz5er9L0iXr+z9g3/0HT/wN/7Z4uCWK9ftlnPNLM2fXurdn330K3H90mtft6RhK3XQRaU3GkWeujBZW7RVWE9QSGv+3/h1YFo+UW16onGrAmBkPH9tp4aCsar3qlpq+iTTMh5iWKlNgte9m6mpGDmTumaqytEJ1hHxqy66Jtr0eKy73j2PgLMfrp1zPIR702HxbYKbHWm8nuWByZ1g1F1DNUugBFjNssGhuwTOZVneGQZrRStimYeEoSlZJs8bdXBMHMQyskeR0eET2FQNs0/EGlX5VZ1UB7WAiKfxOS3lYm46w2AMMQKD1QFJRsW5d2o/JjKais214KXfb1yZulY9VaPYGMH5RFRpDXMWsMRZkfth2HraGDfo4HXVaUQIcP17wxkV8Tt+4k/kHJRQM0uw3H6bJl/3hyCyMSxUb8jEKMwQJZyocOOlTFLmkoVZtYbKSgImpWOOg5xCKkpJvkf/GaiEIeNAKFnO1lhuwVs+dyocfwuj2vJishOKQXRsG1OOJWRwYDoWMzElFMh3RTVbSedUm4VIsgFFN6GRy5cqu7cMRYk705iCUpQap6xW84d1jqm8DyYhdKVqUiQkaZhWcbjzxPDCS3sfwVzDHMlAyXncOZecEZNJE4jINJnG65cvbW9tASTtPATIEG85PX/q4sHVf/PH/syXX/r6r/y2Z68fzeLlrTktbGUpzGBmG7HtQUupMcMcHc3Gk4c33CJ0fSySmbCSWSiaEsSGpE4CWoYJXMJnTEmTpmRmEeBC/V2H1CX1hJdD5vNuGIZhGNhrNCnbLNJ2QbtV3A0YToTZVV3uhvl3PvKWDz7x0+2Fc/t8+lCOzl15cti7wrfegfPBbAFbAQvQMi8S21J0LKRhrgyhhCRoEs2N5SQr97ZEWlkKiKR2CD1iNOa7HZzMaa2Cm/Alr0XuQhgLZMZNS6zGrpPY6NBUvcwbFgi5eI/gkE/2ubeYApMOh6ujVZidffbpZ9741i965w/+gfd99GOf/eSzP//Lv/23/+nHjzZe/PEnn/72h+8+fcu13YsHv+fJZw6fd/aZF965fbC7bLo5d8uYpgVFngf+/PpiXNWfz9sr9q4BoGPyZF2VTmXfMTU21b7HbkSOi+bsN1tusWBuN3kiVwvSRDOjN8wxNRV2waQwIjViJajGz4P5WHvZiThWmzgSVY5PTYcbnzyfTICtvZcRrOCtimimnOsF3MTIWtnMiEFaI5vupfp/Nb+0AAJKbpJ4vhQuMaYHcksvoghwIdDIDuXaq2mFCNVc5dp05MOy6KJcCeTMCIIMlHMJkaE8xXSHA4oNnEwtI13KKmJDjlb7c4wzwhNrg8ZV4buCfUhrYr6uomNzhHIexsTizcMek4VnITMuZVfMP00oRlahGHQOL3OPCQawAMZZWrna8OXIaxprXZU4ZJ5JbcQzm5djFffGjBoxKopqtKZLwf6oSnwyUi4h8E8y3NeqxV3ATHWaPcaQvYk1+BlV68bIwJmrogwZ19mZ2LD1ylRvUYh3sktajHEpoS2u1DPjTJSEFwFEZmB4AGcNopXHJ8OLiFO29wEg5BNqA0cPNMONnbI4LNPq+UvlUmVkdCXUszgMS9wbtI98amv18GzxwYUuukiFs2J0/ktzZWbu++X+tavzWds2jYWGQxsD83z+9NXLB//2e/7im/WNv+dbru4uTkBi2/bDctsWS8x60MyWkbY67Bt1WY8w14gWFZBLhAkxMWdeOR3/5NUXzAywqnrcizn7JcVdMYI4+YaqezJg5pSSMHu3Bq9zFpEYlQgpDU4gxiwpxhCCKRSq0ciOmhB4tdhrulO0fe3o+isfefhVv/MrH3ruN2P38NHi8tatb1leO7jl5GwRumRHQCBsCW0BXZQTFM5yeyrQrG/M2HQwGRJY0LbasWCg1YbREmlDU2/pCnQgkHq9nxHAWmgIoFBbmRqIRQnRlJgaI6Km2TCWoBaTQo1sAFTJxPlZCVA1Tq43AGZYMgY4DT1m6Pt+uHhld2f5j34hfPVr7nvovrtf/lV/5YjP4druT//MZ775rWc0XL9N73uChq0vf+RssgNqG14emQkxIKAS6ueaXp0QxYyreu1YU6i5ucK6f0wTWGX5JZc53aCcbuqRHLuv1/qWW6e8HXMwyhhQx9saEsw7G7qPkQrYMpq2mZ7d3eLcdA+U3eHp89zYIWfy1zT1mM2KglHUHTd9flv77viKk3rfMu5EViqDzeCUIzkwVCmMSMDJWzCaMAkzZ+yVVwNz4jravmZ8O/jwehDYJm2bnauqzOB0EBJRkNJ6oRCkoJRy5NoOm8hWzagjT8xrzUzl9/F1YdkKnWp6u6FHgplJCVFOQfZl9guqKw+dL7ysfet43lSnZt6VCcLan38Kpa+N/qbK27OY47UA5EXfuD1o2fnwsQJ5P06QAOT1yE7JxsSaoMgdYwuhBLBuOKiqsYEQqEBd1iyCVALToNoDgUunXMCsKtTsd3qj5mMjQuTl12Sw5CZYmWAYo7QqIIKaceY3Hg1Jq26lZVU9Br7KrSKsFBlXIxP1q5hYAN5USFMitSpKlLKP7/273FPnDJcyAiBeKuOPR8gAwmxXm5mULKaaRc1NWDnfngoLKSUzzowB/ppiHgaowDdSIYLBqWp6cBN6WOiiLFbp+eeu3fFZup4eEAxRu4F6phmsBSKJiJgG0GJYHF2nIC1vRNqRmbTUb3QnntldXPpXf+DPvc3e+CXfSLv7LJSsgxlZc0SBzEA0CFNcxNBlaIan2dT7FCUPldQxNrMY1VNH8Dp1D4V76s7EwKKDNE0jEmOvqpa0bZukEQ6fNjBMYxaNEsiUvB9DdVlUI5GQipkFbhTWhDBEjSnOQoh9NCBF4vlOWA69LufUopE/+No3/PGffgen2QLgu041G01/tOLUmqpBuTkBvkfDGbRigaxpB8BWA1YL00Xka1h0vNoS2U4SSK8jLhBXpM8ingfMIIxgNqgtMiMKF8ieMSmZDUYBgcEEqJAqK0kLAqVkMWE4co2RlFvphnhgbGyzQOjTEsJRFCYDR25NjmaQ3ROwC/3df+pfP/UL/+4X3/EPvzsurza755pb+Nff9amPfPTeO06du3R4+Bu33/dt998y9FfYjIYNaldFApUCgZEHYyT2qfuUmZ2ZsMJqrDRh8wKzahNXe8up2H1nZfEwCoRylN2q+eL5Clq8k1EmWm5lQ4AbDbnmQs2M1JJ7GwlJVMyrf5HI+3urBQlwukE3X4utSyRMQseeStiNHaqrWXWcSG7M4L0yi9HsqZZIRLBMKbVmPYyX5oIVKjD+hGgwQ2JVNZBXRRAYpY0MGZExK0w0N0hQEBupMSQItUkHgiCYRSQGs4A8qxVVIzEpCWABpGlQkIiQgXIfjWo81aB4zlupRiIjVhKvjVtrZlony1HJarmfFUiV2AgJmscEBGKwOuIHxIaggHqojMXh36WTn0EZoJSNpbropILCRquleMgibLRmRflDKiGlkTYcYxVTCd1xXp0yCYRUjTXeiykcMw/rck/rnwAomU6UAPjaCZ47MDN3RADKIYgbruy2aolv5EB/caVzTVJWOUQAV+WXd28N+4yu8JpFWSzE8lde/3wS1fHPj3FSHhsNn56KbaOJdWMFsuEJSxSL+9i9SO1YtGXdj1wz5zXzex8bhIlZV34Bcmos36vWSqGYxCx5p2EtfjK+rMF977r6AQTygpnW2kRRQrf3gs2dX782bM6ZEH09kg1QBcS4Uev3lvvRZKM1alqbx00R6TafvbZ75Uf/hz/9+vgVb/y6eLAfZ1tEi0OLGwhAboGQH8BXBbGaGlzITsxBMx8RrwmmguMA5VLgaFbMDo8JBiJE1ZSDz5wtxTpuxmbeyMEsjdFCF/oppaoARKSPQ51TEUlJZ7NZjBEp+si3bbvqdX9//yWvesmL3/Wuj164mtA/tx+3Hzy9/MizRgcIh0hnE7YpnJBZyw1Z2qB+hX4f8arG89DLpAuYKDq1GZohG+PGpgtgH6QJwpYA99ecPIuMCCSkk6BaSpAAJTaAGcKBZ5RSSr1BTXvAmhn6oz1uGhLVtLQwa7owIJqhsZkOoWFdYl94U66mJz/5nm/5loe+97u/igPe8MWv+smfOni+NG/a//jVD7381Mte+Myl67fcuiWtxYUECSFQr1yqFcrmAnIokYrKXNeXmScBOZQ6ulmTTTS10cvl3Bhf22vTzTsu6XWn+UZxNz1sLA3IN6zOm5LKuCTNHNKoKih8DrR2HX/q6d2oBMHWn9bjtHkdZk+gUCFlkoQJbHAckDo4nvMszp+psnM/uT8wSZ/7kXIY2MyQPE9IyspKyszGxszGrL66KLnUPibGYUYe4oUYmykbW0E4jqFpTWgk+y2FUoLMjAUwIJkVJ2taeZUHPLlYq2FCEJmxeMMMyw1s2NtC1syjAXCetbz7fSlmtiibLJg8YuuQ7OkSIibvcVD/pJTdYgC1K6CuB5bHBXDD6spPUxwzmEfqj31tLWRc1lFRkz6deWWtn1yNl3Ecbe3ifogbHdnwyQOhxQ6icjj2HVPXsxwOZB9vCmQHdhKCqJdAQVnXn/oVm1jXx0awrmYHtiWYlT3hqDnj8Ub+XU0W1cxuQL6NL86FuzRb4lT2DZAZca3889jElXPGOdLj9i8nYq3wRZgR6yScMqWmMxpf1qMX/l8HZjMaU4ENKURTVsLLTx508WoyTrpqQiBAOYXAHsGmo54Ol420g2w1rZyenUydXdvX3Z/8gd//gt/9yjd/7cHyoG8iYt8MydszJFObUNj682Qccm69MSZRJlM/ojncvPBW6FPaE0BJmKgU9ZIQUQnL5wO+6yaDUMGZ/t+maab/FBHhRogDhzrjOfYuFEJoWomxB9tXvOgF4KWAfvnaxdDOce1KpD2NczNC2DO+GHVXV4fp4EI8+LgdfgDLRzF8kuMzpFdgl0DPgD8jwzMyXJLhGsU91gWZwQIsGDzabkCERSJi6SR0JgJieJ1mUopKKWq03E+6aWW2QfMNbTujBsxxEFAjtKmJwK1pICOyNliDtudu6Fex6br+/MXumXf/xA+/rokXNg7Cn/rBf/ZTjw7YPv1AfOKt3Xvk0x/YOXHy/N7RbbfNCVHRGKTX1QhY4eBlETcq0RGG6qB9n4v1Vc8GxprUHxXqpL3p59Oma7cr8jFhDax7/HykuhQtg6KT5tqHbDoYIcFKD/kqG0d9s3Z3FxuTOqSycevjKePYX9cjeSPKeNLQl6YnaD2tflgdGEEVm8IQ8/ZHBcSbpykTjjFlioZSiSBCQTjkRgtcu6sZV1xPfrCSbFYng0UBgUdYhCWteGno2qPWclAruCxmJq5ln+UJzUHImZeUAFpH+R2bTaIqSHOzJB8AIgKLl0+u/cBDSFgr/5Hc5QkTgV/KtYqILszSVRG4GMmL2XPNvLZcvQglmSYvHQdwDKd3bPrr+9QzfTrHjTF5qMw0PXlKIqocW2tX9suVeoBUKgGM2IgVIzNlLgryG63zoWgxqDSHPKrjmwMIN+xqX/2FxGoamrcSSK7lQV6q7jDacmoZd6o6oA46LFOM5gpxrregomeZvBQPZN7XoBROVUE/Aa5QPQFGySyqplF+FVwR51U1fVMd66P8mKzmIumO7WSeNDJzd0RVGUkTqWjsu9tP7D24cXW1SgpGUkoRbMrSBI7Lg+uLa+hakDY7J+eyrfFaXNzy7L/7oddv/NJ3fPO3XWuutWBwp2GJ1GLYN7OUhlwUUQRQ1BTToIUAoUy+cGZ1zutbJFCJ3hTkIPN6YUnmtTFjYyEmEqoijMo+ocDM5B1DJ2BLh1X7J87DKsRN0/iHzNyGzpNyIYTAHIKzCGHeNXHAWx556aalJ0LzcSw3qF1d/zRST1CRBStjWGFxUQ8/g/59WH0kpadML8L2FNFAxl5Z1CkkoUkUvIyDyUMYQ6Y/swSLjAgjcIMw5zCjpmVmSwqN0IFSRFzpEC0mgK3p0G5Y6Cg0zIFDCK0MsacQoE06Gvrrl/hQte1Mgyyee+ikpvO7D946/Mqvfu+3fuNLH9hJ//QXPrzFd/YfSQ9s7H2zfvQVW5/a/sQHYm/9cji5QQGa0gAlFmnqztIcC61775hGnB43Gp3r2ij7024K+36f0g/lg3MdiP/V/+mnZRu6KkvccJBiQkUwzdsRZcmbjW/K28R31oh9LcpyWpxTJMD4VpRfXwEdkTMGoFDEj19cC7zbJOpe9/s4bjq9Y76VGWGqq6ooILJa98ikICM2IvbeNswuQkiYvKMoCQkzhRytzaprankQGdSioeja5I8NVcQY3bYGvCOREZQqj7S7Qt6js/IarYOC8xBZIUjIJzCsGBNjJpusqtvxCgJjcIGhTX58nVAJO9DEN0PRLHSzo6SrKJsRhKlGr+dMzgQA1+v1hwt0ZbIOi3qziTM6PWeUhiA2YZCUK6Go4+kF/TLTT5IVKauUvK8jrT36WlFvvkphUjQuvSdGSK8/re+9Ue+XFyEau0bXt8tPMtmWFRPrSem1MSnlasUlXzsonzIZbiMC+7JeGwq6ueghIsLaXNx0yuuTT2cXpYamTo1MzmePehEp4P+tZ1KNVxf5Ut9PecXcwJpgrYqRDSrxkXPLJvUNN2lQAUnoknDDEg+vaeptzvO2aVWX89WKu8d/5V++ZPcdb/+Ob06CRnU/9UH3TNtVPAjWwjlXix6NptHU585KfaG/qZdZCzdOqlCHd20YmaZD5xW9pMYGYSYSASH3O82RnzKartoZgAsIv69IY4VS28xEBGrm0W8iEQosXdMEFiIK3qTE0AjvHR7dc9fdX/XyV/xiXB3BGh2G/mkQgwKslUTSH1L/HOKzpFfYjkBqYGCDsUVoSQfSI9alUQQrKMGiuzRsAoh67a8ZbKlpSaqwYNxw07I0Ku7TezHqYENP/aBDb15gHWah2SBpCZLAESQNkCLicObk4k/+8Td9ySOdXju060/86A9/1yc++YP3PXj0uWcvn77t9OOPXfqeP/62pz7w2Nd/4yO3n4h/iJ9+6/YTp2abzzxzYffy3oN3ntkKSKu+CyRkw5BCbhWoo9pQIxu1S17Dk5DUuKrrJ5r5dXWyY7SAEKt2rPq1Kp763+k2t4kLksXBTYJMqGH8vJeZiQPYg3MwsObqGDYvhy3MHLnvwvgkvj5Vb6ro14Nto/EAqsOS1/X6iNXz6y9+qYkeoLqv/cjWrY1sELnkFwQmp38AcWWOHHWS/y6BJKB4hK45bRKumA5+xV4hWzBx8moKKj+T81NcG7XsQJuZZRVxrLZ4OgK+wVEcrenwFoEqJboqBnYPH7kCnqb6wIUg88g9mu9VtHJ2w9RXJTJrBU3UFjPzGOmpwvlGjXNMnvto8+f98yQvWI7MUUa6Fl4+DjSncSbs2AiVBwOHiXExSccWW0/LTwWWjbfTqln9tak6msb5h4idtBDHCXmKkSFrY8TM9XmO3266t4uXKiB3T530jSibXaNizq/JWf8VD0zXL6jI1BjHhqqOP0+ONbFSolK+WjPd0Q3Bhrox/GrpWNCm+sSum3wKKDGzagzQQRvi/mjoHjy1e3d3NS0X1DKTCVEQHOzvD8vFDp/uaN61gp6Gpn3u0Y9s/e4P/OFveMkt8zPLoz2xWTNvDyNC2pVmfni4UFVnF1GjpNCU9Z+HJhKMmUWaEFozG4bBCzxMaZR0Rk6pVocu+rLhCc2LD51flMddsbYGNGPUJ3/lQCygVoLAfW4xs5QGzpYcB+LAwgAla1jmTROEhNEw7S7jm1/1skvgI0rbWCJdkZCMWFUjnlE8bXYVtjTbUCKxRAB4bnIL+LTRBtCww6hMCA0QgFbRKTaBDUIHC4BCF6QLaM8eCQ8tNR1JBwneYh0ppbjSoad+wDBwshCCdDNqZkpC0hAaIrEkQWaqB3/o7V/+Yz/2p1/70qM3vG71Nd/w+mt7B1vbbTrSQO3h/tXbzp77w9/1plV/+cu+9tav6j56Yutqarf7BRZDuu/czma3YWxI0SyJhOXQ103kEqr4Unzs81xdJuPyrp/U890z1ZKaqcLKJpNYY3B1zVPJLlWas5psqrN/TCbAnST/mQSHsucED6YEY8kaqLhfvq9GPaLjY1iu8jkeZNac0VuLo06lE4NG7Zt07a+WY5PVg/RtW+VHFR0JqaZakPOXBWNYBd3EXSPhSWCWQTn+bCQGcifYMQclAjHB+9pIyuF6tATM1dG547trGh8y5Xj1dHCOKdrpn5wGhyyRTgSyGUDOoHJM0PtrlakhHSstyU0dLUFeK8yiQEl9Fi4geOc0z5gce0Jau1HlDuKMCJJ65XokzeQb/pPUYsr8gs5PSzVus+bLlnU5Lep17cbjQNDaCTzO6FQBl5mWutnALkXHjOB6dvM4Qqo+VQ7blqDisU2l2ZuFkhNq5h8fHSLOMtnGEDEmFcZU0s/jyqC1yI/xTW6KyTKqWa4as0rFZB7F0LHvukVbsZ3Tc9id3UqDxZp99XFN6Lpzns1Irn9d08HT0U71ZGdtSyHaYEwRKzMzkhjRNatXnrrMi2vKSW0VYk/pYPfqNUKr8y40p5aSmrmkT146+tW//Adfdebe++/bW14McnJY7HcHRyI7pPM+7TXzNqUMJ/HiH6PMVRStchXV9p8McIK51PNm8nXjqSoxuDhG/mHUxEGyiGGuvnXVzZNgXm4eHpjbEBgIFLhgI3PAWULDEkIQESKTQP68SAq1hoXJWgmzEBqWzY32cHn4yle87MWnzyz7hR4dzUJIaZ/kktFl2KEZQA2EcgcXtASBBDSb2pwEnzJsRWzAmCxABRAC2EvnhWCSSexogXRAujIbQImaGTeb0m0izCGNgU0VMVlMKfaWnWAJ7UzaztrW0r6ECEQKs2a+eeUq/d3/5R0Hi+Xf+jvf+wfe/h0XrvYxNW991fNleenE1vaFq7u/+mvv/cZvfeRXf+fSFz3v1gd3TnBz4mS37A/7fRtamKFdWZJmTkGISEJrgfOPiCeVclKN8z89uFV/OZZ+qxk4b4Q33fI+Z1Uy1kyNX7YaUqNEdL1efqHJMW6AUmVeT7BJ5ghMBKnGeq4VLlE9lwueFVZYuiGGbMUCngqHyTmjbLxBfQAAT1j5JwX7ZUdPYt0eAM+52FK3Q5zD8lPjAxMDiCjX/+YXJ1ImZWdVE7CwSJbSwsRBmS0wS0PFX0y5UEp1zK+72WNKSSfOhWoq2rdEKXhNxY6vXdxlQ1r7HRgTzJbgKox0OnDH1HbJcGX4lSm0JGJv/EpdGPW/01+OHSgGlBV7gpkJQpBCWoCqT+shx1ahz2zV+ZU9FVAiC7R28rHvTv9ZlssYQeX1oz6Ba3dPagKYhhqokAIeu3jZPGteINH4btOn8quVRMQx55epGq0ljnFst4wLtAyumXkcZvxw8r3pLJoZuHainXxYMgRKqNeRiSvg5IseJOFJJ6+6ydW5sMekwBhmrqA+N9DcdklI0aI/T7aBbpaeB8YY2hSixUSqkbEZE7g5MkJLq6Nh9uIzRyfntEwLImsQ02JXKMw3T1o4aqyftxu8GJ79pX/8yjs++dq3vOngCA2nRPvadPu02dhhsn0MYVE2ZEopJfM5N8olFsZenYAYoxkxc9u23s8dwtPIihY6LhG3S/JQpJQ4CAnnghMbRVIRBL7Yjq3QUgqsWsPRdem2bds0TR5D0sBCQCuh6zoXi8wchFVI0FPib/qKL8XuvnGrNkAiryKna5QU1sIaKJP2bJsJotQAG8RnAp8lmjEtWroI2jTMjebgzqQztKYNlEvBYyT0ZqsUj0wHs8TSSuikmYdmTtJhDNVGVU1xUFVmCm0XZjNpu0a2BK0SG+tAC3Sbjz11dJSG9/76+//I27/lHT/xL5979tLr33zPfS9QaVRj/Mf/8lf/3F/+t48/fuFbv+vLLr30pc2qv273/PjuPWljdri/D5lpA6KgMBEmCjl2N3FzzUt1a/RysizBNPoERAlIKEYzTX0yKvl7OaZNpxKAC0h+PEGOT/Qxu9kvuC7ZhJl9FRWMKsPyiirR12z6W96hquup32hqkw7EVSBMI1LlTxmLamu6OYt1D8DUf1YBNX2FevHp1zOIxaoszBKgPo0LDSAz7uXMrgufOsgSRrukuBzHMqzmZZ6kRcv6UKi5z0o6edP8nMlSLqnKfrxiTSNq/WQ6pBPirTS92tqAlCyyc1IQZZlrNAY21lbLVH/dkLKdXryeX5fxVLGZmRUR4xgmI8kNom8IQU+vCSAwIsDJPKrsBR4ELwD3iqESmmTiki3NX46FjJeYaMJkXZYam6XpK3lpLsEMybQzYxYUZcCqtUZq7eUTLGkKVGC3bN7JxwxknEv2ymZwDuvMQAbAi+HKgstVgT5q0GxjmJmpuIOY2SnHyXB5TQaDCnKwIpUWTL6h82zlaiWjEguoewyOJ8stVRAtd5wg8wTlGhbOEfNJU94MHsSuNAE5uctWkL6qhrFhAQwCL14yiBMhj6bAyExOVBgSvSjeCpGpETNFLIkaGXzmk6VVOw9vuuOZf/PEHPM2dpSubTSbA7pmSzfSpgmvnnnPu3Z2/8nv//rfq6Sd7oNPUmISiB2tIocwZ+E2aTRbrVYiwoyUBjJhiKoytQQx1qQQCUYUFapKIeMzWNgsd1FoatKFYIQgrVniEtpyMRE1sngwJBMPMIuqSQiWvL+N2+8MgNCkVJWuLx51P4jUGhZlBVEIwZRmbRtjWqVBRCBkKSW1JpmEE9cP97/kxQ+/5K73HfSrHosARD6CMjAHMyGYcxhyYq9pSOAgGs4Yz2zY6uMVak4hKeWEGZkoLEITuIclSw1YwbvQ57S/hecnlQlNa9qRNLQ8Ihsop8aGFBM1IeoAtBIEoeEw4yas9GobreeN5ui6dpsf+/Qnt9qTn/3MU9/31//p5z700d//nd/+NXe8+dIf2/+ZX/zAT//0e977q0+97Qe+4r/5kp13/Px7Hrjny+/63Ht+41PnHtU77+r65w56hMVGOrHEkilDi8b9zlTkwLR2H6OIJILm8mvKqEYGkBtIlMyUlYQCMntPkc65PoI8RG3rCRqH76nmvrwFjZyjH2udFbjq0SzKHKCQNDmfYcZI5J52yQgKJSMmMXU7nxXEZk5nZd4kuHDFVN/V1hExCkPBFrioNDOS4J2XvLOPau4FlMzMC3OIKKklNa8/9v8VcDU87pfFPrnhrhx6VVMjEmaLmpWE+/IDqRnDBKZMCQxVUwJLQ7ZiCCCJlDiQBB0GMVGQEaJpAIEI3iaJqN7crcDCOlLgKeIiFsIiiuSs/Pl8lCyBTyhUjZyVM1MlURa+KFLaDCAhRHGnSBIYxGBJ5JHzzIqlBDAMucUwcykELkVJ2URgVxuU+wUguTRkFnMjxvWK5qipUnJtY+axO/XUMHQEzfF6ve5gWt3+qj4y0b9Aam4g2yXraRVfBFKInGppx+S/UqqE6xo7bqb5vgSUSAoHCQNpyiCSTZmxlD6hlHjXhZXvQgDlLtwlbCQohlUVBMdMMOZQiG7ECbhSFQeFDMsAAvsMqBpguUs8SnQKlOCflKLEnJtGpmvxskcawd42bgy/g2a5VCy7qXFkZkTiImbEP5dfElBNpawkCq+WlarHShxc5ZcLOCuZgpS3DcZKY9IKIbaM2favGxGWQ3zg1tlDT1/8rN6/nbBHPYWGgX4LzPP9z1zuP/QPv+WR27dP7wwR1u3MTVPyKCEJUQ3GEWV302HGycAwmaCdKe9AFSERijFRaKSUArstSkTEU9GM6hNn6hjnPKkLblrhVl4vr+o41NCLRyNUNSWVIERkBcDpf0qWCzOVrQFHkKo1LGjQUNjFiq7Hk/edfNvLX/Fjj310Y9YtDq+AWmetAdzIySHuZAy0IEkwkU7abYRTOiySXfACDl81QCKI0QBhpN6jFVAGBqQDDEdsfaCZdTNrArEmTjxkkDnUEBOSakzMDBbiZkXXwIGaiH41bLW6WO5snLt08NQf/d5v/qJv/Rvd3skf+fs/9cyV65987KnTZy5/z3d9xSOv+OwbXr3xvg891uDwuVvOpZe/4dOfeHKXQGyz1OvBAqdbRzolN1KpZApKdLDObPXSkA1jIxoLbScrn4qUGOtfq2gGpOpgV46+Oaagp6L4x37Sk+1jxyJjpBke73GpmrhlZkKJ6xIBzEh5b5uhUCNlCZMfaLysatZ403vVtTddgdPt71yXhfZ03PIMRJQG7+6wutlRLRszm7J6jSCeMWDmDw+mYmmjFF670UBA4V1XjWQmLE1QjaaDf5FDwKAKJpZS1+wWwPHoVH5sZvUGh+sR+ER5Hqay8dgoZclJuo4jq/plCvDOg2DjFXBjxyoAZFM6quOxhHFhjquEjpWu+cQTEVNIUrjmjzFzEQly85u1lUb+Mvl5XF+EyWvUseDibiE7796uyM1y5rWGIZMFVDtbjfeevh+AHPZkAFWX534AY4DF33ZNb6E4zkDeLRgVVq0jKlOSeV6KLkHR53mJw3UbcicpgpnC2B3BQoZuhQMPLL4t0vp0Mouu7yLkOeY8Ucgx1fxwJXJCef8UuZDbJuYBtbKkPEHttKl5POsQFdpYKl4gkMnSaDIvWQhyRkiOq5zFzPsdUjFk8h/cXci15/kiChJmjpQ2+eBL7+Ann7jIm3cPy1W70w0aNyJHu375Az97V/fxR17z5Q1tM++3msCtqpIZB8cxJSJlcj5IOOTQ6zKImTm4Vga8gy8ZJReMo/QkBZGIgGjQJIZRtvoKZGZmK0i5DEkjHyC1TJhX8yxFJXi8eoJ2ISIRNifKL9cPxOQwVTI1kCFwmXOiBpywoEa7Zrhy+dqXv/rVv/7kUx8+PAjoBhChIRYX5t6XPHfHIwOS2WHig9CdsmZDQ4PVCuhhg5egmyVjBbWEJRGDlpmaUJdIl215wlYn0WzLrEXTomPiTo8WhINgKaaEOCD2aFqiVprO5tYmtpXwaovo6kbc0rD9mWt7X/N1f89m22b3mV2745ZTl3Z3f+yH/+zjn/3d2+6St77h61Z89bff9+nf+zWv/0s/8s6nh5e/fzYfCKlfntU0O0h0koRAxH0aWm+YtZaYK5uDXHitiYSJcs3ngGrxjDh7U1YnKNI3L9gsHy2zq5JQqJeqa4ZAbkZz8XmJWGkNZnK8rQ17DVt1lrSayEasZKyepDB3pAMIBq2dGJIBZJqSNMw0CfpWITm6LvUXUmN2Wn2DgZgF5MiNEtlSUTffiguQBaPCSAv9ZL2m+uYiqSg1g7vnKNc8ZobU3eImbkgaSUSFyaFYNBAHkoSBiYSQclNUIyV1ckqSSdC4bGdlFpjHDKomI8kDc4yb0w2PrM9HTjR3piXT6BKxefzIkNkjJkZeuY5zhVqeasoTeEPovry6u1cZ5AlfMh6FUuekytcmyxUlVi7rltvUGoOHN+jmY2y09nFgZlVo0fxlifAaWTG5d32TfVWz0aWIHSa+i4qSnpxqk75OxUfMipt5rWFPMRWZ2LMgTgmHohbGW3tI4NhL1g+IqNbClvfPdQJjjawAzu1anO/JqxkLgOJfTgaXiDEpfLKqxyaK2kNdZRjZr24l9uHRI6cyHp+8vn9lyAPATnW7xo/tbocBtYT42K4GshbKSzxhugRLpX6+yQhAK+dPr8ZMhD4t5P5b+0cO9z683A+KMMTUqdl88blP2tP/8o2vuaubbcfF0dYm3IjOX7eibdm5wrn6rGYpBMm/k/cnpYTkL6YwJM1pMN8czGWLajQ0kr/rlnuZ2TLgE+JrP6qXDJhq0hIlg0vhVPqglWIQgrP4KMzE+zeogYVMAXOPEsX9Zt6aG3R7sbeLs7ef/tqXfOpDH74K2UaaO1GGB0MBMSAZQAzf2ilZNE2NcWtByE7asEQ6giXQAA+6sjP/R7ASnNO0t+GK0XY6OsfdyqA86yS0Zsq8a8uee0NaaEw09EkW3ASWBqHp4+aXNfudPfEfrt3/TXd+cvvapb/fv/QQd+qedouDzR3+1j/4lvN//yfe9/FHZ/38A7/1YZ2fvXNz4+ve9vKf+DfvXcntP/HeD55v78H2k60E2d8Pe0rGwSgRsTJLpXsavd58OD9yXeFuQVNuB0Q1tGU8uqjeVXCMHuXIEEBVOOb/FpE4ql6vpUEWRFoNemAtiVgwj3WTupx1eZgDlSguiLrTyGoJMDFTc05ZiOctDd62wWnxVNUoYP2oe5AyH2K1JMxpV4mITMdYGRtbkffFeXLbukBz82BSqWXCVPZzrqysIoE86sAEp3T2W/pIwvG3QpSYORKBxRN1TAKK3nwXJOa0uWoJYMvGqiaSAHhGrGavzbLuzUEBdpc2iy7LiAH3SXzRoPzXyiVyvMFDeKV2hya9ZNxp0eKNTFdg1co3EY/wEGZtcMWY6rjcTrhq9VFOEkq0oV6Hsu/IxWnGOK6f58imHglyOjrjbJlDzUhPZbEDFwuMQgqscXxhKuMIOMtBIAnT3AyzY+wZBeFlTMbMLJXnKAt8FoM7OYG5BSpMKXh5KLyXFh+H02QZyuMD1MKG+hhERBCm4IQMBW4Qan/f8gsRZdC9pxP85EBNoCZ3OEfuMTytdxzv4j2SveOvBGXRylclBWBSiuKnzYZBkpuhTqDX/mxanGvUxWIMG784ramwkcIs87bkvUw8KaUfUQ9EZOxkHplL3uNAZsYWjDdSu3jdfdoO10GxBSekw3R973ffc1u48PDdD9pySby0RTiKfYyxmvy5xZBlqTRFrDgxVj5BmIhSSn2MZsaM0aZGbrmhznUvuXNw2UW5fUgsF3eWj9HihlRlQJPsPrK/K6UPMUnp55HnumFn4RCRUjUDEWn8Q5AEaiQEoSSrkAbQ0Lbtlb2rb3nxPadnW4ka5hYUzATukXBLNANmTDOCAAPhiNOC0kCcZEbUbCHMwTPjAJ6BW/AM0gEdcQNqzVqFtwc+pHglHV0cjvZ0FQkhbMzaExtyYoe2T9FsjqYFkGJvw0qHpWqEABu3SEo//MAn3nz0m1cO0u/dvPKCwyfPtAPHvY1bm4vPXHvHT/zqV77t5T/5o7/0vOffccdL7751w77/B//en/8n7/9757fvffRdf+XZH/9WfpKOtuenzuwfXDvaVzRzBUypDfMqb6rt7oLrmJSo55jZuIM+/1G/NdXomAjZNRZ8M7OxxD9/tyC5FGOxEABdp+8oflW+kZp3fiQ1U+QOb3AwKSYY4AkFVDFkeTTW6zhUT3ryi9lI9o513XDjP6cZxFGxrA94CSajGiuad3hpQ1uKh6csE8y59Cs/fZH/Ba8YxIk4kIHnljNtY7lo3XfTyc07PY37PVmy2qppctSoiSNO/bVzTRPgMJCxkYy5Vp8MKU3I/ibdoPNj3Ez7GkGNRuhx+dZ0iY6zVktaCmWF+j9IHA9OBftba4ioklNNLjXKPeSxChmlIMwlt2qEChfg6kIUTARJmBLc1JdyRSvFzKzG2MjAArcv6/uTFefPxtVFKDSbGcZFRJyprcuyU38Bv1ClTs7yHXll1qGsIjhH38nWFy4D4HHtTQY9T0xxqdeZNbncBdkSLz802fbTYyp6UAO/U/sEVT0QFTOqkJD4nwo/RLbbbc2jLRcqEfkcYFaexFXqs2Tzt9ZUUDnffLnDRqmZo3lzUL+E7mz29876C4uotsVJaO96f/7XXnDn6RM7O6pAm/oE7k2DTvWcD5n/s+aAiUg1AqBAmqxpGjAhcUqJzJgbz/SmlLwqK4RMBulms6pG1cCj8KWSZRkDEvDsQkY2jCK7JI+dHROAK1oP5fmzUU6P5TjW9OsiQslUI5RZSIRanhuRRQyzPh0u77r7wd/zmlf++G++i8OOJlHzul4xbggNDJYa4Ah0ZGaWFugX3GwyJHIC96BgABBBAZZgggBTRjRQAgbThk1hBzY8bYutdHi63dqQTsKGcLOlXQtcYoMtD1nVjSBDEmm6Lr3zyRM/v/PKH3/db/6bD33m7D32p7YXj9LlH+8f3D0gYP6Bj378D/+ht/7QD5391FPn/8E//PWtE7/7qe1HnlnqtX/115+Pj33tl7/4xf21n/344sjCqVt2VqkVGDOicUOIjvIj+ALCWrR/bStMPl8XmjXms1aNyBVf4mmWSZxq/FNdqzqdffOw7TjvUz+nPGpZKERaAiHGnj0ihSL3RCJva8YFvmjkcCi42x5hDRBNG6sopONhvek/UVy36bCs6VXK/XSyQiq2+LjxC8by+GWVtLxy3i0Y33q8jn8F1WcuyUdjJjLmEELsg9JgxaMw7stFlN32JRIy51734aKctTUiomQepE8Cd58tR5Km4gUASMds7jR9m5VZTS1T8nZbTjsk3ts4Z0lhk5zC1PvMgV9PF2R/+jjgeXrUlWklCbWmSqm2Kaqwdkdw5SZ4JdW1lhGvUzyxliy4JpnoBqDIJljB4fvaIxv/5Aov42rW1oSNhieb1Z4I9Sp+/WCW3CcDKuo4mDtpTCDy/lb+EOsvX2HD6xsPBpJjPFbj9p4aIzQGc+q7oCaMyyBYPbmoTqOx5RFGFVrCJpaHbqoX62hMJ4AwNunA+tTWY/rh+HUDPHScn3Uc9lGWrX+rTo0vCy/ac3vCxnhPDp7AAZgooaC1rFIiSpqaIHrHfGlX5werva3mzOFzB0ifeOj2sy0vhkFaEtuwoHOlFdaXmuV4r8eT/QWSGREl1dyOV3LXBE5m4hhRwCwlLfEYLlfjsTaeaO31815wJe3ZQyboaBWVmpZi5mdUBRNRgjKRBIqDlhHPnKdm3lxPARN3qpUcfc2ghvvYdqLYEMYwv7y7+JY3v/Xf/ca7B/c5qAEFcAA1xi0hWDiCdTABEmxQXdkQjRvy1tEe9YFAPc+ogBDYRJAG0ALYgA1qSxouYbGle1tDx8Snm43NMJt3bZdgRqFPmlYLGzStemGSViR1X/bgwW999vBlt6y+6XnXLxzgpTsX7++feXjn4g/vvfyzd5z+F+949uLqH+sQ3/fe69sve9Op+849+xu/cvkX/tbXnz78upc+X4+GB0+e/5rTtzz9zOUX339vpN8ZojaciIIOgwUzZXh6f13WjEt2YgPduGgBePKr/KliQaaKNgOVp1ts5PCZJOQUHkEcb53XQA1C52Rp0UaTh3FjLmsFLiSuGbaQEUxmJBxILSERSEEp46JTKEGUekFNRjmlhSywJ0MzGZbj2hSjshxdZyqR+qonxl5uVD4vV2Pm6BHr0pold0+zrEsqcgJr5ohQaU2owpbYMhmzQIlIgOgR6JSRKv4QmLRj8J7rqNQhx15tdODWtSBpFrwep508lQvfLNY9YX9zsC/ANs0H+kcZ4JIf9Ibx/z95THTz+FJuFLDl2TUzWsdh1dckyqA5AMFF3pRahYhAfBzEyISpaVYdrPHypYqguKZZTt6AA1wrTCLKe4wFZgwxSRnCOtoRSkSKXFiHcSOFms6xHG9Ze0maLIr8iYF43LpTvZhRTtkNz0uYyjS5o+irDFY2q43GNQC3GzL0GKPHXC24UfvWWqjir1bd4NdVHSGgWc3nIaW8VYpZTMXyKhbxmFErxk1+BnZYF2i9U3cVgl7O5DZMsbQoR7SYOaZDso2gQdKwcxL6Wej2kintX/7kDLtnbnlxv6IkljCf9cvYLBmt1io1fxcnNGBiqbAsIhJVNevbdgYgxkg5DpzjODH1TNTWdG8eEyKiIBJjzNPNRETJtKEcNEduq25ZUpUVNSanifyOTdOYmQ7RzJqmATSlVIybXG0sIlETgZhYFUQUghhIUwQRKImS0mZojFb9zrx7ev/p5911x5te+bL/+OhlgIiFuDMRA7sfDDpN2GQT1SMjhTQOFQ/O0OWsH8nzxIk8m0AKCpAARGhSI+ghdKFyAUfz1fUOPDOehxY0463mTE9Cy365GjQZxWQxsWFF8qp48S+/6T3PXHyu3z2xQX1Iq4bwlvbZ207gf1y98MnZK3/2318/84oHH/iGN1957pOP/t0/31/+8Gs28OcfuHPjzo3l7mG4xb74Xr1y/ur2w/ekQQNLgJmZGMWynrn0XMMNNqjdIPiO6eBqVN1wPhd5N3qt5I1i1yRDmVwmUuVcH2TTc6a380JYAGpQVZbRezOHZypYGLEodbPa4tgzoKZeUlawPwaz3O1t+mol9zkOy3TXF8GVbnxCD7ZphhTlqxumOB8CvGO9EbytexoVjLPQei3Oun53fGb9oBooLkOMkMzFmjCHxL3HXV03KwbvbmhO54ExJ52glvKDMVkGu2RfpUwxIedzLXsD1SRz6aaZPKfI8xIrzb4OkYN2bF1+FhOExg+rq13CqMdMvjrdxz7MV0AZ4PU/MReL0D/MEBMuZRR5HqfK7tg692sXdvsixlH8Uc1WZtGFDgE1mmrhuoaqqiMiEYK3RjeQhEmwCKUBpN88eISbIGbglF0Q0sZP1jySecA1N6jP4jebbzaJb08ejIi9nE7ABGguWTEGTCNBtHShCp7YSEq2ZlLkKaGiL127lco2EJgnNfLVZTZDYZudICyQLAsCRwt69+YK9cHE+qnTpinxZFUBMDJl5Ky7VMOwypsch2GRjLb3SkQCMSfkbaIECKuqG2EgT68Xs9xMjIxzCi379kyRjGh76AbrEzTevkV3xMNLR6faraN4/cJO6GZdWsb9bnYKq0Uk7kPXqAHRuxgQjZi+ZIlASVU4mJmzN4uIWYqxgKSY2ShGFhGApWmUSAimJiyWzBgpJQaJiKXEyD4TKRIzlw3PRYurRoDjoE3DAGsfmUNVFXklhJBNH6jX+9ZdFEJQ1eDOS4IQiEy8YpqCwjQSN22K+02QBOljf2rjxFE//L43vvYXH/3fqXmjaSRpjGYu3hQnIGZkiUE4QZgZNQBzWhk3oAYksEQ8WEqEIWOOaMPIkHooWQhiBxYbJUK8goMWtjlgU5tAG9R2p3UjwrbZekHUa0eNEajXbrU1579++TWX37PxR+/47ZPzpzdjv2ShGA4lPjR77J9z+ivXh/d++dfPVp/60I/8zcX1j0HwlR1+4lUvm5/aomtoNtIwJ+jB/lNPYPN5O3ZdUrPseB6pn/W8CpXhqBhYPv4KyrDyiiL0tZ2QC7h9+Xli1RjwjtHIuAr3JBKIgdKXYtwzUwHqrcgVRgYlaIq1tOZGOQv2ck4D4KGfrHoJyXdToX1SN7vYkfCEBDBJ0qQATEwNlEDk6WQ1cs9m6tUZRLODZNHIic0VkayRmoCcCjFiyhncIqILWteJd9RJMDy2xMKUEgiakqMNnQSXYMErlxWsABMrmZolg4JzZFbI5RsksFGyBBipCSFR4Yh2r5gpX8IIQEomBEsJBEN0omwXcGZGqkqahIkZMHEUmymEfXyJ2TOCKfsxqSYLWHIv8NxtMIPjQEQCNWOkGBkWZllfqFkQkkDMmnHpmkcgg/lgDhmEqSkIk4ZRa9bhVKNVsrBRz5hZBt+TY69A0MxQYAlusuQKipu61W7YuZkTaKrjbc2jJxIqNBc5CAObGm5To4NqcC+3YKQq3aZLqoQ3q5c8Kn5XqzlEMLU4OINi6qWqfYoSEq9G5XiCMFnpslD91FqmRahOkpfzHrNx6kzU371gX9Y/nLxXGdmJp4symVJjxVMdT6Uq43hwAcnUaWtGNekXU5uiTOtaIcqesX9eYQy5HG5d6BxbT3U88wyqohpuWgrdiCQcxRiEcJD45Nbh6x7Sn/sMJzkFrKIhyVw5pdVygU4hm8CgSjStomOjPFkpJRhB0hT+PY5bebZkxqUUwcyS914FHDJV2zYIeRCtrge4XmciSpZ0IFUiJqFAGYrl1qv/IsKqGmNEIeLIj8Ej+c50fvPAaKaaYSIQdw36qI0ES9qwcMu2SkdHi5e9+CUvvvPMx55d0ewM1IiCyUDYIrBBYEpgQgMSA8ySh3G8IsDMyAJKyATmdVlKTWcKJNUUwYoUSSNwgNXTdhjsOg1NRNR262zbbbbn2gXiUYy0iinq8qi3WRO3Vk8OO+85OvswX723Gfp+EcMyJjBOb3cXfuSuxW+971Nb+x9Xpg+ePvFQc/JbnjfbOH1iQQdPtmcPP3nxnlPN/Py7n3n6VddWdFLSwMTLjQVS4CG2cx5WdR7XTP6S5T3mfwiEuLhFMEHGPVkqsGmXDQa3ExOl2rByep3C9AtgLAomMy5wXBcgudpt4l5bCZGgCBCdQAjy4jWD82zUZqzluyUtlTPeBlJNmSeLeIqUNTNlNadR5lFklYG6iay2Gz+aHEQ1Dj2KrLUxJ/LtT0LQpDCApuBEmE1zhOOUlT7EjjmMkpuyExEJmzJUnOZAkzrIWhHJcT1FgIdCHJ1R3OoeXB5AmsCBRjd3mllIWtrKwat/gApJh3lVjO96M1NF3tQp9weHp9gEqPGCLHz8vQLVWoxRmNdfphLyRvmZB9wj6yWkOhqbN7jLx/7pIt1PD7UuaboErIRKiDjTsNS8Ouf8GhFRblPj82hVlWpBUJgZ23SCZVTVuQzBE3VjJCTjrUoK3e0zw7otSVm7AyWwkHV5AX4RJQLMSGtkeOxxiBo3MAOTqk0aCPrnJfJcDPBKjm1TXtaJMqNKI1yhkqVICTaurWPWltWvl3ctCxQqNN7ECkRt3HDl7j46HisoqdAqjKjg9mFrAtGZetQfyYNBlBdAxvsVu9MISkagmHjGnQYbhq24vP4lLz3xvs88s390L0lI1q+UZ0Ip9s1s1ieEgwN0HREJedWNTzqbIWrGz5VPjicLp0t2KlPYa5AclWLqcH+UULlH/KiSl3m+AsYcvJUCGbvahtcUFayElqNoBjWrz+DAThqtk/K0qlGViYPCHNLfsCTQkAtDrW1ksVh1bfPtb/3SH/zRx1O7pUPfNps9R7UOcSA0LuKQuZ6zfRstSRZzMIUJoAJSWEBKRt6xk8oSCJJ2IVF131ZLgsJmSgG6jeYATYeNOZ86LftDunY9xQPqj0IUC1vt9vU378QHrb+wd9BxiAgtrxq1A7Nukb72xHN6x93z+alvDkdY0nIrLdOqabb4jhemb/q+9Jr773zvd7zmyuPXd6/csSWPL49WHTWhldgu4nXGHEWUT9b2pCxmBK96/sg53fycstGrRqTJxlfzNFSmhPMdVAOMN9jEo6B0tUoAlbqjeqKW0GjdasesripbhaGWLFPKmnMeEcxjZ2YKglkiI0ViEGl0Fop6q6ruzaZWHWjywqUO6pjQnx5U9M90m4yDlAEQcLhTAhKSOnfAGufjeD5KaNHMBBTLNX1D1ThGFpIkWaUyqXl23Kw4CZPc2cRfUkJSYgGMnMpRc4ey8vw6CffmKVDVCQQpk2bBuYTG1uBS7aGbvFutZMlQKc2pBvP61Ql9GFG0UjAM5BVRpOhNlejn+ycRcaZE9Ilab3zu988BDGXmMP3mOnq0Xp0V2RsgovoVK2wjWQ2MqMW1sPfxQVn3tzSTMU0KFUB1TdTwvRFNm2CgLlBes7KrVTXZUG4DZptgLR1dLlL/u6aDJ0oWXgzmaqyUHPL6mxUzpijsEV1pXJ6nGhnljhPfPUuqcneuk8H5EbKWRGWHAArWtIybkwz4J152ZWZO5THeqJhWxaJYN7yK9vWrKI3wNJFNTf3S0gw2aMuUvuGVJ/71px9vu1PJ7PDwcCYbIaBf7DWznRRAMTKzrz4pO1NVk5rjOjAJGNTwBtXogscnzWorQGcUyYJPTQq6XgEBA4mIRMQjhapqKQmxhEBEleUDrrC13ktTjMwcQigMNV7vVOof1g1hV/HMDAQzIiYzcgqGJrCptSRD0qRoSDY2ZrtXr73xJS+9pX3iCjh2syEx4gakp2aG6B4/EYk6eW1xEF1OGAgcCIJSL24Y4IFDMCQQGsMsBQCHsCV0YasL0TqEaEyYHwmRhJ3u5I4k2UuDXT2UiKOrw/aZ9P/CmY8+99Wvwuu+NP3aK5cfW9hV0nljcXMTu5uHnYa0XGxieRRt49StstEbpeHwifuutv29f+DHfvqnvvLedrH/qUuXr8zP7tBBbGezsEqKsNWc7FNfllndbV6ExnVbEZGrUZs0kNcarSGqy48Lv0C5UsLEypwGbXXdQq9TNmiqded1EidScdyP0xWIMSFpvkeyphlt9/yVaOYtJjzgWcRCYa5ch9rqDQK29hFc+3DqIfgvTDeVpTnIZ2aVmctYC5xyHBkDMSOzv2T1jOOxzBHmRrnWpNj1nNvHMfMU2F0EGpslZXBxM/LBrIDDnUmNzYHK5kRORjmdfvyNpnOh4/i5YcLjBDAKu30VquQRe42goCwoOikPr2sMZjaYQk2rJnIVZjcb4eksrH1CY8jFXArc8BVb5yGob1IjKKoajiuwGhafssGNYcy1eC9NFroLPpTFP/7phtDKVOHlqiEHcLvnmjTvwzWnE7KW9Kk7di08WP/qmqN6w65zcBMbaQx/O0/LxBUtj2rFIyy5KP9wYtqWq/onSXP2JV83D/pU9d7o5E3folBa5tiAlXNS2SLrWjx/S0Cp7DpzAAqgZh799scupjcAqNPPHn8GJWGsDbIvTE1YeJMUs2vcnby2rw/d3b0Nuz/10bhr209eunjPbQ/p4SDCcXmkc+7IvcpcX8uqyTUHcY02o5QDTglx/J9gsOVIeFRl99odYCVEQjoUz5Q8zOGl5ExkQk1Kg7+Cp4pVIQwPDjGz6QCAmVOKdSnSOC9O0uLXlzI+WjY7VYuBmIN693GLKbGEQKwYGsgqpaZpYupvu+XkG19x7h3vS3zbWRv6GZrBUkqXJS4rAAAaJUlEQVQrAIrAqMy0AAvcus3GJY+i2UhMTYJpUo3wWLR0FnvkFgZCKqwxrp7CXlwlSWLzuEHSdKc22jM7w+psWq1sf4k09AexCfbpNn5yeeZJeglw8ErwIIdXdbel7Z2V9JK6PWoJ22dODTg8upr++e9e+MWrl952eu/WT33v6Rc90NDy377zHW/+rre/4YEHP/rpD9tdYRFjsBPLfn8S2SsTWmSVrUuCqbGbrUZf0moAtNQ51F05rXookiFbh2YGYVOtPH8oAqHmFI7tu/pJXXVmpmZSTEMu5niCeQjCZZkX/nDm7smB1cw9q2ZG1QExJZ0UU3n1ME9Ne6Ljg1IsFRScpz+eJ7aPyY0bxYiZWVZrpkQwNjIyKZ0hYMpKa81XwJV6DCiGLAkzWN3rzC1v2ZiNKBAnZmJW1xG+cbLgGhMMZqaaAEtC4gVbvJ6A17FX27E5WXupono8B18+VyNKLkaKk6aFCArF+c5zWly16gVNtQbWpN9N4nA3Lh5bD5VzTkDkP3lzAjI71qkJ60mTetkwYbzKpkU2K+oErSVfMb2E5Q0G9xGn1yUiTyRMXUUqFGj+XbvBB0Vx3eo/td6V2T0+zwYBuRXdsVfSapepN24AFXKqvJptLePqKml9oNaitbkN7cRNFNdw0ywRTb5YqGVHI9Zdt5sUZhyfDCttt4rV4Bsv5598buq38zrIlgJSJgQylOiTeUPGkqXK3yqPmizmFyQQKhUCO/U05znikpO3aKkhnnG7tK0UUwizy4v9L31g69IrbvnZz5z74GNPvO7F9+qgJB1LYqWEVPUHUUyJkhlzkJDrbh1a7Bz03qPwmC01baWezKR0HPExc1yb+KrII2Mpetm+qqIRgVoaorf8gJmqZtJpIglEwp78qINP7hvAVKMzsXjWOUelGfAEdkE8Oku7kCTfBxpZQmBRxJYDFG0X+nT01W954BffeyGGnWW6SnbAQ5PaSL0ZkqEhMFjICBxYOnfBrTavqjPjShfqyW8iIk2gQXgzpU1Yz2nf0mXgOuIRHy7j5VmyzYRuxbJ1yy0nb7ud43DtyeegQ0BshlYba4D3rV78QTn9yN4H/pC866FgTX9FqJ118eyJO7AR3vXpC//L0xcf0+ZjFP72gw/+1y9+cLW48tP/4We+d+NVF972Fz74t//961/0gnO3paeXmCkf0P42c8yEURkzgVwjy8fs8DFLUv6JHL4rEVqbSJIxRJQN+rrpigEHZ2u/8ZjYnTfffcd80qrYLOszc6WrxYcjg4HNohZkL4HJokvJBIumbARH2U3u5ngeVJd1TSKVly20Vjc+Z9XBU9XrChdAtr+z+lIdLzilKMlvZLkBmke6eDoolZ2DmdWcvSRr38LowP5D8DKkvDM8FcxEqlrgyayqibXSF2jOllmw3N7bi5SyN1UnZM0JLkuEx0jIJIth0ZQzH7WZmU7qZq3OZlkqeVppHAfk9ZlwM84yAMQjxn467DczHbL7RERa0DprNsfkGao1EG78c50L/1/yYFj1LctXplZEXuA1j+uX4rXkBibNaEuMxQuFaRpvoUkAG8VzBTCk5BF9FKSiMxDqMAL3c+TdsvIwy5/AsuNIeUESSk4hP80N0elS4TzG1quhpPn79esj7yYACwUuP8knuQMFrx8dDds6QX6Kdy7KBk2aUF3lQZ5YxJP5qv73RMt6OC9DFLJtSDW4hLGXZ719Kjo4h4b8IpxhiwR0NO/jinRFvBnigHYV226117/ptWd/+T+ceXr3s+//7OXXP3Df0eKgkQ59UlHJdkQDoGjYbBXohC6fcug4x6KrNWZmSoYJmBZAVKdvNKm7lDKHTGlNgxgzxjuvcjUhIUswCIg0V1appuruu5lEBKKiVks5ihVGhWOmD0CKlClsDNQ0MamC2kCIARIoalIslqsX3nP2ebd/9kPXr2LDEhBNMZCREcTMG16JMphCLsogkrGHR8YfGBiWyNv6GRkRWZKQLEUkcFRNna0ImAesdHWIvU8PIBJYi77b3Nien7rztmUc7NlLmri3EHk7xb7TvX42+43Ffc/EE2/a/8j9WNmtt3E62nnqdz51GT+R+ksIrTQb6eiOYbW9de23f/vTP/7yH/i2v/UHv+eRU3/hH//aX/uL/+AP/pHXP21dUjvZDgeKJhfSjGzDkyYlGD+xzPlgBfPhhRjm5bTm/XB8UzOgJUmcGGESfOK8ZslI1+Io/l9v81LF5TFpON1HWUlPZOBI6lQc9GoVuU9QXOHsyylGakRP7xkcVTbdrf+5I0sBf35Iba5343P+Z66AGnMulbeqpGZcOAwsc3jlt8ANg6PkFFd5jqZeZhl1yt584Z/KI88+htnZyFJaNRET1EkoqeCmHI+lZFy9Kd9Tmrj2Opv6V2uSc5JONLbMFlDegsid6zWoXXZHs5BUHd/aLcUaOp8ukmq9HVPAN87p9JepYrzJHPkg+/lmowI+dnW/d6qJmfJhXtm2Fv51tjYaawZKGA3rWWgzTBpXEZWUj18DQGlx6PeSyX0LIXe+TizyelpxWMJ1MBgxqWajOIPFreZlgdETLs85CRhMh9smwzpuzlL/RKVb0SjuHWfrv1sOkaVskFDC5E9cjIbccaXk08Fm5oS/TvLgikGnVvP4VPmmxzLcGaAE0bWOWNCcRM6e1bgq67tVi0DN2zjmKpG0lHYWdaC014V2pT2M9nV2yzn9ole++Jff+4Ff+dCTD9128vQsHPUmYkmHWFaLWTB1l1ddNsEdxpQTt8zdNE3r/M/lLcg91wRzUCmXLuvmnPiFRJwAMiZh08jsXY0phOAkz5OSpKyeY4yVgdJ0HFiuDKyeKi7kBQJSzjFF8hBOUkP0imdTDaGJpilRK+Gw74m5a9rDQz1z+tQb3rD56M9dA5+IccNkgTQHL7wNXEGKeD1k7qPnz5C8z7kqU1BhqAd4xMFETnI2tMLWNUY6dIO0rD3Hq2m1R+nCcNTpYcD1fmnL03bHyVtOn7o7XITa5WvBYtfrUiQ21uxpmt/12CE91rwGw8H26oHNe/oLn/xNEyExUY4W+obvvOvcT/+nj/yLN//993zpN/6lE2F5NPzpP/qWP/3e933oMWzesX21f1pXwu2GpqFyuZgDrEZrtmxG5H2KiS8LQ4KRQQoDSt5Qbg0SnHp59HYwLn5ftjfYpmueiv+S43llT9yDN68xbk2PY8r6/4Auc+1QwPmiFpMPn2p+T/7b57vj//cPAQTo/s+f+n/Xo8q6+ozt/7Xv/xc8Cq1mLQewrCmICMLGVH+UNFGO3GbPwzSaJtigQ+73PrUcDULs5afHyH6xhoJ2wZVjSkbjJoyqUVXXPqdkUBBMvBOmqjezJMvpwFxw5sS/kWzaW94Nt8QYoMlGduyi/2tjFgMyy5E6l43ZtNmil/RMzWoftbqxQ+1ZXXY7w6viUzJNlvktQGZkbjwaZyJTt8wSkTKDasDAs7dgI6fi0RxJBhXst19EJW9nv1QqwxhNIUxBEmttia1qqqZAJEusIyt3VrLwF+cEM2TYZM6jU1SNIBtWSAYKK1NYE5TBq93r+2/96tdv6J3Xl3s/9f5PdhunWrI+rpKlqAEx9cNhj8iDMRANaYgaExHFIflMM0mMEZRKFYHFGGOMFeScg67ZJfIeFKZQLUnBsXyIDdAQQiAhiEjjGQ3iysIRAfUCNQaTIVAm2PLZZiIiYQvDUPLEpk3TNNJqNBo4UHD6YGjKVEdmLQs3rYGctQOWWi8w136nlcPV8mtf8qJ5vyc8I/L891IUgEGSMiViY0EbaLOVZpOkS4QVpaRKkIabwAw2DjNp5tQG6rrQ7rThVMubXZg37Qlud2R2T5jfbWGrly2bn7FISNF2r3bXrs32V7tXrl7f35tv7ezcdpfcepu2EoVaAYbN1cZWYu2aGFSxxcvl1UZut+ZMk1RSE6xX3mtj+9/99gf+p7u/7oNv+c4/8cBzJ4Zmd7nSXt/yjW/40NXZg1e5w9aqa7u4YusSxZSGYA2TBST2xo7mP5a7OxuCSYMQFDyoRBMFJ4e05Yr8xBjYlJQMwTvjUjNo1thkMEuq0cxXDlFB6koJijCPYQzfpLV67QvHF47/wkd2XycuNQD6n//aX7CJvqm/aFUn04i8Q7L899IjCKREJNxMjc2JQ0V38Zf9l3vLLxxfOL5wfOH4wvGF4/9Ox8cXP18NwRxYA8wsFI8iJ4aJR6qHGoMtwRg1Q6FodmBwTp6hJOdy7I65pkUtfcHe/MLxheMLx/+/H3cPv9SFhjgFlhBCCEEIuR1bgdbThFa2OEKxZoXc5U/IvXSqn6NGZha9kZCiT3GARKJkHCERNJj1lhKohySywdRDiRHE0viVrZQgm0YkNbOUBtMYY4z9gL7Xo8WwOIhDb8NSVwvqlyn2NAyIPaVIlkknhZgbfx2PRuRWY4HY2XGKivBDatzCg1iiOXhZHcLaSjIfTBwaI1IWEk4SlBoNASEk4kRsHEyCBTYgUUhEDl8kIp3kXF2JUekYuAaXm2B3ZEJeazfAr44lOMwy+BQYkWU51Fyx8Y4Wr29jpEZKbIYE0ppoxMQnxqQ1oQd8aog5PxZA5LXVVlE+HiAiomfsl/4/WLdfOL5wfOH4wvH/28dti3dapcnjGlNk08rNvpa3tomAxfo/a9aPCtIKpGsnTCunSx1HRi2QpvGyHCikjPewmpo+1kAdBfHgXWiJiEjAhT2JYEZKTORtJbkaByiQIFKbPOCowMzMtZGAuHANedfIOj4oDbfHUpMyYl7jUR4yJzhSSp5l0FzPqdWmUTMr7+i3rtlSTDTr9L/18wqHO6aAxyfKTS1HAvDyX82tonPL1/InNecZDN5p1WPKI6vDpOi2WmROMpxSssLsmLxmyQDvArdeiF1mDkT0DH65PJlmuLxK7RbiJIX10Y9Pf7bP+Njn4+IoVTrTP2jhpZp+cuyc6QWtEKPYpKsl1ou3bvzWsU8cWlXrj2tCelqGRGsh/bHN1vRzAIKx+st7QZZc7/Er1DmaLpo6Mrl5w0hEng+RMDl5zd4ys1o5UK+c179mGB2X9ikEizwLdtBs3PpXf/AdFy6+0xBedt9db3/LCy9euLJlMUqU2U5r3XyjSZZm8x0R4SBN0wEI0hBRCKF2AHRajBCCSON8ul3XuZcQGr81KjlzIBZmXyFS0n4wC0G8oIUATi6tkr8OM1tSYucmzB8KsRCc8lfIKqO6FEiUmcXYHxwcbG9vA5kaTynzDJiZiMRkiYgKfDqCosKsW9Dq6uL6rdt3/7Ef+Vs/99vnu3B2NSSuVdHc4f9d17X1yHFU4e+cqp6e2fV61469ju04CbkhiJM43IJCIJIlQJF4Cy8BfgAP8Ad4gr/AExJCiDckLkI8GPEQFCmRDLlAlAQRJRFYa9bC692s9zoz3V3n8HCqqmtmN/M03T3TXV1ddS7V5/s+XkZ9kU8+Ui1c9MOuaw9kstuN9zC+q83H3G2S7ogGJQbVpALZV0zJneRqNYwu8OCcX7iXRkNhInIMhyBtu4H9bWlalTGmm15cV1+ks/cvXHr05MULw9HSuG327twJW1sUOjmcsuyNmyntbmnoaLq/8uwT3du/2d96TWkEHZ+sl9durf/8b+svPfUAD/StG1vf/+Pt735x9SffuO+Rqz8+cfmbJz77pU//4pc/Wn3/nW89eqvdXJLRlAZOA3GQAKmYw3y9aLb4nSYFwARw6NVho6pM/KPB/7JH6Qenqmoww+IQodsmR5CJXLTwMfaH8opz8/GIGVUiaIggF+laCp0XsAQXxIG8Cktwqp7ZK1XsvNLAe8/OO3bOxpcDmJXICjCUNUGgXKaTLwot7btn6jQmPJSbDj3KrkMUi5Jjv1knWIUvRUkvRazwEBPDLfARpQkqjUlOWYXNhScACDlFEDAzIUAiCFvJFlET8NgBGQWkiqNWs7R+Pc9G8Snv0XaIiFIU3RKRoEGNocDoUCgVxyuZCkDyexKr9WZOHgUU5wbnnDMqjW0cu4nMQCESSaLmWqvAjCB0aWDzHi+kgGZJkPgLJgQDzhTaIMZmHn0aScLTSuy6eH0iMmYzu4JGfU0Vmim2zU0pZxGO0EcDEW4/1xdzH6bew+XTItJ+Aei7IX/pS8WLNsz24DFHc8f1PyBzSzDJw1xp3Tutovdp/vFrqeWC9BQpqpnE/ZQPAJmeLZV8G/ghzlFbp4gWytyEYfALXqc5T18qkRUtnJkKs0hp0aK0XURqGk+meuJU+/zXHvr9bz388J21G6++t/DMwxd2du54Gej+/mCl6oLVsmongTsTG/UKgbIVJGM2wNSE3A0hqCo5iiX0SehbRCIRqyoSDtJR5FTpTA8OJBKcZjtC5clti/vBb+QRbAbMMTt2ol3TNCJS19XS0pIaQb7GM9qz9pHQaOb5kqIibrWTrq380Dl39elnrl3/FfgEYSJorTjMCYLcQrcuzVo7ODutVii06HYQPoZsQ1VogXCG/aI6r35IPJQwRbel7W1p1qjbFbfVNhM0Z9xg0bFzCgrStIE7h7YDV0QDkT3uNmXfN1vL+wxevThaWQ6nlg8n48neXsW+1dHA+47uquug7mBt79Tjz45fea0GDrA4PP/EtQ8Ofvre5D87//3BU/e8cOXMy0t8cnFpGJpzq3x79+DE3fX1r7/w95+9/qmvTO8sr4gExYS0ZvWBpiIdw0RW+hQhMRBIJGMHoBnkm6LVhLxNfqdnxzMIt0tdHWI9ZdQjApLYDogUMsd9NTvge/tjgkIFEK54oMm99D4pJhjQCLB0bJhZAhMnAK4ojOA6RXIJL5IcBZFTzi053r5FSLFCIWZqjchJokBY1J8AYFpyxgYhRAYcLXKryOlnEjhmv4WijrtJ/BKlsZ2zLyZyDHKWAYMIFIt2yciUgE4CgzxHOQCDG6oRqhAU6jQ/2NylM1fJ+wszVSS+6BHBGmVtoiwVcboVpsiTxBqMgEjI0mQgwq0lANTnPJrxkP1qbxpgeX03hT5ILbChqYmUiRPCNhIOFZ+cAersCkcGunpFJjdOQzg6D2UltfFc+h4WghPSOdxONqClN1U1CmwlRMB44fxFo5WnjJajSDQR73fOXZWeI8+Nfq4WtlU1yVcdSal7+567Mv2rfCpFTx1zkmP9cYpUWEUdkXm82CHI+KP5m+LyHUOx5BCMXBaJUyM1XtI7htgAnQE1qBJTX/kJ2Dv7XCg9kzfM3XjcpJmuj0ct1DOYpqL4ozqupTt0rt68s3P16mNbd57/y6vXAVx7431P9PjD5/c3NxYrP54cdF4HwyqEoALvfQiRI9DK8hWJ+rUPGCIjVQiiykw+hGAo3thjSROmoJVFK51ntrp3UqKIWSLSkGmtmDkRGzAQ+iVBs5w27x2LCEIgYku4jYS1S6IXTKzgDsIKYgohhksZsMhq2lMYuEFo/fbdneef/PKFpWvre0MMakgHMS2czqEN2EazI+2/gUrJQQeERXJntVpCNVLnAy0zA+SER8Q1yf06vqHjm9xtaNjTbgOHKx2Ngg17EXAtoSXn4UaqtaKjrqX9cRj8b4zgyWPgh4sLfvWeoFJxO520fiKol3jSMKpmY6t97CF35gvTrTc91adPD944GN3y5zbC4aUz1a9fubl03znZq/764e793/vhR2+tHf7ro0euPPeP85evvLtdf/WS6AGcKhrVSkh8YKUwO2ElGSUzNj1aYm6ezgxOVUHIqSAKPCUo5gAERIyu0SwwqQprBBzneWF+pYhr+7T76IfSIhClTROqYfaiokoc+SQgyddS6VZKNxPf1IHMSWcq5SO5Ycy2zccixh+qJBoICFHFN1sqUZCIipoOXVzVU3CgYCA3TdpHDBVSAdnr5JIkxcLZfJuWWRsRBzk2QsoiAHHxZsmZGJCYyTMPLmyUINQDDKK9B1ER9RqB3YxRJbKwSWNQxpQYraAmmB2/U8YEq1FxE/ejCog80dTzOSpC9lxEMctBmaHNJnLlO9nCZkrmiNK0xglEfumjjzKfrXC9cY83Hy4RUEWIBLxqqhYu2akcoVjyQ31MEdcXMo6zlLhBNOYzvirbdkDtsragZ8fnJt4n+eA8uo96r2M3szuRpEIVe6Q4VF4lbzKozP+OuuR8FUKK+uJ840SqoUSJ4OIII49qfzv5IRU+MoGgdOZax36iSZIZHuOkqRcVs9Evqn/SKAmJRbO433hPMyEXoAKtQ3NYV4vT4Mht7tNL33nx8pNPv/zy9Xc/fPtPb36wPBpeOD3Yn0wXpt5x1wZ46jJPtaqaG85wkSImtWZH3DLSjw1l1I8iS4CzPQVCFwwYFkKQgmLazEYIAWDHxWxhj7hYBEZMsIzMiahnbdUg4kRVTduDQQwXVBDiSzWx9bNUPJKMDYI2wKjy48mhXrq4/NTlz6xfX/FDYNqqmwY51DAJCAaUElXnBgIGDZQW4ZdcddL5Ech1cKCaWEk7R53nuqsfbN09Ml6jsAnZ99PbikpA4hmO0IyhgbkO4TRoFQ5EDckeDvYC3J5Wh46X77t3cXlpOB4TTTzvtI3U9anpZFtHA3Td5N8Ho8+/uPPnt5Wnm7fuNuCw+/GVR8+fOL34+s3D3/1TBstoqzMPcPvtzz34hxsbO7vbN8+ewzs36+fCoQalqsVhhUap9nCNNkBpEwz/LsY4ZiP76GDmxPnab9rAy4SXkS8R0ifWx8xQVTVmj9IBp5H2iUamPIlGL5dSOFu/FbWUl6DoRLN4QDqPqdnn6axFtpDGsIWbvdpbbxnid+MaL8LlaBdy24QogqNtEShx8IoJRUTXbfNIIgmRuVmBApbBEgAR4lm7kFubeV8172en6BCpY8DeacrKGewhkmaQrWPluy5O7or1vJlDc92oAEhKVpN8KIgoR7i8MiGtq4uIgpVN9jGCTc2XAxAJlCibyOh34iL9fBsKQ1366PhepHhkfZo6Z8njFwct0LDRvKv+HwO5ceeFW4cmAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 23,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "Image.fromarray(origin_RGB[3])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "id": "cfda8018-dc6e-40ef-9f4e-f2e85ad70512",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa8AAAKACAIAAACkG2AoAAEAAElEQVR4nOz9WbBty3EYiGXWtIY9nvEOb8Z7mEGITYIUW6K7JVFDy22JoESQVjhCkh0Oh/vDEW5HtC1C7A87SFDhDys6/CG3wyEPYTUIgCLBUaRIkCIIEQQJEvP4Ht505zPuYY01pT9q73XW2Xuvfc+5eIpwdzDjxL17r12rKisrKysrMysLEQAQOUdrPTAAQPAouLKugusAv1bpbnBvUT0CAADoGvWzjU+7++Wvhc91+3V9em7Gv6vd69d/vf5eF/Ca5ddHNoDrqqjjhe+Gb9tN2beqA9esh3fV8/9n4DrnVxdfLcojIADQBb02l98yrxERAIguKMUYA7IAQIBEyDkH8M45FEJYa0MJIYTWOk3ToigAoi192wDX5YYueKtG95qzAqDe/HjzIALQNelz3X5dl57Ygf9jmO3KcN3+dsJbJVU7OkDX7DBeF5/rttsFpuO5vF41b9W8uzZDXBOogz+xg6+6+LmLD7vojy06IwIAEAEieAIApZQQqigKAM8YIAAwxhA5A7TOMgQHPoqYMZtrxw7q87dIqXNXW6wbQd+Fj/CrJbfXTx3SSr5F0tlek9m429C1LiShmw5d7b5V49UFDT5bcP4PAdcdX7FViF29F9cdX6C3Rjpvx//q0MU/b9XwddGna351tXtdPkcE74EIGAPGFp8RAQgZE8aYsAxIyY0xCABSSmscAEMgAhensiwNdmG5+fFbtkZ1tXtdoA58uuvfvCZ397drbb9eu28ZPWkz/tdWkbvgmv3thC4pcF3okBrYWf/m8nRdnahLWl2zX/gWKe1v2VpzbR35mtV38Cd18VVH+U4+7JKeoMIuGwEvfcCFXOSMhW1yUAqBHPSSfl3XH/3oR9/xrrfPsjmTTPou7De32im0O4A6hD/77oa3qZbYZnw660e98bHvFCfqWoh1tes7h/Ga4rAD/652u+jTNS7X7S+28O+ss6P8lfDpgOvyT9f4ElEXShvh2oYNsB3PO+ZdBx06+bOr3beIztcFBh3zCzr4qoOfu/iwUywxQ0TeeymltdZ7H0WRtbYo6JlnnvroRz/6X//XHwYCREREEbbbRZkBwDPPPf3e97/fA/ilF2IDMh3PxVtEzE4r+HWAgESH2O6uf/Pa2Llxv6Yu0NXuW0bPjrX9LfOifDc6XXumXVfKXxOuyz+dXojFhmortPplO1aXLnirqPDfGy9KB3/yTr5yAJe5ZUHtzZy73YtFQAjowRMRR66t5qCEgOeee04qxRiry4pzLoAY5+i8Ywy4ZATwv/2v/o+1xSQebKwXOxbfzq11J4KbqSA7pFhYu9ZXNkRsL2vNZ8exXab5zF2X7rN5Te60B7EOK28HCLe5oq61WqOFTRoWw83rFPnNz7vsStcer64dSteOtWNcrqVwQbfO0lXPdv5Zh67x7eK3rtq62u2E6+4QO+Da9soOwOuuj93jvvE5N5t1Oss306Hh5xWPMPLNOmPX/CKvOOfWWimlMQYRlVJHR0cf+jsf+Nt/+28a74zWKooAwForAJhzlnEggspoTcBkOkiHlm/W5LsWzOi6wrCDO7t2cBufBkphq0JcfhB+8/Qj1cHfHT4+1bWKU7z5eQf4jg1BF9mUF3Cd/SayzVpg106qa7zeqp0yY2yjNHzL7FMdqyl1mgY2E0J17Am89w3x25K9LTXaHfTXlA4AaUf5zePYNS7XG5Ut+HTR8y3aQXu5WZ6oLr660AaWtq/FBE82Fned89QABzKWJKLyiEjCViwXKmIMGBPImDGGMQYAAtACSSIDnilSEQIAc8L0VBL22xfoIQKA9za8GX5qPrdZ5xL2XavrhbeOgNjF6+BhkxS4PCqrI7cq8i433UapCz3fJX1w85qJ4NsoXVS7sbNEjdX8ysrRRR8XQn+xSDq4TI3Fc7zQKdoUwxZt2wU6eXzR65ZmvUBndRSIiIiEEOHDSteC6tlWCVcX+ZaI2WKkCz81hcOHFfQ3D8TlMuuth6+MiXb5pgBX3HvftN60u6Lztt7l6/W30V7HcCOeAOK66vNKPQFb59xltqFlf1lTvsENEZGzjVS9tlezy2LQsXdxHmCNXADAuIBueq6znPDU8Bhc4qiEiKJYAIBjDIFHUZKoASEnAAEGvWdSWu2g2zx40V5Tb/tJu1j7wzqvdM67y9y5Mh9Wmn4srJRExIaVuxC+yldYSp9N6D+hNXr7IrGx/OXZvpng/nK1W7r8ZLDCf82/gc5NmQspA6tzPiyf62y9Hcmw0K5Lw2ZWd8H60HfVv/G5c67pdZuqKzpvW0pub6iBK3LICnRJ+a63NpbfKMpDGWcttEawKcmuaeEkvxm9bqmKG1FdGZf2OrTeBUT0a/GGzStEFLSU1ofNk7pTGnpvm4ab1h876huFWkfRDe8CAOKl+d8szt1t+mXJi0dPIKo26g4AnTu7lZqImlc2M9wKRo+dEoxdUp3ar26sgZbj/TjV46KWjTrjQoe9ZL3ejulFKyvqHlyek23aPlYIXkJpTR/c8tb6uri9iasIkba8a0/INmLry2r4tUsoX3WabOrFCg5bamuvYbjY2/mVCdWm2MpSB1uk21vkDUNG6xyGiN5v5uQNM3QNLo9O6ODF6yu81IZOabje8EYO7mKm5uuVeLE1rl1r15ZK1lFd/7AyOa8IiEjXjAt7LKorxa4iuNt9Wdkpr0/+lRqwe21vrzSPl86AEEaTFi8HzuKcN+x8qa3LzW5A7Go75ZWpuz75t/TrKvVvgaYSWtsvX7eqFfSe4JX1YVohBa7tyjcK6PaT9leOFzpvexw7I8DeaqCWWgodA901jutS6PITf3m2dlqut0nD9uLWPNlefh2bzleCzL70hFZG9LHCdCs0fcZFey181rmqrZkiIsDi366dQhdaDFdZ8DIaT4B/u8JVWX/R7vqOY/GeXy8cVkxERMDA+svF80movb4CNTi02WBFQkGL8lv4auNPG+tpt/sEyG/8aaNkac+LrgLXwuEqiHVNqBXNrinWmPKDSSE8b7afK2ivSPn2h8daJFbR7iB/52rXXrZp8QQALn1ugNbquZheG1ZNWFiWcPGBFiExXch0SsMVUbhxbV/53C55FY1jC09fq571d2HTctpVyXb1tg0f+dAvf/gTP9r167pKsqW2x04Y3LSdbLhzexPN2K2P4Pp40eVFqF3zP/vQJ8OHn/r4B9t7LlgbnXXahif/7Cd/OXz9Jx/70S2k+Lmf+GQXHf7Jx360XWGopKm2QW+lQriyeOqSpBvVwBWqrq/ZV5GDV1QpVh52cWnbGruyArWLtYe4S3lcgSdTRLre6up1V7/abNlV2/oE6RIXoaYgGRGxSz3cohv6wOewIGVD0M4d4hUl10qvuuRp16K3Bqz9VquS643lOkMvnyy+hhn7kQ/98nLubSQoXvFk1WM5cstkfuwOqOvFja2sTGYi989+8ldXijXSqpFNG5Fp88CKwApfV8TWSuUb4Z/95C+339pYuHn4Ux//4HZarcOW2Qhr27ftFW4suc7e2xHYDutorEyc5vm6TteWg3DZpLhxE/1k0vCKUq8FK+pq57ryWPHSJRyvDleauiv7nY2fYZOOcBWCrgxSu6rGX3kVTWqlXURkSwhNNB/We7FREbgi/td9ZaW/j4WmI5xzzvnG+qkFzVsby2xB+CpYMUAkQALwBJ7I+eYJ0sWvK6KwgY2ybF3CrkAjZa5Ft67+XrFYkCZN04F52m91IbnyZB3WGf6Ki9a6LFvn8/a/6x1ceXiJZzyFv5XR7AK8Jmzv4Pr8bc/cdr9W+Lz9SvvD5WK+vTJtARFMZJuqZgDURrJRDxuBFfBrPneRbH2RXBsq15BsBeHm3cYOgi1Ft2nX+0uVM4b+cvT1+rqx8pXzDVG1LazW6XhpIVnieeELXmHBpp6V52GA256+lcFekdS4adHeKPvW0V6fq+2BC620FcMgp9qi7SM/+cmwawYAQABEFyIbQh0IsCby/snHfrRdw8/9xCcb8ddQ5qLO5cO2uhf0Bby8of4//PzfbQo39f/cT3yyUSTXJ9g6HTaKmHYxWprb2q+sV75x7NqCoGs2NtO1+YzEw1seiIg8LB04l19tj9oK/ssZ0aDg2wXaHxr0MESoIDTt0HJfyHDVMtPU0NXl9YfQDSHec4U+RJcsAO0CzSq10lCjC680571lTAGAD+GG4AkccLGUIQwAgBiAA/Bso7jc3gFag+2Fmzo3DuFGWGE+aPFWux7sWAzbwUqPxXBL6xufrEyhFfTg8oTZTkm4zMErVa309Cr1rFSyUR3eAu0yYdeJiB/+xI99+BM/1jz/uZ/45Maq1h/+1Mc/GCoJH7aXbyN5WRRugAa37cU21o/L1aWLe9dpdRXSwWUR0+bGjVNgHaugDQEA4YUn90IZ7+7Xlv5e662Nve7iqzb11mm7Tocu6BqCx77lvW/vHTfi2YVA13klBtDOK/t42ChZritu2tCF8crzLdIBO5brjXVeC6v2zGl+opYqt50Xr9Jc2823vtBBiw7tD0/QKVyD9ru4VQwhYpfEWenpFiNgU0PXPvqxNXS1fvXyG2FdWj1BnV3zYp1/VqTGynNgFyy3ED1bd6wrsDZl2rq/a0cdr3T2u5wvTeG2hLru6Gxk0S6UrqKKXXrxCgW3RdhsrvSa5lW6bIduNN71eqjbGwBrA0MXSvWGHdDGkg19n2AtasPG6drWngJ85EO/tF7s6m6EULJLNKzX02WSa3MPXEd0bqRwuwB0jGMXhuuvr0O7F1tqCMW2k2gFuvhkO9ddHTbyeVeLG1tfTA1cBHIiYtilAgJ66sqkv17n8ivRpXgUH0ZqPa/iMtX+qkxsM8wKM3SJ/qtIsS7MrzgKWxB4LCA8Ru97kgwYzahvl+LbYTtBV5rDx+1uNla1cU2+Lp6NiXp7sRXZd5XZHmCLw2HLPG9+2t6j9co3EvCJ9YItasW1VLyNsE6BFfm4XuCxDpl1WOlCM9na2tl3w+frb61vNdrQqDDNO99Nxs+lRNssp56sR+13V2ogosZmdV3d7So82VTbbr39ZL0wXtYKcVNbDVxbGnZPAL/xr81nV18HmgLbS278tWvCNw/XeaLrrS3Pt8BHPvRLP/vjv9j16xXFxD/9hb+3vUBTz0c+9Esb9dBrNQdPaoFa7r8Ww/1TH/+7V8NkA5/gpv34doHYhqUo7OTDlfmzwg8rArELGpfryl+LIBv4fF1qdNYPwBDZEk8AcFsVGkRq9ZGar60mVhOvrH9uq34rDL9RpVjxsEOHinf1+b6xzPqIIF6KBmsPHANs/pqwB1ymcW2fodhih732TrlZPLEV4ruxM8vy121hAY+Vg7i0U2wsfHX+W4GVsd/44oc/8WPN82a60prJL0zdBo1GZrVdn+062zi0ldHwU0Pnpp6VXv/Ux/9u+8lHPvTLK8WuJdPbyKy3dRVod3O7UG5Lje373y31LCMTr93Hq7DxY2Hji4gYTMyN8rJlPQ4QNEFa5oYI/z42wTV1nLq7ZHFEIiJc2xF31dD1cONPjWBqOrjl3RXoIl2bAu3nK+3SZXNNQ+dlsQt/1GM549rSENYE4vLz5sIrvVqhWvPkWhO1WeShJQ1X1gpYkwJhleva825k040j+uFP/Fjg8sfiufL6hz/xY1uUuBXc2vU3b/30v/773vtQTxCR7Qp/7id+ZTs+V5/qK6O2hW7rL374Ez/aCOKraKYbsfqpj3+webeRqu3agiaIl50/P/cTn+xSTlcWufbzlTVvnSG7FsUtrTTcuMJXGysHaPFJsBgCEoAlD7A5v8Zj0WDskiwgoseuEyvs2sa8rSrCZQnQ7gguM4mt6yJdXdgogrcguTKpL+js/Qoyi2Jb6lqDDdKQATJEhrRIknNpUNll02zLhrgW4rj8ySOGzxcbUqDWbT6h5uZFBNjEVQuLckMIIk8hr3crSralD6/EUK5Lz3Zt1LI7rAyPJ4PALmcbJOcNx9UcxQtMfNttR0tmxpX1nS1PZV4UBk+u6cil/jbwM3//X4cP606bLbCRrRE8u+jvKs8geACCdsBp2x3Z2nw18ZLQovD//qP/+f/5H/z6YxFr+BoAQub3ZhIR0U997O/83DL4kSH97FLCAsBPfezvMLaY4Wvy91d+6uN/F9t6Sog85e0Rb51mAwr8SUR+uUcMaDR7xPb0ZIw1LNTsIhHRO88Y4xfZAwN7kpLSex++LjaYixFeuF8XTgzvcbEDXXTfAWFzyBaA6CImt52tjiFrZxoNU4MhhhxUlyBML3aBNrSoxASS80SeITLGOCARgF/I0BB24oCAlkrrkmhtwddgtS7RPDikC/ZujcWqFhLkOHkbSl4Sa3Rh+Fs2vcyvylkoE6TWZQQ0AAASg0UsJzJazugg4jwgAl1hwb/iqtTQpQkib/d2ZTHcKMXbwmjj8rIOsPRyhMJhWjrnnHN+Ce3P3vt21H4bmib8ZVBKwVq2NaXU+pq2aKv1GFtwNSpeouc//fiPffhjH9z46xYdcwWavWp7DsDlNbbp+Mq7V8S/rXo3zP1PPrGqo32426QIa/NnffTb9VxoBEv4Jx/7O+v4NAy5vs61sYVN/LkRnxU6tOkTWmko2UzXcDMRLd0L4dfm4XrN4cXGVnixGLWIDK1pQh0OBFyD8LyNRoNkI+JDEyuhfCt9XDnitUJS6IALUbiG1UbuWmfXAI3ox5bYbSi/IoVW4m23szFcJYfN9vfXX1npD7Y29m0+wzWB2CwsXdTBltxsvvo1DXlRG0K78MYKu3rRxtDUhoja91KS96Z2G+8nwct6FkP0F4vBY0YCERuMsLUTbwvEj/zkJ7fU8NO/8MG2/9Ff5OPZsE9s7cw2WGdgjW5dnNQel2aIERGBt22jDPAjP7GQ4O3N7Ed+4leCdFuZ5+GnLZ1tI7D+hNYYjNq/Xt7otWXi+rxpcx20eGMj17VrC1OxLWXaH1aEWoMYQ/TY2irBRVzI+gRBxHXDfPh1JbvHxTAFN+vFdmqxZQNP7W4s5iwCtQ8yAECTvnOT/IVtsHlqb3mrSw6EnxoJTsvN5UUzrXdbmaAeL8o6dUNGF5U2DVyMUIesXV9R25g9ZvVoycqNv7bbbeuD7YnULtA+obwSKLOiGrQrbH8N20AppYouZJ+Um+/xCfW38SciXC62Xb1e72ObGh/5yU+28f/pT/y9Zo8c1MOVLbMD8gjhj4h+9kO/vJGlVqRPA/90maHnZ378kytirr1Rbb/SrqQ5NfVzP/ErK9rrxltJgrxrpF7XxNioVOLyb+GBbf20ora0xd9GUjTFVp63K1nBbUtV6yzXCLtGSRRCtJFsuNF73+wtLjHzprm2gsaqkkF0IfhaVHLOBRzCsffAsY2xjy+xDWi0z5ysThnwCB7IhT8Ez5BYy8G98tcg0NZ2N9IcNtkZm9bXB6WLbZZ4LikAGGgSfM0bYdtOmS8vyAtLViMTt0+wRs1uz5DtsIXVVsZgA5KcNzzXtN7sjtfHcl3bX9lJteUpLpcgay+sMN779qHmFWgjGiRIwwE/+xO/tPGVjURAxFC+eWshH7v3yD/z45+EJcV+5sc/GVr/2R//xRUGajfUJu8KnX/2Q7/cPG+raY3EXODzE7/SFpSwyZe9gva68G2kdjMZ1oVvIxMDMiuivLEwtrfMl+jpCT0xAkbAAZu/jYUbPmnPzzbFmieri98SmrmwQopLKLWkJHTPrDYR1vFc/2lFwrYxXOexS18vV94IxI3QJs4KZR4Lbdy6uowtaD8PUy/MbtiUqqfNzG2UukatDY/xKSOGnNwXTT3BnWe4ya1M4Jp+tjXdpTq/bOWCFJdu4YGOLnURtym8Yl3G5f6U3KXXA0MhonXOe89ad9/UdS3Ehqt8PFkAYIz901/44M/++CfDwxVJEeCnf+GDXRexwpIP2urkz3xoQ/Tihz/xo2Ef0PYhrDf307/wweASaYi9PHuwgC1cshF5am0wf7bV7rozd6Pg7koQ2bUv/ulf+CDiKmLbN9Erc2xFnLWfN3PtEmcud4J4eafSLtN+QmvRZuuiEJf7DLgcBdFM16ZaTxvUaEYL70dTYZfo2TzXWgQJaZDakggR2w/bvbPgOVzQJNS7QOnybVBt3NaxglYMORERrvJbG5ntIrWtrrZfaY9d16g9HsktDW9fSVZgZa3eyDSwiZk2NrrCzV2rIixXiZXW162nzZq2smjQUp1crz/8xAETFSUqan5KVNSlUzSYb0kK+9O/8MEtL14LGsp0Nbeix22k5AqhutALEBS09ZkDrQOqWwKwG2hq2O5aaTcHj/PDwEJ0bugmXY4Z6KJDuzwjCLpko1Eu/tY8hCtyrV1hU7LN1U15WBv0C6HTqoRD56itfG7qpMs7yja0+9Lu2sbCKzOlmRTNrmulU7DGTg20y7dn5fZ2119p1pK21avpV1vrD38rNUCHPFlQEhCAJDIDnv3RZ//o+3/oB/53H/6/sDRKOA/vhMvDgC9vDe3AHi9TZH2dWRm5rk1EI7Dg8orR3GPblq10OQ7u0srQcZNhiFRot7ugFzFYmxJEBN5+5B/82saq/hz+HP4c/nsKv/X6T/+tv/7DP////f/8o3/4j5iU1nggEoyQ0AIhgSe0AMCwRoqIoQ9237CR9T5YXq21bXdVo/9TeBLkV/i30dKDLCeAVkJtYojL6CFGF5fK+7YYXabuhrX4KVw6SKy1LSkMAAsxtjFej4gufMHNeogAAB5d06NgaZaMO+9+9s9F4Z/Dn8P/4OBvPf8zjH4TidEi9tkDeEFAa/ZTgE020S26/ZbnXUBE0A5BWgrEjS927bKJLoXdtEtuRAwRvdt8bNMvb7Wnli18exf+HP4c/hz+hwSLxLMbDRMrX9sAa2KLddiqu4RiI2zYUhrT5bihFTSo9fXSjngTqhtF6iX9cb1+f8kQyxhbuUk2efen0FklpPf+B7//A3/7H/5vHj46SvvDoio554jIOTKEYFFZa/SSm6/9vCv4hq0lFV83S116gVYtBovP4FZwCP9uzPUNsDi5sbBmtMZFg4wEgK5j7r/8J//+la9/7fTR/eefe2b/hfe+8NI7ezsHpXYqTqqqEgyTSNbWwNoStdJcuwvOuZWgkxWCdFnl1h2ywerXwMI3SpfebSq0rXMp7QLtkWo8CbR2u/xF78SFl6/9L+M8bI/aCKwkYri0YPvNXN1E3mxUSlZoS0RbTNtdgIh+6d/AZcoDWuWyVaWn6dfCsNacC6aLh+toXzSEuFJJ16HsUH6lX3jZArv++SKrPHlABgD/p+XdZ+vQ6VPu0tFC1esM0TlXG3dHqxcYTp4hwDIiD1ry7rpKGV0+atqlli4oteaRXzRKGAIHmtgr5y7tzS1wZJ4zIOc++8efiw5f/Gt/428+PDnrD8fWO+OsECIvskhGXeIYlh1so7qRrZvZuK5xdxHH05rFYCFtLxlJG+V3JWq9QYm3juVQ6yfGSFd6mPBXvvbl3/udf5vNzjnA2fkZfenr3/N9H/h7/+AfqSg+nxe9ft/oqjK6PY7tD+gJYOkEpDY3s3CdKUKIlFoXCpcnfKuPK9J8hUBtMUQt/2/4INYYIrRoYeUY/qUdxvqCt+JBhtYgwhos6XC5YwHDtRU0/NvKwoKLcu0KLzq4XuVVgYjgcjc3l+n+FTatOhu/hos8aeFAR2iFDaxEW7RGAYgIljvIK0oJvPC34EafRxsuScOV6dEey+37xy3d3oZoSwKG9WFLro62etU8aXSrdZ7rwmGj1G7XSa1bOtuB1mhrJcDUnhC4lP/2137p1o2D7/m+H3hwfMqjWAhRFEUURcyFVi76GP51S7ELcGk6tRfP5tdmxrax2t6vdo/WF4YVnXQjKRZPcO1JqNbZWPJiNv29T/3OZDYVjDMpa2OFN1/70hcmWf6Df/mvvv093zOZnwOxOFHgNgxm6N5GVm5Ya2WIN3YQYHGEFhFZOA2+/LqdOOtd63qlPQSXpHnHWHh/cY54eytNRzf2caVF2DRMl8svSjXFm1+2vLUOKyrFxVr1Xdwuf3WZBd1buu2vNC92aYjXgs26YSP41tfALpzaO4j2W42MWwi+5UPn/WL7gMGdgiFRwcZsbl1kfQu5H0JYdeumNCJKkqT5lQMEtw8h80xyqH71F3/+qWeeSZNBVlUqShhjkougUa60QkQE2/SL9t5qY4HH9nQ9WCGwyMo1e+viuA1tbah5sqCGc0qqo7Pj+3fvAIBHVmoPwLmE2tSvfOurr3zrGz/8I//Zf/JXf0TGvbyqBF6i5PYurGv3DQde5RjPenfakpjRIvZgC8FXGCzoIBdCcKnM0prhYkVQrtdPmzqOjXtwU19WKtnICRuH77rSZMPra7rhSn+vCxcHrtnibNxl5XHRu8V4IdKabnitWbAFiGg5IJ3QGW+IHQAddAnBPpcis+hKaXvxsn2heTGECzVRUW3Emu617ydZx/OKPQqwPluIKIouwgxR8sqBDYF1pkoYTc8f/fy/+n/1EplGMYJP4ng2m6/LEWhNtnXddh3Pdr+24N/G82LuETWiZOXF9hGCrtZx0+Zu2QCz1t6/c1dJjuDJGSAL4ErrPZCSmEj63L/7rd/7zV/tKQ5umwh7LE9fhem3iJJm9Q3daK+vK7JmhW7tr+1q1xljvSRby2IAl4ds5fWuPq4gA5f2epeE7/qL24nzWFh568nEX+gsMSSGKwOxoTBsTjq4kj23XXMXYl2r+7WQ75SGK5lgmtwwG3WHlVm0XSotGu6e1Vu60a52uzRcqbB513fAyvm8EF/adjUYy4AngCJSQniPnjjAm6+/+q8/8fE0TTjn8/l8PBiu4I/dNla8fChwO7naXdj4E7XCyEPNwbezfkJxJdp8nfIbJzAXinH58ssvG11xgIgDglcSgHHgzBnnjSWnv/xnn//Mp39f8KsmQ1zvXTO41LpQex3WdeG21CAAQiAE37H2rIu8dXxWYOWV5nNXVSstrnPCllbaTIJXO956xV5seWvLfLxWPRcOH1gE3m0WVY9DuL3qwFbm39LldcmwBfmwU5aABogRcQAPXgJ4DpeO4jaT1tCFC48tzukRAIT8duv9QYQNZ3oRYOnDvQiTbu0L2jbpdngjhjpDFYsdnMfWitGIPMZX74FtCoSvK/H33jpOwAgEMvDECJRSVVW1OuPAGQTQGpAJh+Sd63H3Z3/wm0MJf/dD/7O6qHONPQ8lcyCFrcohj2KVnJeZT6Sog+AOh8eJfDgqtzhXf5k0C2xXhFT4HJw8G2VB82JbiODlhYqa3CquySe4qDnQXHFlrWaAjKO3jnPOmDDOcl+dnZw+fPiQscj5GogjI20WjiYWqbrWAOCK6R/+7q8+c5AOn33PZJbHvb7kApxWkhtjiUmOq3NjifnK0hWQvTgBtjJ8fplHcvkcAMg5yxhnsKDwBT1x9fUVObWODy031+HEAed8eVx9kQ8RWkfWYOnrXJFiAICtnDFskVvQkyXsEHDtE28NC9DFKYMVEl2UXP/cPnkVXvdrF0O3XyGiJgQYL8h+oXAQEV9OSWvdkrgrVfmmY41CexnxBfgFoTwC8rbtAjEkT7y8flx8WNJ/8TCUWdL2InMakYfFWZQFM+FlVD0CBfm1OG28dc2hNWhcFpsWQ9p0GcW2taVrpYVNakJ7lWg1ekmxusoKsI58s/xefVENmjIAaK2l4J/5g3/3q5/814fjAdRznyj0xGs7TAa5dw+yc66k1JvpcK1lPBQOWSrafVnp0UZSLDmGCc4RwLsLkz9eTrjivWWMIWfkgSGXQmlrAEAifOPrX5nPzpw3AOC8894DMS4EAFhtQv0EcHZ29rnPfc4Z3e/3ODKtNSJa69cty82/6+z0xNA+qdkmyEZm3m6UbAvQ9b1CF9rr7NeeOw21r9Wpx/LJRp5v0GtLwC64Ys20zM94LfyfANbH61p80l4SViTJlreuZDdc/amFrv8uXE7Qqqf9eX0Um183Yrj+9VpSpt3Wyiy6xLUrGgRnQnLnCcELcJ/5vd/+zV/+2I1hPDcl54IZmk/nJIUc9I11Ea0ebr06Vl19uSKhjLWAyIVYaArWgfMbg9EWbS0zQANDQrDeWWuVUicP737tS58HZxE8b+WR9t4DXUhbxpgH+trXvvbw7p1+HNEymodzjowhuzTW16XGk8HGJra0uzL3Gq2q+bz+OnbbW9sj2JTpGtaVh9vl1MbXG+ia+Y3ZpG0m2j4KbWpsnCZXx3AF2yd78VpwLQbrjDdsC1Rsp7G7HF0JAB4oeMieGOOVdpvP6zzX/rrCWFecXRcG6cuvYEstx6X38JI0bFYbZI4AiBljY8GNdRKNJ/Pvf++3xql4z1/7nzALdW2iJEUha2M4Y1prVLJhKbpC5EETkNW0jogA6DYxImJ3/BouJyERekJsrie4RMaLdhGttcC5YMoD6LKMlCRTf+GP//DR/TuCgScIwYCcc+eI3CUTZECmrKsvfv6Pn3nueSCmhKrLLI4i6y5dbd5uFBG7Te3Xg43MQGv3umzRpJoCTXeaw5rYysi7Ua6tc+/6KrjyvAuN9uCuo9cAY6sWoe2daqvDKzy/sQa4LNZXsPouYbtOuvHJYyc4rYcHXKG5ANt0w5Wv2+iFVy35WOhaSNsAbUvHil2stY49md7RbJk37qSaOUVkAcCSJwBHIBgguU/91q//2e/8W4nWx5ibEo3jtZWMV/ySTWA7fR7Dc863c3U0yUgamzUs7zMJf0oKZGCdcc4yhkoKLphvXXLSphgALC7bBG6cDYtfqvidN175ypf/DMgBegxJMxcmnksHOYLbLeD/8je/enT/fiwloEdkVV03fd8IVx6fx8IlIjSkIPLN32VabQZspctvkLxKuM+WClck46YlYbXkd9PcRsHazu+JLSPJlnraOLfQW2W57fTcWOdbCCtC4Mkq6aRCW6C09w7NPFxj5WtTBy9b/dpP1kuuP2z3eQXPLY22+7JlZtImu1JbEDNkQgjniBBkpBZZItB/5jc++Sef/lQkSEnhazOIIms0X6bOpssBveuobuz7OilWpta6b70p74zlyCKpJOPOOW0MEUkp13PcNrVJKRHRWouMYsVmp4++8id/OM8zBAwxBQFp7/3G6H7vPSHURXHnjVcjJYgojuO6rvkyK9LGTnUO2DVhhQGaOd8e97aTvaueNidQKyC/+beLJ1dqbie/at66ivTZiM86PJbh273okhfb6dCIzvV6ngC65vgKUAc8QXNt3t5ew2O8KOv1bmSCdS5/bG/XidJG+irdaIut9isNl2xHYB3W6b6J3ZcXLJC31gopPbG81gRMJMpYGqfy93/jV779x5/bTxOUMDcVIHK3ecu/TuE2MusYrkzRjXiu9mKpSxKRc85aa52zzq3UsFJPMAd7Y3SZf/nP/viVb3wZw5FVRE8ta0Mo37JYM8YAARElwqvf/tZ8MhVCoOCMMWvtSij4SutvOayI+/UlZKOuF7Dyy6RN0Lqjbp0P2wy/LuK7eHjLfOkSslfpb3tMN9YDl2l+FRHTmAia9eCxdsYrwlu4BL5V8Jhsr81SthJcukLrx95+/dhWms90eRVtJv/Kvw2LrzMZdq+9eBlWBEdjVA6Fm8nQQNMUY4wI0jgxxiFjjMvKuqo2liAryr1e/Buf+Nhnfvt3eBJlpLnivNZPxkBbGLph+qUv+MIi3o4PVUpZa7Msq6pKCBHHsfd+Op22C7crDDYy770Qwpp6dn72tS//WV1VBESEUsUAzNMyqin4SQElFxBsC8ugB0fmzp079x/clYzXdR1FUV6VbeTbfXkCynTBOq82/Wr0xKuIG7+80rMLyceKmwAhBqDNbBubW698C26PbRTWOKcpsL5H3h5NEa73g60W0ieGLZVgB2yvcOM4rmhLW15nBIDcEQGiR3QAjEvPlmn3V2J3vfcb7S9szWy3LtTWVk5o6XauVe2ltWudaitSEhGboJMmAMg5185/207220BzodIibt57KQVjSBRMY+ScY6zlZUIGF5ewEgEUdQnoiax3BgG8BwReMDZx2VN99+Xf+OidL/7RWMTFvM57CRGR85whkHXOEkPiynixLp0DzcMTY4wxJnTQWhvQJoYouEcw3lnyIehfSMYk8xwtEgnGpOTITVGXzmrvQQgQIq/raZZZouHOjssrX5vBoG+ckVIg2RhBGuONVySZp9KWEfP3vvil84cP6+Vdtboug+K4GCMAAvBApslwEfJhevKCl+X0tW9+ydYzxlhpKI0S7mqPAJwBZwHtQH/gTDDhjPPWSy4ll9768JkvrtddBmYSkffkfZAx4Y8zxpdz2jsHROFJKB/e3ajREJGhKqumpS48Ge8dAEkpBeMA5Jw1Rgf+XNyEjNBUS94HlNq6elt1oOV9tg2Xtlf9Noe38WyOPKxO1OU7uLzyaYHD2tQICBhjqLndpXVL1IrXJSyZAOCsVVIyRGdtIKZ3jocwAG+tMRKZAHTWMmDeU3uuuWXs6hMsbBdEuNyRdfm+oHCLXA3RsLWjb5MCGlMJB2Tk0bn2VeDLW92XN2L6x8Q9rYmw/+DKbZf8bjPQRgpur7P5vH52cD0TOnVckn2hcW4a9PAKR4oMzgHS27u/+/GP2aP7/b1edT5TSiFHY2rOeZpE3hhTZoladXQ2ygsRCSGCgS/MqHDJWaIiRuC0IetCrDgHRE9ooZwXzFEkldb6fHoOko1u7Oky13VR5bO90WiYpqaqsskkn04rW+dFNj07T+NEa8NENCsqHqdcSYjQo+Om/M43vvyZz/0+AUn5mPtz1sFbB+Bns5m3TkopxCKSmQPqsspn87oowy0LknFvLCGoOGKCa2uMs1wKJnil68YzI4QQQnDOhRBRFK0rWSvUaxbyLrUiFPYO4ih1xuR5joystfP5jMAnSdJIkxCHT0RNu+0KN4qAjTO5/blL99mIJ7Yy4MNS38G1PdBimXfOWhtFkRCiwaSpOUiuxpDa3JwXRVFDN0SUUgohtNZCCCa4EKzUtQOKokhGskGGL2Gj/NpIELoM2wtvgS5B8d3AY+IN4cpWz66hbfd8y5B3wTrVthN9C3rXLY+IrhUUAkiIGPThhaWshUUIngeGETLyWBgq6kq67N987F9Wxw/3esPJ5Jxzjpw58mVdkbfjfoquXrfohw9tBSH86r03xlhrw3EUpVQURcES570HD/24l0TJ5PQMPCVJNJmdn5w9OhwPTD67852X88mxIB0xlyrc6UX7u0PB/BvfeWV6dBIL4b3vjcZzo4nozqMHUcpYnX3tC5/NrK4ZmPra0baxijiys5OTIsvBeeecdsYRWWuE4HEcMYZFkU+nk7IsEEHrmsgLEXQvYgw5Z0Jw5z3jHBDLqsqLIvS/KMt1tmym/Qq/wXJ5a69wjejkXMYy3t87ZIw9fPgQGR0e7GldzefzYFg4OTlp5nyWZe3X26vyRvm4MgWgtag/loCPZXtc6psNNCYCtjxFE9aSlXabz411xVqrtdZaA0CQ+CGlvFKqNqaqKm1NVRV1XRtrjTEeKdTc6A2NZWZ7jx7b64aGXfLksTVsgceGvG9Z8y+cwogIQLh2ddl/CFjn7/XP7YdXJ9B2RkREIt/sIwITt2PuEck5QgTOuGu8IgRN4J4H4AAS4cS4PR778yI6TE7P7//+R//VX/8H/4uk3zs+O93Z2yUAJEhUMp3O4lghXvJINOhJKYItQkoRzILBkmDtQi+w9oJlo0jVpYljWdf1jcPDus4n07NbN268+vLLr37xC2VZ3nnzzS//6Z8IIfb3d6MoqotyeLizv7PPHdh88ubZyQvvfOc0m6IQSg5EEgnBj994494rr4oYKgMArHVP95XAGOPJnxwdZfm8t3sY5qiMhKSFwhL2NaG/YWrVdc0YU0rh8nh1I00QMWRXayt9rYG7MK006tK6tW4jP6CHsqyE4DvjPST4zsvfTtP0He94h7W+KArvzFNP35rPsjiOm63uitRrGtrCXU3J5ut2rNYFX+tu5HCZEQAhefDeXRRuiYxGB8SQ9Gy5oHIhmiuVWesOonDJR1DAtdZlWQKAlFLGXDuDiGmaWms9WWcpSVJT1c27W7qz3rWu/l5L0rWF5vZ2Vyrdnkfm8TeIrnzdPt5Xh3b5y61Qx+dFmRXDx8Vdo1dTANeL0OLkNWuvnIGr2tKQkXcAtNhTO1xBNAQ5A0ycAwDhGDqYFOXe7fHDO9/51Mf+u7/+j//x/nhUa+OAOeecwsHOznw6U7GAFmHb88oYAwBSSmutMSboAmEBDzvoICWDbbH27uG9R4M0nU1rMub1V1751Cd/OU1jxqGf9v6j73nP+fn5w4cPXv3WN7z3g8HgW9/6wq0bt3WpnaOnn32uKCbv/8AHJtn8ZFru7g/L6fzVb7/sPNUaAEGK1NjssbRtgycPAMYYskYKxixY57QGRNcMFhdIFLRgJ5Wsqkob57wJqYOsM8ENrUvNOR8MBpzzsiw9ORVJ7y5k5eXxveR2a1jCLU1sbVkWCgghyrLMsqyXJm9/+9uPj4//5POfe9sLLykVM8aKLI8TVVe1tTaOY7dkibZmhIjwFikKuOkrArDF+Z+2cued80qJy2vD8k0fjJhIRB68J09AwAAZWa2990opIWR4FRElFz4Yaz0KwdI0DquOEIKkdMaofmRMLVlU6dpaLVvb8JBiknG+jn+rJxsWkjY0KkhXgY30uSJcMU3jY6RhW0DA9UXedwmX9cRLTx67JnTWeaW2FgajtjTkAMSY92CtZ4AEtBCItHiFAByAEzDyvLAFIcQFzGWV3Bi+8fIXfv3j4j//0b/X6w2npVEy0loLxpNeGppoaxbhXyEkY0wIwRir69o5F0VRFEVsmY+WMRayMVprq6piSgA4Rub0+PjBG68pyV989ql+v1c7m83nzhog+8Lzzz51c//k5CTPc+yn3pTjcb+uzJe++Mdf+/qX79997Uf+5t+YIeXHRwnC2enEBLIzaay5Lp25EEgAjBmt0RNnDIgDLGYpIgJdbK+ICDwpIT3jxpis1sFupYQkolhFzrnp+SRoiIwxq03wK7BWPsr2JpGImhzmgVbOXwoUb29dvffj0RAAiiLjHPf39xnAm6+/fvv27eFwmOf5bhSFV6y17Rsv1vduXfuPFQ0IEZFRI0Cb0/yIwSuwYV3HNcNckFZa6yY2oPmJiNq+bA+X3DvhYVAeaWkoLLJcCOG9L8sy0BkRnXNVniFAUeYMwBrDOZec1WUp015wN+Nl90XXDLuiXtV0c4tmc3UV7VIxgtWs6GtwJev4VfTYrgJPrDNu5LP1J9eqf/savq6ubrCDIAPyG1eaEInIuCqNRgaMoTekKnGen+4P5IOv/9n//dtf/5/+z/9Xz77zfQ/P53Ec12UeKbmCToNDnufe+2AWDCZ8rfVkMtkZj51zWuvgYo7jOOxuJLoUqJpNZydHw0HvpRef/9a3vjHLZ0dHJ/fu3XHOVVWhhKjrUim1u7trDd299yZjePOp2y+89MJrr77x7a99+fjum//jD/0DP8lO5tnp7KwCQAIJoK+5TQYA6wjIMYLZbFJXBReREBLBS8nrutbahD2+EFJrqusawDMGnDNryVrtnEmSJI5jcKCUMsZMq6l1TnEhBbfWXlxp29p3B49TM4Lt1WU96GrJURQpGURAr9cry9IZ88wzz3CE4+NHWZa99I53PHjwaDjaWdorLrTOhifbMRzrTW8UwZs9cR1zjYiWt0lSW1ggAuIiDqzBJxQIUnLxcJk+L6AabA7BAB0YrFlrAcAY45wzxgT9kcAzxhiB1TVDXmTZcDwO9utQQ1iwm3a7gtvapOhSDDeNzoaKNj+/AjxWQ+y+FwXcMhFOqAmJQurn66Xf+O5hSZdVOi4pe916Hg8traHVXJh7XIDzG61oQUeUldUKEEHWxDGpMtMXeB6bg0TNqvJf/T/+xQ//rb/zF//K3yiNRQYCwbbu5WjzipBR4GbvPbKIc17X9WQ6PT056vV6/X4/zPyq8t77PM9jq+eT6Z07bzCkb37z67/1W7+R9OLdg9394e773vc+znmWzSbTs2w6m8+nb7zxhhKJA4acv3nvPnvwsJ/E+XzmquqXfvGjf+MDP/zHf/iHJ9NTUMA0kDUhc/H1gCE4CIptVVWeOa11VRWcL/yVABBkUBzHg8EAifI8t9ZKKZMoquu6zHNnDHkkIinlYDBwzlVV5ZxL09QjC9O47TsGgBCQJITApfFxkQON8xXdKpTnnBtjgnJT17XiQsa9+Szf3d1FxLysPvfZz777vd+T53kcx0QkliGobenj1+4ZX1FY2iO71M5aET+X9/rtV5q3iIIq5xv3WtD+suksmFCCw73RrZpLLBAR+cKpEl5USgXzSygWzC95ls/ncwAYDodpmk6n07qulVKxVN57JSQAeG+PHj6K45gte02t4KGNgUEr0KZJs0pdW6HZ9LCriu33i6yAgCAyaWGbbeUm4wAhsKxhIgS4SHz2WFhZGDd0YNMSsfEzAJB37W1yKLH65FKjmytfx4qW9YeBCaMbPBjtdW4x0OS4ZN74jdQnAI2eOy4AibnKl54DcIhrnjGyzr9wa/hHv/qJ+Rvf+Xv/6L+4U+Npibd7YPISndcMCgm9Qd/l9U6UOnIWoayr2lsuRFVXo9EoHQ64w5PTU2McgNvp94v5+fT42NTVcXH86quvvvHGG0VRcM7jOHZWP7x7j98W/f6w3x8yxqqqejB/4BwppQSDZw5u3Lv/IJEiSSKj9TNP3crzXOSTP/r8vzst5wgABh0D5+lJrGLeCsG8dfOzE67z2TxzyEqtEyKWxMZBVhSjvV0VJ3VRTyYzWxR7O6PJo/uDQY8Iz04nUdwb7e4xr4uyGAwG0/mEEImoKKrdt7+9AFaVpZQiidJ8NnfeR5Jl2RwYA28EiUhE3nvynjEWCVnWmgnuEeu67vf7WmtGwJEZW4e7uckTEVrnGWNp2i91Odo7NA8fPHv79re/+uVnn3/BgRvv7E3L81hFuqxra9M0RURtnIojcui89whBU7PWMk+MMWAkpQjm3QUHekJERVZIhVzktQYmhBDO1OQ9d8Y7H8UKHaHgRV4iF4RgwSGiA0IirSuwTuflznhIFRA6kr4qi7IsBoOBJzYa7ZxPyv6gVxSFtbrXS5Bc2EmYqvJOl2V5fn5urU2THmNMaz3aGUvFAUAAPXp0vL+/W+WT7Ph88OxLdV3PpzMh+e7u7mjYe/DG6zduHEwns96gf7h/eO/hA++h3xsUs2kcx3WdR0lqHAmpnHOcoa4KJJ+oHkOunQ22SEYARIJxjT5Yh4NhCoXgQnhLK/rGxi1jWxfGy3HyzVrlyDMM5g3wQO2LMBGBEIJXM8iLx++Ur65Srb+4shpfpdquHTGsCT54nMB9a4EWDYXw1G257r33FhAAPZBxUHtA7qTwMmYnp0e3bo6//tUvTP7b/+ZD/8v/ggwdF8W410cDA6UicnWm67IuuDifTobDoQcUKKYnE4Hs4cnEOSeE7/f7ZVU+uHtvksZVNn/9tVfy2bSoi9lsVpUleLLe5MYG/evb3/7Wa6++EtSRKIrIGVya24wxkQprvhdCVFWFiNa6yWQym+ftHl3RNLMCiEjg6rp+7TuvxL2+JZ9Vdbp3OJnOOed7u6OjR/d6vZ5gUBTF2enkzz57xxrNGHDO3/H2d/fH/dnJQ2u1iFSeUV3XQIwQjDH3777hVXLz5k2tdTGbxlFkra2KMoniJIlmsxlY45EBQCQEEc1mk36/n1dFlMSRZGU+45wnSVrMsyiNglLDEBAZcuatM7WJIzGdTkejQVUWzz79VDGbqDjx1o1vPJ3nedobmsqY2ib9nvCanACXAZDXRnsnuUiiiAvunKu1LquSiIQQSkrvPQFwKbQGYzzzhMCRwOuarI5jlXkF6I0GBIw4F+nQeW+N5Zw456YolJKj/uDk+DhN4/l8fnCwc//+iZ5UsUp86Y4nj4wx7mYpUIEwt3f3HNDZ+QQYZ0LcPzreGfTv37vnnIvjuMhzGcfzyYSIjs9P93f3dnZ2QNvBcJQXtZBxVuQheLys9cHwIE7SOErqSt9/eDzaH3JFD47fBI7GFZUhlXLrawAWRZHLqzzL0jTVZTUcDMD548kJAPRHQyllWdYcmVQyr8uIKykWxljBEcGjRwBvzOIOyMbWeV32ewK4kt1wXZO6ImyfRdeaYyvkeILJuVLPyhqy0XLRbsUtLe4AICRzukMcIpInD8SQEYAFqAjAAuckOLfe11V2c3/46I1vfPxf/jd/84M/Fg9un87m/bSvq2oYp9bUqYrOshkyWVTaG9uLVC9SCecPTo7m09nDk9fv3LlT13U+z3RVCIa9JCLnZ9ouppxSwfTjvWeM9Xupc2ZxMgG8UqqqCgDgKLIsU0rVdW2tVVLmeR5FkRR8Pi9r4wmAcUbBDLdZFd5KZwbGOIns6P6dnUEfvHn+xZescwbUYNBLpPjG179yuDf67Kd/m5xWQoKIe0k0L3NEmJ7NP3P3tQ/84F86OLgxL0qf+eFwqJSaZ1PGBDL26re/8c73f+/x/Tfruk57fQHOBUXM22xSpXFsvXNWR1EUbKwqiZGRUgLJC8HiOC3zIstmSoq6XFyHjYyF/wlC2Aob9nuSC1tVWTYDorosvDX10ZuSi/nsOI5T51xxNh2OR0UxHaaJ11owSKLYanN+cgTOxypy7RO+RICEAMwBoAiRft57JbkUzHoE6xVXlkxZZOSMKUW/3+cMCbwtq6KuZaSyyRQ8Sc5ef/31LMv+7Iv33v/u9x+Md+q5SdNR0k9m+XlVlt5M7r9+lg533vbSO2/dPCi1PZ/miPzewweHh4f9fj+O49dee228s/PiO97+6NGjh3fuzSZTq83O7mEyUFVVSRR5Uc/n8xCB6L0/eng8n097vR7n3FuqSj3a2ZnNMyJC5HVVAUCSJKfHJ4PBQDGGzo37PV3WDx7ec2T29vZcXZXZXMaRVBE4KwSrqqK9JwNAIq8E98Sbudm2w24Rixt1o+W7zWTfxrTXu0/5CXSExwr1DpvxWrGOtxoSPLF8vCKk/XGRT8MRNWO2aIbBc8UIGQCG/H/ERK1tXtt+As45U2U7iZg/eP0X/5//4of/s3/0nh/4/jdOzziw+cNH3DnVU3k+i0Ea5/uDtCqm50ePvvTqy9/86ldnkylXfnF0lChNFCPSukYCzkWwalMrzTIRZfkMAIRgAtFaIwQzliLFtTbobBzHQcQTkbOWMSZYFIJ42gadJ7pGki3SoTv78je+zKX41je/Gsfx7uFTxtTgra7KL/3xp9MkSiJVl7N3v//tdVntjtJ+mhDhZz/3R1/94uf/6o/8SF1MpYhmZydRFA0GA2ttlk0Hsfjan/7RO9/5TkH04M0jxqUD5Jz3B8M07tV13ev1pJRVqbmSUZrkZTGd5uGMtiMfx7G3jsLZEu0ckSWntXbOcM6DKa02ztQlIg52dlBwsu740REfpHV2Pr51i3wluEmiaDKZTCfae393ch5J7r2vipK8S6NYClbm89qa8XgskE1Pz8oyB4AQyN0/OBwMBkpGWZbZ2gDnxlgNFuw8SSIpfVnlj+4+PAZQUTQYDKJ4oIjmZ2chlzgi3r51y1p976H/nd/9vYPh3lMHN8q8Orx5sH/rhnNIUrz3ve99/e6Df/d7n3rquecPbj1tnb+xN8b9nclkkqjI1HU/jm1Vzc/PU6VeePpmmc+PHh7bKIpGg71bN0+OHwxiJcmbPDPziVbcGDNIkl7ETVZZk7iyPNi5qWenw9GOcpJzlmWZ8XkxOf/WV770jne8ozce33v9zvnp2Xw+f+873zWS6bwqXKkjlLqsrLU7Ozs1GCEkIiJwIZm3TuvKe895tM5SjxWF3yVs0w27zMDXgi70t1S0Itq2Lwht0+FV0NtY7Crb9vd/3wc+++nfFQIQmTHbYu4BmvhYAmCAwAQHxwaJsrqonFcxjwQXQOfT2Wc+9vEbu+P95545LasK7dM3904e3X/b7VtmMnvjzdde/tqdV1/9zvHxo7LIEKAXS2e8lAxg4Ul0znlExhl69OSBwHkHAJzx4C5MVOScQ09EjkLqBVhkWwCAYLIBwKBIaq1NXdcOPEBTTAjhrp/5PRj9ASAcRz47PrUPHvQHg1e+8ZVeryeULMtyf39fKWXIF9b/uz/4g0iIWEWe7O7u7t7uQV4W//ZTv/1Xfvivzudzxlg2ySanD4JbRghRF/XZo7tx2uspriJFiIScTHmaV71e7/z0zAMdHN605I+Ojqx34+GAiDjnOq8enpz2BoN+vz+ZTHpxTwghOAuOBbdMWFkWZZIk/V7y8P5dyZk3RkXi7OwsiYcTmOwfHFRVhSj2RocnJye7u7t1VOZ5Tt6NhgP0NJ9N5rNaMn5+dpSdnSAiMuj3+7FUeZ6fnZyfHN0RQox3Dnb29gaDHUvMGCNkVNfl5Py8LnIpWL/X897P5/P5bHby6HhnZ2e0s4OIo52xc253d0hEN24+8xc/8J9+7Yt/fP/OK4Ne8sbdlx+c3H/xpXdZlC+/fvfWrVvjnd2vf/MbRw/vv/Od7xxHO2eTzJfFK1/+4ng85oh33nx9NBpVVXV6dG+YJPfuvnn/1eSp595266mnX/n2t7wzJ3deBfBOm5wqYwwf9o/fmNy9e/eZ595969YtzM99fvbG/deOjo5efP5FxtiprRDxL7zrJWeqz3zqNwHYUzdvvet73jPJ629962VDfvfgEIhZ7x3BZJqJVAAxra33hjvJGIKQQimrNVzewC28T5tm3mbXSuDD6zDtNmn4lihcnXbDpXrcbmtdN25+3WLHv5ZNYaM59irdfN/7v/ezn/5dbz1ypCuczVj61zwDJOeB+FmWKQADgKSrStca9m/27Xn53/7zj/zD//K/6t24Sam49+jOUMpP/eonp48eTuaT0/OzylTeQ5oIY23tDDggol4/GQwGp6enVW2klKX2HB0H4HwRks0YcgZEYGodjLeIwBgj7wUHKaWz4boSK4Twnoy1iouqNsFJhmFH5xngE+Y35UJ4qwmgrPL93Z3TI48c8iy7eTAUXBZV6Zy5//CBUDEyjohAzAHM83zQ658cn5+enw7GI0T8sz/94+FwSESz2WwwGDDEPJ/fvn27LrOvf+kLhzduPvvcC5WujbPj0a5HkISgi36igFgxPRWRGsTSkxDkQBsi6nHO4xictdk8jqPJ8UPkPI7j3mCYJDEhWO+JkAFqXc+nFXiKU3U6OZPo94bp7PT44dm9+fm92Xw+m82kVCE8BaNod3d3ZzRW5BBhbzTUWldVdbAzyvN8OpsheFvlsVRELhaYz6csih68evLlPzkd7Oy/+I73pL3hfGY9jziT6XBHSi7qWmu9kwyElO9423OvvfbaoztvRGlyevSAC/Gtb37tve97P3KczU9vPvW0TPDRw3ukRG2qr37lC9Hg4Nlnnnnw4EFZ5H/h3e86Pzv5w9/5zW/s7Mikr6TMsuyLp8dVXhC5bD6v67rXV7rIUyWVjN945Ztx2tNVGUfSWCuFEEJ8JZtNp/ntG/uIKCT70zsvMyGAoQMK8f8PvvP5NE2ffvY9aS/+05e/VlXF/v5+HKf9mF5/+Wsn2g2G49HeTm8UJ4M4JrLGI2I5n4GKFI9RKuTMeGeM0zqLlYLNitGVfNArgmXpBn7MVnnbTQDblbIVuFbh/z7Cwc3bTz/zzIM7b3gi4NuuDEZAAhdOsynJJZG3RoPpRZHx1hjnGeNKRNJkRW457Y3Tf/nP/9n/+r/88KA3IITvfPNrR/fuHJ/cs9ZaqzmAkgwcDZNUIMvz4vlnn5tMzs8eHQFCpERVGyaktQaWPrUm9MQ5zxhKKRd2GWRlXSNAVeqwQQ6i0zlH3jtwBMCVsNoCAXkEICC2IejyCuCs5ciA/GAw0FU13unVxk2z6vhsyqWK41hGcTHPjStVFBOR18ZbkcbJbDZDxFhFs/PJu9/97qOHj7IsU5JLKaeTM+dcJPnJ0UPnXD8dnDy8f3pyfOv27X5/8CjL6romxm/cuOUrVlYV59x4EkIcHh6e3jsmomw2j6Uiosl8Np3PxuPx7WeeNtpWnJlsECc9oeI4TXq9npGImDy8d5d7XU3yanJ88vDe6ckR+gI4n2eZIz8vcmPc3nhHa208F0L008F4MIxkjJz1eoPBeNTvpwf7u7dv3TBVeXpydP/eG0bXcRzXRa61VpL3BDeToy995n5vOHru+eeT3dvWaO2M0wZCxCsXJVFh83e87bnXEJIkQcTBcHw2ndy/85rg8fu+93vPZvmzz7//4PBtX/7CH+/vp/n03Jrs7P5rB/v7tc7+9A8/PRj2b988KLM8qwrv/Wuvfsd7Lxlap4f9Afe0t7dzXOe9NOr3e/Wjk2xa7owGDJy2JRNxImUFfmcQ9XqyLisOgmzlLAjFvTWMqK9kdn7GXPnyV/4kn2dpGqtI1tMjbSxKxTmf5NX3f//3i9SfvHo/nDmKZTwej8cHt2xVGKocCgImFI8igVx634pUb0k0fvkkawO0KcLkurBNGjbNXLGujQLxKpht9JCstMvW8Gnk/RXR29ho1655/Xmv1/sLf+EvPLzzBuPcb/Eo4+KACoJnnCulhDEOfMRYXtdSgAXQ3g9iZWunnSsi6PvqME4+9i/+xd//h//4y1/74tH9uzqfEWfzuQYAIeDWjdsnj44SFld5cfvGjbLI57NJEse10VVtAYBzDt46T94vQhMWRzKWnh9jHWcYJSmrjRBCWy0QvSclRGA1zjl54ggMBZENSbvC2Qiix8bwbwbGGDg/n885AgN45pnn8M69mS4Vcs/EfJ4Nh8OqqoBsnmkGILk4PztXSkgpnbVAcHz0cDQaz+aTyWRyeHiolMjnpUgGQojjR0f8gCVxZB09und3kvbG4zFjrMjm98p5MK71ewPGmLbm/MEbZV5wRG9dLoT3/uDgYH+wX1TVg9de9t5zoeZpz3koay2ESvu94XgQx/HJ0bGz5uzowTe/+iV0ph9H5CDtD7iVxplRvFNBdfpwooSQCejKnE5Oiyjd3d3dGe85DpOj/O5dHQJKPFnJOUNkDKqq4CqNkHtXV9mMvObg86Oz1+YPRTJCIkQsyowxRh5lFFnvC4df+dKXkjjOs+L555//1re+1R8MXnjpxbtvfuPf/NrL7/++v5rN8fbt5z/wffFv/9pHD3eTk4ePrLXTnZ0ir6bZfHbeAwCpVF6VWTbjnBjYQX8wnVWCEQNzNjnf3dubHB/l8yxJev2+tFrXpkzSQZIkDJknqyK1dPISWL67uzsvcl2aJElNZQfpMJvmvQifvbk/n0/RWONrIdV0OsvyumfgT/7Nv+n14yhOnfNRFPV6gzve+/0bvf741lPP3rj5jEp7INA6W+QFygSXyfraJ8E3TuSr+FiuAp3ScOVg/Ma22w+bTS60dvvhy8b6qTkp1ZI+Dqi5QaRLqV1ZAfzlIJ6LXzveukAguJou93ERu9TasDfltYX3ft9f/swffm569kgxsIw1x5JWzj/Q0oFFRGWlAQCFMGQRAD2LwJOF+awA9JzDoFQA3kFtbPnz/+9/fnj7qTqrTqfzylsA4AA7ydDVFUM6nZztjEe21pXRw529rKhy7QFh0Ivrum7w5JxbY+NE1nUtGATtDxnnUmZ16cFzMIlkBXhGQNqCkkyKojQRwH6qJqVjwBA8YYgofiIPCgACM86riEVRpKxJlcrOHh7cGooz5pyzVbY/HlRFSbVOB+lgL3pwOpdJapBmRb3XS9CbhPOdQb8oZqmSJfjp+elTzzxzfn5eaU2IjMFsNlFKRVIyxqpZdTw/Z4yl/d7JZBJFUVEUj4zhUvYHPWOMNU4pNZvNlFJFUbzx5rdHo9FoNBIMJ5NJXdd7e3tKKYGYJMnk9enrk4nWejKbcykm8/n+3gGXqRAiVdI5Nx6Ndnf33/bi2x8+fHR6Nqkq/ej0box8Mp05lbz28PhkOt/b3Xn2qdt7416e57UuEXypfSyVtz6Je7aqEfHZF166d+/Od1759o0bh55qCzh7+Mb+wWFRVyen5+PxOCvySKq6LuO430+SYSJspt/49leTtP/mozuzswe3b94YcvrCp3/x8NbNb31+Dt7r7Owbd6f9XnJ6fmat5UqUZf7w6CRNIw+sl0jJMY0HRycneVkxLmprpIxsWYKUjEvOhTFmvDN89GgWq7gXR0qK119/s99PD/cPQp7gPK9HB6OT8xPO+XDUU0J6L+fzeRrLZNR7MDkFgCRJrDblfCKlPNgdiUghYlkUuSuISElhsOwPkmx+bza9Y85effMb8tazb7O8t3/7+Z0bN52MKl1bjxy49xAxwQnqsnIJ995zZIwLT+gAPTHnQVLORSM0PS6zrkjGgSEAeg/o14WKb/37ON2wLXSvG9x3Re/Hmn3witVfD9alXvN1ozBtdzmA1jqKou//gR/8w9//lKmKEKdOrfOhK1H1K2sGB/RA1nsBKASXkfDOhsOmtbZJX6aRKuv6fDqvbfDweslwb3esuDg/PXPW3bpxsLO7++jhw7KqQOuyNgzCLoSjJ8a48xdb2nDSQClZ1QYR4yQy2oHzSRwheMX5vKgkA0aI5NBDJCEJJxmueMD9cSC4MK6yGshZGSLvTFkaTdb10zTP9f549Ppk+vTtg8lk0uunEZvn0/MkjdKdnqkLBnDj4EByJjnL82zY7xHRm6+/OhgM+ml8enqaJIlzLlYqz3MAiFU02t2dz+dVUThjKucQoa7rCKAuqjhNi/lZOJ07n06ttWmanp+eVkXBANI0feapp09PT6fnE2PM2dnZ888/Hzjh5uFBUVe9JM2KXLBE6xq07Pf7x0dHdVmWZXlycrZ/cABkkKiXJLqsjk6PJWMUq7OzM2+0tXY46ntvvXXGmIn3HPgZHRvjhsPhpz/9yo2bB3sHe2+++eZoPBiNbpGuptPpYLTz9NODs/Pz0XDH2LonBkRY1/XUTzlniDjPptbR6enpw/v3dnd3rXevvPKK0a4uy+n5PI1kbXQcx3VdRTxJeqkH4jJC5FWVAbBZVgyHw9lkMhz259NsNEhv3bo1n88lF0KI8c6wLMskinu9Xjh7t7e3E1JmFEURRVGv15vP5zs7O1LKuq7LvAipQKSUD4+Oer1USpnneV3a8bjf76dlWT46Ok4iEYIuGWPWamPqui49sCRJimyu4uT1b35NxOmj17813tl76YUfeOrpp7xkkyJjsXTC5XXlIzfmAjh4b62pkEAsDmSiY8paS+A45wDMe4eIURSRXeSbuorguupO+eLfbofsugR5LDR63YVy+VYFynQ5Sbrx39jlSyU5e/HFF7/wJ5+rq4JtUoRXXml/9cgIyCMz5JnzzLiQEwcBDUCPCya406bKMuDSWisZjIb9SIgiyxnC4a0b/X7//OykKMtKG8bQeZKSSSkl49VFNlBARMbCdRYghMDaeE+Sce0qT8CQbG0g4ZxAKUXaek/AUDAeq8gbQ80d2dQdEHAFMM5yZEieI0mGui6V4CKKnLVOm5u7e9Vsfmtv15RVhIxZ98Lt/bIsmRRJkjx4kHsP6MxsUvT7g8nZ2Xg4VErNJvP+QYIEkgsGhAyJ/Hg4fPTo0c5o5L0rilxIZp3d39mvSs2Hw6OTkxBJ0+/38jw/PDy4d+/ezs4YAKIoms1mDPD8/NwYMxgMlFLBivrgwYPRztA5M52WaZpqrcf9PudcKfXo0aM333z00tuems9nzui9/YOjB3eefvppzg7G4933vftd1tG3v/3tV15+ZTweAPphmpiyOD8/V0IopbJ5JoSSUlpwD47uKSEePnxwcHBw49bNV16+c/PG7f5geHZ2RgjDwWCeZeEKhziSzlGe5zdu3FAyvn///mhnhzMyxnhrZvNpkZfj3R0HJorkSy+98OjRI+99r9fLyhzqWkjJOa+qCpFLLp1zo9Goro2K4zTtC8bBO3IeCRhjN24eCMadsZ47pYTWoLVu7Mth6yqEkJJrXWWzaZIkvV5SVRWAn8+nB/uH5+fndV0nSRJJ770NBy5HgzQ4W8jbNE2tsSEXCQBkQhWF3tkZKKV2hZ+fnD948O27X/4jQ7Rz8+nDZ15K924d3H7h8PAp69HoGXLuAT0jwVBwBGfAWyIphAAkIvJEiNwTWW3V5bNz26XTtnjDdX1qZcu8Un5lE73ww1x5/gTH50Z5el1zwNXLtyVg08GN1gBA7r0djHZu3n7q/OykHdO3WnITGPIYZCJ55z3VniMoAYQgOFhHWleEHJDIoyPqRayXKFNXui7Hg2EaqcnkbDKZaEceQUghmYuE5IDOeWrdcYyIUorgLyYixoAcaK3DWFhrnQfwlAhUXGh0gEDOAxEIX2pjkcPS/xYMoE8KniMxglTyfhoV3ohIMcE9A8ssmKqnBOfcSKyYH/Zj7+0g7mdZIbzd7ScAjDMgjnVRDNJUci45v3Gw20uSPM93h0PGoaoqZzUqgeDJW/K830viRMymmakrIDo8PASAPC+OHx3duHEInuqyunXj5snJyWg04owzwEiJNNkti8yaejQaxXF843B/Mpnk2SxNU4Y06vcePcpkpLypev3kh37gB//0T/+0zHOBPhIItsqnp2/U+fPPv/iVL/yZ9/7GrZumKpOIkTNJEtmyTuIIx+N5Nq3rOlxagYg7O8M33rizOz5gjJ2ent66devpp/ZfffXVD/xH72VCnU9np6fnhzduIU72dnerquj3++fn5/P5/Pnn977v+7/3wcMjruTR8fHh4eHp6enueHR8cnywf8g5Pzp62Oul1louZUwxIjrnpJRVpZFBGg9m2XzQ652d3eunsTEmTdNsNiVwaS/mDKw2eZ0RuX4ap3EsmM7z3FsdfG5prADAW82RhaRqsJz74Tz4ZDLx3qdpKqWobcEY45x7ssE2rZTQdV0URVXZQap2dsbz6dwRCCUeHs8Zwvnp6eHuaHc4KJzMivzhvbunxydRkiCP9vZvPP/c23bf/f2CS+QcQVoE4yx5kFx5a2B560vYpYWmwV0jOOwxKRjWjYPXnRPU9dey0D2Bx+YCq7U/tlAxqRHo2ILtPV1ZAPCygolcDsc7H/jBvxj3B+2ar4YpI2AWyAMwAC7CjocBgJDCeGe9k1J6742tGUCsoun5JJvNx4PhcDicZvOzs3PkDAXnnAlkkvGQgskYYx0hghQ85OwMfICIxhj0EEXCagMESgjJeC9WjEMsFTkXcj2RI+/BGGcduHD1SiDCcjSeTCSSpxhhp9e7fbj/9FM3bx3sjZJ0bzR69vZtiTRIInB2mCSDOJYAAvyo1xv1koSxXqR6SURG26rMstlg0OMMqjIf93vMO05eADmjGdDueITkn3vuGcaAMXDO7AxHNw/3nanTNDa6un3rRhypfi/tpfF4NBAcR8P+/t4OkJOC7e6MkFwviZ6+fRO8fXDvjtVVP41Hg97bX3rboJ+mSTQ9Pz3c3404k5w9uHcXvdvfGZsqSyIlOSvmsxsHO4L52WTaj1WqRDmd9GP1theenc2qoijGu8N5PjNOx2kkFNfWzLL5YNQ3dTkepp4sIgqORldJGgnJ7ty5Mxz1n3/2GcYYQwrCs8jy6flkZzSuy0JX5Xw6eenFFx7dvycF6/eS/b2dLMt2R+OTo0fj4SDLSmutM6bMs5Agw2jNkcVKpnESRZIjZFk26CXgCbzTVZlEsbeOI9vdHVur+2ksGOOcT6fnYdVPkiRqpTUzxpi6ZgBJkhRFMZ1Ow1wTQnDGemmaxMpbV2lT6Tovi8l0oQZyXFznAACWSDuHiNZ4JiOQElR0nMObp9k37pxNyxKYSGMVcz/gNGR6duflz//ur/7+J/+7L/zOrx9/+8u8OO+jizmXjCPwXhwJBPQOkYDIaB08aRvtYJ1TFDpk0MrDZtpv8ey0/12XJl3Q6X65ch+uXnhLzesSeaWwEBIYWuff9Z73fd/3/yBb3kvV3mivt34hhjkAeOcdAUgplFKApLVnDBgSEcVxzBjTxnlHqZLGmLpy/X5/vLdbW5NlBQFaR3Ecc0BjtPcOEbx3tTVuuSp6763zTXiNMY4xTFSEjAgA2eKuFSQIV9mFe5oQQIRk7mxxAda1qNpBa48APQXMW6Mr8joWPFVSohdAvTQ+Oz0m74o8i+N4Op2en5+fn55FUgnOvLESIFaSyMWxcqY2dcnAe7Kz+URw9M6kKtodjjhiVRRWayVErNRoNDo7PTG15pxbXU3OTmaTMyKXJFFd5kgOyU3OTm4c7JX53Jm6l0RRJLWurNW3b9/s99O6Lvv9lHMsikIyvjfeAQByPs/zJI1v3rrx4OEdAvPMM08NeglHipWIpRoPhkWe3TjcB3KCE9k6FvzF5w7y6XR3Z7SzOxqNB1JKQH/79s3RaKitdcb2knRvZ9c7E0nRTxOr66du3QTyk9MzKeV4OJicnUdS7I6H73/fewQDBv7m4X6Z5wzg3p033/fed48GvSiK0jTd39sRHA/3Dx49evR93//+oioYQ2stB4oED/m4Iikl47aqlOCcfC9S/TTux3G/lySxGo+HnGM2mxVZlmWzKJLkbBonZZk7ZwC8EExKHs4XOWe890VROGMk57FSIceS1hrAT6fz4+NTY0wcxwDMexgOUyUi8FhVFXmMVNJLE2PM6ekkL+uQyiGKZWVsDTCraW5ZPZ+Cq8ajfhSrB0ePjs/OLROlhdlrX3r5D3/ts//6X/7+z//fPv9rH334pX+vj94wZw+nk7OwwjlTe6OjSCrJqzJv73Efy8kXO+VLm8LljnWL1tYlPq5uOlwXr08y6zqAbazqclttLNvIbF4eGILHsja9NHn3e7/ny3/62TzP2zaB7YtKOLYMAATgyHnPAYAzSJNYGwMASZJM5zkiREoyxKI0ezuDg4MDre2jR8elcZHiwDlY8N4jEeMMEbWzxi4uaWj8Oc21xZxjLJW1lhFwAIHMW1sTDfqpN9Z64LHw1gGAUko7Q0/sQl4HxtD5YS8lo48e3jXGDHpDcFA7yzmvjDXGGJv1+/2QUEtGqbEuimJjMmetRtTOVoXbOYim83msVK/Xq6pKV3USxd77qiqE6BttRoO+tiaOVVnmnPM06RljYhVprcfjIQCMBon3TmvNOa/rajgczufTvb2dqqoYg0Gv3+/3j4+PBeMHe/vHx8dnJ6f7u3uvvPqaEKIoijRNoyhSkQy6T1nVURSF2nq9ntZ6b29vMpkYV/WSaDzsH+ztHh8fZ5PzZ5955qvTb3hdR4jRoP/UzRv37z0kZJKLREoRjwCAI3vu2acf3rtfFdnzzz597969p27fuHfvQVVVcRxzJCR3enzktHnpbS9+/etf78VJmibaGmt0WWSxknk+j1X09O2nXnnlFZWosi6m0+lwOIwwHL6mNEkQYHI+Gwz7zpGusyRWkYqrqhoOh1WZ96JelmV1WTprtdZpGiPBeDh68803+4NeuG0i9Le5hgUAwFsuuJR8OOwbY6bZHNBHcVSW5f7+EACqKtzx5YAYQ6+dEUKEK//q2iBywZWSrDaatLd12R8OEpk6xLNJNi9KV6gdw2fZjHHTG/W9t/P6OBrGT4+ezeZTUxbm/N7D2QmZzJtSk+DjG8PxOIoi652UUZwozgWSa12U8ERelLZat8Ut8Fi4iprW9qLAE/mUuzzX60J5o+J5Ia2WZ2Pa++t2Sa11JESaprP5PFhb6roO2RC2SMMGgtDhHMmRsWS5ToRI4qjXS6BA5j1jrCzrJBKDQX86nR4e7vT7/fPz6cnJqSUQHD2iEqIuanIkJJdSMkBryRPISNKifh6sNiHZp5RSCXk2nQOAFCyKIl1VWtvxeDw9O0cEKWVtrA8C1Gq7GIzvxlx4QVkASOOklwprwSoZSV7VVZwkWZYJJZMkqbXV1lS15px78MaYsqqKokiSRCpFVbmzw6u68GQRZVUVVVX1kpQxKMty1B+UWc4YAymQIMsWu0KBzAOWRock/iqSdV0JIZIons1mSZIoIefz+WAwQIJsNo+TaJ7N+oNeVVUAsLM7zotMSL6/u1eW5Xw+ZwyW6VENARij43gQx1E4FDE5O0/jnuQqiijLsp3RUFclR4jTpCqKYX9QTOfemHlVo/V1nu3uH8BgWFd1OkpHo9Gbb765Mxrcvn37/t17s+lE15VkfJAm8zwDT+RskZkkUmenJ1rrneHIhnwcxiZRXGYZMUzi/mQyIaLd3V0iklIOd3eKsvTGRVGUZbN+2hv0+tPzWS9JtdY7wz1tvfc+TUZJkmTT06pCjgtuD/7fftrz3hP4pbFPhQztIVH54jo9rIUQtda0THQYRVFwnsSJqkpNRGmakseyrLQ2aRIjYllqIuSclFLGOOe0jFQU+Ugy1HmtPeO4P4jzWj/KdFGcjRKWojRTm/AkVntQ8K8X5+NU7e/fyCdnJ6fn0WSy9xTGaX/v5o08z4tMyyjWrsyymYzi0WjkrLu6N1A0OmCYzN4DInmynuTCtLeUC4vU5Xz10kJcfoBGBrW0xfVsjsuGfFBBgxJ3kZExFG5FVgc02jl1NyqqS/HqlvodW3ne7GgvaaPL12HZEVyGQK6AYoy894TI06dfePdf/k//2q//+q+DJR5FtipheZ63S4wgSIbIkDQYzrCs6fZBemPYe+XoWMYpF3FRafRwuDesyloI1pO8yuanpxNiSB5U2vPeV7XxwscMlXfohJaoAVIlhXE1ggbwxkRIMZEvilF/kBmT65oJBACVxGVZove3b+zU+exhPpeEoqbMeA4gkRiBhgs52KbSNkHPJJBhALS4G4GFwSSPz+73RpFBqwGEh6g0djCKz2dVmqYAwMhEaYRCWmvLsuSMAbnJ+UkURYzxqizIWs6YIhj0B1VVRUnChCRjvNajXi+bz4P5aSAHRhtd18lolJ1N5kjD4VAwZIzVpZZJ7Bi32tTW7Y5HRVF4a8hZwbAwmpwTmJRlScKRdZxzRuCNrfICCSTSwc6Icx6CeA52dvI8586hMd4YoaKyKHaGoyybISJzVkWR5Ax4lOe55KwfqxnzjKOrra7rDGjY70mkfsJiKTnDmPNRL5menh4eHlZFfrAzevrGjWxeGu37cc9ok0TRfD53XOztH5C1ZG2vl1rn50W+10tc6QFYleXoPHhfZLM47UdS1XmxO+jn81kUcYA0iqSp6zQWnFkpPHhSDPKy8Ij1bLI7GHDOta/BIXPEPeuLqK8iMiZRsq5LZ2FeViF0AZwTAFSbWmseKWMMA/TWWe/Aeed8JGXKJPPAkaTipq6IaJBGDFSuC2eJMWasLSuHZSUlF4oLwYxxWaWJwFtwNXFeRoqNATIHR7nvGbcrJMOqrGca/F46riblnJFMe6nzD+68fnz3zeeeeR7ys2i42zu8oUZDgwLKkjvHtNNxj1kLpk4FSYZ1K8MAESwdJ4uDtp264cXn7t1lF7T1sq4tNmOM2tEtnjwCETG4ZHncWEMb+DKn8bLYwjPzuCy814YVVfE93/O9xrp/+1u/qYtcCOasD5fYtgOh28CQHJGzwJEJ7w/HCXI2Kau98c55XmhdlWXZS7lAprXuJYlQ0d2HJ3v7+w+PTuI0AnJ5XgoOiCgiSc7W1kAJEhh4konShtBZ8MQQ4kjuPv1UaenevfuAIewGwp1TaZpyzossl5wz60MOxF4iiEipCPRm5LfBYu0Jn9kyS7YX4DmQYMi844yEkORcXddxrADAOSc4cqEQ0dbW1kalcXhurQ1e1yRJlFJlXSVJ0k97VVWV1qZpypFxZGmawOJuELe8TdAoJcsy99aA90QevCNnkTwD8taVeYEAuqrLvJhzIThngOBJcpFn+f7+fp7nZVUIIZyxnIdbcUS/nxZFprXOstlwOCRynHPnHHgnpQyOL+99XhU8jrLZNIqiJFIc4fz0ZNjv1XUpJScSUSTLsmQs8DMV2bwfx9Pzs36/f/TwwbNPP4Xg8zwbjffVztgYQ94JzpQU3lnBFeNIzpCXRpskUmRMHCmlFPM49bYuq8B4jihJEnJ0eHiYZdlsNgPv0zQdjUZKyDIveKyEEL1eTyCbTqdFUYQAQMGgPxrNZxPOWJZleVkkvZRMbZ1B8s5oCo5aQERkDNFTmLOIiARI4IGccxiBtbaua+89MpAoOOfeuiiKnHAMBSInIuQskGI6nQOAUiKNEyGEMUZrTc6NxymVtatdXduZB0zjfhz3IqxnFZNYlmVROCnljRsHZVa+/vqrD+enQia3nn7xhZfePdy7hTLygudOD3OLkSylLzgC42xrZoZLv21wAsBF4F5Q37qUzq598UanxGJffHlDxgj8cqe8XRpuMU22X+xy++A1PU0b37UYfeCH/kfnp2d/+Ae/y8mjYMb6uu68TcmTBRRAKBiLvd9JJXF2Wmhh5llhn3nhba+99lpW0O6YRqMRF/HJ2bmQ6nw6GY+HjLHTs0kvEuTtqD92YJArbnw5K4dcabTzqjKOMfCpxLc/cwusPZ9MTvPSASgAEe6+0EZyniQJAs+K0hDspD1ba8HBWiujqNDV1enQAtuEJwKyZplNEWLmgcJ9vsQ5eUBrvIcq3G/lgLwz3nsEnyYCJANk3oG1FsA2pHZG10BpmiaxkmLY6/Vms1mtXbBhMY7Bdk6eLwPZ6nB9FABwxoLKzxlTkpdlKaXkjCexYkicQVkUnKNzTghGYbWyWghmrWNMRVFk7SJcbjwe13Wd5zmC987B4g5rRw6dXaTXPz09HY/Hxpjd3d1Hjx4FqwVjLFaRrupwDdZoMDTGnJ6e9nuJs9U73v5iXZT37t/xvd6NGzdmk7M6nzHG6qoC58Z742EahRty9vfGszyTnJWm6iVxXeXGeldV1npjDIthlKYiUvP53BlTVVVdzhljw36K5ItsLqW0gsexqvIi3AAVpalSyi7vYqzqXNeFUsoZG65ytdoIqcgtDnd677lYiAsZKasNMhCIjCFHjgyamDNGniEAAmccgMA754x33jtPSIjWLq+1Mob298dlWVZVPdNzzplgDAAYYzyiMSpGeqbdzNg6z0H0d1VqXBZFkfUekHxdWaOVkMNRv6a8Oj9//eTR0Te+snf7+ee/5/t3XnixZpAZG0nGGUfHvCXn9BZWFiuTPEiGIFGu4g9ZkVkrsq/r9baVLeiboTxvBU1TK/pvCwLN1WjLYovLdIITd1PbCLBiFwt9fkxPV/oikoFz9bve896je2+8+p1XwkMVRbouO5tFAibIVQfDqBfJqXFnVS1z+973vf2b335NWzrcGVht9m/eeuPNu2WtPRAAJklydPSoFytr9Hg8AONPZplKoBfFRDRM4or5bD5XTPV6rB+h19Xp8ZlKh0wIskaIZdiABxRIRKWutQUPEEkxK0uphKmsl944B+zaOf9XxybcfYx4Y4CKgzPWexeuWyVygEDWee+Jh1tNvPceOU+SqLLEkSHzQc64xZXnFWOsyPO6qoLP3daaEURq4TMRQnBApSQjr3WNcRRiMD0RAEjGgwoDRM7VvThK05QxZuvKVCWLolG/l5UVEe3v708mkyiKII6D8pPEcZZl4dqAXpoyxLqqouHQaMcYi+MIABwDABKcOOdSKGeVdyaOVF0VvTTOskzJFMALjnEkB/00yzKjK0QcDnoSwesaI2VN+dLzz83n80ESP3PrxnyeKSVG/bHWOhKQ52U/kUIIXZcSIeIQS1QCTekYWQ5U6gqA6SpHxqzRVZH3AMGYvCiiKIrj2DpL3iMXuqycc3GknHNaGyWFFJwhGGOyrJSS52Up+DCkS+jFSW00eJIIQnDjwTkKIs97zwkRPBIhIBIwROQsaEtW15zzSHAAack75wBJSO4cIABnHBHFIgoOjDHT2STcNhQJGZRurY21kEgbMTmMpPU4cbbydDTNbF7v7Q492TzPolgKxLquZcKZYMyiilXMBNn63qtffXDy8F3T//j9P/SX8t4OA3TGKcbJu8ptnp6LSX1Vpn/iGzsvpMyKn+Hipm24rDZeyyl+bTc0LoR+y1VyxX5d2nvXtZGMDm/efurZF15/41XnvOBCd2yTAYBLcMahp6GSh/u7gsP58SOt/XueO/Te59qOBmm/36/qYjabnc3y/rDHOScCY4xxwEj3U8WRhJCxBC6YYJgKDkBFURBAHElb5ogMImE9mFqXWvfTCLS11iGCklwKETw/gCAYOGM551Vl+j1hTC0YA7q+feFi9Hg4ay7Bpxz2Bz102jkSyMhbW1vGGHDW6yd1XRttCcPd54zIO2MQkAERImOMc2CEzpK11lqvJDfGKKWqqirmWRRFQojAJCGKLXytqopzHinlnVmskeC9M+St955zjCNZVwVjDMiFEL9+L5nNdBRF6B04m6g+B7LWJnFclrn3No6Vc4aI1XVJ5KJImgrJOhEzIuKCMUDvUUqprbl142AymVRFlqZpL4ny+TSNlRCirityJomkM7KqCkRM0/Tm/t7R0VGZzw52dsqyRKKqzPLZbDzaKcsyiSIkcsbUZRmyUcxmk3TQFxzSKDLGSCRkECspGA+ZKYx2la7QOwRiCP1eCgAMwTvrnAMljbbW2jjqA6Ax3lod/MUhYmY46IVMX0opAleU2WAwKPJKMhCCcULHEDgzxlgiQM+BOIJHAnIAyBGRARE5Z5EREjAGDNBxJoUMXmngS33feUJgyD2y/Z2dcMolqJaSi2F/IKWcFUfcoVTCcWmszmtdGzqzOiqKJIm5FN57j8g5D/FnvbSvnZlUOeeQJHGZnX7xD3773je/+q4P/JXbL76tt7ubeVMbq9J0Cy9v8ymvej8W/20Ox2uXv4rJTyDzeEmjXPgzl16XtmN3HZn2dvjCLQOAuLg6dqPdEBGf+ODfSn/jSIJFlPEP/fB/goif/v1PhcypXemvnAdOEIF//vYND2ySl5PMH+6lh4f7v/8nX3/qcBe4ePDgwc1bhyfnZwiQxCrLy8PDw7t37/ZjxRns7OyYunp4cjIcxlHMIhmr3jgrtK9gZ9zPz+Y9AePRiIgsodWOPMQcrRBAXkopJQ9MmVeaAQz7kdPGGYMMOOeJiKqsegJXcjNyBARAHHyPwyiGhENtPSFHIdFqbzWRCOZLImICARYXH3vvPSCXiojQe0JgTHAEyyxaqiqfJMJpvRhfwT3CNJvHUoTuNHe8YEjXyNHaxu22SOrDOSqlELEoCillUDPPz8/Pz885gziS52cng8GAM/DOMAQl+XRW9Pt9IcR8PreLicrKfN7vJVVVkbfGmFgqxonIgUfwzlvTT5OZNZIzJD/s97LZdDweO6ORfDabAkA/Tay1zujT4+NBrzeZGGdtL42NruqyCje91FVR8EX6lkgJBJ/N50kSSYa6rDiABR9Hsq7Bac0YCoYqjowkpbVRkoUQVuTBHcwAi6IIKXKVUmVRKBUiDn1ZFIAY0n3bWoclJAwQ5+iNTiJOnjgDxriXwW7IQyoQnsaIGGyFYRvnQ6oXycmB85ognAlBBuS86yVxmKfGGPCOgBCIEZRlEUJlgby1Vntf64pznkQRFwKZAkN1VmlDHgC5PJqU+wDDtA9kTF2GMwtKCe/4cDTM4/l0PidfR5EyWXb8+rcf3nk5HY+ffcd73/uDf2nv8NnT/Il0w+BBbqb2E0dcbDHwMbqUyBaXZ1SaAttruBYCiE2Ffln/4vdlwevdjKrnsyRJLKBHtXfrmaeff/HRvTfD1RCbwckIzfN70cEoeeXOo1mhGcBz+zv3Hj5IFMyLvKpNv9+rtDaOev20ruteGj969EhK2U97RlcHBwff/OY3pYS9QT+NeKVtXlcPJ+eVAz7Jnrt9Mzt7SOTy2jMVF0UpAW4f7Lx591RKGUvlnHHee7/wpCnBTVE7ACHA1Jr3IvtEO+Vg711SkBIOwxj2EuGtJQJkEjgnQ0iA4L3HeVaHVPtEZBbR6BAUFFx67by3zRXA493Ee+88hYjiNE3BE+fogDjD2hpE9AjWWRlHgKiXJ7SIPIQ0i5xzwbWupOSj0SBI1bouEcl7G8dpsNyHrAThJE9ZluHGmCzL0jT13ldVZYwRQiTjhKyLhCRnkBESgvfgvbdWOwcANw8PT05OBoOBEuLs5ERyTkSj4bAoCiLCOGbLm49OT0+TODbGhCRmsVRkndNm2OuHa7Ln8zkjMFWtuOAMyrKs6zpJegIZY8xLr7VGj0VeMhRE4Ak5Z0ROSU7AnLOmdoKxKJbOOc4AyAXrAVkHwZpsbTBumlobZ3u9XqlLRNaLk7LKB71+pck4q1AigDXWO8cZI08y5sGnH25ephDxighMECeOhIjegfXaOvJEhQ7jEvaCJLlC5J652rlg22WMKaX48ryCN9YzLyI7iITX3DEz8+CE6nE/n5fe2l6slFLOWed9nCRFlp2dZkKJ3WHPW+O0VbGIhqryFkz+2uc/c/LNr73wru957v0/uI2VNz7duP28rreh6/nS5+uJiNGFDojLcJyNArFLJl7YbpfH0agVh7zxjY6/x8AKDoM00nXJhIp6wxdeescP/cd/6datW7LDVgkAwKOIw82dvjfFJMtz7ffH6TiOsixDvogT5FJM5zMiitNECV5Vha5rJeRkMrl169bdO/fnhT28eUNJnjIJ1jw4OS8c9Id9JJycHfV6yc7OztFxNilKjrKXRLqYV1qHrLFFUZeVAQC+DKArjEujSGvgnM9mM7zmEAdAJgBYOA+pBEsVDiMxiLh1moiIcfLoPCAC5wgA4TSh1rq2BoEFi77WtqpqY4xzi2vLvXXe26B0GGPiRPb6vXBdUVYUQVYGhzjRIvdymJxa6zA/w5lFrfXyvDYLEYVNiOhgMBBCRJLn82k/jasiy+dTJEfOFNlsej5BAmcsOW9qPej1B72+t66YZ1VVETjnnNWmriutNXnPEcF7BjA9P+8lyWwyIec4Yq+XZtk8zzNrjRC8rqvpdFLXVVVVZVkGUpRlaYw5OTkJt7YLIWazWZZl4d6u4F4PPVVKCSGstdPpNJhQ41iBJwQvBJeCScZNVXtjg5/XGeucs7XO8zxko0GkosiybAbO9vvpcNjv95IolnGcHuwdAkAcx2maalPFShpThxYDIKJkPBIyEtIZQ84tnPrOeeu8deHQHmMsjuM0TrhYWL04YwLZct8GkjMpWIgIiJQKSv3ijADnQSkmTfN5MZvPGJrbO8OndgaR4FrXMk6cX8QeeA+M8fBubyDQO+FM4kEST+OEp9FJkXOfCp7Eg5Rk/Y2v//vf+Ff/1y3MvEE3DNLEssunnYOrtx01vZQMzWa25QDxTbzgihBrXvPo23vhxZbLUyOg2zOz/Xlty3yhUG4UmMEyAhdK4maJRZtMZl04AEBNxOLYWC8VByZuPfO2v/IjyR/9+09/45tfkwCMwAI4BB5HrqoVyBFl73rp6aQ3eu2NN62GvQH80Pe+9/5rr2elrzUwMuO9fcb5tJi+47mbztRnnhPhC8/cdnX11O6gmpyWs+mLt/efv30wL4svvHr3PPec4EYEWZbXYvRUv9h/+tnPf+1bNcBOXyqASPJaEwDs7e0dn515KbUxyjnw0FOsLkhEalLXO4mIidLd0f3zGXTffnURD7pCN28Z8z0lhLVPjeOIAWO+RsYAnHN1OcU4ipK41Fho7b0L2TsBkbzXVodlTEoOQpZlxTnjnCMwa53WVghGlmIZO2fqYhHUmcYpEGhjjcnCKpKoqLDO1GWv1zvNKY0kELPOgKdYSc45WKOdS9PUGeOMIWc557aqrNY1Y8G1ElS/sJUOOSudc71eL8uyIIBC1MjJ+dmoPzg5OlZCqjSVKp7W09qaIsu11gcHB+EOwvF4fHp62uv1iECpKM/zYX9QFWWSJCKNs9l0d3efvDdVWZZ5og50lUnBZ9MTDgyd7MeqMvVwkBTFHBjqeeEsWuucc1WlETFIybqua+2TtF+WJTLyAFWZSSW0rgWR9xbBV6Xr9XpKCe99mc29cwSQJAmBE4wN09756anifDjocYkCOSIWVQkIVuvBaIcjWWsFgzzPGaKjxfWEjIvaGI7IcXEJEI9UwnlVVGS09l6pmJzvp3HYSlvmJQ9B7FQbA7VTSvV6ibPaI3kkAGLognOBiNKdJPFRVRWz6TxXFe/F+47cxE2rOoqjymhva/AWkYAzFnFXmigWAOx8nsdxJJWytbk13nOeDNR5UfVgAE4oeRH1wQDAEyISJ3IOGF4pv+FG0XBZlsFWdewa8Fj1ZA2N6+Wpv9a+e3thwThwYiiUiiWCODh86e3vmszOzx89EoSJEE7CPK8Ewa39wYEww+HweDJ5cDqPAN73wtvn8/yVh8eVhXSQnkwLlZRF4SQDh4zJ5Oz+3VsHo3w+O9zd1XV5djw5vLXf6/VOHz14+SSbFhoJCPBhrfqKnuGTG8+846vfetkDRJIJxpF8yGzU70Xz+bw2DsD1k6gs61RCP03OznNEUACKgfCOOSdC4oOOYVwnBAIghAALNhz2bwx7vC7yybmUQIzHyBkjj2A8OWvIAwESUJNF+GJd9B4AnFmwqbUekRhjQjDOpXNukUIXPBEEczsRKiVoeeGBdpbAae0A8kTJoK2E3J7hDsHQSlmWEKI3kBljnHdcirA1DjZfa224NQEAQv5Ea21I/xM00FDmfDbtxYn1TltTVCURNJkB5/N5sL4FGRpUP6WUtYaIQuXG6DhNgg5FDBkTWuvQEclFODtovJvNZkIIJjgSlGVJnodD8c3uZ9F9UwMwwXnAUzAeEFgYCqUiqo0xdV0zwaXipGm0u5NlGTnriJFzt2/d8kYbT+Sdkrw36I9ooI07PT3LZhOhlDFGShn2X0BUGxMskrPZbGc0Go1Gs9lUaw3OTabT8XBcVRURaV2Fo/0hJFMQOUfBb6OEDAZHa2244yHog2HLaIyxznFA5ELEkQ9EkBEOmIDs/twwJpIkAmvy0gkBKsJ8nu31h8EljSGRHaIQzDlTVHUUk0DQWoO1Udy5fUN6nE95Xeq1f2p/XT9zsphF143YWLsXZmNzLe/Ktap/clihAznnkbsQL+IdAKq4f/uZF35AsDdfeeWN77yS53OoYaQgZqh8/ezBrUmZf+vVe7dv9V/YvZ1w+c1Xv3New7Df08buDGNvtdUmTiNLcO/e/d2+cLocDvqT00em1uNR9Lbnn57O519/7TR3QB4YAwexjHrKnvzAS3tfeOPeaeGFYPv7+5GAydERiZBCXVjnOQAy4IiphF4kQ1qBvKoYQBpx7oicsXbrWF1o8MsDPIAckbzzAEqIGzdulKdHpsjihDly1ntC5snXOog5Zj0QgSdgi0S5IZALISSMIE8ERGiMQwSlIkTuvafgGWOIyBBCDd47EMARwDnHGAPwaZqG8HKpeF3XxlrGkDNpicA5YsgAvPNIwDkhIi1zHlnvkcg5p5SqtRZCWOc8gJRRs8smosVWjjFgqLXuJylyXlVVuI/UVd7bOqiWURQFy+MiE2pdK6XqWgdhV5ZlOCBcl1mQAh5hOp3WdS2lVAOlnTeeUFutrbE+jmPG0Bof5IhY3twQEHPOKc4t2ShKwoY9TqKqrjnnxJhz3lbWk09jIQRzjoJv3esanen1elEsJWcCwQvmakOegJyuSu/BkZecG0QitNYTLS6bZQydM4hQ1hXnXGud53nAygH1ez3JuWXMM6a1BmC2tiqOguufAYT1IKTYAQAhVF1XYX/AWrfIc85trQVHwRA5JwBwpi9ADdLSZHlurfe9Xs9aS94AeHJU1yZJBDnPGHPeuNpwZM77WClELSWPWOKtdnAp3jCk8kQCoEXuksfAihiiTeeCqZU9v0t8XBG6fMcbW3wCB8uWCq/47uJfxiTjjoWgYwEEQsidgxvPvvC2F9/2rtNH9++9/srR/Ter+ZkEP0jis+nEcLixK/d3xlyy+0ePzmbF3m5SGayNHkbx2bnppbizt1PV2gLuDHpppLy1US+1QohIaa2/+c3vHNlIUh0zKElypJE9+aHvefG1hw/unxVxJCttZ7OZrysBoBQTKppMC6VUWIFtVfV7SgkUDD2S8RBz6KeJLcrzWV25YOXequO34pHCCf5hHBtnz0/PjtLEFXNPRMBqU0fAENETs9YRAWNEiJ6IexZuHPSeEJfeLWJN4okwDmGjCgBciDDWwXfsXNATMcTTGOfjYHKN46ABMiDOkYh77413ACzUKICiKCJ0lTaSIKgnRtdKxUTkHGltnaNwTtV7CKofInIpmOBEBAw9EGOMBC/qKo7jeZH3ksRay4TQVQWMhStpkHNrjNNaWxuif7z33pPF0C3nvZdKhXBu50yapulgWFXFdDIXQpRVBQCM86C0EhHnvLm0lpZxRbBUqxmBN3oR8+y8AAQCSyQFJ+DOOW+t944hRpFEj87W49EgElIIxhgr8nmvl3DyDkhKzpCMCyY5hkS10doaV9fWu5DttSxrpUS/n/Z3eyE6XQguhCAgzjljmCSJEKKs62Bb8NZxxhx5RBQcAZCIB+EuBeMsbgSFQMYFhnPQ2bxARM4ZC3Y5BMYxkuodzxzefXg8mfu6NiJSgpCRds7XlVZKcS7TNPVkqyLnApwjieAo3BPJianSVJeYeRl/HOCq8YZtWBGI7Y3Puky5vmH+MTvuVhPXNvlvgXXLwHqBS732Id10iHningEQRHH/0dkcRPTM297OEAaRPH8YSXTkLXgzPTndYfL87gO7t1sxUqniHqfz7ObBzuTsPJJw48YNFOLOnbv7uzsSTKpkoavBcEhJSkL86Ze+bh2QiKw1DPwwhhFUH3jncw/OJ199UAiB1sN4PNZFxgBeeOHpk/Oz80nuAetaM4YInnHgCFLKJI7eOD4lgKQXCSEqa2sbAmQU+OudSCHnGWBZ+6Kqx70BCWZNbg1IBQw5Y4RIHjwBIx8S2WI4HuKByBNjyJAAgXNpbR3kY7gdyRpiDJF5IiLumhRq3gEiWLOwE3sgqx3nxlrrnMFYSSmZwLo23hhPQbp5zwCdJSJrPZAjj84b5zwn771nglvnhJLhs/fea+cdSCkQ0FlCRPJojWeMAUJRlcZZ66nSmupaCMGEsN4TYl6Wix2x1lJKJkRtTBBb1joueDjiUlUVY4xx7omq2hCRMU5KabxzuiaihcLlXPCrMCmIyCMAkPFuEULEF+IyqKKMsbouQ2K3KEmJSGuNAN4ZIu+JOINBHA/6/dFoNJvNqqpAZJyjlBJj0lp7ImMMuKXiDohcCoXonAfmyEuhZARCSudcWVe9JJWcz2ZT731YHoK/2zkbSVlVlVIizJFExcYYbx1yJhlnKgoul0AZgYxx7sH6mkytGWPEmQcy5DnDcI0tAgKyHofb+2Nnz46zKjb1eDRQnDlb68LMZjPJRRTtKCEN5/8/2v6kV7ItSw/E1lq7Oa21t33u/vx1EZGZlUwmu0wqqaIEUSCggaoglAo110yAAI000UQ/RgNBIwkoAUURIoRSgUwymU1FdpEZL+K13l2/99q19nS7WUuDbWZ+vY2G5IY9f3aPHTt27Ng+a6/mW99HwiEEUaooDSojXlCTtsUHJvMvtoa/kov3TvfwVxpvmNoP1E/+o/ieb3zQ/Sr2O3c4jggie7agvWq79wGQq7zwARabFSmFIo8fPby9er5YL3wMmbE5YW6zjsP3z5cXp9O+dTmBAmSGk5NxWVZPvv/udJJfzOrzUf7VV189evCw64dt31eTqSlz37vM7XowWWEfFcPv/fDz24b//JuFystxRkRqGLph8B+fj5lZ6Sxgx1EIoCyrZrcbl5nWSim1XG8CQFp1Xd9p4pOJ5qCumw/1LQG8lj6MIgqgdS61Uwqq0Xg2rOPQ74xJvp8HoWPaTgST85VugPTrgQgIiQhL8AGIBBFBEBImTUQBMUcRQY0ASdcUiZRSEZGMUggUOQ6DRxRmaLohwQkZhCVhWRQzM4d+8ABgtBZSnRtSIq/tHQBYawODQhWYFaIPvAfxIMQYUlZRRITFkAFBQdV0fV1Xbi+C7pMNSjCdZMuc88aYGGUYfIwhlWKKoiCtBr8PyUUEAay1Sut+8L7ttUWrrLDEGBmZUgujc2TsMV2Y/k3LcwQREM8xV1Yp8j5qrZnBKhqGwfcdGW2MyTU55wgEJFqrkeNsPHJ5dnt7S0Zvt9vc7PWLvXMu8OADoEJFbd8dKvtBRFzwaTHxw5Bp47XPjEnMZs65Ki8AIFXGrbUoorT23ns/APCeiJmTIoaohAYiQhYiUhoJdBCHIigSQ/CIMe4DaCICjBCD73a2qE+mVeAmigx9wwqLzNYnZdM0Ifh+aKsiH9eltVY49ruBVESFJEYRDKF/YzLf70H7BdbwaBTeDpDfcKbeaZV+jWD2F9rTXwMF8h9lvHEm2mQC0eyZBFkTBAUxiop9s1t37Wpe550m6TvXbcs8e/5sVZ+fujAUVtsQH0wyk2XfvVw9mNd3t3dlkfmIi8VSQviHv/vbGONqcfvDLz6/vr7ddt3p5cNvnr9snKx7NgCjWoHb/r3f+/tPnzz5m+d3tii6oV31cDKrXdefT/KT2fyb775tInQBFECW26IotpsdEJI2g4t3a19luRt6iI5irDIl2vqeFs3w3pqUvP1UokCdF713McYXV9dWhHwfoxhrIHoRSdRBCogBmSMA+LA3hUSgtUJFkTlGRkkoHBVjDCG1IQMiRpbIggSJziMKCAugCGAI0VobI4tg8JxlGajgxfXOw56Id5+PItK9i0n3I5VjeM9qS947or1SQt/3eOzJ3Z9JSs/tyxdH/xQIUaEgMIBCBKC+75N3dowhmFPPNRMRgIkHHIYIMEvX9caYokhqIaFtO2YuikIgEGkfPbMAc5ZpEYwias9nsS81HCdkFCbALDOMwByVRpZAilI6rygKrck5FxmNwrquXD+sVqvBZrPptCrLldYhFZ0ip9oIoNKW++XWBRcFFRnnnNYKBLRSMQgACmM6eAgB9zwR3PZdnucEKJFTVSQBg1K9fui6LMuUtsccSJJ6IJHAIcaIgJCuL6ImUgdUJicmY4UAKoRgMgvAkyq31q52zXrlWoEYY24VAGutuqbt22ZUVcCSAOd92EIAi1oBheG10CeZQkFIwr8f0kX5hVve9+r7KtG/zPiAd/Zr7PaBN/4HjiAcIxuFwBElgkoUAQBDb8RfnMy+/Zu/iN1ud3OVa7pa3IxMeX23mF/Mm773y+3jjz7+y++ejOc5hAACZ2dnEXC3uXv88SPNcbe67rphu93eLZuHn3z81dff7QJHnaHWZWHP8/D5Dz9+umr/+KvF2XSMzYYZHp2PunaY1vnF2dnd4sY58AJFWYHrELHv+yxT3nun9dD1WQbKGnF9obDOrXZd0weKulCwe485fBthIwAC0g59EAGC3kfnwqysQGgYGqs0J/tHlAiQEZEZBpc6O0ApMGZfIfUejNpTgnddxyxElF71gUMQIiCKABD8vtgCAMPAAO4gCwNKBWbOq8I5530kBEKIMXKMiOgcF4VBxBAiQEBEAeiHIeFUfQhENPQhz62IEGkACAGIotaJ334/QghROLhoM7vbNVlmQQAIA0NudBRmEAYBYWUQFXVNn+c57Hsw+AiHzLIsxpgaJfUhNyoiKU5P9WuJ+/2VUt77o0gT3EO/Ou8QsSxzN7gYozYUO2+tVioDgBCcUhkRkYLog+uHVPrIjX3x4kVVjvK8jCB5Ufiub/quXW877/KyisLhkMsYfIjCIbAxPAypxhVyC9vtNreZUSo4X5ZlXhbOOedDjDErchHRWjnn07qyr/9EH6Mcr2Tf93lRwAEvrAmiIIfgY8yzTKESBGRGAAXEzMiASnkfiFgJW5LTecGk27bvui7Lstl03DXtdr1tmqZvO6XwZHpSZBkAhI5JqXHxWmfea1YLgUQEEA4yaQQAhKAAEiYsEX/jW+OQGN4Lmb+Nmv6FRue+13mMeY/H+WXyd/f3vH9uh4MzACdikncen+8NOQC273+7X2BnQ8y10aQQUSmVWdPtdqHtVkGPysnym6/9y2fb1UvIsGHvvF+43WcPTtvdbjlsy2n+YuEXAz2empum//g3fzitwN8+gdAP/Xazeg5ZcTEd98xnP/jiq8XupouZziuNI8snhsbzB3/9ZP0XP/0yq/TNej0az8bWxrYZA5HNfn5907Q+qzKnQINcXE5DN+SRM4mjOgPsMgozY6Trrcl0MVt33hGgAaU5AwBMThgQglaH9kdFsjd/bw6TSQkADGL1Yrn2IpBZ3QetMxGZVAW7UNgshU6eQ5bpLANjAAmcD845EMwKw4I+xG7ogQQVDC4MA/Q9xCiCxKD6QdqBe4GotViLGk2ODGwynZe6qAyDoFLRc3ASUyu2soDaR+hdJAAOHjgeeTLTb81CzrMXdAxM1Ay+i9xF7mKMRNuet33wiINI4+Om81sXPWgv2DROKQ0sPkaRCIRt73wUkxU+yrYZfJTBR1E6AIJWTCqQGiKj0SqzvcQA0vZ9jNF7r4xWRg/ehaEPbshIYwBm8IFB6QgIwIgSY/DeMURBdsH1blBKWW2CiyKYm7y0ZV1WHCQE51xvjEFgDWJRjauaWHo3jEYjZm7bliXkuV1cv1QEROT7gYSndRX7flQWBkWTiIjWlJYHiTCuqyIzmdWxj6NqjKg4Qj0eZ0URQgwhZkWhjOm6vmnaGJkBYoxN0wTmbdMwQMLbp1pQlhlhVkSajLCKAUEIlUJFLghoUkabzAKIcwMia40GdWqnOZ/PLibjR+fTeQ6nJYTA63V39eKaQc4uTspROZpUpOn65qXrvR9CObKmNNXk7J4NYiAUBBRKYPVfp4oChxD4fQm+921536H25/bLOYP3d347fn9j57ffdTSX9yP9d8bjH7bpWmsicM4710/H9eL2bj6db7fbsXZxd7d4/k2VK9dg8CH2ocjqUYmAOe9e/sZnDxq2f/7k24tJsdiFWZX9/g8e/Lu//NmzBv7gN84//+yTP/kff/zZhX66GFykr/76qyAwH9ejsrq5u6km1cn8RFCtVhuVqfl8fgd3TbPLcjsd17Ny+jdPn0aUPC8aP2RGD21HJ/m4zrSmsR2RQud6P8DDB2e7u2VsOt8NikAVRrFIGxhIETJjikeFDyQa70MhAiApwggCIQRQJgpj8KTI+6GuqvV6NxoXi8W2qIumbbUGFGLWcqAa4ghOYuyjVcC8D12YEz8hi0CE/SoFhMziGbwPzgWLCChEKJEpFZoFicgFjlEEwIcY+bj2odZApADwsIgf0I4SD9UJEAEREI5E4h0nhddDuhOFIZWbd7sBBTIDHEEUEVHbDyKAKCGEGGMIkqL+pNt5gEyCQuDDnAwxIKIiJFIp38LMgVkrigIsUUDS2SJi8tL2FzsZcd63BTOzFyHAY7+2HJC/6ZjquF1EKzWfTBY3t5k2o/F4GAZOydO2LbPy4cOHzOFuvSqKYtt2eZ63fdc0nQhYK9ZaFAjBIYkxRqt9E4gX3z97ppRKfJRN0xhjptNpikhSvnWcPotZREJwMabqM6VaeUq5CkQiZYwBVCF4xNTuGFLuIWkQRPYA2fFo1upRPUoDVLlY3Nzc3DTN1imREJS1Z2dnHGN0Q9/3TduKoKYPtIv9utYQXrdiv3b4+bo396sd6n2x+TvP874XCa9byfQSHXyGN5zN9x2WOXgfrbWkq8HHrCiX65Uf3Fhtf/7TH1+ejrbXL33Xks7yvHjx7OZHn1465s8vT7ELf/XkdjzPS+PXff7F6firL396fbOejEY/+uKT77762agsYsDv7tpt7yfTwihdGLteL87OzrxEH+XFy6cuwGxUeO9d708nE2vtEPrUbAsKu64DwnFd9rG7vbo7GVcShFl875XAEIBILZruty702bi4XbaRaZarbUdDRIRBKWQwnJomhVNe5X3XlxmM0hwCCIjIMPRR4iizw9BQtb+oZaFQ2Gogjd4xQjxS+kYB8SwMktCE6UaWlFxjADTWyl4hF5mQJDJAZOiDEIE2KAyAkjjbVYwJJoQEMUoi70kBgdIGUrDAkiqm6bfmV9oTSdwVAEBYOCESkUJEBgaIzMCRssz0YTAWbF6CMIgCRGbvI2cKiZSwAEUkYsDBB60VAKT86SHyQAD2AVAENaJSUfZ9JgDgWNJyRAfGFxGQfdMEChAeEOwi9/Rw9pXcGKMHEUQc+qg17OWPlU5gzCzLttutMYYB2ra11s5Ho6QbkeDut7eb3XqjsrzveyE1+GCMiYG9C2VZGq1i9NpAOq8UnFZVFf2AiMkU1nW92+22220CXVajUdd1zrmqqo4BMh+01VKLNBExcAwsSEopQAzBw76lLS0fhARKI6D2fqipBgCl1NnZ2fn5JRHNTk/+4H/yT374wx8+ffr0m2+//tnPf/4nf/InInJ9fd00DSKWVa60cS607pfgN/wPHG+4Wmm8veX+UHu0D2B6+/HfX9qu3rdr7/zcD3id7/NkPxyk3x+GVEohaa27ZjiZTVYxGK1W3/zs4fnl13/9Y4MwGk2+e/ZsGPqTs8kg5Jr1uC6ub4e+c9U0d324rOenJ+bf/s3ztu3+m//VP3n6/Pk3Xy/Ozs1PmnLRB4XYNF2u8bd+9+99880319cv87LcAK23w2RSWqtj8BJhPCklsvPYDn3guN66H5xOTJH95Mn1JLeVhqrMu90QOcYQjDF55lxgICgNSrtVypqigLBTHNJ8kChAAqAAGFATiXB4H5uDG2JmckJm4ijc9r0GmRQFOowxlmXufZjP5ze3d1mW+TCwBAAABhbhCCxEpJUikQBIvNdwFkEQAhFQACHGGCUmTu39jwUsJADACCTJeiZsNiggnbJ+MUbRmgCIhb2Pr+dV0uInh0MSAMiBVgcBmQSRElcpsiACMwTPQoEREHRk8DH2vUtMBIQAQiBEqCWJaRwsKxzPGYQ57CGWiJHFBSZkSk6liFLkPKejZZQauyEyiwADIQCzHPTThYiQMFVpSClEjJKsJBCI1lCWhbVWESBLjDGhbZxERHT9oJGMMbvdzmiNABfnp8y8Wq2stU3fW2s750UkBo4xti2INEWeAQZS2vuhzqtXtxiRNaYoitTwE0I4OTlJi5AxJnU6J6qktPGYlUqZUDi6/wlOr/bFNCJDlApfe942YxQHidHH4NyAm80m6ZcqZV48+f6f/tN/+s//+T//9PHD3/u9f/i//a/+N8v1KoTwx3/6P/7sZz/76U//5uZmkWkD8J/GN/wPHG/k/l45ie/Z/2ik3nbu3jneSGUe3/vGcd55qOM+H7CMzFyWZdt3RGSt3m3WluDqxUvL+vb2qignGvnp82ekaVLWMbhF151aH8zsb25eXkwKYG/y0dyonz6/W+66v/PJjIbb5999OztTp5//xv/wb34GoETCSTU+Pxn99Mu/HZwnwsScXNe5UVoiK6SqwO16k1SWrm9uJSMk8N6rTBsCjOHTTx9um8H5ARE1UnQ+y7LWDxzhpJ4N62s/uMGoSSYfnY+u2G2H2A4SOAgEAQKlJfk78G6V7iBwbC0noigSQvSMqDQgeucRVSoUOOcEYD+/RThIyoulVhOV2E340OeyN1LiA4fAniGh32C/Xu5bFEKMnECLKvW9CwkhkyQfEIABUZAZBk5AqHQCB6cLEqsiALAA7SsgAoACBDFKjJy+HhEKEKAEH7VSQdi5oJR2wTNDnltlxEf20cFen0CUIq21HxwiECGRApHAkQi10iTAHAQwgoAgC4IAQ7roCXWCEZGFIyOzCEo6DjAw7/HkShGL2KRQzPsQJ01yjbinePADHGrizJwXedd1SimbZWnyz2YzOLBdjEejEMKm7WyeawYdOfYhyzJEl2JepSjLshBwudxOp7W2JoHJu2EIzBKjtTaRUQ7DgPfE9qJ3KCKRaV+FZ6UUMsleAlKUUggSQkhmGlhQADCJX+5FCBQR5TopVaV6FwCMx2NE/Osf//jm5dVmtZzMpqRVNZqUZTkZjf/r//q/Wi6XP/nJT/7oj/7oq6+++e7bp++7o0XkP5pv+EtufHuHt8zTe/CAfFjVX98e39r/fkR8/89jheTt03unF/nh848xIqtEv+x9DxKWt1fbu+uRxKbpLmenf/Hnf6qturg4222Xk1HdQVGw+vL5rSh7Ni1vFov8dDKeFv/6b5791qP67/32D778yV9YgcvHP/h//+nXwL6ochmkyHPnwq7vkagsyzLLF13HzIhSltXi5sYYkxhcnIT5tN4En8nw4PLibrMeVfrB7LzdNZtt23ZeKSgzMppsWSxWiwfjMbOECB9dnKGi9fLlaBR+9wfnz15udm0TGFyEu10YogsRPrBqIkGUwMLCIIpQaRf8uulqozrnODCAMDsiQkZtFHeBAEERC3vFECCyAAcyCbyy/7HkEJ1HiEKgEFARoWbYp8WYEYATXEYhCmNCrkDkyF5EOAAiEDMQMIgmYmbcU8weC2WggFLK8TD1RAiRSKmUOkWk5BgmdCkCIRAGF0V8aY3J8mEYBKEbPN+j6gkRojBDJGNIgIhQYYwxxEiCSOQlxr3nK0LICCwCQQANKVRq36jIjCGiiwIgRKiUKMDUWhhYogRgQAyQcD8sQKARASDBfUQkxogs1lqllFZq2WxFxPngXJjNJkSkSVVV9fLmerG4HY3GiFjX9brpW+eiACCkED6EQKg16L7v+96VhTHGdF3XdZ3VKssypZSxdjIa9X1/d3eXAOFJn6jrulFVpopluv7JK0SSBOQWIUSEKCGElMbQ2ohI8BGzRFaU4OucW/QxlmWZejGFeXBuuVyeTSYA8K//9b/Oirxt2/F08r/+L//Lui5XtzdVXf32b/1GVWSffvzpT3/65Qdu6v+gvOEb5uxXGr+qr/fhfd7IA8IHE4XwixKU9Drj7DuHtbZ3jrTyQ88x1FZvODy+OHn+7d/WI/OXf/WnAkEY1svVuLKPzs9fPH+eTR58/5d/MZ1my+02N9UnDz/6iy//Ap37x3/3d7/98m9vF8M//L2/9//473/cijkr9cq1tdUK5PZubYt6vduOKgvBx+gl+tnkHACci9bqsirbtlVonPedG2KEEMJuu9ZavXj+fJIBaKsMIKLWOjNW52bw8nAqABIR+nZriqqcnqJ40yw/PR0NHWRGidJPb5fP7vwmQBMDv+dKsLy6SiEEF5RnabyvTNa0fVmYrvXWMiICKa1VLyElBBFRKTIGfBARPEYJaWa9Oj4LMySkRYTABzdp7xICC0CiHxBBiSAIe/E+BBAILFoEE14xmbyEk0h5GYTIqdX9kOohpD2uMEWjShsSiUm5E1GFIDGGBLpPNBAM0g7O4N7tTcqiiDFGCCHaHBOVQKoVeA+InLOLBJJ6s1lEJ6PLMQJCVKQCg8QQBRB1FPKRCUEAEjJdAQky7uUsOUZBOEIRIyMopSaTSbqeWusjk6uLcTQatW2bSvyz2UxCbJpmNp5kxkwmE621ABSAy20bQowCRWG9j6QQkfI8z3Pb9U36wZOsaFmWiSgolU2Cc4lPdzQaee8H7wGgrutjxsBaS6RSKw4AJCChSMr8pisvIYTMZAd8PiUxKmYQYZYALG3btm2rtT49Pb+8vDw/P4cYTk5O/sE/+od7IqLMAnPftsvlQmvd9/3t7d16dTefTQFeQQ7fcIl+/ZoyvB54vuGRvXPL/XHfZfuVPvH+2wFA4B127Rh9v31KH84PHt9y/6u9c6TpRYA+hPl0+v2Xf20l7Dbb65ffgu+zTBRmbdsP2+ajxz+8+v7pWan+5Z/9FAAKFXq2F+V4s7j6cjH87/6Xf7BYLLvl9jc/++hf/Nn3W87OM88DS4SiNEPfK2VcYGNtXdcGIPqhKLI8t19//bUx4H0cBt80g2M4rYqqKtfrNrGnSIDcmqrKg1KN95mxItw0O8WBNIysD0xktXN9H1hNTinySWVMYZoQR5WZnkwfnox/frv7+YvN97ftB8T0EEVrCsIuMg0+KokigsQCAmSMatu+rKqu86QTHalwBIaEjkalJQYGopQaFBFC2hsuQI0QQ+pLARZmTsEwRWAUAE0iktyw9IsSAqJCFEyGRgAQEDGEkH7P5LslJ5QIU/MeHlRj+VDrCEOMAZRiTUYEgkRC0EoLRREoigxAus4RgjEqhJiXRQpFk5I1EQEKs/go0YkIGCNIQBo0kbKWYwAMEiGIEIExhGJEvO9ZIYkC54AZtBEBFUUpYkh2HxlADqlCzAwl6ooUXYbAQpgAjClWPdYrUgW62W67zo9GRQhhs9k8vPxoUo9evny53Kw+//zzzW673myvbxeIOsts27u+d85BliHu2wRZGKuqLIw+Qs1d8Oh9VVV5nm9Wq+l0mtQEd7td2/ep3Nw1HQAopbIss1bgwHTZDh2mpK0AIWZZBpiEASClGohUIiUiIqX0brebTqdFXm2bXd/3y+Wi7/t+GBCg7YePHj76jd/44SeffLLZbZ8/f/7kyXeffvJ4GPqm2W1Wd8+efFfW01epwzQh9kYXYW8NhRAQIMKxTwWZAADpAD1I/0QARjAAIMyH5kEgFACIkmpnb0MOj1lkpKOdEmBSrw58b6TaGd2rjZAkbyG+O/hNK/s914VSivogJXrcOX00SbrNXjOsIgLqVX73ra8AAECHXO/Bh+F0mFFVff/VV2WWl6D+5M//5LSs7lZczmcvnz0bZzS7rJlb1OiofMLNIzXUNt+4eHk2/v9++dWP6mKkmu+uvhr/1m//t3/0E/Hy2Yh2A99S8UnpHjz66Kc//4ZMvtt1n336MDi37FoNUObFer3Vtt5sdg8fnb+4ej4eV//k73zxx//2L1Dgdz75GE3W9kI2VpezttvihhULqVCp8WC5ERcHuDg9Gbxrmy0D1Jlit1ZFGYpxt7stRrPr5UYVfj4ty+ffflwCZvClA0BUYIkDQmSAgAAEKkIbgjHKO3BahRgn1kb27cCkMmGVQNTX100xIqAx0CKJQEUhEWCMSIIGvMREK5PyU+w5BZ4AoK1mF0iReLZWdy4AsgKIItEn0DIoQE0gLJGBKCJgcio1QQCWyDozwXkOoELq8MXkSkYAgSRghAcV+TAMQSmttTDHtu2IYG8uMUokAOhbn2auICTSnWEYRJCjBElAHE7zjHpGJET0UZAJEb2AH4LvgiLQGpVBFuh6zwwAiiG6GCGCCGR5EWPcts5aHHrJclSKADii+MCRocgUoJACa7RSNHQ9syQxLEVQFpmINE2DWrVta4SttUgK2KOPo6Iuimo8nu42W01mPj8JIaJAWeRlkfVBmsbHAMQq14AASikgcb4FhODitm3zPLfWEguSMcYAqYikbe6jbJfLqqqSlMJutx26djqeENEwDF3TOueKogARhahgb80VAnMMkbXWKYgevEMkhVoYrLV5nnVdIwDOe8DWahNV2C3XBug3vvji808etW17d/Xsb4fuaj5bbTcA0LXDermr6zrP8+26vTx72LbtvWU8+UYkGIBE+P15Q5G0Tt93ynDfwAL7otjxqAmh/YHs4f7Vo335tQA58h7emje2yOvV5CNE/Bce/w3r+c4djk+MscPgEXG9vEOAcVX+7K//R6u0Hxo/9Mth4OBf3C3/F//57798+VLb7N/97fdj4YCqHfovPjpdO+nb8D/75//o2++/pHLyl3/7cw0wndXWkO83WnyWZbvdzhizbrrJpHbOsRt2m+2oKgDgwYMHdz/5Mmn+MkNdVq4Zeg+XZ+Nd10aQIJATdtud1WitrpDQqM1yKblZtv58WiyXy2pUn5yddl3Xti0BGmPu7u4uZiPvOS+L9XqLEubTWcThZN5+vIVVH3ZhiEDKaOAIUSASAytEIUUUlVLIe9XCm7v2wXkZhdumH42qyUzW24i0K6wG5ggcAic1eiFQhHBw/dK9gVqp+KrUmOe2G1yWm37wVqEIMu5hNfczNmlNFAahVHMAxD0JY/AJpZMQtxL31QowRh0A+JJCvyRYFDgYBYigNaYSZ6LnS+HdcbYgChIQgYuc8Ej7ybgPyiGVeRHxkJVMEwgIKKZMX5QIqVCMsHdHCLVyvfdtzywxABhSKopIiAzI6midAYaBy9KEELpuUAgikLqhQSIAJBZFIqqqKuUQ63FdZ4USmM/ns/mcCJpm2++ajz5+lOfZZrO2ebbbNawya60Ahy6IxH0vObPRpLXWpE6nk81m0+0apVQ9GZdl6WNo+x4AhqFLNOOayHtnjKmqauiHpOGXZVlq7k4Be+pROd7Fh3yuEGkiEtk7K6lLEgCMMTFGNwzGmLrMrSbv+u++/fpkOvpn/+yfPXvx4ttvv7u5uRmPx+vd1odhc729u7Or1QoR27a9uV4A/ObxjlZKwb63B+CDecN3mo/32ZT9/PhAdHl8Z/ry9F5WUcY99xwA7F25o/l8u8rxRv7xuBHptYhYjmXre6H9fet2PO4vjNzxQDCnNfV92za7B+dnd1ffv3z+bFYXhrKkMS8cfvjFp4hqtW68yE5Xodl+8sPH1j0nnf+7P//yv/iDHyxvroYgy0hPb4dJrZQEMZMsjzK0CrVGpRCtBiRxzhHAeDoeFcXdan17c7dpupPpOPhBGJrt+knfXMyr27vNaFJTZkQAWeqs2rYrilKMx5um9Q7OzqrtsOLQkx63ba+01jaH3rnBdb2LIfS77Y9+9KO+bTSaqqhubxfiOSf4vFZPYwgMgyUmJV1AIA3KAwSWlCyXyCRCIJlWUkQGDCH2Axjrlc2itL13eW6FEIIISgzAuAfVpGMc8IZChELInokkxb3AewzW3rK8DsVKP7MAWJWmoiAisPC+0oqRIwgmBcuQmiQkIXX2qJRUtEhWRmsIIR0WYpSEcrnnAHBiUMeks54U10ESO0/KgbJIOk3ce7jHaGZ/ooJq/70jIgoJAQACDgH6EFOqQ2tlrQZw3kclwCBKidKkdeoHBWaejopE7JrbjJmTDuft7W1ZZGVZps/b7XbpidZ6tdx8+ujjOPTr9XrX7qy1Gmg0qjebjXODj+H5i6uqHt2utl5QQB/ZlCVy5FRvQszIub6qinFdOueStEBZV+PJyDVdoryVGFGphGSMMc4m05Rb5INCnqQKuNrHrSmWP959h1Zxvp/dSqVzYBSOqHRRZmWed822azZ/+Id/+Ed/9EePHz+uRqPlcvX90ycff/yxMQaN3WxeXl9fTyYzZs4Le3/aMDMwH43TL+C+hn1H1n39pviGydjHs/vnh7cfXk3Xku7t+WFzc/9VBSjwjmrG28d5za7dM39vHFxE6D0mG38Rh/YxcE5HjjEopWLw88nYu+6nP/nr87MTLfH26dMXz16cnc4nVVkW2U9/9uX09OJP//wnfSSnyYTFo5H+9zftyen8dx9N/9Uff5lXk6++ek6ZCn0cn49erhptVElydnr+/OqFiAQPdVmNx/WL50/L0fjq6uXp+XkIocqt98NiNcxHZjoZKxfvNmsXoRyPbhaLADCqRopo6GOVKQ5hvXKPT8y0qm7XmzpXwXM39CEEk2cigNooZYi0Yn7y9PnF+QmI3+3aMq8Cd1lR7W4Xn19WWYc/f7lzErTWmkxichVMSGkKIYHpVFnkZyen3379bVEok1PTO6RQFCSout4DEItiICEGkRglJku3pzuEY6rLMygBIhl6rxQEF6zVzgUiiHKMVgAAVDJVAoqIOeDeFiUbB4iCkkwWASSpxogCIhjicTWFQwYFEcGY9CvH+40r98trh8mAwKlFhUSS9WPZV8P3J3bIZiKkvA6+ApaJHJM8iZ0AooBn0CyIoAhUZizgMPSkQGskhccgJ5GzdV0nAqcno6IoduuNtXZU1dvtNolbtW3LzNba1HAyDM6W5fPnz0PfTcfjPK92m3XbbC2aTz//Yr1eR+G8Km+Wm6KqZIibpk8mjLRCBJGIIoh7EahhGEIi3NZaIQ7D0F61uc1Go9FsMun7vijy2WxqlL6+vgYRo7XWOiXc0wXkfak+kVCwyD6VzCx7FhxESB4cCCIqpcFHQkJChcTMmVFFkWmFIeJsNnv27FlCbm5W6z+9uj27OJnMTkxmz87Obm9vt9stkQb4fH8FD/wR6deXX6Mz774pedsZfNsYqbdMUtxbzw/ZRBFRh36FD1czPnyeRxN2zPfBW+fza3yEiGhFMQYCOZ2N/uX/678tDJ2dzG6ePd1ut+fnpyBxMirbXTO4MERwSIJQVaNZETcd390u/+f/6Df/+M9/GoP77uVq10db2tnIJqT+tuk/OTGCAKiGrtEKzk9Pnjx5kmXZYrEwShmTff39E1REaC5PRmVhXduczS++vrq7vJg45/reGQXee6cISI0n5c2yR4DT+bgb2jDw4y8e+u3m8vyiG/pNs0urdARRiLYoifj69sZ3uy8+/iTLirBcZ4bysSKWmZbHpb5rQhuCpyDGgN9fZKUgRX7p9qjrejuAtlKXZd/33RDyPCPEXeOVioiKY2r8I8B941qK6QBSdAkApBQrBCQgAAWIGqxWHAIi8B5/B4pE9mEpIkiMYd+XopLvJgCglCKJcc8xm8ROESAFp+k4eyqEBLtJsMSEFk6VYmaOMQFEIDWTiJAI7x1VBP+6dKwQohAiokRE3HfXiKRwXgAQY0qgJ+fx4Jmy1QZiVEoF7/shAnSEoLXOLWitRGLkED0QgM1UlWXpzHe7ne+H0WhU5kWiuklAv0QYsdvtuq4LIZZlsbhrTybZDz/7rCyM0lpOp0M7DH3ftruqqv7myy/RWFJ2ud6qLM8yM/QeCCUeklTEKIICfd9brXWep2ZEQDRKK6Wi9x5AF0VR5ETU7prxeHxxeba9W6W8RIyeULQhbWyMcbtr0293ZAZI9+l93oBXNy9glhUx+lcOJCccqgDIZrNKtWzn3Ol8HlM7E8rQt4kf6MGDB99/+92rH0kprfV9g/DebJok7Zb7VRFQ+DqSW0QS/h6EAPmdjzcctHtFig/tT/dwGwkQAa+btrfN0xtPUpd7+vf4JMHUjo8IcnyO7xlvfMr90e6a+XT84z/7M8L4+OGD3Xr9/NkTbc3Z2Vm72zjX57ktR/Wf/eVPGsfLlj8x/Xgy+/Nn3ecjmKj2+TAySp7cbhEAvTs9u9jsOoI4yaiu6+2uFcLAMJvUu91us9qxD5mxo9Fos9n4sBfusFavFgsCuV7cEQAABedBoCwNadUPTutckEVkPh117RZjKI3x/VYRWWMyY6u8yPM8tdZ3Xdd2vSBQpkbTyXrXbNa7k/Mz53omatoWhv6Tef2jy9FEgWKA6CF1WHBqKgAAGIbQD94FX5cQAm+bITCFAG0/pKwaC4UIPrJ3Mfh9sIJJXS/GGGPg6GNMVlVrEhFrKbLk1nDwVhMBaIVagVVgDeWack1WK6NAIxgCvQ9OX6GO9/+TeO+ueyXmcz/aEAHeL5p8NIIAiYLs2L6ZJkPCLUIMkNr+X40oqc32mAg7zEza12OOUVT6SyACxAM3vUBUCrIMFSGHyCEEH4IfhINCsBpyDYoEgRHRGDMqqyzLhq7fbDZhcEmHs+u63W7X932CYYtA23bzWT4Zjx4+OL84PXFD8+LJU47xi08/m8/nV1dXl5eXLobVZisI220fmau6yPM8eYgKySpttTJWqxTz+pB62NVBlznPc+/dbrdNmYrtbr24u0lM18gCkRMZz1HXMP1A9PqA15VF0qwQkQPfDyaPHZNgtDLOBQLUpCaTUdM0fd9vNhujKLcmV+aj0/P5ZMrRr1d35yenb5iOw10N8MuJCL8msLnPyBx+yOOXefttb+T1RCTet60C73wQMME94whvWtU3DOLxyb0J917gzvuM6f0t94/zzi+VRtd1VVUsbq77rpnW1XQy+uqrnymFRT1aLG8RpSwymxttLBozoAKA/+L3fuvZuh+i+Z1Pzl++vBoG/2LjPOYEcDbON00DOgPnH57PbVYx0ovb9WiUG2OWi5sHlyebZXd5fl7k1Xq7KQuTZZnWpEnFAKOquF2tA0DTNJOqjgE4xPnp6brpvIvO9cZkVlkOzhqs8mLotn2ze/Hi2fXNVd+37B3EQMIx+rZtu6GvRrWPwfmo85JI//A3fsSOijzPc+391tDw+KK4qHXGQAgosHeMEBjAR+id7/t+Mpn0AwzOD86TgmHYMwMCKgEKEYNAYI68l6byMXovBxw1xEMwhXuqOxARSdomiApBKzAKDIBB1oQGxSjShmymjKVkuA7yfEwpeE5+BOH9rKNIQjXuU1REoAiUSiBtiAxJUQQxhWxwyDPKccVM3iUp0ApTiWN/3EOoLgn8g3uqAq0MESi8n0zfP2KMIbL3rBCqIq8KYzTkGVoFJCARlEBhdJEbiwjBk0C73Q3DYJS21o7KKsXIiUSrLPcM2F3XK4V5nk1G9clk3KxWty+vqiz/+MHD89nJdrlVSL/9d35ruVlfPnhYVKWPgATOxSRw2jSuaXzX+b73bdt2u6br2q5rQ/BECMxt27RdE2MQ4bOzs6qqXD8g4uPHj8/Ozrz3Cik4nzKbqYev7/u2bfGg/XvwxCndjIk//JCVimlBijH23iGiUioyeB8QVZYVxubMrLUOzl+en9VlNR1P+rarirLIs81q2bftxelZYbMYXtdFuccUCR+whm84R0crkPzW+27a8Qu803agvGlf3meqfuF4441vG8T7fx53Pn7629/o7bM9LuNvM3q94RgmJr6yLBXK48cf//t/94cns8mDi8uXL18CABGtt5u7u7uXtzed85FxXmaGw5ff356Py8vLj65W7eOJXmPpBC9npWLnAzvPl2ej9eJWZfmLqyuDUJblfD7PbfbixWIyzsq8uL6+doMURZFEeI3Vp/NaKRUQiKAuq9XirjIQPS+XS0Ho+t5YjYjr1XY+H8cYu6Z79PDBuB6NyqoqSmFumh4Ry7JkTowmu2fPnoAiUnq7bVjkyfNnjy4/MSrrnYsYQQcl/qzKf+vhZWE10X4aERlFihQqZdq25QgDQ15UAmSyjBBExA0Swt7bQgClNBEplbqJ98kzo61Se5sSwl5sOrcmOK81ibAxikBIAEEUCiHsV1BmlH00gAmdYZTWOmEMEUGpBJBOOwARaa2Ikh8I6cdPe6aTJEKjVap7hgDD4JN1O06nV97MoQBEBFqB1qgVaiJMlpswUUZHScrDEUnuz6sjsgtRtAYCiBF8GEJw1tL56enlxcl4VCgEFkBgTagVJim4qqoSAaK1NsbYtu2orpNYVQhht2uccwnQEWPMczsZ18EPHLxRyvVDSq2s1nd/9Vd/1bbty5cv+77PMgsAWWaJQCk0BvJcVVVW10VVVXlu0/GNMZPJZD6fF0WRbq2EUkrMPYPr2rbtui4zdj6fp+7Mo551lmXT6ZTvjeOtl0oox1svrYhpyzAMqFWKZjabza7tFOmyrMfjcfIf7+7uUmqyLMvlcjl0/aiqEfHly6u0Qty/qWlPL7u3CckpBZGY1nikPa4YJIJEFEChfcmYBElANNzD5Qh4Fsfi3jYxaboEjsfnSX0VRTgEQXj34/WqMYMIAqp9JC4Q0wOQWUJk/3asnV5NDgYmTBMiAaAIAUj0KJGANYFCSa7osYRyf4q/8XUOHjIbjQi+X92MMv3su++n48lmcd02m4uPPvr5s6fd3bLI1GefP/berzfD1cvG62oj8E8+qf9sMTxv5LPPin/1P/y5HU8X2yL07lx1nrg8ufzB2aVfb767284//awK0gzh8eNHLvB6tW3bvi7VpC4ndRYwqgxEYmasBmw2W5RYFnkXyCozLqvxeLzxAKbIdGYC/MYPHhCN++3u8lSBPdm0vrJ+s2wxVwFjlIAKisICwNVNM55Nilq5HnwHpa5YfD3ON9vVpJyScbOxmZSqsNqQ2W6D63ePL8b/zR/8zn/+g5PPTjD0jiNENkbp4BulRBmtFHRDjCFK74Gha0MruAvSBwZBhQQcQSICAwRFAACDD94nSAe0va9qJeABOYjXBgCZCL0PuZbCgNrfKiAsGKXMSBNlSidmS6s0IrJEbVSIgkgaSQmTiII9G4w5wGSJwBhNyrAoF5PtSA6gHCkyRUBroxQphVoTAPskjyLAiCGCD4eHlyRearXRpAiQQEiYhBWyQgYGozULIGgELQC5sga00ZoARpWejHVuMYQYPOeWrEajILdQGCDAGGWI0AwhmRirzWw8yZQ2WldVBYhu17i+CxxtXQQCD6AUXZzMxoW9XbxYbu+GMPS9f/Dgkc0z0CFELIu6LkpxzpAUCka5Bu+MUeNRRQi5JgkDxCEjKLWejUcaIQbnXd82zXQ8OZvOK5sbY0VgNBqPpxOjs+B5GAZr7d12y1pHpAAYomiTOR+73uV5rkknGlIO3LbtMHTGKEUQgwNmiVGEfRj6viUCbcAPjfO9NjSdT8uy2DTbznVRgiAk6HsSJgSWIsuTWOuoqiZVLS70zSu8oZBEBC2gUEtCYsF/4nH0HN/w0X7V47wdCH/YJ33flreD5Q/Exe8bKABkrLXNbovRLW5enpycfPfkqQ98cnFeVSWIn5+eOzBNEPa98uEHHz98/s03D2bGd34IAcg+v7tatgEVGCB2/m+/+lk1KiTA+Xz+7dMnmYbrmysFmEDvRVGE4L755quyLIcBJpPJ7WJdlmVd14tl573XpMmobmivXl5bAIlOGzw5yRTSz7+5qWsVgmubRiOcnIyyLFuv7hC4KLLdxgfvijL77PHp8na92+6mkyzTVOYWWIrcWm1c32WKCDDTxiqtkMa1yfNisVjsmm4ymT386MHnj0+KTAEEACmqahj84EMQ8DE6hi4yIwQkRmKRKBhQEkkC7/N0SESKgACZowATgTFwjF6NIp2GIb3vf00/aHLxUOsksCkAoPeRdUSOIhJjTDFssmKZptwoa5W1BIJKkVJ7pF7qAdekDuHwvTCK9pFsjByCJFIcor0gagr1lKJj7QURiPCIJrkXWSfWYUCMRIDEgFEjIEWQYLVCAZBIIAhc5lQV0LTbq6vb7bZjBjrcs1rrssyJaDIaj0ajlL0Jcd+kUNaVIs3Mfe9ExCrIrU1fcL1ep1C6qqokGDCeTQfvm65NTOYs2DvnfQAEoxRzMAQiUhR5keVaayJqmgYAkis6DF3TNKlVzlqb/MGkB22tzbLs+vbGZtlRnHrP4sXJ9g2BUyqCBWGvqso8DEO68imMSJh87/3Qe457q+Kc3+12zjkERaSPosyphr6/04GNpqFrvfc+uMl49IH7+le3hrjvQvklj/BGxHqY3PT2Dh8e7wy3j6nWN6Lgdx72/oy8vxF+aYNIh2iamZlUjHE2Km+vnvthqOuaBXftkJeZQvn6Zz9brDcvVg3YgiT+9sNaszSr8Hd/+KnvAC1cL5rrvjUW6kl5Np7myrTBiYaPT0cqyta50agggumsJhClSSkkrQYfF4tdlQMzGw3GqNvb26JQShtml+d503VKASHkmeI4fPL446dPn44qqKvCD7Fvdm5wZZ73ze5kOnVdZ5A++/QcBAzhdr2YjYtpXZTWTOti6NtRnd/dXhuFmuDl1YtxXU4no77rm6aLMbZtd3u72LQ9oFKI8zIvSRSEwLHzoW37th8CQxdiQGwj9ACDAKegAySIeBEvkB7JDCmV8vXpF0xV1Pv1jVSaiOzTHaX3fcFAwsgRYhCFRCCIoumQiRaAmIBiAsK4J5cgo0gTeh8AQCkCgBAhhOQGHqsrby7Dx+cp9kyNE/en0L2dAQCO1vB4hH1DGwGgEAECayXWglagCQyKBtAkBMJBjEJNuNu0RKA1ZplJdAzMIUYf2e+PxgIACdvsvV+slv3gUJuyHiulXC8cYFTVZyfnd3d31lprrclsIlZImshReHDeB04ZUGaIDEpR3/cSY5ZlIFGCD8H7flAEhTXjqq7ruiiKuq4VUdd1TdOs16th6BNdTd/3IYQj2TUAJHVQH0Ny4kQk7RNj9CEVVQiAEhHJ8Xoew2TvYyrCcAQQijEOg4uRiVRiUWz7bhg87OmUGAj7ZlcUBQKMqnI2Gb+RN3xj/EfhsPnVTOqv4Yul8aHs5FuG7+gDfuDj3nAYPzzUgQWaGSREmxccwm51W1g6GV+ut5tt0z78+NH5WF8///rhw4fP7tonyz7PrfTwUa1f3C3Zou92z17cnT8avXyhIoAJMJ2O3boRpCFCJv4Hjz69fvJkELAgdVW6oV+tl1ZR24bTkxkR8d1wfn7+4sXVfDpWSCHEh5eXXTdkChFlve2qUpcljUdVs17eKplNRhBcbvXZZw82mx2yHtV5qcveudxmzXZrra2salbt6elkt9uhgswUmvTJZBy9awmb7YYmo48vHyzXKwX06KOL69Vu3bo8N13vt10fOGzWy6B0ptkg5IVlIR/DECCRdmpFgSMelPMIkEEIIKa2SwAEoABKgdbJOdybIGZ2IohACZSf8koCyKl1bU+LmVpwgffseKnmthcvRVB7AdN9WSP1mqZ0NjPHCMYgkY7RMe9B+8xCh1uYE0DwMGMQARUSCTMkjloWCQzC8YiUvL9CC7yy5q9NOYAYAASUAkJSCEpEW2DvrIFMK6MSJigikVFirdm362pRhNpoIlIAfnCqHo3H49Tj4b3XmS3q6u5u1bftptl5H3NDl6cno6rm4IZhwEyvVqvMWjXLH0zGbrXcrnaRUy8MEeoAIAiJYNUPrJCVwmS4rclQgtY6QURz0i5ySmGDsCIKMZ7OT1KmdbVaee99GBBxt9tJopDg2Pf98Q4lUiISBQUBUR1usah0ln5wAEgRgzAniu/kOSZWHqLUy6y13gPU4N4SZa3Nyiy6obCmGo9ub2/1B2/0D1jD95G//2q2j1MH+1vF3zci1g+bLfjlDNYvM974lF/+sK/2jCwiwXlVkGsbJJ4/enR1e2etvTg/g/ZGa3tz1zy/3Xz2+aMn3z/7/KL44ccP//3Pv90gff/0qnOy8zI4AYSRyRTEbbOtxifOg9Uqum67XpW1HRWF1nq1WllFCUJ1cnp+dXU1nWQiggjW6ma7K8uCAZumyQ3uNmsRiDGOJrX4QSm12TZVUZnMZkbvNmvX95PR+ObF848/uphPqsKS1vrq6oqJJ6cVEZ/ORl27UQSjqghuAI7jutp1rTXm7u5uMpuum+7uehFFZcY0w8DM17c3pTHODxEViLCAIgNIRWF8H6ALARAAIwAACiMCpxyt7DUl96CtmCYGRwVHyGpSEYWEQ0YUBUhAigQVes9aRxEggcRfICRAGDkhF/ZWiQCFSISV2lMaIgAcdAhSqJvo8wBAKUCFwsgck1Tpvn6c7JoIAIQoWiEiIbAwhAQU2ddVXpvGx6gYjtP7XniktXHOA4BStLfUKLk1zD7PETEqpCy3kQMyZEV2rDMgMGmFhCIMSBcXF5PJJMuyrutWq1XbtqAoy7Kyqvph2O2CMWAzWxTFcrncbVZIEryfjgqtVFVVL1++3HWtcy4pE4CiGGNI1w2FOZa5EpHondUqM+b8ZO6GLtNmiHx7e2uMGY/H44sLRNxsNsvl8uTkpMjt4F1ms/Gk7rqu7yIRpTUr8B5bk+c5KBqCN4pcSlAk4WSOKKLJ7NvVJWhURDrhQK2yggICSTkLcU84hEcyxxCYmbRKlpSZezfUo1HXdavFnSFF2Yf8v1/DN3zFFfzLjPu27/7GX8O6vR6nvIpw3z7U20vxf5SxhwEhKqLIw+p2WVdFcP3tchtRP378eLN4Cf3m7PzRX//tV+ut77dPL0/GP/z80XdPXty2fstxCuXDj8c//f6qZwMIP7g8K3QIk3EXvAWYjyrnO5Pp2uZKqbZtvfMnJ1NmYOZh8C+u78aT0Xa7zTITnB+cs7rw3m92TWltNzitVVFk3vXEwVpLNnd9a62+vLxcLa7vFs35CT06+3hx9YTwfDweLxY3jy4vdrvdMAyEAOzP5nM3DHlmu12TII1lWRZFgVkRWLKimM/nT29u2zZarbTO7pqhiREZHAooEojt0LOPlx9fOHCy7UEgxrg3b0gJ+gwAcW+xAAAUAiCyAAf2+44QQAQExRLVAS3NIAqEFCqiA2Ey8IGTJK0EABAjIIoQcDwYSgEGgoS7TgVcSsCafcE6dSUgApEACtIrKOJxRuHr0p2vuYGQANXHcD69iQEg6YjB64EIIipRAEEpJCGASCgkoEjKShtj+r4TEqUpDOK8MHijSGuFKAgQQvQBjEHS2jk3tF2z2W43m8E5IuIA3dDzch1j1AhVbvPcCkcBX1VF27VZprMsy7Msxtj2/Wq9jhBT3VYjeBFM+VBMKHSKMQIDioBEjj43Vu5Bo5fLZf/iSmfZbDb76KOP2ra9vr5O0Jmqqja7bZ6VzGyyLEEUvQ/MMviwzxyjxCg+BkoUhxwNojYG9vf7/koiMwgqqxz3RhtEEIjeS/A+ceFEiYmyHYES+ZpEjjHmWm02u7KsrNVd1wm/z8kD+HXyhvDql96PhL5+z3g7nffGv2+89IHxtik8WtXjUn9/57fdwLfTi7+GuUxtqaPMvnzxVCRePnh0t+2q0TSE4PttHPrvn7xso7XFyCo4m2T/9t/+pJ5dWFMzw9iM5xPrGQor9agobZhmOVp6cr0qFFxOpipDRywuGGVBZDIaTUZjIiqK6vZuqUgZY4ZhAJYQfWFNXdeRYdfCw/OT6XjMzIa0RsrzvPd+s+2azSAi6+UdAHz8cK4JFMJ8OgEO6+Wizot2tz0/Pfnk4YMH56e51oqormv24fLyUkTyqhyGYbVeB4Z6PBl8uF7cGmMmk5o59v0wGVutVUTNYDxrmynvQyI4AAABRtoTF+NeXfzexT/ErQzoBcLh4RPKjxMFBATAwBQZfIA+ggsy+IAAhJpQg2AUTM1xMUJivGIAEDygAhUAJPiFJDr+hFxMSUSRZArlMB+Sp/dOPkcR0fe4jo7TiQ7f6fWpBffcwdfyhkoplmAVFdYgRoWSWcwtZBqstakQJCJu8N4JEQxDMiIB9oBf0IqyLKvrUV2URVEURZGShqhVYtCqyrwq8+kkK3J7Mpt6PzTNbtu2VVVkWXZ3t1qv1y74R48eTadTVMQcYM9nC5Ta/ggzAyjAgY0hYUaOTdPkmUEBrbAsijzPtdZ5niHLMAwhhOmorot8Oh0nSm1EHI1GKZuZqigxRh/jbrdbr9fDMLgQ0vUZfPQ+pLKCiCRN7cTzqnFPFZEujDGpFXBfYETEGKPWNv2mACAMSimTWUHYbhtmvluvbu6WiMp9UBflP3lN+Z2O26/hGL7TK/yVPvR9L71tNz98GiKCLG5oIIYHl5e3i/X8/KPRdOb6zne7k8mYhW6X7fVqW2U0KfRsCrerLnYuQ5jYikNTECCEojBhWHXr9a5p8kpPynxSVHfrOx/dR2fnSW3We7/dNsBSVdXt7V01qhP+6cHDj6qqCiFkWbbZbMYjs9usm+3W6Kzv+7Is+74HIR/55GRkNfV9f3117f1wMpsv7277vgeOZZ4xh3FdXz1/9uTJ964fTucnIpKcwaZpmEUYRuPJZrPt3bBYLlPdkJl3u12MUBU6smOJvQu9i+umC5FjhNwU7a5xzqGAVgoAkguUbMxrTZn7uw8iCMMe5iAAASCI+ChOILAwAAMdUk1IpH181aIg++IYECEpgwpR0R5ifXDN9mJXqQns0H2kDhKpRGANWZvKMkCUcpmYDpIeMfmUWiW+/sSpGIXT6e0B2Af4oVKotdJaHSPcwwftkcYxBqXEZkqREEGRmywnbfZkLakvcBiiIBRVpS3ZDEmBQDw0xpAiQ6iTgNzy7s57X1VVWZbK6CSa7L03xhDhZDICEm11Xqim6Zj55GRWFMXJyQkiolZ93wtzjJ5j3Ds6IgiiCbMsS6kCERiNRoXNTk5OrLWbzSbGPXKwLEulsG3bpmnu7u6aplFKXV5eImKe56kAjYjDMDRNIyJ1XZdlecCxEWmVpGyi7K8PCSRy7FQySslBpRQAaU37GJkwsSgqhcxJrkClLpdUaYGEvlIqL2tFiWFbjM4+cHcfsooIh6pbaghBuE87eJ898JW23DFqiGmKAhzDoP0eAHAE8bwVL8jxI1736fC+5cKD9OqxcveGp3l/1b2//d4BX7Oe91f1+3tKDHT4ODm0Jdw/TnCetEJD3W5X51nf9tn4ZIPVyScn7WY5tJuu3Y3ml0/Ww7r9Ji+M39H4fL5a3u124Apb5eA3WFyqn32/9azmo5HyK5+dbOty/XSVWzX7qHze3q4W8eHFg9i/3LVNkdPjRxfb9eb07OLLn3+jDXo/TGZnq9Vms9lst+tHjx+0bRtA2s6bUjOREoAAm2anteJhGJlSa5fnpUQeTUbOtdc3L0qtS6233TamezmY09O5c27b7FzwysTF4mWWFTFKkZdZlq03q8uL864Ni9tN4ziScs6lYLNxsetVz9KI9NEHBGRRBD13ZTHuh8gIIgEBNNIADFqSkMqrmQXiQECgQhDhIBAFEBBBFCAgi0BEEGYFYBBTKi9yEIDOy954BfEpmEax0RtNLJi6wSJICCEIKMZw6O/kexMjsTYoVCIQAh8SiAQoaUpzEtATJgBCHAaf8pjHuZSCcRB2PmqKWmkRFhbmGAQMEAhg6pUjOjZkWYPAHF07rZVRyMERYaaztncAgEgxilIoCAnLwp5QYZZlwXsCybWpjXl8eTmIU1aTJg0KQXzXg4h3gTl67/M8L8vyuyfPd+tNjKy1UgQgqtkMH3/0QDM8+/b7b558R9asusEYm+UmDk4iW6OBJMaIodOEzsWy0Lmhjx+cNbtl79pmcAAQ0Q1u6Pt+NBqFELwbTJ6HEJrN9mebTV3XdT1puibLlSI1xGiUAgGJMeF/y7xq+o6ZqzIXH8oqkxAHP4zHdaEkDM18PldYdl2HCkgBKJhmJ3d3d1lW1KNx1zVWadd3o1G1222stYXNIPFpswTnNSlHw3a31khZlq+2m0RxdLQNB6OGAEC/mMPmrfGBKsQ7Paz7/Yb33/WKKej1V+kgW/FGcHHvjb/Yj7u/z9spy+OTt43pO21rGlrrtu/qumBDkf3ffvnTH/7wN2YnZ8vlchiG1JeyXlxvbq4jTl+sr89neop041Rn0AxNVeY0t4vFouscADS7zQ8/mTV3223TAkjbBKN1t93NpuV0Vi/udpqUJpqOJ5rU7e2tj6Guy13T+aEr86zd7ubTcXButbibnZ4N3Q2HaIxxjSeMmR4NroUk7L0beAijohjVZZFr5OD94CRMJhPveud8O/QIXBRVVRV975z3IPTyekGklWoEcTabmaJYLK5REWokQW2kGYKPYMt81XSBkSVR8CcWSxCB1bat52dy14CIIpVwcB/QZQYAwX0/esoSHn4IAHgVxgIAcELpA+6x+vvNKTIdopCOiBAjcBSJEQBFEgnwa9Mg7U9A99MnaTtzkhLl45J53MOqe12qewp7ltQ+CJL63RP1NADQIauY1lmS5DewQsxzLRIVoYi4kKwDDj6+ap3eZzn3s1Fr3Ts3DJ0iqEub55aIVpu1LjREEJF+GIwxeVGAIu+9b2JZVsZo55zrOyRQiCzREsQYR0VJRq9321RkCCi5oHM+BmHmVL8W5hiBQ8yrou8HZJmOJxenZ9tts1m3eZ6nsHcYPEQwprfWlmWZzrau684NTdOEEEgrZh76loiyLPM+RB/20EKNo7Jq2i0wE0BhM8qpyK1zriryYpol3rzZbLZcr4bBjabjsiybpsky472fjsbMzBL7vrd5RUQSmSVGhjTT9gBV0rmxWmtlTfggwub9rA33xjszbr/kkF809hPrmIJ5F1r7nX3Q8CtWhN8+/7dP4/iJR7f0uLPVBoDdMNR1fXe7ePjw48ns5Pb2NimID0OXfqcffna+am3j5NHcaOef3HR3veTRXb+4PT2bLhbLGGFU5qfzSYzygx99sVy5EOH3/sFnykNl8/k8JxOGQQqjH3506fvh7u4uqXS3bZtXZaZQIeSZmYzGi5vbjx898r0TARG0WvsQk1SjiBAhS5idzJQ1zvnNZuO9R8TJqJpPp8EPEmKR27Isg/Ntu/POeT+QtibPP/vih6PJzBTldH6yXG9uFuusrBhwvd22fTceT2fzGSBud90QwLFEBobUs4TMEBgGUaD3NOlRWGnz4WUsIMRDZJEuPh8kQo/jaIdIXj2QUQSPOceQmCFExZRVSjnCe23J92XFEIHUocnq9XGQcX8tK32sohx7+NKfSdnI6D1/H+4ZMA8dLAAArBGUJqMx11gYUiTW7DkpmCEKBBDnYxSJIgddg1dXo+2cNTQe5dNxqZGYeTKZzGazoe12my3wXq/dWsvMLqRqtVJKwx7XAVlmrNXGGFR0cnZ6+dFH48msnoxH00nbdftvrVRKF4QQCbAqjc5U23Zaq8vLc6vNYrHYQ7g3m37okaSqirK0AORcGAYfQkhyMSLS9/0wDJoUhxgSTpA5xhBjMAfFUUA2xiikMrcvnm2soujDqKpPprOqqjJrx+PpaDSqirKu66HtnRuyLLPWpnwvS9xT9USWkI4fQwgpTRmj35fsYlyvt23bdt0rSYtjCvtVHuN9s/PDxuud+79ne0yi3sdH+vN1poZXJA7vG+/id8B3Pt8fJ7U4HB4SOT0hwLd3RnllWI8G8e1zMEonWfmm2U3np8xcliUHF/1gtb69vSWiJ99+t+yaWZ2NtW4DAcCnZ4XOq7PT8c3t1d2aP/v006HvFcTHjz756uuvAdT8xJzM60ybTOnPP3vYtKu2D5Oqfnhxudvt+qat61FqNvjk44dVafuu/8Hnn6UGTGvyvu0UgFJGhJPjwCEWWamVMoqWy6Uw5nk+DMNms9tuNwBgMz2fTBVB13XRu0TNkpIv47JSAJvV3Ww2mU8ni8Vis92u1+unL1644Kt6xAjPr14+fb7cthJR9wKDgAdgSLmPvV1ZNUPfD0WurdHJ/QF4LfvyxghJWmC/UzI6CXaTNmHKGzLg3tcDTPSqCcsN+8wdAIGgZqQkJ5HQvCIShNPj3ioLR4Tg/ewe4nvXztQnFmNqaobjWxIs/xjWHDpEAZOzkvCQwiCMIok+iWPg6CDxfREKYmBxLFGSW5hon/cfTYBFobTW0QdENFZlWWaMabpmVNXp5vfed0Pf9J0LXlmjlNmnIOFINhGNpmQmeu/uVuurxc1qve69G4JPiQURsUpL8FYhKciyzMdYVlkMPoZwfjqfTadE5GPUGpOQtNY6ZfestXme13VtrSWiwmans/nJdDYajUaj0XQ6nozrsshSg3Nqkw3BA0tVlCH405OTs1M7HY1zo6Mb1uutME8mE420Wqw2mw2HmOd53/fWGgAoszwhtGP0mbFKKVKoFVltrDZK4VFmj5m1tgxAysTXidfeGL+YteEYt37YGr7/A5AAFdLxkba8b/9kto4G7pVF2zcK74m57j/e3nKfyOv4SLb40LH/6nFsQf7wt0tNRXVZ3d3dTcZj56Pz8e7ubrPZlGW52WwSo9yjL35nt7sdS1eY8U+uF1bkN2fjv37yNM/zu3V7dl49efLCaChz++XPvnp5N0h0jx58NDSNRiBA4Agcq7qwWt3e3jbbXVFUwzD0fZ9brUkNfTubFplRRmGWZdcvXzBHY5VG5V1vLNR14fyQiO2M1caYoetWq7X3UtfleDyKMV5fXxNR6vZP6fbtdrtcbruuC0M/qcrMqma76od2Oh1fnJ8TERrTOt/0Xdd7FzjLDRm42QQGZKCYfJm9NVEImO5GowAhpk7+qqro/a48y57VCvaAFSFJGGkIAsnkRcEAEAEjYiJkC8KSxIgTQYxWqdzhA4coLJgmUfzAKntQ0EtsoyIpTKdE5MWviG1ozy4hkAwtAgowICuNiXDsaAeJSGuyFqzVRaaynIpMZRYzDUaDVqAIiIAZYmQBAqHgJR7ZtpN9lz2XTxoxRg4RgA2p3GZ5ntvMJPJUOURv9+/QPLeGlITonPN+4MAco/deE82ns7KsPcembXddGwKPx9P03q5LJQiu6kIjhWEoC93uhkzTg/MzhSQigmq13qb+vIO7F5PDyMwhhBDCcrncbDYiEkLYrtbR+aN4VmY1kqTGO6tN33dE6Abfdc3l2Xmz28ym07LIyiIjona7u7u7yzIzruphGOqyAgDX97v1JrF7aVJ+cMvV4pWURJpNh6GUCjEmGoi6rieTyeu//msz8r3WkIjwrfHeOfXeqfYa4vp99vT+xuP8e+ON9z/9/sm876zux90f/grHaOjtU7q/v0gElK5rgONoVAmic+729tZ7v7i5mU8n1toXL178i//fHz08wd//7c+/f7ldD/Cf/eD89ulL0dnd3V1egou42QwJBTAMgSxcnORVZjkKYBhPRxyx3XV1QZ98+nGMHpDTYquQJqMxB9e2zdn8JPF3LhYLa60gxxhd70NgQ0AoYXBxCGEIJGy1KYpsXNfTac3Mm81u17VZXn777bfOhSzLACiwGGPKqhhNJ1mW9X1PpFMFsO2Gxd2KQTMRklbaaE2CoIy1WUUAkSi8cmL22GZEzPOy3W5PxmV04r0HoKbpPrDciKAkHXcE9UrW7MCaDhABPUoA8cJ+byIxAoYUBwsl/k0BigyB40EVjyhx1NwvEMurx2GGvPbTM3Pa/MaUkCS2fHgc4xICVAgIrBAUAkggBK0AISoEA6AJDSm972VWSiltNSlioQQMijFlQtXeGRAMInLggwSAsiyZo+8Zgefz+cXZKSLu2vbFy6sEZgIAo3SmjVFaQjSktFEC3Pe9H0RrlTiySlOcTE/KLE/9eaTMer3e7XbMopRKDC+piKwQhQMAlBnlWTau67ywu93u2++/j0gxCKHWyiatKJHo/dA0Wx8GYxVLSOuENhSDs0b1fTsMXdc1IpLbTOkk5BWIqG3b0ahg5hDceDzuuuZkOsuyjL2rquJkPs2sJYW5NWVZVEURY/TB7Xa7hHaqqip99+RjKYWpdpRsn7UWgAJzjHEYBqV/LfT1O83Wr5c3fOfR3ohM5Y0b6vDSr/GJ9w/7ge1vz/XXbd+bNWWtdXSh3W3zPPdD1/Yhz/PPPvvs+fffNE3zyYNPf/KXP16tWq7qCe/aZvP93eoko9rqrxycX5bRqV2z6QYvQFrzycnsu6d32Ri++OSEnd/0fVmZ8WyCoH0fxnVICSAfQjv0hIpDEFa79SrLsqZp5vP5y5e7rABBNlYNIfSdKwpFGGP0eZ43TeM9ADAxSGTPzpqcBYCwaQfFcHHxUZ5b71zqElXaktEhSllV09PRt99/v+76boiDC/V4drtcAQkqM0TxUQCoG1zTCSPsIWoCh7ReakYT9u7v/p0fjkdmPl/81c+eOtHinVUwfDBSQWB1b4k+MmsKYDwUFRiBDqooCoAgSdEzB0bEiJLqt4yH7BsyKThWZmRffD58BIdUkDkuiinVeJ9RCg6mMLIQ3p9Cr16yCghBaSUiMUZSQgTMIj4yAhBHAkYQAQ5AxGRJkAAk+OTRHPPUe0x6QmYi7UEnIbg8z+pZWZU5+3B7e7ttGgAYgs901nStRDbGAFJRV0VRtLt1CMH7gQ8tg4RaK7w8v5iOJ33fAyEzWGvvf8csN95FazD6oBKbuQCgVJlFidvVejqd1rvuyyc381mVLlFyCQE5L3IASOSyAJDnudWmrmo/uBDCbDxJUB5EyTIjCN77vu9n8/luuy3rybiuCpv94IvPfvzjH6/X69lstu5aN/RFUYhwmRda0+311fn5eQrP0zlbmzh7eLfbJf80y42xNrnMLAGNTQAdY2zbtve/7zvm3/te4Hvj7Wlx36Z82OdCSu1Ur0LltOWN3T488F1o7Q8PeX28sf2NHeB1Z/ADK0FRFBxi27bj6fTk5OTp06ebzeb3f//3/82/+TfX19cXD07sqLqszbOXt4OCz2bj29vb8adzv7zZ7VoG8IFNXsxm5fX1dWQoqiqETde0eVZ3Q1uPqz/547/46OLRw8uTu+WyaZqiKKy1IhKCy40Ng8uyvB363W43nmZa681m430YjTIAGI/HeU5IMhqNvPNEYKwKwROId2632+2anrTO8kLb7OrqarFYklKT6ZyU6b0TIKVUEPXk+fW2HRgztLkH/WKxDGgGv+dbExFUNAx+1welzOv5/uQrAYKMx+N/+j/9g6fffn0ynzKzhJDlefigKSTAlMsjhKRpm2B/eEALCkLAhPWDIMCyJ4uWlNFjCZEBQA7pO2aIHI6lj/g6ZWXCJ/JB5W6PdDsU8Y5h8nFiEJHaS48dvCdFR5KJRJOoCY0irSARL1uNdWmrwpZ5lmVGa5WaZ6JI38cYmAVjFOa9D5sMeiKFTZwURJh8SQ4xhECIGim16HZd13Udc6qcx8QWE7yXEDNtQgiJIcYopTU4F1J3cKJXTKTciYUQEa21yhrnXAih7znPcwBRGp2LwGKVTuXa7XZ9u1jc3NxQhut14krvkubiMIQQfIxhCD4dsCxLrXVRFACw2WzabgeRU4vxMAzRh1Ri7vuelNpsNm3bNu3222+/ret6tV4Orj+/OEuizM71MfrkzDJzKtnnNhuGIbmWi8UilVZspo8ENiG6fhgQVKKl6Pu+7/sP25DXfMM080gAWY6xyhvvf+PPo618+2PuR7iHdQ/ubXkN9vx6jjIeJiim1Vru1bXvHxkR324aSMckRa+S3If09rFpGl43f+kJH3S8EiroDZvY+Z4l5Ea1IZyenBez0++//dp1/Xwy/fnf/s3zp0/zTAvjR75ZVfOb5mXu4PRstFl0WXD5+dkmkn96m/e+nvvT80/++m+eGwPzXJrGzGbj9Xo9GY+ffP+8qHDgftOZm8Xi5najbVGPddPsRLjrOkVZu20zk9XlqGv6Fy/Wp+fV7W0zKlRWhFmubpZcnyjmIUSwGsZ57gIDocpVCG46rti1Ibo29FlZbt3glytrbTWZqb4/PT29u7u7WyzuNps2OAZNZNZOXd2FCK5GGEcUtjE4IimqEn3bJJwfEJIWDiCMJKhUiPB//D/87/9P/5f/8//1//5/G3V+XprFxjvPYjLw79Gpx7D3LRkQU/iZfrvE9yWRk+0DBoigFKBgcqEEgBn22nU6AsTIB327ACAMzKARjFJ4qHIkjaEQJHF5HZRLgQiVSgk7Obh+yWGMmDrVlGJmAYkiwQsCGA3G6MwY74dh8EiQadAahaMSMRkldQNhAcCExxYRowAgAQBpGIJARNSMbMhE9sCoDCAIMoB4pJgV1jsXJejMrDerxWLByDEKqFwkhsgZgrW6KIrxeMog3DvxkhclAwTXaWFNkFt6cfcCMkLEeXk6mk6uF7e7fiCjXRtFAFDqkXLBSWQiKkzmBdp2+OLxNDOoZ/P1rlfKUJC8sk3njIEQefCcGdC2yI1VjKO8JCIJ7CTsdruyLPM8Ty3DBDwMXWYLACYgTRhFyGjnXBfj3e3q2cvrFPDmi6VRWkQyq53jejTSJmtUg6CJYl3XXddlmVmuV1mWnZ5dEASMnr2Pgt2uTbWapmnKfFTWVQhBJEqIQ9/en3SsMACUQRxDoF8ab/i+APNo5j58kLff/rYxgve0hbzvTN45PvzqB1aGo6nFe9no+0dDxCzLNFGMcds2O+efPXs2n82ndbEzysc4tcXt9e3FyWS5uMUIj87z6Ia6Ko21z1++vFrBOFOPHs9712zWzTD405ldrzuLwTmXGjx+/vOfn52eWmvXd8u+S2pkpLXu+74elWVWeicx+tyaGP1uvZ6OCIWtBYViikxETk6qsip2TZ9bMApi8CIchlBUJZHdbps619PZWLwzeZa63BEpz/Ou60IIFxcX9Xode2yaeLWKrIY2mi2rHrCjsOliRm6SQ6ZIOOYeCPIN9SwCwHu7lC6awNXz51c//3q3bk4ns7Pf/8f/3b/618IQ+YPChLJXgzrQC4MIGN6TO/ABgiMAAPE+1n8f5grAYSElBKVACFNBmRA1HFLsKZKXCJBYc7S84jwH5lcARqLURXc/YogskRRq0okGIoQgAXwMxIGIbLZvtuUoSimVm2O3zOsByX5Oxcipyil7kRYcvEcBNKDIKALgkPA8zrnpZGKVTgGBUsq7qDR67zwRR3bObWJYr9c3Nzc+cmFN7AfftlHEKLSZzRRlRn/66ach8Gq1+urrr2+XK53l3nPfuipTSlmBmLhwiiQngBKcn8/rzWaDwNPZSVnXm+3XSW/LaERATZSNDTEMXeO7dlRWTdMYY2azWeeG29vbi4uLzWYTY8zzPDURtk2vBCMzEfkQY+ettc1mC8haKXHBGFPkGREMfY8oYejVZCIizrnJpBCOzXZXl1UILjN26HpNqmk3zFxVI2szkSGRlY1GExd8YnLsuk4ZvVqv7xuLN0rMv8Aavm0Ufo1xdOXuI6uP1vB9CcT7tul9NlfuA8k+eJ5vvHT88+irHr3I+zu8xsMIQIDeex9DDCzg/v7f//vPn115UIv1LrAg4qjA6XS8XK7rHD+9uNwsX+52nS1tO0BZFEKuGpVui0ZXILez+bjfNufnJyGEyXg8DN1kPDbGsA/j8XjbLRJkAQW8Y4Xkg+uafhjcZDxaLm5BwGhV5lm766zR4sJmdTcqMhIgkPm08G5oNs18UgNA07UhsNGgtN1sGxLOkbgbuq7zQ9zsWgAwpn358uVmse1JkSkjtJsGPHijTZ7luut4CIFgUMDMpNBZPUSlGDjZv/1121Pi/7s//MN/9f/5Oxrg9urF7/zO7z48nX1/u/zgLDmSNQgIIgIKAoI+iLILQrjf6oR7pc4UmCd+MBYgQAFhBq0IIeEIURnFIcbIkohqJDmToFTS1kjzbf9IszTZxxhjyiqmhhOlULPgHkGtkMigER0R0VjlvWcvRGCsRcQQQtf5PKP7k21feJcUzmPwHOOeR5ZZiDDPLTMjMKeMgVKGtFJq6LrUqXZ3t0zlW2ttCCEEVpoNgVEpvRhijMDcDyzIcECPaVK5tfPp+OZm8eDBgyzLWHDTdru2PTmZ9t671gnE6CNYIcC6rrfbLTMDcAhBirzr3Xlefv302d2mE6X6IeS5Yebog8bUsiNVVXGM52dnq/V6tVppra3SSc058Q8GjkQUoiuL2nvfe2dIWWOIAITqcjS0XT2v8zyvq0wrHNc5MytAiGyyrMyLrusQsaqqYRjy3CbcYghhOp1vt9sQQuy4KkdGZ4jY9p0xqncuMCtjQghFVd63AvupdDBBv1oV5b75eN/+v4zz+IEk3Ts9wTds1tu7ve98ju/6JfeHeyHzG/lQRPTeu75lFqX0F198ertYNf2QlfOqnoIQARut2m5zMq/PpnMeWgs4m5ZBmxL0s6vh4jL/6vuniMVyszg9gaHfLG6dhmsiKovCGDO5vHTOdb6ZzWbfPXvJwRtFm+16PLYaQRH2wIbAEO76rioNIiJHTaBFnEQSUATBD33bRIBJXWYT3Sw3o0lltUKUGKXrek10Op8u727Pzs9ZsOu3pE2KWUajkbPnu/Vuud4wwbymj06nda6Mpc2Gh8HuOu6d79qoa2EKXQglJnEGAYBX/wnerZY+OgH46ttvzs7OfBgm46qP+z6ztwcCKNhDFvHQ1IEkRoDTCopACHBImYCKwAcCQgAgQIYogFqFEAQS8ysHScGvijFCsi8AuM/AADNk+hXanzmBAhkQtFKRozCAAFGCD6a4GGMUDgLMmpAIlFZEFLyzSqFGZh4Gl9xQpSjwXpBRDvXhvePJiETMkRm01gjCHNPqy8zMkTlGAoUQNRpma0EBdl23Wa2ttVobAPDeKQ0ogITMLBATMReh9nHPeZV4v1FiCC7GOJ/PF4sFC7oYlFKjyWS5XsfIRqkYolKoCQQleh9jTOnLzOYPHz3arNeL1Wpxtyqrctn2hQKi5CFzbkyudWb0aDRqmo45fvL44+122w39bD4dhmG5XBqjiUiDFpFe+q5vhBNJbeAgKs8UkiYIBBrpfH5iVbhbvFRIxpjZ7IQFUWLXddqq3a5RSmlNWZat1+tkEJ3rq6oi0k3b7nY7pZRSRgQFkZm7oR+NRhhRm/zVnNs3Sr8avxSj132jcD8beHz1F8an93c4ul1v5w3v7/DG/r9w/PIO7NvHf9tWvmEKAYAAI0CMUVtrtOoH//zq6tGjR6vV6vLyvHUxePfw4vTl4q7duZPRqG02F/P5putW29YlXj+WIBD6YVKY0iRmDgCAzFoiqstyu1v/1o9+Y7lcfvnlT8s8U2TOT8+ePXv5D/7hby4Xd6Nq7PuhKDVIHI8qZCGi9XpTZYqjt0YVxhglRWZpNtnudkaTJTj/5KPbuxVwKIqiaVpBxSAvb+4+++TRs6uXzFyNxgKkrc3z/O72+rbvb1frvo8fn0/mo+Lx6XS9fLbbbieTvB0ADaqdRh/Rx6IHBDA5xZ4j8BsVuevV3e1mk08KCKFxfVYUL14swvuXJHVoFMVD8RdJNBJTTHUReC2RIhpRWUW8TwczAhErBs+8l6wCEEEWwShMPnmFtGeMFaWAkof4SuLuFcMYEYYYEcFmdLQpyeuyIgoBEPYaACyB9wAXRYz06oZKoJYQesDjop7MOcA+4U4pO5ni/JSgdM4BiCIwCpRCBEGWKOFkPMrz/MWLF0DYu2E6nmw2GxHIMysxagJABgaFBITGKIx7qwoiiVWs67o74cuLB3Vdf/3Nd32ILsTlepOXVimJPhhFo9GoyGzXddvt1sdobaY1Lper6+vbs7OzZy9fPrtaNg7KcaZgcMOQGV3lWV0UuTVaYfDDfDZZLpddZ3e7jYjc3XYms1VVbHZtyggB4GQySaLPzAyMIYS8zNq2JcCT6Uw4FlnWbNbRB0ZUiM45mxXO+Rij71wSMPDe73a7uq7btt1sNnVVIGIInEooeZ73vYsxYgjMXNWV914bvdlsPmAZfrFv+Au9KvjlDOKH93kjjfj2q/ffft9uHglyP3xWb/t67zuH950GImbaRGs1oYjs2u7x409vX14XVvtuOy2wsIY5KuHTeVVVxfL2Reu7LM+tw++e3FWldY5XOzgbZ5WRUZ6vNtv5rC5zxcx93/dt8/zFlYQ4Ho8JcQjho8vL29vrssDNanl+dnJ3c+f7rpoUwo6Aq6psdzurQBskEkAiEOdckZnJuJQYlMS2aXQcJHqtFQIrRYMPRZaP5+PrxR1HcCH2w4YIDEJhVW7142k9MoUXGE9G7Fzb7brAXqvKFz66wkhxok0WNl0IHRhTlTb0YXABeW+wUqcIts49eXFl8+LFs7unz68ms2l8sVDWxuHdjaKHjOGeGw5FFBAiMgAREO6j18SrHwWIgSQCUgrOCREIESRENgqSip/sdeeBWRSCQgKAGAURNB4OGfjYfKL2GxERJXoESGLhIEIgiQwtpQvTzoCcMjVHny6kljhEZRBAUoPHYWpR8mz3k433SSs8dFunHY2mxGurtChCQ6i11gozYxNZfoyiNfWDF0Gl0PVOBNAARyAArZEjRyLhAIJaKZYYo1dISMAIwzCEHkyeLV7e+Mj1uNzt2iwzKUlKIFVZ5lnmbxYM2LsBhUxuUZELQ11Xs1lB2z4ETxqIwRLm1qBADEGYEKXv+7Ozs67rHj540PX9brdbrVZZln10cbFr21SDHmUZQ0yYbaP0yclsuVwSoAh3fXt2crpYLBTEi4uPAMD7YbvdTrXt3GAyq4ibZjv0fVEUZTEOIQizNaZpmpQXzop86EMSGCjryrmgifzggBCRrL3HYXOv1fI4Cd898DDuG4tfxv96p2f3dvHknebvnR/xYSv2gYge3vJq37f/0VZ+wC1N0hOEOnG6MRmtdfDDpw8v/uJP/0iCTCejIKIEqqK8vnmZF0Uf3NXt7WazLQxZE72DaV02bVfXujB2Uk04dFdX6wSpb5rmH/39v/uP//E/nozGd3eb+ckUAKqyBICPHz2Kzs3n08zqGINGdENPIMG5UVVYIqtViE4ij6pi6LrF9U0/tNao85N5XeZ1VYDEruvzokLSq3V3fbMgIh9DBEClEamqRtPpvKoqCr3y3dhSDrHKciST1xe6vnSuDLHqvG2C7kkHpZwGqJQCUAyHVN+hJgbgPBNRXY9zCwAQo4yrPL6fXY4g9achpZD5iObZd9cBCigRg6AIDEEU4Cg+RO+ZGVCEREjAasgMGr3HwihKzh0QHWjlFZjDrCeF1ipjkv+3l8cLITjnj51nIQTvQwiMiNaaRC2FiAwijIiYtJA4sEKyVitSMYpzHCMTHQ3la+RJiEopSt9OKSUSAVlrSv6mQgGMMXB0UTgQitGkkRKgJEZQJhuGIcH9qqqoR9moLnOrrFVZlhGhxMAswGwUaU0ShZm1MdruZSvbtiWtAKBt27LMOUKRZeO60kqNq7osy2MhGEk3jev7HgCKovB9x1EsYZnr6aQc11Wdl5PROLErnpyeFzaDyIktYXF7m1k7m82Yebfbjet6Op1WVQUgWuvcZqenp2lPm9usyLTWTdMYo0iBoixNCudCVuQRpB8SO0qnlBqPx4nOLvGSWWsfPLgsyzylekfjqqqLvLCImGSmm6aJPnKICfFzvL330/UX5g3fcKzeaT7e99439oTXrRIe8Fz4OorwnYYSD1WUX/Vzf9Wx5/hNDsVhqX8jwHfOO+dMXSgQlRXb7er0ZP7f/6t/+e1XP52ObV3X7W5rSX/2ySd/9hc/ns0nwCIYunZg1jGEZse2LE/PSmHPg94sN6qUk5OyaZrrq2VVqevr62EYvvnq67Oz2cl01vbh9vZuPp31fde0Wz+EtnXzsk5NoLvNNpHHEdFeZwfCZHLaNU3bd6UpjNHCAQmCH6qqIC+D9855ZXC7DWdzlZUluUhaocBqs3VD86PPP7nbOpWrk9PT6INEuFttdyw3m/XXd54R2g4AoAQY12ai4ySPzdpHBgKIIvf7LRHg7vZuMpl81cPQ9kaXHMTozL8PYQMAAGrf4yEAAiyCopVCAYqpOiOEmGkiIpeYwWIiQN3LPHngnECRChF85ABgRBQRA6amOyIxRivAEAILE2EIR4jYkaBQRARQDnUVjIlHAUQgMis45nmYY5AYQ4wxy/IQghsCImaZQUUx+hCCtRoOEEWitOgqAFCkYuQE6IkREJMkKShkrY1CIBCQuNfbDWJHFlnFVSxq673Ps6zvOmF0zimUiOB9JIIUJzJzkWXDMCQR3YPNlV3bEtGz758sVmtQJIJJiLnv42xcXFxcxBCm0/HLlzeplS3Lshggz00UIaLvnn4nANaANoqAM2NQQGt9fjrvvUs0Tm3ww9CfnZ198/13p6dzADBGVXXx7PnVyckJABRFISJEarVaDd4R4Fdfff2DH33x4sULiey9//7777/4/PO7mzvv/enZPEY5mUyub+8AuayrZrPMskJEJpOJcy5l87MsSx5oWeZt33UdJvOtdCjzEcZY5vlmt8uybLd+LVJ+zQSJJIoLAFQiMc1DpZAhAip4Bax95TfdA06/biLv/fWaS/UePPPbXtt++wFDgccU0gG3gQlLkQjdD14kavW2R4mI8qoJ/zUQT2pC2G+kVy9xiIR7FYvUEqVe782y1q7XXZ7nCjUpJO+0yr24/+d/9y/+s4eTi7KM/aprt0jxu2+/qvR4s1iPTsxy65hqzHbKFP/g7z347quvClCn89Prl7dohcB0nhEVIDBTUVRa69np5LPPPinK0xMOt1fPjDEfzU8xyFdffVXXdjKaXD1/NplM8oldb5aktDEquHg2mre7deM6RMiUhsBWB0TedmE8mb14ccMCH12cPfX9ciWff3G+WV1HQWbDjolEG+VA/var7yd1VWcEbjWI/uqu++bOrZqhacOsgLP5hLRtu/Dietnu/GcX1ciqWyEgJgYRYNCAAMAgMSCsl1fT0bhD6GI85XUmw5azBKwWhCOlWxqphBKQCZH2fXZKEUAAAU4LlEgqHwtCMEoIUcgwRyRGxRwQghYTmNkabU3eDy4ElhCigLUGgEkYJShNxiiI7D1rvZ/bMYpExsSAD6Bxv8z4IIhQZnssTmbMMAxDUtojUogMEqKwBOYgAAjio2efzB81fWo/BkRSoNKEitGbzBS5SRZVKSEBCEEpMkYNgzNGWaM16mEYRqMREQ0Yl5uVYxhap5QagjeZlhiZJTDHEIls8MGH3mhCRBeGelxJElRSCkGIYWSzXbfTxpCxrXNa66LI201zeVp++uABAhDZftdIZNcPu65jhQBgURUm26w7ABvg/0/bn/VYlmXpgdhaa09nuoNNPkWER+RUmVUsNimQaEjqAilAUFPQRL0RoB70DwRI0G+QHvQb9AP0KuixpQYpokWJZNfYZEVWRmRGhE/mNt3hTHtaSw/7mrmFuYdnVrG4cWEwu3ame88+a6/hW98HxmmjyNX26ORkGvYs4fXblwoRSL9+9eJsuWwWHaGcHZ9cbbbM/Ojk9Pz84nh9RCCnx0eI+OrVq7ptHz06u76+zpnX69XNzcZU1TAMyjlTt29vts8/e8bM4zgBquB5vVgLYd/3dV2nxFXVCGNTW0BeLNph2HNkXWmt9RD3c9jnnI+Ojq6vL53ViCb4qLUdx/F7ZRNUmBMCpyygNDD/rWjmAXwfjHJ/FB/w/Yj4fW/x8Dt8z3o+qCnffxNu64APjvzx439vs3vIbbz/rw95n4VDXCnFIinGrm6m6CvnfvqTn77+9a9+8g++kOTHOfz0+SevXl5oVdW1A1HW5NFPy7XbbuY/+7OvLMHzT06O1qev31wrhTGBMmq/HbpGKyWPH58dHx9tt5vrq101YY7+9evtz3/+2fX1db/bznNYr5eb6+vCZ7PbbivnlMJSQes3m9W63W93x6s1ALZ1M0/7EObV6mg/9G3r+sHv9/uzs1Pr+v1+b7SCrBJDzCI5WRLRiEqtz56+/O43C7RffvfqVxcwK4gZfvzjz9aWQgiMeHK2RtJv3lzs9wN6UKWYIRxAkA6VWlIohJvN7kc/+okIOFcLkbEKBoZC83trCum2S66AdLB4hAB3Ak1ZWCGQQhLMOZW5xFnahfIzh5hKzQFvuayJQFhSSszAUsTeiBIXQmkEKVwJeGB+LbiWsu+7qXKAH0JWGkmJUlRawXLO3s+J+bZtjwWodB6Po0cEY5QxCgBS4hhTzuwqzcwxMCeOxBqoXKT3USForYxViEi35DrzHIkg+KxEQKHR1O/2P/rR57v9jYgoRSnxPOcA2RkwCnIGpcAYBSgpCCmwVmtDs/fjOIKIUmrRLUCYYyKivu/neTbGtMaMc0izJ4L16hgYj07WkDmEQETtokuEMSdmttqmlABVSqnrGk45pew9v3r1qrEmK/zZT34kIrvd7uTo5MefPN/stj7Fzz//fAq/Wq/XSql1zLYyIYTtdlscukJ9GGPU2szzPM5T4eVFlgFJRPb7fYzRKt00DTMPw6CdBQBrq6bRMeZQCK6RV6sFka67Vlmz3e2qpnn9+vWTJ09izkl4v98frc+applj0FrBR4e+17L50NZ88M0fTh1+rEJyZxDv/Lj3/cf7425jvIeF/uBmP5R/fOAS/tCFvTvU963w++OOmjznLEBTiH2/e3R2knOeGH7z4rx1GpCmGHb7cHTsunWz2wURqWuxynHwy9bGOQyD//P/7kulTE5puVydX15VlRJIP/r8ixCnv/rlBbP8/Od/ELP86R//u9PT5uc/++mbN28Q8ZNPnn777evjdVMY8P0cgPN62Z2s1grxajvsrrfLlTOaqrqZxvnJ008y++vLGwA4Ojqp6vnNxfV+8kpbEWDSmTEk9iECAutCN6T+5b/58uzxaj/QtxvoAZR2xuCL717eaBynnAEEgBQgwHq5qjHt/FQZFEFhBqQkOYIY0nNMv/n21d/5u/89BOjHsTH14ujkbdzlwHBrChHeEZre3hEAODSXCAqXKogqjC+cM5CBApdRyiAGRC7BCmcQYKU1ErFAzlx4EEyllFIiURITAKmiU1UCciSCGHPBHh7iEAEAYAalpSANtVZlpS98LQDvsqNygG0XzqgDN3sJvZm5ZCyDT0SktVKmBB6Qc8oJus6CZGaOURDBECqNSmnOcblc+HECYK2UM5pj6ncbgQNTDAAYTVqhVYTAMWatUZsiIJWKvnRKMUZJCYwGjjlon3NeL5fL5XI/THMMwxR8Ekbo6mYO+9ev35794siPfrFou9Xy7fXNMI0+hk0fLUG1MCGEEMLlxU0C0BraqnJG+3HajPMf/uKnXdOuusWLmFft4vz8fA6ejP6zP/uz47NHr9+8qaqqqpq+70syqu8HY8yq61JKu93OWuecg4gQIwsUOuCqqmJKR0dHCg4xr3Nu9PPl1RVIds6dnT3WJhed0qurq8InVvyVaZqePXtWxABK1msY94BGazVOvXMfUQL42/MNf2uB5XepwPzQXu/bxPvmFW5tGdyaZPnQEcqfD1KQDzKDD+L6+/9lBK01ohJJSqlxmo6Pjv5///q/efXqVVObAFZlQO2+fXWOplWGlKLtxqcQTx+3221+9vT06uKybbVSyMy2ooqqzWaDjM5YgGkYt9dX52dnj3/2s59fXmxCHLXWf/RHf3T++tWrV6+maTp7/OT586djv5+mSSvsulqLpBCtVjnz45N13++dVdM0HS2Pbq43xtk4BiJ69OgJMy9Xq2ax/PbV68w4TbOzdgp5mjlmQA0iIBmDyJxhxuqXv3qzz5CAko+fPns69RtOqV04Edn2kzAqEETc94MCUNows0QQgsxCAERQGXtzswHA06PldrOzmtbHp+zfoqIC4rsbB5YapbA0ktyJ6okAs3FwG11ySqD1oXVyHmZCrGxRFBLOgAioEgghilLEzIigCQkBgY2+A/9nTXSLawEgklsGqPsTT2tVoNfFAt52LUNVHTDPiIJECiUlSYnr2paSd4xJBIqwSTkjAUiBuggYrbTVYnLmoImMKQSxCUUKEWKRx6wqC5IJUHJ8+uTROI4pp5QyMxCS1toaoxFAclUhIh56KoQQMUUOIRuniHJd2TgHACCi1dHR2dnjN3/x5yFmVAqEU0gi2DRd19ac0ur0dA7h/MWrm90WlUKt6po1iIikEIGwrlUBgmqF0+SbquoaN47jPIxxGterhVLYew8I2+1WO/vV118fHR1tNpvVCgsYW2vtnMs5F9jpycnJ+as3zaIrKlcxxiLNPPXDsqkKj3KMkYj6aRSRzz//PEVvbVWEVkRkHMfFYlWYwH/zm98wc9c13vvS+pKyI5SqqvphKjlc/F4j771wttCSP7ARHx8fsWiFi+EDr9ta7d3A98b94zyIfH/ruH/87zVN3xIjPiB/vRv3d79vIu+bwvufl4gYoUjQlFy41jQM/RQ8azMm+Pq7rXJtyOSaGhTdbPbTOC9a21Y2jNM0bo6PautIW7U6Wj56dLrd7wGzM9r7qW1bZm67GgCurq60tsfHx84UFuK0WCzquu5325QSp1y7UjyBpq2cNgTYVTXHZBQ+ffR40dQhhLZt/9W/+pPPPvvs+Pi4KEl98803b9++LQ2bROAz+5B85CSQgXym3SzXQ6JKf/v6os/AylR1DcAX5y8lpd3ob/bj5JOxrqoqBkgpGAUIoCEbAkdgELQAAiRhhTDO8fLq6vd/8TNECKBd3dhbUFShSMBDlhEAiUHybWMR3jbbFXweoT7QcBU3EAQAJg+MgIYySJIDp0PMXOitlFLGkNIHXmsksBo0MUEiEJEsIpI5p6RQFIomsJqMwgOMBkFruiVkOMTsZS4UiA9AoZlRShmlCBRMPoSUGMr5kIESs4/xAH4sxeLbiB4RU7qb6odUUok8uq7a7+dpmnLOSqMztrh1ISQA0KWCFELfD6WZUpETweDzPHnvU4oMoIkUM3MCjokzkMK6rkXw8uqGtM05A2Dbtoi43e5CCKenp6vVqvBanz15XNX1OE8iklKeJl6uFp9//ny1WDSVA5CmqrqmJmFrjLX27fm5tfb46NTPcbfti4+GigrTEhGVE5XK8uXl5c3NTXHZxnG8vLxcLBZa62kYb4oGGalSG9xsNheXlyGEMvnrugbE3W4ngn3fV1Xl/TSOfaHRu7q6GYahgD1SSnVdF6545xxn2Gw2BNi27TyM49h/z3rA92Lnh8k+uS1Z/LVM0kfGB+3s72h84Z5ndyCqu9c2cEcxcmcK5V3D6fc8vt86fuiS7h+nZI4iF7FJck2NiH/2p3/8d//w7z399IsXF9t6Vb94+VaoHcI4hXh1PS669tGjdZhHEO5qO07T48dn19dXMcZvX3x3dNQlEVfR8dHKED178klOuN3u+75/8uTRX/7lX07TFP0MAP1++/jR6TzPVFZ/EkRk5mGeGKXrugL7ODs7+/LLr6qqOjk5Wa2XP/rR2c3mSmvb9/2nn376ySeflEZR7yMRMmJGygBZMDCOUbaj3Ozzfk47zxEg5zxPgwLIGfaTJ20ywBxjCMHHAAAKxTljCAjEIGiFSvh2/mAOkQFevXr1+SdPkKAfPDD86FFXFqTD7bvTJkOKzFkk3da4EFFQIWIRbuKMAGAMEFGMkZEJAYGYOcaim2yUMnKLZUFEpdEQKhAFYgisAaOxMK0WQb0iQVXmC6JoTbdQGwCAYlWJiraBCCMIClPwKTMIIDOEkCYfYy6EYnDbJnoo/hUsi4gQgTGqcubArZKS91w+CzPHmEPgnIvkvN7tZ2Pg+PhUKZMid8vFzc3Ner2EQwHp3QPLzDGmcRyDT4hirL4jIdNa32XyEYEEjDGZYdsPVVWRVj6GaZpEGAliCvPU+5ibrpuD/+rrr8fZ58x+jiJwdFQvFgsA2O/3ItI2lSbYXF8vulZr1W93v/jFL16+fPlnf/HnZ48f2ap+e3M1zNPV1VURgC9UOs7Y/X5fZqZzbhzHYu4LpQ3HZIxp27aYM8g8TVPXdeULEcKL6ysRKUStiLhcLr2fYoze+5zjarWKMTJISLFddMro/dALQtO14zTFmK128xzKMYk+FA0X3TD8qBLA+xbhI4N/YHwwUH1giT5wefci1juP8oMXed+c3ffy3vdA3/dD7zZ7cMAPXlIBVZQFPAnPwV9fX56dnP7zf/7P58gJKIOqum63Z5/HoZ+mEVbrGjD4KSxbrKoKGM7PL7R2AjRP/OaiN8Zag01rldIXF1dff3X1ybNP//AP//Df/Nv/z8XFxT/7Z/9smqY3r18qpYZh+OSTT3a7HQBL5oMWBMDk53med8OurKKnp+sQwtXVBTN/8snTFy++tdYO/VTaWkvjc3k4AbFw0jNgTDJ6mSNMAvsIAVBQm7op6BBQGIVCylDU5oiYueBG/BRLO40CVIDMjKU0IegqQ0q9fv1akTROTZO/PH973LhKq1uowN33TFzayuCOlOFwLxJDipCZQkgxgdaaEQowRZCyAIsAAQukjJkFFRSQYOaIt2sloBhNSos2YK22tqwdpBQYA7f2EemWSUwRaAU5y0HaNHOKRZRci6AcpAUwZ0ixhMmSEmiNSikAzEWuQw5LeF0bazWgxBhLNwUiWq1K5wkRGWOs1Qjo59TvJ6UgJnhzcbHdTavV6vnz513XfffdS2FVKjMiYIypKmMsUpGeAyYlVaXrxigtAAkxO+e6rl0sFserzjnXtovFYrFeHe/7USlTqLGQoGlM11VNU83Bvz5/208jaaWM8T4hIgFqUgqJU2JJ0c+Scs7ZWJrn8eLt1cnJkffTJ88/Wx2f/Ot/+8fXuz1ptRsHBlgdrbfbbfC+rqrry0ulVN/33vtCwlo8mztvjplRIIVYaMeMMdv9rgCqi29YKL8eP31iTTUMw11RqzQpl67kxWKx3W6nadpsNuV0XdctFitFpmBCC4fYB5/uMv6T15SF35mqu1kO95y+O0t32ADhgXnCe0nD+zuWP/FDpGHwwzWd+9f5fcqH9678+5YxcS4scog4z3PXLt5cv/1H/+iPnn36iY8Jyez6aczZgDt97PwupohIfH29ITLro/r6umeGtu5i4vPzDRCsVwtE3O13PkyfPn327W9ePX9+ut3ux1/+pffT3/u7f/jmzZuzs7O/+iWdnp6KyOXVzXK5zNNUtc3N9po0np6d+WHQxvz4x1/8yZ/+++vrTYGJ5Zxvrt68Pc91bV6/fi0i+/3ehzBNU0aqqipxzqWIyZBEIkvKkJEUVrOMURAI4zwDJEIAUsAKJCIii5ACjgc3yBgQUSkxABPgbVsbJQSlKM/pxYuXfvrpk0dnN99cDvteOVvXNUxTTJlL8uFQfilf+Lti/qFJAEADiWCMwgC1oICwgNZ6miNqNJZIC0cJIWoNrlKaMKWUs5SJwMK6SIEKUGGjSQf9eEQCZEemLNsILCKEojQSUcpCRMzCmXMGpZCQCJEUlS4KZkBNVunio8FhvQRCzXJgfABgAlCaNKEypcyCkiXnXNdGbpOMiKDg0DObJRMCAhoL+6H/D//hP7R1fX19Pc6cEpCi4l1mEGfAWKzreppGFs48KyKlyxMB+/2oCaQylTUFjhpCCpm11gA+pYQKnTKAHFNEysv1erleT3589eY1IioFmhQpmqbp8vJSYlKAbdsqo8dhjwJtW9dVnqZptV781a++fv78+SfP24u3VywzAIzzFDO3zUIRKcDNMLi2Kh+wZAyLOZvneb1Ybbdbjty2rdY6xljIer33TVW/efNmnufVatV13Xa3I63iFPf91hhVVdYYRURd11Wu2Q03b968Wa1WIvnx48d934vIZrNpzKJuFzFn773WOsb7uK6HJosKnbBIKmW7srRCgT6woIBCIiyN9KLoQ/pK76ky3R+3zJ13It237xRUvEJUWNTWivDOAzP0fkbvgTd3p3uSpWiQgyAywF2qEh44pPcutKhHHV7AgHKfiRa/r9Un+cAaUiAIIOH40dOz5z/bT/yP/+gfA0dtlRhIxr94Ha52fPbp8X5ibddXm+gZIsemU66mOUxd284TSMooMwJoZZtF9+zzx4J5nIdXr96cnT4N89xU1X/4D39Z1e00zwJQN8aHQVkzz6PWmkPa73aVdUqp7757eXqyXK1WVdW9fH1Rt4unnzxbLpdtu8BKpjRvtzfO2pc308upXZ39bBGhIaNFnIJFS21nWcEs3MskYhSQYtGCWkgL6JiceLiFX5KQOci3ZKXQQK6cQqtYidZoEVUWDRQzGGBg+NP/7pvPnv/Ucsp53lWL//wTWCBlaEVRllwV/n9iFEKADJgQgkBGBCJDhIgxRkKwGmJOAkROecnWkfcSJ5Ykba2P106JhCGzECpNqAUJESRDYTZlAWaIIQefhLkyUlvRCJCjU9w1moCtJa1JaR1T1oqFI0iqKmxadHXWzts6EEWQeFjjGQrFKSIoLTEFH4MgoKJCSWCUUkScGICstaRAIIHK2oEfE4hGUoCorWbklLLVplakAayCHARYbNW8vroeYspCGSAlzikiiFWoyeREY58JLSFJxpy4crWAQnLr1cpWLgCdb8dvzvfXu33IIc0TSHRGG6UgJeDYVM6qareJ07BnSfv9uN3P0xwFlU8RNZpCeKFVRgohRB/aZiEIc0ygSDS8vXob4vjNt19dXbzOPA3DFGM+Xp8Q0fXN5TCOu3FgDSV6TZxj9D5GRCyR8sX1lbJGKbq+vprnSSnKmJSj2lXM3HZdTCxAKYsI5shVbbXWy+U6RNSuq9qlrpvzm6txmoy1Stu6WV5ebObRr9qudZWoOE67nPcg8eZ6l/Eev6GABhSEXIA1/LenmUc/MH5o+3fh0u0L74H+HpjCj48PXqS8543+R2YwHwT7u12/XC4R1fn5+X//v/gfGmtLFh1QA2kWuLi63vXDfuiNAWY2xmitb7a77daP87xc1iJ534enT88+++TpxZs3w26/Xq/Pz88lp83NQloxjgABAABJREFU1dnZ2TzPFxcXBdxQutyXy2VhWn/y6DEzx9l7751zfd8XsSdU6tNPP0XEm5ubumlCSHGOzz/7sTWd0tX1Lvz5Vy/2mYMxzNx19WrdGet8yikDAyDphDmTZOKEkpQKxnltvTXA6fZ2MghqdWhvKN9JCXxQDuh5AnZGaQQA+PWvfzP0uz/8/S84wNX5G8n2i0/PKpogsyKYc0YUAnNIIIJkgFy4VJkTSwYp7NXMUKqucuAiEMTCrX/IQqICrSHlyAeZSiZC64zWhhlywuAZgNqmMcbMk4QgdWWXrYtJckxt64B5v2c/R2tutU9AgRAKcUbOIIzF+zaGlCIiOoglCRBpQBC+BcIIl8IIEZUmvHmevc8AYAwZg1ZTTL4IMQefmIEIfQyojFIkjN2y7rqufMPTBIDZGKobXVW6dmSsAsgp5RB9DtFosto0dV1XlTHG++nyaouIIrl2etEqIrh4c359fXmz3W122xCiMUYpDNPcdd2Pnn9eChfD0ANwcd+cczFGhWStLfj0EnbE5Nu2TSmVwkXbtsvlsrTKIeLx8fFyuSy8Ml3XxRgLUULTNCmlkkm01vZ9b609OTkpxywJhLsgzxhT0IibzYY5jeNYUIfjOCqljo+PEfH4eK2U+s1vfvPixYu3b9/u9/siVJVS+snPfnr66IyBchYByLlIvujvteV9aPygtfrrjh/KG358r/ft7IM/fyjf97uP+xb8P+Y4cM8tLTWyy8tLEYkxWmv/D//7/2MWTBmmmOaYk8AwS2KZp2ScQYFhCkopZgYFs89IGVAWC725vvzuu++YeblYgMjjR2cp+CePTnPO33zzjVK0Xq+bppmmqXyQs7OzEML5+fl6vb5Lu3zyySePnjwuneoiQFoJqouLq8wMjNfXWyRztdkHBuPwV9+9GEgppeq6Nk0zZ9jPOQgAKmbWwI6yYkZJmiIkDzlATiighAlAMjMIImQWn8rXIgisEBHxEGsw13UlBEpDFvjqq6+OlqtHJy2kfLXxx436yYltADQ2AiSSMeeDbGGJMQASAANEkCDMcOD9L0WPnCQnvk2QkMgBCUgEyhARYJHpZMiCAJQZZi8s5GeYxpSSEBpEEoacEIBP1h2K7HdeITw+s84AJy5izXJQDWVOwglSkpwFAEqTL6MgIipChBCzCGqtlDXGGFLIWJ7NdDfxEA/pxZL+yaFgvwkAtNauqZVS0xzmwIm5rmutbUqpdlVTARFoJQCcOYmwIrFOt51SCJyldtWya5zWwzDkFDSp9bKqrAHJzqimsutl13Z1XdftamlcXUQdNKkUGUSGYYjRD8Nwc3NTllWNRMCaoK5dXTtjTNNWp2fH3aJJKRUM4GKxuLm5KZn0/X6/WCyKUdNa931fBNSapmnb1jnnvS8CykW0p23bEMI8z01TO2edc6WUHOLc9+N2uz3QLjTNPM+F6+H4+LgUYZRSxtpXr179+te/Hobh4vy8aRprqxDSrh+vbravXr25ud5672OWeZ6HcfQheO8R8eMW6XdSEP1IFeI/3fiIH3p//NB1PrhUun39jof94Inuny4lbtsFANTd4q9+9fUXP/7x/+n//H/Rto5CgTEBgFZIlm93VAoS5zkwILgalEKAZLXSWjd1pZUyxrx9/QpyWi273WZzc3W122zWy1WK/tnTp4pov+2BZZjG00dnRFSmS/Ef67aZJr/re+Pcdr/7y7/8cpjGBHi12V5dX796/frN5dXx8fEf/N5nwct+t7XKaq19zDeb/dV2nBKUhozSipkTIMDC6ga1FlACmJEAEFjjQS9ZBFJKOYFRpIqgJjAp1FppRAKcYiSlEpAgXGyGX/7qN4IkjOc3vu+vfvS0awFyTKAUKDhgn2+jg3wwhYe6Sr6f1OWiJXq4I8yFTZvktrv8riosCDnz5OMcUrGYpZw4TpP3nrTWheqCeRx75/TZcRu9xBDa2naNIQWkWBNrumtYLoRgUFhhAFnkgMdWCnMULoaSgAhIlc6cA1axpL8JUQRzlpzZGuMcaF0WEczMMfokSSmlFDZNU6Ah2+3e+6i1VUQAlBKnBDlDiiwijWsap47W9enxOoRwfb0fdnOJyaZp3t7sFaA1OsVQQgqWtOuHOXjveZqi0+74ePXk7BEhCGHTNOViurauK0sAR6uVdVogz34chqFknwUgMy+Xy2L4xnEsHW8lg1S0Q4sHR0TFazPGKKVubm5KKbnrut1ut9/v72Kaw1N5K76KiFVti4zUZrOZpgEAClJnHPs35+f/7t/9qff+eL1SSq1WqyePHtV1u1gsrHVt2w3TjEr7kIj0crnsuq54psL8cT3lv7Uqyl3PL8CtwPhHx/uG9XYS3zPefx3be5ccLH8KFelFORznew0Pfz1+xvdPVKKz4uuJyMnJybcvXj15dPp3/vDv/bs//jeoFOecsuzGqbWUkwQMSoEwAmofQ+0gJm81MHNlNAB0Xbe72RjjTo6PtdZ+mruuu7q+aLv6zZs3b968KQvszc1VVTWvX7/umra2DiRrrTTRX/zFX6yPj4+Ojl6+fj1M3hjz5mKTM2iE00dmGNj74Te//lW9PvnJWVVrm/d7aup+mC5vwpAhAxBpFMnAuToFPwHkKTPnAADG1iHmymRkERBQgPlgObUBY3UCwJiAQYEYrRRAEp5jss1i3O4BFEB+dbXtCAwCE2778WRhv3h2dPNqW+4Olht0C1ARAUYggQylLx0ED7r1godKCgsQUC5yJYQAhFgaMyAlFgEiZJEU2ShydZXi5JxWSqUYUspIWVmlEEkpQ7TfR+fy8XErItvtaCoyGpkRFDKI5sIOAaAU+1SqPloDAEVOnIAQhOhQOeEMAIpAE2itjFYhhJwzojADi2gtRGqavVJUonoiEuaQoXZABCjYNHUMc78fiuyytTqnQvCjCnIohsgxKlDOmTBPMcaj1doofXm9G/qgFCwWzTSMhcTs8ePHrqoZaA4h5qydqyXFEEIIhhAAUkpD6EPMPgZmjkWAGBE4DfupauqiPtr3PRKVCHoYBq1JK4wxFkiz937f90S6yFpM05xzXq/XAPDmzZu6rtu2LQU9k7jgaUqDSkm5ZI4sWGAPWmtnjVJpnue6rnPOTVNN0zDP4fWb746Ojn78k08fP3rqvX99/gYR27bdbDZ124UQBGG9Xovw5vryaLVmgNL9nXPmHB90xz8YH+M3vG8j/sYu1Q8NfK9rBL//xu+eNPzgn7dM8iWaui1ey4ctLOL37eVvOxEigiAzH258iErbyeezp5/Cf/uvUxJASMLzDMerNvtxzoVgiRQZH4JS4CzUzqHAbjcdHS22m50xVnL+7tuXxyfr1aI7Ol69fvPSe//06dMSOIjIcrlmkfV6PQ0jZG6bah5HIvr5z3/ej+PVzXU/jQKUOK/Wi5wjAOz6+enzH82jHy5f4/7mqFLPP/10eP3tgJhYYukORptTKuqd2V86C0/WjRYOMzS1y4ivzwOIyTlSuXEImkAROo3IAiI5S8pQ+nZJGFms0jFlZU0OqZRbyWgl2TMPHt5cbp5+8uNvN/vzKQFAEj6sSe/axREOCOcihnLoNhJGQQYEZkAFLAfPMoMgAjMwUi6V3ENCSgiFlDaF/19Aa82UmCXGzPqQjlyvG6XUdrtHhKpSOedC2gEIqkCGFAAAEVtDKTEiaKMBCHyIuUh9CgBkKZqfqEAOqJ1bnKzWmouAn5Aw+gROYWZhBq2JhRWCs4pZFIBWOMeACNbaYQohZhEwRiOIRqR3JXjSGrY3cHFx8eTR4265ipl3/UhazXMAwmFI05SePf1k8vPr84vtfoqE8zRBFkIogS0zG6fiELfbPRFYW8X93mpar9cgeU5RIWlnrLWkFKJSSvXTTJK7bpVTaJoGMhfozDBNSukSR2trQgj7/X61Wj169Gi324Vw4Lnpx9l7P02xaSwAKKVcZZCk1LtyjjF6g20Jq5VSlWtijIXVtTS0LJfL65vLFPlotd7tdq9fvtDahOC1teM4AkD0nhFCin4cEFwHpiSab6nSPzz+03Tm3bdxP2DU3jevH6x1vF9c/uC4+y8+wNngQRcC4L1+7P+4YbWeQ3CV3e53q9VqHiUz/M//F/+rf/H//L+HOSgEpZTCTERj5Nppp2WY5imoDGAr09baGDX2U9M1k4+1c0qZcfRN3Tjnvvjxj/79v/+L3/u93/v2229LErr0k+ScjbVdW0cfDCmNVC2Xm93u4upqsVicnT1qutWvvv7NNHO3XGwu911TLxbNt9+8Ojk5PTo+dZVpoLq8vnCaMkMSBgJEXfrhFECloEH48SftZ09OnUIAjEyXu8FK+voioSASMAsCOKOLkn3OEai0YwALIBw6ea0kBiGOGYqvhLVTGFk4zx5GhdN+8/PPTsJX530CQciFGPr2HgkI3+NLEhFGSIwKBeRO/lCLwC2/g2hNjIX3q2AMQJBA5QQy+LE2OoUowlZrUgokF8CzMjb6aTeMxqhu1Q3DMMfcNM4PAREPDLQCcIA7QKVVBBEQxIwI1hQfFIQBEY1CpRQpBBZOWWKOAHdR/N38TCk3rRNBDbnUhTSBVoCSV22rNSEkQC7ZlcyQQJwCZ1XOOYYAGo0CItQGtVbHp3WY56++fm0tHJ+dLJZ2nKdpnh6dHjujjNLHx6fnV5eozerE7sYw+gkYnDNGYdXUU/Ah8Rz87MfMIOIRBREVgZ/ioVdk8j4EBkGUmIVQg6TLy+vHj477vs8hVlV1fn4ORDnnkiVMKVVVhaCYeb/fFbtWYuTVajVN02GzHADZOl1Wr1v1LsXMRW0qxvjozN3c3Hjvt9vts0+e1HW93W6ttTHG7Xb7xRdfIOJunObttulapRa73VZbA8hznCvnclKI6JwT1jF+7KH+GL/hXabs/ps/5CR+b7OPnfHd/H6w1w+98/Hx/kUe9r2/wd0zdut9yA/AuX/HISLjODZdVwDuMUZEnENcAH7x2adff/U1IhCRQvZzDAFOjpph3MUIRG5RK+bc9xM6bZUOIdR1fXmxXa3yomtB8i9+/gd/+qd/vFp0N1fXw77vum6z2fT9eHp6+t13350+fhRjXCwWw3aHlQshPHnypKqqi6vL8/O3+yEenaxDjNvNnggEwe+DiPnyL18+OyMR9rpyVXuz3WlT+TlPCQKwICJKbaCtzI/OThZt8+b19vrqKjPsIwyRTLMS2WlFWmEIERGM0Vof6Eu11lYw5ZwYhZVGYICK5Ozs9Mtff2e1qmunU+QwW4BKA3tVu+Wv/+r6P/8f/Ozy7Xjez9nxvs/8MKVR2NVyeauQ5icBJJG79gF8p/JcsKSFhQEAiEoSCnMW7zMm1qiIKCaRkIigctrZ6vKy7zrdNs3V1TgOfdfZ5aLph31RJSiFFBAoBIeAqCwCUEo5JyFKhf01ZZEsDMwsWRgECbEIV6WURSDnlHMSAWtBaxIBH9M8ZaXAGgUAVWVWnUPIzMnouuTXBCHnXHdOKxOm3lUqZxgjCIgiAJAY5q5eMrM1VXVM/TS/fXs1jNB0oLS63tykSZYL03StoDLGTCEqQGuN1c4ZpSi3bZuTFIrA1WrVD1Px8goQOqfgPRnjsMhJKz1NU+JorVWoC5dtU9dhmr33WpsiX1VsmdaGiIZ+rKrqyZMn+/2+JAFLPzIizvPsnBNQOecYY0ppmmYiMEZXVcUpt21bmBdevHxtjRKR1WqljRmGwVo7juMwDCC03W5TSrp2LOm7775T1iDiydHq/HxTu6roKYOICILIxx96LQiEpZFeAFUGSJIMCBzEeQ5VGEREFETImQtuQA6KYgcxvDt2rAf5u+9B9r7f9vvA2N0lv++/9W5f/p6tfLcvIQCwMMA7NxAA1DuP+F3wDLfFldvn590x6cBsKPcP/sF6dPnIpnHD2LdVHXwgAkU4+pkVR7aBoW4NSMpJALltYJp2STu0IccpRDBGaaWGMVVro7W7utr95PMnRhFIPjl69C//xb/46U9/ulq10zSdnp5eb7bKWB83DKKMjrPXtcuYu/Wqql2BQL59ezGLCmLGGDffbY6Pu6qqK1TDODXWWsnLBW5mPYyBVECdnete7qSfQAMkYBB+uq6ObVia+PLi5suv3wjBzBCkaK6xC2Ntzd7PlTMVrVsVV3bQAgbNzIzRE5IkFWIGk3IWjnQRY30CRJA516TOnpy++s23ymLt6t089pGpgW9evvw7v3imv/x2u82RzMhRCJQiiIwADJzoIK+sEQQxgygBZAABRYVVSAMASxaB4DORSsy3LA8iKZcEMgEMQR8fxbNj+/KbySgjEDOmwME2bjt4GdL6qI4xb4dgK3d0sn718qquNBHNU0wJnEXnahLq5945cpWbfZhnUZyEVAy5aXQWzFlEgJQohawAEhiyzCyCiiTGPE9CJM5VwrOz5D0mNJJnSzKwLBftqjH7fT+MngEUGYWS55AhgMA4BKdVZXVKCRCsIaUUCRmlEk+JedlVc0ikxLpqnHpr1cmTVik1xfTm/GXOMs6BSC0X7TANoF3bdt98801bN5yCtjbnLCk6rTRCs1h4758+/WyaBgAu7cb7YdRaE3MIUSF3TZuzxJCNq4F0jDmkiCgcs3aWmf08K0OZ4Hq7YRByplKUQybJRimxdpqmZde5xhUbGkIo7GqG1G7aL5cLAGyaLuebx49Px3F0TnHkytbMPA6zNdU8z8fHx9v9ru97q/RqsUwpj+O43/Qx5u12+/zx6WLpYsZ5vMlxtvYeyAY5S7ptiRe6z936YNzlDe+cxPJOsWLvymS3oqD3t3x/rwdZyI9YnA+6bD8UPt//8z8yEL7rI7wziO+f5f6b5f4VeI33PoRwfHy82Wx+//f/AADGMcYkDLAf/JxA24pZnHM5Q9NQKauVZSKE0DR6v9+Xj7nb7Y6Pj3/2s599+eWXpXBcVHsWi0XXdfMcCxYBEUMIOcnl5eXFxUU/Dr/+9XeCaK06Pev6od9ud5NPbVOFzLMPdVN1ja0rPQzMgJt+iNPApLJyNcEXC3i+IrL1r7ZqsWjbWhV9TgSorAUAH3zvZ2so+ZjS3upcVEYCF1m17y8VDAJiLYUQjDEicL3d7/f7J8/ODmS6AMypbdtx8tc3N8v1olu1rSUNAAI5Mx8yhnjLgg0ZIIsU6HwGYITMkLOkw5Ccb9GIIoXfSWtdpgYRWmuUjtsdzLPtlooxcgZhNY7Bz/H4eFnXcHk55Zyt1ZvN3s9RawghxRid085BCDIMY8ipcQoyAEDXtMuu0lo7rY5XjfdJMmsiTcWQIwgpMrMPOSXhyJKQxFq0lhCzMWCMrhsb01xVBkmMxRynqqqM0URF4Z7vZmPTVEQQQogxGUXOWSKa53B1dRVCcM4V3e1hiOOYdru+ctoaE2a/7BaPTk8q53LOn3/2Wc7p8nITY9xu+5ubm+Pj48VicXJ8FmMsKTnmJCLOGa1pHPvj4+P9fj/P4/X1NXMqSMASwE7+gH0ZhqEIhIYQjo6OELFEyt77/X4sdIre+xgyCJUJrK1DpVhR8BEAtNYaqa1cbZ1C8WGq66rk5Qs0pzDZFB92HMf9fl8wj8+ePXvx4kXf98xcCG+UosI/pLVer5u+73e7XUlBWlON4/wRI/C7qkTd3ZUDPQYz3rZq8K17/P5BHkTWH4+CHziVDy7mI/99//i/S1H7/VP8tbYUFqWUAhzHsa7rpmlevz2/uLj4L/7oH+32N//qX/zXmbEyJqWoBOYkKZVSAYwj1zV67xFh8rNROqU0z1LXT8Zhn1j+6T/9p//Vf/X/apqmrDoFpeWca5rm00+fjv1QVbbE16Vjv6pdzllbs90OdWunaagqpbUeRx+jGKdNRZIis68suQomHzZjKQ3kZa1+9ORkrdNm329mtefmCcFy1WmfZD/OUYCzRkgCGcDpLk47a3Jb2RQgIQJxxbpk9UuyqRDoE2DtKhQmolKBvd7crD77FIhIwCkI0TdNHT2/vbxqujUoeXLc2JkuBz9HAVIsApIlAx8a/kTkkAUuNQRT1Di5iMUDlgZpIMSC4y2pUCQWUqXhFqYZrm64aZSqsmIDQCL52aeffvvtt+uj+tEjOj8fmgbq2l3e7IhRaURULCKAWosIpBRufc/EmFNKIICgcwpOQcFjZ4GchDMnBhEgBK0RAHKWg8weSMyRGEgJMDMDKTaGjEZFYK01xhARHDSkDk9ZmGZAMAat1QQcQ7CWVstKklirlSIJogXaFlwtKYufUlKpdlohbjYbTaqybp5Hay2zb9oqhZhSqqsWATim0nKKiEURxRhVQsAC+6+qKqYeALz3zIyc67omoqILWLRGjbMM8vLla+dcMZpa66qyQrjZbDKDT6FIdJFWoIiZM8N+nkAREUY/OWe0QqNdqb/nnI0xAFCMb/k2Li4u6rq+e19ErLWb3VZEpmki0sa5cmoCNEpX1uzHzTwFRaF2y8wfSxz+9irKD5mn39F2vL/XR+oqh2n814RM3/cKf0c7+IE840ev7cFmAGCMKYuedpaM3ux3wzB8+umniOq//J/8T//lv/ivfRINDElYwEe/aE0SLjlMIgohWo2lmWG3ic9/72yehn63/yf/5J98/fXXMXqUVJaczWbzxfPP3ry9+PLLL58+fdpUrrAHl6X4yZMn33333TiOWhvSmHMSAmXNfjs3jQtzDBxqoxQkZ1Sa0vNPTt5s5yEMQ4IjB2dVrDGeb/x3FzlTJgzXG7S2UkiWJAAUbWKrABSlOSugtmKr0zRKEnBLyrNkFCIpj60QEgkhsaRCnY8AR0dLDqEf52591N9s69pOc9Dj1NT15Md5s8kCLQcnaEFmFqFDqtdoiKnYQqCDeDyQAAKq4vchUckgCrAgCJIGhlzaUYkINIhIjDETOOU24+RDWizANmocoiLlMwvCOM5t3SwWJuc8TR4JQhaNxCBU3FQFRcX0AI4UyJxFwCgkkpTyotGZmTkRIGlgJg45JqhajYjMwJwADuQ3IhACuArn2WsF3udlrZi5rpsQ50LpDAAsmUAhIpJUTjNnYCFgowkAhLnv58rQMEQAyJlDhoLBAeDG6W7RLNqudpWPYbFYWFdvt9tp9lWlRaSpO01kbWW18dNUQyxuzS0+ZpqmYZ7H3W5jbcXMxqoQc0rcdd3kfQbhlBRBaRoBAFS6sArGGFlEay2CIYSiJw0sAKgMEVEG8T4WQZqKIOakGFPKXVsTiNYEiOM4H+rdxhQEe/Hv6qYpZA1AyGxfvPxWaw2IJyfH09Qwc+k8MVaFADH6KaTV0ZE13Tff/cbTru0+xtrw23tRHsSMJY14FyCXf9GtOPL9+Pf9YPP+v+4HxQ/i0wex6g8dp4wPmsK/gbF+P8x/ELY/uIwSBhaHvO/7YRjOzs76vv/1N9/VbWudI8TEEgCEQWkMIQnjNMNiUceYiSglMcaEEB49qsv9Xq/Xr1+83Fxd//ynP9Na97uNQikhAHA2ina7nYg8f/68aRprbVU1L1688j6u18dI2vtYSKl2u7lZuO3G100HACnLarVaLDoQsJqcxqNl9eMT83vPH3WL1YuL/Ysrr2t9drJsCfaT7PtptxtQYFnrxqAFAAFNKBIqUIog+FjUu1GZkBMfChpIRKQOyd5CdhJCEIAp+JDzd28uzy+uUuKYGBDmkEIGZaryVGhKjqAC0QAgXDxA5NsZUlrRASJAAkwo8dCvIgkwC2aBxBxSEkFmyHKg9uIskSUySIaqRoQ0J9ztIcmMlEM0f/nLF7aqZi+X10Mht8kZAIFQTWMehySkgLT34j2XqigApJSdMZU1wCKcK6cJk0ImBEViFCjNzmJdAaJOSUKInJGl0BoCoRWGFFGYEEgSBJ+RwWi33+8LhzMiSLG5kAGAU6qsqxtXlErryrZtZdUBFq6ssVWttMoZcs5G63lKBMjMMfrlcokoMXlXV84pa6oYMjO3bVvXtdZ6sViUqYWIMUZmXi6Xjx49KkwKpVevdBxqTYVK692DRggAWQ6JpoOgIHPOh8RaGc45V1fOOWVNeYqIwDmtNQGz1bRo29KbXJA0xfsrJ4Xbunxxk+d5LpjtcRyfPHlSCEBLtB5jDCHkGEuonnO2ldtsNvthWK/a1Wq9236P3/DB+C3W8P3s3v0U4Z2B+IjVeN+s3D/aR3b8Xa7qfiSufjes9g8lBO9f7f2Lf/BB3u2WuTJWaz1NEyIuFguOaXt9s1gtr25ujo5OcqH/QnCVWi272cs8lyYt0lr7FIWKAm/WWi/bDhFXq8XV1UVh4FgsFuv1epomhTLPs9b66Ojo5Ghd1/Uvf/nL7777bp5DPw7Xm5vV0fp6cwPIQLTd+BDZOu3naGsYx15rXVfVPIfNZrtc2GF7s7vsPzla/ezE9Lv9L9/s34yoNbSUeJ48g8+QAHIGhdhY02pdW6gNWc4aYtsqSeBHsJq0gjCld4x7WEgzABhQZLVadm3ddY0gjKM3dSUAvc+JoZ8TaRSgzXZMkay1SmHbdW3lltYsFBglRAwA8R5TsdyWmxkgCxbanASQETNiRsgCWSDFw/KMinKGlA6mlTKK+LZVXdVNCXyEpqsEwQNMc7JWNw31/eTn2LRNjJCFSYMyxBlylgLZmUPy0QsKEMScYooFOl5kWIjAGtQaBYRZEMU5I5lz5JyAS6IzcoqchEFgGr3WBgDqmgihaRqNynvPkogO8illxpUEaggBWeqqstoUzZBnz57WVWWM5QwxAQhlhhAkxrhcuhKoOue8n/b7/X6/v7i4UGTGcYwxbTb7aZrmeX7z5s3Nzc0nn3x+evposVg1TUekU+KS+Fuv1zFGY5RzzlrtnOv7oZDNRM6plIM5l76RcNuVbG1VwAZd1zlbz1MQYebsUxjHcZpSjKAQKl2YLLImtegaY4y1VhtH2pRMEQAMw3BbpNYld3R6elposadpAoCqqrbbrZ9nP4+IeJCmyWyMWq1WOceye0qcmZuu/Yhx+C1VlPte0u9irT7oVb1vTe6O9kG7ifd64OA9M/QxP/Ful79+HP/Ba/6h5CYAVFUVQmBm0so4O8/zPM9//+///bprSavlelFgIUaT5CwcrFVKQeV0ztnYSgTquhYgTtB1XVk8ieizzz5jTmVtLPPg6OhomiZmLs1PMca6rh89ejKOo7X28ePHv/n162dPP0WUcczL1cLPzJkSSwjgKkpTFJHNdgJUVd3mlBYGnq4bY9rNbppCbupqtWyJcPTR1FUUQGUVASeJ4xymqAScoorwdKGMSpyJFAEGkJCnXMSO+datRz5gmIoIcYzxUPrIsli21umUQQASi8/iA0xjyEk0wWYYog+NoYVTFhg4o6LvdTiVOwIHKqSMkAATYGZgkFubiFI0UhiFDxADRCxq75KFMBuXKkUpuswV6bm1JglkEEXGWpUz9P2oDTGLtUZr42OcfSQiYxQzTCFop5vGIUpmUJqstSKghEAUiBJBYci5NEpzzolItEFSjCikQAiYEypiASS2jqpad13VNi5lX3AacOtrl1wkIi6XS2CepiAixhjIPAzDfrcrbCAx5mnymVFrregA+S5h5nK9QsSjk+MnT592qw5AKaWbpum6pjiGp2fHi0VbuUZYhZBEsES4KXHOMk1T0W7WWpdWYud029XW2rqunXOle8Raq7R2zh2tT0AO0s8AMAxTQdL4MBVlIeds3aimJkvEKVTW1NZUznR1owDbdrFcHbWLVeGAKF/CgYWIWUS896WK4px79OjRxcWFc6703jVNc0sLTwAgKcfZH8gTEa213sf9fviIEfjtbK8PQlq8Vym+byjftyb3beiDo33QVsIhP4MkB/bQ8ip/vr/L9z7Gfbz33x7K+oOWt1xJofYtpa5hGOZ5Xq/XV1dXb9++ffz48fHxsSJQirQmFpCUENE4O81JRLbbHuFg2k5Ous1m0zRN13V0S0Dw9OnTQse2XC53u13hjzk/P08pbbfbtm37vn/y5Mlms5lG//jx8dXNNaMYA/v9YG2VMzhbawPKKqtJAR4dLf7uf/b3p2mSDM8etXHcfXWVrFGftgD9eH45jOjAWEqeAVzVKOuYIXOhyFdOkRGpa4whAZmmXosIARgyd1/UbVG+9NJhYTG5fbBh3/eRs9J65mQrO3kIQeqqyUxxjlrrwGKcPTk6OluvLYEwCKMAAdy1L5eo8DANkkBkicxBOBZWNpFyehYIKZfUvtYGUeUs1oAlOw3g49QtXI7N5mZKDHXb9EMKIaeUiuISM4TAymCMcZ594R7xM+cshWE35yQkpnJaQ4wcYtbKiKiUIATOCYm0IhKgFCEmRhKjUSnSBp1TriJSoA0aAyK5aZxAWiwbgDSNu5xzSjmlMhHe1ZRvLndKqaaq/Bz3+1FEULDvh8vLbQhJgELkEFIMKQsopebgBeF6c7Pf7/fjcHV19Vdf/3qz6adpMsYBgHMupdT3uydPnhR2a2utIhNDTilZWzlXF2BgWfjHcSy6Tlrr7XZbZJgOkWlpH/G+MF2Xay599FVVlfbnuq6t06XmigJWqcrayloC1gqVQiQpu4QQSiG43Ou2bUtzSwnPi9KAc674noUDIoRQKHZEpOQZShIg5VBIdsdhDiEVc/yR550OasUHoB8TgAbR7yq8mTkxp6LecP9Y9x6AcsPy3atQDt7+/m7798edfSl/3r/997cREZWYsmjBInQrCAyShRUICd9dp0gWZEHme68M+e71Q1abhJHz3YuESVjdwwKX9+8+oDEq52gVpWnSgserNTN77+ujbvDhD//O3wcGg1Q7gwhMWpEUGs5x9MuuSYGRpa2cQTk7Wg39LuccclqtVuMwzNMw+UjaXl5vNrtemRqAnj//Yhimtm03u33M6c3bcwGa/DyGQNoQGmU0osQ45xRyGLtKZ+8/e7ysDBGZ//d/88dvrtNmhDGq7Riu9v3VkKOuTE3Lzsy7WQNCVhXCsN0YzMaCdSAEDDKHBAqQTVMZZ0IK17WrtFaCETDOHmJUogg1ZDAASum02c9K28paDVCpSpiYAYkNYB9DVCAAOaVdDjPCqVs2YtrK1I0a5+26qhwASAZiwIN8SulUERERJaLukDcJIABEwASUgSJiIAgIXiBIjpwZMpCIJtDStoYTDMPEsI0c+xHG/barKEbY9DkIJBEB0KRTxBDBOYuIVWVdrQBgt5syQkyw7+N266eAWVRIOMUcJDJk1EqZotDMhOIstRU5rSpLTjNH4Zw1WhA9BWSGRmsTk41YYe1n2U/ZOO1qR4ScoPBO55gxp2rtksKbYTbOnpwdaa0EWCmIWr+8nrc+ZeMCaTZOkATobLXCGBtTp8QIZn10tuhWMQBrutjsUeTx2fGnTx+dnhx9/Ve/LGai7/vTs2NtSJB3/c3F1RvjdAiBtNLWkVIxZiA9h8SCOSfmJHRwzzNDweigIldXpdd4juF6e73bbzLHEIJCqkxlSClARaAwg8wo1DQdotK2Wh6tEbFrW0jZOZNzLNa24IeUMjnLbn/d9zulcLfZbjYbpbCqrJ975jSOfd24pqqjDwX6U7mmaauqNixx8sPoR75PgyBYDKBIQSvID9aU30dHw8E3pPdzhSWvcX+zD77/O47383qIhw9xh81GAQTk39Zc/Lc48FBShJLZL3W0WwqTg8I9Ea3a1k/zj3/84wwQcrKsEMFPnhlspZzDEsJYC5w4pSRa11U1TUNbV21VD32fc+SY5nnuuq7v+8ePH4/jHELous57Pwe/Wq2UUiHm65vtYrUuBOtMhjMgKiLMOYYEzmHTLl9f7mLixJhBBNg1OOSR5+Q9KAUigiQpR61BctIKiFFrhUpJSgzojBiDzGwJSJJV0FinJClNGJEZrFFALAAxckxAVkQkJaAU3rx5Za1GgjnNAJRSAsBF1/RDrxEIdZ+CB3jUWFSAnP00ucpwTIvF6mrwPosgSKGK+N7gBzFNqbEgCAMmZrn377L2ocA8ZaW4yKfknGNkEVAKC4iBCAiB6CBrBqjK+/kWgpqzIEpdW5Fwy4VU5ilT0YMufgVzyQXHDMySUjxIXjGJHBSJmFlSFg3WgEBQ2hyvlkSSckAFISSjlVJK60PvttVgjN7tfFdrYNhtZ4W0XBxbRzlE7qdsExAVUT0Q0Ao0MgCs1+v10ckQ5u12GzKnlNbr9mYYFgsLAH3fk3DXdXXX3uy2ddUiIjMrrfOcEXVVVSJSSKTNrXRhwSRqYYRUuB1Lcb3E85yzD6mAckp8Wjiuy6ee55kFS85HKa0JAckZO8/jZ598KiJNU8XovZ/ati68NXe5QubClU7GmChZRBaLhY+h0OccHx+fn79dLld9389T0LbUEjfTNNWVjSnGSEaDMZbUxyzGByLlu/t8P0B+36F7sMv7v9/P+r0/Hhz/I5d42OZeDxayFPo5LR8Ln+/Gx6Psv9YoZ5fbPhwAKCgZgAM8Kvs87sfV0XG7XM4xMUjb1kZRzsV0SkjZe2+tVRra2jmrLy7Oa1dtb66q2l5evkWWUj+pqur58+e73W69XhPRr371q77vS7C83++HYWBAay0qrYz1IcWYfUgC6KqWlBrn1E/TZuIhwjhL7ah2sD5ZgsYJAAHaxhkNzmhN0LVaGzSWMAsCJIYsACDO4rLGkwaPOmMxYo5KEqQkKQIwKUicQUgEU4IkcBAqRjCVQo1kiOXAnVFw0gwsAoEhaoWuJQXGmGEejKa2ruI8V4b63fXJaqkAUMoiSPf5vgAY8QNMJGUOpVvlqcM9LzTnADljjBJjBi5yS4gIRlNlTbmDWitmiCwp8Tz7ItdZ9BGtdUqpIp6AQIKKUBc2BrhdoQWQqJCJIRBZq60lpeBQZGdWWNry9MFsJjFaZQZUcbGycxzGeeIMIpBzzklu19cCY8SjZW21q2trKrvdjV//5mK7nY/PPjHGaCLIjMBagdNgDWiVp2nS1pDRpdRQsmkhBKMVZBbIpydHAPDLX/7yzZs38zxeXl4ul0sRKeBqRBzHOaTYNF0xhTnL6OcizplSIiEFypBRygCQUVaR8XMsj0YxzHcpvJRS13V1Xd+i4iGE4L0PPmlNwulmc8UpTMNeaRyHfVUdxGuUwpKytNZaq50zJVnpvS/Ox2KxKMCMrmtLaQURh2EQkfV6ba1NiUnAGWutJTyIf/3Q+Fje8H5vxr3384NXiYvv8onwfetWQs73Xz9koe4OeP8lkrlIGuHBNTuEt/CBNpjyZzGX77/eP/jt67eM++sB3msTLHerbGCMUYxN1YrgZ8+/CAJTCGWRPFodSnKFYC3nzAlAmACP1st57E9PTznlX//669//g1/s+13O+csvv0TEm5uby8tLY0xVVSVpPU2TAE3TZIyZQ2TmXKJwUiIHeSMR9EGmMZ6crc4erU6OzaqxTgPm5OfYD6ABLAlK4hQ1gdWIknKMCkAfVh1ggdrA0uGywtNVs6h140CVNmGSQp7MRYdWEPCgAS8iZHC7D8+ff/rTn/7k937vi5/+7McFQJizrI+WX3z6yCkaY5xi4AyQMgBYa0XkaL2OniUIJL+ujTpgdwSJDtrst42VD+9OMTEgRVruUIrlMj1IRIw2xWFJKSCwNVhZbQ2FEL1PKSWWA7u1oMoCiKQUMktmICJrXfluC5yIkYQOSEAiQAU5SxKOmX1MKbGICFDmA91hKT0bTUYhAisCo9BqU1dQ11ZrmqaJMyIYRTrk7H0OSZiZFBAh54gizFEkI4p2Rll4c7n9N3/85z7wGLifOaaCszPGKAA+fXRmqyaEkCK3i84Yg5JjipAZRUrXQEGJAUAxhcbZlHNK6fpqE2JcLJeEmkVK28/d2l+aj8ocFhEUkMzl93dNGYruyHsYhEH2+733Hkms08YqpZRzrpAkdl0XQigTgA/U4qYUFVNKMXq49UkBoLSdIGIRXy7W2XsfY+z7HgBs5QCgyKsyHh5PY4zVGhHxo0/6D0g7fcgH/GAB5Lf6d/ID4yPX9OHjIDxwBD9YLfmbHfx3H3dfwjutydvzwm0dsEQcT58+FQRAmubg6jYEPwxzqTMsVsvK2fWyXnVt3/dHy9VisSjxxT/8h//wxYsXRRbHe7/ZbNbrdbnl8zwPw1BwYVVVZYHJh10/DpPvhyllLlBwn2Lf72NMzuKya+K8lTTWGjBHCwBRGrtYONM1aBRYQhConFYEWmHO0DVYV8YpdBqcgsZqa8gZQchOUREdRgFhjJx9kEMOF4mIQCAlzpmdc8ZAjPH8/PzLL3/z1VdfCUhbtZJhGIZl1T07PTWEmaMG6ExjjPMh7YfeObdoldOAOZ4um06BAgY5+Hd3fevv3ES4tY+3C5oQ3bai394aAEQFmIxRxiAgsDApMRaUEq1RKUBUIphYUuKUOEZApay1iBSC9MNUajJEKmdOiQ81DobiFwMAKiJUAJAYEkMqADwGAEIBPnA+CAITZK2ERAh42dRdVYc5+imgUM4SM+Qkt59VSA5cYZDn4EOYc5ijM/Tk6emjx+umVdvezwl8hsDgM4QESApI9+NcdI271dIYc3193fdj1zUpyHq5/OL55977t2/fxOgTZ1S03e9yzvv9Pud8fHqSs5yfX4SQYszMnEFAkbN1cRvLwg8AzJyFY04hxSysjI6ck9yzOHTQiS7yp3dhbwEkpsTCGRHOjo+1VsvlApmdsyB8h2hOKYUwl16DUkgp1rAcNoRQWNxzzqhIGzNNU9u2GWTb75VSWtkkHELIORYf8yNP9wfyhh+0g+9+snx/Kn7PGt7tWhzFQ1bmQ0PBO7MlH2KUue9swrug6e4iD/Sgcq+c/RE7+M5q/9AWv8PAe08j3zvdXfGHmQWp3++PT5Zt0xgire3Yz0dHerVe0DAHocwgkodxcg35Wa3X65vtPs7+Rz/+PKRYQWWr+uLiwntfYIbe+9VqtVqtXr58CQDAOSaeNpuC3xZMPkBdUz9GwyIiJEAEzmLrdKUhC9SKKmuH3QiMYZoFjYS4XDlByBlaB0arnEWRtjoap4ySzFlp1CR1pbWm8qACKQAOiWMCSDlkLHIlwhyzpMhAJACgsKqs1c2//Td/6RpwDkCUD3kaR2fozfXe9/NqtVos6t2uXxtbVc1mf8kp55T3/fDkyRN5c70bZ8WxMTBlyAAikrMU3g14/y4jgMDB4DCTvGN1E6CiTBY9NwaNNhB8jCWCZiJQtqitE2cBwcxS5OPHMTaNQ6Uo8zjGAlgjynhoRj3EyEhIQCJZQBhEkIqHygiICgvbBAIBawStVUhZKzBGhTm3Fo+6rnIUplEB3nJiFvJEgySckghrIiCsrFqtqrZdeB/3fT/1+5h8ThAYlVagpHhSXvKybSqnnXNAuNlsJh+1NavVYrvd39yMx+s2x5Rz5pSLO1YkSlar1eXl5TAM2pqS0ygtelkQVQohxJDL/C/GSOQgNkJEjBBCSMyC76I0LtRv956dnHPIGRG0JmO0VpqZEWkcp7ZqUsrGmKOj47dXlwCIBNaZIm+Uc845AhAiGmMUHdz80jLYNA1zahddjNkYE0JiBGut1pRS8sEzMhIyAnJi+Rv5hne/3IXMdxXkj4wHVuN3cdPeD64/MhDxPtqG/1O6ge+f+vAZReSWvaI4g+WXQtBGRilDGmlZLyQzZ/ACLy+ucwxaq5RSBgghIELtKmds03QiuB+HfpyF8ZtvX1xvbl68evnkyRMRcM6FEIpWd9ERXa/XxhgfEyptK8eCQJAFEoP3SSQ7Zyqna0NOi+SZA8SYfeQIIoqqxi07s1gASs4pcE7Wmnny8xySTxq1JdYqOkqdhc6iUSommaPEJImJhUhZ0pAZM5Ot6pC4CGqmDAKklCnT9/pqt1q4Hz3/fNF2IeTKuEXdpshiTR/iOOxZfCGg2e37q35OoscAu3GaQzw9Pc1RnEJH0Cpwd86gAAp9OMeCAAc7BCKFtwbLO0k4ciaEnDgnRiRDIAw5SYrgQ+EXCCFEACpxVV3bzBBCEEFrzUEciyHEpBQWEOTtEk4ZUBjnICHkGBNniAwFvSyH8ovShFqT1mQUaANNbU6P9dnZ4uiotYTIebmoncOmLkoDZYqrMruVQqspzImTRB8uLy+3m9ka0zUtChBmY5VRymltCDSBJbSExtlHjx4t18cppRcvXmw2G61puTS7zaCUamqXUigxh9ZUNe7t2zd9v5vnsNv1pXq73Q7b/VAydKWtiG+5Wuq6DiFlwcQQSjyqbVG2KzGTiGTh0g1SRtt2TdM4Z+nQdJCmadpu94iILMMwaFKSmYgqY+mODpKAiIobWGDV8zzfFXiLkEAZOedpmsZxLDxgIQQR2e386BMQKmuAIKT48bzhb+e+fs9OfSBSfpCze3+DDw78HdgS77Yp4cL9Y2UodeUfFJ7/WyyewB3EsqCRRLRScJtGKWFUyWWM82CtHYf9ou0QQJNeLbubXR9CcO1SR2mqrJSyymijgNPbt2+JqG0XhXn45OTk9fnFOIcjxM8/f/7q1au6rgHizc2N1hoR3759K0DW2mGaUZmUknN2HIPWgAh1XTujw7RPAdBiU7lxEgTlA4cESGwcAkRUAAIaMaLUrtrtIgIwS1PXxs4KGBicAgFJKQxTjElyAlLAoOrakjbDFHdTJpu1gNKGWEruGBFD4CzDZ5/8SFmcptFq7UjF6BWgBggsDIAK6sa2yxZvpqvdLhrymV2Fb9/ePHt0zILrZcPCbYVBNMbESQQgHxZvEpBDAuhDd5huZ065Z5xAUJbOxBhjjFqTVRbxsLqbihAUc4wZiHPhyDEa2+bgIilntFbWWoBARIhZhBkKIlJAgUCGzNocJFlQAaRDtyII5ZTVgawBkARQFIA22FhaNlZh7ofeT2PdNSlHRLDWhBgL0E8YkISIQBKhvrwc2jbWrqmscJIQZk1IWTAHSKAUOKONYg2Q/XxzcwNCPsW6rheLRV9AeYSPHh0vF22JQJk5JBYBm9JydUREpM319XUBMDRdF0IY56nrOmW0ESl0Td5HRIwpkdbe+8l7Y7S1lhFAHdIUzJz5HZpNEG9uNtZqMgdzoXVRXcz73eCMca7W2gLAV19/fXR01O9HxlTsb4q51F7K0U5OTqbR39zcPH36yWKxAOBpmlIKrq6aprl4u0dtmLnvp6pSR0fNMM2oqXxeAKWN+cgzru9Pp8OyS8iaLNLdVLtvsx44gPdCktsy330gNCKBfpDLOxRA6B1S536oe9fyfP8sACBUmBZvyxeIKFDc9ftHvm/B745//+LpQw9QOdgD6/mRjAEh3tH2lMABbjm+SFUpBtBmjBMDTGFwChYOXt/IOo2rRcXRz/NUL1xC893ba4Xw6bOnnzx78vLbb54+e/z2zStE/MPf/4PLq7fXl2+NMU3TaB0AaJomIiLT7bdXKFC76ru3Q72wPsZ2Wc/7iRAwR4bU1rY2ShML43JVXV5uQoKqAlJKksSMfgLWiQDmGYwOZyft1c1gFGgzNkCIiIaMVlapnPO6MmdPHm/HsN8P212fc4wZlbZWBWROyowMU0qgwFm97af12cl3F1f/u//xP3i7n/+v/7f/BxvFJJnBWhwjQOIAdDnxUlFXK+oalbxlHoe50qpZNje7mcP2k2dPXr94WStjKulBNMDuQExLzIWbpgSr35t0iIokFxwiCBulCFCzCPDooyZyThlCQBHJgIwaokfGzAKkQSlyWucsMcY5xMq5lNI4+qYyMUbOWZHkhMwq5wwMWiMpEIEsoDWCwnlKABQiVJXzPoSQ6hpZJGbxCRQr4KyElw4XduEU7Xc3/dSzgEyxrqppmh1GpSFlESQyhhPsd4EZrGNtQUN+sl5Nfhx8mHKeAsQAztl+CkTRVqaunZAIyydPHhNp7XG763NMmoxyh0yf1jqHOE1RmS6HYA3mYfY2AMBmtzXWGG0j5+1+Z4xZr49ubm4KYwJpbREFkbTunCtCAs4YhgPmWUTEWACIKackRCCSAICMJqdYJMdUGHpiTBEis2hF5Fzb1kQwB79aLbb9JgMTkrU2J05xsrfZjHmeu7YC5OOT1TTvh2E4Pjlr23a3y9vtfnV0cvqkury5Yea6rhRxCLNSiDklPx0dtxPnfpjuP893TmgZ38dt/c7h6n3f7WAjQH3wdZdTu3+W4irfd6QPVfnbcS/Vmu8i9DtjdGdPH3yY+/+9C94fRPd3R37wJn5/PPiYcI8AkW+Vtz6YJUgh5hCJiqU+4G8UQVORMWocR8mgNWhlw+ytJgAo2eumab799ltr7WKxuLi4KL30zjlm/vWvX1pr1+t18f+ttcOUmXm5dM65lOTqajo+qp0FwpxyRJDVesGcp3kKIS4WTdcpRCj97FqTMQAMRPj06VFK6eZmaCo6O1mmlAG4a2tn9fFq5cO8Wi+0oe32ZrPZbXcHTieldcxJa8wARBRjRISYYZ4DIozj2FT6f/3P/zdf/uZbRiClcmIN4IfpLhKJKY7juN0PwzTHDKC1UQQAQORzZq2v+n4QuI7RVK6uXduYVa0bhciMwFmS3C6Mcm/9lVtTmAAyQhSOwplAFCWBxBxzipyZGVFprY02jKXyc4B2M7NS2DSVUrgbfAhZazWHmHM2VqfEt+w4SvBdOh8RQCkRYYYYOUZIKSlFTaOVRm0OQkgx+pSYFFRVVSjT53lGBCIsnc51ba2l2qm6Us6IpkSYKqsWrbYajteLp4/PlFIgeZ6j06prXLdofAiVAaO11to5xwxnZ2ci0nXd8elJ0zQl2ETEokzCzCcnJ4C43fYhJ+/9YrUss6toOb29OC8k1cMwIGLpeyvM1SW4vms4Kf3gd09N6c4qXifcxmdEpJFKDFcuozzUIkKEn332WWlPPjo6Oj8/LzoqfT8U7xgAtNaFtKm04t3cbABgGEaldVW3heQiJa6aprA5AIBzruDJrbXM0LQLBri+7pnZ1R9j7fpr66Lct4PwIf/rwZb3HcA7C3K3gbzX0nffuHwvAM+FuEnKA3DnBvKDzW5/v/Mx70zbgw0ejPdXggfvlCLaAyf3/b1IAScxSpV2IuCsSImA1mKN8qO3lrSyiDhPY6NhsVgy85df/mq9dM+fP9dabzYbIuqHbK292tww0HrdaK3fvD1PKb15e3N20q3XNZPSTDfbfeXUsqFpmJ49O9tsNq4yfhovzt8+eXw8DftUupFYAMAaBETJOWeoa12AIDHmqiLvOfOuqe2ytX6enLOzH61Vu91OWztNkw8gAoylapkAQFnjGGKEGEFrQABmdsaNIZw+PvvP/vH/6N//+tdBoDCWWFKZs1Nux6nc3SnkGLNW6JxtyLTNwodpnOJ2552D69k7p0HR7H3MrARbazSSzGFiOMQIQGWa3AdIMR3kBJKU2VI8xttEM0vkzACkMmpFJKWlv3AuiEiMiQiNMVoZgCAHBKXEzIgpMyitSvszEQlIiLmgr2PIRUGJEDOX/DBorXIu0nugDaFSnCIf2jbs7HvOYrQRUdPovfdKYdeYxDkGTlkQUStUGhRiXS/nYby58WfHqy++eG7fXl1uh+vtHBibxtbWBD/ttxOmySmah+hDnxIro0sLnfexLMwp5L7v/+TP/6zvA2rY7/nZo1op1bTV7/3e73374rt+HFar1TDN2+1utVqO41hKsYXZ8M57KNNbRLLc40gmRD4QXB34Lg9r1m03R/E8pFDNMxHt9/snT54UIfmf/OQn5+fnMaXHjx/tdjsiAiiFkVD8p6qqrDXGGKQD3nAY55SFlBqGKWZeLtbr9XrVLaZpJJRx7I2r9+OkrdUqzVOK/LeqIPrAmryLZOXD5uaQMXkvD/ihI8j7b76//buv/nZ1emBeb89Ld9vfmd2PfJD3z/Lggz9QYv0hq1oZOwQvIpvNJmVgBEMoBM6iUYDOxXRwL41VzoIxRiB3nWvb1k9zc3RU2pA3+916vZ7nWRjPzs52/f71683ZWccA/TjWdb3Z9GCsn2DZKEJpaxMKY2C/ZwalYHtzIyJtU88xIKIiZYxhkRDiolWDT0hqHMd5hsUCKwsAYFCs0YRWcjbG5kxFCoK0ieyVVSlka9Xkg3Y2xYyoUkooAKisBiIirdLku7oF0LloB0a2xvoYFMCcA9zFt4hJJCVJEKMgOYNKszausdqo3W5KnFKC5qgGSewjACuhSgFq8BlCvh8WUDGIh2NjITQSERCQAmvQGlVZSIGTAGZQwKIQDyDh2yMxcxafgnG6q4330YdY1ZZTnILUtQalUogiUnopYswEYJ2afSZKiIqItKacD0rKSJASC4IyZKzNKDmkeZ5L6QkO5fKDdh2zNE02SMpRzowsAKIQNcmw3zlSRpO1miXP8xhCUIqsVsg8DsPTx6dOq/32ymjlvV/W9TAMWdjHnIVLFwcRJS3r9dq5sxC/nmJer6ng9ZZtl0EQRZOaYkAEY9QcQ9HDu+OgLU5fVVVUYOciGggAGA+PTM6MSpEQpnTP8zkwtoqwZCaljDHMCRGnaXr06JEx6rtvvtXWxBh9Ctv9rtS7yyinLqQ1yujdvtda74cxRc4g/X6sa2erWryfY6AQt5mJUCDv9yM6u9umriFjNUPAj7Up/4A1vO/BfeTJ/6F933fW3j/aXXD6YPf3931/mweX98E370PHP+g8PhgPgu4PnPQ2MXr7iT6cZBDJnGNK6fLykgAUgjUKBWtnJCer1DxNWaDStFx1lKemqkOcrbXPnj3bXF8z55ur60dPHjOC1rppmpzk4urSGHd0VInI6ely2O9EhAFCDE0LzOzndHxcjUO/6JY5SdfVRhFKKuh0jtFYM45zjNlaHSMvl4sp7r3PDHm1Miklo+hovcjR7/fb5XJJRg3DYKsmxoyopmmaZtGmuEpaiHPiOWTmzAlLB6vWmgGj90kgpXT1m5dpiiTIwqIpA6CmmAr15+G2lnpUTJyyD/NcO1MxtnWnUBoXlaCBeLmZnEEQUAgIogQcYRLRIALCt3wdiKow6Rxg9oSEB1UXFKHCoY2iEBEUISMiEABSiEnd3mulyVqXc/Y+xZjQGiHkJClmJCKVkbQPkRMLgEhWCpUiRBQmAI5RhLNILnBra2+feUk5AwOjSpwzIhjtCDAFz8UOJkQArZQxKodoDFXWMXPyIeesGBQpgqQNbW9myefrtF4s28C03Q2ReNVVkdPVxeW6q9fL1enxOse0XK2qmOfgw2bHzFobpco9rXf7vZnKCpD3+wg1PH10TETjNGqlnDO7ccjCVVX109hWTSH+olui+8MDjgc8XflG9cGa8+0DIu/AoSSEUhAX6taeAgAJWGOcNV999dXR0QoRb25u4BZoXfJRxQi2bauUMgaHYWhM5dNYNS0DZklNVWuTYoyKCEiHEGrr5nkqVW9BAIbFUkHG7XaqnNPuni7Ke+PDeMO/US32e7JM9zy+7xmLu/G+a/ZBq3ffc7xvPe9SFXd5yR8yu3e/3/coP3D1/DEgEtwzzYfz3hWNHnQxciq/bzYbOsRqbAnDHJG5rhyKKCodsjgMvmk8p9xW9fXl1TxPz58/Pz0NN1fXrqmK21u3TYzx+PhYKbXdbjMyAGThdtEM1+NyWUPyjYMU5tYao2G1qK210U+r9UorvLq5FshEJcwHrQxA2m73VWWtxWEKBY+aQox+MooYsTA4bff8pHPnl1ftop2jsMAUWGs19t4YM/uEgDlJYgElM4PJTCAxZwSInP/8j//bYfII4JwN3gOA0jrmDMDv3QgSgQiSfBymOIWgMtfaWqO7utvlyTibJs8pB59yhq51XaMvNn0WiMD5+7nvchuQpTywChFYGCWLCJVWBCxbFDJUEQCFwJJZNIt2WinklKLAPEetlRjZ++w0VLUd5hly0TVmH9mw1JUCodkH0kYgC0rKYm7nXUpBBAlRa2CQlBInMQjGWKWxtLo7ZyOy9zFnMBa11pI58GxI1ZWF245GTdBUdWqjcXa332dULLptzZRlGOauUnHO+900D5Mf9p9++umi7YyPdduQdZGzL/IjShHRarV69fK77X5mANJQNdV3L98cHz06Pj4+h/MQQtvV+34c/dw0TY65SAKU2KgwG87zTLcwI1BEfFBYY2YWwJxFWEAUFV4EIgLJTIBV5Qp1k6TMnJVSJV+53+/PTk7n4FNKNzcbV7kQAt02IJUjF60CH2cG2e12WTCxBJ6bpr3a7tHPhOCMPTs741vS+LbpEgoIuGYBov3M8zx+5Bn/W9NTfjcdP2TUHvx537I8yCTe5V/vH6rkKgARPuTZPbCYd28+SBreTyO+v++DQPj9cbcBHgrvD7+6cs0pHWZP3/dYiASYndHDENrGKIV1Q1lQKfRT4ATzPC+7BUrc7bbPnj27vr6e5/ns7PTr7749Pj6OKemcnzx5IoL9MIQYM3Ji8LtZFJSOeKNIgZwdNXMMzmGKIXjfdc3m5sJarTUpZRC46ypmIKW6pru+6VGH46Mz0v7t+a6tVds64ORjWB2tROTmerdaN9vdiErtxwholeHkQ4gcEgAyMyiltOKYJWVhgJDZEKFSKNmH8O/+9E8EgBCO1suby4uUgUNEwfcoGOCurRMBGHEKLJx9mjYTOALd1Ka29ao+WnTzOJ2/fjP3s89QGwiFDvueQUQ8OPAsUhxzKUQlBQ4tkouMSmnuYEEUa1RBywAAM4cw4wHlp1LKIqKUUpGZIYYUEyiCLKAJjQESiImBc87AwohktBYOShFLKu0WwoAalMXSc5tjZoGcJOfIkpQCItCGAExMMYTU1jbFBFkA2WpNWsUoiLlul8a4jrumqfbD/uJqJkMhASe2mrqmjdRX1iiE6MO3335rjO2HCa0OLOM47veT1QoBIsubN2+0NVUVMioR2W7n9UJNY79VahzHGOOcY4yRtPIxsE/GmLvOk+IhHuRNiIhI6F13rDIasyAR8OFZo9us7l1pBfFAQ1UgmZeXl0+ePDk+XhMcluHj4+Ndvz/0orCUQmLOmRmstYUmwMccYiRtETHECADGGK2VIVWwhwXPqJQOKYxTOl3745PFVuY0+o88439ta/iDTtw7isHv277bau39je/FlQ/9tTsn7qFn9/3T3f1+zzl/t/GDbe7OIvd0vh9s/w7w+QOh9B2U59bqfRjGyTmWjzDPs5QcllJtW3FWR+tVziMS+xAJMee8Wq66rrFWS5aTk5Ox79u2Xa1WAHBzsz8+Pm7b9vp6s1qtttv9rSvhCt/c9S5Utdtup0/O2taggH90ujq/vOy6dpwGpHx03I3jKAJEOM/BNdU0+WGcj4+XTWWNhW+/vWhaoxQYo7SmxjUkKYZUTEAW8ClnRlH09nxujyrSep5S5UxKbLQdvQdAUopzskbNMZMIISaGvu//v3/yb5WFEKBt6+wX283ekQXO4SA/j3chyN3tYgFUmFgAYUIAAC9QeT9NU8rw6HgwSJPnWmujgFUGkMyQBO8thyCHZhAoX37xBougyt0NP0hZ3fZQ3mX6RSDGXNzHlLIxKqUMQItF42PwIdW1ToG9T2Cw7SpgmQcPDFVld2NwWsFt47xSaIwhijEAs4QgymRN+oDuyRKjFxEWGEcPAG3bmqy8n30OzipLCgVimolJW9O0i91+ZIaUUj8OkRkUtN1yCvsCC+n7ftHYrqnmafjk06eLxYIzaK0Z0fs5peScqV3l5/nk7Ox4vXr1+gUz+8QisOwMc4oxhjCP45hyBk3akCCFFAlRbnEUB94NFmNUzpkIUCu4hW2QVopIESHibXPhYeEpT3wIqYAiCkNt6ber6iqE8ObNGwJ88uTJixcvGA+YExHhLAehFeZCVzPP8zj6qqnTGJtKk7IXFxtBcFq1bUcifd8DS8wpxuR9IKMaB7vdPqeha4/1avHBx7YMXexEcdRKDKOQFN86uPczBfeacuAWG3hXuuV8mF53JuP9APaB1buzkncbPzCU3yuhIMKtTZS7Dd6rlsCHrOHd6e6/c7cB3yq9fPC/954hVbR7ynGUVe8+1D3SNKlqmaat35sc9wpWCl5up35OBmNMuqmrYRiMrnPOWoGpcH91odbrvu8//fRTdFWpcjjnfvz5p8QUx7BuF2M/tc1i9nE39JACaENGV1VUGB4vUcfx6eNnm+3bzWbfudYoVbWLcRxnhGW3uL7eGlcxx36YTWUwxf00bvuUZxMipClWDmcfnHWIuN1PVUtE9TzDzc3Yru0Qk/fgFcY+MjMhIANpHbKwUGIOmBgAYwYABmHOXeOiH7/85a+JUYH87Ee//yfbP2MYkjBAuv/13t7HA94Tink7AKcPN3pOrAEc4tV1X2lcHnVpnvyULZIWbIAtQpTsASIAKgJmJMBb85cYFCCgQsosAoc2FTi0KwtnAo2giBTezgGDAAJeQsgCIMwzBOcMgfRDqlpNWZLANCQovilBn1NV2RziOE7GKADISXwOxmiGJATWAgugBOWQk7AB77NWzX4Y21YBSkpeQVq2Js5RkSGklGNKablc5ZiiT62xTGi6do4yjENmurjaxiiLpVGA/T5YNV8Hf7Jajf1gtXn8+LP9fiBnmjpwksvLyxQjAHRWbzfXwzgmBoWkDcUQl0vXtO0cU9t12/2OMyDo7KMSYAUZWHJETYpMoUJIwk5rRMwxMbMQIamceJ6iJpVSThm6mkxVsSREnVJgMqxgP3mllF21IU6ucSi5lPLX6yPj3IsXL4Rw6HtUZJSeppmUCiG0bbvf760t9J15sVpOPhnnfExp9F3nUo61rmLwtbNR5mkOZBRqUqgr0v00MiCD7LfbojBxN5i5mAYBAfxtesoPxp3RuQty71yzD3p/PxSWvn+K8t/7JumD+z5I3n3Qj/tgRPz+NveP/P7GH9n9vsl+fxRsVFN369UxM4RQVIG0c4SIKaUQsp/nqqqs0Tc3m5OTk6dPn5Zkh1Lqm2++KbxyOeenT5/+4he/qOt6GIYSpBhjnKtjSH70BabQONt2dWHELLG899Haap4zIhpjrDUhBEUaALOI1pCFiSAnFISUIHhBgDjHvp+BMXiYJq8NkQFGEATvE5EtRcOcoRBwppQEgUhBadlGUEiImARijClB9t46DQif/+zTgLOtzUdyER/5PhHBEOpbnrycswgqBEQxhEaTJkACBaAICv0/ldqKHGwiAoDkxJIYkkASYEAGFIRMYNVhRc9ZYjxgYAuOS2t01linmXkcp5izNTDPqaSMk3DOGeFALpBzLlRhOedU2jAUZmFjjNaktbJGkTHCKBmEkYhCmE9OFs5aTagJFOB6sVBKDftCAR2J1M3V1nuPt5Qtm83m4uJ6u/XMbIxxTkvKwxCOjqqmqYlou9+V+eO9X6y6vt8pparKNk3VNI1zDgDquh7HCADWakm5rq01pX+j997zLe2Vq6vSEoeIhZG73EGiw3OKB46Sd1A2pVAZ3XXtetW6pvEpDn3w3iMqvOWKZuYi51QU1nLOq9XKxzhNU9d1IlJmV4yx8FeXPGPXLauq6ftRKWWMKxQnRtsQ8n7vu65L6bBXufji9c9zmOe5amxd11XVHB8ff5y14Qet4cetyf2U34OY9IdM4QcP+2D733rS+5vd9ys/aP4+Yivvf4ofOu9HLvUjg0grMm3bPX78VGsgBKUVEIlImQRVZZi56Ekaowucarlclhv5D/7BPyg3ta7r169fX11d7ff7k5OTdDuGYRSRqqoWy7a21ljVODePu0enp48ePSozKYRwdnbMDJfXGyJCVKZyKUsIyVWVNRUIhJRL6pMIm6oqHKjGuJCwHxOjaAtlDk8zJMYCUc5cOMSlcLRkEUAqCkosh9C3aZrFov7q4tWnP/pkVcH/9n/5P3tsdZo8VCqoH+gyfu8e3fsdivUhwpxlmnwICRFYhJQohYSiGBSCBiAGDUiAhbwV4VazBSQJpFvVPS8SRQJLZigyICLCLLcM6Zxzrp1GFJGIKKgKtyaIQM7l8iglDlmYWZCEIcTMIkDACAygjFZaE1Gxk8yQWFKEEHKKgFJabvnmeo/MTumjRWe0irN/9uTps2en1zdhseicc21brVYrYSjKCm3b1rW1FgpM0vskInWlwuxLw8bJyf+fuP+MtSzL0gOxtbY77vrnI16YjMyMrKrMrKyq7O5ybarasQ3ZmCGJkSBqMAQhA40giAMMJOoPBYjE/NBAIAhJv6gRQED/NABJgENQQ3I4TbZjV1VXpamq9GFfxLPXH7fNWvqx73v54oXJyGqOtHERcd+55+yz7937rL3Mt761BgKjpTkej40xt+98EmnhI/D+ypUro9GgyKVRIpqD1toQfJqmUY4DQOt85MhqrONVrgR5H84ilkxIwCiFMUanSZSYMaRsra9bWzV1pNpEhSCUJzhDUwsh2rZ1LljrQ2BrbdU0bdu2bRsZuopuR0qptIlJ43mea60jU45QMs07JyeTurJSquVyKSX0e6ltWgqeA5G3cRUKBimlEKBMdHtqIUSspPiM9lS/4dmqfdzRduGcz1TEntbz4/087YSndRLn4Ikm8Gd28vx3efZoL3wkQVpbN02TF10KAoQIgRZlKxJOcmJmY4x1QQAK5iwv+v2+1vr27duDweCMNNg5N5vNOkWv2+2GEBpr79x5IDX0R8PFZJnkmfXOV5YpSBKqMDJRVbXsdvuxFH3btv3hQNUKpSbygT34AIDBcwsBpQQpfR1UAomWqRFGSYFMngCIyPhQs/UqEShkoBAAvAsALAGkBCEFM3MsywmfglkJIRBLBJMo53gAuoOKBXzzd35ldHX0wYMj5UIKSQvNZ/7scG5RxXCzDoGICYAcCQApBQRCxQgYEdYKTg1vFIwQ0/Zc/Pj0AwAIwAFAAvhTr6VwYcV6jdFAJyYgYtAAKwkYEFkqGaMiWgBEekoGIPAIMsb9BNApe7YQjwQDicD6AAwsQgigEFKTtW6xtp61Vd027bCfD3r9nc3Nj97/wCQpM29t5UmSTE7Gly5dWi7KJEnyNGlDqFsrhI3+TUZAhLbhwUAJwMVisbGxoZQqq7qpSwLtmXRiAvN4PC6KYjqd9nqjhw8eHBztN01AARK4W+RVWZHzjoLzvm3bAByfeGbWWlprTyvERg+GgIjiRDzlFgohBB/idsKBAlHwHrK8yZJE6QQAnGuD5zQVEcjtnEUOzrKVtt8popBtmsYFT8yCoWmaLM0j/WKWZYi4rJYucJpmzoU0K4ir2WxhjFJKaSG890mimFkINEoDRbIMkSZGCrksSwDtiafl8tk8L59PN8TT/OIzZ+LjouHs/bPVqMf1QT7NkHv2JfCon/EZtzj/LR7XB893+5n9POFCpE9fLIAFgoxI3hCCbX1RFMSEiIFWFSaLoiuELMsSiGOZGyC/t7e3WCzSNPXeK6WOjo6apjk5OanrOsuyKB/ruh4MOkVRzOdzY4yU0rWNQBj2iyxNEDHWkz05OmbmeMn+w8PIcEdEzob5oiFQPuDRibMtIUilQEtIjJAitLYkskJD660LKLX2DELpxtKi9gwQYqhDghBSCIUoozEac+AkCpSSEQJHiSDqsuRu0TJdG43+D//x/3wb0pd31gNCAw6ebx86m5d4bjRsASCsQh7SM0RE6QrUKdAIkQAwEhE5IAcUmLwAj1ErZAIIgAHQw0pPjOP3DIExVuAjhljlo2wsAGgtQUAITBw5CEAJyQEogEChjACBkQJWKBFHGO3B2oaqCtZS1FAEChYIKAUKIzFRsmmapqmLIhcCJIr7d+9Za9M0HY/H3vuiKPI029zcFEJsbGxERGTkaAGISEYhpVRKJBqAuGmayYQmk8l4NpVSbm1fOjk5CSGUZdnpdEDgWQGJ3d3dLMuyFKWAqrLMoShUlmUAECEsccNGRGudECKEmEmCK1F4+ixQ5Cipqqpq62aVeyMlGqPy3BSF1MpY78qyaZrGe1YqKmsY41dKqTOCgegHWC6XeZ73er26rqWUVVXFzNymrquqQsTAUDWtVKbT6WxsbyslEJG9lwKkgDQ1EgGIjTERuR2CIyKlZEyQFULoxGR5+owl99kcNngaP4FzwutMFF6Qg48ffJ6G53A2T3tU+EJQ5TEE4vnePtfdz4/heU47u/tTTuCIsBkMBoAIKAGCVEYIG3WPEACBXdtq8FmnSE2SJEksGTocDsuy3N3dLYrik9u3Hjx4MBwOI6FIWR2nedZ6Z4P3jRcSB93OoF805TxYlw8Hro1MR0op5T0lCbPz1ocQvEqMCK6uXUsADChUY+ssgUSDiahZD5CAVAqUa2uXZhLZEYvFsikbAJAoQKKEM10gErgAoJBIAaQgJkcsAJJEDwaD4GxfFu+/+0nRVf/gH/0jIuj1RykLH6D9nJPDAjhAoEiSAwohEHgAFhAIWAAIlMgopARwyO1q9+cVp1dkHUKIXF9x+gKcVhZARGJAdKsACwNALDway7EQAxEjgkBkBh9ASCQGBlBKCiHIhwAeiSOlq8AY4UYJgAKUhBh6YrEibY8mufO21+0eN421dn04pOCSLN0/OEzy1DBPxvOtrVFDjbV20O3N5wspNBFF6iohkzRNAUNjPVHoDnJkVqnZWCvqsqLAZVOjkp3+ABCLTjGbzbTWy+UyHSRKqcnxibet99zpZIgtcEgT09Q1RupAKT2yFLL13gaQIeBpncLgmShEyQgA1nMEvAkp5LmHQmqhlAoBmTm0FIUpIhij4BQ7iYgoUUqMYZmyLBkhMI3HY6WEUirNsqpqpRTeOyEEA3qQbdtaz/3esKqqJM+SxNi6AQlCGPKWgyFvQwiJ0qcFAKh1oSxLUFBVbd1AN0kdPAtI9xnV5R971C+KLX4sPe6RpfxUkfFI6Pkz/YbPNk6fUwQ/YzBndveze7gwYHhU5YxvnHPMgdinaQrMIYTaUQhBSoypnUphdJ0IIbRUeZ4fHBx0Op1Op2OMKYri9u3bSqlLly7N5/Poxs7zPCIMmFlK9MFJ4KYuF/NZjKV4T7PZrGka8gEAptNZ2zpmjnu7lMokmQsADEmGIbD3IBFyk0ghgFBrwSxaR0rnPgTrHAGUtVssGQE8EIsVyNAFdhSCZyKOZWowwvRiIhqAUDJJkiRJPjw6qAGSpCeDpgYm4zklqsFnscs9+QcnCAAe2QMEBg8YABwTATgGHzhGJAQyIiuETEIm4yZPn1ZIOZ15RmBkBojMXcxMIDwgAXtgu4qxACMQKktgXeAzzYgYASiEmE6zohcBBsYzoQmneoNRIklEakw8iYicDyE4FIwATDYy8Vnr27adL5fd/sB6t38wLfJse3uNmTudjvd+Pl90il6n04FTn1Vd1/N5WVVNjEJ4axeLOuJbh2ujNE03N7b6/X7R6aVpLoRSJjEmjWz7vV4vwpgFQ9vUMVMYETudTiw/b4NHxAAspcwydcbQdd58YmYiiPDfyHUW6baiKh/d1m3deuuEEEmCqdFaSj4tJeQcAUAIQQgFAEVRCCWllEVRzGaz2WyGQjjnzmCGUVFtmqZuvdK6qpcmM/P5vCybNDOdPCsXVZEZDk5KKVEQETkPEAnWWAghZNzKV4GvZyy2p0rD09Tri+28kvg0he7ZYuXCp+c7eaKP8uz857zLM6Qqn2vnT37aLZ44zmc3ISAujjQzSmulV1mcUXsXQrBnRIzxsvF4fHBwcP369RdeeCG6vWPMpKqqWDOvKIo0Te/evTscDmPafKySUxSFlGik2tra6hTF8fHx7u5uTHcF4rW1kfc+5kKlqSrLylqnlcyyJASez5eJ0RxASgmBKIBA09R+PGmrxgmJbRtCgLrylsDogoBX3PfMxExhRS5IDIHJA0QyP6nis9pMp+Pj45Nu0QMUx1WVbm7NAebWV1Wjnp0m+uQfFAGBBTIAnRq8BMggQgAfmIAjxTwzo+COUZkWqUCNIhbAQ2L56eQ+Ep9hBg9ETMRIp+WlYlCo9Z4CCG20Soi4bYiZO8YARItPtJ5q61e/OQAAKCEkYHA+OM/MMdflbHVFLIfWMk1FmhpgRsQiT4uiu7W5fe/eA6mTvJcYY2LAYT6fdrI8qmzz+Xw6nQJAt9vtdDpKrcIRUsq29Rsb/TjXbdsywtHR0Xy2ePjw4XK5nM+X5bLe3d0ty7rfHxKRElIJUXS0c6CU6vf7kdLGU4i7tRAiApgBoGl8tDEFKqWkMcoYHQl9k0RorWKietPEWsqEiMERec+8QpAiQ9zRQwjMQWutFEZvjzilSY6SOkmS7e3t/nAQfU3L5dI5x6fY3hCCUrLT6wdmRDRGdTpJWVpjVJ5LbZRSqlvknU4HAZrGNo09sx3bNiSJKQrhnIuy+Klr7ZTVkJjpTBgJSRQCEzERnpkVAAggYhkwwQwBkOJ7Yi8kABKxJ/bxo/gSsYraCuiwwnHSKT3quaV5ypQVUYSnV8U1iwDRXYUo45gJRfQBnfVwQd88GwCKTyFBF+7IjxF8nb25IDQheucfJQo7C7Gd9yE6F0SioXXpsGcAKnYCACVpcMBBCGGMUkihWWKwnU7nK19+/fj4uKqqN954o2ka8m4+Hru67OU5sLeukVLuXr3CzE3DUpjxdBIXUwjc6XQODw+lUsaoe/fuaZ1Ml/MAeDSZdob9NtCyCnVLrYcWHAt0TRAORv0EpDM9aKme11amhoRZtExGTlpXiDDq5FIVSwcVwDzUoJUHqJBbAB9Laq2KdJ6ylEjNqIKnS6Pu1qBQMm3YzJezwajftu39+/f5NFOT4NMdNGJmnl3tGwAgMDD4wNFjSIwOsWSqkVqAFsATcMyLQOQAdRuCRwGoAUSsuQ0iRMgN86og2Kkt7QFaxAaxRXYMAcEhOAEWOQgAjegJGqc9aARGaNBKyTE6LQQwQEvQBkKhiUXrufXYBCwdLC03AVjrxEhiVsqkaRIIneUQSILUEoCcUuC4VqnojzrBOY3qZDwLhFXtrRNFf603WJ+XS0cBjI4M5VKIXp5JglSFtb5ZHw0O92fLZZVlBQAURdEdDUyRre9soBGdXqEkfvLRx1mSAsD4aJyk0lrrmmCkMErX5WLQ67eNVUJrrZvGV2UbgVNN44OH1lLThjpuDkq0wVXWseRIbhY3A2MSbTRL1Z5iOmPiKQhWWhA7Yqel1FIKIKOEt00IobFt7f1kVp+M52VlT8ZTF/xstkiStKoaoJDnOQrpAwCI0aDXS2VH+kLKXAjp2kzCsKvrstQ6qRuHDIEpsA9IWSeRGtrW9rtd8EEjkA8ukFDyIqSQGBn41Hh4xG/IqxAYhRCUlnHVMK+qYQEAMwr1SErGp2L1UZbW872d2aHn5VE4S96+AHt+NAZ+7hI6PXIhF+XJ+pr4nFrI85jJzzifT6M6UkpnQ6xQyczWUdzIY9mHaKcwBYEwHA6LLP/www97g6H3fm9vrygKoHB8eHTlymVPzCEUWT6ezOZV1diWEXq9jp+0kcTYO9+27dbWVjmfpWla12VZloCRWU8eHc6kwaIwi6X1BIQRXegRQEqZp4A+1YoxbQF86wIxkpPehVKARF95YUPUlRiJGECeboewqjHIAZhXwtEDSykxSZLUaAAIIQQOkWPOuZV1LIQgWmmsiBhxYeKUOfwz88Qv/NoMEEuCE7ALzKsCDdHfF5M4SfAzvUTnJw7gTG+M/xKDZ26Rwoo8DIQQKEAIQhTELAGBeeWlRA6BYiiZGCSC1oKZq6ouEuUdtKL1AQKBEjEoAb3+YDqdLhZV0cmCdf1Od07LWGkkUEQ0i6gcxWTe/eP9svTK1CcnYTBU29v948nswYPF9lq6fWkY6WG8p4cHR0KI9fV1xpAkyf7+fmqSXq+XpmmEKHoKaZpO53NjdFnV66NhmmejwfBgPNOJybPUU4gsS0qKLNWMIgoEZnY2UAAEYEImjuRwEWuNCFqjMpqdjfYpIgsUZ+nM3q9ckOflQDSBY9JeCM4kKpInaq1iVYCYEZh3imgbee+H/YG1tm6Talo7R4iwrCohBLRNimnTNCbN29YZY8rSxq9M1AJEZgD17FX2qSRaOZ8Z6FxbGSCIUS0/K6P+uM14dvLFVXuqRp1Rup7xvD6uiPGTAiN8NrJztz7LA3yiOf95RdvP0C7c6Gz8qU6FEEKoTtHr9ocAkBglpSRahSDSNM2TlJmrqjo5OSGiJEnqun7//fe//vWvz+fzra0t5xwQr6+v37lzBwCWy2Vd11rDfLnIskwLzFKztjbo9XqZSZq6DiF0u92ILK3aRhmdZdoY0zQWtfYAVc0xWSrLtRKIhG5h29oBwLINx3NfttS26H02szCp/LzxLUM4rQBHK4DFqY0M6IGj5+60WpbvFbkQIsuypmlELJpsrZTybEWcVZ2Gc1tpTDf8XKIwthAFFoBjaENoA7nAngAIiBmZVmbyo+yHn9knAMQgCQN4hppoSVwBOABCIVgxnnG2s5CAkU2MVlJRCKGkUEpAxDAG8NGjGr2VAIggBTB4a32SJEVhHt6fOOeqqtFaAzEipmna7fW0StrGhRAC03Q+y/OO1oAor+wOOp3eYlGur61trOd127RtOx4vm6aJgEQp9XQ6BxZMmKXFYlkRwWAwmk7nV69eV0p5ImsZESUCEZVlOZ3PqqpqW+e9b7231lsH/lQCnCk0ce60logoBEippFLaCGNAa5BSKoRYcR6RUazSx4QAKWMJWHFmEZ7JhDRNq6qVEqMLSEpZlnWSJBsbG9EF6b2vqurevXvL5TLLsslsenh8ZK0NgZTCJEsAIMIJpYyAB4SV0xCcc4xICETEgZ9asu60faobnhcgzGxtc3r8gohZwdDPPl29keLCyatFsxJlj0Fw+KKLMB6/kA584f15x8+qUspTBd/ni2ufKXfPPu0z5WxUeULgNE1Ho/Xx8RH5EJAVgpEqM4m3ri6XUgAz50VxdLD/ymBweHh45cqVjz/+OIpUrZUxadZkyiSLZTUYDOaLRW1b7103SxBAALqmWczm1XwWITjWNsokiChQlGUllBYQiea08ODZGSERg9YIyCGwMYBS6KSoQlt7bz0EtgAQBBCTYw6MFGePCeNmyQAABBiddx4AEBgRiKWAXrcTONStnc8XRulY71Hr5Oznjf4j59yK3EnKqP4AQDzynNO0ejIJBKAAcMASgIglIiIqZgnAgAQsT/2bgPScy4EQBEPEMIZTOSriV/dECFFTXoVTeYVJJCLEaDoJrRRz8N4LCUqJEFAgSKmkBE9eMUuJwCHLsuODxXAwfOXl9Tt37pRluTZcH62v7R8fyABKomfyPmSYSGm8X3jb9nvD/aOJd0FqEx+fxaLqFtp7l2UySbKqaYRQRZE1TTOdzoloa2ur1xs0TXOwf9TvDW99ckdhS0RF1zjnOp18c3OzU/Tqum7dvLG2dZ4FKK2FJKLIzEjeBykjl0wsdS+sdQKBOAihQCopAYmZg3MhTSRHlwQBIwFIFCwBCeSp6+sRhcp7Oxp1syybzSchyNFoVNd1VS2bqmZmY0zdNpGyQQhxdHJim8o5p5SKsRdmdg5A2Nxo7ymWahFKOReEEo21WmhEAIFEDJ8lER+xlFebKaIQwih5NvTza5H5oiW7+ug0IeaCxnSmEl/4VOJZn6em9Eqp/lR3wEcixadYp0fl3NPk11OlFj5FU1hd8NQf68LPeOHxwlPKHAou5hsh6KLoCgAfWCvI83SlKwXq9Xrra8NmOTs6Otra2losFpHQ7ejo6MaNG0cHh7PZJEmy4dpo//BIKpwsZgCiqmB9I40ZtZ1u3pTgg83yIjH5dDpOsjS6gIXUwNZah0CMWNc1s06kklJaBg5WsDBaKhGsD1Xdtq1mUF5Q421AQJaeiIEhRjxOVZq4DiL/OEGEi8RvLgF8v8hSo0LAg5Nx3TYmSYQXIRCeCyIzhzQ1UfytfsMYfpHy85rJiAgQM05ZAEZjViCgiPKQEEBGJhsEAfAUb8qTG2G0s2Usg8wAgOAZkImYtABmEAixcgEhBA8U747AEGIwISbdeE9SChkhutH0EZCkOkl0r9vf398/OD7q9Xqbm5vlsm7b9vhoLJWsbSu0ybsdCBQImrZubGutNTpNEtU23lPrHd26dbK2pqNamud5YHQuGCObpvEhEKBUMsISOp3Osl7mmLVtO+ibuq1jcbEQwp07d/JOL8871gdPFACAUQAgSoBAwFJIxMDnMiyIKASQGhnAUSC3+l5GCq0ibpsw6s5CCCAkZARPeArWWXFmxO6MMa2tq3qZpqmUcrFYAECSJK61gTkwIWKSJHXbuhDaspQKpU58CMzsiUMIQgGibBorhA/MIbBQAc5lTAqjNQgKLREI9Sxt5gl4wyiw4q5+JsbFOaIxeFSTOpNHjxvR599f0KouuAsvaJRPOudTxoQVjGx1j6cVQaXzf5y70xNP/9x+Q34sA+dUpkdiS+eZrHMRqGaMkih0kva7vfF4PB5P8izRUu7s7CiBZVnu7OyMx+Msy46Pj6N26SlIrQGgLMter3f/wd7WepZ3chnCdDrNU9Pvdr1t8iyZTqfMqKQgApQ6glcRUelkuayCZxdsICQvjAalQRtZNa47lE1Nh8e+Kn1A5RmdAFBADk7rFsNZxAEZzqTaKvbKZ05EkgCjXgHBKpVMl1XMmI6uwKjx4WmZ8IjyZeZYGfX8yvm8Pz6cFgiNPs3oyow7EqAAIgSOCSrM4J6+yyFG9o0zgYmxe79ab4AAglciNXpdmVkKklIKQI8MzEggBEUSMBvYKDB5ChTK0iZaoaAQQ/IAQkGRZnmeg0Cp9MbGxrKu4nZ45fKVhw8fyjSR0q+ygxGYKYTgbIj4fGNMYtLGurW13tD74+PJ9as7y6qJvND9/jDvFHXVFsa4QHVd68QIwIhP8N6jFA8ePNBaJUkS0593r74AoA4OjxvbeiYGYOKmdUQgAKWUCFKchr6EWHmPtYZAAZWSQjJ47wIGAAlKqeAtMwuBUmolonfIMwNKfTZ3n5p6iK2t0zSN+Opokgshqqrq9TqxKosxmgCaBpxri8I4G4RgF4iIo9Q2xkiduHrOiLalJNN17bLCgLVKGWudYuZTsOezuVufEEVZjbJtxbnSInxazS5aso+v4zOX4hM7hEdl5ZlUPbcoV6M8D108kzgcndYAAc9powgAIJ5OPPH/l8Yc2rYGACJ/Mj4KxApBALnWS62dc0WWJVplWYbBErC1rjcYTqfTK1eu3LlzZ319ff/BQyGEybP9w4O6bWzwXFajwfDwcNLtdNZHAw6OfPDSxzXNzJ28uH3/oN83IBQBL6qQGJmkuigKgoUvAQJTcFkKiZEShbchlf317U4iT7JxM7fUlNGSQGAGjGSAK279OAMUPbdwKlfO7UZrw44CggCzemGSRBpdlUsK5yGiLGXMdA5SyjzP33zzzbfeeiuWRf3ZfuczTZ6jNgfADCGi4IAUMmLkN1zFQdxT5OHpCFe1BM6MEh8zEQGimokrLwEEjsVHQUlGgYI4WvhSIhFh5Og+jRGpBGN5kBAYAJRYqUTeukraTqdzdHxcFEXrrBDq3oO9Xq/nySFiIFouyhBCXmRZpwApFrOTyaQuuulobe1kPHnw4Ghnd3201r1z72FEpA6HuRBiPp8vl0tr3eXdK1euXN7b2wshpCZxrk3TdDDoNc2kqWuGkBg1HK0XRdFaIiLPqwwlYmTv4bQ4Zay7BBFyJzBub8aY5TII8EICrSrEEAWybSvlGRKEgSWzB0Bmlqfq1IVnP81NZAuPqfqLxSIayPv788HAJElirRdSDgaptbZprNQqBNI6qesaGKTRZd1IG3p5yszek9Y6UttG9VBK6b1zjqX8dF6e1i5GUc6WiFJGSi2lvgBtOQuAnOFLok4XzrXzEZjVtg105k+VElWM52ttTptSKjqSzgbAj7Kqhc/ZPutpesJT8cT2tPOfqEsys1GKyBujYmwEANJUSCm01hKxLMv4jZbzxXw+Pzw87HQ6bdtub2+XZbm5ufmVr3zllVde8d7neQ4ALLDT6QyHQ9fafj/33h4dHXW7XSFwOh4j4nQ6VUodHx+vraVpmrZtOxwOlQJmPj6eLJdLo0RiRJGmWqBEcC4QeQpw58OZCrw9Kq5uZ1sjk0qQICGkZy42fFSN5rND5z9gAICN0ahtGhR8dDTr9nssMAKlzqv2UerFeUyS5Gtf+1qkcYy/xuedLABAODXcP/3xgQA8B+JIDAaIKAHFM5iantJWKiaCAFT8acguhux9iPwOp48ArsSodRwI0tQg4rxyde1ibiWtKONQSsmEddVOJjPnnMnS4fo6IayNNrI8N0lSVnUk79BaD9dGvV6vbdtYqQ4AikIURfHxx/eSJFlb60wmE2aOt3DOaa3LugohXLq03esVVVXdvn07riJrrTFmPp8fHx9vbm6CFDFeURTFeDxu21YqbVtvvYux4zOmPuectasc3BgA8Z7alrz3WSYj7J+IpNZpapSSzCCFXll4YQW3BgApV+m85wOncYKcc8aYNE3LcjGfT6NMEEKMRikiLpfLwJxlWbSj8zwFAOeCEMI7dhS0NtaSdxS7itTcKnoPhQhMJkkYIcIYhBBPg6DEpk45vqI0XC0bpRRzOIuCwQpns1ph8KgsOJ3sM4DgSvs71SvPC9xHrOALsuaCz/F8bwCr7yNXx8XZXeBTRfK8BKRTyO3q6sdvdMZKtOqKTp/3Z5rMZ+MhFJK9ZGbEAIpQsHdGILZeSjkej5vZSVPPSJt5bTNqxwjdbrff7R0dHeWpmdU1e5cYsVyUo9Go3x+Ox7eMMXmn73zIsk5T1a61kkArvZhN8iJt21ZJZFKLednN0ss7l+7evT0YDCrragLvpEJc+tDOx3kvqRY21Ymt/bgKMitYcE/ijbVCGPPOYfhxDUOsq0/2ewqHHZMbfGEns4f11NVGgXMAjAiaIQJRmYGkxBACoBRCUAgApJXwnq6v9dg7nXfGizkDfOPN19966516sgCJRKSVIE/DfndR1YhorRdoLm1fRobD/YNL2zvj8Th66wmcUiomWeM5CvQz/8l5wwWi3/ZUajMDA3oAARgEybgowkoRE8ASOEFJwIGZVol6YnXt0yLOLAmjh5SRQQFIRImQCElEgcl6kMxKSgUBmBhBSeAA1lohIFUgGOpFVSSgJFpC71gKBqSla2QjwtHxoN9Pktx5Oh7P1oZDpWRUlCOeeXw8jlk9QojDw0MpMZCYTCajtW6EEIxG6/fu3ev0O8pIKeVkNlVKSWX2D06KovCeQmAENeivAUCSmsPjozRPZuOxFoo9C6EX84aFfPjwYdu61KjaBu+Z2SOiVCvyBjqtG962FiUWRRblTpGOFuUSwVtvl8uwNlSIQRpk8LHYPPsgJOR5Ph1P8iyxtjFJ6gK1Lkip2tZJ4G63kGgFoJaKmSUK720UZyGETqfTNC16P5/P19bWIs+NFCLRqm0cSKG1KeuSAPK+nldtpIRARLZWhkDkiaj1TssMstpb1gKT82nKZ4YmrYTJky1l5k+LvDxne1y08VM8a087/9kdPgrTvSg0AeBMRAIAAD3NQXCm0p7pj+dv9AxRyI+ifyQgokQIxCyVRBTWtqiENh2V2ZPj2f/z//FfIQqjaW19Pbdh53IfAGbLpcwKS6GTZkWWl+WiNxz0hoPrL7wAiFma7u3d63SL4bD34PBoBUJwJKWURhNRkqbHhyf9bgHIiHzp0qXpdJr3Ota7alxuXNlyXNWlt8LqLA1MIhVDG1pXEkFRKDZ6UrfzeYUeKtOdn5QGwtYiJJqXtQsWUhCtIwCQAhEpokMEApyaSHGXk0oFb72nzMhImVdV1cm0uXZ965/9s/8OADY3h2UTFouF96QQNjY2YDw5PpmkaVouq1deeeX73/9+p9NBxNa2w8HaZDqBUzfxeTPqtNDaI3Jw9eeTJuostBXtkWjtEzy2FvjC/0/uCoGRIaws7ngQY28cA+vEzF4CogBjEiF8cGeoOpAQd1zvQ0yzBmYCAgGohWya5v5yubmxcXh4uHtphwDK+bzX62VFUS2XSZJH16rW2phif3+/KIpoKpZlaUxS1zUzDgaDRbVgEEmSIDbL5TIxITBVVYUstFJSCGutMbqTF7uXLp+Mj9jVxiTLatnt9pMkmS6WSZI01oEUxhilKOYR+sAALIRIUwUAzjkXAIlZtNEQbBeHWkN/lBHl81ksryxxZQNEojOQIAEApUCpim5vOp0FBma0lvv9vEiz8cnJcGsQn6wILVRGE1Hk8S/LMsvSJMn2DyfeHyRJkmXZfFlqraNO2jZOGTkcZkAx1U9E2sSYCh1Vzul8FmnKovvzmQVEQZ3qep/KhNU+/DkRe2eq79mRC1rkM6zO52mPyqlH7nLhaTk94clf4CLY+5xr8tmDPP+UMjODUHIVHGCyQgijpQBWxnzvz/7g3t33L426Loju5c50MlbJ8NaDh92iA0CDfj/VpiiKLCt4Om2Zb3zhSyJJBhsbvU5Rl4v5YrJ/eGCtZ+ZYLr5pmgQBEZuq3dhcs3XT6eSL5SxNUyFhf29fJaLbV8cnh03NqdF16zzUJhdNRcMUuhqMUXmnO23p1sOqauH6Wro3Zw+SQO5X3ggIBCiUEIp9AwAEMboIGKODp+o/UQTzeQBQSmxtbbVtU2Sd6Xx5/dqONoYZ8sxIoebzSZwGpSImw0IkrC96xpi9vT0AmEwmSqr5fK6VJggxI+3MKHPOnQ9AX2wXQ/wru4Z5xft/qlvCqccz4IrIIfoCCD4jST/yNqygNsiAggVAGyjKu7MQOyqWQgbnKaxSClCwRkSBQghLgMhRc9QK80QVmcnTHMg1TXV0fHzlypXxeLw+GipjJpNJ6xwAmDQtel1aLGbzeZqmaZZXVZUkWaebzGazEEKWZVVjXQhRaEaw4fb2pbquT44nRVEYpcuyns2mbdsqpZxrB8OeMeZkPtXeoxRlXStTllXlKZg0nSwX8Wv7wM7FTF+QksiDUCilTBQioqfQNKFxkAhYLKBqamNEt1cUuQaybVO5VoUQAJxAdAIJobEBhAWgxkKaamYm8sghS9Wgm5dlmWVZtMq99wRMRGmalmVlTOTZrZJEeB8A2qIoPAACuuAYoLVBc8iLflUtESURtG1DtGKIsNYzt8zoXJAKo3EdnvR8n8kNxasgyTMXxp+jPU2+PEmEweOC6bxIfeLxc0LqEeDNc0rDs/ueRT+f/V3OxoBCMLP1Pvq8iShP5EcfvP+v/+U/2z/cTwS9dm3t6guvfnJ8uP3yS1vFparaFkBHhw+F4Oli8v5HH166fG19Y3t/dvIv//BP0jR96caLe4fHu5e3L994+eO792E8OTk5ybJMp8myrqiKdJ5eAva73ZiwHHWgbjeTUp40S2a4cm2j0Imz9vDwcLO/ASMxK2euqSj48bLdm/r7M1ACNrQc6uUigJdQOmgAPIJQ6J3XMg3BEa2SHoVYhWXPfijmEKOrqVZaSWM6ZV01DpZVXZ6Mpcad3SsP7+8holIKgYRAY0wkKGvb9tKlS7PZpCzLVX4ngg8OSKytDWPtND71sl9wIj9tLfHK4GVaJX8CnOGo4XFLmKPv5zQo8syGqwuYwSPwaXUBsQqVAHKk+xMM0LbhNP8UBAMjEwfyARG0ERJYMmuJqTGZSZB4sph3u11h3XgyKYpiOl/0u72Km8Pjo+3t7Tv37gohrl65zAIfHOwnSZKkeYQfD4cj51zjbBSCa+tDANBaV2Vz7969PM/zIq2WJeS5c62UOkkS7/1kMmlt7b11DvJcN02zvbW5ub1T37oTgjs+mkojIWJqmAFByggeECAictnLSNoGLDRkGlKVYNUyifmMmro5gdZIxaTS3Ee3W2AOARha6yBQKyX2+t3o12Oul/M2tAfro55z3Ov1qqqKTva6rquKh0NQapXdXFVtVmQxeLBcLgHQWhsCCESl2DlYgXK0AQBrXWAAgcGTtcH5mPVELFkLEQLTM5U8Bac+40eWwTmT8OLie77AwhOF3fO0J6/4x0LYp0L8vDH+iPL4NHfpBXcknGqXj0vJCyO/kIcjlcbgXQhZ0QVPgRwi/Nn3/2R88OCv/sW/avDkN375xj/9p3+Sy2xjuH5076O802MIv/xLXz/YuzedTr/7K99++90PBdLdo+ny1v0kSd756E6amM3R8As3b1SsWkKR5AHlclE7T1quArKzyTRJzPpo4J2rqmXTNEmaM7MgvbM1TA0uF0eb61ut642npQ/SpxkAe+9PlrQ/xwbVMJEQxLCry8ZZBwSglELrJTlmUEFGhM2q3hHH6BlLyedjU0miszSZz+c7O1vzo2MGODiaCokh8MnxZFk3HPP/W7e+uZYkiffkfI2IX3rlC4cnh+vr6w8e3odTt5TWiUTRLTp1WUUSZmst0zmv8KNGwIVMvjOBiCtKV5AAF0Iz4tN/GQADPIcCcLal4ipBRQJz7IRZAUbmbUKAwMygFGijBK9cMUQQAqNCKaUUDN5zIBTsvZ9VpUnSqqq2t7f39x70egNonPXOpIky+uTkJH7f997/sN/rbG5uPnjwQAuplG5b632IRanzPJ9OF3Vdx1BpkqT94WA8no7H1WCQOt+ORqOIY3XOKS2qagkAw2HWNO1wOGxse3JyIrQq59PRxrCqau89UWBGKZVSwhOFwABEAAIxUhZFys7otsrznFAQNExUVoFTr4RQauU8cc41TaSxEWd5Z5G1sCgKJ5Zhxe0kq6qKcB8hRJqmzHV0HcaKKIjSeh+zVhaL2nMkRhHMnCcphdA0rtNJmVkpZYxm67wL3hMISPPCNi2AZzplrnymPfDvv4Lohfa4dHs8DvOMk5947XnBd+6SR+Tvs6XweZlIj1Xde8bIz55JCkEhxsh4a2sA6HULrcT/5j/9zVsfuZYaT4u19f5hDdPxZGO9bynpFaqpFl9+/eV33v7RdHx/0EtQ6i9++U1mPj4+/uSTT/Isuf/w4P7BUa/bGRVDjdo2FSjd6w+Pj454Wd586QWDo8PDw263u7c3JYI0zWM86suXXtjcWR8vTmbzxQ8+ujuvYbIApXVVuUSBEDBp3BIAQBLRdL6gpAfaCE8itNL6NQMb3SSR8O5hKwEkSkLpyIfAiAS4crNG9zYwp1r1ej3k8GD/YLGsQIAUwntSSp1MxqdIRJISL1++vLe3hwgY2ZbYP9zbq209Hk/zItNatq0LVCVaFUURKBRFEXMT33///cd//PNw10cma/XvKhRGq9BfvBAgmroAsILSxBTnZy02PMWYnBeb4ewA4yoMwwjEnggBhFBGKkSOzkbywUNkgmatARGEBCUQkGrbbq0N6rqeTRfrm9tVVeWdAoiNNgyrgjZKCSB2NizmZa/X00Iy83w+H66v9Xq9vb294OnFF6+7tqratmmaxXJW1/WgPxwOh/P53CitJLZNE0P2RqcciMk3baOUbtt20B9Za6fTKRHVde1DsC5Yy4FYSgIhvSdrWWsQAqSUKEUIAWMdCPasBID1wScGup0UwSpJCMTBGK0QUUkRvBdCRFaepgmz2ZIZhACt5KDfVwJc24QQFotlkpg8zxeLRVbkkeUzIkOstYgiTdOmaRCx282oqo1OhBBN0yRGC5E4NxNCnCJPKObFovQUqG0cMAshmb2NTp5nzDg+VhR4tbZ+Jsv5vD6Ij+Kon19DPDOELzgcHw2bfNr5eWl4Tsbx88AqzrTL8yHLp435wgkhBCHQ6FV5QyVBImxvbORp8qd/+se/+Re+cuv+w/dvHVYwlFgvlioYkwQum7I/uP6Xfu8vMMkfvfPRvQdHXsBiXvX7/V/8lV+uFsv9h3tNUz08PGyK7tbmRn+0sXf3VmPd2tpaIoS1Vptca31wcORc0FJZZze2N5xzg35+++79W4fj44buHAJpaDywdYZhagEAGCBFWOtniaBy7prFvNvra++bkgoB14dqmAuNvF/BooKGwinGgJhD/CUiqJuZtRJZlhklpNR37u87Am2MdRZA+OCVEiGQQOGcK/J0Mpk8eHjIAFKKPM9//OMfv/rqqz/60Z9duXJ5WZZlWevEFEVx9dLuO+++I1Ds7Ozs7e194Qtf0Fq/++67JjHxFz5vBzx7fV7cHk9t4zNVb0V0/8woCsSTGeBUbp5qoKdBbIKYVfHpsicmIgYHABJ5RcNE6K0nxDyBzCiplUSQUh4fn/T7vdl8vlgsrl275m3DzEVRAFLTNBzIpMna2loI4eToSAjhEPM8VyZdzMvItb4o5y7YTppqpZyUiGh0Op9PQ2CTJmlqiIg5DAY9RKzrMs/zxdLtbG6dnIx9a2Owot/pHs8mcMqucppWjrSKPbFJEyKy3oc6smyAilkk0hoDoQYhwVoriEmgkUpI8rZBRCUNIlDwQggpRJGLtnVSCwRYLhslqJulddv0u70YN48RYThNXQeAWDvUudDp9WLVlyRJugTM7L1LtBTgnWOlMAQnhGyaxnuQClEKQaoJtm7bIhHAKgQgCgDm6WVNACJA8fHH/meQho9fhefasw+eXf6M+553Hp1/g09p/JQW95yzTs4UyQvtjN7xwsjP/oxslEQUwVxa6/HkuG7Kjz++E8DO68Xt+yceCi+4pdaFpHFUtrZx/nt/9r2mqafzyeHxwfr6yNWVVmDb+vhwHwVfv3799Vdf3d7enpXNH//pDx4cHG5fuhwJ4pl50OtXVeU95VnR7fYJOPLTvXDtxo/uvfvu3t2Pj5a3Dl0NRe3ywNIoQ4hC6STL00QrBPRLI22/h9dGsJEteqrc3YAb18z2diG0b7nZ3Rn0u5GnJEiECLo7m5W4UtfW1rrdblVVx4cHjkBpba0HFkpHAhviUxM4gi6/9MWbly/veO93d3d3d3dfeOGF4+Pjhw/3xpOpMcpZGykdpZBZlsVYilLq5ORkOBxGEtwLC+zJm+up2w4RGZFjHknMpD4HGXxO7GE87ZGStSAibiGsjiHzKuMJEfUp7MF7blu2NljrnAtaGiIgYiml0gKAPBOD0FrP54uNjY2ydGVZCqGIqKyryck4TzMp5dHRiW2a4hSxKKWs6zpJkhi1XV9fX18fxl8GEROl0zTNsmxjYyPypVdVVddl5MQMIZRlmRdpCGEymeR53ul0di9dUkrN5/OzrKH4s6vTlFxEFDJWdHJELAQYIzNjFArwHBrNtutrkJBpkWitJTKDE8CutW3bApJCcZp8KbTWUqJAjHwKVWUXZYmIMSJUluVsNut2u1mWxbrJWZZF8mMp5fHxLD5ldV2n2timKRdeCQwhLMsm/uwrTQggBG6axlorJSaJtJY8U2DwDhARnkltdUbDtTJuVodZnelZF6QPARNwYIpvIhnhqVD9dOt+mnQ7O36BKSd+nyeGOM6oL849A3Qe1I3IZyM/7fkRXfJMOCLieYz3E9sF6Xnh07Nh+GZZdLLaW21S4AAUBKrDo9kHt2nnyqXxFH76EdXeqrYcmcGiHncz/sobrxPnrV3//lsneweqO3r57ffuQ1KYvNcdro2G6yGE+Xw+W5Td/vDll1+89MoXfvrRR//mnb2p6r/8xkvHHH707vuTtlHd/Gg6RqZBt7NcTJTk9z9454Oj5P5ULmrIjMigHJl6Iw+9xGbMW4VWTdWXYbuL3QS1wG63y0prFNsZvNjVO4mEpgHCQEJW091eutvHgQHFHjhEcjQUJgQWCINCrw2ycjbTMh9PGwYhTpOuiEgqxQAiJixRGHaLF67uQGgWk6ObN64NB73Rxuitd99K8mxjYwsZgvd5mmyujRCRiNbXN9fWNjY3t6WUi+VsOOq+9oUvJtpEHzkzapOiUNHqjZiMOJsi0g3yagaB+FMuGmIiiiVQggB3SukZU02e1lZ0inB+DRCfpuuRwCDZITuIWjRjIlmSszZYAERHwnnQWkrh+x3dKUxMAg7eF2mW5clyWQOAt/7rX/+aUQoRpdTz6SLLstls5lw7GPSKoijLcjjst21jbVPXpQAK5O7v7T3c35NCFHne6fcDgEoMEU2n0/39fSFgY22U5x3nYolO1+vkRomTwyPX2EhmvVgsbt25E4WgAIRAwUsKomq9JdBpRyrjfJCCQEkQKwZsoODYkgisQSuHuFgfCQG1tTWwZxQEygXSiZFSLuZlhHkTUV23bePyPA8hCCWyzEghAykhO4h4cnIyGo1Qqv3jk+m8miyobP1i3pZ1YNRp3snzxHrnKbTOBgFppyszrB21AYRER7yoXN2CJw1KkUAXwDMwAiDKTlYT2QoYoZRtu3h0ivF0YgHgZ/AbPtF+fH5D+IldXVDBLnT+tFvg5y/A8rlGdaHxo1icrMiPjo7yXh8AnHNpkbZVczIZL0qq65o/CYg4HPaXy2Wijfd+2TSLRakRfv7Nr125fHmxWOx/csvZcLC/XxSFMXrUH+xcetE27WIxOzo6gpqu7Qxeu/L6Tz6YffSTDyY5fOHnfr5MHs7371WL+Ua/CwDjyYzRHM/tJ/dOTqagFfR6afAkQQCSlAIFm5QV+s2NYjIuRx3VyZNlXS2XcwUAEjq9XEvodIrpfGaM8cTCkXdeMCRaZYDBeo6k+USIbCT2Oh3f+uFwePf+Qw8MKNqmUVqHEIgcECitvXNSSqZwcnIyHR8751xgFrK1vt/v//7v/36WZQ8fHkSHFDOvr6+/8/aPtdbMnOd5rB08GAy++MUvfvT+RztbG9dfvPGHf/DHVVM720QA5Bn/zXnqh+hgesbkRhxtOE1u/1lW7dk6oTO/ZNxukRikRBTMKJlRSFACkAkAicL6sCfIZVkqpex3e7Es9WQyMUYrIabT6ZXLu+Vi3rbtxsYGAI3H4/SUL31zcyPmbNR1bZTa3FyrqipWhphOp8zc7XaJKEmSmM7cNM3W1s5sNsuyTCl1cHAQgxJ5njnnULj1ze2ybsrFUmhV1W1RFIRQNTURhBCcXQghjNGAZN0q8BBhp1JIRkDBqVLMAaVQ7KRApZRvbSBSaeT7ElJCTEsTQnS7Rb2svBcYHdDESitgsNa6ptFaL8qqrmvrAdHmuWDmRWUzphBcLCJ6PG4Xi2WnUzjnIrA8IkpDYAEsJVRt433MdluVe6UAsXRqINCn7uNnC4zPneT7uJELP5Of8Ykm8/l+nvb+QiePf/pEcfbEM5/zqvPDOBPQdWUHo/VEpxFJNxgM3n333cViEUCbrJt2+v21zemy7QzWakfd4TqhuX3/wcHx5M7e/vd/+M6//aM//dFb79S2dc7dvn27ruvDw8Of/OQnx8fH3W73+tWrQjRf+/LLL11eT6n6jV/++StXNv/RP//Dwyq58eLLRdGdzhdEoHQ6XjYfPzg5KiEE0AqzVCG6otB5pjKt0HMnFxK9QF8kkCUKwQOx0qB1TJVzIQShpNQ6MCwrpxhjboCWkSmYKQRkACQhoNftIINGOZlMGttGuiEhRPCeKWZ5IPkAvKL8W5Zt60LdcpJmd+/tvfrqq3fv3j2la5QxfFwUxSeffBJCsM6++OKLk8kEEW/fvn3lypWmsQ/27jF5CXjl8k63kxd5CsTA4QyFEzXEKCyeIQr53PPwSKz6c7bVgqCVVxVPbfM2kHWBUIBURARASqDAYBIpBZAn31prbVvVi9lsOj7JsjRNE0Q4Pj4eDodZlhwcPNza2prNJkdHByGE6I5Y5fnN52VZCiE2NzeVUmVZRno0Y0y3293Y2LDWxp9CStnv9/v9PiJevnw5XnX58uUQQtu23juUuqzbqmmb1qVFZ3vnsk7TRVWFEJwLMVwbuTgjEa8SKKVQQgghAFYliV3gZdWWjbetR5Ram1SbNE07eYaIMaAhxCr/Lwa1EYGck1ICsYtIaQqNbQFAa902zug0TQ0zd4uO1no4zBF5Pm/n87J1Fk5TGxElAQgBiJKIfIAQCCK7W3SVoGQUhGg91y0AgRKglBQohQBxTv0Tp56QM3D+59YN//2qY+eN68c7f6Ly+IzxPG1sz6nA4nNEfvA08GKSrGmtUgxI3W7xj//xP/5n/80/2dxYOxnPq6qKWk/bupPJ3Fq/dzABAUWW+B782Vs/7uTZ1sZmdzCYzed5nn/88f3Nzc3ucDidTt+58461djjsX9t65a13v/cbv1B895du/OB7k931L/7qr9z40Tv/ZvFQvvmV19vZ+N7+gzTN+6P1ycPjsoFuCp0sBfZAjGylUECkGYCoWxSTWdktVPDWNSQRdJK0ZdspkkSj1Or4+LhsPYEQWriGSAIK6V2onYu2ppQyUMjSpJsXCoGZj06mKkusdUaauB9oLZ0jPkd3lKdZ3dR1Gy7tbC+q8utf++pobeMnb/8QKUhgCNS6RivZyfLlbK6NbFs0Ru3tTff397/5za+/8MILd+7esra9fv360eH+ZHLS7xRf+9rP/ZN/+k+1VtaFNE3ruo46UVS1jDFnLANPmLgVHBsAIIITTwE3n6/FQk+ranyAABCRKS2BFKAEeGKJrJTQAEpikug8STm0WZIYpXrdoq1qmaSxJDyQv3fvTrfoOCJEvHLlyt27d/f399fW1oB8ZCTK8zw4f/369b29Pedcqs14Nu908qZposyKy1JgnabpvXt7o9HgwYP9NE23tzfLsozM+8botm29g8FolKWFMO74ZHLv4RFArLbdQsyvlYopEIKj4AkSiQIFIHDM/iZmZs8kGYSAWOnJtp6cB6Ik1cDRW8VnFThCCN6H3KjWeSUNM4c2xBiOYFA68YFjYUiJsFgsojzVeR5CSBIQSlprlRJpmo3H86woEFHrJDCxi4zWiCClRM8EQrAQQEQsAlEgSjQ4kgqUYx8Y9Lng6uOP978HhA0+jw76WOMnVQSFx2TQBXH5efv/XBdeOJP5yZmFcdiLqsyyrK7rosi892987asHBw99sG/96B1E4T1Fsr3WegDodDrLcrks27I8yox0NmTmo9HaYDQaCKFe+cKLzvuffvDB9vbWpctXprMxMZfQ1vNybeP19dHw+PCHtz9557CE73zr24eH5T/573/0pavDF67dfHDvllyUkmljIIDZ6FiKD+qaE+0QwBgdnNM6SXRDjrwnrQAQ2ZFRMUsEiXzrvPdAkglE5cF5WgSeNr6OUBQhGEEArA0HWssiy+/du4cxtEJkg5USY558FEYrHDuAD/by5R1EdM5JZTY3t+/evbtYLKK+wMxJYpxzGxsbTdM4Cpsb21LKsiyJ6Jvf/OY777zz8ccfG2OKIj86OkqTRGn9/vs//fXv/srR0ckP33m3rmullFKqaZp466eJwvPzex6c+LkZtwEATpnAAVc4xIi4AoFMRBRQErGUKARIhLJ0QhAkq3QLCIE7uVKqLBfDUb8sy8x0m6YBpKKTHR3ub29vbm5uWmvTzChMm6ZZLpf9fn82mX7v3/3p+vr6YDBYLpcbo2FUDxeLRb/fn81mg8FAq6Sqqn6/G13tTVPN5/OmaYJRZbmUUmZZptKOlHJZlXmn1+v1GueSNG/bdlFbnWpnva2tOC1xp4z0bRCCUAomPHtCFQhjVmpBCJ5DhECCCoGYtNZSkncUVfVY3gAxUBtja0oKF0JAhCxLYvJlRIkJwPgnEUetNslS733b2hBApwQSmqaRUiIKb0NgUEoBC8/UOuc9CxGkZB84koZoLZh9nHpH7P1nsKz/7LrhmWiA1cb7s4ShL3gMLxx5Yhzjebp6vJ0PpDyth+c8GFuWZUJAp5PP5/MsS7qd3v/0P/nrzHzwYO+f//N//uMf/9g79+1v/+Iv/dK3/97f+3vL5XJjYy2EsJjPaxsEQO3C4Xhy/+GJFHB1d1sovba+aZL8wd69EIL3bm33MEuv/P2///tf+cpXhpfVK6/d+MN3moNbrVnv/fKv/eL3/ugPpsvqpatXxicHxL6bxiADWesRQQjQieJAKILSOJ3MdZLYquoPMwlc1o1RQifaOysJ2hA6ndxxjTJZLBsSybJpFw4qD4yASrH3DLC7NiwSw8wHJ8cni6Y36JRVXOsr+iKtddzDQ6DRaLg5WgOAfr9/cnIyncxfffXVTqeT5/m/3H9QdPLFYpHnaQhhOPz0qd7d3V0sFvv7+7/1W7/V6fTu379vW98b9A8Oj4pOZ1mWaZo6F9rWvfnmm1947fUf//jHb7/9dhS+seha5Hr5zPnlJ+kFz9l49Y8IwJH4O/6tARHAB/bBM0OE6qPAvANCiGVZDrsdJm+MqusaidM0FUKk2mgtR8Mt51xbNzGSLqUEpOVyGVZFOE1ZLoXEfr9/Mj5Oq1QqtVwuh8NhniRxPcd0jjwTw+FwsVjkeZ5lmZRyb28vzYwx+aeEe8Stb7O8IyQ0TVNVbrGYoQAWq2AjEQgJzOwJBBERAKIgDBBWEAMEKVAJEQIF5xmCRNCpBmCUAvwKvSsisuaUnMUFJgDnPAoZ2TRSI4vMQACllJBgXaOU6nVy51xtaxRKa22tt9YmiZmXNqYzNbX13kc4JAEgSBs8EcVSLYxARDFfXSAKwdYDMTHJs73wwlyebz+j3/DZFu7z93PhyPlo7+Oa2tO6+sy7P3+o5xnRZHj0y4bgInAhSXSEiR4djvcfHr326qubGxveOa313r27f/k/+A+VkBLFZHwyn80oQGISpU0AACF7w67U4u6D/R++/d5bP/7Jx7dug1RpVszm5d4ny6YObOB7P37vX/ybnzw8FkKoV26u2XpaN8tv/fIvc1q89cGttLvWG6xXdZslgskCQfAglFRJalLtArHAxvrG1kJDliVCkkAwGpvWIXKaplKi9aFuOTBprQLoqoXaRg1IRYoCibA57EnmxtqHx5O8l0Z+dsFIIQhAJaRRGgHe/NrXvvmNr5fLJQa3tbl+sP/gk1u3X3/99atXr165fOmdd97SWsYqFkTUtm57e/v4+Ljf72dZcunSpdu3b29ubr744otHR0dCiGvXrq2N1gFgfX39+Pj41VdfF0K8/PLL9+7dI6K/8Tf+xl/+y38ZHt2Yn9oe+/Bn2L9PLwTPFJhjgceI9EYgJQTFMjIIAMKtKgtC69yy5qq1zCy0FlKzwNFoNJmcRJ6V5XJZ16VSwhglJPhgpZRpmgJAnmf9fp+ZpZQxMy/6IjY2NsqyfPjwsKqquA5jWvfx8TERLRaLpmnKsnzhhRcQ8fbtwzzPu92uD7aqlm1dKYlILFEMummWYWLAB7bOAYDWGKEXSqELzAJYIK946QEBlEAlQStIjNBGImI0oANT4x1EigcX5XhylgzjKSgjnV/RK0hkJVBAqNoqkHPOWeu9t0Rea5EoFUNqzCFN06LXTVMRPFRlk6YpwSlNIaMjbpsQPCtUSkQuFRQSJAJwCN5zTEEhBpQxmfKRRfGo3/BnkYYXF8dza3DP7ja2M9jN4+f8bHd5fu3ycfn7uCF/dkRKbNs6TU0MnIXARbfDII6Pj9u2/eVf/HZw9s7dO3/37/5dIK8EIIFg1kbG8xGEtd5aX3R762vru7s7VdO+/9Hd99//8MOPP7m0ewVr8YM/+bNOb62ztrNz9Usf3jp8eDg5PNzPExDoTiYnL77ypRtfev3tn94+GM+vXH8h+IaI0jQhAu+grhoUTAjWU3+Yec/aiKZdIvvUgLONlpBo7Vwbo41ag/cUmKwNjYcAgCCBEHxAgPVBXxEoIZblXKdi6/KlpvEUWAkhUDBwoEDs/8pf+Q/X1taaptnd3b169aoWYrlcKimuX91NkuT4+PinP/5JlqRFlrZN6Pe6L964vpwvjNJG6Yiqm81mb7zxxmg0evDgwWg0SpLk/Y8+vHbjhePJtDccSaObpmlbt76+2el0Pv7449dff31nZ4eZo738GfVIz63cUxzh519RKCO3YgAIzDE7BcSZPQgIoKTGiAlTMjAniRkM0qZtW+vLZZ0kiTbp3bu3L21tn4Vc48pfLpdpmqZpZDZtiGg8Hj98+DA6BCK2tGkaCmE+nzPzjRvX8pV/LYkOxDNAaJqmSZKU1QIR19ezw8NZdCwUWdbpdEIITVM538Y6AcyglHBupTREDpgsy6QEZohYOkBABCnBaJlo1TaeKSiBkdMjauhnLuPY2raNYjpJEgahTUIA3hMAAwXk4GwTQvDsbSCtUSnpnI3pKzFJOU7obDYLgbrdTjQjiCh4BoFn021MPAghsGAQItZAJSIAAQHQ85NFyoUWsVqKY4krRATSUgj8FGB43rokIg4Ui5DGV4zliCfgl1ftTKY8Hj4+3+i0qN4F3fPTgT4BdQhwqlGe11VXAksgIzBGQiFx9p7PAbbhUcP/ie38jT79FgIBhDGpc0HEcjUSbVNnqVrMq9/9nd/7X/wv/9df+/q3QWX/4l/8K25tJ9AbW/K3Xtv5S19a/7/9zf/x//b3vvlXvv3FHnKKjVFoq+ro/sMU5HDQLXrDxsEPfvjjjx9+vDYc/Onbe3fvHk4X9qP7tW/geFGOx16rQms5nR1JLb79G99dyvSdh8d5b9jpb41nLShAMBoz8sGg7PUKJUgzdBMwWqBWOktbD96DlKhQIWHw2DhovDxZ0uGitggtACEzhEwrCXBpa6viOh8WZdUEx0f7YwAABAcBmRKlEeSv/9pvrQ2Gf/yH/+bqpe2NXq8l/7233+mPNr/x7e9O5s3G1va9e/fmi/GXXv3avftHDPBzP/+ttOg/PDr+wmuv39l7gCiD57WN9Zdfubkol3sP7w+Hw4f7e1d3rmWm+PHb77z00ktHR0ezstrYudQbbviAWZa999MfB1t+95e/mRtptKQQtBIIYIyKZgYiohQrJx8/upfjZ9ZQe0JDXiW1RIFIBEigCBh8Yy0JEQACOSnAByxrMkIjQ71sMq2KPO11suViBuyGvbXFos6yolwuvfepSSbTk7xIJ8fHvm0vb21gcInRaZoO19c8MyNZ32qNg0HH+0ZJJKJ79+5rIVNt2Ide0SmyJC9Sk6jZfBKcS40JnuvGTub1+novNSkEQbHCOPg804jcejddLCsHgig1qrVQW3Qs68Z775EApEhMJgCRIDFCAjSNd8EpjUIKF6yUmGdKCuRA5CODJARGFuicS5IUAGezqqloPq0kgkAiT1HztY6IIBpMLmBgNVu41lFgQcG61tomGGOc88bIxWLpAzQuSCmzVKWSjQqZBqXBctAGTYLMIJQBlFKZgCAMzBZgHAsGaUg5KBJ9bi5XWuHZOnguv+GZQHyGSfI0w/aCTf3pSH4miOJn3vfT2wW6cORpl8BzuB0vXBsjred2i0cuXywW9+7d+93f/q3v/7s/6hVF3cLNF7aubeXz8UmnU0yPD9cG3e/+xm/85u8uu6P14ebav/5v/1Vb21v37v/rP/iTeYCiyLe3rxyPq/fvPLxxrT8e37/14YeXr1xrvcsKzPN8Pl8oIyL6DAC+851f/NPv/bvvfXC8tZWuba0vxjPAGgV4p4VxZCslMU+BApFnY1TVtImBTAstFbG1wTuiEMBxCBZACBQCggcAKdE6e2ljBEidXv/O7bvWAiHP53MAYAaj5K/+6i/PZuWHH996+eWX/z//7X+zubnZNG3buLIda613d3elUtba7e3tf/KP/+sXr79w//5d5vDijRcAKEn19ReujifHxyeH169fd85tbW21bRvT+K9cufLhR+/bst7bu2et3draunfv3ssvv9LrDhJjJ7dPJK6/86Mfrq+va6mKTl4eTjpFZ1kue73OfL7kU/xN27ZCSeSV/nIWw/nzGzSrJQEAAIGAACSzQIjPvEQSEpuGe/0k0amtG6OdT7SUuixr18yVUhsba2tra5PJZNDrx0XYH418a+/dfaCEQKTZYnFp93I379y9d5uIssQAkZaydU5rnec6BEaUQigAQSDaxlGAmAK0KMuqLiOcqCzLiAqUUnrv0zQ9OZlIqZ2rI0u+ANlYTwQuBKVEmurgLDNQoOBtCJ48SEFao1FCatHWDoDP6oLyaTTJGCPlipWSmZfLKsuSEFohpdYyeKu1Rg4huETrprFJoiO7bZalw+EQYFUQfFnWWZpG7cgYqbUWaKazGmVrrdcSkAFQRH2OiEAIACiKdFE21oEQQABpmqQpsXcCgRA6nXx+XD1jKp9qKZ9xGZzXoc5rYRfaBZXqgh73bH/c87en2bOPd3teuXuirne+B3hMV/3ZRhtv0el1F2V57eru7/7md5ezxa+8eXOYi/0H96ty8Tu//ZtA/uaN69Xs5C/+6i//R7/3299848Z/8V/+7f/L//lv/7/+q//rOz/8w//8b/7PBDd7t+9BFgZrG7fuLI6P6ptfun40u/PT23f++IcPx9NZIGBGozQCBW/L5eKVmze++xd/Zdba48lS6qQ/gDwHRocCFLKWtDbM14Yj53xTNhKBCXKjBZALoQnkCDwjBUQCx+BWGwlxIAHQ73UkwrJs6jZwrCMXAFj83M/93Jtf+/nNrY22rb/yla8cHx8/ePDgu9/97oMHD4bra0dHR9euXUuSZLGcffmN137643fvfHJ7MpncunXrlVdeGY1G3vvZbFZV1aVLl5qmeeH6i3t7e5cvX+n1eu++++4bb3xVKSWFBqTpdNzrdba2tsYn0y996Ut5nqdp2usU773/k9dee219NDw83F/OF508SY3a2Fibz5dJooWATxHaPpzRPVzY2j9/i+ViEFfkj8AIASEWZFEStYREQaZFZiDVkOWiadq2bYUWRVF474lY6XRrZ0dqvbe3VzdN9IpqrU9OToJnKfXu7tUi79Z1LRH37twfHx4KgcH5aAsjYghBSamU0lqP1tfTPK/bNhYgni3mjJCmRirUWnU6WaejtVaAq1IEicmkSsuqARb9/qDbKXq9gVAaBGZZorXQWqWp0RKLVGWJ1BKNkkpFzKYkFI31q69/uuyFENFX0DQ2Uq4CgDEJ0YoANtJcEoEELLI0OkaJgNinaarUKhaXZQkRLctSSkjTNPIbxm+dJEmSKGstIkipUSpicMEDolIqTdNYM7ksAQCMzgRL27JECAGkRK0FeTcc6qfNK3wuv+Hjq+fZ6+mJpvGFP59f+jzt02eIucfHAM/UYZ9tKV8Y53mhf6GHprYmzafjyWavuLamO4Y0tZubm1969VWGFY/p5sZamuhqPgtte/zRB4d3boGrd3c3/u7/8W/91//wH3z7q9eXx7Pl4ng4yoKG7717G9TWpUvX8wLf/cmHdd0GT1XdxGHsH9zf2Rp9/fXOF69cfvH6Tm+UpvlOayFLYL3or60lWWrKZVVXLQQOgbNEZwlogcwhMLkADYFn4QICoGNwTKt64MC7WxuubbQSSdadzhuhhFJqMBi8/vrrl3d2Yw284+PjTqfz9ttvf/3rX//p+x8475umSdM8zzqIuL6+3i3yP/yjf8sATV1dv349ktzdv38/Qq/fe++9wWCAiKPR6KWXXvrwww+73e76+vrh4WFE7S6W85/7uZ+LFTy2Nndms3ld10D+8OGDZbmo63o0GuV5ur29JZBns9n6+qhtnVbqLMMXzq3VM6/0M5bNM9q51YPEwAyBgRgJkKI2KiHRkGgwGrURzBQDR8xcNxZBglDB83K53NnZqS3M5/PJZBKJnXu93mQyCSEcHB22vu10Ojs727uXN4Nviiw3RgERM0spO1kuJQbv9w8Px+Nxmqb9fl9r3el1u91u0zST+czaNuapSsA0M1meKCWyrNA68Y52d6/rJAmeT07K5WzeNHE5sVQYyLV1SZ6B2Tehqpy1ARGYwTrfWlc3HKUbM0eu6bMSKM5zVbet9YEYhUgzzQAoMAQXgtNaiGhIETGzUhACI2IkAZtMJhFGLgT0el0iatu2rh0RtG1wzuV5rpRCIQITA6IUjDLuDYvFMjK55jkogYGsVGA0Wev6fWOtN0ZFkf2MyX0uaXimPZ0/+LiU+fPrVn/O9vjd6bH2tGsF0BNf506h8y8J+OkLUQAgMzILpEVVSmW89/dufbI56NTzk9RI60HIpOgPS8cqzbv9tf5gNB6PGw8oko2tHWSY3L1THzx89er2P/gv/4v/0W9+S1mez8oAWmeDw+PxJx/fWu/la+vrH3z4yY9/+oH3ZJJsPp8nSh4e7l9Shy9viUubWX9t9PCkRNUd9TuL41lVu9b61S4qEQW0dTvsd1AoAsGoCdB5aB2Vras9e8DTWrQkEYajfpS5773/EQAAi2tXrn/nO995/dXXlsvlaLTetu3a2tre3l6v17t58+bR0VGn03mwf/Dmmz+vtS7L8s2vfuXHP3lnf+/+jeu7xpgvf/nLSZJorW/evNnv92PB30uXLt27d++rX33z8PDwzu17b3z5q/P53Lmwvb19cnIym812dnZu37q7tbUTU9CklJPJJMYN3vjq16bT+cl4uVwuN9fWJOByudRaWusRIMavV1MsxPkSffjnyOw8W9uxAr1HtkzhFN0tEARGbwpprZ0L1to48tliOR5PCYWncDIZr6114o5CRNPpbGdzS8hgbd00JSOXzXI6Oy7LWZIq5pBoDQBaCmTIi1ShcM5x4L17R8vlEgDG43FbN0mSlGXJZ8WefIi/mDFGaiWlzIq8sa31/mh80jpb5KKuKaYVOm8RWQK3LQOAb0Onk2aJzBKd53mWJadZ4WfPGhDBmdOfiNLUAIAQGEIoyyoCUbXWgYE49Dq5EODa2jnfNI3WSilRNxUipqnx3jZNo7QYDPqI2LatlFJr1FoqBVVVxYrkRFTVwQUCoaTURFyWXDUAoJbLOssSkwCKoExA6Xu9rG3taDRYzCwzi2fuf0+Vhud3zvMG77N1saf18LQ/n6GLXWjPL2HjOYLh/OtMcl24xfNrBxdGeJ5s4vxpAmgwGLQ+KGWuX782H09iAZD5fL5YLKQyN16+KbOss7a2bBrT6XgvkrSYz0vvKTVJqmS7WBzeu/O/+o//wj/8+3/7t77xLeEct9NO5jqp2r8/Xlb1xs62UOatt997sHfY6far1tZ1/eYXv/aL37zhw2z/4OSlL96og3pwIF74wovKDE6mlHY6Kk2qmlECMwTr2kCNDT6ADxgIHYs6cMNAwFIL9h4YBoOua21RFIvl0gVmwN3d3V//9V/lQIeHh4NuTwt5+/YnUuJ8Pt3YWn//gw+WVWkD/cI3vjFa37x//8FXv/rV2Xzy4Ycfjkajtm1vXL/a7Rbvv//T3d1L77zz1vHx4S/+4reqapmmptPpTCaTt9566xd+4RfyPGfmXq+Xpulisbh29frdu/cHg8Hu7i4AdDpF2zYffPDB2traz7358+/+5KfDtZE2+JWvfKVpmjRNXWODC1Jiv9f/3d/+HX+azkyn9Z3hKRToP0NjAA/gGOA0ZI2IgpBJ+gA2cF27NDVKqbKsm6ZZW1vLO8Xh4bhx1jm3trHOAk2aCCW73c6tW7c21oZ1UzbOlk2tTdofDj0FBrBNQxQxddy2tbfOWhtse+PG1StX1pSAplqmRhH7qlyMhn1tDBHb2kfoQl21TW0pwHg8Pj4+Pjg+un337smxm06rosgSA0WqEqOJQEtMUm0MaC09QdSvrXdN01jrrSXn4MxLKEQsganO2N5CYCIwJpVSOgchhLr2AGCMjCW0IJBEka8QshwpbWKkGE8xdtbayL4Tg8sAEKMuTdPUdQsAKAGEcoHqpgnASkGSaCFEVQEAKC2MBq2ACaSURZbOJlOlgAjm8/oZs/ksabia7+dIfYPP8hs+j7x7/vb4MM5LyWcI2Sfe/fMOKXZ4JgrPf1khBHMQQhADoOp0usrIsmoaYrtc7GxuDAe9V7/86utvfHlja3OynCutO5mqq8Vkctwd9Oq2WVbN+vZOd7jeTzYvjbK//Bsv/+/+k78wJOAaQksik/OqvrO3n/d6/bXhnb2Ht2/fRZBp0fk7//d/ctiK7Rc2v/K1F+/d//jy1ZfmIP/4g4/TzqbJsgdHy+PpnBWkmSmKpGnapfXz0ta1cy0xCRTaAbYCAVYiQwB086JtW5Nm+4dHnpgRbty4sVgsmqYqsqTX7ySpvn71WswPi26jqP1du3btrbfeuXz58ubm5u3btyH44F2emm63+8Mf/jCKraOjoxs3bkSDMcuy9fXN27dvb29deuWVV5xzCDJN07t3749GoytXrhDRzs7lfr/f2tr5dv/gwdra2s7uleli+eJLN08m0+BZCFm1bXx4ijwDgCtXrqytrf3eX/q9LEmjLcanxTD/vRku+OmLV/VSmAhcoMZjbYUx0tbWuRVmhZilRJNiCMEzPXjwoNvtGmPOChstFmWedeqaZvP6wf7i/Y8PHItlZZMkicgN8kEAMnOWpr1er67KbqdQUjjb9nrdPEmWs5a9l1JH2nutVbcoBoPhYDDoDvq9Xsdam6bp2ubGCy+uE0FVlb1eopWI0YZYrBcRXSBGWJaeGJnQexJC5LnpFsmg17nwpJ89Ata6EOITKrSG6OtwzmkjlYJqaQEprhOtlWdChDzPtZExoUgqrOu6qurIhh1BNs4FZo4oIiJAqaWUBNw2rmpJSlkUOgSnFAwGkpnbJpRLCE5oJYL3TdMgCIFoa9sp0mdM5mdIw/Mi5nn8eo+bqOc7xKe74T6vZX125tOuOk8Xdn5U8CTRfPbtnn88Z9JQnLbIFSYFtG0rpZZKPdjbBxDapHXrru/ufPGVl27f+uhHf/b9TicfrI+Gw4FUaCSP+jmH9vYnH86XCzDmeDrf2r3aHST1bKYq12kX//nf+K1ra5KYqibLiwIQ7u/tt6174YUX9o+m0/ni449v/fEn87/79//VwpajDX9194WHR0cvvH7ddQZ//IP31rd3lw1YD7tX1623TdMWRdcyNx6sY+8ACBmEA7bEMmLMEDqdNMLcQgiTuSWiV1999cUXX5xOpxtrQylxa2vr6Ojopz/96dHR0de//vWrV69+8sknW1tbl3d33377bSHEt771rcPDQ2ttXdc7OztCiI8++DACA2ez2auvvvrFL37xzp07RVEcHh6+995729vbN2/eHI/HsXpkxLQbk9y6defFF1+eTqdZlnU6HedaRPbe93q9xXK5WCwe7h++/IUv/PS99/r9vlKKY0HEwNevXz86OlpbW/urf/Wvbm5uRv0iTlNcDD/z3vzIYmYBHIOqQEQUwHpuHbWWq4aCZ6V0r9cDgNq2kU8wz/PhcBhzdT/++G6WZbHwsdZaCt00bafIlTQmkUUnbVoG1IPBQGuppULETqfTLTpbW1u7u7udLE+12Rit9Xo9CqHf621v9SP+eWXJeoZVPWusqjowdXu9LMvG45P5fJ6mwAyBvBQAzHmCABACIWLwnJgEJGRZliTJClRIHBmG4tencxXP47OWZbnWGNPGlZIhcKy6F0LI8kQpyJLUW1eWJZz6LvC0KlGn0/HeVxUniXYOiCimGAGAtTZqoEWRAEBZhqq0jkjKVXKeNCvUellaClKg9E5XS4wo1CzLvOfInvmMaY1oyXDKDyhOGQ+d95Y5nLEHxvfn/AXMzEiMxI+bop/KGoGxc+bAHJDDmT/ugqz5dKthIfgRL54ElCAl8tkrHkcOyCE6agAEoowDiJev6OsksGAUjIKFBCEf6fn8eKKqf17AXXhUVm5BAAGgAIk9Q4ivM6tZSkmQswFF4LUI9qTLfkZeNFXa6x8enCwn80HeaeryeP8BkO+k6aKyJ9Py2o0XlVIG4MGdTxAJNCzH06MH+23reoP1jcHa7/ziN28OcQcXVeU7RmmGybJ5f/8k6/YOD+d37lXCqauXRzuXXvuj793aOzogSUcHJ9cv7XS/cPW/f/v29rD/5vWcZseehpXLl9OFq1wigQCXDiYBjpqWUCOIEIKWQhFs9HtKg0jNrYf7HiBNVSQUMMYcHBxtbGx88MFPfvD9P269/r3/4D/a3b36zlvvCtBfvPnlurTM+MoXX0PEPJGSw9H45P1P7nbWdr72rV966eZrl3avPzg4/OJrr7777rtGKte4bt599bVX8k7mgpdJEpilwuPD/c1+1zpnsnT3+guT+WK4vnl/7yEiPnhwv7+23lpvG/fwwYP1wfDS1ma5XG5ubhwdnSijSms3drYGa5tV7bKiU9XLtV7RL/Ib11+IT65SSpwW1IZzXDjRsfgZKO7ze3DMUQYihADgPIEAEKK1BAxaq6MpBVDOtqNekSkIrqnrWkp9cjyVwnR760Wn88GHd1vrdZqUrql8EGlKELJcF53Ee8sIlXX3H0ybmpqq3hiOnAt5pzsej6ty0e1267pu2zZPUgk8nY6lRCVZA5GzSoGn4CkkWREYs7QAlTTON7ZNjUJgpQQBLJdh2SoHqnYcIdaIrLTw3icaqroM5IoikSisdYHIuiCUdIFcACl13RAjoIxFz4OQnKRKaQ4R5iZkIKEIfGuFgCa0vVGXgbM0lYRsgwR0TTsa9Jq2yvN8OEyZocizoigQoWlsopLEdMuyQQDPDgWniQ4ORJCZ0cG1WrdpktcNtM6iBGkYMDjXAhAEM2+J2Beq20oH6gklRM80v6fiDZ9/2+TnBus95y2Y+Sx2d2qT8vm0gfMX4qMpV6drVFzMwTnHE3E24LM1fd7yhac4BM5kJZyDfJ+5n842yeB8b3M0P67LRSiytElTF4KUajqdhxA2NrayTgEsqqrJO/3JZKKERMmz2axIk6ZpJOBiOSvL8mgyfXB8vLm+cePlm1mWDdaG+/t35ovF+/emtxZgpckN2npeKpXneT9RR+OZML1/9d/9yWxmATQjgePj48n1y+vpkh5MppP79ubu+mYL84k/CqDShAin06YNoNKkrUuGkCgZUHvnchPxEOR9W5fLQb9AlFW5uHrl+mQy+YVvfOPWxx/+/u///mg0+u3f/m0p5fHx8Ww2e/3115MkiYx7O5e2Hj58MD15eHJy0jTNa69/9eWXX87T7OjoKC/SjY2NLMu+//3v//Zv/66SZn1z23ufJFme5977osirqgSgt9/5kc7S73znO0dHR2maKiWLophOj9vWXb481Fr/5Cc/+dqbX7n10cdRv4jFxbvdLs0m3hMQX7u2MuRnsxkR/fW//tddoH/4D//h3bt3T0Mcn3oVEVcpX+frYT1ni0uGEIjREjGBRNAg1taKui4zkymjN4pN59zxyQRRuuCPx5OtjXVjTBVpsqm1bbssySiQUkAEBnniQAhQVe3W+qYIalktmWE6m83nUyk5TTpJkmRZMpvNEJGcr3jZND5JkixPy7IhAp1kh4eHSZbPp7PGQV3XdVt7ZimlEEoJYknjcSUlKA2IEMFIUoLSkpmriqwNaUp5mmmdBfIxHzwEMEZ677JMMlCSZMFZay2tvI0QAggBp2zzoihy29SRxFtp1TRNTDix1lbViuwDjI4PoA9eKQUCEJkA2HvrPCIIDQyotDLGM4IQEVgvWlulKSRJ0lQtAksJLEAInExtrw/OOSTMu7lqFk+fQ/h0e/zztGdYlE/r/OmiMDz6Z+z5M7JqztNfP6PxY5UDztTA89IQzhnC56+N5lX8N8rBM2zBmaU8Go0O9u4LITD4/Qf3UaFEoRNz7dq1qmp++t4HedEvur1Lu1eMMeQoz9Miz9uqNFoDs1YCib1twKitK7tvfvMbpXdJnkiwWz31wkbye29e/forlyB4a60GAO/rur5/PMmK0b29yZ29MciidZCYAlga3dn7cL8/ou5O5+PD5I/fmZqRqdgGNxiXdrywrCRodTQvGUAr6f0qtWtjc8taa0x6cnKitSbvrl/ZvXp5N0r8P/iDP3r3J+998dU3vvNrv97r9ebz+XK51FpHjoZ79+5dunTp/v17H3z4kxdfvLG/v3/58pUvfvHVfnewtbFhEvXJJx8Nh/3vf//7m5vbN154SSmztraxrOqN9S3vfbco2rYtsvTWrVuO/PUXX8qzjpRybW2trmshhFIGEV9++eX9/f3BYHD9+vWqqsqyRMSYpYvE3sPm5ma32+10OiE459rZdHH58uXZbDYcDv/3f+tv/U/+2l8DEM65GNIVK/6+nz26wiACICG2INoANkAgIOLJrGQUyqTzZVVbp3SSZUVVt3mncA4YIUrwEAJ51sr0OlopBKCmatvWowCjRK+TJ7k6OTlxYcWFRewHo2Fd17P5ZLmYjU9OFosFEfX6HYkIALN5W1VN3s2zIsuKHIS8v7e3f3Aymc7LqrGWvQfvyHvyjshTYGAERoEx3eb0gc6yLM+VMRACl2W1XC5jDnJTu1XxaISzZ6FtQ2RnsC4wIBBIlBwAGIQAicIYE58jpZSzPj5HWus0VZFXIljHzDGowghCQAAmIhc8xfh1QCRONCapinm8gZX1UiJoJYE5/uxx/MaYrY0iBAiBvPcHB/OyfJYv7rOjKP8/aI/oevE9i7PXs52Jp7b8z3K7C37DC+8f13nPC8TzOiacUzOPTyadNGtdqwVrZgAOjSWETtFzxLNlubG53ekNpJR11STG1FXlvd/e3p7P5yGE2Wy2sbZ+5cqVa7tXOp1Otzdalm3T+izLbly90i7n/U725m7n5T74gE4nEkCSYzT700kxGpUNHx3PiXE8nUitgBhUW1O/Lek3v7l78+b6//vfPFiqjUxOtdZ1Q1Ub2kAohDRp49mDSLTJ89R7n3d6Dx8+RERv3fXr17e2tvb29u7cukUEo9Ho0u6VV1//8mht4+DgIM/zO3fuvPTSS977LMu2trbKsiyX0+9+97s//OEP7+0d3Hzli1olGxsby+VyPD4aj8eIGAJ/8xvfzvNOVbfHJ5ON9S0A6HS6y+VifW1469atEFxRFNeuvqATs7e3t7Oz471PtKmqamNtva7r6XR68+bNtm299/HXy/N8VakE4Atf+EJRFGVZJdocHR0xwqVLu2maH+wfPXx48J3v/Or/6e/8nZdeuhnzeYyJNZU4Wsqx3sjnbQRsiW0IlqIDBXxgFyAgLqqaWLQuPNw/RCHyPBfKmBS894SQJEncmLVO0iRBRCm1UGhSlaVZhN2BQJBgXds4m+ZZVGbX19fzPB8MBhGGDQBF3vUESom8a7JOLoVWRteNRW1aT2meS6OTIsk6SZoqlABASgtjdJZmWqcIMgCCQKUwyujlsgwhRChMCGAtwwq3hEkiiEgp1bYOYSUfBUpg4SwgylNBSUmiUpNU1TLiY7TWQkgQ2DprI9/waZUopVRmkswkUq2UFSKKJedRgDLRv0VSolTMwDYE56muiRw4F9rGSSGyrKO1bluomwYROh0tJQSiPJPPrh33rA+fIhDPwe7w3OvzNGb+1GGHfAHfdyG+cWacnrXzvsvVhQyCIQATQnyd+fjEBaDgudDK+TePjxAe1XnPB0zOnE1xFSIiETnn2rZlgdS64bBfz2bjw8Ph+oAau7Gx0el0dnZ2br7yCmqNSs0WS0RMkkSgAoD9/X0iquv6tddey7LMmPT6ld0vfeGLBwdHSVowJv3BZlX74Whraen+xx+8frm3lbJ3jrUMKGLS+NHx2BMxisl8cnJyWNflbDbDzBwelRujte9+48ZXX+m9cm374KQulfbOCoQsU62nlsgSg9AgU++sBM6zDADKut3Y2Nra2trZ2Tk4OJrNZt/41rdefvnll29+gQlffvll68L29vYf/uEfdrvdzc3NjY2N999/P2KJr1y5/OO33/rhD3/U7RTb25e6/Z7W+sP33/PedzqFEGI4HF69/sLB0eH6+vpsNrt58xXrfZomMYXu9u3beZ4Dipdeunn79t1BfxQfjMGwd+fOndFonZmdc1rrWPZIa93tdieTSZ6mg0EPALY3d7wPWZIKIcpymWVFfzgMTGmeZVn23nvvKWX+5n/2n/3qr/4qADRNE0NG1to8z5/Nk/jkhgggPIMlCAABIQB4T0rLwFg2brqs54uqbGzbOmttvSwTk0UMnU6VI/aBm8ZWdVvXVDe+tdxaso6tB+upsQ5QKm2UUpPJbDweLxYLZo5+gCzLtNaoZOOsMrrbGwghur1BWVeBoPXhZDxN0pykQEGMHDi44D0xMXpAx9zY1joXwuqJCKfPhXPgPTOzMabTSTudBBHruk7TNE3yOCnMgIhKqcSYuJ2EAMBndF6UpiZJkrZlYp9q471nZimllDomnFhrnXNaKiUk+VAtS0QEDgAQuXYQI2VkjHPA6ZMLzBwCOxeUkoky7LGuqCpbYCkQEFXTNJGIW2utE6OemYr8XLrhs7Wz51sqF3u7ENU9d+pKtn760TOl7eo0JIZwwVi+EKh5fCQX5Cw86kl82h3Pa4XR6xFTkVbcG4npF53pYjo9PhJMy+U8VfqFGy+lmcmKtDfoo5IsMO8URmkJEHk0ty9fUdJsrG95R2leKKWqphVKe+/X19cfPHhwPJ44Fkne59AuLKwP+r9yc+2VoXAeXBAmWKEQELyjsq6Ukp1uvvfgwAUfuKtEc//BrX/1Rz9c7+Zfv8avXB/+2YFBoQfDrjYpMxijBJNAwtBIgETKtqqapkmS5M7de91e/8Hew95g9Ou/+VvMWHR6H3zwwZtvvvnw4cPpZPJnf/ZnL7/88i/90i+lafqDH/zAGHPz5s2tra13331XCDEYDr/9S79ycjzpdrsHBw+zPLFNs7a2LqXevXx1Op1SgPlycf3GC9bbNE1ca4ej/g9+8INLly7duXPv1VdfDwTB8/rmBiJ2Op0HDx4oIXu9XjSyLl26tLe3p5SKj+udO3c2t9allCIWNfQhKqQba2vL5VJK3Sl6RGytW9vYlFLeuXPvO9/5zl/7a38NAJRS3nulVFU9K5X1qQ1XRIcBIDAAIrAgIutD67xUela6yaIxSVLb1nuvte51u8zcto1zrrFt60PtfO3IM7SBSwezmuZVQ6i0yYtulxCEkkWnK7Va39zeWN+qqmYxL6Pxu6hqQDmdLT1h1bazeTObzUySeQapTOt948OyrMuqqcqmab0NEFBYgtnSHZz4qqEQAkpEIZghBIjIwSyTJtJ2nbYQgrUQZbpSwjlKUx1CQJREQAgBGHHF3EXkRbRhgVID7CNjeQsARJDnedQHY4WAuMNFSScYkFgARu1VCCGFICIQyIjOBWcDAhipBKAUQD4YpY0x5GA+dyGwMlIIVErVNUcpP5/XzbNCyk+Rhk8Tf0+WX/8DtChwzkr6PVMc8xMk6tMH+bjf8PyXOpN0TwunnFdLY/pkxBZEv2Fse3fuDYY9DB48mCw1SgamTz756PDwsDccbG1vx0LdVV1W9bLT6SmTNHU7GA27/Z7JchfYejLDjRtf/sqXvvz62qh/eWdNIs1nJ5Pp8clkcvnKVprIL+wOv3lj9FKPU/YmUcH5PMud4+BgPq+t9zvbG0dH06PD+0YOs87W5RevdAeJsxSc2Lk0uHPoalIOhVSCnRfBfen6zqWO/vYvfOXF69dsW29vbAohQ+C821vb3PqFb3xz78GhNunR0VFMbLh7+874+OjFF1+Micb/9t/+27ZtX3vtteVy+cMf/vC7v/KrH374sdbJ2trG5vZWWZatrRHp+OgkSZJXv/R6tz8AFpPZVGu5sbEWk1KSVJ+cnCznMwBwgb/61Ten09nW1lYsvWaM8t6Px+Orl3c//PDDK1eudLvdw8PDLMum0+l8Pu/1ekVRzKbTfq+bprkQK3VPCFHk3Y2Njfl8rpQqul0iOjo6Lori4cOHX//613/t134tSv8YRYnOxM/VMAaXMfpuVgcFoDHaOrCe+oNulqfWk21dr9fPkhwRE6OYuWqaEIiAGUTdhIDSo1JJKo1pCFrPi7oty9o6Px4vTk5Oup1+lhVVVTkXhmtrWdGpW2uSlEDWzld1O5mXeW6IMckz692iqgBlYJLKECGgAmEAtQ/aBm09Nh6SBJSRUkoUjBgLjwDAKgYSd/2msXHDKApd1ytUDSCgAGb03ju3SqPWGqM0RAFCQKDWW5skSXxkYowolg4ry9JaK/HTxzBNkl63m2ojUQggIFYoonoIzEoJEKKxvm1BCKmUUQK0BOvAhzZN5Ggty3NAJO+DD65atHmuIh19nj8rSRk+01J+olj5H1ognlmp50Xh+T/Pi7Pn7O2sPY5AvOABfNq1Z0Hk+Cbqg4hojEnTNGoWVVXNpoudra00z+7evp0nmOdporX3frlctm19/fpVlShGXCzmSaLJh9Y659zR0UmSd5jReXLOaW1qkI4BjXKuXS7GdTkG36QKRJp3NEC7aCxdGeW/98alnQSWVgsBVdUgCASdJLos7WJRbm5s+jq7ffhJ3uMf/7t3Pr49z1++KYdmI4RLL1y5ezBpHOSdAhj+5n/613//n/+jgQ7L+fT4cH80Gn3yySeT2fILr35pe+fycLTOINI8K7rd6XR25cqVH7/7NiK/8cYbVVU9ePDg+9///tra2s2bNz/++OPJZPI7v/M79+7de++991566WbTNAAYQxl3bn08GAyuXXuBmfM8Pzg4MEa98cYb/1/i/iRYsiy7DsX23qe5nbs/f230ERmRWdlWB6AKKACkYBIakUZK30R9s2+SKFETaayJRhpL/AOZaaSBBpKZZhrLTCaafYkUSRQ+UCxUX5VV2UVm9K/37jan21uD48/jZWRmVIMCePJZpD/3e6/fd++5++xmrbXPF+dVVeQeF4eHT/f29t5999233/6yKarxeEykMiWrqqrDw8Pbt2/3fT8ajfb29n74wx9Op9OiKHJTlKyml5Ugcj/ytm3rsnz06NHOzs7e3oFzriiKs7Oztm1HkwkR7e/vf/e737179+6/+lf/yjmX729OJv66kzavrpfXUSJyITVNNfiQEuc+3qaw5/O5G4blfLER7ANCBhJCJgws82Wct8Nq8M4DI8UkSNp7Hm9Ndnb2vPdnZ2dkbF3Xi9UqxjhfrurRJKQ4Hm9tTXdu3riJira2tpbLVpGZzxezRZuizFc9iBKhGGS+DKdn7nzhEhTVaFLXVhuVUkiJicBaY4wmel5OISKtKdc6QghlmUF8CRH6PuT3C1uGsC6MCACiEJHSmFLIDY5FpG3b3KIvpNT3/SbRtK5PpjQMw3K5LAprtEYBYEYBAlhbTE2IGKMEDwSZdsmIcHClQkw+9NoAEsQUlIbptDJGuSHm9du58HKwwCWtaQTBNYwlE2+BWVLCC8JjPukv8tQy/g7wORIQJREnWvemEvw0V+QlswoAABkpIaXcawY+rW+4MWQ5Z7E5HYWoUDSBpnWWMImkz9Q9LnuC8Jnk4OWpfJnWevlvz0Yw04Zyvi8vcSIybYr5+Iqez9LD7+zsbs1Pu9G0GBaLWzev7185eHr4rCpsaNvaGudcUqiAObnxpFgsTnVBQKlqatWUsFqdfPzRz777N1pc6Ffv//wXh8cnEag0kbQZnCTvVmE4Ce5Lb94aS4+cu3SwIIcIArBou9PZ6cHVpjHm3Z8+enJe/r/+6hfvPXjC5McHFaxmOzvTp/PV8Wx5ZVr87/63/5t/9l/+T356Hn/xyZMHR+eibescA/ze737TmOLWrTvBD6Omms9O+2H10UcfjcZb12/cefL0+Pj4EBG/9KU3rl69/v77H77yyiv/6B/90eHR47/8D//2a1/72r3XXgspbk2ayaj88P33XOKvfv33lS6Lqj45Phu8+/KXv/rw4ZPKjkhXDMqH8PDhQ23IWvs7v/sN55OxJSoqilIp1a36YRhe/dK91ne2qA4Pj+u6no4nT588ms/Om6ZsRsXO1pYtCiptgiSSJqORc/2jRw+u3LjpQ2iapm/bwuhxUysEZm6q0dC5wpS3b94hUOtL+LJH5vMH5eJfypMSBDOJVmPg6D2SPlt2bUxU1rasrbViFBkNqGJMZVkjqpQ4hGgKhcQ726ouoLLQjFTnQxtTjCmBPjxbna48msL5cD6br1xwwQ/eXbmyf35+rpRhZudC1w2sq6WPVDRDBNJFVRagwBiwo1EkMyRgQNAAIMJOQb9a+tXSr1ruewhJD046J4EJwWplrbUIXFYKOHIIJJBCGjqPbIC1Ih1jBOAoQ12YwigfvDGgNBGIFmy0FcS2d0BaUDkXKlsoFKuzy1ZHTkDYDR0QJEmmMGS0i2G8NbVl3bb9zs7OqC41MEYJITEhE2gLMbqQICJ1czFkjJWYegBQqowRlitfjitlYXAh8TAa1XV9KWV3YfSe38SXWKVNILnxof4BwmT8gvGCqwif0X+9bOM2VZHLLuQv9SVf+PTlEfomh7JBCVRV1TSN1ib4vl3O7MXQSLPlYjabPXrwMIX48Uf3l/MFsDjnNCmlFAhVVdM0TYzsnEsp+FXLzDGw1no2WyAq770x5vT0PAmuuq4Zj5xzi/PzcaHH5LYJCMlog2uuaFJKIVGM6f6DZ3t7e3u7+4ens+l0+603vyygnz09ad2AWu3sTBGgLMt/+k//2Q9/+B4CDM5vTSdE1A5ha2t899V7SikfQlYQefLkiVLq3r17GfQ7mUzu3r372muvLZfLH/3oR++88869e/cWi8WTJ0/6vv/GH/x+hoPs7+8/ffr06eHR7/7uN7a2pzs7O13Xffjhh1//+tfv37+/u7vbNE1KyWr99OnTra2ts9PZ7v6e954IM1Ur+4bL5fLo6OjKlWs5KAYApVTWesqdM4NPmeuS/cft7e0Yw2KxqKpmb28vJ/UR8bLEYc455t6bv3FvAIDn1F0AULTO9wdOyqwnqiKKMfZ93/e9Cz63RokxuiHMZkutipik62MMGAN4xzEAJwTR1piqrInIx7i3fwWVXnUDarXqO1NUoEiZonfBhTibz0NkRui9W3XtfLFs29Z571xYds65SKROz2erVetCZMxSlmtKCSIao63VWRonhMiclFKd823r29Z5DwCktVKKEMFaOwwBEcvKhhBFxFrb98n7MAwOcd0p21pb13USyUC0/NQMw5CTs0QU3JBCrKoqT92iLAExxJjrS23fM4MgLBaLZdsDqRyqI0thgFNSRKQAAYbgXUwsGENOeiYR6PsUfCJCo0EEvY8x/kYImzxesES/8Vz57JAvGC/f/oUT29ivy4bssz7grxhTv/B18MX508snkC1yBhsSkfd+Wpezo8dDtyKjU4qr5XzUTPa2dwhQaz2dTKqqOj8/L4wFAB9TPWqKZpwYfAicEsdEIIjKGDMeb7WrHhG/9a0/bOrxfLYKIY63pgkEtWHmxdHhiPwb14iFgaMmzKWkxElEWMAY+OiTB0R0sL9z/+PT//e/+XePHh6Ssj6lV+7dbdu2acqz+fzp4en167tboyoKnJwvPvz4EwF44823Z4u5DyHb+sVi0ff9lStXMo4vtyJCpX/67s+eHj758le+cvP2jWW7enZ0+LN33909uDIMQ9cNb7/99rNnz37+7nvb27s3bt3OLdU/+fjhO++8Ayz7+/tK0TD0ALBcLhEgU8reeecrp6en9ajJgIxssI6Pj/f39+fzudb2/Px8Mpm0bZvbh1ZVNZ/PR6NRzv3dunVnteoA5fDw6cnJydC7TA2EC2xAzg/KuuvbWkk/f/p3sYnrIxAKYRQOkbPEy8aTyABVInLOtW3vfUSlWXC+6s8XwUXwESNTZMVAkVXvuBvSsnWncxcY3vvoaRAebU1Rm72D60+PjpOoBNj7YKqajFVFWdUjW1RlUfW9O5utnHO6sGVpAcmHFAKECMKAqJA00Hr5LCurlAJgANFaW2uyDg0RmJKqytgCmdnFlJIQKQa2pWJIPgRbamV05GQKAABOQIQE6L1HSUQUQmKGHK6ORqPcLCXf1rIohmEgQIWESMzsUySj22EARSIoCCB0NmudS1UzCoEhMTPUdWkIkRMyEIHz3PUpsvIMAgCE1tok0HUDJwBFKfLQ+/4LG24D/BZVG/6+x+fGs5fi5U/VqRFxA6/Jcfrm9S8d+OmKyi/deAPcXRdVkjRWnj14P3ifohCKc/14a5pzi4vz2d7e3unxCbDEGBWic05Xjeu6w+MTpUwzmmz8l8lky/uotWaGo6Oj2WwGAOenM45hsVyitVdu3BFVFKb4+le/PKqtiMQUlVIZQSwiiBA8IMLT40NbVLu700ePV8xWm2b34MrDhw+JQGtdlHUQcS68+cYbSKg09YMHhOn27o3rt6bTKSMrpTJOsCiKrH2dHbp33303pfRHf/RHk63RMAyLxezjjz+eTnfefvvt4BMqWiwWh4eH27s7v/e73zw+PiXUq2X3ta99LbuN21vTYRgmk8nQraqqfPbsmbX21p3bVVU141HO0xdFobVCxK7rbt++PZvNcpfxjIkhgpTWJNnJZKI0KqVGzcQYk1KIySPiwcHV7EsSPa/LbdjKAJBRwZu7/wLB6VcZlyeKMKaYgYecBPyFDoIig6hQaWUK1Kpt2xA5Jqnqce+YBSKorvPes/cxt3jfMOu3pk1RFkVNq9Y9PTk5X3Yr51ipAHC2XJ7MlqvBrQb37Pj4dDY7Wyx8TECoDKE2MbHzwUcR1KQUKkyAiddV4+ctpoGZGZ/3cUcQ2WDPMlsxz3ZjbI4/UkrOBU7rUCnfKa0VirAkAshw/Y03kgMpEckgG+dcVVWFtcaY3BCGjCmKIt8LY8skHEIgo4kACYUzzDspgqYu66oASYpAkxIFnQMXlE8UAXxkQYUIPohPIIyCJgr4L2yqCPBLreFmWbtA+vwDWcMv8hk3vtjlbV7Y8fIRPvv+b2t81grnE7NV2c9OTx58WJdm8H5U1eOqBMTXX3/95s2bd+7cOT4+zuFDrkcbRcNyfnp+FkIqmlqNx5m6ZIx59uxZ27bvvvtu3/dZ97+uq73JSKHUTdW7YeVSl8z3f3H4nZ+9tzMZFwoVQM7VI2SnHkghCxTWfPLo8Wrlr12/9uDJ2eHJyZVrN87OzoSjtbYcbS0797Wv/+53//YHKUlMTMpoXV25ci3LKY+b5uOPP55MJtPptKqqsizn8/mzZ88+/PDDqmy+9a1v5VDrgw/e+/DDD4ui+MpXvjK4oK0piiKDsV977fVucI+fPCvr6ktvvJ6lt7KgQ1PVTx8/KcsiN9iaTnd2dvYAIJdBECHGYIzJqg0x8Gg0att2f3+/7/uMuH748KG12pgiF5G3traVMk3TZO3Bw8PDN15/Jz+EdCFQulk1Q4plXRVVGVJcJ5IAfpPEIQBcQPcTp8AcGAIAE0QGH4WFgJQAJoYoUJSVMtbHtOp6H9kWhS4KFrSF0UYJQGIOMcWUSKMp9KLtEgMpE0QWq2G26FxgRh2FhsBBxPlAyrKgLkpti2Xb+8jM4ENwzrsgIUg/xJjYRwmRQ8gqrZznyjAEkFRYrRTGGL0bZJ0CUinxYhWci4kZEV1IbdujVu3gQWld6GUXe8ekbTd4EVRKiYBCGtVVdgPLshyNmlxpdM5tWkoppdp2VRQWETO2RilVltVsNmQcbozRuWCMyrvPZjMgEIKisNF5kUQERWEBQNvCJWgH6QMMEdo+9n2fvdSUJAkYU1hTyEsdol+pL8om7/YPYw0/18B9bqib5/flX3/jM3zB9/ylx9k0qP2UT4GolOH2JLbnBYlLUTharSbbO7mU1nt3eHj45a//zvn5aVVVWmur6eT0zJR2e3cftIUQtS1SP4j3t2/f8u18Op227ZI4FUWxWq1KVRofQgqr1h0ez7sgUOr3Hw1ODRLBEkSBkCUkdM5tE0AavCOE2bJrB3fj1g2J4d1fvJdSqssypTRfLF2Ef//tbwsAIFR13bf+lVfu3L17jxmqqsrm48aNGx999NF8PndD6Lru7t27Ozs7IQRhfPToUdsus/IrAMTIyui9vQNE/N53//bq1asPHzyOMf7eN75lrT07O8sos6xZMl+c+zBsF9PlYhZjfOuNNz9+8Mn+3pUQW9QKJbckV48fP97emhJR1w51NfI+AAAp0Gjm8/nbb7+5XLY3btxgjru7u0ppRACOi+X8kwcP/wf//H+8zqUiElFizrdPKeW9z1Xp7Hr/uhmVy+PyrtmjQoGQkFk05/5RBAQusfhAwrnpQlEUi9UqJHAeikIJEZLK2OWUog8gMUXmujQupul4xCkYWxDRk8MTELDWEhEAdX2oqsoWFYIKPrGgCLBwFCGlrVHByzD4BJQ4iWDK0xaEWRDBKlAq+xm5Sdw6P6YMESvmvCwlFAgBiEAxa712IbWOzND3TgQAk9YEAEahMcoPMYSAqIpCrdt+AmitjVH5tkqMIUXnXPBRGc3MRV1pDSEkoljaIqVOoQiRynYNKTEXWs/nXVmAtVpADV3PqvAMvguIioVFACMURgFh4hhS0oWg0ogvcw5fVkW57Gdd3O/fWhUFv2Bc/uizW8JFkeSyU/bZE37ho1/lzF8wf7/iX/rCiaWUBCD0CwOeU0RQw9AhSlOPVn137cb1vu+v3biRs2AMIiIgiYCnk61qOpWUvPNgrS1KpfDhw4eLxez2nZu7u7t3775iCz0a10pXxhQxuNKShsAp7O3tTaYQPQBAoamy5qJ3jiBASpKVrJBQAHxIx8fHJ+dnq2Vb2qLSFoTnq5ZJ9yEyQGGLvh0A4M/+e386bkZ927WrVfRhf3//wYMH77//PjNfv379W9/6VuaQ7F85+N4Pvh9T2tnbvXn7lo/htS+98fTZs+vXbpJSGd8HQAcHB6+9/iURaNtuPJ4AAGllrV0sZyLy6quvumF48ODBH/3RHx0eHm5NtiOnjYZozrKto6qiaNt2e3s7hABC+/v7R8eH0+lke3u7KIq9vf3lcrm3d2BNqZRmjk+fPr529cqNGzfhYpHLx0TEnI9v23Y0GhFR13Wfmx361cdFIeXi8gMkAJ8kCHgGH9Lg0xC487F14Wy+6p1jQiCKDCFAjCAi85nvWh8CE2mtCyJAJBHse18W1Wy2SAxa237wuzv7W1vbIqiUUcpcVAn49PR8Pl+FELU2ZdMURZEE3BBYoCgrBgQghvWk3dAVLjTCOQt05nyLCDsXkzARkCGRnI+jyWTkPKuLGNxYiwTOA6ASgZSSIgCAmHviAfV9v1qt+t5lylZ+fochiEjV1CklFkGFmR/JIe7vTAtdDG2nNZXWZPkrbaCplQC6CIE5AXgPWtvBeR9gCJ4FfALPwAJKAwAopYkIEUIC731Og75k/JIuUZdryvDbUwx+yXjBDl5+Hz5jCi+IQZ8KpddB6wsNTi9ev+SrX25PXxgZb7jJ8eFFrcmY4uTZM4NQ1yVpBSyjqp7NZt77VdfeunPbBb/qWgbZ2dlRRiNzXZci4pfLFEWbAlCBor7v225JRE1TTSajoiheeeWVsrTVaG+56jlES7C/szUp9OzkWV3pW9d2ag3RZ7QqwvM8KQ3ueeqYSPeDZ+Dt7V3fD6t2MQxDTLK1Pb169SoiZHmS/8P//l/fvfvqYrE6OzvLzXkfPXq0XC7feeedr3zlK1VVxRh//OMfz+fz9957/969e2+++WZK6eHDT+7du/f06dO6rvf29pxzn3zyyc2bN621TdOUZZVxfDnwF5HZbFbX9a1bt54+fvLzn//slVdeCc6XZe2cExFbld57RGTm5XI5Ho8zVPDg4CDGWNd1bqB+dnZ2crLIyoYpJe+H3d3dXBWZz+f3799/9dVXvYs54fWCNcxGMMOkhuH5VfoNVv3Le2DuO4gomRuACACBJYTkfRocd30EBUobrfXZrDeGtrfrg4NRjEwaUCkWTIwhsg9ZnByI6PR0aYxZLtthGKqqefLkuBuctkVkyV0GV6uVc65tnTFaazsE37bt4EJKKbIMg1+t+hiSjxwjX0xezEI2zjEAaK0J0fvoXGAWY7S1ioiy8EE29yHwMAwiMJ977yMAta1nhqqyMSaGrOuFAJAVW8uyvBxChZBSyslQaJpm1bbO+/WCjWiUHro+uLi1tdV10q1WiYPRZK22iqwmZYoQgRM0TWEtaGucS0pBTEJKJVCJKTIQYUgQA+fuvohZVifSS6XavjBS3iQKEfH5ES41FnjBc8wSWs/fvNiMLm3zuUvuC4EwX9LgvOwt5vdfsFByIdIFl/r5Zej8ZyXqcq3ws+s/XuAZX55nfGFHSyUYF0GGXlWFBji3Vg2u3g6z/+8P/mZ3tGUw7AB0qXmyoG/euta2bd8OJ8dnEVBA3bx9c3E+Uwr7kMbbe6CNIDIAMIS2W50vZ+cnRTOydVMS7e5c+e63/3/TUXOsieMyObcz2Q+cEnNVqOkAzdhcMbP/x6zsld3lRRIIWDBHDWhMjCF3/hUkYIkA4Ae10HOxBrRu6tGyP/rjb37zb/76r0iAgfb393d3d+7f/zgrcSJC2/av3L57fn5el8356Swxv/fee1VVvfOVL5+fnRRF8ezpUz+E/d2rBOrhgwdf/epXUeinP/7Za6+9pou1aixzstbowsYYrbUhhHrUlEX50YcfI+Kd268WRUFKR+GiKrNoa67RN01zenq6tbXVu2G6s62t6bqOOZWVPj89Wpwdv3L7YDqdxgTNZGcnwmi6rRUs+/bpgye3rty5cuWaqS0HCSlqa3wM+W5WVeWcE1BZOX7ZLkASMSqlEv+Gil4XU5gvvS8KEBEUEIv43JRewCJxgUqhKnQXeUgBWSGWOXZFQOcGRLSaUkjMAFUJKq48j5q6LC0zj7Yq530bglJK26zampJwPaq01qvl0hjlAyOKsQVoZEquC55RBBCERGxBxmiWGGMsDKYEy6Wra600OBeNtc57YahrrSoVQtKadKFRJxciGjJavIgPURlFpFIUAgCSqtZNWSjhFDiE2PmlNirfcSIyhgCYtC1r/ezobG9n7JzzPlhbAFDk1Iymi8UiwNnOQQFCIuh8HI3MMAxIySqcVqB5qMvSgV12gVEpon4RIoggiHgDgElGFZBOgFKU2g1h5RkBRuNPaV9v+sLn8TLfkC/Uqz5bzfhcM/HpyfF8+5fv9dmg+PJBXnjxkvGS77p8Pp+tfnzun/a5lvfy8TPMFlgUMnACIee5KMqPf/Ejie2qPa/rMiQvGBfLk+OTZ7//+79/586tRw8/Gbr+9OS4XSzL0rbLlaBaC1IVViGSpsPDp48ePTg+PckS0LPZ2dNnj7/z1//tT3/8I60JMG5Nq7Ki6XTUdnOA1IzMrVs3DoP5yjXahkULUFbKiBuVyiqIAQRAkQLY4N9BQFYrJyIc4tnR0d1b17an49Oz+c7OFgC88cYbfd8PwzCbzZxz+/v7InJ6emqt3d7Zabuubdutra1Xv/Ta+fl5Lg1ntMTBwcHTp0+vXLkynU6/973v3bp168aNG6vVKjfJy+sTMxtSAJBzdsvlsq7rq1ev5sqjMeaC9p8gMSJmal0W7CqKoizLYRjy+4vFajyanJzNdnf3tbar1Wp//woR7e7uZhzP3t5e27aE2RY/rwfmpKH3vuu6jFXcYG7wt50czz2kWDAIp4vwgxES4KrzbesSizB0XVh1gwj33jsffUwxSWIRRNJKab1YDCGmlNJy2Z3PFv3gWUBEvI/D4LuhZ2ZtbVHVgjAMg9FGK2uMRtK9D4vl4F3UWjOwsaqqyqIwwCkGD8xaQwYjaw2IjCjaAGAEBCIIIWV9XKVM8JkgjMCoUBfKFloRJhRfGp6MzajSGVmJiLasbVkoq60tN0Fbvvg5BGmaahic1ib7IlmxDZCRBAByTJ0vY6695EVKa9CaYoxKY/TBFnq1CvlqiCSBXP6FxMCJnIucwBhlgWLkrnsZxOaXRL5fFDn+6lm2l8ytz7WDL5ihl1jhFw7+Qrz8Rbu/YKYvG9xf+hhc3jgRMJBCMRoAOSVk0ET0ix/9pZJVXRkgREOd67d3JtNRMT8/XS5md+7cyqLLJydHrh+aqphMt+vJFoocP3y0WizS0J+fnk23tqZb281ofP3GjdnZ2cnh0ZX9Pe+GrckIMDjfDa6tSho1JZLEGI6Pj2D7+j96fetr1zEgek4GgMVHkUldFlpLpkcIKLUWWSrrUd8HBAGGb3z9K/c/fF8AogARfem1N7JMVsbuGV30fV9W1c7u7gcffNCMR4KwvbuT1UEyt+zx48fXr1+fzWZd173++us//OEPieju3bvDMNR1zcxZhF1rbZXORXPnXI52b9++/fDhw9xILxO9N24+CQBArh1nQ5l7sBVFkdOIh4fHWhd3X/3Sk6fPXv3SG8ystc7I8Fxubod+NBrxpWbKm+mxseN5vm3EGn671jACRIEAkjW+gkACEAEfWAATUO9SSKwMak0+RR+4D9wHGSL4CC6CTxgBSYPWGkmHBKuOF+3QDT4kQSIBiEnafpgtlvPl0kcGbUKK3eCWqzgMMXf3ZBZGqOtKkPthcD4ojU1pm7KsjDEWlZaiXIukGAMATAQISgSZIYTkfXQuOQchiISUfOAQgZmyjhUmo0URjuqmMKbtu7xuMeCybfu+z8mlTFjYxHNFUcXIbTtk9A6i9H3LHDMqPs+HvJrmGFVSIEJjdQgxxtgPoTD6QhNVNv9LAimCjylECMx4oW3+cnGiX9Iz7/LYfPRbnC6f9f6+yPxtnLiXnMbmKsMXW7eXZwNfbnk/ZUkViSAKEEaR5HxqitFqcS7d6d6oUgKrVceAPgwc0+GTwxD87u7uez//uVHqK1/5ammL48OnnIH2ScqyrMtSE5yfno0no2Hob96+AwAffvDB/v7u0LfGqL29vdlslou2TVU/fvjo+vXrO1vTN954c/BpdnKoY/+N167c2S2XDuqtIiRQ1rh+iDESoFaaCFKEbDL6biAkjuHLr9/qFrOf/OiHX3rj1bPZfH/vyiuvvPL+++9Pp1td116/ft05t5ivbFmczc7vvnqv6zoRGY1GImKtVUp98MEHV69ebdt2Pp/fu3fv/Pw8hPDWW29l/8sY0zSNiFRVtdFBySyd8/PzG7du3v/kYyBsxqOM4F1D89RaNyWlNAzDeDwuy/KC86+Kolgtlk1Vf/TRx9eu39w/uCai9vYOXPBlWQafQorb29uZwbK9t9u7YXPf5SIJnsHABAiJAaBdri5ndX5rg0AQIkAACBnUJyCQbZxioZggAipTaGuAhIkSQRDwEfognU+dj52PQDiE6HwiY7TRLMCobTUSUrooy2ZUVo3SOrAMPgw+9IM4z4EhAShtyqIo6toY07lehI0BowGSxOBBuDBWkUFQikyKELyAaE6EoJIIkmGhrpe2SyyIhImBNASGIbCPzLkhRsKYIIsPAlEI0A3RhRhjzIo4cIHJzWpPWTwx65UlgZCSICaQBIKaLkI4idHHGJ3zIhICa0VaUVEUpCDGpDVUhdnb1cYAZo0HkIyRigIxoSIMPoWQhFBZZV6q2/BL8IafdbJ+W3Pls4f6FQ/+cj/x8uL/uWPjenyuL/mrD5HEKQt1MwOnKNOmPnv8QRpWV7a3G1uP6rHrB2ZeLtrZbPXRRx8B4utvvrm7u3v07NlsNmuaRpMKIawWSxqNMaWyahTCz372s8G7x08PE+Dp6elqtaqqqpmMB+8m29P5bLW7s+991No+uP/J9vbu0IfZrL29pdtUTev6K/slAUi9r5QmXdaVLrXSAMjPc74xRkDUWjdN/Tu/87vf/uvvCML9+/d1UfzLf/kvU0rb29tZtkRr/eMf/7iu62vXrt28eTMXNHL8G2N89OjRYr760mtvnJ3O3BDu3L6LoJaLdndnXynlnNNaZyu2bqGlVGZ/ZwchB7Cnp6fXrl2DzzT22nAfQwhbW1uImBGadV2nlFbL+TAMs8Xitddeb5pxEszHHE22fAzW2rKuXIhVVeVGxhtnZHPrc7idf9VIuW8RACAA/harhbI+6Fr0ECGX90Sp3sXVEJkUoO4H3/sASpNWuezHiInBR/ARIgsjhQhDzPKxKoIaQlwNzhZ1Ylyu+rNFu+pjYGQyTIoMNpPxaFwh6WXr5yu3WHTnsz4FAIbSqro2tiAR6Hu/WLQhcAgco8QIKUGMkn9SXEf4WdiGaN0ZkawiC6CAUQc2Pqoh0BC01nq5bNu219YUVRmZiWg6HVVVkd3wvDsAhBBihNPTOZHe3t7O+jcAm6ZUbIxGEhEhAq2V1pZIFUankDgmAOAIdW28d6O6sFaTBgEQAFSEgCwQWYSMj+ADZ9/z5Q1vvrCK8rnhJHyx4cDPUJrWe73U0PwqR35h+42Z/lx7+vIzfOHTlxvWX3I+mBQoRAFiEbS21OKWh+9JEg14ZW9/8G5clfNFt7U1vXnrVTJmuVx+41t/OMS0XC53dnb2r1xZnZ1aoroq5598vHXz+tknn/zVX3/HltXR8Qkfz45PDm9fv3r4yUfv//D7BmIEaF1MSVJIu9s7Xdf5EJfzxclstVrBrWkV6j0m//pBNYHzk6ePKgDyS7GgCJhU4MAMxqiUEjNohT74b/7BP/43/59/B0oLKucdQGjbbj6fl2UZonO+/8lPfvLNb37zwYOHZ2dnXdd1XZf1FjPv6ub1G2VZ/uhHP7p27drdu3cfPnzonDs8PPza176Wy8EppbIsnHNlWa6RMc4DCwFma/j48eM7d+7kLFKG1KxJxIkRQJMaYsyPUGbsZYdutVoBxp/+9Mevv/76zt6BKaqnh8++euWrIbidnT1rrTG2W60AoCxrrW0SisnBZzLFImKMAQSitTV8Oerg7zQQOOM5EQkwsjACCvggzKwAIDP5SCdBEbg4U0YEJM0iSmkhGFwiEiTwMfk2yZkzBqw1ylgAiMzBRYHEAQCHwcesVp0lAjFEpYgQmJkUaq2Y0PsUAvispr9OMQMnQFScGAhz3clYIqIQc3Nk62NiQFAqMSUfhEWEQEkyPLggAkWhUYkxRhMAJyLaYDAQ0XvPzE1jhyFunjVjDCeIMSISc8iAG6URSa9tGZmy0MG5GL3WWmycjEaHx+dlaZVS4Pk50BMlZxJDFEYwAiISY0y/Gfr6sqv1G4yX77jJVf8GTtkvPeYLR37hKy7X+74oDfqSNzc7amBNBoETxijQVPXy+FmcPbh160oIrta67dv9af3s+MwYXZb1W++8tbO3+9HHn1y/eXv/ylVg6RaL0WRrtphXheEYoF3Nz2ePHj0q6pGpak1F27Y/+/m7cbUcQvzbH353stWwMZXWbbcCiXVpQ4pIIuDv3puMtne90OK83d4a/8///EtPV3J2drY4OfvZKRCAMlCZoo8+hAQApFSK3hj8T9/9264bymZyenKutRagJ0+e/Pmf/9nHn3x0/uz04OAgO2Lj8bisyxijJnX14MrTp0/H4/H+3t577713dn7+1ltvlWX55MmTEMJ8Pn/77bfXwXjfV1XVD8NoNFoul1neLqsNjkajVdeenJxcuXKFmUGtOcJ4Ud/PoGsAiDHmQFtENh1Nvfdh6I+On/2L/9F/eXY2G03GAEAERVHUda20yXpCXddVTa2UCj5twGGXbyszm8L46FNKq9Uqf/WasPbbGhe+Yf6XRUBAQEISow1IcolTgsIqAuVDIp0SCwgQKVnvRog4DFHrlHueICWltTJUaHF9BFSJIatWA4DSpLUtRwpBudAica5fpZRCAANojCoMAqRhCCmBtTQa1W270lqFEI1BEQghWmOQ0YfnvB3IcRADqSAeUAECCidCIQ1GsyLnAzEDaYycQh/r0hDh0PWoKJ+G9x5R8mul1GRS932/WDhEVMqkFFbLrmmanJLOTZYJkZn7vgWhprZ1XYYkCrLyvNIEiJI7xuSHM+VYWYABOAEjAAIzRxZ+Kd3kl3BRPutP/d3H5WN+kW94Of332U8vj423+Lnf8tlxmZUFlzIAG0TO5VP6oswjAABHQkwJIqcQ0dTm5P7D2J42N65K1yvk3WnTp2A1uL4tKhtS/PjBo1ffeHO2mMtsvjWdGKV5tZIUHnz86M6tG/Pj47OzM631fNX6xSoNcTxu+q7tZzNUmdRFQJaIjbZFqXzoOYWiLMaTqmgm95+d3t0f28ouXXp1B29sF+6VN3YK+ctD/tGPf/HRozljKgvTQciBj9Xggxyfzbam28cnsyyHWZb2D//wD+/fv396dvL666/nlmbn5+eLxTKexiv7B2VZLhaL/b09IvrhD38oIt/85jfbtu37nplns9mrr75aluVyucwy/VrrkRm1bWutzboPo7rRWj969Ojp4bO3335bKTUEb4zJvgOHADmbgSQiuS/wZDLJnma2hrmZ70f3P/zmN3+vbVsXfF3XOddeFMYYwwLLtt0ej7OTq7V2y240rjI3Ng+66AmlkDKXdhgG/HtA1OJ6IsHG6RSQBKQJhxgIwKwFDhICGIWRhXNMtQl9mEXIWJViEhSjdOLo+6AtNk0T/RBCzJg7rRUA9G30MZQGjIEYgAhFMBM/mrEGBylGl1gryMEvM/fDYAtSCp0DkcQsIUBRABGGAEWBiBICE4ExCgkwN7JjEAatyJaqKkDriMIgFB3XhS1K07er4IIlbQy4wE3TeO9XK6dUHI/H3vu27axlkTWXue/73LgZEY0xRVE4N5RlqYz2PsYgxtB8vrCljT5EFkGMiUMAohACMIMAEKIIJwHIyoSoWUJaX0Z4+e39lDXM1/8iAv18dwm/oM8Kf1qFn75gd3iOzHrRWm0yO5918fAS7mGT9Nls/ILh+6xXe3mDz1q9i6/Y/IGX97oM//7UkQsoosRAKjlzpUG7+ujk/b9+/cqNcTVOquhX51aRQr07Gb/25benu1NUxdVrB7u7248eP3DO7e42wXcJcGj7rXGzWMxPzs+oMCfncye6H8Lu1tb9Dz6cTorHR8/mi8WSahCb2uRxMAjT7YNyUpwcHVpdLPyqKMN4Upys2qYeA1C04/OzU2XjKZd/cHX6e9e++Zff/+nfvPv02AcBC8AWQWsVUrJFOZudw1rXkv6L/+G/GPyw6to7r9wjZVZtX5alj2HZLq9fvy4IDKKt6dxwdnZmq/L111+fz+d1XZ/PZ5988smbb75ZVKUPURnjB57ub8+X8xhTVTbMHPwAPKAuPvz4I6P0l995IwRPaArSCkiSoGBIrJTimEyhN3VtEdGkQwioACQtzk9OTo+i6K99/Rvvvvvua6/du3//w62tcdM0MSYBAuZJU2abM93bFwBSsmkrjheKXhnB2gY3Go18P8TBAUAf/W+1hnLpMZDL/2fPa2mIxCDIGhEEQoKqULIu8hChTsI+RZciJ9JKc+LAbLUGjCFI1/WmBAyYdWWU1kSkTCpSiFEAVVkqlpiCFwGlQBNRzRopM5eq0iBiiJEUx8gxsrVIRIJgbBpcRMRq23KIiCQhIUAIyRYFkg6qq6wBSZhSoVGBQAJtlXdMCrSSFJ01ZLV2wRNRWZfz5SofHK09mc+NMRGhm7nJxCBC01Rd3wHGslIhDsaYELwIIKjkubRGb0sIHhCKUkem0Cdm7jqftFmBNSn24iIAYLKoMLED6Ui2wE+Kat73IytWqbl7jiTdPNt8gUT+lGnLDtPLq66/4vgif+3vePDLR/hsheeLvvqF4OiFjXHTmuvzxuceBABC7JUChGgLCG71g+9/RxuM4p8eHfbBIVEUbrtOWfPJJ58kDlvTaaYKpJRGo9oqLYmRpes6AAFk59xyuVy0q6dPD5dtd7KYjadbp8fHY22mtmgMxRg635eVNkbNZqcxdIDJR6+K4nQ+r6tqa2vLOee9z4UXq4sY47JrP7z/wZX9vaakAnJIyjdv355ubYvk7kiqbor8R927d6/v++l0urksXddlNenRaDQej7O/ljkkd+/effLkSVVVy+Xy/v37maPStu0w9MPQj8fVarVkjsaQ0mALFaNfLmcnR8eaMANuskcpIhmKgRfiIESUsWaIOBqNsphuRuocHx8z89OnT7/2td8RQRHsuuHo6GR//0rb9tev38zH2YTqBwcHWSHi8n2UC+BhLuNk3zBL3/3GqaFfe1xAfhlz0VnyzxDTEGWI4nx0wQ/BZ719AI4pO44skhCRKOfC0sa+971r2945L4JFUYhA73zfcUqAmMu+YsgAkFJkNIpICD4jZ41RWZs6JA4+pbS+FH3HwQOKrcqiqApESOxY2kIrP/joU1moyhaIiATGKKNRKxBgo9bQQiLSpLJHX9e1tsoNYbUU76JaF1TWyPGsra2UzrIOKaXcpial1HZLZo5RDBEAKIW2QFJMCBxT17aMayokX+RYEEAjJk6BE19oqb38nvwaccGvO1FeYvVe8tELduqzX/3ZOPdzj/+C2X3BYr7kxH5Fk21K41Pf9Uuj+ej4yYOHHyUIPg2mKpd9N2uXPgZTVqTV7duvFEVxOjsPHJ49ezaZTPpVyylG50FkZ3tqNBXGGlISU9OMBSEyrPru4bMnZdE01WhSN/u7e2iMHU/tZHr3jTfm3aob+v0rezF5n2JRN13XnZycDMPg/dAPnfd+vlwQESsyZcHR/8kf/6EBMMgAfOPW9Tt37iCC1jqE1LXu4GAHAP71f/2vtda7u7uImG3EeDxumuaNN96YTCZZKF9Etra26ro+OTnJPZg+/vjjV155JVuWbMKIyBZq1c6EPSkehq7vFscnTx8/eZixh0VhUkoiSWtt7IUa/iUqcU785ZaERFTXFXPKmUci4gQ3b97sui6jbay1V69e7bqOLhr75vNn5t3d3YzcvjyjNlFIBrWJSCaxvvyO/z0NBkm5cR1BQnACXmBNbY6cEsgGiQeAuNZWUBq1VgBSlbXW9iL8h0w7ZJZucCklrVXT2NG4bprKGJtko7OQ7RAjglFABKtlcl5Im7Isq6rUWvkEq469k77jYQiCpJRSFkiB0iAcEUCvRbsGq7DQFAavs7QqR02gUKIPBCgiSSQyuxDWAjYaGCTGqAxmnXAAUGQAQGuNSCklgLWVzzfdGFOWxugSBQqD48aMajMa2aYqUgQPnNbhHSSRBEIAGvJ9l6xMTgBGv8ziZS3wl0Gp/y6r5Uttyhcd9lfKD76Q3fuiL8JPUwtEJIv9wqcD6k0i6Yvi688O532I0JSF1eY//c13zp4eVtzcORj3fghDbxEjaoXIQDtX9kfjrahxe3untEVprIzHJ4dHO9vbZyfHjx8/7vrVzZs3l6sOkbZGY+GTk7Pjgtj17bN+uHf7hq0njx88fXI28Fk6PpMPH89ev3XHVHpwftRMTs8X1w6uBd8uF+3+/v4w+ElTgTadi9rWTqlr128+fnKEml65sfvuw9PpdLK1PZ3W13/w4584H40xIYWT4zNEdfeVe0+ePMmO1dbWlohMJpP333//xo0beW0Xkaqq+r6PMW5tbS0Wi/n5zGpz59bt09PTruuuXbt2PjstrD45OXGuQ6y0zY4n1WUznU61wpTC0Cdtio3UHRJyen4Ts2+YH4C+7zdyQdn8Pfzk8c2bN3PiaYOgVkplBzA/PEVphq6vqio/Thl4uHEbX0i2rFOWzIQgiETI8turorx0pPW/ArB+IBCAMJe2hQUIgHCd3uQgSqHWBBxFUClKCdq2D0FiBEQwBnIDpovkKAKAC77vvQhoBUQQfIwxGq1AOCXRGpRSISVbkogEH70LCVBEtCKj0SUVYuqHKMKIurCGFCuFKEQFFwoVMUKqCqMUdt2gMCmDKQmB5CqQRsr3KLcoSAm0VUUhSqkYIwMwgzEGlWKOKYouiYhiTLkVX1GaDNQnQmtN7CNzAhJSQBiNNlo0B3AiMfNpBHjj5bEQAREolfHhYF6aOPwlVZR/uMDhVxhyiZUMv5pB/KUlkRc+/dX/XhGFCErZ6NNPfvzzEvzIwLgZ+X7e2AINuSRVWb75zhs+sjZFsz2x1rLEvu8V4GK1ghQfPHiwWM6i86v5YjZfTrb3jVGAMh6Pw8nh/t7VoNRHZ0c//sEPj89Fa2yj2hmBgfjw6eLVq9uv7G/tT5v9nd3TZ0+29/fG4y3vows+cKrsyJZyPluW+/tPj0/G47EH3XUrAPjG7/1eSjIej6uy6Yc5EShFKfDXv/61/+W/+l+dzU6ylmJWMZjP59bavb29s7OzsixzJJ69KufcYrEwVt3eu71YLJhla2ur61cA3PfL+Xw1mdTOBYChqcdIuLO9VxSm77sQgtZGawEQ5phVkTOmBC446TlKIiIg7LquqerEgRQ8ePCg77ovfelLIpIrA3wh17pxMDdeaoY6bqzkRt0aL7XWySjIlBILa0Xp7yZ8/auPDfxMLv0KCCCQBAxKBFQADELMgmgVKgVaZ0sBiMIsAGC1KW1uYsQxRuHcmMkm6A2RUgqYEiYQ0Zq01knW1yGyIIDWlrTywVlT+BR9DCGAsJAGrZGUUTxQgSlJSjwMsSw1kZUkhYXgAxpVlQWwT8Gj6LosnHPWWqas6pqs1dbazKIzrEQEgFPwiSXPougDx6ypIcwAJMIYQ+4Y9byohQgbzHzkgIgiiYUBWROKwJAhiADZDF8Q9ARUlj7IETQwvczFWc+PT9+nzwFF/1Iz8UUb/Lr29LPfdfFOzurw5gfWWEuBtUbE819FPqeb1QuuweU3N1SwFyLll7iHShfWFhwlJfGBPYPY5riLyhQRoXfpfNkpW169fff1t94hWwBA13UkoBUCyM7OTjf0053tV+7ce/Odt6fTKQEYRaWxVWG//tUv//G3/nA2W/z8vff/7b/7ARLcuFLVdSOgTlcwd/bJAv7qp09+dP/wfBAGmk6niWVv/8CHePX6jbIZhQS2HouywwCrwZ8tVm+8+aa2Znd7cuvmnRT48PA4k+FCCCmytfrqlesbBzCLTo9Go6dPn45Goyx2nQsRMcbcYPPw8HB3d1drXdf1arVi5rqul8tl1626flUXdmtrCwCGYRARABRBBYqj1wRKkffDcrHIZJUNPQ4u+MvZ0sGFJqixSmu9WCycc7du3SmKql31waetybY1pSIz3dpxQxh6LyLW2mEYso3Lpe1NXnjjFV6+szmshrUhft5U5x9gZObEuuK8OSOEJM8nNAMkWVO2iTRAxrWAZASiCEvc9GgT4RDiMPSQIMaUogfkwuqiMAowOp+EGSEJxwQsEJMMLg2Oz+Z93wcEVZSmaqy1BTP0/RAiaANFoZRRveO+D23bd+3QtoOIAKcQ3KViPcYIzECkU5KcjhQSIamsqUtdWl0YBAAU4JgkMRDGKG3vfOQYI6JKKQ1DYoZ8E7331uZ+zbm1XiSirHKWzaUyqighCLCs4aIRIKcR8xXNXU4BIAnE9DJz9DK/8XMNmXzB+KLtP7vLy+fHF42X5PI+mx/8u3/FL00dhuAR0VpdlmUUXg4wd3EQRaSHPrrAUSiCmq+6yfZ+EDk+PFot55PJJAyusDYnwuu6ZsAYeLVaWW2894XWCkUhPF3NTuez+eHRf/Vnv/f//L/8n//X/+KfXt9WB7sGgIfgj5e91+ZpG++fLIrt3YV3Ryez2XI1xISke5dO54vlqhNQs/N2a3rgEj86OvqDP/5HN27f9p4nzTQLTecUW1Fa79eM4035ItvEGON0Ot0gnwGgaZrFYjEMw71793KGe3AdItV1fXZ2Vtf1uv0mckyD0UDEpMBojGmIyXk/hBBQUowht38SkRAjXnCHM4kFAHJSL8t/rVYrY9SHH36YJWa9C9lrKIoih8+IuO70dBElZF5qbu8Ll1gol+dMdg/xEvr1HzIWkhd+EQK5aGOMIgiAF4hDkA36MoSU1dpSFBAKMTgXQ4iIUtflZGu0tTUejZob1/d2tkdGEcfE0aMkQlEEg08+sosSBRhg2Yfzme8dgAAnCClljQZmFkJQCAKcKDISKqB8JoAEKUFZ2ux3a01lWeb0JSK6EBkwcoosDOJjAEKjSSskEGNUYVRpNQFnr1AQsg6s97mTFGSQTe6FkNsS5PUMAPqhC5xiEh84ePAuxhjzHV5fKYEEEGTdNVMjkQAiCkES8PyyG/wShM36nV/vBn8e3uW3koj8bEXlJdbqwpf8nM1eQOF+kR3/pSdZFKbvWwKlx03kpBU8PlwC8Ru7N1znQkijyXi8tT3e2v7hz35y/cbtybi8c+fOuBk1hV0tF6PR6Gx2HoZ2Z/fg2eNHq8WyKsrlalkUxahuVu1yloZ6q/mvvvFf/M/+yZ9WcfHHr9/6j39Fi9QuNccEEeBkFZQGevBodvrkjVeuchtWbV+W9bOjY7KF0lVMAAQieHpytrUzffe9X0wOXnnjzTen462l9FVVnZ2fCZDWyg3+zTff/Iu/+Itnz47rUbUOYWI8PDzM0srZUOZk9nK5VErlDk3OufGoXCwWW5OdtUpCt9za2losz4euFeWNMSjifZeIzs9PXL9URDF6rcdVM0aksiwBOISkycBFPBsv+CfZD10sFrs705OTo/G4mUwmpa26tue0Ftx0zuUKT26uoK0RkaqqFFKuumTXL6vsfO5dvrwErv8llPT36yF+YdZ8HcUDixBA9hpFIAQmlCQiAAWtPUqijAHE3ODJ+yHLkCKoxXyIMcUIlN3PxDloyl2SFXJhrVJKWhdiLG3Jsi7jpsQp8TrejFAXRUrJxYhlYa2uS4XoykKHIYpgSskaYzUEH2Jka0ttirwCISoAzmsqEUXnJBd/QMcYgzAiKgUsqLViSEqZEIaUEinUGowpECWllKXAssqv1po0GmsBjfcE1DEgS+T1M00InGngAqAv+YYZS5GYBV52Wykj3QEARAgUIqDSEdbBY34w6KKfDiJ+bnC6ierxooPlhoVDpHIYwCz5QgOg1oZZssDPBTFU0Vp1ii/W7JR/8vE3scxm0myW9xdsN2LuzMCbQ12OrJnXP3IRpOSdNvteLjt+2uuEfKqS5UCCH9VjAAiun1Tmxt4EEsRkBgf7V64BydVb10Z7u83uzp1X7hpFlYbl+emTR58cHz31Qz/0bWjbkvT50dOTZ0+fPXnofVdqvLpTf+WVq7Wbjear/+l/9x/9L/75P16eP/jxxx+9f7LYv3bXJjJrvUoEskczHnD68Xn/7Xc/unb1JmnVc1+OC0nCUVArj3E03RWtgRSL0WZUldvODV//nbc+fvRUAEhz5ASi//TP/mkIQcDniDLjpU9PTw8ODi7EOzElHoYBUba3tyQxMFRFJYJlaRMPIXYsXkS0qnemN8gojVolU+tJYScCOvoh+T66mevmQ9d3XT9qplrr45OnJ0ePQFLODHofEOx4PAm+i/5stZyP6sY5d3p6un+wHeOQmEkVIYRhGDKgN2cMy7JkZqM0ADCzj06QMxNZISELssDm52KeaCIRsWXBAIETIoAI/ibr9d99MABLei63l2M9RECBRCoCEeUJQARQaNQIugYhYYxEBKC9g65j52jZc2QEBFtRVStdgC01aSxRdEqUKDnoViF4ISBOiTkIB4WgSIEQe0gJkGA1OFuoplIKnMbYNMoaWs1jbcGAUyoJBOdcSkKkmXlwQ1lZpdB7lzWtAXRK6AJ7F72LOe9cFbYqtEJhhhjE2KLterKIpjxednpUd3EYmM+W/uhsOF34w9Ol1sYYQ6kSVoEdUrIEFCT4pM0FNhgJARWAuVA79sgREwL3irWClzv/F1pyAHDhG8YYLelNnoUvZFbh06Zns8uFycjWkIg2ktRZr0Jf5IOeO2UxBkQQ4XXeGIA5waXa7gtDLrVIvmyncvi2+fRy+PNFpIINyvrSO3jx/09FyvBpa4j4nHKNiMaUs/k8Y4OvXbs2bYrJZBQ5zdqu7ePV6zdu3ri9c+X66fHJ13/39+bzeT/4vf2q69vS2Fk710rVo8njJ080yBq5klLvnY7p3t1Xbt68WVXjptDBdYeHh0ez2emyM2VVVVXTSHu+EBAQBpDFYrVdFUM/zJcLbUujrTHFWX+2vbN9umqv37719Ghmi8ILffLs5IPD7lt//KdFUZycn7333nuIkK+60vr69eve+7WElzG7u7ur1Wp7eztXVIwxIcScuKnrOsaoSIcL3ki+0cPQMUelNEAk0qNxvZwtS1uSiqPpNqAajUZPzp951ypdxxiZkjWS26oopSQ5F4a6GccYEjuAou2Wjx7fb5rt4nrx7Nmzq1evt+1cV9pYJZIorFOBzrkMhMzWDQDWzkiMubloYZ/Hwp+dV4iY7ak1NiaPCL9R6PLbHLJhsOR/BRCAL6I2o0gw/wdJuIRClCgCQk2QpBQdARWHIIoUYdJIAMIJBJkZesjeIxKKizE41hoKUzKEJBQTJuEkImot/kbIMd327TwAAQAASURBVEal0FoDHNq20wrGY0WYUCkBEhEGxIv+WkVhnHMxojE6X1vvoa5K5wZ1Qc5LSVIKOQomibbUDGIL4x2s2gFYuR5S4uXS1bXyIVlL43HlhlaER6PJsl9FTCb37NXU2PpoOZOLzCDC8waZiIicCcvMAvqX9UKk560REDMwB4Wt1dlxQ6TsPSmlldIbJy5/dIHfRhEARYwQhaMwIwghI3Cu60jKPwCMuJFdyE5kyB8xR+a4WQ43jtjm140ISuZgZYZ/hkds/pjPrYd87p/9QrUEfhmeZj1NLwYzz2fLGFMIkbRumqZpKu+HENzxsnOiRQyKLrVBVJ88fLhs2/0r1+7cuVvVo+3d/d3dvapuyrp59Uuv37lzZ2tr686tW0opicn1w+LsFFPC5NkPTx49mC9nZ+fn58vVqu2PTub5PLUmbRQhnc9W48n21WtXFp0DIk1mcd6OR9u6KIbBP3z4uC61EH7v3Z9/7+cPf/SLDyPAl7/6le//8HvMXBQlEmhjXn/99clkslq1uQib17/FYpHV/DPepe97ESmKoigqZvDeA0BZltnVckM3n52dnhwpYkVsjRDRarVwbgDgEJ1zvfdD3/d1PaqqSkS6rkNUiGo0muztHcS4evTgw9PTp4NbaIMCMUkU5BCH+fzUDWFney831gBgpNwN3QzDsPEKN5MhW0MRrOtRjlHgIoq5fK/zrcxPbFEUVVXldBX8Z4ZSXAL8X/zCACycQBJAFBYARkkskRMlRUmxh9APHL01ONkqtqdNXZimKsd1o7X2LnWd+MiozMAwBFn1YbZ0/cBMEASWQxcEk0BiDrkiwznvJilB71KMHEIiUCkAglLWCqjEGBPEhDFJZIjMGScuJEKYQISQtAUCnxIqxYCRJXLmgSODJJHxyGxNG4S8gMHJsV+26fS8G42aycQ0TVNVJvcU4wTDEFABMxfGFEWBSolI0xTEgPQ86ZcZh4KQQBKgcGbQAgAYfJmIDV1WzM9TwbseOMhF6W3jJL540y69ycwkCpkkQvIcXZIIJMqQJcqFMEpJQkgxZmQAEun8MOQN8gulzGXzRJfGOnhOacMS2bz+rMeK64q6AMta6ftylPTS9y9/9Knk0ZoFwBwTx6St2dnbM0Whtb1y5YpSqm1bY0wg0yfWZSOg3JDu3r0riFSYm9evf/TRB8eHR9/9zneapgFhPziOafCuqqr5skVQk8kEUoTEoe80xPOzo/PF+dbunmh9eDr7+NFTQFXUFSKkxDEEBkkCs0XnIh7PFjt7V0FUUZT1aLJs+6vXb65WnSJ8+uzovQ+eCgCgvnLlinf9t7/9H7P3JAwxhK985avtqs8QjZwbefLkSVmWiJjLhZmykvHPeZv8DiJITMAcBue6fn5+1q3mq8W561cAkCvFdV3nOmDbtimltYgxMwA0TZMLviKynJ88efLx8eGjxeJEawih995VVVWWdjY/u3rtIFyMrlvlhFQuYWf0NV+0wcvJTUINQtaUhJovpF4BQBCAUC6RLLPbWJbl5WX1P6s1XI8cr2V+RQJQCApAIWgEQiTJsERYLbvgewXBatQKFIB3w3wxw8zJiGsFCiIA0IkRQStToEJmQAVVZcvSpgRukOCZGenCRYgBQhAipbVSSGFgRKwqWxSFd9EndkFcEOdTiBIz2gUkxgiybtMqjMYUWpssC5bLRCKYy82IyhgbvPjeDz0PvUtrsJTKikdKmQxISCn1navrWmvqnQPkbJe0LciQ1aQEABgQM548Xz0GSAKc1q52XhLVS71DfRlPkC3L0dGT4Lvt3SsXbm1kZma9UXLfzJvsrEEOPxkUKbzI2qzjWUAfvDFGa5MtFwiBZITkOnOXYVOy7jeW03wvFkDkEmo622j5dHfwTUVys81nI/oXjvnCyOLjl7PbG2Lyi1te8CUya82tFlXZvP/xBzHyMPgVc1Pu6LI+Oj7dPri2XLWLVbdTFj/98Y+UUnv7O4VRH37wfmGsc/1kNFp1w7IfQJvlMBTGFkX17NmTV+/dG/r+7OxMSJ0ul6erYd4PgbEabc1WbZJNDCUMcHg0n4xKFcPDR0+2m4oQT89nu9dvuxBfe+01P/gP3v+kH8AWlVL2tTt3/u//t//rcrECMJEDKhCGO3fudF03nU6HoVdKhRDatr1582bf91mIX2vdNI1z655nOZWMiCEEo7UPg4hsTSfn56fHx8ddt9rd3dVFWRSFMarvWzS2LNeSdghsbH2x1kqKgTkK0aqdIabEbrE4a0YT78Px8XE/LEd1U9hRU5WPHz1QBMvF7HgYrl+/qXWRhXNymCwiuc6TgYr5TmX5r3yh5ALC8kKWOU+ki/58nzs1fsn4+3An8xOcANTFjCRAJNSEComAAUGTUgq3t0hpRMTkkk+cWGLk4CCk6ENEgbIkay0qjEm63gEQGTJUkPHM7H0kQE0UmRGBMJcL1v0/OAorybCVlLIp0CGktg1NhcKcVxOFAARZihBReR8ziDXPkBCCItMOsSjEWoNoYowxJmOUNXZoXdd7TuAlaqXGEyBN1qowZAHEKCKZPkOkFRmfnCC4zkdOzWSrJCMilkA45qukQPCiskwAnCXUUBNHgc9PmKyvuYjOH+d1FQBSCkeHT9vFeT8MG/3hbAHzjNmEJLnql9d/Zo5esqBxRvbnq8DMPoamaUajkVaWiETWop4IRIiw6fGEawBELqm8OMMuEGH5tVx8RESZVw2XcpqIOe/8ore4PhpurGfeeJOIfN4VCz7Pnl5020JmQcKUQopilBqPt+8TzlcrU9Wexeri8Oh4dutqdbD/7ocfgTY7+3sf3f/kT7751UJM17vAqakb5wZBOpnNHx8+M6Tm80VT1aaoutCORpOyLAcXjs7muix+/IsPHh2ff/Dg6aznZR/P5y0AmEJzIk5JAfZRkuDW/u5kazu08+nOztLPf/jjH129fsP1w87+zdNFjADiwjd+96uFou/8p79WWoOomAIAbW1NJ5PJ+dm8Ki0RhRTPzs6uX7+eUiqKIsNliqLIdA5mMcauVqvCWADQWmuEwTEA7+/va03Hx8d974bBi0tNVe3u7j16/ARNaYxqmnFRVEZRXTXWWs80uG5wLianVHERq8bEkTkOXd+t2hBdK3Tv7hv90J7PDvf2t5fL5fn5+f7etdG4yKbZWpsVbjYZZMR1pUtrQ7TmsTAh4rq1AHye8drb2zs7P9lMjF9x/CoJlt9sbAxiHlEEc+aQBCUnxZjQFKM6peT7oXchRVCKjbbWqL53SiFwSsLehRAELkQJ2t4hQFkYJOp9ZACbcemg+AKMgRcaiyExCBiEsgAQ8D5qHbUFpTbqKut1Rhjyf9k8xJgQ1yq/AslaYGbnvNZaKc1MzsW+90U54uRMkWHbiEguBM9he2trGIbMUjdGNU3TLxcAECSWqkAkPzgfhIUx+Ct7Vi09ZqHx9ZoHAJAQOLP0Lm5TgpfxLzUhsAAiMgiiaIVD1wbXDZc6CGwsptZaXVDrYd0l2sBFm7r864ZauG7yQtQ0o3bVaG1zCMPMKYkpbHYxsnnNVjVneTYu58a6EZFS6wUfLxDUGyDIZZfwJXnA9TvPreEXjs/99LKBFpEUfF2NQ0pZfW/ovS1NTDIqbGHobLHc2tlerdqyavpwFNxwPFudnZ09efRwb29ve2uiSS1mZ1VVBU65U9L50dFi1SJHCX5nZzpv3c8/+EjX5bPT2fGie3a2ANNM9w7mq8ecfPARhBCRtIHgnx4ebTe7Z/PZzenYaj3d3Xk4O/cxFsb+7P6jjkG0AcFXbl//3n/6a0GMKWkEgAz/X+uzt22vNebYZDKZzOfzpmkyxEFEhqGztlRKbxxzIkwcAAE1DsH3zpHRZVOTtsrYnOPNNGfvfQihKKqmHrWrZZ4etrDM0Yd+uTqfz5IhEiTnQmMRRLTWo7qez/vt6d5kMnn8+FHigYirqtjbO2iaLa115snk1XdDRCGVRdsohJDToBmri6jhggNHl8ydiGQH5LXXXvvFez//tazb34spvFRAkUvvDQAEQgJGJMMQVRQv4aMHMwWgCAggd3qAGESistYolTgIpxiSj6B0hnAbn1wSiAyoFBDHdSSHFzpYQJtaNpIhNBqNxaZQwp6IciNsSIMI5MoAgICQgABLSphVv1JMkCJphQoBwJrSORejcAhaRAR94BAAVBeZDVJO2mqtAQOzeO+dc6TWrKHnjTAJAWBUjQDNoutdDLUp9ra2K32U8TPCAICMawK4Qkk53CRghPjSa782MSmlvPCs66YsmuC5Vm1WaZeUJMkFijUDLzILKoRgzXMx6uw55rkSUgyuXc6VSK4sG0RMkYNAWZbZdGqtq6rKmawQUi6SrF1FxFw5QXhOV8iJpwyC2/QAoguhebioNT+fYJdmLQtfNpp5bM78ssvwQjoyv97kK+uyLJvy/Gx+eHjYNCMfQ2Uax0NpCwVgy/psMT9ftFvbIHHZlOUHnzz6yU9+0tT1wLDqfd+tovM+uMmoWrbd1niynC+MQvD+9vXr7eC+94MftYPTpOf98OjZMZBq++HpyX0Cg6QBWTjfhbC/MzZalDWr1WqOjIjFaPzOO+88ePCII/7193/uBMBa6N33v/+3f/PXvQselI4pEhGDLJfLlNLu7n5ZmBAG59yVK1fm83luXry3t5crFVVVORdEIISQexgwp5Pjk93tqTHGOffs2TOtdVnUW5NisViORpPl7HyxWFZVczpfeF+tlsu+d5nH0ratFayqSilUCiPHk9NZjJG0Zmbv/bgehb7/8IOf33317cPDw9n8bLma6RPZmuzs7e0VthSU+Xyepw0AGGNyYcdYNfTeGBsj13XpXG+tyZIHl2/lOgIQAFrnRm/durUOHj4TWPznHpSdggSJAYFQgYBITABJdNQKRCsoNOA61EkA0vZOoQhDXavRpK6SOB+XyzBEl/McQwghgAAQoId15RLXV2BtEEG4UMoYDRCZOUWwBcfIIlIqXhsZIbhIY4kIoek6pxQYQ0rRMAwpwWTSDENHRNZCDKnrYkpQFDQZ14FWhkCEs2wiChW6yvCpfE8znfn8/LzUJkYu6sq3DkqwtgjLlfMifthtRpU1IYTwHFxNuVaDKEFAiTA9jwi/aGgUjRBzXEikQTQlsFbRRaNRBCUIRASCwiiybkxMoIRTChERrTYAnIGBKi8qvLYmla1TTGlNRaQUh7WRVaqbtwCglEJFq7ms52gMsk7kKsHshwMDaHhOs8/0HUQsy7KpJ9lOGVNUTV2VDSL6FLVVSiljCk1KWFISiYmZy8aG4NdmjlR2ZnMuDNYmL/8hL144Qh1CGAantc5KM6dnM47pzu2bh08fny39/n6xWsyfHD/50r2bi9W8D3bR9Y9Pz7Q1RWF//OGHruv39nZOlu32dv/48WOz7lbSj6o6PjlsCjutRuKHedtrUz5b9qfLXgZ+eLg6adPxuR+P6qbg1gkwUxZd12AJOYZlPyxOaXr9akeqUQb6AVCNqtHRbNEmUFqnrjXG3H/4aP2HpwgARJqjCIT/0//xvy4tfen113Z3t29dudaBv3HnXmCaTLZOz+fGFCGEinRV6GHorRLgvnUDM/fD7PTMHeztjmoDyIQKNQLgaLxVWrUQOTw62dvbM8iQhrq2CdJyNZiq2Z7u2rJAiTE4Itrbv+L6Zdcrq0rXDZCiNvjuL36yf3BQavWLd38k4MvSNPWkrqZa697NbDnxMeyO91moKIplu9iajNp2mQYqyxqRxuPxhuwswslHay0p6rou96sCgMQJUsoA77uv3jNWex8LY334YpVDBLhggJEIX6yqLzefv0Zu8XM2YQAAoRyRSuSEgAAKARFYIilQmpQiRShAAsRAOjkEAAXRJ6MphrBcBm3RB4hRGEQwt9sDYLn4P2Ce/YQioAFtjhsSAMoqpVJDTAiZXZ7WYuN974i5rm1ejWobMYEyGFlSYKVMdGE26wprvfdakwgWBTBLUWjmgRL0PdSNaRqbUlIaA3sqgAeJKQBAWdoYxUdmDd7H9gSapjrtO0Q0pQ7Cp3OJp6tvHOiPjnxr4LgDQU2kOTlUkLKpFiaBJFKqF/kmm7uDOXxY/74pEKMQAXBEYRZEZFzjVUUEhCGjZHIAC8g5SJcLIXKQC98QAABcCHnLLDGW0zpKa0kpI62ZGZgZ1sdEVLAurWTQL2W7GjhdxGiaiHP3WxHpuj6bXUQ01l5E3KLW1tBorWlT5BLJaAxERK20sqPRKMtj+KFfu6Ias3uS07ebC9e1SyLa2d5SSvV9fz6fNU2jrTk7O3v06BEADN4BqRjD6dmivrZPaBECoDx7etI0VW3rzg1HpyeAslgszs7OyqJSSh2fn4zrBgAqbZtyWSCfL9v7D584USHxfDVfrFofEgB0XQcMxpgQWPhC6ElTSDGGtWK+6+Yff/zx9Zs3npwcJ10U5aiwhYjwhcLVxUVe9ym22oQYUJIi9eH77318H38CKglMdvbu3Ht9Mt1+6623plt1u1qt2r6p6qqq5ovTJ08exeTv3n2lrmsCOj097brBub6u6+29UbsalLbdEBjF+yEnNDSpzgXvPQmcn58WRRGiS8wx+dly3ndthje0bbu1NV0sFqenpzs7O3t7e7PF7M6dO0+efsJJ6roWSKv2PMao7RIwNk25WnX9EHOHAK21VlXf99aalDwz535DWmtjIKWYUhaIlhjz+idECkCGYdjd3b537957770nIoSU/h5kbD6bjP51R3ZEcgiXDbEhQCRmjsJxDYuBJDCd1H4YQuDIoLTPfpkgGkXMwsKJs3z1OjSPz2P0i/S9SAIwBAqJSOiiXIm4fsCDi5y81kYgtSvPDGWphyHWdWGMWa1W3os1SIQxCmIARCTNKQBAlnOPMfelAE4kKMvlYAwIQFmSNqUxSkQ4iTAVRaG1FVHBO+d6BlZKMYJR2lAAjlrZqzu2E62UO12GgkQScwImUEKyrqtIeLlveFmz+rmlJMnYQEMEChFRbaLgNRJw7QFuwC4b8Q9E1LIusyBhjB4RSdbx9RoJASCMCIpERFAunHSkdV0ll5gRQWGinDhYB6qQl8oMrQEI69K5CHMcfLeho4okIlonK2HTGAgzQ4uIAImI6rpumga1WZyf5ccmwzWcc4ByWSUUJWgyQ7fo+361Wh1cuzqfLVHk4OBgZ2eKCI+fHY8nI0SJDCnBbNEyGeF0fLQsbzVztwjRhRQRxYfYD86FSKS7IbnQphAVUmFUbY1Vqm+X165ds9aezea9C4iKNCMgSuQQLIE1SmuNkhDRx6g0lkXdtm2plTZFZJhsbb/78ePZasgyhcaYTHfb3IW8kouIIaxKWxWm65xvPRAVdX1+/HS5XMznix989/pbb731B3/wBwcHB0+ePBHhrcn04cNPRqORJgWSkBRg1hYVpQyCci741WALIaLBO++96z2IAMukmRSlPpvNmEPfu2EYBFI7n7l2wSDb093Dw+PT09O6GuVU8mw2u3LlSuKwWCwmk2lTVX3nHj/52Ptua3pFkYmhB0mSoKrGPnpE4x1nzcSnh48Xi8Wd23cLO44xabsmGhRFkXMym8o4XORefv/3v/Xzn78n+KkMyd99/JbSi3y50JzFvgAgCaIII0Vc67MoBKVgMe8QwBhgBO+9tgYVIQBGQIT103Txg4C8SQ8QrFEfGVGdIKWUwcySS5akSKkUmAVTEGMUghriQARJlFHRRx58j6RNASwCSoPEBNL3UrA3xgBR2w0+emOMCCRJgSX4IVw0j08JfGCVshpYQBLNyrt2k0DLkmuMCEBagSJECePG1KBLBbzstkb6rI19gihQIEQBj8ACL1/kLvmN+VpkBhMRy4VADitEzPw9EUFcV9/hQoKJJQlwNvPZDYwECjJwCTZSIhvsdM5ba7Rr48uCF+ntGCMpDc8LW0lyO0Vah8yXSsC4Bk5ciHWLoDCnFJXOhBiFiCCJU3rutwL45ETWvioz9107n50zSHBe1r0K9cZqD1mZFwAAPr7/YQ6rx+Px3u727PRERAhxtZjnJICLjJ0jCPGon07q7a3p0+OzVe+KQp+dnRmriUAgKqUG7wTJhSgS6noUY3RDTChJkgupKSwYezpbXr161UVJjC4wp8QClqBUMJmM8p+cHVhm0dYs264ob4B4U9Lh6fnh2aIY77UnHaeIAIogXCpJrRU3iRLHSVMByGq1GDc1F/ZP/tEf3v/ok5/94hfLZXf9+j6E/sc/+E/3P3j39/7wL95+++2T06MY/Y0bN85Oj2bzMxI+Ozu9enCQxQNj5BjTdDo9OT0/OX26s703mYxHo5Ek7lYLRGqqUT3WzvUKJUYfXAsAhUHnBhfSwd4VkNS3w87Ojoi0bVtV1WI5a9vFeDyu6/qjjz5q29Xh0YPp9ujsjKbT3eVqXhYTYWEGTmisAlLGqn44Pzs/PDk52t3dGY2mKYL3oSzLYVhIZjErlTkFMUYiLGx1fj7/6le/aozhi5n8a9nEL2y2h/ICbAsynuxXP/RnxsYgAgACZAEZS0QkWmWpG+wlKKWq0sYYMmtIRFISSJzLrkiQ22yuiYgigICAa/8TQSNYRRnxlpIAgRKMSZgTsaQhWqtjjLmjHhFkQrEudIjsXCpLrZSKMSgFLELaRvAkggCS0qoHE1PBOB4VPnYxpWHgZqRTStqSDynE4FdiDBiNlTU+hqGT8TjlyiGBCpy8TwjJKCgMgkLgCJJGVu3WsDupCPlk5VnQiuoTA0FkCC/1+DV8KlNBAMDIDCk8r0THy1WRxHETcymVsdNERCExZPuHCJTThpyhPmvrRiLIcuHtJ0gCsqlp4EVhGjOdG2ndHYdAiJBIYkZO5H4veaYKgKQkFyt8diJZmJBUbsUKAtmH3NBPYhwQEUApVIgCGBOnGKNRam3cUwAAhYiS/NABrA3icrkgImutc8P5+dmqWzbVKKu8OOd9YqWpd35rXFkLz46PyrIU5NPZSVEVO9Pp+XwhAiFEupCrypVwQq9IE0KO2oJ3naS6LoeYImCIkBkCIKSIx5Pmxt4UEWfzeQgehUlRXi/nq/7Zyfndm1dPT54dXLl2tPQx4bIbtL5ItmZuA/OF/oI2irSh7e1t4eD6hKgA4N//x2/HGHd2tvu+j8Fba6/u7zrnfvC3/61S8cvvfPXn773b9SutYDWfaUNIYq0G0G3bLhar8dZ0a2sLEM9mj7uu02Rynm61mGVi1mKxYI593wokJE4h1mXZt+1qvtSaRqPaORfDYGx5cLCvtX706EFZ2dG4Wa3mDx8+JIIU+66NkcPB3kH0wTSFd4MbgrYKhIrCnM2e3v/kJ10/Tzw8ffZJYevJeB9BEdFyuYzRX79+3VrrfSDUABJjKm2xWq329/f/4A/+8Nt/+R+00vEiM/N3sFpfOLI5gl8fpbj2WC6QNzm5LUAI4plFcvIp5omacaMxgtZQaMOAkT2u/UFkFBYCyjoGlKUUN9+jsvYDajKMCjM5JQnkWqoIk4AlEYQY05okTBKZVz2Px6UG6H2MMRJBVSmfgFhGI6u1blc9sxQFKKW7Lla1Jq29j7oAVGCNksSJQVmFHIkAFehCG8GUHGlyfeCIQCol9AEKA8aA1Qq0GoZeRDRBUwICW200eY6iQRQRrfE/L42U88W4nE1kZp9SZRvYcNEgIVKOYVERgKx7IYIAMqEmIlOsrcZFTCp8gYbJ/ogghmzvMMuRp3wF5SJjmBU7EkfEdW8rBGBBZEHhbORyt+kLhp8AZCj4RSGbRQAJiISiD5C5B+t5g4iCSNooAKD1t+WVQiFiSmGD2s0ju7Qba9j3rYhkNK9zrqjK5XwRQiitrUcTAoiRgbD3vm/T1d3q5p3b/PgJPTtsmmY+P2dGIkJQeFElX8sUp6QM0lrteX3F+r43plqs2iH44JMk0Jqq0k7GFTIzgjVaONMMpCqs1jp4//P3H9x95SYjPTs5Nbb8+f0HZ3OHCJPJyKeImK/nmpYuHD0DCx0eHiLB/u6OIFpjvR8MqZQYEaMfjMLlbB44Xb22++1/998E102m2+enp/defWV21nNkInV2drK1tdV13Wq1QsS+b7XWe7sH56ezeVpIhGtXriYQST5ymM1mRKA0EqExahg6xeSjC9Gl4IxCY/D09LAeja9effPjjz+uqmqyVR8ePVnOF0YLAJBVi+Vs1FTaYNe1dbVCVLYg0nh4+GTUVP0wOz09UiayhJOT47KYWFvX1WjoV2enhzH66VbTNON2tcBGbFk455hFKXV2OvvTP/3Tb//lf4gpwhfATr9wfIHSwwbNswmXN1C4X+/4l8ZmBxEQhAyQUfkpTgjAiiDCgDm9yMAAKUqMTKiTFhZIkhJDlAQIIJSr6AhMQBsuYMZsRoUsoEAIUKFWOf+GUNgM7QRSJMAcwfugFACjd8yMwkAIipATEGKIjIgsKXLuWKCsLZLw+WwYjQoXYlPpbojjpnAx5vpyVWU0Hrvgy7K0VXIxRobgEmMCQEEoqloJK6V84Nw6OQROCG03CCirYenBYCIRjaDgixz49dCfvR9JYkipwAYRAZBYEAUzxlCENALRRTZPWBBQRDijMbN/F4XlohFPJnIpyCBMEWAAZAGX0UMAwBxFMjhGIwGnC/uLgBiFOXFKyZJC1Lj2PjMLOwkI4hotBQBIIswsJClRNrLrck6+OyAgZk2ewRTZpwhp3XhPNlq7uZCdHUu1WS3XCJ58uay1i3ZVF+VkaxRdZI6jpmydTwLeoSaczfuf/PQXLGCMnc/npdUpCQAX2pDCbHYx04YUASlTWEEIMRKg0SZy0CLDMFhbEKWYnAAEF9OgV7631jZlRpb0WexIKXXjzr3To8ff+d4Pb18/GPpOlZPpzvaT45YF6qby53OlQAQ5idY6cpKYvvmNb77z5bce3P/oP/7lXz58fAwACHD1ym5V1cSpaRpkFhEXw2g0Fr+6tjv9D//2v/nDf/zfuXJ1fxi65XKxNRmdnZ/53t24fktrqqoiBO+9U8aMm8litmzKajQaFZU1Ri+WC+ZodcEcU0ohJFvZIXgXAyu8sr//7MmTJLEqzDz0h4dPqqpYLOcH+1dTin2/DHE1Hk+6bsCUxvVYW1gtzkJcKKWqelwAz+fLjz7+yc50d2talxW13SACttTeD4l7F9Ljx49mi6fGqOPTB+dze362vHr12rX6XsZwaG1Wq9XNW9d/5+u/8/0ffP/XtVC/+nghi/grGsQXN3tey87B55qbK4hJCAWUwcoWGfzELEPw7ZA0YUKVmKNcIO8EABghsxWB15KpJMBOcs8TNgo1iCHAkAhRgTLGoGbvPZFCFgBi4RSgtIY0db1DAq3JaE1EMXrSKkb2Pmkd4YLrIZKMUfMF2wKFwQcWht5FFAIANwStdWJmhtjFyF4ps+qi1hjXyT9BAUHFwiGEFIOI+AgpxhCAyIM2RkFASEgKxIBEEPPSi6wvag4bQAmLSBIenCda44iIyMAapsuQLnnUz5W+8AKE6NO6NxUpJRdNPjd9XnLtj5kH77TWiigbUEPKWquUMia/I7wWF+IYkw+elM7qODlQSCmmlESoKHUm/CEiEUAEkZRLJKhy1VuSIEhkZmFBMbnKybhm9WVIZ17DZU3IWTN2jS42VyqXIzbzsmka3w/CERI3TXPl6sH9B48lJZCCBYKP7777oKzU9u5um5a5bgYJmDimBAAckyItImDIOa+MKU05n81iDEVRcOLc4msymTDYLp2FEKrCNqO6KWxKyVoTk0+aOIpCiX748U9/VhksdYSbtLe3//jo/OjoSACMgqqqjo9OchEeEXIp/Jtf+5233noDFKR060///M/29/fbbvjrv/7O2dmJbbsre9ssuFqtmqbZ3z/w3od+NT64sr8z/cv/+O//7M//fGtr+4fffzI7L3YO9iUmlnj16vXFYpVpfCnF0hirTFnWOTperJartp1ujbGqlss5h9R17YhGLvgYY1nXpS7bblnWxWq1DMEZq+bzWV1XRHR+fqoNJnYsoSxtGNAa42J/fPKEsKrrOnLwcXl08uzw+IFzS6ArXd/O5/OmGY9GdWIXY2i7swcP33e+3doaHx0/dC4s5l1R4v7+ba2NHxwRFUXZtcOf/Mmf/OSnP4rp16ulfFGlZOMyvug7/vqVlbVB3OyYH0NiyEEVgBKKLKgkMsZeIA1Za6soLKISSCLQc7z4foRcCQAAWRdlcpAFBJAgCufAew0aicDMxKA1ECovyXuxFn1MyGAMxcCBhJPL4q9d14Xgy9Lk3icKqbSKiIYhJEjGEkjqu6AVpAhal6vlMJ3Wfdc1ZeVcHyW7SVAUlpn7LpalTnxBNBaMAsnzMDglIYCUCFrp1sUQIQQorEj0EkEUZCiRRrEpKnnZdd/wlCVHiwCiNFSVJcFh6BGxaRqlcBiGGKNSisiE0KeUtEKtLGIGIaLCBABKmUKbEOii55nhFLUmRIwc/OBAiAE4AQFx5Ey/1AgpcQiRSOVv2YC6ObFBKutGMht/zU1OAJm5LBp1TEFYcmttACalrNVpnTFkBFSIIoqQkDAACDN5hwLPMYZChV5bbWZWACZ/lPwmUgbCGDJrUhERewkhVcW4dcvFqtue7nz84DEIkPYc0wBw7cp0OV90g3MOj89apUkr3N/eNpgUoA+eNWSl6MGHbj44zzFGQojgt8YjjG7o/bLtt/f2inL/6dPDpmyKYmv/YLcf2m65zETJbohorE/SIxqUb/7B7333b/726o0r1fT60fkD1LYe8dn5s7fefq1t28VicePmta9+9auj0ejx40ff+8G3Ce2TZ0evvvra+fm5Mvqf/fP//up8+W/+zb+5/+DJ3Vduj7am49oO7dm4rruEMTJKaoz+q3//737397+5vbd7dHx8TdVs1/mQYeiGITb1KITkCyoL7V3HyYfg+m5xdnrc1AVQcrGLQ0CU4Pq6LM7Ph+R8D6gK27sweJ8JTsvFWVUenJ7dTyn1fV+Vk77zSqnRZNR1XamrpqxCEuR+OXN6b3foZhoT0fDo0Qdduxo3o/l8QUC7u7tn5x93q1RYW1h9dnpUVpRL6rPzEwKKPuTKklJ0dPzstde/9Nbbb//oxz8mUmmdPEwXynNrZDbjWgNRCSYARtG8zgVedDoBBmCElJGJABs1qayoqTJWMfs362MTwJor9dnx3DQ/t6p86dc1MiM3XcrP/+CQQQTASWKRBOBFDGCCCxO4sdSAhjEBM5AkJqFcrxWQAqACRZCQQNO6Bh0RfYgswDFpbVKIfcdKgUZbaN11A2BX1jgM4mMgssuFL0utNKPEorYxwnzhlRIkFETnHJLYEiJ31YSc71sBFGWV7gdnSkiYjLXns66qisryoo3LjjmBIUgROy+2JK0xJS4Jd7erk5Nue8eez31T6hs2cjIau6lunrURh0t8ClhLeGyu8PNM2aXLTYhKK52V7Pq+z0FiUZi8XK6ZeZgRPIoIldLBOWYY2CMqa8vxeBxics6hwLp9CzIICXKMKfhUmjW+YcPzE8ktwBMA5Zjbex9jyt/eVBV+Wqoru6XOOQRCwuw+IxIqEgTnByICgZQSXyCksuOtaS0/gSKEuXiypu8IrmEEGWZxuXfaMHSIazGxfL7W2pQCEXk/TLbGISQi4ChEpIhns4X3nHiVAAkpRuYEbdtaDaO6UkrFlPq+D9GnxNEFAaWU4pT6LjAvKqO7RRcj2PF0Z7qz6rwCDCH07WLVLlKIwfsQwu7udogJgAlwsXBKmS+9cXe27N/9xc/LUnWDb5qtk5P5nVduLRaLEPaapvnFL34+mYwy1v/k5GhvZ7JczXLE3bWL5Pif/JO/+Ku/+qsPP3rw9ht3UGkWVVSjooLVaqFJjZvqfL782U9+8tY772xPtgDZWDWbzaqq0obQSVkVxycP+3a1t7d3cLC9XC4fPXo0GtcHBwfOOY7D6cl5MypFEiho23a5XFprnXM5gOp7J9JlHAwiZuWboijwAnufuzADgHPOx7hql0RlCE6EBdJqtdB6TfosSxuCPzo6XK1Wo2ZqrV4u5871iYGZtaoRsetaawsAyD2wyqJerbq/+It/8sMf/TjxurKUCaDWau8/xey6LJeXQNQl/082pDWUiyfvAoL2qRqzbFrlrXu9/QZlmwsG2YaInZ/TorCC4L0PISUAATBIn20HmAubPjMOCBAg4xBwXUtcP1cqvyAAgKx+hAjM+ZkFY9bPiC60LUmEQxRbKGH0iXUBzvkSFRKEkDjhBbMzIYHSpJUgMggkj5w0AfuQADhG8CmiCJOgAlS0GpJjigigL6RdEQApCHofIEERuSyhKkpfxRBBIQwDT2vde78zhiG87EKuta8vxQQIgJxEBLPEFkDGXa6leFJKGaGSNQaROHFwvkVNyipjFRHE6AfncsFEkNZy04Ko6AKUEzfVlRxB545FAJDVfjYEOLmg+mVty8gp66Pl10l4iDGBJBAXU+eGIQUfQ++GxA4w5h7HIfQpOWYf0oDApGBN/lMK1+lQcSH4GF0I+cVlaZw8ysKUhbFGIbBw7Ps+pZBFDZh5PB7v7W2RAlKGBUOE3jFp7H1yPmZypQi0fd8NHkhVVWW10aRKWzRlRQqNUXU9IqWEYPDprA1dAC9wfDoLUZqmGY1rBF6tTo0GkWStTVFCTEnofD6EEPYPJsen54MLr9x7dTQaDUMajcrFbF5a0kTnZ8fLxQwkNLXVCrPWnPf9aFxJcoVBa0kkxOSOz05+5xu/e/3Gwc9+8UmIsrN/9fB05pzTWk8mo1HdHOxsa+b3f/rTV2/dGdU1AWyNx7Ozs+V8PvTL46MnRlFVF0opRBmPm8nWqKqKpqm11gBUVdXu7h4zhJBERCmM0aeUsmVs29Z7b62tqiqnCzI9a03QRLzQaEBQoA2F4JxvV4uZ9545xhj7vh2GwYdhNK4zOe/p00ddv9AGQhxi8sMwOOe6rjs/P2+7ZVkWInwhl6IW89Xt26/80R99ExC0BgCOkY0pvI+blfvzLBIkeN66bPMmANAFNnCzc55WtLaDuHnwLosb/qoDn0e6OZWEWXOAgBQTEYjKaXWNYDRe3m9dC774yV6SJM7MPIVAIKR0ZE4MTHQhGU4hREBQWhOpECAEAAXKKqUxQKLCuARtDww2gfIhaqtRESiKIp1LnYuBWUgJojFZKItTghgheIwBQSxQll8DZo4MgSUB+JjO29Q66gL0HiKiv6jWtl0cBvARBhe0BiQorLKKbYEa4vZI1yrsTexW9TJ9w0/1U844lZQkRrQaQgjZoiFQDGvVTNCIIESkDWmtgVMIIcaUCchKFSA0+DD0nlm01tkxRBJNaqPPqhQR40YjJ7+ZzyTltjQgDIJaaa1ySHhZzXBzzojIAD4rOKfEzElSEkRgpAgsiAiYRDj9/1n70ydZsiw/DDvLXdw9lsy3VFXv3dMLZjCANJghCA5lpEgjTTL9u/zERZKZYDRIomYBQACjWYDpru6eWt6WmRHhy733LPpwI/O93qoHNLlVdb96GZkR6RF+/Jzf+S1mfTWtBFqFKQITMpuauYL5YxE2cGVgYgj8C2mD+2ls2q8ZAIA4RND3bmjbtvzu7/3oX/yLP31Mc3UHcwgODTp5gcjMqgCA1lrHMRMjM3UEWsQNG2BUfT+9EEdAm+f14XRPUl88v91NA0ErpXzyO5988eXb9vYuUXzz+q07iJiq/tt/81d5oOKxqRlAjOHl8SMO1MrK4MjeyqKq6HLcHz774vPD4bBtm6qkFLVVdx+ntK3zTP6H//QPAf7sP/z4029+/ZOXL1/Op3c3h+PlcvnoxYtS4hevXrngv/rTP/n+7//+q9dfIOKyLPv9fhjTuqzPn79wnxDxdH53e3v70UcvHh7uHx4emLk1ZY7bWpuaC4aQpmlqKiEMtc5+9eyIHWJurY0po3nbGnOX5zo5ROJmOhDnnEW1Fam1il67y2VZOqW/E02IoUl59frvWtseHu63bYsRcx5VMIRwOr17/vzWwc1gHIfubns5L//Nf/Nf/8mf/Enf0YUQezaT/0LX8EvbkL4sdkMgB/vFLwK8L4j2viPsBdHt8S+e2sYPb8N/H/jy0XgZr6XQoVvrtdbEBYEjE4C5GcGjjuUqMHtEMLsazZwBBoYcGHt0B4C6E6AbNodIzohm0BqEgCEGNVNxVWAGZDYXUWsCrQJiU1A14ATIwQDUwN9LAB0IEVlqcYCcIISgBtpa1UYB3Z0QHEnNXEwNSqulgritqgHAHF0aAaD5vDkBROYqTozbtqFDRCjmgSChHjNodBy/KjP5Q8NYRGQAkmYAlpM30aewtKdq5eIxMsfARACGTDkMI+BWiwOqK4IPQ4oxbmvdtk0NkZyvHtoIADFyjBGbIaKqqkjramVEVUW6bmP6VvoaqgugoAbm6A5X+jczc2AEUjXX7oBBVyoVgWqxVomIuPNyBBA54NbaVqo65DRyymgOrkREhtgliYhMzuxIv+BxK7KJuXtnWXJzaK6M6GZEWMr68tntxx8fvvzyzMwAbE6tKVJgAhEBROpjiMF5XhHdTcGUOImIGSi41fX9e8Fo2hAwJY4IyPDsOH3n29/Y6np/utw/XC7LJg7vXr1NKVWpBKDqMQak+G//4sdLheNxjDH+7Gevv/2dl4jOAbdtA9it6xxjrFXq1j759jdMgZHHPLbWui3Nx5+8ePfu7osv7v4P/+V/8X//n/6vf/Pjn+2Pt3nc3Ty7ff3l9vOf//wb3/jGxy9fTvvj6XT5sz/7s8NxBwAphWW53N0VRI6JQWEcRwC7f9d6Gn0r66WUaZow8Glepmlf63a6XABNVSMLAI3j0HkIImYmiM4xoej96ZLSEGNUbSlHQ9JaEQ0RarNaDYFjwikP81ZUfbebzOzdu3c5587Eam09nd+pqUh1x5SSqo1jXsv93f0Xt7cvWi1tLv1z+NnnP3e8/JM//P0/+ZO/GEZ2YxFPcaht+bDKPRbEX1OtekFEAHJ4krx/6AfxofEUdGf/x4IIv46u85sq4nufhUdbAQBQgERggJ1sy+DkoKY9Lskc0MCxL0uur4aAwTWCDwgjU2ZyckU/V+kvycA7WadPks0AS8sIMSYiMdfSlAA4gFRxRAy+FEEEZqhVXKjfcmIMhNRak2ZItlYBg5gw5SEmLNL6a5JH29OmPQIUDED1UXPR6ZABATx1dpsCBTanTSREKlUZQcSUgZlbK8OYHqTGMP6GEwnwq+ny7q4KgNaDGR95cD3XybatVGn7/Z6IgLA1fRp4AZmIpLVtXbqvwbRL4CreNyVOBOCqogR95KGrpK8HR/XInhCeOI+dZPO0qib6BVJk58QgIgcyM0MndAAwUwFFQ7juzjhx4hCeJm5KLNba1jZtUbo9JKKrEwYiRCAKTIToYM30PQe9SEFkIDYwM68qpt7t80IIaLJu8x/+wT/+i//vj1+9er2VBoQA3TjzqZlFDsQETQ2AQkACV4dlqxR6tK7364WI3BT8KgmPMX7y7MXLl8+JaH/z/G9//sXrt/ef/uwLdQDEZa3jlTQn//if/JOf/uznNDdvMs/r89vbO4Pf/d0f7fbj4bCf59O7d+/Gcbeu6/nNHQCISIrDtiwVIYSQU1q3lclyTrXW//Af/uaf/ed//L/+y3/1p3/+b/6Pf/xHn/7ss/2Uv/3d787z/NnnX9b22fF4hDGVLdW2lbLGyLe3t+taHh7upNQQaRgGMz2dTs+ePecA5zcPRcrxeETcMfNPf/7p3d398+fPhpyfgBHm2JHiPgl02GtZqgr5QGrG7ODGkZuqbauqgYcQEjMDWIoYeGOKzFesQ1UQcdqNCDxNE5HVVkrdlrmdzndVmtrWZH315TtV+E//6X92Ps9ffPHZ67c//s53v/6TT//q3VvVtjINtVUi+K3y5SeC4XUQvpa3x1UoAAPoYxvYGzJ6bCrB8RE4/OXq9xVWVAhIjxZ+7ledS9kgRkP00K8nNwCIiA5A4IoQ/Eq4vea9mQXwzDixZwTShoiBsZDLY1J7Z32jASKMMajKurQQiAOCk7sZoguqWkoxBaql9MuubDaO0UyaqoGaWq2e0BhA1AIREFW1uoqYIkGeoNaoqghgziIIhA4squ7XkQwDAkBrmmIoRbombS2NCUJCB0CHugFlCJyWrexD3KSi/D2Vef3MIrqhKdUqKREzpZS6QxyhxYRirKrbWokN7D3GN0wjM/feu3tA5Zx3+1xb7/K6Ia2bAjmQg/Q6aPakFQWAfg30ItjHoo7fmUm/0UHf4RCauZt6qygOQIBupg6KCO4KpvFRPuOmQMh0pTrnHPdDBiBRB/PAjGCmwvQYxetmJgSm2lTeg65I4GDt6qwOSMyMhNdpurXWtvbs2c2Pvv/NIcPP/+7Nssow5FJKb/g727HHt4kUZk6RQNq8yXmuEDrg5P36MO2FDol52eTu4fLxxy8v1b948zMBfnhYP/27LwSAU1qWuh9TSrHUsq611Dav21alEy2//PLLjz7ZceK//clPjje7b3z7Wz/+8afI6XyeD8fpsL8Zx8gA3emCiZjksNvJtu53Y09Svnu4/2f/7J/+83/+z//8X/3r/+QP/8nD/dt5Xefzw7g7UHKM8c/+9C+/+90Xv/M739VawExqPd2/S3GYdvn+/oEZkby1Nm65NeUAX375ORE9e/ZinufTw2Xb6jDsdrvxfHp49FpXZuwBT621ed1MgTiIeRUF8K3otIshJLXSWiO6htCLSK0NIBKFdS0hUE7jNI13d3ddbalaO0I9jLG1Bo7Lenp3/3Yr8/39u/u7y2663crs0IYxxITzcv+f/NP//f/w3//LEIKIdh/l99fJ++3x+/KFVzbzL/x1r4DQB+THdUenyjwVRLi2k/9bJHuIyL0xdAO4xjVVABRnhhCBAFrr11cwaX1ZYlcdC6j3NTc6ALnHwIHcBRSc0MdMpl7VxSFwAAB1IYCQkxbXqlaNFZmZgAFQRM1BREIk5q6XJeu6aEID0Oa9NvenpkBO3tTLXHrvERJHiITY1BxBzVpV4C54AzCoj0X5tLbBIN+EIorgzNf8E9y0BUQnaRAJlPGMUJdWGWX9qjVKQOBfyhjtRWTIo1oz8xDYQVtrMfLNzSEPXkqZ5xnQhiFNwwhAtdZlWcxsGIZpv1Np8zyLtpvD0U06SYqYIwUn7NoVkfL4XKjuHS9XVccrOfMKyiECWodCPrRgwUdTllLWnHMgNjMkj5EDkYijGzO7Wkc/c0zdqoBFEEIEaioEFgKheynNMrqbaedGOVKv9e9vyY5WmrWqQBxDnudLCslIUsjM6G43N4eH091+2v3e7/1of7z983/5lx1niIHMrHeJTcUMXKDWGjC2sgJN6pCYHVzNUoitVgZQJlcQdQD87Mu34zS9e7i/nO4+/fRtiFAapKEzumFZ6zRNIcDv/8Mf/cVf/MXDuSmBqn/y9Y9fff7ly4+eM/M4Deu63tzcvHz5UgWY6zw/ANiz58d1XYcxEmCTTc0ZwzBOojbk2ET206DW/k//5//2v//v/qc//1f/+vf+wQ/cWlM/5uHLv/vs9euf3hzDi+cv3T3GGCJdLpfnz5+7YR6IeKq11roNQzKXeb58/PHXgGld55TSZV6JgjTbtm0cR0Tc7/cppbu7u9a6CghCCKUpAKZhKqWJATMXkYlCrRWwL2FYhdy9tlq30lwAcNs2ImTG1tqyLM+fP4+RNimXy4UZ94eRiIZheri/DGMIAS7zwzCOx5vpr//6L29vn7948dzxoy9f/ZwYfvSjj/7mL18TZiRQ+wU88JcY0fhkC/gL6Wu/5iB/lNZ9xQj84Sj99zuuXaUDIARIjgagzMBEqtYUrBNmHZgQAa2zN9wAKMTorYgDEg0Di4iLGMKEUdhlq2SPF2ZDRV+WBQAodGQVu+mhuQdkAKjVVTQlQCQTJ+PTqeQMRIDE3biWWGuTmPVRLk3gqAay0GyaR9uKdmSpAQSzlBgAnUlFFYOaiXoDuIVsDGBbSomjGGCpJuaMwJhrKyICAVap6WZY6/YVJzA8oRUI3vnIYg4IU1RX55TAtJQtxsgcL5fLcTcQGHPYGjTLl4KAkjItb82spTC2UjkQISPg6zd3w/H2Ml8C8W7gaoLmMXQzrl4Hu5SEhboaRAhc6gYAPShrKZUdxjwYqdSaUrKuVGFw0ZwHx+ymSJ7YYyD3upWaUpImZlLbhoY575a6lXpGtIhTN/oawavUdWvEkXJ21979hUBuzUBDIvxA5M1IqA3MQhx7Hoi5UozOvmwXIK9tizFuW/Wtfue739wfd//Pf/FnBBBDrtUi1WqQYxCteQwYOOfoGtbzFgKVrV8d1Bem4g5q197WzQH+9tOf9n0mpbBWGYakqq1JCOTud6dzMMgxfftbX8/v3v3dF5dhDCKVCb7zjYPrA8jqKu/evMp53Hwrcv7Ot7/36aefqv30B9///ny65JxjGFR8dzut67at4shu3ldYDw/3//X/5b/6H//H/9tfffp3P/zhjy719O///K9evjz84z/4vW9/68YdP/vs85vjs5RSb/PHKRGgouQIZrJtW601xHSa7xNTznGVuZHTkJzDeTmH6DH51lZOu/1NbMW3cunEmmfHm1rbu7enEBJRMNNpN5lJYF3XjZmNAVFruyAiZcZiOYd1VTMIKZcqeZjUoApvDdzVq5jZOA1DZLBSFsJ9WM6Xr339a9/65vfVfBgnM5sf8HI+V331D37v229e3d2/M1dKIVZtV4ADPAYUcQQInERrF1r90rRFjgFYQfr6IsW81MKcs1VxJ4TmEEMoIl1KlQiaASL09V8vi+LA0NHzp2J5LX7uZugFAdEDQARkQEY0UncXB6nIYAAQCNS8AESC2Ec9u27BGxhKGRA+OQa0dpnbYQqRUKoXLyHEXY5bbe7N3AM7EYQUa23WHBAQrb9SQiRWRFSDpq4FYwAKDqRTwlIcFHICIqy1NbHACdxLaYTODI4gBpurOpQNwK98SQRoRrYZAhUAJwgmAlAw7FwO/PAw7mEFU0HyyGktVRtwQNCKEJ3q6swG9KrRMH14Cnsk3OPtBz/kG0KH5zhG82rq5AhqgJRCDkyMFEOQ5jEOIZKBzGuVVs2rg0zTvjW6rFUubZqmEIaUo1F58+aNme2nHXNEVDPptxFixhCwyrqsosophkDuFlNGo9ZakWYISChqm1Qn6OQvVUUwZvZARBAYKHIMhKZEAMDUUJuQxVa3dSnNNG5qBu46jDEnMjOxBsYpMFN0QjMbhuTuy3IpRQIjkgGEDyPzmqxEkHPg5GqNMaiayabNVTUEIiAzFdHj7c2bN1+kNP0X/+V/+v/+F38GaIjKHEmqqkoDbdJ2rSl3iqXqFeFyf/Ljeb83BwBCCoG6rUQpQgSttV53RKxXRgP4i7/8qyHFtdTdLjVV13q8GXaH/eVy4YBiOAz5dDm3pimlrSx/+Ed/8Gd/8qc/i/Ebn3xtnmdG6vPpZVlUnSm7e1OwrTfp/kd/9Ac//vGnf/Kn//K4i3/8x3/w4uWtmSzLpS+7AKDUdV1XVVlXZqJHqxjv3uYAsJbKwHWbjbiJv3nzZtu2UkJrOeeh1TL7mlIKIfUYiRBCE4kxjFPe1moFco79VmoGISS1K8DdfdRVfJp2ZjZN2lpblxJjDCEh8sP92cxKXT/56GUMdHo48c2NiMXE7t5xnm1bbm6eHY77n/3sZ69e/zzlFOBmvpTf+70f/i//r790D026qP99S0cEYO8TyQHA+67kEf2J7sQaDNQhMogUBgig/TrvP6l/OyIS0NVk5LpCAAAwACJAc3i01bo+z3WFcy1F8Ohs2HOTn2iMV55mr6/opEAGBB4DYUB2ADE3z0wshu6JOaAiMqLnbKiu0FIOSHSZzQA4JDNrTbs6GgnJe376day0R6Xs9TOMwESm3mWuZj1MGQDAXFyBmRAelT8MqMDIPWSv23kb9HgnR0C9nhfsyZaMECLAJsydRQBmQowq5gZi7tYQr+wnckAp8JuPgIAhRnAVNY7JAZqUeT3n4RYfEzDQUZstbTGzvL9R1Srt/HB6+26OMR2PhxAzBRzTvpR2eViX5TKMaZoSMTJSCJw4QN+SuwUkJHJQcCTGnCN1UTJBRO7OOM281ap6DXis7mMISIzI3eicCSgGBB8yqqpJlVr9So12RHLjbvAcmN1x3ZopmMM0ESAQkCMQOfVG340oq7Zaq5vEaSAM7o6/kL6qDoZoKUTaxQCptSatqTUmyCl2v3kkLtu8n4bT5fL8+cs//s//6H/+f/xpSli2Dp0TooLDtm0XsHEIT5QdRPRfmZz6+gyvyTAdKJduT0JE/Z7cY5KqahomAFiXFYI//+jFfHn7yYubLgoi5nl+GEfbH6Zl3lTbMKS7u7e/+7s/+qu/+ptI+PLly2VZzOK8raVuMQxiDYAShd6ubqf7Z89vn9/e1n9Ux3FUlfPlbrcbQ4juvt/vmamURoTuwAFNLEZ+8tdgxhASBl7PZV1XI1bDdbnk4ZqHU0p7zJaEEIKbqLiKE8GyrYg2jAk5IuK21t1uB0jDOBBRKWXbtstlSeOQc56GZ2/fvpVmKQ6AGGNsrS3zCoDbVk6n+uzGEJkoVQHHgIjzuuS0zzm+ffd6XVdiW5ZT07MWE7HL5TXh8PVv7j/7+SXFoUqBK7jUr3/ogDhctxi/5gLLEXKMpm0YhvNlc4fSBAgIgZjBtMOJ1GGazvXjSESgoqZ4pWRfhfYfyFaum1Z8xJw7jxodGIDtKoIhB0AyB0InomyO7mhA6hQZEJXATHcxAFR0C8SKQUQIPCeesteiaUAdUq1bqUBAVbCJIHRptCsoOHEXzqKCo0KH/FzV+VHEQte0azO7sh3dXZrnHLw7pCJojzvAxzsCgiH4I57ao90FgPrlAhAj5Ag+CwVEcEYwMAYyRHc0BbiO4a5XDfZXpkQBqLbrWqvnS5W2qbXSJMZIjkQUu+jNNRJd1qWvl4aUpqEwx2lIgDKX8zQduztFZ6gvi4SI+/1ERJG6TNIfL2xWbK1WRN7tJjFdlsVMcs7SKnJgQETURyYNxQDI4NBMwZ0IzRRd1cxRpVaVak3Qk5nV1kKIAVNKKUR3wlIcikvTZdVl3oZhGHN0g9aauxBRYOrE3VrWXn87MfhR7Xe9p7k7gBN6ImIEUzMWAmdmRnUAJM9EQKFpI/aHh7vb2+ff+52XP/vZmxiTiJjoNEzaVgCote6mPlo+dhLu/niT/CVMysxEDMDtima6qvSrscsw1MGRTvcndcghEIi5fed7nzSR+4eHWmvO0RBijOv29vbZDROcTg83Nze/8/1v//jf/3jaDYfDjbvPdXUAjqS1MsecY62bqg3DNJ/OKeUQwrIsta7mrTVG9e4S1i/JTlFCxBjJXbvFbGvt7du3wzDFPD5S7qE1uTnsD4cbAgGAZa7DmNx9ntfKxR8taTFYa6u5g/eEPto2q1WGQ+yBvCEkdTyfz+JLCOHly5eXy+n1mwUwhxhCZHMdOJeq7jgMYb4s28q7/XQ6r+AJCB8eHoYs+91x28rlcuLgb998GbOUzVrlGMe7u9cvP/7k9DBfzrWvp7R736kxARPorzMsJAdEjOxDpBgsphgj4YhmDgpxAKLghBpBO+HUwAwAQzVBFQRGt95OuYN1VfvVsAYMnhxZ3rsxOVxjM71/Fd+Dg1cGBkJM7KJu3sxJxYHcnQAiAjFwtz2xzpBFRrSmqACqHHzIAACizcEiXym1fUlLYMhMYHI1oLuuTQUADJhBGiA4PlopAkG3CezaLQOQJkBgna/r1w5YAczA0P2xVX7kNJGjgWlgjsHBFAMhuhkExq1pDmmtzR2QGBAMzdzE37fWv6kagoO7QddLIOB+2j273WFMPTPTADcRNQGAFGJgUNVAcHMzcMBaJASpdUPZZAFtdBhizjkEFN2IHVwDdVOEvrIgd2+m45TNVlF1UHcFMFAzlxBy9wMaYjKEJnLt0cxFFUxSJAK01szFVVxaay0wDsMQYyylXS4zIt4emMgpUBN7TO9zdTmfNwDIMRIRQtfeIWPne10HFhGb57mJpA/cXtfNUkqBQqsqIjFxk2atEiMgtCZgSBQ45+7vMAyDmb9+/eU//P0fzctDa9PlcqlVRCsTpTgg1CZ9pa7+SMH5Te/TlRkOwNw9CkNrQgQhUK0txpAznx9OLoYATP5wujseeyFDEWGOIQ99T9U1cAAWIy/LZZr2n3zjk5/+9Kff/va3X774eK6bg3YleAhEfE0lJqDIkSmWrYrI4Xjj0B4e7gKgmYXAiM7Bm0hv1m6PN50xMwyDu5/P87JsvpZOt6bApdy9fPky53FbTuat38m3rTQp05BDCCmHlMNalt1+NIX7+5Ostt/dENE8r0OibW0h1JwzUeiO/+fT/NnnP42JPv74RcqBAm5rfXg4A9C2QeA0jXsOuM6LyKXWOk3TsmwIRBS6sQgztVbVmnvb7Y73ZXXjYcz3D6+/9zvf/Hf/5ufX3R4wXg0K4WoO93j0JPinN7LLOFtTTla2Ng7ZDAgLMROhu0NAd6ZH+5ICYZ6lmGu36YXr5tfMr+5KvcoBdCPkX6b84NWcyw0dqQ+UcqVZX3Wnzl2KCqBurj2IXUodE5iBNAMECpgiM6MJp+AmCm43ex4TrMVGI0UW9ao9v94d/MqV6+RqdCYGAjQlJmICUXVHhxCIEM3U+q9NgMBdlohATg7ao9K187R7QbwKZj44/Ioc9D+7KTATGKTM22Ypx3mrCGxmimCMiqjXIv2bqyETmzmSE3FH7RPRlMN42Ndau1ypirYmiAiOMQX3um4LMeTgphrYIIIqISiRjkNidg5AAiHytilB6Cni10RmdQevDTgEDgSAzNw10apt2uVaq6sQITKj+bytrbVhOgCgXLUK1LwRkhiZOQASBkc2IDFvKm44b2eOHJxEbGuiakgILszB3UWEGR0NEc2segNwRJ+mqfNvAVmktrY+nSkxRAVTYQJ3BTT3rmIBADB1AGImEWkqwzSJuZS2P+6q1u/94Hv/+s//1l1zZlCt6iKSIzd99FV6pOHCY1f4IWj49IAeSdGa9fjr7jitCiH4s8Nxm++Px+nZ8ebHP//cGJ49e3Y+zxgwpXQ8Hre1MpGKpzi44VaXcRzWdQOAwOmTr3/9L//63//+7wZjNNEKawiBCbXVzHQ4HM/z2qWTTEQxzvO8bQsHSCmqamul2w2UUvpnpneFZsIxhJAOh0AY7s+nWut+P4VIKaUxx1q31hqAhxBqba21cRoP+x2gEUFf1uc8MAdiKM1VayerPzyciSjmvJQiIjmnEMLpcn716vOXHz3n4Nt24Rh6I1qrqGJXQ+/CjkNalmWa9iEOIZo2Y4o3N7eHw0FVAG03DpdZhswh0v2b8zAGIz/e7P7hP/rOX/7FTzvbIRCRP66O/SoV9uvg3CsYIkAVcNcUwQ3V/JBSKS3G6NII1AyIgBDHIbijO88KbKAOxLGpNTVp3rqB1BND0KHTGRUBrrqSXgl7/wUMaH2/ctUAXqV77rA1ZURCAgQz0+t8De6QUiQTVScGRmJGcBniQGxrVRHI7Bg7IUjnzRwpYucTIQCZqTkwdUML0kfKkaoV9671Brh6M7t/yORtIqIGSAjeXyz4YyCSwS/WQSdAfWzgQNRqA72mtigxMEIg4CcOUzfvRnb/8EL7DdVQrQFcoVwV8aYgzYtVf1iWxZBijKCGZo5cpbV1ywlVHM2JkdFM6lYWwuTuzMDBat3YUUSaIFIAVFUppSVPmTIi9mjBrq4HAIJr6CoIqFQmyIGvAmomIVJ1N4mhOzZ21BmRI6o2QfJQm63rhZmRAoVkBkYoTcSiCpXNVHycOKZhPw4pRWS+DhcI1xQY7UnY0N+YTiDvMuR+IAVzNFdiChwQMCZSbfMyM3MOQ485XbZ1fzzO60bIVTSkXMo27XbDSJeL5khKaCrrWgBZgZ+4ltdn+WCL8uHh3h3sEBGJoBTlK8leAMDMCKGunm/sBz/45tvTF+IeQ7o57Odt3tZmehmG1GOYaq3DMNSHc8ccr/FSpX300Uc/+dnPnz8/9mBPdAUVRMopMRJhdfAiKs3GcYyURTdED4EAbFlnAOtuejFGpni5LDlHImKHdd0Q+ObmGLfSkWhV3Y2DqJVSVHsfGvsyZLpaWjQArrWIaPcN2e12yfDd25O7hZC3dcHAHLOqLuvMzLvDELZwPp+R3F2Z2QCZQqvw7u3leHPbafzn8znGnPM4TVMI4XAc3729N7OU0uFw2Lb19HB3Op1q0ZLKOKZpGoZhGJ6neT7vD+Pts/xwKtoMkT/sy/DK2ruiXU/uCZtAFZgOu9Y2MxCFUpuqu0GMAAZEoN4ZZQYAI0raEYXEYZjXeplLdY0KnbLa/PqPvbf4A3hseJ56SUS3q0VXLya9arr7owEYQm9u8EkRiMAxgBiTMrODgZmDQ1gdMAe2qttizBAJWgNsHqkLzVC6WLjjmAjoZOCmBgCEgA5gzkGZEQC7T5f7FXMkwlrl6rQvZuAAaGbdaOd9pb9eBk//dmSJVbRUM2UnF7EUWa3FCGotIIhrV+tcm4m+lPmKaggARFchBAFyCM9vn+2mMOVwipE45nHaRLZaq+gyb+Ihp1ihu/aT1E76K8yp1tXBOAKwhTjW1i7necixz/Nm0p8OCbrzYGutVul5802lc25Pp/v9tBtiNjNEDplzTAa+XOaUEiFqE3EFNKLY1OdLiZHRdVnmlNJut2OODjrtd/N5KZuWzeZLQ/TDcbq9Hdkhpcg9eNvNDUOMISSTog7LstzdPYj6zc2zw+HwIZFWe5NCHkABBTwQs5iez2fm4HtKEMBrGofLZQGkh+Uy5Ol0OrnrcX/4B7/7o3/3b/+i1hYCDwOXoq2puxHFrtx62qL8Km7Y94ydYbPf79z9crlM0zQMw/l87mKV87t7AsiRvvz80zExpIGZ7+8fMCHHcHd312MzD4eDGczzutvt1mVrrd08f9FF6Dc3z0Ts/PDw/PY2pbSuq0od0phSKHUFbLUVwBAilToDeQg9r8ZjYirQR+DLZRnyFGM+PdwBUEopDfl8mmutu92RKQxjRoRtK8Mwnc9rx4XNFBGnaRJptW7zZUP03W5qUkqpiFjKVmtNw8jM0zSIGHOc17VbK8WQY0pDHkuuYx6W5VLqmlJq55WptOaEUbRGzLe3t59//nmMejgcam0A+OUXr/f749e+9nUA+slPfrIuM6JfLpcYR3cv9dIht3dvT62Vy/zZ8xdfK+31Imom4I8CYcQPvWHeLzQAAam6ccgPD7MbBF5rVejTNEVk4EC1FrEOVcM+AwGE4OZFyioFiCCncMjYzKv5qloEmoMb6OPe+b3/lAN1sLCbPD19rAB6pUn9w/Y4exAgAjqimDZ1Ag9EIQS1ggQEwMGJYMjTUP18nlNK3bvQRQzJDauoGliX2SBcbQKurRswMWP3BrUYERFrvea6EEG/CZW1WmehgwN0T+hHoPBavj7sDz5ABojUtTUwB3BS1XGM66Yp8CaNCFyubaWZPeYqfdURHHrqiFxNLLz98JObr93GnEeVF+taiAIxF2lNpUhRVUA+XdLru/sGFgLM6zkPOQHt0t5dI7G61GXOzDDEzWyrBQxzzsyxlMLIRMqWSqtza+oSIUSOQFQahZCAw6XWjs1HDkyutY55KqVxjsxpXecAZE29qkgA95ji/uaWQGrbwD0StrqqKnKqsjrAMA61tod7evlsN88LERKxVnVXdDWdIwdvHmNO6bhdlvuH1YCn6b2qcUwhoCMgc2wNEESauwLHGDhxCMiwasWWtmZVhEKarS/F8bTOt8/2Lz+6+fyzh9YUgWLkHIjYwWJiK6bWUxuh72EJqLu6A3LoDHYiGMYUrBDjcJMAxOxymFhEa1tVfbfPpxXfnt4B67c+vq26QQIWE6DD8dYdcgjLXG6m4+c/+/n3fvAPgGjZ7ua/e/X89jgOw7Zt+ymtF5jPi08CLhzIvF7mLXAio2nYra0Z+G43udtWFleJMbdWdruDSF2WZZqGWquZjWO8XB6m/ccpJSQPgUpZ1vkEeDCTbVvGT0ZiCVFLabvdIZKd719zjLvdLnI4n8+iNM8qTXLOhHHbtt1uTAe+v39Qwa3ifr8nh+2yTtNwGAZrm7VF3Djgi8OLV69eifonnzx7+/atueYwfPT8SETLfhfDdHP70daqupjGm/2Ll8++fnt7Gzktl7lpvX12NNO7u7t5vfRUr2bQNAzjC0d5fvvM5bQtdcpZakGBAKbA9jjFOoA80gEH94H59dsHUEiRFJgjtCIhw1rbbgxiumzQRJDzw6kI88tvxUb6k58U94GwRrYARkxaZMq8H4bzvBEShnh/KicARe4uOe7NAcQBkKObA2jvitypNyGADZBB4TGF3gAYHQH2CARCRK3KNBq2nk8bGAwdl8tcikeGHB1sZZRpn5qqV7UGQFAdxKF6YBTtpZAAAJqq9NoHWJoHgBACqgKRI4nItlQjFHIzYIdAzgjaMUF/Ckx973HrbgCsYIjIWijDiju2mfKwvm3MGDJggPOdA2aDogCFYVAYAWdw+upJGQDez/CIgHgp69vzckQiIiFwV1RzxpRHVJ7nNaX0bBzH29v/8JMf11pTGoZxCN7Xo0YBUTopJIhYAm9ba60NIQ6ZAodx3CHitqwpxklImpEhsxuqaru5vRERBlzXYk3AvdYtcdiaoBqhuDs3TzkieWtaS7EAHNIUQkzJ3VprJvZwf2nNQ0CmSCTLXMrqpnAJGCIRsZl1Bk9raqU2FqQETt34RESWZfmwTQ8hROL+fqiqtgZYHODm+AwRzUDVh2FYt5KQQ2L3fjZS6LpBs+9973vuP/vsp+/GkfbT7jKflrMfjhICAMI1AKELDR26wSgBuFQCyAFjpIigJv4+lgBa022rrcLxZlwuK6LWpsebeHt7e3d6G3NKI6vjPK/Luo15EBGO4Xg8fvHFF8OYc86llNPpVGvtiYAAICLrqmqNmfsacdu2IbOauIq4r+vaXdGJwrquZsIBRaRrbxAx5TCkEYDm83I+z+AUMosDhjjP591u3B8mMwFy8zoMcX8YAqA8uhmJCBCWUgAgpQAA0zRxAHff7XZMwxdfvDFvRMOYMnjoj5FmZrCupe9tcs66llLWELk1jSE3sxzDixcvxuGY8s5OD0upN8d9KeXnP//p5XKKgcZpqNVKXVvbUgqiYd02RAkhcY6ttbu7h914++Ll7dsv362lHMakAt5Ef4P2RAAIgYhFdavmXsccU86tCbhtxRnRDZoiuiPCqqo4IcA4trJu+ykHVgfRZjljjLzWYgLDPsQY1rVkg2oq190KQc/K+Q3wmOMVm/NHCLKrZrq8dBimWpbdLtVacwq1iHszvYYM5IyBGcBVjQgGhIgQiXYZjGIRPK9ynkX8OpmbX2k0CKAOQmAGDZ3BMTAAqFu73jz82g0+jrSPwOuHL/2KHl6ZNe8RQELEGKArDrt8Fx99s0CvkAAREiK78ntbtd9YDa+ENycE8HeX07bWL8/nyElVexRyyCmmtJVlW2sah7XU/eEQcuKWzETVIyPHpxUPuqMYqCMREkAAPAzTYZgY/PnNQVVLgHE35TigGJlTDIaweq2V7h/OlGlAZuYhx22Lz26O56VpkxRiCp0+bZdtudA8xAQoaN3dIDBSClFVOQ+nh6W2K3dBxJCJOa+lHvMeAMvWOrWNTNyRMIjYsmxbqyEkCozvo7cBANAcAxK6GbgaAFxNQ0MgCq2VKgYU0HHIkQLXWlUhBiZ0VWtVmPnr33ihWt6+mh8uDznG3U5BjREwQEQCAIuOoABAFhDRXMwgEOSBicC85HHqAt6tipmLgCkgwumy7sZwnuX2WZz2u9Pp/nA4XOZTnm4S0eWygPVVnavabtzfv3pVShnGmFJIIex2u069vntzch+YQ/cBjCG7IxKqS2tiZu62bdc82E4YE62k1D0K+8dJBJXDfr8/n+e6bdPhiEAP51MpdRgAyUvZzvMp5xRjSCkCNnUcpwwAIu18Pm+1AMB+f7y5HZdlQeBhiESwLNtaDDnePJt245QjmygimjoR7aaDOiHCu7f3ItJaaa3d3Bzc7x9Oi5h+9OLls+ORaWjmkcNhHNwdSUtd37wuokW1DWMg8vuHNx3iPB52AFBKq1IQfBi5tkvg6Xib372R81ojoAEBOMEvkNmu1l79cwJdFg9aHdBySrUaIKoZgfm1HhhxULK//tvzxy/gd7//8tWXdyZIHKtIoB6ZpJHQBkdQRH7xbFjuegyxukMgfMqHhKuJ//tPcGeuSEdd+q4WAAEDdFqUaRNmrrXkiFKEGU08BRTpzD5mJjPriNY2F0YYEiBHYtoE2YQbvGuAV8fmvnC/ekk0dGBwBTXtmeZN1Pxp6XSteJ1jrY8v+NcU9Eds9vGXcjF1BDeNAQhVBcDtkekF4MZwDXQnB/ytvWEnQ3Yii4I/rOtFTzxOoGYGOQ4hBG6bI5zPDwC0t/3fff7l8Xj77PlzUb8/32Ozpc3Zc1+Nr7W0qsyxVgFC4jjEOAyDu6orqLRtM2gmLeV8OExTzKr6+vKwnO6L5nk5EwbEq8dXj2o9EI8h7GImBDOr4F+80zd3No5ZjTj03T4Ydl8cizGFSKVVDjSOCdFMdVmWsE8itm31clkYwziOkCCEBBiKFDUgDOqGCB+GogCAihgjEHUCzbwuiChSzWzYTUOeAlDnlSI5oT9lC/ZvL6WEyM+f3+x2w4/zp2++OJXWpMEUM3jXdBmSJQYOwATrLETACN1zNAQFdBNY5qKqTszMbmhaVZyZkXTe5HibPvnG1xj17u7hfHm4fXH7yNPGPCS4bmOQQvjWt77z2Wc/P5/n43Fi9Fq33pRxJOJrapWZrGXrxr61VRHjwAHDVsVdTaGJRDIR6R/dzhkopbTW9gPtdofW9DKv21qAUMQopJw4cHp7ud+27fiMh2FQ1cvlctwfU+LeYBr4bnfoCxlV7e5wpfg05XnbymbPnr+srQRGABevUnQtGHrPT5EDEoXb231pW4xhGIZ1Xd/NJYQgYogsIio2BOa0b1K7pwMzDzQ1WUtZTuf7nGM394yRwcyZhv2Qc8ZEn//dq1bXw/Fw+2z3N3/5ihJh4x5NiY9NjT+uFBiwmnZPKkJQh7nIVpWcmEDEOk1K1cwk5Hi3WQS4nOH1l28IADy00tIIWlzdeqhZYqyiiOs0TccB3K+GTZ0T0nfH+kHJeCL8WPc47AF7AAbUaYmBMLHVukUmaTAN3JpMYwCASAhwbfn7hg+x1xUghkBIKGbKZocEwxG2M4iAKChCTxx1BCRoBpGw24KxeV9n86N+5tr3AcAjpGnX+vhB8fqwBiITBjAx822tKDAmGEZkplrADYn8mtIA143IddH0VcUQAiLCtUITADhyaU3bdtzt1AncoGeVtiKmzQ0RFQkp3D885GE8zRdVV63koI4xMiJKsyoaOgvcnCI74HlbUIUAMfByvuxvjtvlUqvEl+lwGLS1eWuv7s5bm9eySbNpmkILtRQiEHVCSy+eA1LdVgAIw8AB1Kp7RLw6MIppKWVdSmvtcHsTAoUAZhACIEVXDoEohipWt1qLxEhNNAQOIc7LNl/WEAZO9HC6dP3fVj40UrKuh1PVbdvK1lJKvetsVVMEAK+1OnGzSwghECOBuCIgEA7DhGRv3r1F9B/+8Pvf+lb79Cefv31zv14KBmBm5kAEhO5Nm9kwDv3DBwDmutZORQemYIAmoGKtiSh0t0vO8M1vfbLf79d1ncvKMaQhvHv37ub4wsxALSCt81xFUhrE4O3r1wD0zW9+/fnz28vpvnMh3XCaJnNR9RijGbt7rZsqx0CAFjiEGImoqZqBGolsZtLrYEqJCPp6tGkVqRwpBNrKCkiIyETkIcYRISHDuhgTShUikEEAaJ7nZS3jOL548dGb1+8uy1ZEb/Y3MXpZF1VRcEDu9ddRgDkCq2rZ6rYVR04p5Ty473e7UR60lDaOu2mayhrHcehQQAwhECK5eovT5O6lrAAeUwwxOVReMOWY0s4N6rapQlcZmhmYj2OeJmbw/X765BvD/ZtNAdCvOP37i9cBAf2RUQwAXTxkAOKerwMrsAMhKIA6MFpMuVUNMRBVqVa2ksdBTEvVnKO7tmZOfQUB67oeplG96qrN368a/FHe+0vHewcd6FSWHjLq7DpOOSCsW7k5Rpc2jWxm05BaqYhO190wdD7AukoeBwBAb+bdKB/yEAagF0TLvG0FjKiaL+LqwMRXXUiniKuCOQEwUU+BvpI0Ha/K6R7v/LRC/uB4WjL3/1WHIjoSRCaI2Ak3V43EtUM1ADAEx+4g/ZXVsJs39l+WHBDQAB2oNQ0huKG6ucqyrQoacgzO3XTkdDq/fvd227b9fj/PMzN7be4ec6DApFffwzBmNDeV+8uMbtOQ7udl2bbGUUTuaD2X9tnbB1N/2OZiYRNVCAIiQGawFAmEgFtieXMHetjvh8yMl/Uyz+ec41bADLtUoyqsa9s2UQV7OO/3+xijiLgbsechj+NUtla0NJEuTxaRKkDN3XDZViDNw5hScGdC6Ou/flDg1hpemQHaVZl53GUARNy2634JIrbmQSTnxMCqaohEVOdlmobd7lDr9nA+gfO3v/uNH/6DH7z6/CfzZbu/u5xO6gYMEJECxfO6dW9Oose7MmXm2NrSml0dxQGGCNOUxzF//M0jc3z77m3OYxry27evP0ovCVOt0senHryl6qW0JhBDVm3Lsg3jJee433/NHe/ePWzb5k1TSjlHsx4uBCHEp7BpQk8RiVgMKPDlfMaAISdEFBdQUDAKVNomswIQRQJpCEiMZjqORzdYNhHFUoSDmtoQ4927c8yplNb3xY6MgbfTZsB3p/MQEzNfLhcnJE5v794eDyNzIgIMxOxIrmZgKFrnWZdlqXW7e7hvTbe1iQhR2u/GMccYCIENgBjc1JqklChltXK5nNUKMx4Ou1a2qq7ia22tKkARUxGZxghAz5/flLLWdvnGNz/64vOfESghgjuSk6G9v4w7Hf5KGhC7+vUzkroyUue/mGMnRjdVbRQBl7XkiN/6+tdef/nu/mHb3USOLj0eNzIittaVSIStkXaHp/e6Zn+UpuAvNIa9vJCDA7p5j5NXciCCHNi8DRkCI4dgIpGhtYLk/JgjpA7M2F3cMSRt1bzTVgC9F3p7eYgnpIWsOZBgE+84JgK4XRVXale+C3Iwb4+746tD2mOawq+faQmpJyB139Cuhwk5ARiiVdXawIgwiJmqXzt0d+9N8W/ZovT7CXfurHX1JAOTlDqGoVqV2roko08TAcK21f5dXQ3aHbrceKu1tnYIe6JApA5gYKTdq5VbrYjQFMu8IKKoe4zN/bOH+/blK2/oHDkkN1V1wlSqBUKk1LRFNY/jw1LNZwjMzu8ul3nZct5tMquZiHYPRVF0iEj49s3bwAOFGCOb2bYtrgaAW2mAGghDCKrWTFlsXT2GkZnndXGEw+FARNpqh+cfP0ywbRuiD8Ng4MuyKPhEY48zVjUOKcZcTV3b9UanamIGbhx2u92yLIOncdhv26ZuyH5Z7r/3w9/pFWpdtrLWupT5dF7n5RBiz5PdtlKri4GIblsBACKYJjgcdjeH3ThFZgC0588OX75+Owz53f1DCGHcHc7LMuVca90No2qLHMZxdKzLugKUspb9YTwej8OQtvmyritzpm4PYN6peT3wPsZI3H3YTGpz1ZCimYkaIKYUVQ3R9ZrLBu6O5CFHESmliTYkC8xdLDTt0uu3D/M8A4aQYi0CbpsWRIgpxEBuFZwul0tvNrdtrdB88JxoSNnYzbmo3p/Ou3FAGAnMXBA9hEDE2zZvm7m7KjHHVu3167MpfPOTcTfmzvZgb02NnYHAxCwYIuackey8rNu2lbLeHPaXy3w+rWtRURNzRMTAgeIwBDPjQGtbb2+e39zgMndvdSR3/cCj8ArigSM92jHgFcYXA6MnrxpyBO/W79669e+re1/KF7c3cf88vnvTPvp4dz7PqrDbRURsImbAgWRtaoBIT758V0rKr+whrvfPrv28Vkojh8AwMDTZEGwYgkjNY6oV8pRqqSF2AXaP1bVuOR9jXucFwJgQGdy7ZSEC0kD1kIEd5+JqmBNq82pGiM2vfmgdjydG0XZVgD3y1Z+o4L+2aF1NKB6/1lf4qoCIaoQktUF1RGMCkattGjm4mguC+K+0mr9UDa90UcQPdy0ByavRBKCm4jRQjFGqiAiaM9JSlm3bYh4B4N27dxwDgK6lQpE8pBijgZpAa82LAMB+vxfE7p69lnW/37fWQsgQ2TyAIwduCktr2amWmodY1irMOSZpBYe4FssxvDuvbx8eYgrMbMDSrJQi0rrFUI+nV2uqdjy8HPKhtMXczVxVOXCvgSHGYUjoVGsLIQwjg9XLeR3H0ZGRKQSqtZrq8xe3T+dEVed1BTSi7rvFiCiiAHUYBg6pS5ojRUAicAZ36/6xDICttWEYROwylzwkNCl1QfS3bwuAEUMc+HAzjWl025lsZW7jOBLRulVVCzw08XUt7+6li3SGIR12Q8rQZNvKZZlPgaC0FhMD0rKu+2lXRKaUcs7L0jq3q6kvawOCaZrMdFmWceIYY0fo3f14e7ssi5hpU0CIKarb6XJ5fkimUGtFhIzQVNZSkWk3jt3ov8sqYgwOGEJYZSGgmDDGiYBELCCkQCJ1XWdmpBjHcdLW3ERM9vu9qrXWWpOtNSulB+mGkF4+f2FN1vX+eNzFKd2dLrq2+bQGwv0uh5QQkbtJCoVhRBEhCqbQ1BBCLfPh+fGjjz7ajcOyLNZsHI6IKKomjZG1SdOqVpb1fFkvV7f1pikO40hVVyDKqbv7zBuVYRjevHnnsIVAwPD9H3znX/7Zp7m7cfzyQXBFj7tNERCBm1dThKudBQCZUcdEVC0C7HfEzGTjVs5zba4wDqk0FQM1uCxbf7AjrkvLBDHGSMRmzdtjFf6Ki576d/dHxEhTwl3AdZXjgdx0SLyt9bCLKQcmmOcaI8QYiUjBRFREmXlbNA8QY2AOrTVxIKaUkuoaCFKArQAhDCkIeKniSOZqAIRk3vMJUM3C+9mXektov65kPQ24H7JxEVDNG4CKExkwNAMDJmQgNPXuNSbu7CDu+hXS12s1dECCquygjjM6WMsx6+HmRa1treX2cBxiMhMIw7aVXg6c3AMu23w8HMwsmmPkGJk55JwBQEoPvQPldL48iMEwphjDtm1THNbTHF8wCJNyUAbDZiCiUlsYhuLayjyOozW5O9+llAQ8MlWxUpq5ZMAQXU0MJA8T1q2Wzas1K+DoJugIWE+XB1E3Q3eXGlx8yPDySCHEcbfbttqChRi2srjbNOwcjSI52jBSCMNyWcHj05l6eDiXItM0vXp72mpR4XKpNzfZ1GwtORsCTNNoDiKKRECMwJkRETtsX8qKTGkYDGETFWMMTNDEwNXZkDGwmjeT0pyn81nNWrezVdxa1ZfPnwOf13U1ha0U0fXFy2fT/qjgbkFXkdoSMlEY90ciCCGn6A5lt4/mjYmH3T4P4d3dCUBevHxuZp9/9vp43Oc8Sl2drYlMu7QsCyiEEGp1Zl7X7XV98/Llc/X05ZvXN+jTNMlyziFLaWPOpaxVtpgigpZtW5rtnx26+U1MAAAxBVKUtpwudv/QXaa1lLIbx8DDq1evxh0agiFQ5B7kbWan0/kwTbsxn9psoBxD4jCmcLFtP2Fia2Wr27rb7cbDcH/3MF+Wm/3Lnt8N0AJ73qWcOKXcfHnzsIgoU2wOfdwjopCwSR13w09+9jkSGcQqhpDf3Zta2e3D97/3Ypzy+Xx+9fnDy49HSuPlcnJvt7e3AcPpbtm2hgziDubd4KsvmM3RwXriRZ+WCYiuAcoOAOqmAM3tw1V0A7CLjxEylxwziEsrtVYUCmEAstIkMOYc3a3UShFdLakM7gqgQJ3J/+TU/aTEgGthFveu90R2QzElbhR3RyirPN8DqyMjhSxN3awPByaKyENMmDByMLPMSz/PTYWZx0TgpKIGQ5Oi4MMI7K4KyZwrvDEnCkiueg2ndlPCvtRGgGv8tF29u365Tj39xSMFR4C6uxU4wKuLPd+HdsYmLaA4iFbuUkYDiAYbwEagBvSL5fCXlGDh8ck+WNiYiUiMkQBV9REwIqKQktetlFaJeEiZxhCYx3EMREWgVReSsgkzdpMBM2temBHwKpnsKuDuszQM027aV9GH+7luqwENw0AYpnGvqutSwGwcdyGEZStTDtdoPQ/u6NZ3iKlz5cGdOYiUJqbizFSqJCCHbhBfpZXdOIyZY6Qqst3duaOIYCkhkogG7nEN4gAxAGIPEnq/RSllRQRVMVdpVRSYeVuJCIjIPA/DAIRaWz+H5tqXkj3oihjJubW2nU6IiBSYma45Pu6OqrYVw4ABkcKgDiGwO3XFGyKXbf7iiy/DNLkhM+U8msmyLCK1NW2t7A/Tzc3N27d3RPTRRx+1VtZ1nYbhak6EGEI0JUQMgbZtFWsxxqZ+ni+X5XzlCcac0tUnvNYaQsg539zcgFrnJB4O+1IKoKWUEN0JFNTQMKAjmntTrSJhlctlMbTDbpfigKBdWK1QhyE7hqam2vMdMISwrqWUlnNMObnXLlPb745Mfj6fa62driAikfHjl89DGhhQROZ5vlw0DmNPljqfz91pAtFFhGJIKR0O+3mezRyc0pDG/S4gNSkiIqocw7t374jwslzWrcQYi6iVNg7peNwtm25t3o+Hb31n16pWNXc1i0S01epS3PhwgPO9h8AimkIovVNmUlP/RaDqibT1m5yxCaCYy9ZWgBRgzCHGHBPePWyqBQBEXQTclQjBH5k7TkTOZnq1BPugjvziC8BHDWGfWs1hawpexomfPd9nxnk+q4LRFtGYbBpSzllY3F3NtdSKFQA4cMcmiULXApuqGYjJFRJAAAUEGxKZ2aVZU1MDCmxAoM0c6EplwaeX+h+VhPD0myn41qSZisEVK3TzR3s0+m1W5E9H+LA69j+rqkHbtqXHIHYIqdvuM0fE2lrLOYQQUkoi2u1DtKiIulutEkLwzvogD4HGMZuJSOumJs0lxtg5R7VWd+yZJSa1ipbmwzBEZgVA5r7Lu1wu3WKIAkuV0mrT7q0S3AGRCYMBNfXWVEQAECmpgbsiaU6QQphGZvLS1V5VhnEn6lLKTToQumqrAvNS3ajJkgLHFOb5/HRycmQeGJhC2A1DSmkopazr6oYcgpkA2FoWMoIeR4VE7KqqrQJzs6vfRK3NHUJCUZUiEcgJ3dHMGniLNASMgQKju5v2k4mqGtMgsqxLK6WFEBAVAFWwgYugiAGUm5vhcBwRMUQrteSBeil0Qr6KnD1nPt7snj3fM3N3yhARZuaAujaprfPscs6detKPIWc1MfSUQ23btjUK3JNdUdBMOFBMwdSvL1hoXWtpzS3sJ3KTSDgMAyKMU1xWMWuI0EmOIaQmLlKGaQwxr1td1zWEkNLw4qNn2zI7YQwZEZuUsm4xxhDIVUOkYUxuGGOcJqQQL6c5QOgcA2ZGurorAl7pgP1mz5H7D1mLIsBlXTpVIKfEzCYadmNrbd0aoF9O58Oh7vf7WisFzDm7B3dvrbjgMMRvfOOjHy/vSlWG986vHxoTdJiuFyZ7zzX+NUdX5vYkKRNw0Biw27j0AHsEMIDaIEVnpiJGfZ9CxIjULbmu7eFXmhS4g6OCVwOrtq425eGybVUhp8HRzQQFgCyFgO7LtvWtRLccjs7u1ukcHNAUzAwUkAARuqjPTcyNCfe7eFzaZfPiYIZABBAA7OrJ03vVx0n2q8vhk9Nu58o84ox+qtpPa6/RT4usfL03XIuh/Tbc8PFAfDqD3u+xgEQk4erHqaqBoph3/ndKwd3NTEXXtawrbpsA2nzZEHHb1hACMYRA+/3evZ8h6guHaZpyjq21UgpTYKJxSGVrqpoT5OQ5c8q51lrbJXgI0VIambE1Q0T3jsOoCF1doAkNusUgu0utlVKMSDHRkDOTgQohOrTaYFnbk+ahtesSs0grpdbiZriuGwc7HocPo8qeP7+ttc7zCoRDjrvdEANIW4kp58jMwzQiYgBqrakKc+zqFTMLgQKHGCMi7rr19yMfKDgCE8A15iUFTCnGQKyl1uoIMcXlsi7Lut8dx2m/nuY+ejeVEEKIWRQuc+GA87KIevdcOJ0etrKM47iVklIKGFSt1oaIIYZDGpCoL14BIERKKSLitm0hhLVs9HQwl1Zba8wUY6xtq7UOQ9pqWZYl54gOiMjMDCRNW2utqYgRsXmqpc3Y3JHRNGLIYRiDI8jlolJjTjnnsrUmSpgALMUxhNBlre46DHQ6X+bLOWcGsGVxJJXWuqW2iOQcd7uxVumho+CUc+78SlV39xBCV7B2Z53+pl8up5rDOI5DjF7bvBZz30pFxJfPXyzLAuYvP/7o4f6kiq3JvLTa5nVr7g7Yjjf7cRxNWkpJyDDgEPInX3v5059+mYa4bo2J3Z5MrJ9YL+8L4lceBIQOboDi5uKbNAfYRQInQEQwUHUHUUCiJkaAjE9PZD126rc80VWA3+sKATgSqnqtYgZbLQj+Yhen6GYgtZVaXBUADJAQOaI4tObokAdH7fXhEf5zBAzoRG6iSlEDw8RAI56Lzyp9VUFEZBquayZQcHq8gfxa45JffP1dBv7UaHux6/oYnnpGRACIv8Q1+mqGTTdHgUf3FHjUvhCRqyGiWiMlM2utAWEfl4gox9inj2VZHx7OAJM7MgXC1KRsW2MWIsw5w56YI3O3ViOzClfOkaIjuCNajmFIMYSkLt6vHiOkXnY5hMwQERFQkRLz2FWQnZHXr41SWu8RRLSUss7rYTfcDLvdLoLV/s4BgDrPa9vtdh2WBgrLVmOMrfmy1taQiNfSqNZhTNPuPQE7xlhrXWtxw5Ay6JlT3O/3IQRRba1pqzGnIQ+95+2xYe4eY5ymCZgQ0Yk7p/vKk90fmpT+5944R8bQ/USXxhyZOYQkcq61SrbO7AshqLamoqrLspTW3fAjMz3cL+44DMkUxmGvvWhCVINtqyqSUkiJ3P3Vq7fuPgxDHoZrb8hsCof9zbqu3dAhxphSIiIA2ratk/UQkSMncHdH9Jhir4ZEVKqsS21NRbSW1Z3A41aMyGJCIlR1zjEEY6aUQk4RwEoppRQVQfRt21qjUlpPBFP1thbiME0Ht1plG3Macs4p16rbvEFPktraWkQVQxwB2Ry6CaO77/YREdWl/2eMbOBaq4My90bKlmVZ1+Lut8fbp/Ho9HBG5FrbVlqIAyA0AWK8nOo46m4Kzh6CA8i6zosvNy8+vj3H86n1vSd3W7ZfbHXsw//4TZclYR/zDFQBussxISmSuYFhHz3ETA1MtBpE7PT9J4toeMrh+9XDrtbC+DSWIiIgqvo8z2g+DRhjnMb8bD+U+X6/323b1kqLOQLRshV3CzE1JWxdluXUvYV7PXKv4giKjE5IjgBgZiMjIlhwM6guCEjd+Qvd0dHeA3pfvej41SppAAaPZfTq59P7RgREA+0cT/9lP5xfc4THV/AL7inUnUKq9g9Ha63Wum3VHAlDSkm1iXitVZ0AgEOSpgDOPISQACCGhuSICBhq6+5AjbqBt6mqJmDotAM3ROKAOcQYg+BTTARP4xRS7IRPBnJ3JI4Re4BUp32mjP1u1kSaCvK1p0lAHeggYiJGhFatVLusMi8txJZzPhwOHHBZlq0spfDlXIizmKoaxqiCMbzPlDnNSy0KHmpTRzSpGSjnYRgGEVl93foV2Lz3vO4uwrVtOedpmpzMFBCly+O6aWiv4wAAoIwGCIhdlmCttkCISPM8V2m7/X4Y0rJstVYiiJFjHmqt53muRRHjfNnGaWit5JyYGR2G/VRKgSIqXvVqBjNQQATRhoECcxoGItKeioAErJd1qbUCIQYWN5fWCzo2K6WEEEKMtVRivLm5KaWspSBicHT3ZSnSHCCY81Y3pkghtqq1despC5sEB2k4DEPiTCFoEwCIadjWSx5iV0C7ewip93GEwQFOD2fpvCWMoHp3P1MM1hoi50w9JqVVB9DaGmIPmCUkcMfWamu4P+y6v7oqqiobqprq5oDuerlcPvroo+fPn7/64ktiRKTT6RJjFLFxyCGEd3cPIvLs2bOUFhFb11LrpqqE2OP9Sj09//hwf/8uJy5VEDClUKvAr16C/XL/jaPyI5UUEbzrNAiQqgpY91G8Ggq6g4j7NUzK/UqrAb9CXr/xyr9+1e0RU3NGXKrFDM92dBgCER32w5hjXbgrvqs01UaYxjFfb/aaxN0MgoEomJOBIbAYqCmiuaq7G7g3NDOOMXg7JNiPqSosaytiTOQO5t5hTHwE+L6qMezsxscHXJnkV8LQr1GatC4Kgsch/O85Kbt/UA2vU5IGjujeQYHWGhJh4L7vczVmlk1SGm7CcDqdS5FtW3pCvDt2N+utrKU0IkDQ3T4zYx5SzLGbOasqgDIkZjDTUnTcj80B6Bo85Ah9nh1HZCInMCMK4KimCgjM2FqttRYtRXp2kuecOGSzza26EgVyYjO4zNvDuapAKWp7GHdTikxE5/NZGpZqMYNIMbAYh7VILe+x13nZapXa7DLXQcIwgK01hIzI43j1x3eFy7L2m0fvfcS0iZVacxqIHLE7LXX+trsrMl1dlEG7fshdwA2RDbzP3QAwjmPMaQK4v6wxxpQDhwBMoWgTDJxqE+ikucCqDVxrrcwsbtbExaVBTNQvlRjjxx9/bGam3poi4hULV5rnEzMfDoc+j4tIKaWrDwFw2TZVMTMioJAccZ4LIjKLNF2WjTDFOKgAMzFxn1Jbl/Kb1eTValkl0dhJXT14NqW0P+6m3eBuQL7b7/vkJWoEqipbWWLkw24Pls2t1JaQUtgxRRVHCEzU2rwVixEBnCjESK21y3murcTILz/ehUruSAhmiMD9tkQI0zhGDgCkgpe5hEhEaTdGkcpoz54dYozzfBbFYRhFp1rUfRERM4mBEHkYUmmn4+HF8+fhcr6iK/0sda3m0yV2LYW/uXnDx+GVmdxdxawzh997Wxl3amMXOOPVxvXDKx39KaP011QTu9oiAgEEgkCOYMS82+VvfrybqM2X83Z6a3G4uXn27v7tMAxE1Jqie+Iopq2Bm/aYee1sQ0dzdgMBNnBENxcxMEczLMVHcjYYAgwDmeMZ7bRKNVMiMH+0hu344XsC0K89Puy4/RoOBAjovwwKGnxwFh5bzt/m2vD4g6/4a9/y1FrBnRMzoqITXR9Za42MRBSIh2F6vb0DwkD8/Pmz+/uH82ntI1WnL4hIqa5i45RioBCCmZjZtm0mrU/cBGAu5kjek1hlXTcKPI7s7k0khDCN+6ZzpEgMDmpuYPQ4TNVt20rZzKzvchkpDxGcwMMQmQlqra3hVqE1NaOUx1ratm1jTQhhmgYzWS7XaJ7WVgocQti27bK8T9gSsW1taiQNLIdhSO6a8giApRQpdVuWGGPe7burQneC6yhYSsMTJttpfURXpL+06gAEBnYFkQkcwMdhZy4phb4qdfd1nQPF4/G4240coUkxhN1uZ17KJsOQD8fdNAbRTVsNkVorfcg1BQciAlOoVQJDyqGqBo6E3qW7j7dn2O/3vRl82gY8DsIh5/zm3dt1XZ89uy1FlvJut9vt93tTBwCV4sbADB7MNEUHMFVtYtTNfGOIYdzavMyb8JVgcJ7nJuDAHJAIl2XtW+xOPKy1gnSlMAbKTW1+dwohmLEpUYyqXuuWc05piEGsWgjUgUtEn+cV0QE15+Plcmqiu3GfYi6lcQgxZHdHMkQ6HA7zeSmb1NrO53I8HkJOAOCgbo1DvL09ujMjIeLWKjPHGFXJvCc4xiHVnPkf/ePf/Rf/878DACJqor9sp/f3wK8igjq4g6i6XfuaxKRqhF24AgZO7ohoPTnPrzYN70l5v20kdHfuUaIhBDQwXza916Ud4Ovf/fjmd7752au3n372KrUJEed5rlXzlEII59MsAoTAkUMghWuOmzk0EVVQ7zKIPuz31ioByVolM0QE1i1x8MxNrC4WEzcAcyMERHYEtyvR4qt/hfduFAjmv1GA/NVSvF86ApK5RQQAMnBGBHdZZwpsjFTWdZomVQW1aTw8nC6lrm2rx5vdNAaztt9HacKMb041j4MDLctmEGurw7Qbh5t2OYuIk+8Oe0ftO58UolGY54u6MfOYB45ZDVKMtpaJ41ZrszWEoNvFGKAldzw/XEJOKSWRxiHFkEppIQzHm1GA1s/fUIjqrq4DjYFxWaR53CQ/3BdVJE91YxcVtZvbAxG9fXu32+WbmxsKzHGOyRwtj6M0W7cG7qfT6elMEad1m0upaRjS4PnZ8PqLV/VBnx2e3b19WLf5eDwWscubd9Nu3O33HJACd+QxZG5qvV+/tt2I7ubaogMzMbITuYqLIFgkcq85Bmm1alOH03zpPV3IgaK2ZrXKkHM6Jm8byjYcxv3o4BXA4zQR0VbKUpbd/nZdV0IYbgYGVG1iBkWa893lbtu2zgEKnPrYlCPc3NxcPaKJQwwIkShs2zYvm1tUqetihsAc5svW9+edDQ4A2yrmZdoNovF8PjcprbUYlcO4rlseUik67Q8557dv3m2XuptuzOvlsgA5Ea1rHQZ6eLgws4iqGnrgGKT7mGGWpu4yTSOxNGi1qrslplLXqtvLj18Q0brU+7s58FAr1bZ981sv1et8kf0hDyPlyISY4iTiu/2B8P7d/bJs83wRhxWdhmGSKkv0h/vLzW68v29fvHkHhM9uM0DJ01DKJiaBBgaoVbetXi7vnt/sL/L69nv0yXfg7z4FxOSwIgNbz0f7hW4H4Tf2bu1JRvLBKqA5OIBe5XYAfTvuDgDkqNfJ8Ukm7V/FJ0FA8+7a0JxMTNwDUHV7K/Dnny1f3P3kj3/v+9/+5Lucb/8/f/WXkUarehwxg2qpeQhSQCnBtoSAgdCA1k2Q41LAACgwgZM6ggUANRSvHHm7wMuvP3u4v8sOVsRMbvfxdhfPl6aBVoG1moESxIBQwIDoaVr98KAP5NiE1EPgAdx+FZC46gCxP9QBAH8ts/v9EZ6eDhGeKIHu7O5b2ZRxGAboSw+iaTcAyjgOKXVOCYxjxokJw6u787bV589e7vbjqy/fdWC+1qpNuIfBAKSUIg+AviwLIrUmIcbA0cylVIqxD+kiIqWiORERBVOZLxekUGuFdSUiJ8x5HAYFQ3dkYq1NtEaO+/3empzPD4f9noikqbSllNaqu2kVqdIAfSuB44DEjtRUgJCIhiFt1UWkicREu2kI4X1f3Rs0BI4xD3m83M+uICqv5tcPDw956Bbfvtvtxt0IABxwGAZg6PMmcXg0CvKnbRUAExt1nMTU1RyUuj+NewgUwlBrRfcNIYQYY1SD+bJ2Ot48r0R0vL053t400/Uyu/tunIY8ciQOoZkSOgEycwzZzLSKqlmArYopMMUeWLGULYSIwPG4X5em2pgiEW1bdW2IyCFYU0Qchx04tdYaWghBpPT3ehgGRAboBKbWxBBxmqaUhAh6R9xXcJ2isNtPwzCEkPtnY16X/X7fH9bV5du2DcMwxN20SzGG3qLGxCJ1Xs45c6bETKreHWtSGgjZtW1lzgPt98Na7oFgtxua4HI+3Uz7w5QQfReCo9/fn+qypl3soRSOoqLjmNzEwSPD7WGQutGQcuR39/dDAEK9fX7btlJrXZaFCUII45gREbCM4/Dll69/8IPvleWz16/WYRhq29QUn+rUdePpH5Jvfk29+mCj2ge1r8DRPvzS35+sd8Wq3RGhGyU8C+FE8LNFPp/h/L9+9vsfP3x8C//sh89//OkJptjAhFMa0/3rhxc3k6ouzo7ggN0WoNWGCEws2ltb766OQOgCqhoSPDw87HbZtBADERC4gjIZBhpDZLZaRUwMIDEs9mtK4a/+jr91R99NpPyJ5/lbkwDgUSb4BHB0zMjMPKQOGio4aAPw/X63Pww5BZFqpjHGSMEMbvfTvdRpjKXhkK9mXN1AEMCtSa0N0TEFIjInrcIUx3Gnqtu2RmKMVNfCiK1WqQ2vM7sTgdbWVHqEVm+RtGxzLUQBKEzTFIgP084NEwdOuWyLmcWYW6vbVlW8FKmlIhKxu/u6FlVPmQCEqAxjuLk5GHi5m0ME4sDBhzF+WA3BruHf1qyUJlpAyQBK2foFzDEww26auhoHyTHwY94FERp1zr2Bu/BjQaTOFXC7lkIHcAWHVsTVQghgmlLq7BCTZk5l28ZhN+6mLolzQmbe8XR5uPSfua6rb8CMMUZrgq6twcPDpWyt9axB964aHsdxHMfz+bzMZ4Skqq/enlQaM+7245hijEwYr1Ina2bGHC7ruq4rgKeUUh7UzByiATMjB5erPd04TkTEPHZqHoccYwwh1Fq3bck5xxiXeSm1Nmk5pnVeGIkDa5MYwrOb2w59unuHYkNo/d3nAC9e3DSpHXlY1zWElFKSpre3tzFGQBvG0fxwOl1qWVtrAfTj58fb22lbVlNU1ZJ0v8+NOKV0OPDD6aKmIWLZmqrYw/bxi+c3X/+oiZ6WAiYq2+EwnU5ns55eYMOQxjEjeUrJ9X6cMoXDMi8/+NE3RH5+/24DiAAdyyb3vkP1v881/EsXPH7lNQz/MXUQ8IPWETuHEdR9Y8mQBotK6S8e5jdt+90z/NG3Xv5nf/D7/+av/2YWuCwtNnjx4iDz2QSYg6ojgTvkzFaUODW1TrQxh8AAYI59mQk5h7aJu6eU1FpidiJvbRrD1qSaMNM4sCpsJvWXo6H+t5+ZCQGZqnmzrsH5e1TDfvSOoy83CDHGHALP29qaAgAHYoAYMacQY5dJOD0+frcLOT3PI5e6vvzo2cP95d3daXc4WsMmrRF0HOgCmnMehkEVq5SYB3RQcVXvSXFdxsREqrZtF2IYhsEMutdI56/nwGZWizCLAVUiQnh2c9y2Wso6jmNKoXPr5nnd1jqOe2JU25ghBgohqUAt2jfaZk0kMg1EFFMIKW7btq2L7vPN4fh0ckQEgHoIjKEFZ3PNOezG3TiOcSAn3+/2wzQSkVozvzZEH5zbRzqnA4B2WpyZMQL2rti6HSe4GgKqyHU/HgI6qNu6rjFMoLBtGwCUVrdWqRbiGLltVQJBadKBS04cYxxTckdZ6sN5LaVxiIhca3FrmtAUEOIy13kuKiRiSwEmGIZQi5ADMwLAus0hjqoOTpSiL8uQJyIahqGpmKKImK69aoOjqHAADtRaCyEwkxnnnGqt27aJSCkrMw9DIPZxSjHRNDw/n89EHVy2zv3ets1UaxW1VmttTWLMu90wHfJuP719u4oIIq9rafVut9t1j7Xdbne+PMyX0/FmDwDLUnMaEDSEdDzcDnnSpstWhrIRgUuJ7PfLQyv67Dh+8vHtwwOs8wkB9iP/6Aff/ut//5NlfhiHSAjTGC93F3AD9y6P44C1FiTT0nIMDuH+/vVuV37v97/5p//LpyZIQH1r34NT0PC3eOwBwOOU9wsd4m945H+UeKN/w/v/dzeADldXh2fR9irV2x3Dmw3mFV4ty38V3z1/+Y358y9SDJfL6sKMkMfgFtxbacIIFCk5OXAVjYwEToiIjghuFgjdnRnjjualPruNwVFVhxhdBBjXCiYAZBHRAYJ/BZDwK7/Nb7uvjDFSDNHsshX5baeqj2/w4VvUn6Bj/GrXTMgYYw40TdNWTqqNyK/TLwCgcyA7l900xSFsC8Y0bMsqTQKYR+aQdrtxvxtVpbYNoKfGyMP9WVUPuz0jgrmZpRBbLdCBFbPWxKv11oCZCV1aE5fAV2egQMmRWtlaqePuQGNurbS61rKpYa2wzJuI7w9pYCybEJFq3e1GzLRtFcCkyUVqrfX2djAgM+MYDsc9mB73U68F/RARAAgUiYKLS7cIis6Jh5xCYmTsZvr9newDDiKGkPDJ/e7xNBOELunD6wf9kTEAbI8/u9dKAOhR950QWoswxSqyriWPgyPP8yxW6tbc3YlrkBCioteiCBB3cV3aWlSamwX2EEKkMcaA7jDP67bVdS1u4I6IrNqIAnMmCmLubq5mCgLGFJGvnxAmAuIqnTPe11PA7F2FWErZ7cYcg2tnUXjfp8znSwgxcDBOBBgYxyF1GuPDfRWxdV3d/XA4iNi6zkRBtYQYbm4Ou924rSKiTcUsPjw8rOuKQCklFSjbOgxTjFmFOFMPL0RKTIOpEo6U+Gdf3l22gmAxZHcoAkvbgreb3bBM6ZMXcrg5gmyHKXzr698VkbaVu7u3r159cZ7b8TjcHgfXGgLMc6lVQqCUghqWuohGqW5eQFrAOJ8fGO2HP3z27//qzg3MDIGenLWeRBT/Ucd/7OP/XgdevaYBYKpAE/Exjkv7hEg1vlL+q7Xwv/35/+4f/sAQsbZDRgzh3VkHyjvSEMKyaQhQawNDNQH3KfMjLO5NFREYIQVWcgZkhm1rhylvW6ltQ4KyCgIMCRxQirYChhDzgF5+8ZXir7E7fEQevuJXVNVOg7nSin6r9/X1Jz/ihkTkTszcRLrgJ0Y0l636NA05Z0QwMwJQs6v0PYScs7QK6EiKWPdT/PijEVGIEoeYU0CElMMwHkWkG7J2L6xt21Kgccw5prKtrRUzkKbIFGNUFVNQ1ZTCUynpppsmriRqFmMmQBclpmkcRGoKhCG3pswMyERBxZxQ3MywqRGBuJmJSSMyp1iaEwUOUZqklHb7XYwstT2dn5SCCrghEIpICoE4phRUlcWn48QxhMDq0ksY0/sp2x0fASAEcMRr8q0bIpCYgJmruRvBlRy1rFuMEVBVfV7nFHPOeTft396twzCERg6QUuoZwWUuQL4fJ+boottWtlYJA46xNH84L/NciAZm78TmccoxMoARJRGZpmk3kYiJSAy545uASMRbKS7KHLfWjd28r+8d1ESvd4gQ9vv9I2/ZiWiapv1+1xfTHQGsRYgIAJlyTpEIO2dLtbVWmLk1v1xOXT24bfO2XT+NGADQp3FSi+6bl+sdxQFubm9VrZRWO99bWlNJHEu1w/EZh3i6zMu8nS/rPLfdPp3m8/0pMMJud4gxOxqAb8tld0Bm2h327v75q1djTt/85jfvH87n5f7hb3+81DbtYoz8rW9/vS0P9+ucEww5u2Ot1Yog+jTFtvkyVwbKA0/T9Pbt+fmzFx9/Lb5701oDd2Mk77t7/yp29IfT3y91iP//Oa5cFvwFFguBIQhgDIOyckrPcn4Z+cV5+/mXAP/hJ3/wg2/Pd1+eTitZC8OoNJwub8cxcYBp2vmyeVVGSARDBCIgwh41r2CIAIxqsK56e5Pv35ZwjMxtXi1nJCICJQBAhgChqRpIaR++5EfgtRPRPsBJ/x5nZlHjbXMO8hQ59ZuP8KtffXozzBzRFDzGQAa1bus27/cjAKCBqrYmqspEJjqN+8t8qrUyWgr47Nl02E+n0+XdSUSau4iWRx2FllKYeb/f5yGWdWHG4XqlFXVxwyotYowxOgIiJBqRDRlSDu4cQtAm7t6qitbIKUdWbQjE6AZwPO7FSHVJKZmHVmWtPfXcEMOybIhuZiKtG82nmF+/erfb7WLMren93cP54TTE8Oz2/aQ8pNw2R1SELqw2CpSHVMrs4DHGmAIjK2in/lzxIX/Eia68qH6GO6XK3Z0A3ToRzRE6Z4LcnWMgDqKGxK1KHveG5MQOWJvUWruEY7cfh5TQ3ciHNIaQ1svy8HC/VRnHsRZzL00NMDBHd0HsKbVXX6YYubWS0pDS8PbNO1W/efYMwNVarQKRRXRba987W7BOjT7eHpkCUTCzu4f76/WN2Cf0mHgcc7cKb01Lqcu8MTM4McXzea41cvCeBY4IIjWE4ZNPDmaXw+Hw/2Pvz6Ot27K7MGw2q9l7n+5+7euqkURJSALTiSAjKEBICByaxEAUSCADI0wCGUAkGgmQQRJCoA5hGuePjIw4ZDCcEAixsYRAWBIIGUyMY7AdhBqjUtWr133Nveecvffq5pz5Y52vea+qnpBU5T88tMb3x/3uPffcc9bZe67Z/Jp+QK7r2knQm3EkD4Cl1FZKJvLMqAgxxv1+fz6v63Ldk+h1yd6l63qtqreu7rQmJet5yTenPE3CTTejG8dIjPv9tjRZlgXQ5mV+67SkrCqOXRTwp9Q+/PrD0+mEBiEM49a5GFpZ2Fncjbslgo3ej/M5Pb4+1tpC8CrYtzGvaZz2Knjn6k7J5dM//UWm6+vr03wGM3XMVdR+PNTHv0477KeynoCc8Qm+GAjQ33aUmrsGNHytpBPk9/nps8dBX9DT4/TPfuBHX7w1unForb3vhRc+/NFXcwF2rf/6NATQROhyrg6FyPqQBE0bAQAQSTb0CA5pHCGlghzUkigO0bUipQJycz4MQC21JIJIT+h3T0eOl935Cb3ZAgAKpq0r3/4Epih9d/rwtGcwudVlWTabzXY79mFoa42IUC+j0guSWISwjuPYyd7TNKkCGAdH83rMWYhoHEdEa01FxHly7GvLvtFmsxmCKyVrk2EIuQIC94NFwVSVmYZhUFusN6LNzIzZhz5nRFNr1kjEOPRZ5DJNU60556xqgJBSWnMSacikzVpbvecQPIArpQK01sz7eDyekYkZx3FTczqd5hjCs2uIrNTcpI7DxrNblsUAETfOOUCVVgENgWjjSJ9QxFWf5zv2V/7cYaNmhkiATAhEjtFATWsTa8FHM8s5kw+ptqG1ZVnO53NKwMwxxhhjn3QNIUptFWVJ8xiti/I7R4Du5ubIHkWsT+RbE8fsPT3R7sde1YYQmEdAC8GptBBcq7quiXbbcdoDriW37XZiZoNWax2GQOS8C0Q0bce33np4Os79qLMncb5WUb0IQIzjGOM4DKMZno6JiJgdUu/GQM7GzE2WcWIfzDm4fefuzc3Nsizb7VV0UUCY+XReas0+sCqmlExSz4sRcRw3rWmttbVWyiqiDx48KKIxDACgCrfu3rq19yGCSlrm8347qsiynohAXQhhONy59daDm+vHJ+cCmJ4WKQq39oe7d+/+2KsfqdJyXl9//aO3tmEzhnnteh1JxMZxijGC4XY7qQkjp5SCn6ryfr+Z59NLL94XkXVZuqTTJZ15B2XvY9Y7MsRPZnr49mfqnnaIuGU1k83or+688JFHb6VUX83zycWX723f1LTM8PDc7lxtWz7+8L/40Rfu8Gkb1FrKUHXeDFHExslJa44NCYiMCYmce/KWq8Fm4+bTeuvW1etvXu8OUwhOVBWFPDCCCogWVWK2gAQXSs7bQ+FPfCF71SfAGvxxjhkCAwQgUkB4ArFGduiDC85LaiOGYMhN79++tRsHBqqpLMvSvSuJXMp1TUWteu+ktjEONZdWMmEbR3vhpcMwoWnJqbaKy1rmJcdhYkv7KTpHQFiazjkDWWlV0TVV9gwErWWEilBanUVkHEdG9j4AQCkpREIScFxqTWkBqy3N+XSDtVJriHzY7KFpOZ8lnSMBVPA2jsNehVR1t9/s9uM4hRhDzmvKLQ6bDudDAxFhdgb83F4Np/MqtTDp4B2rBCI02YxxmsZSUknZVFrKhMhEdjlUCKVbyeDTyGiGzaDner3xhkTsnSE3MSMe4oaiX1sh7xAx+OHBw5vjXIv687qQC1VMjIoIMoM35WpYbo4PHzx6K0kZtjtRa01rsbzkLvG9Sq2ojRRYh9FtxrjbjNHTduORGlLb7nzT2SCpFcAGZF3lhRmvbu3v3zsMEUs6b7Z+uxkdYR8rDSPfvn24e+92CGNKVcRcn/k0NHXehxhG50LO9eY4G/hxGrq11jiOpghAu92tlNpa5s1+ZKcGxaDcf+HW/ZfuCtRcVkZclpTTEgJME4yjoeT5vH70ox9d19lApk14+eUX15KNkLwDCksSbf76+lxb+vQPHK5uGfMafJc7CFWgiqZUiMJIAzStyykdrwdGNnDgh7hjMFVJNe/2Uwzkvavq1d9aC9ZmqWT2NE0TGJuh95FpW7MbtjtzurZr4FRKkqKn+c0XX7x6/6fdIwdVhTh6PykgAmF3ekBAAEZC8AjPePH23PpJx4KPXYxkAA3wqfyh9QFdcqu6Nx7Xj7712FN78Za/ezUe9tt6fnh33HvFutai84vvuysePvSWkMNclEM4zvDo1DgMqVVDWzOkrOO0a2LSmqkSokMKnh0jGqAJGqzzEhwzWBWqmVhcnQEaRs93dnFE3Xndod315sEEVIITULV/HV2ut22gSgWTbosCau8uYnPJDVUV6FLYtdbUyklOIYT9djJF0bquq2hmgu1uB9Ab/J2Tox028RSW2Bvh3ZK41iZV0Np2GpD99c1pWZbeTrp3uALiuaS8ViKKnjNCS6sP42W+qg3QqMM2mJvkklOtZRgGz67mXGtprXk/cAidOMHMwXsA8N7nZVGj7WaAqcusE7tVBYwLcTOjWsQMwRiQO6cn54wI02ZgpFKa9k15sq6vHzPjZtz54ABts5m8505DZERmREApVdS6huOlRkZU7HKz7R1b3z+tSGRmrTVVujSV1FRaKmvJreEFptdL71rrOI5x8Ag8zysC39ychuJqbaf5bMrofMm1NejDVgMxbZJElNCHUkpay+D247Cb51OuMk7x9t37Q3AIzIDbcRK4WG6palrW6isixhjBCIHHzQEAzqeUc3bBb7bTss7LuqxrLeWi51iLCEvNrSMEmT2RAyg551KKCYBx9+EjbszIDg0wFRxCDMFJ12VcVyK32WyWm2XNGcC22y0zhyEicIxFwbr7HRGVkkTWaQjz6UaBVAGRQyTvvJoEByBatXYFM0TMOc/zLCIi9ebxiYMfALa7EcEB+uvr4+PHb203AZ0rpahZCAFtaq3dHE8PHjzabMYYY1prSqkWzYXWdZ6G7fl8TmUO0W3GyXEEc2AyTUSIh/3w/vfde/3Nx/M5NYEQHKjvGLXL1YCKoITcfgL3+09yIYA9L4NoAAg5lUgUBjue1jt34jJnC0i0qovrmvd39q2u19dl9Nf37kzzKa1Ldo6a6n4/PH6cGI3JNpspLUs3DvHOUXBEBIrruqZkQ4Bp4pTW/d5fH+sAgOyeiAWqKnjP3l8i0iHydIilNGr2xlytNDDwhOXdNbl+ass9z+/uuUvHcA2BQZSdFxBGYoegYmh/zP31rzp+yTAMMcYu7dWvyI756FQwIosx9u8MkWOgzTQS+3U+Nc8hBKntcLjfTNtRal1qFTQhiAZca+kFFAAQoHPknEMy74bWWknZs+PQG3canFMTZv66w9/ub+Hr5t/Q1QCZVFJjlHEcwjh00dub41JaYQeELALSoFVgp4D2n/z8/7w/w6//r35JHLz3UaSu6/p0p+bzcRyGv/LZ3/OJtvJPLF8qrbFnNEXgi7sIVbCuN2EA8DXwV7+OfjvARTbNzMyjIahYh+kxEhrKk1q71tpHEHGcyMUmyoRElNY8z/M4jiktAJ0W0sZxMLN5ns1QtDhjIjtsNy5M85KPS5ba4hB3+6sOhsg5O0/TNCLa+XxclmUI0cBEdIxxM4yKIM3meX788IG07TzPwQ+qUEpWELG2rLjmtK5pXWstJg0QoYAAmGcHYIgWIzvnoKt1qDqOiNjtucgaIDriYXQhDN47emIl1EohByEMPsYu9cqMfSYTI49TVLDWWqmFwalIq3Ln1tX19XXJXrQ6p9FHGrgJOwYE7TpDvTUhIl0cs5Sy2Y/eR0T2MagQkn/4sKZjunv/fd57VQEgETPkJeUlZTCW1snmyMzKCAYicj6ffAzeI6KV0pbT9XbaOR+s1VTPw7R9//vvHa7GH/vQ6w8fl1qaXTxXQ/f/k8ug+V8PV/JTWAT6ceNtyXB1d4A6s0LONcZNyqsbdSk8p3z7wGQmKxxP5eX7d6ZxuD4t5yXVohx0v/e1Vm3wxlvL3UM00+P1jYF2Z1TnWMEYIYRQSmH2hC6EuuZiQK2Jc2yGIl1QtiHiOOJaZLdza2txu30wP24GjM70nSnFJ3e5p0RyeFKfO+eIw+BDKcVMRZpjjD6I5j999Z0A8Gdv/92vmX99Z62bIRGFEAAEEYdh6EDZLkqMiHEc9ttxMwWgkPab7sOnCOu8AKFKA9GSUjazSUMI0mpvuIEJMyIhoKpq9EFqRTOp1biPzPFrr77zHe/nT2z+k/7FH334axrW4LxjRpPaAHqH0dCxB+CSW23ZJH/7F/zT55/hb/2C7+9f/MZ//sGumNDXZjP+Xz7w999lK79u+mt/8vybEBgBwKS7iFlTADEzMvpa/o8A4E/o/60HxL5aU3IMYD2xYiYAEjMi55yZAKHji0kTee+7XPCypJS6A7I4J8OwmaZxs9moNjSdpmm37fZVbvTo4/DgISxpcSxDiIDy+OZ0Ps611T5XdQStZALz3gNoKQ1QiZyJEigR1VrXJc/nrINPqeS6ThtXW745pnHYEiBd5nWGyAgdUsMGItLMYBgA8KIpP3hXm7BH6M7X2rvAPA4x59RycsyIBEatacmVyAG0LpFVSoFS+tSpqRARIzCbD6EV2UxxPvP1jaa8BK+7LY+B1BqAcxSSSCnNuTDPcyllu93GGEVkiIOqKphjHocBzB+udq3q48ePx3Hc77e7zfbx9cNOp5nnOfKYiwKxCx6TlTYT0XbaMOl2uy01resqps20qeT5BAK7/UigDx5+lCn+zM/6tEcPzz/0wx9toKbQWiP00KvVi3bB/1DrYu3XPzlqZs4Re2RnKWkIHrFUrYE2MLRcFhEIwT++qcv64NbtCeQygQFRF2POdZiGqqm1No5jLqu03jcH54JZHaOAilTgCIDmo09ZchXnwHuvCswNTKQKEQ7B11JKnrv7OiF0mPenMi8EeKbohWgXW2dgZkbfWjETZm9Gpq3WLPosNPReZNfaIurNNaz1Uoa01kRGM3POtZqnIcYhlFydA++w1DbG8TSfiUhMY2BTn3M2UHaEl8kqmAkgAXT9aJlLBYBemfYv3r2f8mfufOcfe/AbcHC16bqkc8prbqZMyAhcShGW4PA7PvhPP9Ez/L9+zvf9pv/mC57+d78d/9jpN3/D7q+/yx9lIknFEJ70COnpHPlr/X/09GEmCgCgZqpFi8eAyHCpnREQzCyXqqrOhe02tNZKlZyzKHBkJBJTcrzmBKCQLAxhGAKzidY44J17WwSK3jN5aXlJK1C+e3ebVj+vy7w8ZuZpM9SKznOt2Qimcewdj5wzM3Z9jWVZVc2AnHOvv/GwlFo2sK6rc7TZHMbNbhj9cq7eN+esttbjPgCho7QWAOiC551PwszTNBz2oRRCNPKuNVrXnFJjtpLnUpI18YGJKKemCIRRRUtt3mOXemRmETufj8g0juM0DmY2jZuaal5nAh1jbBUQIQYaRo+5RB/GcTwv6/m87Hc+p9IahBBEJEaf1tpUnHMI4ie/LGUIESIXTa0VkSZau4EfUwQrtUBKOefcVdmdCznnm5vj/ft7H1iNnKMQQi9r0EjVL3MtpcTo2VPKM2B7+aXD0srDh6uKqlVCzxSaVAJSKO9ygX0qlkG3osfHp/NL94ZWViI8n5fDISxrHTmNwR3nrhcVm8Hj63psywt77+NY8uo9PX6wcoBSSgh8PMpu5wDjIkttECMZcJPqnDud6jhiaTWOrta62W7y45nIqUIpiQCcx97NMG1XV76kyt7fpFnsYhKA7wJN+mQsB0/kHp/2a1UVyfqwQlpDUHbEDlGfgRMZSUwdcyeipLQwUY+DiNBVQr2PRKRWzGxd55RKn1qKqkhVsA4/Hsc4DKFmz8xMCr5jsqTLG4CqogKaijjnvOdmUqQ45752+7bE8OvmX29mf3L7nz79DiJqg1KaAlXRUq22To9qonm7Gf7Gz/vPn3+G3/GvPvgffvr3Pf+dbnh7ecsORcsfefTruqFKEwkuxBi/4fA3+gO+dv7NAHBRlUREIoUG/ZB5+yTLtNkFLWXSehloZgpAIhWAVKQWAQByPV+jlGcRIfbMXGttrXQyb4zeQK+vHw3DkLPUlmJgRAOppbRu25BzGbzzw2i77fXRtVaurnZMQy2ZCHJZtRYgE2vreUYi7QKaAMAEaGUtOefNbkdLNjMiiINDgpTScj4FvxWxjgDtbevSFJouqXpCNWtkT5AcGON4OEzzPKeUVEEalgKtmfd8rqW2ZqKDoPdchcUU5uqcy9nWNXnHwxCCH0tNpehm2ngeCKnkJK4SYs1lO20UyCwgF3aoqt2guTTxIT56vLBLPg7jxoU43NzclFo9jYAEALXmlM/zMhuQd3EI4/F4zPNRy1rWhSlygFYBuskRwAqZKYQQiKDWejrOaS2d8O7dqB6JKIzjg/N8794dYjmfj07aECdAyeW02U0AlJOlVVvNIoRA9hOZEvzkVofXPCnI6alTSwWbFzvPEn1IqSC21rhVOC95GIAMnA9iutmNPIYlpfO5ThuethOjhpBUL3PwOEGqpdYK5Gpry1HpfN5shuDIhepj8BHmNTsCRBwGt8wtRDWDEAnRGMEQiACZqsA0OKqm0Lo24Sd5vP4xy8GT2/IJsBtERFvZjxtTTWkJwfngmZmfu6VrrWtOAKhmnURFiE9GGQ4RlmWZ59nMNrtpSSsilqYAOEyTIZxPS251jN4zqfHgnScPADkn76Kqdf1XNFNrhBSCq4hAZGBSxOBtOIGvvv4iIoeIreof/Ogv+9aX/0H//p++8x//wY/8mpQK+qCqhoDsERuAObRx8+wZ/vdvfHBZljFufu/rX7zM+T/8GZeY+Nd/1j8G+Kr+NSN4JoGLGJekWUGfhkKAPrgwZjQzIkddrVMFkP70+LaM8gJI7FAhNJVqIAgMIIqgrfbWMiK0BmZNVXunmR2WXLvqKgCZSYjee3z4aJEG6JHIqVqal9aUkVX1PGfnHLNfHt1st9s7h/1xPvcGnVoBA4BmIKJVDUutw2bQquf1XKuYsg+RHFqBVqG1VmqaxrDbjYiWUi15lehrriJGxN5TM5AmtVZVU/agiohETqQaICLWDCm1ZSnI/CQjRkRs4joCFAGIHbHPKZVSN6NvlUotFRsROyetgidvRirUsqpAWtYQhiGEzbTbbOnW3qm1OHnV5t0AADkVH6YYfMkaY4xhYIohDA8f3gxBNpsRUBCttiVEY6YY3cMH16bZ1IPB/Tt3T+c0n0utkue23cVh8ACWcxGxLhs8n5YHDxdVCAEGvw1+U9b1XNI0DURQShERHziXubZ1d3Ci7dZhwis+Hed1bWCQ1lYr/LjssZ/iQgS0Z9jrJ3+NgLFKe/SovHT/wK54TzmvDh2NLQsTegQOoVZdd36S1R4eIdf0/vfdN823PB2PyxRjjIOZllLWVF30yKwg8wzjNlYp4ziItHEcr485BL/MZ+d8vx2Y0XuupRqJZ2SmNWWpkJZ1HLZhOWfpMMBP7WnR/V4vpzcRPZ2i9FjWraAQsaSsz7VfmTk47xx3WtVTDb6Ov53n+XQ6dceSeV6XJRF1S6lmJiEERai1ApELngiYMEY3hOCILlQvVKILEJ/oUtd0eCMS9THr0xejYGKttiamQPgVr/3ypz8apgFYUp1P87m0Nm6GzTZMW/YR9DnqTwzTC/duTYN3bNvN9L/7yBd/7E7VlgG1A4PJVMy+7f53PP3pH7/+t5uIqkoXomrS6TpE9PXT33jnc3Vyu2qvIgkukg2ICCaqqq2llDq4/enIrda6ruv5fG5Nr66uQnClpGU5j1PcbMK65lbNGpUsx+N8Ps+ltFqsNEzFljk/enidU41xZEAykrrmZW4loamiVRExQ8fn87l3MEVVrKkJIoYQcq7dewRZDdr5fC6lBT+1JirQe8fjOMYYe1LWGdaK0A2wRKRb0Dx46+b4OOWkiG4YxhACojStVQDRMXk1LtVqkdYsFTmf19YEwTk3IPiSRUrzLq5Lzam1ptM4IiJ2JQVrrZ2Zm1ldluV0mnOuqdTzsszzutsdiGiZ08OHj29uboZhcA7WVXxwIdK08ex02njnDbDcvXfrpRdfGMbYSmbGnPP5vDC5GMfzOT18eBKR3nxc1/XBgwe1MpMbYkwrPHjreD6ldS0p1cfHB0WSCzxtx81mZAeANQ7QCx3nJQxy9378jA+88Mp795vdT+lm/kktAgBDYE8NoDQ4n9PhsFVrqIDgYfRLk3mpa07bkSQb1XkTYb8PqcCHP/zm+TynZZ0Gf/04vfnm9aObY25VAOa5isL+as8Ojsc5pbLm2lo7Hk/DwKK1CUht+/2GmVuzHl56u0ZEPAdPMJ+A0bFCV+jkH+/N/BSXA3CEzYxMVWA1BAcDoyG0P3v373yiX6u1EhEzWam1yjfd/bsf+5iveP1XkGMm9S6ktDAzmoKUb7r1XXD1cZ7za9KvbpiiO+SyEvlegI9TjOMwr2cwcp572AXUb7n/D/tv/fHTrzTUYRxATUR9cDU/GzwJpGET87yG4Nmzj3bY+WXJm9HH+MwreUlrrhh9cI6MLTz3o6erAWZpFFm1FbLwnLzNH7n+tQRoaLWJI/DeN63QjIj+1OZvfpxNZ0tpBdXNZlxSS6mY2TiObvCiYCKqOlzURoEcAnmqtS45p1VMxyHknNnBZjsQWlrybnPl3Hmez8MQBz/Wpj7EAlpaIbAhDGa6O/jtntd0TaxrOrWWKeC8rsM0AlLO+e69buJu3rvWGkJDpJznda05lWYTgBuiA+Oc2hAdkM+55GqlNGY20loqkQscVluRQaSKCIXIFLPkUvKyLN1vOpXip10VPh2zNIsRNScFCNE757RPpR2qNFEah0GkllIQDQhrEQVzqCml1lwq4ombM+e4ZcmVm6yi8/awBQoPHy/r0tC5ONrN+ayqrVQ1EDih19t3Ng/enOf5FIKz0TPjPM/eeyJIpTLz49PjdYG7IQ5TdHMyTSqw345Vyum0DsO4223SMpcMYVPu3b96/bUHIVA/le/cuXM+3gAGkyagZppyJqLNZjQz5uy9R4JaDSC3dn3n7vZ0hpsTwxOfeoQnLPafck70lAKQ3zZSVuhGaCohiSOoim8cSzG+d3Wb43w6rm72mzC4XXjw4JhFbh0mhAa1iJTDFecsrz1s0aP3CEg1qzO4Ocndu/sm6a23yn6/vPzKez7ykY+UBqZw9/ZI7FIqIojUhg1pN1EBMLNpivOctxMbGKOdE8DgzkWbAQMQtaZA4J9M3vUiFf/Jy6bfpmHzlKcMyOzeDbS9LEuM0XNQM/0Ek54/9+L3/nvn/2lw3AGMRI5I/+yt7/pEz/k1w9/5qvTL2SEUU5UQwjRNiFhKEbFaK5IRc6C3/TkXQiu51tozGkeO3LMjBKk5D9PArRESuKAplRij7821J4uI8rqCmnOuNU0pwa13vjxmrLVXndxa+/P3/rOnP/qmq28HgD/8+NcYSG4NmACAQNpzdsxfvfymp0lia82airaUiqqpttY6me8ihYF4aUGEEJrIeVm6tpUPKmvnNWKI7BwxdVooOOLDbgcA3ntG7cTHeZ55RO/9eT7euXP73r17Dx8+bK0n/uqHOI6j85FIGME5V2oDEFVgZzs3EFEV8I5kCk39+bSA2WYKPpCBEtFut0vXc2kZmoQwNIO6Znmi9KSq2uzCWVJ0zo3juKxFJIvow4ePxnF8esn1CW9tkksVaUTE3rELpiRSzTQEF4Lr7WYX/Hqa+2b2rFNX9UTe+5tTGUYijzm12kCFFEiLEl900cdxCpHGyQVGQLl3b4douay1KlF0nvpHPAz04MGDw2F3dcVvvnEdfHzppfsPHz6S2uIY2lyRXLdsunXnVlrXcZic89Mm1FoRGlg1a+wg5yKKgKhWAbGbmvVUmh3166pD1plxu4U33jDqWGHtnNyOvf3kVIjvEjkcdTsBY4CWS15wM/irA+SiKSUpbbsNKZXTaXWEgMAA927fefX1N1uBzUhozTmexqG2FcyW+YgI9+75+VzfeP0j2004n5jc+vi4jgPECFBQCs0n9FFKBc8AQGo4DE4MYnRqgUJdaqua9BL/gsFz9koGTyMPIr+7ZOS/5vr4tsvf9sr3fuPdv/cuv8bMwxQR8RvvfNe33P+Ej/xT2+/IRZa15NRU7Fvvf++P83KMiAxAa81mcvFczg2B4+CJL5YsOT8rckWbgFWtAoJoHeDxVdeXYvnPXP09pBKiDVGIksnRMcbgpiF6fk6xohs+msUYt9spBPfOFwZAbN0wvtd9v+vD/+Y7HvDNt74zlbW1KlLMRLX9mf23P3tn+qy0vxS/YrW0p9i3fj88xVp2ZHtrbV3XNK+qSmAl5W5iRwRD8OMQEE2kGjR2NG3GrhLWRSG3fe0mYngquMvsRASBa63dSL6kXFImIhA7n88GVa0AqA84Dm6KtB3d1S5Mg+y2cDj43SHEAdVaznXp5blhrZJzbVVrbaXUjsVjZqCLo05rzQxVTAWaIII/HfPpODMHBJKmpVUFY2bno/ODGuXU0loBFQDYoffsA/eY2Oe2/U8weQRurc0pHZcF0Zz3jkOrOp/TaS6lqCrU3LSZmXnvt+PkkHo/Z7uLcXCI2qSWmlprTUoppeQMZmBCYOPgxsHFQNvNEAYK0VW1dWkP3rx588E1Ig1TNNA1nYfovENiEU2lnpskdsYMzqP33G0j+z92gGiIMo7xgtaHtt0NnQmBF2g0fUoJy88vwkBADOAQ1Nq8zCkVhNikUgAADcG1BrWYKJcM2214/fU3pym+8OLEqAAK2II352C/994DIsTI4waQgX3bXNHtOwcwWFfIK6+rGShgS0WKXJjbXTa41gbkjueZPfSrPcYAFxkI7l4IohefNUTu2pGflE14221/mSnbs4zmKx98kZmE6EIIJu1Pbp5UxNRtGZ498g+8+kEi6udej5L9+1+//47f+6Nf0Fr7tpeegfX+6OmLa4GcEzMH577pziXPcs4ZCDusqXbWSk8Mh2HosqnOOUCQ515hKaUbdotUZRYwMavtOQ0Mgu00hNgpCpgLmGkH4j59yF9+8R/84dOvbq0Z6Ddt/w5sP85ODUNQ1VrFTGOMzdrvffODRESAf+Hu916e5+V/+Pvf+KUKptq+9faz5PHfO/3aNa1Pnxa1W9CYmTW5iBiaSSmFqKlCazX48fJgRESIzquHNc1MBGJM6AOLtJKaiCpZDAMZEJhJA1VQlZodAREdj0sILqXl+voaAE6n0xCnIQwxRlvLuq5ENISACK3UMDIAaZOiGZwAAJoQEkLaTOxdNLKSRQVSbuuSiiIRI1EuDZGQiawzQy8oKKSnUyM9n5ci3cCDgEiVRIGcFxF2rGC1qZkgsiIJGKCXhj6yd8yMYGQgIpJKJrtkTM4TOSThJqKtxYAGBQkce5cZCTzjbredlzOASoVWtA2KJoQQQ+j5/jhF1WZmtRZVRWiltM1maq3lsh4OGxGcl5s4hB1smbzjMUM+z80lG6OP0amUnPPt27en0QOoZ3SOANDxOE6RGc3E4NI/7Qeqc44uNILWYZXb7RRjKhlMgTCoNUR7xlf5Kaznic8fd4kIgnkHU6TIwKa5VVghV4jRV1MFiyOZXPAG51PZbOP5lG/f3k2Hw+uvXU+TGUjnpA4x1lqXOQ2D2048z1kwod/cur2rWdNaW5PAQB7muQFCVQhAIrWh1QohaIwYIORjzgnAgTNo1rzzVeBiBv3s/XzSRit9pgy9mYrIZvDvv/JXn/64q9t39fa1ZHgyhxVrVUqfCV4Wo5iaQWBGoj/08Iu+5UmMM0N5Dlj6+1//xcMQmGOfz/Q5TF9Ermnx0TXxOefSaq3VDJHJM/Wh6jBs6GOq+NZaadVKda6EMLCn53+EiNGHCwTQpJSirSLS73v9l/3FFy8D6G/efcImaV+qrcv/tabO6WYz5pxLyWjw+9764F+8dxlDO+cA9FtvP6Os/PHjrxGRUp7ls3gR9iDvnIo9kXduYsW76JyL0TOCGRBBb1n01sHtw+HmtNSWU9JpIGJj7iRX845KKZ4dInoGZu6JJHs0EwCKMfairEP/bt+9hUiLLWP0m81mmkYm2B+2KWcCrk1rzYWa98xEquaYEBBBpXa3aJCCtVhH7QIAImE3iYaGiCJGBMxsKgAwjqOqtqYpVWbOrTE7MViWtN10Aow0lVorAsfY7eEFQNBc0kI0BO9VNZWWc66tbUaPiMRMhAQIgWMYmVlsGUfPjMg4VNyMQEQ+6ovbQ5OyrqtqraU5jzH63X6zrueuRwfgVbWUZmYq1kPVNE211pxTLWaAIpUoXl8fS1ZU55AdWzdOCJ4QdIgMPnT9LiRjGpixp36AQMhPQWzM0EtyeIIxIKIY/f0Xth/58BnsiTHw5cz++DXcT2i9e0CsIA4AEJhtGINn0tZKaQQxZ8tZbGz7/fbxo2MD2Wz9PNda67gND69PgWF/cLW0DmM/HvMw6DjGdUmrNURyjh+8JTkf3/PKYZisaPHETV2brUqZBtdqY6ROtWSGJuLJyMHGgyjwgFlsThB8uW4eiRyxqoq23vZkB/LJYKm4p7v8pMh69rM/ef63xnHsnra15vZcRCPvcqsAz8v/hcssmN/pa6oCb2NfIiMTmvXhY5er6WtZElLto0kzU+1ii+YcDXFoUpBIQZ5/lYjIHMysM7c68vmb95cZy+959fO6ARsaIF1A0SG4zt5DdH/4+ld989UnbGU+v0qrIqmJqmkr0rQSYPQBnmiG9/W8rGFff3r/nQDwfCPyT22/o+eJXzP/umIFyQjYzNCI+PIifeCcc85VRBwbkTk2IrjCzencAFStRR9i2HUz0l6NjuMYQvBPzEamaXKe1mW5uXl87+4rm83meDy//OKLIYS7t28/ePQIzfb7/W63BZOU0jS4rgpjirWIOXTOITkiCAClad9nz5S0NDGpQs7XXJhd9EFEOmicn5CF8MmlwOyJrObS52C51IunSoHdduDg83w2A23CHp0nFKm5mRmxy2VlZ5spikBXxiTHIm0YBu8JULQWxzaOwziOuchmG0sp8zqb6nbLzKyQwsDe2LuoJoiGaIRWcylFnGvdydJ5chxUVVpxznfpcrlQ+pDZi4ipnI5LzgAEzrlpGL0zAgUwZm65mDbtcO4L3V5qzd37+2KfbUjIAApAiD6lpEoiZlaZ+ZVX9o8fnOflIvz1lBDx/G3yk17vUlESIZo1gTWZZ+HBGbKgWC8PiM5LddGxA2ZQBOdAkfJa4hDSWoq0F+7eevTwcfDgPJRqzoPzTq0ta91sNndulzWVUlqrkhYgdk1gKQUJmDxgQ9DoOeeGnpk5Opjn3CrcPsDL73sPEH74o28+epRisFJqU+gJHBGZqXySCI0fp0H2dNVae1a4pFUVEJ9NWrUjqN/+AfnARN5MRLS3e/oq0p6PF53L3E8qVW31WVRPKTEbYe0Ksk/qCEXk2rIB1JSWtT2fTjIQAxk6NwydCfO8elwcHJEBCiL3HkSrCRGQiMCJqIl+xVtf+OfuvY19/IfmL/yWzcfhI/czvHesai4hhhAC6tvhPqrPv7x3X1+z+U+/4sEvV1UiQWQmNLNcVhXwDgFUTZFg2gzMbCat2WY7sNsC6hBCiK4bdJRSajoPITCgJ46eO9R5GAZVvbU/aG27aTPEAbd22O5UlQgYjYgI1bSVktJyDsEDNFUAbOyQuLMUmiOHhk+JQCHSDqJpa0WKgqp6TxcWgQkRmkk/onr61hFRqtbVc4s05xwYmQA4KKXE6K4Oh1KKqpg1QiWH0xQ7KouZfQCRXGtFkhCdAVwg4qgm2bR5AoZiTR2DSWslm9QhxGkKzFxkvbm+6bOLGKKjy2hiXXITSmsrJQFajL5fdWaoTQGgShERR0zsVAEJeKA7t30uZuBqrSHoYbetLTdNcRhUFQFMBJAFDYBVMhH1aCgiXQq7w1HXpYQAaa2I1FqvQMt2N/oAvPSdB2JQAf0J+WD+pJYCIYCp5AI30ko274kYWyvkaRzjuq431+t2csS8zBkJGAAQ17XEGE301dceb0cvWjfbcV1yn/sFN6SUcqr7A4QAUqRkzgWrNfYgCA6gteYdaSscB8ckIuT9zbmEwC+/PIUxSJmL1vt3p/e8dOe/f/DodFxvjiBNgQDJyTvxxz/55Z6SXcyeslEu6xtu/b0/+PoHmXlek/e+q8X1JVK998PwLD6uad5ut85Ra2rWEJ+lSJ1z8vS/OVe15tn1K1KeC+yOvUF5wtK/kNVUVbV557z3qlpyCSF85fGXf+P+7wPAN+y/56vPX1RrZUb0Dp4orT/9060VkQoAoQUiJ806XzWGUUT73/oj11/URKZpUmtFiv94CJta61+6+/3/7qu/aBiGYRg2YSildJu658Of1uaQvurxr3qX6fnT9RWvf8G4219gQ2D4ZKAMKG+99dY0Tc55VTCTWpuqAKq1EqILwTtGu1hgW0fbbbfb7gTfBwfjOIpIzWUI4ysvvTwOUbXtttvT6VRL7hKHIbqUElHv6ENrhUBE1UydI2RsWrWCkUVyIUTVtqYFEG/d3m835On40TdXRxQcg4rWFth1uVZBUUVm8M4BaFdX7ERTVd3tdrWIaA2Bc00Afoh+GALihoi2+02tlVZ1Dp3nzWZDRDWvuZRhjExuXtNmM8bgnCNQ84MLngC1lTVOGzRDxP324PxQclvLWkve7XYdFgYA0gAYa9XzKccxIDgzbNXMaozWTzupAgDDMALA+XxWgGGYRITBXnjxlhqL2FtvPaxtIR7bsmYpMQRpLTB1jx+pKoTsLzyc/sZbFREj0hh9rb33YuMYVZtovw0TIDCDChgoM6qYfZJmyu+yRA2APTgDqFJ1kXGC0QfjNWWZNnA1Ht58/aYKtmqtkB/UDMRQDB7f5MHDdrM53cz7K6hSxJQZS6sOrArUJc8LHK6c8+YHSA3feiRiXsw7l0qtw0ClgI6KaK1CCOoCVdUAyN4TK6lV0WU9vfc9Qy7x5tgePsiPb2qtDYDYRWnpp74JrsOZQbGHHUL48td/y7e9+H/vP06liiTHHoGen+SGMAFZfi6t8244z6vLlMvaeexPf0QM/rkOY8kJjCFQjL7WNE3PZhabaQIdci3LusZIuTZtbRwmAp2TxGY5Ne8mRnD2nLdna0S0rjkqhDD8qeFZGKqC7IbLbFoamgKQG6KqVihi8hde+j4A+MqbL769P6DDJdVU8rfsvvdjd+ov3f1+APg/vfJPvvzBF7Y1V0eiFcmglj93/794tjPD1Fpz3r78rV/W5e+Rmcnn5fQfvP/ysK947ZcxUmsthGEiOJZiCuhQVJ1zMbjWwPupTx5aq4ioaj2I5Jy1AYVISj0QizQFxxjSUlUhemZ0RBeed5WkwAbCxUopIsdpmk7HhcUTYl7mWsrgXVFJpQJArRpCQGQzRSNVFQUmTDInXltrhKxgtV6P43j/pYEdSDNEvD4ud+5s2Ptca4PV1LpwVFpzjJGIqlXyjA0I6hQ17CmtMEaKcRSRzdat6xonLqXkNO/GYeLBEVJkMytrgsnbNgzTcD2f/Oi2XJ3r4mnA7AGgFKlqW+cQTblKXRDb4NAB7MKWXaiVS1NRUsYlrcdzipFulrJBtWrB83YzGci6aC0aQutDvBBCjJHJ11REzI8BzciqI7y19aWYtzIFPISNc9Raq60476SJmfYBT2/7VBEAKnVW0GkaIzmChNb222hmYojg66rJ7P2fNv6z/3o1YKBaGyBuDOZPjTHKs8WgMaCVSgSkEANoE2hSKowj1abLeooRzQwIwMNxgWkw74PUNDgwBbS63bo8NxzZTAEcIazJzIIKmJTTEfjWBE0ReYyaS92MbnBOpKnqdhcBQcHCAOwQZ746bOdyhlV5cORY+77nNoQQbuF2hJdfGlvFh4+Wt95MDgYAEBAENVR7Qq6DjiG3bqsi72icviMBvExREOBSPsLb8ri//L5//OWv/1IzM2h//uXvf/p9EUnPqV0BwLfd/57f99Ff6r0P0anqNx6+++mPBu+er5T/zz/j//v7PvKLYozS2m63+7P754JXrc5xa60f4957QE7rerpZzGMiJMToN5txeB4E8w1Xf/+PXf9yAgzOR/9MLxMAvIIjdArN7N+/+n4A+Nr8a4hozRUAvuHu5UV+4+HvfeXNryDnS2t/6c4/evrrv/PDn/9D8IXvuG6MpKqwuRCCR/j6O8+ozX/k4Rd1cjUDe+JV11KMiMNg0zQ9fRg59iFEGkHt8XERA3IeOYBISrWCMbMhqKn3HEJgdmaWUkopee/zsloQHnytteTcKUPneXbOI1LX3QkhIFop6XS+6aMAE1WV8/ncZcpSSl1qv7WWcxaw3p0AaB0bo3rxqOol3uB9kdaqxOg2wwjEPVW/fW+/rmvOMhaIXpllE/wuHN58tBLiOI5SWymNCcfoSineDyGORMiMd+7cCtHVlBHxfP2YvdtO20LdQ8a84xACORSRuN0OQ2ytVWkb7zfbLUDptbnW8nSEHWNsIoiI7JiwG/4iOWb2PiASkM5L6XH/sBs3u+2m5vPNyTH3RqGYLkuqFZznXJqa9CTAO0PmEDw+MdcNzvcskryjLgiP2KeCTI58l21n0WaKAKgqqo3JEzowagZiSAhi3RQHDEwBRWQcpv2+nM5ddRM6bvGTMiV4l2UAqhq8Q7AYAE2IsDbdbmPOudbsvUO2nBsAxOg2ozudSnRCDOMUHGGp1Tm33fvzUq6uws2xmEIYQRqooAovueHNzTCEp38RUAF0jN4RiggBmqKZtaqb/S7XXEXG4A1tzbmphBAcx1bVuj2JM2a498J09x4/fnyTi5yOUAXQQJTQnAEDrWYV4IkKzrtuwjsRNmZQcv19r/7Cv/jKf9m/+W0v/sOP/bVSijYBgC9/65d+273LA/7iyx/nkV99+lXjFGqtf/z4JbXWb7rzPQDwF9/zTz7uq1GVdS2IOA4TEYGCQ/Le8w7OJRHRdjPtpnE7Td7Rt8m//eV4YXp8w9XH0dr6+uVL7h0uw4s/Gi8CiH8yfuc3lV9HzE31G+1/9pX4H/fvf+Phez/2GWL4OB3AP3/7H3zcF/8nl19HyAQKSB0TV6vPVgEgMj+fLHfIpPc+pWRI3sfeR0NVa+ZC3G92N8ujlLOJELJgIyIGJMBA3A16TbXkLLURkZLEuOk0DyQag49jAMJSOr0bay0AFn3IZU152e/3vcqGC4IH2cAQCcAzggldQOZIZMh0oVSTixG992aotfXqr8IMrHFAz2NwAUSZzDz64SqlNPhQC6+rbjYbMbi5ubk5z7v9kPKypPri/TvDMIgIkbKw825wzBiQbPBBtRk070YVqTm3UohhnCbHIxPmp9c1k6NLWGdmMywl25MZnan1Afe6ZkRyHNBAW3XOs3cM4JBNYLu7MpB5PREBIAybMQRXa2VkM3HErTXvueNdLnBRx0TYHXrJ81PY/JOO06WJISrOCTBJwyqGSOioiNpaRIQYar18EEweEWutfoj7w+bm5ggIiPypJuf2hQC1WYgIagBUmgwB+4QdjLrbBzOHgCKWUptiuHd7ez6fveNSSlLwHm9OZTfCvbuHx9c32w3nJszsmJalDpsIy1JVNSczCA7AIBLVpkNgA8lZzAHRBVaNaPM6g0cgbCrIBNitPkBEgJQYzFStAqFz7s59JhxysnmR0025OSlY9xWIrQoAE5JafUfPAd8+OHYXSXCDp5ZSqmomf+jRB7/l9ve9c8+eLCII7MyMDL56+dVfP318eMqfSr/eO2JyhOId/bjAqf12d15m5xwArkuupUxxOOyu/BW++ugtIrzaHxhNm4jKNIzwiQ/Mv3r4svftXrlQmxHhuUT2/u7QTM/ris69i7zml/3YL97tnyV0v+fND/4f73/CDfm65dcG8uAMUHqX00zGKYYQQNF7X9f0FJ+08bG0FsgVBQ5uM0QErqUwwBDiZhivttvBww3cOOeYnMjFQXAcx/O6SIjBeRM1Ue991x8chm3KS4c9dwJPqgkRvWeRmvPaWum3ald+Dn7sY2jEy3iktk7paa015xyyMzPngmMnIrmUYRi6V0RHzAGAmfnJg1pu2TkXRvIcHEHNBcEHJ85x8+BcjIFU1XZxu9vkvDYp0xij5+V0rKXcuXMn7rcKhohBCdA67stMS091h1hrrk0wL7Xm1hoNoRKqCDOz99pFVFQBaF1za62X550/KtLWeSHnNpNzBI7YEUHT0/XNvBYRKKmmsqbchom9jzGMpWapEodA5IPjZVmkZil1iJHQkMC0df44koV4uZAQEeySPKr2qTGVLBwIALUPig1UNc0JUGOMSKQGZtoxNYxUsk4DI4EpsOOm9ZM1M32XpXAx7kGAUqooVDFV0CQheCBtVRB1GKKq6lL6NbDbbdZ1XRNcXcXzmsct3zyW0/lmswmvvV5u3RrWVEuutQLgSo6oEysVHAMT5LS6AABqJqpPxbpIDOd5rhWGjRfVVcp2v8NmatikISEA1tb90FFby1J200HEtKZxcLvNdL9pruV0Ws9na7UBqHRcy7uOoy4ur2gOQP/xf/l981dN7/bwn14/vX56AXzFGx/s078Oo/Het9aDOZpZJ970r7v2XRewKLlVaZ2hkNfEzNM0+cBdm6OfVWMMVRQp/OiH3rx+DI4HwNadWj+lCxEJbePc4H2eV4COSIPRBzMREQPwDCG67uWbz42IbuZ65xAFTKQOwwCo1MLpdArBHw67R48f3bp16PLPVRozXijwhs65mkqtsNmSc4SghBb6uVsvii1FbXdvy6O/Safdfq8KpZSeu3aaloh1tzJ0nJdKRH2jzEyxjePADs+n3OMvovmAAPQv/+6v7G/ZfeA7/8pf+Su/43f8jt4gxj75fZoq/nQo/On10+tfZ/25F76vFUEjz0EVahWp0mpVEQRgdJ5d9CH6QIho0Iq03ExEWydcUNe/UYW0lmVOHaTFzKYgDYOHO7dHBGjS7F0qoE/eMkMEvrjiMCBBUWiKrTVmHzpVSXsY0lqFfVhLHQdccq61hhDO57UWSfV098WNcb0+Pnrv++6e55tSFx90v9+aWUpVFcl5IheCPxxGACi5gVrwQ69REEHEPCN0rp53hC6l0lXRSq0559YUwLVq8znnLIGH/SEitWVZ01pahZZoOdabB8mjjYG2Ix+28fZ+e3v/Tp7Z00rZzNyT1PF/iN7ET6+fXv+jWUMYmDn4oE1NwbPrIH8CBOzmqFRKAdHgfQNV1RC9c00FPLF3XIu02mqttWXvmYL3TK02M9ckbbbBu1abiQAgwydDleDdFkJTcQJdPbPWPteB1NR7C8EbiKqCUataaqulTZNTlS4ImJe8nWIpZZz8a6/Nt25xjPHHfuzB4eDXtZ7PeusKtEEVANNaMhMgwpbZDGsBR6aquVYB84FrE0fsnZaSRts659SMmdGoMaEZAjMiEXGuiFLrutazKccpMI05lXUt4xg3m22rWZoxsxGr+Frfto3vIOe4i1DG23fm97/6+fdvv9jV9Ij4cDhst9t1XR89esTR3bt9S1LajQMRAZqokXeP5vzmm29WUe/9drsdY5BapjE29cfj8epqX2o+nU6baft1z8lTP7++uf1GE2WoxG7aXtWipRQfXK0ZtJiy937JCzLFwW/GaT3PUpsjbwgXAZvgEVEvZgaYc06tOueGELW1lopH8uPgvX98c01EwzCt66pm3vvXHh8fPr5eUjHgVNSAnPOq+sY/+hX95X3ub/j/3DlsSfLd7XT71n6L+/M6KwgHJgYQBUVVXbI+fPxQ2eIYirSWy+D83dv3amubaUKD880xhjCGmNe02+1OpxMibjZjCOFmOd8cz0upWWTyeHV1FWM8nm+aCjPnVogotdZxmlVa5/+sOW02myAxpRTHQERFypqXlNI4Do9ON12Ot+TaUVSmuNlsjqfr3W43xqkjnEvKqi3nvOZ1HCdkkmYiVkpraiGEXk3UnLqVM9pF3/9w8DnX83n5hT/3F/ybP/8X/cJ/4+e+/4WX2SDevbWeTtF1HGAjDus8v/XWW+Ptw7179+BwC87nvCxA2FoBgEDBh1iXc2uFGIIfcBjzsnz39/+Dv/+93/ff/eAPPL6+Pty6dXV15V08HY8GsJaVmZvKzfnkvRumMaXU6nr79t1x2DyVg6wt96FWT3Oii0SUlrXWfOvWrQfn+a03H/m4AQDv+fbVtuamItLMe89o0Tup1XtfUjWzr7l/UVw/bHdmhu7i2xedT5jMjMkrKAKaaMuFmccQwVNV8d43lZQKIuZ1NUPH7Jh9I2ZkootFBFBKyzjuDrvdzTGVT7E10vNLFXKu+81QqzAAEg3eUs2qbZyiiKxrJoBxjD5oKXWMAQGco7ykdc3B8bzo7avNMqfj9TLGcLoRIu8IltPZOR7GWKuUUpqYCoCkw9WkbemeInlV8jBNrt+Sg8fFStfK7Ir6RappZ2223JrztN1FAynlTLBpqqbGzvmgpQJH9aMaQ8utdWsdqGt9RpT4WGaOQwRTB4CGz2h2Lx0OKZX1nPJS9tuNB9KSnJYAZZp25/NZpDaV3XaKIXi1Wustz7bbvnH9MAwjD9zIWlUBazXttmNtZV1XRPxEofBb229i03EzRt57HwEgSyZPAoDsisFuv0lpaWitlby0pVQwMmB00JUQay4xhM0wenZEKtbWUmtr5Npc62XGJxqsjSGWKmBtCGP0YV4X9H6ILgYyYyA3DjyflzEO8/EZpPPuNlDLgRjMPXjz1A4gWkUExYgIjHpPN5slqZ58jGOb52VJOsBcV2qQS8mtrlbPuVo6g9ojSUlyzhlO7H2s0nIqqbbW2nYIR1VmNBAiADDRqqqb7f54OnnvmfnxzWPn3OFwUNVVKgdfq0SPm2FjQNWgIt26uns8HnNKALCdBu/9uq4GcufqChGdo9PpJsaIHiXjWmoYBjE5bLZLTpIasgNB0BFlHYJHBAGI4+gIHj18ixF+3mf+0l/yS37JL/6Cz799+8pEAbW1uiyLHR/XtJLnGNy6rMclu2G6/cqL26sDqN189NXt1RXvNmBKjWsp2bTWRJ5wmABxyUkfzQ7wV/+6X/UlX/Ir25L+1Q/98Ld/x3d+19//nmNNd19++fbu9um102a3vT4dx8202WzSsprYFLeahSNEH72ClgrTpKroVLrkgxPPftpuRIbSZB83bV87ZXg7Tttps7k3Pn74KBGmlA6brSNe17WUlLSQf4bB6HOSgLR1IwDMaZmmqVaptQ5xUoWc82Y6eAQHrpoE4jF4MfQkiMh+o6o9l2zes3OnZZ6miewcvZS8G93tF+4ebx4vxKD68Zv/+ElUxjcAQjEE0HMq0TmSKiK5jsFXF1pJCxoHHuec81xfujMWB1JLh63EwaGSGVLNc5mdY2A4L8V7GAKralIkEaI8BnaAzvnjXOJmaqV2XMGyNkKQBvO5Dt4tljDrbnIhuLkUzVKr0BhHw9Pp1Fo7HA59BB/C5MbpfFrzulZBaYqIwzAh2Zqq6xV3bmQQvRtjeLZ7gE8NDBDBEJxddCXfhu5EAA5+2AwC4oJ3wbvgvPdXRGEY59PZkRt9IIMyJwMdhoGAbh0O4Dk3GXwI3mMYwMSzayog4r333n/1/Gu/fvPt7/ggvhW/FMhqUyyFBnKEzjmP0AqYAQoQGCJWlTWVprXjENF6bxf7dcnehRg5eAQERFXS7qxm6Jxz7LS2YlKkkTkagzVZtDIzDWGumbzt95sDO3IegNYlk5HJcwB3tCEOUuuSU4zxvMyqTVUROxmeEJHIITsAKK2u69qNYoq0Oa0DYp5TabWpdqSettaM11xFBC+VQhORzt6vtao27z2gilSR1kfApUpvS3e0XW+mxBij26g1bU21NZWU07IsCtaBUJ2ziHaRax6GYZ1nVSvd2KuW483Zex9jVFQzKNK8C5VAtQzDJq1limMq1VF0xI9ef1jz8mu/5Ev+3d/1Oz/7lc/QVkopp9NJpBKRD26z2wJRl18EojDRYdz6YePjWEGBmbZbGjeICIzQxJsAAqhC53SaGGortZR2/aMf3owTqb3/Pe/98v/D7//S3/pb/tbf+dvf/b3f8yM/9EO73S6tC6gQcRclE5EkbXNn45x78OCB937abo7nc5WGtTGzcUeN5K4YklICusAGSympltFGMQPCXFYDLVJS0rSspdVSCtQGty+Xw7IswzAomJqBqPdRFaRZd/vrHPMYo5FWFVN0nkqVJlVEhjFGwrwmaepCmEJwwXdZ9f1myKWF6HNadrtpt8NHJ/tEk9BPptIpXQhpAtBUiTA45zyuaWWiEFzRJk3BGqMyw3qaxzHgGHIuqkAmqi1ncBE2w1ByQ8TDIZZSzucSI4IaOjidZDuJZwRrV/u4rgt5YDRiI7tIFBIpeQL2yIXJAxMRIQMAIVGaV2buwaRjmLq0VdfQTUU73xfMmNkHDs4zcKEWvfNM5zw//6Y7jf4CwUZw7wyEAAAgtY1XYZrGcRyiC5vNRrSptjhOztATj9M0xgFAaykpVYzAjiPyYXt4dLxhIynVEUtTYO1+8z3j9d7/ifXX93jsnAMARnPOGWgDrW1dzyXW6onNTMDAqKn0a7G1Qo6jcyEEZm9NFAQITdUImZm9M4CiggC5VWTyHBWktIpS0MDI1pqXOQfnCPB0mvu2Zque0Y2MSMjGiHEYHTqA/dM9CcFN2/F81CIyOQ/aALlTbOwyW/Te+2KGTNLjFJgfYmfCVFRpkltlZkNr2ppUBu1MDEBUVWYkYnQMAOy5a/YQ+dZaH2Cq2rKsRKRqABhCzDmXUmMcuheogNRWm2lptTUttU7TxBcCtDW1pwY9IURVVbAQgikyrz0/KtK89zfXx3HcXF1dzec3Hz9+zBRKjiYsph/5sdd+8//8S/7IH/wD73v55bwux+sHXehht9uFcWtmCkZETcW5qGatNRqGwUcKI3jPzgHxDh0wa62EJKqMAaAAEYBB5/Grt+oBbYAppUQu+uBaLi/fv/d7/53f9Tt/62/7v/61/8f3fO/3/osf/sEXX3pp2GxuTqdSSg/oTfU0n5FpzakustltKec8Z3QBEURqr21VoDR1wcIQzUyyppKP87m1VlvLOXnva61lTbUJABgh47Pc0AjDOGhtQChiSL40KaIAIE3mlEXEx4GgGxibGpZSUkuIFmDwjtRRvxFbK+xdjDECqTQVCoG1NR/DvbtX16fHivzEj/BTudS6ZVQxUBFkP4QYa3WEYlxNxMyhOobgQAVyLkNwmyH0mbh3brcNr721TBMcrjbH4/l4SuPA+/2Qc44xeEcDVyYDU1MbA7bctRcaABABXBRnoUk2ctQMakUFZO98n95UMOvu9faET9yBkLUV1QYX1wkhBoMAQK1kInaEBsLsp2H82Pf9ZGPRXTTH395N9N6PzoUQHJgZmmhJRU2cc6kVRUDmosKI5B1UKiJVdc21ArAPTTWl5BGYuZW6rmtvKpsZASBRaxczHCSrIrVUIlIQEWHGtM7WhABjjD4OYppKmU8nF8I4xRC7FZ+pIRCF0GMNmllVKdK0NgBQIGIARDFTrf3kA7PSWkm56zCbybLkzmFQ4KYiknsLcggRfZg2z/Lqfoc3UANLUkbvVC5ZNgECADpGxw7Jx9g1Uhw6571zzlCLNANw3hORGSCSD9E5N8RNh26pqguXXcpl9SGmlDofvYmpofMjUnjiQkUxDB2zraqErkkhQCA0gyqlmQKiInSXCTHzYTBt67rW2pZUrvZbJk/EtQgz7/f7Utp5XZEIyVJqiOXWVbx76/Zb9bEZ7naH0831i7fvftlv+V/9O//r37Kcjv/yn/3zO7cOw2GziYEcs3NKYEgAIAjsBwpOayXHbtigj0AOyFF0qgrkLJe8rCRWltU7ggCMaKJA4PxlwMeeW66Hq0PJZcnLtN0xcU6LA/7f/u7f/Vu/9H/x1/7m3/h//o2/+dEPfejl978/19qhlJvNJomklLb7HZmVUpqK95EBjdB7b4qlipmR464r0VpDIjWb16VPSInAOaciAsaBAWhgz89VykSkYLlVAFIVVuhWN4jcFQmZHDOzp46DFDAVVQHnWVVB5SLxg1qrsm8xBGY+3lQiV1obI+ey3rp1CB9+nJq8O1Duk7Ce6EgTgRk0haXWhnYrsqgta8vVPHkjZJDg2AibtLXKwAzAaxaANgDcuTdcXyfENAw0jtgrJ+dcK3U+2wt3NyUvCDCM5MhuXfmlmplJE2KMPqhqznVNRtYgg+fGIsTkPatmVZ2GgYjWde0CkT0T7HKlPjj3RBYMQF1wzOwYN9M2r2VdzkwQt++EzbyTmQcX1OizR+z3+2k7ORe0as7VpBFY8GGaptdvHiSpZT4CgHPOs2tmoppKTjkL4HZ3aKbsnWgLQ9BUe2nWe/89UeoN+K4G2qx16Dk5L6bGZKrNFABImtbaWhORYZrYO2KqKqCCaoyucw8ACJEBUQ1FtGspukC1taq1m0w5T1pbLdkjuWHo+qZEtCyLiTpiQI8AQMwELad1zTVV75/JNzTT0zI3UWY+rYvq0FoxM++6wARpq4YUBu9jMAQABTNkMoT+aTGzZ9e1KmMYmNmQVOGpdAUSEhGgOnV0Wa6TvbomjZm5SMuyIBE6FjAjROJUSxd2JXSAmJuUWnsf87wmRHQIwzA4NyC5VjMzn+bVuTqOo4g5g2malnwjIo7cOqdp3O6mbV7ye1953+393Zub04v37nzGe176sv/Nb3/x7p1XP/xjt3a7D3zWZ7L34gyZiMgQ0TsgAtNaCrMDZkRHSDiMgCRqyFzXpK0MPrTzCjmBmivVmTfnPHsgbCZaVHLRtEJr59ONK+vmcLWJ2zktQ5zibteWpcynzRB/15f97t/8G3/TN3zTN3/nd/3dl97z3vt37y4pHY/Hw60rIFyWpX920zSJGbnQq+mGwoAAoGa11n6+ApOZEbGCGcI0TUSUVbvSrDSztyP1uxpjt6UXkSrNwIBQtAGA79LcnsmZmaFZa6pgPgbv2RBMLgc6M4MIgCJiziszC4FIBfbayjT6F+4dPvTaTedNfMrTQ+hClSBiKiC5HQZes1YlQE9I2FQVphCSVSCnCnURIqQQW82Pju3ubZ4mXhYpRadpKKWczus4eOfcmmpuQuwcIVI/HsyURUQFwUgdq6GBGGipFgAIWQ1FmiFHH5CJxKDnyarIfOn5EQVGM4/MHXWoqkCo2oZhHMbomAHFh/D8Hf2x6xIN37HHnbUKAM5dzB8EDIiKFHMkBKWWcRyNaa7ZzEQxSzN2jIiOrYgfImoABHIuOjeMIwH0e77X+UwOAADNzFJNRI4JFV1OicmHEDq9qZTSz/DNuGnaOimKAYkcApJhSRkAuvJYny3IE3E9AaMmRITIpsDsObppdMxcahURQJrGLVj3LA4i6oCdc8lQWy21xfFZbuhdFBEK5r1f01xNGyiaESAhIKASAlFpFQCQL3qliAhM2sCHgQyQPKghknOBiFKujqGrtHUkV98c7yIAxTg+EdEifeLRTo6YK8DFi47oIgWkgKrgHBlBk5xbFb3www6Hw4U3Bp0uPZVSrCZ2AZCdRxXJqYLROGx2u/26rp78+9/7Pql693CLld7/8ns+7X3veeWll8fgA9O997xEzvHt28vpNF3dklKKCDKBgYoRsZt2rWYwUyIXArBvYmJAig5dA8EiJDWotJQ9kiOoa4KIwOSAAKEbfEttt+/drrWm+Txsd/s7d9J5OZ9vtnfulkfXrck8v4UA3/SX/4Pf+J999x/4ii9/8NbD9336+8ZxfPToETPHcdAmu93u5uYGDYNzyFRFALAzVVpr0lo/lft/n8KnpzEYEGJzwRGyQQNyvQnbV22ttkZEhiBgiHpR/m5qZiE651w/oK1zHMhQzXvnvVdrSOxCwO4RVRMQjuNIDofgzikrY8p1CkG13H/x8OqbN+1TDIF7GmpVDfGCQTaDm1WqAQMzMoBUqaCQBci7UlopzQyiI+cQ2YdRHzzKd+5Md+6F0+k0z8k5jBFzqYOP201IuQ7DsEpO57abuFa5uFQpIEhp6YloXlxLDgQuRFVbS0bmaRg3m/H06Mh8UefrnPEQgnNO6sXUsz+D9x7IWjN0XFpjou12C9iqlHfZBPdx3euv51MyICIRYxfMbK1rrTXX5GIYhlCbG6ctAJQqPvheMTKS8xFEQcyssXMo1vv9tdZurQtdNpEdh2BmhOjYB1VHzi5sfXDM0XkAEBGxHvuxlNKjIUCPAYBECpd8k8yeZVhP9LSJyLkAALUKGYxxmLZDqz2vxmZQSh188D602ry/bGXfTfKumfrnJlDMjtm1VnvAQiY0ZyhGrIYA6jAgUyq5XYogUIR+h1xUjkUZgbs6QG3KZKI8BDEFQ+cQSrYnveTaRQCBVC+SxV181BBjGGutJbceK03Bu9iatFYNFBGbwYWOSUjsfIjahzD9jYAty4KOxxjSmqZpamI5nWOMqnrYHm4fbh+vT5/5Mz5rM2xMVPKPfM5nfta/8bM/l0w307TZHzb7q2y2GE7v+bRWZovOO4fMAFrLiojoAyGoqnce3QCGxMQOAQgpMnuomdk1y6flNMUBGVJOps35CCGQI/YRwgCqknNJiZyjWmGeY/Au+JtHDw/DpqS0GUZD/tA//Wf/k5/3ef/FP/onX/VVX/m3/u53fOADH3D7w/F8IsDueXbY7U/zWcFQL/pa2PXUvcMNdrmF3bRZlqU34EMIKkAO2TtDNDPyzgOea37ueuCqwgjWKgAwX+zP+8HjPTvH2lXYRInII5cuzoAKBs5HdqhmzbSCelQ/OCdYmgArGReRCKY1+WF85T3Th37sbSIpn/TVb+HLPMGgOzGBWEJAAI8EVgkFPZQCc22HyWkzQVCFVNRK8QjjyJtNePhwiXGZpgktwcUQohzPOXhM1bKsravTOSBAB5fgqwgm2hogG1tn0BP04YqIdJviS8Vjvbt1aWoNAzMLUWutav8sKARP7GutYXAlVyDvGHKu6TmETddgfdYkNHJ2sZp+W0RMtZS0dPfCIYIhZJMK9VTSBLbZbABqNw4Gs2kcU0oKWEod/GCiHqikEjcOkXLOXSsFzWKMiKhNFKk3yzrNtueJqGjNPDEZ9ENYTcFQAEyBkamPVkRqrcAY4jjEKEtjRDVLpXTt667FEmOUUlMtzNwlPJld5GFebq6vr32M42ZKKWURBUzLctixiYCpGipqT7jyc/4qqVx0FkpNIQQwaK2hSt8EMmhBDeGpFIIRaNW+sWLa0kIGfprYYa0qUn2MPjxzow4hhDB09YFOxWJPYtDahZDZ/WqcUhck78qMfTe2262IlSKkSpdGoV5gA4illFqrY3o6hiOiXIr3/vr6epq2RKSIu93ueDyKyHbataG99+X3bqfNZhwH5w+7fU35lZdeds4FP9C4HeMAccqgIWzUpIpAEyRDHwCgqhICIAE7QKpVmAnJm4qAVxRUNIMielpWJFLCbm7TVFAEPCKhMQG7cr4ewohIZV4xiJ/IjcPh1mF563ra7HJKqu1973nvwwcPN4erP/sX/vJn/OVv+6Zv+XOf87M+++WXX3711Vfv3LkjTRiRnS+1wRNx8lYEfRuGIQR3XmZVvbq6IqLr62smurq6un702BE7hmbSFZXIufJcNNzsd/2DVgXvfWu5T8Oc9wDAzhEzKDK6fgugQ2rQWiECQAtEopabuMDb7Waz2cQYj6frVDIQgxEBp1w9glF6z3vvf+jHPvRJjX4ff+GT5Ig6SxyAA5CgSjXTSDAMJKBrrviobrc0Hsa0lpKEGXxwAJpLHaJr0m5ulsEjkonU7XYKbKU2h5KLIuLV7f15Pnp2uwnNrFlPlSiXUutFy6pXPwjgvffMqrrOs+tN3ifto0saCNCzqyrSbxNTVFQRydVKLkJaGURlGIa3v+OnAZEAwCGwUTN1AM+EvApoNBNpqhBCY2JpzRrd2d8Va2sqvawwxcP+1jIvgf0KlQJzdGuaRYUjV6oq4KPr84F1Xc838zRNgFCbQMnMbKQOnZJcnM0ImmkY3Ok4d0O00/nofQwhUHR5LSG4qmCEWQsBikpBaWoigoFaatM09WHuOc9GdjzfjONo2fb7vdv4127evDkdnXfFsi7NOVdKqQ12VztB67hQ1FJK6bT/NS9P9+R6Po7juJS1p+jW1lJKPzB6LDOy+XyDKE+YqtajVS9yQxhqq+fTcbfbFckppQ1vENFWOZ1O9+7d2+x2Dx48EJHtNOVSkbGU7Jyb14U8EdO85qurK6matWFwLVkxQcZSpKFlKWGKx/kYKbrg5/U8bqYQRm2W8oqIqeRU1hAcIgrpOGxzrrvdLmsiZva+VD3s7xfJh1vb6wdvfe5n/cx7t+4sx9OP/eCP3Nrt7293h8Ph7qd9Gm73XXKaJEcz4xHNHBESGKhpMWgOxbwxMHSHA8fNjLQ4Q4ZCrbaaPOH1+Sy1PXz8iLx7z9076+m4295Sa2upm6uDBQvTlWcvVk/rDYHskKCuwka7w3DYlJKrlpqz9zhEpzWlN1//3V/+B37WZ/7Mr/33vvp4enS4fzud50PcXq8LgC7zeZo2pjgOw+O3Hr/0aS8DwArlve+7t9/vf+RHfuh973/vktfD4fDoeH1cH29oF/yASiHEnBM4x/xslmEoYDaOU1pLrQnI2BORu1BluyGeGRNicApwOh1B9Gp/ANWcc8JlGIYxOgWYhtFExVQNw7DpJ1bNeZzGGOOjR49kPv/Mz939y//uiBCRshogOlMErJ8s3cOnb+wpF4OgS1BQEx1910pHKXh3t8luPc4tr64VNcAYHaCJNEYg8lWEyHmyJYkajB60tbv7crOAEoDzKdWbm5v96EkrKxpyzRLHOK85RG9WvXceKbfC5Gkp03awQGvKI4WUcoyx1lJbjjEyMxGraq2l57aOQ86ZqaGRiOSb5bC/3SWTncOanheFvSiPdNsZBHxivve0VdB3xIzZ995WzjmtBYF7fd7tflSByTvnaq0i2kyHIT5NQ3q/73xazudzbhUdV5VUCzAJ2HldTsu8pLW0agil5XlZlnWtrbnAhthUq9ZmqgiKUKQsOZVSRGrP53u9nHO+ublZ1znnVaSmlBBtGMIwhPP52LNI51x/kcuyHI/Hhw8fdkAfPlne+z7hubm5WZbleVkXM1vfruF4PB672l3OuVflz+fUvUl3Pp8vDHC62D/2V9ILcFVdlmVd167hmFLqaf/5fH7zzTf7C5jXtQvHP3nxeZ7nDiMQkRDCsiwi4r0/n88ppe6FklJa1vmiuEfU3WA69oWZvecnxykjcrcP7FPylNKyLPdffDGlcnV1tRn2WojMv/eV9+x2uw+/+mMvvnT3/gu3d1c7YshrsrKiVlIhMCBAUwM1E3tyX/YytLd9e6LR/1YfXEipiIhq59Op78Brr71Rq5wfnuL2oIfR3z5s2KfX3tCyVqpQFQG2222cNqvVYg1E5fGZTEkFpW3juJ7OXZmnzsv8odd+yRd/8d/+7r93a7v///3XP0BjfFCXMA4P1tN054qG4Kfhel5+/ud//tUrL2xfuPe5n/05wcUf/sEf+sAHPlBynaZpXpfHN9dIrtZ6Pp9zzuM4OueO89HoOfUnT0CW87rZjh0Yj4gx+s1m45wDsJxz5/mklFR1mibnXM6ZiHa7nffeddiGc71CijHudrtWSvT+1uEwTVO/VPb7/bqu0fPdeyNA1q45pQog+DEmPJ/0paIA0OuTfj0/fnxCxO3IaoVYYnRNGoCOYzAEhBoDDpGQFAlihO6+7cKw3YYh8G5wV9s4BHSMIQTk7vaFpRRVqLUyISK2VqKjmlaTZqagvbnf7Zugp3giUkrJOdVaFaC0dhkxS6vSusd6v0P77VxrTfXdiD29uf4xC5GZh2HYbrfBD8w8juMwDMyulLauOeecShZTEe0ZEKIBNtGKaL2SzzmnVJaUq+h5Wec1GZIhVdGmZmS55dzyWnJVQYfNWlNdc1pzyrWkspZWxbSpKMi8nlPJVRp7B2Q+BgVbc1JrtWViIALnSKQiWkpLv5LgiXitahejb2bmvfd8sStrrdVcHj98NM+nJ5pXotr6F91C4HJZaOvuQmZCdBkTdwA2XACcIlI7rJIvFrn2NOzqE180fSJN2h/Q7xMReXzzKNfSP2Agukw/VZ4+DAByXk+n06NHj06nU/9QELHH+mkz9ninqqWk/hc71MDscgD0t4zIZsiB33jr9VrrrVt3VGE7TS/efyGwe9/9909++ryf9wuZ/b/4F//iB3/wB/ZXu9t3r9zgzUTzAqlgbVhrzammxbSgCqCBXdoC9ASzZV2pTi8NeZWmpVhty/Hk2OW1vPHa686F/X5/vjm+IVUV/Czt0alGphduu2FMbzw6SplTZvLhsOfdVgcPDHpeOwZrE4NDKOuMWgNYOl6Pa7t54w2cxv/3X/+bP+Oll37gh36YNsNxPg1+sCLvf+kVWMsXf8EH/60v+lXvf+U9d29dRQrnxzc/63N+9quvvvahj3w4joNIHbfjsixNJNfy8PHDJS0N7ZzW/Jzmai+PSquGepGlyfnm5uZ0uulH5jyfW6tGmHM+nU4iYoRNpXSP7FLmdT0vSz+eFSznXEpBBFWptSCC9y6lFcAQgZk/67NeRAICb+aZEVDB3m1C+klZCBAImNE7qq12/I2IjAMTgrSG0FwABRPTYRqiBwIxKYwWI4RAwCQgwH6aJlKJVvbRvBljC5GXtdSm3nsgjrFDZLDkagrDGNSAHTmCEMLgAxH3iLzZbPoV3qGOquqCN4Q4DmGI5F0YBxfDsJkQsdaSa0olVwN0z6tB0xPHan36fwB4Kij3ZAsQa2u5NFGo0lLJpdXSWq6lqqBj8q5rLLvgpu1kaHOaFZU8cfB+8Ox965asoDmv69qZG6214hx5z+RYwZpK0wpk7J2YllZzWXNZe18s57XW3EOSiNTaNXi5H6eACqiIkNKqKs4Tkj189FbKi/PUWjETABWp3ZL88ruEUsuynFNaUlqkFucoBNfP6k7pveQ1ADE+27tSyuFw6PC9nnnBxS1PO0iwT2CGYXg6r3xieAIA0ANxv216rHyaLXbM8OVT6YrNCIZwXk6n0w06jjECaCt5XVdE857XdV7X2TlqreS8huC224kZ+7t+CtBHRJFaShKpeIG7d495Zsb79+8j4jzPu91uXfJLL7xwdTi8/MLd+7evvuhXfuHDtx688cYbn/3Zn/szPuMz97tbVauZQquQFlgXy0lKriWhNYRG9vRIQDMAvRwDHU5k1s/x2tLqQgjI5+MRpE3TdPP4+tUPf7QVyQ9vfvC//5ETqTvs/LANYc+bq93P+jnTKy/DMC7HVB8dTYyi52kKt66MUKxB8E3ruBlKSSoFtM3X11Ta6fG1Gn7Xd333z3n/B+aPvvXCndu3OHzhL/j8z33p/X/4d/6eL/uNX7o3emHY/ILP+tz3vvTyl/7m/+XP/pzPfe3V11944aWHDx8Om6m1Qj6k2nKrudUk2VAV7BLpAQAgt+4tQ/M8T9sRmKrKnNbzuhQpHDi3XKRsNpvNZtPbPv0aY+ZlWVJZlzQ/vnkk1gy1UyQfPXrg2TFST9j3+/04jj3BT2nd7vlwC5gZwJlJF0D8VC9HYAaenfe+NBCRW7c2pSijjROKQm1tHEcRuL5uSHEzTabQD/TguFPdRez6PKsAKAxeb238wICgnb7S1MQuBUSM0SGhAhE4QkfQ24PRsaqSQdOWa0Gmji8RUwUztFLKkpOACVinFfRcSlRzLbXWVEoqGej53O9tmbWZfYwzMQA8GcumlFqjUlp3h3gip44dC96DXa9GU1rmep6miRyVVnItpdWmkmu+2l2llMQ0DLGptCzMDAi1ZmYmAjMSkSbFQNQaIIp2sCoAee5ht6bgfCnWWjMQYmhSem9brJUmpdUexE7z4oJHJgLuQgOq2vsL5/O5X5S9sxNC6JrJPV/bbrd9LtFj1tNo9XRPas0A2loJIfSa/WnCRYQiahe/2st0u/96r+tFxLnQR2CXGZlIL3vRYZHSTNGxqqJDJJ7XNTClWujiHQh9nqymm82mp59PEfn9ZXQW4JrT1dWVc26eZxd8zhnUuoqUc4GR1AQNgvOttWEYWms1t/t3NpHdi/dfyGt5/3vvv/jCS5/+aS//yI/8qxfv3/+sz/zs3X5Tay21Bq/Wal0XLJWGEKM3dtIKsQfHcPFQ6/HvsmmKcAHKAaAKSJPjueWU53Nn6YrUw257OOze/Oir+7t3xyEC0enmPO1uV4zpWHe3b2/RlVdfLcdjIOaNV0byTOaa1iLVPMQ4nZc5LTmEUFHLw0c7d5+2vqX8bX/i6//23/72t5br/efuf/tv+23Ht64/49M/4/FbD+9d7a5ufY6LgxL/N//tf/ujP/qhz/u8z3vtwet37967OV+HELwf33jjjRj9/RfvHQ6H0+mGPT3fgy+5jdOWmU/nmxh9KtkQXPBmBhfTvbrm5XA4xOhLyz66VmpKq2NENPQ+xnha5n6+hhDO5zMi1pZ94Kvt7mEr3vPhsLu+vu6Q2/P5+MK97XycUZwqDKNLn9o5M8AF+wKlVCYIDtZVr/aOHLQKPozBryomYoRoYOfTMuwHRmcsCD7XWrIBADl6dK3RF+/gsN9f7balpLWKSB1HdMGtayHCWu1w2BBRCOzYcm3kUFVrXnka1nUdwlBrFpF1nUppzNzrOSIq0kpJpTgAqFJSWlJK/cbvSAwOvCwL0rv5WV5M5vTtzdiqoqi55RhHdGjNukkGmlS5IGbMtNZ8XOenwJ9+/4tISmsTIQLmnpwVUw3j0MtVCkGfRJxSCjE4f1FRFxFCUGld03gchiHa8XiU2hpgk1Zb7kdlKVmkhdC97F0n+XWGb7+8AARQDVTN2EXv2UBCjM5xztl55xidI+eptSZax2GbUurvos+gl2V5XmWz9xZFZJqmeZ6RzHlqjTrUsda1B6aUlv7FUyplv5SZ7Wlijwb97Xc+TEqpT9g77sNAU1nVXRLGWnNr1vPHXuZ3LbwYYymle09fX197z6qtR//+knoe6tgDkNmlE8qMZuCcS2VtRW4dbluT1z/6Wp3XT3v5PT/v5/zc0eH9u3d+5If+5RCnz/vFvwjIrcdTmdebmxttRgAbRO+YAfukoJYMgYgMuhP0henZtAkAIfAFmM0MxEYsLWtLaT6/+cbrP/Qvf4CI7t+///jho1PL7fXXf/S/+ucf+Pm/YNiONcDgpyHr49P1rc3/n7b/DNZsS8/DsHfltdMXT+rTufvmO3MnYPIMgJkBQILRhMQkirRM0WUWqZJUpCCyIJds2fohlqtMU6btkizRpESChpkBkAgkICJNuhNvDt23c5/8xZ1WXv6xzjm3Z0hRwhS1a36cntt9ztn7W3ut933eJwzFxEXnMWIYCYNAOZtB4KOxa9bORGN1ORys5gtnrKK+P14G61DG86q8fPHCv/UHfv/tB3c/9iM/jDAeTSofPR7QSb4heNYbfffWg+lkcrxYPjjcm042l3dXjx883tnZss5RSkej0WBUee96rVJBcL4eIoJyUHVN6108ni2q4ajvW2MsACReF2XYWOW9V0av12sp5SluiFBAgGNMn53xru/71PplWdata9Or4XA4nU7tWT9BBfXKOwuM4wsXhw/uLRECayL8K6zb//VdjGLjglV2PCrni6ZpmrLMmmUvPAiRGaO6TmUyyzK8XrcnS8uZ4FJqrVUfMAYuOQKiTK+Nx4i5SE0ALjLKnbbWeUwINdoAit6D9954BwAMc9UrXlJEsItO696dmuaGVIMHBN476yyiBHxyfk02RSRlz6dhVDGo2rZ3VouMe8++Z6ac6pVz9P+skflucZ4xpuubrkuu68YnNwvdN81aqS75IzFBEQ0IR+cNZbgsBufAMMYYYyQkFZIhHIVkmAAmIDPOBUU4EoowxoQipbuzEixyzkI47fLSUCc1d5RSxom2KgHyvVIRRR8DYEQYxZgWRXGGRvNE23bOA0DX6VSvWWsJIUVR5Hl+Kj5VerFY1HXNGMuFHBSlDzaCRziG6HywmEAE757gagrJjFVCstSSnz6xM8zIWntutX9OiUoPhJ5ln57zyc833HB2WWt9TIpXb4xBBGNKuBSJspM+MIxxXkgASCTz1IlTStMHbK1FCHFOte4Tx/OsWSacy/SpJyVvwlExkDzPy6zY2dr59Mc/cf3Slcf37znV/+iP/K5MFIcHx5TSrq3v3X7z1Ve+9uDB2/WqOTg42Ds4qLs2xBi8t33vGgUxorPFgwAieIgegoun8xMCiCDAEGIMDnnntVqeHN+9897jhw98sKvF7N6d2xRDtz9ve/3KvVsvf/XX7778Nbb3GNaHIS54h8AhKHNflV2I0QWOZZ4XwQMApkxiQM6GjIuqKBEEgEAYOdh/TLQDzuIkxzl/8cq10HcAMQZLcsIkmkyGZcnbxXFRZpTidb38/Oc/f3BwtJyvPvKhH2CEc0qno7GU0ii9rpdKdanKOF8PGFMADJikyVhRZOkDRQhxQQGFpGYBjJLxWoyRCQ4EA0IY414rwCi5kBljuq5L+GrK9lrOTkJwzuqub0J0eS5jIFZH5/yFC3k1BIqp9wih/8XNvggCSgg9laqFsiRae4yxC6CM9dFRjggGQpwUWArUabDeueBd8AEAU6AUYxIEJ50KTe8O5+tH+zNlPOe8EByiQ+CkJIJTIcAG730wNhgXlYWISFYWIpPaGsJoephpNpV6o/MGjhNaZnnikzJ2mpOBInCZBYjaGs4pOfUAOLsinDXLp4jD+7rL79kNhZA+WOeNMUYrSykFCDFCq/qtrS0fbBrZYIycC87ZzZ1N5xzjQkI0RvnoogcffZFluChWqxVBqMgynPxsCWn7nosyvedaq4TKEUIwIJJ8rLy3WiOEow+cMWOtEJRz7oNL/Wy6ur7P8xwhRMhpZAdCKEYoisKYddo4+r5Pg1dKabKQyPLMOZfKt/Vi2batKPPEcU9j8XP+9vkzSeVeURTpHyakPJ5Jx9MwOjW253OPdKWutuvU2YjDAI2n1EVjGDv9fNK30lon3jXn3HuvVAcAjFFvHcIxw+Lk5GgymaRauOs6pZRSHaW4bhopsmSOFGOUUvZaIYRiiJxzY2LacynFIYBzvsyK0XA0GY1NryDE6WR84/LVD730QdWHB/cPXnjhpeeee+qtt19/45Vvvfnmd65fvXLpyvPLpmm6lgnBspxbHyOimDCR3vlTxSiK0UeLvENndDBI2IFz3lpk7ezo8K2331zMTtpmPT8+0lo3TXN0dLBsrev69ewoL8SFizuf++HPZVw8df1GNnzRxB6PKL+waReLECIJkXqCCWuOTzLJGWMkg3bdcEyQyFbNLBAIITx+7961jaEfZX7NZdMc3Lo13dyQ4yF0vQSEvZvv7Q8xDhnvHj9+/vnnf+Yf/AOlzRe+8CNfe/lLBPCFKxcXi/livQAIiCL0BKv//Op7zZgATGSerep123cRouAsxLhar621PnqlVFmWVVUlNMNaKxMl02qAkGWidkYIhlAkBFlrMykHg8FyuVw1dZ7ngE+hlb53J8frouI+dNdubL327SNKMh/d/+LJogiHEIpC6l6t193G5nBlVn3fM04QeGuNzGieE6WsUrbImI7WRB+MAgSMAUJgrQk+MM57ZQDAeNuCnQxpkfEYI4QYgmcUG+spBesswogg6FXK30Z5VvqA6+W8zKUNjlKaXqtUaCfgHiE0Ho0JIev1GmNsg++6Dp1pPRJ1hDHWtbXV/6rzg0YAhAGCezJMyrgIhLoISluMSTmQXdcxThBCzsblakYpNUZzzmmeGWeV0ZwBo4TgaFRPCJFcOGMhhABRa0U5w4QqY/KybJqGUIqUWi6X29vbJycnUkqMiffB+0A5AcDRAxOccgaAsCXKaEpACEpoyJgIXjMKjIi2qUej6blWnzE2nU611mWZAwDG0Pf9cDiUUjRNnWXZer1CKJZl1rRrKfPRZDRfzn3wvJAAkdKkt48IQYwhZTicP5Ne9+PxGBHUNE1RFFmWGWOyTDbtKsuyLOdcUEqxsU7IwlobosOEp4mFc05IAjFaa7IsU6oDnJXDrG2bADKBvsn51VorhPDWtM6ORiMppVKq65tkHuVjoJytmxrg1F0ZMNLWcCm4Fn3fj6eT+XLBpehUW2T5arXqOigzuzkd5YVsODXOm96PionGUUopMb1++drNi1euXbz87DPPbF+7+eob37py+eqkyvTy4XaFj6Y7hye68fdcyEB7wbht1NHJyZVrV4SHi1vbmk0IoSjiGDQEi5GHiACwVxoIjwJCJIBFDM6sl6GeH58ctvVacvFoXr/59l1Eyartjl55Z1X3pm3+yE/8xO7ubm/dT/2nf/na9uZ/9lN/YUfu9ZjzPSR2Nsl4Bxvdcy8jBCbKEdN1HVSf5ZkxhhS5YYgHWPQ6gDs5vDM9vjgsnguyR2UzZsQult3JwdL2xMcRYYxEI0Nf8+jar7387auXr0y3du7cu/fUzRcogtn6xGifiwIz4pyhqKcE4SemKEqp0WiEMRJCOEe06ggGpbSjGCIVQjhro49B+3yUScJ02xhjGCZ5nkuZ62PV1CuEEESf5XlZDLy1dV0TBBjj0XRijOq6TmRSK7sx3tLt0aNH/UsXd0xoNnay3euwd6+HmAH0AHCuKDsjMMD34WaPY5rK4IijjRFDFAhUCOOicFZTiqyOzbKVImvbfjIqjG1jBKudtwRjgXFYNRbHpDONUso+Kh+iMUEIEqLJCrZubGdgWolaaUpbAo4gpI3PyyIEBxS5Vhnjc8loLmjX9LUigtnOg7JZRTwhhGSEsGTvwgS1nlEuEELp4zDGIEratrXWAkaYkr7twANnsV41mdzs9PH5/UaIaeSIEAXwCKEnXBueuIpCHB3MMEBWyslk8uDBA219jDHP88mEhDNbMQBIZUjXpbQ22rY9QqSu26Zptre3Q4CkdqKUhuApJYzRLJPOueFwsFqtjNGcMyF413XGaISA0pTYknLTvXPOewcQOedZltFTR5AghICIlVJt26a6DwDOJdlp7EsITrAdpSS1qG3bpiDm0Wi0WtVp9+m6Lsuy9G/P6S/nvhLnz+ScMQMAfd8LJhhjjNHELkyUMWOMlDKRb6qqAoC2XTMq8jzv+ibPyuVy6ZyhlKZ8S2ttluWUcoQyxpix6vQGvQsOEmENACKcWl2EEIRkaRBMGbZOAwJMgFB0BhG4zelGXlaSixDCoBxiJI72Hi+P5sdWX71+bXO6tTmeFDzzMV7a3R0PBk9fu7Gzsbm7u4swfevb34gEc4G6fq27xcsvf/XW3YdP37j8lZe/spWPphsbr7z9naefflZwFiY9G08CzzFFgNMblAzrQ3DeGh2tldOht157nUmOMomIAMp3ti++d+vOt7/97UcPH995+NAD50X18KB+76hmAP/Ff/13PvyBZ378d//u//Kv/fTf+5v/nz/2v/33/rP/009+5LOfWzVqM8+yLOtaDUwagnC0gE/F4LppEqu0b1rAkVJ6vFxi5E8O9sudK/l0CurELGuOpFGGItYsG93XPGNKueXM6Kb5wNM3sBw8Pjy5vLtd1yvvPapJ3/eYQCFLABqQX6/XhGAYndURFFurMU6iQS+kGA6H8/k8MQTTwhNCeIhAgEm2nq0TpGuDD7obDAZpDJhoDFbruq5DCJSwwWDQqxYxprVdzOZCZF3TCsFGo54LiiNfrVZVlQvZmd7BuZzu7C0O4fuaNCMUznGAM6YURoAA1nVbCEQxKYd0uVIVRYyRrlcy48YaY4AS1GsdAozGVCvQ2lkPIfSUU8awMcYYL8RZ2ipAjHE4GCDQgtPog1qb9WqNGOuNtQ5ySYyyHocM4xDCYrEwUVdVlef50XJJMSnLcrFYLJdLLkV6FwghiAnjnfHOG00IYeKU6Ukxw4hQSp2NAPAkbvg9mx58V7r8E/8tz+WoGFy+fPn+/fvHx8ef//zn33z7rbZtGWM+mGQNkvjAIYQsy7qu01pfunTpnXfeiTFyzrvOO+eKokiTspROa622lnFOQ3CMUcaI1j3GiDEiBEuMYoSjVxZjwhhJ1L8E/3PO0vQ2fd4xRowQIaTvlZTyfICbmMnp64TXIISSQCX118YoSmlZlsvlOkF4WZad8xhSEZ4WaOp8z59JUvglvM85V+YlIWmmjCjF3qdPOSKEOGdJXJweS7KbPju0Q4zxjCdo0p6bhiHnOGNylFL9KbzogwWgSqkEwycuZ2oEUheQtmkhBCEsQESIdE2PMpTn+eXLFyejyTM/8RPPXH1Ktd27t95eLRaTQfX01esE0eloPKiKS9evg3cnx0fae1HmzWyxp977+Z/9R698+/Wtra2Do8cBkMyH77x7G9+/G1F49PCu8CAie+mHr7tqyDkDCDFY5ywCT1CEGAkgzDk4jyPijARwBJFiNH58cvDwvXsQYHNz8/6Dh43SOsLDu7cC4iCH1urJxvCdB/sv/1/+yv/rv/qv3/r2y5/81Kd++r/9K89deSqfTP3BLAyGmBFpORRZ1MYZnT7cbr3y3gcbhBAmaqU6IWS9Onlw570bL34UQrQER4aatq2qoso32rI9eO/holWaOh7ixenQRLroXc4AOzS6sHPr1q1MyCtXrs3nJw8ePOCSIYS01aV4P2MoRNe066Io8kKms00IkWVZ0/SppUgfbgC7WM2N1y5amckQQqfa0WhinDXOlmVJMSGAvHV921FKZV5yxpxnCKHpeEgAAeDgXJ7xNQdjOiaR0i7P8/HEHTw2AOicKYIxOpfqPwlx/s+5IgI4DXVJDqiAAQjCBAeMMYpxPKyW80WRY+es8+AsUIZigOQRBYCVMlr7GOmZe19MJAIEBIG3HpTR3oNkKAbfNI034Zkbm4JgIdT+8SpYCw5IBEow5qFxnjMG7FS/gDFK9ZDVJrkdp/elruu+N5QiRRnhDDDCiHDOU0WSbGyc9zIXp15W4ntTot5/AjHSxH44k6e8v2tuTSYEYe/9at3cvXv35s2bv/Zrv5llXEh6apnn/blgUAihlAKAtB9PJhMp0Xq9TjNTAEhWw865tm2zXDhvAAUuqNY6RvDBCsmsTdwijDEmBDNOkjFB2iCEEM45QJhznniqgmecc2uDtdZaOxqNkntwkpfUdZ3uJeGb6aDO8zxFHaa/lqDA0WgEAEbpCKeKunOE8clR+xnZBSOE0rT3HJuglCpl0pbkvSuKQmttrYEz5NF5k2VZ067T78Y5D9EZY7JMCMGXy2Xq0wFiCD7GUJaD4AFjHMGnEQ2cyYXShpsqWXTqhM7P2ZEikxhThlnbto+P944eH2Hws+c/SD+Ff+izn/vcpz/Hy8yeHOi2sSaWuWSczR8/aLq2mEwkkwcnj2b7ez/9//trlMn/+Kf+8/uPD/7m3/5vvvS1d3e21GAAUpAXnnlqc7I5GA5/4HOfrm7esBHFqGKMIfgYLIIQIaYJEwYEWkVEKS+0NYhSXJQG0X7dnBzskeg++amPPTo+/tbr+xYh5TxCTZlnzXI2HA04G2IIuzc/+OVf/9k//qf/7E/+xf/kL/yl/5w27tKlS3YoBQEYEMS5Wq/AGnZqdIlDCAThiJEUGauw1ev1ybFeLeR4oAkVuexPTN/4erkcjTef/+AHl4v5w+O9PCchktm6qwS7uLn12jtvxxgvX7o6a1aP9vauX7++c2l7tjhp+yacHM3nNZTvvyNJJJ6ag0RIIIRIycKpG3OxXC6V6ZXpAUUfIxPMGqe0DuAjux5QAAEAAElEQVRTII/kwvSqt45zyTAhCFtrV6sVY6RercuyHI1Gfa8ZYx4iAKzW8ykfZllmld/aHh8dHnr3PqU/6UTh+/PETgj4E9VSehUFo9HZqsit1pShEIKUfL02CIHSjnNCMGirGecFk3WtCLKE4ITwhBCsDYxhhJA2ESIkTxaGcd8bHCEA8d5Np9O679vODAoWQjDGVmVmW2uMxRgwxgSRtq7rusYYktwrNX+pxCkKqZSKCOq28d5LKRljq3p92p+50LZ9CIwQBkAp/Zfjhqcvcpo5fA8R0ToNEDgl1poso0ezw+0LO8888/Teo8cAMBwO27YNISilUi+ZXsjDw0MhRNM0i8UiyzKlUrq5SJtmVVUxxq5v0sHljCU4OWWg6ANCmCBMEAaMUhUGAOfM5PQd0u92zllJ8wrnYuKd5Hm+Wq3SF957YyxjFJ15iqQuMu2t+izzMFUWaWcHgOBOvzjlDIXTP6YrkW/SOivL0hlrjEm1I0IIYyCEMEaN0d77xG3Msjy1z0mVtV6vNzc3IWLrNAYKAGnSnSrHdFPn9xjBI4xTAW6tTanepzpId6qwTsOcdIMYY8bIer1u6273wsWPvPSRQuTOuUySjeHEGvVzP/dzF7Y2b1y/8vS1ixTHfKNyxsznh8bqy5cvrdr+4Pj40aNHv/lLv/DpT37iw5/4oT/1Z/+j24+PIoa8Eg8XVrTdiOCwfusTL374c7/rx8XOBLxmlPfr1VnNjFLwmjM6OBdjFEXhjKKkEaL0wUPww+nGzaeuHRw+nM07cPH65YuP904Qq/aPVsH7jPo+uMPDOQKglIhS/MDn/1d/72/95Tga/e9+8s//yd//b2w/2rz50RdXJwfbxdNDVmAAY+x6vaQQhRARwWwxX5v1INvcny0xo9189uDtt5/54ufBZjQ6Qtjy6Gi4s9nVa63XhJBnbj6jmjoG5OPcLtuck8986tPrtptu75ws5jevX1s069fffqPve4KwYLLI3n+XOGcIoUTY0lprbQgheZ6noWfSbimlmrZFGKSU3kOqH/ter9drzAh2EGO02nhrM55RSm3wvVIRhYhYgnGKopKCF3lVq/VknBtnMcbGaB/c1vbWlcvzu3eTawtJFNckuf1tb4X/IxsEQghH6GwURhN66pKPCeQFWJOkvDgEp1S0tuecZVIarawNIfTeg5CnQJO2MSLIJPfGBO9klTMaBKOLddu39aaNgAhCSArBOT8+nmPkZca8c8GC7jtSpJ5JN1Y57cuytFav10smeFmWUsr1ek25SLa+6SdiQCFGDIgwxrnHp2o/T777nPieY4Oe/zk+cS54b7NczFdzGy1hJC+KV1555c/86T/7t//23z6e7w+HQ/hungcAUMq8D1JmzgUAV1WDrusHg6H3vu/74+PZaDTinFpzepwycvqjU3sIAImao4wOIXgXIfo0kE3z1TTD9f4U/kutZSpIk/ATALTWm5ubnPP5fE4pSS12cgdJg7n04xaL1XQ6RogkVdzR0RE6c9AN3iOCnXM+hlRRPvFMglIqpcdlWbZSOrEdU+GWdvBE6Et/p21bzrmUwvvAOTdGp6ozDcI4P+UPJnDw9KeHkOd5fML0IfXvztk8H5xPqI3RjDFrDWMsCbkQAgzROVfm2cULl+rl+t7du7ubFz7+Ax/72Mc/rFY18nFjMmEMN/VqsVpsDAbrdlbmBRXAKDO2O56fnMzrb3zrO5euXPzij/6ej33hT2gAJitEoFeOEdCdrXa2/sgf+kPXnnqWVxXJhHfKLlcAFjwBf+p8BcGB88hHwnjUhqKIcQhOxQjAqCjzRrKXPvbRvuvefvvtz33iE1a5g5PF7sbg+KRrXO8i2SwL1XtjXG+8rMRf/FN//v/8f/iLf/X//Vf/7n/3333mk58YSL7z/Atofw5TRAKk59YZBes1xlhZs14sUcZdCCZ6H8ziYA+UIULarh6Pxw/eeGMwHQUfBREEhcXBnhACY3r96qVnnivmq/7u3v5iqR4/uKOt/5V/+svLdiWqoq07TBGlHD+hhKOU1XVdlhXnYrV6lAgJqUFLn2xd15RSLliSpUtJzsSg3vuYZUw7H53nnMfEvfWurrthJRESbdswwXwMdbuesOl6vY407OxszZcLAFgtGyGE5PjGUxcePHzgfUAxIoRT30DId03/fntXjBFOY1gSQG8gMo5cCDjiroONjeyUHwYRIla9pQxGQ951pmtsVcrIjPcBABgDhCMG8D5gBJhiTnDkmOJAECjrKKWrtu87aB7PhCDRRdRrxkgmkfcuOF9IGlhQSlGBEkykaoUjKcuybVvvoZIyhJBeNG0txSQvs/POzxmruj4dSxgH77zzpvhut9fzGis9OhpjRBhi/K7aMATnEfROZXk+W6yKEIwxr7766uc+/bmf/cW/3zSNtTaxQJqmwRgrpTkXqQ5KHT4609kQzLz3afJNKZcyhBA4k1ophEgy9KKUJ1Vc0zQxoBiQjz5G5FwwxgkRhBBdZ0MIwYa0/Z5RczTGDAASdpnGrN57pdT516miTi4J9NQ8FTjn9ixuKd0yjnCqnKPEew8pIfMJLJWx04ZdCJFcGzCGNNihDIcueG8p5UIIIdh4PE5Ml/TT0ZkCr23bRJVKQ7EYY9u2aRtNv1jaVRMymzqgrjsdl3vvu67L8zzZoKddOL14CcCNOGitZ7NjiuiwrJbzxS/8/D++++Y7Lzzz9KjK1XoesL969fJoPECAR0W1Pj6UXHjAb775umf5qu1u33/0sT/w4z/5n/wlByAL0WsdVODgEO5vbhb/0X/4pz/60Q9fvnGlGo9PHj7GgCbDESAUnHPGxDNRNkEoAhDOdVuLjEFwqu9ZlgNQjOHy8887pR/du/+J4fSVb3+nYPR3/tAnNzY2vvyVVx4d7dEyQxHnLB+Uw4cHDw9O9v7cT/yJi5vDX/17f+9oeeKd44E8eLi/qbwylhG8WiyNUqvVQivFOOec4xBXi7WsqmV9wjMetAnzBbswcJxrHwghq8WSl8Wibgd5lknmnAnWrHXLRbaxe3k8eebmjatf+trXZ0dHly9s0znpnCGAnA2EkOloer4eMMZt27dtm3qXpBFKPUcqEZLdw2gwMkp764osJ4g4G6IHCAgjRDGBECnGNoFOBPsIPsam63xwWVmYXlnrmrb1Pg5HRYTAOVO94VxSSup6ORjmo3E+O+kiRILB+1TsfF+hAd8TRYUgCWcxoRRBXuaz43UmIclmVK0JwcmUAyHIC0EoeGeUUpSBECythAQUUoqKQqreeqczjgXnxmptwQRFGHUYaRdd9JxiHtF63TCKOWed1REAxVMo352SZ0EKmdC5ssyyLFutVkqpoijqui2KoqqqXGbNuuaUQYimV0WRYUyNaRDC3xM9eL5iz/9I4RSQwuEJ0WMIwDO+eLjsteFS1F2LCH755Zd/3+/+fZPJZL1ep1cRAKy1VVWleme1WqVlobVO3irL5ZJgZm2q8pKvCUrdX2orYoypvkvy3sPDw7KqjDntGb33SmnGuJQyDWQiQFpt5zhx0mZgjJMQJ7W9aRtKZzXnvG0brXWqtvrepGhdpbRSarFYFEXhvQ8RuXhm44oQYCSE4E/shum+0g9dLBYUkxBc6rVT3xpCkDLvez2bzRI4mFxktNaTCUnDrDSJklIuFvMQXBI7UkpD0Ixxa53WBgA551OpSAjxHtLI23vfdc1wOEw9dRqhDAaD1ImH4Jqmy0QWPMqERAi99NJLF3cu3Ni5fPnC1nRUYuJFyQghOB/AuoP6MEfYtO3dBw/7zvBx8fI3v5UPh//8t778rdduecDBGu+jBCoAfufnX/iDP/jF4SR/8ZMfuHvn7tHew93xRp5nYBxgiMHHEJIDIAbknQ8hBKU4o9F5o1dUFoziaPssE8p5uTncNKEcTowyHKN6dXJhe/yX/uK/97f+wc+8+sarmZRXN8r17OTf/hO/53hxcP2ZFz7yY58DZa9+4KJqdVj7x/t7X3nlnRf15ngyfPz4sTN929ZFUbi+ny0XOfHB0G61akwvCCxmx0Fb7yMrS8cW127e+PYb37l044b3ZrHW3VHLMZJCCCFmi9ne44dbV67RrPp9P/5Fi4r/4Td+/Z/8yi+3h/uUslFZptHWufoDIZTnMqEuiSq7Xq8JIePxuK7reBZ0URTFYDB0ziKElVKcSYSg67rROM+4AICu6/q2y4uqKArrvZC87/vhcJBJedz3hLEY4+bmNIJfLJeEUt33Wzu7Xdes1guZw3BYzuddDKlZdvD9Bukl/64ne2wXgQBEABv8uqmzDMUQAaBpGs6ZVhZilJzG6FaLOsvoaJgv59qdWagyxkIAQoBzPhgMtD4BHzEG8M7aMJnkda+ti7WOg1JG7yjn5aCYHR1HAYNBMZXl+ujEhSilrMbjfrUK0UspBRMAkID7BBMlCnBSEjfrmhHqnKvyAoWoYy+EMCZ0XSdlFgJR3+Xo9b1alATPAUGIPKlnjjx4RkBMRoPZbHa+5d16fOvppz7wta99SUqZSPNlWTrnIRKjHcGMM7lsl6PRZLWqB4OBUkqHXgjRq9A0DaW0zIu2bjjnmECMXkrZ922MfrVaCCGyTMQQpOTz+XwwGlPOnLFNU5d5YZzP8zIVU2UxSqQqKXPJckYoIxRjpLVCCGSeYUK6rktnRbOui6wILmito/EYCKeiWbdJp9zWzbAaGKVlVkZECSFd3wSIeZ5HFMuyeP/BRRiUVarDBeNt36SMF6Psxu7m3uMDQgjgyBDutMIYi4xrq5LTXd/VcrSRy7xe1bnMUATJZdu2lHEIwRnjvcNYDAbVarWyWmOMUw2YtIZW25hH1alMFPV6LnnRdT2nzAfddotU5JZ5SUCUcjQaTLY3tqfDaS7yjY2tq09dGQ4KDBZHsz4+VvVitrfXtTWRA4LZg0f7AfFLN57pFbSrfr53WDNZcHjq2V1JxP79+zubo3/n3/k3p9Ps2+8dfPGjH3795VfzvEQgFAKn29g5beKZ+ghLCUgKSjAg6I0lBGMfqLFIr8E5JKQBiNZAEwvJ/Op4c3PSNTtbFzfv379/5MKf+Q/+/N233rz1xmuXL19cGfvUix/8wevXVotOtUjmE19DNPhkdcw6Kwn85te//oXP/yBjdHGyjF5HQYxzmeCrWUcr0vYNtDrPSoP9wpxsQInWjhTjlVhPtq/ee+fuC88/c3j0eFCUi/mx6SnlfGdnh4hsMCjXjXr4zrsQ+Q9+8KWPPPeB77z11sHR4bt37h4v67vN3vl66PuOUuK9w5gNBgOMSdd1ZVmmIzO1ESGE2XweASjjfdcBQNvVRSnaVgtgrelElfW+7mOE6EoiB6Nh6NpSymAszfJhWRFClstl3SyzqpJZrrUuiswHDSgEIMcn3c5luVzy5dwYawABRIaAAup/u6zsJwaGZ18iZBAqPCCMwAUmCQTPKYsRda0eDoVzLsaQqDjO4xgtlb7rQQiaPIsRgOCUEdo1re59VUkPeF13o7FAiGYY67aNQHSv8hwQcYhKyogxvmmNQp11wDOJsOhUSxhAxIQUQvDFcialXK4azvl0MlZKaR37XicroLbvMCXLtkYI5cPKeodZoCTLMuks8vZ9Vyp0ppI4R94pxjjE4INPg/V0DYfDTvU+nkkpGEtl1+zo+NmnXxBCME6EoEopjKm1PQDEGOfz+dWrV5OFMsan5ght2+Z5Ljhorbuuq6qqqiqM8WBYKqX6Xlvrve+klN5Ha32eCx8CIcwYI4QAGr33bdtSTlerVSLTpKNgvV4nFUqRV13XnYOJdV0jhBjnlFKKSeolp9PpyclJnufUs/V6nW4ntb1t28YYTxttkmbHpxpqrd/nGyZoPGF/yYuNc8mYoJjUi7rISkIIQyxiT8GhiBnhQmQQYgrcUUolD+SEJwBA8lWMMVBKI4LU+BtjUASMMTnTGocQUgGSGBvOuSJnBDuWs6bzGNMYQowgpYxBO+fatn5vtT7MDzanG/PV/Pabbw4HOcMRhb5bL5BTOPgyz5bN/dWqnky3nnn+Q8PB+I1bt+/cvf3xj3/y8nRSovoDL9y8f+/2J37gk5/77Oc//OEPf+Mb3/jsZz87Go1iQHVdD6vycG8fkM8Edy65dnMhBAJvrEaESCmzLAvOuuCRoJgxYCxihAHhLDdGcykJQtuXLuV5Xq9WFFGlzPHR7NK169PpmBAy3NlxETlltdaIEMAKE3bnzu3Vqj463C+K4sq1G7/1m1/emlYMgHNe13UASMOox3fvFcOCYqytccbjVPb3rerbGONwOLT95J1btzY3Nw5OZruTjfV6OT+eaW18gKI6uvnMC4PrV/u6v/Xeu8tWDYuqunmDMvaN197glMEZIqeUDsFPp9MQIiE0leoA4Jzrus6YmNYM4xwAEusr6SgQQpzjxN5NpiFSyuSgMRwOAyOPHj2eTMYiz+arZTTRQ+xOvWYJQshDXC6X1tqiKNL8cPvCaD4/IgS8A4yQ8/pfZ8Ae8gCREPDeS0GSVlVInAZ6AAARueBiBAQ4eMAAKWEZocAY9i4Gb9rWAoBSJmGIfacNMlpFAOAYMxIwiqqHmV0TzCx4hCnDwUSgFIxR1NE8E6tlU0y3o9UpKJwwygS33qUXmbHUt4UkTkUoZplMyDuhIKXUps/EqOvV/9iNxhifnKK8vxvO5/MIqOt7dKaBIxjnWbZercq82JhMj08OcykzKaXIJZf7e4fVoAAU9vb2qqo6J815752DZl0Lno3Gg1RERIS8D6vVKtmupBFKqntTtwuAOefWuWSohc+koOdwZCI5J0w67Wtdd+qVQCmN/lQ5a7Vh5NRfkzFmle66jlKSccEZd8ilfS01uYRRTMA51/f9qRMJxCeVWOmbpE0zcQbr1XqQl5SwQVV1iQIaYmIXKqUAIwiRUprnOQaUpknnCq0E9iU/u4QbeO8T4JC0UElPkPwXjDFa6wR6IgeqN/v7s8mkzLJiMCgXYdV1vfeOUNSr2jnHCPO1dcE+Ong0ptV0MtgYDTYmA8YrF/GqXq2aNSA0HG8Qni+Wq8m2/9rXvvb7f8/v/uEv/shv/MOf+U9/8t93vl2uP/z0My+ONi++/ubb+XiSS1HXKwCMET08qiWjEQLFqK+XXgjIChJdtMZ6T6UkhDDKEUJUCiAQA1hjIEbOJPCsM45xpqzOsrzaYkrZ8Whzc2dntVquOrVz8XLXd0dHM1kOZc63Ll2K1r759rsJXG6bdd/3fd8Tgobj8e1b7woaL1/aee6Zp4wx66aRG9miXh8dHQ3KShYDQGi2dzi9caNbL8qqOum7uq73Do+2phNAFBB96533NjYmIi8ODo4uXry49+jBel2PxtOnX/zgc09dWzTqm6+8+ujw0Eawnbp26SLcO10PW9PtgDwhJNkaEoK9d947xmhZFolZba3hQiCE/JmFsLUWA8plFkKI8TQxzZ9Z+QKAsdY6EFIqrZu2TadvNRiEZPCOUEoySMupHFQY4+mmFBKcRgA0RAMA+LuBr+/7ijE6HzlDhOAYvBBCqT5EYIwG7+NZ/JV33nvAOCCEEQoIAefEWo8Q1tpRCh5AMIIwic4wQUL0mESMgRfCG0MIhoi1sXXtNqbSeOh8zBgZT2TdqUxmiBFlnMgzyon3KJwx4dJoNEAkGAnJYoyAAqEoRIcJcHFKBCSUAIC1tsxP/bf+x66Umpju6v3LGN8bneYklDFrbdu2jFBn7J07d7a2ttKg1rvY9z3nXGY8hLCxsZH0y3me971SqhuNBmUuksOz6o33/vDw0FqLCD7fvzDGZVmm4mJjYyPx7BL/WSujtbHWJirJcDhMOB1CKNl+YIylzGezmTFmPBw5YyHEZCwMIbZt2/d90zQU4Wa1TuOn1WqdZblzHiEshIwROBchRKW7xNyWUhKCk39EGmSnKzEYjDFKqSQ9NsZ3Xaf6nhNKAIEPJJ46XSuljNLO2OA8QThRdtJ9pdo2GTim8c45SJpoQ/gsvA0AyFk8WEKv8zzvWt11KgQIAUKIbdtTSkfDyWKxsNYo1a3WM0zBeHuyOLbBCEmk5IDRarW6e//+7bsPHx6enNRqre29vWPlwnAyff31NxPw+pWvfGVrZxMjfv3qhz78gR+1Znz73aOTWU04UUotl0uM8cbWtBoMZJF3XTdfrrJcOmsWx4fLk6Pg9aDMi0wShNr5XLeddylYMGIA5gFCiFqjEH1EERNHCZRVvjG9cONG3XQyy+dNd7JuRTnIhmPK5Px4eefddw4ODra3t4+Oju7euSOEmI6Gz9y8MRpNLly48KGPfLQcjPb2Dt5953aelU67k5OT6XRaloOjk1ndKwBA3sHJnFG8WszatqVcXLx09bW33m21a7XbvnTt3bsPHx2eBEK//I2XT1azd2+/fefuO7/x6//s+Pjx9oXpD332E1/83Kc3x6Pf8+M/enH3wvl6yPMyz8p7dx/s7x2OxtMU7hhC4JwnYXKy6vDOQYypBsQYp9hiIQRjRKmOMSIks06H6Bgn63p5sljklWRSHs1miFIqhHaOZ1me51RwREmqMwajoTL61J4O9xcushAiQQIACIXvT43yL71MhBCRcR4iioCDR0rFFAWDEIQQAeDU5T0SiJiQU38mQlBiQWJEJWUuhhAAIxy8BwBKCc9oJAAoudlDCMgDGBcDwqumc85jjJQGQlAqt2NATdOs6nUaOaTBQEKrZos5IaQsy/N3J9UQfd8nA4H0ajvnyvK72Nffg7GejpLjd8MMzz771Dmp/Vymljxg7t+/G0JIhX0aoh0dHaXBBaX0woULKa9gY2OqlEqLYDQaJbD/0cO99PZSSn0ALjIusgi4GoxCRNq4CDgxn5OSJG0WSc4hmHDGWW055ZLL6KO3nhGWpjchhKoaYIxjhFxmg7JKh0DbtulbJegzz/P0sIwxTdOkyjTtNQCQjPgTdzJtTE+KnAjCECIG1LddQmo3Nydp40scncSGAQDOeSGzKi9S544Q8jEkrwcASDOf9AUAIIS9DyFEa533gRAKgIwJqUdOb06WZQCQhCjWeq1tJjljIoUBWHvq5+GcyzIJEHrVdn1jrBqPx9PpKMt516+PTw7XTR0wolJEgkU2uHrtJhfFt7/z+j/5hV+squrg+MgYg8uNhcXfeOPdhwcndWfuP3gUEXYhTjY2R6PJpcuXh8PxYDD6yldf/ue//luP9g6PTmYu+CzLOGPBWtW3bbNezE4EIGSda1tdr6PWxIeolD2ZQaszRLELjApEMFCcb0yLrc2syMdbW7uXLu8dHd97tH90sug6JWTetu1rr732la98pW3r995779233pzP54ziq1cvM8aGw+EP/fAX/+Af+reazvzNv/nTWttU1ydEWCm1WC2rslTz2aOHD3SvNje3Hzx4tLlzKauG79y67QI6aZvdm0/1EU7W9fVnnl/1fWf1o8N93TfL+dGr3/jq/t6D1eL46etX3njt1fu3b5+vhxCgWddZlo0nw7at42kO7Wm3nvqe9HICwCk4FZI/E0p1BiHk/JM9J1QZZylnAaIyuqjKrMh77U7ms4DgNFKNkHVTa62Lokhnc9/XFy5O8oL6qAGAkH898QDnO0UISGsIEfedcx5ZC84lh2NIHlznWc+pyAUApU7nnJyzVMRhjJ0zmABCkHGMoqcspZEARtEoixCTnBpjAJOmixjxtu2rEXBBXAh5XiilrD19qhCi1cYonRICMMbeO84ZIVipnhDMGNVadV2rlOn7PvV/6cT6F+/0fKx8OkWB7/Zr2d7e3ts/MNZorb1ziVoIGAWIIYT5fJ7kvRjjLJOHh4vRKE+8UyHEarWyTo/H46qqFotF9CBEhlAcDAarVTscFjFGbQzGJEbwPhhjAZC1br2uu67f2thQRhtjCaVJlWKMYVRwzhMZJXGVx+Nx2o7btk0+eiGEoiittd7YMi8hYq11s14XRWGMixERwnKZJaoNANR1V1U6z/PFYpFWJMY4BJ+qQjg163//2SWbJsqwDxaTTBDBObedwghTLtq2M853SgeIAAhjwrmIEWzwGBPvYyruzs+YM0cZmpR5FOJ5NBVBmPPTyJvEX0tnD5zm1ZDVqkcAWW4nm5MYQ6p/E3Y22N5BCKEYKIKiKBlBCMeyLEspjrSazWbOOcp5WQ5u33kwGY5iRHlWvPSRD2vjnHdd31t+9dbjvWuXxrPuYdN0xXBgAmAk3rt9PwAiPH/v7p1vfetbIcBkNH7n9oPZMb95/dqV3QuEEu89jVEIQRnzqgeMwSMPMWKWliyOEINBALa3jHPnQgpHVEpNL+9GpY6ODrc3t2azmfdh7+GeNX778uaNGzd+47e+3Pd9whYuX9oFgHq1yIScHR9JzkbD6o//yX/3F372537pl3/xQx95Kcuytm4ykS+Xy0zKtq0HRV4vVzHA1s6FrrcHR8ef/cwP/p2/+zNFVT5679FwOFRGLZeLdddvbEydNbrrDw8P37v/cPvilc2N7VVd78/Wg7J88fln4eh0PTSrdatayvBstpxujFPFkBrkM4zIee8TDdB7n0z3AJJ5NaSYirSdZVmWqrykNkt+l+fMMITAWtv3feKa7OxeuHXr1nLZ7e5upB8RwQ8qtrEt27ZBgJyFf10EbABgRAQIETzGVClDKeIckvIO4mmWEkJACIqndlaec5JiDIyxMXofIkJYCNIbTxCUkmc57boOhUAIJhQYY23jGQpUIO8dAQIeehsyxnmGmRTSY+QQpdTF0y7KGINCROG0aqmqqms6rQ0hVCmV9qsYTVIzOBfKvAzQe+/rdfvk3T25Ob7PsInxu3TK+/v7g6rquo4SopI7dIy9UnXTOGtlIRDBEUHyaMsKWg4qjBEhGADleT6fz2OM08mm1toZv16uEMFVVWAMxhhtHKU0MUXSB79cLtM7nzBBpXQaFxBCYghpp0u/Xhp6MMYSY9k5Z3xIuJsxhhPqtEkzViFEOEMeU5PrjLWEIkoCgogRZii5t3uIQHDbtlkm03KUeWat1br/HhZrapxTLYkwttoAACKYMbZumrwsjLN11+IIBOHoA4QYnQ8Iknbw3JctVe9wJrD33pNInXPGuLJEQgpCiI8pCEWHEESVPKDsWWcNjIK1OsFnIQQqsTVWa9f3PSWEUaKNZ5j0df9g+ahvVc4ZAjIeTHqtVk3bdieb0y3G2O7uxRhjrwzPcorsrbv3iBwMCnr/0cOMkY9/7FMvf/3Vb73y1my+mu0feoiL5VIZXRSFEFlwt2/evDkcXjIBKxMIwgXDjFGAYKxqVst0OhJCoo8uepFnpMhs9NFpcBZThIxjQgAlAZGuWemu35yO9x/vCZE9Png8nkwPjk++8pWvjEbjzc3N1Wr10osfMFZFH7w1w7Ls+/7q1cu7OxeOj4+X7773sU99aufC7t//+b97+eKlYT6gkTze3xNC2OAjhd7o5uAgywcik6+/9uZHPvqhH/rBz//Kr/7TD774wje+9c2XXnppvV6fzFYIkfVytTEZ+ehDCPVqWdf1aDx98bln39s/Xp7U728TjBFLhsOBj95YXWSFc94YixBOQvV0zJ9Kp+z7FSLDJFhnwCeScJ7nIYSIIKHJycsuOM8IXa/XznnJaS6zJHRLFFRKaUK8k1opRtJ13WCEmIBguA8hRTZ/Hxf6FwTOhEZrbC4ZY0R7DQiqkvvonU12wjFGZF2KpSWUImtjjJFzkqaRxrgUMQnBIgQUR8FwdBYDhOBiQBiDEIwQhYmHGKXASntK8GzWXd0qXdBd10XO67pF0YNAuleUoFzIUmSUUh+9dtYojTFerVYbGxtwJhtLVEIhZYhaSskla9b2SXXZv3hhAKD0NLz8yd2QIEzxaRIx4zy1yVlZJGJz0uSl0mYymczncynlbDbrU4KUtlLKk5OTJBfpui4x4Ioi67XFZynAiZac53k6Uc+dohP4kn4fray1PjWhqQcRQjDGVqvVKesY4jn9ODXsCKG0Y8YYx+MxAGRZRjFJp7dWllERAxpUI8GzrlWMCoJZ0g4m+Cwx59K3PX8mCTxNRqrOucVikRTEIYS79+8powlnmNGEGOR5PhqNRqNRnufnE5K0CZ47v6ZyKWEfaZTk3KkXRgomTD80vQbpeOj7XkopBGCMrLVNU6dOPDn6jMfD9E8AQHW9N5ZivLl1gVHe1P1q0Wjti2xw/cr1D7/00eFwuLOzY4x5+GjP+IAJ67XW2i5OHt96+x1sy5ee/eG/8d/+4l/9v/9/f+u3vvX1b39nvlzvHxxlRZmXA0zl8WyxrvtvfuvVf/yL/+yV199V1g9G47yqYozGaOdcPigppwCRYUJQNEat6mW3mkHGIkVMMIjg+x6MA+s5AsCxKDKKCQX07ptvbG1s7u/vX7i40zRt27YbGxtVVb355pveuu3t7cFg0DX1aFChCAk1vnT56mrZVqPxv/lH/vBisUAIDatqMhqv1+tiUMk8Q4Bff/OtL3/1a03drZr6y1/+MiHkc5/7zOvfeeXm1Wtf/fJXxsNxmZfvvnUbR3zw+PjwZAYAdV2XZemsXixn1tr7D+6er4e2rQHA2gT+mnQkp5K/bduEw5wbC1l76nwOZ+ryNFDmnO/s7JxCigBt23oXGRXOhhgQJZxRjhENHk61pAS/8847SqmrV69qY9JrGzxq2xZTXZTgg08s939dlw3GRhCSEAqYQIjAOYF4Sv4/BYJCTAmShGApuffBWq+U4oJSBpQS54IPMc9AcMoY8c5mGUsTQoSAMcY5IRT5AFnOvYsEYWVA2ZAVxWq9ds4xTBazjnOa53lVVYLxJNGNISQoj3Petj4hCWnqCADJ5j29sElB9z24YbrOC0EMKFhDAAKh71fXiODjxRETTKl+UJbgveCMYMQpGVbV/ORkMKicswgh533TdiHium4AkNWmzPPJaDAeDgdVPhxmnXIyLxChy+W6KCrBSFs3EKI1njN5nvkwHA4xRgDROj2ocs4wjlH1nbGmKDlmSLu2122nugBRaYtI4ha1hCCR8bws2r6TVaGsGY0G0bvVYiGEcDZ4F/tOF1WpTG+cLvPcW4uid17P5kdKd8aYXivKKeXMBQ8YtW3bdYoQJkR2/kzSVps8IJRSOeNlljMmVnW/WLUAONjAMBlkRULKjVJN0yAElBJGSJmV48FwPBi267rK8zLLvLFOmzQUCzEiTLlAiCAfLeOYMKKMDsEnZ8O8LOp1q5VlQmoLvYmD0dDZ2HcOYwIAw0nV1R147h10uo3UjMfDreEmJ/jg4OBocXLcLNa2mzfLuw8fvPrqK8cnh+/eufPN19+0CL397ltduxKMNE1zvPfwYx/72PVnn/7J/+P//u/8/M9Q4bYn5eXJ6Mql3cmgVOvVSArsdSYYFqTz9o0HBz/993/pL/8//tbXvn1r72R9f3+vaVoW0aga56L0PlDBLQaa59Xmdj7eCpF6YCAkcM6KzDgd+jaoPqMZQqTVRkefj8rf+vpvbexMF4uTj3/qE+v1+sGduxcmG5//3GcxRo/3Hza6BoD1et00TdM0GxuT+/fvnsyPl6tVtzTPP/2B9EAuXNrIMtKtZtgawdy9B3d/4Vd//UvferNR8I1vv/pLv/rPCOXPf+hDByfHN5+6cXzwcFKJD3/wGSlQWXHJh7msoveP7txpFvXje4/qxVw8oeuSMgcApTQOKJgIAAiI0UH16ThnhBCjAxfFfNFtbE4RQk4bQZnuFSPcKAUxrJaLQZlVgzzLZESRcR4xX9b944MTzCTP83VniGAmmIiAMJr8hlPIcvCeYJzlGGNsbYgxXrsxQdhxHkMABCzVOvgsyRYAI/ifyNj7nsIwxmg8igB1q9tGTcfTYGF20mMotEHaROM84MgYpDyP4ahCyGQST8ZlWZZdq51F3mGEqXWAqGi0my17ZYlxWGtLaZAYrU7mknocQkbBqkgJithBhKzKOc9J79RiTXJBMgQ9VJkcFKX1zkOgglHGdNfj4AFACEi7XtIjeO8pxQh7SmkEy+kYk+ji6onbSwbmEIJLeyI+6/zRk3OortUJARxWg0TfK/Oi63oEuBxUo8l4uVym9tM7hwDG42HfdhSTtLWVZVnX9Wq1ooQLkU6qU+97zmUq/Var1XK5TD2v9/7k5CRFi6WBgDU+beSck6SH995rbU7HIDgmdVqKdkrKk3N9YlL+Nk0DZzVzUssPh0Oleq01Iago3qdVh+iS0iNJfNIXiUzzJHM9dalFUWhlvTtVGiiljOqSB2iSnRBGEwzUdF3TNM4ljBkLwZKfK2OsadqmaZvGDYfjVCZba41RnPNEqFwsFjHG5CueOqkED505cgPnkOgaANA0bRpYc8739vaDdcaY4CJBmHPe931R5kkssVwu7z54eHBwYJxbrZvD4xOM6RtvvHXnvXuD4Xi1qjGhf+QP/9tVOf4P/v0/9/rrb+7uXKyKQZ4XP/L5H7ly6fLTN5/+HT/2Y888/XRRlBSz9bKWTFzZvbBer197/fX/8v/5X/3al7/eWQgRNW0/W6x6rSLgtuuKcoAQQQHFGIWUmCZL/ZgCzBDBREpwhsSAgx0UclSVTvVf+8pvHu/vIeN+7AtfePG5Z1vVfvM7375x48b25k6ZV2loe/ny5YsXL7ZtmyI6hRAhOi7YcDhcLBaU0vF47Fxo6q4oq177xap5vH94cHQssurXfvOrr7x1m1B67dqNvu83N7arwWRja/v608+NN3fG21tHi+V7Dx6utXYYZdXguQ988DM/9EPn60E7nfz1EMFM8BC81rosy4RrJ6g3gdSEQOJFJLZpYkQkq5XxeHzv3r1US85mq9TKJH8HgDQ2Aa1t8jiPMTZNk3qjZNHknMOYZrkAgL6zlOLLV0tjFUbvF4fnViOQchp+m5cPMaRMcIg+xDQVV1ojjH0M1njnAkJAKYQQuqbljKWJYt/33kfvo/MmJEIiQghHY4MLHgGmlHqPAWFCEVAaMXiEA6IRIe9gMEDJ53RzeyslpAvBlOqSy7JzjlB6Mpt1XZeqv6TaSsh4eokIIYwxRkVq4NKk68k3+l8cqNAz0tB3nQpGh/FwkobFW9MNhPA50+Xg4Lht1aVLu1mWrdfrZl1TRlLWCcOn1GKtddt3IYS9g33GUML30kwHANpWl+WpajjPyqZpyrJM/aAxJnhM8Om6SXvfet1SSjNZWBMZO7UOhEQgKsv1qk37chqzJC0wBqSUSuqXEII2fYWKPM+tNW3beS/zPFs167RBW+sQAUJFGmjYsxCVNCk6fyZpi8yzMsu6vu8JZx6iUso5LySjlCpjAnBxFsuQLJ601ikeS/Bkeoa7TkmRe6f7DmJAeZ6BQiEEpUBKxCl3gIypgQRKqY+uKPLj4xOlFIogS75YNhjDYJB7byml6MyNWSm1XLY7mxOt+53NzeC87nTX1IvlPM9lmtsURZXJUikTCQ0AXGSzxWpVt5/42Ee3L+z+2pe+9sf+139y68K1/82f/FPv3nn0oZc+VDcKIeKtff3Nt0IIt2/flvLTP/Y7f/yPbG7/1le++gu/9MsPH+8FFHa2Ntq625stf/aXfvXy9atlXva+w0pdv3qNV0XoOghI9yoAzqsyOksRIMDgHYoQIShlIPSZZKpeb21OrC5mx0fPPv3048ePv/XNr3/m41xSWo3HN2/eUMbcunUrODcdTxgjW1tbSZu0v7/vvd/e3o4xso41TYNiyLIsokAw9S6UZdXet5PxxqPDNiJ8cHRy9fKF7d2rv/zPf+MP/77fsTiZiaw8WS5Pluv1ek0YXS6XrXKIorLKD+brWX0bWNa9+tbD45O/gH9XeuCYIspw3emIopTijDOA5/N5NciSzV3brIOK5zZuTgjvPWNM644JsVr2k2m01reqRwRzipVSlBJKIb1HjDEEyBrvfSQkpC0yoe3GAEJOKbU7uUAIWS3rroOyNFu7/MEDCJ4hCAhICjOBU0Dw+xmtBEj6POxCsN5hxqL3xrnk3OYBkt4OIeR98DZIyUMA5ywgzDlJ/DFEADtwxlCCAomUIm2Nd0QZTzgAwiRgE3G0QILTBhkPzMTFcl0MkSyKoRzOHjyuSum0Pjk5mUwmiTRjrU2muWnqkOe8rk3f9+mtT51cJlEIDoD3TSsoa03z/m4IkPwGESLpVt73vn5yN7QGQggQYtM0F3d2P/3pT7/y2huPXn21Uz0XdDQaeO9V12dCWmGs0pxQo5I1CxdClINqsZgDRlprmXE4HViH5NFoLRjjOOerVbO7u13XPikEVquVtRYCkcKjU+PVyLkAaFer1Wg0xJj1vUrzk2QGEyPEGPveLJdLLmjSzJleBefH02kKKgMCnVLz1ZwxihlijHZdWxR5qrNOQ6OMGQwGUsrj4+PEBvDeV1WVBn/pSry/9Xo9mUxWyxpjorXujWEEDwYDbW1y8VLg09nIqcjzcrleTUVmjafotDqAiJ0LbWukBGNcPioDRGsdAkBnrMNkcMQ514nuD9EYU2R5CN4YJQQajQar1SovZAghcX3rui5LxjntOo8RU0rLkVwt5h5cYl0tl8uuUz7EGEhEGGNoe723P3/qqWvj0fS/+Wt/45Of+aGdC1d++Hf+7l6ZnUtXv/LNV6oiv7i9QcDPFou6rqebG6+89dbrt97b2rnwjW99+wMvffje3sF8dpwLubl9sWn7d+48+um/8/N//s/8u1GZF156ttd6sVhNJhPMaZ6XymgAZJpOcAHRO6UheOSCU33fdlAVWV72XdM19XRzczSZMiFe+OCHVvtHwZlM8Fa1hPJnnnlmcXwiGOeSJdfbR48exRivXr2a5PPee8p5tCbPyndv38IQEULNas0JvXbl0qqxTJb37txdzOYvvfTS3/hbP/Prv/Hlp556yhnNRb5cLhd1hzBuGrNY1atmORqPvfdFURWDqSV0Ot2Exel6qJsVIigx6qebG8eHR0VZLBdNCKemc0VezWfrBOenAO5EGiOYYIwXq3U5kLPZvBxWo9FovlwaE7yPCEBwjjHu2pZR7m0kKHLKIxiIuCqHy+Wy78xwUHjvCSZKG0ZJ11kECCAUFRpPYHXMAiiMAQE+Y4nF87SA396FgGAIEJ2DTpkIEBHSHoILjIFgJMbgXQQUCQKEwVofY/QeMImU0ggeEHBBvYYYHGUIZ0ApWSxd8B4Q1doBBkKij8i5EIwBHzFCmxPporLg6pOT4eY0DYWKoqCU5XkeMTLeZmVBBQ8hGBubdY0BYYC2bqSUZVForb11WlvBeQTfq7aqco/eZxA/yRiB05ny6TT5u/6D1mG5XEYEUmaPHz8ej6cY4/3DlnO4cmX35OSkD92lS5cIoMXJLM9zFEFrC5iEoLYn42eeeebrX//6cr3c2NhYzOYAaVDmnbNlWRKSPO7JcHgaYSx4FoKfzZqNjUowdubUBqlSCwEWi0VZlmVZHh4eJsg5LbLETmCsTkmk6ZbyPFddn3wDnXPT6VQppXQ3GBYYYxTiarWCM9sbAAAUjNFP9jJJC5i+Pn8mQoi+7xfzk+vXrud5qWxrrfUeqpwXRWHX674PIosZp9bHum4HJR4MBg8f7Q+qUYxoPB5lWbb3+N3xeKSUZoxUVamUahrAGAvGiwwThI3Sve6dc1Vxeui1bZsU34Lx1WrFOMGYRfApri+52sQYog/j0YhTOhwO1+uGUwGEOqfKsjJa4xiKolDKdL0CFJwLyhjr4tPPPf30jev/8Od+7umnnv3IRz/+H/65/3h/3g7Hw9uPHisPQelwfDIZloumzQu5v1iFuDLO3/nnX6EMvv3O3awQG7nMimq5XqxadfnK9X/8i/9sWskf/9HPutdf35xuXLhwgeVFvVgkn0pV14hQp4031gdHMYneIes5Jst12/e6LPPphUsDpQCT0dbO8dEMaYcIXq0WsiqMUW++/mqRld46LtloNEqHk/f25OQk9RY+hrIs68W8qoZlWc4OD1IQlen6Z27e2JheuP/44OTxvUHBr1+9UhXi/qP9ajSt10tvzfb25tVrNzplJhvhOkIyz7U1q9Wq75VyYVBVq+790zENAM873xh94rWVpaSUOuedtYSwAB4AnHPWaIpwnufNuk54DiHMeMO5YEJ0XYcRIIT6vmWMZZlcLtfe+xgBY5xlxWp9GjNrrXXulOEcY3TeOm+9h9FwgHEMwVy9On591oQQzixa3o8K+D6uGMEDkBADQK9Pk86sAwCgEQXAKCIABxEwQYQg59JPhRCi88Y5QAgopcgHH4DSZCHtQwBEEMG0sw4FQDFSwkK0xgeBUJZlghGIBFOCQzDKXL+yW3cN42RUjg8ODhAliOBEsBsUZYhusWowxlKe7/6QhrTOhcmkalbLtk/O5084DzzhXpO+OHVC/d6xOjmFbLU1hInf/NKX3n73VowwGJbr5Qqcf/apZ5996tmHDx9vbm4651zwIpMxpg3e9W23Xq/7VgV36hJ4VuRbAMgyFkLAmA6H47ZtR6NR3/ePH+17D0lwAwAI4SzLQwjJ8LYsBov5ilGRHDTPtRlpApvGsmliyzkfjUZFUezv7ycl32g0IhStVm1ZlhhDyqIGFBI1WkgmpcwL0ff9arU6n08lC8kn5+zJxQsAVquV1r11wQXP2KmuACHkI0QEeVEBQKeC0tZY7xykgUyWZfv7+0LQZHCSZdJ7KyVXqkNnZmKnNt3GpdF2wkO11kIIhCLC0XmbWLtt2yaiaQg+WajlWRmcl1JgjJtOax9tjDaGveNDGwPG2PvImdjd3b1+/frOzs7ly1cvXrw4GY6+8qWvbk03Pv3pz/7Tf/orb731LmL4ZLbqtUOUdNYfLbtF0xtArTarppnX9b29w0hBOUCcNJ0+nq8Pjg739h5NRoNmXQ+q8bt37ted2d7efvho7/Dw2DuPGT86OmrqNsZo2r6eL9eLhe018s50fdfUwVkAePz48Tvv3FJtz0ZjJvPJ9oVnn39+uLlJBM/z/MF7d+/fvh29E4KVg4JSur+/n4hvqWlKuSLWRIyZC7Ft24sXL2qtHz14cLC3DwQzTLa3pl/8oc985EMfEJxwhq5dvwJUvPn2O3lRrZv2rXduffPbrzx8+FBrbZR+9TvfSSkR9bplmOi+G1Tvv0td1+n+NICbUwYAs9mSUnzOIkisA2NOo0TT0ZV+28FgEBE5OKoJZqd8bMKllFY77099s5NzvZCEMpLlnBBIuGFRFFlGE27ovZeSI8CMY4DgXCBIbGxMRtMAEFKQxpPv9fc3a0YBEEIMQwwoeAgePAAGcD4a47yPcJrdnVLRI8YgJctyTghBCEKAvle9MhgnU1QGAHkBecYBmRAgRvAO/NkmRAlIim2v2tYZ57jM5vP5he1dTpg2xmrT932n+lTKKKOVUv5MgJBAiWRisF63McaMZ2WZJx/SrusQejL18HuhAwxn2VFP/r+MkaworPNN2+Zl8d7de3XTMQ7Ge4boJz72yZc+8MFf/dVflVImAkHXdYiQtu/7vl8t69lshiIUWSa5yPMijUqKosgySSkeDoecn40gjBNCHB3NAODypc2uVXVdJ2Fy0rEBgOCiKIrlcs2YKItBCMF7l7wYnA3r9TodAn3fN41Nur3kjzAYDDY3N9PqpBQYI2nSJOW55SqvqkoIljDveBZ9lXSB3ntr319MCRjKc6F0V9d1GuELwZOyBQAYOyUcBIgIgfe+ruvhsGyahhK2WCyt9U8//XSqkeu67VU3HBWMMSGZc9Zp6/TpZkfIKck8mZ4lLR8ADAYVQoBxil4J6WBIxCMMwAU7Pj5s+m61bh493i8G1d7x/v3He8b5uunu3b//+PHj2fFJWzcxxkePHllrb9++TRmWUl66sHt0dBQiFDwvcgkRgotZVgLAuu46Zbqua5pGaeschIgxIc4CRNx55BEWki/nx/sPHwyrgbb+zXdvHewftW0bIjLWBw9UyN7oR3t763rV9W3TtU2z7pSy3iijO9U3q/lwUGaS7+89OHzvdr9egDVAyI1P/MD2pUsPHjzY2d4cV2XwdjY7jihsbm5ubW0ppdbrdcqHLMtytVrlebm9s3vt6vWm7jhl165djTHM5idNby5evVaNJ+Px+PkXnr1wYZtLoY0rymHAdP/w6Nr1m9PpVHJOMdy5/e5yOf/oxz96eHywXK9eePG5sswRhnq1OF8PGc+TC6DVVikNAAhB6ogTz4zztKggy7J0fp/GS4SQZnSUgjJ6sVwTzPI87zoFAINBwRhJlvecU84pxpCYJQCQZKx5nodwmpW2btdKOcZ4r2pK2e7204yxS5eFzEgapcQYESJnqrPf9naI4JSM/ESMGmYEJX9D56KLKYTg1C4wnU/pC0II54RSsBZ8hBjBeI+ABg8Z54xHxgIGwIjEGL11MQYKwCl41w+rUkoEmKzqddvGvum7rlPKJOVFURQpUzPGuFwum6ZJk8Y0QU01BKVISpleT8aJYNRq96TWNh0YcIobAgCcT9+/6/LBW2tt8BcuXLj13p1O9ZRS42EymXzwhRefffbZn/u5n3PGDgaDU0Akk4RRwqhS1jmXeHZa66qqkhNZQsESQQ9jiNFba2/cuIEQunPnwWBQXLhwITWwWjuMcdd1XddJKctigDGu61qpkBiOSSefBi+JxAdnfmcIwebmZiIcGWcf7T1erld7B/tN15aDUhlNGAYIKeQvaRvSPqh1H2McjUYIoXSwp1/mSapmyrBPn7QPttMqeCCEOHeqEyAEAcad6r33nCOMsVJmMplobdITeOqpp5L5QvrOWcbr+vRNjs57DzFCIbMk50o3i86C+tKNDwZlImZubm4aY84EUnG5XCqlwIckVlPWbWzt1Kp7fHA8nkwpF8qasiwvX74MAHfu3Llz+9Z4PG7bNgS3Nd2oijLLst2diwBAYtCdEoxjQKrrMi6M8d543Wurg1EWAKIPwUWIEWMMmBnno3c4OtW3VVUJIV/+xje//vLLbd2FEIxxs8WcJxp2jJ3qA0Tj7MlyvqrXkWCWyUCi16pezIJRHGPVrFXftsuFb1bNyWzr6ac+/slP7D18tFzMh2U1GFf3Hz185513jDFVVSUvg7QHbW5uKmMPDo6SYdJyuRyNRjH6LBMe2M6lqzLLj5fzFz/4wedeeBFheuHipXXbSZEX1fDhw4eTyWRnZ2s6nty8fmPvYP/n/8k/Pp7PxhtTTEk1Go4mw+nWxvtvknNGaSGE5AJFCCGMRgPG2Hpdp8NyY2PDGi/lqfIk/TLpk63rGjAiDKU5+KNHj7quS/4jo9HojDEHMfoYvfcWoWiMSSKFROAFgGQgsl43SX6LMJTFYGvz6my2iLgrioyx01f7nGETfvsC5jSejj6gEL2L/ix4IxmnRgCI2PtobfA+YIwZI96Hvjdtq5QyGONM5kKQqiIRQdsYpUzfR2stQSEvKEZIMEaScTcAJ8AIcdZrbSljZVXFiK5d2w0hWOtTyTKfz893gFQQJEJFOjDORqM+FTRdp5bLJSEkyyVC6H+CfY0QAnAYUxTfd68KkZViMD80waEL2zurxbptGknh+uXLUcRf+fV/tnc0m27vdMocncxdDHmeQ4hFLgfDzAdzcHRAGPExvHPrnRhdjCE1s32vtbbGuKoaKqWOj+aSDx89gDwbJvVSlhVFWTZtTzlr+05rfe36FSnlcrluajDar+tFJtmwHBOcMZot14sQgpR51xnw6NqVnUeP75ugpztbMuNc0FW9dMHGGCHEZrHaGE6bzrkYZMGVbgBgvWqbWl29fCNZ7xCCUux3jJ7QyJ4wvAgRyawAjLkUIpOCYB8sYIgUsMAuqtE4i673SJXDnAlug4/RR7DDkTR6iTjdO95/78EdkeUuEMppUY2NdwVjOIL3Ps/5YDBoOuVdDDYKWg3L6fbWLsV0djzPGOcEB2usUXW9MkYRhrOCAwDnnFNGqCvHFeYyxphxuLBdvfrKtza2N0Z56bX2xu7u7gKKhJDJZLKzs9v3PUbw9PUbTdO0vaq7+guf/8TOiM5a7QAbZzFFEUJvtAeYt2rVRxORsT65hyMIuRQxOB50XauV5neOOoXRg/0H3vsqH6f4zSzLmGRbF3Zmy1XT2o3NS1r3jx7cLyQTKOp23XcdY0KKMjDmMLq39+hgdrhczx7cub0+3g9dmwWr9/fzi5d+5Cf+0Na1G2++e+vO2+9cGg0ySU+O9yNYSvHh8ZFP2rEs2xyOpORYSloW83XNCKMBj4uKB2Rj3BxvVMORdfryeLx3fMgQfenZZylyBMxkPHj3rXcQ8LIaXbx25Q/8wT/8Yz/64yyKN15580tfe/mVt9648+D+g0f3z9eDFCUXFQJivWOMUiqGwyEmwDimhCNgx8czY5OXV3TeBIgBASGES0EYDiFZKAWKWdd1IbpyKBvdKN0yTpqmQ5DeC9K2ru1qSrmUufdRW2d9EFlmHKybFlnGKZOCMiq01rfvvm5872O+fQlCiAg4QhDBAWAElJDfttWXj+AA9xE1ITiCDABCcVhIiYNkwBlgAkCACSwyxiRZrQ0mlFBSFRlB0DWWUp/RCAGhCONhRmjIc6xMbDrUtkKyyIktBUxLXjDIJdHWAQWaywwRpVucob5e9KbtvRnyPB9WTe+M0hRIziXGeNVpTwhHZHdzOxdStZ0QYjAoA0TACJG+a03XQzEqozDrvn7y7s4HA6l8xmc43Xfhhpzz9Xo5HOKTk6OiyDjHs5l7/vmnuq756le/FkIYj6sY42q1SsCK9x7hGEJIrWiMUWs9mYzPE0LSaZkoLEm1sr29vb+/b53evYjarkmVYCJeVYNCSikEp5Q0TTMej6Xk1YAdHh2kAUuaoIcQtA5CMmut95Ywms4K1RuM8c7OTlEUKUQ1HblMZgAwnU6bpkmeFnVdCyGqqnr48GGCL9u2TzPlGCMCUhTvp68+fDh/+PDxxsZG+ieUUs7ZaTgUJ2kInu7dGCMzfmpO4f26VTb4+Xy+WCxiBOsMQjH9/jHGiE4FLUmJmKICGGOM4K5pg/OEkKqqOq0S9mytTZimtZ5zTimu61WaJs3n8yzLZov5zaduAsByqbIsK/OCYLq7u4sQ8i4gcuqst7u7e/PmzeVy2ff99Zs3EaHf+NZ3AFNCUIooSL15angwwi5NBwkJCEajAWNEq54ijDAGgF71aW0t56v9R4+FEOPxeHd3d7lcpiIu9Xd938u8BEzeu3OvHI6A0OPj48ODvbquNyfj6Xi8szE9Pthvm2Zjc3J0dPTOu28dHRyovr3/nVdWx8cf+eznfu/v/b0Xdy+9c+u9RDRr66YoiqdvPjUcDhkmSinAcd3U77z7FiOUIqy1vXj16nh7ezgcYkoyWRBGKaV129R1/XjvACC8+PwL6+VyNBh84fOff/21V46OD3/9f/jVt99884XnnvuDf+jf+OHP/+BTTz01GAwSsny+HpRSBwcnaQy4t7dHKU1q8RgQY6yqKu/tcCiGw6ptW9UbAAghIErKskx4d6K+KqViRMGDs54QXNe1cy7Pcx/AWjudTsuSJTpa23YJm4JTxfopyeycGZZiOVKL2vd9OcCADCE0BiAEYRK9//6GKSFCjCm2FwDh6L1nDCUjAYg4BPDJvcq4ZHZtne+6PsuEkKCUPuPJorRI0i0kIyeETsP50k+KMWIMlELf9zHGlCKXnFm2t7cSGMLYabWb0HaMIXEMU2P0pJNNegFDiOeB6fhfCZ2+72/4JKaIMbVOlVXmnBGSIhyHI0DY96ouikL1pmkaIbI04bLGM+bSB9w0DWNMa5MaurIse1Vvbk5Tw5+GgCcnJ8Y47+1i2VAC165fefjwwe7FzdQSLpfN3t7e5uZmXXdnBquQZZl1yntdDbJ6vW7addNqzimlgDEaDMrVqs4ywRjre+ec985gY5qmYQyt12uEUN02w0GplKKcEUazIg/QLxdNklqv61Zp+8ILLzjn6vrUU5YxppU5fyYvvnj99u27bdskQDNdXWcxAUIIZRgiBnCDvFivGoKotV2kVARRVdnG1kbbdlrrLOfgCaMsbTqMk7Rwm0ZxTrKi8DFaawlFVmkcoT+9OoSjkdw5RwnPs6xpW8kZhIgJiSGEGKz1o9FosViMRqNqULz+2pu7F6fK9IyxqiiW84XWhlKOMNy8calTutf28eM959zlq9ddiCfzZdebxVp5B0LKc44rnEk2KaU27Y8A3vtLF3YPDg4YYxQzF3yvNQA4bTmCF198sZDZ88+9uJivphtbZT64ffu2FHlRFME5IYuLl68s57N79x/uXti+du3a4eFhvV5G1w8Gg42NjevXr3/961/7Rz/781evXvXe7x0dX71+YzAcr5fzerW6eGHnE1/4ke03X3/99ddDCMqa6XTz2eeeiz6kI2rvcK8osvFwND86yoRcrZvqxSkdlFIDLQrTrBhjzWJZluW9uw+EEMG76WT06U9+/L1btz/0wgd+7+/6Xb/yz3/l+o1rr73yzXfeeiOvSi6yVutl1yHGx+MpnHknv/jSB+u2sbZXuquKwseY6NYJ8k4C/ATqHx0dc0pDgPl8HkIYXrwYY+CC9j2csbgwxth75B3iHHVdV+RDSsE6w7jEGMeAZrO1tbCzk4UY57O1FJQSng7U1WpFCGKMeO/7vu87HUJAKBZVaGpwJgBQ7y0XKfX7t9ssB3yaXAsEI8KAIJRoYC7EECD4dGpCwNj7KCRVuuMcMiEBBc6TRbH1HmEM3ntMMIAnBCkdEbaUofOtLRk+wmk6a7RGlSjz1jGWMUpH06lbtbOuTmSMZI1MCMkynkCYxMAHgFRepMRgZ4xSWgiZ9tx/5W4YTrvj75kp951GG4ggKmWudZ/nYjgcHB0djkajTFZN02RZ4b0nBCW3+sR4pJS2rR4OaZqNYozLMje2S5t0XshHjw6LQpZlyRhzzuQ53d7eNkYNR/lsdlKWlTGGc2xNsNZubIyLojg+Pr506bLWuipFWeUY47ZTUiLGiJTy8HCpZH/l0vbx8UwIFhEkXAYBq5s5BpRkOlmeHx+fqL713vbKSSkJYd51WsfFfNX1NWUwGAzeeuutra2tsixPTo7imR/J+TPhnI9GVYr+UapLEyHvvXPo1FINgyBiOp5Y7QTPkqZFO0U5bdu2LCuleudcdAGiCyF0XYcpeO8RkBhBZEUyke5VixCyzuWFtFpnWbZer8pBESKKCMqylCLXxpUlSwKeYSKg+kAplVKMRqMHDx5Y5xCOWVHmIu9aleel5Bme4hjRfLE4Pj6W5XB7e2s8nrz19u2nnnsRE7p3fOwRSMk5p6nITYvsjA8QACMMKIbQ9/2+2uec/8Qf+P2Xr9z463/9r7sQVN9Jjq/sbI2Ggxefe7ZpmsnGdP/o8MKFC0U5SIGrUspVXW9MRi999Mb+g/ur5cL5uLu7672nCLdtS5gEzL74+37ih77Yvvr6azHGZr443NsPAbK85JzOZjMI8er1m7u7u6+99pqHqLX9tV/7tR/4gY9752/fvj3eGi1PZjtb2xuD4Xu33tnY2j5ZrZ/50Ifqk9dA6xDC9pUrh4/umV6nWq+gKONsPlt86hMf23v8sO/7D7zw3K1b73zopQ9orWfzJcb4xo0ba2Vu3b139/592D1dD6+//royuqoyH2wmhHGOMXZyPI8xYkzn85PRaJAATWshEyREp4wOLgBEDxEhRChUVXF8eIIIpZRrY9rWjwdl23ZKdZSC1n2MnhCSWLpZBl3XZXlu7WmCWAjBOYMxCCFkxmOM1uk8z5umYZw4HyYb6GgPCOY+uhgDQuS3S7VBAIBiCps/0+97a21ifwQPKbQ0YhwRAsCEgNYgJWecaJ2iHxHBVBmXxPUMGEKIC9Ipm7Ls02JL8GaMQAggIICR15BluW8XmCIMaD6fx6YHRobDYZoWYIwpRgnrDxDmy3ny+7LBheA5pZkQMBhYO3fORUjZKeaJm3tyZwxwlqccQwj4CcPXrlMxSi5pUjskFzZCUIw+ANo/PClLCTYmO6yNjQ2MsXfa+zCZDIKHvu9Xq/WlSxeUUskUQ0oeQggB0piYEHJ0tHTOE0KcU5PJcLmMRVFIUT5+vGct5FlJKNJata0+w0oRQqjIB84+DjyMx8PFYsEYcM7XdQ0YJROLEAKmJBfFcnXMOUumsHmeF0VWr3uEFsPRKG3fzgWCT81ZpZTj8WR//6TvHz711I3RaHJ0dJDUfufP5PatO+PJMASqVOe9396ukkYwBGetxhhCiJShXEhOKGWYMbqqXUT9ZDKZzWYbG5uJfMuYaFuNMIoxFkXRtYpznpUCAIwxCV8PEAGdBgCUg5JSgumpY3ZViCzL2rZlTMQICIAxVsgs+pCa6K5r2rbNy6zpmwuXLshChhAQQAA/m80ST+jK5Ysir4q8ev2ttz784Q9zLubL1bruy8FgNlsrZdLkOsQzw06MQ0SQOGKMOWsxgbbtfvpv/wzG1HhXZrIqM0HRs0/fVG0zOz6qJFDOPvwDH3331ntN00wmE0rpW2+9tbW1A5jeu/twZ2erHA4g+L5tvDNCljtXb6i+A4wBSzqQH/0dvwcQgmY9u3dXa9srY60mBOleLRbE2/6FD37g6OgIY1qU5a1bt65ev1aW5d7e3mQwvHv37pXd3fFoihBatx1ksusaq3Xw1q7Xk8nkm6+/HWNEEYZVURbFMzc/9rP/8B996lOfuXz58le/+uWd7e3HD+9jygeDUW/D2+++M9rc+cBLH5ytVjA7XQ9Zkc+WzdbWBGF5dHBUVHnyKCKEWWuVgjzPI/h13Sd7c0oLxonWyjjba5XiaZOAjLCUqm6cS9sBMcYQAkl1OhxWzrlLl6YxxsPD+dY2GY/zRHiIEVJbLTOegmTbtq2qylrfqxoT2Nkdm153TfQOrP2XidH+52yICCCelpQxxuCi8UFwGgMCFFFMjGwEAN5FxEBKYowx2kjJQghaw3iQU+oxxs55AIsxpowJ4TAh3nvnQur+CUn7KkEIdV1XSsoYy6TMGIuEaGsl573pCSkpJUJwxtJ0oQeASTUMZ05XyVnVn6YvsMStkVJQxp2rv/vm8JOF4Pu745PD5RDg1KImoDwrT05OpJQAOAToO9W2p+5SMUZrXYwxoYeE4Ml4YzQaHR3OQoiMsXW9xBgSz6hpmo2NKllyHRwcMCa8h/l8LjOe1IWHh4f7+4eUcISAczmfLdfremNjrHoTPAhO63XLWKa0bzvFGF0s6s3pZHv7woMHR4SQclABQJZlWut1sypzeR5DkeU5pXQyHQghBoOB994az7lIqhhyllVSlpIx+ujRI0rp5ub2eq3SMZAu733bnEZ3pvgUbfrkAJZ+LqWYc951XbK1TrRbIVhZ5oyRpqkRQpxTIZn3zhjrvIkxGu86rUI4pQr1ppdSpvAzAFBWpWCZXBaCc2sMQlgIgTHWWpdlQQjRuqcUSyn7tjs+Pm7bthgUXd9PNqarenX3/j0gYJOrow8U4YsXtne2NnIplovZc08/PTs+0loDpovVigkxqnIAiBEShwMAACPAiBCCCCT2KMHEBQiA0lZICMoycfnShU9/8mMI/PPPPXPxwvYHXvogxvif/vKvpIXU9/1yud7a2plOp0qZvBzIfIAwdyFSLtpOHc9O7t+9dzybGxsAEdOb7vBkcf+BW65G42mWl3meSynrul6slkcnx8a7/f19wGi1XmNKrHePD/a3Luxc2r28XjXXrl3jXCBKLly4gEIEbbY2Ju++/aYQDEPQXSsY4YxE5/tOp/CJn/qpn3rllVdee+21P/pH/+gXvvCF4XgqZe4i5GUxGE32Dg9ef/st80TGUDUYaA1N105GYyl5ogoURZUslISA1B5571OCQ+JOJUid0tOOtWnXWSaEYDF6hGMyWPHeO2/LsuScJn/TpGMJIXgPhJBr166lDIksEyEEY5X3LvHbT05mSYKFgGAEUvKNrcy4jjP6/Xl8PfmPfIzGeuWiiZCGy+m/n3K8A3IheO+N8SYlViXvPID1ukvSBoTA2tN/wjnNciEkoxQRgtKZkZpla70ykQq+Wq0YJpmUGEFZloyTlICUUkO89+d4Tvpj6o4hqWNjTAuva9/XibMnfDfel2+f8QufqBXR+4ACJQQixoha65um6/uQZYXWpq6b+/f3L+xUW1tbiTNVlsVisdjb20tTlORTHQLkeZZ+vzzP02/vnF0ua+996owm4ylEKMsymTUSQgbVyLvQdWYyHu3vH+7vr/pOY0S9j03TbWxsaG3ns1VdhxgTBADGKka5tWCtS+JihKIxel0vL1++XFXVeDhMYTp13YxGoxDjql4nkgcmpOlguV5paxDGfd8nDmNZlk3TnJycbG1N+v5JHQ9JvBwuqJQ8fQCJzm2tPnMAQ3VdBwRS8iwX43E5GAy0UhghYwzntKoqIXhZZlnGk0OElBJjopTFGBtny7LIMokQciFkRZG26fTXciFT5mSwnlIanCfJ3s5551xC+pL7eQiBMBSC7/veQ1g1K8bJarUYjqrnn3sm5xwHl3E8nQwwilVVxRiOj4+1NoNq9JnPfObKxR04KyNOrSRd9M5EHxKTyQXvYxBZnoSD3kfG6QdffD4Gf/3q5cODvbIsvvnNb7/zzq1UrF2+fBljar3TWg+KMsuysiwXi1U5mhDKjfOb2zuckoP9R33bNMvF3t07XbMWBKu+e7h/dOvevePlfLFazhbzra2tmzdvdl13/+EDbc3j/T3rXdN3V65fOzk5+c4rrwTtJRfW+mI4yMvCGLNczPbv3R9UZdeu6uWMYEAQLl/cNapDELTWCNOd3d233nn3v/i//t/quv3v//u/dePmzT/2x/74R3/g45ksmq5PHkKA0d7x4fl6wBgXBSilEELgQ13XiREdI+p7NxhUXFDGKMUkuGicF5kMMbrgtVWYEoxxUfCu6zHG3luMIc9lXnB0Gr1N80LmhUwjSmvtarVQqssyYJzIjCfPGC5OD2PGWJaJLBMIwXw+51wWRWENWGs3tjJEwHsEwL4/9nWIKABEABfAhRgAMALrvfUuhBBjAEhk75hyo0KAFDWeYM0sE1pDGrRyztKu55zz3qbGNrW6aUtNZ3AIIc9FCMHbU4P9pPpvmiaBD0mXkRz2KKVlWbaqt8EHBFRwTmiZ5ShEHCFtFHlWZlmmlPqeXJTv4Rcm+jjAdxfRlFKlDEJEa33v3sMLFzbTPGuxaMfjajgczufLpD8fDoezmanr3nvfdd16vV4sVhcubFFKE4Wq7/vxeBwhSY/BWpvMCler2jlIZg1pNJbnZVFUjLKqGm5MNzEGKfONja3lcpllmXdRyjx4zCgkhp2UrGm64+PZaCT6Dtq2jQhWq4YQlGITUIh1XacRtnURAPpez+fzdIOMMSmBEIIRGQwG6W9SSuu6SYOXROQ+fyZJGth1tuu0954ybK1NzOe2VWkbSgISjHEy78QEUvT45mS6Xq/7vjdWJc9wQlCql7MsGw6HGEOiEKZYPsZY3VobTKf65P9olV6vmvRZJiOcVIN0XZt2TGPMlStXUoOQRCwpGnDdrAIAEDQYDAZlNTs+ohiNhwOl1LXLVw729r3VhJB6tRoOh+Px+N79u23bVlVWVQUAWGdThUgphjP3WcYEAE6ROFnBq0qu18uXX/4qQbEsc85Z1zfj8fjy1atFUezs7KSlopQ6OTm5desWjrC3t3d0cnxyMkOUldVwvlzlnFzc3TJd1zZ1KeXDu3e/9fJXm9mxjfHe/Yfv3b77aH/Pez+bHd+/f/f555/Nsuzd27eklJjRR48efenLXy6ryhhz/+69vlWUsaZruZTOuRtXr33za1+VmdRaf/Ob31wu5+vVEgA+8qEPX7iwrZ29d++eMS6EcOuNN37yJ3/y5tNP/eW//Fd+6ze/PJ1u/sDHP379+s2NjS0mMmXMk+shxnjp6mVjXF3XWZZZGxPolMxUEtintWZMKAVdp7IsK4oi7W7JYKmqKu/BOt12NSYgJY8xJHOQwWCQvtXOzk5VVWkyw1hyuleLxSINl9PgNc/zoigSPb6qquSSmedl34H3cXO72t4h3kcE7PvyxMYxoggQAAFGARBGmAkOZyUhQqdtsovee0CITCZDQpDWFiHifQTA41GutY8xcs5TcIq1Vmvoe62UMiacQYenMr5Ux/W9mkwmUkocIeMiy7LpdFoUhZQyFYBnK5NyzhknlGFAARNAOHJBjVW9ageDQVGwwWDAGFsu1949aXb9vXwjjIDFCAA4PoEbVqVBwI8OF1ubF+o1AICUsm0bSiGGvm7mUlJrvdKesnK1gqraxIQRxgijIpNN0wwGg9WqVqobj6qN6ahraooJJtD37Xq9LqoS4ZAXIDO8Xq9Go4lSdrGYIRwQs72p9w/3MYEYsNb24sWLAGG2WDjfMWHyHG5ev9a2nXNO5jxRqCgFKaXVaWBPkkJ52Sx9dPPFYdsutrcHwfeCBAie4KC1Xa87a6Dr7MZ0KkimlJrNZsn4K4TonC/LKlkHnj47sNr0ZSkZFcGz+/ceplz5EIBSYm2cjLcQsGE1KAS3bTsqCknI4eNHeZ5TLjkjlBDwxFoXoivKzDhjXWjaecSWSqx8jxkQRijFfVdTDIJKDCjGUFXV8XLOi7zVtnNrFTqEI2Msz6q+AxOiQ3G2Wp8sV8WwCNj7YAA8pdQ5Z13no1Mu8LJcdTWj4eLWyNXLj7/wtGnmRnWAaa+sKErG2N7+IxTDdDKmGO1ub3EMBAEKHkP0AQOk/4FzJvU9nNMM8Mag+uFPf/ZTH/vU7GS5XKvdS9fvPDjkUg4Gg6eeemr/8UFVDcuiQoAn0417jx7de/ywqqrtzS1ndPAgsopnw/1lf7RUvQ+iyO89epgPBnIweXAwf/vdt7OqfLD/+L079958+92H+0ejyebtO/dvPP0iRHrr3ff+0c/+PMsHy1a/8sZbi8XKBW+CuXf/Tt0sUfSMoEFRdqv+66+/tpXzg4M789naYb6/2PvA1Z2t6ejpp595+eWXh8PhZDLxIdx+770PvPTSH/sTf3xxsvj5X/yFX//Kl07qtu8jR3IyGHH2fnFFiBuVxWQ0zvMcMRQDGKPzXIqMI3KqLxiUVerCCAJGuLeBYppye6z1TdMUpcSMGhu1MdaZ4Bwn4vjAEpxlsrLOBfDK2M6EDAvGWDbIF81y1SyC1xjHrgtNozamW1q546Nl37nZSQ0AxnSSoiu7G5vTkVbNaFxiHCLY8Ntvls/3u4jAeJ8QbeccL7iNUfsQI4oheB8AATCw1hmjOKcBfIye/P85+89YW9b0vhN73li5Vq2w18775HNz6EB2N9lsNuMozXAkSrJGM9JItmBbHsOABxjbgP3VMDCAbRgw7O9jYDA2jNGMJVqJpJqUGLovu/vme+4J96QdV65c9UZ/ePcJt6mmJNeHxtnnbKzbVavqqfd9nv//96fQ9a0lmnoAiMw3TSNx3uiqMcqitoO6JlLhtgOpUSeMMtBLBZjIrg8GMbF2GEWFbouu8S0OvJBqHTC+XtcWmMWsbbSUQqs+4F6WpFmSpkEkezW/WBJEB0mmhUgTtrczLcoFZ76QL4heTuuDMXZOboSeJQ3+5IoRY6dcPz+fMQaU8NVqxbkHAMkg5ZzneenWJmWZYwxVVa3Xm/WqopQbY6qqaZpmNMqk1EIohLDvh0JJzhGltKoKAON53t7evpQyyzIp5WKRLxZ1GIaTyahpmr7vKSVJGj94cO/s7GQ8Hru20Xw+j+OoLMuDgwOt7XNctlLgxI+ex6SUQRC49SZ6Bv7TWiNEPM8bDiN8GQtlGL/kshljlDJCqOfXyH2ss9y5w3l6XHfm4ODAmaCFUFJKpbR7gRNCTk5OeqHMs08AgKasCCCML+eAzv2CEBplo+Egc7UbIeSmPYvFous6jEkc+7PZjBCSZZlbPm82G2NM32kEJIqisiw9j/s+7nupJLg2RZqmaZq6qb07d41NL1rZtaAk0upwfz8KvO9+9zvGmMVicf369ddff/349MStOBhju7u7APDOO+8kSTKZjHd2djjn48kQIwtgELJhGO7tbmslOSOcEUSJ53k/ev/Hf/THf3D79q2Li7PVeuEHvKqqx48ff/DBR7du3bpz506cRPsHe2+/89Zf/Et/4c0339ze30ME71y/1nTt+exiU+RumXNwdGgtCKVms9lisViuV1Kqzz67E8XJx59+9vGdO+/98IcffPKJMObRkyevv/n24+OTw6vXfvDeD4eTrapq8jw3YAkhURITzJRSRVEorff390/Pz+bz+WZdfPb5HZevFEVREHjbk0maxt/73u8OBokz+U1GoyAIXn3l1mQ0JoTleVE2dV5Uq+WmqV88S4SQotjk+dopBBmFIAgJYUqaMKQIId/3N5uNe1sLAW4yUBQF537f900jOPfSNLUWOeBm1/YAoK0ZjtnjxydN04yGw6qqVqsVAdSJ3t3JO+MtpI01iHMvHQXOA0qeZW0nSUApWGubpt7b23UEOW26bOQBaPzvnrNsXzrc3xgDShklXR7eZenAGFGKCXEWvUvRjAGrJEjpktEcIdRKaaQUGINTBVGGABltnRbSIIS0BkchNMas12tGqGutVFUllXq2aYO6bhBCYchDP7jM7DUWjHUA6SS5fPYZYw5f4BYHX14b/uSZXu6Uf6IaIgx5nrvXV5aFTdOslhtrkNs9NU3DGBFCJnE8m82uXE1Go6ypRRSFUur5fMm5X1dt10nOwrKsqrIhjCqldnd39/f3Xc5WFF3myS2Xy67rOEecQ56vXT2qG0UZNkb5Pu96SRlyjWT3kJdlORgMPI85M7YQOknYJc2J0rZty7J8+PChS0dxS2vHg4mixJWzQRIPh4OtrXgyTjFGTVu5VqD7yp2i0JXa59fElbby2SGlXK9KSikAjqJ4sVg4LTfx3SbCYWsxQqgoirqupRadaAHbOI4cwiRL0oD7bhgVBZdB44zQJBm4GFXnMXJCqqrq6rozxhDsY8wQQj6nWvZpmi4XhdGEc89NjVyw6jNZjA7SeFXkYeAjra/s7noIXrl98/TsOIqCo6OjX/qlX6qqxjFykiQZDrOzi9n57KIoijt37pRlGXp8f3+/KAqMLEaAwGolPEpCj6leJGHw+ptvzJfLN998nV1OCfRHH31glDw9PT84OFJKOWXyRx99UJb5J5989PDhwzt37jx88ODk7Pj9H3z/Yj47Pj25c/fzdVFG6aCu2vOLuVb240/v/Ivv/f6P3/9wvtgIaYej6e7BlR/88P0PP7v7//xv//tP731xNluVbTscTT748KN4kH308adN21uEi6JIkqSqKteaAExPT8+z0cgP45PzCz8M/+j7fyIUNJ1QSiELVbn+xe/8wunxk+MnTzkjVVk+ffr0xtUrR4e7bV2uVqteaqUtC/3heOIHLzjyZVm4fDGMEefU90KjcVFURVFQ4sQDTCnFOJlscc6BUux5Xt9Z42R6FgAho2zfdk1lRScxQoEXDMeTtpPuOZ3NZpyxQZJSTCwFTIloRb5cm85yxPpOR8mAscvICte0cWFtQoh1ubQYZYMxAkKpGgwZxsaYfwP7+k8fzysDxphSF90GAG5GhCh1KJ1nBcU4SQ4gRJ61Ai/HKZQwpSy+tE4D55Qycqm6ZYQSoBTcxNWVo7LU1iKtzcXFRbEpKaWIYNdqoJRiDEIAgCEUeZ7HMHEEDaWUlDpJEufbs4AYJ1pL987Q+gX49nkFfPnHF2rMl//BGC2ExRgz5gVBsFyujYG2bRGQi4tVGIavvPIK5ySKAqNtmsZNWxkDYZAUeVlXfRwlUtrVstbazBebk7NzJU3b9gghx+k1Srdte3p6SgnfbNrFYrk12d7amiCENpsCYxyGwDnVpp9uj9PU77rGQfrCyMcYC9m58TlCqO97ISBNU4zx+hk5SimVpnEQeHESumGfa8/t7e2JZxiM2Wy2XFZaaym6oijiMPIYxYCUuMz/ZoS6RDd3EISTKA48Pw6jpqqDILIWqrJR0gR+pKRxXtQgjPOqLuqqV9plAAWej5HFlPSyQwgxpwwoGkIIBhREYVmWDubqYtW6rnceoevXr7skvK7rEIIo8j3Pw5g3ZesMoU1T+b6PLLTNZS7zepU7nE/XCbcymi0XUqu2bX1K2jI/3N9bzObj8dh1YT74+KOiKnupue/n+cYYk2XZZDI5Pz9vWuGk0Y8ePEBGE7AMQxL6168caSV3d7Y9TjbrVVmWbS9Ozs+Ojo7e+5Pv+76/v7+/XC0Y448ePdbGFlX59OnTw8PDqqlni7kfBNqYu/fugcV5WR+fnt978HA4HhuLlqvNKi/qrv/i8ROE6dHVa0KZjz+9u9pUP/zxR9SPwnT45PRi3XS///33fvjBx8cnF+lo0gv16PFT5gez5aITMkoTN0y8e/du2dR5ngNGBsNka/vsfDbdOfjk07tPjo859+u6Ho4G21vjK4f7B/u7D+7fXS5mjODA4x9+8MHeztbPfesbzAtm82Uj+6ZtL+ZLAy/cq0IIIfsg9MIwDMMQIeJUMg6JyTmnlGACQrRZNohiz5Uqp8HW2oQhNwbKstTaag1t21LCCSFlXVNKtIa8LIQQSsm6LALfa6VQxlBM+ka9fvu1b/zMN9tWlXXtohwtaIQtJmBBB6EnZKctrNdLxtjOzg7GJgxVlOD/f6gNz0TLbtzx7EcwxroXtpPQaW21clHJSGmttHb1kzBMnllHjAHOmedRQrB7cRqrjZWEgh8QB4Jyo0jP83wfmqrenmw55sX5+fnx8YkBm2Wjuq4ZI9xzQWm9NtKlI1hrm6bhnA8Gg17IqgbP8zAGyrDTpRNCHPr/WcX7UtFDyGEuEFjzpbWhMZBlUZIkCNm6rvvepSuQ+bzgPvWCsGmayWSitY7joK2brfFI9Hq12vS9DMOgKAprrefR1bKQCsqqo9wzAMvloixLQoF71K2JGGOjYZpvoGmasiyTJEFAmqYZjYa+z33fa9s2DH1CCIB1nm3GiVK67zvH006SJI4JuqRhw/M35O7u7jP3Xu+MO33fbzYbQugzhhKOQpSmCTwDKbr5KTyz7/xEEoBSGmPs2rpufrK9Pe175fthVTUuxqAsy7btEcbWIucVJ4Qggp3AAqNLdr8QvVLQNDWhGCxW0jgdV1s3YGC1WpWFdHfG8916GHrPib7L5cqn/uUNamA6nVaV6rqurps4jp3IgHNujHWk+LZtg8CL43B/f7escil7MHazWiyXyyAIpLZa6/l8sbU9xYCWy2VRFIPB4PXXb2XDgVswxnE8mUx83+/abjTMXITstSuHyOqiKH7mZ742n8+rqtre3a+qqq7r45PTTz69c/fBF8v1Smkzmy/+wT/8R0KZLx49+b/+3/9vTd+VTf37f/QHm7xYrtZPnh7/8IOPqrrVBsqqkcq8/tbbZd08fPzUDyM/CI2FxWajjNUI5XV9NpstNxtt0A9+9EGSZk0vnp6enZ6ejkYjz/Papj8+O9da7+zsrNfrXoq6bT/7/PNeaeIFYZyVbf/hR59Rxo+PT/b29ijBxWZ9++aNm9evdHV18vRxGHhR6L33gz/EGA+H43Q4sgDUo34YSPni7ZgkCSGXTRVKadNU7g3tbieXweBifBGyURQqLQDA85CS5nniBQAYY46Oxgd7+0ZpJWSelwBICHAR9XmeE4qk7I1VDgiGMZpMJt/+9rcZg6oo3X3S973bFbpIEIRQFAUaxPnFyWgwjoMQsEwGjFL7E7vAf+Px3EL6rCV1yR41z3wjGGOELhd07rOFUH0vpXKzEQSA9LNffsYMNRa0+2CtL0uSBWOfYbqfyQYhTVNkkJOmUM4RoWES100TBEEYMqUlPPNKOYKMG/EbC2VZWguUcqc4fi53edlP4ZDdX9IbuoWuBfvye4MyeCaDsnXdMQaOF4IQSKFPT08/vfOoLMumqTyPKS2D0HeqC0SwAb1c9whjP4iUAQRYSUspjSJfKKmU9DxmjAGMvMDXFpSxcYqLqm77vulaz/P7zrjbzhgDYNwrqO97ADscDtu2tRaKonAKFXdjbTYbANjayqy1RdEnSeKUzM+dUpTwtu2LotqZ7Glti6Isy96lHYLFSRi52ADnZ/R9XwixWq3+NPHC87zNZlOWVVXVrj56ns+5ZwxwzjGBrmn3dw+Gw6EQwmIkje6k0NaITjpBDAZkrY1StlzNO9F2XZcmyWAwiKIIIeR5HjLYGIii6NGjR86/4VYfLns39JmxsF6v9/YOwiB1V8D3wFpb181oNKqrFqxzemnOuRKKU68Tcudwf7K7TSgdDofr9VopVZZlXbVlXZV1MxhmhJDVemEA/DCcz+dSyuVymRebKA4PDvcBoKq7wSARQgyHw8lkslqtdnZ2VovlH/3BD372az8bBBHn3qPHJ3/tP/pPANOq6z+/d+8Hf/KjTqiq62fz1T//7X9RVq3vB3/wh39EKFst87PZfPfgsDdmtckfHx8fn509eXry+Mnx937/X12/eZt7PvcDQ8j9x49Pzs4/+uTT8WSKMO1acT5bPHpyXJTV5/ce/NzP/wIAxHG82WyMkpSz5XJZlc3FxYwzf5VvEMFSmwdfPBpko7rrojj76JM7Uurz8/NBHEdBuDWZbFbLLB288/ab41G6Xs4O97fjJJjN51JpPwoX+bJq88Eg8thLUzVrn6fZWWsJRUoJIbowAkJR27ZOCO0Etk5QXTelH/B0EDvxIIBhjHWdunbl6MaNGwhbhonPvMVC7e2laZzUdR0E3uGVo16KNIqtlk3XKmvvf/GFtTaJQ/os9sR51FzNckgrygJCYL2ZLZfLK0e3kNFZxg2Il8vNv/3hPtkYcDhChJAFp0hVCFtCgFJECKGUIISNcZ5mqw0YfWlwQBg4R9YaN69wbw6CCUZgDSiptbLgmOzIaqMGg3RrK6GUlkXRNb0zLzw5fooR4dwLAp9zhjFO0yDgXltX2ALDxG0Em6ZRylAKm6JYrTaBHymlhHDIvi8BH9EzUyA86xsaAECAXq6aUeQJ0TVNhTEEAaUUOKeEoKtX9/rehmG4szPU1jDGsizd2ZkeHz8BAEcS7DrhSH9d13mct70RGqRQbsUrtQKwbdsJIfK8cqOYIAg8z0uS2L1YrIW2bZumc2s69030vXTiA2ut7/OmaYIgIBTled40bVkqR2cxxnAOg8EAwDjFk5N3uEo3HA7zvGyazmNekvhJEvjcF0K47rjj+qJnVEH3VnmpDvLnfvsoCimli8Wy70xVNk42gTGW8lJJDwBhGLstWxzHBqO+FQTRNEmEEOkgHo2zpm+avnLtFSHE9mRrd7rddR1CZDhMXNShWwC6S+d+BKRHo/jk5CQJBxRTQojS3SDzlDROa7Zer50nh3POqLc9mm5tbSFC7j9+0hlVds3J2Tm24NaPbd8xxghjSqnNZpOmaZ7nnucFUWSMmc/nk8lke2t6cXZOCNnd2VquS0fbPjs7SwbDyXTnlVs3rIHFYpGm6XK1IZz/7/8P/+Urr745moxHk63p3n5eN/e/eBQlQ+KFVSd3dveHw7HU6N2vfv345Owf/dY/NpYcn1zUTZcX1cn5ed11GJPv/+C9G7dfOTu7+OLhw4PDw7brPN93MCvGWN+0J2enCKHZbFZV1XQ6pQhnSQoAq9UqiqK6rj3Pi+N4kA7zssaUPj05WedlXjRBNHj85LgXylWo8Xhy/crV7a2pEh1F6PbNa0nsL+bnk8kIkBFS51U52sowthfnJ0q80J/meeGeIimVtSiK/SQNGUdJEgaBJ2TnBLAYY61tXdfL5dLJ5SglxmhMEEIIE/B97Hle1zdpFAPYuqyyFB3uH52dnSEEzOPrfM08SgEPkhRT6sfeps4/u/NJGgZxQNySECHknjiXHcYYA+RpEH6AT0/OOYkPDo7ihKXDf6ca+KJewOWW+bKvZ60lCFt7uS77EhrnmX7wha3TYgTEURodRAAhZDQ8Q00jAPwCwoougd1dJ+q6XS3WnPNr165hjA1YNxJI09QiMGAJgjAInATdZbQ5u4T79gnDeV42dUcIa9vOGDBG/4RP+Zms53mC6ItTffF7Yegbq4qyAGQGg4HbIbZtu7+/H4YU7GUHoaqq8/NzrbWWSmsrhLBWU4qHw8tWrlseh4HPfC8IAgDT9y3G2Gn3+x4mk8n29vZ6XTtXr+/7Td0pBVGYtG3vLGjPBHSsKOonT56Mx+M4jpzrw5nnKCVBAM4XVZaV73uOT2OMyvPSeaiFEEVRzOfz+Wwpeuv7l0wLa61Suu+V0xW7cbZbUbtt+MsXjhDiODEugo4zj3PStu3TJyfORcc5ngxHVV4U+bPoK7Ce77v4Ks78YTZ2X2cY+syjmCJ3B6teOGatFoox5nChjiu+Wq0c09TN9Zari2yYtq04O7twfMMoCiklxtgsyy4uFg5VOxgMdnd34zjO0uHiYvHjDz44PjulnK3zfDqdtm1vrb1kO3bCfftRFFVV5QCRnue5QgMAd+/eSdM4DMP5fO57VBv7+PHjrus2m02e58PhcDJOLs7OHzx4ePPmzWw47jv5/oefSK0fP336yWd3DKDDK1c//ewOIAwI53l5ej773d/93d/6x//k+Pj0i0ePv3jwsJcKUy6E4J5XFMWDL77I8/y3f/u3LeCu64QQ+/v79+/fX61Wzy+OlPLi4uL8/BxjPBgkWssg8HzOFuuVhUvpb13XeZ73UrR9F0XRYrGi3KecrdeFi1c8Pj5Oo3i9Xu/t7WGMu77xfX9ve0oI4j7rpWS+t9qs+77nHsUE3G7XHS7zSynj4hubpsmy1PEWncwAY3xxcUEpT5JEKV3XHWOMUmKtdeJkQjHGeG9/R6r+i3v3oyis67Zr7PWr11xQ4tb2dLnczGZrIBiUS9nFQilMySeffez7fJwOKKVu4kcIaVvrdJ0A4HkhQjaMmJbmyeOzN994x/PR0dV/DQf/36kyOg6N86o9/wBrrTFWSuVCUczlW5xYa/WLYbTBGCtlHEdHa+tcK1JaaxHGFCGslFHKAoCr72631DRNHMdFUVBKhVbrfONUzH3fGmOk7DHGhBBMoOs6honz4bFnGeXuX59DXrlHXz6j59XwsiUKlgKAsUKpl/3MoIFLwZiH6qaMkzDL/FdvfvXx/acI4b7rZC8YxYHPPU6Xi3POqR8AEBCSVrUBQIFPX7l+ZZwMqgoopUaqui4P9w+0NEooq9D+1ta1o+zi7Is04cOMS9kbo+JB6Pop3MNpGope15Xoe6m1ZoxHUaCUms0uyrL0PIYQsgbVTUWoCQKslRBCWAuUIClqLwyqqqGYEOBt3llhVKfAYhZE2gJgI6XwPK9uOj8MgtSbjsecEI9StwgnBGfZoJcveVGAOAUGpQSQrkt/Me8nWwPKgGKv2sjZWT/KBhp1PMSAxHx+FkVRFITz2fkwSynz2765WJzWbTWbbZTio2y/LGTfStFroew6r07nM+J5y3XuB0Ge501bRVHk1qeDZFDmEjTygwQQmeyOZptzL2EWQ1GUGBMtoO9kGAdZNsQaYhb0jXj4+Dj0+I1rV3d2ttM0ywtBcKCE3Nvd2hpPIz8IfNr3JScalMBKJZxbBWVZHR8fK9CIos1mZQzcvvFK0bSW0Fuvvd5r0yrotK2FulhtfvThR4fXrhtK7z96tFgtwzja2p6cXZx2xp7M5/P16h/9k3/8yed3WOi9//GPhemLrvn0/oPj1ebRxeKzR09bbXslv/aVtzmld+/e11qvivzJ6dOLxfzOnU89Tg/3j77/Rz8wwuxN99bLopeWBUktbVnWrTRVpxbzdRJGuzvT5XKZt43vBYvFqhVyk5dFVVVVjQFjwMvZquolxjDkZsCgqhqNoK7n0BZBiKPhIEq3GPXu3v8x9+1WstM1feiFFGEMtqrzRjbAsSYveky+73MGlJgoCn3f9wKulJpMxggMGMsYJYQqbdu+64WsaoEJNhYFYSSUFEom2POCgBHSLNfWmqsHh1D1iNDBhLMQ3/viM0SAEq9rIfC9QZwgnyyXy8BjWup1vtpUZZjE8/nKaNF3ddPUgyxTGpq29YPAGENBBXSATdCZ6sniwb0nX4xGk91RyDm1YAn2kB0ABOQyddn7aRUQP/PmWWu1tkpZaUADKCWcXscixDxOGMYEfA8rrQjFCIHWCmPs9rNaa59HxhiCgRGMEO064MyjDCjFxhiheqkN8yjjVAqjlTFGIWTPlxdeEjWqO5tdSNXpvmubsiwLhLDoIRtOpIKLiznnfhIPJ5MpoqxtuqYBA5Bl6Wx2LrS24EvbIAJKorLqXj67Zzvly+7h5XrwJxaQjDHGSNtKjPHR4dUoTJqmuXJ1fzY7DwOulMIY4jh22KskHmCMt7YmoRc2ZUcxSClns9l4a+vo6OjKYSa6Jk4iRzkkBNWtiZLYBSHGcezIvUoBYyzPcz/g1gJCdjgcuqXvZLKV52We1wCQpqnvB57nWYuCIDIGlNQIsNsjt20XBEEY+o73t7u7W9c6iqIkG5RlOZ1OB4NBL9rpdBiEnu/zsiwZJxgjN5t3FubhcOhkd46Q+PyahGHYdZ1DEBpjlJCMubAe6Lr22vWrO7vRer2uqurJk6dF0fp+iDEWQlHK+17meeH7oZKmKLRU/WIxWyxn+/v7CCGHorq4uOCcTyaTJImrsnQDSge5AICu65KEVlVHLTK9VK1Mo1g0giJSF3XgR7s7mVR9ksRFkTOPWWQJRXHMpdR+GO3v7+8fHqzzTadELeVwa6INdFLAJVEOUWKN6pIoRKAJgiRJlNDDbGwAS6V//OEHm81GCHXnzp3j42MAUEq1bTufLyzCDx4+Gg6HmNLHT09Ozi7uPfji6vUbf/InP9rfP3r06Onduw/W683Z2Xm+qe7fe/j5nfuz2WKzKaqqpdRTyrRt/+D+o7yshVKnF7O67V559Y29g0PPj//gD39AmX8+m9978IW2sLU99X2/aWqEgTDaNB1gRDiz2hCwW9NxscmTJHEjSBcTRhht+242X3pB+OjRo6YqYk6u7E/mF+eeF7R9n5c1Z0wrkaZpEAQ+9xbns7quLeCirvJinSSJ7/t92zlv7PP7wREb4yS0oK9evTqZTJymZ29vrxfCkd6VUqKX7iZxuw23tcQYu9BRpxw4Pz/3fX//4KiqFAA4FPZwOKyqajiMXJjtYlG4zw8CZq3FBIqiIAS2t7fdyhRjvLub5nnHKO37TqqeMTabzVy/797d+0opzrzRFgUEFqSBFkBaA8jCn+FR+fLU1S0LALkEdguuk4gQwZi4rg6lhDFGPe42WNZabY214IJ5AYAwihDiPjLGGA1w2foEa0Epo5TSGtyU0gndRqNRURSUUc55lg1c/2GUDbcmw2wwUEJ2rUzTtOm7dZEDAOWMcGi7WmoVRCEy9lk2APi+/2eir+HlCcuLP/u+j6zsBShlKOV5XnZd973f+x0eAfcwIPB8JkTvVIRhGCbJoMyrMi8wgSSJEEJlDVXTdrKzUt68ca1vu6ODw7Ozted5zIMwDjrZSdU733VZlkqBtairO0pxnCDHSTTGNE3XNj0AoowYi3ohmrZt2m69yQllCJMkGRLitY2UQjdNs7W1RSndbFad6LXWcUydMtPRHJqm0VopJTzPY5xk2WCxWDBG4iR0Hcwoii4uLs7Ozuq6ns/n8/n8xW2h9WQ4ceZH2fV1XSZJ2Lb9YDCgHuT5cjIZdx2s17mUcOvWzThOGfPczRQGcRTGTg06HAbrdSdVfwmNA7i4uHBN5a5pZ7OZ40IyxrSyLijVKZPBYkohCSLdi6auMRBKWRyn+UZPhtPA40f7+01TIQLEI0J2bdtQRuYXiziMoyD67LPPnj59mpfVfL2hYVx1HfV8RDDG0Nal1SIbxMZ0WlW+h5DVSpk8r4Q0jZQnF4um6Vw3R0rXIdUAGCE8m6+rum26vpcqLyttQRn84cef1lX75PHxMBtvT3c/++zzo6Orvh/O58u667Wy+aZ0cijfCzGiJ+cXj58+CdN0ucmLsv387hcffPx5kAzvPXz8/R/+iPLg0fHp/QeP6qoZjydGaY+yk7Nzae1ytXF9zOVyOcqGURgsVktlTS8EQmi9KSjhcZRaBEAZY6zarLay8Jd/4ZuLixMhBGHecr3ihILSo2xACaLGXpydtn3HowFmfJ3ngAwyVkrlMc69l/V6lnk0DP3NZtX3deBHzsnqnm3n4ieEKCkJxkYBGEswEIwpJhgIIcQL/DAMGWPn5xd37971vMAPSVsLj3EMtm87ikkaJ21TUYJ8H8dx7HOvLGVT9QihIPAHg4GbsDlSct/3TsXCOV+tlhY0gImTcDCI1+u2bXtjYLrLEXacgh5AGQ1gGfz01Hn7ZdjDs9kxshZZC8qAlNq5N422SlqtjJJaSS2E7HvR90pKqwxIpQlhWoPLW3ddRUoJpdQCYEQAg9RGa7DoEu2jrUnT9MqVK67pnySJF/g3b950vVfXxHfLz9Vqs1ytNnlRN40GSwj4YSBkt1qttTbnp6dpmnoM+r7PBv5PO9MX1dA+w9i5w82+d3aC7a2dhw8fbzbVaDLe39/e2hp6Hh0OfWtNXddSyq6XTdP5vi87XVXS98CCZoyORv7du3c/+uSzfF1jbfq28z3v4GDSdd1gELuQM60tYKS1bmqpJVDCAbCUMstSJ3lp276u+64TUZhkg8QYtdkUUmqlTFFUTdNVVWMNCvxos8kZ88pSuHGVA1nPFnPueWVZ5nkeJnGvZFEUDsNVVcXW1hhjEEJ2XRfHLkmKpoMYkHGJTW4W9vyauLe9MWZra0srq7TxA88Ygwlk2eBikTsKE1iaDTKMqGylR7y26dumr+t6e2drMV/VVY8RjWM8mYwnk8mTJ09dv/Jy7oYQxSQKwsDzwZg4DOui9JlHAGshjVI+50mSxOlgmI2Mtp4XSKHbHizC+TrP0gyApOmQEm8QDz3K0zA5nO5F1Lt5eHR19+Crb71DES2rRmhUS4kI6/s+iUIl26rMJ+OBsRIj6XMCVoeep6QhhBFKLQI3EYLL6O1La71r3mNM7z94KBUcn1588tkdjVCnjEVQ1lXbd4vVXCp1/8EDyljVlMvlUhnNOBFdt1osyipvupYxttisnxyfnJzNfvjjD3/www9PThff//6PKQ0//Pge8+PTs01edx9+fMctNwLPp34wW8zDMF6uNw78UZXFlYP94XBYluVms2mFTJKkbptFnisLi9V6b29vvZpNR9lv/MV/L478pmk8P+y1Up0QVUWwBSs9gnUvyq65/+S07kXelEoJjDHDhCDUt83L94O1dp1voiiYz+dlWSOECaF1XbuS4fo2XSf6vu8FaKOdXMHZAZxC+Hx2cXJykmaDtumrqqKURxEzRrm5Ytd1683SGNN1nRImCIL9/f3QR0kSFJs84F4Y+UaqpmkQQtlgkCTJIKWz2cz3udbSGDUcDl1jkXOoygYAByFFCKxFyMUPA7XwJWLLn328PI92+jxrrdBKCt1LK6VGiBgDQqj+ckwMlBDOmDN6UQpKgX7esCOXrjgAwJi4gbVzbTmHAqbE+dCMMa78DYdDjJDPOLJ2s1qpXnLGhBBF3UgDddfFaTwcDwaDAaG06YAQHASB7/tdBxjjwWDwZ1VD+68D/azXa8757vZOEARFUUoJlFKXpjpI4zRJpJQAqMi1tWhTlHlZta1kDHyfKdX3fc+Z37YiTaNvfePdrm37pn308EkcJox51kAYhmCxsTBIhxjjOA6MgTgKKKV1XTkFtRCirnvOaRBEAJgQ4nFOMERR4HkeIaRputmiCcNwOp1KeclGd5gZAHgW9lRTzpxLfGdnh/keIcj5WOCZ6xth67ryw+Fws9kMBgml2OV2dt2LefxwODw/P3ejobquKQFkwamj4zicTuP5cmkBE0aDILg4PXNNANF2Upq6bdbrdVEYrW1RVOPx2EESfS+klA6HQzfOdjFVzmIohQaAuq5dQlhdC8650fDoybHnBdlorC30nTybzXd2wtls8ed/9S8w7G1P9iI/bfK2LTqiyK39G2/fvP3r3/7O61evfeudd//ir/3alYPDxWyFMVMGS62buuOUJHGkVd+09XA4GGaJVb3u267pMZi2qZ0JB2Msn/GsnisSHOCraRonMAJEhLQnp+d5XlZVEQTecrkoyk0UBw++uH9y+nSxWBRVvljM1utl11dStZTi2ez85Ox4sVr9zu9+7/O7X5SN2BR1XjZ51RZVBwidXywII8en87IVn9/94sqVq+v1emtru2uFAWjbthM9pdQacLFECBMgdJPnykLd9RezhZB6vV73fa+k9D22u79//cpVjKHrOhp4VbGRbdP3jbUmYDQK4/kmv/voeF03veykFJwxj/lu+vH82Gw2g8GAMaaM3RT5crlyPJUgCIy5pDYQQjzuUcLjGBgjCDmpqdJaN01bFMVyqfq+930/TOK+76uq5Zw7V1WWZcaqupbW2q7rPY92TevYItPtCYDVRnZd4+7hpmr6vovCYDweay3bpnHTMHDX55nRLUmSrhOUgLUUvdgN/hvcy39akeMKGCGEUUIwdS5ea8A4N57TJWpj0AsJixBgDMRJzBhyvi8DVkqprdEalBs+W1AGXJV0d1fbtp7vu3vM5akVZS21cCAvp4uQSnPPx4RKDZ0QnPPxeFy3NcY4ipBLrCs3OaWgRO9giD+1GsK/zpmX523gBcfHp59+emd3d/ruu68MBoMnT06VRpTSzWbDKZdCcw5S6iAIZrNZ00IUBYha7lGMcVlWnsfHw5GUUkltLQzTTCl99egqRqhvhQGXKtdRypVSngfWWp+zvgdrkda6rus49gmmi8VCSkkJDJIkjWOwVvbCjfApBmMVZdhaqKoqjn1HM3XVzWUmcM4pZ84gbIzx/ZAxxpjngjUAIPAjV5KcyL5pKt/nhDjK0EtviFU+Go0491ertdaWc8AY6rL2vTAIvSAImlpqSd04OwzD3Z2drm1v3rqOMBijhGijCBlt4zitqqpuyuVyNRiMnZSSEBIEASdUS4ktGKmSOM7Xm0GSKSGN0nHoW23SJGmabjzeSuMk9IPA5/uTyVfffJModbR7uL+9jzVui3YymGxn091s62uvv/P1t99+5cqhh+yrN64a0Y9Go+FoenK2MAAGMKW0LsvID7IsOzs7416QJel4mI2Gyd5OkiU8CpjVgAAumz6EuD/QZxat54/Kc/IYQqRp+6ZR6/WaMZrEAyn0eDw6Pz/v+76omqpt3BOyXC7Pzs6+ePzk8dOTzz5/qCys87IsqyQZ5EVlAQAjra2UWipjAZSG5Tpfbyo/DItikw3TqqqEEEKooqj8MKjb7mI+cw9JUVer9RoTVrdd0/WB561Wq0E26nr50QcfDcdbSZJIKYXqRVMnHleqE7KTvfC84CIv1lW3LitMiQVNACFjtRScviiH4/GkKKrdncOm7s5OV23TB37klmnPMS1bW1tuKT2ZjILAh0spnCaEborq6dOT/f2E+0FRFE3TRGniipezwLv4kcnEzakhiQee57mozLquB4OBtVr2AgAiPzAGNpuNCwgaj0ZN06ZpZi1q29btpgEgjPw0jfteDDIPQFtDrKEACuBLErx/bTV8VgRf/Flbo60CAAPGWmsuBdhgjDHgxsqIEGIxEloLoTACbYAQpsFqrZXRzwSMxq1VrbnUbyMEjLFWXEo7wjDspUCUKGuSJJktF6cX573u4yQMggAIFloJZbJsxBnCGC2XS4cEJhgzQtM4kVLmeZ5lgda6KIp/QzX800BcxqBtpNEwniSjUSZE98d//EOj0enJcrFYFbmkhGtpgiAEizzuGw1h5FHOAAxCOooioyzDbH5+8fTp06ZpsnTQ93Jxsair9vqVGx7joteiNxcXc4xx38so4n3fWtAIQdv0Wtu27aMokkosFh1jhGHkMRL6vG87sMYoTRAOQ3p2drpez7kHmIC11g06ptOdum201i7U0c2p5/O546k5YAHGtG37JIkYY3t7e1Kqi4sLQsjFxcot1I0x7iXmjodPLqY7e4CxxcgLven20BjTtv1oOKSEbzY5AiJ6kFrVbYMxdnCKra0tQqET/dZ0HEVBXQvP85qmnUwmxpjZxTLLMldEHKYwy7LDw8PlfMEYS9MsCAL3/W1vb/e93N7evrJzuD/Z9TEnQo/D5Ftf+So39p1XX/nzv/5rs9OTOs93pluTLEuD4N/77nd/7t2v3Lx+FCcBJTAeZwjDap2zKPzi5MwZGACg6zqjdBKnSpvmUu04vHbl4I1Xr928cXTz6iEFoJgqZRzcyTGanFQCIeIMRQDg/tdBLTHGWkPbqKZWp6drIcx8liPwjKZgWVX2F+fL87NFkTf5pu47WMzrIPD6znqe3/d6Nl+60B+tNUZQVZW1CBMWhHHb6c8+v3/l2i3njHgGrywp97tOhHEShmHbd2fn51pb6vlV28yXi9PzC2tkEAS9UItN8d6PP9je3U2SJPJ42zda9YHHur7tRNu2faf0yXKxyOvT2Zx6FGOQUoJBQoiqekFOfuett2ez+Wq1Pji4UtegteXcb5u+bVvGsANtICBN1W1W69APOGWcMoKwz70kijn3yxom46lbKmotCUHZKOSUaak8Trumrcs2CsJRlvkcF0URBMHB3v5wOFwtVoyTrusIRVrrxXzFOXGb4jzPrdUYA6VMCm0tGg0nvu8TghwogXvo8OqAcmMBrAPeI0BA4KcfzwcpzxOdnquvtdbGGGs1xphQJ2dBhCDOiecxzimlmFJEOEKEuCGBMdB1X2pTIoqQSyHHBCHQFhxhAWEchqHrql3CFwL/Yj4rq4p7HuO8qPLVpu56bQA59UUYhkoJsDaNE2QhSwdaW0boeDwGbcIw/LPXwZfvupebhgCQZYPJZDocDgHg4aMHRbnZ29uaXTQeD8/PNkFA+l76fti1vctvi5KoLPum65IsUdaZ4fRwMEjT1Pmlrly77nthvmnyVc4ws8q2bVtVIKUyxroMNkCm7zvGcFVV7m1W1zXGOMsw51zJvm8bxpjPWJYNMCApe6N0kgbaqGdhAxohW1Wd6/dZAGttkiTD4bBqaif001p3rXDvUoQQxmQwGKRpVlWVH3BjzGAQOuIFIPNy39BamM1mFxdzhFBZ9levHrVtnSSRcyMAAEKkqkXf2+Fw2HZ1URSEkI8//jAIveFw0HWN6wkURUEpwRh7PHDKbVdKnKlmsVi0dRPH8Xq9fuONN1wpzLLMsRd937955fr+9s40HaZ+eOvo6M/9yi8HCP1P/87f+fyzj7qm+vrXvlKXxXd//uf/+l/5y7/wjW/4GKJBiLE5ONxr2urze/c++PTjwXjyww8/QkAWi8VmvQ680M064zgWQlhtN6t1XW3u3/vMmE6KllEwWl1iX82ll+D5c4Jc2C6AkhI9q4mUUo97SoO1mGBSVX3XaWtwXYv1pmpbKXorJShl+86MR+MkTQkhcexXVQcAyILrSrv/DsYYEDIG2qahnEkNCMh4OGyaummrMAyXm3We55R5TnzeNI3z7fR9v8kLa22e57Oz88FgcPfBg2VeNULfuPWKA+gDQdaovm2KYuP4N0Kop2czwLRpO5fh5ZRVoyxzt6U7njw+fvWV1x8/mgd+EoTEGHCaOLdkdp2W4+NjtyR0rAHyrCI0TZNvSucy6Pu+aYXW+unTx1tbY8aYGyI/eXI8HKZ1XZ+enl69ejXwPBej7CTPzh7qrO5tewnBvLi48H2fc84YjqPUWQallOv1Wirbtq2xOknp7n7oBe6Ofq4Y/LelObwkzXMybLCXmr5LybV7TWqttTWuVjoxtlJaSqWU8jyCEHgeB3AjaQsv+f+0BqUum9Ru7fL06VN3MziLqlAyiMK2bc/Ozqy1nEPbg7amrbu+7ZAFZ3DAGJdlube31zTN8fHxlStXnFcyDH+qluh5NWTA4OVZy/3HPeqLo52k2+hhnCELRpMgAsLIcJxE6UAjrZFmPun6dpClcRR6MfIY8ZHPaGxY0iF2ulqNRyMbxCcXq77tGMVBQvev7Z4tT8LMn+xE+0eBtUYIceXqoedfQnGD2FfabFaFVkhahDnb3RmHRAJltRBBlCqDlDTaGszAjzDzk6oViAFgGAySIAiy4fDp8QXVVEuTDDIp5ez8YpQMmq5tZe/7/vn5jGJGEK2rwuOEGLw6X2MfVvmKcJbnDcacUN60bZq9YJakEf/i4THigInGBhjCgyhF4O3s7Z2ennad8HjQ1dC0dJCNCSdSIQ1MWE0Q7Ga7IK1Vrcc6UN0wHnS54cjD2nIWMuoxxpxszQVd+mF4uLPXVeWtG9co4iBpX6hf/NrPX93a/dk3375x7XBVLfcOdr/99W8lQN64efjOu9dW89OfffP177zz7leOrv/6z33nm2+9M+DeTpoxzeZn9wluLhb977736LzW63KDVN9rc+feF/Egc0l4AfcYUGaIRoAY6w1GXnL3i9OzxUYqCMLEGqFV94xyrAEbwAawtYCVsfDMS2ClZAiMEI3sNYACo6zWABqgaHqNMGBw7gMAAANNVXLU7IzoJKJGdgiDRURbh0MBC4AJNsZQgiixAIYgDAA/+uCjIA6Hw+GlFwJTrXXfy64VT45PZ4uVwbQTerkuCOVFWc/mcyC4bdtNnq8268nWlhdGu3tHyuCUmcbiXFqm+qArEEIfPj5+mJfWdAQZj3pKKWn6dBJbDD59UTWenp1NJpN0QOtqfTAdpxnxA+T5jGCmFWY0qKu2beXWeHDrxlWGcdNWns+0kQhBURWVXLx2fff0YtNIhCRcv3FFMaM6FSWccru9Pc2yxBjdS0E519ZaqjflqmrLvpMIgzYI88CLBwLAEFw2nQUUBJ5WAqSexGOQVna9lH0rCkuM75NiVWEIJmmWz/KdSYCQAuiRZWAxwJdUeC8f9sXaEFtAUlupL73K1oIB8DyqjKaUc+4T5iGEHOy26xRgIrVpO0NoCAR6JSxGYAn3aNMIhBDnGCNmzDNziwZkEcdQV6VRwmJbSqkYBcqSMDJ9vzg/OdjZG8RJ19YYWaOlx8kgRsW6uFisVrkSUhPKlVJKiyQMkyiYretGNlJaq9hoGI3Hoy+VP0yttVpLB2zAAIZSDOhLS8hf+cY7BCy2dndrhI0eRJHP+XQrWMzzal1yg964cXsSD3aHE6NMWVVeFA4omYZJt1rzXkVgWSuvDEcDjFXTUID97R1Q8trBUd/2YKzuBKeMEe55/uxi8ejhkyhMyqoNo1gpkcZeHPoBZ6JpPYSmo7FVmlrU5BXV9urufkjYOEnG8SAJI9XVHoYs9qUQ1qhskMRRgAFWyw0jHIxlhAbcE0IkflisNl3X7exMCaUOHZhl2ZPTJ2VTg3G0ROCEIIQmo62yrF+m47r3W5ok80WbZQOlW2vlcrlyQxtK0WqdX7k27hp1/OSp7lQcRkmY7Iy3s2ggO0kQTZJkNJwMh1maZpzzJEnCmD98+HAymciud0Tr7e1tQsh4PL5+dGVva3s6mgzT5K3XXjt+/Gh/d2c6nlzZ3xkEwWZ28c7rrx7t767ns1/+9s9fPHq0FY8Opntff/vdr7zz7mQy8oYJ9igJ2Xo1HwyG82X5L7//3o/f/2A8mrR1vVktnj49cQsHY0zTNE3TxHFICFJaMk6dN9HF0Q6HGUHWKGcuB4IBI3A0ZHDZUVYjaxgmnGDnVUAIMMIEXfL0MHreXkSUEnA8KIQ9TvZ2x6Px0CnCrIXLh+xZ9wYT8gxNppRSzlRACW7qErT5yjvvrhdLF33Vtm1Z13lZRFHkduu9kp0U6/Xaea4JIavNmnrcC6LDK1ffe+89PwrTJOsNreu6LdcYQ2/IvOp/8MMPjVSbouCe53aFGGMHGRlPt156SsxHH330xutvdV1vrS0LHccpo95qtek61TTNatUPBhFCaHt72xiTpqlbMLrrgDGtqqYsGyEUpQAAQoii3CRJ0ncSIeT7flXVjs23XC6DIHImfaXUZgObzabve2tRkiSuWfk8ibtuGx6ETVs5AzVCxONBFMZ9r9fr3FpECBmPh5QCxpdD1D/blvIcbfCcd0fIZY+PMewyc9z24hlJELkwAOc6BQDnB3MOE20dAwK06xwagzFQijFx/xWLMeacc+Zx7htjTk5OfO4BwGq1ElJmWUYI8bzAWjsYDMfjsTHW8xClbr1q3JUJ/OjateuU0qJsm9aenpwDYkajuvrJun+50bHPfMpKStBfUhy9e2367u1bI9+bxrHt2t3hgGm5Nx69dm37F772tSd3ln6v/ty3fu6Nq9dTj1ujANseKRTz45WoQfCEBRkp+kJx2xXr1GfVZj0cZNvb2w/u3qvycr1ch5ZNgnTAopj45bIEYUZhIopWGNvIPohCIcRWNkBaHUyn0MkgSzQBy8my3rDEZ3FQya5XcjKIQk5i36MYnL2vruvxZGgQ8jyfEXqpXTIyioNBEiFk3fbEuEhvl8yArbWWc15ucmtQFmdd1+ebpi5eTKCuXL9at7Czc+CUtG2XI2oJhdOnZ1GUAiBj4fBwrBT4PJBScsLjMFkt1lZZRvjh4ZXACymmezv749HW2dmFMvbg6Ei0nVHKzXPWy1UaJ9aogLHEC7751a9HlL167dqNo6O3X31tOh699cYrWRLGDN/Y3bl1eDAdhBypG0d7xw/ujwej12+9kkbxz3z960W5Ac5a1fSm8xitG/nJ3Ud/+N6Pew1NK+uq3Sxmy+Xa4wEl3IEtyqoAZAFZITpjLSEky0ZpmjLCXU4sAmAADGOKMEWIWKAADIEHQAAoWEYwZwQj65S02EXsWsAWCABB2JVDrS1Y7LLKrLXZMA3DMAg83wspoZe3J3rhfzDmS4g9AMDIckqrotwaD6fTSVUVebHxAr9um6KuzmcXmBI/DOq2IYQYBE3f8cAP/Egps7u7n2aDdV5+9vm9p8enQullbZUyXb2Sqt0o/fs/vvPwbKGlopw5ObHneXlZLVcrV5FfWlbgoiiMMZPJpOv6KGJSqqKoFotmazKRUvs+IHTpvHTlQErpe2GWDQeDQduIuuqkhK4VzgrprKVGX3KYHKzEVRAnXaSUCSH8gMcJrNfrtu3cbxLMtFSMUkJIHMcAWGsNBFwulehklZdCmF4CIRQjaoxJBxH3frI/9tNK4cs/uv2s+2qUdblOFiEklHR+CqMv/9LNQDCinFMAcAIya8ChjgkBhDBhXprGjDEpTS+1BYMwRgSMUc7m0Pf9+fm50iIIvTCOjDGUYecKdVkUcRwPh4MkSZTudrZDxighyOWfeJ73/vsfBoHnefhH738khO5aRdHLzjx3+i9prhkFAAMEmZc6qb/y1VffODx49/q1v/xrv/b12zf34mjqe4ESB4P0L333u//+L74+APuNV18Jtby+M019LkW3tbf95PxUUdAUN6JnPrMUemOpR26//opGlsfhw+MntVDZeHT71durzcZgtKlLy+loZ4J9zqJgsDXOLB3hUG2qJAjLvm85eVhuqtTrmjaLI6ul6ro6z9uiNFJYpRnCLjwzCHzPDwHwcpF7xFMWeimshaZpDDbKmqoqBknsEuuNgbqup9NpWdSEkOl0SimNg1gIkcTx7duvzM5mgecr9eJ2mc8vtITRcEIwXq3XWus0TW9dv3Z8PE/icVebyYgZI7SGOE1u3Li1XOdFUYZBFEWJ74daSIZp3/RZkkVBbIxpu+Zidn7r1i3GWOD5k2zUVNX2eNTX1TgbvHr9ZhaGu6PR3niEZf/nf/WX9qbj127dijkdBPzrb7yaMhwwsj0e6q5jxuzu7R9evco5H2QDYm03O405yZdz7tH7D0/+2e99P2+FMnoxWxplR6Ms3xQOCe5WFl3XlWVJKaWc9X3fdWIwGFLKCSFVVWmjQ+b7zOeIUYuoRQwQxZhiQgE8AI4RBgPaPJ/IYaPBgtsTE4QpvvR4WYMQxp7nIWwZp87Twgh39lX04gAAsMbA5ZIEu2RORjEGu7u9NRllDx98ceXoCGPctu3WzrYQQhvD/XBTVAhINhjlRfXFw8fOLNH23fHZ6Te/9a2mbteb/LM798q6C5Lk+LzoWlHnqyAO7p8tfu/9z0gwoBgvFouqqV0VCwIPY6y07voXTk3X3f/oo4+mWzvb29vbW9MwiBeLMhuGddv5XuB5vMwrZ6lyMysljWt+tU3f1MZa5HEmpe57TSl1wRJd149G467rN5t8MBgkSYIQmkwmQkgAcLE5w2HkRlV9L9brzWg06joTBIHHOaU0yzIhVd/3FjSlHCNqDNbKSgnWEM6DruswMQgDIMDokmL10w77wmgMAGDBaqeRdnxAjJ4xaYzTyrSiN4ANACJEKCW0QpQhSqSwFpC25vL1hrFFl0NnAOOCpiw4CaTRWktjgiiMogiBcamBnud5nmeVJoC6TiRJ4jhyaZo2TU0wpGkEVkrRNU3rhCh1XVMGlGELl+l6/UvfoNvdvFzx8eXbTtmXc1EOB/Gf+/a3f+2b3zwaDv43f/8/+5/9rf/4N77z7f/87/ztX//6V7d8+r/4O3/rL33n5xOr/v1f/PZBFt3a3eZ9dyMdb9H4+lYWCnw4GA4QiZG3k0073UtQlpHT5ezk/OzwaI9SIvr23W9+FQds0zR84C3LdZAFmtrOimBnbAKmKNrZ2UHGhoivj2fF6XocRikPVk/Pru/uibzmSseIRUADPxpNtggLKAsQosNskvgBQwRZSIMIKWOVRhgbiou2Vkb7AQ+CIArC0A88zyvLkhNa5ZuAB5RSRjijnBG+WRdRFIX+C2feznQCCO7ff3Cwt+9U1kk82Jpsix6aQrUNDOJBVWw8H9b5ZrlaDYfD4XgklLx163aaDnZ2dhhjBGOC8NHe/tZwtJWNOKFnp8cR9995663FbJ6GMUP4K6+/tTMeb48mr968+cq1a0c7O7/6i79wuD092t0mWqZJkIXB7njsEcwojpIBpfxg/0q6PUmGGaIYPIa06MucGmu77sOPPvpnv/Ovlrnw43i8tVXXDSGsk2Kz2WxtbW02GyFEXddt27onP4oipZQ20NR9W/ZKaS1NEoacMooJQdiZsCghFBCxhhEccMYosVpLqcEARoAACCACQBEwjAh9Xt6sW+8J0RkDoR80ZXVycnJ+fl5VtdYWIWQvdd0ubPzlTEcEAFqbKPCno8HtWzeeHj9eLudu+pSmqUHQKwmAx+MtY6As67pu+16GQRwG8aYob9565cOPP4kG2WK96bWxmGiDzxfr2XKtLAiN/vC9D3rLkB9Krcu2wYxuyuL09AwApJSbsgjiF/cDY4RSmudmNj/f2dmhlGmtKQGt7WZdPctQS7a2tpbLZdu2onfLPVYW9XK59DxEngVaKgXOpedaE4PBoO/7suzcqTn5V9/JIAjCMHQ7wTiOXRi36BWl3GqQvWCMNE3D/RBTLrV0z7+1QDFDCFMKQiuCvb7vMbZRDJevnz9zoPzS5X8uugaMAb+sQcTI6WkwvfyGtTZuoyakFUK0TQf4EsgEANpe2g2EEOv1RkrleSjwMMboUtLPWVN3lPDFYiGEGKYJQrYsy17JxWIBAGkYg8XWoKZptFVC6Tjiom+dTjsI/K5uzs/PB4OBlH3TqrfeetP3PUygrL6ksHneEn12HgQ49TAjLxuV67zQon/t9u1Xjg6JaIeU/Pw7bxwMol//xlffuLq3l3k//7XXXr+6/frV7b/7V39j2yeRbCahf21/981XX/u5b35zlCZbW+PpdLIsy8lkUlXV8fHxk0dPZGdW5xe6rGjbh4vif/Trf/5/9z/8u9dZ/K3Da28Opr9663X/bCmbPKBmGocRsrzv+2VOhT6c7hyv50ev3WqxqkEYD3mj9Nprt7VPXR6CcyNgbRLuvXnz1q3dgyvb229evzX0gojypmqNMZz5VoPPPYyQR9kwzfqmG6aDUTbM15skipGFMAzB6Pff/5HRUst+MnnRc0Wgrxz6Dx+cWqVv3z7oWt007Wq1ShLvyZMnGAEhjBHKGZJtTwkxQjLA09EYG0j88MmTR4MkeeuNNyMvJBa+/u5Xt8ejrsrHg+z87Gw8GL756msDP6yWm+/+/M8dP/zi7Tffoph87SvvTLJkeXr81is3d0ej6WDgYOfXDg8iP6ibLhikLBpkk13mcWWU1hpUV+UbpLVqmmGcruv2+CJf5R1h7Ozpo3E6KouO+lEQ+kdHR+6V60qhs0wppQBjj4fLRd42Qgrr+2EQBA6FiRDCiBLiBBvWXXnXHrIGLAACoAiI6y5hB/e8dCxYay0YSimAwcgmoXft2rXpdCf0wr5TRgPGl2JGeC5tu8zcwACglQIAZOFgbycKg6ZpfJ8/efLE2kslacC9uqhF2xmpnCVps1qPsqFLHI2iZD5fMC94+PDxbL48OLpyfDp7+PRYyGZdVulk73f+1XsffHJnd3fXWr3I104L4SBGbdu3omcep/zFFIUxtr2zxT1YLpd1XU2nW3VZSQ3zWZtlqbZGdO3O7pa1xrnX3aY7jmOXsZEOYq2lVL3vc8Yud8eMsabumroDi4OAOqISIcS9tLSyrvPIGAuCgGBXSdVqtQpD6uyndV1XVUUYdYprn3sU4ctVEkVaSwCsjeYenk6HTh5o/4yV4ZfEhhYAECBCCOfMddSVUtpat1B13xRhRFujrRMkAuPIWCsvx8cG3HrMGDdKVkoRghEh1lqtrDEWLEKIIIQswmVZNk2TRiEhBIx1lyjPc7A4iqLj42PGWC/EZrOJYkYIctvz0As94t24cfPi4qJt2+lWHHhACInjRPQqy5KXTs7+xDlSY0BaiYwhL+2fAy8Ko+h8dsYp256OqmI5Svyd8UC1Im/ypq03dZslKaP0lf2t/+3//H/y3/y//8GyNUdX9u4en35+5zOjBaG2E5FEbDsNrhxcAQ2+wQCAlXzrxvVXrlx5c+/wzW99E5T+T3/9L7z33ntJFN+8cR39p39vka+PnzymnMRb0//xf/G/erg24XYyL5aBRXc//eTVmzeU0Okr4WQy+fTTT7/6+ltf3L+znm8Q49vD6VrJhOCfefttaoy19vbh1W5r76JYf+9H36fUM0Z7jG+WK88Lzk7nHl8dHBwM0nQ5mystEEJ9L0eDjIzIw4ePoigwYKaT7Pk1KTdrim0SUbAaWaEUms9nnPMk9Y+f5uMs8hhPBvF+SbdH1Dbt7TffHGaTj/O5j/DWdPfByWeffPLJ3/jNv/FHf/DHr928/eDe3fHW6MbVK1qq7dHk/mf3funb37k4PVvNF3We/72/9belVjvj7bqYHR3sz89mk2GW52tkFWXEGLN3cKUqK4UpCwdaW1CSAuqE5Bj1q6Xnsdling2SVomHT042ZZekYy37MKRayKaVjdS3D6ZFuSEUObTXJi/qqiGYstinhPe9bOreGEyIE9boy3cnunwkAFs3jwOCpTJSKuMi9RC2FpBzKyADFgGAsW7LixByDyRYC1mWBUFgOY2iQZ6vtXZsc4oJMdrZ+M2XyfUYIZvE3pXDg2GWnJ6fYErcI+oavl3XSSk9xpVwDz/1PK+pqvt37zLG7t6/99V3v1KW1Xy5uv3qa3lZfvHoURBFoq+kGS8r9a/++IM0GXoUSdX3Siqjq6J45fZtSvFyvfCjwPUin/+/KYpiNBzGMQ4Cf5Ovbly/1e7sfPTpxXDMDTI+Y+ulIcg6x71rCzLGm7pbLHI/5ISCNkIp4KEHWhBCXAPXxUIxxoJgsljOACP35Ive5HmOsJ1MJpTS9Xrte0jKyw1gFIScEJ9xSmnV1L6XbDabwOdpmlLmA5i+04OEtn3j0ggsyNF4wPhadPZyFf5TSiL6Mh3awouNs7EgpeEcKW0YuwSzY0SNVYxRSplSne+Ffd8TMMaAUooxz9rLiCFCmNTK577UQkqQ+lJroAxgoT2MfT+8cfOg1eXZ2UnfqtFkCAwFOEjSbDabNY1JEiuFtABh6BEgHuN90xsN2koXbowxTVJ/Msw+//ROGu/20mL6cp7yT7ZNKSCELAIL+KWd8tHVm2vZ7uzttnXTdBXntK4266ZliGqQ2MjQw1W16DsdJIOdgyt/72/89bt3HvPBpCXef/9Pfmtvd7wpNnnT/eijO1TCm9dutVXXLvJBmvzNv/xXDkeDvZ09IGJ2/jibbJGEf/sv/Mr8yXElq2GcHl25untlWK/zbPfov/o//x//u9/6p8TjF/PzrWwySNPhILty5UpXN5PJ9HuD33/65OTaL/7CRx9/sq4KYiQW3dBn33rnrcXZ6WrTHI4nt75+a9GUjy9OW2ROjo+j1CcBzC5WGIPPeRQEURQutCrK9uzsom3b0fUbV69ePTs7MwjqpiEvrZjffeet9378PiW0aarR0Pf9YJXP00FosQ4jiBM/jHiaxrsjHvndMBq+fvM2AOZvvjUdjRkKw8hXWkrVXzu6wij+5td/5vj08c985SvGYi3VJx99dHG2f7C7d7S96zG2vTWdbk0JJ3EcB3wftKmKzXB7W5bFdP/A1KVVKogSMhx30ng8kBrpuvUpWcwvJuPhsu+Xm3VRF4vF4gc//rFBAeN+21dWiqoSo3HGwygIvB/96EfGmKIoRluTi9m8rlvfDz2MGaNnpxcuF81jHsJIKQMYIQMAyC3yXO6te4Z7KZQFDEAwgctmH9bW9Q0tgDUINAKLLMLEao0QeB5NB0nTNBgMIcRaVNetkEaBwoRg7B47cJoHYw0gB3BT169fH4/HW6OkFOXFxUUQBa4artfr5Xzhcw9jeikLV7arO621UnowSF3x/f57P/hrv/mb6+WyLKvDw8Pf+sf/NI2RNofvvf+pxd7bb75yMcvrcpNkSdN3rotfFEXXdRaDtkZq9fK2su/7o6MjC3qzWT95+mi6sz8YQJqmRVGAkdvbobV2sVj4vh/HsQZLCNlsFn0Pu/vjrls4Ty5CVkiw1kop26a3FrnJrOd5UhpjTBAECCEhrBDCGb3iOH706BGf+HleWwtJ4iulOA9cWqQFAhg9N6Q2regagTGMx+Mg5E4Y33Ut5ylCl6+oP2N1+HzS8vzXlDZgDcYEIe1mPhYsxti9Ml2t9H0fIXRJwNYaY4SxdehDAHAqXgNWa1tUDaOYUYaw0dJoY6VUGEB0MJiCtfbx48dtA4EPTo/NPBaFYVVVo1EEYBmmjBMDmgIlhAW+J7DwPP/99z+4fv0aQmgxn7322isffXBMdnrOgydPli+f3cviWQCgxCADGFvd4Zcq5SAYylCuS9P1lFjq2WCQQJAiEqbNQoleiibk4UoXsitFWzStePPN1zebIskG7/wv/zNdV1IrrdVsNosgMCGNpqPI+5tQCDBEcbLoOwr1cDhkGgwYLVS0tWWFIZjWkkWTax7Pm05df+Pt//yV1/L5YpOvxoMJAMRJApzpttK6/7v/yX/Qi/bJo8f/4btvN6L95O6d7y1PfdsYaNPJ4J1XD65e2efMvPrmmx//+JUfffjRG299TVrwM+978z+wHkuiiFkIEE3CaJhlrJd6AJ+//7Fn2CgaHx4efvDBB6x7UQ2/eHr2la/+zGeffIoNGw8Ou/bs+uHV5bpg1NvOBq9cv5IG0f729NUd1NdVFocDKgdRSCo8DVkvuzSM9/b3fvv3f+fXfvGXBqm3N96Ctri4OPvuN79d1+03b7/aNe13vvXt3/u9f7G9PTF9FWZxIxofeWwQTvcNSAnc0oBJqWyUAmWyEZFCvsEWaZswU7Vatrqdr89XxXrdKvP5efkv3/t4U9k0i6peKMmo54Wsu3lr64ffv9v0IDVoaTyfbTar7Z3p5/ceenGY2b3FYt5XwkicJWnXdaARtQhRgjGu65oSgjFxvnVMcSlaBMAwcrFkcBk3YUKSlqKKwriXQoLSWhkDYDQgAAvTQTYJAyX62WxhMOk7tZESEHiUWq0diKUV0oKiAMpiYNzK1gP49ju3jg73Pvr4U6u1a58LIRaLBUJWasV9TwihLSSD9PT4VFlDCPiM9KK8fvW1i9Oz6WTrnTff/q//6/+mlerWa7tRMp0tn1qNv3/vx9/+2s+iZPjHJ09Gw3FbrCpZ0MCbbRaGgRcH1lqMcVVU8AwfTTBOE973fdcKg8yDx4+iQfatb7zzwQcfZrFf5e07P/Ot+Xy+yvOdIDAIMMKLxaKumyzjGFCY7h4fP4kCjzM8HgWDsffwcWeVZQTJvicIVVqkWex53tn5eS/UICNK91hYqw2yYDUMs8QaeXK2imIPrAojrhXqazXZHm2KHLSqOrk1PiiW67Mz+PrXp5jY47Pjd9/Ymk4H+abb2R5NpnD+VIJNDRL/JrOyw96Ak8AohBgYYwBh0BqQASk0p4xS29a973vIYq0NJaxtW20tAGiLOgHUKISZlNLjVClFKTbaWGuNleiZnNtYkBYHIau7/uz8xPO86e54udgYjYlE5XoRcC8Mo6Ktfd8zoCnxAJDWnbIKwPCQcg/xEEsrKOae583mT1+99e7xxfvDSfzkfvzSOXnOmca5by1SSlAAYwEwAvNSjRSbTtczP/aRDxYnVnOulO/30C4kjeuqK/La9wghpJOiLNdeELZtnqQ+8T3b9cpQ34+AkWv+oCIy6AxpEahOJpQOfK7pZK1LnFpElNJaGUS0T6mxwvZtZAmo3tey72shG4RsGvPBaF+3QgiRr2du+Git1kYaY17df8siq8F+5dbP/OVf/quPHj1hJXnj1u2T+Hg83trkJWj42jtf2d/du3r16nK9iq35K1/9xpPTM869iPsIIeaxj+58Oj7YpYw/ffPNk7Pzd268y7k/Zs5XcCk9GhMW9PI7b79bbFZXDo/a5WJnd3fu+W3TH96+FXE/8vw3b964ODvng3hrlFolxnFQenQYhYSzvTTR45ExZn1+Ht+4vT0cBm+/Xdc3tibbjHku0wpj/Ju/+Zv37n8+Ho+7Mg+HqV2t+6ZPplvd2YVWhgABAIoJJpT4GAzSVoPBzOdC6LKoDLCmFbP5umo1CNnnq1d241uv3vzRx5+dtx3nwZUrt/b2D/9fj0+u3Pqa7/ud1gDQti1hfDBI802ZRHnb9IAJ9zlg9Hw3qpXVoJMw6ppWtIKnNI2T+WJ+uclCAAYQAMZAKLXWCtSlWVxUjbZGaMMZN0YwyjAluu/yPL+gVMiubXpLmLEIYcwIVUIggDdff31T5CfnZ8ZarS3j3CBrwPzGX/rlr7z7zsnZsaW4b3oh+q5pMcaDND0/P+Xk0vFtjOm6tYOXYDBZlkZRNBplf/L9H/zN/+h/UFXVxeLCYLbarLLRaLF40vXi5OmSf4Mvi2J+MTsYTuuuRhaUkHs7u9kw/aM/+kMHaHh5axVFYVmWRd4xxrXphsPRarXa393b3p7eu3dx4+o0DMPPPrs/GIUIIRenU9e173t9LwkhSZYp9SSO47JcvvH6a1Lo+aqeTna1bMuyjKKIcCKUnM2Wu3vbk8kIgV4s8qODHZe+PRplLosqjPwoitqmBMCMMUr5arnxI2+56BBgF6Rx40YwmUxOz54aK3wvQAh1XTsYDAaD4PRxa0Ej/G+7U37+o7HWWMBuMWhBa60RRgY5Wqh2LUJjLLrsN2Ow1ho3JUMAxlzCGjQAMpZQwJhYY622ABYhVDZ9NAqc7jKO49nFclU2h0dT0ci8KgkhPvcIIZSQMi8pZaNh2nXdbLa5cmW3aUSWjZaLNUI4ZMEmXyTBzjAbl/Wybl4+OWWtfmaEUQBADQAgoyzYlwSHHHA/fkXpvJjdj/GCAGla6UV+3ZWyn4W+j8ArisJoxGhkJbc06NGGeRNrFeKxF/mq7vtVwTHmfqeYLzRWfQNtzTcGAdOGJWmk2x6U9Ch2olusFSgtm9wxF5Ikor7X9U3fGsAo9ANrRBT5GNGyrBCiEQ/btrWmbboWkC2LPkmi167vLJdLWS+m2Uj2MosGVupXb956/eZ1q/r91IO+54G/P82UUhwzhJAwMg3foH5gjH11b3e2XFHmEULoKzf6vgf4E3dNvvP665SSG9ev37vz+d729uTnv0UIa446o23gebIXO5OtAaPeMPIZBS0wNluJ713Za/ouwPTacIib9vDoKgDaiuLU8+LJ5ESKKAhGo1G5yYeTsZSS+P6r7747f/oUIeXP1t2E45MFMEYPt8y9czgY0w4QECMMAqS1tgBaKaaZH4QPH3yRDZJeaIt4mV98+tHHO0nw57/1+t7BlZ0Y/unv/n6yNfn2t776L3/wo3UBWZZt8hVCSErZ99JDlFGvkG1VtH3bIyCc+0pqhIk1GmEap3GZb2SvQt/f3tparBebslBgiQUMgF0vEYASijCWWvWgN5vCIgALnueJvvcZZ4y9++7bi/nF7OS0ahtjDPb9su1LKQDA47QDOUgH5+fnneiVMpggQrnRmmDJAd567fZqtcjLsu57Y3QUhARhh3t58OBeOt12wxPGWJ6XhJCu65ToPI9xyp4+erx/sPvWW2/9+Mc/LutqONl5enoitTDWPj0/jTjkeX62Kq1QZVtpq3zGMYaub4TwgiBw7b80TV88SUpxzzOmddeKUXpxfuoxfv369dVqfT6fxQ8fTiYDL/SSJD45OSmKIklSjGia0sViVvYt53B6unzjjYM7977IsphR1HStR4BSKpTyGUYINQ0YraMoqqvc99lms3HG9r3tbWut1ZIx0nUtY6xu+0E6WaweXbt2zYLsOxiPI0LIycnpcJg6370F2zSNVlb0Ksuynd3p3U8fKwUYg/7p0sOfkBw++8vLlx9CyCBLALQ1CBBlzIFaMAJELrfihBCKXLvQGMd6cITXZx+FMUYIA2gDFlmw1oYeBQCPB72t8zzXWjv3t5NkpYORqaFuSwf+CoIQLG6bHmMoiiqKIkp424j1ulAedMoMkj6OMmmW0+mLc7FgADlmxGUQIHUGAbBf4liodtmUHzKaUpZ6gwGA9PM1lThR6XHR6k4kYbAzZE1fVU1eVStCM9GFGHGiEPY0pX3fNlgrFsVSBYR34MkgYNCNTKO1rXy/6juutfV4AIxZI7WW2mIhuiQiLExACNV1RZlTznzfq9t2sSmyLCPWWNMP4rDvOtGWIeeGKSnbNI1N087Xx0mSBAnq7cYzXt/13KdlWSjRYd1X64tJlmxQe3527oVB3/fUEq31fLPaPzq0VSf7nvjh9b3t87MLj3JGUYhedIm+dvsaQqiui7duXmnr5uowZb63Wm647/ncU0KEPvVARolHKW6bDmFrZZUlPgK9PRl87dWbh1uTKzduMS+qN2VfV4Nhdu3qYdeZuizSQapEhxHqq8obDuMoxVoZju1i42VxW+YBSu1kKBuJEAeleyEJpggh5ntWK1BK9s1onDlHrTGqrda3DyfXrly9sjuwtr25m57e2P3ZX/jl6bVX/sv/0/9lMPB3dnY+v/sZgUtPKEKk69phNlFSO4EeINRLcZlARFBZlpRygiwC2wnR9b2wmjNCtEHIxeNaZQxgpK2RUneACeVAsBbCWEQJ1VJc3d8fJjGzxgpZlmXVNsJ0rVQAmIIN/SCJYo+yp+cnSRIHgYcwNthryw3V8Fd/41dff+X6b//uPz9ZLDZlTTH2fd/zvL7rMMYIETfwWS7nxhjRtRhjTnHoxxQTpVS+XPydv/u3Z4v5J5992ks93dk+X6zmqxVlWIF99eYreV6WdZPGMfIp4QikGQ+HVV7URVEXFUKQhFEchPBMr7ZcLrZ3Jl2vfQ87+0QYhqdnx1EUXb9+/f337yw3yyhJhGxXq5VL3E3T9MMPH2xPh8Ph8OnFhdJwdGWcZoPHT45939/ZPTg9nbWq39nbK4oCYetzbzhspZSc8zCMfT9squa11177/h/+0auvvkIZ3ny+TOLAWk2ZRxBZrIqTY/X1r48fP3lgrWunLpsGkkStVitCCCZkvpj1fd91Js9zt67HgPVPp9i8hGxAL1dGt8d89jugnaPcWC/g0ikSHS7QWkIwQpgQq7VFyBoDFsAYIARjTB0+8qUKBdoC1gYzWpattRljnu9Hvl9TbI1RiF5Ku4UQfdcBQBj6QRAsV3Nr7XQ6urhYIWR93w9CvlwCoTZivG1Xuzt78eBKlrxY9KHL5eqLc6TWAsIEIWNeGt8tL+4XFRxdOYyn+6pcnJze7etZQFDsRaMRXswuuhLiMI6jLNsaCwlCmSgOOfeV1V210YR4DFvom8UslFgTXxCOPOtHFg2wtkFno6Q4M11Xd31V1wZQNhiGgwQhe3ax8hmPw4TFccqYFAJpSw2E6VgJRUAhZJumxBg8jptmQdmAGNIWLaN8K9txmg7EebGpR6NRXpZxmAiLimLlMyu7nPV2Pxt0oo8ZY4DrWrIk8ZRsjeKcNm1VVrk2IIXqO6NfykizqrYAoFvQimABSum6DYkMGQPbcoaHMa+qOgqoBTHcHpZNlcQeZTxJIsLZtf1dn9PV7Hw4nqZRRCmVsuOBHwaJECLIUtM0Smvus36z9H0fma6lwBsLHu/KMugtyiK6rKWSHsbUIoSQJRgYo9ZooRAyUnZ5vjZGg5G/9J1vrGcnp08erSK0vTVFCP3yd7+9c3jwD/7pb+XL5Ve++rMAwDlXovU8zyJS1cIaNBpO17O1tYgQ7AYmlGCrDUIkjaO+7xnBhJD5ai6tJBg6qVNGn1dDZ9WTxkgAirhWxmoDliilwKjdrdHtW9fPTk66rmv7blUWSlthLqNrGaHD4bCu69lyMcqyqqk7KRmjvRTDNEBdOxnGH330gUVEKWWtqatGSYkxdoB+F9nqEH5G6TiOm7aq65pT0uMuy7KrN64Px1vf//7312XFg3Bre/fB4+O+70Hr6c7UVnnV9cLYvu3H28P2SW3Ay4v85s2rX/3qV/7F935HCOHSoJ7fD5iAVrbIte9LjqUjMjjvxHQ6nUxip7vebDaO2+xQeJ4HbVvHcQzaBgFEsT+/OI9CqgSqVFNVPSPg+37XdQAmDEPHzVdKNU2dZVnT1PP53Fqzs72llDJGKWujKGqafjLe+eBHn/o+CCEoQr6P+r4/OTm5cmXEOV+u5mEYcI9yTsMwXG+62WxWN7mxgLH+6UEAXyqLbpt8WTsIBnCBos+rotYA1GgN1iKw+LmVyEnoEcYUY8w57ntzieNAFGNljHHr00sYBADGKMuyUsyklJTh0Wh0fHxisZ1uZ+uVQhh3XdeUDSbU49wPoq7rpeyn00kcx21XllUVRYHWIh3QMGCBt/PkyYP9g/Ew3Ovakz99ak46Zq2LiDIWWePiotxBqNq98ZoyFVl/jLW9sncF/Ld0W1dNjupqZzrARtXV5mJ2gikOwlBZE/Abxjbc9xOOMQbAWiPV6b4e+2EwCFDSl2W5mHugfJL6EIIX9YwQL93evYaJBwYUII3t7mgi69r00opWdKLv+zCIAu6DRSyJdVPVbck51kq2fe95HtRLjxPVSd/3ke+Juqo7UbctTzLdct0VtWrASAKya6tVnlPMJ9OJbhtQmlBGrSKU1WVhEAOMMGgggLFlDDNCGvvC1ehR27YtAskobdomIpRzTmLWCxFFUVXVCPrAB2t7xhjjOMV+37fpcASAmlpoqZIkoV4URjFCpG3bJEwsSAw6TaN2NTfWBlHUN7UXxX3fY4JQp+kw7Zs2jlIgWBcd4Z7pGyCE+QzAKrCya1TXWqmkqOu6Hk+yi5PjOKBX9rYeffpD0RVxOhpko7xY71/b+/yL43/y//1HcUgxqJPTp3EcLeeV7/vK9HWVe15iDHLOZY9SBNbjzMNUaUmRtUISDNJqCdZgY7RVBjyMCMKXjwfG1lhptDBWA/i2CzBvjdIA+zu7xWZFAO7d/7xrZV4Wreh7aTAjjGClrTWGedwimC8XUsmUJe4J01qnaeBh/Z3v/uzBwc6HH3/y+aNHq80SY0AWO4KTo2QmSVLlBSEkiQZPnjxquxq0YQzFUeziAOM0uXP385Pzi16oG7demUymF+czhFDGCOUkLysdR2XfSymrptOt9Uc8jPzpdPro0aPT0+L69ambv8Mzik0U+UkywHi5XpXTnQC0qvJCg72YnSVJEgSBM4Ayxg4ODlbrRdc3q2V+/fqVtukfP3569cqBMUbLniBLgBDCNpvN1laqRN+2re/7vWgJIViiOIpXqxVCaD6f+74f+b7jmP3Nv/HXP/34/cXpOee+kubifFGUsL8Xz88vvIBNJpO2beu6PTg4mM/nbdslSYwRTdO4aaOkFNpIQm0UQ1NqQhyo7V9zoC8nDv+pf4VnNl8wFgFA1/fOegwA+lLDYrXWoAEhixAKgkDrmmDedQIuMftgwf0rJphgbBmjYRg2imJMMcJ5ngshJjtjjFHZtKM0shYhhCgmBDPG+HpVUEqdW8mJTxG2Sqkw9LXVhBCt4ez8+ObVfc5eptNg5ARhCLkoK4ycIAywNS921Gmy1c1XsgdJx3jrNmT7VgjVnJL6ftkv19V8ls+CODm88oofbgkVaZt6aRwOIuZjrEWdL5cXs6qRyWA3wtf105P28z+A4ikf7ZCj12Rmy/6HfbWxWhJsMEhQtS1mcnWK62V9ccasZtgU69VmswICNPQMQ1W5rOanbb1RoqnLXLQdASI7iWxVF7OuXTXtenH+5Gx+CgxND3fGW1uyKQKQ+fljkc9ijn1C4jjmIWtkTXwsoWtVo7Es+9wQQ0Ah1TOsx2kQccRQz5Hk6MVaIMTWxzBOYyO6aTZIQ1/1VcBwlnig+oCRKPQ8TnzCIt/DWsdhlK/XVZ6LRoSezxnzGEviGAOyUjOMkFaqa6pyLbsqSEPfI5giQgGs9jwPWYwGCUhrGWODWNdCMGKlIpxpLUBLpYQF3bRV19amaxBm4/GkqVrZNMM0kW17sLd/+8bt9dnxxenT0Pfruv69f/n7Z/NVOsz6vl2tVm6H4iKqKWWceVXZOeuY+0tOGQJDjfEQIkU1CQIfo8X8vO0lGIgIGYcJIeQ52sJYK7XR1gCC//Xf/4+L/uzaTjII0K//6nevXT2qqnq1zM+X86JuFSANIJWWUlpjCMJV09x9cF9bCwifzxfU4x6loC223WSUfO2rby9Wy2VedL2YTraSwBdtp4UEbRgmsuuxBSAYU5bnOaV0e3t7Op14nidkl2XZaDicrdb3Hj6S2uZlu79/VJZVmVd9K0ZJtMlXcRJ2RjVK+V4olZ4OBwihOA4vLs4ffHEvy6jDcNXNC74hJUgI4XGvqgAh5JwnDBOtzWazAbCbIl+sNtvb2y5sPo5jzlnXdU6qEgW+6OtRlpT5xhULpVQShUmSWGud59ehIrpnx2g0cqTOMAh++MMfCiFGoxFGVHSCc//hF7PhMKCUV3VRlnkQBH0nfZ+78DVrwXGujBWMsSDwCEGY6J3d2Fj500rhT6uPz3bNDunKML7kc1iLhDTWXpZJVzytBWm068BIqRljhGDuUQOgnm3Rn8etuMJECLm4OCtLJYQIgqAsqyAIxuNxURRdpzFjGPHATwAwpazvpFJGCruYb87PF5t1FYWDrlUuR4Rgz6JyOBiKxrZ1MRxOXj4VsK4aXo4K3XpQAWDAL9aGoiPRlXEw2DJF1yzmdTUzokmjTOiDaEDS8bBbro2WFjMvigdhwKNIUY7AVutlV5VpkkXTHSC+QVyK4zpNoyu3OIfui0/P/+QOQohHWZN52wdH4NP24sLWTUAopajvBe7a8/kMAO3sHQx2tvq62VQbBTbAAmFweXXDbMT9UPXGGFAa+/5AWzBAh6NkEqbaIqmM3cyq1QJbRUTt+0mTr4Iw1dqqZoOIjzH4BGFrrEWaIsBAwHpB2PZdvV4eHR2UZW6Ngpcs3hFn2Njleh0nSRJHXV3tbk/LqiCEDAeJ0ma9uNjbOzBStV3HIz9J0iQZ9p3qq66QVa/6yXRXGNRLwykDg+o837t6KHpljGo3Kx74oq25H3ddgwj1xlt0Wdjd1C86qCVMB/TpSg8SQlVXNCA1pozzCMAwjDzGz4s6DYP9nd3zR/fnp+fbg+To8Pp8cbGeffy0Wq0W89NV/q/+8A/DJJxMd5reMMbatnGMFoTQYDDoBRW90aARIpTSvu04pdgYC4Zj9td+4z/44w9/fLo4RwYCRqwxiRcQaTDFyCBrrcVIg1XWWASA8a/84pvy7PNRSiyOnj56IKU0Gq/b0iBQAFZqwqhWyvf9vuuQtRosAPzGX/4P33vvvSePH/d9jy1k2SCJzK0bV49Pntz5/F5jCON+0zRI9i64XUrp+8wpH0MTPc+lq/IiDP3p1hbGOPCDe/fuTfZ3u15Kbeqm7Xr54P7DIAhAAyi5Xi8nWzvVatkIYQVKeOpF8RfnJ9Pd6b1797Z3JkEc9X0PBFv9YsUQhuH5+TljfhT2XuBrrZ8BKI9OT86Xy/V4azydTqMoevr0ibW2aRpXy+q6phQePrh/eLi/WS+1NoNB1nXdaJAtV/Ot6U7oB+fn53XdpqkKgmCxWHRdNxgO4jh+eDHbbDZxHG9Wsz/+4z8MPN85oIkmVQNHRyOMdJp4VbWo63o2669eHbppuFQiz4vhcEgpieOwLCVC1hi1s7P36METbYz9KZvln1gPOnedU9EbAy/xNRzr0BgA+iwg8LkbU2uLLQJltL7caDPG0LMPRNZQCoQQrZ6jsC2lNGB9nudRFvR97/LQpeq5xzGirrKDxVGYrDa5UsZqLME0bc85MBoYY7SqhZDjYaTsTKs0yuInT+8dXb/9/FyMcan2rkWIAYybKWOOjDQveC3x0S0YTvs777XtkxZFu9tXZbXaVCJM4ojLdnmBe9tRRMOw39TpwRY0Appytb5ghMTjXTrchmrZnj0g4RhF/nC43a3OTn74TwCz4PDtcLrPd69jD4sHn/K+gLLE0USnSbWaBV2e93I4GHlpKgQqznPOyIBa1FfLPgeLs+io6bQ2XVOvpUKU2R4Go+EYkAEMoEWzOcNGG2Moz7YOroGWbVtr2VIm2r7SRnhZooU00oJGQRR1oqMWaasAuDEqCnxOyWqxjOMYYyz6F/dI3taMsSRLrLWEoCSM2rbdmuyUZdm22vd9Qjop5Xgw9ry6b8vN+SnlHvViyj0ShLauXXsFIaOxNGC479dFEYy2+rYm2BKtEFgwne97bS+gFyZgel2yyNdCEyllylVfRZpHk/3N2SPUFrVUiUcR0quup6jv21xL/cbrP59kSRS1XXmy3pwrCn6cHS/r733/k9O12do/pNzzQSBjkNWL9SLLMkyIz2m+2hhNQYM3TIgX0E6VTRGB+tbu9t/+xV/95jff/H9Q7/9z/96URa1quKUhCZUqKPVKwlIh5l3XQ+KBRLb5L/7+X3/96uH3/tk/2xqOHp09+vjuF0JBLnrKmZbOfmWNVAhAio4AEII0IKvhH/7D33K53gQZ3ydpSl+5uj2ZjO49eroqSkIQWOsz1iqGQGMMSikgoJQIw6xrWo6wsGCU0lrn+YxSgiymlPp+KPoWrLXSINPPzr64e//zTrTWMErDelEVU9IK6/tBg6XYFNNhhuYnhGDGqBRGglmtNu6d8fx+YCxlVJayIAxEa/iEA4BSClvo6gY0WCH9lOZ5gRHtREUICSO/qvN0kHKPdF3nhQFCaJNX0ipp9OOH5XQ7GQa8s9oSEiYxgC3zVRh5TddGBHkEG4BOitCnYRJ++uBhg2nV6nFk13PwiReki9U59SPSCbp+svEIZNlotV5Qhi0Qj1KGzIMHj5hHo0FSF7Xp8HgsDSgEqYU/C5HvDgRgzeXSzwIBDEJrAlIbYIwoaRwYW2ojtEaAHITBrfUwRrLvk4C3ZYWNNUr7Hqt7ibQhBIPFLpkOI8AIWW1YnJTresqHIHFblhRbwDwvwWchslbKxmcQBrHs+8DjJ127Nc6EEFpBlIajJCOEXByfEQzYAiOTon9K2jEg+8nd9wB+/XllN8a4t8KlwgYsgAX7Zb4hYFne/YCMWKZ/JmvOHp/eGcZHWwMExD8/fpoFiUqjUZhCEHpS2lXeIVOuPuPR1fjgG6gtzKe/WxKCdt8I4kCwycX7/7y+/8fmjb948+d+BU7fN9LoLz5cWy/NeFPpMEokJ7auh8xrUJhuccayvrcE60mGytXs5KKLwu1kbEBNWOSFLNciCkJbNHNGdqxVoDopu7op27qxWkZBiDH0qEAKPTfDIwPIYs6MtgoHXt82zPeV1oRx1fce86SwjifsWg9SShdD8/ySEAS+z7nhLgDEAo4HWd00cTKglDZNM8qGfdstmR5kW+CF3PfrRsSTaSuR50XEzwFAtn0nercdYBQzjJBVQRiAFFIIgwDB/4+y/wq2bM3vw7Avrxx23id37r5hbpyZO4OZQSIxAAFCBEskXbCCzbJf7GI5yWU/qFyWqyy5SjZtPZASS6ZsyyqQlkmKLIIJJMLM4E6+c3PndPLeZ+eV1/qiH1b3vT0ACEvfyz11+p7us9fe67f+4RcQpsiybGBRWSuESF0UGEBec4YoBiipNdncjXeupUmBV0eGdqXTh5snQdA9PnpKkAmj8uHRYZnndZoU6UpBfOeHH995cHSxyvf39xshx9344f1749fenk6nCKHFch348SqrAMQIU4Vh5HjNctWU2ZXx4C+8/tatQU8M3GR5/nvv/T4D0ontvDCKspmpjI/cxiHV9JQBoB3bJMyCdQNevbb94acfABYkRZ7lsslmGmKEkOICImSMRghrraEBECAFFDDQdqyqKJumogTZNrYt7LtWrxN2u90sy/I8bwXO7dLc87yqLFulV+j5WZZpqVohsIYaESJE086DgtDntfB9Nwj8wI0++eSTMIzXaWY0BAA1UtZcYstuhK4qAVxq2zbUjZS834+Pj489z9dat6aEGOMkScBz9m6r6a4qMBq57YgQALBeN8vl0vd9Y0ySpJQyajPOeRzHhBBCCOd8Plv6fgDAs9aVUmpRenaW+j7wfCctcjeM1+vE9+2qqrTkPd/HGGVZNtjahhDmed7rbB1n2ePHj0fbO45jAYAkF9o0UIeUmbqo+91emUy3d7ei2D2fnLquk+caAGjbfpKuIbZ3+n1RKRrGcRxTetJULzq7/Lc6req81asTgqTUrWgP6la5CeBzbzdjlDGgbhRuTdGpJaXMi7wSIPAcXjftYBFqaD5n28CiKNruvtPZTopVURWtf5oxhvO6zRm3bVsDWOYZAKAoiiAIhFdjjHd2dpbLpeu6XHKMkDGKUGAzS0jdyD9hJvC5TrnNiVEGghfYJFU2CzwK8HAy+WGMvYOtL2RlVki/Ov52Zsbjrb7yGeBGZ7ntueVsXchmuPXLoIvq6T9vJme0+42gex3Io2R2W55l1LIGf/VvBmDd/PC36uAKdTzXUl7g0lwITYRjQSNLU9NuzzmqFMIwJMwnIp2XFxcYo62bN/HOVf3kTiPrulC2G+XFuSyIZw0xQQgqUa6KqhRC2Iz5fkwtWxZlUq2BNlJqirBlWUYZY4Btu0WeIEapZWNCpBBQKwwhhQhasJ1be74jhNBKI4S0+Sk/OwwRAAoBA5TUyGGOmxYlYZZFSVmWnu9IxRHfYA4oBrzMLESaPEXEhppi21dKOdhyfB8YLUVjpBC8llnqhh6AWhuJiGMg5krbDAJCEZEEAa0EVsAYgAHCAMUdt0z75WoZuvbCCs+mi6vXfNAdr2bz7a3Lk/NH8/XJk5Mnn3x4lq5yo9brsrHd0I1Gdo055y/fuoWB6fiu59hxHEKA1+uV7XQ0QIiSbF34iNWiZkT9yq2X3nn15WvDQV1uBsPuZr3+eHby9etXJdGh7yhhJWcb7UKtU0v7VEscNDXEXMHfvH7p67t7//SD38N2tywyaAAEkBHa60Sr1czygnb52zSNaT+KiGBKZVNDAGyKLEYtG7s29VxmMTSfzznn7Y9AaCzLasVez/0dNELIKM0Yodj3HHdxuKAMY+g6jtXetL1eZ3d3vxH1vXv3HNvb3h6vkhW17LzcUOZIBG3brWotBfSJL6HoDcLN8txxnLKoMcZV2RDMmtowS7Y3YXvKsmSM+D70fX+5mCmlOJeWBWzbVrJijGlt8jz3kA+g1lpTSjtxL8/KolC9rtMiZlU9c+KzbUAYWS3mKkBBr7+9u30xOXctSjEJPJ/BFQC6XUG03mstmFZVxbCNgCzLqtPFjAZaTtJSI5hraJhtCNVFkbhuWFU8DoIwis/Onxpjoih4/0cfDvox53I0Zmcn5k8h2fxxHIQQQmS0Aq2dK2NUyppSqDV47swGwPNATm2AkQpDiBEQSro28zzPQCiz0qK0LeSfyz0RQs/QilJalAAh1EatAmSCIFBKK2kq3liUtYaJWumyrFsRtAGqnXd7njeZTDzfBSXAGNe8IBAwTIDGns3+yMt5YQwKCXz2LQxe8HmuVjOBxPri4WD/dWbzk7sf7F6/Ml2fqMy6/s7rDdQWN8BjTZ5ZpdwgNex2EztnD57KnLLdnxeBWVQ/6WkvUtvgjSHoH4Czb6XHj8PX/gLMc6aWBhP7bJ5GDh30dFlYvu2tNvJkJsdD1Y/xYoUvLqRoVNgPegPAofzhjzbUjmKSZ01ZcwAaQh1M/SKfKVETZkVRBKlllIFtgIbQnbhnjKnKXAsJtBKCSykRgkABJSWzHaGV47plUViUQW00Mpxz6jiMWkbpNtLvRTe0z3T1bb6dQI6C2PF8obQxos0563Q65WZdJEvLcTRAdhg2jUIIIIIMdXVVKyOQNoILrSTFgBIijQCCG4gAIpBgSm1pkFJG5xnQhmvJGJVNQTHkVaG1RuvK3bqsltNyPXf8QRjGycWEdrf2ru0ffXqv2wmn81Xg9/wo8/2wyp0A0MnFzHLcX/rmNy8u5kVeXb9xdTKZnJ0ed7p93/fjRqdpUZYCQQsT6Bo4dLy3v/jmW/3hFkBYl5ZvHbDgb/3OP3+U6Ru7wVyv7h/PhQIOAE0DDHQ1zJEGTgrGsPM3//f/k5+53Pn4eOUCeHR4/Or1m/eevk8B8j3/xo1rf/juBXi2c0SEkNbrTivVNA0F2mWIMUKQshkLfJtSVORJ0nCMcVutA6A9z5NCCCEYJgAjSqkUjec7gecYpS3GAs8BmjdKer7vum5V1FtbI87re3fvYky/+St/5vDwcDo9NwBzCaTmpaAOJDU3BDDJZSXL137hSxcT55OHT33fn88XFnNWq01LzWt+2t+QYMuxGK8rKUHTCAhhv9+xbXs6mWltgiDAmJZ10XKGCSFpmm42SRx5xsA8z40xO+OtoihWq9XB3vjkbBpGIcaybsRwOJyenweuN+p1AQC9bhdoXlVVe+myLLMsS0OYJAnnUipRV+LWyyOHxLZzMR7uNjy3HPvoZGqQIYRRYlGKvNBDFPNGdrudJ0+eNA1fr5O33n7j5LQ8Pjz6b4uFzwHRs+2mqaDRGGEEAMUQAgQwaowwBkAIMIAQw89Y1soYoEBZcqAVQshxHCFEXqSUUgCeOZy3kNhOfglECAGt9fHZKSbE933GGGOsgZxSKrVSUmKMhdKEENtiQcDad0drXVZFXmQY4yAIANBFlrq2FUb+ZtMY8VP2ZS9uzAEA5E98JLBaVdoH/sr1y9n5evTqO3K11mfz6OYuCDvlcmYhC0ACIUbY+L4PMC5OblPbI93rONy2qwVsMmCp3BbKIeDed+1chVd+RaYXDG8M9ZeJ7h/0w7OUw0Z5bDGd9S/tFFntNRgczjRSCUA0GgbdgSmLJJuRPu7bXaBYp5esN9NO9xbAIJudBN4WsJWoKmGQbiSXmhBq224w8IGqgVYW01zm2nCIFLEAwJxaFiKYEKykQQgxgiGEUOlSVK7nKKmrqvA8TymT5/mLLHxKWw93TSm1bReTAELj+kg0tYaGMKoVsGwCvJjYrkTM7fQAoiywikYC4lDPsxGSTa15I4CB0FgWo57D9DNSP6RESIUIJJalhQKVMM/GGQZpDRHSSAklEfL0008a6gE7QumU7Rww/6XF0b2yzg6udNcXs+3elYcPf+wytEkWSqt+p9MJ/B/+5P2mrH72F39JKD2fLYY7l4/PJ54fMuaEAZkvUyU1QlJL4W91/3tf+NLupeFKrQTX1WrjdDogyf/x7Y+kB//KX/qNf+t/+Vf/T/+b/+2Vnev5vaff+t6/mDTqyaz8P/5P/9e/+m/8WQmXwc2bZ/l678Pf/yf/+COvu72eLMahd5aWCKFvvftdiEDrNPUCd1cDAAghoU0oxcYoBAGjhlEEoamaynE8IUQ7exJCSiFa5yugDcPEsWyoTa/bBUYZrRzm9ftdwWsINEFYCRmGvuTi8PBQ8PqrX/uiEbzOk24nOpkujQaQ4U1RYVZ7kti2YyCCEE4vJkVdciGoZXl+6HnBgwdncUwtG5flC4wry+LVs6cjpSArqiAIIDJJnhVNjRG2NPACPy0SAJDr+LyRh4cnTQ2uXOnO50sA5Gg0Wq/X/X5/vV7XdTka9TnnURxnWTadLVo6997+zpNHT4e9rpDNJi/W6zIKgra/XmclURoCvFoWfgDC2JmfLxEBu7u7m83i9OxktQbdjmDUbRoOIRSCS8XbuLH7Dx9Ylt3U8vxsirBxfFBl4L/TYYwZoxrOKUVtSANvJIStfYNGBkAECSEQQi2VlLKV/xICjDGbNG1NfZpGSClauQoA0BitlGp9LIUQvm9DCE9PTwejTtAJOOfIAM6557h1XVFCIEZS65Zi3LqZIQQtytr5WFmWW9vbWVZKKbvdrmtbK6X+OEnoRTtb8syhCf5Uyjy2/KjrDNCuFtXw2heBWW+au15/Lxi80uQZq7XsElQ0pmxA7LmcpMliOxo241eNLFj2ANSiyhopAdy7EZ09boJQ3Xw5fXIndCJQ70FzFI6s7P4FHEZ+EK1PzqLRdnaeBJa3RmWna4wKfLBLLaZlWpWLwCBMRwAiQESRFb7XKbPNYrHaP9hr6oppp1aIWsy2HZswAIDhwgAoKqFloxrOOVe6wRgRSiGEzLERgU3TYGDqqiAIS84JQoQgYwyABgAjhGj3gy/WAohggpnUxkDYCIAoZMxqmorZDgKGi8YAmOUlxAhoZTtU1ZVB0mBlESabHBgJtTFaGmMwRFzrqqqVUtTxJDCWazPMykYqA5CBxkBCqS4bDIzKUkQJb0pCsFZmMzvvxhFDRvIqLevJRx/d+MIb/ctXpp/85MOffH8Q9+tKvnz9pUe22GzOLcKK1fJnvvH1vd3xBx/ffvjgzsGV66PtreTh4zzPldC97uDs7IGoBUNYC67q4s+988tXBoM0XQcBjSLvabaOfHd2dnHcbIA0/9Hf/r+NXwp//a/+xqvv/Oz8u9/d+aL79be/ebF4LBWI/8wrn37/29/7v/6HXj+6//g4L+DR9DCt9KUrl/npxeliBgAwpjUr1JRiJY1SBmMAIXAYZgzbjBIKbYchZJqmwhhTarV92Ys55S0yAtCm9xmlBCWoKkrPsvu9XlEX0GiLUSl4sikOdvdWi1m6SQLP1qK+/fFP9vb2sGtv8sIAQAgpOXfqJgriOAxWeQqR+vZ3/rDX97U2rY3gep3YNnAcp+EFpZ9LFFzX5fWGMdLpRlm6AQBSSjGBZVlSimzLlVKen58bILvdrlJ6MplCCPr9gHOe5+Vw2CWE3Ll3wgiNwmA+n+8fDB89esQIVBCv5hvbwm1+JgC6qqooDi6WK6WA1rqu6zgKiO2tkpRSmm7Aq6/3McbT+XQ4JEWVGwgAJJYNMLY4zzHGURQVVb7aLB3HC8NwNBpdnG04l59+eifsjD0fV9lPpXq+eP5IAdWeNrhcq9bbVVHCAJDtEw4aoAGARhujMMIAA6iB5zpaCIyxbTPJG6m4a9mOhfNaQWgg0BCitpBsKxCtlFAcEy/y4+Vm3Rl0bGJnm1QpiRBs3XpaUkGS5llZR8K2LAtD6DCrHaQ0TYMw4Jw7nk0YPj8/L8tyvNP741D4ORpCCAwA0PzUtSCDbUg8np2ywUFaPXQ2dRy8BYZQZpL5DJBGSmkzy+KsqUqLa5sy0P8CW5/WqkjSOarX1vhNGB/g9VndHdhlCR5/Csa3GjHVcqHwvvP+vwIvv+NzxU9OOoNByWFw41Wgq858ZZJKO5jGLjBCrBILExTFFaGOgEX2xNu9unk62aTnl26+CSRGLOWS2bZDXcdoLZtKSymE8ByX+Xa9qYxRhBBVcw2h0YhrY7CghmgloAFGSEOMBkoCQykVgjPGIMR1VVuWZdvOi9oDSixEqNHQAKQR1kJYjEEIEWbQKCAFgAhipnmaFxkjuBLK8WPBa2fQp7XQhkAEdSO0EIQQTDxjBGK0URoiIjUkjLmeo7WRnAMFAG6k5NBI3lSkBpw/s8ALqZmn9Ti2q2ReKi/sxHx5XMCgN9oBQD96cPvkdPrGF7/8c1//ucCJHj14XGTJez/50W/8xX+z0+u++4Mf3/vkg5defX3QjT6smjTNI7+XbDIMqUXoZrW5erD3s9euP7k4iRi7xOL5cr5z+eq1Gzf+q//0b88NABzcmSb/3v/s3y+A/F/8tf/Vk3e/9R//+3+N+8WV1379f/5XfnP3//13/6vf/1D38Dtv3Hr03oPdnSsNY2fnR7yoZ+sUQIARVkppowlBvudBaJTgWiopOQaKYGw71LKpbTMheC2alshWFHnLp20/4u1EwkgFAMQIYISM1rxuKIaOYzGMfNclCDaNtCiOhoOWJzQe9jFoFrNJHAQ3rh9Ynv/o6VPKgBCNoLAqmzDyt7aGywfLqioNgm4UFbOlUur8/GK5BK+8vK2NSLP0RUDQWgohwiCGz1PSGWMQGa2167qeG6xX2WpVRREjmE0mk4br/f2xFLquGwhBzcXZ2SQI0GKxCKOg1+sVRR5F4WqVdPt9jCHnilG6WCwgRuvVxrIpIcT3UdM0xKGUUi8K1mlWNTVvQKfHDMB+4DDbSdO1MWj/YHQ2qTBR9abY2tra2t19+PjhfLb0mW1ZVqcbXZxttAbD4dhgLNW/Fgr/daeuOYQGISiFghAqZTAmShmtVSthNgaY576YEAKtFcCovaFs21ZaAGAsRmuptAZGt/8vgkA95/DAqtRN0/S2+kmxSpJka7DVbjjbwEXLsgghCJGiKAhpn1KGMYtSOplM6roOQz9NU2WM7Tpa6yTdOI7zR6Jg2mftZ9JA8uwN/mldNt3Zbp48QFsv5cUqlLhApWDUqfaJh0W5JJGLK2lgU4rGN6aEkgql+KmqE8cgFr8kgy4QG7S6TeMBOM/A1gh4qFnfoW63mBWsOMavfjNgsMyOKVJis3G3rpVpBapU1Wu485pvGrk+5U1hRRGy+nXNUS2UyhAIzu987LjupZtfBTZNz+5prSOPGASBkFIJSikg1IhGiZowVFap5rXFSJv2Q4kHlKl5oZGiGIuqtCgVssEYK6B4w13XBwBIqSybaaXbmNrPnxDMgphAgzGzmOWkybp9QDVNI5Vq+2gvDBToplnBaeD3u0oBjJDSlAMDqpwg3FSNMcb3fYRBzYEGxvVDA2EllZTKDjzElWhqDKAyCjEsm8a1WJllRBte1VrrxnICkM4XedzfClfT+TTPo+F2jyalAjj++s/92W+/+49+91v/8Fd/9d/94ls/tzXaOTs7rev6e9/73td+9hvGmI8+/tS38NnRrNPpnJ6eWU5Rl821a5cCx16cnd+4cnm9OFdE7fcHlIPGIi+Fw8Mf3/kb336XQxqBMLHEk0VRYPrX/oP/xAfNNF1Pq/Tru5dnK/njpzPeAFPaf/DtyYWCFV0LaGYVLzKOLYQlUFJZiDVAGGOqqlK80QrYDPi2FQQeszBjjPNSyoYybDsexjjLcmZbbbQuAM/ihzCAkBDeVIz5LVBKybtxzDBZzhfA6NAPpGNFUdSLO7/7u7/72mtvDG4NrhxsffiTD+q6VkK8fOvG3/tHv00xcKPQNOVsVlRV0evHg013US4H/eHh0ZkU3PMCxuh4hKIoOj55GoYuf0Gp2c49HccpyzIIrCTJbty4vlovJpP5cNillFZVFYYWxiRJsvVaXbnSp5SenpyMx0OEQFVVw34v3awope26nBC8KEuKkda6Ko3rgjZlpvUnXy6XruczxjjnVy7tlkW2SovWbR9C1MhCcuoFtlJ6la54DTuDjtLSD+h6qcsqV0oRQhvO47j74YcfQkKqsvHd4Pz83A3Dl16+/P3Z0/9OaIghamOU66bB2AjBCWFGC0Jgu+DSbTDoc7gpS97pBFAbTIltMSUxRYi4bq2UEErwZ6aZz/mMwLKsgf1Mdrm9vZ2k69zJXdspdNMGV3yWsNw0Ju75juPkeUY8AiF8+vSpbbODg4OnR4dOEGnNESX9wcB22P0HTwB4rX0J+jML4ueLFAQAQJjqZ86az056+wPijFD6GFuEF4DmiLs9GAhxcr9KJph2ldNfTo99RyknotFlHcRYsVWRA8cFrJK2Q+mS6QJsakoHgIHaKEsRdP++SCv28lclbYrDexR54PJr5K2vgW4fFY0uymA49JtlkyYXmwo4IY7iulG84qZcQ4gJdLdv/IJ97S3gVetPfxBu3cDXvgQhrCFr8g114jrsZ3VjpCpPHzx878MmL4UBNUAs7kCLCtF4FmMIG2m4MMyJSq4baTjn0BgEgBKN5KUQFee1VEIIURSfczAXi0PLsjS0FawB9qxRv8nzBhPbrnkyE0rxfFLlBYA09KM6W/PFORYJ40k2PdTFCiM7ywqIgQFC6YbLhmDbdmK+PITJwtXGVhBgIjBCBIK6EZsNUYJqUJYlxKCQBXKQxsLGpuYKY9wo2T24uXfler443lwc2qSp68Xjp4c3b3zt57/xG4vFAtlq58qVW6++evOVLxzsHSymk9Bj463B/YePqOMToAhSSmQv7Y/euX7pVi/6xZdvvNbv1QLvRn6SFRsu3nn56nQ6+x//X/7GIxtgBhO4YapuAOhQ88tfevkrr7+84uxsZn68AbkXk73RP/3xj7/yjV8kDnr90pWjZLls6koCYwBBDEFIEVSaA+BBSFXV7HSsL7+2/8qN/ZvXDnaG/eGog7BSSmFMDMAQUcociAgCuF05ti4slFJpJELAGMUYSZJESokxFQ3vxNHF9CwK+zcuX4scB/FqcXZ4sD10GLx6eb8uqt29nd6oezo9P53N07oxGHiBgxCpEKE179abKOwWxk43SRy4W9s7k8nEwmDci3ZHvdj3hBCW7bzweVgRhmqeMAtpLYsM5FlTJGU38hlGeZEArCrRdDrBep0Mh7brunmS+65d5ZVFiGNDx0OUScenVV1DZEFApJCDceR4rtYAAmrbtjFivV5HYTdt5k1TxHYv8IzNLADsIDKbGZqdUNfXgdtD2NRNKU2tDSxLXRU1JaipgeN7F4skDr18vaEGDMY7ZYU8pyeMRhbGzFutVv0eYxaktKUiP8Mj8NMeDRBC03rnt8YcQBooATLMIgBCZmFMNITGaIMRQhBSQiilFCGGMdSaENCUlQHKKKmaGmtgtFZcBI5rM4tRDFqbPqil0bbnG1RBgy3gdnzPdhAmTBmEKHBtN1knluteLBZCq6xICQairkUtPTsoilIaHXRiQGha1swKfMuWNXRs5nvW/CKV4nNAb1+U1tqYZ0ttBAHQSrVZVZ8dP+7gEEk4cBYX3Fb60rUYu/p0wrvdcHwL1GfJ/GE0uA787WTxBOuNQnGzno69boVqtPdq9egfJmfORo0KtQE9Mctl8+QuKJK8s9P94pdgk6cf/ciLOzDwIPP0KmmO71to4/U7KQ8Aco2odq4M3cFekiKHVFEgcLirHQ8M4kZPncWZWUPr0k2Qb7yLae36Li7la+8sWWM/fd9JcgoA7bxy/c03tvb2t/Yv+Y5b5inB2LJZI2rX9d3Aj7tdKbnrO7Zth2GolDIaGw2BIQQSQhijlm3bL9aGoX+5bNKoCwP3xnT2yBtecfpdPj3T4Q0RRyFPXPsgL5flZirrtUVUkW82yzkwMIi6CmAANGMMQViWeZYlRmkIjeYN8XqlQmlZAYI30wkVnGphZEEgEHWjtdRKCiEQgGWecdFkRS6lXC6XSqk8K6uquXzl2nS2rHLe740ty1HKjEZbr77yhSwrKGZhHHme5/mh0rCsZafTHY0GVVUg34tc/5X9K1965dX9OL4c9V77wivnMjvY2ca5CMPw5cs33v1X3/u3/9Z//IHHezVQQrTeXFEcAEhu33/06YNHtx8+Jg6dLi/uProX9eP/7G//rU/v316mq7PZeS3hZJ7ZvtMfDQi1XMcHiHS7HaBrIPmNy4Of/fpXr1+/1u93ITTMppzzum5ag6bWoxBj3EZotkw9hBDBny8Ee73uer32fRdoA43a2Rrvbm8ZJSjUge+89fpryXLxP/h3/q1O7DdVeXJ8WEne6fWOnjy9enDZ1Bxx5RHUZFnU9Xkjz5aJgOzKqDcO3MU8ZZgUeV3k2vZcz3POzk6kkVkqmubzm2k8Hiul65pvNhsI4aXLI4QAQtD3fcuytNZ1bfr9GADguqwV2Dme19K2ur3Y9wPGmNagjQ+t69IYY1nM9zyCsFLAGJXnuev6r7zySl3Xod9XSiFsXCcoS84Y9bxwdrHGWIyGtmi4ErLMGtf2unGHUbjZbCzL0lpZlhVFFqVYadHpRk+ePFksEtd19/e30jTt9Xqj0UgpRSkW8lm/DD8X1T1zalDP9w8tgoBnChP9GTlGadPKSDBGn2Goee7ogDF2XddxHMYYxlQZyLXhQtZSFlXTNEKotvZH0ABoAGUYQljzpi0zhRCbTTKdTnu93maz8TxPa12WddM0WZaNx4P2n2CMeZ7XNA1CSGvT1tRZlgMAAMTr9booimvXdv7EUvdZbdj+5hjjF2tD5IacN0BUAIV+gHk0BEWeKmy7TrneNI3p2pA6OE1NdzQwmxPodki/K1llAXvze/8wol/E9bkObHTrbZmth+AcdLuiM/avvVofPp19/7fpzg1gR8YolK3AciXzXGMBe2G4c4PnU9vvA9CrF0dh86hR8Tzr0OyhhFo3C1wRFY+hWsHHD6XlNlqwkJrdG+TH74rv/rAaX9PbQ9IJrYMeIAQgODk8XM8XuhGLi2mabipRCiGyLLuYTFzfa4nZbXImhhgBAgDSGgBlgNZA6RenDLXMtXTSNFd6szXcSX/0h+bW1+3LN3G6HESXZ3Z3XS07gCWbKUHK7UedYcePw3m6mW02hrHnBF3diaIo8KGRos4FrxUJ3d3L9nC0KrLIdgCvVJUZJIBRy8WF0cr3nKbOMdQYgqbIq7Iuy9K27dlkhhAqa57l1ZtvfXm1Wi8WS9ty64obZZJVAjRMkqyque14w+2DvUs3BsMtiKkQDSGaSGh7bjcMtpBl0ozFVl4n7+xf4qtNvz+8Hoz+xt/7u//mf/P3HyeyX+glA60EK8/L1SartU65EJBWAB+enz8+OUmq6r2PP/7P/ov/4pMHT6BlrYsCMdty7TSrkqRIkqwoCtth6/V6GFrbHefWtUtXr1wSouFKWq61TtdpnldNbSBQRmupCMYIQtd5VosRiFpwxBhbhDLGmoZ3u90iy3udyKLUdx3HtcbjoU3RsBf96i//4q/96p9N14vQtW5evfTph+/3xoM//N53RqPRz3z5ndMnh9vDwVuvvcabarQ18D1wtskTDlG2+uY7b0KMLIs2NUhSAAyqmmq2nDqOTS1gWZ/XhhgTjMlnN/lLL18Tsl6u5hCazSbdrNPt7Z7nuOtk07a3WZY5jtOG5O3u7vJSaq7bGztJEiVkt9exLJpnJYTQYoBQnGw2SZIoaU5OTpYzDiGWqorCATBwk6w++uB+kZmtHe/S5Z3FYkUpGwx6CKH1Zmk71CjN64YxVhTZpUv70sh+v4sQklJqDU5PT30vlFLO53NKLCGE51sAgHaA9kfsXV9EjRd3DtJ83mwCAABEGENmWZiQ9s0ihECC24Vki4yCq7JqsrJJs2qdlau0yOu6FlLJZzaIAABtNDYGQkwwk0LXjdAatM+YLEm1VO0CZ3s0TNOUEdqOLCCEmMCiKOq6ad8X3khCiB/Gk8miqipMyWAw2GSbfx0Utg464I+npQCIAZeWGxdgJvWWezE7Wz6Ob34Ny1LqjCoEnJ5qNqa5mJ3nePyKQ3NxMamtvii1048pngV/5pvI7jgnZ7VOADdRZWqyt3ry/qP3/r96542gt1/pUiNLpQnOJ96wz0evzFdN9fHvMdqVukqOfkwFgr03gbwY6Cfav2UXCWW7shuZh49BycTVMTEp3b2C1tXqD39vo4vBr/0lpzMUja7DbXTyweJiNluuok53OBiN9y6Nx+NVsuGcN1wwy+4NB1VVFUW2XC0AAFJKQjDGqA2HUUpKKYRsJP/cKrc3DGrBMYjOJh9j5NCdG869fwWZlcAAGdrpD+KtTiH92IoP7z25+PQpX5So0L7EI+bbpaSEtOQDSglGABgFIbAYwYhxzlngeWGghZRpgW0bWLQoUsdmdZXxOncoBUbxMot8ryzyNgJtf3+XELq/f6AMni3W27s7juc0TbOzs8MY9QN3PB46Lm2kkNpsbe/tXLruetFoNNrb3S7ShDB6QAI2y1Nd0HGQzy5uet3rncHOYORy/O/8p//h/+47/9IxwLGsBYGBwP04cGzmuraBoGx4Wtebhi+KUgKUVUIYOFulEiCAYV7zWuo0zauyRhBIUbkMezaBvMEA/NovfePP//IvQCMuLiZSytVmPZ1dzJfzPM+llJxzQkjTNJZFpeQtgxpq05YkhBACEaW0xRSjVeC5RgsLg2Sz6EXB9tY4DGzftQjUZbq5mJz+xV//dS3qd774xtNHD0+PT77y5XfiOH745HFZV4rq0f54uZrsH/Qv0iqT8BtffD3AII46EMKy4JYFwjhCDPmRTy2mNSiLzxk2WZYRQh3bC8O43+8v5xOKzY0b1yi14l53e3tbKQWRSZLaC3yhTJ5XGGNikbyqXNcuyzqOOxDCLMv6vU5eZPfu3RsOh57tdaIojKzAcz3XD/xOUVe9QX86SRmzx+N+XQmMMcZwtQDGoNG2U1bJelWGYeh5npKGUrq9M/C8AELY8MpxLCHEZrOpBT+dnJdl6XlkuVw9ffq0ffav1+vlYu245Bm3pC0InjsptHj3fI//ORoiBAEAGiKD8GeICREWQjRN03DezvWaRtSCcyW11kIrriRXkitVK1lLXQldcyAN0C0hEQCMgFGAi9pyHAjher2BELd0N9d1Pc/xfb8oROQHjLE8ScMwXCwWlmUBqAEArU4sCALBVfuZSdNcKLBeJ4PBiHPefnL+yPnMoedZPai0QC+0IbKsdAFqPa+kRXYuo8X9wVu/0Sx/XK9kGHWQqSUHSc49Po+GOyDYyw8/tgPbt69wCEB+Xl2/Vt0/jPkCaESkrNcc9N6CRz+avv/P9n72N/t7VwGEwHXZ+hwuZ7XbV/4WSlM/WzihW5gKr1dRfBl1/MXj7xSLCvReQ+rMkD0DZ/LpIzLaBRYNoyvF3g18djctn3hXr3ZvfQPPZ+rx1NO2ffrhxr3c6feGoy2IqUJoNZ+v0+zg8iXHc70gwhhzzjmvIYSMsbYvK6u0qrOaV5zXQjRCNFw1XL0wNUcdP4QI6mHv6np9jND58vE5k9iOGwnmUMd0cCO6NvRfev3gy9+w9q+sCOW+Lz0703WDBeeNxQjGsHXBa+nHSkqItFG8SjeWTesiL4piuVg1BjDGIDRCNACYvEizzZpRarTsxH7gOxYG9+7eztPEGNjt9ptGSaMoxTWv1smqEXWWpfPFFCEQx91GqEdPnswvLvwwDsOYIjzuD7oFjLe34MA/CLvmeHbjytWv/OzXYxZ++uDBr/71/+APpievXx0LCXijQ4AQJVHoiZojoHznuR4DQgBAw6UBIM0KiJCQGhNmAIKIOBbqRd5Ov7vdjbYHnRuXd/7df/sv/4/+h3/5ow9+dOnS9v7+7ibNNCJFWZ+czRljQohnsxuE2jqizaVkmDybrBvw2Q2ptbYoI4R0O1GdZbZFHUqX84urlw86UTAe9R4/fPDVr3z56PBJkadXrl7mdfOjd98d93vj8XgyvSil5AicLadWZFs20Vj5Pf9ffutbca9/796D+XyJEFousyiylBZcNhqYPE+FAC/6khLM8ryqqurs7AwA0Ot1FovZnfuPFutVVTbz+cK1ndViub8/yrIsCNyDy3uz+dSyrIOD3ZPzs6ribZYeb3jb4uV5U9d1U/Es2TgW8TynaZq65ufn0/39/eFg9PTJMYC6rmtCMUaW78YAasfTfuBSCtM0sR0KAJBC7+1vAQCUUlrrMAyjOFgsVnXNlQRCqKaRbfJUEATb29vLZRrHsTYCANAGe74IE5+tRP74NvZ5OLbWWivV/le3OxOEEH425UAY45YOIaVUSrXRUQYgbaBuuTgAAYSVAVobQki7YkqSBADEJcizggBiW26Z50KIPM85B/v7+1rrKIosy0pTwZumRbR2m+/Y3sXFrJUtlWUZRV7b7GsNPM978VW82NSDz7rjdv/z+XMv2djjoUiX8fj16oPfFvuvo03Kmg0NO3x+IexANHOWLJY8toZxdvKe7W8L6xJYvKfkGn/pv2/fed/hueCg4EtUE/vKO+D0XVVNrn3x16JwhC1/mZzAIodCkvGetXulqEowe+qIoiK2V9VquFPxZPnph5630720XczvVDkq7EyWLu0EAJVguAuksn/0foldhvdthtB8AjRQvaqxm0aPYsIwZU3TIMpKoZHthr1B1UjH9oyBRdUslkvbcxmjrmvXda2f+fW1rmkYUYYoa1mdL164ItPKpDbzo9hHVVWGYfLh74hNWY1vkuYUPH5QB1vAiZQVuIOt3t5lO+oE43E07DSaV1VR1yVvDZ0AEFIrAwChteCWxZg2cpN4LiOMlmWZLpO6KVsbu7quPc/jnC+X87IsRVOm65ngVSfwqjIt0gRCOBqPAUSA0N2D/bKpuZJlU6/W61ZLSwjBFF0sJg8f3YVa7e/sd/14a3s7xlSW9WS9+IWvfKOb47/xN//v3/w//Ht/5f/5t1MBrg2Cok56vs+0UFJ0Dsa92LtxeRz7VlM3vkvDwNGSEwJsgjEAnsV82xp0YgLMq7duuozujLpA1y/durK/t+VZmGLw6MGns+np1vbovZ98oABep8Vv/7PvPjlc+qGTJIWBWAOEIGl1wXVdQwOM0i04tte/RUaMMYIwCIIizRhGb77xmkOx5GVT575nua5rjOn3+++99x5C6PTs7Mb1m47nDsJwqz987bXXPrl3J+jEL736UrJZZZulbErmepeu7dx7uPjtP/zB/s3XEARJkngu6PfiLMsgwO01HPS94eBzthohrMiB7wfJRgmhCCGrVX7t2pV+b3RyNq05Z4wZo6uqquu6dQOTWkEIOW/W6xVCQAgReL7rWpvNKgiCnfFgPp0PeoNL+/u3blwTTXV6eur7ge8FmywJY7ZagvOzqes5nJd1LWaTynLA5UtjUYnAiULfZURjAH3HK9IMKKklqOuaEHLp4EpdcykMgowwShkVSm7v7jSCF1Vpu6Q/HHBRev5za36AEXrGNul0Os8q8efvQvtFmxzQymy4etY1K6WbptX6S865kLJ9qjVNI6USQnIuWgeAFqn1C9NJAIDUCmHKGFHSJBnHlNm2fX4+U0r3u73ZbKWl/Cxyu9frtVHgngMBAEIJqVVV88FouE5SqQEilEvleR4hREOwXq/dwOf8T1Mgks8QsnVxaA8CpsrPgvj1eXp3YHuqd7349O+EwVekeGJ1e6eL9frRT8ZhZ/SVn0sWTyNUGXcMj48ST9DdV5N7/7w/eJOrCUSxl87EtVvg8Mebwydoa8Quv7w6P+9mp0D7ts7WwYFC1Lr/XSwl2/kCcGxnfrdwRujogRN27VtfMDwFm7XDOsh3QVNoD0DUT9ZpNH8sygrvbHtpU/AGeLtIfAz8MeNDYPJyz803EzFJmWOnZeX4XhzH2WatDebSCFV6njcY9TfzieS8LDKHWbxpmONaloMQgYBAjNpH64tDk6JadPzxIj2s68O4M4QN3Xv5Uj71Vk/PnemJu3eQO/vg7nsK970obh8vAEJeV1WddTwvt41Soqory2JcaaWNZ/s47kGDk00eORYQUhsBkRx1wuXFzPj2bDG3GbVtS/DacRyMQJIkwmiM6fR02t+Br994+eh02ut0rDBgtlXXtWWzg0tXF4vFaNxbrddcGAuZOI4Jo0UBBCezi0mdiVFnROZrrXUc+uP+zj/53d/9O//inx4pUyHQ2Y6aRZLmWRg5qagAI9t73XydrAv50quv5FlJyTGC2EBkI+D6Pobw4mIWBbaU8vq1g5OTE2Q4wzrsRFEUZVl26WDfbG0dnhxuslRCs7O1/d3vfvfHH37cKNQdhEKrsqjbz3dLpmWW01JqDDEAmja6vp1gEEKMafN/YUvrQwAygveuXTk9OcrTxLUt24sI0pts8/0f/uA3f/M3Xcd/9913q7LZGg1uvvISl+Jb3/k2sbxhEO2EHcdxmI/PSiOb5MYt8tf/X//gN/7yX/qL/8avvffRdy0L1FWmtQp9v8wrCLXnOEW+Ac9dbNbrNSEAI9rvu4PBYLNKbt68XjXyfDKVAoxGXcZY00jmYCGU77uWZUkpATBBEGitXUf4nlvXm/F4WFdyOVv6XnTj+ktvv/HW7Qd3jo+PKCXx1laWFlVTU9faJNOrV8eWJbWWWZ4ITvNc9XcA57wsm7rmGEPHdderwhgIADLGOA7ONsWVK/tZVmBEs5zXVdMfqG63O724gBAvFpVS052dnclkQggYDqOjItEKGGDQ50YGpE0i/RM42BB+ZqOPEAQYAykBBgAjBPTzChG1SQwYP6slW+zDCCAIjTFaA20MgZBApJTWwGBKgIKhg1taVdvLG0irCmxvbytAbbo+Pz8nCGutq6JwXdd2Ha1Fa07u++Hjx0cIgWfBOJJjDOu6pgMrXdeW9yd0yp/jXpsSRdFP7ZSjTswLA4IGn874/tvm8e8Ew69e5A8shZLKqAc/eunaF/pvfQPkT3WaZ3AHNJNJwCPq0o9+vx+/AVxiMmgWt5u9m3xyPyumSbdDX3ob5Bvr7ORiyXuxkv2vdGzeVY99P/DGN3S1zs8fNsaH2UYH3XWR6/UMaVgqUzXFxcPHSVrqhxP98COi5pkf6aBfn57UdO05TVM9yXqvVdZWFRjlOu7ZiTpZEIgsam9dvhIN+oXgxLL9ICLEbj+Ly4sLKWWrFZVS+r4vhBHSKA21wcBQrYnWRKnPpwcOCwxeDvsHVVUnybJ0u2aSOt5g99JgMDhoShOJo2j7JWcUAh+WVPKAmq5HdvtFaD+pEqWE67pBEDDHJpRZjgswUUVpb+24fpTN14bzqszX64uzw0cdRgxARVFIrdodaxiGjuM5jgONytOV7zlVkX744U/6/X5d14vpdLnOq0YBxIgVxtGwrEQcDanltV5JhADbIQCqPEtn04uTo3PmOQPNhpz8P/7r3/rrv/NP7iBjQtuzXXCeMGxLC8CIFh7Eoa3qrE5Tz7eN4o6FL+9tUwItgi7tbYUOY9j8/De+cvXSLsNmNjl57ZWbRtZf/+qXVpvNm198uxH8/oOHmyIL48iPYqnMJ3fvAoQVQvN1k2RVllaUMkKw1poQUlWVZVmtV6A2qs0bIc9muqgt1dtyg1IaeL6QzWoxz7PkC6+8XJYlhHBvb6+qmsVy1RuMbly/NV+tf/yT94MovHHjxi/90i9973vfAwY5tn1le/dv/Ef/59/8c3+eAsQcvyxW3V5g9/t/++/+/e98+w+63W7g0bopg6Dd/Bop5eXLl3e3R599HjabhDFw//4jAEAURb1eb7XcPH70tKoaAEBVVZPJ+XjY0VoLBTzPgxAKIebLhRBCG5llXEppWXQ0GjVNU9fNzZs333nnne985zvHx0dJumGMDQaDJM84l1VVKSM8N7BtN8vXmJjJ+RxDezgm6/W6yCsIEYRmvpisN0vGWKtXEUKFoQsAqqrGGLC9tdOSoauqQgj4vj8eB8BAjHGaZq7n9Ae959OyZ1CIMUyS5DMx5WdQ2L4dGGNMWEvHaXcmGCMp2zfIyBfsGKSU2gCltVJGKaCUMbK90wDGwACAocEYGwCU0hCRNv+Ac66UsW1mDLRtu9ul0+m0LMvd3V3R8E8/Pd3b2yOEpGnR3iNVVW5vb7fT5/UaMMaklGHkt2PoTqfjed7JyemLQPdHBDYIGgQ05Eq3Y8j2aESi7nDx4Em4v0MWT6XumnJtKb3OZ7N77zs3XyY7L8OkWJ1fdHb7gZuVF7xr8NFixV76GUCFnh4SlbHu9ubJfXyRw/j6/utv24XkJxPsw/7OzvlZTsjFZj3joitloOplma89y9dqs7l4Wq8ex9TBBOfLE5GuimwZRF2HygWt0NbIc3vN6SORnNeQ2TCqgn0c7HtAOkbivCk3qY4HdLwbjIYGY1BxmVTVssCGAOZCN5BlWSeJrCsgObUJIEgQmAhOgEWRqMuLxeKUYqKkQKgBsPjsmuRFRcmWrnjXjYpqDtPDupqXsylyd5YClZoDGpgmRUABjFyLyDJvigII3QtGw3i7VXW6jp9mpdLIYk6dFdgAcPiY8syP3MYIKWXHj/wweDw51fkF5sny9PFmfl4kG9FIjCxgLCBBU5uKq05/AJE5nxy7vl8Kw8uZA4vZyf10fmp3ws5obBDE0MhyPXl4L5vMKbbj0e7Vl153tTtWfkTRebb6T/7h3//B0YQwp2M7TVpXvKwBdFxkSsA3YruLOz5M1jW1WC3AapNZlmNZVtwJq6Z2g6DW+mB32BTpG6+9ev3G5Rs3LzEHjrdHQuu9ra2To8N3vvJFabgy3PFsbaSQDddmkRYV154HXQs6DFRVhahjAUtXOvKicp1TQIA2wMCmaRihBGGggGd7luUgAD3PoRQrLW1GPOZukvwHH90W1L5y5YbY1KYqKFDL6fmr169vb41Wq9W1a9cgwW+9+RUvGH16/4gx98rW9q3Luz/44bfvHt3bvf5yPn1iE1ooCkE2ioDlMAKJ5watRbOBIMtLhNlsNsurz00AOx0mKwA0uLS7ZxH1+OkjDUHU6Wa5Wq/AF19/G3LZ9V0MaJWB09P5ZrN2WCi5rJtUSwwwBriBRq8ulqHH4jheJfXf+W/+P7fPD2knpo673GzyMgdII6h92+GlbXurOA61ct1olKREmXJ/q9PwmPkEoFwJUGeW0STPk0pkucTCINHwyLM3y8XFxUW6WngMzC6KOI4BAFm+7vV6RdFUVdXpxGVdeT4d7gCKXQCM0hpC0HFsTDmAoE32AAAgDAAESimjtdFSKwGhsSlGRiveSKU9zyKEEItgjAE0xhiIURRFBCPYphW30hQAlYHKIIowQ88caAgEouFSNDajHrMRVjVvMLIZsQ72h5ihw7MVVNpCzHEcjEiaiVqqxRy4vsWwvTXc2dvZfXDvPiM4CsDZySnQJk+qqqkQ8LSQo/HQpp+zAp6Z8UBozE/tlAH+KWcHgKBen9xrqpIAK1snWmVlfg5UfXY47Q62AzYQ9cOkSLu9K/U6mZ+WmiarUuxubwHY5ItpVqsa2henZ12P6u2xzzSck1pkYGjbu7eS9VE82CrW5xYKjSyoXWarUnFRlucnT2f+1qh36edrKgH1obWPfbu/dcvd2s3LbBxuAWyfH9/GgvmdbaLmRaYdYiQvVVOIYoOkCCyKjLQI4FIhTNM0VRr0L18WQiADlGgaXjqBbVkUINTtDHqdse/19g9uarKpKstmlzvd3id3v+d6zGhWFp9vUTbzn8j0BAe+tz0cWKNK28gdBcPu6uy92KxpAi7ONvNmNj09mR4+np6ezqbnyWrOy1LWBQFKUlcCmGeb2KWmybLNOtzeSRtT13WWFev1cLCD+wABAABJREFUuixrYBBCyLLsbrd7enpuDORcbjab6fR8vrgIQ19KIbUCGD15enL79sOrV1+6cf1ly3H3Dva2968KQAh1pDbL8/P52fFmOSk280W6STmHjj2dzCyJksMpLHnXD1dZ8o/+2T85nMypy0rFs6qmDiOMtDsl27Y2myoIIt/3tTZKqbrmUhmhFSQ4juO9vR1GSVWkaZpUVZXnKYEgisPT0xNMYFNXbYfyySef7OzsIEQuLi5OT85nF4uiqDBGLZGwrfta2gempOVXE2ZXvGnnU57ntW6GdV1TSpuqdj27KkqCUeTZoe95rm07Fobo0f0HhNLuoK8ADMNQa31w5fL7779fpNnOzo5r2cwhi/Vs//IusZAXekWVX7lx5e13vnz73t2yqMejbWKxsmzCTsSYvVgsOp2O0VBIWZZVO3uSUr7IN1wsOITgV375azv7ez/40Y8AaN0+mywD+wf+fDUf74yVUhAByyJKgU4nEkLEcYwQqqpKCo0RtV3PDwNmW5jSO3fuMMaMMghAx7KVUgi1Ylt8fHJCCOr1BkKoqk6fPjlZb0rKNKPefD5fzrO6BlmR+76LMQ5CTwjheV7oe5zLNE03m1UcR37gvvHmq5YFjo9PR6PBepWsVqudna3NZpNlue+7xqgoAkJVAADGGDCAucSyLEJe4Nk8Y2A/O8/mfUY/73+hFhIojcyzCaOWqqnqsiyfsUcJJAR+xklslzDwMxE6bGmMqmmavKqMMUHgpEkuhT4/u+jEfQCQ7/vSSNu2m0Y+fPjQsqjrIq3lZrO5fPlyK0zq9/vGgNY0iFJq27gtGOu6JIT8kV/+p3Dv+R/81Hc3s+npycMqS01tdCMIrDebydGThzZ1naADTWEqGnRdYBuRARvxrOFbN17GGG6ePjC8NJgYy+8PR0hUOjubNzCxCK8tnObnH/9LSX13uOsQQiEEsn5890PXRggqKfX1a7fC6HKZPya029SgbCa+N0SIPLnzSdfpr3lezyf9wctehxaT+8S76QUSNLWpK4YMNYpABYzKN5t8syorASkLhyM7jtZnp47jKC2gMYTh1WqxSVZ1XfNGIsSAoU2hw/ASN3nBV66z/dabv3B0dhfishvvfXZNRltvnSdHq8ltkANnPIoQv7i4n9Wqu/+zG+kzP+m5GdlIJTlQmiAAtK6KLFsvmipnBGrqIExFU6ynp3W24rxW0oQ7+7bjUEyA0kAbjJAUWillWXYc9efzZZ7ntm3btt3m+fX7XaUBZc6rX3jri1/+xnyZpVmJEIKMFI0GxAq7XcKoUsJixKLEddjW3u6tN18bHRy8/NIXzKo8//gByrhN6HKTXyxXBgFhNCAYENxIIYWmFivLmnPZ6wVFUWFEhQIYQwPgcr05n1wkWYoxdlyLULA17ne78dbOuCgy27EeP37YiUPO6243Xq+XSZL0+30I4XK5PD+fTqdrhFjr2/pZ/EXbXimljAaEUUxZu1Z2HMciVNSNMYpSHIQeJcj3HAsRC+NB3O2HgcOwRZHN6HjY/+CDDw4Pj08vJhAhqcHrb7wVx/G3vvWtrd2t9Xp548YNoZpNtjo5O6YWe+drX7l887ph5B/+099erVbUYpDgJMuFBAbA2WIBEMGMSqnKspnP547jhJGvlN4sPq8NBwP6zW/+mTv37r773e/F3e5ys0YI+YE7GIJuNz47PzHGEEa1lhjDMCSYQCl5nueUYYQQs528qimzw7jbCGEgUMAEUTjs9xGAWVpACKXRLcWhruvRuF9XsshLQvX5WQIMePX1sZI0y7Ju16c2lFIWVdHtRq5rrxfLKs8ghF/72ju+7y+XS8ezb7580/FYa4JLsGVZ1nyWNk0lpa7KZms0npydW4S6DiAUKy0AAN1u1I722hR2AJ6F0EOIzefOgOjzaWCbCkqIxZjFmEUZpZRhggFs3fBexKD2x/kzP8TPvgla78uqbDiXVdUgRLSGTSMYc/OsEUqFYXh4eGjbpKrLpmkcx2lHK57nnZ6eAgBs28YYxHHcPkelaP0lcZIk4E89zxk26qcg//ToCUbWeDwuqk1Rpg8ePCqLptcbHFy+pKlAUqA6SLMmzScuU0U22770WrOcn5+eYsKqpg4DjwCZJSnXUJLtwe6Oh47g5jxfoe2Xvjbcvj558O78Is/LSZYVB3s3JcwNBFF8VUINQA5rhZtC8aNBMM4mi9nJd3c7g1zpDnXJ8EpVnBNj0dF1F54bFApeYwTaRAYppZHKcZyoN4h3dvOyAtqIqnEcxwCFAABaNk3TCE5ty3EcqXhZpg0vhSwsL3L8ftnUJ9N7Cpit/uvTSTFd3v/smjCne+naN7Ll4tGd3ys2qXXjja3RteTOR8mjP+xd30Kjlyu2RZCmzA3jXtQb7Owe9AZbGiIhRJIkNjENL6jtOFEcD7aH29vAqCZPAMKWRRljLRuxaZqyLIUQnV5/OBiHYYwQ0lr6vrvZrNarmYKIOm5nMK4bFXeGjTBJlqebdZWlFALRtHyriDquMkACuJhePLr/iGK6OJ58/59/a+x2dsdbjZKPHz8N4+5o1EcIG6kIRMggRizOG8ex/DAQUmsFLi4uHIdgSqjtNEIWVb1aJ1VTc17bNr18eZ9aDCKglKp40/IYOOfr9XpnZ6csc8bY4eHh06dHRV5LAYCBUkqMqBACKI0BRAZgCDF8thhhjGlgXNfFADq2ZRNMMaQYurZltAxdxyIw9r3d8eDGpR2GVBS6u9vjXhTGvvf+hz+59+gxxCjqxNdu3rh9987Lr74SBFHTiBs3bnCtZ8vVJ3fvKYgm8+WPP/jot//F7z49nXZ7g8FgAJ7JgSFCSGoThmGrbVDSNLXGBDqWhQF8MWNo2O++98FP1mnihcE6yRAiLSs48BzO6yiK2pQoIRpthOc/8wtIEi6FJoQkaQkRma+Wj548rnmTlUXV1JZjjwY9iuF63SBIqpoTzPI8d3x/uNU/OZ0kSRZ0fAgsgECnj7XCgediROvK2Jbr+Q6A2hjl+77vOVmSbo/HGCMJpFScWXi9Xrme5bruw4enhLC252WMlSWnlBIER6NRf+hL2SgpAQDrZNqi4QsHAgAgaGnSpuXLAIAMggY9k3PA57tmLaQWz9bHL66kX5zWaQM0BO3PQggRQQBBrYHj+UKahmvLcrQCvNFZWq5XUiiZJMnFTF66vO/ZVlUWxiilVBj5Dx48ODw8dByH85oxSgiJoqiqmro2rS96kiR/eh4W+hzyXygPkdHM6vs7248Ob9dNurd3NYp2uEYCiCRdKO6lxSkChFd6nR451lA26dGdD13Xn2XciXqb2akpVhiYQlO7MyxP7qkLSQIYbUVgbT358F0F8Ghr13aCoNOTADfKMDeoak47vfX50rJxo1dI94VMDUr60dvYSvzYza1+vTh0+tuoO1TJWemO6mojpKbM1soAiDUgJVeQOoA6+cUsjOMsy9brpZS8KHKgZVXmedkEfgcCnGUpgAoRVVbrTTrNs7Lb7W/v7oRxNJlc+L3+7u7ui1zN5elDPj++8uZX+pdurM8fz3/0h7TXH375571L1yc//pG1WATxqDp4Ix7sulG/Ekgzz4v7ftiJuj1CrXxx0g19YvnEH7PRvtC4SJYmXxTLRV0WWkkhGs7rdpHdNo+XrlweDAatcktr3e91LJsKbYqSp3mBMLl9+3Zd14wxoHTokHyzOnzysMhygIgCJOyNB9v7seuHzFk9Pf/OP/6XlwY7VCGpdVJn63US2N52f/jSwWUstK554NgYwlqqL7zxhSAI0rTQWtd1wyxKKKzrGmNKLbuseVXzoqzruknTtKirNC+m8xkXsj8czBZzAMD5+XlRFEmSfPLJJ7btSmGk1JaFy7LGiIJ2WA4hAAAThCHCEGAEW3drRjFFUCvJEOxG4ajfGfZih6F+4HkW7YZhPw62R/298RABhRDYGvaqPHv91VdEw+/cu71arba2tk5OThAkju1969vffuXV1+49eKSw9eMPPpnM1ocn0z/4zg+//6OP3vvwjhP2q7oQQrRVKufGGON5zmKx0FrbjmcMNAaUZVGUGed8f+/SZ5+H8/OL6XQzGo22t7chMq7rN5wDYBperTdLSomGYLXJAHwWe9QuxyltlxgEY0AZhsgURSGECMMQAFBVlRJSKUUpMBA1jTAQlGUduN755CQM+r1+vF6l00kzHHllkx4dnw5H3TbDNa9KP/LzfNM0jVagLPPBINZaXlzMCGaCqzt3787XcwgV57wsQZYVjAFmYQAAwfTxw0eWZTmW64cGGIAwsJgVxQ6CBGMAIX6uyTNtMQgA0BoopZ8TCKGUspGyBb7nJMRnWxStddviUEpbhsznCmgIIEQQwjYmDEIIDNIAAIMqIRECRV2o5xb0tg0otW7fvfPKK6PRoC9kYwyQkhOKLcs6OT0KQq818ggCj/O6Hft4HqEMt8TsPwUKwXMpDoAQAPP5WnlnZ+fSwbWPvvvd0LeHo97jx09Xy8wLOptsU6xArXNiGy02plGi8Z3AunPnvX4nKMvS8vy8LGRTIs2NMdTy87OPygZZ3X2gPZGcbS5+0AmjXnx1nU5sd9QIMV2cQBAbQJgnH3x8z+52OewJZNsDC7Btt3dDOg3yDoDVR/VTZ/slRoMmO8WDAxezCgKMKSSsza6mzIaICGmKrPT7cZms8mw93Br6vmszK03WCJh+b+yFoQYwK4vVamWMchxruZyfT44vZscEO/3oahjEh4c/sHzY67z82TUJer2L9PDk0b04vrp781UWbk8+/a7ePBIV3vryr+dxv6hWQbpUmDQK5rXaZPUmr0qupDYQo9C15hczRG0F6PnReV3XocOgKMoqa6pSiEZJLoQAUGOMNdBCiOl0WtX1xcXFYrG4/eknd+/emc1mABLm2Aih+WIax6FoCi1FS1QmhAwGo52dHUKIUloZc3Y+dS2LCvntf/TPbgz2LIOk0RLIZbqWUsZ+4ADcYfYoCEPGgDbrstzd6gxHfQiN61qNFJghy8IIadnUnNd1zQmhBpK85PPF5vRsejq5mMzmjw9Pzs6n9x88Lsrm6Pj89Ozi3sPHqyRbbVLH8yzX4gpAgmvB29Vk21IZYyzKEAIIIaOEzSgwihCkZNMJXIaMauqOZ/U8d2803NsZ7m31HQa7kc+Q2Rr0r12+RDDodOMr+7uXdnf+8l/5iyfnJ7PZFEJzcnIU97oPnzxmlvuF19+88+DR48OzO/efDIa7B5duBH6HC7i9cyAUVEISgnzftW0WhBbCEBglZJOXWRAEShkhgFS1ZWGlpGg+Z6ERAhwH2DY7PT2RUgqps6xoBWSMsePTEwgwtay26m+T5oVQRgPH8SzLwQSsVgtKievaZVnGccy5Wi6XQonlcsns1vwKXUxmRoJu3DFANI3kKkPAMxq4kVnMs4YXYeTFcQQAaFEVYZDnZVNJi9HLB5csy5pNplHUqbm4mC8bLgFUhKDRyC6KzPOYEI1lUWMMUPrqlUuO43gugAhoDRouPJ/UdashflGTpz8zQzXPJKxGKaUUUAo0XIrnhkOYUWIxxhil9MVBYYt6LUmAEIQQMhoaDRX4jIUDGiEgAI0CGGOlRX8QS9UgBIqqUgrcunUjTVOLEi1BO18WQgAA+v3+YjlLkqT95whBUso2NbAsS9/38U9vSP5IofrC3PCF2jCIO5PzRy6jUKIHt+/2O26vZx0+up+uCxe7xuKQhkePHqgyt8Ph/ePbIQtKARAwLpbFZjHc2X96PhfalMmyNhaz3MnJd8T8fDKv+XjIojG5eMAsXCSb2XQ66A7iuIuMfnD34+tXdij0s/J+6I+STf7g6U/q0hBmrZKLJjlxh28SvhIyYdYu4xU3VdftWRYDUgheV2UODXAd17KYFwTFdLJZLbZ2tqssnc0vZvNpS2QHyBBCer3ezva+FCZPRbez1e3sRDGQNasymORniJaD7uWL86Lky8+uCe3g/tYXQyucHf4wTUV0bWvr1s/BMpzef/fw+/9ldfFEc+xu7WJMKbO3dnb7w0EUxlEUAaUxRMTrYMuRTV2lq55nB72uUkpIg6BpeMVFqbVUmksp6rpar5eQwLquXc8GQC8WC875+fnk8PGTLC081y/KlFLoudR2aF0WoR8I6GA7tLwgyfKL2UTxAqsaq2pVJuvpdGQHIKsoIBoYDFGdpuvNxnFsXddNkhyMxoHnVrK2fXbrlZur9dz3XQihbTOIAHOYNpJZlEBUlqXj+gYgAIlQQCiUZFWa144XZkVTVA3EtKx51QDX8SxmAwDOzyeUUoyfMWNaR4A2v4LXDaWUYkIQBlohoAkEjEBGEKPY95xBJ/IYsZCOXGt/NLxysDvsRoN+rHilpbh0eT8Mw6Ysrl25RAD42W98fTDs2hZdLRe2ba/Xy53d/V/5tT/fKOP5cVbVqzTLq3prvD0Yjl3XvXTpEsbY9z2jJYaG1xWGgNdVkVYYGIiM69kAAIxBGPquZxNC4AvmJkIDi5Dl/MJmZNjvaG3qmiOEGWOdTse2Hak1eO5xMBwOpdBFXloWC8O4qbnFkG0RaBSCptuJMIBKgG7cQQgtN2tjTJtTtFyCwHM8xxFC1JUUMl8vJUKgN7QcKyTU8CoXsqkqoIFRSlDbIoRcu3rz+pXLBujjw6OiEMPhWCtjNAyCMIo9QlEQBEII17Mh0rZt53lt23bLiBQqhRBgAmzLJRSWBQcAGfOMdP38AmgAnyHaZyJfjBHGUBsgpZZKSaWU0cYYabQ0Wjw/bfn47G9poyCeV5HPkvOeawH9IAAABIEDoaYUZdkaYZBkaRD7FxcXs/m0P+ghBAjFjD1zG8jznHO+Xm+qqkII1XVNCQMAWJbV2qa86MbwJ9SGL/bHn31VN02yOnMZBQL34s5idvTxh38Y+tbOYJ/SXIPo4eNH4/jAIuhk/h5AHjaMBQOg1erkye6w+/0f/2R06aYBKJudReEAmwTi8LC58AceXeLje++tEKizMiuOt0ZjzxnOT+9PT4+u7N6COGs2j0MYJ4uP8vnxK7dew2bG00yVS8vp8fWTotRYMt2spUZ8xbWSusp5mSKjjRRGCWBUvkmqJBFNORoM8tVSG2UR3ArmGSEPH96fTifJJrNtt9vflgKXuXGsrku2Ox1UlE826yTbYCVxpx9C9PlzIz0rHGOinVfszpUq+3jxcKqrOeyCy29/fTh8uZhN0rOPV/d/xGxHSQ4hqMtKSM5sppUk2KQ1Goz3sNE+1lQW9eQUYaqxxXmdZUmR5Vw0UsqmqfI8XS6Xh4eHabrJsuzWrVtbW1vXrl3/0pe+9MYbb4RhnKbpYjFL0pWQhRSN4ziKK+RGwPIMYkqDwPUo1JOjh6vzI+xQAAARehDEWZqWZU4wRA2nru0F/rA/6PjhsNuRSkhgdq7se77TBhK1bqb9fj8vMkKw5I3tWFJKY+AmLTGmEDHeaAMQs+28qJhtG4CKkrte2OnFeV5gTOq6gRCGYdg2Rs5zFwaKsBCiqupWfYwJpJSWRYYJcm3HcazNahH7/lff+fLueBSHfp2nW+PhaNB/843X9nd3/MBTSnW73StXLkkpCcLdOCIQ/Lk/98tRGJyeHlMMt7e3kyTJ8/z9Dz/Iy+ro5FgouUmSO3dvf/s7f1BkaVXkts22RoM2wpxiWNeNa7MocgEAjBHOeVlVlg0YI4vFvG7K0ehzvqHrWi0DvJ3zVmXjOl5rT1BV1f7+vlZAG9gqDlsZXFmKnZ0djOh0OgtCN8uSLEu0VlVVHR8fx7FDCKlEJZQGCLdzZMZAr9eryyrPC6V0w6vJeTIedw0opcDdbjhfTCGEnQ6ezbKaN4SQrdH2YDA6PHoClF6v17ZNIIRBEDWN0QYSguq66vU6lNI8z5QSZZl7nnP16tWLi8n84sLzbcdhSgLBpZR1y+UmmP7xDSxAz9AQQgARopTato0ppDZFlLRgJ5QUSraF27Ou2bQVpVZKSa211kLq5/NH0PbLwIC0yKuqAgBIJWyHpdkmCL0rV3cRQlmW37nzQAtp23YcW2073NohF0Vx8+bNIHQty6KUJkkSRVHTNK0TUtM07W/yr0VDDSCAQBkA4Od3/tnREy+ILc/lpppMZ1o7t26+MxwdzFcXGZcnT+50Axv75mh6FpAOE4ra1nr+pJFVb3vvweNDh+F8PX3w5F730p4U1Xe+9/2sTK+MrsuC3378o9HuNlAEU1ZXJBhvT+Yny6Ie7uxTz2pqklW8EKoR0XD32ma1EoBuynS4dQWook7TdH4qRbFYrY2qfU/x1VGeCUYRRrYbbEtVKV77lo9NTr0RdmK/ty2kOjs7W6/nT58+FJpf2r+6XNeLxfLs8QOtZXTpcoNqC07y7PxivnbD7t5Wh4pZsjjnpMuufPXzSxX2UqKBU4T92Ou+SZluKsloV0nbHV7af+Nnd974Rrh/azk9F0Kkm43SUgiRpQkmdL3JqSnKYok9BsJAOK6xWN2UNjahHwVBFHW6DRdZkS836/V6LUWTJOujo6MsyZ8+PbIsp6zEZlNZfg8CWaZp7Ae9uJOskuVymSRJrRoolqrIHeR6Vii5WKwWwujx7r7rhvl0UcAqzVYWAICxdLnWFhmGfpqszzaLkoKjzXyWFDvDKIBqtroghHjMpdCCxnieM+j2JdfEdlabBBMCAEBAQwgr3iCLNg3XWruOZZSm2CKIlGliE+O6TtPUjmMrJZNkgxAAQEGoAZSMQEKxBqRQsJIIIOi7lsaGOnYjRSM4grDfi42uLWK2R8MvvfX6tWu7vEp2RsOOH3qWFdkMaTOOBgFzkdTduOP5znxyPo7jRyfH791+8Hs/vv0737/zn/+9f/69Tx9NkvTJ5PCj+yeQuMNO/2D/iu3FyI8XSWEkOJtOirK2HM8NIy+0LNcKgpBX+ic/PLKYE8eM2Xg+y+Jwy/f9x4cffPZxGI73Gq2VhEEQrDc8r/L9SwdnZ4s46mutBa94U2rBh4NtIc2Th0dG0rYDffL0HGCAoa5r0nCSJLks9UvXrgBTAYMDoixAHccpmmS2OOn6zngwni2PfZuMt/eDvuOH3SBQHTtgFBDbm68abJVcKVHRNKn39/cMoN9994e1VA3QqeBBp3txNlOl8CmZnc9kpXZHW4yCne1hlRuX+g62Ys/6hV/80sNHhxCG48F24HGivW4XCYkB0ABIqSpjFADgmZk10AAABCBCgBLk21bkOg6Cpq48y2II0XbQCBCBjCILwXZYrJR61oYqozUwkCChjYZAI6AxFEBLBaQBCGEJYCMlAnEcQQT1apn0+sPJYsVrRSCMOj60eBAMsgzaNudNRRlyXMZFZTlWGEe15E9PTspGSikjP+jFnbIoeFWPRoM/EQfbkSgxwCDKtGjgCx01QmRvb+/06Liqqq2dbUYtattZkWtgjo9PEEK72+PZbGZZVlEUnSBumirLMmRQjevZbLG7u7tcLrvdLmPsd3/nH79088vj/u7p+d08z9949Sunp6ejbXd+sbl6/dqT2x8LpXa2dxteaSOn06nNLEwbZlEMiVK5lLwb94o8rdP0waOHl69c43XVjSNCSJ6lzHbDTlxsCsJ0ujk1BnW34mI+gYYxioHvn9z+WIiKUlqXKULo009v9yP80utvW058fHTeNHV99HC4dQl1r/jqMZXpYj1TWzf9l66TbFktn47lWu4+uybdgInMyA1TDJPQYhZoGlXWFcIWgLiua5RDpYUTxMx2CIBSKWAMgpQRQG2rSjdaISUhhZBSCyDaVHXZ1E1dCiXrupZSSqGCILKpzTkfjazAdebzeRRGxsCyTGerBabEd1yMqYFYCBHGPdsNy7opqhlzWC/sNqLmoqmaGkK0vXNweni0Ojymo3jz4Gz3YCAZVkXZaL5er0/mSz9Wfrd7sdl89ODxcBwxxtq6JvR8JTUhpGgqpZRlWa7r5pWQUrhesF6vh8NhXde26yRJEgRBlmUEYd/38zxvJ5hVVQktP2ujKKWu67R7RqCABDIMOutNqYRJ03TcCwhSBCLLsmzbaupSM+Q7kWvZktfQhuenR7duXAEGNby6+drL05PDoyMlNYAUdwf9i4sL23XKVdGNIz45e+/9DxGxPvnkTtmoNi1oMplcXMwJo5ay+6MxY0wBI8pSGo0Q4kJTamkNlvMFZQRCgBDMS84YaPcejmW34VBKqelkDZ4rlR8/fuy6IMuSfn9ICOI1QNBMJwtGca/Xk0rlOfd9C0LjuuDiYt7tdiEECIEoCi4uEgOBEAJAiAkJAtd2HAhBzZtOFEYds8rKluYBFddaE8IotXzfXs7UfLHqdIKq5K5nU2qNRzuTszPHchZ1Jbg+Pz8tklrU0HX9o6Njz7fHg+FmnU0m5wgBL/C0An4Unp+f7+7uQXTqum5VlJZlvfvu+1euDbRuEO5ShgEoDq7suD4E4F8TH2XaRBSAoFEKSAih1m092xZrWiuMMcZIaw2NedZ6ws9Mw4Axz1KZP/8bnwETAAAwjCRQQAnXcxijttOUZVmXJTZgb3fQ6YQttdAPvE1Wt3A2m80Itc7Pz+ezFecKYeE4juQcQtoKXdoK/U9+Nc+ctyHSQhACjPx8Qry3dyAbnuVpq4FvpFgnm7Kp3/vwo80m3draqqqmaXhd18aYrMqTdOM7PgDg0aNHnU7HGIMhGvb63/7Wt25ee/3Kle0f/OBbj+6fXt5/6Xz6NIjYdJru7++enRwbJfvdblMVrm09ffzItS3fDxEWcRxPp3POU6M5s4M6Xz98chTF3fF4y/dcLcVqtRIGlhxeTE8sJ87LjDmo+8pb5TqpVIaZB408/ugDUVfdOGaUSqF9P7x27Zqhzoc/+sHtjz+88vpbO5df2hr0bUYMC5ybNwc3vjIe3NSriVmexDTwo9F5fv7C48OiLtImsSysa8Ci0PUdQhDBEGPkMItRamNLaoMIZd2+G3cMJkKqRhjm+VFv6DgeYzZ2PGS5QEMpNTSoNdWwbbvT6TFm15WIu4PdnQPH9hSA29vbnhe0Ofcvv/zydDrN0rWoK23U0ZPH3/ve9548eUII6fT6SgLbtos6K6q0N+x1eoNNUkJsv/36W1e++rZSitkWtzEDaDTcsm13Y0BD6EcPH/zkwWPPpy0rGEJYlpVUSgHT8ks4l214W6ucy9INxrDtSnhVM4w+24C3tviUUillSz1r74q6rtvULUKIUsrzAgAQI7TlOtR1jTHmXPS63bLIGcHDTg9oRRHcGvaU4J0oikLXKEkZdl0HAOP5/mhnm7gudezBcGi5juUwiJEX+KvN2vWj4WiLWg6ibLi1NVssPvr0bsnFdHpR13Ucx0IZpYE2kFALINLtjHd3LnMuq6rGGFGGMYGEAsZQkafj8Xhra6vf7x8dHVPL6fQ+Z9j0er2rVw/CMMyLjedbYQDSzaYbu8+d/UG3H/pBxDnHGO3sjKqqAAAsFoumaUajIMvKoqyKvBJatfSUioMkSRAmZVNKYyyLSAH80O2Pho2Sy0UhddGUVhCCwTDOM8FF3pogzKagrmW3hzebnDGb2QpAlWfFepVLoTHGg8GAc6AUuH79um3bi8Uiz/M8z3Z3+4TAJEv/wl/49aPjKddNd9g5P7uQUkEM8vJiNpv9yVAIAHhubKO1llJzzoXWAGOEcPvylVIIQYTg892JNs9dwiDEAAAFQNsfGwO0AW0H/RwoDSUYKgAAD/3Atu0iz06PJ55rWRaLu/00zZqGPz18nOcb26ae5202ObOsOI6FkK1v3tZ4zDkvilwIoZQSQrX0tT/yKl6cACBtNHjGovz8MNdP0s1wODTGhGH4+OkTTOnte3fP5xeXLl2yLCvP8ziOgzAqyrIsy7zK65pvNmldc8uygIGEkIf3H1zePwid6P6dTwjUX3vnG5PzuVINl1Xgd5J0UzcVpZTzutOJ7t7+ZL1cOo4zuXjU619/8vhe3Uw6wa7NvPd/+E/qAuwdXHr5rS8m67VR4smTJ64fAGJJSEfjbQAagqFFrfLxnfn8AmrGGN2s52myHPS7WZJMJhMhRFVVSuvO4NUbV9+ImfXo/R83EGXMX1QJao7tnGjQBNf2vGtv0Cgus0fY5BRe+uyabNI8adJKzDeTj83m6cm9u01eMkKQ0VWelXUhlUKM2radp0l+MUkXSy04QqjKs3S50kpgi2mt88W8mM+k5Fo1y9XF+fl5kiST84tPPr2zSbJHj48m53OhIKZ0PlseHh6v1+uqqo6Ojn7/D3734ODg6uWDbidaL1ez2WxnZ+f69eteENq2vTXee3L4dLNZdAdxWhZJUfeH2ze/8CbUGFsMutbsYsJcJ4gjF2DA2DTPPnj4YFFmGgDqss6g43ge51wKXVU1YzamTBpTNw2XEiHk+U7LlzZa27ZdVRXnNaW0DW8yxrQhFe0wnhDS6kzAC2ZQLW62axNjTFsjKCGlUAgSpeTu1jYvK9+2Yt8jQF+7cnlve1iW5dWrV8MwtChzHEdLZXmB60XDnS3Ld7FjhXHQSFFxsU6yyXyR5dUPfvST0+kFsaw0LyezFWFWXtTj8RgTJpXZpBm1bGa7tu1CSJtaN7VybPczw67pdOo41HGs2eyiLDKpuEXZalURQuULzLvz80VZlphASkmWpZHvrRfLqirPTk4555zzfr8/Xy5W64Xv++149OBgtFxmLfmcS9Cq1jCmEMKW/MGVTLKq5nVreFXXgNp4vdkcna7i2M+L9flJ7nhAyCpLq7IqKbEC3wIaSCm++rW3up1BnipCCMJUCOW6Tp7nF9P5fD53HPD226+fnZ24QdA+tzBFmMC0THd2xmVVbJI558Jzw7AbUBtJA4AhLR3qTznPqTaaC/3MZEFIqAFQGihDILIoJggwguTn6Z1IQ6DhM+ADLxCd2+Rlo4ECBhsNACBAKiWFkGkq8o3ZHo8opVLq+XwJIaQUN1wFQWAAogxlWek4LqO2bbuUWmmaaqVc1yYUtS2LG/hF9VNo+Edw77nX7WfJfe3RMvD8PM12d3c//vjjg4ODR48ePX78+MqVK7bNEEIagCwr3n//fUKINgZiVBTFer0Ow1ADCAk2xriuG3j+YnU0mxZfevvnJxePbFeNBld4TSEuLy4uEEJZnsZx/IMf/GC9Xn/5y1/MkvVLN994cPf7ZdFc2v+CMsnZydNrB2+6jvF9v1ytlFLL5TIIAmOM7/v9nZ1kmqSrU1nWBDiz80fjXkyBt15NhBD7+/t1Xdd1c/XK9atXr1++fLnT6W31Q2OFo73r1159qd7M/f6WHQ+rdLVZv2caKKsAA4KRbXvXsDcM9j7fLEVdy2Zx4G4LzpPN044Tqqq5OD6anZ9VdWGgWZfJ0fyszDZK1IxAiyEElOY1kA2FpmxKowTxmB8HlADOcwz1aBAzxiixfN+XUp6dTbIsE0odHR2fnE00AIvVBmHqeZ7neT//8z+PEFgsFicnJ2EY/szP/MwrL79MCKnL4vj4eHp+XmT5wZWDTZqcnU22t3aNMbppNllaztfBbn+2mDVVVkJRzlZb+/scaWPBWoFX37jS6cVCNJgSy/EMwkmSEUwhwC1Rrq650bCtEFuME7ymFLcxx23Oanu3F0UhpWwdCtp6oCVLtiyTls/cNA1jDADg2jbGQEhQFoVlWUBphIFt0TRZ7+9s/+LP/yyBatDvUGKvV9nWcGvQ7TVVgxBhljMcjwdbw02SnJ4dO563Wq3Wm83FYnnp2o2KazfsdAcjZWDJxTrNKqGLRi7XiTEw7vaiXg9iNl+sl+sNwbRqRNTtQGMYAZ5jFWnmeIEXxAYoZpGmaYosPz09xQgoaebLFzgGFK5WG9tyHcdp7QIvXd4PPLcoADRgNpvNZjOjtG25aZrevz9drVacS8fBxpgsy1yH1TVnzEYIRWGnLMtWM7ZYpo7HWuMpo3EYO0+OnnQ69rVr1+q6Xs6N5+OGl3EndBxCCOn23cuXxn5gHR49zLPy/t0p0F6/P2pbQsuyyrKsqqrTjfzADUKvteBGBLbFWhRFaZp+//vfZ65uGjC/yIejuNNzA4etFpwx+09Hw2doAYEBrZwKFo2oeKMAQBQTiyFCIMYAIaV06+vUPh0/a5BflPkZAHSr/dMQaMUQcD282Wx4o8OQ+p7tui5C6PT0VCjDGNva3WYWQAgJroXQhODVcpOmedMIjAijln6eVJXneVFXlmVl2Z+WG40oac3LngM1AAAAXuebzSqKgqOnT0aj0acffzKZTHa2dnfGO6Nx7+nhw81mc/f+/avXb5ZldXZ2JoXmUnX7AzcMvcCXWi3XK0rpZrMhtvfGF1+braZZ2RBiHx0/FrxUEnIhNkmyf3Dp008/lVK+/fbbRVHEcffBgycG8IODy3nWnE+Or964ajtRkqe+41ZVRQhruN69el3UDVTy7P5dRhBDysJodnKKdJMlG142VZnZrlPVfLVObMdzXa8oqqKotBKLox9F43jK5fTpk34nIFUTja51tr8QB1/gxSSd/cQOPeH19CBQyFiV/9k1KWcbVGZIysHOre1rXynyyijtWna/14t8D2NICO71ug6jCMKmrJQUhBBGMSaoaapG8E22KTcbwxuKEVCyrNIkXQuhNut1kiT9/nBnZ+etL749Ho8hRhBiTK23336bENLv90ejUVmWVVkiRBzH4Zwnm83R0dM/+NbvffTRBwRBLdV4PKyK/Ld+67f2Di41DW+aanL+ZL5Y5Mv1l37x6w/OHgNglmVCAneWbVyP1I354ts3Ol1fyNr2HKkBxARBkqVFXdcIIQgxQlgIYSDQQnqO1ZIE5/O573lN07TQ1tpqto9fznlVVe0Ist0bftZPYYw9z6OYWJYllSAEUAwQBFVVVkVmEGya5vLlA6DVejG/dfPqlSsH6/VyvL3DOW99hhzHNko0dW2MmU3Pnx4+vnfn9unp6XqTbu/tH52c/+BHHyZZyYX0wxgxK82L2XIFEdUG2bbLHPtsMr1778Hp2YQrbQxuuLZtu9frLZdLx6F1XTu2l2fVfLaGEPi+2+3GyIA8N1ICDWCrwWhPt9uvKlGWdZ5Vnud3Oh1gEECIMeC6zrWrlzerPAr9MAzrGsQxNgau12tKLQCQ43hhEJSlgQa0hqycc8chUJumVhBIyVUn6vIKRL5DKX31C6+n6WZ2sQIG9PoxpTSKfM+N02z95Mnj7d3e1tb4/Hxj2RgTOpkUCD3XvXGOMCAE53n64MG99Xo1nS7bAvfx4yNjjO+FnIu8qKPYlVIfH51PJqedyPY8J0v0evU5+v9rj0EtX1oD1E4/tNYIIUoZAFAILYTiXLZQqABQwGhtgIEtFP7xVbX+bPusge1goWTVSIgwl1BKbntsNiscx2uEcj3bdgmXommU41kIIc/zJpMs2fDxeJxlGQKQ89pm1PM8jDHE5MWE9D8BDYVUAEKlACSf10FHx09ak5zBYHD45Gk3ikf9kee62+OtO3due55rO2w8HgMA8rKuOEeU7u7uHp0cJ3mmgJktF1G3w6XQWsfxeDJ7+vT4br+/m6a8rJcGlmfH88V6vXtw8ODxI2KxWy+/aiDOimqTpo7NI+smZeBk8l6/82pR6GV+e2v7pePDxxiisqrDKL44ObVtW/PaIVrI8ux85rpWkk4xtrSW2JKOGxhIFYBbOwdxd8iF8jzPtm3GGPPjk8cPdoZ91+8+uHMvmZ1d3P4QKKBHQ7tzqUN8cHZbHH9EKsOi3ZX7eafgOB2uq8nsEVAcaGt082a4s4MYLYo8XS2rJFFVxYwR2hBqSW2qulmtN/P1BiDqeqHr+J4XCa4uLuZ13fhRFxp0/+69u3fvtlO2VogymUxu370dBP7u3l4cx0+PjpIkMcbs7e1MJmePHj24e//+8clZkiSLxeL2J58ePz30XNtmVPIaaPkP/sE/+OY3f6XbGZRl3fBinUw1MBzIzqD7jb/4K//y3d8Vij/hq//y7/69OuVfffvSpb3hej7xXGKMsV0nqyqEMJdiud4Q8iyj7jlLltR1HYfBer1sjQgxQnVVaK2DIEAItcjYpno/93fCEMJWMC+EaFUKjuNgDDEEmCBMoGUDQlCSJK7rYoyPnjx9/fUvvP3Wm9///ncxgb1+vMk2USfMqrSqU0Z0XqzPJ0ff/8F3vvvud+7due37/njYn8/nv/8H3/qt//rvPzk8WW6STV4dn5xNLmZBGEttFptEAdI0jWW7ZV0VdVM2tTZQSC2E8jwnz9MoCuM4whiPx1vHxzzPpOc7nPOqyIwxkY99nzVNUzX8s8/DfLbodfvL5ZoxGxh0fHb+8Mnjpml8n6ZpalMSh2xrOJzNFmFoGwMptRAinPM8K1bLHAJkUaCURgYVWRa4XuQHCCEAUMMVgsQoVeUqLxKLUtHI9Wa5XgmjQV2XnPM0nxHsZlkSup24E1Qld2wcdWzHcc7Pci9ii0VKCJkvmn6/63p2HEdvvf16XuSMwTaoJM/BZrNZLJZvvPXli+mSQLff6xTlOlklUejHHfhn/uz1ftcF//9O62YDATTGSK0RAq0QT2mQF1WaFWXF60a1sAnhs/3J8yEhaP1jAGzhsf3yWUyVBoBQACHarPOmabK0rmvu+64XwDZWG0Jj2zbBdD5bdbvdqBNPpzPHBv1+eHR0UuY1MM+G2lJKLkWe51X1+Tv4XHP9ORw/c3sF5qe2KKv14pWbb2ZZNp1O9/b2MKEnZxdvvvb6arEEQHPODw+PRsOtx4+fQghfuvVKliff/sPv3Hjp1mAwmF5cKK0xxmVZeY779OSeVtR2Bkk2Xa/X4+HBYjYv6/X/j7D/irUkzfMDsc+GjzjeXX9vuqo01VVd3V1tZ4bD6aE3OzTSSIBACBgtqIeFIAESIEgLPetlhQUWoKSl3Epc7VI7IIdcjria4Y5rU11dPv3N6+/x58QJ7z6nh8jKzJ7hcOMp8+S5N+N8J77/9zc/89aDr01nM9d116uNUqrutZumyQq7M8on49g1bybFWZJW26PbF5PHnuaEgd/q9POKlVzojnP+7DEvUq7Dt+5+8+riccmCnv12zjIMs7zQAFSUaiVjSikNYa5AmWVKVlbv6yOShefP3J1bt9//3uNPfzLsuGfHH3YaW7jRIK0RK0qnTeLJCTLdztb+K8tBtN02Y0Mg7ennP0Iy1ra+3u90IdU0ogTjUoEqzRIppNXVTQ1rmus6BKIij5VkWZ56zSaCSNNMW7eTcL2cnxZFPhrujogRx7Ft20VVhkloG2anM0iyuCgKKVhRFIAgf7O5vDyfTqd5nh/cuMuFCpJ87fsAa8NBr9fu5GlclnI+W+/u7r77/e8vzuYY4ygKoOKNblvp6MnDL2DXvvPg7cD3J0D8j/7BbyaaCgJ/Ohu7th5lJQCS6jqAGEEJIQ6CYDDqC6kARrVzrmnq9bla0wRr7X5NM1/zi6Usy9K2bQ2TV1y3Wtuu7ijVMRE7NsHQtKysqqRUtdBeEfmXl+dfe/Dg9OnjMi9+69//rU8+/OOHDx8OB92CISALCFja9AjRlutwHQZpnqyX/t7e3uHB/vMnzz777DOmMGdy2OuHl0smS4AJwVAoIBQwiQ4AKop8vV6vV4HXalt2HXdAs9kMoitE7M0mCoPAcZyf/eyzZgOYlksIQUhGUdTrjvx13O/1ozSrqtfULtt29/f3P/no4+Vy3Rv2FEDtbvv8ZD4YNGzDDMNwa2uYROH29m6WZQ+/uEAooET7xje+8Ud/8seaBgN/o2k0S1Ko05PjF++88y5CiFcsS3OjCQhE8/nKtu2yyDRqr1arVquhjVNKsRDMddpBsNA1p2IVBAZjzF+FFRMKVPUIIIxnrZap63R313UcZ7PZVKw4Pj4+ONiqShhFkaZhywGNRktJlKY5Y+Jg7+3Z4sRzdc6EEOKHv/7ecMv55Ofyo49P/jsD4ssoBqGUEhJQcskkA4C9IgVjhBGQEoJX1A/11Y98pcAv3/g99a8CBGKIYV6WQcSHOy6hoqjKYac7HPZXizXCXDNUWZadTnezWfWHFSWGH+QaBo1GYz6ddbst0zQ9EwlVpUWulEIYGcaf2wlVCiBVVwAKAPj6fbdvvDWeTsqy3B7tjAbDaBP0Og2pqiBeGmbzxcmlprknp5cQkeHWqGTFk6dPu93+1mBr44fjq0m/O8jSoqp4yXgaZbZJKVZXl5Nmo7P250t/9uCd94RQhmZmcXbrxmEcbiQvXc+6nl7qFp4vIkoxoWy9CLcHI15tNEWgBiCWEDJZFS3XnpyfQ0TsZu+tt+8vp2fjy9mdO+8DgBqNgWFs2U4DIKiU4EXC8zCNlkUWNtsN3TKr4GQZ+s72QVFkebh+6859zWz32yOjMyzyjYpCBxFRRG53hEkDvKFnNz+ZIM3WOqOb3/3L+9/59ywB/etpmcSSizTLSy4sr5VXau2v/PUiT4MsXGfJRlSpKDOT4mA2LoIFj5ZlsqRYbg0HW1vbrtdyHAMA8OLFKRBEQ/bhjbu7+ze7w61O28MYOo6Tl+zFi/MnT84E0B+8+x0/iWbL2XI5l0qFGbv94P3ucDuvSsch683y+7/0NxYXpwiYlBRxyButHQolSqPp8vTpk8/+yv/g7/7t/9lv/eZv/Q//6j/4a4OunZVRRbCflU6jr2G9jGOLQikF1Y04Y2nCNEhVUZmaCSUGEhqaHgUbyRmGsirSYb9TFHkcRqys6kFBWZZpmtaqX7qu1/l4q9Vqt9umaTqOY9s2K6uaiEIpNU2Nc4AwMC09idliuvr1H/7w+urif/cf/ocHB0e7+zfmqzhPlgYFqmRJEM2ur+fTizzdzKbjLcf6pffey4Po3/zBH5mNRpSlTc+RUSx1bbxYR3G6WqyKtOg2OkWShpsgz0qKqWnpeRJLwQAAFWdRnBiajaGDqVNw3htuxwnY3unduG1OxmuMTM3wCsaZ4kkamBpt2K87J65lFnG6PRptAp4UcP9gZBi64sC1bY3CokyWyznSaX8wGE8uGqYb+dUPvvMXgyDJEhMaChJ+sL8lBeoO9pTm+FmeFoXkwnJtoQyhVXmJlZYul7nnahZ1kJutFqTZwlJwqqmyAqenp7vbW5t4tQkm/UGTFSBNw96QtrvOYqbKvNjbukEQ8/0V51IhcXK2uhr7rU5jtfBbTrPrutHKtzVydfEcU3D84kmaxbpNLi+qs5Ps8fPj+SqOMoYBGvS7oOaqvRQg196MgABBBQCmSNMJBEpwjCAVQkkBEMa1ABiXopKKCyXkL0iCKaUgABAqCCBQCkCgAJAQEI1ChKmOdbfMSo6J5bWl7WVIGZChqigxVoZpX10tATA459QECKHZdNJsYKqhJA40HbuegwmqSkmp7tjA0LFUhUGtN27+laTYSysCBF7lim8if5Tq9/sHN244rrVcLr2m5zhOEPi6Rp49e6Zp2tXVVbPZbLfblmV9/PGnrVar1hOfTCaj7a0kSy8uLnq9XhiGNf0gz3PP8xhjRVHcvn271rAVQiikNptNFEVhkpydnXtuoxbnqdPSnZ2dehbcaDRq7x5dMzHGYRgSgl3XdRxrfH51eXn54MED3/dN0wzDcLGYM8YopYwJCGvNKAoAiKIIY1pr1V1fX1NKESJBFAuJ/DAq82WnfxSsZyfHH7FUAYR4NY/fVHCiyebph9X4tJiu0nnsDQc7X3+3MRpWFBqdVobANPS1lrsz2up0OoZu1mK/mOpUNwTEVqOBNR2QelIBwzjOipzoWhDFjMvDwyNCyO7u7sXpyfn56cZf+77veR6EsN/v7+zs/Opf/As/+MEP4jicz5dKQd8P1uuNlHJ3d3ez2di2fXU53traRgitVqtG003TtN1u6bqexsnTp0+nk8Vf+1u/MVutx5NpliWX52dxmqV5XpZlp9uvW82aZtRfCqW0tr2oPTFqMyPTNG3bbjabjYaLMc7znHNummae57VxbafTqZ2pN5vNarWK4zjP8zzPazO8V8a4mqG/guAAADAAvKxarRZCwN+sHz999O//w/9Jlkf/yX/yH2dZNBq0Go1GVXLdNK6vJ0EUV1yOp8vFcv3WO+/4SfZHP/7xeLIQCnEBDcdr9YdJnNX8/DrmxnFMqW7qeu3UHMdxlmVFURRFIRiHCNTznyzLGo1GVVWMgXo4bpokL9JWq5HnseMYUjFMVLP5OhpuNpv68W40zMBf5TmDEHYHNmPlyl97ntfvD4HCl5fjsgRhEt9/Z28wbP3so5/neU41aBiwFheIoogQcnJy4rlNhJBlGWVWiEqwShAEbt044qISgvFCV4pTnWcZkBJZFsUY9no9hFCacNdpKABYhQUHXBRRmGeZSot8MOzVRnEY47rdvFgsOl1XKo4JvHPnlttwCEV7e30hhJJQStkfNOMsDALftp3x9VSntYEBwAgijAGQ9df3huLhS8O5OutTQNRqYAqoVyoJf4od/OZF8FeCYKi24XspRkU1LFEFAbItSjXIGHMdezq9gkiFm+DGjRs61abTzLHsMAwdEyGobNusKtHttqWs1cPkdDrWNKJpRClFCGm1mjW/5c9e9c0j+NIe8Bd6mePxuDXsp0n47Pnz4ahvmibCEELo+35RFBcXF/sHu61Wy7KNp0+fHhwcjEbbZVkGUVRUpeN4k8ns5u1bF1dX9TaAEMZxXE+vKKVpmna7XSHYbD7p9XpXk3F/uIUg0ajhON5ms/F9HwDQ7XaTJNlsNoyxzWbTbLZtqxHHcZqmUspGw4VQTWfjPC877Z6um6ZhKaUIQVTD8/mkKsputyulNE27qCpCNI0aEODlcqmUcl3XDyJMtVanizSt2RusF8twNrMtY9DvLaYTlWdlFseb1as1kd52c++e29tz2u2WY4ogO/nxz08+fbS5Wq4uprRQXb0RXa/rrYgIppRiShHWuMJxWgqAgyRd+mGYpozLrMin8/n5+fn1eN7udDvd/ne+930peb/fbTW8KFj5wcb3/SRJkiRptRp5nk8m4/H4upaN4pxnWba7uzudTjd+MJsumu2W22gxVm6W4XR8ybnEGCsFiyRRXP3wL/0Ny+lYXlu3LSHEew/egRhXJXe9ZlkyKYBmWBIA3TQUEKauIYQYKx3X0jQNAaiUqlgBAHBddzgcdjqt2itDCFFT05bLZZ7ntm232+1Go+E4jlKqlrGpo08URXEcY4wBgkLJirN2s4EBtCwNQkgQbjTd5TLJsux3f/d3f+M3fqM/aP/Jj/7w+MXT1Wo1nU6/fPhYM62Fv7mczKM4+8YH3z+dzP7Ff/OvHz5+niSpazU0w271hmHFNpuN4zgV5xCRsmSc8zzPpZTddlvTKFSgFpqtfTMopf1O39TMxXSxPRzlSa5hcLC75y/9Vtt9qSokma7TTqellPQar6OhEKLX681mM6/hZFlVFkIpsLu3vbe/fXERaNRSUHv2dPz82QtMQLPjOA3nky8+whoUQAihakTmcNTXDayUkgIYhlFVHMjSsQ3LsIGEjqU3m00MFCEojx0u5XDL+fVf/8HaDzUdYQKePTsOwzSN5fn5ZafjOFY3ipJur5HEheuSIPAVhEmSTBdz3y+KotB1PUmjqir80LcsI8nizWaNMUQUKYCSpNjZ2Wl3XAA55zxLC0q1kuVVVSGIAECS1xYof1pA/9WFEURvULnrdvMr/NC/9eJfsVuAfCkdhhCon/B2F5qmvVgxqgEAsZTItLQwWA96rVbDjcMNhkAj1NQtqFCelZ7nKQUgUlQnUlabzVrTCBcVIaSWv1VCCvVn3JLfuBCEQJSVFAq8YY0ihHj42acPHz60XausqjAOdMtcr1dX5+dpmt67d08IQTU8Ho8xxrpuzmYzREhZlt1u399sBsPhZDLjnHMpkzxLi9z23Mvxdaff0y2zPxqmRf7w4UOv0Xj48GGvO0iS5OzsojcYLharqqoajYbruovFwrKsms4dhqHgEELMmKjlP/MiTdKoqiqM6cGtO7PZrKqqIPDLskQI7O5tB0EwuR432q3pbKbrRslEyQWTav/gyDRNy3I8z5NARVnutrruYGtn/y3DUYyDJJK9kbNazzrDO1R/o51RxFm8ivzry6c/TdbPjU6rt7/X2Nmyei2z01SmXlCgNd3Ly8tgEwIApIJxlMZJZljW4PDQcr3e1s7o4LAzHLU63d5guLW11Rv0v/7e+51OTyH8/ORFVha9Xq+qin63c/feAy6F43mapo1nUwjVxeWZ7ZiNRiNN806no2na3t4BQsT3fdd1h8OtIudZlmw2oVIsCXNM4Hq9LtLs9s23ut2t+XJTClkUxa0bN6/OL+bzRavbKYqSaIbteVlRSqDCMCQQAQBsxyqKAkPkOS4msGKlrusQKSFZPTEkBCEEEAYAKAhrkU7BWKWUNE2j3W6Zptlut3u9Xo2neSVkgohGqG7qRpqmhBCgpORCcuU4juPgF8fTohRPnr64fefevXv3oyg6PbuM0iyv2MnFVZiUjMMoYz/56cf/7F/8i+vxeDQa3Xv7rmmaaZru7R+eXlzEaWJYlkaNKEqUUhDiqqoYKznngjEpZa0ACAEQQrCyKopiNpu7ToNzeXJy7Th6muaEUKUgxpgxgZGeZUWWFUmSUqK/3iNKWo6NEFKcQwAQwsfHFwirD3/+RX9ktjqDq8sxBCAtVFWCbrd5dn7phwtdM6UClmUPOgNDIwpww9Ank7nrNuI4J4TYltZqNHnJJVOO6cznU4UwwvoXn172+tRy1MYPMaJpXlJKBQe6AfKMS8kV4MvlWtd1BQrXdfOSD0ZbmmakRWVb7q1bu3FUsJLv7uxDjIIgtG0zCHzOeaPd4lwyJqRCSZpCxIdbTT+skrxqNBq2TaTkr5wAXhWVrwMihPBlQ1AhhGpDEYxfh8U/L3S++a/4DUMWhBBXikup2apiYjRsc1nWzitCVlJy27HCYBNFUb+r86pqeg0gVc0HN00CgNINarlmkha2Y26igDFGCFUS1kiJ/45o+OpTvXq19rF0mw2M8cnZaa/X22w2nDFd1+/cuVNV1XA43GzWUsper7der5vN9sXFxSYMXM+zLOfqaiyVKqqyKIput1v3cb/+9a8DAGzbDsPw93//99vtbp6XpuVAjGaL5c7e7tnpha6Z/eGgZNXjp08wJWmeEY2GcWRYZp2J1FNOQtF8Pk+SxHEcy7LOnh/rulFXRmmaxnG8XC5tywBQfvHFF0yKoiohxhhRBInvB3lR1QMBSmlje/vi8pKXFXE8zXK9VpcazvV4IiTIgrA3HL5ak/l0jBGAptO++a6vD1erhWnptm1ijA3DqKqqvp9mp61pWu3cOtjb7WyNMNF5+pW/ipSCs7obYFi2aZpJkkwm15vNOk4Sy7K+fPxos9lEUYIQ+fp738jz/PT8rN1uL9aro6Mjx3GCIGi1GrquN5vN8fjq6upCSO553nS+1DRzvpgMB9uGTgjRMIZlxXcP9jvdfpYzLmRVFTdv3Xj69Onnn3+p61pdJNq2DRQihCRphDGEEDLGGo1GDYtptZoAgCzLdP2lp7sQDACJMawny7ZpEoTKPE+iqMxzqBSQsiqKmnlSAxLrH6wxyQAAgnBRFJZhtpqNLOE//OEP8zzXiW5bjmkbv/Mvf/zsxdXpxQwgE1EnK6qzy3GUFkGSx1m5DuLj44unz88Nw2i327dv32y2GkHg33n7rePTk0dPXiiIwjg1DIsxUYvumaap6/pms8my7KVQAONKqXoeOJ8v6jlPGMQIAYK1MIwsy7Js17IbZSWFRJiYWcYBpGGcvN7GElZVNRwNlsvN3m73+mra7zem88lbdw/ee+/9hw8fHR7e6LQsjYBm0y55Gsep17Q5lwACnVLbdqSU/nKGiSoKwJnaBGGcstu3b9u2naeloem6QQkhjtsK42qzLnd3+mWVf/Lxl4QQwwAV56OtHc6BlHx7e7usiqqqer0OgNy0cJyA1TKwHXd//2AyWS2XawBAq9XKitIynW63gxDhXC4WAWNia7TT63WUxOt1gKgaDHoNz0yistPvHRyOFKgLTwgRqqFUfzaOSKkY4+orL1BCCETqJRfz31kpQ/wy2VQvp8tACgAUJDoYbbXStLAsK8t4UXCEJMKg1WqNx+M4jk1Dxxhyzqsi67abgkleCdu2Pc8ry8LzXMshaZ6WVSUUMA23zHJM4JtqDP+2aCgBAABjCPjrD1mWZbPZrKrq9OJy7/CgP9rKsuzmjVu3btyqwbRhuGk0GltbwyzLXNclWDu7OL97974Q6sXpuWZYQqgoSlqddqvZ+eTjz0bD7elkPp8tlYSnJ+dvv3XPsdw8Lx3Hu7i8BvClNZdj20EQPHz4sLaXWywW8/m82Wzmed5stqSUcRyWVV5VVVmWhmG4TsM0zTRNapZi3aKq/RCKIgvDTafTKorMD4IoitbrNQDAMM26lbn2l3meTY+P92/cWCwWV5fHSYwVUl6Tes7o+noWJeNkU7xak1bTnZ6eJuPL7OSpubpWab6+Gld+QBnnUUwZa2DKo9gybcMyuRBBEGxm8/VkGgZrBABnZRxuAn9VZHlVVXEc+6u1vw6qMivKfDDoaTqJ4rTbH7Tb3XZnsPI34+msKEWj0VzMVxjjOI4RQq1Ww7btdrvpeU6WZbPZ7K233nr2/AkTXCoIoTo6uPXs+aOG4wEg2+2uoppmueu1z6qy6RqnJ8+Oj493dw739/dn40m/3+clV4JJzoosNS0dYyyE0AitH5u6h5vGSd1sJgQR+hJwgzFECKRpqut6u92uGUqr1SpNU1Aba7xhv2tZ1lfaf7qU0tINDJWpG0yAH/3oR3/n7/49XcO6oVWMdwfNf/n//b2PPns8XkTUbB7cuHNw445AmoQkZ0IqbNqNy4tQI/p7772PqaY7ztT300p89PFnEOH6gInTvNPr+0GIIK61VZQSNfybIPwyH0FIKQEQsRwviGPTcd2Gm+SZbtpZUQEAdd2Yz9cYaYIry3IopZvNayn5ktVKP7LVtEb93vbOsCiyMEx1zXz85Pl4Eq7WM6rL0dC2TF3XiKG7SRpVpbJ0UBRFmuaEoIrleZ42GiROM8fxogj4vu/7PmOgqsrFYmZY9trPPvzpk9t3hmkWZTGTAkvFFADnp5nvR46tC1kpBZMI7OyOLNtQEmMCDB2enV/Npv6gv7W9NRRC5DkoikJwEIaJ4HCx9lutjmZoaVJs/EgBEWzSjZ9WJd8EkeBoNltwzkoW5IUEANQYmjd1/15+uS/7hrVjLuz3uxgDznk9UK7j4L+jUq4VEqWUEACCCQRQKgkxAhAQTTs4un05vo5CUOTCsIBjOyWrMEVFleuGUVUlxjCKgq2tYZJUlmVrhAohwjAry1LXdV3XNdPQNbMsGaV6lmWW9e/Ck6M/L1SenV1cX09Go9He0c3xeNzvDepOZJqmcRy6rgshzLJMSmlb7h/90Z/82q/9GuM8K4uyLMMwzMpC0/VOp/Ozn/1sOBzatu37vuM4l5eX9fESx6nrNNKsqEFYq/V6tDUoiuzLL78cDAbD4ZBzHsex67o18rEo8iRJsixDCIVhiDFueC0I8dOnj4fDYZLEjLF6v0VR4joNqASEajabaKZmmHqr28aUXF9fn19dz1fr6XRKEZ5Nx1Dxi9PjhmfplHBWTq6vZpPLhuc8uHtnvZilcfB6pQZvHX7/r7cO7mmNbqPVUTZFDTMG1SRcXPnTp+PTT188fDo5TbJUiJfnp+vZDc8hEHJWVlmKlXJNw7ZMBECepi8pumW6vdVf+6vlet3udXXNNG0vClMIKWeq3x9ujXb6/YGSME/Sbrd7cLh/fn6KMS7KDGFwdHQ4n08fP37Y7vaCTdLptvK8XK3nSZJhAl3XxYbtR7Gu6zqFRRK8eP7o5tHRnbffEax0XKvMC92gtm37q4Wh0c16TSnGEKRpKhUnBBdFEQUhxljTaI3mzfO8rF6qOTQajboxhDFuNBr9fr/RaDDGFovlarWqySphGNY8qlrjY7NaG5pee+wahnaw1724Wv3zf/E7e/vDwaBjmDROk0rAP/iTj/7J/+e/+uknn/34w49Pr6c5k8tNtN6Ef/KTz7vdnqaBXndLAXo5XZ7OlsKwxpvwZLzQnbZQAEDs+76um5TqtY0kY4xigjHUCKl5hELU3FWGCM6LynEbAMH1Jq6YSPNMQTSZXAGghACGqfmbOM9TpQSEr3c1hGAdbBhj+/u7q9Uiz7OyYjduHsyXq7KSAIDLq+XWdqff99IkMEySZ8LQzNAvEQKmjnVqaJqmAC/KFEIYBjHBWsMDl5fXEGDTIoQiyzUqwc/PZ1kKvvHBbapBnTZZAQbDFsbA0KEUcDQ4IgQtF1EUAM9z0qRczjOEAKb2clGMx7NNkFxezsqCtdtGGEZ5xtKkNC0XQaogsUw3iYusYOvNutvtZqmUEhKiLRep6zSTNKg98yjFNUYQQgD/TK1ZV5UQAl3XXdeFEIiXbifgK1emP78+VcCwdPIV2LmuZCGEVAcX53PHbu7sDAUDVQkGIyeOkzAMPbdZlbwujXVdU0palunYdlVyTdOjIMQY1Edys9myLMsPwywtTdOO47DX67z5n/9pZl79tz9lF5BlWbvdfvfdd0dbO/5yGUZxlmXPn7+YTGZlWd64cUPTtDgONU3L83w2m925c0cormna48ePsyyzbbssy8FgsFwvmOC9Qf9qfF1UpVASIFgbSNuWy7lcLBZlWWJMW61Wt9v96KOP+v1+PRhdrVaj0ShN0/F43O/3y7LM85TxstakrIvThw8fbm9vh+HG933LstI0r2fQURSlafL8+NlsPv3888+fHT//4osv4jhutVqO7RFCdne3q6qo0XCWoSdJwkvI2Lzf7qQBm44fB+vZ3vBmkb5mrbPp8er4Y9PB1qjP+wMLQIMJkOWoKF1MeqY9cLyh16gqXgs7CyEkF5xVRZpkSYQRRELwiqmKIQDq3iWlVCNwvV76/mp/fx8hlORFXnDL9UzLUgg2Gk3LcqbTaa/X03XToBrG+OjGIRfV4eFhmsatduPf/Jvfa7VaRVFAgjebjeCy6XplwYqigABT284ZC+JQCjafXY+Gfdd15/OlRujtm7eKotCplkRxq9XinFu2UT+OYRhKKXVd54wJIZrNplKKc1azkimlCIMaVl1jRbMs45zruu55Xrvd7vW6CKHVymeMjUajRsNdr9fr9br2g8/TFEAJpDIMI82zZtta+uuHX35i2fTGrSOAlNP0sI6DJP3pzz+7mEweP312NZ6sN8FkMuMMuK57/+3bttWqGHp2evXs/KJC9F//4Y+QbuUCJkkCAKgqWUNl60j9coADQE2UrtPbmjetJPQ8LwzDYBNiDCzLpERXSmECMVHttgkhsCykAHc9+02X3f39neVyiRBar9dhEAhedTqN+XzOmahKTik4OmpTTY0n036/F26CYJNq1HBdkzPg2LahW0WWCwHqFnAci/PzC8PSpIKmaVcVxxjeunVrPlteXoVOcwBxRghJEy4EuLq60jSt3epdj6dPn5x1u93zs2W71ex2u5PJzLbaYRhDQJQE1+NcStDptDqdDgCAELxYrNMEhGEcR2kcpYRo11dxlpZpGiNMDV1fzFe25RGKlIJ5nr773r1GA7yUBUQv08A/Fd3qMSylxDCMOI44BxgDSrFSoG5JvelU92evwWAwGo0whkoIhJACgHPZ6TZty/njP/7JW2/fbHhOkVcAlQgSohmzpV8JXgleSUAoqtvZt2/fvroa1/IirVbjJV+gLBHCJy8mhGh136bRaPw77uRlbogRfrNvONw+6g724oxFaXJ6cTqdXf/2P/ttBaUEams4aHj2xp/v7+0+evQEIyoVP7qxU+Ty7PJqMV9rmg4hci3bMvXZeHzv7ntxVD59dux4rgQiTVPXdW3Tma8uJSwFEAAjTHXdsh89fsqlaHZGWc7KQrTb3el0LgXq9kZRyooywARapiMFQAhpGlksFq1Wu8qzIk91nSKsSlmugzUiSgFxfj1ZraJGozca7OnUIVSL8vTk+uzJ00dRFKVF2R0MR/3B7PoqWi38yZUScVUI31/1t/qG1TecTim57Y1erYkQoum1Mj8twhxXsgIyqSrN9nSniczW6Ojt1taN5vDGsDNQQnoNB2s4COOyYlxUBANRsSRJEJBC8NoJTwHApZrOV0KoUX8EuNis1o5pFGVCNCyF6LaaUhTPj79EsFzML+fzcVEUO70hBsgybM80o8V8Mx13Gu2vv/ftsMyQiWx3wFWxu/d2moVAGlEalXlZpAGSKctTTMxGY5BlSRpN/8bf+Ftbw+2m4yZJUioBNFNIoiEHCR1CrFCFiIRE5lVeVLlhEsE556LZbKdxBiSUUpqWRrE0TIixKoqCVTyJ08lkQinGWFENNxpuHMfrte+63mAwUEBULJOKlYIXUhKTEgranqkEc70m4+b42n/vnQf7W13IE5NiXbNMpzWeFKtNdn59VbJi/+DGsOc5VLtzY2vrxkFQFJ8/e2G5/bOzGYWaRqksEoM6RVbqOm63G2kaxXmkWzrWqIIIYoopRQTXia0QDAJJCYojX9f1NONCAEzyQc+MlpEs+emT6c72NsYlwXan0wUwB+o11I4gyoXKBUtYUSrhNvW33367zLmUMs+DvYNWEARxyFvNFtFYs2VrulkInPJct0AW+WkRLde+41hVYkheDrfRxge9frvlaUXqI4YpJnY7EcKoEt125v/t7z365tff5xn41rt3v3nvW/FK6M6q1eyzSj17Mrn99nD/lvX8+NFw1Gr1qJRapYLBdiNcgMnk8uadnavLaLTbyJnIk+ov//pf8CzlOYACjeDcboEkYYADDIRpl0pqQmWORxVi52fhu/3hX/nVLYAowAIBTCTWgA6gBIAqqAjRgDIhkhApznl3Wy2WAcJYAcyFegXE4bwCgECIAaiZTa+MizEBwCBG4IdCKQ4V41CnFoTSbQBKddcyzp8f//qv3+Q50ECbYA440wkSldQJNTRQ8EQzrMurdcGDZtdQUFS81DRN07ROp5PEka21TR186zvfBFCPIx5sXnMNGRMIfqWGXUt5QwwAhEKKN/GG6/U6yxIE5Mnz4+vLy4cPH96/f39ra0dJuLe3lyTJ0dHRZDKpK3PLsuoC6uHnX7Raza2trbIsDg4OoijyvEaapk+fPq6BUUmSEY16XnO1Wnlesy6Eu91uLXny2WefffDBB/PFFADQ7raqqoIQFlVeVVUUB3WBY5p2mqaNhpumaZJGlmXGcVyySjP0IEqEkDX/KUuLNMnv3LlTFJXvB2maLhYr23Io1fuDweMnzz782c9///f+2y8ePjYs5/T8MozTJ89PXpxdRlmRVcxw3IW/gYQi+vrpz0WRVbFUhQEUSqteb9s0HNv2RsNtIdh4fLVaLc4vjkNOC2QyYrd3bvTvvts4fKt/eNfpbhuO3ei2iWEinVqOHSXJJlhzXg23thGmo+2dxXJdG85RTJbz2Xw+PTs7++ijjwzDIpp1/Pyk2Wzv7h8GQVD3aqMoStN4Npvdfuut9XqtBKAI123TRqPR6bQ3wVoBUTPeKKVpkROiVVxqhnXn7buXl+cASEIwQsA0zTSL60NeAfFqPlizmgghNeO4qsrNZu04ju/7eVZmWY4xFUJijMuyWCwWi8WyNsxDCFGECUKubSdhMr0el1kx7A1Nzaz5eXEcV1WVpmkNzDYMoyhy2zbn8/kv/dIv1R5sNbWZUmoaNkUYQ9LrdPb3d/OqbHc6o529jz//Qjfss4ur68mkYFUYhowJpVRNiXklMlYjS4RSCKG6cK4bPoQQw7Dq2XGv15NctNuu57lxHB8e3chLgCmtSj6+XjFWAgCyrHjTNSyOQ8PUTNOslSmajdbDLx/bthOGoWFQpZSQEiLlOFZRFO12mxByeXnNOSAENpstSnFVFVGUQagUVo1GgxC48UOn4VZVEURid3+HEPLoiznWysOD/Z0DWwHn1p2djz/98vZb9zVDJLGEJLzz1q31UmmawVgR+IXrNIsyzlJmmhqhCACQpnlVVYQgxphrWUkMpOSYQoTIaDSSig+H+moZm5au6fTgYL8sGFBIcOA4Vv29SA6AYqDGKgMBEAUQ1DLVQggAmOAAIdju2Agar2jp6qvrqwWr1a1fekiBV9wVCFarVZwmoMbuAFWxilLAOUMI9Hrds4s5E9XR0c5yubQdDREMAOh2u5TSQb+jJMQYn5xc52nmum4QBLquJ0kUx8l8PheMSyl7vc5Pf/rT6+vrRsO+urp+nQm+OV9WAACA6v5mzb969U9cgsvz86urqziOJ+PZ1mjn7t0H52eXv/qrv0YIGQ6HQRCNx5Pbt2+XZTkajTRNOzs7k1K+9957cRw3m81ak7nd6Uwm117D2draAohswrjV7E3Gs8l02e70giihVL+8vNR1/cc//vG3v/fdMEoQQhCqLMsWi5mU3HGcr/BNRApQF6GMscVioZSiFFecObanFEzTzF8HZcmkQFlWtlqdoqhqOblWq5Mm+U9+8qG/3mQFu3v/QW8w3D88xJRWnA9GI6Jpu3tH3f5AYbJc+7PVau9g33QtzXwdDYtNMTu+ihfL2fxi6p8+ffo4y9P1ejmZTBgTrtva3z86OrwjMp+n68XVi9nps9mTL6aPPy82C8Az7LrUdqFGuRSV4BUrNY1IVV1cXvt+sFr5GOMgCHzfr5m/rutKKe8/+NqDr7174+bt7//Sr2YFOz0941W1PdqqR+etVitN40bTPT55jhDq94dRlNRqMVlZmLZNCCmyjHOOCZUKEKpjqnV6/Tgv8iJtt1v1kV5TAKiGFRBSKQgVAIBSCgHOsgIhlBdVDbvNsqx2dyuKIo7SNCnqjqHnuZpOCcGGYdRVc52/Qwi73bYQIM/LjR9IAVutFkKontHV7Q5CUA2rWq1WRVUen5x+7evvCS4hxLxig0FvPl9oRP+VX/rlXqfj+/73vve9v/xX/+Ynj58+P7uM82ITJBs/9P0CA/xKHqKWGquzj5omWHe9pVQYY40aQrw0dCvyqmRcCGVZTrPZ7PV6SkHXdbe2t64nSRAm3V7PMszZZBqHmUZez0ZrOLcQAgJsGm4clet1dH21cRyv2WxKySmtFcxwluVZluV5GgYZhABjCAEVQDabTc91DJNACA3D0HSYZSXCMs2ZkmC41YpDoeHGzgE9fn4BYPHzn/90Mp16nvP0+RPL8QjBuoG++PxJq01eHJ+HQYEJyPNcSc11nSSssiwGEOQZp5QOhh0pGNUwBPDJ04eNpg0BlYo3Ow1WySis/eR4npWHBwdBEFcl+ApzasymG4wBRFIpiDFgdVetTg+VAIArhatK9Qctf53+2+IgAADAlwo1LyE1ddqolDJsWkMsagozRhgASTGwbKMo8iBcbW25vr8abQ0YK3Vdk1ISgtM0BlAu1n5ZMgCgrgPTNJWQUoiG5xGMe92WbVqWZQGMLNf58ssXvh/u7Oy4jddqr38KZA1fud6oWpr7q8trto6Ojly3QQgdDIZ/4S/++uX15L1vfNNyvFqdIsuyb37jgzhKd3f3KaVffPFFFIQ//OEPgyBIkpgQUlWV12j5fsB4WXe1OOcAoPUmnC9Xh0c3rqczx/Gm0+nh0c2zi/N+b1gUhULQ9/2SszzPFQQ1VDJMYgghwRrnMklS07SXyzXnvC7EMNEMy175PtUMCRHBGgCwKjnnIorimzdvdTqdoirv3n9w5627hJoVF5fX4/UmyEtGNMNyHIBQu9tVQDQaDdd2Op2ObRrjyYWhY8d7jS/be/drux98t3F01xncsJ3tVts2DPJV59jDiAJFWs3BjaOdvdGg32q0HKPtmg3L4EW6mU2i5TLZbABXSgLGmIaJpWkXp6eO1/rO977/9PmzongpsGzbdhzH0+l4E4UQEyERRppUqNcbhGHc7XY3m81ms7l9+/bBwQGmZLlcSskbTqNWoi45gwiZpsl4aVASBIFlWWmaSgn6wy2i6UEUX11dDXtd1zaLNKnxdxomtR0KwrVQKyK6JoCK4xgAlKZpHWI0TVNKNJtNjCmlOmMiz/M0TbMsK0smlah1GSjVTdPUNM0wDCFEv9/x/SQIYqVgrY9dliVCqKyKTrdNKS3LnFAkFF8ul16zoVH9wYOvKaWiKPnsi+ej0fAf/sP/6dfuP3j05Re7ezsffO97k9X6d3/vDwqJ1kFWVoJJpSQgmGJEAACWZTHGIISa9rJbVDeaTdNMshRCyKQghFSMVYwhQoBCGONWq1GjICHGp6enUVxADNK8YBUwLLMquRTwzf3zcgiDsFLItr31OtA1PY5BfarVWPT5fG7ZumN7ZVlCpBzbUxJIKZMkmy+mecUMy82qlDEuhGi2TVYpRCArAYII0/zsOCYaRwi12vb4MjUdNV8G3/7e1+PEx8hiQkyvy/VKfOu7hxDCNIJOgx+/OMljPS02ogKeq1ENFrlcrVaGSSEEw0EHI92ytYuLC103syKNokhwDAF1vWaaRVKqPM/zpNA1L8sTiFGz27LNznAIhj0XIyIgeAm6hAAjo/5DXfu6njmfRvDPucArg9CvQs8rsEEdGWqRGwQgAlLTQRyHAEqAQaffeXG2KKoKE5imqWnYruvGcQ4JzjIFFAEK7exsVRU/PLxRZikQfGe0VaYlxtj3E00jmqa126ZtGxVnpvnmTFkqIAAAtfoseNUXlfJN8DW4uLx++vzFi9PzkolWp3dycjYcDusSyfXs6XR648bNoigI0ba2toJNFMfx17/+9SzLkigYDoe6QQFGURSZpl1VBURIt8zNJpQKXk8mw61tSPBiub68GiNMfd9fLpfdfk8BdHF5LaWsRd/qE0MpBUCN58C141qNDuv3+7WgI6Z6GMcV55ZlDQdbzXa7LJhQst4M8/kcIKhpmu/7AKBGu7O1vXt0ePPbH3zXtC2hJKV6kiRBEITr5ez6crNe8KJYLiYmRWcnz4Pl9NWaLC6exeOnPFmYOqa25xh7RabpWsM03aJI89Jf+iePnv7xzx+9OJ0HUveA0ZZaAzpdaHf19hbkEgrJK8ZKrmFqmxZBWFX83Qfv/vSnP2OVcByH6Jpt26v15vp60ul0LMviTCxWa6HwZhPev39/Z2fns88+qyGH/mbNOdepdnJynOe5YFWWpPUnJYTopoEgwZhuj0ZpFHMuO91uyXiWZWmaKCUYL1erRVmWOiW1RiFjAmMMoVJQIoTqaVWWZUKCsmRVxWvecZqmdZizbdtxPMt0asRlo+E6jlO7lddsS03TOK+8hgsA6Pc9AEAUJUXxUkSkRqK12+3haIAJyrKs1eqs1pvVegMxabfbzWZTMvEbf++v/Ef/0f8hDOL/9P/0jxEGv/Zrv7oK/B99+PMoKysBKs7DJK1K3mrZdQ74KulQb/iUSilt26ZUAwBwJjnnXwnfqTpFNE0TKoAwTNNY1/U4S9OktCygJBQCFmWSZYBgo2ZJ1VeWJ1LKMAwFV5bpdDqdMCzbbVBTsLNMAABbzY6UvCzUSyVwgTkHmAAlkWGaq/UGAkPKSilQltVg5G18tV6vCfV0i1xcPZ2M806fBH558+bWYqo2QaQAmK+WiJIkC7e3e+Ga3HmrG8bzW7f3TUsTgukG6PU7hgE81+50HYxhGKr5fImJyvM8CkJdp6PRMIoAgLAssyTJk0QYtnF1uTo43CNYw1BQSoNNighqNFpXy1UUZx98692traaQAiJQ8fKr80ABgCACQrCDw0Gapv9WIM3LPPHl3BkCgOpWnVLqZZcmzzjnGAMEgVQCANDrtZrNppQSYzqdz/pDO03TPCuVUoxxCKFmwSKvBv2OFDAviySLNU2LogghlETpdDxRCtiWZ5mmrutRFEEIIX7pqPen7u1VjFZKftXO/MUPADH1Wu2DGzcfvPv+7sGNoxu3BsMtQqmCMggC13Wn0+lq5d++fbu2GH///feklL1Ot9/vKyCEEFEU7e8fTqZzhEir1UKIjCezzSaglHb7vcls2ukNN2FUVVVRFPfv31+v10meKQQ13aSUCgCTOLNMB2DSaDQw0ZIsRgR3ut0wjizbNm0rjBJMNURIkmWddq9gXAERx9HaX0KoOOcAKCkFALIoMgmB6dhFXj5//uKzzz77nd/5nc8/+/L6+vqTTz4Jw9D3/Vrg3l+tnz59CgSYTufNRiOKXvOU+7d/pf+1vwSJvb56QqJHV/Of+NGjxfrZ5dXxZhMp7oqizbIeRSKNVtfnx1cnT8PlnCpmakAn0HU923YZE0Iox20bpgMAvnnz1mazIRB9+4MPaiQK0Y20KH/4V/6653n7+/s7+wdZml+Nx1u7OxUv5/OJbpqWY3e73WazKSSbzabddnO5mH340x+XZa5ppCzLglWapnmel6Z5XYVZllUUVZrGnLPNejnoNB8+fBgEgWEYNYGqTld5WQkhhGQAI8MwOOdMSAghBGi9CiBEtXAhY6zuQ9WYm6qqdF3v9TqDQa/b7Q4GI0p1wXjgbwxNh0o2PFujpNtuRkFGCKmnz1Qjmqat10vTNLvd7noTMqEQ0a6uxkEYfvnllztbw//7/+M//Q/+5//BP/pP/8//9J/+V5Zlffe737Wbzocff/LoxQkk+srfFNVLZpdSSjN1QjEAIM/zeohZBybOuaZpFecVZ57nAYw0TWOcQwhrj0tKaZ4mFStYkW/vjCpWdDodjDHCQCnV6fYMQy8ZkIqk+Wv8aY32D8MQY3p2dqXrWqtlWpYBIdzd3YUQrJZxqznAGIdBAgCSkq9WASGIUiiE6PaGaaKk1GzHrDPNVtPkFXAbvSznlk0dz97ZGbY7DoK4129+81sPnj/OGm16cnZ+cnqR5Pn0ipdFdftuP/Rlu2sf3mytFtJ1mmFyUeaYYs22MaWYVaCqBEJQp1ocR7qtzi5Od/eGlNIwnhtacz5ljMdlDp4fH3MuNR2ul+siZQgBoeAmq8I8/eijz6JkCYDiHBgmABJgjABgBGtKAoDAzu7o8nz+Sv9RvXG9fEW+iob1GySAwHaMipe1jpmqc8M6zXTMbrsHAZ4v4jAoRqPtxXJjWU672R1Pl1lZ1uBWJWFRsYoVjGe242zv7NQnukZNVqm1H4dhSQgJw3C9yWo+7i8iH+Wb5bxSgGAMpULqK7n2+jo4OiKaFm42qyDcGo4AghVnXFRpmuZZVJZlFEUHB0fb2zs//elPt7e3IWKCIYxxURSaocdxvLW1NZ/P4zi+dfNICPXs6XFRlACR0fZ2mueaRseTWVmy7e0dztl8PscYJ1ESJbFn2awSXFSaZhiGlRY5wZpSII6iTqcnhEjTtNn04iiNoqThNbO0IFiTEGw2G1m35zmjlEII6vZNnCZJnimlZvN5q9XWIbBtuy4kdappBGOMK1ZeT+MszV23QRB9+uK0yJPryeTuvTuv1qSc/YnmtN3+0N17m1XkLVyBJFpOLiUQaZWtwquyqrxWs21tYwTKMhdVGa3SbD3RdSwVa7S6GGMAoOV6wLYlF3FRml5LCek57mRy3e/3EdXyomw0W/PFGnI+nc+EOL9981YcbE7PT3iRdXtNbGgH+4dPnx8DWCilMEJQgTgIP/30k7Is/+pf/2utdjtJsp3RcD6bxkGMNF1KoFESRlGUFK1Oe9ht+at5HMfdbh+AEwihqBiEGEKslBCKCyEwhrpOw7De/AhTXORVmuaO42iaqs1qGWNKCcOw6vO2NtJECCVJUhRFw/WUEv5m5bpumuWUEghhs6VFUWTb5maz2dkeRlGgDFNKqet0f//g8ePTb37zfpJEjx49+ZVf/t4//K3fypL0f/G/+l+uJjNDglu3bu8f7k2Xs+en55P5OknSPC9ZwVzb5i8jnVuUGatePuJ14C6Ksq7xsyxTSrWaHYyVlICQesQJTNM0LT2KNlCKkud9u3W6WmqGvl5GN2630oSvl35n4PUGcZEzr+m+sXmUYegIUqXg+dnGtMCNm4enJ+eMlWXJNKqFm+r4+PTdb95sNfuCK4RQkUvXcQCMoyhS02VZgflsgwgCALhOAxNhWWg6DTmvWt12uEmi/EUYtLf3GovFwmnSVtMtM2U3sNe0YaR9/qXf3wZBuDB0ezy+7vUbggHB4XKZKqZjKqkGmi0vTXwJVJZlw+GoSLMomSYJbnpthCXCMoorCAA1QRyBo1stAlF30Pj+D97/z/+zT6Tks+nqxx8/YkACAHd2e+cnSyZ4UaYYU6AggCUAJlCg20dClFEoAEBvxpdfRPOpr6A5AqGXI1uvYfm+DwCGANbhR0qJIBCyjKKEUg2hnAlweTVdLuO9nQPbMl6crjSNGBbBGMdpAgAiGHgNKyvyL7/80nKdXmeQpgWizsnp9dqXlagQQb2eqySBEDLB37ylukX+6p6REEopCX+RPfPpp59++ejxZDH3g/Di6mq53pydnZ2fn19eni+Xy5OTE4K1o6Oj4+PjGzduOI7juq7neUmSxHHcbHq1jelivcIYt5qdOE7zvPDcpmVZOzs7WZZdTcaz2ezg4CAvy+l0KoTQTKMoCsuyjo6OdNOcz5YQYk0zbMtFhBBCFBCEkMurixrBFEUJACCO06W/xhodj8dREiZpJCRrNF3GS0LIdDo9OTmZzsbX15dRFCml1ut13V+P47jMizSNi6LQDW00Gg23dzv9EeOAAwyQxhVaLDcf/uy1YyQggzxR1fIq/OK/Wf/8//X5H/yXDz/9vfPLR1G8icKMIHdn6y6B3aAEiaSZ0pqjg/077w2O7g1u3LP6OxKooiqJqVPbZkVRSKEoxaZ5/Px5kiSNRkPTNABhnueu10zSfL3xoyiJoujF6QlCyLIsx7Fms8n+/j7R6PVkXFvWdrvd5XxxeHDgWMbDh1/+4R/+YbPZjON4tfI9r0EIXa980zSDIIijCCIFlGh4znox393Z39vZ3Ww2tRFYnVLZlgteljCoHiXXhSfG1DTtPKuPcVAbIdm2aRhGDas2TbN+f11Kl2VVtxoBAGka27aJCQSQU4rrGtyyrPrrrn92Mpm4TuPocOenP33YbDbffvvt+/fv/+QnP/nf/G//10meIoIt2/l7f//vE0JWG/9qOgmzBEpIEa5HRoSQVqNRlFk9UH6FSIUQRlGk63q9LeujlDFWv4gQ0gy9ViEzDIOLStPIar2gGua8arVNy9YAkGmahuFGCFEwrt4gK5RlUVvERVF0eNhzPXs8vq5Y4XleWZYAoHbL5QxcXV05jhcEgRCyVu7DGEAIF/NVs+GtV9F8sdA01O/3szzWNG3jZxABQiCv6GAH+GvVaKuiqE4vXhzd2D47LjDh7Y518rwYDI1WF+YZMy3ir8PTk7Hj2nlW8QrUPu5BsErTRArVbLiEIIzoZDIlFPR6PX+dbDZr1zPzlLMKvPX2DiUGpdTzmp1O69PPPq6neUKoIM5uvn0rK1TJM8YKADRMgRRAcAkRkFICgA6PdjaBjxGtW8/19QrR+RWk5rXsDYSwLpxt22QMCCEUUAgBQohUEgBgWdZouJWmua5RVgGMiGmaYRg1Gi3TcPI8r084XTdraH2ep4iSrEjriQWrxGYTrtbCtDFjLMuyegukadrptN6Ihv82XxSEMIS/wJ65d+/e9va2bbuO41mOoyAI0jDKw9l6dj2emmbz3v2vMwZ7vR4h+PBof7lcYihYVbQaTX8ZHOwfLRaLJAyODvcXq+Vkct3vdjBSN/b3oiAYX449t/XWnRu2bQohTNvp9gfTySzLsu3RVp4nSjJW5v1+Nwj8JIp4VfmrVcMdaoZ9cnHBCAwZmwTR2Wz9YjxDCOV57vt+vfoQ4DKrdM2EGHhNt9Vttlqt2zdverbD8kKW7Pj6er4JloGfFTnR6HBr5Hqt+cqfXE3zNEMI+Ovlzmh468aNQb/fe8MjbTwe5wxpW29bN39g3/9rh0cPDm7c39m/uw5y3XBN02askrzi8UbmuWc24qhIigpqFrK67a27jW5PMw0AVJbEeZayqnRd7/LyynTM/nCwXq8ZY7pGEARQcVYmCEHGCsvUotBf+wt/HeSlvHnn3SAInj999tbNmwYCXc8WZaIReONoH0nB8uxf/cv/Oi8LgEnKyqQqgKmt5pcYqyhOuVANp+GajWfPLrf23t7eGh6fvPBabaLRogjLxG94upB5kkYACMfSMFRQQttwR6ORYdKkyPKyWK3XAGJMyVfoBMmxqhQTQDBW6lSrH02AgWHpQgjPbeYZK3KuE0PDei1Qr4RsN1tFXiquGBNQoW67pxO1t93f32m9ePbi7t37jx4//z/+X/5vDGHuZ/5k9j/+B785nl9HKTu7WM+WSV4pCGlZ1mIwsJaexQBjgKGSFGPLMGoEj2U6ju3VAieapgVxlGWFaZpKSkJBVaYQ8TjxAZJeq5FkRVbx0WgfQIMARZVWJgWGaLUITN3CUkr2un4KNqKqmG03wk323jf2v3P//a7daHltBOF8OnNNo2IFoKrIVc42pmtiZCgJbCcC0uaIGBYsq6gsseCuUDLLE8aEaVXza0Aov7qaH+2/JfNBd5DnYa/XH12+AJk437/hrWfafDHJN87X3vc0SiHDrVbPcqAosUXp9jZttxtpJTUDe94WQCUAYHKRtxrtpufcf/tdSEC84ZYWEihN0kWoQBC0XJImRS6sogz/4F9/fDoVSVUebDU1iKqs3Nlyu55hQGKbGgSVYEBBpmlESfD2gy6G1tae9eJpyBVDSH+Zaill6NSzdIvChoE0JYDCpqkwVgBgiARCAGGomYqzesjOpURCAgU4lADldG+noSS0W6zRBRgaGIL1Jt4khefoeQEw0gzDLMtSKaFpBCFiUM00vKIAcV4yWBEdtNu0ylRVFf4KnDxfAKkaTjfaBG8GQ6UEAPIV9wQBAORXWIRX7zo7O5tMJpxzSulyuY6i2LE9oIiS6P79d+7cuaPrehRvFFSNlvfo8WPDsnf3D7Mi1wzd8zzDMETFBoOB41iLxeLo6AgAqWnaaDRcLBYQqabn1BoHUkrLsk5PT7MsG41GSimAyfGL0939QyZUGKcSQC5lyZhhW+PJrJJKQnJ8cjGezhljhq65rjubzRhj9ZaoyQaMsTiOy7IMgsC27Zo/a1lWTaeVUty7d+/Bgwe7u7tZVlxfX0MI1xsfYqTr+v0HDxSCmmHcvHVna3v31Zoki6vTL//kxU//lX/6J8XkZ2VZTMfjPA273Tbn1WazDgI/LbJcFEkRRumKVZtgeXb+/GfHD/9ofPLh8uqEiiIPl9l6ponMUEWxnlmQbW/vYo0ywYmuBUHQ7/erqvJ93/dD03Q0at67e99zW5Tqg+EOBHS98usV0zSt2Wy6rst4eXJynKax13CSJP7Rj36UpulqtappUllZaKahmYbbbJSMMSm2dncM20rTtCxLoFBd4RqWCSF82VNjrH4YajXA5XJZqxwWRREEQd2rrg8hAABBde6uIURqh0YIsec2IIR1m6YmqNTti9pTFJGXqJcaEFMDS23XKVnluu43vvGNP/zDPzw5OXnnnXd8319tVv/93/z7OSu/fPj49PLy6npyeT1Oshy8IRjFOa8VPWqrVfIV/e4VZLI2bKnF1mqtinregjF+pdJYz1tazQ4h2uNHc8NyJIRpLnRdf3DvHqXYsg1KXqcSjmsJIbIssx3z6urqejKuBDMsczqdWrZhWVaz2UjTsk5kiqKQkkMI6pTDMDTOlOd5nPM4zkzDllIIIWxHJ1pRVUBykOXRZp3cuLV3dv5848c3bw8WE3nva4PVevP5hxm2FifPN5RCKXQAK8fqNZqOYRJWkm7PhQClWZwX8XDURhg7jvfs2bMf/ejnX3v3wXvvvPPieEWw6bpmJfLNRh4cbFNKMQabTRhFMSEoyzKEgVJYM8wkkZ4z2DkYmY5QqKKUAgUQ0KuquHtvbzauBjtSMqvOpYR8ubxvCKlCjDGlkGCAkX771i0ABOcAQnDv7q3VagMUwAgRgiCEX0l6AYip13AsyyXYlAIIUULEKMU//vGnum42HX0xX1GiU0woJnle1GiH8XhqWVaSJPP5klLaaHgKyOvrSaftHh2NEAJFUdi2Cf7M9QoljjSNgHrU/EZuGAQBQiiKorJkQogir4IgTtLy3r2vAUi3d3f8YBlEawCrx48fbm1t3bzx1h/96MeL5cYwrE6n0/QcAORoOAyCYHt7RAiK43B3b9v3fcex+/3eeDyuxQcZY77v15i1+pHdBKFQwHTdMEox0SHVgiixvXZRFM9enJhucxPnP/3407xgnuc0G3bt12GaZi1CWe+uOI5rKcZOp1PTp4bDYavVEpJrmJRluVgsFECTySyO4yRLT05OhttbiGqYai9OT2bz5eX11WK9IvprvOH9b/3g69/+tZu3vjHY/ppBdiiG3XbTNE3T0DSdQgwKVliOaTiu5XoYYyV5noRlEkxOHn/50R+Pp8vLq+mLk/P1JsiLqio5AGBna9vzPKXU9vZ27TlZi6cOBoP9w1u6ZttOMwiSi4srTHQA4HK9bjS7jtN8//1vapoWhiHFyLFM19Yd2xx0O0qwD3/647OzkzRNT0/OO62243hPnjxrNpu1lmcURTWjLs9zJpSCIMsyxqWu60KoejBSD16Kosqy3DCMKIp834cQOo6zv7/f6/Xq+NVsNg3DIFhTArxE3mFCqe66brvdNgyt4iUmsNfvFGWmgNBMapg1XozUCBspJWNlbTRcK6ealr5Yzj7//OL4+LhmfH7/l75vOPbZ1XXGxRePn51fTxy3yZms8YN1wVs/unU4q9UiJAD1f6RpmlBSM/SsKGpbiJeD5q+6RXWMtm27KlndnHn29EWziYaj3dOzS7dhMyYopZap7+1uuc5rfEa9rzSNEAqVgsvVyjBNxktK6fZwVGQphqrbcesHO4oyAAAhgFIAgErTtMilrutSVXkqCdE5rwzDcD3jxu1up+NCAMJoFWzyZkvf2eu9OL7Y2etMLqs4m959+1aZmXfuafXdzmZRr98+P10AyNf+SklycXnNMokxcB2z1fIIIZcXPkbat7/97o9+8kdXV1cIguFgj4kEAIUh6LY7QGGCYLCKk7jQNCKEoAaIghJCGGcwipkfziQsR9vNqmSUQqVIs2X2Bt56XX7vV44+/tnJS3QnwjVQv56SF0VZVayqKikVgDxN+PHx8c5uT6OEc+A2tM0qB+CVi54CAAEEpQKbKHEcc2t0YOm9dqMXJyGhyvYsQyfz2arZbGtYAwLUzRkEkGPZZclqjQKllKbhKPYtW8MYcKbyvAyCqKpAlmVv+ilL+dKV5ZVMGakqDgAiGCn1GmIDIUziLMsygmhZlspxiGZUcTKfb/q93ovTc8Zz29En80mn342i5Hd/9/+X5sWDBw9u3rzhWNZ8PlVSttvN9Vq4rvvs2fFoNGp5DT8M4jAqqvKddx4IBaIochynKArP86bTOdUN03bC9Xq0veNv4rJiDdMqSpFXYuR5i+k0SjNbM598+SRJy+3tbde2201nPB4bhoExrpPNsqhXX9ZCNZTorBIYqbSIsizrdrvXs7mSklL9sy+/cEwLIYQguXXzTl6VrVazLEus6RpGu3u3oyjIK/ZqTZaXp4KXGEOllGnqpbC4FCt/wxQyLFfXzSov8qIyra5leDqhjuPYloY8B5QZYOU6Lgyd3rIMYGjcXwX+xulZpuNcnp0Pt7c2QaRpWl5UYRS0m+1etz8ej+t+KKV47/CAly994yzLNAxjNptcXF67rks0ajr2k6dPh4P+Yr0ejUZSytpidDGbHx7s2bb97OkxwVqr1QrDsEbGrFaromRCiKpiXChKqZRAwaqqODUppZQQLYmzGuJQp1eU0n6/TympFXyLvKi7mVyxOh0jkNRHUV576RFc66pmWRZsNkdHR1mWFVVZB6OKlxhBTSOsZFJKDFEQRT1dP7+8HA0Gv/mbf8VxrO2dgeM4V1fnz14cY4QM0z4+vw6SUndMx/Fq5mydw9aI63paDRDiUmII60iHCK5tW2oKSn0BCDnnNem4LAohlGFacZrs7h9cXl4KodqNzoc/+3S07e7tHDx98vzk9HjQ7XEmdApfGXhwziDAhCCImJI4YXkpZBQndTqslDINo6j4YrHa2z+yLM0XjFJkmqjIC8vWq7KCSBECiwwGmwxh1u93WRUn6QYhDwIKoVISx8m62TKfPFoi+rQ/8BazdDkpml3+4gk/vGVgTOM0JsQ5unUwn121PRdjaOgUUWVaEACpa6Qqy1Zbs233cjxuvxRqA+PpqtkjOnQ0msdJcD253Bp1zqbrnXaj2fKurmaGCZU0siQh2DEdTCmuCmo5CgBAsMFB+q1vf+vTT740DUqomk8jABRGWIgSQoigkgog9VLfgQmFMeElhwBXVZWlm3a7W1QbTGRZ1MqYCioAgQSIAACE4pP5glXF9Hq+s3djsnoEABht9TXDCHywmvrdLqZUNwzDMIwqLxRQW4MtP8mkBL6/GQy6N28d+v7m7GzquNS2XM5SKWSv12o2vTc12QBAr7LC+nrpEsWFeFMT9t69ewKQoigopUkcI4Rs2+71BowxhVEYBAipMA6gAleX0+fPX+zuHHzwve/1uz2MUZ2Rdrpd121QqgeBv729zThP09S27eVy+f43v8E5RwgThBhjzWbT94MoifcO9pMk0QwLYbpaLzyvGUaphKDZ7sRJvtiEhQQnDx9NpvPvfueDfr9fRGFdrw2Hw5oNVsta1LpetaLEw4cPa3ut4XBICPF9/+7bby+Xy8ePH+/v70NCMUEYwKurK9P1gvC8yPN33nkHYzydz9M0DuLowTdfrkmnN6hnl6v1OvQzQ0NRnEJEKSFFUXGAPbcFMQK8TIJNKEEURUxKSoluGp1Oq3N4BKJQsSqZLVieEapTzVgs1xICTdOyLGNS1DOBZrs1m0wrXjFeei1PIwhCZTcsnRLGGONC5JllOfv7+7P5RHC1vTV6/PjhjYP96WzmOhaT6vj5U6jA3bt31+u16zVX/np7dycviyhJW51ulMST2VRDKi/LMI4xxhDTLMso0RQsKSWMoRpGgxFN09RxHNe1u93+YjFbLOJut1tWZZKkpmleXFzUhbKEQEoJFNI0zXEcSimQFYSwrse3t7c554vFwjAMqjMAJYRQCEGpWUd5hXEUbnRd/853vtPv93lVzGaTLI983wdAUEM3dPvh89PTq5nrtbK0MCwryxImBEBIAiDq2TrGEONXsF4AgAQKSll/FgBAXdETSusACpFCCLmuK2QBALBtO01ThNBms4ojoBvIdd1WqyWEUArP5/N+b7vKK/CV/oBUlWmaEEnL0rOs4KzsDbams2Wn3QzDMIqiv/xX/9rv/Mt/ZVlGFIWNhhu6bDyNKNURxFWVIahRCjUdLn2+MbhhF5x3NV2lCwEF6/Wbum44bs4YC8Pg/v3d86srANLVVMOk2jvyvvxoU+Um4xkm8sd/8umv/Nq3fvufXmSaMJyi1dg6VxdVjjabjeeYCIOyrIQCeZp2ms0oSobDju8HEpdVhaQEhwddwV2lzLPrtRAEUxpHrN2grtmsKiCUKKv19miryKGuLXTNLPL8a1/bKqtkOS+/9d2t85MIAKTpqioRwgJDWLfhEAKUUsEZ5wpjQBGQElmOvQlSgmZf+/pbk8kEAIAxAZyDl54ktbk8yDJWlwuPf/8PvvGdG1EQMq5AKTebgAlADR1zGmepbduDwaCsEozxxg90zcxUsbd3YNu0ZuBRSiaTuUYNy6S1YYb+hktUPWl4Ewb0lZDOL5qanpyc+H4QxyljrNVpKijH4/FyuUzTNIhCQDDRjU2Yrv2oYuLf+9t/52/+zb/RaDTSNIUQ1rXewcER1Qyk6YPBKM9zJWWn05lP5nfv3oUKsJLVdg1JFEVREgTB7s5+EmdFXlFK4ziGEJdFVXLGhMRUX643Z5PF+dVkuVy+c++td+7eKdNUKRUlmWEYjLEwDB3HqVEUdfew3W5zznd29u7de7C/fzgYDLa2h4dH+4vFLMsyy7bHk4mm62XJVhvfMIw4irI05Ux89LOfP3r06Nmz48lkNpu+1rAJmJJGizT3jh78hdvv/aVev3/nzp2Do8N682OMMUQaoQAmmKRUKyEudEuZnuZ1bKdlF9cnoAyhynEVa6CqEj8Pl0QWBwdHz49PdMt0veZ8Ph8OR2VZzhbzdrtd60WneX56fhYEweNnT4MgmMxns9kszTOl1O7uLgDA87yv3X8QbJZv3bkFpWg1XF3Xz87O0iT58stHRDNu3Xn7/PLa8ZoQ48VqxYSI07RgVVEUVcUhphBCJiTACGFaezwxIQrGqWHqpmU5Dlfy7OwsTdMgCOoxdLvdtm270+m0ml632+50Wr1er9trew0HYZDlSSV47bJi23az1RpPJrU/PcaYC4Exrr10IcFCCCGEaVnNdsP3/X/0j/7L3/7nv6PruhBCKSmlJESbLv2lH2YVN+0GAKDM87oDWDen6rZmTUOuT0QpJcQvcdcvm5UIaZpGNFoX1AAAiBDCOI2Tuu3IBN+Evuc5mkYe3N83TePyapJliVScUlpTa3qDwRt7qTYVwIynjt1YrpL5fCklIFgzDOPGjRu/+7u/qyC8c+dWjbUgFGEC6hS1220zxqQqMRVA6RgRSnEYpAhLQ6eEkK2dRhKXbhOmibQt13Z017FXS5EE2u273cuLTX+kL8ao3W7efvvw+MU8LRLP7UZhjjBYLle2Q1iFTN26vr7SdeA4lu/7tuWOZ7MsE6aFiqpEmCaRTJJsuG19+5sftDoa0UGS5EEQCg4QkkUqeh1QJPnk6no4aFFEt4fDqmSWjW+/tfuzDx9jjO/c60wumBCCc/kKU/2SfQjr2TGqu3CUQqWqNE4NHXAJGg1jMQ1eJ2X45QRDCmFSaGDAuRwMu3kBfH/tNbrjK3++2FRCug0slLRda7FYCiGiNPFarays0jStzRkhQKcn5xcXm1u3btUoqLIsGWNp+m9R4f4Kd/1VNIQQAKXkL77NcZzNJqiHD/P5nHPe6bWHW4Od3d1Orw0h9DfRaLj37tc/+Na3vlNU5cnp8fXllRDcNs0avmDYluG4huks5qu93YOd7T3O5Wq1Ojw84ly4rls/gnXXs3Yo933fdr3aSpQQUmNoEUJxHF9PxmfjeRgnt2/e+OC9r6kqY0WqlKpVrKfTaU1QqbXmTdOsq0Kl1HA4rOvxmtF9fPwMCNlqNVzX9bzG5eVVWVWNRgsAoOt6XW3pup4mmeM4hJDDwxuv1uT08w+L9QtHzWT0Bc4fIQ1iDa39+Wozr1guRX51cXr8/Ml8Pt9sNnmeJnEoq4qXWbJZXp0+Dzfr6eT64vj5ZrPBhFi2jTA2LWcymdTaWaenp4eHh0mSvHjxYjAYWLYHASlKfvv2W57XzPJib+8AUc1xnEpwxsoa5nJ5ecnKSjBZVsX+7jbCIM9znWpJkkyn0ziOa0HJ6XS6Wq0450qp8XjsOA5CqGKCaBRCWDIuhFAK6rpetw4BQIJLjLHneVLKeuQNIdzZ2cEY116mtXiaUiLLk81mHcdhVqRZlpRlXuVFHIcSyla7oYCYL6aYwE6vXZY5Y6zGJ2KMq6qiFJdlXj8JRVF88tkX/QH6u3/3N5rNZhAEFBPbdqMwfXF6FsZZs9UrGcvzHCpVS7fWlY6u6zVtqe4hQggBgvUrQgiiaxICRDCmr0cuAME6LNbpIaU0jqNm0zs7Ox0Mu91eK9hkw4FrWgaQIMuyTm/w2aePZ9PXPjkVK9M0h0hludQ044NvvB+HSRwBDElZMM9r+kGk6XqSJJ7npWnl+0G363DBkjTa29trNtp5EWMMANARNEzTrEoBIfCXTAghwGY+jbwWSCNgGNajJy+qUpkG1A1alGGr6e0fjBjPPv35BBNgueDRwxcAIgDQepmtNynGOA45UPTwcF9KUFZZ3QzhDOg60E1pWdTUW4tZOhi2qJb90//it6N8TnWCsGnbrpJYMFEm+fbIwwrIzH3n/qHbKLI0RhD84FcePH18maeg1YVCiIvzta6bUgLL1OXLGZHhmEY9wqrbuAAiIRTG0tCNIgc7u2ZZZpbpklr1GgAMAEVAw4oAYGmYYDCfzHqdxltvtxgvz0+nb91+f3IdaRpxG07FSwWl6dCKl1fjpZSyLBgAaDKJpQAPHz5O09yxkWU5jPF+vwsAYIx1OoZhGOwND1jwWprsJUYV1WER/2JymCRJq9Wq5eDPzs5+8pMf/bN/9tv/+B//43/yn/8///k//2c//+TjLC3SrEqT8rNPv5hOp2vfr/lQH3/80U9+9GNCCIKk2WyZtnv/3j1CyM7O3vn5+a2btzVNUwqu15um10iSpB4BD4dby+XS8RpKKVGxOmbX0CHOeZIkp6enWVkNRlvvvPMOUGw1GTdcO00ioul1Mthut2tX4nqXQgjjOK5fJISYpun7fhAENd2thqT5YVCwStN0AADWqGc7omIG1WzbVkrNZjPXbVxcXLxakxv3vjZfJ0+fXX7yyfMvv7g4Pn7yyecfXo4vCIVrfz6ZXi2W4zhcR6EMNlxx3TZaTadlAtLQ7K1Wv7Nz2N0+bG3t9/Zumd1tZ3TAde96k5yenrquu1wu9/b2aoe5GzdumKZ9dTW1nebu7v5y4Rc5d52WRs1gE+umXlVVDSBvNTvf+MY31utNt9slEF1dXfU63TzP60ZqTdFdr9e1ssaHH3548+bN5XJZxx2gUN1PAABVVYUxhhi9gg0CACilrBL1XL4+IOvKIkmSGvJZC1lKKRGAlFKiYSl5mmdVVWEMa0nEJMtULSJpWYvFAmNcFKxWRcQE1rOUvCo554iSFy9e3Ly5/8u//MuO4yyXy5q6V2T55eWlbXm24zEh0zRttVq8KuuuQp391XCfOtbXzcq6P1hHw7rvib8qoutoWNdHNSum9h2ra4v+oFOW+cXF2f5BO47jIAjSFBweHjLGm53mOnitfQ1hPXRSzSaO43SxWOzu7h8dDWaz2e7uXpxkUSKpYda3ZxhYKZBlmWEYjuN89NEnN27c4FxBBDA04jiBEGqahRCoCuK6bpqv46iwbNjw+lLAZhNs/ExwlGZ+UbCiSF88n4/2wGICHj8+O7zlTMdBu92qKsErvdsFEGLGUJ6xra0tBQAhEGMcRHG73U1T0OpYukERNAJfcs6iZN5qddLczxPebnffvntfFYJVwLZt08AEgfl1NRp6B0fW06fXvV5va8t69niKgXfjdms+jQBAnCkAQJZHpmkLoTBQGGPOZVmWUkoFAOcCKAwAQJAgAAiVWZ4s5vHu3qj2swQAaIRYum5qWKMYK2BbbhQFFU81jfhrlaVie3uo6/omCrd2txECtuOcXSx6Pce0nPF0kuf51pbX6XTSJO92+6uVXK826zWHENqOBSGklNac/VffYM3OfDPuIQAAwIRJ9aaS5Wx6ffzk0cMvP5/NZhq1bt+6/+0PfvmDb3zvwd33vvn177z91gNEcFakz8+eWg0XIGpYjaObN3TbSIq8PRz2R3tpxrBu6RQvo3jv5q1VsKk4Pzw6WC8XUbDudZolq0zTLIuX7AXDsCzDzNMMQGkYRhyHWKNpXlhe49HxcZQX2y3jzuHI1PAmiIhlZ1Vpu1aeRWmembYlgdI0rVbEbTabURD3+h0hmb9ZuJ6Z5VGSRhhjANA8XCkI6lCLMJ6vV47rylJUJQMAaJae5TEkqj8YKACy/DWrcR3HvZ0d02sc3HprtLu3vXNja3TYafejMGVCVUwiYnYHe/sHu6OtQafX9pouIrA7HFRSRlmKy0pmhSwqUVZ5GKyvL6pgla4mzW5HAOWYlkHo+Pq62+1DpC39SCjU6gzKiuu2qVlmWhW//Tv/fLS7Q4hONTNnah2mmzg1Ldcwre3tHYL1t27c2R32hw2LyuJofysvM9Oxf/bjn/j+pjcaPjs7n242QNMX/trxPIIkF1XFWMZKphQxjPoILcqSakZVCsUVAlKwyqC6rlklY0LBlR+1e/1mu58WZcGqKE0g1RQmum5SrJm61Wo0DcOghl4VhUaIEoJVQgqAICHYWK4CpYBtWUVRlQXXTaNW4uGgqoUvh4PBfDK+Pj+Jo41pUK9hZUopSqMoisLQsSxMaVoV0qRVxZQCEKJGo6GUMnUdKiUYqznaAIC6RnEaXpZlEEKNkjIv6tl3HcEBQBhjCbiUnFKMoBK86nY7Fcu9lm1RXTdAkCRCgfV67VjivXfuWNrrvQSEB7HchL5jt7J8/eTFdRAvhAz7vd3xeGzZRrwEIkmKium6oYCABGAiEUIEQclBXk410tQNKNBCCH3jS6+hK1goCOKwyiP6ztcaVQL2toYAL5TUMbQMWzTaMvatPAW2a2SZuHXPXM9A5utb21wKoRtmkkeMA09rWR58cZw9P3lCdSC4l/O44W0Zjcyg1np11XBYu5nv7AKMMRMWx3kRp14TP3p8/PGHv9/0ALLtHz3+lBSolGSRvDg5jZar0jDBD//W7u/97iMoNKHyt+/e/uTjYwAIwRYAAEJQFCmFIMvKPM91nQqhiqKiBCoFgMRSAqZKhcFwaxCFGQIgWkc7PRcDACDAGhK8EFzohhXkgCujt+XOr6o8Y80uuFw8mo0LnYLVNfAXJzcPD6t803Cgjnf8cJZXyHXajgObbR0C7fnx8+HI8pNz09Jn88DS+2kma8WNvZ3X7DKEgVKv0QjgZcNQSAgBeGOm3Gn37j64/8EHH7zzzjtv3X17tL3VaDZH21vDrZFhWIRommZAglvNjuM2vEbLsqzZbHZ+fokQ+sY3vp4kiec5wWp+enpimoaua48ePXrw4IHtukmW9YfDdrdXlmWSJFTDtQMRALLZ9KIochutq8m4YBxjbJrmkydPRFU2G43d7Z2W10jTVAhhGEYUJUKoJEkopTVIxbbc1WpV22Loup5l2fX19e7ubpZldTJlWRaEsK7UlovFvXv3fN9XSk0mk6zI64lzfZIv5wvHcZIk6XZfo685E0+ePJlOp48ePXr27PnjR09XS3+18oNNJCXQNKPV6ti2jQkpynK9WU3nk+vJ+OzivKgKx3OF4JyzZrdNCCqrXNM0JsV6E1iWk+el5TrHpyemYW02G855GIZHR4eEoE0UXlxcFEXx+eef37//zu7ufo0SKIoiioJ2ux1Fked5Xz76cm9vz3Xd999/f3d3V9f13d3d9XpdMwo8z1sul4SQn/zkJ7du3SryCgDAXkLDNKBgLdNd5+nwpY6HegP3AGpSQZIkvh/O5/OqqjRNo1SvITtJkuR5XpZljekry7Jud9QrD6DknAdBEMehlLzWZ6MUSykAABLAqqrKggGEC8ZfnJxopnE1vhZKAoiLks0XqzCMCdVty82yjJWlFCpPi7pRqOt6WZZKqdoO7c1XbNuuB2t1XlAHwTfJs0rVYohVzWCpIYc1PNY0jTgJIYRlWdo2jeM4z9Px+Ortt99+9TzUObium3letlqt/tBNk2yxKPYPhienpwiSO3f2iQE4k+fnF0qBpuvkCVBKSAk0DY3HY6iA5zaAAlVVhWFaFIWh2xuflyJUiJmOPblWx+efmXrHX5UK5q6n7+x1uYxbbfflRLVUbhNMxrFjj16cHQuQC24IDhb+2PGoYfEkzpotmiQJlAAhMh0nmKgsAbaHoXIbbg+istXYyvM8SassFYTqQkIISZFmeZYMh0MM+GatLbLLJ0+vD7f399o703FYINYfalkq0gQQDEqWIwQgAkq9dMqrHx4IAUIve3MYKIoBZ9IwoaZpk3GgESOM0vV6Peg3GQf114QxKMuSYvDpp597nmd7AAJD00zLMvIyKHOyf6P585/6eZ53u7t5Crb2cZ6BqkgNwzBNh/NKgarZNC2jUxbCcmBV5ePJlZJguYzu3Lnz+RdvsMv+jJ8fIhAAIP+Uk9Tb9+55nmOYZlEUaZqmRZ4kSZKm09lsNl/EUSKAyvMyLUrfD/I8VwoWXBi2tbW7w5WESC2Ws/HVlesYrmM9efxwNBrduXMnCEJMaW8wUBCsl8utrREhuNVqKCUs20jSqNG0lYJpmrdaraqqwjA0NOrYdqfZGA0GruumUawRKhhHABKE642aZRnBWh0Z6xKJUrrxw26nH0cpgkRJGEdpq9nx18GgO5hPZ4d7+6JilNKsyNfBBhCsmYZCsK6R2+12WUuEvoHB/KM/+qPT0/OLi6uzs7MgCBAiQZxIBTu9vlSAS7C1tdXtdgtWCCAQIa1u+8btm7sHe4OtEdYosSjVYJFGFSsIIVESf/HwkeW4tuMQQuI43dvbqzgTUl5Nxs1mM0mi6/Gl768Mw5AAGLo9GG5/9vnDq/G00xsYhrHeBGdnZ27Lm84mw2H/6Oim67oAgG9961vvvvvu1cXl9mjL9/2tne0gCFhZeZ73+adf/OEf/uHbb78dJxkXkAnIlXxlRljXlXU5KSTnoqpfhAgghNI0VUo1Go7gKo7jOI6VUo1Gy3Es09QxhkKwqiqEYAgBTSNSCilFHVXLKs+LlHGGCTQtBLFSSpZlWVcGAGFNM6SUJata3c5svoSYFpxXUl5N53FeCYAFgEoBXgnOpORcJ5qCoC4I6qFZyV6ju18ZItZfnKZpCCEpflFE4KvLMIwaJIwQSpIYACkll5K32y2ESBxHQrJOpxMEgVLi4ODw9UYCzDCMMq+kBEmSGaYSAuo64DK++db2H//oo+V6c3Rjl1fi/t27QIIsTRquhqDKkpxiohEKIbRt22toUqiyABhDf50qCLKcbW13Nd2OQ91u4CRGgiEAFURiuNW0XbxYBtfX07IsMTQNC6Yxur4MO12t3bGyGGGoCwkMg/ZHxmKetjsexnh8Cc7PzzXcZjw/OtqDuDg/DRezyvHIdOILobIcNhouxhgQSjAtUzXqdd2GtzUkQSA3UVjk4r/3t//OH//rzwEAAIO3H3SvL/wqB5hwADh4ua64jn1S1tDrN2QaAEOQKil2trtlkVMENUoJBGUpMcamgYqipJQKUXfJwHoVBIHf7pI0lnVI1U0QR8U6CJpt97/+l5+Mr4qDGztC8JMXM9M0fT+4vJgAABoNSgi5PF3xErgNKJRwXJdS/RvfeG+zWlfstbu8Ur8gtggAQPX8BEEA4GsuymKxePHixWR6nRV5JSqMcbPb2tnfe/DgwZ07b492th3bxYhAgBhjfhBOpvPV0o/ipKjKLMsWi3kYBmWVG4YWbfw8SV3XhRhbtpvE2fbWbhQmlFLPcRljCCjHcSxDz/NUSl43cQimURIbhtbrdBzLLLMUQpinWR3yJpOJaZpFUUGATcOOoxQh5Pu+53lVVTHGoiio4RF1siCl7PV6i8VC1/U0ThzTKrI8TWKEUBiGXMhKCIhRjcqup4evsHKv1uTo6Kjb7Sql9vb2bt25nZVFFCZ+EC5WawDQwcFRq9leLBaCVQRBVhaTq+uT58cnz4+Xs/lsPPHnU3+1XC8X4cZ/9OjLyWyWl0y3HUJoGEXr9dqyHQBAHKeCK7fRTNJouVyORiOE0Mcff+y4DUrM1TKYz5eXl9ebMI6i6Hoy7vf7JS/jLGVSlJwJIUzTbLUaQjJNo6wq5vP5eDzWNbPX6/V6vQ9/9vOPPvl0sDUqhSxKVuRVWZYYohq4V7AKISQVr5dRSv6K1l6nfnVyLbgSXBV5FUdpDXrXNK2WsK77lUVRKKUQwlLKoijqvqSu03pIhTGuOGOCR1HEmUzirGJiE0Sj4XaS5QpBiXBW8DAtrmfLikmqWWlWJFmKMEYQZklu6gaoERIYvSLGCqUqzuu8tQZ414M1AECdLdb4spcMzpdkWlV/tLqFWsOw6+lklAa242k6ygtg6JZhGK2u98c/+smr5wFCgBGyTMfQrTiOTYsAqRs6TTO/LMs8A/N59PDxo2gT/q2/9Tfv3f2aUoAxkabV1mh72O/Xw640zhivAIRVCbioeEURAkUBLMeczf0syxDULi+mtktsy4pDHoVxp9NIU9Dvt13PjONEQQwQHk/X7V5ft+y8YkJh0wFpWpgWAgrbtlUWFcHAdsjpyVWeA4lKy6YbPwk2RVmWUbzO89z12gQpBSoBBGNMk2DUb2RVkjAOAc8W2nc/eHexjD787IJBAKQ6uNE8fjYDigpZAsAAAFICBOtZ1huuIkopKREECIOSMYxAf9CKg6jbGijOHAuZJtlsNrW31KvtVq9VXsSEkCioLLfSNYdXQMjyvffewUZV5Or4+bLR8maz2F+AZssmkGapskx9tN29eeMw2OSmYbU6mumgTbAZDEaS8UePn20Pe+DPvxB4CWH9SlYCAADA+OoKQsjKSioex/FisZhOp48eP/zy8aMvHj384ouHn33x+en52WQ2ZUJapt1oNRHBZVleXl4/efJsvlwFQVDXRzXKrNFqlkx89MnHP/zLf6mOtnXDvuk1ms1mUeYKSEPTMcZhGLbbbSHE3t4exjjP83Cz2RoOMca11A3GOMtL3bDSLIMQKoiEAlGSSgAVBABBJrhQ0rKsmpZXpwCapq3Xa13Xl8u1bTphGPKy8lxH17U6/qZpGoQhpXTY67OiNE1TCvGmGprv+5vV+v33379//8FisUAIdXrdRquNqdZodaRSZxdnVVFGm4CXlUG1put5tkMRzpN0vVg+fPh4sVrWjku3b9/u9/udbh8TjWgUQqQAzPMcEw1rdO/gsBaYIARRSp88fuY6DddtfPHwUZLlCkCqaVtbO0Qzut3+zz/+pN3uWpYzn8+DIGCcV4Lned5sNi+vzg1D73Q6uq61Wq00Suvq8vjFi08/+yLKiqQomJASqHrCUM8iai2sGvUCvlJL5/w1Cr0ecNVQ5zRNwzCOoiRJsjTNi6KqKs6YYExIqWpGfR0u6x+pZ771+ELTdCkVxoRzASHCmIRxFAQBEzKIQs0wzy/GApI0Z3leci4QJAghLkStTmgYhqZpNc+vTmlfxWvTNOu/1hGvBljUQRAjWhfUEKn6Iysla1FYAIDrunEc12K0g2G33e4ihCwXTCeLZrtj2fp0On+1DpQAxli3262qCgBpaFpVKsuybdv21/GNG3vNtsEqiRD5f/8X/+Szzz5vtnSMNMaBabqO7VV5DdDRHRcDCaFClOLZJBYVUEXD9/3FfE3M/OmTKdVQp0+isIxDsFxEABCNgIODg1bbSVNGiQVx1R84z59eL+eJaWoVyyTHltngXKwWIsty3cSe59kuURDYNuoPG2WFsEYFEP6GLdeTdrt5eHgjTxPTFFADUontAWm4RlqlvZ0dCsCTnz6/fXD0v/+P/6/A1YECWz1TSrlcBADoQgCEwavpBJMAQvDqyKkNQgEACEEAQLNtQCTiqEQYCFlIrjAEgskyz1zbKiqAKSwqxiUIgsS2bSCNNCk++O6dOMrzBG/tOrqRsNT+9g92j251Hn0+DzZJuzmIoqCscojA9fXY9/1Op0MIoRqmGDqeTXVaT2IPDwbdXuuNJ/lNhbF6plzLwKs3wdfA1DEGMM/zLEmLNGOsLMtyuVxeXV+uVisu2dbW1t27d/f3972GW0m2Xq/TOOO8ds+obNuWUpUVn84X5+eXZxdXQsiLi4vvfPf7lNIoiu7dfatub9Wa2A3H3draqrM/LEHT9UZbwziOoyhhQhQVv3F0q4bvaqaRFWWj0RBKAoQRoXUbsYZx1RpNjuN4npcWeZylEoJKcETJi7PTRru1iULTNBFCukZYWYz6A8916xGnACrP84ODg9pGAwhZG8a/WpNBb/iDH/ygKIrj42NDtxrNZpTEfrBhQkig/M1qPB6nWVJr3K9WK9/30zTFiFimvTXavvvO195575tbO7tJkggmz16chWFICA02Eaak4kwBlCSZFCDP89liGYbhzs7eF198ATCihvnZl19YjmNYTqvVSpL0+fGLNM0hpklcVExquvVq+FvbuhdFVp8E3X7fsiwhxNnZmaFb7XZXt+ysrDZBEsVpJWqfdcAYk0phROuq5M0K4hVqz3Ec27brOXJZVlIqhDBCREpQFFWa5nleci4hxAgRCDCrhOBK10zLdGpCMSEEIAoUzrOKVSIvqjjJqopLCZSErGRVyYUQpmnHSWba3iaIMUB5Xui6blp6TTT2Gg2EcR2166SPCf4qlNfFclVVNbyjbmAZhgEh/oWsEMKXAREDjCHVMMawzk3iOMaYQgivr6ZZnrdajlDIMh3fX8XR69Oxtn6vKq4kt0y6XkWLRSqlKCqW52rlLytRbO8cCAXX63WvO1KAZ2lFKQiD+Nf+0q/fvLmXRvF0PBNCUE1LExkEvm12EQAVKxgTSoHByC5ScPPm0PMIAABBWhZiMV+zClxcXGd58P/n689iJEuz9EDs/NvdF9vNzbcID4+9MrMqK2tfuqvZZLObxCyARqAggeBIgF4kQZAEvQiYhwEkAXwZQcAIGM2bZoaQAHE4HGqGrWGzu6uqq1hZW26VEZmxefjubrvZ3bd/0cPv7hFNSrpIBDw9wt0jzO49/znn28KWQYDYlmy3jNUM8rhxHWwwKFORxJlpuK6LoihhjFGKMJajTYcg2gpGZaEkcMACAOoKNkY9pGB3u+UFTGCuAA07nds725PVYjFfY4D/43/4vyOqu85RxTJQ3ve+tX/4agWAKSZKASBwPRsUSMWVAoWvB88rNh8QgKpRzEDY4AiRxbIGkIRBw1HTcNMkZamjGd2mUfogVhIYtRfz/N6DnW5nOJ1NMGb37+8zUoKEsuDvfdBP8+bsKOuP1OV5gYlqhwYAVAVcXkyYyT3PAmlP5olhGMfHUyGanZ1RWb2tRfk3+IZSuzYg/HYuihAFRsqkDKQSDU/W0eXZ+XqxTKPYtI0sy5bRejKfJXla1bVuE4QQRVGkUcob8fHHnx4enx8en5xfTgzbunN3P0qydqfX6XR+/etfjzYGl+dnw94AIdzpdAmhvV4/jhJtqhwGHgbFMPnoo48czxNCDQaDxTo6Pj1tBGeMTRdz1/fiLDdsSyBECeu0u3o3hDGua64NnTiXhmGZpl1VjVKIEOZ5gZTADMPxrsKdMQHLMMMgiKO04Txot6SUvG4MypqmSdP07SVrVVWTyXQ+X7iu20jx/PnzOF4zxiSo6WzGhbh1e6fXa9WCW66ztbu7u7cXdjq271ZccAUKSFnWGNE4Tp8+fTqfzx3LEY2UUjJqem6AMXYDHzDKigIA7uzdPXx9zJg5Gm0tl8vN0XYQBIyxsmq+fPYiTdOHjx6vV8n+/QeOHbhO6Pk+JsRxnIuLMykFY6zle3VVFEUxHA6LohiNRtvb27Zt/+QnPwlbrbyu06Ksq0YrB8RVz6VFpgpjIARrFR0hSCNahBAtc9Y54togCxQmmJmGbVuuadgY0aps4ijVLzvGFAALIaQAwVVTCyVJUYk0LVerKE2LyWRZlE1VNoJzpZTneZZlKYmCIJzNlwgYJQalVG/3hGwQRY7vUJNqL4+maTQfSILSWxGMcVmWN8bp+gNt6nWzHnprgajquiyrDEBqbwXbtg3DUgryIqXEYozFcVqV3LJsPUrf3A+cN47j5GmGEApbvpLE9zGhjcHMomgkFK4PqzjZ2787nmbnF2M/dJhptTrk8PjkP/9H/8XmxuhHP/rR3/7bf7usgHPp+37dVHkmkILBBrSCkDBA0u50/bBllSnfvd21LIqwKgphGe7Z6ZRzzqiJCTdMxEUz2jR93y3L0rYNpYBQOR5Pg9De2NighEVxlKalYdBoXf+L//bTdqeX56XjOKaNeu3thuevnr/46juPXIdlRVWVsimFa3vHZ1F0nn7lYedHf/f3/s//l/8nsxXUQHBjOeLFFxGAVNCAAs/DVZUDUABx3SGK620s0mZeXGLLpZYHVc3zFJiFmAkEu/p9wBjyvNINpt4bUkqLHGbT+t2v7f30L565HrHdJonE3/8f/P1BHx88TYoi271NuIKKz9ph1zSJ6xvtVkdU9PT0TErgPI/Xot1yF/NsYyMcDjpJusLw1xGSt2ridflGb98fAACtwC+zPEvT+WTa8CoMw9Fo+OjRo/v373POi6Ko6+r8/Oz58+cfffTRs2dfPHv57PWrg6ooNXvrva++v7W9O9ra/u73f3Dv7oM8L9rdTl3X5+fn26PN5XLhWObevQd6v/PO469gjAPPAwDLspAUO9vbR0ev79y547puHMemaWdZtlgsuoO+5/ucc8N2pJRBGDLGdPhZmmQIIa1v0c1Rmqb9fj+O47Isq6rSOegYY0rZarUKgoAQQjEZjUau64qm0eBsFEVaDjyfz5VSOhHp+u7ncRy32+04jp88eQJI+q0QM2pZlk50Kss8z/OkyOM8XyXxIlqXXLT7g/agF3Tb/c3tNM8/+d3nTdPs7e09fvRIm+YLUISQPM81XN7tdqVUtm1HUbK/v69/HGMsTdMoikajkRCi3+8/evSV0WjLcTxKTAAUBGG/39/e3n716tVyuex0OlmWTSYT3RWu1+uLi4v33ntvPp8zxr7z3e/+2Z/9GSFMCqh5o/s+TTLQJHalrqZIrV3TPGd92GjvGb1UNQyDUgMhrBQ0Da+qWv9XllVZNmmaSwlSQpqmUZSUZd00TZbl83m8WKyygguhgiC0LHM4HAwGg6psDGo2dU0xcxwnjtLFImm12noPqJTKsoyajBn0hr/9lv0i0UVct4eadUgI0QtBzTfUd7v66xcAIKRuDBCDIFgu151O9+JifHI6Z8yoqsqyKCi8XsWLxaws3qBqea704TGdxkrJxSJ1XEaZang9HGxIBa4PegPzwQf3lIKyqbhUSgmMyGy2+PnPf/WLX/zy93/vR3/yJ99UUq6WiW3by0UEAN/+3k673aYUppc5JQ0jKotELZYSilbLDwLDNG3BwbKsOE4sC6qCW4YZ+LZjG+tlw7BhMOT5Zq/XkVA8f36cZUWrbdeVyrLCMMir5xFCaLECzqXt0OPXETPQchENet1BtyclSIVA4NUy5hI88P6D//B/8Z/8Z/+3g/PEcgTUsL1rE9uYjmtAIGUDQDvd1npdIKBwreKWEjQegjHGSO9bmJBNfxDMF2sAJmVDGSiJGSNNIzBGhEAURUHgCCFM0ygLPh1Hg6Exnh5+/vHU8VBnAB/+qyd1wf/+3//vlSlPFo7Ay3feby3G9OFXRnVVlGVaFMV8FnfavdEmJUQx4t29fx8zqOt6Z3f75Oj4bU/rt0uh/pUSCZIixSWot/wNHz2qhFHWPE5yZjsK4el0ul4u1us1I6Zv2lDKjt9ZrVZeEHSCNkKo2+0Sigkho+1bGCnLpkWZ53ne1NIwzSxanZ+f9/t9jMkqrr/9J383u7yglHzne9/VezHOF2ErKIpsb2/fNE2kMFIQr9ec82Gvf3R0ZLqm47on5+f7d+6enZ1tbm7qR8JpOXEeISwNShjBxDQ0p8zzvKZpdL+pPb6Wy6Vt247jJIlMq3IQtubzZRiGLd/PsrQq6jRNRVW6ni1ko5Rqhd0oe4Oi5FXda3fyNFsulw8fP6i5YKa9WEY154ZJq6rKkpwxFra6DDEMRDV8dnm+GJ8RBGWeIoQ2BsNey721t79eJb/41cebO7tJWTlScs4pNeqau44vuVpOp61OGzGrrgWSaHuw4VDj0TvvHhyemJa7v/9gtVoBIqv1WiHJZYMwqoSkhl0lObXsMk2llINeZz5bZst5ZQbdQb/dbsfxGhHI0oIQEkXxbz/6xAuDOE0UVhwkZiSJVp7nJjmp64YxJkBhQpjFiqLCGBsUN01jWkxnxTVNU1QlIVS73iil9DmU53lV1ZRiyzekVFXTlKVoGoVUo89dz8EaUQEA3hS2xQSvZ7MckAxaYT4uer1NAPzbj570Oi1CiAJhWU6e53oTIoRgJtFw/5WmBWPVcNM09cJEEiVAKQUmZUkUGYbBMa/rkjGmAJumRQ1WFIVvOgRjJbnjobpGWZIHYXhxfmKYuCjSIHDLVFX13Ga0yEVRGTUulnHhBd7N/bCzOWCESpZKACU9146ruqqqIMvE+LLsDEzLhK7j/ua3r4cjrxW0iyIWBTZNUKiGpt/baZRc/af/13+4XEWEIClt0ZhC5CBNjOnhqxOGnK3bBmNVxeuyxJxUrtVq99Dr54yrhitIiloRykxeZnQ9R35vffIKQOKzs9QNAyTVw/13p5OfliluOE/WdHfPXa8yx6Wtjl2JVDZQFqTdsk5eNAWOpmv14W+fDEa4ea0MDA/fuVWJZHKC/9a3yDfef/y//ZN/aFtOr5fHY7x/v302TgEEo4yLptN28xRAgWGqqgIESHFFMRYgdWPeYCGVoFQEXaDUm5zNLYJRI5UAZRSSI4RACOU4VpaVbsfnnDdNnecwOV2V6/r0xWz/blCUpe957d78//AP/4u/8+++A4Ywg0W16q2XriSLg8NzNzAvjlV/BBzR2WrRAM+zsCjOZx9NTAbLmVyssxpwwd94X6vrLFOlrlZDVAAoISgBRN64V21vb68SXjWiESJKUiEBY+wFoVKIc8GUUdWcEPK1r30tCIKiyLqtdp7n62gVRREhSIrm1asXu7u7W9ubtm23gjCOqyB0CEF5nvYGwypaHR0d7e3dOXp92O/3pZSX4/Pt0eYqjlzXXq7XzDQspS4n08FgMFvOMMYGNZRS7XY7ThM91umSV9dVmiWMmYjQuuaGYTBGs2xie652P74RY2GMNRsxz/PQ8+M4DlxvvV63Ox1CiFSwXq87ge8FXhJnlNKyrsqyBLh6WRzHkVJapnHr1q2kyMuiLms5nU4tJ2g4aGvCVqvl+k5RFGdnZ0WRKSFMg2xuDG/fvjPa2qrLkmLy+Wefrdbx3bt3Ky7Ozy82hwPdtBZ1ZZr269dHg8FgHUePHr6zXi02NjY6rRAhdH45fvTokWW7G8Ne/vlnURS5rk2ol2WZadqO4yxm05rXo9GoqqrxeBwEQVMLIdTldGXYlmk5ddPoHvn45CQMw8vxeICgrut2v9U0XAtL6rKCK4MjbQ54c2wiuO7CdOcIcJXmCm9ZyOgXyrJMy7IMG8dRWpYNwYiYRAhh22bLDxDWhoaKMaYY45wLrgzDyIs6SZJ33nmn2+n/4he/lFISRrVt5RXRB6EbtEe3sQDAGLNNQ/ezV12tVEgqw6QYwNZCQ0pMygBjBbiqKiGvRIGmRSlBZZWtVlGn01mv50opx3PruiaEYta0wv5pMg5CZ3pRAoQIobcM3q4YPJbpZNkSIdLv909PzwGunPGklDojodNpjcfL3d1Bw7ECkWWAMcznM6/tAAezwzY2Nl58OVWKY4yDgAGvPDccX+ab2x1QVCnh+75t24LK2UXcbu9jciqkQgiWixwh8/h1FfZl0DKTVTjYEELUi2mtUNwJnfny1Pe8wQasl9Jy1HQau44lBcUs5k2vyOnmFjk9WdW1jZFpmtZqtcIEf/W9rx3SCWN2mpRVJf+X/6v/4Be//N3xcX33cRcRhaDYf9D6b//LVwiQEI1+LubzFVzHfilQAgAphd5OkkfALOI4pmgEbyolsVCSECCEUIS5FK5rJ0lOKcnznDFW13W/11kulxjD7//oe6/Pjz753WuDiCAwxuez05ML0zQJtqTMp7OzbsdbLVZUuUELM0OGoffks/W3vnM7TeO6QotJFrTQMq0bnhvUP3q1hv8fF0IIU0JBYUpJ8xZ++uGvfvXRb3/9//7n/81f/eQnX3zx5NNPP/70009PTk6iJEYEUcZG21sffPMb27s7QknG2MHx6y+//FKnxRNCer3eH//xH29tbTm2a5qMEFQ2JQDMF9Px5GK1Wnz6yW8xJlEUAeBWqxUEgWU6GxujTtj2fb8oMpAizRKElG2bQgjbs0Eq13X1JH7j5kQp1XQ5pVSr1RJCOJ67Wq24kjpDS48qWZYBgCbopmmqny5tu6TbRoNQQlhRlAowpoYQgplWWZZXKksAABCyUSDKstSBcK7rRlEkAde8uZyMAeN2t0sNY7lcRkmS56ltu+++++4Pvv979+498ILWfLmKkuz49GS9Xj9+/Nh2rDxLKMUAmHMpEbiOrxVs2ndACLFYLre2ttrtrlKIMUaveeZbOzsCVBiGWVpkeXnr9m0uxGK10ENlEARV09za3et0emHYxhhTShfLWdM05+fnlNIkSTudjh7PlVIIoCxLKaVj2YQQfYsD3PBmJUIKkHxbdkqu44k1NgLXSeFKKd19K6WqorYtK/Q9k1HbpINeux16UjU6IUBLjBljjuNodNj1PM6574Wnp6eAESIkCALdXGjIWPf4GhbXsK/ruvqos21bKZWmqWWYGhNDVx45TI/VV0AQxlJKKQQlSEoBUnR7bcugts0AuGlR1zOVUo7jYUQbUTYNVsIwTNLwDAQe9AaA37DVLNtACJVl6TpQ5LWUsmlAcKllBXoAr+u62/MxhiSJOOeEKIOhjY0BJhCtasB4sYza3Y2N7RBh9fyLhW2bdx7C4cF8c2OD0DqKFwhIFMV+4BLCBEdbo93be1tFljMGjBCEULqGjU2o+bqIDUYdwuqw1apz8Hz7cnLhuV1qNEpiBXW3s7la5nkee74xm9YEWZ0N8FzbD9HB8wSDHA46ve7w2ZPXBy8vbcv54osvO11z8869/83/+j++/cAAWr36Mrv32F0uksWsJoRICY5jYIzL8spaFEBDslf3DyGEXq0OETGUbTlpXIhaCNUoiQCQxiqFUBhjHQlwvYqBui7DwL7/YLix0ZrPLjY3rf4gILgBROKkiuLUsbrT6dJg0OnYP/zBB5dnjRcAb4Cw2qB0e+t2kiSLWdnveZZhglJc5Ot1Or588w7e7JHfVEMuJACua0HZG68bLkWSJIHnj0aj0bC/f+fO/fv3h8Nhq9MVQlS8Wcern/70p599/nmWJRfjyziOW+1wMBjYtt3v9+uKJ0lmmrYQwnG8k5Ozo6Oz49PzyXhWVxxJtbO51TRNVVXD4XC9Wo3H48FgEPitdqurQGgjgGS92hxt1GXe6bQwxkjh0G8lcSaEAkyYaRmWnWXFdT9iKaVs10EIzZaLTqfjuF5VN3XDhVQIE6nAdtw0y6VQgsu6ahzbbWruuf5isQRAhmGYhl0UZZJktZASVFmWms+sr8Vioa5SqHi3250ulphQwzAuzse+7z948GC1Wp2fn0+n0zRNATDn/Oxi/OSLLz5/8uUXXz6P4vT0/CwMwx/+wY/W0fKTTz6yLMu1bCBYIdLUQm9Rt7e3GWPD/mCdrPf29vywbVgmItjxAsMwalFjTDiXVdlUXLx8fRDHcVnWSZKtosh2HS4Fl3I4HI5GW6PR1uZo23FtvVotiiIMw/Pzc72F1B4/jDGt7LZNS+OwnNeafqwtU3Vludkkal+MK7bK9bZRd0P6t/QjgRAKPd82TM+xhsP+xqBvmURJjoAzxjRchwnoI6qqKkoN1/WFhF/84hda4tJut5um1jse7VKjiYo3P9G27bosKcaaNKqEDP2Ac86bhmKCASEFGBBBmNcNbxrduVBKMQYpJSZQlFmrFXY6LcugdVOGLV8pkWVZWVZFUW1tb0wm8yQu+v227RhRlEgBtvkGadSQfZYVhMDBwWkURY4DGnAvisa2bcs2EFKHR8cPH95utT3LsrioDOqHYYgwOK6vULW5uXl8dDkYGQrxeIm5KN97/9Z8rD75aNzutLa2tqIoNgxrHU2qvMKY/ubXn66icdMAZaTIBSjht8ymCKsqNe1mPZdCQKuDQdGz0wVI37U7FFl1k8WR2NraQgScgFYFrBYVZvVwo5PnsrVRHb4oEDTRajwdj5tGhaHx8P59wdX/7H/+P/2zH/98tirDjp1mcVPBg8fhYp42/CqJOAiCKErQ26IOBACgMCLXbCaCFCOIMGUyK1mmBAMCoKaBgEguGi6VgrIsLQvXDWg3csbYfJZjjPdu7+Z5nGXl3q0d02C2ibKSP39xZNnk8jy+e/e269G8XAlZ2TZrd/zFtLm1NxhtdoPQSdOGN2hnt6Xd5rgU1FSj7TcuRDfXtTZJYQWYGdoktrr5bcqs27fu3Htwv9tui4YjpJqqXC6XWgXs+a4QYjQaGYZxcHAgpRgOh7PZ7NNPP53NZmVZagTQcZw4Tg9eHBrM3t3Za4X9nVt3fvCD3x+NttM039nc2traiqJVUWSUoOFwKKUMw3ZdVyCl5E27FfiOSxB2bTOKVprYlWWZBNAdqJSyLiutOB6NRto8Oc5Sx3HanY5QSChUcwmYIsKSrHC8YDpfag6j6dhFUSiMyrJMkoQYzHV9TEmal2mW50VZFBWmb7bCAOB4QVZUcZKF7U6cF5jQi4vxch11et1WpztfLi/GY9t1bdc9OTk7OjlGmDqeS5jZ7nb29veDILh7965hWU8//+zVq1fb29tZlhVFEScZMw1EcJKl3W7ftu2trS3NuOx0Osv1SiFSNcJy7E8//XSxWExns4PD17brjMdjw7Bu3dk/OT+bzGdFXlmWLaVar9eMmho0931/e3u7LAvdQ2GMtY+/LtZIXlU60zQBQP99rgGHqzHnZi7W5Y9cBxbfzEB6C6FhX6VUnudSylarpaHkqqqKPM3yJM/TssyrqiIYTMNAAHmalVVlmLZpWxoRHo+nWVHu7d/Rfx/dvCuldBWGaxakVk/yutZDdJZlSF3xivTvalRE7x88z9O3CgEipdT6paapGcFRtJa87vf7RVGUWe44VlFVjLHxZFaUAiHNIkbL5bqphWnapmk28s1uHWOcJIlt261W4NhWkVemaeqThhBQSum2dHungxFbrZYAGCF1eRFPZ5Phhml4ZRTD/cf7XCbz+QIwYETjiHtuazVHFOOyqAghH3z924cHFxJqHa69mKWdtu86xKTMMMyGN50eOznMHNsaDIy6qNqBt16vAcN8DvOx+ui3n56dRKNNTwmYzS80stHqBnlCOOer9aTIG8NETUn8wGEmN00ax0l/2D67PLVc68//4p//7//h/+neV/3JpIoiHnZ4pz20HawAhGgMEzPGoignBL9Jy3ur21JKScUBgBBk+yZCJItqh5kIATMNSg0EQkfsaJ4cRqDbbSklKJASFMCzZ88si9WVBAnD4cj1SFWpwbD9+WeHjuMVZeX7Tl3Xt++6ecaL1Gx46fj18xe/c2wTAS7rBSEKgKZJc3tv6869ztt1EP31vy3GGJqmkRy0WbS+eoONkotXr4+m87kQvCoy06A7W5ubG0OEdPKaPDp6vZxPXdcdX14eHByEYfjuu+/ev3+/rnkcx1LA+HLqOv7du/dHm9vMsAbD0XC4xRtZ5gUjtCjzyeVFEq3LsnBdx3Ft27JM0zQYoRi3w/D21k4arTutsKlqyeudra35dKrnvqDV0l72pmnWZW0wM/BD1/F4IxDgbq9fC6ENSMIw1Deltg5TSiFCdWuZlVXNRVaUXILj+oyxLCtqLmouy5rXnLfbba3x0len2z8+O0fMSLPi+PQsTfOqEbyRUqrJZNI0zcbGxtHR0ZMnX7Tb3Xe+8p5lWdE6sRzb8bzFYr5erz/99NOPP/74xYsXGxsbhNF1lFRcLBarqmrCsI0QMW3LdV3NdOn3+3GWgkJV3RimNb6cnJyf2bY9mcwwIoZhxUl26/Ztz/PqiudZOdrecf22H7aluDpgwzC0HXN/f+8m6mS9XhvMLIrK9/00TiilV/JkQrU3JairBR1CREed3NwxGlyG66EYX/OxdJtGCNESjiAIwjDUTZzruq5r62Aoz/PCMLQsR5cJKbmWr9i2TanBOb+8nOh/dZ7nURQFQSARcNHon6vh7BvvQt2cJtqH2Ha0BZzm2wNCmBLNwweMTNtipoEwJoTcLFUIRZZtAMgoWmFl2pY/mcSGYRmGSYmhJKlKgRXwJsdEHh+tbCu4uLwsqloI883p6DhFUTRNFQTBtSZaFEWxXnPbtvQes6oqSvHlxcJxnCwtTYu1wh6ATLKKWWW0hNl0AaSeTzljVELte8F6WU3GM0zUdDr/8svDphEP73/wez/62slpBIB4QxeLmee2gyBg1NzcCqQUTS2IMh3LsZ3asqx4RbHJXRfOTlaM2ZujnT/8m98XDZyfnxMDxSvR7qEskUpaq3XeansgPOYITOjO3mYtS9s143SWFhGh1vn0YrgdnJwv87xkQL76tVsHz4/Wq4KyRjeGegelR11dCa80vkIqpbiSQgiJAFHiBXaeNXUGBGEFUF+5CilKqT5/OeeMIf0Wcy4INTGhRVFcXFz0exuLxZoLZNv23q2NduAiXBvUT9OUMjAMY7mITbeQgqxW6XQcreNVlsdFUVFGqqqhDCmA2Syr6jpKT//N3vDNCSelBCUYAx36o6933n3/O9/73vd/+MMf/ehH77zzzqDX29wYmAY9PHj18vmzVy9eFmm2v3enFYSDXv973/vevTt7QRBsbGxcXl5ijDXjBAAMw5jNJpfj89evXz9//vzLL58evH55dnY6n46rqqAU7+/vEYrKKk+idV3XWRpjBZ1WsH/rViv0bYO1fE80da/boZhoBzDNlYnTFABs29bjdlYWnU5HgNJNQVmWGoXU4wzGuNvtFkVh23bNOTPNqmnKuqqapqxrTIkEpfmSSqkky+EtBfTNa3J6cZHkRdjunF5Oykaen10KIZbL5XK9tl2vEfLs4ny2mO9s77VbXcZMzAyu5PHx8Wef/+7l64Of/OWPo9XSd23XdSSSF+djYphVLWvOV1FUVZXv+0opwGi9Xt8EEyNK5qslMdiHv/7Vw4cPq6qyPddvhWcXF5RSIdTvPn+q7fUpsaJ1wrmcLTWWRVarRZIkWt6vlT/dbveGa63D0THGSCqtwyNIt2D4mqVMEEI6O0KKq2qoq4m2QlDXscV6baf3351OR68+qWFUvFFKhS3fDwMuVFU1jJqu61ZVAQC9Xs+27cViMZ/Pm5rHaR4GrW6n9+d//ueGZRVVqQ0g9PmnlNI6k5seUO9YbxaIWkltUHqzZ9T8GyGEbmkBAF+LUG3TUkoFnpMk0WoV97ujLAXBFcGsrLiUKM/qpmw6HWc4bFclROsyjivTsi7f2jq1221CcJZls9nkcrwwDEPnDTAG+qU2TVMqLoRYzNeWZUkJQjTrZYYx3r/bBhUoiT/+zauXX/IwNJuaE2Q+eDAsCyEg3rntx7G6/2BEMP1H//lfdDqt9766QQkpM5llYjZZFkVpEKNukjSpbMcAJLOUK6gREiAtQPCt776LqViv8vnilDFTKuA1w4iapnV+PouT0jBQGHSqOqsrMG05nURN0ziuP59Xg9GgahrP7/QHm9/+3j3bhKaBZCW67XC9bL721W9qEa9pGkmSwFv8TaUAKT0rXyG2XEqEgJmUmixaJEgBUgpjyLIMM0yuwqQAAG7WuxhrhSCP0zgtok6v0+q0m1pMJrOmafb2NgiWcRzH62K5WFsOjdPs4PXYdXzBYe8+O3xVOJYr+JVnRJHYiAA1VJHJyWU2uYzfLn83KoOraogxAJJ/LYEe4PDwOM1LALi8vDw+PlZKZUkyuTz3XPvxo0fvvPPO9vb2jRD46OC1Tnp68eKFXmavVhHnXC/dMFFCNK22F7ZcyzFt22h4IVW9Xq/H44uf/OQv14u5UmI8Hp+dnZimmaZpp9W+tbNLEb6zt2cbJlLQa3f0Ey6E0IYOujHUhNvBYKDtUmzbTrJUgMIYp3kx2tperNaIUGZaWVFiypIsr5pagmqaZh3HlNKsyKnBoiRpagEKK8DLxRpj3Ai5Wq3e1qK8fPVqY7QpAT17+eLw+GQVR1XVdPt9wzDG4/GrV6/W6/V7770XhmFd82fPXnz++edxHFNKq6pcLuf37t7pdDp5nm9sbGCM/TCom8awLMuyqqo6PD7W8+B0OtVm2jcTq+cFr18f9ft9bWEbRVHTiKqqTMdeLBYYY8dxkiydzReLxaqu+GKx0Mj+2dlZXZdKqV6vlySJHj8JIZZlmabpeV5VVZZlaVmxQZnOk1FKIUSufIzllRmJRuQxxm+bO9y0SDeLPNd1m6bR6BNCyPM8N/DhOrwJE1ZU9WKxcBwnDMMoirQXvP6qfr9369atuq4RYNO0tAW65/s3N6u69i7UUhNNgVTiymhHSok0y8c0uJKAsVAKMK6aBlGis6dvYB9KaZalpmlmeVKVwvfCXs/kXG8/zSSuMWN12WBo6iZ9/Gg/igvLJX4rdNw3e2RN5Or3+03TbGy09KwnhHAckmWZ9hnLcxlFCSGmUoCRVr7XVVVgLI9eZY6nzk4zxD2/LVpd0za2TTe5uLi4tRemRdwfEIzlcrlmhFxcjAkFLvh8VnS7vsGc1SpO0zT07ariZVkFgROv1nmqHJcpqKSAdXx+ay+sKqAm5EkTtmG9rMqyEajOU2g4OL4Yn3GEkISsLGUj0HIVYUwxhfc/+NpssRxfzj/+6JBQ2NpqJ3PYvbXp+eazJ9nhycdNDZTpEqYw1o5Y6GZ0wG8AComwwhQYY4jgNM0ZMgnCpgU6TgsTIISY5pUAtG7gZuaQICRSZVNUojo4eOUGflE0EsF4cooJ+AGi1Fou11tbW0JBq9MK/GHTNO9+baQEiZYyz7ge50+PM4QQMwUllmV0TePN5vdfI1kjhLCUEiH6r3ESXz378rPffAi8dlyr1Q4uJ+OsKEZbt7a2duLV8vz4yDIIL/MsidM4Mm3n4eN3e+2BxRwp1J07d3qDrukYAnhaRIjgsix15HEcx+skrRuBiJnXzeuT851b+9u7dwTHrVZ72OsvZ1PLsrbv3CG+/+43v93pDh3L3ej0Op7HIVGQD7oBqjluVD/o2KZTVk1/81Zei6Lhlu9OZtOg1ZkvoryUN8Yk+tEty1KXbIyp6/pZUeZllWR50wiDmk1RF1VeSV7xpmiavG7KquFS6VFRX7btI2b9+Gc/n4xnrmk/vHd/MBgQQiaTRbTOWu2N3VsPT07nr8/OCtG0et3bt+5sj7apQhZmt0Y7vu9KCbd275mms16vBS8JlovljDK8WC0vJxNFSJRl3f7AdlyMcVnWm5vbFxdjAHj27JlpOYBI3Yjj0yMJAlPquEFRNYbl1FwqREzPsTyvKOqW11GKmKb98uVzRJVl2L1OxyQkjdauaQSeK3nTNI1j26ZjV5InRa7rC2FUgGJAAKSiXBKhEAihhATmWIBpUTUIiH7sEUK2aWGAPM+TJMmyjJkGNRiXAhHMpWh4VZZlmuZZXOSZTh0o6zp3HMf3wzSrkrQ0TdeyHNcP2r3uxsZwtpxfTieGa5d1BYAYMkxs6vyvqqo8zwMpkygiCFGMCcFFkQMGDZ1VVWXaNsaYgcmAqIZjAMkbRjBFmFIDG0wgAohhQgFxy6bEIHGap8XScTuWDWm8aLVpU9F23/Fb5uk42t5+x/Xqy5PDnW1Urdnk4thz36yZmMmJXV9clqONDZMmt7c3O+3+YpW322GRquVkQcFAELruYL4oLM9HBo6yxm1ZQknK7E5bRWuThbBxC1bnXttyf+8PBy8OllFi7951mAkMtS5Olz//xRduWyCLK14pkHfeNYebbdvjdYYpZZfjvFHgmABV8/ju/XQFeaaoW0HJ4mi5nHEQBuL9hhwgQFKAw0zLcoQCxWFrjywWMUHUYY4s4fZOpyqDOJ289yDYHfWTQv7qo+O/8cN7i8kF1JJIfP/d6he/eKVI/fEv51ha/aE7n88ZsaWgABIQF0IQwgRICdgybKKUSc2iwMS0rH6F5n5VCOSKHHKmmI0sjNOkMjEqKYG6FJQaJiMEA8XId+yqAlDeYp5ixU1EQ9diJqwjOdgY1by8fWcPcJZnwEWxuBRIccJyIcRkHO/eGk0nRZ6YdQnMVm6Iv/GtD0wDVsuSi5V4QzcEpQSlV6AcIUwphDWTjGC4yUgBAL/dcbwgzct+v+/7vlZBJ+vV8y++NAzjhz/8vvYKdF13a2trb2/PcZxG1IbFwjA8Pj4+Pj7WRNyiqJaLVavVsm13Y2Nzd/d2p90Nw7ZSqtPp/vEf/8mdO3cAySyPL8cndZP5obE52vM7G4HfcVsdxli7HYYtd2PUs7HVdsNu0ALFTYclZbrKEkmQDsPt9XppmguFdDd3o1HVC35KqeblUEq5UArwbL50XD8vKmZYWV42XOZVqccrCYo3AiGEEWVvEczCMByPx+Px+Otf//qjR4+0I160WhuGMRqNDIp/+9GvJa/b7baOTxBCvHr16uxyXFUVJjTLst3d3bouj46O5rNlq9WZzRatsBMnmWVZmjiSZVme50Lyqiosy9K5Wk+ePPE87+HDh5rXsjnallKu1+vZbLa1td1qtbV3IUEIY5TnGcb40aNHV1AD55ZlWYbpeR7GqBWEnmtrSopl2xhjLq9KmzbCwteG0nBtgamU0kwm3TmWZan/gN6LNU3DeYMxcl2HMdo0dVHk6/VqvV5NJhMt45PoSvanv5U2idFdc7vdZoxFUaQPS8340YPtzaEtpdRou969aBgHAK4TC674fVdQDyFNozPnr75W3wPX+IrUX845pxRLyTmv5/OpYVApFUYGJQavG4sxgiVjcHBw6NjtbrejJHNcVhaVgjczlJIkT5rJOKorEfi9g1fnFxcXfsDGF0ngm14oizIBrPyQSAFFfYmxwShLsuzkteh0BgiIqMS9uwPbFa7bGEZNKJSJaZgYFFMCFNS7t3uSg0l6OsgXIbScNYG7GYS2Zau6kkhZ3R5GypJKBV2KEY2jglAAigm2EBZBC89msw9/9nxjY4OZICV0Ohgac7DJEDitNvNaCmMbAFarlR84RSbXK3VyvHz+6rlQHDP+ta9+4+WLiDDl2r3xRUJUhxmwsV02tWwa2fDGtmwpwTSvwgt1b9c0DWAQsrEsE0AGfmu5XFIKpmkjBFwKziWmFGOMEQFAunfWw4d+Q1stdz5LA79l267nuXmWtlqeYRiUGFIgrZkKA68s8zyvNzc3jo/GVSnGk3WcntsOTMeJ4OjxV4amRT777KnnecMNC4DH8Zu+T8OJGh6UkgMARgqkEP9ab/jOe+9/7RvfCNvtqubbO7e+8Y1v9Pu9/Tu3/+Yf/sEPf/jD+Xz+4sULbYKUJMnR0dHZ2dknn3787PmXZVUwRkaj0fhy6jjOZDLRNqiO688Xqw8//PAXv/jl5eVYScQYe/ny5V/9/Gc///nPz8+P2x2fQ7VYz4uKr2ZLAFQmyXBzuLWzubd/i9pGYIbvP36/3+4oaOqm4IoXZemGLSW5jsVYx7Ft26enp8PhcDabaKK1BkzjONaj4vXoWmlUQRcCDRw0jTAMA2GCMS7riktVNXXd/DUM8ej1QRiGo2Ff8hqQREiNRqN2O+S8ns1mP/ju9zY2Nk6Ojtthq9fpnpyclE0dtlrbuzte4G/tbFKKP/zwwyRJdnZ2irJUgBHCeqarG5FmBcbYNo2mKmeTie5q9XRsmuZ6vT4+PtaP9Wy6AIUxokEQIITquhFC2o4pmopLUQvOqOm6vucF8SrWy4QgCALPE7IZ9rqdVui7DmPMYBYoTMjVoo1zXnOBr21mMAZ5rTZVSukXTWsf9S4Prgci/UreGHkBgGVZu7u7w+EwCAK99dNzruM4COOiLB3H0apHfpPfRKlecervrJ1v8LWJv/5AlzT9Iuh3EAB43cB1/pmWzCt0xQzXjl3yqjICKIwxZowqJRkjgJSQfLmaZvl6e3tXCiIbuZgtDWp0Aufe/juLxcp3B9u3hwgswGI2Lwz2Jk/ZNFzLDJQASgzLdAlYdVltjsIsUYS4htvMV0sAuVqODQMsRtM0JYS5JmWUPf3dy/WiBoDFdDno+UWZ/d6Pvnl0cLiaq8l4gTAvCpASDBMohdPj9cGLmeCEEKKE+5f/8uPZfAVYScHide24rGrI5eXq9t2B3/KXy6zbsgA4AsO0KKYlIIgWrCxktw8Iofl8bZsWJurg5azdNU2LNSIxDJws/DjK3NC682Dzw4/+7PbdoWHDr35x/B/9R/+Mc9wfKc8dZSnnsv47f+eHf/Qn766WhRSAAJVlCQBVKRgjSgn9yUY0GCMphWlhyhDD7GbTxfnVkWaYtGpKhDACwiUoBQoh3ijOlZAgeWOZaDyegNSk4EoqsY7T518cIGVMx5NOx26qRgnZamGMVJGLJC63d+ygDX6IRUOqAoYbHctiWVrmWR2EluvZmlRw80zrOx9feV/Lq36QEPy2v+EXXz6fzla1VFyqTz//3bNnzzqdTl3XVVUcHR2VZfmtb31jOByu18vZbJak8eHhYdAOHr3zSICglF5cXAghXr442N7adRznFx/+6s///M9/9avf8Ebeu/dga3MHU/ry5YunT59kWbYxGgVBp8ib5SIBxRzHXi4XdV1Jya1WW0oQCgOie3fue36AGU3jiGLpmoyAgkZoGe98vgTARVEx07JtO1qvGWOtVsswjLquKaW241FmNlwKBfPlquaiqGouVdXwrCiFgoZzQpkABZjWXFZCZlWVl28w5eVyWTVcB3EdHx9LKQeDQRD4nudxznd2ti4uLg4OXhqGcXp6enl52Wq1+v3+/v6+5XiIkNls9qd/+qdhp/2Vx++6rjufLz0viOOUS8jLWofJgVSEkGi1UoLreOiiKAghQRD4vq8x0ywrLMvp9XpxHNc1z7JCW+9MJpemaR4fH2oTnSzLHj58GMcpxliIxjYNSjFI2WmH7z1+YBDQ8AJjrBFcE1wwxtoSRkqprhZyXCcsah+Eqqo0qfAG5IVr2xiNXWj2ted5rVYriuPlcjmfz5MkaaTQYItpmlICQqTb7RqGsVithBCe51JKbjz6NaSuV42MMaEQXCte9FDDOYdruAzkFaSjF4KEEC6vjMjwVbjo9aYcCKWGEMJ2TF0KKcUYA1cyiudZWuRpPej1iwyqou51WwcHh0HLlgKPJydZWgdBkCVQ5m8mZYxxHKV1DQiruq4pE3XNizLLM57nuecFRW7UonTslmkDBh8Qp0wt57zbN8YXRbfb3t5pzS74qy+moxF0wtaXT8dpls6nQuHVvYdeEnHeYNcHSmFyLpVwOa+ztIjW9cOHO/2+KzjKc9k0DTPU/r3dVqdVy3VeqnjNfR82NgZxlJUV9IeE18bpybSqIGwZ3/32Y8clWQSgoObp8etU4cyx21JEiGZbm7vPvzjvdvYUEGIBNQ1eeGUtv/cH+y+fjyk1FEr8kP7qZ4d65DQMQ4Gi1ACA67USVqAwRphSRAFQFQROtM6LkmOMpQDdBtacY0IUKO2oIhXUvBFccQVSAOeSIHR75zaS5Px8MZ/P+/1+Xde/+2RclTJPRbvdBpBl3mRJ/s5XHmIkW21HSWYZIReq3TXanZA36ounB2WVh0EXIUwZYozy5u1q+Mb09+o9NQztZyff9jcEJIuqRJgSZmxtbksEh4eHRZEvl0s/cHu93nK5nE6n9PqybPPi4mI6nbquKxFsbW0hhO7du+d53i8+/NV4PA6C1vb29sbm1mq9Pjs7m06nhkEfPXrgui5C1DAdStyt0d1+d3e5Pie4rHlS5PHi5EQIZVutYX/X63e279xeLJe37+xZ1OBFtb+1RTnnVb1YLLIsY4ydX17cvXv3/Py83W77vl+WpX5O4iQzDMP3/TiOhYKsKBshFcIaWtG/KqUaKaqaK4QbIblUEmjz1kuyWK5brVan1//ok89GWzt37txpt9vrOF4ul4ZhlA1fJ7HCpCxLQuj+vXtZkbuOr/0mTk9PP/roI9f3dnZ2srK4vJzkee44juM4GOP1eh0EQVmWOsFKgxu6/M3n8+Fw6Pu+di5YrVa9Xq/VapVlubu7CwAHBwfb29tlWV6cns1mM8MwRlubFW/09sCgbDqdGoaxtbUVeD4j6PL8fLQx2NkcAQCXQs+khmEhRAi7cjbUYRH6V91/aTyXc+66rh5ktExYo9L60goTLVbRdgkKwLLtbre7sbHR6naYZep2UgNHy2gN1yBMURQ3e17yVhiexr4xpvItLAUppb2jGaE3kA4hBDBSCJSSSl3hKrpAa769vhPqpmSMWTblvCYEUUo3t4braOr7/nwW/9Ef/VFZQFmos7Pzi4usrIq8iDHGq1VZlbId9o6O32TmmRYjhPT7ZqflBp7jt1HQ8tdRVUugTCVrmJw3UcTLQiGFGLMD12FE1Q0EvnVrr2Uwe/u2Y7LWYoL//X/wD16+OBOKmTZs73Rt22YGKspitVr1BubmVvfyvPzy6RkzUC34nTs7GJndzihNEsdFq4Xsj6ysyj/69JnTJggBUgHn4umXr7797e9aJulvmN1e4LltXsN0HiMwhEBSEYNZCJjnhEgBL+utnXYrJEmSMdNI84wxOwyd1awkVsoMsK3wX/3sGef1cMSWi/XkXGJMMcZVnQFouhWuqooxor0bMAbOJWAQiPf63dUyhas8CUIwSCmTpFRKYYq5lIZhIICm1uccYIw450VRASCCmetYTdOcnp52OwPbBcNw1qtma2tkmCjPJWMGwo0QQkEeBOF62aQJWI4SKgYgJ4e16wRRFFVVuVyuLMty7DdK82v8+k3QGK5rDoAZo+jN2hCi1fLp06fHx8dJkhRV+e1vfecb3/q2adtBK1wsFg2vRqPRcKO/Xq+l5Mvl8uzs7Pbe3fe++vUoSi4vJ+sk1XaET58+ffyVh9/85jd93zVN07bNJEmyssiy7Hx8eTGZ6qnK99qtdt/3Q8YsJQrTwErU8XoVrZd5mhFCGLU7o95kMb21d9t3gywr7t/Z77c6VErDMHTIVFHWlBhSQBzH3XZHk1SyLNMTqEJ4MpsDJlxCWXPDcrgETI2qEYCpUAgzVjeiqhohoap5lpe1kI14s0HggNu94Sef/m5795bv+zWXUZzOl0vLdi8m0y+efZnl5XyxcjzvnffeffXqVa/Xt237yZMvDg4Onj19Ztvud7/7faWQEMJ2HW1Ok+W5aCqkRJZldV1XTV2WJWHM9QOdjJrnebvdvjGC3Nra2tgYLJfz27dvc84PDl7euXMbY/zkyZMgaM3n8+9853uu647HY70cbHg1Hl8EQUAxbI2GjOJ4vSySZNBtU8MUQgglr/yyQOls+CvxCUhAihB0Q8BW10phuB5LtU4OYQVI1k0pJVdKNE0lRFMUme/7nufZto0JqaoqSZIoiqI0qaqKELKM1nmedzody7LysgCMdOeoa+4Niq03fZqEoTeV6hrO1gP7mzsb1M2aGGMsQPJrVQzGGK69RwFASk4plZJrOjpwuByfua5bN/yv/tVP+0M7jrkCGrYRb6BqilarR01YLuJ2u62aNz+xyjMMRIFYrWf9fi+vykYWsxlHAK5nHry85BXs7w3jeMlwG5G0qVVZ8N4Q8kyFLevg4GIyP43jtN/b/vr73//lL58Zhl1xaHeZ7+wUmewNqGkyg3lVnXW6plLQ1Oq9r26+Ojg9PbnMsgQQFxzyFLhMLM/86ONnpm0gCklc7O0N9/f7h4evTMPzfDPJxgpKgzkbI/bTH386vcyZWRd1U2X29nY/XaGyTN59913G2GoVVXzpuFVVFdCI0PN/+IfDD75x/8f/4iAIDd8PF/Pmxz/5RHMNbNtstT0AWde1Rh2a5urd4ULVXHAOzADDoGnSUAJCaKopKIyFAh28oQXpCECBxBhjBFdB2Bxevnptm+56UW5t7p6f5wjY5sbW2fklJjjJYtsxqhrCoF03RdNUUjV5kVBqmAYkcVXWNSYgOVqvirLK/cAuC0jiMsuTt3tDfT/rexuha1tDIYR6a3eIFMcYT6aX0/msLMt/9t/8v/7yL/8yaHWEQvfu3QuC4IsvvvjNb37DGPM8T+MDX3//Wz/5yV89/eK5bTlN0wihptPp3q3b0+m0rHJEieVaWZa5nr25uTEcDt//2jd63f7tO/t7e3vdXriOpk+ffXJ89gIpupguLk5OleT9bgupBoNwfCObXYaOw6v6+Pj0R7//N9vdfpQnHHGllGNajLH1Our3B5PJJAgC3WJcG9Cb+gkEAMIMPfTpR+taOUCSJFEIiqJoBBegyoav4iQrizR7wy8L290ky8u6aXd6cZq9eHnw7MULoeD5qwOEqWHalmP3h4OgFT5/+aI/HKRp+umnn87n8ziOh8PhH/yNv1nklWVZhLDFYlHxpuKV69m8rm3TDHz38uIsCIIvn7948OixH4Y65WM4HGrnAm1nqynECsR0Ns6LNAzDLMu++OLpnTt7vU7/1q29MAyLosAUxVlsW0ZZ5p7nKaUWi4Xrutujzdu3djASi9mEEEKpoccWXXQAdIocu6mAGOOmqfRfQE/B+iXVVcZ1XT0y34zJUkp9CGk3LR2Iqpe2uk+3LCsv67LmUoBtucwgZV3oVkKnX+kgdi0W1N8ZXcP6nHNtWkMp1QoH3aUSQiRceZHpXTaiBADkdRzaVVoAVlJxyzKqqtDB8NocmzHLMPAH33h/f39/tpxZjruY59NFGq2UY/brpjw5Gd+67RuWKUmOjTfDQl3zquRlzqfT9e7urSK3alnXDWBsJXERr8pu10QKb44GhknSZC1V3TQcJKxXcbyO2x03TaTjog++dft3nz6fTpOwwwDDF1+MX3w57naHQoh4LZMkyYq03Rp89/uP9BixMbKKorhztw8E6pL1uj3P8/JixUzDMNu2gwAV60WeZ5yaWZ6nq2Vqu5irnFGzqbDnBUVdKIyCFjk/iU+OjhnQD97f9FpZkq6XU1lmiDfs8MW5H8i/9bfvYCIQzsvM6A2csuK8QQqg4gohRBne37/NjCtfD8OwAIFSEiEQAMxkmEG370dRVObKti3OeVMLzgEUphQIIVwqBRJACgCMETawfuMkKD8gAJAmpW0ZhwdHf/Cjb754fjK+XHGpqGGNZxNMFaMAmPi+63lBpz1seMplgpSRJcAoUko1lWoqqpTmL0KRc9N6wxJ5GzfWNRFfe9r8NRPE2eXFxeXZdDo9OTpcrVaLxSIvq8Pjo+ls8fnnn//ud7/Tli1SyrOzs3v39lut1l/+9K+ePvkSI5qmeRi0GGN7e3saby3LEiElpTw7P9GT0enpyZ/9i58MBpuMmZ9//rvffvThJ5/+cjI9nsyOsrTy/XaWFUWaXJ6fUQJRPDs5eb6eTlRdZOv4b/3df9d1PYkQNhlxWJZl2t5Vc0QMw3BtR5OBdZtQ17UGB/Ky0lt2z/PKsmy1Whqv1P1IWZZpnukllJAyL4qqavLqjZOFQvjFq9dhGJZ1c/D66PT8zHKc+Wzph8F4OkGEEma4fsClNCxrPB6fnp+dnJy02+293b1vfuMbRVGVZZVnxXK5DMNwsVhoxZjByN27d1+9etVqtaIo2tjY6PcGtu3qUmJZFsY4CILLy0sAGA6Hv/3o177v68pomoYQnBDS7XYJocPBRp4Vl5eXe3t7YRgeHR0Nen0d/heGISFoe3sz9NzhcLheLfRiTqPJZVnqvZs+Ia57LglwlWqiP+m6rna+0Ggyunbb115eWpcG1942eoWi9cWWbevUOv2mVFVFKdXnaJ7nhmHkeX5T2m4wZQ3L6HJ285mrOVoqdG3HhK8tbW46SnhLw6fBZX32Sykdx66bCgBM09RTkRRg2/aTJ0/W67Xvu6t1DGAMN3ZMwz4/W0opHTscbIRCCGo0OlBQX+tVLCXu9zsIABRezKDmQDDF4GZZ8+57d77zvcfL2SLLsorPkLKD0AxCwzFbvYE7ucwxM9IUnAB+7288/Ef/9/+SUafiCxBAEEwmkzB0JbeefJq88+49vw0HL8btHjOYMxnn/UHX862snNzetxR31usoSWrLJZ1e6+Rw7noeInB5ntQlunN3A5BIk4YxMtiEoswQ2FHUtLpQl6QRNQAkkRxtBf/9f+/f+ei3Tyn2DMMO2ti0cgVwa2f09Mln5we146HFckbNTEppe6SsoShMQlAUZWkW93odXT3qutYkVMYQQhCGoeNYg2F/tVpxrnOjFKVUIdBZDggpSrUTolDXb73QeBcoKSUBVJb1e+99zTTt8/PL4WAjz2rbddK8WCzT2/u3Gw6+H56cnQJClhnef3hLqFQpxYhfFcAYIxSUZEUJQeh4rpMmpZRvPdFKaatjANAJjtqzSWp66s01WZd5qhpuJAUGGv7wR3/y3e/83lfuP94eDriUG5ub733tq77XlgLt3r7X625lCX/x+lnYa5VNvbm1M9gYJVneG250NzaqrBBVs9UfHr98eW9vnxE6my2Y6fwP//7fc13zpz/+syeff/TqxXOTWYw4o+EdyzEPjg7SJDcsb+vWbWpZZV74zGoUqiR6/wc/BCVPxhfMoGW89gnGSJgWO7s4pbbBpRRKIkwty7Itz2B2lleO4xqUMkIwqGi1BEyqhmPK4jS7VuYphTBvoMoam9lY4VrwOM8rKflbk/KLlweNVL2tW7/67HfPT8+p5x+ennElleCuZdqmgTGuuUiyfDKbP3vxajyd3r1/786dOxtbm1VdF2myWk4uxye2zaIospg56A5c2+6GwXRyiTHGhP36Nx/t3bmb5yVCOPBbeqHW6XRWq4Vp0Fbojy/PCWZ7t/cNajJCm4ZbzLx/9+50PLZ9V2GYLmbbu7uGYREg3dbg3p0Hqs46rSBKCi/obQxGnU7PcX07aM9WawTYJKZBqGnYRVlqjkmtSqkocIYxBgIIW6ZpMdzUnCdZZjmOHpglQJymQimDWVJAw2UjVcUbwzB40ygpBedlUVRlmaUpb5q65pQapmkXTZMVuWEYIDnDxGYGb5q6bLQ1Q9PUjBAlZJkXVZlbpkmUlFVjECo4Mg27EWK5XAqF0jynGFuG4buuqOqqKLU0/lpKLAEkoRhjisCkxJaCeJ5tOnWUjNfJ2rQdAVXYRU0jn3y6tGzSG1lVbr3/rdbuHqnS+c5dG1GxnlhSTJuCKJVhFfhvi1xRHSe1VCjowmqR+H7ik45ve5QuGIUf/fCPbLqVZfWwfa+IaVmgzkDVJS3qmBIbqVavz33WvXfHvDxNf/mb4862ipYEKQj7gNRoFZ+2up6SUFZxEWOMUJUaX33fqyPIIhMh99kTdX9/z/XXTdbwEhnEy5OYV5WBGkJBIaiSYjlZBi2oCi9NMMaU2XV/aFUlZgbwijMMjgeWGf6dP/4Hnz//JK1LLxzm9UQ2Dkbd0XaQ180qRt7QPT+pkAADCaZaAjgDH0EqBfN9+/D1ycN7u5RKhDgAVhIDNABudwjUm3c6O4oeLya1hQzFhWwgKQulgNoVr4kUpmkCRqSoE4WAAyG4wgqQMqsGmKEsy4qjGtN8/2Hn4NX0+dM1ItxiUlQqmaCjl6dbuwCo+PyjijBjvrpIY1FnhuOgmlvSVIo1QrEsTaH2FFBFqvEkW07e5KIQgvRyHCGku0HKGKkF1DVHb2HKZVneefiVB48ejba2KaWGQVVTKyls3zODQCk1nc6JaT54/BXKzGfPnk2n81bYUVISQoabo8PXh61WJ/DDw6PXvu/fu3fvyZMnvV5vd3f3xYsX9+7d63a7T58+ff7lF7vbo6++9w6lOM/L1To+Pj5mCEaj0b179xBhGpbp93unp2ejzW2JSZ5EthtgTNutMInWGKkw5FEULRaL3Vt7GOM8z1tBOJ2tKs5brZbuWTClXErbtnVyiEaR9O5fE7Nt266u28ArjRGCmjeYvOmlozT54GvvX15eHh+d9vodKSWXav/WznK5RlgWRakQni2W4/GYMTYabnieo03GkiRpyiKNF6Zp6slX96d5njLTXa9W29u7rhfM5hPd41iWkcQIE2i320oprb5wHOf09JRzPhqNiqLIsqzX6xiGMdzcUkqto5XvuqfHx1s7O7ZpXl6eb2xsbG6Mnn3x5bBlm5YNkjOCKKWddhgX9XK5bLfbrw8OiWEihMIwzMtMt2xXwykSup3nXCoFSgnPC7Vqu67r9Xp9JbPHWDvfKASqaTQ7R0/NmlKj9Y76O2tUmivsOc4VuhXHevrWYXt5nut+OYria9pTpf2qOeeGQSmlWc5N09zb23v16pV+JXVvqEkb4tr4EkASwkAhKaU2zkEKFXns+Y7vOrxuolVMEGkqDlL8W//2H67WS0zAcazpvN7e7hwfn6eLfGtz5/TsdHTLpcDSGFmW1e290fITikwTJ0nSHYJpmmErqESxmDW9obMsedC2/vzPfz7aCYFE1OSGqTY2Nix7XtVyMRvfuzsq82gxW/zoDx+cnE4YJbWsEUFIoapQZTxbzPDt27fbnaUU5TqWYWCenkwfvfPgd5+Pp/NDxszVunTsOwQDEKgFxwahJsoLqCoGqAFMEFDfay+/XHk2ysvSLKDf2zg7G3e7re6omyzq2TjZvcW+893tn/7sv/2rH7/46ne6RZkgAhjxyXjaiDRsufcf7uze3vvwL366tdnHUJYi3u45VZFTgjGVaVwZJrx6ffzOO/c//ewFYaAkoRhVdXr7zojXbLF6edvcr6sDrGoN+wMGAISxvCa1AGMMU4Hx1YKFYK6UkgryHBjGGMN8FlGbNRWn1MImoZT4IdjMUVC4nnVxvrBt+5e/eNLuOLOLxe6eMb6s8yLCBJpEOg7NE5UkqR0blm0+fjz84ndT+OvXtWwGEEK4aQQopTcpN3/i3/+f/I+//f3vYIP+83/xp//xf/qf/ON/9s/+u5/85De/+7xAyG61K0CGF2zdul1LNZ5Nx7N5xRtK6XIVddq9JM0FqFt7t/M8xxj3Bv3nL19kRf69732vLMv9/X1K6c9+9rPZbPZHf/RH3/3u94uyPjg4fH14zLkMWu3b+3du799ZxdFiNnFtM0/TxWzW73Y83ymLwjRNhGFjc0RNY+/OPcP2NIpiUFZVVcNrShmXIk4SUFgKUIhwCU0jqqphpqXQVYbkdZ8spJTa/R8QMSwTUyJ18J4UaZHzt/YHpmE1Urw4eM2VtEwnz0vLsrKiXEcJIoQaxng8XS6XDx480JC65wVCiNVqlabx+cWp53n9fl8Xbr0TRAB1mT9+/Liua9u0iiwHJeI4jqJouVpJKTc3N3UOXJYVGl3t9Xr9Xm+5WHieJ4TY39/vDvoY41bYbqqaINwKgtVqMewPNjY313HUHw19xwWAXq9T5hnBoAW/y/VaCwGllEmaA0atVkcpdWOLoJS4NnzFSinBpeb9FUWRJImm5gCA67oASNNiiqLQNEA9sd6ksHY6Hd/3tYxSO+bqZa5WnWu2GiHkaihGKE3Tuq455/oHSc4ZxVI0CEBJLrko60qCiOK4bErXtdvt9mAw0FYReqjXK1FN0LlhRBIq2p3g5asXGxuD4XCoyeQAeDKf5M0qWuecN01TuE5bqXWv40RrODtfhB2YL7KsiONISsWbt3yegKB2O+x0WgiAMiYVnUwLBUxKyQVwUealMi18NjnwPNrUanJRKIXKEnZv2XfujuqCdnvs3Xff/fijzxshEQHMlFQsizFgvpg2lNbbu31A8v0PwrJKTo4v2+1+u2N1+15Vl6YFSVy0WwGmVlFXXNW25yOMslwJTkDI+SJpdUb37oeGQRwX93rd1TKTCitICZZlXvX7zje/89X5avzL374Qik0nUVmmjguE1VWpet3BbDbrD50vnhxIAYSK9ZJTWtUVDkIXYeWH1PPMuoI4Krd3Rl4AGHEpRNOID769W2Z4a9frD9qrRYqEbTlXtxZCWAqQEvQNxhhSXOnYACkAFKIUAQDC4DhgWQYg/OL56e1bD+paVlVepCJNs17fZMzY3G55vrVapoZJoiWcvMpv3W7d3d8iCNmOaRuIGoSQmlIMEoqsVgLPJlPxlvf1v3npWCvQbIabz3700UeLxSKO17PZbDabff755x/+6td/9ud/+f/4x//VP/mn//zDX31ycj5+9vL1r3770aeffV5W1WC4MZstNzZG6zh+/vyFZbtF1cRxujEcSQGu49/dv88Mq6hKz/Mmk8nDhw//3t/7e7PZ7L/8p//VfL4sSl4UVSPkYLCxs7MzmUyWy2XFmyhNHMcaDvtlmZ+cnLiujRAq8jzPcy8Iw07b9QPXchez+dbWluSCV7UXBJyLvCxNx86rEgBq3lRN3Qh+bY9xla+mrQp0b8g5x8wwTFPjmAAglEyzon7rtTMs8/jkNE7STqcHhCrAVc1PTs/TPK+5HI+nSZbu7u7Opou64qPRqNfraX+zOI63tra2tram06lQcOfuPS6UDjnZGm2ulpE2y6nramtrizfV+fiSMTYYDLIsa7Vaz58/F0KUZe267mg0YoxwXvu+2+/3hRBxHG/t7jDLZJju7OysFsut0WYYhgDQ7nb7wyFjjCA8Gm5IxcsyRxgv1/E6zpVSzDJ1V7VcLi3XCcO2lCDE1SEB18JegpleKS6Xy5s+znXdMAyrqpJSAiAdnUwp1Zu4pmm0pFoHct5AHDfn0M1iFwB0R6lroq7+lBKEoK6rLEul4pQSxqhhUEJIEPi2bUZRtLO7tbGx0e51DeMKINbdqGbqIMBKwg0uKERjUOS75u72RpZE3VZoMaPf6ctGOp6dFsskLbWyWNaKUC5k3e7aaZRv7WxWFSBWd7qhUlzyN7NCkiRCNoQiBGZZlllaEQamBatVaVjqp3/1W6XEaGuj191E2E4i9cufj5fzotfypCDji0me8AePdj0vePFyCupKg0EIk7Xx7nt3sgQwBsbQdKI9OIxWJxhPp5bNCGaE0cePH67Xa8tUogbTNLECUVeyVrysApdZtvD83i9+/lGSFFLVUsmqbMYXieuEFFiVcwn1aMcUHD39LM5TZDkiiVFVNaPRBiEwn2a7O/cWc769PTg7miAF9+7fzlNEDS45U0rYtgGQV3VlW34cF0+/fPKDH36z4cBMfGuvGyVT27az4tIynZOjFQIk3ypBXErONXtUWJYhtPYT9I2nACMBijIMGGGKbdvBYH/4rz4BgJ1bo3bfare7rVYrTXPAhVSVbbmOp1zXKnPiB07dFKZp3d+/Y1sWVjAcepzX3/72t4sC8qwYj7Nut/v/tTfU7SFWCgBjIdTbbq+ffv67D3/28w9/9uHp4UnoBLISRZxXeTW9nK6i+NmLl89evHz65bPVah2223v7+ydnp0mcddq9NC8lJmVdSymPTo4554CJ47ntdptS2u30J7NpGIaO4/yTf/JPfvzTv2q3OlXD/bD1lXffe/zOu5iSL778Mi8KwzS5EISQWvDz8WUjRdhuc85fPn82HV8O+h1sGsvlMkkSKWWe54Nuz/VsbaZSVE1Zcx1YTplpMEtbHOZlzUxbk7E10/gm8+h61CKcc85r3U2UTc3lm+YwL2suwbIcqXCalS8OXlVcDEebpusJCVGcDofDPM+DINje3o6i5PT0dL1eM0Z2dnaUUlo/1+v1JtNp0zR3797FSq4WM8aYZZjr5bzTDj3HqarKMIxWt1cUWZrGx8fHcG21sLGxSQgrimJra8u2bSHEfD7X9qKtVuvewweGYezt3dIe3dPptGrqrCiDILRtmxnEsqwkSYKgdXp2uYozhZHmWrfb7brmSZw5jsMMQ3PHlFKAJLpOExVC6X2CPjW1Z0wcx2+zDhk1bNu+clWoeJFXpmH7XggKF3kFCruOr5ehms5tmqZGq3UpDH1fcl4VhWUYBCGD0tD318t1FkdZEinRUEowRr7vdzodqbgfuBJElmXj2XS6mEfxSithOOcYEYyxLoUGs7RUqW5yLkop+ebmSEr59Okzx3EYNSmli8XqmtQNnU6PMVNJRGlBmPX6+RikWRSJH5J4PW8q8tZThBWCxWppUD9JkjAMbdMlrFLCbngzG1d7+0ODOWVZZmmRxIVt2q5PW62WYVDHpY5r9/r+eLySAkzHnk8VKBA8l0IkyRwAz6ZxUaaKOwRoU6NG5fPl4v0Pvn58slxc8ufPX2VZ9t3vvwuKu8y0DRuEZAjqoum2jLu3h1GcXo7LJKodx9rdHnJ+ZdYihambL0LIJ5++XC4wSKsRcr1olDLn08yynDSGL7942Q68OEqn4wYADIMsVnnQsouiOTrKXNtstd3t7Y1Wq6UAH75eYIwHQ0Nwvndn49WzsjdSy0VmWXh6pgwrR4IYBtOzAkFX6ZxCCMqwnkoxvEl3kIpTihGQ5XK5jtOyELPJSggQvCSATk8WR4eTVtjxAzvPi0bkjYgR5krh2TQuci6liJNFEhd1JYLAQQiqMtvcCJdL8e1vP8Z/DUb+N3pDACAIU0b4W73h937w/fU6ZoT0wvbWxmhruEkx4XWzuTGyTXN3e1txFS2j7a3dPCufffni4NXh9vbu8dm5ECoIAgkAiDRNkyQZNQ3fD6fzxfnlhRYLc84/++yz2Wy2s7MjhFIKJUnGBTo5PedCBZ2exLTgfJ2kZ+PJZDoHRLZ3dpIkmc1mnW6r2wmyOPrkFz/74slnR68PXr169ej+gyAIKCZhGCZJluWl57fzqi4bTgwTM0NDWDUXrh9onsdN0i5CSEcOObZrUAZa2U+oaZqcy7J+c6gRZhiGVdY8SrJ1nLpe0B8Ml3F2cja+mEwt1wuDtubBnJ6e6nnw1q1blmXF8drz3Pl83h8OkiQZj6dBECRJ8vr16zD0+/1+WZahH/iO2/CKEKxtuObz+fn5uXYGFELo6dtxnKasRoOhtooZDocIkSwrDMM6PTkPgvD8/Nw2zHi1bnfCq1ARwEICwYxznhX52XhyPplzRaMochyHMFoURRAERVGkWeE4Hlx7Mckrvp7S/6tZPjqMKYoibeivMeU3sjmh9EnDGOt2u3pnKoTodDq689JIuoawNYZ4A1jrT+rZnFIsRIMxBIEDSlR1xnmNQTa8yvJEyKZpmrIpV1GUZHHTVJZlOY6jvw+jmgNuEcI0sm0YBjNIqxW2260wDBbL2fMXXwaBaxjGo8cPLs/X0aKIo5WS2DTdoi7SWClJ+13TtfBiIn03qErZ7lqGYXjeG+6ubfmgMMawjguEwfXs1aRyfWwZZlEAlvZgw3796giwimL+9W897vXDVo9Ts1iu1hub4dbOQOLm6ReHCFNEADjs7Aw9DxBGBrNchx68WO7f2cSKGSZVshqPi8PXZ0qJMgfD8pOYT8ZLQlXLxxajwFGyTLe32h98sBMGzrNn47woPd+qKjg9XeZFVuQNIVhhkRXFxlYbYTg/LiS3G5EDKijqALA4Kl13EEcZJVa305IC5XlFMHS7QZrFpokZY1XZbG+1Vqs1VhhAzhZjhJBlko8/+vzb3/7m3fu9Z89fmwYImd6+ffvyLAOQWIHu2W8mAMYAIZBKUErgmt8qleQKCEEKFDFIknBCUeDZRVGHYQgIJpNVnhf3H2zHayjK2LbtPINW2zFN6noG0CZLjCzDg2ErSVdCgOO6RVHZFjx/+eSrX3v3+997fH5xom2T3r7elqNgAiCuR5ib6+7duzWXiLCw010uVhjj0caGaRiz6Vg1YtjtjzYGrTAsiuLw8LBpRG+40W5386zkQq3WcVU1p+dne7f3CSEnx6dl3Wxtbfl+qO2qdE0Mw7Db7faHAynhwcPH/X6/3x9+9Olnnz55enh8cn5xOZ5MLy7Hs+Xi7PLiL3/6V59//nlZ5ryusiT++De/jFfL6eTy8uIEA/n6179umQxjXJdVkiS14I7vabs63kguVFk1gisEhBkWuvZwhusZTVdDy3IAEEiJEWKMaQs8vdXSF2MsK/KsyMu64lxubIyW6/jLL7+kzPD8AGOsX+jlct3tdjWHkVyHbR4fH2sBz8XlhFIqATHGdna3MFLL5XK1Wj18dD/w3fH5hRDC9/3JdKr3aN1uFyHVbrdXq5Xv+0VReL67WCxkw3d2dhzHmc1m/cFgvlgQRrX+tygKKbljWrwWRVEUZd0IiQium6Yo61//9uPpcsksVysaCSFxmjRCGIZZltXNovuacSVvhoi6rrUZtSZv6g90iOgN3/BGU6z9ZbXNXxAEUsrpdFqWZRAE+m+oQQ8dv2fbtoa/MMamaSqlRdOQpqnr2rZt2aZFCOG81tVTm7ZiQoRsbiZ63Wvo4+0tpwbRNA0XtVJqtV6s12tAMo7jra1RkmRxvD4+Pr61vZGum24vwJjWlbAs86OPkrxUNsOhh12HNCLNY2owC2MKOHszKxTNchk7jjOfZQJEkaVZKjEQZpUWZavV6uL8MI7SeC0ogdlsNp/Pu30zzVatFpleTLdvd/Mq+fjjZ1JKIStEoNtqb4xcTOTF+cK0ZTfYsV2ZptHmduvhVzZMkyyX+enlsZJQl7nr0rpCcVS9+7Wd1XphW2F/MPIC9/T89MXrc8rMoOOlcVk3MBoFtuVIrjDGRRlv3+4FQUCJOR1nGIMfAqZQlhmAAkCrRbleSyEEwrWUUlTKsmB7t9s0TS1kUVQS8+U8sy1ime5sPjVMrJTiAo8v8vHkcnOzdXleYAr9QUdw+uWTZadDRO0IXnEu6vqKfY2QllpyxgiAREqPYBIhoBQjAEwUZYbjWIA4EBiPp9/7/uPbe/08hbBNtrcHWzuddqsbeKHn2QgMpYQdwMlR8tFvp4hVtayEBM75ZBp97evbt3b6cbw6OX3dH7TR///eUN/1TdPgt5KzLy4ubNe5HE873R5C6OXLl7P5vNvrdXrdXqfd63SW88Xhwesiz3u9wc7OTq/XOzk5UUo9ePBguVzOlwulICsLTceN41ivz/ViW0cF6GeAYPbgwYOqatK8+NN/8d+dnp4KJREh0/ny5Oz8+PTkydMvvnz2/MXzl6so1mlwT58+NSjhdUEx+t53vv2tb33L933OeTsIF4tFURSMmWXVFFUJGOVlceVxQjCmpLm+bo4pANBOAYqLuqyqqlJCEkDX3gFv5ecWVZ6VjJpNLShjTdNcXFzYjme7jhAiSVOFUV3X7XZbz5U3wrsoitrttuu6x8fHlmVtbG3qfZ/2v7FN89atW5eXl+PxuNVqnZ+f6wE2z3O9rdPmqcPhsKoqULjdbh8evb5z5w4h5Pz8fGdn5/Ly0jRNzKjv+1mWnZ6e6uWsUorXnFLDdd2iamzbLurq/PIySlJqWqZpLhYLLbbTIkvTNIW4eo/IteP/Tauoid+69GhEWGcwCSH0+WKapmEYjBk3HGxNSJzNZjquS5M9tcV6nueWZekKq3+Q5kVeSaebBiHgXKxWev6VTV2maUoIYoxcaf4Nw3GcwWCgd7L9fr/T6XS7XYyxUkjb7VFiaKTSsizDsgSo/saw4tVivXJ8Q2F0enHa6w54Q5bzcVnWTa1c3/E8UIrFi+L+/V2KRZYWTWkKjtOkLOs3p6OSGABc10UA6/USAygBcVRZVl1V5jtfefj44QOs8GouDOq+ejFOIo4QUZIS5C3n1Z37O9QgF+clZSZCoGp49fJlXaWB58aRuHtv5/BgrFAupCSsxCzJU1TkstvtdIYGgAhbvpLGl0+P7twdOgHxwvD10dkXL87yGhCxpAriJO0M2oyC6/qMsTSpMMb9Qfsr7+59/uQFAsMO4Pj00qaBFMi0K8CyKIqqlLdvDxSIdTwRolFKhWHo+Waa56YFeVlJLhgx33///SJvbNt2HBNTxGvwPXe9imyHUmzv3d69vR/883/yRasLoBilBmOIUvJ2IyYkXONpzDApJUAx0aHyCoGUPEnrJM8xBssyKIWmypMksi18cnZMKVWo/OijT2wrtG3bc7uLRRW2GSWtrdFAIbFa8SDw6qqyTOfd9x4uV7Pp+Kzf7y6X87ec//9ab6g/wAgTQHAdFH11jS9n3U4wGnUm41Nq4p3bW6Zpci7u33v03jc+6GwMusN+f2PIhZjMZ+PZtKkFAOzv7xdZWZb1fLacLJZBfyAtWyFc1s08iaOyMH2fA6mFbLgMw77vd1ud7ipOVtH6J3/1s6bm9x88PD+8HJ9Ps3V+a/v2/u37777zQRj0/XDQ7m+s4uL0bAyAMTXDbv+b3/oeV/jVq1eTycyy3XWWSIwN0y6LxjZdnYxuOc4yjvOax2mGMaGUmZbrekFVc6kQIFKUpda11lVuuw42mGEYFgGb0EbC8i0PG6VUzblCiFoWB5gtUyGQwRhRKE1im9HAc1zXzbKkbnKh+HDYj9Pk+OLMtJ1Wp/vbTz7zg7ZhuWXRMGbbXqe/eSurVSMEQujLZ6+GG9tVyX1f84daHjOIUgyTVqvjegEzrNOTc4xxUfF3v/r1dZJOJhPP887PT0EJg5E8Xj9/+nQ5W96/95gSByQKHBt47fkdUVdFMk/SaLyIJ+u8aQhUjUWY4iJaJ9SwJUBeFpLzOk8N0weFFWIgTSklc7jjsqZhQvC6rjRYoa59EKSAumnqppGAGTP1hEEIZcxABDeCR0msDxsd5qdVxoBJoThYlsTEcRzZcEBSiopiZBmsKmqTGZ2219RgMIwxkxJRagS+TwFZzGCEUkpFA5TSKI0Io2XVNFzVZbVeLWzblqoRqsIUcdlgjMsilSIXKgZpnh1dvvPocR4JpZDt0Ka2oih57+tDKSjntVKizHjYAdv2T88hzaOvvNcWOSRRioEAAdt64/Za5wsDwPMQV6hWpCGkMzCiOSwuDNtPczGVIrRsw/C5whXw4PH70PKGjaiLhs4zZQpuYwbSvn3PZKwB2WYGWLbjuuz2ng9AV0t8eSJv3TcvTprJZc05t23ZCXybSqxMpGD7Dj08Xm6PzEGbnbxYjja7UkC0cBoombekEoMoRU0QyXmDswQwq7/y4ME6i8bnBrISywUoPcMwAr9DDXA95XrW5DLNygUAW6cFYHeVr3YC6/Yt+/Bsim1Hctuj7h//jQ9+/dOPXh0stzZ3uYglVwg33/vDFq+dJMv374n3v+H8k//sHBDUmdcIXqk1Ij3LtRoFiCCBBAKDGqjMLMttigJhsLEEIRulvILXlg3ATUSxkCivGkwkIejyYhpFtePTdx5/raznk3EK4ByfnVyeKYUXeQTluulvzbbvivNDMmi3i3Vxa8/8wQ/u/NN/+mM7sF68KPcehOeHhRJ/ze31jfhdoyh61pAS0FvD8uHhYZIkSqn9/f1hf9But//wD//wu9/97mAw0HyU+/fvP3jw4P79+5oFgjH++te/Tgi5nFxUVYWZsV7F5+eXDReDwWC5XJ6fnzuOk+d5lmVKIdd1HddGGM7Ozl68ePHq8LVpGRjjv/iLvyAmbbfb3/zmB51OByE0m02SLO32OsvF6uzyYrS12e33AKMvnj77p//sv/7Nx5/USrR63XZ/sI7SxTImhkkpubg40/8uPZUbhoExNSyrruu6roUQb3EvmDYa4FJQg9G3Ls9x2Ft8Q4yJHgB1RQAAQmmv19Pwgu35i/lquVz6vr9exZZlZVlRVdXm5qbv+7/85S91q2gbpnYnpAStViu9wfzss8+0ZmNnZ6ff72uYW6fKai8vbW/lOE5RZjs7O/P5/Ar4FiKOY8uyXr58med5kmebO9u14JxzwChOE2qwKIq4EEqpKIqm02kcpzo4Sf8UwEhbVV+7Xr+hFugXhxBCGda7Sw016B+t5SgaxtW7V/1VOk9CR/EhhDqdjobpLcvShmCi4XqyhmuzQnUdhay3crq1VEoFAZFS3TSneuyt67osS520RwhBCCaTyenpqf63eJ6nWYeaQKM/RgjZjrmxsf361bPLy8skLnr9EGNYLJN1XJyfnz548KCum2sHRiYlaILk+fl5rzdot/1bt8I8TxljefFmUm63uraPu91B3ShMUJPTPOOMYowRwnA5Gd+62+VQEAJVxdtdQbFf8UW0gLpe2BaZTqe8wZSKwG9jDJQq0/BMyxAqbness+M1ItXBwSrwu4bBDEYBwHHcT35zMtrsS9XUcnV0lO3u3n79enL33u2K58++fK0UeL4VuEQ2mHNoeNHueOtVLoQSCv7tf+e7eQp/9t99nqY5QcwwwHRxnueYVoBAcls0hkJJmbqA1PsfbHMuLy9mj779cDIv0qUctVxZFL//g2/+5U9/WRITY3k+eXVrv9yvw7AAAQAASURBVAXAvvI1z7NuHb4e/+ZXJ9//wbfW67isJ6A8AWmWcstkvM6KqjYNZhiG60KRVxgTfQNnvAIkCQMESHJhGAYjqCpKpZRpmk0DTckxAEJwd3+jLOqTkyPDpJ5vK4UYJavVijcYYdjob//gD/bXM7xaxnm12tlr3X905y//5VG743Xbm/ce3F5M5N/8o6/+wY9+/19vDt+6sAIF19Llm88WRaGFpZPJxLbNzc3NLMuOjo5+/OMff/zxx7/97W8//PBDwzAmk0lRFL//+7/f6XTGs/FsPlmv19Q0Wq1WxcV6FbtOqCQCjH0vVErleUEICcNwONqsqooruYojzKhOdCKM/M0//Bv6kZgvFz//+c+fPn16fnkhhHh9fJQkSbvdfvn68OT08pNPn2R1ffvu/eVqHWXxdLmaLtfrpJrM1usozcuCWYQSw7DMNE2LotKyMNM0NROYc3GTwYYQMgwLY1wUxY2hhZRSNpxRXL+VEqVx55vZUMcHLldrLkVdNQghzKgfhjq6T3DVNI0QsmnEixcv2t2ODgWs6mI6nbquDQCuYxEMiOBWp72zs9Xr9RbLOVbgOFZZlkkaab0gxvjy8rJpGqm4lvRVVaUTBZqm+epXv3p0dOQ4jlBysDHkUsRxvIqj3mCwiqKsKOI0BcCGaRFm5mUplCQGy8saYdJIZVmWHsb1q9FIoSvvjWhJF0HDoGEY3uTPqes0Cf2FGgrUBe4KFpRS5yZiQJrG5DiO5BwpBaAc1+Z1gxCyDJNSQ69xbcsFgDRNTZNZltXUgjHzWk2PbmxydJupxXxBEMRx7AWBjisKgoAyFkWJZdqO42qyjh78oyi6vX1vc6vfVDzLSsAFV83FxbrTD+qaKyXa7VaWZVLKLMsGAxchlWV8tYKL85lt26bpMEOH8L15cpbL9XAUjC+XrcCqq8RxrbLkjuOZDrJsvFo2pmfMlzVBCil45/1+tKhtW2Hl9vrs8aO9s7MzjGyp6uOjS4qBi/VsHEnJN7eDsO28frkECuenZZFRZgpAJcYQhu2L08wwmWWj4Qj/6Pc/+PKLo+OjbLg9fPH6dac7QICKfCW4wNLt97t+QBAWBrOXy/kPfm+PGfCLn39W5MBMo2mYUmC7fJ3kposVAs/uFGlDGWDR3t3tDgcdyRVBZgbp68MJSLCJ+lt/cO/Xv/rZdFU1Urgh7O/furxcW2717e9845//sw8xonUG//LPfn7vYd9AXQKVZxuUKCSMhudF3mBMQaEgCLmCquJ1XepDVFwhdlDXJVJXUksQSjScAFiG0W63m7pkBDwPBK92tocYNZZh1aWQXCXrihJ0fnFmGTZlyLRwvx/cvtv6l3/65TrOCJWvDk7PL44++tWp6eLffvyv/s0iiG5yUQAApKQU3nb02t3dvb+/3+l0vvb+e61WazlfNE3jOLaugE3TdLvd+XyOEPrud787nU6LovjiiydlVdWCSwGD4cj3woPD0ydPvugOhr3eoKwbIQFTw3G9rCilUIv1Kk1TPwhX6yhstVvt9je++fXDwwNNmvn5z38eJbFhmaZp1oIHYWhY5mQ6W62Tw9PzQigg1qdPvmz3N2qAZZqcj5fTRRxnZVk1QkmFdH68leZlURSASFVVjJlcgqYKY0yUekM5NAyLc04IBowVAowxozhwHfyWCW4jhHYNuKLjEFAIrvBoz53OZgBYKYQxZcwUQizXq8vJJI7jmkuMaVEUhLFVlFiWBQBBEDDGDg8PPc9J0zTPc+1u0DSNbDiSQsc3a86Q77tFkWmvxvPzc+14eHp6OhgMDg8Pi6IwDIOZphcE6/V6Op/1h4M0z6SUaZpiSizHTpLMspyDw+Ow1SnLkjBa1I0CbJq2us4bUUrBtW5dCKmPCt24obfClDVgAtf2MHrLeePdcHNyMEJ53WivbMMwRNNoSwVGiMWMsizVtUicEGaZjm4ntZvZVWx8I5taaIszfTzfQChKKU2EDoIgild5VY62tgCTvCoJIdcV3NBCF73E/Pg3n969u5sklWV6y3iOEIpWBSGYMvjsd58oHU5vWfqlmM+XndDc3rGPjpaNqNO8tGwCkmP05hnJsmxzq7+cJ0Hg5UXS3zC3b6N1FBuWYNRdzdWgv5XHxGQOZeB6xnJRJREvM0kxur2ziSlhptfuksW8HPQ3HRekpCYjo61OtCrjmCMMAHRyydtd0/Og22sXRREli/Oz8aOvbHvO8KPfPMEIf/zRcZwvf/D77zY1UkpRpmzbKHKOabW9vT0ep1I1O7cGjx49+tnPPiyLetAPERJSAqG01aWyBs7rugLXB2Zgw4AoXt59GCymAiF1dprLqml44fjQ7g8vxnFcCKVg/9HO1nbv8jzGYPx7/6PHn310IRqlVGUa7t6d9uRy/Orl2PUbKSglloSiEYAxNLXIsrwRIgg8pUC/1wSBkFxKYIzo05RzQRExLSKlZAyKoiYIGxTzJvvOt77meiYmsigTJRHGEIYhb4hp0m6fIhnmeby7z5By/uW/OPD8zc07DBEppYziar0qylz54b+xOHy7N7y6ef+aaQMMBoOmadIoGp9fzOdz0zSj9XI2nRoGe/fdd+/cuSOE0F4As9ns4OAgz/PN7S2l1GAwaHXaZ2fngHG3233+8mAZRWGnN50tozi/nC6Sovb89ipNKWGL5aqsedUI2/Xv33/w2aef53l+d/+eANXvD2/duvX48eN2r//o8eOg3RaKZBVfrNPL+dr0WnmjDDf87WdPJ/Po8y9fPXt5cDaeGZazWEd6jNLqrrquGy4xxlwoKYExJpTiUmqxrQAlQNWCI0qKumikEEoJfhUFF7reW5EyVwm52q9UgjJNs65rCYowOpvNWq12lueYMGKwJM8aqdIkD4JWU4utrS3t3fL8+cvLy0vfDzGmp6eneqzmnB8fH25tbZ2dnXieV9Wl5uJ1Oh1t6VoUhfaC1fqNMAx1zFNVVavVSuM2g8EAIRRFUZJlnU7HNM2joyPtlBVn6XK9NkzzcjzN8xIhIiSUZZmk+TVS1Fx5/GCkqZe6CCqFGDV0GDwmoC0Ir1wYLMu8ZqprxpKGxW7AE3wd3KybRINSndBwVXMBBNeJkQyuk5q1t5D2xVFK6XYeIfKvjck3l/4S7QPmuq5tu2malmV90/XrHlYqbprMNA2E4ZNPPvmjP/rR0dGxZTqu47uumyTJcNgDUJzXnMvVKtJv/XDYH20OGKNNDWVZ5lmFicKYkreQRts2p9OpEEpyEbjW5PKCICIFKGiiddrUcjy+qGvBiIMwPPndketZh6+yLC/arQ3PCqSU8/ncMBVIqCpuO0hbY0kBx4cpAJaKUlsevlpQLChVAOL0dB50gNck7JDJGV7MK6WUAudyfFbVWZrl/WHPMLHJDAWN7QBjZrfjtbvWxkbvX/3sU9sMd271EOaYCEqhKaHTdYmBq5J3wx4x1lykvGLdAdq71/rlz44xEa5Nq2XRaTPiwuvzxdOXcS3ge99+5JJ8chkfHc7DoNMKe599/EIIAJB1k/3h3/r200/En/xb7woOaZobzLn36PZGf4MQbDsmoni5TG3bphQkqEZwjABjbJhXVH8hhJTQSMEYYYxYhtlUkESpyaw8z8oiCcNwvV7ZDqlK6TgeF3WRSYWaD769v44WZeYMhu7zL8YGZf2d3DDNLCuIqQARoPKLp5c/+L0P3m4Jb871q2qIkfb8gLcxZSHEYrEYjUbr9fr0+JjzerVaxXHsOs5sNjs8PGy321otOxgM3nvvPcYYo2Z3MGy1u67rtbudfr9vu26333vx6ijOqrJRJxfj+TJ68vTZ7p27FUdREt9/+HgVxXlZeUF4djGmlD548GC9jqeT2fbWzs7OraDdEVKdXlz85Y9/+vr4ZLaMZlF8uYgPTib/8q9+8Y//6z99dnDy5Yuj18cXcZYjggcbw7IsPc8fDrbWcXRlS4EQYyZCJElTjKkevnR/hxExDetGV6tNH7kUkgusgBH8tpWFfmh1s8Y5B4K5kgCwXq9Ny0EEb2yMhBBxlJwcn2ZZ1mp18jzPy8LzgjhKG4Wp5e7de1g3AhAJW51ef9jp9hVGXEnd921ubgZBYNt2kiTD4VApcXJ6zBjRLVhZlgBSsxFfvnzpuq5mqNy6dUsHOaZpClL6vn9wcKCJfmVexHGcl5UbhJPZgjKz5lwiSPMcMHH9ADCWUjZVJQQHAESwZgLeiEb0oMp5o3d8GnrWH+uJptVqaRRY/+G33V71rrCpKi3X02kBIAVGijGkt7fk2uWfc6mU8n1fxzNwLquqcWxXQ9Wmab79gWmarmeXZaFP7l6vt4rWaZ5hQjiXGFNN6r6xxY6i6J2v3ju/iDZH26PR6OT1pN8fuT4DgCxPdHNt2zbnfD6fE0IuL2cYieUqoQR7YZCkteuZBrNcy725H/4/7P1prGVreh6GfeOapz2ffeZTc92689wTe5KoZkukKFGUFMcBZAlOZAQIYsRB8sOAgSCBEhixY/iHncRRHNmJbDESKUomm80mu9ns7jv1nWuuOvOw573WXvNa35Qfq27d25LsPwEcBOD34+LcOjXss/da73rf532GoOVMJ6vlMtQ0w7HtNIbnJ3xz01tfG2KoUcoPD+/s7LkQI80Ap8e1bnirJcQaeOXlN0cXc6IbhkEAVlRDaZrohoaA7LY74TwKFxXSqJSUS5mmVZ6QQZ+mWTwcBq+/cSOJ+WJ5EUcSKKAbuGb11tawrquqqrI8TlJpWKZhAoSV77vbO0Mhq/Oz6d3bF4JDiMssywjGELLlnLs2bflWmXHdIK0uznMQLtjGtl+V9dlJqptga2tvo7d1ZXd7cwdJIDgD12/snp+dRdFktaodH7z6+s3f/a171276GANdx9/57s20WN35JClFeOn6OqEu0OYnh7GAdSVk0PEGg76QIMsSopHGGEHDxDJ0U6eN+blQElOIMDYMDUBZc2E7BuOy2b89erTvuYEQwrSoko1OdJUkddDSTA9++vHZchFNz5XrOsMtEsVRskIIG2UtiaGbPjh4vKirX0wH/Vf0hv+q4zjOo0ePEELr62t1XQdBgBBqdAhNVmQT4VgUxXg8LorCsJ1VlBwfnxweHx0dHU3ns8bBVAByeHxecpVklel6d+4/PrmYAIiHw42iqBbz0LTc/YOjXm9gmlaRZmmab25ur9JsbX1jOplVFds/ONrZ2Wt1+vMouZiE81Xy4Z27NSBup7956dqdu/uYGFwozuswXGAMNWogRYq8aqqVUrB57KxWq8/qIG2UsAAA27aVBI0TFESoCUqHEGoUm4bu2p+nREkJmu+CzzTOQRAUVeX6PiEEApxk6WQ2Y4xdu3bNNCzOueN4w+F6FEVpkcdJZjtezYRQcL6Mai4vxtMkyU5OToQQAojd3V0AZFEUrK4s08QYNgYQhmF0Op00TZvvNv7Yuq4HQWCaZr/fn06ns9msKoqmozs/P1/OF0Aq27Sm06ll247jTMYzzvkqSaluFFVpOTbERDPMz7bAmFV1syv+TKaEG4GdUqppnRqCdIMVcM6begeeWGPVTb1rhCjN06Ix+FJC5Hne8BAxRKx6ovOxbZNXdePQhRFhjCulmpZT0zSMMee8KoGU4DMSOGzIN09p242Btud54/H4/OKiKaANStjcV7ZtNx10E659ePrgyuXdf/Bf/pff+tY3xxeqLriuKV4J13URBo3NeNMttlo+hICLqtPSEaLtdlBV3DAIpdoX1aumQwNvCCBQSnEmXdflNeIiwxDVhTw7XvRbvZ2NNSFLw9YVRMuwrJnyfGjb1s9++r5p2KaLOVeYoLIsOOe6AVqtThTGjHEFAdIk1QHV0GrqbW1sPvf8lUF/+IPv3a8rpYBYW3cwhlxw26CM16Zp1XWNMDdNmOaZ5Uop8Hx5SvVacPzOz84I1soyL8pYMlAmQgkmKyBFrWlcSZBmY0PXFcMQkKqo3vnTg05H81xtfD5NWXFyHCZz2Xbgep90AnO+rLAeAAhu3FrPysn5SaYk7Q91DOXLr29/9OEJJuDdt89e//IzQnEOwCLKwtXStiEASgHWatGyrhqfFII1giFpQBglqa7VHEgIqKFjDTMu0pwLoThTXADH89vdluRQciF4zSqphERQagRvb3fznBzuF3Eq69LAuDR0WGbANE0pEARAM6VCAAB88Cj6Fwod/ALpBkklAQCU/kKmsud5aZpub29vbW0FQXB+eso5v3Hj2mAwAAD0ej2l1MbGRhMD1JAnqpJRqm1vb1+7eqMVdAAAzWRzcnYWp6nlOAjTVZxXXHx6+67jB4ZuxXEatNuji8nBwaHtOgihoqh8r2UYlmEYlOqP9g/C1er69ZtCgkePDxZhlBTFZLqczKPZPKxqcXY+kopAQC4uLizbEJI5jgMACoJuc4vWzQoYQU3TmhwoAABCqK55c880fDelVF4WRVEIJZs+BQBAEbaMz1OBGijqabtkGEZRFJTSOE7rus7zfD6fE0IYY2EYKqWaqPvlclkUheu6aZ5rhhGn6cPHj+fLxdnZmW3bXhAkSYIQGgwGzejX7OjPz89c120eOQCA+XzeyDkghK7rNtY+ZVk24XNRFM3n89FoZFnWaDSSXNR17ThOM1ESQlZJkuZZmudra2sNjfEJLZnzhlDZdFLwswi6p5aXzSDc1KDGgUYp1SzHmweMpmlFUTTi5aZnbGDfJve9WQs2T03xWYYUhogibFCtQQmbj6MhgXqeZxgG41VDTUUILBYr8BlA2RzwBakMQqgosmZ4b5IVmODNx/S0DjaZCpzzmqUAUcbAnTt3vvPL3/7ww0dra20IwHw+9zyv2+3GcUEpXSwWURRdubITRctev5ulVRzHEMCiKg3DytLP3X/H44uqAO2ONZ/MNc3wWwgA6bdRnqeSQwTApe3nLD1IiiXnoqplmgJAxPrmcDY/H4/mhmHmxQpB6PsugEAIsbEZQAiFUBADxRXSaqrrTMjbHy7CMDk8Orhz5x4BQVlwwdVrX7q8d2mn07ExVgDIVZTcuHlVSqmZVpFXtocJtjWD6abgNUaACK4qVl++fHl93VPSwBAQZC7DuVDl1kZ3OLQuzharUK0N+p7Te/xg5QXKcTXTNLFD792/CCxzq6P/+V+6vv/w3uXLzx2ehO0ufuHFG/ce3BUqP3pcXb7eqmrlePThg5mAVZGB27cPvvyN9WgBWl1YVWBtOIhW87OzRavlm6bh+35ZAqWUZJxVNYbAcewgCKQEda0UBOFqxRXQNBSnVZ6zJM7CcNWoA4SQhJA0zbrdLueCEAIg++j9OSIagkDB5NJ1czXtQgVGo3FRMUosLkvOgWHq9++M/+XO7/NJWQGAqM5qBdTnfeKjg4e7u3trgy3P7d688dw3vvENXadBEFimfWVvxza0g/2HlqmtDXuahuq6xEQNe931tV64WJ6dnBZF0Qp6ne6QEqPf7wMAbn/yKab0YjwSAL776SdhVVPdMkxLI9T1bKVUmuRcImRYUiNZzdKy+pOf/owY5o3nXnp0Mn54Mjpb5BeL7GwcpiXTNK2qhGnoGGLdQFkeDQa9qii77Q4hKFrNk3zhtTs1E77vz5azOI4t18mrkgOo6WaS5rbrIEKJphdFZRiGkkA3Hc5FVZRcKgYQMX2imQh8/tywbbPmXAKEoSJSIAHjRUQh6rXaRVEwXrXbbdu2fMeHCBRlLERVciYhnUXpJ3fuNzkt4+nUdJ3+xtDynNFkPB6PD0dn61vbjum5tt9p923bVoLZOqk5XF/fbIgsUqJud62qZbfbnU7mTeqLZVllWdZ1NV9M2h0fKnh0cNTv9ouyMi3bDzrTZTTY2GJ1LWumhHwq2Hi6Om82EpphSACIpjUCdoJ1JgXVEBO1kEg3nFWSm45NMDQNra7y2WQiGHNtBwIphZAQAUya/UNZlpZlEoIJUhpWdZFIURGsMJKCl5qOCAW1KkTFWM4SVtdAagCoqq5q7rRciJFQEkAqhKrrOggcAMByWSYJKytR1byo8qIuhKwxUlwIIZUC2HH9LE8QUhhjIIiCXALBGANAQsTzYkU0TKgxGyHDkkEPvv/xO7tXB8/c2lgul77jAIQ4yNKipBQsVqcbG9ejJZ7MRxeRwpaJiRMuplAYsHR0I+/2Pjc4FDIanSecCcMVi3lsUYwAdpzuaLFSyBpuubrGdFLLWjMd7ntdoWKgwM1nLhtk22srASql1AvPfSVOwnbHErWzvbdVqkVSYAmAY7ZJDfJFtb3hXr81PDpZ1AqqGrh2DQxwPFKGIlc3neko6/dLKvuBP+gMBM9bqs40ClkN3Na87V7VTTBbLAHEkDAMzDIvNzZ6jOVlCbjAizn323Q2QVdvDCA0AZQlu6hErIB3eMIo7XS7+vd+76eXrnpxUqztbv/onduzZTAL38dc/8a3b965PVutQKsHqio5/NR889vBojy/OKFEA5ZpffjO6c6u12rpUZjrhqkZmIkaAaJRZhBsOYXg4OxkYTskjlPbdjUHjeNxrYCUQNYllhQLgzGpmYBJJABUSNWcQz3ksobApTqEpF4t/OdfXSvrejkKZY0kIxhXVZ1991dfqHMAFViOq3QmUQHaRqDZvOL5009QKdVAZwCgZmxHAADJWGMe93nHiMja2tra2prv+xDirChM05xOpxDCNM0f7x8BhTc2d1wnGI1mum5e2rvGBD+7GOdlgQhWSi0WsyxLIIT37z0khHAppJS27axtrEMI7927xxWoap6WVX9tfbYIT8/Pd/cuY0w1Qk5OTiaTycHRYavd/fFPfjqezs7OR6vVKk1ThICuU13XLYsSQnRKTNNsvuX7fiOHrDmP4xhCWBRFAwg2bUiztQRNzK4ATQtTVRUAiDEGhAQANFBXM0o3DeDT96Qhu5im3pgXAAAcx2loHI0jf5IkJycnDx4/0DSim0ZRlVEU3bt37/Bwf3t7Uym1CMOmr8yzQgipafpwuN5gr3Ec67q+XC5PTk7m4Xxt2K/rarUKhWCr1cqyDAihEGw0umgifeu6Pj09bRq9VtDJ0oJzvru3d+nyZcaY67qMMdeyu612VVVCSd/3bdsuqrKumGnYWZY1buHqM8f/pg3knCPcuOTXnHMuasYqiFSRZhAhwzS5UJiSNM8RwQBi1/MopcPhsDEr1DTNMIzGINqyrGZYbhq6Bhxs/LCb/xWMZWmMEKirQjeIQbVGpgKkaNhdukYHfR8AUFVlnudVVdQVr6qqrhhnormCy7Jues/mxQMoIXzSPCoFdd3QNK2uSyHrw8MzVstue8P1yT/8h//1N77+57laEWxxhllpzqbzVtDOs1rT5cXFuefqHaf/6P6p59fXrq8RJKTkacKuXr389HrQNC/NCgUkBAaEECFJKUVYREspZGrYpWP1w2gWhpJgPQnngANDA+1W8P4Hb/XWtSytMFaPHj3UNBKvcoj46dkhlIAgHLRAlodVrW7e3DZN89Pb9zY3Lvm+6VhOnOR+19I1FEXzoO1Sijs9t67rvJxPL2QtQ0rsdscry/LSzssX57EShuNYUgjPo7ZjHBycFkVGKNINBEBlmqZt6UGrkV3CVhu/+saVo4MxJiWUIE5H81nkBXg+rZ597tpqlc0u0JVrMJyDN762nq7Q2z/99JlnbmgUaDoQKqUUvvf2PqsrjEHF8qpmH7x7+p1ffR4i4LeMOI4x0gGQWcogEmXB1zec9Y0+A1IpsbW+kYaJQYhGAEJQMw2pGOc1xk3jhkzLIQRkWZYlssmDYExQDWlmfvPWLqtFHDEAso0t2zLdaCHPz8ZBy7RsvLltKcTKEsyWUVXniHwh7wSqzwLRnnyBEIAASPCZgURz6rpuxiLTdpI8MwzLtm2M6cXFhR90XnrxtRdefPXZZ58/ObmoSmaZ3unp+eOjk+PTU8t217c2g057lSbHJ4ePDx+Fq0gB1O30P/zww1vPPff40b6hm6sovvP4cVyxMMkrAa5dv/n44MiwLMaVYRitVqv57/37D0aTWbRKojTnnDMGDNNsxjRD1xvM3vddxliWZY2CrbnTwlXcsJcRQg1437DqlFIAo5LVDQlD1/W8bCrmkyERYpQVOSK4oRnTL/j68EYNZuiWYSgFGGMAKAVBXmZc1JcvX654bbnO5vZmFIdxHFVVMVtMTce+ceOG7bmYUkJIt9vXTUsImOb1weHpg8eHURSbpo0g/vDDD6MoMk0dIRRFUavVanr4OF6VZblYzBrffABkkqzyPG2KC+eCUg0hfOuF513XbVBI3/cvLi48z2vegaqqXD+IVkldcyZFMws/rYDNO/b0hxWCN7t4hBClWNeIbRicc0I0QrRutyelch0/TXIpQVWxhvAMAHAcq2GnN4Wv8UmDn7lJNpviZhbudDqtVivLpGEYEMgsSwLflVwpAVhVSymhkjolUnKMoeebmk6EYA3UK4RqdORSgkbd3KxilFKc180SWSnZGIs1V3xZZYRy24HLOesNgtVqlSbi8Oj+9vZQKcVqlURUSlCUMgxjxyOUkqJMonl2ul+tb2pUFxLWWAeSU9//gnMyCcpaSCDyFC6WEaIKEwGk4gVo97Hts7rCnues4to124qTS9vO66/tJqvjMJoGbd/3upgAKSpWS1aDnd3+YC0ASgvDhGKqVPXyyzeF4A8fTi9f3j4+nmtECFVDhE2qtTz7fHLSH3YZEwoIyzYWy4uP37+4egNVpaxZZZi0zLT3f34fQdPzPMOiWcYohQiByWzMBHBbFtBYuCgUELqRaoSUVTIYOq+8cXk2YRDWly+tIVi3W/31zZauOesbvfd//lEt6sk8HKx5G9vm4ePl1o7++PGBZWvPPrfFZTQYtJYj2O0Gg4HX7lBCwb07i0qMbt5as10lhDB0Vyq5mOftjh2FSafrrOIloLA36E4nI1fXsBC6RspSSQU3NgOEJaWUYENKkCQJJIAQspjnlKIsLYVQUtW6xQgV03EqJfBaIOjA0WjRaW3PpisAuWWZTqBpGuqtG16AbBMi+MUtigRANjWxWS4jBRTWNMZ+YdUSBEEQBBKCqqoI1Xr9tXa3d/XataDdAhAPN9azLPvp229FcVzXtZQcYjDcWLdsN87Sw6OT84sxQqg3GDz//POXr10VQE3mMwXxycnZiy++mGWZYRh/+rN3vFZbITJdhJbXygt2dHKxvrF1eHgIIWy1u1RrnLjIPIosx6O6QTAwTavxDsAYYwAdx9EoNQ0DoyeOoY0+rAGkmiLY2E81fVCDdjVI4tN0JKGkYZngM31FVTEJgASgLMunsQkAAAUQoZhgaBqGpmkVq13fa7YHTAhEyHA49H2f6sRyTNM2iUYMw/B9H2J0fn5+eHx0cHS8CJerKDk+OTs7HwmFJMCaYTSODwjjbre7vr5uWUaSrEaj89l8ouvUtm1CUJZlNSst29B1TdO0MAyDIBiPx80zYHNzc5XEB8dH5+OR1wrSNG2326OLC0pIlmUAgNPz81WaKIAkUFmRN+TBJxPfZyKTRlWilCjLGiikaYaha5atUw1D1fh3ScZYQ5O2LKcxWdB1vdmc6LpOtSfRS4QQ3TAweUJJgRA2rrpJkhR5NZvNHMdRClAM97a333z9FVZlBGHBeF1WrKoNU9MNCqAUkvm+67qmZRnNhkTXTUp0CLCUEkIshGJMNMSgz1DFJznRSinOpZRSqtr1rCtXLp2dLLd22uFc2ba+f/z29UtftV0AIF/McqG4FFBJKmRBiGFZbscDG30DE8Eq1Om4i+Wk3VpLVp+nakymBUAAIMS5xjnXNdPxRZ4qoMBwQ7NNEobL7e1dvwXjVVrnvNuyN4YWJWL30t4yTFkthWC2Y+SptG3c7VoEi/kk0giua3br2UsPHjw4ObnYuzQ4vTi5OFv1Om7BaqpBW9NODqM0j7d2NygGmqZBVEsJqwK+8trNsios0233vZ/89B0IAUQoLyLdQEoBVpftVkc3XVFDTCChIEuBZ7e8ABBoZDG4cm39o48/brWc527ehCr72pe/dvf+o+lkHrTxaDR6443Xv/Hty6IGz73cDxf8/v0zx6N1Lgh2Pnj/VNPZ5uba+DyfL+ZFznXN8jwz8NuffHx25fqgN3CKolguYwBBngGERa83wJQTCrprvTiL6zJfHw40iHnBXVerWP3CS9c1HZYlK4qi1fI1jayvD2su5tOV4zhSkF63v5hng6ExnSyXM2BYcmNjeHoSEYIwhpZlzadM1/W8LLmSjuMghDj/RSIhUAqIhk72ZCaGEIiqbobEp79ra3unGYrjNNva3t3a2QlanaIoer3e1u7W/Uf3T85PCEGajoK2n2Sx77v37j6IoijPy2YNiggej8dHJyfRKgmjuNsb+K1gf3///v2Hzz77fFFUCqKHB0eA0PPRpNXp9Nc3Do9OKqZefvVVzTC4FAjhoipn86WmGVQzAAANL/qpoQDGuNtpCSF0nX52JyuEEOeycQQQQjQ5ywihZpIFADQR45qmmY5dFk+2DQ0nXinIhIIYCyGUgmmafxE3ZAoQQjSCbds0TbOZYamhJVlRVdXDRw+WUTidT1bpCmtUt/Va8ChezZeLJMmkgpTqw+FwMQ/Pzs56vV6v10ca5QAmSVZVdZylvu9vbG8dHB+5rnt0cjSdTpvxv9lfN14vvu+nadoYGjbjZLOBTdP08PAQEdw4gTcMZABhlmWr1UoK9eDBQ9NyuJKNhyOhT3zYn4YrNVI2pRTCoCxzQjQMkVKCYiX5E/ZMY9vV9GiNvKRpt23b5JxHUUQI0XWKEHIcy3EcQoj4LLkJQigYz5JU00kax+FyoWtAKVFW+dbm+nd++Zd930UIQAjLKkcIYQxNU7dtE0LV8LFN02yIjRDCqqqlgEAhQkiSJE01JKRJ8kVfIACJJzGnEIfLRKE8z2pe6YhUg7XOT//005dfeQFpQEFg27Zh0roSEGLHsqEwN3b4y688p4SxinDJ6ppXV69evn/n4On18PjBxHQ0IQCCpOW3TSMIunI6inUTuJ7EyFIwhYAWmYKw7q9pl652Hct//GD5u7/9Xr/fa+KxlsslgGBre1CzrC4L2/JNnQoGLkaH/e5aq906OJj4bSsvIFLKchDAnNf59cu9OC0qWW+st6iuA1TyyqIE3bz6zFe+clkKkqYriGuIwWI5uXZ9Z7XKgAKWZYha5pmAGDu25ziUVeDkeBK0HIJcIEFv4CQJNA366ScPvval5wN3TdM0zqBhS8Owzka3e2u0025vbq7/4HsPW23QbgcImuGiggq88NKV+XwZrxiCAAM9XNTLRVGyxfkhGE1PN7bW14Y9SvHamm/b2sVF6LruwcEcIZjVZVZUhmUJIYCSuoGKssYYJkkEgDJNjXHARF0wvr65QaguFS/LbDZd6IZWZGB9uHN8EHKmb+4aWSLjEAyHQyZXjFcYAyllVXFeqjgqqlLUNcD4v8vEBlEEAJQYg4Y80ZyqqmzbVUo5rh8lKROKK1kxtrt7aRmFf/hHP9i9tAcxMizTso2NzWGWJ77n9Ls933Et0+Scp0lec6GbFiT4bHQRx3GWFk1v0vRKCqLbn941DXtza+f3vvf97d1drBsf3709nS83tnaiOCsqJhSklJZ1naYpE7Kpd5RqDT4IgHRdV9MaaShs9owVq8u6and7+LOUNUppo0lohKhSSiEUQsRxnLTITcOuK845b4i+hBDDMrlUTPBGLPyF3hBbluXapmMZQKpWtyOA6vf7e3s73X7P9b2G8OF4Lqb4/OIiL8sXXnrl2VvPI6Jpmu63Omle9tYGr776ugBqPJ06npsVqRDSCwLX9Tc2tubzmWFoEogoinq9Qa876HR6YRjGcYoxbre6tuWuVnFjAJMkSRAEjVTjwYMHLT8wdaNhbiNKHu4/dnxvsVz2ep1FFJq2lZWVkAA8iY5rAFPQ/Mjos5w5AABXnDGBEJFSVnUGgMAEaoRopsEkp7qeVzmipKgLauhMCoRAFEV1XT5VzhHSuDzVEClNJ0oJIRirSte1fd+9uBhvb2+22wGlYBWFabz64P337j+4iwkEUOoGJYQoKLkUiGDN0BuVS7OV/kxKjJsPFwCoUSPPymYvhBCEEAJFOBd1XUIkAFCGYWCkT8fh6cl07xpeTpWmaf0hTSJ4cvpICnrzme2aZe121/MNxgSvxaXL6/uPp//G3/nrZRXv74fjcZHmVSsYrJLxxfnnqRpxKh2XhkueZytW1hhZkoMsq69ebQeeBbhBNZllWZ0BTcf/5t/9Tb+jYdp+962RqVtCpZZNAUBZyiwbbG62V2HYavWKLFOK+44z6HfCZRqvCoiAYUIFcJVWmg4ABi3XfPWF12dzsYzCzU0fYQkwEMzivNh/fHbjme3FYsGl0g3U6oH5fO757tZ2WwiQpEvTNFkhqSaTdFVVjFIynwvH8Q4OLr75zdeDVvvD90cIAR2Cl5679Xu/+4e/9M03i5JzJl3H7w70P/7B7Vff3PnhH34KFFgbOqtlUZWs5beBAkQrjg7mVQlME5uWplNT10wuAJSti7MwDFecl2VVlAXXNEQwKqvU9zHGME1ToiGBQFbkEklEsefpZVEDpTgHVVXrOiBU+AE2LQsArGkEQJnnAKKqFbTPTsKPPhi1WwHG8OR4QomulPADM4qWnmdzLrCiQNFVVGKkWRb8RetCCAFuSCJPqmGjEITwCbGrOWEYhmG4DEPHccqKhatoFcUIocVisVzEL77warvVT5MSAtoKes0Xz914Zmd7sx34jeedphlrg3XPDTCmnhfcffBQt0zP82zLjVcp0WiRlZ12ez6fP3r0KI5TiOlguLZ/cDRZRLph7e5d9oN2c923g6AhZ1CqNyoFTdM4r6WUpmlaugE+c+VqamKjGGl0ss0vNnJa27aVUlwIBZ4IIcqyhARjjOuKNyyTZshqcDQuxRe1ByVnUkpKsGWYAADGmOva0/nMa3mWbWqaZjom0TUmxdnFiCtAKb179/7d+/eVgkCRRbhs+NIP9x/v7+8zwZIs+dFPf7y5uZkkmaZp4/E4z/MoihhjGEPDMDzPI4Roms457/fXGvqObbutVmc+X3LO0zQtyyLPszzPOOenp6cAgLW1tdPTUwhhlmV+t92kAuimMZvNACYAEyllQ0BpqDYN/7kpKISQNE0ghI3LoahrJbljGhDCui6FYEWZW7aZ56lhaEoJAGSTEEAptZ0nrJonnSlCuq43nmac8zRVjQe1bWunp8dJumr5Due83+u1Wi0EoBAMQmXaRrvb0nWdaJRxWZR1c/k2fevTgkgpRYgAgAihTaP6ZAWEIABYStB8LRXHGGNkjC7STtdptR3L8oK2CQBczouXXn7mD37/T19++eWyBHUJB2ttzyWLeWj7TAjwT/7xn7zz8weIAIk440BKPU5HjH3OsDF0A0JWpUCjIkvTsuCSg0tX3c2NFmcQAJTnpeManUDPk/p3fuePwrQ+n004AFASDemIsCTODUMfrjtcZPEqVwydn0/2djcdx41W8+UizZJaCQAJk1JaeiCUJDp449UX3vqTd1gNhARrQ9/xrTwTGjUBAO+9++Hp2TEkvNsZlBW3bR0oPVzGum4gAFqBxXieRGW/r7d919QMhBWEoGIiLcrz04N/+jt/IBRYrZLLV1uL6cpxjJqvLAvUJarrOo0Vq8C3/9wvEaJfuTr0POv8JJaqLsqIUnDz2a3zg0JxBIHGZahgwStZ5qC/ZhhkvSwq29ExBVGU6SbQNS/L4nYwKMuyFXSWkUQEcwSIoUcxe+75Z2wL1BW3LL3V8q5e21ag9lvOarVSkCIMPc/b2AiCtkaI9vDBFGOwc8kbn9UAAtcjSinbanHOa5YrpXitACC8FFXFFAISfBESbGzeIYT4CYAuFSCUcg6+WDVt2/Y8DyHMhBoOh8tF1GiTGWOaYW9s7Y4mc4L13Z3Ldc2jKBZCvfbqK1vrG4aui5o1OxCv1Z4ulnGSNAltQqhGXJUkSa87CFxvPB4f7O9/+ctf9oPggw8+WF/fEEq+9fa7dx88ZFJsb2/v7Ox5njefzz3faabg5mZ7ghNB+ETeIKTjOA3bttFFNCS+5oZvELGGKNdEczTsOYxpgxs2tbIJZRZKKgXxZ+3SFxWLSZI1TZBhaLZtAwCSLGWMHR0dxXHMpYyiKMuyOE3iNKmqSgKEKYEQpkl2cXERr9LZfHl+PirLvN/vKiDG4wtKca87aGxcF4tFnudVVbXbLcdxKNV03cyywrbtJMl0XQ/DVZKktuU6jtOMzK1WK4oiz3eKMiuznEBECLl7926apjVn7W7HNM1GU3R4eCgVeNIGYvR0S/Y01KlZvmOM8zx9ikU0uQiEEFbVzbtkGFpZllKJOI6VEk1olOd5nufled7QGyGEzQfBpWxYnxhjQoCmaXVRQqTSjBNCGK+SpIzjuC5Ky3I0Q9MMzTSNdrttWKZtuUqpijPGxGdacq1hdzPGOGcIPhERAgCAQhDCZoGDYKOlgYQCIVijg84zsLXTTiK1DM8xVlkMOj3v/Hx0cZ6WpdzYaJWFQlgpwDGBFQu3tr3lFPcHPpcAGzzogcUs7/Zd0/r8TtKwlhc1pWBrc+BYdlmWvtd5440bRZmeny4gFKso7Q3a/b5WZODB3VTXBlm5EAhAJHr+JakqCDEEpNVxJtMz23YwMn7pq2/MF9OTkxHngBIDYY1qJMtr13dXq8xtOesbtBU4J6dzzXAms0WrZWoaQsBMkhUA4PXXXgEKFyXLs9o0PErM+TQLl0mZMSlBzXLdQAAAx4VUe+KJu77ZieK4KApC5ebG5Rs3+1nKv/vdN23d29neOL3YxwSMR0vP848eFc8+t/Nb/9UfZuW4quM0zdNYQqSYSK5dHwqZHh9kOg0QNCCpNYNJADAwti5pD+6NHjw6unzlkusBAIDrGeNRZDt6FKWapmVZAQCYhVGcZxJDTMDZyenrr7w6n4eCK6WU7VplxYfr/cl0/Ojh1LKsPCuVUkzEYbjACLzxxgtn40dJpAEAbtxal1LaRm+xCBFSdV3naUkxBRBKJiFS8AtK86YOgifRKBgAgCQAvBaUQvmFKJc0zx6fTy/fuIV0uoxiw/Iu7T1j6N5yEYs6Ozs6KPNs78rl0Xzq97rns4nQcLe31u71Pc9zLPPS9gZGIA4jx3YxQp7rb2/tzGcLiLVaSIXgKk00z2MAIt34ydvvfP1b37y4GGdx+fJzryVFcTFbnE3nj0/O+xtbiOhrg/UiKxtcnDFBECaImKYtICrK2vbsoq4Mw7JMTwHCmSzyqqiqtEipoUNCy4JRokmhgIKcCcE5/oxwp2GymM4a12XOuWN7VVG3g1YSx3XFMdHqL+Qp5xnLlOAaRToNPI/ltYkMnnMDWVUulrOFa9lScgVqCFSZMixJ2w0Mw4AUWYGn67ptWYZuSgEn00WWl51+j1JqmN4smiR50esNKChlUbSdtSiK8jzDlKyShGgEYZ7lIUaSUppVmVBcKbG5ucnKqqoqSvS64ntXLkXJanxxnq5iCOHa2hrVtdFsHqXxMo4kQP3+WpYXzRNCAaBpmoIAYtTQmU3HYpJzJZBABALdVEopzn0maZQvqRVgAAM3YCVzTFvDlEACBIjDWCOo22rnSb5YLHidx8ny/Hy0mMfpKlVcKaV6vR7G2PGoQoKpWknid5woigxAKYGxUiWCq/EoS+M0WY1Ho/v37uZpVhbZoN9vez6l+MnWGEEJUVHWhBpCQqlqhFBVCtt28iKlWqMy0oBSDS6OoIawwQX62Vvv9Ye65tGi1N999+7epe3LV9cX4Xw0ialpv/3Tn33t668/Orp9Pl4YjpbmKyq6g7a2TLPeVoWhhYWxtgZ393pFVmra58hJ0AE6oNev+7c/ykbhJMwWgILL115YrvL9QzEep5ppnRzP7j1MTIdevp4rkX/66ejypT1MsmHLDMNM13XTqsu8mBzjbrdbkrOP7y6VKznWTNsjWgkF1A2ugZaU9TwGBqh83frTdx+XEAiZT0enkgBKcFbMV2F96XpATPpo/9iygGYITKSCOcHg8GFoWJAYoK4cpBdSASW0Rw8uspQNN81OF935ZOEY3i9957Xx+Xh0Hpld8Pb7n1ZF/eDBxeNF2ml7RDf35x/OV1XLtzBYxFPAVT1elkx4iuk6Nl/5Uu/2nccKaBWLIU4FA3VhYaI662Uaq6DtVyU4PTvb2dkaDrvj8/LlLznrG1qZUCBhu6UrAAqRCoVYqTQC9h/Pk6J0WlYt6nbfEnIJAAASLuelyIFp6lJxzUoMrVNW7Or1/mT+IByb/Q0CFGr3yMF+mGXFKpRKEgp1JW1iRVBSyZCtGegXTBuglBxCJSWXkkMIIMGQCwiBhAj94FvvN7/rJzt/1/MHnV7Xtvyr129mWba+vj6fTqsij9NkuVyatltV9eb21r179w6Pj772ta8O22sP9x+HYZgWOaLaO+/+3LLshvrX7/fff//9S5eurK31wzBsd1ppGk+mC9M0xuNxkiTrwyGB4OaNGzeuXvtn3/vntml86Utfevjw4dbWDiba97//g4rxJMs1TSvL8tLuDkLo5PS41+u99NJLo9Ojxu7YMG3TNKNoORqNbty6ce/ePdO0e73B6GJ86dKlw8PDRnaNCeKcNybJi+lMCNZY1XNRp0neHfQZY0mWlkUtlMzz/Hv/r+fAn50/O5+dP/23/vfNF1/7T/7X/799JX92/r88+PL3/ov/4h/8rb/1txoMCsLPaFlfwMcAAOD11950LGMxGb/33jt//MMfnF2cr7KU2laN0OHpWVbVVNcBxOdno26nb+pGXdam7WJETcsaDAaNr73tumG40jRtNJq4rr+3t3f58lXDMNI0jeM0iqI0zQBCvUG/3elMl+HByek8Wl2/djNOio8++mRzc/uTT27fuXPv1nPPp2newGSapqV5NhwOm4iioigYE40jw2w2a5g04DPFRaO9a+KNnvqDFnm5tbXV+M62uo3+F5im2WxabMNUShGEGWMaofy/M331z86fnT87//97/uVUAPT0G1/conz5y1+9vLv7zI2bG+trk8nko48++r3vfe/B/sHB2blu25Dqx+cXd+7dR4Rubm73e2uB367remtnO0myOE6rujYdW0rpBf7zL770wksv/uZf/5tcqIeP9sfT2enZ+cVobJpmHMd5nnc6XYhxVuTzcPnpg3u25/f7a1UtJ9P55SvXmJD7+/tvfOlN27abGKOqqqiubW1tNaEZjuuv4pQQLc/zRn5rGMZytmyoFQ39IsuyZmMgpdQMPU5S07Aawo3Xap+enlNK20HrMycr1VDwEEIaoX/j3zr67+nD+bPzZ+fPzn9f5z/+Z78CftGyAQBAFFCabrCq+OIWRQi5tbXFuPD81ulofOfB45OTk+PzMSJ4uVzubu/YtptVtYJ4MFzf2NpucpOjKKa6VrJaCPXC8y+urW9EYRxGsRDinfd+fnx8LISgFDNWO57ruYECaLC2nmUZIcQLWq4fSAA/eP/Dvb29VbgUQn366ac3nrn18PH+p7dvW7bdBSDP81bLH4/Hly5ffvDgwXK5vH7txng2hQBXnNV16bpukiRpmmZV3m53lQRCipoz3TQsx55Op67rTiaTVqtlGlYTX6kQXKXZxvqa57p1XWuYFBASjIUQpmkaVHvz1z98eDqtBegE5q0r2y3bbHt+lqXT6ZRotGR1WRdey2GCLcKlb3WhBLZp2aZ5cXZ+7dq14XDN9/3lcpnEMas5AEBBMBgOJvPJeDx+8+WvUr3GUhMc/PzDHw23tv/SX/qr/8F//Pf+d/+Lf+/s7CyO4yAI5vPl1772td//3ve+8Y1vMMHffeetrY1NhBArq7TIfvzjH//tv/2302h1dHRENDrc2Hz8+PFwY10IkWflbDEfDocAkx/+5O3b+2dEtxFCq3BhWG5WNEydmHPutYLxeCylNDVd1yxCFZOszPPeQD3/wvWP3j2NY9UIe5IkaYQ9q1VMCDFtEwC4XC5rUQ0HnV6ve3J0BgSqqqKq2MZmL09Txqter5elBcF4sQgVA0RHV69f++j2fdc1KIQt21aUpmlqmhbnvK451bQ0zRsiN6KkoS4iRJIs7/fXpAQKgOZZDpHI8kjTiK7ZEKKyzuua26YbheloNDJtsLZhrW/6Bw8v2h2PUqJRe3vr6j/6R3/00iudq9c3/5//+cfbu/qv/8a33n333XjFlFKmKXYvdW/frfbvTP7233nl4e3HGnWxqTa2n3vvzh//n55EHoBbv/Gj9Y3Bx+/GEKXPPLNpG3iVRI7vhmGkJA2XkW5ov/rdX/nRTz48Ot3v960s0kSpIIr/6l/7zjvvvttb7+8/PL106crHH3y0ud0WCt29M79yeYfVRZovopmBqEySYn19czw7Ewz88q88DyR79+17g8Hgzp2JptFuj33ta3sSqNkiuX+njmaqu5bmK7y2axJqESpG5xHLWnme2q2y19dfef5bn3zy6f3H56app0W51jPSEDp+8T/817/60c8/+oM/yL/6ovwb3/0b/+yn7zxcHOexG5io00/Xd1/42Y/eJ3Lw6ldtztX5xfj4cSkF6QzM4/1Ycvob/6P2Yla+80PpdTLO7MU0sR0taOmXr3Xee/tIp57lZaNTubkNt7efOzz5+MUXXvnn//R9y6SsJlu7LtX4zl7foOsP929DCMcXUasLl/MSIloW4uvfuv6jH9z7jb/53KfvLcpqYmoDYC+q3Bxumo/vRxcnFaJSMiS5SU32je/0P353urG5hmn5/ttTIcDu5Y6UqeN4J4cJ1YRlG+Ey7Q/co/34P/wPv/svl0gEAGqIZl/sDSnRe/3BarXSdb3dar326stf/fKXDY2cnZzuH588Oj4u6poDcO/Ro/76cLpcTMNQ1/UoXl25cm19uBl02kG7dXx0+sntT6lufvzpnfc//JBLQDQNU51JxSWYh0vbti3LilcpqwWv66abs11vPp/Pl6HXCvx268OPP7p16+ZkMsnz3HXdqq6bZAwI4WBt7fDoSCmoa0Yz0s7DZeMS2nCq8zxvFmeNfKVhZjRpdpPJRDN03wsYY+12uygKQki73WaMNZYtDZSg67qhEdukOoVCgKpiRVkDAFbJClOiGXrJaoBUp9MRQi0WEcW0roVS0DRtjPHVq1ersjg4ODg/P29es+M4jfl+WZZhGAIAijIjGG1sbOxd2iGEHB8f//jHPynrKi3zWbjY2tnudPuc84b6zjmfzWZN0kuTwvrJJ59cunSJUooUaLValy5daoxX2+124PmcscFgcOXKFc55k9YipWwyavhnp9kgN44vnudJyZ+kJCvUNNQaQZ5jN0SWRkeklLJtOwj81Spq9tGe53H+xD6aMWYYWqvVsm19sVggDFzXbYQr52dh2/cGa21T04+OjqQEAEFd1w3LTpKkWVunaUo1LU3TOM5M04TkCefpiYhIKSEURAQhAiGCEHHOKdEbXTnGGACs60aW59PptKrkl770JaDgYh5CpHTNjGP26PEJNeDVmwZCsMjUX/7L3z45qaIw63YHjBV5nhBCBEe9ji4EONyfrm9uIYJt24ZIGvhzhUKSglbXt22Qpfz0+Ghze4ux2nZMw9CXy3lZsY21wXIxeXh/HxIgITo6iggGr736zCqeJVld1cXNmzfn87HnmxLVGCPJyCqJgax93+WqzLPScbGuQ9swRQ0qNpegGKzhmsWahlmlpSstWqB+fz3LRBglEBLdAuvrG3WVUqK32+2qFlUdK8A3N3t1Jf6df+d/CRRiTDGmnntuazAYVBWTCiRJFMcIE/n1b70qsX4xucBIS5axbmSu03n06HEcAsYnUELLsYJWL4pUq6X3ey1Wg7VNbFr6+CIlVAgpXU8zTFgWzPUJ50CjlqarcCZ8j7iOX+Tz2QjESfjaV7tVzV55/bLv2wjL2XS5CKf37k6PjyaYAMaBZlBey60dK1nxl1/fmowySJIsxkLlrLQdn5+fLmdj5reMugaOE0hQ6abUNccwddd155OaUAAUEkJYtrGKUgAUFwwCnOeKi+pf7gqfVkMguCTkF35VKSgkqJkoioKVhWc7l3Z3n33mVq/dwYSOxpP7j/f3j0/6w/VayvPJtLu+1h+sIYhni0XNGas5Y0JBYBhWY4DoOJ5SKkmeZDYpBTXNMGxnMplRQrI0NXUriRKlVJqm7W6nrIoPPvig1Wptbm787O23nnv+VmOuhxDKipxSenZ2NhwOV6vVaDxlQgIFTVOP4zgtckKIYVidTuepg3wjyI3j2DTNRoPYDNGGZT51bC7LstVqNQJuU9MppRAAwzAMjVqGbhgUY1BznqY5pqSuy7TIqUFt12KMjUajNM11apQ5UxKahu26rqGZr7zyyptvvnn1yhXTNBtpcDOtN5b6ZVm22+1OKxA1y7OkLquvfOnNLEmBElVR/uz99wzHZkoigi3bHo3HUsrRaLJYLAzDaEpYp9M5Ozt77bXXlFJN0tPa2tpisegN+sv5YjQaOY7T6/WOjo6Komi8ywCAzSPhqaC4eTcanwvLsghFDd0SNL6HjOm67np28/qfkl2yLBsOh5qmRdGyLAvLsoLAbap8XVdCiKpitm1fvny5iYRuvIG7XZtS6jnurVu3dnZ2DAsJIbIiXywWmqYlSRrHsVSwqipCtH6/0zBmIIQ1YwAgJgXGVH5Ge2r4T6wWjSa9IdxgRBEkURTlBWt3zCzLbtx4ZhXlvu8KBZIkKWtwPjrDiOZFfXI8qlj8pS9d+af/5McGtYdrPaqBsq64IJwtEAD37ozXt/acwKOaJkQmys9vIcGtokz8Nljr67/0tTeOT09tzz04PFQQUA1e2l2Tolosp5whCECaVa1AOz9ZvfjCs3Vdc64RBJfLpedYt27dEqL2PC9L5Wq12twdtFq+38JCKCFFls9Xy6LfI/v7o8P9sWl4rmchLDSNcM41gii28jwnBHAVu65x7foOACBJV5PJJGhhx8NlxX3f39q89G/8rX/z9PR00LeyUDy4fVqUK4j5rWeuZLm4dy9+6aU9xsm7H71fckGgBRVwXRyl+WSycp3WcGgvwzlA7M7dsWkSQqVpUAzBrReDLK+jUOk24wwiLHr9oNVq2S66OAsNanCW1CUI2mQxBo8en+/u7n7y8QHVwN/5u7/2ta+/XPEFk8UyzKQqMAaB70vAigxUNRNMdrvO/v6xVNVqVWENI+TNZ5Ft+atVOh8DTQdSFZbuRKslIaA3sAXXpKwpxfMJdxwdAJQXqaaRLCswxkKCJEldl0hVf5FH3PRJn1dDAIAQv4ApLpfLuuadTieOY9u2p5NRGieeaXf8gOhGd7AWx/FiGd25f+8f/ZN/HKdJnGRHR0ebm5s/+9lbd+/e8zxvOp2+/fbbdV2Pp5MkK8fTiVQgaLf8VjtoddY3NvqDwWw20zQtCmONUN/3wzC8OL1oblHTNDudzscff2wYRhAEjw8OXNd96rtXlmWTT9CAj3EcS6AaZWFj7VeW5WAwsG2bc55lWRRFjaEWQohx/jQpkDGWxGnj8dn8wYbS2OQQNZwYnVJDo5pOCAFKgaKuNE2DBGZFygRvHJ4ty2Ilsw371Rdf29u7HMfx/v6hlPKTjz6ez+fz+fzs9BQA0PTCze8HADT1d7lcWrZxenrK62pjYwNIvru7a+naBx9/dO/Rw09u32l2RxBCpWCjC97e3uacO47TQJxNtnKe55cuXZrP53Vdh2HIOR8Oh1VeCKHm8zlQKI7jpggq9USb/NSctQldappiTSNUw43dIUZUcaFT7anNbbvdbuKZJtPRMpxfuXqp+auqqvQ8j9KGH25JKRs72PPzsyiKGopMw5Eqy3w6nd6/fx8hxJg0DOPatWsSgqIo67rO8+IzBxoFABBAKaWkAE3rBwEyTbOZIaRUTynZT9O7AAAY0/39/dksARB8/etfy/Nco5ZluAgajx6NN3fW1rf88XQ+XySmaes6/fGP33vjjTf2djfv3nkQtDzHpWVZEWzoWAz7/nTMbt99UNTVaDTSiLS1z72vk1UtBKc6u3XzhkZwzVmn1y3KkvMaAFBVhWHqVy7tYmgVORAcSYFu3doqsvTTT+5lmWC8avrr+/fvdnvBcrkEgGaZrFgcxst216Q6EgLYNvTt1m/+tb+cRuZsJM/OVkmS7V4aVvXK9yCicbgqVnEtODBtdfXq9Si+gIBAqIQQAArTIoYJ3nzjS5YZTMbzqlZ5nptaJ08ARJwaYHN77/6Dk+2tLoJpWig9IOvbu9OL8JkbgRACaXQRAozxlat7mkbyYrUKlWlphkkZqxDULl1tr6K0KoDtQUI0iIRomE91fHa6YjWnGlgfbm3v9oSs3vzy7q//5qsbw6uzcXHn7gf//t/7B+en8fr6mmk4p+cHrkOKotZ0nKW1beuSKYz0oGVR7CtQZwkYj+dKItOp5ue2aWGhOJA2F7mhG1zwtXU/T8VsXuV5HsfCdnQAgBCcECIlgFBRCoQQ165dwxgK8a92wEYKSACABICoz+tlxau6LhsB3CJahVE8m80rVnf6va7pu0T/1le/+q2vvmkB8NYPf3R0dPzo5Hh/evE7f/QHD4+PAaG37zzY2bz01de//Ovf/Ust13n1xedu3bxx+cqlnZ2dlu9dv3zp0b37jw+Pgm4vzcvu2hBRLa9ZXtVxXpSVwMTwW93ZIoKEPHz4aGO4ubOxHUYLyzak4lVVEY1WjNmuqxmGxCJOV0xww3QgokVRUcOEEIpSBp5vmFpZ51mdabbBpWBc2pZVFIXr+s3YxQSTStWMzeaRkNIPgqqquKhdWw88Q4lCo6DnGDteW5VAYZQLnpaVBkhdMtu0OOfLVQQwMnTT0p3peGFQsru3vbu73Wq3v/K1r9565tlf/e5ffOX5Fy9durSxNnQ1Q8dE02gURRrWWp4fRmlV6Z1uX7DyVm/voIg2Ow5CZNjpHj569POP3h9Fs0kcFpwHQbtMCp0TicH07MAm9Md3H2xcfWGzt57mc7cdrJJ4Npm2PcekVEpx++6dte3NB3c/BYSeh2EJkeAKcE4xEgo2wh6lZMWroi4UZ55tsbzEJEBYaJRKoUsIgEFnYWSYEENFEOCith2zKLONjY3xZOIHQafTy8tECIkUwLCFKVMQAWz4rRaiWs2F47o1Z5pGev3O1vbm5uam1XYpkFW4Mj0jrwpdoeHaum1avuuZpmHouuM4uq43pVDXjSRLLcvRTANhyMQT+TmrBcYIYaYAI4QKjqoyNwzw4PZJHisKgWMBxudCzg+O7l26fC2NZ88/s46FY+FOnZWtVvvoMByP+bPPr3//+9//pW9+AxAYZ6mum5SAqpgA0RZ05feQ67c1AgzNLlha4885BpRkecwWU/Gbf/OvfHLnoeVgy7JdD1A1pMAp+YqoDcsJqqrqOXYVVV9+dfPPfff13/p//zfXrr1YZzEhdpzOHB86li9ySjUIYAUxkAIBABSoty9hCkl8of31v3blpZubUZgjaO5cdosV9m3xzW9cjRMxnpJaUdfxqhK88NJ2GtPzUao5QihcxUW/tXFykjz3wpU45u/9/AOJS79FEUKGW3T6QIftbht1e/DocUZtpdXhzuYLk+XKd/TdLbuzhiQMorBAFXA7/OSimkX52WGpSTjoYlNTk+lKb6lAzy9GTO/J6ZmUZrXp9ykAG3uhAfZk6UoY+4H9/Ms933f+9f/xr/je3h//8AfJ6qyMhU7cl79kFjmQghFNVJnVXYcKFasVsy2dYqR5IM1ImkWGxZez1NKcq9d7RS5nR8n6Oh4MPUoBAcKAmq1rEIBWYM8m85ZvMCYgKlTtIcihBBWrdRNDDFp9TyDltt2klACBRj/aqAw+k1oABCFoolEU+Jyl7TgOkwpgQnQDYYqpPpqM86omWFNK7ezsWJa1vbXzzDPPvP7q68eHRx+9/8Fv/c4/eevn73aHg3kc7V27cufBnUWyKgT75Pbd3mDgeP5kMrm4uPjjH/34T3/61rMvPL+2tsY5b2xgFlHYeBQ3poTz+dxxnEY8p+vm0dHRYrHotHuGbnluYFtuEmesFg/uP9rbvRyGISGkEVc0lstJkkCCO50O57LX67Xb7eVyOZ1O19bWFsuZ7/uMMUJQYw1NqZZlWbvdDuMV1ij7LNqtKArDMBrEynEcz3d0AqSUzZ8CQDYhQb7va5pGid5qtRaLhW3beZ6HYXh8fHxycvLhhx9+/PHHd+/elVJCALIkVUB2Om2M0JP8k1VKKc3z3HGcdqulGbpGycl4bBjW88/cevONNyAAv/d7v/fJJ5+UdaEZWBGgW6aUch5Gt249+/57P3/11Vc//fRTziQEqCxLx3MRoUqp8XiyPtzknJuW0+l0JpNJoxJ5qrxumrWmYy3LEgCgaUYTuSm4Elw1Op8ir5UCWfYEEMzzvIFfG9HkwcHB9va2roNGZdTQlZos1tVqRQhxXbeJRmsM+hljw+Gw1+t1Or1ut9tYMKRp2oC5zStscM9mCGjs/hudSWMY0YgvMYZCMillXfNGseM4joJyGS3LMscIKgC2t4fn5+d7e5cf3B132z2lgGW2zs5P8jxyXVcpBYCIouSFl3fufrL4wfffvvX8tuu0MQyGwzXb7M7n8zfffK7X663CyDTtfn9tOpl/sY+gRFNKGRbcP/yIcyVkWRfCMTuT2YFhqTQCo/HCsklVM4ng5sBcFcWj2w++9Z1vLReTncubXJQEuZ9+/NhxdYB5XUIAoeuTOJJb2/08LwAAlNjIyP/CX/oL/9Vv/W7QxkWVWZbT6bYuLqbj8fTmre08z4s0Uwq127QV9N9795P5LIKA2oYpIfj2t/5cr4d83/9P/9N/CACASO3ubmNkhGGsaVq0GvcGwWy26PYs329tbO1VrHr46KgS6YsvvDaeZJAk84kMAqwkCzoUKDIerTRdEEIYl9OL+MplU0h3dlZZmma6OotBWqykAlubO7fvPLx60/rVv/ytW8+8MF+e1IX9gx/86A++96Oz46go6sWiPDmebG9dcVxdyJJAy7KxYBpEwLMt3ZRQIQoDgOaDtfZyAqRi2OBpwizHYhV64aXLo9FYw1bQgnlZuk7HcoBS6uJisrt75ejw1LIAoUgpYFmUEI1zES4Lgxi6Tu/fuadh0KQ5f/E8UeYpBZRSACH4Bb+W8XisAKpqLhUcTWYKwtl8iTClplnVtQLo7OzC0LRWq/21r33ttVdeN3Xr8OR4uYoOz47CJP7g9keLNP7uX/nV/+2///fiNPmDP/zBu+///PD4pKjqX/7Od37pG9+8GE3CcCXEE+UpgoTVQjeMxh0rK4vGNQAoBBHKsgwjKoSIoqhB08uy7PV6lFLOuWM6nXavybzXdT0vykZ4V9asFbTTJA+CwPf9LEv2jw50XWscVhp31QZKMwzTtu0sy6qKEV1rcD2CMALQsexG0udYJiUACCAlqDmDGJVlSXWtAR0aqxihZFVVruturG9tbW2tra01b/F8Pl+tVhenZ4Hn9bs9XtfN5CuEIIRIwTCGrmNpmEiEukH33Q8/AoRuDTev7Fz6jV/7dSXl4/2H733w3uHoBBqw0+1maT5Y2xQQffDue5d3tqlp5HmZFrluWpRS27YPj0+orm3v7pyNxtduXP/49p3TswvGn9jEMsYMy4RQNfRMSmmWZZqmNfVosZh1Oh0AQF2XjuNwBhbzFeNV4+Rq2zZQqCoZUKjd7uZ5vlgsNzc3AFBc1IQg0zRc103TlFIaRVGDSxZFkSSZbdsbGxsXFxdFUWmalqRpVddEowCivCxmsxnEiFIaJ8lqtZIQNKk7jNXNiC2EEFwSokGkNE2jjQEiooJDJTEA6PR0YpoUYomo2tjqAygXiwVjbGPNGZ2NdndfOp8+6PfWz05CJ2CbG/3piHW6zmIx63a7d+88Dhdlp71mGMad2+Mkwb/87T+3nM2PjydpmnImBZeEkNHF564NdS0EB7YrHx18TLCWrnJMa9tqc1E+88zN5RzEyYIxpFMYZemvf/fXPnpw/szla8TWeZUm+SIIPNsK0lhWLJeqjFcVVMi1aRIpxtNOr+MF9my+GmxbH9+5/f5Hh4ahayYQEkZJSDS6CFejydS0HSllGtdKonCRz6c1hIgQI8sTy3Tf+NKXt7e3L0ZnlgUMU9vZ2jw9O55P8qBNOVNM1JtbvfOz8WAYHB2dSGjMlxMJiOOZJ2eTNGaGjZZTqWtSiqKsJhSZeQpafc0LOhJQyeC/9puvHJ/VVQaqtK5gdWnjyvl8PtxcC0P1a7/x5itfujxbjsNkOlukv//77yVxWmTAMnoQaJubrcU8yVK+tu6X1SpLeLvj5glXAiSrmtKKYqyEYKXqdrzT06PN4TOPHo039txVzOIsv3fvAYbQd2zb0Q0NnJ0fvvjSDoRQ14kUcLngZQHiOBqsOV//xtcuzqcIagCAMIwkk+OLmGAi+ZOu8IvSW/B5SpSUX+wNZ7NZVlSm7d689VzQblu2W9SsrBkhWrvbiaJoY3Pz5x98cOPqteVsWVVV228Hvu973nIRPXz4EABw67ln/2//97/v+t5wc4PoWrvTbXzeo3j1/R/80cP9g6IoLi4uPC/wW20FgYIAY4oQIYRo1EjyzHGcBpOyHU83jaDTBhgxKQRQXMnxbMqVjJK4LMs0TSHAmqE3hg4KwKpmdf1kZ2pZ1lqvTymdTEZ5VQrFuRSYEgVBnuf9fj/LMtt2IISN755hGBiidjtgVeW7DkLE0DTb1CgBSgApQF1zCZRmUNs2oyhCClBEOJeW6azieD6fT6fTBtQLgsAPvBdffPG111/55jd+ybFMnRKdkpbnzqczIAGECEhuOxYAQCP0ZHxx48q1jx/ez4pyc7i5vjY0NO35m7csy/zxT378cP/RbLU8OD8qiurGcy98/0c/6rc6g35/PF8ASHXDqmru+sGde/eDduvr3/jWaDpL0vTRweHZ+Xmr22mqHkKoWRxhjAFQjLGGl9405rputNtBGK48z4NIxHFKiZWmZb/flpILwZqFcrMtAQCYpp3nua6bjYGQaZplWXJeu54NAPjMbBzpmlkUxXg0XSwWtu3O5/OLi4vxeCylKouqKAohBEAQANBk8jUrJsaYpuufOWaTRmPeDDUQQsvWpOKN0lwpcHY+ygtg2hbRQc1kq+XZrj0Y9ML5otvt/vzdjwf9zbLkcZx4ngcBD1qObbtSSqJa7X7lOPjeJ8uHDx/aLv/lv/A1312/feeTw8PRjes7raDtOM5kMvG8wPfdp/dIEosk5m7AoyhyXHN0VixXB8P1PgQ0XOaWiW4+ux4tJSZKQHB+dFZw4OnO+XyqBHc88/RkNp2PLl+9mWe1rtucc8/XtzY2J+PIMCyK3byMTAfGRfSPf/f7fl8XQGFDFiVXqGZCKggIQas4jZOoyApNx4f7RzqFVV1ABW3bAAj+nb/zP6G6ZpomJkBKnuWJZVlAIdPCQRC0O7TXb+UZZzwvizpodfZPHxEdYGI9Ori3ttE9O8klUJ5j9vv9aLVgFRESZHmR5fVinl65sgHl4qPbJ55jOHo7jjgS1Y3ndm0feu7G8cXd8Tj64Z/cTcvx6YFYW3c0zaDUoMRhtbh2fRcC8vDBfqdnmZZeliVn0HYMKSBnHEjg+7ZpYSDNxSIM2uZoNNlY95fRLC9ZWbG6cjDGmBQte8BqcPV6u4n41jTt00/vQAARBACy115/cbFYQKwVFScEVkXtOhZCQEqAifbfulOGEP4LvOz5fH5wdHR6erYIwyY6WTes1WqFKWkUo/v7+wiR6WL5wUefJEm2tr7p6PbLL76SxBmQkNfiw/c/mIzGpm4so9BvefP5zHGcuuYff/yx7TqO60Xhqt3qNEWt1xssFqEQwtB0QjTGWBzHfrv11J81y7Kzs7NOp9PtdhtvrqcbFc/zmmF2MQ/ny0WzT+h2u5xziNHW1tbpycna2prvuISQKIoWYdiYF0AIw1XUTGEAAEzoMgwBQL7vI4Q8x0EA6FQjWDMt3fcszzaAAlXFkixjgFu2AQAYDAZB0G5GyMVi4ThOELQbi4pLly7NZjOMcZYlTeST77tBy2u1/OFwqJRCBEOITdsu6sr3/el4TB0zsBxOSFWxqqrG4+nxwcmVS5deefHlVqv107ff+sk7b02iZc2E7rd+65/98yuXLwMALuZT1/dv373n+sF4Nj8+O3/jzS///MOPkjSHhJ5PxqbrFkXVTMfNdqh5bEAIMYYNQd1xvKdTMAAwzwvHsYPA4wxxJgwT6wZivARAIgwcx8GYZFmu6zqCZLlcDgYDCFVVFYSgPM/Lsmwc/yHEhmGsVivP83q93v7jg8ePH9u2vb2z0+/3mzehFjzNswY6aHwumoAtiJBSSkjWGHawmjfelFLKqi4ap5yizGzbzvK8qlSno83nSz+wr15fl6rOstXj/RFCwPVsz9OW8ZltXD4+nlt2SsG64qQ7ZGcnq8f7D1965RmIRBiGWVpduXLl/Pzsj/7oh5f2todr7vr6ME5WGqUNFal5Bjw5CozPM91USuiWA6sSrFZxu9Xbu7S7WCx0zUmSuEl/1XVy796dVgvYtj2bzZpstVVULsJTAGReAIRtQiHj+fnZjBBcleD8ONzY6G/vta9evYagX/IKQqjpYDxabO9sYKRzDoYba1VVQcSlVEWZJ2nm+ZbrUQCAbsDFIur0AtsxoySyXFpVNYTQtm2AFBdVXqzWhn0pwGQ8Z4xvbKzrjrFYTZ578doPf/jhlRvrEOezC2A6nDFhWy3B4GQctYKO4EApiKDW7YKqVGdnBdHq2Sj62jevb2wFru+E8eL4/MFiUXz8wen2liu4hpTvt0i8KrOsWK1WQgjdQAireFVnWbI22DIceHoy39oe6NQbDG3JabfXEkJcjCdQ2q+9+mXdSoSA4Qy/+ZXLEGvnZ9PAbWdx5trO9at9zvl4OkHwiZWcFEhKgIm8dHnrT370MaF6nkhMEMKgzDNKgUao4OJpNfxie/jEqQUR8sVJ2XGcVqullJpMJqZpVlUVBMF8Pq+qqiiq/f1903GFko7rL8KlZlpnF6NuazA5ne5u7rS8lmu5Dx48KopKCIUp6vV6m5ub0TJczmdNtpFhmRDC8XjMmQAKlqzWLZNSXdfNJmEjyzJCNCaF43gNZzAI2mmaSwk2NrYMw9I0Y7EIGRNJkjRQYFEUhm4JJbMij9MEEZhlWRAEnPN4tTJNs9cbAARPz04kAEyIJrK9qqomTk8IIaVarVZNYLkS0vM8gjCECEPkOXa75VME6lqVNVMQ2p4jFY/jmNes0+o+88wze3t7XitQSkkJHMdJ09Q0zclkMhqNfvzjH3/88Yee5w0GPc2kWZkVVYmpDhGRQPmt9nQ6hQpg3djqDxfpqhO0kqL86ONPXdcFCvU63WtXrgkh79y5e/vh/TjLp9Hq9v7jr3/96++//57A+Kdv/3yVZEenJ//897/3xpe/8ta77wGIsUb3Dw57a8Pz0Tgr8jTNG4iw2YMrJZ8wlrKsCT7kXHDO0ywxdCvLsixf6TolhBZFEacThLkf2K5nNRBtk0YipWq29pqmOY7NeKXpZDhca1RGlukAAKIoEkI0MSnD4dDzPM756ekZhAgSrOu6UNK03WYWbiyOGj6QrutpmjbjTHPtPrVibOJoMIa6TrIiVoDfuHGJSzidJbqGTYNUdf7sretXr/aIgf7iX/zOv/e/+Xfv3X9448YNxwFRKBAAtm1Px2V/EFCdHzxYtNrmr/7V119/7Wvf/4P3FGCub9iWliVJVWSe7XzGQkWa/rlrQ7dvLmdVnmhQmYQKCeRyAR7cO7l+Y3c2H52fxVksuAglkASBrau7qgZOx6vSYnvv6sH++cb6ZrtrP3z8CCGSJJmU0nFBnhZJllmmH68KwcnmdifwBuPRHGNY17XtaEDqCMmqYq2Wy1kFkUpWCcbEtsDepTVCla6rsiw1SiUAu7vb0/k8iqLBoEcIriuua6ZhQsMwyroe9Icff3TXtt1BbzfLssn0zHaCNJOcASFLoGgSguG6lVdVmhSSu/N5PlzrWKZGCZCqdrzqnfdPN4atl7/8AsCgZdpRGt++fZszZbmVqvtRlOxdXl+OYVHPg8BZziuqgbrOEdIQBpRCKcF4FJY1ooZYxaUEqt3zJKgZ1zBREhSOrbfb7QcPP1EKzmcRANUbr7+slKkIYLUyaYfz6EuvvzY+z9sdd7VKOt1Wr9cRQkgJdAPcu39HCiCEoCbY3tx49tYVIaXv6evrawD8CybYn+GGGEMFlOT8i5Oy67qj84skiSUXrutSShsXaKXUdD5vUPlVnBJdO7kY+Z1unGd37z9QELVaneHmFjVMLhQkNK9qCFWep5xVlm0ahqGEzPOMsRoA1Gp1hJJCSUwowbTxUuZS1JxVJavrWikogMIYN3kUxWcnDMNWq9XpdAghZVk383VTEDl7Er8bhkvHsbM0dm0njmPDsFZRvLuzBxAcz8YY44qxz6ImGQCgYnXThHLOHdMSQgSeb+qUYiIEowT4rq1TAhWoqqqsS8ZYEAS8ZoLLOI7HF5M8z/f39xeLBca4KIrlctlMeRhjxqosyz785IM79+6cnp5+/OknZ6OLra0tCRAXqhSsyCvBJNa1Os0VBgDK8WJW1pVp2qZu+Y6/Plh/87U3z09WH97+JIxW//wHPzifpm0/+NnPfjZazh8dHudl8entuzdu3Dg7OxuNx3679dbb77hecHB8NA+X12/c4EI0THuEUJKsGkY3+IyT1KwslIJBECwWoeM4QtTjyYWu6wA22ENm2ZQQIEQVxzFjjBK9yCtdNxFC4/HYMAyEYBRFDckRQhhF0dNk0SKvGrZ5mqZNRnyTGppXJUKk6bkW4TJNU8O2TNNknDe4KsYYAKkU0DQDIfQZ2UjUZaXrGiYqSZe2o2umsVpWVQk21vuUoGQVKSBfefXFNFu99d5P/4P/6P94ep71h+TqlWcVM2seVVWWJ+DqjcHsIlsu53/lN747n8//s//LP+I1tS13FSdVlbueJgQTgiXJStNpUWae5zy9R/pDHQBw/AgQihAGCFlK6ePpyLLsqgI7291/7W/8D6LlBeNAQzAXxbBj/8m7b6131qOkzmOpYGlbTrjM3EDnIi8y+fytZ25e3+McFEXe63vHj1LB+B/8wZ8KyQi2y5ITpHqdtVW8nIzY7u4uhCqOCo1aQFHGgaaRzc31TsdXki7moeeZAsiyyj3fahzgx+NlnpeYys3Nzb1L/nQS1SXe2dm5OFvZjsVVsQrLt3/6qNsLeCWn50LTUCcIdFMXSq5CQA0gQZbFNSW1bcmXX7n18Dj7+le+OV3EiMq7P/84zsGgH0CIi6I+P5lcvd7ttP2L88X2tqM4LHNECOCiKnIOFLIds65AnpCT07lmapCAw8P52qaWpozVaLqY1pwjrPsdI83Co4PsW9/+suvy3/qHvytU7XmgrOLlYn52cjgaXxQlb8wQbNuMk5AQZDtgc6v/4Yef6Bqs6oIxIFU9WOsaGmi1XS7KxmX9X2gMAQBISgUAQISgLyTN/+xnPyuKPM/zsiyWy6UQoqxyTdOSJFFK+b6/DMNXX331k08/HU8njw8PTkcjLhXEJIoThMmPf/oTpNM4S5M8S5JVkqyk5G3fswydC9a8jl67gzFutTqMsfPzc8ZYXbEGkHoqHWnyeRtBWJZlrVaraegghJPJpMHIgyCAEH7rW9/a3d1tbuxFGAKEyrIEUCKE1tfX5/N5sxsxTTsIAozxfDFrLpEoig3DKMuyKRMAgC8w7zTLsizLAQBIyRsPWwhBXpar1SrLkmYF0el0bNtuhuW6ri8uLoqiiOO4WaE2uunr169/6Stvvv7661evXpVQNSOhaVvj8ZgQ7fTsAiBoWdZsMZ9Pp51edzaZCinbvW7N2XK5PDw8bgWd9bWNZ57Zm8znH3z04c/efueVN144Pj5GCJ2PRgDB5TLUdT1OsjCKTdP+4P0PKaVhGB4cHg2HQ0p1zrlGqGmammEwKTDGQjAAgJSqWUyZptmgIk2G3+Urezdv3pjPlpRiiISmQ85LxqtOp+N5XjO9Nht8y7IMQ2usEpvMlqYZbFCOsiy73b7runEcY4xN02zmccaYbdtZVhuG4TjOMgqbPVjD8W6uwyzLGkO6hmDQUCPhk9xnRSmN40jTEaXkk0/uAgjyol6tVpSSdifQNKIbtCzT995/Z31rYNvgT3/yzre//e3lsvDczvHxqesBpdTrL/3a17/97Pd/8Ns//uPHge8xXpaF6nZbV65eMk29wUAbNPOLNF0AgO1CTafnx4JSiDEeXaSUwrJejs7jF59/+bkX9nRDPrh34PsOL1mYRs9du3Z0cWpp+vHZ2DQCBUrGlGAEoMq0UJowoOjx6UNK9FU88wI9DlEr6Pa6FoQgWXENY6XEfBZSgtbWNAxRlqdBYACFMTINA6yWYbfdLsoMAoKRsbG9tVwug8AXQjRbfgBAnpettvHg/qN2x3Fsn9Xoww8/7ne3IFRpHFPsRROBYBWF+XysPI8SpGVFVXM2HsXDdbOsQyHA8y9c/9Vf/fPLxaJS9ls/fevnH+6bPiwiESawrnIA+GIC1zactXXz+PjYc8Fg0Ds9vtBpUJQAIcA5LEtmGEZZgDKn4TJpddoKg8W89nvKtCwu1HS6kEK/eitIs+XjR+yX/8LrpinarR5Q3PGBYAQT2e7BL3/pm2+//WF/DRq6yzm3bLOqhGXrmKCg5XqeTqnJpXRcUFXl+PxMKvDCs89SgqXk/2rcUAEAAJScA/C5Mi+rOOdiPJ4YhkmJPptMKdE1QtI4kYQ+OjxZzJae552PLtKy4EzEy9XG9s5P3nr76o1bb7/zPlBUVFLUnECMoSc4YUKmVaLZ2A/MXjfotoK4SMbTURB4p6enpm2VvJ7FS+LbaVkwqYim204AFLEdD2l6yRkmmpCAahrGuNPpSCld15asPjo7PRuPfv8PfzCLlgWvc1bZrjeZTSEk8SqTClY113TzfDRGhGZlEdieTnQhVbiKZuGyvz4gGp5MRpbnno4ufN/Ns4Txcm3Y46JUSDmOWXNMNcfToW/IGoBEqDBJchALJBzTyZIEapA6BEE49Aa+35rNZq7nIQwAFJaGsWSeoUezcDGZqaqyDb2sc8uzx+OxZRi6aa9bvoZgbIq3f/bWlevPvdS79dFZnJZ1mhVxmt/ff2S3g6ysVK2e3XvGc7yjxXj/4HHH0g5GZ3lRVWFWAiABgJgYlm1Ydpgkp6MzoOOT8cmw1y+KYjIZEZ0wWVZVwapCVHValtSgtSypBqq80jSdMSaB4EWVpZFlu59+euj7gWbWaZWEmS6E0k2gEZUkha45jJcKlrZt64QVCeKMaoaPjRoRg2o4TRMFassmQtYCqDAMl1HEuBIAt7s9nua9ftvttUTOpAAp50WWSEAwNbOC1TWHEEuuEMAYEkB0AaBQKitSouGyzIUQlOoKgGi19HzXNNzJaEUAhQBsbXhZvRA41XTz6HAVhtU3/9xXskzJ2uj49sXxwrLT17/Subi4OH48Gw526iodRx/+/f/zj3W6dvkmkCTmTFU8u/nMrZ/fvTNfCcuBq3iMiX58uux3r+va55qtTtfBSGHEjg5mcVRs78nJGceQMJ7fev65K89s/6/+3f8D1HuS1W7QdqT2+kv9w9O50okqKoQzy9RYgTWjIshezEVeKM0V4wsb4ipeaqap/uf/9l/Zf3jS7SvHbOkGhkQo7usmq6rq5dc3Khb5TscwjLPxYrqI8xJ4PTqLZgDSgkcYu8TIz49rKEGvbfNCVFVVVWAZKlenO5t2r7N7++7xyWgBdXw4vpNlChiD/dMDt0O44obRibPUayOq86oGSZLImvom/vKLb/5P/+5f3tvZ/fTuez+/c79j6ZP5yEagytwlALt7SlSbqylttYt2D3NmXpwn21daTjuyrLbmLik1k1wBvY6iSNPyIDDcdjVfiuVy+dWv9+siGx2Wz77QBtLMC9Bqa25v8NZPxy9sbXzn68Gjg/3+5maVChNqFjEIVVnZundy3lrvm44CrOiv6eGiLBJHquLGc/b9u/PuhpbXFCkNIqBZfBFVnTX83vv7o0kEqdYkYTRzZEP4hxB+1g9C+MXeUAhR1pWmaYeHhwDKG8/cnM0nnucxVjX8Fc657/v3Hz1sUhy73e5HH320t7f37rvvVlU1GAwaKWsj4Wos4NM0raoKYUypPp/Pq6Ls9/vL5XJtbS1ahnVdW5Z9+PhgZ2fnC4b4uK5rjLHp2IZhLJdLz/M+81ImTbpTsw9pUpOaf07TNClBk6wEIWpkcM1+ubH7dyxrrT+QUi4Wi8Vi4QVBVuT9bi9ZrSaT2c7OTsM6olRfLpeB59iO2fwUVMO6joqCK4hWSdbpdBqcq9nq+L4vpWy6mOPj46vXr9965jkv8B3PvRiPGh3bfLnY3d29uLiYz+dpkff7fSHZdDb75PZdCOnp6bmu645rGDp49+fvpXkBAHBsryiqR4/387J2HGdvby9NU0LAchXNo0Va5FVV5XHSanU4l0pBCSClFCA8Hk14s3aVsoFri7Js5HdVVSEMdV1v3i7P88qynM1mhmEo1QQlIogAIcQ0LFbDNCq4VELBMF6x+knf1wwKjQa5KLKLi4tut7uYLxt0r2EgKgmaBXEjBGpSrYMgAADAJ/mfBBHcdNBNe96w4huhYSM9bg5BWAn5xVgry7IQxEmSlWWJMbQs6vs+koN4VViuKOrzt9/58dbmFZ2CVZR1ep7ty9/+7T9+882vTEfFeMwuZseji/nO7jUA0NnJwjK9lm9JgR7cOd3aHM5noaZjgg1KqWkaaVJWVZUX1ed9BITtji0VkBCcHIU3b+4BqZTUCAHjyek/+H/8452dvedfvFyU9WAwMAxjbbBZVRUhZDq96PfbSoFFNDVsYJo2Y9yyQX/QSpKEMyBVOVjr/v4f/GARjm3j8tqmV+TMcUAYhrque26gFGSMIaIg4vEqU0pBgDTNcF0XAKRpwLIs02iNz+erKPP8lulojmtUHMRZ2Ok5W9vX33370zxPEQCu2a4LZljC1OFqDrIV16B/cDByPTBc27p/98yycbTMDUN+51e+1W4HD+5O/qP/6D/v9QZckPlsYVmWrlMMRRAAXotPPjkIAmcVga2trft3D6fj3HOD0Xm0WoXPXN+7euWKZeq9nllVVRpnACCgaJWz5XKu4f6VG/7J8YWON9rDuEjBtWubh/eny2n+7b+0VZVBWeZb24Mbz2+PRqskSSEAeZ4eHBwQDH3frOtyZ2fn5GiiEaVp4NLejcODqef2/RYqilpwAKCMo6TTWpvOzldhqf5bnPqaCqjAL87P/X5f13XHc2zXjuOVAqLTaWGMyqowdWNyPg6CgElxenrabreFEp/e+UTXddf1R6OR7/t5nluW1VzNEMJuvye4KkuxWiV5Xs6XC8uy1oa9zY318eji4uLctm1eMwSwZdij0WhtOKwFRwgNhmtnZ2ftdns2mwEAMMZJkjXiMEqplCBN88amIUkSy3Saf64pixDCKIo550JIxjimJMkzhDGGSAgxGAy63W5RFMenJ4ZlcqBms9nm5ubDhw9t29U0bWtzBwBgmiYvi7IsDcNQSpi6IZgkGF9MqiKv64r3ep3G8aHT6SoAhBKGYRRFMZ1OP/zw48aYumJCM4z9o8PT09PxeJqm+SpNG143hGo0uVhEIRcAQFKVLAoXGgW+g+49eryztxunKZfy9qd3CNF8v7W+sQWk2hgOpQRnk4txOE/r8vT01NHtvKr9oD2dLUaj0dn5iDGRlVVRVMPhsKqqMF41z8BGxKZpGgCg8X90bK8sS4yopmlSCtu2m+AEAGQcr3y/xUtVZAARyriEiCgIz0cXAMJuu6OkPB9PXNduglakALbtNqFQdV3XNWeMAQU5F3VdYwKLIhNKWo6d5jnnHFPCGG8+r6cMnuYR2KS5EkIIRIoLJQSQEgBAMaGYQAWUUlXJTNMOw5ALxlg9GPQwxqxGBGsKlO2uHYXswb2Tv/DL333wcP+1N58rMhIlk0ePZsfH9XDL/au/8VUAJFAWAGA+qaCyiMbiKNFx29TUfBZrOlCSCCEUFstFEsexFJ+PV1VZ94e6ZYE8T1cR2dno6xhdv/zswaMDjJXgoNPpjKaH/YGdZjHGyLYCCGGa5JeubDgeXS6zTtdrd5xVlGZpdenKcDo/RgArAaQo42Rm2+6tZy9//P6FZdMsqz3Pq2upFCRYF0JlWQKR9HyzLFSDrqZJcXh4mMQpJbTd8bOYAwmkBIwxrpjT8hQArAJIUw8fHZ9fxO1OsL7RqSvl2p7noSSN6gq0fKfKleeQnUuts9ORZXiYyPlEXrneHw77//U//ic//OM7w3Va1/UqEkKi4XBomJppac/cuPHJR2df/8qLi+V4fW19uVwuF0yjBue8392xHf32x4cPH96XQlRlEQT+cH1rGeZMIABBOCNZEm1udRS3IVSmzU3LRgh88Nbxt7/9QpQfTZehZfqajr0W3b3U63Q9KaWmAVbX09lEKUU0TKkeLqpaZINBZzFPgQIXp/HaJpUSIKBRTKqSO3ZLAVnk8otz8L9cDQGA8ItbFF0zhRKe5zU8Bkppr9dbLGa9Xs/U9KosXn755eUi8oP2Igpns1kjGvnkk08opUmSYYzzvNSo0QQSjcdjBYFu6EVRMSY0TVMAScmVEkmyYnXdEGUODw8bTlye57qur1YrCKHrumeji52dnTRNdV1vRCmNc3VztzSG2I0Fi2nYDRxQliWhtGasrJiCgEvp+74QTEjWqE2gUoHn93q92XJxeHJsOnZjLEYo3T84wohmWd40ZVWZY4jystrb3fVd2zJokQnDJILjMIzW19cpJaLmruMzxhAClGLO+d7e3ng8ffvdd8/Hk8l0vkqyoN0ybcu0HcO2rl69urW1JQRLkkQh2Ol1saZDrGNKXdct88TztCiJNMtehCvLdKhuUM1YxWlvMJzP50mSSAmiJHt0eDBbhdQwCcI1B1lR7h8ezRfhPIy4UKsoWRtuaIZeM7ZcLhvIFWMcx3HDImowWcuymje86c4IIYZhCME1TZvNZr12TwjAK1gxVrI6TTPTNBu+QRMO1el05vO5lLzX7hwfz5Iko7qusPzMpUI1WV0NIZGLOopX7V43yVKIEefcMPQoihAhGENCCMawYe00ljkAgC+2hBhCndKm96SUpmlWFty2naqqHddqd4KiKGyvKsqk21nH0HId88MPP71x88r/7N/+6z/4/tuSB8so/73fe0ujftCmm1uDLK0eHRwhHdpeu8jlYOBKKS/vXItXM8aVrhOs6VjTCQUSwPk80rTPPWyUgobJOl23qESek9PDydq6E3j+vbtTzuXrb76cFsvz89Gzz1179Oj8+eefTeKyqishJIAsL0IISVEkut5ktuFWYIbLkQJquDaMVhXVlG7ge3dPwzBE0Oz1LQEUpbAoKoAwQqjmDCLRartlBiBSnuf5fisME9O0g6DLWBXO537LhFBN58uac1ZzCRDUYZLmq1XY6XgXZ/OjwwWC0g+sIs8s0711c1ehlNdVO+j0e4Fg0nVMXikEjbIO/69//z/rdq08Vc+9vKcbKFzUg8EwTdPJJAOwHl2cv/7KtfOzY6HKdquXJDGEgNWqLMvpZOUHRqulScEwxp2uXZSrXq/nuDhcZp5r1KU4PDjTKLVt5/H+/es3r21sDO9+fOg54LXXhhB0sVEDpRV5PFtdTCYzw9JmU2nZ1DTNTtfUTcMw9PksLnLQ7oKyyo8OJq7rHu7PvJbSdVCVsq44QmQ+i/t9rSrlv8Lo9Um/jwAEEMBfYF9rmmZZ9nQ+6/S6jueGYdjtdoUQUnKDEIrhtWvXHj16NBqNlsvIdt0m5whC2JRXXTebrULDkCiLWtN0xkSvO2hIf7PZDCC4COc7e7v9waAsi0Zkkue563uLxWJ7e7uJmW86QcbYN77xjcVi0SgcNGpQShssv66543gNWSQMw1bQkVLmeR4lMcZ0NpsBRJSCJauJRmfzecVqXdfDMGw8skzTfPDgAZcCAMClNG37YjyZR4lh2lwK13V7vV6r3U2yvCxLioCpUcBBxUBVKymBppNBr39+PsrTwjAsXdeXy7nv+1lWAIglIBDhVZoxLj/46KOaiaIqx5Pp2flIKOm67sXFmePZtm2blvXg4eM8K4uiYIxZliUheO/9d3uDPlcgXK6iKO72ew8PHrc7/XCZbmz0gQJxns2iJaGUMSGEPB9NqK7HWWoYRqfTCcNVu909Pz8HCGJK5Gefb2OK0WgTMcaEaITQJza6FDd5zQhhSzdYWZumrRFa17VtmkiBLEsbIV3TP+Z5TjVDN3Wp+GoV2gZaLRKEEISAc97kfEsJGnSl6UmTLGuQ3yzLAIJCScdxoihqtQNdp83f3JhE6LouJGv2yE0r3bz4xlGCUIQxPTs77/fWlAI7OxtCcAiw7cIkKU+OJ5pOOj0zWk0ePnz4O7/93zy6GzPG8hj/xV/7artPpSDUyHTSeu+9TzERhKDZdLm9MwxaYHtro8wzCCkTklJMiSmloBQ+fjTK8/zzaigAprVpI13XVqv03u3zF17eXYRTXTfni7jdtSHOn7/16unZEYRga3uYxIVhEM5AWaaaps1nS4RIp9M5PT1t+Z4fOL1+p9v1snRu6aCqyjCejM7rS9fbB49mw42ggRqKsjQMDUDY+JgVZQ0kkJJJKW3bxRgIrvq9jWg1h7A2bZCkq7JkpklmswWoiUYMoOjOXp9oDCMri8HaeouLbNDfzjOBNfHtX36RaAIDOp+FV65eSvLlYgqkwL1ea224k5U5osr1SFmlnOEsS+I4Ng3A6mpjY2N9uFlW8cZWkGYJ59z3zaqu8rw8Pw8tW18btk0bCMEEqOIktF0/K4TXcVfL6uozjqX3zs9GN26tjS+yNAvTLJ7Oy69/9Xku5lza3//BezvbXdOEAhJd04VgvR5FoG55AcKKUko1vJinUoH1TSfPi+UiUUooBSglG5t9VnFWA9s2F9NFf9CimPxCjOgXq6GSQAFBNQ2Dz7V7h4eHEiDb9ZbLEGMihJjNZteuXSuKYhXNr127kqxW77//fhgnlu0kcRaukulijjWa5qVumvPlcmN7i+haq9NrdTtVVRV5NRyuL6OwZgJBYpqmkOD07IJxziWDEM7nM12nSbJ6mgcPCWaMVZwFQfDw8aM8L1999XVCSDM7Q4A/owqDsiwty0mSpPEitUxH18zlMgIYzZYhAAgTLQxXhmHM5lOq6xKArCgYY1mS9jvdhhUogCjrym+1lnF0MZ5Q06K6rhvWwwePb9+7T3VzsLY+6LRZkduepiQsC1YWNcXk0uXdOCrKssYYawZ94YUXXNd2HGdra6vXHRCqtzudWnDDsifz2dnpRVUxQsj5+ciyrPPxCENS17Vpmh99+hEkOIxiTTOVJKZnPz4+LMpy/+DAsOxVkoyn09lioTutioFBd31nc6uuVV4UYRrrtpXneQPmGlQbDgdlWRZFkadFQ1HCGDfNb4PcNQ5mzR65af8RQr7vN0I6IQRQSAgghErjlWFSBCvfNl1LCxy7yLKzk1PBedBuVXW9XC4xxggASghChDG+trbm+SbjoOEPCCEgwFIACLDrulyKZRhCgiUETYk0TbOugWHpEEMuBURIAlXWFUAKE1JUJaakoekIpSrGnq6egULzWVGWdbfrmZZW16VhGJxhjZj9frdis1YXdzqd3/3tHx4+zkyLYKTv7e08eHAfwnzv8tr0Ig18ihS4cnmtyJdVxeNVYdpouN6+f/fIsqy6UoQKVoM8L6gGzk/jJE+e3iOL+cq2DapxjZqGBc7OGTXUaDrJKzmeTmpeAMgnoygMwxs3dgwTF0UVtJzTkxEhJE3LmjPLbk3GIaU4aNlJnFNKl/PoV37l67/xG79ellUQeO2uQ/R0uVy6nmVbLleS8UoBkaZpknCpyPHRGBKg6aCqszwrIASjUcIZFIITqgxDJgmDgLqOw2tJsCaqIo0T29G4KFzXBhAgoghFVQX/P3T9V5ClaZ7eh7328+b4c9JnZflqV909PabH7sxiF7uLxQJcgMsFEYxFUBESRFLUhS5kgqELKkKhCAUuJAbFkBhikICAGC4FagfrzezO7Mz09LSvri5f6fPk8efz5rW6+Hp6BiD53VVeVGVlnvf9/uZ5fs+P3348np49efqgqso0yXvdjXW8jBNelyAIKDHMukSmQ6hTu6Hz6PF40BvOZqsg8AzDJARBgH7/97/b7vpBECyX8/Uq6/Rc0wJJXIYh1RpowK7f2CpKhTHdubL/3vv3NQRCSYxBliWvvHZtMk6U5jtX2ucnxdnlLGybi9mUQldAMbt0d7aceLFA0OZKT6ex64RlxZeLtRCVVtDxveW8AIBzUXmun+dc6brX9wSzNjeGhALOkG0hLmrDREFo/0/ehpgAAACvmAT8s6+++uprWkNCjDwrJ5OJZTqc89lstre912n7nXZ4enpMDIoRWa9jxgRjwnVdzmSrFRRFUZZl8xYtyzKKEtOxV6sVBBhjojWwHPull15aJzFXcrqY257rBX6r05ZaQgw551mRHx0fd7vds/GFZVlRFA0Gg7fffnu9Xt+6daff7y8Wi729vSKvPC9o1DBZllmW05Sijc/MNM2qqhAkVckcx4EIEUqFUpogoSSXghDS4Gw3Nzd5zYqqKlmd1XV3OProk4+fH5+YtjueXH75q18xTPvw6EQI0Q5937ZkxeqaS4XiOE2SZGtjc3NzsFpFzWzxk/v3zs7OVqvV4eHxdL54enh0eHx8MZ4UReF6wa07t70gYExkWRa2W/v7u7yqPcdN0ihJo83trf5ws6phkWnbs6fzaV7lZVlqLf0wYKI+OT06PLuMYpBHxf72Hq9AXtUSIolAE4ssWHXlyt6oPzg+OpKMX9ndc11XaNWwD5qOtZGqJEmktTao1TAEGWOtVotzbpoGgDjPSykgq1Ucx65NPJ8AyRyTODbtdYKdrY2yzGezmeN4SmkIYZYnEEKCqFJgNpvdvH2j1SJCsGZbJ6VGiECIgUaccw3BeHLpum5aAN/3oyjyPENrWdc1Qggh0ixJmjoxKwuhldRaak0IAQgqoBH59H4HAKzX6/6gm+dpQ/rqdXbqWiCsRhv9uoTzCT8/rfd2t77xi1cYX3V61my63tvfCHxjNZFf+OI1kwIAORcKAjo+j6/f2HcDGsfIsiwtDcfDUiANgOsjLVylfkaCoohArR0PM65Hux6EABLKJa54XYnYMoMw6D969AgAEMdxkq4Wi0Wr7SKEKTUDr+t5TpZwywwhEkWZJEkxG8//V//x7yiZz6bnggPf60KSIUS2953ZdBkErebfTZI1wkAIUORiNhEAAMvBlk3qug5Dt9fznj09ZrxiFe92u0ADzYlpmo6FKeKhD77+tc/PJnOgwGDD3r1iHB2eIeTFabK103/jiy/Ea8U5aHVbH99/dDEZpwlCCOzs2598cvzs2cS07N0rwXSywtDOkng0NOezea89kFJHSdzqeJYDy1wkScprojXXAPDaKAq+nOeEopOzCwiw1nQ6ix89HRMHlJx1+mYRa8tL4xjMputOH12c16/c3e2PQiXk1sbNH/3wk6DlS66IbjNWpgk7uDoKw9bmZjuOy929HQCgEGIxyzwfKy0QIpQCw9KuT04Ps7LMBxsoixnjKYSSc97p2YL/m+rrT2/DT0lfTb/80yeOY8u2tYaDjRFG9MmTJ0IozuXp6Wmn2x6NBuPx+Ww2MwyjKEvDMBoCXSOBxhg3hMEmojSOY62h7bllWbZbXSllp9NJkiTNCi4UNaz1OmaSAaAcxwJANYAdy7IaAigAoJmpNw68p0+fNmYGzvnBwcF6vTYM49PYeCGa27AhzTiuO51OEUKzxbwZXzYo7CRLiWk0AkNKKatqpEGr1Zot5kzwqqqSPNvdP/je979vOTbGeLlc7x9c7Q+Hjx496vd7jm0hDICGGFMh1fPnz23bvnnz5vNnh/1+v67rRnvcCJuTJHEcx/fCy+kkCENKKWNCSl2yutvtzmazVqt1cX7Z+ORWq8X29mYcx3GUc4G2d7dOL+Llcmnahud5q9UiyzLTssazxd6VUZZkdcmuXdvmHERJnOYZAMCyrDAMwzCsWWmaNPSDN954I0piIYTU2vf9xl7WeH7LsvQ8j3PehHwmSZKmqWnRBn6YJJlBbaW00sK0cBAYrk0Fq02D+t6n26pGp0kMI47jTqfVvIc8z1utVuPxeHNrhDEEUH8mXxBCxHGqILBt23Gc8Xjcbhtaa/7T76qs8kbQ18wuOedSffqGllJKrYhBP2u6KaV1zTEGhBiNvbIBXK5Wq2639cEHj2eT7JOP5ufHtWmgdg87Xj7aZRenq2tX9z55+PjyJG+3bNdBvV4rjZONkcMrFa/ZYDD4oz/+zvg8ybIsS2uAhRQQY0oNoJVVlD87RdeuXVsuVqaFy6JGpDJsw/e7i1Xut4z5Kl8tU9fu9TptpQAE+OnTJwCAMPTLsi6KihCLiwpBczpbup5tmGh8Mb127dbh0eO3fvzWOpoLDjlD23t2mWtqpYt5IrUCAGACyiofDHqug6tSCg4IIVoLztlytaAGfuXlu8+fzTnnVcnbrS5GRCtsGybBirH6YD/c2R1EyxJjkpfz3sjH1CHUf/TofHtvOy9zVtl1CTzfQRgYBhClfe3aQKGV6yJW6zhON7fby3l2eV7yupSKvXjn1ng86XQ6l5dT27Ztzzw/m3qeXRYKIm2aQAmTM5BnQkNoGFBw6Pqdy8mKCwAQ0EL3em1qgrIQr76+nWXZk0ezmtcbo33Lo2WVmob3/LHYvoqSlfz4/TOActum7VZXSs3qcmu0sVzOMaau66aJOri6BSHEmDAGRhvdKI6On8/X6/Xu3pAzrTSjBiKEDIbh/3hlCACipMnnBurnOuWfvPuT42dHi/nqYjyrAaJe8PTo2HKd88sxJVa71f/xT97f2NotaqYAwdRUSlOAWFVQA2sgNZAQagKBbzsAiJplgpVhyzMN3G23u+3u++++H/g++jR+hDfaH9u2m12wEjKOY4RxVderVWSaNqs4k+xicgGwOr442drZTNO0224HfqsoCsMwtre3y7K0XC+v6ryqJYDYMiAl6ywhhEipBZP9Tp8AxGtR1BUw4SqPDcOCCvNaBK63u3Pl9Oyi4owryYEoOX/46NAwW1EtVvPxnZvXS6kfHJ7s7450DTCyUV3TlltSmq6j/WGr1aOfHD/ZvXZHKpAl5ag9RFLv7A77oza1ydbG1tvvvlMrwWtWU+hj+1e/+M0f3b8/8ofn8zEwjNkyRtQiCGeLeT+wyyLRvA49cDaZeGHLMAjW6nJ83m6342n0ta9+/de+8Utv/+TdX3rj69tbG1UaRdVUajnotZAW08vTsOWkRTzY6KZxpCRzTcNAGEOEMTZtA1EU5eu6zAWrWn6rSMuiKFzPzrLUNOy8KCg1MYZlvaREa2kIBXojV+KqEqlhENfzqOcR29MKOgYlSAshaqY0wNSwq1J0w83H9+Y2hUEbpZlZMMlRWVWGBKYggpeg5NEyjiRUWYxabbtgpUBAK2HRQNS6KFZFvnZt36Qu1EoDUNe1lsJAuEjSwPZt0+KcI0i0QlKAfrfjegYTKUSyqpgQiWt1Oh3rkw+j2aX+1q/uDXZAHMuN4d3VQn/pm1c1pQICYNdcmabV6XW7ixkf7mDDRCdP0q9/6Q1WmL/+b3/h8PlES9Vxt4Be1hljNdbmYnlpfHZGSlE7QbhcRZ1Od3xav/xKez2pz58lg00WXRpCCNPSbmgmJTAJHGy88PDoiEiVFfNCo5xFqHQ9u1otUs/3l4v6b/7NXyrz7JNP3vq3/8HfBAjCeruqn9y+el3xsop8UUkgZ54bcADWy2C2fKKVbPWk1IZSkhBiGGaec9u1sJ1ubhuLSyyhgLTc3tov2VIJGC8AlqPrt813P/xx2OoxIa5f34omem9n65MH79+8djuZzo6eHff6HaBMpKuQ+tMjsLnLhn2BZKvbtwjwAg9YVFWZXC+REnpruA2NJIp4nhqIiF6/w6vaC+hypvevtIMWhxrmRUpMAAjP1lpw3R8EWTWvmA0EQBo7pnRtaVBQRPbNF3vrlYwj8Nu//Y3DJw/3R93ZnP8f/pN/8qt/8+pmp9/pj2wPV1M16AbrdHH/wWwaVZKK6aRyQ2Mx4wAALiNWaMOE1AbrPK1qYph0/Lxy28zsmhp1tZbD0JMVpPbPbsDPFPUQQsSbohFDCH4+M+/NIAjG43HDi3dcN4rjxWLRbrcRwUzw2UI1JjnLIISQNGUAQd/3m8G8UmK9ThFCNWMGIVf3r4xGozxPFZCu733yySdBK8QYB4HHef0Z3irP8wYK7bpuU2horcuqsm27IT50Op3z83MhxGQ+8wL34vJya3vDtR2KyfPnz8MwzOIkcD1CSINLaNJR8jxvFqmfBavneV4xYZpWVTHDMBq3crfbbQXhfD5PkoQYtKjKJ8+eOoFvGMbe3t7F2cne3p4QIkkSaoCqLjQEZV5yLhjnrVan1WrN51PGy42NjVF/YBjG66+/fuf2i0mWL9erdrdzenqe1nWe50SB2WLe7oTr6VSbqNfpH56epXXdCsLLiwu/266hhlBjhHq9zvnFRavdbvBlhBicyzwXVRR//mtfqleqBPLFg6tBJ0yWa0RJVhZpnpm21ekNFqv19u7+vfufcM7LqtJaNokIzYtHa40xchyncX3ked74lxvUOSGkgZ5RanIuEaTn42maZqz+FCkIAPB9v6GRN6YUhD5NqddaQiRtB3z88Kzl9T07YbnmzKx0Yjp2nhR1xaVUCmitIdAIIUwwRYgorZM0dTwXExK0wuVqJZWC+NNYAmIaUsowDPOqlFISbEgpGa/6/a7jeJxJ1wlOTs44553WVpot1ssqXldhG0TrhJUWNas0n/iB9UffuTePHvfa/boSTM7eefv+yfGZxuD54/TVV+9++cu30liEHf2H3/leGFqM11rrTqdjmmaRFa0AA/izTjkr5pwhx7GwUQqhbt25dnGRa1RGK4CwTPOFbflxHNsmAFCXrIqLxHCcfs+fTeZVVv69v/8bV/avcw4skyhdVxW7OJ9+85tvIAKjdTIenxPkViVjTEvJHRc3ShrDAFGUaOkIDjlTmCjLJkJorTChwA+cOCrqSuZF4tmd8XgWxTMt0cP7J7df2AVo0h9sZ4WOi8WdO1fH42S6XCV50h90s2q9WF2+cHu3KOMsr0ejHtelYYB2L1hMV6ZZSW6l+cKgzpWDzeeHy8FG8MqrByZtnZ2N230wX2Td7tAKsrIiQvCaVTs7G7ZtQ6QtixgGFUJghG7dOrBtO0vzOI6xTVkuPc9aLiLH9pNs/ud/9GGWFv0+OHmaegFYRuu9G735AkznvNPtz6MZclLT3GmHzu5uyOoSaARQRmHLsPgP//ojgEBVVbZrl2WJEEAAIqhaoZkXZRaTbhfHa3bnzrW9/Wuuh4aDsOmKmvFRw3VXSqFPN40aqJ+7Df0w3D84aHc7qzhaR5HW+sqVK3GSCCkZl0+fH7VaAFPy6VISqZde2GuEGoZhNLrr3d1Nz/OGw+H+/v50Om1m9p1OJ8uStMqd0BOKe4HfSKMJIbXgnHMAECHEdi1MYM1KhEFZ5YhAwzAMahqGdevOC4+fnkdRZBhGVRdpkV6/ft33/Rdu31kvV47jJEnCq9oxrSRJuv2eEAISnJUFhLCsqkZQ0synAABcCK2hadpVVdnE2trchBpkSZpnJaJkspgfnh63gjCOY8MwsiTZ391RglsWtm2TcQAAyuJkGcWu5+1s7eZZslzP0jTN83w0GiGEHz19AhAUSlPT9lz/8clxlOUP3rvXHw17o4GL8UqkX3n9ix988snx+GJ7uJWn2SyNLqN5tx0qLgkhUguFVFFmGONev//RJw80BJ5FayC+8NLBD9956+/88q8GQVBESVHlCkiIIVN8Ea+X63I02syzqlFBQwiV/hkxv6oqCJFp2s1dVlZ5Y6pTSiktAFCWZXU6HalAWfCykAjYRc6UAo0rWUqptDBMQi0TQtxQWhsJjQZSKWFZqD/qXZwtblxtGRAoHhg+Laq06/cl0BAjgg0NgVJACg0AYkw0n4QG69+8yRBCze18erpyHQ9TOl+uhRAY0yY127atwbCXZZlS0LZCgzoEm0dHx5fj5XIORpvtoEUuzhdFXgHInz09GW1ZtgtUMWh3jaNn5x988PHV6weDYbvbsfq90XvvfXj1+vaTJ09sE/i+AYH0bMe27fV6bdt2q+VjDET1s9swTuZAG57nSR35rrF7beu994+kBnWBHBcn6VIq3u8NKQGGgfxOcLmYLaM1IQbL+QsHN3/v93/3vXfvAQAMS1+9tvO7v/sXcVRdTo+//9d/VRTV5tagzMHpxaTdcb75ra+GLYczAJUGAHDOp5e5EAbQxLY1NYDgIEqKdifQWmYJFzWCACwXjDPV6bl5pvKM5PX65kuOYOTJ00tkAMMKTk9XGoM8XYlK19Xq7/6dX0mzpCxzxwcScMeluwej4bAHNQhCXedIaeDYwTpZJAkwPQVNHWVzw7QKDlyfHJ1Ma56lWdnuhJ2u0emGjQ6MGp+mE5+ezlp+a7lc5zngXBNCLAe22611xAjx8mo9PgF/41deTFYgWi+Gg14lim5/9+CW88H7h/+P/+I7117YUMqfLqZb275lmASLMlVal0CTqmJKGaaHas4wpotFihByTAspJXkGMTg5zK7dHNQV+NM/eZaVRW/gpHHZ2DEa4dfPclE+Xa/If22s+OjZ88dPnyKEo3V8fHxydnGBKWVC2LYDMDq7OG9122VZa62LIhtfzi7H577vm46NEFJAMsGLolhG6+ns8uTkRCkVBN5oNBpPx0meBS1fSNlUnZZjN+YNKTU2zCTPMIYAAEKphooQ1DiXpRa2bZ+enJmm+Qu/8IUoWT98+nBze2M2mzU2ainlK6+8YhBaVVWzT2gylLXWjca43W4bhpEkiWFYjRQuzTKEUFnXn55DIVpeq9PqYownk4kC2vScdz/8QCg5GIzyNGNVGfq+57tASc7rigOkqUHpg8ePsGl12+3Ac89np57nQYKfPn/29PD548dPi7wKghYXajTa/Pjho3/nH/7Du7dfSpKkN+jfvnrtr97+/v7m9sX5OM7S0AmwQgrB+Xqxt7FZpnmn0+mPhp88vG9Ylm3bUuqTi8vQBWWZP3308H/xH/3j42cnT58/+/xrr0ONjk6epGVk+1RBdnj8xHZBksVScsGV1lpqhTGESEMIK1bnRQUh1lqbpqmU5JxrrSilP48vbDiDhFqMg7LSxDCl1FoBjDEGsCrKmnNCCEKYENoMBxFCGEMuKkz0Oo3zVFzfv/b5z12NkjVjxDAxq+qG0kYphQAJIRhjQGpW1Q2+sGGONW/ZxideVVXYIvP5XAhR13UURUrrpuTf3NzUWmGMpYBVyTlTT548Ob9Y89pst03Hr6pSRStue8ow7CyRmMC9K/D8sFjN4qpWZUZHmyGXUbKSl5MJq3Wv13YcIAV64YUD06Sc151WuFqtptNpO3R3dza2tn6WiyJqJJhYzJYI4BdfvFbWRZ7Vpg3jpTIsbpCgrCKMLM+zIdJn5+ftXndzZztN072tzd/8W7/RH4THp8XVKxtZFtVVvrfnh0HPsKnjOL4fSlWtI5EmRafT/s6/+uOa5RRZEHOlQdhxT064QW3LslodwzIQr6SUyvGtvCrns8S2fMMESZJpaXJeb213ESLnZ4kdyMU8JQgMuu35ZFbn1aADXBe3Q+ub3/jy+cUhBIgQg3Pg2D5A8OR0wph8880vM54KDnyf9IfByfHl9ev7TCTPn0/NIDZIJ3ANp5XVNTg/k25glmU53GgxXrFaBSEkhmwEW0CC3d1dKTWlAGhQJyWEcHwxYRyafvngg/yX/ta1xQW6fXMzXi+zrDBwwMTU9awXXt7qtr1/+l/+OTWAhuz46FG8EIORjRBOY3D9djuLUX/oX7u+l6ZiuUhME3RaYZamdQWu7HXc0Juc5pSATtsTAswWl+99+IHruk3ATlMSNjEpEEL0P2DbAABAXtYN5ssLfNO2uJTHp6cQQkTw48cPpeRhGDLG8lwAAF5++dbrb7xu2zaleG9vJwxD0zRbrUBr2Wq1er1up9NZRutnR8/KunI82/Ocoswaa51SihgUANToaZsLuyxLamDTpAAoCHVd1w1aLmiF4/E4LwsIYZKmpxfnr9y9WxSVEKqu+WKxunHr9qfNHSJCyebSaTrEOE0cxwEQMsYM22qOVtOFKaWIaSkJlNCuZbfDTlVVTVZyWhVPDo+2tnchIlLqKIqu7O5JBbQEGoAyLfZ3984vx3ldW9RybSspo8v5pWUZUsr5fCa1wJScnl08evTkF3/hF/M4+dG7777/4Qc3rl47ONhvu+5sOauz4sVbtwkklmGxig/7fcUkUhppxJjQGD0/OYYIaK3Tooziqht6koBsNqed4N/7zd/8f/6zf7o32hltbpVVcnr2fLGeZFV0fnnU6wdRvIjiJaXUtm3GKg1BySqIdJ7nzQZJcNUsK5RqfKyf/pwh0pZtpFlclmVVMSVRljKMiJCyZhWrS4xhUyHWjEGMIcZCaQk0tahhW0wIjSC1KEDg9DR788svDbpEZgQjZbtOAyhs0riam5cQAgAyDKMoWIO6sG27ySQIw9DzPKW01AogLLUSUq9Wq4ZuSSmWkkspXSc4OR4rBcpCGwbo9f03Pv9aUUVB4PheqDSQUkZJKhidTpI7r5LlJTIwdGj75OzJjWtXasYNClglXnv9xZ/85JMPP3rmeJZrUw0kY8w07X63Z9sW57kQ+WdnpMrNJIkdJ6gyokCeZ7Xl6LrSlIAr+5vzcT2+fFJVIgi809PFD3/4w939g/HlNE3ZF7/wxvj8tDPouC4oq8RzXc75sN+hhrNer09PlxCQi+nk+bOxkoAa0HIAxAhj6LgYYxC2LCkANRBGoNM2McaMgW63o7VmtTo/W3U6XYzA5o4zn0V5yQ1XS1UpZkCIz87OvvD567Pxendr6xtf+TzgQPNqdzuUFbv3wUPBSZpUg2FbQzOOMssCz5+eCyEAQFyUaSq2d9vrBfc868qV/STOIdbnF2sE3Koqw8CenFe14HUlPN8cj8dKYkKR0jwM/cBvWTZoCECN8Jm4hmNboU9u3b52eRYhCF7/3PUnD5/dvXtX6XI2SVstQwvEa7a14fyDf/DrF6dxtIyv7HlB0JEC1CUOQns2AZZflZVAJgeaUwqaIY8Gqq5Et0WuX93L8sx0jJNns+GmjZGdlOnnXv/S5Xjtui4AoOmRP+PZIK0BAAhg+PMSnE63T00zzbPpfEZNs9laWo6Tl6XWMi9SzrlpWfv7W9du3ljH8Uf3P/74wYMsyx4+ftQoQlbRut/vl3Vdsnoyn1mObdpWr9cpyzxNY0qx77uMVU0+r5CyadMs064FZ7xqVsxM1NQkCIHGeRLHkeO6WZZZjjscbmR5+ezocLgxCtst07aSLD08POwNB7bn5lXZoLMbfn1d142Zz3EcJnir1WFCWJaDEMEY14w1o8Mm8jQIgiAIojhbrlYAwg8fPKy12rt6jQuVJEmr1e62fISARKhIs8D1+hsb9z953A66VVmattHuhjnPDNegJmnyi1ldXrt2TStxZbD5h9/9M2hZnaD9u//yv1dKIKkvZuPPvf7a0ZNTTZDCMFsnoe1yqQxIV6tVWVdFVUxmU0ppVbOsAr1uO8syVfOfvP/uqDvMhTh8etjpDVut1tn5+dHp86xIalY4jkkxrqvCC/yGm6u1rKpCKFUUGQDAMmwphFYKamAQqoQs80Ir1dTsUgqEQFrkeVXmVUVNu6hL06KmSRmrlOQIAYxxM/9r+guEkGnahmFIqREkWCtioXc+PHx2cvT63V1D1qrmk/USIK0RQBggDIHWUojGaY4ooRauBa84qwWnlqkg4Eq6tmtZVpIknu87rrterzHGeVoYhlFWeSPPLooqTYqyLAcj17HNl1/vM56EQXfvoJvlMQJIStZuDQAAF0fA98kv/urOYor/0e/8L3d3t1lRvfbqhoHN1z53vayjxx8XX/vWjQePH9y8cZ0gmGVZu91eLud5lly9smX9bIkCHKttUPvK/rXZtLp5Y//jjx70ek47MHwf2YYbr7ltuXVdci57A9f3Q9e2F/Op5+Ef/Oj7/+K/+xfROisK4HgYAlpVfLWeHB+fuF7oh0bF1EuvbCNILdtYrmeUYsGR5LVtm4QAofJ2HyiQVlUBACiy2rKB61EAzdUyFwI4jk0wfOnlG3EmpUBC1N0BjdfSdVpcCcfCgWt977s/efbs8M6dm5ZhUmJ+fO9Bv+e6Tme1llKq8/MZorTTC6N1lSYl0LQs6v0DZz6/XMxLxzUnl4u9q4My9QjUpslMarqu63h0tSj7/R3TNqazhVJGE2NIDLMo+edee6GuCi0FQlBrAIBOs2J7a5Tmk4tjcO0OePbJYvfAjNZ5UcvpNFVqFTpbG4Ph/ftP19H4f/6Pf3kxKWzb3d6+tk5nywX0W97GllVXotWh00l0/PzcJGar1dGAZXlsWZbvtpbzBUBAATUb54QwDeVqxc7Op1f2vAYi11SFzSfwZ9SGhpv02bNOUwW053lCKYhRU02UdbVcrygGoe8dHOxTShfr1aPHT58+v1QatNtBk5vRNOGN/CLP8yhLuRZKCcMg8/n8pymahmFbEjRiNIkQwoQoqRvxIMS4iRZqOP7EoMvlsjfouZ59ObkIggBCmGRpt9ufLZbPnj2zPVdBYNiW0Gq1XhNKpVKu6xKDRlGEKWnSwYnxaY6w+VO+PMBIa4gQ0VpLDQBAjdSj3W77vrNcLrOyOLy4mC5XYbvdHQyztEjjpN3usApwqbTWq+Xi1p3b7390z3N8pAE1ydnkXAGZV3nFK8syMAKdTmcxn07Gl7/xjb/x4cNPllVmQQwhvPPiSzamD0+frdfLogD3j5+RwM/TInADhjQlBGPc6rRKVjc8x5PTc8MBGCLftNd5+uijBx8+efSVL7z5337nD7Z39jqdgZY6SyvGhOt4nhdACDHARVFACDX49LcOoG58O6ZhY0STOKMGth1TA1nVRVWypmZfrVZCS9Oktm1zJrmUAArfdz3HYHVRFHlRFM0I4tNfH8YIYoSIVpAxjhCRlaAenRfV2Vn6a9/6+jBkqtaKNDNr2FSXACgpJYYQA90Ek3Y6nQa90dSqzZjM932pQBzHtu2ONjcuL6dhGDbuZq0lhPrZs2cQgSQpIJKdTqcWc2IwzquiKPr9Ts2VZfpFposycV2QLJ03vtxvdcD/7n/7v/es/atXDvZ2NxCsX7v7wmQyyTKjZmK42T07O/EDzzTNBrtpmtSxjTu3r/5cxeBRZD199JTVYH9/P42TaD13XH7z5k4WqTTJsgzZHt7Y3OFMI4BWs2W6Tnv9TsnyO3dvCg6CAFBDW8RVNen1fcYEJW6SsCBo5eWCM9kb9Dzf5VxS7DQwCyVxxSvHMZXmAKAs5Vkqu32CqeAMzGa14wANOKVWmotWy1gtE8sMWz1XaZikq63t/tHJ2AmoH/jn5xnTPOwP/+BPPlznOcYIKuz75iqKf/zjD4lBCUFlAaSCYatblOr2y50kkq5NVovl8ydZqw2mZxLi2rAqUUElM9sBWcZZDeq6BhoT7LmubVkgjuMsy7/4hTcOD58rLRACmEIheCc0tOZHT9PXPrfVbw+i5OnezhXDydIYmJZ1dJxLEplO1/Lg8fmRAr6kFcFdDqplnDOZHR1NiIkdJwiCFgQQKFDmNUXYsontYAhxkfPLyykAwDAJRTbGeLRtPHm0jtaJ65LGrdAsUj5jtaFPA/P+9XzRp0+fTiaTNM+acN6tra3mmqvr2rQowvD58+ef3H/cHIbRKMyrstGUUUqFFkVdNdlySimAoGEYEug4S4PQg0h7rlv/NPHdsozGfPJTaJ20LMswjLzKCcUAatOkEMLxeFyU2WAwgBBO5/NWp1OVTGl9cOVakmcPHjwIw7Db69mOM5vNyrIMw3A+nyOEmqsTIdSk+gIAGpNG42tuSk7Lspq0kKqqirpqUDedTodzLgSPs/xP/uK7ncFQKiWEAgBpqRwHCQUgUKv5wve9VbRmTHS7/VrwrEgVUI24z3VdxtjRs+cYwHbof/7ll9v97l+//db+7t7O5pZhGG3Xn2arR08ef+HNm3/97kcM6W63W+XV8XjcDjvn5/PecOB49tnZiRBiNptpDW7cukkUmOVpy7C5Te7efLGCACGyt311NNxlTF2cTxhTjuOykntucHFxEccxY0wp0SzQFQSN741SmmVZM8Vr7IxpmqZJLqUMAi9NU0pxVRWIwLIsfd+1LFNKnud5VRdFmaVpmhb5Z3ElzSJFCMVqAQDEkHAl/QF468eHoqh+++9/oS4ZpJ/6fBUECDVdk2rS+5oQlUay2u/3q6pqPqbNr4Mx0VBz+v1+EASEEAgxxrDX696797CqKq3AzZtXbNtM0jmlplAxppVrDQ3DeOlu+PCTi5PjiWO1hQJZmjz4MP+P/jdfEAr8X/7TbwPNeq2Ngxve9evX33v345Ln02kdtK26Lpt0hyb8z/Xs9XJOfy5qbTx9VhUgibO/+5svXJ5fBp5TZqrVQsN+6/RwjjCYT8pVdGm7vmnaeZLPLieWQSAEQvFVuipKZlmG0nUSlwjR/qBzcLCTJkW/346iyHWtLGvgAmq1AlpjjLEQQApECJGSYwIcx6tyATQIQ8+2jWidSQYkBBoIINB3/+z+aGPguv7R4Zjx4vqNPSYqiNR6XV6/tXd6nq4jPVlOADbTDPjdru18GmpoWWZVA4QAwmpzs3P/wZOnhxeW0d7Zd6eXWbvjFWm5NXIsG89nkWOTqpS+5whZbQw2goCenlzmeUmpnaUlAAAiwGp+5crVg4Mrq/XC87ymP0UA3Lx1/fnhdNht+a1cS6uo4tGWtVoUeQ76/VFZeesoDwep67eePFlywPIcdIZhlF+slgpZGsEuRBJR9IPvPagqHfiGY9qhH2ggINSmYVPDUhIZPs3jqt1unxyPe5tGmRg3bl5bLj/Nm2vSH5tfqNYaSagAAFgR/nO3YV1FT89PzmaTUvFFvM7KYjKfnZ+fR6v1ZDEHhHApEAZaQc8LirxyTKeBtBdFBpU2MMEGqWRFHMRYATFiXAIAWt2Q8+rk7Nj3wixOKMKu63MmmRRZWVi+hW3IpZBSO3Zrtc4RNOuaWwZtd9zValHXZbvdtk2TlQxCmOTZKl33ej0AwHQ6TZOk2+lsjEaz6RRB6Hvher3WUDFRe4EttWgILk5oFVXmucHFZBW0+rXUGOOO664WS4IwFAoDyGtBgDHobfBCLkT87ifvHx+d3n35tYvzyWy1VBgwoWwJNKIMEFmI11964S/e+ovuxhDXxG2HcVVEWYQp2d7ce/Lxk61u7wsvvwBbzsHW7r/7pW9JDKVDP/7eW/P51AqcxWJ6uZz+6tf/Rp2B1XRpC6iIGnTDsNP2e3YxmVztDSsbj4sVrPgrt3b3B711GiGppUl8BSjR3/zi5/7gj35/2G3t7m2aNql4kRdRWSXzZHaZTpCNTs/PBAeUmhKprMrrWlmGDZEEUNmOWVdcK+g4DmPSdiiGZhQtW22XQCyZpgbSSmJtIwzD0CSQGUhXhZbS5FIhIJIkk1JrrU3LqKrCMIjjmlIKAamshMqA37X+0//Xv7BvvLzzcgjYgiALEayQqEqKkMTaRIg6oRvHMSGoLvLQdxXno9GgrsuyLgHUGmqugARSCnZ+cnrtxtVVHuXFOgjtyeVaSUSI7vYsSkiWxkwig7Z5bWOiNMqylDnW7sZed//KsCgq18Obe+bv//47CI5+6VfeTFL+z373J8eL+6PNW/0d+72P73c2ZJTECMJuv5ckNWPsyv4Br01EE6HJIj397Iz45tZoy6Vo6Acbab3O+dRxAdQOIt15FgMDVBXptNpVHl3Z22asWq+Wb7z6ymt3bpW5VsKM4nmnb0lO+lt2nC/mq/nRYTZZXfaGg7woi0J3Bxia52USEAwQyTEJpORFyh3T4VJh7ABdY4WcAJgWBEotJmW3DzqBv17PW0NlGyBJl5hovw2AFFWxvr5zhzD8pS+9+uMfHN263RlteocPisNHZ7IGtg4p9I5ODrEBJULUhOt1KSUfbtFclsdneH+35BG7LONU61EXf+1r1x9/UuxcD6nt1BxojBCk52cn1/euMl3OJjzwt05OYlGZvt1GQO5seblMypoKkBo4UEK8fHd0cnKULECe50p6EsJa2G64uYjXAADfM7WIl8sLWfT7vS6l7OnD014fAM2I9ONzMfK7BC3DlldWcr0EL7/UUYomRbl9MHLsPaGNCiwQIjt7PTYXFvVzdbpec1C2u4P69PT4cvHp+rjpTZvC8GdblM8uyOYJw3aDM8iyLE3Tp8+fDQaDTzkxtq8UEFxxBZq/rtn9YYzzsmhI1HmeGQaRigshpNRhGDYrizwvDcPwPA9jjDFUSnHOG1fGzs5WE4ghhEAE9/t9xhhjVVNetVqtssybjbjnee1O2JheKKVbW1vNHb+xsXF2dra9vT0YDJoVpFawLMtm3WnbtmUZTYYUAKCh4Dx58iRohXEcY0q11ggBahpKgea9Ydu27/tQKF7x3/v9f9XudXevXpnOZ57tWBTYjskEX8cRE3y0ucF5DRBaRannOVkctVqBYZCsSPeu7H7xzS+NNrd8wzk8O3n1tbu81H/14+9LqNquv7u5w4HCGFuE3n35yg/f/rEgEBkUKt3s0+u67vf7aZxcXow3Ntpbm6O6rpUWhJBWq+U4zuHhYRNVenoy7nVHgd/hTM2mayngoL+hJGqINRDCsqy1kJxzy8KN8PCzkV8URYwx17Wm0yUASinFufD9sJHmQAi1hkVVKqVN0244LowxKXQTZjKfz7WGnAkAUFMq1nWdZinG1PcCy7LSVPw3//W3N0Y7pgW5KAAUjTmaENAUrbZtMi45l0KDsqgppZxL23YRxJ9KGjHQUoZ+MJ1GdVnt7u5yUVxepJzX3b7Ba3jt2o3F6nhjtFOWrGYVADJZk8XyDGE1GceM546vFEglt1lpXb/Z+vY//5Pf+odfgaDgnH//L076/e58tp6NgefbEOKqlBJojEwvQA/vX/b6vm0MZ/PLnd0XPzsjB1euP3pwfHQ8DlvedDrlDLge2NjYwJgrBiAESmoABaaECY4oQRgzxqbzpe9bcZoM+m3H9pWueW1Yjq4rVLMs9Fvjs1kSF6wGrVan0x7NZqswcJVCCkitNeegqiqCgW2blBLDIO2OY9lmXSmlS9chSjOESLfb6fYwlKjVQespJjSMkng2X75y9+57b82Xq/zq9Q2l9Ne/9eKjj/M33uwiY5EUJYS4riVjTANtGSbGeL1cfe0r3xC53Nq113NkYne2iPPUCjtwOomvHeyul7FlU8lr06JVLS0bbm+3uKgPnz/pD1BVFVEUdTrO6enxbDapa2aZbhTF124ESqKL02K0ZSvNTdO0HVKWPCuW0+ms3cFZlrmuLzjIi08xS48eP+z3WxhjhPnV2/00W/X6tmOh2eW81yV5UidJ3u26f/7n33v+/DkhCGP08MnFaGPLsLQQzKb+a2/sHx9dbu20tvcGCDTMuv9BEkDjx1NK6Z+D3EzncyGUYVgYUVYL23LzvOz0B37YKmsRxXnFmJQAYiSlBFAJwbKi9H1/Pp8hrHeubBVlZpq01Qq0BnleYkwJMaRQ4/E8DNoNLL6ZHBGKiuKnhxMSAAAhJE3jZsBHCEEYSCkRwYZFi6I4Pj5WSlmuFUWrNI0vLy87nU6v10vTVEr5ySefuK47Go0cx2nK8mZV/ZnKOk8zBGASr3e2N6M0SbMMUqO/uUkISvOsEZALoRrhpOM4jmETQk4uzv77P/zD3/zt38IGJRg6GOdlrSAQSjYxAwroLE/a7YDVlWnhxXIatgOh+KtvfG53f+8n7783fn6KXOvatYP97fAvf/LDr3zra9vt4bA1rKXyfV8UxZ2rVydL9cnZ4WW0bHkhk6Ll+ZeXl4ONEcVIcmZZxks3b5Zl2el0tra2mmFumqaDbu9bv/DNv/7R2whbnt+xrVBJBDRNotSkFoakgQ82P8+mNf4pwRA0XNXmbnIch1IoBG9oXWEYMlY1l6NSSknNatFshJvhH0JIcIUxzrImUBQ1GK7mzWrZwPdadS04r/p95/gwkQLtX9nChtSASSmk1FIA3/cZqymBRVFpgJrOpdEVQAhN00ZaKSED1xiPL33fHfTs05OjZL1itTo6POkPustldeVgG0JlmEhryQuQ5ataTJ8/FJ3OQILotddfGXS2COVxJALPG5+n82n0wu3X3n77z8KuMEwzi+kLL7384OGzIgNVlWVZZhBTCoipMG2LMfXB+58MR7t5VkH1M1PXj976IInB1p6dZovlfGFA2/OMN7/0+vnFEUJYa1CUcV1XZVlCjBzPRZS0Om0NwSqqNIJ+4BRFAZGWnJgWQMD1fNN12mdna0LIahUzJvJURes8WheEEKlE035JziAEGOOaVxJIxzUMw8gS7ofItkKEZVFUEGlqAAj4ahG3w83Tw7o3cqez/Ic//uDDD46+8rUbZbXWWtQscR3/8NnSCygTehlzYiDPtrQApkEcyxZCzS6jdrfjtFScVixxhz2wd7D17OmxbQMtq1ZoatFc0/X+lTYxVSv0gRZa81bohqF/7co+AOpysqImSZMcSH+0RUfD7if3xl/7hVeyoqQGQAiV9YpgW4E0jtTVa7tVVQkly1LMZpMgCIaDQbSqfa8thIiyue1Xlk1tG2ZpRDS9dmVUpRxjIJXGGDRITAi174N33//gytW2kDWQLaFXWgMAxWo919JpRnP/Rh7Ap7Xhv3FHxnFe5NXW9nae50ErZIJfjMdVVTGhikIWea0AQhgYhoExbM6SRhpgaLnWxvbQMNDZWd7pdAAAlJJ2u305jiHAW1s7nU5La93r9ZowckJIkkQ3b+4cHx97XoAQEUIwVkmtHMfhSqZpXNU1QqjVap2enmotXddexaum4huNRhjj9Xo9m82Wy2WT2XJ6eqq1FpwjhDiTjS3XsgxKqWWaDdovz/OdnZ0kSRhjp+dniBqu7yyXS9u2FQScc4xpc0EPW500zohh/PCdt7/31l+/+eUvSy6QkACDZgSbVyVXcmNj48njZwAACJTvuZzXju9KIFfR8g/+5I/TPHv5xu3WoDdfzq7t7TIA/tWf/IGJScv287wsy7JMs2G73euBv37nR3GZ72/vKqVG3X6WlUKrth+sFnONdOhaZZUHQSClXC6XjAnHshaLVZkXlu1MJhNKqQTadOw8zxljnW7LcwMtgZaAMYYQ4bW2qNHElTS1eaPQbETavu8LyRBC83mGMbZsg/FCCKYU0Bo3yfSfreEoIRghwzAsCyVJ1sxkm6vQMJFUQAgFNGqMz5Zhfvj+w+2dketRQgAXtRDCMDCvmec7QlaMN29khA1cshpCmOelEMrzPCU5QqjTCvM0uXPnjmUZ5xenacKHm26elZSAnf2QyyxacceDu9eMD3+yurJ/98q1rVVyWeTk2//8D/Ly8vq1lx2rDXBsWoBia//KdpUbv/Lrb1RMQ6T/8//svzo5utzZ7SGEKEajUY8xZvkyifjrX7jx4MHZOpoGrcH773382RmJomx378rmVjdsuZSaSVR2Oq1Wiywmay+AjtVyXGmaJiIEQrhYLBzHuZxNz8YXbkizPOe8Ni00vVS2aymNLy4uOp3Ok8dHBAHTIJSYZZlPpitMUV1pQpCU3DCp43w6YW+kl1VdmhYSXK6WebtrAY2oAZp3EoFe0FFpBDoDzUqrNzS2Nm9/eO/sc28OKrYsq0LwcjVPoBnna398kZh22GS+rqM88ClUOo3jrY3N+WLs2WC02b9YXFwelQbwWxsiXVvDnmFgEq9q321xphsOAIAqz3OCtO+b1ACeY7fbbUppr2fVsojXJpOLze3We2+f3Hnh2uXsIQRkZ68Doc7yteuECHPTBEFoLZdrjLFWYLma1VVhmrTXx0Io06JK41bXLguWxYWW/JWXXsqzRZWzZkdalSD0g6oqCUWY0CRlWutWG5yenhFEvvTllz65lykJFWSfBXM3z09vQ/Bpp/zzt2TYaq/X8cnJWZTEDXFPKCkVwNQoqooLpRSQEjDJJNBaSyGE49hRtGp3/LLKLNvc27eklHGcNuGHhAAAkGmaTeva9GimRQFQdV2++torZcmbDE/Hd9I0NQwDIt0kVVZVpbR2XbfdbluWRUyjrmuI9HI1T7O40+k0cPlbt26FYdi0kFJKVgvdDAUgrAVHCGmlLMs0TKKBNE1jvV5ujgbnlxPLcc/HE9u3K14VdWUYVpPpbBgG59wy7EGv5zgeE/wvf/D9yezy7t2XTYsSAotSKAAQAnmSOrbXkBqg0gghqXh/0C3r8v79+5TSIGjdvXv3dHxxOZsfPnuOKfj+Oz9p9fqDXq8dBJP5rKiKlu9sj3ppVRHLZIzneTnqDAglZ5eTQXewXFYHN6+VedYwKY6OnhuGIRmXUs6ns/Pz8d7+9vPnTzmvlVKGQSbzseUa48kZ+CnQsC6rJEkAALZtE4h+GsKJG1YuaMgIUjbUVc5AHKUbG8O6rrTWgisupYaIEGKaVGnBWPUZxtVxrKIQDVFGKaW1JAQhCPI8dz3bsozVqkbQWCzq87PJ3t7edD7rdFpFURCCEEJ1WQVBgDHN8qpitRDCNKllGU3Kwnodf5YrOxqNzs5ObdsOw9AynbquL8Znd1+9E0WLus4h1FLK7d2WYHQ+i7rdTlkAhDQxFQDkz//oYwPb165fff0Lw6PDqtfubQxuvvf+OxuDoR2IyXn04fsfeiFzLNeycZIus3JtO7ioa6Wrr3/jzbOL+dHRLEl/RvSqGDt8fkpNEK2Tbth1TKvbakPEkoh3OrTMyqs3+rJGjben1+uWdbVcLi3bBgAkWY4AYDxlFcBUsIo4Pl0sVrwC/Y5Xs8R2TGzINGEAqF4vrOpYQ6C1JhAhjQhEWuuyyiGEQegu5nkS19RAjYozCLwg8FZL7jgGBNB1RX9kTi4Xq3hukA3PDZQE61Xk+W6312IccF73+6OsEnkJtNaWAQLPFbzGGK/WsZLpsIfiLK1qIAu5s7G/jov33pt87WvfRJAWBahK7vstwcHe3v58toQKDQYDISqt5Xg6+Yu/ej9NU0opFzqKytsvt6YXERT25hZaLZllGb1+q+mLGRNpmly/sSclz7KaMaYV7PfCZB21fG9nqz+bLtI0wSSI1lmvN1ASaoGV4NSAnucaBhFSQQgA1FIBx7GoaSJizMbZYOSGHeCYQ2REkgHXHgFcfdYb/Xz4F4I/nSb+fHVYC+m4vmFYnhfEWeqFQZqXy1VUlHWSZVxxBSQkAAAgJc+rsq7rVRQhqkdbA0qhZRHDMBaLxWi42em2OK+zHBiG8eMf/5hS2iQuEoItywRQNZkBjmPM5wtKTMdxiGkkSSKkhFAjSizLyvK02VBXnGEMF4uZZRnbu1sXl+dxHLuuW5bl5eXl7u7ucrlsoggQhBDgZtfZ/G85Z4HnCym5EFrrJFodHByUZdnvD5uBpuM4i8WiwYuWZe04jhCizCsEcLOEnU6Xz4+Pnp8cWZ5b1VoD4FgGIWS9XnPGtkab0TJJonQ03Lh29QbnfLlcEkLSOPnGl786XU3uf/hhtE62tw5+/Zf+9jxif/XBT/rdriwrjXUmC0pA23O2hm0AlVIyWsd3rt+qa3F8ceG6vuUAieGzZ884565rW5a1Xq8ZY9cOrruu61p2GkeGSdbrtevaQggu9CpenV6cMMbriisFECJZkkoJmqg/COF6HTeK64ag1dybzRLfdfFisWi1QmpAAFVjIFFKMClMu2kIEGNVXZec1xBqSkHjy0QYQCQR1ggapkmpoTivbYtIKdst55OPj8JWr655lmXUgJjAIPTyPHctm0td1wAhqDTzA1tI/tNvMirKSikdtFpPnx+mabZerwkho832asH7g8Bvacv0TdO+cq2fp8pAbWryxfLy+dOpAfutnjy4DuYXcn6ZV2wNZNDuwV4fnB4vD48exyvwpS++tLUF4kgEvgdAGYTO7t4mFzWher2Wjx49bHUGiiyKxHZ90Pjom6fbs2sud3d3j59dvPLKKzdv3rQtgoGNEbJd4vqo1baKTFKEEYSc853tzRs3bkRRpBSwbVtw5Qd2EoOqri3bhxBwXne7jm0Zo2E7TVPboWUNtAZNZYAxrsq6rmspFcbUIBQj6voepXBykUMA64rbLmZMegEFAKR5cXlZUFMncT3aKlZz8PzoGEHz6HkOlA8A8RxP6ZVjmG98pc9Ece+jkzB0MYBAgtGgZ9sWIqSsq43N3v6+naTV8RFwnaLftf70jx/8o3//b5WVWq7Tb37rC4ZlxvG61+uFQZtzNVusDcsEGHDJwlabUGB5wd61g+UUh8M0Wqr1ktt+8c7bTzoduygKjHHNyn53V4hqcrm8cfNKkmRag6LIIMTXb+xJWbuO5Xg4SfLx5AIC0u9tTqazyaUe9LeZLG03jLLcdmhdgyCwbNtGCFCTWk4QxwxBM47yTttpt0aWDQ3TPDtbd/qgmfk0U+mfbVGailGqf01is17FcRw3XP7mNqGU5lUJIRSSQww10rZNTJMSipRStm31B4Hn22m6Nh0KoDIMAgCqKsZ5zVgVhoDz+sUXX7x27SoAWgjWQPwB0K12cHZ24jhOWbLGE+a6bl2XlmU19FaIAITQsC3LdSjFzUAwSqIoWvu+lyRJU2kmSRLH8c7OzmQyGY1GjetLAi21QhhTyySEjEYj07GZZBpIx3GiKLp+cPXBg0daAdd3Wp2QS1GUJUQYYayENqmBASQIU0Q3Rxvttj+ejJMiVVi7FvBcoLWkCFNMsMa+2ypz8MKdl3nFV6uIEFIVZafdChxX8Po7f/IHgeNubO5sbOx96ZUvpiX44PmjsspZwrrD3sV6mpfpleGg47hQSdO2CDG2h1uIGOskn03nluO+d/+j2XKxs7N1fn6epqnnuDdu3FBKxavYdV2LWgf7V9M4E0LlRWXZdDKdhu12XZRN9GtT6pomyPP8pxJr0FyICKGikE0XrIFSSpmmVZZVlmXDYb8JsWvUSEWREYoxAaZBlNJaCg2UVMJ1DaUU57XrOkoJhECWKGogw9ScC4RwURYAAF6T46OL4WBrtly5ruO6VpJEvu9XlWCCQwK4ZIZFCUFFkZkmNQwDYpwVueN5WZYBAIhhFBVjQlxcnHueFYb+dDZWWpZlfnk5K4qCGHx71704hgVfpPVcSQKUf+uF0WibmKZ9fjK59+Hz3/lHv/zWj7+X58tux/Ps9AuvvfGrf/PFTmhmES+Llec5giuIkWBoteRPnz10PeP9955dv3Y7aP8sT3k4aiEMHNtLY/GHf/hHvuds77R/8Jf396706hK89vmdOI7LQkANiqLod3sQwuPjY9dxPM8rstwyKatVGNpHhxMA6yKXAPHACxkTu7u7rNaEIFYDwzaFhJZFAEKcf/pWgxopBQAAnueto2WWKMuyonUJYE2QQw29Wq1GO956DfzAOD1etzp2ENhBAPojEyFd5WS1EE1w0Kuv3Wm17Qf3L4EGimkMkZIgTeO9/Z3d/T2ASbfT8n0QLS2uwM0bHcey3/ji56Ws/8v/959evXFTaHbzzjXGSyGrKIq0AFUpV6vIMGhZC4hJq92aLxJMjJrxoAWyBAgJrlzr8sqMonJndyQFtCwrXtc7u1txVJkWGF/MEAKEYM8NMBKuY11ejgnVQeAhrAwHJHl2686g26Ef3z/WSDx5POEC1bKiFERxBaFGCJRlObmc2U5ITREtwOSy6HSCVjikVr2YJ0EY/nyP/DMvihQCAEAw+flO2TRNCNHpyXnDTJVKYYwty1lFcePBruuKC1HzSgihNfA8Xyje63WieHV+fgohaMKJDMN0HAdC2Gr5TSr8bDbL89xxbEJIU4z4vt/cgLZtLJfrxprazD7a7XYYhlGSNC1AE08uhLAsq1leCyE8z4vjWGu9vb09Ho8bP3JVVaZhNTq4Zs7VROgRioqqbN4ITYaf1jpP0jhOW62W7/tNmdl8zpqsq6KoTNNGAGopCcJKqShNnMAPW45lGXmWVlVV1zzLCsMwfvWXfyHPyw8++KihMRJCrl45GA2G47PzWy/f+eqXv/K1r33jYjL/8O0Pb9/Z/ejwySeffPy1L7w22tr48MG95XL+0u1bLduBSN+7/5Hvh9Eq3t7axZRMp3PTtphSN2/ebDTtzRq9qqrz8/Pd3d26rvd29hVTnMtonUKIFEBxVgBEiqLqtFoNz5Ex3mmFSqkGe7G7u4ExzLLMMAzTbEh5mrGq0RxAiC4nFxsbG1UFEEKMMSm51ooQ1GRCQARs2276U4wxJiBNheNYjNcAKMsIiyIDqDZNo6654+Kqqmyr9fzZaZrmd+7cWicRoYCxqigKgg0AgGHAKMoxQVIJKTkAitfM98PFrMiyAiAiNSjLemt7i3NZFsBy+M7OzpW9O8v18eVkWRfIMOH52aQ3JPFKmYZl2SBseZwB0wYvf64FZECoXE1pWa+v3ew9fvzM9928GH/187/kuvL6jf1hb4eLCgDEau25YVGpbnjrcvY4jRXC4OmT6ebW4LMzklWrbs80TStL66oopZR3Xrjy53/8fq9r+U7fa1VJUpyeTiHSFJMsy4a9fuj5WVpcXHzKk0eK2jZdLUovwNGKv/rKDd8P14ukOSBFzcoCKIkMw8pz0Wz2DcNsXFt1xRkTBNPFIkfAJYSsVyDL177XMU1SlrUb6l5nyDg2TZisdatjRCvgterhTj2+WAJlUIpca2SH0wf3FtnasG1c1zUASCnge84rd+9qraO4OD8/D3375KkabZpf/OJdxexVfu/733trYxM+ePwgLdJ7H7+/vbcBoW4M5sPRaLWOCaWdTiuO0qpkEMIwbAlwefoEKLQKfODbg2vX++NjMNx0p9M55/z9954dHOxBYAlZFbnqdLy65pZlLZfz3d2d1WIW+G673cYYRvElodALoOu63U7rR299YLshREZZMseBe3uDPM9tGydJbRjm5TiGuO60Ni3avnf/J9/+598bbQMI4XQSY4ybjV/TPv58pyyk5PrnYqSkIJgA07aUpkJgpYDtmFWVQa0UpBppXpvb2xsEmaarCDUUFoC3qzI1KEDaWK+SQd/f3mo/vn9KDLpex/EqNaBhaEiAdk2jqrhpO2UtILakhoxVlmMOR5urdZ5mqjsIN0fXjw7P26GjOZYi63X789myyKuqYgAASmldVpZJIVASyFWyyOvUdDE1weX0vNNrR3HsuGaeFyZ2CDK1UghroWpMiGlAoJRv+Riiqkw2NnuA4OkiVfCC57iK9ZXdwXq11BpoLNOCIcvAFHFWAaF2BjuAI17xJI0ULgybMI2haSss1/Hkpds3pmcXZxen23vblmtNpxfdgZ+Uq6zKu8NNmeeiTrRp/+Avf/LmF+/849/6+94y/L995ztXtl66VmTIpu9dzHp2SBHWWrWGBtKq0KVrYVMwpWupKtfE5/Pz2cV8oz9AUG5s9qu64JzbDu0P2uUySpLZeVGV2iWMV6LOMC3XC8O2ai4pMTAiSoF2u9vrdOMo5WXOirQbBhjqvEgppVILiAECnm0RagCDustV5rjYDUBZaqy8KKq5FNRZmIQCCQQ3K1QSYmCslVJK0HbXVCirecW5XcklJmZdUdN2pFacKQIg1InnuY/fXiCN/C4QGVTMIQGwLUNyIQWEAGJsC6k4l81aOUqn/V6LFxLBktoV15XntdIot31w9/UbRZk/ffQ8z9T+bl9JTLCtBDWo7Qac8VIyx7Bq1wnee+e56/azLJlHJ2EHiSrc3d113c7WXrvmZlrni2x2Mr938JLbG/WTtTIo52KONUmy6cG1/SKvX7rbBjo+ev6zLUqVk+GWn2aL2aUaDoL9vZFn71i+mi7Pul1dpGw+wUyaWgCEdZGtDELLVJeJpghCCKnVllhKXXihOny83tzqaKzv3XsSDt3z80iqGgrlYGej38uq0yDoB26gQSVU3QqGmIJllFHSO5+cpCtoBAkwiq1tF2gadESR6zxDuqYQT30rEBUgdDXacHzH+/j9iUGM7e3NaMmYSPM8n8+SkkVlqU2skZYUA87A7v5eIcfr4pxL2mnVDKOL8VRUrbeePfyDv3oHFFuLVX1wg3z89qLtuyz18jixjTZjmWSgKufDgZeuSJ5gjTMmsO0TbMrf+1cfAROYtiVqezI5DkK9szkEzMgzff/91Ys3r7U7lDGUpxbn4GB3a6MzkizPMmK4bUX9KKaeb2KFFCdSgYoZBY+CgFrAYUVmOVKX0HPtsN1SmvESGoCEbaoFtUH7+k0Pkfrpo+zzb14lsEvNOUtA2HIbK5RSzfoEaa2RVgoAoP91eAOltJlQNKtGxhgmhHPOOa9qbpqm1lIp2e0Nup1eXTMAkNsZaxE65ohL5vn2yfPs3nvrjV0FoNzYGCYRaHx7aZpaluPZju86FMNeu5UkCcZYK+E6JiVgNlsaBirKOAz8KJkqkPc6+4vlZcVqiFGaZVXNpVatThsAwDlPs7ihEkwmk8FoqH4aH9yoFJtiWCnRuB0a8ReXEmDUyOKqqjq4cuXyYt5u7XNdmB48fH7qOE5Z5N32oCyL5kfRdJGMsQZXkWUZVKAsy08B2ox94fNfPD09LYu6KDLHcSilUiuIdJ5nkMD1erkzvBJ4Bg37rg/feOMXX3jt+iJZVRr9xt/9pTdfvp6UVhWlvX6oWy1DVZcrFVdscrm4eXCdMea3/EG77xDrydHpCy+/lGXZ7va2SeizJ09fe+0uxURzdv1gz3A8rIGJUZyBqgIGAGnJm0oZIVTVJcZAKcEYC0PvxRdfxBgzzj+LRuFMQog5ZwAACDDGsCh0URSDQTsvYs45IaBRQSnJtdYIQcFBA1DABAHYZAxAhJCSusFeE0KyLEEIOI5jGKSumWU4v/Xb3/rgvQdIO14IeiMLE083o0mKGNONvAYRCCHkXAIAtQZNPqJt20EQrNdLVqtuN8izYjweS8VboaE1pJSuopia4PR00moHkiuKCOc1oXA4DC4uziDUnU7Imf74k8eO41mmu16vw7D94OFHu3vblhkuZrllWVVd9odbF2cCaHO+GCuJJ5PJYpYLIT3P/+yMCEZ399qMqfls3em63W730ZPH2AB3796ViiulOp0wjuu8rAg2ECJJmgetcLls5hIFY0WVsyC0ISAAItez0rSuuLLtT9smxlS325aK+b7NeT2bT1yntbc3XK5mEBhBQMoq7fd6ACMhQFnIrdHWfF4HQZCmaZ6VQRAoAaJ4urHlbG/tQ6hHW85yVU0vYNihnR6mxCrKNPD7Shi9Lcm5Mmxac+E44NmzZycnJ8N+37LUYNQ9Pp6Efu+NrwYfvTPf2PY404sVH/T23JA9e5xdvxMcP8sGI2d8FinFu53h+Wle1EmeJ3kK6rrU0vrJT97JkqLb9QSrAGR5Ctbr9WtvHFyO1/NZ9OWvvNwfugj4UZTUdTnasC0zaLVa7XbbssxmXvfs2bNBt6e0cFxLyRohYDuYsdJ2DKWlVNw0KaVUCGaaFGMklZhMI2rTKIotW88mRW9onB2viFF7rmeYII7jz+g1nz3ofzRMr5mpI4S0hlqpJsed8UposbnZQYhwzuN4fX5+UdccAFBXwvM8O4jiqKoLeH4a/eD797/5S7dZreoqu3H96ssvb7c7rTAMr127hjHWGs5n56vFQnCexQnFeDYZl/l670pvOU/X67iWabvdZbJEpDZImGYrapklq03HXUZrAECWZa4XAACYZLZtcs7TNHUcD2OKIDEMowHH245p23bDeUWUGLYhhDBNu645pkav10uTyDaoa8P33jnZv76hYNHuDTGGVVWlSeE6VkO31xBgjBerZafT8X2fEAIhsG07zuK8LH/9N/722+++c3Z20e8PmxgDSqlpGnEcP3nyCEK9XM02htu27fJ42gqHrcB69ZWXN3ccLvALL+392t/+jWqdbg93Vknqt11kwHVc/tVbPxn0N0Pb11ojg7Ztb7+3LYgpFdjf3+91urPL8euv3R1fnNmW4TluZxAenc8NjXxKcwGUAIZSSSGLshRK2q69jjIFAMSo5jWXrK5r23WqqmokfgQbWkPBVdORAQBsxwQQLBar7e1NABXnwrQchLBh2IRApRSlWKlmGq2bWUQzmtQaliUXQjMmDMPEGBsGrutKKeW6znK+unrdu3XzapXZg5Er4XJ8FmGDKi2QBkoDwyTNKEdKzRhz7E+DH2zbVkoJIcbjSbtrdFrhcrnGEHW7HaVAVTHGGGd6tNF5+eUbR0cLpQBnmhAiVYUJWC1X1ECm4XCO333n9IdvvbNaZsvF+sWXXorieVFkl2dRlihCiJT1X/3Ve6yE6yUL24aSNE6y2YTduHHVtn5G9AIk6rY33/7Rx9t7eHvrysbW5sXFRRiadV0rKPM87w/D4YYhBZBSUcuezWavvvoqF0BKubuz6bsWRrbnm3GcxrGUuprOYgWA49iLxcKgltLAsikAwjAxY0xrTolXVWWrbVelsm3XcWldKaUUIcDAMMsySoHvu3lRVrWk1HRsf3PH39h257MVAAiR4qtfvx6vq0cPn968dQdC3B/2p9MJRPLqtW0mQc05xAbGBABNIGJV2Q6RE5DLM1GW5a0XgpbXX8yWi+XMdWiWStMW9z54fnB1q6pBmuZZVrTb7cUySiP4uS/uuAHo9FqMiTgpD65eb7d9xpjrGauVZBX2A5fa+cMHk7IEUjFMC1EbnKvLy6npCABgI6EzDOPs9FhJniSM8zoIgrqupOQayLqWWuu6LttdnzEgFesPOqZJszzlgm1sdK8cdHhdbG5u1qxUGty+c0NrHUUZBMgwDMEVAKCBaf7cbQgAAP9aKAoAoBG1NB++hkNnmARi4AU2NXBZVoZBDBtnWQUhdFyjZipPgVb04KZVpNbR0/iFV0mnG3Q6PYIBAjJJ4kazQqkZR4kS8he/+fUvvPHqfD5VUiIAD/b3DRPv7266Hrw8S/rDoNsPqlJG6TLO1u1e3/NDahgIY9M058tlM6syLce2DQkkV7zZ7RqmqSFQSmFC8jxvdTqNCRdjyHltWZZQsuaMGoZlWXEcY4z7vU6nFfzJn767iKbYkOcXY8YYISiLy267o5QSUgohsiJvXia9TtfARErQpM4rIP/6Bz+AGG3t7FHL9jzXsgzOa611VRUAgze++Pr1W1e9wLbd8O2P/vTK7kt+UMMcfu1LO3zB//y7fxG++OatkTOZLh6drm5vD6axDlF1No41JC3XV0plvHrp5u0b21dOTudnl5M7d+4USfLS7duirjaHg83RAGsNifrw4+c3dvddihXECBFQSqZplCZcSkSJEMB1rUZAIyX/4KN7YRhijEtWNgwLwzAAQIQiIZSUmlISBHh8MfP9MGzjWnAITIyxQZ2wZde1wEjBT8WqQEouBDAMwhiTApSF0BpQYjLGqoo3ISqU0qIogJKr9RQjuF7lo9FgY7vttfFyERuYAKAMAxiGgTAUQimgIcJVxdMklxJACLIsI8SACGzvjIoynU+TmzevsypLE6a1xgQwxnnNAr/n2gBokCZMCXh2trg8T1qtsCiTG7duJ3HZ6YGP7z2tSm3b9qNHj5WuPM+tS7SaF0DrsspfuHO9zCDGZHO7NbmctduukqBmRVMlNI/tAtv2kbJfeGHYDjvrKD0+uWj3WxfjCRcl57IoY8fD4/FEKiSFjrPs+fHRS69saw0Mg5RVigFRuioLYFAIiC4yEbaNhjJXFEW362otV9HS85w8r4IgWMyTOE6GozZnqq64aeKL81W/3wMaEmxF66TbthGEUmoIjLrgd148aHc8TMlyHUlBwmAUR8srN4Nnj/M0YZP5ea+7sbnT99ro4qRwfQoxyLMSE6OqM5NayWp9Zb/FhDg5rrsDuJzVgM5NvKEUV0A/eXzU7QwQBR99cPTlr1/57p8+hbgK2z1MLIA0MaQXqHgVYWRBJBREEBgaMEqpaQDTNG/evHp+ftztmi++tHd0eDwYdqXUrbZVZNrzXIgYhJoQBKBqtVp5nh/sDaaTycZwhDRI05wSUwpAiIEQqStODGCatKqKqi60BhgDxuvNzQHAoK4rznS7B9bL4uB6dzoGo41uWXBKzQZhBYDSWjZ58wj8dLv8b8iym8aw4Z00Ow3DNtu9dl3nSmPHcy2bQoC5UFIzxoRnb54eL46fiKBT7hwgz97Ni4Xr0SxObNt84/OvX7t+fbqYJ0l0MZ7uXdl99uxZt9v9ypfe3NgYEoIZY3VZvfP2vTt39i/P6ziOocGmkyovaqFXnIE8zy3LCXwfffrg5tVBCOGcQQi5klEUEUKEYA1oXinVabXyJO622k2ALzGwZVhpnEVRgojBhYIQxnF0/drBcp1/fP8TqcHXv/4LT549dV233QnPLs611lmWNe43y7Iaz59j2ZRirYAX+HlVBu2WBuDx0yfHx8dSCN/3AUC2bVuuo4G8uDj75OH9dz74EfbNP//un51fPK6j2eLw+e/85q9QAf7v/9X/F3jDN7/0Upktj04WJ0/Hfd/tmQAAsMxigAmE0PLc8Xi82e61W+b5bJLlZbfduXPrluA1oejevY82+r3JOmU5+NZXvwq0EFoSBDkHGmEhNRM8y3JqAS9oKaVc1w2CICtAxUR/NKxrzjn/aYAUBUApCZRSVVX4XhitAeey2wuklJwpAADQtNcPqwpIJQCAEKDm06I1ME3zpzsrADRsZhGGgTWQZZVrIF3X9nwItC2lbLWdex8+dxxva6eFMYFQI4Q8z5KcCcGkBAQbGNM8KwHUfkCFZEUhHMcxTZQk6ziK+r22a5s1y1kJbt647bq2kqjI2eU4ggA7Dl0va89td7tOKwwgMLKMA406vf7Btf2/8Te+sVwk7bCX5/l4PHEtpxN2BFfHx8eGZTLBlVZSVZhIDWQQelcONuN0BtHPBkqsBH5AtIYQmJ2OtY7zk/OJH3oAWXmehkEfAOG4VCuYZYXlOJZjP336dGNztLs3XC+W5+eXTKg0zQkB7W6/ruukyCXQhkkQIrbt2rZdVqlt4+VyGQS+1rCu+Gg0rOs6CHyMsZRQK9Ab9OtaF0Vlmw7GWCkluOJcWZb1+OlHBnUefTIuCmkZ4ScfjafTVRCaX3jzetiyOp3W4fNTDB0l6eRyVZU8L0DYaWMMe33/8vzCpBYA2Trhec6DLnnnB8d7V9wkrludIcD66sFNy/Y7PXB2vOqPzE6rHbSCJEmSJCGmjpaZacqt7S4ERthGP/jrd9erxAsBZ8AkbqtjLmdLAzk7uyPXR0lcbYy2zy+eF2W1XGRSoLS4PDk92tgcSikPDw8hxFlWrFcpBjgMW54XxHFuGMQ0vKIUZcm1AqZJtZamaVgWblS0WZ7YDhZCaC2DECbpivH64KA/Ho8NgzQTniae++d8yqB5vf9Mgtj88VPml4KfppQpYViUWtiwzKrkhBDDIFUli6LwA7tZOF6cgPnybDDsSM0QzUTtreOLjY0+hDBO04/uf/zhRx+H3Y5hwzSNT08vvv3tb//wxz86OjpcLBaHh6eEOoPBcDjsEgIux4ll04pBg4b9DSfPysuzS8cwh72+Ftq13LKu0yIH+NOVsWmaeZ5DjCHSACrboUop3/UwRGmS7O3udNthzSqCUZ5mQRBgjCeTWVmW7U5Ha22a9M6Le56zsZiVSRa/+uqrDx8/sl2z2+02Xl3bcYJWmBW5ZVmrxUJLKZk2TftyPI3jGFNCTMNxHKmU63iu66dpbpqW43g1Ex8/+BhAfX5x8sd/9Lv/9X/zx+1B9uCDpx9/+L1X77x+42DnL9/+eHpx8m/99r/bD43t7e1vf+d7N4eD3/j138Qc/N4ffefw/LTlhjUTGsHf+LVf+dydW3/+/feIaXRarT/6g9/v93vTxcwy6Ze/9MXvvvX+qEVevHGLidq1gWthDQHnNRNKa5jlpZAgy7KiYqZpAoB6Pf/w8DgM241LR2khhABAS8kJoZQaVVVhTCEAq0UatlyAAJeaK6Ek6vXDZgQJAZESag2F0AgBapCGkoQQKAsNAHIch1LSfMWyrH6/jw0smV2x2rDFbJrGS7650UvTiDGupAgDr4nZMwyolCqLWiltGDQIPIQAhCDPC6VUnuetgO5sbU1nFwjpTscRkmnAMMbLRTQ+XSgFwsAxKS3Lej4tzs+SeF3ZLlwsFkyKooziNKpK9cUvvvnq515Pc+a6odL1dBJ32v2y4ACIg2sjxwMNIRwjo9s3CEGeG3x2RoIWWi/y48P5YBAMBqOnh2cXl3ydrCeXS6FknjENhGnSLCsghOcXF51u9+TslDNBEc6yjAlgWjiNNQAAE5jEpUGAa5tFkfV6vSTJlVIQ6gZ95jpBmpSYaISQlDDN1pZl+V6HczCfzwEAnOkoShzX4pwJodKMS1FubHYuztZ5Rl3PLsu6rvTV/f1HD8ZuWD54/NHW1s58HhUpXc+B21JQo3aAkyTRgM2X48FgEEf53s7o+CjuDYPj4ygMRmUmpc7WS3b99s6Vg5uHR886vUFcVKyGN+5sQe3aLtJAeh4g0JEcAp2XWS6Y8j1PK97rk+k4z/PcsWBZKEJMx0Jn58ftju/77axYAg2qkkFALEdn2adh3PP5fKO/8Q9+6x92W71nT0+77bZtmEiDyaXIsoIzrSERAigtXM82DKOuJQCo3erMpiulQBj0NKyAMoO2evzwfDDy6koJyZUCWjdVIGj4/1rr/4mYZQAk0LohICKihOScE4IqVpZluV41pldqmNSyrMGwizG+//HRjTvO669/zjT89RIMB9txfsQqIoSYLubf//578+WiPeis4tWNW9efHT+9cevFF1+5+9JLL732+t3t3a0vf/VLYdDz3N50PO327eUczGZJzdjFeM1FCaDo+J5rO5KrbrebpinGOM8KrbVQEmNCqYkgaawRtm1SiikmjuPUZRV4fr/bq4qSIqy19h03ixMAUBAEQqvZcub6DhPsxq3Ru2+fKOE8ePCx5/svvPjiB/feDVutBt53eHjYuJ6b/QyEECMzz2rH8aRWaZF1Ou2sSIVkvu8LocqiDoJWI+Q+Pj5erObr5fTRwyfLee0E+vD4JC2rn3zwcaEFRPr/9H/+v37tF77Jy6K7MfRCZ74o/p2/9x++cq03z5dbV3cppqtVhBw6uTx55eoeA+ByPoMQXrt6ZXNr5Lp2r9//6KOPfvCT+6+9cLvM0lyUW0PieQhaVAnOasCFlAogBNfrjDEmpSrLEhMzikUUx34YIAIJpUpyLRXCEACEEQVQMSYs07u4mNq2TQiCENd1LaX2A9d3DS00BlRwDTTUGhgGaMYRSimMG0m/tixrva5Nkx4cHNi2OZvNLieiqsF8tiBUBX7w5OGlZfqOwy2TCgEAUIZBINSEkDTNKyaFABAChDWAqtMJy6LGiJoWvX3nel3XZZEKWfZ6vffff980Pw1oPT2ddbutVRTbDi2KzPfh5sZGlgrP8x48fmBZRm8U1qzSACmp//AP/8Cx2n/8R3+2vdPf2sY723tpUjBZdfvWjVs7UHsXFxMMvZIti4Ir+bMZ00uvHLz79pOtrfaNWztIk4/vP/Y8qjQUEm1sbGVpbRCKEZASUMMIgiCKknanM5/Pt7Z2XNsh1IRY1wxAApWSUJLNrWA02IBQJ0lCCC7yqq7rXq+nFCoLOZuW167vTSbTZ09PHJcahnHvw6eDQetiMscIEEKLrBr2B1mWCQ6UgnE664R7p0frqtTRqoRIWG5V1eVouHlxcbF3ZZhl2Uuv3L5372OEECZAcM2YpFgbJtzd6/Z6vboSAIr5vMyrcmMUSIZOnmeUcsaYYZCP732CEFCa2Q44PpkEbf3k4eVgGBKsbZMSYHp0O1pWm5vh+BwUabG1Ey7nAgJw+4Xtp0/Pe52dfr9TVVUS67BN8zzP8xRpT8FUA0EpbrUsx7Hquq5rnufFvXsPvviFr3h2i1DFeekHtu2A9XodBEFR1NjACIGiKMbjsZTANOw4zqOo4kwlSa615oLNFxMAwNn5yRtvvFHVAAIMYcN5BZ81xv/jW5TGddgEGSsumnoSU1KymnNJKUqSZL6cGYYlFS/LFCF064VeFBU3bl45ej7e3Ogvl8vpZRKENqKGEMILEITQ992Tk5Nut60BqEp2cX6Z5cmjJw+LMnv3nfe//72Pjk8mvt++en3AOTg+nI42upQ4WmHPN7/0hTe1kIoLDBEhREvpOE7jBgMINoSFuq6ZZJZlCcFs2wZKl2W5s7llEDKbTG3LAFJVRelYtkmNhmy4Xq8VbFRv053tnXv3nrc74b1798qy9EJnGcUN/7Wqqs3NzX6/f3x8HIbhyy++VFVMa82lyLLs7OxsMBoiBCil/f5Qa12WZVnUi+V6NBoZhnF2drY1Gvz1X77X7vRM1//rt/9yPK2OZuOjs8tXbw//s//i2+DydH//xu/92Z/+xq9+6XitxmfZP/qHvzVbqvuPHiqu2t3OxXwaxctvfeXN7sD+4z/9k5s3r3uet1jMglb42ut3Hz1+UNf686+8PL44qwQbDRzLANgyIQAKgqKotNZh2EYYKgUYYwQbeVaGoXl5OSXYYIwZJsEYI/yZtFASQuqKIUinkyVuim4A6pozxhECtu1ICaRQACCMKcbQtGijWNQaEEJMC8/nsRDCcUCv1yvL8vx8VlVVq21wIcqaYYzLKrdo+PEHTzY2gsFgAABoxJ6NEzQvmWEQ00Rh6JsmlVK2W11KTSnlfF5fu36FEMJYtbO9GUURIajV9iCEnVbgunR8uex0sVSsZnx7Z3RxeqkVUkp1u92Ts1PHpWdnR51Wr9PpXF5eUmpLAa/f3LFs/IMfvGuZHqUwzVYQcVZhSkiaMELlxmjE2c8Oi2sPDo9Prl3fM0l/tb6YTpZbWztCCM9tlUWdxBnGmDHWarmTyaShydm2c3p6gTFut7uM64rnUkHDoIxVVSmUqtbrtWnRuq7RT+XuCCHfC85OJ1ubwzRbDgYDgi0Naoh0lqqNjZFtUyYAhHh7e9N13SRJlAIGtXb3hj/+0X0piGnSaA0IlX5bD4d96vDJuVbcSZJoNl12+gaxMi1tz/YEB1rrTjfoDMLpYt7vbyRJEqdg0N8xLH1yNO2EnTTJ83IZR3lVFwRbpq0C3y6r1LSMzc2dh08+ERLcvnk3CFqffHR+5/bB7m7PNwMplVDxqDe8dfNWko/7vfbF+eL54UNK7c3RKGyTqsrW67guqWECQkFViuGwr7Wuqoox1Wp1xheT3/v//X6n01vHs/2DraOjk1//9W/4vpumseMYn62G65oRjCBEl+O8FfpKItu2qkITQ1UF6vYJ0v5yfbG702lmO0o1JmOpNUAIIag0QkRB/fN7FAhN17UBAMQ0FMIA0tVy3Q27i8uVUharwdZ2oIWpUdruBfPLeqs/gjrZG944e/7w7/zayx1TXZ6chd3BvKpMlxZVni7djW0z6KokdmfLuetSLvKX7u5oaXRbG54b7B20NzfDazephnEWVy3fn04qQojrqySb2mb34Oruxmgwn01Ozo4t3621tGyTKmCatBYVtjAxoayrrf6QIOw43nIybwX27m5ne7d9/fqVXm9gma7WWhs4ZeU6TdZpYnoWIlDIIqsiAq3/8D/+JgZgvcqw6SZljrVjU2aYCGGAMHj+9Em3FwxHnd/593/nR++8b1BomRAoWZR8HkeFLLa2BxbRjkUFV1xAL+h2wt5kMpOYPruYcKweLpK9/cLiyCXdp4/f+8H3H93YCfI8Byb4z//bP/7tr3/+3UfvXhS8bczH+dlv/c/+vZvYfevDv4zKuZaWEpEMeoGCf/vVm2/du2jbLCrrMitfvnqz6/uP5rGhwfDawV89+vFG29QSCRO5sAQISA40xBpww8Kc6yxnhuVAqizbaHfNOKpHoxHnmlXUdCAXijGkIQeQCwWklJhyrcB6ru1A1QKaNlKSKMY3hk5eAkU1tTQXoKp0u+tlxdx1fdPwqooFoRkGvtYaAnu5vkzTXEOgtGsYLK6lrDGRCBkmwtxUZLl0Nvd0p+ukacllAnWQrSwMoBLKtLAb6KKMJ6cqz7LeAPIK9tqW69Hv/+WpkHAanTPhum387HFBLOm3BqYDHAcmkbx+/UqVA2qlox2TIJMaRbQu2m0zS3kS8f0bSml5+sRBpMQmSKt5p9+7+8pL2JhfHhKT+FVRbm35O1t7y+g51A5EJlfFZ2fk4vJxHoH9nU5WxPNltphnYWDZfj5fzvKyyBM6HHTqOgUIK820MKWMOy0bcCdJl25ALdeaTMq6MF3brIos9PyO7yMVmxRBZHGNFCr8kJrUKnLBFej1rTRJCMJlkW0Md4+fLw0bUS+XkiOBt/r9nR03L6qKlXlOrt1Crqs8q8eZklJWOVjO652NTr/dOT1dxiuQFGvGwfnpIgw6BBtQgwKmAACsUFkuQuvaah0Ptvrnp1JrwGUiSoPaGTQgQPpb33xDFZnljOKqMkC7TErfGMUreXDbnFyaO5tX7EB+9NHhYHNYcfLw6EmNE2RRxwGObUTxXHKj3Q/m64UGu+P4ZDaZ7GwfnE/mZUEUWIdON7Q7rE6zdG2aBsGGBsBwCXYBDdAHj99/+HE6HHXaLfvttx5UOq3qwHFcooDtEIghULaCihjCddH/8T/5X//ar36+rNKiJhkHleSI08CBz59PkEcAZFqLxjdlGFbDKm46GvCvr5SbfrCJ7wGEImqZWkMhhG0bNZcAgCKvlFLtdpP3hCbzyzwTSb5++uTwxRfvvP76XSUUELWFLc8LeM04LyHEWgPTMc/HZ01OQLcXnp+PyyqZz+fNbD7PaiBcBeJrN9uaozwvTUcUibWx3YmS9f7+blFkd195RWstuVhM571uXytlEiqEaIetza0RpZRznmVZu9Pa29ubzWZxHCOElsslQqgheLuuixDyPM8xrQboLYTgXN68eRNhMJnkAHJWa4TryeWSK8kYOzg4ODo5JoT84//gP/gn/+SfrKNCQyClFpxhIBVjZyenxDSwQWzPTdPUMMi//Jf/nWEYUmig4Xy1/u733m23RhAY48uFYVjDrc3j89PdvQ0PWkCDf/rtb0uKXAfYBuQMPDu639p44asvuwVvMxO0eDFNBYag3+l+/uVXkA3+xXe+e2U4un335cC33/ruX7310b3t3W5eZvfvP9nYGKZprJWwCO74NsVACeb7Xp5mW1sbeZpJKQ1MEIIImp2Of3FxOegPkmSlFSIENZqDz3Q2gkslwXK5pthAGFDiQMSARr2+34xaINQAKExAFEVS6iZrYWtro64Kz3MA0HVdaQ3qihMCGxfg4eGhBqooCillkhSGYZydne7v3r5+uw0BCkO/rFdCKGxo27ZbrQ7QmDExHPaidVwWtVTy1/7WLz1/OoaIUQsvF4DxfNjbiNMESMhlFM1aG7t6OTUreRa4/cUia3eCsk60op9iMYnnON7u3uaP33r7yi3lOmGaSsOER8/nP3n74xs3bty/d5lF2XA4vLy8vHb1hoYAUwohbIZ0zZNE2e07g82dQRiGp2fj3b2grCPHHGECHduHSD59+vT6tetKibpS1EBSagghIIJVkDNVZEk7tNsta71Oe91WEhee2/WcPsWB1BljFdRWr9+qa/7k0Xp7NyiqklCaZZnr2ov5cr2uO+1uWVWEEIzMw8Oz9999urXTO3pW9/quFORH3zvd3u1zIdt9obg7mU3C1qbh1ItZDhBYTCOgjOEWvv/hxHQYq6CsTWoApWVdwSgCkOpVtDo6zHq9sCzLTqcVhm4ULV997ZW6rrWGWZpvbwbj8RhAHIbhdHZpmrQoSojZ5cVqPE77Q0/IkteAYi/POJDubJbMZkvX8dqtXqvVSuKYqFAIEAQBQqSqKsZAgwIhBg2CwDDMqqoau9RyOVdabG1vACIe3D/8O3/vK7PpWnDAxYogbhLqeZ5hEK01hCArytFw+5/9f/7Fx/cfOS7kvDYwcUxTIZ7lUV2w48cz3/ebIVjTLX2aBPDTYhChn9PdYAJs206SRGrhui7GOM9L03Zs24zTAmFKTYMzqbV2HMtxDcZrQt3L6fKX/9bXGBNX9rc3Npy6UL5txauMEAMj4bpuWdZK8+FwmObJZDIJWqbrBFG8dFwrWpfjyWmeCa2IbZmdHtva2jg7jgjBtts6PH12cn7yl9/77t/7+/9WtFzUWUGxsb21u7VzhQKymC0D11ss5q1Wa2s03NrcdBznF3/5m5ZnrVfR/5+9/3qybcvS+7Ax7fJr+53enJPHn3O9qVu3fHU10AaAgGY3IIAAESSBDkYwGCE9i6HQgygpQkGQDEEIEmgIZAANBAjbcN3VVd1Vdavqen+Pd+l3Zm6/l1/T6iFv3yogFJL+gB4PmfmSuWPnXnPMOcf4xu/b2NgaTsZ+6AVROE+T86ZQVVVZlnmed/4fKYrCcUMAs7QK42HpR35RKYUr129pLTGln332med5X3n9q7/1W79lAba3lzQCaxE20IkCj+GDvUNCedAOzk6HVV1oIylGB3t7jPH5POl2u4NhkqVVq91nXrx3cCABMlFLWa7G3bVe53A+HqSLWzeuzk8HS8vOH77xXaPkb/zlvyRnlSbYw2oy0wZSwsJvfeUrTQd+//2HVy9szYtkMRsSQCcTwQP2o5/8aHWjp8Fyzo2WW5trFCuEodUMwErKiFGac57M54xxY4WSqNFyj45O1tbWCQMlCSDzR3hXaw0AYCk1AAzPJrLmgCQlPuVSSt3p+QAgpZZSAzKEID/wyrJsNFrnLqPGQFGmCGuM4dxSCjBSSsVx8/T0NAg8xggGAnD+pM3rkrS77utfeenRwwPXw/1lt9PxEDKc88k4K3KT5zkAZcxzXRLG7Pe//64CSbilFLq9KEvrF19pGEn2907LKhkeOcvr4sGnFfcKVQVhzJhj0lR5DqvrmkNrfy9ZXevt7R0YA6JGIBuDg3p7p7m85npe8N/9zf9qMFgwzE5Ozvb3D6MosoAJ5YB/tkYQkG4/fLR/9+7te0Whw5hYXB7tF1pZrUgQunkpyhyklIxE88WwrqUx5rnnrx0PksPDk0bsSJkjUnW7cV7UQqnhKJ1Oi8Brc0eHkReGzSAIykIFPo2bWGhxbgfkeK7re9aCtdZ13bpQdSWshUuXLqXZtC5gZ2dpcDRTtYNZFkbodGh4WH31m69Opup4OEhnxvN9sGiRTKLYu/XMZc4ZwhYAU0qkhKX+yu07D3y/ee/eXlGDUiZNc2NlUSZBxNqdxtnZSEmrtbaGWmJ935/MpmWVEIquXlnL88XhwVkc8VrOPJ+BovmkaDW8/b0cI891mefHBHvJYnp6crb7aNrruxjj4+NBXcsgwEKWtciD8HM6RpKk56r7brcbRQGA6q80790/rtSs24uQ9b72zWcYk9lCMkyM1tZqP/JEbZ7sHn125/HJcMZ9QynGyEPAXQ8bDEEQMf65pPqLbvL5y+H/T2VDyPJ5FDW2L257njObTShlUkGSJHEjBADHYZNR2mo2Xdc9PR0HkdfuuGUtCKa5OB2cnGGi/9yvfT2d5rrOCWLpfOF6yGrDqEeZPbfdELKWsr5///HaescYM58V7Y6XJhXBIg6X/cCJGlldwXxKMTNVLZ3Af+GFF+7evetwvrmxQQANh+Pt7YuB57uUZUnaaDRaraZBsL+/iyxwBz99+rTZaR8cDT799FOMEefMaIsQKsuSc14XpeM4vucRRtO86Lb6RTW5cGFNQT0YTLv9ltBqkZaUM6WUH8Z/7Tf/i9/73u9fvnoljuPxdGrAIoRcinqdsOn780me5EXQDpXRcTN68uTpr//6r21ubIOlcaM1X6SFrhEqgZhaq6IqF2kxLYQF85VnnyG2qEDe3d/96mtfGuwdbGxu3bl3e3F89xt/+b++GJegmytXLkIuDg4fCYV7vc6vvnr1rdu7CoMu69WlzqdPHwHHXsge7z7wAnexWBglXEYDj3kO9jwII+57TEshhGCYnFeB67qoKw1Iihoo4evrPSWx1vKc6nFO9zIGjAGHO3Wts8RiUEIaQHWeF9yDOAQEmFPSasQEW05J6IXpPD8d1MhCp9NYzAsL0vW41kAYE8I4DgNEF2kSBMH5DA8lrKqLKPDefefjKqej2aPQWwNLG12RzCCI6MnZYDarHJchqvKiyvKKcDgcPBmN4PWv7nAHMxIs5sPFtOgv8bpU3d4SoTZdQLvVippwvF+7viXU+fo3vmy1s1gs4iB8+mTQ7fJOp3M2Gr766uW6GoM2oPDrr9+4dOHC7/zjjz5+79F/+3//P//kx7dX+isHBwfWIACwGE3n2RdrxGXebHrixrSu5f7xIIwcY2WzsbW5uT2dpJiayRgojizoZFE7Ds2z0gKezYdnp/Nnn3vFKtZsdOOYj0aJw4P19SUptTRaa0sIN7aiFKrCDo4ma+tLZZUYYzRYAMyok2VFEKBzUpbDUasVWAsWZWmStbrNopwvZnY+r/0ARbGrSvqdX7mY5bMHD4+OB5WVUBc1WNxs0aP9tLNSnBwag0rOZJGYwPO5J7Pi7OnT01oxLyZGQ6sVWSsJhZdffn48HlZV5Tje8PSMM7/RiBj1PM+LY//hw4ebWytSas55o+VWdfHwwb7vxYCwlRRZvywUZtbzncUiEzJ78fkdrPHa2oq2ZnA8lMKGoW+tlkY2m/FsPq3rWilNKdPacocCUmWVBTFDGO0+XaxswmxUhj7bXF9pNZyqEuemPdZaxoPF1ARhDAgQQs2mj42s69JYmyVQFqbdpEVRnD/q5+jc84SIv9DVnAtwPk/J6Wy+SCiljGMN9vRkeP4LnDPXg7oqVpaaZ4OpFMLlyPW4Ab2YqfULjc9uP965fNHxEefu5SvLZV7EURMT8EPLuTMaTsGI0I9kLZrN5mS8yHMJoPOsHo+KdrvZiHtHp/tCVKr0pFnETXhyLyeYW2Q++OSjH/3kjf3d3Xyx6LdbURjmabFYpEvtHgCk2aIW5XB4+vDhg5vP3Or2e+998M7G1vrh4XEcN67duCpUnRY5YCKkPOchLi8va6nOO9RSAqWuhSqO28/c2j7YWyhbYAg4p3Vd52X2V//qX/2d3/mdt9663Wq1e8tLSSaVNdYgQnDgEUKhKmH/8NQQK4Sy1rba3t17t+fzZDpdbG5eyPNKknp12a/EQhiBsC2Enqa11nJ1pdGKiLSwe3Q8GQ3LvEI0Go/Ln7z9A+53XBfyVO1cvEJpffvBftSMsMv/6i//Ckjx3fffvbS0kmTF7334QSuIk3S6vLx0Dv2Xwrqe43nMcXHgM0YRodjzHSkl4c6537w0RlmTl6Uf8YPjo97ykrYWU35uaX2OszkvTruu6zhMC4KwKYpKWZNXhbGi0+MIwBhTlGmzFVjQCCEhVBzD7u6R7wZRxCyo8yerrnRdQxgHeV5KKeNmpLTUyliLyixfXV0enWWffPQYAbEGoqiR50We1xjRPNcYORb0xZ3VZKGLXGitp9Pxcn8pKYZSykbcMlYLIaoijQJnvhg7TkvqGtv4tdc2p2PluHCwf/r46SPH8dc3+hjTg73Dfq97eHzW6XSow3afptQF4lXvffDxwWBv40L37//93/vDH/zoL/2lP5MVZV5W3HUQJWmaYvqzE4OpNdg6r8vXXv0K8Z2iKvNM3b/38O6dBwD4mWevr6027tx9sLzcN8YIoRcLIYTo9nvG2uF4JCvHc5tlmRKMsix3PEOo6XRDC5USbDazCKtkrhcLASQ7Pwmee6gB4KPD1BhLCJlNx912uLOzBgCbF8JkIdtd5/h4uLYWf+vbL5WlqFV58+am1f7u0yNMzMlRjTFrtjwl9NbWpla2KBeb6zsWwFhFqMVEWxBKV7M0a7db5xjg81HCZisAZO7fvy+lnIxnxmqwlFJsENKWANJKwunp4MGDcmW1c+HSirWMQHsynmKszg7Suizms4QQHIRuWdSTabFIh4yCF3JrkZS6FkpK6QbM89wg8ILAy7JUSjiXo2uthajP+TQIkUd31LMvtRGCO7cf1rVcWWuPRpPz6UwttKikF1IhRKPpVzVgoigVnkuURmUBqoZ2SzPGznXL572Uf++m/B+wrxHS4/H04OCAUryzc7GWFgE2xgC2rdgJPZov5ku9hlHnHw8YsMMT/cyLm3UZ3n+46wSMks4sHYRBq6jK5bXldtdzXXc2ycFKUdZgjDFqMio5h263OzybbW330jRfW1u/eu1G2CSLuTUannu+3+0sf/Lh4cpyfzhOL1+9+u1vf3u5v9Tww+9869vW2vfff/8XfuEXLm5fmE6ngO1wfLZ9cYtQenZ2QhlUVTUaT5nDT09PMYH5fP4FnawoimajobVuNpvT6ZQ5YGVFMJKVvnx1NQic+/f2XKdBGCrqcnt7+0c/fuPp3v6tZy4+evJkY2PDdYGA/ZxzZUQlSmVhcDpZJIkfxotskSRlliVra2vDs+kiLb0gqLVsRFzWuR/GVVVohDXmoixmi/HWWtvnIGv54M7toNHMamM1/MPf/b4efXTnAIDV6XDGIzWY1g43h4Pjl248Fwf47/7Tf4G1/sf//F+fVFrnCSO4rgqwFiFiEFDOuc8wh/NurFLK90JCCOe8VhJRQgihzCployg4ODgqC8Ud7DietaC1Pdesaq0RQgiD5znnPVljFMUBgBK1CRtQllIq2+t1ev2W45CyrKtSIYSiyD09GXU6nfNhlcB387xEGAjBaV4CQKv9uVWOEIox1mxFokaUBJOhjBo0TWeLKfSXotFoRikgoMaaVpd6ARBCOWej0eR0MGIUaW2f7h75XnTh4lZVE8ItoiRJJ80GXL68stR5dvMS5KkbBM58lmktMbFPH02KUi6vtJ8+HoShv/+kkFJjxIcDtbS0hGm5WCw2tum/+d3vabDPP/+8UqrZbJ4DVvXPWan12p1W1Pjkzr3RcJrVs8W8QKYRNVFRGaHFm2+9NzhaCCFa7VjIbDaplpe6tSgRIkKVx8fHWnvvv/v40tWLdW0RsLyYp+mi3205nk2TGiwQwo6PTxpNSqiyhpyja8BiLc3N6xtVAVEQiLK6fHnj6aPHCAAREcf9RTJkxD09SR4/OY6C/tq6+/o3+m9+fxI4TUrKKquNlkvLXCmYTbPeMpwdG8wKWYPV1AvA4pqzYDGH559bq6oxNo7jMikFxnhtdf3xo6cIoUajUdfS85yzs2GzFVlDkkXOGOu0V0dn49e+vPnOO08v7myPhsnu45EUYDQs9TvtDshaeU6AkD0+OaUELIhnn78YhsF4PE6zUkojtQoCH5AyCCiDs+HxufzFdd0wDDHGFjRGbpGr2x8PgtBpd3xG3cl4XhSJNbhMSzh3/qhVVSiCIXQpoU5ZFgTAcZlBBmMeB83VZe8/uCN/flMGAAQYDELws5pI3AgQkEajEcRBVRUXL24hRI6OB47DGh5nyPzqL/3ifLzwuEsJ88M4SRRY/MM//MBxgr/9P/3BaFjHrWaeQSVqiyDJkqBB0zT1fa/baT68v3/rxjPLy8tPHp0GITbG5pmYL0bTSfrmm+/+6Ccf5KXgDj49hjjq/OZf/wuToZhNKmFgkeZSSpdxRsmlizvtdjPNMk54EISO61ZCaLB7B/sfffrxS6++8mT3iee5jUZrcHy6tLJU1IUyknIXyOfuS3meb6ytpWla13Wz2XQd3PS7jKKzk5P+kpvOQAo9m4+CIBjPpsfHxysrK0KIzz77rBJlp9uwBqy1hNFCZGlZI8yqCk5OhlKruq5aba+qyocPH8Vx897dB72l/uBkzrErSi0V8t1AG6i1aTXC03kSuaHOIOAxxjhuxYWqeh3yaPfpOx/8wSyDXou/89mnLd8fLIbzJMlmaXN18099+eaDpwNL8LRUwjKHmisXL4ae/8kHd7TQSoHjuZPplDgEU1JLwR13niyiRlMqhSkx1mJEMZEYPMoQINjbPQ5CrhVQSs/7a+e0CwBTVQUmyGhdVZIQZK0vdClq3WyTMMBf+cqrabY4PR1EUZSmOSFUKauUWsxlmdXnGn7GHFFL3ye1KMtSIYQoxcZoKbWqTRRFWbpwXHR6XGVZoexcGxnH7nS2YAwBgDEQN4i2SX8pELVyuG80OrfezjPR6/P9g0VRLmZjzRzjuo7W6uvfeuGD926/885Pb12/VolZlotKaKmKOPYvXVpdWqYXLq4f7E0GZyfDycHqRb28Ed7+ZHr7s+NWa6MuI+ayF1565u/+vX/97gfvrq2tCFFhDBgM+zl3+V/+xe/0O/08h3ffep+HWAl2ciyu3lgqc0BYr670tEGY6Ol4tLTUMMYdnI4XSYKQc/XmirLi9p2j6zcvpNkojkIwqBH7zahpjTFGK60c5ixmOs1Es+Uw6kspOaHYQp5mzbhxcXsHDOhatppNjASYaH3D993WZDIpCltXJvT8/f3pe+9/+vprX/nXv/P2fJ6AVRcvrHseWloJuSc77cgo3YjbRVE8fnQURt65Q2nokzxNN9ebnNGqMJQQAGWM0dqmaTkeLZqNDmPMD3iWzKtKuC7XFqKwFTVa+3sDgvnGVi9uwFtvfhCE3HF8lwXIQhiSl1/aqQpjtcuYMx3njASEoMHwcbvdPD4+zlLrcO/cKCnLEq2l67LR6Izx84SFzpExnucls0oL3/f1H373gSUCExQ2mou0jKMOQlgJKWsReD7S0GmEZZk0Wi4BpCTNk5px0EgIITjB552T85vyF5N4P1Nf/3yajKLoXIWPEPrkk70vTukIIYfj1ZX+zoXtfq+Rp5moZFXVQgFge7wLbqiaje5HH+wLM5lN3MvXLzXarb29EyFLIcRkXMZx/OJztxjhQRDMp/XFnW2tUKvZ29nZQsCeffbG2pZDUXe2OFxf8+99evr2e79/5Wr/8GnSbPr7+/txEDWi+MrOpffefbvT6ZwNT9588837Dx8kSXrhwoXJbDqcjJVSQsmlpd7+4cFisWg0Go1G49yN7/xsKKXsdTp1Xd+4ceP4+Pj8/TocCAqW+jEBp93lGNz5fP78c894nqe17na7URRxzjc3N09PT6NGrAUopYFAqapCgkWEEGc0muV5nue5lOdEe+fVV17r9ZbqSiIUyMo4PMTIsQZNJpNKCgv18el4a2Or34iwRbPpJBdZqSrPQzob/3f/6N+2PECl+Gx82iXR4eSJBqff7n385Olv/oU/VczhaHySG5NPi7jhJPPFn//13+h2m1LKRhwCRgrprMqVUr4fVlWltc2yzA+DWgjACABrUxLiAJhWyx+epX7AiqI6z4bnHz0AWKurShqjrLV1DZjYqrRZttCKrKy1r169/PHHH0+n1fJyHxNU18ZoOJdex3FwdjYjhCll8qzUClzXrUSJEXDPxRgFga+UJQQ1m83FYiFUplQDU5Xni25neWO7YxQ0Wrzd8aw1Umlt826vSSkHAN+Playn42m71e10Y7CwSOdpAnHTt4Y6ATx6+FSqutkKyhxqZbXkk0nd7bU93338eHDp0jrjqMj1xYsXDdh+7/Lde/vzebWYRFIpHk2ZX5Zl/tJL62mWfUFLYoxEvvfFGjnaP7h6+ZoBmE3nBomjw+JskPmhbrWaRSGSJAFLMTGz2ezK1QtKEM91pZSMepRJx2HNDrPYYoaazebJyeJ8/mQxz4wxjRYwEk6G1fIqcAcpSfyASykpIXlm1tfXH9y7RwDSNG03W/PFpMrQ1esbyMbD0QkGqpRZLIq6sjdv3vzogwfTAVpaKazNiyx3HRo3eZamGFsDZTpzrt3qNPydoiylqhnxigxZVFy9vnn/zj4FypnURgVBIKV++uQgDGPGnLquG40oDD2E0HgyxIjkZVVV9fBEGQNlNeu215SifsCFqGtBMAJKaoRKAuhsMHn08LHj+PNFNU+rXr/JOMmLwvNwEARKKaVFLUqM8de/8VVApiw/97EAi7XWcRzPZ+ViIh1fnR4S12Wno2GWZRjz2WyxtraxuroqhAKAVsOrq5wCYKYoZUbwIlf95UYQUSGEx73z5xwhZC18MZyHARGLBACYn4Pb9Ne0gqqswXGcjc3+dDruLFOCnTwzjDUavTIpislisbK57kWoLpPrV3qOY8F4J4PR1eej77/107/5P74d9KuoWXdjCH2KUFBJtZiB1PMkV+/d/kGZJpzpl1/ZQDRPFrMgAgDcXrYiBcbnsxmW2NKoun3v8ZXr/SwrlwJvb7D4+GiQUfrw0d2l2OvEEePx08mpEzqR50zOhkv9NQtkPp2+cON6q73xdPdepxveunn9bHAcOA0lCCIFIMf12f7+wz/xC6/fvX3HdRvTRGrHHy/SvcHpYDQTusDGtjryYD9hQevo+LQS9dHJQVEkQRC0G+3D/SNiEQGEuVS0FCrSwi2KylqZzfEsTYpsSnziePEvvfT689tLW2vB/OR4rdn9aLCbURYw0295xTRb8uhkVCVZ0QJYb/sq4I/nua1EB1nqBYw4b/7kx7JFLm8+c9W69+o59/z7T+4kp08ePrn9wnOvf+kZ/t/8/d968Gg/brJMiFd7yx2Ov/LMTY0giFtQQqW0S+n5rua6brMZ13Vd5kWz0RBV7URG1K62CwoBGB8wDI4qJ3Dm8+TcEs9KQxFFiFAORVEqVFoAI8OseKyksIYTvHT/6QNbiZV+NJ2lxmIKyEplhfEcikhNHWC41WxGFnSzC4w4ZYopolHg5EUqaksp0cgGoVvXpM4x5zNR+Uojg6pGs3XlWRQGjih5o1cWCR3sOnHXCJtnhQybpL8Gybzx5FF6sL+oBQxPRCPC/Q7W1fzq1fje7Sro8HtPjlJxQhBwVhQL6oborTcevP7aZqspVAVumGpD6lJkiwJU5ARq67JdzOx4wGTelzYVed0N+HLYNaXRtqhraVH5xRr5V//qnfaVHnOcsZ2oAS0KAKwfPzL9dTE7BY82HV/WhhU1ni3GrbaAitmSp9mTVqPdbV3sd93jg2MpkukkiWIvrxat9trGhUvzLIuikJHKjzKtAgWGUEOQQZQMJ5nfcKfZMQkyL8Z5plttv8pjw8bpnCvIkxlgwhGziMKf+DMbrVYr7thaWt9Zff3lb6732y3PyTIVx72iKJCxGC3qpGPJEwwYEFiDvYbCiCF+WlcEuLIEjG5ib6oEw6rvR/PZZNxf9hbzklE/DGUyUu2Y9/vTR/cOn3/u2STNjSmanWo0EHHUpY6mToKgEbaCRRoobGdTnM1N1Jz7gV7MYW1zDWOczFTUwAgrxsEozxp0/9Phe++9Q1CgNXCyIU1eVqeRu2SrqlzUVuvpCJTxKOdR1CKsUrVAniiP6j/32jcbDozSdG27a5RjGaYQSlsVKltZd5peKx/6m1fNWcLO0STn83afX5PPmdIAP+uqnEer3fY91en6u3v3N7dWXI9RyhfzXNS60QyPj2aLZNxptyzKjw4KjKHf7xOCAHBdSwBDmD04uN/v9zE08qxUSnPHEGi2u2R4tvBDVOamrAuE7Gd37olaM+4Oz+ZCqSRJwsi31mZZoqUI/WBw1rjkAAEAAElEQVR1Zfns5OSF567v7k+aTTaZnnk+27qwA4i9/PLLnoPffffdr331GxsbG3t7e1LKpaWlq1eu/aN/9I/G4zFjhHN6enp6cnYKAJRyhAiypqqqRiu48dzNk/GpH7gEw2w0PD4+2d19srTcqUqhFXS6LQvw/nufxs3GZDKJ4/hcI1mUGYCZTEaO4wCA0VCVoq5rjM85F2axSKXUQiiMYW1tDYw6Pj7e3twUppzN6ul06nre6vr61tbV+UJcuXKlFTcyXRkKyXTcbwdC1aubW9QyZSR3aJroF5595ptfeX10VMZh9Hvf/57lfHlpKe73r1y6fHS8SEWRZ3Jruf/tb30rS1LOGLKozKs8ya2yopScU6U+t1gIQx9jHASeVCJb1J9fQIxsNhtRhKbTmdEAiBdVrbWmHBBWhKAiB0oja62UwB0aBFEUhRakECJuINf3lTVJkhdFUVUWtAl9ty6rc5X/aHTmehzAWAuEEYQMJpCm8/l86nlOUeitrT4hJEkSKQ13iAXhuOzunbHVTq/X4w7irl1b6wZ+ZDQdDuaUgus6WZa5rq/tYng2c3i8veMaY42MNcrzFIN11jZcUauvfeUb05ExCrirAVRViWYjVhKvb1yaTCY3blzbP3iS5dXB4YlSyhjo9TtFkbY63u7eMEuryWR6+fJOs9XQoK21RgNnzhdr5Ph4+u7bt/thj4YkzUvHcRBjD+4dt5p9ziDNh8aAtVpWRggzmtRCK4OgrJTnBe9/8Jm1emtrw3X9WpRay+l0PhwOP/zwwzylS8utRZJ3WxfThQ1Cqk1FoHVOoFpb6TWbIULI87nnE9d1syyzgIPuMbKRH7CqLJpR/JWvX2rGS7/zz37kh+B6sHdw8Lf/1u/GUe/6rZ0gCMqiopQqaRCQyWRWS+CcMwbGGDCwvNpI5joIvXYzzpKcUCtKKMsyjG3A22ubrfufnRGqLAhZOQjpsKFPB2k2h16/3ek742G5srKGaaklpgS0AmWKs9PR7u6jbg9bsNqQKGq4jnvt6upsNl3M03P32nMqlZSyrsV0Mt+5sK50QSlIPXcYTZKk1w+lIo7jNJr+17/+pWYrePJ40e21q1L5vm8FKUBfvLn1zde+TnJI61mm51B6jSaZj9mlKyuce4PDrCjLVscti5+54J7bofzspozQf0ht4NxzfLu8FK2u9+7d/aTZDCnio6FA4Ehbrq5t7+/vhkE7L8dFCpy7d+/eXV1eYoRgy4+PTtfWwyBCURTf+WzXaMI5x8Te/uTwwoULaVZblDEaG2SAQF6WftBM8iLN1cp6v5aiu9QdTSeAQEpdFNX6at/lztpyE2Pkuu7jJ/d2D54y7jWb/fl8euXK+nlvyFp7dFTkVel43v7+fprkjudUsnJ9RyghlVLGVlX92af3wJggCAxG/+3/8N9fvHL5aDB47Usvuxgv0nznysUvvfb8yXB0Mphdvby9sdl6+uis2egqCVHUMAjOX4s7rKxKRLC1oDVIqa2xGAMAlgJm87zT6Wltm82m57nz+SwOw/X1dW2VUDCbaYPquLXSXuopBa+8/Py1m7e+87/51aenZy6Bpu8jRqVFodtivsMYBQNVlv4nf/4v9EMAqTMtN2/eiL1oMTgxUrgeFLoKHPj2yy+0mu1Ws8OZmyep1lpJXeb1Oc+cUorw+UgmErI6F9Vz5lHinm88ZZVSiq0FJTQgai0hnNRKG2QwJcaAFMZxHARgrc2LSiiptSAE+QEryqLRiBnDYOzaaufSzk6v07YajDGeg5N0Udel4zjcQePJyA8Y56TXb1lQ2gjKYW1tZZEtgACmYGwdRsx1OVh4+uSYMRa1GOf65HQMAMOzxdlJ2Wp1ymohhNq40JqOodnyLV5QzEUJlUoRMDDu8HTR6ld5Vv/hH/y4SJnDG4A1YEjmdafTe+e9vdEkpQ4/ODqshTLAhSJpXiIGnuetbywDLq9di6tSE8yWV/q1SBG2ZVkmSY5/rqn8q3/m5Td+8DYuFI883wNZ1wQrkeKj3YnHI9ezxgDnnFKULLLtrX5eltpAVerhaNrpuAiDkFVVyvWNZUwsWIYx3tzcZNw+fTzyeGxBSlUUuUXWw8QCALaAsFa69jzHD1jUoL7vHx/P1i7STjfc3Xt45col32ss0tkLz9/8vX/7brPtBTFrNjpR5DW65Gx88k/+13e1VGCIlNL3IwMsTdNzNh3WUBUlGOj2/YPdzGGs3+8CUIo1xZ6WJoitqJHnsaPdvBH7SZICMtuXloej0XSMu73u3uEnKyu90+NiMc9aXTIZFxcvXjSaYqwJcdY3ll985ZrvuYPj8Xi8sBYfH439gJ+cnAmpwjAWQnDOAQBjUtTS6Nr3uMOdVhtbDUZahfKzaYkQuriz/tOfvDM4OQ48mucJo74QVV3rmZz+j3//f45Y8zd+9ZdPR1nYDKkVxtZgPO7qg6fJ4HiMkS5yIdXnVrfnee8Lr6jPs+HPy2sAQGq7sbEEQLK0iBt+WeWiNpRAlmWz2ZRQhDA/HQ20AmOAEtdx2NZWB6Cwmp8e1r3ectzgeZ75Xki5j4mcTgtj8PHRJIp8x+FWc+ZwoaQBbJGTJDrPNSZWSu37fq+7dO36ptZAEcHIgjZlOWPcPzlJl5daBwd7v/u97x+fjZMkmc9Out0+QvjmzWcwhulktlikzHW6/V5apEVVemGQVWWj3SjLEgFptdqzyRRjbMDW1payPjgcg1ZG1K4XDE6O/vBHf+A4zvrahWYzBqgowfNZyrmbZsXZ2UhZg8/tXAxIKY0FKYBhx3E4skAIMwCzaV5LUwkwSDsOow4P4+jT27cZC70Axmd6Mp/tDU5WNpeyDDY3OtvbV/7gp28ZBBwRkRWVsp/eefzNL/+J6Xxmle510O6TR8+++NLXX3hxPp4cjk4bvR43eP/p7nd+4Rcizykr0Ymcrz5zKyvydr9bVGWpQBsrjS0rgTD7YsulFAtRaS0pxZRisLQsa8dzucOKIgMwge+mScY9bJGRyooaOIuytNIWPJ+WeakkcM/pdHoY0Vk6AYAw4GHszWYza62UejqdGmPazZbVwAkzxjgOk6q2oD3PqyqIW66xIgx916V5UTSb3nQ+WSQJJZxS4B5yPIQQ6nfbT5+cplnRbAVhjAiGsihEbbH1ZCnj0JtNc8fT/X4MSHFXSSmlBMcl1mDXY3Vl3UBiTJqt8OBgKoWKYwcMJHNNGFpZJ17gSlOUlZ5NTFGYqsIA0O4g34uNMYTq7QvrWVo1O+2VlV5R50mSuE7YbHcXi/yLNfL6t671l1lIcZJXDLe3d5qOrzF15tM6WRRbG6udZmM6rgjCk0nCHDduhnlZpElllL14YTNNi7LMrSGEQF5oJdHGxgYAEGrOTqvr1549OjrIchgM0vF4KkSRztOLFy92e63p5KwsJKWwtt4dDsdFZcKGIKSHiX7vnds3b6597Ws3P3j3A8750kpY5R7h0mh26SYygIx1KMPf/MZ3fN+//+Ck21kCAIyI1rC5seZ7rNXmvocmZxohzBkmgDDSFDFGOSDp+XxwmLU7kdF6PoF2DxNqTgdkZeUaokmn53ESzsZqb+9gZS0cj2bNZhMBpxQHfryy3otiByGQAgils2lR5MLznNF4gjF1HKeqaowBIcS4qw1wxhhjk3GtbSYrvdRdFbJ8++1hq90Yjg7rGm4+s1lX4HqcYMf1KHJorfIP3h28+fbH25eDqxsbgwdy43KktfYDYmx9tK9dD61txxg1DM7O3fHg5+Q0n2fDf19dAwCAEa9K/fjh0WJStNvt6Xgehk2jQMhCKtvqelJgwpSs3P4KwpjUtfj40zvGqEbUJtA73l8AUKnK5fV2lpaOT/LEMUinC1OUhesEZSkMUERYmuZVKVpdyDMxm59pbY0x+3tHk/mQYOT6MYDp95dLkcbt2PNhPpmurq6ejIdhqzEcD0ejs6KoxuOpEGp9rTkcZpzzr379a8cngzRNqUPH09GPf/pGEIUGrEF4bXWj3+/COaHH2h//9K0opgDYGCO0uHfvSavTFqJaX9v87PYnfkC1MqenQz8I0zQvi7osS2MMdx1rQRpJKRE1cO56niclAAAhrCxA1GZ5tfPo8WMJ6mw0HM8TpdHRYLS0HFAOjx8UmuVvfvCx67Oqzv+Xf/hP/uW/+t2LOztXL9/oNpc7jf7HnxwZzF9+6RWH8yyziOLBnXsbrQ4BlMjqjTff2uwtLYrk4PAQ1VCX6srG9lq7QwPv0e7T4WziBDQXVVoWwlil4Zzyfy6yOZ+683yXEHTOgLMGLIDUUmnbbEattp/lmTKaUS/wG3UJxthWExBNn3vuFufOaHQGiFLm1nVhLeIO9jyvlhVmqBYCYzwYDA4HB71+iDGuKvAD7nlOmkup7cqq57iEELZYLFzXjRoe4+Tw8KjZbBqwmEIch0VRAGAhJFioKlHVIm54vg/WKi2VEJpx5PmsyiDJ5NYlX2lhpct4tboW5CkwDy+vBhakwyPO3bWN1vMvLeVFbjQjlBYZ1CLvLjUvXLw4ng7rEomSi1KVmRQV7OxcfPhg9/GjvUYjPhmcnbMngCCEUKvZCcM4y4o4/pln3vHpGacxJeByLoTwfXPjRtfoDFvXGr29dZkSz3cjhBBYfHY6qutSaxP57fHJuEymAFDXNUZOko67XTYeFZzTg4OnjIQbW85osndyrNdWG699ZW1zu+nwGKyuy2o8OgHAjIZVVa2udQaDk+u3Vn2353kORd3pREatev9JcnR0/OIrl6bj+vgg3dzxEE/6S6tvvbPrh2CM+Z//l3+6tr6yubn66PGe57Fkqq9d2nKZb7SMm3y2SJQkUkGaZwCAEJJSGrCEeq1e+Oje4uqN3nyWxw24eGnl/ff3Z2MbxoR59uhwxLkLcG6j5DKOR+NT13GFUMmiIAQ9ePgYUUMZaEWkgpW1ZQAoauEFEcbYAlhtlFJKmaqCZJoFQdhq9RjF89E8my/ShQKAre3VssoBgetSpdS9u8dhGDJGsMuZhW7be/Ozg+/9+Me//PVvc2Uk1lZXQubcQZ6HKXG6S7zXb5el+gJ5fa46/PwHgC+y5M+irGSn1T49mQR+nKazuOE24qYxMJss/KA9WZwKXVmDhsPy6998aTY/bbWav/7rr7/2lQ2pysmkeHh/1GkvE+w8enzXgpZS5gkBC8kiXV1Zffj4wHHd2TTj3D1X//X7oRK22wmNNFLoRVIXRVWUdjCYEsfd2rmsrAh9srHaRZYOh2PH47/5X/21wejk4qWrUugH9x/5XtDqtAmD45PBbDbb2dkZTaZRo9nqd/OqPBufDc5OP/eNU1Jr7Tvu3pNRmZWMut3+suP6eZXsHZz1uss7VzbyMkNAfN9ttcJSaM/zrLWNRqMsa61tGEQI4DyhgDk35GaEgpQ1IKwEVLUimJ2O5s+/8NIkTU7Hs0laToY5GHr5in94qMK2+9b7dzqrzpNHR3/41sfXr96wyiytbiRF5bsRQfDWR+97TqiFNQau3Lix93T31Wef9zDOqrIsS4/xFMt/+d1/hyXKM/ja177V7vVni/m7H7xb1AUhWIM5NxWhlDPGACCOY2MV47SqCsYIocjzHUpxJeqyrgmhhACycufCmjbgOjgv8jRdpFmKAKKIray0Hj95VKY1YyTwWwgxbaQR0Om0Tk+nruueOx2ura9XdX10nMbtRlWKZozPm9HWwmJROr6nrGLUMwYTwuKoybiblxA1mhawG3IpZZEDZ642gnEshXm6O+r1OtqA1JpQq6VsdxpZlsqKCyGMEb0lL88rJYgXYExzBK6B0ljYe7JYWm4fHe9nxbDZckWN2l0uhJoli9t3Jx98eH+e5IcHOcJu4HFOaLfH+t14d3ffaGKMGY3nK+urk8koSedZVhSVlBqGw7GyP2Nf//iN/Y8/nBycnHKwbmhcj2mbMh+qUmMMneZKu9XKkxwhCxZbjPJaO4wZaa9sXfKQbDTcxaLCyKMMdXsxWDg43FtZXdKmWl/bOj4aeT4ImU6nU855mk0dFzsu9zyP4mB8VkVR49azV7O0CHw8mUyssrc/OfjGd7YR9MLI40789PHh2ek8bEip9cUrawf7ubbQW4nOhiOlob+0RKjb6fTCyKUErK0P9k+KEpotdzKpDejxOFvMM8dhxgDhZJFnUdQ7Pp5UNfZiFTcaL7y8/ejBQTIDxycPdz8K/M7pkaS8brY8hFCW6F4/BFQpkwKwxSJZLBaiIpRC2ESnJzXBLIyZsURIG4ZxVVWc4/Mmr9JGaZgneaPZXiwSJc2NK9duXd8+2c8dn5+eHa6udX75V5+fzRZByHvdeDI9a7WbZVGAdlo9x+vCT98+e3T/0298fVtVYVmlDHNR65UNfniQBRFomH7BZfgPKoQYAbIW/gOu19nZKGrQTid6/oVnnnv2GkL6pz/+IAqbnJNG1ItiX6hpmkIUu8PhmdCTRqPDaVTkU6FmnOEgIIt5PptmBHOElRJsOs4oI36D3rs72N7eLstyNinOGzra1M2WhzFutWMpLQBVEpQCbaCqzXd//+1/+s/+DQ/c2WIQ+N6FzR3fiw5ODv7T3/yrg+GZ4zb+5J/8pfv3H66urrbbHUrh7HTk+mGSZRZQXlRlWa5trGtrgsB3XZ4kibKKMQIG3bi2NTjMh8PsweOnYbs7m4+FoCtrF3r9+PBodzSaZUliUeV5BADyPMeUaWWl1EoZAEDYGmMIAau0H7itlnN+PAQLSZJZTJSGRZHtHR1byjV2Gg02PlvEUUBY/dM3Dy9cX5ck+/iTJ50NT1VllWROGJZSYKXiEN678/5PfvQmY44XkYPTQZKlz924FXnBIs9G0wlx6Pc/evO0tIA5oejfffcPS8BFktR5JsqCEeQzpxlG1CKOKUIIwHiec74ZnltqYwxSFdoqSikCRinv9Zp5Mfc8ZBRYg1//8ovPPLO1tRV94+vPf+UrX37ycOK7Xhy3EELj0awspOM4R0cnk9HYdSFNK611LW1WFkVt/QZMkrlWttGIjVbn0hAloSqFtbYslMN9Je18niCEtAZRK4wxZSjNa7BAEHUdYqwxQBczRTFrNr0wgpW1RrMValNaa9OFTdOUuZ7rKkrB6kCbYvNiMBqVUqCbz6ykc3A9VOTwp//Un93c3MqSutmrETKLeYEMfO+7Hw3PFlETF2XiOjoK6PWr60oloR+EYZimKWOu77tFWSKEZtP57U/PFvO802mV1c+yYVnHdQU1MSavAMzgcNLtNL7y9Z6WsLbu/eiHbw9Hh2HEzpUcRVGsLgeUoN2H+3/ml37l2s4FrS1jYA0BMNPZxPcCpaow8rhrZ5NqNqldHzA1SiLOIoQlRpog7DsBaP700XQ2TofjMwNoMpr2+741fOtCd229+2/+2dtlXW3trCz1+5TC0eHZ+vqW7zWSPHF8mEwX1GFKwtn49O69p5cuXUGg27HjEFOWMm5AbyUqcsJcO0/qSiigxliEMEYE5knx2WdT4qhkkW5ureRFMh2bre0lyxbM4YspdLtdzmmzzapKpnMUt2BpuY2pROAKYUajics7WZ4ur0aug7TW7a6TJLmopeM455a21lpCKQAgAvN5AhSErrWG7Y3l9bXg7LhiLl5Z7QhRHxzdD4KIOcpzG9NZ2W43r6wsz1NREbu13W/FrY9u33Mi0o+6yPqUaayj3lJYldBseWUlGA3Pk+DPu8sbY7AFawycc2C/+KTHs/nJ2VNt8uWV9sNHt5utCGPgzK8r/fDhoyAIy3qcJ2h1rbe1tRVEUKTV6dFsvsiX+iFG4uLFTc/zCPKXl7byYl5XmHGqFestebJ2x5PTTqfjuiGjXAhVpMnmRjf0/CKbO5TNZ4uigE4nRAi7Tuh4oC3UUrRb4eH+oawsIWx1fenx7v0r166K2qRpurGx8cEHH4RhaC0s0mQymYxGo7qWSZIcHZ94gS+EEEoWRRFGfhzH53VTitnqcnzp0ubb793/7N793lKX4uDe3YfzxTjPszBoOI6zvto/B2UXhRBCeJ6HCakryTnTFqRU53xZ1+WdTvvcdtCPg73d3PO8sOEcHp90un03bJxNEimkHxAl+NVbwRtvnBbqYG0z2t09XtlYiiO/zvPT0bBUlcsJwWC5Pj4osaFVrZ8eHDY77fl05jCGMX7w+IEh9q27n1gfxtPk1de++t5HDz96eG97baPTaCbTaTOKXUpCx/O5A0oDgFKqKIpzFWEUBedMBoS0NgYhVFViNl10Oh1CgXGI/U6eqePBXiXGf+7Xvl2J2ds/fbvfjpQSdSXPaa/tVq/b6c+mqTFw6dJOo+EDxr7Puv0eYUA5y8vcceh5XdxxHK2N7zsYk/PhE7AUITKf5VobBMA5dxy3qGrGHLBUSi1k6brAuRMEvadPd7OkvHlrh3GwIHyPSmkojpIFMDdF2FAUYFI/+/xlWdMsSw/3J1Wd+l40T84CL75758ny0qpSyg00dwAAU9wsM2+xMJSTpZUocO3acitLR8YUp6eZrEVZ2U6nMxyd9pbaVVXlheh23dOTUZqmL79864s18pO33n/pSzcv3Vot54LxNme+43hCzeKo+cKL1+7f2wt8bEzd6bY2NzezDIwxURRpCfdu37mwsZrnNed8NJoSiiiFqhKXLu8URWa1J3XW7gayQrIiYUROz/Y9p2uMCcMQITKbpsjimzefAQBRK8ZQu9EWYnr5Wu/f/ev3gcOjB4WCQWfJggkGT1sWTxbJNEnFYkTdwDFgKcdS6xdffPbhw4dlnq6vrmlVgyXUgVoks0lFHKDY87xAW00pLYqi3fYfPHxSZWHUgbIyjk+ePp5yjrYuxRub3ZMjUZQKcDE4HjPHWAtGOYQp7pB2x7NA6hq2ty/uPjnxPCZV5gcNzrkfsDyrlVIY0SRJkQWpamOs1hZjpIyeLWbrW8tS6LPh0ePHHxPMCVVnw0G32w1jWpXS88mTJ4frG/5weKoWM4WBeN049D2nOhhW9x6OXn12m+HOZD6Pg1WHhe2OzzhyWT9J0p/djv89P2VQBDilFOBnekOKvV5nndPGP/wH/3JttVMlXEkIO5kxHiqUlXlZuGlZf+M7zw5PBMXNJK9KJC5d3wi8rjD1493Ts9mh1KrMc61w1ABAyqqqEfJWHNx+LyN8FHkMW+wwSBbSC13mVyenCqjje01KQUglhbV4RmyISKnKGoA02zGP8729ociD1aUuaO540e//4PtB2ztNB493D5nDrGokRXLnyWMlpEPaeVrVVeZ7sdZS2WI2q5NpSQjRVg1Hk1pkv/rLr33txWW0gMePk8cH9995/2Nj+lGzgdyqsvW8yNyWO08TWYGReFFW43SOMSYKOQiUgJ2dy8yjYYxX18IoAF1Ko4QCSCc5ytxUjtdWt+X0qN+kjDPEdDoZX77WMFgWY9Z2exNULUUoWPJv3y/eufNexPhEZoSAaxHlUDOFDFzsd1mjIf3GxtolKM3e6eEwXyzOik7RyFx/qz/wLfyjP/gUu3HUXkZcjOYJbzRyNKq1NRpTitO0nIwyRkIplOu6jJOyKoTmiNAiF3GMKaVeqJQhJ6PhylZiJBqf6avXXvwn/+RHP/3J/nAsqtp5/Khc5HlVQ1bNJosxIbEXsUa748Tpyb4c7uOqkJ9+ctfzulqAA9QNvUoBD1BRV8Yi7pLZVB8P0v5SJIQ4Oxutb7YWyYRz0BoQVr7bmM8q5nJMidbEaEoAEawQa+c5YY6oxMJahMAVFVrarseHSNSAmY5b7suv3srTWZ0bndHnnts43MvBqYMGq3KIeE8LJrWxBlrtZl2ZuDlfXpYqh34n7nTUpNBPh8et/ubRQbm07ChbWQBlcCWKWqW7e4K4dJ5VvaXYYebJ3SdfrBFiYOcydBtLkwkTZuo31eDkbP+h+/Vf2vzd739EY1B6qdlFfsOfpU/6jQ5zcWKSmrj7o8dgAiWAIiZrkc+D1U3XWMmZY1SldIoQCVtSa4YJWGMQGEZU4C41wxaQg8hvGmS2r/iLYk8oTVwqjeGu85M37s0TiNqesONHH/vgc4P8C1fpw7t7h4eTOncYUxyXIlWdFgEllZ4U1aSsDAvsIs8lrRtRv8jy+x+pVgs7niuksdoAgCyUA6gRgJWs1fLihvvw4cPtnT6mFmvkE8YQgE6Q9cejnDNXSqjkyMg+gmapSgAJCN78wa4XFRgZEH3OK8BaVJGEsTVsMh8oA1UtRe1Zmykpmr67d0LufTrttxAzjd7W+hzyZIE3O7ZKHS+AqmJBrBEOLBCLDBAY2hopn6jMcewsKVfb3YefLe48frzSb81PoKyG4zOzeTW0BM/mB7GHWh0XQGFMjfm8Vvi5xc/58eHnq4dZlhlNn3vh8upqYzGv8mLmOCT0e5NJubrWY8xrNP12J/7n//zffvDRu6JWYcSFqJRS8/nMWvADvrS0hDE+OTmparPUu/Rr/9G3b77QzIrRlRsrk0XWiLdroU/PBtubV+u61jVgoo2ulUriiCEArepWOxJC1XXRiD2hrOd5w2HCGIvj8M7dx34YHQ0O33jjh3Ul7tx+0Ov16rp2XZ7lc4yp4/BmM9ZaCiEmkwlCiBDiOA6AOT8YEkLyMmOcOC6LG+ELL1yQZVWX9v79w0ePnhDqNBsdVZtmGMfcYYxKA2UlfOa5llGCAFtCiNYQRVGr1TqHDlEKhEBdScZACHU6XOR5HoahVsjhnGKmJOSZiOO423eqSpwcT2shgiB6+OhJGPqDwUALXVUVpchai31UFEW7xT64d/ssnRNCnnvm2XmhskXy7tPHTOtJnjcZWvG7nb77B3/wvWEyNxjVAiiiRiqECIBhDpdSeq5vDJw7qZ5fCvr9PsIKkBLSaquEUFVtEVCMHM58C9b33ffee286nfd6McGQ57nv+9YigqgWkhM8n87yPNt7ehCGIcLK83EYk95SkOZjqaQ0KknSc+YbABBCalEqLRCC0WjieUGWFq7rn2/JnFNtJKWUsXMUmLKgtVbGGIwRoTpN9f7e6cbatjEGI6oUDI5ywiFfKGthZbVNsP/g/tn6Rm80VCeDyZdff2F4Ig6eZmFE1jajspCMgpEB9zJKeJHCK69d27jIxsPi4b2yLrxmI4oapBLztbVlQkijEQCqlTDGwOD4eDQaRZEnalVVZmlp+Ys1sryOnz4ZGBkLLbVi3LWicp9/4XqazaxBeQbMS7udtbworeFpsug1e82gSSk8fHxoiLOyGmZp3uu36yrDlkVBkM7TRtyTUhtrs0wUhWi1Wgihc0UUIPno8d3QWwtj8H3o9Xq3Px5aK13S8aPyePD0YDeLGqHUpe/y4XA4GtTf+M6VPBHDAWxdJElSR8Eyd3WrHWS51FqXZbmysmIA7e7vlbUCZJVdLKa0v6Z2H0g3UNbabrcHPEGmZSBXRYc4s9WV+OSocAiPwnZdg+u6k8lkZYWtrCxr/bk8K27AbJpbrQaDAQIAEGEQdLsetrC20fVDM5lWYRjuHdzD4DHqx2FLSaCUFXnFmJPnEMaNNE2lrAkhVW2Go8HJkY4bNI6bZVXVlTwv+dW1wBhrZWeLeTrCjp+PxmdB0MEM1nb63Q3y43cfX7nevXp5495HM+werPR76QIAcKfdFqKyYLT+/E99fjYEAHOOsvu5bOi4rCgF0CII/arCYeRwj+aZ8GNo95sArjAlwrLIod1xEfCqXswXY98P40bY6wWuR6wh574tZZV88tHdh48fvPjyzZdeea7RJi9+qTedlVvbG4SAklSpejwsn3v2Wr/VcZlBqF5dYaK2ShZgwFhjLAHkWG18H6bTOaHm8uWlhw+etloNoesXXngFIwdjmE6nCBulbJYWnPlxI0IYGCNVVXHOMcZa6+lsovXnHi/GKj/0iiI7Ph2UdfHNr764sdICDVUtDw6PB8fjgPtW1T5AXeYaQ1rWzLDL6xfKPFVEl6VutdzT08GVK5cIOTc+j873UmNgvsh6S2SRzNbXVxeLLAiCshStVuzwyBp08Won8KOqwBQDwtxakqbFuSoQIcQ5N8ZKZOusoAifptm/+sHvR404nacGA8Xo3777JjV2XqiXLqz84ovfbDYdRuDjB48yUZU1WG1EXoJEGgzmXGtECAPAWlvGHCGEVjbww9W1ZUAgJfi+ry0w6vaW+mUhAfGllc5ocjaeVIhAUZVhHJVVpaWWtaGISiE4wVaL0PWQhTwvXY8ayIMQb13o9/pBEEIcB1qDVgos0so6Ljv3n2IMqsqOhlMhtKjVysqSBVBK9vvd09OJKEEpYYzhnFKGrDVS1QgLxiFNbJ4pRrm1yBqsShyEDIwPFvJy+tOfvLu00jobHiICSrA0mxJM8xkpinm370xHYwscI+56xHV9P3B/9MNPr99a872QIpbO7erSspAL7oAF7boup3g+n6+tbjiMuy5HFvKkdByPMfzzZuRrF5wkzfZ2J9/6zo3799IoiF3mC5G8+cb9rc0VWQNjilOSZUVVWN9Fh0+PZSa1rsbT6t7ecRzHcYOkybjZ9I2kLqeEIjCIMYdSJiVEUTCfJdYgz3GttcPR1Fix3LuqdH79xjal/PTQhpFLWdEILyyytNEFWVAMgLmQCj95vLf7aPfwcLGytLKy3ASJa3WmJe20mp4Dge9xzpuNVl6oWljKGKHGcbEonY0dMJozxhzHzidzz42JKxhrKDO7frMdN9nRk/TGjc0nj44Cn2itz+0hpaqFEOPRHDRsbS6fDmRZli5nvXYLsMqyIojg5ZdffPmlm8wVrVY8Hs+UFVLxwdFib/eIEjdLK87dLC2jkCBgWaZdjwdBMBkng7O9yQi2d9qeGy8vL1uMuUONRRaw0hIIP4cOr662W83uyXj35vPbaSm2r60Np/WPfvj2t77z3OlZyiiUVV7lVez3m80mgAUwf3QqPB9CBYwQWACCzz16Po/Q8xrt1v7+IXfZbDabzIo4jstqLmqglCrhrq2tez6lmGRZVRam020qXTLq1HWutQoinKZFlmWc02YzXN3sDo4n/+p3fnr3/m6SLZZXuq98+RknwDdu7RwdDoxVe09Om3F088YLyGiMTRR62Jz32yEIPFnjw/2RMcb3HJd7cdO5dHm7rgwm6Euvvfjw4cMsFVLKbrcbBAHlcOf2Ayk155QxwjnHiJ4XCISsZrOZ1FYarcESQjinaZn4obe6uVKWozj0fuPP/6rrUUBmPs3rqtJ1RpWgGAUN92w0uXXjhkeYqGoefC5FnsymRVVGjXg+T9qtiFLwPF9XQLDTX2oWZdloxtYQQqyoFLZM1Dov6t6yMxxPhmeLpeXYCSKpLcIIYxxFkarFcn9FCFUb6DVaSOqg4T0+Ovj040+YRZwC5uz2oyeJkBTBX/6lX8TWfeHaTlrqH3/4/jidEgpgtaqFqiUmBjCyBteVpoRNp9N2u10WlZQyy4rhYLTUjQFBVhac47yoymoeNry6hLjhagMOP5en6jwrzy0+sAWjLVLWKOFQ4lC+ubp9dHja7jYRVpgYKUUYs1KAqFUUcKMtslhK6bksjDhC1vNcsHCwv+h31+/ePbt//2x1tWVBLhaLKOJ+hF3XlbLWWmOMCEXWakzr5RWfYPd0eOb53BilpPadWFby9HSMgM9nqe9zY6znNq5cXXn8ZHF6Or6wvVwLNR3bq1evFtUUAXV84TpNKcu8rEQJVc6TbMQdBLbq9KIslUdHEAbLjuM4joM033tyaLVNF7NerxdHMedOWZgs+xnfMEnKCzvLZ2dnrXbD5TzwephWn91+UBcQNc3Va10pgDKbJImU+satixhQr9VcWfUqZf7pv/vB6WDm+6GUZmWlVyRSq7LbCZWqLGAptTWglJJSAUBVCVWrb3z9Gy+99MpgcHJ2ulhdb0yn4+m07vV6gU/SNGW0zxjrr1mKYDaCi1ejTqv98P7gF799s67mi9ncYYEf2o21a2cnx9euXzLGMOYcHg+0BoNAGu06RMq6qKa+1+6s2v3H08DDURBmGSRJTnnZ7ITXnml98nYOCFZ6zUbYs9q4DjsZlGHYSNMF59xosrKysX1h3Xdoks6vX79OiUewdZh7/84QkHz/g/eGZ3PH4cpAXXKtaBxTP3C1kYCAcwrYIoTSNPVciKKAcjZblEKLqvSW1gPK3Ua7kSwKqWspNQBOc6grRRjLS4OR4/vebDyLQh4G9tMPn77w7NoPvnuyccH96tcvHz3Ck2FaVwlG3vmREAE6t1H+o7ohxubz7/+eymY2n0gtBieLzQvrnaVmXTAAYG5FCS1L8/4H98oSWt3IarcsACNHa22tpMSpqmqxqIOQFrkQtUHIvv/uoesaQshiBNNp0my27909TpLE2LJS6eUrF2/cuCaV+eEP3vnwg8+WVrbPmxVaQJFanwetRlyV1uHR6emw2YpcxxcioQzVJdy7+9B1+XwxGo3KssqVAoxxo4lHo4QQcu7ZdC6OSJKcMQcA6roUwlDiYkwxw6PJ9JNPP02LtBaCMPHw0WB1bem111/48msvNBrezs7O9oW1rY3NsigoxcZAkiRrG+tVVS0WJee0KGpj1HA4VNKkaap01e1xKUrm0WRRx03/0aMn65ubWaodBwUeJZhba9OkOj45mM+sUpoSR1s7nc9clxslKcWMsSAIwGJTg5XKKM0YG07Hb7/7TqvZtCVMs1TXalTAi1curQT+aJ5+59VX1lf4p3fuT5N5HDcoRgQZo8FxsVLKaKqkZcxJksxxPK11VYk0TYenqbVIS1DKAAFrbaPFKdMng6njYj8AAKI1IIS0NmWpwjh0XVdU0nW4qEsw6vRk7rtxUVru0CDwXC8ajcbaKs4hzwSl2FgDgMFYSrHrcgTgML683DcaTk9H3/rmixcuRrUoPd8Zj6cIEcdxzgFxhJBzRI2UkhMSxe45QopwY0E3WpAXc7Ds4s5KlRurXYMyz/NOTtNf+MXXgoA+vJ8trXqra3SpvfTGD94dT44xBqnzxWLBOI4iuHr51g+/9zBJ4ObzjUs3GKDy7CTP5/DowYkxxnG80+NsZWk58oPZZHLj2mUl5fBk6DDU7Xa+WCNlhkfTw3aXHx+Ow6C5mFVZlq2vN1yPDU5Ob966vLa+dP/+AcGOkOZsPKhLUZdJt+MhagoF06kYDReNOLZaVAVaXul4AWT5HCGSpQWikCb11atXgyA6r7cg67/79idVPU9maPvi0pOnj5ZWYW31Ql1mUdw4Oj7ToLUqPMe5enWzEPm928NLl5rP3LrSDBtKVVrlzab35MkT6rCLF7eVUhjj4XDY7jUwRucZgRJjjE3myvElRk5dgZQL1yEYsflC9Jcad24/GY1m21u83ewZjf3ATZKk3fJ8L86LijFS1vLw4PhXf+VP11L5Xnh4tK+1jBouc8DzcVZM5rM88NqEagJs73GqFX7+hZv9pWZVaMrA9ag2RhlVVGWzxRljZZkrDYT6onYQqTh3k3Q+m6dllVPGjUWcQ1XbcxJrWZdxW/m8szgtN5blf//f/O8efHCMYOn733vvz/7Gi+OR0cJXEkspKQNrrbHmfOrk/Cv+IglKrdDP5cPJRDx48KTR6PlhJGoTRt1KlErLXnfpnfc+HByneWp7/TjPhNXAGAVjhRSM+q7HjQHGocgl55xzXiXgOEzKvLcUPP/s1boy+0+S0FviDpVSIaY0oGeeu/ziSy8JVT989JQxpyiqtdWtixfaaZJPJ2d1VUynCUUQRUGW5Z1ulGaz8UhaBIfHR9/+zpd9HwDM0eGJVrbTjX2fE4IAGdd180xqbRfzlBB67vM9n5VSaq11HDXdwBGq9gLfIAhbUZrD8eERw+rddz/otptnw/H93cdZUX7nW9/uxBElcHR26DWC2Vw0/EDUynUJYGAOL2tRFAWjpNFwjLUAIAWez+dgmeu6WoLn47XVJU64sTJLxd5usbwcrK5Ho2Hy6MljJ3QNMkrX66vLCCGlNABuBqBBE0bCIMjzfF5XG5vbHZeVtbZFnZXwzPbaxvaWQvqVF1/69muvzedyvhg73DsfeaSYeQ4SdVWVknMXYwoWLxYLz/OKojAaPCesqgoM446jrbEYrW32snyRJrqqU9/ndaU5Z0ppxhylIAx9x3eklI1Gg2GMEErmkCb12lo/zxfMoZx5dQ2U8tXVbiWskNV5PZpSgpBFoAnBxljPcwBgPisfPnxUliVjpCgK3/cnk3I2K4VQAJgQct6AVkpb4xZ1AQQjZjBGolavffkGwlDm4pkbzy0vbQihjDEICEb8D370u81WsLLiJulkfSNyHf7P/unvGQNK1w5n3DGtjj8dQbODOelggBvP9q9dXzFQDs8SpfiDh8eEojxP80T7bjA4HjWawdb2RpaVWlnf97u99hdrZHRi6griJnn86HB9s9Pt9qcToU3dW8YXtq7u7t0XcpHMoM4kdSAr6rDF+kuNMHDDGHu+JyQAwr7vW5CTYdnvd4syraqKu94syfDnJX1MKSVAlvorAGZwPDFWVFW1vNI9OTn51re//NabHzKKRY0RNUlmpqdqe6M3Sw/GI/Haly9UmWJUPP/8drmA/nJobHUyKF9+9aVPPvu0EvUiSetapvMFxqC1sdYiDA4PAZVlAb1l5+SgaMS0rqZZKlf6y0oZTvvf/pWey3uzacoZIQSEqLKk/PCDO71ec5qMm832/uHhg4d7r7z6XFaUs3myutmu65r7qCjM0fEAE+Z70WI+U8IawWRpPReNh8euB1eubihdSwm+7wkhACnGnFoKbWE8Lhl3aymKKp0t5ox6FhlCWJ5VjRYVtQaM/IYdT6pkXldF3ulEn3xw8PrLX/0//h/+Yg1nP/7h8cMnj7/9iy/c/uwwDrePBofaYM45Rvh81PKPFDbqj1LgHxGcziMKYTqtNrZXFvP8vfdmQtQYQ1mDscIYu7TqHx9PECmUNdYwZXKELWO4LGVZlhgDwloKIJjVtbxy6ZIS8tKVrtHVx+/v//B7H2MCvV7vpz/+wHPaUpUYHOrreZ5evLZ5/dmb3HWYQ/O8dBi88tKtL3/55vbmSrNJ2+320f5+npW9XvvRo0dGIYz47tOjSkyWl/uuy6Ow5XmhMcoaJFWplPJ931oAS/K8lsJai8qyZJQx6la1FEqSPwqMcVIqx4XFPLuwsR66cPnS9XsPhldu3Lz3+GmZF0utVuDAk6PHv/0v/9d2v1Em9fm5iTu0rmtRq8UibbebDkO+C5hAMs2Lupot8jhucA6BjxwXz+dzpWVRGmSBey51qtmkPpueMYY63aZSotfrZMkCIypqhRRogua1yrKs0W69d+dTEnqxE5SFxBTrOfyFP/NLOGp0GvFJka46XuhCns2l1AhZQiEIAs9lSKmyrClxrUGEkPF4HEWfa8gXSdLtNZjjpFkFBB8dD8fjscN9St3hZN5oNYTUmBDCcFkJL0BJnjDGznc4hC0hJIrh+Hi0utYztjZWZFlV10rKGpNz9hdEAc/zgnNOGTbG+L5fFnI4HPo+NgYODlKEkB+4hJCqFK2WRylgRKxFZVlnWWGtdRxepDRNKsdxqqpwHH82S8OYvPRSh3P6d//O7z15sh9GjuP61qIwZp1OZ/ti58rV7XyhR6PZ8jr9f/3W/4OREGNwHLeq6mefu8xpeHRyV6j06o3+4f5c1twYGTRBK7G+0acOzvJFt9eI/Gh5uXXp4raSpePg825Gp9P6Yo0YibD2R2fjwPdWVt3hMNnY6k1mVdhCzVY7r2ej8bzZbOcL6wdIWc4DT4M+2B9EIUtHZa10qxu7gWOJPj1RytjRaBFFS3lepgkYYxnnu0/3ldCEEKP1LN1F4PR7G7ee75WFvLC98/D+4eA4XV3eSfNBlhlk6OXrvSdPj2Zn0F5y8mxWFMXx8ePB4OGXX/16f5kt5va556602t1Hj4dhFBtjfM+vKnAZD31GkE4XYA32QilKJFRSF/prX/0Sw77vQbPtvP/WsRegbqcPYAhFFoTvk6LMihziqGURieOoKDLX59/73o+lLtc2tpjrhE2uLAQRAYyEIEJJRERZAGccIzk4HE4mI6Vlo0EuXdqZTvNGg1eVUNIaYxzuaS0xg8ePR+1OU0g0X0zyPKOUM0bSvMyr2lpb5FJK2WziyVk1OsHMU9LOltfW/sp//p/vPLN69Vk/q9SnH4yW11G7CwcHRxixzz7bJ4R+cRz8mcLmvGFFKDX6Z5rs5eVWVaA0HzuO24whjHhdV0pCpxu3Wk3XwyeDWdxkUeTlmdQmpxS7rltX0lobx44xqsgFxpgxVpRHFNuqTBdzTfSaErTZBsoqjLx0ofI8/f4ffnw63PUCH7EaETOaTrrddrvdHk+m779/+/337lhTP/fMVUrJymp/fX399Gzw4osvOm5gNCAEJ6d7Fy5uLZK56wZS6DzPlFKu65xfeQgBa1CRl1VVMeZwzq1FjuOdH5cQwgC4rmuLAIi7utbbf3q4vbl5/crOwcFhENKHT/ZWN7f+9b/8YcsPmg2vNra0QlvABnker2slhCiK4uHDh1EUSVmHoRfF3FqLiHN8LMejGSFsY2PN2Pp4cMi5u7HZSRY5Ji4gY7BME2i24iRbNFtxt9d+8OD+OU5Ra8sYzo3EPpJSRlF0ms7u7T7eXF+vs/L49PgbL3/ta6+9+u7du6YsP93bvbSy0o4jo6QQAhEgDEeN2Hcpo1jUCgBpbayFIq88zxNC1HVNGTBurdW1AmttllZSWKOJFCqKcC1Kx3ERQmlims22lHY+LQjDXuBLWRdFoZRqtVpHR1OpSjegGKM8K6tSK6WEqJot7vskiqKyhPMcigkEQVDXtetxSmkQOOvrUV3LRqPBGEuS8w4JYIw55wihqoTPvdkWUNegpOHcdf14Ns0++eSzr3/zFSHVUq/DmVNWszBoGQNZMRoMTk7Ont67f//4cLG5urW+7mbFKEss59xag2x859671mqllFSit2If3clVHU4m026fX7nVzYuZMVopW1aLR48epemirqs4DptxYzaTFy5cyPP0izViwZ4diyytu93m2ejpWz+5b9C8ETtFXpX1VCiYjW1/qS0qjBCqKmi2Okm2WMxha3PVdVvNjlvKTJnq8PAEAcRRp8gVI/F0MkcIXNeVleCcu67rOE6SJNTJVldX/+B7b0ftAgHf2zv8+MMjzuDChcbxvlokcOFSY3g6LBJ46aVrURQcHcw3L7ArV67Mx2aeHEVNPT9D3SX+5ptvRhHyPM8YI6VsNNhsXgOANkChiahOMgj8dq/Xanei+Tyhav3l1729x+N2l9355Gw2LbQhnR4n1DoOLcuSUQKWjseTqi6WV/pu4D5+erjIZ0VRnp2NinrWbHUWWRo2vbLCO5e28mqyurImpAAEnLrz+dzhnHN++/YdSoBRtyw0Z6HrIQBclmUQuNOx8CIual3XpZTSWBSGgVLG932ltDZgjFEl6nTh9HgsJM6F5qEv3cW/+O73/sJ//CutJXh4PxkMD6/e3JCQBEHvbGDrWgKg80mK80AIPlceIgv456ZR0kqv9hoHj48f3X/60pc3xkmCOBUZfOsrz2COtGwyBtPh4vLlVp5CsvA1K/PcuoFgTkD9GlS/FjoMPC3k6UTv79dFVSsRTpLRn/2Lz3TjfkS9UhTdXuS7rEhg/6A8GBxPFolU1A96miPeg2uvPPOlb66sLoVnu+MPfnIny10PZRTjt35y1gvQzpZ3NkRLDfT4boV5JWR0NH06nM4Cf9sPTKflp0lJiN3YaHOuRqMRoV5eV27o9bq+UAtRJxhpjKgQKoh8QFJmBT0vM1rz5Mls7+mjqxtrv/SVLy2q06DjfHDn6cXLV7ABmajV5bXSSiC2qCAOo8DzRSWeufUsxryWpt12hdCej8sUn5zOh7MBCrLxDOLY8QM6G0/Wly72Os1KzGTFghacDSeLcbOohkk576xdyBWaZeOlzg0LxrPMV141rxhGYeS88cYPm50l5XJZ4qA7+Rc/+VGyKA8nQzUc7s6Lre2mLPl4vNDaYmz8QGPtcFwvRLUoS+4HWV5KCUoZpQ1lDmOQzVW3Y1eaDaIsMTCdp2sXVta26NFTs7G54oRa2JIxhPCcIgcpOBkMa5smpagkFOWiFgkicLBbr6x7oGOMiShQp9WtixprMCYWJtc1dx3qORiZFuU1QBBHhgCpCjtdpFs7y4g4eaGjFighKSWEjZWgBDuUAqG+1S4PBaNNaXLuBMbmvV4PWf7WW28997y3uilXNhHFjbQ8EQJqAWvr3e1LL5iMeyGM5wuuVheLxUy41Acsl10vkUXfkNJitLzJHz0YLa3FmIiyrEN3K4hMZ8kdnhptSF4Aj7gWvZPBuNWIl5fdqoDusv/hR599sUYU9ARWeck63eXjk/zP/8WvRO6mEIIyODkZqBKHIVZm0F1VydSsdpb3dnfDDrcU7nw2DoNZK6qgdFphf+8ebOxAGKP5fNzpweFo2PTidFx5LWDNqSrMev/5xyd7gdf91i/ecDnrtW7sHX12OqwcjtY3nZPpdDabbK2081ScnsD65VZjCeqynI352s72G+9/HDYv6rq6ufk6RraW1d6jBGOqTRFFESUuZtjxoZKSelDZuTY48sIySWxNVi6o3/rbH3Y3jqrCOz60y5sMU1he7t9/ePZ/+b/+u9NBurIeTU6ClW0Udatnb726GOsyn+ZJ2Qjay71+XhwsxpVLVqKGAkMtIA2yrOYMupcu95ZXiNWs0eGH+7LZbHd7nTzNmk1Wi6ISIMGUJfEiRBmu6ir240YM80lmFQEDUiacNhGyRVlIA60uI4TlShlDSwnzhTAIC1VfufTl7/7ep2/+wcHzX+6dZfLBo6QVoP/sP/qNYlJ2l9ngeCSEIgRhDMbAOfYVAQKwlGCiTf2H3/kI/jj+OP44/v+I37j97dl0dv1mcOuZjTd+8HTn0kYUu0/27iCE8swGftRuNU9OjpF1211vPsHD6eiFl+JkEhVFUYvc90EKVGZkPC2+8c2lRrj99PCd7Y2r333jQYMTWwe0LT1fLQWdzY2rb91+49bVC5149Sc/eu83/8s//z/+nd+ezogV9NkX/f7S0t3bx0mazRe601nZvBhJlXz43imU4frlLE+hwVs3n3E9evno7GCe1/c+mXRXYefyMljng/cehU1AGChhdQWNrvQ4dbk3Osvqyq5t+tbEnT57581DWfCdm7IV7nhh+YPvHl+4sJEuDq/d6nz66eSl1y5p6aQpHBzc8dyoKIrtrZ08z3eutv/Nv/jsm79wfTzNHj067HaWLMz7vYaR+P7d0xdfuHbnzmPClNTu0gqsrKycnQwRrbNUDYfQaAYrfdbptTGt3337uNvsbl+K958eR6HjelwI7AZ4nhQnRzUghbFe7sfjceI7y4fHQzcw159pNxvMatVoNP7NP3n67GsrlZo/+EBev9K9dXPp3qPHDx/Uf+Nv/A+/+df/i9/+7X/0l//yXyaEAZjP3eUpodro/8Bg/o/jj+OP4/9L9PvWc+DZm5emZ3OHqk8/eZJlie+Hjh9Qh6RpTrFHKa8qoZTJ8zwMYDEvyiqdzWb9pU5RitnYNppht0uiZnR0st9tbdQykQv64gtrVZk3G/5kqOui7rT8bqudJPNPP/v46rWLi3R4dmSLzM7m5fb29nRSFkWxyHSr7TPHlGU5OJ6AhmbbAUT90Hm8N9vY3srq01a3pbWWUiwvrRoD1iDXRdYCY7QspVVRVYLrEWNEWdpGI9RQr28F9+4clikopfr9huM4nPNGC1qt1t/6f/6fPvtwcmknarcCrdCdz+70lpnRiGA2GAwGR8fNuNGMHcZYEHhaQ5YvpMB1pWo57/W9996/f+u5rTwHRtV0UhWpyLKcMRJ4LZGDlLW1GgBms1krDosyM0ozQglhRoOUGmNqtU7TGhQQDFLpqkCez4OQ5gtQFep2m4t0Yo26sNN9+mBotVpd64xGo3d+Ov0r/9l3ylIppeCPusnnrGtrLcbovKViMIb4/6b/fzwCfxx/HH8cAP919YuOpy9fd0Vtx6e+E5mrV3b80FssssU8AzBFbs6GMwSYcz6fJ5RiDG6yUJ1u7PlsPh/7IVQ5XVtb6XbbeZHmRTqb6VKUdWm+9vqLK8uNZJbUiatMfufOva2tjVqqq1cv+wEbj0+rglNwVpaDZJHtPj1OEtmIndWNNiLldJyLgrke7q7S+ZRs7XS63dYPfvA2D/J33r7fW16yANPp1OG+qM9BRyCl8jxPm4JjajSSumYUKCObW717d/bPhgAmMNak6dwYRSm9fG3p/v27jGlQoFQqS0IxWV9dmYxlFIQWI8YcKWE8HH3t61+5d++u5zmMA3cQICZqCCPH90NRQVFkN29cAKuwhdk073ZbAHB6MnN9DyPreZ7rMK2F0gJjGI5OwzCezRaUM4QQI9RayzAYYxg7d4q0eXW8vBZyDw73ZkhHN668WCWce0AQVgV3vfpP/PKfeHqYTmbZK69dyrJMCHEOvgaAc109BQBtPk+CdV1+6/e/emFn/aUvbX3z9Yv/7l9/t9db/vj2bloJhLlWVVmob/+JF978ySeDfaM0fOlry4tF+vBe/uprm4zR6Wi4dWF5thieDNPBob11bW15if3hDwcUi+Vl//Klm9Sdt5tkNbr+J7/59T/9H//v/5O/djmfrP/D3/7B5Rexlu2NbXb/s5ON7a1Wy//B9++1Wk2/YbWs8lH9F3/tJUH0nYOc1vbidvdoUX7407t2Ib0VHnMGRC2mwZe/vfXRxx/PhsHqtlpaWnr86HRltRcG3my6kNIWeV3VcmNzbXA8VFCGYUiJI2S+tdV2ePT2j+8gZF9+7dadO7fXV27s7j3qLwdpmSx1d4g1Z8Mn6ytrVc7v3dvdvtAqRT0eVxYZTODqlQuTyWQyTl555aXJ+Mz33Ubgv/3+nbwiUtk6l9/5zotxjPePnhzsL1zfrK70lvrb777znuOB6+But799ae0f/r0PHIdtXsKttlfmkCZ1o9GYzSdKSMaYAVspde3m9enwpB2Ho/FsMslf//KVyfHhCzuvd+P2S6889w9++5/vzR66TlwVVS0qwNZxg9NhdXqWbe9cODw8PIduTSYTZCGO47IsCdeNRvP0ZIyRI6UuS3nr2Q3C1N1PTgCg3elZNpkN3VZbaakpdYmnZSU9l7ZjutQOsizjYThJ09371gvZ+kU7HKgw8p88WGxuBY0mvvfJvBF7XsSrqmh1Y8JQmquyEMVceT4EDdLptxeLRaMZLXdX33n7w85SU0un1bLpwizmeZbKF19fe3B/DwHBOsS0bIRt7mpi+o4nhqPD4RnRNkc2uHwLNcL+wdMRg/hP//rO99+4Pz0cWhKMT9nf+1v/5U/f/uRv/M03nnk2m5eGEp6Voh3vHA+etrvO0W71p35t5+Hdkwd3iqs3u9ip60qfHBSB13rpteaTR/NH92auCzvXWpPJrN9p3LzS+dZXX8tL9Hf+3j9uLS11Gk2jxf7hySyhNITxeNzotWoJnhtkeQ4Y9nZHV6+1w8AfnBzFET85znwNfsBd183LdLnRWtlkP/jBJy99acmP6MlxdelaMJtqQs37733S6tCn9yVFzY0Lzul+fb3frcr8k08+u3Z1pxFvMvakLIuXX7354O5nmHhVCZ1ew6Kq2/c+fm/UCPqra9HR8dnm5tblK1s//t4b2zutNC2feeaZ4ejs2WevPtl/cPX6Ba1FWZpGF9X1OeW0ajQaRVoyThFWnV7zdDA+O1NxRIUNl1biTkums3Q6la1W0wuyv/t3/uHGZhtBbnX4ySdvXLr47HrU2n166LoeBrxzcaMoil/6zmsnwwfayCBwMTFlXoYr22W9F0c9ZBfDs3mnE21tbT14sE9wsby2Ok8Ka6EuymaTM46VqhG2hNqqkGWpQxdcxhEinJGyLLOkiOOgqqqy1ICV6yKl9eBoGgdekdePH55W1XTvcXHzuY31dXI2OgNN/8E/+F3Hh5/88LDRokEQnPfrzs2aP3eJMgYQIEoxQp8nSCnMO29/tLm9QZmb5fmTx9n1azutVksqtb29VObV9oUlwhCl7PHT082N7UZMEQJMVByHCCEhjFaEUiAU1SIHJFwPLeblzVtX/+QvffvhgyetViPLy7iJyoyVZWkseF6QJsVkkjabYV7lS0v9m1c3Tgdzo5QoayLhr/za//ZLX/rmk/uPqCfnGSEQ/OIvfen6y2vjUzE4yzc2Lws7/fCdQ5CtZj9rNXtSwCKty7KmlFprlZBCCASmLEvOKULI8zxCSFnlnufVlRqe2bwAzt0gdD784C4mYC1yGMoWhTKKcUca2Wr7QYB292d5URswjsMQgjRNpZS3bt0oisLhrtZ6ude3RjNHOS6EEZydnRHinJzMKHYYBcZtlmUEO77vE4aF1A7zbj5P88SZjaUfl4zGxtgil0Ipx2EEgdVQ5pAnueM4p2dHyTxvt2OpxdmkbPb7v/grvzpezI7PBnGzRRhbpFlV1udwJErxzs42xXQxU2VZlmUupcYUMU6qqvJ9P0kSY6wFbYwJfOy5jpbCcTBYLERR5KYuC2uhFnp1tZ8tqk57OVnUvs89n3qeq4WkxGhbKaUW89KP3dkiXVpujYelNsTzQGtbFZkxSNQGE5Cl8X3PWk0diBuBtbjIpRTWWhv6wfHxbDQanQ3PdndHVVULIUfDqesEDnUp4ZwysDoKvXfeufPwyaNrNy+98GpspR+1Koc161qsXZDz5Hg2y8s8qVIsjUiScmv7cl5mALLXWxoOYDQSrVZwOnpy4VIXADwforCbpXXcglbbF6KSlXIdB+PKc2mRpRhwVcLZaIG5Qxje3t7oNhtCEddrOqH4+OO9umj3lpYFnOzuAmHE9Wiv281TgxFizLUGDFJ5niIEUeQVOVQF5HmmpIki3u12T06GvSVelrIsrRey0SidzcSlq6u7hyezLNGAcpkKVTuOJ5VB4C5StbG1fvuTo6LOev346PgxADaaMQaUYa3QfD4vUqMVqvIs4G6WnX30/hPXh+Wl1ckpXVoh+3vHQehcuLislRVCUAqOwz0PF0WJEDAvQ8BU7be64Lj0/r18Y2OdMJKW4zQbB0G8SIftZm88njaa/mwmuythkTnWcGvh7bc/nQ6LjfVV3/eHw1Gj0WiE0btvvf3qqy9XVel5zjypKdeDoxFnLqbSAhHSHB0/RYYt9cIsE8dH4zBorax2rAWHU4x0ks4Dn8dxIGrtuqQsy7W1lZPToZTSWisE5GnOGGt14jyrCAqNwq2mI2W9vrZ8uH+0tdH/lT91YXW92euR6TFcuhyvb3uVgKePU9+jnufBz92Uz3l3n8ttzlsq5/PhruufDMrHe7uIuYs027nYowxtbm5yBxBCYAlzDHes0tYamC2KolDWCOaY8eQsSwuwFCxREhBC2giMwHHIYm5/7/d+r9VpCgl+FANGV2+sYLTsed7yGi8LqSzkmQGisjzJswSBunpl5XCQCw3Xb2xy5v3tv/1bX33+pdkIfXLvTuDJ2Txrrmz++m98tbMCf/D92+2ul+WLk9NpI/KTKQFcSAmUOEVZM8aEEFpLQkiWLKI4iKLAWquUopRijEfDGUHge8F8lgSB14hbWmtjTFVpijjziAWGER+ODy9d3kIAdY39mNW1pBQVRbG5uTkcDg8PD621hBBkMafguMAcRV00m80ePnjCMFtb70kJvh/nxcyCFhXy3Ob6Rv/f/KufSKUaTTUfm8UUNVpEKck4IYTVUhJCPM8DBftPD13GHcYjv1Hm1Wwxb3TZ473dH77505+8+07Qbi6yajJbiFp5nucwbrVGoFyOx8OZ6wJBJAzDsoDLV3b6/X5ZABCMMXY9prVGyNbC1HXuuJRxIoWpRJ4msH25V+RibSM4HhyFQVBXJl2ArEtkVa/TEXVpVB02AGFdFRCEXEqNaVXXfHSWRRFmjADSdS20lo7DEEIYFKWEUIOoTZMSrNMIY631eJzVJYBxGHUuXuxvbKxbC47jKGkcxymr/PwRLcsKIQj84PDgtN0hr7x6KW5qRulsumDc/8YvXXj73U/iyOPcaTeXiUOAoOPjEQ/Lk9F4a8e7esOdTQtZo7NBxXBvZc1PshNM4UuvXx2Nxq1WZ2trA2zd63NZ8TimYcAZx34Qp3lNqUuJx4j/6cef+b73rW9+eTJQTx7uHR+cvPzqrRtXr58NpyenB1HUzHOLMB+dVhgTCyLLk0Yz8HwGFosaGCOeF5zDyAnG12+tIORNRoVQVV6g/YNaoCRqtY9PKiEQ9+uDw5kbIs6CDz+8G0ex4zgfvvf0P/3rX2WOAaiuXL729GHSW/XbHa8u2eisbncJRvXBfm5EuNRf3X167HoYAR0PC8Izz9cffvRpGPoIofk8YQxlWc0YazQalASUaGVyTOzGxupnnz7Z3OxTLtOsjlvQ6vy/ufqzWNvWMz0P+/529GP2c66+2X1z+sNzDlnsisUiWeUqCY5kW4kTJVBiOIgj5CIQEiC5MeAIiZGbJLIDIzGSwLZsK5KrJFWjUolFFpvDQ/L0ze73Xnvt1c9+jDn6v83FYpUUzat1uYA58Y/xf+/7PY/fVMCpJZhXtR6utQ9enBFPN40XtrhowHfJKlsSQGmatuK2MYZg/Gc/+MHJ0QuMsR+4rsMZQ2Whm0Y2egFIOS69eWf0+cdPr1zdwwTSpGTU06Zsd4Fz6vuutXJ9fWiN8AOQQmOwhJCiEIARIaTdduoaHMft94fGgLGirgxC6NqNzdnibDjsh7HTX0NHJw9GGwGHyKBkcyfiPhrPxumykfJXvIb/P0sUQshYI6U05lenYavViSJ8MZ30B6OyqOOo8+TJk9Vqdfv2tYODi+Ojc89jjEMQxnUFeVY3FVhQTVNShoMgiKPOYtEMh71ut+t5zte/8fqduzf+yl/57quvvfZ7v/d7G1s7o7W1rKiOzs9+7x/+4Ge/+FkUO0VZN7WsSkEo6rdbIOX04nzv6s712wPLQRD8f/6//SfjC/2tL399lVaPHycf/eJDi0pFZJYmr7/+rd/+N19+8bwCrPsD6pBNFoyNDB3OMOVJstrc3AxDn1OmlBBCABjOeVmWQoher4OAnJ+PR6OhUno2m0dxMB4vrTZaGowgSVaz2WQyzqumMbb+xje/FsUdjJy6lo7DhLBRFCXLdLlcdrvdSzDEyclJFHuMI22s69Kqqh48uPgf/82/1WkHxQq0wo6LjVWyoeNxmpXLN197g6H+xpW6ruDFY+SGmVR6uZzVQhgDjDGKKGNo0B2cn505jFRVIxpJCPEC/6PPP/3Hf/hHV2/eQASUtfN5UtbGWltVxeWvLS/SqmxC39daX1yMv/mt15RS4/F5GEJV1dxzLyERhCLGoN2JhahbrchxPIzBc3G6miFEwsh55523WnHv/GSCEJRVXdVZO44IIb7LR2s+xkCwRwh4bjhd5hiC8aRB2ASh0+l6xoBUDUYGY7Cgo1bY7oSM0ZPj2cnxSjSGUkopaAlpUrfiHqX05PRFVQJCAEgLUWOM67Ly/RAbGoXOKmmODmeTszSKWltrr0q9xMT5098vCbdh0J7Pl91u6/nBGZCGu+TwaBL1oN3tNBW0Oz5l1o9sUWUXF5M7t19ZTM36ZrcW82RRrw+2GpFbBIORXxX4zu1dhGW311mmabczePjo/IvPH/V7m9PJBVj53rvvIxt87as3T1/M/viffNHt0G988/UoChbzpK60VggAHO4SgjinWuuqLnvdkRRwMT4vioJR5/hoMlgnpyczhHUjKkCUcgEaemudyeJCGQqAvcjWNR2uRb/8xSd377y6NlqvyiZPYZEelNXqK7/29mKxQEDbPdLIZHpRDXpbFulGrK7s7c4mxb2Pj19/7c5rL722XJRllYuq3tzyw5Ccnp5ijFerlR+43IGybCilnhtoyasGtnb989NVU0N3QKeLsePCzt6gEeV0usTEgMVFXlci555rkcoLNRj5dQWEkHaLxXF8cpxxzre3t1er1ZfeeA0AtJZBFGUr0WqHYCljDJESE8kduHF7TWs4OHi6udk1Gq9WxXDUvoxzhaz9wJOq4Q7VGoKAOg6zoMPQcV03SRLf9aKISSknk4kyMNoIbt7evfvSjVrMW22eraqj5yeEmtHaIFksv/1bV85emBcv0tuvR6IxP/nhk7/cxrt8MboMVTAgjpDGBJAFBhwAujG5e/3q2dGk1++scjlbHDWFPXz2NApGu1cH43Hhsq3FBFw3912YXoi1HS+rKl3T/f3tJGm2dtsh93bWOy/f3ZiOS1Hq+bz66NGP/vD7P/nH/+j56fNibYMQpHAKf/c//F/+9re/d/RIXNu+2g5JUytjUVGssMfBZz/98ft6xXpBGI9o6uDQE9NykWfNa6+sHRybyThdHi2yLCvK56Ef/rV/5612h9Sl1TjJs6ou+Ppaq99XFyezdita3+hrU9dSYdTO8qQuOSKGOVQ0BgDXmSuafDSieaKWY59HsLbTNaCt4q22wToyANYgLxg9ePYx5kvGgRPSKB161EeYCQgIbgW2FbIm0YEXBiG1QA3mpZHMp/0IWqQosgWyGFBT1XXUDUq1Gp/JKOi3B+dWKlB85ypMztjxEwIWcdo2CLgXFLVEpHG5rYoSwK8tZx4Dbmez+d7WnZduvaog/fknP7Fui7sagIEGIZswbDdSAEWrjFAuByPPoS0tcLJIP3r/2frmhtCgtQKwWmslhJX6ct1CKZWsFnu3TV1QDNDpQNxyH95fHDybBsFESi0asKbVVLBYJAjjk1Pi+tbxdLkKajkdrGNmiVIrrCGZQ12VDg8og9lEGot7GyYrFXKl6/LkAucL6A84dTjjSJRoGHkeY9TT1QJ950uvf/etTnI4bQVdS3AlKsBofaO7ysALtDZKSufgaVGIZ1lxbmSbYIxY/f0/TC7GJaYgCLYV6TD93/6D/7LfY23Uaso5c6q6qoghIeOjAVSpdKN0kawI1VlqCLX3Pj/IEhRGjrFxKfOtzbW/8m++/vWvtNuY1UmdLeBsnJyV8yeH/tpuND4u+h2d5Rd3Xh9oCT/6/vNf/uzANlvLadnvyvFzTSzEbdOUliKv25dHT1cb24ABqtTptP2mYFKobrdbl2gxm/se77Td2bm6eZepcmxEt8kp0soz/Ju/8daizD74+bHrwvoeef5iBU6TzLzNbcJcee+Lcvsma7XCPGswFtlqWS1ZpxsaPMG8Qpb+iz+83+5DUhxzH+bjZqd/FwO5em1UlGOEgfHKCHBxjyC1vUnLXKyt+VlVHx7l127s1xm1Cm7vbx3eXwyG2Bq/MxjO59W1670P3z3vDI1MB3Uxd6jWGuKBDKKtoklee2VnepaNRqKuyOb+9qR8ZoFQpDf6cbEiDSR1zTEgql1uAllSZ0APDuvxUT7quccHS+ZEcd9TtAIMjBFRMwtlqw1ZqqzFRWbCkHW7Lkbts7O6LByMKOOr11/ZE5r+8v0X9z6/Z3X5yt0bTSMluKdj1GttptUyWBO1JE3Z6CK7cqWtNGbUuxQiAQDGvwI1YDDGWosxIIwbpcHayXT6i/efvP7Gq1o3dVPdfelmqxWWVfXJpx9ubq7v7g+bpvjGb269/Mbab/3uG0645JyHEZOqaQQCXH7wi4dvvXPr5+89PTl7FnjhD3/w2UcfPGdM+xy/9trwG1/75mpVlqXbWcPnycNPH37g95reqB33gTJQVmhFjcadbrB3ZXR8ctY01bMnJ59+/IzamHPQNjk5uog8X1T87OxIQ+M68aeffC6EGg7WHc/1PI8QppSYTmerRFPCjJVB6LhOiyDI8oVWVogaA7kcEQihlst6tL42mxSvv3lra7ejKtAN9QJjkYijkYU6S4Bxgoi4/8WpFOBHuqkspVRKFYZ+3AovOXR1XW9ubnKf11JwSgLf9Ti1WmqAxuorV64DMlpRpYwoFcF+rxd/8vGDIOqtirQu3P7Qi2J5/9642xn21zrGQJYW+/v7g8HAGBBCKKWUFnVdeZxaA8vZfDweD/r9zz55AkhcWgosAkIpIKwMZFmWFfnm1lAbub45qmpzen4yGAUGS0RBayOlYowgbC2CXq9jjHJ9xxqerxRChHNeVdZxMcIwW5yaZv1/8u9913XRxXnaVHyZnp29qAAqxj3X9fJ6OhvbK7s7YPDefs91HUDAOZayiSLWanlCCK211hIhxJgzn8+HQ/+SF0AIKUt75cqVb37rS8vllDDxwQdf/E///f/F2sbmMptQSpXSlFIh6jRNjFHcAUIwcczD+2OrgzgO09WqPwIDK9f1ixVJkhlmgntoNLzx6MnZzTu7VWMQ4Lqutnc2KLNG46hFZ9NFXWlG2mlSW0MODhZ5kWJi4jh4/vz59//si/c//vTDT4+CPownOWCYzdl/8p/+g80dJ03qVdoMRy1K6Ttvf9UCdNdM1K5+8d7nBNvf/I3fuX13LWoB9xXBrSACa1peBMyzcSsuK1HK6Wy+CoP22em0aZpWK0KAlZD9bmAtMkanq7njOGEIG+tbDx8+TpMME0iTfNjfrpvCdd2jw7HnBUoBIuX2dnc+rbVCtSjm0+LKLV5mTqfHZI1u3Nl4453BH/x3H/daN7WFw+fpYAsopc8eHxGgcRBmS0fWQHnGncqQZnN7Pe7A04eZ0sAJL+vJSzfvPH9+Sjjs7u/MpsmLZ2VvZE+OZ54HANAo1e3yuq6NgdFoVFXF558/3tiOlKk8z1/M81ZrfXyeaaMwtkHLzYvVcNTOsoIxz9h6kayS1VxL1WlTaUWvs7V/rf/08cX+3iajFBNVFNXFWeqyNUZ6dQWdfhcxMTmv3v3JwydPzvsj/uZXBnvXgyv7+x/8bDw+m29uoDhuh2EoVb6xsZkmxeHz096w8mgvX9m9K60o8DntRJ3mL0Pkv/z8KkWxYDHGWoExBhMCGPHAe/Od66cn5wh0ECJM7PUb+3df2t/d21wlmedZQkgQoZ2dnbpS7Y6fJgUiotPtPnr0HBGMMZ7Np6+8crUVxZxzHiEnBFHx7bXNT355RpAO/PYsOXr40Pxf/y9/9rN3x1Gn9ec/+GK5qI2JlfDyrAmCwHFoLdJr1/tBEKyv7RweNARRTkkQgKwgSUprrQIlFTeKeV5UFUoIMxz2lVKu6z8/fN5qB8uZBHBXq8T33brR1gAiSmstRGMtQgCMscV8CRiMMZs7/R/+4Bff/9NfXr/ZUbqoK8DANFRJurx7d9vhQbIsnjxKfC9I0yoIPSkF4xC3gjAMfN/1Aj9JEspwAyYvG0IRsQqMshaEgRfnp2UhKQMpUBy387zxeavTjWZTmS4bN6BK+u12e+uKK2pQhiyTC5chxniySDY2NtbXe5fTPUJItxenqSKIZavq7S+9kybZ5laYZZOqNlVjlAUDtmpqZXRZGwCTlYvBqL+1vYYZIITSvKBMIwzGgJSSc44xEAqtdiyU8ANPSZQutRANxmhtrZuusigmOzubn378/JfvPf4r/9abjQAhxGpBvUgVGSLY8yPPj0yVQpYVVSVv3B7euHqNMrAIhKyD0MfE1rXg3FVKh2GY5/lqJRzHUUohhAhBlMFnn99r1JQy3B35x6fyD//5n7/61lcWqSGE+b5X1zVjrK5LhOFLb7/puCRuuYG/DhhJU5we10Yz4honsBdjTRi/dnvIXFguLaNM6tQoJhvCHVgsL27e3rt+7U6njzj3losyS8xsUgZBbA1UdbWzu3n44mA47D05mGcpifrxPBVbex5geHYw+fD9F7tXW8cvFm+8/vb2fq8W1WKe3rjtR+3Sd9n1G3G3z/6r/+KPXn5zbXd/RwlWymVZqbfeueV48PThsr9hCSNxe9tQW5T69s3XykL6gVMUlRAKkKWIM04wsZTS0TB+9uxgMU8RItev73z+2ePz0/zJ0/tlUb94nvt+OJ0kmzsBwjLPVFlY2cC1W5AukLTjfn9oLXr0+NnLr73MfPvTHz/c3Xytt06+ePT5zZs3CXZfHF5srm8Fnks5ABKeF+b1CjPx/GlpBIy6A0uma8PR0eF8sbD7N7qMDvO8OHmRBb6zSptbN/c7nd752TiIXaEV9wBRsloljMF8ebK737EIADv/z//8v9bGS5PcABoM29oiymxZyX538+U3rgHi8+VsY23NdVinDccnB2VRJ7NMSt2KfJftTSeirKtrNzaUTdyAvP/+wwf3L1y3d+VG95u/fr3fa3364fPpmajLJoirptCua4tsFbiRUKlQZV3jdCWm0xfDQbyYZMO1yKK6Klm7E3qtSzLjX5IN/yXt1fwFyAYTxpS2Uosg9spMKKX6/c6zZ8/OTy9U02BLrOGe56XLpFw5//C/+uk/+UefPX9QakVd183LqtUlsqGDDff+5yedHgfLhKg1soTD5EQNhrzje9s7YV2iVXHy9jeir3xrsHdTb+yIL3992xhotxhBNord5XKe5/lsWl6cz+pazGaLV17Ze/mVawdPn/oO3L75VrsDjqe7PecnPzr6/d/7ME1WWqPDw7OL8Vkcx2DpcK1/++ZrT59NCIXHj56fnFzELZdQriRcpqhNbYwxnPOLyWJzK3xxdOS4OI5ao0Gv221pU1uFer0R46ipAdOiqc29z/LX39xgjBnJiqoADZygoky1aZQyYHGySpVVpRKAIQ58CpYC+AFnHjw7eXF8eh61wBoQQlQVFHmlTEYALs7rdrttUPPwwbnnA/dhfL4oysIoywl99ux8Npv3+/1LSC224DoUAVhDZrPZSy/dCbyAENIbBHWltQZAUEuRrHKprbZAHdrttgl2/vif/bDToYtEbG2ta6ilBmuQVfrSnsg4GJBK14gix2EEU0zB80ngt60Frexnnz0JQvT5Z4cP703eeGtrPpdxm/W6bSPtMqm1LTnF1pD333sGAJzqoky5C1XV1MJoq7K8LkpFSYAxiaP2+fnSdaGqi0tfldLS97FWMBjGvuPPlueIBf/w93/2p9//UX8EYGwyrzzPq+s6yyBuxYzRoq4A/P4wKOtJI7JawGxiB72tsKW2tuPTk3y1UkHsRq0wy6UwtTU0W0lA0O1F9+4/+eEPvti/1suz0ho2nc7CMDBGXbkWOw5yHGe5WPleC2Eos5o5dL6Av/q9X7u2sxa2qcP4fJY1Dfrwk/ereokQKqsMk6bd9qQuI2/v1dc3d67D//e/fH98njtRs762lRflasm3dofaKkxC7gXKZtbCcpG9OLrgLgakLs5F4MdC1JTSKAhv3dwr8gQDsRYGg/V7X5xLVe1u77337ie3bl1rtdqEwGi4mSYlceqq1NbakydyNHKiKI5iTggWoo4HyAD8wT/5QW8Eboi++Ozc8dpbWzfmk+l3vvU9h0d5dfa7f+21VoxlzZsKBqPRxThLZuA4/ny2CgOaJFmynLsB29zr/Pm/eEQ4GozcTz88++a3bq6NOoy7z58vfd+jhO9f6RtjF+ms3Y6Nxq5LgSAv4FVedlpbWW6SmZRaXTIB6kK3onVA1SptlklTrmQYUs/1/UDlKX3jjVfvf3rY63SFKZRVi5l89OB4fK7rSr/0yt7XvvXqjdvD4bA7ORe/fO/YdXEt5kHIXA9c7hgNo5GnJDo5XW5sx03pMB6cH5D+egO29r1Wo8yLw/Eq5ZfizMsI5V89EDHGWKlLDBUIIQhBCJkPP/osTUQct+bzxfralrVouVxOp8uf/+zR4bOJ49J2uDUa9WUDDl1XTS1qhhG5HEmWZc45fvToQVlXTdMw4qyvx0IKxy3e/PLW0clDBK5UFMnB7CjWNXPxoClTjrFWyzLPKZd1s+r3RxjwYg5K2rxIi3I2XBtJrRnD9z//zFqYTKbrGzu7OxtX93vn4+KP/vgzrRHnFFNUN2pjY225KBmH6ze3skx/9tmLqEUAKYx4IzXDqCmkkQoDqEb7kVeWZnv7th/aVT5/8PmhSzuNrAxkTUOGg4HW9uT47LXX9haLhRBCShlFlDFswS7m48ViVjXNcpkQQuI4zPMSEfADz+GEYMAYgKDz6QTAMBcsiIuLC98HIQvPQ2HEj48XVa3bfZ0uYTQarW/QNK0xwgwTgnAQoKOT46qpKeVKGaUUYDQY9I1BFuTR8XNltLU2ivymNgiwxSCUFUpijAkBbQRl5Je/eBDHPmMMI3R+dsE5i2NuDCBEjNGEguvyvFhd8u0Gw3aaKseFGzf3l4vCc7k1VCsYrbXbHfL5J+MXL1IvVoRaBmuEwHJRc2q0JJ2Oh43z2hsb7e5gPp9wjzUClERlWWMMVanTpGxFsTGmqsB1fAAgFGECUkrGCGHhZHqhJARhaDB1fXe5ynyv1TQNADiOI4RwHBBCPHv2rKp0FLaokzOOkPU3Nn0ANT4rXhymrpcTDLMLpLWO27TI4eJk8upLrzPKrYFG5Lt78d5+IGR2icmhzDou9gMHE8MYMxohcJ49PfE8+Pav35ie190+vPcvfv7Wa8NbN66uDeBP/vALSvHOlRHm5sbtG/PFueM4RQrzqX32/H5dQRCgMGz5oZVVpHT1ne9++7/++3/eNA13/dPTc9fl00lyWeJ48viMMowp3t7qLxdpEDJjJbIYESGVttZub20QzNotlzE6Hl9w6lRVk+UJQsAYL6uGMlwW8uBR3up4+UorQRq12BheL8sEU/07v/sbv/07XwPj3H25b8j4h//smODus8OTX3z055vb7c2d6P0Pf7RKiajC/hoxBg4eCdnA5LwejGyZuWWZMQft7g8fPTheJnVd2+396MXBMgr7i+zIWgQWWu1gMpm2O6HRoJSta6EbnmUFRXieHHstpyqMEeTpwxknfrcVg8ZCQDsanJ2fVqVOU6WklsJ22iPG/bOz6WKRjIabZ6fzNFtprY2FRtRvvX3ru9/7ZhDxp88e/OynXwDA1atXEQI/IL7HjUK9TlebxuWegcx1IkpAm2W+sqKyH/681DaPeyhZlt/4xu3+aHBwMDH2V8ffv/5uiPG/lOVhAARqNOp0u3B0OLUWbW9u9Nq98cUMIaSkVgLOTtLRWmcye/alr2x2h5AXc21A1SgKvaa0yi4xtNzI5Dk4AZYWtcLGJR7G8Mv3zneud65fe+f84lA22TI/ePHi2cZGKy8WCFkHt/PM9NrDpmmMMVHYms1Mq8UpxYNhazrPe/2dZbpgHvZaKl3CxalaTNVseXbt+u2/9td/c3ubUuKMNgaTyWSVluPx+IsH97/73W8MhvHuzv5o2MuLRZ4b5nhKGUBGStM0TVmW3A3zIgnafJXNFsusriCMHMfFrZaPMM/zdHNrlMxNltftLmkqbIxpdXG+UkYZzjEheLlcNo1QEjqdnjJaVA3HBFngnBMCTSOssrJRWmuwqKiXRiNrIGpRa63n87pSdaUbuTIalsmsP4xCH2thBv2u5zu+70dRtFgkhBAEpKkVQlYos8oq4sCnX3xwdj5OV+Xp+UmRS2MMQYAxOA7jnIcBJkitVonjoH63RylmiDPmIBBWG601IUQpRTmjnJV1zZlbN/Lo+MQoWNtwTk4PHz8au65LiRuGrrJLKXzK8flp1giguJWX5+3IW04KgqiWWqncmku+LKnU5WOVGUuE0L1eRwg5nczbnThNsyiCuq4xxlobhJDjMD9whQKwlCCaphlmdbqqo9hl1jNKdbuBlqaqmjj287yezJb9QWc6fVHWS4a7Z8fl5mb4+luj+WKZLchwGAyHXpnbqlRFmQ4H7Vara0Fyh1QFUGZWad7tu47jMeZwxzLHMG4BqcUij6IWAlYWjZLm+s3efHImdaMEff2lne/++ldOLx69/dbNKGZOgLiDKXfOx2dFKcD4i3m1uYNNMzA6HAzbeQZRWyOUf/jL8x//5KO/9je+6gedZFa0Y1eKJTTBjWtrzMOtNkVYc045C87PTbcTYiSb2tRV5jqAMVBmFovFnduvAaDxpP7GN7887G0Bgr0rLSFlURRgvBdPV1YBd1Ucrs0WS2JaeXnGqHvr9m5ZT58/e4otzGazwTo4LflPf//jV1+7gYhgfl5UqzJrXZxowg12Z48fniBNpID1jfDmzduTyUW3t1Y2sqoXT+/n16+P6gowtZu77T/5o8+8SOdZRRnEcTyfpVLWq1XuOLiqG9DOoNeO4mBjs1dlFbbo6pVdWYn5LN/eHmiBHAqTiwuHgeM4ZU6SNCEoGk8vpIjdCJ4evDg7P0kXUjZ8b/faN77+yiuv7A0GTlkm9794TJAfRxHg5kc//oGWUK7I+UkjpcR0QSgsl1UURZOL8bA/zLK0rhMraVnCg/vVq2+8XtX1w3vJxfkUE2mbf31i+KuGjVKKEEwpppQ6nApRtkOn1/IJYUaKokgdhwWBTyjq9btawu72ZpoW7R6eLU6/+rVbFtftdoCwylarrY3NMq84p4RA3I6EkkLJ9QF1KKEEslV47+HzsnB9362beTKHfm/79KRs9cLjs7kiJeJQ6kldwnKZdbrxS6/0Nre665vdJFlubsSfP/j04OhYKffKjTXHBdHAh798HkbuD3/401/84t1Wq0UISdMlAHQ63elsiokM/HZRlYNRfPvuFaGk0QC4QYg0TYWAKSHTdEkpF0pSyhEWYB1rgFLVNKmWVDY4brNHj57ked7tuVKVnk+kEkoZa7BS4DgOpbhpdFFU3e7A98I0TTnmoR8IITAlru8yRjllxNBVVnHWqpuCoLCpIWrx5aLwHI5ABW7cibtXrrUGAy90Rrdu7RUZRIHfVHUrih3HKYpCSq2E1tJgyoMwJhwFIRO62tnZyTOlDZaNYpi5LuIcOGfGqjgO+72WkuX1q9ekqpSsAS6xfCoIXSUtxlgpRSnWWmJMEaF5VrmOx6jrOFyqejSKLMh0tTJG9roDQI1SJmgDtd3F8rQVc89jnuPVOQz6Hd/xhKqOX8zH05k2YLEyoB2HYQauj42xjBNCVZIkURRcvucaAwAWIUsprao8W5W+7yJE1vd8zCEvEl2DtTZLC9d1V6u8KErP9ctSM+pqhVvhwHM82ZjpZNkdoFYbyoTUhbl5p42xQDbstNYuzhPPcT0XFVVllN9ut+raYFpZQynFvYGfZVW73Z7PlkbDcDicTC8INa22X9by7s3XGl0b416/1lpO537MfS/evdqKYpoXjeeHg2E7X8HZi2JvPy5yPthgQtRnh7g/KqyRqm698mo3zZb/7A/fbUT1+tsbeUr9wHC3WCUp5RKoCUNPiPrTT150OwBYdrohNrTbihkHo5tuLxJCfP7ZwydPzr77nevL5OK1V95Z23Bv3d2YzWYW1IMHiyqjYQfSpQQ69lmn0w1qkUnZ7F/ZmE8nTx9fdDqekVhLvLYNWZr8/OePh/3raZZw15teIMzM9ZeD8Tlgw6/e7GxtdV7/0v7B07Eb6qxo/JCfHVd7e728SFptKHPbW4eL82x9c2M6XWqFtbWYcI1klteu65aFxagKQ5ylydbGZqvr5Xm+vu4Tah7fP3S4QAa12/DJJz9zHSpVJUrkBaCtcb3Ws+dnbgi7V/uvv31DCMWdqqnSn7/72WcfHFHTffbkpN1xw5auZXZyfIbNQAqPO3b/WosiqEuQGkabDqHtJE0odqoV/ta3b6VzsbbPP/+k/md//MkPf3Ty6cfngKHdCTFz//KOfPn5i74hwUoZrY1WqioyzvFw0J2My167iwlyPRaEHiDT77cdh1FCr17fOH4xCSNvcloR6Pz6N9+eXhReoCIvPj55wUicFWcu77395btK0VrUIR+WWWk1lmiJCCAqq9xxUMcQ8MKA8WHUCg8PbCWsF3RqiRlpIeBZvrzz0v5seTFfXGBMRAOPX3yerkpr+vP53HHJ1Rsta2B8XmMMX//GV4UQRVViDEHgSanrGrhr/vmf/LAVtwlV09lJU4PvBmHEMMZNYxlhWuuiEFLoIHDSNH/85HS2qO++tBOHI6vdrFhFLXxymrSitf7IxRiLhiCauS5dLcH1seNQY0yS5AhBWYhW3NGArEHUEoZZluV5nltrLwVVVVFXlaQ4AICykN3OaDjsRkH36tWrFrQQitN2UaVeYD//+HBzo8sIYDDLZfHml96YTCaEEEoYAI6i1mwxtxbVtdVWVnWR5tmtuzfPziacMM/zgiBwXGKMKUvhOqzX7xCqZ7OJaEru4EG/V5YabMMpXNJqjTEYYyk1Y8wayKs6zwTBYZJkjLGyLKWquz230/PPjsuNbd+LGis6RbmIw3VCiEUFJejJ4ywK2Wi42euB760poy2il/g8z3O4A43IEYbBoFs3q7IsKaWe51xumAJAURR5nmGOCOMIWyV01LK+Tx0OjLC/tDkGQSAFGAPdbuvw2blDerIiQiX7V9YOn8o0Sd58a5sQVhVImgngPPZ781nZafXqoiRYUQYYeXmec+YEIVUSlWVZ1StCYLFI2u2uaAAsruvSWFAmu/fF6mx8VlbUsLyudF6dXdl/5f6Dx0LPWh0Xg3d6em6sSBemLgl18umkxhQpfPH8YB632WoJsjatttnd3Y3acPDsRbJc+T6srQXdeOPlV3Yw0bdu3bCgkyRxHbQ2GqXpqtMNrcXT2cT3easdR7FnrZ1Nk07b39vf+PzeR//lf/HfWhB+iLTWb7/9pb3dPc93lIDdG2Y5M4whymy/3zdQIVJfnC3bUWsxFl96+26eG1v77/xG7HrkB9+/326tGw0XF8lrv+a70fyLX1jP8zzPOtFyOa3ychwGPakTa6Odzc2bL3XzlY5aZD4rLaqi2K0ri4AYA/PFNMuKLMuU0mErVgryfLq/N1wsFstl0m31l4s5IeXVq6zbjg0UnLK1kec5uNdrEQJKwt7+cJmMFzPxpbf33vnyl26/3HMdXykxPisYDcOQhyHOsrHVsi6Mx0a6GpSFTvOp41fSNLubexdnRZGB4zHMxGoJ7R6bz+egw+19X1Tgdcp06Xz082no+q4fYwJ1ZTA3/9od+VenIWjMMFDsWjDAKUDoO0F+DoijWtbGKCnFoNuLfQ903h+AQE2rvcvD+uSs+NlPP7t6M9zcWE/nUhrV6iAhM88Jl7Ps4NlTjAwx3KEkCl3Xtxh8qwPulUJlgOWzF7C7T2J2YVNoMiermmqp0Mp4vujEDCuSZ7PFHJjbiqO+56546AprGzPpd3v1ikdRc+MOENOqC/qzHx7cunUraGnP56ICh1GOYG9rn/Lmxz/5ibHccXoIYW3L0AschpoKNFTWehScupiDlHtb5OS4arcAkVqYnAUB9Zx8hadH6t/4N75hlHVd2sh8b+9WLWTcJlIqra3QJq8hCPyt9e7xi/vI1vN0ZbmtBFos8vWNPmOOVLWhQiHSHcDJyem1/VtGuI6/aIcbJ8fz6TTjXjRbnk/nM1XF6epk2LsWd/wycwlz3A58/NEXKkclWM3EWjucT0uKatddEo2Jin0eE5QPRzYZO4XQiqzCkHLLVdlw61alqsR5VRG/JeM4ZNYzduk6MDmve6PQ8WC5VBaCsimZSwa9GNTKN22rNXOSdAFCMh5o7rq9fgshmyl5cpZc3V9TaIl8cpqe8IDKWjOst9ZYvmiu7bc5wN5avxc6nUARFFIAhsR2v6caMxo6UaSZDRBjWvIoFFhRirCxGCHmMGsamy21NQ22GCS2VhmLG6sQt8h6CEqlar8FRUWLVRa4OCnHGgtK47w5bXXh3kdmlag3vi6f3Ss3h9tIQssLui2TpnJzfz2TaRSgqijDgAnRgKFKyaYiVQnG+OlKMJe0h6Bt7rBWsoDf/M3v3brSebw4cIG8tH330XL+9EytRb6m5sr+jXSpqqquUueLTyazyWLvBpbFJscu95r331tZAu12uyqruGUbYZHOd3db2NJFUmzsuaIJyjIf9ob5EnwPVaW4cf3u+i5DTpasYDo1zEswGnAv7Gy0nxx/vpggitxf+1rn2cni8QPY295bH24niVosm9MX9de/8ta//z//63fujqxihGpjsB9Xp0fZoLeVT7Lxmag0GL98cXSia+j3IZ+Jv/G31hiHP/m9TAGs74TDXv8Xf1q/+Ub34H5RFyb02k8PHkaxS4kFictsfvNuYHTDGAlCZhT1fb/bo5yEDHuEwfFxXtkLUJgDsk0DCoh1Ov3OdIbvfZ5grwBHZk0QbaxHA0+Xo9Bb/O/+91/56Qf/2+v7IyPgxi0HWHn3jSvf/auv9QfrF6eHv/zxsz/9J4e1xLPEML8ZtHc8n3qBx12XEgfbUsj07Bii0LUSbW11Txef71zvh30kGjTs7dWrWcvpv/LSzsVk/nv/6KkO6ySxcb/pbzCZezpffesrO3du8SgUl5myMebyJVFrjRDCGOFLf+1l80trq6X6G3/j13/ww/e0pH7Yy4tZFPP7Dw/yTN68deWj97949PhDhrqjoW9R8YPv//yb33qr3e4CIEIYY87lBkVRZHVZDQaDZZpfvbaVJRZDAVYdPJ0O1t3xtPI5EIyvXr+xygsppcvhm7/2tY1Ru5EyzQpCaFHVQkGaZBbA8YOysIy6jkNrsRyO2mBZf9AabVqXwcNHB4vF7DIUQgTneU44nJ+fK2Vefvn2o0cPnj174jhMKRvHEWOMUNBaN01TFA0ADPrDq9euuy5dWxs8fjrxQ8kIml/IB1+c/p2/8+/+N//Nf5OmJcZ4NBrN53NCiNbaWmAOzlbSGmAOcVxydjGVGistGMdVVbz00vWNtdHlOiBFwClGiASBX9eirPIoii/GZ2Vpjo+P61qEkaMbxh0NxkWkSpMSkGxkXmQwn4y1qedTgRCKOjxJmyjoaK3bHc913Yvz6e7uHasjUROMIfBcIUSWVVrrMPIZY1LqOA4JRVI2mBGEUBR5nhf4jhu4VErJOG4a8P2wqirPj+paWACMwVoghLiuAwCIEkppkYs4dququnZ1x+WMMTqbza5c2Wl1fD9wzydL5vCXX73rx15Z1mGMkyR3HC6bPElWlHINOllWhGFCcNM0l4Fe0xjOOcbGYO15Tl2XBmxVNa1WtLXVM8oAMkoZi2qtte+HnENR5Ag4oSaOsW54Wc6MpBRDFON7H0/6ravdAf7iw/Ktr0btdrxIjjxv1VQY236323VdFyHkOK7DvTzPhVCDQZdxwjjkxSrwQymw47K4BT/4wfdffvWWKIBzWpb108djKWVZFtvbm+OLiWhkkeUXFxdPn546njsajZ49Ow5jTwk6u2jWNzoA0IqcdsfPV1IpU9flaNR3HG8+SxaLWasdPnt+cuflteMXs8DvcFcBgKh8bPnBwcnO1s12x6uqepXOFmObLIu9W9Jz9vKy8n2cZKvv/fY30mQyPk1+9u5n//f/7B/+2fd/EjibX37nK2GEjl/MjOLXb2wdvbjI8/zW7b2Ls7TIYDZbtDs8brO19U4yRX/tf3DV9clP/nTy1V/f/vyTY0q9bi/68q9HH723mo9tbw3C0FfCAx0M11yj6Ue/OC+KCttuozNVRzt7o4ePP5otLnb3e6O1gRZhvtJR5O1fG+xc9R49bABc6qhkNV+lFccMkKjleW+djVf31neu/J/+7gf/67/9h/ceH/3Gb92+eXdzY/1KGHQ/+uDBz959jxGujQwjDEQWRb0Ye4Y+77TXTs7mlLbbndaqSACLVoSrQmhjPc9LJvjwSdMOtx1PJMmiUvXu1Zt/9sOHQoIFZRVRVbfT2mMk/Op3zP/wf3aFUbG7t7E8Czjnl6fhv5osY22NBcCXS8sYY7BPnz1utaJr17oIO1rh8+nZ1t6a58aOGyXpdDnW/S6s5mhzY7S5E52dlJ989q7vu9YQrRACarTVWkvZWGuNAc3sZL76jW+/YzVwRF4cHjg+eX48vba7efLi+Hx8PpknjsOwAQq2F7QaYTBlRdVked4bONrC6elZFLUQ8HwlF7OV46nhIChyqaTZ3CFSqu98+02tpFFACZNS+6G/uT3y/ajT6ZRl2el02u225zl3795QWmitpYTLLUVtAQBTyglh1+9Evd7gjVderSvjeM1bb924eqU3m04ppVtbA8aY1noymf7FViMQapWCvABrNaZosbDzeYGIJdi4Hmuaqt2JKUGMYD/wAExRlGEYSqmkFP3esNttx5FHKbVKN01jDcW4piSaJ4effXqfct2O/OUUev12GLuAaHfQF7osG1jMqk6no0yhdD2fp7/+jd/meLhclp6DkTXFqkQIOOdKqVWaIyCuxxnDdVP6viul9H1fKRWGcbsVImubpiIE6kZajKQmq6zgHDDFxoC1Nsuay2cmQiRwnaasAcyTx0dVXWspCYblbF6phDAct52Dw5NlmvaH7fOLi7wy3Y4bBx1AljOvqaUQ6vS0wkRHPlVKAEbaIqXA4RRh7TikqpssyzzP8wMnSZLtzQ3PI1pLsIwyC4CVtISCBZOt6labd7vtVqtVVeLoaPHKq7f29jfTRH/6weTL37h174uJNhVh7tVru1ELCJEOCbNsVZZ50zSMMQBcVXVZ1AgId6wFmSbN7s61ZFE+fPAibnFMtFBL0NEyKR49eiYqn3sOIKFACCEoIYQwKQEAfN/HlGgNg2GcLiWmEAVOka2imGOuVonVWjqOt1jOQMv9/f0wDPOyKHLJHbtcpP1Be76YLmYiDNp5IaoczieTbIW7o/rsSExO0Whbp0sdBNGTpyeEOEfHB8v0pN/vZqnyuHftKtTq4sd//tH77z3fXLv7a+989/BwUss5GH9re00IqYRjFG5q47iQF2mjinxllsvlV7+7wgR+/x88eOmlu7v7g2XS7O5t3XzZmZzjsxcQtTigStlkY3SHUryYSSVRmlWzBYiaKYnjOMxWsL3bBySaUlhrvdBs741c19na45VaEaaKAjqt/mIuVY260Y7PW8ro2So/m8gf/+KJZcEXDx6/9+6DDz6499OffPDk0TlzQDR6bS1wHLE24lbB5x8/ZRzPl2Ns48OD8dbuaDgcUgKvvvya7/CtLQdscX6mzo4nq2zZ6wOlcaXon/zgp7MFRswL22h3Z6hVaXRzfrRcrVZXbrH5PK2rKWdW/avG5L+IUzAgYM5f0GukRBg3Te247OxiEcfRcG1wfDQj2HF9p6ryNMv/4//jf7g2HBlpwQhKNGOYczevlpRShIkxmLue1rI/6Lbb7enFRGPxwfvPej305Xf2u+3+ePr0fJwFrfbxs9MsTUcb/TSrgpBubkRVkbTjlgES+C3uetaiLGs8z1MKVmmudNXtDqOgKxvBHKkaMT7Pymrlh7C20c6yZavlCKGUMdPFdJnNi6I4O53mea6UmkzGQtb3Hzwuy3JtbdhqcYwxYw4CyAt9+OL440++eP5sTpmZz58rKSdnlaxI6DufffqT0dqQMYYJFGUeRWEURYwxo6FuVBi0jAaDldCSMDyZJlE3BmwwMecXp0LUrVYLYUsxIhhpY7RRk/HMWFAKAOnZrMJA1taGG2vrZ2dj1/WVUr1+XNXlaK2NEQIEL7/8ssdbTaMwtrWwm1vB8WEFlg7XY2V1EDh/9Ed/8PGnD12fcmooQcaA73uu61ZVlaY1QhQhAGS4yxtZu75T1lVTizCMt9eHyAIYCQjVtXQ8t8hVmmk/cIxRzINOp+P5jBCmlQ1bMUJkuQQM6Dvfeeflu9cdDpEfaKVeeuWKUKqomycHR6eTCycgk/nCc0kURWXZKAVBEDVCtFqRqGjdZK5DtZGUedpazsFqIUTjeC4m0O62KMW1aOq6zvO8qjTFYDRQDpy5TdNYC91uVObgBdgaBrjMEswYjKfPr1270unB4bPk7GT59W9dffCFare6ZQnasNGGg9kqK+TltSgIokZIx/UJd7KsaHV4WVjX8eomvxifU0K1Ilevr1XVdDYpXn1tZ39vI12KwbBlcKlUo4T23IAQYi10O75S6uDgoN11jVXj6cp1+TKZKC0tNJjoyaQC1FjpLBdqsOb6AZMCn56keZmt0oa7dn0zKjLl0GGan/zuv/lqVcKzg/P5vJLanL/IPcf58leupzOmTJouJRDVG/nvv/9+mlR1raqy2hitd7vx2qb/6PHhxx88++Kz519+83em41VZpbVsHjw4tQanc6NqLITABIIgyrO5KEld1d/6Xgskfff7+Wi9Pdro/eLn95O8/PbvbKcz9yd/ds7cmpGo3aanp+e3Xu7leSFkhgwU1QJjXzY0T0A2YplcCFlwT9VNUVf66EX68pv7a6Mtx+m0uiBkvr7uHB4cfPL+8y8+vjc9M+mq2Lvjb15jaSbOj/T22ma/11pf7xkDo7WgLqQScn295TrUZc63vnP36X1JuSwrmeap47qzeVblcHF2lhW1No2F+rvfu761GyKS66pz+Gw+mYikVPEo3L0yclxr7KIoa4dBp+98+FM9G8+uXtuqS7m5Ky/dPpf0Gmvtr/qGgKzWYMFeAmDBWuZw7nKwTJgSUOP7kdIUYeHFNAoH09nJ+KzJi3meZ1JaQEY0CGEjtSKE5VmhtUYY+t0uxniV1rWQeaEfPnlMKaaUBEHw7rvv1lL5PnzpndeLerVMQZmizLLhqG3AFLksqzpJVlJKzpE1IAWEYajU4uzs3OWDVtw1toiioNPaFBX/ta/eimJXaRGG4eX931grpRKNevXVlzzPU0o4LqOUYgxRFEVRyDmtay2lxBhTCtYQKWxTQ91kjSgZ7pyfFs8Pn0hV3L71xmq1WixmhJA8zykj1mohBMbIWuCct9sOWLzKMkrpZC7H46nneXUlCCFCKMbY5TOGc4oxHYy6CBFCQQjhuARZ0EY+fnQmahSGgKzvOCRbFZhA3eRSoH6XBF6AIUYASpeiIMYWnDmrtFJKlGXZHQUPn332/Plz7CgCphsHoe9aa40xnFOP46qUCGGtdRiGi2TZ6XWrqgLAnhtubW8oYVyPNo0FTCnFlz5YjM2161d2dzcPnj/XWnuBv1qtHj9+3u51fR8Gg8F8vnzw4Em322Uchx4nTEiphQTXi4ZrI4PqNFGO49SNStIUCEgpHQcHTks3uK5KUE1da+ZwY1EUu6Ku8rwwljgOXy5Tzt2tze0wDC8uLvqDQIjaGAAEAPiyIhNFEVjQpubElY2oy+rala08a+pm8uvfes0Y/fOfnPWG2KoO9fTDR8+tRUUuXK8KAkwYtRZ5brBa5ZRySmmalbIpOmFPlBZM5YawylRVY+oQhKDIjcPw9k4fYY2QUbri3K3rJgzDNE0RgsukKElEFEXT2UJKKYSwxuxur2OMXSdsCjBWKuEZCXELBT7lLKgbMKBn08T3XamqNM2s1YDrja3YD0EoZCA/ew6jDdRqq8mJf+vlbtOQOtV7V/uYVhtrV0+O55vbwfWb/aaGxw9m0pS3XvIpl8+PnvyDv/99Yke97lpdN3ELwAjXcZVkgR97rtOOR0naWLx06PDJ/dT3cF4e/vBffObwcLnUvo8Pjw7f+mZQl/Czf6HXNn3qpg8+n3s+27oSZamWAoA2nT4SQl9GKKEfIcNczuMobhpigV2cyH/w93/wT37/B5SSsiyUadJifv3W4Cu/trs5ajvYZVT7Pm4yiSx4XtM0C62ydssrsqLValWFbbV9rSil6utffzNPUVE4lRp/5RsvLebFYp4hRR0XhxGA4slCZUVFOTs7sVpEq7wkDG7duhl3VLIaX5yWO5tbnMDkvNy72rKAf/7ufOeaFZVvrL40Zf6rsTIAYLDWKECAHMdBCEktDDKPnz+pajmZXhR1ORyuHzw7Oh0vtZaNkNw3Vvcw1xs7w7I0e/uj87OJElKqilKsjG6ahnMaRm6WpkEQ5In86jevaxVOFstGZWG49vDxJ47jfO1rLy+S1eHRaeCD59LBYPjDd3/8yZOHrsuPj08vHbtWW61kpxUUq9z12P7+cD6fywa6vXgw7Dy+f6oku3PnTpqm1pq6rrSWdVk6FDsUCymWydxx2Nn5hRAyjmNjoKllr9frdruEgLVWWSMUNEoZhNY32oHf8v3BvXvzW3eu3Ly7VauqqlzX5b7vU0rKslwu06ZpqspyzimBdDX3fKa1JYh1e3G7DSfHEy8Iw7hVVsoCnkznCMglbbCqhLGyrBrKgDNHNHkYMgBz/Vr39PjCD/izx2PX9eNW6HCXMOxwt6p0VZUUPIqBYUvA290apWmTZ3W73beGV/VqczukjBEKoY8pwWCtqKUQAmPs+75qjKwVo15VN8ZA2dTtdvvSE+Y4jtbIWAUATa0BzHKeUwKNkq7LfN8TwgZBlCzTMG79zr/xW7/zu99lLjx++uznv3gct6MwDAm1XkzrJjOaOJxMxhkl3ECFMWxubuaF1MhyyouqbLf80+NFVYjtrSE2VgnAjFKHhqFvrdUK5YX1wkApQwlbLJI3X/9St9u9fvVaVVWXYXddN65H5lMoimp9s8cYiSOnKcxgQBaTohtHafr89s1rV65iraMPPnoidU7duqpX3BPZkkthXNeva1GUNaa0ruu6rpVSTQPTcWMtbrXiqs4ZRxZgdlE0NY6joevA6enp8enTre1eVdVx3F4saoc5TSPnszqK/KKotdbtNseEJIuGUBO3WX8QdXuR50UnRzNA4Dh8lRZhSBhDnue5Lo9icLyIcdTp9OoSaaPKZr42Wr84n776xham7GKcNyV/851+4POf/ODJ9dvx8WHKQui0OQabpWo03JC6oK5J0jrP9WDICXbbHeetr7HBujk6On//3enzZ0kQuIhqTMx0kv/O9/57nfbww48+b3Xa3OXTyeLoCVVa/Pf/1k4Y4p/82ZOvfv2VKouWi1Xg96/f7jG/VHU3TZdZgo8PV9t7UbpAW7uo0x5YMnVcd+9KfHa+Ws7rpqJVYQ6erv7kj3+ikPjso4PpdNzuwNZWBMZlNI5i4ocB0oRSiVABylhhR6MWd8B1Wm+8cVXWot12QAOjuswZ0JoR/8aNwZOHF9/6rdfe//nJnVd3VsXs7DwllLuue3Fx1u+3lktdroLzY/Xo3jKZQtUsXnm9v3+ld376RDal1bZKYXohrlztp0m9XK1e+9Lo4/dAiKY/DDAiYRhijC9Rr38ZK2MAhAkAQFWWSinKmB8Hp+OzLAeEXEb9dDXLi8Wtm1ekglW2/OLxJ88Op9oaJ7DpsqlKXZQiz6TrMotsv99HyFIGrVYkpey2+px4lNnPPjs6u0iZz7nrSoFmFyfS2sUyLypQkiCDjGWTpCwMtkrfvXPLYXQxXxgDvuOC1Z12q6lw1KIIrYoyy9Lc9/3BMIgCyl333ffea3dbvUGbcdpux0ZZJQxCMJlceL5DKVzG6JQAAKqb0hjTNKCsIYQRghEi3PFOjpLFYlmJ8c4VWK1WT54sEfLuPf5xux0HoVfXNaXYcZjneZeFD6uQMcZ1MDLY4UEYOVf2N1pxe5GWjhcqA/Plqqyl4/mUM2V0px/P59O6Flvb0XA4zPJlUcgo8DjnjTAUvI1N/8XTadxik4s6in1r6mIFnGKjhShgtVzdvrH7xsuv+gHM50uC/CzRjBGgQgqoKmhFnqwr1QhrrTG6qiqMKUIkz2tCqFLGDfzZdNHpDYwxRVFVVWUBCw0WgRAyL1ZZkjkct9u+MOLw8BAhUEpFURTHcZ7n3//BP49aQVHB3Tv73c7wxfERxjaMHJfj+aywligJW1s7hNggYEqI2TLnLuS5qaqCcZwuagQw6rUDL7QGLALqYKMFJYgSb7msF7Olw528rOKo/ff//j8XQiVJigFhDNYAwcxAqQTM50vKoNPpFUVWVsu19a7R5OmjzBp2dHzwne/9Wq+vsOV5LYeDtfH0gjBYWxstxpIxrpXVGsDiS8IgYyQM4eIEgsClvJlNU4Kdbp/EXfLo3swjQ0CwtXnV2MYLtRQEDDt4MnEc58XzwyDAGGMpwRjjBX6WZVluuGtabdfzHCkrRv3T4wJxQNCazuZbux2K/If3j5PVWdyG2aTEiAmVZlkmalxVsFqtrHGTZFVUYj5WrgNxHLbj2EKJkff4yeH2jr9arRweS6m1qa9d3352sHB9Z30bjMYOj4qy4K797d/95p1X2xbQFx8vylx3ez4YQTHcufPy3v7V1UoGXTg5Ei+eGMzU2782ymfR+qaxuv7pT+9/6at7q4XTFF7UrW6/0nJ9fX5sHI8aY0/PzoLY2b2ymaX29Kh4/nSZ16tOB5QyZbHSVnXaLTAuxvDX/+0v/e2//e9+5au3r1zdXCallu5qRe7fmwsTMocHEc2zle+5GppGwGdfTPa2h60wzLMk8DqMm3ylMK0ms3lVppOLcVZc3Ly9fnG+zAqhodra3sCOrAQYjcLQr4V49OgCEB9uxm4oF4vZbDzfWe9FnLfDEAAOD48RK90I5jPZ7vuUuZ/8EravQVnLf7Vh8y9TFLDWanAp/9ViCoBQcpkmb35pO88kZ5GC+mJ21mmtEeyvb3afPHuc59Xp2YQ6pq4BWffuSxvJsibU5sWq3W4Zo6uqYZwYY5RS7Vb05MHx13/j5dlMG0yFSSJ/u2mW9x48XCblzu56stC97mA+TzHH1vEvF/uTJMEYCIK6KSml/85f/7dc3s3y+fpmRJm1Fj159HT/ytbVG6Mf/ujdjY2tOI6ruqiqoi4rQgjF1HVZr9dL09RaCAJHSkkpbxpJCCEUaQ1KWgAwBhqhpdTXbvYICkTpdzph1LOOjzDhi1V12eterVbWWtd1tdaXvAMAvLEWtdqeNWQ2Wx4enibp1HH8k5OzxTLbv3LtxeFprzfwgqCua0qplLJpqjByKYOmaTqdtrVQ11WarIZ9vkqabt97cVAV1cz3QkKQkAWYSxytiMNWmcOVKxuffvy5H4DnOYvFSjS4rgUhRGka+D6jAMgwxjAiWmshDCEEIVJXjZKm1WohIJeDM9d1L5HdAMTzkBDged5sllqLKCZ1U5ZlqYx+663XK9EAYCnlwcFBWiSNaiiHg+fHH378DAGRRno+reuaMYIRRUCVUienxzs7O7PZpGqg1YlWuaprW5Qrl0UEwZOHj0PPB4BGSgBTFDlCiBE3TyV3nUZJzjkADnzod3uXA526rq1BYRhqLVzHVzVMp/MwjKqqGW5QBP5v//ZvAcDZcZUVF2VZvv31npCi3aZlRcpSOAwDnTUVYtShlGGMq6pCGDdSUs7iOADtzBanYYww4pwFUYvUja4L95c/vx+EcHY6dV0eRjzPmhfHk+fPEoTIbNbcvnWrqirOwXFdSvFyWRjNBsNIm5oR6rk88FuD3rofoOW8cTzAuD54drqcVcO1gLiwnAutuBvU2pSi9F1Od/c2Xrx4cXS4mp9Be+D2+u0qA0xkp+sr4WCMN7eC6Xjps85qlSxX4+l8+cor++lqjhEoXRfNC9eDp/fU/+f/8f21Lfylr/pge4u5XCYld9Dm5sbf+3t/7+NPPtzZ7RZ5vZjjb//OzXbLWRu1Pv7oHhj49ndvNyX97KOLt7++d3zxCTZ9o9ztnfVGJnFHe6G0Bryo+uCXJ599fPDRe6vpuUWA1tY2wMobt/tXr/t1Xa5WFlkWR06ZmedPZofPz+O2o1DiB3gxzafJRCOCrM9pIGoExmOuP15kZyenDg031tvpsqybDIGT5rOwFUoBmOVxuL65rx89mFHcYk4znU5ff+OWkjCZJYhXGlftHumO+GC7rJuG2NawHXkML8fCiOrua+5rb+60W4MwRsbAbJF+/budP/vni7irul1elqW1FmP8l4qov6Q2oMYUFigBBwGeT2yawRsv33795d3zswNdc2w7jx4/j6KAMu5TOtwwy7nLaVSVEEVkOl8YAlIHlPN5eoGdjvHAODJJ9GJ26vvl5LwpE7m1zYl1lHC2r0btwfprr+8uxyRbzq5c2bl6d222zHXttAIrFaxSIw04DiWAEbLAmn/+k3cNVE3taPA8p4vswnOU79EvPptrqILIL7ISG6qEtFjXWmVSeW2DKFqleavtNHXjsoBiAlA4HHHiEQRGY2stJsYhwABj6T57+rSpa06703ElG+k4XJXw53/2SeAOHce12oRh2DSSMcAEENYYMS2sHzu50rMcTsfw9Nn5k+fji/lsPE0IDpsqSZdLML7rUUaMEjDo9JpSqSYH4+1dB2kr6jVhu+2E+t7nc0IZZaHS2mKbrjAFhYhbgwyilDDv//2P/gkN+MZWaz5pwCJp9KOnqhZdrRqXCm0Dyl1DpAIpLaGOn5Z5b+RZ7KyKuR8XxHJZksn4edzyTs6/+PzhE+I3yzkwBlbX5dJTShJHcs6NMarylstTj2uKO0+ePG1U2Y89hrU1VBOFKRiiiSFVkovKFVJjihBTyBBqO5g3Z4uqHYKoUBBBnUM1R//Bf/D2935rr1p1pskkjrBM+ZXrTnctqGvMreNIACXj0AcwAq2WCTghFjKlKGRMS2EttgBRLUpG3ZaPcNMQ16+F9/mnT1ez6m/+zS+fPWsW6RlCDGrAHmLAOJodHue9Qc8n/nS1Qog5nmy3hsIkSiJksCiLdhgZZLLcUJfkpS7yhcdC1wVKU+tX0ymMBmGv1a5KWdmL4abz0uujZy+qrSt0Mp7FHd1UNOigLIG6YO2+6rbjKtXdXns8UePl0/ZwdfMmI/5quO5g7BmAuEuL3M0Tip2SYWXraJVWszTngXcxzZ8cLPMCUQ7tNq5FA8yWTW00SpLjQd9ZzOxi7rjdBhFa5dZj7mR8tlxKrNzxMYT+IE3h2p3exq7LyBBhsrEDm5sjK6BadcfzSaFWo/4rQXvx5GEtTBnFgy99LfqTP3ocR37b3z1+PvnN73UPH02Tsb66+TWpln6If/HzB+cnKuzrZabOj/x8gVwCHJO7L/dvv0p73WEtVycv/LOLVbJounEr5s2A+7UsgAiru4iSdhclU4WVO+qTybkI/YEmEw1Ca+6GQjalFXByLrFvtQ2cwD8+wsbNLk6i3qBttNAiWq0Wn7w/f+ml/vJ8CtrNy0a7q+29TanB5bjfil99dZvzxWbvpdALjCaZzFa6ao8Gw83hoN/99BdnZ+fHJ8/qMMQHz2Z7219mVHzy7vTVV7VoDAKEgGuNCEGALjNlAK2tMQBgtFYARohayGY6Wx6fnD95fLa2ucYYUrrJ81UcRnXuO66lvMEYd4dg6Znr4fXB7cVsglTQiiKO8fQEAse1QssSirrpdoMHDx4yxizooigIYWmano4nzEVFYyezi08//+Sll263+9H5eep5sMoSx3HCOLDIXG6Pff75p57nGbDGGCEUYbzT7iKEnzydGKMwAakaAGga4XkeIUAIIIsnkykAcOqEoce5W1aNsUApI+RXwwFjfoWr0FqfnZ2FoU8IoZQWRVlVpZLScRil+KfvfsQY09oKIVzXbRrAGGsD1hqlRNNUCIHHGUKIUprN9O7W3qN7s/l8bKzIi4xQZYwEANd1GWNnZ1Wv15FSIgRh1Dp5rv3IvPLazbjNVok5O00JhXarTyhCAHmRxrF/qazhHgr8CGHbajnz+TKKgzBkD+6fImQRQlpIIVTTWClBK4sQQoDLol4bbZ4eQ3/Q5p6USpaV0ArqEildXwIupQRrUdM0CIMfkH6/c3Y6bnV4VVXWIiWLugLX5as0N8YihLSCMAy1AsY8JaGu6yQBrTXBgBAKw3g6nVEKl/vvnsfWN9qMA/fIlatbSteOF3ghS9KGO1AWtqnTshBXr7aFMFrVCIHHnSBgUkprUX35X/nOZDq21rS7TOq62wsdl1lUPnmwbLX9P/vR9/+j/+jvdvqd+QVuVCW0aLdjqYW1Jk2X2jRCltxBdZ232+26aqzGVdUQQlzXXSzmfkDDyC2LGixR0jZNE8fQH3QvzvOtXXLn7tVBf6NpKmvoF5+dZqu6qmrZcIyx53Jjrev45+NEKdntRXWTUQpCVpxzKez4okiXElucZc1qla+tDYMgmM1mTaM4R0LWmJfp0hgF3T4tc5RcEG3slWstivp5maom9N1Bf0Tu3PoS89LpuNao0Yqv0qLfbSHDlG4YhO2+Gg4Gj+5Nr93oXbm6Plxr55km1Jwe1dt7UasHlZwbxaaTJCkenD53IoffvrZ5ePBZupoxB3ob3faWm6PjVW5eesd89OHTrEm9KPzZT84fPrwoS1/Vg04H4hiPBv2tXefOK6Mo9gM3Pjqcf/ZBvnsNLabS9+JHD2a//Ttv3H11dJlOnJyc+V5MKUcICdFcu74vG3x+NqOEBlEQxJ5UAgAct31+qLe2vQf3ThuRFsVSV2CkmE0vekNOqHP/weHmTo870AgsBW533LPTqR+pjY3u+EL0Bu50Op6N7Witm8xt0CnWN6M69bNUcFc/e3q2StD8jO5cwSEfYgufffria98d/Okf5H6EB2uugQZhAXDJEAAAwAiRS+H8X8j0DMIGY9MfbP2LH/yo1fVmi3ncCV96+ebp2XEYxgT72hrC5HyW371zhaAWY85i9aAs8/GJQBY5jBEDD+89dqjzv/k7/6tL9UpZgedSq43neUmSeL6TZFVn5BESUVd5nnP/i6fz6aQdeZ7nnJwcFUXuOI7neQhZxilC1hgzn2dlWQd+1NTi6vUbJ6djAPADhkAboy4FrMYYYwBZ0EJjS9aG69aiNKm44yJKEWUUE845IRiD0coaDZdnzWAwWF9fF6JJ02UQOBsba0LUWkvXY6+8uquUJAQ53B1fLFstRwrtuuAH3HGYEDVBYIyxGsBixp3nz85aMWysDb7zm9/e2uxpXRktHccxYGpR9XpQNjUAMEYBcBS7j+/PTs+er2/0rr9ExseOMcpzYblaGgApm/WNUbfXklJIaZfL9MqVfUJRltXaNKO1QRyzSyAKxvQyf1cSlDEYY4xxUTQHB4eygvH4rDfwfJ/1BwwAOIswsYQCIcSay3V1E4S42wu01qKCIII0zawhdZP6rjMeTxhz4jjCGAOCIm8ooVleGYt91+t2oKpq10cAeJVmq7RGCLmOU1Yr12NhiyNmHz66l5ez9Y1u1dQGiTCMsyybX5SEwmKRfPvb3766u46RUrJijHR7MWW4biRzmKjAcannOZPJpG5kp8vjrgdgsjK/OAXM4OgkPTw6+d2/+u3JKTm/ONVabm9vG2Na7ajTjYQsu71IyIJQ6HRblLpgqRDK87zL3XypqjgOrAUprBBgjIlbrjZNsYKtnY6CVRh3Z8vk9HSxnJn5MndD/OxZeXp+YSzOKy2VLRLTG2KKgRDbSEOZAWQ3N3aTBVgVIsAIoCgqxriQOstqzqEVB26EJtNcKhrHbpk3h0/HqsKdGByXNjIBC0riOI4xxstksr2zNjnO967iPNFKaCOIbuDGDa5qW5bq7qsbQei1Wr1VYovmAuF6NqkYtw+/GCdTuPNytzNQYUzyIsmKZjgS3TYRFTQ1dHqtWTo/eLE4O+fv/WT65IuYB/DL9x74QevW3e2wb3eu4+MnSeS16jqvxPT6tT0vUIvl4XIu6kq7DkuSrK7s/ILdfikyuA5aYEE2TXN2mjWNoMQ1Gqq66nQDx7FnZ9OLsZpP9P3PT14cLalDtC6Wi7LJvK98rRc5u3vXgm6nP5s0YMRgbXT/0WfGwvlkkqSi3e1MZzPX9/3Awwx29za2djtn44lS5urVnR/96MfZqo5axFp9drq8uEh9342iDqNuuxW2YhfYeRS6T57eH432253Woy/w5nZkIAMkCUHG/EWmbK29fDe0VhurACyAQRgePHo4HG288+VfwxiNJycffPheFHpaqr1rgee4k1Ps8oFGk+l0BsZbW1sjHF+cF40waboMwujoxdggvMxKY5GQMorA8x1CiMPcLMu63W6eqjQ9T+cNgPnGV79yff9G4MGbr3wpjgIp1eXMEWMspVRKxVGEEMSxW9d1UdeEsI31LWk049BuBU1TIGQNWN/3irxUEhDCCBGjLKcOxSz0vapqlkuhDTBMXIdRYo0BY+AvxIGacz6fz6MoLKsCAJJ00WpF+/v7COsw9Kuq0NpijF2XXjJK/YCFket6DAAQAqX0ZTjlOHw5E0FAk3RSlXUctbJMcBZIKQkhi+Ws021JKTDGxqKqatwAOp3e8XHRH/Htfbcd94tcGisIoxgDJtYYaXTTNCAFFGUjRK21BkObpqrrgrNAKuN6lBACQI0FoaCR1lpkDFSlGIxCDH7TqCAIwqBT11IbIUTNGEIIMKYYY62M1tDuRGHMslVdFeC52GOh73WWSZ6ljVHg+74f8CjkYEFJSQipqkqDNkY5jqM1XH5Z6XKpJXTizsbGVhh5rusulhPfJxcXF8pkf/Wv/qY2khCSF/O6JJ7PykJiIt59771ep0sx6Et3DZKuS4uiIRS5Ds7zklLKmec4YEEYKx0vmE2EFLqo6u3d1v/h7/7H3DN5JRFCgEi6yvPMHh2fFkW1WinPc6RqlCy0lhjRum6QBYxxVZXD4ZA5QBkgYE1tECBrLUK2KFZW+48ezLq9ltaN7/bOTudAcCMMY0g1sLO/Plrb1hYuJkuwdGunV1dqPs0Yg7outG5c3+v3/VVWpqnCGNcNnF/MLi4mWgOhyII02BrdkqqypF5MSJXpzV27MdrLskzpam2tn+eJRfn+ld37955b7WMHdre20yRD2Dx4sPjKl99645XXGak5Dc7HT7u9CCO6mMBo1FouU0rZ6EqZZhkybDkxb39l//btnSef8S99aQ9BtxF4Ok/AsGzpP/60uvfJdHYhfMfnzspj3mBTffTzo/3dK1sbztpw03Hl7Fyvr/lXr4erJTx+OLn90l6ns9Hue5igKvOuXusXRcO9ptVhdYPD0F+tklaLLRdZp9OzoDmHssraPfvSy9eaEn/6UXZxRuoSlNJ+JFdJnia1taRR5714wwvTbifa3rr26NEk6vD17cFqCWcn4vmLF5Np8/zpotP2slQ9PbzfHVFOo7pRL72yb7XjBjhd2Ivz8u7LO1EETx4frK0Nhco2NlyLy/UtKIq6v+F8/P7s9usbP/txwxijiGsNxuC/kOUB/lfrNpfBCiGEMXp0fLBapUopa20rDt95+w1j1E9/+uEf/+Mvblx/5frtdtWMO51OOqdHzxfji0XUbUtllolAjFZKJLlZ5uXf+8/+86JsgiCIYkYIMIKTJPE8TykV+eFw0Na1HXTYH//TH9R59vard1VRcU4xAs55UVd5VRPCMKBLDj4Y2zQNAbS+vv5P/+AfX1zMe/0YYduIyoC11lqEATBBQAhpakkIabXa58czx3FOjo4B4NKg6vsupdgYQAZAYbAYAI7PzubzRFvzve99h3FSlhUhZH9v7ytfeef8/NRa6/vuZeNGSk0IIRgwQJalrsetBddlCFtrbVFm3a5DGSYUcxY+e3pMCYDxmOtwTsMwWCzSjz/55MWLF9eu3WjFbc6CoL0i4I02nIsT/eqXre+DqBkmjDnUdbnStRBNu821Bins2dmZ5wbJUnmeq3SdLErXvbR0VVVVGQ3agLVgkWlqKQUU1cz1cLHC7717MJksfC+20BAmKUNKgdYaI1rXwhoIAs9aPZtUCEOn0yLYqUtLMDQltNvtosi0Fn7AKIPBoCOEiFqtRlVNVVZ5E7dcrXVZllVVVRXEQWsyuYg7jtQ6zYE5LmCW5bOL8XGr7SupgVTFyvEDVJZ4uBF99sXZ4eFRGDFKKQaidOkHHmeOlI2S2HM8a7BW2BriuGQw7GWrejlFzFd5biyCg6OTT+99sLEDZdVojZ48OWx3I2swRnxrs6+UYYyVVQPGGq2llJ1OixKwxjDGtzZjq6VVYCQwx1PWNEpixhzHWS3h44/uVzJdLEpjMWKSclc2utfrRbF7eHRGCIClPODpauG5sZLQbgedTgeQIdRubAyV1lYDQZQxVBa1MuD6WClrrVIStGTSACGwnDW9EXzzO9eKrLTWUty6ciNe3xhxVwdxc/RUtcL1a9dotjR1kxOqh0NyPn4aeVu7V73FooijXqsVIVJ//NH9p/crWXu37m6sDdpREFmg03GSZePnRwc372wsk/Hxefruz06mZ+7TJ3IyOd/chq119MbL++1Oce1q+2/+rbeSc/jeb915/Pl53389m1d3XhlMp7lowPfDNGlOX8D0Qp6cHI/W23HsK1NevXLr+q3eZx8LNwSEAkqp1tpaPRz2T06O+v1+UUBVFd1e2O129/dugQJrHc/1AYGU8OWvbU0uUgTUGLPIniDTefOr4Xs/PjLKwZg+P5wCIqfHyd7e8Ne/+SYGP8+rMAwZQ4zh3f0dIfQqz8qqKAp18qLyPaesxo6DMEFPnz+K2uT0+Nx1wfe6mALFYW1Pz86Sdjc6PVkAOGC5tRgjCgCYwOWN6tKTQglmAOjyj729Aeda1A0GvFqtMAaE7CuvXrl+a/CDH/xyMs7+4L87OD5Mr15f6w6oLIfWWr8Np8fLfr9PqFxlsFhlwEFbggh0e7FW9eWCKiW8rqu6LDmhxhjPw6NhdPfOlePjU0xQGHhlCUoprWxdaUo5YxwDCnzXKBmHEWd0e3tzMOh5DhTlykh16UK1gMuyZIyBBdCGcNoIqbVeX+8fHyaD3nB3q1+WJcWsHUeuQy8nBcZYrS1CYC26xFlQ5nz7299uGojDVhzHnudd1vc8z7PW5nnOGDFWWaubpplNi8j3CAXfcyjFSogwQo3Si7loanl+lpycyN29rV8N5hCSsml13VdfvWNAP3jwwFgStbiQZnNrra6UVOXmZo9SQjFaJLk2yPU9QjDndGdnRynIsgIhAoDLDMLIj6IAI4cxgpCWqimL2lpiABFKKKVCCMbo1WsbiBZFhm7dWu8PguW88jxHm+ZyG1NrDchcNq4IYVLYbKk3NuI0zZqmqYvS417YAQQkWeYUkUYUvTYDa4WwrVYLIYTABCG+bO7XolqtVu02YhQjrEdr3bKoLcBkWpQZ8gP36bOHjcgZJZ0OLMa541KptBORwXo4X2Zh6DdNQyl3PWaMIohrJV3uSCmqophOsqbRcctFyIoG6hqCGKqKJKs0y5s0K50AkmWOKJIGrLVV1ZydXlDKLxvXGEMQelpLRm23HyCsGCMXp1PGCAKCEBGN1lpzzo0G0UBZLzkPD5/PlRL94aCsjVCQrqoyh1s3t8PImc8Kx4Eia+IWCjy/yPIgcIw0dS0QQovF5Hxywh1YW4sAACOKGfM8nzFGAOIwVHWQlbPAQ7KhQMRoPTo7WS7SCSPtRiYffXBwenY4Wg9EA6dny9mk2tnpTM5TTCVGNEk1ddQ//sc/avXcOIzbnSDuwJNHp6LGrXjo+RyBY63Oi+zatc7f/PeuJfM0G7c++ejglz+tZlMNWEXd+itfHe3sRK/cvTPsxUaP33jtpc/eT3TNr9+MRcni7vSTDx7futsmCN56p7+9tff86XK2POXc+eXPzs8nidXuzrWu1qDgfDAYyIa9+9NHzJecu+PxOIwCQEbIOs9zSkE0BiPv3hePO70WdqFRcw0No7xKgfni+GTx+adnG7sEw+j6S8Hnn52LxmZZzkjclFAL3R/Emxs7n3787OhofHac+yFqt7vjcTZLjvev7hjlBRFQTrUCrQRjTEkcxc6bb221210hrUu6Rd5s7ATPnyajLaia5Nbd0enxAsAhmP9qIfnypmyMurwzXhbrlTJVKapKvvPW7a21fpEmDnVc6lprjVWuy2+/tP3Ol6+XtcQYPvtw9fRh1uq4lRjny9XVvahZQbZctNuEkagsa9d1Pc9P0/SSHVAVme+4VVXFcWwRmsyW0ghDzPXbd+bZeDxLiUMpudynRlIbiwAjWhY1wUyWZb4yu1ubu1ubk/HZ1uaQMmi3XIwxWEwIsxY10gplLndstdWM0aZpLs5nv/W9L6+PBsv5AoxljMVx6Ljs8jdqDdHaIAxaIc55XYl79+5VVYUtIITiqP2nf/qnSVJfUh4utfR1rRGy1tosywDA891uO5ayaUWh1oApkw2WChwvfu+9j994c399c5BXCeccM6ytapraInP37l2lzNHRySJddOMbGzvs9Kjs9X1RRquV9gIslVXGMupMp1NKqed5rgtSW60gTXKMCQAopZpG1Y2O4sBxuLUAmFqLCEWUE6XB9/3Tk3mnT5QgroduvzyoSoUxLXNQSvk+vpy3YgyYgBRGKUuw227z46OZH1LKoK5Ep3MpL6cAFGnSanUn48QaVFUSE6b15SShuqRYSylHg17TNNqIJJ1WtfZcajVfrfSlz74uVafjKgHGKsL8RpdlXQgtALDFCBBpGonB1mWVLFIMUBRFpxv4AUtXgBBs7IwQ1ReTieNZqYxUJIj9k7NmOqnPTqHd7tZN3u26FivmMo0MEEDIFmUWhlwpJWSJsJIq16ZSSk0mSZYVjDlGgzWQ5w2l1Fpc5PLK9bDTjWXtl4Uu6ylYtFrCYBTGPmp30Wx6ji34vgfC+n6TLjKLSi/Aw1FvNpsN+qPZbFGWqtOPo9Cva1HXsqllWdRV1TCGjDFVJn0PtKJlprb3HITdP//+OIqddCl7A16tgqMXk1bbRzba2IFGlNjiVjugGJ+fZ0WOo064KsuL8fIrv/ZOb+Afnz47ft4Yqw8OT4SePLx3cn7eIMBay42NtSwDhJDr4i9//dpLd9nv/tbbRsCrr9yhvMyac+4HR8fNJHkad9gf/NP3+msBC9KDR7yBxf1787XhVSdU5+MDpYFxzFxc1iZss+l0enExiUJfm3mSLBhT58eY+5Jz3jSNtZo7yFoJYFyXaYUvxbYXF2dGA6LWgpZCU+5Np9O9/Y24D8bEeVaJGoXuyBgxn0qE0PVre/v7frZKnz79zGrFKSSLKk0qRJjje1EU9fv9g4OnCIAxYgxcnFljoNt1qwI/fjAv63zvWmAhRASyFJqmvDit+4P49PTcdV1jFMIGIWWhAQCtAF8WDzEGjChC2FqktVVSzybHWxuD2XjiMF7XNQaI42gyuUizkzyl16+t/9bv3r1x11su06ePZ4up9LDTaeGAR+OzOcFSN4gQkuc1pTTPjdIyCHyllNZGa93v9/trQ2Xxq2++ihmV1uYyK6S9WE5OTk5clxDOilwwRv0oFAIIIUKIYd/Z39thnNy/9zSM/Cv764RagllVNQiIkppzVpYlQsAYyyvb7nWtNcbA8fFxEARNY9pxTCkNfJ9zitCvbKpaWwAQSuW5GAxGq9Xq8PkR51DX4uHDR5TSq1e3lQLOuZRSG3lZ59baFkUZRYgQ0u/381y22zGhYIE2pdYWRKPTpGi341qkhEqMcZZlhBCEoK7ri4uL2QyuX7+eTNkX9x88fPo48PpNPsyKie+DFFZbpCW4rrdcLsMw1Fo7DhdCAlAptVGoaRptlGiU4wDnLAx/paBTymhrAKyUwDmfXDSOC3lec1cX9Wm/31+lZRjEopGu6xkDWltCACGoa6EVUlr7Ien3QsZwlhee77g+IKQR8DQpu50hAlaVYA1J0lxr67jYGuX5HCEoq4IQPJ/Pj49P1kfDui4p5UWpCHZFA5RwSunGWqcq8m6nwx04OpxFLVrUsjbCAKGU7u7ua2W0kQ6nVdXEoacNtDuRlPX16/Err143tpGyqqrKCwEsk8IukjIMcJYaB8dSKsIsdTClKF0tlIIg9AAMY6jT6RVFgTGiDJo6c1xKCAmDwBqEES3LGhNUN9A0jRSaYP7Sq3sW5adHyfPn56P1KFnaONqaXuTtdjeIoGkK3/dWqwosvnl7e297j3KjdBUEnud5y2WqJDCGCKHGaKUAITAG6rq2FqKoVZYlIlIKWM5lfxBRZqsCd9s9QIxSvEq0aESVI5d3LJQ7O8NKHsuGarVyXW/Q3wIIpVaUoRs33riYfX50OOXUf/31l2/c6b780n4UtYoybbX9m3d97mf/r//0I5eGXithOFzOjE6ihx8+H0TRFx9/ura20e3117dHXocyN0BcpStSVkrhMq2mUnJhsqdPzznz/NBEMdUWW1J1RySdKwXZfAxNXfp8Dznn3LEIXK3Npd+xaaqqKhC+LBuwNClaHcIddHx85vhuniklwQ+4kpU17dYoxyZmjlwu5QfvHxwcjoFaK8nJ+YGyy153KBq7tunvXe2LAjyfHzyZUYb90CrlLhZLIHldgYFmfW1TNaBE4wb1akEPHiqhqkYU4B5lCTl+WnDPZgs3m7ePXhSbWwMLwkJjQVvQl+VrDADWYkzAWANIMsaa0lvfis7HCffcXKykVlLgRmBKscX5qiiJe14XZVHM3/7ylY1tsAr8EA6eVeN5s3HDrhJf145uhOc1jsfroux2nEYuqsoy3i7rGSe0WGUOqlxHz+ZPQEUc48Vk2e2zp4cvkrJCjm6aOnQ5aGVUSRkBopI03d56uTfoZ2IiLF9miUOdjR5U2jZKS63qpkBGu5xTSqQ0XEGnUxtUWQzLVdPutX/j2y/Nzpec004cdfyQYmiUroyxLhEIOCIYQ5ovAp83ZeowyPLZcKu7ttZaJKeYgcaGOq412CoAhYwBpREQr2zybkcy5Xa6JI6duiiBcCVA6pBz6MSo4+yoxoBE7dhSaqoSrNVpIpCFIGRgm7s3r6/1+/cf3FtlU21gbX0HMVbOkOPhBlRSVoG/tcoOCRYeC7RuvFAjprSWorGEMEr46fHyIimksUY0EQePQJYvN7aDZZrktZ/kanM7fvZwkRd2uBUQwrJsRYGDBowYQp5CoBEoWc/P6ngkt0bra5FD6jwKIKtLx10v85XXkh4PCWJJduIFcVmzUk4ZI4yRTof0YhcsFOVSAxMSXb3R16bm1DemDL1Q2ZqG9T/9/eo8aWpdeR7D2g4GqKpAayIbhRrPgnS4MSVBMOfMF4r5oYeoxRzP0xPu0NhfBTTn0icozrSWKRp2KWGyzsHzemmZGbp6cVAO2kMqZKtPKuHUE4iY2xhaFZAXc8bC2aKymChrCfHqWvSGTp5SJ5pVBTDmhD64HGHj+L4cnx42xSqO4vEsP5taYBjwhCO4fW1kDcmlM1lVogG/pbKkOZuO6xpGg2GWpg73j46XQPxVajeHbcmqsg6EaWMHamGtdgAnssJF4+cleCF0e8Ax8r2m1S/zrESgOXYBy6ZEsmQnJw+MJlrhsqmZhwl1B2vOV75d3/tkEnXVs8NHnz2YPH6UTc/NIrtXiurFcXr8Qg2GPJ1mIodkLDErw9Zw/1p/cyucnhx4/XBZZ9TvXBwN739+/MGPz2Znk41BhGxtGmZ0s742rGaCC+OW9j/4t76hSTmb+mG8u1qVvi92Rrsuhn7fplOurexvgVANRX1Gw+EadRyHu2I+pg5zjUnWOrtRqE3ju55ZJHPX9Tf6nbffiNY64CBkTQXW+R/927++2RkFfnc2V5pWqwwYbjHMAHQ290Vj1tbCfo+fPavrlcDgqcILfffihdSKVmKa5tnG9vD/x9Z/BlmW5ud94P91x59zvUmflVnedXW1ne7xMxgDb0kQEo2IlUK74kqigtJGKKTVhnbFjZBiQyuK0lILiAQkLgSKDn4wwAAz09PT3dOuurq8S2+vv/f41+6H2zMkFcpPaSIjTt48571/8zy/xw1to0mmDhvN5t5+wpUZT0aVuvQ8YB4w3Dw+mvhVyAsAIofx8cqmO+wXBHtGEwRIK2wMIGTwD2k28y2KAdDGKMZItdJIsty2Xd/3ldLzhgIACHa4wH7gCm60kO02+sqXXts80xay7PeL8TgxRrqug5CR0gSBxxhLktLzPIQQ54Vt28YY13Uxsngp0zTvdru3bt2ixDGaFLnCGCFAlNI5ZyFJMsdxe73RQrt+ZqNBMbl/76llm/3DozxnTuBPp1NCiGVZP2r2hVC2bROMq9W6EMJyGKX0W9/61tlzG5wXUbWWc9Fud5UCIaRtM9AGFAitEIIsyx3HqdVqZQG27Xhu8OKLL2kFWoPrukmSAIDjMkoxL4EQlCRZUXBEqCHF3s7QdgAjgokGBHE80xoIck5PTzCiXAqlkW3bnmdLqTkvAp/Es2meicU1BsatVdpC8SdPn3aWocx8r6q55KPhWCsmStyodxiFINRFUViWFYZUCkiTQikBSNsOjePY8y3bhs5C3fZs13Vt20ZYgVRGgeMAAFDjHO7vuB6yqMU5jiq2NEJmueY2CJQlqtEMLmysP7pzr5wll86cWahFloZ0NK1V6sgo27bTNLYsIGSuy3ONMZblRFE0B1NLZSjDnU6HEMY5t5hDCUU0nU25a9fmcmVkHMoQANSbdhZDyQswbpLkGEOz09zfP3QcZy75siwqFW/UncjdwLRs1S5PpseeT+KpGZ8CpXQ6za5cXCUE+qf9TsfzvKAoRJxyjHGzFTKHIwxSCcuiFlMIYdu2GWFJnAkhiqKo1Spaa8GzhU43S1PHoRcuLhRFCQRrANeq/vzP/ewsnmlptreOKGF5zH0PR1EwixOtkNEIDFQim3MJAK6HilLZrkzTUqNpPCtW1yJCreP9VPB0Np4oAZRgQsh0ClkGSomigG43Kssyy0opeRRF2mjXx1mqNjbaG2c7771/l9l+mo+UJCVHZUkO9wePHz3r9TgYdnxY9k5nFy5uJMX45vM3Dp7p3a2cOen1K9d6e+7FK8tLy80wDLuLdiEPRn1d8mx1tTqenKxvVk+Oh6U8/Lm/cOW5FxbvfBA/ezz2WevilcX1De/MmfbD2woB/Cf/+c9hfWltrXq4t8/LcVmaJ/fVwhk+GZNa3a21TZGWR/ugteP5/jhOVtc6PAehpBviUhSe50ySsWVHcT7IUuTZiwbKUiSdbv2lTy1dvryuOQOtCxFtXmk+e7rXqLbWlhogoMwKr8KpA/lMGO48evQgrDBlYGvnqNYGbVJm6cm0n8WJ5wYEs4cPttdWNwAriqNSjJgNO890FNbCyLeZ59vu3vagUW2WGTx3fYPzwrPsbFamaSqlnHO9fsRuwD9iYQMAwsaAMkbZDhUSxqPZZBx3u91KrZbnOWNWmkjGoiwVRyd9MGQ0GL74/OVb778FYlqt+RsbnVbbz3JOqLFsnGdgOxQhQAjKMndcS2s9Ho8xJgih4WDWbHQarebh4f7G5jpCKI2LwK0TwrQ2nAvOJUYwN9sGflgNo0aNbW09LXOQRualfvJsYPneZDL5ke+aEKK15hy0lsYgjOhgMMIYl2V5cpJkeXz23Jl+b3zp4pXheFyW4Hk2LzjDBAwYAwoAY6TBEEI0fEKEHY4mWkPg20VahJ6fppxzIZSyLOS4jFC7LGS10lxYZqOTIs3LItdalwhZoswXFiu+V89FypivlFIKcSERMkVRGKPa7Wqezi5d8xUPP3jn4NJz3fYiEiX68N29o9P7nW60subleV7m+I3vfpCnZVSxpYmrlZAxZtsWAkcrakBShlZXOnOmIaFkYbFl2SRJMoRQkRtGURYDs8CiZDTIKQUEKp7RjM+40kaB5XlR4FjUZGkmSuvBnZ1KWP3ql37sr//rv/L68883A6eYZQe7PcdxuMg819IKpMor1TpCiFBkNMzl30UBvNRCiGq9xkvpuBbnfOPMhSAiCMFomNoeP9iLh4OUMYKJIoyDBCkUhhBhoAx5nmcAECVhJcrKzLYZpTSeZb3BvsfOjONep3Px1dcvf+/bTylGCCHP9fr9vmO7BFuU0mSSGgO9XiaVIbZO89OwApRSihFhXGutlJlOinq9wZjNiGWM4UXZbESnxz1joCiT6XQaVeth6GeFmU3LJC47XZTn4LKGVqpModXyw6prWV6/lxhujAHLcitRNS/yIAgwJk6Ak7RwQnNymi2sdE5PRlg5ngcWJaIEYxBgNEsgy1GZ81qdeJ4jpSQMCSURQlHkFTxGhLYXqtSWeSa1BuYYQu3RILVp4+VXXrxy9SJSzvLy8pUr59Op63sN34X1lTUj7YpvNRuV05Pdg4OhRuM7d3cWlt1z5zeoxWu11nRcNNohz508LztLeGHZfXbfbJyv//Jfu7Z8hjx8sH1ytJtn8p03n9gOeem1ha/81Gf+q//3rz988GTjvLP9ZHxmfbVapclMNDpqOOBXn2t7ASYMvv/23VKhc5ct29UuCZJUnzlfX99cPj5MpJ6kMbdcyHLEua7VvTzPpqNJ4JPQZ7wUlInf/ZNvvPvBXpERUQ5UYZDB1260O10mS6DULXJDKZ3OEos5Xsi8qgAqlRZ+YA2H2Wwc16KaFHgyzp577tJwMKs2aBCQKHD6g/HBQRJU3DTRFnV9p+Z76NrVDYKgyHky03N59Rxj8yPP8r9cG2qEkDHagGKMnPYnQiHMaG8wev3113d2drXWjmMrZbkhPtxRYVjL89JI9n/8t38lHZWWRbRCC4tNx4XhaAagwoqnQGRZ1mxGYRgKIaQSjDHf94WQZSnm9V8pc8qQ7RCEwEiVZXxu6phDVaWU/d50Y+Ps137sKwx7tz74wBjods8/fJQOx1laWHPv8DxpD6E5rwy0VgbN5xelbbsFL9fWq0dHB4tLbdv1ptPkrbeebZ6pGSUoBVEKrAEMKAVRWI3jdDyeWBbkWbmzs1ep1LQ2FLMoCI8Pe61mJCVQBpZlCS0YdXt9LrTuLAQYQt8HEIAQMOIggKWF7sF+zxg1GmdZllnMJQTbHp3NEl7mldBybZbE4vBoa/MS+f5374m87oSmXo/ajfZ4lHQWO0fHh7Ztg4GyEEizVqMCAGXBhcyzQnGJCDUIGduhnU5LKVOrVypVx3GpUhAFfhAALwuHOif9GbZRnpXVSjRL9WQm4wwQsl075JngZWLbgDD0T3sv3Lxku+6DRw+3t55WA/vc+pJjQbNZm80y22bacEYtoWS/PyTMVqAwEACNkKEECLE0KMsmnAujUbvdnsXj6UR6PvN9e3833tjoDgcCtBtUdJZq5pCywKPh1GgwyAwGfUqZEHNDVFnwUmstBdQaDiHo5Gi8ca7+h7/zUXfRAsPyggdBNIvzLMmRMVqWlDhSwuHBLE50Xmaj6Um1bmPEiqJ0HVKt1ouiHI9BKSNKiRASJSfInFntRH5YZGDbQG0ax+n2bj8M2XSS/cHvfgOIoQjiGdel9AN3YaFy0j/p90bJDGzXJwhnSc65xBiURKEfCKF930HYsixAYB0e9GxidxegUQ94QZRWXPGSQyEBEwgDdzjqu647L+S1lq7r5rk0qJA6m87GzU6VMcaog7De38uHk+Od/af37mw9fVwomH74/uMig/sf7c4GGMBcvtzNEz7uZ8L0P/dj3TgpxgOod8STR8cUU6H7SaK1KcejTAvPpq0P3+3dv/fst/7+B3/yOwOL+efWX15oXrx8edlm2LJRUK3/yq/8rS/8zHLFrzkuMZJNB7hSx+M+WVhVUtnIlN2FlsXcgutv/NHdWq3GiLIonc30/Ud3CeO2tSAkFGVhUdtoMo0PooqvFIB2VOmsLm0yCsurjlt1v/fnh7YVMCw8pn/+517e3t6vRkubmzVj4pPjQbOxxCgSRkwmYnGxW6tWmvVFmznpDOJJPh6PN86ce/RoN0vMSy9f05rzgra7ISKAtO1H5Xgqer384ZNnhOHT3sHG+abteWUJtm1/oqf5V9Pl/7d6w/mPtcIH+8dBEMRxHCez42PQChzHefZkq9GyiQV3792v11qH+9PVta5j1TmP40mBkLEdCEJQSE0nGbPwXEftujbnBULIsuh4PHZdv16vCllmeUwpHB7vWTZqNSvG5AgAACulAHS9UUHIlBxms8kLL7z0ztv3JrN8eb07GSEhQBr56NFRrVYxxkip58HtCCHXQ3Oz7WQ21QZhjDnnlm2nedLrnXaanb/7d//uX//rP8EYyTLNCFUKlAIApBUYjPI8n85mGAMQs7e389bbP2DUbjYan//sFy5dODsazADAAGCMlDJZoeIU8qzEBCFsrl/foBQTBARUFJB2p7m9veMH1VksOs2KY7nxLFeKW8yp1arM1oKXICpeKC5cqQd+7fHDES9B6qTZbO7v5B/d2t7b22m3G2vrlTzNkpmZTcR4MFZCMsvwUguuvABRTKajsShzyQ3BJs1GXKRaQpbkKwveK6+utFrnqpU1wLjRrLh24+NbiUQ6T3CacINjQMKmLE0gqpDXv3AxE/mdh3v3t7Yfbm+7kfvKqzejyGnWo3o1NCDzPEVgNVu2bbtK6TkGglEESGIEUgBjVMg8L3iWlUIIoWYYSLMV1VvWuA+2C4RA7yRjTl5k0OgQyUmcTMCA5+MknRVFYTFHKeV6NkJIK4yN5Xngh+j6c5e/+9239nZOXdtrtki94ezvn6yvV0FDnomSl2FYsTxIYz0ZScExwmA7THAjBbZtl1Aaz1Lfh8loaowBYxhBhKAiH68tb4QhLK22pJSzOPc80FqPhunXfvLzn/38Ja0BGwALqhW7KGPXd49ORiBBG0moJgSdnp56gTXuzxACntvE0r3jorUQ7e8ODIBQ08tXVrQpQSPMoCyF4GCMbjX8ef1RrTcJsytRjVJLCEEJM6gwRjp2UKkS37eLBAxktVoEuDw9njWarc9+sXNwsNc7REFFnj23phXr9XZvvniGF2BbaG0jms1mH/yAVyotpdTh7qQSdvcPRu1OFVO31WqWYrJ+zo6n8KnPLXz2q9Hiurz93vjDOz/48P2HT+4NJ+NTy+E/9dNfOTwpP7p9HATR+Dg6d6nx8N7RYuuCRKdFEi4tuXvbg1rFlzqnRCFB93dO2+22lAWz6eN7Wps8mY0C25MKjAEpkMVwNtUXL6zF2UmtsmgQanXg4oXL73xnFxFW8HGa8OW1oNnJRY4eP9lxHOeV188jAoPTnFHPGFmp4OmED4fTw72BxezVpdb62vksT4RQV6+tbj/devLwyXgGGsE47jc69MaLV6rNcHXj6me/+IXPf/GLL77ygl8Jao360ckxWNb8BFTzm1jr+en3L/MOsTEGIQwGl6WwHPe0n1DGhCi3t59duhQm6YxSShAg4NeunptODHNDzOj9B48QtputWu90QrCOKq6QoJQCY0+nY2OMbTOpBIAm5BMdtVLK8zylVClknBWMMYRMp1t3PQyAweB5iHutVhGiXFmJprPxgydbS8ubloOzLP3gvYfVakgIdix73vzPWRTGfBJ0IGTJGEmSWZqlyug5AHU6nSKC//k//91kOvvxr31Na40QSKkJQYSABoQxjMdTrWCeYeC6TiHy/aPhJ3oxA+c2N8sCfJ9KA9rwudilUkWO56axSdIRSNsPLFmCMenSYrcShFoLrew0g0roOZYbhhazUJLl03hmiFhaWQwimE3Kcc8/dzVsdUlvz8emQq2xLlgQ4Go16p0e1hqe69mqBJu6RgHG2LKBUqo1EGosy5GlxkhHoY2QwVg6FjYcjvf6ly9sdlvWowcPdraO+7201awgCRQIZkYr1Dse29T1XCh5cfFy+NLL13uD0cOHO8gCZXsTLjRB169e+PSnbk5Hx/VaM0tShEEJ2u5UK1F9Oo0JIYwx12MIjFGQpmlU8bIimQvdkyQJAscYctobjkbDwKuVZbmx2Z2OOcLaKMvxFMLaGIWQ5XoMEZhH63iel6WF71UQttOMU0pm8cjx7MkIzl6s9o551CjbnapSEEZ2uxOBAdcBIQSlEEZuGkMaa9tyLIsgioTSQqo8z5MksW1wXZcxZtsMIdNpNxr18LvfebtWq3e6teOjjIBNEEEGG4BbH727sLCBKWgEjMF4Ogn86mg4LTIDCkRR2hbYDgUAQlDo+S6jZ9cvTEZjKYhFSTyZtJr+2rp39dqFLCuYBYyRsgApwXYQxRC4XqPeKkvOuZqlaa/XK8uSYra0WNGq7LY77WYlncUYU9uG5pI6ObTiKa91Uinp9lZCmWl3w62Dj5pddto7WuguYwphTUyn04NthQ1DJH14ZxxGrCikbVmGJhhHnYWgt189OeQA0O+NwLCsPFlctV977fq1V5jlZhrKZrP5H/4H/x+LOf1hsr21f3AwGI+H1YZ57wePrl5dHRyhSk1zDgjLTgt3m8Qj4WJ3Ic0S27OBinzGtDaLy2zSN+ur1d5pqTU+PpxKTj/z2VdLUWpU+mG4cubMn/7ZhwAOAf+X/8rLYc3a30vfv3W70Y46Xe/x02Ou4h/76o17d49t287TUnAzGcd5BmmaZ2kSz7JhfyR4vrW1c//RnuXIyahsNeq2A0rSbneRWOl0SE5O41sfffzuh2/euXvr/Xc/uPXB40pUA+A/OgF/6EgGY8y/Qn81GiEgALjIhZK6WnWCINg/2l9Y6HzhC5+bTGa2bYce8e06otOsAGOsablXby16dVKWuRTAOU+S3LLAtlmRa0Qgz6FarVqWpbScp1K0Wq00TRFCRS7TRCBgRWmk1FHgIFCzqaaUOo4DYBA2s9h4vt1q1X/t7//PX/7657tLi/1BvHqmksUxNghMMpvNEEIYEa2BEEoIkRI4l65nATIIgW3bjFq27VJKEULvvf3wr/2Vv/obf/9/rNeqGAMiWBsC2DIaAyJJrHJeIoQwBSm56zr1ujNLivXV5fW1tYO9wyhAWSEpYVzokgMiNAgireXJUVGpw93b25XQAQNBBS8tLRwcHCiT3fn4GSGwvrzA0xyMmr//A0aEYESYlHxxoasV2tka9k4zbQo/cNMZBkRsh9oOS9N8Z+tYSlmv1xDJCLYIkLmTUkoFBmxq8RKM5gwjZAQvEy2FEqAFVHx37/Ezh0hdFri0TZ6fHGy7xCZYewF2XGs6yl0HXnql2150bt/56NZHx4zC4lI3KUVcquN+f39v6+r5zbOr7b29A8uyEDK8NErJg/0TXmqpVOB5tkOVKhmzjUaNZjUv4mq1enQ0YYxpRas1GwFQ4kgzTmMZRX4YVizmEYoBtOVmZamNRoAUAGjAQmpE2WQ2m06TeFaub9SMcjTSf/DPb33685d6/RjRzBiTZpOV1bqSab1asS1od6I8Tw2AYwMhMBvzshS2Ty0bTWZTrs18LA4AlOK5mIJgU6tVLJekKbTb7a3tJ1kGYVBFGvFUYGJTi/zhH7xR5KCUkhJsH8ocvf/B9nCUArEcD2oNCyOBkHEcZ3mh3ml2NjdXklg3G0GW5q2u12lHN17emEwTMICZkgKUwAQDJkYJHobhdDrt94ZZXp4cD7NUag2+a9ei1ng0Xl1pZKnIsqwSUYdZBkToN6mDZrPJuE9+7Cs3hIaVxTOnvfLac+eVxMagC1dsx3V3t/OV9c7y6tp4kn39a7/8N//WX9/eOrFZjaBgOJhYbgHe4c7+M4ZqWYIqDXV0kNqu3DvZiap1yf3nn3v1r/7VX1hcDhDBgFzKHEPSfq/orqCs4B+8c/L5z7+ap1mtWT8+2fvM6y88f31NFNNqRLQpCHN2tg8REU/ux+fOd196+cL2s8mZ9ZCXfZdFFy9vvPXWW4hAs9Pa3t2793CXeYBlIct8fX3t+o3n790br5xZO3vZSWaiWg9ufXR0uD/6uZ//HKY5pdCsdhp17+LV6tJyM6zgC+c2MOh+X7br7ZdeunDh0mpYsZ8+Gq2unJVSfvDB3nvvP/rgvcPDnZMsjbEpQo/pEkwJZVIw8sPI0B+ODj+pB+efzb80BgFgAFyWQig9N9nYtjUajVZXVwFgNptduXT+5CDxQl6t2LMkJV758f0ny2fqoE1ZAmMsilzfZ5ZlAcLzKd6zZ7txHCOEtJZCiOk0DvzIsrzAr2DEplPhe1Gel0op22GWBYSwsiw5B89zHAeGwz6haHvn8J0Pvltr1BDGhBWIgGsHSiutteM4xpgsk8YYxhjGQCmUZakUuK7DGBNKJkmysLD0wQePf+InXr9x48bGxsbdu1u2jTiXtu1kCZ/nwyIEaZpKJRzHTpJkPsh3HHRyclIJwuWFxSQ2tmVprTEFjFir2TGAh+PhdCw+9ekrZQYGBKGw0Km2Gs0HDx5IKQ4PZleuXa3XKnmaYgyUQBBEhJBSFPMQPtvyct5/+mCWZWAHajKaulYHiLBsmEwmy0trQUBlWc7igTG5Usa2bcuG+SNdqdIwqMRxpgVnhFaiIMtjo3SnGV25dJZi8uK1zfUVFnoQD8sXr9/42//Zv695AdxozkTJ187QT712ESN6dDCNE+OG0Gn5Wuv+oJimqTGoyFPfQtfPbxaF4Jx7njccTpUWtVq9KCHLCoRQWeZxEmOMtTaMkThOvcBtNJyyLAl2iJV5rs8L1l6gvdP40aNnGGOjHEyEbfm1JgEDGDPLxpTioijmWugoig6Pp9MJr1WqQUUebtth5FLiHR7P6g0HG6vgRZqmBmSr3Wy1K9rwOCk63TDJ8tDzeGHSRDHLSJOf9I9d103SGca4VqtwzsPAwwYA4OhgL8/TtdWFJMkQMuvrQb8/vHDuvOd5BVeA0aBXMMuSShoJrgdh2Ll8eUVwPX9gmq1Ko1GbzbIgCLiIXdtJ4mNVYkTyLBG1GqNMtTr+d7/zDkJUKSNyjZFPKSlL2Ww2Lcva2ykIsxizGbPOndu0bbvTro8G+WgMy6uND9+7U61UKC2kgK3Hqr06Msg8uYNd10ZsUAmcOJmUiTMel1o7STpcP+sP+yKbuUtn073dp2DAdd2P775DMARBcHKghM4btRUZR2K2KEw2GaftBbK42Nx7pizL+s4fp7sHp1/9iZv//X/720+fDc5datRaWqPiyvWlz37h0le++sXPf3H5ZB/1B/tn1s85Plle6ZZ5+pnXno9c0qgRrQoDFk/s81eJhWsffvjw4rVofc3tHaWbF6p5Mcny4/7pbKl9dTSM/9k/fXtp+Uy1hbttP6qW/91/849F0S0lYCZdn+W5KHJhFDx6fPDBrbevXt9cW17LklLKqeur4bhfb7pPnt6bTseXrzQGg3Ecx2UhukvMSOf2h9utdogRyMKyaSuf5f1j3m5Url64ELmVn/nazxqpLALz2lApNW+WP+mUlVKYaKMsBNoABwOE4dFEGjPzPG8ymraalUePd4aDBCEHYXzrycdZBpG1Gjp4NL7frJz/+PazM2cu5UVmE49zWRY5NvVKHRVZiTFdXCTNlv/xD7TRgSFI4kJoxpXELi5V3G5VqGaFOMnychoXoV9XBjCxNMg4BY0MoZbtWY+2nq1dWv+tf/i7K81za63NwUlpWREnI8AEDDNEZDx2vSjPWb83RYAUJ9IoghGSVQqYYFGrdsezp719vHhu2Zj0/HL9a5+7niSGBn7Kc9cGwCVooyXIAlHChCj9MFCIGZl6rrN/Mtg66Snb1jYoUABYC7pSr1/edF0fv3+rp42shEGsiuEgcRgsLzbKsjw8NgKDjfyF6hhTAizBUMHIzflp6HtGyyJLGs0lbdhH78ZeHWw/KEpotOqjwR44arlTnRzJ82uRQ5pxyYuyMMoLXRFFdW3svEgNBwscTa3cQqUgXsVgWqiMVu3a17/06mdev3F8nNy7f9htyasb9r/xr382bJn/63/1d4Sp1VuOp+WZZevSpdo43t89OBqO8GQMitvGoblImnVIJhPAzuEozRSyA6/VwGEFJ4k1m0Eysd2wqFRACnc0HZY8Y6Td6+edJVyk1vDQwXR6fCi4RoYaPwjKQiqZN2rW0gLsPAwXNhB2x7ZtFzNIe05gNzRKKDJFRizHBUO0lC51TEmqDVpts8Mduzc4vvnp8PGjUeTYSoi15ToRLdtmRyeFwTmi02Z9rShgliWIAsZYK16kkMvRcDJlyKFApiOEqAgrwXRWIOSmMUZYVKK2EzUePDmm9sRo4jiO0RYjdruqfSwJooU0hkhsJAXbdS1BhrfvjZhDwZTNRiA4xMnEYbDYagx20cVLZ/cOR25FxzOBdMX1Iit0fvd3nzzbhkxL5gRpYTTEjmUZCQihyXjYqiJLeqOj2UsvrjMnJ8zmkJz2xhW/Jo0eDvOFpa4XduOihwxo6TXrzYzrZ7v73/7TiRNZE75VDdCjRw8u3Vz7zvc/zrLi8FHy8o1oOeyCAMuC9z984+GTA2yDxvloMHaYh8BIa3Y4PiK0AVq+/QdOexFbTnj0MD9zJv6Fn7/x7NmzlbXFzY21w+PTwSBDxLl37xhbzjvv/Xm1XgMov/edB91WWwukuRUG1Tv3tz/95UvVynKlskCJ2N8eVYOl1lJ+930QRlVbrpQ4jhOtcZqTxc36uJj9xj/4gcv8J7efnW2cbXTcqGojCm++9b3XPrf55ncOx4PcdqDdItUQIj/ce2K99ebO+Sud3ul4OlLt5jpFnbzM9vb0F75+s9XcTHk+G2e2bfvBwrnrRTIWIq+HLmDJP/NahXms1YVrN+tvvPHxw4eTrBguNWowBctyjJlLVv7VnbLWoI3+0RbFGKOUmg/jlFLtdtvzIM/zV199td+fLbSXJ7PeaDCtt5gWPmFZrze49+Ch59lZnmkNQeDt7JwyageBl8xKgvznXzzvBvmjR8eMesYoTESa5pFfSWfZyVFveXlFKRVFUa8/NMaAASlKz7U9DxqNRuA5WkqKIMsSSsEP7M99/jPMgiRJJIcoCimlYLBSRgihlELok+snBJSkk9kJs2ng1RA7eXwHrZ1n8WzGObdtFwF2LAChGGCbUWPmvzinPWopYZ6egRAihJRl+f77729vb1MKnxC0iMFEWswri6RIlOcDBlSNmDGwvNRYXFy8e/8BoqjWaCRZ+uJLrzmOE0XRj96FsiwDhJjt+oH1xnc+sm3YPBtlqVIcpI55aUAA13J9sbmysppl6UpnQSIgGvzI2T3YLXnpO65jgef4e1v7ZaIQKZVS04msRE0gvNp0bt+5/40/vmN5S0Et1MQ8evLwt/7nb61uhFwOJdcb58O1M+04kb2TYjjSUhilIMvK+WDXcRwAGM+mxpjTQd9xnDPra9NRSkiJCE7ytNOtUtKUUGIMSZKk2bRaZfOJbZoWaVIGFV+UqcgzVWLXNRixgitgqNHJ3/7uIBmH9bZOZmI0Tko1tJ2I2qYsBcYaEU4IMSDb3bDdaQ5Ox6enQ8cBxw6Gg32ldJ4py3KrdWc6TaLQGU/6lmUdHx9Wa16RI8920yxxXbq6spolUHIO1JRiThjSk3FuWThL1XhyWq838zwrBV7bqA2HZaWOpxOT83QyyrvdRdezAz8sUykyDWAsivNMZFnJy1KUstZwfd/nnBe8bHVrWcEzMbYsur+/zQuYTQuhxnmeW8wfDmZlAbZN5gRJx2F5ngchthyTZ8JySFCRX/jyix+9f/DuW0fdJb8oeL+XdbvV06PjsjS2g30/5MKsbrhpmtYb0XM3Nqb9IkuFbTnToRdU4ORAT6fDZrf48K38hVe7K2uNBx/PusuhVCBV1j/C1Zp3elRgS1uWCitgo0q9jrnsv/rpi7Y/u/tRr7OEgzq88PK1bvfixx/Gb7z1xtUb7TIn7a5ba8J0oJ/enQpOgwitnamcWd/85jfeBiRSfvTeh+/nKWgkHzzaefJgAsi3HfyDt/fq9Zbjwre++S4Yq7tYnU2ljbqzycDC4cOPji9c4TxPb94MfvqnXn/ycJAl+OL5q3c+7j17unPt2npRztod6/XPXazXVyeTaaWbHDwVH39892f+4s0sQY8e3jPoNI3xynL3ww/uvvPG42oEezuTeFbk+X6neXHzavDwzq5jR65PsF22FtD1axfu392djFS76/2Tf/y9H/vxl1zLkpIjBJRiY8ycSjXPRfnf7pTnyiytNaWYMZYkSZrChx9+eP/+A9fFo8E4CJCQiecGWWJanRZm+vbHDy3bNQik0K7vZBkUaeEHnlJQ5GY43n/hlQ2E4KNbT3yvSihIKbM4syyHUjKZzIQwRcnnCQRhiI2UsuTJFKbjIWhjlKlFjdlstrax9uu//r/cuPlcsxUaDa5rzWYzQhgAKDW/bEUpxQS0BiEAY6oN5EXabNdGwziPncVlOhmNkyQ77fWfbe+UJYDRBMN0KudGPQAAAxjT+esAAAYBYVQp9fHHHw8GA9+15lwfpZVFleJggJep8T2wLKvVCpWCpeWWEGI6S9JcnZyM/Ep09+HTa1eu2IwYKRhjlmW5vhfHOWH0ydaD/inU6hEjyAhMmWUxzagfeDCaTT91/WaWi0zkLqJWgG3CuBDGgO+7aZoFHt1cW09HsWVAZJjzgthpLgZKO7fvnNx5sPfia8/90r/2r31we9Yb6oNRz/UqoE21Sq5dWa50QBm+vz8d9jXPQShtNGAKSikCn4xRZrNZUYpZnDDbWmg1Q9+RMqFgDftZb3A8GuKg4sxzDjyfzWIRBFGSzIoSPLcSRDSNi0pgMUVDR5eZJIwyx928VBMlvv/xLIhIte6+8qmzGEOZas+zpUAIa0C5UZDncWfRd107nqbxpNjYXDg56F+7fs61vZWVyrOn+2lxxChTkgBSZckJBqOzPEVSakAQBL7gtlI4TmcZn3FlKCUYmWymA9/d2zrpLjSUNMxCmLrHx1PMpBAO4NSiYNmoXl1UqkySDDAQGxtlLJtgxO7f3yeAQEAUhEibuYah3mwcHB2FNUQtJmRhZMioZ7A5ODo53B8NBxIjAENEKShGhCJMwHWtnd1jRGUp5OJK890ffDAcZq+8dmMyGSWTTJawcXZha2ur1bJtB2uDp1PTqDtHe9lkOHFtXK9XeF5KEQd2S5o88IJnWx/uPBlb1HQXw8Oj0++/te9EFBGYxrk2FmWVPC8uXFhGpBiO0sVVe215vVqHPIMrNxa/9lNXDneSwSQdjERQ8//kW28Bhvc/em99fcPzaG/fXL5ed8Os6p0ZHJMvfPmlRpv1e+r4eFJrRYjqe4/vXbq+XO/UHj0c/uY/+L2yzM+sLe7uHBMKh3sCGe9nfu4raQKYmXojvHtre6nbuXLxTC2KfvEXf+l3/vHb3SU7quL9g6e1Ovhe5XB/PB2hin9mNpvVOqlWJM/B8mi/n+3tHn/+i58qSr2+4fPUHYxPdh7lo8nEteury43dvSPP6Sg5W11drnfZ7rPZq6+90uq0lhaamB3tPtI2bbtR5rj+N/74vS/+5Aunp6ez2WzO2WOMzcMA/sUEcQ53+9EpUKmGw+GQMowxdl2IZ+nx8annBa5nN6utak0OjvNK1Z2OVXPBzzOtFKIUhDRay4VFPBymWhahZ/tBqCQona6uRKKE8cC4TiQUj8KwGlZnY4U0rVVrALjVag1GiWtTjDEjViVE8XQWBAE2hGJrPlgsJbz59vcWl5eyTNsOY8TMnbbwCaZQU0oJIRgDSDBGUQuE4EFFbz3Ay2eY41hZkd586cVPfe4LpdKWAwDaIPBD9MOEhPmbAsEYKKXzmA7GmNa63x9rrQghWgJBBmGwHZwmeRg4SmLXAQy6XnN9D/zAmU6n00kaVAGwrZF4/72P/8df//UoCLXW0+lsDm10PCaEmEyy5RW3GoWnJ1NGjVIIYzqdjpsVK87VjcuXnm0fGCRFxqlLbUwLjrMcslzkOawuLdsEyRJqAXU8bVk0SSGstAuZ/+Vf/Uv/8X/6n//pt27/Z3/7bx8cgqKYeYAts78/u3ZtmVI+nqbbe/3Z1HBhI2JhjAGD0QRjTCmVUmJKSs7jNMGMcqkXWwuthquFlKq4eqMtOD49ncZZOj8RDHDHBSl1HM/Wz4TDQdKos3gMtdD3bEoJyWLl+JCV8OxJv72MKQnGQ+4FecknXIBXsaSURlkACBMDhhRZSZnZ3z+MZ2UUVTwXMeo/23qEEBmOps360uJyjXNBqW2M4BySJGl3fQaeFNr1gBDS782yxACAkFxwA6Db7cZ4lKVJalthvRH2+0M/rNy5+1ADYZaZTUshi7KEo+P9xaVzbmANBzEiAAqMAkClVjSeAVbGdYlnW1meGKOiaoVZ1mQyW1ptAaajaT4aqmSmFpexVmR7e8QL8FxPFIJisBlCRgQB00aOJyBk8fyLm/3TVEl06erCZHYgSms2Lev1yPfg+HCyurpIKc7znJdweDByHZxMZO+kf/5Cp70AQHJlJkrCxgXbtRr9Q/WFr63s7e2+9b1BVPF5qZbXK1kG9RYdDfLl1bookBBlWFXJLMOqcu4y4bLc2h3MEgFAjg9BCj/OewvrQJljMxeRzCgnSfN4kiRx/M7b99JksrO9+/DxoyvXzy8tnuW5t9A911noPtt7snEx+ku/+spf/rc+nWWcWXBm7eJP/uRX11c3d7YPP/zgo1deuVJp0939Ey5MrZ0/vLf3Ez97c3G19e6th5vr55NZCkYzCufPL+fFtFozzJ4VBV7dcACMESSo5oy5k6F6snX3619/UfEKpqcublbqyCaW4+hpPFxZaW491FHFtm377Pk2WPDNP37rj77xgVLT2ZhOx/C1n74wG4MTlg+enN76+MGXv/zFKAqUEvO54XxlMlfVAEZ4fjoaAxhjxggARFFUluV4PN7cPKO1ZoxorZUSGFlaS23kcJBQYiNkOJclV4ABY5oXaaNRZQx4mdiMjsZDJbyyMLPZ7MbN1Yf3hh+893AyHRiNBoPBa689v7t7opSek9kdB2klCAaESKfTSdPYc2wAKHKZJkAIWj1jf3T7/d3d7UrFnk5TZuEsLcpSzPtcIeCHEG+glAqhlIBq0+qdTnlhtRbAou6tO3fefO+9ackf7syIgy2HFaWQYH4kO5LSzDcw8+JZa00JU0plGSilhOAYA6EQRVQjbYypVCrGmGo1KvIsioJuNwwCbzJN0sJgAlrhMLD7J2p5aY0QVq83bdtijHHOtdZ5nraaVUzzoswmA7A9brhwrEpRTi0b2TaEYTCdFpZNKKVccKXUbCa0RhjZSoLrWLyML52vVCPGGDPGeJ5FmaUB/Vf/r//m3/l3/wOg5OhAhlGweakST2E0nmkF03R3NhT9Y9k/MfVaB1MkBEcUmIVlrrBBnHPH9gghUso4TQ2CpMhbjabnGSOZMXDj+StZbGkjihIotbKMI6RsG9Kk6Ha7CJnjw8nceJfEeb3pEWxpgxGWSapsq1Ft6IInoqSESsbcvIBCjOKkNMC0wpQyShxKLcXNwa6klPb7U2M05+LFF14tRVGt2w8e7gBAGNn93tiAqlds33EH/RQTwAiJErI0nU2T6dQA4LLgWZb5vu95HjJgU7TYbfcHpxcvXj7YP93dnjRa7smRDnyUTnCzC3lukiz3PDfPpOGgtXFcqFSd8SizbFqWsl6vMotIyR3HbjRqeZ4TihFhb3zv7TQBMEwr9Iu/8MtcYM4Zo8wYZIxhFlCGKEWMsTyTlo2lskcjWRRoYbmhYaZNMZ2kpYB2u3F0tIc0ODYiiCIQjNqlMJvn25TpZrNZaejV9ZpWkImJ49Jak7zzxuDa875FvOmUVyoNbLHZLPMd1w/sJB3Wqz6hZn//KHSbaR4zxg6PHnpW5cHD7Woj+uPf2c4z3mh4Dx5+9Ou/9vtXr10wxvQHOaAinmU3X1iWimcz87nXX1xdb0+zpwtL0Q9+cPfW7SfvvX3w7T979Off3P0n/9PBf/1fvPX/+E9/9zf+3oNmfdl2Zb83effd97vd9osvvjzox1euXnSDRsmjr//ElxqNBrXEp7608d0f/OlXf/4F20dh1aq3/KhGsSWbHVZKEWdDyvT+lvSqxrbtNNXxhHaW2IM70/d+cHdhodNqtgo+Wlhsc8GljqMq2Kx6sDfaflw6TtZttzcuAih7OsSArONdsrHZ/spP3Cg5RA0ahsHTrcnTp0+llFprjPGcmvWJ+np+lPyoX8YYz0vHLEvmG+j19XUhhOv4o1FiWQ5mlND6mQu1rSelZbNsJsLIkhpLCYy6WiupiuXFJcdD2qhZXI4GebXSIgiDKa5cuXh0FDuuSy0SVit37t1VBlzXzfN8PB532k1EQCqTpbltu0qptIilklJKyyYll8xCk9lQgTbYRJFdFipNsyIXWoPRiPP5X6ABgeSSYEtrRJl5cHd89mKIkau1rlSD//E3fvPPv/cWsQAhk+U5IqB/qDlHiMxjl7UGhFBRZFmhDUaMMcsCbSTCxrLBGMNsK89LYhvLdgmTzUZXKG7brhcFaV6MxrFWUKlaiptsOnnthQvP3XhRaVStNMYjzkvp+77kynVdysh0BqDLMgNK5LwUbbaqhKrAcsbZbDyeBaGTK4E1lEqXHHlBdZZkhECzWT86PvAD5+s//qVma02BcT08nU76p9kP3toBgMWVADMQHLUXms1Wy/IhywAjNBydcu7kOQSBa1tIaZClIAQxH3POy1KEYaiUKaXkUsziOCtypfPl5eUszzbOuYNe72Av9n0XaWzbjm3RuZUTgaWNlJIXGQFkbNs6PJpE9YAyl1IsOK5GEWFOf6Bv3FwjBPle9PTxuN4BLcBiPqVEadCKKl1WKlVRUs+DZrPZXbT9KOqPhrt7w1a3ubJ2hlh4PCy4LOeRuJWqX4lalSqkaew4lBLw3DDP07ObDYptLVEljIoyQ4Y2apGUJssGRkK70/3oo9GZjYpRohJBMtG2Q8LAn8zS/99v/RNqU84BMNjUMwYWlmqMWkUuASCqBHE8wUiFgWNbdDwaKqmB2oXgnMPScjNPi//pN/5Zv1cYgwghWZa6DnFsTIlxbFYUXAgolTY6uPPR7unoQOops4MsMczBSgN15PHx6UK3kSYTm0S2K4tEV2pBvWO5kaZMe57jOFWA0HbcZgd//GHvyqXVM5v29qNhMoW/9G98oddPMVJKIMry0G2GVf3s4RGzwPeq46HTWeKgitGp+Qt/4Zduf7w7nZp6lb380uq/+W//TH8f3ntzPEvK5eVFBNbh0WT76fhTn7peqchXXnnlwx88REC++uOf6y43dUYs3FxZXXzh1e4rn+189iuLn/pcq5T92x89HU16x8enB0fDt99++0/+5HtPn+7fu3fvz//0w/2t3j/8zd/93d96/PKLL6Xj2jf+8LGECqH8xs1Llk1u3nwRDAv9bhqDay1Ioe98fLq+WUvizAuwxTyhSzBweoQKtd2svfLpr7Te/8HxmXNVL3AB4M6Dp1wW9z4+KnKFSXn1ymW7UvLEvXtnfHoaP3dzHYPfXgReKoCAMjweTzGmvh8CQJ7nxigA/UNnHhhjzA+3KwAAQpR5npdl6Xne2tpaFEVSStvGUdU/Po7LHCbTvufBN//orfEgcW1SFgIIKABCQfDMtlm7FSEjg8A+OelzUZwcaUDacvjFy1FZmDhLG43G2toaIVAUhcUIRsa1bUKI1kYDCsJo8+yZssw1gEGAgGVZFlaiIAowxq5rew5ttW0p9VwZgxDSGubqIYxRWQDGyLbZ7rPEaLSw4oK08rxYXVjqnfR+7df+F4sCVsZGEDoWTwHj+WmIMELGGEIAY5plGQBwzi3XqVadeTc9F4hnBVeaIMwBUeYYDYQxdNqb7O4fW7adJLnruMmMW4h+/SuvLbVav/f7f3Tt+ku1RgcAskwYped9vjZZ4EO9EbkeSAFgkEGZ5QTYAQfTg8HpeDBzHNbPkoqHDMUG61kytm3mBuzDj24zat947oU0KWfJflloVVaLjBowr356aWEpBGMtdmwp8mQiFpfrzAbPbRwdGqDg2OCHgFluOwQbkCWiGFWrVErluo4QIi8Lg4BzmeRFVuSlmFSj5TDCN56/9PTxfhQ5YBjnGgGr1RrayCgiUsDhwfH6mdXZRBWJWVgNBiM9SgoWEUV4PvVCD+1tHw6OYTouAHBWjI/2SkqBuF4UVQHnCCFjWMkT3/f6vVmnE7i+tbhSL0qVZOp7bzxaXO483dpttlpFys5daCNkRCEpQ41ayyLs+vX2LM54CVoDL6HRcIFDPhWBY88mghLbsk08gbycNBsLt2/fRgYoFrKQVy+tD0/FQqfue/X2AmHMDoKAl4ZSIoQSEoTMfD80CsKIeZ49nU2D0Pd8J8tiJSQGCMJqf3SCMSyt+lefXzs+KlwXNBLaCMqAWci1ic2QEIKXCiNiWTCJx04AYehG1VbvJE9ipRVGxCr1hGAn9KtKcIaiwFO8UMNRNh6XC4vNw+NtwWmaSD+yESVSaoLQyjq789HI98Of/OmvfOeNPwUs2w2nFrqhE1y//NLWk+MkNhgDwpxZiKK6haqf/cLl3cMndz7kzFIXLjdffuXiO2++iwD6p5mW9PDw6N6d3UaDnR6lx7vp3/z3/ubv/v6vOS7tHXjf+uaHn/3yai1qCj7ZeXaAqYjq8gtffC1wF8oEMwZrK5vGqJ/8mYsIrDBkv/BLX9jdOSISNSrW2aU2Bfjyp3/mf/ivf/9wO/3m773zh7/78E/+6OHuVvnBezs726Oi1I1mLaqGO1uDTrd27txGvVXjQif5qRZVzEAKCuDduvMmL9HXf+YS0o3l5cXJBDkBwYxaAXzzDx+BYVi7r356CdtFnpGyVBrw7/7+bx/vw+mxMHisJPE8DwCyLNP6k8aUEILn4Oh/eYsyX7JQSosCiqJ0XfeNN964f3+3Wq0GQbB3sJMnREEeT9WNm2fiMbQ7VSn4LEldFxU5NwYwgfFkVK0FhAIvdacbxMnoyuVzlkWZU/SGM9v2MEVxmrS7nXPn1qbTabvddizr4PCAObbWWnCtte50u2mWGQOO4/R6hW07ANoYE6clpdSyqW2zuddw7k9GCH4Iv8EYEc4zQuHxg3zzQi3PJGChFfUs+9//G/9nZGB1edki1AhQBQ/c+W5d/3DdjuYpq3kuPI+VpUAI2batlFJKSAm2w7JMen5FmgIBsxyYTlNK6dbWbhCFSZ73BjmlludCPIkHp4dri8tZyr/3vTffeOPNc2fPYAyc87JQBAyzNCMhs6DTdpDGADisYF4qwMah7GQ0wJgh0AIZl1FMCCAII0doXpbCGLOxcV5p8vTZnigt13XychQnY0btca+wLToa9SeD8uVX19N0PJumNu3E+VBrkCVxA7F6hvkhIgRrBYx6lBEwHACq1ep4PM7znBBSCA4ARV4C4ZOhvHx1Xary6eNZvRZMRmmrXuWcE0Jc185zJaVeW1s7OjpCCMC4C0tBmuqtnWPbx4AgnVnJrFftEseqf/zR6elxsrIegg7BgFIKY1yUU0yAMVubHGPY250yCiXP601/69mubcPGmY3vfO+945PcILBYRcis3qhKqdvt+v7eMSFsYamCEFBqYUQ3zjpFNu20uqFfrVbCtbXWdBpbNmxuLlgOMGYXRdFd7CDQGAnFLdeBu7dOj072W80lwKYsS16quT53fb3R6w+G4wkA9iPf9WyModmsWxZL4jgIvWarKoRASHm+hWiKcEGQizEozZVWUeRpI5mFKSVxrDGmlNhKWgpEs4Oq1briYe90ppTS0qEWEzr1gmqappQRjBw/oK7lTU/UnVu9sFIPI1ZkaHtvv5QDygRS7fNXLSn5Umdpfe3ChWv+h+9Max2wbV2UvcvnXuRlNumzMMJKkiAinufe+sH46vPVN7//xlvfPjIaWgvG84J0Wj66279w1T17vpJMqVY08KtlAUFAoyj6R7/9OxvrN2pRc32jcXxy8P57TxZXy+dfabTa/oPb8dF+9ujB4Rvf+divKECQJtIPnCQ/mk35pz/96R+89+3+6awaWmfXGye7vb/1N7/03W9923Vnl5+H1z6/5vpemvPxhD971r/13v473zt8cG/yB7939+hoVhT8o49vW27pubTWhtk0C0IYj+PZFKp10h8Obn344OB4a3ennIyMUMryUGfRqtetb//xfrUh2/WFjQsOT2tRR37v2w9rlYXz51c3NheSqaVBKGUQwo7jUUoBoCgKpRRWSlFEMCgDimDPIIlYoZSjtcwLcJyl3e3sz/5wb2O1CSoBQy3ZkbqXZ5nj+pgBc6yHD2eb554jUMkz43map7bn1JXO3YrBNDBEjWfJqAeLaz4g0mouVSpkMBplszhy3b3tZ5VKGfmt6XS0vrkJ2BZlagzCyJmluzu7z8YD6ng0z40SwHXquESUrExBqZha3CgkbWVLz2FWoVMbAaJ4khuPGc91lrpB0uPdpqlVQ64l82T/WO3vbT98eO/C+VarwXxbBi5gm6XINgos5giuFZhScgUqTjOMGAYlS+kwCxNhjCDYMwAKRMWGVEyZV61X6j5Bs0lJrQ4xZjrKnz070hrcqpZlnXlAq/l7D/cNczXlTx+m02nsWlGRKwoVicdlymwn90OwXDaeaRqUiNQEShkozw25sLxqgrDymHd8qE8Hw0EONdsLEliI4JUXLtjS33386Oh0iyOOwKp6XV0g0CV1BYCmCC4812wvV5KU9CYHWjsYM2Wg4KTkpeKoFnUcSgDAC6UBoY3lOtacGlvkfJ4pOBrHXOl4KMJQEcDvvnXPsfEsVcKIUjNVxA5xHZtKAbZD7t4a8AKd2fR3no2BFoyFs2HBFKr4YLvx4T5Z6EKlPsLG5iUwhi1m0hGsLGvfIw6LCKJlMeu01x89fuZ4cHCQWYgUBTYULXY3kuHetfXatbPV7Uf9xWXRP8psK3/tldcYtA3myyuXb93Z04hGDZWXEyODSjXMxZgwKNWkG7V9Z3rz+TONavPs6tXQE69cu/ELP3H25pX25Y2rrab3yuuNmzeDs51qMd5bbIAACygwKgBlCGlZeDpXmGOCy+Oj/dBzA9sVeSYlb7XbBVcVy9gaNSt4qbmYTUukc6MtbcC3QRQZRTiqtEYTjjEoKTDmkKFWxJrRiuJicDLKRjhwIpGnHkkdUyOYczRFljfLd5lp/dTPXcUGy8TEI+5HjZPh4fPPXxEFmDRQdFYI/fTZuHfaqrXZD77/uF5pLXR85p45OEjqtTAIWc6RsrVG3EFVx5Qvf6q5f5zNEudgb1IPGjaFpaXG7b2d4Zhd3LiB8jolRVbI8WCSD5yNS940Le/eP3q6fd+twtMnB4vttY219tJq+Pje4NLlxfOXm5G/eHoykgquXL9w6drlvNxf6pKdu+XnvnB1f7e3vwvNBRj0RaVb21y2fvWv/DvfePfj7V55+MRdWV6++Xy923ZXV+xaS61tuu2WR5HxLIjH7slRuvtQnexmPAHXAs9BG2cbl66ujmdHYKq+19UGoipOhurGtWUTWw7JsaDdZa5h9MYfj/yQXrm2Ua1mRQyWr7//9u2jg8M8nj7//AIgIFQiJDnPlFIIkX8xN/wkcxMAAKTSc0BWWWA3gL3d2ce3D199feWrX399MgHLYQrM+SuRLB2liyRJZhOxvmF9+N4H1JkyCxzHAVz6oS4ylCUwz/2JIra9ffro4ROM6bvvvtdudw8Px2Cw43gIoSRJ5gkbe/u7vu86ji2EEKIsS46AKiXnJ3cYWrNZUhRFnueuy6SUrusqaVybUEIAdJlpzyXpLNZSzcvDC+cugoZG003T2LKp4CZOUtey93Z3LcvClASRhzGUuTBSzAPjKSVSmjlEp+QZs2AOZEQ/xONkWaYUMIYsl+UlL4XyPG9hoXN8cpol8YVzG57NdrZ6lsUsCoQqKcAPKsyFqIa1EQAQx7HWklBECMHIyYu0Va9LKYbDeKFTr4S+UQIDSiQQ102KMqpWeVHmcSpTdfPq1a+9eu2gPyIBfuXKtcVa96NnD6VHTA7jQel5wdwuwhhJktjxnOvPnas3wsO9ycnxkGAIq+L4QGhFEeFKQJ7xwaBHCHIdoIgZYwjVvu9bluW6LibzxZQUQhSlmE+TtdYYQEmdx1OGIYtnzGZpkXPOu91ar5doIxzXnk7TXm9QlqUfmaLgtkOrlYAyRS2Vz/Bzz19wPDMagBBSobHrBBRhKbWQZZrGzcbivbsPXYdVKoQLjalFKbIIA4E8j/7UT/1Uq7PoV/zBeFKt+w/v5Lu7e8trEYDZO7qNlEcI6fUUQqbXH7ium6bpcDg87Y/2e4f3nybfffv9/nS2uz+6+3A74cVhb1JKYnlOrdE6s37ui1/69M2Xbn76c5///I997uaFpb/0szd+7DMXvvz6+sW16pm2dXnDX2polxrD0+Vu0yJmNhq267Xh8TFPYxa0d46nCysXP76/u703sbxIKOy6blB1NcDi8vLO3oFUIARoxErBsF0GVWawVKgcxwPAGlhpaBGFUZ7NKMVhUC9ziLO0Uqu/9eYtYwzG+M7HD6bTGGN6etovM8iyxCjjOpEbkrv3PipLFFbatWaYFTmXQ6EhzzPb4xpxB4cOrQk59L1anumnz06nY0VtvrjKGPEqVfujdx8SmndatcdP7gW+vbxi19ugDU+z4u6D+4QlvX4ym8hXP/Xikye76diLgqVrz3e//8aTZw8ms/g4CN1LF1fjIZw7X3nySNdrSxvn29P45M6je4Ah7nfOnAv+7J/c+Q//nX/3ra0PR2n/0y8ECxuVf/obf/r+2yeY5surrShww8hZW186s7HwlZ9cvfGSadaszfW1tdXAIphnUIpDm8mVMzbnllPrFTKutdzmsnYbk3PPVVbPeX5Y1yQb99nzr8HWs+m9O09r1cbrn7ugFAiVxBPd7OKTowxQfuFCdZ6l8S8TvQCAIoS0McgA/qH2ECFCMZvEPJ3h/lEc1ODK9YVayy9LoaeGEmLbIaFqeaX98UeP67Wo2ZZaOtOiaLStNBsjDJgoQEpJo5RaaHd29/bX1jqua3Z2dgM/sCxrbaWBEJnDWXu9xOC9ZqueZkWaxpY9fyxNpVIL/Vq9PgGTDocTyuxuu2FZtH8ytWxqPjHVCAJIKUEQ0gI2VxfGRT8tSwCSp3Geie5CYKgCJG3bLlJlDEFCyZInWZaJIqiFhZSzlFdcu1ASQGNCSg5KAhjMOQQBmt+FnwBllVAKGIN5nBbnknMphV5dW3n06CRJ43qjGgSDNM21JJgYpTODYXfvKHT18gYMB7jV9bEBSoCXpWIMIReZolavKBVHAc1SGmeJlJJRbAjEeWnPsvF4ura28uzh3ub60l/7i7/8d/6//yBy4VMvP7cQdT+6fX/Ih+21VimJ4KIshU0wc2yRzoIoajQrRsGgP52OtB+4q8ubw8k2GKIkFAUgBZhAHE8tO2CMZSlHxFRrLmAjZDmflhRcaCkpwkUuj3qniyuLrmPXqi5ByLHcRsvJs1NALC8zZqHJdBwFiKJo0O9bBFqN6lJ3JZ5u5Sk67u1rFTBbdBbZwY7Y2dmqN+14ipNUNDrAc/ACYhAwhnhZDAczwc3iUrPfmy07ISJWmo2WOgtv//mz/8OvfvXh4wfv37oPLOydpuc2L77yEh4NTylztvaHK6v1wWDUblYxKm2buS7C1OJSI0qKXNkeIAyKYOxaB4+nxFLVYW9762AwUc36ProNlQpZWm73erk01uJqxVPU9WyEme9HlJDl5ZYUIIQquCnytN1uKMkZWfF8//79h6uLC67rUsyKrDw9OgQOIplhDDZBsjCtRlRkmeTg2DYjWChkAHUX6rWaE884AMuy+RpPM4awQs16WBaxRetKUs45piTLAAyybKfZDJ496m2eDaezsecBaBSF1dkoX99oHexMtQm+/+ab45nwKqwQ/U4n+v0//J3P/tiV9VXrycN4sbbWaNl374zH4+Fit72/319cheH45PKFDdcJVUrPbjSM5gjpT3/6Zn+2PU1OkiE+3i8WFxd2d45XV0NmQZL2/81/6xcfPnjye//4B7/8V1+YjvI0NY/uj+/f/mhtw2/Uu0mxfflyI6o5e7vyo/f2u+vByV5iteN+r/jJ19s//nO/svYTr3U6lYOD/R//qS8VNz775u13Pv5oj5KJ7TppIo+zJzdfiHa2IfTR5z9/FlMx7FcuX3ru+Ki/tf1YzDoPTh/baDVPDg8PlOM4mHjMTf78W/deeuXlNDm982GigdtW+7mXyHtvHdeap512cOW52scfjC9coZORbnTg6ZN9L5jvjfEP18ifAFLxvEo0ANpoYwwhxKZMKzg+npzsaeLBpz/X1VqLQgURIYRgIkZ9rSG3We3kULsB11o3WyEx4Hvac6ksqRTIC1QpJnmm6rWqbcHJyannBY16K03zRq2upTo8PKxUqo7jzKd+lmUNBkNjjNEQRYHjgZJod+cIYYMQ8X3HaFmv1z3H9X1fiJJSIiUHoKCNEMIAGAFLi9WVdpdoQBhTCtms3NzcMJojrG3KJqMySfKzaxv1ai1NU4QxYRgT41BAupwPTI1GCKAsoMiNTZFFcJIUWmvOJUJICEEJmYe0lJwTzMCQyWRSq4Urq75RZRYnoixqlUpRcCFKRIQfhLOk4DquVOuDvopn6elJKqXEWCslpdTNVi2ZTQmYixfPn5720hmPQr8sS6Lps8c7jx485twwxrqLbcex/vw737734NnNzXY3Ch7s7d96tru5snK8u3eSFoFrF2lu2zYhyPO8ZrPFedEfHD97PKJO0mo17n50dHJYaKMI1baFwDBjIC9SIQQGlGWFZZFKaIPBZSFKnhtj5lacgkvOFWBacqmUCn37xecv//zP/sTnP/06BtIb5tVaLSvy0A8wQfFsePPG2QvnziGNtEYGZRjZSuo0kRhDWKGOQ4iuLyw2p3ExHfP1jSiNk6jiCSG45K7v7e8fr6ysMQsrLZeWG3khmq3oaG///NlOp1u/9/gBs8Mkj30/fPLkWZw9/dwXXt3Z6lMKx4dxpw1pNqUUayMXFhtZlpel2Nw8B+BKIwjDnU7r9PT46GCysNgBqjFxAEMuVH8kAbwgih48Hty+ezRNkz9+894/+sP3v3/r0fc+ePitt++98cGTP3/no6NpPB4PbdeiDGtQ9Uan3Vp+5dVPn1nftOX0U9fPrdaDL3/qxi//5POfvbHyyoXG82eai/VKzXOmp4OAQDYusc4RzyyTNmt1Lcx0UFgQ1PzIczyXeqETYQyOA9oUlaBycnBaFBnC2rEjz7PKIjNKr666nWY7cAPbod1Oa3/n0LaiohwvrTt/9mdv206lELHrutUoOtibNTpVyvDG2nmXsSw/no6To6Mj18MWqXNpVtaD5aWVabr98a2jmmt/+tUXDg/6S6vw+NGtUX9WiXyhC0zZ4/sDiwVeSJPslCLrW9/801/91Z/78hc/83v//P2XP3X2yvUKSDDaXlpa6g/33v3+yeVrG7OZfuvtp5tXaklSWLbLC2ly/R/9jb/82+/+g94TvntHHEjItgY//tMXP76198Ufu4Jo8uzJ+PgoXlqohd5Ko+XtP7W9qOgNn7z9nZPf/offUpJ+9ksvBa0ZAxbPjg6fKR7D0VZx8BghWe1t0+9+591SwPMvne92Gqcnw+6SEzTg+995zFV+8cr55TVnNmK1ekAo3HhhI5mBFHpO7ZpTrz7xKet5vjoGANBaYkBKmek0zhNGLLa2XrVcnqWp5zQYY7arKWVpmmdpef/uru8FSstOpzGZzHzXS2aS4gpIj2BMKZ5Oc0INpRCGrtZQ5KVlOZyrra0txki9XpVS5Hlu21CpVLIsm4tayrKsVCqLSzXO5f7uaZbPAKBWrwCo8XCktWk2m0ppzoXjOAjIj2rdLAUj42oYKAXEYrZDpcaua1NKtJaOY/WOR2dWOo1W5/DwOM15WK0YpAF0ECItJSDQgIwBi7lFZvJY2JanlKEUKKXzJOU5FeITx44yjNkY0zzPAenllS4iRGrQRrkepQhrhRhDUvIwrFoWfvZsvP04AwDbpnOolDbcGKW1YhYZjUbT6dTzXMuCLMsIISG1v/aFL9WiysbGWin4mc3NR0+3/+yNb188v7a5ufnw4aO7Dx+BhXMudvd7586eAz1H5IJSKggr00l8cnIipUgT6C7Ue6fx/n5/3De2B0qZRrPCGFMSshRmsxljFCMIfBuBIYRKKaUGRIgQglJLCFUWYjydSqnb7Y6W8vZH73//re9+8OFHB4el0nDcP/Z8whgRpT5/cW1vf+vk5IRQk0zLIAgG/aLeXCKMFrlijFRqJp7Qfn9YaQLnLM9zA6AkB9Ccq0rUaHdbnU5rNBpRBpgKqTUyUKT8F3/xF+8+vOtG3mgaLyws5oWs13Uy4dUK649OOXeW1rrjHlCEykLbDvUDK45jrVC90To9nmnJA89ZbLdVmTMG7Vb95Ph4MEgxdRw3tB16OkinsckyIAQLBVxFeQHUrSclOTwtHjweH5xwbsgHt3enaXL7wb1HW7uzTN2+//TeJoj3SAAAIdVJREFUw2eF1IUomWOHtfrSysrlaxc+/+XPfO1rX/7pn/r6X/qFX/zia6/9a7/w0z/11S987tXN129efOHawrWLLYLK6WgwOE36xwdFOhNFBiKhhpdFqnTuWIQyrLQMQhchY9n4zHrbsmF3b7C0uHD//r08TQLPvXBxs9PpvPfODhdFrR48fLT9dGun064BaFmQPIW/9tf/ardz7s6HOxaTF65WQdeX1+qtxsYsOd44EzTrnU6nc/nKhT/55oeexVe6y3c+fvjCpzbzosimZPtxiijYDq82WBwnZZkrjW2nPh3LP/z9N77w1XN5Ck8e7770yvUXX132gvLp45Mbz1/bOLPR6/W+8ftb58+vf+0nPruxsc5YzmP8n/yNX/bP3Pivf/3vbXaQVvZoDGUpzq1vvP6Z5x5v3UvTcmVtSUjYfjq+/dHOo/snXOeIYjf0c46l9n//D9/55h/f3t+Vf/mXf+Xf//d+ZaHV/Mzr565dXI2ijKfl+mYtGcLd9ybD0UG3dRGQOjrsv/hKy2jnzu1dhPX1mxeOD8dKWI5rbe9uOU7dmH+xPf4X4kIwBhAghMwnDFhcliIeSy2dWlsySyYTSZDO09hjtayYYeQgNnGs1rOnR9Wa49qRF4DgAEYoTt9/+xljjFBBsK8EBpxqxV3HAoCjo6OTkxPXtYo8HfSHi0tdAO37PmMUYxrP0nar6XmBkkbwvF53eMEt6lACkgteZqDBGGWEGQ8nldADBBjjUgillOVYmFGkcZEOsFZKgAajsXz8ZGeO+bKZk6WpyNQv/eLPfHT3wf3Hh1LDdDrFGEdRxBxbI0CAtNbKKEyMlMBLQIgIocKwghFN05QxW2uY4xQRQgwDNoC0YYxleQxgEMGOFyoJSyt1oaXgCABleTkajQDou+9sjfpqYaV27vx6rVZjzBVCCsUBYDgaIUqKosiyXCOo1hqTyQSD6TYb585uBEGwt7f/6MnjoOKdvXD+xoXLW4Pxre2eyAXVcOvps4XNlc1uu8wLDJDlsySLB4Ph8cmAMbcoisVlF7TbP8k2zgV5LigBy7JsVxE6F2mC4AZTQS1wPQaGFAWfxplSeu7tMcZwztMi18bM4gQMdl03K+D49PSg3zcWJDEgrTDWnBdaA2XmzMZyp7u4vFxHyGjJ4gSKDHW61WFfIkMbLbfX68VJfvVay3e6lu0GESCEqE0xuL3TcXehRhgvcmERS4rM9ezTk/Ev/YWfncSD77x1Z2l1pVa1JidDO1BS4HNnzteizrOdJ0EV7e/2shlElUBKsCzsBixOsu7i0nA8mkwAlEUwGg37Say6LUeKvMxUFLHIsyiylVLTGX//vceMkGoUUiBiljoYkEyRKJk0kMNSK2LAz11alYByJcJGfefo+MM7T+492sslP07K3/vOu//rN974R9948x9/6/t/9OYHt7aO3rm/+/DJY2pZCkylUrl+7cqly2eff/7SKy8/99Ir115/7fkvf+najZvnrl5bunipvrDgBz7YHsXIct1gOh1GFSdwfa0UQqUfmkad3by5DIjzUlGGfc+eToadVvcv/sWvgqFhUGu1KoyYahTNRlMjiRfYQpv339trtztrZ+pnNrp3H/QqNWv7SXb+SjQeJUY5rq8mA/B82NxoTqdxqTgQrhW4lk8gCkIbG2rbynJhZ7vY3Z4lWf/8xUUA6Cx2Ns/Vs2K0vfvs+VfWAMHpsdg/un3x8uobf7Z75Xpn/7D33/2XfwhSbK41b96s/ZVf+tl/+P13Hr4jLl6uv/QFC5XwLNYLzYul2fLs5rnNy1ykYVCzbdLp1k8PoSj5P/2tnYNn1aihBJ7UOiyoO9s7g7//9/8RMd12M7p+9UK3Xfs//Y2v2hakRd/2IB4WB08TZY4alQsK8UGP2z5/dC9O05RR7/Nfu7719GQ04gSqvdMRGPyjueGPTkMKgOeyFfihAnmuWWG2JMxkSeKyFQKszEfdbvX0EQAzC4tOZK3fu7uvIWWu3RsMABteimolevZs5jq5Nsp1K0IaYwqjhOPQy5fPnfb3CEF5Viwvr9t49v7777744suVSri7K4uiiONMjLNqpR5FXlFkWSHHY66VZ9kghapUbNuJm40GaHFyctrsdMU4k1IiIFJr37Y0krYTElwibRyPGgS2j092szhLXSfENjrcP7h+9dryQv3hk23bJ0Awz0vjYMe1MC04AkaYMZzaGiHpeOB6VClFMTLGCCGKQs6pEGUpmQWcGxaCxYjW2rXsOI8LnnthZTpJslwFVWoQpIkOK67npnli8kSkGYBhzImZHWqhHCuM8YxzzighhASRHydaaiAEE8KUBoX18eBkNJnuHe7UGxWVq82VtXPLq4+29j64/WicQKdGtZGeUz23ceHhe29TigBJrQ0XvD+EoOJFYa3Ms9W1zrOn+0HkGE2UhDSGxUuEUiuoqkIIrG1CiNJ5GILv2Rbx0jxNElGrOwCGMCYU11pzzjnHs1mCDHV9DzOIy0JxOS1goY601haBwPOyrBQiX99Y/bNvfvzaq0u7+6cn/dnion98Mjp7roYA0qTwHHd5HWUZ7O32JWfPv9xVeiZLQ2qQpGZaTpfPMAKubYVaSm14lkxt5u/s73x853614WvAjKpkoKwIbOG2O2GeiTQB8HIwEaZlUWRCgDYSISWEqkS1p1vbYSUYDYr2AuWl8izU7LaTZBbHxoB47vrKB+9vEQctLFT3tmecQwMLlecIKdcDLhIlQUqgFKq1ME3HllXXIIQWveEgmSmDwXagUokOe6OD45zHgL0CEyM5VPynearW18m5sxfffvte6DHLsjCGqOJTBlGl5bjGDZtRRCu1hhEU0XjUT1Y8dzqJ642QF2klVLJEDvWqkWt7bHdP+CF+8mSvWrOUEkk6m03zoOIutN3r1166c3ur35+euxDsbO0uLlTzPF1eC7/5zW9/58+euUH64gsX/tnvfLy02CaufvBw+rnVMJtC7/gkCJ3pFIUNuHrlyvfffbfRDludRV4civKEOhUNReRX+72Jw/C5C2dv33m8s/fs4sWNh48/YB4dx6MXL604LpJSao0bLf+5G1d/89e+02wufuYrC/T7+e33e08e7ZIc/of/7j8SPvpv/85v2druz/DiZnZhHT58MviNf/RbB7v8zNkwTiZpkuUFFxnUa/IrP7M0mR6m49qtdw8xAz+IVle7Tx8/rTTY0UnxH//H/31nMbl289xwMi6K5eX1hpRscCp3i34YwZvf3r7+QqPVXOz344ILxeGj905feBV5vrV6Ae881M2axWyYA2J+uE3Wn9SGhNK5HWXuaUMIOZYTRd762bAShFHgO5Ytcrve9C17xqCep6ONtTOb5xuUgONSx88cp8tcsBjzI3XzxfbRYWaU5QUIYelYjfkY6+jooNVqNRoNxijnvN6oIjTHcEvPY1LKbrcTBB5CKAxDZhFCwfc9QojnuYTC8vJiu9kkhCilGKOWZRkDhJB5y0ktVkpBiWXZmGJSr9ctxzFEt9qN7Z3dMKxgjcus/MWf//lHj+5oDPVGizF7YWFBC4OANNutILSIRZiFHRdTpsLIrtYCjD7h0du27bnOXKLpeXYURZQii2LP8zAgQpExCmNs2/bewZHreCVPmk1XCuM6gePYjYZ7dHiqFLhh2GizsEK1EZQ6tuXatk0wRZTNZfEGgRf4gDHCZPHMciqK/eMjRECU/OLZs2vdxZO9g3sHzyzk1DzbBEy5ZL25bHMy5WkY+p7nOK7FGA5DXKs2ylIsLi4qiScTFVSL8VDZtru04gHLbFZrtUPbplIYQqhlo0aLOo6FEMOIAkAYVCzLmitUEQGtZV4Ky3JcL6hWq5aNNAAwxw48KUyz2VxcXEQIYQKNZm1vfyuMopXVZl5M08SsrS9Pxml/eLCwsFiWwnMaQTVFyBSFc3wkCNXttguAPc8Zj9Jmo8ssjYkK3KrnVi2LGSM6jcWTk6PBlAfVRqVWXVnp1MMgHjt+gM+sbg5G245HRj2o1NHFCw1CURjSer0mFfc8bzQa9XuzMKiWBXU82/NDRGzbpxoMY6Ht+ec2ukbDhXPrpcqUoUijzc2lMk0lo9om2KXaJjkA8X23UnUqlUolnIxHSpSUIcowAeh2WoSa0ekRVVCrO65lM4w6TVeVquLbG9evnMYzySBReK+fDmYyk9b2wfTd9578+Xfu/9Efv/VH3/jen/zJmz94/96Ht548enJ6/+HD8ah4+nj/2bNnSqmtZ/sf37ofhe5keryx2eQiWVwKw9BvNuqEIKWE1vrDDz98+mT37sdb3QVydnN1odlO45hRztVgeWXDqOClT62GoccLKDg/Psjb3bBWWUTgLq3UlaR5nm6crZ/dvHzx8gXLN8NhKjg5e76uZMociGoTP8Se51Xq9PKV5tOHMk/Car395tt/srLSaNXPKWPGk5nt6i9//eIf/8GT7oL9K796+Xf+0cdauhvn60UCv/wrn//CZz/7G3/0+9nBMBdYWnbXO/u5zz8fdQb/z7/z9/7b//6/KOLK4W6qgVeqrLlIw3pBKW2G115+de3CpYrvQ7ttCXEauNV63SE+EJcgG27d/357uf7P/tnbz720+PjhLJ9pRIvnX1i9ee2Fweno5HS/01m4eHm9Uq8cHgwHvaKxkN54/loU+b0jWW+BUvpHqPwf1YJUyQJjPG+LEEIGRFlmCOTW7qnHrHjCldpaWx4ej2ppTk5PR7y0pgk/Pn1fSjjaE27ID9OdgycgAaYTceaMFwTw9rfj9Q1baDPEp0U6lVrnJX+2dVCpuLNYPn5ytNCphR6+desdCTBJIC7Hvh+MR1meZzazHM8MJxJATzJZHFjTGBZX0tBVvaNePCuODqXlpP1T0DLhkicZxF4ZD2WR9T/e8jz/8HBnGoVeyp2cD/MCRtmpTXU8Ub3x1qPHT6Rynjw+QQgE31NK+a7vuv74mBuNMYbESAAgrExCwBi4SPIZtJdtwsq9g+Oj/aLMwZjSslA200YfG1AraxMDWZrmw36+9ySWApaX18vkKJ+prceDvFSWQ7kEk0JzbTI8MTwbPHowW1qUeYYm07LZMlLxWZwi8HgOGYqPdk+kKP7gHz+9cL6FdDk4SVtN2js5fjR+2BskJwOYG6X5ECwb+sF4+ijZO4SWn6S8wMSezHScw2Sy73gMCJzsCDDo7rtgTEaonk0AExianZ2nEiNQkpyezACB5+tBdGg7aH9bA4JDPRWy8Lzy9JSvrESHo1nFj2fxZGGpU+Zk0DNpCgAZQnrLAqd1ugzeYJTtPoV09mhlPUrS6Z9/T9+9C7YDx0c7WYxv/UBHlaM8RaP+03anfrAzqtbBsuDOexPC+NZOPhqY2QiG4ePq6SIhYjScnQxm5hQtLvuPtx6UBcQTSEb7/QP3YO+0ZKrowwkCp1X/1je+1TtQhrOdR1PsgMoAMTg57U1mrMjQnY/2swQazZ408Nab09X1RCj1aOsoTXiW6c4CTfSRwmCEd/rYICMRMnu7k/G4NJlIJE77VJYlYPDaea/3DJFCFXa/VzKKGRW9kwQQ1OrZ02fb73y3BwA5EvMGKx/klAI2cnZy8vROb9YHMAIwuEgOT4ajYckzQAiMkfEQAMB0iizLylIhBAgdhn4wHGiAnsMoF30A0AgA8h+qPv6FV4I4Kc/44cETBJBZatCPz5xbPDkWvb4YDZJf+3u/c+5cJx5Hf/jGrWvX1+58vGtZwEX64DHrbOp+X3347u7nP728uba0s3+0e/hmo2r/r//TXQNw9+FIKzw7CJyLOskyY5K7H993HHL1udq7739w7frqdIxGo+HS2h4tzbOt3ZX18Nt/9l7vqEQE/vQPdk6PZzxJfActtuGzn33+/fvv/N/+L79NCONZ/v6393bunaystpu4fmJGf+vf+78f7k+7i15ewPBItDrO6dF4cFye2SR/8Pt3JAeCoYz4syczxwbJqdLUmGnvBMpcanN3NpV/979813P9/mzq+tY//e2tX/wLr1en5957//HOs7tr6x3HTqYKvv9nz6bD7vpZvXZe3PsonU5oEDJtBGOIMSaEAMCUsn+BrqKUGmMQkMuXrzZ6NRp61BCexc2m2+26FX9tY6MmZbfIVavW4J545eWFer3uV2cGdLfKuDCODZ1OZW1xNhqmflgjliKWYJggTLO01IB8359NxrZDw8ALXSvLSwVolmZgCHPceBxLqX0vMqjQpiSY5ZmxLX8y7W+sLlU9J47zo5N+vVlubpw7uzEBAqPRCFPisEhzlMyG1Zrt2CgIZoHf0IYoI9MibbXrFOuySG27sbp6OeMdLktCwA+9PM8taodhtRJ0tHYwBg1Ka0kZsW1msBFCiBzXGhYiueu6K+1ScooQogxRWhjNtNaNVmBQVhac4opvTzGSq2trUdiYxantuVprTInRyBQQVpAbSMaIx2bVStuAyrKZ57sYa0zAKKviTW3bPbO2WK1WK1G2trTIkFGXsjAMAKA3HNRa6TlT01ozixgjlRbVamTbVq3adpF0Xd8gnOWiEJJQShhFyGwsCgBkNDEGAUjLRl6AbAd3GyUljjF4nkxHmWEWYCKXFxjG2vUshBXGOI7jVrMTx6lnKT/AUcVVxkJmUXIbYyx07tpu2BjXGg69ztaXELNkreEudjLHczw2tRxTrQbJChIyd1wkuYNZXK1WqY4vX11RJh0OZn6AF5rC84Klpd7CYr3drSBkuk3RbcZa0U7XFRxniVro9OtNt9mo2jeWMHIf3d0/e2mxXl05s3bZJonrNlyPlmpmuGfwZGHZB9CSs9VFIYSKooAQezDarTddSiyjnOkkk6pcXGp0GtZXvrT04E7/uesvWTYk2fDmzRv37j3AhFnMxdjinAPoqGJ7AREyK3K1tiwtyzWazdZixyWdhcjxzKc+1ZkrNBCal2ySWdhxaWuRUrNS5oxg20DuBYQxNptmoKx5N6a0wBjV6/WyzJVSblACQOhH4/EYY2rbjhZSazg5Lf83nrFPtnnEgNKMMQSmKBPHYkr4neaFdtv1fb/f71+9cv3Onbuvfer5MAyXFjaSJKNMV2qhZdNqVGEQ/sLP/4Ub1y//we/9aad9XSPrM5/NuTAGxTazZBk02sS+bg+GvSiKZrPZzZs3bt++3Wg0LNboLjQ6C1FZptFzm6dHiY3jT7968fHT2ysrK9evXmtWK3fvfPQTP/6ly1de/+Yf/8Hzz19zHIsQwkXBeU4x1KL26tLFPNOhl9x88QIm5r13HkQVd2m1kiacWfqF513bqhBCHJesr00Z9YsMSa0ASctGloWNMUXBtUKE2GBou1M9OdkhKFhZarSaZ7JSDIbj5y69kKWqd9onrGzVly+ee3lzZXD/zlG1WgWAouBCCMdxiqIQQiAAYIwIoQDwBx98cPPmdS4KizFugCGGAAAkQA5gAGwNltE5wRYAzrLM8zyttQFFMChtA5QEawAMigipmY0kZFgzjBkAUgYwwkpxQjCCOTpMYcyUVggTBAjMXAaJDRRSFZRYRlsY07yIXQfPR5xKazCYECaEoIwYUAg0AEMGa6MRKhHSUmFK3PksoBQFYcxoCVoxSgDAKNsgPY/IkFqCBkZtJTRh9JPJ6SdDhE9GCZJTZkkAAYABbCWBUAAQ2kijKQAlxACUABrA5iXGRM5dfUopg4BgoudaTg2ADEIcAJTCGDOENIBQGggGAG2AipIghJklAUoDPgJttEBKAsNgkJSaMgbAtP5EA6CU0EYy+smVz+3c8zIfY2wADBgwcp78ZQyaO9ExBgCtlCKE/Eh+P/+mNkprCxMwRmEE2mitNSUWANYCMCkRFgBIKkKJY4wSMrNoKFVCKQDYoKkQilkIQAEyWjOEJQIF4BqjAAkEDkAulDAyYpZCiGuDAXEMc/N86ro2gJJKUmIBzHMpSgBbCUDIYCqNkQhZYBgYMMARNkIqRh1tsJSKUmIMSJVZzBjQADYA01oTbBBQITNGtQaNwZUSIawI1gAlgC8FoxSUNoRIAA2AlVYYk3k+BPwQfam11GAwBgTIAJICGCMAJYAA4xpj5mTM+b8GE0AABkqlGcH2D28qBYCURhjQPId6Dk+ap7XM2zVjACEwCv4V+ijS8L/3YUDNXygEGACUkNpwZlkARmmFEMYISyUJIQg+2aIqzTUYgikCZqTBBIERgJBRAjABbAFAls981wUAADa/8rIsbdueV76A9A/vW8lVbhEbwEpT6bkuwuU885ISCwyAlkpwYjNA5Id3JgUApRRCZs6TBsMIFQYUMg4gkDqm2DVQGGNhsACB0iXBGIBpBeh/ZxUMBoyShlJcFpnjMACd84JZLgKEgCJA2khtxDwRRypDiYNAA+Df/M3f/NVf/VXLsvI8RwhRQDDHAkqpd3d3MYZ+/7RWqwklFccUW1pLQEoZiQmT0lDKQbsYU6lSx3F4iRAygHMAD4GSIqfEmm+vLYck2ZRiG2OKgMw7dABDKFJKIGBSyrm9wYCavy42s5QGQBKQxIgaQ7QCTAAQLwtlWY5WMK9sjTGWTY1R2nBeakocAwpAUoalAExsUBxjbBAYBABACCnzwmYWYGKMkZLPAWVag2U5Qgit5fz9FmOsYT5MMBhjihxtBIBWyjDqSCkpM9qUCGGjGRhmjAEkMNbGIIwsQHJ+38yD9zDGSkjGmNLIGI2wkUIz5iilMFEGStAOJvOIBkOJixASMsNESskoQaDVD2kayCCMMDVaYvyJTmr+OH1yqcj6l2PAjDEGFHyinfrRg4SNQWCIMUibkhACMI+sQxhTAKwVANIYYyFK22ZlWSJEGLOl0GBsTIQ2xVx4QAgzRgGSyGDQLgAGlGMCSlCECCZCKEmpBaC1lgAUIWOMMoYoVbquLzhWihOq5umJaSKZhZVSjuNIKXkpmUXmMx0luGV5SgKlGJCQUjJmF7lilmbMnsWp41rMMlJKAxQMIwgpXVKKhVAIGKVMqhIhZbSFidKmNAYwssBQTEDKQikFxrJtTyllgGOssywLw5oxYm7KAgBjEMYUAZVSM0YMSK3l/EXTCuZKKYSN0XMyJjXGaC3nAaFKKYQYJRbCRsrCgELA/v+NXcuS3DgOzMSDlLo8Hd6b///jfN7Dtt31UNUcEqSknnHEKirackkiQSCRAKgSRaTHft+yJqlesiafz2dmPh4PvqC5cnffXo8vFKDccHvd3PNx215PX9fVzO632+u1Wfj9fl2W5Xq9AliWRStRPm5bNI/mn5+3x53rcnluWxgf2++I9+v9Fu1uhsfdM/h4/NftP/f7fbyT8vX5+ZmZmbltT+H5+Xze79fe15bLx8eHxQ0va2359evz8vbX71+/vn9/v16vv6//iwitzVwxeMO2ba0HgOv1A0DGNwAv3AB4vO6313OziLjePtxJOl4J3jWztz1eJD0IPLft7hlh+Xg8t23Tinme5s7nPcBt265m0fKybdvt/ht4kP7jx4+fP39u2/b5+anFkDDvL88f7l0uFwBa/5gwQxIZ0cwTqNAXEfOX3O5qIkhPDwKEsV5HpahqgMnf9CHpsQBhFjyzPWGKdE5TO+mNAKwSnxl+3UAgw6ySCHN3dUckAc43RNNBFwrn5YMpandWH2YlKunuaXACBifC0SUeibE+dACpR3oAHG7WlwrnZ8BXSW5SIZe1zva4zT9GR4wRpXuaBZGjr5M/xEwMh25xlmH8bOAgx34yzt/btO9508np0Sx8yqYVDUA434m/ZARjA5KG0f6ho7FDJGARrTIuScgaP+kChk4eCWwMsLmwR6C1pbd3s9AQMh3IffViOtGMTV0SIdtlWLr2jUDv3T2Pcrp1ohmybH36BNDnmRPbY53g+nK6Uq0vb2FmHE1wGP3flGzmAGEOGsDD3z9uBZLds0oWE3Iyc6gRJImQ2rO31lcgPEO2i3gHVglpuABdC8LrWiFNz6fWQNmIbPk2h5ONgLW2SJjMbruPmXtKmKEo+cu4tg5FxoqdVczdM12zCmd413inYq2IJIBo+TbMlGYW1W0H1lLy6HQOcN9aa4KRxtxaA5GN2dj7lwE4qGqxfC+yMKDLnXV3WrqzKJpo6RwERN+d0Ag3mNXNAa3NdXp4cC8ikOnunIOngaJF4cwHoN2zSQAOPSKiAQaDO0kYkQUMWHnKWdF6zaRJP8uwLsyra3M1RS2cM+2hl4pIciPC6QYQrdtUfWtBg8f+Qku5AQ2jx0Z+FSnbIkWRcKdQUh2FyyAW8Kh2WrqxmYUZaEPmgEehXPseUpSZhZQjqVoLEir8i+xiB4kChjmMXQyoFyJLyZldv2MNXyRMxmqO3juQE47L6kCua299x+gEW6Q4DuYVaeZ4l1UyRNm6MLkzfkQjFR3LLtL8hP5Rva1bX3S0oo6xlys2ytzSErRMUorXiumOEP3jNqiQo1iZpJlZ4YF0w0IsQ4D6C7YvDDvCtrl1INyzjMIC0oGG0Hsny5ot1ogQydbHYeJShHmHg4bwC7CuSwg20rBUtK5dhpia1BNQFS58cetSC4DeEwYQGeskPuGwZEAua717Yn0TXe7wiDBlZBj8KGxjjzoyJeaIWl+H/6KllzMS7mz5BiRgHohoKvy16ecTMKv0dSYaWgl2T1IIAFk8hBmKS90EDaRnzFwAEYUPwibLhJOT2oyQVx9TE5bQI+RCg/8ndklkVgSk4oMPhoWFecg242Sd2Xsvr8be9UQq3SqbrWHQQE4xKvaebuedt2MGdPKNanKIMXs8Hq3pPOEp4pijyS7HifNxoR3PObXM+e//4aVHofbEil+6GM7sgCn7UPI+uVKWEonQAcTIInMMtgvHvb3DEBGKrL29j6y/Uhv57Ukw+c8Ub+SeRwErudidp2h0DiczR4GCzCoj3FOeLGczi7ES8nxs/6utFbbHOcML6LqFAuDIWaORSm3Mwt1nIjwatNkRx3/ry72i+pPJfCCTM1KqO5lmpmOz/gCK1wB8+/Ze8geKkYukBghZkSDTJ+lPHpyNK4ObvSiFnIVLa03Zvew7rWZmykY14okTq2S0os44N06APBhELduBUFprYSXliOiSk+4+Sg0br26vQxhVyb4c9tjegKDvhq/igtyLrxIlZMUwPx4ykJi2HGVvdsA0F8qR5BFWcWmvBAsBQrNZEBaWCtcY9GReMXwkhgZEi/RDCwWFyRITKIqL0tiJGiFXV8apSi38qDIjGrEcilwD0q2TbmxAGFulohKsgkcca0DAVHYpvO96YwNWwWFPkM2HjCHHGyDwARE7al6lPcVENW0RA+J1IemjAI8D159Ok7SzgHVbgNCkhRd6K8ZEAkhVIor5bVFMXT2kpUvVFliHDsSYFxqAXqacvDDEi5jkaBo+ACAzi2fDV6CTLrZVqiXfGFlGMQwQuqFR3MdWyUIVkg5UlnFIVIfhZFkbwYYccy9FH8Mu/7KNgSeQ7jnYPyZ3AGit/KjiimGC5wjOf25HnMhMM5rKcEJL+CKzZjqB9CCC6ETT3MVwUrjBWPJMc5RFZmv7FA3Gl2FsIGY1GRFzqg04PfUxJn8y7DsIdw9ftUO8CT97SlQJu0wfB8zXfAjQqVHTx5QakuaDYesuVuVbhdLiogOn/w3d862hx8ktcgAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 24,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "Image.fromarray(origin_RGB[4])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "7f14d60f-2f20-4266-b817-01425f99ee45",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/python/app/fedcv/YOLOv6/deploy/ONNX/eval_trt.py b/python/app/fedcv/YOLOv6/deploy/ONNX/eval_trt.py
new file mode 100644
index 0000000000..fe1c297c1d
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/ONNX/eval_trt.py
@@ -0,0 +1,73 @@
+#!/usr/bin/env python3
+# -*- coding:utf-8 -*-
+import argparse
+import os
+import os.path as osp
+import sys
+import torch
+
+ROOT = os.getcwd()
+if str(ROOT) not in sys.path:
+ sys.path.append(str(ROOT))
+
+from yolov6.core.evaler import Evaler
+from yolov6.utils.events import LOGGER
+from yolov6.utils.general import increment_name
+
+
+def get_args_parser(add_help=True):
+ parser = argparse.ArgumentParser(description='YOLOv6 PyTorch Evalating', add_help=add_help)
+ parser.add_argument('--data', type=str, default='./data/coco.yaml', help='dataset yaml file path.')
+ parser.add_argument('--weights', type=str, default='./yolov6s.engine', help='tensorrt engine file path.')
+ parser.add_argument('--batch-size', type=int, default=32, help='batch size')
+ parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
+ parser.add_argument('--task', default='val', help='can only be val now.')
+ parser.add_argument('--device', default='0', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+ parser.add_argument('--save_dir', type=str, default='runs/val/', help='evaluation save dir')
+ parser.add_argument('--name', type=str, default='exp', help='save evaluation results to save_dir/name')
+ args = parser.parse_args()
+ LOGGER.info(args)
+ return args
+
+
+@torch.no_grad()
+def run(data,
+ weights=None,
+ batch_size=32,
+ img_size=640,
+ task='val',
+ device='',
+ save_dir='',
+ name = ''
+ ):
+ """
+ TensorRT models's evaluation process.
+ """
+
+ # task
+ assert task== 'val', f'task type can only be val, however you set it to {task}'
+
+ save_dir = str(increment_name(osp.join(save_dir, name)))
+ os.makedirs(save_dir, exist_ok=True)
+
+ dummy_model = torch.zeros(0)
+ device = Evaler.reload_device(device, dummy_model, task)
+
+ data = Evaler.reload_dataset(data) if isinstance(data, str) else data
+
+ # init
+ val = Evaler(data, batch_size, img_size, None, \
+ None, device, False, save_dir)
+
+ dataloader,pred_result = val.eval_trt(weights)
+ eval_result = val.eval_model(pred_result, dummy_model, dataloader, task)
+ return eval_result
+
+
+def main(args):
+ run(**vars(args))
+
+
+if __name__ == "__main__":
+ args = get_args_parser()
+ main(args)
diff --git a/python/app/fedcv/YOLOv6/deploy/ONNX/export_onnx.py b/python/app/fedcv/YOLOv6/deploy/ONNX/export_onnx.py
new file mode 100644
index 0000000000..ba7440aeea
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/ONNX/export_onnx.py
@@ -0,0 +1,151 @@
+#!/usr/bin/env python3
+# -*- coding:utf-8 -*-
+import argparse
+import time
+import sys
+import os
+import torch
+import torch.nn as nn
+import onnx
+
+ROOT = os.getcwd()
+if str(ROOT) not in sys.path:
+ sys.path.append(str(ROOT))
+
+from yolov6.models.yolo import *
+from yolov6.models.effidehead import Detect
+from yolov6.layers.common import *
+from yolov6.utils.events import LOGGER
+from yolov6.utils.checkpoint import load_checkpoint
+from io import BytesIO
+
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--weights', type=str, default='./yolov6s.pt', help='weights path')
+ parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size, the order is: height width') # height, width
+ parser.add_argument('--batch-size', type=int, default=1, help='batch size')
+ parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
+ parser.add_argument('--inplace', action='store_true', help='set Detect() inplace=True')
+ parser.add_argument('--simplify', action='store_true', help='simplify onnx model')
+ parser.add_argument('--dynamic-batch', action='store_true', help='export dynamic batch onnx model')
+ parser.add_argument('--end2end', action='store_true', help='export end2end onnx')
+ parser.add_argument('--trt-version', type=int, default=8, help='tensorrt version')
+ parser.add_argument('--ort', action='store_true', help='export onnx for onnxruntime')
+ parser.add_argument('--with-preprocess', action='store_true', help='export bgr2rgb and normalize')
+ parser.add_argument('--topk-all', type=int, default=100, help='topk objects for every images')
+ parser.add_argument('--iou-thres', type=float, default=0.65, help='iou threshold for NMS')
+ parser.add_argument('--conf-thres', type=float, default=0.5, help='conf threshold for NMS')
+ parser.add_argument('--device', default='0', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+ args = parser.parse_args()
+ args.img_size *= 2 if len(args.img_size) == 1 else 1 # expand
+ print(args)
+ t = time.time()
+
+ # Check device
+ cuda = args.device != 'cpu' and torch.cuda.is_available()
+ device = torch.device(f'cuda:{args.device}' if cuda else 'cpu')
+ assert not (device.type == 'cpu' and args.half), '--half only compatible with GPU export, i.e. use --device 0'
+ # Load PyTorch model
+ model = load_checkpoint(args.weights, map_location=device, inplace=True, fuse=True) # load FP32 model
+ for layer in model.modules():
+ if isinstance(layer, RepVGGBlock):
+ layer.switch_to_deploy()
+ elif isinstance(layer, nn.Upsample) and not hasattr(layer, 'recompute_scale_factor'):
+ layer.recompute_scale_factor = None # torch 1.11.0 compatibility
+ # Input
+ img = torch.zeros(args.batch_size, 3, *args.img_size).to(device) # image size(1,3,320,192) iDetection
+
+ # Update model
+ if args.half:
+ img, model = img.half(), model.half() # to FP16
+ model.eval()
+ for k, m in model.named_modules():
+ if isinstance(m, ConvModule): # assign export-friendly activations
+ if hasattr(m, 'act') and isinstance(m.act, nn.SiLU):
+ m.act = SiLU()
+ elif isinstance(m, Detect):
+ m.inplace = args.inplace
+ dynamic_axes = None
+ if args.dynamic_batch:
+ args.batch_size = 'batch'
+ dynamic_axes = {
+ 'images' :{
+ 0:'batch',
+ },}
+ if args.end2end:
+ output_axes = {
+ 'num_dets': {0: 'batch'},
+ 'det_boxes': {0: 'batch'},
+ 'det_scores': {0: 'batch'},
+ 'det_classes': {0: 'batch'},
+ }
+ else:
+ output_axes = {
+ 'outputs': {0: 'batch'},
+ }
+ dynamic_axes.update(output_axes)
+
+
+ if args.end2end:
+ from yolov6.models.end2end import End2End
+ model = End2End(model, max_obj=args.topk_all, iou_thres=args.iou_thres,score_thres=args.conf_thres,
+ device=device, ort=args.ort, trt_version=args.trt_version, with_preprocess=args.with_preprocess)
+
+ print("===================")
+ print(model)
+ print("===================")
+
+ y = model(img) # dry run
+
+ # ONNX export
+ try:
+ LOGGER.info('\nStarting to export ONNX...')
+ export_file = args.weights.replace('.pt', '.onnx') # filename
+ with BytesIO() as f:
+ torch.onnx.export(model, img, f, verbose=False, opset_version=13,
+ training=torch.onnx.TrainingMode.EVAL,
+ do_constant_folding=True,
+ input_names=['images'],
+ output_names=['num_dets', 'det_boxes', 'det_scores', 'det_classes']
+ if args.end2end else ['outputs'],
+ dynamic_axes=dynamic_axes)
+ f.seek(0)
+ # Checks
+ onnx_model = onnx.load(f) # load onnx model
+ onnx.checker.check_model(onnx_model) # check onnx model
+ # Fix output shape
+ if args.end2end and not args.ort:
+ shapes = [args.batch_size, 1, args.batch_size, args.topk_all, 4,
+ args.batch_size, args.topk_all, args.batch_size, args.topk_all]
+ for i in onnx_model.graph.output:
+ for j in i.type.tensor_type.shape.dim:
+ j.dim_param = str(shapes.pop(0))
+ if args.simplify:
+ try:
+ import onnxsim
+ LOGGER.info('\nStarting to simplify ONNX...')
+ onnx_model, check = onnxsim.simplify(onnx_model)
+ assert check, 'assert check failed'
+ except Exception as e:
+ LOGGER.info(f'Simplifier failure: {e}')
+ onnx.save(onnx_model, export_file)
+ LOGGER.info(f'ONNX export success, saved as {export_file}')
+ except Exception as e:
+ LOGGER.info(f'ONNX export failure: {e}')
+
+ # Finish
+ LOGGER.info('\nExport complete (%.2fs)' % (time.time() - t))
+ if args.end2end:
+ if not args.ort:
+ info = f'trtexec --onnx={export_file} --saveEngine={export_file.replace(".onnx",".engine")}'
+ if args.dynamic_batch:
+ LOGGER.info('Dynamic batch export should define min/opt/max batchsize\n'+
+ 'We set min/opt/max = 1/16/32 default!')
+ wandh = 'x'.join(list(map(str,args.img_size)))
+ info += (f' --minShapes=images:1x3x{wandh}'+
+ f' --optShapes=images:16x3x{wandh}'+
+ f' --maxShapes=images:32x3x{wandh}'+
+ f' --shapes=images:16x3x{wandh}')
+ LOGGER.info('\nYou can export tensorrt engine use trtexec tools.\nCommand is:')
+ LOGGER.info(info)
diff --git a/python/app/fedcv/object_detection/model/yolov6/deploy/OpenVINO/README.md b/python/app/fedcv/YOLOv6/deploy/OpenVINO/README.md
similarity index 64%
rename from python/app/fedcv/object_detection/model/yolov6/deploy/OpenVINO/README.md
rename to python/app/fedcv/YOLOv6/deploy/OpenVINO/README.md
index cd800e32b8..dd5fde8e16 100644
--- a/python/app/fedcv/object_detection/model/yolov6/deploy/OpenVINO/README.md
+++ b/python/app/fedcv/YOLOv6/deploy/OpenVINO/README.md
@@ -12,4 +12,8 @@ python deploy/OpenVINO/export_openvino.py --weights yolov6s.pt --img 640 --batch
```
-### Download
+### Speed test
+```shell
+benchmark_app -m yolov6s_openvino/yolov6s.xml -i data/images/image1.jpg -d CPU -niter 100 -progress
+
+```
diff --git a/python/app/fedcv/object_detection/model/yolov6/deploy/OpenVINO/export_openvino.py b/python/app/fedcv/YOLOv6/deploy/OpenVINO/export_openvino.py
similarity index 91%
rename from python/app/fedcv/object_detection/model/yolov6/deploy/OpenVINO/export_openvino.py
rename to python/app/fedcv/YOLOv6/deploy/OpenVINO/export_openvino.py
index 7b59ae0fc2..2aaa7026f9 100644
--- a/python/app/fedcv/object_detection/model/yolov6/deploy/OpenVINO/export_openvino.py
+++ b/python/app/fedcv/YOLOv6/deploy/OpenVINO/export_openvino.py
@@ -42,6 +42,8 @@
for layer in model.modules():
if isinstance(layer, RepVGGBlock):
layer.switch_to_deploy()
+ elif isinstance(layer, nn.Upsample) and not hasattr(layer, 'recompute_scale_factor'):
+ layer.recompute_scale_factor = None # torch 1.11.0 compatibility
# Input
img = torch.zeros(args.batch_size, 3, *args.img_size).to(device) # image size(1,3,320,192) iDetection
@@ -51,8 +53,8 @@
img, model = img.half(), model.half() # to FP16
model.eval()
for k, m in model.named_modules():
- if isinstance(m, Conv): # assign export-friendly activations
- if isinstance(m.act, nn.SiLU):
+ if isinstance(m, ConvModule): # assign export-friendly activations
+ if hasattr(m, 'act') and isinstance(m.act, nn.SiLU):
m.act = SiLU()
elif isinstance(m, Detect):
m.inplace = args.inplace
diff --git a/python/app/fedcv/YOLOv6/deploy/TensorRT/Processor.py b/python/app/fedcv/YOLOv6/deploy/TensorRT/Processor.py
new file mode 100644
index 0000000000..7d5fed4cbc
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/TensorRT/Processor.py
@@ -0,0 +1,306 @@
+import cv2
+import tensorrt as trt
+import numpy as np
+import time
+
+import torch
+import torchvision
+from collections import OrderedDict, namedtuple
+
+
+def torch_dtype_from_trt(dtype):
+ if dtype == trt.bool:
+ return torch.bool
+ elif dtype == trt.int8:
+ return torch.int8
+ elif dtype == trt.int32:
+ return torch.int32
+ elif dtype == trt.float16:
+ return torch.float16
+ elif dtype == trt.float32:
+ return torch.float32
+ else:
+ raise TypeError('%s is not supported by torch' % dtype)
+
+
+def torch_device_from_trt(device):
+ if device == trt.TensorLocation.DEVICE:
+ return torch.device('cuda')
+ elif device == trt.TensorLocation.HOST:
+ return torch.device('cpu')
+ else:
+ return TypeError('%s is not supported by torch' % device)
+
+
+def get_input_shape(engine):
+ """Get input shape of the TensorRT YOLO engine."""
+ binding = engine[0]
+ assert engine.binding_is_input(binding)
+ binding_dims = engine.get_binding_shape(binding)
+ if len(binding_dims) == 4:
+ return tuple(binding_dims[2:])
+ elif len(binding_dims) == 3:
+ return tuple(binding_dims[1:])
+ else:
+ raise ValueError('bad dims of binding %s: %s' % (binding, str(binding_dims)))
+
+def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleup=False, stride=32, return_int=False):
+ # Resize and pad image while meeting stride-multiple constraints
+ shape = im.shape[:2] # current shape [height, width]
+ if isinstance(new_shape, int):
+ new_shape = (new_shape, new_shape)
+
+ # Scale ratio (new / old)
+ r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
+ if not scaleup: # only scale down, do not scale up (for better val mAP)
+ r = min(r, 1.0)
+
+ # Compute padding
+ new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
+ dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
+
+ if auto: # minimum rectangle
+ dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
+
+ dw /= 2 # divide padding into 2 sides
+ dh /= 2
+
+ if shape[::-1] != new_unpad: # resize
+ im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
+ top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
+ left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
+ im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
+ if not return_int:
+ return im, r, (dw, dh)
+ else:
+ return im, r, (left, top)
+
+
+class Processor():
+ def __init__(self, model, num_classes=80, num_layers=3, anchors=1, device=torch.device('cuda:0'), return_int=False, scale_exact=False, force_no_pad=False, is_end2end=False):
+ # load tensorrt engine)
+ self.return_int = return_int
+ self.scale_exact = scale_exact
+ self.force_no_pad = force_no_pad
+ self.is_end2end = is_end2end
+ Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
+ self.logger = trt.Logger(trt.Logger.INFO)
+ trt.init_libnvinfer_plugins(self.logger, namespace="")
+ self.runtime = trt.Runtime(self.logger)
+ with open(model, "rb") as f:
+ self.engine = self.runtime.deserialize_cuda_engine(f.read())
+ self.input_shape = get_input_shape(self.engine)
+ self.bindings = OrderedDict()
+ self.input_names = list()
+ self.output_names = list()
+ for index in range(self.engine.num_bindings):
+ name = self.engine.get_binding_name(index)
+ if self.engine.binding_is_input(index):
+ self.input_names.append(name)
+ else:
+ self.output_names.append(name)
+ dtype = trt.nptype(self.engine.get_binding_dtype(index))
+ shape = tuple(self.engine.get_binding_shape(index))
+ data = torch.from_numpy(np.empty(shape, dtype=np.dtype(dtype))).to(device)
+ self.bindings[name] = Binding(name, dtype, shape, data, int(data.data_ptr()))
+
+ self.binding_addrs = OrderedDict((n, d.ptr) for n, d in self.bindings.items())
+ self.context = self.engine.create_execution_context()
+ assert self.engine
+ assert self.context
+
+ self.nc = num_classes # number of classes
+ self.no = num_classes + 5 # number of outputs per anchor
+ self.nl = num_layers # number of detection layers
+ if isinstance(anchors, (list, tuple)):
+ self.na = len(anchors[0]) // 2
+ else:
+ self.na = anchors
+ self.anchors = anchors
+ self.grid = [torch.zeros(1, device=device)] * num_layers
+ self.prior_prob = 1e-2
+ self.inplace = True
+ stride = [8, 16, 32] # strides computed during build
+ self.stride = torch.tensor(stride, device=device)
+ self.shape = [80, 40, 20]
+ self.device = device
+
+ def detect(self, img):
+ """Detect objects in the input image."""
+ resized, _ = self.pre_process(img, self.input_shape)
+ outputs = self.inference(resized)
+ return outputs
+
+ def pre_process(self, img_src, input_shape=None,):
+ """Preprocess an image before TRT YOLO inferencing.
+ """
+ input_shape = input_shape if input_shape is not None else self.input_shape
+ image, ratio, pad = letterbox(img_src, input_shape, auto=False, return_int=self.return_int, scaleup=True)
+ # Convert
+ image = image.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
+ image = torch.from_numpy(np.ascontiguousarray(image)).to(self.device).float()
+ image = image / 255. # 0 - 255 to 0.0 - 1.0
+ return image, pad
+
+ def inference(self, inputs):
+ self.binding_addrs[self.input_names[0]] = int(inputs.data_ptr())
+ #self.binding_addrs['x2paddle_image_arrays'] = int(inputs.data_ptr())
+ self.context.execute_v2(list(self.binding_addrs.values()))
+ if self.is_end2end:
+ nums = self.bindings['num_dets'].data
+ boxes = self.bindings['det_boxes'].data
+ scores = self.bindings['det_scores'].data
+ classes = self.bindings['det_classes'].data
+ output = torch.cat((boxes, scores[:,:,None], classes[:,:,None]), axis=-1)
+ else:
+ output = self.bindings[self.output_names[0]].data
+ #output = self.bindings['save_infer_model/scale_0.tmp_0'].data
+ return output
+
+ def output_reformate(self, outputs):
+ z = []
+ for i in range(self.nl):
+ cls_output = outputs[3*i].reshape((1, -1, self.shape[i], self.shape[i]))
+ reg_output = outputs[3*i+1].reshape((1, -1, self.shape[i], self.shape[i]))
+ obj_output = outputs[3*i+2].reshape((1, -1, self.shape[i], self.shape[i]))
+
+ y = torch.cat([reg_output, obj_output.sigmoid(), cls_output.sigmoid()], 1)
+ bs, _, ny, nx = y.shape
+ y = y.view(bs, -1, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
+
+ if self.grid[i].shape[2:4] != y.shape[2:4]:
+ d = self.stride.device
+ yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')
+ self.grid[i] = torch.stack((xv, yv), 2).view(1, self.na, ny, nx, 2).float()
+ if self.inplace:
+ y[..., 0:2] = (y[..., 0:2] + self.grid[i]) * self.stride[i] # xy
+ y[..., 2:4] = torch.exp(y[..., 2:4]) * self.stride[i] # wh
+ else:
+ xy = (y[..., 0:2] + self.grid[i]) * self.stride[i] # xy
+ wh = torch.exp(y[..., 2:4]) * self.stride[i] # wh
+ y = torch.cat((xy, wh, y[..., 4:]), -1)
+ z.append(y.view(bs, -1, self.no))
+ return torch.cat(z, 1)
+
+ def post_process(self, outputs, img_shape, conf_thres=0.5, iou_thres=0.6):
+ if self.is_end2end:
+ det_t = outputs
+ else:
+ det_t = self.non_max_suppression(outputs, conf_thres, iou_thres, multi_label=True)
+ self.scale_coords(self.input_shape, det_t[0][:, :4], img_shape[0], img_shape[1])
+ return det_t[0]
+
+ @staticmethod
+ def xywh2xyxy(x):
+ # Convert boxes with shape [n, 4] from [x, y, w, h] to [x1, y1, x2, y2] where x1y1 is top-left, x2y2=bottom-right
+ y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
+ y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
+ y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
+ y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
+ y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
+ return y
+
+ def non_max_suppression(self, prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False, max_det=300):
+ """Runs Non-Maximum Suppression (NMS) on inference results.
+ This code is borrowed from: https://github.com/ultralytics/yolov5/blob/47233e1698b89fc437a4fb9463c815e9171be955/utils/general.py#L775
+ Args:
+ prediction: (tensor), with shape [N, 5 + num_classes], N is the number of bboxes.
+ conf_thres: (float) confidence threshold.
+ iou_thres: (float) iou threshold.
+ classes: (None or list[int]), if a list is provided, nms only keep the classes you provide.
+ agnostic: (bool), when it is set to True, we do class-independent nms, otherwise, different class would do nms respectively.
+ multi_label: (bool), when it is set to True, one box can have multi labels, otherwise, one box only huave one label.
+ max_det:(int), max number of output bboxes.
+
+ Returns:
+ list of detections, echo item is one tensor with shape (num_boxes, 6), 6 is for [xyxy, conf, cls].
+ """
+ num_classes = prediction.shape[2] - 5 # number of classes
+ pred_candidates = prediction[..., 4] > conf_thres # candidates
+
+ # Check the parameters.
+ assert 0 <= conf_thres <= 1, f'conf_thresh must be in 0.0 to 1.0, however {conf_thres} is provided.'
+ assert 0 <= iou_thres <= 1, f'iou_thres must be in 0.0 to 1.0, however {iou_thres} is provided.'
+
+ # Function settings.
+ max_wh = 4096 # maximum box width and height
+ max_nms = 30000 # maximum number of boxes put into torchvision.ops.nms()
+ time_limit = 10.0 # quit the function when nms cost time exceed the limit time.
+ multi_label &= num_classes > 1 # multiple labels per box
+
+ tik = time.time()
+ output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
+ for img_idx, x in enumerate(prediction): # image index, image inference
+ x = x[pred_candidates[img_idx]] # confidence
+
+ # If no box remains, skip the next process.
+ if not x.shape[0]:
+ continue
+
+ # confidence multiply the objectness
+ x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
+
+ # (center x, center y, width, height) to (x1, y1, x2, y2)
+ box = self.xywh2xyxy(x[:, :4])
+
+ # Detections matrix's shape is (n,6), each row represents (xyxy, conf, cls)
+ if multi_label:
+ box_idx, class_idx = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
+ x = torch.cat((box[box_idx], x[box_idx, class_idx + 5, None], class_idx[:, None].float()), 1)
+ else: # Only keep the class with highest scores.
+ conf, class_idx = x[:, 5:].max(1, keepdim=True)
+ x = torch.cat((box, conf, class_idx.float()), 1)[conf.view(-1) > conf_thres]
+
+ # Filter by class, only keep boxes whose category is in classes.
+ if classes is not None:
+ x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
+
+ # Check shape
+ num_box = x.shape[0] # number of boxes
+ if not num_box: # no boxes kept.
+ continue
+ elif num_box > max_nms: # excess max boxes' number.
+ x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
+
+ # Batched NMS
+ class_offset = x[:, 5:6] * (0 if agnostic else max_wh) # classes
+ boxes, scores = x[:, :4] + class_offset, x[:, 4] # boxes (offset by class), scores
+ keep_box_idx = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
+ if keep_box_idx.shape[0] > max_det: # limit detections
+ keep_box_idx = keep_box_idx[:max_det]
+
+ output[img_idx] = x[keep_box_idx]
+ if (time.time() - tik) > time_limit:
+ print(f'WARNING: NMS cost time exceed the limited {time_limit}s.')
+ break # time limit exceeded
+
+ return output
+
+ def scale_coords(self, img1_shape, coords, img0_shape, ratio_pad=None):
+ # Rescale coords (xyxy) from img1_shape to img0_shape
+ if ratio_pad is None: # calculate from img0_shape
+ gain = [min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])] # gain = old / new
+ if self.scale_exact:
+ gain = [img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]]
+ pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
+ else:
+ gain = ratio_pad[0]
+ pad = ratio_pad[1]
+
+ coords[:, [0, 2]] -= pad[0] # x padding
+ if self.scale_exact:
+ coords[:, [0, 2]] /= gain[1] # x gain
+ else:
+ coords[:, [0, 2]] /= gain[0] # raw x gain
+ coords[:, [1, 3]] -= pad[1] # y padding
+ coords[:, [1, 3]] /= gain[0] # y gain
+
+ if isinstance(coords, torch.Tensor): # faster individually
+ coords[:, 0].clamp_(0, img0_shape[1]) # x1
+ coords[:, 1].clamp_(0, img0_shape[0]) # y1
+ coords[:, 2].clamp_(0, img0_shape[1]) # x2
+ coords[:, 3].clamp_(0, img0_shape[0]) # y2
+ else: # np.array (faster grouped)
+ coords[:, [0, 2]] = coords[:, [0, 2]].clip(0, img0_shape[1]) # x1, x2
+ coords[:, [1, 3]] = coords[:, [1, 3]].clip(0, img0_shape[0]) # y1, y2
+ return coords
diff --git a/python/app/fedcv/YOLOv6/deploy/TensorRT/README.md b/python/app/fedcv/YOLOv6/deploy/TensorRT/README.md
new file mode 100644
index 0000000000..37857adb26
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/TensorRT/README.md
@@ -0,0 +1,102 @@
+# YOLOv6-TensorRT in C++
+
+## Dependencies
+- TensorRT-8.2.3.0
+- OpenCV-4.1.0
+
+
+
+## Step 1: Get onnx model
+
+Follow the file [ONNX README](../../tools/quantization/tensorrt/post_training/README.md) to convert the pt model to onnx `yolov6n.onnx`.
+**Now don't support end2end onnx model which include the nms plugin**
+```shell
+python ./deploy/ONNX/export_onnx.py \
+ --weights yolov6n.pt \
+ --img 640 \
+ --batch 1
+```
+
+## Step 2: Prepare serialized engine file
+
+Follow the file [post training README](../../tools/quantization/tensorrt/post_training/README.md) to convert and save the serialized engine file `yolov6.engine`.
+
+```shell
+python3 onnx_to_tensorrt.py --model ${ONNX_MODEL} \
+ --dtype int8 \
+ --max_calibration_size=${MAX_CALIBRATION_SIZE} \
+ --calibration-data=${CALIBRATION_DATA} \
+ --calibration-cache=${CACHE_FILENAME} \
+ --preprocess_func=${PREPROCESS_FUNC} \
+ --explicit-batch \
+ --verbose
+
+```
+
+## Step 3: build the demo
+
+Please follow the [TensorRT Installation Guide](https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html) to install TensorRT.
+
+And you should set the TensorRT path and CUDA path in CMakeLists.txt.
+
+If you train your custom dataset, you may need to modify the value of `num_class, image width height, and class name`.
+
+```c++
+const int num_class = 80;
+static const int INPUT_W = 640;
+static const int INPUT_H = 640;
+static const char* class_names[] = {
+ "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light",
+ "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
+ "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
+ "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard",
+ "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple",
+ "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch",
+ "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone",
+ "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear",
+ "hair drier", "toothbrush"
+ };
+```
+
+build the demo:
+
+```shell
+mkdir build
+cd build
+cmake ..
+make
+```
+
+Then run the demo:
+
+```shell
+./yolov6 ../you.engine -i image_path
+```
+
+# Evaluate the performance
+ You can evaluate the performance of the TensorRT model.
+ ```
+ python deploy/TensorRT/eval_yolo_trt.py \
+ --imgs_dir /path/to/images/val \
+ --labels_dir /path/to/labels/val\
+ --annotations /path/to/coco/format/annotation/file \ --batch 1 \
+ --img_size 640 \
+ --model /path/to/tensorrt/model \
+ --do_pr_metric --is_coco
+ ```
+Tips:
+`--is_coco`: if you are evaluating the COCO dataset, add this, if not, do not add this parameter.
+`--do_pr_metric`: If you want to get PR metric, add this.
+
+For example:
+```
+python deploy/TensorRT/eval_yolo_trt.py \
+ --imgs_dir /workdir/datasets/coco/images/val2017/ \
+ --labels_dir /workdir/datasets/coco/labels/val2017\
+ --annotations /workdir/datasets/coco/annotations/instances_val2017.json \
+ --batch 1 \
+ --img_size 640 \
+ --model weights/yolov6n.trt \
+ --do_pr_metric --is_coco
+
+```
diff --git a/python/app/fedcv/YOLOv6/deploy/TensorRT/calibrator.py b/python/app/fedcv/YOLOv6/deploy/TensorRT/calibrator.py
new file mode 100644
index 0000000000..c76ab3b421
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/TensorRT/calibrator.py
@@ -0,0 +1,104 @@
+import os
+import tensorrt as trt
+import pycuda.driver as cuda
+import pycuda.autoinit
+import numpy as np
+import cv2
+import glob
+from tensorrt_processor import letterbox
+
+import ctypes
+import logging
+logger = logging.getLogger(__name__)
+ctypes.pythonapi.PyCapsule_GetPointer.restype = ctypes.c_char_p
+ctypes.pythonapi.PyCapsule_GetPointer.argtypes = [ctypes.py_object, ctypes.c_char_p]
+
+
+"""
+There are 4 types calibrator in TensorRT.
+trt.IInt8LegacyCalibrator
+trt.IInt8EntropyCalibrator
+trt.IInt8EntropyCalibrator2
+trt.IInt8MinMaxCalibrator
+"""
+
+IMG_FORMATS = [".bmp", ".jpg", ".jpeg", ".png", ".tif", ".tiff", ".dng", ".webp", ".mpo"]
+IMG_FORMATS.extend([f.upper() for f in IMG_FORMATS])
+
+class Calibrator(trt.IInt8MinMaxCalibrator):
+ def __init__(self, stream, cache_file=""):
+ trt.IInt8MinMaxCalibrator.__init__(self)
+ self.stream = stream
+ self.d_input = cuda.mem_alloc(self.stream.calibration_data.nbytes)
+ self.cache_file = cache_file
+ stream.reset()
+
+ def get_batch_size(self):
+ return self.stream.batch_size
+
+ def get_batch(self, names):
+ print("######################")
+ print(names)
+ print("######################")
+ batch = self.stream.next_batch()
+ if not batch.size:
+ return None
+
+ cuda.memcpy_htod(self.d_input, batch)
+ return [int(self.d_input)]
+
+ def read_calibration_cache(self):
+ # If there is a cache, use it instead of calibrating again. Otherwise, implicitly return None.
+ if os.path.exists(self.cache_file):
+ with open(self.cache_file, "rb") as f:
+ logger.info("Using calibration cache to save time: {:}".format(self.cache_file))
+ return f.read()
+
+ def write_calibration_cache(self, cache):
+ with open(self.cache_file, "wb") as f:
+ logger.info("Caching calibration data for future use: {:}".format(self.cache_file))
+ f.write(cache)
+
+
+def process_image(img_src, img_size, stride):
+ '''Process image before image inference.'''
+ image = letterbox(img_src, img_size, auto=False)[0]
+ # Convert
+ image = image.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
+ image = np.ascontiguousarray(image).astype(np.float32)
+ image /= 255. # 0 - 255 to 0.0 - 1.0
+ return image
+
+class DataLoader:
+ def __init__(self, batch_size, batch_num, calib_img_dir, input_w, input_h):
+ self.index = 0
+ self.length = batch_num
+ self.batch_size = batch_size
+ self.input_h = input_h
+ self.input_w = input_w
+ # self.img_list = [i.strip() for i in open('calib.txt').readlines()]
+ self.img_list = [os.path.join(calib_img_dir, x) for x in os.listdir(calib_img_dir) if os.path.splitext(x)[-1] in IMG_FORMATS]
+ assert len(self.img_list) > self.batch_size * self.length, \
+ '{} must contains more than '.format(calib_img_dir) + str(self.batch_size * self.length) + ' images to calib'
+ print('found all {} images to calib.'.format(len(self.img_list)))
+ self.calibration_data = np.zeros((self.batch_size, 3, input_h, input_w), dtype=np.float32)
+
+ def reset(self):
+ self.index = 0
+
+ def next_batch(self):
+ if self.index < self.length:
+ for i in range(self.batch_size):
+ assert os.path.exists(self.img_list[i + self.index * self.batch_size]), f'{self.img_list[i + self.index * self.batch_size]} not found!!'
+ img = cv2.imread(self.img_list[i + self.index * self.batch_size])
+ img = process_image(img, [self.input_h, self.input_w], 32)
+
+ self.calibration_data[i] = img
+
+ self.index += 1
+ return np.ascontiguousarray(self.calibration_data, dtype=np.float32)
+ else:
+ return np.array([])
+
+ def __len__(self):
+ return self.length
diff --git a/python/app/fedcv/YOLOv6/deploy/TensorRT/eval_yolo_trt.py b/python/app/fedcv/YOLOv6/deploy/TensorRT/eval_yolo_trt.py
new file mode 100644
index 0000000000..c515b65161
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/TensorRT/eval_yolo_trt.py
@@ -0,0 +1,353 @@
+"""
+This script is used for evaluating the performance of YOLOv6 TensorRT models.
+"""
+import os
+import sys
+import json
+import argparse
+import math
+import cv2
+import torch
+import numpy as np
+from tqdm import tqdm
+from pycocotools.coco import COCO
+from pycocotools.cocoeval import COCOeval
+
+from tensorrt_processor import Processor
+
+ROOT = os.getcwd()
+if str(ROOT) not in sys.path:
+ sys.path.append(str(ROOT))
+
+from yolov6.utils.events import LOGGER
+
+IMG_FORMATS = ["bmp", "jpg", "jpeg", "png", "tif", "tiff", "dng", "webp", "mpo"]
+IMG_FORMATS.extend([f.upper() for f in IMG_FORMATS])
+
+def parse_args():
+ """Parse input arguments."""
+ desc = 'Evaluate mAP of YOLOv6 TensorRT model'
+ parser = argparse.ArgumentParser(description=desc)
+ parser.add_argument('--imgs_dir', type=str, default='../coco/images/val2017',
+ help='directory of validation dataset images.')
+ parser.add_argument('--labels_dir', type=str, default='../coco/labels/val2017',
+ help='directory of validation dataset labels.')
+ parser.add_argument('--annotations', type=str, default='../coco/annotations/instances_val2017.json',
+ help='coco format annotations of validation dataset.')
+ parser.add_argument('--batch_size', type=int,
+ default=1, help='batch size of evaluation.')
+ parser.add_argument('--img_size', nargs='+', type=int, default=[640, 640], help='image size')
+ parser.add_argument('--model', '-m', type=str, default='./weights/yolov5s.trt',
+ help=('trt model path'))
+ parser.add_argument('--conf_thres', type=float, default=0.03,
+ help='confidence threshold')
+ parser.add_argument('--iou_thres', type=float, default=0.65,
+ help='IOU threshold for NMS')
+ parser.add_argument('--class_num', type=int, default=3, help='class list for general datasets that must be specified')
+ parser.add_argument('--is_coco', action='store_true', help='whether the validation dataset is coco, default is False.')
+ parser.add_argument('--shrink_size', type=int, default=4, help='load img with size (img_size - shrink_size), for better performace.')
+ parser.add_argument('--visualize', '-v', action="store_true", default=False, help='visualize demo')
+ parser.add_argument('--num_imgs_to_visualize', type=int, default=10, help='number of images to visualize')
+ parser.add_argument('--do_pr_metric', action='store_true', help='use pr_metric to evaluate models')
+ parser.add_argument('--plot_curve', type=bool, default=True, help='plot curve for pr_metric')
+ parser.add_argument('--plot_confusion_matrix', action='store_true', help='plot confusion matrix ')
+ parser.add_argument('--verbose', action='store_true', help='report mAP by class')
+ parser.add_argument('--save_dir',default='', help='whether use pr_metric')
+ parser.add_argument('--is_end2end', action='store_true', help='whether the model is end2end (build with NMS)')
+
+ args = parser.parse_args()
+ return args
+
+
+def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
+ '''Rescale coords (xyxy) from img1_shape to img0_shape.'''
+
+ gain = ratio_pad[0]
+ pad = ratio_pad[1]
+
+ coords[:, [0, 2]] -= pad[0] # x padding
+ coords[:, [0, 2]] /= gain[0] # raw x gain
+ coords[:, [1, 3]] -= pad[1] # y padding
+ coords[:, [1, 3]] /= gain[0] # y gain
+
+ if isinstance(coords, torch.Tensor): # faster individually
+ coords[:, 0].clamp_(0, img0_shape[1]) # x1
+ coords[:, 1].clamp_(0, img0_shape[0]) # y1
+ coords[:, 2].clamp_(0, img0_shape[1]) # x2
+ coords[:, 3].clamp_(0, img0_shape[0]) # y2
+ else: # np.array (faster grouped)
+ coords[:, [0, 2]] = coords[:, [0, 2]].clip(0, img0_shape[1]) # x1, x2
+ coords[:, [1, 3]] = coords[:, [1, 3]].clip(0, img0_shape[0]) # y1, y2
+ return coords
+
+
+def check_args(args):
+ """Check and make sure command-line arguments are valid."""
+ if not os.path.isdir(args.imgs_dir):
+ sys.exit('%s is not a valid directory' % args.imgs_dir)
+ if not os.path.isfile(args.annotations):
+ sys.exit('%s is not a valid file' % args.annotations)
+
+
+def generate_results(data_class,
+ model_names,
+ do_pr_metric,
+ plot_confusion_matrix,
+ processor,
+ imgs_dir,
+ labels_dir,
+ valid_images,
+ results_file,
+ conf_thres,
+ iou_thres,
+ is_coco,
+ batch_size=1,
+ img_size=[640, 640],
+ shrink_size=0,
+ visualize=False,
+ num_imgs_to_visualize=0,
+ imgname2id={}):
+ """Run detection on each jpg and write results to file."""
+ results = []
+ pbar = tqdm(range(math.ceil(len(valid_images)/batch_size)), desc="TRT-Model test in val datasets.")
+ idx = 0
+ num_visualized = 0
+ stats= []
+ seen = 0
+ if do_pr_metric:
+ iouv = torch.linspace(0.5, 0.95, 10) # iou vector for mAP@0.5:0.95
+ niou = iouv.numel()
+ if plot_confusion_matrix:
+ from yolov6.utils.metrics import ConfusionMatrix
+ confusion_matrix = ConfusionMatrix(nc=len(model_names))
+ for _ in pbar:
+ preprocessed_imgs = []
+ source_imgs = []
+ image_ids = []
+ shapes = []
+ targets = []
+
+ for i in range(batch_size):
+ if (idx == len(valid_images)): break
+ img = cv2.imread(os.path.join(imgs_dir, valid_images[idx]))
+ imgs_name = os.path.splitext(valid_images[idx])[0]
+ label_path = os.path.join(labels_dir, imgs_name+ '.txt')
+ with open(label_path, "r") as f:
+ target = [
+ x.split() for x in f.read().strip().splitlines() if len(x)
+ ]
+ target = np.array(target ,dtype=np.float32)
+ targets.append(target)
+
+ img_src = img.copy()
+ h0, w0 = img.shape[:2]
+ r = (max(img_size) - shrink_size) / max(h0, w0)
+ if r != 1:
+ img = cv2.resize(
+ img,
+ (int(w0 * r), int(h0 * r)),
+ interpolation = cv2.INTER_AREA
+ if r < 1 else cv2.INTER_LINEAR,
+ )
+ h, w = img.shape[:2]
+ preprocessed_img, pad = processor.pre_process(img)
+ preprocessed_imgs.append(preprocessed_img)
+ source_imgs.append(img_src)
+ shape = (h0, w0), ((h / h0, w / w0), pad)
+ shapes.append(shape)
+ assert valid_images[idx] in imgname2id.keys(), f'valid_images[idx] not in annotations you provided.'
+ image_ids.append(imgname2id[valid_images[idx]])
+ idx += 1
+ output = processor.inference(torch.stack(preprocessed_imgs, axis=0))
+ for j in range(len(shapes)):
+ pred = processor.post_process(output[j].unsqueeze(0), shapes[j], conf_thres = conf_thres, iou_thres = iou_thres)
+
+ if visualize and num_visualized < num_imgs_to_visualize:
+ image = source_imgs[i]
+
+ for p in pred:
+ x = float(p[0])
+ y = float(p[1])
+ w = float(p[2] - p[0])
+ h = float(p[3] - p[1])
+ s = float(p[4])
+ # Warning, some dataset, the category id is start from 1, so that the category id must add 1.
+ # For example, change the line bellow to: 'category_id': data_class[int(p[5])] if is_coco else int(p[5]) + 1,
+ results.append({'image_id': image_ids[j],
+ 'category_id': data_class[int(p[5])] if is_coco else int(p[5]),
+ 'bbox': [round(x, 3) for x in [x, y, w, h]],
+ 'score': round(s, 5)})
+
+ if visualize and num_visualized < num_imgs_to_visualize:
+ cv2.rectangle(image, (int(x), int(y)), (int(x+w), int(y+h)), (255, 0, 0), 1)
+
+ if do_pr_metric:
+ import copy
+ target = targets[j]
+ labels = target.copy()
+ nl = len(labels)
+ tcls = labels[:, 0].tolist() if nl else [] # target class
+ seen += 1
+
+ if len(pred) == 0:
+ if nl:
+ stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
+ continue
+
+ # Predictions
+ predn = pred.clone()
+ # Assign all predictions as incorrect
+ correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool)
+ if nl:
+ from yolov6.utils.nms import xywh2xyxy
+ # target boxes
+ tbox = xywh2xyxy(labels[:,1:5])
+ tbox[:, [0, 2]] *= shapes[j][0][1]
+ tbox[:, [1, 3]] *= shapes[j][0][0]
+
+ labelsn = torch.cat((torch.from_numpy(labels[:,0:1]).cpu(), torch.from_numpy(tbox).cpu()), 1) # native-space labels
+
+ from yolov6.utils.metrics import process_batch
+
+ correct = process_batch(predn.cpu(), labelsn.cpu(), iouv)
+ if plot_confusion_matrix:
+ confusion_matrix.process_batch(predn, labelsn)
+ # Append statistics (correct, conf, pcls, tcls)
+ stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
+
+ if visualize and num_visualized < num_imgs_to_visualize:
+ print("saving to %d.jpg" % (num_visualized))
+ err_code = cv2.imwrite("./%d.jpg"%num_visualized, image)
+ num_visualized += 1
+
+ with open(results_file, 'w') as f:
+ LOGGER.info(f'saving coco format detection resuslt to {results_file}')
+ f.write(json.dumps(results, indent=4))
+ return stats, seen
+
+
+def main():
+ args = parse_args()
+ check_args(args)
+
+ if args.model.endswith('.onnx'):
+ from onnx_to_trt import build_engine_from_onnx
+ engine = build_engine_from_onnx(args.model, 'fp32', False)
+ args.model = args.model.replace('.onnx', '.trt')
+
+ with open(args.model, 'wb') as f:
+ f.write(engine.serialize())
+ print('Serialized the TensorRT engine to file: %s' % args.model)
+
+ model_prefix = args.model.replace('.trt', '').split('/')[-1]
+ results_file = 'results_{}.json'.format(model_prefix)
+
+ if args.is_coco:
+ data_class = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20,
+ 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
+ 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
+ 59, 60, 61, 62, 63, 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79,
+ 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
+ model_names = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train',
+ 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter',
+ 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra',
+ 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis',
+ 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard',
+ 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon',
+ 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
+ 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv',
+ 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink',
+ 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush']
+ else:
+ data_class = list(range(0, args.class_num))
+ model_names = list(range(0, args.class_num))
+
+ # setup processor
+ processor = Processor(model=args.model, is_end2end=args.is_end2end)
+ image_names = [p for p in os.listdir(args.imgs_dir) if p.split(".")[-1].lower() in IMG_FORMATS]
+ # Eliminate data with missing labels.
+ with open(args.annotations) as f:
+ coco_format_annotation = json.load(f)
+ # Get image names from coco format annotations.
+ coco_format_imgs = [x['file_name'] for x in coco_format_annotation['images']]
+ # make a projection of image names and ids.
+ imgname2id = {}
+ for item in coco_format_annotation['images']:
+ imgname2id[item['file_name']] = item['id']
+ valid_images = []
+ for img_name in image_names:
+ img_name_wo_ext = os.path.splitext(img_name)[0]
+ label_path = os.path.join(args.labels_dir, img_name_wo_ext + '.txt')
+ if os.path.exists(label_path) and img_name in coco_format_imgs:
+ valid_images.append(img_name)
+ else:
+ continue
+ assert len(valid_images) > 0, 'No valid images are found. Please check you image format or whether annotation file is match.'
+ #targets=[j for j in os.listdir(args.labels_dir) if j.endswith('.txt')]
+ stats, seen = generate_results(data_class,
+ model_names,
+ args.do_pr_metric,
+ args.plot_confusion_matrix,
+ processor,
+ args.imgs_dir,
+ args.labels_dir,
+ valid_images,
+ results_file,
+ args.conf_thres,
+ args.iou_thres,
+ args.is_coco,
+ batch_size=args.batch_size,
+ img_size = args.img_size,
+ shrink_size=args.shrink_size,
+ visualize=args.visualize,
+ num_imgs_to_visualize=args.num_imgs_to_visualize,
+ imgname2id=imgname2id)
+
+ # Run COCO mAP evaluation
+ # Reference: https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
+ cocoGt = COCO(args.annotations)
+ cocoDt = cocoGt.loadRes(results_file)
+ imgIds = sorted(cocoGt.getImgIds())
+ cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
+ cocoEval.params.imgIds = imgIds
+ cocoEval.evaluate()
+ cocoEval.accumulate()
+ cocoEval.summarize()
+
+ # Run PR_metric evaluation
+ if args.do_pr_metric:
+ # Compute statistics
+ stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
+ if len(stats) and stats[0].any():
+ from yolov6.utils.metrics import ap_per_class
+ p, r, ap, f1, ap_class = ap_per_class(*stats, plot=args.plot_curve, save_dir=args.save_dir, names=model_names)
+ AP50_F1_max_idx = len(f1.mean(0)) - f1.mean(0)[::-1].argmax() -1
+ LOGGER.info(f"IOU 50 best mF1 thershold near {AP50_F1_max_idx/1000.0}.")
+ ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
+ mp, mr, map50, map = p[:, AP50_F1_max_idx].mean(), r[:, AP50_F1_max_idx].mean(), ap50.mean(), ap.mean()
+ nt = np.bincount(stats[3].astype(np.int64), minlength=len(model_names)) # number of targets per class
+
+ # Print results
+ s = ('%-16s' + '%12s' * 7) % ('Class', 'Images', 'Labels', 'P@.5iou', 'R@.5iou', 'F1@.5iou', 'mAP@.5', 'mAP@.5:.95')
+ LOGGER.info(s)
+ pf = '%-16s' + '%12i' * 2 + '%12.3g' * 5 # print format
+ LOGGER.info(pf % ('all', seen, nt.sum(), mp, mr, f1.mean(0)[AP50_F1_max_idx], map50, map))
+
+ pr_metric_result = (map50, map)
+ print("pr_metric results:", pr_metric_result)
+
+ # Print results per class
+ if args.verbose and len(model_names) > 1:
+ for i, c in enumerate(ap_class):
+ LOGGER.info(pf % (model_names[c], seen, nt[c], p[i, AP50_F1_max_idx], r[i, AP50_F1_max_idx],
+ f1[i, AP50_F1_max_idx], ap50[i], ap[i]))
+
+ if args.plot_confusion_matrix:
+ confusion_matrix.plot(save_dir=args.save_dir, names=list(model_names))
+ else:
+ LOGGER.info("Calculate metric failed, might check dataset.")
+ pr_metric_result = (0.0, 0.0)
+
+
+if __name__ == '__main__':
+ main()
diff --git a/python/app/fedcv/YOLOv6/deploy/TensorRT/logging.h b/python/app/fedcv/YOLOv6/deploy/TensorRT/logging.h
new file mode 100644
index 0000000000..e04857e64a
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/TensorRT/logging.h
@@ -0,0 +1,503 @@
+/*
+ * Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef TENSORRT_LOGGING_H
+#define TENSORRT_LOGGING_H
+
+#include "NvInferRuntimeCommon.h"
+#include
+#include
+#include
+#include
+#include
+#include
+#include
+
+using Severity = nvinfer1::ILogger::Severity;
+
+class LogStreamConsumerBuffer : public std::stringbuf
+{
+public:
+ LogStreamConsumerBuffer(std::ostream& stream, const std::string& prefix, bool shouldLog)
+ : mOutput(stream)
+ , mPrefix(prefix)
+ , mShouldLog(shouldLog)
+ {
+ }
+
+ LogStreamConsumerBuffer(LogStreamConsumerBuffer&& other)
+ : mOutput(other.mOutput)
+ {
+ }
+
+ ~LogStreamConsumerBuffer()
+ {
+ // std::streambuf::pbase() gives a pointer to the beginning of the buffered part of the output sequence
+ // std::streambuf::pptr() gives a pointer to the current position of the output sequence
+ // if the pointer to the beginning is not equal to the pointer to the current position,
+ // call putOutput() to log the output to the stream
+ if (pbase() != pptr())
+ {
+ putOutput();
+ }
+ }
+
+ // synchronizes the stream buffer and returns 0 on success
+ // synchronizing the stream buffer consists of inserting the buffer contents into the stream,
+ // resetting the buffer and flushing the stream
+ virtual int sync()
+ {
+ putOutput();
+ return 0;
+ }
+
+ void putOutput()
+ {
+ if (mShouldLog)
+ {
+ // prepend timestamp
+ std::time_t timestamp = std::time(nullptr);
+ tm* tm_local = std::localtime(×tamp);
+ std::cout << "[";
+ std::cout << std::setw(2) << std::setfill('0') << 1 + tm_local->tm_mon << "/";
+ std::cout << std::setw(2) << std::setfill('0') << tm_local->tm_mday << "/";
+ std::cout << std::setw(4) << std::setfill('0') << 1900 + tm_local->tm_year << "-";
+ std::cout << std::setw(2) << std::setfill('0') << tm_local->tm_hour << ":";
+ std::cout << std::setw(2) << std::setfill('0') << tm_local->tm_min << ":";
+ std::cout << std::setw(2) << std::setfill('0') << tm_local->tm_sec << "] ";
+ // std::stringbuf::str() gets the string contents of the buffer
+ // insert the buffer contents pre-appended by the appropriate prefix into the stream
+ mOutput << mPrefix << str();
+ // set the buffer to empty
+ str("");
+ // flush the stream
+ mOutput.flush();
+ }
+ }
+
+ void setShouldLog(bool shouldLog)
+ {
+ mShouldLog = shouldLog;
+ }
+
+private:
+ std::ostream& mOutput;
+ std::string mPrefix;
+ bool mShouldLog;
+};
+
+//!
+//! \class LogStreamConsumerBase
+//! \brief Convenience object used to initialize LogStreamConsumerBuffer before std::ostream in LogStreamConsumer
+//!
+class LogStreamConsumerBase
+{
+public:
+ LogStreamConsumerBase(std::ostream& stream, const std::string& prefix, bool shouldLog)
+ : mBuffer(stream, prefix, shouldLog)
+ {
+ }
+
+protected:
+ LogStreamConsumerBuffer mBuffer;
+};
+
+//!
+//! \class LogStreamConsumer
+//! \brief Convenience object used to facilitate use of C++ stream syntax when logging messages.
+//! Order of base classes is LogStreamConsumerBase and then std::ostream.
+//! This is because the LogStreamConsumerBase class is used to initialize the LogStreamConsumerBuffer member field
+//! in LogStreamConsumer and then the address of the buffer is passed to std::ostream.
+//! This is necessary to prevent the address of an uninitialized buffer from being passed to std::ostream.
+//! Please do not change the order of the parent classes.
+//!
+class LogStreamConsumer : protected LogStreamConsumerBase, public std::ostream
+{
+public:
+ //! \brief Creates a LogStreamConsumer which logs messages with level severity.
+ //! Reportable severity determines if the messages are severe enough to be logged.
+ LogStreamConsumer(Severity reportableSeverity, Severity severity)
+ : LogStreamConsumerBase(severityOstream(severity), severityPrefix(severity), severity <= reportableSeverity)
+ , std::ostream(&mBuffer) // links the stream buffer with the stream
+ , mShouldLog(severity <= reportableSeverity)
+ , mSeverity(severity)
+ {
+ }
+
+ LogStreamConsumer(LogStreamConsumer&& other)
+ : LogStreamConsumerBase(severityOstream(other.mSeverity), severityPrefix(other.mSeverity), other.mShouldLog)
+ , std::ostream(&mBuffer) // links the stream buffer with the stream
+ , mShouldLog(other.mShouldLog)
+ , mSeverity(other.mSeverity)
+ {
+ }
+
+ void setReportableSeverity(Severity reportableSeverity)
+ {
+ mShouldLog = mSeverity <= reportableSeverity;
+ mBuffer.setShouldLog(mShouldLog);
+ }
+
+private:
+ static std::ostream& severityOstream(Severity severity)
+ {
+ return severity >= Severity::kINFO ? std::cout : std::cerr;
+ }
+
+ static std::string severityPrefix(Severity severity)
+ {
+ switch (severity)
+ {
+ case Severity::kINTERNAL_ERROR: return "[F] ";
+ case Severity::kERROR: return "[E] ";
+ case Severity::kWARNING: return "[W] ";
+ case Severity::kINFO: return "[I] ";
+ case Severity::kVERBOSE: return "[V] ";
+ default: assert(0); return "";
+ }
+ }
+
+ bool mShouldLog;
+ Severity mSeverity;
+};
+
+//! \class Logger
+//!
+//! \brief Class which manages logging of TensorRT tools and samples
+//!
+//! \details This class provides a common interface for TensorRT tools and samples to log information to the console,
+//! and supports logging two types of messages:
+//!
+//! - Debugging messages with an associated severity (info, warning, error, or internal error/fatal)
+//! - Test pass/fail messages
+//!
+//! The advantage of having all samples use this class for logging as opposed to emitting directly to stdout/stderr is
+//! that the logic for controlling the verbosity and formatting of sample output is centralized in one location.
+//!
+//! In the future, this class could be extended to support dumping test results to a file in some standard format
+//! (for example, JUnit XML), and providing additional metadata (e.g. timing the duration of a test run).
+//!
+//! TODO: For backwards compatibility with existing samples, this class inherits directly from the nvinfer1::ILogger
+//! interface, which is problematic since there isn't a clean separation between messages coming from the TensorRT
+//! library and messages coming from the sample.
+//!
+//! In the future (once all samples are updated to use Logger::getTRTLogger() to access the ILogger) we can refactor the
+//! class to eliminate the inheritance and instead make the nvinfer1::ILogger implementation a member of the Logger
+//! object.
+
+class Logger : public nvinfer1::ILogger
+{
+public:
+ Logger(Severity severity = Severity::kWARNING)
+ : mReportableSeverity(severity)
+ {
+ }
+
+ //!
+ //! \enum TestResult
+ //! \brief Represents the state of a given test
+ //!
+ enum class TestResult
+ {
+ kRUNNING, //!< The test is running
+ kPASSED, //!< The test passed
+ kFAILED, //!< The test failed
+ kWAIVED //!< The test was waived
+ };
+
+ //!
+ //! \brief Forward-compatible method for retrieving the nvinfer::ILogger associated with this Logger
+ //! \return The nvinfer1::ILogger associated with this Logger
+ //!
+ //! TODO Once all samples are updated to use this method to register the logger with TensorRT,
+ //! we can eliminate the inheritance of Logger from ILogger
+ //!
+ nvinfer1::ILogger& getTRTLogger()
+ {
+ return *this;
+ }
+
+ //!
+ //! \brief Implementation of the nvinfer1::ILogger::log() virtual method
+ //!
+ //! Note samples should not be calling this function directly; it will eventually go away once we eliminate the
+ //! inheritance from nvinfer1::ILogger
+ //!
+ void log(Severity severity, const char* msg) noexcept
+ {
+ LogStreamConsumer(mReportableSeverity, severity) << "[TRT] " << std::string(msg) << std::endl;
+ }
+
+ //!
+ //! \brief Method for controlling the verbosity of logging output
+ //!
+ //! \param severity The logger will only emit messages that have severity of this level or higher.
+ //!
+ void setReportableSeverity(Severity severity)
+ {
+ mReportableSeverity = severity;
+ }
+
+ //!
+ //! \brief Opaque handle that holds logging information for a particular test
+ //!
+ //! This object is an opaque handle to information used by the Logger to print test results.
+ //! The sample must call Logger::defineTest() in order to obtain a TestAtom that can be used
+ //! with Logger::reportTest{Start,End}().
+ //!
+ class TestAtom
+ {
+ public:
+ TestAtom(TestAtom&&) = default;
+
+ private:
+ friend class Logger;
+
+ TestAtom(bool started, const std::string& name, const std::string& cmdline)
+ : mStarted(started)
+ , mName(name)
+ , mCmdline(cmdline)
+ {
+ }
+
+ bool mStarted;
+ std::string mName;
+ std::string mCmdline;
+ };
+
+ //!
+ //! \brief Define a test for logging
+ //!
+ //! \param[in] name The name of the test. This should be a string starting with
+ //! "TensorRT" and containing dot-separated strings containing
+ //! the characters [A-Za-z0-9_].
+ //! For example, "TensorRT.sample_googlenet"
+ //! \param[in] cmdline The command line used to reproduce the test
+ //
+ //! \return a TestAtom that can be used in Logger::reportTest{Start,End}().
+ //!
+ static TestAtom defineTest(const std::string& name, const std::string& cmdline)
+ {
+ return TestAtom(false, name, cmdline);
+ }
+
+ //!
+ //! \brief A convenience overloaded version of defineTest() that accepts an array of command-line arguments
+ //! as input
+ //!
+ //! \param[in] name The name of the test
+ //! \param[in] argc The number of command-line arguments
+ //! \param[in] argv The array of command-line arguments (given as C strings)
+ //!
+ //! \return a TestAtom that can be used in Logger::reportTest{Start,End}().
+ static TestAtom defineTest(const std::string& name, int argc, char const* const* argv)
+ {
+ auto cmdline = genCmdlineString(argc, argv);
+ return defineTest(name, cmdline);
+ }
+
+ //!
+ //! \brief Report that a test has started.
+ //!
+ //! \pre reportTestStart() has not been called yet for the given testAtom
+ //!
+ //! \param[in] testAtom The handle to the test that has started
+ //!
+ static void reportTestStart(TestAtom& testAtom)
+ {
+ reportTestResult(testAtom, TestResult::kRUNNING);
+ assert(!testAtom.mStarted);
+ testAtom.mStarted = true;
+ }
+
+ //!
+ //! \brief Report that a test has ended.
+ //!
+ //! \pre reportTestStart() has been called for the given testAtom
+ //!
+ //! \param[in] testAtom The handle to the test that has ended
+ //! \param[in] result The result of the test. Should be one of TestResult::kPASSED,
+ //! TestResult::kFAILED, TestResult::kWAIVED
+ //!
+ static void reportTestEnd(const TestAtom& testAtom, TestResult result)
+ {
+ assert(result != TestResult::kRUNNING);
+ assert(testAtom.mStarted);
+ reportTestResult(testAtom, result);
+ }
+
+ static int reportPass(const TestAtom& testAtom)
+ {
+ reportTestEnd(testAtom, TestResult::kPASSED);
+ return EXIT_SUCCESS;
+ }
+
+ static int reportFail(const TestAtom& testAtom)
+ {
+ reportTestEnd(testAtom, TestResult::kFAILED);
+ return EXIT_FAILURE;
+ }
+
+ static int reportWaive(const TestAtom& testAtom)
+ {
+ reportTestEnd(testAtom, TestResult::kWAIVED);
+ return EXIT_SUCCESS;
+ }
+
+ static int reportTest(const TestAtom& testAtom, bool pass)
+ {
+ return pass ? reportPass(testAtom) : reportFail(testAtom);
+ }
+
+ Severity getReportableSeverity() const
+ {
+ return mReportableSeverity;
+ }
+
+private:
+ //!
+ //! \brief returns an appropriate string for prefixing a log message with the given severity
+ //!
+ static const char* severityPrefix(Severity severity)
+ {
+ switch (severity)
+ {
+ case Severity::kINTERNAL_ERROR: return "[F] ";
+ case Severity::kERROR: return "[E] ";
+ case Severity::kWARNING: return "[W] ";
+ case Severity::kINFO: return "[I] ";
+ case Severity::kVERBOSE: return "[V] ";
+ default: assert(0); return "";
+ }
+ }
+
+ //!
+ //! \brief returns an appropriate string for prefixing a test result message with the given result
+ //!
+ static const char* testResultString(TestResult result)
+ {
+ switch (result)
+ {
+ case TestResult::kRUNNING: return "RUNNING";
+ case TestResult::kPASSED: return "PASSED";
+ case TestResult::kFAILED: return "FAILED";
+ case TestResult::kWAIVED: return "WAIVED";
+ default: assert(0); return "";
+ }
+ }
+
+ //!
+ //! \brief returns an appropriate output stream (cout or cerr) to use with the given severity
+ //!
+ static std::ostream& severityOstream(Severity severity)
+ {
+ return severity >= Severity::kINFO ? std::cout : std::cerr;
+ }
+
+ //!
+ //! \brief method that implements logging test results
+ //!
+ static void reportTestResult(const TestAtom& testAtom, TestResult result)
+ {
+ severityOstream(Severity::kINFO) << "&&&& " << testResultString(result) << " " << testAtom.mName << " # "
+ << testAtom.mCmdline << std::endl;
+ }
+
+ //!
+ //! \brief generate a command line string from the given (argc, argv) values
+ //!
+ static std::string genCmdlineString(int argc, char const* const* argv)
+ {
+ std::stringstream ss;
+ for (int i = 0; i < argc; i++)
+ {
+ if (i > 0)
+ ss << " ";
+ ss << argv[i];
+ }
+ return ss.str();
+ }
+
+ Severity mReportableSeverity;
+};
+
+namespace
+{
+
+//!
+//! \brief produces a LogStreamConsumer object that can be used to log messages of severity kVERBOSE
+//!
+//! Example usage:
+//!
+//! LOG_VERBOSE(logger) << "hello world" << std::endl;
+//!
+inline LogStreamConsumer LOG_VERBOSE(const Logger& logger)
+{
+ return LogStreamConsumer(logger.getReportableSeverity(), Severity::kVERBOSE);
+}
+
+//!
+//! \brief produces a LogStreamConsumer object that can be used to log messages of severity kINFO
+//!
+//! Example usage:
+//!
+//! LOG_INFO(logger) << "hello world" << std::endl;
+//!
+inline LogStreamConsumer LOG_INFO(const Logger& logger)
+{
+ return LogStreamConsumer(logger.getReportableSeverity(), Severity::kINFO);
+}
+
+//!
+//! \brief produces a LogStreamConsumer object that can be used to log messages of severity kWARNING
+//!
+//! Example usage:
+//!
+//! LOG_WARN(logger) << "hello world" << std::endl;
+//!
+inline LogStreamConsumer LOG_WARN(const Logger& logger)
+{
+ return LogStreamConsumer(logger.getReportableSeverity(), Severity::kWARNING);
+}
+
+//!
+//! \brief produces a LogStreamConsumer object that can be used to log messages of severity kERROR
+//!
+//! Example usage:
+//!
+//! LOG_ERROR(logger) << "hello world" << std::endl;
+//!
+inline LogStreamConsumer LOG_ERROR(const Logger& logger)
+{
+ return LogStreamConsumer(logger.getReportableSeverity(), Severity::kERROR);
+}
+
+//!
+//! \brief produces a LogStreamConsumer object that can be used to log messages of severity kINTERNAL_ERROR
+// ("fatal" severity)
+//!
+//! Example usage:
+//!
+//! LOG_FATAL(logger) << "hello world" << std::endl;
+//!
+inline LogStreamConsumer LOG_FATAL(const Logger& logger)
+{
+ return LogStreamConsumer(logger.getReportableSeverity(), Severity::kINTERNAL_ERROR);
+}
+
+} // anonymous namespace
+
+#endif // TENSORRT_LOGGING_H
diff --git a/python/app/fedcv/YOLOv6/deploy/TensorRT/onnx_to_trt.py b/python/app/fedcv/YOLOv6/deploy/TensorRT/onnx_to_trt.py
new file mode 100644
index 0000000000..5d22078303
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/TensorRT/onnx_to_trt.py
@@ -0,0 +1,184 @@
+# onnx_to_tensorrt.py
+#
+# Copyright 1993-2019 NVIDIA Corporation. All rights reserved.
+#
+# NOTICE TO LICENSEE:
+#
+# This source code and/or documentation ("Licensed Deliverables") are
+# subject to NVIDIA intellectual property rights under U.S. and
+# international Copyright laws.
+#
+# These Licensed Deliverables contained herein is PROPRIETARY and
+# CONFIDENTIAL to NVIDIA and is being provided under the terms and
+# conditions of a form of NVIDIA software license agreement by and
+# between NVIDIA and Licensee ("License Agreement") or electronically
+# accepted by Licensee. Notwithstanding any terms or conditions to
+# the contrary in the License Agreement, reproduction or disclosure
+# of the Licensed Deliverables to any third party without the express
+# written consent of NVIDIA is prohibited.
+#
+# NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
+# LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
+# SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
+# PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
+# NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
+# DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
+# NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
+# NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
+# LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
+# SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
+# DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
+# WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
+# ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
+# OF THESE LICENSED DELIVERABLES.
+#
+# U.S. Government End Users. These Licensed Deliverables are a
+# "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
+# 1995), consisting of "commercial computer software" and "commercial
+# computer software documentation" as such terms are used in 48
+# C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
+# only as a commercial end item. Consistent with 48 C.F.R.12.212 and
+# 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
+# U.S. Government End Users acquire the Licensed Deliverables with
+# only those rights set forth herein.
+#
+# Any use of the Licensed Deliverables in individual and commercial
+# software must include, in the user documentation and internal
+# comments to the code, the above Disclaimer and U.S. Government End
+# Users Notice.
+#
+from __future__ import print_function
+
+import argparse
+import traceback
+import sys
+import tensorrt as trt
+
+MAX_BATCH_SIZE = 1
+
+def build_engine_from_onnx(model_name,
+ dtype,
+ verbose=False,
+ int8_calib=False,
+ calib_loader=None,
+ calib_cache=None,
+ fp32_layer_names=[],
+ fp16_layer_names=[],
+ ):
+ """Initialization routine."""
+ if dtype == "int8":
+ t_dtype = trt.DataType.INT8
+ elif dtype == "fp16":
+ t_dtype = trt.DataType.HALF
+ elif dtype == "fp32":
+ t_dtype = trt.DataType.FLOAT
+ else:
+ raise ValueError("Unsupported data type: %s" % dtype)
+
+ if trt.__version__[0] < '8':
+ print('Exit, trt.version should be >=8. Now your trt version is ', trt.__version__[0])
+
+ network_flags = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
+ if dtype == "int8" and calib_loader is None:
+ print('QAT enabled!')
+ network_flags = network_flags | (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_PRECISION))
+
+ """Build a TensorRT engine from ONNX"""
+ TRT_LOGGER = trt.Logger(trt.Logger.VERBOSE) if verbose else trt.Logger()
+ with trt.Builder(TRT_LOGGER) as builder, builder.create_network(flags=network_flags) as network, \
+ trt.OnnxParser(network, TRT_LOGGER) as parser:
+ with open(model_name, 'rb') as model:
+ if not parser.parse(model.read()):
+ print('ERROR: ONNX Parse Failed')
+ for error in range(parser.num_errors):
+ print(parser.get_error(error))
+ return None
+
+ print('Building an engine. This would take a while...')
+ print('(Use "--verbose" or "-v" to enable verbose logging.)')
+ config = builder.create_builder_config()
+ config.max_workspace_size = 2 << 30
+ if t_dtype == trt.DataType.HALF:
+ config.flags |= 1 << int(trt.BuilderFlag.FP16)
+
+ if t_dtype == trt.DataType.INT8:
+ print('trt.DataType.INT8')
+ config.flags |= 1 << int(trt.BuilderFlag.INT8)
+ config.flags |= 1 << int(trt.BuilderFlag.FP16)
+
+ if int8_calib:
+ from calibrator import Calibrator
+ config.int8_calibrator = Calibrator(calib_loader, calib_cache)
+ print('Int8 calibation is enabled.')
+
+ engine = builder.build_engine(network, config)
+
+ try:
+ assert engine
+ except AssertionError:
+ _, _, tb = sys.exc_info()
+ traceback.print_tb(tb) # Fixed format
+ tb_info = traceback.extract_tb(tb)
+ _, line, _, text = tb_info[-1]
+ raise AssertionError(
+ "Parsing failed on line {} in statement {}".format(line, text)
+ )
+
+ return engine
+
+
+def main():
+ """Create a TensorRT engine for ONNX-based YOLO."""
+ parser = argparse.ArgumentParser()
+ parser.add_argument(
+ '-v', '--verbose', action='store_true',
+ help='enable verbose output (for debugging)')
+ parser.add_argument(
+ '-m', '--model', type=str, required=True,
+ help=('onnx model path'))
+ parser.add_argument(
+ '-d', '--dtype', type=str, required=True,
+ help='one type of int8, fp16, fp32')
+ parser.add_argument(
+ '--qat', action='store_true',
+ help='whether the onnx model is qat; if it is, the int8 calibrator is not needed')
+ # If enable int8(not post-QAT model), then set the following
+ parser.add_argument('--img-size', nargs='+', type=int,
+ default=[640, 640], help='image size of model input, the order is: height width')
+ parser.add_argument('--batch-size', type=int,
+ default=128, help='batch size for training: default 64')
+ parser.add_argument('--num-calib-batch', default=6, type=int,
+ help='Number of batches for calibration')
+ parser.add_argument('--calib-img-dir', default='../coco/images/train2017', type=str,
+ help='Number of batches for calibration')
+ parser.add_argument('--calib-cache', default='./yolov6s_calibration.cache', type=str,
+ help='Path of calibration cache')
+
+ args = parser.parse_args()
+
+
+ if args.dtype == "int8" and not args.qat:
+ from calibrator import DataLoader, Calibrator
+ if len(args.img_size) == 1:
+ args.img_size = [args.img_size[0], args.img_size[0]]
+ calib_loader = DataLoader(args.batch_size, args.num_calib_batch, args.calib_img_dir,
+ args.img_size[1], args.img_size[0])
+ engine = build_engine_from_onnx(args.model, args.dtype, args.verbose,
+ int8_calib=True, calib_loader=calib_loader, calib_cache=args.calib_cache)
+ else:
+ engine = build_engine_from_onnx(args.model, args.dtype, args.verbose)
+
+ if engine is None:
+ raise SystemExit('ERROR: failed to build the TensorRT engine!')
+
+ engine_path = args.model.replace('.onnx', '.trt')
+ if args.dtype == "int8" and not args.qat:
+ engine_path = args.model.replace('.onnx', '-int8-{}-{}-minmax.trt'.format(args.batch_size, args.num_calib_batch))
+
+ with open(engine_path, 'wb') as f:
+ f.write(engine.serialize())
+ print('Serialized the TensorRT engine to file: %s' % engine_path)
+
+
+if __name__ == '__main__':
+ main()
diff --git a/python/app/fedcv/YOLOv6/deploy/TensorRT/tensorrt_processor.py b/python/app/fedcv/YOLOv6/deploy/TensorRT/tensorrt_processor.py
new file mode 100644
index 0000000000..5c07dc2db7
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/TensorRT/tensorrt_processor.py
@@ -0,0 +1,293 @@
+import cv2
+import tensorrt as trt
+import numpy as np
+import time
+
+import torch
+import torchvision
+from collections import OrderedDict, namedtuple
+
+
+def torch_dtype_from_trt(dtype):
+ if dtype == trt.bool:
+ return torch.bool
+ elif dtype == trt.int8:
+ return torch.int8
+ elif dtype == trt.int32:
+ return torch.int32
+ elif dtype == trt.float16:
+ return torch.float16
+ elif dtype == trt.float32:
+ return torch.float32
+ else:
+ raise TypeError('%s is not supported by torch' % dtype)
+
+
+def torch_device_from_trt(device):
+ if device == trt.TensorLocation.DEVICE:
+ return torch.device('cuda')
+ elif device == trt.TensorLocation.HOST:
+ return torch.device('cpu')
+ else:
+ return TypeError('%s is not supported by torch' % device)
+
+
+def get_input_shape(engine):
+ """Get input shape of the TensorRT YOLO engine."""
+ binding = engine[0]
+ assert engine.binding_is_input(binding)
+ binding_dims = engine.get_binding_shape(binding)
+ if len(binding_dims) == 4:
+ return tuple(binding_dims[2:])
+ elif len(binding_dims) == 3:
+ return tuple(binding_dims[1:])
+ else:
+ raise ValueError('bad dims of binding %s: %s' % (binding, str(binding_dims)))
+
+def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleup=False, stride=32):
+ # Resize and pad image while meeting stride-multiple constraints
+ shape = im.shape[:2] # current shape [height, width]
+ if isinstance(new_shape, int):
+ new_shape = (new_shape, new_shape)
+
+ # Scale ratio (new / old)
+ r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
+ if not scaleup: # only scale down, do not scale up (for better val mAP)
+ r = min(r, 1.0)
+
+ # Compute padding
+ new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
+ dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
+
+ if auto: # minimum rectangle
+ dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
+
+ dw /= 2 # divide padding into 2 sides
+ dh /= 2
+
+ if shape[::-1] != new_unpad: # resize
+ im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
+ top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
+ left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
+ im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
+
+ return im, r, (left, top)
+
+
+class Processor():
+ def __init__(self, model, num_classes=80, num_layers=3, anchors=1, device=torch.device('cuda:0'), is_end2end=False):
+ # load tensorrt engine)
+ self.is_end2end = is_end2end
+ Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
+ self.logger = trt.Logger(trt.Logger.INFO)
+ trt.init_libnvinfer_plugins(self.logger, namespace="")
+ self.runtime = trt.Runtime(self.logger)
+ with open(model, "rb") as f:
+ self.engine = self.runtime.deserialize_cuda_engine(f.read())
+ self.input_shape = get_input_shape(self.engine)
+ self.bindings = OrderedDict()
+ self.input_names = list()
+ self.output_names = list()
+ for index in range(self.engine.num_bindings):
+ name = self.engine.get_binding_name(index)
+ if self.engine.binding_is_input(index):
+ self.input_names.append(name)
+ else:
+ self.output_names.append(name)
+ dtype = trt.nptype(self.engine.get_binding_dtype(index))
+ shape = tuple(self.engine.get_binding_shape(index))
+ data = torch.from_numpy(np.empty(shape, dtype=np.dtype(dtype))).to(device)
+ self.bindings[name] = Binding(name, dtype, shape, data, int(data.data_ptr()))
+
+ self.binding_addrs = OrderedDict((n, d.ptr) for n, d in self.bindings.items())
+ self.context = self.engine.create_execution_context()
+ assert self.engine
+ assert self.context
+
+ self.nc = num_classes # number of classes
+ self.no = num_classes + 5 # number of outputs per anchor
+ self.nl = num_layers # number of detection layers
+ if isinstance(anchors, (list, tuple)):
+ self.na = len(anchors[0]) // 2
+ else:
+ self.na = anchors
+ self.anchors = anchors
+ self.grid = [torch.zeros(1, device=device)] * num_layers
+ self.prior_prob = 1e-2
+ self.inplace = True
+ stride = [8, 16, 32] # strides computed during build
+ self.stride = torch.tensor(stride, device=device)
+ self.shape = [80, 40, 20]
+ self.device = device
+
+ def detect(self, img):
+ """Detect objects in the input image."""
+ resized, _ = self.pre_process(img, self.input_shape)
+ outputs = self.inference(resized)
+ return outputs
+
+ def pre_process(self, img_src, input_shape=None,):
+ """Preprocess an image before TRT YOLO inferencing.
+ """
+ input_shape = input_shape if input_shape is not None else self.input_shape
+ image, ratio, pad = letterbox(img_src, input_shape, auto=False, scaleup=False)
+ # Convert
+ image = image.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
+ image = torch.from_numpy(np.ascontiguousarray(image)).to(self.device).float()
+ image = image / 255. # 0 - 255 to 0.0 - 1.0
+ return image, pad
+
+ def inference(self, inputs):
+ self.binding_addrs[self.input_names[0]] = int(inputs.data_ptr())
+ #self.binding_addrs['x2paddle_image_arrays'] = int(inputs.data_ptr())
+ self.context.execute_v2(list(self.binding_addrs.values()))
+ if self.is_end2end:
+ nums = self.bindings['num_dets'].data
+ boxes = self.bindings['det_boxes'].data
+ scores = self.bindings['det_scores'].data
+ classes = self.bindings['det_classes'].data
+ output = torch.cat((boxes, scores[:,:,None], classes[:,:,None]), axis=-1)
+ else:
+ output = self.bindings[self.output_names[0]].data
+ #output = self.bindings['save_infer_model/scale_0.tmp_0'].data
+ return output
+
+ def output_reformate(self, outputs):
+ z = []
+ for i in range(self.nl):
+ cls_output = outputs[3*i].reshape((1, -1, self.shape[i], self.shape[i]))
+ reg_output = outputs[3*i+1].reshape((1, -1, self.shape[i], self.shape[i]))
+ obj_output = outputs[3*i+2].reshape((1, -1, self.shape[i], self.shape[i]))
+
+ y = torch.cat([reg_output, obj_output.sigmoid(), cls_output.sigmoid()], 1)
+ bs, _, ny, nx = y.shape
+ y = y.view(bs, -1, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
+
+ if self.grid[i].shape[2:4] != y.shape[2:4]:
+ d = self.stride.device
+ yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')
+ self.grid[i] = torch.stack((xv, yv), 2).view(1, self.na, ny, nx, 2).float()
+ if self.inplace:
+ y[..., 0:2] = (y[..., 0:2] + self.grid[i]) * self.stride[i] # xy
+ y[..., 2:4] = torch.exp(y[..., 2:4]) * self.stride[i] # wh
+ else:
+ xy = (y[..., 0:2] + self.grid[i]) * self.stride[i] # xy
+ wh = torch.exp(y[..., 2:4]) * self.stride[i] # wh
+ y = torch.cat((xy, wh, y[..., 4:]), -1)
+ z.append(y.view(bs, -1, self.no))
+ return torch.cat(z, 1)
+
+ def post_process(self, outputs, img_shape, conf_thres=0.5, iou_thres=0.6):
+ if self.is_end2end:
+ det_t = outputs
+ else:
+ det_t = self.non_max_suppression(outputs, conf_thres, iou_thres, multi_label=True)
+ self.scale_coords(self.input_shape, det_t[0][:, :4], img_shape[0], img_shape[1])
+ return det_t[0]
+
+ @staticmethod
+ def xywh2xyxy(x):
+ # Convert boxes with shape [n, 4] from [x, y, w, h] to [x1, y1, x2, y2] where x1y1 is top-left, x2y2=bottom-right
+ y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
+ y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
+ y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
+ y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
+ y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
+ return y
+
+ def non_max_suppression(self, prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False, max_det=300):
+ """Runs Non-Maximum Suppression (NMS) on inference results.
+ This code is borrowed from: https://github.com/ultralytics/yolov5/blob/47233e1698b89fc437a4fb9463c815e9171be955/utils/general.py#L775
+ Args:
+ prediction: (tensor), with shape [N, 5 + num_classes], N is the number of bboxes.
+ conf_thres: (float) confidence threshold.
+ iou_thres: (float) iou threshold.
+ classes: (None or list[int]), if a list is provided, nms only keep the classes you provide.
+ agnostic: (bool), when it is set to True, we do class-independent nms, otherwise, different class would do nms respectively.
+ multi_label: (bool), when it is set to True, one box can have multi labels, otherwise, one box only huave one label.
+ max_det:(int), max number of output bboxes.
+
+ Returns:
+ list of detections, echo item is one tensor with shape (num_boxes, 6), 6 is for [xyxy, conf, cls].
+ """
+ num_classes = prediction.shape[2] - 5 # number of classes
+ pred_candidates = prediction[..., 4] > conf_thres # candidates
+
+ # Check the parameters.
+ assert 0 <= conf_thres <= 1, f'conf_thresh must be in 0.0 to 1.0, however {conf_thres} is provided.'
+ assert 0 <= iou_thres <= 1, f'iou_thres must be in 0.0 to 1.0, however {iou_thres} is provided.'
+
+ # Function settings.
+ max_wh = 4096 # maximum box width and height
+ max_nms = 30000 # maximum number of boxes put into torchvision.ops.nms()
+ time_limit = 10.0 # quit the function when nms cost time exceed the limit time.
+ multi_label &= num_classes > 1 # multiple labels per box
+
+ tik = time.time()
+ output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
+ for img_idx, x in enumerate(prediction): # image index, image inference
+ x = x[pred_candidates[img_idx]] # confidence
+
+ # If no box remains, skip the next process.
+ if not x.shape[0]:
+ continue
+
+ # confidence multiply the objectness
+ x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
+
+ # (center x, center y, width, height) to (x1, y1, x2, y2)
+ box = self.xywh2xyxy(x[:, :4])
+
+ # Detections matrix's shape is (n,6), each row represents (xyxy, conf, cls)
+ if multi_label:
+ box_idx, class_idx = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
+ x = torch.cat((box[box_idx], x[box_idx, class_idx + 5, None], class_idx[:, None].float()), 1)
+ else: # Only keep the class with highest scores.
+ conf, class_idx = x[:, 5:].max(1, keepdim=True)
+ x = torch.cat((box, conf, class_idx.float()), 1)[conf.view(-1) > conf_thres]
+
+ # Filter by class, only keep boxes whose category is in classes.
+ if classes is not None:
+ x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
+
+ # Check shape
+ num_box = x.shape[0] # number of boxes
+ if not num_box: # no boxes kept.
+ continue
+ elif num_box > max_nms: # excess max boxes' number.
+ x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
+
+ # Batched NMS
+ class_offset = x[:, 5:6] * (0 if agnostic else max_wh) # classes
+ boxes, scores = x[:, :4] + class_offset, x[:, 4] # boxes (offset by class), scores
+ keep_box_idx = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
+ if keep_box_idx.shape[0] > max_det: # limit detections
+ keep_box_idx = keep_box_idx[:max_det]
+
+ output[img_idx] = x[keep_box_idx]
+ if (time.time() - tik) > time_limit:
+ print(f'WARNING: NMS cost time exceed the limited {time_limit}s.')
+ break # time limit exceeded
+
+ return output
+
+ def scale_coords(self, img1_shape, coords, img0_shape, ratio_pad=None):
+ # Rescale coords (xyxy) from img1_shape to img0_shape
+
+ gain = ratio_pad[0]
+ pad = ratio_pad[1]
+
+ coords[:, [0, 2]] -= pad[0] # x padding
+ coords[:, [0, 2]] /= gain[0] # raw x gain
+ coords[:, [1, 3]] -= pad[1] # y padding
+ coords[:, [1, 3]] /= gain[0] # y gain
+
+ if isinstance(coords, torch.Tensor): # faster individually
+ coords[:, 0].clamp_(0, img0_shape[1]) # x1
+ coords[:, 1].clamp_(0, img0_shape[0]) # y1
+ coords[:, 2].clamp_(0, img0_shape[1]) # x2
+ coords[:, 3].clamp_(0, img0_shape[0]) # y2
+ else: # np.array (faster grouped)
+ coords[:, [0, 2]] = coords[:, [0, 2]].clip(0, img0_shape[1]) # x1, x2
+ coords[:, [1, 3]] = coords[:, [1, 3]].clip(0, img0_shape[0]) # y1, y2
+ return coords
diff --git a/python/app/fedcv/YOLOv6/deploy/TensorRT/visualize.py b/python/app/fedcv/YOLOv6/deploy/TensorRT/visualize.py
new file mode 100644
index 0000000000..df91ede030
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/TensorRT/visualize.py
@@ -0,0 +1,122 @@
+"""visualize.py
+
+This script is for visualization of YOLO models.
+"""
+import os
+import sys
+import json
+import argparse
+import math
+
+import cv2
+import torch
+from tensorrt_processor import Processor
+from tqdm import tqdm
+
+
+def parse_args():
+ """Parse input arguments."""
+ desc = 'Visualization of YOLO TRT model'
+ parser = argparse.ArgumentParser(description=desc)
+ parser.add_argument(
+ '--imgs-dir', type=str, default='./coco_images/',
+ help='directory of to be visualized images ./coco_images/')
+ parser.add_argument(
+ '--visual-dir', type=str, default='./visual_out',
+ help='directory of visualized images ./visual_out')
+ parser.add_argument('--batch-size', type=int,
+ default=1, help='batch size for training: default 64')
+ parser.add_argument(
+ '-c', '--category-num', type=int, default=80,
+ help='number of object categories [80]')
+ parser.add_argument(
+ '--img-size', nargs='+', type=int, default=[640, 640], help='image size')
+ parser.add_argument(
+ '-m', '--model', type=str, default='./weights/yolov5s-simple.trt',
+ help=('trt model path'))
+ parser.add_argument(
+ '--conf-thres', type=float, default=0.03,
+ help='object confidence threshold')
+ parser.add_argument(
+ '--iou-thres', type=float, default=0.65,
+ help='IOU threshold for NMS')
+ parser.add_argument('--shrink_size', type=int, default=6, help='load img with size (img_size - shrink_size), for better performace.')
+ args = parser.parse_args()
+ return args
+
+
+def check_args(args):
+ """Check and make sure command-line arguments are valid."""
+ if not os.path.isdir(args.imgs_dir):
+ sys.exit('%s is not a valid directory' % args.imgs_dir)
+ if not os.path.exists(args.visual_dir):
+ print("Directory {} does not exist, create it".format(args.visual_dir))
+ os.makedirs(args.visual_dir)
+
+
+def generate_results(processor, imgs_dir, visual_dir, jpgs, conf_thres, iou_thres,
+ batch_size=1, img_size=[640,640], shrink_size=0):
+ """Run detection on each jpg and write results to file."""
+ results = []
+ # pbar = tqdm(jpgs, desc="TRT-Model test in val datasets.")
+ pbar = tqdm(range(math.ceil(len(jpgs) / batch_size)), desc="TRT-Model test in val datasets.")
+ idx = 0
+ num_visualized = 0
+ for _ in pbar:
+ imgs = torch.randn((batch_size, 3, 640, 640), dtype=torch.float32, device=torch.device('cuda:0'))
+ source_imgs = []
+ image_names = []
+ shapes = []
+ for i in range(batch_size):
+ if (idx == len(jpgs)): break
+ img = cv2.imread(os.path.join(imgs_dir, jpgs[idx]))
+ img_src = img.copy()
+ # shapes.append(img.shape)
+ h0, w0 = img.shape[:2]
+ r = (max(img_size) - shrink_size) / max(h0, w0)
+ if r != 1:
+ img = cv2.resize(
+ img,
+ (int(w0 * r), int(h0 * r)),
+ interpolation=cv2.INTER_AREA
+ if r < 1 else cv2.INTER_LINEAR,
+ )
+ h, w = img.shape[:2]
+ imgs[i], pad = processor.pre_process(img)
+ source_imgs.append(img_src)
+ shape = (h0, w0), ((h / h0, w / w0), pad)
+ shapes.append(shape)
+ image_names.append(jpgs[idx])
+ idx += 1
+ output = processor.inference(imgs)
+
+ for j in range(len(shapes)):
+ pred = processor.post_process(output[j].unsqueeze(0), shapes[j], conf_thres=conf_thres, iou_thres=iou_thres)
+ image = source_imgs[j]
+ for p in pred:
+ x = float(p[0])
+ y = float(p[1])
+ w = float(p[2] - p[0])
+ h = float(p[3] - p[1])
+ s = float(p[4])
+
+ cv2.rectangle(image, (int(x), int(y)), (int(x + w), int(y + h)), (255, 0, 0), 1)
+
+ # print("saving to {}".format(os.path.join(visual_dir, image_names[j])))
+ cv2.imwrite("{}".format(os.path.join(visual_dir, image_names[j])), image)
+
+def main():
+ args = parse_args()
+ check_args(args)
+
+ assert args.model.endswith('.trt'), "Only support trt engine test"
+
+ # setup processor
+ processor = Processor(model=args.model)
+ jpgs = [j for j in os.listdir(args.imgs_dir) if j.endswith('.jpg')]
+ generate_results(processor, args.imgs_dir, args.visual_dir, jpgs, args.conf_thres, args.iou_thres,
+ batch_size=args.batch_size, img_size = args.img_size, shrink_size=args.shrink_size)
+
+
+if __name__ == '__main__':
+ main()
diff --git a/python/app/fedcv/YOLOv6/deploy/TensorRT/yolov6.cpp b/python/app/fedcv/YOLOv6/deploy/TensorRT/yolov6.cpp
new file mode 100644
index 0000000000..85df5173f2
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/deploy/TensorRT/yolov6.cpp
@@ -0,0 +1,494 @@
+#include
+#include
+#include
+#include
+#include
+#include
+#include
+#include
+#include "NvInfer.h"
+#include "cuda_runtime_api.h"
+#include "logging.h"
+
+#define CHECK(status) \
+ do\
+ {\
+ auto ret = (status);\
+ if (ret != 0)\
+ {\
+ std::cerr << "Cuda failure: " << ret << std::endl;\
+ abort();\
+ }\
+ } while (0)
+
+#define DEVICE 0 // GPU id
+#define NMS_THRESH 0.45
+#define BBOX_CONF_THRESH 0.5
+
+using namespace nvinfer1;
+
+// stuff we know about the network and the input/output blobs
+const int num_class = 80;
+static const int INPUT_W = 640;
+static const int INPUT_H = 640;
+const char* INPUT_BLOB_NAME = "image_arrays";
+const char* OUTPUT_BLOB_NAME = "outputs";
+static const char* class_names[] = {
+ "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light",
+ "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
+ "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
+ "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard",
+ "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple",
+ "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch",
+ "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone",
+ "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear",
+ "hair drier", "toothbrush"
+ };
+
+
+static Logger gLogger;
+
+
+cv::Mat static_resize(cv::Mat& img) {
+ float r = std::min(INPUT_W / (img.cols*1.0), INPUT_H / (img.rows*1.0));
+ int unpad_w = r * img.cols;
+ int unpad_h = r * img.rows;
+ cv::Mat re(unpad_h, unpad_w, CV_8UC3);
+ cv::resize(img, re, re.size());
+ cv::Mat out(INPUT_W, INPUT_H, CV_8UC3, cv::Scalar(114, 114, 114));
+ re.copyTo(out(cv::Rect(0, 0, re.cols, re.rows)));
+ return out;
+}
+
+struct Object
+{
+ cv::Rect_ rect;
+ int label;
+ float prob;
+};
+
+
+static inline float intersection_area(const Object& a, const Object& b)
+{
+ cv::Rect_ inter = a.rect & b.rect;
+ return inter.area();
+}
+
+static void qsort_descent_inplace(std::vector& faceobjects, int left, int right)
+{
+ int i = left;
+ int j = right;
+ float p = faceobjects[(left + right) / 2].prob;
+
+ while (i <= j)
+ {
+ while (faceobjects[i].prob > p)
+ i++;
+
+ while (faceobjects[j].prob < p)
+ j--;
+
+ if (i <= j)
+ {
+ // swap
+ std::swap(faceobjects[i], faceobjects[j]);
+
+ i++;
+ j--;
+ }
+ }
+
+ #pragma omp parallel sections
+ {
+ #pragma omp section
+ {
+ if (left < j) qsort_descent_inplace(faceobjects, left, j);
+ }
+ #pragma omp section
+ {
+ if (i < right) qsort_descent_inplace(faceobjects, i, right);
+ }
+ }
+}
+
+static void qsort_descent_inplace(std::vector& objects)
+{
+ if (objects.empty())
+ return;
+
+ qsort_descent_inplace(objects, 0, objects.size() - 1);
+}
+
+static void nms_sorted_bboxes(const std::vector& faceobjects, std::vector& picked, float nms_threshold)
+{
+ picked.clear();
+
+ const int n = faceobjects.size();
+
+ std::vector areas(n);
+ for (int i = 0; i < n; i++)
+ {
+ areas[i] = faceobjects[i].rect.area();
+ }
+
+ for (int i = 0; i < n; i++)
+ {
+ const Object& a = faceobjects[i];
+
+ int keep = 1;
+ for (int j = 0; j < (int)picked.size(); j++)
+ {
+ const Object& b = faceobjects[picked[j]];
+
+ // intersection over union
+ float inter_area = intersection_area(a, b);
+ float union_area = areas[i] + areas[picked[j]] - inter_area;
+ // float IoU = inter_area / union_area
+ if (inter_area / union_area > nms_threshold)
+ keep = 0;
+ }
+
+ if (keep)
+ picked.push_back(i);
+ }
+}
+
+
+static void generate_yolo_proposals(float* feat_blob, int output_size, float prob_threshold, std::vector& objects)
+{
+ auto dets = output_size / (num_class + 5);
+ for (int boxs_idx = 0; boxs_idx < dets; boxs_idx++)
+ {
+ const int basic_pos = boxs_idx *(num_class + 5);
+ float x_center = feat_blob[basic_pos+0];
+ float y_center = feat_blob[basic_pos+1];
+ float w = feat_blob[basic_pos+2];
+ float h = feat_blob[basic_pos+3];
+ float x0 = x_center - w * 0.5f;
+ float y0 = y_center - h * 0.5f;
+ float box_objectness = feat_blob[basic_pos+4];
+ // std::cout<<*feat_blob< prob_threshold)
+ {
+ Object obj;
+ obj.rect.x = x0;
+ obj.rect.y = y0;
+ obj.rect.width = w;
+ obj.rect.height = h;
+ obj.label = class_idx;
+ obj.prob = box_prob;
+
+ objects.push_back(obj);
+ }
+
+ } // class loop
+ }
+
+}
+
+float* blobFromImage(cv::Mat& img){
+ cv::cvtColor(img, img, cv::COLOR_BGR2RGB);
+
+ float* blob = new float[img.total()*3];
+ int channels = 3;
+ int img_h = img.rows;
+ int img_w = img.cols;
+ for (size_t c = 0; c < channels; c++)
+ {
+ for (size_t h = 0; h < img_h; h++)
+ {
+ for (size_t w = 0; w < img_w; w++)
+ {
+ blob[c * img_w * img_h + h * img_w + w] =
+ (((float)img.at(h, w)[c]) / 255.0f);
+ }
+ }
+ }
+ return blob;
+}
+
+
+static void decode_outputs(float* prob, int output_size, std::vector& objects, float scale, const int img_w, const int img_h) {
+ std::vector proposals;
+ generate_yolo_proposals(prob, output_size, BBOX_CONF_THRESH, proposals);
+ std::cout << "num of boxes before nms: " << proposals.size() << std::endl;
+
+ qsort_descent_inplace(proposals);
+
+ std::vector picked;
+ nms_sorted_bboxes(proposals, picked, NMS_THRESH);
+
+
+ int count = picked.size();
+
+ std::cout << "num of boxes: " << count << std::endl;
+
+ objects.resize(count);
+ for (int i = 0; i < count; i++)
+ {
+ objects[i] = proposals[picked[i]];
+
+ // adjust offset to original unpadded
+ float x0 = (objects[i].rect.x) / scale;
+ float y0 = (objects[i].rect.y) / scale;
+ float x1 = (objects[i].rect.x + objects[i].rect.width) / scale;
+ float y1 = (objects[i].rect.y + objects[i].rect.height) / scale;
+
+ // clip
+ x0 = std::max(std::min(x0, (float)(img_w - 1)), 0.f);
+ y0 = std::max(std::min(y0, (float)(img_h - 1)), 0.f);
+ x1 = std::max(std::min(x1, (float)(img_w - 1)), 0.f);
+ y1 = std::max(std::min(y1, (float)(img_h - 1)), 0.f);
+
+ objects[i].rect.x = x0;
+ objects[i].rect.y = y0;
+ objects[i].rect.width = x1 - x0;
+ objects[i].rect.height = y1 - y0;
+ }
+}
+
+const float color_list[80][3] =
+{
+ {0.000, 0.447, 0.741},
+ {0.850, 0.325, 0.098},
+ {0.929, 0.694, 0.125},
+ {0.494, 0.184, 0.556},
+ {0.466, 0.674, 0.188},
+ {0.301, 0.745, 0.933},
+ {0.635, 0.078, 0.184},
+ {0.300, 0.300, 0.300},
+ {0.600, 0.600, 0.600},
+ {1.000, 0.000, 0.000},
+ {1.000, 0.500, 0.000},
+ {0.749, 0.749, 0.000},
+ {0.000, 1.000, 0.000},
+ {0.000, 0.000, 1.000},
+ {0.667, 0.000, 1.000},
+ {0.333, 0.333, 0.000},
+ {0.333, 0.667, 0.000},
+ {0.333, 1.000, 0.000},
+ {0.667, 0.333, 0.000},
+ {0.667, 0.667, 0.000},
+ {0.667, 1.000, 0.000},
+ {1.000, 0.333, 0.000},
+ {1.000, 0.667, 0.000},
+ {1.000, 1.000, 0.000},
+ {0.000, 0.333, 0.500},
+ {0.000, 0.667, 0.500},
+ {0.000, 1.000, 0.500},
+ {0.333, 0.000, 0.500},
+ {0.333, 0.333, 0.500},
+ {0.333, 0.667, 0.500},
+ {0.333, 1.000, 0.500},
+ {0.667, 0.000, 0.500},
+ {0.667, 0.333, 0.500},
+ {0.667, 0.667, 0.500},
+ {0.667, 1.000, 0.500},
+ {1.000, 0.000, 0.500},
+ {1.000, 0.333, 0.500},
+ {1.000, 0.667, 0.500},
+ {1.000, 1.000, 0.500},
+ {0.000, 0.333, 1.000},
+ {0.000, 0.667, 1.000},
+ {0.000, 1.000, 1.000},
+ {0.333, 0.000, 1.000},
+ {0.333, 0.333, 1.000},
+ {0.333, 0.667, 1.000},
+ {0.333, 1.000, 1.000},
+ {0.667, 0.000, 1.000},
+ {0.667, 0.333, 1.000},
+ {0.667, 0.667, 1.000},
+ {0.667, 1.000, 1.000},
+ {1.000, 0.000, 1.000},
+ {1.000, 0.333, 1.000},
+ {1.000, 0.667, 1.000},
+ {0.333, 0.000, 0.000},
+ {0.500, 0.000, 0.000},
+ {0.667, 0.000, 0.000},
+ {0.833, 0.000, 0.000},
+ {1.000, 0.000, 0.000},
+ {0.000, 0.167, 0.000},
+ {0.000, 0.333, 0.000},
+ {0.000, 0.500, 0.000},
+ {0.000, 0.667, 0.000},
+ {0.000, 0.833, 0.000},
+ {0.000, 1.000, 0.000},
+ {0.000, 0.000, 0.167},
+ {0.000, 0.000, 0.333},
+ {0.000, 0.000, 0.500},
+ {0.000, 0.000, 0.667},
+ {0.000, 0.000, 0.833},
+ {0.000, 0.000, 1.000},
+ {0.000, 0.000, 0.000},
+ {0.143, 0.143, 0.143},
+ {0.286, 0.286, 0.286},
+ {0.429, 0.429, 0.429},
+ {0.571, 0.571, 0.571},
+ {0.714, 0.714, 0.714},
+ {0.857, 0.857, 0.857},
+ {0.000, 0.447, 0.741},
+ {0.314, 0.717, 0.741},
+ {0.50, 0.5, 0}
+};
+
+
+static void draw_objects(const cv::Mat& bgr, const std::vector& objects, std::string f)
+{
+
+ cv::Mat image = bgr.clone();
+
+ for (size_t i = 0; i < objects.size(); i++)
+ {
+ const Object& obj = objects[i];
+
+ fprintf(stderr, "%d = %.5f at %.2f %.2f %.2f x %.2f\n", obj.label, obj.prob,
+ obj.rect.x, obj.rect.y, obj.rect.width, obj.rect.height);
+
+ cv::Scalar color = cv::Scalar(color_list[obj.label][0], color_list[obj.label][1], color_list[obj.label][2]);
+ float c_mean = cv::mean(color)[0];
+ cv::Scalar txt_color;
+ if (c_mean > 0.5){
+ txt_color = cv::Scalar(0, 0, 0);
+ }else{
+ txt_color = cv::Scalar(255, 255, 255);
+ }
+
+ cv::rectangle(image, obj.rect, color * 255, 2);
+
+ char text[256];
+ sprintf(text, "%s %.1f%%", class_names[obj.label], obj.prob * 100);
+
+ int baseLine = 0;
+ cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.4, 1, &baseLine);
+
+ cv::Scalar txt_bk_color = color * 0.7 * 255;
+
+ int x = obj.rect.x;
+ int y = obj.rect.y + 1;
+ //int y = obj.rect.y - label_size.height - baseLine;
+ if (y > image.rows)
+ y = image.rows;
+ //if (x + label_size.width > image.cols)
+ //x = image.cols - label_size.width;
+
+ cv::rectangle(image, cv::Rect(cv::Point(x, y), cv::Size(label_size.width, label_size.height + baseLine)),
+ txt_bk_color, -1);
+
+ cv::putText(image, text, cv::Point(x, y + label_size.height),
+ cv::FONT_HERSHEY_SIMPLEX, 0.4, txt_color, 1);
+ }
+
+ cv::imwrite("det_res.jpg", image);
+ fprintf(stderr, "save vis file\n");
+ /* cv::imshow("image", image); */
+ /* cv::waitKey(0); */
+}
+
+
+void doInference(IExecutionContext& context, float* input, float* output, const int output_size, cv::Size input_shape) {
+ const ICudaEngine& engine = context.getEngine();
+
+ // Pointers to input and output device buffers to pass to engine.
+ // Engine requires exactly IEngine::getNbBindings() number of buffers.
+ assert(engine.getNbBindings() == 2);
+ void* buffers[2];
+
+ // In order to bind the buffers, we need to know the names of the input and output tensors.
+ // Note that indices are guaranteed to be less than IEngine::getNbBindings()
+ const int inputIndex = engine.getBindingIndex(INPUT_BLOB_NAME);
+
+ assert(engine.getBindingDataType(inputIndex) == nvinfer1::DataType::kFLOAT);
+ const int outputIndex = engine.getBindingIndex(OUTPUT_BLOB_NAME);
+ assert(engine.getBindingDataType(outputIndex) == nvinfer1::DataType::kFLOAT);
+ int mBatchSize = engine.getMaxBatchSize();
+
+ // Create GPU buffers on device
+ CHECK(cudaMalloc(&buffers[inputIndex], 3 * input_shape.height * input_shape.width * sizeof(float)));
+ CHECK(cudaMalloc(&buffers[outputIndex], output_size*sizeof(float)));
+
+ // Create stream
+ cudaStream_t stream;
+ CHECK(cudaStreamCreate(&stream));
+
+ // DMA input batch data to device, infer on the batch asynchronously, and DMA output back to host
+ CHECK(cudaMemcpyAsync(buffers[inputIndex], input, 3 * input_shape.height * input_shape.width * sizeof(float), cudaMemcpyHostToDevice, stream));
+ context.enqueue(1, buffers, stream, nullptr);
+ CHECK(cudaMemcpyAsync(output, buffers[outputIndex], output_size * sizeof(float), cudaMemcpyDeviceToHost, stream));
+ cudaStreamSynchronize(stream);
+
+ // Release stream and buffers
+ cudaStreamDestroy(stream);
+ CHECK(cudaFree(buffers[inputIndex]));
+ CHECK(cudaFree(buffers[outputIndex]));
+}
+
+int main(int argc, char** argv) {
+ cudaSetDevice(DEVICE);
+ // create a model using the API directly and serialize it to a stream
+ char *trtModelStream{nullptr};
+ size_t size{0};
+
+ if (argc == 4 && std::string(argv[2]) == "-i") {
+ const std::string engine_file_path {argv[1]};
+ std::ifstream file(engine_file_path, std::ios::binary);
+ if (file.good()) {
+ file.seekg(0, file.end);
+ size = file.tellg();
+ file.seekg(0, file.beg);
+ trtModelStream = new char[size];
+ assert(trtModelStream);
+ file.read(trtModelStream, size);
+ file.close();
+ }
+ } else {
+ std::cerr << "arguments not right!" << std::endl;
+ std::cerr << "./yolov6 ../model_trt.engine -i ../*.jpg // deserialize file and run inference" << std::endl;
+ return -1;
+ }
+ const std::string input_image_path {argv[3]};
+
+ IRuntime* runtime = createInferRuntime(gLogger);
+ assert(runtime != nullptr);
+ ICudaEngine* engine = runtime->deserializeCudaEngine(trtModelStream, size);
+ assert(engine != nullptr);
+ IExecutionContext* context = engine->createExecutionContext();
+ assert(context != nullptr);
+ delete[] trtModelStream;
+ auto out_dims = engine->getBindingDimensions(1);
+ auto output_size = 1;
+ for(int j=0;j(end - start).count() << "ms" << std::endl;
+
+ std::vector objects;
+ decode_outputs(prob, output_size, objects, scale, img_w, img_h);
+ draw_objects(img, objects, input_image_path);
+ // delete the pointer to the float
+ delete blob;
+ // destroy the engine
+ context->destroy();
+ engine->destroy();
+ runtime->destroy();
+ return 0;
+}
diff --git a/python/app/fedcv/YOLOv6/docs/About_training_size.md b/python/app/fedcv/YOLOv6/docs/About_training_size.md
new file mode 100644
index 0000000000..2c638031ae
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/docs/About_training_size.md
@@ -0,0 +1,18 @@
+# Training size explanation
+
+YOLOv6 support three training size mode.
+
+## 1. Square shape training
+If you only pass one number to `--img-size`, such as `--img-size 640`, the longer side of image will be keep ratio resized to 640, the shorter side will be scaled with the same ratio, then padded to 640. The image send to the model with resolution (640, 640, 3).
+
+## 2. Rectangle shape training
+If you pass `--img-size 640` and `--rect`, the longer side of image will be keep ratio resized to 640, the shorter side will be scaled with the same ratio, then it will be padded to multiple of 32 (if needed).
+For example, if one image's shape is (720, 1280, 3), after keep ratio resize, it's shape will change to (360, 640, 3), however, 320 is not multiple of 32, so it will be padded to (384, 640, 3).
+
+## 3. Specific shape
+
+In the rectangle shape mode, the training process may have different traininng size, such as (1080, 1920, 3) and (1200, 1600, 3). If you want to specify one shape, you can use `--specific-shape` command and specify your training shape with `--height ` and `--width`, for example:
+```
+python tools/train.py --data data/dataset.yaml --conf configs/yolov6n.py --specific-shape --width 1920 --height 1080
+```
+Then, the resolution of the training data will be (1080, 1920, 3) regardless of the shape of the image in dataset.
diff --git a/python/app/fedcv/YOLOv6/docs/About_training_size_cn.md b/python/app/fedcv/YOLOv6/docs/About_training_size_cn.md
new file mode 100644
index 0000000000..64d1477c34
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/docs/About_training_size_cn.md
@@ -0,0 +1,16 @@
+# 训练尺寸说明
+YOLOv6支持三种训练尺寸模式。
+
+## 1. 正方形尺寸训练
+如果只给 `--img-size` 指定一个数字,例如 `--img-size 640`,则图像的长边将被缩放到 640(保持长宽比),短边等比例缩放后,将被填充到 640。送入模型的图像的分辨率将变为(640, 640, 3)。
+
+## 2. 矩形尺寸训练
+如果传递了 `--img-size 640` 和 `--rect`,则图像的长边将被缩放到 640(保持长宽比),短边将被等比例缩放,然后填充到 32 的倍数(如果需要)。
+例如,如果一张图像的形状为(720, 1280, 3),在等比例缩放后,它的形状将变为(360, 640, 3),但是 360 不是 32 的倍数,因此它将被填充为(384, 640, 3)。
+
+## 3. 特定尺寸
+在矩形尺寸训练模式下,训练过程可能有不同的训练尺寸,例如(1080, 1920, 3)和(1200, 1600, 3)。如果您想指定一个尺寸,可以使用 `--specific-shape` 命令,并使用 `--height` 和 `--width` 指定您的训练尺寸,例如:
+```
+python tools/train.py --data data/dataset.yaml --conf configs/yolov6n.py --specific-shape --width 1920 --height 1080
+```
+那么,无论数据集中图片的形状是什么,训练数据的分辨率将都是 (1080, 1920, 3)。
diff --git a/python/app/fedcv/YOLOv6/docs/Test_NCNN_speed.md b/python/app/fedcv/YOLOv6/docs/Test_NCNN_speed.md
new file mode 100644
index 0000000000..619371c3d0
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/docs/Test_NCNN_speed.md
@@ -0,0 +1,789 @@
+# YOLOv6 in NCNN
+
+This tutorial explains how to convert a YOLOv6 model into the [NCNN](https://github.com/Tencent/ncnn) format, as well as some common issues that may arise during the conversion process. This tutorial covers packaging and debugging in the [lite.ai.toolkit](https://github.com/DefTruth/lite.ai.toolkit) platform on the macOS environment.
+
+## 0. Prepare Environment
+
+There are currently two paths to convert a model to the NCNN format: the first path is from PyTorch to ONNX to NCNN, and the second path is from PyTorch to TorchScript to ONNX to NCNN.
+* First path: Build [NCNN](https://github.com/Tencent/ncnn)
+* Second path: Build [NCNN](https://github.com/Tencent/ncnn) and [PNNX](https://github.com/Tencent/ncnn/tree/master/tools/pnnx). If you don't want to build PNNX, maybe have a try: [PNNX releases](https://github.com/pnnx/pnnx/releases)
+
+## 1. Prepare something else
+
+* Prepare the original .pt file under the ./path/to/yolov6 directory.
+
+* (Path 2)Prepare the export_pt.py file under the ./path/to/yolov6/deploy directory. And you should modify the code as the following tutorial.
+
+## 2. Convert
+
+#### 2.1 ONNX-->NCNN path
+
+* Export ONNX model as following command:
+
+```shell
+python deploy/ONNX/export_onnx.py --weights ./path/to/yolov6s.pt --device 0 --simplify --batch [1 or 32]
+```
+
+* Use the onnx2ncnn tool to convert the ONNX model to NCNN format:
+
+```shell
+./onnx2ncnn ./path/to/yolov6s.onnx ./path/to/save/yolov6s.param /path/to/save/yolov6s.bin
+```
+
+#### 2.2 PNNX-->NCNN path
+
+* Modify the export_pt.py as follow
+
+ Show/Hide export.py
+
+ #!/usr/bin/env python3
+ # -*- coding:utf-8 -*-
+ import argparse
+ import sys
+ import os
+ import torch
+ import torch.nn as nn
+
+ ROOT = os.getcwd()
+ if str(ROOT) not in sys.path:
+ sys.path.append(str(ROOT))
+
+ from yolov6.models.yolo import *
+ from yolov6.models.effidehead import Detect
+ from yolov6.layers.common import *
+ from yolov6.utils.events import LOGGER
+ from yolov6.utils.checkpoint import load_checkpoint
+
+ if __name__ == '__main__':
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--weights', type=str, default='./yolov6s.pt', help='weights path')
+ parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
+ parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+ parser.add_argument('--inplace', action='store_true', help='set Detect() inplace=True')
+ args = parser.parse_args()
+ print(args)
+
+ cuda = args.device != 'cpu' and torch.cuda.is_available()
+ device = torch.device(f'cuda:{args.device}' if cuda else 'cpu')
+ assert not (device.type == 'cpu' and args.half), '--half only compatible with GPU export, i.e. use --device 0'
+ model = load_checkpoint(args.weights, map_location=device, inplace=True, fuse=True) # load FP32 model
+ for layer in model.modules():
+ if isinstance(layer, RepVGGBlock):
+ layer.switch_to_deploy()
+
+ if args.half:
+ model = model.half()
+ model.eval()
+ for k, m in model.named_modules():
+ if isinstance(m, Conv):
+ if isinstance(m.act, nn.SiLU):
+ m.act = SiLU()
+ elif isinstance(m, Detect):
+ m.inplace = args.inplace
+
+ x = torch.rand(1, 3, 512, 512)
+ mod = torch.jit.trace(model, x)
+ mod.save("your_filename.pt")
+
+
+
+* Then, run the export_pt.py in shell
+
+```shell
+python ./path/to/yolov6/deploy/export_pt.py --weights ./path/to/yolov6s.pt
+```
+The above code throws an error that it cannot output a List. To fix this, modify the forward function of the Model in yolov6/models/yolo.py to return x only if export_mode is True, otherwise return a List [x, featmaps].
+
+* Copy the generated new .pt file to the directory where the pnnx script is located, and then execute following command.
+
+```shell
+./path/to/pnnx ./path/to/generate.pt inputshape=[1,3,640,640] #windows
+./path/to/pnnx ./path/to/generate.pt inputshape="[1,3,640,640]" #mac and linux
+```
+
+## 3. Modify ncnn file
+In most versions of ncnn, there are some issues with directly generating ncnn as mentioned above, manifested as xywh being all 0 or random numbers. This is because some versions of ncnn have problems with broadcast multiplication, which requires modifying the param file.
+
+- Open *.param and find the parameter name that corresponds to the output of the last Mul operator and the first input.
+
+- Change the output corresponding to the last concat operation's first input from the output mentioned in a to the first input.
+
+
+ Show/Hide modified.param
+
+ #The parameter names corresponding to the output of step a and the first input are 182 (output) and 180 (first input) on line 162.
+ #The specific operation of step b is to change 182 to 180 in line 165.
+ 7767517
+ 163 186
+ Input in0 0 1 in0
+ Convolution convrelu_0 1 1 in0 1 0=16 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=432 9=1
+ Convolution convrelu_1 1 1 1 2 0=32 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=4608 9=1
+ Convolution convrelu_2 1 1 2 3 0=32 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=9216 9=1
+ Convolution convrelu_3 1 1 3 4 0=32 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=9216 9=1
+ Split splitncnn_0 1 2 4 5 6
+ Convolution convrelu_4 1 1 6 7 0=64 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=18432 9=1
+ Convolution convrelu_5 1 1 7 8 0=64 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=36864 9=1
+ Convolution convrelu_6 1 1 8 9 0=64 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=36864 9=1
+ Convolution convrelu_7 1 1 9 10 0=64 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=36864 9=1
+ Convolution convrelu_8 1 1 10 11 0=64 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=36864 9=1
+ Split splitncnn_1 1 3 11 12 13 14
+ Convolution convrelu_9 1 1 14 15 0=128 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=73728 9=1
+ Convolution convrelu_10 1 1 15 16 0=128 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=147456 9=1
+ Convolution convrelu_11 1 1 16 17 0=128 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=147456 9=1
+ Convolution convrelu_12 1 1 17 18 0=128 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=147456 9=1
+ Convolution convrelu_13 1 1 18 19 0=128 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=147456 9=1
+ Convolution convrelu_14 1 1 19 20 0=128 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=147456 9=1
+ Convolution convrelu_15 1 1 20 21 0=128 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=147456 9=1
+ Split splitncnn_2 1 3 21 22 23 24
+ Convolution convrelu_16 1 1 24 25 0=192 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=221184 9=1
+ Convolution convrelu_17 1 1 25 26 0=192 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=331776 9=1
+ Convolution convrelu_18 1 1 26 27 0=192 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=331776 9=1
+ Split splitncnn_3 1 2 27 28 29
+ Convolution convrelu_19 1 1 29 30 0=256 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=442368 9=1
+ Convolution convrelu_20 1 1 30 31 0=256 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=589824 9=1
+ Convolution convrelu_21 1 1 31 32 0=256 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=589824 9=1
+ Split splitncnn_4 1 2 32 33 34
+ Convolution convrelu_22 1 1 34 35 0=128 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=32768 9=1
+ Convolution convrelu_23 1 1 35 36 0=128 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=147456 9=1
+ Convolution convrelu_24 1 1 36 37 0=128 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=16384 9=1
+ Split splitncnn_5 1 2 37 38 39
+ Pooling maxpool2d_110 1 1 39 40 0=0 1=5 11=5 12=1 13=2 2=1 3=2 5=1
+ Split splitncnn_6 1 2 40 41 42
+ Pooling maxpool2d_111 1 1 42 43 0=0 1=5 11=5 12=1 13=2 2=1 3=2 5=1
+ Split splitncnn_7 1 2 43 44 45
+ Pooling maxpool2d_112 1 1 45 46 0=0 1=5 11=5 12=1 13=2 2=1 3=2 5=1
+ Concat cat_0 4 1 38 41 44 46 47 0=0
+ Convolution convrelu_27 1 1 33 48 0=128 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=32768 9=1
+ Convolution convrelu_25 1 1 47 49 0=128 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=65536 9=1
+ Convolution convrelu_26 1 1 49 50 0=128 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=147456 9=1
+ Concat cat_1 2 1 48 50 51 0=0
+ Convolution convrelu_28 1 1 51 52 0=256 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=65536 9=1
+ Convolution convrelu_30 1 1 52 53 0=128 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=32768 9=1
+ Split splitncnn_8 1 2 53 54 55
+ Deconvolution deconv_107 1 1 55 56 0=128 1=2 11=2 12=1 13=2 14=0 18=0 19=0 2=1 3=2 4=0 5=1 6=65536
+ Convolution convrelu_32 1 1 28 57 0=128 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=24576 9=1
+ Convolution convrelu_29 1 1 23 58 0=128 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=16384 9=1
+ Convolution convrelu_31 1 1 58 59 0=128 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=147456 9=1
+ Concat cat_2 3 1 56 57 59 60 0=0
+ Convolution convrelu_33 1 1 60 61 0=128 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=49152 9=1
+ Convolution convrelu_34 1 1 61 62 0=128 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=147456 9=1
+ Convolution convrelu_35 1 1 62 63 0=128 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=147456 9=1
+ Convolution convrelu_36 1 1 63 64 0=128 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=147456 9=1
+ Convolution convrelu_37 1 1 64 65 0=128 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=147456 9=1
+ Convolution convrelu_39 1 1 65 66 0=64 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=8192 9=1
+ Split splitncnn_9 1 2 66 67 68
+ Deconvolution deconv_108 1 1 68 69 0=64 1=2 11=2 12=1 13=2 14=0 18=0 19=0 2=1 3=2 4=0 5=1 6=16384
+ Convolution convrelu_41 1 1 22 70 0=64 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=8192 9=1
+ Convolution convrelu_38 1 1 13 71 0=64 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=4096 9=1
+ Convolution convrelu_40 1 1 71 72 0=64 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=36864 9=1
+ Concat cat_3 3 1 69 70 72 73 0=0
+ Convolution convrelu_42 1 1 73 74 0=64 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=12288 9=1
+ Convolution convrelu_43 1 1 74 75 0=64 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=36864 9=1
+ Convolution convrelu_44 1 1 75 76 0=64 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=36864 9=1
+ Convolution convrelu_45 1 1 76 77 0=64 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=36864 9=1
+ Convolution convrelu_46 1 1 77 78 0=64 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=36864 9=1
+ Convolution convrelu_48 1 1 78 79 0=32 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2048 9=1
+ Split splitncnn_10 1 2 79 80 81
+ Deconvolution deconv_109 1 1 81 82 0=32 1=2 11=2 12=1 13=2 14=0 18=0 19=0 2=1 3=2 4=0 5=1 6=4096
+ Convolution convrelu_50 1 1 12 83 0=32 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2048 9=1
+ Convolution convrelu_47 1 1 5 84 0=32 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=1024 9=1
+ Convolution convrelu_49 1 1 84 85 0=32 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=9216 9=1
+ Concat cat_4 3 1 82 83 85 86 0=0
+ Convolution convrelu_51 1 1 86 87 0=32 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=3072 9=1
+ Convolution convrelu_52 1 1 87 88 0=32 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=9216 9=1
+ Convolution convrelu_53 1 1 88 89 0=32 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=9216 9=1
+ Convolution convrelu_54 1 1 89 90 0=32 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=9216 9=1
+ Convolution convrelu_55 1 1 90 91 0=32 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=9216 9=1
+ Split splitncnn_11 1 2 91 92 93
+ Convolution convrelu_56 1 1 93 94 0=32 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=9216 9=1
+ Concat cat_5 2 1 94 80 95 0=0
+ Convolution convrelu_57 1 1 95 96 0=64 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=36864 9=1
+ Convolution convrelu_58 1 1 96 97 0=64 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=36864 9=1
+ Convolution convrelu_59 1 1 97 98 0=64 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=36864 9=1
+ Convolution convrelu_60 1 1 98 99 0=64 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=36864 9=1
+ Split splitncnn_12 1 2 99 100 101
+ Convolution convrelu_61 1 1 101 102 0=64 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=36864 9=1
+ Concat cat_6 2 1 102 67 103 0=0
+ Convolution convrelu_62 1 1 103 104 0=128 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=147456 9=1
+ Convolution convrelu_63 1 1 104 105 0=128 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=147456 9=1
+ Convolution convrelu_64 1 1 105 106 0=128 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=147456 9=1
+ Convolution convrelu_65 1 1 106 107 0=128 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=147456 9=1
+ Split splitncnn_13 1 2 107 108 109
+ Convolution convrelu_66 1 1 109 110 0=128 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=147456 9=1
+ Concat cat_7 2 1 110 54 111 0=0
+ Convolution conv_87 1 1 92 112 0=32 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=1024
+ Swish silu_4 1 1 112 113
+ Split splitncnn_14 1 2 113 114 115
+ Convolution conv_88 1 1 115 116 0=32 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=9216
+ Swish silu_5 1 1 116 117
+ Convolution conv_90 1 1 114 118 0=32 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=9216
+ Swish silu_6 1 1 118 119
+ Convolution conv_92 1 1 100 120 0=64 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=4096
+ Swish silu_7 1 1 120 121
+ Split splitncnn_15 1 2 121 122 123
+ Convolution conv_93 1 1 123 124 0=64 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=36864
+ Swish silu_8 1 1 124 125
+ Convolution conv_95 1 1 122 126 0=64 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=36864
+ Swish silu_9 1 1 126 127
+ Convolution conv_97 1 1 108 128 0=128 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=16384
+ Swish silu_10 1 1 128 129
+ Split splitncnn_16 1 2 129 130 131
+ Convolution conv_98 1 1 131 132 0=128 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=147456
+ Swish silu_11 1 1 132 133
+ Convolution conv_100 1 1 130 134 0=128 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=147456
+ Swish silu_12 1 1 134 135
+ Convolution convrelu_67 1 1 111 136 0=256 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=589824 9=1
+ Convolution convrelu_68 1 1 136 137 0=256 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=589824 9=1
+ Convolution convrelu_69 1 1 137 138 0=256 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=589824 9=1
+ Convolution convrelu_70 1 1 138 139 0=256 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=589824 9=1
+ Convolution conv_102 1 1 139 140 0=256 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=65536
+ Swish silu_13 1 1 140 141
+ Split splitncnn_17 1 2 141 142 143
+ Convolution conv_103 1 1 143 144 0=256 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=589824
+ Swish silu_14 1 1 144 145
+ Convolution conv_105 1 1 142 146 0=256 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=589824
+ Swish silu_15 1 1 146 147
+ Convolution convsigmoid_74 1 1 117 148 0=80 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2560 9=4
+ Reshape reshape_187 1 1 148 149 0=4096 1=80
+ Convolution convsigmoid_73 1 1 125 150 0=80 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=5120 9=4
+ Reshape reshape_186 1 1 150 151 0=1024 1=80
+ Convolution convsigmoid_72 1 1 133 152 0=80 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=10240 9=4
+ Reshape reshape_185 1 1 152 153 0=256 1=80
+ Convolution convsigmoid_71 1 1 145 154 0=80 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=20480 9=4
+ Reshape reshape_184 1 1 154 155 0=64 1=80
+ Concat cat_8 4 1 149 151 153 155 156 0=1
+ Convolution conv_106 1 1 147 157 0=4 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=1024
+ Convolution conv_101 1 1 135 158 0=4 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=512
+ Convolution conv_96 1 1 127 159 0=4 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=256
+ Convolution conv_91 1 1 119 160 0=4 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=128
+ Reshape reshape_191 1 1 160 161 0=4096 1=4
+ Reshape reshape_190 1 1 159 162 0=1024 1=4
+ Reshape reshape_189 1 1 158 163 0=256 1=4
+ Reshape reshape_188 1 1 157 164 0=64 1=4
+ Concat cat_9 4 1 161 162 163 164 165 0=1
+ Permute permute_192 1 1 165 166 0=1
+ Slice split_0 1 2 166 167 168 -23300=2,2,-233 1=1
+ MemoryData pnnx_fold_anchor_points.1 0 1 169 0=2 1=5440
+ MemoryData pnnx_fold_anchor_points.1_1 0 1 170 0=2 1=5440
+ BinaryOp sub_0 2 1 169 167 171 0=1
+ Split splitncnn_18 1 2 171 172 173
+ BinaryOp add_1 2 1 170 168 174 0=0
+ Split splitncnn_19 1 2 174 175 176
+ BinaryOp add_2 2 1 172 175 177 0=0
+ BinaryOp div_3 1 1 177 178 0=3 1=1 2=2.000000e+00
+ BinaryOp sub_4 2 1 176 173 179 0=1
+ Concat cat_10 2 1 178 179 180 0=1
+ MemoryData pnnx_fold_stride_tensor.1 0 1 181 0=1 1=5440
+ BinaryOp mul_5 2 1 180 181 182 0=2
+ MemoryData pnnx_fold_925 0 1 183 0=1 1=5440
+ Permute permute_193 1 1 156 184 0=1
+ Concat cat_11 3 1 180 183 184 out0 0=1
+ #origin : Concat cat_11 3 1 182 183 184 out0 0=1
+
+
+This modification means that some operations in the head need to be added to the post-processing of the used framework. Next, we will use lite.ai.toolkit as an example to explain.
+
+* Modify ./path/to/lite.ai.Toolkit/examples/lite/cv/test_lite_yolov6.cpp as
+
+
+ Show/Hide test_lite_yolov6.cpp
+ //
+ // Created by DefTruth on 2022/6/25.
+ //
+
+ #include "lite/lite.h"
+
+ static void test_onnxruntime(std::string onnx)//保留onnx对比下效果,如果要更换onnx模型需更改onnx对应的头文件与代码
+ {
+ #ifdef ENABLE_ONNXRUNTIME
+ std::string onnx_path = "../../../hub/onnx/cv/" + onnx;
+ std::string test_img_path = "../../../examples/lite/resources/test_lite_yolov5_2.jpg";//切换为测试图片路径
+ std::string save_img_path = "../../../logs/test_oxr_yolov6_1.jpg";
+
+ // 2. Test Specific Engine ONNXRuntime
+ lite::onnxruntime::cv::detection::YOLOv6 *yolov6 =
+ new lite::onnxruntime::cv::detection::YOLOv6(onnx_path);
+
+ std::vector detected_boxes;
+ cv::Mat img_bgr = cv::imread(test_img_path);
+ yolov6->detect(img_bgr, detected_boxes, 0.5);
+
+ lite::utils::draw_boxes_inplace(img_bgr, detected_boxes);
+
+ cv::imwrite(save_img_path, img_bgr);
+
+ std::cout << "ONNXRuntime Version Detected Boxes Num: " << detected_boxes.size() << std::endl;
+
+ delete yolov6;
+ #endif
+ }
+
+ static void test_ncnn(std::string ncnn_param, std::string ncnn_bin)
+ {
+ #ifdef ENABLE_NCNN
+ std::string param_path = "../../../hub/ncnn/cv/" + ncnn_param;
+ std::string bin_path = "../../../hub/ncnn/cv/" + ncnn_bin;
+ std::string test_img_path = "../../../examples/lite/resources/test_lite_yolov5_2.jpg"; //切换为测试图片路径
+ std::string save_img_path = "../../../logs/test_ncnn_yolov6_2.jpg";
+
+ // 4. Test Specific Engine NCNN
+ lite::ncnn::cv::detection::YOLOv6 *yolov6 =
+ new lite::ncnn::cv::detection::YOLOv6(param_path, bin_path);
+
+ std::vector detected_boxes;
+ cv::Mat img_bgr = cv::imread(test_img_path);
+ yolov6->detect(img_bgr, detected_boxes);
+
+ lite::utils::draw_boxes_inplace(img_bgr, detected_boxes);
+
+ cv::imwrite(save_img_path, img_bgr);
+
+ std::cout << "NCNN Version Detected Boxes Num: " << detected_boxes.size() << std::endl;
+
+ delete yolov6;
+ #endif
+ }
+
+ static void test_lite(std::string onnx, std::string ncnn_param, std::string ncnn_bin)
+ {
+ test_onnxruntime(onnx);
+ test_ncnn(ncnn_param, ncnn_bin);
+ }
+
+ int main(__unused int argc, __unused char *argv[])
+ {
+ std::string onnx = argv[1];
+ std::string ncnn_param = argv[2];
+ std::string ncnn_bin = argv[3];
+ test_lite(onnx, ncnn_param, ncnn_bin);
+ return 0;
+ }
+
+
+* Modify ./path/to/lite.ai.Toolkit/lite/ncnn/cv/ncnn_yolov6.h Line 28-29 to the input resolution of the ncnn model.
+
+
+ Show/Hide ncnn_yolov6.h
+
+ //
+ // Created by DefTruth on 2022/6/25.
+ //
+
+ #ifndef LITE_AI_TOOLKIT_NCNN_CV_NCNN_YOLOV6_H
+ #define LITE_AI_TOOLKIT_NCNN_CV_NCNN_YOLOV6_H
+
+ #include "lite/ncnn/core/ncnn_core.h"
+
+ namespace ncnncv
+ {
+ class LITE_EXPORTS NCNNYOLOv6
+ {
+ private:
+ ncnn::Net *net = nullptr;
+ const char *log_id = nullptr;
+ const char *param_path = nullptr;
+ const char *bin_path = nullptr;
+ std::vector input_names;
+ std::vector output_names;
+ std::vector input_indexes;
+ std::vector output_indexes;
+
+ public:
+ explicit NCNNYOLOv6(const std::string &_param_path,
+ const std::string &_bin_path,
+ unsigned int _num_threads = 1,
+ int _input_height = 512,
+ int _input_width = 512); //
+ ~NCNNYOLOv6();
+
+ private:
+ // nested classes
+ typedef struct GridAndStride
+ {
+ int grid0;
+ int grid1;
+ int stride;
+ } YOLOv6Anchor;
+
+ typedef struct
+ {
+ float r;
+ int dw;
+ int dh;
+ int new_unpad_w;
+ int new_unpad_h;
+ bool flag;
+ } YOLOv6ScaleParams;
+
+ private:
+ const unsigned int num_threads; // initialize at runtime.
+ const int input_height; // 640/320
+ const int input_width; // 640/320
+
+ const char *class_names[80] = {
+ "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light",
+ "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
+ "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
+ "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard",
+ "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple",
+ "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch",
+ "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard",
+ "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase",
+ "scissors", "teddy bear", "hair drier", "toothbrush"
+ };
+ enum NMS
+ {
+ HARD = 0, BLEND = 1, OFFSET = 2
+ };
+ const float mean_vals[3] = {0.f, 0.f, 0.f}; // RGB
+ const float norm_vals[3] = {1.0 / 255.f, 1.0 / 255.f, 1.0 / 255.f};
+ static constexpr const unsigned int max_nms = 30000;
+
+ protected:
+ NCNNYOLOv6(const NCNNYOLOv6 &) = delete; //
+ NCNNYOLOv6(NCNNYOLOv6 &&) = delete; //
+ NCNNYOLOv6 &operator=(const NCNNYOLOv6 &) = delete; //
+ NCNNYOLOv6 &operator=(NCNNYOLOv6 &&) = delete; //
+
+ private:
+ void print_debug_string();
+
+ void transform(const cv::Mat &mat_rs, ncnn::Mat &in);
+
+ void resize_unscale(const cv::Mat &mat,
+ cv::Mat &mat_rs,
+ int target_height,
+ int target_width,
+ YOLOv6ScaleParams &scale_params);
+
+ void generate_anchors(const int target_height,
+ const int target_width,
+ std::vector &strides,
+ std::vector &anchors);
+
+ void generate_bboxes(const YOLOv6ScaleParams &scale_params,
+ std::vector &bbox_collection,
+ ncnn::Extractor &extractor,
+ float score_threshold, int img_height,
+ int img_width); // rescale & exclude
+
+ void nms(std::vector &input, std::vector &output,
+ float iou_threshold, unsigned int topk, unsigned int nms_type);
+
+ public:
+ void detect(const cv::Mat &mat, std::vector &detected_boxes,
+ float score_threshold = 0.5f, float iou_threshold = 0.45f,
+ unsigned int topk = 100, unsigned int nms_type = NMS::OFFSET);
+ };
+ }
+
+ #endif //LITE_AI_TOOLKIT_NCNN_CV_NCNN_YOLOV6_H
+
+
+* Modify ./path/to/lite.ai.Toolkit/lite/ncnn/cv/ncnn_yolov6.cpp
+
+
+ Show/Hide ncnn_yolov6.cpp
+
+ //
+ // Created by DefTruth on 2022/6/25.
+ //
+
+ #include "ncnn_yolov6.h"
+ #include "lite/utils.h"
+
+ using ncnncv::NCNNYOLOv6;
+
+
+ NCNNYOLOv6::NCNNYOLOv6(const std::string &_param_path,
+ const std::string &_bin_path,
+ unsigned int _num_threads,
+ int _input_height,
+ int _input_width) :
+ log_id(_param_path.data()), param_path(_param_path.data()),
+ bin_path(_bin_path.data()), num_threads(_num_threads),
+ input_height(_input_height), input_width(_input_width)
+ {
+ net = new ncnn::Net();
+ // init net, change this setting for better performance.
+ net->opt.use_fp16_arithmetic = false;
+ net->opt.use_vulkan_compute = false; // default
+ // setup Focus in yolov5
+ // net->register_custom_layer("YoloV5Focus", YoloV5Focus_layer_creator);
+ net->load_param(param_path);
+ net->load_model(bin_path);
+ #ifdef LITENCNN_DEBUG
+ this->print_debug_string();
+ #endif
+ }
+
+ NCNNYOLOv6::~NCNNYOLOv6()
+ {
+ if (net) delete net;
+ net = nullptr;
+ }
+
+ void NCNNYOLOv6::transform(const cv::Mat &mat_rs, ncnn::Mat &in)
+ {
+ // BGR NHWC -> RGB NCHW
+ in = ncnn::Mat::from_pixels(mat_rs.data, ncnn::Mat::PIXEL_BGR2RGB, input_width, input_height);
+ in.substract_mean_normalize(mean_vals, norm_vals);
+ }
+
+ // letterbox
+ void NCNNYOLOv6::resize_unscale(const cv::Mat &mat, cv::Mat &mat_rs,
+ int target_height, int target_width,
+ YOLOv6ScaleParams &scale_params)
+ {
+ if (mat.empty()) return;
+ int img_height = static_cast(mat.rows);
+ int img_width = static_cast(mat.cols);
+
+ mat_rs = cv::Mat(target_height, target_width, CV_8UC3,
+ cv::Scalar(114, 114, 114));
+ // scale ratio (new / old) new_shape(h,w)
+ float w_r = (float) target_width / (float) img_width;
+ float h_r = (float) target_height / (float) img_height;
+ float r = std::min(w_r, h_r);
+ // compute padding
+ int new_unpad_w = static_cast((float) img_width * r); // floor
+ int new_unpad_h = static_cast((float) img_height * r); // floor
+ int pad_w = target_width - new_unpad_w; // >=0
+ int pad_h = target_height - new_unpad_h; // >=0
+
+ int dw = pad_w / 2;
+ int dh = pad_h / 2;
+
+ // resize with unscaling
+ cv::Mat new_unpad_mat;
+ // cv::Mat new_unpad_mat = mat.clone(); // may not need clone.
+ cv::resize(mat, new_unpad_mat, cv::Size(new_unpad_w, new_unpad_h));
+ new_unpad_mat.copyTo(mat_rs(cv::Rect(dw, dh, new_unpad_w, new_unpad_h)));
+
+ // record scale params.
+ scale_params.r = r;
+ scale_params.dw = dw;
+ scale_params.dh = dh;
+ scale_params.new_unpad_w = new_unpad_w;
+ scale_params.new_unpad_h = new_unpad_h;
+ scale_params.flag = true;
+ }
+
+ void NCNNYOLOv6::detect(const cv::Mat &mat, std::vector &detected_boxes,
+ float score_threshold, float iou_threshold,
+ unsigned int topk, unsigned int nms_type)
+ {
+ if (mat.empty()) return;
+ int img_height = static_cast(mat.rows);
+ int img_width = static_cast(mat.cols);
+ // resize & unscale
+ cv::Mat mat_rs;
+ YOLOv6ScaleParams scale_params;
+ this->resize_unscale(mat, mat_rs, input_height, input_width, scale_params);
+
+ // 1. make input tensor
+ ncnn::Mat input;
+ this->transform(mat_rs, input);
+ // 2. inference & extract
+ auto extractor = net->create_extractor();
+ extractor.set_light_mode(false); // default
+ extractor.set_num_threads(num_threads);
+ extractor.input("in0", input);
+ // 3.rescale & exclude.
+ std::vector bbox_collection;
+ this->generate_bboxes(scale_params, bbox_collection, extractor, score_threshold, img_height, img_width);
+ // 4. hard|blend|offset nms with topk.
+ this->nms(bbox_collection, detected_boxes, iou_threshold, topk, nms_type);
+ }
+
+ void NCNNYOLOv6::generate_anchors(const int target_height,
+ const int target_width,
+ std::vector &strides,
+ std::vector &anchors)
+ {
+ for (auto stride: strides)
+ {
+ int num_grid_w = target_width / stride;
+ int num_grid_h = target_height / stride;
+ for (int g1 = 0; g1 < num_grid_h; ++g1)
+ {
+ for (int g0 = 0; g0 < num_grid_w; ++g0)
+ {
+ YOLOv6Anchor anchor;
+ anchor.grid0 = g0;
+ anchor.grid1 = g1;
+ anchor.stride = stride;
+ anchors.push_back(anchor);
+ }
+ }
+ }
+ }
+
+ static inline float sigmoid(float x)
+ {
+ return static_cast(1.f / (1.f + std::exp(-x)));
+ }
+
+ void NCNNYOLOv6::generate_bboxes(const YOLOv6ScaleParams &scale_params,
+ std::vector &bbox_collection,
+ ncnn::Extractor &extractor,
+ float score_threshold, int img_height,
+ int img_width)
+ {
+ ncnn::Mat outputs;
+ ncnn::Mat temp;
+ ncnn::Mat temp2;
+ extractor.extract("out0", outputs); // (1,n=?,85=5+80=cxcy+cwch+obj_conf+cls_conf)
+ extractor.extract("181", temp);
+ extractor.extract("180", temp2);
+ const float* ptr = temp.channel(0);
+ const float* ptr2 = temp2.channel(0);
+
+ std::cout << temp.dims << "\n";
+
+ const unsigned int num_anchors = outputs.h;
+ const unsigned int num_classes = outputs.w - 5;
+
+ std::vector anchors;
+ std::vector strides = {8, 16, 32, 64}; // might have stride=64
+ this->generate_anchors(input_height, input_width, strides, anchors);
+
+ float r_ = scale_params.r;
+ int dw_ = scale_params.dw;
+ int dh_ = scale_params.dh;
+
+
+
+ bbox_collection.clear();
+ unsigned int count = 0;
+
+ for (unsigned int i = 0; i < num_anchors; ++i)
+ {
+ const float *offset_obj_cls_ptr =
+ (float *) outputs.data + (i * (num_classes + 5)); // row ptr
+ float obj_conf = offset_obj_cls_ptr[4];
+ if (obj_conf < score_threshold) continue; // filter first.
+
+ float cls_conf = offset_obj_cls_ptr[5];
+ unsigned int label = 0;
+ for (unsigned int j = 0; j < num_classes; ++j)
+ {
+ float tmp_conf = offset_obj_cls_ptr[j + 5];
+ if (tmp_conf > cls_conf)
+ {
+ cls_conf = tmp_conf;
+ label = j;
+ }
+ } // argmax
+
+ float conf = obj_conf * cls_conf; // cls_conf (0.,1.)
+ if (conf < score_threshold) continue; // filter
+
+ float dx = offset_obj_cls_ptr[0];
+ float dy = offset_obj_cls_ptr[1];
+ float dw = offset_obj_cls_ptr[2];
+ float dh = offset_obj_cls_ptr[3];
+
+ const int stride = anchors.at(i).stride;
+
+ float cx = dx * stride;
+ float cy = dy * stride;
+ float w = dw * stride;
+ float h = dh * stride;
+
+ float x1 = ((cx - w / 2.f) - (float) dw_) / r_;
+ float y1 = ((cy - h / 2.f) - (float) dh_) / r_;
+ float x2 = ((cx + w / 2.f) - (float) dw_) / r_;
+ float y2 = ((cy + h / 2.f) - (float) dh_) / r_;
+ std::cout << "x: " << cx << ", y: " << cy << " | w: " << dw << ", h: "<< dh << ", config: " << class_names[label] << "\n";
+
+ types::Boxf box;
+ box.x1 = std::max(0.f, x1);
+ box.y1 = std::max(0.f, y1);
+ box.x2 = std::min(x2, (float) img_width - 1.f);
+ box.y2 = std::min(y2, (float) img_height - 1.f);
+ box.score = conf;
+ box.label = label;
+ box.label_text = class_names[label];
+ box.flag = true;
+ bbox_collection.push_back(box);
+
+ count += 1; // limit boxes for nms.
+ if (count > max_nms)
+ break;
+ }
+ #if LITENCNN_DEBUG
+ std::cout << "detected num_anchors: " << num_anchors << "\n";
+ std::cout << "generate_bboxes num: " << bbox_collection.size() << "\n";
+ #endif
+ }
+
+ void NCNNYOLOv6::nms(std::vector &input, std::vector &output,
+ float iou_threshold, unsigned int topk,
+ unsigned int nms_type)
+ {
+ if (nms_type == NMS::BLEND) lite::utils::blending_nms(input, output, iou_threshold, topk);
+ else if (nms_type == NMS::OFFSET) lite::utils::offset_nms(input, output, iou_threshold, topk);
+ else lite::utils::hard_nms(input, output, iou_threshold, topk);
+ }
+
+
+ void NCNNYOLOv6::print_debug_string()
+ {
+ std::cout << "LITENCNN_DEBUG LogId: " << log_id << "\n";
+ input_indexes = net->input_indexes();
+ output_indexes = net->output_indexes();
+ #ifdef NCNN_STRING
+ input_names = net->input_names();
+ output_names = net->output_names();
+ #endif
+ std::cout << "=============== Input-Dims ==============\n";
+ for (int i = 0; i < input_indexes.size(); ++i)
+ {
+ std::cout << "Input: ";
+ auto tmp_in_blob = net->blobs().at(input_indexes.at(i));
+ #ifdef NCNN_STRING
+ std::cout << input_names.at(i) << ": ";
+ #endif
+ std::cout << "shape: c=" << tmp_in_blob.shape.c
+ << " h=" << tmp_in_blob.shape.h << " w=" << tmp_in_blob.shape.w << "\n";
+ }
+
+ std::cout << "=============== Output-Dims ==============\n";
+ for (int i = 0; i < output_indexes.size(); ++i)
+ {
+ auto tmp_out_blob = net->blobs().at(output_indexes.at(i));
+ std::cout << "Output: ";
+ #ifdef NCNN_STRING
+ std::cout << output_names.at(i) << ": ";
+ #endif
+ std::cout << "shape: c=" << tmp_out_blob.shape.c
+ << " h=" << tmp_out_blob.shape.h << " w=" << tmp_out_blob.shape.w << "\n";
+ }
+ std::cout << "========================================\n";
+ }
+
+
+* Save yolov6s.onnx, yolov6s.param, yolov6s.bin to ./path/to/lite.ai.Toolkit/hub. Compile lite.ai.Toolkit. Then execute the following commands.
+
+ Show/Hide Commands
+
+ cd ./path/to/lite.ai.Toolkit/build/lite.ai.toolkit/bin
+ ./lite_yolov6 yolov6s.onnx yolov6s.param yolov6s.bin
+
+
+
+## 4. Performance
+
+
+
+
+
+
+| Model | Size | SpeedNCNN average (fps) | Params (M) | FLOPs (G) |
+| :----------------------------------------------------------- | :-------------------------------- | -------------------------------------- | --------------------------------------- | -------------------- |
+| [**YOLOv6Lite-L**](https://github.com/meituan/YOLOv6/releases/download/0.4.0/yolov6lite_l.pt) | 320*320 | 39.88 | 1.09 | 0.87 |
+| [**YOLOv6Lite-L**](https://github.com/meituan/YOLOv6/releases/download/0.4.0/yolov6lite_l.pt) | 320*192 | 64.51 | 1.09 | 0.52 |
+| [**YOLOv6Lite-L**](https://github.com/meituan/YOLOv6/releases/download/0.4.0/yolov6lite_l.pt) | 224*128 | 130.05 | 1.09 | 0.24 |
+
+- Speed is tested with 2.6 GHz 6Core Intel Core i7 on macOS. And the architecture used in the speed test is Coffee Lake. During the speed measurement process, 1000 pictures were randomly sampled from the COCO dataset, and the average value of the speed measurement was taken as the final result.
diff --git a/python/app/fedcv/YOLOv6/docs/Test_speed.md b/python/app/fedcv/YOLOv6/docs/Test_speed.md
new file mode 100644
index 0000000000..c33b40f8fb
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/docs/Test_speed.md
@@ -0,0 +1,43 @@
+# Test speed
+
+This guidence explains how to reproduce speed results of YOLOv6. For fair comparison, the speed results do not contain the time cost of data pre-processing and NMS post-processing.
+
+## 0. Prepare model
+
+Download the models you want to test from the latest release.
+
+## 1. Prepare testing environment
+
+Refer to README, install packages corresponding to CUDA, CUDNN and TensorRT version.
+
+Here, we use Torch1.8.0 inference on V100 and TensorRT 7.2 Cuda 10.2 Cudnn 8.0.2 on T4.
+
+## 2. Reproduce speed
+
+#### 2.1 Torch Inference on V100
+
+To get inference speed without TensorRT on V100, you can run the following command:
+
+```shell
+python tools/eval.py --data data/coco.yaml --batch 32 --weights yolov6n.pt --task speed [--half]
+```
+
+- Speed results with batchsize = 1 are unstable in multiple runs, thus we do not provide the bs1 speed results.
+
+#### 2.2 TensorRT Inference on T4
+
+To get inference speed with TensorRT in FP16 mode on T4, you can follow the steps below:
+
+First, export pytorch model as onnx format using the following command:
+
+```shell
+python deploy/ONNX/export_onnx.py --weights yolov6n.pt --device 0 --simplify --batch [1 or 32]
+```
+
+Second, generate an inference trt engine and test speed using `trtexec`:
+
+```
+trtexec --explicitBatch --fp16 --inputIOFormats=fp16:chw --outputIOFormats=fp16:chw --buildOnly --workspace=1024 --onnx=yolov6n.onnx --saveEngine=yolov6n.trt
+
+trtexec --fp16 --avgRuns=1000 --workspace=1024 --loadEngine=yolov6n.trt
+```
diff --git a/python/app/fedcv/YOLOv6/docs/Train_coco_data.md b/python/app/fedcv/YOLOv6/docs/Train_coco_data.md
new file mode 100644
index 0000000000..027bb253bb
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/docs/Train_coco_data.md
@@ -0,0 +1,122 @@
+# Train COCO Dataset
+
+This guidence shows the training commands for reproducing our results on COCO Dataset.
+
+
+## For Mobile models
+
+#### YOLOv6Lite-S/M/L
+
+```shell
+python -m torch.distributed.launch --nproc_per_node 4 tools/train.py \
+ --batch 128 \
+ --img_size 416 \ # train with 416 and eval with 320
+ --conf configs/yolov6_lite/yolov6_lite_s.py \ # yolov6lite_m/l
+ --data data/coco.yaml \
+ --epoch 400 \
+ --device 0,1,2,3 \
+ --name yolov6_lite_s_coco
+```
+
+## For P5 models
+
+#### YOLOv6-N
+
+```shell
+# Step 1: Training a base model
+# Be sure to open use_dfl mode in config file (use_dfl=True, reg_max=16)
+
+python -m torch.distributed.launch --nproc_per_node 8 tools/train.py \
+ --batch 128 \
+ --conf configs/yolov6n.py \
+ --data data/coco.yaml \
+ --epoch 300 \
+ --fuse_ab \
+ --device 0,1,2,3,4,5,6,7 \
+ --name yolov6n_coco
+
+# Step 2: Self-distillation training
+python -m torch.distributed.launch --nproc_per_node 8 tools/train.py \
+ --batch 128 \
+ --conf configs/yolov6n.py \
+ --data data/coco.yaml \
+ --epoch 300 \
+ --device 0,1,2,3,4,5,6,7 \
+ --distill \
+ --teacher_model_path runs/train/yolov6n_coco/weights/best_ckpt.pt \
+ --name yolov6n_coco
+```
+
+
+#### YOLOv6-S/M/L
+
+```shell
+# Step 1: Training a base model
+# Be sure to open use_dfl mode in config file (use_dfl=True, reg_max=16)
+
+python -m torch.distributed.launch --nproc_per_node 8 tools/train.py \
+ --batch 256 \
+ --conf configs/yolov6s.py \ # yolov6m/yolov6l
+ --data data/coco.yaml \
+ --epoch 300 \
+ --fuse_ab \
+ --device 0,1,2,3,4,5,6,7 \
+ --name yolov6s_coco # yolov6m_coco/yolov6l_coco
+
+# Step 2: Self-distillation training
+python -m torch.distributed.launch --nproc_per_node 8 tools/train.py \
+ --batch 256 \ # 128 for distillation of yolov6l
+ --conf configs/yolov6s.py \ # yolov6m/yolov6l
+ --data data/coco.yaml \
+ --epoch 300 \
+ --device 0,1,2,3,4,5,6,7 \
+ --distill \
+ --teacher_model_path runs/train/yolov6s_coco/weights/best_ckpt.pt \
+ --name yolov6s_coco # yolov6m_coco/yolov6l_coco
+
+```
+
+## For P6 models
+
+#### YOLOv6-N6/S6
+
+```shell
+python -m torch.distributed.launch --nproc_per_node 8 tools/train.py \
+ --batch 128 \
+ --img 1280 \
+ --conf configs/yolov6s6.py \ # yolov6n6
+ --data data/coco.yaml \
+ --epoch 300 \
+ --bs_per_gpu 16 \
+ --device 0,1,2,3,4,5,6,7 \
+ --name yolov6s6_coco # yolov6n6_coco
+
+```
+
+
+#### YOLOv6-M6/L6
+
+```shell
+# Step 1: Training a base model
+python -m torch.distributed.launch --nproc_per_node 8 tools/train.py \
+ --batch 128 \
+ --conf configs/yolov6l6.py \ # yolov6m6
+ --data data/coco.yaml \
+ --epoch 300 \
+ --bs_per_gpu 16 \
+ --device 0,1,2,3,4,5,6,7 \
+ --name yolov6l6_coco # yolov6m6_coco
+
+# Step 2: Self-distillation training
+python -m torch.distributed.launch --nproc_per_node 8 tools/train.py \
+ --batch 128 \
+ --conf configs/yolov6l6.py \ # yolov6m6
+ --data data/coco.yaml \
+ --epoch 300 \
+ --bs_per_gpu 16 \
+ --device 0,1,2,3,4,5,6,7 \
+ --distill \
+ --teacher_model_path runs/train/yolov6l6_coco/weights/best_ckpt.pt \
+ --name yolov6l6_coco # yolov6m6_coco
+
+```
diff --git a/python/app/fedcv/YOLOv6/docs/Train_custom_data.md b/python/app/fedcv/YOLOv6/docs/Train_custom_data.md
new file mode 100644
index 0000000000..74ab9937c7
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/docs/Train_custom_data.md
@@ -0,0 +1,159 @@
+# Train Custom Data
+
+This guidence explains how to train your own custom data with YOLOv6 (take fine-tuning YOLOv6-s model for example).
+
+## 0. Before you start
+
+Clone this repo and follow README.md to install requirements in a Python3.8 environment.
+```shell
+$ git clone https://github.com/meituan/YOLOv6.git
+```
+
+## 1. Prepare your own dataset
+
+**Step 1**: Prepare your own dataset with images. For labeling images, you can use tools like [Labelme](https://github.com/wkentaro/labelme) or [Roboflow](https://roboflow.com/).
+
+**Step 2**: Generate label files in YOLO format.
+
+One image corresponds to one label file, and the label format example is presented as below.
+
+```json
+# class_id center_x center_y bbox_width bbox_height
+0 0.300926 0.617063 0.601852 0.765873
+1 0.575 0.319531 0.4 0.551562
+```
+
+
+- Each row represents one object.
+- Class id starts from `0`.
+- Boundingbox coordinates must be in normalized `xywh` format (from 0 - 1). If your boxes are in pixels, divide `center_x` and `bbox_width` by image width, and `center_y` and `bbox_height` by image height.
+
+**Step 3**: Organize directories.
+
+Organize your directory of custom dataset as follows:
+
+```shell
+custom_dataset
+├── images
+│ ├── train
+│ │ ├── train0.jpg
+│ │ └── train1.jpg
+│ ├── val
+│ │ ├── val0.jpg
+│ │ └── val1.jpg
+│ └── test
+│ ├── test0.jpg
+│ └── test1.jpg
+└── labels
+ ├── train
+ │ ├── train0.txt
+ │ └── train1.txt
+ ├── val
+ │ ├── val0.txt
+ │ └── val1.txt
+ └── test
+ ├── test0.txt
+ └── test1.txt
+```
+
+**Step 4**: Create `dataset.yaml` in `$YOLOv6_DIR/data`.
+
+```yaml
+# Please insure that your custom_dataset are put in same parent dir with YOLOv6_DIR
+train: ../custom_dataset/images/train # train images
+val: ../custom_dataset/images/val # val images
+test: ../custom_dataset/images/test # test images (optional)
+
+# whether it is coco dataset, only coco dataset should be set to True.
+is_coco: False
+
+# Classes
+nc: 20 # number of classes
+names: ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog',
+ 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'] # class names
+```
+
+## 2. Create a config file
+
+We use a config file to specify the network structure and training setting, including optimizer and data augmentation hyperparameters.
+
+If you create a new config file, please put it under the `configs` directory.
+Or just use the provided config file in `$YOLOV6_HOME/configs/*_finetune.py`. Download the pretrained model which you want to use from [here](https://github.com/meituan/YOLOv6#benchmark).
+
+```python
+## YOLOv6s Model config file
+model = dict(
+ type='YOLOv6s',
+ pretrained='./weights/yolov6s.pt', # download the pretrained model from YOLOv6 github if you're going to use the pretrained model
+ depth_multiple = 0.33,
+ width_multiple = 0.50,
+ ...
+)
+solver=dict(
+ optim='SGD',
+ lr_scheduler='Cosine',
+ ...
+)
+
+data_aug = dict(
+ hsv_h=0.015,
+ hsv_s=0.7,
+ hsv_v=0.4,
+ ...
+)
+```
+
+
+
+## 3. Train
+
+Single GPU
+
+```shell
+# Be sure to open use_dfl mode in config file (use_dfl=True, reg_max=16) if you want to do self-distillation training further.
+python tools/train.py --batch 32 --conf configs/yolov6s_finetune.py --data data/dataset.yaml --fuse_ab --device 0
+```
+
+Multi GPUs (DDP mode recommended)
+
+```shell
+# Be sure to open use_dfl mode in config file (use_dfl=True, reg_max=16) if you want to do self-distillation training further.
+python -m torch.distributed.launch --nproc_per_node 8 tools/train.py --batch 256 --conf configs/yolov6s_finetune.py --data data/dataset.yaml --fuse_ab --device 0,1,2,3,4,5,6,7
+```
+
+Self-distillation training
+
+```shell
+# Be sure to open use_dfl mode in config file (use_dfl=True, reg_max=16).
+python -m torch.distributed.launch --nproc_per_node 8 tools/train.py --batch 256 --conf configs/yolov6s_finetune.py --data data/dataset.yaml --distill --teacher_model_path your_model_path --device 0,1,2,3,4,5,6,7
+```
+
+
+## 4. Evaluation
+
+```shell
+python tools/eval.py --data data/data.yaml --weights output_dir/name/weights/best_ckpt.pt --task val --device 0
+```
+
+
+
+## 5. Inference
+
+```shell
+python tools/infer.py --weights output_dir/name/weights/best_ckpt.pt --source img.jpg --device 0
+```
+
+
+
+## 6. Deployment
+
+Export as [ONNX](https://github.com/meituan/YOLOv6/tree/main/deploy/ONNX) Format
+
+```shell
+# Without NMS OP, pure model.
+python deploy/ONNX/export_onnx.py --weights output_dir/name/weights/best_ckpt.pt --simplify --device 0
+# If you want to run with ONNX-Runtime (NMS integrated).
+python deploy/ONNX/export_onnx.py --weights output_dir/name/weights/best_ckpt.pt --simplify --device 0 --dynamic-batch --end2end --ort
+# If you want to run with TensorRT (NMS integrated).
+python deploy/ONNX/export_onnx.py --weights output_dir/name/weights/best_ckpt.pt --simplify --device 0 --dynamic-batch --end2end
+```
diff --git a/python/app/fedcv/YOLOv6/docs/Tutorial of Quantization.md b/python/app/fedcv/YOLOv6/docs/Tutorial of Quantization.md
new file mode 100644
index 0000000000..c5ca2ef3d4
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/docs/Tutorial of Quantization.md
@@ -0,0 +1,10 @@
+# Quantization Practice for YOLOv6
+For industrial deployment, it has been common practice to adopt quantization to further speed up runtime without much performance compromise. However, due to the heavy use of re-parameterization blocks in YOLOv6, previous PTQ techniques fail to produce high performance, while it is hard to incorporate QAT when it comes to matching fake quantizers during training and inference.
+
+In order to solve the quantization problem of YOLOv6, we firstly reconstruct the network with RepOptimizer, and then perform well-designed PTQ and QAT skills on this model. Finally we can obtain a SOTA quantized result(mAP 43.3 at 869 QPS) for YOLOv6s.
+
+Specific tutorials, please refer to the following links:
+* [Tutorial of RepOpt for YOLOv6](./tutorial_repopt.md)
+* [Tutorial of QAT for YOLOv6](../tools/qat/README.md)
+* [Partial Quantization](../tools/partial_quantization)
+* [PPQ Quantization](../tools/quantization/ppq)
diff --git a/python/app/fedcv/YOLOv6/docs/tutorial_repopt.md b/python/app/fedcv/YOLOv6/docs/tutorial_repopt.md
new file mode 100644
index 0000000000..607fb42cd6
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/docs/tutorial_repopt.md
@@ -0,0 +1,28 @@
+# RepOpt version implementation of YOLOv6
+## Introduction
+This is a RepOpt-version implementation of YOLOv6 according to RepOptimizer: https://arxiv.org/pdf/2205.15242.pdf @DingXiaoH \
+It shows some advantages:
+1. With only minor changes. it is compatible with the original repvgg version, and it is easy to reproduce the precision comparable with original version.
+2. No more train/deploy transform. The target network is consistent when training and deploying.
+3. A slight training acceleration of about 8%.
+4. Last and the most important, It is quantization friendly. Compared to the original version, the mAP decrease of PTQ can be greatly improved. Furthermore, the architecture of RepOptimizer is friendly to wrap quant-models for QAT.
+
+## Training
+The training of V6-RepOpt can be divided into two stages, hyperparameter search and target network training.
+1. hyperparameter search. This stage is used to get a suitable 'scale' for RepOptimizer, and the result checkpoint can be passed to stage2. Remember to add `training_mode='hyper_search'` in your config.
+ ```
+ python tools/train.py --batch 32 --conf configs/repopt/yolov6s_hs.py --data data/coco.yaml --device 0
+ ```
+ Or you can directly use the [pretrained scale](https://github.com/xingyueye/YOLOv6/releases/download/0.1.0/yolov6s_scale.pt) we provided and omit this stage.
+
+2. Training. Add the flag of `training_mode='repopt'` and pretraind model `scales='./assets/yolov6s_scale.pt',` in your config
+ ```
+ python tools/train.py --batch 32 --conf configs/repopt/yolov6s_opt.py --data data/coco.yaml --device 0
+ ```
+## Evaluation
+Reproduce mAP on COCO val2017 dataset, you can directly test our [pretrained model](https://github.com/xingyueye/YOLOv6/releases/download/0.1.0/yolov6s_opt.pt).
+ ```
+ python tools/eval.py --data data/coco.yaml --batch 32 --weights yolov6s_opt.pt --task val
+ ```
+## Benchmark
+We train a yolov6s-repopt with 300epochs, the fp32 mAP is 42.4, while the mAP of PTQ is 40.5. More results is coming soon...
diff --git a/python/app/fedcv/YOLOv6/docs/tutorial_voc.ipynb b/python/app/fedcv/YOLOv6/docs/tutorial_voc.ipynb
new file mode 100644
index 0000000000..8dda21b4eb
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/docs/tutorial_voc.ipynb
@@ -0,0 +1,279 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Training YOLOv6 on VOC dataset"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Step 1: Prepare VOC dataset"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "| dataset | url | size | images |\n",
+ "| :----: | :----: |:----: | :----: |\n",
+ "| VOC2007 trainval | [download zip](http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar) | 446MB | 5012 \n",
+ "| VOC2007 test | [download zip](http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar) | 438MB | 4953\n",
+ "| VOC2012 trainval | [download zip](http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar) | 1.95GB | 17126"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Download VOC dataset and unzip them, the directory shows like:\n",
+ "```\n",
+ "VOCdevkit\n",
+ "├── VOC2007\n",
+ "│ ├── Annotations\n",
+ "│ ├── ImageSets\n",
+ "│ ├── JPEGImages\n",
+ "│ ├── SegmentationClass\n",
+ "│ └── SegmentationObject\n",
+ "└── VOC2012\n",
+ " ├── Annotations\n",
+ " ├── ImageSets\n",
+ " ├── JPEGImages\n",
+ " ├── SegmentationClass\n",
+ " └── SegmentationObject\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Step 2: Convert VOC dataset to YOLO-format."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The VOC dataset use xml format annotations as below. (refer to [VOC2007 guidelines](http://host.robots.ox.ac.uk/pascal/VOC/voc2007/guidelines.html))\n",
+ "```\n",
+ "\n",
+ "\tVOC2007 \n",
+ "\t000007.jpg \n",
+ "\t\n",
+ "\t\tThe VOC2007 Database \n",
+ "\t\tPASCAL VOC2007 \n",
+ "\t\tflickr \n",
+ "\t\t194179466 \n",
+ "\t \n",
+ "\t\n",
+ "\t\tmonsieurrompu \n",
+ "\t\tThom Zemanek \n",
+ "\t \n",
+ "\t\n",
+ "\t\t500 \n",
+ "\t\t333 \n",
+ "\t\t3 \n",
+ "\t \n",
+ "\t0 \n",
+ "\t\n",
+ "\t\tcar \n",
+ "\t\tUnspecified \n",
+ "\t\t1 \n",
+ "\t\t0 \n",
+ "\t\t\n",
+ "\t\t\t141 \n",
+ "\t\t\t50 \n",
+ "\t\t\t500 \n",
+ "\t\t\t330 \n",
+ "\t\t \n",
+ "\t \n",
+ " \n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Run the following command to convert voc dataset to yolo format:\n",
+ "\n",
+ " `python yolov6/data/voc2yolo.py --voc_path your_path/to/VOCdevkit`"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We follow the `07+12` training setting, which means using VOC2007 and VOC2012's train+val(16551) as training set, VOC2007's test(4952) as validation set and testing set.\n",
+ "\n",
+ "Finally, the directory looks like:\n",
+ "```\n",
+ "VOCdevkit\n",
+ "├── images\n",
+ "├── labels\n",
+ "├── voc_07_12\n",
+ "│ ├── images\n",
+ "│ │ ├── train\n",
+ "│ │ └── val\n",
+ "│ └── labels\n",
+ "│ ├── train\n",
+ "│ └── val\n",
+ "├── VOC2007\n",
+ "└── VOC2012\n",
+ "```\n",
+ "Where `voc_07_12` is the converted yolo-format dataset."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Visualize yolo format dataset (Optional)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "To check if your dataset is correct, run the following command:\n",
+ "\n",
+ " `python yolov6/data/vis_dataset.py --img_dir your_path/to/VOCdevkit/images/train --label_dir your_path/to/VOCdevkit/labels/train`"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Step 3: Create dataset config file."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Create `data/voc.yaml` like:\n",
+ "\n",
+ "```\n",
+ "# Please insure that your custom_dataset are put in same parent dir with YOLOv6_DIR\n",
+ "train: your_path/to/VOCdevkit/voc_07_12/images/train # train images\n",
+ "val: your_path/to/VOCdevkit/voc_07_12/images/val # val images\n",
+ "test: your_path/to/VOCdevkit/voc_07_12/images/val # test images (optional)\n",
+ "\n",
+ "# whether it is coco dataset, only coco dataset should be set to True.\n",
+ "is_coco: False\n",
+ "# Classes\n",
+ "nc: 20 # number of classes\n",
+ "names: ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog',\n",
+ " 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'] # class names\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Step 4: Training.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Use the following command to start training:\n",
+ "- Multi GPUs (DDP mode recommended)\n",
+ "\n",
+ " `python -m torch.distributed.launch --nproc_per_node 4 --master_port=23456 tools/train.py --batch 256 --conf configs/yolov6n_finetune.py --data data/voc.yaml --device 0,1,2,3`\n",
+ "\n",
+ "- Single GPU\n",
+ "\n",
+ " `python tools/train.py --batch 256 --conf configs/yolov6_finetune.py --data data/data.yaml --device 0`"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Tensorboard\n",
+ "We can use tensorboard to visualize the train_batch/validation predictions and loss/mAP curve, run:\n",
+ "\n",
+ " `tensorboard --logdir=your_path/to/log`\n",
+ "\n",
+ "![Train batch](../assets/train_batch.jpg 'Train batch')\n",
+ "\n",
+ "![Traing loss/mAP curve](../assets/voc_loss_curve.jpg 'Traing loss/mAP curve')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Evaluation\n",
+ "When training finished, it automatically do evaulation on the testset, the output metrics are:\n",
+ "```\n",
+ "DONE (t=4.21s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.632\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.854\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.702\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.272\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.473\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.689\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.518\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.737\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.751\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.554\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.656\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.791\n",
+ "Epoch: 399 | mAP@0.5: 0.8542516455615079 | mAP@0.50:0.95: 0.6315693468708705\n",
+ "\n",
+ "Training completed in 9.206 hours.\n",
+ "```\n",
+ "Or you can manually evaulation model on your dataset by:\n",
+ "\n",
+ " `python tools/eval.py --data data/voc.yaml --weights your_path/to/weights/best_ckpt.pt --device 0`"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 5.Inference\n",
+ "\n",
+ " `python tools/infer.py --weights your_path/to/weights/best_ckpt.pt --yaml data/voc.yaml --source data/images/image3.jpg --device 0`\n",
+ "\n",
+ "![image3.jpg](../assets/image3.jpg)\n",
+ "### 6. Deployment\n",
+ "\n",
+ " `python deploy/ONNX/export_onnx.py --weights your_path/to/weights/best_ckpt.pt --device 0`"
+ ]
+ }
+ ],
+ "metadata": {
+ "interpreter": {
+ "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6"
+ },
+ "kernelspec": {
+ "display_name": "Python 3.8.2 64-bit",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.10"
+ },
+ "orig_nbformat": 4
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/python/app/fedcv/YOLOv6/hubconf.py b/python/app/fedcv/YOLOv6/hubconf.py
new file mode 100644
index 0000000000..13ec92ab29
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/hubconf.py
@@ -0,0 +1,182 @@
+import os
+import cv2
+import math
+import pathlib
+import torch
+import numpy as np
+from PIL import Image
+import matplotlib.pyplot as plt
+
+from yolov6.layers.common import DetectBackend
+from yolov6.utils.nms import non_max_suppression
+from yolov6.data.data_augment import letterbox
+from yolov6.core.inferer import Inferer
+from yolov6.utils.events import LOGGER
+from yolov6.utils.events import load_yaml
+
+PATH_YOLOv6 = pathlib.Path(__file__).parent
+DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
+CLASS_NAMES = load_yaml(str(PATH_YOLOv6/"data/coco.yaml"))['names']
+
+
+def visualize_detections(image,
+ boxes,
+ classes,
+ scores,
+ min_score=0.4,
+ figsize=(16, 16),
+ linewidth=2,
+ color='lawngreen'
+ ):
+ image = np.array(image, dtype=np.uint8)
+ fig = plt.figure(figsize=figsize)
+ plt.axis("off")
+ plt.imshow(image)
+ ax = plt.gca()
+ for box, name, score in zip(boxes, classes, scores):
+ if score >= min_score:
+ text = "{}: {:.2f}".format(name, score)
+ x1, y1, x2, y2 = box
+ w, h = x2 - x1, y2 - y1
+ patch = plt.Rectangle(
+ [x1, y1], w, h, fill=False, edgecolor=color, linewidth=linewidth
+ )
+ ax.add_patch(patch)
+ ax.text(
+ x1,
+ y1,
+ text,
+ bbox={"facecolor": color, "alpha": 0.8},
+ clip_box=ax.clipbox,
+ clip_on=True,
+ )
+ plt.show()
+
+
+def check_img_size(img_size, s=32, floor=0):
+ def make_divisible(x, divisor):
+ return math.ceil(x / divisor) * divisor
+ if isinstance(img_size, int): # integer i.e. img_size=640
+ new_size = max(make_divisible(img_size, int(s)), floor)
+ elif isinstance(img_size, list): # list i.e. img_size=[640, 480]
+ new_size = [max(make_divisible(x, int(s)), floor) for x in img_size]
+ else:
+ raise Exception(f"Unsupported type of img_size: {type(img_size)}")
+
+ if new_size != img_size:
+ LOGGER.info(
+ f'WARNING: --img-size {img_size} must be multiple of max stride {s}, updating to {new_size}')
+ return new_size if isinstance(img_size, list) else [new_size] * 2
+
+
+def process_image(path, img_size, stride):
+ '''Preprocess image before inference.'''
+ try:
+ img_src = cv2.imread(path)
+ img_src = cv2.cvtColor(img_src, cv2.COLOR_RGB2BGR)
+ assert img_src is not None, f"opencv cannot read image correctly or {path} not exists"
+ except:
+ img_src = np.asarray(Image.open(path))
+ assert img_src is not None, f"Image Not Found {path}, workdir: {os.getcwd()}"
+
+ image = letterbox(img_src, img_size, stride=stride)[0]
+ image = image.transpose((2, 0, 1)) # HWC to CHW
+ image = torch.from_numpy(np.ascontiguousarray(image))
+ image = image.float()
+ image /= 255
+ return image, img_src
+
+
+class Detector(DetectBackend):
+ def __init__(self,
+ ckpt_path,
+ class_names,
+ device,
+ img_size=640,
+ conf_thres=0.25,
+ iou_thres=0.45,
+ max_det=1000):
+ super().__init__(ckpt_path, device)
+ self.class_names = class_names
+ self.model.float()
+ self.device = device
+ self.img_size = check_img_size(img_size)
+ self.conf_thres = conf_thres
+ self.iou_thres = iou_thres
+ self.max_det = max_det
+
+ def forward(self, x, src_shape):
+ pred_results = super().forward(x)
+ classes = None # the classes to keep
+ det = non_max_suppression(pred_results, self.conf_thres, self.iou_thres,
+ classes, agnostic=False, max_det=self.max_det)[0]
+
+ det[:, :4] = Inferer.rescale(
+ x.shape[2:], det[:, :4], src_shape).round()
+ boxes = det[:, :4]
+ scores = det[:, 4]
+ labels = det[:, 5].long()
+ prediction = {'boxes': boxes, 'scores': scores, 'labels': labels}
+ return prediction
+
+ def predict(self, img_path):
+ img, img_src = process_image(img_path, self.img_size, 32)
+ img = img.to(self.device)
+ if len(img.shape) == 3:
+ img = img[None]
+
+ prediction = self.forward(img, img_src.shape)
+ out = {k: v.cpu().numpy() for k, v in prediction.items()}
+ out['classes'] = [self.class_names[i] for i in out['labels']]
+ return out
+
+ def show_predict(self,
+ img_path,
+ min_score=0.5,
+ figsize=(16, 16),
+ color='lawngreen',
+ linewidth=2):
+ prediction = self.predict(img_path)
+ boxes, scores, classes = prediction['boxes'], prediction['scores'], prediction['classes']
+ visualize_detections(Image.open(img_path),
+ boxes, classes, scores,
+ min_score=min_score, figsize=figsize, color=color, linewidth=linewidth
+ )
+
+
+def create_model(model_name, class_names=CLASS_NAMES, device=DEVICE,
+ img_size=640, conf_thres=0.25, iou_thres=0.45, max_det=1000):
+ if not os.path.exists(str(PATH_YOLOv6/'weights')):
+ os.mkdir(str(PATH_YOLOv6/'weights'))
+ if not os.path.exists(str(PATH_YOLOv6/'weights') + f'/{model_name}.pt'):
+ torch.hub.load_state_dict_from_url(
+ f"https://github.com/meituan/YOLOv6/releases/download/0.3.0/{model_name}.pt",
+ str(PATH_YOLOv6/'weights'))
+ return Detector(str(PATH_YOLOv6/'weights') + f'/{model_name}.pt',
+ class_names, device, img_size=img_size, conf_thres=conf_thres,
+ iou_thres=iou_thres, max_det=max_det)
+
+
+def yolov6n(class_names=CLASS_NAMES, device=DEVICE, img_size=640, conf_thres=0.25, iou_thres=0.45, max_det=1000):
+ return create_model('yolov6n', class_names, device, img_size=img_size, conf_thres=conf_thres,
+ iou_thres=iou_thres, max_det=max_det)
+
+
+def yolov6s(class_names=CLASS_NAMES, device=DEVICE, img_size=640, conf_thres=0.25, iou_thres=0.45, max_det=1000):
+ return create_model('yolov6s', class_names, device, img_size=img_size, conf_thres=conf_thres,
+ iou_thres=iou_thres, max_det=max_det)
+
+
+def yolov6m(class_names=CLASS_NAMES, device=DEVICE, img_size=640, conf_thres=0.25, iou_thres=0.45, max_det=1000):
+ return create_model('yolov6m', class_names, device, img_size=img_size, conf_thres=conf_thres,
+ iou_thres=iou_thres, max_det=max_det)
+
+
+def yolov6l(class_names=CLASS_NAMES, device=DEVICE, img_size=640, conf_thres=0.25, iou_thres=0.45, max_det=1000):
+ return create_model('yolov6l', class_names, device, img_size=img_size, conf_thres=conf_thres,
+ iou_thres=iou_thres, max_det=max_det)
+
+
+def custom(ckpt_path, class_names, device=DEVICE, img_size=640, conf_thres=0.25, iou_thres=0.45, max_det=1000):
+ return Detector(ckpt_path, class_names, device, img_size=img_size, conf_thres=conf_thres,
+ iou_thres=iou_thres, max_det=max_det)
diff --git a/python/app/fedcv/YOLOv6/inference.ipynb b/python/app/fedcv/YOLOv6/inference.ipynb
new file mode 100644
index 0000000000..644f237294
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/inference.ipynb
@@ -0,0 +1,241 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "view-in-github"
+ },
+ "source": [
+ " "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "Q-0tGltfFeQh",
+ "outputId": "94af1d35-e4a0-4c09-e5e9-ae89064823c2"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Cloning into 'YOLOv6'...\n",
+ "remote: Enumerating objects: 522, done.\u001b[K\n",
+ "remote: Counting objects: 100% (15/15), done.\u001b[K\n",
+ "remote: Compressing objects: 100% (13/13), done.\u001b[K\n",
+ "remote: Total 522 (delta 1), reused 7 (delta 1), pack-reused 507\u001b[K\n",
+ "Receiving objects: 100% (522/522), 1.34 MiB | 15.44 MiB/s, done.\n",
+ "Resolving deltas: 100% (227/227), done.\n",
+ "\u001b[31mERROR: Could not open requirements file: [Errno 2] No such file or directory: 'requirements.txt'\u001b[0m\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Clone and install MT-YOLOv6\n",
+ "!git clone https://github.com/meituan/YOLOv6.git\n",
+ "!cd YOLOv6\n",
+ "!pip install -r requirements.txt"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "DyJwTrLIR9tD",
+ "outputId": "b56bf04c-96c8-4ca1-d34c-17d3ffeef7c6"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Loading checkpoint from ./yolov6n.pt\n",
+ "\n",
+ "Fusing model...\n"
+ ]
+ }
+ ],
+ "source": [
+ "#@title Set-up model. { run: \"auto\" }\n",
+ "checkpoint:str =\"yolov6n\" #@param [\"yolov6s\", \"yolov6n\", \"yolov6t\"]\n",
+ "device:str = \"cpu\"#@param [\"gpu\", \"cpu\"]\n",
+ "half:bool = False #@param {type:\"boolean\"}\n",
+ "\n",
+ "\n",
+ "import os, requests, torch, math, cv2\n",
+ "import numpy as np\n",
+ "import PIL\n",
+ "#Change directory so that imports wortk correctly\n",
+ "if os.getcwd()==\"/content\":\n",
+ " os.chdir(\"YOLOv6\")\n",
+ "from yolov6.utils.events import LOGGER, load_yaml\n",
+ "from yolov6.layers.common import DetectBackend\n",
+ "from yolov6.data.data_augment import letterbox\n",
+ "from yolov6.utils.nms import non_max_suppression\n",
+ "from yolov6.core.inferer import Inferer\n",
+ "\n",
+ "from typing import List, Optional\n",
+ "#Download weights\n",
+ "if not os.path.exists(f\"{checkpoint}.pt\"):\n",
+ " print(\"Downloading checkpoint...\")\n",
+ " os.system(f\"\"\"wget -c https://github.com/meituan/YOLOv6/releases/download/0.3.0/{checkpoint}.pt\"\"\")\n",
+ "\n",
+ "#Set-up hardware options\n",
+ "cuda = device != 'cpu' and torch.cuda.is_available()\n",
+ "device = torch.device('cuda:0' if cuda else 'cpu')\n",
+ " \n",
+ "def check_img_size(img_size, s=32, floor=0):\n",
+ " def make_divisible( x, divisor):\n",
+ " # Upward revision the value x to make it evenly divisible by the divisor.\n",
+ " return math.ceil(x / divisor) * divisor\n",
+ " \"\"\"Make sure image size is a multiple of stride s in each dimension, and return a new shape list of image.\"\"\"\n",
+ " if isinstance(img_size, int): # integer i.e. img_size=640\n",
+ " new_size = max(make_divisible(img_size, int(s)), floor)\n",
+ " elif isinstance(img_size, list): # list i.e. img_size=[640, 480]\n",
+ " new_size = [max(make_divisible(x, int(s)), floor) for x in img_size]\n",
+ " else:\n",
+ " raise Exception(f\"Unsupported type of img_size: {type(img_size)}\")\n",
+ "\n",
+ " if new_size != img_size:\n",
+ " print(f'WARNING: --img-size {img_size} must be multiple of max stride {s}, updating to {new_size}')\n",
+ " return new_size if isinstance(img_size,list) else [new_size]*2\n",
+ "\n",
+ "def process_image(path, img_size, stride, half):\n",
+ " '''Process image before image inference.'''\n",
+ " try:\n",
+ " from PIL import Image\n",
+ " img_src = np.asarray(Image.open(requests.get(url, stream=True).raw))\n",
+ " assert img_src is not None, f'Invalid image: {path}'\n",
+ " except Exception as e:\n",
+ " LOGGER.Warning(e)\n",
+ " image = letterbox(img_src, img_size, stride=stride)[0]\n",
+ "\n",
+ " # Convert\n",
+ " image = image.transpose((2, 0, 1)) # HWC to CHW\n",
+ " image = torch.from_numpy(np.ascontiguousarray(image))\n",
+ " image = image.half() if half else image.float() # uint8 to fp16/32\n",
+ " image /= 255 # 0 - 255 to 0.0 - 1.0\n",
+ "\n",
+ " return image, img_src\n",
+ "\n",
+ "\n",
+ "model = DetectBackend(f\"./{checkpoint}.pt\", device=device)\n",
+ "stride = model.stride\n",
+ "class_names = load_yaml(\"./data/coco.yaml\")['names']\n",
+ "\n",
+ "if half & (device.type != 'cpu'):\n",
+ " model.model.half()\n",
+ "else:\n",
+ " model.model.float()\n",
+ " half = False\n",
+ "\n",
+ "if device.type != 'cpu':\n",
+ " model(torch.zeros(1, 3, *img_size).to(device).type_as(next(model.model.parameters()))) # warmup\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cellView": "form",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 404
+ },
+ "id": "dRwGfdcuFuF2",
+ "outputId": "96472352-8f97-4744-882d-8f0ea53740f3"
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAB3oAAASaCAIAAAA0C/qhAAEAAElEQVR4nJT9d7hk13EfitYKO3fuk8PkPINBBkiCAQAjmESCsCSKkiVLtmxfWRJpP9l+17Il2997fle2bPkqywqmRFGQKDFJJECCCRhkYIDBDCbPnJz6dO6d90r3j9Xdp2cAUXr7wzfos3vt0HvXqlX1q19VoS8/8e3JydleN9iub83OTn7t639z+PDh2Zk9eW9ifbVhWc74eDWXt4vFvO2ZSoFCgBAAAEKAEGAESoHepOzvVwqwAoRASpCov0cpBQAYI6x2/gQAAAQAEvX/wEoB6G8x2jkWMN45f/8wBAiBYAohNBypP6CRuwLU/yRBAQBR/eOVUgoBxhhGtuGBw9tTgIanGh2KQDHGut12miVJlgLIQqGwtbX1tce+urJ6fWt7EQGrVEt79uxBSL125rRpYUJgYnKs0/a7XV8K/I53vOttb3vb5x/9bLPZLpcmmg3f70V+N7IcO5dzczlXSFapVA4dPrpdaz30gY/u2XfoN37jN7/5xNcO7NtTr21naYwVJEkspbRsI05TPwzSlFmWRTHlnBe8XLlYWa6tYsCGYfR6gWs773nvg7XNNcsiXKT1xubs7EyapuPjE+fOnqfUzBVKndY259y27dnZ+aWlpXqraRq2EMJxnFzedV0XAOI4LJfLd9xxB2PsuVMvEkLiOGZMcM4rlUo+X+x2u0mSAEC9Xvc8L5fLRVFULBaTJIr8lGDbMgugjA9/5AdmZ2fXt9YPHDhUHZuQUv7hH/3efW+/56M/8OHf/I3f7TQD1ymMT1Q/+MEPlstlxlIuRS6Xm52tIARXrq27rlsulykBzgdSh/vSIgZyoveAACl3JEfqN4sGwjcQXYxAShBCIoQwRkwIAMAYI4SEEEopjDGRWA3kQCk5FBWEEJIKGwQhyDIuQWGDIoRAgJRSDxj+K4TQHzDuC6AQ/dmhxOBsqH+TQ/Hrzzu1MwEBQOnfjvvDdoQf3yDPuH/DIAko1f+NCBAejInjCIEUQmxtbRiGQZDavXu3aZpb2612u0kpZTy1KF1ZXep0WocOHbp27cpGbevEiRMHDhx64cUXMablsernP//5qHOBMVatjrNM9Hq9KEmOHj1qWdZLL71UqZRnZ2ellBcuXAjDkBBiWZZMcJrFGIPjmr7vz87OzszMBH586tQzLJOmYQMAIQRhlaYJJrDnwLQQQgiFFZZCEUIIMeIwWltbe9cD94+PTyqlkjg7c+5srbZtGIZSvFQqmaapFKpWq4TQJEna7da+fftmZmZefO55AAiCwPcDx3GQgjDNCoWCYZJ2uz01Pn706NF2p9nr9bIsQQhhjKWEIAjSNI2iKPCjQql6//33v/e977185eIf/MEf5HKe4sJ1XcMknHPBVRzHtm1jQLOzsydPnvz2k6c2Nzd37doDgG+79Y4PfOCh9c0Nkxqmadx7770AEHR7hFDbtBzHcxxPEUopZYwRQIQQIaQWmxH9CQADZaWURH2JVXJHc2FAUsq+SGEtXX0Jk1IqpVUoGkqyHjzUjcPBSikp+XD8UKT1Hj1eKaUP73+L1fC0GBAAVkrpqTRcERTcIL2j0n7DNpD/4UiEAAQgBIB2zqBlXQ3HvOE0oxv+vt/q9e77DRgMG94e16ubvOEkACCEvphSSiGE9a+TcrjcAAzWOCkVxkhKADX4UYMrIQRc7mi5ndmNQUrAGDAGuPEBIrVzD8NNL836DMOFVQ+T6IbTwlA34p1v+09mOEaCUor0JaT/XLpd/9SpU2fOnPnwBz8yPz8/MVZSCjbWtjjLI4Mz6RfHPS/vMqGEJEohk1IDQxxlj3/tb15+6YUH7r9verLyi//+30rMK5XK+spqFCZZlimFDMMAAIwpQkgIppTCBqWUYgwIIcZTIYTgKkkynnLDMIQQUsrx8fHx8SpCyPf9NE3TOEmShBBSLFcAwDCMbrfLGEMIRVGAMdZKm3NuWdaJEyc6nU4QBFEU+d2AUmoYBjGolJxzrgWeEOQ4DqVUKaWvCAAIKwSGUkrwDCuJFcR+kHSDu++8Y7JaWd9Yrre2i8UiYBT4sUE9QijwhCnwymVBSb3R4oyZSh0/eIAqGfgdAECURAlrd4KUcQA8VskzxizXabY6XAomJSGEEEwR5ixVSkkulFJj5Uq1WhVCNNN2FERY4Xyu3Op2BSbKIAFLmBBCMqoQBSS5QkAQodQyEeGMsVKpZBiGAhkEgVKKIMAYJ0kSxzHF2LE9xphj2YwxMIjneaZJC7mcZVkIoYWFBd/3TdM0DduyjfHxcd/3hWC2bXIlQUjOOcKAEKKUOo6DECKEVKvVLGWnT5+O49TzPMOwKKXVyvhb3nF7kiTPPP1co9GQUprEiOOYUmpZlrZAAKA8Vi0Wi6ZpdjqdRmMbY1ytVguFghBCy3PkB/oqjLEsy9KU2aalF+WMCX22NE2FEJQaWZZphWZZFgBkWaaUpJQSQvS7VkopjAghlFKt97ACbf8QQgCAMSZAaJmxsKnNiShNDMOglFJKWZLqO6HUwBhTTFzXLRQKjUZjeanmuq5SQkpJTUMIkWUJxtg0zWIxTwhBCDHGpJQSgVLKMIwsywggL+doDUwISdM0yzLGWJIkGGPTsQVXCCHDMITMDMMwDKNYLOZyLiIYAKSUacalVLt3711eXT9+/JZ//W/+TblcxRgTzJMounbl+n/4d//xzJkz5XK53qhVxyvURApDHIdJkriuq7h65zvf9Wv//X8+/t1n/tN/+k/lauWWW2655ZYTz7/wbG1rbW56Kgy6od8uVwpCpo5jK4xanebmds0zXc/NXbhwhTNpWa5FLcdxlFKOYwVBTyoBAMVymRDSaDTjOJ6bmZyb29VqtVjGwzDmnLOUY9w3uqSUCCshJaUmISQIgl6vk8vlHn300Uq5/PnPf/7J737v2Inj58+f7/W6SikuRd7Llctlx3F4xi5fvhxFsWVZH//4x+d2zT///HMXL14sFArLy8uMMaUUUihNU9dyLcsq5PKtVosQQy9tQknGGCEoE9y2zYMHD2Q8bbVa1Wr12rVrGNO9e/c6jkMNSQgJw7DZbM7OzmCMa9ubpVJJSOl5+TTNjh05/oH3fuhb3/r28sIqY0yqVEmoVCo8E1evXs9Sbll2rpCnxEzieGN9a7xaTaLQNIx/+Kkf/dCHPqQsp1wuG4YhJEgpEQAhWDJBCBFMrKysYIxnZmbWNzd+//d///ri4pWrlw2LRlFACLI8S0oRpwlCSioUBAHGmFKDUpr3cr7vx3FsWAbGGAGUSiUtihQTbQ9o3Wi7VpZlnHPGmOM42lrTCtYwDKUU54ILYVqGaZo///M/jxD6N//23xaKub179/7iL/7i3bfcs7i6SCltNpu/+t/+x/LyMiJYSzLnmVIKgcrlcpRiKWWr3fjoD3z853/2577whb+anZq+evUaz8SP/NAPb27WxsfHx6oTWZbNzMzomUIIBgAs4ZVXz375y1+2TfORRx6JoyjLsqmpqTiO9+0/YJpIGwBcQm273mg0BIdHH3302LEj73jHO2Zmpy2TpJloNLZbrZb2cXw/3FrfOH78eKVSKRYLScYti/aXVARpykAhw9CrFXAOlAIgkFJpvTFcyhlThoHUwI/W6y8a2BjasFEASoJSwDkIITDGgJFe0xGCVqvXabXz+bxhGAihajXHWH+hNyhICVyAQQCQQEghoKtr7XYreOzxJz77uT82LGm5anyi2Ak7+/fuvXz5cpIkSkjLckzTTKKkVKx4+VwQBGkaY4qzLDNMQghCFNmmgZDKeznHtY4dOfrAA+92TW+sOjNZnVaABQfGwDQgyYAQkOhm209KUHLEJhkgAFIqALAQkqAyKRgIhHDeMdpbye/+xu9trW2FYUgNqExUeqG/tbVx5513//iP/7g3WRniBlIIrckJIUMXTCkFase+VWhgrGI82AlKKYx3DEGkdqwsgvsmKOcKY6QUYAMwBiEAAFLGDYMyKQEk51xKmbdd/R4NE7qtII5j17OffvrpU6dOXbt2zfM8wzDe97733HfffZubm0kSnztz8ey5M77fTbPoB37gI81mc3J65vChY9cXl0+cODm3a/a//rf/35NPPVEp5wwThExBMtM09TqYJMkdd9zxgQ984I/+6I8ajYYQbHx8PAgCwyC2bTuOk6YpMumVK1fyXk5KGQfhnXfcsbGxwdKkUChMzcy+fu5Cq90rFCqAjUp18u33vfPYsWMvvvii74dvectb73vbO65evtZqtcbGxr7+2N8cOXb4gQfe+X/96n+5dOl8mPQQUnfedQeP442Njdm56fvue2uaxNevX63Xa67rrq+uKqUopZ5jE0J6vV6axa7rMpZYljU9Pa1tvPnZedt2jxw+MTU5C0A3NmuBH1fHJy5fulqr1Uql0vET97pePpcr5by8QlQpuH79esYS06QIS4sShFXQ8xkTM5NTvV5w9uJzL7/8AuB4dm5MqITzDGGj0w5yTqnb9cfGxizLohSfP3e2VqsRgrCBAeBd73rX2trG5uZmr9cjBOVc1/O8ra2tQr7EUvFPf/pnvvmN7547dxEUwrZUChnYOHTw+D/6iX9aKo6vLG6srK5vbK68fPo5L0ff/f77733rWwSXly9fn56d3z174Pz580888cQ73/n2mZmZr3zlK9euXr333nuPHz8+NzcjMvba2TPFYp5S/NqZV55//vlCKd/r9UzT9Dz38uXL1MCmSR3X9P3uW9/61h/90X/41NPPSIEnJqaOHjlh266UgBHFmHQ6vZ4frq6uW6bted7MzEypVOr1ekIoQgjPBOe80WgVCmPValVKaZhEvyClFCFo4GLCjZ7EDhwBN4IVb9wQAjRwW/q+idz5SkpQeORU6oYDRz8o1deHMOI2Dj9jBTACJw4Vy/BbpW64CqIAACB2RmoXDAD0r1Zyx13CGAQwhBBCpK8c5A70JAQQAkqAUkBI/xJcDtQCBiWVEIJSCiANitOUxXEYRVEQBIQQIZiUsrO91WzWhRBhGBKMAWB8fHxsrGIZZhzHCwsL165f7fV6mJByuTwzMzM9M1ksFpVSURQppQghhmFgRC3TzLKsUCj0er319fVmq7W+uZGm6cb6slKqUCrqFdkwDM65NhGllBhjpIBzydIsyzLQzxIhhTDSMBOAlFIors1c27a13atFSCnFMTeFnXGW0AgjZMcWQijJR0ESl1pT1DCsNE2DINizZ0+5nH/rW99a29o2qGVZ1t69e6UEpQQAYIOiHSh28CIB5Jt5s3iws480jLj8SIKCvvpWO8N2hFiDEfojwHCM0kjd6IUG3jIaFUc9ctQVB1CA0QDsABA7pxjAJf1bRWgHWR6edOc8IwgCKJBKOo4pRC6shRhjxsT29rb2wRhjxWIZQZqm6cLCwt133nHixMml5StSsksXrxiGmcScEOP48eONRqPT6ZRKlXq93mr2br3lTs7kK6+84jjWiRMnzrz2yl133fXJH/nRxx/71vr6eq3WLHi5O2+/9eWXX963Z+/y0oLImGHQYrGoQARRZBgGxtR1XSWk53mlfAEh2L9v3/VrC51OJ8u4azuvvfYaknLX7pljx05sbBTSLBYiunDhwtzcnJsvLC+tKqVs286yzDCMd77znU8+fapcqt56660vvvjipUuXDhzcZxiGZTlpmr7++utKqXavoxQYhsEFzxhvdtoZlxMTE1tbW+12++Dhw/v27XvkkUd+9md/dnV9PZ/P60dkGvnb77j9tttuYzzNRPb+97/fMM1arf62t71tfn7WNM1HHnn40sXr3/nWk4ZJarWa7/umSYlBMcYbG0opJVgmhFWv1yvlMdNEnA8AEaUwQgRrULVvtZAb0St848sclSgYgGtK7cjAKCSH0A7GNMSRMcaEIMWVVliEEBgg0XgEttPjMUaUEq3RRq+rVP8iN+x84+29QRfrW7oBgx6gbDdNTG209V1ijED1IS0pZb1ex0iVSgXHcZI0MkyLc95ut+Mky+VyvV4PE2RZViFfsm17dXUdAN9771vn5uZs2z506FCapisrK4ozzmWW8Xaru76+Tgg9cfKWXfN7rly5sr29bRjGysoq59w0Ld8PMAYhpBCcECIlT5NMKbW5udlqti3LyXmFZtLSLj2l1LRoHEcYU8aE4zjdji+y1LbtJMmEiIUQ5WqFMba0tMQYq9frzXbXMKhSilITAFNquq4rpWQs9n1fSn7x4vmlpYXxanV5eTmOUtu2pZRIYWpgqThC1HUdjHGr3VhfXw/DUGMQuVwuTSPGmOfmx6oTvu9Pz+7as2fPnj17zp49myRJpVLBhhJCQAamaWVpmMvlpFSu7TDGz54957ruxMREp9OZmJiqVqvFYmHv3j2PPvro8spis1UXQoyVKyeOn5TUYIxZlsQU6WUAg455AKUURuJhMBCKUcWl1eDoqx8K4VArD/8dwsEwovdGZEYNoWqlFBrA2aP3oBFnPUwOHAUtzaN/6lsaQtv6cNlfEdBQmGGgddGNRgPoZWJo92j9rz8AgAKJAFTfiMEYELwJ1ixHIGYFIADIG8aMXvRvN5/+/xjWX19uwPm1BdOPleqH1F8K1c7K2N8JAND/pcNhO5ceMblG9/QvPXB0+wj14CtC3kyN3LAQ37za3vTt8FoIAGMEA2tSv1nTNPfu3bt//37XdRljtVqTc76xtXnh3Et7Dszv2jsBQr8KKRh3HCdJmB/HnLHp6elPfepTu+anfu93fgMhYlkkTVPHcYqF8tbWVhjGGmLTDpVSQoN3UkqMQRvHhmFwliouTNPUviXGmFI6jHAopbIsU0rl83nbtuM41lMSADR6mGWZvoTnecViMQiCOI4550IIQgghhJqGlFIphDHWRtswQjOMtUgplQClOABgjImCKAgMjN/z4Q87hrGweK3T6UgJURTl8kXTNFmWIYQJJRSTXhhkUqZpqqTMu+4Q1jQMIxNcCFEsFrt+EEUJ59ywrThODcNIwgwwyrLMolRSKqUEqRzHIYDSNG2320opZKG86/ndgGCwbStIkiRNTdvMObluq80zRklfvSCQURQ5Hj1w4MD4+PjC4vUkYQCAkEqSVD8rQghIJKXM5XJSSpUpSohlWaZJbdeNw3BtbY1zTikVQgjCCLHjOI7jMGGZH6lisaiEoJRqbNc0lfa38/l8fbuxsbGhzfo0ZVnGTcMOzODixYuFfMk0TcMwgiBIo8TzPKVUHMfVapUQw/f9LMviOG42m67rzs3NaYHRwpBlGQAG1x1AzxJj6lgkSRItPFo1JUkipZRSxnGEENbLUJIkQ72n0Yq+sHHOpBhMK4KxXvMxDLQupVTPHCllkiWWZWGDylgmSaIni2EYImO2bfd6vuu6iNAwDLMso5SapimEoBRjjFmaKSVM0xzOSj7YhBBMCoyx/l2CC1fZGGPDMPRP0/emZZUxZlBLD8aEIISTJNEyPDUzqZRqt7uNRuPue+4pFIpnX399amoin8s1GtvlcjliAZIoSRKEFQC0Wq1CodD/aWkKAJOTkx/84Ad5yn/nd34XJJrZe/hXfuVXer3e7/3+7/3Ij3ySGvh//d5v1Wsbhbyztrw0PTNx6NAB27YSlk6MT2FEMeCtre1qtTo7Mx9F6eba+sbGBsZ4YmJM/9JKtVwsFsMwsm3bMIwgjtbW1sIw7HV9hIhpmq7tUEo5571ez7IsqXgQBKVSxfO8VqtFCPnP//k/h2E4PTX10z/906eefOrpp07liwXHccMwSONECek5LkH4ypUrLE0d00ri5M8+96eV8bEg8D3Pu++++w4ePPid73xHcoEQppQS6IciCCFSSsuykiThgmu7ERMcx3G9Xs8XC1EUFQoFw7AYY71eLwzDKO4Vi8VcLlepVJQCjHGW8iRJer1eHKeFXOH8+fNPffcZQqhFLc/LYwz5fD70o+Xl1WazWciX8vlcFMec+2EQ79m76wc/8YNrK6vvuO/te3fvlhI818UYa5KQVoBKaZAMDIvYto0Qur648Nhjjy2vrsZxXCgUqEkIQYylWsLTNJ2enpyanl1aWvJ933W9LEkdx9mzZ8/i4mKtXjMNQwu5VpKGTXO5XJZlGOM0TaMgxpRw3o/8AWCFIMlSHQLXmlYb9gDw27/92+Pj4zOzU1mWbW1tPf7449Vi9fnnn7906ZLjuK+dfdWyrN279q6ur2lvOYqi8bEq55xzCQAGtZaWlr72ta8ZhnH33XcfPXrMsWyLWnfddVe3283lckIIQtBgkQIAUACWZd1xx+1nz7yGENqu1wPfn5mZMS2r3W5Xq5UgioQQQRQ1m81du+dPv3wmiiLbdoUQSZxi5KZpWi5Xs4wnSdZsti3LqoyPFQrFQqHQ6wVcSssqSAkIg1LQarUcx3Gcgr46pcA5AFIGRXqxHqLMlO44pzdyovprMcYgRR95oRQoJRiD6EPPgBAUiwUppWWYrutyzrMMDAMkgJIgJEgBGINEAFIa1JAAhBA350VRxDkHLMYLlWPHjr14+vler6dVvWHbjuUyxqhhZDztrLcdx7FtO8mSOI4r1ekkSbIkQVJhjCOU2LZ9+fJVJcneXfuOHqG9blwpjXtuASEkFBjGzQSygf1z484dEwUpCYwLhDHCCCMihBAMGo1Wp9PRwYw0CxuNRpwlpmnuP3gAU2IYEMfafEVaaWOMOeda3oaAMgwsYYTRyH41tIpHzaqbiUoIAIBaSErgTKZ+qhEV13MIIRKEjin6fpdS6iCLCxbHMSFIKdXzOy++dOk73/nO8vLyzMyMnhFCKMuy5ufny+XSubOXms1mpVLK2unjj3/zve9979Ejx6empiemZrp+T0Oun/70p7/+tS8uryxYNrEM3Ol0siwzTZMQsrKy8vzzz+vFOgxjhBphGE5MTDAmSiWrXq83e50kSQjChBie59VqNQCJMc6ybG1tJU5CIXkUBblCpdmsX7t+5djxQw998L0vvvhykoRxEkxOVWdmJ9bX18vlYqVS/Opff/nq1csHD+33/W6xXHj44Yf/9//6X4ynDz74YK/XuXDhQq/XWVlZAYDxalVfJQgC27bz+Xxvo2NZlhAqipJ2u23brufRXC63trZRKlYcx1tZ3Xj+uRelRPlC6eTJk1JVt7a3oyTAFCOEDIMgYm5ubmYsardb4xNVrKQf+Pl8vtfr5vOF9fXVRqO1Z8+efME+9fS3Op2ORFmSJOVyZWZmbnpq7vLlq6dPn0YImSZlPDMdW3Ghw5PLy6v1ep0xYRhWkiRdEYOiOa8sOIoTduqp5zlDxUJldnZ+q7nRaDQnJyfvvOPeyYkZy8xNTyFK7KXlBYxxlvFqdaxUKHb9XrVatk3a6bSqY8X7H3j77t27EUL7D+ztdlqnT7905swrs9NTpmlaljE7e88f/eHvX79+1XXdKAk+8YlPnDlz5sUXXxSSedgRQrXboRAsl8uZpjleqYZhbBiG67qUmnHEl9fW0jQ1DXtrux6FMSgkpWy1Wvl8Po7TVquFECKIhmHs+/7Y+JRhEsb6URlKgHPEGVA6MPtv4gONuAl/H19pONOH8wgGLtj3gaqHR426hDvX3fnQn7KjCvMmR+amTbIR32dw/h1wEgYkp+GtEqN/Wrnjrg7DS1oDKz7qoCGEAcn+08EYsyzJsqzdbiOkpJQsSbnIWr4fRdHq6iqLfT1zp6amioWCaZpRFKyurl67crVer2csHRsbO378+PTMTKFQIIQIyZIkMU1TB5k0g8E0zSSKG43W5cuXr169ura2JpWSoAzDsG1bOzijOlBrxSAIsiwjCFNKkcIYY43MAEYAeAiCEUIwQqZpmhbVXpg2zEzD5oxJKZMkUQgklghjQkiWZb7vS4wAEB2fnL569bplEMsykiQplyqdth9FMcVRsejkCiXbISOo/w18MDny+qXceW2a8jwAtm6SmFG0d+et4AFzSgNlI0BG/52N/vlGgRuJb+xw9PpjAI9GI3eOfQPxbbi6jF5IAmhHGu1wWvUvJb4fpWmGCFU863X9JI3Hx8dvu+2ORrMmksgyrWq+HIbhK6+cCcJukgTFUp5SIwzjifGZcrn66quvTk9P7927/+WXX7l44cqJ47c9/PDHnn32+aefftp2zHPnzgmuuh3/f/zqr62ubUxMTIdBmssVHn744f1799Vqm1cuXzx84EBtc8vLOWEY+r5fqVTK1Uocp57j5vN5x7Qty5IELNNeXl5eX9/Uj2V6errVaj3/fN0wEOOpaZraV9SAYCMIyuWq43irq6txHJcL5Uaj8eKLL66trQkhXCeXy7tra2uMsVarAyC1PwNgeJ5n26rdbodBrJQqFsuNRmthYelf/IufO3Dg0MTExMrKSqlUquTHet0on6v8wi/8v/btm19drz/77LNPPfXU7Xfc5Xn5Q4eOCJk1G+25ubmtrW3AIooChNT09OTpV1/JsuzEiWOcZzo6LSUPw9iyrDCCfK6QJIwQIhVHCBFsEAJYGzTDyJW2ZobqUps1N7KAYcTUwIAUGo1/AMAOvw9g1BbpqyckAQgQgggmCAFXINkQkh5OBqUBRA3ewc0Cr0b+xG+U+ZuUOkI7Wu+m7WYLqQ/D7eCKGECBJkXiaqUShn4cx1JKk1DO+ebmphDCzec4ZwirUqnsuq5ECGNkbG11u91KeQwhVCjkpsXEpSuXnjr1XYT51NRUs9F2HAcAdTq9nJt3Xffq1aumYYdBjBE1DKPdanImCWCFsNa5hmFIqfEjlSSJBpXy+TzLBEIkn89TA0spyuUyINZudQEQISTLuH5KGCvLsra3t+v1OkJ9J0oDoEIAxtjzvCAIfN/nPCsUClxkgBQ1cBQFpmka1JJSYUCMiTAOlZIYo1wut13fWlld6qt1IdI0zeVyCIhtuUEQmKZVKBTf9773dTqda9eubW9vVyqVNE1zjmsYGACyjLmup5SSQsRxOje3CwComXi20/F7vV7ne09+p+d3PvGJT9iOWattfvvbT3zwgx88duyY5m96nkcIQhj3mfWUYsCcix2e8pu8cc0U7oMmbxw03DWUNzVYom/UzDdY28MxQ2kfjh896qaZ0r+HgdgriaRSCDQPGgkh+2foH6uXFqQzBkax75t1vv5X9j+qQbhR6/jhQvC3WhgI5I0xG/XGKfb32P5O0+oNcPnObxmC6frRqBEi8xCUf+NPUCM/c3DOnX9v+jBqPN2A3Q90gtTLNwwuPUgNGV0UbwK15Y1PacdKezMKueNZe/fvE0K0Gk2FJJewsrJy6tSphavbity9e99kFMV23vNsO0vTXi9Mo5hlqUXJnl27LdsghALB+VyROiJJUikl4zr8DhoHhBEpVRJpH0lKaVJMgUoW5vN5z8unaarxaEppFEVxHAdBIITgUlimaVmO4zhRFG1sbBBCoigyDAMA6zXD8zztmtZqtTRN9e8iBhVSCiH0JBWCcc51dBYhAjfGb6SUjEnLoJKlaZYiJe6556179+15+bkXer1eFCZjU9VDhw6trq3l8yXDchYXl02CMUVYoSROCSHEMJIkqdVqs5MThFLQjNQwyZJAg5XbzUa1Og4IacYrY0wHStM4mZmeLJVKgqXNZjNNGOh4p1CE0FKhKDnzHMvOeRHPzLybpFlq24nQzxZxkUmupYcYJsUEeZ4XxyGlOEn6WDwhhhAil3MNw7QsixCCMfGjnhBsZmYmTdOUpwgphJS2XBljlmVJgIRlQjDGmBDCJKbjOFnGlRL5fD4Monw+36g3a7Ua59IwDM4lY0ynufR6veBSu1gsVqtV13UXFxfTKDlw4IDruq1WK01Tzfmt1+vb21umaU5Ojmu6RxzHvu9rWBZjKhnX6TWEEABEDIpSFEURAAglAcB1cpZl6TCGnpIaO5NSYtxfWaTsc5wBQA3mhpRKCC6UEkJoHwAhxBjjGc+yTCGwTSdMYiml9g30eYQQGqMEUIQQJrhJDdu29aJjmiZCRJPjcjnPtu04TTjPdMhEc+0554oL27MRIYSQSARhGO7atSuKounpaYTQ0tKSllJKKSiMMRBMcrkcYyyKA6VUFMVKqaWlFSGE7/uGYZw7dw4hrATLsuTVV18CwIsAzVbtnjvvyRjb3NrqtBu33XHHww8//PyLz5x9/bUkiebm5krlAqXUMR2l1KN//Ce7j534zL/8uUaj8fDHf+Ce2+88euTAt7/19V6nfeH8a7tmZ4rFXJIklm2AQq++ekYIvnf3wcOHjzbqrfX1jSCIpJSOY9m2bVlWHMdKqTCIALf1D3ccJ0viZrNJiaFdpiRJHMsWQvQBMpNkmTBNW0qZpqlhGA//g0cOHT327//Pf/fBh97/wz/8w//4H//jf/kv/6UWksMHD99+++1/+qd/euHcedM0Qz8oFou7ZmZXV1fTNF25vjgxMXHrLbc064311bVKqdzr9TgXAJDL5cbHx7e3G2EcsTRL03hubi7jot1uS8klAEKo3e5QSi3LCcNYT1WlII4TBCQKkzCIPddNohRj2LNnL8aIM+lYdpZlhBiu67YbrQiioBeWymN5l25ubBULZSkgY0mchDoT9PCRg//HP/uZfD5/7NixPbv2VkpVybiyicbpBgtEP3qtCaRuzkuSZGVlZWVtDWO8sbGBCLKUkc/nwwQnaQQAml2ulacOw1BMe71eq9W6/4F3vfLKK+fPn5+cnIyiSHAphAyCsNPpOo4zPj7WarUkKMdxOJcIKdM0AMC2bQDgnMdpYhiGnmidTmdiYizLkrW1Fdt1xsYqjLG/+ItHX3ju+UKh8MM/+EMbG1tC8Le//d0Y48tXLmJEszR9+OMf/7mf+7kf+7EfK5WKxKCVSuXVV09vrK2fOHFy767dd911t21aaZRq+TGooQYcN0SwDtErBGOT491u58ixw12/w3iqkEzS1LYdxlgQRWEQb9S2Tp9+Kcuyu7K7KaWlUunw4cOlUgVj3Gw2CSHEpY7tFgulF1544ejRowY1L1y6pJQqFAqFQsFxbdcxuQDf93WongugBMSQB4eQJp9wzg1MOQcAoHQnr0gIRfp0Ou3N9CHjIRKtTzVc7hECIZRpomKxiAERAkqRPv8GdOABsIZKFSCMBSgAlGXZX/zFX166esVxHEXSKEqeffb5OPPn5uZmZ2eXlpYOHz7cbreDepjzvDCK4zQplIoSFOd8ZmbmoYc+8MUvfjEKM9vKTU1N8CzlXAnGL126urZUW1upHzhwZKzayeeL+/Ye2HGibiQbqoE1srNnZ78CQIAIV0Jpex2IUrC9vS2YTNPUtm1MCRNZmqaHjx46efJkLpfjvM/y0UFHjPEg6DLq7N9gv+wwAt4M0tqxjrRdJHfMLSmBMba1vtHr9RAGpKq2bRKKTNuKYt+gOAz99naHUqzzNZMk+YM/+F8acr3zzjt/8id/8rHHHnvhhRc0bkgpff318ysrKz/8I598/PGv93x/enraMO18Pm869pkXX3zl1VcfePD+j3/8Iz2/jRDCGDjnOndRKaUDn+vr6+VyeWJqamNra3p6utvtmqYdhrFSQZqm7XZXKEWwISUEQbdcyHe7XcexDMsALBlnpkke+eBH77jrLX/yx59fWl7ft39+dm4sy/jkVGl1dfXyldeUgCiKnnnmOSaytc2F+fnZT3/65+PE/8u//AvLNJ544omNzbUDBw5IyR9/7Oth6BeLecMwoihqNpsaF+OcOw4ihJRL1SgOpBSVSqVQKOm3sLK22qy32q3nwji5fOlavbHtuDnTNm3HsDLDMNHYeMGynFarmYokCuM4TqMkbLTrc3vGLp6/uG/fPj9oPvn0d0qFopTg2N56Iy6WPExRvVk3THTw4EHO5cbGRrPROXv2dcaYbZsYm47jMMZSIQqFQrU6nqYMAINCggPBZhjEgsUE8Pj45Cc+/gOtpn/kUGXvngNf/vJXPSd76FMPt+rNjfX62urW/Ny+arXUanWXri83G13Hw8889UyjUa/Vap1OFyPqesVSqZTP500DsiybmR679Sf/4Z/+6Z+efvGlSil/+PD+ldWl3/rN/9lsNQpFLwiCt73tLceOHnzm6e85NqXUZoJzznft2kUpDoLgq1/96trq+nve875isZTG4WZrtdUSlJpJzBEIwaVpmrt27Wo2m0EQbG1tacO40+nFcZwlLJ/P64wcpSjGWLsGhNzATVES4G8BHL7P9kYnZXQT8OZZpG8cPEpz+Tuv+HeOAQAlFCYDXEYppQDhG/RBH3FG/R+uBAzpQUOGNcZACAgBnAMGIHQnZ5RiEEJRghhjOulfskxzAsLIT9O01+vVarUwDACAUjozMzM2Nqatze3t7UuXLmxvb2dZNlapHjx0YH5+vlQqOY5jGAbjXCdowoD5oZTqdDqdTsf3/cZ2fWNjQ1u5hkEkKC4EpZix1DTNjDPGmMaCtRmpDV3TNJUAIRRCEpSSUnIpUB/Bx6Zlm6aJCNbJdoKLPiEaISlAs6EVKCUlMagQIk0SUxmcc6B9UiY9d+7Cvn37bNvIBFu6vrCysnZg/xFqulxBnKW2yAzDAYCMS4QwGQQkYcS3H8qBfvpoBJIeAmFqwBUdfa+jHC6EgA7caegvADcgv28qOqMr0wjoNritkfyjYXYzHskZf+MyA2+YGGgkADtw2PubYVhxnEopESKumyuVKtVq2c05hMqlpUuLS5fy+dz6+roSkjE2Pj6JMQQ4cmwDISKFOvvaubNnzzKRvfUt9/3Gr//262fPP/HEN7e2alPTE/V6vVar3X3PPe12++WXX5ESfuxTP37f29+5vb39zNPfQ0hVyqUkDIMgsGxDm9ETExPj4+NJlioljhw50u12JeOE4FantWfv7tnZ2TOvvLa9vb21ud2qNzIWz89Pcw5Scsf2lORAaLO5efjQ0SQKtKekFKrXm6ZpYoCVlVWEkOu6GGMEBAFxHct2TIzx5MT05ORUu90mhDAmLly4wJlst9uGYXme12w2L1++fP369W7Xn5qaKZersR9rF8txrFbLz1gaxeFzL7y4uLQWx0mz2ZiarhCCJiYmdu/ePTE5vrywurm5eeLkLYZhCMG63e7Y2JiW8tAPACCKonw+n2ZJP7mP0HyxkM8b2pxUchAnkEPhA8BABujJKGQzFJIdCQEQoGBAU1JKDUFjhBAiZEgYxGQAHo1ICVYAg7xs0NkZA1bjUN4Gls+biCKAGk4CPCiXMUyr78s8gMI37JQ3rgc7UwCBgn4QCIRCuI8S6chQoZAvlfJZljaa21ksNM5i27ZtW61W5DjOxMREu92OwmRubg5jEoZRrxcQisIwRFh22vUwaGECOa8Q+FGr1TZNc2zMeemll06/8kqv19MWf5IknU5HKSS5CrM4lyOlQl4IkSRRHMcYY85EkmSGYQmuMKKEAKVmlmWYmJZld7tdDglCxLIspQAhohOB8/l8msYbGxtSSgCZJBo709ycuFZLWq1GsVh0HEtKQ/McPc/btWvX9uZWlmVRFFmmk/fy+/btu7J4JQiCIOhRDIZhaIKYvvNSsaIkMgwjy5jvB/l84TOf+cwHP/zRc+fOffazn33+hWejKJqojjHGKKW2bVNKlUSAQGDFUt5p906cONHsbNfrdYqwUqJYzJ8/f+7VV0+Xy0XbNg2DeJ6zuHg9CKK777xHYzpSppqXLYTA6o1lNG7Y5M5LVzrw1pcxBCCVQnADPRhAIsADXHhE6vpnuGn/EGceTpDRwaM3NlStSKfhDJDt4eABqwXBDQpfSaSQvOHMaCTjZCjhg4UDAfRjSMNv3xj+HI7vo64EYARphSFXZXTkILj4xgd9ky7RYwaIef/fm1yUvouLd3LNRm9YipuQ5QF6PoI7j6yhgPo5CTs85dEnc9Om3mzMUNehwRMbrulveqrhdd/0nH29pN2tAeSPAGWM5XJWlqm9++clh3q9iSjatWdPHJO5uRnGmBJZq95xvaJSOI3Sbrfr2FYURTnPQUhduHAhSzkxTUpZErZ6vZ6+HCFEKdDIsuYSCiFkPwdZpmkKwihPVl03Nz8/X6vVNUhnGEYY+nqwDshbloMQarZbXb+ni9Vo+E8rujiONSNsc3MzCCKMsVJIX44Q0IxmDVYKobQ+0f8KobKMK6XRAYQx9hyLZwkoJXg2PT5GsHzppRc6nSZCqFAu7du733XdIAhtF00USo7rZmmsJARRxBgHjOKYlTy3j6SbZqfTMW0LAHQuv5RSIdxqtwuFok7el1IahPCMTU6MjVeqhKJeElFMiEdc16aUxllMAAkQTAqTUC9nF628n2XNps+y1DAMyThCGAAyxgghlmX4fteyjCxLAMBxHM/zoiBMkkSTSTkXSmWgMKWqkC9lIu31evVGTcswNmipWNAeJk5xJjKecoxBKUwIMQwaRVkYp9TQFauUUqrb9ZMkieOUEJKmDAAwommacs4RwnnbgkG+0f79B9IoDoIAAHK5nM4ZxxjPz88XwyCO4ziONctSm+/6rUkZg4AwDJVSjuNQamocWSk1PT1dGatubm5GURSGoQZn9cKkFBmGMIeRNn1aAFAIMB7kVyolpQY0+gkflFILOZQyhBBjAiGUZZl2D6IoQgiZpskUmKZZrVaDIMyyzCBUy/OQy6/vVrNoKSZsxIjFGDuOox0PTXjR5orv+4SQcrkcBIGeL0opAUoD5YVirpAvbW1tSQEAKE2YEMK0rCRJNM5Oo4hQSin99hOPn3r6yaNHj3qet2/fvu3trY3Ntc2t9VyhMDc39+Sp71GKjx49st3cdlwrSZJzr7+Wc3Kmacwdmfm5z/yLr/31l2Zn58+fP/fL/59fTJJk1+zcJlJBEGjae5bxq1eux1kax2kul1tb3Ww1u5TScrkspYzjtFDOac47ALRarXq9mSRJeayq2dlhGBYLpSiKisVyGIaWZbXbbc/zPM8zLYoxjuJYRwVM056dnX/yySfPnj3b3K7/+m/81pe++JVd87OFQqHVaukkrZ//Fz+bRvH66tqLzz+fBCEFVLTz7p6D3aA7Xo0dz93a2OwFfhiGiBCMsWURxngQR1Cvx3GEMQjBskwZhuHlc1mWtNtdalHHyUvJwzByXVchmJqa7nQ6QghQWEiRxrFhGI2w5TgOJpCmG5Wxqm07vh9EUTJWGS8WixY1r125LoQKfc5T1Wx2CgVumhbnPAzDialJJRGlZHF54cjB4+VC2XVylCIgBicghASE+oYfgFRKp/chqXK5HELo5G233Xr77b/8y7+cZKlhUBlzwyCU0unKdK1eK7hOksRbly5FcSyECIPANE2llBDiySeffOQT/+BX/q//urCw8Cu/8is6mOe5bi6Xsyyr1/PjOHE9TxcpQghpNkOhUMjn87oUj23buZyLMeY8C8PQdV3bNpM44q4dx6FlGaury/l8/olvf9P3Q6F4ksQYE865EClG9P3ve2hjY6PT7Z689dYwDE3Dmp6e3traWl5eXF9fv+uuu4fVbBzbURIUAOcCIQQIy4Hl7br2xPTE5OR4lmVHjx3ThojneY1WE2FaqVT+/C+/8MQTT3Apwjj65A/9yOrqqk5A9jwbIcJ5FgTBuXPnyuWyZksUCoUwDIMgOHXq1Fveeq8CWa2WKaUIKaUE5xwhSBKBMTZNTYlVUglCCMZUCEkpxrhfZ0P1ER/Ehr6J3DEJYFCPSyucobGnP2SZohSBgowBRkhT8CRRWPbDD5j0mWHar7lw6eK1a9fm5ua2tjajtCslY1kmlDAMwzRNz/NWVlZ6vR4hRIEnBE+SeGVlpVAojI+PEUJWV9aPHT3xoz/642fPnj16+NCVq5e/++3vIIxzdjEKkytXrqWJete7JqMoarfbs7OVOH5z1ra2QPTvUgrkwNpUEmkOkBBCEYUQsUzKGSwtLA75fRKh9dV1w6L3vfMdk9PTpk1C0a9oBACUUh3nGzV0NdSAhvl2g6f3phbRTfw2AAAMCgATYJkyTaSD1p1ue2NjY6xSzuXdkydPnDn9YrVa3d7eklLecvJOTWR+5plT3/ve93zfp5TmcrmPfeyjlUrlLW95i+/7u3fvRogsL68+/fTT7//gQ1EUFUoVY3Oz1/MvXLi4Z//+KE27vd7m1kan01pbX/izR/9Yycw0TSGZkgoBdh3PNExKqWXa7W7v6vUF07T27j9w5vQrlBgYkYyJLBVRlAgEjmVLKSnCQgjOM9PMGSZJ05jz9MStR//5P//pVsdXwBvNzWee/e7e/RNRFF26eGVsbGJmrvqFL3zh5Zde6fV699771o997EO9Xm9uduy7T56/59676/X66sry3NyM5Ozzf/o5hFSWJXFMpeL7D+y1DXNxcVmvNSmzqGlwzv1e6Lru+PiE53kbGxsIoVarbdt2u9v6zne+ZRhWxtmJA8cnJ6YvX7sYRdGxY8f8sLGwVA9jhhFtNJrUsNrt9tT0RG17pdHZmErKTz31VKtds206P7vrgQceAJr85m/+391uByFkmrbleM8/earTDhDCiiv9LhzHNk3TNC3BuB90isVyEqem4XTaod8LpVS2lZuc2DUxMXn/u95z9x33NhsdlqmFheV9+4/8yH1v8TzvmadOEUK2NpueU3Vt74XnT3e7gUEsEOL1cxfOnj2DELTbbUTJ3r17lVKMsbGxsZMnb52enm41RLnoTM+Mn7jl0PrG8gvPP9NuNyuVUhj5x44ffN/7H1hdW2q2tl3Pchw3iqL5+TkdKazX69vbjbm5uSgKKpXKyupiFCaeN18qlba2tlbWVsfGxtI0NS2jXCklSTKor5VduXJlbXXj8KFDs7OzQghCACEsZT87nA7A077wowFDZQQT+/7b9/dNRr2Sm0YS2Cm28/fBjvUZJLrBK/z+GyUIdBGPfqALgc5EudGVk7pgKfSh5362aD+fflixUCKEsXYwJRACpgG9XhT5gS6V1i9xE4dRFNVqtSgK4zgWQti2fejAQdOitm1ncXT58uXFxcVWs0kIqlQqR48enZ+dq45VPM/TVdGEEEoJpZRjm0JJhFC9Xm82m5ubm+vr6/rNWoaplNImMTGogbExIEkIJTnnURTpiFSWahKG3oiAfjqmlIJzDhgsyzJNGwCkACY4kggAhGCaRCKEQEC0amWMpSKFjBIFgiiEECjQ1AbGBGOMlooTtuVSqpauX/va1x4rl8b37Dpa67YKBZnLFUyT6pdBAQOAEIMaUm8QHV0u6m9zuUdG9mX2Jqx56NDqIgNqB0hGb6LiR/6UNzGy9FXQTbjKyJ0MoLebAphvZNIN3Gw1AgEM84UBY8CEFEslQmmn06lWq5OTk0mSxGn8jvveiVC6sHgxCIJut1vMFzY3a+1Oi1JsGIaUkCZZgKJut2vZZhhFm5ub1XJlZmbm859/9OCBw41G3TCIEEa301lf3egF/q233v6Vr3xJCPaNbzzxwovP+t2eZVnFUn5peWG8OuZgJ1fMI0LCMNTBjefSZxgTB/ftZ4xdvXp5aWkpiVOQyHVdIYSS3LbcKEqCoGdaZHx8suM31rdqWcqvXLlimyalpu+HpmlqEoRBzcmx8U6nkySJ47i9ni+EnJ4eP3To0Kuvvnr27Ll9+0LHcdbXN3u9HkZUu+sHDhw4f/68Nr/e/va3f/7zn9eUeyl5Pp9rNLd/+3d+/eGHH3nx5ZcRMm6//fbHvv5Ebatx7PgRwdGZM2c3NjYOHDgwPz+/e9e+M2dfvXLtMsb43e9+d6lU0m4/AGh3xXNsDKq2uZFxViqVZqYmCQGFIImBkP4LFQLITcGuGwt896EoDNAvw4KGxS4waGYySAAhBCY3HDXQU5rH2cd/Beon7SMElIAAJKVUEmkSCgagmIwKJ9KX3YGZRmIhaDgXEHpDhQHQbOsbhVx939gjkgqN1ANhjPOMZSw1Teo4Vr5gSV7airc0epim6ZhZnahWDcPAGGFECSFhGCuJyqUqgFBKbW1tlkvO3Mw4wVm71ayvRWEca00nhIii0DRNSlCSRpiAlNK27DRhlmUhROI4QVIRipSSGFOENGWJcC4Nw8zSWLvZSRKFEU7TJGHZseOHqM6ZSpKcV6DExBh3u91erxdF0S233MI5P3/+vARsGMbJkyeXVi4qpVgmkjTwcuNpIqMoERxlqayt1zEhrutq5uPa+vLU9Pjtd9xy5cqVra0tIVi1WtZFPMMwTtO02Wxqs6BYLDabzb1799522222aZQrBdezZmamJybGZyanNI/Mti0hZK/XC4OYEFIolFqt1unTpz/wofcAQKNxkQDqtVsJyzCBJDVc10FYPv71v7FM5+DBw5Ztt9tNQox8eWwIlDimJaWSN6GDI5IwIgZK1xDa+fMNIqHHSwQI6cTo/sghajxKABmRSTXK3xwiLDcdMtwjpVKDqaSxatUvKYPhzfDcN55n8OGmAYO7lWhUsQPc4MNodwVgBKUdPjx10//fZNOnvKm+8xuf/g4r5/ue7Y33D4Ngj77acDUE0Bk1O3/u3NJQa+GdwiCjaqEfMxssWKPn1Pd3UyDqpsVa3Rhw1V/JGy3L0XfRHzC4k+GxtmtwDthA2tfjnBeKxdvvuLVcmkrSyHXtIGbNZnt1ZWtrq3H9+nWl2MMf+8i3nnisOlZ597vfff78uatXr6ZpatqEUuo4tu8HhBJKbYz7BNubQi991jM10pRNTExIKYvFomZEBkFPg1N6jFIIY4kRZZkYeqpRFE1NTU1MTDiOE8dxo9HodruEEI2taCOPMaaD+YNQ0A7yqCl7ehhCCECjk1JkwjRNjAgSTLJsa2sj6PhKQKlUmpyc9Lx8p9tL0zRlgpoWtUjKCFeSSSGURIjoxa4XBo6JJ8fHe71er9dLGceYUoPEcUwsQyHkh4FlWZRSnjHBueNYedfzXJuxVKSJYRDLsjCmBjWQknEcKyVACEAqScNyadwpuHGaJElCCWVcCM4wxqZFKaWeayvJO51WEPQMg0xMjDHGBM90jWApAdsGATQoex3t279nc3PTtm3Pc6IoYoxZlkaBwXVtACklj9OEsWx8fLxarbbqPSFEo7ltWVbH7+VyOSWl6dgFhHQl3DRhhBDOhS5qoR+5aVpCSCFEtVqt1+utVku/Jh0JKJWLjmM3GnUdVtTvXZvUSqksToRQmukshKI0cxynMlalmExOTmJKJicndUUOJVEcxwBg2zbnXErQxZb1sQCgoxSaSyGJ0gb7QEmCYFwwjinRVDXUxzRQFEXaUg/DMJfLzczM6EdXLhR1SiMhRFNK4zg2DIMQ1C/LgDEMIg267i3aqSSDLcuyLCuTmWDivvvue9+73/PVr351YWHh9OnT+rHooAjn/Xoa9Xo9imNiWKbtZFmGMEiFer0AoT41O8syQyndySAM/YvnzxYKhY985MMvnn7p1371f6Rp/KlP/dh//+///R/9ox9//fWzlbHK7PRkvdX0/W4YhoqL2++49YEHHti/b/enP/1pTKgGYqhBSqVS6Pfue8tb9YWuXbvoOE7KGQLMMpHFotlsm6Y5NzczPz9fr9fbjSbGgHE+CCKl0J49++699+7vfve7xCQY40K++L73va/ZbD722Dfy+Xyaphlnaavl5RwllQLQaQeO4wgher1eJ+j2ej2EECVkfX19eWlJSj49Pf3v/u3/+8SJE0mS/Mw//z8Wri5cPHdhPduYm5kvubmNrU2bWlbe2G404jSRBBzP1fA351xn6oRh6DiOlDIMfCF5L+jiiJqmOTY2FsYxABiGJSV0uz5Cqpgv8UwkSajfqWEYUZRgjJMk9TwvifnaynqcJPl8XgoQXK2srIKAXK7AOWcpunZtodVqOY41PTN56NABKUXGGcYoDKOZ6blDhw5Z1HJdm2WA+6q7T5WAfnIbQggAAwGEMVLKtRxnY2MDU5Ikie3kJycnfb+bK+a04+p5ns5iLFtWpVLRnKnbb7/9pZde2tzcRAilafr0009vb2/rXHguFCiMMd7c3ORCxAO4H4HggjPG2u2267qGQXQQq9HIdFGjLEs8T4uiatRrUimEEDVJs91otupKol/8xV/84l9+6cqVKzqh5FM/8mOc89/49d9SCl28eNEwjHq9/pM/9ePb29vnz71+5cqVjY2NfXv2asFzbUdISSkG0CUxgevQKIac55KZKYRQq9GwTKdcLodhbJpWupkSbDQ7bSFEuVzu+j3OuetZt91+y9LSUrlcJAQJIbIsW1pa+ta3vqULo58+fXp+19x73/ve+V1z33ziG6dPvzQ7O50kSbVaDoKUEFKv13SGjeBSl/svl8uOQ7UVgAhOM2EYBEg/s9YP4jRNC4UCRtoHH02X7Cdx6z8HK3g/e1IKEBwA+r65kEAJCKWAICH66zUXCpA0sKEArl27Vq6O79q169nnn52fn6/VV6JEKqUa282ZuelKpfLd7373rrvumpyefvLJJ4FgYhqPPPLIrbfe9md/9mfN7fq5c69/+MMfvuXYbWPlScZYsVjNOSWlVK/dEUJ5bn5sbBxjWq1Wi8VilgEm/ZzLoR0CO5bLqEEyBAQQ9Lk1CCEsBRgW+L5YX99kjNmmk6apgIwx9tBHP3js+HGdU6WUHNImQGEEWCk5AjnoDLy+Hze0fkaNWHRTL6j+jfVrbyLaNykl6AKhynVdtskvX7x0LkuOnzhKEDz++GPFYr7X6zCeXrp8rVarHTp06Pnnn/P9XpZlvt+79dZbp6amlFL79u178MEHq9Xq1tbWd7/73be97e0SE8dxfvAHf/Ds2bOe5zGeHjlyZHyytLh8fW1t6Ytf+otWq97rdTCSGIPr2QTU5OSklPL69eumaTqOU6vVNNS1vr7OGNOhtUKh0O36BrUto8/1tizHcdwk9huNRr7glMq5w4dPBmG4urb41197rNXZPnho9+LSlT/+7O8fP378rrvuevnlV7729b/aqi2bthp3Cm956+3XFy598YtffNe73lUul9/1rvecOXOGJXG1ml9eXrRtk/PM9eyJybFSqTQxMfHIxx/+whe+8I1vPOG6bhjGWZalaXrsxPFdu/asra1017eEFM1mU08Qx3GyLJMgy+WiaZKYBXHS83Lu6trC5auXojQhxEjiLEkyLiTGOIi3z74ezc3NfPs7X9/crBmYXLt+sTpWunT53Nr20urmsus6rXZ7u8ma7a7giBBKqWnlrUqlZBISBIHneVLKerOFlESAXTfX6QSgiGk673/fh/btPeh5+T27DyBEDbOQMf/0K6/OTM584H1vKVa9Tie8+977HNPqdHrdrt/thlJKx/YIAS5jQCnCeLuxFYbh1PQEz4IwDKWU+/bMvefBd3znO995dWNLCLG6tvDHn12anp6uVotz8xOmSS5evIiJfOzxv+71epVqYXOjhjGybavZbMZxzBgLQ99z7Nrm1quvnJ6dnWUsnp2bCgJotbfmd01u19cIFUXHieJOPldkLJ2cmuh1/TiuI4Qs09yzZ49SSgel1KA4gZZ2vadv3v99AOa/a/v+WPDQG/3brnVT+GeEjoPe3DcebEMkGt3kLSpN7euDKXLEddKdutDQG1I74/tIoAJdfJ9STDBgDJyrJA40iSHotDXKLIRIkqTRqG9vbaVpSimtVEoTYxXTNHUR7ZWl5eXl5dXV5TSLZ6dn9uzZdeLECe2PYATa+5BS2ratlEiSlDGmy4du1ra63W4URTo/TxdT1mZqH3HGOEmSNMuEEAalgR/phiWUKk1fQAjpTDullOY36FePgeRyLqVUZ9cJKYYOlx6WpgxjnGZpq9XSkLSiQHVJNwKEEMURRpRgg5gYY0zHJ6ZTliqQa2tr7XY7CsS5sxfuvOOtutyeBCUlCKEJEUSXxoWBUzrqpuraLoPSzH2pkPIGkjxWMFqj8ybsbADvDne9AURWO0eNStjOn0OG2gD9uAlE1u60gjevtdlfcm6+qMLDM43gjFzoKgTIdV3TNKmBCQHDMAjGjUbz/PnzGONLly4iBd1uN8sywyCem8MYE9OIokSTf/2gx1J27cq1z3zmM9Vq1ffbZ8+9kmXccWxCSKvVynmF6ckpJXgYdP/jL//7RqPhum6lUkJK2eZYpVTWoVqtHxuNRrvdBoD19XWE0J5dc7NzewSWzz/7AsY4ny/EcUwIkUwIwv2t7r59e3bvnjctY7vRynmFVtpqNBqe4+TzeUopwRQAOOe6zuzddx9eW1uTTG5tbeVyuW63d+3a9UajKaW8evU65zxJEgQEY1wsFrOMr6ysaArAk08+ubGxoRcMQsjYeJllYmZ27PQrL16+duWB+99z/4PvtC0vicVTTz7d6wanT7+aZuHU1MTpl8/ceeedP/zDP/zYY4995StfybLsgx/84NTU1Pb2tiapua6rlNIl8DDGSspCLu84sLHRbXc7pmlPT03quNybR6flmzXiw4D6lAE02I+0uQZyBxTuI347rSnRTVEPhAEQYAyCA8b9mJfUsRGEMN6Bs98ooiPk0D7MPIIB9mVyOEGGEwEGTEM1KAh7k07Xe3SDlJ2ppAATRCRptVqUYqdjCCEwRkJwXc9RgdAUGMa4vrFmu0UIiuPYdowwDIt5+/XXz144f8agqFopnlteNAyDmAY1DExw0cjl83nt7SulXCdXLJbW1zfThKUpM00jTVMHO3GSCsEMw8CYEIJYlnHFy5XixvpWHMdezmEsY5JNTU1UymNhGBqGhSTSvDCDWr7vM8b0FHBdd25uV9f3i8Xy9PT0/LwXx2mn59t2bnOjEbBkdXWtWChPjE+HPT8IewhBsZTHGJIo7HbbuaI9Oz1VLhYMaurJhRBqNBppmoEFnAtd+2z37t3nzp376le/eu99d129etXLWZNT1Va9wXjMRZKxZHWtPTs7Wy6XtrdrxWJJAfPynhD8K1/6smH14a0kjaamJlPOsiy2bcPz8q7lHjhwsFqZtCxLUKm1vDYmXNdFCFHUJ9ndRMGQWqehm/UXegNzWeNjom/G9wsxS1D4Zmm5ATUG3Xapj/HJwTKPB+cXmsoHb9j0UDwi1UoTAN9gcfQrL8MNNfVGQ5hvDKIghIal+JUEqVvUDuogD3OdRj/jQalmpZ8aAgGAR8ojInTjmvXGnzSyKbVjmtyEeg8H7Pw7OP/wrga/CI2MVwA7uc9vArLfyAK4oRT1KLI82mYQANSNJxncgBCgUB/vHnZBuAGA1vrzDQ9/eC2tXfVDHa03pbsSEQIpBwxQqVQ08bBcLrY72ebmZibSXjfYu//Iyy+feeLxx6ZnJgzMnn/hmenpyVuOH8kXc7fecXJtbfXixZcKXkGXqeFcKCVN0ywUbE3Y1H41IDlMmBVC6bqo3W5XKeV5ju6swlgKIIXQtSaAcy6FDuODlDwMU6WkLt+saz5EUeT7vmVZOqhp27a29ghBuVxOr86cK0opY7xSqejwPhpsMIC/sUJZktkWiUJ/vJTbv2/vxup6lvFSoWTbtu+HEgAwjdOk02tLwHGWJpwLUAIUlpIi1Ot1hWGIgqd5EFESE4NapoczRjDtRYGuoaErMArODuzds3fPnm6ryZNYcJb3PEIIMShj3A9DmTEEigAyXEsRSS3KWZrLewbFSElt1AKAUpIQ7HkuIQhjiELfdsxcLue4VmOloQAwgUKh0Gi0siwCQLp8bZZlSRadOHms0+rohCdKaa/X63Q6Gc/K5XKxWCxVSm5gCyEKhUKWJZWxslKq2W5EcUwpzrLEtm1CkDQNy7I4l7o0sWEYCAhI5Pu+bdtZxjmXtY3NpmVlWdbvZ6KU9tyE5BMTE5Zl9Xo9KaXrupwzTQ8nhBiYaLhZF8oEgHw+b5omCLS5UYuzCGO8a9cuxpjgyjCMZrOp/9WFj13X1b6xPpwQOjq7EEJIKs3Ik1Ih1HczEEI6sEcpLRQK+tjx8fFCodDpdHTpat0wEGNcqRRnpqaDIGg0GgQQVkAwSYTIsoxSrE9iESNOEimlZVmGYeiwhJ4FlNK1tbUnnngil8sBgAa1NTCNEKpUKoyx2dnZ3Xv2KKXOn7+s4dco6hd5ECwTQul6GsVSgTPGWWoZpuNYpkn/6I/+4Pz5i5TSX/qP/+HHf+wnMIaPfeyje/ft+sJf/QUmM9PTk/fee/fVq1fXltcOHz547txrf/PY3+QLThylWZrajhGH0fbWpmUbm5vrrusWinkpIUmyOI6DKLIsi2DXtq0sS7e3t4vFQhT7gBTnfHt7OwiiNGFzs7vSlCVJQhiybVuZ+KWXXtKle3Wx5o9+9KMXLlzodFra5mSMUYoYExirSqVi57wo9G3bdkyr3WxFUZQmEWNse3t7dmb23NmzUsKv//qvx3HsOS7n/NqVq4wxYlCBZT+1hXGKifbQ1KBoeKVUStPU9ZzxsfJ2o55mCcu45+VzuRyXkhDS6bb0Yup5ns4bS+JMCgEKU9vmUmZpMj+zf3y8urC8tLm2RSmh2Mjl8r4fKK6iKDGwCYB7vV6n0/qpn/qpXbt2/dVffWF+bu9rZ19N0pRS85ZbbpmYmGJCFgu2LsiAKTDZ73I21EsEY6TLKShIU7G6vn7x4sWllWXbticnJzMWj42NtbotAPB9X0qZJImOyXmeF8fx1NQUQqhYLN52221RFPzmb/7mt7/97d2791qWo6NujLFOr0spHZ+Y2t7e0upU06xMbGnSSZqmCNm2bWv+frlc7vU6v/AL/2ppaenRP/+8dnoJwWmSYEoOHDjwH37plzbXt+6/737PcX/+5z9TqVRmZmb+6T/7J7tn9545c+b0q6/s2bOvF/i1euPUqVMf+MAHfuAjH/2rv/gr3/eTJEmjVClUzBeGZTf7TD3cN7AFSMd2hBSW4+ScXJZltm3HcaKpWy+99NLdd9/90EMP1epbrutKmR07dqjbbT7/wjMPPvhgu9197rnnFhYWXj79UpIk+/fvX11dfv38a4eOHHzoofdPz060Ok2FpOWYURInSbK1tfX0088Wi8VSqVKtjFFKPc/L5/NCUEIgCBNNjsYIuAA/DOv1en27USgUTMNyXYcQUAoLobRzrVde3g95DlSQft19FYTQoHOglCBkn5dHKSDVr9GBsRFG6fLy2uHDR8bG5x999AsYcLfrg8Ku7UVRXK/Xjx8/Xi6XX/JOv+fd79tuNpaWVt73vvc5jvOJT3yiUCj+2q/+9yzjhmF9/euPF7yJO+64Q3JZLU/cc3fJ87xuq52mmW3bQRBRSqenZk0HafOAM076rQJuABOGH9QQARr8OKWAYENhqUGcZrPZa3eQwkgqKeVWo3b46JEHHnywMlalFGWZIhjrkRhjCYpg3SdwtM5nn0IxqsNv+nCTkzg4qv+VBAAOGGPOIU3TcrlsWValUmm3m9OTUxoGYmmYZVm32w4CzhhbWVpOskRKOTc398ADDzDWB6Q453v37n3ttdeeeeaZUqm0e/fuF06/rJQ6ceLku989GUUBpXRmunR9afNzn/tjqdjK6nXbpl7OZmli2YZnO+12c3NzU68vhmGESRyGIQAopZaWlsIwfM973mea5osvvjg2NiaEWN/aDMPQcayJsapt23HiM56mKe75ChFU2976xrcfX1i8Vh0rxnE6MzNZ214XMu10G3EcnzvfjqLItu3x8ckvf/XP11Y3bNu+dPl113UxkZcvX76+sLC5iWdnZ32/m2bswIEDMzNTGONXX31t3759U1NTlUpFEzw1dFUsFicnJy3LYix96qmnsjTVOjZf9CYnD1BKAXCYhHEWX1+8JqUsV4pbW1tCoZMnb+tuby8uLFfGqtVq9dr1q7VabW29GofJ3Nzc2+5968svv/LMs9958qlvGQ6YpiEVB4AgiFy3oBQUi+V/9s/+WRzHf/VXX/jkj/7o0tLSF77whYMHj/yrf/WvXnrhxdOnT1er48ePnTx37vz977r3Rz/142kmAYht5bJUnHn13PnzF2+77Y6Z6VmFUasd8oxRamLDFKAsyw6C6Mixo2marq4tdrr1eqMbxW3LtvbtHZeSN1vbOlRMqPzed7/10osvrK6uFfKl9777wbNnz374Ix84e/a1lZWle+696/rC5YWFqwTDbbfdsb62wVkaBj1KaZBkOpRumrbuJNxobF+9cjGO43Ip7zpkfW2pXLUVitrt9UOHjzImbMfICZuxVHdmZmkmJdd2BaVEV/VV/ZZnfSEfwiMANzhlf+f2fahvMOINvelpleqjvSPMmJsoUDefSjdavwlXHA544w2rYYVV9YadChTeaYKFNHAih8oBkATUz2sHghEARFEchX6SRNpZUIIjIbudjmaC6spL49VKsThXLBallI1G49L1q/V6fWtrK0mSSrV64vjR/fv3l8tl3aKDUhoEvmPbGosQQoSh32w26/V6u91uNBpxHHMpNNSmW3RoKkyGGEFYB4MzzpIk0fQKwzDSNNXECAAYNqTRaE+/L4hSmmdDCFFK9JP/oE9/1mAOYymiRIFiaSqldBxPW+ASA6VUKEkIwYBAl9lHiBIKgKkU2KCWUoltu56bTxM1N7sPI2N8bFLnG+ly0hgTjEEB1km4b/LCFEgJaATa0yvcsFjkm4EFb/LuB0HamxX9G7Hp/kkIwI0o8U1LwvDqaEA+vUn+3hTI2NkkUjeCd/o8mADnIBUQigg1EEK6chMAWJY1NTV19drrlmUpKrOMV6vjGAPnUimxb9/85mat1+s5jqUntmmaW7XNrdomIaS2vUGJoRSyTE8pEUZ+uVzu9tqMMdczD1b2ri6tdttNAKCUIgVhGGJqaNpyoVCo1+s66XL37t233XFHtVqNkmR8vNrp9HQdwCzLFBeGSf7Lf/n/3nrbLc88c+rRLzzKOTPNfkMJJCHwQ0KINJVlWWEYci4XFhaEEDombxu2SUzF1dWr14UQBBvj42MY4+XlZQDQjKG5ubnz58/r1mp6LlGKi8VikkS2IZkUxULVNE1qOgcPHpyenrZM6/777z985FitVvvLv/wLhM04YrfccqTTDs6cOfPOd74zCIJvfvObFy5cmJ2dtSyrXq9jjDudztjYGCBlWgbnvFQuVqru9YXNVrMtQVUqNjUG9dEoKNXXDjAo36xIn6k4DH7sJOCPlOpGQyWLgaB+MWWMAVC/T+ZQtDTmIiVg1U+310x9hJDmWQuB+j3BbrBpbpBnPELOHEGXbhDQIRQ4Ml/U8BsdshldJ0ajOzpo2YenAUyTEkoB7GLeQUgFQdButzQ0rINjtuUCQBRFlusKyQBJx7Fqtc2z585SAvfce7uQ6Pnnnv7mE187euSA61lz81MIoSBKEALTNOM4jGO/Wq0KITY3N23bbDRrnKd+4GNEKaWeXYjjGBSenZ3XFTYJwXr53LVrV6FQqNe3pZSmY9qOOTZWqdfrvV6PMWFS6nmeLumouXW2bTmOE4ax4zhjlkMICYKgOqYOH9mvJLl+bSXLEiGYbdvtdnusXNFeulIyyzLdwU8pVatt6vI4GGMFkjOpWdK6NzehqN1pZleSqcmZsbHqN77x+NmLL37yk59cX11AKkOYnz33ahRFY2Njhw7tKxRKSqkkna/X61I6tmMoRZGyGo2G7bqUUqWkZVn7D+xFSNUadYQVIIkx3rt3r23bUqIkztrttq7poZV+zvGGjadHt/4yrDRdo48vj5jLNyzSWszVjTxdAYoOyojfSO5Ag4CHkgjQjafSOwERrpQCRADBSP1lhBBGRGnLZVCqRu+XI+0HQfNOAKvBao537IKdnwCDHrAwouRHOwQMp7A+pT52yB3WyLKUQIZnRYMY9YBLfNPJ37iJ4Q/vU1r614VRa+b7GmE3WFQjI0cP/9sWu/4tDyZ1X5ngN0nlGR6IyM7n0Q0NKvAMY2ij6LxSIADwiKv3pou40vg+AIxoGz2MEkAIGANCAAPk8gahuW6vXakWdu2dcT2z1WnPz1lK4u3NrfHx8Sjs/uEf/e6tJ48fPLj7r7706F133+15dr1ey5IkwlgDfwj1e8to8GLw3NDg/rFhGA61lZDddkcpVSgUsiTlLGV9KqsYZIro/BhMCBGSD+JzKE3jep1pgdRAnoZQNZ9UTzpCMGPpnj0HK5XKwsKCYRgafe6X9RggzsPoi0GokjIOg2OHD73t3rv9bndsrApA/G5w9cp1pVTKEkJJLpdjUihQyDAwqDjNCKWcMc6youcd3b/fMTDnHFNiuY6FsEEdAYgSo1gtt9vtftFGUOOV6uzMTBr2QDLDsmyKiZkjhFiOnSas2Ww4hisUpybuxf7snrkMxIEjBzcarVptM8sy08S6J6qUglBELarRUsaYaZozMzOe51m2wYL04IHDm5ubBw/u55y/8soZAFBKTk1NGwbpdFq1ek0p5Hme4zimbfpht1osl8tlwzCKJW9yqqpbPnR7PZAUAA4e2re0tOTm3FKpxDPmOG6n0/EK+U6z4zhOljGEEFJACDGdPGOiXq/rboGa5wgAliUdx4rj2LIsUKjVaiVRpGm8muKBMTEMw6IGtj39vnw/BEgty2KMBX7UDxRghRC6fv26bduu61JaHB8f397e7hMGZR/mQKjPkhsqyUEWlGaMKoz7s0cJKUBRSqlhaABL63MAcF3XdV3NEtBJNlqwkyS5fv26ZsobRj/qaRIqlIiiyLKscqWIENq3f38ulwvDUEPhmkvOFNMFozc3N7e3t7vdbqVSzrLMNA3GmJvPaZtTSPnwww8HQXD16uLG4uLBEyfuvuveb3zzMcE4IcSklmAcJOIZ18Uc4ziWkrebrV50xTbN3/md337Xffevb659/vOfe+mll4TkuVzO931K8eTYeN71pqcnV1aWXNc9sG/33r17n33+hXq9TilRjsk5pwjX6/Xdu3crpUql0sryKgBUimWuZJZK3/e5yCqVYr7gMR5blJim2+lscC4opRsbG91ulzFBiKkDAFevXtfEnE6n80M/9EOEkFarwRgrlUq6bIh2wovF8v79+y9cuZymaalUypKUEHLy1hPvfPs7Xnnlle1mo9vrfu2xr7u2lyRJPp9HQMIwZp2eUopLUaqUq9WqGYZMcUwIF6JcLmNK19fXKcYaRJ6cnDQMpBDU63VKzTD0wzDMFUqFQiHLsigObNuenZ313LyWN4qxaZgEULFYrNez9bXNOEpBgGm4cRLGceY4imBTKIYVCcOIpzwM48985jO//Mu/vLi4ePjw4VdffW3vnsOfeOSRVqs1Pz/v2PleNygXywYFAJAcCCBAIGU/1UkNzD8kIWXi6tWrL7/8csrY6vLK+vq65hXFWRrHcbNZJxQ1Wo1CoaCr2COEDh06xBh75ZVXKKWf/ewfbW1t/YNHfnhhYWHYGEaTvhFCXIqiV9LyrAu5AIAuHaOFXwjhOJbneVrgMcanTp0idEeZZ1kmpdyzZ//73/+BP/zDP8wyrpNO8vm8RQ2s4Ktf/epDDz1ULOU9zwGQtdomxrC6upokycGDBwuFQrvdXlhYmKhOuG4uy7jnGQBAEAzZrVwBAlASbW7XEEL5fN62rThO2u12lrF8Pr+yvBaGoWGQsbHKW+65N8mSTmczX3AQVt978luzs9Npmn7xi3+Zz+fvvvvOs2fP+n4XsPLy9he/+BemBWkW1mqbzz779Pvf/35d9O/SlYv1eu3YsWNJkpUrJVBIPzSEIAjSlZVVTBDGuFQqXLt2bWV5Ncuy+fl5hND6+vrExFSxmBugKoPQpgSkkBoAygiBrsqNCCjVR16GTq4QgE0spVQSGwQwRgRDxmSz2cp5haNHxldXNzudjmVZLE2VInGUGcj8xMc/8eCDD/7mb/3W/v0Hnn/+BWoZ73nPe+I49jzvc5/701qt5vuha3sYSLfd+8oXv7q5tvWOd95n287s7KxJsIFN3/cnxic7na5t26aDsqxvJ5gmHRInR42fNzFXBj4LFwJToiQixBAClpdXu11fCCGJzFjiec7HHn54fHJCIogzjhAhWBfg6q/puqmxBEV2OmSoEV7aDZmhN2Fhb2pfSQlIKqWAUoQATNMueLm9e/cjgO3t2tGjx7e2Nnbt2lWrbao0nZiYShjWNYs7nY4f9G699dbbbrstimLbtn3f1w//G9/4Bsb44x//uJSyUqkUCgXDIBQbWZYVCrmnn3nlf//x7/f8dqVakCrq+W3HNjHBiotWq5VlqZQyjAIAAKSCIKhWq3feeeezzz7bbncmJiY+8YlPfPnLX87lcvPz85cvX1VK/czP/Mzrr529fv1qkmRSADUMTEmapqdPn7Y9V6fXdHvtNBGlUmnX7Nzq6qqUcnZ21jRIZmBMoNHc6vV6CBOpsstXLnied+HCeUqIUqrbTYKwl2WZ41iU4o2NDdu2y+Xi448/rpTy8nk0gLo6vd6zz79Iif3QB9///PPPE0K8XMGyTS6ELi9bq9U2alvlcplLUdveZIzVG5tpmigFr7wcJRnv+Z2MBa3mZhiGloXDsAUAgLKZ2XH7PLnjzlua9ebi+nVCTZ1jNDMz9y9+5ud+93d/HyO6b++BRnP7zttu265vnT17Ngyjw4cPn7zltnazs7Ky9rEfeLhcrpw4ftvBQ0fzxZLL0cZ67cyrF65dXVxcXH73g+91vdx2o66UUgpRirV3jhGKRWwYZGpqan188tz51wM/cezckSOHGs1NhBkXzAZSLpcpNc+dPRP0/PHxaqfT2btv98FD+089/eSjjz568eKFvXt360YdSZIYFC5duuD7oWEQKXkQJKZhlyultbU1ALBdi1BUqZYWl66ur69fuHh2fGKmXq+/du65LMuIYfX8JjWc3bv2IbC2aw3b9JYXl1qtRqVYtg3qmIZhGFIKQshQbwzdDRhgCH8PkPn7baoPgOwguW86s97089+2oR2YcYeo9KbHSqTJTzu/RcGgAvsIdAmDNl1DzESfHCOAQaN1xpSUEoFUSgZBwFkaRQGApBilSdLpdLrdNouzKIowBs/z9u3ZrW2SjY2Ns+fONJvNRqMhpZyYmDh58qRlWXv27CkUcoPOZFI3n9IR3CAIut32ysqKrrsdRZEuXqGU0i1wAcAwjIwxSohmjWRCMsa4FHoYwphSKiVQaup+KoO0BktzZTSczBjTcLO2dZViCBFEMEZYKcVYxgedsZNer98hmRJKzTSKTdOUIKSUmGCECAJFKc2yrNfrMQWsSWgpX0lZL2XR1ORMqVRpN+P1ta2cVwWoj0+UCMKC9V8DYzoXCRQAHniVw9cpRP+tUAAY+K6jdDc04ruivx2DvknOBmvPTRjHDWja6CWGm2Z6ygHT7Y3XusmfH8rfTQNGQyU794NACoUw0rY4ADQazSRLhRAEI8e177nnnkZz/dnnnioWCouLyzqhDyGVy+WCINKdSaRklFKDmgAghSQEWRYhBNUb24V80fPyoLDjuOOV8vb2dqfbdhyLIOk5NiGk1+v53Y5hWExwlTHtbJTLZdd1m83mzMzM5OTklStXdJXxo0ePLi4u12rb87tmS8XK2vLK1PTEhz70oa8/9jef/dyf6Cq9hNBcLh9FEUtSQoiOlmxsbOkKlY7jrK6ulkqlIAgsy9E/wTbsMAs5491Wt1AoGNhACGUi6zRbQbcnGSeWbViGEIIghQHiMFRCbEYtz8ub1uTy0tJb73tg1649BNPATwHD2Hi5VM7/yKc+6fv+X//1XzMm77337l4v2NysTU1NHTlyhAwKhmCMq+VKFIdCcoIIHnSBv3Jl2fd907IKhaJt2xJAIcAGgOzXTu2/WQUA/UqjumI40hUw3iBgo3IyhHgI6cu/TgRTaPDniKT1CdEAMGhyOtwPMGi5+QawSRuIo6d6o8SOSujNI24c+cadoxMBKZAKFEisMAFQCPl+L0niLMs0Hyqfz7fbbd1mt1wu9MLY93ucM0RQvpCrN7a2Nle7na1KNdfrdfI5lxDUqm/rvC0EQKiBMZTKRYSQkLzeqHPBGo3tIIgQIn4vMgzLcRzFgVKDMWaZjpKo3eqyTBBCxsfHMUbTMxO7ds9OTIzZnv3qq6+srS+zFCulDIMYxNCkMExAl1culUrdblcIwTIRJnEUxRcvXtq9u7Ax2+x1g83NWpaKTMh9+3bPze26fuVqq93BBHTtl9XV9ZzrWZaThREAJEmSzxe1J2BiY21thfMsTWMp4e677+52u91uRyk1PTO+d/fspQtnV1YXatvrtuXOzk52u36pVGo065ggjEilUsIYDh8+qtNIG7VWkqSUGq7njI+Pr64tb2yuzM7OKiVmZua6Xf/SpUvvfvD9cRwjRHXgUTdh1/UoCRoGn0d4x28uBDt1y2EnIDEsLjGMj4yc5wbtd3ON+5u+hUFZc93xTqtoCYAxworoMRgjOVDdAjQVeYcBOlSs8qbuDDdcazh5YOgVkJHZIUBhhMiIzA/Njv4aoeMxGIb1KQQAUaMjQSkQCsj3jcPDCNY8BKmHrlH/Wn/7Gfo9i0eYxTowvrNEKoA3qxw4EnAdrD07X+2k70j15kTsQbLtzScc4sIjwD0oBUBAqT4nXd1wrf6HHX0o+1G3/m8XAAgQ7tOtGQcAIKRPwNYdO/NezvWKU1NmEEIURablfe+7py6ev9Dp1rkMT5w45OXJ8sqVMIz8YN/1hYsbm0v9yAQG0zQ7nW1KDcdxTdPs9QKNXEgpkew3o6OUaqNcF72ZmJjY3Fo3TVMpwTgHJC3bUBJlGUdIGSbFiBKldLF1MWCPDtEQ27azLEP9jn9MT7okjRzspGmqK0sM6MCSMQ5yp7CvbnyKMc7SjGBpELp/777Q91dXV5M4yzLh90KDmJZlMZHFSWp5Fuj+1QioYeQMM04SBeC6rtDFRgHiNEEICSEYz5BDLGpkMsuyzLIsJSQomYRRYXpKsSTweznHtihqtdqUUi+f4zxjTEjB4jQkJnFzuYKR6/rdidlJRJDvd13XMahjmjbnAiEQQliWkbFEKtDmCgBsrK1PTE0oJXM5L8nifN7zPLvRaGUscl233WvvP7TfdkiWZaVyodloB0EvTeNut1so5iYnJxFSlmXZthnGAUqQlNL17NpGo1gszsxM9XodxphpUsZSQrAQHCHsOFamqRUKm6ahJKIEG9TkTCZhTyO/jAmdL5+mqVK6vgGOwhghNDkx4Xie7/sASPM4siyjFHRwMZdLdPOWZqOtIVrTNJWUQog4jqUAz/NaVkdzLTWvmTGWppl+CzpbS2MZOrqAmAKMddEtpIBLAaCfHjVNU2E0pFTrREhCSLFYnJiY8DxPGza2bfcLRqeRXkmJItoNEEJgBIAQIcS27Xq9Xh0b01eXcie8RwlVSgXdHkIoDENCcJIkmvbieR5jmW42a9n2ysrK+9///nvueWVmZiYMwwceeIAxduqppxCCNE0BsG4q2Kw3LcsEkJDPY4x3zc195CMfOX78+JnXX/2zP3u0trm1vLLk+37KUqVEHIdpmnLBOOeciVwud8edtz711Pdyudz//Wv/47/911995ZVXJiYmNKFVN7jWUGOhUCoWi2EYEqwArHIlXyp4FiX79+7u9XpLi2sIIUopApKmaRzHtmMyxoQAzrkuab21teU4zgsvvNBqtUqlgq5/AgCO43Q6PQAIguD111/vhT3btjvNFgBwlr7jHe/4lz/3r1Y3VhYWFv7qy1/aqm+fOX2GYlLKF3p+CFKZpplkKSKYK2kYBiI46AQSgWlbnU4ny7IsSbo88zxHMBaHEbfw9PSktvM77a6UwHgahL18wcMEer2e7/uUmL1OxzIMIQQA4lwwxk3TioJIB0UMbCCnILiqb7cLXg4AKYVNw5Usuv32W9/xjvuWl5c319aPHDxS22qUS5V9+w4KcXV8fKJUKhOCu92e69pYgc69RQBK9pc3ISTGGCsECLIsLRaLDz30ULPd3tjYOHv2dYxxvuzuMPcl0hW0dZAjCIIrV64AwAMPPPDpT386y7KxsTGd/4ExYAyUmroGi3YyW62GLjeplNIEAsdxkjTWebi6jnOlUtJmWxiG3/zmNz3Pc1xbt9QzTUspdeLELRjjb33rW5zLZ59+5sH73/3xj3/8e9/+TqfT/pM/+ZMvfelLenacff3c1NTU8ePHn3/uacF4q9W5cuXK4vXF++9/cM/8HiVkGIae50gJeISKkUZpq9tJ03Rh4dquXbvyrqcUbG1tW5a1uLiomz+/5Z67DMtaXlk6e+7VLMuuLZw7eODwpUuXlpcXf/03/ufU5IwQ7J577vrJn/zJX/qlX3r62WdKpcIj/+DhF1988X/+z18rj1VZJp9++un9B/ZOT0/bjnn77bfv3r17dnqu0+l5nlfIF7MssywShuni8pJSKue4ABDH6eXLlxWgsbGxsYnx733vqWKxqBDWdZ+UUsOkpn5Z1QFyqs0ejJEQqu+tqx2ngxDIMmFZRHIABZSAHyRBEJjUUkBXVzYuXbxCAOkgDRIGS/ntd578oU988vLlyyZ1PAclSeYR8mM/9g//8A//8OWXTxuGgRX2nJxBLawMitSD777fMp1uxx+rThDAUoBju5bpGAaUx4oAkGV9K0JKxZjUeZ+jWLMaFCdUasQAUUjvJ4RIpVLObNuUHJrbTQDI5XJxHMdp8sD7Hjx4aL9hEkKQBAwKZRnX2k8Omj0opQjB/bjzyHaz4dVnI/ytYIW2+igCIGhoxVkWJRRmZ2cJIWPj48VSpVAsEoOeP3d2cmrinnvu+trXvv3sc09ru+LBB979kQ99JJfL53J5QgzdzLbVatXr9QMHDjCWIqQOHNhHCLEM2/Psra2tz33ujxcWr7Y7tVzOCsNuFPumgYRgtuEIITBSCINhUlvavu9HUWSYZO++3R/68EOvv/76tWvXKpXy//7ff3jt2jUhlBAin/ceeeSRH/qhH/o/L/zbWq1eKOQs28yyyMwoJkooYIw9feqZ8cmJk7fcdsstt549e/bapYuum+u0e47jAIBt20ophPrFxADAtk0pOcHAuXBdVzDuOM74eLVWq129elVKed99942NjX3nO99DQKanp4vFommauiY4Y2xjY+PJ752Kk3BycrpW23QcTylVq9XXt2r1ep0xNjk5mSvkkyQBkIylCEGWZRsbgeM4BgFMlAKOiRCCU2rZptlp1Z869Z1Gc+vg/n0nbzna+eq2vpZjWnffcWev3e00OoVC6a+//BWEFSH4G9/4hs7GBoA0Ta9fWyzkS7t27fL9YNfuOULx5cuXV1c2NzcagR9Xq5NHDp9wXU83DLBty80VHddiSZqmCULINK0sYTmvND8/7zq5NI3/0U/89J13n/jil/7sm0/8jec5+w4cvX79ehTVKTXX11aEULblnj3z2jOnniaENLbrLM3W19aefPLJKAps2wIltra2crmCbTtBEAGATubrm6lZZpvW9atXCsV8ypIg7K5vLGi8cmZuvtNuvdTYJNg+e+asQT1KHErsXttP09SxjDQJigVXIpmwBGOsFCaYjMJiN4WF3jgddihCNx51g/cxegga7JGDxm9o5+R/H5R59Oqjl4YBzUjrw++Hh2g/aOAKK81oRn2y0o5T2e9z1FdQGIOSkMRhmiZCCM7SLMtA8CgOkiTutjvNVr2fTgdobKxSKpVMamxubp46darRaGQsIYSUSqV77rlHg3VxHEdRYBiEc5amCRl0hm00Gr1er9VsLi5el1LqPiKaWDMs3TZsjaA5NWmaCs6llHodR8PWSUoCgJJEL9kIYUp1khbR9AitG/sdUBDSS7YEzBjnKQfVd+3EwA0fIf1gpRQxTAmIUkqkYZhmyMIo8KWCLMt8FaaCsw6iSqEs41JCuVz90Ac/GvissR0SbJimmSQJ55xSg/ddRzykj+n48HB5GEhVn0FGhr7rSIRQQ2wI65IaQ3xt592PysqoTGiHWt0ogqMTYEhKHRVxKXeqKAz379Q71yxUDBj3s6GluJnapkeSQZV0DSAiBICBc4WQklIQolE7iNM4Y4lhGGEYxYkghDzyyCOdbuOZU09LqSqVytTU1NWrl5MkMQzLMAwp+cTEJBes2WhhjBnPKMWWZe3fv/fkyZNJkkVhqrg6cODQ0tLS6tpSLueGUXL12ka5MJbPF13PUUpxqSxqRVEiBYRpnCZsanzq8IHDzU57cXHRtm0ppWlRAHjLW+65fn0xjpNPPPLx7e3t55959hd+4Rd836+Ux/IFb2Vlqdvtap61ptMTYugVUVfg1ZXOHceLoqjb3U7T1LKsarUqpRSZimWcxilSSEllUtOkRhAEGGMlOSCCFCgpXM/VbdDbvUAIdSW8kmQoClPTcAxKmmE3TWNq4LDXPXR4X6U8trCwcOHixfvvv//W245dvXp1Zmbuwx+e0HyfLEmjOCwW8rrJG2NsamqKUur7fhiGxVJpenradS2FgbOBpYVgWPhCKZAKxI0GhO7RPKQ97vTlg52j9H/GADbCGHQdZzSgzOvP+lg+8udo5GOUa4DJTt8PNWgJMpDSQUEM6N/PzoS6kdqpOCCECEXDjDmibr6Z/hQYsZ8wAsEBYaAEi4yHSZJmcafTAlBJkrz66qv5fP7EiRPFYrHV6mRZNjU1FYYh55llGQoJxzEOHdy7vrZ44cLrYdhO0t7U1JRgmeu6jUZbSjk7Px+G4czMjOu6hkkbjYamB7aa7UKhIISSAvUNSlBxHJumFUWR5uZrNz6O482t9SgKisU8wtwMTQUsCHrFwgRjTEmUiSznukrJNGWcc91nybbts2fPAqacCylASlherG9t9DzPc91CGDTCoHf8xOGPfewHnn7qqXPnzjWbTcsinU48NzcXhQnC1DKsdrtt23aaxpZlWZZrmpSLtFwpzc7NMMZ6fltIPjMzxRhL0/jKlSurq6uWZUkp/aBrW+7ExFiaMsbStbU1SgzdNmdjY21jYyNNGQHDcZwkSZhg99xzT6GYu3jx/LVr1xzHsizHtl3BRavVqlamlMRRFGJqGIZpGpaSSnBp2KbUscohVjtQc2gQjtDeQr/c58DChjfbFLqhdWp/GEZIwbDUaZ/W159BaHgqhfsBRDXY9EmklAohAkgpJYSSoAb1THVrBUygP3jAZcZqpArBsCLHDswtpf69OgFISeCDCYJx/+pyEKRBO2uBkhLJkQk+DBdhDBINijgPBggBiA7a1d5oYPXXjsHYPh9npHAEwA1QMkI3KI0bHvgOgg9KAucwzBYagZVvOGQIZKNBceeRhsg7kXyEBu0N5c6B+g1JeYPtNbyKfhRoEMkHAKn6QPwOii21Xrrh9nSkQmlNJRTGaHge7cUhBHSwsJLB3VKMJybG/SC+dn1bCJYkmZHxJA4d11jf8McnnHLFC8J2p1vL5/PPPvdkGIZSpa5laQlM09R1XSGk0WeJMk1PRggBoEwMgDwhdQkgBWJjcy0Mw/HxKpcMUigU8rlcvt1uK6UwplKCVFzLlc5j1bMGBuXP9BTQveY0O49z7uTtylg1CHvVanVsvLK0tKQkQghJwdhgYgrBAUBXT8OSZmm8d3bStqwg8BvbdS9X6PV6WcqViXRJX9M0hVDKIEpKhClCYFGqAAzD8ExjbmKyWq1ury1jQN2gKxTobHSCjTiOJSUYEKWEZYJgYEkcBr5NCIsjqkwDQRwGGIPjufXaVpbENvUAYSGE4VqcqDhNr169GoQxpTSOo6iX6h+ez3uYgAFGlmWcM8sytFfj5b0TJ07oNJTSxFi33QmC7rFjh9fW1uZ3TWcsMplRLBYty/I8TxedaLbqHnUmJ8ezLGWC+6HPGNva2sIYZxmrlMpSZc1WbWZ2oq9bkNPuNrjIpABimpDFrutgTEI/ElwxBFGUIIRASG2rsExIKnVCLqWYEBsh4jjUFCbBlHNuWXalUqEILy4uRlEkRJhlWS5X0IcY1ALF9FsYVNmTCAhCMgzDYY6hDvtR2q/Yq9FPjLFrO0JJDaiJQSNKAOCMCyEcxzFNUyHFOTcdO45j3w+KxYKulEcIqdfrfbpxxgYd2KRl2QnSFGmKJNKVlIUQgAAwLhQKupq/lHJxcTFOwmKxODY2dvbsWa1psYIsyxjLKCWcKyGEFsUkSahlAsDMzPTBQ4dff/11DfU+8sgjtm1/+tOfBtmviGLbthCiVCpHURRHaT+si2k+n1dKua772GOPNRuN69eu3nHHHbZjPfbY1xzHUUqMjVd6vd7td9x25MiRz372s8eOH33/+997220noyj61re+ubB4vVwp3eQy/fRP//Sf//kXTNMMwzCOU4INahDHtJRS7U5TQdHzPNOkrVaHYBMQEGzqsiEIQRAEtm1jjA2DlEolbUKkafrjP/5jzz333Pr6umVZMzMzURQJobIsiaKImIRzHvk9jPE//qmfOnz4UKNbn5+Zzxfzf/6FP19YWAQCYZoEtTBjaaFQQkrFkY8QStqNIAkVgkKhIEA12612u21ZVpYlumY6ACglmq1msVB2HKvdbiMMtmPr3sK6bIJ+4JJnjLEwDMfHx5VEvZ6PELrl+InNzVqn21UEOY7LldRuZK8bEkKQwo7jGVS02+3z588fO3Zs9+7d168v+r6/urr6q//1vyGC/8k/+SfT0waltNVstFotrCTnvFoeGxurYIykUJQipZPyMFIKbNPaPT/th+m1a9c2NrZAKtM2lVIbG2s6ugYITMNiPBuu+7pYzdjY2KH9h3720z/DOaeEmIbBOQelBM8YUkrJLOvXKSqXyxjjMAwZz/SsMahJCUU65VaIVqujMfHx8UltbHAmp6enu90uQihJkscf/ybn3DGtLAkKY6Wf+Imf2LNn3wfe+75//a//dcqZrn7r5XOu52VZurGxPjcze++992pG56knT50789ruufmjh4/p2kqTk+OgIAgSzUswTfO1M2cXFhbSOPJs78DeA92u/9df+erJk7cuLCzMzs/l8/lGo3706FExN/Onf/rZWq1GDH7h/KVqtbpr164LFy5JKXfv3n3ixIliofjQhz548fKlLEsWFhb27N/32utnG1dbx4+feMtb3pJyViiXpJTzu2YnJyeVQqbtcCYvX73sOG4v8F9//fUsy2699aRpUkzR+sbGVq2mlLp69Wq1Wq1Wq4uLi5OTk91eMDZWUQppt4KxPqNADUymocmBEBp6HEMwVEowKZEMCAHOASFQAgSThmEEvTAK4m88/vjhw4fD0L++cMW0cLlc/eQnP1XMl3K5QsEr9EKMMF64vvD1v/46SxiSiAAJg2hqcsYy7DTNQKDFa9c/8IEPjI1NmJTiQXoTAEr5jk3Sd88BITLoYXNzw2ddh3OQp6bU0KoRSurlGEkQEra3tyk1CRCdf3PgwAHX8wDjJGMYY9TvLawTTIkagBh9RFvq/QgQ0r0WB89QDROe/h/G/jtYsvM8DwffL53cufvmmTsJOQwGIAgSYBRFMUlMEilZlEgFy6bMlexy1bq8teX1umRVyfZurf2TZK9kSyKlHyWRFElJFEERBAkQIIkwGKTB5JkbZm7u3H3yl/aPr7tv3wEkbxdQ1dO3+5zTp7/wvs/7vM8z7l8bleFvehyA4SQoNMrUqI2qjZlSqeS6LmNo+cgJx/UXFueOLNcOHVoun78oJf/x9/zE297+8OzsrNTKKCxfu3ZtaWnp8ccf9zzvx37sXSMX9HKJEIwAms3uo3/3txfPv4aJtm1LKZHEQyUzhcjC3JxSqtvuUkqXF5bb7XaWZa5rz8/PaYx2drb+6I/+5zDsN2Zq//b/9m9urN04d+7cBz/4wU6n4/uFl19+eW1trdPp3Xrrrf1+lzJSrBSjaJjnQg4SZuW2bT/05kfe//4PKgkvvfgKwc6J4/M7zb2tzb16vUoY0VpxwSdduQqU5NwwNLMsYUTLPFPcKnh+fa5h2imklFEUNeqzruuur99QStm24/tyMBhIKa9cueK4lule6vf7SZ5JKW3L9dygn/db7W6cZGmaGq0tgrXFmG1ZCGPbto2ygUUxAPiuLaUkFO3tbvE8aba2O929NI0xhiSJKtUSY+xLX/pSs9n84Ad/8saNG2urV3r9tu+7pUJRcP3Uk9/f226//MqLs7OzX/3qV7e2trZ3d23LB83e9siPPfiWhwpB1bZ8x3GTOIvjOMuTXAiSca2R49hlvyCl1FISbLc6baGBWPbszOKhw8tc6HKp5rq+1lIIVSpVDi0ebjabnU4vjmMlO+Psh1iW1WjMNBr1fq+rQCoFmicIkSxOQGpCSJrmGIERJLEsK03jQsGPk2h+YUYNc5tRyxKU4lK5xPMYYcmA1iq1xUMnBr18Z7O51dotFEqubWkluUgBcUyAEJJLwZglFNDxumHwCoB9HMM8p2Q/zZmGJmC8KhmccDJNJmKAk9wKoZFixuRE+zUmPVoZTH6BMSi1v8TB1OkmL0485MYSUvvQzbS93ORTioARsp/U7dDYow4kGFV30zJsFBdzyaMo4jyTUmZpqpSSkof9Qb/fb3eaSRQBACAVBMFsvWH8qw1L8rnTzzd39xzHWV5enpufqdVqvu+bShjn3ER0pshBKe31enEcX7p0aWdnRwjBRSaldCx7lFNgbGozjBGESJZlJp5sdzqm68VibIwgC4yJUbcwaZSREZq4iUgplQKtR+1HpvcOIWQIEVIILlNC2ASMRgghMpLQdF3fJEcG8qaEKaUEl+FgQAhppS0pZRrmWuuQhprghu9TpRRGFFGLWcQm3mzNLXlDhBhIVSxWbdse3foxPovGy+5o2I1HjJFDGg2aMX3ypof5oBgPPnKwgXe8du/XSKbLKXqqxXuyleoDBdA3KELeVGMxQNs0RK4nEDN5Y3aYUsC5Ygx3OgMhRLVeMaUYIaTjsiTNMQHQ2nEtpXMpOWG4123NzhertYLv+4uLh1zHNyFau928cWMdYyylXl9fvffeu2dmZgysX6lUZmaqQuaU0rnZhSzjF85fVkru7m5znjUaNcum/X5vZqaWDvhw2CeE2badhZGU+k0PvPn69evdbm9+fj5JEs/z77vvvt1W8+zZs57nEIpee+21LMuiKLpy5co3vvGN3d1dpdROc7darXa73WHYdxyPc27MsmvlmmHxGPTZzASDAM7M1K9dW42iiFKqJHTaPdu2mUMmlUYhRKFQSNNsdnbW8zw/cHd3dw2MDgCcm03C57kI08FPvO9jszOH//TP/uLnfu7nC4WCKzOtRb1RAo3and2FhbkjR47ceust9Totle5pt8Ner1MoFHKeITx2hQK1u7tdLJbjOGa25TjO0tKS67meA1ECCAFlkKWgtTYdjhO7Uj1NtD9YGUNj+HhaI3X0qfGLBAAIIDSiNyIE2CyUMHWc1w2k6XIIQtrgJApGrMbJucYA8c219v1/Tq22GI/oqxMHy8m6Pz350Ggka621VMqEToRgQqDTGXSae0oLAEUIMVG4aUi8fPnKPffcM9NYyPM8TVM3cGr1ihB5kiRZls7OzvzsJ36ai+TRb/5tt4M9z/NdVioVTz//Kuc8F3D06NGVlbVDhw7leb6+vnr4yHKSJK6b57nACCGU+n4QR2mYxw6zfvqnf9r3/T/8wz+UUtm2rbUehn1CSJIMg4I7jIco0dvbm9Vq2bY805KZ57nR+UmS3FhQJknkOE4QBGkuKGVJnFFqEXCTKKEYbAuXijWFYG1t9duPfStN43vuuSPLsr29lmUzi9n9vgEXbMtyBoOwXq9KKff29paWFur1qhACY+X7rmVZ7Xa72dqp12fCaLh2fctiDsFMa+15fprmAEAp9bwgTTKMcZJklMo4TpMks20bKSKltG1bI3jxxRePHD1crVbNkOj1eknWPHz4KGbWXrsFAmeZqNbrpq3bIBomwRsvblprjQjBY+MyhJDSGjQaI8CKK431/mDap9JqbTj5xlYXTS26sO+oMHrVCD2P/4lgVL85sL7fNF7luF0Rxo2fkz+pA2/EE+h5/8LGTyYL/gjO1qN+p2n03IS5+2AoAoQ0AaOUOn2isX/s1GXg8bxG43kn1GSGjv+ERrNptOMokFprrfGU4Id+3Vrxjz6QfiOvXZia45OJvM9bn9oEtb75q8GomI9MD4eesrRFI7vUUex1E4xu7tKU+7NWCk1/C2WuZAoTvwlGn7Trjj6FNAakp/yEzegytxEhEEK0221CULlczrlWSgLoNz14X5q143hIsQzqxSzjvd6e5xdyntTLFdd1B4NQyIEQUmsYhn2jw6MUoLGCaiY4AGRZ5rJRotJoNHq93iNve9vW9kaxXLp+/brj2EZYQHBl2KkGxZtkSkYLCyEix0ZwlmWZ0Ssll1IWCgXHJ2mauq4rpej3B0mSIISyLFNSGthaA5g6zURtzWas3+9v3dgALbIsE7KvlCIWq9VqWZKC1hjjTHIFSmOilMoEL9h2EARZGkshB72OrWWWZQRhM88wpsPh0Kxvtu8jghAAUvLo0eW5eo2CChxbSY4BeJZxgvM0MSpszOi7ITSIQs/yMi5yUArjmZk5TJ29vQuY2KajQimVc4lAJXEGSOV5HgRBuWwpIbe2tprN3WKxaNtMarGwODcYDI6fONpoNLIsc30mpdjZ6c7OzoYhQggdOXIEsG51WkIIIfIsTZMkGfSGBgZ15uakFFmWua5jgtdarRLH4UDmIEmWhZRYSqnDh5e3N3darRbPtHEe01IZyUtTbqo3ZrI8sW2bUmy8HBhj5onneTzN1MhBxeI86fV6cZw6juP7fpZyA8WaKp1R5xgh0YyZfCDPc8YsKaURZdFaG6zZsDiJUS4A0ApJMSJyUkJc18UYG+FmREy1DJcLxVKhVK1W0jTda7eklKWgYNJFw7KnFOVpJoTIc0EIIYBB6zRNCSGAQAEsLM612+0ojpMkGQx7nU7HXK3JVUxWcOTIstb6xo0blNIsy7IsW1xc9Dzv2rVrQalYKpXmF+YunL945cqVj3/8Z06ffu6d73z3P//n//y733n8/PmLJuSjCMfDOM9TrDFPsiAItFBplOQi++Kf/Z+mIm5kSQ0jWyllWazfG/b6nYW5hZMnTxaLxa2tra99/a/29vY2N7ZbrY5re1EcCyUxIgDAGPuP//E/fvDHP3ju3IUnnnjCdwMMKE5CW7HBEMNQpVlIKRFCVioVSp0kTtNUZFnGLOZ5znDYP3z48Ac/8P619euDweDGjRtJkgwGg//6X//rgw8+8MUvfjHLMtuxkpUYI6K1xJgFgZfkCQEgFDuO8973vffw0qICud3Zunr1aqvTHEZDz/PSPKO2lUvBbJpFEGWp41jDKMRZEgTBrYeWHM8t7u6axoI8T3e3dwaDgckeGWNZngwGA8dxoihK0yTPM0JonqelUgljCMOB77u2zTCGNE3zTOR5hjRaX1/XGmmlDKTLHNt1fEPEy3OBgWRZDym9eHjRyNPVK/Vjx47MzM899dRTP/zhD2fn5i9ePB8EXhAEe7vNH/3g6YWFhaWlJd8NDP3fBAsY41EZUgNhBAAGvf5jjz127fKVYrF455133thd7fV6QRAA1tVqWWs9DAd5niupmWthRMIw/Na3vtXr9c6cfmFxcfG22247c+YMABi1x4n4u6mp9/t9w6VSWhrmiud5lUplMOwbaT5CyO7ubrlcNoYxpmf84be+7cUXX1xbWyOEaKHLhXIYhp4XzMzMlEoVhzon7z9VrJRHlqSFACGNsB4M+lluHz20fOXKtWPLxz7ykY9gwNEgeumlV9I4m52dN3FXsVDMsmwwGKRpeuT4sfWV9dPPPec4zqFDhx849cCLL7z4wgtnLl++cvvtt8/UGxcuXZydnWm3m3ES9jothLXg6tix4//yX/7LH/7wmdmZxVOnTm1v7x46tNwbDt/yloff/OYfPfnk9/rDqB8OEcIYk8XFxZ//+Z//4he/uLGxcdtttx1bPlIqVqIoiqJwZWXt3GsXgiBYWVlJksR13Uajftvtt2RZRhnmnF+6dGl2di7P8ze/+c1a640bW67jB0FgWdY4ZR4HY//w46bQQgogBNJU2jbJUr21tYMQisLO+fOXet1BGIZvectb1tfXLwmhFLzpwfuX5peKfuGWY7eduu9NTz79lFbad4tPP/WM1rJYLIbD4Xt//H2/9qv/7D/8P/6fWze2q5X6+fPn8jz/qZ/6qSAIhADHgSQ54N48uqpJivQ6lvEkzBihCGNWwrgYCQZJ8X1YW+lsbW1pqYhlpWlarhfpGGcBxbVGI6W3cbFkOuxCCGm8X8I3DwJonNOhScV9kuKZy55CD/SkfI+mkAqDatk2AdsDAKGhUqsCwY7nJznceuttQVCglCwtLTTbreT6erFYXF1d/Zu/+ZskSYwwFwB8/vOff//73+/7HnMsIeTZl18ZC/cD5xmAiPOQUJSkvFjyMYYsyUulYhhGg16/0Wh8+tO/cP78+QsXzmnQWsvd3e1SyS8U/J2drUajtrg0JyTv9jp7u7uDYdJqtY4fP/7rv/7rjz/x+Le//S3HsZVSnU5CCAn8MiL4+99/eqaxcPXqNYzJz37yU3//93+fZ5ISe2+33ZipM8sGitM0xhjnPKWYRFEkhCgWi5iA7xfyPOt0OocPH2bU6rS7SZwKoYyG1cbGlinze55XKBR8vzAzP7e+vr61u+V5ngYtlcyyDAEJ8zBN8zTnVGmA1HODPM8JZpRozjkmyLEsjDECTRlzXdsoVnuOSwjO85RSvLZ+rdGYVUqG4fCW47ecOvXA9lbTomxpcbFWqV6+eCmO48AvKC05l1pBvz987rnnHNcaDAbff+q7Uuo0y44fv/WRh99+78n752YPCU4EhzwTjuNalmMqzmGY9vvDbld5nue6dhD4imtKLaFksViM4zDPhcleDUOu14Esy7eHu1JKKTTPJSEUY2xZzmAwiKL41KmTx48f/973vhtHCaWKIpAyV0pLAVLqmbmF4XCYphnGxKjkK6UoYcPh0PM8AEjzDGMMCimkjh89BuA88vCP1WuL585e7beT+XkflC4WA0IhCnuCV2wMzCIGANZaKkzweAHRB5/c9KKZm/C6DOgAujLSF32Dhx5jLzCVmiG0315w03nf8PjTiclNsPIEY0Rj0QxTc1IKEQJSgpTAGGgJwgCUEhECSmnQQAjiXA0GfSllniUmd8iyLI3DTqfT6XRMwIYQFIvFerXqeY7puDI5u9Y6iqJqtdpoNJaWlhzLtixLg5xQ6wilcZJkeQoh2t3e7vV6pmpuxrDr2YAYpVQDKNCEUYKJlDzLEgAwcLNQRnxjFHymWQbGaHeMKWs04tDYlmVKQebCtNaMMUqZib3VOPwwtButNaUjzTpjGJhLQTCekC2Mo3UURVmaax1HUZTLFOdMapXRWCnFoCClxA6RCIRQ1HEsP6hRqyyytNPpYURq9YpWBGOoV8q2vd8nMvqppn6/yT9fnzybJFZpjRWaHh+ToxlK2oTsfHDc3Iwgjz+rpv86xin2x99NA/2mUsb06zBGH9A+Ari/7U2PYMHBtnCeg23bcZJcvnzZdV1CEKXU9d1yuSwVRwh5niNETimVkne68lvf+hYmUnDV7vRcO3Mce319PU1jinGv0wqHsU3ZypWVG+vrx07cOjdX7vY6Fy5cKpUKx48fb7Vae3stx7UF5v1+V0rJLOK6jtaB41b3NjpRkgEoo91RrVY++9nP/pf/8v+6cX0LzZMs5aefP2PbNnNs3/eDIOj3uzMzM5zztbWVIPCE4I1GHQDW1tZ2drYYY1ojQkixWMQYJ0kyHPYR0oQQSolljfz95ubmTFfdqAIMxGRxSimCR67flI5ybIzRoUOHCoUCIDUcDpvN3Wq16rputzvQWi8dXt7eava77e889r2feO9PvfLyeZ7DJ3/2p/0ii+KQWVRraHfaCMsH33xKaxmG1LKgUPDTNC4Ug06rWSwGjmMRol3XrlQqc3Nzm5ub1XqjUqm4rptlOeeYMao1cK4dB0mJlB79vqOAYDpEmxp7E1riZIGbBoBMGMH5xHoF0BiYA7T/5hFq/Dpi4+T4APu0xMlkMQkAnrT8H1ShmX6CpgqM07g2UvtfCqGRGhG8bhU20YxSijGcZVJx4fv+YNhTSiqlxkLbdHZ2rtPpPPnkkyfvfeDU/Sd934/jISCVZTFjzHGtE8eOhOHg0sXzJqMY9MPWbjgM+4Q5mNr9XvjqK+cYY71uqJRqdZrNVs+IIyNMBeeM2UuLhzudXrPZ5EpijOfm5kzPMmMsjiOMMOeZGWNpmloWpZRaNgOtCEFm+TM4UbFYBAAppdEzwhgXCoU850qCECoJRblcsyy2vrY1vzRbrcy8/PLZvb29W287JiXv9/tpHNdq9eEwsmwkFYCESqkM4+Y7hHSSJJThLE88zzty5HCSJDs7O1EUIdSUUkuBiMMYs8MwViqVUvq+TzD1PeY6QRzH/f7QZKHVahUhJLhWSmU8N7o3tsM8zx8MeoQQhWSa5oeWloUQmxvbaSqOLI981TnnhULBtm0ppQQ1GV2YUpPdmUwPjVax1696GiGsRsUVbVa/6QG6L148wX/xaMBNCnrjkH3SKzCBsPfLI+OwWyOEphHnKVYvGhfGbxaU0ermjWQCKyOElNRqpMxxcHfACJQ+QEgZX6Ge4oBPvCCmv7ea0hOZTJPR9J8IZxiVdgVSGLUQPdl3Ji6F6HWT9PWPfxCGnrR0vU5u7CaNlMl5X7+vjROkqWsYH/YfCv60Ht2lm65tkkrBuAtrH3k/8IbRnybXPCkTGBR4cqk3PUwcVih6pXI5itL5xbkTtxw5cnTx61//M43iStnJEjEIIyl1vV6dnW1EwwgAhBC+76c4F0JmWab0yLVyIjXDmJ1liRBCUQYI5Xm+tn7j3/7bfwMAv/3bv80s4nmeZdlRFIdhKJVhoFhSarOwGDqeqdJPZDHHMlPI2P45jkMprVTKWZZpLZuddhJGJpUlSBPGDFhpug1GTwAwopznduBalrW72WTMVhq4lAC6Xq/mWba5mUqtKKWpUlIpTFge5+ZipJQMwKCreZ7bzNJap1nmBQXXdbfT3TzPgVLLYoJzSinDpFQsxMOBbbPmXqff6ywuLlaqpcEwYpY9U28kyQYmCDNme57QSiGURLEmlHR6YZgYD2tCLcuyCAYpOeejIpbtuIQQjHGSpP3hII7DLMuSNDIFsGq1ShCEYa9YLKZZvLfbopSurSVCKEJpvV6fX5httZrbWxtJkgghbNtuNBrtdntubs52WBRFlk01yCSNzCxbWFjgXOYp57kaDiOG2ebmJqXU9bxhMgQAmzJNqJkRjFnY1B9oQYPUGgCwGj0gSQZZljWbTdOWa4BR04Vq7Ae1zk0wgzHJ81wpjRA22nYYE4xHPt15npt+L9gvcWmMMcVE5DxJc621bdtGTEArhfEoRgeAPM8xJZ7n1SvlwPWzLOt0ugC66Ada64lUn8EEMSDGmGU5nPcN3Z5SyoVQWiBAlm2vra2VyuXZ2dlWq/WZX/p0sVg8e/bsN77xjWKx6Hke5zljbG5uzsB8ru20Wq3d3d0sy0ql0vz8vNAqz/Mrly53uu1jx4595CMfGQwGf/mXf/n+n3jfT3/s47/5m7/5wx8+YxBwYxCX5znGFAALrjBSWond7T1TrRRCrK+vz87Ozs0tDHpdrTVleKYx993vfvfCpQvFYtFxnDNnzrRbXc/zKqWy1ugXf/EXd3f3Tr/wwsMPP/z0j37Y7LS//s2vLy8vSykZI4S4vV4vT5M0iRyHFYp+u9mu1mueG3he0O0MBoPNfr+3vLw8Nzdz7713333PXZ1We211xfM8jPGJE8fK5fJwOLxw4UKWZcVi0fWc9fV1I1oCoACU57lxGM7ONmZnZ7/ylS+9851vz7Ls6aefXllfGwwGQSlI4sz13cNLh9fX12cW5nfyzPKsSq1meU6UJEGpwBhrtVqWZdm27ThOntp7aNeQMDDGUkkzeWu1CmZ0e3s7ibNCoaABbWyuh2F4773v0Frv2lRjLTnXoBBCUojd3V1CiNIjM0mupGVZpg+aMaalQogwh2VZNjs7u7y8nOe5RWkYDWZna7OzNYzEl77854899u3jx46BRitXVi4Xrn3iZ35mrDIESiBTJNAaQGlKsZQaY7S4OFMqlcxgXltbi1XIbCvPUyPp2Gq1er2e0XM3pTUhxEy9sb25Va/PYIwRwib2MMuU53mAULvdNmtpv9839PPA900yXCwV0ixJksRwsjCGIAjiODZ0LcNxef755w0cgxAqFopKKZ7llZmZ1dX13/qt3/rkJz955MiRRqOxtbXFGBFKUEpBadd1kyS5enVlefnSu9/xTqX0e97zHi30ysracDgsl6u+78dxXC4VK5USY6zZbJrV+61veWTjxo2Xzrw8U28IIY4cOXLnnXdeu3bti1/84k9/4qd3d3cvXrx436m73/Oe9zz3wnMzs/Mf//jHZ+cWTt53/4lb7lheXt7e2g0KpUJQwAgcxwFCz549l+d5mvNPf/qXMIb/9Ud/tLmx8c53vvNHP/rh008/ffsttzq2V6/PvPTSS4cPH77rznsMftHv99fWV44cXQJQjLH7H7iv2Wy++a1vaczNJln2pje/+crFK1EUdbvdcrns2LYQijEsxAi53Y8K0CTHfgMCFUIgJTgOAYBut8s5X1u9vrKyurvbXF+7kefZ1atX8jyvlisI68X5BcuypYB6vXTXXfd87Wt/rRGKkvj40RO2bV+9eplgpiWcP3+h3e7WazOu7YVJZ3V19eWXX67XZ7ZhZ2FhjpCRRvZ+qHAwWJoGgyaPA8SIsUS+1ppQopRmGAHA9fWNdqurcpmnOSK4VqsVKyXCKCKYApVSY4z1G/lXmwfGaMxA0gghsh/V7NfmJ1e1n3MBjEVsx+ExQtO0OcORpAyE2DevKpbKGEMYQbXWKFcqrVbrwqXLMzP1aqWGCTz11FO2bX/sYx/7zne+c/ny5TgOGWOEYK31xYsXz7362vb29lvf+tYsS5M0QkgiLLDWQkoD2rbb7SAolkuVKIpN3YtzjpButVpewWOMaVBC8nK5/NWvfmVhdqFcLto2u+O2W5vN9qc/84GnnnqqXp+pNRqHDx3p9yIRCEDsLW99+5133frMMz+KoihN8r/5m79VSv36P/8X4TB95ew5QsjS0lK1Vn7ttVcbjQbBzKLuYNBTSrUGbce1fu3Xfu3atWsvvviCbdfiOM6ypN1ux1mq9egHYdQul6tGGEoI0Wq1HMexLGtzc7Pdbks50i5DCGFE4zgWQplVCGNcLBaFEEKoQsGnoCnCYCS2JLcshhF2bcd4vJktNUmSbre7NL/k2Raj1GKsP+hVq+W3PPTwMz96QWuyvb3d3N1lmNmM5rkK0wQjUqmUpUAaeBwPEALPZ4Dl4cOLb33rg3HKkyTCyAVgGGOjT8UYoZRSYpdLpX4/jON4OIjiOC0Wi7VaOcuyI0eOnD793GDQy8Xwsce/vbNzo1wpbO/s5XluUWbKdcahRHHBVdbr9Wq1mhDq7NmzSZIC4FKpovJECJFlHFuIECyEqFQq/f7AkCEYowhrzwv6/WGe591u9967b99p7q2vrfpB0bUrb3nryVtvvV3kzHULb37zW4qF8unnnt9rbt15xwmMEWXAGDW8JotRSolSwBU4bALcjfI4PcVxfv3jDSP/0ZQ3b5hQUSZYIt5PMQBG0hUH0b+Dx5kmAk4lI9N01YOT/cBB1Kj5Gwk1SSo15xoDIgSBVIQgBKCVjJMkTSJjZCWlVCLp9/vtdrvf73POsyRVSlWr1Uql4jmO2eyk5ABgBMcBUwBwvODwYc/QLgEjLgWlmBjNOCmbzeZr514NwzDP8yxJlBp1cDquZZ5PcGQTECZJkiSRsdlI01xrLbUCAEKpUcGdaggepdyE0ZGEvR5JNsMYC9Jacy5M4mNAZzzW6kQIjczSiYUQyjLObMvzPCNXaK7E9HTmGTel4kwktkaEUdNQInPpOE5u55pgEhHquJQywJgihJidEiCFoMCYpTFY7j6/WGsgZL9lePL7wcHEe3rA3TTI3jDfNknvgWIFRvvJP0wlzGOvAISRhtFfEUKTuuJ0sj3Jfg9Q1SZDE+/zP98QrZ4u4xBiGn/A821mzQBAFA9zwQlBcRpHUeR6ttFJmfhCMsaura7s7W6GYYgRsyynUCh8/Kc/8vWvfunG+prn+Y1GwziAEUy2bmwUS8Hm9nZjpr6+fmMwGBSLZc55qVSJs0Tk3Pe969e3CEF+4OY8LZVK80vB9tbuMEwc3wNMn3z66UEYZxlHiLzvfR9YXV3d3NiI0iTNYs6FZdH5+XmMca1WS9NUSs658n1/aWnBBLhI6bA/kJJTSpeXRq4USZKUy2UTqrouCQIvz/O9vT2tdbFY1AoZboLv+whrpYSUwrKs48ePA+gsyxBCFy5c8HzHtm2tkZFmi6KoXC4T7BxaOlKvLW7eaP3VX32tWKg99thjS4dmP/iT7yEUc54RwsrlYqlUzJKYUE0IJIm0LLK4NNPvDhzHktLJ8ui1c6/eddddnU7rypVLluU4nt/pdHq9nlKqVq83GjXKAAApBUKA7Yw0TCcj5ABZD8Yat+OG9Imm6oHS3GiQaDBSP2MW4fQx9xe+g+P8JjTKNG7cPG7Hll8IjVr19etYkObIN/UE6PE6jfUBpoM66NuJEAJAUmmMEcFUKSCEVColIYTr2YNBTyl57Nix3d3dJEnm5ubn5+e/9/0nFxYWlhYPF4ru9k6aRiEgvdNsJkl09OhRz/GLxfLc7OLqyiWpsr2dTUKQxTwAiKIII5omIoqSLM+ZZSmFODe6acR2PMrcdruLMTYWGV/7m687zDY/X7FYpJRyrrRGhUKpVClGUTQYcFMRiSNpkgQhMqyVZVkm+a9USqbkmOc50YgxaygiIUS12lheXtZaUkqPHD9y/vxrM43FX/rML7927uULF16bm5vZ2tlpt9t33XVXoVC4cOFCv50oZbpds1qtUizOmAkuBM/z/PQLzw36Yb8/dBzHzGvHdgFAK6wV8FwoBb3ukFIahqHvFyzLMswynst+fwQfGGTBkCvTJNda9/t9QggizHG8KIpeeeWVSmnm6NFbjMk1ISPBSoSQGZ8SNEFIa5gw8gzoTCnFCJnKAQCYPheNzMDYD/OnGkJGgK+BF8d2eUhrI0huFJnHryCEEFJjkvDoE/tVlpHW3k2IM5rS34BRKH/zTjBiLoMeMVMmL05/Cgk9FtQavzICkPXNRXPTb4Wmyy2TA44FQEZvlRPEeSx3g8moA2Z0g9RYNQKZDyOEkBrHK/9IOfMfebzRPZh8s/HGhG7eNKfqrHDTV4OpJrJp0BzG2s03ocNgdKhfhzUbzFqPb/RNUeMkHJxQD+Bg/RhMuQJr0COVqv1lVoMGwBpM8bJY8jRAq9W+fOXi9Y31ayvn4yQMCjRN08Gg77oeIqzZbPI8FUKZXn7XdbVChEghhBSaECKEKQghhBBPM2bZlFpZmgih0jT9tV/7tY9+9OP/+l//a0LYoaVDW1tbpho66ilTRqRMAIBSyhBLS6WS0WPFmGmtlVKUYs4lGF97pWyb2Q4zBnRGZoExkaYpQpgQMPUeQggXo7qs4cPalBw+fNh1nSiKAWPAhttiXb9+vVgoYAwEiDKiXBgJrrTWaZoqLbDSM41GvVgUcVwtV3q93mAwwJRSSnkuDb4ppExjyQi2HKvb7UaNapKEWTRIk9hkWVJKPygGQZB2e47jpEkOmttOYZgmHGlsMUrs7a29MEmLhXLGc0QwIKUU8Dw37AYzl/NM2A6jlAklCoVSkkRGkXlrayvLEqWUECJOk26vhYBYlj0cRuVKReYijuOrV686liWEMOoHhw4dOrJ8rNVqr62t9Tp9jHGcJb3uAAA8z8vzHGNSrVY3N7Zt2xJCgQTO8yiKDIeXYeI4jomqTbALoIfDYaPR4CKL49jELUopKWWWcUotSpnZaNrtLgAY0nqajFQCDL8DAIQQSmikMTHri9JaKoQxwghpM+cBIUQQRRprpSRXYlyYMnC8Cf+UlMbozLKUOR1hNMvyvNUZ0oEZGJTSSbBkkgrOOSMMAOI4NXplQgiiaZ7nSmsuMsNfNndpd3f3Ax9837/9v/5bCfJrX/va9773vVKplOe5SVQ2NzctyrIk1VJprR3HqZTKn/nMZ77//e+/fPbVTqdjDM3n5+e/+c1vLCwsddudP/mTP7n33nujKFqYnZFSmpSpXC4Zn8Asy/IcKQWFopMkiQRNCMkF931fKWVRRghLkgghi1DV6/XCMHR9d/HQodvvvPv66hpjdqlUopjdfffdrruyu7d34rZbv/vkE//m3/ybkydPLs7Nl0qlJEkYY1qCBo0Y5lx12oNqtSwyrZh2PHbHnbcHBX99fT2KB8PQUZq32rvD/ki20nasxcXFen3mhz/84bVr16rV6vLysus5DzzwwNra2pUrV4xmHc+567u33HKcUnrmxedeevn03MICYwxA1RrVbruX8zSRcmNr4/r163fccUfbtuszMxhjx3dtz6GUbmxsaK2zLPN9P42TOI4ptZRSaZpzLiWkBDMAaLVaQivfdynFCwtzjUbj/PnXgsDjIgHAlUp5a2sry/OCVxAiJhYuBWUhZMbzLOUJTyilmIDtsDAaUIQJZUrKJE3D2Lm2cuXGxjpCCGu1urr6wx/98MrVK3GcIiCbNza2t7YKXmBb7uGl5UNLRy3LMnyuMYiGEAI9qpogABACXNc1RX0pZT/rSSmNqttw2DcQjwmrzNz0XHdvr3n33XcRQra2thqNmbm5uevXr5vAxnXdoFBI0zRJEsdxzMgJgkAKJZUAABPjZVm2sDBnWoZN1kopllJ+9rOfdRznt37rt8rlci6467pZlrVaLYuyXqcPAD/84Q9vv/32d73tXb/+67/+K//0V5vt1okTJ2ZnZ9fX15EGizKC6I219SeeeOLkPSePHDlWKZSWFg5tbm7muTB0By4kJqRY9Bz/ECH4zjvuuP32269fv/4Hf/AH3/jGN9/znve8+93vSdO00Zg9feaFlZXV22679fHHH1tcnv/Ez/3sQw8/1B/ES0uHpdTFYplSy/cKQRA5jiOlPv3ii4Mwvueee9bW1jQCRHCr1Wm3d59//vlKpVIsFs+de215+Uiapp4bzM3NbG7eYIy96U1vuv+B+4IgePHFFwuFgsHc6/X66Rf3Ov3e3t7uzk69EJQQQvXZmbA/MBKX2rIIwaZ+MB0bKJATLw1AyoAL6GBH1AgS1RAEQeAXz756bnFx8dCh5RvXN0ulwsc//lHLsv7k83/04z/+YydP3qsAGR2JtdXrSuJipVguV3/1V3+ZOfR//P7vm0LO+srq5z73uXAYP/Xk0+899c7t7Z3XXjvvOoWHHnqo3x8eO3aMWOQNCGGvK3JPnuuxDqzBR2AcRiKEpDJ1XDYcol6vxxiLolwJSSktVsqFQoEybPqKTOwK42E/jnBGZ5m07e8jABoARipheqw9KKeuaj+ZmmLaETAT6maWgFIjN2bGzO4ASaIcBwPCw6G4sXHd9/16vW6qreVyeTAYcM63t7dXV1fvvvvOX/qlX2o0GgBaZHx+fr7dbp9+/rnr66siz6iNKUUKU6oVxjTLUgnS90YSTwCwtrb2+7//+5TiWq1muVav36UUe56XZUnOs/MXztbrDa2Prt9Yr1ar991374kTJ7Z3m+12++WXXy2VSp1et1or3nnn3aViQUr40Id+0nXdv/7a1wEgDMOXX37t3e9+N0JoOBweO3bsUz//i88/+6PHH3/c8xybOinPHnrorYWCf8sttzz//PO27ZZKlU6noxQM48Q44hgtRGM01Ww2OZeGVBeniRBCGT6BUqYjHACyLEuSrNfrffijH3nvj7/vd37nd/r9PmOsVCotLS119rbzHBeLgQS9dGhxd3eX84wx27bdbrdrrGIwpp7ndfodv+1XytUsy7rd7pe//OW3PfKuYrHaa/WvXr5811132Ta7dOnC7u6OlLLRmCGEJEmsNSeE5DxBhFg2anU247QrJAvjNijbcyu25adp7rqu1koqAYhprWv1oAbBcJgKkXe7bYviMOrccefxl1959v/84hcQFmmW+L4bRX3GmG07jLF6tXbt2lWM8WAwtAjVOsd65DdgtietdKVSjfr9brcrpUaUzM7Mp2kaRVG9XjeCbIwRjLFt+VmWvfLyeULQXXfd09zrg7aiMFtZWV1YPDa4O7RYyfcKhxZnpdTLy0eTdLi5uRkUTjDGjCQsAHDOGSWUghDAFVAMk6RyMnfRlFrAdMXoDTOgA1jKlMv65D+AA4jz60kw5ul0HjR9zPGLB2b6GyZoAKC1NgKDmGKtNYaRyRZFSGtIRZrEPE1TKYQQeZqmMudGQW5n90YcxwBgW1alUiktLhmSrxLCSK4ppTCmY3Rb8Tw3luNZngitCCAjcitE3uv1Ll682O12N7dumH3WhIUIIUqp0mKC/BrEmXOeJIlBOZQSGGMpxqYd49tmEiJCSC6lRanrughpIYRGYNIfSowshsIYGz4+59woPjuOweu01trgKqNGN0qNxhqllCLc6/ZNwdjwoEc/h0Zm/VFKCSkIo5gQ0JpSq1StgAVAaSErUM8HpUAITTANgkAIganSWFDChASkgFJQhiuGkBRvMJ70iEcGcDM7Dab3uVFurEeI3oQApce9KtOgABxU0gCY6LbcPHxuApenB9kbAtBKazTV2z09XjXaL6rufx0MUgHGkGXStsny0dl2x9/b28MYsizr9/vVapUxZtuu7bBOpwOIW5b1yU/83N9/+++e/dEzCJE8U54XpGkax3G1Wo3jOE1TSi1KLbMH9HvDaDg8duxYrVa7fv26ZaWbm5tHj7KFhYU0igFgbm7Gtm2Edbvd7oWdMAzTNBsMBoVyZTgcfuXLX9UaFYvlK1euveUtD9955922bWNGf/jDp3d2m8eOLq2srCgtLJsKiYdhP0kSQmfn5ue2dzbr1ZnhcLi3t+f7runKXFpaKhaLplIhp8qnvu8TQjjPjGJmEARGbsZQC4XgjNFGo97v9y9cuLC5uem6brfXNgQxpbAQCmMaRcnK1dWcS9f1EcaVSokSdt/9J0+dOuW6bpIPKcVKIiF44AW9Xo9z7rqOUSRDCEXRMIqHlsUuXT7/gx/84IUXTlNKy+XKqfseWFycHw4j0yMw6Pc5F8vLs64FUTLSKSOwr30BAGSqnjEZtNNj25QZRmNxaghhQAgdMB7cH9tTM+INF7vp409XayZVcXPe6YNMZsHkgDfBzaNTjE9E0FjK5nUrvpkdclyWxBikBIRQENieb5fLxc3NTULIwsLCcBhGabLbbJ+674FarTYY9uJkwBgLwwHn2dmzZ8+dPTc3N5em6YkTxz/64Y/9yef/52vnXkrTrForMxL0+33H8QAAQCCCEaZC5MVC2XGcOI5d10VAms2mae20LHb48FIcpzduXHccBwEBbZo1WLFY5DzrdntJEvuBixDTGhyHRVFkxL8ks0wKZDtWpVrudDrDQUgIohSnaWLZ1HbYBz/w3uefe6FYLP7qP/u1L3zhC7Va49Of/oW3ve3hXm/wN3/zjThKB8OwWAwyzsPtrSSJ05RjDLZt12oVy2FpFiNk33nnHdeuXQuCoNvt5dl6HKdao3AYWcz2vKDb7SqlSqWSECJJEkPVMWS6er1+5513Gq1SLhzOOSEYQE+LV4ZhiBmVSoEQCKGtra1yuf5j7zplWV6SJGaumWmIENJaGUxWAVBGo7FZBGPM930ppTroV2fefBOXGUbLLx6/ZUxMPSCbpScbyShCQAohNFEBnjqOeZvh5b8Bl2SCOOubBuvklX/EYu/ABU+9F4GZvobFMIG54Y0ijEkEMnp+sMRoPELJ1FRS45TDXOtoa9AIoZEeMYyn/E2zbHq2TgdDN3+LAwjvzdc8OvX//pbsXwZMxV5T+O/rjnwAkx+/Nvn1R0+I2v+xDlzEfvVLmx3UYNNTru77KLmWGgGAGudv5oQKASEoCDwhFSbAeb6ycrXX6w6GLdd1KdVcJobiARr3O/1uq1ss1BhjSZL0+5ngijELYyy0yDJOCEnT9PDhwxsbG0II5thKKdf1Xdc9duzY2972jv/233631xvMzS3EcQqAB/0QIURHzhhIKWV4QEIIxojjuPV6XUoZhqEhO5tgYXwrFCG0UqlYFstSzhhjzB6InlIRYwyUqdCMsG+MhdYUAKTUAKreqDqO0233Ar+Y53nMM+P1PIgGjm1YDM5OpzdM4kKlmotUcBVHEaXYNnwEpdMojqOhEtK1HaCMc55l3LZtNFoqqWtbSvIkSZqtVtG3kdblclkp0e/3LdvNel1sOXmeu47PqEhEniQJUCKVsJgjhdQaVYolLjVCCBuYFUBJ0FIBogCQprltM9MvYtsOIRgh3W51gyCYm5sLwzDPU6MIgdGkk4MMhxEhJAzD+bmZmaXZOI4LhYLneZKr9bU1rYBiNggTYyZm27bWMo4TrcFxfFNIy7McY8i5ogh7niuEdCk1Ma4p3UlpjA2VAbaUkSsRIgi8kdLF+DEcDgeDcBK7E8zyPAcAz/MIoUYXQkqpFdYKKW2U6zEA1hoJoQCMIykgNJKuMymxGfYEY2Tc/DDGY0V5KWUWSzdwi8UilyIMQ8ZYEmeMMUzACLaYSqFhkSAN45YdFccxAWIKfoQQpDWhDqbUdV3LZtvb2wBQKpWG8VAIcePGDUPtDMPQ81xGaLvZMkVN40moQUbxUEp5++23P/roo4ePHuGcdzqdI0eOnDp16v/yuc9ZlrW+duPb3/520Q+kNB6GBSGEkpxiIrkwXbqSC8klxRRpmeW5+Y2yJG21WiAV1phnmRAEE2y+V7vdDgqLC4cOD7o9paA36P3O7/ynxswMAPzZn/3Zhz/84StXLq+srEZR5Lr2oNfPs6zgBVIKZtlC5FJxQiwh9ObmttTi+HF53333Li8fWltbWV9f39pKKKUL8/NZlmZZFkXJ5sbWxz/+M2tra/1+33Xtfr+/vbO1vHzo1KmTs7ON73//+5TShUMLDz74YBQNu93u7MLc7u5uoehZlhWn8XA45DLXWnZbzUvnL87PzlsWq8zU7MDtdTp5wg2hJI5jQ21O09SY2tXr9d6gjxDChPAMECjf94FgC9NarXLfffc1W3vb29tLhxYppYJzQtjC4lzO073dVp7nnuc4jue5QRiGhFGEkn6/7/uelMLznNnZeqvVQkTUK1UppUb68e9958qVi41Go1wub29uhmGYZFmSpErB8eO3RINIa70wP//www9blLm+p8fqvYbtigxzSI62f0zhgQce+Kuv/TWJSS44QihJEgBlrsnzPCllp9OJoiRLckKIkpCm6SuvvGoEH/M8x4giIIwypVRzrz0ceaHbec4NDmJaCowtpNYyDEPP806dOvXNb34zTWPXtavVMsY4z/MrV64Ui8Xf/M3f3N7d+cpXvmLb9sc+8tE4jt/3vvd99atf/cY3vmHb7tbO9l6veW11xSz+v/7rn1tbW3nyySfr9brneSLJB4PB8vIRy7I6zZYW0nP92267bXV13fM8SikadxZSggHg5MmTWZadOnWqVCodO3asXq8vHToURdFes9lp9xzH0Rh953vfPX/p/M/+3CfuvvvOUm0mSpM4Szc3t8uFYq/fYRbp9Tu9fufc+bOU4SxLkiw2zPczZ05zKRAieZ5/89FHi4UAIfSxD39kfX3993//9+M4rlbLjmNhDJcvX1y9vnr33XdLybWmYRK32+2t7Y2LF0v33XfKtu2VlRXLcsrlMkglpUyzzPccIfZTWa1BIzUR3Zre06cRZ0JGkT+l4HoWxlCv1w8dOlwsll999VXHcQ4vLzUatY9//CPFYrFSqRSKLqUQRqpQKH3iE5/89uOPEcKEUAu1+r//9/++1+uVSiWe5uVytdvp+37h1P13PfXUDxYWlvIsT5KsVguyLPNt7w2jFwMIvHF8cvM7R39DxrqWosEgDYdDo3ckNXAhZ2ZmXN9DhIDMlUIUE5iKG9/4sAYxQFPBkD4gr4HH7mH73u8HcS5sWt/GUR8aM5aUAiEkY0QIEEJ4HrVtnGUqDaNOp3Po0KFSqYCwVkoVCoWTJ0/u7u7+7u/+bhRFtVrtJ3/yw4uLi6VSKcuy5eWjGMPGxsZj3/77MBx4gZukIVGYEKIFUUpizJQS7XZ3ODToD/Y8j0tBCNJaD4b9paWlarV8/fp1Y0V76623DgaDcqXYadt5nm9ubs7Pzy8sziVJUq/XO71+vT6DkPy7v/um4zDLpoVCodfpxnG8uLjY63UWDy0kWXz/qVM8l5VKZW5mZnZ2Pkky1/UdO0BAfvzdP/7s6Wf/23/93X6/jxm6sbmZcel4ge8VhBCDwcBijutacZzu7l6M49T3fSMyq5TKBddSpWlaKBRmZ2cbjUacJoVS8dgJO8/zd7z9XYPBwHXdd737HZcvXw6C4J3vfHsaDl8++3Kn06kWCmbzPXz4SLVaVUqdOXOGEMY5V0o6jqe1jqKoWHCWFg8ZRPvZ535EsB24hUajxhhrt9sbGxthGM3NzQXFYpIYs5AsjIZB4NkelWHa6W6vrp+vVBdADSxWkEo4LvEC0mptFAoFrSXRFsYUaceyiHQwgB14LE7CWr149pWXr9+4tr15/dDh2be//cEXzjwTp5lhvNbrdYRQnudRFN15550njh07c+ZMHMeU4jzPwzChlL71kYcppZ1WO0pSjFESZ8Ph0LgclcsVSq08E1nKszzMcsEsknM9W53JUgWavOnBU3fccce3/v6x69evb+5szzRofbbuOoVOs1OqlIOgePHSuXKleOjwokvdIAgwBiX1hLn/BhPzDRkzN03t1+GEMJ3vTKFzBz44+n9U6cE3w8rjutob9X//I6+M7a/0fp8EIIRBcW7bzMSQWqoojaIoyvNUSyWlzNM0DMN+v9/tdg3sUCoFc3Nz1UrFhKC+70uhhRCEMcBYmqwJIY0wACAKFiMEE6OoprVmruk2297Z2dna2kqSRIMsFApRFJm7TS0CAJxn5v2U0iRJAMBUfOWYNYkQAUBKKUKYlBKblnilxtadyOi5GWhOKGkYGCYgNHdAmAYBNeoTNX3k5ozmdUNc0CAN2GJyIiHkMIq01kLyEXFHSiklRiO/wUqlwqQjlHRLdp5lRbdsMcditlPw/SSgXBpFZoQ1YowB0oQAwaC1wJgCHuEHCCFTD9TjwYcPyFyahPMNWFE3//B4lMCbkTUZghPy/E3bw+txYaUO5LcIwdhHYLqMOclw9x/SHE2NCzMHjzx92unnRrraNAgnmbCBloqBiewxpsNhuLGxeeLEiSAItAaMWC6icrm8srqbpnmtNtvt9Hw/AI2fe/a0ZVmHDy91Or3dnZaUUmukNfL9QpZllXJt7dra3SfvvuXEra12kzG72Wz2+11CyNL8gsHULGKVipXt3nac5Y7tFYvFLBPFUvGnP/Yzf/zHf0owu/3uO5/90XPNVmsY9t//oQ/eddc9L73ycqvVyvNcyHx5ebnX67TbTdd1g+DouXNnB4PBLia+7xcKvukIsCyr1WoxxpaWlpIk6fY6XOgoio0CoFJg27ZSIIRQCgziHCfhiHPk0OdeeHZnZydN07m5OcAIEGGWTagKw9C2ba1B5ELyHFM0HPa1IhnHlKRvectDc/MzV69e7g86d997z3AQD3tRqVSZmZkx7tWNRokLoBik4pbFrt9Y+cEPnqrX63fcccfm5vbS0iLCGiFkXLAxoCSK08SQzbFlWaWSL7giDCMjVzsR1jg4zKbHgwnL0DhMHy2RcjQ+DSN05BE5GpNgoCj8OpmhNxxg43E7Ou+0i+Drx/y48cH0Qo7wsskFo5tAIQ1Yg5p27jp4AYwhSqHfS8MwrNVqFKG9ZrtQKACoRqMupWy325cuXS6Xqnffde+RI0eEUK++9lq1XACkCEH9Xmflylqn3dOKWJR96c+/Uq2VEOaFoIQxGFuYEd+Qc2Zbvu/3eh2tpWmVqlQqAJDnORdZngnLsgLfznmaZUmlUqGUaYUGg4GIRaHoP/TQQzu7W6+cPUsokgKSOA/DoRA6DMNyuXz48BGbEiFEr9/NeTbS67RooeDbnu86fqfT2d7efeyxRz3Pe9Nb3nX9xsq5l8/8+9/+7c999nNf/euvPvrNbzt2IDgql2oYo1deOae1JIRQ4lCKDx8+3GztJFl836l7r127ur29TQjph8N2t5vnwnE8BNTzCmkqikVqWZbZ+E23teu6CCHTWhVFwzQNms0mAJw4cWxzc7PZ7iutZM6DIMCMCq0cz1NKcZEpCYPBwHMLJ0+eLJfLppZsPIUmZD2EwYDUeiwLFYYh57xWq5nyj+06mBKtRiCv2Z9GfTRmgKB9rHkapZ0arqP9WB3sX5qECNPI7wj7HfurwFgJesJiHh0NjY+stanpGezmwBwc6YXdhH5OXQCaOrXWB88LZtQd/OCIq3uTpoSCsXLI1BwRsL8x4SnkWo2N3RHaL8hP35PppWMa/H3Dx+u3s+kPTl7U+IBe4fSe+A9lT5MrmdSi4HUNaK+/GKPnfuA2YsPgPFiI1eN3mlfGv+yorH7wkqRGAArr0e5sVsVpiF9JwAwzBpVqaWZ+9uKlc4B0uVwuFll/0OZpJoUGQL5f8P1CvxcCgOM4g0GY5xwAUUpBY86liZweeeSRK1eufP/73zfDVWgVZ3mDWZeuXBsOomNHT7jO9i23Hv/iF7+oFBACWWrKNtoUacxUMtRUwyyjlBpEyex0Bjn0fb9UKgHAMIyzJJVSUmqZ9yMgaZ4QzBBFWhvTIaQUKKWk1MZ6pdluF23LKJ2JONEIKKW+6wiRay09z2PDSEXQ6w2wMhLtQBHlSnXbLcJzmaTRMHRdt1KpWJ6fJEmvOxCcY0SBWpxzx7UZsbqtZhgGC/OzDkWubVkWXVlZUWlqO24YhlkutEaMMYkh45xLBYQNBmEUJQgh03osci6UdF03S1LPcUqF4nazLYQwbZVJkiSpohbxfT/PRRzH166uBkHgesYYUCCEGMO27fh+QSvS790QWEkutrd2fd/3fR8AGGHNZrPVbFerdc6l5phhO8myME8xAd+3QFOeS8f2KhUVDqKtrW3bdhVShBDf96MoUkpmWTomaKhRD4fW/UEXAIwik6lzAwDGNM8FQgQhbH50AGDUNmrIhglSKBSEEKY7kmEHABAQKZQayzQbzRYY4RGjRVWNjbxN16QJ58c2FZxzzjARUoRhqJTyC4HneQgh05ZIKAIYOfwAgG3bczOzlNI85wgh14VBt8c5J4QAGCvLXCutRmLiUghx++23f/8HT7/4cy8rpQigU6dOra2tlUqlTqvV7rWNvaHJVQxNBiH09FNPHjl6PIqivb0927ZtZv3e7/3eyXue7vV6hi+W57zLM0opJjbnwrUdoz3t+Q7GOMuEBk0Aub7f7/d5mgPBjGFCKFIgleZcIAQEpAQgDCup4zje2topFotZxtfWrotc5Hm+ubVVq9Wqjfry0eWrK1e1VkKrkydPnuEvNHf3bFxktq2VzjJBKdvZbDseIxQB6KtXrw4GvUq1VKtXypXi1taWECJNY0PsAlDD4fDLX/7yqF5F8G6rKQRPr6ZZltxyyy3vf/9PbG1tpTJ77fzZfq9bLpcdx6pUSp1Oq9VqtTrdmZmZpcWFixcuJUly/Njyffee6rSbnU6HUloolaSUSZKInDuOI7JcImQEEIIgwHQ0kNI8F5yb5/XZmVZr78Qtx3v97muvvWpZtFAq9gbD+dk5QpiSulotJ0miOTbmPGkWG9aOZTGcoixLgqI7vzhXq5a73fqNtXVEBcU64+LI0cXDS4uXLl1qtX0tZJJk5VIFgPzMT3/yIz/5kSee+H6tUrv//jeViyXLsrAFGIPQoEAjjbTWUmsMmJFRy45WMIyifr9PLaY5+K6vtWw2m4VCoVKpGIz4jjvusih7/vnnzdi2kIUxJoRJKW6s3kjyzLCiRmIygpuJ4Lqu5wV5nvd6A84zjHGj0ej1m65r/4f/8O+feOIJxkixOMM593wnCpNCofB3f/d3xWLxP/2X/+yvBL7vA+DjR5d/5mOfRIC2traef/55Sum3vvXN22+/3UjQeJ739NNPv/LKK7/xG/8yjuM/+ZM/WWjM/tIv/fIdt93e7Xa3t7e73W6pUJ6fnz906BDGGGMklSYETVirxWIglHt15crMXOPd73nXwvwSQqhYLHa73ZP3n5qdX/y93/39nZ292fm5emPW8wuZ4C+//OILL7zwtre9bXl5MU3iPM9feeWVhx56cGt34/HH/z7P81qj7vv2jRs38jyvz8zee9/JK5culkolrdTGxsZfff1rBNCLZ17+xCc+8bGPfQwAdnd3v/O97w4Gg36/O1uvLRxaiuP4He9427Vr1zzPMz0NeZ4nSbawsBC4HiGEMRJFkeM4pt9tXDR+XSEf6bEMqwn4IJEaY6AUSQCZK0rx7PycRjC3UPz4xz/a6XQch5XL9K0PP3Tt2jUusqBQSlLIMr6wsLjXajf3Wrfccott21JoQpGRsGs0Zop+ILi64447APBdd97j+3632/c8//Dhw0KrqUDrQLpi4OY3DJluyqEm30hrBYAch6yvdq5cuTIYDDzHaw2a5Vp5+ehh27ZNtxDnkjKsOcip/nr9+vL5CG6eNGzd/AbzuKltFKbCMIM1m1fQuMNMadO/QggBSqAQ0DCURjF8c3OzXq9bLo3SqFQuMMbOPH86TdNf/uVffuyxx77zne/Mz8/XarVKpZxluSncttvtcrn80Y997At/+kfDMKYUF8vlwbAXxkmh4CdpPhyGru1oRBhjIKWUo50xjuOZhcapUydbrVaaxpZFjx5dVlwlCRGCVyoVzvkPfvg0IlRrhICkOZdSfvKTn/zud7+zu8s/+cmfffRbf/tXf/VX/V5XCNHutAbDfrvTvXDx7GDY29nazeKsXC7ff9/99Wr9woUL5XIpyeI//qMvIAZaS2ZbANDrDTDGUupWq5VlmVZIa52meZK0GLNNzTjPc61lv9+3XYdghjD1CwFgcuXa1TiOb7nllqWlpd3dXS6yG9ev33briTtvv2PYH9g227h+o1YvnTp16sUXX6SMNJtNU1cOowghfOttt9u2vbFxQwpx/fqa67q+70sNge8RQjQoy7J2tlsWczd3tpMwabfbYRjPLx46fHhp0nhh2zZCCGEdRWGS9qu14G8f/erxY7eXCrOPPPwuxnKpB61m69KlS0KIIPDvu+v+QlBJk/7K2t7e3qiayBip12pchhtb13iWAFQ2NtfjZOB7DgDWWu7t7Q0Gg36/jwkgrO+8587z51+r1KtxHBt6qRBia2sLY9zp9CillmXJcWiBMW61WvX6TLfbbbU61GKVCtJaO3bBsQurK+uFYrlarR8+spykUS5zQjWAwNTSWjq+F4Xxzm47idNeP+JCW1oorQmhGBlxVKT1PgcORlKN+5NhkmJgPCLKvGHuMz3H93k8b5TOGFLLfiq0/2Q/FdL6DTKjyYx+w8cYYxkzj/AoB6SAeZplWZYkUZZlnGdc5IoLU5DudDpxHIPWnhvMNhqe51VqZZNnmmTfeHXA2KBowkcWSo7gY4qEkpTSMIqN0HNrd28w6AEAYywoeCav930/TROT5ptsXSkVhqHWOk6SSf5OKKVTvc4YYy64iXgBIS6FMUiYvF9KiZDRzABDrJFCm1OMfzU8oW5MdFYRQpblAMFJkog8TuIsSZIgKGKMO51uLoS5gaaKLKVkjDm2O0qjCDjMyQUHoorFYhGKnuexAAukMcYUYam18ZoBZlvUxoQgrZGSCOGJXaPUCAHg6d/SiGDsj8PJ62bhNj/qlGoBwM0ktsmAM6NEwhub9U1DctPDbryHHRh202D0OIfXCqGx9sb+J1+3me2ztw6UNzEYqw1E8GTPqdcanuf1ej3bdvv9jWeeeW52dvaRRx4ByDVGSZJoDZ/59C8nUfJ7v/ffRc7b7W6+M9QqJgQlSXTLrccLXjVNsitXrtQOza2urjqOg7E4d+7SHXfcNhyEpWKZMtLvdxljnX5PC5llWbVanZubs5DVG4bd3iCXIgyTP/2zP7/rrpOtVu9rX/7a2tq6aztJlMzOzD/99NNGO49LQRhdWJzjnHuexxhljF24cL7T6R46dKjoB/1+f2lpyXXdXq9nLO8xxv1BbzAYUEqPHTtmeuLarU6v17NtO0kyjHGe5cZ93g9sE14jBGmaOY5VLBYRQkKI48ePHzly5JVXXo2iGGPCc0mIJSVn2Ml1qhQm1JIi+6M//oMfPfNkp7tbq1cosQO/UirWyuWqZY3s1PeaivMsTxMNApDI83Rpfu5973tffXbm0qUrJ07cutfsJElk6jyEEIyIUqq117Qcd35+HgAYw1qOwbLJuBqvnJOqiT5gWbn/IoyxNjNNYNI/MjV4Rn81dbmDTSX/aNF+/53TF7APYE1dMpqcYqKZjscM1YOOsUga7d2p4yhACjAGrkAIKJWcTqezsXG9FBSarb00TefnZyl1kiQ+fHg5TJJWs3PnnXcqBb1eZ2PzeuDd4gfu7u721sbmsWMnVq9dx0D+6T/9Z1mWfPVrX3rxpecAsOd5lBCEcik5QpbUimqdZQmlNAiqxVKQJHGr1TRra5LEQgjHZWmaeJ5fLAXNvbbWYFy8pJRJnG1ublWrFc6l4/iMunt7OwAwETDyPM90G5mq3Y0b60YV1PODJEsrlQqhaGamvr6y/oGf/JCQaa/Xees7Hzl9+rk//sIf/4//8ftra2uEIstyioVgbm7O9exnnnkGWYwyOhgMVldXd/e2/IKHEJqdnW2328yxt7d2ECKlUiUKY6XwcBBZlp2mcbVaBlB5ngIo03RtWbZSIk3zOA57vc78wtz29naztaO11hoDaNOgarQLTcjuOI4C4fv+z/7szz788MNKIiWxUmC6VEx3KgAUS4XJnhTHscnxDKvadPcTRrXWelzPNCDsNHD8uh36wOickH+n34CmBDFe//GbMN/98arH9ZCpfUPrkbTl/jGnJD4mQhw3r+paGmPD6WsebwDjTWY/0EF40qs10ZPZh6DH5xodav+7jMBQBVoDIqPAimgAPTLTm1yCmmxb/0AxCV4366fr+VOvTl3XQcQZjRHnSVV1+iLfcEmZXjfgf3dheqx1MT0AJuca3wq9f5tvGicjPFsjgqd/jvEOidUkAYPRzZ8Eo4QAY5AkecZ5EHhSa7NfDMIMY0qpbrebvhdUK7UwjE3rWRAEeS5A4ywzVsjE+FdUKpXHH3/cNG4jhLIsGw6j3/iN33jozW994oknrl1b+dznPkcp7bXbx4/d8urZl22bYYwZGzFkTaSoRybOqt/vGwDRSAQIIRhjnGeWZc3OzkrFo3ioqc7zvN8dcM4JYEosSjECEyAauB9rDZZlAUCe5xSjLM9JECwtHr504ZxSgDG2KfU8r1j0iNaEkHQ8eYe5sLRmhBi01KaUICQ510oZKSGlQOZ8n7OGkcbIdwpxFFuUeIUgTpOrV68eWpzFpFQsVw4fOdppd4HQLBcAmCtOQVFKbUqiOEpykXMpuCKE8FwSqmq1mgLdbrcJIUeOHPFsv9nqZkpJiaRMjamDVMqyeJqmvl8wLrKEEIyyudkFxtju3ubeXstioZRaKT3sD0z8vbe3V62WEeitZrPX7RPC4mHMOcfILRRKcbSX5pnWOomzoMi73W6xWKxUant7LUOUFlwJLYyKvaEVT6JqhBAmgDExunWO4zBGzJoppbQsx9A0JlInGFEp5RTpMhwOQ5M8UEpFbvBrbAS7BQcAU3LQEzVJNO7sBoA0TWFKzVkIgQC01pVKhacZAIw8LXJuZgqjlta64Bcsh21ubgohfd9zLFsIkaYZ5xwhkkaxlJpSak7KOUcEKaUIxoNhr1qrKaXW19c7g05re6/cqH72s5/91M/9k29961uf//znH3zwwVdeeWVnZ8dskQhrnnLf98vl8vr6en2mceTIkc2dbTPjcsF3NvdK5YIphMicCym0VlIKi7JOpw2AwjA0nW2UYs55GMZWnhtxG9Nf6TiOzHmaphgQowxhpJF2bKdYLriBlwtuWy6XnXAYAYDNHESwoaK/9tpr9913XxxGzWazUasaaFtpizCqlJK5VlLZNmvtdUuVICi4eZbs7m3nPDl27IhSqlQqIoSyJM2y3JSKg4If+IU8F1JKopn5jr1esip4FA8bjUah6JOcbG1t5XnOZY5ztbW1VavVEEK1SrlUCFzXvuO2W+PBkGKyvr6OlGaug7BOkpgQVCwWh/3BRLHd9/3Z2VkAMF2lSZaFYVgueidOnCgUCsxhUTRcXV3tdFqYopm5xqgArAUG1h/25hYWjt9y4nt//6QZS47jSSmTJFUAs7MNv+DNzNZd14nT2PWsaq0kpXQcJ8/zOOlfW0sHg16aphRRKeC9733f3Xffe2T5WKFQ+uhHP+q7vsUQAGgFHEDK6b0RYYQQMo0moBScPXfxL//yy1JKqRUhJCj5aRo3Gg1DPeGcDwbhrbfSQqEAACNrCkJM52+e58bzs1StEYJLpVK9Xm93O61WKwiKtm37vus4zoULF5rNlud5SsEw7P3Uhz/08Y9+dH1tpbl329bWFgIlpcx5mnOo1StZyn/nd37H9/1arZbn+bA/QKAEyH63/Zu/+Zvf/va3X/nrV1dWVuYXFphlXb58+dy5c6fuu/+d73jX7/4f/wfS6FOf+oVTJ+978cUX77jjrhMnKrvbe1mWYUxd15FSjXeu/QSQMESAxnH85je/2ff9YsmPoywo2dXGzJseekuv13n1tbOFYtGQry9cuPTUM98/e/asFKJSLZXKhXa7XalUnj/9I9unzdaOZZM041Lld99zF8Kwsrr62c9+Nk3TH/3ghwsLcxohQsiZM2ccZr35oTeVSqUXX3yh2+0++eSTe3u7CKFXX301y5NfK/1zpRSl1j333NPrDgAjqdWhQ4eM0JOynSzLuMg2b2zMz8/PzMxOWCloXI9/fanetCEBAKWjHVpKRSwMCFzXZswmBG674/jubtlymEJQqXlH4QgAJDloBOWqvdvUzz132vcLrVbrhRdefM973skshxDS6/XK5QpgYI7dmGvInMsyqtVqlUo9iiKMgSE8lvUzV7V//ycZ903Bj7ligNdBBgCUYtPStra2tre3xxjzPM/x3Hvuuefw4cOm8qS0Qhq0kU4mMB2+ToKifTh7ih6E0CgrvKl1FcAIk7zuRQRS7WPW4+NoBNr3iBA6CiMAWF9v53k+PzsbDnrnzp297bbblo8cKpVKAPrGjev9cPDaa+cK5dJPfvjDtVrt2WefZYxJCbZt5bn0XLYrxHPPPUcI7nQ6nm/7fjFN05zzRx5+2+bWRrvdDYJiEATlYqnZbGquCEUIcJannuf8k5/7+SeefPzcuXMnT96zvb29sbHBs8xzg0uXLj38lrfu7u4+e/pZglmpVL58aSVOM98LXnnllX44/Myv/PLSwuze3l6n05qdadg2Gw77X/rzL4ZZQintdNoYsO8UtNatVuvo0aOXL1/e22taFhsOo0q9pDQCMHbuVAiBMQ/DEGNsVjmttdbIdDUZLnO32zcM0HIlIIQ0m81Wq0UpBVBbWzthGK+vr3ue19prrqysuK59/vx5P3AZY5ShSqXS6/Usy0rS1JR+B4MhANRqNcdxarWaZbEsz7nILMeOozSKIiFypSRBRCnV6bavr28qiRuNxnx5kTHS7/dNG64xEK5Wq8RSfBghrNJs6PjetZVztrVeq5eOH7v9W9/+Wqfd29ndOnHiRK1WeeGF3uz8UhLzF8+cjaLE8zwjE4QxPnfunM2AEZbnca/XshhWKs84Hwx65VKBEFyqFJcPLxGCvvnNb7S6LdfzT9xyrBCUTM/H3ffe88QTTy4sLKRpnCSJEHpSVh8Mhmki0pwrDf1emKWCc04pjsK0UCwnSXL23Kt7rZ2UJxsba1s7G/XGfKlQzBIosqJfLGBElCZKIowcpRQmgBHhqdLKOHKZAvLNrJfp+XvTvNAH+zv3yzbT71ZaAZomx8DBbGX6UNOPcdUKAG7WCLrpMX1YIRQhRuABSamkFCLLhRA6y7Isk5JLxaMoDMOw3+/2ex2TXBcKhUNLC47j+H7BiIybVJoSYluuHlO+CCGu6wohpFYaNMKIIAwAErRJ8wHrdru9trbWbDYtgs3uiQkAEACQUiAEplgbhQPTGWYSEA1gPGOM5IUwXtVSorFZn1bK9Txj7wEYCaG0VmNEDoHWQohcGCdDhCk1mQ4aO98YcEBrbVnWhGEmhOr0e4bNY2FkvjhjzLJsSodKKWbbXOQmAjdy1UbzM89z33dLdplajNuZbVl4yMwpqM201pQQxLkETcYcLgSgpFQE20JoxhBCIKcLDlN57wRfe/1DT8bWVJlCT40hrQ9QsW4qYmitAfAkpp8admic3IIh+Ws1iaNuQlVGI16CHjP4NADCeCLTcRNODQCjo+3v2VoDQpQSrSFNM4wxQkwIbduoYPmE2ZRYcZQ+88wzxUJ5OIgYsySmjoXvuOMOSsnl5tV3vvPdX/3KXzELKIGgVKIUI4S0VJ7naQULC0sYg+8XBoOB1rrda8/OzpbL1SSJzA9crVbzPCeAqtUq5/zMmZfmajPlcnkwjFzXxcQ+ffr0vffe/463v+srf/FXW1tbWZLec889X/ziF5/64Q/+83/5nWqlLtTQlPs83zly5EixWOh2uxsbG6bWsbS0FEXR5cuXDfUGIeQ4TpZlR44u33XXXadPn3Zd94Mf/OB3v/vdne1dw2jo9QYAsLi4SAjxPK9S9Y1tfbPZzDIehiHnMs9zKVQQBKVSud1uE8wIZhJrUy3EGBzHzlKBKYs5r9erJ++792tf+7IQ4g/+4H8uzC/Xa/MzMzOHDh26445bO922ZVmOY2ECg+Hw6tXL58++2um2Vlavdgadv/u7b1Fq3X3Pfb5XSJKsXK661LIct1arVWpVw6AkBCQfLVJ4TLvU43BBTY3D6ZE5rfU8GZ8GPZkoaUyKJWPW5wRoe+NJMTkaHASyp0t50/EQwL6M7ASGRmNEbHqcv14JWk+B6VjvYz0G7gkjQQiJ43CgdBAEURRtbW3Ztu15br/fP3z4cKfdO3v2rON4zz33jO2wBx98MEmjzc3Nu+6657777i94pStXrpRLFT9YvP/Um374o6ccFxPLZoyGwyzLsjRNuRQIaUo9SjHGeGNjY2PjhrnPhJByuYyQlpIniYqiaHZ2gTE27A0psYQQRkp+bfV6v9+vVCoGSCoWyka6iBKLEivLMoZJsVi0HUuIPI5Hms79fpdLffXq5fe//4OHDh36H//9DxgjKyvXOBf33HtXOIwvXjy/19yp1SuDweDd7/6xX/mVX37qqacfe+wx2wqWlpbiQafVahmM6fjx43t7e61WE0DZUjqOE0WJzVwpNaWEUkjTtNXKTX3P6BwZgACQllLkee44TqNR5zzL89SINUvJEEJSckKYAY5NH40pZn7oQ+9+xzve0e/3ea7iKF9YWHJsd3d35ERkWtEBwFhLAUCSJIZPNxwOzbZk4A8lheM4RuEU9kHhg+PQDBWMpoWP9xmsB1GV6ZD9wJvf6PWbzoKnweUDPSj7BzFT9Sa54uncaXIl/8jppq72fzMHD34KAA5MHDXVu6P1vszx+KqmciQ4YEp+0zH/kTNO/ntD0YzxnYfJrdq/PLxvBTS5nunwbnoxgdetNuOHMrQINfaUMGcyosYAgDFSamRPYTZiA6iNN8v9xVHoiXwYAIyZ0VOeq2h8o0wAYFlAKQzCbHNrffX6+tmzZ/M8t20bU+LYNs+T3rAHGgmh9naaWmvASI7NnR3bS1PTFYEBkOd5URQZMVBCSJKmZmycOXPmtlvv8Dz/+PHjb3rTm1ZWVtZXVv/dv/t3v/jpT2VZ4nmeYaqa8Mh81iCYJiMyDm9CiHK5zDlnjNTr9ULRN5o5BBMTXWltzKW1YUAD4JG6GaUmDjMtQYTQKIqsuTnOuZRaakRtR2kdx3G9VkqGQ611nOScc6mx53lMKZN3UbJPqp2dnRV5lmVZkqZxkliuZ9u2MngrIUmSmLvveV4ahwRMCJ2lUUwpDYKgOxgKqbnStuXYNiK2g0DnmOxtbFDHRQhzLkTOEQVm20LJLMs8x712ecVzHKWUZzspz812IqV0HQcAgqCg9cg+ESEkpW61OoSQfr8fhnG95tm2jRBO4swYTkih2+22sfAeDoeu5SYq4VwizcNhjLC2iCW0Qkj3ej2MsecFlUoFIVzwg0uXrsTxADTmnBOEMMagVc45EsiwM5BCxkQIY5wk0XAoTPhrBvmELWKo6OafE4dVrcEYURhiiFn3zM9nxOyFEJnIJtLMk6VMT/m3IITk2MsbY2y0oQ0tESEtQRu3QEOVopQaWUmTzUouFGXtdpsxS0ophAr7AwBs5qM2hlcwqo4IgYbDIaVUYTU/P7+wsFAoFJ566qmrly4bPuna2prxpO31er1ezw9cNO763N7e/sM//MNyqRrHcalUwhgXCgVGHT9w+/1+kiSglGGOLy4uFoPC9va2ZVmOY7daLYyLI28SBZxLy7EQwYwxqbUW0vd9JWS/31dKUYsiioySiY4hThNGaLfbY4w1GrNZkkqtDh89bCa1ZVlJlm5vby8fOnT33XdJLlqbcZbk1GKEMK20EKpWq1sOtW2a5dFwOCAEdnZ2+v1+lmXLy8tGsVpKaNRnARPP9a9f3+h0OoQQIaBarWqQe9tb7U5zc3OzXC45pYLruoSiOI63+91C4M0vzDabTZnL1dXVPBeNasP3/X53QBGu12cszxWct9ttrIFi0506Wj3SNPUKAaV0GIVpnud5vnho6cSR5eGwv7m5SSxiWVaeZ4WC7/peFEW+7xOClFJr6yvtVhdjXCyWHcdhzI6iKM/z4XDoeV6UJEkalarB1tbm4uK84zjraysME0wUodpCeNAPoyiyHYtRS3EIAm9vr7W2et33SkKoUqlUKQVG9nDfPnocR052E6MtqxGcOXPmwoULQkktdRzHw6wthFheXh4Oh2mqPc/Lc/H888/Xq7VDh5allEHgtdvtMAwBgFJ266239/v9MIkNzd804WKMe71eEASe53EuGWNBECRJ8q53vSvNu912Z2t7c3V19ZVXXjEcasLoxsaG4zhBELDA7na7SZJgjLMs+4M/+INutyu1ev75593AP3f+4uzs7JWrV8+8+KLneYxZzd29ra2t//7f//uVK1c+8YlPfPrTnz539rWLFy/eedude3t7vV5vdnY2SRLXdQnBSmlCMAAoZfSUtEEfFhcXFhbmfT+gFIpFWyiI4/jy5cuvnH35ve993/r66oVLV77yta+fOnXyz//iiydPnrz/gQcff/w75869JqVESO/s7Fy6etHzPN93heJhOAjDwad/6RcfffTRy5cvE0I+8IEPPPXUk6bTmfP8Q+//wC/8wi84tvfyyy9/6Utf2t3d9QqBUVd79dVX/z//9f/9rnf+WBjGzWY7HMYXLlw4efJkwa9QSillZvHZ29vr9/uu687Ozipt1I9uijH2c+fpwAMwaAmcK8awlMq2sRv4ruUaeY3Z2ZoGneeAMRQKPkKIS4UQUhqZAqqUstMZXLly5a1vfbBQ9AeDQbfbdV03CALbZlJqiqjr+pQiSqnneqBBKqBsEo1MorgDUcpNl21ID3oqPJosvGYZHgzE5cuXEUKu60RRVCwW3/SmNzUaDduBTBn6HlVSE4zk+AA33YppvGwa9TaR3iTWuSkdU5Moaxwf3uSjgxAwhjBGGMPKyvWr1y4vLi6+fObFbrf70EMPFYvFMBqsrl07vLyklLx69epTTz1Vr9dXVlZ6vd7c7MLxW27Z2tpCCO3u7hrLUMsiT33/B88++2yhEHzuc5+7sbF25uXTQoharfHpT3/6j7/w+XtO3vfAAw/8zz/4/0ZJrEBTQpRUSnLLcjDGjz/++JWrFxkjZvuoVqvHjx6t12ZeeeWV06dPl8tl83O0223btodRfOrUqbc+8sjb3/X222+/9a//5quNRuPDH/6Q59qPPvroxsb1PE1P3HUbAWJZTrlYAYEW55csy9ISZuqz7W4risIsy1qtDiKaMuy6bpbkAIDxyKlsRNIkxDRuGhl3U7gyYoBGQxYhpPTIZgMAzA77+GPfMUyjH/zgB0EQsJxwzqN40Gw2fd+P01FbbRiGnU6nXC53u/003R0MBrOzs4VCwXEa3V772rUNIXOEdLlccm2XUNbt9BhjfqkUBIEGmed5lmmEYDAYAMCtt95OiOY6+ic///G/+MvP39hYPXriOLMoZfDMs0+9+OILV6+upWnqec7c/ANRNHzp5Stz24uE2Lfetkypvb6+Xq/Xm8291157LU4Ghw7PX7tyGZNKIfDyfBBFida6VCp98IPvP3bs6OrqtSe+93gYDsY6+PYjjzxy48YN4xJ/9uzZYrHwvvd+4Atf+MLq6uq73/0uTKDX6/V7OZiSJ6AoShEijuMBpI1Go1Qq2DZN0hwhACQYI3EaX7z02uzMUp4i16n6rhsEQZQmhw4tI0LDYeTPBEII0ICRhchNUMNNNjz78wjG4f306wAHcInp17UGrbUGNEHsDhBlDlBe4PWPm4DB1z9uyne0BtvGAMC5MrGxkFzmXAghwijnaa/Xa7ebw+Eg56llUde1T5w45rquGYqcS7PvY4zRqEsEjJiaCRQNBKwREEzAWIAgQ0Ew5lKgFBw5cmR+fj7Lsl67tbu7Gydhp9NRSlGMtVRREmKM8zTjIjdNk2Y7yDk3xBoTWE6iJtd1DR2BI4MqyDzPqcXyPMd41NaslBKGnKG1VBJjTDEmmBh8fHIbmbGgEUII0ev1siyj1DLXb1mWQ4njGk0tnaaZiY3NrZjITDuOYzGbMWZRage2iwKhpB0wwbnRZxaOI5BWWlOtMMH7yyUA0YqY4MQUQrUGrMk+PU0BTC/BB5fxCcir9YjjuY/HTbJ0U1XGoBQIDshQpEcENaAYKQQT0GN0KKkYxloBAiAYmzLjqEZGRrx4pfUY1wA5OSAanXbUHy0ncAogc3B8YGSPhL0USKkYw0qNLkCBNprLlmVRhkmiHIe6jst9a/nwsY0bzUq5fubF03PztcXFgpRE5gC2UyrMlYIBpdZw2C4UraBU7PfbfsnWWjf7N/Jc5ZDNlGqAKn5ACSG1eoB0Xq/ObmxHSZQwxuIkA61zpWiam1HilbwTJ06UyvXhIL2+vvGDJ79/5cLFu++69z/95/+4vrb1zb/7NkL0z/70K9Vq5TOf+pUHH3zgP/yn//uNja3Z2XmCSRiZ5k1UqVQoxkKIK1euzM7OVhszuzvNwWDg+4VhHPX7/V/8pc/8s3/2a7/8y7+8tbX1zDPPnH31td3d3VqtUS6XzTDNeWwhKiRsNcNiUDh89MjxW0889dRT1CZRGnmFoFwo93q9J554QkkIw4EQwnVdjBBIQYjjWA4BMRiEnuWur1x67Jv5bSfuiuP08pVrtcqCUnx778bMfPWJp763s9W/885b5xfrjXoJYfb86Zeef/a5j33sY+9410888cQTlNJWa2fl2kXbdi3mLs7PFYK64zhRlHme4CK1mOPZVqfbdxzLcRyFgGDQCpQEywIhAIPGCGkFSgHgfQNTU+g20AmMWXt6bIE1CkrQiJ+IxlPjgIaXAq1BopEGwOsQn9ErN2HHZPy6MKfAoAGEBIxBK8Bk/+AIgVaAGCgFUk8ZHoJx19gf1eZPmIykVNM029ttKSld18/zXGRSIxIlPMl4p99zLUuIbPnwXLO5a1vW2uXLUqsvs7+an5/vd6IH7n9LkvJ3vufdh44eZg5K+eDFV3+EcI4wxYC1VEncI1gHQSA1GF9127Ztm8WRKvgBISTLMsuybOY0aqVCobC1tdXvdPJkHWNKCFaSM2r4N5AmURTRw4tL169flyDvufeuNE2ff+ZHApFi4CEgwyijlCqF6/WlQ77z8ssvDtt95tiUWuEwbLZ6lHp+wbuxeR1jalnW+o1113XjzC1VSmkal8uFldVLf/GXf/bqq69ev36di3xjc1VwZXk+oahUKkWJ6A1a5sfLeCKlDILAsqxhPEyS0HIdxLAWsLfTnJmZ4VxLiRizjKw+ACsEASFo0I+A4GK55rpuq9Wysc7zHBCaa9QshzWbTWoBwSwoOLngYRSHcQKSrK5cn5tbIITEyTBJQ2axcqni+p6Ry8Sgu922ZVnMQcNhJ+fCtm2kVRJFxKKcc9/3Lce2HMswekCCEgIbEHOkdKG00ogQBQjwdBiBJ8wOPV6slVYIIYSNaSBorRVSaPQYvXkcGmrQ4xGvRtGlVMrwm419LgYEetx8hLBGWmut9KhXHY9hSxgxcAEQaAkY43GVaHzWMVyrxzMFxo7JYoqxog7uUXriTTyexTApO8FojoOainLwPqAsp8ImPUFcJ6Wm0Z0eH2TsPrq/t+p96WdAoAyufaDUNCp24pEkBUx00/aXiGl5n6nrvym62n+OtRqJ0E9plSAEgI1ay+SzCCGtkamNmwSMEkJGP5bGeIL1KwCQoyDAaBqbOrqp9yhCCMagBVAKUox54lhjQEKIMOG+7w4Gg+eeO727u/nQm05K3t/YuD7oJklIk2gIoBizeZYnImaMADZ8VbtYLPJcFosFzkUUJoQQhAy5lZg6v2eTTqczO7Nw9MiJdrvz4Jvfcvbca4iyHOBLf/s37nf+vlSf2d7ZSoV0HQspKXiWpQnC1Hwvw9I1VuNKKcuyENKMkSTJHceZcGMZx0oShiyJlEQaSQFKWxgApKIgkUC2hwniQgiuEGG2yigBjEScDakNhPMSJUJJLpHMZa5RlHGJMLYsBzShWGiFJNYAQgOWINL06NzhYqEchQOE0DCJsMWITS3LklwxTGOZIowsQinFUqrAL1sMUStIEhmFA9e1g2IhSrNkEGqMCMU2WBZYxYJXqyAQfLPZTLgARBDCiEN3ry+VsmxLA4kV74eprTAAEEBKKYSAUEQ0RhoTQqhFXNdRSnGeZWnMeaaUkgr7XsnQz8vlstZq88aGlqpSbyRJkuQ5KOayYhInjuMQjLTmOc8JYRQxRpnWmmrgPFOS7+xu3HbbbTeubzabuwiYRWzfLmdpjAAToAgZ1wipARBBRiMFtM556rqulJoQphRwzk3OYFlWsVhsNTv9fr9UKimlOOcYkxExWSGeSyEU0TmxbK25ZdmW7VBKpdSmDiGlFMIkzxgBaK0ppUojhClCyLWJlJKMIWkpZQ4CUZTnHABs22aIyDTPRGpSF8dxGGAFiFJmOPuEEK1Rlg01RhSN8hakAWPjjo0JwiqHDOV20WEYqEa2ZTVqZYyh29vZ2tpyXDtJwBC3J6h6uVy2bTsMQ9d1H3roobe//e1nzpx54YUXMLW10lmchP0BIQQrzCw7DEMlUZaKhHLbdYMgiOOYMJbx3HEcTIkRKDfK6SNqOSMil6YFEGMshEQSes2+xohSattOK+4lvSzwy3P1hdX1lWKhVPLK58+/NuwMrp2/2m/2qKaXzl10XTeKIuIQSojRLgSsEKaIWEKIIKgEQZBkoevZWuvGTC3PUyFTP7AzkTuOMzsz0+x047TvFigONUJa5px6hSzRWtigHZk4oQJGJSGMSNeyLKvgD4fDQTOPu0ppsLGbZj0EKii4UTwIqp7Aadzj/X5fKoQwiXOuuAAMnGeeZSc8U5Hw/ILrulIox/dnKnPdbrvVagmZu64DBEYBQz/kUpw4fmer1dre3k7SvDE702w391p7xMXDqJvwRKXgBm6U9Hr9wdGjRyXneZpdu7JSq1ds2wWAJEkUcIeSSrns+36W8t3dZqVcnZmp33nPbUmSOr6V8tRTXio1wghjkCCRlsZZlDCqp8hoCMEwTNrt9sbmjbvuvv2F02dKlXKn00tUEhRcypDjMqloHEeEAnCZ5FHGU8e2k9bQiNfneQ4gcBk1anW1uyu4SLN8dXVVSpnx1LZtpcTu7nYUDT3PO378KOe8VqtEMXr/+98/DONmqyMkYtQNh2kURceWb7n11lufO/08QsKxXVAAGCNEOnH0yoUL/+Jf/IthlPz1174mhChXaq++8gpohAiO43h5eVlJef7VV2cbM8tz8/kwb22377r17kqp2tpr27aNEDE5PwBgYgyWgQDSAAQjIQEINh59hJAoytMkf+GFF7772Lf39vbml+b/1b/+V1/88z+7snrx4qVXr9+4WioE25sbnue4vrN+Y80k9pZjU4L8kp/JjGVIgz772kuA+C0nll95+eXFxcXGTGMwCHudqFyqLi8dffsjP+E5Vcpwvz/sh0NqWwAgtcIYLx5ubO/e8Iv27t7W9RtXZudqK+svFspibnaxUKjkGSeuJ2LsOn6tjhBC129szs/PIwAlAWkC0ySVKVaN2awRAAhAABhhLYAgLDKYqVVN+cGITWGMcgm5AFNmNlrXSAFBUC0Xu21X8qy5s7u9vV2pFktl/+q1i37g1roz5UoNIcAuSAmp0ggBZkgjoPvByShywwa3HcdXWoMybFiEEEJKmXgPQI/iEEyQVFJKCaAEOJ4F29e2W1u7AXVFrvOUH731UKVRpS4IrZTOLUbyTGJMlBoBWiMp1amQD/S4l9rkUwSQAqVGSR/ACFBGaJTTYQxSaYKR1oAJSKkxQkoCEIk0MIvkubAsijFQBEkCe7vtfjt86fnXNmf2tra3dna2vKD8Uz/1oZnZWUMbpMSeacx7buH0sy80d5rlQnnY7yZJcvz40bm5mRs3rt+4cYNSmqXxd777d5ihe+6/+zO/+iu94eC3f/u3n3nmmTiDz//Jl44u3/YLv/hzts2+9Bd/vrp6rVDwMbakzhEooRTD7JVXzjLGLIu2djuNaiNNkmE/vO3EXd1WOjtz6EPv//lvPvrYuXNnNWalYnDbbXd8+jOfWj6yyHn+0ktnQOWf+tQ/WVlZERKSOD929DbP837uUz/T7/cvXry4vrrW6/XSbOi6fp7mD7z5nu8+/kQQBEroMEmKxWKxUK5Va63WTpZlWCPfCeI4FpkE0JZjOY7TzrqmhdpiNmWW6UCyLBsDRgAEUUKJUioOk25nDSHil8pSSiFzL/Btz/J9N+eZbbOFhYU8F2F/gBAhmvBYlr2agx0hwbWssCfiwbbByHabe1jpPM8LhULSV5Eacs4ZtbEGUPmw3xZamc42hJBpOBt0e5VqQeS6tdsTnN1/3zt/7Mfe9eijj6ZpSrHa6+x4tvIdW3B15tkXKHXmZ04+8Ka37+zsnTx5n23bUtr33XvyzJkzp597TeU4KAbve98Hdne3u51YcpdiJkA4rlOq1UvlSqVW1URzKTDGru+kefbot75lRHtJSAgh73jXO58+/aPG4vzHf/ZTR5aO/enn/2xvO1cciYxYlOaZYMRKsjSK4x9//48dv+Vou91cvbzmOPYw5Dkf5ClbnFtI4+QrX/nC4tyi6/rHj9362tlLfhB/9MMfeO7ZFwBJm9CoN6hUGoIrTKnJFzABQKBAAQLQSiuMkMm3QGOQYpId7Fte6Sn0z2QxUmpCkCRKS0UoBYURAOfAKCgFGEEuwKIAGBACJQUGrZQA4kqlMUYYkFJaao0x0oA1AMHA+ciK0zyRcky/MyRCBAgBxQAAUTjI8zxPE8MdFpLHcdztdnc2bgyHQ845JdbMzEzNqTUaDdthBsM1bGKECSEYAAupNDa2LkBM3IdBgyQUSSkQQqZIhpFBLRVCSCOpNbYty4SgQRA0qrVbbrkjTdPr16/neR6G4c7OjlR9Qkiv16G2k+TCYYwQ6nkuExkGZDPABAwVJgi8OI6TJDFdaMjCuchG0L3klOgkSw1dZsx6IQBAsDviDGnuOhYXyrIcKRVh9mAwyDthlmU5TznnxWLRLwZZlhFKMcZIK621iUAopb1el5iEz/gzWzaltOAFhGDHcRhjEmVSpIhQqZTn+3KgMCWYUYJ0uVqm03yo/z8f+yn3QTPK1xVTR++Bg7xL89gfGUoDQYQA1iAlaD1NtptACXhSHdV6pME0IS2r8VOTJ08wiPFX22fVaT3thjViXQFMRMQRACilLQuZxlWEgBCQGqTkjZlKlvFmsxnFCReJ5zmNRqNaKykFb3v7gxub1y+cefncBX74UKPRmL3j9nsQgmqldC5NfN/1/Jmf+vBP/OBH3+Wca8BxHNuWm2UySRLHsZTypOR5ntfr9Xa7vbe3V6lUtNbGg7JWrdq2vXVjw8z8SqXS7XbPnHmhEFSLpYBS0ul0AKlf+NQvPPXUjziXGzd2fvCDp2+55ZalQ3NRFC0vH7nn7rtXV1fX1lZ4nsZxXK9XG9UaxlgrSJJkZ2cPCDbJ9i233HLp8jmt9f/6X//rscceu3Dh/JHDh59+6gdRFGmNhsNhsVg0OkrdbjfPSZIkmRK72zubm5uNRiNJkrm5edf1bNu1qb21uRNFsR+4GqSSWgjBKGaUZiKToEvlklJKKI2xvrZy6dgtx378x3/yq1//61Z7b2a2Xq/Wjx8//uyzz5bLwcxsrd/tEMw3NtdfeulMkkYvvfTSXXfddeLEiaWlpa9//evLy0cffuvbozBL0xG/rFr1McZLS0txHK9f3zDWrr7vag15Li1KEALOYcLYMyULfbA0d9OYn2BGryvTvcFH8KTWN9W4N32oCXv6QFlPj7TCbzr1RD12+sXx9HmDyfWGD/M2ozZTrVYd2waAKIriODTqwKYjVQIwalcqFcOfbczONJvN73//+8vLyw8+9OZ+v29ZFoBaWJzjUmA0IvdRYhGibduan59vNBozjVnLda5du7a+vj4YDAxlHgDSNDUaLJ5n+nOp7/uD7kApNSmdYowBkFKK8zxN0/X1dc55baZ27rULUnHHcdI0T/JMdDoY4zRFUvI0i03pNc5SpmS57Bw9evTatWuXL12RUna7XUqNkGVGKW02m0mSEIRKpdJgMHj00Udt256Zmdna2kqT3EBXFrON/qZpSZGKK6Ucx0rTNE3TYrE405jLsqzT6aZJgjHu94eN2ZlutzsqgSKU57kQAmNQSqU89X0/ikLXdd903yljm9Mb9AeDQZoLQki5VvT8wu13nFxduf7a2fNZxrGmhw8fCcMwiowdimVaxTGmRgbRdf1ut40xznOhtU6SjGHBmGW4meZu9Hp9A20QIIHnGYDACAiYi5QmzH/d43V1bAQAaMQEMQsx0gc8gqdJ0DB5DgAaND44OqfbSkY8wSky8sHCtUZjBNkQXac/NSa8jN92sIQ+chqYwqP/ocek6jPd2IXg5mk+gaf3d73JKUZF2TF76CBAPFoiJsvBQVlktE921pNvrdVYIOR1Vy7l5LvfvAQdON3BW30TJVyP3zRNgJp+z35Vdvy6WQ0QQiPeJQKji0IIEnLEIZVSUEpN4mpCTEoh5xoALAshBGvXN9M0qVRLWuurVy9XqsW3v/2Rq9curq9dFYIniZScjxqAxpx3DWBZluM4Y6ULK0lSQ3zzvEAphfFIMSZN00ql8q9+4zdeeOmlTqfztnfMZ3nS73dbuzvNne1Op+O4tmOxLI0TLV2LGfPlNONmBTPLkbkHhhjLucQYTPN4HMe9Xk9r7TFbSsmFHBE3kCE0aKm4RW2jK0MIQRqLTBAgBKFSoZBEceC4o+vMM9u2LceJkiSKE4lAEwoYgZk4GoPWQkrHtqWQBc8LioXd3V2CQShOCBFS9vv9LM6U1FooxEY/FKXUtiyZZ4Z9ub29LXhWLAZZlg2jMIqiamMGIaSR6g66IupWZ+eOLh+WCFbXryOGtNRKA0KIEGrgVGKwWGlEqKXJwRgeNcdprRXINE0dxzaVBlPPMFwJs+pqredn544fPXb9+vVWqwUAjuMAgG3bpVLJaCITQqTUnU4vCVMthdaaWcQNikKIZrMZhmG/N4yiiFEXWyRL+1ops74Z9F9Kc20SQBNCoihyXOvYsWMbGxvD4bBQKCRxxnPJGFMAKc8RQkEQmIuM41hKNe5PVOZiLEykUmaAEUpt2+Y8HTcBaJMSSyknswMTZgwJlRIIocD3oygyM0UIobXpDwAppXHpVUobsifGMIwlQ2AivSAIYNK2ojEar3VKSM45pZQQahZzRJGUEhAyYiDX19ZP3Hr87W9/55kzp69dueo6hqoca609z+PC6O4FQgjP8z7woQ/Ozc2dPn3adfw4jhljeZabBmRzOtPm2e/30zTVIA0sXqvVTG8pIQSUllKZa9ZaVyqVQqHQ6XSMCBsAYIyVkkopyqw8z7UGy7Isy86ybH19nWeiK7r9fr9cLud5urOz4zjOcDAY9PtSykaj4VeK/X5/tNkZMSgNmOBed1As+b4bUAsBgG25BtCM43RmZq5YKJ858xLnIk7zmZm5xYVDWqg0Snd29pSQnEstlbRspXS3M8iy7NDSElIkCoetVrvT6S4szHueL2Req9Vty0VADi0tm4m/N+zxLNdKhXFiESqlrNeqi4vzjLGcpzs7O91O17IcrTBCcPXStUrDDoIgy5MkiRcXF93AbTabpvfo6tWrYRgaIxOLMiklpTSN0ySJyuWyUqpardu23dpruq6TpqmQ6WAwCApOsVjs97uWxRqNahImvV4vTjLOeZTEC4tLiOCdvd177jpZrVbDMLZt1/B2OVfGTmPUe4tQPhZHwgi40FeuXPnWt7713HPPuY43NzenlML4/8fZf0ZJdp7noej7pZ1q74qd4+TBDAYgQIAEERhBgqQoSrJEUcGygiXrWJLlYy+ve49lr/PH6x4fSV6ybOk6yLYskZIsWYEiCWYROYcBMJgceqZzd3XlsOOX7o+vqrp6AMpn3Q2sWTPdVXvv2vWF933e530eIEC1gl6vVygUjFJZsVicmpryPC+J071qVUqJEeWcu67b7/c3NjYqlYpQ0lCbO/0eQsgYDBqWVpbwRm1TSygWi6+8/LICMTk5rTUKcnmCcJZl9Xr985///G/+xm9+45vf+NZ3vm0k8gEjIYRlWUJkW1sbFy+e//Gf+Pz5C+dsylZurXmOnQlpO+7ebvWnfuqnojB89aWXf/7nfm5jbe3WrVvFYnF6erpYLB45cqTV6kxNTZkmBj3cH8HQRwaxgW632/1Ol3POueh0Om++ce6tt95aX19XSrXb7ddee00pNT092Q+7GecA0Ov1qju7M3OzW1tbjuPkcjnXdYWSrVYrjZMkzoTMfvEXf/HChQtf//o35mYXXnvtbL3W0lo//PAjfi6/s7ltyGhxws+cOfOxj338K1/5a6WU5+cIIa1mJ45js8RVqzt33X0qS9L//t//+9TU9CMPf2yiMru5sVvdrhWL5RPHjkRR1Gw2C4VCqeTHETeNH0JoAMAHxMf2E4S//e9agxADJTLDRVV64BVWLpc//OEP1+v1er1u2/abb56bnZsqlnwjfN/r9fKFilagBAAAwSYCfPf8SA+7LWHc2RiNOWqMx28YtAKtNWNMKYG0Rhpdv3693W471NNaR0l4xx13ODkHIRCDu0YYDzkJAwhgP6pE3yOyuu3YD6KGMRVjyKAWhABCiHNFMMbIBCDgeTTLoNHo8oSvrKxcvXKtUqlsbm4WCoUPf/jDr73x2vz8vOd5s7OzpvfCbNmf/exnd7a2VldXS6XS4uLiG2+8sbS0JISYnp5++eWXq9Xqzu5WHMeU4Wq1ev7CufnFxSDI5XzHcezXX3/FyzHO08uX3jY2vIQQHvOUp7mcDQQlSWLaKTjnlmVpjer1eqvZmZyY+7Ef+7G52UPHjt9BLTY9UypNlC9fvnzq9PFCMbe5ufHd737n8pWLMzNTzWbjpZde9H3fcdn8/OzU1NTa2hoAbG5uTk5Orq6uVrerluXkcv7Nm6tSSozp7OxstbYnJO92u3EcE6J7vZ4r7dHzNypPpgXWtK4qOTDeBQBCMKWECxO1ymKxIKXudHcYYxqD0iKXy1mWlcvlsixzHFdKmSRZFMZxlFBqYUwZY1qhOE6FEJbrZCk3TUhCCCWkaXvSWhtnYACQQhuuaJqmuVxucnKSc763t6e1rlQqrXat1d4jFvrrr3z5Aw++7+GHH/zWt76zurpu2zYj1LYdKVKeqSRW3Mf33/e+ycodU1Oztu1ZzOn3wqnJOUKtzc3tIMhXSqUw7B0/fnJ7e/vypatezuGcJ0rkct4TTzyxenhpd3c7DqMwDE2jkpR6b2/P87zhP+ULzz2/W2/8i3/xfz768CeeeObp9fV1gqGQ98NI9/t9bJEPP/TB8sTkW+fOnTx5cnp2slrdubV6/dixY51mgyuBsG63mzdvXnNdF2uo1RpXr1xz3cAPCoAEZXp7Z80tWktLh40XMkJIaQl6QOndJ/2jIbVOAR5LIkZwhJk2UoIemHIDQkP2qsAAOEsVRRhjsAgYqp+UwOgA/eCZcl0quKKUccODlgMBeIyRkbsxqROjoBXofSfAYc0MgVLARSZ5ZrgLWZbxNEmSJEnjvb29enXP9PeDlr7vVyqVQr5kljJKqZCZaTE08cyQtY0IIRIkMhrNhndlQsNR9+f+oxgkSkqJ8ZRMay0BsNaWZZ0+fZpS2uv1oigyDrrb25vdMArDME3TXruVZZllM9u2LUqFEBqk67pScnO5ODZazzpJEkN9GHTsURZFkW3b1DZqG8i83tClMbKFEIC01nqvXs8ykaap4sIA1mmaFosFg4EQShFCGGkpdcIzx3GobXElldS5XM5c0c/njQaIsZLmUrm+Y4OPCeuTKJPKRtS2bemJ+cWFIF+ht62t/0+Og8oD+mDS+r1X7XcDxdC+2hRIw5lSSI/tEzBKrYfvgP3MHaOBB7gGPaC/jV93eAI8kG4eVlf3b2nsQhgjIaQpBSg1rHkiyGRKKUFK9XpdAMjnc1zQfl+HUd8NHc55GPUwlSfuWED0/q9+9a93dkS32/f9/Kk77nQd533vvy8XEEJVZSL/F3+1kyR9y6ae51nMQkgrpeI41lqXy+UkScIwnJgoC6FM/Y0QYr7aJEnm5xf6/f7G2vrNmzdXVm4hoEIooxn3/vd9IEmSdqfJRfqLv/gLjXrnH//jf3z9+tVPPPbR++67b23neqFQeO2116IoKQS+mWOEEM/NKald1221OlGSKaWCoFCr1YrFYrFYDILclStXCKHdTs+27UOHDlWrtSRJ4jjtdjcBlHEEFkKITBJCa7XazZs3Z2dn77nn3kOHDtVqjZdfeFlJmJqaUkpTShORxAnPTUzwNDOyA4WCPzlTTpIkTTggtFfbOvf263HSTVN+9erliYkPLszNP/yBRxTiuZxHFgpK8a9/8yzC+kMf+lCj0fiTP/mTRx99lFLaafe77fjtc5cmJ2Z2d/fSNJ2ZmVlYWKA0bzSYlBZaazNLc7mcER8wRsPmizb1tJFExv7IHP7FYEmmkYqg2/XECAJ5EE2Gd0yo8ZBrFGaNo2O3AUa3lXAGJMeDuNIIbh4/8zjo9s5Da0CACGbMHdQty+Ugl3MBVBiGYRjGSTgzMyO0xhhPzcx3Op3Z2dnHHnvs6Wefu+uuu+64444nn3xycXHR85yJyVKtVn3qyb85f/68ATEd184y7uZytuu2e13d7fT7fctyMM6azeb09PT8/FyWZc1m02hlxnHseT5jNqKEYZIkmRQaYyIy7nm+lBJhaiz4jCuCZVlRJPL5/NSUky+VW81OGIaIYGZbgqcm+zUNWY1GAxNWKJTStJ/P5wEgTXmSJAjhOI5NJDFRLhmGjoEelAQlwfCztNYmVMrlcl7OESKjlBSLRSEzjGmv1/N9cujQoSRJhJAqlUIowmgURaYhxQQupsKhlC4W805uhvMMANI07fVbQRA4nu1yWym/0WpHUXryjlkp4OKFK2EYP/XUM1rD/fe9Xyhere1alOVyOc/zNBhhJq0UEIJc100St91uM0LNWBJKe4xFaWzkPo0/oZHUUEKqgzgvDNOJ2xZ+hJRhtYzDvkPgGGAMF0bjbNmxl+3/adbVA5czf9t/MQCosRsZvWuAkA4oL+8cxnrsQkZ0YnC3pvQ4VuN8h4TIAMc8MCnG/6KHPQ2DXcbMVrh9hg4exghZHjKX8Wgmjr14/73o4Bn24eaxB2680Q9+6ndu0PtnOCg6D2NfiimvDh/vWHft8HLv+P73H5H5lRxGmgZtBACEkBqsTvt2E4SAWec5l5QSxkBrEAosAlQjx4Esg0aj3W63rly9gDF0Op1upylF/Bu/+X/v7GwVCgUheLNZt207juMoigpB3vCvFUgj6kop5VmqlPrQhz60trpx/fp1w1MgBEwKYcSdLl++fOXixc21Nc6ztbW13/u9/9zpdBDA/Nxsu92MsgwhhJTMMo0salBySunA4F7KZNhFZH5lPp1pMctSgbBOpUaYYoQYYwBYCCG5UFoBUK40dWyNII4igigozUUytTC1tDC/urra7/cZswmJ2+22m8tphLngGgGXiosEEMKIcCWNiLDjOGmS5CzHcp2V1VsoyxybAagoS5Ms5VJjjSlmAIhhEkURcRAhhDGGlJRC7e7uYpCYkjiOMWXFYrEXxkIIy3YiHq1trgGmlDGBdNxqM61BKa40IIIpBdCcc6q1eSxc89FXbwohSimRqCjuM8sSMpuYmKCUUGJpijRIhKmBp7vdbq/T/eEf/uFOt3X1WtjpdBzHKQZFo3OnFTSbTdOgzblUQlJKEcEIIT/wNJYKhBAiy7I7z5yampg+e/YtmUlCKAZiwv3RELUsizCaZSkhJAiCIAi0QmY7iKJISTAizmpgSaSNM5vx2zHUY8dxJDN2BzCSbaaUaqVarZZBVFdXV0dlvGFgYEgJihDCOQdQruua6kiapua3w6mmtdZyGOsKIfr9PmMDvT9jqgEABsgGACPebR4jo1Rr4wkjjOS0mQ7MIu02J4QEgS8y2aw3QGmjnuQ4jhDcQAzMIgghznkURVEUUUqLxeLb5y40m02zV1qWJYQwv4rjmDFGGVZaxImwLMskMKOmZlOmchyLc2meqrGs4ZybwgwAdHpdSglCqNtqW66TJD0DYRuWVqVS6fV6/TQyG1McRhlwglmappblEMxM6mJkqQDAZD6S80RLL+dIyaOYp2lcrVYdx5qdnW3U6zxRbb+/t1frdUPXzW2n24xalFqe52MgzWYbY4wxFUJmWUY0AcW2Nmvmu/DcIiEoiXm1upfP5w4fWZZS2raTRHG/28cYK5H5ntPvRzYhoIFREng5pDRI5VneoYVDjeqbrW7Tz+XjfqwR8dxiqVxOszgIDhGCq9Vqr90DgqXUe9Wq4JJLwZjV74dSCklElPQPHVk6fvw4aL16ax1jnS/6/X6fMjw5VQYkG829lMcIISdnNdo1mwbUdhqNRrvdnqpMdbvdpaUjWuuZ2VlDWGGMaQ1IaQIIFCCClZLDuqxEiAKABmAUvX3u/NNPPSOl3N2pcs47nQ6mhLgSAOq1hhFuNoaTWZaVSqVed4A+N5vNmZm5brdLCNFK1Zs1y7IoxVGajfQMCaKO5dbr9X6n/+M/9uP33Xff1772tfPnz88vz773nvu+8tdfeeWVV1w3B4BnZ+fX1taefOrJJ556klKMMSiQGDAhSGjl59yNzbV//zu//cJ77/vBH/wsSPV//fpvzMzM+NSKoiSXy3HOP/3pTx+aX/zUJz+9vbn5xuvnDh8+XC6XhVClUoUQls/7AKbWcwBrNvsmIcjkI91uN44Tx3GuXb9i2/YP/dAPPfXUU6VS6atf/aofOFpry7Icz9GKI4R2d3eNk02WZcvLy7Ozs+fOnTMJ/8TExMmTJx9+6IMA8Pjjj29v7TFmU8J8LyjkS4TQhGdRFGGML1y8DATbth0EBUKIEhoDhGHqODnfCxYXF/v9/s7OddJVOwABAABJREFUjpR8c3Nzc3Orutv43I/82NvnrqzeXJ+ZnnNtNj8/PzFJe/2OsTcApKUcKDkYH8jxaOFvSQqG+zhoPeCBUQQakAaklBJCR1GWy7knT550HIdnkkt148aN118vf+jDDx8+fLjb7UdJDAgog0woMkBebo9bRjegxgKng0Xu4Z9ozHVjP55RAIAx6rT5pYtXslQgyTmXS0tLhw4t5ws5jYx9q4FXCFLvLqj2ro9C7xP/laFCHwQTNEJIykHTc5oqxrBlYYwBIUQprK3tSSlt237ttdccZl28ePnixYvGdsW27bvueU95sqyU6nR6+XzRtT3H9izL2tvbe+WVV4zJ+ebm5vnz582SSwj2PPeDH/zgN7/5Ta217/u9qLe6dvOJJ7577OSxxz750V/6lb//u7/7u6srN4PA3dnefPnll37g+z/7zDNPvfX2OZewiYlyGPaYZQGiZnGWEhqNpue5Uugo7d24ceP7Pv2DExPzGOPDR+byhY+2e+3q3sbKyrVme68fds+dO8cYkTJzPUtpkWYhQnpre+3mrWv3ve/+8+fPNxqNk5/8lGVZiitCkBEoMHXWu+66K8nSbrfd73fTNGWMDDpcHYoQMoqCrVYrDMNCqcgYi+OYMqLFwHuNEiQl11pijCiljBHbxsVSPkkShDVIoBQbqnKzXp+cnHRs99bNVcfxGCatVgchhBGN4zRNU0JIFMVcSoO1WZY10tcCAKONqyRYFjahTpZl5XLZ932E0Ijj3Ga6221HcTQ7P1sul7/85a+ePXs25wVSaC0FaJIkkmfok5/8wemppePH7lA6sBy/gBxMHY14FKYvv3T2jTfPnzh2NEn7jUbj6Wee297aKZTKjUYtCILpYqXVakZRVK1W19fXu93u0tISQqjVamFMS6WSYQ8YobatrS0r5zabtZdef+GrX/0yofruM3cJma2s3PCCXJZlhFGlRJDPXbhwoVB46MqVa0rz6t52liWe51iW7drMsSyKMRfpzs5WFEVpIu65571h1JyYCgSXOd9uNmtTU7MaUJrGluUyhqUErQCQRghJg5eMHNcMiU3fPt8RBoRBK2TKRUIqah67BMYAa0wpcA6UAUKAFRAGnIPpObAsnESKEIwkYARkSDbFBNBY1VAIPZLGJRgAgDJQCjiXSRIbxQwtBRepyHiv19na3ox6/W63axwIjPv39EyFUdt8HiX1qGRuZCsAlAkeMMZaI6UUJoNAyMDMYAAkvJ8Lj/25v4IclPlFAAqAmIqsZVmW4yCsC+XS0uGlNOUIoUajEcdxFkerq6v9sCu5oJRxrtOEa5AYUyljsy+niVRKWTbNsgwAjNVNEBQMIUNISSg2gECa8jhOuYj7vQhjmgreaXctyxmYoIgMAbJtu1KpAMFCCNtxlVIYAWMDy3TBpeF+mfxopNUJACZOUEpRG5i0+2kMLszNzc26c7lcLsnHTs52cJ4OgIQx/UcYw7/GU/FR78n4MQZeHHjj99rb0MG9TWvAxHwfwyx3OHL3k+ExFOA2YG74qwFn+barj93DfqlTD+GDcaRPa22c2U0RhlJIEs05tyjDGHGRJkliqmEmrc3lclrLOI6VUphIwiShulhy/cC65557jh8/zrl0HZqmSbHkPfjg+wnVf/UX/yPuh17OtixrZnpue3t3ZWVlcXFZaIER9MNuq9WSQgshPM+nttWoN6vVqtYaIeI4jmvZSoHFvK2tnWKxlA+KjuMlSea69tk3XisWyltbWz/6uZ+4cPHc//yzv+iHbcaY1vLNt8+99trZF154rtfrea4ThuGP/PCP3nXnqd/93d+9efPmwsICQqRcLnuZCIKg1wtbrVaaxqVyod3uOo5XLOYLftBsNqvVmuM41WqN82Ycx1NTU7bNAIBSSiXNsoxSq1SqSKm//vVvLi0tfeQjHyn4ha985Stpmubzec9zjchmlqUYYctiQHQv6nrgYIKCgmUL2gtrL7y0dXNl/QMPPnLixMnp6cmdnR3P88O43mhs1Ru7OztbH/3oBz/wgfe/8NyLWRZMTc4+++xzN1dWXde9dWvt7XOXjx2749GPfcJzcb3Z7vV6rut2O6mQ0vVsY31r9nXft0UGQgjGqCmkD4bS/yoaG4xbYortg5jJjEnTL2ZWlNvsLm8fsbfTD/f/NKcy7sZwUFYfjTHx4UBsdOBCg5feBm8dfDExewDofr/f7XYJQaPm8VqtVqvV4yj1fb9UKkVht1Qqf+r7Pu37vuPlgiC4ePFikmUb2xvn33qrXCl+9rOfTtN4ZWXl1B3HK5VSdW9rfn6+2Wzs7dWiKEIIeZ5vWdwo1hlCk+/nLMtmLHUcp9FoVatV48kg0kwPhOqR67paS6WMQo6RRVZpyrNM9Hq93FRZKTDdzQaeSNM0S2OtNaXYiBCZgMaYVASBWywWtUY7OztRlBhheyOV2Ol0jHyYsQKzbZtzjrGpwHHTqm+4Ko5jZRk3ipxaoSTOqtWqcXbKBXlDebZt26y/nU7H8zxCEELUtpnv+4Vy0bbtfthdWVnp9tt3nD55+dJV3/fb3TCJRS+MtaJ33XXXzPTcn/zJn54/f54QKoRotRuPPPIIpa6BsC3bEUINFJ2yxLIsx/GkbEnJ834AGjUaDaUgzSLHcfL5vO/7xgDKsiwtlWGIwHBrVErJgcz0aFDtb5MjwPG2ZVzrAVV5uOijff2WEYIJChnZ/bHTmheb9XocLB7HmkcvM7Id4wMXodtrkACgB2D0PrQ6ug4aOx/SB8qKw5d97wKpmY9DDQ6lDN/U3MaB6axgIJizf63RvjkeexkwemzjgyGpxyjkjD7j/jvf1TMXQGugdNAObB7biMQ0vqQcfEqjJ3z7g3q382s93HnR/tvNrR6o3o/OwxXYNkoSyRiRClyXxLEOwzSfd7rdsNmsF0t5AiCl7PU7b517442zL+7s7CRpdMcdJxrN7pXL5wuFvNbUsijFuN/vI4Rs2zZwf7vbmZycNOa0lmVlqSiVSt1u1xDout2+mZIGRLMsq1qt/tmf/klQyMttefHSeYSQBI0QmpiYSOIwjkOKABASQoz0xAcqzABmKTAfzTRWm4VLazDEagCQQsciBkQUYIkxAqKUQgoQEKG4RbBMuUZAECaACEUzE9MzUxOgVBJFCWWWZWFqublAahCcK4SAkizNuFLUtgzT1jzhJI4ty0qSpJnx2UrZLxZklo6+NpsxrRBPuQJs7BAM+cXgs2kShUrOz08zQpIkEkJ0+1EUJUK2M66UjnOFvGs7vuu0ux2cZgXX60URxhhTajk2AOKcY0AEYRtTRVSapkOPFC2EwBmWIEFjjLFNXIyxlEoJaQL0LAvNk2SM3nnnna5nv/HmSqVSsW27Vqt1cddhjuHMGtgUACRXQggEREuFKFFKSSVs115YnDMw0PTs1AMPvG97a6/T7IAalE9MDmkoJwRh1/UAtGHmNhoNIYQRr8QMI4QMkjuiRcPQ3m00OyzLosRCCMVRZDpUDAKrAYxhABpagyAANLyuTVkipEkFMQZD6zYjyhT1EcIja5fBgZGUUoIGBdQQkDk31h0AgxdTRAfIvoRMCgPKm5v0PE9okSRJP8yMp0U+H2xtbe3sbAEAYyxNUhjiI6NJagaG4zi//9/+wEiWB0HAuVCKYywR1kJmJg7XgIvFIsbY6FkDQBRFJuI1jZ8YEMaY88ykwd1ut9/vU4qNLHWappRSsyhRSrM4ocRWEgRXAEApQwinaYoBUcxAIc5lr9dizNYaTU5OOo4TdcOo11dcMMc2DaQYE6UUxQQDURqkQFoRqXjI4xpuMGZdvXrNdXMEUYxpkmRJzHO5wHVppVQOidXrhVoOM0OJsoEVsTTccMuypFBpmjJi8VTWdpsIa8dxJiYqxpkNIw0Ig5JKKYdZuVyOUiq5ajaqpk8ryPlZxtOUcy4ZRXEco1ar3+/3Ot1Wq1Usl3w/MDUto+9csCzGWL/fN4oulovufs9pIUSv11c66/a6UkrXc+bm5iqVysbGxvr66sLCjCmiCyFwzg2jqNvrOW7O833muI996lOT5Unf94v5EiGMUgsPY1GE0JCOgKSUWANCGgApI0tIiJSaMZuxpN/vE0YZo4VywYiDCyFcxyMUc857vV6z0UIAhw8fxhh3Op0w6hntSK2U7/txlgoh8vl8EARhGJuQslmrg4Jf/9e/8Qu/8AsEI52p+k7tX/4f//KTn/jkpbcvP//0Cw6zFZdSw+uvv3H58j8pVcpBEDDb0loCwcmgKZiXywWt9dvn35ydm7p165bn2YyRKI663a7jeI16vd1o5vP5drM5Pz/vOoVqtVrdq1u2m8/7+UJeDiKfwc5lnBjQWMJrVt1yucy5CILgR3/0Rw1RhjnsV/7RL/+73/ntp5564sSpE6++9lLK0//j//X/Pnv27B/+4R9OTU1gSjzPq9frxsK0UqlMTJSXl5d/+qd/Wkp54/rNcmnCtfj8/Hy3EzWb7ddee811vQ8+8mEv8G+tr1uOZ9n0U5/6vve//wO/93u/d/PmzXxQ7PfiZq39R3/0x45jl8vl119/HUB5vnfo0OEsFTu72xp4LnCvXL04Nz8zMTXle06SZO1OM1/ws5RjjDHCBnQeDwwQAmkCmNsr0wdDGgWjxcqsIUbqutUK2+12oVAulyYwo7VaQ4N45unnisXCiZPHXM8TMtvb252dmSED5AW03mcrHwAWhr3244dZrOQgTsJaa0yQ0oY7AAhr0JpzQQjxbHj77LXa7p5Z+NOULx1enp6bcDwQ5otGWGtAgIdX3OdAALwjP9oPZoaPYtTZZsIxDEgDxkgqzRgadvBgNJBphiyDGze2Xn311XK53Ov1zr3xpuu6OztVy7I+8pGPUMKkEgCwuLjcajUcx+l3e9PT06ZVf2tr66UXXsiy7NOf/vTDDz+cz/tra2sjH7C77jq5u7v73HPPIawpxcdOnP7+z35KY7m7u3Ph4pv9sPWL/9vPRVG0uroyPT05OztdqVQW5ubnp+cuXjzvuF6WJQk3GxNllHXaoWN7npdLknR2Zn5za6tQmGo2O25OA5Jf+uu/mJmZqTf2Llw6Txm2bVuITGtYX9tst9u1WnVhfjaOQ4xxs9lsNBpSyueff14I4biWxRyEiM2s3d1dglmv10mSKAx7juOUSgVTlGq32xOTZVOCNa5UQRAopUwAoLWuVMpBkJ+ZmXnzjdcQ0oSgKIoc1+p0W57rG5sfjDWArtfrrmUDUgThXC7X7yUW82zLrdVqaZQWi0WEiBCCc5Fl3DQeeZ6Xcj4Y2BozYimlMiEK+dLU1NT09DRCqNPp3HnnnYCU8WQr5v2bq6uWZSklur2269rMIm+++eaFCxcmKlNZxvvdfhAUQNO7ztwlJfmBz/5Yt8dBEwRO2E8QIr1ukiZy+fBxBbfuec99q6s3Acmf+umf4zz9D7/7O1mWLC0f/tyP/Iim8stf/vKxY8eQFlLKmZmZn/mZn+n1ev/zT/+s1eoQRPHQeaLdaRaKAXXYl/7yzx/92GMIq+/7zCcRQs8/+0wUdwFASnXx0tv5oJBycfPmjZWVG0JkExNlY0BiLFKiMJFCd9rNKEy01kmScC43Nlcf//qX0yR53/0P9HsdhC21C5MTC4orKTQlw5mrsVIakNJACBoSa4akZhiT/gMAIbShMyMElILhHSEEjgtCQK4ASQJpv4WJnaZJL+wjhBi1isWJLBU85badI8PkyySpJikz12cmCdIaA8LEFMmUwVt7/a6UUkslRBYnYbvZqtWqYa9rqt2FQlApFycmJubn582yn/KBuBkASKkZoZxzpQXGGGBgqTfslTDprdn0FNYDwgElA2H0Ubil1b7nPR5TqhwFnwqBkhIRohFSAEoIyzYmftJUPhYXFxFCvV5vdnZWa3358uVmo9bpcIRQFKZCZpxLAEhTLqU2ZAWg2AC+SoJtW0opjLCJBNOUt9vtfj+UUgJIKXWcpY7tmlXIwNaEYEoI55nQKnBzcZQYirRUilLqui6jVld2iWn3xkQjFCXpdKGIMaaUAiaZkAgh13Er3tSZxQUUINd1J8hEv9/dg7Raazi1lA6W4IMQ7QgFe1fUeL+C8b9iYMGY19lgbL6DTXbwDCPmiPn3gOelNWipERqgG4P8GSEAIBQNBJjHjnfF+AZ/Qe9+/xhjjCFJ00ajAQClUsn33TQVhADn0OuGpmQquKLEUhKkRKZZnlkakOhHvWef+W6/1y6Vi91O++bNm83G3vLy4tr6rZWV6wSp8xfOlctlraWQWa/ToQgvzS8gDXEcJ0myvLjoed7lS1er1Wo+X1xcXLx161YcC9NIQaklpdYaWcxGBAxPZ2FhqVqt9vtd23ZvrFybmZmZm5/a3ll/8qlvtVqthx565K++9Ocvv/ZqL2zPzcz2ul2l9MTEVHVnRwmxs7Nz+vRpI9KfpnxxefnEiRPPPvus6bvJUmHZVEopUrFSvRVF0cLCQr8fJUnium6pVErTVGujWkF7YYwRdR3bca00TTnnrVZrY30r7/vT09NKQrfbNbBXGIaTk5PlcrnRaBCqlRLMwoQgzDAWKM26XAjLhs2N1Q+8/4Erly+dPfvmY489dvLU/M7V1T/90z/ycu4DH7h/ojJ556kzX/3q115+6bWF+aXpqdnz5y/2+9Hi4uLi4uJdd90VRy3GGLUcY2ZSKBSEkmbBnZmZKZfzIjN6jowQyDJA9DZ/stuH/RhcNfhTjywmDo63cYxoH5+CIS0UBqGeQYvGA77xd+HvwU1+ZwVo/JbGx7Mc+wj7vxq8XkuFEALTDoKQ5lyYbVhKOTc3t7S01O12e72wWq0hhCqVSYl5LwonpieiKDp28lgun3vPe+5eXFz4kz/6g/PnFxRo13VLlfKp0ycOH1nc2Ni4cuWqoWVhTKenp03+ybmM4/jGjRuHDh1CCJkx77quQYviOO73IwDAmBgUcUApVYoyahQ2m83mnXfeaWDroFgCITjnRgHGRMam1c51XcfxOOeu5wdBoDXK5WzLchhjCBEjcGEW9CRJ2u12GIanTp3yPG9vb48QZlnGy2VAeVNKC8ExRv1eAoDn52cxxvPz881m8/r1647jYowxYJO4mo6tyclJpZQQmeP4cnj0+/12u71b3Z6dnZ2dnb106VKj1fnVf/RPb95c+/Xf+C0E9Ozr5xr13i//yj9aWj5kW9YDD7z/hRdeuHnz+oMPvt+2mRAqSRLbcUemAUYUW2tNCFlfXxeTU61mu1qt5XK5YikoFou5XM7zcwY3kVJiQAghPc5SHGGvY6jE8C8HwMrbObAHR6cpeo+/3pzhnbgkDNMPQAPA6CD75oCGxvhf3nEqPAK5tdYKlFGjHs8r0G2lZviex/jcGc6mIR5tBiEyoDgAAMID7HiUsaghx3k03Ya3Pnw4w0MZbfjhRfcXE9PlMCa5o99N5/3d7tx8wMHXp9R+zqZgH2zCA+r0fsH1f3HesdeMP/nR39XYcokQYhTSVNk2Mb9vtZNmo8F5atvLSRI1W/U4CT3bxgTeeOP1mzev+T4TIiRY31y55jjO5GTZ0CqFEIaQorVWEqIwsW17eekwwtpQhDrtHgBUq9XNzU2eSSPFMMIcTXOGUopSTBAQSmxGNRokz51mw7ZtrJUCBVpTQjDGpsA8whzNwxx5aEgpDYhg2zbn0oSenHMiNWApkVaD0ssgbLKYo5CSQlGGMaaKZ1gj26L1vT0lpGPZZvICQKlS5lImSZLwLBNKao0ZRYhwkWitiQaEkMUcBMh2icx4rdEIlhctgrIsMYkopZYUWmTSNHUZFFIrlSRJEkUEa6G4SeeyLEs5VwoQJnEimCWogylmtm1H/a6D8UPvu780OVVrd96+frUdRRJho0SshCQakNLGn32owDMYVAgTACGldhw7ChPOOZimAaVTMVg88/l8FEUvv/yysau2rGIcx1JKrrjMNKYMUcKzlCcpxQwAsizDmCCtokjZnq21jqPU9WyDxpbLpUKhcO3ytX4nG4TsSgkhhmYsGKNBW6cQ3FQcTWUOIWTAVrNsmp3OkEqklJRiE/MQQjABwQeGgWZUGPaaoQYbBj2j1DCkTPuhEd9AyPSb6yRJMMaJUpxzNJQc0VodKP8ghBlGWpvhZD7L8PVSa41HU3bYhjGU8kCmMUtmEmPsWX7OdynF/X5fg3Qcx+hKg6bmyzJooJKAidZaW8zpdcMoiTnnQZA3k8XQXgDAcJx93zesH7OxmhcYN0hTSc2yTGTcNOQZlhkApGna7fZzudzExES5XO70uu12CwDMtqi1lhknCGFqZ1nWbrcJoa7rRlFsnBJNXO15uSiKlRoZbwJIRYkV5APHcbrdrpSi2+ljAkoJKYXjuISiOMxCnWpFslQJITBQy7Zsy7UsRynVaLTiKLGoRWzS64aK80Qm1HWTJMFAQBEhMpFJAJUv5BBozkWSpJSSJGnPzc0Rwur1Xc9iBoOLorgZNk6fPp0kSavR7Ha7gBRoTC2LEiuOUyEUJczUIbTWSZJJqXOun2ZZu902atoYUyMTzBibmpzM5XKtXnVlZcWMQGZT1y2ZL6XbbTcatWKxeOLEiTRNoyhCBItMen7usU998ktf+nKtunfoyJEf//xPBH4AgBzHyQd5DaD4YDUjCAshjPTRaFU3ZHyDFFSrtXy+ODFRvny5jymhSDPGwjA0hSsAcF3XdV1CyOLCUqfdXltb29zcJIRYlmWE9VzPBgCuOKEIgEopS6USxrRe3QvD8MSJO/7p//5PPv7Rj3WanUqpePzoiX/8j/73j3zoUa3xpx779B/+9y9oCY7nKi3y+bxSIgzDOI57YbdQKIBErutIKanNOOcIVKVSAlA2Jf/u3//bt958+ytf+eqHPvjwubfOX79yZWt1/dGPPAqA+90wCAIpZb1e39jYmJiYmJ6eNPJx+6HyKMDWAACGRmBXbJlxx3Hy+cLe3l6hUNjY2Njb23viiSeuXLkyPT2Z8SRJEsB6b29vdXXVtC8gDaYGI4SwbWYKM/fee9+h+SPfeeo7b7557siRY7/0i786Ozt7/fqtl1969emnn7nvve/7mZ/5GcrwU0895fu5xcXFqamp6alZjCjP1Pb2ztz84h13nPjOd741NT3h+67W2nU9IWSj3grD8Ovf/Nrc7EKn1euF3bfeevPee+/N+8uU4jBMpZSuZwmuTWud1mQ8UpNjBfZ3pu1ozEUGYzKEAhAhkHGOEMrn8zdu3NjZ2YvSJMtEoVAIw04UJc1mU2lNCFEKNRoNy3JKpeKo4D0yrRmQutQwlz+QxRyMJ9EoVQKz40glMCJag9TKdZw0hvNvvZ0kmW27YZQyyzp5+hhmGCHgShrBNa00oBEFDb3zIwO8Swo2lveZUXJA+dqcxwBqzDAxAXo9tXpr7dnnnrlx40av18nn81jDoUOH7rrrrpWVWw899FA+n7+5tiqEqFR8x5ldW1tL0zSOY7OnvPLKK/1+33GcQqFw8uRxxlin0zFxgklPbty4QSiybSvh4Zm77pidnXzhlef/8i//bHtnK4uTUyePSC6vXLlmMefll18uFss/9EM/PFWa2tzYCuMwjjlzbGNXq5RSSuVyQXW388ADDzz6iY81Gp3Hv/aVmyurS0enm83mysoKpTSO0snJ6fe///1nz57N5XKXLl1IszgMe5zLE8fvmJgsf+c731pdvamUwBh1el2bWRjRJEkwpghh13VB473aLgCYZlCpuGVZURRNTk567sCIz/SPCqUxAiHE7Oys4zhRHJdKRVMwRggZ5hDPJOd9KWWaCcuyNEYYm1ZOAoAc2+33Eik1xrTT6fV6oe/6tu0KIbSGJEmCIFhYWDDqNIwwk4oSZyCH5bnu/Nwcs6w0TXd2tyYnJ8+9/aYphNu23W636/V6LpcDIrngjmenCU8TDhqHYYSBUGpxzgO/9N5778PEs5ycnQqtSMYhjEJKLcYwIdbKyipC+LM/+CPddrPdrns518/Zn/v8j33rG18/evSw4+Yand1KpXTnHaeuXruklErT9Bvf+MYHPvCBz3/+8//lv/w3036EMO6HXRPxFgpBvx/e/Z47K5XKqy+/hhDqRe1iudDv9yljrVYjSZJ8oei6bqve8DzPmwzSNE1THgTBkSNH3n777Vard+bMmXq9rlTIuXQdr98Lq7t7GONPPPZYuVyu19peJYcQYtTmUipFtQZCTNpiJBUHXuGmfD5opBijbwIApYO5DwCgwKLgOIAx9Prp6upNRslebbvZrOV8O4r6tVrNshzP88ulSaWgUp7O5woLs4ucc8EpaIoQEOP3pkEjpJQmGBGKpVRZKgzfy9QJQHNDpGs0Gq1WI4lCrbXnOcVCMDk5WSqVjB6aIRCkaaqRQmSgjyFlpkBKPSCjEDLwt5RaKDEAl9UwMiPD1MOgz+PZ68gxbrTNjOfR5pWj6MgEnCZmI4QojYSUSEqllOnFT8LojjtOSymvXrm0sbGRz1Ot1e7uruNalmVhxAy9w3VdU8sxMwhTGsdxo9EwKqZZlgmulFLYQhohz81JraQCwEgjwBRRQgGDRR0pJQJs2za1mOd5Ssg4jhFgN+eFcQSYKK1NxUhrHcax7/ue7wPAmTNntNYz81M+LWoEMUuzJLmxfjNNU1lOGWNJktHBeqrend25n40PlW33W5WHGwmM1wbHXr9Ptxw/IZgtR4+YWUppACAEASApR6qVALehfmhUTBn8Xe+/7PZCrr7t5veht9EZFcB+n7U2xhpKmhbLTqfV6bQqlcrs7Eyj0YjjJI4TU6kwcadlWX6usLdXfevc2ZnZQq2xWdvbfvv8W1kqvvbVx7MsSdN0emby+vWrrm2Vy/lev7O7uxOGYalU6Pei3Z09xtjJk6du3LghOhmldG9vb2lp6ciRI77vM2Zvbm5hjCcny4QwSqlNbQNm8YwDorbNGGPb29tCiDCMo7Dq+/lmq/47v/vbS0sLf+dHvu/LX/7q1WsXZmfnjh07tLKyUi6Xf+Ef/P3vfOc7nm1TYn3hC18ghCwsLFWrO7VajVKr1Wp9+9vfNqJy5glIIY1gJQyDzjCM5+fnzcg2BUPP8wzpybjx8EyCxvmgqJR66aWXep1OPiiaBGl9fd0wwRcWFipTk1u7W77jUYS4Si3XFTJxPQ+AWZYVx+nm1uqTT/3NyRNnHMf7d//2tz762PuVEtvb20eOLv+P//HHH/nQR9977/vuueee//lnf3n06NFf+eVfXVlZOXv2TSn1Aw+8r9Gs+Z5l27bWyrIsg3QDRr7v5/MGfzRLIeVccY6HrQAHBs+7HgZNVqaONxyZBA7SGN/tXWhs2RmEUIbt+I4CzxCUG75r7MxoDIMex51vo1seuPmxkHrwAw2gQUojLoxt256amiFkoDKcJEmWZYVCgXPOmG2WvzRNJXDGGGFEKBEUAkrJlSuXLl++2A27X338K2kaBkFudXW11dw7efL42tqa2bCllDMzcwsLC+vr641G49ixY4uL86YJyyixaq2DIDAFST+XnyhN7O3tVXdrrutiTBhjGCGRaqMISSmNonhiYlJrOH/hdWo7hJBurzfqDrZsOwpDU8J1HM+gSFEUTUxMNZv1brfvuq5hkGmtTbaMtP7c5z7nOM6LL76olMoygZDEGPu+b4ADPSB1EoRAyqzXDau0duLEMSlVq9XO5QZSmzxLDUPNCNFsbW0ZYTKjSmnkoaNaQgjmmbSYE4ZRsTxx7cbquXNvHz9257/+v37jj//oz7rd8NQdZ/7jf/zPvW77B3/wB37gB77/4qVzvu9du34JH7PK5XKSxboDfi4wHT22TRmz252WgQMuXLq4urI6N7dQKpWMtFkURd1+z/O8IAgwxjzNBnvjcHfUCGHD13sXmsn4MMJGw2tsSCOt5YHNQoMRNRr7gaEEAwDASB16/EIYDZdovQ8uIxiv/Iz2Zq21UTPVGo0mFBpi1sb4ZgAWjiDRg7vZOJa9z8d+t8rN+Itvm1mjQhEczFUGjMcx8s73OD8y/0k5hlbrAWK9P6nfsf6M87AAQIh3gfL1GHPcyBSOgpsRrj+Ov5uFQ4990+OPaPzQWiuECAxHDtr/XgwYJqX5LkApqNdbe9Xd9fX148ePRlHf9ewbV69eunRpbn5KiOyNN88WCsHsdN7z7L29PYzx1vaaRWixWGSMIYIopWEYUmKZUsrCwqLv+6trKybuL+RL5tJRFPm5vFkWOJeu60ZR1Ot1kiQjhAT5wLbtOAkHbstcIIwZxVIMVDIAoUFANmjuk4bmgAkx/OLBywALwbMsMfMFYwyAMKYIJCIMY6QQRkD0oEUdSSmFFGCcjoSwCbUpy+KER91cLuf7fqvVajQahVJxprAASsSdTqY0l1IqRYCZ548xBcGl0AgpQohSAyXcWr05OVEGTAijUgPnnKdCSiWldh0n53lKSoMASsU1oEqlopSqVCq+79+4cbMfxlyoTECnF7qYEK0KQb4YBC6zsn5/O4ysIDhx5MiV1Vu1Tg8TNDDzFFqBoh4ZrhyIoAE4qxBIqTSSCKWcc1CaEEIxllKmMdcgGSae7bXqTaElJpCmqdaSUpxlWRRFjNpG/1dKjWHglK2IGVZYcKXiWChKKU6z2LZtRkm9XnddL5fP9TsZABjlEIOLGZF9hJBG4Ps+AGLMMnxSI+NgsGaTy9HhkSRJmqb7AxmhgaYEZuafpkaeJInFGCVEa+06jiFlizSLhBxNBMYY56mhbxukmzGm1YBuQyklhEnJBwIdWmFMzAhHCBmVGM/zoijRWhFAiBBtZhpohJA1RMzNcmciLsu1ACBNU4SM9IQ0vXeUUjTs3Bzhtlrhfi+yLGGE1BizjD9SHHUxxhpksVisVCq7u7sma8qyzDxYw6qmlJprMcYcx+EIm+KQ6fMzY2MAbSuFMSbGWAdjzrnv+3KgwqnTNM1SnqXCyzkAkCTJkFIkASDnuFrpNEwR1oYobUZFzs4hQEkYpWmKEFiWhRnmIoui1LKobduGipslmWVZGmOL2Z7nl8vlra2dVqPuum6WZVmUaa0N0jE9OcU5bzRaSZKYxZsQlKYZIWAYRnEcc5Ga9imDH9Xr9VqjSYD8xN/9u7/0S7/0zFNP/at/9a9yOW8giiqE5+eZ425ubBfLlVKpBEMNEMdxdnZ2CKWm4AFGaMVzzACu1WobGxu1VpUQMjc3VypV+r2o1+v1er0sFSaG2d2pF4tFL+ckKU/iLOcFluXs7FQLhcJP/eRPfeYzn6lV63OzS2s3V3d2dpRAU1NTozqH2ZQRYJPpIIQAKS01okRreOmls1evXp+ZmYnjeHN7q1AIADQXKRcDZXwppe/7u7u7ExMTJ0+c2LNt27Zv3rxppp5J2o0AkSnMZCoBDr/2a79Wr9dfefGV973vfeurGw8++GAUJUHAGo3WzMzs0aPHuq2uEAIkTE3NcJ7yLFNaU0o0IzxNp6enz9x1+pVXXxVZZlFKKdU8q0yUsiT1PO9jH/vI5ubmIw891Gq1fu3X/nmaimuXrxmO5Orq6t5uNQiCouXm8gEhxDTsR1HgeY4Q7xLYm+Kx6YPEGGtLmkHb6/UOHz78+htvfOtb33rhxedzgdOLet1eG0B3Op3HH3+80+lUKhUpZS7wOednzpyu1WpbW1uFQmFp6ZAQ4ttPfvu7330yDOPJyWkCxCLWA+9/wHP92dm5B97/oOd5lk2np6cvXbq4sLDAqL2+vp4kqcOcgl+4+65777nnPd/+9rdFmkVa33PXPW+9/bYQIktr/X7fdp00TbNUFvOlam13bWNteWHBZMM3b94oFApBUGDU9OtIgEF6o8Y+uzqo4IfHQpSRDYzR4jD/m44QIZIwjJ98+pmTJ++cqMw8/vjjx46fvOvuO87cfYdSEMfp8vIhjGgcJ/tYs97v1FRqUFbX+nZdMjiYJZnS3aBRHQEy5EAtASNKiePAtevbtWqdYoYRBUiXlhcOHVpyPCuTWkqJCEaIaFBaI4IBaZAHA5tBeDuGTtxW2pcjr5GxlyEMGIMQihCMMWSZ7nb7Ua+/vr7+zHPPb2xspFkCUlWWShjjhx9+eHZ2NgiCWrMxPTdpiIpCgBAqywbOLlLK119/vdtuLy8vU0o3Nzdv3boVBMHe3t6xY8dMih1FUZZlvu+1e20N8r777n3m2Se5Su9+z523Vm9UyqW/+Ztv51xfStVsdA8fPvqzP/tzk5OTzz/5EsGu1vHy0pHP/djnv/jFL/b7fYfZ1LEbjdby8uGlQ8u/8zu/k6bcYq7UZHtvbWpqaqIy9YEHHl5fXz9x8tSdd95VLExubW099+yLhWJgMdO+Y4X9uNPpBYV8sVjsdruUMkIIRqTVa+Vy+TSNhJRSZmlmYYxthwEy2xwEQeB5HsY45+fMwoIx1lIqCTMzM0Z7Sknpua7S+tixE4YlA6A2NtY45zyTWmulQGmNkLYtV2SJ7/tBkOdc9nqhUsq23fn5xajXbzQalmUnSVIsFiml5dKE6+S2t7e73a5hLURRZFQ1CCH1en17e5syBkgZ4zizRJt90IB3BGOCbQJWrdYUQhTzZa2QlDKXc7SQzWZ9ZWXlQx9+LIqiLAPKPK2V67qW5biO1+uFr7/2xvbO5uc+97mTx494nqM0pxidOnXniy++ePT4SUSYbdt3nzmzsrJy5coVKSUleHd3NwzD+dm5KIoYs33fbzQapuLLGOt1ukLImyvXDx86GsU9IUShkCcEEZKP4ziP/V4YQRc9/PDDq6urtXqVYOvUHccbjVYQBHvVRqfd/+G/82M//dM//Tu/8zvnzp2rVCo7Ozv5vA2ACWGTk9OM2nt7ewQ77lKBYuTalpBA6b7XGkJY7yc5WikkhDacVzWWwFEKSSIIRYwQABBS7Oy2qtXqxtbVW7dupUnfthnSIox6ts0yKRi1TX23UCjt7W4Ffj5NOkeOHMHS0VorqTTGAMhQrbU2HIIk7PdNdCclj+O42+0263utViuKQq11LpdbXJgLgiCfz2stKcJacKUkAtBKAkIEdKq1FIIMJdoMfY1SKkUGptI/SHkGiTNhVGuNhwwnrbWS0kxYE6FphTTSaPyAsZxwjLhDhl5K2PD2tdYSEFbDHFNlqUjTlGcCIRKGfdfzT995V9jvJknkOG4Y9h3H0RqGlD4uhJBS1Rp7/X7f2FBxzg3/A2NMCCMUASipRCa4bduAQQgxMzNDKZZSKikMcyVJEsuyPNcjhGGMqRQjnSJzzwCAKT28vOx5/vLysuM45XLZzweU0k63vre310/i3HROck4IWVxcRFNaIcV0jr4TKRvjXt1OLoN3x3D/FyToA2v9oMKMlBoAy3qMIIYMVDzqdsFj+AMZejENtjGkx24VDAQwuDCAHqb978Dphs3XAyLY6NNFaSKlBKWEyCqVSpLEYdg3ZjJJkjiOB6A6nfbW9kar2ZmcnJqenr1y5QqXSaOZrVy/tr2z7jgOo/rKlUuYwORkJU2jW6vXpibKCGczMzOcZ4YaEEWJbbtRFK2urk5OTnb6rSwT9Wa7Xmv6fn5hYUkpfe7c25bjua6bzxd3d3cLfsHUJ7MsY1YujrJisZgkkWkVyeVcpUS32z527NBebWe3uvGRjz64snKr3qznS8HCwsL1G1e11hOl8vnzb585c4ZgppS4ePGiAZFLJafX65kSvWVZhoC8u7vLOXct+9ixYwahs23btu1Go6GU8jwnTdNGoxFF/TDmnueZALdQKBkiRhjGoHGapv1+3/M8hLAR9W80mutbWxsbW3ecOlaplBvNqpdzGcsrpVzH6/ViTNTEZPHW6vVKpVLIly2bvPLKK3fffebBhz4Qhj2eZsaQ5NatWxMTlZ2dnWvXL586dWpyqtLrhr7vCME7nYgQ3G53PN836ZyRszFhk/GwQgjtl6NMPLQPNo0NmLFh/LfwDf+WGTROoxg/FcaA9P4i9K4vfterjMgCaOyWbgOk4HvORw0AJkMw6aL5uWU5nkfy+YIQst1uGroTQjrnuwhpKVSWJbbNOp1Ws1m3LOvxr31lc3O9UMjX93Y1iEqlEuS9LI1ff/31NE2M3L7v++VyuVqtNhoNhJBSIgiCycnJarVqLh1FUa/X01oTzEqlkkWp53mBXxBCEEKHnSlhmgqT7k6Uyq+88oqUMp8v+r5vmu7L5fLk5KRt251OBw/IYtj0U4dRQggxwU2WZcZvway/GGNQWoPO5/M7OzuU0lqtYRZZIaRRi8aYmKDH0JYRIlKKVqt16dIVx7HCMDSguVKKMRyGPfMkXddVSjUajfvvvz+KokuXLrVaLc/zpNS+7wcBvXr1WiHwPv2Zzy7ML//Fn//1j/+499M/8/N3nbnv9dfPzs8t3lpd4Y597tybv/lvdtI0vOPUUdvBb507e/ToMS8XlMsTnuc5tquU6nZ7aZZQSuM4bDQajLH3PfD+malZ3/f9wPY8TwiVCW5ERWzbDnL+Pmts7EAIqXGeyagYDfvSqO82irBJ1EcY5QGs2fwQadBIa43wSIV5rC4I+vaTD3s/Bxv02P1oBKCxvu0MQ5wa44NyHkNQ1XzLMKw2w8GNbFSwGQeXhz//HkoWB3ZGgIOzzBgJIg2I7L/yXVYGdeC9Zjsbewgw7kYI79bTILQimJAh4D7+rMamPxr7XjBCB+7jAMo8furhuwf7/liF3uSoenjy/U+tgVDQGmEM1Wrr9Vdfe/GlF6Tks9OV2elK2A3rjb23z79x5SqdX5g7efLo5SsXq1vXer2eyBKEkGvZxhbJSPgZIXUltdba83JKqb29PSGEbblS6Ha7XSqVoiiemJjwPG9zYzvLsjTlc3NzCCHOuWVRRmipXKCUSsXTNAWpPNvSWnPOlZSUUspYv99XSpWKFdt12u12qZTv9/uGAmCeG8YYY6q1ppQi5GKMAcQAbyWkUq5IrTMhU8GlMFKXgBFggii2hBYUI0QpRpgQQjAogFwuV6lUKKWdXtfNBVGWbO1UY54x20YYK6XBMHowAwCNKUEcMDZzk2KMKW72OgjrIOfZto0x5WkmuaIUK6wBwFjJUUqTJLUsKwj8QiEgjPZ6PY2A2VZvry4UZtTOhOjV2+WgcMcdp7EQUacHSu/tVgMlrXygudA8A4wRIggh0EpKqTlnjHmeRxAGAKGk1ooRwnyfUhrGEecSlFYKuORKKSGklALnrShKOOdB3k/TOI0TRAljdj5vJXEWRXEcx4SwNE1zlsc5F1wNuDIYIwRpmgJCrVbHaD2Vy2VQKMvSQ4cOdWphkiRZJo3cNt3H8jTBxDTn2rYNgLKMY0wMXjEiLI+6YUxZXQgRRfE+Mqu1EUxzXdcouhpJxyFSrKWUWZwYdRGzgRJCpOSmP+aRRx45derUH/zBHyCEBuzpIQFfSowQYEwRUVprZlsIIVADIek0Tc1GA4CMfciw/IAHohwYk0EHHtYghyudBgDP8zjPOp0es4jWJi8YULPxmKRgGIZKaSGlAfTNUzIs7+H0sQxAPyIQmO1SD1jWA3HwLEnNpx7ZKwGA7/ue57Xb7a2trXw+bzNbgTJoNcHEdGuOEHMDZzPGMMZaIQoIY5wm3HwdgIxCKzYBZ7vdjuO41wsxxpThNM1ULBFCQmZphKSnOZeUWr7vW8xRSvV6PZHpqB8rpUzLdhYnJgg0fQAAyrJopVLq9/tZliilojiME5iZmWIMN5uNmZkZyy5hjON+SBF2cn5Jaj9XeOCBB//1v/7Xnu1duXItFwSAtGVb1LZAo0KpaFlOGCUKlDEUHfQECM2lyniqtR64PWNtFE4B6TTTaZo6ti+E2N2q9dpxkiRGDp4QIqWp7GrLcqVAjHqUqCzVG+ubtWqtUqnMzc21Gu2nnnzmxz73Y8VicXuj6jmBFnpmZtos0ZwLxpjSg912sGwTDACNRueJJ54ghHTavSvXLudyOSEEwopnqaaaMWZ8vx3HieO43Wq9+uqrUsp8Pl8oFCYmJjjn1WrVQDamim/y7VzOvXbtWj6f32vsHTp06J577omiaGlpybXsyxevxHG8vLzUbLd+//d/f29vD2uYmJhqtRpSC6UFQphS6x/8/C/+3R//yRdff/6f/tN/agTKtISlheVms7mxsZZl4v577/9P//E/ZJn4yZ/8qa98+aunT5+enZrb2dy+devWk08++clPfrLVapRKFd/3TRNDGIaUUsaoUoN9Dx/sVjQ802Kx2Ot0CCGVysSJEyeuXr26vb29tLzYC7vlcjkVqRA8l3MDx9/c3DTzV8HAXfaRRx554YUXVldXEUI7Ozv/5t/8m/n5xVwupxVcvnTlypVr8/OLaZTOzc0XiyXH9vx8DhO44/QdzXazWCwKIW7dWm3s1SilDz/0wa3drS996a8BMEbUcdyd7b2f+ImfunH95lPPPF0qVTSWnPNypcQzkST85ZdfPHX8WLFYDIKg1WpVq9VOpzMzM5fzAqUUgESIjLDm8cBj9OdAAHDgIr5fU5dSJkkSx/HUdDnLMtDY9lzjGtpsdKanZ/7hL/2K6xEukmZrLwiCQqGgFWLMNmDJoJ1uFFmMRTV6/35GfIL9tMtELmaJNuVgjLHhRFiWLQRcvXx1ZeVWEBSEkAih4ydO2J5NLcxVBnjQD2IaTREaXfcdbdpjZMxRJDZMrPajwXHCplLAGNaDB6V67dbly1cvXLiwtb6lhDpzx51ezv30pz95+fJlkyyfOnNntVrNMuX7ngHuCcH5fH5tTfT70cWLl7M4+4mf+ImjR4+2Wq3XX3/91q1bjLGpqanZ2dk0TarV6ksvvTQxMZEv5HpRd2pq4mtf/8re3rblsU6ntbw4HwSB5KpRb7daHUZt1/UQQqAxwc6jjz4Wp3GxmH/f/Q+/+cbF8+fP+Z7julav30gz8fbbb7c7zbCffuChR+bm5lut1nvf+95nnnmOUuvDH/n4wsISRuQDDzz8xBNPxJE4eXJhY/MWo+6FC5fCsOe5vlGOKhRKvV5PCi1B2l6u2+1Koc1cc10XE2CM5XJeHMc8U1LK3d3dIAjCMKSMEEIUANWaENJstBAG27aTJFlZWSGEhP1Ea00Ish0ripIBO1tws9HzTFoEISC25SoFcRxJyU3FK5/PZ1lmxJ2EkI7jGBtSAKDUCoKCWaYcm1k2NTWqbrfLOaeM+b5vWhPMnRhMzXGcJEmEIpTSOOaFQlDwHSGE4sJ2mOc53W43DnsvvPiskOjMXQ8cPnTacViWxgBaiGyv1ms324988KFvfvObN2+uLC/OYYyzVCRZ+vLLLyulCKEbGxvLSxM3b1y7ceNavbGHQZdn5qanJ2/evHnh7YsmFAGApaWlWq2acW6WXAC4dWvl3nvv/b7v+9Rf/fWXhOJJluVyAaRaAk/TsFAIKEGM4iSKbeYx4kxPz9ZrzbfPXQqCgFF7Z7s6NTn7cz/7vitXrmxubAsOOa/w0EMPBX7p4sWLN27cOHb0FEEYkCIEFADn2nBDTZ/M/jRCyIR5vh8QBEqBkbbAGDBAkKOWDd1usrOztbW9uXpzZW9vT+F+GIaCp1NTk65l93sRz+zTp09brruxvrWwsCRSkUHm2Fan2+x0i/lcTmtFMMJYa6UzKbM0Ntq2hrUfhmGzWW82m71OJ8syhMC22eLifOD7JoaRkhPQlu2YoWtqCabkQylVaMBNVgDm2RpeAiYghdDDLn5slKO0BoRGCtIGlIMhc1lrrSRorWBAz0CD5kvYT8f2F72hbBEAYEoMZ2WYqg4S2CzN0jS1bUekmekXBwDb8YhRvVNaCNHrhYSwra2tvVrN2G8a2RDLdTKpABNCwNyHUqCUJoR4OdfzvHavm3Occrno+z4Xqcw4IThNEowxsyzbtqUGEzAHQQCAHcfBuMM5J4xNz84ePnz42LETQRAQRoMgaDQaRhk142HJnVxYWGAlRjEuo5JSKsx1uRS251A4eLxrkgwHkYXhmv7uWPPg7d8b+UIDi4YD4kpSDTQ7D9yDhgOsdLMXIkDvxsXWWis9cKbaT7yHVzzA+0RowNLS+3se57zdbvueY4ZsPp+Xim9tbzBqM8YYIwC4MlGwbAiCnOAQRf1urz0zW5hbKFy48HKjUT916kyz0aWsOzU1oZQ8f+HNUsGfnCwnSXT+/DmDT1WrVSlVoVBACDUajaNHj+ZLxStXrvAkpZRq3UuStN/vz80uhEkshCiVSjs7O41GbXJyUgiFNGQZaEBhP0JYOY7jeV6r2QUA3/c2tzaq1S2lRZqm+XwBEbK1vaEkcV3313/91xXnUkqDrzmul8/n0zR1XZdSnMnMdhjK9OzcdKU82el0lBY5x5VSNptNAGCMGVplEAS5XK7ZrHueV6mUyuUyInaappubm2YyYExc18vnC9XtHc4FxiRNM60QozZofvnSdQEZY6zZbE5MlDiXtb2649pRGFuWgzHN5/0sFnedvlNk0aWLa3ecPN2LO5/8xGNT05Xf/u3f6qXR008/vbmxc+bMPT/0Qz+0tbWVpFG31w6jrh/4jUZ1c2M7nytOTU01Go1erzc9O2/EBHq9HsbY8zzGsBJggFaTAOiDOLLR6tovbw/1vGAE9Y4P8tEQfScYjQbw0zjWbF6D8YA+gDTIoYqrOTnGJtsChcYKLbfX/wGhgUDtOOK8f1djFoLjkw6GpmGmm0lKDQCEEASQZdI0z5ph32w2PM/Z3t7o9trTMzPT09Nh2Ot225ThjEeUogc+cH+lUvr2N78exyEgzRg5fOj4xER5ZeVGJriUiqdZs1kPwzgIAmP/9forryZpjBDCoGXGzZroujnB006nk2VZ4AUTExNKqU6nY9ZNMCwhNGhpCTyv1+splZmwoFgq9ft9Q5IKgmBpcfHChQsj3uIdd9xRq9X29vYsy3Jdt1arEcIMQMw552lm2+zVV19dX183kFyaphgTA8THcWzIjDBAE6SJoTnnjUbDWDy5rkMpRQgU15ZlxXEcBDkTH2CMjaW75/pbW1vf//2PYEZ3drZyuZzg6j133fWxD3/ik4/9wKuvnO10es16a3F+oVgsvvXWW1NTFWZBvuD1e+2jRw+fuuNIEAT/6T/88cVL5+cXlj720U84jmOiona7naax53lTUxOrq6tBkLvr7jOMWpxzjFGSJM1m23YdIYTJBmenZ3zfV4OOeIwQkkoNwIsxOu4YBKzHoAp8W4QBAIAIDMslyDBG0LtsGwghAI0AjznnjTScR6juAa70qGg8wEwxAa1NQ/o4Ej26VX07e2XsBaaNBvTYZnQAcR5hTDDm5D5KfkaQMXpHD4E+uKGMQGQ9IhQN72EI3WKzM6mxHcdcC4/c2/GghmSSk/H5ProxGLg0gAZQB7URwQgvmtk/eE4HUPv9+0EIDmyqwz0d3nEMDBOHDa4Hnp42hQrOueta9Vrv7bfOPf300zu724HnPvvs07duXj10aOm+e+/58l//hRB8aqpY3d1mBGPLrse1MAwN8Gfbtud5UsosE5TSLBWm3GW0NaSUWiFDFdRa93q9drv92GOPfe5zn3v2mecPHz789NNPf/e7TxqXhSAIDEpomlURQhqUEMrMX1NrNEgQFyqMo5QLSi0DOyKEtEKZ4BhjSi0DAhq+gFLKsFMBgDHWjWKEEFdSKcNF1WTQPg/dsO/lchPTU71OK+r0HIyFIBbFuZwrhEAEA6ZJlu6125ngXEoQAlFGCAGNlRwk6JlhC6KBnbdGWAMQRvtRWC4WCNJKpIZkpZUmBBNAQgghhGl7z1cqvp9DoLrdrqmwmoQNYyyUIpgRZE3Nzu7s1hwAhnCr1dFSVXd2KhiDEARhpLRSQmvABGsMrVYLD6JVJaUUA3U5K5fzKaXtdoenQ96ukBhjizmKik6nC0ghpHM5TanV7/cdQmzbBo21wlpDlgklwbZcKSUlVpbGWitKrSwVgBRXUiiuQZZKRYxJt9vXUnlejieZoaJTijCG0TdroFIhRJrEtut0u10jpkEI8RwXaWTe5bqukSGKosjzvNnZWcbY9vaOqYkO3I9TLYTodvqUYXN+0zY4YDxpI4GKKLUAQEqtdDbaOpeXlw0qJ4QwrFvGGAzVMPBQ/Xy0STmuo4Ts9/sGGE2SRAuNBuxUMAivVkpKqYdvBKSk1khKhDXBNMuyMAwpZcb3TwqlNR9B6qMvTikFgLIszQTPUmHbtuHeAoAQmdlDPc8zl8AYM8akFGmaGFBYSmU+hWVZyPcNndwsJiYBNn2+lUolDMNer2cCS6WVZVlKD8anOTmhCCnQWqZcgMYjnqypDSOELJsSMqj1mseYZZmZ12aOEGwhrLUGQghGzLUQUkikwrOxRMRIZpn9mmHSbbWFEMZIPed5GONmq44QYtRmjDDsSsW1zHr9TqtREyILo2R+drZSLO1ubZu6lB1nlFqn7zoNgN94461HHnwkyVLHyyGkHddeWFjo9XppklkWLU8Vu53+3t6u5+cAIa11NjRsJIT0+10gYLlGfAVxzk3vUacT19o1jHGWhqZEISWkijPGXNeTUmpFCaWlQjGJeBzHjOgsSTfXN/7g9/9wslzp9cLpienv/74f0AInSeJaroHhCMFCDz1tRm6xGlGLAECtVrvzzjs5ly+8+HK/3zWwQpDPTUyUgWkjeiOlDMMw8P1arWZa/sMwNBYXo9FCKaXE6vU7xvSy1+v959/7j4yxn//5n++GXcbI0qkFpYTGVhj3C4UCs+mNGze+/e1va601Rt1uVymFCSbIDvK5TPIvfOGPoij6xb//Cz/9Uz/zx3/8x+9/7/uef/75829fmpycWF46+tprZyuVyTCMn3/++cXF5fe974Gf/PG/J7j69//2322ub124cGFubu6e997X67SCIPByTrudmFVrKJE0AFfR2PYa9iMASJKEOXYulwvDsNvvv3b27De+8Y3733ffxtb65csXJcipqSkFEiEkhMrSzHAgut2uUuILX/jCsBeQt1qdxx771OLi4lcf/1qn01lYWDh27FgYhjRvrd9a3a7unj592snZ+Zy7ubm5u7st1V2c82azmSTZ/Nzij/zIjzz+jceVXjx+9NB733vPn//5nzmO98lHP3Px/O/EfVEuM6U0Qrrb7WJEwzDa2Fz78uNf/dSnPrUwOxcEQafTHQBSaBCbqf9nwlwKDblc+4wWYspg21u7ExMTXMlisfjRjz4aRzwT3MsFGxubSqeLS3P5fN50KxJCLQtprbFRotB6UDNDQ+tCfVvajmAoTzGk2gzoBQo0YI2G6wBWoLWmGKI+v3ltlQChiHbi/sTUxPKRZdu1mQVZogihAMhYfiAFiIBUymAK+3HtQVzidhQaAUZ4FO+NgeAjxre2LJSEkSlGGnl3I9Z/9OjRmZkZhFCzVU94Nj1dAAAppeviNAUAcBxQSpXyBYxxL4qXl5dPnDw2MeFPT1cmJiauXbuyuLhoWZYQfHV1lXO+ubnZbDazLLn7Padv3rr25ptvep61XF7qdlGz0VISi0ycOnXn1OTM22+eD/wCo3avFxJiP/qxTxKGGSOBX3jsE5/udcNWo+Z5/vKhxZWbV3g7ThNeLpc/9alPnz9/McvE2tqGVuib3/j28uEjD7z/A1qjMIxffvl138+niRBcUUL6/X4u5xDqCiU5l1EUFQvlsNeP48SyHBLgcmnCpG+MMSEzIQQh2AyAIAimp6drtVo+n8cMSynNCjOQIFDQTbuEkM3NTd/3260wDENK8cREmVILIaKUYIQKKTGiGg2kDuM4Dvt9KaVtM9PCsrOzhTE+fHg5TXmz2cwyzghVUsZRqpSyqJ1lGSNUKWGqrVrrMAyNUbyJCkzixhgjCFNGJReMUKmw4pCKbC+qlUpF09mzvLQQh2GaRFrLfrd56+a1e++933FxkrTTRORyOc9z1lZvnjt3bmZ67vDywsnjhwEUwqrf7Vy/cfXatStKqe9859tTU1O97u7Zs2e73Xah6JcKec55tVrDGG9tbFYqk4aRXSwWNzc3o6jf7/Y8z1GgL168HMd/0mg0Ll++aEIdraXvexgnme+FYe/s2dcKhQKldGXlFiCytbW1tbUlpVxcXLx27frNm7dM95tRocjl0LFjx5aXj9y8ufaVx7/8yMMfmZ+fUwqE4FEsqOWSgTLGIGcxzQcYUYQhiWIhhO/lEBnUeCgGSkEDJGlya3Xr0sW3t7Y32u1mu92ybJqJmHOONKzcWC0GRYxtBM4HHvgoYOLalxcXl2XGoyjyc24QBEppy8JZKrIsM5oBZmPinPM0rtfr3W631WoNnaK8Q4eWczmXUWrM1YbIskYIGRVNE4mZeJjajlIKoQH6LITUGkyiAUPoeR/2BGmqv5oLGEg5jzLH4T8VAqyMkqEJPs3ZRvmY1lpraTLfEaFNamWk1UzxPk4zAgRjnGWZEEopPRAJJMyc2LKwAcHjON7YWt3c2G42m+12O0kSSi1EidKQyxe4EEmSmdtQCGlAiCDHto0onJfLYdsOghzGOBOcYEwsizGqpCwWi6ARpTTJuMHMtdYA2ojMJEkyW6l87GMfm52d7fV6UvJGq1mtVs36OT09nS+4ZW9KgWYlGocR76Wg9a2bN9rdDln16AjVGgeah+ssGtuB0HAfGuK5Y4vyO5fyESqHNchRn++A+Lb/9AfI9QgyGzYjj6DA0WmV0nR4D6N9Yh8OAABAJgO/PW/WAGgIUmtjP66Hvc/7NQfbthljnX6PAPT7/X7YNVlEGPVc19VcuK49MTlZLOUWFmcF11GUuB5+8eWnXnjxcrO1m8v5jNr9fnjo0JLrOu1OfWlhbnd3K81ix7WjGDUaDa01pQxjJaUMgnyapteuXcsXS4xafinHOdcKdTt9QkgQeAihVreztbUxPT1Zr9ZLpVIURY0oxMT2vJyQHCmNkI4i8HIuz8T58+fDqD87O3n02OF2u90N+xZzjx8/3mr2ut2uEDxTylA4NUjP80yPBkJaSskwcQqFTqcTBAEAbG1vUEotZ0DwMcSQZrPpOB5jxgogOXPmdLfbzbJsbnHm8qWr3W6XUotShjE2SV2cz7daLbMqUYoQIgCaMUowQgj6vQghuriwfPHSedtmlmV1u5FIRblU0Rp2d3fm5+cxEa+dfW5mbuHr33jccdjNWzcopdvb23t7NcfxPvKRj5hySpqG/X77xo1rL7/8aj4ofvDBjyCEJicnyuXK5PSs4xCtYWtnL4qiNE0ZcykdDDDDdB4f8AMN8GHL/D6AdgAO20ejxgOXcUR4hM8Z9uJ4k5p5o5SDS5MhHdIcSg3gqvFpNYp+RqDSbcf4K43p9ujFI7BsbAJqjIlSYNtYSdMjBpQQSiGKeK/Xcj3Lcall463t1W9/55uPfPDD99xzj23bSnOMnTNnTh89svzii8+3m/VKpVTby7Isqe3ttZp1QkiSJFwKx3Eodj3Py+fzCJF2u5mEabfbpYxIKW3bdh2PZQO9Tp7pdrtLCOl2+0jpXq9nWFFGC8x1XZ5JAJBSmqEIjBBC7rzzzlq9bvwnXdeN4zhLU0OPsizLsT3Jxezs7PHjx3u9Tq3WMB1Spl2aEZwkEcaeSUSbzSZjdhwnjDHbtpUaoF0mSTty5EgQBGHY7/U6UvG9vT0DFhhsa29vDwBMy3YURYRkpgO334vCMKxUJmq1+uLi0h13nv6v//W/drshAPG90q2V7Y9//OOvobcfeODBYrGYpJHn2jnPUjLtdhq9bm1xaf4995zuh53vPvFtpTJCWKO+e/aNV0+cOEmJlcvlCCGMEQ0845wxcuvWytLSkuvmer1e3s/1+/0wDCuTU6NObbPRAkEUUymlGpLcpVYjCjDGmGCjVKXMDmr0sHK53LA+IUeb8RBcHfBQYBCRD0wIAUCrwYAbIM7jiOdAfHnwW0SYlNLEBAfKvwiUHpRNxs9s4BizhSultBq8Hg2RXDxU1BoHdsfig/1fjR9GpGIEaOuhyKBJw9RotyIGMgZtyNNjmC8MQjHQo94aQIPGzKEv7hhKPrjuqNkTDaf2aDc8sLfiAz9HCDAennwIUmMMBJAc+GKh0XMb/7wI4yGN1LCK9EhJWw7on3RAGFfDdNFEU0NPXYTGi2jAGEkS3u/1zp8/v7u1zXmKPHtrc+2Vl587euTQP/tn/+zf/MZv/Ov/+//z/PPPzs5NTUyUw3bbsqxSoei6bhQlSZamKddaCyEQEIwVwMByLeHZiFhqAJos477vb29vX7p0iTF2xx13bG9vf+PrXzeopYEVNEiDP3LOFSVYw1AAimFGtdaM2pioLBMJj6SU3U7DkDoRDOJLE5KOBhshAwDLZpbkIlWZoUliDEhLhzGMtORcKlku5CszU1EUaTnIZyilKlNREisVx2lqu06z3VKYcKkAIQmIAiAgGjQxIe+Q7yClJgQjhDXSUksAUAAKdOB5aWxamnKtZkcphYFYlpVlmcOobVmtVqvTaZdLBQBl5CCEHEJNGCGEGHG7zX6n2jy6uMgQurW6Xp4oObaXhJFrO1aSaIQzUJQRSthINkFKCUpjjBmh2qzb7bbBy+I4RghRoAqbPkAMGmOsBVeU4Z2dqmEqeZ7vWE6724uiCAALrghhURRbiJh+I4QG1T6EEGGUUiS1YMySUiKNCGVxP9zr9USGTcSMMRZCmSzCrEuWZWmteZpZlJnnH8dxEsWMMYtajLG8H0itDAKYpmm9XjelDrO/GP6yeWOWZUJgyvB4wmCixCzLlAKlpOu6CKGYJ2maLiwsRFH053/+5wZ1HY0ZwzTGxtbKMJ0pMiVPjHGj0cCAbNvO5/Nao36/zzDhXCCEmEW0QgCQZhljzLYsIUSaxTayLcuyLCtJI7MMdjodI7hsyDtGx9As7wZrNiFZmmZxHJtPal5gWRalFsYYQA9ccM00RMisGcZfASHEuRiSr0FyZaxERgaSBm42VGgzawxebNRspNRKa865VJxZA/aQeZhymAHKodi0mW4GvTJs5SiKkMaSKwxkmNRJ0Mi1PSEE0hgQAQ0IiOm5xhoEF0qDZVlAwMAfSiklBtdFShFCMag0TUulUqFQCMP+b/zGb3z9G4//4R/+93/327/1qU9/8oknnvj1X/913/D3u2Euh986+1YSZ1Jo18m98MJLSinLogihfN7nPO31OlE9REoX8x6m1LYdQIoS5nleP46EVlrwXD43PT1dKhdv3LiBKfI8b2Z2FiHUbW/6Xl4IgRDBQJI0y1KhtQabOAwjjaq7Ddu2AZqc8yhKij47dfrU0aNHDx069IU/+OLdd9+9cn3lypUrS/NLacIppYwRKbVS+xucEIIxKqVElEip1tY2vv3tbwdB4ROPPfbKq692u17GI8exLRv3ep2Ix6bMliSJ6ziEEPO1qqHSdxzHvV7PLMtGrJwSSyuUz+cRQt1uF2OcJEnGk+deeq40WZoqT/XrPeqSmcXpbtj9whe+oLUWWoRh2O/3C4XAc3IIaa1Qt9VpisZ/+v/+p821TULRRGliZ7OqMkxt67573v9P/sk//s3f/PXf/y+///GPf/zcWxdAoxPHjgdBPouzz33uc1/5669evXpVCNFut83ib+T+ms2mbVHHZloPlDeVkqOOYACIoiiXy5lhKaW8fO3Kt775bVMrunrtWrvTdByHWEQpoQCESC3LjuO4UCgYeoHRm/Y8r1gsV6vVo8ePtdptLmSapuVy+ROf+CQZHsVi8ZXXX7t169Zjjz2GFuZu3LhhMUYp9X3/5MkThJC7775bCLG3t/ejn/+Ruenp2bnp7e3dzY3tSxev31zZKOTLoKlFCZdxFIXFQvkXfuHvP/vss6+//rqU8gd/8AcnS5OWxeI4juOYMaM1AcNOtXdBnG9LZLQeJt0DgrN2XbfdbrdaLQna9/3Z2dnFhbnv/M0Lb7755ubG9te/jk6ePHbo8CKlBCHEM6kp0hoppQljIuOWxYyGhgQt5SCm2kcPzIHBmBKN8iOpASnAGA1NC4EgLMHQOGBl5dba2sb09GwUxkKI48ePlytF12VCg0G7APDoVIZQPIzcBhc0Rdx3oswIDegPtwHNowRKCMOwRpyDBD07O5skWbfbfd/9JcdxCoXAcW3LYktLC7ZnU4qFAM/zHIdlmQnPtNaIc760tLS2tnbkyBFTqkkSQz/Cx44dA4CzZ88uLy+XSqWzZ89Wq9Ver0dtUW/sZll6991npOTtVlNxvbW1u7vTeOgDD/+jX/knqyu3Lpy7HPfjGzduzs7OT0xM6EFjFo6i5K673nPp0pW//J9/5vv+/fc9wBh55tknLcv7h7/8q+XyxNTkzOLC8lNPPSWE6Hb7O7u1y5eunT59ZnnpcLPR1hplWba8vNxs7iIsXNeWKg0jbljGSZIRwpRKLWbHQkVRdPr0mUajUatVtUJmDwWANE0ty3rPe97z9sULaZqCAsdxJicnu91uu902+6Bju0pLAGi1WpLThx56aH19td/vOhbLsowxYmLCLMswQohhY+YmBFdKSQlpKhFCrmubgrHnea1WS2tlyq7mT4RQlmVKaUJgBC8SQizLMg09Zu+zLMu1HaPQZTBKTFwpRZYlGU/M+W1mNZtNpYQGZVsME3pj5eqX/urPP/MZeeTYyWKpgBBYVN956tj66vXr1y685z3vOX7scJrG595++403Xm80GhijLIkZpWkcb221TX23XmtMT0489smPu677+OOPSwW2ZSOEanuNne1qmiVZJpQShglBCKlWq7u7u5VKJcsExiC0sikrFApaa4xpliSdDvi+F0a80+l2u4MG3Eajsby8PDE9denS5aefe/ba1Rue5ykJVy7fePvcJSFEkvYDv1QuT9x7z/1erqBTibBg1GYM0hSM/hilVAqNCCgFgJSW3LGwEIpiBAqYhRCCixfO37y5srp2o16vcpFSBKWiV6/vpRJMvaHX6RcLU0ePHIuixM+VMLUmJxYmJ+ayOJmcwIQi17biOG619qIoMl9QHMdxP2y3241Gwwi9CiGmp6cPLS2ZmNy2bcy0lDJNY5PSmgWHK0kpVVoprQBhQojQGgZmzoNEkhAiBwArMoHTCC82yQUCMsKgx1NLqRTSRlKMAEZaytGoG44rSSgylXWEtLFCVXoQuEqhpJQGHBdCSCXNe7NMIIRMEGVI3FmWTRQq9Xr96tXLa2trjUYtjuMozcw9OzkfGRoZIlGcMsaYY5vBIJRM06xcLmutXcezbRtTUnAd27bjOMSYEIw1lkII23HMfOScGwKElIaCQxFCpVLpgx/84IkTJ2zbXl9fD8PQMGLnZmf9fMAY831f65R3kyTLbMuu7u301rvtZivJ9zGlgWPT/ZLjQbLkbTiy0gr0gIA1oGLp/eV4tIXs88KGaJ1WgAGpg0v8KO1H+z8d9NSMNxcbAjUaa3kev+L/HwdCoMb3uuF1EEKtVksp5btelqVaa0AoyxJKaa1WcxxncrIShlmQd4K8u1eth2EMgPOFXLW6c/Xa9Y9//EOnT59+5eU3HnrwkUI+d/PWjZ3dtVIhf+LEiRsr14xEnWVZWoLNbNvx8vn84uJio1m7devWzk4NY9yqd4IgsCizLSuK4yRJGGMm1q9UKpZlNZt1jHGhlJcCKy191yNU93o9QlAQ5HimOOf5QkAIKhUnl5eOPvv8SxxkpTxNMNvd3bZtlnPter3OGBOpcl232WwGQRBFkRCiXC4vLC9VqzvNZr1WawAA1pDhzLaZlIIQMjs7G8fx5uaWlDKf97MsW1lZobZ148b1zZ3d2l4jTVPH8RDC5dJEHKW7O3u+5xhVTYw055IxBEZhHgMAAsDdTr9QDPJBiTEaRRFSyLacXq8nhDp16tSRI4e2ttcKRS/jYRR3Xj97gRCstbBsprW4eOncRz7yIc9z+v1ur98xjAnfL37mM59ZmF4wrZoAIKXMMmzbaHZ2KopSpRTnilLMCBgHyPGBAWN9du96GEvrfRx5MHRgJNs6ONXBwA4NRZ9hGMmN/w/DWEeNCJJkMAvG6Y3vGi+qAXHlXabDbYD4gftBiPNMa5SmGiOSptyyLNfFCEGx6DVbu2m77+Xs61cvvvXmy1rG5869+fIrz3/0ox+1LOvCxbf2qhtHjx599OMf/ptvfTufD25cvwKgAt9P0xgASqUSIrjf7XlBDiHk+3673d3e2DQZftQK0zRdXFwsFAoKQb1e1xqliTRwrVJKZtwk6iZgAnANd8BoGHU6nampmenJmXw+X6/XR2L/xWIxyzKjBmsxRytwfZcxZjuO53lxHGoth3r8YnF+zvM84yKdJEm5XO73+0ppQmi5XO52+hlPGbOzLAuCoFKZ6Pf7cRwZTeSc705OVowRebPZWloKGLO6/bbruoYFZuqQPJPvvff+fj+8dOlSpTx54fyl4yfvzFLl+4UHH3zwYx/6+Be/+MXLl66vr68vzM69+uqrrVaj2ay/+NLzUmaHDs9fvXSx23bOvXm23W66rjs1XVlZWbnzzjMfeOC+re1dKfXG5trk5GSlUlYa+76f8x2lRbvdfOmlFziXk5UJADh69KjjWADYrB6SCzRUbVZKjQitgJACiTFGer/tGg+rKyPsQGstpRjAMd+DKaMH2mpooKGxn1q8uyiw+ZUCjQbdnoMazb7thMajCuXB9X9wBwoMe2vghD68oBn2SB8o2OzzeW/DmkenHaDko+ksB3mRhkEJCjTSB3jeg7rOoKNgVA2SB8o/ZnvV8t3n4237GozVmca3OYXgXR+7ISWN3jUsxO4XAMaviAZizeMkbj16BmNw/PBHBA1LEbDvi3pQmMNcq91ur6+vr69vxnGqZNZuN3nGmo09xvT6xq1er8d5uji/gIk+9+ZbgesdOnTIIF+e52mt+73IsizB1RDdxmma2rbtWlbOcdrttmFHag1GHKbb7c7Ozn75y1/+0z/90ziKKKUI68ALlFL9fp9axMRnCCHGbACgGoQQlDGMMQKSZCnnUmjTB4cBDRRIBedcGqxNGgjVDAlT1edpYgAXrDGlGEApngV53yZkcX5hd3d3Z2enMlnBAP1+P0tTzjmyjW5sH9Wx5TqO7fn5QBOaSqmzVAulJAitjAkhYIw0EISFFmiI8RvgDwjGiCqRhWFYyHmMEayhE4WU0kxwjEFr6bq2kYfOsqxcLkkpKcWU0jAMi8Xy1NTUXr0NCDRIi9rtdo8RwgHiKIq5aHV6k9OuY7k0TkCCUgJAS4yFzJJhpypCaHxZUEoZoTeD7EsxmKdGO8J1AwAlFU/iDJDGGPNM9Lr9fFBwGG+LrpIqihJCOGOW4lJKrjUCUIbu4biuJsajlQqutAZMKcYYCGg9MPoblBaGpHwzqQ2Z1xAPtdLMYsy2RGYwOGYUNpIoTnlmyCNxHOdyuSAIZmdn6/V6GIZGCw+GgsVaIVOcAjCphinhUIylGNoPcsURQsbb+fDhw1EUOY7Tbrc91zWbmulPNDXUUanPDHKtNWUsCALGWL8faSE5UggRk/oaugPCGpDCBCjCQmDA2A+8fD4fRU6tVqOUGQ6B2bBc1zHKMAgh8xEM6GzsECzLkqnCCJut08xBQgg2nwnj0cRBCLTWxrrKOOKaVLzX64lMmka9OI6TJDM+IqYYbIwWjDKDISKNlNAJRYoPFKjNdySE0GSgiGKwCZOkCQmcc9tyHRtnaRpHkZJg27ZlWblcrtPpRBEnhCRxxiySZZnUwuAFhjFnnpuBv5VSZhoJISQXlFqEEKkHpSAhxPz8/OTk5Pnz55955pmPfvSjH/vYxxYW5p546umZufmJqel2u12pTBJI4zCymIMB/eWf/8W3vvHNmdmpIOfHSb9cnKAERWGPZ4kQIh8U3ZyHmNJax1ESJjGzWEBzN2/ezLLkgx/84OLyYpyEd99zVxRFYRjWarUwDLMMKQVZJijBIGUWZ5RYQLGUOgxj13WlkLVuTQghpczlcve+555Tp05dvHhRZJwx9g//t1/+4y/80RPf+Zuf/dm/bz5pkmSOZ3GhgeCEZxZhZn3TmBCMwzDe3Nh65plnOr3+RGVKyCznuyRRiKGEZ5hREQsjcm2AZsdxgiAwYxUhFEWRUSaZnZ2tVCpb29vVzd1SvtCLQtd177zzzldee+WHf/iHNdJf/OMvvve973U8Z6u62ev1FxYWgMLWzqbQIhVpq9Uql8t/7+/9vW996xtxmvR6/UIBTZQnEUJ7e7vPP/v8//kv/qWIxN13360QfuONNyixn3zi2bW1rTNnTmPEKpXJt944n3Pzp0+enpqcXlxc/NjHH11YWFheXv7Sl/6yWCw+8siH5ufnkQYlZL1eD4IAIQRgOqX0cFIgKZX5pK7rVqvV7e3tqampEydOfO1rX2u1WvVm3bZty3UIQe1O/9iJY7/6q7/yW7/120buuVgsX758WWtptOM6nd5dd73nl3/5l//z7/2XK1euIkRs2+12u88///xDDz1kMSefDwxKEsdxfa92/u23isWilHK3uv3cc8/5Bf/I8SMTExMI6729vZPHjvV70Z2n777vngf+4i+/3G31/Fwpi2PXZzyVeb/wa//8n09OTv7VX/2VkuTy5ctzc3OffPSThJAwDFutVj6fN1UHodW7Bl+jGGN0SAA6RGMNe9E4sPaiWGOSptz38xjD0tJCmqaU4SRNkyyNkyTIu81Wq1goU2qFYWjbLkLQaDWLhdIIdjEPHA10ug50mA1zfgzD6GsUBnDOGaOjdhbbgtdeeb3b7mmNeCYcx55fms8XA8uFOHsHB8ec/x2B098CHZgISoFRDBh6OA/oQZoQZHhCWutiMa81LB0+xJVcnj8URZHr2lIJhIArXS5PAECWKdtmnANjkKaKUpym2rKoZVn1ej2O40OHDjmupZRqNtsYY9u2v/a1r/m+XywWg8C///77p6en19bWnnj6S81Oc3p66u/8nb9z7ty5ixfPX750XSty7NjJf/gPf6VYqGC0BRpjTF999fVHHy0szR3KRKq1KeDh9fX1lZWVmZk5zuWLL7y6vbNGsPP5H/38Qw9+ZG1t/UMffHRnd6vTefyBBx5odzpvvfX23NxCpTz54IMPBkFhfX31lVdf6PfapsOs3++7nt1qdWzbTlOuZYcx25S6bdvd2d3tx4lr2Zxn3W4XYc0Y4zxTCra3t8+dO4coMWtyPl+sVEpmf0EIbW9vB0FQq9UoYZzzhx958J577jl//hxBhjtivGGl1APnAykVQhqDpgzSlPejDGkwJVhKaavdiKLItp3Dhw+v3VpdX1/9zGc+67n+d77z3ThOcrlclqVKKWNZRBk1e/0QCkQIgUVZFMkkSU1wq1XGLNJLInO3GAadUsyiUgippZJSpPL69atf/MLvv+/9Dy0tHs3ni/mguLy8/KEPfuCb3/wWguzW6tWtrc0rly6B4sePHnr++eejKGKMaS0Rzo4cOfIDP/D9r732iuDZoeUjrVYrHxSzbM1xNAEcxwmAZtTuiz4ARFECAIzZ3U6/UW/liwUhRLFYFFoBxoyyYrEYxykCbArDALJarWFMe71+EASEUCDEcdxcLlcuTdyk61yCzpRI0zCMAcDOOWkieaaMroNlM8+1273+xmaj1WoVi8VioYyQYzMmBNeAkVJB3kvSOAxDx7Ixho2N3Vu3bl65cqm6twVKEqJthjhPT5y4S6rkwtXV6clJKTSlSaVSyeVyx46dYNSOs3RiYgJjPDExkaZJmsWdTk+ITKYZ57zXDZvNZrPZ7Pf7Bhwol8vFYtm27ZzrDeevlkMPQETwSJXehIVGjGLElxqlw5nMBt2NesCLHCRQCKGhrbS5IkZkxHM6mEViTAkAmNDCNDOZ2G8/ItXmPNJQeQbkGKwBANNBH4mJtLHGjDEDAKZpKiQ3mVqUJp7nXb9+/cknn2y32wactCzLthEAYEKMBojWCDNqe+7U5LTrukmWmsqE4ziWY2utpVYKNCPEcV0hhOv5oKXWEgMYVe5yucwzAQA8SxmhlkULhcLk5GQul2s0GhsbG5ub62gLYYyPHj06t7iQz+dNeMY5b7UaO7vrrc1ueaJybOJIq7anIlkIcpJESkuGgH4vr7MRFjb8p0EAENIHFnHD/BpRpPE4OQuN+q1hyN9Cehi+j/5EI40ndeCKtx3o4EXhHT3Oo0ON/VCN39JwUCKEBtvbYORhAI0Q6XSajCDLYhokAmNVKbe2tq5fv768vPzAA/dpjeq1pgnKAeDGjRuM2ffe80CzHr559hLB9tLiUcflnW4jTdPJycmpqYnVtZtaa0osrVPbdpSCNE03NjZarZaRLEwTrqWM40RKnfdz+Xw+7MdxkiZJcujokXw+3+93KcWgsBmpts20plyk1e1akqTHj52Mosjz/JMnTwLA1tZWpTx1+PDRy1dW33jjrdpe+zPf/9ijH//oF77whZ3tqmVZxrAVNAakDh8+fPHiRTM9jJS+oQZQSnmSJkkSx9KyHNM3F4axwf6EUBjjt956ywv8ycnJRqPRbDZdN5ckqZIQhZue583NzTXre4Y9lGax6+Q4FwgRDZISU6ukOzvVra2tKO7fe++9Rw8V3nrrrXwxjxDiPL18+eLLL78oJL/zzjtzQXBj5XKS9lzXdmy/3+9tb2+vr6+nafr5z3/+oYc/cOPGjeeee851cz/3cz83Mz0XdpIkSfL5Yq/Xi1OTlzJMSBT3h02vvu/7BGHXdW37XcRkRuzgEc8RjddRhhWRdwWmb8eaR61YhqF/kBBtjn1VgtENvOMMWt/+z9uojoaaPV6tua0ItD87lOr3o16vJ6W2mB2GMaW0VCrlC7mcC8Ug6HRrjVr9mWefuHL1fD7v1+o7zWbz2pXLURRdu35lc2Pu7bfeUErW6/VrVy+3Wq3jx474vh/HoclIg5y/OL/IGKvValJqmXHXzTmOzOfzGE+vrt0SXNZbzTRNLcvp9/sI0SRJfN/HGCcAhJBCoSClNHXaMIzMKqy1JmTA3eh0Oq5nS6W63a4G2Wg0pBBpmiIgkjenpqY8z9vd3dVar2sBAOb8UZQYzg7nPIx65XJ5ZnbKaOetrW3YthOGYRiGgDjG1GTU/X5PKdXrddvtpmVZrTbkcq4hpJChlQdXulqvHTt27NDRI6++8nqvF84vLkdpOjkzbd1cVZDcXFv/H3/0xx//6Md/9md/NgiCJOZBkP/ud7+7sDj3l3/5561WQ4NMsyiOw7m5mYlyYa+cdxx689Y13/dnZqfqzV1moZmZ6YuXzrVb3bmFxTjuUzoFYMzExPXrV+M4cj1byGxycurEsROEkFKpJJQ0dkbdbjfI+QY+E1rp4V4rtTJQL8YYNBrROQFAKyN/t49CYkwBsNYCD5prbhulg7ff9qsR9DlCjfXQqW8c3xwia8jYEg539H0s+LZDI9BjghaDuuYYh3r8Zm5Dvd9584MfDiS2kFYHpueBwpIyqoSADloCDm9p8D+MmeiaO4MD8O7+LY3dzP5nvW1TG1Wq/pa8cX+yDxHn/aLv6OyDKwywe4XGlyGEh89KDdjiAABAzG49iL7eWTlACJRSnuf1e2ESRgBAKRVZulrbmJmqHFpcqG7v/NVf/dX6rdXPfvYzf+/nfuoPv/Dfzr70BmhsMSeKIq21xRyplRGfAQCjsWMqoGaKJUnquq7rUkMl830/DMPf+q3funDhwpnTdx47evTKlStCiCSNHMfRCgwIOGK4G2onxlhwxTnniidJprVmjj2ApBHWWpsWCgAQQiCkR7wYE26akNFEkK5lJ2nEmAWEGJbxP/gH/wCQ+oM//OKhI4fPXbyYCh5GYTEXUEqjKMJKLSzME8uq1Zuu6wKmabudJhwoQwhhSsiQhmbGg1DKNHcNZijShpKHlAKAOI4pxkILrTVg7fq5HNGAkRFGoAxPBBOEYIIhl/PAWOpReujQoVbnvFRYaw0SQGPO+frGVjHw/VKhVqtVZmYKpWInjgjCCiHQOsuyRHIAZHiv4zUqRtkIyDMhtQRp9KMNdgNj8hGGUq01EkL1+5GJp7M0w6ZbGpDQSEplDGwNLEspVVpgyyIEaQkAiGBGMc6QllyZhGEY9xMAMBsEGcQVjFLb4G4IIYoJUI0Gaic6TVOlNMVEKGlu1cCOvu9UKhUD1HK+T6iXUiqFNFIGHk10gjE1OstmqCilFMj5+fndnR3Q+tjRo2tra47jRAZHREhrbcaPuW2tNSOEUnL8+B3b2ztbW1uEENOMwrkcQTNS6tHtjZ9EY61BGnJQkkSuawMA59wUO83cMc035i1GlINzkWXGRkaauo5BY0eFhCzLkgQI3e8ABdCGgu15nkmzDVyOMXYtOijVmHqhGixr5tKu69q2jRDh3IhlK4SAMeZSVyg5UtUwZzPxpFH2MPC9EAqQsCyLIBpHURiGWmvbdkz/gdGaUEoZUSzQWAoBxCxNIKWAgTEjMVCpGSfmio7jGJ0NqUUcdzGiQRDsbFdv3VwLw7Dean3ik5+mCP/BF//gu0989/Tp0xjTKEpmpu3yZKFarWZZhgGmJiYwBqQkQbqUDxbnZ9MkLvjezGRlcnKSELq2ubHXqksp+73w0KEjhJBz585FSfLYY48Ggd9qN3I510BL9Xq91eyEYUikp5SSmVQooZQiGOjkaKUSmRjOOCjted6P//iPf+tb3+r1epubm08++eTp02d+6id+cmlhwfd9KfXW1lbgF0qlCmY044OWIMaICTqJRRCCOOJZyhcXFxGhnU6n2+1OTJSJRde2bkrJS6USpf8/xv47Xq7rvBIFdzr5VK66OSMDBAiSAAOYJZFiEOUsK7qf1HLb7vF77u7pbrf72W73zJuZ5+lxe9xOHaZty5KoaEWSCkyiSBAkCAJEThcXN9/K6eRzdnh/7Kq6FwDVb+qHH1CocOrUqR2+b33rWwtNT0/XarVmsylLR/l8Po5jx3HkRNu1a5fjOLVabXV1dW19XVEUhIj8Hdvt9tmzZwEAtm1TGk9Ojt933z0/+ckrGxsbu3fv3b5z++tHX//a175W32hsm5m962Mfe/jhh++5557du3f+9m//tmmaNGZp2xCAaUT70KMfevD+h0aHxzKZzNT07Njo1I9+9IMv/N2XhoaLzUb37ca7//L/+m9CP1heXjn6xpt79uwrFovT09Ozs7OnT5/udDqO4xw9+vrPPfPztm13u11d18vl8ujoKGMJRERmAUIISrmcO9Kast1uQwjHRsc//vGPv/7667VGXfooJoLoupqyMzt37MpkcgjidCrTarbX1zYQQhAiheiNehtBnMT0neMn3K7HqVBV9Cu/9MvnL1y6sHgul8uNj00KIQxVS5nW2NhYtVppt9s7d+4sFArXr1+/evVqPp8fGRkJk1gITggWCBqqfujOw2urFafj3H343gsXLtQ6Tr0Z5gspwdEPf/AjSumuXbuSCNRqtaWlpXq9nkqlZQW3UqkMlUZUVVUVTCngXEie342JwOYm3tv7BBBAEABBr6aIMpmUWtXq9frc3Jzv+80otlNmNptZ21gjCp6emcxms47biqIojCMIMYTYdTyEEGdiZWWlUCgUClmp2Q56odcNVOut2LPYElPJl0MIoYCKQhACNAanzi9evHAFAuR7gRf6s9tmRsdKqoqTBAhZ1Yc9KhMAANxCYd4atPwsLo6MoLZGdz0OAedhGGuaRojsF8EQAts2xsbGTNM0DI0xpmo2pRwR2YcnFKWnLZAkgBCEMaAUDA0NYQ4AACdOnCCE5AvZdDotCbkvv/wiAOD2229XVbVebxQKhYmJSV03Ou6h/fv3//V//S9/8Z/+knK2ffv2KErmZnf87u/+m1azc41d2759+z/9p7+9urH+9a9/fWVl5e67Dj300EPZbLZSrwHfjaLgM5/5TCGb+8u//PPLly/7Xmfn7j2PPPxBnVijI9MK0RFqQqQWiiOeH+/ff/s/+rXPrq+XXTd44IEHG4299VrNMJTllWvnL55kjLZaHUMzwzBklFPAKQ1UVTUNLQx9IQTnNKKIMsohoEnSdV2M8YHbbkulUqvr5ZF8aX19XXbMrKyshKG/f/9+KcLbbDZlSqUqWiplnTx5XAimGwbnVHBGVJVzjgmWcsxCCISB5BpTGhPFEIyHYSi3cgVjKezDWJLOZhDCi4uLhm5J0bYoihijQgjfjwxDU4hGVOy6LuOabdtC8MH+IhUqGGOe4/l+oGkqwgABAKGUWYBhkGiaQTBoNBpE0QADa2trzssvTk7M79u3D0I0VMpFsROE3Z/+5EVFxUNDQ49+4P4333xzcmp0btvUlStXCvn8gw8+mMvbtVrtyJEHdF390pe/+Dd/83eHDx+OY8oYj+OE0di2LMYSQoiumUKIJKGM0VazUyjlZ2bmqtUqJmqj3lZVVQAOU9auXbsWF5dvP3BwaWnlwoVLnKntVltRFM9N9uybO3jw4GOPPXb58uVO21OIJThO4kQQfuT+hxWkKIoyu312amoql8txhhRFUwjZKJfPnj/faDTS6XQUuOX1lenpacu0EUKGYWkqwhDEYQBEEsX06tUrZ8+ebneaPIkJElESUcY0TWm1moapHTlyZHGtOTI8FscxRmhkdChfyI2MlgCMVQIUS3ecduT7QeixhHqexzldX15qNBqe5ymKput6sZQvFovpVFZGR5wxAZhU5ZKrOga9zhWIEYRQOlFL9EDGqzJ0RFgRnFPGJE5KKdWIpiiKlGoRQmqYsUH8j5Eii5VbsWaEkCQHwL7xuOjfBvGeJEpLrj3nve4xRdEw7vVjCSE4kO0IUNIgpP6ybCCTYxtCNDY21m425FPpdLrVSuQVIIoShiESQtOMTCZnpmxFURSiJoxGSSy3Ay/w9+zZc8899zWbzdAParWaHwYSAiVEgVDhLBGMKiqMoqhWqxWLRYxxsVjUNC2dzcgel/X19ZWV5cXFxXw+//jjjw8PD0ufTwkbSjfOIAi4CEGiAMARFIAzBASnCUCUCw6BILcCUqDXuXlDd4nMYKXQEtoCeEmLpK1vRGDLASEQXAgEt7A1+1Tq3v2+XsetePeW3WITkr5lexBCbM3Vt7zlfbC2/m0Ta+4n/GJ4uJhKWZ1Ww/PcKA6EELqqEEKmp+YuX7p6/O0TMvjWdb3r+BjjOIrq9WbKzoWhv3Dt6mOPHWw2m+++e+rq/HEhhGHq8/PzYejrmtntdlVVRwgDAKIwFAIyJjodRwoLSCDggQceWF9dazabnU6HEJJOp6VUjVSSFUIomoYASJI4CF3btrlAksqxsLCQyeTW1jZKxSFNMxYWlt879df79+9POP/I0z+nKFocu0KIdDq9vr5++PDhCxcudDuur/phGDbqJzVdgRBTyqMoare7ruvn0hkWJzJ/87yQUh4EQb3edBxHXgGZaeSKpWIx7zhOq9Xqs89kNzRqNpumaWYyGc6Z67qaprpeN5ct6LoZRZETdIrFYipl5zPZpeXrtmE7badZq8dx3Gg0dF3XNAVAgQnQDXNl5XoqlUqlrbGR0pVrVzRN01QTIg6RePvtN8MwaLWajuOm0lZ5o37hwgXX8ZcWljPp3J49+0zTFJIoxBiLY6miAiFsNtvNZhNCrKtaPp8vjeRuGBl9PiOEm+P6JrS3h+nc8uzNI7D/zwAqkuzpmxCiTYLk+4VBm5HZz2Axi77oM9gyK2G/m2zrg3IxJARLShGEwvd9hGCSRLV62e0qpqUqKmh3Wi++9Py1a/Pbt89Vq+VqZQMhFEZ+s14pr62V19Z0Q40CaQ2cwhiWSiXf9zsdp1gs5vPFtbUVQpRardHpdCilhqoNDw/n83nfdymlY6PjQ0NDbuBHUQKhUBRFcKKqViqVCgJf0zQAuJ0yJdDjub6u63GcMCqFL3kcx7VaI4oCqQOYJIns26VJIiEJgFXOgDQl55xjArkQ0hm5WCyuLC+32g2ZfNbr9SRJ9u7dm8lkcjm3bz4AUmbKtu0wDN1OV3ocAQAoiwkCumrSKOacW5aVTmer1apk/XDOV1fWpYYdIerGxoZtpzjnn/zkJy9cuHD+/MXp6eknnnii19tOE8syGU/q9SpjiaaTkdGh8fHtK6vL1Wr5woVQoi2y7WB1ddXz2djY2Nr60tUr1wDA09Xqo49+MJNJD40MRVH03nvv/ejHP4AA+76fTqf37N01NjwpgTwAgOc5Mt0yTVPFPb4/BD3wpVcgRBgAIAAfbKWgj//KVVVutxKV6DP8to7A9yEvvy9MvBXn7X92jzK59fWDz91inNAfu70s5MYP7berDB65Ecbd/CzRg4LRFoy3p+TFJXgtBkfYWmcdvBiAzcsj9aFu+oI/ExTecogb/98XBulnXn1IeKC9jm/QcB+Ul7auEoO3DO4MVhXR174YXFUhgEDykRu+HYdQXjn0M/K0wXY5iLd6KA9ntm3t3bv3pz99s1KpJSwCIIzjSNfVQqHwJ3/yH3w/tKxUs9kcGhr6p7/12//6yr+S1p2SkimEIKpaKg1JCTbOhdQWkD4tUnk8CAI5YmVMKQ2RCMJBEFy4cO7AgYOPPvro3/7t3wZBkPBE8F5IIpEmAADBKlAgB4JyJiUOMMYEIqFghJACuQQQFUWBGEn4DPZ8R3uIKqWxgomkYUqei+u6GdtSFCUIo7WN9c997h+/e+rM8ZOn9t52ABH1vXdPZtM5r9P2HXfv9vHx8fG1tXVOWTfq2umsJOdChCFGBGKIEUsoTSgQbDAqwKYpNhdQIM5t2zJNkyCsKGoUxJTGXEBDJaamAACslNnDghWFxrFq9JIljPHa2ppppQhBkEEhAKUUCKEoqgxzZ2bnOt2u5/urq2te4EuiB40TxqI4TjAhBBPQq9/APtyMIAQqIZxzeT0R4AwAaYrHOWVMSEkTIXgSx7LBP47jJEnS6Wy73W3UW5LoFIahYEDSUSVBiXOa0IhzppmG3KQ454ABxoWgQFX0OE4Gs3tQEpADMkkSTVPS6bQQotlsxnHEmCoV+QfgI0IIY4SFgLhHb5Gtmqqq6rrmuq60fhm0YTLGGOWahhFCUcKE5/WQ354tDEAKajQacjBfuXKFUtpqtSQNv0dPhhAA2YUKMMYCYk3Trl+/HsexrutxGGGM5QiEEEushxDJx0kY4xJKTngCOZQHdJxOu90kqiJbuGgcY4xluu44DoSIEIXzASLfc0qUWLbre4Zh6FClSQ+HjfsnBrgQgiNMVKJACNzINTSdUx4mgWVZCECEUKlQjPyo1Wp5gY96kjJICCj5xYRgjJU4plIMWg4bjDFjAgAOEFBVVQphy/yNs56CAeey5R/LlQhwKKFzueNIrN9xHNmtKTudM9kUYwxEXNHUHhV9S0uNHFqDDJAxhpECAKCMYUz27d1frVap4FTw4vDQpGFkMhnHcRQFX7x4kVL60ksvLS4ujo6OckGj0EVQcJboqs4YwwS2W43t27cZprK2towwME0dExFGbrVab7fbVAgAwOHDh4vFoaWV5bnt2247sC+fz22U1xYW5oMgmJubw1hZWV7DmFDK4rDnaih/MqIgARhChEOgK5jSOAyDdDbz1FNPfP7zn1tfX33ysSfq1drP/dwvUEoffORhz/OmpqZ27dpz9eq1mWk9SRJCEGMCQihNtFRVFQDGUaIqShQl9Xrz+Il3hBDFYl7XNaKT9fV16XUpHY/90IMQRlEklTTa7bacm/IXOX/+fDqd5pzX63VF/voxhxBSwTVd6XY7Xdf5+te/+m//7b89+d6pv/irP6+Wa4SQt99++7XXXqtWq1euXBmyhvP5/DNPPT0yMtJqtd5778zHP/7Jw4fv+oM/+ANCSNq2FUXz/bBWa+zevZcxJhi4/bbboyg6f/68plo7tu9eWlpynWB0ZGTXrr3X56+fOnXq4sXL09OTs9u3TUxPffjDTy4tLVUqFT8MgiisNer5bE4z9IRyTVOkQ4AcFRyCWrMh83xN03bt2iW1pNfX1+86fOjQ3Yeff/75K9euqkK1bTth4fPPP//qq69ihHRNa7fbGBIgQBInmqZZhu374crS+pevfTWXyz399DO2bR858sCZM+fm5ubuuOMO1+taZsowjKWlpbffPNbtdggg0xOTGGM5d8bGxmZmZizLslK2ED0tFNNUOecf//jHh4ZG/sW//Oe5XO5jH/vl7z/37Y3K2quvvv5PPv+Pd+7c+eKLr+7duffChQsLCwsjI6O5XEFVVVXRpZpN38poU7VS3BDQ3BADCCEQgjFlcraGSZzKWtI3vlwur64u1xpN20oFsauqJE78sbGRVNp6+/jrtm3bdjqfL6bszMZ62bZtWeuS8oyDap/8kBv6zACQwReEXIhNi2bOucwOOGUYYwTA2TMXv//9F5y2QxmKAz/hdMfObfl8VlFAECVYxRDcIH7It7ho9EOg/9PwTL74huBK3scYNxoNxpJMJpPP5/sccDA8nGcRIARRpgAAsNoL26QYCKUCY0gIYAxQKnQFOm4AkXr7/gMXz1849e7J0bFhwzCGhtLnzs3X6/UHH3xQUZSNjY1CoVCr1V544YX11bWf++UnL126dO7shVw+88CDD7536vTtBw5OTk7+9//f37qu+/nPfn52dnbXrl3nL12UfZxXr17etn36vdMnGq3W3Xffu2PHdttOXbl46fz585m0pWtF1/WbjW6xQCvl5uL15asLlx55+LG3jr3bbreOHDnCOZyZ3haGcRxxArUj9z1cKuW/8tUvYGi6vp/O5CmNKWaGbvqBJ8MkplGJy0kxK7lcMMbS6XS327333ntnZmb+4q/+qtNprawslUrDvu/7vu+67sLCout25VvkHp227fPnzyZJohuaomBdtzzfEQAwxrzAD4Ion8/K5iHbMpIkMQwLQAVgwZgn9f29IDA0DQBQLpdVVR0eHXac7vrGRrfrQoiZYFJyKpVKqSqBGHFO5dk6jqMoBAAgO3FN08QYB0GQSttxoxbThEWJpus6NBkFt99+sN1sxXFcr1cJskIv9MM6TUQSsg8//uRdd93x4x//+Ec/fuHKxUtCiIRGs3M7a7Xa2tqyoqD19ZU9e3YiBJ566iNTU1O+76qq+tprr73yyksXzl8kCrZtu9t1aMIFh5SyMEoIQXFMNU2HEAoRIoQ4ZykrffsdB8+dO399cRlCJQgSALjrVCFW9u7aE4Zxys7t2X3bK6++gxB22t6dh+75wz/4o1KpBCFsNpxiYTRlZ+66895Tp05bln3w4F0a0UzTHJ+clCVG0zSFAOfPX7x69Wq1Vtm3b082m750+YJpmp2uSRNX0zTbxlwk66srhmHU69Xy+vr169fy+ewdDz/wxhs/jR0GkUAQNxoNy7Ia9dZHnnlqZa0zPT25srICAdi7aychBADuB04UJTRhQsBut9tutrrdbr1ep3HidZqpVGrb7Fwml1UUTdM0QkgcySHHVFVFsl4e9TjIKtZlQAjAwMYGDtqeJKQrABJ9SgplsYKxrqo04bItTNaqIYJS40tKt0GAZXQ9yIAghBgrgxVGttTLmocM52To0nOREVxwDmEPhu53bBAZtUIIESZRHMohJ9vOkiQxdatfTRe+7zmep2havlj0fV/RDCEEE4IgVCqVbNsmmi4DWghQwihCPQg+pgljzDRNSuOxsRFNM0bbbXlB2t1uo9HAUABCisX8+OhIt920TUvTVam3FkXR6soypbTb7ZqmWcjnR4aH9+/ft2PHDkqp022vrq52Oh3IJbJETFVhkGOsm4amaYqmK7EIpCqGoIkQgmzZgSAAgG9JXyVX6yYPga2pL++lyDdsWgPEWdYnB7l/7+9eNnVDQ40QA1mnGyqfck8a9NcACCHchKtv3RVuvd9/RADprXTjbjPYeoWAUUShEKqqy0cC35XVkqFi6VOf+vS3vvUPp987e+TIEdvOmgaX8lg7d+x6/advXL9+fXh4eNvcnvEx/0tf/vs4iSCEcRKVy+VGo4ExoVR0uw0IsGTNECLLKVzTDMYYgTgRvNPp7N279+TJk61WK5WyNE2zLINzfv36dd93JV4GAGh3WhpRVFVNpdK61hGcZLNZIWC71YkjhhBhVDzxxJP33Xv/2OSEdCv+6jf/7oUf/iCJqKIo1Xo9DOI4juv1Ro+wEyKa8FKptLK2Vq2Vfd8v5vKapkVRJJN8hFC5XIUQxhE1DVtwGCdJoZgbHh2N4iCVQsXCiOM4lUqNUkkJJw8/fGRxaWFtbfWhhx+4fPny5OSk67qdthOGUddpGoZBo4hpGhe0VCq1Wq04DqU2wvbt23O5TK1Wa7Ya+XxO19Vut5vOWBhDx21lUka+VFxfqxJChoeLum6Vy+t/93d/k88X8/nCBz7wyOrq6urKuqCAjYhKpbJnz95MLhsEcZyw3koBmNwgwzCUs10mbAAABG/Cjm7mEfPBpOD/5yGLEJuhz001D9nQ/rMQ6ptuN82I//FrtsDKNwBPA86lJPpTym3bMgwLACCXNsfpIMAR5o7bhpC99dYbb77xuqaTTktJ4nhybKxcLgtKU6kUwgBDVMjljTHDcZzQDzRFHx0Zv3LlShIzXTNpwldX16WoGaMCQ6hltY2NSrvdle1LjLGEC9f1XdfFSAn8yDRVCKHv+6qqYIx93601GqPDw81mU47MbDZ37uyFJEmKxZLjONIrz/f9jJZOp9OUxYEfARlTcogQTJKEdZjkZAHIIQbZXFrXzCiKxsfHZcNvGPqO4yAE1tfXAQAS1oyiKJctzEyNr66uEqJEURzHgWHonHNMNF3XJHtL13Up+pzJ5BqNBsQKUACltNFo6HrPP+e9997bsWPHH/z+v5OVmN/7vd9jjM3PX5mbmxOYaRZO500IYeRFI6XCyPjQ0uryzNTE+Pjw0aNHhRCjo6PjE6NCCFVVDUuL4sDzuoqKm42u63VPnDiez+eHh4dVVX3llZdyuQyEeG1tZXUVZjKZndu609PTAADKqGSxwb4WVR99AFJHAMg+I9g32N2SBsC+TL8EaGSfjmSN9dfMm7sXB4Dm/+A2oDbf+hYhBOACAXijdeEtjOCfgYTeurBvHlnuNoPjbNl6BvA62IRTwSaiPDgJAMENJ77lmVv+e2t96CawePBU/yPQlq+4NRljAiHY/x79X+RmUPvWO4OvM0jvtt4G69jP+joIbt2a32fpEVtufQ4msNOZHdt3XThzAUJEKUun0+VyeWVliVImA696vfnCCz9wnK6qawKCIAohRrJBklK6vr4+iNKEELatShxTojCScYD6bnWqquZyOQxRt9tljG1sbHieNzMzc/To0Xw+D6GI45gxLmciZSKmCYtCCLGUAVdVIgQLQ58QAjCmCECAERKMMQF7stHSoaU/ZQSnLKJMHrCUzdabDVPrsbMZpW+dOHn7nff8yqf/p7133p0vFp6m9P/27/4wbLUZpbKi6XTbnDNFxX43arfbpmkmlCcCCNAzo2MJZYxhKOnACIG+XnDPvrKnpR5Fka2qCEBFwQghgHDXdUxkm6bpux5AkBASBIFgLF/IAiDazVYURUzwXC43PTmxsrbuOL5lZl3XhVDxaGQYWhAEuq5X67WcELqdEopWa7UdxxFSkUBRaNy7+Lg3eTfnC01ixnrSHwgzGesB2ONBIwQRwhApGGOMCca43e42m+04opJzwRKGMWZQyDBDSpQwxhAEiqZBIVXNEYtZO2hzyhljGMCB0iKEEAAOIYJ9aomu6xCKRqMRx7GkS8dxrCg6Yz2EWi50GCNN0yDYdAaXesdCiG63o2JbURRC5GlDSVHnDKiKCgGTrFGACAQAYoAQQphLYFTmzLJXbOCEKXnNEiaW2UtEE9pq2bZtGIaqasC0pPZrkiTdbpeynmIgQiiII8YZJBBhBDiQoBhCACAohLBtW15kAOCgViqFDgYSFoPCG+qLOGuaNjQ0JOV344RyzjEkoqdXDgmBfS1LlslkoiiKorhXHYFQ13WECORCURSFSsF9OADlZb4h6RFJksiyJASIQx7HMYAQYyzzMdm+IE9M8i0kTVw+IoWbY1nsQQgIkbCezkYQ+Rhjw9K73S5RFN6rvPVoRFLpdUCxlwhpkiRyv5MhnxDCSqd+/pd+8eWXXz558qRcc7mgx469+eabhz/02Ac834mi4Lbb9uZymcnJyVOnTmkEqyrmXCEq9v0IIMxEYmcMjAFweb5UjOMw4cnVhav1ej2bzVtWaseOHdVK7Z133sUKmZubS5KoUqkoiuJ5nmEYw8PDiqLFEV1d3aCUE4RkBwZjQg4khJCiYVPT5U8JEIzj8K233pKDigPgBP6//je/2263Nd0M49jxPawqo6Ojtm1HURRFiaYplPI+zMcgBFEUVSs1IaCi6kuLK7lcLgi8a0vX4jgEgGuaEsZBD/oUieO4mXQ6CIKpqSlZd1cUpZgtKopy8vR7SZKMj497vu/7vqZpAKPb9u+/597Df/qnf4oVrCh4x44d2Ww2icLV5RWESKFQ2LFj16uvvkoQFox7rptJpwv5vGEYP/nJTwRlv/Zrv1ar1T74wceGhoaOvXF0165dTz/9tBDCcZxCoSA4yGUydxy44+d//hdfeuXld95598KFC5yD3/j13zT0ZGZ6LgqTRrNmpVIK0Wam5+am52ZnZ8+dOyeH4u7duw3dkuJIjAmAkUAAISwEqKyXl5dX06lMOpNijNm2ZVnWpYuXOee/9Eu/dPXq1a9//etzc9vGxkYvXDwXxoHjeLVaY3Zi6rHHHsNYee6555IkGSmNQQjr9bqhGmEYQg4LhdLayrqmaS/+6CVN0T/6Cz+fyqaWl1ctzSuVSrt27cpnc4tx8sgjj2QyGa/ryAdPnT59/uIFaY3jh72zpRDour5v394kSWZnZ+677777Hriv0ahduHguCPzh4fEoSu65654zZ84cOHBgZma22WyOjIwlSZIqpkzT4FzQCAAEMEZyFmwNk7YGJ6In3Az71VYwYCQUCiXHcU6eenfn7h3j4+Orq6sICVVDQtBiKVeprJXL5bvuuksIlk6ngYDNdithslOBSoZdrxcB9iOKQWwGAeBCQDFAEm4KM+T0hAJQCk68/e7q0qqq6HHsh2GYH8rNzk6btkk0QDjpizPfEKUNxAZvvf2P2M3ybwFQj9cMIASEAE3T1tdrsmKKe2VpIARAGFAGIAQcCkoBxhD2jTRUFVIKKAUKAgjDaq3RaDSQwENDQ7/8y798+vTpSqUyNDSk62oUBffcc0+xWFxZWUmn05lMBkKYRPHi4uJXv/LN06dPp1KZe+858oe//+/+8I/+gBASheGZs++NDI8Focc577id22/fv3fvbiGEbepBEHz1G19N2ZlHHvlAnIRBgL/1rW+VKxtAlHRDbTRqb7zxRjZbfPvtt0+++56VsnPZwkee/ugrr760urpWrVbHRidymaxgoNnsdDt+pVIRAhOi/dZv/i/7D+z7gz/810JAQlC9XjctQwq8UpYYhhHHoRBCVXUI4ec+97mzZ0+/9NJL09PT6+vrvu9Xq1W5x0n+ptQpBQCkUmnLMnzXDcMwCAIuiQJxbGZzxWJxbY2FSSwEfuD+R2q1umyCyaSx73mcA01TAcQMMIRUSjlCRFG4JCER0tOGyuVyScyCIAK9sASbpokQojQhqGcCrGq9ZiYZZclFWNf1wPfz+bymKamMXW82ZqbnVtcrSQyfevKZl1967cSJE1OTc91uu9VqWTbSNGN4eHh0dNTzPMuyrly6oOmaYRjVarnTbdTqGxcvwJgmhw4d2r17b6PRsCxD05RWK3rppZcuXjofRUGlUjl48OD8tYV2szM3N1cqDZ84cVLXUZIw2TGAMbJtOwx9hFCj0XjrzbfsVMbUU9VaPUkSIThl4eXL852O6zrhwYN37Nt/x4svHo9opKr6b/3m/7x7123nz59HiFTKrQcf+ODy8vLq6hpCOI7jKEzGZicymYxt2xJrDqLwypUrQRDI7alYLGqaEkVRu1Wfv3phYmLi3rsPdTvV1eXa+fNnOefpdJoQhDHcu2/PwbsOAgy++c2vT09PP/PM0y+88MLy8nKuMIQV/dChw7lczneDS/75l19+9aEH7/dcN/B8VdVrtbrvhY1Gy3EclnBN0/L5/NTYcD6ftyyLMZEwyhhjVAyKyrJnCwCg9I03eF8BEvS1yzBCpG8SKPdE0OejyLJWQqmsfMvBkCQJwVhmo5BgiSQw2luOZLh5U2YE+xqAfIurUI9tjTHnnHOGEdqS9AHOOcGEMZZKpRBC7Xbbcbucc1XTUqmUEIImCec8CAJVVYUAmEPdUP3AZTyR8KO0Mk5lCvl8HiEihIg5Y4wZuiaEEBBwzrvdLoQwl8vFcZzL5aTJsxQtYQKOChEEnqnrEApD12gcZNN2q9Esl8tyoimKkk6n0+n07t27i8U8hBADGITepQvnpH4pACCTSgMEKaVAMAgA51zHCCPodLtMKqQhKDiFEGIg5I/UvwRb1txBZsv6DGTOIQCAs36DCdzMgQEAbIs8JYdioJwi0KbgJe93QL/vct8rPw5e3mdVgxvRBHgLMrh5QNjrqN4KvW3qTkoYAvXUvsHNrDosPTpkW+jY2FgUBRsbG9euLe3cuTOfyywuLeRzRQiwrtmccxlEGob1sY99cnh4+C//6q9n5yYcp1VvlpMkMQwjm8nROMYIYaRoqiFTwTimvt91Xd8wjKHSsO/7CY3L5fLiwvX11TVKaT4vs0GYytgxo4Mm0HQ6bdu2ruuLCwu+H0CgjoxMZNLZXC73zjvvSApMtVq99577v/rlr5+/eB4p5L3TJ7/6ta+sbqwqimLolqooi4uLmmZgTGSALss4cZysrW40mo0kZtLctu9BGVNKFQUnSYKgVL0Bsh2AcoAQWlvdYDzZNrcjnc5Wqw2FkCRhURQtLi4KIPbu260oeGZmIp1OxbEfJ342l83mUnFEHcepVDfiJEylLNPUMcaGocnm0FQqxQXzAy+Kom63PTY2RgihNDYMrVTKuUG4ffuc4wSu18YYazoulUojIyN3H753fv762bOnn3jsiQP772JUtFotPwzzGBiGirBQFIgxgBBTBmxbAcCkFMiy82D8bB35W4OPm258a1gkNrn8Pwsa3gpCwX4AJPq9bD1i8hbt5sFxbqIr3nRKW18GbqAwbz4yaHTdMs4h41AIoCggSXg6bRiGUiimFIQ2yitRHL/6yotnz7xn23YQ+ouLy6ap//zPfez48ePtViOOY8G4lUkRhDlLkihuNBrbtm2LoujAgQPF4tD58+d93/e9MDAjTTXc2OeMOV2v1eyU47JlWblcrl6vO16QyWSSmIWCEVXjDAgi4jhOktiyLAhhEAStTscwjLFtY6sr65VKteu0AYD79u3rdDqXr13gnGuapqlqnCQCMAShqqpRmMi1Xtd1xlgSR1hRIBJAiIWFhXQ6nUmlZSdXkkidyci27VwuE4ZxvdaMooQQIgBbXV1rtzuyyZcQouua53lS+DWO406n4/u+ZAkZuqVrpuN7GGMhuKQJK4rCGC8Wi7Va7Td/659cv37905/+dBQFb7311qlTp379138dqPzM2XenZ8aiKBIiMz4+JoSI4mB5bVVRcJjElFI/CtutLiGk1WrNbp/tdByioIcffvCF5398+vR7Z8+eVVVV2jEnSWKYtqJomUymXmt2u10pCBiGIQdCmkExxhqNRsqyZdsyQAAIyDkDAHDOEe5RwGTfe39XlgNJ1myJ5/m+7+dyOQhvVpEYDC2ENmP9PnQrwYifKasnwQpZmxF9Y7ob1+TNvWlwZNgn7IB+MXLrh2698/6fu/XJnta0PAF4U8YDBxsQAALwrZ8LABQQcCikWzHqd//c9BE3sWm2fPTm90JocEwxoE8LIcQW3HfrQXg/EXrfryb6iLnYch02Q5z+Vtjbprec0KAUIc/jfdc+uWvALexmzjnEyPVjRsXExJRhGJ4XUEox4QqGkm0AgeJ53ujEZKVce/UnLwsWT0xMLC4uwn6bG6VUmk7II8dxLJFcSUNTiCZVzAahG0IIASi5A0EQLC4u+L5/6NChs2fPysNJcqWq6qivgMw5EILKr6mqBAASBSEEnDPOKdr85SAc1GYG4mvSWxVjDCAHkE9NjHWdtmnqXGhjk1P79u0Pg/joOyfvf+Chex98tF6vrywvjo9PXihXWJxsn51NwigJI9fzMSaaovpRHIYx5wBA1CvzYASBgBj1CvyCM8ABFxBCDJCAEACIEQYApFIpQojbdZrNJudcQMQEb3eaUppACKDrervZCgJ/bHzEc9xezp8kruvm8kWE0MWLlxCC4+NjnMaO0+EsaTTqpml6QRDThHAWxnGUJAAiQggGPZqk/CFwPzLrsUIoZT2zUAAg7F9qwACnjCGEdN3QVSKBRdjng9A40VWdIhyGISGYc6EoihQSYQwkSQwA0A0VEcQYo3GMEOK8x/VTkKKqKodcHrPPYUF9zjKW6a7UguglIYoiWcNChi19CQiMKejzXmG/hxEAoKoqYAAAIONy6T4kIVFZ84B9svBgvMgeNVnFlFmNbKzZupRhpBAMYxGHYQg1MTw8Mli9JY5cKBTq9TqEEKvYMAzJF1YTPYoi2RoshMAYKgqWWQTGyPPcngKyELquJ5x7jgsAcF0X9DUlpI7hQH4EYzw3Nydz6UwmgzHudDoCCFmVlGV4+S0IIUkSE6IMuORxHDMmFEVhMVOUnmC0nL8DpFgGz/0LhRljCIFenoY34W95AfuSzZSxHuvcMAy5SoEtYizyyH0atZCYexRFtXpF13VpPgwhkd05hPR+LPkDcc4pZUII2LMZREJwxpNnv/KldruNEOKCdp12FPvptP3FL31heWUhjoOx8eH7Hjg8MvLMxMTEP/tn/wzEMQJCwYQzrhpKq9XSDFUxFc9zOGaUR7LLKoh8yhNVx6Ojo9cXFi9duiS7d69cumzbZiaXoYzNzs5mMqlms0kpD8Mom8l3Oh2QYIyxFKpKGAMIGZYlv3IURQBBjKFhpFRdW9tYd93u1avXPvOZz5x471QUhPv27UcCjI6PDQ8PMyqWVldmZubiWHquJH1QT8Rx0mw2CdYgwhtrG61WKwiCSr0ahr6mKelMhjIWx7HnBaqq+kG0d+/e7XPbLly4GMdxPp8PXI8zMDw8rGnaaLWCMUaQSJq5aZqAw2azee+99/7+H/7+H//xHz/66KP1ev3f//t/F4ahrpucc8/xL124qClauVzet3vPLz31MdM0BQO2aeYy+ccee6xWrnzhS198+OGHP/jBD5qm+cRjj8/Oztopk1PGOQcMIQxGRooHDhz8whf/XpYhhYDdrosB1nW9XK46vpMvDhmWqWiqrhqFEp2bDYuFoWazmc8Vbdt2Az9mFDBZVgeKqmKMuo7jel6xWJS+IKVS6eTJk899//nxyYlSafjZZ5+t1RqPPfHYHXfccfLkyTCOVVXP54uqqu/de9tTTzx9z+F7r1yZ/9CHPvStf/j2F77whUwmE7IYctystlq1lmVZ1fXqww8/XCwWV1dXwzAsZIoPPfSQ5/iqqk5MTLRarXqjFkeUAEQIaTQaAICYJkmSSP44goRzkM7YhCDdIB/8wEOZbP7YG0cffejRZ575uRdeeO473/7e/v37d27bPjU1feeddwIAwjDWdd220kIICR8L0cvTZR6wieHeUnAul6tyxg0NFQEAURRBKBwn8D0mhGg0auPjD+0/sGff/r0Li9dOnjrRdRqvvfZynESmZaTSNiEEIbCxXvnRj34kpW/GxsYOHjwoK0xCCITIYKHoxSR8QFzop+Q9ZU8IgJACOxgSCEGr5c/PL4RBnIScUk4Fn902MzRaMkySJABCKMuAt4ZDt0Zf/c3o1uhGnhUQ4AZGkegbD3qeRynvhxDA87imSb05IOM/hcA45oTAOAYAAM4BIQBjACHQFNDuBGEYYgzPnDqbz+cPHDjw0EMP1eoVSqnvh9lstlAodLtdKYTqOE4mk5FaLhcvVDmDw8XRRx750Pz8PKVUVciZM6eLxcJdhw6+8cZPz50788HHHzuw72C9WX/55ZfHhscWVxbX18p33jlGCMlkMt/77nPVWuUXfuHnfvDCcwWSIQTZKbPRqOzevePQoUN+EDQaDdPSP/CBR1999VXGaEKjhEZxxClNpqenGUtct9NqNVZX1++8804p9NTp9HpNbNv0PIexBBOCMIwT5vpOEARHj71Rq9VGxka/973vVSoV6ZwZRRGEWDpzyG1CtjTFMR24C6q6zhhjjDebLYRwHDHXC+6//8H7H3jgypX5jY2Ny5cvt9sdjFAulxNCuL6n67qqAFlgAwBB2IP5fC9cWVnKZHIAiomJMc/zarVGqVQihDhOV9UNhABjgjGmKEYUhRLak7GN7/uEEFnhMyxD18377tu5Y9e+L/zdlzyfff/5H0+Mz9x24HCrXisUx++978FDhw6l0lY6na7Uaj/4wQ/S6fTjjz/+4x//+PLli0Iwx+kYpn514bJC1MXFfBAExVIeAPH1r3/94sWLp06darWaAPKRkRHX9ZvNJmPsscc+fPfd987Nvvy1r30NIqAoCsaQYNzpdCAU6XRaUUi73a5Wmp4fxTFNKFdUqCpmRKPVlfL09AyAyms/fQNAvmfPnt179ySM1xpNAXC5Up2eme12u0lCLctaX1+/556757ZNG4aCMOMiMk3Tj9ylpSVK4+HhEsZwZGRkfb08MjIU+tGxN9/WFBx6/tjIEKX09KlLtVotSZJ777vnwIEDa+vLR986Whgq7N69c/fu3RjjkZGxhx/50NWrV7dt342QUSoO0yRijKuqXi1XNtYrV69enZmZ8bwgCMLAj9Lp7HBpKJcr6LpuG6ZCQJIkQRBBCBEiAgIu+AA77ktViIT21NgGT8E+DtKHlXvpm7wBIHFMASE0DCOJWU9tTFFk4kopwxgONDEkziyjXyEEpwIgSEhPtUzyDCRDH0Io28dlEjEQecMYC04ZkzJuiqxneG6wsbFx6dKlMAxvP7ifEAIFUokGkUgQkmBxFAWEEF1XLWt0fX3ddV3KYkaFruty58pms72cjHMuOOrLQwMALMuSYlxpO0XjBAIQRZGu62FMZauZpmlxHApO4zh2u261vE4Q5JwXsrlcLmPbtqJrxWJRVp0bzZrEuKPAl0xwy7KAYDL6hUimCYAzniQJY1TX9RD6cRyrGRUyijEmN2HNN63XvTv9FVpsYToP1uIeSA03c2j5g/ZyDDDIY2+wReqPiR7cMOC9DajPm7vFDXn+JtZ8K2YNb4GiIQSgDxlsoUWL3r474HJBgAEwTTOMQBj6cRR6nocQyOVyEC6UK8t2Suc0+ev//JezM9seeughLuJOt5nNZT71qU8cOHCw0WicPPX2j198rlBMA8ARArKim8TMczsySd7YqAyogqqqWqZtmma368psASNMKTUMLZ/PM8ZyudzQSKlSr1mWxRiLosCyLMMwHMchWNVUs7xRC4JEZlOKIokjimVZp0+f/uKXv5jP57/9/W8fPfrTVrtRGi4Wi0XPDWQ6YdvpkZGR8kaVJowQkk5liYI2NsqqqqiqzljieT0/N03TqtVqGIYQYNPUpMI1xjiVSnc6Xcn/wthsNFpynjtdT9dNTdPm5+dTaXP73DSlcaVaXl1bEgKWhvL5XGFtbWNjbV031Gw60223oKC2bSsYMU6JgjvdNhfMcZwg8IQQAPB0Og0gi6Lgqac+euXKhTPnz9m2rSh4amqq23V1XVtdXVpfX0UILS2u7D+wR1FgtVrdNrdD13XP8xYX18fGxjIZGIY9PBciEARc6hMGAdc0tJWNPxhRW4fWTVjPTTf57puCN7j1vZIziG4Yq30k64Y33goub73JI9wEiN881LfcufHj5AzqPeW6vqIoURQkSWRaumWotXoFQNZu1S9eOt9sNk1Tj5OIxomT0PPnz3qeMz8/73YdCCFBOKGR44ZJwnRd//jHP86YuHLlSqvVcl3PdV2p5gMhRgJwAKQ/A8aYM1GtVm07pZumZaXimHqBDwGSbXcJjSAExWIxCDzOOcLgySeePH78+MbGBqVU03RN006deldRNMmuyuVy2Vy60+1yn1qWFYahntLDIEYIx3FCCEYIBUFAFAQx2LFjB0Ko2+5YlmWapuzQVxQiN4Y4ptlsNgxjzkW73e42u6VSad++fcvLy81mU9c1ObMYS1zXlX0JAADOQMpWKGUYEwAApQwhAQAMgtA0TYQg58ra2ppt2y+++OK1K1clwP33X/y7BPpLq9ds27Rt27IsaW1RLpeTJAqCIJXKCBEhRNqOK2OdpaWl0dHRhx56aP7q9TgJt23b5vt+rVZfW1uTkEExX9h/+4Ef/vDHh+66+9577+52u41GI0mSbD4nO2SThKmq2mm1LcuSmYBpWNKgYAC4YIxlrL91iYY9wxZKaY8oLbYyU7a8uA9WbsFTRa9M2Ft7e6DtzTfORa/rZIuOx02jumcbIDalNcTWAmSvBxNuGfMQAiD4gKy7KeXEACA3Fm8ggHK6bm5GvRMeTCU+2M4Gny71GuQODwDiEOBbilXgxhl963zc+kUGeM3WS3rL1Xr/KpTYIisv3u9QN30i6HH6bv415BMDMYqbbgOU+eYDAlSplIFQa/UGVjUYIKyQJA6y6VSz2ZSmQ8NjY9VK/eTJEysrSzPTw91u17Zt0zQ7bSeKIinYPSAXSJFWSqns0wcAhEGsaooETyGEvu8LxmW5SNd1wzCWl5clp5JSiiHvk1ARQggIaQmtBEHAOZe/JkFY05UeXsmFhEcVReFASJRZMlURQhhDAKCs5sZJyDl3Ot3dO3bu3rf3scef+M73n/vFX/qVyanZhcXlSwtL49t2XFta/a9/9dcP3HP4d/7Jb3z5v/+3pavznIWMCQJRGEapVMaPGkmSpFLpZqtDARcIIonhCmmx2QuFoeiFzhwwCAUkuCd0i1CCicymIpZomlZMZRlPIMBJQgEXUgiy3eoSDCGE4xOjuWyh6zqe2+WcB4F/x133DA0NNaoV38suLFyT0baQTHBKPS+AENq2zQBMkkRwgQiR7ti9kc85oogDEcUBB4gQArkQQCiKoikqhDBkISFYCmhwALYybTnnpmlm0rl2u+37vtS1kPYpGGOMESa9lSCOQ0VRGBNBECBIoOij1ZQiBQ2qCIwxCOVnyTMUA26LruuyQiC5MBBizmPQNz7tyy73xrOMo1RVLRQK7UZItxjTYwwl3Rj2SxFSrU+unJwDKFgQRkTrpamyA1Fy5AlWMUIyCRmwbm1LhxBKJlccxypRVVWV3GTJZpW6H5ZlpNM5AEAQRK7rAsCFQJQzQjCEkqWFZEQXRZHs+IlpAiG0DHOAZcssS+ZCUk5qbm6uXC77vsc5JwSbpgG5IkBPakMmAXKrknAAY0xa/ymKNjIy4vt+J+okSSIg3FRLxBIw7VUcEUKQSwkaijGWcC8UEAAmhOQ4a4So8r0D3W2MFamLFceRvOCyF6rPfO95bCQ08n1fACa/WhRFmmoIIRgTAIJBp2qSJHEcY0x0HcWR9D/skc0dp9vtdnTdUDWCECQEqyoZGS2Gofe3X/jvu/dsn5zZDiHXNKJpZHJy7MzJd23bNjMmBCiKokozAoxfX120bbMwUsznc2EYojgenhh1Qs/MpFrN9vz8vGnasiVWdkR5rptKGSnbzOVy3a57+dI1VTUmxqdyucK1K0tRGLJ+c65pmoVCAQBQbzaSJJZ0Zlk5Nk0zm802m+1ao37h0sUHjtzvBb5gPJ/PE0WZmJi4fn1JNjPJIS3HdpJ4tVpLVbVTJ0+/eeydc+fO67rmB13LsiBKuk6LAzNOokwmm8sVNjY2VA1LlvTly5cURU2n00NDQ8tLqxcuXDh48KCmaUEQyABPVr+Gh4cdx1nf2AiC4E/+5E8efPD+T33qUysrS9lsXtf1XCb727/9v3zza9+4fOHStultd95x6MnHP4wQUokCBLj//nvDMPlPf/Hn99xzj/zFP/vZz+q6bmiKQhRAFMqoghEAgDPgO24mle06zh133PFzH/2Fs2fO6bp+3z337N+//4cv/vjFF1986JGHJycnzaJhGMbE9JSu6wlnWFUARp4X1Go1wzAq1WovnjQNx3G8MLx+/frrr7++d+/eu+666wc/+MHxE+/cS/DJk++l0+lCqXTinZPr6+uqquqmls/nP/mpj9dWK0PF4YWFxbvvvvfuu+4xdIIBVrHqtD1N09SUnk1nP/3pTx4+fHh1bWVyaoqoimWlVMU0TXN4uOToPmMsnU75vh8GkdSLaDabt99++97b9lFKL16YVRQFIwVjGAZRKmUJwSACB+/Y/+bRY2HEisUhIcT9996fTaenpyd37tzV6XQURcnni47jqYpeKmV8nyYJIAQgBCAHrN9NxTlAAgAB4I28GQiBzPsYY7quRlHU6bQk6h1FYnJy8uw585v/8PWl5UPbd+7Y2FjjPA5i+OIrL01Mju3bvWdtbWX7tl3Xr18/evTY8vJqrVbLZrP7998+NDSiKCQIZNFrM/zofehmVNMvcwu4JVFCgDOBhKbBTrMVBAECGADoh6FhalIET1FAGDPZHwYhHFDcOOS3os+bcc7PNq+WZ3FTCAch4BzMzc0kSdLtdur1+vh4CSGUUABkX6wQGMMoYpqGkwRgDBACjElfQaARUKl0y5X10dHhbDb9o42Xrly5Mjw8vGPntkIxlzCaJMnQ0JCmadeuXet0OhjjXbt2AYAqlRohqolSnhfs2rVrfHz8+edfeOrJJ23bWliY/43f+I1cLvd///f/HkHCAL927drJkyevXL1qGdl0On333fd+6EMfGh4efvHFF//mb/5mfHQ4n89+9KMfefPY64LRc+dOIwTuf/DRTCZn2dMXL148f/7s3LaZ+47cVSim8oWUoNB1fWkDW290d+7cOTs3/v/+D/+v1157tdWs2bYZen4mn7EsS65y0uydcZ4ksazwnTp1ihDy6KOP0jCs1+vZbHbv3r0rKytLS0sY95zQ5BVuNpuKoigIY6QkcRDHVFEUgFEc8UsX5ynlI2PjH33mly5eunT87VPDw8Oc4X177/zkJ3712WefvXTpAiJAwaqmqK7rCsAhggBihSC5hYVhmMshAPjq2nIUJhLdlkVcAUGSRFEUSv8euctgjDnkWOAoiuRJ+l7ger4fBBGjJ949W640hoemPvHJX9s2t/sbX/vmxeR8MZ9ptbrtdmd2dhYisWvXHs8Lvvvd70Ihzp07hxCAUFCW5GEeY5jQ+MzZ05mlFVXVL128cuXKlY2NMoQwlUoRBUEIHcehlE5NzaiaEfjh/v37L1++7Lru7NzM5cuXu922EKLRqAshEIJJwj038r2IMkgIYUxgIgDGe/fuuvue+8+dvXTHHYceeOBh3/frtea3v/2NXC5jmrbv+zt27Dh9+vT6xsbK8lI6bR24fa9hYsZCTBQB3YXlxfdOnel0nLnZHcVSbmp60um6nPNWo2PoqQfue9iyjOGRoq6kLlw9xzhVNcVOWem07fvu+NTkm2++8Q//8I2Pfezjjz3+xKVLl6KYj41NGIZtGIbnhYLxSqVcLW+43Y7rdd88+noYhgjCbCY/NjJiGGYuW8AYEyjT6phROb8UIDV2EMJYieMYQgThJvshjmMBGEREiqf18GUhAIQyJJCxhMxh5X0sC9gYXL58eWlxZWpqamR4mGAVgHjg14L7ltGy0VAIKEFkmmx2isi8Q4ppyDqKjANl6CK59vJlEHBphOa6vu/7J0+evHTxirSo3bVr1/0P3KfreuBHURRx0Tugaeo9hDeKCGGqSgzDsG27Uq5J1A8gyctBnHNFUbCMbDkHACRRnEql2nEsgzEhLRbTGYwx4oBS6rqubDWwTf3ggf1Li9d827YMfWZ2WleILLd0Op2L5fOU0jDykyTBEMgmOUZj0zQhBJTGKpaWLTJPBgBwTdNUTGicyL69CAQyMiE/i5W5lW4J+7gs3EJnHmS5/Mb2XtEHrgeAMugl3hDAmzloN637QmxlIg+W/B7OJ7P63ntllo4AYFsPAAYcNSEAQDdofdy6xWx+FwCazZbvu2Hky05VxpjvBwsLC+MTI0NDQ9u2bZudnf3mP3x7cXHx+uK1D3zgoanp8XTatu1srVYzTXPXrh0vvkw73Xrod1RVdV2XMwgY0HWdMZFKpTzPq9frGGPpXNTtdtPpbBAEI6Mlx3HiOLZtEyEkKMvlcpzztbW1MIlTqVSSJEEULyws2raZSqXGxibqtZbvx+1WN5PJGoaeJLFs4UylUp4b/t7v/d7o5Gir1Ww0K6apdbtdwzDGxsZ03SRYNwyDRsmePXvW1tYcx5ElR0Jczrmqqel0sdtuylVPFuEN3ep2u3Gc6LouJXQZT5BCEIIYKzKGkNIwTjewLOv+++9/6603LVuv1SoIi0aj1m43AUCpVGp+fh4IiDAuFAq5XGZ5OSqXy+MTY1Ec+q7HgZB5TqfTYSzZvn37/v37z549relKFCUvvfQShCJjp8rlsqGnJC8DQjw8UirkS6ury0Ho24aRztie5y1cnzd0q1AacV13cWnFsiwhhGVZqqqqKlKUXieUriNKAUaD8XnjMN4y+LnkPwogBMBbgOMeSXCLXvmtUQyU3mJb5hSEAPaFlUGfkwi2RDY3ncBgrN764E0z5aa5KR+7EQQEGKMkSWq1GucxZbHqKBgyhECzVXPcTpJElMbtdhhHYSaTUxTltVd/ommaoem5yWw2m200a9JcmzNgWdaPfvSjcrlaK1d8P1AURVVVzlkQRIqiYEz6PSW9xW5sbLxUKrWdrnxEVTQhBIQgSRIBhDS+lwtCu92evz4fhqEAbGpqqtPpMiqiKIpjKgBHCpCqynJZ50CYpgk5NHSLc4ExNk2jXC4zFsRJaFh6HMdu15mdnR0aGpJZdBD4EOojI8MQIl3Xk9iT5Lht27ahWXT9+vWN9YqumQA0u92uZVklteB5EeizxoBAGEGEEASYCi6BA9M0GWO6rgdBQAhOksS2LV3XdV2/dOmiDHTeeutYKNrZXDqbzZqmuby87DgOYyzwfNtOm6ZtGEaz2cQYF4tFSfMMvDaG8L13TzYaLdlU8S/+xb84e/bcn/3Znz322GOPP/74V7/61Xq9fuTIkZSdOXr06HBxcvfu3aqqdl2nWq06jpNOZzVNUxUVACBZoqqiqQTLviEEe6VXzsTWoSI3bEVRgiBgjNm2DbcMwa0g8o1DcWDEeguaCW94TL6Xcw54z+arj1nfWve8YQz/jE/s3d968C2fBUB/a9jcHfp3BIfyI7bwXzZzFQQhB5sA7gB13bJ/QcnUgT2CNrp1GbkRaxZ9cFwMoGF5Z8AQhzdWogYXfnDkW4/fh5v7pO/+cQb3tzroihuf2voWeSq37Ms3wOKoL4oq/y6VSoIre/bsOf3eqQqinU4chR038DnncUzDmPFOp9Goc0EPHLx9Y/Wa63ZLpVKr1YniQHoDYEwMw4AQSnMwyX9BCPm+rxBNYn8SD5VlToKki2CIMc7n8/PzV8IwlpLrgHOEocIxIQgAxChnjFHa809DCNI4YSgGAAiaYIwp30J52EJcHbTjyXCWCyqEME3zn/7Wbyyvrrx+7K2///u/r7edL335WTud37N3f8txL12e375j58//0i/vmp64be8eUzcYjYlGwtCPE8a5oFFcyOVdP/J9H0KIERYIyk8REOJbCwBCMM4QAhCS0dKw67oRY4ByyzC7Ycg550ni+0LTNJpQIYAMQHVdDwPf8QPOaTqd3rV7x09e/Wmt0czmcmNjY9lsutttM57Ytr1j+/Z2u61qGiAkTGKCSJTECecYQiqbrwGQdSY5T2FPyZoyQIUQXFAIFTlvSb9pTO6zMiiHfbW7HorKuIJJu9NsNtvygquqCgA0TVPykSGCMoXAfdVjGb8yxgQVRCOC8Vj0HOH6YOVmtIlQ71cTggshANzkycrLQvuxOIRIPsL7CDUhRNotSmzaMIjUguxXvntZjVwS+voYQAghe2sQRJALSJDruoqiSAax/DnkoCWE2LZNCHGD9kDaGGPsuq5kCkuIXHa2EULCMJQUYIwVADiEMGGUBdy2LYlly1OVQtVxHEu5gHw+r6uaqqqVSkWWfiXKn8vltm/frqrqwsJCJpOWiURPhJpLAjKVpBtZepQ/dBRFst9ISg3Ib5TJZDzPC+MYYyw7M+QJoP4NCCRbZ3psI6lmBHvjfEAwl79vHxAXgzhegtdyn5VDSN6nlFIWY4zDMNQ0TVEUjBEApO+IKBAGsGcR2cuIAIAS6Oec9znUBACg6zohOJ1OCcGEEH7gVqsVO22VhnLZbGZpeeHM2XczmYxlWYxH+eGCYRipVMZzA83Qdu3ZValVd+/Zk9BgcXGh1qglSQQwmp6e3W1oKysrUVvIj9Y0Q/btua6LCfJ9f3xitFatbqxXkjhGSFlb28jl8qZpNxoNwyByfMogKpvNdl3HcRxVJYjgOKbLy8vXl5eSJLHMVPcHPyjm81NTU+++e0owbtspzsDk+BQAoNVqSdm9JInkoWTRPZfND40Mc86feuqpl19+yfV9RcUqUzVNq1bLkp+lqabneV0nfvPNN3VV63a72WzO87zID6Tey/Lycjqd9jyvVqulsxkhRBhGYRjedttt169fZ5z+5CevHDt2tNVqFYtFVdURgEnCfMf9zd/8zdXltc98+tMffvxJ6Atd1XOFvJxMZ86c2bt376OPPvq957937NixRx99VAgRBN5QsdgbTqzndyJNrlzP+9znPue63le+/JWRkZFDd96JkLZ7924/mK7X66qhm7qRsi3LMiEAkoWDILh+/frbx487juM4bhRFACOMcbvdHhoayqVS165de+CBB6SUgRDi6aeffumlV4Ig2L5z55/+6Z8apvapT3366LGjc3MzmUzm9h37KpVaMQcUhCECjIHbb7/jzTff2rdv30MPPfTss8/eeefBxx77sKJg27Y1TSM25lREYZJKpRAClmUSCDAGhqbJQhFCyPeDar322muvHTlyZGZuVrYIQMPQNI1SigDDEA0NFQuFwvLKhud5QoAkYU98+Kn1jVXDMNLptJSGLxQK2WyGc6AoBG7pmAT9nAVu2dchv0FZa3x8vFqtLi4uNBq1SqUSx+GOHTtGR0czmWKlshEEQaVW+eEPf5g69gbGytj4KECI8SSTST366MNBEC1cv3bp4tVms71v376XX355dnZ2bm5OURTOe6yFG2OJATOtF5sAIB23esV7KABjDPeohbDV6rhdjxCFMQEAGhoampubIwoKQ8qB9PUFA6xZxmGwjzjDG+gFgyDnhn12wKDYJPRs4TUDABgDhABCiOcF9Xo9k8lks2rXERj37IiFAKqKOQecCwCgbPWmVBgGTBLQbrcVRVlYWMjn84SQ1dXVpaWluW0z8rLYtqGqwPfZxYsXm83mI488Ypom4OLOO++8dOnS9evXMuncL//yx3TN1DRtz549P/zh88989Ok77zr4H/73P3bd7t69tx09+vqrr76ayWRuP3jgkQeeaLVa4xOjQ0NDr7762vPPP//0R55UEEYIffaz/2hpeX5hYR5hrqqKEEzTlCtXLn3/uW/Pzc1sbKxcuXrZ992dO4NOq1vID1uWfe7cmTfe+Om27TNR5EVRFEWBpmmyJg0AqNerAADbNuM4ZgJSGquqCkAsK4iGYVy9epUAMDo6kjB+/fr1Wq0WxzGEvdYWefE1TRsAgtlsVjMtIQQSiRDwscfuGx0Zm9ux88D+g4XiCE3ghz70of/6X//rgQMH9u293XP/9okPfzRXtL7//e9HoU8IghAyTsMwwIYZJzFlMUKo2axPTk5TyqpJ3Qs9y8hkMhnXdVzfg1BIbXHGqFTfkrtJ2k4FQSBhUAGwEHxmZu6jv/Dz/+6P/n292frVj3922449Vy5ca3ecvXtv279v99e//uzrr7/eajVvP7jfCOK33z7+9ttvHz16NJOyAODDw6UwCtbXV4UQO3fuBADpuuq67vp6OUr6PaYIQQilc6lp2rVa7Utf+tI//51/ft999+3de9vKypLruisrK67rSr24Xbt2BkFw7NjxwE8MPR0EoarqhqVHkT88NvzoIx+8465D1Uqr1eyk05amkWarhjCoVqvt9nyj0djY2HjxxRdNy+h0WuMTwzt3bmu2KpqmNFvla4sXFxeXV1c24phmMpnZ2VmEkGVZEGJOWT5XzGfThGBG48XFhVOnzjzygUdKpcLly5f37NnT6nba7WahUJienq7Wavv27du5c3e1Wsvn81jRXD/kHHRb5fn5+ZMnT3hulzGWsmzDMEqlwm23HUCQcC4QQpALARKMMeMJoxAjRZIGECKMcwCY7GCWw6YnUo/7LkRb8tNBaCeL/YwxGahIYm8Yhp1O56VXXmw0Grpm7r/tNlXRgyBQNSIV27bSpWXcyJggCMu1K0mSmPaE5iTKLN8iO7EGkadst1JVAgAIfHdpaencuXPvvXemXq83a3VC1CiKmBC5XM4wDN/3JcOGUSHFMGW0wxPqR6FlWbLnIwgCWfflnKt6r2wj29cghIBzjLFkHEdRxBKaSqW2b98uScqU0nK5LCBOksSyUqlUanh4uJjPDg0N6RqZmhizDH19Y211aVGaxkmZOEXtgfiUJqZpQiRktMziRFIBoihSFQUA0MflmRAiCD0VZCGEGEAGgRCCMAg474ELuM/wEqInWjRYcIUEy/ptJrInGwwAYlle7KXyCG3BzqhghMjMjQNxQ8/1YN3faptLk157I+zxyDZFDAUEVG4PqAcSI8lR3sId6yl1QiC4gFIFZHDkwTYLAezXdlF/48MYdp22pimMUawqQrAgoVBRz164NuOztXJraWnpySeeuXbtWjaXHh4eP3vm0gMPHBFCQBRvVNaPvf0KY1FtvTE3M1sqldbX1zWVCCKIRlKqpmna5z73uS996Uv1umzbV4kCl1euGYaxb8/ebrsTBIGiKUmSRDweHhuV4tytbkeCyKqqszhx2oHXjfKZoXq1RSnNZ3NCCJWoCCDGGAQqgtCyMCGkWasFcTQ8NMo5j2JvfXUt8Lx9e/YcvH1Xo1FrtULLYrkIAywq9Wu6bubyphckqqqbppVQL4qiMAkVXQEAHDp8p67rX/7il6RigIAYIqEAhDFhXGCkcR5pmqEoij6je27gut3h4WHdUNPpVKWykc6WUpn8xsa6gPjRDz6cy+W+8+2vpnLYDeuQMM1A5fJ6zwEznQZcUBoDkRy5/27D0MuVJS9oZgoTv/rJXzt37ty1q1cZYxpR4rDrew1JX1IVbXW1jqAKOKzWV0YmisOlPWEYCgR379m2ulJrNBqe63LOLcuam5tBEEAAopjbNgoC0O06Q6VUtxNyDgxDjxOqKEQArmlIsB7jXgy617cgO/04ZfORHiR0Ezrc4wz2pcbRFtQYbwLNckLdEPpsOTKSZAS+ORnlUwPDCoQ24afBu7YgU5BvRfCgKJQyTFDPcQlCQIDAC69cury0vOi6XRWln3nq/vPnz711/NihQw989KMf/dGL33n++ecLuaKq6ppmeG7sOL6iEENVNaKdPn3WdV1V1RgQKlYIFrpOESJxAmgCINAEBALGesoiCh+aTOu6CAVN2bnScP7K5euUckFjwLmmKTxhruuqKjFMrdPtvnvy5H333TcyPsIZqNebZ86czdgpIRJNUycnx1MpIwhd6eMahYwQJUmYbB/WVCNuR74fKNDkNIk8cfXSEsYoSeYXFxfjJIAYQAh1S9uxew4jhVJarVar1armw4N37bnrjru+973n3jp2HAAEMcK6GtC47XbCyCcGUYnCmPR0UhljgvMw8oQAmqZKqSNJbeM9i6SEC9TuuIqBKAs1BVspU3hq4PkKVlWiTY7NvPPOO5QyhIiuWSMjw2EYlqOq13V0hWgEG9kMY1nfo/lcqVHvlorDv/ALv5BKG4oKnnr6g/tu244we+aZp/74j/8/hp6Zm91hWilMxNT0WBAEly6f831/emp2pJizrbSmGVhRJW1TBlhEVSgDnPGeR6KdlgLNEELZxA+xEJS5nqcpqmFonAogAMRI4lBCCOkfJQ8oOIAQyWLM5rCHYMBcFkJIHiuQ7xUEAEAQ5qAnJC0Xcsj7yGZvCvQMoPpQ9CZE25s4PSUuITgUvQHfY/AMGNVCKjJL+Glg9Img7OCDPXR3s8WSwx6aAwAAAvWqnPIcBYAAwr7E84B43ftghBgAA1Sb9yY4h0hiuwPz3f6/EAppKoAQhICJTeUvwAXGPZfzG2zlt3ClYV8fY3NREj2ETpb+hegVfwUQEA2yqp50CYLwBmmg3lkhJE+gDyszICBCTKaJCAEIWf/3ghBiiAQNu91WELQCr4URMPVUGPiB4wmAHKfx4IMP3nPk/r/9my86jhs4AiJ7/toGUVKZ7JDTXQyCUHKHIRJxHGMCOE8YB4EfJ0mSsjOUJ4oqaaooiVkmk7377rvTGfvdd09cm7+iIa3RqGezOYwVzw2iKMGQcQ4YYzCmGGMEAWcCcIYhkGrRvBcLCYxVjhBCTP4qMgRCQI4xJtNIgvoCuBxADtNWujg1+b2XXj597spdhw//b/+P//3Nt9/UiHLb3tlKuep3ap6lPPHRjzQ21v7sr/98cWVhqJgtFVMnTpzAmklUJeCR7/pMAUIAzgQEQPJ2sRz6AHIIVERgD97mQjDZpBzRpNpsZ1QdxHExm1EhAqGvqJgyGjKEBOCMZTMZjDEAPJU2KaRrtY2JiQkrlWu13UqtXqvVojjWTKNbWVU0FbDEjz1d07KWZevGtrGpE2fP1pxGrOAIA4yEiDkRHDFBsUAIalq/WAUBE5xSLl3sIBdJ3/aECQYA4DE3DEPGpj1yqxAJEzThGGPXCxjjclHAGFMqg0MxyLgk8QRyDiFM4ggwiDFSdcX3gyAObNvGCFBKJaC5hVTLMUayNgD6FbGESm1x1HOkJEQIQTkTECBC5B8eJxJGV4mCAAzDMG0qqVQqiiLKxa4duy9evtxotAbphKqqAHApM00Q4JxDogFZchaIRZzHgHOGINEUTVMUAWGchLqujo0PYYw6TncgcyGTGUVTAIKCccYYixMFYU6ZnPCUMygQglw3DSBTMSFkFiHPRxLE5NWWipNhGAqKAj+BEOu6GdMIAJHOpAUUYeIXh/NBFNTr9SAIAAcEET/0OUiwgrngUAhZG+CcE4h4QqHgNI446EHPzWbTMAykCA4TogjZzRPHjHMuiQg9fLBfP4MQMiGIpJwgBAAgisI5l/RYQoipWwKJJEm46GV0jDEFIwEAUQhWiCA9Px/BQBJRynmSRDThuq4bugUBRBARBYdhCIRgMUdQCCQQQgkDAEBd19NWxvM8t9PFGGJMEEIaSUlolQuEEAlDtzQ8dNv+HRBRiJJrS2cpjYMgiplfrvJCoTQxPdTpOIvL1xAiIyMjY5OlnXunzJTOmHL2ohtHTFMNjIHrBIZh2rapQZiyM61Gq9XqQAgp5dlslhCUREF1vdnqdhBSU7YKAHEd1+26ECiapiRJpGmKqpIoCtbXV1utRhT4hqZu27YNYtBoNMrlchAE6XR6KJ+bnp068e47yyvXSsWhUml0ZHj8+z/6EUJE1/X8yJATeRQy3wsxJkOlEdPIpmxFIUglysc/9qvVavUr1SqlCVKQ4yaUEtPItaNmeaMGe9T4lKqqzWazUCgKDn0vlJB9EEdWOpVKW9cWrlqWxWgcBn4qZWczmaXFxaFSCWP80o9fyWSz6XQWAGCaehAE9WbjP/31X+7etSc7VASqqqUtriVmyhYKYBwgBC5cOp8kyYUL5wAAV69ePXT34Xa3E8exH0ZTE5MIIUaAEIJAaKXtT3zsV4UQQ8X8X37lawtXrsxMTGRSKS/w5y9fueOOO7LZbBiGG6sbQTZt2zYmcG15pVqpeG64uLi8fHWNMbaysoIQimnARYIw//mnPrTvtkPvHD9R3qgcfePNeq0RhuHFixd1XfV9d2xkaKiY/5//6f/lySc+lEtn7rrjzlOnTiUFVBoew4rOIOBcEAIPHzmk2b8zNTU1MlKsNDeAEEHoen5PN3OoNFpMlxKDYoyTCAgIQsYJRFjT/TBy3cB1Xd9xu43WmRMnHr7vvh1TO8+dO+dOd23bRhgJiKiAAmLVSE/MzEYJrTfK+WyuWMgoEIwUSoBjU7cMzaI0GS4NAQQYF1xwjDAVnBAkBukDAAAAhoBgfKA+DLmACDLGTU0dKpREAo4ePba4uFqtVi+eX7777rsf+lBmZHL43geOPPfc9xrNMlbpnj27FYO3O13G6f6DuxgOCsNpAMa//70f1jY6gOjDI1N79h5MGGQCSv6HnN2g34oO+iQbCCEQFEIMBRICCgE5AAgCmXpBCDjlBIJWq0WwCjnCGGWH2OzuKc1WdUtPuACAc8EhQEJGnhwgjsBAlhMABgYuzL0YT/4hW+OoLR1jMoLlvB9s9W+cg4mJCdswXddtVGssSWcyKc4BB5BSGakChAAhUDoEYgiICjAEK+srhXxaUl5e+vHLgqAPPf4YIrjV7k6MlRhDccBVjJKQtxrtHdt3DpdGOp2Oruuj4yPDo0NAY8MjpZHJoVazesedt2EMNsprDz/84IUL5y5evKjr+srKUhwFlmVl0/qBfdtNW3z7u88LIQq5jOM4h+7a9cQTj//ohy/Ozc1ohv6P/qdf/2//7b/d/8CHjhw5IqOFb37nq6dOnfIjNwmj9fX15aWVo2+8ns/nf+3XPn36zGvPP//c1fnLb51IvMAbGi7GwotjiFU8NjTW7XYFRwpGkZ9gTKCgUCDOmaaqGGNVVWVREwGoUSYxsjiOkQxv+tCqpmmWZfm+32w2M5nMrl27HLeJECpv1J588unHH3uqWBzWNRtjks8Uc5miodmWkf7xD1++cO5iIT/065//zY3K4o9+8GKmWKCUdtvtKAiiRBFMcE4gwn7oUjfK5+LxsenyWgNyxe16vhsEQZDNZxSFKIoSxgEAiFGkaZpADGGACNm9d8/169eEEIBRCLHbdU4dP2UQczRfdDv1H73wjWPHjlmWNTax+8r1E1Q0dWKeOvPT68unFxbq7508KdOoTtspFgqmnhGMOFGYJEmr6g8NFb1OEAQeYNTrtBilGGNKBQSKqmidjiOECKKoWuv88KWX1ypV07b27dsXch4LYaTTUZeVilnGreXVtTDCxdGxz33286+98tM33ngjk80dOfLA0NBQvdZ9/ns/atRbvh8CFu/Zs2e0VGy1Wt/5hy+5rj8xMbG6uhqHIRS+6zce2nu40Vq7dOl8QqM4Dg0TZbPZe+5++tib75Y3lubnLU3ThkcmAICpTEHXjGw277mdjdrKmyd+6tN2pbo0NJy9/8GHWx1/fHzmzjuS4yd+et+9B94+/kYYrAgBV1bWRodHGRWO41SrVQjUTqdTLKTCoAMhGh0dHh+fLBRKnEEEBYYYcDkBOaWJjLwhBJIpDACTrCgmnxIQCIEREJxDiIHAAEAOuUBC2nRhBXHOKY1BD/yVilu9EjXGOAiCidLY7Nj01Mx0JpNhIkYaBgRiglRIIISAcsg5xkhI6b+elbgQECiaOuCmEISJhmU2KutkYRiapg4AUACinF26dOny5csXL15cXlqK/EgwTohCsAYx1gyEEEpZBhac+j4nRAiBMNQVXVYiJENO1kWkpmW73Q6CjqIoSZIYtpVwBiEgmppQKgWJJNN4YmIil8sBAAqFQiqVWl9d8xzHzmZymTTnfGR0xjYtjDHkzLJ1HjnN2nqtXGm3GowlqoIJglEUEIwFj6NAQAih4BghwTmjPW9nSCCDmFJKVCORFusswQKZihmHNI6Yy0JFURiGkmBB+rbeQqbHCG3mwoN19lZeML+RgtYnu4F+rL+5fA/0msSNso/yjb2nbjkU74vf4R5YfjOgBsANWv69x9+Pqb2V+wl6yERPQrqH9wkAIEilUpOTk2HoM0Yd3+t220tLS3v27BkaGvn+979fLBZ3bd9x5ux7QRB4vnP27Nl8Prt9+1w6Y6XSxvk3zzlOZ3Jycv+B2/7xZz8Xx/F//I//sdttKwRRihqOu337zm3btkm6iu/7lNLZ2R3z8/PtdnthYWFycvLatWtzc3MbGxuO06VrHAAgeY6EkGw267QdqBuVSq1Wq60urUvPljDyESTdbkd2h2FFOtUoQghMYKvS+NM//ZNisfhv/9d/JbtNOeftdlvaxWYymTAMLSsVhqEQEEGlUNKq1XqSJLJDOZ3OEkJ8x//e976nqj2fSkmriaJIVXSEBOOskE+HkVMuVzKZTC6Xz2az6+vrEIm1tVqhsH98fLxcWS+VCnEctdttCOHo6Gg2m5GqLvsPTFiWde3qQq3akCKJnHPOEVGUTqeDMSqXy7LP6PHHHz979qxUxEZIg1AYhlEsFRavL7XbXU0zioU8o7BSrr7x2hu7d9OdO3ZjjMvl+uRkCSFULpcxhggB13UzGZtzYJiIC8A4bbbqmbQtTQw4B/lCwbIsiIRpqvxWkuXPvm0toUMJNv1MOuYNw/LWgX0TgXGgy4FEj+VxE19yK8/x5tPon9jWj4AIRlFPxhRAKBmIhmF4nlcul3fs2HbHHXc0Go3R0XHHcd555516vT40NIQAZIwtLS0Fga9pqgQLut2uVMLqdDqKosqeXCGYrpsQsSQOMQGUUcPQJmdmEGa6gaIo7OkZCeg6Xc6gRhSZRauqItvYU+mMoqqU0kqlomuaphrFYj6VsgPfJ0RJp1PFYhFC1uk2ZTsz6IOPUZiYpkUp7TQ7rhOYJtI0TQgGAE5EsrqyDpHI5dKZbIoylknnuh13YWFhbGxiZmZuZWVtZmaGMXb8+HGMcTabjaKECS6EUFUSRdH09PTIyEh5fcOyrEajFfsUY9JpO2HY69GGEAkhZAMXxljXNQCA53mSXWXbtuM43W6XiygM40aj1ai3SqUSQoixWLY/V6u18fGxVCq1vr7e7XbvuusO3/ffe++cruvHjh2rVGpzO7a/ffzYd777LdPUJycnn332y4Zh/uPP/caTTz75pS9+9a47D2/fvuPdd9+VjKFDhw6dOXNGJSSVSmXSWSEgE0BWR+UKLNsnDU2XTlnpVGaQDEAAGWOMMUmak22V8guCG7muoi+hxZgA/X1hC4vkBoi5PzIh6Juhyf+Kvqns4F1gcxvqGYzLWrHo98dACGFP8m/Q3rJJuN7SEwA37ww2gM1zu2Eybr0Nzg33RWy2JCFbzmHwFYTgEAjBB8zoWxg08KaPg7fsVlsvVP/+Da/Z2v2weaitTO3eG27WoR68ffBBfe34G36aG89WAADYFnz/1pcBAChlko535r2zy8vLgtPb9u1WVLCydJUoCEK8sbERRdH4xOjp986trKwkzP3FX/xF33c5548//vg777yzvr4m1TM6nY6UBBVCxCGVBIQwjhDChBBVUQqFQj6fT2jk+8hxHCCQZaaSJGk2m4wJmnBF0aDgA2Kyoihyz4JI0ETSKnsOIbwvDksGipZbYg8hev51nHEIYRzHCABVVev1+r/6V79brzfvP/LQ4x9+slZrzM1tn5ubM1StNDwWxbTWatMotm17aWmFMzA0OsSZT1QloVTXTcIF9SNF0ZIw7o0Z+TNwARBECCGMeNJzYEO9lBuCvgqZH4UGgHIvVlUVQWFrGuJc0zQrleGMqaoax3HX8VzXlXJSjuMsXr8uuxNc1+UQlDeqmXzajyMhRGEq3210nLaDibZ9547G2TOg796WiBgmsOdcCIBsCZTKhlLtAfSp35JqCgCQ8sc0oZKyN7iYUuZCNrHKa64ZhmSayIRTvgZuCkBvRoCyBQ9CqOsaQtgwjIQlSZIwSqX94Na1SC5ZQBobYizrSJz1BDchxELEgwxBVdUkSQTvG871kVzKqJQwDgJ/aWmJUyrNcwaTYpAtSxYJT2TmI2IIMYAI9XjTcunzApcQks/nMcZ+6EuUWV5MhBClTJphAC4opVICfqBNIfoax4MLAgCQJSh5uWQEL4mNpmlKSksS9SSqNU0RUFFVJZ1O5wvZTCaDEBoaGqpWq0II2ZJZr9eDKOwNeIQHckleGAjW81XmAKiqxjmVsrmWpVuW1W63AYDpdBohUq/XM/mM3E3kxJFXWO4mMrvDimLbNlEV6UEti5RB4El5DbkrAUla54xzLvdQWXiTjQ4YY+kUhBCBEA+kQqBgmEAhAAIYQC6ACGmsEI1zHkWBrqsQCkA4QhgToGkKFVxVVcYSEXNFUQxDO3LfPRNTI5cun5UVwW7X7XbddsshRCVEd9xkZWUtDJKxsQnGWKvVslPGpUsX2u1up92tVju79uyend3mul0hwpSdBRpWFb1RazDGAEDSoqdUKjmdVr1eI4RAgDBWCNbbLQcAhFFPO1ty4eVq4/s+5zyTyai6liRRu90GAGSzWWkKtLiwxCh3I48mG5VKDQgkBIIQfvzjHxcgOfXeOxNjk5lMDkLkOM7YcD6Oqe/zTCYXR/TZZ5/tdDpxHMYspiI2TEVViWUZQrBisZiybcZ5EASGYVimWSqVuh230WjIkka5ss7F0MBxiNIkk8kEruuFwdmzZ5eWlizLEoDX6/VUKgWhgBBms9lWq3X+/Pl0Onv27NmHHnoon8oghOIk1vvtVvPz83v27FlfXz98+PDU1NTKysrFixehAJZhDg+VmFyQMcYI5Et5AoHjBPML1/L5/EMPPVSpVaWE69tvv/3EE08UCoVarSZ1xs6fP//666+rqu45Xr3e/Pivfrpeb5w8eQogYFna4x/+IETsyJEjJ949Lwfkl770pXK5PDw68u1vf1vmQbfffvvnP//5KIpq9fbu3bshRlNTU4SQ0dFRTdP6uy0EAOzevVuSvIaHh0+88876+vrU1FSxULp8+TJnsFQq2baNMWRM8F68BGSHq+u6uVxu165d5XJZEhjljtntdlOZTC6X8rxEGoRGES2VSgShOI5Nw5RNJOl0mkPUD/IhB0KwHikvDMNGq8M5z2Ry6bTOOWAMKArABMQcSroupTLfFxCKJGGGoc3NTUD4wNLSV4QQ9Xq90+moqjo3N+W73pe/+PflchVhfvz4O6qhl0qlhNLz58/v2rkdpVCz2dzY2GjVPKhoIyMjpaGibZvptBKHIkkiQogQg7hIDCIcGdABIOCmgnMvexKAcQ5VFUEIut0upTRlpgFAELKxsbFsNis3IEIQgJBRmXr0oyAAIHqfoG5rICRpAbcaCQ7iqy2hY+9xXVemp4fjeLhSqVXKNc65rusK0bbSfYQAgzYYCOHly/OtVsuYNTKZ3PLyahzHbhg8eP99xWJRCM4h4EKoGgIQNFv1ycnJsbGxy5cvTkxNFgoFjPEHP/jBr/7Ds6VSyTCsKqOMsUql0u22X3755TAMFQVDKJIkAgAUi0UhxPz8fDY3/Mwzz/iB+/KPX/R9/+DBg9evXzv65usQwkuXLv/qr/7q3Nzc0aNH77nnniiKjr75+vz8gqZp165cnds2+/RHnrp29cqZs+9lsgcWrl38i7/8MwCAZRmum2RSmcCPNdX0In98fBxjKOXvI5pgAMMkllY3cRx7njc8MpJKpSqVKqUUISz5p3KXkXK3g7BZ0i0ppSMjI//yX/7LJEnOnD31wQ9+cH1t44c//PHq6mqr1S7khzkHf//3X1xaXJmdnX7wwfuvXr186tQp0zSDIMhkMoLDu++++9S77652u7quophHUch4AqEgBA0NjRCClq4vgp41Otmze8+Hn3w8CL1vfvObnU4bKySOQ7kvSzXnYjElFSBd11UQBoAGQfDyyy9TSvP5/FtvvXX87ROTk5Ou61Zr5TgOcxn7V37lV85fOEsp/fo3XlBxryGMCarreqPR8DwPYpTSU0mSrK2tGZbp+77n+6lUSteZHN4QIYSM6enpc+fOCQ7DJP7Od7733e8+n81mP//rv14o5iqVBmNM4VhApdGsdbvd7bu25/NFRVF+5eO/Qgg6derUxsbGE08/YejWcy+8EAQRxkqlXM3nCvv27X/22WevXbu6Z8+e3bt3I4QuXrzYaNRKIyU/6NbrFd1Qr1+8Ypiapmenp6cfeuih8+cunz59GkC+d89tzz3/nempbfcfeUTTtOvXr594523Pb2ua8eQTz6gqqTVaupHL5QrLy8srKyvljerf/d3ftTsNIZiiKELAa1evpdNpCKHjdMNAzM7ONhoNO2UlMZVjwDAMGYPJZrVe/CaEDCdkxNVbN27ED2HvhgTotY32XnZDbygE/X44eZONknEcDw8PjxaHfN9XdQ0rCoEY9yvuAAEkIESQccGThHFAKYUEM57Io8nP6ouPxwomEmvOZDK+7+fz2Y2NjWazee70ufnrC4tLS61uBwBAIOJUWIYhBLAsqzg8NDQyhBC69/4jnPNsNusliYzeAQCMcRmN9yrxikIpj6KIMxCFiWEQQgiBRFCRiFheCMuyNFXP5/PDw8OGYei6vnD92ukz7xVz+UwmMzo6mspmLMuybdswtDAMfcddWV2yLGtuZvrMmTOAUV3TZOTZ6xsDXHLDB5d90LkIBOJcQMw555LSgRBikEn2AIQCYww5ZKJ3KAAAAVvTZrC5wsL3w7b+x7cBrCwA4PxmZLk/MjZBAfkWKADvszuFuCGmh7e4AvYoZf1U/AYcHN3QKA1veG4w8gDnoif3KW5+QTabVZRsFCWgWkEIdTrOuXPnDh688+mnn7588Xw6Y+/bt+/VV1+tVqvdblvT8De++fXx8dFnPvrkvn37Nsor586f/shHnnrkyCMLqwumqZfLvqYSAABWlWvXrn77298WAo6Pj3e7XYlJFYvFarV65syZQqEgBNvY2DBN03W7jDEJSUtpJEM1ZC/D6CgxDCNwgzAMOQelUkFRlIWFRdu2dUMBiBMFJjTSNA0CRTfUl1958fbbb5etlGEYzs9fCcPQsqy5ubnp6dkwjFdWVrZv35nL5pvN9pX5BYxxFIWaDi0rFcdxrVYDDNi2zTk3LLPTaiKCdd2URRXOBSR4aWnptv17/uzP/vyVV1555ZVXIYQrtZXp6enx8bG3337bNPVMNrW8vPyJT3ySMfrjH/84k8k8+eSHJbJw4cIlRVEmJyey2WylUpHdf9IU0fO8VquJEJCCVn/8x3+8vLws81WMMaVxrVar1+sIIV3XEVQURQFCNLrtTL7wwAMPpFIp3wtdt8t4cWysYFnG4uJiHIe2bWoaCEOAMRACtNtNzuny8nIcxxjjTMa2bVsApihqHPcc/DbH2C3I1M3Drz/AQB9xFgK8j+Py5mgF/EaweOudwXEGQxpCAAWgN4vA3vDfm5666WWy3YxyoeuEJVbg+UnCEQbZbHZ0dLhardq2feTIvRDgz/yjXzvywP3f+MbXjx8/oWjh9PQ0p6zZbHueJ/v7dF1XMIRIN009DDXbHm80GnEc67quYxtAAoRIpVIRTZIwGB7JqhpSNZwkoaoRQnC1Wl1dLnMO8/lS4HoYY4gEYxRhFEUR9qHg1DC1amUjSZJSaRhjXCzmN9bWKE2GhouWZUSxH8SBtGkSPBYCScKm53maZoyNjVfKtTjmjAop4IMhztjZKAotMzs9NctY0m63f/qTNxqNRrvZHSoOtRotp+MUHixcvnxVIZqqqpZlaZrheC5jyejoaCadu3rlGpJ8pUx+rbNGKfM8D+AeksgYDfyIc66oOJPJKAqJ41Dtpcq9NS0IAkVFuq5Lbc1ut8sYNwxDJtVCiNXVNULI1NQMpfHKyloURYahWZZ9+fJl0zTPnHqvMFRSFEypubGxPjw8fOnSpXJl/ZOf/MTa6gaAfH7+arPZKBTyjNFyecP3fVREstVat2wWJXJL4JwTRQVxFAQBhki63DqOIy1xOedS2cawjEajoWm6rqtJwjhjhEi6IpTN5YBLpV/ZDb0JQ/eCA/g+GKWEjyHc9EmH/ZV68C7QmzQ39cHIaEMmI2jLZrXl4P1WlfeDj0Gf/ts/4PswewHoWeDigZeBnHF9oYz+Cff5v4O3vN8+1XtyyzkIaS0Ibtme+hsu7NOxxZY2ILi1CnXrV3vf3XkQcsEbqOL9pwaPv+8luPVQN97gjbUBCICu67fddtszzzzz3Pe/W6/Xa7WaomiMh6VSqdlsfve7352d3Xb33YcNw0yo/7u/+7sLCwv/+T//lZRpSxK6a9eUlCCglHIGGGVSHkpyEMIwGujzdrtd/6qLECoWi06nuwU77jEgNEWnlCacob70jcTmVI0wxiDrlVtkTk4IQZwxxqjgADAAASYQ8E2mJmNAHgEgpOt6kiSVSq3TdoqFoU9+8lfmr62/c/LdwE8sM9XpOKZlj46OXb58dXpidHJy2llZcbpevb6saQaPEsaYohoJ6yZMaJomoHTzEEIIDoWQkN+WiyzPQECAEJBQYEo3TEJC15FG4V3XAQQDIQQHlHMWU0VR7FTKC3yMFcpEu91dXFyOgtDQLQGQwCROWCBC4GABgabrYZwggimlG9XK3oMHJ9uTl9dWOGOI4DiOAYcCwIHfrBzwMjkEW0QPZM/+QNNAUXESRRBjCbzKbEElJAxD+S5VVTVFjeNEojwS292KUQ6yi4G841YQVt6RqMoAsh+UB7a+HiAohJC9LACAOA4HoDbqewMONEDkkFAUhSfC9T0IYRCEURQRQhDCgzbJvsozkY2KlHMoejxrxpjY4u2ACaQc9rRNwtD3faxgjHEUxZxzQhSMMcZcZj7SI1FeK0IIkF3kAEhQfutMFEIMeNby9bKrVLZwUuqCni1KbwHnnLteVwDmuq7ruoVCQendiBTuyGTSi4tL6XRa0VRN6amgIISghqRjJwBAVTV5SeM4NgxVnhJCyDCMMIxN0xwZGVlaWpLuMQNbPyBVYoRQVRViHAQBpokcLY7j4J5jOwcAEKxIYjVjjCAk0efBMtvvY2WDOkdPbQBC0zQRFJwzXddUXZUaNTRhUexDCCkDQYgdt7Vr167RseG3jr4ZRomiGYzFjAkBmaXpExNjjtP96euX4jgoDeXGRsfL5bLg4MDBg5lUljF26eqZRqNRKg7lcjlFUVIpq9ttr6+XW802xko6lYIUNCvNKAoNUykW875HK5VKEAQYK4JDIJDvha7rB35EE4EhYJw7TpezruxLkwNYKo1q/RsAQLbKuq67sDDved4zzzyjadprr71GE8g41XXT913HcTjnjtt66qmPdDvu8Ej+v/z1fzYMIzp4Z8rMHDx4KAjdeh0MlfIN1z1z5ky71T1x4l3N0HK5XKNTQ4BEUUBpCBHI5lLZXKqYL1RrTcdxZLFqeno6SRLFwapGOEe+77darUKh4DiO7/sjIyNjY2OL1xYUVXFdR9NUjFEYhr/1W7/1wgvPraysDA8PA9BzfE2S6Nixo81m8+kPfXhmZsYwjHw2S7CKEPrABz5w+PDhN95445vf/GYcx9u2bduza7eiKN1uN23ZmmVIJJFxIOGqOI4nJiY+8YlPKKq6sLBw8ODB++6773vf+9715aVt27Zl8rlms7m+Xn7ppZeq1eqnPvWZ48ffCfzk9ttvf+21n/pBcOddd3zmM5/Ys3cnIejEu8e//vVvWZb15ptvCiHuvvvu//UPfv8rX/lKoVCYnJw8cOBApVKRiBiE0LbtTCbTbTvShxkrdo8fIyVfOYcA2LY9Ozc3PT1drzVktQ9jRdf1VCo12PAJgQgBSf0plUpjY2P5fF4qQa2srDzwwEPHjh1bX18fHR0WABimRinFiCAMsum0piidTidl2VJwVlUVSkUvT0ebMl8IIdPUPTeIGS2X130/OzGRT2LQbLqYgELBdl1p/EM5AATKjgTGOQIITkyMHj5813PPPYcAX19dXl/dyO3bMT+/0Gi0cpmc2wkiPdIS1m51meDvnT61trK6c+fuc+9dLJfLnkOzheLBO/bPzc2Ypk4piKJgoIx0S1whK38CABkW9enOkgIGAedcIMQY8H1ftkBFUaJn1EKhIOeIrFoBAVGvewwCqfa5iWwDcIOrh9wdBicAxCDP2gwLbzas3nLCQPZprK2tMcbCyB8ZGSnkNcgFAIAKgBCUIvOUCk2D1XJ9bW2jVCptbFQqqDY2OrFr555rK/Ntpz0+PppKpTgXGENKpe4H37t394kTJ6ZmptPptOu6CMGFhWurq+uMscOHD508cWptfdEwlW632263AACWZUk7GUJIuVymlC4uLrp+tG/3nh07ts3MTG3bti2Xy3zrW98ql9e//9x3h0ojmUw6n8+ePn3qG9/82tDQ0BtvvMFiZmomY0kmZSPIIKIKputr17787BXLkH4DJI5VhIjvh5xSXdcpjdfXq3EcEwVDCCnnCKE47hUIpd6RXLMxRoILVVUzmYx0WccYAwAp5QM2gNxNJIVTUZThoZE7dh967Sf/35/85KfVSnP37t2e5y8sLDbqrfvuu7/rtLPZ7Mc+9rHnn39+cXHxpZdeEiBeXFh4W9Nkjp/N2gAmYegrGpZ+VwrClUql3ewoilYsFh984IN/+Pu/jwH+f/6H/833/VJpaG1tFRGcJIxzYBgaxqBara6vr7XbbYJhIZc3TbPd7jDGgyC6/8hD5y9d7nbccrnseV42lw5DP/Dcb3zjHxqN2j33Hi7lC67rJkkkt/JGo5ZOZyUYxxgLojAM/bGxMSkvZhiGbBvSTUOF2u7du5566ulr166fOX3uwB13njx5cmV57ZFHHlWw9sMfvAyBOjxUmBgpZrKpp5955jvf/db81YWNjcrC9flfvvNjd919qN5qOL5z5cqVA/sPfvazn/3ud55fX6uEXntpaaVebzbqTUO3VVUfHR2VRQs7a6oavHL1PGUeRDyVNlSVNBqta9euHbOPeb4zNTU+NzebK2YyGataLR9/581iYcy2UoZprq6uKKogWJ+Zmbl44fLJkycffPDhq1evvvnm612nGYcOgLFuaK7rSwFfhISmaUHgYaRfv36VMeE4nSSiC9fnVVWVQigIIpkeynkrI7pB8NmDEwXstylspmNbQBYZUdyQscAtt4EjBWObii6qrmFVEQAwIZAQg4VFRnMy3AUQQ4IxxoqCpTqzpmlCIF1X5WgHClZULaVprVbrxIkT5fL6xYsXq9Vqu9GGBAsADMOQ9RjbNjKp9MjI6LYd2zO53MjICGVJoVhUNS2JY865VLDknCsKlqeKejY2iFKqKrowoa4blDIAQLfbzefzKElmJqcKQyUIoVTlKlc2Go1GEgbXr18fGhq659Bdu3bvMAxD07Rms9mobTSbzVarxVgSeP5tt92mG5qCsIAAIkQgEUIEfeNo2NfQAwAgRIBAEAA0sDoHYquQiKYpOMGDyG1w/SUKMYCb5Y/1/uzIrTcoSco3UzI3e0/6Ihvvk6PehDX3uTu9g/QXdDgoD/L+6n/TkW5A+tDNiN6tEN7WU5VYcx+XAAz09KAhhJ7nOU5HcuyFEKZpVir83Jn3RkZGbNs+ffr0jh3bMplUubxOMHziwx+mNPnGN78yPTVy6J47p6YmKIsWFhb+/L/8eavVaLfbuqGGfm+vpVH8+uuvZ7N5AIBceT3Pk5wjTpnnefl8FgBQLq8D0IMF5XIcB6GUUZaGsLt27JT5Cec8ienS0pIQyeTk6Pbt270gLJfLtVrNNHUOwcjIyNGjR1999dXSUBoiBhHjnALA2+1mt5s/d+5Mu921LOvq1au6riOIKYt1XY3j2HG8VCrjOE6SJBhghFAqZSkKJgR5nsc5RUjt5WwYt9vt2dnZ+++5P0mSCxcuLi8vM8ZM0/ijP/qjf/Nv/vXRo0cpK8ZxePXq1aeffvonP3ntjTeODg8bCCHLslSVrK2tCk4nxqccR19aWsrlCpTFCSWqmkEIYgw9z8vn8wihYq7YbrdDGqqqOju7w/O8Vqulqmq36w4NjeiaiZHoeiumYUtvXwRJu91dWFicnJy0bXNmZmZ5efn64sLc3BwAIApF13Vq9SoQMKQBISqEMIqildUlyWsYGxvTddTnLvQ0ZLaM8fcpw7xffHJrRWPzxUK8H+IM3/84g3gICyBucfkAN0yfzafQltPrx12AEOi6YaNeD8MQ92eO5wUTU5OH7jm0d+/eMPSjKBAc1uoNSilASSZDGEQIAWlqRCmFUFCEDMOoVquSyyZDal3XG5UmYcDzPACAnbVLQ5OTU6NB7AhBLdsYGxvjbGFtpYwxNg0L98X7dUP1fS8Iglw+I4QolUq5XI4Qsra2RmncaHSiKJmcHF9eXl5bWykUMq7XkfYOktpfrzcZFfl8kRDiO26n04miRFE0ToVCZB4ex3HEGdy9Y8/4+NjJkyerlSbkOJ8bctreiz98mTEBOXvjtTeCKJE6LQihMPRzuYxM7C9evFyr1eIwwhirqp7P5BRFUVSccCEZDQSrDEUYY8FFHMcACFlBtVOmXAREn4KtqqqhW5qmRVGMMQYAQYiiKDFNs1arQAhHR0fGx8dXVlba7XYul+sBT0IQjVAaFwrDEIJ2pzk9PT07Nz0/f2Xf3v2ptHn58nmEiGWl5q9duXjxYiqVmpueSZK41WrVm+3R0XFDN+UuywSXpEjbtjuttpwyYRhKCjZCSDP0IAiISjjnhqE7jqfruqJgxgTCUHKpIAQMCLjprdeHc2EfKxZCiJ5cJriRE33DHBE3SJ4P6Mw3vbJ3WIFE3zqwp4qBbjim6E/a/rzYWptEAzbL4PU3bS5bT6Zfy+0j5hBACHD/4PLZHvm3X+C8Zau6+Zv+/1O43XqcWyFmceOkhu/3OOiD1ptncMMRxCac3QeOtxaGB68ZUJsHJwa27NkD2LrZadEogRA99dRT58+dOXbsDctUCQa6ZkLEMMa+4x4/fvwzn/5HU1NTL/zguS984Yv3339f6IWvvPLK+lr5zjvv/J3f+Z1arfaXf/kXp0+fzmazjuNoigohEoIbhlEslnzfD0LPMlNRFHWdYHp6enZ6utVoNpvNOI57NHSEIBQRpQAATdNM07QsS+6zcvoghCCnsgAg+s37CPYESXrfESGCkEQPGWNYwQBwoiBCSMxiglE6lTWN1Nzc9oXr5cLQ0EMPf0AIBgFQFFXTDCNlXb0yf+bEcbfrKIrKqbBt2/GqWCECwma7zRgjRPXDkIlerCb3UtEvsSPcuy8ZcAICQpCqYEs3dEWFjEllZC44+D8Y++84yc7zPBT80smVQ3dXh+me2JMHg0EgACIDpEhQppgpWaJlilf6+doyLflK1vrnXWkdVlda35XW0jVlWaQSKSaAIikSAAMCkTE5T3dPz3QOldPJX9o/vqrqngF4tfVHo1BTdeqcU1943+d93ucBQHVixowiAHRNozGTIKSUpVMZhEmtVosZx73gVTLKAYICIk03EYEAo+WVlZSTclJJLuTC4qLrupIzCEgcRgihmFKTaAPMVz0GaxHoo/lKrBwAiDGBEGKsBNkFAEByLqSklPqMYYwRBoIL13WB7ViWJUQiDCO1IvUFdjkAgAsqpUQqusdY5WnqS8MwkBAgADVN2x72DWo/qpY2CI4FkBrWFUOEc6hpGkCQc67+1dSN3izuq3sHQSBYb2oot2cAgIZwIZsbfJcfhXzgRQMAQkrPCgEAAAZIAsZYFAdY0wgh6XSaEBSGYRiHIAaUUoII0bU+AdlQYWfU1xJRZy44EEIoN1dluDfg+/TReKi4dSqOV7G++kUE4wAI07Rs23J9j2iIMdZqtZRbgBDC9/1OpxNpummahmFgDd9zz92dTrfdbkc0xhCpX0RZ9nU6nUwmo7QCGRMYYxbHknNCSBAEjUZD3filpSX17RDCngm77AmkyD7ffPBLqYdCISGEAAgpOcaYc8E5RYDAbWKvUkqF9yGylXopXKNXgIQCYyylSKUTEMlWq2HZVrPpOo6zf//+cnnjjuMPjI+Plctl3cZSSikogFK3iK7rUewuLc9vVhZ0kySS9uLiohAsk87unipACZaXlzXNcBzr+PFje3ZPl8vVRqPl+24Y+kOFoWOHj5umPX99sVFruB2fc2o7VhTEXIBqtSq5qsgiTdOjKJ6/fhMIQQiiQQgAYFQwJk3DjqIoYtHAXGhrCnAOIXR9j/I4nU6n0+m5uTnVAgVkBKFMp7MbG2u2Y2mEYAzf8567vve97/3mv/11y7KOHj5yc2GmXmsjDCZ37NQxqdXaCJFut/vlL3+Zc0aI4ySslQ0PYK5pOJNNdzotTcOe191YXw1DkUwmVQva0tKSOrFOpxNF0fj4OKW0UqkAAHRdo5S2Wi0hhN9qI42oTD6RSFy9evm+++5bXV1tt5uaZjAWE0Kq1app2hcvnr9y9sI999zz2COPVCqVKKQXzp8HAOTz+ccee2xkbHRoaCiXy2maVl7fYJoWBIHpWJwDzrlGsJQgjkUqlfrlX/5lwzBeffXVfD7PGEsmk0eP33H69GlCyFBxOJXJ1hu1u+66Z3l5+ciRo4Zur69vprMZ23EOHz78+OOP3333vZQFEArOuWmaqVTqzTffnJiYoJTOz88fPXrUcZwjR46ots7du3c3m01CsGp3GCqM1Ot13TR2797pOHYYRj2FZYSCkEopDx06dGP+5uzsrLJ3U8pOlFIpCQBAAsmYZAwQQg4fPqzreippHDp0aHJy8uLFixMTExDKiYmxzc31OD6EJBBCIgl4zDSEEUEQbkk8qfYICRDjEiiefD/CkFLGMc9kMgIC0zRbrc78/Ho2k4vjuNtomaZp21oUCQCAQjTUUsoBl4BABB586D7P67744ouzs9e+8x3Uajz02k9egxJ12i7jURIkaOzHnAWBR3R4/vzFSqUWdGPf951EOp12HnzwAcPEukHiMMIYoZ7+KR+Edv1IQwVmqPes55GhquAcSEEwBgD4PvBdb7BcmKZhO6YQHACCMYxjASWEhGzFKX0mG7j1sT056vPB36WKvz2Ik9tkCYWQug4b7ei1n7zSbDbf+973Eg1Vq9VyuTw2NjZUzASBFEAiBDkHmgYBALVGo1QqFYvFr3/tm57nPfTQQ/fe957pI/s8zxMQWBbxfWoYGmCCUu44zubmZi6Xm5zcUS5vGoaRzWbHdkzs2bNnYeHGn/3Zn2Ekhkfyi4s3VK2OMSo5V1XbkZGRXC63sLBACHn5hR+fPXXStAzTNCendoRRYNm6bZtPPvm+D33on0AI33rrrcXFhUOHDt5//71TUxOXLs7NzFzVDQwE++63n2k0N1NJu1b1pOSWZYUxjWNOEKIx77RdQrRM1lpYWFAGVANYkHOqwhIIpWJNuq7bV63VGWOq2KxyPfU2RZlUm6CiEfzH//gf77zzTsdJfvMfnvn2t7/b6XTW1ldGx0Z8L1xeXkgkko8/8fArP3nlzJlze/bsNS0dIfStb33rkYceOHrkjvWNVZ1oho7qtWphKDu9f9fy8qJhG7pu+F2/0WhEAYOQtFvdgwcOzV6/Pjs7u2fPvo2Njbm5uZ07d3HOd+/e/eqrr7gdz7ZNCTgA4H1PPLlv374f/uC5dsellGGsDQ0N/eqv/upXv/HNZ7//fKvVqtfrjDHbMRuNxhtvlBU/WjWLdLtdSplpYtd1GWOWZfl+pFA5IXrdpbpuel5gGPpd95xYW1vz/bBWq7388svT09Pvue+ehx55YrQ0XigUp6enfT+cmtwTRVG5XJ2bP3fh0qXC0NBHPvrRH//4xeXv/MPG5uZf/vWXEIT/5MMfvHr18vz8TLvdnpzaXSqVksl0eW21UqlcvTqTSGQQcpcWl3/0oxd0HTEe7t17uNmqAgDKldViMR9EHiIOQmT++s2Za9d37tz91Ad/VvUkPfHk4ws3l8+euZzNFKempiYnJ3ftnHrp5R/pukGwns/nDx8+0mo1yuWNp5566vyF06+/+pKua4mEQSHDWERRsLa+ghAyDCOOXDVmpIiFZBiD0uiwbZuSbVHzFBNIQqmeS9BXYOgpH0LYS1sGOYtQ/bL9LGYrJVSBFuqzfFRtRkqo63oikfB8n0exGoecc4n6SQEAUkoNk17WACFEREeIA8lYTDQMJFHMSM55Pp+P4/jSpUsrKyv1ev3y5ctLS0thGNqOqVARpBE3DASQpbHRQqEwXBzZPbVT1w3NMBDBjuPohhYxGlIWBQGlDEKo5k4ch0IIw7AUnQJIRLAeRXEYRt2uByG0LOvEiTvHx8dVqNlsNquVytLSkud1TdMsFApjO3fc+567hwr5yclJ13WXFjbq1UoYhsq3QwUbhkYStkXDQEHnlEWapiGITKWiDnq8Ac5lD3oGEkKsunjVzUGIbW9PFIITQgAUEm6xppTXMVE1drAts70NtLotg4bbMOV31RsYrNeKriWV//utiACEPZB4wEcbwHnwpyBu4N0yanirgMBtJzz4J9nT8bj1OvoPAQECoNFoNFt1XddjHheLBcuystmsbdtR4BGCrl69nEqldu7cmUknLVP/7ne/+8d//Ee//MufSSQSly9fXl1bWlq+EcfRzp2Tb7/9ZrVaVf2Su/fuWV9dgZAUR4YLBbm8vNxutx3HQRDTmBmG4ft+wrak1DzPQwQjhFRkb+kG51zHhEJMKYUQB0EABaxrjdLoiCqbp1KpAwf379q9c319fXZuRlnc5vJpLoGp65xTQohtm4ahEYJMU88Xst1ul8b85s2bQ0ND6XQqjhnn7UbDHxsbS6OkZVnlcpkxtrFetizLNFRy4mIMAQCWZem6rjQxdANjRPJDQ3HEoigKWZhMJi3L9H2vVBr59Kc/XSjkSqVSMuVACC3L+clPfnLu3DkAQDKZbLUaykl5cnLyUPZAs97YLK9blr1jx8TmZnl0tBREYSLhGIaxublOCCmXy6ojj3OecFKXL192Xbff9YmjkN68uTBUHD1x5z3nL1y7eXNxcXFx3759pmkC0EEI6TqOI5FO2yOlYeUBunfveKXSXVhY0HUdIphJ5aRUrWSWk0x0u13DMAgZaCRvjb3eWHq3kTmYCApE3j4U/68BJrx9qCvjzVuLJbdXWhRk3O88uA3OHox89A7TwsGZCAHCMFQrGgYwnU4TDKvV6p49e0ZGRsIwrNfrGOP1zQ1KeRSFEoSzs7M6MdRPoOsaAIJSqltWHIeGqQFo0pgrhZNkMtmqtaMo0g0S0kiCOF8oOQmddVGz1aTMuHTxyuLN5W4ncOwMY9xjgWQMYaBIWzSKJiYmEEIAiCDwMcapVDKRSERRCIC0bH2kVNSIzgVTXcmEECGopmm2lajXm+12u1gsYox9P1B5O5RIcAgBsK1kkqSjKFqYX00mso16t91yTdMkSCINhUGcTCYYYzSWEGKMNV3XFSVZCBEEQb1eD4LIMmwgIGM8imLP81RxHgjEGAMSAQgG0IAqeGoagZBTSm3bVN3BhmF0ux2EEIRoaCiFEOJc+r5PKVW5ja6bntddX9+IgwgT7DjJiFHDMCJKdR1qkkSBPz83m0w6qVRqfWX50KEjKytrf/vXXwwCOrVj7NVXX8vmhwEQrVbng+/74MTEOEI4ZqLb9Xzfty1H7QcK/qYxgwBl8zmv68ZxrBEdAKDUciBGsO/RxDmHCBKCB3RehND2JVqpPSuCM3gHcDmAmLdBqHA726UH16I+lHkLcAy2jgkwBGC77MYWdwX0iogAANjTnJFbAHUfFd0en8A+Ofq2ZEP0cWQIByKwt0DSvFez7H2zFAN0+zbYuvffwfn3L0cC0APrt5WvlM4ykH0RkW0Q+e31pP+/Hz0MdYDEwf6jfzduv5ODt22dcP/WDcCdd/6yAIhsNgu49LxAw2T3nj1XrlxGkAKIhKAIQsZoLpfLCPH6G6++9hrcXF+9cvHS3/7VX2MMHcfZu3ePYyf/6I/+KIqiZDI1NbWz0+kMDQ1LKX3flxDYto0Q7CUnUOi6LqS2sbHhu2673ZZS6rouJaCUU0YhhJj0CvKGYSgmDkIgiqIoihEiqOc/3hNeEAKGgg0uR8pes7OUUqlwIIRoHA9oOAxChHAimTx16pQbhHfcdc/OPbshhEgCy074UUhMg2D09a99LYXEVD4XhUEQh5RSAQE0sG4amPGO70sBByZ1EG6Bzr3gjMutxsAeeAujKNIk0AFIp9Nx0BNA8AM/CqltmsiAcUgxxtIPAMFuWBNCxDFDiGgYdjodzTAcQ0cIYS69wMe6put6rdbgVKSdhK7r9UbVcWzTNz3OiYY5BaZtYwC5UIJCusqmIESEaP0xjzgXyuRNAbiKK6DIzj30HCEFTaoSvqZpSSdhmqamaalUyjRjzrmu94WhAQdQKJYxY0z1U2+bUz0eqFpjIURw2wO8Y8VQ75eIY6yptAFjDDFS6N5AcWVbzszDMIxjrus659wghuJrJJyUpmmtVisIAjWvOBBxHKtcWkrJWBzHHACkaRoikDMeRALGsW4QCbiUXEKgrgj0WxHV/iX6dnmDYkOPqt9fDAcpvXrCGFPL7IBQOWAAyZ7LpYQQjo2NjY6WarWaEMKw9WQyqdT5lWdyFEVKpdp13WKxePz4XXv27JmZmX3ppZcsy2IxRQgxRg3DOHLkyPT09N/8zd9wvqVlH4Zc1/VcLud7QbPZxLqBMcYEWqZj23YcxwrNH1DOTctSLyKkjDOApmnKeJZTJvskaIVTW5al8O5Bh1+PNi6lDo1BY+mADq+mubqZnudJyZ2UMzk5SenYRnmz67WTaafdbdYvl2kU79q1Q0o5e31e13UhoigOLcscKRV27945Nz+7ubmqmqXe9773MUpff+3NVquFsXb/g3dms/luR/HyxPrqmu/7w8PDXtdv1jupRCr24m7Xc6xk6PnloJIbKmQymVajQylDEFDKDMNgjFu6QTTMoiiOKUKEYMiYEAIQSLCGhS4AAEpGQ7lWxoxSHne7bHh42DTNGzduMMby+fwdd9yxvLzYaDTec++965vr9Xr9lVd/8q8//+sQyna7nkiWlpav+35o6Nbbp18tjRUhKnb9djaV/+QnPz42NvYf/sN/AADcuHEDIaTrJJVxVDzAOV9dXZVCOIlMGAWKBzDoPFCViWQymcvlTp8+pbqgEolEIpHYXF+lLMIQqLs3Pj56/uy5X/o/fnHnzsmvf/3ra2trTzzxvhPH73rjjTc/85nP/Mf/539emLvpOM4jjzzy8ssvux1vc3OzUCg4jjM6Onrw4MFGu7W5uXl9ZhYhdOzYMU3TuFDNiEp5RhBCEICFQqbd9i3LHhsbW1hYSKRTiiOcTCYRQoVCoVgs7tmzp1mrCyFOnDiRzy+r4bR79+4dO3bUarWx8eFGo/7QI4+12sE3vvGNoaGhzc3Ndru9Ud786Ec/+uMf/3j37t1PPvnkwYMHfd/vdjvFYvHmzZv1en1kaFR131erVceZVJsFxhhCwDkYHx9vNpvtdvvQoUOlUimTyQRBpIax6r4YONMODQ11Oh1N0/yAj4+Pq7wvnU7Pzs7u27ev0WjUarVUKqVwvYFjhIYJtgiXgkuhVgDVzYBQz5wZ9cXTMcZSQB2DdDoZBNHKykqj0dA0rbpZJhBls9lsIQ0AiiI6sB5V3quEEF3XHn3s4R07djzzzDPXrlxdWVxJJpMH9h90EvaxY4e6fucb3/ym1/UTmYSUNAyjTqcLuWZZFiGoWtt87fWffPJjH8cAcCBV3WKwJg/Cj1uDGQgAghCIHmdBADFQSJNBQCmlpmlCgaSkuk6UcJCUQMheI5LS2AFAoh75cXBw0aeTqRPYiqa2Y83b3zAAQ26DDnQdQgjefPPNK1euqA7acmUDAIXmt5QqlK4TpYhtWaDdFp4XlEolKWA2m11bW1tYWNi7d+/4+FgUxZTSiAFN0+KYGSYhBLS7HCBw5NiRGzducEH37dtHDFIqDd9zzz2EoHNnTyeSVipt+34oBKA0VCeWTCZ37dqlNia1kDoJmwtWr3cghF//+lfHx8cPHTrked4rr7xMCDp+/MRLL71QKGaGhnPjoyOjxdHdU/u+0m1evXZpsdMI/E4yYRkG5oIKAYiGuBcHAW13vG4nQFAbnSxBjQEAPM/DGGOC1PI7wI4VGqVWD7XTMcAUW1PlRIP8yDRtlfSpYrOq4F6+emV6z6E//ZP/zrlQlaS33nojnU4Xiplu1/vf//f/EkWxphknT75pGHY+V/z85z9Po+DcufMqbTZ0a3h4KIxcVV41TbPrB+12h1LOGYDAwMicmbv+3A+e55w//PBDEOJdu/ZMT+/96le/OjW568CBgzdv3gAABH6wc9fknj17k8lkp+PWarVdu3bff/97528sAQD279//xb/4yw984AM3b95UpeViYWh0rLS8vEgpdxJmFIfJVILGLI5jiIEi5ivnaiklIbqu60p7CiEUROF9Bw7oun7u3LlKdbPVar322qtPPPEkhvy+++8Ow7jVarZa7VQ6sWPi8B/+4R9euXbOcuxLVy4fveOYk0zv3L3XIFoQREovlGjIMO3jx4+Mj0/dXFiemZnpNJqNRkOt1ap1/tq1K4yHd999F0S867Ycxxobm7h+Y/748TvW1tZCT1DKdN1st7qXL18+duyYAaBt22NjYws3VyYmxoSkcRxzyaamdhw8eCCO44mJiR2T41euXBmfKO3es7PZqu7Z+StPP/MN34urtQbBMpVyKGU7xidarRZnEQDA68Yq1Gm1G0Jwx3G8TsAZl5IjRDDGUCIpOOMUEx1IDGDP6xv2KkDi1mkrFf1CSokwHmQug7SLA4khklKqHmJlOdhoNhWXQiIoOFdrZi+uUN1yoKcwjjEWEmKMZRyjPj1udGyk1eycPHmy0+nMzs7Oz8+3220VsyUSCcuyAAAQIA4kZ2zfvn3HThwvDA0RSDKZDKdc0zTTtkzHllIiKQ1dl5xDohkIK/CQsRhCPGjjQAgBicIwYowZhnX06NGpqalctgAgq9frzWZjaWlJtd8NDRf23HdvqTScTicty2q1m6164ycv/ZgxFkWRQTAhRLkwYQQghAwKIWO1ikrAlaKXuldhGPbzPqxpmBDCuWSMkX7oLfvNheru6bousUAY67pGYYwQQgAywQHq9TWS7aswvDUDvw353Z7rDlQsxVYeu7V1DHJjKSWCGKnnWyk5hPAWzeXbFn0hejgaQgChLXX/dz4EAOCn5OHbSpS3Z9Q9WANsKTcJAKKICg7iOIYEep5XLOYZY6lUamZ10TCM973viZs3b66uLFWr1fe978mVleWZmZm/+Iu/8AP33ntPdN1OpVxzvY4iq0MIR0pDmoYZY1NTU41Gg1Jq2/bU1NTmZiUMQ4I1RVVAECs6rerPiuM4kUiozJYQ4jjJMIx13aSUDuWHlKdZTINsNpvPZ4UQ2Wxa07QdO8Ydx8EaeeuttzY2ygKAdDqtjp/JZPKFhGIopNNpjDQliOx5QblcxRiXSqVEIjUzM2MnErquEYKlgIraDCEcGhpKJexGo0EIIgSbpt4nNOFKraHawW5ev/Hlv/7barVy5eIlGkaFXMbrtp/7/vevXblUyOZUQqUhTENq2zYGmEOYTCaFYJ7XTaVSpVKp1WpRFtmOuWvXzjAMR0aG9+/f3+l0NjbWIIQEobXltTAMm83mE088kcvlfvCDHySTSV3XK7DGuYSAOHa24/lHjhyZm5t/6cWfFAvD+XwRAEQpbbe8dNqJItFqthHECKFGI6jVaulUJplMZrNZQ8MAAMZkp+O2ux3P80ZGRjTtFo3UwdgZ8J2348gC3PKKGpOqnwu926C9bYhuPxSEt0yfLRKAvGW+bB1BbHed7n0K/ZRYqne2QlqWZZsWY0zHJJk0KJMAgETCxgQhBAXg7XZzdHS0VBqem5sTMmg2m5wKteyGYQyhVK1AEEoahZlMplarRZFQyg+WZUVxoBt6IpNCWE2KFisAAQAASURBVDLudzwZRsH6+roU0Ot6ghPLSnAOGAVQMOU4lE6nEwknioNWs+MkrFQqwTmL49gPXNPSiYZsbAIgHMcKgmhx8aZu6crLWNdsZXGq9gmF2wIAhGCWYQOARMwBIIwJxoRpWq1m97nv/QhiaOhJw9AZY1CIhG0AATHUgtBjgiuR0ETCVp5RC0uLvh8qPh2CGgSgTy1hGGPV4Uuw4vAiKSEhRHAJAIjjGCGw/8A+z+uqhXt8fLxa3ixXawDAzc1NCLHqr1EytQAAQkgmk8MY1poNDWFd1wXiBOu9XkIWi5ClUinf98vljXw+HwRBrdYYHi5N7th18dJ527bymTTgIp1wdkyOY4zzQ0MQ4CCIKpVao9HIZrOIYEGFkn/VNK3TbXIpVI+8ynmiKFKtFRBCxliz2SyVRiEEjHGCcBCEuq4rCdE+0rEVmvemiQKG34022x+Z27DmPuLce1H1Rar9RaL+e+A2W81bsN1+5HHLWN+Wzwyw5p8iwbTtxHi/mNo/8tYJ3/bYjr1uu5bbp9ptHxl80fYXt6deUkoBoHLalWqYbbt577oDSnXAd95/ALazvLcBzQCAbSjzTyntSgSFkIPK2QAU234J6piUMyiRhGB4OFWruD23SSA93zV1pBJC13XjOE4JgbFWKpUajYYQQqHAN2/eVEjZ1M4dClDL5/O/8Ru/cerUqb/8y788cuRIq9UMw1B9s9J7KRQKGOMb16+ruyeEso2WKppHSGX2II7DKMKK5qzYeQAIIbmQHMgBUtmrS/TQSSkHv6ySTeCcY0IghGpGKPyXc7a6vnL8rruDwCuXy8lkUscEY5xOJOdvXm+1Gs1mLVvIRb4HfC+SkaFbgRBxzFxKgzBUJwlhb/r0byyXHAghAZISbFUdBeCMMc4gsWzOOdb1IIiQlPl8fmVtVUM4ArTb7YZdr1gomKbpB4HnukxwAUAcx67rplIpziQT0djEeLvb9dwml1IIMTQyPDE5VVnfaDVaR48e1RLWRrNZyGdFp80l1C0NAxSHEWMcIQUxAyHiQfVCgRTqf4UQahlECOmGsf2fdF1X4JRSGCCEpNIJTdMYFQqJVkpWUkqiIR4BIYSqEwRBwDkXkvWoLn3UdcB3JgQqmQvQ77scQN4qbRB9jTl1eoqBCCEESJGjgRqrCr5UBWzbdiwbBb4fxzHBOkHIcZxE0va6Po1jwblKZiTrUXcHl9k7MhBC9OoGEEmF0zHRU35QATeLWegHlDPVKiRlnzMiBBOSMcZBT+lFMVDUIqz+qgtUe4GStlCKmSpzUwPasi0I4fr6umrglVK2Wi31FZRS13WVVKIqACCEd+3adfDgwZdffln9rExwA+Pp6ekwDIPQa3eaQ0ND6+vrYRimUik1Q3VdHx4e7rS7fSquZFLENMRIE6IHxKtLUFMGQig4j+MYa8S2bXXCigzb20FED/HXdV05N6rXec/VlitSk2VZCrkYfJYQEscMAEApjdqhZRkRjRzHPnz07ldeeaVarSaS9spqTUo+OTm5f//0qVOnTAv7fvfYsSOZTAppIJtNU0qPHjswP6+dPXsWY3xt5qqUcmRsCBNYrVaXl5eXllaq1fodx477vq+urtvtdlpdjA3HtJV5QxAEnFEl+GbbTjIpG40WhMgwiK6bhOhQSCChlAgAxJmUEiAkU6k0BkD9KAIKsS3oTKVSAIjh4WFd1xcWFtLpNOWMCV6tlgGU9913H4Ryfn6eUY4gxoi4Xtc0TcexW+2GZZrpjF2uLF+6cto65qRT2Xpjc/eu3Z1OIwxdx3G63baZMPL5koSMaDiXKzQatcOHj+azuaszs+vr67lcThKZSaejKOp2u46TIASvr69VKuWRkREIoZo7vu8HQa+D0/O8YrFYKAxxzv/qr/6Ksmjvnj1jo6OVzfLly5c/8pGfm5iY8H0/nU7fe++9hmU98MADgR+VSiUhRDKZVEpKftf3u/74+Lht20qIBiMQxRxCqOuYcwwkiBkXANcajdHxcS7BRrmy07Hz+byu65ZlWWYikbCFEK7rZvMFKWUyk9y7d2+j0QJQMk4hxkwKgICAQAiQyWR++7d/+/Lly3/6p3+aSCQ8z/vyl7+samCqbNbpdBKJRBRF2Wx2amrK9wMcw2QyY9u2imRUmYcQYppauy0hRLv37sllsslkAgBAiKaWUCGkct3sD12Qy2UpZQihdDodx/HQ0JBj2crM8NChQ0EQtBpNq2RqGg5D1QanAg+oaQRjwBggGEsJeu1eAgIoB8UnIQSCWEoguRwdLrjtzttvv93tdl3XbbVae/fu9gM3nUsrnQpMdMuylEIRpTEhei6XzN59FCL53e9+13VdKGUhlzt27NjoxNi5c2cIMhAKIMDDI8VKdb3RaBBgppJ5wVG30Xr2e98eLmYPHTqEEBkdHQX9HRb0eYsqL5ISAiBU1VD0Vni5TVBNMk413aSURlFEEGJchmGISJoQJecKBAeDQt22NL9vknxrCPSPPt61oj+ImoQAnhfOzs5OTU1NT0+fP38+CIITJ05wETHGarUa53x0dNROmELIZpNeuXJF07S5uZnLly+fOHFieW355Km3du2e2m8ctCyTYB0CwCXQNNLt+uVy2fc9IcTa+srs3LUHH36YAy4kYzze3Nys1WqTk5OHDh3suk0hbmBkBH509OhR3SCloeFPfvKTm5ubv/d7v6d+dCGYEELXSalUuv/++yuVyiuvvFwuV8vlMsJwcXGxVqvs27fn9OmT+/btmb8xu7K4cfLt16q1MsaA8VD4VHDTNE0IJZBISthqtTgDH/nIR9bWNuq1RhhRxkSpNFwoFM6cOZPNYYU499ZqAXoIkPINoxRBKKkQQkCABjVXXdcpj1XjI8TIDwIa86jjPnzkWCqVaTSauVzWMAwhmJQgDH0hBISi0204TlLTMHTMTtvdt2/fSGnoi//jLy9evDxWGt2ze+9meU3T9G5Xrq+VDxycxhjXm+6+6aOFXPMjP/fJ7/z99z7zS78MNHlzcXHPnp3PPvvc+trqww8/PDt7nSCtWqlMTU2tr65FNLJt2/O873znO67rYoweeeQR23YSiYTv+7/7u78bxHR6evrf/bt/d+3atU6nc3Nh/u03XudMEKJ7XhDHwY4do74fBkHEmWg2m4hAAaRuGjTmnFIp5Wa5KiQzDKPT6dRqlVdffXV4eFhKCaHUDWQ75ksv/ziOo1/91V9zUslsNnnm7Nv/8A/fz6RzS0tLXhDk8sWPf+zTTjI7NbVnanLvqVOnFm/eBIDPzc0BIDmPz184Mzk5mc+lDx+ZZmE0f/3G9evXR0dHXLe1srrcdaM7Txz+mQ+872vf/ArG+MSJE0EUSgk/+cmfP3XyzBuvvbVr157hodKFC5cuXrzSanVHSqXh4VKxOPzAAw+4Xufkqbcopffcc2L/oT1r6wutlosxnJm9ePrMyXK5PDd3de/e6aHCsOdGjMVxwIhjIKSViqMjIyXOJULdRqNx9Nixer0+O3M9nc62Wq1Oq4GRsY0S08PnYF+0UPbzuF7qJcFAa7H3/z01HiSEgFKI/rIwKEsLIQCEXAqk3M77nVJccIIIRAirADeO4Tb/CRWKCCGEhIZh6Lqu6bjT6Vy7dm1jY+Pc2Qs3btzodrsqKhMQEIIxIRhjyaCu64ZhUD8uDBUfeezR3FBRQmTbtuQSEpHJ5CGEEgJCIMZYch4xihHCEKp6DGOij7ZBNZU0YgwNFe+6665UKpVKZUzTfOWVV2ZmriSTScMwTpw4MTxS3LFjh22bhmG4ndbSws3NzU1Nw0IIhSwnEzZgEcZQ9rsAAUKCUVM3Yhp6fncQTG6tqwAIIZTNMoSY0ohzTrDOxVbyjgDEEGEEIBCUUU3iMAypVLwQrANsGRZjTPqSqDh5O/Krnr8r3LYdDvtpS7bcPggAQBjeBn69K4q9ReNS3gE/Xapy8Kl/JA/f2jzU+wZvuq2yCqQEEAHDNvwIcUFjP15dXQmCYHJyMpvN6jq5evXyL33mFw1dO3ny5MrKSrm8mc1m//2///df+ML/uTa/dvYs1nWCCSgUCp/+1D9NpLSnn346lUq9/vqrzWZzYmL8UOnQ3NwcACCTz2UymZmZuSAIAJSapkkgXDfI5XKaoYdhqOw1wjDEWIMQNZvNQmGo0WjQkFbCysTEpKYZs3NXa7WGrhOFBCWS9tjYGNHQ+tLGxMQExtgP44WFBc7F2NgYF2Bjo7q4uKhaLzWEGROHD98xWhr7/ve/r2nant3ThULhoUcekVJ+9atfRQhls1nf91Vlw/d9y9Da7XYy6ahyjWnqrVZn1649+eLwzMyspmnVajA3N7e6uuL7fjaXrtVqf/mXX1SRqJJqUpwaxRIFAJi2ZpqmZVmTk5PVarnbbUMI4ziAELbbbV0zPc9rNBqzs7PKrBZBEoahIvNzLp944n3nz1+EEB4+fHh1dTUMI85kq9V6+eWXk4ms7wdXr15dWVlLpTKGYXQ7brczPzQ0BCFUxrgAgCiM8/lCIpGwEzAIABdSSplMonLZa7VaKsSMY135P2yrcvdG6U8b+9tHVF87DPDbBGj/sQ+CW+faP/rmrW/cPoXf8XG4vXcMQA3rqn1VQzgMhZAsmU4EQUC9WNNxFAWMxTsmx97zwH2pbPqN154FAORyuVarBQBSpoIKbgYACCiCIKAx9zzPNM3l5WUCNYRgEAd2KqXrOIp9v9qJosiyrEa1ZRopzgFGBpaEQh6GsQQcQo1SCoBMJpO1RiOMfEojhCDnHCKwtrYmpVRERcZYSEPFtQEAxDHjnBuGDQAaGhrSNA0IZhiG6+qdTkcIhhBJpZOmnVhZWaGUdlutkbEJRDQIISFG4EcYI2Vry7lykcKCy6AbqIBDmd4odWMIEGeSc6m8lX0vdBJWFIUY4VjwWIQQYEIQQshxHCFZKpUMQ58LWi5v9HXKCIRgx8SkYyeCOIrj2PN8pWWpCFyDph4ISTqdBgBIKQnsmWwo+CAOQ6X1EQSBkg/TNENKWa2WKY0ARLV6hWB9fHyH67rFwnCn07GthOM4Q0Oo0+m4vqczXaEYilOQyWRMM67RarfblVKm02m1t1EWh7VQ1b1c1zU0XdNwu91VrdaK4NzHLoFCD+EgV9jCJbegom34bK8S+Y6x3YOYtxZtCAZiHe98P+ilMbdKPN8+axAAvb1z+9/B+aiT6QGQ7zIZ5fb9YlAfgn2rvXdewrazfXeWd/+dvddV4faWGyWgBAIhJDiQcDBtf/p9692pd1+aBt1Mg+/djpW/8yOiv1uivjYu6Pu23Xpbek8IIVCiKIrjGGiaZts2pRRIypjwaGBZppkwwjBstVrK93VtbU2RH5UBYLPZRAiNjIyozkTFofvhD384MzOjdiJFt1fRoFrGW60WQVjBwUoJF/X76xFCEEohWDKZjuM4iiJldscYTSYTQoggijjnAAoIkMIoef9CZP9nUvdHqachhPquHVx9RRTHE8OTe/ftZyA2HSuMg7xRSCWTkR+8+ebrCys3MRKf//V/MXPmlLu6EkQhMoll6VEQBGEQM451TeeScQm4gH0Sq3ogAKQUAkIogey7CAogFA4exTHkHEuhSZhOOBjCKAiV3gLGWLLeEqEqghIjXde5DAWQuq5rpqHuhtfthn7EgbQc2zRtQ9eIrnHKhBC2Y2clv768HEa+aTsxpVwCCKFqkh0IXivnty0ccNuqNSj4wX403x9p0jCMXC7j+zqlXBXeVAttGMZcUC7QYKyq9VBRoXvcXqTErfsYSq81u/eLDbAG2evShYOpNIibQT8cVa8gghX8uv1FNcgNw8CkV8iUgDMmgiBgMe103J6MA0KqYAARxhgp6eoB2E0pVas0RFING8rjwRn2bhTkt52nunUIIcAFxpoQXJVMhJSCA8rCwVXDfmMKY5z1HV9VXVBh34qm2m63EerVh5jLbcdU4V8cx92Ol0qld05ObWxs5vMFzvmFCxcWFhYWFhYUr1bXdcaZ8qaDSG5sbEzv34sxrlarzWbzwIEDtmmsr6/PzswxxgqFguu6vt/Tq0EaERz0Nf56rEOuoGFCdF3HWo/ypsq0QghMIEIQACglVypeSvzEdkzdKKj3BGFIKSUEQSil5AgBw9BUXiQlV7sYExRCEMdxoVjI5tKXL192vQ7CoNNpIYQ6nU65vJlKO6alT+2aGB8fzeYyQdANI98P2irO3H9gdzaXvHZ1NgzdsbEJ13VdvzW1a3xkZNTzvPX1zbfffjuVSKdSqTiOva4PAMJY0jBW+ryUUtPUMSGe56kSS73e5JwVi0VC9DAMu622ECKMQgQJAMA0zV6xRMoefwoCIZQXIlL88aGhAkKo1WpxKRDEyWSyVCqlEunz5xfW1hzXdeu1JsTIMJxqtWlZmtLPGRrOHTp0YGlhsVlvfv/Zbwdtevjw0UJ+6Obi/JmzJ03LCEL/2LGjjU4DIRQz2WzWIIRRFCec9PT0wctXr+m6XigU1DRPpVKNRgMhqBz5yuWyaZoKVe92u61WK53K2rZ9Y3EhDEPV1uk4ziuvvCKEOHz4sO/7a2tr585dSCSSmqabpnn4wOHDhw+LvkT4Qw8//JWvfKXd6RSLxaHSqGEYE1OThWxO+YARonGhxhLkAjDKVSWJc5FMJm3bVo4jjp0YKg6HYdj1urZtQwgwRqo4wRjDGFDBIxZlcrm77713dW354KH9J0+evXDhHCboxJ133XnnkR/+8IcKYg7jCCH0a7/2a3fffff4+LhaxLrdDgBgYmKCECKEbDabjuPYtt0PmVIEAwlAo9He3NzMZLKWZXW7Xc/zEEKmaSeTjuI+cyEghAhBjAGlUpE9VXOYaZr5bC4IAuWDZ5rmcDHPmJRSRhG1TT2OGUAIY6w6B4CElEtC1K4xiD1URCEUFU70ZYgJAfv37wIAPP/886vLq0DIarX86GMPd/1urVZLpjLDw8PJpEOlZDwmRGMsFhLpunbnncfUHD979uzZs2c3NjauXLlCdH3P7unltcVcLtVym61mh3NezJmURr4fEwLq9epXvvK3+/bte/zxJzOZDME6IVrf3gOAHjKu2IhQQgQBlBL2Ay0JoOBSEggRhJoGgiBqt9tBEGCko55EPxJA9pUAkZQQITIo1Qy28v+Lx7u+YzuxYHu8px6EgPX19fHx8bvuuqtWq50+ffqhhx6SUs7Pz2ez2aGhISFEpbJpenY2k19eXt7Y2HjwwQdfeumlN998c9++fYaprZfX6616tVodGxvDGHEODAMsr2wsLywWi4VCoeB6neeee25y1+T1+dmpqR0QyrfffrM0PBLs2dNutx966OFKpdxud1OpxOjoiKZpzVbd972rV2cKhYJqkNc0jbNQlXuj0L/3PXe/8sorly5fgABbliElX1tfdb3u7NyM53n/nz/6fwshMCRxHBsGiWkoGJcAdDsBo6A0NiqEqJQbvhdN7dr54Q//7OnTZ3/4wx/SgAIApqZ26ToZGRkZ6Eqpn0CRP1R0hzEGgA24z0JyjeiqA8YLfACAKgArto3gQBWxFFjRbrdNq2dOAACI41jXdcsybNuUAnU6Hdsx77zzmBB0YmLCNGzP8xgTccQnD+3tdjzTkBAYQuJkIlertvfuOfzE4x+8/z2PDw2N/NGf/OHIyAhApN1um5bdbDYRgE8++eTMzEy9Xk8m07zV8MPY90LT0oUQk5M7/uk//cUXXnjh2rVr5fJGebPmBv6/+lf/2rKNmIZB6O3YseMb3/ja+vr64SOHGGOtdkXTtHZ7I5lMAwMpMQ2EQBzHggPDMCil+XzesqzVteVEIjE1NVWr1VZWenbZAIg49uM4euPNlwvFVDKZvuuue5aW527cvKppupTS98HBg0cOHDoahmE6VfD9cHb2xtgoDyPXc5s8plHsdVqNV159wbaTmXTu537h48/+w7PT+/c8+ujjv/u7vxvfDDmnAIDnn3+Wc37gwAEA0GuvvmEY1upy9f77Hj44fYeUcseOqUa9e/XqjG44e3YfBABgZNgp49lnn11eXnzqQx/IF5Lf+vtnTp16+4H3PJwvZJ9++uudbss0zUcffeTEiROVjdrY6I75+XlGke9FO3bs+PSnf/7MmTOBH0spDx069LGPfexHP/rR0uLKhz70oUy6EMexZRqqZQ0hDESvyxBjHFPVeAEg6qWF2zMRsC0ZUQmL4ED0I0OEthrg1LBUvspcUMVBZoxpfYEXlddhABDGmqYhAKWUtm0bhgEhjqKoUqnU6/WbN2+eOnWqXC6r2rNpmrplKik/SinnktIolUpls+lcIW9ZVqfe1C1TAgRVrIOJbRmE6IQQ5VpMKUUIAomYkJRzJLjSnUAIqa9Q5IBut1ur1ZrN5sbGxqlT69PT+x977LFarXJw/777778/n8/n83nG4kajce3KJYRQHEeu62oEQSCUh5yyFTUwAkBoiACEmYSMCcE5IYhGIZRgwKKDECqWKudCcA4Ag1ADQCKEMNIwxowxCSRBGCFAiIEwUHMZW8TW7CAImIwtyzK4gTGWJuVAXn79Mhl49EnZY/tuh65uw9oAAIpMhtDtLLBB2iwhQL0xsZ23tZXZSgkGXq79/BluMT3fAXlvZ1u/c89Qb34nfv2OHUWdTE+7+rYjSCmLxZzjWCurS5yzMAxPnz69sbF2xx133HX38c2N1S/8n39q2/arr74qpXzhhR99+tO/MDE2/r4n3l8pl/P54gMP3Dc2VvI8b2OjeufY9D/7Z//sb/7mr4IgmJgYl1K+9vqrmXRWSum6rqmZjmNFURRFUSKRkFKGvtdut+vNxs6dOwuFQr1eBwCEYTg5OdlotNbW1gAHnHPPC3x/NpVKpZLpKA51Xc9kcp7nQQhfe+01AKHvh4SQRCIxfeBQuVyhlHc6br3R6rTbvTwKKUtGcvXyjYmxPcXC2MbGxmuvnhwpDf3Fl7509tzpIAg7nY5tpWzb/p3f+Z1Tp0797d/+LcJA9XP1gyczl8vZtl2tN5XBpY7Jq6++Smls2QalFGOoRG3gtpZkhW2FYdjtdovDzv79x+M4dLs+pRxi0mk1oigKgsj3/SbtDA8Pnzx5EsKeOWYYhlEUAYAcxzl9+ky73UkkkrZtHzlytF5vVCuNsbGJtdXNZrtmGC3DMOv1+uuvv57L5dLprOt1Az9sNBoTExNq02KMDQ8Pq0JlFGnptB5TqOswigClFAHIOV9bW8tms8PDxdsHEHwXuHnAd35ngPKPRz3veOftTOd+dWcwKd4JRt/2JegdlMzbONScS4Ih5xhCyCTXMAQCraysxHEkAccYEoIs25y7MRfF3qc+/bF6deHcuXOq2mYYPed6w7BU1Y0JwZlECKlqBOdSiCjm8fBIfmxsuN1pqNSYEF0KYhiUxgIjg3NhGpphWGFYU2t9s9m0LFNKmUok/MhvtTqURoahU0ptx4zjOPI90zRV4KKkvhhjGGv1WjWONwg2R0ZGdu6cLG+sVatVJ2HY9o5Wq21omoRA18kddxzds2ef54df//rXTdPO53uCyIzFumEFvg9AT/5SCEEIEZRRRpvNjupARIgILjXNEEKRziBUTDTOMBYYIgAA73Etha7rRDNVm1jo+ZVKpVAoZLOZQWNOJpOBbldKqetcNc4MHKUSiYRic/TJLLynr2QYpmkpcoqUEmN44MChOA7DMDQMa21lFUGcyWSEAFEU7jqwa7Q0KiVnjDFKm422bScSiVQ2nyOESAFUZphKpYrFbLvTCYLQsEy1Xyr4DyAYhiHCWElcKeqiqm9lMhlCCISA894dgxiQftO37I3YLSRIreG3way3ZwRosCBvtUENjvAu79+aOLdAuqKnKcyVYMVP+4hizwi1a6gZLd99cgGg3Jx6Z759D8K456K2HTy69WzRYHbKvkPjO69FYV59dmTv9HpyU9txXhUw/dQ1pb8MveMhttk1DF7cdsK338PBGwZ/B4Ssd542hFBwCQDXNM00gdvhAIChkeFGvSx8AQAMw5DxWAhGCPF9f3FxUemmYQyVlpTytYjiQNM0VaF0XXd2drZYLKTTqSgKFdyp9Ads2xJCuG4XiMFIUYKAUFVBMIH1er0vqoOU6jrnPIqDfK4IIVQMZgCAkiAD24aQWhAU+KgiLXVk1W5saAaQkHPued0g8D760Z/LD5dCJrteuLm5Wa/V1leWX3/jtaf+yQceuO+uxetXk5DOI3lueTlpZKSEymwSIIwQiuJISimEJIjIbYiz5EIIAQmBEAgpoJAqwlZU2TiOiaZ1Op18KqMUVC3LCuNIJ0RCZJgaY8w0TS4AgFAzdAChaZpxxJQFGcaYxZQQIhF2LEszSKfTqfhBKmHriGxsbKQyqcJo6frSgogpsmFpaNh1Xa/rcdZjj6qFSMF8ajAMCHdqfVBIaByJgfYChFAIFgQ9QzxCSCqVwhBBiBljvu8rSFR9XLmzKkM2VR1UNF4pJUBAih6ErXJUtRwpEi0AyslTyL4DpDqmAmQHKauaSgrelVJqmACl4NHHtRFCURTxIMIY64YRR5GOdQih7/th6GOs9ctsUAgRx5QxBCFWhueqgqLuD8JAdRMTHQdBACE0DF2l5WpQqaBI1SAxxnHEsEYQwoIzCHuzFWEs+paMsE/SUVenTFcUViUl0HVmmibqKzjxvs61pmkQAsFFFFKMcRy5ChAPPH95eUXJmkMIX3nlFcdxUL8HXyVp1Xptz+6dIyMjQoiVlRUu6PDwsOu6jUZj1/E7LdM+ffo0pXTHjh2MsUql1js3pZjRL7areYT6JRzGmIRAKUUkEgnOebWyqeQaFDCtzpmySNOxlJpSa41oiAnkAlAWYQI1HZuWDiGEoAdYA4niOEAE+r6fyiay2czS8vJmeT2OQymFk0y4rrtjcjydTlcqm4lEghig3qhwEe7esxNhuba2MrGjpGlGubyp68b9D7yHxrxWqyVTznvuuyeTyUiGSEnPpnNXrlxNJtIKPm632+fPXnCc5NiOsXQ222g02pttKTmEUGAhpbQso1QqCQ5U0qiYFnHMpIAccIRILpeLY9rpdCRjqKcNIgFA6v6YphkE3vXrTdu2TdNU3Dc1MC5ePF8ub2yWV1PJDISYIJ0xTrAuhHQSlgSxKvaEcWQnDNtONFu1kyffuPvue2erM5/69Mcefvjh55577vO/8W9+63f+3aVLFwpDeYyxcinf2CiXNyqUUtXUZZpmFEXVei2Xy1mWpdDYXC63srKSSCQUNU+NKIzxwYMHP/axj//xH//x8vKypmmaZnBOu93ukSNHFhaWTJOcPXvW98L77rsPcNDuduyEo+u6EGGtViuVSpZlJdIZhJD6LtPUhQCJhM15jw7bwxLRFonVcRxNI7lcbvfu3bquI4LshE10rVc/5lzXNQgBxtjz4jgO0+n0zl2oWCzOzMxcunTh+vXr+/bt+/a3v/3cs88fPHjwypUryWSScgYhfOqppz760Y+qiqNlWQo7LhTyatIxxhROoXo1Mpk0waBaa168eLHRaGiaPj1tnjt3LukkSqUSQkiI1uTkpGnqAAHAFRtacA4wRrqOo0gom7xcJqVsaXO5QjabVSUwtWTphFDKIYRCQiUTzwXgoNf4ywHgvdwD4H4Ei3pyZ72NPQwFpXxsbOzDH/7wX37xr5eXV7Qydr2OlbBazc77P/AzrutrWiedTkJEhFKEk0ghMOPjYxiC3Tt3veeee8uV2gsvvFCvN4MgEkw2Go2Ihw899NDS0tLa8pptA88NLVs3LUM3tI2NjWazTmm0vLY8ObkTIAwF7JMQAZBIKeT2BZ0H5cOt2A9IKKUykUMD1rZinSMEhQAQYggHGzpEcqCQthUmiXcxf1LfNwh1toc9t7+tX+MHGANCyP79+0ul4R8+90NFdT937lyjWZuens7n8ypz73a7jLFKdXNh8cbi0s3LVy76gfvNp7/mOM7u3VN79uw0Hb3eqIyNjWgaiGPg+97krh22bVuWdWPpehAHlUrle9/77mOPPfaBD3wAY3Tm7KlHH300kUgIAaamdv/8pz9DaWRZFmP0ytVLzcbss9//QT6f+8hHPhaG/ne/+22FWgohduzY8fqrr333u98lhFiWFUdsfn6OcyU+JoUQcRhoOtY0rJSyRMTCmBqGwYVgHGFknj93pt1u33X33clk8lvf+ta1a9eCIKCUa5pRqVSmpqb27dt/+fJFlfKoTdy0LNd1hRCJhBWGMcaapBEG0LJtzjmQEPa6AVQA2ec0CKiKWIuLi1hgjHEikRCSQQgpjYRQtmzS90OECABI08h733vfL//zX2w3mqXR4X/zG//6xo0b33r6mdHR0V/71f/1C//jv6+srCSSRSlltdI5fsc9n/3sr0pI2t1WrTonIfB9/9y5c2pBm5+fHyuN5nKFBx988ODBg3/0x/9HtVo1LIMQ5LmBEKBarT3zzDMXL152XTemHBOk6/qpU293u92zZ89Wq1VNw7ZtS842NzeHh4fT6XSn00mlUpTGQgBNJ6ZhVav1btdLJpP5fP7gwYNhGF6/fn3f3v3H7jgyc22uvFl1vW4YBjt2jCcSiYXFm+Pjo4Zh/OjHzyOEXnr5x9VqNZu2JILlclWKVCKRCDzPtBOMicDv3HvP/SyKX3v1ZRbHXrepGyYhrFGrGCXt9Vdfrjcqa2vre3ft3dhYmZra0Wo1mq1qrVbLilQYRuXNqmU6H/zgz1bKjfW1amlkKo7Z8PCwZdlHj94xMzNfLJRGR8c5FwDIjY2NK1cuPfjQfZXq2te+/tera4tBEDz73PcAkFxEuVza9wPP646MDNl6cni4dPXqjK6bmMjp6QOlkQldvyIE0LG+e2q3EKJaqU9OTg0PDxu602l0HRtxoXINAXucGA6AUEpoQggwIDgP2Mq3zNMeuIwR5v2V8zYuAmNMkVQAhIO+ZN7PjzBCAEAhBMZIJ5phGEIIzuXCwtLCwsLq6urMzMza2lqr3VZkBdtOJNIZIYTv+7quCSHshJNJZ9PpdCqVsm1bhZqdesswLcO2dc3Apq7rugRYIsglFBIyLg3TFJxDKHVdhxLIMMQAQgDjMGJRGAZBrbypQLDx8fErFy91Wg0NwwPTe4aLuU9+/CMjI0NxHHfd9pmz82oJMnVdCAGgIBgCAA1DA6KntIYgRIionjMAAIII414fM8YYQgmExBCZusE555SxmELE+32BWNOwpmkAUACAaZqURVJKTpVUFFZ+j6ZlJbREEIUA82QymUKZdDodZ8KrV696nkcGi6xafxUQrLxetvORt35XAIQEYGCehoCCHiCEKgMfrPIYQ84lUVBCP/W+nTH6DrZXn2R0S6URwq20f4BEDw71rjRnKSVCtxDT1K4khCAEK7Y46ntHCSGCgBINKc07SqOzZ0+fPPkWQuiuO/c//sSjf/AHf8AY67ptgvXdu3efP3vu6uUr99xzz6GDR3bv3n3XifcMDRdUweTS1VcppY1GI5lMJpPJtbW1qakpKWW71aGUd7tdHesIASFkEHiapumm0Wy3lI6P67qVSkVJpCnunef6jmVDiFOpVBTRer2p6ySdzgnBOBO2nUins41Go9VpI4SEAL4fzs/f2L17d6PR2tyocCk0nMgWsphAxhhgIAzDzc31dst/6oM/97Wvfa3Z6OzauXdtbQMCvGvXnjNnTgkhGo1Gu93e3NxUSLGTSna7bQ1hCGEYhm3Xa7a7EMLp6QMYk8gPVldXx8fHRkpD5fJGteqNjAxRSmu12sAZoL+7SCFYu+WWy5Vyuby2tqppePfu3YyJOGYAsOGhUqVWVcrC+XwOIVSr1YIgGBoaAQCYplWt1GeuzRUKBSHEW2+ehADv27fP9+NSqWQ5fqvVsSzrsUeerNVq58+f/dCHPnTkyKEgCE6ePNloVqenp1stw3XdMPI2yxuu6wIJAZjI5U1KQRD2vDVV67Rqb7Rt07btdNqBEDAGCAGUAoh78UePL/xTsOataQWBBD2Bi+3jdoDe3Bb3bC//9Obb1pC+HQhTb1B6Ydvh6e3Vmu2zCUJgGjCOga5DSoEqYXFOU6lkoxkxRv0gKpc3NFM7c+bU+sbqzOzlxcXFKIrcjuc4ThhGCCEh5NjYaCaZ7HQ6XuhhjIvFopSwWq12u93xyR3JpAMg63ZdjIgQDCPD9wNdszVixmHEhJBMBNLjnCWSRiYz3G632+22rmue32WMZTIpLwwghIRoKlsDACTtBEKAc64hjQoaxwIhFAax0k0WQnied+P6dYwl55QxKCXWNMIEZRErDg39xr/9TQjxk088cvjYHV/84hdd17UsQpCptgSiaTSOIcRCCF034zj03ICYxLYTcRxSyk1THwBzA3BK9vugAQCcC6wRRgXnvFgsBqHnul3HsV2vo3h8m5ubpVKJEFKr1qrVKsCoLxGuKVLngDU8wCV72yFX/Es0Pr7Dtm2kWjEMA0JIiJ7J2IEXGoYhuFRwAxNwYmJ8cnLKsqxWtxOGkUYMxjqU8lwhr/yvkqkE51xJzjkJu1qtK2SH9jU3QRxpOgEAaJpGCKGUKSQ6m83mckkpAaWSENSHkpX0hQIfFdOhB9sNWpn6mkhye5QgBYQQSABlX5oJQqTUmWGfVwu2kaNBL9rouxUrsUIpEEISggFLUZGhtk2rWxjWEiHea9NR2FPvn4S4RchY0Q2FgIADCLb19AxEQgBAEEoEe67qg89uO3MEUY/FA4CE6oSR0iHhXIkAIHg7HD9oId8qy4NbzdDeCb7LbazqwfN3+6sWBzj4IbZpVW9dxeBLB/CTGhXqCUIIgC2eKVCALxeUgoiGjXZraGgomTDP1SsISUoZF1IhR2EYGoaRyaRVsMg5N009iqSSBehTZSGEIJlMqCZfVcRS6lKFQiGVSvWASEwGVyp75WqIMW61Wvfee8/jjz/+D//wD3EcV2vlMPRN0xzKDKk2fIQQIbgnA4p1zrlGDM65shKhlGOMNU0pCUoIgZSiNysJhhK0Wq2jR49++MMf6XQ6U3v2WZBYDkMA/8l/+2/XZ67dcezw2srSn18+3apuLF+9bAZUUVw9z4s5ExBAhHFfYQAQyRhjjCONMMoMrFlWAiHkxX4URRBITddUNCx7jPTeb0QIARiJCAAANEyEEJhomWQGI6Tpetv1UtlMMpteXV1lnGFdE0JomuZ5nq4TneCevgHAnhtwFjNqOrYtlJY1o4f37z97+VKjUk6lUipIVYxU2A/QwzActPip0TLgNSsJXV3XgIQq3uCcZzIp27ZBHzZVPyiNYjWS+xr3W+ZyCv9VuYEK2dW3xCyWfZVSwzBQz5ZHE5RLCYBajXvSfj0+vqJpKNVIpbCkoFggIEKYUq5oPoMLUcOSEF3BSR6EBBI1GdUFqluHIBQQEoiwppmmKSiDAkrUw7U555goN8IYIG2wBqqbpgJ3dTIAQSkgpRT0p7yUMoqiXLEAAAijSBUgFbyimgaU+MZAzm9wu9Qr6l4hRBjryWgQQqQEURDKXjwgdaILIT3P47xXzldMgiiKstmcOiCEwDCMtY31crVCEHYcxzRNwYEipp05c8b3fcdxDhw4sL6+rpQ6VN+Y+pVNTY+iSAoBMTYMQ+k0wb5AsJqzURQoM+HBBtHPWIjglLGYMQwQxASb2IzjmBAlUd0D0wEAlIVSSiFFOpUaGs5V69Xhkdye6d0Ii9X1FcvSKfMRQpQFRAMCcD/06rUKQmBybDIIgo7nr21uaBoJIsoEoC0vjlghPxz40dzcnG3bGxsbe/buKpfLfpcpnkQ+n49CeunSpZGR0WQyfeDQQUaFBAAgkC/mW51Wu9NJ5lI8jmq1WuAFqVSGIwmkFIIxJeYlmBA9YVPVIqZumuoYIIYuBFAy8VgjgnJV/6CcJZPJzc1NjHG367mum06n+6rW6hfHQsjhwlCtviFBBCCr16vpdHbf3v0bGxuNdmP/3v3j4+OT47t03SoWhl955ZV6va7CkmazCQBQrhuKUDI0NFQsFmu1WqvVsm07nU5TSr3A9wIfY1zI5UdHR1dXV4UQ2Wx2fHz82rWZQqHwgQ988EMf+tB//a//lTGeSqXjOLYs59d//fNBEHz5y3939933HDl87IUXXigWi51O59rc7KMPPfzUU08RXQ+CaPe+vclkcnh4JAgjyzKkBJxLCGFIGUKov93LwaavUrZ+rUUfGS0BAJRgBe6JSwj1itrINA2n02mEUCqVME3EGJubm/uZn/mZhYUFBXZfu3at3W4n06lms4kx3rFjx/Lycj6f931f+c0ODQ15nttut8fGxnTdUBOTEKzrmud5ly9fbjabKysrp0+fzmSyp06diuP4gQceCIJA07RkMh1FEYRQNzVCEGMCY8S5kBJQqnZzlUEDAIDj2HbChhBIiTgDCGHUj6ykgJhAzpUfHeLb6t+w37MlhJAQItJTyBzUBSGEjUZtZWVNIQtXr15NJJyV1aVCoRAzNnTm/EOPPFqt1hOJhIaJhAJCCaUUXEIICQIYA9vWpqd37d+/K5cr/P4f/sHN+YWY+/v27/y5j3/4fe97bHZ29vf/8+/PzMyZpq00f2q12s6dO/fu3UspDYLA87x0OkNjzilXBUsAgK7rUURlDyBGAKjfS/aLggIIqWlas9FyXZdRThDpkTkIUQmUoAJjtJUWbbshoB+XbivWbz0GBLXtqRxCACHA+e0Yhdp3KIWWZQ0NDTEmqOAPPvggY2x1dXXP3l2GYc3Pz/u+PzY2ljXNkMa5XG58fPzpp5/OZjNDQ0VNw5/++Y/n81kAWSptcM5b3bptWmfOnFlfX4cQdbvdkZGRcrk8Pz8nhGi1WhcuXDAMY+fOne9//5Oe5yWTJcdOIoScYtrzPErpyvLK5UvXPvnJT7z+xk8YDz/0oQ996Ut/IYQoFkqtdqPT6Rw/fuLll1/0PE+l4Yrsz7lUTRLlzfUoUqriyDSNKIp9P3Qch1EBJMLI8NzoN3/jt8+eP9dqtVqt1vr6eq3ZwBgjRKSUhOjvfe9DL730gnIRV1RUiKHvh46TVPJlGOPAj0wNCSHjiKpi/yB7UgCiWseIUtMihDFmGPqB6X3l8kbci8wRAFgIEMdUVWodJymlvHbl0o9+8KwQ4u++/s2777x7eLjoJBPvf/8HJnZM3Xn8HtNIVOq1jY2NX/21f/nAAw/atvPVr3xttDT+4IMPhrLxf/t3v4MxzqaTEMJW011dX/N/4j/11FMXL15eWlwJwpDomlJ6MXTL87xnn30eIWQatrK0GSuNTE9Ph6F/7doV0zSPHz8+Pb2vmM8vLi5ev34dEyYE13SiMBAp4Z7dezHWXPemYydVSV4Icffdd//Wb/3WSy+99J1vfw9C6LkBZbHjJCEE4+PjR44cUmLrGGNNcy3LopzXa3VdJ5/+xC898cTjUkoWxUyCRCKRz+SWl9eKxZHScHFxydncWOKctRrNxcXFVqtzeeai2/XDB0NCSK1WmZraYVW0lZUliMT8/NyxO4+5bvBLn/kVgo1Tp8599e++OTk5Mjk5ZZNEFEULi4sf+ejHOeenT5/euXPnyZNvbWyunTlzanVtpdVqpNPJwI/arW5xKEc0XdM0XWdXrlxpNpuRL2w78cgjjyUT5muvvxQFkYoZOOe2aeZyhaUby4DLTDJTrdRbrcVCppDJ9IinAIj+OoAghLGSFEM9As62VLFndNEDmvuVNozw9iRIcedVdV8xVxBCQgIV+RBCGKWDfEfR5mzb9rzgypVrCwsLMzMzN2/e7HQ6nbZrmqbjOE4qLYRQJWElfVgcGlblolwupwrnmmEChDRCkqa5trLaE+7QiKZpumYahkGQJoRQJkOcKxQYIaxxRlVi7rpup9NSrUKZTGZsvKRIn4eP7D90eHpsbGzPnj3ValUCem3msqKIYYx1QiCSACrRJgGE1HVCEOZSqTkBzhgydawT3/fVHFTJVxxFpmlileUIqPodMURccCmlpmNGhe+7jpOUEiKEABQxDTnnURToup5IOZZpKg9MbOmO4aTTaQ92TdOMG3xheamxUpmbm7OTGSL6wLEQaiNXTJBeo/F2auRt7cNCAAEBvD3zBariCvtjQvZ3gu1vkH1JfoC3VyK3iJzbE+rbeJ2DF2/70tveD/vEun65e4BEIM6FpiHGpOQSE8Q4xxjWai0JmKkTy9AmxkpDhdz12Wt//8w3N9buqNerrttxXZdzPjEx/F/+0//r13/9192uf+zYHel0xnW9N157i3KqZCVX1i9cuHhO5ZlLS0vlcvkTn/jElcuXV1fWksl0EAT1Vj2dTnPOlaykbdvVahVjvL6+rgQKGBOU8oWFhW7HNU1T04xMJmPbiUqlUqvVstm8pmmdTgsAhhCq1xphGCNEOOcIAdtyut2uQkB839d1HUItiqhDHBpHbrsjJSwWh1988cV/+S9/ff/+g+1283d+53dW11bffvsN0zQffvjhq1fmEonEk08+efXq1Uwmo4gVYeirzIcx5rp+IgF279oLIex02s1ao9NpQzS6ubnueV6hkMMYLy0t+b6vugAMwzAMw/ddRQfw/fDsmYtCsNGxkpQyjlk2V8gKSSlNZzPpbCYMwziOlelnrVZLp7Ojo6M3btwEEluW1e16zWY7lUrNzc3df//9n/3s577+9W+++PJPUqmMERgAyDjsphIWE0EU+5SFmqZP7Rz3PE/IWNOhpsNOt8E5NQwrDMPN8hqAIxDitbW1OKKEEMu2AQAqVQYASAiCiGkagQAw9u6FjXeOxu3vgdsMALdLOd8mVjMonLyTv7h18HejNm5HuqW85T2Dybv99KII6AaIY0AIUPlOq9VCWCIEiIZr9RYm8trMpQsXz/q+q1LZxx9/8kc/+KHvB6pxFSE0Nzc3NbGjVBohvo77YprZbLZeb3Ta3vj4eBi5lmVqOlxdXY7iSHAU0iiVytC42Wg0HMuKaWQY2p59E+XNhu2YXNBWuxFFkRDCdd1EwtYtU3HZNGKkM0kWxbqu79+/L4r49evXMYZxzHyvRYgOCWZMUBpBSRmLAZSUxY6dAhIxxnXN2De958gdxzDSak3vV37lVzgT/9//9seU8ihyMYYahgrLUTk/AIAQnXMJolgiqOumgj8I0QnRFEBJCDE0CCEUgiMMMNIU1Y5DiTG+cuWK7ZgPP/xQHIfNVh1CEIYhxkhpX5iaoebRQHdSEf9t29Z1vVqtqgxBLSADUKzVas3Ozmaz2VJpLJNJtdvthYUlCKFt29l0RtcMqcxhpOy4wcWLFw8cOJjJZCTUHDtFKU8kEkQ3IITK8MowDOXX5HmekNQ0dcZ6plWaplFKGWVCcohQH8gQru8lk8l0OsEEiENKCFGJk4oCCYE9+3hNcQbjAX7UtwxWgxUOKKUA3aL/sB067I9qKHs9MQo77ldXABjsKVAJD/TtigfJlbxFMkIKuFW2uS3v6P9VUDXqbxxSOejKvuXmO2dlD6ISEMjtAh6QbXvrFjcZQAggRkQIqXai/hu24dS99/1U8Hfw+ta334Kkb9kobD/JwXvg7Wa5YJsN2y2c63fC2WAb3j1I/hUGTTQCIYAI1VtdAMBHPvpzf/e3fzM3eyWZTMZxSCMGJFJ7waFDRw4e3H/p0qVKpaLEAW3bbjQaURxIJjnnjmM7jqO+iHPu+/7IyEg2m11ZWYmiSGWtURRpmsZiyhi3LEvxZAEAuq67risou+OOO2zbLg7l4ziGSNZqlVQqlc/nXdeNKEYY6FCHkA287ACCnG0RwLeHqgNirIL4gzAECFqWMzQ0Mjm5k1IasJgy2W3777n3/gfuec/6xsrM1WvV2ura4k3kebDrpnQrptwwjJgjIFgUxwBjYuiAC0apAtio4Ol0OvIDiKRuEGAkDMOIgxD3NON6lE+EkAAAAtTpdIqFHCFEQAEhjOMYIqjCCSmlZds+jVzfT6RS9XqdS1EYKrYaTccyBGNxHKs4u9vtaoRg3DOJCj2/222n0omu64mIHj1wqNJquV6oFnYF73LOFYCiymBqJAzgQtDX3iUECyEEl0IIFeEAAJRZTSaTUaTmKIp815N9+z7lbKGANt/3lVvv4IdQ1zgoK6o5rlJo2e+4VFxmqNxNdU3VJwYjVh15oC4tZY8ao2mGlHwAmquCn4LhVAlQxzpjjBhmOp12XVd9UNM0TdellHIgWMEY0ZCp6xLCMPIhhLquxyzq6U0JofpX1AkokyUpoaZpjDPRl7lgjGVT6UQiYTmO8pVVHNIw8tW2C3umF0K1J6ufQzF8fT/AuMf+Y5z1XVslhFzVCwerq8rQGBO+31A/nGEYcUxNEw0NDUkpq9VqHEeMMZ0RSunYWOnQoUNra2szMzOqF7jZadVqtbvvvnvnzp3r6+txzCCEqlqJELJt27Ic9at1Oh3V4jNQnSZY45w3m81arYKUJVBfA8ewdPVOCDDESABJEFKkoVQqaVmW0naLop7fVE/bBBPbNoojeS9sZ3MpCagEcmLHaBj6s7Pd9c1NCEE+n9+7d6cQQvBo777dbhhVyvVutz1zZUbTsJRcCHH48FHPi8+cvhRFURzHjUbHNM2Za/OGYbBQVioVTdPAMKzWat2uF8fC0Ou2bedyOQm4BJwQbf/+/YZlUkrXVlZbrTYCyPMCy3IKhUIURZRGNIwgxLpBpIBRFCgqFucM9jqYJI8iQnoFPMWZ8jxPCMEE39ysIIQ0TYuijk40XdctC6psBmPNDwIpRaNRO3LkUKGYefLJx77whS9kM8UPfvBnr12dzSYLhWwhkUilUzlBYafjlkqlQqHQarU4551OBwARx3GtVslms3Ecez4aHx9X5mZDQ0M90qJpqhPeKG/+i3/xLxZvLtxxx/Hvf//78/Pz+XxeI8bpU2fffusUo8K2EoZuCSE4FxcuXBweHh4bG3/44YcffeTxN954izFRqVTW1taatXoYhh/7yEdt2242m5qmIQRs21DMiVitjbgHHNy2H0mIJJBMSIwhIlhHWCEUarHCEIL+lqxK1/09FWCIIARxHF69evXJJ598++23OZf/99/9f2xsbHzpS1/61Kc+9eKLL7qu/41vPH3hwqVf+7Vf03UtDEO1mMzMzOZy2TiOHcfpdjuEkGq1ev369cXFxfPnz99///179+597rnnbty4mclkTpw4sby8vHfvXsX8Mk0Ta4Sxrd4mjNHA/QgAAKUUPZgVSAClBBD1uzH6eSzGiHLJOQcISgAg6mXQfVqY2su3HM4h7Fk6CyE1DRYKhaWlpbfeOnVjfiGdzlIaRhELgqDb8V555TXLTDzwwANAQMMCIlKeURAq8hnuccUEB0KAnTt3ZlPZRCLxngce+fxv/K8bm8vf+MY3Dh061Gw2VVerEFLJr9m2nc6kNA2PlIaUPhIEGGCkdg2lpKRpGu3fh35IA6SASKpuKigEcF232/UMbEIoJeC6TqTkfXQYqZPk4hb6jtyGMt+WmQ3+aYAmg1vRZ7C9c3RA4oFQSpDNZgEAlNLx8fHRifHqZjmTyezdte/m/I1ytXLgwHQqlYIQ1Jp15T2AEHziiSfS6eTyyuLQUL44lN/Y2JibPyeECIKoUaufOXN2c3OTM2kYluMkoyjyPJcQYlnm4cOH77vvvrm5uWPHjmqa3um4mqYlk04YSN9rrK+vv/HG20tLa8vLK52Oi7F8+ZXXzp6/mC0UpYSOnU6nspubm0LCkeFR13WVhkMuVxgaGmKMeZ6XSCS63a6maQBISpni7Echte0EY9z1/H/5rz7/8MMP/vBHP15cXMwPFQAmGGvJZNKxk5VKZXrfgbm5uRdffFn166iCimSy03GPHT1eq9WuLF+zLCudzkoRep5HokgzDJXUE0KY6PX6qBI1QohRahoGjXkulxlEYrZtB34khAgDBgCa3r+3VCphjHWdXL10+atf/YpukEaz/JPXX/gnT/2Tp576mQ9+6AMIoXvuec+FS9c6bf/f/MZvPfreBwEAz/7oR17g7tm3+/Tp06+98uqdJ+5YXV1tVGsQwlKppGlap9N5+lvPtJutVCb7M/d/YG5uBmGAEFxaWsJE2laCUup5nuXYtm37vl+plNfX1xMJR0rJOatUKoLFtVplc3OdaNKyLIx7PKQoimq1muM4qplPwTKapk1OTr598s1vPv31QVcrF0YURWHoj49NCAF03dQ0w/d9JlxNMwAAUcinp6c/9LMfNA0tinzTNAggBjHimNumc+LOe2nkEQw1gvbv33Ph4tmNjXLg+UEUJZPJCxcuXDx3UXDgOE6n2wrDUP3WtVqDYHN+7sbjjz95I7f0yiuvJBxDcJDLZ770xb+av3H9e9//9vT09Nra2uzcldXV5UTCXFxaiOM4mUxjpGNkfuIXPnHniaN//udfCCPXdb2lpaVKpYKB4TjWsWNHHNuYnbu8srJ8+crFZrOOENCIzhkQQkgJW63OW2+dLBZGdkzsgtuMkQfLPkQAYaQc4tTrsL9QKLB4ENWoAEkVaFV72cDJQ0W8Wt8QFWMMQS9VFEIYhgYASFg2Y6zRaK2vrM/MzFyZuba8vFxvNAghum6GEc3mc0EQhHE0Oj4xOjpKCLm5uEApLZVKtm2HYZzN52y7V2xT3AJN07CmAYQFgJpumpajFnmF8/aYaggKIQSnXrdTL5cbtTqIomw2a1mGZQ0bhpFMOSou4pxxDvbvn+52u9euXRsdHW42azdvXjcMA2Ooa0RKyQCVfStagrCSmVQoilp1NU1zXV+PdfUKQFDXgWXbuPcVXNd1CQVjUqj+Tk0LGI3jGCNtANbHcaTrJkLINHXHsWzbDgLvzNmzmMADBw4MF4ppLdvtds9fvxDHMfRwq9Opw03GWHMtIFt7HoRwC6KCCG0RLcG2fHv7Cj5YjtUWOBCaVAECVke7NXUdHGerJgkBlFsLvehjEOjdPnXbQ76D2jz43+3UTrAtaVdtOJQKhBBEUEhJCKI0Mi1dMNluNzFWriwxJiCZsjOZ1KVLF3Rd37dv3//yvzz87LPPJxL2r/zKr3zhv/+Pj3zkI9/8xjPPPvtsoVBoNGuGZTqOUxo37zpxj67r12auUEqTydTLL71UKVdVqlDM5d22q3IMXde9rish0jQDAMq54LzX0RnHMWcim83GMavX65SLFGWmaRYLwwBBzw+xpuum6QWeaZpTO3fFcby5uVkulz3Xzxby6gjKkdy2EpQFa+s1AEAqlcwk06qG/3d/9zdSStd1v/A/vzA/P6vp0DD0kdLQnr27Tp48+d+/8Kfnzp1TImuLSzer1aplGQNGJ0JobW3tgQem9u3b94NnnyeEzMzMBIFXKg3v3r1TBVgIze3YsaPdbtdqNcuyEomEkBxjPJQpplKJlZWVMIgz2RQhGueCU+b7PhMinU5DiBhj6XQ2mXQ458vLqydPntKI0Wq6w8PDahXGGI+OjntecP78eZV9tdvtZrOpacYLLz7/S7/0Gdu2vvb1v5mcnLz//vcmksbS8nzzZOXgwYPJlO35nc3yWiKRzOVyvu8uLS0RolNKVfUsk8kkEjYhQEoQs17FW/SWu3eHg991WL7LQAWAy3fpeB/Mr+11+K3S+m3lmW1DevCG7Z/qNx2+Sx1IvU03ehclJaA06nRbYRhgAiGUlmlUKpuNZgVCUCoN37jZabXqFkk8/vjjGibf/vZ3OJOEkDhiQoiNjY1WqxUxappGp9NBCCvbola99dKLr2g6uuP4Yc8L6/W2bdtRFEZBlMsZEvBUOrFzxwTCUgjm+U3X7Si6EyGoWByNosh1XUX215CFJDCInrAS7bjd6XSq1XppZDyRSFQqFQAAFIBApOtGJKlq2lW9Tgo7sCyLMc4EWdsoP/fcc088+QFdx36n+96HHlxdX/v6N74GocQQSkQwwEqTGiEkgXKX4pBDACCTHGMMARoUAxMJm1JKKTUM3bZtLqhhGFKYQRBaNmFUtFotLuiNGzddt0tjTjQkJff9WMmS6rqp63ocx52O67puNptljKVSKWWQNTw8fO7sBUKI4MoUXokPYsdOMsprtVqlUjmwbzqRSIwMl1SgpjYS5VcgJWSMmpY+Pz8PkL5v70Eai07HFUD6fu+uYoyDgGlaJl/Iea4fxB6llDGhYaLSeEop0hClVEip4mZKqeMkkslEtdpy/W4ulyMESSkoZZalh2EMIekTkUAcM8PQOVe+XpDRdwx4eIv0wyCZ7D8ZUGtvn01b6OqtS/ptWK2UUvGbOFCKgGpH6UGK2+fmtuc9CtUAqhZC4Y/gVg/kPndym+gTvH2D22Jnb4fM5DsMFSFEfVT9dh3o2zDowdXBW5vIbrt1A6j6tn9914P3GQS3LEi3/e9tr2/79l7Ap45GKQNCEoJ5HKfTaV3Xu92upiPGGNII4AICPDw8fM899yhCvVLFiaJAmehijJWxrepDVGGN0lJoNBqDfu04joPQAwBwCmkcE6KFYUiIrqaAoKy6Wf7FX/yFE3cd/5//839SSn3fVfabAIg4DtWPUCwWAz9yXZcQ4rmBQjTUNQ7I2ioiVOHX4MLVxeq6fvH8pX9Iff+//OFDhpOIOWQSLtw4Wdmo2LqmY3Lx4kXdgCdOnLjv8OE/+c9/AA2UTSaq7Wan26EQUcGlEJqmAQFVg4JhmgENpJSQ9KBtXdc1TAhEoq+MzBUjQ1UvhGBSCCGo4MrSE0KokEcAgGab9U5HIPhb//53XnzxxYvnzse+BxDinBqGkc1myuVys9nFGKtJom6d0rPLpTM0iiWNc+n0vffc88OXXm4LHyJCSM+zTolyqGBa/RXbVLMHAhpq+hiGYQCD8bjZbCMEFBzs+65p2uqnpJxBCTAGnINBIGuapkrJFLTah+R4TyBCQPXVSqFC0zQgBOUUITyAOxljOoCpVMp1Xd/3HccWoscdVk3ElHLFWB9Azz1z334OoywKlYSIqelRRAXrnYBqaUd9gpL6lGmaal5AGOC+qXcch6Avk6LURgEAihuuUiNCSBhSohm2bTNK1UFUPqBKArquQwgty0JY9d4FEELHcWDf+RAAoAr5sk8GV0eWfKvwJgSQEqoCgNomOFd2EgPdWIwATCdTQRDUKlVN0wRTBH9NfS+EcGll0XX9VCpVq9UIJ9ls1nXdOGaLi8uNRiuO42w2q0wIEUK+7xOip1IpjHEYxJz1dG+xpikIlXPOOUUISSFUC4mamIOlSTdVOZYGQdCjheq6pmOIDMqiOAaDVA1CSAhuuw1ZYdlcyvc7tesb6bRjOWYy5dx9z53NdosQks1mU6mUTnTLNBljfidsVFpSSiC1Rr2r7mq95jLGKuWmSmKVXzchKAgCtxtoxLBMq5AfGhkenZm7Xq3UAxJ3uy4hWr6YTySTjUZDQlAoFDgXlmG5rrt4cwljHMeh53ntTrNer8VBZBiGk0ors0QIZRxHjAmMseCqWVUO+O+KKGRZFqUUctHpdEzTVCsnDTkyCaUMQqa02p1kIpW2haSOY33iEx8vFvOf/eznMun8yNBEMb8j7aQ9L0gls7aRWK1u/PCHP85kct965tvnz5xFGrBswzB1NR3CMAyjQDJx8uRJVR3RdV15oGmaVigUHMepVmpnTp89fOjQ5OQk57zb7VqmE4ZhuVzmXGKsQSh837cse3JqYm5u7pFHHikUCj/+0Ysf+Jmn3vve977wwgt33nnnvffe+8Uv/uX3vvc927Y/8P4PFovFdreDiZ5OJ0NKMcaGoQsBWG9J2b5n4Vs3MtB/gwqOBxXrrbRwsP8iBCqV+sLCwpkzZ86cOfef/tN/oZSapn358uXHH3vos5/9bBjGv/Zr/4JS+rnPfe7cuXN/9md/9t73vldKKSVfXV2dn5+3LOuuu07s3Lnz5MmT733ve1955ZWXX35Zjepvf/vbBw4cQAhNTEwUi8Wf//mfX1lZMU3TztmSA6WwL/vtQduT1u07cq/MqUp3EECMhJB9vi2kgkMIDYNICDgHUAJ+K7Nke54uIJBMOaACISDnwDS1Y8eOjYyMpBPF557/fhQBTHoLY71Se/nl18bGJkzTZMw0Ld00jTCgEAMuQbPWBkBoOuZMum7AGXzqZ39244sb+XxeiXR/5WtfyaRSQRDk81mMMQKACWoY2vz8/PPPP//xj31CNwwpua6bCjMBWAO9xQcNSu/bYxUIIQQYAIgglgJ0Oi6l1NRMRW0eHRtRqG4USYh71AQIANqWCvX70LZuzm03aju1GfRbutUruP9BuQ2UgBAIASyLCAF8nzuOY5qGgGDX3j3JZPLK1Uujo6MTExOUxktLS9lsNlcsfP/7308mk9VqtVDI/ezPPhUE/te+9nerq6tAawshgERBEHVanTCM73vPA0KAtdXNe++9e2Zmbm52PplM7t+/f9++fYlEIoz8dDpt2wnBQRQJzoW686try4uLN27cuLGxsUFpMDt3TQjAKSP9674xv1QsDmOs5fOs2+2ur68TordaLYxxvV73XU8pm0spo4gBiRhjQyMlznmn3U2lUo5jPf/88wcPHkQaabVaU5O7m42zhfzQA/fd97Wvfe3alSvVet221W6umldQp9O+49ixn/vwh//nn3/xl/7pZyYnJ59++ul2K3z/+99/6dKlphLgxnhQCeacJxIJBLASqAUSQSjK5Q3GGELY1HQacwCAZdme56XT6XQqe33uRhQH2VSy67ZN01zfaCFCHnr4MSHpvuldB/fuB4BIKa9fv378+PEH3/tA022//PLL3/72t++++94vfunP33jt9YcfvXfXrl0XL17c2NgoFgv//LO/8vLLL7/84ku6ro+MjJRKpcOHj54/f35hYaFYzEOINKJDCA3Dmpqaanc7s7OzmUzm9ddfRwil02kuKGXRpcsXmrW6shRiLIyimDFu6Na+fftu3lhaXl5VYSrnXIUl+XxeN8jFixdbrdaOHVOM0TiOuKCVSq1YLEYRvXjhypEjxyTQq9X65ORUuVymMd8xkc1mRngcpYZyN27c6HRbQ8URIDWCLQAEpRRCfPDAUc7ZPffcf+nSpVJpbHx8R8f3Pve5z/3Jn/zp+sq6rplRFEGAIcSMcY0YjulIKb/0pS8tL6+YlhOEXrNR+ebTX5dSNBqN6f27dAPW6huLS9eLxeK+6d3nz3cffuRngIQvvviKFLg0suveex64+/jxixcvPvvs930vbjU3Z2dnLd1ZWV2c2DGacHTT1K/PXy1XVo4dO7pz146EmXZdV9OMVqtTqTXuuOP4fffdp2mWhLifjyAJxcD8/LZ0ZrBQqJBskIPIfiOmYxuu3x2A12rxHxxK0SMAhCraNE2z2ahtbm626o25ubn5+Zs3b96EEHIguRCGYUGCAUKZfC6Tzo6OjGSz2f2HjwwNDZXL5fXNspRBvjiUSCT67mJcSokIUXEgE4CGsYRAN00VzhHcM7KzLFswFlEaBEG1VjYIrm2WCYRD+ULaMdW0EkJwoar1tFwuK9EFxcWUgBumpoTFhOAEQyn5wFIFQojhFnCvOn4hBBBiCIEALGYUY4IRglByLixLs20bAqCiawCAhjRlksAYI1i3Uk6r1VLcEdX5p6qwlmUZhpHNZr/znb9fXl4eHx+fv35zs1YVLnRdt+xtmKYpu3CjXF6LluM4zjdKRAoA+iqWqF/l244137bsKqJYj7OpxkS/MVlVZWHPnBRwCfD2dF0dBN2yL6qv66N5tzAxhewFEQOS8m08zXd9DGqbsi+m0e8461UzhOD9ZANwxhmNLcuASHa7HVNHQ0OFrttBGHIR+767uHhzdeXGsWPHPvWpT331q19ttVrHjx975plndu3ac+3atT/8wz/M54oq+n/8sSdPnz0zMTFhJ+Pl5TVNIwiSKKIHDx6uVcoEa5VKjXMeB2EymVQNnqEfWJa1b/+BIAjK5TLnXKUxhm4iiJvNJsaa67oKDG3UW2oIKjDXMAw/cGu1hmnqlmVNTU0dO3ZseXn53LlzrXojiOnw8PAnPvnxn/zkJ2urG7Zj5PIjhw4daDabftc1rQKlNAxjXTcNjl597cXJyYnS6BAAol4v12tuImF/73vfwxh3Op10Oq0RQ4FiUkKEMEJKR4ydPn06n88jDTupZBj6kIamY9dbDdO00pn08GhpbXMjCmkmn8tkUplMemb2quLwO44zMTFRrZbjiEGAm422SlkJk5VyLQiCIPR8P0inU4VCQdcNKZAqda6vb2qYGIaxsVE2Td33/aWlJdM0EYKtVsO0jHyuEAXe+Qunksl0uVpdXlkoV9Z9P1BfWq1tHD50lDGhG4jx6PTpU1EU5bLDw8PDqVSGMyGl6Ha7Kp9xHBP1qkOK6gj7bqX/GOIMe9HPYBj346DeUAeyX4l5t9EL3qGcvv3It3UJ8IFMhwQAACW70Cv5wFuR6P4BOAMAAEIA51LxzRmPESbVWnlx8eabb71arZYr1Y1kJokQGB8fRxx/+ctfrlWqhmFgpKmPAADCMAzD0E4mms2W6qVVSZGtp0QQdMPwlZ+8YZh4ZGSIUWHqhu/6tVoFQpjLZRCWCItUOslYbJnpIAjqdcgoz2RSjpO8fv26InwRQqTEcRxXytWJHeMAgHa7q2t1XTNozAghCBEIMZA91FW1hgkhCNYYk8VCFkG9UmtJCJ97/ocQmaOlsWy+sGff9L/9rf+t43Z+9MNnIUamaQghLMNU/a2w75otJeQRo4Latq3rRHXlAACCMLAsS0MaY2x8fLzRrAVBIAUslUq1RovG/sjIyF133fXzv/CpGzfmv/e973a7XdfrDCiwarEOgiDmDADgOI7qJW81O+1WV7XMqDsMIeZcqso26HMJBWIIIYTIxMSk67rKx3zTq/i+b2g6hNC0rTAMf/TiCwtLa81Gd2J8qtv17ITTU60CwDAMy7IAEJzzdCYBXdlutnTdjBmNgggAoOs6k4wxFsWxojUhhDqdjud5nDIBpGmalLFquZJMJhVmoaYJhJBzmUiQjY2melHXdUM35cDgrufH91NhzXefEb1h3IeStz66hRNtT1eklBwICDEEW3HGdnL04LDvBGQHtGg1BrbNxB7KvMWS7scxYpv8MbyVqrP9MYC9+iCaGOB9PZe4Wy8E9etL4pZvHFzCNg71oEArxUA49d3u5K061xC8g/rz7p/afj5biH+fu82F0HWt0+pEUYSh7HRau/fsvHRxaGHxJhBc14mAAiHcbLS//Ld/d/DgwVKppNozlYU6xlgw2W+l79nEDdT9hBDdbteyLIwxgEJIAwAQ+FH/clSLvaRhBAAolYZN0zx58qSKQiGE3W67Zw9NqRf4SnlQXYL6LSilhMABZjq4NIVmqvARgK3OO8554MVKkSYMQ4ANgvVUIvnySy8FblfK6NCRfStr8w8++OCde6cT6RRgSKn1SgkDGoWMSQAxQgQQgrFhaEKyRDLpeZ7tmAbRoAQcCMZj9b2pVErTtFq9TpmUXChOUDGRpZyp5RcAgIgGAcC6RgVP2glHiF/8lX+eymYARhvViqWRlbVVLIWl6eqKFDSpNKMIIYRgAIDjOJOTk6try5ZpHhobt3TNc10opGbpMQ0HxBDf9xUGOsD7ZN+tTv0Q6viDAYOBQvOhYRhh6Pu+m8vlNM3oCXoo6QmJ+j8EGWC+24Fm9QASQdjjmytoFQHAhBBCICXCIITahjjnnWaLA+k4NiHEtu0wjFTNTJFcBmUbxXDHGA4UMzCAVAgpRA/jlgAhDDUYMyq5BADAvjC07Outqw1xoJgJCVRnCCFEBCtkmXNBKZMSCCGRBBKhniiE5FGo4HUMAIgQ1nVdQqBpGugfRJU21Z3pdruDaahCGmXp7HkepZIxFscxAmQAcKvaoZrug6MpgWBFGpBSQgHUze92PSVXBQBACcSFUK0GURQBIJScAuUMcy2ZTEIIz507l81mR0ZGNjY2IIRK7sPzAiFAq9USHGCMoygC/WZ/IQSAQtcJhBqEMJlIRFGkPAANw8SE9Ij2YSilgmL7moAaUj0Nuq5HWiQEGqy9EELOaRj6mm5rpuZo1vrmWiJpd11r165d09PTCuBeXlxeWFhQ6AaLtZGhUdf12+024JHvRxpE9bInAWcRghD6NIx8nkynLMtC0BoeyiSSjut2pISeFyScVA22OYOM8mazLaXMZjNCgHq9UqlU87liPlsYHk7qxGi324SQfD6vuisa1UYmk0FEa7e73bBr6Nag1tVfr3p66JTHrXorkUgMDw+vrq4LEe/du7dYLCKEGBWry+vtdjOmke+7ExMTpVKpUit7XlcC5geuZRlRFN155wnOcLPhGrotJRorjUcBjSiHEJuG9fQ3n7m5eDOZTMa8175ACDIM3fPaqZSNkRnHsee7uq5fu3ZNpaCpVKpcLo8Mlzjnq6uru3bt+u3f/m3f9//wD/7rjRs3/vRP/3Rubv6LX/xiGIaf//zn45h5Xs0wjOJQ/vd+7/e6Ha9cLv/mb/5visn4+c9/PpPJvP76m3PXZt54440Tx+8qlUphEG8EG4QQO2EJ2aNl9LHjweMWFan+oLrlFYSI5AIABCWUvX25t55HUazEedbXNz3Pu3plJpvNfu5znxNCbJbrBw4c2tzcTCaT169fv//++69fv76wsPDAAw8sLy+nUqljx451Op1Lly4dOHzo1VdfTSaTr7322pkzZzDGjUbD9/1UKnX58uUoiorFoTAML168ePDgQcZYIpHq7ZI9cARsb/bqbcfi9lABQsDYViAxuGoBpOB9vWMIoBAI9qxuwSDs32ZFACGIY6kyF4xBNmuZ5qTfZYaJd++ZunDh3I9//GMgIEba6tLql//67z76sQ8dOXKwNDGEETZMTcOg3WHlWrXVaiRs03Gc8mbjwvkrhpWIomh9fV2p9LqdDg1pJpPxvCAIPIIMICQhBGP49ttv5vP5u+99TyKRiqIIY40QDULJmZBSqluCAQIACCjAtmhksLMwBtrttpKzEpw7jpXNpjUd9yIviIHs84H6N+G2v+98vJPIjG6lASHZM/a4DW5W7a2GYWQyGSmBruv5fD6KonyuODk5iRCanZ0lhARBsL6+MTY2dvjw4VQqubm5/uKLL3a7nTdfez2KAyMV2bZNKSNEJxrEFNiOecexO0+ePMM5nZraceHChTuO3XnixAmEULFYDCNP0zTOBQQYIZhIkiiSp8+cvHnzBuPx9evXhaTtdiuM/CAIOWeRxx999NFKZbPZqrfaHYhAsVjcrNSS6axhmkKASqWsRGwxxhBgLwillGHojY+PP/bYY6dOnWo0GlEMX3v91X/+y5/dtXfP+UsXlalGPj9Ur7dc133/+9//3HPPYQwVbyaKIkVwPn78+KOPPP7M03//1FNPPfLIo7//+7/v+4EU8P3v+8BnfumX/82//c1ut62q7JyybL7QabUlFxIhdRwpoIZxHMcKvA7DUAAEIYqiSHmTXrp0mRAMkSyXqxDKOI7HxsYq9XI2lxobHt1Yr80vXe90vGee/vuFG9ffc9893/zm185dOE9p9Av/9JOtVuub3/jy448/Xq+Wv/XNp8Mw3Lt3z733vodzfv369UcffyKXy62vr1er1a9/45lW25UAcS4PHji6vHJTabgLCZqNFue83W6n02ndNP3A3bt376c+9amnn3661WoNDQ11u13KJKU04aQYE52Oa9u2lND3QwSJEn/P5XKc81ajGQRBMV9QLSxSSow0t+sPFXG91o5CcfHSrO/7H/vYJzRiafj6I488Mjo6fubMmbW1Nd3Sb9y8Pn/jxu7de3dO7R0f22k7BoRJGkWcx81m69zZC5pm6JphmProjh3F4pCumaowhjHutNtS8nazRXSScFK2YV+Zufb9739v//4DgkcIA0pjx7EOHNpnWjrj/sZmY31jcXp698rqjTB0jx49PD62c2R46vKl2c2N6uzs3PT0NMF2vdYixMQo/tEPfmBbiVardeNG/qWlhXJlXS18pdFh1+00aq1crrC2tra4sHzg8KETJ06oNifBBYAQ9YzfkTKxALeSebYnf4OAsw8690KCKIpM3QAAhGGoGTrsC9CpayeEOI6ja+bGxsbc7GylUrl06YIC30LPr1brtm0bttVpu1yK0viIadkTExO7du3KZDKZTMYyTID1RDLVbHUw0U2rJ+MJECK6zqXkfY1B1VWmUHPDMCSSjMfpRNqyLK/rVzbXm/UGYwxiVCjkbMsqFQqQMdMwWOgJIeI46nQ67Xab0jiKokp1MwgC27YBEL7nZTIZFlMgZBSEhqGpxlaEAMYQAIARRLAHHKu9Y3t2oxGDC9onN2BlIyel9HxfhVUaMcRAzFPAVDaJem2LuhCiUqnEcZzP55UFmpTy5s2bUUR37dqj7EAWF5dpm4VhuNHZCMMQ+YQDGVohJsSyLHIL22vrdwUDkY3birHbmZ7vup5LuFVd5hLA22q579bMokia8HZW88Be8Pbv2X7OvM+U255nD8RABhswVnsGQBz2Rq3gAiFgmqYQXAiesM049lvtJgBCCNps1jmL24HXbDYXF5dVNWxmZubo0aPnz1547LEn8vn8iy++YBimpmmdbuvo8SMf/8RHM5nMZmXe87xqtfz88z8aGiqG/qyuE8dxCCEYa267oyqKLKbDw8PK0HZlZUVKiRExdFMBsr7v53KFTqeTyxV6WRnSBgmSygGUe7vnBTdu3CgWi5qm5XK5I0eOrK6udrvd6em9V69ebrebo2NFJ2FNTU05jjU+MZzPZJvNdr3evHD+4srKai6Xu/Puex3HLlfWOp1Wu9MSTJNSjowMp9PZ1ZV1zvmBAwcuXbqka6bnd0HPUxup9s9arTY6Oo4QoCzKZFIQgiAIVlfXCoWCEGB1Zd00TSdh7dy5k/Fo9+6drVaDx7JSqRCCUqkUY0w5OBOia5qGsUYpq9ebCAFP8wghQbBq6JbvhQiRwAtZxBhgrXqr3qoXCoVMJqU4IHfeeee1a9eWlpY1HRNkzc3NmKaZzGS73e7p061kMn306FEhxNra2sbGhm0lHnrokeHh0sZ6+cyZM3ccs+69994oop7rY6wppynGWDabnZgsYQzCUCqBMM5vZxmruvqgnjKIXd71sX3QCgAQBFKC28AhCAG/VTMd9lXLbxnzg2khb/lXuK1K/w4CRe+JrivNOOB5YbVWtizTcZzl5cWfvPLiqVNvd7oNhICTsAEXmXRmZGx0fWmj0ai1222EUKvdEBwouMGxk+lMstFuqTqhojQCAJRYGITSj2Pej4XDMEwkHNW9hQnseB0EhOt2dZ2YRhJjmUxalPIwCjzPM00dQqjyq3a77fuewggopblcbmRk5MKFC2oucM4NQ6cxk1JCQHQdYww5kFTI4ZHxAwePJZzMjZtLnY5bq7ZPvn3m45/YMzI8qmva3NxaLpf77Gc/+8y3vhmHoW4QLqim4ziSknMl0cW5pJQLiKSEinOUSNpRFAYhJwSPDA0rTz8EIIQwm8sdPnxYN22EiDJtT6YyXde74447n3322TCM1PZDsAYB4JwKAQgkRNc9NwAgUFCFaudRybxCIaMoBMp+CiGMdYV3V+o1f9E1DEstBc1ms2f3QbCu65DgrucJIW7cuOF79ENPZVudrm4a2Ww2iiLT1AEAjMUYY9ftdDpANzWsERWAQhMuLy8jhDRTy2QyXIhBl3o6nVETNo5jKaVqq7dte5D2AwCr1WoURY7jKJXnwSbXG4Fwq6Yo5TYlBwihGPCSbp0Ot24W22YPAH0cFm0hyFIpEUvwUxFtlbrB/nOwDYSF24QUUN+4T/X29ifb1gY5UGzv9+X0cGjRD4NknysNtn1X/8nW1916UnDb2Sn0QfL+bZNSqrLsYG1QxxdwCxcX/z/G/jNcsrM8E4XfuGLlqp1T59wtqZUjQgEFQIBJBmzsY2NwGB97xtjnOKc535lrksfGM4ZBMGAMFhkjJCEUW7FbqXPcu3eOVbvyym/6frxV1btb8nzfui5JWxVWrVr1hue5n/u5b6BQ9ytcurWX3QYFu0zCf22Zkhu9eno/xAZ92438AgAAxCiOk3Q6nU67LI5d2xr/4EPj4yN/81//q+SsWq1EfjQ6PKhb/hcWFienzmazWdu2NRyjiZYry2sQqWaz2d/fTwhl3WZqTdjU01/z+/Q1NKIYIQVAx6JN46HZbPbpp5+OZLBv3z4ueJSE+WLBtIx0Ol2tVr1WOwgCpaDrpgmiEkqzYwWuINJ3RSGo886O0oXuUJNSKslZogghEEPLsprN5tzM7NjWraZJTAvNzc0lSVJeW0m5BlDyxhuvr6yt/Ifvfx8A5KZTcRjoyE923EsQFwJChRFIEgUxanht27YpIZTSJIob7bbg3EQEQiiSjo8oRCqJYi2FQAyKIdD8YoQQIlQpRagZc1Zer2zZtWu1sv5P3/3uzTff/Nnf+o1SJvfkj3+8OD3t2o7G8U3L6sAemhUupZ1JFbNpTGAYhjnbzmXTrx95rb5etTM5pZRu9uzIFiPEGNOcStil0PaGtw5UujoPEcbItCjGWEoOMEKYGIToBouemhBCCMgOrtpsNpVSepHRsLXnedqSXinFmOh9nFb40eRu3LUr7BXjtRIuk7xnFKnRYwAAxhghvHEySimVQlJ2uywh1P60+jVCCCkZpabW1kcACN4Zcr1FA0EItIGVSaIoYhHTpGMpJcRIc/OlvGRjiCmFBGtsvfeUUlxfeRRFkGCMsSaCNdotBKS+afrQd0NHiQAADaMDADQFwbZtrxXoraRXglVKaN63JgtjjCFUlFJd7wECEwWllCyKTcdWigshMER2ymEsrtfr+o31elUva4QYrmvGMdu1a9f27dunp6crlUo2m81msxDC2dn5ZrOJMdZ0OQghwlBKqQDABFt2yrI6GlnanwpCqE16e/zrTh9DGGGM9HiDXZN0nZMjdCngEkI6rqEJ74gDTECr1Qojf+vWLbVaLUkSSg3TNIFCc7MLjpMCitiG2ag1PS9giSTQIQhGvsQwghAKBpWSQoB2HAd+zXVdwzBDI6o1mgDIynqtWCxms4VMut1seqZpNhu+53mtVgtCKCVoNduNqt/q85VSmbRLqamtdYRoEYKuv/5a07SDKJ6ZmavX60pGejXr/hyGnj5ciqgV6m80NzfXanm674olHenJer0OgMxms7ZtWpZVLq/29Re55L7fXFpafPjhhw3D2LVr7/DQpl07rmq1/FpcQ5Dk0jklcSFfPHLkyOTk5MjYSK2+3g4UoaDerPt+O5PJlEolAKQUOIoiginnHCg4MjyaTqeTJImiSDsR9ff333nnXYdfOcJZeWxs7Pobb3ju0POL80u+799/7/179+596623du/enc/n/+RP/+jw4cPltfWHH354cvL8Zz7z2bm5uaNHj15//fW/+su/9OUvfyXluM8999xdd901PDzqB8H6+vqQNWoQyLniosMK6qhlbUQaervm5eS1ziOX71z6AaUAhDiTMa6//vq33ji6ML+0srJqGGapNDA8Vmg224VCcWBgIEmSUqH4wH0Peq3v3n3X3mPHjh08ePDAgQMYQ6XU9l07BwYGXMsqFosnT5789Kc/3W63//iP//jqaw9+8IMfPPLKq4ODg9u37/A8b3h4OEkSnZK6rqXDYKWU/qOHPl9RAO58CykNA3EFidEJPxBEvRdLKZOEIaSnjEIEvaPCnj4VpVAIqHN5KQHGAGM4PDw8PNJfKGZ27NhmWdZrR966cH7GpNbK0soLh17asWOrZJxTlCQ8UshyqGmapkmpRcM4jlg8ODL8jX/8lmW7jLFvf/vbCwsLxUIf59xxUpVKVUcvtm3v3L7jwfe992tf+9oTTzw2tmlsBKMgiPO5YjqdllIlPKEGBQAIwREknWgESgm6ORGEUAGEQRyD9fWyBq+BhJgA0zKk5BAZGGMuAQAAa1+ojY3Ol92HbiPa226RJlGDDRw10A01EQByQ+bVI7oJoQiBxWJBKaB1okxEisXiYH9mZa1u27ZSampqyvP8/mL/wYMHDYNsHp/4hy9+YWFxNpPJpdMjHl8JwxAA5LUDk1q27Rw7egICOjs7e/rU2f7+wXw+32w2z549s2XLVkJIsZRTQCilUmlnbbWmlDp79uyPfvT9yvoKQrDekJZlrK+vt9vtz3/+86urq6ePH/s//8/f/Y//8T+eOnUGUxRF0akzZymlmzZtwhhXKhUlASUGS2JKCeccKhBGEYTQ9/2nnnpqZWVJCLG21v7pTx+XUjqp1LXXXvvII4/8xm/8xjXXXPvXf/3XKysrQeBJySHEGEINBWQymSRJarXaK6+8kk6n77//gS9/+csLCwuEkNVa7Rvf+Mbf/d3f3fWuO7/08Jf37Nlz5513VKt13/ffeustSqk2zMAAJpyrTocZUopZlpNwjrsuHXqDgBAqLhGQjuMgBEzDdl33Zz/72e//2z94/LGnXjz0ynvufeD0qVMPPfQ+A6OTJ48bBOeyhf37dv+H//AfMAHXXnf1D7/7vVqteu211374wx8+cuS173znO3/8p38+MTHx5JNP2W56cWG5Uq4ODY9s3rx169bNQwODc3NzgZ8ksVyvnkyn0+NjE7qPB3cNSJ5//vlGozE8PGy5Tsv3isXixPjm1dVVz2tQamonqmw267UDDcrHcUwJOnTo0N133722tnbq9EnXuaQWNT+/YJp2Jldqt/2+0ki7FWEs3n3nvXfc+W6CqWmmF+fPf/G/fzFIvNXy8tLy/PbtWy0HQgCSBJiWa5B0rV5/5VsvuCmzXF7btHlcd6iMjY+cP3s2m802m03XtbVXClQ48IJUKj0xOnb2wvmlpaVms5lOZ3zf37xlbHC4f3Ly/OzsxXvuuWdkZHh6+mKj0RgcHCyVCplM6pZbbhkd2fzkT5+9cOHCt7/97eeeex4hgxAClbpw4QJCYMuWLS+9/Hyr0QRQASDDWK6uri4vL24e29FuN1966aWR0aH77rtvYGAwDJiUEgAMFJI9HA9hqGRvLl9RaAQbFvlOvtbl6xBCOE90IAoVSFiijbK1klutVjt37tz87MLp06fX19eDIDBtY9u2baPDI6+9elgD3zFnu/bsHp0Y7+sfGN80ATBKuRnVNXY2DVe36EEITccGiEigbB0fIoQI7qhkQCiBYowppBCBWl5jfn7+3JmzzVp9uH9g9+7dg4Pj6XTaMChncRSELb+dhG3B2NLSUqVSUUrpMkzCIs3riqIIIaBpoD0tNWJgBDotdJ0olxAlAABdH069cXTYvgBhQKiJEAJAdj8iQgh5nkco1aCKUspJZSCEGsmJoogQurKycuTIEQDAHXfc4TjO6upqvV7XDJ6+vgHG2PT0bL1er7WrMCAY4xD7CCFiWgYCiRFhjJUCBF7Opuz9rNrrD3Qxr95TGg5DSOelQHWlMCCEl0AupOUw9Re8dMieRpKGxjZ8olIK6JzvbQPrMnbo2yifHe0qqOQlj9vOXqI6lrKdFm99uCkHQthstRACrutynsRJ2Go1CZJSMc4T06S1+roUDCHAWKzR1enpWcexwjA8dOhQ2s2cO3cmlXZSqdR11113+PCRubm5SqXy//z7v/rHb/zTz3769Pvf/761lbJrp3KZnOs65XJZ8yA45wgRSnEYhrbtxnE8Pz+PsIERqdVq2oTacZxarVEsFk2ThGGsCVymYTMpIMIpK9MrJ8qu1aYeyuVyWSnFBZvYND4zM6MErzdrbsoCUPp++9SpE4VCbsuWLQZBqZRz+vTptbU1jRefO3fh4MGrh4fG2+322Oi4Y+dWVlY2b96sd8RcLnf27Nnt27fv3LnzySefbHtN/bm6i9OyjWazDiHU7jd6AjDGLl68yLnM5/M6hTAMgyhICBoeGVpbKsdJKJWklCrVyRV1oMiYSBKeyxUIQRjDOGKGSQRXSkElgGEYSgK9xLtOyrZtXfOsVqu54vrIyEgcx0kS5dIZx3GklBhAhFAmk/m5n/vw/v37X3/9jWq1FvgRZ+Do0eMQnOJcpNOZwcHBTCY3NzeXSqWy2Xy92Wi1WjoT6Nr66XBWV9EvC3s3ThzYa6vfMOJ7vOMr8F8dAqqu9kWvGr+x/+uKca7PIN8Bfbvs2FiTvzRHAACoQ52OIm4YpO35i0uLEIJ6vb4wN3P48EtTFyd939e7+ODAoGnRxcX5MIzLq5V8Ph/6kZZShQA3Go04jk2KTdPsZcLpdNowjHK5jBWVUrkpa9O2MQVYu91CGBCKoiiyHbNXLEFKSsXjOG61LuTz+aGh4VbTi6JQG9Ei1LGNiuNYSiCEmL4402jW77733ny+iBAaGBiI47jZbEMIKTWSJNEEOkggACCf67Ot9Ftvnty8aeu2rbuffvrZW26+rVDqy2WLjp1aXa1+/WvfOH7ijRtuPGgYVPC40WiYhHYYdgJLKSGCCBJAEJMiihIAZKGYAUBZlpEkBgCy1FdgiZiZmZm8cG7rlu033XRTs9nCQtRqjTfeeINS+rd/+4WXX35x545tjHHOZZKE2Wx2dHR8ZXFJCkCJCQCIOfP9EHThEkSomzY0GR9CSCmlxGQs1rsCQlBztYIAG4Q0Gg0IoZ4FUspsNgsAGBoaQpQkMX/ggQeOvnWSMaYg2rZtm++H6+vrpqnNajjGmLHY90PGmFaPMqkVRZESklK6uLhop+xcLmfbNuc8m8329fVp3Wrt76TLocW+EkFYwyiEgEYjKJfLCKEoikqlkr4eRKBIANBYc3cebeQId8Y2gkopBN4Bcb5itCt4Gdas3wt63ODOFICdl0Dcw5TBJe6qnqZdrHnDjqM7+nsGs0peZmuu4Ia9acN/uwKRAABwubTGO6DYSoGNHGcpJZCXwOINFw+6l30JFtdfAm+4d5dDyQBCKHVX6dvy2MvOueG9/xro/PYDdpU0VJeRp1N9LgWllDOeJJHfbgKpKIY33XTT7/zOb3/ve98Tgo2MjGhzgl/+5V/5+te/vry08vGPfuyNN95YXl7OZDKMcQ0aKqWUhGtra1rJN4oCw6AaMWw0GtTAufwoIaRarerJ3uG1KQSETLh+RFqWZRAyPz8PobJtu3+gL47jlZUVpZSEElOiBGCMKQwxxkpJjVGCLnSu0S61wcZa457dbgMIIXRdSyp+5uxJBmUiwdzs0g++9/0oaOUy6Wptta8/31fKf+ELfxvWGzuHN2GDhgGzbdtgsYpDBYBQAjBlOy4QUgKQiMS0TAUVIgiArqhlGMZCOabV4oomMdIsUb3xIKiUMi1LKWUYVCklAbIMAxKMFIAGWVpbfe7LrzZ9754H7hsfG7/z5pu3b970+d/+XUppo9GwLIsDFIYhgkRIKQSTkPq+h5GiBoZKmpQuzM4lCUunsz5nCBEbY+2yCCE0TfOGG25YXFxcWVnRQbzqsr9512VUSdgLc1ki4jjmitu2bRikhzBqOjnosA65JlBrEvr6+rphGJZlxXGspSfS6TSCJASh/pmUUoQQDCHstkYK3gF/dU+MFv0wIOVSCiG0IVJPUE+3kOniJey6zfQow4ZhAIAk4BRhiDoprg45NJat2+Z0sgEBwJBgjBEGjm1rHD+OQwWALoEwwTX43qPSK6Uc06SWCQDQwjKGYbRare7NFHEchu3Yshx9EsYYTyJNykZdYjVnknOBsGi32/qL62cxRoZhuC7UX7k7Z7nusNTIe68E2PviiklkoA4HM2EAIdMkvu83vYbjWFrlX9tzKaVqtYZuOAiCIJvNTk5OJkly/fXXQwhXVlaWlpaCIDBNkyWit/xoiNwwDAEUAECPEwBAHMemadq2qTnpGkaXXeViHYD11GykAF4Y6PFDCEFIAx1aokQQQpKEh55PKCyV+glBlum2mn6t2kSIaP+9YmEoiqJWMxSmQpAQSILIFwwYyA7DUDJlmoZhGgDKYjFXqVSkkM2ab5rcsJHjWApIx3EIMSHASSKQopHPqEGSMKqzlm3bBrUQIEKotbVyKpVicYIwEIKFYeh5XrPZFIlAiNiuaxjENE3OZHdT6MhQSikRwS41pDQRQisrK0II101LKauV9Ww2L4SoVqvNVmvTpomrrt5//vz5VColJe/rH5ydu5gkSRAEb7zxxh3vuu3FF1+YGF9eWV7fsX03i+IwiOUIgBL+5F8en52dVUqVSn1TU1NMxY5jAQV9P0yns5SanHPfb2vWuV57y+Wypv02Gg394GuvvXH99W9ijMfHxwcGBprNZhzHy6srf/VXf3Xy5Mkoim6++eY/+qP/+x/+4R++/vWvf+QjH3kzedMwjDvvvPMXf/EX/+Ef/oEiPFDqG+of+OBDH9ixY8eTTz71j//4j+9//wfGJyY45+1GM51OE4IB6KzMsIs/QAV6offbC6Ibjm4NrNtlq7q+A0oBzuQdt98ZR/wb3/hmsTCAICkW+6IoiuPENA2EUC5XqNUan/vc54SUFy5c6O/vv3jxom3bO3bsuP6mGz3P2zQ29swzz2CM8/n85OSkUqq/v39iYmL37t3bNm8JglCXzfRvp++Y2tBcizHW+hiqK6cO3/Z1INS25LJaXZdSOq7lpFOUEKFku9WslKuGYfT391NqIKDE5XlxL8oCCCZdfozsZcQIFEsOAIBQUCik73n3XTded/OjP/7p88+9DCGcPD/1gx/84OZbrkvlUik3Y9p2f9+w5dgZkHVcq16tDQwMDPSZ27ZtO332dKvVOnvujO83DcOQErTbPsYYKoAQSKfT5XJ569bN733vA9/4xjeefvpnmzZt2b1rb39/P2MxIYZp0jAMDcPq9c10f7mulwXAQClKQL0VaiuXbCrLYo4xdhzLtAwppVRaVAdwDhACb4fdr6S1wU5bNugmU/jyPGsjrLzxDKCbr2Hcub3a9iafz0gJWBAXijnOgWma/f39hw8fPnToBdt277vvvup6HROYyaRyuYLr2uXKmmGYUVO6djGKog+87+5yef2FF1586KF7b7n5tvVKk9LpX/7lX7Es6+mnnm02my+++MLNN9/seaRYLDYbtWq1duTIkaWlpXJ5bW7hQhj611xzVbVaDUOmFZkzmVyp1L8wM3txanZpcTlh0qs3G+3GjTfe2Gq11larqbRDiBGEnuNQgbCuiDDGoAKmYfi+32439SLc39+fSqWeeeapYrFv27ZtgiWnT5y87eZb/q/P/94f/tEfnD59ur+/X9eheZxs375906ZNU1NT1Wp1aXHlU5/61DPPPPPMM89oL9l8vriwsPTnf/7n8/PzuVwOAHDhwtTCwoJmdFUqFQBQynYsy1lbW0uSRK/3QRDl83nTNBnjeiPQK2QcxwAok1LOJefJzMwcgBwC/Pd//8WVxbUwZFH4k2q1UqtW18orv/mbv/7soedardY3v/mNyfNnTYp/9tPHBwcH73r3uyGE3/3u91qt1h/+8Z/eePDGVuhNTGzevn3n9dfdjAn8wXe/Nzl5fmF+5fz5yWymgJFxYfK8m0pZluM4ti6ORnGIEFpYWJidnc1msxjjQqHw7/7dvzvyysuPPvpos9kmxLCtFKWmlCCJue/7QogkSfK5nGmazWbz1KkTa2trur1YcMUYM00LISIBkhJ85MMfu+aag5TYAOHBgSGDmpzL4eHRF5599szpSUBE06twnkAq3ZSVxGK1Mh94wfHjx48ee8NxjUajTm1cbVRWy+tnz55ZXl7O5zNSykIhFwWxYRhRpPmCNYiJUgII2Ww2MYYYo23btnz4wx9669gbk1Pn3/ve9+7Zs+fYsWMYQ0KQZRlSMYhkKu3s27fn1Kkzh18+U62U69UqRVQk3LRMpYSUIow8xhJCsdYPsSzyk0efSKdTMoGNRuvAgX333feAm87GsbY1lgjqyAR13J6h6q7ken3QKyTuzc7emqkXWwk6vhQEUR3nEEIopTkrF8bRqVOnKpXK3Nzc3NxctVrFkGSz2f3796dSqVJ/cWhoqN1sHYYAG5Rz/v6HPjg0OkKogSlBlGBiCCXzxQKLdY2cIEoSIRPBc+kUpVQ7B9iugxDSYvvda8Ma9DNMalkm56zZbCgl87ksRnB1eQUo6dhbyvX1enV9bWUJK+C1WmHk97aGhEndHKYp/5pmIYSCEFBqJglXeqGHWsdS6g49CEGcxEIIwzAgRgpIoYAUnXjPMAwhmJbtxVjL06Eeopgk3M66hBgAAJYIQoxGo65ToaWF5VQqNTo6miTJ5OSkHwZJkqxXakmSBL7fqLe0/qGEgGiCrEGxQWEEGePAAB33jitW2N4iq7mcb+dIdqlhHVXZXu8/7O5qnRS9i6D1TiDhhvdqN14F0CWsrbtrbvg4CbVWQFeQC1xSwOyB4F1E+tIn6eJH94OU7mJOojgIgiiKABSFQhZCJaWK41i3oSVJRCwCAKAUN5o1isngYP/Ro28aBnFsB2PcajcAQI5jDQ4ORlHSbDYfeOCBV1999eLFi0LwgaGBY8eO/s7v/k61Wh0cGK6uN+bnF646cO3wSP+LLx766Ec/OjY2+s1vfvPChQspx9EldF1OVErJJKSU5vN5nXUkCc9kMtp8Vi/9UgCIO851ECKlhASKM855J4ujlJbLZcexwiiQUuZymfHx0YWF+UIhh4HyvdBxrVaree7c+ZMnTzqmk83mk1iEYWxbaUrp2mr12NFTQrJGo9bXV8KkzhJx+PCr73rXXZZjHz16VErwC79wu0bnR0dHz50/oykqSilKKQSQGrhg5zZt2jQ1NbmyskIIxZhihKWUtm232+3XX38NE+W69vYd2zCACwsLmi6RJEkmnQMAxXFsWVYhX0ylUrZjLS4uJknUajWCQFqGbRkmAEhwqRXKoyjQhaYwDFutBuf82LFjW7duHRoaWl1d1YpsnHNCjIRHuh/acdyhoSHB1fp6rb9/kCVienoqncoCRRbn5ufH5hlj7XYbQqzNqXTmCSEQAmAM9Uk03NCLTi4lVOAKLdpLL/jf4MIb2f0bX3zFfLysArThEdU1U+5ahVz2yl6tRcupgw1nRhhwwS3L6usr1et1CFWSRMPDw6NjIydOHFtZWXLTzqZNm9ar5dXVMiGkv1RsNBpxHHqe98lPfspxnH/+1rfLldUkIaurqxoRMAyj0WgMDQ1ls9laZR0hODwymCSBAKBYytfrVYSwYXQSPwQJZ2EchhDCJBFuyvS8Vhhmtu/YMnlhGgAkpUQQB4FXqzUIIXqQAwCUBJVKpZQttRrNIAodJyWlFJwLIYUQjFHXSQdxEIax5A3ByS9+6leGhsYKhcH5uVUA8M033eZ5UaPRpsQQQjSbreeffz4KPQQVIYjzxDBokiQUEykBBFpuD0gplRQIgSiKEFKFYi6MfNOiAICpqalyuWwYRq1W+/rX//GDH/i5++6577994e9nZuZGx8YW5pdM055fWCIIW5adJEm77TUazWKxJIRstVoAqCiO0um0lmg0TZNxEUURoZQgyjnnTBKCcrlcGIZJkjAWQwipgaWUTAhtu6EHKuc8SXg+n2232+lc1vf9sbGxdKr4k0efmJ+fHxwcTqfJ4cOvlEqFgcE+LQGZdbPZdC5JklbgSSlbjXY6nUYAWpa/e/fuIA445xAh27bz+bxtW1qSyPd9IThC0LYdxhhXzPd9Tf2rVus6BysUChBChKDggCUKqo1Ys2YeX0aS3bjaqy4AeqkGuUEQQ13KrXqzQ11S6ACiF4Js2DKA3DDTpJTa77g7TbqRwWUE5O7f2tXw8hQXXM7/VUpd5jEAO8WzjafqlaxAVw2n9xrV6faFoEPlhj1Y/B2R98tXmo3X3NHl6H2vd3rvlcc7Ys3v+NP0ztmFzgHomgdKJRGAAEOCEKWUYJiEYbVa3blzZ6FQaNSqnPNPfvKTmqjY9sPbbrtNSrC0tOLaKQCQLpcyxgAQeiQrlWhepJQqjhMIgeu6hklarRYhXaMhJZRSGCPBhaazpVKpJInCKJgYGw3DsL+///obrnvjjTeSJKEUMyZKpZJIxNpahXOOIFFKmqadJIn2CtPfCyFMiK704O4XlABIpYTuAkYIua7dbNZ/+MPvk8cf86IYU6dULCWex1ikRPLTJx4NopZr0eLYiGvZGENKab1RT1gCMYr8YHhsdKR/qLy8YkAMCRrfuvnUmdME41Qq5dWb7WZLcwowAhjjJIliztxUihAiGOdSmAj3QF4dZwNIvDCAEVYIBn5LNBEgOFsq/K9vfGN0cDBotpNWC2LkBb5SwDCMoWLfytJSGMSMMaCo41hAqTAMFxY8JSXGuJTJTp84yRgLotjGRhDEWlZeVxZrtZo2stMRKuhqXmvQUBNRDZMQQoTgnTILgIwxTTlxXRchJCHo+p8ICCElJlAA4c7boyhqNpsao2SMYUR1c5imfILuBNcFBs45B1zrKfVGLzVILpdLOK9UKl0GNNM+tIR0aKQ9KBN05Ts6bGvQwcr18MYGNQxLF9Ehxkh2dJ+llEAhba6tJGy1WqLRgEgZBlEKSKmSJNHOMPou9eYLISRlO+3A10/pIKrXTmHbthcGUnLTtuI4xgQq0al/aJ67kpCzCEKoJJBA9oBgIToI70bcVic/AACtwCaljONIKalL+3oqmcQMPB9CjBCJojBfKpZKhfX1CuCKELJ9+3Zd1NfazYOD/VFLzs3NQQiPHz+eSqUefPB+IcSrr75arVaFEAgRXQQ1TbOrXdOprvXCE/2/ukFbSg4AcByHmgbQDbDEpMTUdRchhO5+0D93l4+vlOqInygJpQACKgkhUKS/r39sYmR5ZbFarQshOJdAIYSwEFEu2+dhjyWJBqqhQiY1gJCMCQJNghCGmMciX8hGfoABFlxIJhmSkKok4ZTiOGatpuf7lTjgccwIIXEkTGpQjJOAcaSkADyR0ABeOzAoVkqm0o5ulfN9f2bmom27hVI/Qh3tb/29EELUNISSCUswxtlsYXBwcGFhIZVKZTIZKUGtVjNNGyEUBkHKdcfGR6SUs7Ozi4vzW7duJ4Q0Gi2MtO2n3Lp1y8TEhG25B6+59kc/fOx73/ve7p17JsYmNk1sCb14aGQonU77vn/kyJEoivzYF0Jkcjk9tObnFjTfRRNEoijSBlmO4wgh7rnnnlwu9+1vf9cw8NNPP339tdfNzMxJCcrl8nvf+9577733L/7ir6rV6vj4OELgf/yP/zE/P3/Hu27jnB8/fpwxNjk5+fDD//P48eMvPPdspVL5+Y9//Oqrr5acU4SHBwa/9a1vPfjgg9dedx3GWFP+TZNyroBUl22pqlNv09I6oAMlXzJ6hRAq0Q2ke7mkQlIq08S+xzzPe+2111566aUbrr/pwIEDccwAANlsNooiISSCBCi1adOmdJocOXJi8+bNoyPjX/nql6+66qpdu3ZoxhlCqt6oHjlyJJ1xMYGu6546derFF1/86Ec/yjnveSoKISzLAV0hpl6ZDUIdsV+KQMDl3UgYoyQRGON2u7WwsIBNXJAFapnl8moQBEnCeZxgkkYQEoyEEEjh3vftHT1el/44pRQhUMPcUmosW5kmHBzqHxhA73vvQxfOz5w7d04I/MKhQ6dOH+0fLpmW8773fSAKeaPZ5izcnJ7YvnNHuxGlnMzd994zMzfTbDarjQAArheTMIyThGMI9KItJJufn683qlEcHDv21pkzZ86cOfPeBx8aH9+UzeQL2RyEjhCCsRghsmGlQt0eIAAAwhhU1tZazSZCKE5Cr+0PDw+7rk0pZlxiDNXlrBoAe30PWtG1cwd6AeDGjAx31uQN79bgRq9b9PIsTN/JnsoopQBCwBgwTTNtmnHMLcuilFSrVa1j/vJLr+7atSuVSl13/cGdO3ZXa2u+7+/dt2eX3HP48OFP/+Iv3XTTTf/+3//7tZXmc8+8emDfDZ/65C8d2H8wCpOx0YmD114NAIDIDUKvsr6GEDqlj9Mn2u0254lpYkLthz7wXsMwHnnkkfe857633jxBqakUGBvd3Gi0BgZG/DA6d+7MzTff+td//dd/8zd/89xzz+gC0tpaxXEsBJVO3AyDGAbRwlyYdi3OMNbY6MrK0uzsLADgBz/8/tTFSULI2dNn8tnc/v17l5aWlpYWKKVJEp0+fZIxkU6nTYO/+eabhBDLsk6fOKlBvWq1evr02S1bNhHTaDabi4uLQgjbtjvi0VzJlNyyZQuLk3K5bNqWxg0ghM1WizGWy+UoJVEUmaZlWZbuukhiBiHy2n6xlNu8eevSwpKUIJfJXZyckhI88cRjEMIw9D/5yU9ksqkvfvGLcRwPDAzs2LHjd3/9d/+f//T/+da3vmXZDsb4iSeeiGNWrTUOH37tgQceuOWWW188dOjNo8cvTp6/4YYbPvCBDy0tzj799NMQICFkrdpgjKXTLiEonUmt12ph6DPGNGJzww03AACefPLJubkF27YZE7AAHcdJEq5ROR3S9PX1pVJOuVy+ODWFMU64SJIEAt3Mp5SKIZe7du3ZvHlzNpt3UxnDsGzLoRTEsfj+97//3LMvAWTVa6upXAph8KX/+T9uuvFm18mfPzM1P7fYatYNm1iuCUjs+8HS8qpS5uRkU0rZ19dnGsRr+YxxzczkTCKooiAOIp9SA2NMLTo+PjY41P/CC4dOnTlZLBaHh0Z/+tOfXrw4Mzo6vHv37rn5ma997asPPPC+66+7FWMTwGRtbSmVymzaNG5ZzrlzZ7iICEEQ8cXFedO0pQCaTR/HDCFULA309/e7rrtv355EJEFlzbJcAJCUEHWlSgVQCAAloYISXj4NN8zHTslfdWnv2ioDAGBRw0qnAEaNRmNxcXFmZubixYvTszO6t29oaGj/3n19fQPFYrFYLAIAAIESAERwsVhcX6+Njo6OjIwAhEzbcjNpADHACALMhDIskxCiGQYdR6V0ihhYKQQQBEDTEdCGJBQgBAzLUBBKoCjFAwN9+3fvGu4fWFspz8/OVSvrs9MXg8BDQCopsAQQSIiBlAJjAgBMkghjSro6YxpB1g7SmkJhmjYAQDPGumwJIIRIOIMQQtxhdfRWRYyx7mx2XVt3vCkg0hkXIJVwlsllbVfEccyjiGBDAVCt1SzTBAC1Ws18Pj84PAShajQavu8vrSyX19Y551GUmKapFDANU0oJINBXFeGgE0JjjDGVkkMIidrQSNLJiTtaRd0y6cb1/DJIV7PDIIQd0BmqDbn65Rmv3EDzBBsX+q5cALgEQ1+Z7nZT3HcYdxB2RAm6r7yScKoBo15lAADQbDZ15B2GYZJEYeQzlmCowpAJmSAEWo3mY489OjU1FYZhOp1OpVKe52kvlyDwNQVy+9YdmzaNv/rqq1wko2PDFyYnM5lUuVyuVqtbNk80m+3xsU31xvpPn/hZrb5+/vz5AwcOZDIZniQhhNoNRidLCCEphNbOt21bb5Oe5xmGEYaxfpntujrLSpJEN6/3GCKaP2+a5srKkmVZCYv1eEqlHMexWq3W3NzcRz/+C5/4xM8/9/wz/++//xtC4iTk1WqTEsuxM5wLzpRpOCsrZc3oOntmanSi33VdTMnrb75WKg72Dw5U1tallK2Wd/78+b1792qGv4YP4ji2LVcBQYjhus6+ffvy+fz8/ALnUmMHrVbLdszV1dVM1tm7b5cQLI61dhXLZNK1Wl0pNTo6Oje3oCkVYRjq0QwhlBIgRDRfCWOKINbz3LKcmEX1et1xLL3WGAaZmZmBEBrUilSsVDOXKywtLSFitFr+1NTUzh27+0oDDz30wUcffaxRb+27d38UspWVtYGBob7BAa16Xl2vVSoVoSTG2HVdwzK6CqKahAI5v6LlH75tmF92XFaiu/xxAADG7wxGdynVnVdKCDAESgFxaUW9nO95OZe/d0kdQkf3NRvfUqvVGEtyuVwmk4nj8LbbbkMIpNLu9773nR/84HuUmktLy/V6zXVdPRrD0K/X6wMDA5Zlvf7665Zt7NmzJ/T8HTt2tHzP89qzs3OMsXK5XCqVbNtSQKyuLlfWV7fv2l4o5DiPisVis9msVKqOkw2DmHMBFEwSkc0WnHQiJejv789kMnff8+5GvfX660fbLU90DVUppaZJlVIDAwPFYml6eloppYRMojhJ+O5dOz3PX1paAgAIITCmjoP377u6XvMffPChXLa4Xm1+9rOfW1xYTqUy7ZbveUE67VqWMzg4mM3Yb771mpIcIQABSJLEINqaj0CEfT+IooiYhmGY1Og4vdRqNc9rcc4XFxebzWYURZZpAACy2awun+o2BcbY6upqnEQAANe2TNNJQCKlXF1ddS1bSmmaZpIkg4ND/f39s7OzuVyOENJqt03TtCwHIdRutqIo6SIhCCEUBJ6GmyHSqnZcow9h3NYkzUqlsnPnzltuv+25Zw999atfHRneTE3jyJEja2sVx3HW1lb6+op68moHgGw6Z9u2nXbjOA79qNls9pf60um0aZq2sCuVCjUM3SUXRTGEyDCo4zi1WlXnhEqBJIp77D8IcTqd1nZYruvGEceUAAXkxkpgx74P9vAysLHQ2D06G9H/Rgf5skzgys1iwx/6n0vQcA+D1tFAb1uBG97biWCk3ibhRkOeDtC8gUYEO21KinRhcdlttN9wMbD76Z1FG0LYCZIAgAC949Z2BXZ86TWXrucSeH3poR6wDXvSHD1c+7JPUUpJndV1kf1Our7hNb2b1lv3uqC2EkIEQcA5zxcL7XbbdW1NUA0Dz7btIPQwRFu3bi2vrmCMd+zYNT09/fWvf1Up5TjOCy+8UK/XtXduOpON447z2+Bgf7PZXFvjPUIxY8wwqFbgbTabQcB6qKKUQilumU4UBJZl6KA/X8hVKpWxsbGbb76ZC6Z7wTKZTBzHAKDADxUESirGWJKwJOHZbFYpofvg9A+nlNLKtlodSO9iuvdfSwYxFs/PzSCD9g0OpfOFgaHx6w9eX15cPfLyC21/ff/+fVcd3N2srk8MDB/+2aHy/DLmQqM2gKBcLlcoFIaGhhzD9ButfKnQ9jzXdeMk0RyQSz8iBHrpEwAyxqhBAABJFAKCTdNMolBfKsY4ESKOWZz4hmXWvXYkOTQplNR2nCAMv/Df/36sv39kZKSyskwx4UHAIAYISSgJIVyKMAyz6RRLYoLkpokJgKDGZ6WU+Xw+FpJgoue77tebn5/XQG131kON0vYEKAAAccSABUzTEECxOBSSawRftz5oCnnMQ6X7vSA1DCOTyURxoDnUSimdbebz+UajoYnJHXkKCHUfKO7OIH1VQEEIoQ5IHMfRBTzdI9zTrNeEF/2hOnzXVY2eCgeUKooiwWQcxz0PcUSJNujT9ssx7+iGKym7u23nIxhjhkkghIxzpTqGe6LLoNcKJEKIdrsdhqGdcjWMS7qHhoy1crFt25ZjQwjDJNYxnp68SZJI0WnC0HdDU3h0UGoYlHPOYtZdx4RSSHW6T4hlmUpJxhK5wWpPKcW5NAxLNxKl0+mRwSFIoGmaxMSUYs55EAS64UCXHLRho96SpJRPP/10zwJRX2GxWOwrDSRJwpjAWAGYdH4jCECXZK2vIY5j2C08aAlsnQLpjk4ApW7A1HI63fF2yf9HSSilpIhCAJM4ARDk80XOhe+FUiDTsJSMhJCZTC6JeRjGgikpIGPMoghKaGBiOJQxpVUdRcIQhevr6wAAJrgUAGOCAUSISKAgRkkSt1t+ux0ojrZu3b6wsKC4QIgKIRHAUCGRMAQIgApCzcsGQRBks+mhoYF0Og2E5FzT5JVt25xIhFAqlQqiUP/0GqCv1Wp79+5dW1uzLEurYBNCHCel0fmhwWHTpNPT0/V6PZfLra2tVavVoaGhgYE+Ibmefa+++mqp2D83P5PLZw8cuLpRa1577cFms3XddQcHB0b/11f+l9bdsiyrb6ivVCpgSoRgnHPfD6WUSRJoLnOSJGEYplIphJDjOHq5HhoaSpJEazf/5m/+m6985SsPffD9qVTq4sWL+Xy+WCzWarUdO244ffq0YZLDhw//6Ec/WllZGRkZabVa3/rWt2677ba+Qn7rli3Ly8uCq0wqpX/WVqs1MzNz/Q03QAht22KMC6E0mnh5afZS+P12LhTQ5WQdcOu5ucHrnnPQaDTS6ezExKYk4bfeeut73nN/tVoLgsC2TT0juBC68YJzkMvlbr75ZsZYo9E4duzYWqXy1tE3TNO89+47b7zxRs/z9u/f/5WvfEWzAQ4dOuR53vseeLBYLAkhisWiZTl6kexVp7owdMcptDuMAURQN67oUV2pVLQxWpRESZKknBTn3PNaJ06c8H2/UCgMlAaSJFleXnTddD6f18Bp72ygm2tr1pc2wVMKMiY5hxhDYgCeAIRVECaOaSYxKOTzH/vYx1599dVjx19PpN/2mtWzFcO0PS/cvWef146uObgfdGu6CICR4TEp5cLyYpQ0lRLpdHrz5i1Li8v9pb6+vr7Tp08GQRBG/le++mUIoa4vIoTOnTsXR+w977nvwP6DBjY0MkIpVaJjzYQ2yBQihHRQtrq66nlty7LDMNTtlcViEWMIMeYMrJbXbdt1HPuKYaCUAAD1xsfbeT86MtqYMSHQeQR3uOdXDjBCOjBFT5kkCIRpYgUlY5AQYliAcyOTyUxMTNRqDQAAY8LzAt8Li8XSnr27RkeH16uVoYFN77o9Y5u5l196bWZ6ce/eA/fff38cJ5lM9t3vvuvZZ5954YUXbrv9Fj21X3315U2btjSbzZ889uNqtRqGoVICYWlZZpLIcmX5gfvf22w+MDo6dmD/wSCIJi9cPHDgQL1er1arn/vc52ZmLj576PmHH3747NmzBw9ed/r06Wq1YptmpVKhmOTymVQqNTjYp8U8U6mUVlvSelme5+kBiTHUzTfHjr3VbDaLhZztmIuLi7qR5ZprrilX1zVSYRiG53nXXnttLpf79re/02g01tfXGY904LSwsAQJtCxL/+6tVqtarUoplVSNRmN+fl43tSgJgIJc8FarVSwWOef1el37EwwNDfX19dXrDcF4FEXpdPqaa64ZGh789c/9xp//6V816hd8LzQMgzFRyOUVBFMXJqempk6eOj4zM4MQWllavjg59YV/+MKTT/w0ncqs16rvfve7pZTf/f73CDZGRsaOHHmtv3/g9OkzURTffvu79u7dyxg7c+Zcq+UBgDKZjGWZhmFQSiFUQeBnMhkAO4LICKG1tbVnn312cXF5YGCg3fYRxK1WyzTtjc4f2nNVCG0OrEMRCYEG95mWFiEGyGazR48eNQz7wFWDeqYkiTp58vihQ881GwFTQRwnO4bHY+G9/vqRvXv3ttt+pbKSyToISwiEkLHrOpCITN6+OLlcrVUsy/IDi0Wx1/INw+JMAYAgwJ7nCSEUlAlj7XbDtu1WrnX8+HFKUTqbKhaL9Xrd90PTNAcGhq6+5sDs3NTrb7x65syZe+95kGD36FsnpeLr6+Vt27bpOFkBZVqGYdhB4AkhOJN6vtiWIyTv6xvw/HapVCoWizMzM/Vac3h4bMvmbUJAwRUA6hKuCHX7gdI7QDd5kV3t+8tYO4ZhGJapA5LaWvX48YsXZ2emp6drtZomMmZz2Z07d1qWtXPnTsswdYlLr8lMdWTHMCUIIUwIxthMOY7rEkolRNQwTNMWjOtcACqEMFYAaMnNniicBqB7GRNCSADFlUySRP/WlFLHtpeWlmanLnqNVqNa09r3pmM6lkEQhkgiQDCGEnXgbINQIQQhlCAspUQAUkIZEwhggqjkiiCKO07dXNPAdVioXQq0P2EvAtTfMfTanAsAbAih7ZiUUsu26/X62tpKGMYdswGAoyTGGAdR1KjXtWd7kkT+SrC2tlatVoQQECMEiU7o9N4lJOBcGg4RiWZzCK4kYgZEKkkShICUkqAN2Ba4VA7tLrXdvVsppYAACmBKpBYTUgogABUEEiBtjwY1kQ11tnsMJABKAISA2nBO1XUkh7DjnNYpHiqgOIAEgK5Dr0bZdPWadrPyjeVKnVF3YDgFelovEAHOhePgMFQRS+I40vKg1KROLrNWrZsmCePAxaZlQKTE0tJCtVrV1WnDsHbtOrht58HXX3tzfn7xzIXpZrP56U9/evbi1OTkJEbUsFPnz11cXFiFAAOlioU+npxzHee9Dz549OjR1aXlU6dObNmy5fobrl1ZXLrqqqvOn5/8sz/+Ex1Pp1IpQsjS0lLoB7lcTi/uAEFKKVCAECQlzWaz1WrdMAwgIAY09AIAgASIYLPZ8kyDdMsdSumoPRIIEcdJGdwAUCAEOOf5fLHlBelsKQzEymr92LELAECMcpRSE6EkjrlSCCFq4C7rh0ipBgZHUm7O87yBviEhRLvpry6X6/XaF7/4xYGBAYTIiRMnMpmMZVkYI62JGcUBIWh9vXlhUu3btyedMbdsHYEQN+qe5/lRlIRhyDl3HLi20hCSra8ubdqy2XVTWruzXq8zxizLyORz7UaT8cgwjFTKieNY6xkxDb8qTpFCkkEMBWAYQSE4VCCXK7Tbvkwg40ApiSFSJAEAERPBCDabdcdx3njrtXMXzuzas7Ner683Vw3DnJ47d9sdN0KBnn32+YRJzw+2bt0qFWg2m3Eccin8MKBNmk6n0+m0klrjBRACBQMIQaEApUApIERHVQZ0tZh7YUqXfAG6WcClB3vdAxsf7E1AhC7NRAAAlB3FVtJ13dQTrXPISyG1Xp7lBvqzTvHkhjIPhAAilM3lqtXq2loZACVkTAhEWMbt1vCm0lU37FxaWlpen/fbAdR6QCx206koSh583wMf/fiHn3zy8TjxCmY6lykMjeTTHg4COjiQbjQaYRhSqhLBm616qVTK9m0u9eUxhW7GDmIPUZAtuBgroYJmq3zgwIGhoZEwDKvlOd8PF+bnV5ZWMaVRyH0/RIhYViqVytVqtSSWhqEsy3Ict77erFar1HQIV+MTY1dffXUqm3Fd9+EvfzVJEtNJg0Q0G/77H/po24sQJchA2VLGzTnpQlopZbuu45Dz548fPLjHssDU5MVPfuxXX3755cnJ87ZD4tjHWDrZbC6X6evrk5I3W3VKiVY2XK+Wm80mUohAg4WiUq4qBbLZXBSjRMq8lZmcnnv+z/8ijuNsNssZ0+5GUsogSDA2KXE5C1kC20mYy+VSGbtarUgB3FSOC7hWrkVhoteH9UoDI+Q4lmWhJIniuINO2rYNAJACcM5sm8SMCaXimAVBmEtnW02fc37q5HkJBeNhHLOTp15z3YwfRCdPv3b3Xfdef9P1mzdvMgxDtn3LcgCkMReQACIAhmR0ZOzYsWO+F0xNTQVBcODAgWq1ms/n260WBMCkpuM4oR/X601CKMak3W4rpSzD5FxqgvPg4IDjONVao9FsG6Zt2YQxpRCU2iuzV/IFsIdvapBIy25JKZWUEEIJe853WtFPo5667NO1yVKiRzHuAcqXZJwhgh02igQAwG4fKwAAY7Ix5dDghbqE7CIFoN5SAFJCSc7lRnRYIQhAZ/++AubmenIqhDbkKBBCTdmGnTZO2MOj9SGl5LBHf9YyWx2q0hWwdQ9kEV1JaKUUBBBraTQpIVAQAAlVR10EaFxcCSUhhAh2HJxRFyNTXZnLTu8ahABo/k63vVdpA5/ujwWApmDqAI5SLITp+36z4QnGUzaMwigOgv5CseW1hIJBFLm5wod+/lOnT506dvKUZMnI0IBj0OXF+VbTsw1TCIUxEUyyWEKADMMSopOW6zuplNKsVUppJpNBCDUaNQCAEAxgpbgyLcpEhC0kofRCb/O2zSMjI2enzwkAf/bM0816TSnFeZIkSRQlnudl0lnGROBHFBPFZQIii2DiUsOmEMPA8yFEGTeFMQUA8JiLhHElIYSZXMawDSllyMN6Et3/3nseuP+ecmXlyccfS6KpZw+dJ9SUqXZuIlccGczlBlN2bqi//5Of2/7Vh788feG8OZAZBdlKvc6ArKwsVtdWx8Ym0gOFdhS/efKEbZgmNVTMDUiIbaI4CZmSQMZCIggpworxREqheEeBLmGJH2KohFISqFDhgMfEMp1CsZFwGnOLOibGshFu27o7t82dmbwQJjGEgFAYenF7PVYQY2xylRCEkiRZq6w7jpPL5Ti2/FYD42ikLy8JqccSU5tACRBQUErYUUbO5XJJkqysrFBiQgi55skiKhUnhABFAACCq0CElBLbNIUgCAGTmhhChAiPOU9CgmkcxwhghIECImFRKpWyLEvrrvTcCDPpnBIiiSLOeRyGinG9kHCpJBcUIz1gBOMKKIiAm3Jc1zVtWwOgtm3HcYxQh62plMIYRVEipdQyZTqd1p/FpGCMAUUiLgCUCCEluGtgihXGCAEMJJIGNEw7iqIw4IaBEUIQKAAlhNCgFCjIGUAQKQUlUxIAg1IAkFIAKiSYJJgmPFQSoDjSIHIcM63gwRLOURInzLZd27YN0ySEFGhhdXW13W4b1OJMcs41MqWURAgZ1AIKKtmBA/QU1vL6oAOLcE1v4Zy32+1eqq+9p3R6RgmM4xBhMD42aNpWvbEOAEhYpJQyqW65TfTqp40KLSslBTBNqsWXqm1P6wkSjEulUjafsyzL87z16ioXDGAEEaIGJabJGeOc67UMdgjXht7yoiTWGpdCiA5KpISQ2h0LKwWTWCCEkIG4EArpRVUByBVSQSwQQs1mEyF49vRskkSe5+UyKQgZpRQh4tdjDIkIpEgkBIhxB0qDEEIMwDk3EYhjFcc+QijxuU7MIINKSWoYGGEsgAyVAsiyMiZRrp2e2LxpdHSEWvLs2bPtKJICWFYKI8gR5lzaHAIIISZQy81Dh4WactjwgzZCiDNp2jSdNSkxDcNozlcNwzKIoSS0DEdw9dqRo612k/OEGknMgoGBAcZ4zCIuRNv3avVK6EcGdbKZIoQwl1VBELRaLYQVRk67lQwMDLz15ulzZ+duufnWXbt2RFEyvmVUCdCXH/Qjz8waDCcIgsJgwbIMhZiQ3LRMzGAqlWq32/MLK5xzg5gMgkIuE0VeuuAkIjp38dyv/drnjp4805pfnZ9avnh6JkfTz/zw8bjVev31I8V8KUfSvA0ybumeOx6UTB5589WZ2VlK6Wd/43Ovv/764srR62+45ZZb7pGsdfXBq5555hkNMF04d359vWYS8/SJ42d37bnqmmsYNrFBAQBcSqGUgfBl+6COIjpCN/pRBCEE3aBXamlviKBUgglKiZKSEKQU8D3vzOnTrus+8OA9kxdPXVXZ5TgOtggDUiHFhAAYSCARIUEiB0aGGWNCyfd98APPP//8w1/7KgDAtu3b33X75u3bZr72v/7L3/63VquFTGwTuro8/9jy/MLcjO49r9TWEcH5fN60LSigYJxSqrigFHMJCCKCCUSwYBxjjDAUQurIptlqRQlzMlk7k4pbIpXPrqwuTE6etR1y4fwZN2X39/evrWWHRyf6SsO11XrDb46ObicUCA4IllxwDCCGWEhFIAYKCA4oBYwrCJVUDEOSKCyxhEACjGIhqIn7h5zbc9cClRx78w0kbGq4Im4xwYNWw7HU9MXZc+fE9u0j9RZPuYV6M+TAS4Tn+Y29+3bs3bv72Wef9f32x3/+I1ftP/CNb3yjWqsUCrl02tU12jiOR4dGH3z/Q99+5LvVcu3HP/xJ7Itdu3ZbljU0MIgQFrRTiVdAIoUhoAgADIBhAAxBo1YXHMWRUIhhl02vHD13cXQr2JpOp8vl9dWl1aHBkUxqWEqgAJQCQQKA6gARvSRI07qBUghB1METAAJAgG6HKARcdhnNDAAAEARSAsPo8MQxBs1mzDn3/JYuHPq+TxFOpVKJYJxz101Z1EgSfv11t+zbe82FC1OO48zPz19zzTXnJqfOnz97FbhKKnfv/u0paqX2pLhi//zP3yxkSv/23/1OoZCrVNZC32MxuumG6x59/NGVlaU9e/Y89dRTJ0+eHN80AQmLkmoSV5ACQkAey01btpbX1yCX7UZ7784DGJt9fcVKeXl0KD+xefOPfnSciSSVcjKZzPLC4vPPPOu67ubxTQ/ee/9jjz0Ws+Tmm25XSjEe27YNERgcGp2YMJaXlxmTkqs41GZ9mCuJMTYMS7vnUmrmcgWMqFS4UqkbhuE4mVtuuzOKIi25+cILLwwODkZxcOS1s37QevChB3bs2PbIt7/rhYHjOH67HUURxUQpVewrJWEiEoEU0n4jy8uLGtETICKU3Hnru06dOvW5z/3Wyy8dfv65lx986Oey2ewzzzxlUWfrpny9UVtZXh0aGtq0aUvQ9v7l+4+2m55koFqt+kGUzxcRJrZtF4v5H//o8SjwMSaKq7AVnDp68uSJY0IyP2jfdOPB//if/t/vfOc7x06c8jx/Ynzw6aef/epXVj760Y9+6hd+/szJU88++/SLLz7ntfw4YoVCKeXmIFIiEYrjmMWN9XbCIoSQg+3ET6rrta995WupTGZkbEsQBFHYAEBgZEdh4Ps+QYZrUyGYaVuNZotzhinR/jeQQcESJni3AQJHUXD8+NHf+q3f2r1nGyUKAi6Empld+MY/fj0KA2yxyI8wJTMXlwFMctmBUrFvdW0llk0pTYEiFiWEEIKsgb7xYqFQrQTl8jpGRm3dJ5BwbrCYY4QQUhAyCGQcRRDC0GdIOioxZqZmnHSqWMxbjpQyPH3urOe3igMlauNDL768slZt1MPKavufv/lIMVdMpdIEg4CFa6vLAOJardbfXxroH15ang9DhqEwDAshgKC0TEINMjd3XnK/7Q2F8Xq73b7lllsq5XOVymTKzW3fto9gRwiIIWVSIIQQRAgjCDtIrgaapQRazlsqgBAyTSOXza6trc2em2w0aidPnlxcXurwYPL5kbHR4eFh10lns9l8Pq8VunrgtVIKImVhahku8xIRKoINJgWnCFEM3RSHhGivC8CpARRg1CBIEtuyEFQmIiYiWCIklUm1UzQgBPdoTCYhPOYIICQBZMAh9trs8puvHk7bhgGB4HEx7UipuIpAzJVCBBsEohhKzgUhFGqQFMAwiSGEhmFYpqMZDzYxAZEKC0gVgFLrinEuNdlCU8I1W0JXOIQQpm3pr2ym0rl8JmU7mt8ZhHEYJSMjY0LAJOFJkvi+L7jyPM+27SRJVldW2u12o9Go1+tJkuhWPGrQHrbOpOh08GKIMZKKCUAURoogDBBmSnChiOQSJExcln53k+TuI1fq6+u8vfM6hBC8BPt28TV42an0Gd5OxryictizJeyRNDd6/W2INsAVB9wgbnDZoQDGOAwlpYgQh0AYx3Gz2RRC5DE2TaPRqBmEUEolF4QamUyuXq8Xi8Xt23cOjQwLLr0wKhb6MpnM+QunH3nkkXPnzlQr5SD0+/tK11xz4PXXX6/V13/5l3/5ySefCKO2VImU/PTpk6+++vLNN1x/9z3vHhgY+MQnfv6a666O4uBrX/saY+7Z06c0q5pSmsvlAs/X5UHOuWlbHTVACHV3RqlU0kKoQnBMqVKKcQYBZozZlhHHMUKwUCgQhOr1uu+3DcMQIp1KpcLI0/U33/dt25mYmHjllVeOnTheqVQKpZLGvzS4TCktZHPpdFoIMTMzE8WxDv2bjVa71cqkMpVK5brrrvut3/qtP/mTPwnDqN1uO44jpcU5i6IIREDLFWn+BaV0eXl1ZGRIc7IgxIZh9PU5MzNzWhRGK/0xxlwLTU9Pj4yMlIr9uWxhbm5ufX3dclP9Q4Mt1KpUKiMjI5ra5jhOo9FgXqhdaPxWmzFWKOabzaYUTCmVzWYNy8xm874XVGp1KWUURQokGgfnDBBiYEw9LwjDcPnZFUrpdddd16i2pqdnh/rHx0cmUm7mpZdeyufzo6Ojw8PDCCHXdS3H1q2mhmEQApL4EkAMMZACIAw4B0JIw0AAAM4VIbDHSt5YM+890hvA8PIJctlkeac/eg0H//uTdObRhse1zLRGnLlUEELNp+ZcakV8zrmUwjBxFAVCxrZrHDx48Nprr3ns8UfPn5ucmpxcXFh2bRsAJSXYvHnzkSNHduzYdcsttzz55JOcc5pyX33lMMKwUMhpVo5lWVpOwTTNQjGXz+ejKMAYYUQRVNmMixBqNZtxGI+Pj5um6Xke5xwARKlpUGwYhh/E9XrdMCzTpH19Ja17GEWR53mMscHBQcuywtBXSmUyKSHEiRMnmBStVquvry+OY9+PisVSrdp6/vnnP/yRn6fUYExwkfQ65jjnWo/vlptvPnz48PlzX9CCoe12O5MdDCPPC6N9V10dRUGz2bQso1QqSSmSJGKMpVNZgg1KqW2ay0ureh4BAIQUUsrx8fGtW7e++OKLc3NzQoiJiQnOuRaNcRwnCAK9AwkhkJKe53lhoL01du7e5TgOpXRhfml1dXVwcDCdTnMWCyG01HKSRFqzUnd76zb27khQWlgzYolJqJ7ds7NzrutqW6RmsxnFLJ3O9PX1WYbJeNIDLrUll5QyiCONRBSLxSeeeOLo0aOu646OjWhaSjabTaVSlm0GQdBoNeM4HhjoQwjV63VdLw2CwLKsUqmUyaSFkFqdTSmVJBIhxDcI821Y7TX0jLvE287jGmfsDWqsYE+5GHQxUfA2OvPb2cS6zwZ1BWQvgcnv9PaNb3ynA258OwJQ/G9er65sZJDwss/t/IFgd998hwvrboLvwOfqERLf4Sq7TyHV24IvnUGj/L2v2nvTxrdvuBWdp+Ql2ncPbkZxHEkpPc/TdBjbtmu1mmVSADKc81arYRgdwbJ6sxHF4U0332ga9Pvf/XazWoVQ3XTTDasrc/X6GSY5ZFIIBKGiFCuIkyRaWfFMk2qDY82x1X2drVbLsg3DMDQBEEJomiYlZpeJxrVw0+zs7OzsbMACIVnkB5ZlZHMZkxq5TLbWaLquWyyUKDXX1ioXzk5ijIv5fJREGHEhBEs6RN0gCHSSbNv22NgYwJBSGsR+y/MYjyuVyic/86t/+Sd/+vpbR44ee8NO2YiQrOM0mn65XJYC/PhHPzwxdnSkv8+h9NabbiwWi6uOkynk91519XMvvbC4uprJ5MIwnpm5ePvt79o9NLRj9652u/3cz542LSKl4N37rBmgEGPd4QEV5pK5ppnNZnkUd4xQIIhYnCQdRl6hUEi4CIPYzaTjOFwvr7Z9L5NyW61W2nVs21ZSuq4rQya4YlA4jiN5ogRHCFWrVUqp5ukkSdRsNYO2x6EJDco403ojACr9o2gFeR2cya6ZJuccImWappIYQiWlTFgkhCBUi1RoXnxHPeCS1IZSmpmrmd0dvQilNJUYQoigVpRLhBCMsYQl2tgRdXR7ma79YIiklNQ0tEqGNvPR5GWEsL5d2tFBpy6EdBQntKAzYwnUWvmUQkAppXES6h4U27a7clW9EyLHcUzD1p+ON5SjOpivfrVWeIyY6LYXaMq861pRFGlJSoyplEzrJkEIBVf6GpKkIwMhhNCYlJ6AGGPOOyIMPTUGPUM1U9ggVJOFtZo2AFJ0TclM0xBCWJZlWZZSSohY719BEGivJ4yJ1jHAGFNixknIOW81mgBBzQcvFoumaS7P1PSvpu8wpZQQJITI5XIHDhwACDabTa1pJqXEBCultLss6hS0pL7VnHMhmBAiDMMoioSSWi6DxQmlFGJEACKY6CYnfTOVuGQYpY0EAQBJwvRyASFeX18XQmAMwzA2DCOOA/1jQcU63eIYx1GshytCKEkSIDoKJ3qQ6JuJMdZLLyFIC3fEcayQ0gZ9YRicPHnctm3HsRqNBsY0k7UosWdn503TVIrqkakNTn0/rNVqK+U1KYWWsaKUAgmqlZou0jhOCmMchYnrprmQUsq5uTlMUF9f0XGsyvq6Ftms1WqlYr8WdcEY84RzzlOpFMa43qiWy+V8Pus4TrVaLZfLUoJspvDKK4fPnbuwd/eebVu2Fot9iUjeeOON1dXlVMpBCLVajSgy0pkUhHBlZcWxXc0iJBSGUWCkTEJQsZgfGNixuDIfxsHq6iql9L33P/DD7//4jjvuMAzjzJkzhmFs3bzNNq2PfvTjf/D7fzQ1OYcQ+Ye//++1VsV2TNu2Gee7d+4+fepUHEbHjh0rl6t/8Sd/UK1Wv/71r7darVwuJ4RIItY/0f+hD33o+MkTEoCRkRHbTfcPDmhan5KXWqB6+9ilTXDDntvb8hDCQnS8W4SQlCCggG4LeOmll3bs2PHxj39ct6K6rguk4gmDAGttgSThScJTKdJuC855vV598803DcMwKNZxGufJ3//937919A3HcVzXVUohoBzH4pwvLMydOHHsqqv2I4qjOF5dXc7mc/l0ASAlgQIIRowTQqRSkEChODEIYwwgAjFCEHHOTdvucx3DNuM4iePIsgzOk4HB/tdee8WgZH5+vlQqRVG0tra2ZfMO36sEgZckMYQmhIozCSAQUioFIMRSKoQhEIAxIKXEBoZKCSEh0iIUQCklpIAKIoUggtlsdmxi7Ny5c1whAIBgvFFvra/Xsvnc84cO5Qrpbdu2Ofb66kr11Vdf37N317/57c/edPP1tkMvXLhw/vz5CxcuVCqVlbVVQpBWX9HhvWEYtm3fcsst7Zb/3//ufyBEbrn5NgCAaZpaeAd2zayujJ0kkBI0m00AJGNMIWZa5szMzJe//D9vvPGmkZGRcnk942b6SgOyYy6nOo1q3RSs06WtlJIQamJc57QSQigutaNBPYhgt8NbSoAIAAJICbgC1WpV63DGSajZfK+//vrExMS+3Xs8z/MCTyPLKdvp7+8PWSAV27V7WzabzWSdvv78zOxkrbZ+5MiR/fv3Dw4OOtQ0TRDFQoue/+xnP0ulnEajtv/Avnw+yzk3Cf3KV75y2223TU9PNxqNxx9//MjhTK3aSGLm2qkkjgBAZ89NptPu+MRW349YonJZ26Km7aS8wH/m6efeeustx3H+9m//1ve9RqPuug6EYHx87Nd+7ddef/P1++6772Mf+9gbb7zxrX/+J9u2r7/+mkOHDiGMdUg/OjraajXr9bphGFwK3bmiV0jTNCHU/Eo2MjJSLpc/8pGP3HrrrWtra1dfffXJkyc9z+vv7z9+7ORDH3gfIeTWW2+98847n/zZ05MXLgAAWq1Wo9EwqZHP5+vVWsw6hsNBEGQyGSml5EJKqQAECi0tLRFCfN8fGBgYGxv9pV/6xe2btruu9bOnHm+347GxsX/zW789OzvfaLSSMFpeXg6CoFarRUnymc98ljFWLJZWVpbL5fLCQpsYZuD5QjDLSccRRxaihjM2VrrrrvfEcXz82EnB+cTExOLi4vp6+cKFC4OD/bfeems+kx0dHT169M2nf/bMzp0712tVzpN6vY6gCoIoCDwpAVCEJQwhFIW8Wq0DAEbHNydJ0m40IcQQYN/3LcvuxecImVoNX0qhJd2EEFJCKYHWKmRMpNOOYVkHD179rne9K0n47OzsqVOn4zh+7bU3Xn31Zd17mrAIYxBGPqWwlM5PT8+eOnXCMGm93uQxKxaLWmg0ieMoDOM4Hh8fdyx3fn6hVfOUghQTHT84ju5qijiXGFEAZBRFhgs8z8tm01KAxcV5L/Qty8hm8stLq+12m0BiWZbkod/yXcul1KjXalKo06dPJ0wIIQqFQqvVmp2dNQxjy5atCOLp6em9e/ZCKD2/EUae46TCMJ6bXSAULS0trSyv5XLFRj2II7Bn11UYm0J2NmLdCAWV1O5Eml1KiA6RqI5al5eXL168eOb06cXF+TiODcMYGBgYHR0dGhoaGBhACGHU8+PteM+AboMp6OCHTD/YUzZTSuk4SiiEEUIIaRk9/RtiBCEGvu8rBBFCECnDMHtRjewqOwEAMESSd1SkEcb6R7EsC2OogKCGIYRQCEghhWSUmhIIAaDs6Pt3UoDe4NGJgI769NfXGgNa1RYCIKXMZDIYY8k1GVi1Wi2dxWcyGWJQrcVBDCMMQ83y1De21WrFMVsvV2qNula5sS13enpad2/7nteLbG3b1sEk7NqMK9WJx3vAgl5UFRQb7zbGWEGAMSbvCF1d0X7S2927+TzsnPeSgEZXEOPSW3r/uSKVfYejh9Ah2Gty2djyfOl6rtiVNLLQOyvq6tsCoH14kRZA0FmrlLLdbler66ZpZtNpIRhCKGQiiWI3ld6zb79Squ17A932rquvOZDL5WwXNZpVz/PmZy/GsY+JiuIgm3NXlucJlb/3+d/5lV/5FS6i8xdOr64txnH85M8ev/baa+99z13VRjWdcb/3vx6Znp5yXQdTqjXCKpVKsVhUIyoOI5bwgaF+y7KWl1cRQsW+foBRfb1eq9UAAFLKVCqVyqSThIHAl1IaFLfavmXSKIqFENlcOkkSjfbqsF4PKb24ZwFpB2GSJL//W39gWdbv//7vU+roCIAliVKq1fRaTS+dTtuWqyCmlNbrzSSKCTGSJGm1Wi+88MIdd9xBCGk2m/V6QylJKcWYEqJ9q1E+V6zXmowJ07QQBpVKddOmcQix1gdQquPek06n0+lsNput12vr5dWwUo8jcfXVVwOARkbG1usNfcOLxWLKtoRgnCttRej7bYwN13UghDyJkyTRWWir1bJtW0EghEinUxCgtfVqkiS25UqFICQGtfr7CvPzC7Vavdlq9w/05QuFoaGh97/vg2sr5e9990fHjh3PpnK+7+/bt29kZGRpaWlgYKBQKFBKEUEIET0ChQBScQx184UiBGLSqZwDgDRDX69dHWPMDYhzb6y+bTa9898b/7c3I3qDf6PK2Due4Qq9GoSgEFqpFiAAEQZSgjCMPK+l61oY42azIRpsYLDIuHJdN4qi9fVypVwVnOeyhWq5yhIhJAuCRhTEnuf92Z/92S9+6hdGR8dnZ6eDIGhUa4QgjQUnSeT7vmVZQRKn0+nJCxcTFjmOA4DM5XJSyjCMMESGYeTzeYyx74dT56eUUqZBpJSu6wLQAaqSpFUqlThPgsCzbRMAoJttV1fKWhTScZyhoaFKpbKyslKtNw3DcN2EUvOmm26q1dsz00uHX33twz/3CT2MFVKtdrNcXjt35sz6+vrOndu3b9/earWuufrgQw998H9+6eG52blt27Y1WzWMCVRqcnLSde3V1VWEQDaXxhjbtiWE6Ovr27x5c6PRQIg0236tsq7rKBAqy7Kmp6enp6eTJEmlUtq0RyeWqusnLrtCjRpMARhFUbh3796ZmZmZmZmJiYkPfehDhBCNhnMWnz17VuNfUBHTNKvVaiaTCQJPi1nryY4QIsTwPA9jDDBCEGlsrtXydu0splNOFMUAsMHBQcMwNKwADeS6brFYaDabvhdijDUN8OLFi0uLy6lU6j3vec/s7OxAX3+pVIqSeHh4WDPjvLafcIYx7LHnoigSWGooPEmS9fUqNSwtOoQQohQqBQRAcsPAVV0sU3UVjbtTA2pfBaVEh/MML+0lasPbukO9S/XvgtTdidapzgAIJFAAXuI+X9oI37YJXYHtbsx8IIQaI+uctnPtl8HEAFxKejfizZfMDDegxvoPCQF6+0kuvRL0RDCuuM7ezts7BFC4i+N0X3Zpg4YQSqDQFVXjfwUulzpV63g8X9IM2ZDGA9O0hOBRFIVhiBAyDMN1LCllubIqWIIQCoJAQqCUGBjoy5fypkkVYIQABbjtGNXa6vz8bCISiCBjoW3bAPJMNp3OZObm5jDu9nxhrICASNFu671GlHTIRQgCAGKMAACmaUAFNGgYhkEYhqMTI7/0S7/41ltvLSzMObZFCKlWK5otG8fxwYPX7dunrr322tnZ2eNHj7muKxMYB15XcxNIKeIkggj6UfDgLe/N5TPf/+H36vW6nbIZi02TPPjg/RLIRx7559mZSde1AVSFfJESdOuttyzML79+5I0D+/eODQy8+uIL//zNf9LSIjt37mQ8jllSLBaZ4EkSHTx47fYdO8rlcr1eUwpMbN5UXlmFEGAIbdumhqEJGhghxTsehpZjWphijNtBkE2nosCzbIsI06u1AMK27YZhbBq27ab7+vouXLhAqakkHB2fOLBv73NP/WxyZSWfTiNCBvryKysrtmECADhChJgYQp4kBBLbtLxGrVjM2q4ztfCmciA27FJ/P+dJpVLR8I3nee122/d913Y0CKihZwgkAFBKCQFECHf737QyCdKAndZGppRGjAMA0ml3dXWVEENDwLoLCna9X/RhGrZhGEqIKIo0U4PLDvCKEFKiM+wRwRrd02tRvEHZQ6mOfKoWMZMdGzqkrw10bYj0CNdIqx5pGEutUwGETKfT3VnS4dropzYWiiCESOt1ANHDwQkxCEIQKdFV5oqiWEpFCIEQS11hUArjzh5BINFru1SUUKQhb32RUul3dSY7QogxxrmSUhomQQCCDrCrpWYkhEo3GvaoDFo0jDHGuej2YAqNwiul2u021J51QimlCDYEV81G27ZtTGCx2GeaZrlc1sabEGAFuOXYPGH6VBjjpZVlLdakVypiGrriqLnPnbwIQo2G64vRP59hGAln+tchBpXdBZOLRClFqCahYwCAJDqxkTrn1F5VGEBimBBChYBJKACAJQJBqRu/Qj/QG5Zp2IIrzT/inEEIlfahRkBxpVPNTkcw6tQzEEJ2ytbhTRyIJpBKpRmPW16Tc04oePddtxNiMMYQJNQAa2trkEN9/xljYRADKGMeU0VNk0KIkoTFcaIF4oBCyFBRmFBKKTWDIFQAaNN5hKFt25Zlb9mybXl5OYqS6669ob+//9Sp05oiUCw52hfecZxt27Zt3jzx6qsv5/P5Bx54gDH2wx/8aP/+q44ceb1SqT6/9nwul9uxY1d/39Abb7y2tLQ0Ojra19cXhj7jycLCgmUZ2n6cC04IYSxCSAvlG0op0zRLpdJqeSVJkj//87/49Cd/+Wtf+9r2ifHvP/KD1dXV++659xOf+NTy8uK2bdt+53d+9/f+3f/VajTb7fr977t3eubCqdOnFYJnz5yJosgwaSGfjsPwyaefWlhYCOLIzaSxQXNO7qYbb9k8seXu99zLuRwYGKjW607MnJRbKBUF01zxS3vZpekG8DvvYhIo1aFa6PIYRKC23j516tTQ0NDBgwfn5uZ839+1e3uzOby8vAwBNqgZhpFpmkkUYURdF3ttvr5WLpbyL7744k9+/CjjcT6fj+MoEvw7332kXC6XSgXOebvddF2bGIbEwLKNIGi//MohAPlNt9y2bdu2hIvAbxrEymfTjEmIIRIQYiA1bx9TqRSiJGYMIdTwW45pOa4FEVhZq7z44otDI4NCMoxhJpNJpVKOa0kpK+Wq5/mFQmnXzj25fIYxRikWggnG9dRGEBFCOFNKKclVD7xQCiiJIYRK6G4rBCEASgkFIAKGAXbv3jk2NvLmm2+6aQdCkE5nd+zc+uRjT2GHJix46aUXC4X8E0eeyKRLUiYQim3bN1+cPv/KK6/U6uulUumtt9668cYbBwf7z56RQuiFUXbVJ6SUcmhoqFAoPPTQB++66y7TtIrFouQ60ECaFXA5UCAhRFEQN5tNvWLHiWi3g2Kx2GLR6dOnM5nMiRMnHDu1a+ceAAAhkAOlIHx7ltRzfgZdtxsA0AY8AW7ASQAAQCqAKeAcaLXc81PnCSHHTxwdGRmRUp4/f54Qsrq6YprG1q1bCn3FEurX1SCFgOs65y+csSxrYmICE5nLu6mUPT4+umP3DpaIVCoFpIIQ1Gq+AmLPnj2zszMXLlz43Od+7YknHjtz5sw111z14x//CCE02F+anDxfq9XC0G9ON+fnpOYzcaHcdKZWbbXazdFNE7VG27DStWpLKFTsLxXzfdOz808+/uTdd9/9i5/+1K//+mfPnDlDDfx7n/+3S0sLJ08df+Tb35KKSym//e1vW5Y1Mjxm2Uar5bXbfrPZ5EJwIWr1uh94tusopZgf6cqiNiTX0VcUBY6TGh8fL5fLAIDA8xYXl5577vnnnns+jpNqtZpOp1dXylGYPPP0c4/95Amv3XYcB0pFKc2mMwAgCLFhWFHCGBMYY9O0pQSMdQXNMEQInTlzJp/Pr6+Xq7VyrV5+/tAzwyMDW7dNwKcV42z79u133nlntdrkTH7rG/94+PBr1Vr93Xff9XMf+thNN90yMzvnuulvfvObc/MLw8NjEILBwcFatbK2tjY4OOgHQcIi0zakAhenZuv1+szMzM2uKyEYnxg9cOBArVZ78vHHbrzxxp07d46OjgoGVtZWwzhynD7HSdXrVX21UsAoZNTAScJXVyqZdDGfzyexiuMAQpxOZdfX1103xTlHiPCEAQAopSa1mu1Gl0tBAECJ4EIoLcigyU9BFDUajYsXJ4eHR19+5cWHH36YElNKBSCv1cuZlEspBQgYlISRv23bDgwwj3nQDvREE1zxJGk2Grlcrtls5nI5KUG92kAIAShtyzGIGUcRId3OTqVM0wyCAAKsQ+z+/j7bdgWT9VozCD13bKTZbJumrRQUQlqGDR0SyjBJmGa8JjHD2PSDyHGcHTt2tL16HEfZbFZJaVvOu9717sBvLy7OEQpy2QIXkYIAYERNe3Z+OYnZ9TfuhsBYmFlRSiFIQBdd1SI8CECeMMuyJIAYY9M0py/OBkEwNTV14sSJtbU1zvnQ4OCuXbtM0xwdHbVdRzd7dUwsBNBlEtRFSGHXp72TbYGOjhkAAAHgmBZSHfNeJCAhmBCEYIfSIRWk1JQAcCkghAopRKiCEEEoFceoazmOsFJKASFYLKTkQhBCEsbiOJJQUmpJLk3D4CIhhCgAhFCEIAyxUkDHOTrr6RCwVAfs1g3TAAAdQSmlDMPQ4avGs7XinFBa1tns6+vL5/P6VFonJwzD9YUFrQ7XanmNRkMz4QxCpZReq91oNdcrNS2tpuM6fc5e85zsikD2Uk4ISY9vobq4VRd97opVQqWAglCRfw0Clpcp63eyX9g9uh/Z6RK+pAnQBa+7yzcEG8ieV+wEvQok2ChZ21FzRpfOqa9He7KpK89zZSbdfbzLOZWGgREinhdoOD8OfJ5EkSScJ0oZUkqFoEIYA0UomZs7ryTYumM7hApCNT8/e/Hi+YmJke3bt2/ZNHrq1In777///LmzTz9zViH2/PPP3HvvXXe86+bTp097ntf2amEYYgDnlmZOnT3x2E8fveeeu2u1aqNRl4pZthFFgW27Y2NjFy5cSGKmNfviONQiocViKZ/PhWEYx3EqZRqGwWORSqUsw4zj2KKUSZFKuX4QM544jsVFIoQoFHKtlqc6mYYQks/MzFxzzbXVanN6erZU6h8dHV1ZWr773ns++9nPPvHEE416U/OJgELab1C3MWKMkyThUkCAMMa1aoMl4sD+q6cmp1tNDwDAGLMsC2PCOdfG8mGYzM8vmaYZx3HIwmuvPRgn/tpapVAo+H7YbPgI4SiK8vm867qVSiWOw3Q6TYhhmqBWa/h+WKlUIMaDA8PVWqXVamnBLgQgJjCdcX3fN0xSb7aXlpnrulB12GdDQwMTE2OmaTYajWazSalp247+X86kZRvZTD5JeDqdKRX7l5eXb7nltrm5ueHhkdHR0X/5l0dvuP6mTCZ39VUHgUJXXXXN3v1XAwAYE5qqI4TgUhGCe2bWGONOKzyASgHdwkwIohgwBpQCEHWUYcAGmLg3yHv1kv9/jt6Yfzug3HtkI4oNAOC9xy8f/11CWeeVCAAhgGCSMcGYAABJIWzbabXqzz33HBdxoZCpt6qGQbZs2nrV/qsfe/TRMIg3b96csIgz2ajXgYJAwR8/+jhQAkKkJDYsh1CEMORxjKmplPLCQCoYxyyfL66sLDXqrSAIcrlCJpNhjBnU0MtxvV4L2p4e/5ZhK6W8tqdgBCE0DJLJ5IaGBmq1WhSHScyUglJKSsypqalSqe/nPvz+6elpDSvceuutZ85dWFhYWFlZy+fzp06eWa/VwzDy2vHM9Ox119/UbLQbzQql1LEMCKFhGHv37kcIKQk07aJarbY97xv/5R9r9cof/tHvYWzbtrl9+3YI4fp6WdvHt9seY0kUJUpBXXrhnBPToNRACCVVTwihva3iONabdxRFrVZLL9OyK57Q2+q0Eg6E0HVdL/CHhobuvvtu3/c/+yuf/fznP3/ktVe3b90Whr52UeOch9UaISSKIoyplEIIEcdxFEW6t0AjvJwzattREisAkjiZnZ3dtGnr8NDo/OLS6urqrl27du3aVV6vtlotAEC1WvX9ECHkNT2IlGVZhmlemDw/OjJ2xx137Ni2XZdPU46rBG+1WpxzADtkwFqtYRiGadqUSs2h062FpVLJNE1KO8Y1cSwilmgU7wqQV8KO7EV3qG+si/boS52n3rawKwC0PEUH2hVAoSsnyztuVRvevgH53TD1rqBIX2qp6RF+N57n0tsVevvslv+/5rsACgMIu1rJb8fBEcLdK7l02Ruysivv5yXMC0C54fo33hykrijYqt67JAQdzvWGp3t5vn6Z7vnQLSCEkDAMGWOplIsxbjVqjDGIYMwZIciwzKbXXF9fX19fjeOgfyC/MHfBxLDiVRFFlOJUKrWysuy6+aGhofVatdWWAErbdqMoiqIIYQCATpIlwkjPL86569qWpX3bhBAdTxEAlJSdC0ulUkEQ/MsPf1QulyFUqbSrlEqn07VGM0kS203NLc5VKpWhoaGPfeIjs7NTQRBQ2XHY6ICPACAImUgsy3rj6BHLMj70oQ+88PKLK6tLpb58objt0cd+fOiFZ9tB20nZrVYTIdRqtUrFAaAERsAyyPFjb0UTWxCACCqkgGUZ1UZ1Zn7B931imYxxxtjAwAA1cKlU8sLgxRdftA2TUmKaFAgpEdZwGyGEEg0/alEaWegraOH1IAggxJxzxpn2nerr7280Wn4QEdNaX69BRHbu3rtarvzgh/8yMthnYjTQP1StrI0MDduUACEBAVJK13agEt24XLQaTds0s+lMwTL6C4XFhmc4aT07XctutRue542Pj2/ZsuXwK692gLluCUQjoYJxZEJMMJHYMKjqWNhBAARCyLIcIUQY+o7rJBGLokirOugFUwf0PQAXIaSrOD0x305WAFGXsSspxoQQvQrp0FwnbFxD1aYphGBCSNApbumP0GVIAICuCGqMWwgWhlq7NtGDgXMehQlCCGBQrzeVUnHMdPqtvy9jHCGkYXWdD+gQQtfwbNvucWoYl50RCxI3ZRqGBQCI45glHQ6IFu3RHFshhO2YEELBFYCqV05DnZge6K+s74ZlGZRSLctKKRFCEAgBJopgnQboewIwiuPIdV3TtKrVqkagdBwYeRHBBkY0YbHO7zDGpmnpkpJSijFeKpWSkIlEnj5xhoUglUoJIQzT0IxypZTlmFyK6elpza+JoghRoieU1FSuLl6svyDGWEouZeeLQAiVkEIpvV12ljUpZVfxVt92KSWlBBHMudL1A51EaShESmlSU3OuEQKcC9M0CMRccIyolhblScIu6fN2+PVSSgUkwlDLJ/Y+VMPx2qcXAIkQ8potpSQm0DLM/tERw6Rra6sAANu2Hcu56sCuM2fk8mJbSIkoSZKEBT6lFEKkzQ+1E2kYxkAAx3QYY1ApABAAiDFm2lYcJZxzN+VgjGu1xuCg5Tgp07SHh8a3bNmyuroax5EQIp1Ol0p9Qki9Wo6MjLz73e++++67p6en2i2Pc/7ud901Ojr+7NOHbr7plhMn3zx58vTJk2c3TWx+9tlnGWPac9VNOfWGt7q6PDg46Lq2jihKpVIcG0EQMRbbts05P3v2LCYAE2RZlmW6mUymmC8IDkZHR2+4/sYHHnhQCjg2ujkM4wP79qec9LYtg7/+m5+7/4E7v/Twlz75iV94/c23nn/uhXpjPZNKh5HfbJS/+D+/9NBDD/3e5//gS1/6h0azecftd372N369Wq7GcXz9TTeahpX3fS8IDctSCiCCAe/kt52uHQlBF4DeuI1t2DcRAABKBSHQfRXr661KpTK/uCCUvP2OO4amptqeFwSJ7jbAEAKpCEKKK4woIbheD+v1eiabqtfrL794yDZpNu1oJRlCSG29knaddrsds4hzTik2DUoIrjcaacf95Cc/cezYsWPH3xyfGA3D0HHd8nqZGIRiwhlXQlqWBRBAGAkpkiTxw8BvewCAKIoG+vrtlFWtNc6cPXXu/JnnXniasZiaeHhoIEmSxaX5B+67f3FxsdFoag5aOu20Wl6rXR/q74tirdMFMEKc9WwYBMEIIaikvosQQqCZcBAiCKAEEkkoAUAYJJxt3rqp1F/0/XYQBJl8dnlxjSXA563BoRLj8Vp5aXltaWB4aHJ6OZPJPfLdb12cnqxWq6lsCijiR6tB4Hl+a3hkiDGGCdaCYAiBw0de+a//9b9W1+s33HzTQw89xJnMZrOaUqaUAmijmRWAqFPnxhh4nud5Ld00g7Boet7tt9+RYPDUU08dPXrUtu2pqamnn3s2iuJsIT8yPIbRBrqAbmkHkDGuncYxAgCAJNaCOagbWQEALvlVaDxBKU1WA5NT5y9OTubz+eWFxcW5eYxRtVG/6aabIASrq6vVarVYLBqGoZS5a9eu2dlpP2halrG+vjoxMcKYgFAxHvb1F3LZgp2y40jW6/XAayGEUimnr6+Pc37fffft3b395VfSFy9ebDbrs7Ozt956q2GSZ599llIKlUJYptOp3/jNXzMM47/9zd/FLFZI7Nm/58//8i9efPHQiVPHh4fG5xbmmu3m6triydMnGGNzc3PPPPPM1NSk41pDQwOtVu2DH3zo2LG/eOqpJy3LeOrpJ8dGJ/7wD/8wm816nveXf/WnURQRQjKZDCHk4MGD/QN9jz32WLvd1u3X2kchjuNCocA5Z3Hk++0XDz2fymQff/zxR3/8EyFEvV7XJdgkjLlhHXr2+UIxf+7MmXq9brmWxlIzmcx6VNXdUUEQAAR7+t2diq9UnCcYU86l9v947LFHm812ubz+yCP/lM+n9+7bc83Bq6emLvT398/PLw4OjH7nO9899OJLEMKDB6/7gz/4v7O50rHjJ2Zn50ul/ve+9/0f+9jPB0Fw8eLkffe+56mnnvqXf/mX3//9P643W9/85jcq66vPP/fK6dNn9+/fX66snjh5jBCSzxX37Npx6623a9MOpdTp06fnFmYJIbfddtvAwMBPfvKTdru9urKEEIrDSEoQhVwpBTFVkraakRUDhJVpONVqtdlsKQVSqYwO4LVmKYRQCMWYkLJrJiEFJSYmUEgZRRHn/I477ti5c+eXvvSlgYGBs2fPRlHg8Zbrpk2LGCaWMjEtgzHGExGG4UsvvGjbtmUZAMEoiikms9NzAACEwXXXXTc6NPz0889dvDiDAIYQFotF7YYaxYEQIEkivTPHcai55K6THhvrHx0fS5Kk0W4CCU3Dtogd+aHi0jHcZX+FxRxCTKkRBEEcJgrwdCoTRUm9Xi+VSiMjI/MLrL9/ACEYeAHGNJvNNupV3w/HJ4YZi4Mguueee6amLti2XSwWL168aFvp8fHNvsf9KLacHBAKAKhjDEKIZjeHYTg/N79WKc/MzJw5fc73fc55oVDYv3//wMBAoZhLpVJQAdM0uew4QxiGgRHVdMxOjtNT6uvCphBCiIAOFznnejRqNAwBCBDqsCWAVmomUErtyxczlvCO8QZCSCreiVq7wTAQEspOO6BCUOfCnRY9hFzbVFLoVRpjLIEUSiolhFAEd5iOmkOjGZa6iVnT1wAAuqtJh9apVAoAwGKtGRil0+lcIW9SAyGkINBAc9v3dHSq41tN3YjjuFwu656euZnZcrmsQQxqWPoj9B0DHdpl52p7d69TC3g7KwoAACRCWO/DvVBOK8CSHiB1iarVw8tkB/zt5p6XMILuHg8VukTpUvASuHYJYr6cJb0xje+ed8O/EdAilD0Ue+PL3hlZ/tcTe+3w26WaQi1+n8+mdagNgGy321KJZrOZTafclN0OfAVRvdVot1sAKMump07Pvvb6q3fdddf2HVsGB/L79u+cn59dXp7/tc/+0srKSuD5/+a3P1er1aIo2L17RxzHhw8fzuTzrmu98MIhhMGhF56rN6qYQMZYX1+f53m33nqz5wXHjh3DiEAIE5agRArRnJiYQMRYXl7GmOzatSuXK1y4cCGEUa1WU0oxwW3bhhhQijOZDOdJNuNSAyslEpaEoS+l1CyV/v5+vTFs2rTlicd/5jhOKuV85StffumVlz//+c9XKpUzp8+eO3cul81KATr9qghpumVn+RMgCCIpJaVmo9F47bXXPM/Toh+akMI5Nw07DMM4isMwHBgsDQ0VqIHb7TZEam5ujjFWKBRYImq1OoQwSZKUm0mSZHW1rBREkBoUOzZZmF80HXu9sm4YVHDFGGu3fUJQLpOK4zgMA8exBwcH0tmkWq17ngdEh+lTrVaz2axpmvl8XheWM2kxNDQURyyOY4Na9XoTADg3u2BZzu69+377t3/n777whWPHTnAuwyA+d/af4pDt2blv27ZdCFFCSKmUAwAkCaO0Q2nRFCqEoFIAISg4AAAQAjgHEAEEkZQAIEBI15Gv6/unNrRxAQCkVJr7vLHicgXZuXf8a5D0FfjypZH/rxSK9ME50K6kPSgcQmDbNoDQR36r3cAQOI4Tx8H58+e5iDmP2l5zfHxsdHR4eXnZMp3R0dG+UimdyRQKhZ8+/lMA/Gw2LyUgyAhDX8qWYVCWCGwbuVx+fb2iRwjFBCqYSWX6DvTpdMh13bnZaU345ZznchlN2eukowIKIblUhBCM4ZYtW1KplBDMtm3TpJ7nKYkIMRDE+/btX1xcrNSqm7ZueeGFF4QQb7x1rFqtRlFkmialxq5du4689hZjdQSNH/3oR0vL5Xq9/vOf/FA2l65Vm+VyWUdU+kpm5xeOHT1RrzcRIt/9zvfvvveOkeGxcmW10WhMT09rkxzOOcFGnIRRFMdxEkWxzsr6+/vT6YzuL5YCNRoNTeXI5TLValVK2uvmRt1Wa72vKKW0fLCWRTtz5sx6rfqJT3zi/vvv/0//6T/9yZ/+0VtH3zCpoX1KGWMQKSgVAMrAWO86QvB2u50kye7duz/zmc8888wzr7zySi6X0+q0WpLfNM04ZnNzc7ffcefC0vKePXtSqdTy8nKlus65NE3T81qcy0qlkstkc9liX1+fadhbt2694YYb+kt9UIGFxXnbtjOZDKU0lUpVKpUoiqTSZoxE1zw1WmS4nbb0TC5TXW/ooqjezBAlxWLRokYnplcKdHFY2euNUUoqCUBHolnCHvcZSqmtNkEPrN94hg7y+rY5AzewcXvv7T2ukTsAIZRXTp4eztWdXJdAZ9h1QIYQIgjVZQVPtPFdAvS01NU7nnbjFcrLdtJ3+Aq9By59mtLUbbAx5dZXihAGl+3Ova/QeeCKLH3DFaL/DTgOeywApQyjU0tIEhYEQRzHnPMkiVKOQymOkYIQYIz90G/5Lcbiyvrq5s0TN9167cFrdsZRLWq3a+uVYrG4uDTvea19+3c98MB9L73yMmrKaq3s2Kk4CYMgBAAQRKTiUgoglW0YBqFe4Ov+r1wuY1mOUiEAAEHC4kSHPkJ2dABYLM6fP89Y3N/fXygUNGe2UCg0m00A1NzcbLVaNU2DEPyrn/3M177+VeZBPVUJIRApIRlXIJ12x8dHhRDlaqVSL2MChWD54tDAYPHEyeNrK8vbd2wtFvJeu5EkUaPRajZa585dSMLENMjZU6frq6t5N1Us5JAUQsnJi1OLq2upfBZAXK6sA4huvf2WHTt2MSEuXpx57LHHEmoUc3nJeD6XiblqNpu9MY8BlFIGYZTKuBobQwRbloMxDFkSRC1thkaIsV6t11vNVCqzulbWKuory6v9pcKefVc9cO/d7Xrtb/7Lf1YQUUxyuZwAMIpjIQQCMooik1pRFE1NTV2zfy9CSDKezaQWKjXFknajSSlNp9MIIcs2bNsOPF+v5JxfEiLQi393pKleFN6dgFAIEUWR4zhJEkkpJRBe0JZKOk5al+hE10EOQmhQqxdbd3jOeieGEHYF0AGAiFLdYqJbLjDGGhXiUnZwZ851xgAhVBBAjJBEmpWvI2/97y56y6SUAMQQYB3rd2B0pTQS3QPWOee6sii4wpBouFlKKaS0bZsSE6NEmyLqa9MAqmaCO66FMVYSQsClZF3rG52IAo1lC25AyISUGOM4ijjfwC7hAmLYO7OSBEEoIdSIPIQAA0QpxtghXfvBDvvYtBuNpoYPNNCsbxFCiBiUmgbESAjBmEDUoNQMw9gwLP0TNBqtMIxN01QKOY6l138FhJ442p1Jp9N6b01EpwapGTe6MqELBvKSbSPS91+HiEopahr6Lmk6Uo8l3cHOlMS4A2FHcVLz2zoatCxXVwh0bial1GK+GuXWDVW66ik555wjjLV7T28Z1HmmRlWUUgAQ2eG7QM55EIYQQoC0bhW1TVMAAYBstVpKqbXyqja65Iy12+1sNtuoCd2WDro5rV6KpQAYSIQJEJIxpmMzCKFQUrJEJ2+mRYRMMLa0ZNb58+dvvPHG22/b8uabbz755JO62TGTyTLGV1ZWEEK2bXPOjhw54nnen/3Zn2zbtu2P/uiPPvaRj6+v1x755+++98GHbrjhhv6+wo033jw9Pd3X1/+dR75byOUNg7iuKwSfmBhzHCuKovX1dQih69q2bQIglYJG2iDYAEDatg2gDKKAGoZlWbRjfKeuuebaX/qFX9q8ebNtuwgBw7Catfbtt9/+8Y9//Nrr9ioFrr36BgXBo48+ce70uVJfLvBagquMm925d+fy6sozzz37f/zqZ04eP3HqzOnTp09v2rSFGDRnWF7LGxgazISxYVlCCICgAgh02akbj7eXojsbllSEICY6xipJIiuVSj6fLxQKOrW+5pqrK7WahABhTEzDMh2WcIw7fpthGAW+n89lhBDf+853m/XGzu07br7lpqeeeurixUnXsbB0GBdxHH/607+0feeO//yf/2O1VhecFQqF/+Mzv/qpj37iL+f+8q3X34ii6Pbbby+X16iZWVlZSjmuVg7BGPf397uu2243gyicmppKp9O5TFYptVYpt1otIdnKypKCcnh48OTJ47v37v7Yxz72ne98Z/euvTMzc9VqNQgi359/4cXn3/WudwGkuIhCFkoBEdKd4EAJhTEQQiAM9BgGCimIEARKAgKB6PRWQQAQk0JKLAVkkt100w19fX2vvfba5OTk1My0lBJI8vFPfEKB+PCRF3/2zM9M0zx69I0wTMbGhwYH+6u18mc+86tPPfX0c88e4pwfeePIxMTErl075ufnPc/T1RwAkGEYL730UjaTv/fe+znnrptBCHEugFQIIdmhjGlLDwkA1vmSUiAMQ9/3DcNQQJimmUGp7du3x0g9/PDD8/OLWzZv41w++uijQsgHHniA8RhjWyPpshsyIQwMTAAAlgUkBysrVSBkX19fkvBuz8fGEQWUAlxJIIDrokrFW1lZ8TyvVCpodouUsJjLH7zq6ka79eMf/yhJIqVEuVzWPfKu6yZJ4rru/Hzg+75uyTIMI5vNmhZNwmR+ceGnP31y/569u3fvVkoSglvtxg9+8L3Z2amXX3lpbW0FYwyhevXwy9rVScsSmha68ZYb333LuzzWRlhmbPfB9z04Ojr6+luvPfXs03fe+e5UNtVnuzMzM4cOPReG/vXXX3/+wtmvfvVkJpMxYpRKOSdPnmw063qlvfHGG8vl9Z07dtdq9TfeeHPXrl21Wm11dTWbzQrBXNft7+9fXVmdnJxMpVKjo6Ojo6Nzc3P1et1x/r+U/We0ZNd5HgjveGLlcHPqnAOABolIZBIEk0BSlGgFS5SsMB7JXGNRI4/tsb9Po8BPki3ali3KpEyKoihRkimQBAkQsYlG6Jxvd9++OVbdylUnnx3mx66qvt2gZs1XWKvXRd2655w6Z4f3fd7nfR4LIWRZFjBps9kUQiQSKdu2Sxtl13WFANu3b9M0bXV11fd9AIDneY7jYIID11OImGDStu1ms8kYV0h3MpFCCIVR0N/oEcRSQkKwphHHba+sLmFEk0k7lU7u2bt73/Y9k5PjJ0788OzZs7Vqu1ZtvvLKa06nWSwM6Kbx3/70zwzdfuCBh95z30OqtVoIQbC2e9f+IOT7DxyhmpVIZNK54V//7Oe+/OU/u3DxTBQFBw/u3759+/z8rBBso7T2ve89v7CwMDg4rFHjxIkTJ0+eBkDs3bu3UMitr6/euHFNrTxxHKuuqh5IhaBEykwnlTYUmmyadhjGELpqr+mGqVzq1AACQoSAJCwGShxYSqlpWhAIANiuXbt81525eX362pUoigyTSEGFUFbDLGHoFCPPCZrtFqU09IIgCBFCqoQTCx5FjBAUh+EPX3t9x44dq6urkovCYJEQrVLaZEwYmhEEnuu6kqvNNxACECJ3795tmiYTYbvZCSLfcRzbTlqWhQCOI9lueZZhmnoiClosjBhjccgAAIlEwvd9KSElaGRkZHR09MrVS2tra+Pj44Zlrq2t1Wq15cWlmAXjY/dfvnLx4IEjD9z/sNPxRkdHx8bGatWWaSbiSE5NbsdY51xgRDVClM1dvV6/cW1a9THPzMwwIRFCIyMjU1NTyWRybGysUCjoBlXBj1IJs/WEcmBWzLZuFI1xP3/sZ4IK+4pFrGGAYLf8DADACBlUgxAi2BXT6PaLYgRAl1Lgep1YcKprUkhCke+HirjQ34MkAHEcC8axpieTSdXhrcJmI51GCEAgCdZiySQEEMKYM4KghLeyTjXS+uX5PnVDVcp931f8NhUxYowLhYJt2+pb+0Gg3DWV/2cYR4SQZrOJIJGAK+mCVqtVq9UajUYYhjxmCk+TUmKiqSBNnZFgvJUEACHEhPTBegCQ6AV1vTSZIUmlYL2DdNscVdxOtmJhtyCzPo/4th6X7i3oxX+9mwIBELfJNPdBt1618I4OZfDun/ukTmVUK0HXfvDdf/L/8oUQVKF8FHERdxvAwzDM0Uwul9vc3FTclrW1lXQqk0jarttpNJod1zEtbbNSqlY3EwlrfX25vLnmuM2/+ebXs6lku91+4cXvt1qtY/fe9fjjj1y8ePGtd05EYSiEWF5ZnJycfPSx9xFCMpnM3NxctVpdWVnSdd00dZWJ7dq1q16vb2yUU8m0qloYhrV9+yhCyPfDtZWVbDZnWYlGtbGyshaFDAAQRZFpmgDBMPIRIQAAxiNCset7aWpxDjCCuVyGc9luNy3bVFXE5eXlhN2ybfvppz946MiRr33ta7Pzc//u3/0727anpqZWV1crlUrKSim+iSrldbm9UggBESIYQyn58vJqGPqZTCYMQ4KJ0/GikAkhOsANgsAwjGw2PzQ0tHPnzla75rqddqeRTqd938/nLdu2lWJDrdaQWT44ODg5Oek4TqVU4VIigGqNzkQqncnk6vWq+jCE8NChQ4uL86qYo2Q6DcPQdSpZnEinVcGg1Wo1m83FxUVFmDJN88b6jd379k9MTKyurmOqcS50zRwYGOi4XjKRvnJ5mnP+xONPbWyWTdP+xV/8lfNnz792/IeVSsNz/ff44UMP3Z9MJl3fY0z14nEJJABI8WohhEJyjJScUNd5r8ss5pIzSQhCEvwIkdp3vfo053cjzu8u9gAAUA+5lj2xmv5n+jRqiO881B1nBGDrQSA1dC2OVf4WhqGp648/8uibb/1wYXn9qfc/MTIy/Cd/8ieNau2pp5566MEHr1y5cvnKlTCMAi+EEAdBpGsmgNg07VarEbOQUqJ5SEoex/Hu3bs6nY7n+UqgKpFIKKGGQq4wOjK+urrqui4XMZJAKbSqqo/rB77vG4aWzWaFYGEY12pLUsp8Pl+tVhkTBOtBEJiGfeDAAcbYSy+9pIKVdDrdDJvpdDoMQyEk53zHjh2djr+2Vjp8+DBj7Jt/843BgeGPPfv+xcXO//jzr9p26tlnnzVNc21t7eLFN27evHn23Pl9B/bv3r17avu23/pX/4dpacWBoVzGRAjNzc0xJijVAQCCA84kQrDdcriIleurYlm6rjsyMhKGYafTMU2z0+mofgVVt8cYIgRVyol7yvoIIaxRHgRxLIKgs2fX7nQ6/fWvf31hYaHVaum6TjFxHCeOw2QySSlBEkgpoyiKBSeECAE455/73Oc+/OEPz8zMtFqtHTt2IIRarVal4huGBpUfF2PJZPLKlSsYw2azee78mccff7zjtKbnr4WhH4dRu+1MTk4NjwwyiduOs7a2xjjPpLOEkHQ6vVnR1bKwuroOAOCcR1FEqJZOp4UASsZdLacqDI0jvlmueZ4XxzEAXSKhwjuUI53KugEQUPbxYgHftawr4jkAQMHBsueECXrp5S2ItvcmvI1bfCecuhU+3pqgdvFuCPGPLmJ2LwcAqPSZ+gHKlql1p1Lz1vNu/d+t0QO4PZi44w5sLSBvveD+mxDCft4NtxxEwHexmJXkCAB3pOlb92HZ/Vjv2qRK+24RpbtoO0ASiM3NTYXBpVKpZJICkFSAC5RxI/R1nUoAqEYBEACjoaEhCTmiYGl5LmFjHjqGif/pT3/m6qWLL7z4xujo4Lnzq5/+6V/fu3fvyTNv+0HbMIiQLIoiTKAU3XCQMa5pVAjJOaOYUEziMNrcrCooE0KoEyVAL7joiicwFmEM0+nke9/7ZKvdXF5elrDLdzNNs1qvZ7PZvXv3CiGWV5dc17WTVsSkansCUHAuJBQAgFwu44U+YyxfyF6+egkAMDYxCqF0XbfTaqYzycj36qLbvxy4XiduW2YKShCFoaFRt+MYCEORllLWG41sPnf46JG3Tp18+pkPPZkvnj59GgBw/PjxbTt2PPPMM17g/97v/G4YRybRMNV46EVRJJWpEeeGbliWpVumAHxjsyz9oJjKcs5TmUy7XMaYGiYxTHN6evqjH3t2ZX3j+y+8SCmFBPNWi2oGItrY+CRE+MLFy1LCMIizw0PJdOrmwqJpmjELocRAMCml2m0RBs16TUBQyOZGhoJKy2UACiGiKMjlcmPjI1cuXV5aWFQ5hhDdaJ6xiBCiFCfcyA2COO5JIasnFceCMRHHvuqRUrmEatMTW1WPAYjjmGCN6lQIEYWhirAVtKoIrYwxALrVH0VMBj3QsE9K7VHgY13XwzjWdV3XdaWmEkVR5HkAAEKI0iNSwTqEUKmrYUyFEAB29UBVCoEIET2lPDV5KKWmqcdx7LvRrdnbi9GllGEQE6KWIEgJgRAGImIsrteaSvScUhrHXdkNVaLjnEMoFYAeRQwhBHGX+if64oAYcKX7DBHEXVVr1RgrhMAYmZoBe/JxW9cihBAQ0nVd9QjU6TRNsxK20lJQn4/jmOhaGIaqhKB+QAjl8/lKpaJhAiToanpAoOyvVY8nxlRK1mp1vCCCEHImESQQoL7TgLp1mqYpzqnsGaYrdlsQ+DyOJVFy7UjTNABku+1TSpXqtKbplmVhjAEUhKJqNYzjOJvNKgXM7noFMJBcSIXnYiCg7LfSCyGVdjMLOZPJZNLQNB8hxZNSqspRFHEmYsHVE1Hhseo8VZGMpmlAQsklxqTZdDRNGx4aI4TU6/VatWnb9sTEhHLqllJSqmEMVBUQY4oxEgB4YSAgkAgyFimKN9ZMIRghxPPajuNQigFgUnYLD5XNammjXK83lD8ngKKnyq2kLZlpmgiD2dnZt95659Of/vSuHbsHB4cnJ7Yf3Hf43nvfG4Zxwjanpqa2b9tVqVSGhobGxsbOnTsXBAHVyPXrM2NjI57ndTodXdf37dtnWdbS0lIYxgCAZrPJGCsWixDJocHhp59+ulyuZNM5wCVCUEKcSKR03Ww023EUDA8PEkI+9mMfSVjW6urmxMQAQvi//emfzd2Yf/jBR2v1jcnJiY9//OMnTry5++DBr3zlK+vr64cPH/65z/z8f/7Cf7pw6fLo6Hin00GQMMGbzXYmk8EU+WEMOECAbN09t+6G/dfWjVVKKITqDVIts5BSaibsiW1Tly9f7nhuEEf9NB4AQAiAkCh5GSmlUn3xPO/FF198/fXXc7nM0aNHjx079uCDD77++uvf/OZfhwHnIi4UhsbHtz391DN/+7d/73lOvV7/2Z/+mY9//BNzi/OlUnl1dQ1jcs/Ru0ul0tDoNgDAYHFAo7gTBJ7r+p43ODS0sLBw/fr1ZrM5Ojp64MABIZjnugM7dpw/f/a111772LMfnZqaePvkm0fvOqxpWq1We/bZX3r+O9995+0ztm1bllGpVCQUmUzac8LLly/aZiKfG8xli5xLNbkIRZzHjDHl4CIEgD0bY7WmiG6cRrgQEEjL1qVp7N23695771lYWPrzP//K+YuX06lUs9G5fOWc4zXHp0aEEBBxAPj161cB4AcP7p+amvB97zd+4zc2NjZee/2VYrG4tjTn+65lGY7jAQx9z7PtFCYoCIJGo+F5HoIkmTSCQCKilD1UKNVV2oFbAAe13kIIhOCO2w4iRwjBhAzDmBJ07tyFTCajabrSfFebl4gEhBAihbNLzoGU3DBIFICNjXKj0RjIFzAGnEO1rHXHzNa4EQKMkefJcrmcymSCIJiamlqcX5iamkpn0++8844QYrCYz+VyZ86c6XQ6QRBpGgnDcPv27dg0KdUPHjwqBArD0DRtzqWmGYuLi2tra3Nzc5JHqvU6kbQg4pRihMDLr7xUKpWEYLlcJpVKh0G0ubl57NgxXdcrlcqhQ/vzhXSlXVldXWm0mnv3jDzy+COXLl36wz/8w2Qi/ZM/+emJiQlLt+Ig/NjHnn3uuec2K6UoCnRd27FzamFhbmFhAWN86dIlSnXDMNZWyyMjoz//85/50pf+PJXMnHjjnenp6ZGREc/zgiCam5tbXV1ttVpq9eOct9ttXdfT6bRKATzP8722nTAxooxF66trECJd06KYAwCUxBahSCUCpqEzxiRCAACN0LbnsCgWTHz21//FBz749Gc+85l6o6H8fqSUipYEJeCcC8YZ6uKYcRRnMslWq1Gtbp5oNVSB81v/8x8oNT03LOSH0plsx/XOn7u4a9e+Zz/x/kNH7jJNu9VqdwWOdCtsta5cu7Z9cvtddx3zg1BGMJFMZ3L5TsetVEvht10AOZSAxwxDEAbeiRNv2HZienp65sbsxMTEMx/6YKFQOHv27I0bN/bu2725uQmRrFdrhFAFOhNCCMGMsTCOdF2PQuL7PgQYAiyFVKQcyQXnnBBNlVFVUVzTNMGBOgIAAEYRl8w07JWVlSAIquXNRCKhU6onqGrd9n1fozSZSjDGhOS6RiHCClXEyroj4qOjw6Ojo8uL8wpHvnLliuN7O7bvGh4ePn/+IobINPXA64ZVbuCzKM7n88qwRNOIrlO33lI8EgCAqRk60QQAggEWiWbQMU3LaXUizuOQKYRXATWO43/sYx/70Ic/3G63wzAcHByu15sLCwtRECps9Nkf++jk5GQcx48/8aRhJicndu7bv2d1dfXggbtMI8kY13UzYWcwJhjgtbW16enpUqk0OzvTbnbldLZt25ZMpnfs2qm6fnO5HABAFbn71XcVjXTxWQEBBkpPmXXNBm+xf2BPUgMhBCGORdciQn0j1f4FAb5zr+n51fUFbKEqkygVsp6gRFcUjgt1asOwVAjn+77SCeQcYCAVCUMAKSGWEGJC1FyQPVlkFT8DABTVTMnBqetURHiVYjPGEokExUSRU8+dO5dKpSYnJ5PJZL1ebzQaXIooZIVCYX19fX1jtVwuq55jFSFbholtrG4a5xL2OoRUwBMGgbrh6h0loa3idoyxgLfsNNSN5Yo/CGQMYwhhr7sRRFEUxOGd2s0Ka74trVY+flveAODWM+uv0Vuz7B4WdusD75YI6L/Zl1t6N3nzXRS0/z9eypBK9d+FMfP9QHFnWo12p+UEkW+aZiaTyQ8MIgQAgtTQNzY3lhcXEN7WbFbthBkzNDpSSCYtjEGptPbdb5969NH3PfbYI6+//vp//9J/y+Vynuc5bts0TQqw8tnYtWuXlHJtba3VamkaUfUWSqnv+47jVavVVCplUCOXz66urFFKKVVy8oaAIJPJWJZ1/fp1p+VAgNPpNItipXQhIUgkLUrp2sZGMpXtzZ+EZRtex4MQfOADT50+fXqzUk4m04xF7bZTry1jTK9cuZJIJ5599tkr01e//OUvu64/MTExNjpa2dx0HCeZTEopU6lMs9n0A58QDWLU75JOp5OGYSQSluypHPajNMuyXNdtt52BgaHh4ZEbN24QgiSIdc1s8VajUSMQFQoDxWJxeXkljsO1tTWM8dDQECEkkyu4rqtYMKWNTcs2TNPuBtxucPbs+U6ndfjgfk3TEolku92avX4zDMOUnRgZGVlZWfF9P51OG4bRanU6nY6miThisZBAIkr1IAgsOzE5Obm4uOwF/tDQUDqT/NKff/nZZ5/9+I9/slKpHD9+fG1t7ZFHH/3Ot5//3ve++yu/8r+MjY1tbtaKxXwqpbs+pxQLISjCXCoaDlLtqwgC3481jVINqkAWoS4igxSCLACEdzbRw56V5R0VnTvGOdwiuPEjmgzkFqmZ27HmO46z9aVCTPVD/5icCyGFEKJQKEjOPL/DY3Ts2LFsLvWVr35px9Q2x+lgAG3brlWra6ur2Ww2m82xKM5sz1UqtShk5XI5k8m4bkQ03bZtxkOMoR+4hmFQqoVhSIgmJcQYr6ysKcEH3/chRGEYMcZGR8dGhgak5BsbG2EYBqFHcerIkSNRFGyU1lXPQU+oKFYmkAgRSiFn/Pnnnx8cGFZY9vDwsO+F+/bt+8AHPvC9731vfn6x3W6dOXvqrqP3tjtuvdYqlyuZdD6Vtn7n//r/Vit100y+5977FXW63W6fPHnyyOG73nPvfYlEarNcOX/hnO+HlJJ/+2//3f33H/nCF75wc25WSqmEYhAiEGIpAaXE1mwFlBQKBTVNarVau91WvUigh7SqrhnVmCPErT4UhBBjghpdypUStm41mmfPni6Xy+l0mmLieZ6C4wlFGGMoJGPMMExNcC5lHMeZTGZxcTGRSDQajdXV1UceeWRzc7NararaphAijlkURa1W6667756a2m6a5ltvndA0Mjo6un/fnnfeeWdzs3r//fcfOXKwVqsFYYwxphqWUi4tLWmEptPpocHhUnlDfUEBJOc8ilkuX0in02EYNxqNarVqmQlK9E7btSxLAeWFQsE0TXUNQgjVMAFuQ04VRHurFgr+EfgV3k5S7i7pt2PNvSHNebcwA/sbk7rVd/4t7GKoW99XohZbToSklH0xij6ke/tM+9FAM+jBwXd8HSklUO9LqUAW8K7P3HEf3o1Egx7+e+tieqtJF4gXsn8H1AsDICCQUvQ1pX9k1bZ/LtHtRroF0MN+55JEas1vtVqNRj2VSilZds6ZZRAVQMcsMpiBKDJNHRGYTKUuXtq4fPnC9WtnseRup3H6zFsrK0uGrZkJeujI/oXFmRszVzJZe3ik6HSCeq1FiMG58MNQxeIQxhAiVSdW8wgAhBGQXMQxAxIJIhX4ErOu55uU0kqahw8f3qyVHMfRDGrbtud5cczb7bZgDGOcSCTW1lf+/u///ud+/mc/+9nPfvE//Pnm5qZGVP1BGIaRH8hjjdRqNQlFMmOpmK/dbkopK5UKQpSFkTC5INx3/MgP0un05ORUp+lFESOIrMwvuu32yMBAxNn7HnlkfmO10WwTQ89kMktLSw/c/+D4+OT09HS5XNEMo9aoJ5PJHTt2IAkH8oXVpeUgCEIWa5qmSpjKINHAqNluhGGIpex0OnYhz5nElAgW2nYSY6pswd/73vf6QcglPH78+OjoaAzio3fdk0im/+N/+s+LN25QjFNJu5jLh5yH129Q09I0LfB8UzMC39epRhGMoigKYt0ykwkrYdlexAMIGWNKHK68UQrD0DAMVWnAmMIe/V9Fw3Hc440KQbCGIJJCSgBYLIIwQAgBgDzPo5TmcpkwDEulkk4thfwqekWtUZcAqPRAM3SlIgcAUE9ha56gBOtAz4qkV9ySAKF8Ph/HsbKZVbCpEqAIgkBKqdoSUVf7mKliQ3+6xXGIEJISchlLKSnRVSKBEAJCqMVNSk4IVcJ5amYzEStOdBzHii4NeySavkKFhZCp6SELhRBBEBCiSpJdWo1aFghBlFIABUJYlVU0zYhjt8fFu7VSqXsOIYzjWEquxr9hGDrpChBv0Y8mqjWYUgowUhIZaloBgJQPpEoM4jh2fC9ksSJrCw40TQv8aHR4AAoYBzFCRIlNW5bV7jTVE1GnAABgSrUeMq7ucxRFhGJ1N9SHVb6k6xT02puklLquMRbHcazjnlD1Fi4S7mHuCAMABQBA13XbtlU6JDiglIheuqh46xBCzhg1DEKIlNzrOIRiVRlFkEjE4zgOGVMbnGEYyUSKM86U4Am8jQClLlJlrYJJx/EAAAhxAnUZQ7cVCRixGAqOo1AuzK+GfqQTijEmmIieDpJS2eYijqIIY6jrOjY0FU4PDRU2Nzc1HbluZNlUSsK5jGNfCD44OJxMJtVzj3lMCKk3qq4TqFqCpmlxHJmmuWPHjlqttrGxsbG2/nM/95k4YpPjUxhT07QtC6ZsS6d6Nmm8884pKaGmGZVKpVKpYIpK5Y3Z2VkpZS6XUQ+iVqt1Oi4hxDKtRr3VTeMjlsnkPvrRH8tm81cuXvN9P5dMrZUq//Mfvn3k4OG77juWSBgYA8dzx8fHE3ZqYXGu02lduTJdzA8gpNVrrWazPTS0g2Jy+uTJKzdmleXyt7/97fe///2//tl/MT+7wJiYW11KWnaxOKD6ZlKZDEKI6hpgW/bWLfvdbdvrlhelMI4lxhBjIATgAKaymXa7PTo6+s47b33+85+/5557BJD33HNPp9PJ5XKtdieTSSKE41gghNquG8Vxp9Z88cUXgyA4dOjIBz7wAYTQ2NgQfvSxdqPJBLx24/r58+fXVksCQNtKDxRHjhxOZrLFK5dnhooFjPTxsW1xxF95+fjRo0cL+SwAYHhooF6pUgTTuezJkydXV5dv3ry5vLxMNWN0ZETXNM91J0bHWvXGCy+8oJrDzp07J4R49ZXXv/fd76+vbayubEiBPvPz/yyZsr/73e9UKpULFy5kMmldS0VRFIeRadrZbJZQLAVECAjGurqcmqFpGo+5kBIBCOQthgqE3SwGQKhhKrkwrbSpgX37pn7lV37lC3/8X27enPvBi686Xi2Vpkvzi5ate0EEIXIcr1Re13V95ub1bdt2lcrr4xNj995993PPPafrwDA107AKhcLi8oplWdls2vEi0zCbzWYYhskEdN0oCCLbtiXo6ssrWW4pJYBCefpBpfsBRRj6hCLH6zhO6/Lly2uVmk70I4fvmpm52Wi3du/a+4H3fxBjrDTNhGQQICh70ZTsrpkbGxsXLlxIJtPFXL5ebylvuu5A6lWkIAQQd6O7Rqtp27ZlWQnLyuUKu3btymazyVRibHQUIaRRo1gsvvzyy4uLix/+yDOBHynGCZIoDENN0wWEQ4NjjuNoVCuVSmtrK0tLSxMTI/v2PdFod6qNqp0yS5XSL/3qLw0MFP/9v//3mUyqWCyq3sQwDI8ePfrxZz85ODh46tQpTSerq6uf/50/4oD7Xnzjxs0v/PF/dhyn3XKGiyOltdLy3Jrr+I++730UkvJqyfMbnu/s2bMnjsNSqdRuO9TQIYQijHft3O84vudG77x95uWXXn/iiSfefvttQ9NVJ76UUiG8tm0TinVdb7VaSqkvjmNdpwAItTkyxjTTUP2UquPE0IzqZsUwDNPSpZS2bXU6Hc65bZsxZxSTrlssQrquj4+PbxvbMTQ4UipXAIjS6STnHAIkBQiiQCMUQgwAiCOesFMBjhzHA8D7/Of/AACwf//eSqUmhEAA7tqxM5nMzs7fzOaLv/BLv1zID2azOdf1IyWHDBATHErRabtCSIixhJBoGodoeW21UCj81m/91lf/4ktLCzdSSSsMfQBANpuNY44RME3DcdrJlA2RXF9fk1J4njs8PNRutyEUiYTZbiLGQsMwdF3nXHLOueAEQc7jZrMtJVdBC0JI00kcx41aHQCgaVoikVKqI5zJOOJSSkoNzjmlNI5DgGAcx8ePH5dSGobm+37fnE3FsZTSwPO5FJZlRWEcBaGVSI6O5hqNxsc+/JFzFy+4rrNt27ZapTw2Nra4uHjx4uXCYKFerytLACWqrhlUDyjGUAg2vGNbIpHqtNrKY3Z4eNiyEnEch2GIEIoD5vuhbdvJZLK0VvI8L5lMxjEHAqqgQtWti8WiZXoHD+5vNGunTp2anJy8cePG5uam67pJO8E537Nn18TEOITw6NGjQwMjTtvZsWNX4LNUMjc4MKZRw7ISvuMvzS9ubGxcvz6jTDJN0xwYKIzsHR4aGrJtO5FIpNPpiHHFE1UIrGEYfbhTSq6SGBU4SSSFEFCp8nWrSqAP5sJexyoipNvfDwCCOGHbhCAgJQIQEZXACrVCciDVwTnnQCJLN+I4NjQ9jjjViIoS+6sKQgjpGgDA1HTZU+0ghGAoEYA6Ib7vxkwwIAGCAEnUpSziPmGrC3krEwvGVByr0gE1KlQ7l2q8qNVqgnHbtmu1Wi6XQwhVq9Vyuex5HiEagFCpDjSbTd2gjDHFmdN1XSmSKeYB55xSXQjBGcO9cFqFyv2kXkjZd8JjEsAtGK/67sqLVQDYY4qAfoMiY/wWuxn0EN53J6W3NnQIQK+5qReQ/Qjlyv/nVx9cg10PNPV4uos+ukVnAwIAuPWTt3sx3X6Ft+XnisgppFRtO7plFLseJsLQddd1gYC+F8ZRTUDpxwEh0HHblNL8QP7IkUPl0hqhYHlh7vqNa5jAbdsniwPZC+dOLSzMOY7DWGSYZqfTGRwcbLcc13URhIID1/EX5pda7Ybnefl8nlLKuUQIWVbC8wJd15TgQxAEiURi9+7d7Xa7UqnMzGwIAYZHx3O5fCKRokQnGmNhFAQhRjibzQWB7znu5NR4JpNptttRHHIeT06Njo4OVSpl09Q9z3vt9VdTyTRCyPf9tbWVRCKVz+fr9Waj0Xj55ZcPHz68srJmWVYikeKc12q1sbExEQlCSBBErus++OCDH/7YRz//+c9zKXgsIISpVMLzvHQ6jRAWQiSSlud5ruvyKD508MgnP/nJ69evf+Mb32g2m2+88cMwDJNJWzewaRpQSEs3Op1Oq9XJ5XKh37WdbTRaygYNQa1SqViW5fshQiAKCSZQPT2EcLVSzxeytWrL990dO3bs2rl3dWUj1vTh4dHx8fGRkTFVeuKcnzx5slar2VbC8wKMcaVSsayEruuu59RqNdVMPTAwiDFGCLz99pv33nevbSeTyeTGxsbiwtLGxgaUqFIp28fuM00zDGMhqGXhXj9EF67CGDIGIASMi2pt07aSxYEU56BSqQoh1MRmHGgaUkMag2543B/hQtwiI8p3Ta6tYHTvvHf+Ss0RpexxRzcAuLPF8LZZ1sPEu3oayjyTC2DbNibQ0HGtxjwnLm+WLMtQ5fTV1RWVthFClpaWrly6TDX9X/2rf53P53/3d3+/slnTdd33/bW1tXQm+Z733F2pbkZREIY+JUgFH5x3ux9UytrpdBYXlwlBhmHkctlDBw40GjUI4fDwcBB6rRaJQzQ4WAyj4Nr1aVVd5JwjRHw/xIioZJkziSigVIviYMeOHa7rBn6kurNPnz5dKpUYi4aHh5vN5tLSQhi5l69ceOKJJx984JETJ05sbGxgRIeGhlqt1hs/fPOpp55KJTOPPfbYXUfv8X0/itjgwNDa+iqlVNeNRCJx+vTp48ePq70t8PxWq6MwdEKQEIIxgTFsNTuNRmNwcNA0zfHx8Xq93t8k1N1TpUIFcxCCAOjS7iCEFOHGGDkFAAEAAElEQVRWq4UQymQyqVRic3NzdXU1m83S7drg4ODCwoKiGWqa1lXfFl0RUimBkCKTyaTT6atXr/7VX/3VSy+95LjtmZvXKaXJdEItgOurG7t378zni6VSKZG033rrxEMPPfTw+x44d/50o1nlnC+vLOzZvXdoaKBUXtU0TUjJQmYYxvbt28fHx6muMcZs207YSUXs8gJfM3QJfM55s9mOI44RVVugKiZ7nqfgHhWj2LaFEPAjBn4UEUl0dxChhof6jOjh0RCoZB8K0NV3VuOf3+qPvG3N33pYfJu+hIo/lBCEVGl/H6/ZegQIYV/9WcquGdG7zqKa5rqI9T8+57Z8zdtTYrjlTdB1qOjO8DtQpP5Jt6LS7/6+7/4WEsG+JWAvIQeqVPkjX2pL5d2uJPUnt60wd1gMJuxUNpthjHc67XJ5w3c7rutevHjeNOjhw4fTmVSn02m77VQqZVj6pUsXL14623Ea1cq6bZJ8JpHNpc6ePxUGnmnmEUL3P3AMYRBFKIq1dC5VazTSmRSQuN3y1T3RdR0hs9lscsZ0XVe1A02jKsbCCMdxrNo2AQCCA6xjTdMglLatlyrrjuN4nrdr1y4IccvpYEoTiYTgcmN13dJNCLBODclBIT9w//33f+vb3wIAqBYNiSTGKIhC0zYYY416Kwg9jHEfmoRU0wmuhjHCIAqC4eFhQuj66obT8dLJTBB6hmFAKQUEURxv27lrav++b/7935VLG9lsnjH2pS996ckn35/L5W7cuPmDH7z84ksvVyqVYmGgUalWJQiCgIuYixhCHaklGwDXdWPBAQKapnE/ZIzZdpIaOvG0MGhGwHe9oFqtemF04MABqumz84tXr00DBOOInzt3vl1vVCt1K5kYGxxqNmpXrlwJOU9nM4BQgqCU0ml1Egq8oySKIogE4ZwFgRSMxwybpqYRCGGz0XBdVzEb+sgvAIrdg9SmzBiTBOi6TjHmTCp7UgUEQ4DjiEEIwzBMJBIqSXvqqaemp2cWFhbGx8eDIGi2W4SQOLrVPNiXh1apo1pa+7SUPlbLpaSEUEJUW2Wj0chkMoZhqGq92s6CIOi6VgCgsl8AgAqyPc/r0Y1jBUObJkkkEqDndMpiIIQQUGgaoRQzhg1DQwhwHutmV4gZAEE1LEV3YQQ99WEhhFItUxmanTCFEGq/QD256l5kj1UyD5HEGKsBCTgAXJhJE2O8VdNDoQBq4cUYYowJRAQiALq9jWKLZ4AQQqHJACMhBIRYSiglCMMQcKZaJmIBECWGNHjPpkZw4bTb2Wx2dHRUUa5UCsQY03RicUvVHsI4DnsSzIoprP7c931d1xVnHPakAxUzWhGjUFfWX3Q54whKCMYmxjHGzWZTUcAUId20dMuy1HhQB1d7k5QSwFtNppxzIDmlFEEoCFFMpTgOvSiMY8FYxDmXAEVB0AhDIYRGddOwVMaleOJqSKC+4TuEYaCc66EUMAgiAADC1HFamqZpmh7HsWkaElLL1IIgCEUkGLMTpgLlCcQAAkQxhLDTaWMCdVOzbWtwsJhKpXr2p4Jxv9Vuj44OI4Q6nc6NG3PZTN6yjE6ngxHZvXt3oVC4fOVSFEXpdBpB6jiObduEYEJwKp1QUhgvv/zyZqnysz/zTwcKg1HELMsggEAAiUaABFKg9eWS74eu63teoOu6hCKVzEZRoOt6GDBgoKWlFSnlZrliW5bv+p7nWZbleUGhULhw7uL/9tl/+dhjTwwUh3ZM7SQEOI4bhuzAgUP5YjGR1Pww6nTaQnRyudz4+HgYBxo1rl2/mU5l1tfXYubU643/+IU/ZkI0Gg1N04CAYRC/8P0ffOiZZ37wgx/M3Zxv19uci4985CPj45Oe59VqtdHRUSElkLeiiH8Mcd76UoxmhTWHYewGvnIaSKVM07beeuft5dUVIcSpU6e2bdv21FNPcc7r9ZYQIpFImCY6eeqqbdsvvvBSpVZ96OGHDh48qOumEGJjo0Y089c/++ucgd/5vT88dfKcFLhaaVcrjbfePPlv/u3/sbi4Ut2sFx555KEHH61UKnv27PF9v1gsJi2bUkoRLhQK9Xp9Y2Pj8uXLURRVG/VCofDQQw/s2bOHUlrI5oaHh984/sNSqcSleP755z3PaTQaFy5cDDw/ny+m09knn3yaMXbXXUfOnTt39uwpL3CLxcLOHfsUM2lSH3e9lipiSQFrtZrn+Qgh20rmMVbvi5gBjJVNg6KwCACkFBgADgWEEiHphdDSwO7dQwcPHjx96rwjPNOya5VyKmu4nsMYQxAT3XBdN4qCgwcPfvITn/r//d4fnDl5an5+bqO0tmf39rGxMeUfPjo6bJp2o95y3Y6um0HgKRevdruNECIkIUSPjqN0QgFQzxsAACRQdbsoDiTApqlhkvzhmyfWNmoaNSqVKkJkoDh0+PDRM2fOjY+P2rZtmBrCGELJuRACIIhME9QbweXLN5cXl65evWoYBgZwdHRUDQnZB9178Q+EQAoQCyA4GBgYkFKKmBmaPjW1fXl5sdPpIIijKKpWq8qbd2oqn0hYMzMzCoKBEObzhU6nk0ik8vlMubx58eLFMPKvXr04PjEGoPzWP/wdE2B8fBxCMbVtfNu2bX/5l3+ZTNn/5t/8m0KhcP7M2W9/+9uZTG7Pnn1vv31yYGAgnU5XytVXXzlhGNp77n/POyfPUWJduHCZhUE6kWnUmvMzN/ft2V/ZWA/c9l989auH9u+ZW56+cGF+dlZijL0w0C0TAnzXXcdmbsyms0UCyQMPvG92djGOxAsv/MB1XSWP2WP2oUQiEccx1YjaWTzPgxDqOtU0TdVuoURSCJU6OY6TTme6xjw6kYC3Wi2MEecxpYSxiIsYCAAA4FxiiASCGOMXX3yp0WxPT0/DrmUUU6uukpAWQui6LiRHCFOKEdKqlQZCZH5uxbbNhfkXGI8z6bRtpR966CEAUMt1fvVX//kH3v/Ber2xsryxsLS4e/du3/Erlcro6Ggikdy+c1upVAJIEoI9L8C6JiWzbfPIXYcPnT+wsbYQRQwA9OQTj128cLnSrGUymVazWa1W45itri5vVlZ27twZx3xpaanZbG7fvt22iwTDdttJ2gkI0ebmJosC1WPHGOcMYtxdlOyECQAYHh4mCCttRqWSBAFmLFC1ZNVapOuarutxHHpRoOrNqpKtatVBECh01XXd1OAQQmh9vSQlxJjatp3P53ft2jE2OfHq8deiKDpz5tT1mZkr09NSSohxFDIpHIQQAkA3uuC1bhrS80dGRlRoZNoWaNTDOKjWK6lEOgiCKIiZ6Nawm4226/gqhPAcP5GwPMallAhAyQU1EMY4mUq88ML37rn3Pbt3756ZmZmbm4MQJhIJwQWlWI2xsbGxTCYT+BGCRCH1QohWvXXpyqVyuXJt+kapVHYcL5VKjY2N7du3b3R4KJlMGoZBCFGwsgobFNbZF1vrxYQAIaqSPhVxEazBXhSkPgY4F70qsopkVKgDcVfWmQum0FXUMwpGCAEgIMISACGlBBJKwKK43W5jTCXvim5xJmPIEe5qHDMgAQeEkJgzRV6EQvKYOZ2WKoeHYQgBYJwjShDB6kyccyhi2NPelFIq6U4AgCp9aZpm27ZiYKyvr6+trSnesao9C4ja7bbSlLMsa35+fnNzs9Nxox4BwrbtbDYbBEEqmeCcC8EJRV0WAgASAohI1AspOedYeXF3qcwCYwwRAr32Powpk0L2bEv6FAGVLwMgVdFIvaEKKoQQ0pV27R2nT6JUcNXWKqiUt7qbEQJ9s6Y7qJdQAgQBUCj27SnylrgB9GApgDHsEzbR7aROCLsC/93foq5eR2+cQYQAY319OqBE8oSQ3TvDJOecEMK5QBgVBgc0TCQXgR8STGMeq7QWQAGxTKYTu+yds3NRrb55/sLp9fWVxx99KJ9P15qV5eX5K5cuUQ2XNzdWVlYQJMVikXO+srwmhHBd37YThGDGRL3eAgCkktlmo63ElBFCY2NjSjuytLGZTqcbjYZt2+l0ulwuu66rGyYAqFwudzqOZdVktymSSCkRRmEYuq4Xx/H1azM//qlPDA4Pv/XOyXa7CYRQ6nuB6+VyufX1UqvZfuCBBy5cPO84nhAgk86m0+nJyW3lanlpaand6ai5ypgQsBv0q1xRLUCf+cxnnn/++ZdeeimRSBQKhd///d//7d/+7bW1lUKhEEZ+sVgUQmxubjqOs76x+o2//rpp2EePHs3n881W7cyZU+mMncvlwjCAPedx27bb7bZhGIZlmabVbF60LIOxSHChFhoIYTKZiqIIchyzWKn6WpbtdTwMsK5rjIm5uQUhxOTkZDabX1hYUulKu9VRPLtUMs0Yi7gwDZtz7rquwnGWlhenJrf9+I9/QtfNF198kYt4YWHhL/7iLxhj+XxxYnRidnZ2/4G91XLtpZdeHBocP3bsmGI6cB8RgjBGQkhCIWPqFqkBj+I4DkJvaamt2AcYU4WvFQqFIMAYY9W2hqEiFXbHuRre/SEtezozP/IFtwjabH1THUT9tn/kOwpFsOfY2Z+2fcAKYyAlYEzBWABoGEpeqWwKGQHIEwnLcSPGotdee3VxcbHRaIyPjc3NzYVhaNv2L/ziP9u2bdsXvvCF2dnZiYmJkeGx3Xt2bmxsfOc7zy0uLgIoNY0Ui8UgCDpOK+YMQ9LPSwEA7XYbQqhpRK2zjVYLQri6uqIKdIQQCeHbp96pVCo8ji3L8jyPEk3XYRhE+Xwxn8dra2sAgDiONU2HELqOH0Ws2WyqePGtt95S+/H4+KhhGGfOntzcrCAsWq16eXNVgvjRRx4/d+7C2uo6G5R79uyxbXt8fHzHzm2qgSiXK0gpH3744cWlWUrxjes3v/LV/9LpdB599NGBgYHpK9dmZ+chhGriaJqGseqrDTHGq2trQoiRoXE1mxSvrdtiA6GKLdQSjFCXxqXQDdO0OY9VsVGhruvr66lUplqt9iQ4tWQyGcUBYwwDrNb0kMWqxIgQwhh95zvfKZVKVMPr6+vpTMY0Tdd11eYxPDx88ODB7373u/Pz89VahWpo797d169PX7hwplarCQH27t09fe1yOp0eHRmLhZnNZk1dV35K6puapq2aygeGBlGj4bq+74fN5koul6NEN03T932FMheLRaV6qbCARrvlhYHCAtTX34JmdokkEEIAbmlpiVvqTFIISXowtIQQwC5Ei8Atv0GIu03rW7cVCBEQcmv+qdJOCKFSW4Cox+GVEm3xKe5itbCrToV6XsC9aSURIrLHqQQA8N6v4O0s6X4CLLu1lq21T9kHltWf9mYxVPHM1nYktTDeyoVuh+zVkfrQ+bvR897dgFJKJRgCJOy3GfVo4P0Vo3snZTfZAlvPiBAUAkgpCYGcAwm4EBBjZOo0n82WyxudTieRsK5cvmQYxqEjh5NJe728ziWjOmx3mqfPvG2YNJdNcBatrS3rFLrtViqZME2tVqtN32j7QWd4eNj3fSGjTDa9srxumWmqIYW1RRFT2zruBoUKRJNq1+v10BEAACEYIaQbNJ/PG4bmRPWIhVbCNG1js1puNtu5bIFizWl1hBBSwtXVdUpxEIWXL1194fs/cBre3r17x8bGfnjiuBDMttOUUsnE8vKqUmXlXLAYcC45B74TARRyXU8kLcEBAqi8UYEQ+n4IAe4ABwOYyWTe+9RTFOP5ubmZ+bnrN2eWl1epaWCNQIB83/+Hf/gH3w9N09QM67EnHg+DyHGcifHx2AvW19cBRrt3715eXsYIK9pvFEWxiIlGVUgXRHHI4rSRrjcbQRTyGDPGRkdHPc/78z//85hxCXEuV/jN3/zNN944/ldf/9pmuTSUy/ziz/7U6XfeqQRhK+T5gYFASAZAx+3YyWQ2nQkcVwhhGfp6aQMCni/mkG7bto2qbUwpAFJyEUS+ir8VygkhhFC1/nEVRTAWE0IkAQAAzqTv+0EQQgg5F6o3E0IUR1yjhvJtHh0dLRQGKJ1TUpUqnUCQwC6fmvRioW5jrxrhiUQikUg0m03Fz+2HuZqmWZZVr9ejKHJdt9PpqDmrJD6UtkZXfAMDwW4RVxXrxzQzipvc6bRVDK8ozwoXppT6vohjiDFIJJKMsSAIjhw9PDtzM4wkAECx2zjnnN1CXdXjU/ORc8l5HAQRRFzFP5omCaHqm0ZRpDB9xpiQTMOaWhbU+q9pWuj5sDfOFZTJeKT2DiklxoQi3LWWjWOwBYlT+Kzv+wqmx5qu8jfFsBZC8ChU31QKptIxRb9ijA2PFDvNjmmaqpSoVhWMAUKwXq9jjA3L2roISynVVtivCoie+DiT3SyFc04IgpB0d4eeSnIynUqjjJQym82qZNL3/TRBruvWajUhWX8wdO3XOVfwRzKZnJwa972wWq16ni8k87zY0PVkMqnrOgBC16mpa77vqq+GBOJMcM5t21ZfkzGGMcWYapoRhr4Cyvv7eNcQknNKCWdSCMm5R6kmBQp8NQIFQshM2LZtr62taQjymGGMgcSqvZpSDAAwTA0gkckk9+3f44deGHoR9wEAibT9M09+emFh4cb16WQqNbVt/+TkxPT0jXqtvX3b7vHxyZs3bx44cCCfz5fK5Xw+BwU2NL0wULznnrtLpdI7J98CAIyOjmbSOdfxgiDIZDJCAAy6SaCUyDD0KBKWZe/atiuRThGiYUwBlIwJziXGlDHWbrmcqeiCxBFXhYREImWaZhBElOrTV2ca9c7U+OTM1Zmjh+7eWNu49z33DY+OmzblUsQizhSzzVrL8TrZbLbdgc98+EOlav0rX/mLOOJTO3b877/1uf/wH/9w+up1Yhie4wvAG43G/NzcpUuXHrz/IU3TTq2eunTpMov4Bz/0zPj4uIii9fX1YrGIMe1iBKILvqiRgHrdS1vr1mpf0zTgecz3/ZDFlFIpeaVSvnSl9OqrryrPCc9zWq2GppF8Phuy8IUXXkgkEk8+8f7S5ua3v/tdJYv5q//81/bv2WsYhueHmqYhCHO5rBrDYRgJIRcWlmw7OTGxfW1tI5MujAyPldY3fvCDV8bHxwcGBg8cOKC0NSEShmGkk8nF5eWLFy+W1KuyeeDAgZ/6qZ9ShUzbttPZHEZobm7u2LFjpm01m/V6vX7txnXGpE7NKBQihn4YDQ0NNhotgrVP/eSnOQ8ZjwzDuHDuvG3bnMcHDhwKgqBc3gSS2HbSNGzLspRsHYRScg5RN0KRopfRK39OGQEhMIBhHEkOljZd3wkbjUY6nfYaXhxGlpFsNWqMB7l8HmHSabZ0Xae6Brh4/jvfOXnyHSBlrbppGbqq5GmaVi6XoaoI8qjdaabT2fHxMd3Sw8gvlyv5fAEAIKWAEClGDlT67AQhiQgBhAApoOM4vu9KqAEoIh6ltFSxWLTtxDPPPPP22ydLG5sY4xdeeOHZZz82MTHBOFcrHiEaj4WZQJ4LLl268Nqrr8ZxbJkJ13UXlhdGR0cVLCClVDbPKgISQmCEFaKSzWYhBFEUZDKZMIgHBwfb7XapVKpWq2SOptPpQ4cOqcaIYrE4NTURRdHAYIGFzDB0Sollma2WE8X++sayZRmHjxwqlze+8pUvtVqtgeGhm7PXXj/+8ic+8QmEtjWb9WPHjhUKhXQ6/fCjjxBdc1rtQqHguv7OnTsdx6nj5n3vvf/S5YtxJIuF4WptE2M4MDRKENi1Y+czH3iq3aymD25fXbjcqS+ODuw1TPzQw+/1vGB2dh4hACQZH5/6yIefXTm88cwzHyqtlXbu3Lk+uL64sMJ5fPz4cd8P8/lsKpXyPI8J7jht0zQRhmoRVnuQWnIxRIJ1JWhUtVhKmcmkt23bVq/XHacThpHnecmkDQCIWYgwcBxHcFQoWLZNPcdT+dGJEydefvnldqdDdcPzAghlMplUm28qZUjJgyhUW3Mccc+LXCcyTTwxvm379m2TU+Ocx9evXW022huldUq0w4ePPvrooypHGx0bPn/h0rVr11qtVjKZ1A2CCajWyqdOv/3YY4/pul6rNeqt6vz87NzNmWzOyueznPNEKskYq2zWms2mRnRNMziXjtdR9c5227l06QohpN1ux5zXarUwDDVNSyQsjGC73QkCBcUyhIDkHAAUx8KyrETSUnvcffe9p5DLHzly5G/+5m9ff/11IYBy5Y2iCGMqpVC6gqpiDQRUVFahKQvlSErpeZ7kQgjJY+G6oWmaUcRM04zi2HV8w3Dvvvtoq9VsNuuZTGZtbU2pYRCi2XZSyT6wKGq7LiFewk5ZluV5dU3TVc+TihBwz9ZYOQBBCIGQKhvljMGeFlYcx61Wh3OuU02hiwBgpcS1srKSTCYRodPT04IDzrmQLJtOTW2b3Lt373vfe69lWUIyLIhhG/V6/dT0qZmZmbm5hcpmDSGUTmdGR8fHR8cKhUIikbAsS9NIryCtivEUYxxzJkSXytYPMxACUqJeF1QXKYYAQQD6YaQCgtXveiEZ54qorKMoihROrYKfPrO4l08BAACCSEiIENGwxuNY7fKSSQk41XWEUBSqkExSSiFCqu4JJcAQmYahYGwMESGEhyGLYwAhgQgiRBSzuCv30TX5AAAYhlEoFNTpDcNotVqrq6vlcnlsfGTfvn1qf1HXGQQBhiiKolKpNDc3J4RoNpsYU8UEUSxm0BV7oH1hOiGE7JnScy4g7Fopii7YpBZHoOu6KsajHkYPAJCoq7+hblq/fQEhIoQAUAFiXSK5phlcMgAAkf0GXCjf7bvXx5FVY34/U936AfUvY7ekl1TqraJeQlD/8+rcQtx6ij+SSd0/Jrr9TSkBV4KaPWyiV8rGAgLGOZBI5UEAgCBQAxGph6dpmkKLRAgKhUIQBJhiyzYkkmHoN1o1LNHlS5fm5m+89sr34sif2jaGCSgU0+1O4ZWXXjJNc3BwcH5+Pp/PVyv1IAgo1iARvh8mkykgEY8FwVoYuCOjQwcPHjxz5gzGUIlEU0oJSbVbThAEUMp9+/YpKDaXz7quSyjmTAgA45i3Ww5jQicUIQwhDPwgnU4PDQ0trSzfc8/dhfzACy/9QNf1iYkxCPjS0sLk5Pjg7j2+H7ZbbqPR6HQ6+/cdMEz94sWL9XrdNO3Z2dnJ7eMY4zNnzzqOI6XMZvOSS8dx8ul8tVqt1+sAoCtXrvz8z//8xYsXVbZQqZSr1c3BweLNmzc6TotzvrCwUCgUJicn19fXHce5ceOGpmmjo6Oe76TTCV3XV1dXNY1oBNfrTcdpAwDGxychhJZlaZrhdT2CVFu0NAwtiiLVUKlGRRxxFoUa1ibHJhcX530vwIjEMUcI67o5OzsfRdcBQK7jAQAwxrZtp1IpKaXjB4riFMexELGSw0MIBKG/tr569133pNNJFQrMzc1FUcSYiOP4/vvvr5Q3z5w6s7y8/Pzz3+ec79y5k3MexkGxWMzlEkLAOJIRi1ut1mCxiDHwfEYQbjWaEnZLPVJK13XT6XS1WjV0K5lMahpRrArY4+Eru5L+kFY/99aUO0f+uyfXu199lPmOiXOL7Pyj9Gr66DOEsN5phWGYyyTjOKw3NlMJs1arvPX2D9944412u6W2nLm5OQDAgw/e//CDD913//teeOGFEydODA0NxnGYTJkf+9hHpORLy7ObmyXbNpNJW+HLUsCEnRJRbFBNYZGGYRiGkUqlOI8xxkEQbGxsCBY5jqdgFMuy/CgslyuU0n0H922Wq/V6wzYQIRohJJXKrK+vt1tOd2VEAGtEVepUDryysoIxjlk4MTmWyabK5bLjtDWNFovZ5ZX5a9evFgqFTttdXl6WAn36J3/mwL79mCqV2CAIvGJxMIoCKeD4+OhnPvOZa9euvPiD7yeTySeeeOKuo/c0Gg3JweLi4s2bN1WdI45jjDVCiCK8e35oGMbKyopKTfsbdj/x7iOknMdC4EQikc/nHcdRTVJq0c/lcisrK8qN85lnPry+vv53f/d3k5PjqiedMUciKCQQkhmG4ft+FEUbGxuaRjjnmUxGKd6ur69bvcxfN+j1G9MzMzOmaQIgDh/eb5p6vV7VdLS0vDA2NoYx/uEPXz927NjAQOHkqbfuv+/9o0ODlUqNUBTGoZRS3V4BJKaalBAh0uq0F+aXdu3aNToyrhbVSqWiHh8AQNO0WHDD0Blj1NAdx3FdN53OqpVZ2UJCCO9wxtuKNfdHKwBSBRBqWQBbZKS6QHCPK9y7tYoOjQAAt+sXd6Fh0XOmUg+FcwGUOnSvPQcAReO9DaruxRkA9ESZ/h+m5Z24MLztza0f24pl93/mDECIIOwuByrAUrHRHXB29wq3MLh707tns66qvLddjTJk7B8FiJ6ycw+PBls+rlB1qPqhlEuwCrowBhKgKIoi33e9jm2bIyNDnY69a/f2w4f2+76v63Rzc9MwtFwuY5ja8HARALm+vhy6SSECDHkmmTANw7BM3dIzMHX16mVNo6lUUtO0ZNL+l//b5/7kT764ML8aOCHVkBQcAEwpjmOAu7hbpBroVNxpGCYhFHR10yCl1DQNQkguV9g2NFxvtBTxWUowODxU3th03dhxHBZxjHEcsiiIh0eHPC/88Ic/Nntj9p133mGChyw2E/bw8BDEyPE6XdM2LgFAUoKxkbHV1XXXDfLZFEU09iLXdamhq5ALQQIRarVaCTOh5c2bc3MaIVzw//mt5xDBZsL2o8h3HE3TLCsRBIGSz/M875lnnrnr6N1f+9rXKpubRw8dHhwcfOvNN23bBgBAgnVM240m55xLATlSrFgiBMaYCxDGMcAIYWJb5tDISKvVWl5entq2PZvPzy8ura6u3n33sTeO//A9Rw/7TmtxcbFWq0AgGGP5YvHGwoIfM9frjO0dTRnW1UuXWRyb2UylyhHgpp0MmUgkEslksi0Ej1kY+oxHmqYZRtcguz9PEQIq0Oe9+J1SIFlXY065t/XBOwiRlDIMYtu2/TCevj6DMSYEKdU5hXuqWxrHcb+th3PRk+DIaYQqTQy1UvUzh3a7zRhTJWfY6zJBCEGoMiVICFFCYVjxNBChlEIoEwlL0zLKJoVzbpg0n8836i3HcQzDYCzmXBiGgTHEWBseHtYw2Sit3/ueYz/90z/9H/7wj65O31S6upqmxXFMKFL+Fipj6akJQQAYhJBSGsWeukjOOcYRxJgQQmlXZxlhgADpAYUSYyzinqwEF/1al9KUUNtiHMeAC2pRXde7fyIEU8kVQqoICqEiBPWXwe5LSmkYhh+FitISx7FpaqZpqwou4CKbTRuG0Ww2Fc0NAag6OpU3uh+GPfSB9zPDPvbXX+L6+6Bi4ihtWfVAMcVcCoyJ2u88z5udnYVQFgqFgwf3r62sqCtRyI4i3SgkVBGBCcKWZSkKpGVZYRhyLriIOUeqWZhzjoC0bTubTTuO02zWEdRVSqm0s1VFRNNAVzKFaqrjWAWruq6jnmmHlABCJESMlKojgmEYAig8j0kk7bRhmAYmwneDVCrDOYMQAygQBggDAISdNKMoqNYr12cEpcQLAwhlOp0eHCw8+NB79+7bub6xyFjk++7I6FAymZq9ueg63rVrV9tt5623WgBK3/dHR0ZUcaLTbl28eFGx5yzLStgpKcTw8PDAwBCE2LYtJEEURpRSDHQegSCKAECXL18J4tAyEwAKz/elgLpuYkwVkzsMY9M0IZRRFCCC7WRi247tQRBUK/UHHnz43Jlzn/70P8kkM1Cir37ta7aReN9Dj8VMRk4HE6BTjCkBCEWCCwTNhM2YiDlrtlqMRxiTkydPX71yDQAkmMQY/+SP/2QURf/kn/wT3/fHx8by6Xw2mTN189SpM0EQPPn+pyYmJhAhURQZRle7WcBuFtqvp/LeIO9CqN1GQMGYXFpaklIatnXjxrXV1dW33nl7bm4uioJCIb9///6zZ88Gnn/qnZMv/+Cl/Qf2nDlzutNxDhw48MYbb6yXNjzPu/vuux974vEoCIMgCKIokUhomua4LiZ2FIIoCjlnrVbL8zxNI6lUyjCMgwcPCsbXVlZM09y+fQohpKBeDlm9Xp9fWjx79iwhpDA48Iu//EvrpQ3f96e2b3vjjTdeffXVD37wg+85du9qac3OJKilzczetG3z2LFj169ff+SRx6qV+ttvn5yevjY1uf2tt96+77733n33scNH9g+PDK6sLmlEr9cqN2/eNBPa0Gix3XKuXr2macajDz+eSmUFh5hAP3BN08QQYgwll6qar9LwHrwgFWCjWp5brWYU8fc+cP+FS1eqrQrjoRcEY+PjTz716CuvvrqxUU6mU4ODRd93//RP/9TQTF3XM5kcY9Hy8qLqxBeCe56LMPE8RzVPZDKpQ4cPEILmZuY0zUgkbAiBlJLzmBDCeTcmbDabSCJdt7UMrdebuq4zYfpBJ5PPRDwkGtk1MnX0yF1PPv6U50bNxvH19fVCoTA+Pp5M2QBKITnVKBBC04jjsOnp6y++8MLc3NzY2Fi5XB4cGE4kEkrHX0qJMYqFEtUlCEGhSkcEIQQwABAASnUNaxhDIMHgwDClNAiC0dHxIPAK2fzDD78viiIuvGw2m0qlCEFu23WxNE1zfWMxkUjs2j3l+a3jx1/rdDo3b95YXl7OZrObmyXO+ejo6Pe//7yU8oEHHnj77beff/75Y8eOTU5O7t61d2ZmJpsvbt+ZHR0cfPv06ddee/no3XfVarVXXn1JdbcwFgHBPvMLv7hzanzmxpXN8tK2bcP5PL7n2Nj09Ck9ObC6sgwAymaTLIaVWqu0sTk/v/iJj39qcGDYpEnTSFhW4v777//Od54bGRn5xCd/9rnnnlP4rGpTFkLELHIcR92ZrrETJkEQAYA475q+EkKUrGXo+0AIBKCh0zAAqvdFKYQjBIBEnufpuqHSAU0zTBN0HOdzv/mbr7z2erPZtG07CAIFY62trWkaqW5WBgcHNaoHTFJi/fF//L1yufKd7zxn6Mkd23flC9nNUlmjhmFoGxsbR+7enkwmBQemaXIuJyfGfvjGG1EUHT161LQoxtJxm2fOvnP9xhXTNKMo8iNndmYGAJFOGTM3rwshhoaGxsfHL5w7v7lZHR0dVRpcoR8wxhACGFGn42KMk8mkqig7jsOi2Pd9DLvlZGVPo+olUcSGh4cJ7e68pqkvLCzEYYQQqtfrQ0ND1Wq92Wxaho0R8l2PaFTt44rLDACAUAoIESQEa816S9M0pfIkhAAAtVuO74UI00aznclkIASdTmdodETV12MW+oELgDIqDHO5PEUoiqJIBIoqm06ngyDoOljqeqfj9ntthRB99x0VO3mB32XO9uS2wjAM/YAQAkxpWZaUUPn3hGEYs+jq1attx5WiK63GeBxFUTab3b59qt6sLSzOdTodxM2FhYXp6eulUolSOjY6cd977lNlxcHBwVwup+I6VSHr9y11q4xA1bNVoVrtArc8s/phRpeII6Ei5sIeYAy3dJr2wxKEEWPM8zzFRVAIGIQAdHtueQ+NhBBCKAAU0vd9waQQQie0G40o05GeJbViSFBKuZQiirPpJJKg0awFnosQAFIAyRljumH4fmjTJGMMQwgREoxTqhmGoShcyjyj0Wg0m818Pk8IWV9fxxhvbGwoqwnFMHMcp1arra+vl9Y3TNNU4K+umwghVfDr5toqfegpmPVDNfUz6TlL95JTxGV3X2A919d+ryEHEPTKD/3nRSnFADLJCaYAQg4wgBzjLsqn66ZhWOT2hPO2Vx/27SX2EqI7tWi3PmwAQI/LBhTcDGGXIbWlUADvwMveDV53f5b91L37b/eTCEAEpIRdOykE4pj3KTBSYowBY1IF+hCpe4763wIhpOu6bmitdtv3fSYjhCXBUkg5OJTft/cDx3/48vra0iMPP/D97z8fs3D3rv2tVlNpnFmW6Xk+oYhznrD0OOZCOARrkgMOIsYEY6JYGCxtbHImW60WxpQx0ek4nU6HUk0Ikc1mTdPc2Nio1+uEEKoR1/F0XdeJzoEkWBMiZJIp0WeC8NLS0s/+7M8+8dSTb7/99oXLl5rNpq7rAWCZTLLRbK8tr22sbhSLwwAAIcClS1dM05yammAxr1arv/jLv+J0vEazUigUJiYmXNdVTPsg9AEAnU6n79DNefzGG8ellKapK83f3/md38EYp9Npz/NU/aRer29ulicmJu6//77z58/Pzc21WnVCSKNR1TQtp+dc1x+cnCgWizdu3GAsqlQqAwMDO3bscBxnbXrD81zF96TElFIqHb3+QqARgqHOut6gCCHkOM7NmdlkMtlsNRuNRjabRwhRojHGNM1wXRfjgEnRnXV+JwiCQqHAuZRCIoQGB4vf+ta3XnvttXar43lOJrOTCRAEwY/92I+NjY3VNmsv/+ClublZhNDS0tL/+B//47777jt89MjAQEGtuZggNYUcx/FdT82rLtOKdkmglFLTtHFP3J1gDHpVGSmBEABjoGn95oPbx/A/oqO6lbCM/nFMuQ8i/6hpeNvMve2ASEED0PMcHnsYAY3gixfPW7YBIdzYWFfosOyRRyqV2je+8Y3vPf9Su91OJm1lPHLo8P75hRvHj7+WSBhBaC0tLaENZNu2pmkEa3EcRz3BKRjzbCqdymZU+bperzebDd/3JeBMCotoEOJOpwMJ3rlz5/DwsBQQSOS6nhuEnEshQL1+XnCg+qAT6ZRyBYzj0DAMy7KUYrJlG4SkNzY2kkk7k8kMDhUrlUoYxGMTkwPFwYWFhdOnT+/bd2j7th3ZbHa9tJFKpSDiuq4lkwkAOEKg7bR0Xdc0fPnKxc3N0uhIEQJ89uzZCxcuBL4/ODi4sbGh1n1N08IwVtkyhET1f5m6JaXs2SVh1Xgib+efRlGkaTCTSQ0NDVy71uhR0vDIyPDExEQcxzdu3Hj88SePHTv23//7fyeEVKt1yzJUvIJ7+qRhGEopdV0XggdBJATTdb1Wq2WyKdMwFIRBCEG6riQpIcpKKLLZLNXw3/7dX9dqtWazkUwmJicnwzAYGx/Ztm3y5Mm3/cALQh9CGYa+adhMcEwRE9xK2ABCLkXb6biOf/To0cnJyT4lWSHmIyMjQRAEcaRCUoQIxjSX6/pQddd8ASACAvbJR32cuCcu0RvUCu6UvVP8iBe6Ta24Nxf6wsRQAKnoO1JKsQWiVc9BACCARD19jC110VuXtGWrulV7vf10P4JQDEAX6oXwR17hFoO/LRzk7k3oFpF7XC0IJYBCMnS7DPQtUHvrNchbFWK5xdr3jsKVhGCrpsZWTar+xcjeYeO457sFgQRAMQExgZZFWq3Q8x3Gok4nKhTzrXZzc7M0UMwjDFy3YyWtye3jyYx95cqFk6fewkTmsinb0koblYRl2LataaRc2vSC2HU7lFLTNHVdb7fblNJ6o3rgwB7Lsq5Nz7bbbUw0y9IRwq7jc8b60BilpEdqUzJZTBV4EMGu7/lhUG/W8q6tNgXDTmybmjJ0s1yqNNtNznmhUKBUX11ZT6VSCTvTbnnLS+sf/NBHfv4XfuHLX/7y7MLs8PAw0ShjzDTNdDqNMdYIlRKUy5XQY0EQpFPZhGnqus4YazbbnAee5yXsZDJjhV5o6RYhpFwur4aBruvZXIYJbhEdUxJ7nue6cRxDiDVCH3jggampqWqt8cYbb5TL5VOnTgnOr166XClvIggXFhb6T0dpzRNMFM8IEZy07EQyaRgGxtR32pBShNDKykqn49599925TJbF8f69e86ePXvkyBFDI81m8+5D+zu1TSAYhlIAuLC0jAiVjGm6edc9dy/Pzrfb7XQqxaUYHh4OQtf1PWrYm5Ua75VJEEKQY855GMaE3Oo0hLBL/BeCC6CMhrHrukgChLqU5B6PFfaXR13XEdHW1taeeuqpgcG7f/D9FwjxVeYmuFCqEZwLqCychOSCW5aNMarX6zpGACNDt5TEUN+bmxCiFOSjKJqamqrX64wx2zTbvZ4PwzBN3Wg0Gl1QHLAoCjjHChVSK5gQIplMZrNZjDHWUBzHcRBJCSMWIQSjKAoCn1N68ODBqampP/3TP13bWFceHr7vj46O1uv1fryuYvce3Cx70DxSalQAAFUjR13goxtFKJMrIYQQDEKoaRpAt2kISNktlBFCFA2KUmrbFsZYWWIoJku/1RRCjJDqYuSapiGMVTOmglMJIR6PKaXKbkv9IUIwimLGWCCkYgkEQYAQAEKxEbtQfjqdNuLY9/1+jzDqSQ2qp9zlU0OAEMKgS9pCCEGoupqAhFI9Ggih7/tRHARBICFMJBIUYx7HcRy7rjs2Nlar1QAASmQwiiLfCwkhEODBoREAhXJX16hBCAGA6bpOMFGLA0IwjGPRaQUBVcoq6ilTSinVAYj7rHk16zFGnY4fhqGKYcAtcW2BEFL5ZBRFYeRjjBEGccyC0IcE6MaAaaEDh3Y2N51ms8m5YIJRijkPYy9ECCbTiX37D/mh12jUvdDjPA7DcGhoKGb+f/tvf5JMJvP5rGFYrUZzeno6m8kPDAwYE/a5sxeq1U0IsbK7rFQqhNBsNst43Go2V1dX87miYRijo2OhH4yMjJmmHUWMolgATAjhjAGox3H8/Pe+f/Kd0wihdrsDYXd9Vzmt0/HiOMYEci6DILIMk1gJ13V937927dp9732gUe9cunTZ9/2bN2/+8i/+8rZtYxfOX3rlB69um9oVRCG1JIIQazgWHFPsBb6EgOrk7MUzEWP3PfjAwUP7Du7f+bW//Mqv/uo/f+mlV27cnIMQTo5PDQ0P1KrVnTt3slgwxo4dOzY2Mp7N5vP54vjYpKGbiVSij3So9ZADCfqFZykhxL2fFR9LSgQpRn4Y1Wo1COHS5Qvf/e534ziOWOi6nUceeeRTn/rUH/3BH26WymHkZzKZ//GVL3/uc7/x2c9+9otf/OLf/v3fIoSFZBLwxcXF5eXF4eFhgCDEyI9CrFHNNDAFMuSVSnl4bJjz+Pd///9Kp9Of/vRPTEyMxVGwY+e2Yj6LMVbFGHWRm9WaUsRmnB+7995du3Z5gbtzz+4LFy5cvHql43sMyNm5ueLAQD6Xe/qZDz73rf/5/e8/v3//fsbY008/UywMvv3WaUq1+fn50dHRl156qeM0H3zwftu2McDDw8PljU3DMJ544rGJqYlKpbyyulKpbnAmF5amhofj8noVY6LrejKZyGey+UIWSsp5BBHpltgB6q7JlAZhqGGiGXoqlfK8cPrq9WqtrOl0/67DAAa19sZHP/JjC/MrpVIVCGgZphSsHtcGxsYhxPOzN1PpxNTk5MBAIYqiWq0KIWQ8bndanusnLINqCEIexb6u00KhaFmWlKDPVVd8DgCk53mhF5fLM17bv3r1ahCGqVRCt7FpaZhm3vfoI8fuui8Iokql3HFanudxILPZdMxCACSlmLHANk3XjQEUzWb95Zd/MD19NQzDpSWeSqWq1SpCSDO1arWKNaq6anpxqYoHJeAAgS7ygDFUFraMA9M0h7SRWrVh27YKILPZdLlcOXHiBMZ4357dnVYTQvnOyTcOHz5c3ty49957r12/+Mqr31di3Lqup1IpCCGhiPHo4YcfTiQSi4vz2Wy+3W4vLi5ev3791/7Xf+E4jso6c7lcy3XHx8cPHNzz2usvMRbVW82IhQiBZCJlGPr01YsZG5fX5yiNKe4YJjEtF5OaF1hr6wucw5079u7cse+V1048/YH3nz179tg99xfyQ8oSeXx89LXXXjp3/uyHn/nQvffe+81vfnN4eLharVaqZYSxaZqGbgohVKmYc85j5sROP5olPa9mxpjT7mAEdF1HGLiuTzUtkbTU1hZFUbvtDBRHFc4bd415JUIklUrl8/lf+7VfGx4ePnHiRLvlbGxsLCwsrK6sB0EkBKpWm6YRm2bive+5/5HHnmw222dOn/e84PjxE6NjA/lioVItt1ot13UNSijCK6U1KaCmabOzM6ahISjSKTuZMDEi7Xbj5s3ramenlKYyum4gweSVqxcjP7BtKwiCjfVStVoDALZabT/0FSMYhz6QoF5vcM5TqRQlhmWCOBIb1TKEECNkmqZimAIJCVY2bnxsfDSTybTb7WaznkwmC4XC0tLSjWvXbds2DOuuu+46f/7iZqmsUmysQwmgEpBU6KoQAkqIEZJCYIRkr200CplqmYphTHVD103GBIS4UMiPjI/Mzs7evDnjeZ7nO2rPAgAkEkkhBJdS0zQh7MiKgiBQZWMpYRAEEGJKqRSQxXH31BAD2K2UE41qvWYF9dxV43IUMQgx5xIhghDSDA0jAkCkKAKEECBRHHNKdcZYMpmM4/DFF7/f7jShBBhTvy08xx0aGhkaGBwdHd+7dy+Q0LaTyrZO0UOVooUQTG7plxK3ao1ShUzKBKj3JuyHSb1PCgjQls2ih0DeDkwrFNX3Qyk5wohQCoCAGEkAIJQIYZW8SSkRABBjBJFyflYhTZcJJ7tqcrDn0qwwX7fTwRDduHZ9+uqVYjGvVjkpJaE0QUgQhgrcoJTqpplK2plMxnF95Y3UbDar1ao6hYqcO52O6tXbrJQU47NarbZarfX1dbWbZ3LZKAgxxqZtQYD7kDp4V9tu94H2HEFkT2BE9AD6fuMLZ107a9lrJYSEqjVb/aEqNqg+NowxQhoVGuOcS4EhVgCjjxxFryZ9xmU3l70dEVPAmQKaAehjzbcSZim6CW3/T27r1YVQdNvJt6KL3U9ufd16f6tN7JbfqsK1qjt038WqW5BrGoEQBEEMAMAEQwgwhpyrIYIkVN3KEGOEMYAAMi4gkBDxVqsRRh7WYCJpttrOwtyseWBnsZA7c/rNl156aXV1FSI5Mb4dANDpdJRsipQCAOD5zkCx6DhOEPiMcY3occw5l6lU6sa1ayr4NkxrbW0tnU5nMrnl5eVkMjk2PEIpnZudVzkPhkhKSYiGEAmCIGLCNLGSmZdSQojSydTQ0NBrr72WTKdWV1c1s4vjpKjluu7ExFSltFEqbc7eXMJYTybSGNGFhSXDMEZHx5sdZ319fe+e/SfefF0F+slkstNxXdcVjBNCoiBSFRg1VrSeXQ+Pw6RtBp6jJmsul8MYq1Kn7we1Wm1gYODRR99nmnoY+aZprq6sAwAI1hiLTdOempr4X//5ry0tL371q191XX9xcVklcnv37r18+bLnuRjHpmnGLDRNMwg90zRZGAEEoogrTbpCoeB5jgrrm81mq91S5SwEsW1bjAlVjvMjX0pZKOR27TqyuroeBMHoyPj6+rrXdDHG6+vrAADf933fD4Lg+PHjYxNT6XT2/PnzB/YeaDfajuN0Oh3TNBEINY2cu3D++syNI0cOvf/973c9RynHKx2rcr3se4Ft2wMDA5lMxrRN2zaEAISAIBAUQwAglwBu6QBACLAuieC28kz/Bylvc/C7AyPuz8X+6x/D3yD80Tqydxxq60vTtHw+16iVI8EymZRp6deuXb1+/drIyIiUstPppNPpOI6jMLx69appmsvLa5ZlsThmcaQZdH5+5tz5d65fvzY0NGCYGGOQTNpRxFw3FtzFmIau02965Zx3Oh1dp2oVU/JVEGKNAscLpJRBJDRAMulcp+1GURTHrFAoBEHEwkiRj1qtFmMM9VhpxWJRyMi27UqlIgEHEOm67jiOkiCcmJiIoohSTIjW7rjrG2t79+3Jpid+93d/f3JiyukEVNdMSw8CNwgdQlAQRouLy4Roo6OjL77w3W//w7cs2ziwf5cQ4vjx46srK47jZDIZKaWCQpR7MgBCEeVizijVkQRRFGuYqF4zKCSQkhLCYgYhBKqkjwkG0Gm1Zx1XyaWpCKzT6ZRKJbXoX7lyZWlpaW5ubnBwUNVaARDqHvYgNgShqq+Enucppp5pmv1CiEr4ARBBEHPOPd+XUJw7f2Z1bWl2dpaxSNPI8vJiubyhacb09NW5ubnllcWF+ZnBYuHSpSuYUF03hchhJV4pJZCyUqtFjBUKBdu26/VmKpUCQKrmKWUNDLDqIAEAIIU79LcuxhilJBb83U0sUv5jI/qWxV+f1ywhgAi+G/ztbkC9YKIbagCk5P9UPAd7ChUAQbmFX9k/F9hKHN5y/FuiGbdfaP+TW4DmfievKpDeKqRLKbuxikLDFdEb38nd7mNJoEuEBIpSp64d9Mv1Ww7bu5pbLOxbN1TegpOl7O6m6sr6n1G6WT0IvMcS791V2RXkApxL13Xb7TbCwLZthGA6nex0RMyiUmk9CJzNzXJlc31gYAARnMlnGQ8vXbp58tSJ2bnrGkXUMDiL9+3ZZWi00WjoetoNwqXpy5Zl6bruh8Hi8pJpmpiSb3zjLwGAhGi7dk8gwFpNN52xy+UKV0J+AktJHMexrGSfmCmEcgXBMZeccyGFAsVSscY5b7vORCpdq9U81x8YGNgs1XRdf/rpZyYntv3RH/2Hdrtz6dLl7bt2Oq43tX3b7l27p7ZvGxwaSmXSnU7bsqzA933PMw07UUi0Wm0FhzEmdKJDAUUsECbpRFYACSQGAHkdT8F/cRw77Y5haNls1vd9DmQcxwYHjLHBwcEHH3roxrWZdrs9UMz7vv/Lv/LPVtfX//CPv2BZ1q/+8i//u3/7f64uLeuEtp1OKpWilMRBzMIIQsiFYKIrLRJxVqlUPM8LohBhGjPhuu74+LiGyfDA4PSN65VqrTAw5HhueWO9Vqu161UQuhlbR4IjAAIWC89LFQpYsFQ2Mz09nbESQ0NDBOM4jhEGVNe4EKam1+trLSfkpokAjOMQAIBw16Ov3+6nXkIIJXqOEKKappZKHse413zXhxUUYSqO43K5vGfPnt279545+w6iJJPLra2sUEoxJophx6JYRajqTygmAAAMMQASCukHLpBKhhjati0hSCQSGqGqe+PKlSsY49D3Q4QQgIxzN3B81zMMU2lJQwglBAJICGTE4mq91nGdLr8VSwFkOp0uFAqlUsk0TSXvUK/X225LOdhEQbC2uj49PZ3L5T71E59aW1v71re+deDAgXPnzq2urlJKMaJ3zGu1HjLGCIVqkVT1ElVHUTRkBXZA1MVf1NfHPUUmiXoyzD0ADkKo67qmaRFnSixVcYFlT4+P826rrDoak4J5ngIRYI8WilWjgxCqftCDoTVCSBxGvu+rCDAIArfjqHoAIaTT6XR5PT2eh6JNqc2oX5WUgCvRPAEk6jk6IgJx11E9BqBLK45ZyHsd7rlMJoqi5eXler2uGn6HhoaUfprgAMEuDUchsEIIFgspYBzHqgiNEGSC+b6HMbYsy7IsKFWBAVhWIvBjVaLo+0b22+M8zxNQ9X5qmkYRQly5xiIkBOeSs5AhhAQQGCPOGQAAE+kEwd1HDj/w4L2V6oauUzyZqFRqFy9epABDTCXgYRjGgmNi+6Hn+97U1MR6uVQul9VdbbRbi4uLKTuRSqVMM5YSrqys1KpNXTeLheHBoWIQBGEYE6KxmJdLm5RS1W7cbDXUQAmC8JFHHouCeLNcjUOGTEKwxjmHSGqYmDpYLwWnTp3arJRS2Yzju41mDSKkKhC38nPe5Z5LCblgyWSSUvzAAw+xWFSr1Uajmc8UShubhqHVau1nnnkGYy2TzSUzSZLiLI4iFiOMdcuCAPuR3+q0xybG73kPb7SaP/ETPzE1Wfze97+TSKRSiXToBel06vQ7JwUE+Xx+cmJb0rKFkISQ0dHRT33qJyUApmm6ga/iCC4FunMLVoMfbcklu+JR6g1d18bHx99660StUQ/DMIoCx3Mzmczjjz1y6OD+jtMqFHMfeeZD3/rWtzqdzs3ZG08++eS99977V3/9jf3794+Ojuzavefb3/6243UMa7sfBul0MpFIAAA8L6DUXt9YPnbf3Z977F9+7WtfO3Pu7G/+5m/u3LlT17Cua7quYQA455ZlMikElOVyudKoJZPJ+cWF8xcvtJ0OIjCO47brrJfXV9ZWf+InfuLe9x77y7/42vMvPP/wgw9evnz5xPHXgeQzMzPbt29fW1t7+62TS0tLu3fufvrpp48cPCTiWDfo4GDRNM2ABefPXzhz+uTs7My2bVMDQ4Wx8ZH5hVnP60BIXn3tpVQyyyK5f/9Bzw0GBgZEzCzLSifNKIohkliiSCjunqRIE11xKmgYJJvPpTJi244pK2GWyqv1mgFwNDd383d/9/f37dt/+cpVx+1sblYz2YRhGAAK3/MRQsPDw1JK3/chlJ7nE0IG8/lGq44wTKeT1ermd5//9sMPPUaJGUXB+saqZSbS6TRjMSFUpXsQgmKx6LS8V1/54bnT54VgpfLG8HjBsODy6tLuPXv27987OjzUanVeff34i9//XjKd2j41JhE0TY3xAEEjlbRK5VKlUrOt5PT0jatXLyv0v9eqwjKZzNzcXBjGU1NTauHFXZ6QgLgLTvVfinMgOeBcEIINC6cyadOwVT0SSdBpdnjE3zn91rkzp8fGRqIoiJnv+ZPHf/jyteuXZmdn2+12KmV3Oo5hGIKDkZGRaqP65BPvv++++4QQn//8H3ie5/uhsqv95je/adv20aNHm82mZVmNRiOXy91zz11vvfP2nv37rk3fMCzd851P/+QnH7rvvvrmxp984Y+ajZWnn35gfWNhaCjddsrjk4XFTXTw0L5HH3nib/7m74//8BXGwOZmGQARx4GlQ99lruuvri7/z2/9LYJ8atvYyvJyq9n0fb9cLpc3NyilA4ODcRwjDBVqJljXa1dtJb3gUEWkgvFuE72QMgjDZDK5fdvO+fn5Ttvdu3f/+Pj4K68eN3RLCogxZSxSq6vnh//lv/yXf/1v/83E0ES5VGm1WmNj45cvX5EStNtuq9VhjA0ODg8MTT7y2JMIasNDQ//053/hS1/+Ux4ES4sr27aPf/jDH37ttdeWVxZb7YbrdkQc3bhxc2lp6fLly//yNz+3trYyvzAzNJxLJpOXL53LpO2dO3feuHGDYLK8uKBp2tjYmKnrvkb8wL1582YykUIY64YRRhFGRErZV8ML/QggqJg0QgRCxJZla5qGIYrjmAuJMNEQZowRje4cG02lUu12GyGgtuBWq8U5j+N4Y6OcTqcZEyyKlcaFlNI0TafjCcYZZ7pOEUIKLQEAaHpXxprFAkimfo6iSEJQr9cBAAPFQQihEKC0VpqZuR5GfhC46lkYhmGaunpkXhghBAkhqrjieB6hSjYqcioVFvdkNDhX5+2VhLucYgAAYwwIyDlTA0BFgJRS5Xih0wTESNdE4IdhGGJiBGGEEHFdV9MoF2xjY83znUQiUSwWi8XizatL+/fuGxsbGxoaoVQP/FA3dKXO3D++lDKKgi5hFtNuQAER7MIpsEd0QHfkRP0H1828oFAs+1vgcq+rtR+VxYJLIFVLk/rKAkgVEgCEEcAEQgn6/wkOuOt5YejrltnVfANcAwRKibv+vbHjOIHndcUtEb55YyaKw7EnHweW4XTakGoylhBC3TJ10zAtC2PseZ7neRtr62ulcrlcBgCkUimlHKhsRUql0vr6eiqV6nQ6zVZdaTq3222MsVKihxByzqmuSSmhRBDBPtysZmsv2VR4e5c6sJUc0BVx7gpI3gKU1W8huu1uq6ejROoghDpRFQLR554bhoEAlIFUYaoQwrZtsgUd/hGolgRSSAEBVJk75+pxQimlFLexj3sFhjsiA4m2uMr0YTUp35Ukb1ni4RaN2v7nFTtky2+7x8QYMyYw7lIPBO9K1mIMJYRSAqZIFhhKCTpOqCMQhkEchwODBQBj3vYogdXN9XdOvvnGG6+dOmk9/cEnhwYGGGMPPvjg9WvXwtCPosC2TUJQFDGMYSJh5/P5TqvVaNYoJao3kzGmU2zbpufwZrOpIFpdpyyMVpeWi7mi0glqtVq1Wg1jTBBW3cH9rkmLaABCSqlhalHIMMadTjudTgdBWCqVLMvSTEM5IFmWMTU1sbQw22g0dN00TdJsOEDQZDIZhZxg45d+5X85ffr0F7/4xXz+hJ3QhJBBEOi6nkikHMeREEkJNJ30Fxe1r6iHZdu24zgAAIrJ0OCIgMB1XUr0MPKddntoaPD69WmM8cTkWKNR03Vdo0ar1SqVSolEol5vlkqbhGilUikK40KhoJruuRCPPfbY3r17n3vuOSF4Op2UUgrBDEMPXEfTtDCMABCO006nk8lkUkoeRgGhmFCcQRnH8cIwZIgbhjE4OJjNZqvVTTfwpZSu61YqFeWs3WhW2p2mYRg7d+5sNBrLy6u5XO7I4aOpTFbXzKvXr42Ojp49c/761euDA0OO46rFnRCz7XRsKWzbvHjxYi6f3b17t+d5mUyqUilfuTJdq9UYY3t2750cn+i02plcxnUDXTeaTS/w/OHhfBwDwSREUHVcKilzSvvNfbIXEncHc39U/798vRuqhj2ZZgDu9PZ8N9N561zjHLRaTdfr6JTOzc5fn760urbYbreajYbiz0IIKdUQwlBCaUvLsoBQ+vcAQoCROH3mHc9v6zoNI8c0tYOH9rquX9msOY4PARYiVqUXhIjixQMAOI8VbQoAKIRU89f3Awgh5yJmslyuBoGnsp1MJoMQ0pIJwzBc13fdjmnaEuJOp1MoTFBKV1ZXVT+p67qGYTiOQykmhFy/ft33vVQqHQTB+Pjg4MDwxctXfuEXfmGwsOvEibeajda2bTuERJ4XI8ybrVqr1bh58+Yrr7y2b89ey7K/8J/+g+d5k9b4m2++nU4nFTkOQtjpdKCQGEKNahBKjGEcC13XAUAQYAQRQpgQ0FtqodpvFNm5n3grYpSKxZVZiqoKcs5WV1d1XX/yyScvXLh07ty5ZDKphqWUEsJuuVgR4vrd2RgTdXAlMgghlkiyOFZ5u+/7Cm6QgCu43/e9XC7T6XQGBguFQiGZSJfL5bm5uSAILMu+evnSysqS78U/9vFPGIYWi5hALWZMAC4ltC0LIcS59DwPY+r7vhAM99SgQharp8aY6DWXSEKwUtrFGHMublUl0S3wpY8Ogy6AuyXKR90SisKX340y/0ik+o6y7dZ/pZQCSCB+lFVgT2jiDqxZwi0H7P+JuAU0Kw1EdbVwS2FIhTG3XcDtqNO7X7BnktNHxvvXKe904pX9QnT3t7fo1Ors/Zl+R4KuSKK3VbBUpar/xdWmCiTEGMWxCvt6EKGIhYSNRp3zmMdhFPuJhGWaumFmojhYW1lpO8bevXtX1lcuXjo7vzhHsBgeKpY3vCCMKIWmqWOIstk8hFAp86oxo+qXzWZzeHhQ07RsJuW6vuu3CeWTUyOUGK123ZdcACGh1HUKoGUnTMZYFEWRwn2EAIgADvxAUfuRpmmtRjudzUAB5+fnE3ZyZGSkXqkjhIq5/PLy8r69B3bu3PnmW+8cOHzoyfc/5YfB9dnZ/8/v/M7S/HwylWw1O5jA0A8cx6GU6hTHYeh1HINqQgACQRAEGoIARBJBhDCQwjCsOI6jiKl2YCgFAECxI6M4VPK4HaetsoWbMzP1RpVicurUqUKh8Gd/9qf7Dx7+iR//RL3VrNUqhBDbtjFCY5m0oqACxh23o2kahIAQDIT0XE8DCADARNdGjxCiOAqMsR07tu09sP/3fv/z1UZd18y1ldVUwoqisN6oco+kbdvrtBAkccxLm5WAxYTSmzdvpk1TcM6FJBpCGLAwIhptNpte4BNNFwADJAFASoOhz4AQQiCkmAhAglsy6IpDShSegaBCO6EEpm2GYYgxcl0Ha1TX9Xq9Pj8/PzQ0tLq6WiptEE2DAKgYXc012dNMV3VxNVBZ5Espmex6VySTyTCO4jhWzaFTU1N/8Pk/+OP/9Mf/9b/+V7Vgmj1vFuUUrYYfIYRvibbV3XNd13VdTACllHPueV4ikchkUuohWpb1sY99LJ3ItNvtv//m3zUa7VQquWPHLoULqFL90aNH5+bmLMuCEAp+a6GTUnU3CM65EBACLARHmGiUxIIDgJQonLoYyaWUEiKAJJBMcsF7LaX9gB72AzbZtWxFfYM7dfGK+KnyNwBAxASXvPtlASaYYAIBAJxzjCmUUDIZCQYAUN3T6haFskuBUaycRCLBOReBLwTzvCAISBiGSrComwn3fMy7LcaAQ4hU+od7QaYyYVcfk1JTlxQzJcWO1XkVI0y1EyGE2u12KpXyfT/wu2gFQkqgDzabLd/3lC6HusIgCJRQtWZ2MSwAhaUb/c4tKZAClxmLpIS6rsOu3UhoGIaQgHOGMY5ZaNqW5IBgLEJGMYniACIoAccEYkQJIUIyx3dHRoeGhweXlhaC2OU8ojCTSCTuf+i9ShI6YrEQLI7jMAxKpQ3G2NDQQOAGGtaSmaTX8YSMlFV1s9kOfFZaL7eaju9Fw8OjURRks5k44gsLS7quQxAHQYAA3lgrASTVY3LajmaY3/j6Xz/4wMMf//gnE3YaAKiGQRh4AuN6PXzjjR9ubKxVq1UradYb1XQ2pZowwiBWERohRNOJYRhS8pgxCTgAAkJtbmFWcHDve9+ztrI2ODh47N67sUYNQ0tlkomUjSkKIwa5QAQLwTHGAsQYwSCOAAI/+MGLX//6N6KAWzZ94vFHGo1avVpbXV0dHhx65JFHBoeH3nzzxEee+dDNmzf37d6DMcGYYorsREKNaiUNzJXZPQRQKoQLQNCdUP0yzK1EWhVOJCQaMAztvvvuo4a+vLxIKT1wcJ9hGEou4MMffGbv3j3FYvFrf/FVCEAQBC+/8oODh/b/DP2ZmZmZcxfOD40MAyhn5m4eOHxQZW1+6LWaTYyx57fLtdInf/xZzjmXMcag1aonLKvdbicSCQxgKpVijDEpup0HujYyPHrq9MmzZ89iTNvt9p/92Z8dvuvo448/Orcw++abbxSL+YGBgTNnT7mue+HcGULI0tJ8sVj49D/5qQ996CObm9V6rb2ytJxOpw8c2I+wfOZD7y+XN7hktVr13IWzly9fLm2sDQwUFxcXZ2ZvPP744x/84ActM/Hmm29blr1RWn3/Ux988P73NRqt9bWSireFkIwxBDCCsEfBRggjKaGGCUIQI9But2u12pnzZxy/rRtodXURa9w0jTNnzszOzvlBlM3klLabptFKpQIkymRTvu83m03OJOMRF5xSYlmGaY+srKxwwZLJxPz8zeWlVYz1PTv2Hjly18jIWBAEY+MjcaQsOqng3Om4pVJpbW09ipjjtIUQzWYdurEXuJhArGGIhG7gZr1yY2a6UBzknI1NjlWqGxOTwzpFtWbtm3/79ZszC5lMtt1wdIo8XwohlOodhPD06dP33HNPOp3NZDKahlV3OMbKzBtACNGWDKvrgoMAxkj9XCgUhBDZrA0AaDTcdDotJYwi1m5vrq+vxswfGRl67fVXVldXK5VyFEW+H1BKbduOIz4wMESpzpg4efL0e95z36lTp2q1xu7duzc2NpQVm/IZOn/h7E/91E8VijkIoWUZxeLgwQNHV9ZKtUZjUBtoNptvn3i7U29OjA6trq6bhrw2fQNg9733HW413XK1XO2k7rvvPgmY73d0XScYPfHkw5MTu5yOX66XT719anp6emFhrrK5/pnP/Bwm4gtf+ILqe97Y2EilEw8//PDZs2cBlEgghBCLYrXph2EIJWCMaYauAlQpuZQSE5LJpQkhXLJ2G4dhODs7H0Uxocb9Dzys6/o3/vrvTdOGANDuDhUzxhiPIif47d/+be9fBuvr6ysrqzMzcwiRqcmdH/3oR7/4xS/ed999P/1Pf25hfrlR70xPX9+2bfvJk6evX78+NJBNZfTFxfladVPtboVCjmqwVF53vdbMzem33v7hXS8fSiaTf/s3X3/j+CvZQu7KlSsf/8THHn744d/4jc9hAg/u36s8hDln1eomQTiRsBCGIFa7IVZbKgAEANSvgKq2pCiKPI8rertONYRQX31CSqhphq6bqoynMN8u79CwOBZC+I7j1Wq1IIhUb3cURW67IwHqh1W+37XHsCwLIcA5V81DQghdI5wzz+1Mbt/2iU/8OMb41KkzGtU5557vlkol3SAEUolBGPqmaauifhAEPIq72A4GuVwuk8u5rttuO61Wm8WCItpV9RRSCACgYLHAGJqmEYah53W6xeAoUls2Y6xVawKJEnZKCBFHAiEiuPD9EEKMMRWcCwGkEFSjGKNWu2NZWi6Xu/fee4UQCcuullrZfMZK2DFnhOp2MgEA4FLEYYAxhggKKbkUECMAoQASqDULdoUT+mVyAG5LlPrYaL8cIqUUTG1k+A5IupuEIgkhQAAhiPp7ClL6zxhohCpvEi5YF7oBAkDMBAsjP4wjQ9M1naitViH1cRzWq55Cz6Ig5JwbhqFruOM6QRAoGESdxU4kkQQAoyjmruvfnL9Zr1QJxpIzapjFYlHxBgAAqVQqDMOrV6+GYei6brlcZowR2uVRZbNZAICiUMRxrBBFXTMVaQD0+Ez9by2lxJj20kMkIJCScyAFkJBgDqSImZQSY6BqJBBCXSMAAC4EhhAhxCRAEKovInqisipvVeUN3aAE6RChSI+hBLrUAQAxpaZtDYLBW2Ia/RRU9q3/+vwn8C5IS0LwoxPd7r/qIhAACHfFmntvQoS6UmjvfknZtSLcijjDLey4fjrdx68xASyUoR9IKS3LFEAyARU83ZPHVWwyoMLrtY11AAVjccw8iRgAnFBULq2dPvlOFPrTq/PtZnXvvt2dTru6WWOxOPnOO6ZpapT6vp9KpSilmqZplK4ur0jJTdv2fd91XMGBYaTanbrT8hBCmkaKxXy5XFYm6YcOHZqZmVECxxhTigljTDl1SCgVK9CyNKVAbZqmZUHXdaXkQRBQXbMxDBlTCkcQomPH3qMR8PabJwzD0DUjCsJ0Kuf74cZG+aEH34cw+M//+U+y2bSSmrJsWiwWbtyY2bFz965du5577jtQIs4FgUg1+DiOwxjzIx8iCZH0fc80jVQqrSbSZq1aKpXuuuuunTt3Nlv19fW1zc3NSrW8Y8e2xx577OzZMywG2WzW87x8vvj4I48+99xzf/EXf+m6biaTsixLyV+UNza+973vHTx48MiRI6ZpGYaxurrquq6aD67rEkIQhhQSw9QBlKl0stMRSv8XY5NSnXMuuEylUomE5XnADXyMcTqdyufzrVYTQpDNZjWNEgJzuUIc8yhiuq5fvHjx6Q988Lf+1b8mQPuvX/6zv/r6XzcaTZ3Qw4cPO45DqSaEVALWjz766Cc/+fFvf/vbO3funJqa6nRaSuq602lFUTQ1MSkF933fMIxqtSqlzOXIZqkchmEUMbXWDA+NolukQiABEELpV2xFo27TwXhXbeb2oX57MaYLLm9x71T/4l6f/u1KrLcKSLAH2/VbE6SUAIow8m/O3rh27aptmel02nHdKIoAgFEUFYvFRCLx9ptvbZvanstml5aWAODJlJ3NpqLY03QpZAQgExJ4XiAEVLwtCKRtJ2On6xExNjY2MFBYXV2NRSyEaLfbjUbDNE3dNMIglgARQhmX+fxgsVjcuX3b5SsXO52O4zhSCoKgkBxATghKJm2ASbPZbLfbUVRvtRoKvU2lEgCAIAgMwx4fHwcACCGvX78OANi+fadqR/ibv/mbg/se+Ou//qauGR/+6McGBgqpVBJhZpj41ddePn78+PXr1yFghBCCZSGfDgOn2WwvLy+bppnLplUi2m7UKSX5fFb1NzTaLc6lELFaHeMezqsWN8ZUIwVlTEAot+ICCjVwPQ8AIATL5/PlckXx2lZWVnRdT6fTvZVKwN6aLqGMWKxqg9lstlrb7LM7DcNSDGgAha7r27ZtW1pe7rSb6XQadZ0osGWZ2WzWNPVUOtFoNCCE7Xa72WiHYYwxHhkacdxWvVHNFwYoxQByQlGr0wwiFnGGMXZ9j1KaySQ7zY7neYJxTIkq6rqum8nnVKuXKkH35KpBq9mO4zj/fzP2n2GSXed5KLrizpW7OndPT84YDIaIRCBAgGAUBVpikGglivaVbfFah7J8TMkK9pH8SNeWJVGWbSpQlCwKIEiCYASInEFwAEzO0z0dq7ty1c57pftjVff0ANB9bv0Aerq6qnZV7b3W973fGyoVKd/KGh78DDafq9fAtWB9crnB/90oJjb/2SbsWG1sB+Dap72K9cCrr6IGCp6NrQu84+3tTwiQtnfSmwpU6xfY5mfWEPDGwxGAaj3DAGxwmaVSg4CswSxq89vZKIY2fSAbR3LtJ/C2bXcz2wtseJXoxejah7/jTYNiQlz9Mwih5dimRSmlURTGod9uBxjjLEssm2QZr1YqYdivVEpRFLz++o/PnT+FCeBEUgMmaehYpkGQ7/t+r+95ecOwRsbGK8PFZqMNIeRS6ugtpRShKGOx7ZAw6u7avSWfq/zo1TfzeUcIBhRijEVJaBlmGPpaJpXLu7oe4iLDBHEOpOSLi2u2Z3s5euTIu6a2TJ+7cKFYLN5553u++CdfxBh3/eDi5UvzX/pSbbVBLTPjolypzi8tPvX0sydOnt63d7dh4OXFeQtTalBKqYGJvlgsyxJCtVod7ckWhiExDYQQpkTzSXVrofsxqQbRJaZlJGlMCDEIVQjmcl69vtZoNKanp9M4ieNwba126fJlheBt7353u9dOksS2zcpQqdvu6ZM/TVOHmp7n6dpRrzCmaZa9fD6fZ0KH70EmBEL4/PnzO7dt/8AHPnDixImc5xJq9PzQyzkUY8EUS5LS8LjKktGhykonaHW7CQDvvuuOM6dO9poNc3xCsBRgggTBBBmWCQmWnGcpNxwHIQSgJITobgQAoK29NwbVGyftoOKHQEpJCVln7EqMEYZow5/RNE0mheM4YRjOzs4WS54GjtOEDVDONJXrkvmNAt22bT08MwjKssx07I9//OPPPP1cP/A11Hjp0iUI0a/+6ucyns3MzAAAtExHAqBZrp7n6annAHBZT2LUWg2MEcYon885jhNHaSAD0zSJYaQ8a7RbnPO86919992f+GefevChf3zyyad+/ud/8R/+4R+EUNdff/33vvc9AECv19uxY4eu0QdsnHUDjQ3PO72a6c9hgOQKsP7PDfKIWEfQEGMiyxIpJaLExAivJ9joPQUPsnEAQhARMtiG0EAgmWVZkqUYUUywZCzLMr1vDs4lCbU7YZqmnucN9gtj4MIxEHiaZpIkmp8lhDAsUzAeJbG2ThZCgPUEV6220aQn/S4gUooDxYWEUAAFFTQMw7Zttc7QRghCgoHS2CYi60OFgROOZXU6He2Z2+12G42GZmAAADgXAAgt1g6DmItML3KGYSZJqs9J0zQxIVo+KLhiSOjQjizLlAQbxHxCEKVYSplliVKK8QwR4jhOsZSv1WoAyEIhx5hIM4EJUpkwDDPLMowNBYRp2gDScrW8Y8dWzpN+r81FIkQmRWy5W1y3sLTY7HQ6k5OTAIDh4Wqv11tcmudMzl6a63Q6UirJAUIoYZFlOXHK0kQksej3Q9fNKaUc26OERFE0MlrNMt7t6uxxkCVpPp/HWHte4yzLgIQQ4IWFpSiKx4Ztx3GUYDpZYXV19Xvfe2Zqamp4ZOji3Ple2N61a8fuvbuOHj2aJBHG1LZNIQRjKp/PGwbpd3uOk8sXvNXVlSDyT548ec/d905Pb/vpf/bT09PTa7VVw6CGbRKKut3OatZmUlABXMtUgHAO2p0givp7hnddnL3U9Xsf++mPnXjzxFf+7suvvvo8T5MXX3zx1ptuZgK89tprAMGf+Zmf+fCH3v/dx364uLi0e/dupVQcpfoMb3babs5L0xQRDBUCYAA2wHU1nxpw0xBY7yullBICQrASgjGogyKxgffs2bO8slipVJaXlw8ePJAk8c/93D9HED744INDQ0Of/7e/tvvAnldfffXy5cvffvSRi5cucSl6vY4fhd/45sMAyl27dk2OjReLxSsLs2EYRkF4ZX42V/D+8kt/ffHiRd/3n3/++fra2pEjR2yTVspVXZgpACmlGWdpms7NXRkeqk6OT9zznrv27dv3+3/wnzFUW8amLJOWisUv/tmfjo6OerZT8DwEQXWoYhDx0Y8+8N57388yXqlUKuXqULmSZRnFsJjPL67MnTp1cueenYyxZ555plKp3HvvPQsLC7Ozl/uB/+yzzyql6vW6ECyOI8fxhqolLpLJyfFCvtRrd3WOk16gIBYQkvXSVAEADArb7WBtbe37jz927Nix2dnZ0fGxYp5evnze9ZzxiZmTp0/3er1cvlipVHr9th+0CUG5XGHHjp3Nemt1dTVN0zCIIYQKcc5ZrVarVMuGQQqFYrE81On0WRb6/ZgievjwEQihlkRs6L61IaFtu+9+9x1P9J+K45hJkWXSNiEhqBf0MMYGAc2o/+qPXspYFPidk6eavbB16PCe2up8vbnw+uuvP/PsE5bpQSV63SCXLyCKMKa1Wo1zZpoWAGBqamp4eNR1bYyBTmGB62AWQkCJa6qpQVNGAFAgYSqXywkhOAdJkq2srOgg9NHR8cuXL1q2UzAL73nPPY899v0oTJSEUZRIqYaHRxcXFxGCUsqFhSUB5NLSyne+8z0I4Wd+6bMf/ehHn3vuuaeffvr8+fO11eU0TScmJrrdNqX41JmT8/PzNrE+9rGfeu6FFx/9zre73U7GgicbK68f/dFNNxwWQmapPH/xSnXEeenlY812o1gsFQru7Ozlk6dPlSsFzy0oSRcWL3/wgx947rkXf+s3P9/vBWEYJklCDVBbXVhanrv99ts9z/vKV76SJtGW6/ZrqAtIoKBiaaYxLCklQVjzezYGfoylGjjWm5oGRhzHW1urK4Awps1Gl3P+Ex/5SS6y82fPJUmseQZMDELUa7Xat771Ldtya7VapVK1TCcR2R233zM0NDq1Zcvevfv27D64ttr44Q+f+uIX//z8+TOmhZlkQpAoyur1ehLHlmU99+wzjframTNnup1elmUYgr//+69grDMq04Urs1u3TM1MT165MluplMfGxqJ+p91qZ1nGOU+i2HVdvS/EcZqmGWOsWq2qVCZRHIeJ5zkAgixjpULe93txHPf7vaGhIb3VbqINCcYYJsj3/SDo6Xmnhq0ZE1GUKAEYE/m8naVcz2WFECJjWcohwVJKwzAkALqSgRBiAvUWzDmP4xhIZRhGHMcf/vCHf+MLv753x/7ZhSuHDx/Zt3f///pfX3rkkUcgxFIg23Z9vwclVFyEfZ9SIwkjJYBhgTSV2hmVCTGILwaYEKLBbgAQQXquDBFBAEIFgR6YgXVKog4UkQJs3bFjbGxcSuk6OSllkoYZS5MkYyxNkoxgw6CajKUsy4njfr1eDyO72Wxs27a9UCiMjo7kC16hkDNNW0rAWIYxIcTAGEsAhJQKCEggQlQpxYUgEAEE0bpNwkYBI6XUjfVGlwchRGAT4qw2wNZBg7XRXWp5pyYGmcQEAAAhGWOmY0GMIcGaNoENZSE925ZKSIAhhtC0TcOy/MhXSkiQRwglSSSlbLVaQRAoIS3LMgh1LNsgJAzDtXaz3e24ece2banY0FCZQNTudFZXap1uP4wjhSAAwLVMx7aV4MS09Jeu5Vxnz56VUurTVc85DMNA+GrJrYf02gqMMaaFTXhdZLxRnG+8d7nu1ywHs9urDiRQByzJQQDV+oAh05ftBolqgy4QRZFeEIQQSAHHcWzbjtIADnjiDChlWVahkIMjVQXlOBwl6xv2pmYVDZpTtc5u2GhoERr052/Bs9aJXFchLTDoyIE2tdiEDmzub9+x6b0KpW30yxt3XT1OCBQAjPMkFbmcyTlvNBr5fB5jahiGYRD9lxgDpaBSQEpp24hSx8TDS0uLlOKMJQgpy6RZGp86dQJAfujQdfXVoYsXzz/zzDOlUqnf7e/cucO0aJJESUIOHz7UbrcXFxenJsdXV1ddz3Y9W3AV+gwAiQlkPEnSpFQqaqX88PBwqVQ6ceJEFEUXLlzQZvxKKZ11BtaTXpSCmCqdQalROc1hCYK+FCBjiS4rMUaUGoRSKYSBiZTZ9m076vV6r+e7TlEKJASUAlUqI+cvnVVAmKZZKlXCOArDkDGWy+Xy+bxuOVqNtuflKMUIA0KRYRLbMUlGtF8blNLzvOnp6TRNlxZX4iAeHh4VQp07d65SqRiGaduWlDIIguHhaqVSef3oM4wxy3L27dtXq61KqYaro4EdSMVXV+sYQ8Mw8vlCFEWvvfZaoVAwDCOKwkIhH4YBQtC0DL1EGNhIotA2jeHh4ZRlceybJnVdFyGiobGcl9eNqLY4AEANDw9HcVAqFwBQnW6LUEIN3Gw219bWPvKRj3z3u98dGR6t1db+/M//Ip8vPvTgw8vLK6Zpj01NTE/PPP3kM//2c//v4eHh3/+D/5Ykyblz59rtdi6XW1lZuf7667MsIYR0u13tcL1161ZKKeMZSBWLgw3ddJIkSrW1j+XKyoqb81zXNQw8CAyE14xV9G82zuRrZVvXXBHvSHzejB1vfp6Nn/E64vwWZQAAQG6a2TiulaRRmia6Mbv11lvjKGy1WpTSdruTz+dHR8e1W+KuPbu3bNkCuKgtLRm2QWk+TkJMpJBpLudKxdudNoJEcJzLu4QYSiLGlLZngQB0Op0sSzDGAIMgCPr9/tjEuOu69bWmlNI0bc55FCWBn/7Ob//qoUMH/+D3/58XXnzG93umRZhpKcU8L79lZtIwLIiJ3w8bjYbjeJOTE1r3qtM79ZKnF+JqtRqG4fz84utH3xwaGr7+ukM/fOLJfgesrKz4/YAJWS4X9+7bpUB2Zf5CFPkzM1MQiNdee9n3Q4NQTFQY+Rh7nudBNYinsw2zDwZz5l6vhzGGGFFqVCqVer3e6XYJgJoVrldhPWbUa7oQSucn6S1hYyMEAGhCll6mJeO1Wo0xQQgBYEMNPeCmEQMzxhDBW7duLRaLzVYdAECpMTRUKRQKvV5HCFEZKgVBsLi4mCaJ9t+IoqhSHcrlckkSx3HseY4CYGFh4ciRIwCALMvy+ULoh0tLSzmnUChVbMvoddtuoeiyRAieplmn02aMZ1k2PjJuEBqGIefcNq12tyOl1B2vftcQ6kRdSAgiBHTaUZIkWn+qy8przvCr5/M1UXibLgH1jne9Zfu8Wj1sGudo62ZwLdYsgUJwk6uGujpGVUobb7wDVL35ddd/uS5TANf8f3AwgwsTrqcX6BfY/PBridXrOPJbNsfNI/q34c5g49CV2tBCvdM0SwK1bgKiAW2oN+RNrs2bnnbd12zdxJpSXdIBAIBhGJQYUuogOGaaZpKGjuMtLCwsLSxwkTmua9kGNfDtd9wSRl2IWK/fbqwtUYyETKWk3U4rTZhlOVHU3TK9FUD78qW5XK7AuaxWR1zPHB2t1hsrnGd9v1kqlW697V1xxE+cOCE49HKW5CaEdrfb9fJuEsVhGBJiQKgopUxwk5pCCEJQp9P7pc/+EiHk9Tde3b51RxhHhVwuny/Ozs5quDZNU5GJOMrShP2rf/WvsGFOTE+dn730+BNPGSbhQmCBOOfKIEEQZHECodJ+DhACLjhBMI5jalgAQySlVFAqASFGhJoGxhjbphUEgeKS84yaJkVYo3ue5zEpFATQywklsyR573vvOXf67OlzZ2+6+V3Ly4tf/OIXxyYnfvaTn3r37beePXs2CmL91RvGgNxnWVbGOYZAu2whhFKWpWnKpVRQe/FHOcd94IEHqtVqs9kslUpBGGECFRdhksg0UCJXKpW6a8sQQwCQkpBLZprm1NRU1G4jADGhjDEhecZhsZzjEhACLdfNMgnIICEEKKVFtFmWZVmily+l6SEbrjWKQ0QppSxJdROlgMiSFBEiOEemQShCkEyNjWr94OLi4tKyKBaL1Wp1YX6p0+kQbOTz+SzJwjA0DAMMFhaio2Vt2yZIGYbBlZydnf30pz/91Qf/cfv27a7rfve739uxY+u73vWuxx577K/+6q+0DyAhJExCKcDgc0tTPRkVQhiWpVdspSRcH0dp1JVSCgEO4zir14Vk2qcil8s988wzoyPj9Xrj/e//4B//tz/et+/AI488ogvuOI6fe+65oaGhrVu3NptNbdEgxTXZLHhgLaIghJSaUiopBSIEY6qZYvqSRIgopaAEG3zkjUt187Kw8cPGqogRopQmjGvpgBYBUAp136u7ArmeQQ/XLQkhQLpEp5RiSpMk0WQZhBAGUD+P3tN1xJBlWRuTD6VUyoQaJArIKIq0CxmA0kKG0EuZdqOH0DTNYrEIMdDRAgJIub5RQggGUkmE9Oauoxf15WMYRr1e11mLEEIIEaVUW2owxnQWjeBKv3o+nyuXy5ocJLkYvGsAoJTa60MIoSTYAO41kg4hBFBRSk3HLJVK1WrF8xwJFAAySTKlLEKIYWg5OVJKEGIghBA1CDYAgGuNZppGjks8rxBlbLW5du7S+W63axt2P+hZljWajJbL5enp6ZXl1W63y7lIUyYFopSaOUKIYVBlGzalpuKk3W4rJfx+Pwq1As+0LIMQYlt2vx9AiMMwtiwDYoQxtizHdXK+H/Z6/TjSoRcSKKXHNgCAXq934sSxemMFQkAN0g96R4++1uv1CCFJEusAxixLgqCPIRKSYYzjONbfl+d5Fy+dP3Pm3JW5eZZlnuNUKuWDBw9+89Fvzs5f6ffCJ5744XXv2lko5IqlwiOPPHLm9PltO3Ytry4/8eRjIyMj733ve08eOy4En5+fI0AZ2Nizc08URYuLy7ffftuJEyf+/v88SEwjy9jE1BbLcgYNEcI6Bcd2LQCAYOsstk3hvpsls4NtbqMwhhBj5LrGyZMLPzr6o0ajcffdd586dero0R9v2TJtG+bj3/8BBCDyg//2R/+f6elpDtRdd97d63e+JqUWJkdRNDJSjaLof/yPLx46dOjWW2+1qPHjH/+40+lwzocqlXa7fenyhTAKtKHZ7OzsxOjY9i3b9YrHGEs5E0r2+31E8PjomGWZ3enO1Nj4cLVqUuOFZ54L/f7C0uKNN9ywND9/y403ZWl88eLFUiH/4Q9+4PiJoyMjVZYmC4srAJDq0AjCoFDMIQR+/MYrb7zxumUb9cZKPwyajTVC0Pj42De+8fV2u21Y5r59By5cuHT58sWt27eVCsV+P3Bd23FsAIBjWoXpmThi+mrlUgghdNCWvqayOF1dbs/NzT311FNvnjjWarWoSXy/55r8yLsOXZw92+93t23bNju3MD4+jhBqddoIizSMEUKtViuK42KxeOXKFdO0peQAYYzxyspKz+/u3bcbAnxlfpYzRbBz5MiRz3zmX44PT6Sp8DwHIZBlXPAB1OB5nucU9u2dDvzkS186TQ1qewRi5ua9Wq32rW8/cmTvvgvnLwVht1IqSaAgQDNbpxYX515/45V83u12u45jDg8PEUCTNLRsE2OiOUOU0k9/+tPvvee+SqVCiKHjMQdnlrpaj0Gp+d5wcxulbxhDAICBycWLl1dWVqrV6uyly1tnZs6ePjMxMfHJT378R6+9WiwM//rnv/Cd7zza6/X27dvX7Xaffvpp1ykwxoaHR/ftGzr6xhsGtZ55+rkbb7zx5ptvphjffffd+/fv/43f+I12u/35z39+797df/Jn//2NY69funRhYWHBJs7CwlI/iCAEUdwdn6ju3DGzdGV+bu5iqVQ0TdXvszQDcaKmpnanXHQ6LT/oGdSiFAuZlYr5b3/r4eXlxYsX59ZW1m668eZmU7YurxAKz184MzIycustt7zyyisXL170PK/dbj/55JMQQsYyC1vVkZG9e/c+/fTTjDGKSS6XgxAigjHGCAEhkJdzbNvW24GSsFwe8v1gy8w228q5rseYvOvu9+7cPvPII4+cOnVKWxE6npNlaZIkjHPTNI8dO2YatucVECRRlIRh6PvhXXffG4ZhkmRAIdt2i6XS/oP7o8gPwk4cx46NK5VCksaGMKrVKufJqVMnlpeX+/2+5+Ud10EQxFGwb9++D33oA9/4xjeWlxdfeeWVZrPZrK/OXboc+X0hBMSgUqnoYDrPc/r9gLE0jMIdO3Zcf+jwCy+8kIJ0586drusuLi8xntmOFcZhu90Kw9BxbMMwpBC2bQOo0iyRQkGMpJRh6OuNGiHEOVNKeV4+DGKMESUmy8Ta2lqSJJbp6AQCAIBaF1dJrmzb1PnMjmvNzc0JIaTkQAqtxYEQvu999+7dsSvM+oVi7rbbbnnowa9/5zvfC8PYdW0lURKnWcZHR4dt2wqCIMsGpqwYIi5EHMcASgkAhJhz7W8GGRNAAAhlJgECSinFhdRKL845hoMu2HWcoaGhXte/5ZaDv/M7v1utVr/6Dw8++eSTvh9KlWUZQ5AAwAg2DMOKE5am0UCSS1AYhmkW1+v1++5738ryKudcSqGJC7rqgIQIoTDGUCmEAQB4o+zBxEDrTgYaFtvMYhYCAKAtEzFCCEMEIBCKa7gPw6vuvUIIpTYyfhRGeDMCq3sknUgxmPRDSCmFgyIBIIAgxZQamBiO41wMemmaioyxLAEAsCTN5XJxGBmUFKtFg9But5slMQfQ7/dd1922bevMzq3FYvHU6eP11ZX2WiPwfUqpaTlcSYpoPp+HUhiG0Wp0a7NzmqSsyyRdxOpKlXOuLUe0Cxldj+zWFR1jDGMslBpMEzfxvjf3mBgTAACTAmjlkJT6o5br5pMKQyUHFSZCSBf9eFAsKQUGz683O+39AiGkhGiXtlwuBzPievnSli2ObYsmD4KgH3Tqzca5s3Pk7eDUBoKsf9C4GOcKAIkx3kDNNmPNWniy0RVDve0DAAAQA584CCHQNOcNi9uN22ZF8OYj2dQVD7xuB3sDABAAIaTWnEopXdcuFoutVotzOTExAcB6nLHUMJ+SUvZ6WafTUSIwbSPLEtswuMgES4Owt3ff7suz5+fnLgMAhoeHq8OVfrfXbrcJoVu2THU6nSiKVlZWOOf9fn9tbU0rWF03BwCYnpoaGx2XUtbrTdM001D6vk8pjaJACHbddQf0XYZh6JGXSY0kSXRATRAEacpK5crY2IjneUtLS7o/6Xa7nPPR4ZEoSpjgGAzmLRaEWKLZ2dl9+/dACLvdbi5XYowhaGFEi0Xnxz/+cT/sezkrCHyhZBiGBJuMMQCg69lCiOuuu27u8hXGmEVNHTXW6XQQQvlSUeOP+Xx+amrKtu2FhQXOeZIkW3dsL5VK27Ztk5K//MryxMTo4fLhixfPX7p0yXEcpVSr1TKMcHh45NTxE/1+v1AoFIvFMAy1XBGAjJjG+uAO+b6vETfGmOc4U1NTGu01CLYsS7vd684hTVPTooBLQighpNls5nI5zSMjhEAIVmpL2ms4CPpZxq+77rqxsbGlpbZhGPfee2+r2U6S5NChQw9//Zu+H7a7fi5XiON4ebnW7T7juu7a2lqj0UjT9NOf/nStVvurv/qrkZERIfmePbuKxWKz2VxcXCyXyzceeVcYxq1Wa2xszDCMWq2WJMnk5CSQIEmSfr9frY5oMpqXz2GMlRrwmvUPb2Ex65/fgjVvnP8bpP63XGL/1GWyAVsPqnB1FXHeeAYJBuCajgrUuQSUEN0S5/M50zTanU6SJCMjI7t37921a9f58+dPnz49Pj6+Wm/MnjsXhqGQDONhSqGXc3IFSyq+srKslFRAQaQsattWDijc64WISN3fxnHc7bZN00xYkqZpqVSqVCoEG7wspQSdTocx4TheGMRnz55fXV09evRoq9VyXUtKGUVBnPhxHEOImehCiAhFGlaO40Aplc/nr7vukOM4Tz311J49ezqdTqfT0V8NQqjT6XAu+32fMXby5Ek9n8jl3Pn5eYg449HpM29aNt2yZUu1WjFNs91sdzqdIAgMjLkQEMIszYRkCCGKMMaYcx5FkZ4VYYP2+8H09PTOnTsXF5bTONSFlO/7Wn+9vgAOQE+xnpcF1qETIQQAqtPpWJYBpeKcR0mMEIHrjsPraiChdxHHcXq9HhNc6wH1Eq9xAc4zwzDarW7f7xqGsWXLlnq9rnGZVqvFGCsWC0KIWq0WRn6pVMqybGhoiGAjSbLpyWnGWNgP9+/dfeTGmwEkhmn2ej3TdsPIP3bi+PLi8g033FDKl5jrKaXq9TpLs+Xayvbt2y3Larfb/TDwPM8wLNM0MUZCqG7XD/xQW23o96LeiXq8fj6/M+IsxAa/76rH8WbYBWxCn/+pm1x3pbjWQQIOrpJrX/odgexrD/UaavZb/kBXLu8AUm+Cm/Vb2Djsjfe1cYzyasiBlsyDt/ORNTp89SXBgF29/iLrEPa6MkIpBQZw/DtNtwYPeYcb54PkEEKgEKrTabfbTcsgjuNcmb985kwzin2MQLfbzWpLp8+c3LFj20d+8iNScShlZagUBk0pYBz4nW47SRIloe/7aSKWlpb7fkOjV5zzXq936NDttkMyFiZpMDa+tVgs1lv15lpnx87tzUYvTeu2m1NKtdtN0zTHRkZbrVaWZVnGpRzM84UQQnBqmXEcDw8PU0T1dXTwwKF2r/vQQw9JJqMolhworFqt1uHrj/ziZ375e9///suvvmK7uS9+8Yu+7z/0j/8wP3/FpAZjjGcZISQMIkop51BKDhQ0DMM07SRJOJMQSDfnYIwBRnpiEUWRaRDP81gSc5FZlmWaZsHLBUHf9/1McGoamNI0STPDhEqVykUhxMWLFzt+f61RpxZttuqzs7N6TeCcC8EoNpS8xh9ZtyVataBrUICAABAhFGfp0vLC977/nddff73b7WaMuZadJAljqWfb1eFKFPgAAJ6l2sXPRurll1/Ouc7Q0BClNJ8rdJqtfuRTk/i+b7s5CKG2idfFA6FYciXlwJxhILxYT7JexwEhAFATn7FBPcPM5V2EULfb7bTatusM7qJQz4zRQMiP9HxufHz8yuxslmU60keDwo7jUEoVF2zAZ8QYKUppL/CPHz9eKlbuvvvu5eXlxcXF97///vPnL/z6r/96v9vVWYtajairYQgHCCxc9+jgnBuGUSjk4zju9/u6v0KUuJYDIZQQKKWiKPKDnkb5x8bGKKV/9md/NjE24bre//iL/1kqleprzc997nNRFEkpv/CFL/zav/21Bx968NOf/rTm+bKMbTghblza+mcts02ShFomIQQhDICSkm0AykIM+jFCCNhkKqofztdT1NG6oR6EUK0vYpphoHs5NXDbIGJTyPuAnI6BZsEIIWzbtiyLMcaUINgAQMZxrP349FvQsCxY38iu2iwKpXUtGlXXliaMp0kYrSdNcR0GGEURFwITqFnMUikppTYqMYyrDh6CMV2VCSG0MQsAwKAWsLWvNNQHvI5TQ/1RDKoailzXKxTyvV4vTVOTGrlcTh8GkFLzAyiljmt7ngcU1MEenHMAlRgkkgpKabfbxRgKzhBCnuc4rqkL4263yzJeq60pCRnjJqVJkh07dsKwECYKIpEkiSIgDOMoipSEXb+rqXCzs7MrKyue605MTCCE5+cWBOtLrjLBoKkED4RQSZhBiKGChFClcK/fl0JACAvFgXe2kqhYLDfW6hhj3w8NgzhDnuM4nXbPcXK25bpuTp/qCOviAQ8PDzeb9ZdefqFardiOqZTw/Z5hGFNTU4VC4cyZc91uexDsDKGQTMf+QKQMw0hZIqXkXOa80vETx1jKLMOI4uD222/fv39/FGZf/pv/0+kG//Xgfxob2+UH/fpa4/jxk28cOwGRGqoWtu3Y+o8P/sPpM6cmJsZGRyqlXP7z//bzf/Lf//z5F1+ZmZn5hV/4he/94Ptf+tKX9l938PDhw5zzjHPDsAAErVaLS0HWDeIRwFc3WaUUhAQivcJrZSHG2DQNA2MhgBCKQiilimM4O3epWq3ed999k5PDtVrtxIkTUsrbbr7lB9//fpIkv/DPPz01NeG6di8ITdPcvXPn7bfffuHiRUqpZRmWZa2trRGCzp07s7BwhazP/zDGKyvpN77xjTRNIcC33HLLb//2b3/94YcvXZw9eOCQ/vQMw1QIZZy5rtfpducuXV5bW7355pullH/35b+5eO58lEYAyv0H9zu2/d573vPAAw+UCsWnn366VCjkPe/EyWPnzp379V//971e7/vffyzvlaampq6//ro46M3Nzd562827d+/80z/90x8d/bHjOA888ECz2bxw4QIh5Lbbb/+FX/jFJ5984sKlizt37rzz9jv6/T5CFAApBMPY9Pthvd4yKKhUKtQ0IIRwUJ5hIFQQhNp29tyFC3EcY0o0nxFjCLBECNTrqwATpdTi4iJAyjCIVApQ4vv+5cuXLdMxDcPzvDQR2jNnampq//69GU9XV1eylDOpHDsX+P6OHTu0ZVyh4GQZ73S6CBGtzU/T1KBmHGadtjE9PZPL5QxLJGk76re9Qs7L51ZWVs6/eUwvfa5n9/r92++8Y2Ji7OVXX8yytFjyut2uaZqdTjsOkiyT3W43Y7Ber0sJ7rnnnoMHDw4NDTmOkaZKKSXlVe3pegUIEATr041rujAhpGbT93o+AEAIQTHRa6zrurfccovr5u66855ut53zip/97K+srq5Wq9WjR49+/evfchzn/e+/T2cFYYB6vf5NN91UrQ73ev2RkdEwDDudTrfbHR0dDUP/xKmTH/3oR19++cULFy4AqBTjX//61zIhTQsfvuHQ//X5f/2db3/z1PGjVmXEcZ12qx4nSbmaGx6ZqFSHL1y8rAd1EELXsxcXli9cuAQBee3Vl6SEQ0PlG44cevzxx1ut+q5du4rFfKNZ+4u/+Ivl5WXLskqlYi6X026wk5Mz2vt+fn6eUpolKZPcMExCCEBAf1NRFGECtcWEdv9bW1u74867/sN/+I8vPP/yY4/9kAlVLg9r4mcYhpSQXC5HDez7fTyw4zPvvfd9fj+8dGlOO5KFYfzMcy9Yjpek0datW9utlu+H97//fXNzc36vO1QtfO8H3/B933GMXC4XqEBKiRGFEE5PTyZJFkVRoVDQGtmLF8//7/+5iCkpFosnThyDENdqtdrKmmvZBw7si6LIdqzh4eFGoxEEQbFcIAbN54vlcrnRaIwMDxuTk0ppD1LKuXHmzKliuUQo8nJOGPlpRjjnvt/jXGr7KQWAlGpsbCxJ4lqt5rqu67qcS9055nM5pZTv+0KowI+0F5zeu7mUG7uzDjUBcBBPxViqqc2UUoRBr9d79NuPdMOGUpAS6+iPjj/+2NNCKMOweCYE44aJ815h28x2obhuEuM47nV8pWC5XM6yFGGsIMwyrlezLOOMMSgHdHUEoBC6nBaDwkMKjAdpb+12O0u5/qJNw/7whz98+fLc66+/HkYBhEAojhAyDKy3Y8OwOGdxzAnlnEXV4crNN99s2zYAIJd39doOgISECKngeoGBMEAQSaCAGqgNlFQQDiqQzf3gxshcg4sQDvozKaU2NUWIQAU26gSlFABiowbTOlTdQXGeYUg2N6oIAbiOe0IITdMgCKVp2uv14jg9dvLEm2++yYUwHSqVsi2r4OUQgq5jE0KgAp1OB0pVKhQ9z7v+uuump7YQk5q20e43TdOsVqtJFDuOgxESEmR+XwHQ6XT6nXaaJAahURIjhLSqQIddgfXkD81ShesMYF2P6bpLCKEnnfpy0H8PN902qibdRjM5KOd0FY8Grqe67yaEbHy8gwQRvSZyznVLqr3m9QWCEHIcJ+e4UspisVgY8lSEwyRuNpt+v88bLAzDDm1KoHLZEMHrIv0BqfkqlVjBjbsUQAACgIHUjifra/Q6lVJKhQAEasA106D5ejATAugqiKagUptoZfpE2QCspQAQAojA+ihiAJZBCIQCACqpz0OpOBMAAMe20zRdXV21TGO0OuyOjS0tLcT9djk/Fsfcj8J8sYARUEJBybqtRhZHBvW7nSBJkspw1bbtIMq8XPHeAwdsy/3zP/vj8YmxI4dvIBSdPHk8juMLF84zHs/MzHziE5/48pe/vLCwMD4+qV11PM/z/T5CxDTNnt8bHR2rQrS6umqYZmNhVe+Iw8PDjuO0G00FOBcKACCkUAhRC7s5hyCEEKiO5ipDroTdlIelISiBEQZZJrhQcHJm+8rKUrfbBRhApRBCWcLyBXf7rp2tTm94dLq21knCCDuUy9CwiG0bvV4/SX2EZZZl4+PjD3z0gSd/+D0I4bvvvOP8+fMY4+3btwvGT548TQuGUioMYs/NCyHCXkgJqeTL1bHxdjc8d+EyhJClsWnhZn0l55o3XLf/6BuvT09M5px8u91C0Hrih892u10mMsOirmM+/sPv+v2wXC3lPS8MwzgBBBtKKSYU5FBI4VEbQJpG0dTUlFQCKpWmcW15qVDMTU+NaQSNi8wPAtM0C4VSt9sFikBM4zQFaQqwjLIwbSR2ztJ27Jxz23LjKJMCU2oeO3ZuYmLCs4tJkq0udT94/wOnz579ype/hhAq5UcQNFdXV6WUP/NLn5mbm3/11VfHp6cfeughofjW7TOVaqlWX6wMFxzHeOONo0op07QXF5fn5uYwMT3Pi+M4FnxfPje/cHnhyjwEt2zbtm1puSu4tCynUqkY1NJnrGY0IwUgBHywCA6qlo15CbiWyLwZvNrArCTUI8DBH7wFpx7gEBgoBAaUTTjAlJQAUgGkX0gBxrlpIIRgFAWdTodlARTccpz9+/e/8MJzTz/70pYtU26ueNc993zkIx959qmnH3nkkX631+92uq3m8PBwlGReoWBaiBAShl3HxYSCKAjCoE+wYXu24NgP+kARzys4jqEUDHkMEQJCIWKkTCQxp8iSGbp89ophGMNjo0zyKEhc102SJJ8z//7Lf1Wr1ZRS+XwOKwoUoAYGQCaxgAQkSSwVV0qYtrll61De3eE6XpZl7WbnjbljC3PLo9XxTqfT6/ViI0aIWMQRUCYBS4MQITPqd1wTSRadfvMN27Zr89Lz7Jmx6XanEbTb3KYIoenJkX17di4t1i6cv2RZWAjueiYhJE1ZwjJCCEYYY8I5p5RwxiXjnWarWq0UcnZuumRZFpSw0WgsLi4FQZdiQ0kIlUQQ6m0DAJByZts2IYQnvgJisLtnzDAspSBFJkJIcmkaRpjE+iFSAqUEgDjLOEJkaGho7+49/+t//0U+n3/PHXceO/ZmFEYIoVa3xaQghERh5th9ahIJRJImlJJSoVAsFAEA9Xo975aVUr12CCX18l6WBe1uGyEAHHfHweuGxra0mn2eQMvCME2iTm1t/rRjWHu2jtuOw9K46/cRNa7Mzu3avXtiagpBlURB0O2INDJN23YdoaAfRFxJwzCDNCYGzXs5PXoFUAkh9Eh5A4NGAzn2epWwrjR/C44M109rBaF2h0CYQgikVHIgkYJo3ZViAzXWO64QQkdUwXUpFoQQKYAg0psQhFA3s0IqhAYUx7cOPt8Shqv1RBBq71cN70oFlFynH2+ob/R/1u2hOdeDBKAUgOsOGVIqDNftQDQwLAGAAAGkhH7NtwHfGweBgVIDVTxEECikrjIW1z80JZG2bL5WNoEBkAIgBIXC+oWl0qQMDABkGUAIY4IZ5wQiAGHKMkwJoqTZWDWpMVQsgIJbyHuXL18sjlbn5i7PzZ5fmt9toezc+dPve9+9/ebKpUs1AEAUCCEIJSRLWLFQCHsdJgTnslDI2bYpBQuDXhAwv98vlQqOnb8yt7S0tIKR4Tj5MI7dAhUcdrsdSfhyfa4wZO7YO5YlbG52nnNAMOkmIYTKcRyX5J5//kWlVHk4d/7SRce1/uPP/tYPn33864KbhCpqYIqzTJaLpSxNv/Dv/v1qo5lm2e7du4emZ3YW8n/31f+TMW4ZCCrl2ubYSKVer7e6vZRxwzAhxCoTGBLP9uKUM5YigHjGAAAIAyYlRlDDfKZpOran4SHf9zuddj9KsiyrDFddF9mm3e/7f/GlLx0+fLg6Mry2ttZut6vFkt9ofe+RR1maddbWsjhjjBkIQyAFlACDfhBQSjGEPOMYYwFBwFLLNFzbllKmHDbbrXfddOP/85//gCv59PMv/Mq//n+dOHHi3LlzsQ98EdpYRWGvLRkGAioVB0GYZcq2JMRBKgyACq7Z6/V4GllQGJRKgCIuBTKTVEgJFGCUUkKQRFQIIPSYBCKEFACAYiKl5IJhjIEEEGCKoOISU4IJ9H2/UMiVhkoScoSQaZoauk3SPoYDzQHLeCcJ9ShxeutEv9+Xkk9MjBSq7vJyjbGUpanr5AhCugrnCBFMSuWhJEl+8PjjR44cGRsbe/PNY7/7u7/3R3/0h08//dTw8DAxqJSSMY4QMpAppQRY6zCgRrGFEAQCuV5z570cACAIAsFFGmc8029HASFMRMYmhtM0JQomUZzE4YULF5aWVpqNdqVYuf766xEGExMTGOP3ve993V53ealmW26aCCkYhIgQnGXcNCkmUMhUAaTZ5QghACTGUDKObSgYH5TKAEClpF5MoFRKKkjJgO8MMcYYQQVRJiQCSrFMc0+AwlxK27GUklmcSSmh0OsKxAhhDKWUCmgbSsGzTFs8Ca7TtKEAImFJlAaIYJ2Dp5RCCqVpKpg0DINiIhgXSkKobFoQSnHFgcRSSqkkRApAjin0itbwcA5jGgak1WpJQBAhgHGssBCCIwYkMLFh2hRgZWKqIo44VEwprgzbwBIBptIo4yIzKOVAQaji2DdNWwFm2QaEMMuYFIAzpkWgSgEINTdct0OMUGhaNFrtJ7FPsJcxKpWkmEqACDYxkpZRHCpXhBCtVqvv95QSup43bCtfynuew0TGeZamKVeCUmo6xKCWVKrV6SCEbNsul4vNZjtLY4MCy7ahYQomHCuXxoxznqZpGEiEHNu2IWesb641fca4yikepyKNDMPAyJLCNwxDSim6KM4S3a4DAJSCBrUghClPheTFYn5myxSCZPby5WavP1QZsWxXSmmYOJe3bYcwHkzPjCSRuu222zGmzWZTyKRUzslMmKaDIDRNR0ni99NGu0kNjLBSgi8srKRpatvuYDvAhBCKkCUk4DjCECVJZmCSRMnh6/f87Cc/9Wd/8qdrfsu2i+dPvHFw146P/atfOfry866ZWKi/uLKwb//uXqfbWF2FKsk7lpSi31p96rHvNlstAMDE2MS/+Tf/ZrgyvG/fAa/gFbzcBz5w/w9+8IOLF84ryfKOdc977kBA+L1OknGlIEC4XKpAQAjEUiJsJIwJBCkCFEEiBOAIIAKYEo3OKmMpRLJYLFJKg77vOA6lhTjxCZY79s14brFcGHrmmR89+o3vACF37Zi+8eaDzz73w14/q7e7UcZzlDSazTSLX3p54dWXXizn3SzLojBsZPGR/Xvm5uYMw9y2bdupU6dYJrhO0YiC5uqyYRgYwUZ99dvf/vazL7xYHRomjuunWbfbLxdLxaKLET1//mKtVrM98dr3nu90G9NT204eO29gDxkWYs7lM0tZNmtZ1qPfeOKBj33k7vfem8ubtdpKO2jv2rXrsWe+026055fPC6GWG1W7IMIwLOSLW3ZuEVi5RU9Bef31142OVL/0pT9ngldHho8fP/6Vv/s/J06cSDPw1NOvOlblyJF3WYYNkY0R9TtBr+f7/RYwIbTQRHGCZ4wQXZghAGVlKJ8kyfzChbHRgueB5eX5nGtlgrfDTq29ghDiCog0pRQpmUouFSeEmJJj0/AghJzLNPUlUIajTXXMKOYH9u+mxKivPCfSMOc5LOOf+KlPvOfuO6OoLxSnxDx16oyCZNuWmUKpJFMOFBRMEkiSJK6WneGKF8Z9P5FpwnMeByKoLZ9prqaMCYNaScoMwyBYXLhwIg5apml0m41eN7YtLzOQ5iRxGEPu7tq6y3Vz0xNboMBZxj3PABszfk3EgevTeDlAHqQawA4bN4yRUoAxVq3mGGMNq3H67BmIUalcvePOu3fv3qU9GXbuGGOMAWnaVr6+1hkf2/KRD3/sypUrnXZw9uy5KIq2bds2NDT0yZ/+eC6XW1xcPHHihFJqZmYLIWTr1q0//OEPt26f+dznPvf8889qvUUgmpAiQFAc9irlfLU4MlHdngS4znygaL3ll8p5SXOzSysX5ufiOBwerZaKw8tLDSUhhiZLO9u3zbQa3ZSBsJd8/9vfX1yaL+QdjGQcRSBDWZaEYSi4cuziUGUUY7xjx/Zf/dyvfP97jz344NeAwoZhKUkAEhmL/SDO5Ys6vblSqfhBT3fi+XxeSvmum2787Gc/W8lXbnn3rS+8/NKpUyd27t4xNjR64sRpy3RshzKRpQHP5/MQos/+8q/MbNl5cP/1R187/rd/+3eXLs71+9nMzO44SMqF8ukzy8ffeP3Awf1btkwVXfT97zy4tHi+WDhQ9MpSMCAMACAEVMlMAZkyduDAgU984hO///u/P3tlbvfuvT/z6Z+9dOnSrj37tOxpcnr7+XMX+36aK5QLOfeO99xTq9WWlpZa7f5qvWHaluu6W7ZMdbvddqtRr7Px8ckoSlqtFgSIGhbJuJApy4RtuBqmSDMm1jO3MsEc1xsaGrIsU0qZxDyJRSFv68nrpYsXgVJJkvCMIYQ67SZCqFQuGJj4vt/pdCCmECklRD5fGK5WhRDdbndgNAqoZWIhBCGEiyxfKJ2/cIlnoWU5x06cCqOUmobMOEdSKmBQMjI1Wa1WhWTtdlfoQgkbgEKJFZMijDOKsZQSQYJ00wSEgSBAgGAFgBBCQAQHDhUKSQkQpgDALMtsx0RElfO5KO29+PLzH//4p8pDI7v2Hlyt95aXmmHURjACKAVQcMawIEASJZBUTCgkFBqqjrx57LjjFjGxhLIBdgCysGHzNFVS9zFaeIkABAhArdyEECgglZIYA6Uk53zgsA4AUEhKDgecJCmlAtreFwGdNS0lBwDpHg0CDIHawE8ZExpgHcCpwBSCd3sdCZVhmdR0oKAyzIhBbRsbUPYb9cZa/fLly6srtVqt1vUDQsh4uWQahh52Ks65EhhAJ5dTQF1/8EClXNa6XkpphrIojhxlJX7MIoYEquQrQvC11dUgCFKWJEkSRZHjummWcSEMy+WCGRBjjKEmDgkOgEJKUgSBFBAjBLAO0RVCAAEwxhgSlnJKDQWl5j5r8ynB9VANAYCkVIIjLrlSCg6ge92TYqUggohon0xMuGCUYC4yBRTFph5MgvXpvmScmobneYyxcqliGIbjOHrE1e/33zx/wYyNoN2uBzWJIQwMy3JSU2ILE8Mjm7nMGyRi9TYV8CaK5dulx0CjxhuY8jo1Dejv+iqCtomvtV5dAQUAXHeLVhgAeY0bwDVNMh5MIOEmIaFpmvqLn52drZTL1epIFEVSgH6/3wuCfD6vlMIYEkQBkIQihEgcx2fPns3X8vv27ev1m4tL3ePHXyEEu56RZv7oWIVSOj+fq9fXOp1OxqIoioIgWFlZLZUq/X5fSuk4FgAgDEM99GDZ5fHxiTiOwzBOojRNU63ma7fbCJIsSTShI01T1/H27t174cKFOI6llLt27ypXCvXGSpZxKVPXdXftGrtwfq5apZyBK1eu6Dco1uPLlVL9fv+xxx77iZ/4iT/8wz/8rd/6rW987WH9HrWzIaV0eHjY930h+PDw8Hve855mffm5F18ghBw8eLDX601OTq6tNoIg6HS6FGGgkKZda8Gs7/tMLWmQSCpu2zbnvNPpjIyMPPjgg6VKGQDQarVeffUVYhqWZfR6vf0H962srLiO47rulbmF6elpCGE+n280GgpCbcNHCIEYacIykmxxcbFcKXmeF0UBAKDT7mECNWW13mj0/fDWW2/VnuhhGDORmqbR6/XK5TKEqtPpCCEsyyoWiywTjuOUy5Xz5y92ul1CaKvVyrtYf793333P0uJKmqamafd6vYzzQ4cOeZ63detW2x4YNpXL5QPXHe502j984rFut3vXXXdABU6cOJEkyeHDh3fu3A4A+PGPXzMM4xd/8Zca7ZY24O70um+88Uan0/G8/IH9B4MgGsx7k1gIUa0WEQKcA4DfSk8Gm2jI4Fq35Q0M+hoq9KZL4C13aSKzJlBffYZ1UElffUIASgGlJAj6nDOMYZqmUmSmZTabzTNnzly8eLFSqdx77/vOnTu3ML+UJmxycnJxcbHVaFYqFSVFvb5GsKkA4GxACG00WuVK3qBWdWgkiuJWq5OlEhNbCklw5vu+lABIpaOTNB3YNE3P9vRszY9CUK8nSZKm6czMzLpuHVQqZV0gYowZTxmTCAGFIOA8SZLpLZMzMzNRFERRtNRZsiwrCuOVldVut18qFc+dvUAoyuVyAADOpJaY6zbcoAbnQruvKsW5yGq1ZcexS2VXMxCzNI2iaI01Z2a2mY5Nbaqk0rMiKaUQTHtp6XVW/6zlLZ1Oq9/vxnE8TSbiOC3lC6OjY6ZpnT51Fii1aR6LGRMYS9OxwUDUowAAUgAAFESEc64U1IrsNE3jOF6f2Cnf71mWhSjpdru33HLLTTfdRDGBEBYKhc9+9rNf/OKfPf/889pGE0MghNi2bZvv+xYd0KillM1mc2xsTHP9hOCGYSRJcvbs2euuv+6Xf/mXf/SjHwEgd+w91Gw0cm7ZdfJhP1QKB0H42muvBkF/ZMS9ePH88Mhk4Kf5YjkI+pOT45VKBUBJCC0WiyEO+v0u55wJzoQiBi3mirlcXrKrGccDqbK25VofKW+Q9cAm4wt9hmzw9TY2ILFB1N1EQtn8wLewgDdAZwWvorXru5jW5IJ/6vb2u96Rf71+F3z7tvj263fALkZofbY0OLD1Akhj7utRSOvzJ/XWbXb9Rd/5l0gnJ28c88YHqCGZtzzZYDHZ5FK1cRMCYKJ/kARhIAceDpSaWZrmvPxQuYKhyFi8OH/l3vfdb+SLO3bsevnl57/2ta8zHgVB+M1vfjPNYsMwtCrf8zwIQKFQyJJ0eXkZYiClZIw5jmVY5urqahB2AZC5XC5JMoRILleIoywMwzTlGFMIIePpnXe+O/A7a/Xa2HjV9/2JqfEjR256/LEnQF8OD5UcL1+r1SYnx7ZsmTEc3G631+q1//t3/+9jb7xZKBR4JigygYK8G46OjoRR9OKLLxYrQ9Nbtmzfvj2OoywKoJKu5xgU8TRhjHU6PQEgAEBHY8dR6vs+RQaGUEmk10+MB+Y5OnRXW/IxxjBGpmlqg+Butx+m6czMTKVSSVimd/N8Pl+v13WSquM4lmWVy+V+t7fx3SmlEILrdHikn5YrZTm2ElI/ZGVpSVMYKLUQQltntp+9cP748eNjY2P/8l/9yle+8pXV1VUlOEuTJA4FV8PDw4tX5niWuPn8Xbfd9vhzzwdBALIs4XIkl1NZppSybduwrQTAMI6JSQlBKU8BoRtDIIwpQoO1NU3jDXazWjemh3Bgv0A4sR1TLziEEJ2ep7lgmq+hqYIIIZFEUsper8c5L5fL2i+Yc14sFhEi58+fF5mwLRdSqHUn2gJYU1bDMDh58sTwcPW3fus35+evpGl6ww03pGm6uLiomb+aRKOAnjpp1rBQaiB91VGrGGOuOFTAdV3HcdKUKyV838+ylBpYKWjb9v79+5Mkee21V8MwlgIUCsUdO7cZ2LBsY9u2Gdu2u93u5z//a2EY5/P5O++887nnXhBCeJ5TqZSbzWaWpZRSMIA41mdCg8S/ARtFf8hSynWpqNLeylBCKCGCCCEtgBjkBGo7P73yGIaBEMhSxhjLOAcASC43mClJwjjntmMWCjmdaqjNmtHAVBoSiCTjCcsQAtq1TTIplMCQIKQ9HA1CDJHGQELNa0aEZKmmzyiMECaQYAwVyBKWyzlBvxnHsWV6cBBKrvNnMCFEaZNEZEIFMKa5HM0SFgch59ywbACA3mRNk+r4qSTJEGKUmgihgEUb/B2lJIJAKZhmCSGEsRRA6Zg2QqjZbKZxYhiGZpNBgCnietw4MjJiGa6W9GUsAQBo7qfrOZWhkmVZQvA4CnU7qrjsRf0yLQ5V8mtra1EQW5Y1NT6pFFxbawghwjDG1NDG4p7nxe1WlmXtRhsA4DgOAsAgxDZNIKXIGE95GsUsSRFClFLHdDTVOk2Yl3PjNAIAMCYoJYMKgXNqUkLIysrK1pnte/bsee6HL3pezvXyEGAhRKHgGSZmLLUtZ3py4r777nMcr9NqRlFkO9QkJsYQQaDjlNM0EUKIhCGs4lgABDd491qHpEWiEEI7TzGm4+NDiktZEMtLteefezGMEoxpvlTO5XJbtm1dWF45fvIkpmY/DP7wv/yXr331H0ul0vlzZwpeLouThCWEkL7f05nGuVxurVG/5ZbbWp3OBz7woanJbQcOHPjbv/2bU6dO7dmz5/DhwysrK1umt+rdnxCjUChBhCwLR1GKMWVMEmxiaAguIQKEDNpDQlCSht1uUwERJz1CiGVZrB+u1S8bFEqVTk9Pl/Le449972//9itIgcpQ4UevvQKgqFQqjUbHskyMEYAgn88//PDj3/nuo0EQ2LYZBMGRI0eCsP/+93+gXq+fPXv2N3/zN/+vX/v1kydPjo9P9no9JQWhFAKMEDp+/Pjs3LztOr7vv/zKCzt37uRMODbNMiuKoiSJrrvuQK+7Ui4NH7ruyO2335XLFb/+tYfvvPPOF156vl6vE0LK5fJNN93kefmV5eUZY+rUybP6ly+88AIQoNvtVioVzvmpUyfW1hq2bQvJAQAXL17cuXPnPffcUyqVSuWharU6MjJ68cLlxx9/HEIcJUmW8YceeihNs8OHD3uMAQkBQI5jpjmbQ0EpTpIoDEOloGPZuZyhFFISxllMLbPT71k2yZeKcRbrmASaYMZYxSk7lh2GsVKqvtaMooTobFuMCSHrqnaIiNKlbK/Tf/TRR4uFEkJoaGiI8azd6RQKhUuXLvW6vuN47U7v0qXZPfsOToyO9Xo9x7L0+ug4SEnz8uzsymrNsgghhBIzTVnSCqKoD0U+jtNWs0OpKQR7/fU3IeJB2B0dHTUNG4I0jlPBYRjGpknL5fLMjh2f/OQnJYBhGA4NDWmq5ltUoe9U9V3Tc0EICAGcA9OkAIDl5eWhyvC5c+dM09Rbm05l6Pf72gCq1W5wzimlYRj+/M///Le//e3XXnvt/vvvP378+Ic+dP9rr7326quvfupTn6KW+dhjP7Bt+9Ll843m2paZCULAubOnf/DYd1dqi1JyISRSJkZECeHauReefYEo7Fj2bbfdvLJ0pVD0IC55BVspjhBI4th2LYRIkiRhGCqJECSFQkFKmaSs2w2rFXN5eTlNUwBklmW9Xq/Z6Pi+nyTJ+NhkpVJSSlUqlVpt+ejRo5cvX46iKOcV9ZZtWjTww4PX7a03OkmS2La9b9++8xfO1ut17XcEgWg3WydOnNixbddwacg0DT/oRUH4le9/WSlRKpUA5GkSWZZNCCmXho/ccFO1OgYAHB4eve3WO0aGJ4eGhnbu3H3+8tkzZ8688cYb8/Nz27dvr9frTz755KlTp1qt1uHDhz/7Lz7z13/9l1wwinAY+mkWe25eKXXp0qVnnnlGU4mDINi7d+/dd989NjF1+fLl119/Y3l5+ey501LKAwcO1JYXjx49qiM94zgWXDklTzOfAABBEBBsLC8v9/uBY7u2bUggTdPknHPGNoUlIAihDp0yDKNSqUxNTQGgLl26FMWB7ZhpFnNhQ6b0eFtXQYwx06SVSmV0dHRlZYVa5vjUpF7tO51WsZjHGLbbnSxLheKCK7J+YzzVYj4hhB+FnZ4fhiFElHGOMWaCEWJGSZhxdtddd5w+ffry5TnX9VgaMzYIIWw2mwiShHPOealY0VfooAxDVAihEywgxgBkUgIEFIRo3TCBEEIYy6anpz/+8Y932n673R4ZnvjAB+4vl8sPfvWROOm6bq7TC01KXNdtt3zbstM0lUAxnk5vnRgfH923fy8hACFVKrsI8cXlWcF5FEVTk1umxqf6/YBgU6kBqRYhrOnKEOqkwEHCs7aKWqfuYim1/QWWkq3DifJq17MOMeuQinV1zDW0JACAVIoYBJGBUsEyTEqI4zjtdvvi+bOzs7PNeqPZbEouDMMwCR0aGoJgkKQnpaSYEIMaGI2Ojo6PjxOMN+JGdKXEhaot1S7PXsQQFQqFi+fOAyXCMOx02jpMEkHiuC5CyHVdKSUmBCKQRrFSihKEMVZAg70DCykFgRAKAK45CdogFwAAoEyzTFMUIYRZliFINJ0ZrusOgRpQxTHGUqpNElusJNDVuy7XhWCMgWKxAMRAICilzOeLOm/ZyXnaP83zvHar02g0tNdoGIY+yPLS5VHi5J1EsFyxDBQKYVdxKaUkG44ZG7jV2xmXYJ2bCQAAm/7ymrvk1UchBLRVilJqY1nXjGaFrolFAgBuBqEHNGd4dbS4uVHWvv5K6RBN/Rve6bbTONEleLfbNQ0LANDrBkEQqoFxiYAIhv2e4CmldLXWfuGFVy5cOFeuFie3jLfb9edfeKrTrodRH0i+dfvuR7718NjY2H333e/7frPZzDLeatUWF5crlUqpVDp9+nShUMjnPdu2x8fHMcZRlGRZ1m63IET5vCe5QpAQQhAkUZgQhAghlmkncaKUStO01WrFcdxsNi3L2r17N4TwiSeemJgcmZqaPHbs2PjY1PziClAklyvq3lWDUBhj07SFkErJKIrOnj176dKlEydO6Mh1jZxijIvF4i3vvu3NN988e/Zso1FvtZoHDx2+eHnuT//7n4+OV2+++eZHv/WdVrPtuO6AOS+B3iM1GZAQEkWRYRgASoSQbVkAqEajsWfPnlqt9uyzz2oWkuYSaiO58fHxarWqpDQNm2WiVqtJztM0NU0zShKto9Qd0UCvKlmv19NiFsuyCUGcc8YFpbTvh0pBwzBef/1Nre6klAZR3/d9sRERC0kmsjAM40ijk0Q7D2o3PcZEs9HesWPHyZOnFIRhGE5OTtu23eq0FxcXP/7xT9522y1f+MIXPvShD/3H//gfPc9rNBrtbv/S3KXV1dXp6ckw9FdrNcZYHMe+7992220HDhy4Mr/4wx/+8Bvf+LpXyA8NDeXzxXPnLtzznvfm88Xl5eVarea6uSzLMKJCyWazmSRJqVRyXVNBIMQ7Y82ay4/A1QS/zVfcP2US8I7A1+ZfKqEHhIPLWUdhGBRYllWrtTnPEELUokkSvfDCc51O56677r799tv1KOXYsTf+y3/5w1ZjjXNZLpcxQfv3Hjh37ly34wvJ+/3w7Nlw3/7d7c5aGMSlcsEw2NTUTKftN5vtZqODIQnDMMs4AgNNENR2+xjreYleK03T9H2fEHL99YcMw+CcASEIIaOjo4uLi37QQ0ob/nIhgF6uJyYmC/nS7OUr+/fvF2L13OlzACAEMWPCtlzGmBZ5CQ4opYYBpJSCqzRlWhlEsCmlVu5yACQAivE0jhEmoF6vQ4J7vQ4hxtnz5wFAhmEIrsIwFIJlGRdC5PN5hDAQkkmp1Z0AAM1e1FfQhQsXTdMs5QuEEL8fci6V0CESUCgdaS0JMbSlHeccKAQUGKhaIIMQ6gDcDcdnpZRSYmho6DOf+cVXX3316Buve54nhHjyySdXV2oAgCRJvvrVr9ZqNQ06CCFMx9bIPuecMamB/igKgVSO48zMzLz66quWZSultDh9aWm51+v9/M//vO/32v3ohedfWllevfvO9w5VS8fffCPNwrW1GqF4cXG+UqnmiyWEcXW4wkVWKlZ0ogWCOqTRSFMzDMNu3x8aHh4fHzco7gUJUtC2zSxhUFNnIdQkY7XJK2oDAlWbjKUIIVzJt14C6po/09TmDRL0W+Bg+E4uGRs/a7h541ESKG26DCH8/4FBv+2Ku2qY/A6PgurqpHadNPOWWdFbDmz92NZ3XvhP5Re+5TDgVUBbKfVPv4FNxzu4XR10KaBlSGoQgQgwAoJLhBAhV/X7tuXESUSpSanDs4iabsrE+MQ0pW6/F+cLI3fdff9X/8/y7Oyl4ZHhUyfejONwanqiUChAgJMksS03jtJLly6ZhoEwdByTMXHu3AXXtXN5t1wu2I7Z94NLly+PjY4iiCHESRzv2bP/A+//0Jf+91ccy1Qysx06OT0RRP6HPvoTL7/02nMvvSiQnJgZtyyz3WrVG0tbZqYIhZTSqemJkydPvvTSS5xzg1AMCSQIcJgr5C3T8nJFSk0/Cq/MzX3wgx8cHx1mWXLnXbe/+uKL9ZVFA6PQTyjFAGKDWnydFE+JCRWUQkIIIj8yHVOTZDHGgishRBzHrutykUFIlISO4zSbzSzLSqXS7t27dfh7nCalUklDSEkUE0IwRBiiLEkXFxf1XRnM9IIwOOGxjnCReoO2TYsY1DCMKEmyJPE8zytUuFDLy8t/9Ed/dOzE8Z/82E+FQUywgYiRZTxOMxYnEkCJUNcPpGCeXZydm88V8qPT06dOn7VNM4qigmVyyS3LhBgXXUfF7OyFizFTlFJFCMYUQrCOLAMhJVDKNO0Nx2F9l0koxhgS1O/3dY720NAQITquTWgQecPCXiGoEJQSOI6jA9kxxn4YEEIsx260GpZh5XK56enpbrdrWQZjmUGtfr/PZEwoyufz9cbqZ//FZ86eOb+wsHDPPfcEQfCP//iPjUZTKQUhghBhDAmBaRxJAPCgjUFauCrBwK0vCALDMJSQhJBcLuc4DqWs1+sAPT8A2LZtXQzMz8+32+1qdeTAgQOddq/VakvJT509dfnyed/36/X61q1bCTHa7ebY2EQ+7wVBJKWwLDuXy3U6XEppO2aaphAqhPB6+yTUuiBRDzg554ToZkBywTnnBGubCEqJMfjoJJQCmaYNQMo5hxApiLlULOFZxnRbS0yiNU+IEqgklAwAEAQBhNCyDAAGyhDDMBzLBQAEUSgZBwhJxpECEGKCMOdCG5VnCQNSQYiFUEwmBBtCMIgkNSxNOpaSIwoxhlICCDDnQofJIAQMSjIBDIAwQhhABZRgkmOOEOEZk1Kum1lTvZ0lSYoIkgoqCCzTyeeL2sow8COlAMaYEiqEQINZnTQARkjn2GMdV+X3+pzrBtXgTEopYhZhTAkx4jhdqzWDoI8IBgBIyS3L2HvguiiKwsgP40AOHI0GqyNFOIqiXq83VK6usbUkSc+cOdPvBwghwWTGhZlahUJBCK6TpbXrse4hESSYYAgw5zxNmdY5EaJbRC6ltG2XEFIuuPv273nz+LFms24YFsEGpVQX/GEYeZ7bbrelACMj1ekdU3GcCsEAEMVi0XFs3+8hRM6fvzgyvOXo0aPl8lAx7wYhlyobKg1Zpn3p0tLOnTt/9Vd/9X/+z7/IksSwDUIIhDiMIz0xwpjqSxJCFcchhDDmoFAoOKYNTBD60fs/dF+j0brxxpubzSZC6PDhw7fedrvUcfIYuTmvFwbH3nydUooBLObypmnOz8+XhkoAolar9Qu/8At7du8r5ku12prr5O69755tW3c+8sgjpmkeuu76u+6+6yc/9sDK8moUReVyJV+0Maaat56mfJBRhh2gYJIwwzCEAIQAwwCtbq/bayiQIsJKpUKShqfPnp+enrZtu99vTk6NEkIvzR43ifu1r38lDrsIoTSNuQCzs7NJkiolFpfmFVa1eu3EsdMnTpxst7qe59m2Mzk5+e/+3b//8pf/+szpc4yxmS3bXCf30z/9iSNHbrzpplu+8Y1v5HLu66+/HgSBhGpmZiaIQil5q137+je+unv37g9/+MMQi3pjWUqwdcdMKV8I/e4nP/HPp6dnlpdqS4srh4/ccPOtN+UK7lq9dsPhd42NjSFKKSW26R178+TpUxeklIuLi81m0yDEdd1Wq9Vut2dmZrZu3fLqq686jpPL5dbWVo8cOTI1NXnx4oXFxSXTcGzLvfnW2954443Jiel733fT3NxclmVPPvkEpeS6A9d5nocQDJLAzpkXZi90/RaEsFgo5zyv1+u0u53l5WXBxPj42KFD1z3x5GNLy/XKUImaNMuSnG0MDZWSJDEMa+uWGcuyv//9xxBCuZxLqZnL5eM4DoKAUjo6OmpZRsbjZrMdBbFtu7qD1m7vftCvNxq/93u/NzU1XSwP7dmzzzCs668/tGf3QaUUoQhjzDiHCCsEGM9OnDiRZZlSLOERpphgnPJMCIi42HBlJYS0220AhZRZlnJs2wiROGLdTgshRAhttTp337V9YmLKcuwkSVwnpwBI083kuXXG23qlpF2b4dsKvDhWGENCwOJio9lszs3NMcZOnz6NELj99tuzLO31erZtdzqdNIu73W65XD527Nhzzz33sY997ODBg+Pj4/fee9fJk+d6vdYdd9zx7LPP1mq1Xbt3NhoN2zGnpiaCoJtmISYgl3OO/vilwO/kc1aWZWmEU5aVCkWQRYynL774/G233sx4xHg0OjY1NGbHcZCxCABUrVYxho1mxzKzJM20vo1lolZbUwqXSiUmOB9YG6Fez7dtGUWRJm+NjY0VyyUhGKGo12s/9NBDaZpWKpUkZjqxJk3TW2655dbbbv7e9x+bnW1gjM+cOePlnLGxMSllGIaO40RR8OW/+et6vX7jjTe//uMfhWFw3aH9w5Xigw8+KIS0Lds0CGcyDNL3339LPl9WEvtRYtrOe+973y23xlNTQwiBK0tX/uRPvjg1Nf7zv/ALzz779OzspbmFK2kWU2ocvP7Q3t079+/f3+t1kzRABFrE6vV6pVIpiqLHHnssl8tVKpWzZ0//zd/81V133d0Pglars7y8dOLEiTAMJycntcRnbm4OIaRBD+0YE4axEMz3fct2syRtNBoQYsu0hRASSACAaQwS2BDEGj7WscNKqeHhYSnlyspKr9fTsbraG0rbhUGoEAKcM8dxcqWyBli0/YhpmgBIoUAcx4VS3rAoE1mcRpxzwyDAQIQQ3dOlaQwh9DxH36IwcTw3TXgSp8Q0tm/fnrIkn/fGJ8Z6fr+2tiolV0omLIvCJIoD27YFVxJyybkQot/v6w4RIWJiI01TJrhOgOdROmhyIUEIEEIppYRgAIDjOMvLyy+//HKv5y8sLN1551033/Tu/fv3OK4JkSDEsi2XYMW5RAjGsU9No1wsDI1Mj4wWD11/wHGsIOyZpg1xuryywjlvt9vddkfIpDpctG1DCKXkRqUGAYC6vNxwVdqAWwEAg3pJwfWSaTAX3+h31Ab5br3X49r2bR2J3miXMEFJlkkpqWkoper1+tLKcr/fX11djaKApZllWRQg07UpIZ7ndaOo2+0W8wXNXt86vcXznCzLPNfV8jtdvOlq07btVPB6vR6FSbvV6vdPZnGCMVaS53J5IQSECGOs+0SMMaVIKEAppR7WPmOu68ZhhPGALSGlFAM4/aqlpH45AJHgbKMvRoMYWKh7bgAgQohQjNTASw3CDVdoE2OsJMgyns8XGUsxIpogGwQRgcS27WKxqMvFarUKMOp2u9qD7vz585EfAAD0FaGUIhgigCzTjpmPKeWZklIAiqSUlmGTjWUXISDX190BYXmTNvkt6+9bxoMAvBUd3uS3sanvhQMS1zqPQxsEXEPZgmgDX7imRZdSIQSFkAghjFCv10/TVK8vqys1KJVhWprUAADqdvtxnLqubZpYCJTGfrvT4ixVgGWpylLFJQzD+MknnzRM4Hqm44yu1JJ+NzQtMjJaCUP/61//eqPeQgizTBjUyrLM74e97kXXyVFKTdPeGAXk816328/l3Ua9RSkhkHh5i3PO0tSzXR20zbmkVGdAiytXFhBC+XwxSZJnnnmu3W4nMZu9vFRbabRardm5Ncdxh6vjGgU2DKrt5wghunOj1BodHe31ev/wD/9Qr9eHRoallFEUFYvFgwcPrjbq3/3udw3DmJmZWVlZee2113RY38josG1bZ8+eHR4ejqIoCkJqmkopgBGQgyByIUSSRqZj9/1ulqWFQmFidFQpNTk5CaG+GCgEmGADIRSGkVLKNI1XXvnRrl27RqrD3W53YWGhUqkgCBv1FmPM9tzx8ZHBkIdzPRGyTDozPpmmOsGM6GA0vZqYpi2E4pwrqfx+MDd7xc3nMKYAINs21tbqjLFCIT86Mh4EQRiGaZplWQshkvMKtuPFcRrHcRBmbi534803PfaDH77//R+84447nnrmad1YHjt27PrrrysUChMTE5xnZ8+ezbLszNkTlUrlwIF9CIFer+d4zupKzTStG286ks/nkyQ5dP1ByzYeeeSRU8dP3HnnnQghzuTKyurS0optOZqP6TgOggRToqFqhBAhFcPGWjt/9fxXAF3LxYTyKo1Rlz4bD0HXDt7fjkGj9bvEpl9uXJ5CAIwBF4wz4bhWsVjsdts8yxqtWrfblZKPjo4Wi8U4juMoVRJ2O8HcpTnG0jiJd2zbWijmr1y5EgR9CAlnqeM4lkXqa818IZfz8mGQZKlcrbWVUgjSYmEoiuI4TpWQhm3rwZcQYnR0lBDS6/WSKNLnAwCD4CmNxSilinnP9/3Lsxe1Vb/O7DVNM0xijOHQ0JBt2xcvXrJtW0rVqLednMc5D4MEIkwgJoRyJrNUCi6U1HaWBFEEIY7jOAx9SrieRTHGTNN0XAtgIJGMophSDJTiXCII8jlXz7C6HR8NbkDKQeiqEGpjnjmgqEGlrwikCIKk1/Uty0qSDEKIqKGEFEIgONg74yzlfUkpNU1Tjz2FEEJkTAmLDnjNemBuWUbKGYSQMbayskQI0sPlZrMOAKivruXyrhDi0Ucf1eRKXY5kvu84TqPRMAxDRmpkpAghjOM4n88vLy/3ej2Mia4ItcaiWCxmWXbhwoVLly78+M1j7XZv+5adV+Yvzc3OnzxxrDJURFjFcVhbrV0nrzt69NXrD9149uypJMny+RwXIImQ4zhpGguELcuSQBHGNGDEuOw0W5RS1x02TCql1ENyzcvbvK2ATVTl9cGzIoRAcO29Em7aU66hNr/1ehic/+s78SB49x1AWAUB2IRKw3Vfi42nhZuGQBAP5qZw84UMwD/lhrxxAAAAtWGcrl8Srh/5upxISokQHFzKGyjzNfzrt5lpwMHxvP113/EzUUpp+FJD6m+Zfg3wKykBHATWU4QhAgppooCCg9PSghB6nldfWyWGQw2Di75heD0/VYYdJ8ygrpcvO25BcMi5GBsbGxsb0w2e6+biOA78UA88Aj8s5EsTExNTU1NCMKUEF5nr5Lq9NoTED+J+LyDEYFzddPOtd9z1nlPHTz33/DONZm16ZroyVD1x4szlK8v/4l//2sMPP3zszdfzeadZX2u06h/56EdybmFxcVn2eafTUUppF3UgVRjGgjHBAYEklNAGQEqepmm32/3rv/nL7730xL/87GfiMFxeXMBQcSWTLAtjYVkWxJgljLGMIGqaluRCf2CEEJExSLBSMgxDzxuwY7SZRpZlfaUEV1GYaGXfyZMnu92u4wx6Mx0AAiFGiFBKGROdzmqW8TRlurQQItJ6I81H2Gwyo5TSiT0YY0QIE6LRbE5OTjY77aXaCiXmwYMHgyjq9Hqf+cwvP//MM83VWt6zTr75RpRwy8nxLGn3u2+ePfMbX/jC1p27fv3zvxGkKeEsXy2ZtpXyzDKwEIIgbNt2wmOIoRi4ig886CEkACgphFai6PUQrkeLSCklE7ZtG4YRhcGaWKN04P2XDoJrdIcgAUCWZRGCiYELlpllWZpqn2igJRESyJ7fLxYLUvIoSiCCSRq968Ybzp8/feutNx4+fPjJJ5++cOFcq91sNpt/+Zd/2W63Oefj4+Pa4F4phRHinKeDT3twvWuCEstSvV7pmp4gLKUMgqDZbDpObmxsLJ/P9/u9+fn5NIt7Pf+VV14hhIyMjGzfvtU0TdsxvczOUh7Hfr2xXB0amZieDOIQypAQsrg4XyoXgiDQgrPBOEcBwZVBLSGZkoNNUJc9moasg+z0N6uBNogG6YJKKSGUlABjoveyNI2FEAgSTPG6mTJTSiFCuUgxJlLKcrlsGFaj0eCcA4QyzplkhmEYpqWUSlMGIczlckBCJrIsSXVhnqaZUopSmnElhMCQaH4TE1Sfi0wkxCCCM0INqTLOgWZgcZYBgTLA+rIHBHBdN4kzjE1IsGtRQoiQqYIKQsgVBxICqTTQaRmQEQSR4iKTijPBCSQ6fRdCplmrQCEAItd1lYScc3G1sRQYQ84ZhEQITmKsONDkd4NajDHGuGQ8DGMAUsuy4ihVklNKAZCIEsOwvEKOUMR4KhQ3ibkhxxlQfhQUjId+lMYMY5J3jYsra+uc9MGCqe3j45QppTjn2ptu8I0LGcdxqseuAGomu1KKMYEQNg1bDxvOnj3L0mwQck4tCJFpqiBgCKE4jrVbqFLKcS2MMWOZZVmFnJckSZqyVqu1c+fuSmXoqaeeuu+990qebtsxRSAMgiCJ2auvvrpnz/5Tp04JIWZmZpZXl7MsA0DnzuN8vtzpdEzbME2z3+9T0xBCZEkS4+jKlStbt2wjxOj1/A9/+Cfuuusu3/cff/xxpVRleCRN0yTjYZyaQcTTeGJ0pNVqGYQQBH0/GBkZaXU7cZocOnTItnL9fkCxRQ0bI0MoMLN1amxi/Mmnn7rjjndjjGcvX9EOqpevzI0MjxWLRUpNKaEUQiqJEJICAgBM09CzeCHUWn0tiLvUAjyLW906Nnmn04rizsJibNv25Pj0xFTp9OmTb7z++muvvbG61nWM/Pvuu391beXy5cvveteNTz35jISAmMapU6feeOONJGBraw3X9TgXhXzpP//n32eMnTx5euee3T/5kz/5d3/3d1996Gv33/+BO95zt5Lw024OKXDrLXecO3fOzee279j653/xRaGyqcroPe+98/jx471+vZoVfT9y7bxlmZ1+z7DcKGGnT52NooRS2u01uUhve/dNFy9eLBTdfD7fCwIhRD5XfPPYsVOnzvX9wLJ6GNM7br/zZ37mZz7/+c8LIaanJ5955hkd9YwxzOfzjmX/4R/+YZqmvW548NB1n/vVfzs0NPT5z//66dOnc8Xiz/3cz3W7nf/6X/+o1W6MTY6srq6ePHmyVqshAI8ee3Pfvn07d+4Ow365XHnzzeNhEK+urOlicmxsrFjOtTqrftizLMM0qVS82apr13vXsS5fmut224QapmEWCqU4TrIsU0I1u600yWzbNq2BzVQURUoCyzIhhL7vh2Hkua5UKo5j1O9fuTL7/vd/8OCBA65b1CuYUgoRaFKUJtIrWEduetfFuQtxHPoBYjxiLE2TDEqsFFQKUmzoM9l2TIxVsTTCubwyNw+BmaZcR5ZBQG+79db7779fV/M5ryAh0BIz9DbO3HpxdQ3tYDPowRhrt30AZOj7o6Ojq6ur7zpy05bprUHYBQCMjY2trq72ej2tVXrooYc459dffz1j6ezspQceeGBqagJBsLq6Uq/X77rrjocffviRRx4ZHqm2Wq2SKjSbzeGRocXFBWrAYimXJLHtEM65VMmenYcmxsaeffbpcqkYx6EU6Rtv/jhL/OpwiYkgExnCPA5C13UBAvOLS4Kh8paxFggwplmWQUwcx0xCJrjUe4eUKkpSznngJ3pvMgxjcWk+ZQlCCBOglc2EkFiyLMs0nUsIAQB87tkXGGOlUiUMfSklJjBJEiAVhHDr1q3LS7UwDL/5ja8/9eSThCCoxMMP/eMH339/mvlCCCFTPbYvl8tbZ7aZhh3HKQSmaSCgiFGysgz4frJj+56bbmzeeNMRy3QvXphbbTQqleGJiQmEwHUHb3A9+7333f/Xf/MlIdNipSyluPXmW0+fPq2AkApgSkZGRhhjly9fnluYlwJIKfv9Puf80KHryuVykiRxHOuCROtudQMV+BGAAw/lbt8HECsAqGkQg3KWccY0i5kx1mq2hRCu6+odXLPiEELdblfv+Iyx4eFhPSEO+r7rulrpDqEyLIohMgwyOjrs5ax6vd7r9bgQerv3g67rusVSjjNhWZZSkDFm2yalVAfCV4eHKpVKkkTEMA1qtto9TTx/4IGPtjrN991/H4Sq1+ucO3cmiiLbdjXkrQl/YJ0GixHV1zIhhpSSS56ybKN4WwdzCdANCQBpmgmBLctIkiRJku9+99tSgqGhYc/zjhw5snvXthuOHIjiTqOxRCk1KFYqM0wSBjEBYGR8ct/+nVzEr73+6r59++qrq4ZhRJHv9/tbtmyxHDVilYKwsbQ8t23rbhkLiDCECAIMFFRAaBEo53oATPTh6YoIG1gIIfjAvFjTexHSgja+3oKJdXdRpR+46cK+evEjTPxOO04T27Z93z969KjGrwGQFqbEgFCqNEtZnIyMjEjGPcfdv3efYxqFQsFxHM45gtB1HM4555xARBDmUkEFhJAiYxCCPXv2OI5TLBb7vV6apt1WM0kSxiVjXM8/NCywUXsopVKW5nI5IBXjKSIYQqQJH2qdtQ0GuXQKESyEEFICAQBASsmN2A9dxqw7c16NWzQMAw7o0kBHRnEm9Mg/jgdOngAAxsT09LRBbSllpVLRLcmVhcUsyy5cPE8IIXCQwaYTpKFmLWEAU6Sl20IBIYFgwvI8SCRvCbLeyAAIAdI2lAO+89XeXgKF1Po/0TVA8EZnDte5yZutMK4VpAza7M2dsD6nr6GywY1J4zU7gXbS0JQrJYC++NvtNiYAQqikxBgbhhHHqRqcXjAMQ55xjCGhuJjPpRlJkmh0ZGrXzr2YUmqA115/afuOyUq1UFuZHxoaNgmdm70yNTFtUP7qK0cJoYVi2TbtLMsU1V8P1JmkrVbL8zwpuV5cbNvsdvsQqSDsixgnSYIRwUgnkmsbTX26IwglAIBzYRgW5/Ly5TnbchEyqEWjJHa8Qr5oSIG6HZ9SGoUJ59y2LT0f1pQHKXEYhjpVT59/EspcLhdF0blz5yQEcRx3Oh29sH7zm9+8//772u12Pp93XXeoWh4bncjn88eOnQDrknbDtvxuL01TqTillElumqZp0igKev0OoQgj+uyzzwIAhRBx5AMAXCdXdmxqYMuy/LDXbrfTOEnTtFwu1+tN13XL5XKhUBgZH8vl3G63W6vV2t1OGIalUgljCAmOfRaGMQDAcRzLMk3LkFKyjPv9IAxD07TDJAaQQkAFVwQbUkoIMUKi3e5AiIaHR/r9/sLCQi5XCIMYACAUiKLIthx3zDt54vRwdXT//oP333//1PTMmbPnpeKf+tSnvv3tb23bNnPo0CFN1v7xj380O3sJALm4OJ9z3B07t0dx2O/3e93uvn379u/f5/tBHMdREo+MjNx4442ue+bEyWNAod27d3fa3WKxeOutt9q2qwNtOOcSKL0GrS+LQGxCgpW65tIA4B2uo3ULmrdeQW//5cYzvOVvgBpcwhiDMEwFz3q9TsYSSgkAkjG2sHhldnZ2/spiLle4/fY7v/3od69cmX/3u999333vO/7mG2fPnrZNZ3V1NUljvclBSAuFgh/00kS8//13zc1darc7WpTcbNSFEBDifK5UKFimkemJrg5B0tuAJrWljI2NTTiOs7CwoDf4crmsy9BSIXfw4MErV2a1C5jjOHEcIgQgVJwLAMD8/Lw2zHr22edd161USlnGHZv5foQkSWIGIXYcRy+5nEv9WB1xoJQSCkIKU5YSg5guBVAynkqlecFYCKatErOMVyqVKIpsxywUc1nKwzCkVNJ1x2G9XW30/zo3FQBgGFYQhI5p9Xo+paZtu1mWQYyJMgEAWu9D4MD8h3OuQw7WV7+BhZIQQgsmwjBkceC6di7nvvqjl1utll5AtBGNZRtaZp5zXIxRGIbDw8NcydnZ2TiOR0dHhRCEYtu2lVKT43aSJK1WOwgCbWijEWfDMJIofuWVVwAAY2NjUAkDo1a78Xdf+RsplFRiYfFisZRnLMvlncd/+H3DdBgTU1u2bdmyFWNIKZWKL87PRVFUKhTz+XypVPI8r9sPGo01IRTjqZQyDBMEIdJOH9e6Z2zMfjesM5RSCkEhJFBvawLgwE5v04d2DTP6rX+//nuI3gEOVkpBBNc9Z/4JEcE7cZYhhOr/L87xP3EwAwKNNqG+1hUHobevDJtuCIC3fiab3/VbsPuNn+FVPB2pdWno5m5qfS61QcTGECoIIWMZIQRImXEGISSQIoQAQOWytbLS4AJUq0OtVpMJSAhyXRdYLkVodvbM8vIaRgal+FOf/Nm5K5eyLCmXhrIsi+PI94Moig3T1gDT6ura9u07Dhw4cO78mU6n1ev6MzMzUgJKbNd102TFc/PDVfvkibOjI6/5QUeI1CTeUGVkZa118633YeL1empm26GXXn6TGkpB8nv/6ff37Nr9J3/8RZYJasGxkdG5+SthGNq2nc/nScaV5BhhziUQotFoZFkGACiVCksL86t+/bfn50SaKMWhAGGWQIggVCnTKwPWtnFQAQAQITqoLcOYEtPQw4BWq3Xvvfd+4AMf/LVf+7UsSxFCEYsuXLjkODZGFEjF0sx1XdM0oyhiTEAIJZMaVQQARFEURRGBKA5C6DgIES1ZAAAAhSCUOgxE46HcsvL5vB5164XIdd391x08evRot+cDjI4ePXri1CntYXXXPfcc2LPnGw89eOn8BQFQqTpcr612++2bbrl1bHxybnZej7ViJYPIHCrklFAYY5axwE+2bNkCV1brra5aP6P06aOnRWiQIKc9paFYn1ukaYoo1ryhOMZpmkpJMcYQQgMbTAo9kNM8CB0I7Hi2dn7UhCOdiKKruzRNkySWXEKoer3u7t17f+c//c4//sPfbdu27TM//0tnzpz5X//rf1eGh2e2bPvSX38pCZOf/MmfTJLU8zxN480YY2m20USB9ZwZte5LhhDSeka8bmVHKaUUE0IajYZh0FKptLDYQwgZhrVt28zWrVuLxeLFixeTJCkWi83mvO/71WqlWi0ZhrWyspImjLNUKaSJCFmWBYFvGOYGuGxZBqFYrqey6CJBykEjoeEAtJHADrBBDbxuLoSg0hkqUkrGhA4DFEANxJIQKyURQJpWXCpWKKWdTk8j+BjjsbGxNIu1MY4QvFwul0qldrvt94JKpVSplgGQcZZwznWO/HBleGxsLI6Sfq+HDKQSGaeRUipftiXkxaECwQaGUAqllO4JYZoyzmUQRJxzIKQCQgEmJUHIsmxDKZzxLE1TpQSGEEOokOZPUH3mMJYqpQixDMMQgiul0kQa1MKIpqkvpTJNU3C1noGjIAQIUQAU50yIAaeh1Wq5rjtUGYYQRVGUpqwXdQBAGOMkzqSUQAlKaRhFM5NbJVRezgnjIE4jhJBCkCvJpcAA6q8MYyqE6PX6hBDPy1PLHB0d7fUGYdeu61qWpcnpTIggCNY7XiWl0h+1UopzQbBhmqZUXAgFgKKUWqaTZZmUCki5Orvq5RxdrnDOB57jhqEypt0hDYP0+h0pGSYKSJCmyaXLF9ZWG4Lz3Xv2/eff/YNiofLiiy8fPnw4SQMI4cTEBCHGKy8ffemlVx5++Ju12sr4+GijuUYpKRRzKUuiKEjTdHJykgmuF8MkSQCQW7ZMmaYZh0mn0zl//mK5XH75lR9NT2278V03l4qV4eroy6++woWCiPzO7/3uH//xHz//4guf+MkP/9Zv/vaxY8f+6q/+qlarSQn+w29+wY9Cxvne/Qd+7/d+b++efXfeeSfLhJLp2oXm6krta1//Zr5Y/PTP/9yf/MmfrDbqv/RLv5Rydv78+cCPdu/ebZrCdV0A8EAIBRFCiAmGADQt0mw22r16ueJhQxlObrHGzp47NT09OTE9NjYyEsdhELZqK/LsmeNLy3PLy/PX7bvxlpvvuvHIbRMTU6dPn3ZdlxL32edfvO7g4V7Xv+nGW258163//b//yd///d/ncm51dNRyPAuAfKl87tyFb33r274fnjh+ZmbLjiNHjpimuWPHTsXVli3bpqe3VIarCvDPfe7f1JurhgkOXX9gpTbnB03Gx4XMiJHv9ltREBfz5TiOe0Fv587d1x3aV6+v2rZVKhW2bJliTJgWlX0xP79w7Nibx0+82Wo077jvjoWFheHh4dnZ2UuXL0Ckuu32X//NX/a6PoTw0UcfHRoa+sRPf3LL1PRLL72cRnG+UP5nH/u45+VefPGVZrMdBFG31d2/Z+8f/OF/mZ+ff/q5p/Ml7/jxYxBC13UvXLhwZWE+V7TzBSeO0zeOv3Hq1Jk0ykrFSj6f37p168Tk2LMvPAExvPnWm65cmT1/4ZwU8datW7XDT5JEQjIpByZprVYrimLLdDiTUCHOZRjGjEMd8a0pcgAAwzB0r0oR9RwbEYyhcm17amqKsTQK/TiOp6amCEEIkdAPCTEMC42ODRGC0jQ2DKMyXGi2Vh3H4oItXqkJoaQA2ukRAkwpLhYqSZI0ZJdggiDavXt/FMa5XO7d774rXyhBCE3D0GoPrfhU/7SEVNMONgqqDRZdlmW1Wq1QyLVarcnJyTvvvNMwjD179jSatSzLsmwwKTx27FgQ9k+ePKmTEjnPrly5Mjc3VyqVzpw58+1vf3vfvgNpKqQEzWZ7ZmZmamJibu7y6Ojwxx74qcuzF9IsbDbrUaxzdCWl9IGPfPj06dMIAqUEwcrOeZIntuU+8LEPnzp1jBrA9+MkSSBGpVJZcMAkbLc6vh8WC+VCvjQ9Pd3vBatZo1gqtZsdHUgjBTCohRBVEkrBoigSUvZ6vaFqWSmOCfXsfBzH3AYHDhw8eeKsbVoIoeXl2tTURLxa0w1vEAQASoIwRCAK/OXFBd8PbcvIMh5FIQDAdYyF+cuPPvqwQRE0sJCS0gGhuFQqaXZRnMSOnUuSDGHkh3GUREduOFTIF/t+L07Fp37254Ig4CI7cODAysqyaXiddufxx59qNbuOaw6PlIvF/PT0tFLq7NmzaZbZtjkyMl0qldI0bfe6KysrGNGhoSE9b+g0WwAAy7L0maPWdUVRFCdJjBByXEuHBju2BwDQxSrGuN/vj4yM5HK5Wq2mgNR6LEIIpdRxnIyzTq+r3b2yLKOU5PM5y7IC318LQ0LIT/3Uxy5dunTlyhUtHzEMoxd0hBCmbYo2F1JQSEyLTE1NNhoNhOC+/XuXl5ejMGYstW3bNKnrugCqOI7n5+d1rN/I2Ojw6JhQKo7j8xcvrK6u7N23CwCp6c9M8DRNXdfTwmLOuU5/lVKygUxEKMUQ0um7QCvnNGAqhKDU1LFDaZpSShGCcRxbtqENczDGSonxieHZ2Ys/+tGPn3zq8U6ruXXbFs9xzp47rSFyiOX4xEjGwoWVue3bt/QXesdPvKEB68nxYaEyTCVELIriI0duzuIkCLsYORBiAojuXNTACgNBiBljZJAuCDakfus6JEQIkQIopRAkgguIripcBz0jGEQ7DK5rpCC8asYLMdKfkhDCtu1SqZRlWRiG/V6/L4Rr2bZtj5SHJicnq9Uq55wjUK1WAQC2ZcFBTCFUXBiYKIQ1mWyjllNKAYgrlerExJSmurdbLZ2EvLq6urZWg1KtrKxkKWMs1uWohIPQSIQQl5wSU8pYTy+UUhJoGBsINfBp2ahs4SZPNl1ybzTaEEIdtYIQMjR8IZV2W2aMIYz1KZEkWS6Xy+fznufk83kFpBDCoHaj0Th9+myn01FK6FjsQewEAgYhah0xBlJxISA2lYSCiUQxgInf9acnpnk+ECJzbU9DolLD5wAAJQeKkk2Q1qA7VwrIdZNlAN6KiG2s4Bud89sFKZuX+M3UNqmAfsW3G2i85aZdCAAAuZxlmmaz2TQt5Lp20AsIRtg0tZxBCOG4NpfM93uFQs4yaIgU5xkQEig0NjFVrg7t3rsdEfjU0z/wciZCfPeebVsPbj969OiVK0tAIYSwYVgQYsfJU8pYt4sxFlJiTDudzp49u0dGqwsLV4Ig0CnYUnKIUC6XiwRTEugrGQ28WZVtu47j9Pv9RqOh7QU0858QQkxTAJXEjBATQmhQO5WZUoJzOTJSxQTGcaQzdjTZlvOBB+upU6d0harvjZLESGIhhD5TkyTJ5/NRFD377LMAANu24yRstVR1eHjPvr39fn9+flEpZdn04MH9nudlcbK4uNjr9VYbNQ2jIwx0BVCrrQiuKDUcx5kYrywtLQ0PD09umU7TtN1utxptyVW/67fb7UqlIqXsdDrT09Mz27ctLS3Nzl7Sk0DdW952223ddufcuXNcZIjglIu427MNWqlUXNddWpxdWasjSPpBQikdGqpACKXkul5BGBiGZduu7s9d19WUqyiKCDEkUBAgKaXkghDy+ONPfOpTn5rZtrXfC+5573seffTRY8feME3zr//6Lz/4wQ/atgmhOnfuDKX0U5/65JkzZ1588cVKpXLffe9tNBoPP/xwo9F4/PHHK5WKlOrNYyd6vR7ncteuXWEYtprd225799atW1nKXTdn23aSJKZpuqWcXrkIGWA6m7FmfUPXYj0bv5SbTnt9em8mQW/gZpsR52suK3mt06sCUqpezw98n1IMANAqD4JAPp8fro52O/2J8S2vvvra88+9WK1WDx48yDn/yAc/NFQuXbp04YbDhzqdhu1YcRgkSUIgMgntZfKnfuaf3XDD9U888USv18mytFQqOY6TJpFhEMYYxkBb+egZr2YYaR0WY8yyLABkFAWOY8VxqJTI5VzP8+pNwzQphEqft5ZlAAAMg1y+Mus4zt69e3q9vubyJ0lm23av18uYPzo6nvMKlhWnIcvSnlKAsRTj/y9f/xkm2XWeh6Ir7bx35erc05MDZgYYAINEgCTAIQBKYhRNEpZ4LMnHfq4t27Kvr33sY/lcW885tnVtWdYjW8GWRFEiwWgxkyAJgohEnJxz5+6qrlw7r3h/rOqeAUi5fgHde6or7LXW973fGwwpb/doEhgj17UFwKZpdjotCEWaaf07SlMOIdT06iAISqVSv99vtVoASNt2HcehtEcptQ2tFJab8Moov5UQAgBCCAMA8pzZtisBIMTUWyXBJmOMc2pZFoKamTiCPHQDpfE7hIg+uTWbmzGmlKA0DzzHtEiWJ8ViIYpCIZVtW3meQgD8IKCUMsbiNLUsy/O8drud0pwQEsdJr9efnZ1da6y4rjs9Pb22ujwcDvWcCQCQpuk99xw1DKPd3qCUzs/Pj42N3bhxY37+BsZGYUcwPl4/ePDga6/9pN9rmkap1eoahvHRj33w1VdPXL12Mc7S3bt3mxbqdgZZlhX9oNfrnT1/bt++fVVQbTQaEBsYY4AgIabtmBAA7V63OTC/FSsMAEQIYwykhHLk+Q82QXyg5Ka7xSi35W2lwzseW7+6HYFVSo1ILJu/+pmo9NZqUqO8gf8F+qzAO6Ft9Ndd/rbn2bJNhqO8gc0H2jzvbl2sNunJ7zhe3/GQQN3mPQUVAPCvufL2j0WpLbQc3v78t1dmesBMNt11HdNiUkgpMSFKySwTUspyuWyYhu24SZI4nm85zsL6xvVrl29evxjFSRans7Pbd+3a8/obr05PT3W73TfffLNQKBrEUkoVi2UAQKlU0YXs8eMnzp0763q241jnzl5gjBWKfr8XSgn6/Wj/vm3z8wtPP/0FpdKxyamj9z2wd9/BYSxmt+3PMrR7z8HLV9ZWVweE1IvF8cZG9/vf/W/Xrt4wTSttD+bm5gjCSZJACHU+J5BQCBX2wjxjluVwJTHBYRgihKYm6zynCCrDMPMs0R6mehQkRSaEQAAyzoBQcHQ3CoQQ59xxbUSIto0Kw+j8+fMaJE3TrFQq2p7rBYFYbzim7fuBlNKyrDRN85xJKW3bNpTiOeWccyYMZGRZBqFwHG+LL4kggZtGbHrYbBJSLBaHw9C2LZ2G51h2TOkzzzyjebKe533+85////zzf/7Lv/zLP/jBDw4fPjzs9Z/5/g87Gxuu7TgGIZbteH6n2/93/+4/bLTbgecFvu8bhAkOMbIM2zBInqZcUFPoFOxN5eGmlc0WRUCNHOoNAqEcsS2kNl7QgLJhGFwovVUKIQmBtmHqawRXSkrLsgzPIiZUSkGIKM30N6IB0yAIJiYmGGMspxo9LxT83/md/7hvz844Dv/4z/54aXnxwYcf2rFjx4EDB5/53g9WVlZu3LjR7/crlar2NLAsKwdKf1l6D9ebp2GZjuMUi0VKqed5BiYAAMbYcDjUlO3FxcUsy6QUxWJxZnrbMOwzxizLSdO80bislVVJkmgztCiKCCHdbjvP05wyg1gIgZhlCAPOhXYUCQK/2+4wxgSTmECEsG5l9RdtGBbcjDZljAnBtlYl59xzbYwxhBgAwHhOWcY5j+JYI5IQQSGYUso0TUggQhAjotVFq6urvd5A94eOY9m2zQXVRx4hJM9Yu9XlnAvFozyGJnB9t+ibhXKBsdywUKlUKlS8XGYs5ApkdsH0KxOGYSBD2bZtG9bS0tJ4fYJSPugOEMRSKko5QlLD5SnNMYYQKgkEl0wo4jgOYihJEiE5QqhcLsdxHMexEAIAiRAwDCyEIKZRqVUJIZRmvV4vSiMyNLuDfhanWl0nRk6CoxkwRKpcLksptcBzfX3d8/xCoQAhhhCmUdrrDZRStuVq8rjrWkopJphhEtuzFZScC2IRfdeNHNg5zzIKAPA8j1IOAGAZ62UdXBsrFEqW5XQ6HYJN1/Edx5FyQDnX3HyEkIFGN7l+eWjk38LDMMQYW7bhuQHnPAxDISTnfNvMzPj4+PLKIpCKSxGliRCSUVEsBaVSJWNxmsaOYxGC/MClOWeAEglWV1p7d+1++D3vvXrlZq/XP7D/zo9+9KOOY1HmCJZSSrOM7t65632PPvZ7v//7jLFer0MM5DiO67oqlZQSCOGVa1eVUnoiPj09XSgUisVinlLHcg3DGAzCsfqEZVnlasWwTGLgjXa73x+kaVapVo/ed/++/QfOnj/3yCOPTE6NT0/9QrPZ/B//43987OO/eMcddzhe4Hje6TNn3n/syUcffbTR2EiyfHqy+uUvf/knP/mJaVsf+vAHa2N1vxAQQrwgcDyv1x2+/vrrCJHdu3drq259TArJlYIKSNuxsjxutFZ6/dbiao/zbNe+7QcP7Y/jacexiIFu3rzZ7/cvnj7tehbGeOeu7YWgWg4mPvgLH25t9Am2H7j/oSwTUSwQ9u4+ct/4eD1Ok1dffWN5eTVJkvvvv/9vfPyTy8sre/bsKZeqr7/25q6de/7z7/yXdrtz8uTJiYnJqakp1/Epo7Zl18enbdtM0lAIFUdDBc0rVy8k6eDs+bfipG9bwc4dPEtlrTZOLHDXPQfbGx3TtIJigJCSiksJSqUK51JJ2G621tfXTp46zlj+0EMPfPKTH/ujP/qDTqfTHIb/5t/8m2KxqIU4lXJtx44dxWJ5ba3xJ3/yp5ZhQwj37NyztN46ceJUY739la98JRymEBgnjp/6Z//s/1hbW9m7d2+j0fjMZ/4sKPrFUjCBx6iIXc/caK0pJR5//Mmf/ORVIdjHP/mL589f+JtP/XK5XD57+nSz2dy5a+7gwYMLizeKxWIU8o2NjTiOH3zwwbHa+NpaQw/SJMu4hDTnWUop5QihLMk9z8lzpocuQAGMkBIAAZwmiQbjHMeBCqRp2u120zhUovLy6y8dOnRISrGyujgchLZtl8tVQsopjRuttTxPg8BzLLvgFwkBl69c1PmWaZqOj4/ned4fdNOUr6ysObaHoGlb7oMPHPXcwrVr18Iwvnzp2vT0jvHxcT3VgxBwDpQCxABaIPF2RAIAADSvTmhN2mY0jlKg3+9DCC3LqdVqSqlKpUIpDQLLsefW1laOv/nWzMxMUPBfevHFJIk4ZRgiz3GfeP/jn//859dX186cOr26utptd9ZWG5bpPPyu9zaaa5/+9K+eOXPqpZde2L5jrlj0PvHxj1++fOFzn//z6YnJdqf15JOPS8nvOnLHyVNv+J6lJOWcHb7jrn37d165euHgwQOnz7y5sdHS0I8S0DTcfXsPX7pytTsYGsRKkgRjnMTZwsLSxMSk5xaWFpaLxRJjAgDk+0Wacyq4gqBUKWuYMopC2zYHg0QjDNVqLcsymuW1SrXf7/cHXX12lEqlMAwffPDBxaV5muVRNDQMI4oihGCep0FQZIwxJiAQtWopSQeeZy0vL+/Zs2fHjl3HT5waDDsLizf27dvHJbYdI0kHhJgZzZM8cXyHc7B9+9zNxUWIwIEDh7Ms0RupQewLFy6/8cbr7VavWKzmNDSIJSX41re+NTExoQAIw9B13fHx8R07dly/fr3X67muCwCI45gglMHEMAzf9yfGxzDGzcaG4zhJFBNCsiyLojgI/OEgEkKZho0Q0gLQNE0JRvoT1oiK53lpmgrJIUC+72vxer/f3xSn2hipTnvDNG0hxBNPPn7j+s3Z2Vkp5cmTJyGEeZ6PjdcxxhAqKTkTVAjhuiXHcT7ykQ+9/PLLi4vLs7PTi4uLURxKoTjnWndi29ZgOEyz2Dad2W1z2uhAAuA4zrPP/mDP3t2vvvpqFA0ty7p586ZhGGEYMjbyLhtNuzmHSmEC0ci6F2h/J31yKaWkBJVKzbbNVqvDcqpBKq0u0j6QlmUIwfI8oZT+t//2+9u377xy5cpGq+dYNufTnItedwCgtCwsFXM8E2GBsVJAxnHY6TRLpZJpId8vSNlfWFgqlQpJGnW77W2zuyjNbctGCAKIhFJQ6R5Hrz2kMQSEkEb8lpeXbdPK83xux3bXdbVJ8Vb9ieCIxqtuC7CBSEnFgUIQKc1o2mIvKQSjNJEQFAoF27aFEIJxKdhYtVar1erVWq1W005rcRRJKYFJIACaAIoBdC1bM4LlptOmnihsNZ6GZenyUsMjnl8oVyoAgP3792tayc2bNwueu7i42G63B4PBMB5qKoZuD5WQtm0DA3DOAcQIQqGUEIxyxrmQUgKgdNwFAGALW9bWZIwxjTzAUUwIRggZhpnnOaU5uI0ERhCamprC2HBd1/O89fXVJElymimlMMoghGtraxqBNE0bEaxt0AAATCjLdhUXjDHTIogQJkGSZLZt1+qTuRJPPnrswN4DXbX+w+9/B3UIue2jB2CEbf10J422SMe3w823a/+3frKFNd9ObX5H86wridv3+a2nlVtdt5Ygbz6DEIoQKCWAm6eFlHJ8vC54prHIMAyVUghDAFGWx2trLdM0Pd9iNNX4qe24QaVuEL9cL2ZZGsbDSqU+t21PFHd73dYz331+dnoCQjXo9znnjuPs2buXEPPm1fkoigUHQKk817uDf+bMWeeq7QdupVIhhAgl6ZCVSiXGmC5qDcPRsWn1et0wrDAM+/2+aZrFYpFrMobOBx/xXJDetgjBUqpCUGrEDQAQY4wywRgzDBwEwdTU1NLSUprmetZh23ae5yPJLQDaHFnjO5VKRROclVKUMs/zhOKMsf5gsNFqYYw7nR5AqlKqlEolIXiz2XAc5/DhQ+Pj4y+88uOrV6/uP7C31+7osV6xWPR9f2210e/3IcAIkdVGc625IYTAGCIMdJ8GIex0OpZlGYaxvr7ebrchhKZJtMR4bnbbIBxeuHCh1+n2er2JiQlKKRUUAAAcpx9G/TBab7YINrXKA2OixddCYO3ux5nAWFar1eFw2G53dU6F4EpnuTFKXddljAnOXdd917se+eCHP5RlWU7TlZWVl19++fLli+9///uEYCdPnTh+4q1nnnnma1/72vT09L/9f/6vd7/n4Sgerq+vMsaeeOKJcrn85S9+5ZVXXkEIBUGBMrawsOQ4nrYns0x/bm5HoVDCECVJ4vs+IaTdbluO7du+4CLPuW3bhAAuAcY/g+x/+zBmBHiBt/3k7XjQz1hE7/iJvP2pFIAQYAQxQpporJRwXIcxGkXD4XDY7Q5XV5sPPPDAnYeP1Ov1e++9N4qiVqvles6ePbvuuGM/QuDBBx+8fOliGIamaWJF0jS1LGtlZXVxcXHQDxEmhYLLGO/3B3mel0omACjLsn6/z6jYvXPnnj17Tp48SbPMwDhnwnE8PUmu1+vvete7BoPB8vLy4uJitV6jlIZS5Hm+b9++Tqd17tw5BaSCsFqtViqVIAjuu+++jY2NS5cu7969u1KpvPnm8bX1+Xa7XS5VlRLb5maUUt1uDwAopY6nU0oJ0zQRwnrKZ9uO3tYc1xofH3Nddzjsr6ysSSl9P0jTNMvyPM/Hx8cbjbUkSbKMxXGsLSwZY1ICKSXGhoYDNIVq020DAQAIJFqEZdtWHMdSSkaFaZoIA4iUFEoIATGyLEOb4YzGCQgYxi35jGFgjDHjOTGQYRDDIErxZnPdsoyJqekwDAdLPc/zkiSmlEop8iSdmZk1TXOt2QzDCGNMsJmlNBzGlPJLl67smNseR+lwGCFEAJDbtm3fv3+cc65dyXTAS5IkSinHcRgTly9fPnz48PTURJ4lAKhyudzutvbu3e04zr1H7/a94qWL11588QXLspuN3lOf+CTGGEKwc+fOTcE4ME2s0+E4ZZILpcTI3WyTKaY21T36Ho7SnHOug1a2GIhbYJauM24/MiS4BXipTT0RQBDIn0Jb0e3c3nc+fvokGi0++M5fba6+n0ar0RY0rG5fzG9/Wv1q3/GHNsHm0R8Fb5vOblG23/l+3kZwVu9kbevLFVTwZ7+10UMChX4qNfBW1aWUFHB0gAJIKQUYE0LynAIxSnms1+tKKf0E2hkmz/PllZuDYae5sRaGw0rRS9P0M5/5DKNZ3+m3N9oT46ME3bm5uSRJGGNAqlK5MBxGKytLAEApAIQ4yyjnvNcNEUJxnGJkWJa9Y8euX/21X1tanF9cWrn77nuZNE6eebNWO7h7zx1FF999933TU3PdTuPQHffN31x65pkf7JjbUa/Xr15rXL58WVvQCCH6/b7r+FLXZAhlWVYsluM4RghxQS3LyqKQcy4ZzwGQXOgMAJ2jAgGAChgGRgoApLQCT28FcRLFcWxYFkKoWq2+8cbrP/7xj7Weo1gsPvXUUzdu3NhoNfTHq6vPJEm0ry4CUDDOBedcs0XAFiSqlCoWynnGNDVS7zZ65zEMg3HRWG9yJnZs344QhhApCDEAYjNCJImGtm1fv349CIIHH3zwi1/+0pXzFy9fu1pwHQXRanNj2O+mEDCpCDFd28YYp2lqKqvsB5xzKZllFThjlmHGcTwcDjDGQo58zyCEI6Y8AFAhIfnI+4KMmCabakeiEXMIoWnYjmUxwRljhuECgDAylI6x26zOLWFgSACQLKeCCWQgJSRCGCoguRCMFwoFXZevrCyfP3+uub4SRdH8/KLv+3v27Xcc59VXX91oNRBCl69c9L1CGIaE4K0PjQqxOeUCnHNKKTaIdk4khPi+LxjXZtN6cs8YFYJjjCAErutijHFsCKjOnrvguBanjBAyNzerJ7grKytaOpZlWRRFnud5nlMqVmo1fv78RZlxDLBlWTMzMyumtd5YzfOcc4XgqDXSn6rvu0pBTQDkfORlMaLGAMA5VUp/wrcmZwZB2CBScskkIcR0bM2dF4xKpNIkT9MmIabneUEQaBbzjRs3DMNwHCfP8zhKTVNoMoQELO/ThCUVUFKItwcbiEC37BguTngUVLxSvcCYUEqVKuVyudzrtThjpmn2wu5Gp0FzhqGpKKeUMyYcxwEAMCkAkBBiiCRECmEAtDTQIqZF8lxQSjudDhwFFklimb7vm6ZBCFlZbrbbGxhjx7VMi6RJ3ut1NJ9Obz66tds8RhEAqlKpAADyPO/1+hCiOE7jOM2yDCOD5aNqOUkjpZTv+/v27b18+fLOndtd16accslMx/aJryvqJEn6/SGXEGORpTQUMSZI39W6k9NFUalY0S6NCCFETEk5hNh1/TTV6DnQcwuDWJhAIUQcc9u2dTcrpdRhJNVqDQBQLlekFJoVlaU0Z4xg0zSxbpFc10MIUppp3kBOaalYiKNkfKL+t37l0//s//0vP/+lr169cvORh9/neSZCwPGCPEErKytKoFp18qMf/eBfff1rP/rRj2zbHK/UCcG9Xi9OoySJTNuyLEPTxDT8bduWZZn97qDRaAghfL8QFDyMjCNHjgS+d+78xePHj4fD+Pz58w8++KDWkkopN5rtjWa72WwePnz4E5966tOf/rQECJFRBvKHP/zRMAx37dpFKe30ugcOHEjz7G//7V/98Y9//IMf/nB+YUEp1dzY8D3vnqP3ekFhZWXFtl2t5wAjwYHJBfNcq9frra4t3Jy/2mqvNVtrucjOXz61a++ONI3X19ezNNZ4kI1Rnue2bTMqPv6xjxEU9PuDSnkszyRnIgiwbfuPPPKeSqVCTNxebj/9+S+kWTI7O/fQQw8dOXIPISiKom6357reysrqH/3RHx85cmQYhV/68lc//elP12owsD3t6GhZpN1J67VxP7C+94NvtDurpbJ76NAdJ06cWFrZmJqcO/a+D0y5E0vL1yzTDYKyaQdSStvzpJRZKpSCth10u13b9V3Xi6IoyyIuxj/zmc8sLCw5jqVcoeNky+UyweahQ4emp2fDMN5otlobvV966pfvuOOOA3v3X19YbrVa9x99wDa9P/zDP6xV6levXv7qV/5qz95dd9yxb3yiXioF3UGr3+92+u0sTzDEg0G31+usN1ajMCPYwhguLy//8X//Q4LN9cYqhOAjH/nIysrC0tKS77sAoHa7axjG4uJyp9UXXNm2I6gQAOZhBIQSECGEPM/TZH9sgCgMNQmOIMMwiR72IEh1pq4QQnHVaKx95jOfufPOO6Mwu/uuw5YBX331pVOnzuzevfvDH/7o8ZNvfOlLX1lbWxobG1NALCwsNJprWZaYJikUAq0F0Sta76Jpkntu0feKjz/+czQXJ0+c3rl718///Ad1upqUQErA1ahUIuRnMIG26k4NaBAAxaguGu26ejzp+37R97rdbrHopKlJCFheWm+3u81mK0mSY8eOlcvljY0N3a1blkMIOXDgwM6dO8+cOROGIefcNC0A4BNPPNlqtaIweejBd+/evbdaLb/yykvnz12uVKr33/fw+PjYyurSfUffFYbh8y/8KMtj17V6vV6h6JumqW2Cv/KVrzSbTQkVY6xYLBmG5Tl+kiTDXlStVi3PWV9vCqHiOC2VSu95z3seffexZ575wde//o1utzdWn9i5Y/e1azcozUwLaSdfIbjjWIzn+ugpl6ppmq2urrmuq3GGPGPzNxf/wW/8vfPnz+V5/qlPfepzn/vc5UsXtLSacSqEsIgBlXBtM2ShRbBnW47r3bx507JJqVx0PctzzbX15o+f/0G5XJyZ3eF5BWLacZ5cvXJ9165dAFIOpJRybLxOaRaGAz2ujqKkUKgUCn6v11tenF9dXsrz2LW6d955uNvrNTc2kiSREsRxurCwtHevXRsfuz5/UwOpGGBtxo9H808hBFBAUpZ7npfnOYZI8/P0oUwMpPdqpZRpGvGmYHeLJ4IQKhQKjDFMEMRo0Onp+e5WLU0pTZLsvvvu+/Vf//UvPP3Fzz39ec65gkABValVKtUq57Tf72v2lZT6n2Tf//73d+7cud5sPP/iC8NBRAjR56Y+UDRdz3ODLMt7vYFOoRRKKaUc206ieGlpaWNjQynR3uhwzg3DwljbXOEtxBkIoMWpGGDbNgnxIYS9Xi8Mw+np6enp6bGxMSFYr9eTHG7bNquUarfbnHOEAIQwTVPOuRCcENTtdnu9nlLQdQwpxNmzZ8qFqmk4OU2GUegHVhQPbM9MUnXm7Nk0zwAElmXFSRgnPCjWOxvNRqNt2+byytruXQdMIxAMI4QggEoBCQHCAAFtqSF02WzbNmP5xYvnL1y4UPAD13Unpyccx5FSIgw2u3IiZYbeLmzd6sUgAlu85i1ZLQCg1+sxxlzLzvPctoxtM1PVarVcLNXr9cFg4HmehvUwIUgpaBBCCBDS3BQdbnXxGgSTm3EvGuunOYUY6XK02+3qH2qKACYEY3zkyJHJyckHaW5Z1uuvv77aWNXFzPyN62EYcsq0q8FWE617ZAhHjYMWS8GRR9DIMERjzboO2YpP068tzzPNWLdtu1Qq+b5vWXbOmGmaec7iOO5227pOBgBIJaRglNLp6dmlpSWIiOSSZcwwDMe0GWOWbXPOhVTYtOI0wxgXqtWDdx6ybXv20LaJbbOTwfaCX3rl7A85k57nEwjhlgszhIBAoDYZxFsmGBAChABQo5QzvSNL+TZEbAvtArdhx1u/HX21Snf1ausm0E8F1a0n2WTRA/D2ZFjLgnmuMIYQgDyXhCBioP6gnyWh/nynpyezLFlfXycGSrPh/MINz3MmJqtZllBK5+bmbNtljEEkLIEcN2AiW1tbGwxCy3Ixsuu16TTJ8yzhnBcKhdlt0xvNplRqba2heVK+7+tgOoyJFMg0rf377gjDMMsTy3KO3nt/s9lcXV3dyklTStm2pZTq9XpxHIMRgwxhjDWor4lUlHKllFbISqkYY0ommvY4HA4BlJ7nUcrCsBNFEefcdX09rBgMBsPhcAv50h1UHMdScsZy7YYx4g44TpqmCgjHtSil7U7HNOyDBw9OTk4Pev0LFy7pfapQKGzbtq1cLr/3ve9N07RWLmmWkG2b3W5Xr6g0TaUUcjP0XCklhCDEUEpNTEzogCBtjaRJLlsBOFEU7du3bzgctprtmZlt2nUojZmUEijEGHNd13EcCLWsQxBiKKnNRqFSCiGilMpS2ul0isViFEWa6G0Qi1IqJfA8T3Dp+36eEkTw3/zlp3bt2sUYO3/+/PXrV/v9bpYlV65ezrJssD74D//h3wmhxsbrjeb6X/7lX/6Lf/Ev9u3bd/7M+UqlliRZltE0z6IkLhQKg2E4NjZ2xx133HnnkbltO+r1+o3rS/Pz85VKpV6vm8Rot9uFQgEh1Gw2W60WAMD3fduegAQoCjj/GRbnt9QHo93wlkr/1tAFvs27Wb3dKv3WYrkFW73ttwiBLMvCMMQYEoKSZGQ2v7a2dvLEGUrpmdPnjx49ev/99wkh4jiuV8uUJq++9lKlXCwU/MtXLr3xxhvarwpJzDlwPXtpack0jSAoZlnCqCAGZowqBRFCSZIcPXq02WyeOnVqY2Nj7969lFLOdFFujVhIECmlbty4MRwO19fXtzCd4TAql4u2bY+Pj1+8eFEhTAjZvmObaZpr6yvtzkaa5ACA1dWV06dPa/y33W7nGbMseyFbQAi4ngUBZozbtq1tNxiDurbQhnSuaxdLgWka9Xq1Wq2223axWFxba3Q6XQ2LNJsbYRj6vksI6ffDVqvl2Y5BLLkpvtaX6Q5TPzNCiCDMOQcQ6PqMWGaRkCiKHJdoeyx9/yukdFm8mSGLGMv19JUxJiVHClCWuYbrODYXVEoOJAUY6ZHs8vJ8HEWe58/OTlNKl5aWdJjn0tISwEhJaBo259wwTABAq9UBSGGI3njjLcPACBLt3tXr9UzTHAwGUsrhcAghrFbLtm0HhcAyzPX19fZGa311LcsSpaQQIk3Tcql65cqV9fXmJz75N+e27cpz9tabp67fXAAC79oxlyZ5HCdPPvmkVlCOj4/brqsBNdt2wYjabGkxrN76NEIthAzDMGNUJ0ZijB3H3tobwSa7Wd2uodFlnNDR5yNBzDvqia0DRVs2/y/g5q0rb/+3W8fcX/+Pth63Spnb/8TtYqBbyPLPvhJqLZEuNLdi/G4b4v61bO6fftz6V/IWWXrrPQEANVStn1Pqya7eQOCtdyLlLRZtu92v1Wr9YQTC4eTUhGGalFKMDTVSrgGgAATCcY0sj9rttgTp9Ext0B9bXrq43siHPRINYyHYwvwKhBAoyKkyTZtSznWErGGGw9iyrFptTAiBEIyiqFaruZ6n24P+IJ7bve3g4UN5xq5evTo2vuOBmQOBX8oZbDZ+2OsNW82Ny5daKyvLe/bMvvn6fHN97Z4jh8rlcq/XlVKYpi2lzPOcIIwxdmyvVCp1u31KGQDgySef/Lmf+7lXXnn1hz/8YbFYMAxD5LkUglKGIYIQEwglFzynyCBaZAeEhEghiHV8rhQKIqC3Nd1j6M3B8zyllA74/va3v00I2bFzrlgs0jRJwkhCoAkyGGO9OViWIzlTUBqGoSTEgCVpNDnha4GIPjT1jWoYxiixjcaCMUKIkFJI6XueaZpR3BWcY8NgjCFiBAXv+9/73thYfefOXc9893u9dluDelGS1Gq1jY0NYWHTtEulUpZlBiau6wIxik0nQORpHvhFGsaDTpdSqgyTEANsLk8IR/ktUAEhBed6sGpCCLUSUymlp/JSjqZNQCEpgG5oOecEIQkAkzpMdWTJp1EVpSBCGo+QEIo0TbVkFUJYKBR0IQEhvHlzwTCMWq1GTLPT6aysrCBEJicn0zRtcJ7liT4FbkcntxaUYRgAQe23qJPoB4OBYHyLDZ0kSU5T/R3VarVGo+E4zt/6W78SJfFzz/1odXXVsg3btAaDUIc0CCG4ZMMorNVqhVLRsWzP8xljQVA4fPjwT176iWma8/M3hoPeZgcrKGcSSgiwxje1MnE4HFJKNYSnNg0KgbaxlrmSQHKxuUNCuOlGYhLDNE1sEEppNBxmWWLbtuJQCeHaNqPCLwZ6IjgYDCzLgVClaYoQwdjIMmpZWCmoMCQGyhnthT3Xs7iiknLLq5qeKYSQgAvFAIGWZfXjzkpz0TSIZVkAye07Z1dX19eWm1kaYWBCjJAihmVpIg82cM4yExEpsIVtJmmSA4IQxhAAORz2u11eq9WYZABI3/Ydz4FQEYInZ8bCMEySRGWcEGJaKE1zhIBQCkoJEFdSK42AaZoGwgjDcDAwLLtQKPZ6fcYEANwyHcuEvV6PbAbs2Lbped7OnTshFJZllEolqGn5EAIAGGMZzdM8S6I0z3PP9pBCNOdAKiHkZpgejOOYM5ln8ab4NLM9l1KqRdlKqSAo0jTXjDCN5MoRNK4IIY7jUJYBBYIgAABo/fK5c+dGMheozawBJgbG2DSNLMuQASgTrmtXKpWFpcVh2MeuYpxlSby0tKQAKBbKtA6EEK5rc5ElSWYbhmVZNBMIoZWVZr/fDwJPAbGxsYGwKlWKdb8aFHdsbDR0JaAHh1mWLi4upmmaRFm33xNCzO3YzjhvdJpnz5/ZsWNHrVZ7//vf/0d/9Ee/9Vu/9cADDzz11FOzM9N5mjEhhQJ/+Mf/vTpW/8AHPmBYjmlbSZKePXdh+/btExMTJ06cqNfrhmH87u/+zr59+yCBju8srix+8Ytf1Ny6f/pP/+nU1MzBg4fHxsZMYgklB8PQdz2lFDEIZwAiEsf5MOxzzhuNtZzH9x69h8n8ueefXXp+IQwHnq8lLOLgwQM/d+z9X/3qVxcWFoKgcPnq9fvufsQklmXZQBmWhdca4Xe/+9077thv2nfVjfrS0tLi4qLWgwKAMpqXXCdnVEFQLJearY3GC833vf+Y4/rP/ei/33HHHQ899JBJDD1xTBLm2F61Xh0MmyynGOM9e3aNT4zVJurnL130PO/0mTeGYS+Ls8Av3Xnobsf2CDHyhEqp7c7NKKFC4ZmZ7W+99Va73aY0WV9fc8pEUzdMjCzLsi23Xq9fv359bHKqUKqcPnWBEPtf/+a/ee+7Hy2VKrZh7jt450azbZvOz3/gyXAQfu9735ucnDp69O7jJ968dOkyU9nRo3eXSqVLly5IqCzbQAoQQkrFSpYlCKGb89f/4A/+IM+ZUgACPD5RD4LgG9/4hu+7Y2NjruuGg2hyonjgwIG33nrrWvfm3r37kiSXENi2xajMATNN0/bcJEn0rmtbZrfTwcgwDax1xpqEYZomwSSOYtu1arUaAGCjsb5WKa81ml/+ytOPP/54q928cvWC6ZDVxuJzP/5+FPemZscuX7xSrZaTOI6iIcbYNswkifQx2u22CSGMcSml6/hJnEOIh4PQtt1Spfqe9zx65MgRgg1iYACA+Fk8nnc8FARwk84MAMAQSASVAjqTuVgM0jQ1TdO1CCGEUuA4uN+ny0urOpix1cqGw2E4jO6+++4PfvCDGEONkU1PT5fL5dnZWQjh0aNH00zosZ/W5mdZPlafMAwYBOU///M/e9/7Hn3fYz+/vLx4YF/l3Nmrp06dOnHiZUppGIb1ev3OQ4duLl43LTw1UV1dWyCEQIKq1SrBxnAY3bx5s9vt6pDSQqEwGISlUsm27XKxPDUxLaWcmZnRVNA8pefOXKSUQYVNE+u6WkpOKQVQBkEQRVGa5KVSpVar7duzv1Kuffvb307TdGpq6q677pqfn+92u3EcHzly5Mzpk0oJy7LSNHFMy7KsOI6EEK7tAAxsiwAAer0exjhwncXFeS6Y7ZAsH377O1/btn1HuVQxLK/XG2BMiiVHQWDhUJ+DhBCEcDgMlVKeFzimZZrmBx5/76Vz51584UcQylq13O/0DMMixBwOI+2kpI2wduzYodMgMMAKKp0EoF0cLUP3tSRN8yiKMCKDwYAYWAgxDPuu6yJpZHnSauflUjUIgjRJNJShCQEa29HzMKUUxsh13cFgoIs6bQsGADBN88KFC7/927+9uLTcbDa1A0YQ+Dt27EjTtNPrUkq5FIZlMiYAgqVKdb25cXNhEUKYZRkhpoYOXdfVDaN2+I2iCEKs2RIIIU4plxJA2el0OOdZkupJmxDKdb0gCJSEQtJKpWya5uTYhBY8bR1nQjAA0OHDh7X7ZbFY1He+ZRmcMkozjA2d6cU5hRBqegTno/Bq3/cppVmWQGgoCfv9PuccYOkH/uzcuFR5t9tGBEEIH3/8ccPEp06dMohlWd6unbt73T4BxDTsiYkpLpRBttakBAAgBA3DgEgqLoHCGnqCUC0uLp4+farTbqOpqcfe92ilVM5ojrGBMIACIoTynEIktrqnLXwWjsi/76TaKKWSJDJNsn37tvFavVgoFItFA+EgCDhleZ77vq+rR9t1RjgygQhpvtCWgAlgrP2RR+7SEEIhhIRAAUAMbRqJLcsQQvukcbVJt80pJYREUQQED8Nw9+7dew/s1dOdfXv2mKbZam2cO3O22WxubGxsdpYAY7xF8lBK6ptBvzuMRyC4HvwTgslm1qKUXEpeqdR839fyPghhs9VeWZvvdrsQwmq1qr9uy7L0p2dZFkamEKLfX9YEtSAo5pwZhoEwgYaAGBNiYgWLxeL27dv379/fi8PZ8my5XA62FVIhskw6XAKIqJAQQoIhELeBy0oBKYAESnslQwh0VKuUowkgAkCJze1YASUAhAAqABCAcOS9CRFQACgFMNm8AAKloNyc1dzO5FJK5xyPYDKpRn9XW9oRgjEGQgAhAEIwSTIElec5AADOVRJGQInZ2VnD0NAPL5WDPE937ZhO495g2F9bWUiSjDGBsXHPXft6AxAlHZ3b4wfOhz/8Idd1Llw4RynfMbetWq1cOH96GPbK5bJlWY1GY219HXIbQZOxPI5Sz/MA1IQjo1Iei+NsaWm5XC7t2b29N+ivrTUAQJxT2zYpZQCqzRrU03dGnuemaSJCDISIgbigiivHsnUfbpomADoVVBaKfpqmAEo9X7JtO88zAIAOCB4fH7927VqSJIVCYatsnZ6erlRKy8vL/X5fE2RKpZK+cTXR3bQK1WpFStlqtZrNDcMwFhZurq2sW5ZVLhcppYznUnHGWKlUSpKo2+3p+1hjylmWGYbJOZcQEIIghIQgzjmAULMUMSZZNtDNnkbVdRWr96Y0Ta9duWoYRrFYLBQKul7XIFShUJifn8/z3PMCxhiEKM84UGg4HLqur83UdSljmqZ28NDVPABA+9e4rsk5D/wCpdTznY9+7GNnz569fv36hz70oVqtMjPz6L59e/6//+b/WlxcLJUKpVJBq8UnJsak5C+//HIUReVC8Zd/+ZfX19c55+fOnn/ssceazeb09PSVy1ebzdbEhKHDr/KcTk5OUlpdXl5OkzwoeJZhRlGkF78+b6rVqmUBJoD2btaRfQAAIRQEtxxlpQQI3ZqmaKiL81vmABJChEYos5SbypK349RSKkje5nKjh0CEgHq9ZhgGpZlSIqeplIpzefHy5aXFxnvf+95SqbB9+840zaQUQcG5eX35y1/53MmTJzmjk5OTOp3S84qGYbCMS8U5RwcO7O/1egsLN33fHxsbu37j6mb2LtRmWFEUMcbGx8crlQrBJqWDQqEggNIac4386oONMeZ5npJccD20FKfPnSWEOL6HMSoWi3Ect1otpZQOfMcYc+4hBKenp3o9Z3pqttVqKSXzPDGxUSx6hmH1+/0oGlimY9uWEJILihDCEmOClVKe51GaX7t27cKFC+Vy+a677rJtV/Oadc8zGAwgVJZljSQIOQUA6CCvLXazPrr0f9wyw0FKCJamiWUZjuM4YmSughBQSqU012wsrZvW4ga9pghBSZIpICBEhuEgBLM80ZbQnFPAgc6DGkmhHTI1PdHtdpVSeU4RQlEUA6VzABAh9qb4FCsgDMPcmvrQnCOE+v2+JlUNh8NKpSKEWF1d1edNEARJks7OzoZh+N3vfve+++5/7bVXr1657voepbRcrr311lvray2l1LFjx0zzJ/M3Vy5cuPChD35kfn7hxo0bDz30MCJECKGpzRBCw8AacR4dyEoahsEY0xDKYBC1e12llG3bOttXj5S2GIjqryH5opEZxdbNv1VDIA2e6lMIbGUMvD1ycOsJ9arcPOxGpz6Eoyjazb8FlNKwF9xkD6PbaxSwOdberFz0m9W6rdFLlVLK20Q8my8dbV2p2TbvbHtGwh4gldoy7NgqnsDbkevR1T8lCN0aRCEA1G0mzlufgx5fSQmUVABIbBAAAKeMUsqEXGs0EUJpmuCN7tRUBUJT6/IwAgCA/qC3urbYajYWFm7evHlzKDqSUyBlMbA5U8N+DyjFcj6apTPmum6hUGCUhmGMEMA21nU/AKBQKFBOMXYxIZxzSnme01qtnqbpt7/13Xe/+9379u1rDTDlZpgox3Zr9ckTJ9587fUX1teW1xuLkueVilvw7beOv0kpFZzyLq0UC6Zt6clQlmRSgAMHDgZBeX11PU3yVqv13e9+d3V11fM8CFWlUkmzYZIk2MKKK4RQFCVJkkjJq9UqBtBAWChhGSbnEgPCGAMYJ1mGEEIYGxgIIRgb1WdCSC3uazQaY2NjmnmR5wxjqms+BJEWIwnBlRqxMARXUgrGmGWYg15/S94ohCiVSrVa7caNGxBAx3GDoIAQKni+Xt1CyjCKDAMDIIESCAPLIJZjQwg/95ef/dVf+dsPPHD/Z//sM2P16le+8MXnn/vRV7/8xf379y9sNBljcRw7lk2zPJesVioAqbjklkU0XqzRTEKItqzWO95WyW4SQwihgAAAZFmm7e30ThXH8ehWQ1gIaZoQIWRgwrnIeQ5GSX3IxFihzXXEpGTScRygQwkltG07jWOGcbFY5IxFnAMA9G6mlNJQHTZM7VBPKQUAMsZ0guLK4pIQzLJMzhmAgHMOFdH9lWVZECMP47GxMQjhcDhUSlGWQQUs25BSplms3wWE0HEtIUSe50888USxWPzxC8+HYaSXUZymIhLaDklJCCEmxNSYOyJGp9cNB0PbciFEhm1ocvowGkjJ8zwjhDDBsyyzLVe3BLqI1yepUkDzBnRppO8BqehIrwEhQXir1wUAGIZRqVTSNB32e5RSwzA4Za7vbdu2TYts+v1+t9W2LMtAWCIspaSCYzya3wMAIEAQYpozZACMMZcyTuLZueliKYiScDAY1Ks1CCETPA1jQkicDAecBkHRMLCUoD5e8zxv/vpS2I9MwzUtQ0hGTEwsN80iySWTzDVcCYRQIMsTCOEgHCKECCHEMpkUnFOMcZREXFIJBMbYwKbjmJZFOOc6xkNKLqSglBNIEMIIEoMQAADn0jANRhnnPEvzOMsJMaUAjAoEGcZ4ZmZGCdZutyFUhYJfq9U4p2EWQYySJEKMcMl0iHRH1AABAABJREFUiaLNT8MwhArpwGGMjCzLOOUEEgMZTHCgUDiM0UiJPOI0NRoNfbhrtofneVKzfgxTiz/yPAdSQgWAVIxmCEIAlWGYuhZCI6sNoZRCCCKsTGhibEilIMAQApbFlmfqCh8AgDG0bbtYLO/dU52fv/md7373lZ+c2L1rn5KAUooJNBBmjI2NTUgGSkXvs3/+ucuXL1aqJUozKpgepdi2XSwG3W5bK5Nc163Xa4ZBdHTV3NxOYmKl1J49u4bD6Nz5le9851vHjh2bnph4rt+7cOECzfJep7uytDQ5Nu7b1vd/+KMwTh97/7Gz585du3798JG7LYOcn5/PsiwIgjzPf/KTnzQaa4cPH3711VfefPP1oFK6+94jT/3SU7/woV/4zd/8zdMnT10Iw5uLS6++/uZEfWLv3r179u4br49BjG5zLYd5zi3LIgY6eOiO+cWre/bvWl1fWVldcgO3OladGBtbXl6M4tC0DNf1pIRJkpuG8NyCknqDlQgChMAbb74+P3/j0cfe5biWYSIuaJpnOc8ppT957dUHHro/CPZ6nkcpTZJEp7C88sorT33qlz796U9rppgCAiFDgxiO4yklTNO1LW9iql4u11955RViEddzgoIDoICIX712Ps9Es9l84P73lAtjBrGLQQkABBQ0iFkct+YX1r/5zW8mSVIuB61Wa7owVq1WH3/fscnJyT/4g//68MMPm6Z94vSZV15+9ed+7oP/8Df+iWt5k+MzruNjZHKJIGWB70dhEobJu9/97u1zO+e2z9q29fzzzw/7YVByWq02GSDOZcay3bt352lIKaeUVqu1cJj2u73DB+/81V/5O//1v/6361eu3xgOHccaDodBwRkfq/W7/b17Dhw7dmx1dfXCuUvFubJt+QSkGWdQqVqtlqZ5lmU8p7rK7fV63a7GhqBu0DSvKAxDCKE+E/M8z3NmmiQMw6tXrxqWefz4G5cund+xY8cv/MIHLly+9PQX/rLb7fGchlHPcQ0hmbbZcS07TXMJgW5Lg8DrdvtCCCFUO+4cvW/vz//8B/fs3g8g1moqx3YIAUwBADR6MKqR5G08HrDJztF9EyYAy5HPhgZzAEZaogohKJVKtk2AApZlEQKiiKZpSkxjcnqqWCx+75nvfONb3y6Uio+8+9279+zBBMZxLJQsVap+oXjfAw+Wq9cPHTp07uyFNE0sy9Rt0ZkzZ6ampm7cuMEYS2L6zPee87zi+voqY/mLL75o27bjlBDKlTI/+AsfXW8sNzfa+/btWFlfW2us79u3y7QM3/cH/WGjsdHvDaVUxAiiKDGwyXIquQg8P4qi55577pvf/Ga/E7KcOpbLmBz0B5ZlBYFv2xAAZZqWlFwqjiBCCPW6A9t2depAmqZN2tTMtsEg/IM/+INms5nn2dNPf/HgwQMHDx7MsqTRaOzduzcaDCGEnNO9e3YdO3bMINbp06fPX7wwMTHluu7NmwsAg1KpsHPndsZlu91aePkGwWZKmeBg587dzeYaExwqt14ff+9731spVQwDp9mwUqkTBCCEtomzBNy8fkNQWakWF68vLF6/6ZZMreTVjluVSiVJsjNnzqVRqjdY0zTBZkB9lmWCIYxzy3J833Ucp9PpYIKKxWKpUmy3PdseCdHyPE+zeBj2sySvVCqOMwoVFIIhBGZmZgzDWF1dFZzrUXGe557nxXEMlPQ2mRPHjx+HCGv/DQCUdoMUQujrDcOgNIfAYFQMBoMkSQAAUgDbchnjSqleb4AQcV0XQgwAMgzTdT0lkFRKShlGsQaIMMZKSZpmUEIoYeAHo1w4hSijhXKBZTljzPe9Bx988Ny5c61WR59Zmlj5+OPH3nrrxPnz59fX18fHx6uVQrHgx1GU5Ylje9r0Q1duPNVBAjaE0LHsLEkhhIxToASCtpQAIYKIjmFg+w7uBYDPLy6MjY19/OOfRAhIAX783HOO7Y3Vp3bt2jMc9k2CO53O1GRcLNRyKQGUXHAEESYky9Jh2M2yLItYpVKp1WpZlr7yyssrKyvlUumuu+6am5tL0xQhpPWu+lA2TSKk2IKttmjN2ryZa/dnCHVvopVGEqBqtTo1PmFZlk6As4ix5YnMBEcIGZapEERq1LZrHAABqDc9hEbcACml2Ow/JVBAbWWcoE1oeNTBbXadUN+caRpLNlIxspRp3KNareZ5Xi5XHn/8iSRJvvWtby0vL+uBBzaI5i8TQpS6NQ5Hm5aVSZIoJXPOHOIYBBNIaqVSoVDgnGs5/vpaoz2/sLGxMRwONSCjU8f0F00pdVxbtwAGJDkX2swEQZxzhjARElquXXT86lh9dnZudnZ2dLFhONWSwV1kWmGaCQwNgjhU/XBomqYpbQI0cLzZr+qNFamfkdCqW2S9L0P4NqQM3GYIsIWdbXW2+noFAYJAqc1va5OqBt4eRaijpYRQAADDwEoBxsAtxECJVrvTbsNKpVIteZOTE0uL80tLS1NTEwqINI1q9VKrlUnFAGSWhXv99vPPv5jEbHm1sX/fviShG+0V07ApTRobLcf2fuM3/uGbb7zx2c9+hhAMIcTYqJTr3e5gY6OdJJFJLEzcPXtmH3300aeffnptbW3bthk/cJdWFtfWGmmaEmKapoUxuXHtRmOtMTExwSRL8ixJkmKx6NguY8yyLKWGlFKNlmKMJQZCQq2t09RjBAlChLGUEGzblu+7g0E3TXOdaDkYDBzHZYwRYkRR7DihfipNXFJKlUolzmmr1dK5q5o3qm9ow8JCMoQN13W003GapsViYXVt2TCMqZnJSrncbDb7/X6SJL1er9furC4tz8zMbDE4pAS2bVcqBCEUZxmjAkJIaeY4jud5YTTQ95neSXW3pjf3arXabufaIZFSqi3YCTF1dU4IKRRKjOVhGPq+r7l+hmHqnB/f94VQjDGpmOO4hJAkSTinhmFZ9oivZJpmynO9PCzHHh8fD8NwZbnte14Yhs899+zs7PTDDz8cRVFzY8113TgOh8P+2NhuvcCUUpOTk/fcc8+1a9euRlcPHbpzdmbbyZMnhRD33/dAtVpdXFy8cP6i53m+X3Bsr9vtBUEAoYyiaGxsrFKpLC7NkwBjjF3bwxjneS6E6HQ6SsKgVPQ8CyGgU3T0t6E2ZQEAjLBmpbv2WyDyFh49Wg5b3mFSLxY9lblVKkEpgAK3odJAIQR1dVWrFZUqhmHMugwb8MaN60tLK7t27n3Xux4GQLmOr5S8dv3KtpmJVquZpkmp6Pf7/W63vXDzRrVa1mrcXtaRUqRpAoAUggkhdu7argDYtWfnXXfddfzNt9I0NU1y4cK5NM21y3a71W02m0oprkbp7VpFMjExkaYxIWRubm44HFKWEUIo5ZRzEQsApeu6jOWccwtbURQVi0UtGuKcC8kq1VKtXpmb237+/PksywzD8HwnGgyTNESIJHGqBbl6LkKIwaQQStiGAZEyDDIcDpIkStOUMXb27PnJycmpqaksyzqdDsYoCCqe50gpK5WK53lRFLXbbZ2dpSfbYJOiq6lM2v1GKQWJ0raPWk89uoxgiJAUQsNMjDHGctM0DQPri7vddp5LyzYolbOzM0HB63Q6LrEBAFJyjLHnecVSIc9z07YnJiYAgFevXuZcZ8obOkTRsiztc4UQElwppRCEGvPU43pCkGEYCJLAL7qO12n3OJPaYItSGgTFdru9uro+Njbxnvc88vzzz6+srExNTUGIcsZEGOlRJ4Tw2LFjhUJ5aXGlWCwOunGUxGvrK9PT03M7dmHDCIIiITgMh1qAk6YpAMj3fQAhxlgyJqXAGCml+v2o0+kUg6BSr20xx/VZIDeTH34mv1jPX25nFm89dAzfO2L8bp/K3H6KbZ5Htyw7bhffqNsc0CEEmycU3jp7tl7wFvo2+m90Oxh9y/hi8/mQUhL+TFT47aj6O9663jgghEqNxv5w03bjdtBZ3WbXo37qc1BAadj5HZ+GHlABAJUaBZchgi1s12wfAJUkSZwkYRw1GqhWK1kWabc6/X63ubHe2WjeuHmVc9rubISDITP71XJlOAghYgQpJbgUwjAMz/OHw0imtF4bn9s+e/r0qSSKCwW/WCxyKXr9PjFGEjNthmuapuM4mrzZ6w5q1bFKpTI/Py+NSdcrVKr1F198+eTJ40fvu2v16qXV9audVqNeq0gJhuGAZlRKiSAhhCRJBpIMGURyYRq2bdpXLl0NgsLMzIxl2NevX9cTWd/3u/1ebazuu67kfNAfZhm1LCdJkjiMgiDAEAGpbNPgHMZxqqMCaBwDRHzf13KlTb0CRAiZhDDKFYJCCO2uoNUYesfQjBoAABCSQGTYhsaYlBqdAPoUi+OErqxxziFGSZLu3LnrnnvuXV1di8ORFUCe5z0hauXKFqvaNE3XdcMwNAEyLeLYZqFQQEquLi92u10h6Mc+9hFKsytXL/m+WywFRqedUqpvXYRB4Ae+60GWGYZOKhdJOESWm+dMRytpfE2XGRqp1NsgY3Arv0UbeWn8NKU5GuXJKCGklnAJIQCCGhId0Y2FQhACjIAAAIA4StEoZQAnScK50OxjSmmhGORpWgyCOI4hhIIJSHA0GAAAHMdjTEAoh8Oh7j3q9bo+hTHGpkk4x9umd7Xbbd15eoFfrhQxxo1Gw7QIY0wBhHQGcppqp0LX1fNyIhUvFovHjx9//fU3Or2uFEB7XHDFFYRSce3rDRSCAHMm/cDVpY5SKglTwzB37ty+vrJOaUYI0oIzwzCEkpoZrefxnufphIPNmRy2bVuLt3SvAoDG+oF2uyEYIwRc18MYx3G4urqa5zmEyjAMTaqtToy5niuEmKnU19fXG42NKc+zLGsw7Nm27RFLCkAgwqahlIIYKYw4QozlUCFBeZrmjbXG7MwMVCAOo5WVFX3jBcUCIahYDNq9NhW03W2ZxArcoFguTM1MLrLlOEo54obBHcsDQJWqpT31XZOTkzcXlzhlzWaTsgxCiADkXE1PT+ucjzhNIAScc8rzQlCAEArOIQSmZSplOK7luu709KQSsNvtX7l4xbE9z7OUGG2/+msFAEkpIIQGsQQcZazX6/VSuZCmKcZQCGE7FsIwikOl2NjkmGma7XY7o2m5Vh10u/1+37IsnaNhWQ5CKEkzjLHCetTNgVL6TsYEQqSEZAAhIYRp2rrk1m1tFEUGQACALEujKNQ9mB49Csm03lcpJaDgXI44XBAzlgvBpRT6i4YQYp0YgYFp2hAqSnlGcz2r3rlzJwAoTbJWq/Vv/+2/DQpje/cc0CuOsRQTKJiKozDwit///ss/+tGPhGR5ngMM8zS1HNMw8Mra8uLygud5QoiJiYmdO3cSgi9evBgEged5vu8OBpaU8ic/eWV6etpxrBs3r/zn3/3/zW3b1VhrfuLjH7cs68H77v/c5//iwvmzGCLbdU+fPYMNMrdj+4lTJ03PuevOu7uDHhV0fX19OBxevXq52VxvtZq1erXZbO6oVcfHx6SU586dGRsbu+PQwfPnL6RZ9sB9D9ZqY/v37y8UCkzwwWAAISyVSkIBwwAsohCCar00t3O81V1eWVk6fNfhR977nvn5G3//7//9l1564eTJ477vrayuXrm6YDsBY2jH9v133XlfmnDHdjA2LBNfubb0wx/+sFot12pVhFS32w2CgLK8Xqrfddddp0+f7Pf7QqgwDB9//PFnn312YWFBKwO4oNVqdWFhodfrFQJXS7yVwlJCA5ucAdsKgASnT50vV6r7D+y5evU6QoDxtNNv5DwDBDU31jrdxsTERCkIoij0PB9InsRZFINKpfAv/8//49kfPxOGvV/8+Ec+8/n/Ua/X9+/f/+C9D0ZR9NnPfhabRprki8Olb3/ru7MzO4/ctW0wjIAiiuemaXIWEmIqLs6eOv2Tn7x27NixXnfw9Bc+1+sNfvEX/8bSynx1vPTqq68gSIp+cWO9ZVrw6NGjF85dPHv6nGU5H//4xwf9+JVXXrl84WKvN3jggQckF5VK6VNPffIzn/lTg1jVysTC/OqzP/phpz0wDKPfi5Mwch1fStnt9gEAnEvOaUpzretVm1ISPWnTsIheKQAgjI0k6SVJwnjOhTBNc3yyHobh6urqwUMHPvqxDxvfhT949rlquXx1aSkMQ8syIBRpGmvruSRJqOC+74+P1xUQk9Z4ltHdu/ZLAf/Wr/7vD7/r4VarG0ZJvW4Ui0VsgpyCTX35baWRtmHbdAEd1WUj2zRIqbRtFMes1WqNj49bGDAJhACEAM8zs0xoNjClknNeKhXHxycdZ2iaBAI8Ozv75JOPa4M4wZUeV7iuaxhw7949YRi+/PLL3W571+452zEnJqpC8GeffXY4HCZJ5nne449/YHl58fXX3up2O8VikWD3V3/1b1+8eubAgQPtdqNcDK5cuzw1NdUfDKRi9dq4bbthGDYbXSVhrxvlCfPcQEqUZmmeZlLKjY2N9fWG67pZkms/90qlEkd5mlLLcsL+YLw2/uSTjz777A8pzSjLNDQWRymEOMvyTqdTrdSXl5cNwxgfHz9y5Mj58xdPnDihZdBJkpw6dSrwfc8LHnvsQK1ePXX8RJIkExO7jtx1F6X0+vXrzY314SAuFAoQkP37d+7eu7fV3lhcXARQlsoFgGCj0cyZqFRqGIOZ2Ym1tcbFixchEq6Dg4LdWG8HBc+1LMY4QThJ6J/96Z+ePHHKIlaeZJgYnOaDwcBxHNd2KOVZRtfWGtr9wPf9UVmLkFYO6Z2c5nmW0h07dmjqLoRqfLy+b9++Xq9z8OCBWq22sLDw5ptvuq4tBMvzVDfgOv04DMNNUVRvamqqUqkMBgOD4GhIfdfTO7dhYiWBlEpJiQjRBFjTNPQ8Mooibf2q9WR6kKyUGg4irYXFGEupPM8bDiMpZZrkhaAkiWSMZVkGoQKKKKUGg4Fpmoxzy7IopUqRMIz0KDrLctO085w2m/PT09N5kupMiPPnzxcKRdM0C36wvr6e57lp2mmSfPvb3+71eozlvV6HsTxLy5VKZW1tDSEEoNQ4oy5WMTKkkAAIqLAkQCnYbneoiErFuo6e41wyxhwX93q9Wq1WH6+NTUweOninY3sIoQMHDr384stjY2Oe7yilLl+59OEPf3j++o2zZ89GUXbHvjsZBTSnvhsMh8NXX3slioZBELTWOzt37pyamjx16nyn0zly1+GHHnpId+4IIcs0uJAa88UQSymhToOTt7pFudmaaSyCCQE39yiMsRTKMS2EkLa5lIznQhJCEMH6GgmBUErJUfcnNjOcuJJQar89PZriCowyeUbgMgBwhGEqKaUEcnPDgXp7FEIQrDnm5khfaCApcBRFtm0zxnq93mgjRWjnzp03btzwfd+yLKGkHlQbhkEI1sppbeWnkQpkEO33UiqVxsbG9I2nqXtXLl8dDoeDwcAwLNM0IUSO49m20jWMUooY2DCJZVk0Z0BByqhW/0CEGOOcsr37D0zPbJveNlcqly3LrtVqzVYHAJCmKZMQWDDjwhLSNAwlFURIAJXmWZKmaZaSTf3t23ZkzVNWEOgsols/BDpL8NZlt3wz/pfaX7VJXtaSuNsVxJrdBja9ofVkZjQIkLfoZgAAKWGx6BkEdzqdxcWFQbewfcfs7h07r1y9tLK6ND4+1u5sCFmwbCwYNUzww2d/bNtuo7EWhbmC5LXXTlQqNdu1N5rtdru9sLSsGS779++98847B73OxfPnrl+/adt2kkSWZfm+zxgrVUqlUsnz/HvuuZcxVquNNRprkqtitVirja2vry4sLM3PL2rxuOB6rgunp6fjOJZMeqbnun673da4MwAgz1OAESHEtk2EsBDMMHCaZgSbGGPDwMQAlGXjE/X19fWnnvrk+Pjk7/7uf9HLHgDAGFtfXzdNU9v566FxEAR5nvZ6vWAzTCwoeOVyOQzDJIv1N0AIaTbXwzB0HEcDuJVKNQzDmzdvjo2Nzc/PAyAZy9Mo37QgcEulUp5HpmmaJnZ9v9vta52vbdvEQIznjmtpGxCNym2xovRLbbc3EEI6ImmLYZTnTMstHcfRv42iCABECJJS6lSlOErjOOWcl0olz/PCMGSM2bblur6UXAqACSqXyzTnve5ASgkAnZqZ3rZt2/nz5xFCTz/9eSHEzMzs66+/niTJwuL866+/rjfTMMyuXbum02l7vd4DDzykN69nnvnB7/7n/3Ls2OOc816v98ILLxkGnp6eDoJg//7ZZrP1p3/6p3v27H3ssWOW6fi+rxmse/bsWV1dJcBwXRtjTwgVxzGlNM8YFdy2pyAEhoG0d5heX1wBBQDRTOTNBbWFeW0uh7cZ1LyjWpLy1nAI6TW4CUxDCLRrvFKAc+1QJjHGQRAAKOfm5vbs2XPXnUeVhN1eZ3199crVC2+8+Uq56E1OTtTHyutrS1Jyzqk2Yuv3h51OB0gpFRdAJEkiFb/v/rtrY/WNjQ3DINPTU4N9e954403TNLXvoWVZrVbr61//umb56WyQtbW1o0ePWpZ1+vRpfYfr4aEUQDu5aeikXC4TAyVJ0m53CCGMCUaFYRicSUygTrlZXV1Nk8V2e0MXQHv27lpdWhwMBo7jVav1Hdt3Li+vXrt2g1GRpplhW5razzlPkng4HLquqzMcWq1WkiTbt28XgnueOxxyy7KCIOh2u5xnCEF9D0sFeE6zLLdtm9LMNG29DEdhKVJyzi3X0DAKIWjXrj0XLlyQUnqeo8lNAMg0TRHCEGLPCxBCGWUzU5OEIMbzPM9rtarjWnEcl0oFKSVjeZYpIYSQ3LEcAIBl277vd7u9SqUCIY7CJE1zpQDBpgartJUNxqNXBeBIi60pJhAqxthwOOx2u/q80VoEzToxTdc2cOB6L7/8E/3WXnnlVSmlZXrD4dC21aWLV3LKn3/huR3bd5eKtbm5uXyMlSu1b33rO1euX3X9QhjG1Wqq98w8zwkh2nebMSEk0AiOEMK2jW53EMfx1NRUpWLFMYiSRMM3aFM2LkcOzj/7INFE49sOjhHX8n+BtP5MOwrNKZZKe0rcji+/8+q3jVF/9uvRf0gpeQtN1qoEpRQEWF+nDzgIofyp1/q2J/mZr+SnXhXafONSbZU0tyjPt318t28S73xadYusCpRCAIit8TjCIEmkplpo72PHsRAE/X630VyLBn2IQJ6nv/xLT21sNL/+jb+yy45lknrFW1labg86tmPmKTWNUe1SKBYnJiZu3rw5GAx0sgpAMI3TPM8BNJIkYYzql+S6rn4TYZxKJe+57+iO3bteeuml4ngyOTu+3lhqNJfe//h7H3vfw+vrd7z1xivf+e43GGP33HV0fW1jo9k1DQ8jCYBCAKZpakigIPQ9z3VdLuX1q9fuvvve7XM7Z2fm5ufnl5eXIUa7d++kNBt0W3EcawevPM+hRASbeh7puq4QTG9QSZIppSzHGw7DJNnQUjWMDKWUYRCaZcCw9AqSjEuuCCEawbQMvTyxZnuNvgsA6ZZ/5Ga+tgZnNVRqIFwqFDut9ksvvCi5UEppLsO2bdsWFhZ6w0GeZXp0jTGmFFiWgRAiGJkm4TwTgj377DPVav3Ow4fCQe8//Id/NzM9OT0zdenCxZwrQkie58PhEAKJlfAM4hKYpkmlVMgZGwyj8W1V2/fC3gAhpJSQEkCodCkIt4YTCCGMEEICKH2mc871FFmDgLZtayuMra/YwEQppWfheuqGIYIYaSAPAeI4VpZlSgCC8LZt2xzHajQagktgQkIIp1QIgYiOwWFC9C0r1dCtZVmFQkEn+cTDwdrammma7373+2/cuIEJLJYCxmyAoFJKDy/1VqkNQDhl+jzSbVU0GFquo48zrXpBoyQWBQDQFKokSfRNwpUMCp7rupzzNMmJgfS2r2BKCPZ933RMPW40MNHo/CgQnArGmDYf07wBQ8fcU0op147cUgIAEEAYjhLGtZ8J4EwKrjAGeT7KFdRaXcdxKpWKkCzLksFg0Gw2hRCUJYur84ZhWK5FGUUIQYiJZZqY5DlTSioBFZeVUmV8oq4gq4/VhMjbzZbrOp7tdTY6UvKZySmESZ7mGJMgCDDGSKHeoK/9xqemplzXv3TpMkFGuVxWStm2XavXg4Knq01pWXXFtbJef4xc8iiJXdf1fS+jOUCKy1H7xHhOKdX5w7ZtW5YhpbJMc2ystrCwwCnP8xwqoOPIIMYIEYwh56mSUN+WegCDMIjjmNLMch0ElFYEE4KQ4ViWRTkDCCoFG6sNKjhCRHf+GBkIgDhK8zw3iaGw3Lo3MEGOa2lQgHKOEdLGWoQgXVTYhpll2TDsW5aFINly2uGcIwy25kMYY62M1qs+TUezHy64lBIjAADT3nEjvpJSGGNKea/XP3jwsGf4Z8+excQICn4aSx1c1uv1ACw4riEV832f0eHnP/+Fr/3VNwaDoW2bKU1t29Infrfb1WNyx3HqE+OFQqHoB3pUrIvtlOb77jiwsrK8vr7abDf9otft9r/0pS9MTk5v37bj4IFD73rokSuXLszfuIkxBpIzxqIof/a5H/3ar/3KI+99z5e//OWXX36ZYHN5efnd73rkE5/4BMbQc92Ddxw4cer4kSN3Njvty5cvYow/+9nPajGZ6zpPPvmB/+Of/8s0zl544aUTp09OT0xKKcfHx0kMy5VSmuXXbl5otVcdF2Eiz18623ujk9L4zjvvTJLE84JyuZom7KMfffLo0aOBUZme7J/Cl6emdhLsjY8Vaa4My2w0h3/6p5+Znp5+8gOPFYtFyZXreT969sfT09P79u2bnp5O01i3657n3X///a+88orv+6ZpNhoNjPH4RP3y5cvXr1+3HVyt1g1iAUC0L3ASZr5fOn/hBGXhww//4th4BUHc6XSuXr1aLJcO7Nu/e9f+S5euLa/f3LNnx+vHz2BIfN9P0xwouGvXHoXt7bum0IvCMMHstslyofjVr371+BtvHjt27MaNGysrK4bl+H4ghGq2Nl599dW5bbvGqmNKAb8QKCFN7DDGup3W66+/XiwWwzBstlrFYvFTn/rUJz75se99/9vf+tY3TdMulwv9fn84iAoF+ycvv1oqlh977DHOwH/8f/7jj1584V/9i9+8445DruPPzsxcunRpdnbug09+aH117Vvf+tZgEJ89e3F9pSUlR9BIw0gIwQ0ZxzGlXHsqamtXx7Fc142iRAhhmiOwJkkSSql2MdaGG5Ry7fNmGqhULPZ6vX6/L4TodtuNxlqxWMzTeIPltkMwKQgmB/2hYeLJyTmLWGtra27ge56jcxeITWZmZv7u3/m7vlec2bZjcXHlzOlzu/fu2bFjUkLExa3q6XasGW5WVbc3WUpqxBkAADqdcGVlxXEc08RJwgkhlg0Y05owRAjMMmZZhu+7pglKpRJjeZqmO3bOHTp0aHZ2OopCCCExECEwSXKtguecP//886dOnbrj4J7x8XqrtXHu3JlLl65cv34tjhPfLzz00EOf+MQn0jS9cOHC8vLy9u3bzp07V62MPfjAu6emJoLC/V//xpcbjUatXmx3EiVVoVRcWW3SjA76MYSGSYpze2fDMArjECgOgORcpGmGECJo1M4XCgXOAMbYNd0wjJMk2bNnz7Zt2xBCmgGWpqmScDiMsiw3DTuOUqA6hUIhiuPaWPX+++8/duzxP/+LPw0K3m/91m8dP378u9/9TqNxHUFVrVavXHl1fXVl7969xWJ5fn4+CIKTJ0/WarV77jmaJMnevXv/0d/7RwKI//R7/6nfG5i2FcdRuVTy/cD3fUZFqzNYWJhP0yyOIilYFEWEmGmaTtRLlmVVq4W15cGf/Mmf/PhHzyUJhYqplDuuAQHSFYXjOI5ly804ymazCSEcHx/XDrZwFBIAtC0qwkCPmqQ0HccxTdLptOIkbLWbx4+HUkqMIaW0Wq0mSWIY5mAwSNO4WCxqNZJ2th0Oh8ViQac3cSYMw8hzBkaK2NE+z4W2PRNcSc+2BFA5Z4MorJUrruPqgrDd7ozqeak4FxqZAQBhjHXCNuc8ibM0i/VckxCZpmmSRhB5JjGAVK7tMMYMYiZJYvqWZdhJnAghDEw6rbbjWbrqyPM8imKTGJzLPNcswIBz3u10NNHHsqzhcOh7ztzc3OXLl3UINkSKUa7l6fo8klwIrLKMUpo98cQThg07G73V1War2YcYFYpefaLU7qwuLa602u0kScbHpr/61b+anJxsNtZ27Njjeub6+vJbb73BOIuiYZqm1Wqt1+tcvX6lXp3w3EJKo1OnT2g8KsuyhYUlyzbanY3LVy4Wiv7999+/d+/eOI51PbxJ+hEAIIgUBAoDA6BbTCBxG0loqxsSSqJRMQsIRFoADUfaO4AUGKHGEAAIlZQKAKE7BISUVLoJ07yiLSXrFhsJADCKGh8ZXGz2egrAka+mVrBKxpjgUDuqSSBtx9Q1oZYJIoTK5bLmaHoFT/cFUkoJ1MglH+N2u20YRNPC9AVu4FcqFR17yDmPwnhldS1JEp1DCADQKHOlVmdUbHLAlVRMQaTJTQhjwzBcz3dchTHOo0yj+Yyx+sTkPfcePXTnXV5QzHKGDENw1RlEAGFKKYAGF0BIYRmmLq4M2zSRDSTwPO/ee+997+SxkS4PQyDeTmdWSn8db3toxBncJv9/xz8B4J0wmaZiQnir2739v7eeanQSQKAE0AMEOGrUAcYjKA0hoKPzfN+FUMVhePXqtfFqpVKphOFgeXmRGLg/6ALACVKmRShLszSp1opx3Lh589rXvvFXn/jEp6aLdqvV+fGPn2eMMcG//rX/ee+99waud/7s6cEgtC0nDiPTtDiDeSYbjdbc7HbLsv7iLz5rGEa5XG61Wr1ejwsWxzGGyDLscDjMqY6xDjAeharX61XHcZYXlilgOnlc2wVCCDkXnEkIFedWoVDgnBFi6K8TQmiajmFAQrDjBJZlLC0vLC4uDwYD3yvYtg2g1FVjkiRCjPwlpJRxHDOWaxVDkiTlSlHfRq7rcsnK5RIhJI5DnePHGLMsQ3vg1qu1aBivr6+PjY11Oh3OqQ5mHQ4j7cTqeR7nHJuGZmimaWJZFudM905pmliWrReJ57kA3LKr06J1vWdtcRg14qyXTRRFEKqxsbFSpZwkCaVcQaAJPp7n6c9KQ8+9Xi/NYt/3y+USxlhKLiUyChajIsuyLKPFYpEzsbq6qpSybZNzyrmcmpoMfG95ZclxnCSJjh079uqrr0xPTx85cuTrX/+6rlMvXrw4GAzuvfe+97znPSdPnDl16pRp2qurq6urq4cPH77//vvvvPPOixcvX7p0pdXttN98o1iuHtx/sFQqAQCyPJmYmKA0C8MwiiINuQIAtKMll2B9faNcLjuO8TPsmxGQEICfBSi/w1nsdvT5p69RCEgBMB5dTynv9YYQwnK5TIgWIqAwDG3btGy7Vqu/613v+p9/9Y3DBw+dv3Dm4qWzeZ5IRVtNkOVxliWaVz4cDO47+sDBgwf/6q++HkURAjJKEs93mhvrxWJg2ubGRnN1dTlJkj/6oz8wTdu2bS5FEsVxnJqmSSAhBmKMYdPQepAkST7+8Y/PzMz8k3/yT+I4NgwvCILBYLAZ55prYDTLspnaTKVcO3PmDGWDarXqeT4AwDQtQnC71RWiBQBIUup5wZ49u8bHx1bXllutDoRw9+5pIVSaprOzc2fOnEuT3Nh055RSIITiOEEISzkaTmJM+v2+NvlijA0GvdXV1W6367quEIIQ4vt+p9PmnPolH2CUJ6PAZYyhlEoIpp28fN8vloNer9frdw4dOjQxOba8sjgcRJvCK81zpJr2q9u5KAm1QkcflgihMI4RAK3WACEEwGhn77S7urIxHbvfHwyHQ8OwaM63gEVNDNfnGoTQMExNQnRdT5MQAZSbLD9TI18QYqWkllGXihXX8ZIkCtyAUq6tqzHGjz/+5PkLlz784Y++9dZbL730glJqo9H89re/XSnXPv7xT85MbzMMUi4Vdu3aEadsbKI+P7+43myYptnvdur1+ra5GcbzdrsdxhHnslYdU0AYhtHc6GUpLRaLw+FgMACa8GJ7ruM4BrEIQRCCkZnwbcfKJioq34H3bmHN71g771g4P404b51f4DYcWW1prn7qCNsqUrYu1tdtEZyV+ukjEm79agvSlT/lN337Qym1hURv/ZMto4xbx6YC4LbXf6uQeedD/vSPbnvazfnurW0EIkSU0sZENEx4GIY0SwCQUX9YKRXDaFgtVwqFAlSidseBdqc5Vi8vLS2+8eZr9XodOr0zJ08NBwPJuGs7hmF6TonmUing+T4AoNPpLC8v79692zCwNtfjnDuOA5HyPG8wYJTSIAiyLM+ZqFarJM9N01xYWIjjUCl1+fKbrY2l++97171HDw0Gg2e+/x3XM3fv2/837F967dU3/9Vv/t9vvX78X/6Lf1UqVokB+4M2zwRGRFChINhYb5qOnaYphHh9Zf0jH/zI7Ozs7/3+709MTOzdv291ddmwTICQYVkYoCShWZpLMJrW5DkDIMmybDAYlEoVAOHBg4c/9alPvfLKK1/6whcJMSzL1BNWKSVnIs9CCKHePUzTAAAAKW3DlAApoLgEilJdzt5W+47mJRrSUhBIoAiE2llLu990u109j9FrWcf/6uWjbXk0eCqltGyTc75w8wblvFKpWmbZtkmp7M/NzVYrJQxhY201DAfI8rjkeS4gBpLxNOKwXORUKi6UUnGa9KOYrq1TLiEihFhCCME4RggCSBDGBtaImxACAGlZVpZl3W7XNIllWQIoTWfbagZ0MaAUEGL0OpnkW1F4EELBuVYaMcak4puEUEGzUZSotv64fvOmNtRK03iT06pvXaQFVVmWaTUr5zwIgjiOL1y4MBgMlGgVyyVNf9b+G2maRlGkwU3Nr9dlCQAgTVNIDMZEpzNqAm3bBgjpgaL+CjQ6nCTJ7Ozs9u3bL1w8Z1mWYRAdj9FqtTjnmhmt92SNYuvBpy6BDMOwLVcTxnXlAAAwDENrg9I01li8/nOCAwCQUgBAyMQoni5nFCAIEfJc33H0VDU3bUNCzhUVjKc0ZlQopbCBJBeU6nhGRYgFgKA0l9KAGAIFaZKZJrFNCwPIBEAQRTGled6DfUqzbTPb7rjjjna71eq0DWIUC0VPuWEYGobFcq4T/5SEXMqJifF2u728ulit1izHFJKdP38+SynGuFgsjo2NUUohBJ7n9fv9NE3zPKM018MGjDEAajAIMcYAcowxIjhPom63Y5qmYZiW5Timv3//3naz2+sOsiTTWetSSgywbdtSGxrqD41ALminkyEEtGBZKYUAkJJblsWpSLJUu8yFYYwQ8n3fNmwtU6WUUq4AAHrwQxAmBhJCEANtNbFRFCkIN7kjOUKI51S/x8FgEMVDCRSEABtEKcUoVRCYOoxLCoQAwQYiGCOCEFIApGmKECCEQKQ4p0oJxhQAwnYcKYFpmQqJOE69wP/ABz7wF5/9XC2olqqlPKNx3KlUp6No+N1nvlet1w7feYftlCDASkKMjZdefOXKlau+4yILF4MAQImoCsMBl3JsbMxx7Gs3b5TTSrPZhFJpn3SM8UazabpukiRTU5NhOEizuForp1l84MC9B/cf+sEPnj179uzTTz89NT7x7//9v//hD7//7W9+c2VxdWJ6fGO9+c1vfvPTv/Lpo/ff/aMf/RhDNDe3w/Pd3/u932u3Nv7xP/7HTNB9B3b/0i/90i/9b5/+3f/8n5566qlKubi6uqoAqlQqDz300OxEfX557YtffPqxxx57+KH72u02MUCShbSVXLx4dmV1odtbN0wQlN0kHWCivv29bxNi2pb7R3/439fX1+88fM+1q/N799whiB0Uqk8++ZGJ8bk4FpaFTcNEELz00itTUzMf/sjP2TbRGMf1q0uN1e7999//d/7O3/n+9783OzurtzXPczQhxrZtwzCuXLnyne9859d//der1epLL720uLjoOF655LJcAAWlUACgx97z/sba6s49R4/cefR/fu0rcZQfPHTg2LGZ7//wBwtLC9gg3V4jDAePvPuB/Xdse/HFF6+8eHl6eppSMb94CUJ09uzZxcWFuR3b/usf/JcXXnjRcZw4jr/xjW/Ytl2t1g3LEkIKCQyTt9ptIdilq1cWbizcd+99CCGictfxy+Xyr/3qr5iW3e32293u0aNHv/Htr33j699688Rr6+vrtXolTXPHce++++71xnKv1/uH//A3Xn319X5veH3p5vrqKoSwUChMjk/dd999Fy9e/MqXvuo5LmPs/vsf+MiHPvWv//W/7veHtVot7IeWZUEIdC7oFtePUqaAUkppcBkAIKUWnhMNVeguQMcqWJbBuVRK2I555cqVQiUolUqc8ytXrv32b/+2bduFQmFtbU0JGccpAABB4LqebnK3bdvuFwthOMipUkoOBgPB1euvv/7E479w4vjJ1157g1Gxe+8eTfnSRdKtYnKzatosum7XmAGlAAQQKAAhPHv27MLCwqOPvq/fj8MwnJqaEHSETmCgOAeWZTAm2u22Hm4FQTAcDo8cOaITv8fGSlyARqOxvLzcaDTm5+c1tXBhYaFWq+3du3d5Zen4Wyd+/OMX4jhlVPz8z//C0aP3a51QELiHDx8OgmB8fHxmZgYhFGYDBcHx42+eOHHccs04i+v1+ura8mCYEOz1Ezo9ve9dD713354DN28sPfvsc41mC2GMkREEjq4NtMV/nqeHDt2xvLyepSLLcwih67qPPfbectHNkhRhoACoVapZzlqtLkaGlEDPjKemphYWb1JKj588MTExEQRBlmZf+tKXKpVKHMfVat00yY0bN3bt2nHXXXdhCNbX1zHGOeVRFO3fv//Ysfe3Wp3FxcUXXn+p2+3euDGvFMbYqNcn+v1+EARZSnu9QTiMjq+v5xn95V/62+961yNvvPFGtVK/776HioWSaZDFxY3/8ju//9prr8/Nzf3mr/3mm2+9eu/RI9//3rcmJsauL59ZWVnxPC9JEqWEtSmP1jidnuBq8ME0zfHx8Wg42NjYiKJolMwBwHAoEAaO40gpCoHf6/V8z0vTlOXUNi0ACGP5Zt6GpXlIjuNoHnS329epmBqwIoRICWzbjeOQMYYNLIRgkk1OTo6NjQEAOKcAVMSmw2+W5b1ez/M83fRpxU8YhlrYrcuAXq/HeJ6mqeNYrmsHQVHzrOM4VkrVKlU9+InjFCGc56xYLDuOt7HR0AWMholZzjDGkot+lEIIlYK27WZZZpqmYRhxpBnQiWVZlUplOIzynAkRbxELRtDtqHfGhJAsyyYnpz7xiU9kNH76c1+QUrqe7fre1NR4ziPTdk+fPu0FrmU5y8tfzXNqEjIxMeF69quvvRyGYaO57rrua6+9YREDY3LzxtJw+NKRw/fMzu64fOlavz/0PKfb7TcaN+JhaBjGiRMnVlZWGGPz8/O7du0BAGkelZIjpzG5GT8DIYQAqpG9odya2t4SE2pwHyhdm2p4CiOkv0H9vShNsrita4Ob4SVoM6YebYYNbj2t2myoMIEY6FJfSqk2a+DRQ+v4peRbr5lzqovbLM8xNhBSQsSEEMt09N81DGMQDiFGlmMHQaDvaoTQjh07OGcAANd1Nb0DGSRN02632+/3+4Nhmqb9/lApRUzTC8qaBA0QAogQIvShb9s2pcA0Tc/zdK6g2rQMxRg7jqNvfiHUvr3777vvAalgljOdwCoU4JxDRAAUEEuEkIBCSGWaJjEIRDiLE8e0duzYPlYO+hd65FY/fauvBUATikcUKrnJqQIQAojeZqZxq8eVW337rU18U7E7+skWBPAOAO72B8Zw9DTo1kkgpSQEQQSwREKwNE0Lvus5VrPZXF5cMixCCB4MBmkWFks+IQDbxurqcsH3hFAPPvTIj5976aVX3gBQzM5OctHZki4W/AAAcPr06bnZaZbTMAwLfhEqhDFuNDZmZrZ97KOfKBRImqZvvfWWzvrAGNfr9TSLkyRttdqcc86kSSzDMEqFouf5pbLruwEhZGNjI07TLE4dx7Ntdzjc0N+fYWAgAJNM8+cxRowxCLDr2nEcMp7bjrvRamzbNlOrl3/yk5cZhaVSCSgUx7FWwGl1qgaSKpUKQigMBxpRyvOcCzrrT4+NjQ2HQ+3OMxyGlObVatW27dXVVdu2fb+QJMnKymKn1a5W6xsbG7VazfO84VAAiLIss22bC9pobFSrZQAAYFSvjUqlVCwWm80mY2Lnzp1ra2txHGshpwbg9Hr3fVcriDV5WW9SaDP+VVckul+NosjxXCmlEAxjI4rCNM0c29PjvuFwCADAGNuWK4TIstx1HUIMyzI6nY4QKgiKAISGYTabTQgxpdQyTcM0bdu+cOHCyZMny+Wy63txHPf7/XvuOdpsrrdarb1790dR1Gw285zt3b1n35693V7fcZzl5VXDMAqFwrvf/e4PfehDcRxevXo1ztJiuby8uk6wkaaplLJUKgUFrYGFExMT2oxJO+bkObMtt1gsUiGTJBn0h1x4lmUZozncCDiWm4bm4LZINHUbfjRaPmpUIcHbF8uWO43+LQZMaNUGgFDFcZymaZZlrutzziFUnPNWa+C6rgTCDwqEoC98+fOCUcZTyyZAAkJIu92WnOnQG8uyLl++3O12NWdKg7ZJkuR5io3SwsLNy1cumqY5Nze3bW5GSRjHqfZR0dx2qaRje1RwTXMbDAbFYqnVal++fEXvkoyx973vfVeuXLl06VKWZb4fDDaV0RgbjUaDENN1fcFBrxtSSrXhoIYdPc8rFEqCU0LMy5evtNstwQRj7LkfvQAhjqKkXhsnhEipMEYQAtu2oVSUUosYTCICiG3ZyCBcUNu2O52Wvr31cdVstrZt24YxjqIhALJQ8IVQuvyllNKcoxQopSilUqpCwa9WqxMTE1Tmnue67p7hMHzxxRcRQrV6JQoT7VG+sdGGEHLOy+UyhHhtrSEBsywLQ5RmiR5jCsG0ObfGHZQSm2igIoSE/XB+ftEglm3bEGLXdT3PT5IkyzK9TwrBDMNSQCRpKiQXAgOAAZBbKkLD0AMeoIGVPM8ZG5mF2bZtEEs7n/b73UKhoAA4duzxpcXla1evI0TGxmq2azmW3e91BKOrK0s7tu9hjE5Ojt9cWBkOhzMzM/pb7na71VqZMdrtdqWUflAsFEoAg2gQaUhFl306JqVQKOiwNaUgxEiPpnTRpt6Oiiql3n7QjERSW1jzliDg9sPrr6M2b14z+nghhBoIVuoW1rx5VG1OxX8W8XnzMnVrVW/+5B0w9E+fcbfjzn/dM//MV31rTr75UtEtNHrzBQBx60dv/9O3DuKt/337tBhCCABybdNzao5jDsPB2gq9du3a7l070zjCEOqMcsuyKGNRHA3DOMuSOF/stDoAqsD1oAKEkNm5bWmSr6018jhF2Oj0up7vayjWtu0so/qN+74XBIGUotPpCAUwghMTE/fdd9/8/CLndG1tbWlpwff9XQd3Pvbog73ucGlx/uKlK3v37u32elKCJAcPvusx0yzMbd9fLFazfGjZFgQYKsUlQAhLIUzTzuJMSQUR2LZt26OPPvrG629hjPfu3YsxzBkFYRgEQZZlWcaEynPOgFAYY4MQmvM0TYMgeP/7n3j+hZeiJN+5Wzz4yHvf9dAj585e0DIajLEQ0jCMLE51WogWFQguiTGiP1YrtV6vRymFxAAYgFHiJRRcAQAIIUrCPM+Z4NornHPp+wVtI74FZ2sUO9tkNFNKg1JRdmWW0RHayGmcRBhjLZ1j2pZOKppmL7/ykmCcYGgRo1ardYYJwogrCSEGAgrBLcsq2laexIiYCBuGa6eMQoMoBHNGEVQQAak4AkR/iVtNiBYga49djH1tCyYkIIalSyzdomzd56MKAQAMNRUFWLaRCal1psViMU5CfQZxTtebDSFEoeBblkUsE0KguXuMSc0M1X4m2pFMk7P6/f6mxtAaH/dbrVYcx44TDIdDzXKKouiWKx9juo7X7JItRYjiQkhpmiZnEhmIEJLmmS4XpZIGxlxw07Tr9XqtVuv1erZpCSEsy9QMVm1WxjlP86xeH6tUKuvJuiZlQ4jTNBdKahQAQaJ1vgAAHdc2HA63nP50U4cQwgjqQwdhAKWW3cAsSyCBEso4i1OeAKBczw6qnpSSQByGoYQ8FwmE2DMc4lg6zwMTnLEEAQghZjzF2BBCeK4rFCcGQggmUUJFeuDAgZWVJSGZUqrR2Oh2+65r+75fKBQ5F6ZlBF6h1xtAQARnlNLlaFmHN2KjtjfYPTY2tri4fPny5TTJg6AIIe50Onmez22f7fW6g8FAKUVMAwDQ6/UQxJ7vSik5V2maQAh3794eRRGlFGOihwS27ZimOT25zbYd2zartXIUJpxyPcc1sck5BwhBpIQUmnHPOdceixo31M0YhJCyLBeMZymChAu1c+fOxYXlfm9YrVZpnjKauLZOheGB5zNJIQQYYQ1MmLallOAcRmkkpQRQOo5DiIX1dFcp3dgbmzHxusPUIw0AJdjMrdEFPEaSEAIhAgoBoMtmTciAXEiEoJISQpKmKbFQGA7/4T/6Rx/72Mf+4rNPh3FSrdc2NlYEgFIZc3MHPvnJT87NzTmOI5SECmCTGMQqlyu6efYKZpYlTFDbNh3PFkK02y2upGVZ6+vrjLHZqWnf9w3DiMLh3NwcJsZ6szkc9j711CeOHLnz81/4/HpzbfeenQ898q6vf/3rR++7z3PdUqH8cz/3gXK5+Mwzz8ThIBk4BkEbzfXP/+Vn/8Fv/IMPPPn4v/o//3Wr1fzzP/+zfn94911H3vvYo6+88tIjj/y8EOLI4Tu/8Y1vfPNrX9enFme55wWlQkECcP782V6/9eLzz0qROo7z0Y9+eG5u7tK1c1HWc33UG+aWb3EZQ4NhAQDkhNgra6tZko6NjQMAVpbXnn766QePHvvAkx8EHENoRGEsBTIsvLjYMgxjx44dJ0+ePHrfnb7v5RlzbF8KdPPmzSRJJiYmfN+fm5tjjEFoHzhwoFwu37hxQ++onPMLFy7s27fPdd35+cXt23dlWWaarqBCCDE2NrG+vjwxMXP40D1vvnFq9659EML1jdXJyWkMSalcmJycOHHiRJ7SL335L/fv33vl2rnrC9edACZxPgg7jInL184CAFrt9UZjPY7jer2+sbFRKBR83yem5r4BIKXjOK+/8dqFCxcmx6c4l5VK4Y79ByFHCCHP8/yguLy8EsZps9m8sXD9q1/9aqfXjuL+wYMHEFZr8yvVanX++s0oCzHG16/f5EyeOnW60/mdKxeuGYYxMzNTKpS/9lffiKP0/e9/4sSJU6VS6YknngAAbmy0ts1uxxj7jtvpdPSWqwUiut3jnLuBr6eMOv01z+XW+EdX18NhlGXtPXv2QAh19FkQ+HmeA4UQJNVKPUmj9fWm53k0y6MwJMR0XRdDQoiBkZEkGaXcyLO0ladpbNkYQpAkcb83/M53vvP6aycKQdUPitu2bSOEUMFNbCIEuBqppd9W/9wGRICfqtAwhO2NzvXrN4vF8tTU1NzcnGGAPAcIAYCBFKNyUVtyaQKsDluybdP3fcMAV67eWF1dzbLkwoULN27c0OKbJEmCwDty5Mh73/PoV7/61ZMnTxuGVasG+/cfeOSR9xw8uL/bCTmTQGHPtcvlcn84nJmd6na7Z8+cqdcr3V5bqREJL8np8mpzbnr7P/2X//rqlXnO4ME77qqUat/4+o8bjb5B3DDq+4FdrZZ1yS2ltCwEkazVqx//+Cf+23/9kyuXb4RJ+Hf/X/97dbz655/9Yyml67m2bVqWlWeCZkxIBgBCCJVKJYgUpbRcLhsGvnnzZq/Xy/P8+rWbXFxeW1t/9NG9Dz/80PHjx5966pccx/mzP/uTMIykFO12GxPz5vwif+77/X6f5uz8pfNAEc55r9d//PH3T05Pfe9739tI2qurqxhjhEgQBJ/6xM/vmNu10WjqAAzHcRjLz5+7/PWvf+P6zWuPvOeRX/1b/9vBQ7vuuf9QEHg3F6/s3Lljdlfxz/7sz2zLqlarjUYjTePBIEzzTHdPhJA4ji1Ld0+w1+shsLknA2CaZqvVipOQEDI+PrZ9+/Ysy2q1Whwng8EAQeL7fhimGEM9nhRKCiUZo0JJtsbW1ta0Y69SKs8yDIkOV9Azby/wTdMYhn3Xdscn6rZtJSNBZy4lHA6Htu3oqbYmokopNQVbE5U4lxhLLqguCdI0vv/+o/V6TSlw1113nT179vz587Ztj49P3rx+o9vtm6aZJnmW0iBIq9VquVoZVTsS6jYTgBFqjLGhe0zBlUAqpqm2pqRZXq/WTMNtrDcNYiECuRDaZUIpuAXUbo3PIYQvvvjiyspSllHXdWvVMQlUqVxYXG4jhBA20zT3/UKpVGq32yynUvEsyybqY1cvXU7jhOdsZnIaIzOO0k6nE0XJiVPHL1y4lKa5Zbrbt+2AEJqmCX232+2urq5SSg8fPnz//Q9q9BYCJIVmMWIIsdzK/tGuF6O2DG4xhAjBt2PHEG7qQyUnhGCsXY8F51sI+4iwDBAEABGItJWDLno3d5JbD6AlUBgjhBSUujDe2v30oa+UwgBrb0TBRzaQknG3UNLYHUJIt3K1Wk3bpo++Jiw0e0MpZdu27/sYY9d1y+Wy/jqyLFtfX2v3ummatlqtLMss25GaNQ0QRDDPheBUy6QKQZFz7ngFy/EBAJRmTKpKbaxYLCOk02i04G9TI01GaY2GYVDOJEAKIK4UYMy0Lc4hY7kG7qWUxWKpalRrlcpG3oiGPSPzEoVeePW5m1cvoWsO2dpnkQISvq1v3+xL38Es2+pO39bV6w8dIbhlI7vJEbu1nasRF2/kzX/7Y+sAIAgQjIQaGdpyDgCQpokAAEICxnLbtg0TC5qH4RBjyIFMotiwjEKh0O5sLC3P+76NsGq1WqZFGusbC4s3xqfG7zi4b3l5/s8/95mfe/KhM2dPdHsb4+PjDz/8cKfTWV9f/+AHf75cLDz7ox+eOXVaAWFa1q//+t9TEOzbt+/LX/7zYrH4i7/40cFgoD0Z5ubm7Nzs9/udTseyLJ1MihAeDkPbdsbGKhgb/V5/aWnJtlw9Z9M4rPZV2blzpxDs+vxN/cY5F4ZhVStlxgRjzPO8UqnIRVYqFTwvwBgLJCGErus5jtPv9zXBWSklhNSzqXa7naaxvtFd14XIgRBqVlS1WhWK6xZufX3dcSw9AxkMBgihiYmJYT/c2NiAEPb7fc3lobGyLHuk1gei2+06vqelFnPbZ6uVOud8ZnaqWq3u3r37xIkTr792ghDsOJ7O7ZVSUpoFgbdz585GozE1NdXtdrWZRhzHhmFpBFlPyxBC/X6fCa49KBzH06uUskwIPUzTawxibGAMlYRRFCMEi8WiYVgAMN/3Hce1LMuy3ccee+z48eNLC6sW5/Va7a4j93znO99ZWVkpFouPPXas1WpOTk4Oh8PvfOd7TzzxxEc+8rHTp08///zzN27c2LFjx8WLV958/Q2/UAyC4IMf/ODBgwc0T3x5bfXee++rlGtCqNXVtVOnTh06cMjzXMrywWDQ6/W0grXf72VZHsexlMB1/JQyLdBG5ihfTio9OR+hPLewLbVJ6t9cAnhryrK5Lm5fI7evwdsrJ6lkPMgGw16aZwDBKIl7gz7Bpk7MsywrThPTNH3f37tvhwL07JlTORWTk7MI8Js3r1eM8tTUzOXLl5MkQwDSnOsSHEKoG3VCyMTEeK1WGYbd2dlpAMDYRL1ara6vNpIkGg6HQsj/P2P/HSbZdd4HwifefCtXdQ6TMBkzA4AAiEhKoCiCURQpipIoU5aXVlivLPvbT7JWEm1L8lrBVPKntSRbFCVKFBOYQJAIJJGBweQce3o6d1cON5/0/XGqGwOC9rP18Bk0u6urqqvuOed9f+8vGMSUAkCKEQAYDDVHaZpWKtUvfelLnU5nx44d2pDeNG3btl3bTiKdkxTo6fTVq9c45xgTPQtsNNpKaRCejY7WcrmcDqxw88XLly8PBoMsS0arNYMqJcmgH+7be3BtdYMzlmXZzvHbJibGr1+/LjLm+3693thYb2BMy+Vy3vE6QQigMExy+sxJXay7rs+YqNfrXCRaQ+R7ecaYEMwwLC2ckYoEvb6mvTiuJRW/uTCXcnbPPfdUq9V2u33bbbvCMCKEnDl9jhBCyDA972d+5mdv3ry5vr7+G7/xG3/wR7/fajXL5bKm0nAusixBAGjFE9r0yVIKavJyFGa+nQcAIIUQIaZpjY2Nra1upElbyk3CIEulxEpJwyBxHAMAKMWEoi1TaUqpZZmGYWifdD2QBwBRSqM4wAaGUHHOJiYmbt68ee3a/PFjJwAAft6P0whhKQUbGRk7fuIoIcbY2MRg0MMETU6Nr2+0Wt3ejh07KKVpFufzuXa7fePGjenp6V233VYoFAZRnGWJznFVSikgEDIdxyGEQgggxEIoJaRSryPIUAG4ab50K815q1B4s7PF66OXW06l/xmZeBNXfX0d3TLjGVZUr+PIrz/pkIOM3vBQrxdhAIDhsPqNgPLWI/8vkGX1g55080Fu+S39XJrhvHVM33q+wuFAfviCIYBv6qne8MqGAgulFEAIEoIxxggDLgSCoFLK5zzXMo21tbVarTJaq/m+22zWa7XRlZWVlStXms2WlDKIAtO0LWrYjunaTj6fT9NYKtnptSHEPEv06l5aWSYIuq6rIArD2LZNJSFjzDStJEnNJCmVKs1m+zvf+d4999yTZVmzWS+XiwqCou8111eeeua563ML+w8cyuVyN5eW9x88XCin26d3Lq1tfOazfw8JZEEaBGnGYpkoAKSCChtUCUUQTbJk996dOTf/2//XJ5/+zjMHDhzABr527dqOXTtTnjbXV4VQcZJknHHOEcIGxkJIhKDWk46OTf7O7/3nuRuLKeN///efz9k0ipL3vOd9r776cpamAKAkySAcGg/rW5Ylubw/NjbWbrc1B1N/mlrARDDJGNP1OsYYY4Ip4VJgjDA2KSCScQINJpm2vwQAaOtnPR/S003TNC3XS9NOGIYYY8s2K5UKxhghsGW3hxAMo6DeCG3TqFWrhCAFJdILACoJpJ/3DamEYFk29JKTGEZZBg2bUMPPUcYEZzFjLMsyQiRRQ98bpRTCQIek60LTMCzf9wkh7U5P72NSQcGHf6aeJGkihp54mZDqcAhsIAkRtQhEKkmSfr8vgdCFhGEQhJAACgHgOG6ukEcEK9W1LMt13VaLDH0bHafX64VhSAgZGRlB2s9Eyny+iDEVQmlOhwb79Bu4xdPRi1cDu8PPTmSDXk+HMGs6ORdcKSWlAACEYWAYplTcso2N+lqn08l5PmMZAAphyBizLEN/WOVy+fr16/1+QE1bCJUkCUfCMAx9JUgpCUX6zUnTVKe4JEmiUWb9WWj6DBcCQqgAVwpLKaRkEgJEUbvbGJ8YcXOukCxliWWZbsEVisdRkC95nrBZ5qdJsr5W371798z26U6nMzY2dnNuvtvtVqu1TqcXDCLXc2WaWY6lFE/SKGOR7dq10WoQ9fSoYG5uLs0y1/OoaaytrfV6vamp8UKh1BHdOIgBQJSa+bwjBOMiO3j7foyx5GpjYyMIAoKtJMl4NtAf+vLysib+J9lQ8QYUDMJAN7TaUMXzvHq9nSRRoZDzPH9iaqrTarVaLQhhu90EisRxkveKju2lcarLb03DAZv5qxhDbdasx5hSCj2c0FFOFnKUhISaCMBWq/XQg2/76F989Hd+53dffvGlSqXS7/fTNLMsE0LIeCqBMgxDt68aDsaYOI7D1TB1gHPuOEYxVzAMo9Pp1Ov1Tf3ssFHTny+EUAGwRZsaNqUQSymF4AAAIZSUmZDZ5jYPMcZCMNdw0owjRAqF4uOPP3Hz5iLGJImzLOO1sdEs41Kqd/zID7/v/Y+miUBYV9SKS+A4VrVa1ctEgAhCZdsmY9rixuyHA8/z7r77bsZ4v98fq40sLCzU1zfKpYrgcmp6stfrLa8s5XI5wzJ6vd7ISM1yzB27tt//0AOHDx5554+868rlyyv1tXvvfesjP/KOL33uMaDUaLVi2Eav1/6Hv/u7j338n/2bf/uv/+r/+SvOM8ugQogwHNRqNSbFf/y937Wp8aEf//EnnnicEGLaFiL0zsOH7rrjMAIgDvuSp43m6re//fjY+EiadB999NG5pWtzc1frjWVCVYG7QdB1HHN1ox6FSZwkEElq4DSLMkYIBYzHi4s3l5YWatUJ3/OKxAJApilLsnjfvj2f+cyn9+3fhTHiIlMSFYvFu+665wuPfebq1at79+596aWXOOflcjHLBCVmLpdTSlUqlZ07d2qu8Sc+8Yl777335MmTzUbb94qUKqmE/jA9L4cRXV9t7LhtTxC2Z6b5+UsX/+ov/0YpgZExGEQIGtRAZ86cuXLlkmVghOTCwtyuXXsvXbxKia2v0na7RS2qtwJtfdDv9wtlY2Ji4ubiQsYSi5I77z6ytrxWGSlNTUz6OXtkvCQjJrhK07TdWVxcWfF9/zvPPnPy1CmEYaVSabbWbdt2HFtKUK/XLcsSXAWDwdLiiut6R47cGUfpB378g5KJn/zJnxodGX/mqe8wJt71zh997vnvHT16tFgsX7lyZXR0tFqtri0vR1HU7/ejKNqKM9VISj5fHBkf2djYgJBvli5QGyvpNipJMtM0f/8//+Hs7Owv/++/iDGm1AyDWEimWMYYz+fzEBAlpWAyjlPLcqACCGClVBRFcZQKASkxOZPtdhsTxQXmnFFKi4VKMMhu3Lh58EDh/e9/v2lb+nmVUlzcWsIN//2+0myTWLCpJIMgDJPbb799bGzs5VdfGR0dtW1bKUAp4BwAriCEhgHb7cH6+nq5UvRzbrfb3VjfmJ6erFarUooXXnxpdXW53++/+93vDoL+iy8+rzU327Zt+/jHP37+/Pl2u3/w4BHT8Ldt286YuOuuuziTUgDP85UCmVCQwNroyI0b8+tr9dW15cnJyWIxf+bsiSTJwjDSu8TM1G1Hjty1bfv+qan9rWa/vtEuV5xCpSoRjgJhWq7ruVICQgwAQBQFMUuSJGy06m996z2f+dt/qNfXK5WRycmJ11575cKFC2Njo6Zp+L6nZ6VhEG/btqNcqfYHvUajMQg6nue12+0BCaenpxcXb0ZRtLS0xEUGAFhcXDx48KBhGOfOX7zn7rviOAUIYYyTwcDz/PHxiUFQB1BSA9dX6v/i53+x2+n3ekEURV/7yjfCOGi321mW2rbd7zdrtdrs7OzctWtXrlypjY7MXb8RhYM0EVev3Wi1Ou9458P/5ld/Oc1At9+1c5QYHBtifvHyytL1/fv3Ly4u1mq1JI26nf5tt+2cm5trtJo6q9myLMdxtIl/q9XKMq7Nryjj45OlkZGRmws31tfX9KBaA206y1cpRYgRRZlhOJZlmbbFGAvDAUKoWLT0Im00WgAABBDjSictsyzTJD/DMgCUXt4rFApRFGitXpyE+jAihEopPS+nAZkoijzP1TUGhFvsV24YhuNYcRwrJX3fuz53dffevVfnrlVHa7/yI//6M3/zt43GRpTEAMIs5ZquJBVEGGvz3yxLlEBZlmm0jTEOAFCCQwiFkIRSzjljAgAt5kOdTk+I+SzLMKZcMA3C6vNLg06MMSmEpr3Pz8/VyqW33HvPzZuLZ86ccRzpOk6axpyzjCWASUQ0Fi8Mg+R8l0BkEryx3jQNJwoZy1S7FRhGhrFpmnar1QlRmMaZYVimSdvdTi6XGx0ZZ2mYpumOHTsOHTpUKddMw0iTDCEshNLokFYdoa34H62oe12xCpWC2lt5Swk3BIg15wFivV0opbTWTbMBwBbyqQCECgKpOy8lsQJiE4h9nWYENvVVUkrBOJdDVugmXq/A6zbyAEhFMRFCZDpAG0KxaVTAudQ0iKGoMWNCCIN6+vHHxsb27NmjXZ7iOF5fX19cWA6CoD/o9vt907ZtxyKEeL4fx4mUgEtQrY4UC6WU8X6/H4UJgpIYZppJLhRCuFgo+L5PCABQSYCyLINKQYg15m5QCxAhEsiFEEBR09ATcaWArlSFlLZtmtIslUp6shXBNBkkN2/MhahHLNOjxZxpu67rOPY73v8eArRv0eZu+zrXcgiEvaFJVuoNvf6tm/jWCFF78N+SXXbrpo+2nuJ/hggIbQ5wCzOac55lMl+wFAeOY/UH/Y2NDcWZlNIwaa5cFEIIKeMsHh0dzec9P2c/851v9TqNSrmosRiE0YMP33dzcfXJpx5P4oVcrkAN4PsOIfC7332aIPTSy8+Pjo388i/+wmNf+dI3v/lNztN77r1j27Zt//4//s61a1eOHLnz7nvuOnHixL59+55++ulypbi6Guu8Tq0eIoTqCVK9XrdcBCE+c/ZMHMcsExQZ2ofIcRwlITUwxhhClXM90zR1w1kolMIgvXbt+rZts47jrG+szs5O2o5VLpctyxQ803wNz/Nsx2y1WppJqpul4UgEQQlUIZef3TZ9/fp13QQ2Go3Jycldu3cqpTqdThAMut3++Pjo+PhkvV7v9foUk3w+zzKh/wohBJDKNE3GkJDMskwuMt116JXQbDY1pch13aWlhWvXriRJUqtVdQOsYU2lRBD019bWJiYmtm3bliRJuVwOgoBSihBpNpt62+I8Uwrov2tLNoIQkBDqt0Vnv0CosGavAKlDJqUEaZpwLmzb9jxPI/icSUKFUrBcrrabvfvvv38wGLz1nnvPnz//7W9/+9FHH/2JD3340pWLTz311OrqKgDg6NFjzWb7Jz78kd237Xnim19fXFzUKu+DBw8qpTzPe+tb3/ryyy9enbsupRwfHwUAvPe9733llVe/8fVvvvLqS7ft3uk4juNY2kBjeXmJMVav1+fm5qanZ0vFShaGhUIh57tCALXJ5RdSIQjhpnfYlmAfKLAFYg0ph+oH6OFvXSxw8ztKAYD04yMtfNDmJ71eL5fLcSY9w+sPukIIKYW2Q2E8ufOuw1Imly9frtfXi3lfB9whCIVQejwrhNBa0Wq1LCUPggBjvGvXrlanmaZxLuczwRnLrl69cu3add8pOI7HmYIQM5np2aNlWdrjcnx8Ynp6Ws8YLl++TAj51//6V3q93urSqq4Lu/1+LucxJqIoSpLUNGxMSJZxIYRlekHQHx8fv/3QgYWFhbm5OQCUGQwmJyfThNm2jSDp96NSsVKcrM1dn5+a3LZzx54nnnjCcSztXMFY2mzUW83OnXfcvW/v7cePn0SItFodpQREUghBEeY8MzDJeZ7n5ZaWlg3TMk0TACkk6w+6nEnP02MPYBi0WCkNBgO9R8ZxhDGuVEorKyuXLl2ilI6Ojq6urpbLZcMw5ufnhVDFYjGKkomJCc3gGPRDDUwjhIAkpmMylhFCsiRSSgmhKKVKwU1xFsYYm4Y3GAw455QaTIpOu5cmrFAoaHtZjLFpmhASCLX7udBmO0IIqTgAACFDL2Gl1P79+8+dO6cXnTarSVMWhiEmkFKslLx+4/rGetMwnF/6pV+6ePnS2bNnRkZG0iRyHHtldens2bPlcpVgk1KzWKrd89YHFCBLK6tCsMXFm91+9+zZs+Pjo7VaBWO8UV/vhwHnstvtuq6LMY7jTC/zer0upSqVSpZlYYw03ZAMbf2VBBDCTWaupvzfkst3K1FFfR/N/42CG3iLM8Ybjqo3r6xb5jdvRJkBAD/ALmPrnnDT8uL7vr8FFav/ieHGJkF7eJ/ve2oJb13j3z9uGv4hm+/Mm0jMP+D2ukPI698ZkrZvfZeGZ7dUGAJKAcs4UPK223aOj4922+1isaiUKJerOd8dn5xGlGSCX7hwwfcKBNAkjT1ES6VSu91uNBrbtu/cs2fP9fkbLM7cnKd3dgBVu9vJ5QqWZa2urnieoyIRRdH9Dz7our42Pe90OpcuXdq3bx81jW6/NzEx0VhpPvHVJ8M0nZjalqbJY197TCpcGRnfv/+gnXOeeuqpC5fPVEcKGe902xsEQz9fiOM4yzIgJFAKSuU7/s25mxfPXez0etpcPogDwzEOHLodY/jVx75o264cREJJw7QgAEAhRIBJDaVUoVT6rd/8pMLG//37f+B4+dv2HPjq5/++Xm/a9nyvN6CYIKSrWLpFXcRYYoyTOG23261WCxGqV6VSSklIDKxNcnSBu8UU1pUuhFAJBQDgnLOMIYr0tE9jalJKTVPVwQPFYrlYLDLJEEKe7UxPT3e73U6nZRiGlEJIpiREQColCCHFYj7o9TGBhBABBDUNyHmSZXAzzxpCqCAwbVeCej/oOwjZlp+JYV5fqVQihOhpH8ZQAYHgEKvVh6BWfWqPSC1g4pwr+fqa1Se1tqRQQCilsixjYQgQ1ES5IAjiOM54qpMVNOI2tFFOooyzKIq07Yae35smLZeL2hBfV9KWZflevtPpxGGozf2TJEvTUNf9AIAtdFKbJiGEoAIKKM0c0Z1GEqelfBHgITnAMAybOmE0kAroxPled1CtVhnLwjDAGCklt2/f3mzVB2GAEJBSZlm6Y8eOsdGJa9euM8akAIIrQggXAnEOkNK5QyzjOt5QvyptYAohZExsja+UUhAIBJFhEKUU4xlXwMBkbGI0X8qVygXDokEUMBZzxQESgjOAZBgEtu3kCy7GhdHxkXK5jBAiFGCi9hzY7Xv5Xq+XXriENT7uWQCBhIU8SoVi07O31Vt1SPDG+jql1MvnlFKQwI1GI8syREin1Y3DFCrkuj7nUhtGra+vpll89eoV3/d91zdNGsexa1EmGGMcQhUOlBTCz3tpmliOrWl3AADGWKfdNg1bhzhBBTLGhOSNRmswGJTKhWq1BgAIw6jb7yGACTYHg55hWEpCjXkhpKMgJIQKYz2/wa7rZFkG4TCoXSfrCiGFEEwK7Qbjuv6TTz554MDB/+//5//8xbmblmVNTU3Nz8/rE1kOU5gSk1rahq7Xi4QQhXLB992RkZF2u93rDSilrmt3u/12uw0ElFJSi0gBdMe4xTXBGHPFN2lWxDRshFCSpIylWcYUEJQipRQAEkKMCdSudwAME6Vc1z5+/MT8/M1iqdRe6zqOs3vf7nq9eePG8oULF1577cTM9Kzn24ZBDGpyLv/8z//imWe+a5o2YyxTCaYIIRRFUZIlUkrbc48cOWKa5urqWr1ev3LxkmZz6+3o5s2b+oz4jd/49R9+xw8XCrlms2k61vbZ2Q9+6MevXZ7LFQtvuftuJYAA6p773vqVf/qKa5njo2Nr9WXTICdOHnNc688+9V+//IUv+m7u6pXr73znOxqNxne/+10t6PzlX/yl2anZJAqffvppQojjON1eu9frjFZqV69e9nP2D//wD0dRcP7c2W99+/FXXn3RLXhRNLBs9MBDb6k3liTkSco3NlaFAPlChVKcREmnO1AitixTClaplV4++sK+3Yf37zviOz4ESHKxd+/0U08+t2//roff9oDtYISQZdrrq73jx49blrWxsXHPPffMzMx0Oh0tp9CTj4ceeuiTn/zkH/3RHz3zzDN33323UooQsrZeb7e6lUoNAOQMGWSqWCzeffc9EMlXXznmesaPvfe9J8+cPnf2/J133XHi1OkXnjumZx7VSqlQ8KmBGutrhUJpfGzi2e+9FIVJsVhutjv9QS+Xy+lSTW+VUsqlpaUoivqD0HRsxlKM4eE7D4/VRpSUj33ty1E8uOf2eyilSRwrIA8fPhREEUSIC/aj73z0/IXTD4297Tf+r1+fnpj4j7/z79/yljvX1ta+9dS3TNN629veXi6X/+qv/nuz0X7723/43OmzJ0+e3LM7O3jwoG27SZI8cP9DB/bfbtt2vxdOTU11W+3nn3/u61//OiEEY5wl6dZmrts3DUVxLnVsqZ4UGiZByGu32/1+8Cu/8qsf+tCHfvu3f7vZaM/MTmVZpr1uEsYHg5BSUwiBgEIQ+16OZakGbqRUve4AAFQslsMgjuNE59AgJCnVzid+FHaVFKZpF4tlTHVukESICAmEkJi8PpFXb6jXFNRQhXxDCec4FoRwcnLykUcesSzL9y2MQZYBCAHGkDGpFNQm1IZhcM49z7lypa2UwBgdP/FaFAXvfe97r1+/+txz3zt//rz2RgiCoFot+75/6NAhJckD9z+4fdtuy3SkBJSYOY9mKcAYAAwUV4xBSsHs7OxgMHj5yy+PVEvtdvPK3OVmq3HHHYd+7IPv/x//439IAd7ylgelpLlcsdEIm+3OzDbAJesHvcnRyd/67V8Pws5/+8v/KoTOVJBCCNOi8/Nzv/nbv3nuwtlc3lOKf+MbXwNQVqtVhBDnWb/f51y6rvfRj35UKfTTP/Oz7Xbz//cXf5YvuCsry4xlaZbVm43x8fHz589rGb7ruo7jPvvss5rNdu7cubW1Nf3ph3FsENLpdNwiF1KYFt21a9vc3JVWcyAlPHP6HACA8ZSlGVAg6A8wAnPXr37pi59Pw6zV7Zw9d9wwrIXFG4QYhum0O82FleuXrl8xTdNy6JVL1xCSnXA9y5JCzk+SuNvtcM4pJmPjI2NjY3rnVBDooVEUBVJKw7AJIYN+TDC3bEMI0Wi0ZmenS6WS49iEkH6/q5PkhZAIAu394rouIlDD0DpqXl/5FJNWq6WUMgyDZxxCjepKYtBisSiB0LZOrusSgjDGUgqdoN7t9DHGknGmgGlalGIAgG1bU1NTnPO1tbU4joUQSgF9giAEPc/df2DP3n27V9cWL125zDO2ffv2NI3nbt4widHt9jAmiJItCm2SJEkaE4KEwEnKkiTjXCCklISUkOEQFGCWcoD0aHaI2Aoh0jTT0jSeCq1ltG07CkINx2OMgVJRFEGokAJ333337j37Xnzx5W63KyWvkHKaycFgEKYDyzJqxVoYDmzbvG3XjlKp1G40M5Ys3FxF0LRMP47j+kanUqmcP3eJc44RkVLGWYgQCqOgWCzbpgcUqlarWn2rEzjjKIHD7PRhLp+CwyJzC3GGEGLtdCGhVFKvewU1T3kLqIQQQgwwgkNPDLjppPF999nqwqAckmcRJEPoeRN3HrrhKaUVHpxnW42WUFpOt6lElZo2PXw6CogeNgRRpCkOun/X3gD6MXzf14Ef5XL5wIEDhmHcuHHj5s2brVYry1KDuoylml0eJmEUxozxIAoRQnHK9u7d/6Gf+EitOhYGca/XW11dX11dbjabY6PG9u3bi8VSrVYlhCwvzV++fBFjTWNlRFt9As2hIb1+0zAszxN63Gjarmk51DJN03Jsrx8MMMb9bicIgsFgUJ4eNYWBFJgcG8+Viy7PUYgefuD+h+6/azLe8Tq7GdzCDtvqP29t4F/vWn+QJyZGQHtgb+FoaAiEwVvVK28A2t70pBACyYGUAKLhr1MK4pitr68b5qxSKgoGcRKOj48amKytr5bL5VqhmCQpJkRCefXa5XK5IGR65MgdJ4+/srq6+p73vOeee+/9kz/7i42NtdXVZYTASy8/PzU1VSyUj7720omTRyHEvuM+88xT/+7Xfl0KFoYDXdk//s2vKqWStD81NbWxsfbZz3726tWrIyMjCoh6va47E3ALJxFCaFErGkQLCwtBEA36YRxJ11UZz8Iw9n1imY6U0rKN9fV1hEA+nzdsw7KsVquzcHOp3w8YY41Go9XeyBecpaUl27EK+eLY2Njc3E0IQZrFUT2qVEsIIV1nE0KKxaImROcKPoTQpIZOT6aUFgoFLfa8dOFyruDrxkk7r7fb3UqlUqlUgn6YJGGv14/j2PM8hJBJaZZAxpjneWNjYzdvznu+bXu2lLJWq928eTMMw2KxuLKypNe253l33Xl3v9/XRSpjbCtyjRBiWdapU6fuueceTSHX6S66nNJMao3F8IwhghFCQA5zhIRQECnTsHWrACFEiGrQDGMEIdRYm95ekzhzXRdi8oUvfCFN03/2sY/ff//9ly5d2tjY0OF1x44d+w//4T+YtuV5zsc+9rGrV68fPXr0zOmzvW5///79P/3TPz01NfV7v/efKaU/9La379675/r161/+8pdbrYab8/fv3/fFL37x6NFj9731oZGRkZmZmRs3bpw5c2bnzp1Sao/IIMuybre7sbE+NjZWLBaFEMS0OBNBkLiuBTFQCggxxKeUAlK+yUzmFrxMqk0PDfiGf7dWDYQAoKFBq+b+6umOZZmmRTWK4fu+Uso0LMZ4oZgbDAbNZl2Tp3bv3vXCi88tLMwrJer1+vrqspZ69Qm1LCtLUgCglEwI0Wg0IIS2bRNCFGCPP/HNfMHlPJNAFov5JIm63e7MzIxJnH4/ME0DAKQEyLIEAKC1Hhr30fGSAADtpHHx4sX19fVOp2M7pm3bQRTpeUyaZvp81dlcGFPOJSFGo9G6dnVubGxsdnb22LFjYTzY2NhoNZraSUYy2e8PWCYpNc+ePa+LJ0rp/Px8q1XXNMAsYo888shv/+a//9CHf/JrX/5yebRKKYYIZllCCNIqdSFEtVKJBmHM+rqvME26abCV6AZVT489zxGMRXGAELKJXa/X19fXZ2e3f+ADH/izP/szCNHo6OhgMNi1a9dgEK6v18MwDAbR3r17v/e97/35n/95uVaoVCpRFOY8P2PJ1rgFY6wNT/XKAgCYhp3L5ZKYsUwoQzHGioVyLpfT0oRDhw71ej2thzUtqg9DiABQgBAiBJNSxnEMgPI8T6M/S0tLQRAyxizL1AIuxhhCAECUphEAIIjCOM6UwrfffnulVl1ZWXYcx/fsZrPp+14wiEZGRijFZ86c2rP34KXLl6dmt/m+f+rUKZakDz74YKVU1GMGpVS92eoHod52NE6EMQbANU3TdV2tcNQMa70u9PgdIR0k+/oCgQqoW+RL/y9vtz7C1nferJ3cXFxb3Ba4tdZuWXTqlvu8/u+t91Sbs3T9Jyh1SyrgG39LDR1CXn8BSn7/aaqfEW09y9bj/M/TeJVSEP2v3iL1fTqj118cQENPUqANGDBWcRwHA+1g7gghHMsChUIYhrZtm6bZ6QdKgT27923btu2v//qv56+t93qDYjEPANrYaNTr6wBBxtMoTZMk0bN6Qojm7yOE4iiJ4rBcLk9MTFyfu9poNH7okUcwpqdPn43jGAK8vr6+sbFx8NCB0dHRpaUll9oYUiAzwzAOHz781He+0+l0FhbnFQRLS0ura8tzN6/efeeh+2bf8t1nvs3SlDG+SSrEWZZunZWe5xFC8sVilmWu667WV1944QXDIAnLJNAOjPlokMRxShDmaRZFUbVanZ3Zfvrc+We+872vfuVr7/vAh06cOn327FnTNC9fvnrkyKHzZ88N+qFpmgYh2sWYEMJYqgGL5eXlwWBg2k6pVNJmMmgzV0Tjs/ooFEIogDRZUimF5VAYaNt2whKEkFZIAAB0GwAASJLENG1trKHdaSzLajQaQRBoe2KDYL26lVCGYeiSfTAYdLvdjGGdocqVoAixLBFCIGrovS4MgjCOJSZAIe0TLYTwff8d73iHlPLZZ5/V6cp6J9SnMOdcR35lWWIYhrYvAACYpgkBSBKllNLhw/o6RAgBOFSMAgAMaiqlgiDwfd8wCCFIlzRJEhHTMAxDCK794zQgSwgWQkiJ9BScc649NFzXjeN4fn4eQig5RwhpUwu9NrUtCedcT771oQa0IkEqLWXV16f+0+I4wRh1u13TNG1i6fd5MBgQQvyc6/mOn3MxgVnKi/mCRlsQAtqUnFLaarXmbyxoi49+L0AIcS6VUibFtmPo+8fR0CjM8zzd5apN7xFNk9EUYARFmqYQAIWAaVJIQJpGCCs/53b7nbgR9oIeQsC0TdezvXyOQiAlD8NBsVjgnBuYcp4xxhSUrVYDALSm1gb90Mv7s5Xq/Pz8xuparVZzc16n13Y8u9lpCsUHg4EewBOETdMMw1BBgAiWUsZxEoaJQa1yuZqibGVlZTDoKSUQVhgDKeWgN2CMeW4OKgIANAlFCKU81WaapmkopTAl2pKbEhKFiRRDW3yMaT5fZCwdBH1CDIINLtN9+/ZtbNQ3Nhq9Tt+xMQCAc64k1LTBKAoppZpZr5RiLMuybItnRCnVgQ1SSn3ppogRhJVSnudXSpU//dM//d9+/hO/9mu/9j/+6q977Z6BCSEkTRN9eVOKGUsppVEUUdNI07her7/lLW+ZmJio1WrNZvOll15ZWVwSQmGMLWoDALKUAwC0M/gWwVNKqelQelUKrnTXYFlWFgsFFIRQCiklpxRrY9AgCISUSsLaSM1xrGK5VCqVlITX+Y1rc/OGbWzbtm11tbm6unLs+PFWu3PXnYdtuwgAME20Y8eOTqeTJEnOdUzf6nRaUkoFFYSwUCjs3H1bGIYvvvhiu9U2TBMDqEu10dHRUqm0uLzSarV4lu3ctVOXf4fvvCPLsk/9+Z/kvaKCUgjhO26SZJlkd77lrkq5PDY6KnkWRaFf8AmCZ8+e/sw/fLpQKFy5dP3+++//sR/7sSe+/a1Ddxz5xje+kS/mirm8lLxSLAkhBOOGYZw7c/YP/+j377///pOnjheLxSDou449MlJtt+uDoNMNe+985yPlik8MUa/X3ZydpjHCoNls2Y6DMZWKQSgdlzqOkaXSz9nXr918/ImvA4V2795f8HOe783NLyRpsH3HTBB2MXUsy261mrlccefO7WuNG67rZlm2e/dunUClF/t73v2+NIs1XGhZ1tra2osvvPzOd75zcnJydXlN60q1ToJSKjK+c8dt33zi609+69s7d29fXl24dvkaQujihUtAYSZB0gt6vZ7n+bvKo632BiLm/I3FQT/hTH7iE78wN3/zz//8z8fGxhhjlJr6pOh0Ono76vV6QPOIIb946cL99xX7g+71q9copY8//lVDGIcOHTJtu+T6nu8nWfb+978fUXzo8MF6Y/UDH3jfnu176q0113Udx1laWtL6trW1tVKpEgSBxuYqIzXXddvttswJy3K0610ul4vj2POd23bsLN5V2Llzxze/+U2IFEszwzCgvo6VMgxjEIXJWrI1YtFHCWMMYSAF0FZyQRB89KMfvXTpUj6fj+PYcaw4DrmAEg7D5JVSnuOGYWyZFGOCMR4dHZ2bm2OMGYbDMlEuV0zTTNMkigOlZC7vxnG8vLxsmf673vWuH/3R9+TzeSZ4oZBTSgkhAYLaUu/N1eMm8RHcOq3XHZZBQRRFq6urlVrVcZwsU5zruk4z4RAAoNvtCsmGtNksbrRbJ8+cuj4/d+DAPqn41bmr1KDf/Pa3ms2GYRj9/uDHf/zHd+zYcWPhxs6dO32rhiDI+SWEkOCSYKIffPPZkYY+DANevbrWbLRfePbZkdEqF4mJ7YmJqWpl5B2PvOv5F14UHEJIOJe93iAMQ89zorhfrRX/5b/8xbvvvjeMOv/0+c9evnyRUlobHZEibbXXlVIvv/Ii59zzfUIMoXgxn5uamrh+/Zo+g8IwvPee+3/2Zz/+uX/8gnag2r179+Ur55eWlgqlomXa9XodKjA2NraxscE5H58YhRB2ux0AQBgO5ubmwmgwMzUtpdlutz3Pm5yeBrihQGY7eQjo5z//eUrcfL5k285gMJACGIallGAMZCxhLD179jRFFCFULBYVxFhIQnFv0OoPWkdfeyEI2/li3vfd9caq7RjUgLZtpUF66cKFXq8Xx3GlUiWE3Ji/Xi5V77///uXVlVarpZFxXVBNT0+XS6mm7wghOp0OIaiQ96UUcRxnWRIEkZSSUsP3rFwu1+l0wiiiBk7TNEkSKblmTAdBkCWpPmgGg4ESihJTu5xRYWzfvr3ZbvR6XS6yA4f2YYzjOAIASamUEoynnAGKSDRMIICjoyOVSsX3/Rvz1xUQpVJpc3Jva/EWRMr3/fX1VQBAmsZSyouXL8zNzfm+H8cJpZQSM45TCKHneUKIVqslJCMERWkMGBqOr4hJsfYShpgQvQB01bHlRGEYBgSYYCPIAl3CaXmBhrk0jQAopWG9crn8/PPPfvXrT2zU1/QWmqZpkkSDoAc2jcUcxxoEveXlZdOkAMr5+fl2uy8lYJlgmUqTME24lAKToSmCaVn6sG40GgT1bz94eGZqTFODKTGBUqZpSgmklBob1ZKmzTR0gBDimSCEIIQhhFxxJTeDuNXQ4AK8LkMkEEDNvtoifOhOX1eGGsJGCmj7Zb1rYDQMt+ecC6EUFkgBpl1rIJBS6vTmLeR66EOi+dRqaJAKIUQQciEQJPqjcZxhF6mLRoxxmqZxHGMw/Jh0pf38888vLy9rH91yuSSEkAJLaXW77SRJBBCcc0SwJlUYhoExNaipS8qJqenZbTvTLEpTZhBKqaH/zGazEUaJ9m7mnAZBXwKA0TDXBCIEIdT788jIyOjoKEDEcf0sy8I41oViGAyHT77v79y500qMLI6Uk4VhEHTjTqPZAxudzsZ6vUN0/LV+Q6CAmxix3oDfAITp90oCCRFUQ5bm8F4QaUDtDZxlTU8WGmVGAEqg1BAmwxBICbBGBCRACCgEpARKO3OiIY1aCoAVKPouS/zVmzfGxsbSqB8OBiJNLErjftBiwjQsQghAQI8Kucjmri8wzvbsO/Tkk99utPvfe/6FCxcudLvdSqU2PVFJGVFcnT97Nu/nqsViloYEZ4NO97Ev/V3OLzUajampqW6/Sy21sr4gYNDr96empjDJMOHUkKNjxfmbV++4444km+j1erlCTh+W+qInCEmGJYOlQsWd8HvtTpoyznmpVIrjMAxDCHGh4HUH/Va3yZu8UChgZAVBYBhk+/bZ1bVlhChnsFFvQAg31nqu6xfyJQBQp9NVSjbqLckzZNvUNDSyVih5nGczM1MbGxsAStsbndk2fenSJd2AaVJDt9u1bdNxbMc2WZKGva5ifHxsgiKIFHBcK1/wO50WhFAhmIgAmRBSHCSdXMlJkiTrJVJKyzJMghVnIkvzng+k0r1lEDW8nPP2H7ovjuOnn36GC0INkst7K6tLjHNqkpOnT0CITdtSCkqgEMJ6fiiEohRp+TZQwjKNOEo5zySTGBOMKFIAQSQABAAIwTnPfN+FEGYsMahVKBR6vR6EmBBDuxa4rgshbLW7K6vrI6Pjjz/++FOPP27n86OjY81m68aNGyMjI5bhEGzs3rm3udF2LJdSs9MNbz80cuDgoSBMP//FL9y2Z8+Pf+jH/vZv/3Zpaeltb3vb+nrjC5/7AgColD+/f9/BB+67Jx5kWZSxRHIuV1eagkshMFDmgf13OpadZKmUSmZCGco0LQAAZwpjiG7xnAEQQAQ3JVy3QkJASoDhEEyWt2gObnUVUApot3q97tTr8oJN7AgCDIdkKExwFjOEgGVZXMlerwOZyAZJv9Ofnp7+yIc+8tWvfrXVrFtWsdNqEgQwhIylo2M1AGS9vpFkqUl8QhDGtN/vZVkiFa9USrPT269duwYkyHn5JM4IQUpxKUGUdk1qamuhXr+VpEEUBWkaIYUQQrZhCCGfe+55LcfrBQHnXAqKIFESIgBVBgAlXGQASC0lUYBLqYKwv7wqJ+CUaeYGg24cBQiDjEX9AXCdPDYIV9K2zSAI1tYXIOIZi4MeatfblJqGSfPl3Je+/IWrV69+93tP2TkXUZJyjjHB2AcQ7Ng5E8ehYZPx6Wq9s6Qix/O8fD4fx+HMzFQcBstLK3rKwjMphHBz/m233a79pCjFXOHZbdP/7td/jRDjV3/13/zlf/vr5597+Ud+9J2/8Au/EMfx1776jc9//vNrG6sZT1fWVkfHx2rV4rHlY47jjE2MX7x4ESFEDTNNU0IJQVgoGIahZRhZlhGEDYrbvS4gCigxNlYpFHKE4NHxHISwVCpTuuPpp77T7TKgkBT6vFRbey/GhlScUgMhZJgozcJ6YxkTxQVnDCBsCAmVQoBxBXAaSWqZlNJCIQcA+OM/+RSEanpq4vDhw48//niSZIV8uVqtJknU7zQR5PNz500q7zq8i0hDspyfK9tuDgIaRhExDYMAguCp08fKxcLuPYc5S1zHsm07n8tBIAnG2CQAQCEUMUCaAgSBAABjwAVAWEEIuRCEYAkAhFDrHDDcQn6V/ge+fkANl8/3rSawZc2xyZXeCh4AUAGlhJQQQoLR6ytrsxnZ/KECGAspkdwElG95mk0IewgMby3yTd7xsKu5dUCrm5+t3UCvYQ2OQzg8Q/HmgyMEgNxa2kBD0Fu6B03U1j9SQCkJMYZcyOFgf3M2LCQnhCgBe70eVMjzvOELw8Opf7fbbTWajuPp4kPCSAgBMZISOKGTLxYNw2hHgW3btkEkQjxSXEAIDMn5W9/y0Lt+5J0XL501DAxA+oUv/gPCzlvuuLNQLr344gvaWwAICZQACkGAsyjDSKWhBEyurTRa9b5r5771+JO7du32LH9leZ1Sk7HU9T0IcC5XuHr1egS75dGyGZj9doMINlmuvvNtP/zD7/iRT33qU089/R0IpGvZFAKbOrXieGNjg1BsQUtKLiXgUlIIHc/HlERRxJNkbn7+Qx/5sPZECzu9qytLtbFxBBEXqUiZzDIDAAxRxhVGdpLA+YX1n/nYP4+T7M633DMxNfn1bz4+uW13r9fJl6u//1/+5Pixo09/+1svvfQCk0ymnBCsDVizLJMSYWq4fk6DSlvCOp3llXGuFDQNO01TCBDLMsGEElpoP7w4oiiglHLGtX5NJ3wSAnRxnGWJ9tLJ+16WpYxllFLDsU3HMU1zdW0544xlmYEJAhBBGPZDz8ttrNWRlEpKBCBSkLPMVoAAYCDFMLQdJ+51IwYopXEc28ggEkiAc27u7KmzCAHNC46DMGGRtqyFUmEAdUax47oA4ixN9SINBolWM2h/5CAY6KIZAC3EM4AStXLFLdqNRmMw6BUKOUrNNI0ty03TGABgYKK4UAhmCQcAIUC4VEIBIYBSwvd9hFC329WpbkBIgyCTUi3WSZKk3epOTc1s1Nd6vZ4mUOvXo5QCClmmqb8Oo4GQEiJFCNTRLhBCBJRgzKRYKh4FA9M0FQSCZY5llkqlfD4fhiHPWDDoCx5lIrRdy/Jt07CDIIqieHmlJTJBsakEVBxyIQyKAYBScYx827K5yAgFGEPGE0K9qBMohF035zgeISQI+pKzLEuAEoxhx/EVEJlgAKFqrWz7NsJiZW3Jde0o7vd6HS5YsVjM53LxIHZ9u1gr8YwBgPr9frvbdByPZyzLGOeSMQYUIoQABJMsKVfLTs62LAshoiBgjDeW257nZX2AEivJMoQA8hDQpBspAMCJSvL5vO/nMKHpIOJMKAmkYgiBNh+UStQy7JmZ7SZptOptziSmSMt9Wt0WlEhkEAIFlEpj5rs5x3K7uNvv9zHAUiqeSCUZRrBaLkEi+1HPNM32oJOvFE3XuXzhcqvTLherFACDUNM0gZBSMYwx58yyTL30ECFSKQChUEqmmW4gCcF6qIAhVEJiQhlLFxZv2Lb93z/93w4dOtiNmmvra7rCBCQLBoM4jo8cOUJNApFaX19dW1ut1sozM1OlmllvL5iGHcTtkdFSu9W7++63UEQvXrgMIeQsRQTbjqmAUBBNb5vVZAsKKQAKSMi5QCpDUimlLMtyHZKmAiiFoIGwoQDMmOgEPaUEl8JxLMO2HN+TSgRRwIRQNLM94+KlK0srTaDI6urFeqP7r3/l31p2jlDc7aa9Tvv6wo0MptAQAQ9QkECsKMVplnm+Uxup5H336CuvJUE4VqkhhBhjQkqMsZfzJVCDZDAyObKvtOu2nds4z+I4PrT/wNVrc5/97D+OjE588Mc/gl2rk0ZJEkYyXGwsc1A6emruQx9+7/Hzp7pRk/FgsL7x//zFn1Yqk0CZ9953PwAAAjlWrahMYmY41D1/9tz8jWtTk5XuoN8ftCrV4muvvbK6seS6fphGJ86cFUIhBB559NEwHDz19LdN21peXTt79pTvWZ7vQkWSsJfGpFmPHQcqgDACXMkwiREQTz71BFDYornlxfmgF1TLNdd1jx8/HkRhbeyBXHnMMFxC7bXGVc4Ho5MjShiXL86ViuXRsZGpqQnGmOSwOxiUc5Vc3rl8/uLC9bmC6wX9wcrSMlTotj0H+0Haj2Lb8UzX5DFXWGCTUAqX1pZSwS5duUgWFMKiXPXW1laUcGxiDOLUpAQrtbq6nGZhFIdRnCRCGK49MjGx0Wi7rm8QwpIUG9CgkAuVZQnG1LVsPfaDWSYBKDjO4vXrURhzJT/xiV946aWXPvelr0UM3Hvv3R4l7V73sce+CBC888jBMydPXDp/4cihg69g+Hd//+mXX37xiScfl1IcOrh3bGzi5PFjJqG9dgcDPDU+cXDfgUqpyrlM4iwOIwSQZTqdVisKk1zFAwAsb6ydPHtyYmbi/Pnzec9VSgGkoFSMZVICKiUQBFECACBQKbQ5UsU4CPumbSGAvvGNr/GU27a9Z89tjUaj2WlCCJVEEBKCKACAcRaHEUIoDhMAAEIoS0ESS8tyAABcRPlCLYqiJOhDBbFBkwGoN6LR0fFf/KV/deTInflCaRgDsilZH7Lc+OsDdbDp4Qk3tdcIAYiUUgJjDJRQCgiBp2fGTc/YaNT72WC90xodHauVS9QEnAGAFAMyVeHktnGvnEvSrLWxFnTb89euOga982M//corr/zNX/8NY2xlaQ1jHPYCjMmOmX2PPPzDQRC3292cR5gE2CBKAdNEjINMAowBQoBzgDEAAAw62dmzZ5977jkWS0oclkkA0a/8yq9OTo7/w2e+ND+/sHf/7dumd7OU+y4cDDaazcXLl85CCB9913ve8ci7FhfWRkYL22Z3Pfvcd972tgf++c9//LEvf3VhcdX3nGKukoRrUMlC3i8WfMumR+64a2V1fWFxBWNsWebq+urzLzw9OV2yXfBf/+IvNM44OjqGMCaErK+vU0pLpdJ73v9oLue98Nzz7XZDCAUkoNQ0KWoPus2N9vT0JIYAKU4gBwYd1NuuKy+cP7u2UTeInzG0Y1s5yzqDoEOQwhgXcjmeOkGQJD0RW72R2oSEFoGWaToY42YUAQ5FGl++cFKIrFjxiyUfAKdSHmu2bp59baHT6Xk5HyicMZV1AqVgtUIIMWq1WhQF6+urhULJcRzt3WfZBGF3dna20+ksLCxkSboeh6ZpSqkTmCUEOI4YgmmvuxzHsQIZy0gcpwAg23Zsw7Vtd3l5NUsxJV6WZSxjfi6PMIjjeGR0ZHbbmBAMQKaQggDrKiiKMg3/pYmIo9QxnTAMEYBxqLy8xXjMRRSEzLbpzMxEvx+UUI4xoXPUsyzbvn17kkQ3btwEANm2nWUcAc4SpoTEEiGA0yQBSgKIKMVKqTTmhFADW5lUUikCIUBCKQgAFFJCjBQECCOllFByixGswWUuQwIERBwwSaip+SIKSj0ohRAiTAHEGGIm0M3FDSmFQS2lVBQl0dKKEIwS03YcjBCWVGUwDFMsgnm5TAhRwojjVErJMoEQMgiVXBQKBQhhEscGMpRQQshe0m/x9vj4ZKHsTk/OZBmHEBJMFYBcag8fDuEwFAQhoiBUEkqgAADIIArCTAikAELYwEAIIRlH2pEZQc0wIBgRBCGESg4TTTVJRU+p0abTGgBIah8NMkSZNTivkWtdeUI0rNs1XUxBQCgBCikAOABU06uRlFJCBLmUGFMugQAAEoqJohZVSFmWI4SixEzTbtgfUAMhIEwKgASCc9t0gKBhP2l3W0LyYrGoIGy2ewiRdrtumqYQSigAIbGoAaHKRIYQEIIViraQySAZUGpFWYqUpAQZxFQS9pOQUprGqTandt18GmYIg2KuLCVPOcsEl1IWbG98dIIQozY69uDDDyUZb7ZbzW5HkzkMw/Jsu1IsmobhO65pmkWUchEvLd+oByutRt2KiGGQvtGCBsr7ldfZzbqb3iJabXEwtzbuW+62uX3fctN3vpVBtuXI8QNvt7LP5KbeRf/6UF6NAcZAMKWT6/vdzsbGxuhYTQgxGPRjhAghrVYLGmR0dLTTDbS1NqFofHyi0216nmPbTrvdHRkZu++++xBCx48f7/f7lMggCSYnpmamZgkhnW6rkPccx8o4OHn67Orqquu6SqmbNxcNE6VxhhAaHR2tVGpnz55fXFysVCr5fBFhXKlUhBC2bQMAsiyrVqtSSsZYmiSucnO5vJQywNhxqGVZaZoOBoMsyyBUWv+ulBwZGdE2poaJyuVqv9+vVqsjIyP1eh1jalBLcNhqdmzbTdMIIUQITNPU94Y2LlrpgDFOEm5Z1o4dOzrdVqPRuHr1qk5py7KMYMOyrO3bt3c6LSmFbbntKM7lcgCgRqOhTWId15mamkrTsXa71Ww2LcvS0a5xHI+PjzuO0+/3pZQaIgyCQC/LcrGkRYJra2uEkG6n3+126/V6Pl/ccuXXATiW5URR1OsNNBGAYkop5ZylaWrbOdM04yTU/eH09AxCqNPpzV+/gaCmxRmEYEKIvo82YXRs7+GHH/Z9/7HHvqo1TUII07Zu3rz5oQ996Hd/93e/+93vfvrTn8YYv+Pd7z5x4kShUDh48ODU1JSU8p577nn88cef/d7z991338GDBy9fvXL58uUvf/nLMzMze/bcNj8/f+bUiZs3rruuu/e23c2N9XOnz8zPzx85cucv/dIvBYOo0WiQEbNUKvm+v7KycunKZUoM3/cNky4sLJRKpSiKZmZmBJZcSdt29aBsC2/CGCAEOVecS4Rft4HdWjW3wlm32s5s/bu1nLZolQjDW1fiFh9TL1WdOdDpdAzDIMRIU+c73/3msRPHlVLbtm2zLCPLEtu2KcVcZEnKbJMKwRzHCYJ+HMcSqJjFlmUgCWzb8n3XdkwA5I0bN1ZXVw3DStPUNK04jhEiGq0yTbNSqTAmcjkUhiFCQ2sOKaVSgBBS8HO2bWtdNmMMAIwQyDJGKcWECM6q1WqjsUEIMV1X+za+//3vj+L0c5/7vG3blJpZtiWo0VNKbFBDIQygpJT4OWcwGERRODIyKrgaBN1cLtftdr/4xS86jjfEvwCQkisFC4VcoVCo1Spr6ysnT55ijCGE0zRttVpS8lKpVK7WRkfGTp48GccxAAhgpIKg3++bpqntBUqlUpqyb3zjGysra7//+3+QJuzKlSu/9Vu/1Q9Cxpjr2T/6rh95+eWXp6enIVQaIimVSmmadjq9JEkKhUIu5+llhRDSBDpNsSGEBEFACOE8UwC02816fd1x7FKp5Lru9etz5dKIZTmGkTLGLMvRLFJ9BOrixnFyhWIuigYQYB0OXq2OJEmSJgxTgoVCiPAk0iQm23M554RSTWLVptrvec977rrrrj/90z/WaZBJkly7ca3VakkB0jQ1LXv/gcOalFepVJaX1q9evTo9PR0F3X6vvbKy1tyoc0Hz+TzR6AAApmkSghTQA2qUptpuAkAIOAcQAp3sgRCSEgCphJSGgYUA2tcMDKnEGGwZZbxJZ3MrNxm+PuZ547K6hVAshwHB6JbvbZGR4dBR6k0EGbX53FvLTSmojy3wurUU/L5x0eYSfgNmrZTSv6vvvEV1gZsD3SGm/IZlrpSSW/IxMCy8MKUIAJAlklKk8WuKieCKUug5vlbqjY3V5HCQnqVpqi0+u91OFEXdbr9YcUdHR5ngGAOd8WgQgiEMB4NysQikCoJAMzpN0zx8+DC10OTkuO2QY8denJiYqNUqg8HgxsLNRqNBsJGmzMAEQiClxMgoFMvNeltb4nY6ndnZWQAkIjiO40q1vOO2Xevr66+++qqP4Pr6+slTx8vlcrHgSCk3NjaKhdJnP/vZt9x9LwDg4vkL586dazXrhUJhcnIyjuNz5841m01MqQGIEEwpxblACKVpijFRacqlSBM2Pj7+4IMPpmmaL7gvv/zynj17FMIbGxsYozAMEUBKSc2eU1IKniUhsCwrly++7/3vqdZGH3jrfRSCer3e73WazWa5XNZSEoxQEATaNBlqyY6SBBPNddXGNRgTKYUm+eoQmy2BlF6ww1RoPkxh0oYDCkEI4FbMpgajNUd4i2SRZRlAiDG2c3LC87yFhQXOZBjEQCqJpGWYzWbTosb27dvb7Xa33RNccCC5FFkc+54bBEHJtfW1pNm1UkqMgJRSMGHYZpZla2srkAwz06qjI4vzNyGElmVpCzmCkKlpOBA6jtNptxECaZq22+1cLuf7PoRAFxKEEF0yKQUMw0CUaM/larVKCMEQFgoFjQtr5aZSKs2yLBtagmqKh6Y/V6tVbRulzeiTLNK2HoPBQFskQwg3SUlDtjXnfCgAzxKDUH2FIAABgEkc6zaDIksphRGhFHKumfKo2+0TQgqFkpTSNO0wjJMk0xZkEMIxO4cx7geDpY2lwSAEAIa90HX9LEsIRLZtR1Gg5Q6Mc+3lLRj3XU9fCWmaFgoFgi2ICSFGr91hLBWCS8Fs26YGwRgGcSqE4DzzPC9X9IOgHyVhGA7COOA8yxUKlXI1idOVlZXRiVq1XNECHYsaHS6TJAn6QT6fd10LKKSUWl1d5VxqAmMul+t0ekAqAKC+ltqtLoSQQGI6ZpjESZJZljHMqOSMQ55lWafTKfi5JEkQhILzjKeUYs3Z12aUEEKlpAKCMcUYi9JIt3BahLHFIVJA+L4vpdQubUEQ0B70PC+OM8OiCinG2JYMbvfuvUsLy4LpSL2hEU2xWMQYs0xoNBlsioJ18QOk2lqSmosqlcrn89qOHCjVbreVUsvLi5TSJInyeR9AdcdddzVb9TRNPd8Riufz+UIhNzo6MjY+QildWlpaWlrCiGYZo9gaHR1RSkkARkdHNzY2vJw/OzsbhuHCwkKhVNHs0WazqZSybRspIISACsRJooQwDMP3fW1Gp8lEejwThqFpUmpQLRpotVKpBMYYUzo5OSmEnL+x0Go1KXEIsSYnxw8c2E8pHgwy0yTrG2tf/vIXZ2ambMtYWVkO09j17E6nU61WZ2enL1261GhsYAwdx7IcSwddQowIIaurK71eT2JRKk7u378vjcM0TSmlJ04cu3DxshBpt9e4dPn0q0dHOGOGYSRRuLa2kvDe3fce+pl/9r6l9VfXGvNZJpeXwt6gPzJivO2hH5mcmOkNgocffvj69eu1Wu2eu+/rDSJK7Ufe8eg/fu7vPv7Bn3juhecVAK5v2Z7FeLq2dgMAbJkOJjDnW46Dtm/fdvz4a43mWhQPTGu8Wq3ed999X3/8ccYujYyOa3OhNE1XV9Y93/FsK07SXTv3VorjE5Njx147bRue5+WyjD3wwEMjtVEolRAsFmJmavTxb37d87xH3vlQqVQaRL3+9bbrW4VCqd8ddLtdBJRhk263+8EPfvC5F1/QCTcnT5/as2/3gX27er2OKOWEwJ5nhWEcRdHKytK2bTtMCx89/rJQkVJqfn4eIVDIjSwtLSEFRCbSNOu1ezELKcUIQAQJxubjX//G4uLyxOgYRKpcLPZ6/TAMk5RpLl2YxIqLLMt0QtTDD799ZWVlbXU9E3xmZubw4cPf/vp3L185PzE5ApEQSgqQYUA/85nP1Gq1I3cc+su//Mt83m92GgKoer1eLpc/+tGPGYbRarYfeeRHpqe3f+eZ7507d/69732vaVseJtebN5YWV6Ymph3HefrpZ+I43nnbzuvXry8u3nz5pZdarZYmwm8dXhBCy9JJ1FJ/B0BACdbZqkkYaA2KEkBXpIZhhGGoTxl9hCVpZpomJhBCyNLMNCnG2oIGZFkWRZEQwvddAGCr1WKMEYwVREmcJcng8OHD73jHu3SEo9b9QPgGbwwIAVBASiClQghupebo/w1xJQQhIpwrqLBSAhHoOM72/PYgCk+cPnXXnXcrJW/cuFmrVnzfNSDYWF8N+oOxkXGWZEAC27YNw9i1a9fOnbd97nOfO3ny5MbGBoQwl8u1Op3du3f9xId/0vP8RrNZrVQgxELILNMRCIBzgBAQXAKAhASUgjDirVbrwtlzZ8+erTc2MMYf+9mP3lyYm5isHTy4/+lnnnz++WcZU3e/5a1j4yOMsVardenilXa73Ww2jxw6fN99D5w4eewrX/kiwuLylXM6Xfwf/+GfLl26Ypn2tpntjUbL87yNjbXZbdM7d+7cqK8988wzhBBNTYvj2LbtM+fOspSdu3BheWl1amrq/vseeOqpp+I4bjabH/nIRwzDWllZ+a3f/O1Lly4dO3q82+0RQlzHi6M0GERKQZbJRqPV6wau6w2CJOiu5fPFxcXler2ZxJldoEqC06fOMp5SiqTi5XKREsOx3cnpmU6nx0CKIG3U24Khmentlun2e0EcpwZAjuMTggf9CABQKBcYU4N+3G51fT9PqZHEmdaRQIiDIOh0Wr1eDxFYKBR0Z9rptDiXGEPTNGu12rZt22q12trKKoDSdd3l5WV9iUKAlWJRFKVJBhDECDA2RDYJptVqNUmyKAqazbZWkc5u33bkyBEhmHZTDMLOxYsXdQ0jhOh2+0opCBUAwLZthBCBZGiXgZBvOdVqOU3TU6dOKaXK5fJmcnViGMNTTynVbDbDaCCEcF2XAxEFcZZxIBRCSAqlo7n04bupnpFbzGWoTdJMc2vYr08ZXdvoM1Eppes0IQREQ2dUnRqnqwLN1dUaXKWUEBC/blTFEUJJkgAApBD5vA8hRBgCoDQ8nWXZ6up6FCW1Wm0rOcMwTNO0HMvW591mwsfQjCKKIs/PP/jgg9u3b9+iLisItAmyPtC3eh+lFNRsHf21JuYgpLf6LeI22Izq1dTjrRIC/SAzQt1jambfZrc1vAkhWCZ0gQEhJIRApDT6rD8vwzDSNCXYAAAggJRSCGn6FNE1QMK4NnNTQGiuOmNMiIxzSQkHAFDLDAddz9N7GkJMKaWSJCEG9TwvCPv9IGCMMSYoNbXnEgBDbzHBhZ63KQA0zUWTnbkUtuWknMvhe6i12tB13TgMdO0ETQqBHAwGhCDbc8vlcqlUyrseBLjZbq036i8897yT9/P5PMJ0pFrO5XIQQsswLcsSjKVxEgbdYpkcO3b88uXL+THPc00PWxiqzDSYkkopAt7gXDlsgG/dr9/kffED8OMt8fKtv/UG7EwBAG/pot/0XFsYgQYdEAJaHVDKGwgbCwsLjLEkjQYDe3p6qt1ur62tRJzbnl2v12u1Gsa40dhQUCoFfd9vtZrzN5ZsK3/fWx8+ffokY+Ktb72rWq1+8Uuf77S6rushQOsbnUql1mlFvldc32gbhiGB6vZ7jucCADBELGUslfl8/tixY9pWFRGMiZFG0Y0bNxzHcRwHY6xFT/qjBQBwxmybQAg0VKRP4m63ixB0XRchMBgMsEEJod1uT0o1PTOhlGw01luttuM4+Xz+tl17nnji27Ztr62tp2nqOEw/+CDoz8zMJGGIMdGhK5ZlYohardbTTz8tpaQGllLW6y3f81zHEVxxLG3HFEJUq9U0TSiltXLFNO0oiuobDSF0ok6+VqvFcTg1NXn16tUoisvl8traGoSw2Wzu379/YmJiYWFBM0e0Bt8wjG6/l/P8UqnEIEsTtri4uLKyqr3bOee6Q5ACUGzodmIwCIUQGBGuhmWKXvylUilJrcFgwJms1+u+n0/TlElhYqJJN4MwzZjmSQHOJULStu1Ll650u10AAOdSiNQwrChM+vXWa0ePLy0tra2t/dzP/dwDDzxw5syZP/iDP6jX68eOHZucnLzjjjtOnDjRarUs2/jIRz5y//33N1rNM6dPHn3ttaNHj+7atXv37t3f+c53pJT/6l/9MkLo2Wefbbfb+Xz+2pXLf/rHf/LhD394anLy7z79j5TSR97xziRJKDHGx8dLpVK312k0GvPz84yx1dXVmenZiempRqNRqpRti2IMtF2AGhpfQKneIKh/81qD6A0//V94CXxf5CaEQ9G9AkAJaFqUc27brm2bKWfnz5+fm79RLheTJHn11Zefffa77U4TKuD77s/93MeffPLJ1eXFsbHRLEsopfliMUliDEwI4SDoIIJGRqqe76RpHARBpVKxbRch1OsOLMvCmI6MjPi+32q0Wq0WY2J6enp6anZtbQ0pFEURpdrpzNuxY8eps2e0HQ3GOGVMn21a82sS6vuuZU0YJomz1DDo6uqalFJLS0zTJIgiJGTGi4Xy+Ph4lvEse500p4DI5bzx8dEoisrlahJnV64M9FykWq3qcQUAkiKoECIEDYLe9773PUKIZRkQKcdxXMcXIhNCmCbt9XoYY8v1xsfHe73B2tqa7bme5125ciWXy23fvv3s2bOe55RKlaXlhWAQffazf18oFC3buDF/fXpm5m/+5gvPPPPdRx555F/9H7945Midr7766t9++u/yOU/b6vcG/ZGRMSFYHKcAACllmCRagYsUIIRgRBEkhChKKTWsIOhrp5put1uvN3q9QX2jTamlJIQQKQV1GWHbtr6nUkIqPjJSCwJLSOa6LucZISiXyyU06/YHLOOUmhTjJEm0Bl9KmSRJEAQ7d+4khPR6va9+9atazjkzM7Nr166XX3557vpVy3KEFPl8fnVt5bY9e8Mo6PXDiYkpTOCZs6fiJDQwsi1qUWN0tLZj185SqRRHSZqm7W4nTrNqtUow0Zs8wIAzpSBAEGqOida/5/N+mureG2vxFEJYqWG5AG/FkW+58sGbvv6+uLwteBre4suszTrwD1prSimtywGbQ9YfePzpe+pcAz36Vq8/ypaHxg9eyNrE41ZYfEvWcMuDvwFV33whBACwubcoAKAQwyeK0wgAB2NEKUiZNE0kJaAU5fP5wWDQ74e2YxoGaTZ72pLIMIxcLtdqtSzL0KMOy7LCMNRgouM4ur1sbNSVUlEUIQAdx9FFRhiFuXyZs8GZs2d37dxdLPlf/KfPx3G8Z8+emwvzQEqMMWMCAaQvTkqJnmN1O/1yuZwkWcqyXE75vm/blmWZO3fuEIoHYf/uu+/2fff0mRNZkmodn+/7zz333NGjx37qZz72iU984qmnnlpeXjYMY2bb7MbyarvVSqIo5YxJwaWQUBqGYZom56Lb7SJECCGFQuEzf/O3Xt51XIvz7Dd/8zdffOXlv/rLv7QtVwFBDZopZVFDN+4AgDRNU84eeeSRoNfXWVLjI6NB0Gcs+8pXvvziC89NT4y//e1vT+L4O9/5DtisZRWCugDlnHu2Qy1T14taiqvdJ/Rbqst3SqmUqZbyIQUywQEEEoKEZXrmCjanGhhTDdvpqlFuppkrKXU3AgBot9u+78dxDBUwKcUQxUmGINHYqK7UlRAY41KpRJV0HAcRbJsGJEQpZZgEEmJgghRQGGRZRil2XRdR0u/3Lct69NFH+/3+F//p86ZpSskLhVySJIQgz7VbnXbFq9VGRtY3VhFC2nVOL2pCiC5PKaWaDa0UCIKAWlBfGFJKIZSUKkkySk2loDadZCnLONMrRAghBZACxFE6f2OBGsO2AUKIDQoA6HRalmXpC9jzvJsLN8Bm2a17USmlEhJg0ut3PM+jxFSJklIyJhAkQgJqKIQQy3Q/iAjEXAGCbYMaEBCD4n4vlFIaBp0Yn0rT1HfdOI6vXLkCCRyGyym5Y/tMq9XmQCVR4Pt5Q5Bmo10sFg3D4CwOA+2CghGEurnKMo5Jqj9oIXmSxFKwXC7n2laYpL1gkKapZRmIwDAMiYW16XO325dAlEqlQr4QRUmr1VIKNjaaURDncjnXdX3HrVSqPGNAIsYEwcA0KUKkUCitrq5iTACAlmMhADPOwzCMgpgSUylhYEOLZynCSZrqT9A0Ud4vAFNwziXj7XabZ0IpVamUMYa9Qdc0zTRN21mb81YUxNigECJIQCYyzczIeKq4UgBoaBVjzDjXVhi6btTmabqJNaEBgYqiCCEEAUKICC6EkP3+QFjCs/04jgkkIuWOY2AMsizLMpamqQRK98AAgGFwkJQYEwihlFIRLAE0DEsIYdhk3759k5OTL774POd8ZmbKy/u5vDcxOQYgv3LtapKFCJF+vzsxMeG63sZ6Q0oZBGGasO3bp4rFUhikizeXNIEuzmIJQaFQ0MMk23IHg8HVq1fjOCaEQghNMsxR0JxBpVQcxyljhmUZliWEYIJTSg2TGMCQUmqEPE1TTT3Tv7K4uFQoFIrFcq+/lKTR4T37pqYmnn3umQ984IPXrl3bsWPbseMvNZqrufw2ABkXieNYaRIDID3Pyuf9arU8GAxKpdLizaVGY82ynCRJ9u3bV6vVOOevvvZKvuC4NgkHnTRJEEKDfr/f72dprGSSpnJx6eKXvrxmGMbk+Dhj7OK581y1F1fOLqye/vgn3tfr10+fPbtj9vZuCzz8wPurlWnTpEka5vPumbNnZ2dnH374YcXxxMQObJoCwNntM9Mzs5//0udGirk46R598bk4jsfGJg4fuu3MmXP/+E+fPnhw/6E7D64tL5Uruw2TbGysXblyhTGWpqxarY6OjBSLxZXVpShgjDEIKMam44h2p96qd/buOrB379577rqv2ezEcTw+Mtnt92q1GqV0YWE+l3cfeOjIYNDbc/g206S2bQdBEMmEpIOEp9QkuVwOIXj4ziPdXvuloy/9s5/7+PLyyssvv7hn30yl4h199YUkDgqFAmP88qWr09PT45MTtZHqZz5zttlsez5N2UAB5PpOFmcGMsMw7Hb6zUKbGsjzLd/3hVAYojvvuCNLWRyElFLHNrdv33716rV8sTBSG5ud3X7s5Imb84sMgttvP7y8vBzHab1en5mZEVzeWLg5N3ft0Uff83M//7H5+fl8Pp8reL1er9Np9ft9AOXstuk0TSdnJg3DMGzabNURAh/84AcvnL94/vz5e++978q1uenZ7dXRi3/7N3/b7XYPHTrUaLSAVM1mWwHBM/HKKy8LIY6fPF6vr8uh3bnLOe+GgQZWtg4vDfUyKSCEBgamYyulgiDY3A+VdkSEACZJsry8DIeGgIAxRoguOaxysdDtdjVuhTF2HE9POyCESZJ4nocxjaLIcpxBP2SMvft97/3nP/eJsYnJXrdPTX1EAgGG7oKvl08KAAA2pe1AbvZZQgjTxBq4iGOBMaYUKEUyDhCmEAEl+e37D+zYNrO6uj53/RqFKg27hXwOSQAyvjB3Y2Z2m2FYcZzWaqP33//g6NjYJz/5yaXlhdHR0fvuu/f+hx589tlnDWq97e0PZakIw1gp4PtGwoa+HENBuYKb7BCcJGJtbe3ChQtzV6/Nzs4yxtI0nZwa27N3W3/Q+fTf/o/vfveZJE1Nw90cqHPtWbFjx467777n9OmzjLFvPP7Y9559xjABwsqg5rlzFwghWSr+j//9V7Zt2/FvfvXfxnFcqdSSND15+lS/3/W90sc+9rFXj7588uTJycnJqampq1ev9Xo9nolyuaw3UghhEARTE9M/81Mf+9JjXzlx4tTKysby8nohX40jTqlJqNnvtzGm1HSkQEnMwiBrtwKDtjkOpsZ3XLu83NxoF/Nlx/Esy2k0WtqqyM95aSZ7Qei67kylPL1t9p57Hjx+/GQhXyPYfuLxb507ezTNwlw+73p0ZnaK8yxOgigJ01AuLdQNwyuVKkmSmCaampqq15vtdhchtLy8zHmWL/iu5+lSNsuSMAyzLBsfH4cQXrp0RQgGAJgcnxgbG7t2/YpmsyqlCCY6SYgLSRGFkDKW6WwkzQFSKnVd17IsAOSefXtLpVKSxIZhQAJSnkRp0u5104xr+EI7uWknOs5lFmdKqSxjhmEYhuXlfIRQoVBwHCfLksFg0O/3080DN45jx8ZKqYWFBWpg0zSbzSaXkjEGIYYSCCa1V4PGHLHO/GAMSLhZYikgddEHt+zC9E33WQCALZBKU51MCwshonC4DDGmlNIsS/Sfv3l+aZKv9qZQAABMoFLKtizDsDCGaRorCCikUoAoSpIkyeeLnMs0zTw3BwAwTVNLVJWCjAmMhoWQYRj9ft8wjHvvvufB+x+IooQnQ6cLNaRZEISQEhJseo4BgCRQUkoAdYr10JUCwuHsWW8Dup7Z/NHr2Rhq6NIAIXz9zltAv74N60al9BsoJNP0oFvvufUUQCptdqGLc4MO3fwyDakDrvNjlFJJGi0tLdx+YN/4+Hgcx4oziIllWZrExlgaxzHG1CCW9tvUT0cpBRBSSgkxlIKahqW7ToyxQkgpISXI5/ODKLRdd2uX3mpPdIOpEJKMK6RSzjLOkjQdHa1USkXHcUyTcs6xgdvt9sbK6rlz506dPm3Y1sNv/6HDOw5Xq9UgjkzTNE0TShWG4dzi/MbaehAEU+MTe/fPcM5Mi7iuSTGSimv/ECF4msbkFpHv6/3w96HA/7PbFkb8fXfeonQNJf+bWDPcTCuSAJBNv04Jt6xXhr/YbneyLDENI0nifofajpllCeccYbiwcDNJ4snJcQDkyupSFAdZJhcWFqamJhACmim5vLx86dJV13Xf9aPvAYpcuzZ/4sTRubk5Bdjs7PTJ9fU9dxxYXFhZW1llnISRPHnmcqHorq4tHti3+xd/+RdZmnz+859vNCLTpCaxMi6YkNqtPAzDfr+vZ1NxHFNKG42GtvFeWFjQ4XWe5/V6vSSRhBDPdnTwQrfbxZhwnmkiITZokiSrq6sIoUG3QyhBGPg5J03Y+vrqju27crnczZsLUoDDh+5aXl5utVqe57iO32q1CISOgzFG2lNsdnbWsOjS0lKn0xofm7x69Wo+lwMACK69IGEQBP1+n/PMNM1qtTI2NialHPQD23YhTLBB6/V6HIcTExOcs0ql0u32MMbr6+t6p5mfnx8dHdU05/X1dZakQoh2u617vyiJbc/xfV/DFqZplUol1/G73a6UUsf9AamSKE2iGEIkdZoNAIwxnUF38+ZN7amEMQ6CYNPhSCFKHD8XhqGQTFs0xnGYy+UgxGnKlpaWer2BnmlzzsMwHBkdrUxMnD937v3vf//Bgwc/9alPcc6/+c1vPv/88w8//LY//uM/npub0xO/559/3rKsV4++vP/A3rGxEQQPv/LKK2+5665jx469uLHxK7/yK5TSl196KY7j7du3Xbl8WfDM9/PPPfe91dXVsZHRtdW2jiis1Wozs9uUUtpo6eGHH75y5Uq/39+2bRuCw3253W67tmXbtu2YQzQZAAgBeuPo5c1r7c341NbC1BP7LbKzfCNsvfWLLGMYY86UYRjFYrHb73MuKpUKACBNWRQlACNiGpZlheGAc/7II49AqP76v/+lQtAwjHK5PDUzPT9/I42EVFwqt91t6z5Q754AIC2KCcMwSTLGWK/XK5VKCKF+v68UvHr1qufmbNtFCnAudIoUpTQIAsdxgiBIkli/8jjKEEK+lyeE9No9z3O2bz9w9txpDTEDoFqt1urahm1r0qtybM80zSAYNBot23aUhIxlECnTNDzHxgQgrFzPiuNBs9nUO3WWcoyxTqAa0g85B1CHwBp6xOtarmW6enqECUzTFCHQaDSqpbJGi2zbLhaLUkoNjpw/fz5JEoQAIV2MqevZr7zy0t69e7OM/8M/fNZy7H6/XyzllpZv+r6LEEqSKGPJ6mpw+PDhP/iD//zHf/onjz322OTkZLvdBABovBgAYJooCgPHcbSYAJl4ZLQax3Gv1ykWi76fS9NMKYRREoYx5wooomfImr4HgNRzdUJomqarq6tB0DdMMjExJoTo9XpSplIAQghQMMsSCYDuIrSCQTt1Xrx4kTH2/ve/95VXXrl48WKn03rooYfGxsa0tTSlWEreH3QVBBfPnyuWaoXSiGlSyzJ832VJfPcD981MTZYKnud5ExMTjDHbtn3ftyxHv/96FJ0wjhBWQBJCGOOmSTiX/V6PUmpbFsUUEcC5hufI0P38lksdvOnr/ze3LWMNsFkr6C+kdrR4/VBDQwz5FogZDU9JuXkHcOtPNx//Vqz5VhL0D3496PWX8/2vU0rt+fGGb2r1gma5ci71aJ8xpuuwrdfCRNYP4k0XY1itljPGoiiCEAZhnwsriqAQIp/3tfImDEOpuGVaCKM4TnWVOTc3J4ToddqDwaDdbtumUywWR0dHNd2Yc+77vuX4lmNduXxtZWVN8Lh3qtVqN/fu3Ts6Onr58mXPd7MsE1wath1Haa+3gjH18zmN2LaanXKlaDm24zjXb9xYq68RQggF5WIljuNutz0+Pvrwww93O/2TJ04opVzXjcKFsbGJR9/9rm898e3p6cmc5y4uLuZyuaySvmP2R771xBOdbhdCqIQUQkCghJBpmiJEpJSWaa6v1TOWCMDzBX98fPTJJ7/d7nbGx8c554LxsB8CgNKU27bDoeSMCymzOAFSnj1z6utf+5rrulwIx3Ec23Jd+yMf+cjlC+dPnz5tGsb09HS70QzDEBKMIOKcG4bpOB4GSmRDmgkAUCkJAEiSRIO/OiRdMzW0/VkYRp1OR5eV6o1Rk/qet0aQDd0DEDIsi3N+4dyFjLNOpxOGEWOMIGxR07QtqIBBDdOxdQiJ7XsmMRUEBOOcbUEIu91usViEEGxB0lIbbiCUsSyKlE6J6Ha7Y+PjnW5XSWm5DsAAQ4wQMgxDKpWmqUFoq9VyXEspRc1hfe+6bq/XBQDkcjndR2mGCwBASoGoQSnJMgaARABGUZQmCcVkKwFGKYUUUBJwKbVZkO6X6vW6jsZNs1hbYzMpmBR506QUYww1Tqcp2xhjwRVGFCpGbVNKyVgax0Ok26AWZ4pzblmOEtkW2xRCzJgCCEkBMKKm4UCktIcjhKDVaiVptLqYpVlGCImz2HEs2ySO47ieybj9Z3/2X69dnfvHf/zc7bcfnp2d/S+f+hQXLIoZIcRx7V6vq1m9s7PbPM9bXlkZDLqavMN4ODE2DgDodputwcCyLIRVxhI/l2M8DcMwTdM0i5UCxULJ83JpygzDcEyvXq/nig5FxKJmFqf1QcIZk1Kahh2G4fp6fXJ8ojJSrJQqzWZLp0PzjGNMlOScScEVZymEUGGgWyzdtaVpBjZtppEpoijqBF2D0nw+XyoXCMGua9dGq/1+v9vtYoNon2IpheM4hk0BAEIyLpmGTaXiCgghmQJCKaqPHsMkumdWiIdh5Di25+UwhnDQ7XX7WcpMYkqJtF41TRhPe/qIlFAxxvTImbHhZEI3ovqsEYwLISAc9tUMqTRNKSYQQtt2bdcnhlEslvthvzY2mmVpEARnz59ZXV1GCI6PT6+trccxX11d1bNYjQ0hhLvdXi6XLxRz16+nJoRpmqZpWijkbNvudvq9YIAokSxbWlpGCriuq+cuWZYhhAFAQnAIodqU7lq2IQEhHGOMhVKOa2WbRH6hhoiPdrsGABBs9ONumqau65kmnbtxNWPp1T+8JKWcmpp4/rnnJqdG2526EKxY8riKqQGjNGh3WnbdGp8eu3Sp22iuj05UGE8Qwnv2HhgbG9OF2eTEmOXCQt7r9zpSgiTO1tbWAFL9qDcyVnnXe9952227VleXz549m6bNBx980Lb5mWOn6+3++Yuvbt9dAzjdt387JnRkdGZydoxgI01T04JpFmCijh17bdv2XXff8ZDCZHxim+P6zdbGzOGp+cVrKWvt3X/3kbdM9QfdamWkUh4/dPvOwSA8f+5CsZh729t+6htf+4qO2eh0Oq+++qqfL2KMV1eXEaacSQgxZyxLRUwkRqLZbLpmsdVq3X/fD9m2u3NHtdPpaRgXANBq1y9fPVMu+SOjpZXVy8D1d+7cafp2pmC300iyWDKURqmCcGykbFB7dWPpf/uX/2JyYvrf//vfWVxYHh1zt2/f/tprL8xdv/zud7//pRdfCeP4vvvuy7Lsv/yXP5y7cfVd7/3R2kj+c//0d7Oz2xcXb+aN8raZnZ1O5yd/4qNffuwLH/+5nxkZqz7+ra9DgIMgunz5cr8XpmmKEWJpZlDqeK7ruvl8vjJSe997PyCE+Oxn/6HebG2b3R6Eg9XVVYxxu90uFotPP/00pTTnekqpZ75zcXR0/OKVy9/+1lOMCdf1nv7u0wCAWq3m+16jkUAIx8fHK5XyiRMnnn3h+eW11ZHxsWvXrv39338mSuMvf/Wxl1592bUcPcnYtm1bpVpTULY6bcbSJEl0xS6EAEDqYZ7mTKyvryul9G6pLci1M74+41KWDcU3EkIIDUoQIowxCKVhW7qO0ihSHEV6Yuo4nu4gNjY2HMdRSunW2zCsIAikBFGYYIzHp6b27tmv8xKKxUKScaWUGBqMvU5ogxAIDhACUgJtjgaRxpUAIZgxZdswitT6+oZhGLVaJY25ZRHTBFHEc36hUMwV8s6T3zrtOE6x4LVbzdb68vTkuAVhGkUiZRzgLGWzM9sq1dqrr75qWdYHP/jBlZWlheWlHzLpRz7y4Rs3bjbb7ZHKiGmaURRnWRanolgsarqVYWApABkmdA3lO57nzc7O7tq1a3Z22nXdbn9tdtvEE9/62ksvv8BYqpVPvu9jAHXb8uCDD0EI2+32uXPnjh49em3+wu79O3rt9iDoDQZhxay4Vn7b9Oi7H33fM898t9vtF4t5PQwwTCyEcDz72tzVEydOaD+iu+66i3P+4osv+a6ncdIoiv7dv/t3f/RHf9Trd06eOq4kFFz91V/+906rM39jkXNpGKrXjQTXMW6ISalSYRhOrxsp2bxtX41CJ+gmQBkEW5KLdrtZqZQAAGmWKAA63X6pXP3Aj3/wzjuP2La9a9uR8bEdO7bv/d53n7108aqU3HbMyYnp3Xu2Xb5yodvvWJYFIV1ebCjAIYSCCSBREmdxnIZhrGnFjDHHsQ3DQBAwngGooijqdtuu67daHYRQo9GSUlZKZe82r9/vnzt3rtPp7Nq1C2McDCJtWavtjbVbFEKIYJqm6Y0bN5RSpklNy/V83/WsRnMdG5hYOYII4ykhZP++g/Pz8/1+oMkZJqGC80GasSTdFOsgbT3c6/U63fr4+KguQXWEhGYi27ZtmU6SJIPBIE1Ty/aHVR9AnEsMgBBKMK5JuIIrTABnbKslSdNUF2YIY6Gk9l/WemKdr6PnuHpWRAjR9C9KKWPaDA1qmFIzlNUmp1hXbhBCpSDnTEpFEWJSGMjCBNq2I4RQCkkJqGnoFF+MqGlAzmS71SWEaPYhADDLMsHk8AGVpjXQMAxLpdLY6MTDDz8cRQkAQEpJKSWYKqgdFxCEkCsFIcIYIqSJVlw3XQghCJHeppCmHt8CtevScdMlY+jTcGvzNqQfKQ2Pii3lqP7dLdwZQggxUEoqhbSTxtZfpEtWTXDWzyUUNB0bQtVcWRJCpCnrdUM9QljfWG21Grft3E4pSVOUz+eVgnGWAiBd29BG4VGUZGno2p4E2uxFYIyZEFICSon2JyDE0K9XFzzaDi7LGCHUcRyEiBBSAaEklwoCpK1cFYQQUZLFSS6Xm5mZMQ1UKRUJgvX6ereX1Ov1MI6zLPMsmxh4dtv0wYMH3/mud9m2HcZRGvbXlzv9bi+MBixJsyyzDDNLIiEKUiUEyVzOA5AnKcfSRghIKfTlRN7cBuvv3OqksQUfS/n9nfH3dftv5mwCOSS4bzLThzeuIfZbTAM0GDfMG+n3Y0IgBFmcpFmslCIUZVmaJMnS0gKAXPtSU4qvnT4fBH0AuGUbhUIBQ6R15RfOXyoWqjnPeftDb8dAzS9dT7Pw0qWN8dHRvbv37d1zeDBIp6a2YUpXNxafe/5p07JuLNxgLLZsY2JypN8dGJiEYQgR0DT4MAyTJCE4qtVqYRjqrklbpGstud4aEFSMcQghRjRhWRjG/X4/y7JCoUC1gyTnlNJipXzo0CG9dC3LMk0qJa9UKvWN5te/8VXOpOd5QJHBIOx2+xDiJMkIQXGYYCir1Woul+v3+41G47XXXmMsJQb9xCc+8dM//dN/+Id/+JWvfMV1/SSKtTkygFLjzpTSNM0uX76S93y9kimlQa9LKV1e7tTrdcsyj9xxyGVOu90eHx/jnNdqI7pEXllZ0VDFzMzMSKW6sbHRbrdt297KtykUirOzs4ZhYUT55sapgfg4ThljWynhQnBtrSDEcPMSQqysrDiOMzMzs7KyxhgrFApSgI2NNUpNAKSerWlidaVSU0oRkhjU0U+tJIQAJUmWpmm1Vms0GmfPnv31X/91wzBOnTqVy+Vv3rx5/vz5hx9+GABw4MCB8+fPHz9+vNFofPOb33zL3Xc//dSTjz/+DY2PPPDAA/fff//4+PinP/03aZoghPbu3dPr9daW1wu5vOTi9OnTBw/cNRgMOp3OgQMHOt2eUkpv367rHjp0KJfLrays6PhUz3Mcz2dpghDawrhuFde/eU6jFECb9qxvxqO/b7ltrdM3j4ggBIZB9deWSXQSEed875799fsefuyxx+KUu65TKOT0lquk+P0//APbNHbu3BkE/VwuVygUbty8EYYhkEgp0Q/6tVpldHSU8bRWqzUajSiKWs0OIdrWCuhUHJ2gAgBgTBiG0e12oYSWZadpihHFCKdpevnyZS+fU0rqcCeEQKFQ6fcDIdn0xORItezn3JOnjp89ezbLssmZqUcffTRNU6W0Iwc3qWMYNIo4hKjValtWNDoynqYpy1LfdxRSCEEhUsdxhFBcMNtytcpPd6oafdbvhm+7TO+DEhrU9tw8hBAhMhj0crlcGPX15LnfD/SvJ0nS7fS15kivfQ0SpWnqukSv9Lkb1zSqorpgZGTkzjsPJUl2+cqlc+fO7du3713veudz33uxXq8fO36y2Wx2u90jR454nre+vloul7vtDhcZ59x1PcbYYBAwliEOaiOVYrGoR45CiEql1mn3XFcyJrOUa3Y/pcgwDM4kgFpTLMfHxzvd1srKCgASYTA1NQEAgBAylsVRatsuhzxNU0SplHJ6enp+cSGKIkLIxMSE1i0WCoV77rmnXq8bhvHaa6+dPn16bW2tWCysrKzs379/cnLiytXrH/7wR0bHJuNEMZZGQQ8qeer0ybHR6uLCnGMaGUvn5+dyuVyr1SkWi3aaFgqlLEsavUYURQARTUv3fd/L+a5HNupNCGGtVsOIQAgEAxgBYhHG1BCiHl7h+r9Qbboev3kq8/r/1YfLZrQmRLc+wtayglvcZ/X6QoMAQTyMG/g+jBt+3xLeoh8jCIF6HcX+vtX65tsW/K3eaJ5z63rf2gqUAphAziXnihBkGGhzsRu61NQxmxqR1EWSXmVraxulUqlaK+ucW6VEPl8uFApxHGoeRJxEjueMjY3VarXBYBDHseTs6pVLnPOj3e7ExMQ999xz9OhRxti+fft0SNdgMFBK5Qvu4sLyl7/y1V6vl6a9cNCdnp4sl8uXL1/mnFumnaVMM4sVTIVQCA0tZdrtZr8fBFF44MC+QjFfb9U5z2ybZhlQShQKOYzx+Pi4UtJ1/EqlcvSVo71eh1Icx+H//bu/8/i3vj01NbVtdvvx48dbjcbh2w+dO3cuSVMJJUJIcKl30jRNhVBKSSWhPqkhhpTQiYmJXMG/ePnS6urq7OysEGJ5cdnxnTRKEUKcMwgRgBIBVSh63/vO0wa1xkZGhBCIYCGEEKzfS1ZXl8+dO5cmUaFQcF3fdd00TdmmB5wQIkkS29BaY4EAAEISjHM53zBpt9/fupZ0YapJkVoppQXLmomgr4GtOZk+Q8Vm4i6CUBubKAWazaYCyHNzWZZhRBljQRxFUTQzPaVbBct1bDfMOAOEmJaFpIyz1HPdOIxoFHmOrYclCEIllQJASmUQUygeRVEvGEil/tN/+k/33nvvT/7kT3IhICSGQUXGIIQmIfo1C8larVDDyhBCYlIFlX7nNzH3YeE+zOtDSocYCyEwRAgR23YJMaSUQgoAIaVECMEYg0phTZcVQAilTxw9FI+iCAAghPA8T0LAlURK+o5JQ5pGqYa2h50ewIyxcrnsOFa327UsgxAjjlIAEFBESWzbti51lIK6R7FNW4urlFJSCIyhUiCMehjjcrkY0zSIo8nJ8SxLDNsoFovFYrHf77/9kYeTLGx2NnJFJ+ZhKuPqRHl9fX18tDY1NZXL5RYXF+MoVUrNzMxkWYZMqU9VjHFlNL/3tt1SyuWlpZ2OS01jbXVjaWkpSUMaY0SxpgQiSCBEpUIJIZSkqRRwfIyaFmGMtZo9z3GbzWYUJaZpFouYZyKNU8b40tJyv9+PwyRNU8/JHNuL4zhJsixhQ6oUIgAACLCSKmMsn89jc0jsqtcbkHLGmO95lJhxHBsmQchKUwY58DxPKRWHCSFGpVJpNTtKSKk4pZSlKgzDXC7nenaaZf1+HwCQMeZ71KBWFEWYENMwgiAQXBEDYYz73R7EwLIsArOwHwIXubbneV4oE4CAEipJEpEJN+cyNnRRRAhRYkopEUQIIgAUQoiYZpalaZoSQkzTFFAyxliaEUJ01Fir1SKGIfoiiqKNjfUoHfi+Wyjkd+/Z5edytdrI0aNHNzYarutGYaKvIkpNxsTS0ophGBCpbr9jWKbtGbblSABa3Y7+HEXGCESmZeqqQ1/nWZYZhqFF0IQQamAmMguZjmVHUWA6lmEYAEjDohpu3jQ+Epq+nfdzYRhOT0/bjtfvD4Kwb5pmmobPPfecAmJ0dJQgSKiybNzr9dfWO55n79m3N4oGQqSlUi6Og0OH9kdR1Gv3xidHfDe3a9eujY2NLIvjOPI8O1egjKeC8cEgDMOYEBJGg5FK+Wd/9if3HdgVs6AfwG3bKrVabXn5qmFwN4db7fblq1fuvGd/o7O2Vl9dXb6E4cVeb7Bzx14IMEIoCAIJxczMVKmc7weDopGHCparlSSLT54+tba+vO/gODaS2pjl5b0wbPcDeOD2nTPTO4/t2Hb3Az+0tLS0vr6qgRhKzDCITUIhwYyJMBoopRA2Dx868PGPf/yLX/ziiWOvlEsjP/XRj999x/1RKCg1lILr6/U4Tm2bbWxsrK4t7Ng+c33u3I2F05iIpYVBkLQnJibPnrkIBC4Xx+84dA+BNuc8ipIEyvGxSd/zrl65LoQYHR09cezo6ZPHWSY20uzxx7+OMf3whz6SZvHxYycr5XK94e+Y3TGIukCRNBJjo9Oj7sy1G3O+m//ht79zamL6vR94V61Y3LVrx7GTJ77whS8YtDvoDjToc+eRw1MT4/VWKwzDiekpveHfeedd+/cfYExMjY9du3bt937v915+6RXbtolpLC4ulkqlNIuuXLliUB0PICFSSRIhhBzHcV232Wx0u61We6NUKhaK/gsvfi+f9+9965E0Ze3Oxtz1edNClp0zDOvQ4f0P3P9QHMRhGO28bUchX/rkJz/5J3/yZ8eOHe31er1eL00SACRCyHVdXQyDzfjfIUADFCGanadsxyxXiv3BQI92Up4CgBhghOgxObc2+ZUI4jiKGGNavJgkiWmaPM0owixJdUOhg6p0sV0o5X7+53/+8W88cfb8hf0HD09aroIAAszVMHd6WFZtFlfaFhkAABTSQBMXQwAaYygl0LaTcRx3u/0syxzPG6mWLZPkfb9Wrsxfvxkn4eHb9xsmzrvWoLF67vTJLOO3H77T9n2A8LYd24UQZ86cefnllz/ykY/c/8DdX/nKVz/7uc++8sorP/VTP7Vnj3Hz5qJgbGV5rVYbIcRodQaEkHI5JzjURh+bHEpg20T7MeZyOQjVgQMHRkessxfINx//9qlT58IgnpiYKBbL1epIoVDKMm5brm2HAEjTNI8dO8ZYetttO89ferHba0RplKbx4cN3/Nr/+eulYvXYsRPzc8uf+8cvUmoiRBBWv/RLv2A55vETx5aXVhYXF9/zvvccO/rayMgIY+zUqVP9fs8yTKWUaRhAKSlYr9sWQjz5rW8dufO+er3+5LeetG0XAAAhljLDGAOkixNh2bZGRREhXKL15S6BLcGJY/qa/Wa71u4920fHxxYWllbWNv7Zz/2Lhx9+uFDMFQp5KXm/F4+OTDcbrb/99GeDILBts1qtZixZXl5WCozWxm3HaTTrg24XIcBYShCVQvR7g0EvBgD4Xi5jaZZllmVkWUYIRgB6jkswNU2z1+txJjnPDEo5E2EYnjt3YWNjLQxiXSf7vl+pVMIwFp1eHMdaNgoAEkIxJpQSvV6vUMwjhDC1TIu2Wg1IoIEdxlLTJAoKy3Yd29PWHEopnjLJ9IQSJVECIRRQYkyFEEChmKUApevrdQhxPu+XSqVer2fbdrlczbL/P1//HSXZdd6HojufUKdydXXunjyDGQxmBhgARCAIBjBJJGVSNCVLFpVpiQ7yste1nnTvW37LvtfXz0825SU/6VmBClekKIoJBAmCBJExyANgcuocK4eTz07vj13dGIDkrT+wGtVV1VU1Z+/9fb/vFzKtRn1EoVDAGBlPNqAhVEAbSaOGQEMpVZZlDnaklNrUk1AbvBgjlMRpnCZSSgMrG7jJtu1dCwsD15jKk3MO0QgwNa2Z5+V3EWfzZgzgq7SEEGIMKaFIoizLCo6HEELEjPkxhihNOeccY0opiaJY66hYLBoY12DNO+YnEAFIMJNCWcyZmpy55557PK9g3htjTCugtSbUMluH1poQYog4UmoAzIdFWiutNcamVzLcodG7hRAaSH0Xdza1KDbi0J3mzdDpDHi1AyK/5Ys40kshBG+y4wBSGbGXSUc0viJaa8tyMMbD4VDJtNEcxmm0tbVh2+7iwnK321dCbW1tKc1d18bYOP4hyjDPRi5DwyB0LDMsoGkiNARKKctyhBBIIw35LvFiRA25aRgAgMKYJknCHJtgprWmjEJEtNKMWUJnhBAIEGMMAoA0CPwsl3PSJFpcXOy2GxqMkJZjtxx2XZcRmi8WDHVj8ca1brcbBH673fY8jxIkhKAIA6ww4BYGFgY8SwCUnmtxmCggMdQQIkqxZVEaUKJ3zF7RToDRT2JcvqNJ/rG0sh9lSe80GAAYi4C3g2K7WPOuWBhC4HkewZBzrpTUQqZZLITQSjLGyuXi0O8vLS2Vy8XJyUkIlWVZa2srm5vrd5w+NTs72213arWaxZxWs/P3X/77d91z1x13nIBQr39pOcrk8aPHodJRFEvJf/pjn4TY6nRaM/MTcdITKjx6y75r1y9/82tfz7luwSv6g8Gg72d65Ao3OTkphV5dXWWMTU5OtlqtjY2Nu+++26ClBkeO4xhBzRhTSgueCiHTKI7jqFAoCJFhbAEAWq1WmqpOv7d//0EIse/HGmHjQFerVVzXXlhYIpQVi4Uslb1eZ3f6BCEkRDkWEkJ0Op0kSTr9XhxEds4pFLzvf//xOI4NWdhQipQChUJhu7Fuutl+f4gQAQBphCHBUZgARAxYxjkPw4BSevXqVQSJsXCKomhra3N8fDyKQtd1jafqtWvX9uzZc6h46JlnnjHYXK/X01p7Xt7QXaXIjNLTVP9RFGkdG+g5SZI0TQnBaZqamYwQ3EzYpJQGwo7jVErJmGXbo+RAQpAQBjHXEGIpZc7NA40QzIxdieljV1ZWHnrooT/7sz976aWX/v2///eWZTUaDd/3jYKVUjocDp966inf9xcXF5VSExMTp0+fnp+f/+hHP3rmzJlOp/PQQw996EMf/t73vkcIPnDgwPnz5//gD/7gve958NgtR29cXRgbG9u7d+/m5ubq6mqpXN7c3Bz4Q7STg6SUwhgZ7tjBgwcRxIPAT5JkOBy6rg3QKIHTSKh+0s2ASnpnjbwDOLvZ63z3wWAHR3vHGoQQBEEUx3Eu56YpGg6CIIiWlpYGg95YZfp9D37kzAvPASC1ImO1ySRMEFZLS0tASWaRLEu2t7fX19eEksViMY6T7e0OQqharUrFjepwa2srChMppWU5pud3XdcQ9qGGCCHbprubtVJqz/y+Xs+MNOw0TcNGQymJMXQcq1gu3H/ffa+8/JoR5gRx+Pjjj3/2s5/9Z//sc7////zfgiDY3Ny8447Tq2trSRIRQqAmjJFqtWqF1Pd9AEC32zUG5b7fV0omXMiEQ6T9YWiSQIwRKiHEZA5EkW9ZFADAM0kIsbAlRSaECoJEShknoePkKKWVci0Ih8bfw0hjECJBFBlCHIDKcLUQAsajgFLsujbGMAiGrusWy6XBsDc+cciKM9u2r19f2NzaABrm8/m9e/e+8cYb6+vrhULh4sWLlNKpqamZmSnHstM0bXeapjgwZ2SUhltbW2rHD6RYLGkFKbSGPd+hjstwHMdaQyCVzDhGiNosCALLsuCO8aVl0TgJt7ebxWLenLJKqTSNIUCO4yRBAHbMJc2/l2VZU1NTjUaDUjo/P3/nnXc2m82VlRWt5ezsbK/bSpJkdXW1WCy1W62NjbXxicm19RWe6Tjh586dnZqacnP2o498+66778zlnOm5UhQFjcZGo7FVLJbHxwN/GGSZKBaL5XLVqVWMBSqGIApSLcXs7CwAoNfrUmKNphcKIAS1BhBgDSTQaPdMgT/ijHzzvFOpt+7ZET/tOCO/Y+kp+A5xgN7J3vyRxfU2Y4t3LOd3uF78pIf96Go1s1g4cvZ461iEO0/fvUdwQAhCGAAAkkT0ej0hRKFQYIzZNmUMcq60lkJIszBrNSdJnCAIg2BYKpXy+dzm5mapVJBSNhpbhvtp2Ww6P23kL7kckFI2m9uvn311ZWUligKkwQP33eta9rDXn6xPmpm/wQr7/f7m9nAwDObn9m5u3ti3b2pp4UoQBK3G9vraKoSo2+1iTLVWvd4gTVMECUKo1+t5nlcslnu9HrPp6uq62cmVEkHoV2s1UxafOHFbHMeXL19aXV39hV/4hcuXrwRB8OCDD9qu854H3js9Pf2DH/zg5Vde2jM3Oz8/32g0NhvbCc+oRcIgZpRWS9WtzYZWmhAq0gxBRIlVrXoDv5/JFGMcRWE+ny+Xi43GFsaYMaqUtCvFcBgamgkAilmU8wwCnAippLQYE1ATgtIksiz6lS99uVjK28yKoognPAxDE4OO2Gj3AwBEUVQqlSilAIwuMsuyCoVCEqdxEqU7sekWpQAhQ0KpVqutVmvHW0AxxsBNvIwsy4yIwZS/poDOkoRzYcSbacqNzhEj2O8PCzm30+05tnXl6vVKpVQrV24sr0gIXNdVWZYEQ1QoMNvSECCEXC9nZRwxprkGUkmlAAAp52GcBkHwgQ8+dN8D73nkkYe7g76xdx9xMymJ45gxprgw/UyhUAiCwJQBcRy7Xi7LsoxzKaUhTQMAjH9uoVQ0YehKJWaXM6pAs2kDAATGQsndQlwCjhBCAAiZpXHMCCFsZITteS5CQGtpuNJxjLIs4SpzbQ/scMcwRFkqpqamGCbnz78ZDIZawyyVQkjG3GPHji8tXojjmGCaST43swchtLy0qgBTSgGoCIVCZBApL+8Sggpld2Z+RikltBDCkZKHiR9sBhhjO2d/9ev/cO3aNdt1zl08+/Lrzx88enhm3wRIokHc2WpvOI7jVVxCSKO3xXmKGKpMFCbtmm05EMJ2b9txnD0H5wi1IYTlcrE2Vrlw/lK/38sk9zxPCIUAlhkI/EgIUalUxscm4jje2l73B0GtNlYu11ZW1sMw1FKHJBwM/DAM19c3TZtkriWl1MnbTr366quh3+JcIoSgAkopgpkxPXNdN5/Pp2kqEhGrNM1iRIXgqlquQQiVlDyDCGWdThsR6HkeQohzGYZDz81TSgVUpgcmhFQqFcdxCEGWZQVBkCSJFMLXulgYmXSbNCopNNTI9wMhOLXI2JjFGEuSDGMKAMznCn4/klxiiLMsU0jpYJTnLqXGhJiWb5f1L7HcdZw0P8g0AwpAiLQG7XZnOPQti7muLaVcXV3NsrRUzZfLRQjB2toaItCmnhCKZ7IV9oSQjLEoSi2LIagg5FrLvXvnt7ebQTB0XY9QCDSoVssAqCCIKKVK6TiOKSZxGEENJBdGlwBHyl+dcg4hDOPYci2NYJJEhJj7U9t2LMvChAihut1uEATGCL5er/thQCj6xV/8BcbYl7/8dy+99MLc3NznPveb3/jGNy5fuuA4VhQHYRhWKuVSuZClcX28Nj5ZB1BHcZjzXDfn9Ae9U7ef0FovLS30er0wDM0YppivSqm73e5gEDp2Lpezlc4sm/7gB49msk8ZGAx73d5WueIlUbqyssAYed8H3vuf/8t/15q3O42NjYe7/UGrubixtXr69F1eruS6uWEvrE/UDh06tPfAPIY5RHUm06AfLi1fA0DeedeJc+efkqA08DcvXz4fhDyfq29utBrbXUqcK1cvfOtb30pFahGr0WhMTEz1+8NWq+PmPc45wth1Pc6FbedKxbFadTrn1Kvl2WplWkPbdRAEdDDwEULHjx/Ped7m1ipjbHZ2en3z6nNnzs7NT/aC4dPPLp647Y44SQadCEgseFrIFc+++vrBffsJhgXPKxcrjLHP/fo/e+mllx555EsY4zvuOL291dxcW/+nv/wrxWLx4Ycfvu/d99fGyi+9dObJJ55WOqPElYr//u/+Xj03/Su/8mutrd4T339qaW2h2W6cuv3WG0tXz1+6CCEeDAaMMK0UxejKlSvXrlxOlBwOh6+99tr09GzG1aOPPfbeB9//sZ/+aYSQ63o7+nHQarUsy3ruuedK5TxCyARjZBm3bftXfvnXGGOPPPLdbreNCSxXisyCSRpAKBEmCiWTM2Obm5uPP/ndarl2/7vvunFj8cEH3/czn/hkGEaMukmYGNbjUATlasV2mNK5Xq+HIORcYIwtQtM0HQ6HWussEwgpAAAhhDl2oVDQWoSRn6SRma8AACRXURTZlEoptebmstdaaw0RQnEcGvxo11rKtWyj7DHsCnOIGCPHqakppchj33+8WK7cf/8DlFKAoJTASOnfKrdu6o+k1AiZBI4RPqW1xgRJDTAGEIGMx/1+r9vtjo+PR1HEoSYUVQre2NiY5EIIfvL4cce1mttb1VJeq6y1td5udzc21vYcPHzk1uOVscler/fMM09jjAFUcZy876H3fe8Hj37ve4+Oj9dt2y6Vyk8+82R9bMK27Wq1ViqV4jjO0gKE0NjEGbWoVkArYJyg8vl8Ke+VSrYGoNf2v/3NR9MsKhXHP/tLv37LLbfEcep5BZ5J5mDj7b61tfn8mWeUUpcun+8PWu++/z2VSvXa5Wuf+83PT45PZ4ncWN3+oz/8436/DyDqdDrHjt3ievmnn37yYx/72Le//S0p5c//3D9ZWly+fv36hQsXhkOfUuY4ThBEEIrnn3/2lVdeQggSwq5fv/7scy9laZwB1O/3MbYmJiYMJui69sGDeykjq6ur29sb+Xy+WKxRSnmarS03JCcYMQ1gsZg/dtvhUsWjDNx26tbP/4t/tXffwUqllqZplkXMYq5lNxqtP/3TP7985eKdd94RxT4XsRB6c3OTWcS27Uqpurm+FUeZbbOcW4rCMIpSBCnBVEqphAYa5nJ5SkceEQYqxQhNjI8DBYeDGCigpBZcJkm2tLSSyznHjh0zu2sul4uiqNluAY1MEYUUA6OGOojjWEpeqewFSDNGGCNcpTzj5XKpVClblpVl2fb2dhiG3W4/TVOZCQAAAlhIIQQHhEAIpdSWYwuuhOBZljELJXHWanYM0GzmpnEcQ4D7/V4+n69UKoa4YCAmCAhChDEMFNSKA2AwVqMZRWjHW8xEI8RxLORotG/qyXw+XywWzdeCMTaSoJ31qDnnzEJqx5EZY2oeYwhbGGOIRhY6WmuINIIkSRLLpo49Cl4WmTIMACklTwUAEGEMEIQApFna7/oASQBQkiRAaSGUOZctSsybNPtbuVyN/MCt1ZnFFAcaaYO3AgBMkjqEGu5AxoairCGEcETIMN8G0jsKLWQMM5QGchQEjZDBZwEAWsNdvZ0SEmETZD0C3G4mQO/8rJSCu7W3kEIDDQmGUEMITe5Rp9OJosT3/U6ngzBL0+T8pfNJEkVRtLXVIJBWKpXxyQnfHxbyDrVsx3HCMOz1enmvaNu2lBwAar5zSlkuZwVBYpyFhBBZllCbUkqMpcmOGdHILYgQAqFWSuXzxThNAQCUWABCpRSjrJDPpYpBCMMwjPuh1jpnOysrS83tTSDEWLUyPTVlWXR6erJYLEIEgiDo9XoXL5w3KhaMsU2JECLv2AQpm1BAjAJS8DTRSlbK+TRNlOQYw0xLNCKGK1Ptc84JQEArAN+ObUH4zmb+LTLXTff8WGB697lgt7c3dioAQPS2Xhzu2vbfROOSEjiOVSxY5lcYgG6vt7q6rJVQCrquXUTFXq/z5ptv9HpdjLGC6sLFcwih47cdMwOZIAiE5GNjY1ykL730wtmzL69vrKytbeRy9nvf+/6zr77e6favXV8a+tFPffwTjebG0888vvfA9KFDtz3+w+/s3zt7z713nnvjfLfbjqIEIegwJ4qinJsXXPV6PQCACTpvtVoIoYWFhfHx8b17954/f94k7Lk52wwizElpWdb8/HyxWBwOh4bykCRJPo8hoTuWqfjim5fyZa9UKiAEamNljOHWVitLJdUoigQAykyftNaUWghJ44QbBKEWyisWKCWEsCuXLjcaWwcPHjRuWQQRcxTl3Lwpvp1ybrw+HsdxmqZAIymlyUIxEgCE0Pj4uNY6iiNzD8YYEZzyDGKEgDYOEgih559/fn5+nhAWxykAKXWQSRVL04wxG0Fi2KMGLzN6HymlYZrsLlvDcHKcnOu6ts1MtdRsNgkhWsMsSxGCzMKcKwiB5lJKSQiDELbbbTRGhBC+7++0GdLsRLVa7ZFHHhkfH2eMzc/PE0IWFxdd10mSZGNj48EHH1xdXf2Hf/iHer3uOM7ly5ePHTv2/Jkzhbzned6HPvShKIobjcbq6uoLL5z5D//hP9xzzz2PPfbYlWtXh/2hbdtxnG5ubu7bd+Da1aViqRQEwfPPP08JKxaLx48fz7LMdQv5fL7ZbK6trc3v3VMu51OeS1Pu+wMpJUKeoSL+2LUD3o4j764O8CNA1WjJwBHlUr+dpWn2QyMWk1JGUWR4zRgjQxBTChw5fOLQ4Vtvv+Pur3/j77cbG5zHlpNDQIgsJTZRkgMAut0OIrher0kp2+1WFIVjY1WTjmhABKCRZVkYUwBAmmZzc/O9Xo9zkSRxwStgjNOUB35EqcWTrFTK3XbbbU888YQxfIAEEw21Ro5jz8/P5wr2lWuX0ywmmGVZorUWgl+5cvnkyRPj4+O+77fb7eFwMPQHhrLBiKO1HPp9QrDn5Xq9Xrfb3b9/f61WW1tbDqPBxOSYlKLbH7qW3esN4lgxi5RKpTAMh8MAQkgIS9MMYxwEkeu6GFOKpBAq8COtNbWoUkaXg8brk2lmiOGqWCxzKTWEo0GiUnEcm/3dqJtt287n8wAYkYsIhkMuxdmzrx04cPDo0WNnz55944037r333r/92795+dVXvvvd737+858/e/bsl770JWNkORgMXNfd3NxM09RxnEqxpLUeDAYudqMwMeBLrzsoFAp5N5/PF/JekZKEc4MIAUopQkhrCSHJ5XKEkHa7LaUslYpJEhHMhsOhCR8Iw9gop1zXYxRqy/b9QAhJLDY9PW3IKUZd++Uvf2V6evIDH/jAxYsXe70eIcT3Q9u2JyYmIIQvvfQSY/YPfvCDYqly49rCc2deVhLYDi0Wcm++ebZUzjsOnZ+bITZaWd7odporK6u5XP7A/kNhnExNTiNU9P0BpbhUKFiOY5a/GQgb7QhGqed5zKZvcXsBAKb0e7sj849dOLuL5R2n0i6LeZdo+aMPBjeddzff+aMv+Nbjb3ri7mvu0jnfeTOW0juv87YPokZvb2ezfOdTDTFHKYAwoJRYlhXH8fb2thBibKxaq9UIQRhjExzMOec8FsKA+8U0TdI0rlZKpWI+iqJyqYSMawYjRsvGGFhZaTUajcuXL168eP7o0VuK+bxSilD8jW98rVgsj42N9ft9QyyFGFXHatut4ebmZq/X45xbFr399pOXLl4Mw/DgwYODwbDZbBKqAEBRFJg/xXkqhPrIRz4yP7fnv37hvyGI+/2hZVGvlMuyyA+GvYVrtm0fPHC4VCp973uPra+vtdvtP/3TP+WcR0HEeYoS8PRTTxg2zdHDh1zXE4KXq5VisTg9Pd3Y3Lp44YKXK6RJQlqIS5mmqRa6UPBmZmYQRYThZmur0Wj89Mc/umfPnsd/+L3r168XC2WIAWEUKGCoWBhhwogQQimBEOA8wYjGcUgcSwhh2yyLEzdnW5RpIYMwopQ6Tk5rnaYpAhBTatgiEkLTSBSLRUJG8SbGJo9Ry5BEjBjZolgjxGyPMUYYlVpBCDEYRZqYDgGYahdCQgzoOtp/bNvWRj8kgVZcaoUhElwax8DBYNDp8mO3HK1Uyr1uVwGNKZVSAghPnDgxaDctluOc9wMfGndCCBUQQglGsJLQ8OWdnLvVbPzFX/zFtRvXm8328ePHH3rf+//7H/63NE21kIYBZNsWF4lxRTBj8lHg4U4QoiGPaAiklDwKOeeIjJoTCLCUQnAhpcxSIaXk3MQ8SPMK2LQ7cJR1o7VmjCGEhBCu62ot4zjWWlmWLYTIF/NKCdezD07tC/yo1eraDgMaUUw5F5cuXoFa27adZdlg0Hdsz3Ncy8mPj48tr+Bmu12tVhHCnV67VqvWJytRHAwCnzECCSsUcp1O49iJ2ycnx69cuWIVSLFYDIJgYWFBKd3pdARXnld4+NvfDsPQ9XI2YpCpWrWSCj9RqeBhvzco5EtuMbeysmJZjm0zzQAkwPUsy7IajW2CmVQqGsb9cIAkhRC6Tq5UKkxNT/BMBkE46PbLtYppLUQmpRLNRmNzY0MpFcexEIpiFvqR5KpWGSOY8UxAgPNekRJLSkkwjmXKqC24unDhQpqmluVAmImUE0qBHlm7cM7N12smlIoLl7mxDF3X7bS6o9mJDTrtQANpAQMKYy5FlmUp4hBiITIAhYhj23EKhUKapkmiXde1LSuJY6CRksDAK2maJnEcxzHQiGdaAUko4aloNpv5fH56elZk3MwnzDY4Eh0naa+fWJZlmmcDb5mO3TzM9NiUEtt1TJHJtJRSqh0PMnOZSakJZoSiSqUy8HtraxsYgzSLS6WS4P3Aj6TUSkIICQRUcImxLJVKhAKEQD7vlauVN998c+B3pc5cq2RUzIQkWmgIAVA6SiPLskxUpm1bI9UtwQhDi1mU0qHf17pYLhd9f5hkSS6Xi5Ko3W7Ztl2rjRndA8bUkDHb7W6SpR/72Mduv+Pkm2+chxA88MC7/9sX/uDixYvtzvbevfNe3l1aWkrT5ODBg4cPHfB9f3Z+xvWcreb2cNgP40AIUSqU2+1Wt9vrtNpCCNPNlsvFVqvj++HhQ0c3NrYa2y0nZ9uuHQT9+QP1o8eO1MfL//APfx+G4ZFDhz2v8PrZN+b37e+0B88+/eqp228vl2eSCObc4qmP3HH9xtXLN84e2n8ojJng2PVyrc76wN8u5kFzq7W2vhL5gZd3avX8d7/7ne3WUq44EcatcqWUZv3Ll6/YrHbpwlJvEM3tn0MIFore/PTeF154qdPuSaG1EoQJIbmNqGXZnfb2tx9+NEvgL/7iL915+3t/+P0fIuRBbVNChVQI42qtVq5UDK63vLx84eJrCEf5fLHd7nIgkQZTE7XVdLMjwu2tFX/QGa/UMYCNrebB/Qdcy+WJqJZq+ZniD773g2KhfuTIkV//9V9fX19fWFiYmZlZWV0aq1fHqrXZ2dlPfOITd9999/Nnnj372rn77r/n0L7jaT+Lw+QDD33wp3/q4//b/+v3F5cXz51/PclC27NyuVyv29dUAo0cx2q1m1mcaEqEUs8///w99z5w7NitZ55/8X/8jz9+/tkzlNLV5cU05Y7jdLtdr5CfnZ2tVCqXLl00ZBpCaD5f3LfvAEIoTVOlxHA4PHBw3y//8i9duPjG499/VIkUAby+tlmrjlmMVKtVRq2h3yMUXr9++VsPf63V6uyd2xv4cRKLarW2sLBUq5XGxsYuX75s27aWIzG+6bY4l8aezuwPlkUtSiDUcRYbCBVCiAmxLQsjJKVMoxQAQKlBi6DR8jPbwnhEcjSwlzFONPxHMxIbIewaKQnShA+GwyCI/sW//J2jx47l8wXLcoAGACP8dl7zW2XXiJw4EmcTAg2pGRsqgQLNxgazQMqHmXAP37KfI8ez7RzFWRL7wdC2qNJWEAcba8vLC2nUbQMlgrD/+oU3fvj8U/c+8J7Tpx/I5/OHjxw8ffr0a6+9sra5cv/99xWK3tVrl//8L/70nnvu+fTPfmZra+vA/kOVsdpg6NfHZqIoCqMg53paA3OOa60xhv1+aAwJi8Wi49hpCtbWWo2tfqk4Xi4XPviRh/bMH6xVp5Ik4ZxblgWhLhaL29vBy6+8uLGxUizl/aBTrZYf+uD7c26hXKhO1Cf+63/9wo2rS+Vy5ejRY88883SSRvsO7C1Xa1/8i79+z/sezBerd9x+z/Hjx/v9YG1tK4lSpZRWOOfmozDrdvqlUimJRRynjFmEYN/39+ydwYj6fnj81pPve98HkiR55ZVXHnnkYctmW9v88JGDk1PVfMESQrSaHRvYVONmq50m3M55SRrEqe+Hw9k9E51ep93tn7947uzr52677eTERD0VScaT/RNw6HcWFq988lMfu//+e1984flHv/dIFKcAKjVU6+vrW5sNx8lZ1MYQiUwG/SgVklJk8oSl5BCrYrFYLOZznoUQ2tra4pxjRHvdQZYJoz9MkkxrEIVxHMf1er1YLLuuV6mU4jgeDPw04fV63fPyxWLxyoUbg8FACJGJFGM4Pj4+MzPDbGpZNMuSSW9SCGHb1jDw2+329vb29lbPqLeFkARTJaQ5RqHGCGCpFEIAQ4KxllJDiCWXCMAsybRSwTDkQuTzeWQRpZRl2YavqZRO01QKDTSCxkQaEgUkxsogKRpCrTXBlFCslIIASCGFEFmaYsIMUdfoewymbJxgCSHmoDcdqFmAnHMlgVKqVColSWYi4rWWjuNAA+ICABSCo+mRJhRpraHSQohcLgeA0ju5ZaYwM9BtmvAsFVprzIDBdjEk5k8DABizjdMsAGB8fDwc+nvn5kcoqsaI4JHVpEaEGL8IZeBds5kACDRGBnE3INUIEIdQA6n1KD1Ya40wgGAUHWxgdKPoMpsMYsBwodVNJtfgLZdnYNhERui2i5KZjxAEQ4RQGIbb29sLCwtCqCAIojBp9PqdTitJY9tmjuPUJyaBhkDBTm/ALDw1M10oFDIpDLhBKU2i2JAsAcE2ZUEQYmTMdkb8ITAKe4QGbAcA4pHt+MiwQggOEDRVkJTatm3XzSWZgogMh8O+39upkXQpX5icqA+6UxSqudmZUt7zcg6GutvtXL18qd/vbjUbu8HdSAPPySGotRIUEWYRpSSEWnCOIcS2FQRBmiauzYztWIxil1mMMSl5kiQCaldKE9kEf7Rpv5lRtdt7m57/5jtv7uHh2+XARuZsCj+4Q0rfBaB3Hyb123pqCAHUIE0VxsjMEcbGyoyRVnO72Wz4/mBmdooQtLKy/OqrrzquxYU+cODAcDgslUqdTgdDZOBgqdJ/9Tu/LaV8/PHvnzv/upcr5Dzn0e8+zjN58eLT8/N74yTqd1uLNy5P1MulvC15dOXSuRfPPHXwwP5iMd/t9m3HkVJlqSSYQQgNj8zUrEtLSxjj06dPmwMyjuNKpVIul4vF4tDvd7td43o+OzurlEqStNFo7LgbW5OTk5zzVre3tLRkWValUJuZ2bPZWMcYSiUWF9ccJwehDKMhwQ4mwMW2lFqIkfWMEJnWWRwngivbcrnmhNBarWaoi9vb21EUKSmr1equBaSBmAkha2tre/fuzefzQojp6elGoxFFgeM4GENKied5hBDBh8a2wjSB5iMHQWA5Nh/6juPEcXz+/PlcLg8AoAgTQlzXbbe6ruu6rtftdoFGZra2I3wYyaYoQkoppZGUyrJplmVKac/zIIQmYNpMtyYmJtrtdhAEuVyOMZIkGaFQAwChFiLDmLbbbcuytNZKKVOIQwjjNPnWtx7+2te+7rrO/Pz8q6++agibZol+85vfIATPz8+9//3vK5fLL7zwwvnz53q9bn1iPPSDIAiefPKpe++9N0mS5eXlcrly+PDh1dXVubm56emZleW1xRsL169fd5zcP/n5X2ic7rz62muEkL17925ubJ05c8a27VqtprU+fGQG48m1tbXt7eb0dJ0xhJDlunUTi6xv8qh5B3P5HWObd2jq3/Hg0Z07LrZvRWKM1C6jvDJzyGmt6/W6RnBsYrxWq2VZVi7WvLxVKBTuuee+1157yXbohfNntdSZ4H4QVspF2/YUUJTiOI5brVYY+o5jAQAWFq8jhCYnJzGi7XZbCEUpM3C2IYxDCHM5L8tSCNGRI0dbzc72drNcLg8HwSOPPEIpLZfLYRITOvIrnJ2dveOOO85dfN0Q0ziXURgPBv3x8fHr169/4QtfkEDPz897nvfiiy/2Bv1SuUgIkZwDoClFGY+FEJZFh0PleZ5xGTM2xJwLpUCa+oSwYolIoYNwqBWk1JJSKgmAJkJISqkQSmupEUYAmDxfoJEGqtVqM0ZzucTzPIyAqfDUjlW/UkoriAnEGKdpprWOothxnH379jFGL126BKDKeIIwRoi02+2XXnrJ1NC+73/xr/7y+vXrL7/88tLSUq/XGwwGp06deOihhx599NGltSXbspI0arfbvu+/7z0PBoH/8muvYow5lxhTzmWj0RIlmSQpJZZSwOwnUspOp2MKdHNIJ0mCCaSUCiEhxIQAiHS32x8bG7OsVHBlpAa7iqF+v1+fnEjTbDAY3HLs6OzsrMkMXF5e/uIXv7i5uel5XhzHly9f3jM/PTk5FUWRlApjGgTB+XPnlldWtebFUklrff7C677vz89OR/GQYD09O6dVPOi1jt921MsVbNsZw9VqZRwhBIDudrtJkoyPTzabTaOwFgo4jjs2NmZbLkBASk0pNKEXO92EBuCmOOGfQBz+sVgzhEDuBPHtrDLjY/W2U+wdK3H0Im978VEPo96pLdA747S3LeF3wtY3/e6d01wAwI+TMuy+iIGbIQRKAqVVpVIolwtBEG9vb3c6HQjhxESVMdbr9QxHnosky7Jur1PMe/l8XiuOEAFAGx6NMpR2AAkhlKJeL9je3nzjjTcuXjrf63VvOXr4nrvu/MpXvnrx4vm9+/bcdec95XK1NxgMBoNKreo6NMv08vLimRee29y8USx63W5n1W8Xi/nJycnVlfVSqVgo5AdDf1TqIcSY3e/GxWL50sXLly9dcV1PiCwMg/X1zVvKh6rVan/Q42nGGCuW8mZ4c/Lkyc3NzXPnztVqtTAMzl84Nz4+fvHCpTiOK5VaHAVDP8SYHjly5POf/+enT53+73/4X4UQ+/bu/fuv/APEGCAJgGKMmtXX9/sKSCNJieP4+eef39zcZIxlPGHUllIChKjFlPGC01prxSUnWhOCGMYKQ6kk0oonqcUIAEBLYT4agtBmlumThRBQQuzYZudMkiTLkk5HGAvXIIiUEiPml1CEjFxlR8oDrQeDgXlNIQQEmAtBySiD1xS4lkVNhyCl1AgSQpTUmUwRGr0OkBoSiBCymBMnoUrTUrkIMdrc3tre3IrTxEEFrtT81PT+QwcvRT5PwlSJsNNOlJZaQa2FVlopy82JTEOMMiEQIp/5zM8XiiVKrNm5PcbOu1Asd1ptriSlOE1TpRRxqBlZGXaGqd2NM+wOBwcaUyMzRDesIuMZrYRJB6W7IDXcUXHulv5aaxObprSpAYQC2kRT3Hbb8SRJtptbubxr2di2cxNWvdttA4ykzKQEWFMESL0+0e/3leAYUyESQlgYBRLAKMm+9rWvfvLTH5+amX79jdfiJJyqTVg5Wh0vKiWVFodvObS5uc55NjFdESotlgvUQpeunYMQFopl4lAlQaFUiuMUYOQV8nGahGHY7rWLJa9sFQfBIIoCmYixyQnX9eIoqU1MRlEUc0EZSiSPglgOu3EaY5QBhYGGKk00hxZzhNK2VOOTk/1Ov9FoEkIwQBBoCJBSSnAlFTeS8zThhBCj/aeUermS53mMsU6ns7GxIYQihAAwEs9CCFutjud5UAUYQEAIY8zEfhj0NsuyIAiMbZrp2ShmcIRHI5MsCgHgXGEsi7abZVmWZMaxBEKltVZSA43iMOGp0EBatq2UcuycLsBut6uUytKUEYsgGvJIcCUlp5RiAsGOQ1cUxEq0MSYY0VKxEvmRn4WmnGa2JdORx7GxlNllbQMApJQaqN2+2jRgGCFjdqc1oAjblo0QSqMEQuDm3eEw0ApIrgBAlNherthu9pTQPJMWcyCiBFuMwTSNO53u5GSdEIApoRQdOXL43LlzjeamwyKEkG25lk2RRkIIDJFlMbOTE4I1BJRhDWEYhn6YzNfmq9UybqCUJ4QhZltRFCQJhFADoOr1+tzcfKvd7vf7lmVJKfOFguu6445z+fLll156iRByx+lTg8HgK1/5yhtvnC0Wi45lIwRKpVKxWJientYKFovFOI1WVlYmpidLpcq1G1eFEBa1syyLg6harfq+b5h9QogoTCFAvV4vE+n8vpnt5mav35qcrd122/E33njjgx98/9jY+OLi8osvveJYuThOt7aHqyvr/98//pOHHnpIg2yr0fnUz35mz97ZGzeuDQa9N948K4SAErfbbYLy07NTV65cTNM0ioNyIf/DJ3/Qbjf6/c1P/eMPQhxeu9FkzPNy0LbiC5euF/N1oEmztf3QBz7kWrlLF69BjYb9IUIEYhT5YalarlQqhFj12ngcyPvvf2Df3oPLi625PYerlUkISSYlVKMsuyRJbNsuFsuuk9/cWu31Nxmz+sN+hgHn/LmnnvO8gs2YP4x++MT3y/+odueddy7eWAnDOO/mtYK25Ump7333A8dPntizZy5fqB2/bWJqZp4QssG3bjt+0vM8x3E+8qGPaq1zdqFemzpy8DaorBfOPHPs6G1bW83t7cahQ0euXDuPMCnXqhCpXq+XZgkAoFIq5XK54aDPHBZmQilgWc4LL7zw2mtnEWSVSqU/HAz7g2KxWK1We73OT/3UT737wfdcu3b1tddei+PkH/2jT5bL5f/0n/7z6dPj4/XJv/zLv+73++HQxwSee33411BlWaSUEjILAhX4ceCvAo0CPwnDcDDwhRDbG1vn3ngjTTilVi6XRxADgICCcRw3Gz2tJYRo1HBBtJOFIAzUkqYphBohS2sdhqHSI9TY1MmWZTmO4w9DM9szxElKKRfc5OWmYMR2Mqpchk06CHUcC0JoCm+EkG3ZUspmszW359BnPvOZkydP9Xo9jJnl5IQ0WAEAAKibqyxjQoV2ijQNtAIQgzAQW9ubcRwOh32psuGwPzZRyXnk0cf+4WMf+9iBo3dpmWjEbAcPhtnA72dSuK4bRtGeyYmA6EvnzlkWm52fHqTZm5fOTc3tOzV96r4H7iuVSpe+dOm11159+pknIISe566sLIVheOH8pa2t7X5v+PGP/0ypVBoMBqVSSUpJCJASEAKUAr1exDnnPDUWKJggrYFUoN1ul0vjP/9zn200Nu68/Z4oCSAEGBOtgRBCKr6xvXb12qWFhas5hzECx8dKUTZIkmT/vkNn/Bd/93d/79WXX7eY80//yS++/vpZKWWtVvt3/+7fLS4tPf3Mkz/7qc9Uq9WcVbrl0JG//bv/a9hPHdvN0ti2inGUbrS30jSmxK2NeQhBztNBGNRqYzNzU5Sy9bXNUrk4Nzezubm5uHgjin0NrNpYvtdrS8X37Z9dW92oVPNHjhzNwuyx7/1QATwIwlKl+O773nPvu+/qDVtCgdN33nPxwo3z5y6Zy2a7sZrPu7/+T3/rzXMv79k3/nu//29yjjs9XT37+guN5qYJNTX2SIa1KqUeDAYAIABGAmijkIMYRFGUpjHt4SgOhBCOnYsFHwx8CKHWECFiLFu1loSwxnaTEFIoFKanp2dm5iYnZwfDH0RRXCiUs0wkcWZoggjANE2DIOh0OnN7Zh3HcRzHcq0sy65evVodqzUaTUNjQhAzm0VhijHWEmCMlJAAQM4lhJAwlmVZmmWG2yuVRghGUWIrW0qBENJSZxnXWhPCBoMhY0wpkaYZpQwADTSlhGKMBVQYIaARRhBhpZQCCO42dGInYynNMnMUOo5TKpWyLEvT1PzW+F6O+lmtTfMouRBSE0LCMA7D0HVdU1LuOKBKqbhBig21gkBkagnGSJrGlmWZHD+DDFBiZanYJR1rrTlPtIIEU/OuLOYwi4zXxweDwcGD+0+dOlXIFaampii1IISCKwAUUBDC0czJLG1DPBilMmC0azRnGg1TACCgMMYAjOpqw9iQUirJb6JFQ0IMBR4AoJXSCgBTpL71GGOFqjUAEkGgpSaEAIB2rTn6/X6v1zNhM3Ecb2xsDIdBFEVhEAMASK7gFYpFXJJSOI6LEEKQ1Wo1z81NTderlaLr5eIo0Vq7tm32OoRQkiS1sarp5b2cNxw2zdcFIWSMSWA+JtyVOe5IyfVwOIjjuDpW27dvX7lavfvuuxGEW1tbUZL5fmjbbrHsYYxLBc+yrEqpXK/XVLZ/vFYZdDtrq4udVtP3BzzLKMWIYJuRopfnIuWcO7YdR4Fj2abxAVJhqNUoIFFqratjtWK5xDPDDSU2cQhBWmgIMcZUaeW6LnmrUdYjXuTN2LFSb9MXYwzUjlDF+AOMWl8FdlxQbpL578SaIQjAjtklgACCt55lgmJNd72rfcYIIICk0rstfaGQN5DoxsbayspKtVoul8ura8sHZ/ZPTs24rvvqq6+9cOalU6dOHT50iBAShsHE5BgAwrLRZ37uU1tbG9///uO27a2tNrZarQ9+8IMf/+mfvnjp/KPf+9bVaxccGxOqPvThD/zmb/zan/zJH9+4sTA5MU2ZjbCOByFjo2VmADXjAOu6bhRFGxsbxiPCxIAAAIxmv1arVcu1ZrMZx3G/388yrpTSUkgpucgIphBCxYVFaBAE49UpzjkGcO/e/bXq2NbWltn70pTHkTDegsOh77qWIfVksZRCYkwwhghBAlgcpYuLS/m8d+zYLUkapUlSq9VqtdqVK1f6/b4RFWqtoyhRSm1ubs/MzPT7bQjhyZMnO93WysqS1lRr3Ww2p6enLcvudrsY4ygaMNsyShm+Y0JvvgTHcZIkIYRYOcuE5E5MTJTL5Y2NzU6no7Wuj02Yvcz8dddmYcgxY1JKYQyJNIIAZ1m2vd0wLsOOYx04cCAIh4SQCVqvVI6USoVGo3Hp0hUESa02MRgM04RrLaXicWKOFi0VJ5ipnaRvjLFlWffdd9/c3Fyr1frBD35gHMEYYy+99NJP/dRP/eqv/moQBE899ZShAMzOzl65dKXT7W1sbr3v/e//weOPLy4t7d+//7nnz5w7dy5JsxdeeEFJkHJRLFdW19Yffex7Wapc111cXJzfu+dd73pXrpB/7oUzJ4/fVi6XXdcdq1cmJiYGfhBFnNlUKUDpWzY1ZsD+DgeAXXD5Jynu3xIBvMXEfAuwktIM4oBSUEpNKQAADIeBEMLks1Gb7gBVSCnlMCuK4jiOTp68be++mWvXLl248CqAKk0Tz/MgBvliHiEUBEMhBEBwbGwsl8sxi5gcOcfOQQg9r8C56Ha7SZwxxirlapJGhve6sba+vLw8MzPjOt76+mbCM0IRguTw0VsGg8Hy8nIUB/m8Z1S6ly5dunr1qiHBEUSN1p4r6TCrUCj4UTQYDLa2trIsq1bLvV4vjkPXsTzPzeVy/X4vDKVSwHHsjY2N1dVVrRWlFoIEQR0GMcaEcymzUGuYpQICojXUCkopMcYQQMGVUhlX0qxfk2xpetFSqYQxtiymNQzDUEppsmgxxowhrQ3hDhjfGLMojhw52mo1BoNBFEV79uyxbBoEAaFWPp8PgzhJkvHxcQTxt7/9rVarNTY2FgTDVqtRrZYxxo8++uhrr71Wr9f37pu/di1VSg0Gg/OXLriuCzTWGmBMDOuZMStKE60gpdqYeTmOY8J8peQAKAyQiY+kxBJCjPzLEMUYaqVbzY4xz7FtVym1uLj0q5/95c9//vO/+Zu/efXG9dnZWaV0r9czGJBh6w8GPUMfM3Odjc1tjDHQem5u7r57333x8qWZmZnNra2tjbV2p1mr1gfDThJGm5vaYvjS5YvXblw7ceLEWL3sDzo2JblyuVgoQYyFUMViEQLc6XSiIDZiBcYYZhYA2vd9QinF1FzwCEE9WiBGFqW11giMiCo3r6Mf+/MuuAwAIBgoBZRUUhtRFdQaKvlOwHf3LHvruTsLcJdkupPzd/Ofu+mnH5nU7h6mCO5aSL/ztN1d7zc//ebzEeyciRACgpGUQCmdyzlzc3NbWxvD4TCfz3sey+Vy/X4XIQq06vdavV5vbm4u44npABECto3jWGoNMMFKK8758vJiFEXXb1x+4cXnhMjcnNXrtc6df4OLeH5+dmJiplDwKMW1Ws0cK72ev7a21mhu3nvvXd/97loa94HStm0dPnxoZWkFaGk7NkIIY7zdbCgl9u7dv7XV0Fr3er1Ou5tlmeW4Wsssyyzb2RWp/MzP/EytVpPaxPN6hUIhSZKDh/YHQTA2XlNKbG5uHrv16K233vr1r32DMXt+bi7Nskaj8eij333uuee+/vWv33777VeuXvWDAYQEY5zKlDEbQr3V3IIQQgxshwZB8NWvfhUhdMedJ7e3t9NMcBFprRGCxWJxMBhohShmSimUIYyRlIpDjjQQUmsgGaEAAGw48koTjLTWQ78PATZYNoSac64gNis00pHIMt9XxnnJtm2EsNaSUgqByd5U5nxPsmSXyGwONYQQRsj8AAAw8kmwcxabkaqShmdBpNCmRAGj4bSAEGJGMaVra2sAqJRnmNGEZ7mct91sPPXM0x6jUGoJtJMvpFGotR7Nm10n4RlFjk2tKOkfPnwYAFAqlf77F/7w29955Dd/4zcWF5fr1RohDCEQR1Eul6OUQsNEU9wUS4Z2alpBQzwx2F8ulxvVRVpnGZdSWZbFCMuyzEi2IQSMWWEYmp1Ha00IVUpZjGCMKcNpKjDGQmTMMfWJllJymWU88fJus9n0/cHc3Fx9vFrIlwRXWxsNqLEAMvAjraBSoNPuGna5AiAMfYTQgYN7Z/fM5kv5MPXTNHZyThQFSW/IGPG83NLSjTiNIISlcjmJ4/PnL66vb3fDXj6fHw6HuVy+XK66bq7T6iZJ1u32h8MAIRCGfqVSKhcrQRBUihVdgFrBdqvT7w/z+WK5VN3a3qCWWy6WsIWzLOOci0T0+wOeCSkBgzBJEiFkHKdplKbJKDguyzKMkWVZBCEFtZSKYYIoIYBxzqGCUEECSRyEIuW5XC4OIgIxgUhxAQAghMhMUptShEWamemF+XeXSkCIEISYUnOBpWmKCdRaSSkBRBhDighGSAudJBnnqe1aCBIpte+HgiuEEMCIUkYg5moUW2TGB5IrqGWiUgQwxQwh1OsOup3+9PS0uVwxpkIIy8rZjpXxxHR8YRhRSimWkisjpHMsm1Lquq7lCN/3lcK717zhSSCEMIFmBzCrabdb01obX84dsGykjY38iFlEaG0xF2Nk2ZSnSgqAEMWIMOYAjZTQGFPG7Cgcrq+v5zxLKTkxNc4YmZubuXz5soZaShFGw3wuny8Vw6HvxwEhRCuIEFJQYowJs5I0KlWK9x69xwyJCUWtVstATgYbhRCOj493Op39+/ebPZNSq1arGY/RXq9ndkvTfdxyyy3f+MY30jQuFosbGxtKqdm56SNHjkAIVxYWkizDFEktzr72uud5tx67TXAuhUIAFMbzvU4/ihJKMed8OBxiTDlP3jx/bnp64gMffPA7j317EG3P752xHNLudL/73UebzWa1MqEVuXJ1YW5+v03F5UvXHZdFSa83bC8tX/2rv+qeOHHqk5/85NraSrPxxNBv53I5reje2UMHDs4+88STzeY2IWhjPeBy0BtsQsjDMMjU8MaN9aNHbwVQZRy3mt1mI5qb3UcI2FzbVApubzaU1ITYSikEsNCSIlIoFJeXV9dWt2wr98zTz104f/mjH/70vffeGwRD27Y9N5emqYE5lAKZFACR97z3IeZYL780pFT3esv5SokAtGfmwG0nbi2Xql/60lfW11fPn3/zofd+9MSJE+trG4kQDiaEgUE/cNxcbWxiYqIOII5Tni/UOE/n9+w3+3mW8UqlKqW8794HqpX6yeMnX3/pjVy+8H/8n//p4oXLz595Nk341NQMsRRiOkl9PwgoY9MzU+VCKYkiDYAauQ5mlFLbyUkBfv7nf+FDH/rQX/7lXxe83Kc//ekrly6EYfjz//gzEOB83jt79iyEcHl5OZ/P79+/f+nGwrXL17SCD777gfn5+Wq1+uprL09Pjz/15OOYwEKuvLK6lHGltY6jNPbFKMwAwp4a7N27txFt97rtxvbmxPhUoVDY2N7yPE8pwXnKiCVG8znDaRh5XNi2bVmWaRYM91ljaSbZhUKh3++HYVir1SCExktqd3ZoMxdjmGWZ69r5fC5JEuN0Z267+muMMVfCAEkAwEql/LGPfXzPnr2XL191cjlq+ZXamHFr3a2s1Ah80ADA3bH9bhHIOeh0Ohazw9B//Iff7/XahGohI6GzJAm++rW/HH/5VQL07MRUJe/1e8Mr1657heLefQfuv//+sud+4ytfvnz1ysTU1PT83Cfuva/Z745VptfXV5Mk+epXv3r9+jXzz+G6tlLK8zzO+dLSUhTFb557/dixY+9+93uAJggBAHCS8rxHOQeDwYgoUywW0zTOsswlrpSSWLhaH3eZnJoeW1ysSaHr9RrnOooiZuE0jd688Obly5cyHvUH3TQJAcwoI/v2Hdgzv2/QHXz/sccRIO9617uiMHn22WdefPFFm5HJycnDhw9/55FHb1xf/ta3vuPlCs8+dWZsrPrMM8/0Oj6hYb/f73a7jLGTJ0/+ymc/e2Ph2je/+fWpqQlM6LHDx/fum28PmpcvX7GYc+nShbGxsRvXFy5cPD81NaE0pxQPhp0sS13XKlfys3OTnCeYkfHpsRsLK4cO3vJ7/+vv2zZ9+vkf+v7w9ttv/9hHf+a9DyZPPfn09x57VOkk434Y6z/+ky+cP3+hkK+88NJTkxNTx44fueP0yR/+sBOGodYgTTNKk3K5LKXkPOUizVJgdm8jqlZAFjzP9/1yuWjb9uTkpGVZ3W7/ypVrECCptBQAIQg0ElxIJaRUvh82tpsGhDXkvF6n53mFRqNheL5mZC4Et2yrXq9HUfTKy695ebderxfKBSnlq6+8UavVXNellBEsIQA8kznH4ZmEUAEFzelnXsfw+hGmGBuLAxtjLGSWJJmUnBCidRzGCQDAmHOaaZnnFbSWjDHBgVYKAgwARwhpBRXQ1LDuMIIQmNNNcLWLmZrlwzkfyeC0VkpBjBQYWVKYmxjlihOsZZqmnEcHDhyAEPn+0DAAzIgXQggwMJAoxhhBYN7Y7qcz1YV5zSRJTMlnliQhRAsKkHE7wBAAIcT8/Hzecz3Pm52dv/XW26SUQCopJYJkZyGPVrSGABNsQjK1BBBCy7KMz4bacWQ2j0doJHcYQeRS7iLOBmTAo1Q9ZZp6OfKqJUmSEMdRwpjCsZRnQEkAgVLS2H3wNOOcpylP0zQKk62trU6nI2TW7/ejOG61WuZjEsLKVUdKqVhOSq4xrI3VHCc3NTVTLdfGxsZKpRLUnBIIEMFUYozDKLUsy9juUZoz/DnbcizLEqP3Y5uCGSJoCmattRDSMGmUUvPz8/fcc0+9Xh8fH8vlvc3N7bWV5U6n47peuVSempiwLMu2qWVZrus2Gk0tud/vnD/35sK1q/1ei2LkOhZCwLKoge8ghI5rwUSbEQIjlDIMlTY8YACAqQk1BAhjpYHSII4Tngo3l+OAI0gQJEZJjBGW8uaowJuMlcEONHbz/2oItDKE5RFbU4hdaSf8UbDs5lf48VAaGrHUTB+uRoYyEGgAISAEGgRNA4AxbLfbg36/WCyOWdW1tZWzZ88ar4A9e/aYzNxhEDz3zPNjtRqE2naY0okGfHOzubq6BqCSUvZ7A88r/srHfvaB99wbh8PhsLu2vmhbCGjeb/e+98i377rrdD6Xj8J0MPCFhJvbLQDQZK1ozCJM+2SwS8PcMUBYlmVTU1Ou6yqlWq1WoeiVy2U/CG7cuFEuVcvlspS+lAIgZFPKOUcU+b5vnDTmZ2ZzOdcPBlkmrl9b6PV6lNrdTk9KXa2O4THaanWzVAAgNcgwwYQgivKmSnAcFqUJxkQpRRkjhHQ6nWKxWK/Xa7Vaq9UKw5AQoiCK49hxXEJEHMeNRmN8fNxxnH6/v7a+gjE+cuSIoTEOh0GaZsYWII5j3w/yANquYwLEzBI1FYDWmlKczxc8zxv6re3tTc8rcM5932eMeZ4nFYdSQwgBVEpkJqjQ7LNKEVOpmEvQ7KoAgCyDnU5HKm6wvFqtHEUhpWRiom7bNkIkCAJMIM8M0DzyEDA4OCHE1OiFQnHv3r1PP/30nXfeiTH2fd/E+P7yL//yvn37rl69+vDDD09OTpo97tChQxcuXFhdWTOY+MMPP1Iul2dn5weDwRe/+MUHH3zwoYceOn/+4pNPPo0R/ewv/XKSZGfPnkWQzM7Ottvdc+fObaxvHjh8yHXdTApCSKPRwAQVi8VMyDiONQT2TVYAP+l2sz7ArDL04+jM4O3JYzffubskKYVSAghBPu+5ec+QiAEAppKzbSaljuOhH/jMBucunL92/VKv1+71WlLxnOdYjEKokyQxDqRSA88rVMr5OI6bzeaRI0dybn4wGLRaHRNVnyUcAqCkJBh7bj5f9BqNRhAExWLxmWeeGQwGGFMphRDS81iz2czlcpVqSXek1vr+B9597doVAMCD73nfE088EcepbQETcZAkidYgiuJut2ucQFzXnZqYRAi02+3aWHF+fj5N42qtsLGx1Wx0EIFcCCklBLrfGxaKntYSYya4CoP4wQfunZ6ePX/u8tLiarc7LBWr5XJ5c3MzDAONNQGEECREJiUuloq+7wuhDAvj5KnbbNve2tpMkhH/wvSlw+EQQm3bduRHjDFzhhk6mJS60WgYlhARJAqTKOn5fjAcBL1er1gsm72iUqn0ej3btn/3d38XQvh3f/d329vbBw4cUEqsra3Nzs4Oh0OlZJIkg8HAdb00TV2HVsq1brdrMl4BRibhBADg+z7nXEq+S/kHANiUjYp7hdI0U0rlci5CmPM0STLO+XAYHDp0+FOf+tmVxaVvf/vbUkqGSZZl9Xq90+mcOXMml8sZv516faLTaRnfqCgIMSXGfLZUrFy9etWyrOvXr09OTlYq5cWVZc4zQkipVKQMb29vIgT6/e7hQwdO3Hb8S3/7Zblf7N9/sFgqxFEGFBgOB1IqhEZurYyxYrEoIcjnizthd0BrLQTkchS/tjO5MVNn89NPXFk3L7GdxbI7VTUI7s4M9CbF5Tuf+BYM/VbdAwDAGOmdpBel33oFeBNh+WYdzzskC0CPHAZ3/+iP1Tq8faWPXlAIZQSmUgKpRJqmYRgCAMzYptfrtduy3+8aOx2M5cRE3WjCLl06v7a2ft9999m27dg51/UYI5YDOp10a2sjiiLfH1CKPvKRD73x5tk48l9+5aUnBsODBw/yTG5sbMVRsn//QYDR+sZqHMdze2YvXDxXrdVOn77NtpNHHv4qBune+T3LSwudTg9C3W41hJKe5yVJVK2V+oNeliUHDhy49957nwC3ifoAAQAASURBVH32+QvnLyZRmAnuuAwhpIVOU16r1ZRSly9fTpLkTXB+OBxubqwZa9pOp1Ov14v5woULF44cOTQ7O/trv/ZrS0tLZ8++wTMxN7/3scce63Q6rmO9+NIZhtmBAweGfb/T7GjtGC86U1BiirIsHfaGx44f/cQnPn7x8oXV1fUoivL5fK83KBaLCmjbtpM4EzLDGOcLOcfOtZutgwcPIITeeONNs9AQ0BpAnmYGUTVKIMaYbTNCSMZTBEY4lzk0EQVxPGppjKeEbdu2zZIkQRgyxiDElJJM8VEZrbUp6C3GAAAmTM9047vQPGPMsViaplyagFCptNot0BFCzCJEoSxLgiAw1AlmEYRH5GjMqAYoTNNS3hVpLHn2qU9/5triypkXXnTsXBqHBGGCCQAgTdP3vve9juPcddddl69eu3Tpyic+/o+eeeoJ04RorQlmjNoIA6mVqccQBrvfifG+N5wax3FcN2d4IzuhfNpsXJQSA0Ybjad5lpFam/JjpObWAkBlrCSyt7wCxeraspBSKWVSAYRwIIR+OORCMAsVCvl+L0QIIwx4xLVUAEAldSazLMssmx679eihI4cfefRbWZadPn1Hs7m9tr6CCAx8nzHihwOjQEQIRVHabLQ9z3vggQ/+4MnvNTZbOc+LI57E3KJMKSXSLMniKAgJIRZ121udeJhQi5RmKolIlpeW0pS7rpfFGc/xNOEIJWYPr9fHclYu0WmlRDY3t2UmM60ghEJIraFI1e73yTl33YIB8QEAxu0USAEANOwSSg2jFiqljDIP7gSi7go7TCdm9vMwDJMkNQ8jGBlPEg6k1kBLaewpEEKaa6mkQlqa8MuMQ4QxphgTKTVCBACuNTRjA89xGWSpTJVUlmUJoNKUSzlyV3ScXBAEGFOepEWviDTq8A7GwLIshFAURQAq27aFkFmW+YOh63rj9ck0Tffu3Xf69jsuX74MIWy0WgZZNmIjAIA5vrXWAEJzIeXzFYyxgWiV5BBgRoz3FDDei1qPojil0K7rZpnB9xMIIUYWggyALPAjx8mZoOAsi4VQQWeYcVsI0R90Dx05OD4x5rh02OeN7e0wiLMsjSJfSo7ISJwrgYAKEoKUFrZr1WpVx7W6/V6r1XJdWwgehqFSghAyNT0xOTm5ubHdaGw999xz+UKR85QQYpIhlFKtVocxls/nd7VlURQZH7lr125oKfbt29dudYfDoT8caq2pRVOerCyuFSvFQqFg3DMqxRJGZt1RhBCllue5/iDyw2B+fibOgoXVKx/8yAN+fHJsrNrtdaTW/WGwd8/BdruLELv99tM/84l/9Md/9KUsBY6Lch7qBXEYda+dubyysra+3rx69arjYISpFNp1WcKjQdiWKkrSwfNPPiNkduutt45PlsrlfMqzjIt2a7i61pqc2Idgg/MQAtVutytj08vLy4VcBQDEMBMaIIKyLCOMSqkVV91u17ZZY3vrWw9/45Yjx/r94T/+9M95jvfyK8+OVccqlVo+n3fsnDmmlUaUUErtD37440cOzQ/97iPf/d5rZ1+amd47NTn76quvcM4xhpiiTGa5vFcdq0qpIp52tjuU0mKtHIXpVqtdr9cxolJpiGjeq0AElEYyE4w5UGZ75/aO18YXFhZKpdLs3HSpmL/vvnuXVleOnzzuFdnffOmLUiZhFCAMPNsrFAoK6mHgFwoFTGCj0csy4Toes+1CvvTud7/7wL4Dv/RLv5Ql8ezsrNLizLPPPP7k4+VatV6v33vvfVcvX+x12itLi5/6mU8899yZ8fHJQr70W7/1W0WvBAH46Z/6qccf//7XO984fecpzlMELUZIkiRAgywGShElIcKgVpkY9IJmo21YEdVqNQgCpcRg0Ot2fYyxwgIhpJTQRm6vRgWPSfZznDHTFSKEBMgghEZpYYLvMMZaSD3yix+NGxVXSkGAoJZienq61eoEQeA4OaVUHIdmQ5OSSwAty0qSTAiJEeWZfOqZ55JMnDx5cnx80rIsuUNt1jvKzp1ZPhyVZ8DE6mhofqtBvVqPouDxV17d2tpEWHT7PcsGAAvbxY3m6lavV69UtzeuEYAHXb87DId+XCy+3O10eo3tsy+8wCg8NTU7DKMXXnn1vQ990MbW8vLSm2++ef36NT2y0lIy4xhDAlEaJ8Vi+WMf/elWqzMzM5PP5yhxTQ1gWSQIxfZWA0I4Pj4JIbxx4waltFDwhBCVSlFKUCqVGEhsG0jJleZRrCFUUmULy+u+P3z++eemZyb9Zk8pdfLkyULBPXf+TZ6B69cXH/vOD/K5/Pve98H52T1nz54tevmnn3mSUrqwcP2P/8efVKvVf/2v/83JE6defPHF5589Y5qXMAy73e7Y2NjHP/bJ3/mdf2nbtsXIm2++WSiU7rrrLse11tfXLl+9urhyPQqTiYmpNOWPPfZYEqf1ej1JgpznKKWCIGCMGhZOt9sNw5BSWqmVjlrO3n0HPvShDz393NN75g9gohEhGuh+v3/o4IGzZ8sbm4vVSn5jc+XS6xel1NevX/v93187fvzE5z73W91+71333nPtytUbNxYOHjxy++23p2n60ksvbG030zRBcGRbKqXUUGEEhchmp2aKxXyhlKeYhGG8tdXAiKSp3O0pjC+zlMqymRBZFCVCCH8YGA6+kW6ncZZlGYAj8BQAQhBOkixN0ySNG43G0uKK6f21hmEYU2orJSAAWSqyLNNCAwWV0lopU/wY1ixAUEkARQYQxBhDiA11DyIAIRZKplFmdEUIEiUB19LAL1rDLBvJ3aBWEEKptRzhbwQhpIHKMmGcQxTignMAgJR658zKTN1ICME7xtYYol3v5hECK42MSadp+oEPPNTpdF544QWltElHMGwVrUZ1iBRaAzkClDEykjVTP5hKVWktRrFbI7YWFwBjLIUeQUAYx3GcZvG777v/wx/+cJqmRsSjuBJcMcaEkAghhDDEWCkghBDAxPKN0GQFtFJK6resEbXWI3x01wdj9I+gzLvCO0F/EEIJtJKSQIQxzrLMcRylFKYIKB0lsW3bjLEgCAAAURQ1Gg2RcQhhGMadbndjY6vRaJj0Mq11LufkcjmERlz7JEmr1Wppcq5QyNfGa2P1KqN2LpfHmDjM4pxbds5mSGrNHBsDCHccbinFSgmEkOd5UqhUcGbbEGOeZVxJqaTIMgCQ74dSysnJ8f37909MTNTrtXK5TAi5ePHi889fW1lbhRDef/8DJ0+eLJerzHYIIWmStZob21HYarV6vcHM1PSRI0e2N1fjaFguFgiGCAHJhRQZBIpQSgiVXACjEMLEAPSG7YUQkkADDaQCAEEpgBJSagw0spitlHbcnMiSJEkZY4RQk9NG3mGCsdse70aij8iYcBRKpvVbbE2EACHG3ORt3fLN8BnYOQZ2rznzFw03bJfSZXYBCKHko1fGZJfhpZWCluVg6vvDQXNxO0miOE601gs3lgB8/MSJU4sLy9VyTYD4S3/7d/mCk/F4fWPxgfvvWVpaWlvdqI5N/LPf/ud79x74ziOPHTp0+Pr1hYP7Zz7y0Q8uL55fXlqRPMMIJBH61jceJoyWK5Vmu4Mwo9QqFsr+YNjtdkulktYaI1StVjnnxVIpn88HQXDjxg3Xdaenp41/33A4jJNwe6sZxzEmLEkS3/dd1x0fHwcA+L7fbjZjHTmOs29fxZTF3V6TMVYul7ni62tbtm1FUXTXXXeNj0/cfffd3//+98+ePTtWLxufeAAVJB7ShNoW5xILqZSg1AJaTU1N27b1yisvU0pPnrrNaCWEEBZzDAHT1JT9fl8plWVZFAfr65GU3Pw2yzJKrU6nZ4S9xoDcsqxTJ06ura0hgqMgNNyQwWBghGlzczOUUi9vnJotfxhKKQuFgmky8/m8UUI5zEqSRGto5MMi1UZLizEGI+LSqGM0+RLD4RAhuLCwUCgUbIflCy7BLI6TdmebYNuy7DgOGWNZZjZTKUR24MAhP4haLSGEMNKGxx57zHRiEMKxsbFer4cQ+sef/tmvf+ObTzzxRC6X297ePnjw4DPPPbu+uvqxT3zi7rvvMc7CTz/9NKUTFy+ef/nll3/hF/7pb/7mb7766tn1tc1h4H/uc7/VandffvElAEClUoMQnjt37rHHf/Abv/Ebt912m+JCCIEghhgyxjQEZkB0M4HxnUjWTSjSzffLmx6GfjL9WWugINBqBNiZqOXRkkEAKIAxUkobcx+llJno9PrbEMIXz7z09a9/bbuxHgRD2yKOY1kUZ1li4NQ4jsvl8vTMDABgMGghhO65555er3fjxg3fD5MkcSxHCJWlwhwwe+b35Qu5tbWV9fX1XC5nSFJjY2O97kBKqZR0HIdZpNNtUUpnZmb80N/a2pJSnzp14vTp008++XSacowphopzCSHKsmxlbYNSqrTSWqVpvL6xevTYsdvvOLm9tTocdtvtNkIIY8gYtW3t+4FtOW7Oy9JEcAWgxojGsb9nz/73f+B9CzcWHdcyRV6WpSZtCVJICaYUl0qldrsNIcznc2EYAkAREr4frq1ueHk3SVLzcdROfoJp/qMoojv2VeYIf+2111zXtSwniqL19Y3p6elKpeqvrS4trigFXNfTCiwsLCwuLn7yk5+89953PfPMcysrKy+//PLy8vLRo0d/+7d/+5vf/OYzTz+5Q2WiYRhqrbUiRsfkeR4AoN/vjxggBBNJPM8z01QzeQYADIfDfL4IIU6j1CsWIIStVsPEiDuOgzHFmAshHcddXFh+74N40Pf/y//7D+rjtbGxMa6kUopRK4rDdrv94IMPXr9+PQgC1/VMBWnifIfDwHW9haXlW2+9dd++fa+//lqj0ej0up5ru649PT39wP33P/3006vLK0tLS+VS4cUXnpdCz87NNBqNZmOrUqlhjBuNVhJnqRD1sYk4TjnnI42hbaVpnKapZTu5HDGHN6XEhDxorQzQDEfBLwD9OHD2/2bJ7MDNphtR5tAZnWhwdBLBd/gp/8jNMPV2TrS33oFSGr89cXf3v7vM5bfeCQBa65sJ2vrtVh4/6XNRinZ/jqJISmnyZ9rtgQEx0zS+cePG3NxcPp9HKOt2u67r9Pu9JI0QgteuXQ3DcGJiqlwSuVy+04uTJAJASS0wRQcO7lNKMAbOnn2Vc95oN1ZWliqVsdmZ+cHA73Q6nPPrizfa7faBg/uWlxeTdOYvv/jK+tpCtZKDgCwtLYXBUCkQRVG+6Jl5zPRU/Zajty4sLK2urlrUXl9flZJDBBCC1ijrVbqu2+o2isX88vJqt9sOw7DT6czPzzOCLMvJ53PvuuvOlbXV5dWl228/2Ww2L168/Ju/9utXLl1CCBGCPM/9hV/4+Uce+W7gD9I0veOOUxiSS5cupyJFGBHCTFg3IiiOo4wnU1NTv/SL/zRK4jNnzrRard/7vf/1/PnzCwsLd56+65lnnonjmFEbAEAx45wjDIrlUrffsywrl8tlWQYhABBprSEGCCAzgRZCSC2hgkhDBRVl2JAphBBKSYiRZVEzuxLCDAITg24Ys/Usy6IoQRhrAJQGCEBGqDm1zUB099oz/dXoHlPsa5CmqRAZQgQirbSAEAopYKYJQYwxxqg5BQghzLLFyA9aZ1I4FFFmK60Bgpubm5VK5ejRo88983zRyyvJEQY8k5VK5W/+5m9uv/P02tpamvDBYPDaa69VK2MnTpx44oc/MDO2TAqGGefpjswQcpGZd2t2D0oZQpJzgfHIl9MwkgxUIaVMZLLbEpj9FoCR05/Z4ka/kiBV6a5zAiGMEJRlWimRy+VMiGulUqlUKkrJfr8L9FApyGUmZIIAmByfMPt5HMcS6GKxKBUXigvF19aW+sNuEASvvPaiHwyUkgcO7KuNVxkjQijO5ebGVr8/9INtLVTesy9fWhQJBILqDCoEsIu00J7jtjabgvOCl/f7QwUFhNjvNpljR0MuUQQhBFKJOE01XF1cIIxqwfvBME1jqMH4+LiFiQKSAqQ0VwpiTKRUBFPLgkKMRg6em4MQSsWhhkJwKWWWJRBCCCwDRsdxwhir1+uMsa2tLa21KcB2Wi+9SzsyDF+zGZqLynDHFBj1aaaiM1F70CSzI4IJNNchJJgQxhihmGGYag210ggjpI2xeLB76Zq0Hoh0FmdmkJBGsXkPAADTdZufOedcpISNpjhAaQix4zi2bZdKJUzg4sqCVBxjTCkhBBvbDQ2kBhphAJWZE2LGmOM4u9I3zrkUklHbnOPmNDHNp7kUM80BALbtaCAt5Gite92hzASFlGsp0gwVESEkDH2oUT5XKOQ9ZiGLkWAYlsukmC+Uivae+VnO+YULlzrdFiUWIzTLBEKQIGRZFmaU89SybK3Vm2++ASCKopDzNEljqBXnHCI9HA4550mcmd5BSskYQwgMh0PT5wOgAFBZliVJ8tnPfnZzc3N5efnw4cMrKyuMMYt6rVan0+lZlgUAcl0r5VkcJhjTOIiFUAQiKXWb9xHQ4+PjkxPTUnEhhOs5SiJm4z37Z7hOIOGZiscnK2vrK/mct7nV6HX9O++8ZzAIr129Pj4+/tWvfm3hxpVcAUjFO90mwqo+XtVAdrrbzz73VM4txAmcmR5TSgRBEMfpn/z//igZDA8c3EctiaS2HVitjSGEer2O4+WqY1Pray3PmYGAeV4hChPOed4r9rv9F154waY5BBlQIAgCBZSL7H63Z9v24cOHDQfwtuOnXn/99cvXXvr616P3v+/Dtk17/Wa32zl27FbbcgllUmrbdqXke/cdKpfcerXClVpa3LStYq8bPPnEs81uE2I6MV0+fPQwdalG2inYg8Hgxspqq9U6fvx4oVQscRj4IUA6zYxnMZEZUFoKriHCacoZo2ma9no9KUS1UgEINTsD27Y/8YlPUAa//Pd/s3d+zz/7/K/+7u//L1tbG4oIz/O2trbCMKzX65KLqamZ5eVlzjm1LCHEY489VigUZmamtFRCZvPz853m4a9//euze+Y//elPO46z/8D84UO3nDhx4tq1GxAp3x/cuHHjr//6rz/yoY8gRJ588sl6vXbPPe9+8cUzt9566+d+419++ctfvdG8USgUspQDLYuFcmN7+9rlpdFJguxaZYJii6cDJUCj0QaQagANSVwKjQDaRWoM18fzPELQcDjMsoxSHKWJBqMp4+zsbLVaNa1oGMYIIQCQ1tqyrEIhr5TKREqxyRPGxWJRCMMk1UopLTOllOt6jUbLdTxGESHM1J9Hj966d+9+SmmhYHE+otqYWZpSQCkNNUQImMrMTHoMOoUBYA54440bL7zwfJwE1VKZ60jqIOM+QioMOYDctiQAEbVyOWa3WtGJk8fuvvuBv/3y33/ta1+rlYpCg0G7/8IrZ7tDvz4z3e4FMxMTBw4cOHz48BNPPFEoFA7s29dsNh3HMiBUvT5x4MChz33uc41Gi3OOISQU2o4zGAy3tnpxnGJMp6amsizZ2Ni6du3awYMHDcIlhLZtiDGyqy6h4MbC5YtXX/c8547TJ9bWlx959BGt9fz8/Ic+9KGvfOXLxUL5Zz/1jwkF3/72t69cWmptdT/5yZ/dXN+Ioug73/lOq9XSQmZZwhj9lV///M/93M+Nj9UVAMNh/N9f/qNut23bdpIkruv+7u/+Lx/96EcPHTpUKjj/8T/9Z8exV9eW2+3mufNvOI59Y+HKcDi0bNdxnH5/WMgXgQb5fD6KQ86lxVzXtYbDIUI0jpM4TnK5nOu6cZyGYZhyceHChf/rS1/6wEPvu//+e5585vHvf/+x++677+WXXnnve9/7kY988At/+P9RMkzCaGpq0rLsi8n1RqOB8aXf//3/BwCgUChYjv1v/u2//cxnfv7ixcv/6l/9q9XVRce1c3lXpCBJUkwZJcTkw1Eb7zswLyVfXV2VUnNuIDxLcN7r9Vw7R23LYKCmiIIQm+m74ZNqrSm1OJdKKdfxMp6a6wdjaDhtaZpKyV3b1RAIIUXGKWJIY6ig1lqkIk3TLBXGTVZrqIRSSiFscjsMa0VprTEllFIAIGEWxjBNY601ociUOkAjIYUZCcdRapQEAACtFOccaA2BieyTI5YugmSnwCOIUkqB1o7jZFwabrKBpE1tZgIwMMZJmphPtztO5pzzTIZ+8Mu/+qv33Xcf5zxN0/X19e3t7SDwIcQE40xKKTSEWGsOIKCUYkY556ZC01pnOw4eJnN7VCfA0TxYCKEVNF1tHMeDwaBULvhhsLa2Vq/XTUo2Y7bFHACAKQkkkBDgHZNiPSLkwVGejxk17aCLN7Ghd8jO5l0BAIwP8i4VmlLKs9R8sUkY7XrAMkyoxQDnWZYtLCzEcWyqo+Xl5Xa7HUdpHMedTg8AwBhzvTyhI2u7YRiZWiJJs/Hx8Y9//OPK9oTgCAHCqGVZlmMjiAEkAMsoibkAlYIXBpFjWXgnL5HzFABgWRQAoBm0LCuKAwiNzJonSeJ57vj45L59++bn9xaLeUpxs9lcXFy8ePHidmOr3+/X6/Xjx48fPnTkXffeMz5e7/UGm+urve6g0WjEyTDLsjTNhBC1Ut5zmUVJvVaVIkMIKCERwxSMvuc4jh0nByGklCIAIdJKQgCRBlpDzAjhUkjBBRdSQ2oxTBmEGCGiAYBQ8UxaxI7jWFrawIzk5j52l938NhHxDmlrF/wlBEpp4shGrho3s7TA2xHnm3tlpUf8aA2MNvkdjTS+uXmXAphIKMmVkEmz2SQElUqVjY2Ny5evRknsum6Spc8//8KLZ17e3Nw+9NHDCJEXXzyTpEEU+xTLHz6elGvlW0/cduK22+fn94dBduutRx3H3rP3FscGCGXMQvmC2+9G3W4/SVytda8/RIRNTkx/4KEPnzt3odMbdFHToJO5XA4j2u12Xdct5POO4wjOx+v1XC7XabeXFhdNj+W6bqVS8f1wdnbWomxjY8PwRwghjLF8sYgAoISZFd5sNl3XTtO4WCwXvFK71b3z9N3GrfKXf+WXzp9/s1wuVyplQki5XOr1O5RSAiuNRiMMQ0O0MSc0QmBtdSNfyDFmFwre1SvXLcti1AY6M4e9lGZSJLTuLSxcP3hov2XT4bAPITEbkG27EMI04YnOKKXMIo6TQ4iYRGwDtKVpghA+cuRItVo1OqlKpWKYxWbcXSgUkiQjhNTrdUMuxgA6jkMISZLM7B2ISCml7eSyLMOYIgQZswEAQnDbYRhj13XTNB1ZW0qZpiEAKMvErbce7Xb7jp0rl6uU0s3NzX6/LyVgzGo0tgCkCKEgCBCavPfee69evWr+1QAAjUbjj/7oj06dOvXQQw/tGJWkDzzwwN13340I/vKX/g4h9LnPfe7hhx/+whe+oLX2PI8Qdvna9dWN9dOnT3ue9zu/868ty/mP/+H/WF5ebjQaExMTUzPTKysrjVabMUap5XneoNszu2eukM/lLLCT6LWzCvQuO3l3ovMOREmBt4zRd2/meEI3wU/q7b82uuNdriUAAGAg5W5GmTZXCCFYKR2GPheR67pSZggrx7EmJ/c3trcghFmWAQWNTxIhZLvR8PL5anUsCII77rjD87yzZ89ubzUPH74FABgMQ8FjxmyjqlteXj526y293mAXF8jlcpOTk91OP0miLBOtVnMw6EupbMepj48lnWR+fv7jH//4K6+88r//x/+z0WiZSCvCEMYkiWPj2wAhJIgRijAGvV7v3Pk3DhzYn0RBJnmcREIIBKmTcynLMWZHYcwY00CFYWgEp4SQdrv95JNPdju9wSCU0Kh00jRKuYi1llLBnJUXMs15TprwtbW1fD4fhrFlOdVq1SwHKaXjuIbTYfphI181cxrbsdPUnA2W0UB4nicEIYT1er2Pfexj+Xzx2efOYAwRQmmauq5nWfTixYvdbrfZbP7P//k/P/WpT506derpp59+8803B4NBu9MzQLbruubLhGAUrxxFkbHfsm07CIJ2uwswSpKkUCg5jrOxsRYEXCk1PT07GAw6nY7j5OI4hRBiTG0bEcwQJGkaI4QRJAgiyyJf/erXsjiq1+sQwDRNicUGg4FUqlwpKaXOnTsXhmGhUDAxoY7jYIgwo2P1epokY2Njp0+ftm378ce/f/jw4dX1tdXVVSHEHXfccezYsbW1tWF/YK6rC+cvFQolhOjx206urW5oTQ8dOhJH6Y2lpWpl7NWVVyHEp06dMqm+sUjcnM2ovWvHBiHUUlNmiAk/Jmbg/+Z2M+78k81qRkNQBN86AUerByq445jxjqeo0WKDxh5q9/38yKH2llHGj0LJEEIFgPEJuXnd67cfxODH/cr8/UqlgBAQAlBKkyTqdDr9fh9CPT093Ww2kyShVJqdOU7C2anpg/v29/vDzbX1LBPGGCdOk1aroYHMee7U9NibZ18RQmxtby4sXMcYh/4gTfiJEzO3Hb/t5ZdffXJjI5/PbWys1cdr169eaLebF86/lGYR0OnkeOXQwf0QgFqtvrCwEIYhIoiLRCkFAc7S2LZoqZBvtrafePLx8fqk41DDGpBacIGGw/677rxrYrJeqpa/9rWv7tu3b2pqYjAYdDo9x3GmJ8d7/U6ztZ3E2er6GlCw3+9/5StfabXa9VpFAXT1ypW5ubliMT8cdDDGKysrpVIJIWhZVEqNAZTCuBIjMwWcm93z/e8/nss5v/3b//yv/uqvut1urTr2qU/+7KPf/W6n3caIZmmAICSYl0ol3/cRBMZCBChACDZkUqil1oDLTISC2RYiJseDCy0AUK5XYIxBjWiEh4OAc0HwKCjJIF+EECml6+YhhIP+kDLCGFM74j4wipke2WXAHUMAU9PvNg87rOcRnYQxIiU0D7NtGyFDhZbmKjJFCEIoi2OMaJZlKs2qs5OIkjjjg2H37/7u7++4+55DB48w9opSCmOqlFJaEILnZmavXbv22GOPzc/P18cmtjc2S6WSbVkGLjFUeiEERJLupARrRTUcyaKRCXplLI5j4xXwNt8DAxyjEevEMF8MKGzASuO0gBASShBCDOFICKEUSJIEQg0A0FArpRAGQRCZcBupFSKMc55zXSX0zOzkcBD2/S7GYFc+qYCO04TztNlptHuoP+gKmXW6SkphuZZGUGtpWXmtkyTmSgGtsBm1Li9tXL2y6DlOpTjGZYYAaTd74+NjmCKtRBRFPOEIYiU0IYRAK/X5ZLUwtX+2WCx2Ot3zb57bu2eGMXb56pU4AgihYj4fh2G33bYo01p7OUcrITjAGCsFgFIQEsuybGa5rmvQUiWl0IrzDGNMqWVcjE1JZjhBQRAopUyYrfmnN40TxYQxw2mlpu8CABphptnZ4jTZ7e70TiSO1ppgakiORm1CCEGUIAARIgCALMu0AkoKwbkxizOsFqWUMXEy37lh14qdVB9KabvdNu9QAm3o28wqUosAABCA8c7uaDusWMx3u+04DrXWtUo1X8onPMviRGvFmEUINRQhAIBt2/v27UvTdHNzAwCgINAIIjnyeTRwg8GaARjFdWKIzQWpFEjiNAzDLJWUWAghALI05X5/4Lqu4kJJ6OS9armGkI6zoNXsMEbq9ZqQMA4TCOGttx598/VzYZBiTOycjRBxXZdzrrXElBi7Q9u2m602ACCKwyRJXNsyY1cza7EdVq/XlRKE0FK52O/3uc8LhVK5XC6VSkaQ8eEPf/g3fuM3nnjiic3NzVKp1O12jcw5TWNzdmOEbNtGCPl+ADRMYm5bOUpZlgQiE7ZtdTq9OI4tmwaR32yL/XsPjI0fSEQAVEYsFMT9xrU142lTKlbareGf/9kXxyo1pUCc8SCOgrBPMdhY35qdnY4TbrJqKe2UyxNzs/uXl5c5l1Jyy6YY42qtNHv0yJUrF4pFrzZWyhcYooASGnSC6+cWGHWmp8ZXVjYCP2HEwh4JQ//KpSuEML/vhyAt5CsEmemdyoiABC4vL7quK4Heu2/P2HhherZeqaDNxtXvPRb+i8//263N7rPPvEgIveXIcdvxMKYQAoxpzvXcXO7VN8/+2Z/9TwDQz37q5/7ir/6nnSP7D+yr1ccPHjgyv3ceQ9oZtPr9/vXrV7vdLiL08g09N7fHpTmlVRCqQqEENBQKIAKUhEoDAuAICMEgSaNytcRsOvCHjuMYP5knnnh64fqNOBu89tpr/mDgOLnhcLi2thaFMedibW19enp6bmpuOAw2t7cLhWKn03nqqafm5ub27dtHMfHyrmHP3X3vPZ7nLS4uPvfcc1qrtfXly1cunn3tDUJYrzcoFasGIUpTfvbsGwsLC77vK4kH/eDihWuEEMuyOu0uxYxzOTez9xf/yWcHg8HMzMzhwwevXr368Le/2WwMBoNEK4aRbQiFGCIIYRwnQAKjvNkdefq+r5TR1qg0FQZTQwh1OiMCPsbYtm2EAiUkhMCkcZmIYwSJ7ZAsFbt+/SZ70Dg0Uoq73e773ve+4SBsd3qE2MVCac+ePdVqVQiRy+XS1Bxq0Hg9wpEXKLxZUkYpAQAopTBCAIDBQLz++mtePme7+Or1cxCJOI4BlJCAIAiqtbLjWkO/95777hur1Su1a3ecvufuux6I4+zi+UtvvPJafzCkhDSaHYlArToxMT4Xx8N2u3PXXXe/+urr+/fs/cVf/MVnn32aMXb5yqVisWhK4jfefH1ifFIpIUTmEKc/aG9tNvL5ouMWKLGyLOFcuq5tWXQw6FkWLRaL9XqZc4AJcFxw5criy6+cSXlaKLqb20sScCnTu+56l9a6Wq1OT83fuLH4+BNPb2+u27b33vc82G63lxaWi8Xio9/9VrPRUEp1W21KMYT44MGDnXZvaXFle7vx53/xl2fOnLEtWi55udz4Lbfc8rv/7t9eunL5m9/62ubm5l/8xZ+fPn378upSvuBcv35NA84YyeVsACx/GBFsIYSSJFNKVSs10+Dbtp3Pl9I0SWLBGGtsdzCBCLIkSSFiQTD8b3/wX15/49X6eGW7uYmwOvPC049//4eEwE63lYQR1JbFijzlw2HgeZ5WqFKpeJ6nlNre3n73u9/9a5/91c6g+4d/+Aecxw+85z5E9MLiDcWRy5kB+zRUCELHoUE4qFQqH/7Ih7Y2t5966hmI0PZmA2hy333v7ve7i4uLpjoihGQ8wRhqE7AGgBnKqh2bMqOsUkppLU0FwqUQIkMI+X5oXA6MxYFr5yQ3vg1acqWEBkAqgJRSwIxPNFJaAgDgaNKplZASCohHsRw7g96ReakQYteqOJ/P41FDDCGGSmEpJSFIcJAkiQFS865lakIhBIYEIcQoLRUrw8A3JQHG2GDlhBDCTHSWwhhro71DyBRUxgvLcZy1tbVvP/wdk9WU94ppOU2SBACtlfEe1GbaJAHkSuNMZBkXQlFKFZCCCwghz+ROlzQiSWitMYEQYDhSpo6SkAxxM4oCzyusLq9kWbZnz7573nWfO+6ikYOilmIU32f+tPnBGCuakgXe1CkhhKB+6waM3TPAu7jzztAdGEJMlmUWY3EcFwoFy7La7Xaj0TDGIFeuXInjOAgCCXQcx4nx9aK0UC6lScYYC8OQc85sS2nped7U5DRCaH19fXJ6pjpWX+/0lVL5guc4lmFJZmkihJAiU5wzpot5F2LEFd8xH1c7RPUMQui6HiHEpFzUx2vTM+NzczOlUml8fLzXG6yvbz722HfW1tayLMME1ev1hx56aHZ2+vDhw6VSJcuytbXV55971h8GhpbOGCNYagi8Yj4IAi/nYgQtStLYNNpaZBwiQCnVAJjEOPNVQwiFlARgALTpOwAAXAqhpMUciIVKU0NHMGMMLkUYRAiALMscJ5fqBADEuSQ3w8o3N7S7DLIdvfHoYQhB4xcJbxIgG/skcJNx81vcrpt6eHBTT36zW+XN+YEYjzpzwz4b0eY1KperCIFqtVyrj+3Zt/e7330kCIf79x9YWljY2NjMsuz111/vdvtpGpcrxYlCft/+uWIpd/bsa5OTM81mk1In5xYow1k6KBYmu51NwQfMgn7Qsyx6+JYj/W5PKAkgTqO4eqByx+0nx6r1P//iX/q+v3///s3NTUPp1UpnWXblypVTp071er319XXP80x4nflXYcwOw1hrPRgMbNsZG6v7/rDf7xvaL0II75rIIFQqlfqDDkYkSTLazxFCW61uq9V96qlncrncufNnOc88zwsj33PcCqytrKwIEWOMMSUaijRNKLO0EkJoIUSz2czlvDTlAMA4Tn0/tG2bEGPCogEAvu/ncrm5ubmDBw9ubW0Mhz2lJGNUSgwA4pl0HIdzmWWJcXnv9Xq9Xu/QoQO9Xi+KoltuOdLpdAqF/MGDB7/yla+EYXjixAmRVTqdTr8/TKIIaNjvdPftO+BYjhn05YtliDHDlEudJMn83r0Wpb1er98bMkYdx/E8r9frpWlMKY3CpFAk5XLV9wcAwSiJC6wwNT0JNJyZmVtf3zT0TAPoT8+MD4fD9bVNIVSaZmGUaS0dx242t48du+XUqRNCiLW1NdNg33bbbYPBwJBJr1y5Mjc396533XP58pVKubp3z57tra3G9ialtNls1mo1zlMhsmqpuHj9RrPZ3LdvXxRFJ0/enib87NmzZqkvLi6adNdarbZ3716EkJv3tBiRUJQCQmitNaVoJyMdgp+AIsm3I0r67fiWWRfmNd6xTndHRLucTa2B0AopZNia5tSUI8tClGVZEkVKgdXV1X6/jxCK49h1XYSwUhoBBBDQSrqOJ/iQUqvfH3a7fTdHIUIvv/yyPwxNccmIjRElRHIuLcsKQ9Hv98+dOwchdF23UCoCpdvtNgDIy7tGbR2GPgB5iBEX2cLCgiG/N1utp5955vLlq+VyGSOSpRkGMpfzsnRXHy0ZIxBpCJVt21rK4bCPtMrilDEGNEySLE6iSnl8cqK8vb1tGkhqsTSLvVwhy4QQ4tKVq+96170LN5YKYex5WnB1y9HDW1ub+XyuUi0Nh/3t7SbPMELIODg7do6LNJfLG0mLSIVZtgAAQogQ0pQjAICxsTFCiJCZ53nD4TAMQym04GpsbCwMwyDIrl27sby8jBDCmEKAyvWaicRsNpvnz19ECNm2PRgMjB7nO9/5zvT09C233OL7fhQFXAjKLEKIUkhKCbQc+FFO2ggDGXFKGSEoCJJ8vuj7vm2577r7/u9973t79ux573vff+7cuevXr/NMVseK/X5fCGXU61GUAGAoXZhzMTI7UyqOY9u2OZcacc45ZSwMQ8dxjNVXoVAwO5XB2TVCvh8cOXxobGzs9ddfHwwGAAATyhyGfq1WOfvqq2+cPasVlAoQjO64/c44Tvv9QeBHc3N7klgsLa/kcsVWtzM5OYkgCcPw+PETtVotjKOUZxDKbhQXi+ViucwYEAIkSmOMsAn621lHJn6TEKAk+NHbTYLxd/4K3XQi7fJ03jq5dlYfHIXiQnTTIbj7YPNcBbRWQN90FMKdeTsAwAgLdpfq27Dmm9qht178Jkr1j6LMuzeMRsclF6MfhsOk0+mYz5LL5UqlUprGE1OTm9tbGoKpqRmM8fLyYs5xxmfHlFLlclkpden8uSiKjh8/Thju9lph6Hf7Hcum4+Xqffe86/r1q8889XgY+pxLiOAtt9xSKHrr66uc88B352anZ+cmnz/z9GDQLpVsLTBlRZ5FqyvLQohCvsiohfKIUNRuN/N5k2G7tbXVjKKoWq0Ui8Vbb73V9/1Lly4lSYQxXl1f6/V6vu+nWXzjxvU0TeM4HAwGmMDJibrRMbTbzcMHD83MzW5ubG9tbGZZ9uCDD8Zx/Od//hd5r+i6ds61DdA5NT5mYk4ZY2PjYyJT3U6fORbOOCHE8ypCiIWFBTdnT09P33/v/ZcvXn70O4/efvvtzz793OM/eAIBDLRWUkJEFVRJkhgXCDtnK6jSKMOIGLYXZVhlXGsNkU6SyIBlEEKlBGOEWMR2rXAY2a7DORdDIUd0UbAzA5amCje4HkAYIKR2tIcm0kApY1sJdhxId20lIEJQypFI07KYQQ93SBCCMeq6jhAiy6QB+yCEjuPEUQpAGidJvlimiAmeWJYFNAz80Bhuri4td9q9nO0kcQwplYDnS3nDjnEtVqlUmlvbG6trhULhQx/8AOfpAw88EATB9va27TpcCgK0ef8G8UySRAiO8K7dsMnOFgCAQqFgWDDGNwNCaLoQ0wihHbtqg4eaGlcIARAY+YRmGmOMCImjVMgMY1goFbNMGOxDKo4QYTb13AIAoFoqk1kqMr653tBCI0j7HT9JkiAK+aB38MjBn/30z8Rx9MW/+gtCoe3kbNvOl/LGwsXw1LJMzM/t2bNnX6vZaTc6BAqCWbFYpBrGQex4NlCAEOL7Pk1xoVSs1yccO0cgbjRaURADggAYeTERQqanxqU4nKZJxmOMdJqJXYw4DiNlSUJIkoZcJFoxhJBr0SCIsjRRQhoxk6GrG188E6RjDnrHNRGUIzJvq9UyF5jpZAy2i8AouseyLNt2TAPGU87TLOUjHr3pA3edOkxHKoTQUiklEYRaI4wRhFRBwDnXEERRlKWcMcazTKSZhFJyIYDCAGoIAEZaQi4EEaMPizFOBZdSRoGfCj4zM5OmaRj6hrUNALEoo5S6tmPETACAwWAQx3E+nzeTlZQn1Mp5nhtCTTEmmGVZJqUwVd/k5ORgMBgOB0bqa6hbOhth3ObCG7GxRAYhzESGECqXyxDCwWDYbrcNWMbY/5+w/4yT7DrPA/ETb6xbuXOY7skZmciJBAmAmSIlRlGWFay1LYmS7b+0tnfXlqzVWpQtizLXylQEg0RKoMAAgAA4yHFy7pnpHCqnG0/cD6e7CZCU/vNhpn411VXVVfec877P+wTLWFcpzQcDkaYxQoRAMuiEaZpRihCWxVKu3eob4S0hFkZ0bGy8UCp2e8se8iCEnudgQhjnAAIppdbK6CHCMCQUO47jeZ4SfHMr2LIpMAEMAADHsXzfJcQql0qcM4ypQe2PHXvm+eefLxaLWZa9/vrr9fpGLudRTBBCRk82VKkiBAQTSZIAAKQQvU5fKeU4jlZKIGGunP4gnd4xOTw8tLy4HEVWZ9DQKOun7akd4xlnUivbcpCFd+zYcfn8nNbQtq2brr9BAu16TqlUnBybKeSG2u1u2ukUKsHQkMYYAJBOTowOBoMkEZZlYQzn56/u3bFj956dfoB279uVL+S6nf7w6Fi/Nzh/8YJW6XAl6LT7nHOKAM+Sg/v3zs7OPvroowRZluVoqTKeYYiUkizNIAY3ve2Gh9790O//8e+fOXt8ZXV+dHQUY25ZanV57gt/8geF/KiF3ZzrdTqdQGjXy1mWgxAol4uLS9f+8A/+uN1pvuMd73zg7Q8kWfjf/vtvKQVyudz6Wt1xPNu2z5074ziW1nppaWlianJ84tD6xrXVxY19ew9MT89AIgkknOstfyQOMfEcChToNcKMc0yp1LpYytuWSwiKBumxY8fOnD1OqK7VV8qlEgDatWyW8Vwut3Pn7vWV1SzlvU5/bW1NcDk5OR3F8cjI2F/+5V8SgiYnJ4HWjmPZtv1zP/dzruv+2Z/92cLCku/JVqtx4cKlMIymJncUCsGHPvSBcrn8l3/9VwsLS91O36K01+sxxm6++bYkSZrNuuc5POM5P//xj3/ScTwEyc/89CfKpQIA4OYbbxUCPPLII5xBCO1yaTRKW1prx3K1BrblplGKMWZsM7NEbYaMQUppliWmLjLXMCaQc95qtQxzwrKsTKZaa4taytj7SGlMqwy+Zjx2EEK2bXOOAFBxHO/evfc//V+/try6qhX+0z/586WllXK5XCgUbNsmBBqggDHpWphzDTSEAMgt8dkWwmCmZYgQACXgPKtUKrfdfsujX/+7fD6/c9fUGydfAdDmKpmYmBaCHdi779q1a7t37yaY3v+Ot+eDytLSwvT0FM/YuVMnjx49evnypampqThl58+cv+22O8fGD7NMaIV/6p//jO/4rusfPXojIWQwiKanJ++79/7/57/+5qlTp6xbrPPnLkxOThKKkySZmJoO8m4+KGsNspQzJjzPu/nmm02ECUJIa2DZwLLAynLtiScfj+Kw2Wr1+tTNOffdf9f6+qqp2JOYlctDWaqef+7V295283/77X+2e3rPb/w///XJJ5666aabrly50ut2XdctlEuc8yRNf+9znzc50t1ur16vl4r5u++5Y8eOHWtra1euXPnf//2vXLlyZX5hwYyXXn755WIpTwjwcj7BGgAlBPe8wq5de9bW1lqtjuE+UUo5E0qpXi9SSgFASpXKRm1tZWX59ttvf/Bd70aIXLlybWl55cUXXzx27BnLRpVqcXR86Itf/CvXdl986dkrV65xLituUUrZ79T6/XDQjy3LabVaAABqEwW461snzr/+5JNPQiJvue2GoeFyu10fSyuKwzAMN+o1SGCxUIAQujl3vb46OlH9kR/94F/9+V+FYR9o6/777//YRz+lFPjdz/23fCGHMTbenowb2Teg1A2jgZLatm3HcZIkwxBppYRgQjDzpRhQWwENAHDdTRUvxhgBKLlQRquNtv0coFICAKi11kBzzpCRBmzhxgAAIYRj2QAoIRSEQAOJMbYsorWdy23GlgwGg1K5YELCDEBMCJdSEmwJzg3c7Hi26fS3NHZKa40ATpJk69WgQQPMyNkwGIzy3tAvjMiMMTY6Otrv940Tl23btVpteXmZcw4BNoRFzo1jmZLSgPIgChOWCYg2gV0NgIlzNLsBMG3UlhelabCUUoZz4Ps+JjBJktXV5fX11cFg0G53h6tDhFiWTSilLEkh2QxJkZJLaRD8TckC2PLoANq0YJtwh9bf68TMR40gAVq+aYNCUrIsywAGruuawgxI9cYbb/T7/bW1taWlpe1iVQihETQT92q1yjnXCPd6PcGlAnp4dMz33Xw+jwhGCPm+jzFeXl2DGBGLWpYlJFdb9spxnGqFAABaCaS17+cty6KexdIMAyy5YFzkAk8pnqWxgWgItqenp2+9VRKKPM8pFvPf/OY3v/KVr8SDmDExPFa97777xifGRkdHZ2amKaVJGM3NzZ3qnDAouWVZtmVlGYdaWMSGWisoEdRKcgx0GoUAKAiA1tKyNq8ibYIuEHE9S0imITAsAcOP0QBAjITalNkpvckJ4xlLksSykHm8ZVPAJcSYc86xsCxnenqa/GNt7Xbfq9/kLQshYMwk0kKtTdeEGdNvHS2A7R57C6rWEBjbuC3o+odhZ3rLx9moYxACUCNoOPQY7yiOx3FWq60TioeHh++88+7Tp0/OX1us1eoLC0tCiOeWnjtw4JDneeVCWWv+8kuv79u/a2R4fGV5bf++wy+++HylMjQ8PPLFL//ptx+nYb+hASuVvP3796yurg2PDRs4GADV6/Xm5i488/RTkxNTlWIwP3ftwoWLQRAMBgNCCMLImKWaYrRcLg8NDcEtHxlDzjXLNQyjWq1++PDhmcrswsL8YDAw/RWEkNqkWCjZtiulvHjxfBynGFMpVbVSdmzvD//gjy0bzy9c1VovLS8YMhTBVppmAGDLImQzFGWLZAeRme/kg6IQwqJuGIb33nuv1vrZZ5+VKhoZGdl2c+ZZtoTA6Fi1XC4JMZVl2dLSkm07GBNKXCmlQ7HigitJCFIMYAKNK1y1Wh0bG52fn3/55ZcXFxfTNMnn85cuXbIp6HR6ZsEnSZZlmVEfWJZVqVSMTsEwWWZmdvp+IHkyPFxFCCBKbMtljHU6Ldd1zVYuuAIAYGIZ+UCr1d61a8xxnMGgF4b9Wq0OIWSMj46Oaq1MDqxi4oYbrs+YfOo7xwixtNZ/93d/9xu/8RvVavU73/mO53lGp3b77bc7jnPp0qVGowEA/J3f+R2E0MTkZK/bbTabv/mbv3n33XfnA9/znNnZWTMGXF1d/fznP++6/traquu6DzzwwLlz5971zndUykN/8oU/a7VamFrlcllrnaYsTRPfcRElWm8bzkAh9PctjDeJO77HU36zLEBpoMxc500LUOtNt/QfXDhiK4UJAGBZxMLIrCBz5AEACCGEwCTJ2u22VqrV7D7zzHPXrl3Tiszs2Mt5Nrp3bGlpod9tE4IRxIwJiIkQUbfbzRXyaRZfuHBhMBjkcjnbdtvtjpaAEhsARAiNothxHCk559yyLN/3IYTYIkzwVrvt2DaASirOhbIcWzJZq4VKqY9//OPveOCd//k//+darb571/5afX12dgcA4NSJkzt37va83PLyqtbQuChaNqpUKlJlWqvV1VXFskIxGBoZWV1dhRAqpbMs89wgjuNqtUoBYiyVAr3nvQ+fPnX25MmTUiWvvfaaCWQYHR3CGLoe2btvJk4GhErPpzt2TK6srGsNU8XTNGWZUko1Gg3XtTcTS0RmEGfTIWutGGMAqFqtNjs7y+NkbW2l1xuYMO4wDO+66675+fm5ubnjb5xst9uO52utKSWjo6O9Xq/b7RNCSqVSoVBYXFw8ffosAABC3G5305Tt37/X87wtGFcqpYKgYEIePM9RWqdpgjEBNrAsK45jhEiasPe/70PFYvHb334cIbywsHD58uXrr7txcXGxUqlEUZxlGYLEti3GBlpLQogQTEqttUAIQaWMX5XrugJsXku5XM6Q0Qwrx2DxWirf9zPB0zT58Ec+Mn/t2rFjx3bv3j0/f/XatWsKyF27diFE0jRFkPh+7t3vfs/x10/s2LETAuy67s7dezw3H0Zxr5985+nvSqnedstts7t2Do+O2LZbbzYAALlcrpD32p1OvZ4NBgPX8XOFguMQjAEXQGsANQBaQzP81D8ca/7BNQXeDEBvnkhbkDOE4C3/bt7ektl8z2t5eyq+CU/DbWIz3H5FrbeqHgiMe+A/xk1+8z1vfthbJk8/jI69lVkLTbJ5u93LsszkzIRhuMldcPJXrlyxLGtmZoZAvb6xigHM5/OtVotS6vu+77tcsJdeeoGx1A98reVGY3VtbTWKBwdn9++YmnYdZ+/uPa+89vLRo0eDoLC4OP/000/XNtYIITdcf+Seu26TKn3jdehaAKpkeGRoeLh66uSJJEmAhktLS77vl4plP++GYT+KBkFQEJL1eh2M0I4dU5TSXr/VbDZr9eVdu3bNzOycnpnq9XqnTp3yfT+KB1kW5zyn2aorJaZGRm3bXltduemmmwCCg8Hg8uXL/X7fc/w/+qM/4pyPjIxorZcWV/74j/94ZGTk8IGDaZqGYeh5Ns+YlJIJ5vkOZxJREiVJlCamQ77tttuEEI9/+0mMaBJny4sr167Ma6Uc2xOMKa14lmHH6ff7lFLDZDH9cJalpkLVWmGLikxpBIdHRgEAURIrJbBlDw1VFdC9Qbdd7+bz+VKl7Lm59fUNU4+a80Vrbdt2kmTGwphJIYStpZBaGwLFNiXEbPIGd6aUGqzKdPWciyDI+b6/DShTShlP8/m81rrV7Bis1pg7awgoJhAioBFPM+K6lmUjSJIsBgAkSUaoG/YH7VaXIKq1tgkABGRZgjGu1zf6/b5kzLYpY8ym1sMPP5zP5+fm5r72ta9highBnDOgMADM7JZgq+8icLM8NTgyIcR13dHR0bW1NcOR2fbTMLzs7YWGvhe6DZVSQkmojfATGvQTYGSocMVikXPOGHMcWynFmRRcWTbqdAd7du1O01hKmSUp4xHWJCj4UQS6a+2J8Snf9yemJk6ePjU+Pnbo0KF+1B4fH0/T2PZcI4Tq9/sG+1NKJeGgUirkc7n5awtSMqVlNBCImKDI0PGtnONjDMdKpYmJqbA/aDRalmt1+j2lVLFalEiurq4vLy8Heb9YLFoWyTjbuXvX4sLyIIoa9ZZZ2+VyOW9Z+UKxWCw2N3oiYwohpQRnaZZyCKG5AguFAiZEQzMHFUxwjMkWEZ5LYewppTFeNOEiZgxAMcmy1NAJs4wZ5U2WZUJJSqnJXkYQCcmMwmabYG5ZFtQQKgKh1lIpAAE0ulQwGKSbnCOmOWMUY9PXaQgppeZdMcayLIMIQYK10IRaiBIzRNFaG18gTAnESGk5CMMoCX3Xq1QqlUrF4OZRFAVBICUHQJtzClsYIu24FkZUcm6wdcdBlmX1+/04jjDGGkGb0kKh0O12M6khxlpJAIACGkIFjDwUaISBAbkghHEcmcsp8PNpkjCWSsEIIRAiwTOCTZwAZr0EYeXkaJoI25aDXlxrbORyuaGhkTRN9u7djRFNU5ammYaAc+66LhdZq9WyLJrP5yGEUom8F4yOjpbL5W671ev1TNxrqVQqV4omNoNI4nq5XC5XKBRaza6RWmqthVCDwQBj3GzWtdajo6MY4/3790IIN2rrs9Ud/X5fcokpEaGwbTtNU6BRlmWObUshXNfNshRjFMcxsSFCcHhsNOyHly9fljDDLvRyFoSYEodge2FhqVFrHzl83Wc+85lvfONbjLFTp05prUeqQx947weuzi+fOzs3NTO6tDw4d+ryvoN7OOfr6+uTk9O2U240akqxMEy73W6n3xseqQyNFQpFN+MZk/Grr76IkDUyMrSy3HjttdeI9gn2lFC9Tn/HxNS73/3uF557sdsZ+K6HAeVM9KNYI0gIYSK5+567jl538PqjB4dG79nYWIvjWGVtkbGHH3ro/Nn51aVzu3cdYowJxtI0wYRgjB3H6vb6Z8+eHRkZgUgWg1wU9R568MFw0P/il7/0ofd/uNPv/Okf/5HnOY6HpWTFUo5Su15f1DpyXXji5MsaMAB5oVC2Ld8mtm07AGuHYqVEHPPBYJBlPGXZs8+/8NBDD+UAoBRpDWq1mm25NrFHRoqAcMeyep3uzM7ZVqtdW6/n3Hwul7948eLy4lqWMuMUxLIsy5IPf/hDi4uLTz/1lHEqC8Pwr//6r6MoeuONE7fddlunt5xl2XXXXYcxHgxCJdE/PPb1cmno7rvuP3nyZBQnrYR5nnf/299+/9vfvrK69PwLT917772V0tA3HvvWpUtz7Vb3zJmzjXr70z/xqSAICoF36OARzrkJr7Msy3JLWmvBZLfbo8Q2qdGUiizLzHhMShkEgeNYrRaPoghRSylujiGzgacJM2p0jHGWbcbDZmli2TZjzLFxkiSEWMYKNk0YhBBhwLnIsuyGG27Yu2fXwuLK2traysraoB+dOXPu1ltvn5mZMYWTUppAlGXSyDchhBQC4yytTNWHIVSQ0q3yD4H9B/b4nuNYtFKpHDl89OXXXsYEvuPtD3W77XpjA0t7anx2qDoaRsnTTx/z3GKQKzZq7fWV9Z/96Z++eO78hQvn+/0eYzIaJF/78t/cfs+dH/jAB5rNVr8zcIb91ZWNYrGYpsmjj/7D2NiI69obGxv79+/vdrvfPfbM7bfffvXqpYcffjiMesePv3HDDTfn/HyWCcf2fD+oVEv5QmAmgpgAIcAbb5x94djTp0+fbrfbO3fP3nHH7VHWu+mmW5rN5vnzF3ft3DtarQz6ac4vffzjH7vjzpttCJ546pkTJ05euHBpcXHZVIC5XI4x1my0bcvtd7qdTlcIAYCulkpBEGRxcvy1169evaoguHTpkmGAUtuWUhoK2tjYJGNpnAzy+Vyr1bj/3vsOHDjw2c9+Nk4j3/fDMDS8Gd8P0iTjnBcKgdY4CrP3vucDszt31DcanMu9e/bdd+/9Fy9ezOeDoORzEVuWNTQ0ZFkWY6nvu/Vac2zCatVqK8vrjuNBiCm1Mca9QZd30kIhCKPO7//B7xFC7n/nPS+88NzyeleIdHi8JFKgIKNdkM8HleGK1hoA1W63F5eu/V//6T826u2x8VEE7f/yX34tS/Vv/dZvr6+v7969O5fLXbhwbtPSEyiECLVIxqjCCiGklLApiRiHcHMEYv4IoSDEBEKgVSHIAwAoJkIIE4hnYZKxTCOqhDZpfhhigAx1eltJA7ZJAwYwNUMarSXCACFULOZNO2bKJ8dxRkdHXdft97sAKM9zmBQUGPUY1wB4vpMxZmhDYCsZTxtegwRKKUNk5lsnI8aYCW6KK1OGFYL8xsYGQiiKoqNHj372v/7WZz/72ddee/2XPvNvDhw48H/+n/+Jc6m17vf7CBKtuSkbzHI2ujrzusB4bwGNNmOB9TbMva3Vo5QiCNM05UJsz3oNOjQY9EyzuXPnzPXX33jr2243PjyIEgPya621gtvv3MDKm7HxCkqw6Yv4ZknWFt64aaaBNtPtjHgOmHl8Emftdldr3Ww2l+YXrl27FkWRqc8N/8xxHMtyEpYBoH3fywTLWJZl3HN9u+wMDY34Qc5s14ZFDhDhUkGMMbWZUIJzxjLOs62LDRk+IiFE8tS8nziMgVSQUhMeniSRbVt+kNNad1rdNOEbGxtzVy5duXJldHT4gx98f7PZnJmePnjg8Ojo+NjkCCFESN5s1q9du7a6vDgYDLTWlUrF9WwEtxxjAIUQSJ5QBG2CtZYWxRbFWRpnaYwxlFIZQJkxxoWSSiotLOyYq9Hs5ABCyaTBELSWSmlEqMH6MMaZ5J5jA6i0lhhDprVGqlIs+q49O7PDywfuaoG8ubN9k2PGP0qwIoQ4DlAKYAzSFGsNTH37g96U/8QfuBXZ9BZ61/cCZOHWDaC1ZkxmWco46XQ6UZTk87lSuTIzwxECp06d8j1vdHR8qDpy+vTpI0eu279n7wsvPnfx4rzl2qsr9TRNJibHxsbGPM975JFHPvaJj153eNfLrzwfxd3ZnZNSMkwxImhxcd4IQ4LA9123UiktL16tr6/1u20p5fr6+vj4mBFNKAWMM4YB+IaGhkqlku/73W7XeJxrgBlrmQfHcby8vKylsUkAcRLu379/fWUdADA6Ojo3N0epvXfv/tdfP44RNhznubmrhnhy/PjrY+PDQ0OVanU4jtLV1Q3OtFZEaK6BQgiagbBxWDZlukki8jzPspwkyY4cOXLmzLl6Y63X6xl+4sjIyOrqiu3QJEuvzl/N+a6Ustfr5XIKI5sQRQgFANq2DbKMC+m6rtLi8uUrH/jA+8bHx//qr/4yDMMdO3aYKDnO2fHjb0DN4zj1/QAjIoSi1I6iyLE9zvjq6moun8/n847jOI5Xq9VWVlYEH0yMT46MjECCe73B5bmLLBOGRWI2tSAICCEEW0IIxvjlyxenp2dWVtbarQ4Axp5JhFEvn8/71InCpDpUPnz4cLvTLxZPSakJQWYzCoJgZGSk3W7btvvd7353dXX1/PnzxpXYJBjs2LHj5MmTNtmsikZHRx9++GHO+XPPP2+AAABUmqb1enPf3gO1Wu3uu/b/0i/90qGD+//mK191Xft973vfk0893Wq1vvGNbxw4cEBKPjIy4vt+LpcLgsDLeWYegzEB3w9mQQiBfJO6/y2rZnvuAr+Hdb0Zs95emAatNra2g8HApFnanuu6rnlOI6LUWjKmut1uFA8caq0tN+evrTl2EOTK//Jf/W/PPvv02TOnpqd2n++dlFJCBBjnTDDzor1ez6ZqZHhM5/Mb63UpNSFEasWYEGLz9MIYWZaVz+eohdM0NiF4ZsygtB6fmOj3++12e2Rk5IEHHrh8+crx48ebrdbnPve5xcVF3/cZE5/+8X82NTX1/PPPLy0sz88vfuQjH2m1Wqurq91ut1ZbF0IwxkrlfH/QObB/bxIm3W4bITI5OX3t2oJBeMNBwhhjPHMcCwCAMez1OpZN4iTcvecoxti2XEOJsh3a7bYyFnV7LQAUAMi2vKvzVzhDxUJFKmhmOYynCAHbtjnPhFAIQwihQWDN1WXb1Mj6VtcWa7WaeXKIkO/7r7zyiqnFGWOVSgViwhjzfT+fz5dKJfNf5nh7+OH3GDdnozK+4447isXy0tKSaezNZjszMwOAunr1ahgNKKWYEripPkF33XWXVvjZZ5+76577Tp04cfDg4anJHQSDKEwmJycnJia//Ld/Mz4+DiFK06zdbkOk8/l8FMW2bUMoAQCcc5tAMyrIsszyLIwxTxKjNTMlhRmzaa0DPzc9Pb2wtiI6nS996UuLCwu+7y8uLt54440Qwqe/+4xtu71ej2DL8e1ut79nz75mo3vsuy+Uy+X3vf+DvldIkpQQa+/+g5fmro1PTFSHh9I0NfbTxUrRIGthOOCMaQVZyhu85ThOUCwaPzvLsvCWuach9goBtthg///PGgA2TZzecr82c/G3Oke9yehma8bz/Wfh9uh0O/3c8Gi2H7zNaP5BK48fPFh/KOL8QwfBhCAhFMYQIMAzRikNgsCykJSgVArCEG9sbFDbpIQBznk/DNMoLZdLBFOMse/7ruvu3r17ZGTs5VdfVUq+8cZrU9Njd955R7GUC8P+N778rb/8sz9/z/vfe8899911112HDx9c26j9/v/6w421mlJSa/T6qy8uL1zkIl5YvCp4UiwFWeBdutiQjKdRzBjH1M7ni5zzdjshBIVRyrmztjZQQo6MDAGo/Jx7+fLF+flrjuNEUXjy5BtHj143MTHx8ssvm4O1WCymadyq12686QaVps1W/fobbkBAX7hw6cKly61W6+ab3lYpVa9culKpVJRStVotSaOUsXK5vLq62ul0RkdH2+12t9NxHZ9S2/adVqPNGB8bGysWi41Go7FR63e7s7OzjVrzxBsnHcttt7oU47yf7/V6Br6v1+uMbXKvTI2LMVYKAgAsi2ohNQAIISQxAGByeioMQ95gmZBpmmoIkjhqNGtaYMdxDI9j586dnWan2WwbFYVR4RntMKIEK6i1JmhzUqENV0UpU/JuTTtMcJxSW/wO1/ccz8WU8DDUWjuuZdnEdgJTOErFlRZSaKWVwQ2VEMSyPdfVCiopkQJhGPZ7HVPPaK0hxDnP45xTjG3bIjamlLbbnUEUuo5frZY7nR7FSEr+m7/5G0KIfr+f8dRxHKGVBBoIAQBBeJPbYni1WmstOcB4W1HBMtFp93rdge0QY6QITHS0ubElON2kfiNjtUaIlpwLY8iLEGKMSa0ptU3BkGaZFDpJUqWkYeJ0Wl0O4ZWr8wjKnGeXivmdO6fb7S7L4iSNd+yY+uxn/9vn/uf/fPrpp0cnhlqdVrlctFzgOFYu521sbNTW1qljKwUc6lQqFZuS6lB5q0qhjMF2u62FTSCKE8FFNjM6bXt2xlgq+dL68vrqBmOMp5lCfGxizBTujs41W3XX98IoKRaCYqnieblOd1Bvd13XIsQRQkCIIbIcx4JABYEaDAZAQ8/zEMAQxkAjEzTtOA5EmgmOMabEVsB8aHxTF0jQticVxsTI8BljWZIyCAnZzF0EAJLNLA3qUdtQy7/HW0SUYAq2ejkIIVDQNCdZlkICDMEcY2xZ0LRzgstNxARCCIGZwpp1bdgYYEtFaxpCU7JqrQeDgeM4ru8KIQBQEGnL2tQr2LY9OztrBBBMMgyg1tpxbcazJBxEUWJOW8WV0opzYds2YyyKOrlcDmNsNAedTme75dZam6x5CDTGmBBj1UIQQtTClNiU0kIhbzZtIyCwLAthQLAFIWQZJ8TSABHLQlghpRjjQTDOWToY9Gq1WqPRGh0Zn5ycOnLkyPp67eq1+Va7azperYQRbwkhCoXCkSNHTN54p9NxbHdkxLFtu1goRFF0/vx5AECr1apWq9SyGEuzLBkMEoyxSePEmFarVZPsbUTBZo6YZZlSotNpaK1ty2+1WiYxW2ttOHEsE65NtZDGHEwz4Sj71NkzxCYuda+77rp733H3H37hD6emxj033xtEnu006qunTp7ZOb0rl8v3+/2TJ09OTEzMzs5eW1hw3SAJo6XVtV6vw2SUxGp1pV0oFHI5r98Lg7wtZIoxKhSCe+65Z9+und1eQwJx5dqVftRlTHQHXa0xtnCxmG83wixUGiglNQHw/JnzGRe25do0A1JxxS3LNjubYBxA/cS3vr26Nm9ZGEDh5yzHg6wnD+ydefBdD0f9xx3Su3RxLgrZJz75E77vcpaVykWlwaVLFwTPZman5xfmquV8NOgnEXrg/neMjo7deuutTz/9VKtWT3NkeKRAbRD2wmK5UlvbeOQv/9hyvZtuOAyhfOXlY2MTO6TQlWJ5bGwCY5ymrNFoNOut2kbjxutuiKLssW98y88VPvQj74YQRBEDAPzMT/3UiZNH7r7nbX/0J//z2Re+22l3isVSo95KkmxlZSWXy7uum88V9+8vnTt/3oi4G83mv/k3/yZN0+88+Xgcx51OZ8+ePQCAxcVFo13oh13XdbXW111/43e/++yFixd2TM9iCz/13aeWl5c8z//ML32m0+k9/vjjx0/s+8AHPjCz47fuvO3ubr937LsvfPOb38wHpXKp+uqrrz708LvK5TIAoN1pBoEfRb0kGeRyOSmYZTmQmiQYhSE2J8U22dPcMHKfIAgURNvanTiS1MIyM/Gt2FjZmqEU2swwZxgRA5RJseVupJRtuwAAKfVrrx//m6/9/Ve+/LV2q3f/fe9IkqxQLZuoA4wBhEBxQCk0PpxKQYwBxoBzICWACkAFkoxBAMJQMMYwgM1mHUMUhuF11x8VJ9jJk6evO3rDzbfc2GzXrswtvuP+d7sEhHH0rW8+3e316vWm67ZvOHrT8sLiytLyswguL8xDILI0rg6N7t2zf3l59bVXj1vUffvbHyjmyi+++GKSJD/6ox/+1rceX1/dsKnV63V2zu5qt9uPPfb1RqNx7NgzUdy5+547X37t1RdffPnEiZOFQqlUHNqxY2bvnv3j45Pm16cUJIk8duzYwsK1QT+RAh4+csPBg/vf//4Pnbt4Ok342+9/V7kyOjw0fnWhtry0/nP/4l8fOjRTr3X/9E//+NhT3xFCHDp02Latd73rXXfcfuuv/P/+98W1Zd/PWZYV9vpKKQC0bdsYgTSJXnv1DUNpxJg4tp/EGYTYsXMzMzMLCwutVouxxbGx0Ymxnf1BlzN04cKFEydOpFlsWzRjqQbKVMCWZTEmtBbdbn9tbW1yauKTn/zkq6++ykU8NjI8MT5WKBYLQXFouJoJVq8tE0qHhktpmoQibLc7aZouLCywTGBsZxm3Lc/weYOCRygtVwLGo7n582NjE6+8+iy1tONa3d4gY8ymuSBvHzi4C1u02+0aiq4GnItkMFD5gk8R/dQnf3LH5Mxff+lLCwvXJibGcjkPY2h6MQh1HMcQgVKpNDExNjY20Wq1VpZWCLaMQehmIq7UhtJrtm4AQKvVsSzi+z6ltNfu2DZVECilBMu0kAgSjLHWAGyZOoBNVq/cpq0YTJQLTgjBBPq+LwQDQCdJzDnfVh1lWdLptMxBabw6FVTmOgFA246jtI7j2LRIm5oDbaBfbUjE5vzCm7ZRwJRknHMzx+11urZtf+QjH5mbm9u/f//NN16PEHZdd2JiYnS0evDgwTNnzhjiEYQQaGQqT6ARhAht5uhsusNJrWxIIIRSKgCgocyBTf90AgACAEGoEEIWpWb4BwBIksTANQ888MANN9wwNTU1Pj4ZhQnjHEJMCVJcCcG1BkAjCDEAQMJNLoL5ELdvmBJl84bGAGgAlVaG6qrglgWiEAohbRr5a9euXbx4UQjRaDS6rTbnvFQqeZ6Xz+cJIZZl93o9y7JHxsYrlYrrui+8+Kzr+uVyNRfkXdcHCBqYhUsJEEqyjA0GWmtCLIyxECKKQq01pdgYDCCE9FZY5SaDRBkSCdFSFQoFBWCt1h8M+kkaUUot6lgEdzqdjY2NIAiOHDmyZ8+en/zJn6yUSiwTzWZzcXGx3W5LJaTklGKllEmG5Jw7lo1cV3IBoCIYAqCgMd1DyKR9UIK26R0m30JKybiEECJqSeNfDjBASCtlrkAFpAYaILgNgxjIhXOOoYZaYkx93yOW5RBrdGTETZ0wDOfmLp86dxbPu8Qgxf+E+ngT+d1qvC0LRJGs1WpjY2OOAzkHhAAh3vIM2/CxaaUNl/P7ntO4P283299jburv+XiYwjTLslarFYahkMyyiJTSjPTL5arv+/PXrh04cODOO+4+evTo2dOnv/GNb/T7/atXr+aLxR0zU51O98EHH8zn81mWeDn3kUf+KovXLBtmHERxr9ttaw1d168PWowxx7JrtY1ysei4dr/Xaja6rhOUy2VKaavV3rVrZ5IknU7HZNEYzV2WZRcvXuScGzLR5OSk6wXLy8tmPGUkclADIXij0SAUYYzTNK3X691Ob3l5NZfLua5v/MsdshkvEOR9IbLBoF9MAte1jVVQp93zvMC2XE1EHCZZljm2y/kmYwgCzDlPojjp9dJicefOnY1G44UXXjLJDJzzMAyr1erU1FQu58dJ/9SpU4Rgi+Jer1etViFESqJerzc8PAKVFkKCrSlQmiXGPmlubi5JEkND7vV6ZmuzbVtykM9bnEuthPHlcmwPIRQEgRAiy3ir1cnn85TSLMuklEry5ZUlqcTe/QeuXLkCADD08DRNjd/u4uJiLh8ghAwOFSf1xcV5w3Xt90OMN4lmZsi2srISBPlf/uXPvHH8zCN//ZU0ZcVifmho6Mtf/vKv/dqvPfzww7//+78vhPrQhz40PT399NNPe55XLBY7na4pvqvVahbHUqp2s/WVr3zl7W9/+6lTp1aWl4WU5nu/8cabjx177tVXX5VS7du3b9euXc1mMwzD2dldP/ETP1EdHnn00X9YWFiQUna77fvvv99ESiqTCQAAsYkWPwQz0giY+/+Jqcy26H4bz3rL/257cUillPI8DyHU6XQGzaZBKgHQlUqlUAiklM1mM2OJiWH03MKtt9yxUasRijCy7r33HWdPn+t0moQ4GOs4GrieqxKpFJVAQ6AppXEcD/p9pVQuF/T7A62Q4zgYE+MLOTIy4nmuZZGMJYyllNLh4eEoiprN5vBwdXZ2tt8LFxYWfN8dHx8fGxtL0rTRaK6trQEAHMdbXapTan/4wz86Pz/PGKtWq8vLyz/6kY9euXLlc7/3P9I0zgVOv98nFCwsLHT7naJfCMOwH4UTExPjY5Mb9XqfpUpKz/PiOIZQWzZhqfj2t7/FuahWqywTSjGr5MzOzkrFz549nWYDLtIg8EdHh7WGSqNP/fhPvvH66a/+7dd9ryCYEoJLJTDGo6OlKBoMBgMp+bbNKOc8nw8cx/J9f2FhIQwH+XzedV3jpQ40NCqt7bO/02mOj49blnXhwoV+v2+OSc55HKfNZnPv3r0LCws5P58kyZkzZ2q1Wj6fP3Dg0LlzZ4zHxaVLF6SUQT5ncZOhHKYpcyzHeGyVK0Ojo6PPPffcpUtz+/cdTNOUsWTfvn3nzp13XffXf/3XJyYmfuu3fmtjY+POO+84efJkxhLHcUwgBgQYY6oUM/tYPp9niplQwdpGfWi4OjIyYia9AIAoimxqJUmSJBF17FOnTnmep8OQ84zz7OjRowaewxjX6/WJCevOO+98/NtPzs7OlvKlOI45l1nGICJaQ6VULpcbHR2fmJjodDqQYKD1zp0zjUar0WhwnnW7XYKtoaERH6NwEDc2agqCYrFYLpcNBMCFAgBhDCjd8it/6+ECwJsOlK2/lZHpqO8BypuQsTb71lt+ZOsZlNZoewj6pvvNWEi/+eQyggYlt93KNs/ENx+vYIs6vfkYBSB603EJAfqBlMK3mlEBKTXeVDAoSumWx71xXdCe542PjydZGgR+EAScc4fatDIsVTYYDIaGh0ZGhkyzp7Uulsu1+roX2OfPn213mjtmxlyP/tiP/dhLL73wzFNPve+D7zt69LDvupXKUKlYPH3yDKXUd+1B2JMy8T2yZ/dMFA3CqBeG/XgQKqWKxVKQK5TL1VK1dOrMyVa7Xij4QRCY8fj09LTn5RTQ3W671+vmC7lyucw5j+LB+vrazt27q9XqYDDY5iDcdvutN9xw3ZXz54ltxXGsIQrD0Lbp9ddfPzs7K7manp7OsixLsm6363nenj172t1ubW3dtL4zMzOEEMGkSSDIGJuYmBweHo3jmHNerVbXVjdqtZqXyxnyRb/b3b9/PyFk/uq1NE3D/sD4nRn5mBAKIYAx8TwKIazVNqanp6cmxhYXF40jxKlTpxACQbEwNTbV6rQg1BlPNQCU4m636zhpzguyVAitKpXK0NBQOIhXV1eTJPF8G0IbYOC6tm3bSvBtni8hBBlvCCW32DAQGIwbIWN3YCoKpRTEyKZYSpmmKSGIMWSSxCGEAGjLsswACSEtGM801womqUJajY5UbdvmXNquowHWCgohbNvGEJpzOY5jITiGyMgeKUFjY2MPPPAAQujxxx83fPl+v48owRgjYNw/MLLQdpNjxNTmzQghjG10q9VyHEfIzHCIAABbbFxl7EEN9Ol5Hkab/vUYY6AxgihNGDSufmTTJqLRaECMjPmSMQ8BAAwNDQkEa7UNi8I47EVhn2BIiU2gVSzmf+anf65cLn/iE58ACGKiMcVSStd1TS6F1ppSO+yFpXzBrJc4jmu1DQh1tVIR1eLGxgbCEhBNCFJIW45VbzZt14rShFqYUup4dpxGvbC3f//+XbtmDYeIOjYktNmsD1UwwjRNGaYiXywDsISwVamOxHEMsdUbRGEY5vM5w4GNwtjkqVqWlQ+KnU6nXC6bHg8CrBXggkkpbdtRgiulzJjE9WzBFWNMCNHpdDZHJghhjM0m47quZbmc8zCMLYvYts0511vWJQaZNfNX82kzxngmHMcihBCCNVIIIQ0hAMDAy0mSIGiuTIkQllICBbUAGgIlJQDAXABbW5k0fyOETANjGNAIAc/zhGSc8z7jaZpYll0ul/P5vKFExYNQKhFFkZQyTjMDH0MIp6cnIcSXL182xWEulzOzDURJmqYYY6WUTRyEzc6vN/dpLc2Pe55jCFZGWue6bpqmaZraNuVcQ6QxNkuJKimFUBghqRWhBAAOANrY2NBa9vsDx3HjOF5aWkrTrDo0lqas2WwSYpmrOkkZIQhCFIah1rofDiCEuVxuaWGxVCqNjAzZtm0ISgf27e+HA0JIPp/fs2ePaYJsW01OTrZbnWaz6Tie8UN3HKdQKGgtV9dWVlZSxlIAlOd5CINeJxRCUGoZYTVGEFkWBJsm8koIJlixEvQGXYD1lStXhkvDMztnGvVWlrHFhdVKtUqws7ZW7/UG+Xzhm9/89vLyarlcNpvJyspKs9luta5yJtu97sLC8uh4GRMoVrvF/Ei7FSIsXG/MsnAQBErBXM67evXqRmOlXHHDNJxfuDoxPjUyOlyvtTr9fpJwz/NYlHAuCKK27WilFuaXwBa4ybmQTJqL5N633zcxPXry9PHTp087Prm2FGcsDgJ/sjL6/vd+QEvwwNvf2W7F66ud6tCoZVnFfD7jXHL2wksvvvrqy+trK91eq1Qq7Nmze2R4KIxiCOGN190IJLjuuuuHhoYG/Y12sz40nAeIA81ch1w4f7pcGZkYmfbcXBgOJE9s13cD55tP/ANLWJIkEKB+P243O9/5zlMEOw+/972zs7vW1taSQtmkaFQqlQ996ENLi5ejMO61O4aAn6Wp67qMiSzLgqDwq7/yq/fcds+PfupjTz791OjoaLfX+/mf//lyuTw9Pf3hD3/4mWeeKZVKMzMznMtTp870+/0gT8bHx6vV6vnz5y9evLh//4Ejh6/76le/tmPH7Lvf9+5PferTQ0PDf/qnfzoyPvLSq69cd+P1ySD8+mP/cMsttz744IPVyug73/mu226949FHH33iiSeq1cpGbe3s2dO5wPFDR0pqWSTJoBBCcmHUJBaxtg1tzShIKdXr9QhBZgQIMDEJlmbIKrhhWmrLstM4cV03SmKEECZYSGlZlsEHhBCU2FoDY/KWZRmAqlwuLyws/Oqv/qpj54eqo56XO3jwyP4jB6vVqutSrUGaSs/GaSoAACbB3uBiYRhzzjenXEArKdvt9traWiHn79u3b3Zm2vOc4ZHKem0tCPwj1x95/PFvf+HP//y9731vrdZ67Gt/SyySCY4IFEJhROIB67V7Q9Xq22668abrj0RhWK0MHzp0Xa8bDgZRrMnKysrzzz+/d9fe118/boCR9dW1mR2zSknf9z/5yU/6Oe+LX/zrNI1bLe64+LHHvt7q9KrV8oED+19//USW8kKhaGAyzwNpCpNELCxcGwx609PTt99059///d9/+id+otNp2RbeuXMP50m5XL7rznsee+zbf/WXX3Qs/8477nn++VNf//rXjp947f477/yxH/ux/qD7la98eefOnS+/8trVq1cdxyWEpAlLUyaldBzbojiKBp1OJ0kl53x8fDKfLzKh3vued7ztbW975dXX6vVmEl+ulIcfevjB9fXVOOl32oOJ8R0zMzNzVy6ZbdOIug1NpNvtUmonSSKESJJ4fX39T//0z3zfvfv2O5aWVp5//vmf//lf2Lt374lTJ6NogC20srLe7jRd18rn8wpIz/N6vR7LBNKIZVKKOI5jBYVGfGy84nnO2QtnB2GnlBYg4lmW+MLphx3PdyXTAKhde3cTQp599llzoBSLeUpxPsi3232M8Y4dU5lKEUKHDx/u9RuGR2VZhFKcpnGSxmNjY8PD1U6nk8t5jUYDbbnTmsoKbNlBbFfOhlqbJJlSiiJMKdZamzxkAAhCiCIqNwshaIbu20CzYS0gCM0i8n1/aGhIaeE4VpIkhUJeKVWv1+M48v2clHLbWwwAEAS5VqfDOc/7OQgxF5mSwJAh5JZrpzm+CcYYUcNlNto4tOWhAcEmZCylTJIkyzLbtl3XrVar7Xb7D/7oT15//XUz0YEQFAoFpRTnnFI7yxIIIQQYQQzwZrKO1gaI32RMAwC3PzEAgLH5MvCveR4BhMlmxIQIIbjIEEKVSiWX88bHx6MoYoz1+/0s5ZRSAHSv10Nw883rLY7FNliv3+qYgbdST8AmdxYqtUmvNv9l6GLmy9RaR1F07NixRqNhOimj55BSZVnmOK5BnG+55ZZSqZTL58fGxk6dOjUyMmKGYSaCWGrFOc84p5Sai99xnG63a7pmIYwTd6aUQmSTBi6FMh8LgqBYLDiOkwGVxTFnbDAYxGmGEHAc27KsYrHoubl8Lk+pu2vXLkLInj27er3O6dOngVKCK845trBlU4Ozu66bATAY9LTWlVJZKQ2hhkgrpSnFSGPOOQMCIQQR3s513MyhgVBKyYVSSlmuhwEQUimls4y7rg1M0iMAtr3ZdGitLQ0MEAcAqFQqUxOT+VygHDgxMUEsmsBIcE4pPXXq1HMXjwGCd9kHiNQKYaSFIgSZ1l1rjQhUCggJKAZKAaSB4sqmiKUphrBbW+m326366v6Dh/MFl7E3Yc0aAL2FTW+qkQ1dx/TPmy6ZQgC41Y2b3nvTIlMCCACCAKhNv1oFge37o663vLwoI5AyIVo9AJTgWb/fzxK5b+f1ccj+7quP3/+OBx5+9ycIffKll1766Md/9vgbry4vrRZL7s7ZcceWr5/4ruul84uXMDcUYCdsx+X8cJqmrutXSrDf7zuOQ4hFMGIZ7/W7ALP55XNj43urQ0EYxpZNAPBqtbpDrXwhGHR7AKiUp/m8l2UcANBp99ZWayMjIyzNiIcJokPFarFYFELVarXALQshLp9bjCI2iEQYdV2/wITU0WbyqUba8xzGmGM7XqkqJNPSzXlD3XY/jkMAFeNREAQQWdpVFqEOtTgRnXYPU8JVlkS8Wq3agdtr97qD/qHJwztnZ69cvHL10nnP94u5ohQaIlgqlaWUNhGEECVoIRhutVrj46PT09PdblcpVas1uZLUolToNE09N/dv/+2/nZ+f/1//6w/y+bzv5cOBUMpq1QaHDx8qBarba8dxnKUh0AhCaFNLaQYUGK4OM8aiKOKc9Zpty7KIjRHQCtlK68Xltf4gy7KMMz0YxAghBAkEluDa9exoECMEyqUC59y2R7TWhWKh3eoaR3UCqBK6Ue9ijCuV4UE/+fznP+/63oc+/NCjjz6KsPB8d2l54T/+x/9YKJQmJqZ7vd6xY8c+/elPf/7zv/eFP/+zpaWlsYmRUqmSDwqzO3eeOPHK+lptbWNl/8H9hJAHH3zw9OnTFy9cRgBPTEyNj4/Pzs6yTBw6dNC2acYiRMXh63cfOLxHquzWW25+5pljjXoHAvtd73xwZnrfxFQVQiCVJgSkXCIFpAYY423OMkQm1QhoM2tC0JgvbzvGiq0b23xJCCFB0FjEQrjlzrEFlkmAAEJZlnCROi7OmFScK6WLxSJPGQgUhrpSKqSpnSUsAfHE7Nj4jvFWq1MulGwrF0XhBz740ae+8621tbWxyQkAxPrGCsTUcoiZztmEIQ08x7eorxUEOglKAcZQa2lpkLMc4mQbzfVKpeL7frsTY2KVSsUsS0dGRoqFcjiIfT8IwzSO6y+//Or01I4kStrNFgTadd3BoJcvBtQm3/z2tzrdAYCk10vOnr3SrP/x+fPno4h7vp9FTDElsjaFDo9kLW5LKW3bvjK3PDw8HPh5LTcTdYVgQEuWKps4UBHftg2JGEK4uLh48dL5kZERKTkmTpIyiGwhUa1W63Tad919+3U3zr5+wnNdUs5PQohsy19d3VASBEEhTZnKgDH1kZIhLPMFb3x8dBB2VlYXLBsODVUsywIaIYRbrZYGAEKtNDOlAKVwMOj0N2FogrFmnDu2n8uNXrxweW217rl5KTmxcJLFKYtQrObmup7n+K5HKY3DqNVoe65bCPIKyHa76ThUKdXtDy5fXhod0UcO3/7YY08TS/uB1+23fNfvhWG70/vN3/zN97//g64NIHJ+5Vd+ZWx89srVFdFtI6ATwCiCWmslOaFUSQWwdl1XRQoqrZXClHRabUNRNx0+0BBhcm1+od5ay+VyucCTAgBIpEC1jfbX57/hOvbOnTtrtVqn2Z6ZnH3wHQ//zVe+yhP1zne9G0Lj4ikoMeok75Ybb8lS3m0PbMtTSgGkW/VWp9VAQBLHnd6xAyGSJMlwpTIyMjIYDDw35/s+V0pKBTSyCGJMQo21BvAH2M1vHnZ+n0bHkAz0dqgANOYcGv6g68WmWAfBzdX6licHABgR9pt/ZDOnEyMDZWyeaAoADSACcMsVWuvv2TRDCLRWCCKDg4M3gdTGe0xKQCmAAAgBMAIQAoGgAkAKQCky6aJKaoSghaBlw41Gt91pIoQAAuawh5i5nu3YlUG3n4a6pXqWjVzP0pr3m7Vzp05KBSql4eOvnabEnpwa9wLvgYcf3Fiv2567uNbM5/PNZmNmz96UJcvzVxwK7rrpFiDF/NzclFvVVvGihlmWpUxrDcrV4TAMe2Fv7tqlfr8PEYDayvtepVKpN2uDQW91Y9F1gjhOGOOumyPQEyodKk8MBvGFc+chBLmchYittYRQR2H8wvMv+znPzQXtbs9JM5vQg3v2OY5XW11BiNiWu2vXLsdx5xcXwkHcbLQPHjx8NjkzNzc3NTH9y7/0S3/4h3/42muvaQU555ZNUx4trlzJUm5ZNJfzw7DPud5YqJm5qeVaft5fXlhUQIZh37AdNVGe66YsQ1AjoISQlDq+709MTFJKm+2u0fdJyS3X0kBznmICyuWyUsqxfAgGgmklGIaoL7pxHOfzuVKp0OvVNdSlYc+OEEsyhCjBxKEeAghiAxADKaVQSgMJoNYAEEqEUFBsVfMYQ4xt20ZQCSEocSzqSMkzngqVEeRYDs2yjNpISmi7DoImyY1Loc3CB0BryRljQknquAATpTGEQEuGCIVISq0xsniSpWlKLNu2bS2VUooQorQ4fvw4ACAIAgNDDDTQTAAAIMAIIqggi8UmFqwh0FAKgBDlqYKKcC4wxphgLQGEyBBgpZRMCik1hCTNJEIIYVtIFiccZXxrI8IAcmk8dKRGCFmIYgAhgAgAxUUqJKVUa5SxjGWSs1oucJFQTGitdbPR4pxT2965a8arFL/6ra+9fPoV26atwWqapiaqUXDZ6XQsy3JcmxAitBofGSWEXLp0iTGmuKhWq7fectv6+kaWCtvyNhr9MEsJJDay0yiDAmKFgNDIQZZrq0yOj4zn3NzlC1fSOMEYe37Rswo2TpMIr620bYfk8wWCdLWc9718r9sFGgliS6Xag26YhDsmZ5FjEcksoCCBBBLGWKVSNdopDaRFseXYXEkQIkJomiUQIM/2i8VSu93utvu2bSMEXNtRShoMSClFjZRVAYyhlIAQZFkkTRKDaJsmxLCiTLtrUWo8/mzH0QBwKRCC1ibfXwmuIESKKaKI1hoqqDEACCKMIUQ8Y2mcGFGgFgrITdI6VMCIfBElCACCMMYYYbFjxw4hxNLSEtiaQBBC2+12EAQmDS9M0k3VsNYY2QgiKWA+X8TUW5hfUppijHM5l7FMS5GwBEsMAPAcB2qdsgGCBEJo0HCtIIJEq818SzOiA5uSVy25pDZ2fQ9lOMsywfWmvEAyAIFQGUJISEwRkUxmiFq2nc+Ndzod28ZBMfCcAEjlO7YWEmHgEEdrCCgKCh4XaRh1HRexRCGEUsg45/1+V8jUcV0jzo2zVGkY5IsQoXazY1G7215FhA4GA4ShMbzK5TyLEqUUwUpp2e000jTd9DQDsFwuy1yEMigFwxjwTCFNECQICamVksh2g8BGQyOVXN7HFsEYKyzW6ktPP/+449hZAi+ePj+5Y7KxXs95uT237jEZFZnIipUi46zT6EQym961I0vlON8RxykGUGnR73Zaa/Vipeg5QRahdpN1Ok0J2JX5LxZ9x3Eszid279uTxnBpYWl2dqfgWKSgVByqFOlrteMICWJjhO2Z3XvW1tZ63a4Uqjo6HEXJ+sZGr9e79bZbbrv7htfeeJ6Blmc5M7N71zYaShaDoLjv8O2ZHiJ21S/ifNken8oookmSAI09m3732BPffuLRlCe9fq/bHWRZ9th3X7z5lrjeWFtdmQ/D/t133tVtdfuDAca+7bg/+y9+sd9vH3vmyTBq3XvXvbOzs3PL19522ztX16995zuP3nrrraVALF17rVAoHdh/5PTZC2MjpV5nkCTrkmEM0pXla//w9Zfuf/vbzWTUL+DTr1/9m7/5cqVSvum2+44ff92yihZRCCAAQNhLgdK/97nPnzp5prZez8K0sVY/dOgQUrrg53785/7FwsLCcLUSxf2l5avzCxeDPMnnvVzgr2+sIYQItLSAMgNJyKCke2b3I4A96r3y4iuf/uSnp6amfuVX/t3//eu/8Y77HqrX61evLH/0x37sYx/7WLGYz1jy8U+953P/83f//JHf2zm7+9K107VmfXhsbHho/Pz5i64j0jSllDqOTsI4SaI0ZVJqiomWajPfAkCgoFaKUIotNTY+HoZhp9MRXAqubNsOk7REbdfPmSmgETeYAaRSulDI5/O5OAmjXpRmme9UOJcIEZalvuvdcccd7373e06dvnj16ly326OU8Om0VCk3m81Op2WWrdklDNKEEHJd3wxBXdfVUnHOfcsJPJdz3uv1lldXMMYE4Wat22kOXnv15PPPP9fvpH/7N4+WSqVef7Br166xUqnT6c3Ozt5/730rK6uMsUOHjszOzjp2LgnTLOWOGzAV+0XEZb9UCL785S8nYXTt2pVisUgowpSMT040GvViYejA/v3dbsd33BvuuffatWu9sCWEUEIc2n/oxz/xKa0Ry1SSJItL88OjQ1Ei+v0+55yJ5I67br98+fLFhQsz+6dGJyv5os2ZquRyGORsDR5//LXf/Pe/1Ww2y0PlL/zRH+VyXq7g/+Z/+b8Xa4tOMRifHn/f+973zJNPfOMfHiNAa541uz2psQYYIV9Aa22tLgQrF8c/9uPvefDBd9ZqtWazWQiKV+bm56+uPfvMq8VC+af+2b/6yI9+YP+Bsc///h9+7nO/o4H8hV/8udtuveXf/dtfyVIBHU9r6FoegoSlTMgUwszwhScnx3ft3imUzBdLx154eW5u7oMffL+G8vyFU5cunhofH/dJQDBJu2nSEWkXaA15rLUANraiJIVQAwggBiJjjVYyPTOTMtjrpr5XxsgJ+0xKyFKJQQlil4E+Y+LihSsAEJsWlVJJ3CPYyeVyQd5dWV3YPbOfWihJozvvuqs/SI6ffM627UwkzU6dIGzZNJfLddpdCIiU6tTJ87VazfOcbrertMxYRqBluMkQYhMaARFSWigpgiBIkkhIACEWQiJEICIACMYEBhIhIqUAEiBKlZJCCKWE67pj4yMI4yiKwjDM4oxojamQQmRSeAW3MlqGEI7vGLty+Wqz2S7kAsvatO/XCPr5/GAQ9zv9wAsYy6IootjijCGEIAAWsbMso9hCFGVZhi0KMFAZJxgqyQHAACCzUgAACAHBVBSplMUj5SGhk4T1O53WybPPNnrzmSo/+o0vf+C9P7Jv/65KtdDt6o2NDUqJEAJRwHhGiW0RVwihNcMEm8PUUIs3KQ4YGoUZAApjiBDAGHLOEAaObUkpGU8xxiITuZznuraU/OWXX7zzrjsoxVoxywKuQ5eWlgaDAecyl8sVi2XbcqGSBGPOJMJYKwUhUlIiqqFSCGqgJAbEAO5CKgUBRFhIBRAUWmmgIYEQaQgA51mhUNJSpd244AXYthQCxHIQQqVCaXh4NF8ojIyP5wsFYx9kW9QOiikHTGAmWJjEmlg5hDUEIouNUYbiglIqeaaUMs4nGhojEYQQhhpyLhzHsl0EIfR9FwHFGG+2et1W3bEIgsChVrWY9zzPtm1DYO31eo3aRqfVDPu9VqsV+DZjrN1sOo5jOY5FLASkhVGcpVqpLM6SJJMC5nKBkNCM3DClGAApBNcKECKkJJgghDRIMHG0hoRYUkqIkNbadW2EEAI6Y4lrIa214ztawSzLXNeFhCgFCIZhGJoRBSaqWLaNx4MQotvv1VdaMMSVSsUKqJDZwuqy5dg33XRTs97AS5oQgoTQto2yTEEIbQtyDrUEBAOogVKAc5Fy7jl2v9sFQLXaXaW0VnB+/trYxFS+4JqWWH6fjSZ6Kylr68+bdcr/lG309/8UHBubEDxzHDtJokZtPRQsDMOxsbGRysTqxvqLL7yUy3meb912+81Hju4/cvTQ88/tfOSLf24Rvbh4TenowtkzTs6uVqs6SaSU9Xp9Y2PDzblaQdd1bdtO4qzbCS2LzNfrY+MjBw/uJxBhTNfWN1zHsywHIQSALBaLkvF+v9/rdcbHRyGBvh9QyjqdXhhGGOMrV+aMDgJCRYjd7XaTJEOQuK4VhuFgMJBSEWJsGRUAUEoJMELE2qaWxHHMGPNz7urqqu97juMsLy86ticVF0JwwYIgSKKUEKqUdl0XW3RsYrwfDoaHh//5T//0lUtXfvd3f7fX6V+Zm+u3+7bjEEJqtVovHBgrerJFCOr1etdff71S6uzZs2EYZlkWRZHr+oRgjDGlLgCg2Wy++OLLExMTlmVBiEzaj5TyzjvvwBjPzc0xaQwTnSAIKLGllI1aI8uyhYWF0dFR46JDLMpkphixLIsSOj09Xa/X4zhUEkjJ01QTQiHkCBJCURRFlkUZ44bpZkFoXO3NCuy224bVTxHREI6MjAwPD7/44ovUtn7yJ39yeXn55IkzGKe+7y8vL2NMp6en5uflwsLCb//2b//zf/7P4jD6Fz/zs+953/ufffbZb37jWwsLC4N+JIRYXFy877779u8/8OyzzyqlCEVDw5WdO3e++uqrBw4c2L17d87PnzhxYs+ePTtmxi3L6Sdht9tlTN52223PPfvS2tqa53lBENRq3Wq1SChUClCKpdRGQwG27IQMlKD19+40RGW1ZdYM3sLNhNucSpP+B7bkxt9bKRokSSyV5FKa1JE4Sl3XFUJhrFkmXI+yNOt3e47jjY9PRiwEGg0Pj7qWbYaC+/btefzb/6CNPRNSSilTCCZJksvlNOfNRldKVSxVemEPIZCmcT6fK1eGxvAwY2m/18vn867j5/z8zKzb7Xbb7aZBEBrN2urK+s6dO13XbrValy5dStMUYZhmSalUSpLE8xyEcocOHfrOd77ztb/7aqlQ6vba4+Pjhw4duHTpgu1gpSRGSCkZhim1EAAEQkkpNTLbMAynp6fDMDS9MSGWmUIDRAjZVGQzyTjnQRBApHu9npQ8ZSnnmVS83++naSyleOONN0ZHR48cOVIsFnlCldJXryz2+70sFQgRs1gYY4YVFcXR2traxMRYEATT09NpFmGM04TZtm1YfkYEwBhDCO3cuZPaVhyl/X5/ZmYmiqKNjQ0jht25c1xyVavVNmUprjM+Prq4ND8yMlLMF5IkAUo3m20NVS4fXLh48aabbywUykoJ27YpdW+84dZ7735XFLIXnn9FKZWl/LXXXsMECsYb9Ra1rRMnToVh/KEPfbjRaLiue99990nJjx07xrM0TVObENuhUGHz0hDCZrNpiGyWZWWCQ7gpIjaDcUqsMAyFELmcZz5YAJRSAlMCIapUy2maOp596MjBC+cuCiW//tij1LZGx8dMLDuE2NA084VSLhdcXxmubTQa7U4URQBCpUUch5ZF3pSzpwyFynFc13WBRoQABLDWQHCgFLAsLISmFIo3JfJ930Hz/fdsEZy3F45hDps19n1+F28mF//Qp0XwLYi2fuvR9n0P1ub5v/fMemvy+r3Yg+/7cSMAMsG5WgOMAUQAagARQBoQGzCmKYZaA0qhUgASkDDd7Xbb7TYAgHOGCB4dHRVc2TYaGxmaGB1imZyfvxpudHfv3gUhfOGlV/Yd2B/H8XMvvhDGvce/1brxpusLXuG6ozeMT022Wi1TE58+fXJ9bcUMz33HqtXXWZIkadTttjECrusmSWJMkM6du2DoqEKIWq3Z73eHh6uzO2eiKNm5c/f6+mq32221WkJICCFLs41oDSFSLBYpxVEUEYKpwj5xuVK2bWdZCiGkFjFiYVMlLy4uEmI1Gg0IcZqwavVytTrsum4kk3a7vbBwbRCFlmMHhfzX/u7v4jhWSk1PzYyNjTmO99JLL7darRuuv0kpNTo6evXKZUOLjuM4TRJK6fyVq7VaDWxmPyKzHMxwywSGWJYVx5HWKgiCqD8oFouHDh944YUXKKVpmlYq5UqlwjhPU5YkCZcil8sNsgEimHMppTb290mSmSVPKc0XCMjllNScSwhNWLZGCG66RSvFGINo0yYPY2zbeNPSB6HNeG8ATMY655m5oozAE5mdixCMIUIkSzfN+wTnGsh8Po8xQkBprQlBlFKTEmwYK0wI4zObJLEJwjLhIdsfiFJqfn5+2yvD+CRsivKopTdTvxVQmzJqA3FijKVU22bNxkODOpuR6AZ5BAAYbztj5mD+3l6F5jd6k9kD2HoAwIhKmaqt6wQCrJRmTAwPD3c6nVqjbj4ZCLXjOLlcLo7jLEsWFxcBUI7jaKD6/T5jjGXchL0IIXq93sjIyMbGxujo6MjIyPr6epox45zWbDZ83/d9H1s5xni70WSMYYi0pbdSfeJ+vw8hZkysrq4Lxs2FlKSdKIos6kgphQAOxK1mx/VsQ+/KUqUUEIzZtqGcYFP5+L7v2LbgiqeiH0e9Xg9jTCnJBY6UPEmU1pBSarB7lgmM8fLycpqycrlszCW3XZi3CfJSyixl3UHfMKeSJGFMmO/XUF3MDfM1SYwJhhhjLpTWGhNoyEdpmsrNgAoohHpzcWK+Pp5yQohx91NKKym/d6aYaMQkUUpRam+mbSNoVFPm4DBvbDuJ3twPQCdJEt/ZDPwwH1QYDlqtFuc8F+QMaD4yMhyGYb/fNYi5IdpzzpU0lRgykxIhNg2yGNOFQoEQ0mp1sizTChJCDH3YiAZMytM23cxcjcTChGBKsW3bQd73Azefz5t+TCnR73cxpo5jKyUHYY9gy+wVUnEIaBJzgrDWOgxDhHAulx8erlKb9Ho9w9ZEiBg4b21tzYAOUnITADM+MWZkSVyKNI2Hh6tKC72VAKkV1AB1ewPHp0zyLOM8E0oBCLRUkkuBEHI9G1HEJW80GrZrGaoagCqX82Z2TC+tLPqWu7y8LCUfHjbZNtq2XSGU4MD3ClJK1wks1Pd9f6RaqNdaQgCbUK0lALrXHSgAPM/DiIZhrAArFF2/lC+4tuPaXIlnn/tukiS2bS8uLiBEC4VCpTxSLg4vXFleX2lUyr5FXM/zDEQ4PjExMjZ89uzZNIsPHNw3MTV+8uTJqwvzGQsVUCsra1KDbiecmdl1331vbzcj1wbFQjmOOCXYcxxCbCk1xmBhcZ6xNOORn6O79xx54fmXHvniX6VZ/6EHHzh/7uRTTz7x5ONPuJabJAnB+J577tm750DgeGtrG82XXhifnLn3/ndOLl155eU3Ll2cq2/Ue73Bq68fj9IEYjqIozNnzlDi+n4uSTIE7S996ctBruS48B0IzczM9Hq9MIqARvV6Uyk5GAy63T5jrJgvcM6zjMdxPDExsby8/Du/8zuu63784x+dmZmpVqvv+8D7R4ZH/varX/nSl760b/9eBVUUJZ1Ox7Dvg3yuVCwLoVrtmud55iOdmprKsuzp7zyVz+d+7T/9+mpt9dy5M+vr62maIKrf/b4HL1y48JWvfWlpYX5qerLTaWEMw6hv2fiWt90UhqFNnVtuvu2ZZ44RDJOESaG5yhjjGGMIcJZx06Bv9ybbDgNpmlIAzUZt1maxWBoMBoZAp5Qwk12D2ZkfZIwXCgEhxFZ2l3eNQoIQixCiFBmbHP/lX/7lI4cOTE6d+cKf/FWapgtL82E8qFarQRAMDw8rpaTifhBsjVgwpTSKorW1NUJQPp+3CF1aWnJ9b//BfUqpMAxNZmbYHxw+fPjMmTPlctmyrMnJyY985CMaKiHZvffe6/v+33zlq/v27bvnjjsGxntaAsEBdKBlWRhRzhkAAiELSrwwv8SZvP3227vd7vT09N1338YYU0oUCvm11eWNjY2JifGDBw9+5CMfeeaZpwBR73//B//kj79w/fU3KgUefNfDYRi/+uprFy9eTOKsVCqNTYz7vk9p33dzvU6/3++///3vt207n7MNo+H8pYUXnn3h8W8/8dBD7zpw+NDq6srE1PihowfjOCQ2Ha6MdlrdqbHxI0eO/p//8d+vr6+PjY2ZCQHEWAgtBFtdX7nuuqO//Es/f/S6w9NTOx0HXrp85S/+4i8unr/w1FPH0oT/2I9+4hd/8TPT0yVCQb05aLdbDz744NVrc08++dSZ0yeXVxZHR0ellFGUEEJs2+722pxzjKHnOUmW7tu3b8/e3e12k1J69uzZXq/34osvvvHGG5cuXSqVSsZE3rjPZ9lmPIAZHxp00vO8jGc7dkwNDVWuLV5rNBp5lnNd1/PcKIqiKMKY+o6bSUkpFUA1G23LcizqmtysoaGhYrFw+PCBlZWVgwcP/sSnf2ZsaMR1ba3IDTdcNzld+tKXvmTEtVpvtueDsB+GIUIkjmNCyGDQE0JABHK5nOLA1DJpmpkdUkkJoHZdf3R0FAAw6PU3NjYAQBBqKSWlhBCgNTRUYvN7IQjNC1WqpXw+3+50HMdpb0EZjuNYAECk84WCyaQtFcozMzP9fmickR3HoZS2e11zdAIATIiiUsqx3P3792utV1dXG42GUVcjhEqlklBym8EKAJBCGFab0eI7jqWUorbVbrdHR8YJISdPnpyZmalWhz1vrd1uf/Oxbxw5eP3o6HgYhuazwpiY+hAAyFhKsKW1MhIosw9s85q32cdKKeOSbL5cCKEQ0sBcajNlFBcKhSRJlBKzO2fe9ra3WZZlEQtj/OKLz588cdq27YmJidnZXaYaoZSkaYYgMQo8JaVl21xk5vcCACCkIcAm2hpAxDk3wRNaawAUhCYcfhNaQQjl8/kwCSml0zt3+kEwPDpSKVWLxbIGAFGqtEYEY4gw2kyeMLsZVJsSOs65kMx4URKIzLsyhbHrunjLnxoAYNt2pVIRQiilBr1Or9MQgo0MD1kI5HK5wHfznletViGEg8EgiqILFy6srq42m03GNq380zSFEBhzMsuygFJcKZui7fLGlCW+7xu8wsRIGiay1hpvStag1tI8zDJBcMZkb9O5JcuyzFxjWmvDosN4M7qDc2lhQimdmpoydREhJI7jLMtqtVqn0yGEDHjoq2BpaanLmq1Wq3a1US6XB1a33WkHA0A4B1BDIQDGyKKAMYAg4FsRZ4QCLXWr19hYjzCExWJRS91ud0+fPlsdGpmaGlUCAACE+OEuHFt151vugW/NYPrBx/xg0641oJQ6NqUUWFahmM9TipQU/X4/6rJ+GN16663VaiWK+55Pbdfv9tY73XVKWBQPvvBnf5AvuBmLCUGe71BoZ1mGiIOp2+smAAApIQAkiYUQstcNtcbNRndlua61xMRTqtPtdnO5fJoyx/bNciqVSgAoIQTB1sbGBoS43wsdxzU6UKWkMSOOB7HW0Bg1ZhkLgnyWZSwTQgGEoLEgNLwe27bHxsY2NjZarVYQBOVKMQxDx3FWVlb0ltdPIV8SQmAHGtk+sa04Sm3bZlIghMIwHB0dLeVLd99996N///dXz12UQmCNfT8wF5/x9iUUcc4ti/q+rxS4evWqEVPU63WzmTLGLIsIwbSGWkNK7SeeeBIhZFsey4QRsdq2FcWDer3ebNW8ICeUcm27XC77XpAkSZqmzWZTQ62AwpQgJaHmBBKzYBzfglBXKqWxsbEsy5aXl5M4Qwh6nse5UEo5jm126kajYVlWpZo3+0LKYoyp6W8xxpBghDZjGyGEQ8PDX/jCn1y+fNGxbS1VHMa+5xsvJ0qJwQteeeWVo0ePjo6OBn5uYmzi3JnzSZIUij4AoNvtP/HEE51O9y/+4i/m5ua01vPz8xoAz/P+9m+/8olPfGrHjh1f/erfTk9PT06Nr66uFguVjY3GkcM3fPQjP1ouDZ8+ffbCxfPjE2Ou76Upy9uWlFopoLXaZvRv92Bb55zBlb+3Dgzi/H1X/ps1/luI2PaPGDci04N55XKxtr7OGHMct9fr2bZLKe73++FAhmFYLBaN0zdCiDNZLOYsy9JCcpGeeOPE3Nyc6YKg5lBpKWWn00EI41w+YSBjwuw1SZJpLXfPThfLRc9z+r1OvdbBGOf8PIS41wunp2aajcblpaXq0BBjIo5jDeTCwoJSqtlsHjp06MiRQ5Zl+b67vLxcKhWCIEgS/Xu/93tzc3Mi7LelKpfLpXKe8YRQKNSmRS9QZvk7CCHqGjtI22juPM+bmpqq1+ta6yzLzMHMGbcIQRD1ej2ItJaSui4mJqgKZDwrFAqWZWktHccpl0vdbjfLskqlhBB6/vnne70+BFQIVciXtYZZlhl4w/XccrlgO9OmbDWafc/dFOMzxo1JerlcNk4yBw8e6PX6rU6bUDQ6Ojo2Nra8vDo+Pq4UaDVaG2vrWsN8LkiyjBBk224Ypm+//11CCJtap06dGvT7CBKANWPip3/6Z8+ePW0GbMaj5v/4P/6D4DiN9dTk7NmzZ2+55W3/27/82TDs/6/P/7/tdvvq/MKXvvSl8fHxfj985JFHOOd79+4+e/b0wsK1IOcRggndFIURgoy1tLn6PM8zumOMkUlLQABTSqUUhBDf98tDE61WK02Z0kIpJCQ3zpuEoBMn3vjgB3/k8NEjJ46fdF3/phtvnZycGIRxFEW2bWuAlIbGcNDxctJM2jREGKUJU0owiTnnNqEAAErtYrHoOE693vB9v98Lbc8zq9ixXbMuMIaca4A0ABrC71s6P+Qc+UE0+Z84dH64cfLWgwHYnIhuP8+2Nhu8+ZiDQMstJjV40yP0JjEawrdIz7b/E0CgFUAIYLzFd0Zm9MsJpRnnrksJhhABIAHn0rJwlqlr164kSWJoCCMjI/l8PkvicjGPMV5ZWTLSMCYyAHGr3UEIhXHy2hsnBmHv4sXznGeFYr7TbrtOLiiUsixbXV/jnB8+fPCuu+58+aXn5+ev5j1nZXVpKYl9x7YxCiPqOI4kam1tLY5jSm3PzRFC9+zZs7y8ury05thBPqgWC0OOQ9qtbpqyPXv2KQnm5+eTJJVKKaVGRiqe5zXbLa2l57n9QVdK7gce3IqJ40wkcUoISeJ4bW1tMBgMDw//6q/+6muvvfa1r/29gdc9L1cs5RljG7W1QqFsEOQXXnhhdnZWSOnl/H/9C7+4a3bnl7/8lV/9lX/faDT27NnjOM7I2Gin1yUYD1WrpmZqtVoIIa0NlgSNGWUYhkhKk6LGOXctW2SslTQghPl8fnFx0bZpu9ceGxu7++67VtZW19dXu92+1jrIFyBAWkHOJAfStoiUOkkyQhCE0LIcA83ng6KUcnVpxTAIsgwCAKQGjHEAtGnjhRAQIoPq+jlXCAoAgFBLyVzf9X0/jmMFNOPMTArDMCxXSsbxOUkyQijQKI4T0y0oDQAAuVxueKTqUIvzzIj3EQKE2JxzCIFZ8pZlWYQYywJT25gplNkoTP9g4EKDL2itDXkEQAAh1kZCseV3o5QwPcO2WNWyNwFQU5SbvsVURNtOIFsjGbiN+EOIjOUaxhghrDUw0CFG1BiMKiUIIZRSP8glSeR5znC1IrUyTUi1WvV9F0IdRYPh4SqlVANjvqE6nVYhVxyqVDClSRqbcshYqJVKhUP79129Or+wsGBEJ5ZlmXc1MTbqUKtRr2cpT+OMY+OCDVjKEUL9MDQfF9AgEVmSRkIIQRSA2nVtjABB0LYsnoleb0CwLaXWWmMMMYQiY4PBoFgsDnqZkBIhDADw816WcsE4F1kcK0SgUsqyPNuimRAIEghlq9UOw3BiYsrzvEajYQ5HjDEA0LRA3HxZBAMOLMsyS0ZKbVLn0ZsC5c03q5TiSgkhICKUUmphhKDWGiMKsNyG//WWfyJCm2H0GBMIkVI6TTOlFFTatDem5zRYNoTG/pUBAADkSgFTGwMADB5tntZceJtW3YSknAFgUotBHMeWZSGEjZGi67pxHFUq5V27Zi9fvmymC+bXsSxLSQOpo015rxDUwhghxlKtpWV5SgkIIcLY8VwTZAQh9BzXdG4AAACQKTsty3I8m1JiLtQwDB3PPnz4SLfbWV1ZMJaaAKjpHZOrK+ue58dxmrJESuk4ju/lCbFYEkMIpBC2bZt8AkooZ8zYa9o2CcMw5/nm7CuVSt1o0At7hULB8Z28n9/Y2Gi1GpzzJEvjaJDP5y3qUEp7vUG320+SxA88SqnkyjhUSKl5mgIACCFJklBNFRCMiYynfm7EDbyUdRjPKpXS4cMHDxzY9/yLL9Tr9W6r2250m422Ugoh7Pv+5jCYujqn+t3eoBuvLK4qiSCEjmXnCzmheKveaTRabo4Uq8GNN9wQpZ0kGUCksIU14P1+13y/3bBfLg9NT0wP+snq6moulwegAQACGraabaVULghmd+6o19fTNHnPex7ad2B/v9+/ujDHGMPEMmZNXGgA0LVr1556+umR6kRuT4XxVGvkeTmttev4SgvbQTt2TJ08/QIX8YMPPQQhfObZb1FqDQatQtG/7fZbThx/DQBQX6/lcvm9e/eWy1WCXQwcSrx+L3nxxZc9L7ewNP+3f/M1y7KV0M8ee45QyHl27erSG2+cYlx5dnDlylUMKMFSZGkSc0L18y++NDm9Y3R0tFAqnjx5stPp1GrrvV6XUvrzP/+LjkV//dd/HWNT9tCZmRkziZmdnQ0K+T379n7729/mnD/++Ldqtdqhwwd/6md+5nf+x39bWloyYBZCyGBMrusGQSAE+3f/7t999rOf/eIjXxacP/Pdpz/7OwGEMEmj/qDjuu6fP/Inrxx/QQl94eK5ffv2ve3265dXrzm2NTExet99933rm/9QLJR/4ef/VbvV/fqjj95+283zC5dPnTxj8OKc7+f8/OXLV5RS0lBhlIZQY2wRa3OmCKHu9/uDwUAIMTo6hqDxsaEYmtGO3ObQGJC6VAriOE7SSElAqY0xEFyZOcrE9ORdd9350ksvrW1sZKn+kQ9/cHpqp5dzAVSO42CMNTQOPN+TgSIEoyjNBMcW7ff7cRzn88WgkNdaA4wsGwWkUCoVGeOWZfmuNzExEadJu93ef+jA7OyOs2fPVivjjp2vFoPbbrtrdXV1YblRKBSAJpyzIPBFZuwrpRAMIpVmA9t2zaw9l8sdOHAgF3j9frJr1yzGaGhoaGZ2+puP/cMNN15HLeeRL34ZQ/S+D71PcGTb/uFD12kNx8fHskwWCsWzZ8+eOX1Oa33vvfeXi5VCUO50epbl3HPX3TumykoBi4CrcxuPPvro8uLS0NDIT/3sT7/znXdbDlha6gCs/bw/GPSfeeYpreGBhx5CAPzWf/3thfnlSnk4SwXQmDPe6mwQi2qtDxzY/+lPf/THPvIBDfSjX//2sWefOXfu7NraCgRgYrL6wDse/PEf/8mJiVKrNxgdDhaXrlar5Y9/4kefeOKJL3zhC/1exbhrmt5BKVGrtaXkWkshAGOsVCpIJTCGY2MjBmIul8vdbvfSpUvFYnF0dDSOwyAIzFQgSZKtVGSolDK2PylL77///kOHD2AMJ3dMvvHG64aBZ5jshlTEOU9TphRAlvb9AtBQCOU4nuM4xVLhne+8f/eenZ/73P8oFouFQlAoBFmaXLu2mGbxpUsX7rrrjjSNv/rVr6ZcEYyVEpTifj9Mk8z3A1Ob2bbO5XLlcrm+0Wi32xhv+hUIIQilACCDn9q2TSyqFLAsYriDiotNdRowpnCbRnxaKUwg5zyOwyjsa6093+l0khtvvHXnrpkrV670w7BeqxFKtQQ8E1LqwMtBCG3b1hoyxjzb6fV6ZqUbs/6PfexjGNGnn3oqTdNPfOITF85funjxopnLQozwFmFIbVlnwC372kKhsHv3zosXL/Y63SAILl26NHflUhiGrus6LlZK7d2zZ/funU89/WS5VG02G77ri0wCCzrUY4IjpBFCACpCEdrKeSZbWdYAACklRnBLmUTMPq+3TEh63YGROgEECoUCAEBKjgnyff+b33wMQrh7997zZ8+dP38BIQQg5CKbnZ3FGCZpxDQmxBaSUWKbCMTNM10Ly3LMS2ggTYSgVFwItlVVYkNiUFIaO1zj4QYJth1vfHLqxptvlloNDY0QQjCihFCuJFdSSpmJTGRZV+m12kY0CBFCfpCzyGboiIlzwGDTwJpSG0NoRuxZliEEisW8EqLRqCnBGo0GNtW14oHrBr5bLhYC37UoQVqdOX1yZXW12WxqrZMkSZIkn897Xs4MvNGW371SyhS6AGqzggwpxBiXmzrHlPqbI2RD1MAYIWS6DwAAIcI83uQnCSEyxpRSjuNIKdFWAmQWRa7rjo+OmlexqGOIzGYHiKIoTkJjQWbyJAY8bEWdOI5xoDc2Npbml69duRr7oVJquMMIVIALybmyKNYECSGMK6iUACIVR8lg0EniAU8zxpgUmW15a6sb/X543/0PaA0YAwi/ya8Zfi98abN5fqtOGW6HBP4TnfybaJ7b92MMsowrhaSUFMNms97v9yHUSU+WSqXZnTNK8k6n4eesxaVrjfpKt9dyPZRkDCGxMH8VU0wIKhaLLs01m819+/btmNl14sQJ45/VaHZYJjzPQ1jlfCefz3Om1tbXAAD5fD4cREmSJDF3nGR8fHx1aTmKIoyhUmoQDyDEhgSBMeFcDg0NU0pbrRZCpFqqhmHYqLcGOHZdNx8UCbYQzJAU5XK5XC67rmtISSsrK6dOnTLEhIwl+fy0lHIwGFBKtNaEWKakHh0ddf1co9EgiOzdu/fM6XPr6+ulUqXZbGsJbrv1jiAI7rnnns985jOf+cVfxhgrphiTCCHH8SCBWmuEjSHRJiOp1epYllUqlbYvU1M3m8YhTVNKLc6kBFop9va3v10I1mjW6vXa1atXlWKFQlAoVyCEGNEoSdrdLs+yXq9vtmal1PDwsOvZCCGhVJZlWmsNuKFJOo7gnJfLZXvMti03l8u3Wq1arWZmMq5rI0gItvr9frVa5Zxb1DGGOJZNPdfvRyHGGEKdpvHRo0cnJyfPXTgvFV9a3JiYmBgaqqytbfh+0OvgIAhUPj8YDK5cuSaEunLlWqPR7vV69Xrddf1+PzQd3eXLl1955ZVutzs+PtbpdCiln/j4xxaWFq9cuXL27On5+flOt4UQmpubc123fN1QtTKcy+XCMNy1e/bQoUP9fhglses7rmsJDoTWjos4f0tI6+ZnCzYJlW9ZJ6Yh/0eWgwLghyWimaETCIIcwqDVaqWMYYAxwZzLJOmOjAylWQz1ZmqTSVpHNrRtO0kiqKXBU6Ti3W4bE0ARTDPRarXL5dLhw0cmJiZef/11ISFClud5Wca11qOjo7t27ep0ms1G7erVOYxpqVTqdvtxnOSD8qVLV1eW1xzHSaKMc54lGcbUzPpKpdL6+voTTzyhlOp0ekKIWq2Rpmm1OokQ+uAHPzhUqSZJ8jd/++ULF89s1JYKRTenSLfbNVemhcjw0CgAIOYdpYA56SHAc5evmvivwWBgoBbDt8IQMrEp7i4VixpIoZR5JwEM/MBHCGAChWAQQsHVyMxIuVw+f/5svd7QWmOkKbWF3DTEMG6SGCPP88bGxi7PXTQ0K6WEiVAwqIQZ9RsyGgB6bm5uZWVFKYUIOXr06MbGRr2+EcfMppbruhBg1w2Wl1YNvBIOksWriz/+qU+fOXPmvvvu/6mf+tljz3z3kUceqTXrN9xwwzve8Y56feP4idccZ0Yqbo6NRr3t2IVr81duueWWf/3z//LWtx2IElXMl44fP+553v/6gz8kxPrGN/5hYeFaoVD4hV/41wsLC7ZDpRS2Q4FUGEOlgHGINoyPIPAJIQnLKCFKSTMvNXUexnhoaIhSOjRSbLfb9Xp9eHjUc3wAQC6X8zyn3W4CoDQErXZbQ/DOd71rx45dBNNMCAUhV9IUHI1223NzJddvNDpKqXyx4LqO788kaVRv1Qkhnu0AAKIo6vV6cRzX602llFaQ2LZxidqze1+pZCeJWSD/yEHyjx0u6nvHyvfQ4S3e8fedU9uP0z9wv/G+eAsh+k3WzG+aLX1vtrpJgn7TPW9+D/rNcPUWfk0xkBJACISU3damn6xlEaVUtVrN5900FsYFjFJQr7c6nU4u8GZmZmq1Dc/zKMVaY4MLNJv1i3MXkiSpVKpePrC84LnnnltZr2sgrl65nCSDnTM78vn82bNng0J5cXHxrnvuvumWm//yL//ykUce+YlPf/LOO28/feKVasG98fojncbGyuLC+Mi4Y1txNFjqNo032cTExKAfB0GBEjcKM9sKPM+ZmdkVR7HjFFdXl5I0HB4eFkKY/C6WMuS4BnIqFALThJbLZSm5wQqFEGEYMibSlBUKBSllLpcDABw6dMhxrLW1lWq1nKYMIg2hzrLUeKbbth3HsRmBnDhxanp6ZmpqqlqtLi4tx0lCLJplWbvd3tjYMBeYjSzfcR1qJWFk5r4Ri1zbM3u14Z4opZBCWmlCCdASaoAhkopDpH3f39iQZuEvrSzXajWTMAMACMMwiiIIsZRSa0UpDaNEcmE71Ax4qtVqkiRra2uem6OOhSjWWrs5P45j0ydAiMx00tBDKLEd1zKbuWVtjm8hRkLJJEu37Pk24UImhJcL8gAI0TVhDKYryNLMdqhha66vr7uW4TXzzR0VYsNKc13XoBhQ62a7rbUZQWEIN1kkQjIhlKHBGnzEnHRb7xwiDBSAYIvzQqn5HDbRRgMl27YN0KZRtRSaUmLGyUopKRkAAGOo9aZOZUs3rTYlPhpChARXJlYOIaSU1pKbrQYArRS3bdnv940c0rUcg1ArJXrtDnWo67oIQ4Sh1ohSbBO6Y3KKUgchlMax4AxpYGJgMcZZnCEX5PN5094MZN98EfWNtW677bt+PheEIOZMGmot1LCYL0EItez3ej3BItdyEEIiU1pDgCAXDAHo2FRKPehHWcq11BABBDCGBAFoWY6UAkIoWOZ5XpZltmVRaq2srCmuCCFCcKLhyNB4q9USQmiVpQkTaZKmqRQq5+bCXn/QjxzHybKe0Z8BAEx9ZbDNLMuSJInjeOuS2+wb9Zti3M1twztGAMpN7j/YZqkb2vIPFzNuDdIMGG0m2aYc0lsG5UopqJXYiqpHCJirMY7BVuGEIYRS6jRlq6vrZhNAW51zmqaWZVFqPCKV1kBrZdtOsVgQgp0/fx5jHMexeaTvB47t9vt9c5llWeY4NiaOKSMNT38w6PV6PQgxJdi8SaVUEOS2oguy7YrOGGtCDJRSlBItZZymZECAmqtWSwihbr+TB3nXdT0vZ3uE2lgnXGkVBIUkyeKIAyCV5GmaSskpx2m60W63g8A3xCKbWnEYaaUsy8IE5gsjxWLRHjhXr141y7/eqnf6HbMAG41GHMf5QqnTapsJE0JYKxT2Y9fxjW2lTREhBFGktR7EA8e1AFdMMELQUKnqOE48iDDVRn1lqIiBn39j8aRlWbbljAyNNRttKfWgm0rWrVarGVJZGub9vO8VeKKiQRpFkRCq3eqHYd/1HTfnNjYaN99yw+zsjnoDrW5EKU8IQ8PDw+9+90Pz84tzc3N79uyh1FlfX29sdAl2ORNjYxOCSerA0dHxdrdt2/b6+mqSJEeu3z+5Y2yjttIPw0HYq1Srt7zthjDsL6+t7pgYm7s8XywWy5XgyrVz6+vr+3Ydta28Q4NKpUocx8EEIbC6ttjutRHmc1cuX7h0llBNqHz+hWdOnnrlwL79d911x6uvvgoh2LNn10c/+lEEYJbx06dPr66u33LLrefOn37kkb8SSnqe32p1xsfHK5Viq13LFfzxyQkA0K6de/v9sNXsPPXkM5XyEND2zh17P/yjPzIYDBzbXV/b+O6xZ86dO+PYXhzHExOTtdpGlqSGdmCo9+vr6ztmJ4vlQhRFTz71nSRJxsfHu93uHXfcUa0Ox3H8gQ99aGpqamFhIU3Z0aN74zhutVpKASGU6/pRmN544415Pzc0NMSyZHx8fHl58Y/+8P/N5QPOeT6fCwI3BcHp8ycAALZFp3aMTe+cujZ/aXV1dXFprtWuPfvd54rF8je+8c319VrYjcNerx/1KaXmUBvEUbNheKx002MNAwg1xGhTSr81SjTwq1Kq020ZXqQSEgCwBXZopSWEyAhrMMaMp0BI6jiDfgIAAoikaVwslJMk3ajXrr/xxpHhiSBXpgRrBJjYSi4FSEoTwAW1BgZExhhXKkPFYrnRaCRJkrAssK1ioZBmHHGEEYoFbzeaUTTo0365WBqqVN///vcTQl4/8caBA4dsJ1haXG23cha1J8Yn5+auQAiBRq7rTkxMGTBRSOa6bn/QPnXq1NEjN5rkEqXUjpmpRqv1yuuvbGxsbGysP/TOd7mu++zzLxw/ftJxNjvZ7zz5TL8fbmxsXL585fobb+RcCcGr1cqdd945PDz83LMvnDt3bnx8vFQqPf3003E/mp3dQRC4Ol976qknL168uHNm9hOf+uTMzIznekyBqM/DZAAJbPcaq+srt91x6/FXX7t4/vTvfuuJr3/9McfOA21xxsM4ipLkvR94bxQNANL33XfPRz7y4ZSzv/3qVz7/u39Ub2x4vk2wHpsY/w//4T8cPHg4HKS11mo+n2+0WxcvnRGSPfbYY9958mmWicuXL7uum8sFSgsI4WDQN135NnNFK4Uxfu211xhj9fqGQSHX19eN120URZZlW5bV6XTCMN4CxaxN5I4QqeUtt9xy8ND+S5cutHttU6QBqBzHA1vOfixhIUtNS1vKlQQScRw7jh3HabGYt2270Wisra+EYVipDP3FX/xFKV8d9JO5y9fCME1Y+Eu/+ItXr17t9jqU0kQpauHDh69DiKyuri8vrWitPc8zMhette/7JlLLDP7BljpZSlWr1YwdPyLYFE4QYAQ33ZOB0ka5btpDhBEEut/vpmnIOTf0mPvvu3tiYuLa1fl6vT6IInOYpikz5QpjjFIbQqyUMo2qEV2Z9WXkUFGY1Go1jPG73vWu3bv2njhxIp/PZ1km1OYMePv8NZ0OxMj42HhezhidO9DJRAYAoJS2220ElZZg5+yuO++887//9/9h226pmLctr9vpC6G0hkppQiiHHCGIkKbYhMe8xdxgi8lEtstCszMAAIRQtu2ajyhLmTPiIAQ558Mj47OzOxYWFlZXV48fP95qdRzHsamlgC4WC1PTE6+9+saZM+fuvuv+XTM7lYLmGUztCgAAehMeRQhIKTEmUnKpgHkDpuDcpvoiCCDAWmuj8lEQYEowxkJpiDFAhEnRC0OplFAySRLGGILAozbGWApBXdemFgCAYqwR4pwjTTGlGFMjEDSjfcfxKLURiiXnx48f73XaEMJyMT8zMzMzM8Wy5MKFc64NieKXu+00itutRq/X0wAZLB5jXC6XDcOD8wxCqLXEGGZZYoTFAACkldqSoxlw2bxbc62amVwcx+ZwkWqzXAcAmBkAhNqIsE0MjFYKI0QJkUKorWtsfHICY9zpdAAAruNvRzcLIWq1WqPRkFIaA25Toi8uLsa1dDAYdFkTQmhp23EcRlKEgO/7RAigFWRZiqAlmWaMb01yNII6zKIwbHOeYQzX1pccy905cwgA9MmPfmJkvJxxoLXGCAqxGWgGf0jN+f1i5+2u+/voZt/vnvnWe6Q0XQfyfdxu94xwr9PpXj577aa33ZTL5eKk++xzT/X6zZmZMcuGC/MX/Bzp9YSRT4ZhKAkBeeT5BS/JFhaXF5dWPDfnOA7QaGOjjhApFsu1Wi1NhJL94eFhz88PBgMldalUSpJMcKPkiMbHxxvNutagVqsR23IcAgEmhA4Gkeu6juNFUdTvh4KrXmsAACCEskw4NsyyLEkyIQRAkDG2trbW7XaVEiZW21DThWRSqKWlpWKxSCkxowbjQc4EDwpFNxd4npelrFFvYYxd18+yzPW9SqXy6quvdrvdjY2NV199VQqRJIlnOwhtCmA9zzMXsamqCaGEYBP9Z3wqAQBK6f+PtP+Mkuw6z0PhHU8+lbs6TvdM90TMIBJgAkCQBCNIkJREkTRFQqLkq8+S75JEfZIlWzZtL1u+soJtWsEKtC1LFERSFINAAkQOg8EgTM4z3dPTuau6ctXJO30/dnUDDL73rvXVH/Q0qqor7H32+z7vEwwD6449DCPOhUEtSkmSZEoBz8u95S13rW8sP/nkE4LFN910MGMpl1AvaJY5miEbJQsiFkKpZqepkMI9DAAYHx8vl8tbjVqSxDosdafxiCKmdQpk2wowTdNKpWIYBiEo44M4jjmTAx66rospBQhlgufz+Xq97rpuuVxeW1tzXXesOtoan1CcQIjSLDYM0u93bdtO0igY9LI0tU3r2pWrEKMsY6sr62NjY/ff/97XXj0Wx3Gn0wVg2TQNrRHIssSyjFzOW1hYMC2j0ahfuXLFspw4Ce+9+76p6V3FYvnWW28lxJACViqVLMvGxqqYkiRJhJC6jU0TRSiUAu40Ygq+zmPUA5UftV9+xOJXCkiozWZf/83OTUoVhIFWeRiGlcWpUspxLMsyszRuNpvr6+uU0sEgTFO2Z//ufD7ve/lwMKCU9nqdb37zG0HYP3LkEMVqZXXJ87yJiclf/uVfvnFj+dVXT3CmHMdSEqRJZttuPl88efLk6uqKYZCMJffcc0+W8kF/VQqwsbExPb17etdcvV7v9yIAAITU9/ISqChKTNMWQi3dWI2iSAfNx3H6kY98pNsJPM/7zd/8zSzLvv3tb7fajWeeecKyKzP796ysLkmV9noZyzgkhkRSSSjl0FckTVgURf1+v9vtIoSk4vqSJ6UECrFM6LpBd7ZSAsd1hBBcZPl8fmxirNncsh2T88xxHErJ5ubmhQsX6vW6vmhKqTQ8qiVU2keJi2xjo7axsWE7JgBAlxGEECkVpabmQYdhnKYp50xK2Wq1NA5lWObCwsKe3XOzs7O9TsAYgxB1Op0D04cqlcqLx46bpmVaTr5Uefjhry0vL7/2yol/9YXf+s3f/M1Op/3XD/8lQujatWv33nvvtfnLg6CnlJyeniEUj46Vr1y6US4Xv/CFLxRL+WvzG3ESnTp1Rik4ObkrSZJmc8vzvP379w8GveMvHwMAlMslOVTjKsZkkiQQYk0N07BaPp/fd2jfqVOndNiLlJISqgdFrVYrl8vddtu79+8/+Du/87vddm/0wFgcx0LKQRC1u73R0dE4SlfW1xXEc/sPFAuVTqcXBpFpmgAiBWCappub9cnJya1mo9PtFgqFIBgkSayNSnzH5Uq6lul5XrfbXVpeNQyDEIMzOTk5CTDu9XpCiCiKfN+EGAgBEP4hVjL4vg3yg8NOtJ0iAP938MgPbcMf+iXctrv5QRXONjC9c4c33l9+vzXzzvOjYQjGUMoAAFDbd+ZyGGyoo0h6vQ7GOE2AUioY9A4ePJgvkCgEEII4FlLK8YlRCOHS0g3XsvO+u7m56fs+VCiO4063bZik2Q6KoFSqlFdXNk+eOgOgEDwzTcoFef/7308xYWmGLHNhcX7P3OyTTz7uONbb3/bWhx9+uNXYNAzcbG0VfKvTaQ3CXm9gAZBLRLxr1+To6EjOL0oJ6rWGYVjXri2MjFSlVKurK2dOn/N868DBfe1uoz/oLC0tat56sxmmaVatVludNkJobKyqs5IzlnieIyXQNhfVajUIIsZEp9PJ5XKlUglCODs7e/nKJaXUPfe8Pcsyx/G63f7JE6ePHLlpZWXl6sK853mmY0dpYtjWJz7xicXFxZ/7uZ/rtLs6tDaIws16jSA8RLgA1KpG3V0wxmzb1RdpBBHEKE1TJaRmCqdpahKKMNQl3crKimUZACMhhJfz9KxUsxRrtTohhGDDtG2tuUvTDEIIEWSZAAphRDXYpzUEjKe6SC0WKng7Q1xX6vpaRAjUOCzG2PP0ZU3k875h6exsgjHO50u9YAC2I1N0FhnG+I0uBxhjnjFAFISOHpV5HtZ/izEGgIAYF3xfg3pa+SSENE1TF5rba/t16rHuADXzFEipC9nhygevz1l3FJf6TVFKMYFKKcUVBAghRIh+s1JtGwfvxNYhhCRXECElh/cRQltpQIgBhBADLJTONwZCyJ3XszMzAAAgDCAAURSFYeh6to98jLFkgiIMIaCGaVYqaZomCdMvmBBaKBQ0Jjvo9npSOo5TKpUqlUoURf1gEARBtVp1LDtJsl7WpZgSSAxCBlGKFCKExiyBEJrEyLsFKSWBlDNOEWWMKa4opHGcQKh8380S5jl+p9VjKQcIE4IQsg2DAEAL+YJeVJ7vUGJKFUnJwyQ2DAMD6Pu+7nillCJLB/0BUkBK7ZWhiM4j59wkJhCy3w84zwAACKEwDKUUQggAoN4IUgKMhxp5vB258wasWWkhKobD9GmlFEJwh9SsJNSpX9vLQw07UIx1zYkQ4mmmv4shVgWARhks09R1VxRFAKg4ShljWvOrWy9NutFzlB1tvsb9lRx2UFJyvcYMg5gmxRg2Go16vV4sFguFQhynhAz3LwBA7yPb0QyplPOMUrp7z4xt2/XaFmPMMDClFEIBgOKch2EoDM4518T/OI51l6SLVSmlEBwiZRCSMrG1tVUo+HoHU0pc1zFNY3Z2NwBgfGJkMAgH/aTTGfA0UxITgzOWmaapJBCCp3Ffa7Y0DAcA0FizRvGazabhmDMzuwzDiqKg2WwMBoNSvrAT/5skSbfbl1Ll/EKWSikBIRbnACGKMciyTGPTUvFCMZeyJOPZ1NREGIZxFG2srwMgbQ/3e6FG5PvtEBs0SxRUKBxEcdRmjEnNRkpBp7FYrVYdD27V6gQPhABJkkRRTImpgCDEVAoPuqECMBhEV65cW1ufN0xYKDqaktbv95Mk2b17dmZ6dtANoTDCPu+3Q84lwRbAHEJcq231ev1ur90ftCvVIhfpjdUFzjmhRrffloo/+UxbW40riSuViud5YdxstJZbsFYdK96+562rK7VgtZHPFYVMMxZ1+s1Goy4Vq21tplmEMUxZ23Gc2T2HgrAfhH5tfSOOQ9ezDh85ACE8e/YsQvDILYeffuZ7XMWQcB6Je+65+73vfd/W1lbG4tdOHGcym5iYuPWWO9rtbqvVmZqZTLOYQGussmtsZNdNN99SLBY91zrx6onrC4tKwaAfEkRHytX6Zu3P/uwvtCePBCpJEst01tfX77rrriAIFhYWfuzHPrq8vHrrrbf+5m/+5je+8Y2Hv/pwtTr69a9//eqV+UM3HfjoR3/skUce6fUG/X5gGFluLDc9PS2E+PP//uff/e4j73nPu2+66aZjx46trC4JwfIFr1QqAShmdk8eumnf1tZWEiYnTr7a7TQghCtLSxii+fl5IdTS0lISzyNEKLHT9bVyuRjHMQCIUqPfC7TngD5Ndig0EEIph2NOC5n6/JJSarIIZ5JSahu22la6YIwxwRo707GcnElMCcCEWlYYxCKKPvShD733vffv3Td7df7a+tomJbaSaGSkHA/JcEoIifGwF1AASAURNhhXlFAAgJIg5+cNw3A9j3OuYwktC7bbYWNrizE26PYKhYJhma5njONJIVihUOz3B2Gt1Wg0du+elpLvP7AvTeJ8Ps+5YJkghGzW6s8999zefbNTUxP5fG6ztiYl+OAHP1iuFDnPRidGC+XCa6+9trq6eurUqY2NTdd1LdN98CM/JqX8h299e2F++dKVy1GUjI2NnbtwYXl1dXp6eu/evaZJDYPMzEx773fCMBYs9UqFdqN5/vz5uX3TtdrG888/zxh729ve9uCDD+ZyXpoygBUxYBKIza2NQinPWDo3N7fVqG2sL/2Pv/iztdVNpAjB5iBIO50OouRXf/VXP/9rv3z67AlCcS6XY4x95St/9+Uv/00cx7fccstnH/rUw3/7V4iAv/v6w0eO3GJbzl133QWD9Hvf+96xY8fa7bZScHl5PY5Tw8AAQMZYlupcX4AQ0uUQpRQh0Gq1Lpy7EMeRglJT2bTcSvdimkOgtaG66NIsqJ2BNzXwZm39K19ZGBurEpNodb/2bqLU1JkuCCD9d5Mk26q3TNO0bVdKkUZxPQ27vdba2hJESmMsG+tbGGCD2hhTpaBhku889p215RWEACEoCKJysRJGg0K+VK1WkiQJgwhj2u/39bnjWLbv+0mSSSkVGAJzEClKKWMCISYloJSyjCspDUopwpxzKYcbRAnJhJSKW4allLBt03Ft0zSDINi/f//u3btPnjzZ6XQKxaIUIIgjPU2XTARZJLnArpHGmZRcQcBYijEmhOpZDuf86aeflgIwzjvd7p/8yZ+sr68TQsI40txnTWPijOkDnRAiuMo4i+N4bW2t3W73+13Nb8UYIwwklyxNEQJAwdXV1Uaj4ThWfbNhGBaQoVJYcEUIJtiUkmGIXMfKskRjOPqz2qm14LZqU3NgDWOom9cFAecCIQgA8n0/n8+naWyY1POcy5cvxnHc7bYBkLrlGYTBPfe8/SMf+cjKyspjjz0Wx6nn5Uqlku94UnGoqAa1IYSu62oz6G3NtxRKIQQJQUII7c+m6xRdhWrZllIKEWgAw3EcoSSCZDAY6Bj2KIqkUgDBTHCkADGG9nSUUikEIcTAZpgEujraplwgXTYPBgOMtV+usE1zbGxs0Ov67s2aZV8q5F3XfvmV8xsrS/WNZdu0mlu1UqFYLhddxyKmpT9PzZVO0si2bYwRgkSzAzWqoJkxGqlL03S7OIc7+PuO9k6XOroqAxBighEYEs9d1x0MBhAOOSK66bAsa3p6mlLqujbGeGHx+rFjx7a2tt797nfv23tA57GtrKwEQaA9/aWUURwEQbCyspJl2SDpgxhjgICnTNNEmf6EhkuChGFomTRJI8GjZrPJMjE5OWXbrlICSmlahFIkpOq2u2kS9bs9gxTuuP2uarWUpoAaQEHIGTDMYfrf/z+31yOSfkD1DIe/lxJwIVQCESIQY+2uOLtv9uCh/f1+J2MwinsbtRuHbpqcnKo+8fiGa9ucM9exHcvO+wWpIMGa345M09TNYXmkggh2PBdCKBUwTWtrq57L5VZXV0ulkuZhlcsj8/PXPc8TQq6vr4+Uygf2H5RKEEIggf3ecM199KMfbTba3/veEzvYsQJQcQEBsCyLc64pJFzJNE6jKNDrSQsl9KUhl8tRw9/c3KzVatq5UimVK+SFknE3ZRkPBiGhBlSAEGOjthn0Q9u2tUS9VCoNBoPnnn3277/+9bDdRqZjWZYUcmf0ISXQcl1KTNM09YrknOmLfhRFmuFYKhUYYwAghBDGWjk73FHPPvvsxYvnqQEJQVkirl67opRotPq6ASgVKyMjI7lcbnZ2dn5+Xq/vdrutOSz1er1cLhNCMpZoAguEECHIGNehNxjjLMq0d1KSJMViUWuEQcp0Qa9PNYxJEIS7du1C2955YRj2et3r1xdmZmaq1RHfyRvU6na71/rzBka9Xmdq6jDGeHl5+eCh/YN+ePny5TROqpWRIIg6rXaWMc/xGo3G5OTk/fff/41v/H2/39fx9C+88AIhyLKsarVaLJbb7bamSHc6vSOHb9HuPLZFBpHo94MwDMfLE/m8xxhPUwQJgBCC7bHK0KJ5G6J6I20Z/rCf7BsX/xt+ltsbBAEg9PMALbeHpmlMTExEURQEUZTEuZyn/RwuXjy/WVvf2NgIBtGtt96ez/vz81cPHTo0OjoqGU/TOI4Gs7O7ry9ejsPBanOLi+zmm29eWlpaWVq9cX2x3ez4eQcgGKeZxhE2NmrdbhsAuLXVnpmZTBOWJAlCyHbMMIy3tmoIECGGTu6OY0sJPc9nmeSch0HCufS8XK83MAznM5/5mXK5/Na33IMxfuyxx48fP9Zut3/rX/7zQzft/cpXvkzMqb37d7Ns4vjx40JkCMv19TXP86gBNRWuEzS24z2JlBIjynhqGAYlJoRQ8ddRCcY4pSToBf2w73q2ZRlbtXqSxUopQlG73Q7DQNvqT01N5Ry2ujpkHBsG1M1MHMdcDDUsnucbhpGxZGtrS0qptfCe57mOvz3IVUmSQgj02WNZlhCyUCilabp79yxLlwnxGo0WY9nxl4+6Tj6f9zlXGGPHcTY2NhBCS0tL//pf/+vN9fV2p3n33XefOXPGde0PffgDBw7sW11byrK0VltfXLy2udGcmT5wyy13tBvdUydfO3z4EAb4xIkTtVrtS1/60sbGRrlcdF139+7ppeVFo2XMzEy7jrWxsZEkkZRy/9xe3/cRIlmWbW6uB0HQ7/chwcQiGGOdE6jLBX2qxXFcKBTOn720e/fu8epkkiT79h5cXl5eWJwvl8uuk3v3e97/1FNPlUujH37wo612TykqJTh/6fKePTNT4xNCiG632+/3p6amarXa1WtXgEIXL16sVCoPfOgDmr7X6/W6UE1MTPT7/UZ9a3R0lBDDtm0IoeO61WqFZSqIwpQNjSY4Vxj/aHrzD1OM//fnzuvbDEL4Ru8asK1A+JGmzK8rdXYmSj8CnP7BhwDwOrK8fZcfcXLqJ0cEcMZNQiqVUrvd7Pf7FgVhGPq+v7m5EYY50zQNw+wPuvmCT0jx6NEXGrX63fe8rdPpRFFg2+bGxlrGU8e1vbw3CAKA4Pr6+qnTpxrNuudZaTpotbcqxcJIpbR7ZlYy8bff+vuFhYWXX37Zc9z3vu89ly5dOH/2NCXAMgwl05WVJYOid7/n/hsL8/lK4d7D9+Ci12p2ut1+vda0bBIEvWaz8653vndiYrzTaadpDKG9uLhomka5XK7VNjR+pMHEXq+nY0A0cds0DdM0pQThIAjjaGVlbXR01LFcSogCQimVJJlpmucvnOv3+wihrUZdSe29wI7cfPAjH/nYtWvXzp2/7nkepXR9fX1mZuZLX/oShLi2WdcjVdu2CSH9ft+1HSmlY3tZECkhMcZMSE2ZQgjN7dvnOM6ZU6cMw9i1a9fGxkYchxhjwyCCMYtawCBKySxLojTyPGdsYlQ7tem2yvN8xtYoMU3DMJChlW7adEInNFBKtMk7NbBt25RiKSWEQ19XsG1trE0qdNmqc1eSMHJd2/NKSRJlWVYsFSqVCsY45QwA4Pk+NmgYhpwPAR0IIVI6gg1JqdI0JYSyTGZZpo2GtHak4OcsywrDUOnQcIzTNNVmVoZhSil195JlGQBDkxNCiJJQtxB6Yk23i9o3lvXyDXCzrkOGVGbOIdLEWKlV1ZZlMcYY5xrI1oCjYRgEY4Ix34Y1pRxKpzFEEEIEkMY7lEKEQCEE5pxzoT8BxphrU01Q1f0PgjBKEs65BisxxnHc1fwOQhBjDALc7wVCMsuytBGEUiCOE4zR3r17a7VaFEW6W0YINVpNbVyQJWnBL6aKCa5MaiKIpADbnF9EEJUApGmKFFAAYEwZ44ZBTGzylGOAyyPlVqslhAJKUISgAhBIwaQ2WJRSpFlsOybjKSFo18z0Vr3Z7XScnFco5jOWuq7bbQ867T7nEgMMgGZmDAnIYtuCmTGWCW3vq79mZBgGANB13VwuF8dpFEWaBmsYhl6E+qk0QKk/Q7I9NoAQIoQ1MK0U1wtDdyxSSgCHRGOMDaAQ0rzt7Yut/n4RQo7jpJxpGFS7r0oJ4li7kEPdytKhwQvUKySO44MHD1JKFxYWlFIYU8YSzZrUvBsNTDebTU18FkJAiF3X1bg8y5hhGIQi2zY550kScZ5JJWZ2z1UqFX1C6XeRJInu2w3D4BkLw1C/DNO0DMPQtEqlVM4rjI5XheCtVitjiaZWtdttIXkul9OvYXxyMsuyMAwMig2DLl4/Y1leKqFgiKcRBEBk3Mp5pkm1FyQCCEIcRQlCiHPe2Grtmp60bTsIgm63q18bhJhSWq1WPdvR108hRK1WAwpGUTTox5RSQgwlFMIISKUEAAhKoAwDe76fz+f6/b4QzLZtKaWWqxNCOu0oGDAAACGgxjqe5yWB2NqoAQAsy1EKsUwCxQmSCJF+N2y3O0nCbcujxI7DiGdMCWA7jmEYXIpBNJCQbWxsfujBnzpxRlxfvJKmOEmSXq9n2y7G1HX8MIwpsSbGKzwhG8unlCBSpDwTmxutlRsr2AIGtcYmy8WS1+w0RyfLu/fsX1payUTWbrepgXO53NjYWK/Xc13pef7G5nKa9Sm16o3FOJ27cu3U8o1Vx3F6vQ4huNGs79s/2w96nuf4vocJnL9+43Of+9l9s/t++9//X2dOnNOL5/Tpk3/8x/+VUrq+sTo9PSUVW127bjtkarqiuPve991/55E3feO73/juo9/etWdiY3Xl4uVzy6tL1epYmmQ8E5NT1aCX3PXm2wzqXLlyZXJyMp/Pz83t+4Vf+Kfnzp4W973zv//3v7h6+RrPhASq2+3atg2lVBL2er1S1Q/isN7cKpRLn/z0P9o1vus//+EX/9MX/8vp06dXVlZ+8Rd/UY8ANzfqjz76aL/fz+fzja3WoB/2O/1P/OQn77rrrj/5kz9dXV3lGfM8j/E0ikI/n9u9ezqO48Gg11psaG96wTLfdZpbWxqviZPMdf0oTAwTYGzri6VlO6ZpMiaCIKDUoJRmgluIaF8pjLFSAkIIgBw6HCKlL/UaQ5RSOo6TzxXTNB10B9oNCUJoGIZpGkMzEKUgAJ7tmI4bBmmzUZ+e3n3nnW+end07s2c2ly/O7tnbbDZ1M9hsYifnIwSUghBihIAUQKhhuAUAQErIJQASGAai1PWkSwwQhhljzLbNbjdO09QwzTAMO/1epVJJ0zRNbQDAyZOnn3vuuYMHD958y20Yq5sO71tdXY7CTqHoeJ6dJgz7Bs+SlZWVbrd77ty5xcWFf/SPPlWpVL7xja8DIHft2jU6Me74nlLqlltuOXz4sO/7ve4gTdNPf+ahd77jrs3N7mOPPT4yOnZ9+croxOjPfO5n6vX61//+Kx/+8Idn56aff+HZNE3f9ua3JGnY67cRUpZBr1w+e+ni2T/5k03O+dTU1M/93M8yxgzb5EpJqARQSZiFcdjqtFfWlinFDzzwwI2l61/6i/8mMjE2OlWpjC5eXymWytN7ph966KEf+4mPBVG4Z89cqVS4eOHC8RdfuXz5aq8dSQm2trYQQocOHTpx6tW77nrT/fff95WvfXVlfUkLX3J598LF80rqMDqapSmCJAy6jAkpJYRYCOV5OcYYQoTzDCjU7fSpgTEmUGEmmD4vXNe1LEvbi6+treVyuVarpQsAzT8bloVCrq4uE0IEEJOT45qKq5SCAGNEkzjttrqlYtkybaWUEooxZdsGIUarvSUlB5CHEXQcS5/mYdDQUKB2qhVC7T90sN/vJiyxbXPfvn2f/OQnv/3tR3gmarVaMIh8343juNncMgxDSuB5nh5+a0Z/kqVg2Hcj3TCapj0sgbj2gRZJwgCAukAihCQsxRiXi8Xdu6ds13I9Z9++fZVK6dy5c0tLS8eOHa3VtvL5PFDKtu0oisMwpNQEAPCM6ybUtu04Fr1ux3YtSqnr+ro00uBjGIZBwFzXferppxFCACBtJ6XhXbTtVKaDMTiTAAAN8Xe7XUIIQlDDzWnCOOeOa0kphVCTk7umJnbdfPiWC+e+6ntFziAlFsZmFGVhOBifqJbLxf6g43leHHF97nPOAWD6yHYcJ8mG9msAgCxL9LeglNL1JMZIKTUxMYExzrLE87ylpSXDIJZlJUmiX5Lv5yCExWKx220/9tijq2vLnpu7+eabfd8XQiLJdf0mhABAxUnY7XZ7vV65XNAdN0AQIarhb13vye2cD6A0v4EIIZIsg5hQ00wyLoFqd3sIIEopJkQpBQHUc30peBiG3W4XKQAQTJMkTVOCsARKW2PtTNCzLAvjlBCiIJBS6hLi4MGDed9tNRssCbZqa71ed9BpKZltrjccy5BS+r6bz+elEBKinYpay7V1egfQBSQGXGSEIgUE4yljaGelaQbAG90zdI2qR9c7o74kifRLhRgNwiCKIs/zHMexLEff9Oyn1Wp1u+00Tc9fvNBsNmdnZ4UQS0tLm5ubGxsbOlQjl8vFcby+vj4IegAAXTdalmVTRwjJjDTLMhs6nHNBBMaYi4xs1TepAR3HlFAhJDlL+91euVhKkkSIDGOggDAwarUaURRtbjQatTTNZKezSwBVKpfHJksYA7mDNf8/scZ2SGfyR8mgfwBu2/nldm4SBtuUGcaY53mDwWD3nsko7vUHLUx5dbSQZsU46R8/dsl16MhIPp9zhFD9XhgEURyxKIqCYMv3/ZtuuqnVbiAMPM/r9XqUYkKMJI4AUNo2zvMciFTOySEAr1+/zhgDCumCVfcbQTjI5XKY0pxfGBmpdjq9eq2xd+/eUqlsmqaUcmO9hhAikBBC9P7RBzAgAGEopZBKIqyAIhgbQjCNN9mOOTExIQQ/ffp0lMTved97JyYm/v7r35iYmNCdwPLyMkJk1+TUxMSUGBWHDh6OouhrX/taHKXjE6N79+7t9XrEdrTDkYCAYiPLMoQkTzNEiRbOI4gd19IdRRRFUiqMCUKYUuo4nhDCdXOmabWaHQWGVgwY436/D4C87fYjnU6bc66UiJNIcGVbrsYOAACGYYyMjHS73U6nl6axfqyUkjGmyVaFQkEBgZAOFkemaen31Ww2s5RTaigFDMO8cWOpUChkWVYs2aZp6Z2sVTk6I2Jra2swGGikPp/PEULW1tY6nY7v5Pr9QOuXCUVh2IuDAYHAts1Lly5pbPSee+5ZXlq9ePHi008/mc/nb7/99qeffvrq1atvfetbOeeua8/N7VldW37txCvTM3sqlVKcRPfe884gCC5fvtpudQv5EqV0eXl1YnzSGClhjH3fNS0rTVPPMwEgiALGAAASY6TgMChs2+x1yAD6Pv+ZH9oI8PshqJ0xjN4L8g37gnOZsSTLUu2MGUXR2tqa73jlcmkQRIynk5MTr776SpZlSbTv7re+rR21CaHRoH/q1Kmx8dHmVr2+tTlSLt16662vvHK81+8QRA1i/vZv/7bjeKVSicuEMcZ5lnAZ9Ae7du36R5/6zHcf/U4hV7QtkyBqGMB1Xcb43n2FrXqz2wohhJr7E0dpqVTatWvXIAgGg4FtuxoCAAAUi8Vf+PlfvHj5Uq1Wm52dPX/+/NrahmUZFy9evPvuu59/4cnFxYWpXWNhGJbL+VtuOaLjCu+4487r16+vLK/1+109oIvjWEdjaYRUKRWGIaU0jVOt29LYE4QoDPtaloUQ4jyjJnVdN8uyTqdnGMS2Hcsy87liEnQLhUISZ0rBLEtHRqoIoXqtkaQxAKBcLlmWZZqmVFwHU2gPjX6/r6EZhIHmDGrzUynlYBAkSXbo0OEwSk6fPruydENKmcvlIIQzM9Pdbu+D737/6VPnl5bXfD+v0dgjh9999fLl3/v9/+vmmw/fe987Go16EPSfeuqJJA0IQWnGiyX/5VeOHn/p1G23vgUre2Fhqdftf/azn52bm/M8753vfOfDD39ZsCzLEgDkxubaxsZ6uVyqVErNRiNNU9d1AQCtbuft996zd8/e5eXlo0efj9KEMRFF0cLCgvbB1AZ9PGO6VtOV4o3FlWeePtrv9ycnJxcXl65du5ZmWRRuVkZKp06eO3L4tvvf8wEp1ZVri3Oz2Pdzo6MjlmVlgmMAJycnHcep1WqvvPLKytIyxlRKmaXxiy88r5Q6cODAtWvXVpdvjI6ODqLQsT3btl0/Z1lWmqYp5xp68H0PISAEIATo4Kv/HcH5B06QHwkZAwnAtn3QjvBAH0I/rMJR3/efNzzJD/2tN95B224MXci39/IO5Vm+kde8fYbqhEBtIQUAyTIJISwW81EUbKzf6Hb6AMEjR45InhmWtX//VBQZvV631+ttbdX27p2tVqs3ri9cvHhxenr6yC03+76vgOy0e9XqmOt6l69cO3XqRBT1Oe9bJllaWsh5R6amJhauXXn6maduLF7XkhHLNo8+9+zq2rJtGnfeeefF86eXlzZLRb9aKo9PTTqOZTvmC8ePLdXXdu/ePTo6HsWDicnRmw7dfO7spW5vy7Kcw0cOUIrX19cWFq7ddOQgxrBSKaWp6PcC13Udx1VK7dkzxxjrdttZlmk/MkWVZdljYxPtTqfValFkUYo830cA+L6vlNCbDkLY6XQOHDjQajezlPl+/vr1+cvXLochQwi96U1vWl5ertVqmqhiWZYWH2QJUxTkPF/nkyilsG3rYAOhQJZl5ZGRdru9urp68ODBkbGRGzdulEZKhUJuYyOAGCVZiiHoh32EEDUt3/Oq41UIYZwmW1tbu3fvppTWN2thGPluzjEtzuUgHegoXd1NgWFKm+RSIiUpNKQUmoiqfR60iotSAgDQfYUuHqIo0p9PEERKKe0LIYRYr20MFYII67wHx3GUkkmSxHEipQQKcC4RJLorYIwRQvSngRDSlOrR0VGFIBPKNLHneYwxXfRnWVYuW1qeqdVIQrwhDQYMOctCCLWtVdL/a4fULLcB6B3vuR0ahb6bbjgZY7ZtI4QgQjrgUZdD5XJ50O9nWQbR6x7Qw54BDVWiCAL92hAAuuCmBElJNfPU5jaCGAybDWEYpm3CjDOCjU67Z1qUUpqmmRCScxZFkUlcngmEURTE+sO3bVswuWty+vChw7Va/caNJULI3NzePXv23LhxAwNjYmLqxvUbcRBTahKkLdURUApBqCRkjGmTCsWFQkQBIIUkCPOMGRblAqyvbxqGwbksFotgGHIolVLa+A9T7ReMdWhMIV/K53O+7wfBSByGW80mhnBsdDzox2maWpajfTY0wq6nFHrhaayWUv3hD2W2tm0zxgEASZIwNnTW1uTlnfZpZ36gi0CWcU2GAtsSXf239ALD27k0YMiER5JxCQAfMu7Vzv11CwS2mc565IAQiqJIW1QrpaIogRBrKFkKwCFHCJXLZd/3fd/XyR8YwGq5UigUuoNurVZzXde27X6/rynbCBFCjDiOEUKUGoxllmmaFnUcxzRpGIamWXY9R6cWZ1milz2EUAghAcAYS8E4kFxwIYXuUfXHsvNm4ziu1+tC8DiOIVJQYQxhGIamBVnGkiSRACwtLVmWVSzmLJukcZaxCAEDQiOMBuWSOzo6urq6moSxELJYLCglhGRZwgGQiKBCIbe8vHx9ISuXy3EcZyrN5XKel2s2m45pRXHSa3fy+bxhWLaJRJkTYrTbndpmUzer28QlSAiyXUe7pROD9IMeQMC13M3NTY2YeG4uiVIDeyxlUsqIJ5SKNFJSEKQMCDFL9LwHYkyAREKIQTLAprRNxzJspaDruhiTlGUQKSFEr99BGO2ZnfvIRz52551vPnvxJOeKMVUsjrRarW4nyOXy651apxGUS2OW4V26dE1KoLMilGCEkCAIPcvau3/Wz5lb7fVGs+asWhKBXr9fKhfGx8cbjYZlG7lcjmUii5Ow3x+fKObyXjCIXn7laLvRPLj/tunpt507f+byK2csm+7bt++3/j+/cfToi1//+t/tP7AHE1XIl1pbjWefPDroJwianKm3v/3eXq999MXnfd/tdNo3lq6VyjnHNQdB++Zb9qeR+1f/68vip0Cv1+v0e8l8uO/gbsezuWRBNDh06FAcJkmYea5cWrv+trvu2bf/rVma6r0ZhnGlXLUtg2IjkfGnPvXpp556YmNzDUIYRRFEiFCkXdQhhGtra7/+679+2223PfLId9vt9u7du2dn90ZRcPjgoSSMFJCL84uHDh366c997k//9E8XFxY+8ZOffOihhy5cuHD+/PkkSTqdzsrqkjZ7xRAFQaCVAUrKdtgi2FBK5fN5Smmr0dK+9owplvEsE6ZpKyYBgADhLOOcc9f1GGODwcBxPMe0tLE+eF3HPcySogZGkOhsT318UEpzudzKyspgMNCwiH6UJjEYhmEQoCTEmMZxGkXxBz/4oV/7tX9WKJZWV1fTlKUpKxbLvp/P54uDfjAY9BKRToyPUgq0nRqhAIkhm4cxgCEgGCikvTeBUioKmT5fWq0OhKhUKgkhMEIAgMXlRcYmm62ti5cv5/LezTffPDo2Nrd3ur618uxzT6xvLBdyfrFYVArm/NL09B7BcWWk9Na3vnV0bOTixfPz8/Obm5uDweCZZ56pVqsf/bGfGB+b5ERiYuRy/mcf+pler5emaaVcFAC0e+377rtXKbX5tRs333zTXXfd8eW/+atbbzuyb//suXNnv/zlL9/1pjelUbi+vn7hwgXOWLlcXli8ZruIYPWrn/98GEdxMihXR4RgGENEIIBgEA7CMMz7uTvvuD0Mw//6xS+efPW1OIj37t177713mxZ99/1vy4R8y1vvecub395otdOEOY6zvLT55BPP6/DkXrfPszTLkkce+e7YeOngwYOf/vSnvZzf6XQ6nU6apocPH15ZWgZAIoQ8z2k0WkpBfVlOU0YphQBbpiO4RJCwTECEskzu2jUuhEiSiGUiE5kQTBcVlUplz549jUZDL3KdLaZJyhoOS5LEcqjpOLZtZ1mytrbm+/7ISBVCmKZpljHJhGXapmkLIXjGIKAUI855r9eTUvZ6HT/n7pqcABgxxkxTxXGaxIyaUKtnms326uoqY6lpmhCpW2+7+UPv+eDly5cvX746GPTTNMMYb25uRlE0Njo+NTXRbDaFZJhAz/OEklyyKIoMw9IiIUqx9jdQClEDCyF0CC0hmt+PAEYGNBzXKo+Uuv2ezoB96aUXNa9IExAFl5wJzkQQhQAAjClnEmNsmQ6lFCjVbfeYyFzXzed9ahoQDv12dYq6poRrwhMhhDGhtr0jdMSR4jpYKNPO6QghAIEQQp+2jA1xWK0fisKEYEwQXVy48fjjT9q27XvFdqPj58uW5czNHtAM+q2tDYRVnIRJnOnqYmdmoJTCGHs53+K2jvwFACBENPyVpqnn5cvlchxHUvJyudzrtzzPowZZWVnK5/1t8M2LoqRUKuVyufpm7cUXX1pYWGCMjY+Pj46OWLYhBUAIDwFWg3Q6nVOnTmnPk0opPze7L18qYqD9InQrB3fE9IZhIIUQ0gPdCGMMsRY0S0QoxpgSg2AspFRKCc6VhHp6P0xWoDQTQ4UWFwLAoU/pjp2IrmqoaWjKiAbiW63W/JWLPEslTyjBQrA0HpgUA5kJAfO5nJ9zpeKcMwGwhumFEJoeahiGvpDq01yboe0MFXSNp3uBNw4YxDB2e/jPbZtpjDHWZs0jIyMQwlwut3fvXsZYGMa9Xq9Wq2nZgV4/Gum85ZZbXNdtt9sb65d0jKG2W7Asq9/vAwBMiyKENPyCDSRDSSkN4h41DV2oD/cDQkSqNAjSLFWuaxsUbQ7aAKDdak8cx1zEhqUghELKVquzsVozTXdubp9mrXq5Qr8fVMdL4IfIX/8vb5raudOH/9/fdAcOwPDz3b17qtnsuq6LiWx36kk2QETs27/7wsXjaVZM0gATGYV9hHCj2aTELhbzcVzjIjMtajvm8soNwzAYY2ury4QQDFEaR9qFuVKpOI7l2LbmzQ0GA6WgbdtSaFc4M4sTTSanlHr5HEKoVmskSXLyxOkPfehD73rXu775zW8qOeRFAql00zgUHVCUCU4I1qAGhEozbwyDCCE2NjYs27j99tsrlfLy6kq6uXn27NmV5VUAgI5BKxaLt95+BwLw1VdP/PiPf/yhz/5Mr9d77rnnHnnkkX6/r5Rq1LcIwoZhGIalI7+03EArjwAASZJpbW8URdsSFW2JyA3DyLmeTZ0wC13TBQoh1EPbpuNSSkpxqVTodrs6GCpN4zTJhIAYY03aSlO2srLW6fSq1bFOpwcA0qpYzdqIosQwjG63DyH0PAdhwFiapqmOmtWXA865UsBxnCzlUZiUSiUh4u0SH3leDgC0vLx86tSZ8fFx1/XDcEAIabXahGAAQKPR6JOBUmowGBQKJYSQZZnrGytZxpSEyjAVFyOj1c9+9jN/8Af/SUjm+36WZbXNLUrMJEm+9KUvGQY1Tap74EEQtFqtsbGJc2fPb25svfe979+9e3fYExCii5evCAXyuYLlOrZtSYksGwMApAQYAyEBpUAIJARA5PuWt+7CftA35g3g8g8THd/IiNyR8A8Z0wpgjKJe1O12AJBZltXrdUIMAWQYDTzPmr8+f/HCmW63ixFdXJy//fZb9x7ayxh79dVXXzz2vOQil/dOnnyNYtTv93/sx34sDPoPP/wwhDCXK+iQayZUFIVSKgBQv9nORsc/9rEfhxA+8eTjs3t2xWnUaDQwxoTgwaDfam8R5BYKeQ1PEEps22o2G512C1MyPlFlmUZgB+fPn/23//4LU1NTi4tL73rn/bfddgtC4HuPP/qXf9n+hV/8+f/zn/7SH/7Rf+r3+xCCiakJx7YYj03D5TztdvqGYZimmaZMSmDbtpRAs8Acx3FdV7flEEJKjSzL4igtThYBAEop27AhQHpeTQhJkgwAOTIyUigU2u3mYDAIw8h3RiYmJvq9YHNzUykYBEGxWHRcKwj7pml2Op0wDAlBGGNMhjwOTb3X1xPAgFSSEENv+SRJhFBAoesLy0qpxRtLvucWi0XPc7KMz83N3X//ey5cvLq6utqq1bOME0Lyef/QoYOt5iYT5SQaLFy/OlIttdvtdruJCcAEVqsjpmmcPXeyVM49+8wT3U7EM1itTiRp/Mh3/uHs2dOjoyMPPfTQn/3Zf6tvbZYrxXvufZvj2JcuXThx4oQUwnVd23Z1XfXUU89s3dJcX19vdTv6ZBJC2I6ldyIhWCNl/W4PIVQoFBzH6bbjQT8UXHEmL1+6GscxpkRK2Wj1JqOkVB7ds2f2xZde3rf3QKlU3tioEYIdxyYISildz7uxtPjk409eu3bNMIxKpfLe991/48aNJ5963DCMl195aWJi4s477tDQg4J4bGxsZGSkXBqhFMcZz7JMAkURZEyaJtqxC/thKPkNMPEwgPONZGcAAFBAu6ftPHYbHwM7WDP4/nNNfr85xhu9MtS2+7NUQ8ebHzaG2tm2P3DTL1UfghpPgwggpCesSghIMNjcbHS7bV1h7N49g+fI2bNnX3nl+K5dM3Nzc2vrlud5rXb0yqvHwv5g9G1vyec9SimA0vOdXM6zXKfRaBFijo+OQwhvvunQq8ePARk2W/VmveXatF5b+8IX/mV9oyElcG2aRP3NJFBCzszMHD508MbS9TgIKaU6UrzeaG7WtjCGVGFkWb1Bf3Hphu14Y+OVVrNTq6/eWLrKmMCYEmx0e23bth3HaDabAPJKpTJ/bTlJEtO0KCWGYVWr1RMnTkRRVC4XTdPyfa/X6w364aAfarVNp9OtVMq6VJ2bmzFtI47jZqsxGAwmJiZyudzS0hJQkNLo1NkzYRj2uvzGjRt33nnnm267/Vvf+hbGlBAimCCY+KWcdjdLksxxWBRF+XzeNO16Y0so2ev1Pv7JT/yTf/JPfvlXfqXZbA7CPkToX/zWbz377LPHr74EoarkSlmWSSWwxEoCalFIYL2xlaZpksS6yi8VilcuXUEKKC4yNVTwUEqSJNZ6xh2yjGEYSZKkaWo7pm/mAJB6TKWAyBfyjuN02r0sS9W2xS2EMMtSCCGhMMsyyzIwxmEQKQKhFg8KIaW+smEAQKFQCIIgTRlSSAgFEBoW3AppTqimu0opWSY67Z7r+P1eoJm8vu+Xy56eC5bLZcMwVldXNQSpsUK1LY2EQJ96Q+HkG0LAt/eUUtoyXQuYNMHNsiyNhQnBBB9uDM0ESdJUE0Idx7Esy/O8TrvNOdcRpmmaKoD05V1KKRBCCFBMEYQKCIQIQkgIzrYVXUKIbrenKTOMMWoalDJdER06cOTCpfP1er1SqQSDiJIMAMAykUZ6Vq1048QZiFVaLBaXbqw8/9yxidFdcZhIKQv50la9yTIxiPqmaTHGGBOUIAiREEpKpst6SkzDMOI45lwa23wZCKEOgSSEKCAgwLWtZi7vzc7Opmna7/fDMNQdoBCq1+sTgoVgUnHOecZEuQzyuYLrugjBsL6J6XAh6QYSEf394h0S+huxXaB2Mu4IxJAJrn8/GAwIMXZgZbGd6KifB0BtFQgghLqvVgrp+naYlIDx6574Q2672u5zFACA82z45Bjo7kijzApB9YZMmyAIkjhTQ048UgrQYTwUyrIsy6RUnFLa7XY5581mkxDi5p2RkRGuBO9I/dc7nY6WZksJHMchhIZhVCwWddErLVqu7gIApJz5vguRtoGWWZZFUZQkiZTS931KzSzlYRhihHb8DZVSBBMhNIarnaZRmqZhHGimGM+4YUBKsWVZhgmiXuQ4ruP4g34MIWy326WyVy6X3vb2O5996rhB8n7OK5eLIyMjKysr+VyRi2zQ7QugHMcGBBFKMIau7ZmmHYaBhhgMixb8QrFYvH7telu0CSEmNYQjhRDUcSqVShBElVK53ewIximFFjWkkoZhAyDDaACRazlmr9caDAZTU1O7ZqY6re76+nqSZLZpmCZMUkUwzURmGrbruowxCBXGJgRISqmkQABCBVgmdPayCS0EqRBKcEkMamNEOY7jOIwTSunM7MyuXeOnT5++eOnU8vq1icmxykguTRmCJiGy1w1375677cgdL774cjMKojA1qIMhVQoyILVnOiCg3W4TWkAI3XzrEULQ+Qtnjxy+dWb3LGOiUh3pdduGYcTRoD/ocs6jrD81NbmxucaZKo1U7rzzzn4/bLUbCiqA1Oh4dcQvhlE3X7TvvvfOVqt+7Oi5zVNbb3/bfZPjc1euLPzSL/2ftfr67bfffOr0K7/7e/+BENzv99MspBbBBB47/hrixZGR0V1Te8IwbrU6/eWWRHJubs+V+WtMqJXlNZZltfWtvbsPKqVM0/RsgxnG6urqd//hu2PV0Zzns0yMjYy2G81rl6/wNMuybLDRp6axb9++mZmZfMUFAKytrRmGWS6Xz527cODAgcuXL7uuW61WHXO6VquVSiVKqXbJO3PmDKX07W9/+x133PGXf/mXX//6NxBCY9XRBx544Pr162fPntXQ3uZmfXx8tFodY2HaaDQ63a5pmoJJy7I4l1nGIESDMAIAGdSKU14sFrUd6t69excXF7OM6cTR0dFqGIYiiwEA+qKgN6+EAGFFTEMJoYNMKDUQQlpOCgDYsW0EAOhLn/Zbl5IrCQnBg34fQePee++bmJwmBN1yy2HOlXa5ZYxRYkxNlZpN69yFc+srK4ZhSgjarW6W8Wq1WiiURkdHTRNzDhAGaSozJpVSYTjQ1h9pkuQLBc+zskw5DjZME0J1/vzZQtErWsUkjd5y+K5Wq+V5Xt4zXc944YWXpnaNnzz9UrvdnBiftm3vwP6b33//A9PTb7py5TpC6F3vuv/P//xPX3nl5c997h/Pzs5+89uPcC4Rwpbjcs6FAISQsbFRITiAKsuE49I73nzzI9/6NoD84KFZQiVj8Xvf+66pqV3/6l/9q2KpcN999z7yyCNvetObzpw+ceLECdsxKaVQyf3795VGCrgHXccbHx9VSigoMUKdTgdCZVJy7NhR26RJkvzdw18DAJQK5b1zM3P7pjZrK/XOvAQwiHe3eisAUj/n9nvh0aNHxycmN9bWz545d/e993zusw+9durVV1976VJ3vlTKdbphqTxaHZm4eOEqgHJqamp1ecX3/V5nMIh7pmn2+6kQAmPp2J4+ZPXEWtcSaRLbtm3bbhD0s4wLIcKkByGsVCqO4wwGg1arpRs07aevYUp9cOvxp+Hg6empZrOp44sBAK7rSikxwPVG3TTNYrECFeRZphQejs8FSrMwZXG5UiwU8kopChHERq/XF0zumZ7jnK+vb2oW4JUrVyCErmU6tler1f7d7/27+fn5q1fmgYSGYa6urn7sYx/xPG9tbWN2dnZp8cbp02d830cYR1HkujZjKaWYc7WD8WGMOU+04gphaBeGOYpCCCUFxAhikKYxQqDVaUspgiDY2toqFAq33XYbY+z6tQXP9xljlmGHYUywkYmMZ4LaIEsY51wqrg8UjDGQKs7iwWCgz+idY12LePQsR2MXhmFgTKMo4lm2MzkeTveB0rXoDodP0wN0CQGUkhJAiM+du9DvBVkqyiPjt9x8+/33v/ehz37OdcmXv/y1v3n4f7VbLYSMLI0BZDuVIUJIqaFRg+M4OhKs2+0KIRhLNdcQYxSGgRAil/MgUlEUMZZywSilOgrLcZwoSgDEjWar1e4YGFNaj+PkwIEDH/7whzW0DSBgTOgJOoRga6s+P39taWkpDMP9B/YWyqXRiXEhpFRcS6P0+9UiKu2zQbc/KE211pNjKSVGhGDMMgEhJJQIta2KA1BJGQdhmqaGbVFKIVJQQiGHqO4OnQIgpL0jMMZCKUIIxnBzfRUoaRCIACYEASk6nZZt26ZlSM4JIbZtK6XiNBESWZa143mtazA5jD+h+lvTgINSSkm4A2qbpqk7Jk3P0jApAEBD6nrGZhpGdWzS933LsjQDZqtW13UU55xz2Wg0dGGv4WkAAEF4afEGIaTVavX6geZr6rJQuzhQSrX2VCOcLM1MaEMIfN8XSiKG9EfEOZdKkbxvD4KU87TXDV3Xh1LGwWBtbTWKQ4yVkSqMMSCG4BJCOrtn39jYWKlSZoyFcVpyXSG+Dy8eQmMKqO9r43da7qGSTj8EQgARkLpX365Wh+XpEMGBWQYwAlxuP7lmr1DQbgebm3UEpAKMEChT0WpupVlsWUYYDoRgrVbLtgwpgGQCU6NUzlu22ev1Wu3e2NjYysqKbvxKpVIcx1pKIAQbGxtDAHa73WKhkCSa7MB1rpfjOFnGoigSGdNGCppTmSRZHMeUmJ7nHT169Lbb7njve9+zsLCwvLzCskwIgREdMnylQGpoAaFXAIREoWF7EIbh2NhYoZi7ePFiksSWYxeLxV6vZ5l2Lpfr9XpZlrXb7enp3b/1W7/1wgsvzs3uu3jx4tzcviCI4jhWUgKlhmF6hiEE2+brKTl0ouBIyTiO9axSdx07XjO9Xm+0MiKlXFpamZmZgRCH/YGm6EMIlRJSCk17CcMwCALfcRFiUiKkIJRQs5NExqBUnWYrDkLfcTGAQgjHtCDBetIlpcSYcC6iKMEY6pBJ1/UdxwmDOAxjzjmEiGVCbz/GGCJqcnIcQpgkST6fLxUrG+s1zqS29tPta7/fz+VyjGW2bTum7bquZRlpmkJIqYFVBjzPdV3PoJYQ6sbijZeOv/jJT35iZWU5iiIl0blz5yCEhm2Uy2XGmBC82W5ZluX7+cEg3KqfJ8SQEvhe/mMf+1izPqhvbSVJksvlgjhytX8NAEAqhJDYXsianAjAMOwLbJO59BXpjTzH4d5BPwg06/8l5fBRGpPSEBuEgBAAIUgS2e5sZVkKoUrTDCKluatrayuXLpwplfO12lochyMjJSFkvuCPj48lSfS//tf/StP0bW9985//+Z8ahsGztB8Fm5vrE+Ojb3nLXZcvXz558nS1WnIcZ3l5eXuWwAeDcO/hwxMTExcuXNrYqFFirK1vBkE/ioMs0/QN684778x75U6nMxgMIIS790xLKU+cOCFkOjE6yljsuE6asspI0XGcx594lBDi2O6rr77kOB4hRCnRajUQQjdurNi2+/Gf/Njx48fW1tbWNzeyLONc6lGHZn+AbZshxpgQDELIGNND45mZPYyx9ZW1TqfTbDYt29AAR5Ik2100VELptK6VlaW11Y0kjYrFYr1e50nP8zwhRLU61u/34ziK49g2TMe0KqNVhNDq6grGGCGgATjOpL7sJtsa7eF4k1IphZQgiTPH8QaDgGDj7rfds7K6dPjwkc9//vO//du//dijT2zVO4zL22+/IzrIjj75ZGVq6ty5c6PVMkLI87x+r3f8+LFisQiADEJm2wY1IMKUUMC5qm+tWzau4ILnlsIgef75Z9///vefO3fq0Ue/Qw3c63dKpeLPPPRQvVE7e/b01NRUFIba8VyrtIrFYhjEzz33nJa8689ze5UijV5ZlhXHCSEky9jG2sZ9991HUL9QqI2MjFy5cqVSqfzSL/3KM889febMmenp6QP7Dx07diwMo7ff846xsbGterPTae2aHCsX81evXpVSVisj5WKBEHjTwX3r6+v1zbVnnnq8sdVKo+ijH/5wp9NZXFwcGRm57bbbhBBZxjGlnpcDECeME0IoJVIBpYBhILlzIoCdXHJ9zL8+idEcO/CjsGOlwLbXK0AIIgSFUDsY8Rt/2GEcwzc+9vstcTTcrHfojjO7foUIvX5PCIfuH9pKDEAAEcBveEI9EUQIIASYAJYJk4RnAnCe6fpgbu8sTIPltdXZ2T1hGDLBsyy5cuVSGIaXL1/udDo333TYcax+r5ukUblQdEyLSeEgYlCrkPcNZK+urly6fKbfbRZzNsWFXnv9fe99N4T4G9/4Zj5XHhkZ4UlMocrSLAzDa1fCgwcPlgvF69ev93st1/WCoDe5a3p0ctIwjJdeeml+fmFifPrQoUPdbrvd6QAoG81N00KN5haCmBBDz/PSVEkpDdMIw3T3zMyJk6eUAhhT389rR7/p6WnP87a2ar1eL451ZpfQBROEYG1tbWxsDCIVhvHy8nKpUvQ8b3x8XAixb9++D37wg3/+Z39xdWFenyNSyiNHjnRb7Y2NDUrNqYnJXq/P06HRsBJSME4p/ciDD54+ffrMmVNAgM3NzT1752694/ZOtwsg/MlPfuL3f//31zbW5+bmDIuura8gAgmh1DIqoyNJGsVR6rouxKjRaIRhpJTknM/MzGysrXe7PSjVSHXsg+9/4Jmnn1tcWCA2NUzTUgbLhD7dIIQacdZgtEEtDeBqP4G1tRU/7zFBiqV8FAcsExgjKZVSQ26vlJIQS3sODAY9O+dqPki/P9AAXxwnjGmbPOj7fjSIOGcKQc6Z4zhxkCkgdD2KENb4+/LyspY36envnj17oiiyLFu7bPV6PX1ly7JMWxzo2km/ZgAAxZArpZTUvT3clgvowgMAAKWOgJca+tTDOQBAEHAIh2h1s9GuN7be/OY3a3GGJrAvLS0dPnx4ZXm53+/rhjZjTOMUWhRlmiahCEJIoCEE1zQQQoiufwzDEFJGUeI4zsiIn6Zpq91GCCnFL1681Nhq8Uw2t1qWZWWp1M8PoeKZNhMgCCDP8UzTxJASZMxfvV4uj1TKY9euXeu0L2RZRgyKIUUoyDKuIIyiiCCiXQ6UUhAhLplkGpRBSgkFFIR0+D0CFcexaVGupGYGRFEEgIQYYYqylLuOAyEkyErTuNvvYQy14QkhBlAwSxPd1GVZ1u60LMvwPDdNh00CQkgpAaFyHCuOY11UgyEZnGACJVA7CLH+NoV4/fDasdHQ8w/Oh/A9QhAAOATKlUIIcSalyHaoQxpOUkpJoQDWpf5wMQwZVUN/NgUhsCxLbpdAOs4xyzICkZRACokQoIQAIZmSAFDd52jE6vr16/o1+77PGbh87WoYhkpJSnGv19NLTggFIRJCcp7olaBrbB0ommaxgZFUgqdch1gGQdBud/UsBMKhaTKEME0iPYXdgcjBNlNbvykIoUktobiGF13XNU0KAECI+H7Bsb0kY4yJ2maTGqC+tXr4pkOjoyO2S+MgEEK02zIIAs1TE2LoohiqKIqAYRDHtWq1OobINh2lFGOCUrpVawT9EEOSZplBzH4/SJLEMs12q2WapmU6UqrR0REAUJqmUT/BBALIw3AwMjqye/c0InCzBqZnpiDAKysrWcIMwzKInjEryzT6g57+xHRvn2WZ4JIQRDCWEColhWAAAMk4hjhLpWmYACKIZZZlcTLIeEopLZW9Qqm0b98eoUSv1zEdkvMrU5N7bIdevXq1OjLZanY4SMNeGgxSAzu19vp4dbzTHkgOWMZTlpjUcl1XYVWpVCanRyenbucquXT10tzc3Pj4eJKyF154wSC01+sJyWzbdi3X932l1Pr6er/fh4DcuLG4eGOhOjL5wAceGAy6j33vkfMXzn7nmX/I5b18wTn+8nMTk9WpifGrVxYf+fZ3kkh96MM/fmD/zaVSBUJcLFbyufLS8iJCwMvnRmx/cnxibW1FcvT+9314qjLz5S8/3GkHju/6XkFJ/KY73nL16rUoijc2NhzDm52d3VxrdQf9i5evvPTSyxura6dPngmCwLFsx7Ra7UapVL52bWFlZUlK/tDPPuR57vz1BULI+vq6lMq27a2thpTgoYce+tgHP/bN73773/3bf7u6tJrLeZomDIDcvXv3HXfc8dhjj/V6PbF79+///u/X63VNmQrD8MUXX9zc3NSJWAhhiuny0lp1dGTfnn3lUvXatWu9Xg8IaNsez2LBJEREU9SlUrrcRYisr68vLy9Xq6NxHC8tLWnGZRAEUOp2U2jMIuWZYRgGtTjnIssYZ2g7DFZDbxhjy7T0PMnzvHw+L4DQZ4dkEiESpyyJs9tvv/WuN7+t0WgICfycWyp5EBtCSM8wHBusrXdfeOGFi1fOR1E0OTl56OBhliaXr16Joj0HDphhOLDtAqUgDJN+pyuEEJJ5ngelgABViiVEieSAUtjrJSvLN1ZXlzOWDAb96enJt7/9LcVi3nGsfhg0Wq3a5mav38kHVhQNRqolANnVaxeuXr2quLrvHe/ZtWtSC4wghJyLsbGx2+64BWKapuny6mohX6IWVZxTAwsgqYEIBWEYYMJXlxZHJ0v79u85fORQu9M8e+50qVwol8vtdvuD73s/IWRjYwMA0O21qQEhFI5tE4KWVq7/4R/+55/+6c8BohCCpm2naZax7MaN62mS9Hq9hWvXrl26vFWrG8T0HZeLplTps899L192EhZQSs9ePF5vbxzYf8vc7KF+UBMqQlK+eOz5tdXNf/JPfvHe++6qNepPPPG9OAuTOPuTP/7Sr/3ar42PTS9eXz185MDc7IEzp87OzMyoKXDl8nyaDo2AdfCs/gaFZGEYamKKYRiFQk4pQQghBG1urper+Ztuusm2bW3Xc/ToUT1L1ogV51wf9FoFW6/XU5kUi8WZmZnjx49nGceYttvdOAilBGmasUzxrMkYgwDpzhQTpBGA6enJcrUQx9H4+DgAqNfrW6brON7P/dz/0e8Nvv71r1+6dKlYLBpRAgCIogQAefHCZQBAHMe5XI6lPE3Z9MzUAw984MiRW/7Lf/kv4aAfhoNSpaSXMTUINTQXOwEAQah27ZoMw1gzIeI4dhwHYwKARAgwIVKWmKaZy3l+3pNSAqi0dN513WKxSKmhydT5XDHJUp1bIISIo4ggrfJJlJAAAB1xQSnVF+MoSQEA2spDT1UJRVIofXrqg0+/KaUSpRTeAeB0WDQECKId/Gen19PUQEIQUEoIkcRZvz+gxNy79+AHP/DAT//0zxULxXa7d+PGVhAE+XwxiqIkiTgHmOhx8jA4QSipBYVw26dbl3xCMMuytEw2yzKlxCDotdt2t9sdDHqEYtu2LMvBmMZxrBQUkkmZel4OIZwkaaVSedMdd+lCl1I8GISmaXKRLVyfp5RSA3d7zWar5jjOXXfdddNNN0khCcFSKn3x0SWBpjHpGbwSQ2MNJbgimGLsWFYYpxAAwZUmQyilc0QIGAaTAgihhEDzLyGEEuyY0Q9RH4gphBAgaJoUEaKrCI3+p0mcJKlFUZJE9c110zSTNNYUUiWkFh0ahoGJtUM210MLDSYAAIBCgiugLamxAQDQyIP+HjXDXSs59KmdZZlpmpVKZXx8HAKgbQyFypIkCYKgVquVSpVrV6/qhQchzDJumqaObWi1WhDCMAzr9c0gCPRrQ4i4jqO2oy90ha/XNtxWwkEElVIYokwpSikcrq5hnUmkSi0bKWHWt9r1jc3l5fWcX6bUJKaBiRAKAyDSON6//2A+196ze45gizHmF/LlqmE7HqUgjhWlcCgi/n6h8f8NpesHfti5ae9/qKBesrlcjlKgMqAUQBAoiOI4xthGCkjGmRDdXmqYpF5rPPHkd+cXLoVh58aSObNrHCF84fwlSqltmrbldPo9jGi73eaMnto6XSoVBOOu7wkh+r1AKaUEYGm2ub6pSey+605MTGxsbBw8cJM+OxuNxtZWo1gs9jvdnao6STLLskZGRoJB1Gw2u93u5NTI7Ozs9cWrWRbPzs622912u4MJVhKa1GSMFQtly7IajQZnHGEFACoUclEUzc7OzszMKCBc193c3EQIVWeqEMI0yZrNpm3buuv7zne+8+EPf/jKlStXr8y7rvtHf/QntVrNMmyIFOccqaGySb9CIQSBSF+eLMuSULesSKPDpVJJW48Hg2jX1IziIonTMIw3N+sYQ8ZSYhoQKaU19SJzHMfPuRsbG3Ec75vdm8/nL126WKvVCaGmiYMg0OblugrnnHuel6Yp5wIIZRJDZJxALLiCEHMuTNNxHEv7u+v7W5YRxyrLGKUQYWAYZq/fKZV9g1ppmrZb3esLN9S26GZjvabhZi0qAUJSRKAE+UIun8/nCzmtoIQAlcvlhYVFCEDGkq16s9tuHj9+7MEHH5SKh9HgbW+955Zbj3zta1/TQ9disSgVgAoWCqV+vx9HCSGGadrFQvn48ZdnZmbvefu7dk1PD799lmVZFsaJ67rD4c6Pconddh7X4t8fwXzc/un7lPg70xr9KM6BUkOsSscyUQq0hMG2rSSJhBCEon379jWbzXanGYaDF44+HYQdliVTu8Y/8ZOfeu3lVxvNzfml+aefeWL39AxnSZomloHb7eb+/fs/8ZM/+fWvf/2111777Gc/2253IYTvfOc7n3zyydrWuuf59XpDcHXTTUfm5ub+6q//emNzrZD3WluNfN7X771YLE1PTxeLxU6r22jWCUFRFF2/no6MjDiOFQRofKzq5fxms1muVC3T4ZwXi3nOOcuSjKlB0JZSjo5V8vn8K68cP3nyZKfb+duH/67TaTmOk8Q8ipL3vuf9hmGMVCYef/xx07TDMHYcRylVLBYhVPl83nXdS5cura2t9Xq922+/vba+aVnWfe9417GXjiKEsowRQrjkacJyec/zHIMY66trayvrpmkWi8WgH0KFOp1eFCVRFH30ox9dX18/f/58HCdzu/eYphmlSbVaNU2z3++1Wo00TU0zl4roDbNNpDv9OEoTmGnxi+/nGeNKqbvuumt8fHJrq7mxvvXVr/y9Y+cmJ2cuXrj6rvvv/+mf+cfVkbHf/d3fffhv/qZUyff7/SgchP0BxngkX0iSVCllWDSfz4dRT5/0uq21DTMYsHZnS0n8zLNPLFy/cuTI4SDsHTt2zHVdwyQ3lq4/++yz7VbrZz/3uenp6a985St67ze2WnpKCYDUlwsdzsAY0zY7GgLTc1c9E9Yj9IX5q9VqJU2TBx/80MTEhG2be2fntADnpsMHm83mU089OTs7izEOo2D/gbk07J947fhXv/rVgwcPfvSjH+13m5PjI4uLi/mcEww6Z06/hiDxfX9ifPR9773/iSeewFCjWiqXyyFCAIBhFFmu84OG/m/4Gb6holLfv4lej+bcPo/0+AdBzW6GeqIDhqQ8+EZgGv5QkMAPbOof+fP3b97v+w1CwDAgAEBoJBoCzqVW3QEAOAeGAQAAjUavP+hOTk4alFgW6XYDhJDjOH7OC4Ig7nRyuVy73b7jjjua7daZM6cuXbqUpuns7OzbP/iBvXv3KiEff/x7tVotDsJKpZxkSbK1NVIed2x7Y7Xe7/ZfefnlQbdl2aBU8N/65jt37dplmva/+Bf//Mknn6rX6whKxgUl0LaoFLLdbHi+q+MlxyfHbr715iRJvv733y4UCvogCMMwTcTuPdOEQMGzWq1WKOZGR0f7/Whzo6Yj5kzTRIhGYTI1NTUxNt7t9NY2NgEQQRC89upJwVW3293a2tKOUpQaEELLorqkjqKoXC5PTU21O81r166ZplkeqXDGbz5yi23b586dq9e2giCYmJhqNBqDwcC3qv1O9+TJk0mSWIZ58ODBhYXrjuU2tlqdVhtjXKlUfN9/6aWXtBfT2tqG5oWlWfaFL3zh8//fX9UlVLla3rdv7uGHH262mxDDMAySrAAGXYzx7N49nuctLi5BCE3T0EY6UsosyUTGfD8/OT717ne9J+yHNxYWKcUAKM4FRGq73lXbGkOke4Y0IZjAsbEJjPHVa5fa7aYQec/LYYqY4AoCIbjekoZh5PKerqGzLCHE0JyUIAjAEGTUaXsgiqLx8Yk4jtMotSwjy7heZ4SQjHGlFKaEECKl4JwLISFkw/QbiO66667XXntNB/DqwAn9mRBC0pRpGcfOW1BKSSHh6/lyO5SC4U3fU6s+1TYhdMedQ9fHURRBjO6+++4DBw589md++gMfeuC3f/u3n3322YP79n7qU5/65je/+d3v/IPjOAih0dFRz/O4yHaMhqWUvu8ZhrGxseF6NoSQmqaWHAohMKCWZQGItOy3VIBxHKcs07UEQggjOlIZW11dpdRUSMVRhDExDANBkmVZEidpxAgh2MCu658/ezEI+lESY4wrlTIhhGAzy7Is5RBiSmiWcsPAGWO6Ite9tEHpUNs41FpKCSQQUgiBFaaIEkIhRkIwLjLItdTMooahFOQZUwr6rh/GYZqmvp9nKRv0+1EUUUpKpUIUhmE/BAqnLBNCQIQhhEkSGQYxDJJlybYMUyt9h9NEBaX+8IEawsq6+WdMKqWQph4rhTBAECulOGdSCtO0dZs6/E6Z1C5+Ox4ampQMBNheh0obieilgonmuw9nPxKCnZ6KUsK3Zb8arMcIaV1gLpcTQGlphcblOR9o4m0URUmkBv1QSGaaw2wcrdrUeVaafW8SytNMKeU7bsyCXr8ThgOohm2w7rXa7TZjwqIWNgmEmqsFbNMa9Lt61+ilDhG0bdu27U6nBwBAkAAopZQYIdM0qUml4mkqfdNhTGBEoigRHCBFBIvTJPJ82mg0Ajuc2T3ZaYYsU45pxXHMmIAG1GmirusCKOM4SiTPWKKp6FosRSlFiAAJg36YRIlt2gggnnElZJYw0zSBYlJEEELTNNvtNqX04KG9hBBikoWFed93FZTtTodzrh2E6rWGYBIhks8XJFeEEMazYtH3PG9tbU1rHzkHEEkFOIQUY8Q5t22bIJCmXEpODUcqaGIjk0maxoZF33X3vZZnVKvVzY369RuL+Xw+yzLDplGUPv/csWIpb5omkEkWS8XQVr3z9FNHfTdfKY9FgwQASCgRXOkomoynCgDbcwkh5y+em1+4Mrd/jhCSJElts9lqNHO5nO/7AACTUtu2AQCMZWE0CIK+6+RPnz4ZBsnBA7eMjVQJRRlLOp3OiROvHjp0MJdzri9eVTDaM3Vbf9B97LHHP/WJn1u8fvX3f//3f/2fff6//bc/fPqZ7yEMpUCFfKnb7sVhc9AVcZywZDBSGX/hlZdePHrcoM7umWmWysXF5ZuOHEkT1un0wjCm0HzyyafOnLz453/+3++85Z233Xbb/fffnyWs1Wh++tOfMTCilOYLvhDZ3339q91uW0fNb6xtcCG4iiCEuVyBJay6q3LrkVshgOVi0TCMT37yk/V6/dvf/qbv+4PBQEp58803v3bqxPrq6vraRqVSGRkZqVSqY2Njzz3zbKFQOnLklqNHn4/jeHxsMggCIGGn3V/Hm41Go98PDNvChOi4pyzLoFTUoIwJKFUSRo2MVUdHR0cqi4uLjPF6vS64UoZqtVoGJlxxhBQhJgAg5QxjpLceJtA0zXypGEVxu93GGOuxomma49Xx0dHRlZWVVqvFeYbokKaHMTYMu9Xpj4yMfuazD+3fNx3GoN1u1za3+v1+sVgcHbE7HX7ixIWXXnrpypVLlmscPnx4Y2Oj2Wzeffc9vu+7rl8u5kXGgACddncoAjCMNIvTNOWp6PV6vUFgGMbk9K5isciyJE3jQdBFSG3Wlvftn+GCtdq1ra0tgNFjj7xy4sRraTbo9ZuGgX/8xz/2ve890eu1XSu3tHyteqV65PDtpmkIIQaDQRSFz77wjITi8OHDjIsgCOJk0Ool5XLRz+UzJlLOojg5eeqVlaUb1xfnlZIAqPn5axqf1RX1Rz7ykfe8/wNHn3u+VqtpZuiePXsgks2tuuP6cTK4Nn/lT//sj0ZGxz/5yU9O7ZqRUj7//NGVpWXO+cqN5drm6sqN1VKhUC4U4iiqjnsJ7wqZjDk5EUOElYBJlLQe+e7fTk1NH9x3aHZf6d/+69/Z2uxnKfzrv/qbTqtNDPyrv/YbAMinnnri6vy1L/3FX29urrtOQXD89JPPBkEUhvHMrul2u7O2uuF5jr6wT06Oa1m965q5nBMEQZZlCFEhU8+3EJZRjErlwq233jIyMrKwsKA9YX3ff/DBB1dXVy9evJymqa7Bbr311tnZ2W63m8vliJFHClSKlVsO37KxsREEUZIkUagTbnESJSzVwwxd9mOVZWE4sGyqVS9JEgMA0jTdv//Ant37br319psP3RJn6d69B2/cuPHoo48+9dT3dG8CoeJcYgw1jjYyUp6bm6vXt1599dWrV69GUXTh3PlDhw5N795z7NgxnW8/OTnZarVMy5jZvTuK4rm5uc31DQBAu90sFvP5fD4MQ4xRkiRhOGCMlSpFP+9lWWbYBgCAmAbG2EDI5jwaRBsbNUrMYNDXJqtZxqM4hhByqS3XiBQCIYQQtiwnTZkQTA59ywQAQNvR6MwbIUQYhprIuA2gASUVUCoTDOnRKACIYL3pGGM7Vgw7duoaQuU8hRB2u904ygxD/dSnP3Pffe8ihKyurjuOc+TIvixLH3vsMUrNfj9AkHKeDsVtO16DSgkh0zQNgkBncSGEfD9vWQYhREiWMcl4KjOpF7wug/P5oobLHceTQkVRlGUCQ3T48GEhxFa96bqu53nFYjFJkmq1MhgMjh59/tq1a1LKXM6zbbNUKoyPj4+xQnBZAAEAAElEQVSNVQ2DMCYEFwBAw6SCq6GVBCG6DtFSfh2Rp5QASkrJtynDQAopdWIjUlAN7YExgEpJJaSuYwFSO7JmpYSEwKIGk4Lx1LIsXd5QAwvBKbUI0vZoAiIFoaKU5nIeF2mcRFEU5XI5KWWz1bJt2yDDYBvdcetCWrurIYQMAymltl881JduBCEAgFCqaydtWuL7/vj4uE5appRihLQLx+rqqu0aCKFWq9Vut1977SSQSsMUpmkPD9Zardls9no90zQhVISQXC6HMZYS7KwWXR/qF6lfoaasIYSY5FCBNM0SlBBJLeQY2Ixkf8iVZjxmLENQeZ537dL8wsLCxDjjDEzvmR6fGOl0mnEyKJfLBw4dro70k5iPjFYQQo6fs20KIGAMUAq1hwB4AxCgCc479pc/2Pr/UGe+059nXBCCCUGFQr7X67daLZ3yYZqQCyCl9H0bSqD9sxFCCqRhkBx/6USxMH7328defe3Y8tL8oNv3Pdt1Cp7v6O4oDOIoahFC9u87uFlbbzQapmnGYZJEaRwmGGOMSaUy2mq1OJdJmFxfWGo2WkmSaBXq/fffDyG6evVaPp8vFot6FxFipJxxzsMgjqLo4MGDEMLFG/PtTmN6enJubjfGxvLSapZlQRAiSABAEOIwjA3DMgxL6w60PDCfz5dKpVartXD9WrVa3b9//5kzZwaDAWMs4xmlFGHouPb4+Hi91vziF78Yx+n8tesPPfRQu90+8corCBMFhGNavu9rY740TffsmUvTtNfuxHGsKUVKCN3A66FKPp9vNBrVarVcLkeDYKvdUUqZhh2FCRcZxtBSikmmvzTd0547d+4nfuInCDbiIFxb3Wg0mhgilmaGYViWrZTSsdqaHwoAwJjoXHudPMYYAxBBCCzTllJpWz3HMbVxs9YdWJbp+34URRgAkWWtZidLL4dhqAssy3J0QK1muyBIlFIUUQCkVkxoC3wppec5hmFkGY+TqFqt9HohJeZgMLBd+6mnnpiYmPB999y5M0888cS99947uWvqE3ffLbg6d+7c0sqyYRhb9ZZSCiEjjuLbbj0yPj6pxbNJkiGETMe2bSMHQcq27efRj4Sad1Y+GFIat//5A5OYHXPnH36gZkoiAiCEnAMlAUJgMIj08MqyrCgKlVKa6JTL+UEQVCoVAESrXd+3b5Zgtbh4bX7hslTi6NHnYxaNViutduP64rznWK1Ww3GsfM7LsuwDH/jAyZMnn3/++aWlJdd1v/Wtb/V6vSCMOOcQYN/PX7p0qdvtxnFcKhVc18kV/H6/G8dZoVBwHZ8z2esO1tfXMcZBEAVB0Gi0+v2gWCzGcbq+vkm3mrlcjmfi2tLVcrk8OTlpGEZv0ArDUCqmFGq16pubq9evzz/wwAP33HNPHIdXrlz5xje+EQxSKfDExK7Lly/v23tgdHT0x3/843oa9J3vfIdzPjo6Wq9v+r5/6NAhhFCtVrt06VKj0fjABz7w8Y9/PIwGGxsblJI4jgkeRr4iRJrNZqfTsW2HUooQZrFME46xmSQJIURrAE3TlIwvLy/n83nd7vq+bxjUNM00jbMscz1bcKUv9Por1IL0nX67WKS+n+v3+9Vqtd1uci6jKPkv//mP/s2/+Tf/6Q/+8Of+8c8fvun2fXsPWpb1L/7FbzmOc/LUa0EQGJT4vl+plKkN1tbW4ziGCgRBgPCQMLK4uIiR6dj5biuKIw4AcV334sULfs4Jwn51tKIrkn/4h38YGSmPjVXzeV8blGtcBgCgJNQdmlJKm/kIIWzH1DZnWuy2w8SUAqQJu3zparvd5DzjUpQrxVK5sLS8eG3+yuzsboyxbVDDRIN+96//+i8//OEPp2naLJefefrplZWVMAzvefvbsiR+9LHv+q538cJ5QhCl9NChg51WezAI/uav/+pXfuVXPvrgR+avL26ub+SLBQixn8/rw3W4WbYrmh/BPn7DUfIDe2fnANrecQqCH7RL16fmDzzPEG6Wryt1hv9Xn25vSBmAcPgP9f0mG2/8QW9/OcxxBgAAzgHGSAoAIaAUYAyyDHR7nU63wxi7dOlStVoZHR3N5bwwHERhEEdhHMetrfVerxdFURgOFhcXL1w6zznfs2fPTTcdnJmZ9FzztVdPXr588c477uh2+mEY1uv1fK5Ur9fHR3YZhsW5jAZRuVR517vecuTmQy+88Nyx4y+Zpj0xNTUyUlpfXxkp5NM03Vivua47MjqGKWGMpWnMuex0eh/4wAfq9frLx1/Zat7AGFuOnwThjcWNqamZhfnr0zMTMzMzYRjGUTwyUva9nGnag0EYhuHGem18fLzZbMdhpB1visViuTQSBEHG9GbhWkSmvwvtqOD7vue5Wi9GKQ2CKIqiW2+/rVqtHD16rFKp7Nq16+WXXy6XRwZRODY60Wq1kjDRF0allO/7x44dQwAxJjR4PRgMAACDwWAQ9JQSCKHZvXtm9+75m7/98qWLVxqtZqPRQAjYnr2xsfEaAADD0dFRCFWxWNSt0choZW1jVY9s/Xwu6A+klCMjI9VKtdFoZHGilFpbW/uX//Jf8pQZhqUt9RFCAGCEFEIIQpWmifbRQ9sGxAayMKKcZ2NjY45rc86bzS1CDM9zhBhgYmzLMnDKMoQQUFJBwKUwTJrL5Xd0gsP7pKnjONu+zxBCkqZMSmUYiCOhxzNSijRNdV6cUjp8bEhcOn36bK1W08MnzWNNkkRbberAYbDt2om2XZg1hUQIsXPGqe2bflr9EI0+D3ltUs7MzCwtLY2NjW1tNR/86Ef++I//+KVXXn7yyaff9a53/cZv/PP19XVEyHPPPXf6zEmMcbFYIIRYtoEwIJDont8wqP5bURzkC74my2NKIVK9Xs/3/X17DrRarU6nk6bMcRzbRhhT3u0ahsNYqiFspaBpuowxy7BilQCFlMRSSsmk5DLjKkt5nuQVgwgDzgBS1KCG4MC2rLGxsVargzFmTBi2qyTUNHAAAMbYtCjnnEumLfQYY5hQpTRFHdm+XSwWpZQpS9M0JQTNzMy0Ws00zYBCcZwCgNIgwga2HSdJEiWlYZgQwm35l9SFqO3ZMlOFYq7b6Y+OjGrJVxgGelgYxwnjAiKMgL4QIYgQhNq/RAIATdNACGVJCgCgFGs7FCElJnCbdEMpJfqz4iKTQiEEEMIQgx1Bse6+MBkOGtS2KQcCUGwba6jtFHtKKSQQAJllSZqmSkHGWJqm2q0OQigk22HBY50rZJpQZxAlied5CANN0pGcEoqwMpRSnGsfQ8o5D8PIQIZlGYwxDniWZToWGxHUajUsaiCCBoOe7nWllEoAAomOadrZSgoILcEebhkBtme0yLKsLNVWlXqKg7TYmZoUACm4THlmmmaa8ihOIYS+70ex7PX6vV7v0E0H3vzmO4vFkddePfXqi6dc11UAKSVNi2opZBjGpmVBCBBFQjIhFIRYL3XJBTYsjLWEUQnBLcuhFJumqeMxdQdrGMYH3/++ra2tVrNNLRshOLVrIogG586eNe0hH8pzc95c7sb1pTCMpexAhRBCmKp90/v27t1LDXD58mXDMDwvByALwwAjWiwUOAemaRoGMZiRRrGCQ0tuAIDl2Htmpw4e2R9G3eW1+ThOXc/IWJRlSa0WCME5V2EvscruoBthTCixJJcQ4jBIhUiSMFYSpjzWmUVh0m/VtwqVcpLF5y6szC9cnNo1bhJzq946c/piGKRCACFUkmSOYwkhwiC2Lbfg51599VWp+N65/VKq8xdOLS1fHxmpdrsdx6VKZZ5vDoIWgMz3nSgKzpw7furk+QOHpj/wwL39fvYf/+MfSBAuLFy77bbbzl84u2/f/n//7/7D5cvzLx49liT8/Pnzv/Ebv3rbbbetrKyNj086OTsOe1uNDS/nPv/ss91O3zCJZZhRP0pDVq4UJwznsw995q473+y7zvTUDJBw165xxlSn2TJNalr0n/36b/YH3SvzVx5//DGgkG1RZJjj4+O9Xu/69RueV3/uueemfmpaCoAg2djY6Ha72o1wdnZ2fHz8937v93pB37actbW1e++91zCsc+fOPfDAA5XSyDPPPHPrrbfecsttL7/8cqFQ0n67LOVrtc1er4cwElLGQeC5rmax2ZaLMQZCZklCCFEZGy0VHnjggT/60z/XvP40TXVymgZutrUgUCipB/ZSSpWocjGv1DASCQKMMRBCTExMASGvXbumLxRKCZsSvfUwwABABMnY2MTc3L6UAdMExWLRsA0MYbPRXpjvnj195sTJVxljJiV33fGWD3/4w8dfedlxPADQHXfcGYWJ5n6urdUwxpVKlVKkFECIcAaW1+dbrdbo6GgQht/9h0cmpydnZnY5rnnPvW89e/rEyZOvDYK2aVLO+craKqV0a7NvWbZhojDqvuc990kJ6vX6hz74wSwVvlf0fTvNgkJ1otVqRfFgatfEydMvSDCQIJye2VMdqzz6vce73X4+nx8ZGen3uwAAipEQ7KWXXhZCVKsVTMgTTzyZZdn+/fvX19cRJJ/5zGeiKHnyyafb7a5SsN8LZnZPalSXsRRjxFh66dKFzvHjURT84i/+4trG5vPPPdVoNGzDbDQaQdgplj0MZbe7NTY2NnfA9X2XqUwC4Xi24+UKpTyAHOBwafVcq7W4vLSZ8ub41OjaUufAwX2Ykne8497xiQLn4OZbbjt27KVjx463mgFQRrvRf/KJZwHkAIpKqby1tSWEmJwa1c6tvX5L59YYpmGYDsIKQo9SqpRgLEFIua5VLhcqldLS0mIURTqCdXZ29id+4ie++tWvPv/8Uds2R0ZG4jgeHR1tNBoa0pWAbW018/kiQohzmaapHsbwjKUpMwxTJ5pCCCkmaZz1wyal2DR9pVSWcQhRu91mjN9YXL6+sLy+VjOoPTo6LoSIo3RhfjFNWT7vWKYQkmNMKcWGYROEK5XK0tLyq6+ceOc737m+vn79+nXLNvqD7umz5waDgWVZlOIwHORyXnmkMjmxi1K6vLzSG/Tn5ube9773lctlQvFgMFAAPvvss17O3bt3f6fT6fQ73W63oAq7dk1FUcQYcxyXYEMxGEdpLwsxAhhTITK0LXPHUJdSw8IJY4wwZizTHYTaNljQ3GENTUKkEMAaboYQA6kUggDoiTLU9B2MMXyDgHqHj6hPOl2SaTBaKZWxTAL18U/85P3vu991chChqV0TlgnX1lqvvvpqt9uVShMuoVQQQAzR68+sUWyts9fwqIYpo4gDALQCe+f169Q0BHEUxoZJEUJZmpqm6bp+krSEUIKrbrefJMkwUhWqKAriOGy3288//2yz2fR9vzJS6vf7QjLPdxACUkrTpIKoKEziWCCEMMFSKi4yhBAlJgBCKdFot64vaZkU1vTh4REPFNKaLDiM9Rk2iYwnSUoIMQyCENI+GxAqJgVlIEgzzX2GECKoCEEGJiFjECqpeJLElGAlBec8X3D73aH+jLFUfxHaOgZ5BGaZaZr6OgkhBAoJwXeqrB3rDLAdioYJiePYAqBQKNgjI6Zp2ratqe5SymAwgBAGQaAfHgTB9RsbjLHNzU3LcnzXy0Sm0QDGhG5wdJq653kSCIyxFoMqBfXL0EsFbtPRdloAKSEYdjeaaIIppjs8aESJ/oFIyaRg1DRbWy3GxIc/9JGpqZmXj796+fLl+YXLhYK/d9+sbbuDQYgIsT0zCPoIIWIafp6mCUDkdcIm2kbMJHj9tqMj/oHbjw5uAsA0cRwPY+U09359fd0wjMnJyTSLTdMU2dDxx7btMBpgZBAMy6Wx9Y0V00IE26bhtRrtQS84dOAANUijUbctizE2OjoZRVG9Xk8ThhHVO4EzqaW7unaHAHu2lcUZY6LRaBFCzp49Z1kWQjv2xKlpGEpp0xnm+d7MzMzFC5d7vV4ul3vwwQe3mjeWl5eLxfLa2vr8tUXH8XRbK4XkPI3jmFLTNO0giDQ9iFKqxxSbm5uEkDCIl6PVzc1NzvnHP/7x6enpL33pLwaDQX50LFfwB4OBY9mb6xu9QZAEwfHjx4VQh44cSePEd9zllRsszTQVwiS03W76fl7jvHqihTFM0tQwjH379rVajYWFhTAMXddN07RZ39IDaqC0fFLLZqmBSSa4ECIKwzfdeefU5HQSZ2996x1/9T//UtMfLJPq8biQmgJph2GoWbe6vRwbG1tdXYUQGtQi2KCWzVgqhLAMmiSRNnfWwr1CMadLkKDXz/s2QqhcydebjTSLdRusm+ptcyJLz+iymOn1rdkfelajn3bYjNmu53lpylZWVssjo8Q0pACPPvodSunMzK5LFxeeffaZYrl87733ToxPjU9OfOUrXwuCAEHDtMwwjBCip06eGx1t3P/u98zu2ZcJDgQgwtDrHGME8TDK8n9HhPxBq5nv3xGv+8+8YS/8oDMslADoEgoAAIRSlmNCDMLBgPVShFAcR9p/0PO8PXv25Av+f/3DP0AIzu3dMxh0Xjq+8bd/+zf33//+bru7cONKqVQiBCzfmPc8z3Etg1JCyMMPP3zfffdFUfTqq69qt6Nmc0tKiZGZxpmfz3leLozj2950Ry7nPf/8s7ZjtFoNRAlMsJAgSbJOpzc+PkkNKwzDdqcnpQSAdNqDJOaMMcFjKcPaZlMfdf1esDC/CCEsVKzp6ekwHEgpXdcvlQtr65s3lpcmp6Zvv+22c+cuBUGCkIGgeOzRxyml3U4/CILl5eWLFy9mWZbP5wulolJq/dR6q9XK5/MAgJmZmcuXr1qWaZrm0tKS7/uEkDRNKqPVsbFqlmWra8uNRkNriAgxpFQQ4l27ZhYXF1uNwLRovz8YDAbValUf1doUG0HSD6IDBz3DMCEMtCVOmsWuZ5eMUhgOTbWyjA1d8zEuFovT09Orq6v33HP3/MLVWq22trZWLJTz+cKxF1/+5V/59f/4H//ga3/39W9/+5F3vOMdY5NjP//zP79Z++Bf/9X/PPbic65lQgh7YQNCqI3w0phJwC0b33T4UL1eP/7SK4LXKLYRNBE0AACe75w4cUKXI5RS27YZY0mSTE9Pv/jii4uLi9qgQF9asyyLogBTILhQEEGMDIpN09RRqHI7xhcCrCSUUvZ6g2azrd2KKKWU4k6ndeHCufX1taWlRcdx1tZXwjCkWPmedf7cqfPnz+/evbvbbkuelPK548eP1mtrU5Oj1Wp1aXmh1WimSWRbJHFMznmaxVEUcZ6Zptnr9uI08f285Xi+b/YHTKuZ1P9TDu0Pb7ofHupgBH/o9IE/kh89fOyPIjjD7UzB72dSA6W+D8d+o9xHCKCAsiyYJCqOuRZcD/03EMiYIgQCqDzPs2272WxmWbK5uRlFwS037y+XSmtroT7Xs4wVCsXp6ekXX3xhs7Y+MT6+srKkJNtYXwGKm6b12onjpXLhTW96k1LKoFY3jYBEWaoYSwkh7Xa7Uq6+4513vfUtd3ARFUvVSqXKGGNprAAjFNx+6xEI0MKNxU6nF0VBHMfEoKZp7j94IJfzVlbWzpw5U62O5VimKyTPLUjJX3v1tGnhK1euTU9PSS40NBxHSa8XSgGkBIQYhBhRFKRxBADSQJhhkn0Tc9rq0TRpmqbXry9omoZ2p0miuFAqcM6vXLlCDawX7fzVhesLN7Iso9RcXDw6OjoKMV7fbLguNE2bYFLwc1LKXq/XarVM0/z85z9/7tyFv334q5oK1+v1+v2+ArJQyBeLxSRLry8unjt/ft++fZ/73E//j//xP7rd7sHZvW97+1tffPHFbretnRnK5aJSot1OwmjQaDSklJSa2lDLdd1Br7/GJUIoTZlSvNcNs4x1271CoeAawxgNnYfDeGoatlbl79C79OnW6XQ455OTkxDCer1eKY/Ytn3t2oIe+RiGtTPB0l54vu+7rivA62pBHQAIALAsSwfu6b9CCB66miTMMAylhFKCZRwA4Pue67qcc+2QqClIx48f0+9LE2cwxp7n6RmA7oA0xwHuCOg00QhjTYJQ237TWmKJMcaI6su+tuRSUOlggE9/+tPdbvfee+87ffbMzTffzIQ6fNPN33v8ybvCGCJi2W4+5zU77UqlUi6X0jiBSCGKwySSUrIklVJ6nkco0sijRgYzkRlAAAD0/HV+fkHrnIIg7MI2MQ2EUD6fF0JEUeQ6LiEkjTOooOSyE3a1OhCIFEIEAKSY6jfS6/S4FLZtAwmkBDwTMUgAQJ1Oh1I6Pb37xo2lMAwJNhBCtm3rcTgEmHNerVbzfk6j3rpFIQRZtmGYplKKCyGFYpz7fj6XyzWbDU3L5ZlijEOpKKUiEzr8WQmAMMoYl1IaJsmyzPScXC6HIEGIKgipSf28XyzlNzc3w3BAEAKxRochFEO7YQixAlJfuwxjSAvlnBMAdCevv9MoiQ3DyLKUc6YLqvGJUcsmm5t1pQhCWHONEUK6EoNIbft1D4k5CBEIIAYIUyqVgkhBCDDG1MAQY52HEwSBDlIbLicgAICaFAkh1EEjo2MjVFGEkJ5C6bTeNGEE4zjlUkoAFCEEISyEYExIKR3TUhJyLjHGu6Yn2+2WZsQXyrmbb74973ubm+utVgshxDPW6fQoMYRQACAdqqQJRGEYQqkk4xBCiIeDjSzLhNDkJp1LSaXS+gCuE+SVgt1BwFhqGExJGEcJhFAJSQ2cxMxxTUrM9fX1ra3mTYcPDHrB/Px1g9qDoGMaLkKcMYIwUEr6OY9zHmdMD8/SNMWIKiHSKFZKOabDmGBCYIIJRVnGpRSEQF3GU0q7/X5vMNjcqqHm1tTUVC6fj5JwZGRkdm6u1W5wpkdTVEsQsiwzqIUxjpNOr9+K4pG5vdOHj+xfXl6+dOny5NTUaHU8SZKLFy8rpQwDJwkzDAPg4RVgMBiE0QBTRcj02vqyYYJyJdftdm2bbm21pRSOaTHGsOUkSbyyvIEQntk1DQAKo4DoDIwkW1tbgwCPjVfXN1Y1V922jU5369LlXq2+OT1dnZqaXlvbiKPsF/6Pf3r8+Mt///ffckzLJEYcxJ/+9E/Nzs4++eSTCwuLSFpf+Ff//OrC1Zdffmlq11gQBEKGxbIVRRGUan1jsd5Ao6MVTFS32yaIHjg4vVXv/8+/+sN2OxKqf33xQqvdDsIWIWR0tCql/PiDH//xBz+5vLbebLYmp93f+Z3/kMsV7rzzjlav+cST3ymVi9O7d9VqNcZYv9srFwsf/4mPsViceu1csTiSy+XSLIEA5HK5558/eu7sea2Cvfuet+/aNZnLeV6ueNedb1MKPvTQz/zO7/xOdbzwsz/7s1/84h8igJUAj37nsTff+Zb77333F7/4xRdeeOHRRx/91Kc+1e22r1y5srJitlqt6elpTYN47rnnKDXr9fq/+cK/npnZs7Ky8nd/93cQQs/zFhcX9SWacx7GkYKSSzExNVUqFnu93vr6ul7VBiGMcQQgJSgJI5GlLIn1xVO320opIKQe3ILtiSNGCOLX8zO3N4igxNSPxZjqQWyn09EulLqwVEpZlgUECOIkDMPpmd35fF5KkAlgWHDE91qt6OWXXz5+/Pig1x8dG8EQtdvN6V17Tct961veEYYh59ygBnDIYDAQXOb8vO/bSoE0ERhjJZGSqDJSuvXWWxljp8+eGQx63/rWK6NjI/e8/S175+5ESFZHC+3WuqYE1mvrpmk+9FO/cOjQgb/40p8yHu6f2//XX/7LdqOZJEkUxvPz1ycnJ8vVMjJEP+ooxA0b794/DXH0tW/8j3fc+85eED7/3NFCoagU9NxclmWMife/5/1vfvNbjx19yTStz//SL1/6/xH231GSZed9IHjt8+Ej0mdllsnyVd3oRqMbrruJhqdEgiAlUI6gIOpIO7OrI2q0Ws7uUsPRULMacURqBIxESiQIEiRIAKRAwns02pvq8lVZJr2LDB8vnn/X7R83MrthqMnTp09lZVRE5It37/2+3/cz96594QtfKBbKjDHf9x97bBpj+Du/85+ee+6ZCxceOHbs2O7u7j/8pV+MouATn/gPEGLGmC4iKYaXXnvlD/7QbjQaQqaEKqHipVNHMGbrq2sWtfp+7/En3jIM70HKa43qcDSklgkx2NhYM03TK3pK5lDKyanyBz74ZKsZ+364cGz64oMXXnrl5YsXLzQaE4VC8UM//f6CU/34xz+exSJLR17BGPqdQsFutdpBEGBEIQSmaegJoGHQOA7TNIIYua5dLBZnZmZGo9H62ppGGxsTtX6vN/J9zrlj2RnLOeef+tSn8jx/xzvetrKygjF2XXd1dbVYLHKeU4oBQq1WK4oSxlgSZ1I7K0kQhnGhUFJKUWpCgCEAjAlNn6eUWqYTxymXDEJFqWlQO4oixsTTTz9948atyclpluVbWztZltUqdSGYEgAoABUUTKUiLRaLO9vN+/fvB0F0/fpNfTBN1Bv+MLAtR4xjLYlSCmKkOd1KqeXlZd1JSSlb7X2NP+zuNY8cOVIoFKSU1KKe9MIw1KHrunBKkiQJkzAMIcRSSoAwwEAIoQDQQCGCUAqAMTAt1zAMTMaMBO2+ZVBLZ27lea7JE5p2KcU4dFdyXcGMhW66yHwjM0BPfHUyh23bmo174K6GlEJKCNd1G43GP/ilj54+vTAaMSUBRKDV8b/wl//12e8/hwmMg1S3xq/XgVJpD9+DGpXrj0Y/IMuyPE+FEJhAXSABAAjCLOMY45Rl4SgyLWqaJiZEu3UZhkEpbu7v7uzsjEajOI7n5uaeffbZ5eVlz/MGg0GchIZJuMhbrVaaprZtnT9zplQu3L9/NwiCEydOWpbDcgEhyHNuGAbGBELIRU4pzbLstUtXRqOhaVHDMABQnOcIGYhicSBNE0C8sb5lQqZpqg3rD8qeTMuwDGMchaKUEnkOAEAQpmkMpQRKIIRMi/I8MzFWUnQ6nShN9P2gEEySxPM8HVWiGZPgICScUooxkLnMskxKWa/XtdRYKaU79EKhUCqVTpw4YVmWHhusrKxsb2+naTo5Oal/mmXZ+vp6t9vVgoxR6IMxeTTe29nVlXya5ppNovVMSimIEBirMBFCRP5gTDeEUHCOxsUklOOiH0ilABrPGJhkmk2fH1yZXEiyvLzc7w7e/va3J3EuJahWa9vb22tra+Va+aGH31wsFwhBWZYBIJVQju0pLrvDQXfQL5QeZpwRRDEGEAKg4bY35CZBANRfQfh8YwP/Qww1zkGapr7vM8a63a5mPGVZtrm1Xi4UK0UXIdDvR1OTkwBIz7WFBL1+5+G3PNr62v7Nm9ee/InHl2+Xbl6/jKAcBYlBcRgkSikpgVdQCBu93j5CyHGc/qBrWpYETAnQaDQGg8FoNEJwTJslhDCWUUpPzJ9M07jZbDLGjhw5kmWZlpcyxhBScRwTbLiu2+v17t69CyGkZr6/37YsK4nHkbh5zimlKc9N03riiSdWVtb6/X4QBBpMFzJ529vepmXFms+luz7bcpeXlz/84Q/v7Gy/8MILv/RLH3vmmWfu3F4uFmoYY8lFuV63bbvd7r77XU+FYTjs9Zt7O51Op1BwhZKFQmFmfm5lZQ0IqccgpmkqJSilx44dC8NwOBxKKS3L2t7eBgCQg4GJBnwRcqTkEEKIlGRSSUiptXz77vlzD544ceLrX/9as9nUNUexWDx99sydO3eiKLIskzHGpNhr7du2XS6X8zzfv39PU6oLhYLnFpMkyvPctKgQAkJFKAJATk428jyPoogQalnUsWqc53orZFIkSZLnueM4mu2vl/ohfQZIbtu2bjn0RMi2HAAV52x1dTUMw6mpKYxpknGhVJZl2lKdGrjRqHW73YXF+eZ+23Ls7373u6dOn+31Bk88/hN/8rnPlSr1M+cuTkxMLd9c7vcGYZAsLByfnz+KKErTVAiRc0kIAghICYRQB/Y9P0Tnf93LFfw4ef7rWNXBv9LuBoeyAAgBQAAIAMDYx1mvdsPAnOOM5VCoiEXr6+thGMRxXK/XL1w4t7y8jDFeOHa0Wi1fv/Ga57kIg+vXr548eZog0N7fY4wVCq6UwiCW6Rr9fp9z/srLl/b39+HYpRGcOnWq2+12O0OllGCy3+8riM6fe+Dk6ZM3bt1sNndNy42j0LAcivFo6BuG1el00jSNoohgM2WplAIQPPRDqIAUkFJqGg4AgFIex5m+33Z3Wp32oFBwy+UypVhBVa2Wr127cmf5Xr8/6HcH586dE4KNANzf37csa29vr1wu+75/584d3/fn5uYakxPPPvt913UhhDdu3Jifn/+t3/qtf/2v/3+vvPjSa6+9tr6+rklSURQuLS1Rii9fvtzvDeuNqt7WlYRSqkF3UHAKtXKt343SJKeUBkGop8f6RKeURmGSZtnmxnalWorjWAhmGEaj0TAMY293H0KsHVQJIYTQQsEzTVNKvr+/JyUXglUqxTt3bkkgRqHPJd9vt5rNZq1av39/9Rvf+NaTTz1pWXhufubU6aNbmyvPfP87CKFOp+MVSZLlUjKWK9OiACLTdPxhmMTZ/PyRvd1unjJKqAIMIZQkmQbBNSvN87wHH3zw9u3bGON2u5vnuWGQOA6llFmW6C0OYmoYhsZ5lVKD4RAhhA+UVgiSg6Z07AUvgTBNAwL1ja9/9eTSaQ1P6NzUy5deq9VqtVrNMki33ZyerK+v3XFsb2Fh3jAMfzBK07jdzlutZhSMGE8q1XKr1USIQKSUkiur9+bn5z3Pi8KYEGJZlmWZOQeEEPlXKwcOKcxvXE0/dvCjBQSv48g/MPhBP2qjAQCQ8sfj2+OHvfHbH0Wlf8QwyjBgmqqdnR1CyPz8NMZAexKYFEEI9cMMgxoGVaqSprHkIk2SO3fWFxYWCo7r+z6Uam5+YWpqQn9kL7/y4tbWRpom1Vq5ub/76qWXS8XK5ubm0tLJlKWlYqVer/N2dzQKy+VymsWMsYmpyYceeUu1PjUYZVkaLRw5cePGzWqtdPv29cDvTzbKq6v3s4wVy+VyudjKOidPn7p9+/ZHPvKRs+fPfeIT/2F/fz+Kolqtsbm5CSXECAuhGFeWZbuupUDOubQMo98fzs8vjPxobW3VdQqUUmLQVqtZLpchUKVSSduttNvtu3fvPvTQQxMTdcsy9/b2CkXXKziu63ZaXYWRhFIqTggpFF29VBEkqyvrH/jJDw6Hw3ar2+8P8kxigw4Gfp7zKIoss6BdzEzTFMqv1WrVeu3atWtvfvObd3Z2hsOhPuNK5VKh4A4Gg4mZyXe+853f+ua3tXliq9VCCA39wfb2NsZQKZUkEaU0TsJqo9r3+3EcewUnjtIw8AN/5LoFkxpZlg0GA8/zDNvy3GK32y9V6m957G03btxCIIcEpWl+GKzBOROSafKE4IoLaDumAiLN4jiObQdnWTbRmHRd17KsxcUjeojlOB6EcDgcYmxxzk2z6BYLWZYxlmm3uzxnms5MKUUIaJfALMuEkAghhABClpTSNiylBJecKmqYpFB0TdMMIikEF5xzzhVQlFJtD6I5yrpe6vV6SkEpteU00mWxEAJKBdA4c+ZQywkA0CxmpRQEGBGgB11ZluV5LiFI0/zDH/65y5evXr586Stf+zohpNnqxGl+9fr1ra1tpQDnolZrLC0df+nFZ4lpACGyPGF5lgmdpS4ynkEIc5bmDAAAtG13ylKNI+ug9iAIgixGSOP1xuLi4urGerVa9Tyv1+vp9wwA1PYmh250SEGhpFJCiUOjHgQhphjHYaRr2izLTFNgTLvdLlQIAIQBpNSEACgBHNfRVauupgghOt2r1+shrEsXSCkVQvi+r5SihkEIiaLk8uXLhkElFyznnCsECcVUCKkrFs2ohVBJKTEkFJNKowqQisIkjsM0zSRQo2iUyxRSVax4lUohTVPbNtutvlIAgrFFhpRSSgUR0Ge9lFqIhqEak6cIIaZpdvs90zQajUalUkmzWCt4jhw5Qiltt7tSSMMwOJNSSi2YBVAePr8e5epv9ZNTMrbRJxQpCA0DE4oMk0BUHvR9znNNZFZ8PCMRgguhoWSAMTYojaJI33taig60B5SBkQCM5ZznuiLVlG2gEISAEKSz3REGwdDP8/TRU2/2PLfbbSdJUi6XCcJRFHW7fQCA9v2QAgA1nhPkeY6UNsjCGKGxJhkopRRGVIB8nCJoEG2VCCGkxAQApkkOpGCSSQEowghhziWAoFqatB2axIKLhJCoVCm/6aHzlWpx5Ee9rt/t+EQCYhDOpZQwjmOEgEUNluVcScEVwIJSmxASR4lhWBhTC4AgSvI8jeOYUIQQ0EUyhPD69eu6GAjDcH19fXp2anHh2HA47LTbAADOJec5kInnFbOMJUkasSCntFor2ra1t7dHKHr3e96zeGzh+NKxJMlazdbi0TkAZRjEeh429PuUUghwniVZnmOCCQFpFi8v32I8fOiRB86dP7W1uROEoyAIOOcPPvimXq/Xau6Xi+UgCJIkMw2bEJLFSaFg7O7uNhqNmZmZ+6urrW7bcSzLMgZBjwEukf3YYw8VCm6e51GYHl1c+jsf+nvbG82HH3z4yOJCf9BdXV1tNlu2VeASJSH6wPt+7vjixRdfuBSFmVKKULDf2qrXJ6IoqFbLlk3W1laHfmtiYkLj7FKC2bmaZZeI0QujvuXAt7/jzbdvL3c6vdFo+Kv/8v/96FvednTx5MTEjG0VLl159dvf+ebb3vqOIwtzr7z4AkvTJCHN3b0gCo/MzZfPnzt+7OhHf/YX7mzejcPszOnz9XrdMAyEqZTJneW7y8t3Mcb/+B//4+PHj1OKiWEgJKXi73jnE2traxub2/ut7d/6d//HlStXHnrwIdd1X7t8+bd+899/8IMf1JhCGMQIIYRInudra2szMzNPPfXU17/+zW63PxyOEEK6DH788cfDMLxy5YrW5CmlNIKmeX95rhYWFopFTy9zwzBSktuWzZnEGAOIOJOu66Zp+t3vfjfLslarVSwWSwWXElMPg38ItNKFrpTScRwhBMY0GEUQQh1ZzzmPoohA9KY3valUKt29e9f3fa2/AQAgSlCGJiYm3vOe93iFEkLAJAAi0O74n/nMZ5o7zUceeeT2zVssTyuNWqHgSgXShJdK1PPKw2HS7Q6ZFPqlC2Wb5QApYBhYiDFOdOTIEYTQ3n5zZmZmY3ur1u/s7zdffvn5JO232zsPPnD26e99u9XrOZ4NRHxkdv5ND13EGALI8zz74he/2Npvz83P7+/vB0EQhfHvf/r3nnziXR/4wE8++9x3Or3tiYkJ24W+3xr6+9/89l9KCCyXQJwYppUJH2EMhczyqF6vv/OdT87PLZTL9UceerTd7haLXqVa+sY3vm4Y9A8//fvf+vbXqo1qo1F78sknIYSOW3j2uedGYTQa+qZFlATUNEqlkm3ZOzvbjmMyntgOmp+dtSxjd1cyFbB0dO7BUzNHa8V0sVItKCicshWEYafX39trlrxKrVYDihGICKE8F7V66dHHHlw81ihWStggSZ4lSVIoFDgHYRg5jnv27Pnbt65AiQiiPBebWzuYGIQYSZLqjATP86TkGOMoiTUXu1Qqzc5Nd6+1u/2OPpHDODCIqTGsJEkW5o8Ui8WrV6+eO3furW99KyHkypUrURQpCIrlwuz8HDrAmkfDgBDDoCaEkAtJiDE3d8QfBkpKBKEQXKOrhmWZNsryNAzjOAbUJIRihMa+84RA1yNROLrT66dpLqV0HC8KR/rOBMBgTGflKqBQu931/cjziu12t1arFYvFPM/f/va3Q0SvXbsWRkEYhrrT2d/f39new5hEURRFCefScSzHsnd2txljSydP6d8izlLTNDUqolFCba4VjcJxFLEQQihqEQAAoaZSQvsaI4QglASbnusqpeTB/CZPGWNCidS2bSAVpVRrufSUPYkzAICSUmekHdjqSp23QamBMdEvqTEEx7H0wW3bJkJIO0uYpjkcZgAAIbPjJxYYS/2RDyFBmJom3GvubG1tZSxttdsQSEqJUkwcWBFKKQ8oz0qOjdcy7dGhgWkhRJ7nJqKU0iTO0jS3LYsxjbRLhHASZ0qpQqEQRxFECUKAsczvD5ACBCKv4Hzr299YXl4uFou2bddqNSmlbds6VzmO40a1CiG8e/fO+vrG5uYmAODChQcMkwAADGwcTlURwlKKIBg193e4yAlBlOKx4plgBBEc+5dKbaUhlUKv/4JKq68AABiO8X2lZJqmBGODUp19AoQoOA5GkOXMs23FOc8ZwZAQkiZJnucQgm6/n7OMEDIKQ6UUwdRxHMsyKDX18a0H3gghQhHj0is4OUt939fAmk7w9jwPAnDlyhXf9/f29trt9tTUlGVZs7OzeZ7fv3+fMdbv96MoYoxhiIQQucyllMPhECpACDEMCwBQLFr6w9LUAakUxQAikqYphj9g7vF6AXSQ0XLISxu3AxhqVzSIoVIqTdMwjlkppxRLKclffuGLSgGlkGcVa9UJxsRLL74yMVl/8OEHa426EEzzZTjPESJxFhrY6fe709OzSRLbtkMMkKYAIYB1ay0BgAAdEJwPMwN/lAX2owGDB9+AYrFgmnYQ+No0cDQaUUrzJCGVaqfTz/NcCjE1NUEphRD4sW/nhouNj/7i3/7EJ9pXrry6uXk/SsNquRiEfjgKEEKmaUoFojABAHDJTGrmPANIMZ7Zth2GITUpNY0gCCqVAsZ4Z2cHKQAhHM9pqdnv9yGEMzMzAKhXX3rFtm3PK2qT+Oeee84wDM3V2tndMkxoWy7BhmGgNGX93hBCbNuGtgT55//8n3/qU5/63Oc+V61WIZRzc1OTU43Nzc1Op6MFp/r4z/Occ77fbH/2s5/d2FgnBF29enVmdqoxUbt/e6NYLEKIyuXymTNn5ufj1dVVKJVSajAYaDdbqIAmX2d5biCsLyNjLM9Tr1Scmpq6du3a4ZhC/58SqrcnSqHr2lmWZRmjlCoBsMJeufze9773uede+NKXvvJf/svv/OEf/mEw8usTdaVUEIV37twJw5Bz5ha9XPA4DhECnOeFQmFra+vBBx/4hV/46PPPP//lL385yxOlVLHkLSwc2d/fC6MR46BWqxoGtWzqFWyMca1cMi3a6/W63U6SokZjqt1u62VgIUtv3ELoACVp27YSDABAqbYsTCk1dX9umBQAQAixPdexPRyEpWItihLDMDVXizFmGAaX/t/4Gz/75je/5dOf/qONzV3bck3Tqlbqe7vtSrm5dOLs/+dX/yUG+PnnX5QCEGwRA1DTAAAgBBXUWDNACEoAAATwB7FmBABCQLwBDlNvCMx8/ZY/gKs0HRIpIH4QuYIQYgx0TBOEECHAmNR2B0rCYBjcvHkTY1wul55//vnLly/t7G4dP3Fk6eTi7ZuXNjfXFVSlUpHz/O7dZc7ibq8DFDIMKjiXktt2QZsLa96rklDjAtvb20kSJXFaLJaiKDEtexTFd++tvf0dj3/k53/h//yPn0BIegWSJiEGEONwOOzbpqUgUkolSQqAVgkpCDFGSIPytm2maawUONSDKE6SmE9Plyg1/WDEGDMMCyHk+z4AQAfKLy7Mr+YZxhATOBgMqtXqY489pqd2mtr8xBNP9Ls9KWUYhkmS3Lx5c2pqilompcT3fSllHEdBHAkhOp2WDphKkxxjLLjKRcpykSRJHKWEEISIYRAA5GAwoJSYpqmJ83Ec65Skfr8fRqNisUAIxhhXq9X79+8Ph75p2kqNUY8kSYJgNDFRLxQKXOTlihcno1J5+vyF07t73fv3VkyL1urlL37xL4IwfeaZp8u16l/8xRdmZicc09jaXv8v//m3hWBpFlNMhBCe7bS7Q6WgmZrUJLYtBwM/y/jc3JFGfTaO2PKtuxihOI7HkQIA6PcQx/HS0tLt27ebzeY42hiALEsopb4/MC2KMabUMk2DsfHxpnsJBGGWZUAhPS3Tw3wAECE4z1MI84LrZSm7evXqAw+8qeAWkyjFkGBMJyambNu8u3znoYff9I53vO1r3/jqrVvLpWJxPwjOnT0fRUG9Xt/e3h4Fw1qtmqZpt9tbOnHq9Om5K5dvXL95Y25+oV6f8jzPD0amGd+6dXvh6GLBc5JcHfKPDwnLBx42YwuLN2LNh+fLjxEKvAGY/tGfHv759Qf/Nyxy3vB1+G8RAFL98EsDABAGUgL9oQghPM8plUqSC2pSxg62CwSlVHHMPc+dn51rt9vdXrC9vY0OjnYIoeN45XK12237QTgYDLrdjmGSYa977969ycnJhflpBKSBiZ5at9ttkSue5SkM0zSVApRrZdMxi8Xizs5+nAzLZYdLtLqy3h/0onBULhc6rcHu7q7gqtGYqDXqCIFyufj0M9+7c29Z0zzr1RrBRHLBc2bbbpQGWZ7adskwDIRxEASdNMaQVKvVK5evR1HEmTx6bGFubm6/3SyWnJV79/M8d10bQhxFkWUZlmU0m3tJkgjJOOdRFExPT/e7PYQIxhhjeGhVqXnBruv1+4OdnR2lFMZka2s759x13SROTdMUio9GwyRJarUahDCMoz/4gz9otdtHFzyllEb3CkW3Xq8nWRwlsYaJXc+5fuPajZvXK+XSRz7ykVu3bv3uf/7UW97yQLlcbLfbURz4vjMM/HKlJHIupYzDxDAMqJCSXEIClVJCSQk4k7u7zXc99e65uSPveOcT3//+s3/0e79dKBTSKOIih2rMO0YHbu/6XGaMhWGIEMqybG9vv1KpaEZYsVisVCralFAAARRQSJVr5XK5PBqN0jQVgoVhrO2bNdqFxrHRAACg4TkIx/eOTjiRUlBKynYRjeNTYJrneZ4GQaSBOaVUzDlCUEqhn+3QCkOpsS3GmJpxEBV4SJyRUiJEDk833cgdLgE9pMcYZ1mqOA/DsFAodHrdKWr4vv/Vr371pZdebu63K5XKL/+zf37s2OLExEQcx1EUIQwsAwvBcs4yltq2rdUbSqk4TbUAkFKKKVVK6J+WSqXRaFQqlVjEta6wXC5PT09vbGwwxlqtltbB9Pt907T0pqc/F4pMddiuCYUQoohCCHnGIVQQYggAItCmtgASY6yksCybZ5xzjoC+VupQ4CWlBAopNf4b0zQZl4QQALlSCmgbZQmFUAgBjLFBqEGMXOYJT6XAlGClYJ4xBYAUQHAlhFCKO45NKfX9gHNGLW2cmo/CkW05GEEm8igJSqSoMFZAIoIlFEpA/VlIoJSQUgp8EBOkbwxCMJfj5kFKGUWRJv1ph80wGjmO0x8Opcy1sh5BYhhmliaHzJdDcPnw09c3pAJCKywxRoQijDE/6EsBAPV6vVQqNfdaY/dJ01RqHC82vnmRCoLAsCz9uhqo0oJcQojjFQTjYTiK41hIRrBhmhhCInOpdBSB4zCWM5ZNTTSWTp7AhNy5fXM4HFYqFc5zlnHLcjAiCkmTUISIkkBhyPOcK04IUVwd3udKKQn0ZEUBAA95D/oq6U+Qcy1PJhhRSmmUR5ZlSamQgkhiAHCWiiCIPc+u1Wu7u7uNaqXRqJRKJc5lr9en1JRSEIKl4mGYQqj0XSSEgJgSQizLwJgqCRgTcRwDRDTybhiWaVKEAcTAcRylpC5TF+YWe73ezs4OY2Jzc3s4HOopiOvamh5oWdbx48f12FgIEacBJibEyHbc73//2XPnzkRRtLOz0+n00jwtlyvDYX9paWnp5NHhcHj37t3O/sAwTExQo1G3HBrHcSZGae7fu7dsWkjILE1Dy8RAGVsbm4QYp0+f9n1/NAqjKCp5JQxwnuRa/vixj32sXKt8/OMfP3ps7sjC3KlTS3/0mT8OkuGDD170/WEUh0DBkyeWHLv0Gx//d3fu3HvHO55st/fbzY7rFC6/dn1jc9913Z/50M//o4/9w3/wf/vF1y6/WKk5zWabEJhlstvxS6VSHAmRB0mS7+zshkE2MzNDsLQKtuM4SsHJqera2lqt7hkmStOEUtzr9QpFd6+5/eqrr7JMOo4rSVKuVpVSX/3K16N4JITcXNus1Sq25wIJBZMrK6u/95nf3dramZs++uCDD+5t9CmlQMWuW/ipD/30B35SPP/ci0ICw7S9AhgO0/X1NdMgGMMvffkvW63uhbNHb1677vf8K5evQQjL5fLG2uaf//kXAJAvvPACpfSll146nI1hgz7//IvdbvfcuXNPPPGETveZbEx87nN/urW15TiWNqs5c+bM448//vnPf54xARSqVCqmae7s7GRpKoTw3CJnAAHMICeESMZzxiiloygmpmWaBqU0GPq1Wk2L9uI41QCEPsIMwzAwybQlvZQIkSTODt2EtCpCSukUPM/zkiR56qmnNjc3r9+6zjkfDoflchlCOD07Mzs7a5hAQdBqd/vD/jPPPHP//r2HH3rL3//Fj7z68s3/8H/8luNYf+2DH6hPT2d5rEAxy2R30NacR855t7ufZQVCiOsWdPwgMqBHXQl4t9uRUCZ59ta3Pnrr9rXhsI9gFsfdctlZX5Od1m6lWlpYmKtXCm968KzjoqtXr6ysLler5TxPl06eqFQqjGWVSunazRvDof+tb3/1/sry/v4+JjJn0b1765gSr2BZlhkmYank1BqVMIg7nS4G5uTEzP2V29/59tcfeOCBcqGsTfmfeMcTCEuAFULgS1/+ws7OztGjR6IomZmfOn/+NMb085///De+8S2DOhBFECCpBFTAc13TNpu72yurt2fnps6ePTk5U713706xYiwenwAAvfcD7xgOe61OO+dJZ7DvFd1yrWqa1uTEPMG2P0ihkiwLOc/TNG/UZwGBxIIZiyu1Yq1WAQgqpbrt+KWXXpJcZFmq93PLshACXDJtlxyMIu3ekCQppQRTw5RCKZjnebPZbLVavu9jRDHGpmGzXCTRwPOKh4baAIAkSe7cuaPxiizLuBSaMbq4uOj7/t5O07WdDI2z36UESkEEQRKlUCElZMpyCKHmogEAXK9YJtUwDCu1crfXsiwnS3OMuWlSzWKmGGGMRsHQsT3Ocz0ggYwJIaRSGGMh1GDQ9H3fsV2goG05cZTEUVLw3KtXr0dxFgQBhIoLRg3DNM3hYBQkQwCgadrz8/XZ2dnhsA8hnJmdLRWLjlsMw7DV6igluJKEEO1VpXnNImcY4zxNOZcIEoRgkmSIYEKQHvoCAAzDwHqmRGmSJHqhCSn1uFeTWDWeq2OTxsICDJTUCoPxCaWUUkLqqkOzB7TWR9dyetqtZ/N4nLox/nsAJQCSUpixUaFo5UwqBZqt1te+9pX79+9PT09DpG7evA6gyFkC8eu2aUCNR8767EZo7L2gwUqdLKoL2larpRTkTEKAORPUwIzlEKo84wlJlFKGQR3HgUBpcZVh0GGvt9PcQwhqgdRwONT1Cee8VCo9eOFivV4fjYIgHt2+fQsAMD0zaRgkSTJKqWGQIAj29/crlUq1WsWY3r23PBj28owrIfTUDSCkEXOEEEGICQEgQBjrwzdXWpwn9danSxeKiWkZWkbf73dt29ZOL1Iw2zKKrseznBJEMARSIIqFZJhAz3O2tzeiONC3cZrkQggdNamk1IOEQyQ3DEONV5RKpdnZWQXE/JFZr+B0u92t7V63291c39LUCtu2jx8/rgMttre3tRMvIaTb7Uo+vrWEEMQiegaghBRCaato/cgDR1CgL6wu/oGCeq8fNxVvQK4OpZbgQNcihIBQEgHh2CKco2w84eBCCSHIaBQ4jnf1ys16pRFHaRKLra2tXt/e2t2qNSrnzp0pVSuO4wAg0zTkXA57u5TSUqkQxxHGVChqGEApoPhh5w0AfAPopgBQr0uSf6zb5g8h0ZQCpYhOGdaM8WG/m8ZiZWXFcWwlpRAsSaKLF0+226POaNt1baWEP+o98ROPvfziM/fujypVN0vDUqHYaFSbu03TtjiTg8EgY9zz7CzLIFSWZRQKhePHj+c5j6PUNGkcR3mezszMeJ6DEGrtNZVS+rZWSrmu22q1HMeuVquGYRSLxeFwVLbMWrWxurq639qrVCpa7asUiuNMcIWRaZoIAKAknJyc6Pf7v/Ir/6LX72CihMyiKJyZfVQyvr29rV2QtEzDtl3DMDzPmZyc1DoCz/MuvfbK8eNHi0XvzNlTWcravX5rf/+zn/3s9PSsQWi31R7nmEPEpUQICiFWVlYwJhBAeNBXaBvWra2tg3zPQI2VuUzHV1FKMQJB6COEvIIz6PuUmpVKLeNiY32HYINz/slPfqrdbjvFIoRQE4qHwyFCUCGo3akcx9rY2lQQ9Ie9UqW429z7/J9/XnDpeh4EIIdMQdXr9QqFQrHkUEr6/f5ec0cpcfHixRMnjgmWl8vFarVkO8T3BxsbG5pRLoSan583qLW5uWnbtmma45aDYgihZqJJKXVWbLHoCWlOTk52+j3O+czMzGgUxFHOOR8OfaXU9PR0mqbFYqHb85vN5tTU1Pve976cqZ/+qZ/5+je/Y9oFANCN6zevXbvxkz/504sLEwtHFpJEUAoVAggCISRjAmKi5fCHljIQ6X5ufCdDNHZ61bzKQ6z5jQsB/aDl63hFHPTpmqmDEBQCSCkpRVICziUhSDddUggEyZmTZ06fO10sFr/5zW+ur69NTU1NTU1pB96jR4/quHbTsIfDEUZsfn52e3s3TVIAEII4DMMkyVguHn3LW4MgOLwrEAKj0QgCMD839da3Pb549MT/9hu/tbKydvnqLaXQmdMXr1x59a998H2Cp91289bN66PRECJlWSbGkBASjEIAJKU0y5j2N9TVqpRSu7UaGGdpKiE1Tdpp+3neRBTMzEx5nteJu0IyxykEfthqtRaOzCEEuMgVgMVicW1t7ROf+MT29vaJEyeiKFpdXbUsY7IxsbW1NTk5ube39+u//usIES0kQZTEaZzm2ezs7N27y3mea7qHNrhECCGAEVKU0jTNMOYQaROYMXCMENJLgzOZ57kuIPQJJCXP8/zGjRu6TgiCgFLjYK5OpBRBEECkMIZBwE2LtK83jx07du78UhyHGBlDv/ut73yz1/MJwe9971O7e5tf+Is/VYKVK57v9wjR5CxcKhbiOFVcFStlKSVBOArT4XBoGMQ03MnJqZ10v1gsQkC1v7njeJpICADY3t7+kz/5E9/3tapRSmkYRhyHaRY7riWBpCbVTuvaJkjjVpplJoQASgohONeZgYZuRw3DYowPhyONFHS7/ThOwyCtVScX5osnji2tra0cO3ZscnLy+9//PsXEta3BoGcYhpCcGqTT6fy9X/i7ezu7vu+/+uqrFy9e3NttVWrV+YUjvu+//PLLTzzxFOd8FISUmpbjDQYDCLDlmvzgfPnBw2JsX/FGJPqN6+hHac6HwPQP+af/2NknhP8X7h0/yrp+o4EGeMMBhzHgHBSLzpkzp1ZWVlqtVrlcsiyaMc3+05ATxBhCiC0L5ClRQDSbTdsw2YG8CyNULJepaVBKq9WqnsU6Flldu08oCqPRnTt3pqZmZmbmrl693GhMVsq1gldHADKWWBY1HZcaTrs1KBYbQhAz9AQPMTI7nY5JiVUrszz1PGdmZoblgkuxv7+/mW4PR/40ywuFwmg0cizbqlj9/hBI5Vg2ZxxTIhJWKLq1eikIhiahlmVQbOzv7xeLxVKpkiRJoeAOh13LolEUKqWyLCtVykIIIRil9Pr1a4QQ17M9z/E8x/eN7e3NiYl6rdYYDAbaEcwwjDAMMaKUGrZtX71yXZewlFLTsGuNIkIoTWOEEBNSYum5XqfTSZKk2+3evnm7Xpt46ZWXdfeLCJ6ZnTUtK4wDx7GHo9GnP/3p8+fPD4fDtZXVs2fPOo6ztrZGKbBt23WcOAoMy2y19k3HrlQqLMsIwqZJ0zgBABmYZCxREgAAoigSXEkA+sPBEz/xrlEUvvjKy+VyZXJyYnp6ejQaRVGkhIQKCMEghEIw/dFjDA2DWJYlJR8MfCllr9fTfMmdnR3OuQAS+9i2bc55s7kXx9FoNBI6cVIAkTPBFcYYKMAFAwA4jmOaVHvQM5anaWrbLkIAY4ohwgQqCIRgnHMJiQZGsywrFApQqsFgQAjO83yMlgIgx5GnhSQZ5/vpqlTPp5WUekwFDhDnwxk2Qgiosde87h61ntQ0zTSK0jT9jd/4jVZnf2Njy3UKoyi6duO6Y3txmnHOb9++fezYImdplMQTjZoSeZ7nAMhDyaFuY5RSlFKtPtH1gB5Ca4YIY0xIjgnECI2C4bPPfT/P88GwZ9r24uIRz/P29/d1ba2fkxACpdK3FlRIEokPGMFKKQgREJxaJqWYmoausE3DwBjHeYx0rItCCCPdceUpYyKXUvqDEVRocnKyWq3v7jQNj0BElJKKA4ARAEAJiTAOR5HrmZxzSk2KhJAIAASkggoRgqXgaZxCjKSUeU4457nM8zxBVJmmiTB1XRdBDADgkud53um1MUIYUZ4xKaWQAAGgpGYwvx7nqBHdcfiMSvWYCujOBCFimUmSMJ5BCJkQIs+H/bZSirHcdawsyyCElmWlaaqAgADp7ldPAg62PgghwgfgMcaYEKQkLhRcXcJpxzNdOUMIwcHdpTtkLRxO0zROU/2JV6tV7b/heZ72d+ZQWo5t2YZ23oAAYYyoSbXmRio+9PuSi7e+7bHhsH/z1o04jpVSWZYApTCirltgjBFoQIgFHxuLC8kBkKZpciUPQ4EQQghhABAAPOdcHtoXYh37jhBCWc4hUoZhUoTyPFdC8pwd6tJwjgHFwSglhGxubvf73WCyVC6W80zu7GxIKZM8KTiFPM/7/b5pUtu2w3Ck3agNA8RCdFXkugXXLXCVA4Q450oBjLGUAmICEaBkDFakaUIppdSYmZnt9wetVlsPt4QQZ8+e0X2pPve1WwKl2DAMoGiWCSlBitnQ71++fFUIEQRhoVCwLItzFiXR1s6WYHxmZsZ1Hd8MMULakCcYJfXJ4vT8oh/sT002siSOwqBaKQFlRGF+7eoNAslgYS7LMteyBRfNZhNCWKs2PK/YbrcHg/5b3/G2+fnZ+fnZUtW7tXzrqafe1fGbWRpHcYABFAKYpr2+vvmlL3xtYmL63Onze3v79++vT89OHZk/du78hVar89hjb3nh1RcuXXoty7hjF6NwlGWxYVjhKIlGhBo4iXyEAQKFojc9M3Vqa2vjA+/7sFewlRLPPvvswuLc5FTDH4a9fseg1lvf+tbf+De/8e8//u+/9tUvv/nht3iesbyyfurk2Y2NrSxjlmVzliFIe13fS8VUfYYxlQz9a9du+MNgY2VvZnphqnr68uXLrlM8cfz05PSsEOqDf73BGIMEdPv5F7/4xRPHFm9srP/XL/wZxvB3/8snb11/+bd/+7ff97733b17d2Njq1KpVSql0dDHlJw4cSLJEqn4aDRaWJg//8D5Z555ZjQIbdtuNCbX1zd/+Zd/+Xvf+84ffuoP2u12qVQ6WG7Edd2t7Q3DJJZdJNDMWdrvdP3hUIeySDHSxuaW5QCIi+ViHMdJFpM0sxlXXAAhz5w5k6Zpr9vnnCNExEFm1Fg6gBAhhFJMCIEAC5HpvRdCrNcaQmg0Gt28ebPRaOzv7+scqjAMdcAAAGB6etqyLKX0VF4qJc6ePX1q6eTy8p3XLt968MHzP/mTP1kuevV63Y96EuWt3t7Gxsb+/t673/Ou3mDvy1/+smVZ58+fn2hMJemIUnNmZjqKEs5YkucKQsdxKpXKH//xH7/yysuVaqFYnOQi2dhY8wf7iwtzSRrlWTQ1WY1Cf23t1iuvPLO9tXp08fG5I6fv3bvTbO6eOXOq2WwCIGfnJpVSrfZOr9+1LCeKhesWMMW1ekUIlvIYE2DZMAhTBZLJ6UaxYN68euP+3Xsf+/uuvXQWIWCY7uzM7Cjsf+vbX91v7SAEK1UvTfIP/+zfunjhIWIShPBoNNJAvON4imeYEIyplLLb7aZZCKBYWblz9NhUzpy5Iw3DEk4J9/v9RPqjrJvxZH27m7GkNxq6pWpjYg5I2yTu6r3VkT/A0GzttwzD8P3RU+/+yWKxaHv27Nw0ItAgRAiRZcnx48f395pRFGreG6awUPDiNNnbbZumaVMCMBJCAIXsqpvlzDRtfTRzLgeDnmmapmljjAkxlNLRL5nOeev3+1tbI6EkhHBlZUUf3EEU1mqVOI6PHTuWJMmlV16DEHOeSKEYE7piybMsTxnn3Pd9CFG9Xp+ami4WC9vb24JDljPLcn7iyfdcvXZpd3dnYnKy3qjs7GyVS8WpqalWq+UPg5mZ6TxnWcoOSxSEkG2aXCgA+JEjR0zDWlvbGI1GjuPpKiJNs1u3bnMBPc8pl4sLi0fqjUar1VpdWbdt58yZc7ZtW6YTxYEQCiFlmqbreb4/0sYUQohc5BpyoZRCqJIoAADUKlUfBWEYjymaaGw+JqUCQFBKFRAaF07SSDPM9AOUUlxJx9BkZMQYw1KKg9EsQkgIKYSQQgvLFJAKIWQ5jl6hnPNDaJhIMva/Okj91Stag4xCCMNA23ub65srb3r4Yhikt2/d//KXvvHqK9fTOJuampqdnb1+40rOc0SVkuMZ85hzMG6CYJ7nlmXq59ctMwCoUCgUCgUAkGU5SqWaF8u50G0cxijPc4QBxgghmOcpAAZBSCoulfRHA9Okmg/BOQMAMMZ1WUEI0ZYUaZr2+h3fH5im2e12bNuuVupBECRJ8tWvflVK/tBDD8Vx2GhM7u3tpGls2244zBQQCAOANKsHQQi5lBhjCcZ+1trCmQmuT09KqW1a+kU1GVe3A/1uDyFUr9c1ZGwahBIkJU/jiFDkmBZG0h8l+/v7mkp8SNooF8u2bVummSQJZxIRrFueer3ueR6lplaN6Drk2Wef3d3dNU1T+42cO3MWAMA5X1lbjeNYb7w6rU1XVkqM8zA0LqGdWzBEAiBC4GGFr9/PmDEAIQYYAKAgRGBMn9cLRzCGD3ICD1uDw5pfKcVF5iqS53nGEwlUxfK8YnFAenpwQtI0pcS2beeJx3/C84o6DHR7b/vkqeMTE6cMw9C/apzEg26v1WpRbJ8+dRYRnGWZhP7UZD3LgM4+emPLDQ89AXT7/YOcMvDjgAD9RQjQT2hZhlJAO3VkSSSE2NraCsNganJSSt7v9wkhjuNIFXd7fce1+oNmmvlveujcsRPTN65djYKg1dzv9gLDMiBUCANKKUDYNGm9Xu10OkpJjJHvD6vV2sTExH6zLcR9hVSeZxpwsT0nTVOqEABgdnYeY9hoNPr9nvY4j6Lo3LkLSZ7t7TYRQg888ID2eRgORpxLwaVp2oahEMx0SRcEwdzcXJYnnU4njiPHMREC9+7dWZxfnKzXu91eu9c1DVtzJULfn5m54LpuuVLsdNq7u7sKiDt37kgpZyYW2q3uWPipYLvdJggbmPT7fcuydCAphAiO8RTFD9pyfXmFEPpm1XRgdSB8UEJqp1diGnNH5nQiDQQ77XZXKSgBunTpEqUUQfKNb3zD85xqrSzHOUIgSeKUiVKplGVJHJM0zxhj1Wq1Vqt1Op3Fxfm1tTXGmG6PDZNGUdRp7Z89d3p+fr7X6/qjgW4jNzfXh35PcVauFBcXjyglPM85eXLy/v2VSqWyuLgYhnG73dYSEs654zijYFgplsrlchyHevUKAcNwlOep6zlMsqNHj+qmfWpqdnPjbhBEjuMGQdDv9y9evDA9Pb2yunXz1vV/8k/+yX//3//fJ6ca9++vfPCDH3zXu97d7/l/LP+kUCjdvXPfdQr1ig0hBgBIBJTSls2anwsUBJwDhA40+D9I55fyhzmSmp78Y4EwoC1o3gA9a2saPVgiRGPN2r0aZFmCMSyUKpVK5cLFc9U66XSzubm54XCgAOv1ev1B8+iJ4+Jern08u91uuVzVXlSeYwdClkqV4cBP0xQhvLAwNzExsbu7K4TI8hxjmKap4zi6ebl79+7a+tbExNTRxRP37q0sLC7+wkc/BqE6e+Hin37mU0kcDAaDUrngOW4QxkkSIYRL5aKSQAglpaSYaqJiFAVZnkAIkAJxnhBCBDc5AhBKzuXC/FyxWByNRnrgxgizLINzfu/e3aHfhVBRSgCglmWtr68fOXJkampKSDkxMXHnzu1uu/PEE0+srq5OT0/3er00zRljBibdbvfhhx9+4IEHvv71r8dxoiEnvXFLKU1iCikwxqZpUSoBABkDCCEhGIvH+AsXolgsYUSHwyGlFBBSqVQwRlmWMMYgUiwXSkHTNJUCgiu91gjBEKo0jS3LFDLf3NyEUGEMba/w6GMP21bBtAovvXh5f39vYeFoc393OOwLyQbDzmDYwgQZlAAoDZPolr5cLgsJIcBCSAUBpUaSJNvb2829dhimJjWVxIZhPPbY21ZXV4fDIcEGAIBgY3enSQ0MIUySJMsShIBhkiRhMzPTGOPeoKubAcYYJkhlUlP8oiiK4zjPOISQUlND1bqm4ZIhhATjlJq93iDLWJ5xKWWlUo3j6KWXXvp3/+43Wq3mb//O/2nb5qnTS8vLy1nmE2LcuXNHp7Zq7uEf//GnS6XKEz/x5HPPPr+2tgYAvHDhAgSYEBKGoQaV8jwfDAamYRu2eXiyHBKHx7IeAHT033ixHFjQHIDIh8ZOP3AGHS4ucHAkSTlewq/PiiCAUM8a3rA8fxBfPjzLfki+A8AP/w3ngDHe6Qzr9frExESz2YzjpODaGrCQEqCxigtgjPIUtFqtLMump6ebO7thGBaLRT1eptTc2Ni+c/e255gzMzPdbqvV3H7qzT/R7baXl+++4x3nZmfm9/bat+/cXVo6VSnXLp59xHSoZRvTs9MQE3+UYkLSjO/udTbW7ymVLN+9y9IkCFqFggkALxYanldsdzqMiSTx8wPbVoyx4ziSC8YYVMC2bX8woMScmpo8e+YkNWB/0OKcU4MWCiWW8cFgUKmUlILt9r7jGIZJJRB7eztTjbnFxcW9/WaSJDqVIkliyx7PaTzPOXv29OrKCmMsSaJi0Rv4Q9/3tTVEmuRRFO/t7TPOKTWVUqWSByHUa4RpPIyzMAz1AB8RUq1WkzhN01THGZmmubS0lOdpf9AdjUaGQQuFQhrHa2trs7OzOi3tN//3f3f+wtkPvP+9rVazr3ilUslYVigUKMVxHCompVQmNYrFIgbY9/0sy8+eOec4zu5+KwhjSs1bt26VKg2ICCZkbm5OL5zBYKCUggDU6/XBoJdzpq+q5unYtq01BJ7nKQWlBIQQTRrKONOEjsOQnP39fXBQ30umKKWMCQGAfsID0grTq16NiWih9stjjDGWMcGllJRiiqmUKkkjjDHnOVJIU2aiILRsQymFEdVSicnJyePHl27cuBFF0cmTJzVBSerORimN1epyXMNyulrQr60rXXwQ+Ziy3CkUOp3Ob/7mbx4/fvzatRsARULIaqWeZUwpVSqVdI2XJmGhaCOEHK9Uq5Xu3r0LgI6Dw3BsaW1IKT3P0wVxEASGYaRJrj1YxEF2dp5k2r5sYmJCCKEg3NjYEEJpRrlSgFKqPyZKsD59NIEPAEAIeUPTaAAMhFCAMYSQZ7oAKAwVwmN+BwRKcg4x1tCeHslrHp9SKgkjCCFnTEFpWSaEiAsBAaXUUFIcwOgqixMpJYRYcN1vSsUVYxlCyEQmBDgMQwiBgIwQaOBxc4KQzBgHUnDOJWdScYqJbbtcMIQAV1Io7cw1hoD1ly6llFKmafKcJUnyOvqcZwZQxWLRcS3NEI+iCCOBINbJHFJKhLCmSkCk0IHFGUZEjD2UAZecGphSijEUShzsjarX62kXZs5lkiQQQe1ypu/wMa2eQO0/wxhL85wxxjk/cuTIwsLC7du3W60WhLDf7yKECgWXEmvMqwKYMaEjuAEAeZ7HUTo93UiSqNNtaZ2EYZAsyyAASrIsYxaxxwGJmnsBAMJQgw5v2M+VFEopoaeceoKi8W4hGcaYEAwA0EwIamAoVb+/pQ0QCSFSAmJQQigT3LbMbm8QhANKkevajucglD/08JsItvebnft3Vk+dOvWhD/0UpfTq1cuvvvrq2bPnlVK+H0gpp6cr8/MLCJGXXnk1SRghxlgohkkcx45j2bangEjSlHEmgdKKWh3hoD2va7UaQliITCvcNYhDCFIQ1Ot1St0sTSFA3e6w02n5rq8zOScmJgghN27cKJVKhJB2ez9Oo1qtlsY5paZp2IjgUtlNcn9nZ+fchWMK5EkaIYQgFFEUGtj66x/8yV5vkKZxmqZ3796l1PQ8z7IcfGD4vrm5iTGs16sAyjt37rzyyssXHzgvcT7yB0qJURAncZ5EfNgN6vUJAMB3v/vdJElmZmbynN25c/fI0eOTE9PTMxPf/e73Wq3W6dNLZ06f226ub21tJbF0rBLPCc8BQaVBv10oFqIAbKzsdwf+5z77Fwqwhx6+cOTI4t27q9/61rc4g0ePHu11B3t7u//qX//Pzz37rOuaE5PV+fmFzd29fn+IAe71BlBJ00KO5RIDf+xjH7t79+6dO8uFonty6fTJpbN3bt9bX9t8/LGfKhQKve4wyzLTFlKCUqlkUBBF/Jvf+haEWAK0srLS6w7+1f/yaw8/8pZuc3N6cmZjY6vd7hqGEY0CKeXkZIMJXqlUaES2d7fCMPzwhz/8jifeQSk1sBVF0dra2sbGxq/8yq+MRiPbto8ePVqv17WzWRQHd+/e7Q+6hUJhOBwKIY8cObK+ta5dUzEhUZSYpu26BmPK81zHK4Rx4nrFLM/u3rufx7FpWnq/BQc5YOCAuaxhLL3wdRStlpNzzsvl8gc/+Nf29/e//OUve55nYKI9picmJvb393u9nq7xpqen+/3R5cuXv/v09x5//EmA0OrGfSn5qVNL05Mz5XKl3Wr3pmfe97737e/tzM3N1QAbBcNCsbx8x7985ZULF0+Xq6Vby9d839/cXp2YmDp5YgljsrZeLJVK8/PzpmkSbHAp8jxfWVtdWFhwXNLrdQhilokJhscWjwSBn2bxoNcZ9Dq37q3keT43P9Vq7w5HvThOTZPevn07CP1KpaRLCAihbZuj0chxLGrYjmsVvNJzLz2z39o5e/ZUtV6qVoulkluvTt67u77f2pEMff7P/uSxN7/tve99f6Ne7fa7f/bnn3nm2e8JkD/08MXp6ekbN25dvHhubmYKA3MURTvNHZ0uoBSk1JSSsywPwxGheHZ2duh39trdre2NSs0xLMxkEiW+7dKtnTXPdYXMAVCGYSQZu3rlFsEb9eo8EIbfH5w9s4QA29zcyLKoPjE7OTl19dqtyalkYmICY6zt5BoTtQ++//2vvPRye39PKgaJiqNUCJaxvFAoMCaCIMIGlVLqYXahVAwCn2CKMIyiBACUprlhmJrvgjGxTENXevBg3AgldF0XAMA5t227Uqk4jkMpXV1dBUAOBr5hGEmSQICEUEoAhSmCSEpGCP3Yx/5BtVp997vf/dxzz73yyiuVSnVqZipNU6H4uXMX3vXUk7du3SgUnRdeeKbRaOztbgeBnyRJkmRzs0fyXAzFALiuPgEZY4VCIUtZGCdHF4+Zpj0YBFqMq5kfQGHXKUgAHcfKcz4KwizPt7a29KRkfX0dQugPA8ZYseTNzc0oJYfD4XAQDQYDTRotusWc5xpFHfb7QRBAgD3XtSxDcpFlTMrXHTIBAFmWYQI5V/rYYoy5rstykee5gtJxHK6kLnj0qZ3nOUBjxBAhJIDUFGYppVKQYmIYhgRgTOiGUK9W3coJKRHQIW/jL13FKaUMg0jA2+393/2933n10kuW6a7c3165t20ahU63/+KLL0KkKKUAKs7Fj8q1x8xfSuWBnZoe1moMOkkyKSXGRCkFJBQHXq96zqT/rJS0bRNCmKYpQUBKrn2uKMYKQkLGjK5D75HZqWnXKbRb3f39/bXtuzost9vtZllerfavXL42HA7X1ta0kOKhhx6itL++vkqIoZOKNIIsIWa5lIIRYkAIIIRSSAihhAAhhABUSjEpKNJgK1NirG0CAJiUFovFJEkc09I1tkmN0Wh09+7dbrtVLHnDXi+kSLCcj2kTIEkSTc/Xvsa6YE7TdHJi2rKsxuSE4ziaN721tbGysqLRm8cee2x1dbVWq7muK4TodDrD7jDLMt/3JVCHyK++/XThCrDSfYH+rEWuENLeDa9fcH1T6S/dtWKChO5MhZRSHqpVDstFfcvpRa0rfP0ARZQ+Eer1iTRPZIIMw7AMC0JoC4ccWzr35jc/Qin16qXpicnFpQViwy9/6YuOY5kGgQDwNPPcYh5l/a6/trJl0GrBG1h2mRBIs7joWLbrKKUgxuPWXr0eFXgw6zhozt8gMYYHCIA8kN3pO5UrgCk85HtyCUwKbM9NWXLs5ML6+mqSjZaWTt24cevb3/neyZOn3Cq4s3y7UrbCsA1k4nlk7e41kQet/Z1qdaLd6jMhTMukBsQE+oNhntEhj6UgtUoVALC1vn/l0q16vV4tlw1ETdvmnI9GgTpwuENKEEKSMLAsa31lXXMAOed5Lm/evlMqlfb29k+dOvXTP/XT3/jGN9bW1jjPCSGGiYRMDcOwbOx6BmOWngYfO3oiDOKf+9m/OTMz84U///yt67fLlalWz//rP/XT73z7O156+YXbt299//vfc8tmng18P3ccOTtT7g7k2bNny+Xya6+9dnflvu/7ju0RgggxsjjjTEAKECZSSgABIQbGUHGOpIBQQgQVRPpdmaaZslz7J2JKDEK143Acx65tlsoFAIBlgpyFOYsBQEtnli48+PALz7+sMo4wAlzYNj1y8mizvQsVr9VqSZ7lnL3nJ95PKX7++ecNSC3Hrk80AEDD/sBzikuPnXruuecIIcVikbE8iqI8FRQThMjC3ALP+aA7rBcnOM+Hw6FI8tBvU4r9Ydzrh5gg27ZLZfvCgyeDIJydq8dx6nrGRGMqz/O9vb2tre3RaGgY5M2nHt7a2gqCQAlw5OhsmtaGw2G/P7AsKwwylrJSqcRTGfohy3Ng2kXXS6N45e792zdudfshIUaSRJ/4+H9817veG0fJr/yP5ybrjTiIH7x47tjSiSzLMBEKjxX6WBzcughICYAEiAAIFYJQKqBpbgCNUWOm5yVA+2AAoC04FOBcogNtwhvtYg9xK/mDI5lDfwC9pDEGUgLP8wqFAoKQUgQA2N0LQn80Nz1jG6bv+wCoxkTl69/4yvr6gFAjSYMgGtZnqmfOPPgXf/5flVLzs/Mz09OmaV6/fj0Igqmpchz3HQ9zGUmpCDIxJNS0KLTW7+8p2KzU6u966j2CZ1cuvYqU3NvdqhRrLz770r3ljSSJAz8oFj1KS2HYxdjAiPBcmIaVirzomUkSAagU4NQAOZNSAi4VxjYXAIKMMQkhnZxqVKpl3x9wJeyC5RRcIBTnUkbM8xwDT3XbnTThhksRIqVSoVarGCbKskwIvrgw02g0jixM7+xuZDnQjiuSCYVwmsaNRu3s2dOf//xnR8Pho48+evHi+aeffvr+/fulUilJIkIMBCmlREoJFCKEW65jGOZwOBRCYNOEEP7dX/zo3NzcP/2n/1QIoYDIc61e5yYx0hxKkQshsEEQVpiAcqFgWjTPc8exDIP0+t2JiaqQrFDwMMZhMmo2VzAyFMdbazf77X7ZJsPWXhTGuoNVBEOGpYLAQCmXSSIghBApAQRCkLOcKJLEqeYLNPdaBiEYACayNz1wbnZ2dnNjG0FiWlRKyUUuZGZht1istFotpRRj3DTNYsGUAvr+ACPKeNzrJ0qpubm5o0fnN9Y2W62OZdkQUN3nKwUxJnEcYgxt1zKgmSSJHvcahiFlLmRGqOr2dpVS++3mF7/8JaWUEJRz4/69JufAMGx9vuqdJ01j0zYwgfVG+Wtf+XKn0yHEcBz3+uWXJicn0/Ds0YX5LGNCQgUwJmahUJRM8/zGK0WvEd1lqx8S08Dxf3rMAzXjUI3FBxgDcTD+gRAoOXa8AQAgOI7+A4ezofGCHf9z/Zjxj+D4SdTBLFXPmcDBCTh2bJcAIQAgEAIYFAiAA3/kD4ZKCZbnI39QLNj6vKcUSjl228jyXJsbAkhNy6vUGnt7TQrRZKPOeIYUBgKs3rvbau+9/wPvLpTcF154YX1zFwg+MTHxyisvQvhSrzd03OqHfvrnbt2+u9frlEV5yvUUIkoB06RB0Lr02tPXr17d3Vmdn5tWKmI8EUoKAFy32I8GUAIumQSQC0iJQxDutEY31SqhSsis73cpMQQDTAAhRac18AcBoVDK3CvY/iA3jeJ+q00QFiKRUhaLZcNw8iyPoqRWnp6bOtre6+83+wiRaCQmJupLJ87v7Gz5w4BQKIRoNptj8R0EAIB2qy8V9zyHEFSuWq7TkBIkSXb8xImNzbXNzU0pgON4GFkYGGmSEQ5+9oM/u761ffX67XK5DAWnikGeg1zU6hMCopXV9YSnpoUMG3GQUWEpISul8nRj0jFJvV6dnCpfvHgRIPT1r7WYpHGGOMdmJjjPFcikoDrdoVwtGYYBKHRzFudBf9STUtZrRcZYtVId9beFEOdOHuu1By+88EKapnNzcw6xhRCGZXIpCoWC53mj4UAIJRiPwyTPc0os01VJkkCCIYSe68VZ6ppWkiScK0opIQYQ0sAmY0yfNUwygAExUb0+QQjp9/u6yhdCGNQimCR5EieplFmSMcswkjyRUhJsYIwzpmAsIYQyBznnCL3OPj6ytIgxDoIgC1OhhOM5cZq0u60kiyemGucunL2/spIkiZ4eKak0mCWEkBIghAxC8zxnLANKIZ0rB4FUkiKIEFbIIAa9/MrVeJS9/2feLyGAQEjFWcoohpRSwHwgJcHANgABkkAYBUEMoeuWgEJxFEMbWoYRJQnGWJNkdROlt2WEEKWmaVgYmUE6QhAZpqNAihE9DC0UnEspDYIkU2MJiwRSAoYEhNrWWBGCMEYSiJxngCpAFRdccmmaJkLQMGiWZSpj0IFZllHTAApxoRAiSkAIITUciFSWJVJKzvNOpyUEB1hxKTFEPJcYQ4oJAEqxHCGkBJQp8txyxKJMjhASCnGhBNYGR1gjm0hKqSQGUGFoGdS0iMkzBoHAGCvGmMgJIYIpQiwpkeSUCxiHIYQYQiSlhFAZhCKMCEaWYcZpCgDIspwxnsYxAIpSKhVjMiMUIQwwgUwIHQRZLBaDIBBSUWoKIRCCjOUASiW55hQLySilAHLDAErlnHMJbYixgkIhRTEkVCmVM5ZrGazW/JqEAiWKniV5qriEBFu2gTFSUJcSwCLYcW1KiwihOOpVK2cbE5VRMDQMI0kDjGGeJQhaigsCieSCCMVyjiRwHEchaFCr5ye37m4LKSiyhRIih0AgpRCEUDCVKUUp8gpOGIZAKc6kYzg65H0w7EkoDcMSQnAhgAQQQm19QwiRShjUwkr7G4I8zy1LAQwZhwghk5pCCAUQE0yzxpIkppRiSOrlyVppQkopc7O9F0zPTWKsbMcoVienFwqVSs2pAs6jo2cbhYm3ZFlWLpdd92iSZHGaQxf0+l1Fcg5jBLllu1mSQ4WhkkpIAnCSpKN+3zCpQpkUFAgMmLRxAUhkUsdAxft3NpMk1qQTamCT2tpes98cKBjqBhIhJDmNuDIqDsW4tTvCGBu4oDg9ffLs0vElzhkmUOS43dkXipuAck4CP2RCdPe49oaWELiunaR5vW4LyLf2VrFEp86cDqPAD+JCqRIEUcryYrHY4JVWe/ML//Uzgo963eTyqy+eO32qUjTXm7sYU89zgmHguq7IpeOVPbekJO4PupxzAGGpXPDD4PvPfPvk0ukby5cnZipTs5OjUbhyfydLeL04c+TIketXrmJMy+XqKAyH/VBJ6bndNPFPLC3EcTzoD57+znOYQEpRt7tVKpX+0T/+F7//yc9cvbx85/ZKuVSbmFh89dK1za29ag3cv3c1TThB1uTkbKvVEYJ98Ml3/YO/8w9+8z/9xvMvPM1F6eUXX2nt9Y4eOb66un71xtXz5y56xVISM4iUY5hxFCnDunn92omFhU639ev/878cDHoffP/73v3kO775rW//6ad/f2v9HoQQU2JQEid+lI0gyqenp5M0glAQhCmlf/xHn/3zL3xpZmb2kbc+ur+392u//q/vLt/+1Cc/WSi4R48ubO9s7bW2onTQbG+apq2gyHIGc8gY8xyDWtRxnGAUUWomYUQRzcKEenhuaiKKoiQYlFwTIRxLkUNkeAXOeRQmUirbdi1DJkmiBEB0DEDruRrACEI1Go2UyA1CbMPlXAZBoBQsFEqKKSaFUmA0Cre2duI4RciQEgmOh8NwMBjESX7j5uVStdza7woFZmfme/28VABHFo5Xq9Vc5RTD6nRFUU4NbEOz1+usrN82LHHl2guKC8Uj14Kd/a1g1A+DwX6rwzlvTE2/+c1vfujiI41GQynj+997meXJRz/69+7dufn5P/vMhQdOEiwjlq7t7UXhqNfraTOHm9dXjx49ahKn3xthHKRpWqvVbNcqFSuU0tFolMtcKQUlDIZBMAwK1SIXBc75oBP6g4zlCCqCIEDY2Nzcun7lehJznqm7d64M+rt7rTvHT8z1+8OXX7pkWc7Db3n7z/3ch3/v937vq1/6atEp/d2/+wtH55duXr2yt7UuZZznKcJSAY8LFkWhBnwFkwSbf/2Df43acjDchziN04EEmUELjKlm01cSSYEJsbFIm7stzvpiFrJc2KZjWdadW2vxSM3Pzb357MPXX7506ZVXa/NHnnzXU87FhyqVIgTYteCVm6urW/eIa7BMSsEhMEQmAIcEUQ4YywWChFJs27biquKVsQRxHAMlZcahUABBqGCe5tq1/PwDJ+/cueM4zqDv93o9LcMK/JFGnjHB05NTAICMpU8//TTGuFYrDYeh4AApQ3IIFM6FsG0cJ9HcXOVnfuZDjz76KCZor9l6+pmXTp9908Nvf6RcLk9PT7q2ubCwcOrsm775zW+urvaF5L0BC8L20vHFxsQcgrjdaQtFTQfrcwdg4hUqnc5GlrHNzW1NZSsUXEopxEBrPiqVSr8/iJIwipJWpy24MgwjjlMIUafTAQAUCoVKtVT0SpbhZlkWjZIwGlm2wTk3CMUQUUBELtIsjf1YSmVZJIlzxhiXgkvGGJPSAAAgDKWUCBEpEAIQYSBUrg8aiBATQs+hKaE5E1p9izFWEighMcZAQqUAUAgoRAgaO+1gahhGksVKASGEdjlTCmqmPEJEAigUAAoqJSCEOucWKCoVBUCxVNxf3tlc3a/XJ5RSLM8FZ4UCBjJN0xQopqQCSmBoMJFpDzEpJYRjtAIhJCXHFAOFhRBQASUBi/MRGAKA8jSTnEMIFRCMMYowUBARpKCSAhBC8lxImQMABEIIUS4kQlhKQBFGEislFZfIQBACjKFCcpQOwzD0R75jF4EilJq9XkcIduvW9ZWVlSiKIMRc2EO/t7W9sbYmkyQxTdnvJIwzioFNaZhkSCJsmFxwgokEAmEIFcBAEUgQQkmSAAQFJEIiAGmcJtQgUgrLMCGE5UKx3+kKno/6nUqtsrlxZ33tZi7y+aknCZAb6/cVEFONuj8apmmaJJFgAhsISCBSDhU8MndEZ4rUqo3hcHjrxs1Wq7W720QIua4bhmGpVBr0+p//7OeklHEYafLyYDBQAqiDTDKCsIIIIHgIHwMAhJIQI4gRYzkhBAMBIVRKYoggBEAKDJESUh0aTSqFMUSaxAWhGPOxYJ4l2LKk5EIIgqGUMk1yalhKSSm5adI8z6lJgJLUQJXGRIgCjKgNTNe2lS37fGBQk3z0o79YLpc55539zrXmtTNnzpw/f/7K5dc2N9dHo9Hf/js/X6lU9pvtfr+/t98cjoaSyVOnmGnYUnHOpAJIZ22N0bP/tvb4R0wDDr/eAENrcj6UEmAMlACMAdu2PW++1+9Qigfd3v7+fpIk7Xa7VCqrfr632/r+965zPioVjTQZCslM06TE7Hb7jDGpEADAcZyRP+j3+55btiwLYxiEvmmaXORCMt/3gyAwx7GEue5eNH9WMp4kCcZYV5x5npumCTAqeCXLsnTg3u3bt/VybTQmwtAfjUZZJi3LUhLqng1CXK3WTp85ubqyfvTo0cFg0G63KaUXLlxoNGrdbvupp566eOHc2vr9Rx/9aLe3r5SwTYNSHfyaWpYhJR8MenmeJklYqRS1TGo4GJmmmWUsSeJxr5VlWm4AAKDUHOemAEUp0aNFm9h6EKGE5CDXuvvp6elKqdDv9zHGGFsAwSiKwjDebbbOnrmACVAcQCir9cr0VN00DWIiIUS72zdNSzskPPzwI1evXgUALC0t3bx5E0I48v0oit797ndPTc78wR/8gZ66GIbJOc/zDEJ49+5dQkij0VBKhaMAQhhEIcVQKcGYiKLENGmSJP3BoFgsxnGyt9M8efIkY+z27duVSkUIWSwWtTfNa69d1lgeQijNQkzo/JFZIUQcx3EcAgE6nc7Ozk4URQjhXq9n27Zp2HnGTdMuFmCWsunp6STOnnnmmVq1/t3vffvDP/Nzi4tH9vf3eJafOnUqjAJNIOKcu5ZlGGB3t8uk0FNZ07a01vaH7v1DnOvghn99jPnGGx78yL/6b38dAmrwgKSUZVxHa5qObZqmNnVJkjgIB1pP6hXsKPbPnDkLIbh58xohWCllWdbOzs7s7OzExEQURcvLd65cuaIgKHjFbrdLEDUMQwiRsdg06eTMNMT4i1/6r+99/wf/t3/7v967d+/73//+L/3Sx9bWVzrt5tPf/y5EwvVspcRoNJqcnEYQAwl11nCSRKZFKSWe5/X7qVJQSgkBlhJgjBnTQgyYZWxjffPE0vGcc9/3KTV2t3Z7nf7U1NTs7HwaxcPhUP/KSZIoJXd2dtY3Vi9ePH/69Ont7e16vd7pdE3TbLfXIMBKaaUwqlar3/rWty5dulQoFObm5izLunTpkpRyZmZGSum67nA4ylmKEbVtByOapBGlBiHkPe95z+bm5ksvv2ya5tTUlE6x6/f7tmUxxjkXAECEMIRMKUEogEgRghljUZpQA8dxvLi4eP/+Xcby/f0upbhem1BKWZaTZQwCsLm2PRyOisViu92GkHImDMNQUOnxqf5kGcv77UHO0lqtBjCkFLuum7M0z/OFhQXP8zy3mKbp9vYuBqjb7Xa7XSnHenPNCxuNhowxz3PC0GWM5bnKsqxQcH3f1zNqBQQhGEI4HA4dx3nrW9/62mtXut0eIVhnPUEIKcWFgqsxGmJQbb5RKBQ0VOo4DsZYe2Tbtvn5z3/WcbxGo7Hf2vN9H2Gh35IerZ86deq1115jjAGFBFe9Xq9UKh0/vrS319xc3RyNRu99P5yamkKEAoUVIFGaMcYKBZLmYyXBIXasT5w3WmH86Np5I98ZHEgNfugM+iHr5x/6kvLHnFk/4Nrxg4/X3ASMIUKACyAkQAhQChgHhgmXlo4Nh0Gr1VRKtfY7tm03JipZhhhTGEPt4WvZdqPR0JNkJWW9erbbHrVb+34w8of9++tbnV670+m4rru7u1upVE+fPnP50iXbMQkESZKaprmzt2cYw+6gBZFcvb9cKpWqtWJzr5kzZtnG3XvLly9dSuNREkU3blzzHGpaZOiz4TBjLGeMF7ySYYB2u+t5ThJzJrjjOIHvc8WAzB3HErkKw9jAjpQgCUPGMtsxarVSHMeYqDGp3zABQIzlEOI0TU3DliKCEC8vL8dxnAup+S/9fj/JknZ7/8jCjOtZrVbTsiyloI6wUEodOXJkr7kzGo0mJuoIEinl1NSM5xUHg8HRxeMLCwsvvvBylmUFz4YA53latM3hcDjsD0yKeZabBIejYNAb/o2/8aHV9c3Vza1qY+J//NX/19e/+dVvf+trb3rTA5CjJEm2tjakyGZnp4Nw9OCDD77vfe/7nf/8e4yJqclKGsUSqDRNTYsY1FQUD4dDSg1NkywXK5Zl7ezs6T0NwdR13XHCOELtdjsaJZoH9Pjjj1+9enVzc1OHtmtOro6zE1zkOWeMpSqXkBm2pTjX5nqaQKEJ5pqkIBnXzBd9oDDJGGOLi8c0gdo0Tc1kxIhqRE9zDTCESEerUarNf5RSBBJd5+R5TjDWbgZjGnLOBBb6W62FjKJRq9XSh+wzzzxTKpWkEJpPofjYK0NKqZuZJEsJoqbtxGGQ5zl2HH0MYowhRNQAeZZDBKZnJqvV6kMPPXT16lU0jrgBmquOEIACUgMrpbrdLsZYKo4x1hi3vrySSyBAJjK99JhieZoDAAAGQrFMKi111IwMTSTX5DvDJDo7CwKc8FhTAYRgY7sE/PoOjBDS/B99duuf5nlu25ZmhQgpwzDkTCKElIS66aLE1BffMImeeDE2vra6IIAAH+oTDzWtmv6jA9wBAGPxozoM9xt7lQCAlBIIYQAl5zxNFUIAIgQhtCybx0wbKEoplVRZlhFi6FdRimNMEQIIIc3+FwfUFX3NhRAGIbZtU2pp59+xaxljeqvPsuxA+ZsYhuU67mg0CsOUEEIU1h5u5UrRdd3+sEdSHMcxZxIAAKBECBsGVUAqBUqlUhiGaZrpuF3GMsuy9JmSJypOE4QQJaZCijEGADVNalJ9r8o8T77y5a8Og5HjeK5TsG03yzIdpIlQzpgQTGZZBqV2Us5TljPBDNtAUDKZ264T+KMsy/XQ5UCcyznnUnEI4eTkpGb0AwCKxWIYjbRiACFMCFUKpmkqD8xztfyWUqKvT55zzlmW5Qghy7IIIQAgLgSCRDuyQAgBlEII7fuhlJIqoxR2Oh3DIKonyuUyhmR5eZnlghp4dna6UqmkaVosFtfWNuI43WvtQQgX5xePHj0CITapvXJ/DSEgBOec50mepmma5oZhsTzDGEOoLEtTC5EAajQaDQYDBQRCmDEGodJSa6B4EsexUghpHaTSvyA1iU7q1rmFQjLLMq9fu8lFmqbJxMQERFqQISglepwchuHa6oamKHKRI0Iq1VK/5+tgMRNDJdGR+aNBHDm2Vygk+pgtlAt5El+9epXz3LKMem3yxKlT/X6fYMt1XUJIG/cdxyOu5Q+TJEmEUEHgc54DBI4dX4QdLLgaDAaf/OQnl5ZOTk5O3rx207YdfzB44MELv/qrv/rpT/3BZz7zp65bCIJAb6e25SIs252mZdmtdrPRaJw8dfYtb3nEJKZSYGttd3N1i6VscnLaNFyEUJbikT+IY7V07MydOytnz1z45V/+H/7hL/2jNM2///Sz/+n3f+e1S1fK5SrGeDDwDbpPoEUw/eY3v5km+dmz5xzHoZQEo2Bvb291ZX1hcf7e3dvPPf/s4uKROA7f8tijSZ7/2Z/92e3btycmJnq9fjAKy7WqYeA0TTWJr1wu79+5AwCoV2uc83ql+sz3vnfl5hWLGmfOnLp4/sJv//Z//Df/5n9d31jDGJfLZcextCeSEKLT2eI5hxCGUq2uruqJqRoXsQhjbFkWpVQLzz3Po9TQ1mpaI6Kl945jQYX0n4UQEL1BJUGQEIIQIoFQSiEMMpZ/5StfqdUatm2nMkZoHK5z9epV3XUahgGRarVaBBuU0kceeURxMTnVOHvugUajkcRZmsWj0ZAS1O/3PMfa399L0zgS2b17dwa9ju8PbMu4fPkySzOMset6SZIMBgPOpZBA++durW+wRL7nPe8xTXtiYuLxxx/P83xtc+PJJ99VbxSeefbbEAjf9yGS/W5vYmLC9/3hcNhutznn++0WAGB6eloI1esMLce0LMu2XcdxOp3OysqG3lTD3X01BRyrYNt2EsZ+3xccXL9+gyK6s70XhTkC1DRtoGC71fnsn/7Z8aXZ2dm5PM93dvbf9OaHt7a2lpdvB0Hw3HPPTU/PEvLsvbsr+lRFCLGcpXlICNGO8HpHunD07PRMPWaDm7dXhYwIhbbrFAqlwM/TNLJNy3GoUlCacGpqBgLsOF6acCVUu90ejULf9wXnSfj1wWCQpmmGCVSg4DlSSgDY5u7gq1/9yqlTSztb2+3WfsayPI0JQYWChwlUQKQ41eegZlCmaaoponEcc84hwY5t6zev9f57e3u6udjfb+V5DhTSwhfOebFYJBBpCywh1FhWggjnPM95HA1cq2xb1igMR+Ho1OmT73zy7Tdv3iqUSjPTc4yDmZnZj3zkb23ub89Nzxw7tvjiS88bBlVKrazcRxjESdJoNB5809n3PPWuS5cuvfTiyxBSJaECPAzDPOfT07OUUt/3lYJbW1uWZZVKBb0z1Os1Smmv19UVi4aDEEIKC11IaEDZNM3z589XKpVhf9Bud9vt9tgVVynLsnKQHRZXWgegmyBN+EWIQMgRUhBiCKGQWm1GMRwbUumrqsVGAGKtN9KX6BBJ0JRVdJAfAAE+LFEwxvpKAgA0bIXxeKtHB0kb46c6ID7rZ0uS1DBolqWEkGq1DgDIMnbweCmEEkzo3zHPcwgIF/lBoyR1raXpDoQQjKmSUEccjUEnBLMs41zyfLyH6M2ESUEI4ZwRghAiuuJVShGCxYF4DkKIEYLy0IwUag802za3t7dLlaoQilJT8lRXib4fbGxsRVEkhCLE0EVjvz/43ve+BwGempryvGIaxe12FyDCpYCE6EtBqQ7BlhgjCBUAkElh6jxBjDMhlBKEIoxtAJW+k3VpZ5pmlsbFYlETkwsFF+XE87wkiYIgwASGSUwpbTabhkGq1SpBOAzDmZmZI0cWtD7v6tWrt24u+76v+/dKpVKrNZRSjLFer6cvl97l9A3AOTepBQ6UjuM5MUT6dgUA6AJYF/AHt1AOACBIVy9akQYO5ClSN/zaJhSgcTqFdh/V/bv+ZXMmAACEmlpwqR9WKBWVhACBglk0DMNAhlKKaFkqTsZcdcOwOp3eRK1erVbjOFZKuG7Jtu0oSorF4vbWbrVSp5S++PIr+iqcPfkAwWaacte1EQIQEh2aodRfiTX/Vb4B4HV7jQPS2IGVjNbuIAQ054tSPBj08zznWX7lypWbN28zJgxqAQA7/TY1IIL28u2rF84fr1UntrbX+r2RaZosz5UCBGMlZWt/fzQaJUkiJXC96XK5og3gS6XSQfMGdVvCGE+SxPOKWlWhK/085wIElmW5xYJSKs25NugpFssAoFan7Xjuo2957I/+6I84S7vd7vT0tG4XIYSj0QgA5PujEydOPProo1//+tdv3749OdUolUq1cuW1115dWlqqVIu/9mv/0/XrVw2TJEnkuo4QgvPc9/NarYIN2mw2KaXtdtt2KCbKsoyZ6bl7bKXX6zuGB6CE2knQsjhjUmoCDlJKIDxWTHCenzh1MUmiXq8TRVGSRqZlnzx5jnPOckEgQpAEo1DI/Nixxampqdt370gor157TUoFBIAQCulIxQDGc3MzaZqvrm8Oh36hWPzmN795+fJl17WHw+FLL720vb1NsVGuVLa3ty+/dnVxcRFj7A+DUqkUjCJCkVb13lpeLnpeHId6NzFMa75agRDu7u3EccgVN4yiQU0u+WAwTNOUZfzll191HMe23CiKkQJSymqp3O9019bWtJv24uIiIrlhGJ5rP/bWhwYDP8/5yI9W7q5AiGdmZpIk/Zt/82++8vKl5eVlzuXUlOe62DAYQejIwtypk+deeeXS5vrapddeWVpaqtfr9+/fP378KMRkv9X03EKapuVCUUoZxzG1TCGEaZoIAQiRlK9z+X/I/hWA14mW+tuD3QEoBSQA6A0Phj+yOsCPA6YhHGsZ9D1mWVa5XKYU99o9bZ3BObtx45Zl2g8//Mg7H3/s2We/t72zyXk+9PszsxNCiKHf21zfunnzRqVS1TsaYwxhzBF3HAdBqM8/BQWiIIr9NGOEwonJSr1Rpsapq9cu3V6+AaHa3lmPw6HnOZZJvIJNiJFlmW3bpkW1TtMwDMOg1Wo1yxKtX+ZcZwcRzgWlZprGFsCjUdho1Gam5zc3N0eDwPf9OE4tywmC6MaNm9FoJIRwHCdnzPO8NI0VELVaLU3Tzc1N3/dHo1EYRtq/2LZcSk2tGLFdB2JUr9cfffTRIAj+4i/+gnN+ZGFOg+m2bdfr9Van1+8PseAWJcVKmTG2trb28z//8xcuXFhdW2OM/e7v/u5wOIzjeGJiAoLXgf4oigAUjqvpdUwpUK/XtT10muTXrt7gnAvJAACGQZ5/7pXZ2dmJmUq10lhf3+z2B2PBkYIYCMOkEEGExiiqRJIi4nkehGh3d2cwGpbLRYRonIQAAM/zms2mYRgnl07rigQRotMGisVikkZZlhWLRaXGgUt7e3uMCX3D2Lat/ZGk4kopw7TK5aJpmpubmyzbAhKnaVYslJMky3OuzZQIQVEUCMlc1+VMaeepJEkajcaYRs0541kYpaZpWpYBAGg2dyGEGENqGILL5t7+3NxcuVyO4/jVV1+bmKgvLS1lWXblypVf+IVf/Ft/629fu3pjZmLGMCwhwf3VlampuanpGS6RU7CSVGVMr5qxlbk2Q8cI6lnOX2Vk8cZV81ehyfDAT+OHNDc/9uGaEP1Dr/jGF4IQAAwBGKeDancOKcdmO4yrfr+vl6cWMu/uNB23RClSSnAOTJPWahWMsZAAIUgpyDMRRSqOY9u29/cH6xtbmUj6/V6tWpqcnpqbnZ2fn19dWU8z3u8PSmWvPjETBP6xY8dKlfLnPvcnjuPwDC0uLhoUaD3pxvbW9sYmwvLU0tJo1OZslCZpt+tTA2ZJNuj1DNMrl+qNRjmJUs8t+TAKRiGkBGQSK5AzIYQSkiNIlYKcCz1+V4B3e+08TyASo6BXqVSylPGcC6EAEAgSBLmUKhjFFjVSlhuGdQBiJr1BHwAxGAx8H7qeQyn2fV8zeXu9XhiklUqlXF5oNGqj0UhKgBDRI8M8y2zbPHnyZLPZAgqHYUwpjdPsO9/7rmnYhBgQyFEQPPzIm6GS5XotW111PLdcKW5tbbEsr5VrkR8ePb7oD4aWTcrV4tb2plIqipP/7r/7f/yrX/tfvvK1r9+6eXt/fx9BSymBAJyenI3iJElSXbEYhiWl7PUG2gSTUJxleZpmxSLX2FwQRKE/sm3bdd0vfelLug/RvYeUWsNOisXi1taWUlCbbhm2IYDSxlb9fl+7EjuOkySJfjxCiKWZ9kpO05SYRqVSiaJIo2AaUDYNmx18YQgpxggS3VEgOs4nlG/wZdY4rxJC4bHBQpYxKfkhz1EX61JKrRnsdDoTjSkIoTa4Fzk77F4yxizD0B6CBGN5sJIO4DkFkGQ5oyadnJxYWbl/fP14o1qLg7BarZqm2em0isWiEpKLXD8+y3LDoISQkydOLy8vj0aB7poOLeQ0Sq7f3kFngpQCQkghpIZLAAC27WgsHkLImaQESAEopdI0pZQaXtGHqX4qjf/qD5ogDDHSXZMu3MvlSr/ft21bARIEQ6AQpYYQwjBM7Vg6fhtCaij4sAlUfLyDqDeEeuuLc/DrpPp1FQSIYMQPHgkUgvSgciAIIfl6OLjKsoxSb3pmstejWswrpaKUYkQ459TAgus2VSGEFQQQIW2IJ/jrdtv6/ejWgkBCKR2bsEmpINSotIJAn5sIAcO26oZh23axWNzd3RVKWq7peK7recTAUsrd3V3OxgwSzjlCAGEoATJNs1wudzqdMAxN03SLBcWFTsiJg0RPc4UQ1DIxhjGLk0RRhE3LsCwLAhTHsVJQcFVr1JWCQRA4theGIcSUJxnjAiEkgXQKrpCs6LgbW+uz1VnDhIgaCRcAjU0wdLaS9jDJskyfaNVqtdPuaRvEwWCY55ngSimhG1790RmGZRiGRpDl2L4Q6A4CAKC1BRqEE2I8HdH9KiHEMAgCII7jIAiEYJSSUrmQZZmE3HVtpeC9eytcKIyh4ziU4jSNXdcNw7hQKAWjZHZ6olqtKglYxqenJmvVySQKb9++hyQmiHCRp0mOIEEQCJFLqTiPkzgDAFiWraRUQCRppOM0pRSUmhBixnIh1EEUsDYGIVIKrXdWAozJ3ZwXC66QbDgcaifN2VmDEEUpppS0Wi0AAMsFBDiJMscpKJUJjrqdnoFt13UAAkoKu+DdvbuaZRk1bTplQ4x29rZ719vHjx9/5JGHR8PB3t5er9cKk/Q73342TVNiQ6XatVotS3Og4pJnUkq3m3uUmkoJBSRC8N69e8SwDMMMgpAx/uyzz3eaHdd12+22Qci1a9f+2T/7Z1mcTE5OaoBMSomgYRiGYZL99jqEEBNy4sQJwVUSS4K8OE6/952Xmnv9cqk6Nz3XanUMy3Jt2/O8icbkr/3av/q3//Z/X1vdOHfq4j//5f/nv/43v95s7n/yk5+s1yvaw7o/6nlusrG1XSpV3vXEuz3Pu3fv3vHjS2GogAKcZ8t3rhsm7A07P/dzH67Xq9/69jeeevdPPP3001ES/71f+PsvvfRSpdpAlGxvbzORVyrVM6dOewUnSZJjC4uvvnZl2B9cfPCBtz722Nra2r/4//4Pw+HwuWe/Nzc7efP6zv2Ve4Nef3p2ihCSpqner5IkGw19zyscbjWUUs6k4mMDHNM0oyiKojDLMu1Jqp0PD1EtqTgChhACH6xlvR8CACBUAEiMKYQQIpXFTKMSlBqUmkHgY0z1MIkQZNtunueEUCZfz5iilJ4+ezaJ4vrCRGNyptPar1Qqhkl0w/70Sy9MTk48cOHcX/7lX25tbXkVJ47jIPSBFKVygRCCAUiSNI4ThAil5mDg1+t1y3JqtUa9Xr99+2ah4F648MDU1NT8/JE0TS5fvnxyaeHp738zCJKJyQpCUilhWk4QxhnLORe9Xh9CyHOOCA7DKMtywzDShFkWj6IoiiLbtqHEcZAahsEVVxw6pmNSyza9JGTXXr3VanUsyyk4tSTsYkSLxRIQIAgipXCtOoERpdQslQr9buvr3/iKdrKO4/jy5UtRlEgJbMegRr3VamlvhyTJCDZMy3rb2942MzcdhsNbt5aDpA8Qtu2SkJnIYegnBrWq5YqUQHCZJNnID6vViThK0jgDChUKBddye72eUmo0GrWb+3ravbl+/w8//UnLsuZmF3w/6nWH73rXk0CAX/uf/qcoCggCECrbtkrlwmg0ypOYGhhjpIe1eZ72ej1CUBzHHMiMMyh4o9GIoohSihBMkjhM+o7jYEQLhQJUKE1zAECaZhBCjIlBKIQIAEAxsSyHEKQEggAdXTxerTaGvWh2Zi4Mw4/87Y888cQ7p6cn99vNwcDvDEaPve2drc6wUG6Q1l6WZZcuXfr4x//D29722NLJ4yyP3/Wux28v35ybm+729q9evXr//v1yuYyxube7P/S7CCFt0KwpaI7jTE9Pa/hSV+YaCOp2e6Zp6APRNOn4Dj/IwdPdzcbG2uqqgAqFYZimOaU0TzkAwDRsKbM4TqSUtm1NTU0VCoUoijiXEEINzWu+hRBacgQxxpqwpmU0ehGNFwgx9Bl6yCJCCIwb9nEmGxNCIAj0fOjwNH9jJaN7/MP3P55za1cFAHW9OiYnKqSPAII1kW5shialpJQoyZWuEyTknGOC1EExA+HYrQsfJM7p2pJSijBQCnDOtDmhBAofOBcfXnkuOIQUY2UYJoIEYiXGX9KyyMHeJSBSUEEmuf6YwlCUSqXhcMgYk0JxxpRSvj/a2tpyHMeyLE3CqNcbec5MwzYNW5tHcy5TxhUmhmUJBZSECiJNcs05s00ryxJCMQKQcwEAGIVxfzgiLBOSZVliWoam+irADcNCEGKMXbcAAIii2DSNUdQSgjGWVSqVQqGg3cba+81qtbywsBCGca/Xwxh3u91Op5szNhwODZNONiYnrUlKqWVZEMJms6ljXQ8oEdrBDOlPmVIq+TjbRo9twMH4AUilr7/+Sx0GyLl2Z5MAjSMQD9CYMZdCKMkY02x3LkSapkBp9S2VCgrG9Ise3pkaaMaUaNWgNraoVutMSQSx4zg4QkmWCVNQixLTIAYmZqk8Go3yPJeSZ1m2s7PT6XSiKDIMCwB0+/adnLMPvP+DrVar0+mUCxOFQjFNMtM0G42a6xicA3mg9NetOAJjNwDw47DmH2rRfygqjRDEmNI4AssAANI0kUlBHIZKiVdeeaXVar3pTW+yLKe513YK3sOPPCpV9qd/8vsIWv1eUC2XDOooiQWXlmWHYQwBzlImBUjT1LKcRx55uFwuM8Zc19bvkrEsDGPOeZIklmW7rgsA0ueu4EpIlQuZZik2qN6J8oy7rptkKaaGgqBYLpXKlfW1jbt37sVxHIUBpSZjTJd0QohGo5HnfDgcvvDCC81ms9fvKCCSJEnTJM+zU6dPBYH/+c9/dq+5dfGB81evXhaCGyaRjGdZWigUHMfZ3NkeDHr6vpmYrOd5vrAwX69N1OoVfxgUi5U7N+9sbe1Eceo6BamUHjhACBkTCigppWFQYpH79+/GcTg9M7mweEobJw0Gg+FwaFn2bqsNATZNs9frFAru4uKRhx56IAzD3d29QqF0/95qnqYICwnYzm5rOPCPHTt5+vTpe/fuh1EAACCEPPjgg8vLywvzR1pHT7z22mtBEBrU+upXv0qpKSWoVGpKKUpNiISeltTrdYKQNnw8f/48IcT3/eGwX/CKS0tLURqtrNxzHAcgJaUsuEVucoTIzPTc7u5eHIwWF48Nh8OdnT3XLZimDQDIkxxKODlZ6/UGlk0RhrOz0wCg7a3mzMyUztVdWjrxyCOP9HvDZrOpFzxXUilIiRkE4Yd/+md7vd6du8t5nl957dLiseODYQ9jPBwONje3MTXm5uZ6vZ7jOACPI/vynNuukeev+5KPZfUHmBQ6MDEHP/L/N5IlfxSh/tEl82N/ijHW0wVCsBAKUUIPwqDPnTtXKLgQyQvnL0ZR8Pa3v/1LX/5LyQLGWJbljUaNMba/12q3W4TQA7oBMk3TtqzhcGjbBoRAIVgsusePn7h1+7ZpOy+/8vxn/ri6fOfOzs4OJvL+3Tu7e5vT0xOTU43bN29NT09OTU3p3dAfDE2TLi0dU0rZtt1ut7VASQgJFILoIAOBK0pszytyyVr73SuvXdcpWFARDChnAkiwvb2N1HjOTEyi0dILFy82m7udTmdvb8+2LaVUkqSMsQ996EMb61u3b9+xqGGahoS8VqtIoDa3t25cu64pG829VqlcmJ6eDsMwGfkTExPlcvnmzduFQqFeb9Rqtfv37vX7/SNHjjiOAwDo9/tZlumdwbZsDfoghPq9kQKZUloBBeX/n7H/jrL0OutE4Z3feHKdylVd1dW5W1IrWNmy5CiMjQHbDJg4DAxhmBlmuOPhXu4wjO/9vmHS4l5mgAGDMWCSA5iBseUgW5YltVKrW63OoXI6Obz53en7Y58qtQ3M+mppaVVXnTp16j3v3vt5fs8vaNHr9SYmJqTUWgfDYWB2ZCklRtC2isNB2updc2zPsmxG3SiJfM9XBGQZx0hLxR3LAkAhDDQEaRp7nlOpFKUc73a7SRoxiyBkOG6iUqkMh+GNm9eylGOMEYK2bSdJsrPbNudNmsamoIcQGkgaY9vYZeZ5LqU05x+EcGenUSqVCGG93mBr6wUIke8VCWEj4FsJAIjnO45irusy6hj2B4RQKh6GmTHJefSxt/b7/bW1NWOG5RecLM1Nm3rk+JFisdjpdNbX1w3d/saNG1MTkwihiYmJixcv/vqv/7oU+okn3nH8+MlOL8xz0Wy1ACG+V2aWrbU27hRm9IgxgHueGLcbn+2vKfOfMf3/20sG7n3l9v+0evPbo4W5b6yB3pwYmX+C28IGwbetawj28qXfdNsAe3NTjGG5XDagD+e83W4XCgVCkNaAYgIA0EpTTLgUWmulIdeo2Wx2u91yqeBaVq1Wj+N4arJsyg7CmGVZrVZnZWUtDOMPf/j70iw6e/aVw0ePua49NTXxxS9+sd9v+rS4fOtSY3f9+z/ykVarfeWN86VScWlpseDTgseSEOZcAAAOHzr6yKMP/cmf/IlSJInSYT/I87yVNIJhBAApOY4QeRAkGsiiXyCENXfalkUgwDlPhNBxErgeLZb8QsGdm59yHOfWrRUAwKDVm5iYKhbKu7sNKXWpVGKMuUmqlCr4Ja11GAeO4xAC0zS3LOJ5XqfTAQBlGVcqtJhDKfXcgtaw1epwzrOM72y3BoOB53nVWtlxnOmpKZs5r732ep4prQHBzLE9pRSCOhr0CSELCwvv+8D7Pv7x31vb3FhaWspl+qk/+CTBCAM4Vq3Pzc1ev34NI1CueLV69frVG4cOH1tZ3jh94u5DBw995s8/Mzszvbu7rSQar45FgzTMQt/3GbOzLEvjpNXrcM4psaSUpi8lhMRxapCpOA7CILBtZgKmJycnCWZRHBiy5HA4BAAYp+n3v//9L7748urqqmN7tm1znu2TyMBeaLuBGjnnAuZCCFM018ZrWmsTnmZagjTJMcZQa6g1I8RkzsI9p2OuRlwVzrlQYq8xIFprjAlCEINRZ2KgW0oNS1oSQqrV6n6ZOxgM6B6vgUBkilchhLndkdYIYgChebwpdjWQAEGlBKUYEchz0e8Hzz77bLFYfOyxxw7Mzb/++uuNnW1GKGJoMMg1UATZEoo851mWG168RRlGWHIJFMAYAwiEFFxwc3EwwgggKSQAAFNEEE7jDKHRHhjHMYTgdqIQxhhTAsXIhxfsYYX7rHCDSyKEBBc5ABBCxtj09LTv+xsbG4SQ2lh5YmKi1ey02x2MiRC5UsCyaJZx13byPMUYIwRc15eSG1qD2XX3qMqj4eV+xW94PRoCRrAZKtxulrdPYzHm1AACzjljBEKcZVkcpa7rJUm6b8ubSxEEEZAaQmxsFg2mzPmIHQMAoMRCeGTMZ7hIUso0HxGZAQDmJaWmvyUYIJjneb1ed107DMNqvVoqFLZ3NpUWvl+KoqDbbWutS6VSbbyuuDJJAPsgdZYlSZJMTU84rnXx4sU8z+bmZoteYWVlpdFoJKEkhAAIsyzTCJrhpWHWwBwY4Y5XLIAoYTZljFHKAABCKK0hxhgRggFQQgCoT91xwrKo41jOeRqGw1LZEyIPugNKqURSCb0vODWX17btOI63t7el0GmaBkFguJtmP1cKCJEhSPJMGGNohEYK4n1HbEKIMcOEEHMuIRyFZJplYpazlFCIPIgjKTkhBADc6w4LRdfzrOEgZtSdnTlgEhT9om90Htvbu57jHzx46K47Tu80lpu7jfn5A5SITrvZ6/SPHT86NT61tdW4dPEq59J3hOM4QGnfKXDORc6TPEKQmBvNIhT6vrmkBlA2OmvHoQBAIQQlFkLIpD1jjCEERtBpTKIJITZlQnBG7ZMnTyCEBv0OAEDwfHd312RCCqEKvp/FatCNCaEIOLs7XcbCyclJpdTmRsP3/anZubNnzwIEq9XyYNjLeNpobmf5ySPHj91aXWl1ugCgXn/IOSc2chy7110dq1YHgwFUeHJiNgiCOE6rtcru7jbPlOd50xOTkLB/9yv/16tnX/wv/+XXHMcxcVsi5zzPrl27Mej2qtXq9Ow8pTTLEwhho9FCWCko7rjjjoMHD73tbU/8xq//9gNvKT/y0JO/+/Hff9vbnmgtpufPv3Zg9vDdd977/PPPF4tFqGinmfyb/+P/s7mx/f73v//cqxe1RDJX5XL1ntP35iIZDPoYk/e977ve+ujbIcCtRndpcalQKL788svdbn9mZmZ+Zn5l9db8gemDS/P33ndHEARBOHzHu97h+q6Q8p/+s392+siRMP2P3/d931erVX7qZ356ZeVWTvKNjY3xeq1SqeSW5drsgQcegBB+4hOfKJVKCGkp86vXLv333/6N9ZVVIYTWsrnbQMTcjQYIS5XStm37XtGYCGUpV0pZzEIIG6yHcw6ANu2YGb/JvWx5AzcYDrLgHCKNMABQG7q64fVHwQBRYtgJQRDAkUZ59AxAjiwzMUSWZeV5LiU3CVRJkjDLqVQqL7744sLBpebOzpXr19vtttZ6bm6uXC6fO3furW99lDF28+bNJEmibAgAiOPIcawwiF3PNlI5SmkYxjMzc8eOzXY7/Q9/6B8cPnyYc97udluN5vrq2vHjJxmzPM8jhH36s3+Zp1GxUMtSQRkoFHzLsdvdbr0+Vih0gyCwLItg23Hd+tiUQUgJodNTB7rd7q2bLxtGKiEkGKYQ5Wmc7m7vFJ3CzPh0Ema7SUcpkgpZLRZnJlwpeZZxAFAcpZMT00riXi/Isuz06TuzLLl56WZjZ8sQmFZWVoz+hmBMiWXb9nAY8jQRQijAXde+fPlysVzIc7G2trG6cfP0PcfHalNpFgbBcKu567mFWm2i3+sLIeIozXORxCkAKM8EpUwLfenSpXazQynjWW57rmVZaZomWdprt1qNnYuvv5EL8PADj77r7Y/+7sc/mSSB5zlRMFhcXNBANpvNubmZarW8u9vknCslzECi3+9jhhljKgeVSuUd73jHI4888t/+23/t9Xqcc9u2uVIYY4sx3y00cXt7e1sImWfCtu08E4QQRqhSEiFIMVFax2EEFJyZmTl9+t6/+vz/vHbz2j//5//8H/6jjwgBMsHLtTHbL2mFCoVCqTrx1//zS8PBzpe/8qW11Zs3b12Jwq4Ub69US1medDrtre3V1dXlcrk0Ozs7XqtvbGwhDGZm5nZ2drIsAxoZPc3i4qJlOVEUFQqFIAgIQcPhMMsyo9sGQDNG9Uh6pc0Wl+ep4QEYqqKx+cMYRlEkFciyjHPJs5yLzCRwxHGaprnaC80LggAhBAGWQgMIlFKUEQTgCFtVKs0SI2gwZYnFLKmVMbMyw540zUx9YnqB/WPajLtMdyaEtCyLaqr3kgb3jn6utWaMmZdt4Ob9uSmAQipOMAMApWlmRPMAqMFgwCxi2ZRZVpaMqAAAjA6R/TPO/AUYY6W0lKM4CgCV4KMIEQChOUq4FGiPi2DAB0JdzrnjWJwLzgPLsSHUGBNTqkkpESRccyAMk1obhrVxHs+5EFwKoZRQQua2bcdxYlm21rpYKpdKJSGUklkUJUqpMIz7/aHnebblAoiY5QBEMEVaoSznWmsEIOcZAIBiA7JT01xLKV1GSgWfMiKEgFCXy0WoAUKIYeZ5XmN31/HsXGgh+PjUZLHk33nnnZub61rr2ZmZJInSNPV9N03Tmzevcy4NdGMx2/f9aq1iqg7P83jMzRRqZ2cHIbJPpDBojzGSViNuxKj2GBXAGJtiRkrJMKaYIDJybR4xGyDSYHQ/SCkBQGa2P7o9IDDvoxDc3FSmrTAlKEIYwr2wN6211pgSJYFhL5i3mzpeLoXSGls4TVNLIYRhLjKEkOPYxDROpgQvFApZlr1x8UKpVJ6bmx8Og53d1sLCwuzEdKVSmZ6eHQ6HWeblSWx4LoWCN+r/IZB7bfbfIprp2+jL34IL/J2wWsaFzYiUI8W0bSOKwXCYQag7nbbWulAoTE5O3nPf/V/5ytPz8wcKhcLkeI380I/8wR/81ub6jTwLqzXf933T/rkuGPSDKIosywoG4S/8wr949LGHf+/3fs/w8IM4OHn8xOTk5LVr1waDIImzhx9+eGys/olPfNL3fbnHK7Esy3VdhDGAMIySyclJrbWVuUEQLC4ubm5sRVE0NzfX6/WklEArY4herRKE0O7urtY6ihKE0GDQD8OwWq2OjdV+8Rd/cXl5+Utf+tL29vo999yzu7t96NDBpaUlAOTNW9fjOKYIFgoFpdTa2trNlQ3fp6VSyfM8z2fH5g67jhfHiWVZ0zPjcZTHeeR5DsaYi8y2TPiGxgBCgHIlCMFxHnvUEYLnPBEia7a219bWXNd41SHXtpUECGEoIIRya2ujWHLuuueubheXK8WZ6bmtrXXJE0xAf9BpNhtJknPF52YXsyxfWbuVJWm33Xr+m89BiBcPHBwOgyhMXddL03xra8cg5oQQhECaSqnUXmuHTRdarVZbrdaer2vKGLEcd+nw4bGxsStXrnR67WKxKISoVGoFv3T58uVBt5/nolyuAoBMWc+YpbXGmG5ubheqc+Z+brc7WZpnGW82267jI4TjIAZQZVk6GPaEzCnFhCCCmVJqMBjcecfpg0sLly5dKhaLQmYaqM31Ndf3NJCXLl16/fU3nnj87f1O9403LhFCjp86Wa/XjVxIyj3cah940kDfNm6BYPTP/7Xwf/R4BG4XCkBjKXvbwgH7KWcAmi0fAGAEIAAA1/G1gnESIojqYxO+74dh/68//z/fuPz6iZNHwyCGSFs2tWiJEFQuF9M4GRsb6/V6ec4ppcVSSWsdhaHrumY/UjrDuOR4VrVWabU7gyD4wz/8RJxmhw8fxhAAqGq1ajgYPvLQw5VScTAY7Oy0EEIAKEz00qFFSrGZdU9M1ldX1guFQrVSX1tbk1IazhcEMM/zwSCQkiMELr9x1XYtwwwiiJp9zS37RtNKEaqN1crlcq/f2dzcFCJntjUzN7OysiJyLqWqVCqVSuXC6xcppQCjNE0qE0XP9YfD4erqqoaAMRsAFUURQmisJufm5jDGFnN6vZ7jWL1BV0rV6/Us2/7mN79533332Y6V5zkmxLTcg8Fgs92BEO8NZrGpQzCBGI8Cux3H6XR6QkjfK5o7nAOeZ1JKlaYZsWEUpQha5XI1z6VSqlSqDIdDKSWlGGOYZhkkCEMopYyTMEmjAwszd9x53Ahag2AYxzFjVp7n5XJxfX2TEgshAiEM4kjsZYWlaWzbVVO8cs6NuseETeV5Tggy2uEkSdqdTpIkvW7fsizDrJdShGFIqVUsFs0AWUpucsOSJInC1ExTNZBZls3Pz+3s7PT7fde1lfKjKNjrukGlWh4Oh4RYQRDNzs4fOnQoDMNut1sqlTqdDkGtgwcPtlqd5eWV7a1GpVLr9QbXrt6wi6Xx+mQcp0oC17ezVGkEKR6Z0kAI4AgEV0gjBAyY9i0ra680hLf7oQPw5iL9dvXAbefRm6Mg8C3Rgv//EKXNh1KaUmgORA2AmepLpQhGQkjGcLVa9rwxY/SZ57lFQZ4DqThjlHNJCEGYpEnOHBoEEYTw4MGDE+PO9eubZ197zfXsbicrl6r1iUmhVLfbb7e7Bw8eLJVKveFga2MtjlMp9JkzLwVBr1qrjNVrOuFhGPV7MQbizlNHz782SQgJh91ee2s46EiVubZd8Lwf+IEfOHXqzi899XSvH7WaXanyOA4txqanJjLOlw4eDMP40qVLQRBMTU1VKrXtjV2EeJrmftE6ffdd1WpRA1EoOghpy6YXLlzQChJCjxw7OlabXLm1AiG0LMYYsyzLsizD9DRU3JxLY9tCKcMYHzx4cFS4YIYQ6nS7aZqqREjJsyzr94cIEkrZYDDknNsO29zcFNwYAkjfL+RcG0qp4gJq4Hnes88/9473PPkffu2//NRP/dTs7HRjZzuLIgS1FlCm+fLychgOgdazs7O25RZL1cOHTgBNdzvtrc3Ge9/73osXX49CNxpGcZzyLFcYaK13d3eVBJQQwZVWMAhCjDEAKM8FhDjL4jzPC4XCcDjMkkQIQakFACCYIYQQJL7PtNZhyIUQQRDcf//9jz766M2bN4NgIBRQSgGNyqUqs4gRkhslXalUStM0iiLLcgxAUCqVEELdbtfEDEIIESRacqnUiL0CsFLSaP9Nq2P2KKg10kgDM3BCZsnsczMxFwghjBBFOE0zAOC+DtS41gIALEak1KYEhxAiDcyMUyhp2/bY+Lhne91uN4ljCCEkVAGNMTWMaUJwmnMAQbHkD3p9JaRF2ddv3mq1WpRaQRDszfNG+el5JirVUrFYbLevubYnpZZSIDTCyvdxW3NTQYi1HhFtzEYtpURI29SCECZZKoTwPM9cH1NSS6nyPDHIMthDdU0vh0bZNRoAoKUiFgMAGJUrpbRUKtWq9W63GwSB1prLDGhECAFK+65jdmOItB5xiPZErHtap30oE+yBzlJKo25FEJqLYP5v6EgAKqUN5xpRQhFCGhmRExY5j6IcIeL5FiEkiVLT9RFMLJKnIjOajf2eM8tG7YT5MDwXwwZSShoSqLlVjCmEoUAyxgTQZu5rhsdG19LsJLXxmtn5jb8cpTRMYsZYr92BEFKKCbEcx1FKMa08z8MYKyXm52cHgyDNYtMDGwmOlFIKhTECQCltgsgUothcrmq9lmVZo3UVU5TlkZQiz3OEAKU0jFMFJKGoG4S1ciVKwjjVzBk/cuRQs7k7GPRa7aZNinEc57nwvALFJAoTA6d6npfliUFqbkfcIITGYBojCPSoVRNCApAYnxmM2WgqwJWSAECgFCAE6r04QWYswBHknGutKtUJxgjnPNESQqgkosyKwiRJEgBUmvJqtWpZjpRaCQU1JRiXi5V2u7u2uoHQdqfbBABAtUsIiaJo0B10W71SsZJlGVDStS0NpFQcQKW0wAQ6jmNbrpTSGIACACxCtdYKGrqZNFpajLGSQAoNIZBSEmIRgszjR548Umit4zh1XVtIyZidJrnjOBaz0zRVWmGIAUCMOAhqKcHOdjPLuGUhx/KVUlqATrMXhqEE3POS1fVNZuEwDAkFtVp5anqsUio3m7u2zRYWFvq94PqNW9PTszyXg2gQ8DTLo2qpiiChlOY8rVRKRl8FgLIZnZ6e9r1CpVIr+QVjy7O5uZmmebVaHavWlg4tfs/3fM9f/dVflfxSo9XqdDqOa9m2XSwWGSPYgY5Xeebrz/3Pv/nq/MzSyROnD0wcefbr5z/9J39Tq9X+t1/4N9/1vu+cmp748X/4E1Lq7/3eD33yk3/24gvfOHLo8F2n7n3hped///d/t1yuIix3thsaCcexvGIpDOLV1dU777iHMbfX7tbK1XvuOn3jxo2rly7fuHrl4MGDJ0+e1EDt7Ow4rpPzbGJiYnd3t1qtLi0tAcv+yI/82NhYrV6r/MAP/fD//X9/TEO8sbEppZyYmiyg0tvf/s7/+J//86Url3/6p3/Wdpy/+MtPM0LLZX/Q7SglOu2mAQIq1apZL3EcA6Vd14UAY4S4UkEQAI1cywUAcD6qGMFoAqEwxpY1crIy26BZDnESusDv9XpGRQf2fC9znpofdAhlhLieHQRBmiaMWQARxhjSgNiEUpolqZA5oRZCyHEcCLWUUipQKBR+/Md//JmvPxvH8Ynjp44fPzEIAym04zj9QfeVV17p93vnzp1NMg4xTcIBxrhaKhNCINJ5JgihQqjhMI6iaOGA9aEPft/y8sr6+oZS+tChQwfm5qYmJre2dvr9frFY+h9/9Te27ZSKNe66jku2d1ZrbhEgphWkFgyGcbk0NgwSISGhdn1sMk24UpBSi1G73RoqhRYXjjd2djnnSBMMMABSCU0QyZIUakghi4OcModhu98Jp2cmoiRsNFpSasZsSlkQRFpLTMDK6q08z5M0OnToEOfXHMdRWmZ5CqCCEOc8hRBmWZYmkFKslOp0Olzk977lHsdxojBOwuzalVWgEcKKMup71W63y3MAgRWGaRjGWoED89Vuq9tptgkhm/FGFCWWZeVpZobiXIg0F8dPHvG8wjNf/0qc8Pm5xcXFOQTAgYW5+bmZUqm0sboWhmGWJ1EU5Hk6NzeX8nxnZyeKI0Oz1VqbYxpC6Pv+sWPHOM8HgwFCYGpqotFoREkUDiOtdblUdV3Xdb1upy+EiOMR9b5MCEBASm32GaWUZdOd7c1qdQwTfdfJU1Ln3cGwVCrmaaahxowy6ikAtrZ2Pve5vwQyjOKBVKnWcmd366tPf9GyLK11vV5/8sknl5dvrq6uOI6T5NnYxPg//umfPXzw8Kc+9al+v3/9+o1yqTJWqxtqPyFIiHxiok4pvXbjuoF98jzP8lRKTAihlJmiS2tkvHGDINBaaQ0IwsbAwbKwMUpOkgQBaFuuUWL1ugMDyII9awtKKaXIdd04zuAo7GlkJgYAQJBgLA0v2LZt2xr5k5jdOM9zraUBH9I0NVlirusae8P9HAtT75njHkK4P2wGACAAGRmRuA1At1+BAAgh1EIIrTOMieDKiCQAQLblaq2FkLnIhFDGL5gLsQd67rt+qdGBojRjBCCYZqlSilmk4pf7vaHp9CHEUkqllUVYpVIpl8sayEajgRBK88yyqHkLEBwdoxhRQpEGRGsNIUjTNI7jPdCfp3GmIeBcIqB5LpVMpZSM2ohg1/W63aGpc8JhVCwWH37oUSmNlfwwSpN9Qy0pNYKIUkwpFYI7zE2zuNftDvqBUmrQ6xw/erTsINuxAABCcc4zKWWeZlJKNFKB6CAI5ufnv/u7v8v2HN/3EcEbGxtC5qury3EcDcNwMOjt7u7u/1Lbto34YzDsSymTKOl0OoQQ42GtlNKaE8K01gRhAIACcL8iNbWfqTRMP0UIuV3tByEESkMIKSYAQUKI5LkBAQAARlJpXoahOOwTqIUQACiEkHH5kFIaXaYZZhDKDKcNQgiIaZA1NfiFpbgQUiuOuNICACvLMo641JpzTtrttpSS8wwhICSXgtdr9WAQEGotLi5lKW82uvWxKYys4TBkzCaUlcpumqbEQp4HpASG2vltTTjSQMFv6dgBABqO0gK/rdU3D9MQQAgwNoQOxRgCCiRR3gyG7U6TEJRl2ezs7OnTp1utzqc+9alr12589KP/enyiIrJ04cBUsehykUgJAdCWTYWAjuMkSVoqlRq7rSxNH374YSHU5z//ecPdllKmabq8vOz7PlCQUsv17Ndff11rEwqvAQCEEK/gor1AzzhOIYSNRmNu7kC73V25eet//8X/45FHHvnVX/3Vl19+eTgM4zjWeyR/ziXGyrbtVqslhHBd33VdxihjrNvtIgTe/vbHv/CFv1lZvfUbv/lfi8Xi7338dz/+8d+hlJbKBcuyKILG5NG2R2ZMAKBCoYSIqNWraZK3Wg2lgOeWisWKEHkv6HmWB6HWQGaZQAjlUiGEIFLMosyypqbreZ7ct3DH7u6257mef7jZaJfLhTCMgn4gpc4igRkqV62Jifr6xnKcB0II3yu4rj07N30tCJaXN10XOY6DEIJQWzZ2HOY61litIrhKkgRj+rWvfT0MYs8rcC7vu+9+IcStWzeCYNDpNlzL9jxXajk9MZVlmRA5Y2z2wHzQH1y5ckVrYxOJIISNdivP88XFBdfxm52dmzdvQojTJFdygBAuFEpa606np5RK4sx13UHfUOSIkuDqpWsIIZkrLnWj0eBczkzPMcYAgNqHzU7zU3/8h3meV2slrXUwjOIonJs7AJXud9vtdmtmdurypas3btz4uX/2zxEiju1+9rOfvfjGZULYuXPnlAKvvHbW9/3ZA/O1Wi0IgjiOMSUTE+MQ/r0CfAAA0N+COH87lxm+iS/vP+DbBPu3/8ht4BdUhk6pNNCaEIQgjiKgFfTLBcasOAkHg+Cll17p9VqDXm95eQXg/oG5eUpwGEW7je1iqdRqdhACpVLRnFVhEBg8aDAYuK4LFBoMBm+8cUlJbXBhjKnv+zzLB4PB1NTU1vp6c2cXY/zv//2/f+Xll//jf/o1KTnnanHxgBB5q9XtdLpZlh2YX6pWx2zbURJACDEmnGcQQq2xBjKOQ6WU8SYWQhBCtdbMcpIkQggZ83SllMLI9exC0aMMtlotqZFtW8Vi0bbtYZ6bIviLX/xiu9X1PC/PebVaLZeLgqupqamdnQbn0nadPM1MO3f9+vX19fWHHnro2rVr1bGa5diddjeCkZTSuFV88YtfkHqkrvJ9v9ftG43taItDZsQH81x41KOEMAqVUmtrG0qpTHCeSyM6QwgpLbJMQAgBpTZj/X5fCKW15lpynvm+q5SybVsqznUOgMrznFBEKZ2crE9MTEgp0zThknsFf2JqkhDSbncEF0ePHlUSbG5uG1+OPM+14MbjPwxDCLVt267rKgUMbmWGOkJwA0VhjCljpVJpenq6024bBrrFHLP1memxOUUAAFIqznkYJEqpsbExLuRgMGi3HYTQiVMnX3rppeFwaH5doVDIc3H06NFz585tbTeMqfTjjz/+0EMPnTlzZnl5+ciRI489+sitWyvT09MHDy7NzS5GUfLa2fOnT9/94LFTtm27XtGyHISAZSGNRlxjKUdYs4FrFAQUQfn3eKCbaeUe3LwfRfutwPFtC2qf6fzm+rpNr7MPZJvV+iaK/bdcO5QEUZ5RSh0HaQByrrXWGCOgjbhMIoTiWFKK7zx1/PLl65cuXzt+/CjWNE+yZrMppazWx8plP0kVY2x2djIIolvLjRu3bm7t7kxPTx+YKUdRxAYD23JLpZLtOidOHGMO+8M//OTlq1eDIJiYnvrRH/mH/+OvP7+7u6mlCtvNbn84Pj554cJrP/zDP/o93/uB3/qt3+J58va3P95obJUrRXPmLi+v2VahUh4/f/6bBd+RSg6Gve94z7vHx8c9r/DKq+fDMLIsSkiJ8+zmzesIA63lsNOqTx48enSp2drd3t6Mbga+7w4Gg263qzU8tHSkXK5ubm5GSVyqlLIsU0Bk2ejt2Gd0GoWg7biWRYeDkFJaKZWl1I1GI8uyTrd77PiRNI1brT6lFGiECTl+/ORwOIRQ37p5Y2trG0FUKJRqlVqey9mZ2Uq5xLP04vnXEUIT4zMKw9XN7Ufe8Y5/8a8++sd/9PsTE/U8iXc2Nxixms1mldY++ck/vHzx0ic/+Qd40l44cLhWneq0h71+dPzEKde5e2dns1jwgATdbv/mtZvQRpwLCLDNGGOs3wuCIHBd37PdNE2BBDzlQimeSwPfGHNDM9426QiUUowogKpQKOV5OjE9NYzCbzz3zdp4fbuxW3F8g+2abtOwhAwxxIy4SsVKqVAIw3A4HDLGHMep1+vNRltKiRFRQpheiOdSAgnUSPUGEVBCcp1rKJUQQCOTDIMQUmpUue5RGJgpZ/dYMyP1nBl3GQwCY0wxUftPDqHI8jzPGWOMYam4EIIrY+KJgdac81G4jYZGm4kxdhxnOBwqCUKlO82WlNIAmlrrPBeGkiyFMpvYQw8+AiFcWV4zt41pzLLMwIJ4j4NM9lWcYNS86T0aDja9kOQiz5W55UydTSkjjIIcjCBdMAKazTNIc5gpZSQ1kgshhJFnjo+PZ1m2u7vb7XbTNNNaY4y1VFmaOo7j+Y55u/WeXBRCSKkl01Tffn7D/T5TI4RyzjWQBmIGBgUGkGJCEOZSmPfFYNCOYydJwvlIYpllHACIEMmSnBBirKKEEAQjQgilMs85BNiE441wba0p3efCaAiF3DPjNkcJ5xxjjCDhuTRwM4KQUZynmZYqCAIpJcJAxcL3fc9z4jhOksiQxI2CzZAMzKbHuRwMAs/zbNtNkmR1ddVxLDMHXV1d9b1isVjxPG/QjUzWiONaGmmlhGXZSoGcpwhbcRZ7WWzmB/1+Z32TZpHIeQZgTqwCwqpQ9CqVSq1etSjb3d1GCIVRgBBgjHZ7bYoIxrhSqURRkmWpABghZFSrcRxLniGEhFZKSowxIMZ/ZkTwVHvmM/uXd59cZr5ubEkANB7uxKB4lI4Gl/vZkkmSEOIVi74lrMFgoJWKI66B1FqUyoU85TvbDYMylMoFzy1Qhre3d5UExWLl2tUbWZJTSoN+g1LKMCLYunb1BmN2ngvbsqQQWZZAaG65DABgW77pR7CQmJIs5RAhrQXUgOHReknTVHAlpWTMljkHQGmmtRqJEowdjZZaAWVWbq1WDcLB8vLqwsJ8GAwBAJVKZXZ2IY7SwWBICOOplBxQbEGNocZaKqUU12JmahYQFUaBEGKsVp+fnxEynZoeY4wInvX6ratXL9dqE5ZF3/ve9374w//gv/76b9z4xuriwdm3vOUtq8vXhZBhGEKI7z597+uvv761tUEIOXLkiJQqz/NbN1d+//f/oNtqF4vFhQMHv/M7v/OZr31jcmp8d3f36aef3t3dfei7H3n/0tLNmzcHwx7nfDgcFos+BOSbz76AADhy5Ei5VEmSZJiGnudVq/XHH3/ikQcfm5yYx5D83D/5hWqpeuL4Up6wH/x+OD09mSQ8jTgAqFapLizNnrtw1vEsCCHG8crK2uXL1/7HX32hVKo88ch7FhYP1Go1E8wwPz9/+PBhRPHW1u71mzfNuO7CxYtTU9NJkmBmHTp0qDo5iQjZ7vbqk1P3P/Tw6sqtt7/97Vyk3W6HMHb4yBKXgtnW4SNHuoP+eL3canWEzGyH2imt1SrdbpdSO89z13UhxFEQZ1kOIczStC+00oLn0mbYABMGoTCiCs45AKpQKKRpZhyuwzB0XRdCaNt2GMSxjg2waAg9ACpCqCnGHMceH68vLS35BfepL355MBj4fiHJeJJEDDPLsqTIjc0rpRgAJrTheJJiqfxz//SfdXu9c6+fv3LteqVcu++++6ampqgNr15dfuqppx5//PGdne2vfe2Z+++/753vfOczT39hY3PNYGqu605M1D/4wQ+urm1cuHDxyJGjZ86cOX/+jXvvvdfzvGq1GoYh53m1WtVar66uCiEvX778kz/5k+985ztff/21q9feiOOh67hxHMRxOBwOLJsSWZDCgH9gd7fNqP3AAw98x3d8ZxwnGOM//7PPBP3tgl/tdrtZKiDESutBP/B9PwyTOE41hwRYFDAtkcg1z2QcJnEYZRkfq9tKKSGU1irnmQYcYzw9PQ00KZcqaZoKLo3liOTCcTwh8jAcOlZVA6mUStJ4bn66WCy++uqrCJHJiZkkDVdvbQiRTU1PzMzM5LFkmGnAMMo9l2CM11fWoygZDgYGNIQQF/3CRH3cTAqjKFpaWvKLlDG2ubXbafeGg/CFM8+deeGFqcmZ2dmZs2fPDro902W6rru5udnr9aI0AUCdOHEsDMOdnYZhkpnAhl538Ju/+Zvvf//7qtVqt9vGGHd7bQg1IQwAkCSZlEoKrYUmkGScQwiTJLEdZtuWIfkihChWmpIg7D3w4N1BMDhydLFQcc+df/XEqeODfuD4hXKpBgHY3mqfO3eu2+kXbO1a9sGlw4Nhc3t3JQ6HzCoDiJI0MmBCsVgihA6Hw5Mn75idnX3ppZc3NjYJIRZlkotCoUAp3d7ertVqxWLRQENaKg1GijGENcZaKSPCH+FxZu0YPTEYzV2k2UujKDHdh1ELmarAlH+mvtpnARvSroEER3rTvZm0bduYYw1koVCwbduYMmutwyDkQCENAACGwmwIHARj83kYhqbe4JwTwvI813A0NFIKCCGMe4YpEW+vkUxpIYQC0KRQSJMVgdDI6INSAgBK4syQYQHSxEIKCkwgBHjvHIRwb0wutSKEYDryj/Z8x7Zty7KKRdBsNs11kFIgRGzXKVcrEGoptOf7w6Bfq9VMR5wkCc+l4IrjkdcWhBAAjRCK4xgA4LouQjjPY611FCYIUyEFIUwIQQgjzOKc97oBxtjzvPn5hWazybN8enrmnnvuaTU7f/3Xfw0BsChjBEElFSKMMc5lt7nbbTe11sPh0FSJGNFiwbcsS2WB8YHgnPcGXYuyQqFQqVQWDxyo1Wpnz5594YUX3vrWRw4cXFxbW03TdHd7/bXz59I0xRhKKQuFQsFzOOdhGBtjfQjQzs6OabQ1UFIpI/uwbcuUiIbUbJwY9G1EcrUfCwbMhJjs4RIjnsQ+Z9nciiIXAAAI9R4Dg2it9ltjCCHCI9UdpdSY8QKglAYAKkwgoci8GLTnoWHYQmovx4IrCQnWWmZ5DjE0lRKRSGsppUhz3u13yOvnzh8+vDQxWYcQhmGAECqVSsVSpVhCFnPfct/pW7duBUFcrdZ8rySEcD3bdV2ICoWCl5lcFgKk/Duwtj0bgX185ls4aLd/jMA1DRAECgKlgGUhDMHmTqO122CMVitlZqGJ8bE4jTc3ti5fvvj8C881dlt/9Ed/+LM/88OEQkKlbUGIVJqF3Z6wbIwQCqPh5MT03Nz85uZ2r9M9cGDxr/7qr6JkQAjxfZ9SijEJgiBNU0otz/MgwJVKMUtSr+DyXHKZA0STRO5PlhzHS9P06NHjlNKrV68SZv3qr/7qRz/6Udt2t7d34zienJy0KIviwPjcPfTQQ9evXzURc0EQYIxXV1cppRjDj33sY47jRHEwOTn5mc98xhgcP/744ysrK/1BlzGW53x3t+n7/smTJ5OcX7++evTo1N1333P1xoXLly+HQRxF8fTkTLO1W63W3vb4W//8zz4noXRdO8u4VFpIDTRKU24XIGWW4zhxOpw/MDs1M9FsbR05egghMBgMkiTr94bddptgWipV1tfXy1VmWWTh0B0rKyu9Xm9lZePatRvvfveTR5aOvPbaa/1+lxAShuHq6orpUqrVMoRQ21BJkCSZ2eak1EaKdc8992xsrCGs7rrjRKfbGA6HQRB1LGusWguCDGO8vr7e2N4x5C+zPLIsgwTeurXSaDSmp6cXDhx0LPfK5WueiwGAipuAHcDz3CyMJEn2116WZTxOJicnh4N0Z3s3iKNqtfrAAw92Op2tra0gaGutmx1YKZYohZ7n+75968a2WT+NRuM3/+t/i6IoyfM8E3/x2c9Mzczatnvj+nKvPzx86Njzz5+RUt559+kHH3zw0KFD1WrVTKW4FEpphOCbJsvfykfeR6m+7Yb/X3/AN8MzzfDx23/EPMAsddPzkP2zCuN+bxAQiLQeDsOJ8clms7mxvkOwlXL9/vd/987OztmXX6mPTWRp2u40x8fHi0UfQthotdM0MThjmqZQaY2RBnKwtUOpZTseggnn3HG8qampH/vhHyuVC79Nf2tne/vTn/50HIeN3d1Wq+U41vz8bLfbXVtblVJCiIRQV65csW1vanLGQANcJIViwbJYvxd4njs1NWVCtDCAEGEgFcFYC84w4UpKxQHQlUqFEGLbDAAlpeA8T9KE87zX62mta7Ua1EAp3e8PEQaO48zO1jDGlkUwUlEUtVotkUuljLmnklIhhLOMP/fcc8PhcHp6WggxNTslua5Wq77vmQubprHUKk1TrWWSxnmWWZaFEdEaYkzSNDXETN8vIISKxQLGuNPppGl66tSpIAjSKMYYA6ANLVHI3MiITF6iGYwBApI8oZRCCpHCnudYlsVFZgg4haIzDPpBGHqe53lOFEXD4RBCaHRVvlto7LYAAFEUYUwghKY9SNNYaMUYMxNvAEaG6fsxZZZllcpVQojreZQQhFCeZYVCodXsDIdDE2ospTT5gcWiz6iNMTaDbs75YDCgDAMA1tbWqtWq63smPsRgCpVKbXNze3en0ev1slzdd999QMtz587Nzc2MjY31B70oil588cUkyT760X995PAxKXWvG1y6dBlBMhgMOr2+VsCynOGwYDFHQWiwIUN1BABYlmVZ1Pie33bm7p07CADwpq3z/mL5+1bZ//rr6u8a/9w+E/qWnwIAIbi1tpOk0dTU1Ph41bFGKx8hICVQCsdxGgxCrfXUVN113ZynWoPNtY04jox7bxiGwVjNtu0gDA8cmMMY93q9F154YXHxwEOPPJgPmlcun7e2mwcOLMzMz9UnxuIsZhZ+/Im3Xbl29ZHFRxYXl44fPyWF+L3f++0853meHliYm5qcEZL7vuv7/thYdW5u9saNG/V6/cCBAxjjnZ3GlSvLnFNm+fWxKQBFnqt3vetd07PT7U6zUqvUxkpKiVrt4ObW9tb2RpZygNQw6B8+cezI8fmXX3nx1q2bJnC5XC4/+uhjtrW7vLyyvr4lOJybmz9w4IBlUULRyy+/LDJgWh3btglFWZA5rgWAchxHa6GV2NnaHvT6Uuo4jimljmu1Wg3HcYxi6YH77281u09/5WsLCwszM1NhkDz21scKhdI3nnnedQtR2HnyPe87dfL4//Vvf1kq8LP/5Of+8c/+kxdfPXvmlZfbnf7OduPsK68eObhw8vjhSsFNkuzWzRUn8nqdwYc/9JEkVoeWjk9PzcWJ7PUGM5MzxZLbH7QOHzk+NTnx2KNvvXb56sc+9rFmtxFFEYJEaGEERgdmD4yPjw+H4a1bt8xJpITQWguzSCWXI4t/ZFaf7/tJkkjFNYQayImJiX6//81vfvPOO++EEA4GA0Ms5ZxXq1XfK25sbEjFDdRuuGa9wYBi7HmeCd/guXRdV3Ke57k5C5QEGO6H0iCEMABQSgUAVEALriAcSfM4F0ZMbQrNEdKqgIJaSiGlpJRprU1xD/bTaQAEALiuazy4Td+YJInDLK9YMKk1YThMEtN6maOZGyoH5wpjyBhO4wRCaFkjcqhBe00nTDCGGEvJDVJmOfZTT32ZUjw1NSU455wbcwawB9fCkQ8g2C/BDSPDfJcxZrbfcrlo7OONDw8AWqlROa6QNLwhSi2tsekt0Z5zhfkwAL3hd3ie53leo9EwoRqG8IshoowplZq4s8nJye3tbXN9br/Cewj4m88MIVRacyEIRQCM3jjz4qXSptHCEMFRogkaDV9HZCuNMTbKAJ5xhHSWcsaYVhBIgBhyHMeQ3/dn2vt4t9ZQKWlY4QhipcxJN/qN+1fAXExjesscx7YtQ0bTWmMCK5VKmsaE+OYO51xqrRljFnMENwHRzPeLQKM4jrnUNqVpHgMuEQKcZwCg8fHxOMqiKEoybqZfCkjbZn7Jp5S4nm38N+r1Gsa42Wwigp94+1sV0Ddv3gw6PYBgmmVywBFCjmdVx6o2s5Ik7ff7PI673S4hBCKAMZQSSJ7sidKkyKWU3DTzPMvAyDZEQQgxIloInnO76DqOI4UeDocGizd3FMKji2MORKWUCQZXEhgPDQMEYIyjOFBKIYRd161UKp7vYAyVElEUKS6AxoywLI+EklpB23IRQsPhMEkyKaVSwrZthm2/bA97keRacEIwc6gjRC41ZBY9efKuKIo2NzejOLEsy/WdPOVxHJue0Lx9CGFKkaFpG7wAE4gxJhBpBDHGeSZMa0oI0VrKnBvDkH1CnJRS6zcXF8bY9/2dnUYcBVLodqtfqVSV0ozZYZCmaaYVIpRCALOUc5FhjGxGHMuiDrMYq9UqiIJOq10bKzmWDZHEyCoWi4zavd4gDOOjRw5du3al1+8cPrx08tSxw4eXgkHH87w8zbSGjUZDKeV5nvlz8lw0dtvtzuDs2XNHji5kWfLDP/KDH37fh48dPforv/IrnU7HeKl/8g8+cerUqXvuPX3jxrUgGBh2Rbnoj4+PFzznwQffgjE5//pLhxYO3Xn6aJJG3//9Hx4Ow7WNjWqpdted9yoFhiH4zvd9FwCgWoFZBp577tmFhcVf+Xe/NHdg+pf+7S9euHi+UCggSDzPQwD1eoNhf/CcfrZWqz344IO2bUdRtLKyAgleXV21bfuhhx6+ePHimTNnMMYLC0tHjx6XUgYp73a7/X5Xivwdb3ubWyy8/NLzP/vT//iF55/98pefajZ3p6anbWINw/DW6q3+MKhP6SAMJM8sF5eKvhLSIK0bm9uWNVqneZ5DjUxQm8hzrVSaplnKGbP2914zT8rzbDgMDEIEIVQShEFcLpenp2bbtN1qtcyUBQDAOXc925xHtVrt8OHDGKOJiYlqtfoLv/ALv/7r/7XX67mOzzlP8iTLErinPuF5rjSkjDqOpwH4T//pP33Hu9/5H/7z/7O6uv793//9lUplZWVlYWnptZcu/Omf/qnruj/3cz/X7ra/8pWvnDlzZqfR/OVf/uV/97F/a/ZV5rj/6l/96ywX5Ur9ve/7wPUr15/5+rPFUiWO44MHDxnWappGURSZiaznFd77nU8eP7F4c3n9tfNn250GYdZgGEglbKcQxemdd96TDsH2Tqs/CIrFsgaKMfLY295ZG5tI1reOHD72Qz/0Yx//+MfPvnzW+DBIKTWk3U7w6KNvO3KYfu1rXxNSQUAF1x5jIs963UF/MAgGMbVYlmSgBLXWjUbD8+04HhkZhWEaBEGa5p1OZ6xeQ8hizOKc18Yq75h/2ysvXchzYdlkwp1YPHjo9fNv7Gw3pOKUslKxOgwGQohuO9KqwTkv+Jbj29WqE0VRc6cZBAHUJkw+YZRqBfv9PsbYsqxGq3nixIlisXjjxhuTE9NZllqWBZH+7Gc/3Wq05+cOWtSuVCpQ6TRN08x4jWbtdpu57MjhYw899ND6+nocx4babNtumsZxHA8DfvnyZQCUZVndXjtJkrGxquGKpWkqhCRwNNhgmBnEKgoTIbhlGWmRQtTYsKAoHMRJ/9Llc4+87YHPfe5PnjszOTM9+x3f8X7HokADoATPEoLAoD8slGwhxMlTxxWICIWu6169cg0z+pu/+Zu+7x8+fPj8+fPHj5+8eWP553/+51durgshCoXC4oGFer3OGNvc3MzzPE6iXr/bbDZt2y74xVzwNE0ppY5NMcZKAQgAI7RcLI2MCLgACkANKSEZzzFlFc9vtVoAADOPJAgbmjAAwBCQzehuv8gxtQ0AGGNkuhtCyB7Ii4zfAKO2FJrzxMC4ShlDQQCVNCMi4/ihlTIIrEml3isMoNaaUMI5N4YPhGHDrTbDbzzyXr8NoQMAQQYBRFgrpYwclhC2P5WEECJEqtWiVFxr2e93oTYaIGIKMLNpaABsmxoTBqNBMb8lyxJmUdez98x/mWVZjmNJycMwNMPaKIpKpZI5ZLXWAnFTqTLGAHiT1ZvnqW275XI5CII0yaMoQYgooSHCec4hhJTZcZQiRHy/OD4+fuTIkQMHFi5fvhwF4aAfVMq1KEzSNNdA+J7DEEp43OsN2q1OFIT9ft9xbYdZjBCIoLYZoxbnctBpDvotxlipVKrVaktLi9PT05VKxbIs17YhhK5rr6+vjo2NhWFACLlw4UI47AIA0iwrFX3OkdY6TOIsTpQC5m1SUpsladxRCEFJmnquCwAwGDSEUHCOIAF7UPIeEQTsT7vBbVbd+xSHfcrIPjhmSjtCTOG3p4CEEFNidnJTuZlbCABAiCVEbhHbTA4MocTEXO//LvN/hJAyvGkNLUISnnOYV6olEYs4jrWn0yxBSUIog5NT457nGnb62toa56I+Pm1bnhCq1ezMzx0cDodSQM/1c5RaNnFcRimlFCulkYZag73A7W//MCbO+5QxI1KGf79lLYQAI6AlEEL3hsPhcDA5OTFWr1qUAKgajV2EUG2sWq1WDx5cEEJceOO1f/8fbrzn3e+cmR3fbWxMjJePHjsUhv2cp5jAUsmLk+HNW9fKxUqh4F25cqlSLExMjcVxbIiQjUbDoCpm/VfKtQceeMvm5nbnlVcQBiYFC0Fi6kfbcikmqdKdTueOO+6YmpxGEO/u7v70T/2M7Tjz8/OlUikIgjROGLURQmEYnjlzhhBkWVbR93mWjY+PI4RyIZaWlsbGxrq9dqvV2tze+OxnPwsAmJuZrdfrxWJpa2sLeKjf7Umpi8Vyu90VXB1aWpiemk2TPI6yixcvzs7OLy0dfvWV18JhdOvm6uHDR48ePRwEkZSKa16w/DCMZ2dn+/0+8cTp06fX19cGg8H29ta1a5d5ngshsiybm5vrdDqKq3a7vbi4+Pa3P57nebu7nuUJZrhSLVy8ePnuu+d3tpvPPffcHafuOn36dBAEOztbvu8329319XXX9QFQluVIKZQErutmWS4F5zw/dOigEPlXvvLFxu7G3OzsyVNHz5+PlOa1ielCoaCl0No3MdnMsYFGknPjd25oSsPhEGN87dqNwaA/Pz9fLpe1BmmaSylNcoIaJblzhJBtOwbWnJiY7HTaeQqTJH3iiXdZlvX8mTPLy6smoLNUKjWbjXa7VSx55UohCIJCoXDXXXe1Wi2l1KlTp0wpUKlUu6J/9uzZsbWN0/fcGwSB5xXa7TYhxLKcRx5565NPvk2pkXsMIsxB7NuwrdsxqDcJlRrob8WnvgULgwDctoLg3w46029SpG//utkyEEIYIwiBVMCymFn/YRh2eq0wiO+++16t9de+/vTBgwtC+QsHDh85fOKrX/qqY7FDR5Zc1240GoNhJ45TDVCtVtvdbZh69OF3PrzTbm5ubhsD7iCIHnvscUrpzZs3ZyZnrl27du99d6dxkue577u3bixvbK4RggBQg2Fvd3fXsizbdoIgAlopBaMwaTQaGGO/4MaxHJ+oFAqe69oTExMY49U1gaEywApGo3M0TkLKsIWMqBz1Bv1iZA0GfdthxXJh0p0wBMCZmZlSqbKxsZHGqevaaZpHcRAnoRSaUAAAisKEc0kIxQhJobSCWgOhJGNUa2gEB5VKxff9JMnSNEmSOIqCqamp8YmxTqcDHWsw6GVJTCmRUiJICMGc5xjDPNeWxQRXMzNTG5trSRIzxvI8/+7v/sCJEyc+9rGP7W5v1uv1g0vz9XpdKbW+vXP58mWIoY1ZFEVC8DiWRryT54mZ6GICzfx8MBgAnJupeJJGUmghxGDQgRCXSmVCyMrKyvrapuN45riilEKETLXnYowoMbwtQkgQBEIIo4ADQLVaLce1tNbbW5tjY2NbW9um1TSpCGBPXm2QkTCMwzBWysTOJIbeIpUJvyJhGEopAYIQQq1AnucXXn/jvvvuN5BZo9k+fuwYhPrLX/7ycNh/6KGH+oMeAGp1dXV+fgFC2Gq1ojj3/dI73vnua9du2LZbqVSHw6HSsNcdpGkDQoQoMa6CJr2qUq3aDlUSCAkg3Dcg+5Zz5PbR5h5b8bYVN9KPvfn4b1tW+3xnKUbfRd8m30EjAvXtqxVCYNtgYrK+uyuXl5cbjZ3FxcVCwe31+lmWlUol37Md22aU3rhxg2dJuVgmpEwRyLJUCoEgtC2LCz7o9tbDYGp62raBBraQ3LZZmsabm+sVl5w4dfLP/vTTG9vbP3zoh6IoWt9anZgcLxSLpVJpZmbuscce/+Yz33jm619h2HYowdUKxjiMo8uXrnzuLz9/3333/cAP/KDvu7/8y//mB37gB6anp32/ECVZlsmjx05OvfIaF6RYclrNdYjyZ5991i/YH/nIR8rl8l//9RcIwzOz02Zc1NxtlcvVU3ed6PZ2gyDIslwpjTFLU765sZNlnFG32eiHQer7/li9kmVJo9nM80RLJmWOEBoMh4xSixGR537BzdMkikMAFGMkiiJTLud53u42fN+dnJw0WIOJ8/qX//Jf3ryx3G63AUDj49NAoxMn7nCd4h2n7vmu933gjz/1h41WL034O97zXt+rnLrrvk986tOXr9w6ffreX/xXv/ilv/m8EvK7v/sDm5tbG5ubuzvNz332r44fPf2jP/KPg2GqNK4BEsbXhIIa2VEsFpeOHztyCCLaC0JEGYKkWhlTSjFm9fv9OIgxphsbW1GYAI2k0FmWE0IRQhhhKaXjOJTScrkahiHPpcGShBDEIhBCAJWJPdRa37hxw8jcHMcxZaKJTIQQagWl0FkaEUIcxwFKZXvOfUadxggBABBCBFd5wh3HURDt4Zv49lENImhfBwch4pwbMwEpJUGYEIIg0lojiCAiWo7mjvsTdwAAI9TsSIwxYyVPKTVTLkJImsaccwAQkMBxHEZpGMQGEgVKC6FMAnOSZIQQihmEME0S8/yO65pnVkpBBQlhBnHO89zzPEopxjRJEv0mEKz3Q0v22Bwjwwq552boWrYpKh588MEPfOADYTj8/Oc/v76+bjjCpqWRfETsNU8yonXcVtGOCN2Ums+pxQwtF0JYKBTSNFVCurZjrrOJ65mbm6vX63/zN9sAqDw3Vr+jJzfoLQAAY2wyBBFCUOucp0WvSAgxd4jp0EQu90FqjLFhoBj2sRljUErFyBdRRlGktWKMEcKgGTwoVavVut0uQshUD/sAIhz5q4L9Fo5gprQAADDGLMs2KSwi54wxhGGWpBAinmZaSJ7nCCIlBEHEIlRKroW0CIUK8jRjjDnMgVrn3OCeVErNqK01CMOI88z1nDSNtNYYE9t20zR3XTwYBEop4+2QZolhL2ICXNcuFn3OsyiKCMXTM1OO61o2ARBWqyXIJUDIsixqsVzwJM42NtZarY7IRZbkEELPdgBACGKLsWKxqLTM0jzPA7MEEEIYESMtAgCYhcA5N/ehca0xHiDGJMS8cXmeQ6SNeyPGmBCqRnlNo/G/8S01+IJRJygtPM9VSrXbbcuie3Z/GaPewaWF4bC/s7NlunrfL0xPzwTBsNNtJVGap7zV6miFtUZ5JpCyCKBAQymglGJ8fLzgF2u12vj4+LPf+CYAoNPpmXdWcGlyGhhj5njinAOtBeeYEGPUCwCQOTcsdUIYIRhIRYiVZZnMzI6hbdseGxszBjKe56V50my26/Wa0UsN+4PBYKCUDoLQdX2eyzCMKSIEEYqwUkorTRGGAAghms1dTK1Spdjv9tI8Klc817NXVtYg1BRBy7LK5WpfDYFUGxtrjuNhpJYOLVy/frXV2il4bhxHPOPDYXjh9YuEsEqlghDo9Xrdbt+yHEpQseD1er0oin7lV355bWVZKRWGwygKLMsSQoVhuLOzUyz6w2EfE2RZ1pEjh7YbWwXPWVtfbn9+58EHH4Qa/eX//FSj0wQwa3Z2Dh86KQXKuCK5RIhIObKeCCJCCHjv+95/+p67Thy/M4wH/+LnP/pnf/bHZ158vlq2HMvxXX9hbiEMw9nphQMHZi5fvpgk2ZEjR8rl6qWrV86++vqTTz5JCLvvvvtnZ+eTNJ2amjGy5VcvXVRKvfjC81/96le3f/xH2q0m1AIDHMWx2YXCMMx09vTTT1+9fq1SqSCESr4XAjgcDjEkfsEdDAaDwaBaK+d5nufCcRxKmc2cPBPDft+MTCixlDZW+0ApRTHhQnDNDS/SSE+EEEoqE1XXarWCIDA0BbM17e9mhrk1GAyWl5fDMPrJn/yJPOcLCwuDfiCEEEKZNQW0NPCTkgARBAAihPT6/Zsrqxeu3uj2h4tLS47njU9NvvTSSy+9+orvF97znvfcedddg8GgWq3+6I/+6PkLFxqtFiWkPjaxvbVrWc4jjzwSxSmmLOOi1xt86atPHzl+ol6f2NltVso1g9kpxXd2dsvl6omTx4BG9Xr9zz792WeeeebatSuEQte1x+pVreXG9kaxWA3jvNUY3nn63re85S3V6thXvvKVx976+OLi0qAfLB06wiz3oQcfggD9m/V/k0SxMZimLjx+/K6f//n/XUp5/eo6gajVaodh2O/3tVbdbldKbjEfAggUjqKk0x0gBNrNNmPUsqytjd0851oCyZUSMBzEBBHJE0pxvV572+Nv7XUHKysrx4+f3NnZ6fV6BvGfn59nFvE8Z2tro9/v9/thEnEpZZeFk7PTlNJ2sxUGEQLI9dw8E0W/ZJwHDOedMKq13tjYWFxcnJs9ACFkzEJQ5Xk+NTl73333j1Xrz3z9uSiK3IIvgR7Gw6Af5Hn6+OOPV2tF13U3NtcMR9hQaPv9vhErM0xWV1fHx8fK5bKh3ayvrxeLZa0gQkRxmaa5EMJkLCMIAAQ5T7NcFYu+ZVMhJADScVkB06e/9qUgDFvdnT/+o09EabK1vRaHwT13362Ehtp+4dlv9JpNh5JhkkiddjpusUxLpVKv35aSj9VrY7V6q9vZ3W2aJOcbN26M1yc7nV7BL2GMpeKm/YcQ7u7uaqB6vZ4ZHE5MTFiWlQ+5SX2HQBpInWBq5oVBEJggnzRNzQRFaqC1lkK7jo+RJIRYliW5wXVHvGbTXpmaxPf9NE2TJCGEQAj2FUumI9Fa8zxnjCFCDG3RUI9HU2eEtZCYEM/zRkHNUpqOzJSLRohmlielNInifQwR7A319znI++xmsMd0lgJQho2TM0RaaZXnilIKAIIQYYwIQXPzM0rlhMJ+399a78VxLGQOAR41VBhgOHL7zfNMAUkIyfJcQwUhxEpOT0/atnubx7SI4iCKQ8O2YYxIyYfDjHPOGKOYmMdgjIXMDakcY1yr1SuVilIqDMM8U4zZUmgAYZampgATQqVptLCwcOzY8SAI5ucP1Gq1kyfuEDmHEEdRkucCQug7bqfZWrl5SwhVLJSD4VApVS64EELN8zxPoiixXEcyh0sxVi6eOnnEdV1jbOs4lrn+jmvlaYoQqlTK99//FiF4uVJsNHdeO/cqgSCKouGwr7RghJhbwjDebNvWCsA980lzniJEzI0RBeE+uEwwRhCbOQfY4zjDkTBO7bHXldm9zRZ9u0JxRG7ACOw5d8P9DEmMAASmVTG0CYMd4b08TMvyRpA0xlADaPCTPZNhc1cjSvIkVUL0B8NIxiDtWI5TmLChBpxzAtF+v0AsiyVJ6DhMa2nb9tLSUsEvQ8SyTEihs4xHUVKp1IzhveP4lEKzNggBMocQvSlbhnuZSGZEYxIyBQDGGARjNGr49wTIWgOEAEJAawAR0BoEYcwlr9VKrVZf5Hxubq7oO1orLnOMYJ7nGqpr165887lnqG2Vy4Ver/fimXOcB6fvPFmpFAb9PM/TKIoQBlLKWs0HGm1t7WxsbNjMcWzXZqTV66dpmudicnLSdf0giOr1+szMnInJPvPi88NBiDEEACVRTAiBe6niXGQiFBBCRihBeHpqavnWrYLvf9+H/oHBvOI4bjWavV7P8zxTss/NzWEMRZ6XSoXV1dVisfjggw++8OKLnW4rioPZ2VnXdZdXVpQEGONWq7O2tlEoFMIwiqJYcYEgxoj0un1K7Xa7ffbseQhhxpMoAMEwqVUnhFAHDy4dPnx4MAhs2y6VSo1GY2Hh+Pj4eK/XBwAcPbaEbF4ul2/evMZ5FgSDarm2M9hpNtrFYmk4iFzmXbx+EQBw4/rNVvOPjh07VqpQhMHO5g4AanZ2eqw2ViiUIMRr6yu729t6pKWljuMCgKTQAMBYpIwxAHSSRIRASbVO8/6gVSw5/UHHL3oHluZefOXFQbfn+W61WnVde2dnx7ZtIfOsl5jm1rIswZVtuWEYGoGv6/iOa/X7vXb7nGk1W62WEMpxnDwz43eEMfQ8jzEWBIFt2w888MDNG8s3btywLW9ifPrxxx8/9/ob16/dtGxKCMmyxHXdLE/W1tYOHpjP8zRJkGsVDARw4cL5e+6575FHHqnVxl57/Xy1MtbrDRi1fN9f39j50Ac//M53PtloNCDBu7s9z/M8jykFpPoWuGqftQT0nuheGVB4tDoA+LtdzkcGSurv+vptn8M9bEvtPcP+RiOlkhJYFOU5MDbipqvc2N4WeVKvT7z7Xe8pFAoXLr7yyisX260dJaHnFXq9XpomCOtarSpUC2iUi8zzXAghz+WV69ceevgxi3lbW1uMsU6nUyiU3vGOJ37rt35LKbWxsfHyS2eeeuqpfr/vOBYXmRDCsijGeDgcmmNVCOXYIAU5z5UEUgihgaxUygcWpufnZ7jIIASlspvn/Hu+9/2vvvTqyvKaUrJa9QBQGCPPczWCWksAVC4kQsD17MnJyUq1ur6+niSJqdHr9bqpkoXgeZ5PTo5bltPtdpvNJsxhkiRaQUotCCFPc4SIFlopgRBCGhJGy+VytjcNMgHEw2Hftm2lhVG39XqdwWCgtIYAI4QBlEIa5Qao1erDYZ9SGkVRnucm+Etr+fnP/0Wr1UAIpHneaDf6Qb9Y9GdnZy3PjaIgTVPPdXu9Xp4Js3FTSo0rv+c7ZqMPw9D3faWoEGJ6etq2bcHV8vIyIWxhYSFJEos5ju0JIRzH8TwvTbPhcOhQxyARhCKLOJ3uAGhk23aeZ0KoWq02NjZmVKhBEAAAAJCtVgsAbQ6YNE1N/pLBVlzXNRQGLaQR7Jg8ZaUUgmwPbEXDYcAYq1SrSoE0zTG2MKYPP/xomuQXLr6+tbVFCJqamtrYWDt85NBuYwdCHUVRt9/7zGc/e++9D1QrY2nKC37F94vDYQAAJJiFw0AKNTk56bqeUgoSzBjDGFOGlBqdHRoCBOCeG+pojfxtn+VvQZNHevJvXVYQGDusfWB6tMqUmY5CCAG6LYfQfBfdZhu9/xFHKhwGkotysRQEg/OvnTMqJNd1Ws2G67pxEE5OTs5MTrbbbSHyJMm73Y7g3HGs8fHxMIyHQdBoNAZhUCwW1jdaeZ4CIB559IHLly+/du6VxdmJsbHxqdmpK1euvPDCc51ee2p6olgqaK3f8Y539Tr9q5eunn3l1SzOfNfLs2SsPlWtVqUCV65cf+HFlxVA9957r+M473jXk0ePn/K8guP609QGiFnMOXLizpMn73rh+a8/99yzSdwmTBaK3ubGdrPZ4kJMTEx0u33f9xFCahzkKb9w4YLW3LIsSqw8iyDAUsCNjS3PKzi2rxWK4vDVV18dq1fr4+U0jQEA1KJEUy1NMcQB0NVauVIpaSCmZybyPF1eXlZKZRk3yel33HEyTsJSubCzs6MkeuONNyzm3n36LT/xEz85MTHx3HPPxXHMmL108OgLz79UrY4dO3I0iblW+KG3vn3pyMlIAmL55erE7/z27x9emHaoaDdbQGSvvfZanCan7z3d64c7O7vr69uV8vTNm+utVu/w0eMHFg6FSZjmktolH9mZwGEq0kxKjWu1muu6N2/eCoLQpraRBJWKFTPsGcXjcG7qOSk0ocTzPFMyGdWh53lJkhBGEEJC5oY3arBCw1gxRsCGbmAIDqZkJIS4to33guaMEsisSqNHgQBrqfYc30wXAdVeArXx2iuVSlEUpWnKOQcAmjVlyLN6z8RthHFrTQhRYhSpZ5oTw2s21BtDGc5zYf65R5ZRGBMCEaYYQiyFIBRR6inJFVBaaQiAVlppyJU0Dj1gz/pNCrFPAZZ7BArzFYN6p2ma5ZF5AEAAIgQ1YpZlAD6DFyulCGGmG0TIeHgokOftdvtzn/tcq9WKokBKqdMM2VBDZa6zefuSJEGImGBuAxSaER1C0HUdNbJBxOaPNaO7UYlPGRw5ZgDf9wghOzvbu7u7JgKBUuM1D7QGQinzOiFCxtud0D2DZqRNA2xIUiOKigKcK0Pw0VqZaHuDpGitJdBmQGgmFlGYKK3iOIFKI4QIJcaFmTEWRbHFLITI/hxRjdyrDZYtTZVLIOEiGwwGhpkupIJQGT8iM0SRCkRhQijSGgCloYWND2AYxgZOghBCiPM8970iJVav05BSC6GSOCcWwxhHUQKgyrIky5NSqZDnQkptMbdUrPR7oRACIOh7RaOtKRYLvd7AsmipVNrZ2WGMAQ0Hg4HeVWmaOq5bqZQt1xFCIIwd6FpW2tjtaK2jKKKYWcwhhAmhsoxDCLWGFrMH/WEcx4Qwx7EhhFLoJEmA1rZtj7p3gJQ2pt4SEhxFEcYYYYA1NgpoIXMCCULABDYwBjkfed0AYAb/2pzC5gk55xri3d0GIdj1bPNdx3EKhYJjlwyiDQAoFArT0zNCiDiO85wzaps4UMty0oRbzNGKAwGMpwtlCEIapUl30DMN+cT0VJZllUqt3+8Ph0OEUBBHBcdQwyzDWzddpWHTmwGGuZ0syxq1rwoihABUSiqoFHPsYrFoHEKjKOp2u77vLi4uCpEbveb09HSpVMqyHADAuaSU+o6bGjvLPdGhEXhFQYiAx2x/2A8EF4ZUJDMdRTEhyCqVgkEiea/olQXXzz/7vFKK2laahuPjYwXPSZI4TdNepxdH+Yc+9H0AoM997jO+7xvJThBEjNnz89OOx3Z3d+Io+vRn/nxsbKxY9JUSg0GgtaYUt9vNjY2VnGe+7/Z6neVltL27I2QehgMIhO85S0tLly6f5xkqjxWIRRTAnl9RCkoAcqEghEArDYFQMk/V0tLS3IFZAEmvGxYKte96/4dfeulVCKw7TtwlJddSLSwsJKkcDDs7O42DBw8tHFiKs/zE8VOVch1jGkc5YbpYqlWqkFL6wgsvtNvti7duLizMX7t5IwgGv/7r/69tUQylkunFC+cbO9t33Hny7GuvrG2snnn5laJfsCzLYVamgW3bQME4jj3Pm5qaWl/fsBEEOsOYSi3MSSEyYXANnpv9jUIIEYBaK7PRYYylUobnkWWZOa0AgJzzRqNlamOzIUMIjSkt0LBUKi0sLKyvr2utL1269Cd/8qcXL16UQo+NjbXbIzchsz1ijAVXWus8F1rILOV3333vocNHXz17bmpm+iM/9MMIwDNnzlBKjxw5MjMzk/EcIjA7N9Pr9cbGx3/kR37kc5/73AtnznQ6HcLo/fff/4EPfEADdPnqtVsrq2+574EjR48fOXKk0+vV6xN+sYAhUhIM8z6EkBDUbrcBAE899dSXvvLU2NjY/Q/c++ST7/785z/f7DSjKBqvT//ar/3aK6+88sKzr7zvfe+7//4HWq12uVK7+657bNuuTwAhBNIgjOPPf/7zb3nLW5RSTz31VKVU/sf/9Kdqlcr4xOzu9g4XkCuRZRnnOcZIGF6LwrZlAQAotTAkrmsrpYrFohkWCqEIxjlUluVoDZOEc96bmKhDCAfDzoUL52wH333PnRCiNE1zLjkXRmQDADCybMkVT7XIuBACQZnlq+botyzL9zzbtislCgDwfX+fo0oAfuKJt509ezbP81LRj+PYtlxvrFiv10/fde/y8upLL7989733nH/t3MrKKlCaYLa4uHjkyJHv+74PlSr+9PQ0hPD3fu/3v/nNb0ZRJJTMBXccO01Th1hhHDmBg/GoTkgSmaZpwS0AjRKZm3NWCGHbjHOutBJCKiWHw6GnHNu2sdau6z74wEOvvX5eaYGgPnPm+Q9+8IN5nj/37DNXL121mQ+U9fyzL6WJwpgdP3msUvX9Is7zyMyVp6YmGbMpYQCTKEqGwyHnfG72wO/8zu9+9KMffear34yjiDHW3G04jrOxMUySZGZ2utlsGqjO9O8IwCxJpVZAKwgVBIhznmU8SbIs43uRCiM5FKUwjlJKseu6hAgAgBC5kqMjdZS6TBEXmdkMyV7eMiFE6xFZFeNRzoMB+gzGl6apwY5NlQIhNGFuRhDMOTf8LYwxsyzzmH1AAGNkJp0AgCzLMKYGnTDqZ1PsgT2GrFnUCCEFtRQaYWi45xBpCLWSiBAoldRazM7N12qlXr+NiS4UXd/PGo1GqVQyAecQEyUlQAJBxDmnFkMIYAwtm5rfqJSKklgoqbUuFAqcc6SA1jJN4wMHDhgmqBF0YgwRAlJqzjnG0Pha2A4rFouFQsGA+GmaKQkQQnkmIER5nlFKi8WSbdutTvvAgYXjx0/cd999GONSsUIprVbGEMCmMjStOkGo1WhSyzYZp4JzIcQgSWSeAQCKxWK5XKzXJ+YXFxBCpXLZ9/1cjmxMDCnB87zlm9eVkvPz8xrI8YkxTOCrr768vLyc52mj3THwtNY6y3IphanlUs4xIpbFsiyzLAdjaKCMPBeGS2FmCQghwbmSABN8m8xI6z2/ZnNvAAAMim0ckMy7KbUy03Tz/lJCtdYSCIyxhkArRQkzd4KpbI2r2O00fAghQgoAaGYYjDEhJYTYtCRCKwBBGAZqqEymS5qmqc4LqIgx9jxfa0gRzoE0N7ZSihw9tkgZvHHzGkZ0amoGY4KRRaiVplwrmKa5mdUwVgAA2DZDFDBKIABAAinBftiJUtqYhTHGRsUzAloDLQFCb1oJjB6vRigzAIALZdaV4ziUkvXN9SRJbEZLpUKh4PCMGxBuY2uT88wATwcOzLW6rX/44z+4vr5+88bUmTPP725vVKtlx3Hbrb7tOFNTdQjh9va2ZVknTx5fWVnLU57laRyE7fbA87ws5Teu39JAHjx4sFarGY1JsVjs9Xrj4+Mb61vtVst1Xct24ig13kOc83Kp0Gq1Ll++fPDgwU6nY9u2EdQopd54441+v1+pVCi1OOcaSNv2XddeX1/f3d4sFosIgbNnX2m3m6fuurPRaFy9erXb7ZoAZYRIrTZGMZFCDwchQlRJBQChlO3stCCEiJA4StMkV0pJLQoFr9PuP/P1b5ZLNYypCdk0xhSFolcoOi+//KKRZhSLRa+ETf3KuXQcP4pSrVEYZL6NLr1+beSi6Fpa6+EwfumlV97ywKk0TQZhL4oHjuPcvHkzTYTjFDzbM5NJABDBVAiVJjkA0HXdWq2apjEXWRQPGKP18XK54h05ckQp9fgTD1uWZVyQLDe/ev3W5YvLcwfnin5B8NHdwjmnhIK94UyxWMzzXOZJr9MhqF4qlVZX17MscxxHZAIAoCTYsyaUZjfHGNu23Ww2G40GpVa3269Wy5MT02adb22Ftm2bJUcIlVIOg/7YxCTnW5ub2+Fg+z3vec9P//TPfuELX3j99TeqlbGNjc2Tp05qBQ8fPl4qV25cX7njjjvuuec+rXWpUiMUmDm/49QIAVqOzGHByHwc7oNQygxUbvOQQRr8XRqA2xArNEKcbyc+3y4OeHNOA0dcaaN5BWBPPaEBhMBkxOV5XinXlpaWrl+5Mjs7/8QTT8zNzb38ysnXXz936+a675U7nd70zBgvuEHYcz2b9GAcpxhRz/Pm5w9cunTp1pVrd919z/ETR3u9Xp7nURSt3LrZv+fOYNj/7Gf+FEKdZolSwrZJHA0uXrxQLBZK5YJxtzATFCUBhJgQChlQCkgpEcbGU77Z2lUqD+KB41oIko2NNWKR+QOztuUa40jjNQwJhBBLxeM4dhxnbKxKGB4G/Y3NtUqlQgE1A3/f97MsM7GTnU6nUqlMTNQtizYaLSGE4ooirMVoDgwAIIQSgqSUJbtULBajKOp2+xBCpYQZFFGGkyQxoktC8JEjR8ytOBgMXMfv9QZCiEqlurg4d+VKqLRotXc5z2dmpiCEzWbTsqybN28CAO64447l5eVGo/Hlp79Wr9ePHj9y9z13NZvN61dvWJY1NTVlYI4sy5QWURQ99thjYRgGQTA5Oen7vtDx9evXMcZLS0thMAzDGCHU7fZazY6Usl4bv+OOu6IoMqolDKBSilIKoDIttyk+oijSWruu3+l0xsaqUkousigCnueZesKyKKXWxMTk6sq6Usq2R0GREEJCGJBKQYggURJooQghUgqlFEIEALnPjgyHkW3bb3nLAy+/9OqLZ15eX9scGxunDErJOUeMEeOPVih429vbQojx8bFOp/PHf/zH3/2BD93/lvlhEEVxEkRhvzfknCsFqtUxo6PxPAsSgBBIUyAl0BpA/HfY0dyONd+uD/j7TJxu/9hHoP8OVcFtQPbty3B/Md4+cDLRvZZlGcl/q92I43hxcaFen3ctu9VuhNFweSUcH6v3er1et73f6ue5XltbsyxLKmHZtGZVikU/z2OpuOOyCxeubm2uYAwX56q1seLkVO1rX1/75B984gMfeP/i4uLXv/YM5/w7v/MDrWbn2a9/4/r1m0Cl01PjScwPLh3+6Z/+mWefe+GNS9e3dra//syzh48cW1vfrI9P18amoyjOBRwGkecTABFjhcb2Vn+QzMwuFItHCj558cXnrt248aEPft/8gSXH8f7sT/+82Wymac6YHUepVkprnaYRAARCDABwXde2Xdd10ySTUhYKBaOyFLxYKlXyPAdyP6IEKKWE4MVi0fOcRnO3UHD6gxBAZdl0Z6cVx/Ejjzwye2BiY2ODEFKv1wf9oFIuHT164nd/93fX1jZ/4id+4ru+67sxoisrawjStz/xZJpmv/5rv3HnHXfXxiYEgIharW5YHvMPHzp+69q1YT+YP7YQRQnU8sn3v/fFV1+ZmJl6/IlTly5d/eazz1m0fODAkuP1NIAaIsv2hNSl8oRtW1KkEOKr11fWt7bKHlFKlcvlrfWNHOVCqGAYYUQJoTzLgQJcciPV39cqRlHS7w/jKCWEGK9D17OTLFN6ZGRhaDKmcgX7p8ke6wQBwMiIgEluC20zy3O/IcGIWpTJvchpzrmUo0xtzrkRQhoOsmlvIIQAcEPa3ecUm98o9rKqtdaEUVPhIIQwfNNcwrAVOOdpmmdZZtAEjLGWucVsRYAQQnKVZVxrbVkEAmwYxBBiMEo7AQb3NKWtwdzxXidm1pNSSkMguTLKVik5F7l5Mfv+g+ZPM68BQuhYNmMkyxLLYkIoIYVxNlhbW7t27Rql1BSoWmvjbTLi3I1q6xGHm7wZs6OkFIbvaSRxSZZmSay19n3fcZwoinzfT2MTCEkti5mL2W63TSmPMTbU5CzLpJJaS61lLrhRUDqOY54WIeS6bp7nproAABgKFaGjSh0AQMioUzXfhRBqBCFExsI7z4RSEc8yQkiSpBgjn/jGwkIpbcaH+7xm8yTqtrxEUyWaT5I0MneIGTDoPfozhFBLjRFCAAuRKyVzhHObAwSl5EmSBEGEEEJIEMxMT8K5ZAwTzNI0y6VACFkWC4YRZZAxZtJQtIJpwjmXSgmEqeM4jFGAQJqmSRILIXKeGuoNYwxCvLKy4nj2zMx0luSQgGa7E0URQBBAXK1Wq9VqGMaUUqCAcSE0xyvnWRAE09OTWmvGbPNOKwnMG40h5Jz7vi+ECINIa62UORRUmsZG+qq0lIrPz88fPXr09dfPCSGq1Wocx2ZOPFo7fDTpgVCMYH2tCCFaSmoxhKARyRkmF+eckGw47FOKmUXjMFxdXQUAmVEcQhBjXCgU+r1hlkR5wjHAQoucp1orBbFfcIUQ3W53cXHRcZzp6Wkp5eHDh9fX1zudjtGJX710o1argQhRyoTgluVkWWbbtvntUkoTdmjWu2VZyMKdbgtCyBiFEPI06/e7k5PTQRAY2J0QwrM8zeIgCEql0sR8XYjK9tYupbRarcVB3NjtMGYZEB8h5DiO4Fme5xhRAJBFmGX5nb7knPNUdVoD13W00P1OEgTB3Fy5F0RxnFVKY4Og79newYV5SsluY1vIfGJiYnJ8klF3dnZ+Y30TSFDyC16xkGWZbbtAwzActlpRzrNKpXLo0MEsy95449JwEBDCxsfHIYRRFGigLIsqJaanp3d2dgiy4jDxnAJlKE1ElnIhk9nppTiEg2EsJIQImppcaUAJVoBTRpVSRZ9GEabMeuXlV5966qn3vv+9aRa9770fmqhXPvPZP3VsSymxs73d7LR3dhrveueTJ06c0EDZtj02Rmu1eqvVFkJyadjH9JlnnvmTP/nU0tLS9dXlZ5/5MgJwZnqi32sVfWdt9dbv/Pf/NjlRr5bLcTSMgnB9fY0hODM1YW60KEoYsxHiAKA8E47jzC8cWF9ft5iJS4V5mmFMtdIEM9fxTc4nhJAgLKVGiAiRm9OKIAwxMvcGoyZtbLQnauPAvUeNNAeWbdtKguVbq/1ej2AqtXz22Wct5uxnsZoBqtHyGyBDKQURVgpyzk+fvvvo0ePnzr1eqVSSJDl37tyFCxeefPJJDYGGYHZ29vz584uLi5Vardtre76ztb3xu7/3O4wx13Xuvu/e2cmZ1y5ffOmll07dedfU1NS73123bfurX/5KsVgEAHz9G8/0Ot2t7TVDyNjd3W23261Wc+Hg4s/8zE8tLS0xxj7zmc8Mh2Gn0+Fcvvzyq+PjUz/3z3++UCgsr26s3Lp1+PDRwTA48+JLeZ4fPnTo0KFDn//cX/yPv/kfY2Njb3300cefeCuE8IGHHhwfmwAIfPkrX9vZbfI8VjKHmkMINRBmSmfbDoQQKaiFTEQMNCp45YLnSCmzJAAaOo4XhTElNoLm4NaeV4SQL6/crFbGlIJXLl8nBCVJmiRJuVz+4Ac/aNn0hRee21hbZ8yO4xwCqCRGhERRatuMMYtihhE1Y+a99DCGMa5PjB05fKxcLl+5cqXVasRhxKWYmJgoFosIkqef+fr1azd/7Md+/Ps//JF/+8u/8vrrF0qlUq0+9vDDDxeLfrvbeePSecdxtra2bt68mSSJOeZs252bmwuCoNVqVMrl4XBovIxdxz9+5GiSZI1GAwKYZZmZPO2FkOftXtf1bM9z4zgUQgiR16pjtutsbW0F/QElpFAoAAAuX7oUhqHNrKuXLkdhDiVTAmmuIED/5J/89PUbl5878zVqiW63iwnY3t7VCvSD4YEDi3Nzc41GI47SIAjW1tamp2e0UtVq1bRX29vbQTDAGHc6HQCAmfkZGYfWWgolhMAEaQW0Fpbl5Hnebrc9z8tHAnHOuUAoU9pQEqkZ25h9lWJiaNRIAQhHejIhc5UKoEdhYFJKY9a8X1xprSEAZiy0V4FoUwDIUUowLBQKxtEU7aU3GwrI2Hi92+2Gw2Cf7moQ6jdrOTJiCu8XS/srGu5lxCGENZBCKDBKJ5IQmHJdaq1r9erBg/NJGjJGGs0dITiEaGKiHscpRAAAxHnO2Ggcsuf1D6vVmuNaQog0jdM05TxLksj3fYSAUkIBCTFwfac+MRYMhqaSnJg4sry8DCEc9ELf96MoMnRYUxR3Oh1juBEEAec8jnOMqOt6lFhZlnie9+CDD0opZ+ZmlQQry2t33nmn7/t5nmsJJJCm9DLHmev7hJBgGLWanWaziRCq1WrFQuHoPfdMjU9UKhXP84RWZkBLCFHQOG5pAEAURYVCIUmjb3zjG5SSSrXk+y7nWavV+OYLz29tbZVKJfNGu65rwjwcNkJmDIlKAphlHOCsUChIAOM0y5NcKWVZhl4gCKFK6CSLzGZrbLvwnpealBIhYkgnUsokS802rkflIrmdF2+QAXMDmLpo/63XWjuOZWBowiyEkFRCA80oE6mQWhiETQPkO9729ra5IEIIcw0hhAZhQwj5jm8r22iJbIthgIQQmunRHTgYdl3XvXz54vLy6ge/9x/MTM9bjo0RkxIIrgoFjzGbUuy6NmMIY6AUQAAoASQCGI38MaQEg0G/0dwx7U25XE6THEJYKpUgxfvUM8PxxBhoCIACGAOpAGMIAJCment7y7VsitGg3w4Q8n3fsqebjZ3JyUnKiOvaYZhLpY8eO3Ty1LFXX33Zd61g2D59x51Bf/D888+3m23f98bGqsDGN2+sR3EQJeHS0hJCBELoeV673W522hi7xhYNQl0qlbSCm5ubt27dGh8fn5+fLxaLQog77zjZbDa73X6hUIBykGVZFKcAgI3+GgDAsb3VW8s2ZbNT01tbW3/8h3/EGGOMEYiiYcAcN01jZpEgCF5++WXHtQz2Z1nW4uJivV4XQgyHwzAMp6enEUKO42GMIcRpmtu2a4DjKIriMMwzYdQWGc9c1x+1hdDEldhS6lLB01r3er12u727u20y7g8fPnz16lWpuJB5EA6YY6gHyPcLacQ7nT4hFGu4tbmrNQKaQoDyVEvFtdaE4HNnLxMKARQKcqXU2NhYtcp2d5ppFPt+AQgVxzEEhBKrl4SUWG9/4t0nTx7/9Gf+tNtr2g4tlQoLizP1en1yctK2nLNnzyUJOX/+9Waz/a53vuf//KVf+d1PfPyNN96gxBDkiaFOaK1t6mFEB4OB2RwZtaMoyrLsjtN31Ov1drtNiYUdnKVc73nMYUzM8tsPNBsMBvWxiXq91h90l1duFkveAw888Jd/+TmljAU+kVISQivlsc2NbckFxjRJ+2defP7UqVNHjx69evX6cDiMonh6dr5QKK2srHS6r/W6AUD4k5/85MNvfez4sZPMcjzPs2271xsiAs2qNkpM8G3osAbKoFX73Od9DOvv/9Bw9CNQf/sjR/Ob/bDBbzHcgPtLDCDjoI9KpRKl2POdkydPKC6UFmEYFvxqtTxWqdT6WvT7TdMsIYRanaaUEkKQZRlCJM+z6elpjPH586+Nj497vjXY7ozVy9Mz42fPvuK6TOksTWNKoecXbcaUUlmeAKgcxx4MYJ4Lk4B8+q77bt68laU8ihKlJMZICL6yeqtcLtx51ykI7amZ2U6ns3prNUnSYrE8MTVVLJbb7fbW+gZXEiKtpGKMJYnIkhwh0uq0s+2sUCjkeb69vW2MF1utVrfbN9mpec4NMm6iQmTOMYCu72sFKWVAoyzjWZaVy0Xf96XiaZrGQYQpzvO81+sRgsbGxmpjlZ2dnSgK5ubmVlaWPc8bH68HQTA1NWHbTAhVG1s4fOioUuq1185jAjhPpcpmZicmJydLpVK325WKb2xsNBoN1/U5lxhZEJDdnfb65tqpU6fK5XIUBXEcR1FkWZbJ4CoWi5ZlvfHGG6aGsG07TVONsjRNozDJMwEh9n3ftp2bN5Y553nKu+3B3NwcISTPuchy099yzv2CZyAYYjEpZRjESilzErdaLQNkKKUwRsMgnJjwKLHyXDSbTXOGGfza4CZIIwUAggQRoJQyuSWUWnLPPcoUMRjRIAg6nc6//Jf/W8Er/sVf/mWr1dndbdbGCtVq9ZFHHqKUfu4vPnvr1o13vuOJz3z2s5ZVbzYbBFulUi1OE0SolNK2bcJs27aFUEmSaA07nY5stUul0uTkBGZmEWmltPGl3PcjvZ3F/L8Gl+Hfs/z+Nt/5Wx4Pgd5THtzu4Pwt6xEACAFjeGFhGiFw9eqqUurg4qHtnc3NzU2HWZ7vUEodxwJKdzotIQRlWEgNudzXflqW1eq0l5YWi5Xy9vY2xmhra/O55565fuMaRdDznU63cmtZ/9Vf/3mnta01vHr1ynve8+63P/74F5766lNf/PL99z/wQz/8g7Mzk09/9QuNxlal7D/86NuK1VouJEBwGMaLS5VStXZzeW16etorVCkrrqytMeqWq66CEGI2MzN/4uSxBx+8r9vf+uQn//vk5CzBbpbJB+5/+Omnn3799TcsywIARVEENAYQIUA0kHmWKAVmZ6fr9bq5ta5du2HZzPQ5pWKl1xtqDW2rmKeZgeEQQnEc+wV3Z2er3calsn/p0iVmkVOnThl38pnZ+epYxRSdGCNCSKFQePsT7z569MTFN65dvHTp+RdePH78+MzMXLFUlQISAv7i9//At5xHH33s+q3l5196aWu36xYru7tBs9l8//u/6yMf/sDVN852Glvf873vu/u+e6DF/uiP/7ToVebn51956cLc/JEjx++ExFrd2BxEcX1i3HW8OI7HC9bNW63Xz7/y9NeeIdjGWHdaLSVH/II0zQAAw/7AdT0AgOk0MESSCwR1lsowEmYmynNpYEGEgZCaYogZIwRVKpXd3Wan0/E8DyO6T37RWos8N09owE1D8i0UCqVSyfj07c+EEBwleCil9sBicDuybD4fDAYsoVJKizKA0L7UTimlgDY4r34zJBAAA58piDCEEAINRlRNrbXWxvRDiNwQfsEoZQ8rk/HCJVBQ7wn3Mp5naYoQohTn3EglKITQYpYhaKO9/ByERuY5cRwCBAUXlmUhBOI4lFJOTNYdx2m323uantFfZ/B3gx0LIcwADEKAsAmrwSapxvwWIaSJU9ubfIxeJNpjT5gfF4JjPMpdwRgjggEAMIdCiOFwYHwzTGlHGEUEaynNpMGgzBhj02eaRs5QJQAAlmNrrY12Uu9FLzLG4niUHmMEsG7Bk1Jigm97htHLM6ixEAISwtgog17IXGtDfsIG5THdRRwnSikIsLGDhnseGvtosqHeY4RN3wIAUBIgSCCEACmgoLmXECIYU2qjNAVccQCQZVHGGNBIS2n00eZcZtTs4YJSWiqV0jQ3t4eZNzBGTdMYhclYveq6bhQmW1vbUZQIIYh2MMaYkTxJbYdRiqXMhoMIAOAwy/f9lHIIaBzwOOKEon4vDIIgTGJCKWMsCBLfRUooJQHQSuQ5xxghZFnUGNEYdgJjTOQyzVPD9DSXAkJoBjkWs4UQ/f7QfMWoU9ttPhgMLMuanZ2dmKgby3XGaJ4TzjmE2mT/UoSllEJx0/NDuBe9AUe1IoQwiiKlhNbaHHNpGlsWxYhIIeN0yJht2zalVpbFaQKiMOm2OknCoWZaQ+N2wxhFCBjyBwA6zWIFZKfTgUgLnS0uHtAoT9N0bmECSL27uzs2Nj4YBApozjNKqZlvIeMMQynGONGJUhpjSAg2Wm/TuGZ5MjM/Y9vM7EtmXGQqc0MQu3Ll0uLiYrHkdjq9aCMCUkslbdvJstxSFucyS3INFCEMIaQk3N1paiA5z23PRoBYzM8zQQjtd3vDYWCRfhzHACoEP+1y4AABAABJREFUrXCQaoF2drbTLEYIdTqd9dUNjNiB+aVnv/HNQa83MzNbLBb6QR9CyLns9wbmmidpkmXJT/3UP/K8wksvvZTzzEzcKcVSiTSNK5XSI488Yk6ZenUsDCIlQalQtZgrJfzw931ofu4wUI4SLsaWAkACACFwCwgAoBWBCMRhdP36VrPZbO22nv7618Mw/ABxjx07eeL4nY6FO53OH/7B75UrBd9zqIOUzl49eybP8+Mn7zq0dGxyciaO0mq1ZCADhNSVK5c+8fu/EwRBnATUpiXfTpJkd2sly+NKce740cUsjaJwmKUDySueQ6cmjnZ6g3a3k2X5xvrOxMREuVzuwk4wTOI4phZDCBWLxTCIpZSSj8yFEEAYY8NyFUJqqaR+0wNzP9QaICiEIJjBEdPNhntiGjCaVI3iRg38EYbh9NRUr9stlUqu67Y7HQNn27Zr1O5xHGdJ6jiOGXIAAJTWZmP8m7/5m8r4zMGDBy9dulQsFs+cOdNqtW7dumVSyuv1+gsvPDc7Ozs/P7+ycuvixYuuxTDQWZYdWFiYmpp47eJrL71y9uixI6dP37m2vlLwS0EwOHf+7JGjh8Iw/PKXn7p161aeZZ1Oq1wu27ZlFCQz0+Of+4vPjI+Pb25uXrhwAQAwGARxnP77/+9/PHHixE/8o5+dm5vTWk9MTVmO+2u/9msXzp03ebwLB+afe+4517Mpw7ZLr1/f0Fr/xm/+v4cPHSWIfuUrX2EWotSSSmmlLctSXPa6gVbAyFm0hmmaCg3yPBsOIp4DU/ZbFoVA+W6h1eqkGZdSNnbbOY8rVdcvOLuNbaAxIWQ4iJRCnuMuLR38wR/6gae/8uUb166b6oBRByFCCQAAKaAIop7j+77vOFaSRp1eN8/z8fFxTEkURe96z7vn5+e//KWvSinb7XYPhQDqbm/g+z5mdGys/ku/9EsPPfQIYwQhtG+k+/LLL2MMiyU/igZhGJoJN+fSEFQXFuYppY5lL8wv9gfdIAiNXLJWq3lewXG8tdUNpUyqxIgdCQAYRkPLpq7rOI5l20wqbsQcUqqNja00zSHBWkMtwcba+rFjJybGp1T22mq8CQFSXCuRjk9OHTg4e2BpamPn+tnXzgiZ+L67u9PodrsT0zPmeC2Xy4WCvPPOO3/7t3/n6tWr5XKZMZZliTmPTAnhOE65XN7d3TX3uaE6aaCE5AizUqmslEqSzLZtzmUYxlJKzrM9rkCuAWDMxhibPIPRgQKk2jvc5Z7jualwgB6hz/q2QAW594EJ3FsjcL880BBgDc15ZIY9Rk1r6qW9g5UY9ySeGRY5hhAqpY2Czdgzyj1rBXMOml9tPjGtH8ZACmm4wwAAQpjknFk0CHqLBw/ML8wTChtrO4PBwAyQPKfmum5/EBhFlIEOIISYEoyx69qOY1mWNRwOAUKEEpLjKIkNE7bVau2/+EqlYoRNtmV7nmccII2L2szMzNraGpc5l8K13CAMHcfZbTS11hQzhMjMTF0rKISsVeu1Wu3+++8/efKkkeOkeXbgwAEzdBE5xzYyvAgj+RofH0/CZKfx/+Prv8Mkvc77QPTkL1auzt0TehIGg0HOBAFSFMAsiqQo0qQVdil77bv32npsr8OzV/Z6vc961+t7ZUm+lrxKlmVLDJJIkWAAGAAScYAZYDA5dc5dub584v3jVDdAinL/gafRU11dVd/5znnf3/sLO+VymbrevQ88eOedd05OTiZJUq9URxA8ANAAaTREkDgMAG0Xv5TKcuHX1tYoJa32zve+9x3f9RCBm5ubN69dJQ7b2cmt3rHRaDDGBoNBp9eTXJTLZcZYt9uPopbR8MTUjO/72zubRVE42HMcF2NEELY0EQCAHUnurwdjzIi3gYDS2oZIE0qAsr35SIMC3hEbuE8vsD2mFXLZ5UoIcn1PKcU5F1zYwhUAYIzJskxLZQHuVrtrjMm4sBA2JgRj7Pmh1hoTGJZLRmmEkHEQ4gRjnKapw6jneVmWCCEc5gZBQJZXbuSZfPPNN8bHpxhjCJEsLaamGoSwTqfjMjY2XoMQSimkwhCR/dZ65FwJgVJaScFFLkQhZc4Y6fU6nMud7daBAwfmDs8IAUZZanstOsag4IaL3Pc9Y0CWFZWSP+h1Ot0WpRAamOeZYjSOh1EajwHN82SYxAUvAFQOwWk27HR3rt+4uLK6fPZMz3Vdl3lKmiLX62s7eZEaIxXghw4dhAAPo4RzmanCGEgpVQr6vp9lqeWVrK2tpVmc5/n29na/34cQcs7r1dqdd94Zx+nOzg6FDCGUpnGpVGk0at1uP03TmzdvOo6bZRnnvFavIIQgwFmWUUpPnb7dc9xzb7zOuXQcpoXEGNuYdYTQ+vr62uaGJZKsrq42Go0sy5rNZhzHWqpPf/rTly9fvnr1Kucyz7gFDe0S2VO/AowdYITSGuhRZLxQwnXZyZMnrU/QmTOvxPEQAGQfH8dZEARKFg7xchAx6gEFuJAYO7YpklIqpTF2tNZKql43HZ9onDp1NM4HeTGM46hUKjOH5DLnPBNSc54XheICfvzjnzgyf+yNN86fPfealJxSXKnWmmOVLIsK7l69tlPk6srl671eJLieGJ/++Mc/+elPfqbd3r16+cr4+LhllO/bDHHOSyWnXC7v7OzYYwAjmudZu9XFiDLqGqUwxlaXatsGhJDtlCklk5MTeZ6vrK/euHbN5r0gbJpj9edfeJ5QxEVuH2/hnjAMd3dbH3r/B65cueLQcpqm//J//RcO8yYnp43BjuPMz89Xq3XX31xaXlHGHDt27J77Hnz00ce6nb7vexYCyHlmL02z2cQYmr14wH2nZgAA3uM//tUkzR+zl/0rgJexDcroYebtx//485i9vwLMPpRGGPSRZ+07rMdTHEfGKK2B4OrmjYU4Sm/duuV7+OaNhTyLS2WPC+X7PqXKb5aKougNulmShmEAke50dx3HKZV9rfXrZ19N4yQM/VI5GGtOe55TFDkXuVAcEodSzDk/ePCg5/m9Tr/T7jHGfN/Ps77rMqWU0sIY5HthpVI9eODwxUtvXbp8dTiMp6amjxw9sb661e0O1tY2Pc/rR5FN3sMY2bQfrXWj1qSUdjqdOI6l0BCiLM+CoOS6xFInqtVaPIwtrabb7QIAGCNjYzOUOr3uQAgJAXYcQAiydbDrsTzPkzwrl8vVak0p3eu1u93uc889J6U8cuTw+vp6u92ZmBiv1Wrtdtuiw4RoY9Ti0o0gCLI8qtZKlUppe3sbADUc9qamJkqlua2tnWqlnue81WpXq9VKpWq3F8yCaDAc9geO4zDmDodD+3Zqtdrs7KwFHYbDoYVsAACIaAhwGIZaA4xhtVrzvTAM25ubm57jc87X1zcqlQoyoFwul8vlPC26vZ4tcEulUlrkEELmEAgcAEBRFFmWAaizLIuGg8OHH3zs3Q8//fTTd5y6M8uKhYXFMChzzo2x0Vu2x9CjlWg7DYQIQZRQpYTWGiJjJCSEQGQowydP3vWXf/mVjY2tSjl0GCkKFcexlPz69etKy0Gvu3DrhuB5HA0OHDzc7fbHmmO/8rf+bjTMCSFcmkZjLCiFDnU9D3AOtrc7lkfQ7/cgBNPTE5QCpaBBUGsgpMIUgx+9ffa5xvt91I/5afy3Oc5/9U7cv8vAO9IC/6rX8/6XtZOSElQqJZtHL6WklO3u7pIeGh9v1irVyanxxcUF369NTU3dunWLUqo0J9Q5eGhOa12ulrzQX1pazrLYZOLN868t3LpSLbnj42Oh795cuPT62Zehye+++/jc3OGFW8tLCzfvuuf+sXojTvNms5EW6RM/9dh9D9zx5T/9L1vb62MTk5ub26vr64SxiutaQsrExMTMzEGCmVsJlISJyNOimKi4nh8uXlv+8p/9ydVr55O4vbW547ssGsa/9Zv//sqVa1tbW3Zn9ryAYCal4rmgGNWqVSXk0SNHEAEWeWm1WvtlmdbYWnJZSWZrd2u/sOacA6jDMNje2RAyL1fCer2+s7PV6fZvv/32qamZK1eu9Ptdx6VTU1PT09Ot3d4rr7xy7erCRz/60VdePvOlL33pfe978mM/87ONRpVg7+aNpTtO3XXfvfccODTFAfzy17+5trFz51g9iszR+UN3nDzR73a+9rWvzc5MHTp6/PqtxYXFjbxQEOI7Tt156dKtK9euPfqujuP5E1PjaVYUhShE7DsuF+CVl888++zTURRNTIwB3mfVaq/bt8USxnTYi5QahYMlScIYtSthBNpCrKSEEJXLAYRQyEIbaS2PCQSO4youMMb1et0CfDbsBSFklAJ7HGfrnGDPa9/38zxvt9vW1oYQYlOO0zjJsmyUHQehxxyhleXp2HE4wjQvhDEjD0EtJbTJgVLaF0wdhuHbAkxLM+FCGWO0gtCMkvfgXt66rWJd17Ucun1ATWvNubUhYmTUyUjPo0kSFVkRBAFjLpLIotvaiLchb2NsiyiEiKKBMtpWw8YQa31erZVtU/QO7AMCMOrnKSZKKmuCYf8VIQQUdBwnzXMh+D7dOAzDOLaeaXbFQlv42VLbGia6rut5nl3DrusWMs/yBILRMxBCEIJCWBs+IASHEPqBD7SxUJ0QwvM8AOC+4YZtBZVRYRj4vt9sNo0xg8EAAGB1gaVSqdfpWiTaGgu6rmtJTvYz19oIMeLMIoS1HrHgbd8rhEAYQELsCJBSKoQc9Y0aWhMhgomBo9AYQhCEQKu99tgYo0aBM/vEfGOggaORmv08RS4sqAoZc11mu2iIiFLK1sOWOgQhHA6HnHOlFbDhcowEblgURRwPKcMIs0qlPD426bpupSw8z7t8+crp03d5tHzp0qV+v+t6LE05dVi9VocQDXtDKUGe6Y6MHOJLIzutASEIKCAlVBJJwSEk0SDSArjMy5GAxkgpoyiSkkMIS6XAcSzSDaEBjDGCWQYyKSXY45FxzqWwix9bWSfEsFQqZVmGMfY8r9FoUEpv3rxpW/der2cdaYRQGCsppZCFtnHuENorZfUKUgorFChygcnb+F2/37dZ4hBChLDWQgrNobRez4xRBIDjOHmmpZSUepRShIAxSknDZe75DkJmeWkVIIMwAEAPBt2l5Rt33nnHwUOTg2FvfVUfv/3YWH3s1VfODIZxOahorQFARVEQgjAwNgBQaGHn0xIoSqkdeyRpdPLUqQMHDty6dWt/KmP9XuyIIs9zLvNWq2VzLzY3tqEGGNN9Pp0QAmjjOA5C0BgMAAJGcsGDwC9EoZQzHMQAgCLjSZIoBRcXNlyXScU3N3ZmZqYPzB2+fv389PT0zOz4+upalmVx1I2jvNmY8P2wXHY6/W6axhhjzwusJZrdCh5//LF2u/3888/Pzc0tL6826uNBEGxsrCEMq9XyRz76oaIo4mT4yCOPXL10I0sSzKx7ZokSVi5Xdna20tgwWvH9PPDrYVANSzDLzdWrV4wSeZ6/+uqru9stx3E3NzfjKEWIpGkeBt5ASeKwT37yU2ury29deGNnd7fUcBrjtXqt9sIrz3/j29986MFH77rrPsHVkSNHbrvtNkLI2vrKV77yp532FiLY9UIIuDZ5yce1ytjtt58Y9ru3bl4FRosidlnJ9xhCaHyiniRRkaflclkj6fultbVNnhcIYcYcDcwo5cx3jIaNiebSwkqWpQ5xkBF2lEUIRQRT6hhj0jQ1BtpMDoSQMtbtB1u0BSGN3vb6t35/o4VtOZJZmi4sLFjTHguOOI6T5/lg0GPMZYxVSuW520+lWby7tW1G/i1IalAqlU6cODEYDE6cOPHpT3+63+8fOnTo9OnTf+fv/Mrly9f/4T/8h5zn5XK4u7t989ZVDBEE6o5Tt3VbG8M4+tmP/8zy8uI3v/2tAwcODQaDF198sdPt/dzP/fz8ocM7O1tQq8uXL168eDHPEjsDIwRbv/UsS86cOXPg0MFz584N+pFSqtkcP3Hi5Pnzb2VJMjUxYYuQ8fG61uD8+QsvvvgiY6xcLvcHvddf3wFAe57TaNSuX7/KRcYYu3rl4rWrl1zHr5bLYLw6jLpaMYypkpJzxRiJoqzX609OTgCApZSF0EFQ1Yr028OR6S2BtVrN8zyMHIoR0DyOU20EAEoIQQguiqzb7QJD6/U6Qmh3Z+t3/sP/79vf/vba2prjeMBY1w5hjAHGSF0EQRAEJSnF7u4gyzJt1MTEhOe5URRtbGw888wz5XJ5OIjHx8eLomi3Iq0ldWQcx9R1PvzhD//MBz8CAHn9/LnLVy4JKdM0pZTkeUooGgx7QeCEYWile3aC2263B4NBuVy+5557Lly40OsO8iJljAEACaGt3U6/P3AcN47jOEqDIAjDEFFSFFmpVOr22nEcz8zMMEa2dzYRQhsbW1zaQCZXCJHKXBuFENnZbqVRankwDnEQVtVq+VM///FHHjq9tdv2fff+++974cXnsiyTUh6cP9JsNsMw3NzcLJWCohDz8/Nra5sY4ySJIAxd182yDGOIMR4OhxAguwkDACx1zE5oLBG4Vq2HYShErygKCEcgYJrGaCSGQmjPkogQFsfDvUZjBA5a0ww94qMCpQwAar90sV9SSi1HM35jsAG2rtgDChFU0spJ0b6wwEoQ9gFoCKHN1rZNh9Y6TwtrDzLy6Fdqf3uEI5OckW9DUXCrpIEQClFQ6ti0PaMhxcQo1W61qvXg0KGDlVrYau30+/0oSqRWwCDBiS1mCCGtVsuWXtRxAABB4AeBZ4yJ4kFWFIyxLC+g1IxQREYQvMVGrQe9Usr3fYJwv9+3cE2pVGrUxg0EmJI0z4xR1sFsOBzWarV77713Y23zgQceMgZeungFY3L6jrvm5+drtVqSJACAcrlcMiODsqIobKiSrUaiKDpz5pWiKMrl+l133XXPPfcw1wmCAAKU53kQlrhUCCFis5oQcSCUWmRFipHRxljLqSzL4mRoay2l1NnXXndcOj09ffHSJWNMkmRKKd8PNQRraxsYwyiKer0eIzRN8ywrgiAI/BLnvNvtbm9vF0VBKXU8ACHM0gJjjDHFGCilGKOc5/byQQg1gFyMUov3ZpbIrg27UdsOAuzlB6I98xeL8ltQ0RobMJfqkUcc3K9s9znvUsosybXWUinOpYZASskcV0oJMLZCLYSg53lGKqEklwI5buAFfuDOHp/aXl/T2pTL1VbUGp+aPFg/Qq5evbK724qi4n3ve2pycgoYaIfYjkMbjSqhSOkcAAAg0EZyLjFmBZdKKYyxQwnGCCATZ1GWDgPfyYo8y2PP9ZMksUxV24HvYe17hpgAFIJvbmx4nquUAkCXgkApQQgyWiIMmUO7vU4/GhBCrl677DiO41BCEGUk8Jy8NdzcWjl39jUhCmSQEnJ2djaOU2v3Tgg1Bs7MzExPzTgu7fWGmDhS5ACiSrmepCKKounp6aLId3d3jTGEkGq1OnLYIYQgnCTZ66+fG93SSIVhODE9BbWpVusIkTiOLfxnefJybyNgDpmemex2u3fccUetVltfX8MYYmgOHpwjhPT7fc758vKy1hpgZE1Ry+Wy53mtVuuDH/ygy5wPfehDq6uri4uLY2Njljrkum65XBZ6pMyVUmJE6xNjCCHHYaVSsLW9gRHu9XpWUuG67srKSprmlqahtY6GmcMC1w17nW6W5cgAA6Fdl3Zt2aLBqvw41xSXQr8mOHCYL2WOPBCGYaMxFg/irc0dSkkQeoSo4Wa/Wq34gXvw0Mzs7MzUdPPZ73zD9WhRZBCZH/7w+SwTvQ5ACDAGPC+Ynp7+1re+vb629V/+6x+WK6Fd0EHgZZlVcRZQQ8656/h2d07TlDHmMb/X6422bw0RJq5L4zj2fZ8x1mq1giCQUqZFvttpT01N3HnPnauLC5xzzMArr7xUFNmthRtKCYyxMcpKTuy09uDBgxDiAwcOOU6r0+51u13f93u9nu+Hd5y66y//8i8nJ6f/+1/5W7efPPXVv/zGe3/6fT/13ieiSECEtBJpmgKggzCwJt2e5+wxIO0xM/rvSHT/DkzK7Bs6/xV7WfCjD9tr7Ec/NMBgDI3+EeU+tO6xeh9oMwDCfYG/MgYjWBTKcXGWFZzzosgcx1laXljfWF1bW6aU5nk6OTl58MDM+saqHwTT07Nra+txlIZhyBizqQWdXrvT7hWFDMPQaG0trja3uoecA3fffefOzraNLa7UynfffWe73b508VqWZdVqrVqtJnG2uLiY5zmhSErtem6eA2OM77t5Ji9funHtylJWpFE3mZs9+r6f+sBXv/q1l156pdlsMieo1ZvNZjMM/U67vbW1Y83LEMKTE9OrK+t5nvu+DyEmRAshHMc9cOCg5XN5ge/E8T6PKfT8ycnxICiNjY298vIZz/ODIEiSJC8KnWlhAqGlEKLfV1bfah1yZmdPlspBr9dbWVmyZJD97tFS6QEAWZZ2ux3GCKW4Vqt2u521tbUnn3yy3+91Ot0kyRAkQsgwDAlmhw4e2mI7vV4PIUse55QyQohWQKthuUSytNje2p2ZmUnTFO55gxpjNJDGmDwXjmPGmk1KKSFMKVMKyhCiqanpLMuMVACCoija7TZBlFFsIQ+Lf40m20IRQuz+yzmv1+tjY83V1dVHHrpvdmqWc/n+939g0I+++c1vttvdIAhcl2EMhRBAAQCMNspoRAhxXEcIYWMclBKM0lxwO9DWWm9urSktorgXBJ7neePj9f6wRylduHUzSaKp6YlOp0MI6vf7Giy6Luv0Om+88cb45Fyn1ztx4vYwKBdKMxdEiep2+gghQmkUxxjj7e1ti+BAgjHGYVjyXCzk23YW7/zad7p4Jzq8f9/9RH7zT/yn/RsWvOO++28/iVYAAEAIaDQacRy3223P8yCEU+Pj9UZ1bKyRZcnW1iZC4NDhWcYYAjIaDDGmjbExpbjUxvWcmzdv3lq4sb29yUW2vrpYr4UUGwjy1m4ry/quAytzY4w4QgwIkc8/90xRFJ3uDnW8XCQUI2n01s7mXfffXb4Vtlvdbn/Y6/X6g24QBMvLi1evXp6bPQQASNPs1s2rXKrxiUkIYbsTX75y5et/8Wevvf7SWLN8x6kjt5+cP//G2XPnzhGMQz947LFHz5w5wxghBPmuP+jHQgiXeRAapcXq6sqRI4e1kUuLi9Ew8TwvzzliCBg4HMZSyq2tnSwrKDG20LRuvJQFlUrFAMl5HgRBuRwqJWbnfELIxYsXl5aWKpUKY2x3p93vDRlzk7igxH/qqacQZN/85reffvrpE8dvf99PHe50o/NvXbz//oempqcyARy/PD4xNTE1efnyzQtvnXvPY4+6BD799FekVg+/63Fl6JGjJ9/zRBxHxc5uZ2xicmbuYKczGMTd7cVbXOijx04kSRaWq1mWPf31r3znO99I4169VkrjAQEjSz4AgBCCIGqMsQDNfj1gjBGyABIghACEdruwEIxLmBBWRI8gdCzV0aUMOW5RCMVHELOW0paDtlVgjEADCi6lVoPBYJ/calX8SikCRxWk9XeGEBJMkzyzQCTnvBDcZlsrBWxsnaVIjFCEvYRroWTOC6P0PqONEGrbMAvF7ikukTULtiWKMaPkKCFlIZV92XZSpUY4hcbUnZoZT9N0OIzjdIAxdZhHHWwpeFprsBeZkgsOBMAUI4Bdl1kmiFS8Wq0eOnTo/Pnz6+vrjUbD9lcjK3mpLC9b7iUH7pnzeoSQJMsIIZjAPY6wQQjVajXO830SN9RGA4OApY3APM9tLgJjDDOkjNzTt0oL8r4NJgJjN0NbqiVJwrhQSjHmIGTtBXMAgDGaUsoYdbySJZhY5o7v+9aWLY6jNI6TJLHvCCGEAXQpA5ahbsA+zm5hStsPaGMsdmwvIsYYI6yNtPWD7dkIZtglUlgXXaq1BHo0HEcI2RdpB7SEEJd4Ugu7lvb2tFE+8R6xXdnmenRdtY7T3HJdXde1raxUvFIt1eqVGzdu2JYSAN2o16zEMIp7zUr9yJHDtm+3Xii1Wu2hhx4EAIRB9bY7ju3uboflsFIpBUFwcO7QzZu3Lrx5CSNaZAU0UCjJGBNcpfsmG9RPkkjkmniOElprQBCSQiOMtRKcyyDwGHOTJKGUQmPxemgvMRxlY2Ip5XAQ2RvZ8QPGmAIGG2D1iEIIW+/t7OxY++/9KhpjLGVq8zztEAXZUBoA7GKzH47W0haJgitCkTXRYtSlhAIApFS2mTBaSZkqLbSWQeAThKrVKi9AonIIoeTCcRxtNEQAasgL6XqMMaqBNkZBBErlgBC0srrQ7mw1GrUDB6ek1ADLk6dv291sDYepkVApM3qRwEipjNGQ4BEbzqA0jV3P7Q76lNJSqbS6uuoQh0CEAUQQZXFiV4LnefV6tTsQ7VYfGFKtVkulslU3S5G6rqc1N0ZJpaFELqZ22AOhKZXC6enpdq+d5YldM8jzoiiRUvnMl7mUADqs1O1ESi1xJCWXWpowLCsJyqVakas0TTHGWabtB5tlWb/f91w/CEpRFDXqzZ2dnR/84DnXdcfHJ13H+9CHPvTggw/+7//7/4YJyLLk2WefnZiYOHRw/sKFC0u3VoLAh9BkWRbHw+2djX/5L/+X+fkjBPvA0LHGbKM+OTk56zr+9evXz50753uVPM+VlA8++OBYc+L3f/8PAQSEoLWN1bvyO7zApxQmEFRq5VIlnJ2e2ukvO67LRSxkakDx2tkX1taXhRD1euPUqdsBAFevXr106UIQEsaY52KMzHDQywU/derkfffefuPGNQgPNRq1JB5ePP+WgZy5wc1bV1ZXNlvtTlFkxHE31s/u7u6ePnWH6/rrGxthyZ+dnbXPDCH0fX9qanIwiLM4E7ndGSAAUinDudxnFVjrT621UNIYgyAEYCQbh9AgBLW2GSqAEEIZRgj5vt9qtVzmIET2UYxSOUjizG4deZ4SgqjnCFkApQEApcDLuYSYtHZad99998/8zM+89OrZA7MzUTR4+umn3/Oe9xRF8Z3vPPfiiz9817seOXBg9sWXfriztW20aNQqk+PNYb/tumxpaffP/uxLa2trCpjd3d08z6njSalffeXFO24/+bc+/99BZH74wvPdTmtmZvrAgQMbGxtxHAtZ9Hq9sbGxohCdVhcB/Mu//N+/8cYbJ0/e/q53veu3fuu33ve+9z344IOH5o+88cYbCwsLDz/06HPPPRfHUej7rfauRSBuP3XbQ/c/8Md//EdJzOv1KufcZciac2rNIVKh73GBomgwHMZbG1tG49tP3nn/Pfc999wPlAJaQ2KCLOIQCmtOAgCQhWzvtOu1JqUMIayURAgx6hlN4oiXyp7vlQmJgCHW7YHz/D//8X+ynWyWiTznhNAiFwgDyQXBNE/z1k5LagmANka5vlOpViECOS+q9ao2Zm1tjRdSKZWmuUPdQuRGaYAA5/zMmTM/eOUHgqsvfOFLKytL9UZNCI4xCEKPEOQ41Bq82vgHx/Fc1z127BghZGZqutVqWZc8BInRME3y9bVNl47CIeIorVarzPPzouBKEoIopU899ZRScm1tjVJcrzV7vZ4yOk1TqxyyY3gAaC7ybrfb63Q2N7bnDx87ffqe7333+UOH5j/3y3/j0o0bX/jinwzTfqUSYkYNws2JSdfxEUKtVmt+/tDs7GySJCsrK+VydX5+fndjC2NYqZT6fdVut63kxcrNIUAIw33PfVvOBUFg5ae2BLKgLeejkEA7JocI7ZV/wEK9hBC6J6WyvyiEUNLs1xt7SiNg6yyrSEMIOY6zt0/+yDRdSgmARogQhCUXOc8s+MgYs9EgtiaxxYDN0tDAIDJ6kVJKaxK9j3GjvfBhWycIobQeMWeFEBgjxhwIYRoncbczeXD6kUcf8H1vfXNtd3fX98M8lzIvAACWIYsgKZVKWuvNzU0/DBgj1ihMa20t40Y1sDQOHrmZEUb3K0mL2A6Hw1KpBLCxVoQAAMZcwuhwOLTbC2NumuaMyTRNP/rRj330ox9dW1vT0iwvr952221K6emZSeudZdm79vJZzZa9dlZSb9fGztbW5ubmz37sEx/7yIf70VAoe/oaYGNBIIYIeJ7X7bY3tzcAAFPTE0Hg51lCCNHKKGOYy9q7rTiOev2O1pJQxBizjSohzIEaOB7nfDDQUkqXkjiOA7+Upmmr1Tp+7LZHHnnk+vXrY2MTjUYjTdM77rg9iqLlhdWtrS1bkg37A9djnPM0TsyexI1LYYMfLUHbXlx7xe2ObT9VW4fYX7EsbPshlEqlkWoZY4RHBZ6dW1ijv/26sSiKTqejFZJSCq0gQABCxw0AQo7jKqWUBq4XAKgBQtKIKMnuuPPuI6eO171mpVLZ6CwO+924O9RaG4D8sCQ6kqTZsFqtQJAmSbK5se0HlSAIIYSE4IJLIRQm2hKREEBaayl0qVQaDocA6unp6bzgUTRAGPgBHQ4zY0Sr1aXE7ffjmZmZiYnJfj/1PB/jkdGzJX8pBYbDvmVcS8kRQkBLCwtqraSQ1GGuy4RW5996I82ygwcPFjzzPAaBvu3k/M7uZp5FDzxw7/UbVzdXNuzExproB36YF1kheKfdF0J43minyJJ0Z2fn8MF5LRUjtNNpWzc3jDEljtLCVtu2NBdC5BmnlGoFXIdijCcnpxqNxubmthu4zHUZc9M05e2OnQDY5rnRaMzMzLz82uudTqdeqxw5ckTpwkg1GAwOHDgQBMHly5fjOGGMUuLsV/Na62q1OjMz095t/b2/9/euXr1qtXsME4RQHMeYQKm1UhIAMD4+VhRyZ2f70KFD5XKY5Ynv+77vjo01rl27trGxUS6X7dgEIyqltIONLOUQcCGkrY+VUloVGNFapWyxfmtBaAF3SmlRqIsXrnITHTg4NTHROHz4kEOcmzcWGo1Gt90rinx+/tjp06WvP/3nhw7Nnzp18uatSyurS7Ozk9oIIQqlVCmsaRUFYVbkII8Ao6DRaKysrLz00kulsksw7fV6Bw/O2UQ7KeX8wUOLi4vDYZzi3B5OBGElpAGqGEqKsA2msDuyHStBCLMsoy7FGLsui+Ph4mLS7/c1zzzPazRqAICdnS1KMaV2k8GUEt/3bbp0ksQ3blwbDAYb2ztKmiAIlBIQ4jRN273Oww8/3Gp1nn/++Y/+zMd+4Rd+odvttlo96rgIA9dxw9AXSrquGwTUXkatgUE/ouvf93t9J+wFwI/gxX/d118lMttzx7xD5v9XITZg0P5PtQaEQKUAQJBzORwO7eRTKRUGzhNPPP6lLyxnOU/i4eRU40Mf+vDXv/61/nB49eq1NMmllHg0b3fjOE6SOC8SKSUwkhDKGKnVKt1ut1wu9/s9y2DCGN99172DQS9JMt/3FxaWoiguhxVbgBpj8jzBGOf5qC3nXGZZcf3aYpZK6oSlmrO70xv0i898+pcefvg9X/3qVyenZna3t5aWViy11nUCpZTn4jzj3W63Wq1CiJVSGxsbEKJSqVTk4srla81m00IwUmoI8eHDB8bGxjAGlLK1tY12u53xzCCowIg47LquZaVZrXfe6xBMq5Ww2WxCCLud/sbmupQaANjv9y9fvlIUOUKIMjwc9q151szMTDRM19fXf/M3f2Nubu7Xfu3X3nrrrW63WxTc98NmY3x2dnZxYbkoik6nZ88ArYDdW5Q0WslSqZIkmRAKAGTN3JU01g1ZCOH7PsTMGJMkSbfTTxOe53m5XC1yDiGyZ0mj0SjSzPbt9tYAQNtR03A4tJQfpRTG0B63zHdQAT71qZ974okn/vk//+cvvfRKrdq4du3aS57vuYFSZmZmxk7OjTEYQIABhIhzqbQEENn5MGNUCEEpJoTUPLfgWVgu25SznZ3NZrOZZVlRZHMHpgHUSknryY4xzrJkd1cjBLMsAwYlKX/22WeffP9HpibntndaYVgoCDo9CA1Ks9RjztLS0srKyvjYmOu6LWsnCgBCaGJicmxsjBBUvMPr/J2A8jvcMN6+9X7CXQPe/vUfu61+5Id/5fHvfJ79GQ8AgBAghAEAFoWwHLEDc4cA1HEcub4fBF6318qKFEFz48Y1jBHCJs9TQoiQ5eWVRW2gEOKlV1+Rki8s3sjzeHZmzHPRyuL1YrejlBBKViqlIot9Bykhpyaqcdz+v3/337t++c5777t2/eL09HSep9985puB60RRdDJLHzx9/7Xrl/izOaXYdd1KpfTIow8j6Az66dmzZ/2wdOfpuxaWFv7y6b/sdrvzR2YWl8uHDs187Gc/cunimwiBXrfTbI65HoXAVCthnvP77r0rjrJ+/yowiot0da01HA5Pnjxx6o6TFy9e3Nlu+b5fFIIQChRCUGupCSFCqCRJMFJxnFQqldnZWbswpJSBH2IMkySRkperlWq1avSISJskGQDI88Ddd987Njbx5hsXzr/51u/+3u+dPHn6P/z2b3//+9//1jPfXl3bmpk+NDs7Vy5VuTEAwGGcIEoDP1QVThHMs6jQxfyx+VqzwvwAYncwzI8fO/XZv9HY3d1dWd0ul6t33nVfnCWOxxA2/X7fdf1rVy49/fRXK+UAgUKIISXVsbHy6uKt+fmjWuuVlRUEMELE1vf2np2cnOx2O8YYbawUEQkJbR1vy1wIQZqmSomwFGR56vt+qVQSQvV6AyWNMUZDjfeEb7b3UIKLwjJzFYYoTzNEsD2ybS8RDyNKHFtfWm9iznmapoXgFpq0hDWMRvEvSilrK8E5N9BWqGa/LVFKUUoZGUHkSo9wSbIXSGiMsSCRVVxhjC272boMKmkwoogwDJBUXEtljNIGhTRoNuuOM7uzs7OzvcuYWyqVECLDfqSkwQTYUoq6TkCD4bBPmDs+3kQIYQIZI0SjbrczNTX58Z/9pA2nlaKABoiCjyBOKbXWGECRW2KOEbLAACrqjHBYQjHGzWbT87z19fVKpdLvj1z8jFRSSgAt1mwz4g2wdG8CbRdnaw+llNLKnu6WnQAA2Ju9qU6nk+fFPjV4v8lxXYfsRa80xut2ZwZQR/Gg2+16biCEyLKM54XtsbWQvh/aW8MPHKWU1DZSSUM00p1Y7rw0o9bCGIOMwQhJoBAYDQ+MhgIqIQQ0yHJOtbbAPiQIUEIQAlAjMdJmjjxDbJe7b/xn3wg0BhiklURAQwil0VpLQhB1GDZE6wwAwJWECGFKlTFJlhkIgyCwunhCCIC61++EJbdWP4YxLoqi3+8XRYEQ9H0/y5O77rqr3+9ubKyNjTXmj8wkWcwYjePk7LlXgSGWs4IxVsoooeM8QQQaY4SQQRA4jAnmQoiVMvEgNsYAAI0yQnIAQKVcm56ZJIy1O7vWxEIIJWVu9vy6FVD2YtklbRCkWu+NE0CWZUUhLPvEJsvvYXDIpoOmac45l0JrrTG0r0ooqwDAACNsBzCUOkJJAMzI1Vor1/GVBFzkqpDGGGm0LVWVUtZ025pmWATfduYYAiELrRTDxPVdQrA0WkloAIAYU8J4oXghEdbt9irG5PDhw4sLy1muGo3q1PjU2dffHHRjxrzRziC09f2glCBEEAJKGtcZWakePHiw1erokZsNGhsbb7VaW1vbtrro9Xo7OzvUw67rJkkOQMS55IWGECKjsiyDyLiua51DCqEs2HHk6KGxsTEIzeyhycuXL7U6O2FYcpkXBEG/F9ncUQodg4xUvNeNJw7VKPE2N3YwIo7jOczDiFNEjxw+rIC+detGnudTU1Pb27vdbjfPt5VSjUZNyHx//mSMuXbt2vj4eJ7nSnPPcwaDfpZllDitVosxh3MujXQCmiQJIWhnd6taKzfqY5yLm4s7128iBB2jYBzlSZIhEFBKp6en77jj5J//+Z9rkx87dmJ3p/3Vv/xyueK9//1P9gadP/vzL1y/de3eB+7GGA3yTWNEmhV+QIXIpMyTrE0pXV7d2dpZsPWz53m+z5RSw7gFDS9UnOXphYuvj0+WZmamuKlWQj8okbvo6bHG+O5OWwHhlpwmrsdRGqeq2+25bpAkebdfxHE6OTlZLpd3Wq1KpcKoK6WcnZ2FcFsLbSRQauQLD+EIaLYCCIsHQQgdygCC1tN8P15MKaW1hBBiO3aA8OjRo48//vgf/dEf9TpdCGGt1rAzV6UURGYfLsyyLInjfr/vMUopy/OcMXcYRxAZQsgf//F/fu9PPdnpdLa2tr71jaeFKD772c/+63/9r+fn5//ZP/snSRq98vILBkijik57ezVJGvVquVoWkr/yysu1Ws0gyHmRZTlznPn5o9euXHjmW0+/613v+sPf/08XL16sNyqPvfvRT37yk//m3/wbpYWKxZNPPvmrv/qrzz7z3d/7vd+79977fvqnfhoB9MADD5TL5Z/7xCff//6n2u32mTOv/Lt/9+9WVlYOHvyLnZ2dRrP2kQ9+5PTp09/+5jcqlcrPfeoTFMH/z/93R0sVBJ6UEhhghEniYa/brtVqQqgk5v1uoRT58Ic/dded93zy4z+3urr+3e+9pIWO47xSqSBAAVBSSYwxsPNpDQeDoeu6iJIwDH3jImIEB5gQRgOtAILM9fw0TTGGXKSW4iq4QRAjZHghmUOyJGYO8b1ymsZpMgDIUIYM1IRhKaXnu8YY3wusVZ2SUbvdJYQo/narGQTe9vbmr/3a/xtj0tntjI8342GCHJZmMXMCz3Ncz4mG1n5XCKEcB9h2AEPUbrejKLK0+jhOMabVap0x1u90rfKmUqm4gW/HUVZlrrW2GaSMMcfxLFnQ8xzHodaZQQjDue/7PjHEGEEIrTVr0wem4mzoBKQfdy5de+uPvvCHBqjDhw9du3blgQce2NjY2NlupUnOeXjo8Gy9XnNdp9PpbG+vVsqNJEnTLOn3+/fcc0+SJO2dHczY1NQUISTLMsaYFFobZWsJQojrstAPsjTRBjBGBoPIqp2azabd+ZMkKQohpbS5VgghCDFCCGOKEYXIGA2VUkIqYJDWVkc1uu/MXoOx/73V06CRvwS396N1T4UQEkKtzN2Wl1ZeRvbsmK1mZf++s2QFs3eyK6Xs3wX7GQx7WLMtY/bFKwAgpVQ0HJYrlWGv5wXe3/p//t1HHnnozTfPvfzKi71+v1wuT05MlSv1t9666HkewQwYWPAME+gHblDyg8C3sGbBs2E0sACo5NwYEwSBg4mNcU6ixAtcuzZs9J81aWE+LQrBucxzTil3HDqi/TqO2fOUy7JekmTWp+XPv/xnR48ePzJ/DCFcq9W0AhDCfauQPM+11gYoA4DSAmEAEVZavPXmud3dbSGKifFmkadAS4oRL1LH84WQCGOEDKU0jvu3bt145dWXorj/5JNPHjw4Vy6HRZFpDVwvgBAGQVBvVBdvTfb7XcZYHMcAgEqpmvPCdf2sELbst1dncnLSog3jzYkwDI8fv+322++wygbOue2a77rjXhtS9dZb5y+cf6vf76+vrxstbc1AHWZHCJ49MxjL0pRzbiOpbSFqi0OLmGGMbb9sFVcF50ZrSqmxDipQ26SQsFyGEEICNdRGQ8JY6PvWXLTTjRFCxgA38A2EBu6b0cFms4kQchwKAIiT5NiJEz/91FMooCrSzHHGJibHxycHK1HBOaJoGEcVOEUA0HfccfvU5KE4EkVRKB0bg8IwbY7VUGGGw/4wFpxzDEkQBHnGteGF6NuFu7IaZ1nKGLOzeschxqibN29urG/fd99DMzOz7XbXYEQIQ4j8WEsfBEGR5wAA3/fzNI7jzHJJHIKtAsv3/eu3bq6trT327ncrLV498+Lq6gowYu7A1M7Waru1feqOExNjNSALSp211S0htJTAaAABmhifStIoyThzvUGUnDp5cmtjqyjkbqsbBl65XIIQep4HgCaEGKDspqmkGWs2IYRbmzuJTqRUs7NzMzPTMzMzV69ePXfuXJrmR44cgQBbzzXiMNuzaQgMgr3h4OKVyxjjPE+lDN71roeTNLp+5XKe67W1tcOHD992222eF7Tb7WESM8YeeeQRzvnlK9dOnnzo1Vdffvyxd8/OTt+4cc2+PEsCD0s+57xcrRZFkabpZz/72dtvv+O73/3u2bOvLS0v2L81MTFRr9fuvvuu118/ay1frQWkTQUpCmF0Cu2aE1IbxRziuaExQBtOGZmsjlu7j8EgElrxXGysbymdTExVIUCeF/BCz01NFrlaWFgYH6e+709MTRoDHn3XA1evXn/p5e+PjY0NowGEI81vuVzjBWA0mJv1gSGEUIvk12rVKBo67ihh0/I+AADW6xOMQiYJMEjv2eIAqA1ANpII7jlRWlvAPM+D0CuEsH2glfN3e22fUiGEJ7yxifHJqYndTqtSqQhZSCmHUd9SnGznPBh2p6an0iLvdvsQI2m047iEuFmWTU1NJVn+yiuvpFn+j//xP11YWjv35hsnTpxgzM1TwVzH933Po1qPxicAAGRGFm9/resF/BFQ7Cdmmr3zwT/2/Y8xo9/5AK1/9GGjIwwiBCBEWZqFYeg4jHM+GPSOHJmfPzJ34a0zr7328m5rh4vsD/7gP62ur5y6/bT09Pk3L0xNTdXqlV6vOxzCKIrCMDh27AjGOI2zra0tKYXjOLVaTSnVbneyLDt0cH5jY6NUqly4cKHVatlxsZSy0+mEYTgYREIIqbgBIzmbC9zBYJgmnFIHI48X6uTJu97/1AffunDlwQdLf+Mzv3TXXfd98Yt/+gv/6BdffuWl//QHv1+plqxBodaq1x74ZciYhWKDI0eOxlG6FxUlNja2LO0dAMA5397e7nQ6EGrGWBwnUZQEQWDr5r3wX6C1IgxTw+zpWyqVoAHXr1+3Z7DjOFJobaRSamlpyfe98fHxPM8AAJznnuccPTq/vta6fPHGW29dsH3v0aNHKWU3btzY3NzudDrDYey63tTkzPXr113X11ozh8Zx7HnQWvXHcQIh2o/wWlxcbDab8/PzAIAoGgghtIZJknpeQKkzHA45l1ub21IIoyHGeNCPqmGV+CWL4yulgAetnstCxvPHjmZZtrm5CUb6qUJJKIR48cUXr1+/DoD2vXB5eXlu7kBrt2OMDS+13q8aYUAYRggZDaXU1j0DI8pFrrVGCEhpkDBB6Hp+lVLsuiwsjQ0GA+agggOli9W1Rc8tpWlqjOIir+CS57ndbjdJkl/4pV88dfudN28tf//5lwAAM3MHXjtzrtkchw6VUrrMk1JGg+EPn3teSnnvPfccPXq0VArynOd5jijtd3tKyKmpGZsZuKcG+pF5zDuPm/+Gh8aPQdU/8ZF/9Yc/Ebk2BnBpEIZSA4jRxNSk5csHvru4uDAYDHZbm5cuvOl5juc7m+vrrfbO8SNHXdcNw7LWst3ejeK0Hw1XVpaoQ6TkzbHqzs4GReruu0/funV5Z7OVFcb3aL0a3nbiqJSytdvvdKOxsRLA7muvv/jmW2cr9XKapp3dbqfdDvzS4UPXpOTPPvtsFA09nz366HtX15ZvXL2ytdmNo+zNN9+0LeXZN14/cPjAR971gb/8iz8xgP/NX/j0zNTYF//kfMHTiYmxqampK5cv9/qtRrNmjGGMZGk0HHQocQoeU4buuff05OTk1atXgUFhWNbaeG6YpjljBGgAkHQoE0WuJH/g4QezLLPxvJxzjFGv3+p0WnfedQoTs7GxkaapkmY4HNoblmCXc57ngzznjLpKqQ9/9CMXL1zZ3e3ed+8Du7u7g8FgeXn5p9/3wUMH57IUZLxgvjM+MeE4ztLiwoljhx9/7JFvf/MreRY99NBDw5h845lnT548PdEcm5qYnJ44MDY+d+bMqw89/ChmFEI4WW2Uys1uZxAEpddeexVB3ettQVjUKm6e9+vViampqXa73el0KKVAw6LgruMboy2bo1QK0zTJ8gQAYL0awJ4w0xaFY2ONycnxcjnc3tmyPZUUinOptS4KDgBgDrFAs21CoBmhAzZPHAAAIWaMQYygTcfWJld6/zAVRTHkvCgKjIgy2rYciIwwRC41pSPfA71nwQYhNEbZ8a3aSxo0lGKI9m0rrD+G1tISqPdj+vQoygYqpeRIyka1tixgjRDSRGsFNNSVeiUXuUGm1qx5oQcMAgDuKzm0MVBrawziuq4GqlarNRq1NE1nZqcWV5YRgnfcccfExMSZV191GAuDIEmATfEOQ99Ilec5gURoYRuwarVqizouNYRQaUGRa4zJsszKS20/KaXEABoCIQJKS6UUZUxKaaDBlDiOYzd/G7+xL1qUUiqpLByptMCI7ke4WHwZYWT0iHFsxYZWRma5BTZuSAjR6XQskUQIoaWCEFLKhBCS80bDs979I80pxtawBRiIINHaGA0FVxJI68wI1MgpEkKIKSEQAQCUtPMDA40CAFm+D9ifXhtlDJJcWctpe2ha/0SEwAj0HKk1wX5vrKHGGFOIpTRSKyAEQsgNfPtg+zx21Q2jPmbYvotms44oGQ77QeBWKmVjwHA4tNaNQeD3+h2M4blzr/u+q3SepFjoBGMcJ9nW1s6gF/NCQUAQNL7vR1GCIDHIAA2MNtQZtXMeczQEQGljDGOOlgoQYBcthAgYpDWAgGpdCCHynAMzig+B2nA1MlvTWgutCBpB7dbl00oEbKNoeWp5njvOyCNFCCWlhMCab3guI1Zpbrgd9kBLS5dSSomY6xBCpBwZuymlhsPEGokyhyBKMCZWpcYYAxDZ5WdfZxpnUkqElJECYQQAMEojxqDQUhob2gEBAIBIWdQb5Uq5gaC729rwA8oL0+7slLx6s1mXhSkKDiF2mCcVNxxgAu30GkJifTZtyHCe5/V63UjVbrfzPD9x4rZyubyysmK3BUKo1tqhZc91sywbyizPBeeSEKKUIARYCCOKB0ABSIDnO5OTk4cPz21tb7Z77XI5rNTDtIgQMlILpYQBCgCilIIEQwOl0JTSUlhtNCaEKIQoIOxtbe7kST42NrGzs808d2pqSmt97NixiYnd9bWtX/mVv/3dZ5791re+ARsVAIGt86WUr7129s033zJG1RsVu4kxxrrdLqXOxPjU1tYGj/uddg8AMDM7WQJAFHkQEM9DXdX1y2XB1e72gOfGc9xeP1axOnbk4LnXX3nj7Kv/0z/9Jw888ND/9I//aWd153d+9z9kIsbYvPjKC0cOz03PTl67etkPXEs/1Aq89trZYTRIs4HWenJyst4IJiar1h+g1eo4jkMgQg5wBC6k1pAvrtxoD7e7rd0sT48fPWaMEaaQgAeVEDPn6tXrQTXEQ0ZpQqm7tb1LCCqXy8aYpaWlVqczPz/f73aTKI2iJMuKvZHnaGSI8Yh9v3dCSXvuEEIM3MPA9kztpeRaa8owQjZxVG1tbZ458yqEwPrXd7vtbrfLGHM8hjGmDGOMeSEJRY7v2p1BKUEpTvMkTdOnnnrq//w//q8vfOmL9z/wcJZlf/7lLw6HQ4eyF198kRDy2c9+xhiDAKzX69ubq7zIlpcWZmdnCIS7u7tKiVLoA6iVkEBjABQv8oVbN3gh/+S//vHXv/ZVQtjs3PTExNilSxfieDg21tBal8vlz33uc0qalZXVz3/+Vz71qU9/73vfMwYaA7///e9vbW1Vq5UvfulPV9a3VlZWIMQ3b17HAD/88MOf//x/N14vddutldWlpVsLf/AHvye5qFRKEMJh1K941Z3NHWMMccjK0vowSk7edsdjj77/vnvvf+9731etegu3Nq9fXb77rodKYc1xvFdeeqHfb2NsjNZCCgiNQ1maFb5PR2xEaAAEUowicBmhmBLPDfM8d1xWFLkdzSZJAgGVAg76URiGxijHYxCoPEmhgcYYrRTWCBFsDBzEUT8acs6B0u12W2sAIdZaKKXyXEForKfWTG2GMkww41yWSkGaxY7L8jxHwEhRzM0eW1y81WoPbBKjMcb3XddlRZ53o2jfaY1zaWPbfT9kjHV2O5QyxlylTLvdpZR6nocQkpIrpc6dO2cNHxyH2d2V87xSqVhiYhRF3W4bs4lqtdLtdosim5yeCMvezs6uBEVSyP/r3/3rtEimpiY6ndbBQ3Of//znv/+952/cuLG4uGjBTbv/XLlymTEvTbg9+jrddn/QE0JAQuzpaWcto4k1sZbH2rpXAwDyPFdKqz2HASsbtecjQghCo5SRkis1crPEe/EbwECERuXT3sB+JAmyGqn9+tAig+QdCYFoTxyj925DixFrozHGShqgteO6AADLJJNSpgWXBbdiyv1RN4JQSimEwBi8/SRaEzKaxu1Pmvdm2DrLsqnpaSn5Y+95123Hj01ONjnPr169ur3VHp+caDQajhNsbbcb9TE/cEWuIYQA6jhJAAC1Wq1SLY1C7Yy0dSylFBFi+bOhGwAAEOIQQtf1McYQGt/3Xde1QsblxRVbFlo0aWdnZzjs21d44sSJer1eKpWUUvfff/+Xv/zlK1euxMOoXK5WyrUTJ04IIRxChZbGGIKQ0YoLgfaciy00kSTJSz984dq1axaa391c9x5+QEuYFhnFWKuCUUxs4IcR5dC/dePq6vJCqeRdunBWy7Q5MR4EQa3eXFlZyTM+Mz2dJMlw2FdK+b7ved7u7m6lXCs63cAvAZNoRIUQdhIQRQnnuV1RpVJpbGxsYmKCc2lvnHa77bquksYiGAcOHJyamHrhhR9eu3atVq8AADAgpVLJ8o4xIXSPf2kNRtCebYsBwBJKOOfWQs3sabCEEAhjY0ySpkopAxSEsFSplMr2orxtKS73MmA4l0EpFEJIDQpRVCq1sFSqjzUPHz48OTnpuoxzfvnKxeFwWHDe6/fHy5OF5K7ragDYaH3moE4IZgghIgTf2dk5fuz01GQjHgpK6cLCQru9e+qO465HCUU8lUWWWU9Gx/GyPEszmSSZ3R3SNA3DsFQK0tQwxuI43dhYA4BaY2ytEPWZRXYAAAgBpYDWxnGsnwhmLBSicF2330/zPJdKjNXKQRDkgkMMDh486Lju3NzczOzU9vbm66+/5nv06tVe4OPJqfE0Hq6sLFcrJQggF6nnlcul+vr6ZrfTK1VKvu+3e20bhbm2uo4xJdhFjvY811pnQAzshEoIUavV4iiVUvq+jyABYIcQasdHN2/eBAC0Wq3VW1t+la6srGBEG40x3/er1UqWjTREtgkBAIyPj2MMBS9++MMfhiWfUjo1NeW6bhRFcRw7jvPEE0+sbW7YnWVnZ6coiu3t7SNHjpTLZXsjQQgbjQbF2BjT6/XyPPeEqDeqp+88dePmtTRNB4Pe9MzkxUtvVatlS9SN42g4HFplGSGMYKY1cF1PSmWMNAq4vhNFETKGMYagsZdDCA6AEbLQBo+NjTHGkjzr76aKiyMnjpy64+jNpWu3bi5FUTLsRYwxhzqDXp9QdO3aFbtZlMt+XiTTMxNqjQ8GA7udDQaR4NJ1w8mJac/zbeIKAIDznDHCeaGUEqJYXV1FCI1Yt1xIKY0BGGOjoYGac04oYpQhTG0/Zvb8Iu1HB6D2goBKaYyJk6HWGkEM9jx6sizLsmxnZ8fzPAC144aDwYAxEsdDhFC1OjExMbG5tt7tthljjUbt4IEjQVCKhun6+vbi4uLK6tIHP/jBRmPsytVr//bf/tu/96v/4PqNW4uLi3NzB4Uoxn2PUprn4h28NmYQgObHYSm4F+j319GZ3yn2fyfa9RPhZvtsI3QbAQCANgD+qHGHGalEIQAgz0Ucx4Qg3/MQcoQQExMToui98cbZU6dOjk9UeZEuLS28/tqrx44fr1ar3W4/CEr2Q86yLC/iMAztMVwulWrVqqXbD3o9nuU7ceKFge/7t912cmlp+Qc/+MEdd9yxuvpslnV/7df+xeHD8//i1/6Xer2eJMnO7pZl6EAIhaCNRsNx/PNvXnEd7Dp+kRdZWnziEz/3/g/kOzu7a2vrpbC6uLi8trZx7z33/XnpS1oBJTXGZGysDpTe030ESZK0W909mNVYBCTLsjRNEYBFLmzykhB5s9mEEAGgXY9ZCpJ1RVdKEWa18BoAFIah1nowGGBMLd1jlNDtEGOM1irPi+FwSOgoSpgQsrq63OvwsYn6b//2f6zXqx/5yEeyLP/2t79td3+L4MRxYjQMgmB3d/eTn/zkux9/9Itf/GK7PXIlRggbY/K8qNVqRZFbQ/nJycnFxcWiKKanp6emZ1dWVm7dWjx0qBkEpZ3t3QIUnuPv500PBgObkBuEnk0r9n1/GEdWcGppxbu7u34QVCqVJEkE5xjjfr//4IMPzs3NvPXGW5/61M93O/3zFy+Uy9Vut2tnyGkaA6gRRAghoYSNNjJGFYVGeNR4t9o7v/iLvzAzO/X8898vl0MhBKG4Uimvra0ppYoiS5KI4ARCiDEUkg8GA5sT9cR73v3YY48FfrndGdx1110Ioa9+9asb69uMuX6lOqpcATBK53l++vZTVgYRRRHDZKI55vs+ItSO+ojP7F3yY3fWj1mi/0SRwV+9E39sDvSOZzN7NyYEfw02vccOsD5LGiFUqZS0LnkeGA4Lx3EwhkvLNxcWFpQSCBuMoTHmwoULp0+ffuCBB7jUb7zxxsXLlxBhx48fnZ6dXl66efXaha315YceuPvBB+6ZmayeO/v6pauLUJtBv/fSC88JIcbHZuqNqU995qN/9tWnz711/tD84ccff/fs7NzS0tKX/vTPHce7efPm8sriW2+9yRx84MCBnd2tlYXVy29dZTQQHARBZXV983d+53cqtfCTn/zYVmv7+R88+0u//AuPP/LYr//W/7G8vOi5rFarFXk6OTnuOBRAo5RauHVtMEjK5VBJmOV5tVppNGpLSwvGQNfxAQAY0ThOESJ5zhECCIORu4tDpJS33Xbb4uLi0tISQsh1nf6gB6GdbPkAgCzL0iS393IYhox6SZLUarVut/utb/77pz7wgUOHDj37zPfiOP/1X//1ubm54XD4nieOz87OxplGCFHXUQpkvBgbH9/d3U3j7sRY9eGHHthtbU5Mjc+fODa9ugkMXt/cKgWV0AuUgg7zw7BcrpXffPPNaq25uLhYKdfDkB0/fvTo0emvfeULZ1+7+qlPfHRlecFl+MiRIy+99JLWemJiQhQyihJejLwL0jRdX1/Xe4WaLSG0xpbpbIxJ07TT0YSgciU4fvz4cDi8du2ajcS0LQFC2MohrWSVc25BzxGgNkoswFpro9TIdSpOEELAjLJflJSWBQkBAlKYvSxBjLFBkEIspbDNiW0zwAgjRoQQMcqZGMkmCCNQI7pn9GaLHDsGtp2wfVMWjkQISTvHhUAoKaWERlOGKaWUEoSB1hIAHcdDrQFjrtYyTfKsKMIwLARP07Rer9XHmnbTtrkxNg7xxO0niUO3t7cLKW4uLnS73aIorOUxhNB1XWSQNDoMy/aAs3kYB+cOvPbaa5aIYYyByNjCIE3TOI611pRi3/ezLONZTimFiFhaUFIUCEEIYBRFAOogCOynFwRBlmWWqzIcDpVSxGEGQQSQAcrsBWns850dygghnHNjtFXg5nmeF2lz2JiYmLhx40a/37fBelprqbgdFmZZzjAhrmv1NwThPM88z8N71HKAIDCjC2SMAXCkkSR7wl6z1/EqaaS0Zn/Y6FHfC/c2Na21EAohBA1FkPieq8EougoDBAC0FRcAwBhoQWqAIYJIm9FftFT60R81xja3xhjP8+ydXirVPM9bXVrt9XoYY6kEhCCKosFgEARBno/8lzjn1qav222PjTcPHZ4eRsPuILNOUEmaOA5DEKcRh4YInltm9Ii5Y4z9WBBCnudKKQ0ACGFRcAix1sCyfvKM9/uDcq3qul7Ui7UGltYghCgKzjABANh5wL5+zp7gQgillFIjHauFAKw0WGugtZbSimtQXuQQYsfxwJ7RCoTQQI3QyLjG3on2CbXWjNG9AY8hhCFkSdAUQQIM8H3PGKkNRAgWRdHrDfYlsYRihC2dTRmDpZRSaEiwnRoajbOUc86LojM21tAa9oe7zea4NkBK2eq2tjZ2s4Qz6rmuW6vWpZT9Yc8AJbSyxHytUrsFIYS63e5wOKQI9/t9xpwoihzHocTRqgBAQgjL5bJUMI5yCBGCiHOhtYEQaQS01o1G/dixY3meD6O+XXQIoY3N9VZrJ+MZpfDg4YOOQ3u9QWu3J7lGCErBEXIJpkIUQVCanZ12XZSleXOs0e+3HeYBre0C2Nracnzn5MmTlOKbN28y6h0+fPjOO+88enj+hz98PkkS4hClslptbGJiqtcbZFnGeQ5ABQBg4x/tXbC4sOK6jueG1VqJELCz3ZaqsAJTQmDB43a7BSTGsFwUIhoWhAWKFxcvvXXz1tW77j51x+3HK34wMdlYXMQIm16vNYy6U9MTS2uLWdHnPD90aHp5ebnZHD958niSRtevXy+Xy+Pj477vE4IeffTRa9duXHrrwoljh2+77bY84914NwiCgmdXr18XWkTJIOXJ2sYapfDIkWMLy4v9/mBqci4XOSRwEPW7W5rzAgIsVUGIZ+NACll4nre1tTXo9QQ3kiuX+VLISqWSJCnnnDFmBYJgz/heSg3hyGi+4IVVF+lR5NRIQrE/P7N74OrqaqVSyZK0KACEkPPC7oH2JjLGYALt4MduF/szG8dxPvCBD0jFP/zhD1fKdUxJo9EoV0LO+ZUrVz71qU9NTU0VPEuS2HMoACAIPNd1ZqcnZ2dndzrtXq9jbSIoxXmeQ4ghBp7nZlmPEqff7zcajSDw/h//w9/5wz/8w7cuXZyamrIuEBjjs2fPfuYzn7nrrntcAsfHJs+fP/9Hf/RHzzzzrfvuu/fzv/LLAIDd3d0gCCTnSV783f/xf3jsscd93+cSvPTSS6+eefm7pTIA2vd9znm/35dcbPd2peSdXqdcCQ8ePvKrf+9zDz/y+Mz0AV5oLXU0NFKaO++698TxO29cX/L9cNAe3Lx1pTfYBAB4nsN5DiF0HNcYCCEGQGmt1QgI5hCi4TBqNBqlUsUWwI6DtVBhGE5MTPZ76fZWx2K7rkcANFpLDF2EDDbYOtcjAF3XrdVq29vb1kpIcQEhpphprfOcQ0gQgohAJVSexnmBfN/PM57nBcVUKeEyqlVRLpc4zze31hHyoyiyfrjtdrterzNK7Tm7X2lorV3XHwwGxphqpQ4ASJJEQTuIUsZgezNajZQt+YbDISHYdd2J8bLnu4Riz3cbjUYURUrJPM/K5VKaZ7V6RSguFEcYjE+ONZvjw2G/VqtZz9xLly4Nh8Njx040m+MLCzd7vR4mQEqZZnEWp2FYBQa3221jzNra2tzc3KFDhxhj9Xo9TdNer2dH3cYYiGxhI63exb4vhAmEJgiC2dlZa1c9gqcxlkrun637mhiLCNl21Q62ESLvbCUAeHuIa9HAfUWRMcZa6gMANHjn1EdSzPI8pwxDCG3wph1jY0a1Bsxz4V5+staKEKLlKNj5nU2KfYw91tEoCgJxztMompye+9znPjc7O/OlL/+J77uDYW9nd2tnZ6fV6gRBCUE26CebG9vDOCqVAmOMF/jGGKUEcxwIoesxixJYn7exsTHOeZZlUmtjTJIkqpCEkCiKg8Cbmpra3NzsdDrtdrtWq1UqtWvXrhGEy+VytVq1nvLdbjfPc6XMwYMHeSFv3Vw8ffr040+8+ytf+coLL7yglKqUquPjk5OTk4wxuwgJQogRe3UsLKD2XETsq+r1ur1e13UdrXW30/red5+t1eu3n74jyVIttFLSUBPHMYHwxtbWG2+ezdJhGNClpcXBsEsd7+TJk34QXrp0xRh44vhJYJSNXwoDr1QqPfTgI4SQF156GQDgOG4mUosRtfvdE0ePPfDAAwsLCw5l1Wp9e3sbY1qv16WUACBCmBDCaCSlSmVqr44QIgxDrQBziM1iTdNUKgWEsPVDuVQiezbfAEK7fsgo1HcUgGz/N03ToiiAMVmeQwghMlmWjY+PT09Pp1nsui4hJIqibreLEGo2xjGlWVHkvAAJPHzkmOu680ePjU9MlKrVer1OGeOiQAg5lNy8eXN8alII0RtGFVFnroMIrviV5eXltY11hzLGGHUdlWvi0ybSzu5We8Di+fnjjDpvvrlMnZmCp1HGEQKu6+7sbG1urB0+fNh3WVFk165dsx49hJAjx4/V69U4TtdWtw4fOj4YyHhofM8b9OQa7FYqtRLT0CDJgT1+sAEEQy2B5/hd3VFKKmWyPKOUQgQ2N7u7W925gwfGx5vAgDjqVCuVN86duXHDQ4gfnZ+sVcrjzXq33VlcXHzkvT9918mHn/nu19vtnYOH5h955F1f/9rTQuXved/jBLPz599ycKiUKnlhnkGjckIYpbRcwUIm0kggQVbwXq+XF4Xr+oQQoMHW9gbBDALguj4AYDgcDIfRd77z/SAImlONohDdToQRLXLgeZ7jBEUuDTLlchkhCIB2XbdUCsbGGkqpVqt1+NDhjY2NVicCIMr2vnyvXCun3W471SoZDgLm91u9K/Hll154hXPebE5ACAHAEFPBuTLQQNzvD6XUGLmvv3a+1do9evTou971yPjYZJ7nCMGdnbbdquxrtmoCCLUQ3HEYwpRSLCQXIqeUFlJQRAgglFIAFAAqSyMAwLDfF0JyLqknK40KAKY5Pt3q9m7evD4cLhfF1XLoT01NEkbTrAAAFYXo9luu6952/OigO0yGCQCo1xtQisvlcrkSCCGoo69ef3NxYdnzfDvtLJfLvU4uJUdYB4FvIBRcKomLJCpyjSH0q06SRFzlcZpi6tUcjzmsKApErVxX+p5rDeOVQo7Det3CGODTShynGDi8kJCoIjcGqs3N3bTgrktdj2mgIAZaGcd1hv1oaXGtXKrXm1PXr18f9juu62dxNjU+K4QetLvloLSyvIYxfujhh9NC+n7oeuHExPSN64tHj5QQQoNBFEWJ3blsHRaGYaNR0XsEZAiBwUDrkXEzRG9/A8zbov63SZfvcNiwhwx8R7qgfbz1PQcQUDayo0Fk5NiBMAQGKAUggkoBzIA2gBKQZzKJC4QQAIhQqEAepfHSjctnzrzqeuwTH/vY7Nz0d77zzJtvvsk5f/P8uW63E4Qsy4fp5sDSAZQ0iBKei36/v7m5nmVJnuQQYq0wRn42BGmcfePrz9cbE9DIO24/tbW5euLk3U8+9cHz5y8YQLZ3OqWwcvSIl2ZxliUY47GxCd8PF26tHpk/trvT6XZ6QcldXlk89+Zrn/kbn24Npi9evPh//87vDOLBt7/5rUGvXw8anU4HaKCxvvPUHVdvXO+1O1NTU63tbppnaZorZa2mMKU4z4XWEgGMMMnznBBKECUMyUIhZBzmYUoFErZ7VEohhKHBxhgIDGNMcBnHcZ5HruN7niOEMpow6moJbIYSJU4RI46U5zsQKqDM5tqmUAhj3Ov1/sk//mcIAM3Rm42LOzs7CCGDTegFlFIEoNSgUmlcvXozSbJeN8bIKYXerVu36o0qYyyKhlE0LJfLxqg4ji9futrv9/v9fr02niZRrVouhf7a6jIljpIaQcvQZ4S4nMvtVleIIsmLcdj0Ah9yYQw6fPDQ5vZWnKWbm5tKKcaokqK1vcEYGWvW8zxnXvD4Ew+fOXOmPWg99NhDr585d/FPLjYaY4Qwa/a3u7udZrEGQGmlDDQIGwSlRhAjwphSUhoTlGqvnTv34ckPnTh56uat657nxGmK8sKefY7jaZ1hgIABWujALWkjN9e2PM+bGJ+98OaVrOAb69vM8QyTP/zBD6qVehCUFq5d6PU65VIwP3+4XC4dPXLnfQ88/O1vf3d1YeHUnbcjBgTIBSBIAdepAMz2ycs/dk/9mJLgR7Hjt7/ff8CPRAu+I+1z7/Fv/z76UT9o8La8wNKrjdbQGAgRNABoAwoOBlG8024XeXJz4WY/6lMM3v3ud0XD/tmzr2VZcWPhmhc67d3dCxcu3HfffeOT01NTM9NTs7VSeWZyZmtzFUDBhXv+4uLsoduVJJubq4RhCTAH+trK4qcffqxU9YsirZVdYvj2ytL9t5+61h1MVEqrq+vbyxcRwicOz1HH6+50WpstjJHkfYJSjNQHP/DIuXPZc89ffui+U4cPVP70T/4jFGbY7vz2f/z1yxdfKVeU0v1ur62U0QJAEDLmFgWP49jzfMGVUpqiJkPe8tKmpdcVRYKJk2WF0ZBhK81XQIsijyEUFLvLK9e7va2lpRUhVBiULW4YBMGwL3Z3tjjPhSi0URDCPC+AhqHLA5doqUO/8dnPfn57e/db3/yuw+jhg5PXr7/huvqf/NNfDSuT3SwexlppyBrl0AMyg1pxYoqTR44IUeSwCuGg2jiACbv99HRRiDh/qx0lXrXqMHL42PGlpdWDyI8i9cd/9F9u3Lj20z/1U0ePHn3zzJnbTx2dnigfOzrLZZoVMWFwe22BG4EZzrPMupkTSIwxtvSX3AAApNJCasellLlcZ6qwETQOArDfHeR5ng3Tj3z0QyoXWENRFFxqIQQEAEEouAnDkFFXCEERQ5C4rus6RkoZ+IFFSwGAhBClAQQGQUL2wvGMMcIYIyV2HISQUYDb0DyDEICSSyUlpsQaAMOR1nJkDUEI3VdDW3Tbkp09wiCCAEMLKhNMjDHQjAR6DqFcjWzBbH9FEJZSGiA835mem/B8RhzCeWqMSVOujQCAWI5pxmOEkQLK6MLzKUSG5ylFGDJbJat+f+i6zEYKd7vtXr+FMcbUgxDpWFfC0iMP3A8NaO20O51OGJauX7++u83Hx8fDMLx664ZCAGKElVZaGmkAMCJXCiFpNGPMQADxyEDQKA0gYIRCCFng2PbAotIY432WMSHEKJ0mKQLQoQwpQwHgGgIAMIEAagA1gMoAyRyslFJCIYwhQBqArMjTLKWUtnc6/c6gSDnDjks9l3qDwdBITVzKuTDGYEa11kILxpgCGmISp5njaIwxIUztdfbGkmAVNNoYCA0hAGiCscH7TCid57mU0mFsxO2Fdr5gGesIQgQBkkZiChWwHTVQShkAoIFwrxHNi9zSz80ovBJa1IBSHPq+ZZwUSU4IcQhFEEFjgiAAUEvJh8MCY+P7rjGGQAI1GfYSAqlMEwgh1IRgDDhCGEPDaqWST8s7a4lSRgicQQ1AQLUHIYRIC5JJKSGGEEJMoZQCAkMdrAwCiFCXWi8Q21ICAIwWlJJSKfACr9frCZnzPNFaIugIWSgFtVZSAK2NQgpCBKDWEAFs4Nt8TyWlpJRxnlo+rLJBfxjb6QKjnu35uUqZQ4QQaTbkOYIjHjREiAKA9iI3EEbYaKi0NgZwLpRQWmoMCQCaEmpl0wgogAGEmjkUAKqUKgTAxGcs14pDxBXwDEQAI2OkMYbnhRCCKIYoJQxnUZxlqR+4Sqntte1ms8lKQTw0GJJmY6Lf6QNoIFTMgQgrKRIhBIVASuMAZBSUUvACUsKAgdQ4PFYcSEK0Q4J6rdrv9oTgAHCpM6UlwpQ5GOR5mqbVarVUCcslZ2VtDSCtNZdau+Uxt8LGZ+tZVut225bmtrS0mgkpFewPkmbM5w/ftmiW1ld204QDg30/BIQqrQsuDQSdXl+4RW8IVlZvlYNysznu0gBqDjQyWvNUXblwHWFACEEIFsXi//zP/tHRIyfuu/+eXq8nBJ+bm5mcnKSu84d/+IdhGM4dOJAkWRCExmCRFUM+LIoCUxSUvEplXKq80axznjPGoii5+Ma1SqXBC9bv8b/5uV9aX99+9ZXX/s3/+S9ffPG13/md37GQ6LVrN7JYi6p57IF3v/L9VwgErz33CmXwwMHpxoFyq701PTE7PXn4XY/89Fe++qXvff9ZCNXUTPXYsWMIsvNvXoSYlKu1KBrMHZ/hIhrIpcIk2PUFEBCLhx66rb3byzPJI+Gh6qANtlnW7aZKIVUMB/0EqwooCqR2S74nBA+8oBSUZQEMhFphrvVgMHAZlTwzyhRFQRElDsYJNFJxJV3XJZCMciwLDtGI1GmMAdpAAI0xACiIsJQKAEAphchoCLTWjGBCWVEUcRxrbTzP00IiylzKNNBGGwKhFBLYrFEF3HLAmK8BywvR6fWeeN/73vPTH42iCLNyuVoeJokXBpTS9Y3VT3zykz/7kfdnUn7961//1je+0e/3fT9EGJfKjcWVbTeox7H0vFq32/WhN3/0+OXLl7MsO3Xq5Gc+85l/++v/No5jCGG3F9XqeZyL//Hv/4PvfOeZ//xfvsgL47jhwkrrvkcenRhvAKRTDoCCc9MHvvgnX6zX6znPvvyVv4iyNM/zJEl81z1x27H77r33vjtPXr50/Utf+OJrP/xhs14PHB8htBulQiipxbAXd7vdcrXy1FMf/OjHPv7AQw/PzDZzDgQHUgJlIEJwcm4mT0GeFWGtMej1fuYTn+T8w7cWrrsBvnL1rWe+/Y0si32XHT16dGtj0xhDEHSo14nbBOixZt0NsRB5ELJazRsMdhBkGOOpiRnfC5EZ1qv1vBDnz59HOAAAaI2ZA7RWCpo0STFB95++t1wOtZEEQKh0pRoKqnguMMKMOJoaw7QQwvUCz2dKaMPVTncbACu4NK7LlDKUuf1e0mnflJxSChDBPBcIAYLooDe0eJbjEBuOl6apUkZrraTxfR+5pt1uSykxJK7rSymLXGlhCPRUAaFDJTdScaVQnksAdRBSiAREgjHMmJvyREmbw+yMNcYopVop16FPPP7IyZMnhRDb7dYwjqIoeu3N1xZWFyCEVRFRSjEDaytrRSGqpWro1rqdvpIRxmRiYsJmPzqOMz0z1ev1BsO+UsphlBJstOJcEEqNMcoApXWcFUAbSqkR3HXdBx980A5abHgspVRKbTmkjkv3FE1Qaz0yVwKGwJGMxvJYlVIIwf0gQb0XpWt/CwBtjNFGWk9nCCGCECIMITAaSqkMFQgTTBytjJLCAA00BtpApQk0QBaQUmCA4FpqgxHBCHAlLMeZUialRJAihCAySilCLL9BD4c9necHjx79+3///+W67p/92Z+tra1JKe++695Dhw4+//zzgotarVYUxTBNo3hAGYuiiLoOxdz3fYiMNlJJFcUDjLHkwnK57GwPIbS7u2trywwTgOBYc+LYsWNZlm1v7VqaZjTMtFpzHIe5LgBIa6CUSZJYSaCUsTSydrsdBN72zvrv//7vXrx42XGc+cNHT548dfz4ibBcRphBJJAGCCCkIDEYQgiUxhAihBFExhie5cvLS8PhkBDi+34cxzvJ7srr61NTU07Fn52dhRDv7rTPnz9viWUXLpzvDtqYkk40qNYqu92e6w1efHl3YmKi3e5ijON0nDHmlpwpZ+Lee+4PgtLrr59bXVkvl2qTk9O97oCkyNKw3OqER/yp5nSj3PR9d25ubqzRZBiJPEvTyPM8jFGWFZg5UgoNAMGu0SJOJMGBpQxWyiVMoNI6SoZCqjhNy+VqpVnmhSyKAhhoicxKKUsHQRjEabpvk1IIjjHWUmkIlJKVsHLw8BFKcZrFdu61uLLquq4yplIeU0ZDxAquEWT33vPg+z7w014pJMwhrpPlRVoIkBXGGGhUkvE777o3ydJOe3dra+PE0RmXeJ7jnL91dXt7e3pqVsgi0bGRihhI6o1ynAzPnXt9bu7g1NTM2bNnpZRHjx4FQGMMjVF5XrTaOzs7W+MT9auXl6MosjLY1dXVI8dOTE3O+H747W99d3FxJY7EocNH3//+DwR+RQjDCxFFg8bU7H6Hr/eyzjQArgvm5uaKouj3e45DfXdEtl+8uXrlypVLl+T9998vpbq1cOONN872B53777/7s3/jc9//3nevXr8Z+u7Y2NjlKxe11q32TqlUqtUqzWb9yad++k/+659Kyefm5s6eFUqpcrlijIEQUMflPPd9V4hcysxAUC6XTGGazWYUp5ubm6VSGcORlsFqiSqVyvr6er1eBwDkOXc8T2ugtcGIFkWW53mjUbN3IHNIt9tpNpsYE8754uLy6dOnwzDc2dm5dOlSFEWmAIDBz3zmM61W6wcv/sBlhDGS55BQDCFKszgtcmOMdURVSmZZCiEsl0MAtO+71kVlbW3t1G0ne702pfhv/+2/fd999z3zzDPnz5+3TCXLhxplFgkrdJWO42CCSuUwSaLWjrRtRm2iqYU2xjgOQdBYi964SPr94cz0HCTqiSeeqFQqL595eX1jVWsdBGVCUJ5nu7u7U1NTSqk4TiwDK03Ty5cvHzhwQGsDILBKh16vx3mKEOr1emPN8Vq1LoQqiiJN836/rzV0XEopLgoulSHIEVJjgAlmWokkyaIoSvOCEOY4Li+kEMMwDItCG6MJJRBiCMHubptSWi6XtZEQYIgMhEaIglBs6ycDjJRy2OvjZm1sbGxsvPHKmZfzPK+UypW5KkKo3W7nebG7u6tlQQhDsNjZ3TIaOQ51IAUAtFqtLBf33HOflPry5cvN5niWJfYusOGKo5AThLR1w9nDmke4FRqBX/sw1jvhrXeq+9/pDPs2dgZ/5IcAACEUY1ipkQc6gEYJSCmQ2hhjEEQjeiYwUkEAQBRzbThlUGsVxf1S6FICr1+7+oPnvtPr9cbqjcXFxW9+6+m1tZV3v/uJbrd96dKFw/MHKaV2Uuc4fhxnaZombmaMLjgle2mnQgiMIEJQaJlmebu9+5GPfmh7e+NrX/u6UvLee+9dWVn7V//qX22ub0kp69VaEHgnDpyws9C1tY3z5893O4NP/dxTtWrzC1/6spai1qy+9tpr1HXuve+B9ZX1N86df/+TH3j/k0/+1m/85naea6A00A6lr7zykhv4Nha53W5ThwVBwDlPU66UsFQy13UxJFbmybmgkBoIi0LYwAcDodbAGAkhlFJaOoYGBkCQ5SmEkDkUGF9KLWVBKdNAWVdlpQxCKC1SVxPmEGBzutKcMVIqhbfffuDChQs3bl77xMc+8eKLLw4GAxukk6apUrparRpjkiRizL169fKrr75sgxGOHp33PG99bZNQ5DhulmWUUkodpUS32wUAYIwvXbq0tOwdPHiQUlqpVLTWWVokSaKUMga4jg8AMkb5vl+vV8MwHB8fj3odORgMomFRFMNBfOzoiWaz+d3vPet5LoTmwOw0IYw4ul6vf+1rX7t161aSJH/wB3/Ac2EVGFqDOI6bzXq9Xs+3RkQYo7XrukmSMcqsrpxSqo30ff/K5WuHDx/OsvTa1Vu1WiVJo1KpVCqVkiSq1SoYQwo9rXWSJFzkEMJKpSKlfOGFF8IwPHL0eKvdHgwTgt1arTIcDo4fP/65T//82bOvGS0/8pGPJEmytrpljPn4Jz6xtLJcCitBOfACFyEilE0IfgdG/Fd8aX6ipOCdLOafaLJhzNtAM/iRb3+ye8aP/aIxUOuRkYJSgFIgJei0e8P+wPNdz/EwprOzE4NhZ31tGSKplNjYXFtaXoDalEqlubm5Sq2xsbEhpJ6fP2KMefONs2k2vHLpQruzUw4DFwMAaRynpWqpMV5JkuzMmdef/e4Ly0trlUql0+m89tqr6+urW+tbq6vrjuMwBznMhUhvb643xiYeffTRK1cuFVkyOdHAGNy6dT2Oo3q9fPDg3JUrl/rd9tFjh1ZWlhZuXShXKcbUAEUcqpRpddtpUjQaY0II5tBoOMiLglG3kBwU0LJCrJxfiNy60EjJKUEYY4r9kyePlUt+u7PLtdjc3EQIuS614eZJkkAImmM11ysTUm2321wU/X53dna2XC4fmp1KM3Hj1pKUcnNzs1qtn7zt+Ftvne912wCAa1ev1uv1+cPH37h8Y3Fl+84772cI5DFQUsxOTx+cnWqOTW2srfb6cVhqRsNsGLUGg4FB8O477sryNE8LJTljjpTiN37jNx584N4gCHZ2t//iL/68Uqk88vCDx08c9VwtdeL7TuCfzvP82tWXCCF5WqR57jGXUqyMKgqplLJbE8BA5cqjnlIqTVOhJNjT5WipLHxcFMX5Ny9keWLZoPkgklLvMS5zznkURUopz3G11kVRWJmCNd8wxjDmYIyFknme41GXYjEXJLVWe4RlS5kBdhCi375b9J4s1H5ZI0gtFdAG2nkJGD3YommYjWw9bX+llJJc7AET2hhozOjZMMZaaYyhkMbKL5iDecq15hBCz/Mcx9MaeG6Q08KObIvCYEyklP1+X3CFR6bwVIORl+6rr74qxMgw13EpQMp+npzziYmpm9dv7O62Pv/5z3c6PYLd/nDQ3u0MBoPhsF8qlRhjueYIEa0lQsRKwrmSjLE8zSwr1pL7gNYQAM/zgnrp8OHD3W732rVrAIB91xGttXXMsIbalDjD4TDNc+Y61noPwpHNsZXw289ESmm1w/s/tw4SGON9uz0IgX2GfT6L1to6hln+tTHGvgzLOLZUdCkl2Isgt/Yn9r1oIa2I2F4yrZSSxh55Ng/AknOtveO+R5kdV+z7gex7bljhMEJISDlCsfWIDGWXtH1aTN9OQheiKIrCAMV5HoahFfHEcZymKecSQYIpsVYklqZKCPEc1z55HMcA2M95lNM4chrRIz2y5wbW5NEYo7XhPHf9kFJapBnyPPvpjeg8fPSOhPVPxNYzXfFsJBFVSiFI7EDMGIMQpJQag7TW1uc6TVPbCVtKsr13bMlnyUTWwxTscfz3H7DPboN7huYjZTQEEOg9mrNGGEglAbBCZkUZgRgZoxFEAFp/DK1t6hSlDqUY5XZ+gDFGGEiuuREIQKWMUkXBOUwhgNpxXEZdbaRSopDCFAoYhAAaDhKlDMbYC3whlDEiMRnUI+eTjBcaAowIhFIpQSktiswiIAiNUsftMsaIhmFoVQhFUfieZ1eC5dARQnzXEwq32+3NjW1rvGPNQ2q1SqvV6vd7YRhCaIbD4cbm2th448CBmV6v2+v10ySnFPR6u0qpcjlsNKvt7mZ5qqa0Gkb9eDiEEJZKpTxv24/U6oWHvb6UcmysiTFeX1/tdLpzc3N33nm61+utr68O4kG328UY1ut1Y0y/3y2KDGMMtUnT1HEpo6woiiCYjBNVq9alEkmSTE5MbW/vbly+VuT61Km73vve9/3Jf/2S75d2W90r129IAy5cvhKW6/fcc1+5UlUavP/9Tz7/gxe++c1vdvq94yeOTc0c/KVf/tzq6srM7NTiyi0h8zCsbm1vSJWl2XBycvLs628ojarV2sLCguM7UmV5EVE62Rybmp6aO//WG8kwso7nGINyUNZqO8vE0tIKgpgQ0utuYOQYqaMoBQBpKRlzg6Bks2eMUdQhhsvA88Mw5LnIReEQDADghQQAMObmeZ5lGULE0pkxprnIrUAB7IFfoy8AgDEI49GSBjDjhes6DrG96ihUFlGCFEAIaaO11oURRirrF+c4nhXi6JzbeKuZmZlSye8N+r4TAgA85lgm1rlz544dO3b6zlPPPPPMM9/6dp5nNlOn3+9DCJMkeeutt5pjE0Io1/V/4Rd+qV5rYERWV1c/9XM/XwrLcZQaAzvd7vjk5Cc+8UnfD3w/uHVrcXd3N03U/JFjhw7Oz0zPDQedzm57c23nW9/6Fsb05MmTt91x/LN/8zP/6Y//82uvna3X6//wH/0Dhukf//Ef/+7v/sfrVy4/9/3vLy8ulatVAEB/ONBSSamTJNvY2Go2m5/45Kd/8Rd/+fTddzkuKQQYREBKDRFiDBXaGAMIAcwFGDtBOD4+0XAA9kIg5OPf+/63l1YuzxwYi4b0tttuO3LwiBKy1WrZOqpUCur1aqlW0lr0B91WqzU21jhw4ICUcmJiIoriIrebJKYUnzhxQim1sbGRpnEUx+VyuVqpaCnGJ8bGx8c7ndb2ziZjLAxDh3lSJGmeGWOMAsYYpdWBAwcs8ZkQsr297XkepQ7nXKkcAuS6PudcKUMQtjt2qVRyHMeaC1swy9LdRpsqQvZMkVLlea4AgBATgrANe4ekSLO9VYdlwbXRowMIGa11nvE8H0IIm83x7e3t4TBmjGVZXi4riw/2er177rnn9ttvv379ehRFa1sbGxsbh+YP94YDjHEYhlEU1Wq1OI6Hw6FSxqVuFEWbm5uVSqVcrszPz5dKpTRNLaW60+kYYxzHqZTK9pyN4wQTUi6XCSHD4VBrk6eZ41Ct9fve917HcW7c2IzjIYSwKKwiDe3n0ps9MdD+YW23UHuCYIzL5TDP8yTJ0H5ELSJWEWXpxhAaQggmVEqp9WiubKu40YGuNcaGEKKRth5cZmS/Lii1SlkOjESIIIQhAPYUI4QBM9LlWAMErQ2lxBjjuixN0xMnToRB8P73vz/LsqeffnplZWVubu7IkSMQwueee67X6z1w//0AgOXlZQt3jI5vzgFB1rCbc54kCQBAFHxUVSqcxoklZdtqMAgCydX05NSxY8cGw+HCwoItdexbsPozQoiVtY2kRdIUPGeMDYfDkydP3nvv3a7rDofxE0+8t9lszkzPlctVzoXdQDDGBNm1JwGyrAW0z7i3+1ur1dra2gqCoNVqUUpbrZYVZGxvb09PT7uuSyi6fuNqr9ezISuUOlmRep4DDOSc57mUUgJApJTd7k6aFPPz87Va7cTx42EYvnHu/Llzr09Pzx47fGxnZ5c5iHMyPj7+4IMPBkFw8+bN5bXVwPWMUUEQ1Ot1Wz+EYZlzznnmOA7nCiEEMNze3i6VKvZWKpWCWq3CGIXI1OqVVntnOBwy14XQDPqRFesIoRQwvd4gz3OAQZ7nxiizl7MCMWKQ7am1lOcF4+PjEJo0TcNykPPi5s0bUsowKNdrZUpcxtzBIArDMM2jqdmZICznnBdKIyGkMogwoDUhhCCsJFdAKSGzLCEQYYzPvXbu1uLC9PHJgwcPZpu50k4so+Fg4McVkuXx5MR0u93DGC4t33r19VcJZgCZ48ePTs9M1sdq/W60u7vZ6++++NJunqTAOHEcR1FUa0y4bhgNi7XVC7duriBEtrZb8/O3N5vVseZErVbvdgdJnAZBgDEciYz3sTYNssxQCj3P4dzv9TppKiuVUrVSO3IE5zy7devWzs7O/Q/dPzc3Ozc3d+XKhVdeffHWjWtRNIijPgKVsWb95MmTb557AyEwPT3p+s63vvUNxtiRo4fyIjl37szU9Fi73RbSxoIrh4XMQf1B++CBqVqt4nhut9ux7W65TLQ2FDMIYZYWRSGANpzz3d3dNE2DIGCM1Wo1YyAv5GAQpWkGATbGDIfDdrtNKW00a/3+YDiMZmdnJycnu93eYDBotVpZlgghjh49ap3C+v3u5uY6ZRgzzJWEELi+H4YVa59f5EIpCYAmBBVFUS6XMYEMkjzPpdSU4sBzlpaWtNa3bt36R//oHzHGbt68+eSTT05NTf3mb/4mMMim3NiKwfM8IQqtOWWhMWp8fHxzYw0YBAACI3chNhz2h8P+kflDExOTrdYlo2Gr1cIMXLly9Wd/9mOnT59e31jlvPB9f6LZEDJvtVrLi0uNsaZdwcI6GEi+sLBQq9U4567jIYghhJxzXgheiGq1ypgrZW7bhrGxscAvu667sbGRZQXFLjAYIqK41gYILozR1puSEs/BDqIuJjKKRu5UeZ77jg+A7vV69Xo9zznGuFwuD/pRlseMORhShIgBAEHg+Q5CIM/zfr8/Ozd9/OiJpaUFKSVjRgghuNJazc8fzpIoiiLKSBg6w0ECISAUOy5ZXl6O4uLee5r1Wu3MmdcrlcrDDz+cZZlVhVvEzZrm2DpbSoPoyDRGa2Djn/96w9i/9uttGHqPUWlBLsbw/j+NhG/Msp6Rxbm0BpgCmyBuDEjSFCPtuZhzpbTcWFsUMi0F7MSJYy+99FJexItLt1qtHWufura+Wa0277n7gXK5fPHixUuXLsVRDrTxnRKlOEnSJDFJGkFovDDAGKcJT7KIUg8rWK2VX375Jc9zWm00GPR+4zd+KwiCaqXOiJOmqVE6iiIpZbkSMsYocTzPByD63nPf/8KffrlcbfzH3/73hw7Ol4JykRb/8l/8r1rrAwfmL1+9dmj+yMEjR9+6eAFTTDHVRlAEMTC1Ws2Kmi1J2SKYrsvspZmcnNTSlMvVcrl848bN1lYLU+g4ju+FWplCcltM7/fSAGgIASEkDH0pJefc90uDwUApJWVmK+xSWCmKwgp4cykR85Is00aWg3B8YqzaqOYZ9zz361/9ipHq6tWr9Xp9P2ovjiMAAPNchEGWJZTiIAh8369UKoNBJISEEAJj8/egUpoQ43nBXo+tLS7Q6XQIIYyRcrlmyynX9YtcXLlyzXFcLjjnejAYCKGSJBuvlwljIss++zd/8cyZM8qA9z35FHOdb3/rG5/4xMc5z19++eVGswYhvrWwVKnWp6Te3t7cXN9xPaYVsij51tYWIchxnOnpaQjh9va24EpraYByXMpFznmBMY7jlFJvZXmjVqs9+si7Z+em/+Iv/rxRH6vWyhcubCqlPM/jXGgA4iwul8uu5wWlkh+4a2srw3hw4uRxofKf//THz567ePHiVc8L3/u+9/zUY4/feecd3/nOd4bDoRR6bu6gBjAMy0899e5CAqE0QohL7QCkFUAQyB8FfP8bHs17Fdvbd9lP9M0A4Cfcum8HD/4kM+h9jYIxgGEIEJASaGOUUgQTSsH84cOUoPX11V43OnXq1LC/88MXnnMY0FpJpecmDzPGLl68OEzi//qnf3r//Q/OHzkxNTWNICmVyuMTM90O2d7enpk+JETGk4grnaYyF8NeL22OjwuFlhZX4zj1vCAMw6mpSc9zAVGNZhkAMDM1JrURHHDOZ+emZ2amzrzyAgC60SyncbS8fGN9YxNBcujA7G67VxRZENAs7TsuXFlarDcqd991Z+CXrly52t7uTU9Pp2nKeU4I1UY4DtZaYIw4z6XkhFEAkNbSSlwpdRikEEJCEKNISo2JQ5kfDXbr9SYAoFZrtFtdm6/b63eWlxejaACgSdP4Ax/4gGV5tFqtD37ww0FY/p9/7X9ZX99MkpQ53upKDUGNMTx+/PgHP/hhisnC0q3nvvfdenPm7OuvIYKl5EfnjwCgx8bGIEaVagMTDxK8urLe6XV3d3ezLHnr7Pn3vPfxarVKKWCUHTlyJM+z73732cefeNeDD97f2t7Z2dmRkpfLpRO3Hf/q176Q5dF73vOeN8+9Ua1WAIC7qt1wajJXeVoQhwEAHIcaoxkj1HUwxlKr4XAIIYSAYIyNAUJILRVCyKGBEsWVK1copb7vu46LcU6IQZAAADzPs7xUJSQCkDFmgMpyYbN/bVcjpbQBMnaLsJ1MGIYIYdnr2q3j/8/Xf4ZLdp3ngeiKO1YOJ4c+nRvoBho5g0gEwEyRlERRlkSKskaWbdnj8bU9o5n7jB7ZY+uOKVqSqWgqjCSKNEWaIAgmEInIjc7d6Nwnx8pVO694f6w6BxBFTf3gA3bX6VO1915rfd/7vcH0A+Z4AkobtGwHCzN42RA4AxBqAN+BCzlUAMBtC0KsNYJSSqkV2HZ2llyYFkjqd9SfO4vEbMspywztOmGJbVNKEcZYSpFlLEu5Yczt8G2NZ0USZ4ozg3E7ng0AEIKFjdCyrFzOxxhzninJDYxbLZWb7c7FS5c/8Ymf+vRnf7nVaH/ko5/QWv/O7/xOzvOfeebpxvq67/vA8TjLrCEBXGOMC64vtUIICcYdxzFcZs9xMMaj9ZEDNx0yI3wzVxtiuNvkI845VxpC6DrQdAspy4xJNNyO2jM9Eudca5DL5Qz/V2+b4plrbjpM8+dmYr2D+aZpavwoAABRFJlbuX0cYCHUDgppEGe97WpiQE+lJcbYdXzzmQMAlASm3TIArvmN5v2GAmOst81X2LGP3AFVja+lGkKoAEICkaE6yyAIlZIYY8uxGWOEEC6yLMtSnnqeVyjksiyjjh2lmTlSAUBKC0IIpoQgPGzLpaBcUWvItZeSI4QwNk7TJvZHCiF2rJYBAAhhAKDhhXHOgVS2Q41t1NTU1OLiIs+YZVkGjozjWGuFKRGSKaWyZOjRLITA2w4BZikghITQ5iqZh9B8wp2n2iyZ4dM+fHqhOcF3MOWd4QTaNt80byaEaKjAtrG1lFJJOMzhReaIgVorxhgG2FzhnT6ZM2kRYlp6AJTS2pAqzMIH2xJpM5IBDuBcaK0s1y2X6glvRVFcr49WSmXO9NZaw7ZdirGSBn2wEEYY0bxtSSlbrRbAwLE9BKEQ0AjjAFAZS2SfG0P2XCHne7l8rmgeQq2E2ZGM4WYulyOEsJjn83nz3Y3XnG3bUZRsbW0lSVosFmu1CiYwDMP5+WuTk5O333GTgWnOnD3bWGscvmP3TTfdlCRxo50rVmzOBYZgbXkjCALfzQkhisVypVpN07TdbiNCZqYnHUqCILAdSilZXV1ZWJgvlQphNOgFvbGxsVwut7Kywjm/7bbb5ufnOc9uuPGQ53lRFJ17+3KSRHNzc7Mzcwih9eVVCKFj+8VCNRhkB284MDmxK+eX3vfkh8+eufqf/q/PawLzhdL4xPRjj713ZGRMSsmltgH45Kd+/q57Hmi0tt7zngc833770rzSYpbmolj8xm/8huPi2bmp+kjx2vWLm1tNDcHk1HipWI3S5MyZM2Njo5aNCPVLpbHX33gliiKb0PXVtWtXl1cW1inJEewRQpM0c126tdVUXHleDiPLppZSGEKIEE7TTMVJHMdSS0pxqVSwHRoOQiGka7kQYi1AOAiQhjvgoFkFCCGAkOM45jlXw4DQdxc/UEkppczZnnFHFRlnGuwsDUP1QJgIITTSZoaac71KpdJutxFCcRxvNdsAIA0QsXG9Xu/1gkK+eOnSJc9Ge/bsYUlaLBY7nc53vvOdt98+F237wLbb7Zznaa0nJ6Y9zzt69OgHP/yRbz/znWaz+cEPfKRYLB4+fPSpp5565JHHNzbWisVKv9+/8857fvGzn3344YdtDL757We/853vQgV3ze7+R//o5ycmphgTEOJ+L4iiZHp2bmZy5p577/iTP/3j1157/eabjraa7d175j7zMz/7+vG35q9da2xuNjY3gNKEYAB0libGqz0YRGmaPvieRz/ykY98+Cd+0vNAlgHGQZxKhDHCKMmkZWFEoYaAKwAAsFyAMRAC6wTEsUCEnzzzWsLbNx7Zdd99933mFz577eriH//+F5977oU0SXI5FxOqscBEAQk8zzO2NqVS6dChQ0qpV199HQJMqQ0AsGynVCpYlkUIWl9fF0LVauVisWg7ZO/e3Qihfr+vFQzD0HX8MAwHg1AIgTGNkjBLGbVQpVIZHR01AzbHcXK5nG27q6urtVptfGziypUrSimEYBCFBGMppcH10LbFJUIoiiLHcRAi21izMv4ACCEpNARYSZEKppTCgEOA1VDhwZSSGkEuOCEIY0gJYExQamOMO53O1lYzZeyTn/wZxtiZM+dMIqtWcHVl/drV+c3NzW63K6C44YYblFJZnDDG8vm853kYwCRJoiiysNVoNAwqkiRJuVyemJgwVjBm+mjOCAM0AwCzjGmthRBRFFHbMoPAer1qDFfz+fyZM2eCIPA8zxACMMa2nbNtWwgCAEhZ5liOcZPAmBjkVEghmHBsO5f3crlcLu8R2hv0Q6WGRgeua1er1TCM+/2+gYzlMFQQ7ixACKE2ZwQw3lwJ1AiCoRDHkCDNiQOA1MOEQFO0AAixkBoAYFm2UiqOY4xRlmVSotHRUYTBE0++94Pv/wCl9NSpU9/61rc2NjZs2961a9fS0tLS4orneZ7nLS0tGX2P67qO46QsMR+PMwk0hwArCSzqxHEMIVZKZRmHEEvJlAIY45xfCHXIMuF7Xj6fn5+fX1paIpSagsQMfY3BURiGJgTbzCS00uViRWuZz+VnpqYdy4UaHti3v1wuE2JprfvdHoTGIFYBDYSSxn1ba20iSSTQmGDFlZDCzfluLrf3wP6lpSUzHN1BtwlBZk6/sbFh/PQBAEoBBTQhVpoyzrtaayl5qVTp98I0TREiWca3tppjYyNXrly5evVqu92+887bn3jifdcuX7l85SIhhAsRhOHS8vLU1NTNR49alC4sXK/X68VKWQKdcoYtCoaTWitJMrNqBOfFYpFSW2uNEIDIOIZBBXnOzmVZIrTAiucLPoKk1+sJIXq9gW3bEGIJNEXYsiwFZJZlCmjLolJKSm0T4DFSr5XLZQBQv9+VUsZpFIT9JEnNyDZK03zOpo5NM5awzHJs6thcSWkykJlAxFJKYQgxRFKwJAxYFjsWKReKnPPnnnvu9ReO+/nc/Y/fA5S+cOUiJtDLefsO7L+zcj8Jgu7c3GyxmLMd/PxLz4dhjDG5eOncVmN1ZKR289Ej8/NXrl2/zFk6GPTK5ZJFHEQsoRDLVKcd/ODZlwBAY+Mzt912h0XdLBNJ0hBcQYjHx4thkicWQgQANRQp75gGgG2ys9krO61Gt9s3g9lyuez7fpZlnU7P85y5XXtmZ2ellKdPvrV3376V5QXO4kaz2e12zLT/4uVLZt7ieV6pVDFCtsEgRFhnaew4jmVbXKQY42IxV6/XlVKLi4sLCwuHDh2ybXtra2tsdMK1vTRNt3gTAJQlaRRFWut9+/aF0SBJZKlUHBkZXVvbcF13fn4xYwmlNE1TAABjbGN9C2gEAV5cWGaZsB164cJFxrJms1ko5KampoRk5UpxeWUxSUPbtqMotCyrWitzznM5d25u5tSp045L2u0AY7x7924pZZrGSimEMGNASEYRhRBSm4g41VKdOXUqSZIkYq/5b8zMzDAmlAKOYxmX2DgOCUH1+rjWuteP0zRlLCWEKAmE0JTaUurlpVWpuNZyeWXNsW005DVonvDz589vbm4cOXqkUCiMjtYmJsdYGmIGRkdHgdL1eh0gJITodvoJy7KE1aojQgiCrbAfroUbZhcmhHAuW62OmdqNjo7ecMNB27Yty+n1emNjo47jNba6WSYJJpxxhCCCJE1TQiEElHOhZFos5ymFZjKGEMIQRlFk27bjeLbt5vN501MhPMxU1AByIZVSlBIlgWVZUOt2o3Xl8rVDNxxACJ0/fx4AhDG2bEsqTi3su7V7771XKXH2zBk/T1gmoqTnxLkbbrgh55cnJnYh6gRBsri8EMehceSr1Sr9fp8xliSR1jqXyxWLPucSIYzx3wW81I8P9wPg7yyEd8PKf0fU/66f4lxhjDAGCIEkUd1u17btkZFClg2XFUImUE+HcZAkUZomlmX1Op1Op7O8PJ/EwchopVjMWwTNzU43m02Tt75v34HDh2+AEGVZ1uuH168trq2tcaY8N9ftdpWCpdLI9Mxko7E5MTkWBP0sy2zbnp6eXVlea7XaGugkSSm1fd8HGgSDZHFx8Z677v7FX/ulp59+enVlbWN9LQxDs04JIdVq/cH3vKdQqLRbg+PHTzabzQMH97330ceCKAz6YafZKddqP/mJn3rx5Veq9bF//ZGPtgedc6dPWRhoxZJ44Ho2YyxJMowpJdiyLDOZrFRqjLEwHJgjZGtr6+rVqyLjCAPBFcE6yzJIhrakAADbtgeDnmVZfs5lnE9OTk7PTJ44cWKr0bRQYTuVG/u+Zxzf/JyzLWMHnHMAMEK40x+Ua/XFxcU4jn3XZxn/+te/btuuEGJ8fHxhYSGKogcffLDRbqVp6vv+Umvp6NGjlfLY1atXfd+vVqudTqfT6VgWggAXi8VSuSCl5JxhTI0fk8nVzeVytk3TNB4M+hpK27Ux0YuXr05Nj8VRmiRxuVzUCiourswvNCv5iYmJZrubZOz9H/zQX//V37zy8muPPfa4EOLlH7722HsfufvuewuF3NrGOgCo0+kxnkKIZ+dmkigbHRnf3GwMBoMkSbIskYoLIaamplzXjaOubdue53CeSckJQeapzvmFhfmVdbvxvvc/cfDA4XLppV4vmJ2dnZ6eXVpa6PV6mJKf/MRPQ4jfeONYHMf9IFRAFsslztkbb7x68y1Hjxw51OkNrl69HscRY2xjY2tjY6NcLnOhIMKEWlLopZXlblB2fTdf8L2cs61Eg1IADTUYCj93IrB+dLn9iJPG/0t44I8lOyP0o5zoH/eTw18kBEAIQAAohQhhIRQQoFjEaTrabDaPHj16+cr569evYww5z9qdLYoLrmsHQbB79+7l5eXl5eVKpfbAg4+kCevxOF+sjo5PNZvND334Y+958N6XX/7hd57+xs/+o89Uq5VTZ05ubW0dO35yZGQcIgdh+bGP/2S/3/3qf/8bQsH9998bRZESQsug3+4JCcfGat1241vf/Hqr1aiUC8eOvTE1OZZlCcHAdmyp2NLy9TgKtRSEoizV5XJ5bm6WZaLXXZ+ZnMm5Bcdxrl+/alKep6fHR8cnLl64nGYB5yKN0lKpYsDMLMtKhdKOQXDGEqDIysqaOVKVBpaFCSHtdtuyaZrFK6tLSRL1+12CIILgkYcetClut3vr66txHNfqoxDiubk98wsrvV4fYzy3axojcP36Rr/bHgx6bx1/8/vPvYJxHiLnxMkX9+2e4ZxDlrzwwgtrq0tHj94CIbSpM1WbCQbJ8vLqw+95hLH0z/+fPzPonpQc2nY+7z/yyEN//Vd//v3vf7taK37ogx8oFovH3nzzT/7bH1y/eiGMuoSCa9euNZrtOE0KuUI+n9cShDImFqaY1OvVLM6CIMAWNcYLUkmDOhFMTF0upcTbxB8AkG0bJT7Psn6WcoSwmRYLY5IuhziXYVtEUaTU0BgRQsglF0qarcwYrSql4jjBGDPBDWd2iEq/64HeoVga1MzY6ZsPZri3aPu1g6MhhCCGnHMDcIthADowrSYYomkQQgjeYcINHQzzXp4xlsXp/gN7O51Ws7ll27aUmjGhJJDGowdC3/cYY2maKgCUBkADjCEi0GT65XI5riQXWRwnnuchRHjGLEJqlZLW+tKVy2NTs7Zf+C+//0cf+9jHD910eDCIP/Vznx4fHXnwoff80R/8/vX5qxvtQbGQ44JZNsm5vnFa8BxHam02nLm5Oc55v99TSm02tsR5MOiHtm0bOqQxezEEc3MZkywFSidxZorSlbVVcy4gDAAAQxRYI4yxUkO7XnPjDHht8EqlFGPMcJwppYxxY9fQ6/UMbXb72mrHcWzbDsPQgPjvJh0OeypDRTTuGBgzrsIgRpAopUwKeZQlhsBuNDcm3d6EE0AIpeJ/d7vT6l1ehzsoNtxOE9Jaw+0GWCllPmqSDSthDaSGsFwplkolY/lqWZZtZ+aySCYt6gAAfN9njGdZhinZPlIB46mUEkOktdAQmEkAAABBAoFWWiKEOBcIIZO9ZoTzGGpqYUPw8TxXa62ENPozjGm/P0AI2LYNhcSYAi0J0TtqAAjQzlczPDK1HYC5nfWEhGBwGO6kbNumlmWujMHpzNNv27ZBqBljPDXrAioFAJYQQQQhxlBpYWzEDWUb7Iy9gQJDfFkCCDAZDi12xgMYY5ZFUkrLtiDMZRkzhHfzsQEAECGMkFKAEKi1BhrGUQqg8vI5jCnRNkJUcMWZXlhY1BoKoTBAGGMAhmT8XC5nCtp8Pu/lHcf2Wq2W7ZFt0QIEWhv+voYgSdIkSc0Fl1JJkUEIKaVcDiOPkiRBCGFMK5WSbbmtdkNKqbWSXAAACrmi5Lrb7mcpQwBubWw2m42JiYl6vd4PekHYuffxI4eP3BBFAYuD0Yki46kFyMjIyEh1REuwML8CIRwMBoMg0FpLIDFBnucIwSybQKgxwtVqeTAYCMny+fwgGoyNj7ium8/nl5eXkyRyXfvOO2/P+2673cYYEoImJiY455cvXyUEcc7b7TaCZGxswqK2VvDI4Zs1JAf2Hfr0L/5j2/IvXj6/sLDw6U9/2nX9l195rV4f3bVr1//4xnPFSvnh975Xa4UI9Ci8trj4zW9+03GefvO15zc2V288vL9YqLRbnUE/oZTcfdf9Fy9e/KlPPnn7bXe++NLzTz31jUcfe+/a2srJk2c2N9ck46VSybE833Vt200TgR2QJJnjOCITWZxBiINBuGtmjhBr0OwLIeIky4IYISS1TtIkUrJerUENMcA5Nye5MMICLRST2ggOIMTvPIQYb2NVO0IZMhxfbW/4JifA8zxEMABACaW1ztLUtHtmFSRJopUqlUq1StV1Xcex+4MeZwJgoIFUWmVcU9vGGEopXd/2ff9v/+Yvd+/ezRi76cbD7Xa72WkHQfDAAw8AAF577bWPfvSjM1NTn/vc544evfWmm25yHGd8bOp97/vA5mbDshwEyejI+Pue/ICSYGpm96/+k3+WZdm9995bHx0LwzTB+HvfezYKk6mpXb/6T//Zo48+eOXKwqAvcnlvYmLKsXJ33H73YBBCgh988MH/8B///Q1HbrjrrrvSOLi2NP//+df/ynbo2EiF88SxbUR1p9UFGgVBOOiHtu3/1Cd/9jd/8z/Ecbyx2alWKxoBpQDEWCggNbAcLCWACEAEpNQIQ6FBHCRCCB7zdmdzq7koVHDwhplevzG/+PbxU68NOuz64oLgihI7zjJCJetHnX6jUqq5rjs3N2d4r6Ojo9evX0+SRAptWZnWMAdBxlLXdccnxsYnxoIgMIcLpXgwGDQamwZNsywryzLH8TzPY0wAAAxb07Ldra0t3/fNGMx1XQAAxnjfvn2f+cxntAKf//zn19Y2THkg9dBBPggCAJTBH80ewjl3XUtvy4BMuyeEwJRAjcxOghDSUkGkAHjHuQUBTSlGCAAo6/Xa1FQ9SZJ2u1soFB9+eL/r+2YqPzk5vrnZCMMwTVi33TMFiWU50+M1m1gpY7ZtKy4Kfi5JUqa1azv33/8gVHplZW3//v1S6FarNTo6ur6+aljPO+eaVkBwKVhsloDjOGLoac5NZXL33XflfN913YuXLiwszpdKJT/nTUyON5vNYBA6jmVZVEoulCSE5PIeAKBULuTzec6ztbW1wWDARYKwIlYxTgNCLEQgV6kptBzXq9bKCCLLIrZNjdwnS7kpJ7adlodnMQAAISgFS7hACJklDOHwQEaQaK2VlFoDQobbO4DYCK3A9hRZKZkkkVLKdlw/Zzebzbzvra4uv/rqqysrK0qBUqm0d+/efQf2u64LAR4MBq7r5nI540Fh/NmM0TDGVCmTZKDMM2BRagbPO3sL59wcx5QQpVQQBAsLC+ZrQgCSJDFO6MMrz/lOYLWBoW3qTE5O5vN+kiSrq6ulUmlsbAwhFIZxLocItgAQ2pgYmlk+QqamBUABjDSCShjaOGSMHTt2bG1tLcuyKIqEVo5FB4O+lHLP3jmE0Ouvvzo1NXPy5HHzqTjncZIAACi1qYVNhQOBPejHBnbI5b3x8UmM4cbGVr/X0VqPjo5OTo1vbK688vora2srrutqSN//oQ9OTEysra1hjEuV4k3FmxEYDvIRQibEVSlNCHFdmqYxY8LQKDmXJjNpOAJHmjO+tbWBLewASwi+srpKsWVcSqhtI4KzlGutIQaJYLZt7z0wO1KtOY535swZjLHv+2Nje4vFchAErW4nYZlJewqCge1QRGnKORSiXCKmfVBaWF7OLeQE0FwKQm2EidkKMIQ8S5eXFlia5Bwax2Gn3W5sbUZxN03jGw7fGEXRtStXCEW33377/vv3UdtSVwgRkjOWhlFPCOHnaBTxYqkAMUizsNcH3/zm19MsSeMoCPvFYl5rwDIFND108Kb3PPjwYBA99/yLNxy6qVKpOnZ+dmZOStnpdLBFu4Ou0KJeryIClBriblDtKI4BQtCQM7SGSZJyqQkijAmt5djYyMjIiNEpBEGUy3lhGDuO95lf+sdHbjzw/HPf+/KX/9pzrI1+u9/tZVxMTExIKc36vHT5QhJnlUqFUtu2abFYhEajp6RlEbM/piwLw9j386Oj48vLy2trG1OTu0ZGxt5+++04TvL5PMVkfHzcTNiSNEmzeGFhYTAYOI5bKOYqlVKn09MaYAK1MnIztK0aE4VC4b777nvppZf6/f7c3BxjqUFtoihgLAVADwb9arV62+23bGxs9Pt926FCsqnp8dWVdc+z4zgJgn6lUlaKTkxMAAB6vZ5tOxTha9fmkyQxJv1ZxiuVCqlbra3G9evXMca9Xi8I4Pj4eLlctm1q25aU0vVs2ZFZlpj+c6Reb7d7UZRkKZdSWZaTsURKnTGBiWXbUAhl6ub19Q0J5PTMJEI6l/NWOw0AtEWoCTbElCqlpNBBEGAAEUL1ep0QsrKy1ml2iG3l83kIMYQ6DMNcLlepVEx5urq62u93pdRxnAqulYIAAC40hIgx5thUSCaFhlADOHzcDcLFOUdgyOMolUqFQsGY25ryXSnlum6WJUIoJTFCyAiWEQb5vJ9leuHafBQEtVrN2KXX6/XxiQmI9OLiYqrQYNCDSB2+6WDOy6+vb3COL1xcevrpp37uZ395fHwSU7dSqbz5pn3szTdsmx695fZCoVCpVEzuUJIkURRQit2cZ+yVpRxCVGDbKOMfzAnc6fGGeDPQPwKNgXdgLNtGcjgtGAbRJEnSbmPXdVlm4qEIgCAMo/6gy0UKpLgyf+Xs2fN7d+/Zv2/f9etXNtfWz59t3HbbLTfeeOiv/upUytinPvWp6enZfr+PiHP5/CWKcL1eHwxiQqzZmbkkzjDGXKr1jS0EQRjEm5sNz3Nc14ZQ1kfKjmtFYdLpdCcmRsfHJhcXlzG1EICtVucLX/jC+NjE6OiokrLRaCBELMvy87n5xYU4YX/5//z7QrHy+c//3pmzZ0sFPwh7zWbrzdePffADHxQS9PvRQw8/esfd96y3mo6fAxRzybM4phgLxre2AnN22tTyfN9M2ldXV03H2G53KSZRlMRxnPdyCCEIKYQozjJLW6blFkIkSUQIsWyCECoUc37OuX79WrvdyuV8xSxCLM6zKA4A0Lt2zZh8szR1INTdbhdjSKmjteZMNhtt3yMEkiiKJiem0pQ1m00p9ezB2WIp7/v+rt271YVLp0+ffu97H//85z//g2efP378dJIk/X7f7Buu6xvYqFSqhMFAaeG6rtbagD+DweCduh/oJEv1YKheNA5C+VzRshzHcQedQaPd+pVf+ZVX3vih53n/62d/6W/+5iunTp/96Mc+vm/fvld++NL89eVuf/Daq2/cc+9d3X630WilaRrHIcJyZGT07rvuX1pY1gphTH3fv3LlihACExTHsfFONXNUw2DaBgiQbblKKUJomqbffua7ly9f7nb71Wo5COJmo7tn9wHXs2+65aYbbzzSaLS6nZ755P1+oAF3HNvx7NXV1VdfeyWXKxrh2FPf+Pr64urY2Nju3XNTUzMY01a7F4VZPwjXNjYVVK7rjI+PF4tFx7YAABIChEwpthOCMVwv/xDN+e8zmn+8/8b2cHTHAAruLMkft5B3/hxjICVQQ5AaUmq8QAHGMBj0gqB34sSJMNiyXVAsOCMjYxTnisXi+fPnLcup10cwss6/ffEb33jqIz/xcctyXn3ttbfPn33/+588cuPBKA6OvXkiitmFi1cBEPWx0V/65Y9NTH230w3q9UmEyNjo5Obmej8Y3HTkUC6XGxsf1VpHvc1arb60vG5RzFK+vrbsum4YDTqt5p133FqtVhuNxoWLV776lS9Xa6MTY7VW+zrnYnxiFAHYbrajKFmaX3r4oUfLperyyuJQmI1AyhIhWLlSjGIuRIAJFIJR6mKE9+2ZjaJoMBhorQFUCEEmmRZ6eW01y7JK1S8Wi2mahmFMCDH3nVIsWObm/dvvuFUpcfr0SYRQs9n81V/91RtvvOmP/vBP7r33/kLx0uuvv14ulxFC7faWEqLX6506fqJQqre2tiZnSt9+5unDR472W2tZlh0PWr6HL108MzM7UchXAABvXzg3t2vPQw/ePz8/XygX/smv/AqXzAwLc7nC2bNnT508VquXGQ95Ft96283Xrl279dabNeAnTr62ub6sgdzcaLzvfe+zLGd5eVlryYRAGGCMNVRpmlKbutoVQmhteADauC4gSIUQEGAlNYDacE8owoRYZh0xIRBCGBPOpZTccohj2aZj9H0fYWA6N6UU19wEgCigDfvbsizJBYQIwiHbEWoAAGCZkGKISWECERjGxw1pMloDDZQeijzMc2tQ0R0ZtdZaSgGAptQxA1oFhoFp2ysFbvc/CCGkt6FJhADGFnVQPp/zPLfiVyqVSqfTKhbLCCHGmGU5nptTSvd6g8FgAAFAhCAAyHbQtu06SZJAqAFQEELjpQCRNo5hSHHJhZQSAjUItx58z6NBlp07eaY2OdPoB0mSjMxMbbWaR++95/O33PQH//X3/uIvv7zVaNVHqtVKzaa4223n8znGmEnr2tjYyOX8paXlXbvmarXa6dOnNjc3McZJkpRK445rmehUg8xSSh3H8X1fKRX0QnMpkiQ1V94hDqGIc27m+oYhGAQBxphSw8lFSguC6A6CY6jQZtciBBNCfN8PgsB4a+zgkkMnlm1gdKf5NADBDuy4Q79lWZbEsQFDXcdXEqRpalBsjLHrupRS8+gKIeQ74+2h8Z/eMX/YTq43Txo0vmGWpbXmIkuHuKo28NNwYoGJ1BpCKIQJwkWc87GxkThOB4OBU/AEY1JoA5gqpQjBO48Q0MgUS1JoIYRrIclUlMRSSgCgbTsAgCRJIISem4MAA42AHv6sKQP6/X6v0zV3SinDnlOEWKYtt4hFXZJR1u/3peSEWBACM1qWUkL0ToaSESdJoRljGmgD1mutMaKmkQbb6qghaKKgAd0MJcrcLLPKzL0zhYfeGc5AiIYB4wQorYEEGnLOMTWUruHbjCjYsixDm0CQUGpSInfmQ3j7CNMQom0XFJhlCcAIIZxlrDcYKKVAibC0EYYxpTYyQySAjMXKjn2K1KpcLvtFCwCEA+hQmyJqwpeUUg6xyTD6UgshpNCCK9u2IRRKKUxJuVyGEIZxbO4RIaRSqTGWIoAB1FzIobxVEc50FAZcZABIhIFn2b1eP4oix3OnpqbKtfLKylKcxo5riZjb1HJ8R9saaMwzQQjJMpZlCbUcIZnturv3zE1NTaRp3Ot3okFfCpCmqZAMY1yrVcq1spHMI4TGJ0Yt6lg22dhca0IUBH3XdQ8dOjBM1ev3AQCMsThO2u3uyMjY3Nzc8srG2sb64vJSzq/edPNtvkd2751LkmR6vPadZ1989tnnfvmXfzkIgi9/9b+PjIwcPny42W4eP35senbm+PFjP3j+OQCAEoMHH37oE5/4aH2k8p8/958yDmfn5rxc2fGKf/gH/+2GG175+Mc/fs+99504cUJr2e12fceTVEqpOp2OkmBycrLXTbQiGNkmytJxnDRlNrU5l3DI2YJKaM4lAJJzrqRyPadcKPf6Hd/3BeOdpEcg0QqYvYgxQzkERqSrAIBKmefcEP23n6khPmUmx1prx/EMG1FKmaSpIRWZfQYgmGYZJoSLTAgRJfHExMThwzd+ZX4eAGBZlpdzBVe5oicVmJ6ezud9LtWevbvDQfRnf/ZnBw4ckFwMBoNKsRDEUZZljuMkSfLAAw/YxCqXKidPnb569dpDDz20uLJcLlV3OZ5WUClg29b09Ay2SM6Fjz/+pBCiWHRMdOGli5dff+2NXC7XarUuX7k4MzPz0g9fcF3r9jtuHd2zNwril19++cUXX/xX/8u/PHr0aKfTeeGFF86fP797dqrdaqyuLk9OjhOKuBCDQRQEURhHve6gVhu5+957xsam/sk//WcIQ9fzWwM2iNN83tEYAAiUBoQAoQDCQEoFAAJQQwx5lg2igeM45Uru+y8ca7QWKiP5Us0v1aZfe/m1//P//D+UtC+cnXfsPMZYKen5ViaywWBgU9ek1Pq+rzV86aWXr127BjRSSlmWA4A2N8jzHMZSIUQQ9M1BUK1WtZaDwcDUDxBi27YwxlrDXC4HAcpSViwW9+zd7XlOEARxHBvzkzCOOt3+xMTE0tJSEqcjIyNRlHDOCTHphVAIYegmZk9zHMecj4YUHMex2dEBAFLxozfesrq6evXqFduhWkuLEqWUHroUGp2NZDy1HVLI5wpFz7KsMAwh1J1+x/bszeZmmjDj9dHvD8rl6tGjR69euX79+nXP83w/7zrOYDCwbdumNob44sVLhJBbbj46Uqt3mp1Tp04JJrVUjk1zuVyn09GCK62q1crGxlaWZVoZaBJopQyAYxSlSksg4cjIyK5du6ampigh9Xp9a2uLc24wDVMV+DnP9RyEkCUsAjRCSErOOVdKACA9z3Ndp9/vWRYdHx+r1WqdToexFGNQq5WllIPBwLJIliVZxjnnSZKK7YQ3k4ihgTZnq9ZDxzLDiTYMG9MXmhPQ0KLNWlNqB5tGEL5zYCmllJJKCYi0Y5NiMS8lh0C98eZrr7/x6sb6VhzHhFgHDx7MFfK1Wo0xtrXZNEH0rue1Wi2MsWH+AQSFEFxJIDVjwvO8wWCAMTa0S0qsnYPJnPWUUkotBRWgKIkzpRTQCAAtpeh1uwBCAzqbpGvjJGbO8UKhEIZhvV6/9dZbzZd1HCefL2KMITDmP1CroZ8bQkSJVCmt0TsbmRlaQwi3trbOnDnT7/dnZ2fjOHFdL8sYxJAQEkXR008/naZpuVxNkgRj2Ol0BkFgflBKiSWWUgpuCONSKUEpTRN29epVhIDvetQiGCMpxcrK8pkzZ1ZXV3PFXL0+eu9977nnvnu77Y7rutTCkGCKUJqmQkkw1IUIcyILLk38spRacGl44oyx8fHxfMFnLEnjbKuxBjAwuklEsJAMQ2Lbtu06UZT0wwBB0u/39+zb/cQD7zfU9UGv32y2qyP11aXlYrHIlVxaXUKIGNDMsqwgCMwF7/V6hWKxUCghgovl0uZW03YcpnXCEiY4JkQBhAAgxJKSSyWara2g31GSt7cG169dTaLY8zyjKltfX09fj+I43jO5t9/tffe7391qbvqbFZKl7MKFC7btpjZTinu+HUZdx3GyVC0uXIEQ1mo1hIht+RA4tepkvbYny7LbbrsjnyudO3+VYHfPnv2uk7dtWylEbFqpj2RZ4nletVrmnNuY7rhhKgDQu0KcAACEQJapwWDgOE4xl2+2tuJ4IISwbdfzPKk1xnhjY+vNN1/fs2f3nt37m43u4098QAjx1a9+2fcKCGIhC0eP3n7p0oUgCCjFQKNSqZSmLE3ZyMgYMkIPyzY9VBzH585fyLJsenr69tvujOMYIzo7s2cwCMNw4fTpMxDCYrE4NjmFEGy1Wv1BF0JYKpUGg8Hm5iYAME3Tubk9cRxnGR9qJAFWSpVKJQCQ1pBz6bru7Ozs4tL8Rz7ykTgOFxavh+FAKVUsFrTWg8Fg3759a6sbQRA8+eT742RgiJBezg3jgNq0H/Q11BQTU0P7vk+pBZUuFArFYjEMQwCQ70PGmJLK933LdYzMdjDotVotIRmEulqt9Pt9rYsQalOIl0ulj33sE9986pko5AiC//XX/4+77777H3/20+1OEyHlOJ6UmlpEyYyJzHVdDOHa2opl0YxFBAEheC+KdySKWcrTNLUcWyS83x1QatdqtVKpBCEMw9hUzFIqjKnrup7nbW1tLC0tJEkSh4HlOizj5XLZtv1mo8cZN9EfnAMIKNBKaam0EEKE/c7U5BzPrG4ScYUIsYyGpVarlctl23IXFhZa/U6xWNQAAIBM5Q4gMNHqKlSGL0Oxtb62ce+9937yk598/qXnT548ubyyiBCybdsidq/f8Ty3WPLX1pcyplgGP/yRDxZzE81mM47jlIWEorvuuuP+B+5qtjaSRAXBwPNc28a2nS+V8s1mJ0xiL+/taPmR3p6sKA3IjwGb382vHFIm0Y9yJ3/EGUAIoJQmBAIAwjA0QUZG/cQyQQipj1QB0EHYFzJzLbq4tPLaa6+Fgyjv597//vfvndsVJ1Gaht/93revXLtmOc74+OT65taNh49OTE7/6j/957/+67++urIy6+Vq9fr1a1eWl5dvPnpkY2OjN+iF4SBJkjgOJ8ZHtAbdbr/b7ZbL5Wq1uHfv7na7yzLh59zp2akoiTnnS0tLjLGP/+bHN9Y23nzj9bm5uc997nOnzpxeW1vb3Nj6xjef7vZ7E2Pj73vfE6fOnEnDrVzeeeDBj1x4+/JnfvHTT3/72fOXLj/y6HuxRXWnfejIkUuXLrgW3lrJSnkv6vcAAkbpbFl2FMYIoX6/Tyn1fZexIE3TRCoAzInFKbU0ghoN6Ug7euo0jTWQuVxtenqy3W1rrev16q5dM5TSV148gxDi3EqzaPfuXQCqbrdt+MW798xcvpxBCCuVSpTEKcsarWYp5/p+nmVZEERm7oIxZix1XfuW2267dOlSvV6fnJz65E9/au+eg4KDXK507do183kIRBgSCDWEeHVpNY5Dx7HsMep6LsaQMWY7FBMriEJX2dTCcRxxztM0tW1HctHp9HN+yXHcLE76/b7Wct++PeV68X9845v33ffA2urWb/+n3yqVKmur65cuX2w0WnfecXelXHz+uRdd3zFsO9f1NUhHR0fX19dbrdbK8nouV4DbkmogBUvS9fX1/fv3G1aFaVTMXJ0QYoJeybbO9/Lly6VSKUmyV195PZ/Pu27ulqO3fPqzv7C+tvnHf/RnvUFQrdQFzzCilu1owFnKk6R14sSJnF8GANx2221K6UtXLnLJiuXS2MSkBrhUrBRKqCa0UGowGLQ6zcWl5Xw+v3vXHsfBhIAdtERrOIzT/LuvHxn2/Fju84//KQiABggAoLfrvr/7j/z436IAJgAqI1PQQphnD2xurl+8eOHa9Uu9fsci5InHn5yZHrty5RKE+OWXX2GMUeoEgyiO02azvdloUEqPvfXWmTNn7rjzNtt1esFgZWnBIALNdnt8YvTatWsLCwv7D9z4qU99enFx+Qtf+INvf/u7p04fO3z4iJT8e9/7XqVSIYR4FFqWNTk57djexsZmfaRKCGlsbrXb3WNvnnAcZ3Z2llK722tHSay1liodGxuhBHpu7vjxE2E/7HX52bPn5+ZmG40GoqBcLkVRpDQwgHK5XOScF0rFNGIAAMtyoijp9QZaS4i0VkpraTs0n/f7/f5NN92Iid7c3IzjGCEgJY/juFotu55TqRYPHNhnETI/f83gerOzcxjTP/niX5w5/7aSQGr94Q999NLlC2fOnHFsLFjmOM77PviBH7702oc//OEn3/8T3/veC1Mzu3//t//9qTOnb73ttvd/5EO26w8G3SNHbux0en/zN1+95657n3jiyfKgeOXKlZtvvnkH9MmyrFapNppbl6+8XSi6quj/9ud/y6b2L/7iL4ZR33GsTqfzyCOPTE1N/dzP/cK3vvXNK1eu2LbDwphnggtpYQoxQAjlcrn19fUhZwchM4SmxM6yzACEUmuwDftqBSAyS8l4KQzNFliaIQA9z3Nd12joAABmuMg5zzKOMdYQKDVU6FuWZcihxvSAc4k0JJRwIYCZaCoEEMDbJs47hLUd5Evv+PxuuwxpvfMf2qSOGERC6yH0BiE0/OvtADq4Q4MFCHmuXSzlAdBZlrk5d2lxJZ8vtttNQojv582wDUJkWcT3/e5mZFxKAVQaQuMqQSnWAHDOB0FPKSW0sqjjuTmtdRYnruunTCCicoX8q8feyF28dN97HvrN3/qPd993/2233fat//zN/Xt2/8RHP7x3z26rVP7ff/3/u9XY+JM//ENWZEGYOJRyzglB66vLs3N7giB488039+zbCzHqdDqO48ZpXKvVHMdptVrhSgggMBwFczcN2tvv9/th79KlS/l8fhtDtyilGkiEEJAwDkOtNSHUbAnGkK0/6CoODC65Q3M2kKht25TSVqsVx7FtWxbBrm1lWQY0yLKh6fM20IzefeOMCseIhY35A9x2YEDI2A3pvO/zLNNSwu2hwnBMsk3mhduvHUoRRnTHzXkHJEUQqm2YWyqUZVxKTizi2rb5hLZDkywzfDdDssMYlSqVXbvnwkFw8uTpXC6XJBJoBSGSUlomp1Frg2AaWFYwbp5kI38WjDuOq8DwPZxzJQHLeuaBN5QfgxEgALiQxhHLuFVKKREkpj2u1+uEIEopY+2dB97UqAghiLT5pTt/tb2rQ+NubJh6xnxAb+/+etuT3dzHbfTZ5HYYGNoQ6LTWgBCEKTIrSGuNEEEIYIylYFJqAJSUChFkpuZqZ8LEuZKAEKK4Utv26+be6SECgaTiUmijLJZSUkpt20152m51lVKlSsWyrCxjJsZKo20SHNRSK4xwlMQZZ7br5Ao53/edHPE8r1Qp9jp9lokgiGyEbGIZM02Msan/OZNKqShKlIpt1zFsLyVBGMZKAQiBRXA4CLZHDkOavxACcG3bFBMCERRaYAS1wFmqIYAskwjhCxeuQKj9vMcybTs0HHSxRrZtB0EiuZqbm0uSlDEWpwmE0Mv7rms3m1uVailJoo3GlkNy1VrZGO9wzjWCnU6HEFIqlSzLWltbyeVySRhZlgWAklJSCy4tX19f33Rsz1jWai07ndb65trM9O69+3Yvr8z/9V//5ad+5rOeW0oYsamFIeIS9Lu9e+6607Ho8y88pyWjGGQsfu3Vl4rlwrWrF7/z7afDMHAcx3PJ3r271jfWXnzphZXlDYj0m2+cFEI4js1FdvXq9T/90z9N0vDKtctT02O1Wo1CqbUOwzBNGdSYMS4E8z2Xc2E7GAILAFUqlJWErWZXyy4BEALMOVdCS60YG5LxLcvKknTQ6xNC0DD9hRMzNRnq1KEJM0OIAKDRsOozu7rx08CEEKnUDgQmhFCKGB7YO6cJ0NSikxPT6+vrCgItsevnP/7xj0MIX3vtVS5FsZCjlrO6vpYwdvdd97ba/TNnTz7y3keSlJ06debcuTNbG5s2tYIodFwrTZ319fXr169NTk5OT097nr+1vpHP54UQTzz55OT41Isvvnj//feXihXqUAn08tLy6uqq53mGnu95HkJo165duUL+2Weffe973/vGmy+vrW0ozt46/vrYWP3ITTeKLI2i4Ovf+NozT387CIIn3/foqTMnMxYXi0Uh+cmTx99++8zc7DRjabfbBkBrpYrFPELo8OHD//43/9P+Azdcv7Zku04YZ5RSQkFn0HLzk44LhQBIAak0IdC0chgDDSEAGkJo2cT17EHQDsJ2xiKh+PWFtzlPlpeWm41BuxFQlAdAZZmASCYpsh1varIIAHAd//Lly1Jxx3EK+ZLn5rKMG2MnAEASxW6tOjo62mxubW1tGNsl3/c9z2FMGDmRkXQHUWiYSRhjyyKVWhVjbEJZDKWUcy6UhBASisIw/NYzzyCAdqIj4jhGCEkJIDQRHdzsfqYkkFKmaWLEQ5ZFABjqn6Ik7gd9TKCUHADFkYQK2jYVQAGNGU8BBpZNLIvU6iXPs9c2N9I0zliWJIlJn4IQasDjJLNsfOutN4+OjimlGs1NzqTvuywTQEMjKTOw5tzcXBynnWbrzJkzg14/yzgY2o6DMAwdSnboaL1ez7YcSmmSZARhKYYHq1LKsq1SuXzo0CHHtZqtrQceeGB9dW1ra4PzzDCuOM8oxUoN1WyYEIIxhNDwduM4StIwYwnC4PCRG4wUHiJNKIKIep5XKpW63a6QTGvJeaaUMtkVtm2nKTOInhqeJVpKuU1QBlopY84G30kmHxacxjsCDG2g31EgmaPEnPCcM6VFLufV69XBYJClCEJAKa3X67blXr16VUp1/fr1rWZjYWFhdXXV9/KHDh0Kw3BzczOKIsuyMsaklBoCrbWCAGnEmGBsYHTAUAOlYkptM3QUQiRJ5nkeIZaUKk0zE3Gxo300enBKKMbUZAYYdFhrbVHHTHCNFLLT6e3evTsMQ9OB7hx/htuNkAHfuE0JVxKjob2V2bsMWmI0LisrK81m05AUlVJZJiCEx948jhCamJgIgj4AKEmS9c11izrm8VYK7NhtC8FMhYMQQhgQYufzvuBZlgnOGSFkcnLq6NGjd915z+zsXLVatS0/CkLTHXCRGeNy8wQa7fJwLwYIABAEASbAzBJc1w2CyCDLjdZWEPaUEp5vIYCK5aJpBxQEUnGIEcbYL+Q1gpZtIwLroyOlSjlOI9uyUpa9feFCIZ/HFm11er2gY8JRLGeoY/DzOYCgEMxkq1iWVSwWG43G+saq41qcy9pI2bZpxqTtEc5kHIeuTZvNrSjs53x7aWFtbWW1VMyP1arBIMp0PFKrjY6PkwIJB4Pjx96K47h8qLhr99zdB99DkiiVXNl1N01jIUQQ9pRSUmVRFEVRQoi1vrI2NbmrNjGdzxcghPfe8x6E0Orq+pVLZ65cXhgfm8xSKUWMiC2UspDjF32tC0aV47pU7iSnmQLO/D8ElAKUAi4BhGhifAoiPeh2WSYAQBhTCGEmuNb62LFjm5ubrmtPT083m+1+vw0AOHjoyMrKb1erlfvuu//4sdeef+4l33cRwltb7SyTJrLZPOuO7eb8fBxFnDOMSZYlSZIIITY2NjjnvV7PpP/Nzy+4jm/qsLXVjVqlihDe2NgwJnpa62KxmKU8SZK5uTlCyNj4CIIkihKl1OTkVBiGrWYniiLLIhura1/50t9sbm5Sl7700kuDQS/N4omJsXK5ZFwCoyg6fvx4r9crFktvvPGm0Gm73U6SpFqpG86XQYKIi9vttqEeXL58BQOcy+UefPDBi29f0hAYdxvbJo7tFcqlTqdDKR4Zqa2urrZaLSllvx9AqNM0A5pQYikpWSby+UK1WkcwTJNut9tfXFyO0tQQQEyZsk1QQpzzRqOhoCiWcpVqYdeuGaWkYLzf709Pz8zPzy8vXfF9P+tnFrGFEFsbm2tra+aMOXr0aJIkjUYj5SkhJE3T9fVVxhjCcHRshKLxlKdTUxNjY2NraxsYayAJy3Rzs8uZwNg4ECEIJETaca1SqRQEgRl3G+JYHMeNRsO2bUrsbrfruh4hNIoijCzOJKYQIZRyhhDWGsRBYtv25NQ4Y+mp46fe+9jjd99177lz52x3WECP1kdynpOmURzHlmPn8l6ayMcffxxqb3W1I4TYWFujDr356OFinpQK3vzShud5pZKvNUgSblm0XKsYxMrU2RgA/Y6iH/59m9cfz7vcsX9FAP5939hh7QINb9q2ba216ejGx8dth6Zp2ul0pGRAMcexCAWbm5v9fr9arr311ok0Zfv27Xno4QeDoL+8unr58tVarXb12vyrr72xttF86KGHVlZWJmdmm82mRvCBBx6gBD388HtWlpdaraYZ2HDOa7WRfKGsFe90W7VaqVDMC5FF8cD3bdumQrFB0CEETE/OdjodjdGz3/v+YDC4fPnyk08+SSx69erV8+fPF0vl97///aOjoyFjmeD1kao34Z4++eblyxd/5lOfjpJYQ9Xpddc2N/bs23vo0KH+oPvc974jkhAA0O/3KYQAaN/3Pc+P4ziKolarZayQIYSU2hjHGkATiWPbFABAHccwyBBCUgqlFEIgl8sJyVqthm1T13Vs27YsQghpNBrdbtu27VzeQwjk8p6U3CgSKKVJlo6M1VkmTHQAxtXl5eV+L0li6TjOwsISIaRQKJgAQwXBW2+91Wy27777nkMH0VtvnfjjP/5TAPGe3buMM51t257lpWlKkCOEwBj6vq+1TJIEWyRNmRmrQIQopSYEHEDAuXBsH0IsNXBs1/dzlUqFQOR53vLy8hf/9E8c3yOE/NEf/dGVq9fr09M/fOllrbVFablc6nQ6EKh8Pj8IA0qxRe1yqXz01kMrKysvv/wySzlnqtvtcy4ty7IwURBpLQfd3qDbKxQKQgiIdJZxhJDxLeWcpzoVMsUYe76FELIsopTy/fydd969uLj40Y98otnu/db//dsryxuuk0+SjGAohIIIFAq5bq8NAJgYnz554my72RmMdf7xL/0KpfbGxkaaphcvXJ6cnBodH4sTjSkiEFlOpVqvGMfGpaUlAECxWK7Uymg7lvPHgL9/7/UP5Qf+yKocDn52Zj8KQPQP/Pjf/UEFNQIQDcWV0GTFIATanVa+6D300AOvvPrD0XqZYIcztHvuxjePvdxud44ePfrxj/3kl7/85f4g3r9/P8b4j/7kj9vt9s/9/M/fduvR559/7u0LZ7M0rI+NDiwshMjlvIWFwUsv/3B05Fi9Prq8tPbmm28eOLBvfHTCtZ1z507HcdzcbFuW5dlWuVpptvpxHFWr1Wq1tLCwmKbpgQOH+r3EGS3cdecDK2vL3/nuM7mc53hupTJlWY7jOPX66PrK2oX2FcsCJ06ch1CPjdfCJIQQZpxjZMcRQ4TE2cCwCPYdOLh4fVnLoeGs4lwD0ehsTk2Nj0/UlFKl6mSlXrx69WoYR9OzMxiijY2NarX853/xZ5OTk//5P///FhauT+3efX1hAVO7UKoAjZ76xtM3H73vEz/5yVaz88ILL0RRdOutt3Y67Xqt1Om0LMtaWVk5fvLELbfdm8/7yyuLX/zinyX9rZ//+Z//J7/6q2+dPDG/uFAfHX3jzVf37N63b//ca2++vHvv3N69+8M4+tLffGXv/n233367D0g4CBqNxs/8zM98/r8srixda7l4ZmbyyE03rG+srK+vcsFuuOGGX/u1X9vcbPzpn/7ZxSsXTBVbr9cH/XBjbbNQzWOMqU0otozvgVDS5COpHV8CNWwADJWGKWlZFkEUIEz0MIsMIQQBBkAZ915KjUk6M92CaaUsyyLY4lIAAKRUWmvT4AEAjD56h6uIt2mwYNtWGADDgNZKyR28YAduRtsFOoRQCA4AIIZRC6BRNpoPSa0hviaHuNv2OMYgkpQoLoQQWZZRSqIsCpMQITgyWpNSR1GiFAiDuN1uY2xmVILaJE4jy7IwhggCP+cZsgnQwLYtCCHGpN/vc5VYNkGQqNQDAHiep4b2voLY9Lvf/07K5U//zE+98tobr37nexfmZj72k59YXF574/jx3/g3/7tS6g//8A/iNPNcm6WJjSyTmXN9/qpFHYBgLpcTQmxtbaVpWq/XfN9vtVqtVgsh5Hq2lBJTqoQ5O5DhnFJKiY1tzyqWy4xlpuUGAAMtzAmVZZlhhlar1dtvv81xnDePvb6TAWseIb2dAmTuwuTkJCFkY23N0JALhUKWZRnnjGXqnfAutNNG7ph0K6Wg0kgDJZVCkGALAowBZoJJrS3XdV03TVNCCFDKGMGZh+Rd/+w7vtIQDLNWDJ1qB2nV25JVtf2CEBrDk6GzHIK2bXNhAn8QQvCGG2644647n3/+ecY4xnBlZcU85BYhEGDjukAp5ZwPObwQDn0ltjXavp+jlIZxZFw7EEIIop3lkM/nCUVxHAOlDBxmJhmGzqwVVEpmGbctl1KaJEmr1ZFyGGRkviPatqh+9wXBGGsFiY3y+bxjEQihBDqKoix9JxjQUH1N60gIEVKpYUon0goCqBFCetvneYgyQ7DDFlfbKoHtyz70kQQmlQ0hBLFt0W2UVgFp2FsYAGBo79vA9xAfl5IDgIyiGRJoRJNKqSxjWgMEieM6uD62tdVECGUZw9j4YvM4ji2LmkBjz/NKFc+ynCRJYieWSmEMIURCS0KwlMJ1Hdf1dpKvhOCOZ5si3yBZUgjbtqWUQigTO0YIkYwDBRRXUEOTpgU04jyDEACM4ohRC1PipLGIw2wwSJQSYcA9LxNCIJhBCBEkFqWFfMnzvFwuhxDKOBtEIYS63+9vbKxNTU9wLh3q5Pzc0HkPU8NS7zRbUkrP9lzXdajT2Gg4jjUxMcEYwxi6noMJmpwclwK6rlupVC5efHt2drZSLQ2CTj5XXl/bZHw198xTH//YJ6t4tOxbStEkzq5cunTlypWv/+1/n5yc/F//3b/e3Nz4g//6ud179hw9cvC3f/s/j46WLEt3Oq12p/dXf/2XhUKh3W5XKhXA1C233Orn3DSNG52tarWcpMHGxpptkSgIfddNAJScCSEQtJCFCsQZHR2PoyyO09GR8TAMYUsT7PTaIcaYC8X40HlWCIEIdV0XY8h4urWxyTnXWhZzRaVAr9dL4kgpjYkzHDcqqLWWQAOlKMVGYmlsyoYbDcIAAMkYJgRj7DqOlDLL0oMHD37mM595/vnnv/KVrxRKRYyw43tu3v3Uz/0j23X+9L/92cGDB+9/8KH/8ju//cMf/nD3nl2WY2uthGQYI2JhLhKMdaVYePrVb//fn/tcHASj9XoQ9imlu3btipJoaXkoz2+1Wt/+9jOe599///1PPPFEtVr/nd/5nfml+TvuuA0iLRX/wQ9+cPHixf3793/xi3/ied7dd999+fLlVqs1OztbqlRb7WYul7vv/ntuOXqb5+WCIJidnbxx/+7Xjx37337982traxrwx9770Ne+/pUTp068972PVqqlp556Kuc5rmsTQpIkMjAxRCjjjNrkFz796UM3HlxbXV9aXVpb27jrrrvHRifcPOEabm4tcSnCIB6bGB8bqzMme/2elJJighDa9mYlUGmIhFTpxsZ6ygfz1y8LmWkF6vVRpJ0wyLIsNtNAKTXLoJTCz1lBFMdpBpQu5L1isZxlHACRy+XNtpwk6ebmppQcQmhZ1ubmZpZlxWKZEMsMMm3bFkJFcWwotPV6vVQqGWczkwxv5nOcc9tV5sqnCRvwwdTUVBxFV65c8TzPVC8AAMsiBkncwQoM49VsR57naA3NCFYIpiG4dOkiACpOg3zer5TLAKjdu/c2Gs1WsxfHacrTvOPn8jmpMsdzbNeaX9hyXduySLcbH7ph/+7du1955RUAJYQKIbS6tthqN6qV+tjYyPLyMhcZEEBpbdhFloKTY5PtRvvKxSudTkdLBQAql8t79uwJw7DVahn4xdAjxsbGOBNxHHtezlhD8Ix5ngeRFozV6/ViqZSxhPG0UCgsLS29/uprrVYrl8sVCgWzA8dxnGUJAMMT2eDvBMMkDqVWFNEwDEulwvT0ZKPRCIK+OSDMUMfMOj3PIYgUi8XVlbUkiWzbZA6bcRA28LFBpQAc0hGMG5pSEkK8bfGnpZTGPsXUigAMa6csy5SShsoAAABQVaol26YIAddzCEYAAEqp7/sGf6eU2jZhgrdaLaOIMkrEZrNpXBfMxq41wJSYupFgZEbmrus6lt3v9xFCWZZpqTLGhBAIQMG4YMMjA2Fs2YRxvj0+B7ZtO44jpcSYeq5vCmZDeOKcc8ZKpZIQ4sUXX2w0GnfeeWe5XObMvAeZ9wA9NKYAAGgtMYBKa3OgHz9+fH19vdvt3nnnnVNTU0ePHm00GpcvXx4fH8/lcpubm0Zk6bq+Ad8MDN1styilACrGBITQ8MvNnFVpxjnP5XLlcpEQpLXWSpiDxratNM06nc7kxLTn5fL5IoJWGIae7WgAteRQaUopQsC1XaiVZTlZlhniCOfMKM+UlmmaOo5jYSsMY0ppp9MZDHppFhUKuXypOBj02q12tVqVQLu2nYYZ42GpWhmtVoWSUgEuhYLq1Tdebbfb99x5V71e3zU3s3B9EUKogYySyKiR0jRWCvi+b/igQRBMTU3NzMyYEKzz58/3+30I4cjUaLHgJukgik30JbZtm7N0a3NtaeEqT5I0jmrV4mitniRZPp8vjxQIs6dmZgIdIKBumbvlhhsOlvcXJ3fNgOs2UVJCAIL+gDEWxpHx+B8MBjzjvuNT6uzdc4Pn5oGmtxy5I+Xi7JmL+/cfrJRHPac8PbW33e3ni2XX9YQQnAvP8zyPCAmMiS3nhjL/4/t5rYEUgFoASNRutTrdVilfEJIY55R+GKyurna77SxLXNc+duxYkkatVkvLbHl5ybYLWaoefOBRC5M//uM/npwadxwLAiKF6seDUqnk+z5GxHX9OIyUBBgTpXQul7csYnqnRqNl4lwghEYVXiiUBoNep9O5fPny1NSk6awQJFxwOIwTwXNzc1LKixcvmz4OALB37x4I4d/+7dcghAhDyXmnk3i+E8fxqVOnJibGEIbNZhMhWCgUkiRptVoI4UKhnGXspRdfLVQs27YJtqIo8v08QsQIMIMgsG27Xq9PTEwSSC9fvhzH6csvv1rwi5OTk/6Mv7S6mCTJIOhVqqV83m93mq7jDwk4AEuh4zhG0Dp8+OClS5cee/Txbrc/f31xcnL65PHvHjhw6Pbb7/za176qlHJzPufZdr9BzLhp955dSRoOoh4mQCnV6XRs2yIIF4ulLMsAHCoEd+/bq5man5/PFws28ZRSjLGzZ8+OjIwIIRxqpZwNs4BynuM4EOqp8an6WDVOwjDq1kcKxZKrGEpi1W13lITb8lKsgaFy6NXV9Xa7a9raXbt2FQqFt99+m1KqNUzSaMfdz6JeEve1xkpy03vbhCqlMCZSyk67Z9lkZWXt9OnTU9OTZuOzLIsL0e/34zgkCPq+P7drTxSl3IPHjh279eh9+/fvvXDx3PVr81tbW7VKUU+ONJtbLJOu66apJARTSjUCFgFpOuQdAwCEBmibQYkxkH8PntoBs34sQKY00GCIOA/PCDDkPisJAATGer9WqyVJcuHCBah0vV7XQg66vTSLEFJCJq12w/O8AwcOMCYOHDx08dLlt04cBwiWy8XFxcVyuZgr5JMkSVj23e9+99kf/CBN01tvueUDH/7QzNTEc89+/z0PP/iZX/z0r/zKL6+tL1m2K6W0bbtQKK2vb/q+O1If6w/aC4vzlUqpUim5ri8ViKI1znR9pCQVV1pgjN96602E0MzM1G133Pr1r//ttWtXms1ms9UaH5964603HnrokTNnTl67dmWsggBAjZUOsTAg8NBNh0emZlw/HwRBLuedPnkCKK21qlXLFCOWxlwJAIAx1Yqi5J//83+xsLBw/PixLGVplvp+Higdx3GhULAwEUJkQmBsMBRhNEeMMQCVlNKET3LOMs7K5fLbb19cWVmB2gGQJEmYsXRpaaFSqSiloiRevbq+e/fcxMSEAVPMCKRQ9LJASqm63Z7WWnBNcDZ/fdFynZ/92Z996623zp05CwHZv//gxQtXT546Oz4+fvnSec4zQizTAO90rUqbWQtVSoVhqJTAGGMCBWNjY2Ou6545e6paqXe73TCMd8bFvV4vn88DhGdnZ0dG6v1+3/a8rc3mU089hSBxPJ8SS3BOCMEQdTudXrddLpeV6EVZUigWwzA8efJkqVgZHR1tbrU9l2QZ15ppIRkAhCAptWN7zUbbc3N5z9/oD9IMOY5j6DNaS8sinEvXtcvlstZDMBoA9Nhjj3c7/a98+WuKgrH6BN8nS6XS9evXu53W9PTk/Py1VqtlIP5vffM7e3bv3TUz+/a58ydOHnvs0Sd27drVaLRc1wWISAkghEIpDRDGQChZKDi+P5kkgqVZHMdmVIvxO2cK+H8103i3quBHlt4/tEjf/f4fsYEG4B242fwVJiBNU4ItgJCWwBCuV1cbQrCZ2alWc/POO29PomBzc+vIjUcOHjx4+uTrGMBOs7W2slIsFhcXl1MFHn/88aWVZYTx5NT4Sy+/hDCo16tvn1+7evUyhfD2O46maUopef+TT3a7vf/y259bX99qt7pKZnv27G422gTSSrFqACnL8jc32gjpG27cX6tVy+VyqVReW9vgqbJtp1Ktf+/ZZ69evWTZKJd3XddOkkBKPhgwiujc3Fy9Pn7m9LmNjaYxREpYghBimeh2+oQ6CFnGKIMz3usOlAKMJYQgiORWc5Uxefjo3lqtEsdhu9uWUl64cC6fL5kJ4szMlOPZnU7n+vz8+uZab9BfWlrZ2mqur292u92ZGWFRu9vtWq73+BPvu359gQl5002HsyzZ3Ny48fCBV1/+YbfbvXz5cq1WN+ybibHx9fXV/+mXPvNv//W/1gBMTTX/9m+/7rju7XfdfeDJ/YxxpcDSyvL45FR/EBKLPvbY4xsbG2sr186dO3fx4tuValELaTuUi0SKVGuZJNEzzzyTcz2nXPmrv/pSPlfq96KLFy9DpT3Pp5YlhMjlcp1+z8LEcRwhFEAQEQyVHjr2Iqq08hw3iiLGMkpt05VpDFWaQjLUwm93IAYUJjtgIthGgSGEnufBocpSG2BIaxCGoYkKNDDBu5nL6O+lAoKh38LQXvndRE6Dg6Ntr1iRISkl2JYoMSl2WKg75NxtvExqPXTSMOwPSim1MIQwiiIFVRT3i8WibblJkmRZFkcp57xYLCKEjfeuhsp2KAAqipJ8wS9XilJKQsFgEHLODGUSQuC6bhYnhBCIKcTIcJ+TNK3WR3yXXrvW+MRP/tTXv/KVr3zlqzDn/9Nf/pXTb5360y9+sd1un79wMUviWq0OFFfbiX+FQiFNUwLRyMhIPxhcu3bNsmzzBdvtdrvdDsPQzHRZJhBFLEmMkh1jDLU2jhnFYlEIAR3oeV4Yho7j5PP5brdLLVqpVIIgaLc7FrJ937t69WqaxXEcu66r+DAbUG3bBBtI0XGcSqWSJInjeQYdNuI2o/B9F0I6tNcwD5hNKABAZEZYYNm2HQRRJhKbUo2xua0GijKkWnMfdxwhwPacwHx3gzWb8nj7rzCh6F2ERygFgxAKyU3GkZfzzOQ75QwhYC6C1hoh4LpOlmUXLlzo9/txHOeLhYmJCUKsZrOZ9/IQwuvXr0OkNZCcc2phALEGgFJqVINmcIIQVEoZr0Nz7yDSFiUsE4yxLMs40whCYllSSt/3XdezLIsxsbm5iRE1d5xz3u30zS0gZAdgh4QQgqExi9gxkzEPuRY6n8+PjYwIwRhjKssMUmza2h1IztSrSimpxHD9GsjepHygYb4iIQSRIZyt5PAhNHcfaGlwdmJhrbWZClALmqogTVkcp0IIhLBnO8buAGNiCFBmdmWqGos6hqS21Wp2e+18vphlWafTxLRGiV0fqwOAuu0lE15k25ZSSgiJEHQcmzq24ztxHG+1tgQpFAolwXi5XFay2+IdJeR2ZhGSUjKWKSU1MAw6BSExT5ThOwOj7YNIA207vuNYUkqFCGMxQkgJqQCXSrNkexvhyqIEAZQlzLKsNBVIEyl0FnAWitHR0eldo2urq2maxlGWxc0wjIxDd6GU1xBsbGwKwbIsu3rl+sTY2OTkdK06AiG8du2aEEIpkCQZ5xJBsrS4YkbmFnVYJlqtDqU0SaL+oIMA0goWcjmtYG1ihFJMLRwOAg1BEASbja4S9Klvfq1QKD380GMxcdfW1tbW1urV2tFPHPnOd59Rkp09feKZbz+1tbWxsTb/6svfW9tcq1Qqe3aNV4pOGBfuvffeM2fOAKk21zduvvnI7K7pTqd16203f/s733zhue/Nzs5UKpVOt9Xt9oMgsKingSwX8pZlsSwLg2Dc8wdxXynV7m8RQvyc1e+Fjks5Z0JxBJXSSkMllBRxVigU6vU6oWhrawtAVatVjCtFpVIpFotKgVazbxQAEEBsUSDlztLemYKg7SxNxhjC2BR7mJC53bvTJPq3//bfjk9O/N4X/ivEKGEZISTr9TzfH5sY/dQ/+jnGxIkTJ1zXdV2XOnacpv2wH8cxouiO225zXDo9M9FsbRw//eZbx193HVqZmkAIXbl+LZ/PDwZ9s6aMNr/dbp8/f/5f/av/5caDB/r94Dd+4zdeeeWVJ97/+NTUZD5fWF5efe75Zw/feFOxWAyCYDAYvPTDFwzB+dq1a1pfXdvY3NjYuPHwvkcfffTixYtPPfXUzTffvNVY/9KXvrSwsHDXXXetLq/0em0NxCDoHDi4Z3Z29q//+i8sVKQU5XJ+pVJuNBqcc4Sw4zhJkj3zzDPNTvfc2bfjONm1a/err2ePP/7kzNRor7/1g+e+NzIyIrXq9DYs62iapkoCQysp5ksAAARA3i9ZFn3uhecvXznvec4gYEoizoBne2EQQQgJhoACKaXjePli0aQyRGHcbLQsaqdpGsfJxnrDTOmSmCOEtAYIISX11lbTde00TZUCtu0CAHq9HkLEcCeDoMc4N6eJCQP0fIdSur6+3mw2jVkHQsi23DSLkyRJE1YulweDQa/bNe8Pw9jcGiPlMTtPpVKJ47jf75tRmdmisywTQgGELcd2HKdYzNs2rdZzWvNCMbd79+7xsclGo/XaK2/0g159tFYo5DKWVkr5ffv2ZCyRkitFPc87fOTGkZERzrOZmakgCDqdnhDi+vWrvp+/fv16FCaFQkEIls8XEUJCSsF4ApNWq7W+vtnv9z3HrdVGquWKMQowhU0cx5KLQ4cOze3ZOzExATQ8efLk1avXDX/WQO2CM9txtNbLy8u2Qwv5UhJnJ46f6na7lBDPywGA0pRFUbRtUg+kUkbHRCnVCgIAXNthIjOTyK2trfX19SSJCoUCxiYiODQH7ujoaBwmzWbToD0YYwiAZTlGK2Mcb3YKOQCAEAIoCDH6kSRPCCFCgHPuuFa1WieEhOEgiiKEVaFYBACkaWpZJJcrl0oFQgi1SK/XGR8ftSwLIcIYv3TxSqfTw5hKKQ1OZds2RGh+cSFL0qF6ybKE1IbjbDk25xxAyDIuhMQYZylLosQ8GAAAJaQQEiFsWfa2mzM0B3ocpQghy7ENtxdtZ05ShAyC9O55KkLIOL1IKbe2tnrdwcw0Ma4vZh5Gib2zd5mDFSGEAfBspzvov/LKK5cvXy6Xy3fdddfGxsbx48c3NjY827EJbW01sjixbddwqCHEURTtBGyYs5paWGwnRccxtyyHEuz7dqVSEdv8gyxjUoparUopVUpTYl+4cGl8fLJWHcNly8YEAuC5rhCMINxuN6MoajQad9xxR61GMcaGjM545iAXQmhRC2PMmRhEIaUUAGQmRgAqbvJaEEySVCOYz+eTJFFaFEtFxtJB2M/lCgBqbOFWqzUY9CilAIP6SDWJpxqNBgBDlqrjOOaapynzfd9Qx3bt2rVt40lmZmaazebGxhoAoA4q169eXFxer49M3nTkVgCU4KmSPOi3r129lEbh2GjdtiumyBwfH0e2LpWqEMI9e+aeeO+jeZlPkuRa/8ozzzxDl3PEJjYldhqnTHDH8RzHxciCgDq2Q5EzMTENlb1n7nAYJLZV2H9gT7PXkVp7nmc7yHGcaj0yXYrve77vE0IABJQCqQxOBpQC+N0tujENUABCICVACCgJEASlUqlcLjdbW5zJyYlpz3f4+gql+M4773Acp9Pp1Gq1IAh+8Nz3T7x1GiFQyFcJRX/0x3+2tX69Vqsb3gFCyPfzQnSTJCkUCrXaSL/bMyRlCKHjmh1nGNJi2gmltFYQIc25dBzHshyM8WAwuHQpKBRzUkqgURAElFom5P3UqVOO45gSlhDCM/bSSy8IIZIwsj3HsixAgGU7Wqt6vVYdqWKMGU8h1CY5cDAYWJaNEGGZQMgaGckXK7a58VnGLQsBACm1bGpxwIMg7PX6Fy5cLuULnpdDkIRBGPbjbre3d++efr/PObcs0h10fd9FCPQHXduhYRATYmFs2Tao1Ubr9dH5+cXPfOazjuP8l8//3vLyepZlP//zn/7pn/5QmsZXr10kFG6sLplOibEMADA+Pjo7OyMAW19fxQQghAaDQZqmSRRblmVZjpByfHx8ZGSEOnbIQlNJu67d7fYhhK7rqu1gbteiTArf9/OFnG3TwWCwvLwcpUGpXMAYQ6SrtdLC1eUzpy9mjGHsG50O0BBCjIDV6wZRmArJAAAQ4M3Nxv79B5eXl5udtglIDYOYMdbpdDCmGNMkSUwLTyBijNnUUkoBAOM44ZxoAL/61a/df/+9M9O7Ll256LiWic1ByGs3m91uLxikjuMdOXzr5OTMwsICtZpf/dv/EYXZ4cOHOc+azWYcJkKDfq/DsqxSrbquiwEQAuxgze/GpAzfWf+4hMC/P3r5sS+47Rc79OhAwwVlDn5KaRRFFy9enJycNg1qs7W5vHJ9bW2J8eTBBx/8yEc/hBE9cfrM4ZuPXLt+5atf/6rnOXv27lrf3MBYF8qFUSFW1zfuuuuu+euLnV47l/PW1tbiNJneNfNXX/rLS5cuKSWJErZtI0S63W6SZJRSzy/Mzc2FUQdA6ftuGA0yJlrtsNPuzeXmBv3ETOcoJXEcE0Kee+7ZfD6vFJicntAKuq7z0ksvrKysvPzKK45Lr127XKrWHn/iA2EShkloOdbc3jkmOFA66nd6rQaQadF3YpAFg/5IrRLGaRhGCEHGpZTy7rvvveOOO1588UXHcUZHxoTkSRQTQkycbtDrZ4JTagnBjBuybdvVahVAZWZanuesrKzIXm9zcyuOY86FawEItePaN9xwwIw64zjiXORyvpSy2+0qparVqpQiikJKSaK4EAIjmmYpYxnLVL5Yk1KurTZmpvcszK9euHBlfb1x4w1HbNva3NxUMjXbfRzHQCqpMNAoSSOMsec5CAHGUwmUqR4wgX7e6/U7YURc1y2VC7ZDhRAb61v97sBxvCzLer1u3vMfe+zRU6dPSOWlTCZppATfs39foVC6ePEixtimlmVZQgKRpZ5tua47CLI4inq9HmpL72Bheno2ibLVlU1jFW0hIzXSSgGEcBjGV65cGR8fty23N+gCqJKE5nKe67q+75omPMsy4+yczxfDMP7+97//a7/2a7//hT88evutxVzx8uXLreaWCeeJwsHM9PTVq1coJq7v9/t9CAAhpFD0Xv7h8xhZtm0LAWZ27c4XK/1+QKiNKMUYQAiABGmqMEa2TTyXlMo+F++soHcDxGbtmMG++RMDSRuU7B9M/Pu7ns5/x98G/piowB1Zg2FYKzW0OwTD1GigNchSEMfp2NgEoapUzNXr5dXlpY2NtfmFqydPvXXl6oWx8TrjyVe+8iVEaaOxWa2PHLnphoM3HPzrv/kSIRhCiDDO5XKzs7OtVsNCiDN5/MQbGYtHRkYIxfmC2zyzWanU7rzttjfeeCNjiUk5kwJa1OsP4ihOf+mzv3DbbUe/9/1nzp8/v7XVqFRq1LbDOIqSOE0Tx7VGR2vj46NcJEJQxlgSJg0mK+V6msblcnl0dFRpsbCw4OW90dFRvNkJw1alUrQtX/OU8VRJJLnctWvm8qVL0SDJ5Z09e2f27J+dmBzXWnLJ1tY22u12q6mmZ6d6vV673VZKFAqFycnJK1eunDt3jlr45luOfvW/f21sbGxiMh8nbNeu/ffe954n3veh9c1Wt98vVSrf+ta3PM/5yE98dHV5KYyT8cmpxaWVanVEKVXKlXI5/9HHHv7AT/wEB2AQhgvzy8EgjsJ0dmL26pX5brc/MTmdCSkhnNw1c/X6wu994QuPPPJYtVpN07Tf78/umrIdCwCtpTh+/PjGxtYtN92MNCgWS/V6rd3uBIM0jtMkjH3fx4j2+wFCRBoxkJIqTncwMgAE5xxBgm1AMUl5uk1pFAaf0hoIAFQU7fgqYKwBQJZlScmMoIoxprQwW5ZploywjhBsyCxDt1apKKUYU2MzZQhNaZoacwADLBogzDCYkAYYQESIYX8YCeoO4KjeZRDMGNMKaK0JRBwaCwVlvLkMAGH+TTN+BsD0ybZNMed8MOhblgUgMImI/f6AZSJNhnVXHCfFYtH3/TRlAAGjk/B8a3S0jjESIkUIVCoF388zxlZXV7NMCMHb7ZbruhohzXSSxACAQ4cOzczMvn3hwoFdM2zQ/x9PPZ13/McefTxodn7vi3/ebza9UumVV15pbm1WKhUlsjQJLMtKs2R0dK7X62GLjo+Pb2xtmh7JNBgmlA8AYGaBEkgKaS6XMwivSS0mhOTz+Xq97jiORZ1ms1EqlfL5PCYQE7i+sbG+vv57v/d7Tz/zzIkTJ4yjZcYSI3d9x9dSDjnmhhWVJInhPkMIM8YGYWhuhGnjjTM2NGFtBmFEOGWpRsDcDjM2MCRr42xg8Eq9bbhhfp1SCmptbDcMWV5xIaUUWu18KgM/GUzh3f8Nt7n5atvRFWL07rkIxsMxhud5QdA3cPPS0kKn0/K83OTkRDFfNM+VZVkEksnJySAIjF1MLpfL5/NSyjQa9ntoO7JSSkEIgVnGOHMcZ/gBMOA8CyNNEHZdVyloOLYYkyHeAQDYdpiBEPZ6PWrhcrlsWL0YE4ypUioMYqUUwticYlJKLSSl1Mvny+WyuTtmHqCFtikV25WtEQLvXFWtoAJy+2YNMWcJhiFFWmsDHmVZZqhYZmFKKTEmppVA0Jaam0UNgckWVEppxoz0QaWQIKEQQoQSx3GiCJjYQ6MRDoLA913ikFq97LjUtml/0JUKmtsHIWSM27bN2NCmAwlACBFa5Yq5fD5PKQ2jQaPZoR6qVuuciWajnSSJZVkCcACU1oorhSCQiiMMbNsy30IDWSqVEEK9Xo9lYsfIxRgiSSmhlghAx3KllFxnCigAJaEQQg3g0LwbAEAQ0lIShLgEWCOgEUY47icri1tpKrOUK6Ucl8RhJKUwweCVaolXyysra0KovOdrhbc22+trjdHRUQhxEmcIRgDAem08iiKMSZpyyQWEkCA66EZKCyml42HH8RzHy+fKvV5/fWXDcWyWiSju53I52/EUF+1uH6jghRee1Vr3t/pa6yeeeOLJ97/PcejYxOiv/2//9tz5E7V6uV4rNhorCOm8ayVRJ3VgpeQ+9Mh7CoX897//fc/zbr/tFiHYKy+/OD9/5ezZif6gVx+pzO2erlarZ8+mQALHcXqDkHNeK9utVvvGQzfceOONr776OsZQKbXVWJ+amlJQ+AUnCQTCAmGJME6iNEgC17IPHrxhdHRUKh7HUautoyCo1UpCC8ZTBInWwxRHw9Eh2Er50KkJbI+dpJQmxw8AMLTtRlDr4VhlMBisra88/cy35ubmLl++7Pje7bffvrG5OTMz8+IPX/r+D579wIc++PGP/eT58+effe75e+699+23z/f73SSNMca7ds0UCoUwiqIoabZaX/vql2+5/XaI5KlXzjYaDQhht9vp9ruGUGk+TL/fv//++288eCBKs9/93d9ttRpTU1NbW1sXLlxotztnz57VWr/00ktPP/10FEWO49xxxx379u2rVUc6nc73v//9brePITp7+tz//C/+pe/7vu+dOXXq7OnTjLFqubK1sYkxfv2NVz/0oQ88+vAj3/zGUwiDfC7ney4hRArhe97evXsBgCMjI8899wIhpN1pvv32uSDsE0IefOjeY8eOffkrf3HDjXs3NjaytNdp81K1srZ63bGBZVljYxNB0Bwfn+x1N+I4GRsZ3docnDp16nvPPq21nprevbg0Xy5XMMaScZZlSqS2TTDWQBOlRb1aY1y2Wp0oCQAgUmqErDQRg37LDB1NpWFZFoSIsaxSKeXy/mCwQqlt6t4s47aFY5YMp1xaSSmLxaJSKk5CowXJssz3fQOcGZWJkoBga3S07DiOyXg3CFSpVOr1egaM20bZMkLI6Ojo0tKS3nZDQghhSihCjDHfd9M0hcSbmp3mPBOSS8l7vXav1+33wnK1WKvX5+bmCMUYQyYSRLDKtON4WkPHcSixTLflug5jrFAoMMb6vUEURXGcOrZnihDbcrXWSrIoSigT05PezNR0VK5IKcdGRo3TBSFEgeFBaY7I61evraysjI2Onz9/od/v79j7IoS0BJ7n2bZdRKg/6MY4XlpaMmWY0cAqpeI4NvVPFEWlUimKYyOV5pxTMhTKVCoV81PNZlMIgS2bOrZSikBiYhsN9N/r9C3Lmp6ezjLe6w2Mp405Ug2QovXQQ2kbBgXGAAogsH3uKwg1hEhIBiGsVEoQaschlo1t2z5y083nzp1bW+nXaiNjY2OraysY42IxbxiZuVwhCMKF+Wtaw0KhBAGujZaPHj3a7XZPnDgBEYnj1FQRxlfHjDeEEDuGv1AD84E554YGbFB7DIee72Z7NzsPQsiQeY16KZcrZFmCtnN6jRuVGY+ZryyEqFYqlmU5trd79+4bb7xxbGzM+KtQapk6h2Bre/tCQggMh2PRa9eunTt3bnNtXTJeK1eyODl9+vSVK1ck5xjjpaUloyFDFAOtWSYA1ADgwSAkBCGCjUWkucKmhCvkS7t27dIgM1VBFEUQQsumjGXm65fL5aNHb7nn7vuazbYQqlgoE0KJ1EkUr6+vCyHW11ejKFpbX+kHwezsbKFQEEI5jmPbWEqpjNSEawix2aU7nZ6BehBCEON83mOZsC13157dQgjGhVRaa40ooRaWUiICm1uNJImEoBAPVdGdTuf02VMAgPHJsU6nFSdCCiFlyJm0LKuQy7M0KxQKNrVc24nj2PM8oPTNRw4nUXjhwgXPwnHci4MuLxQ21xaZ0BYmK6tL586eGnQ7tWqxWint2TtX8AqlUoVzHmVBya62Ot3l5eW15ZVoLZJShl4P21YNFYiUHGrH87x6vjA2PsG57HXDLEWtrc709MjYyFy71e80w/0HbrRsDyNn754DYRiayAiEYC6XM4yDXN6zbQuTdxLPdrhmxrL5R17GTENIYEzDMSYIgWqljquaOlar1eCcj4yM5HJ+sZSfmp7gnI9PjJ4/f/6hhx55+OGHX3zx+TAMkyS5fv2c49iYwG3iBoIQ2rZdq9U67eagH2ICxydGAQC9Xo8xZuyxB4NBlmWe52XZ0Pzesoht245jYezGUSClQAjt37930E+yjJl+AA4l+dqsCqVUqVyIosjznYOH921sbFgWScIkSROM8cTk2O49e/qDbqk0q5Q4efKESTD3PJ9zCQBRSqcJ1520VCpT3+acQ42AgnGYFMdLSsUQYiF4EmcsaeX8QhgOKKUIwDRNz507J4GwbZplIGFJqbQ3n88L0cUYF4tUCDU6OoYgKZUqTz/99NzcnOM4x48f73Q6pj6+4YaDQcCLxfyRI4fPv316dHIUKt3rdxyXIEiara3my5uTs+MIaZvYUnJMEGOMcSlEyrl0XNdxHMZYytnK8oqpTgqFgtaw3W73+/1tQQTiPMsXfKPGLRQKY2Njm2ubW1vNKIriJDS7Xm105MEHq6++cqzbiiyKpQQIUq1NWKfHmZAKYQyzVKyvbZ04fgpT2/iNRCIyUVRpFiNIzCBIgkwIQRHO5XI8Y+ZhMw28ZVsbGxuMsX/5L//ly6/+8AfPfT+KIqV0lmWcyW6n3djqUeJ4TjWXH33h+ZfDiLlObiPYQFCOjYz2ej1KadgbxEAXi0UEoUnNMoDXDltZa6CQoXi8A4S9+/X3aZLvfkEIoH4XtvWu93OuCR12m5ZljY2NPfTQQ+dPnWs3W7VaxSLU87xyuYywWF1dunzl7anZqcnJ6cmpkTfffFOjzC9QSkEYd5VOd80dgISOjtZTltxyy83vf/+TSoHG5sZrr73muu43v/n0hXPngigcqdXjNHIcr98dHL35FgjhyZMnr19faLcalo1r9eLm5ibjqda6XM5PTIwEQTQ/P5/L5QhBcRy2Wi0/n9NQjY6Ovv99H7Rd59y5tz/+sZ88cfr0K6++ODk5iZBam+e16si/+Bf/85snzr5x/NjK2ta+/QfvvecelsT91mB9ZX5msh5Hg7fPXXVc6/CR/XVlHT9+nAtVLpe1hr/7u79bLpdHRsYYSw3IginRjMdxCKFGFLnAJoRAqE2Xa9nEca1CoRDHsVIqjhPLcqIo4oIDjUbqYxbFWutKpWwWeJIkQinLsoBGWkFDu+j3e8ViHmG1ubnpee5gMIiT0PeKn/jEhxaXV99889jo6OhzP/jhkSNHvvjf/uLf/Jt/02o3lpYXHJu6jhXHkjGmlNAaYIoxxEII27ZNZhrGBFtUiKHqYseJ0rat8fGRYjFXqxcZY5QiNDu1tLRk2XaaMi6Sb3/nW/fdd9/W1tb/+Po3d+3ZXS5VOUsHg54QQgkJtaZ4mBQchiGByPf9KIoIxojQa9fmHdudnd7VaQ+iKKGUsowRQrKUO64Fh36voNFo5XK5gwf3mv1fCBaGscEyIIQGnTGlwNzcLGPpb/3WfxwMBtmb/OzZ05Vy8dChA7ZD3nz9jd27Zz/72X/8uc997vSJU7btFIvFpaWlkZGRBx+49+233yY2LVbKzUa30WhqhSi1J6dmxqfKYagARIbmBgBQSoNtidiPLB/zv0r9nT/RWksJdzI8d9727lW5s4R34gG3/4kfv053gGYM38kI1VARSqWEZqSqAVAAzM7OOA7odHsYaddD598+mSZhs7k1CHo535JSdrshhFBLKRUDQPzBH/7eLbfevrmx9vIrL913331vvPb6sWNv3Hv3Pb/w85/98z/+gxPHTrRaDULh+Y3TCCGlUCHn1KvF6/NXpcpsSrQUWkPbsqRQhJCJiYm3L1z4xje+trg0XyoVdu3axVg6NTXSu9bREFgOyRfyU9MTZ8+eDqOB61CTQ6242tzctG13ZLTGGDt79jSleC6/Z2Njq9cdEOxIgQdpopRCyCYEMcYIxcWSF661Jqcmbrn1plzeabUaYRiGUeJ5zs03P7K+tpkyhjHe3Ny84647NzY26qMjcZpuNRv1ej2fK+XzBQiJbXkf/MAT73nPQ3v37l1c2frSl74Ux/Hm5vrS8sI9d95x+PDhCxfOc6EWF5b37j/w6COPnzn99t989a+/9rWnPvqRjykEri4triytfvGLf9bcbI6PTSoGauURzy92gv7C4uLT3/7Wk0++77EnHp6/dn1qeqTk00984hO33XbLG6+93Ov1siStVEuzs7OD7uCZZ545fPgwQuj733/2xhuOWJaHEXnyySfPnX07jmOL2BDCfD7f7/a0hgaT2gEEKbIAAJJLQCTGmFKybekDTQTTdhCc1lqZ+tJQVEy0iynTCUXGrMDzPEN75JwDrc0qyzgXQlBMGGOWBQy4Y1lWpVJpt9u9Xm8na04pZXziDNKNMUYa7FBm8LY17fZC0Go7EhBjbL4O0AhCSPHw/RahBpswnSxCACICtjELw2GxLEtBJSQrl6ulUmF+fn7Xrrndu3cPBoNjx451u13X9SGEhCJCUC7nua5NCOKc2Y41ZGRDkMt5u3fvbjQa3W4fY6y0YAI7jrV3an9ja/Pg/r3lcrmxsRGG4fHXXpmbGifYATz9qz/980fe89Brr72WzxV+4Rd+TkqJoLpw9sx//b3PO5RQSnO53OTk5MUrlxcXF/W2x59t28a4YAd/F0IoObRDMW4Pfs4NwzCO44SJ9a31fD5fLtUdx7EsSwPJmBofH3/k4ceCIFjbWH/44YcuXbpoxGqEkCRJCuWCSrW51OYCmt9lQFsTfWxaF8OkBsOMdWBYUVJqzhkAAAOsFDCcIwCAKcaMpsdQrU3OpOM4aZwI9Y6JoXkeMIRZlu3kTkMIKcQAD/1VTLcG3jGagO8eQgiuzPaHkHlKNWOsUC651O10OqZOjuMYAKWUb1jV4+Pjpu1pbG45jislD4JspFq7447bOJdnz57lnA9zNRHqJG0Doe5wsYf0YSkIwkpIQgjEGAAw7GaRZoxxDrVWSZJgTIzIxlzeHTKywcv8XI4SGA/9E0mv1zPEt4wlAAAzLnUsywC4psgUQnQ6HfNgEELg8JoQ8+QbyvkOHKCUAkN82biFQnNEqW1xAEIIQbJzbkkpJTd/rpRSZpUhhBHCrmsxKbTOgEZkOMQCBu5JEmXbtut7QBpDFam1KhQKGoFer2t8OaM4AEB5noMxTtN0MBj0+0GWpJSSIIjMqIAzSSk2M3XGUyGlBkAKJYVKU9btdhEihgZFKa1UKhjjdqcpMqaUwIQAqCybUOqa+LihjltDgzVTStM4MY+xofvEQaghoZ4RX0vHss1oRClFbZti5Fo2YywLYwARhFgrzdJsECaOa0FoCRELrqiFgAJa63w+TwhxqGNhQiCp1UYHvWAwGAjFpVSEECVAq9GBEOZyOS0h49z38kwyE4kBgEqjLEmSJAHTU1WoaBywQTfa2NiQWlSqJUKg4CCfh+VyORhkt91918988udvvumWp7723cOHD9945EiWZa//8HUhmAK6VCkXy4Vme51SlGaxZaOpyTHXdV955RVEXAhh3s+NjNYee+yRH778wssvv+F6tNlqTE1N1GoVnrFuu3PTTUcXFhb6/X6tVh8M+kwIANA9993/sQ997Nz5S4MganXapVIhSkIuOEVuvuC4rttu9wedIF9w9+/fWyyWKaX9fj/o9YVko6N1XSubQ8HxPKVU2A+VEoaNDjE2mhXzAJtY4zQ1PHpgcBYAwN69e4ljHzt2LI7jYrEYs1hp9fJrrw6i8L1PPvGhD3/4rbfe6nS7t995R6fXHQwG5y9euP/O9/zSL/3SF77whSgK8sXCYNDTWt9+++35vD+/uNBqtcIg3rNv7y//T79k2/ax119fW1uL4yhhmW3bpUpZQ1AoFFzfX19fD4Lgm9/8puu6x4+feOuNN//dv/t3Fy9e/Mrf/vfDh48cOnRoeXlVK7i+vj4+Pv6rv/qrg8Fgenr6pptuMiP/crl6/PiJl156KZ/P/fRP/+TK6sJTT33DTB327Nl73333/f7v//5dd91ZrhRt237iiSd+8zd/o1ouVktl28KMsSAIGs3m7t176vX6/fc/WCpVFhcX/8N/+A8v/vCHr7/xaqVSef75b1+bv97r9TY2rs/MzJSKXj6fKxa9xuZKs7G8a9fuleUrrVZLy6TTbruOf6m9/vTTTydJ0h9sQghff73NWFoqlWxCu92u4JxSmkRpmmZRFFvU63TatuvaNk1SQiyLcy6FzrgAGjLGKbGlEIQApVIIIbWJZTlKaiU1UAAhhBGB2zIpAwTb1LacIb+q1W4UCgXbtoVgBFPBpeCSEEkJMUdVvV4PwzAKQ4yMbEswJoxJmk0djJHJcBsfH+/3+77vB2EfAEAIQQDn83mlVJYlQRCnaZorYS5SiDRUEmO41dzs9QYE28ViuVDMtTotpVQQdsNwYNnUcSzGtWXRJOFbW8u1WqVYzA/6EWMSAmR+SggVRwwhbFkWACiJIjZM5QFCiM3Nzd279+7ff7DZbK6trFJKC4XS3NxslMTz8/OUUpbyy5evYow1gJcuXpZSl0qlLMts2yaEAKUdxymXy8VicRAEEOCNjU2MMQBQCOk4WCtgrufs7KzjOKdPn261h2M5hFA+ny+XClLKNE1t1wFAGRZOmqalasW2XZ5mQxYzhLlczsBo5XK5VCyvrq53Oj3bco1x6E6RoNQ7zksQQoKp1jpJklwhxxgzFs+YIiml69mWgzFFLEvjJMjnfc/zEILVamV5eWkQ9G2HYAwJQYarJ7VaX1+PophSypjCiNZqNQ1UmrBOuycVyHlOoVCQUkZBaE5VoyhyXRcjZPZ2k1trql+CsTkvoDYZE8PXEBceGo4Zo0ubWDTLslyuoJQxrAD5fH7H18VEL1BqIUgefOCh/fv3m5mH7/tpmmVZBoCwbdsEp4GhVk9CqLUE1LEWF69dunRhcXGxUCgEQVCpVJaWlozNrBBCSwW0koJrJbUaKvUZE4IzSqmUnEKqIbAssl0/U8uyXNc17HtTWhiYkWDsVzxKaavVQGjk5ptvMlJU23Y73f6lK5eWLl3r9/taa8ay+fl5KSUAynXdQqFk27ZSiQlHGcqAlJJap1GAIM3ni1proVSxUt5sbiolbdu1XSIlT3iit2t1y6KEEMuyEMZBEBjPE+PCRwk6d/7MuTOnAEB5P2d0ZoQCCCGl1LZcjHGpVKhUKrbtaq3N7AQhVCgUgqBfq9U830EQyP8/X/8dJfl1ngfCN/9i5aqO09PTEzGIAyKQAAiKIEGKlESToiRbkmXJOiufz6Jl767XOj67Dmv72Gv7k9a2jizpsyhqbYsSTVMiKUYQJIUMDPLk3D2du6sr1y/f+P1xqxsQJW+dwTmNmU5VdcP7Pu8TirwUuL32djyOXNefn58veU4WDR2G5mZnTp062azVZ2fm19Y2BoPBIOp5YI+6TjaKMUYlXNZGTfiRGBGCsDHGdTxeqL32sFJuImDKIcvG6MSxe370458YDKJOt++HpXK5ShgtlZjv1/v92LqaAqg5541G3frBQfyDTrXv2F9CAN9lXIsQ4BwACBACUmqCJj4yEII8L4yBU1NTCBltpNYyyxIA0M2bN7XWH/zgB48ePVoqlTCGzz///OtvPI0ocjyWJ2m1WsnzfOHwoYVDh9968829vb39OgmNx2MpRVFk9XrT9l023srzvKIoKKAYY2PU1NSUNrJaCY8eO5KmaRzHCFELzZRKpSwrrCucPS9sRnkYhkEQhKEPgB4MBowRxojNstva2IjSKMuyqanmPffcs7OzkyTJeBwBgBAEUkqMYJ6LwWBkjJmfnz80f/j1119X0uQZF0JgRD/+sQ/v7e6+/NLZouCe5xW5MBAoxW3iKOe8VqtgRjY2NuyvlKYJxpQQp9/v+164trY2Hg7uOv2xF59/9v/3u79brTYY9d//+CNra7dPnDimNP+xT3zs2o1zjLnDfpcxOh6PS6XyXSfvdFwaZ2OEoAFCKZUplaWF74dCCNfzhRAQiowX1rav2+02Gg3HcZpNhzG2tbUFAFBKlMs1zlGRC+Yxz/MOHTo8Hg9bM9OQ4IsXLyKEhoNYziPBDcPs1B0nXn7hDS4SBDyIgBIGIZIVmhHiOkxrJRWnlPT7g+OnjqVp2h907TGBGUYcGQMgQELkCBu8rwU7MAAixMol4AMPPFAUxdNPP/3K2Zc2NzenpqaWFo+kaepS9/2PnR4MRq+/9vbLL7168fKtqdbMwsJ8kmQI6gsXzv3RFz7/sR/+kUatmaS5lNJMUgWAlPumGerP+TIbBOA+j/IvffyPQGf455X+7/58yx6yz8txiOuWqtWSg9j169ezLMEELS0eBrDQJrv3vrsrldIbb77c6S4RQoaj3dffetX3WVgKinzERSJkOjd1aKfd1Tofj3qf/vFPdjqdmanWV7/8ZSGK4aDHmFMp1wouEUKc54yxMAyFUI7jSWHauz0DuDHq5KmlosiieMR53mzU7rn3rqWFu9bX1/M8T9OUUiKlqFTK4/H45q3r99x75rXXzn74wx8+PD9/7tzbyys3er1+EJSiKPn2U9/51veeubF8e3eve+LEqTwePfK+h+NxL/TgcNAthf4vf+aXHnvsse//2Xe/9/TLCGMKsVKmVqtdvXLdQPC5z332K1/+8pe+9MW5uRmIgJLS5lDVarXtnU1rQlSrVyyNcW5uLsuy9m7noAkkmFHiIIQwppTp8XhsT7PxeBwlsdFQyMmNOOiPGs1aqRRKyaempoxRo06ijet53miYYurcf+bBzt4wSTLPrRDs9nujRx999M+e+Z7t/QhFnl/b29tDCBsNsywjHqqGZStSl1JKIDFGjPmOQ5VSaRYLIcrlMkKGMpxmY50oQtHC4lS/O7jzruNhWL5+/SbSmPO83d7p94cPPvhgmuSD8UgIlWWFwxhyWZ7nlJaEKCYttOKu6yZJwjl3sYcQiuN0c3PTBv0VReEzHwDgeZ6cWJFgy8zyPK9SDV2P7e7u2ibWcZw4Th3H8bzA1h9RFBGCtOGrq6tTU1Ozc4ca9WqzWYVIHzt62HUgIeSeu04tLS5cPHeeYRK4nuO7hEBtuDYcY3zkyJHDC0cHg3FnrxcEpc7eLqGo0apwDiRA5sDH3IZKW5vOibr5XfsI2lsGWnzZmL98vHPwJWh/IvqDW+9/YAlt/sI8yQ6fIKJFITEmBgBlgMMAwUBI0+sl/X53c2u1XnOKYnT2tWerZS8s+YuHj6yuriPE4yR1nXC6VSEEnn35hZWVW6Vy9fvffTr0vaWlpWa9sbBw+Nvf+NbG+s72znqtHs7OzkvJMcZpnFUr5TgaCSEYxY7jKCUc5iklAYTVZplhsra2lue8UW+5HrvnnnusG+x97znd6/XSLPZ9dvnyeYTQVGum190DhteqLoB6r71BaaqUsRWwUoIxdvPG7fE4K4VNJZTWBBpitM5lUeQJc0215kldpo4sxJCJYHPrdqVab+/t9HtjjJzd3fY4HkspZ2ZmPv7xj7/88svdbvcrX/kKAKBUKl+/cSsIy1KZ4ydPffxHfnRzc/tf/5tfH6fZ3Xff3e131tbWsjyTRn/pS1+6cOECIWRY5KPR6Lvf/a4G5Mr16w8//OCP/tjHz9+89qUvfpGnfDAYPPjgg8ePnrhy5Uq12by1tnLl5vVP/vhf+e7vfefI0tzjjzzWbq8+82ffrIYV3/efeOKJPI3WNm6US/devPR2r9PZa3fn5g4VGb+4dmnYH+1sbwtuonG6cGTatlUAIAhBnsaO4yGEouHIFlUAIKCNzY4HABqjKCM+8AEAWhvLV7U4o5TigFNmPXkRQphOgvgghBgji0LGcXxAjYTQ0kO0KDjQBmBgqUYAAIyplNK2N5b9pCfmvEgpYUtku1mklBBgez8eAGETkTWEBKIJCMW5Jf44EGoIIDRCSSUk2qdOO45jL1bqEIwx8xwtpNbKnp8EIc0813URIjZD8tq1a9ZZtVSq2OOFZymlDABgmcWYID8o2/6kENwYw5g7NTXlOM5wOMYYI40sgYsQcuHChXg88jyv3x9qBVzXzZLoa1/707/+sz9/6vSd33rq25iS3//93/s//vf//datm1/84hcwxogSCMHq6qrv+4PBYDSMXN+z+9d1HUJwlr3jUQAhBBBIKeM4dj0WhiGCyKZRHeDRly9fFqLwPM9lzHatH/+RH56dmf+t3/qtt956y1pwSCkBBvOH52u12tbqptWyIAwsbdDiqtaI2XZuEELP8+zbakWjE+xb21HBRGdqYT5jDMbIpozkeV4uV40xeZppqaCZ2G5oqTzHLfbJjMYYijCgNM9zlzL7ZDHCGlq/Yw0OQgXf5fthWy/bD0vFEUIGAhsQ1Gg0hCjsEkITupMcDAbGmKDk53kexzFCBAJgM6mghtvb21mWeV4wPz+fZdnOzs54PLbtN/OYApJQogtgX9KJ74rR1p1cCGGURhAaAOG7iPl2kGMBdISQ0hNmt/39lTaU0lLopWk2Go0QIvaNtgyMiZycUMdxbKxcmuYY49FotP/TISHEd12ptRAKYwwhcV1m3yYIoQFKSgmNAVAbg7TWZj+Fw6Kx9tlpY2kxk5QtK1XGiE5QfoOUNEZrRl2iAILEGGmXBMaUUmRZ1Xbrcc4pAEpJKSVmkOc8TWOEgDZSiMLzXIiRktrzPBvzxTkfDAaMMYxdraXrsgkXXgtMiF1149Ho9vKqMSYMy0mSpHFmTZDzPF84PL+1vTEajY4cOdJoNLTW6+vrNgIUY2rPEAiwUkoJWcAcAOC6LiOEYdJoNEBramNjI1dF6AcI7XtnGw4J9FzPGIUx9lw3c9I840oVjLlaa4ocngpKMQYUKIgBZcwlmBkFdrbbe3tdQhjP8257kOfcKEQpy9PC9zFjbhynGFHBTZ5yKWUWT6IOjUQIEYeaIpNamGEvHY/bShmttdLQADQeZIgYz9OeW/a84IMffOLvfOZ/vuvkmasr10+evuOue+8RQBPPueP0XS+/8nxa5EU/y3hMCJGaE4Zznqd5NhgNmeu89tqr1XK5VAr2dra/861vj6MBgcilDGnoO77jeINBbzQadTqdbrdbLlep5xqj4zge9Ee/+59+76lvf3d3d29mZsbz/MGwq7UMQ18JnaVRrdzwg6lNA+bm5oeD8e21lTROtAZ5njZqtXK5wRgB2igtKWF5nmsIECXIoEF/ZIyhlFqB72TQCK2OYTLBMsZgQoMwTPLskUceqVQqb7z5GoGOlb1zIf7ZP//nnU7nqae/o4x+6qmnrAn48888Gw+SGzduOI6TprHr+DkXlXLN9/12u2OnO47jdPc63/7mN+6+974LF8/NLczbAVWSpYw5eVFwqWQUJ0nqef6VK1f//b//D3Ym9NWvfnVzc5NS1m63p6Zmrl271u30H3rovb/6q7965r5TGQdXr167dWul1ZoihBxdOjEzPX/zxvJP/MRPvOeB+5ZXpr75ta9XSxUh1CMPP4bRhOb/P/3SZ/74j//4a1/7WuiF5XK1yNKsyJU029vb991335kzZ7TWZ86c8X2/1WoszM8HHiuXg6PHFp599tksjZaOzH3kwz+0sbGxu73+/PKtO+88vbe3t7J8Lc/GlLJKpTIatV995cVebxCG4frGTYIwZlBrlY3jOI4rpdAthbPezKA3SKK0UWveuHHrwx/+8KOPvL/T6SVpPhqNXnyxK4TaP4ARAMDFkyhXKaVSUBsJoWvjRqXUBLtaay2NBJwQAiFGCDgOJYQQSi0WLBUvCpvOlVDkEEJqtZrlStsBZBLHRmvHcbI0t6NoewYeDM8qlcov/uIvvvrqq2+88QYm+xQQYxq1GqGYMYYJsnw+Gqh2dycIgsBztLKYCdjb6/q+73nO7u5eURSLiwvr62J7e9PzXcXNoD/2jhyZmp6L40jJmDkkDEt5nhMMjc6Dsie45lxCQLXWaZFq661rDCEsjtPd3d1bt24VWQ4hvOOOO6SUSZJduXbFntIOoVJrQqilDBJCtAa2fBJCIASAAZbWPYpG9twrlUr2etVax3FizY7TJAuDkr1zp6ena7Vas9lstVpJPI6iqNvtZlkmRJEkicWaMMZGWr97nedca53nk0hbhFAcx4PBAALMubQ9/sHG3Fc223oSKc4dxymXyznPITTaSIM0wmxqugUAqNdrpVIYQSX6BWPEdVkUD0rlQBvJZWGMsdngUvLRKNrc3Oz1BsBAzyuVworvB+ubm0WRLi8vu67rh4G9Nwkh5XJZa82YsMQFAADEyI7GHcLsUgx8H2Nsny+GE7M1S5myd5b1dSGEYjyZIttbLE0n6qgsywAAUmrH8WzVEUWR73rdbvfOO++sVquccwAm40xbL1muNNr3G8EYO8xJkmRrY/P8+YtCiK2tLUJIp9PZ2toSQlgSg5DcVracc7kftMgYE4JDDR3H4zyfFDNowl6tVn17g+c5t0X79PSs67pZGt91153T09Ouy+677z7fDy9fvtLrDrZ2dkth5fz589u3tmwqoDS6Wi27rpvlqR3HYkwZM1evXo7jOAzDEydOuC5LspS5Tp5xKbkxSsjCGBvFDKVSkGsNJ2NpxlgQBEDaHBfFHIdzqZRyGZEGxXFcFIUtxoqiGPT6cRwTRgmCdiqsjLC5F3fccQdjrFZr2BfWGLO+vnru3Ln23s7MzEytUhUFH/S6xmCjgCiyyPeSJFKS12pV33ExgJVKuVwJu4Oulb8HLGCMAaCUFJIL8y73NuK6vusFo1HSaM49/v4n5+aXnv7OMw4VwdGpu+98sBQ2fK929NhJDQA3ChIoJcAYBIFXFEhKUalWLd5PCLEcZgMmXhk/8LCxFu+WKkMIKANSgr29vSzLMARBEJRKpSD0XLfFRVoUqdKK86Ioim9+85vt7XatVnvppRcajZrrskajdv/99/3p14M8T5WCUvKC51wUSqmt7U3rA2Up2EVRjEaDcrmslEiSxPM8W/VSSqemWr1eL46TvCgWZxYtCWV+dnZmdmpra6Pd3mk2Zu+44w7Lgmk2p3q93sFwI8sye/IqJTqdDsa4Wq1299q8EEqJSqU0NdXsj4Zpmrbbbc4LK28UQriur5XChAAAhRCCK855qzldLpftmhZCMOoeXphZXFzs7u1laY5LpMgF55xg6Pt+lqUYIHt89IYDCIEF18IwtE43LnWPLM7ecfLYiy89+8orL7zxxlnPobu7W0LoY8eOVarh17/x1eeef+Ynf/JTpVLIHLS1EUnFCUWj0fDGzWsn7jgRBH6axbY3llIy5gKApNSeF8zOVtvtHet/MjU1Awlevr2GCDty+LD1IWo0GqVSKQxDKdl4PJacD/rD5557zspw0iSDgIRBJc/z3Z3eoflFJXhR5EtHD62ubGHqSFUoBQCglFJZ5BQ7FslSSvW6g5OnSaVSW1tbs3aW1otPSgGAcj2n4KmUulqt8rxQxlBKa7Xq0tFFQsjy7VudTnt2bupP/uRP4mTsuswovbOz43nB7PxCGJbbu4NGfZ3xN3sAAQAASURBVIpziTGenZ1dXDpiNDx79jWHubu7u9euXhVc1Zs1jGmv11PAgB5gjtOcbmg9gaUsH9k+FADIALz/vxr+he3wlz3M5L8/x6+0zjOMAaks/whYnibnilK8sDB/48aN4Whw9uyL2ztr0zP1/qitjeA8f/7Z7yOKANC1qgeg7PU2iDFhwNbXb732+tnAL0EjXn7xufbOdjSOhVDr66sIQM556Lv2FDNAK2UIQdeuXeN8Es7OKEEYbW5uQ2iqtRKlbOHYghDi1o3l8cBEUSRkgTBqtOq1Ws33fa3js2fPvv322wih3/qt37SeYocPH86SaHM3feDho7durpx/622NiOfQt157pb219v07Tz75wcdbzZrk0eHD8wuH51948blOt1sqlw0AaZonSVYuVcvVyvr6+vr6ZrVWU0anaTp/aI5SKorcdd1yuYzwoY2NDQDAsWPH8jzf3NwcDaPd3V0AQBAERSGiaDwej33fn56e8X1f6XRubt73/X6/n+e5lqZcqVDqdDodAFAURVmWzR+aqdUq1Vq50WhcOX/V87xmc2Z7p/flr/zxz/3sL95//wPPPvvsH/zBH1CKf+VXPlOuBLVaJUlHnl/O8zTn3A/90A8ghKPRWGsNoJRSQAgpw5DYe1pjjAGCjnEZpdCAIs93d5Ow5HkeRZjFSd/1cOCHnMt6vbq2urWwsNDpdLrdPkGe4zhGmvF4zJjreR7nfPHQ/MLCwvXrV+M41kbu4wt0OIoAxM1mk1IxHA4BQLVaJY5TURRKGvcgZRESDSRCNE1z6552+PBCZ6+fZUWa5pQ4DvOUNBhTGxaa5QnCplTytRYvvvSs67I4GaB1NR51Njc3tJTLN26urKw3m00rkRsMBsaUx+NxGPq3bt26554zlDqd3U4SZ7tbu+zuuyQv8lRyKQlxoIHW1AxCQAhW6h0L2nfvIuvgpPRkxgkNQAiYHwz2e+dhw/0sjWAfoZ6Ef/7l+3SfKG0/B2EADNAaKDm5XO0NqxXodvv9/t541O8Pd7Y2bsXx3t7eytxspVxmjOHxqF0u0anpxdXbm0KCWqNRCNMf9t73yEMnT5z++je+9eyzf/aJH/0rMzNTb7/xZhRFURRJKR3qloLw6JFjw1FfFBJCbOtgKaXWSmstZJEmuTEQMsVKFa11rVZzKJOKv/rK2aAUHDu+GMXx9ExtOIR77bZSinOJAHadcprGWgMhleN48/PznPONjS3r8JVlExm+lBICopRAmmZ5DKEqxJjS4id+8sf88MHt7XUD8jjhe93dnfbueJQdWTyJMWk0Wmma7LS35+cP/dq//f9mOZ+ennaYF0XReBTbSPEsK+bnDjUarTfeOHfx4kXsMMbIkSNHjh9bevvtN9s721qKvb09pdT99z9w8cKlbvey43iYuuVSdXt7fThuf+3rf7wwu/CpT/14f29wc/naQw+9t9trP/vc9z78kQ8l6ZBi+f2nv372hadXV1Y+85nPpJF+6cWXH3/s0W5v77577m1NlS9ffHs0jNI4G/ZHeZoVPAuCYGN9a3d3r9mYjq/0bGK1EFnoh6PJUHOiHLSgGEIYGDThOyNr0npg6jIpiw+6ejPxULaB4/t8EGU7DaL2A+htgY4RtWAThBMuqi1jbOlvjOFcWneCA4aa1bxjDG01bwtoBQy24X5okvQC9k0SbNEZBIEQIs9zJbiBgDFmgAYAYogAMpbLY22F7Zcw15lg6Hqii9RaG2UQAHs7exZliEfj8XislAqCoBKWIIRQG4mQpczYlwVjLLg0xoxGo0ajASGOoigMQ8fxXJfbH4UAXL51q1Erb2ysIQCLoqAUG4YG0UBpdPjo4Y9/6kcrldq//fe/9tu//dvMoeVy6U/++L/v7e01m/U4Gkpjdtod221Sh1mEl1Jqfze1nwQIAFBaGAgtecQmeVj+uH36Ngbt5Ik77rnnnnPnzp09e9ZlrNfrfeELX5BCb21t9Xo9QojneWmRYoztbP4gXA4hJJFECEmhreXoAakZTWIbsef5Skml9AE5CGpjJ2dWymM/k3PpeU6j0RiNRlmWeY4LtLFtYRAElmxlCfVSK9tUK6WQMcAYyKDZN2tmrg8htLYPZj/G0OiJuN4u1DzjhCLP8xyH2shKSHBRFFE0spivVDYzyrdXz2h7mGWFMcahzHFcS6J0qcs573a7Wnfvuusu64OJMfZ934oIwzAkhEhXAwAQgISQfr8/HkdhGB5wtA8wXEvStLvAsmUBAEII3wvtnkIIGagZYZxzKZld29aNFOxj9/bbWlwgSZI4jqWcmJDYWIL9TCGvEErKdF9tMBkYQAghIAhpuL+vtdYG2V2PAERaAfsHAEsKk0oZzif2lPal3r9ZJpmHxhijrDaCWhtHSzQOw9BOo5VSEEEp9TiJmWD2iURRFMXadVlQCgAAtWqTc95ud+ythBCyv6z9nhNqGJi8v3meV6tV13UhxBDCIuNJktj5SrfbzfJkcXExSaLZ2dlKpTIej2dmpq4OBvs7FwEAtZZA2zgrpLUmCNnXZzweQwMwRNVSwyqReVZYjyBMsFFAKY0g1PvyCPtSaEsX18BYtRfEBFMjzWgQCSEbjcae7g/7I8GVkYgxx3EcbjgAwGhsNISaMOZAgzFmUpo4yh3HocRLeWG98gXXvNBp3FVcMc+FEGNEMUYT926GFDejdNzrXvyN3/iNj33sRzp73Y3dIWHw+PGTpVIJEhglSSakC8E4TqoVz3HD4bDLC7G5sw0hxJRhUQiRMVYplRqbm5vayGq1IaWIo2L51nqlP5KqwBgmSUQogkhZ8YSRihDa6fT7vcjzAs9NmIMgwAuHDy0szF++fHk02hvFA5f6tVql1+t2uz0ljeN4Wip7zlgKJNBGaz3MR9bD2hgjBRSyQJAopQgxxhhKsRDCGjdNxjPAGAgghBsbG0qLIAgOH5o7fvz4zZs3KaWbW1vdXu9f/It/waXY3t42xqyurrque/z48cFg8Ou//utFURRFViqVFhbmrTxor93d29sDGlLMKo0qY+6XvvQn29u7p06c7OyktVr9r/3MT7/99tu9fr9Uqrx57m0p5Q//8McPLSwk8fjpp5/+6Ec/6rrOyq1bSkvP85566qlvfONbcRw/8r7HfvVX/+Gp0yeSDOR5fuzo8Zs3b8ZxzKiLsXj99TfjOH355ddmZmaefeb5JEkeeeSxlZXVK5ev1Wq13/qt35qZaZXKwdra2vm3zs/NzSghAUB5xjnnjz766D/5J/90YWHh9ddfP3furbW1tTvvPN0dtFdu30BAlkMvS8YIaATU2urtb3/nKWOUEOLF59uVes1x6IWLb21ubj7++OMQwrfPvUYIaTRalaqvpaIOy7JMSt7rtX2fcZ5CiIuMR3HKqTx58uSTTz651+76offgww987nOf6/f7vu+DfcNf13Xn5uaGw6GQBcZYaQEAwJgKIYxBnueJQtq/kYJnWQGhoZS6ru/7rpQySzKppZLGukzYKkXvm95CCKda05QRm0yTJtnBdNzyVAjCUkpjVBRF58+fP3funBCCMrderyOMEYZ0kmo+9jyvVps6c+bMXn91b29Pa5WlhVIqihKESL3W6Pf7CJFKpeK6rFwuP/zww2+9Ra5fvx545UqlURSq2QynWnMYw5s3b25u7ZZKpbmZWdcNoijihZ5YIcWpdR2EEEqpCTE2HMvzvOFw2Gg0dnd3KaWbm5tpntlbg3Ph+B6EkAthbcfskz3oA6SUnU7H1galklOr1SuVSpZlURRBCKVWhhsL/uzu7gZhie3rz8Iw3N7eHo8G4/FYCIEpAQDuE0+xQxyEyMH3ocQRnO9zmIZ7e12tgdETadEBtRlNWDBIazucRn7Jp5QqLSjFBefT061qvRKGga1J/MBN0zhJEuowqfjW9gZzvFqtdujQ3HA4vOueO4E27Xb79u01G5AQBEGvO+R8RDATQh3cLwZOckEs56BarnDOGbPmikhrLZQ80MMRQqampozWVp4FAIAYeY5r9lVidiZNHQb3FV1SS6QVY8x6l9lVqrUuCmFH73meB0Fwxx2n33PmzD333MMY09r4fmDJCtZ/TIqJ6MqWK3YNa6iXb6989/vfGwwGCCHH8RAC/X7f8zwhRJalYN+mw45PtFJ5nt93331PPPHBL37xi3ud3Wq1SqkTBJ5l2Ag1kYVJKeN4jJFXFDwMwzTNh8MxQbBcriwuLk5NNRuNxte+9o2zZ1+NkyxJsjzjAKDArWDHqQShlJI5DmEES9VoNlwvHI6iwbC3srKyvr5OGW5NNSqVCqWWW4A00JRSCM1gMCiKIgg8jLFSopCF1hogaPlkSvIDK0ulgZZKQnt9KaB0p7PnOK7nuFLaAhJBAyxz5djxpdOnT7uue/LU8cAvjUajzc3tNE13d3cvXbqQpikm0HGceJSsra1BTI8dO6ENEEJsbtyO49jzvHqlWq/XB4OBlGo0Gmmty+VQqqLslgCCGskihyqxg3lIKMYYE0JdJVG51HzgwUcWj5ys12Z/9Ed+XEnAM16tVqUCtXrNC6nBQKiJcFgIQCmm1AfQMAa1drQ2BmpoY8rfldcEJw6WB+DaO2xnC5kJAYwBlUqFUtrvdiz90A/cRqMuVT4Y9DCBSRK98Oxzb772+qc//ZMIoRs3rrkeIQRn+fj8hTeMUaVSaTDoAwh6vd709PTJkyfPv33e9wNKWRzH/f5ACJFlWaVSKZWDNBG2vLOHeK/XQwhhjLRGWitjUBxHV672llec8XiYZdmZ+x7c2dlpt3cRwocP+4uLi0VRxFHa6XTyIs3z/D3veU+1Wn7zzTenplqu68qji9vbuwAAIYo4juMs3d7e9Dx3bm4uCL319fV6vVYuV3bbHSkVAMqlrpSSet7Fi5e3t3fr9brv+9aJfHV1lRFy/fp1x2VSylqttnBo8fbKzXK57LpOf9RjjI1GkR0fua576NAhxtj29vag13McZxz1pqZr77n/3iSLW60WAODa1ZtJJirV4Oyrz29ubq+vr/zar/+bXr9dLYVay6LIlDIAAs5zKTkAqlKp9AbdbqfjeYHjeFmaM+rs7rSDIDh15+m9vd0kSZK4gADX6/XxePzGW2+J/YP7yJEjvV6vKESlUimKIuOF1ibPCyklQoRRX0hDmccou3btRpKOx4N+uVwNQvf+M+85d/5KgVVQLqVJjgHMiwRT2xwppfSFCxd9369W63meE4K1mlB44jianp46snhnFEVxnAa+K4QIw/DwkYVutxvHcRB4hOI0Tednp3c70HGo7Zm11levXt1Y3VQS+r4/P984deddx46eePPtty+cv2TPstWV2yLXnU7H9/2P/PBHl5aWCKNeGGBCJpDTATsSAAMnsJaGk9hAACYf6H0V/18KN79bDQAhgODPBZHZ450QDCGQ0tiQgEqtYqA5fvL4N7/xtedf+LNqtRSUSJako3EfAO2HXrNV39vbkTJjDvJdJLnSSqYplyJ3nXoaZ7dXboyHIwjxxsYmpVRwQffD6LXWyjrxEaq11lpiDK21FoSGGmwM3msPAFS7u3uu6+Z5qqXnuLTiljAhvV4vz/NyuTw3N7exsaG1pgQPBoN+v3/69OkzZ+6Vku9u7a2vr/cGQ8FzLpQQolpyp5vl2yvXv9TdSJMoisbLy7defvlloWS1WvvFX/yl3/u939/ZaWNMc14kSeY43vPPv2iMwogSwlqt1ng8HoyG7XZ7eeVmo95q1FtZlq2vbS4tLQV+iXPuuu54PCaEWcstKZVS2n6MiM5yzoUCEB9eXBoMBhihUlhJ42Q8HhNCsjTd2drJknRna7dWr2gtEYZRGjVbtU6n9ydf/u8PPfi+Bx88E0WDtfXbSTrmMnI9kmXp9HRrfWPV8lMYo0ZpSlGa5gUw0BitDaKEQGMLDGVsC10CNqnWYxgboCcz4aIoAITLy8uEuHGUpVn89oXz9Uo9iiJREKUUosR1/UajkWVZHI8Pzc4IUQyHQ4gMMUgBk2c859ZNqNje3maMAW08z4UQVkvhUI0R0lmWWfswAAAwyKYhxXEMABJCIoQajQYAA61AURTlclnIwgqB7XkLIYyTMSZYG5XGUbVWHo1Gw+GoEpaWl5e1BmEY5nnu+N64F+d5fueddw6HwwtXt27cuBH4leeff35meg4htLu96TKyvr7enJqenTmEKVAKQAOkBABqhP6iURMAAGgzMT1/R3Bg/tz+emfH7e+vdz/ebQD9A5/w7jTCCdZs3zINtNYYIQSBNsBxQRxLpQTCAsJiNNxevnnZdXXgg0rZuXfxnoLHokjGo1xpIXnSbJRGUeo6pFz2d3d3X3npuV6vU636S0eO3bh26dYNcmzp6Mz0IzevXOQ8htBcuHCBUjw9PX348JEbN24KrgiBnudxXigl0yzTGiilDlXmplotYCY1XLkSEgJ63T2IxGjcXzp2tFquRFGkFWLEEcLESZFl/MrlG5RiA5TjOKdOnR6NojRN5+bmvDAY9EfRuKMJAQZoBY1SlEIuitN3Hq83AsdF1Wq4sS3SOI7j9OjRY1KAC+evRlGUpdzzgunpmfvuO9Nuty9cuOS6bmdv77577y8FZS3NxfOX6s0GY+7q6uq3vvWtr33ta41G48bKTddlv/J3//bO1rYoUozh7u5uq9WKoujy5cubm5uVSm1paQlBsrl++/jRI9/43ldcCgky29vrMzOH3v9Dj7fbexDJD/7Qo/VamEYdxZOVzZu9zl6lFMpi7Di1eqP21a9+9Qv/7QutZiXLh91ut8hzrXWapmmaEgyNUZVK7a/91F+9fOX6xuaKElpKORpGvh9YaqeRCigpBNQaSC6kkvv9GwBKF7pQ0gBgnTQMAMgyMsE+Y3QfcZ5QNfW+Hy6GCEFCKbCgsA0JnFgwowkic0Bttl9LCCIQYEwBAFxJWyUDABqNBqXjTqfjMccCl2jfq9eYCbhgmx8hBFAAYwohZMxVwpIrjRaSK7n/U0ipVHIcZm3oLRnZ4t3WiBYAYKlzADhxHHORp2m67+cAkiSxxsG2bcB4ol9mzHUcJ03HCKEsK7rdvu/7QVCK49R6HymlmEcBVNVqBQBjh8qYEsf3hqMIYNzu7P1PP/7p97z3wc2tbeyiU3ffce3yxV/8xV/Y3dmq1SoQGUu3seQ+i6JaBrES0vZaiOB3CLNGI0IopY5LJ0RjjCFCEBnJpYEaGjA3e2jxyMLO7hZziBd4WZycPXtWKRX4JcsJ4kq2Wq08z3d2dhqNBkDQ9T1GqN43zjZgElVnWyYAgFLWrhG6rgsAs0QeqCEwABN2wHvinFtTadswM8YIIVmSA+Z4nhdF0XA49DzPcRybtAMACP0gyVKt5YHCz36hBR8JpfatPFiHdpEcrExjDMaEUmJxXmUUQjAohdbM0RjDOVdKhVOhda7M88xAwHNBGZVS5XkehuVywCw6YB/dbhch69VLjYYHcDwlDoITmnkQBIw5GE+oGNZ8xuIjrks4z/eFvbooCowtsR5Z2jKl1PWdoigMUAYoSulwOMyywv7QghcT0hOe+KVYRog1LbXGMJZHbJu0oigAmixvCKFSRtr2z25GSCAwB1sJwHdeOjvAsO+dHR3ZD1zXpZQCBO2+PlBcHWgR7Dtlv1YIwZhrsfU0Te1bY+mHxhjHcQBwjFHaSOqwcrkipQjDsoU/lJiEcGRZxjlvtVoYQ/tNCqGU4jakXiuVpSmCZDweJ0m2bwSPIYRCCM5zjPHe3t7NmzdLpVKpVDp58niWFck4EkJYlT3ARkmjtWaE2P3lMjrsD/I8D8MQGZhGyXgUaa0pdYCGQAOAQbM5Va9Xd9vbaTJ55ZVSAECCoO/6Biithee4xoA8EwYBJQDBbrXSHA5ioyAGBCigESAYG2OKLMeY+H6AEEnGMedSCk0Q0UKnUYoQQhgYozHAgesXRSG1ARIijDDESCOlNYJOFosBHBkItNYvv/jSkcOLv/RLv/TN7z33+//ld2emZhEkR48ek4LXapUiiwqej2N5fOZYHI+Hw/Hs7GwYht1u13cmwwwL8ft+LcuyOI59z82zAo0LztOCJxDpsORyyY2kvuNJLBEgzdpsuVxN09QOKhqNZrVa3djYsDOARqWxvr6ppRNFies6RcHzPKWYWdHtYDAwSiMEMKZ5XkipEUKCq3ePCSE0WitCHK01z3OEkDGKMaaBMRoiikajke85nfbe888/Xy6Xre0AoVQI8Y1vfTMMQwBAEATlUiiEaDUbO9tbg0FPa51lyXDYz7Lk2LFjSktjoNaAF1op3esMgyCYmpq6vby6tbXFWE0I8f3vf/+DT3z4h37oh26trN575j1TM9Nnzpz5zne+85Wv/Em93vzrf/2vb29vv/Dcc0VRUMdxHFYU0aOPPvpP/89/dmLpkAYgitJ+v9/tdg/NL2CEPDfY2Ng4c+YM57xRnwrD8IMf+MCn/sqPPPXtb3/n20+nSfHkk08eOXJkfm763//Gry8v35ydndZKaQONlgBAxpxf/uXPHD58OI6jc+fevnjx4uzcNCYmz9OPfOTDF86fe/+jj3T2tr/yla/kWbJya9lh7M6771ldXb1+/Xq1Fs7NLXDOG81qpRouLy8zj9UqlVar1m63Cy2NoQCAj370yfX19ddff92qFtI4zzOZZQIC9vR3vnfHnaer1epv/c5/vHTpkuN4QoiiyCCEf+9//pVut/v9735PSg6ABhDa8YDjUFFwAJjneQjIOB4rpRCABGFEoNZ6NBopJVzXtc5ORVEAA6RUEGIuJMYYIWBnQjdu3LDXsVKKc+44jj1kPMfVUimlEMLWQ+ull14qisIGXLmuq4FutVpJEm1tbdjqwnXZlSuXiCsJIXGUZlkSBCUpjNYFIcx1/TzPrXJ/ampma2srz+Sh+SN2KNjZ645GIxuSlqaxEHI8ave6o0qlghBSRmNEsizTQMXjRGtNHeY4LgBgenr65IlTtVpte2vr9u3bSZIaoyd04DxXSpkCqkIZZjDG1h4zSuKD298yRi31uxn4Nlz04Ky2uLZVdA2HwyAIHIcxRvv9vjVUtMes1ZZZ6q7djAf02yRJonGCESqXied5EFhe80hrLaVm1BXCTgvwPi+YQwjRxE4JY4yBAdpIqSUXeaUSzC/MUobr9bpSKssyKxQQopBSEoIAhADoKIqq1eoDDzxgjNlY3+z3+/bmpdQRQszOzk5NzYyG0SiKmeMQjKTUWZEqpeztQAgZj8dokuch7KQ8K3IhBHUcS014z/3337x5c3t7GyFUxHFzdtb1PaCNgUBKCRA8mOLbr1VKQQgsMcJ1XUuGSNPcDt1Pnz595PCRM2fOHDp0qF6v2UgGS0qwzS9jDAJs9ESWASGw4YkGGEzJxsbGYDA4uIWllIuLi3fcccdrr70mBB+Pxw5jNhClKIoiS1ut5hNPfPDBBx988cUXd9vb1rnb933GSJZlIh4XWa6EtJWhDX6L4xgkulqtLszP1ev1ra2t1157rdfrXb9+o7PXq9TqnlsKGlWttVIUMZZkWalUIpRWqpU7752fn5+tN6dG48FLL76yubXe3tmmDMfxmDGigR6PI4d5YRgORr00jV3XD0Pf8RzPdwCgJjdFUeRFIYQoBKfW6wzgPEuFEMpoLDFCwKEsS1JoIM+LIstd10cIaQ2s/JFSfMfp0zOzs0kcnTt3bn19HRg0Ozu7sLCYJIkQwnVdqfjOzs62VFrreqsyGAyHw6E1X8rzvFoq12p1RthgNLScCbt3hMSSSy/wMcAQwmqprLXmKJ14pHTaUaVe/9SPfeKhhx9LC11wPTd/WGuQRCnUSimV8dyF1CDgOCDnBihIGSAE5Lkl1wCAAMQTy8JJT47e5aFpAH4XzGzLaOt0CeAEkraTBK1lNBoLIba2eisrN/3ADQI3SaN4NL5y5dp9993/2GOPvfLKSwiDwaDLHPT973/3mWf/zEIkdh2cOnXqnrvvLYqi3xu6rgspLoV4r7M7Go1arabWusgKCMl4HFlj7yxLlBLGIAjN1FTTFv2e5ySxiKLR3l53aWkBE3hr+YZFT27dunX33fdKocMwXF9fH48jQki73d7Y2NjZ2Zmens7z/Ob1y67rV6v1LMveeust6nqc50pJiIxS4siRw1LKm7dWKMOuS7OssBWplDJwvc5uezzsN1otyw8NS/7q6gpCaGZ2Ks+467p5kU7PtIwxjs9O3HF8MBjcXF5WWriuy5gDISQU9fptjExraiqOo053s1orDUd7XKSU0qPHFpTB165d7nR699135u/+vc/81m//RpJEQAuIgNa6KFS9Xjl5+uT8/FycjLd2Nq0eR3AFmSaEaa0JYSvLtzOecZ6fPHn8cndZKOX7gXVMt2ygNE3b7Y7j0CNHjljwl2fc8b0gcIbDrlJGKUMZRQj1h4NHH3kIE9Dv7A2HQ4KIQUqbohApyk25WipioWLhMDfnhZCyUqmkSc4LSQgxGklhpFIAaq1Nvd44efKU64B+v4uxaTQacRwDBDY317vd7vT0tJCcOcH29qbW+vTJE5VKBWPc7nbCsEwwW11e873ymYfvv3b11p133lkp1/ba3STJSqWSUToMy6urq1rKLMs21tYff/zxsFxiHpIKSP3Oaj/AkS1p5P+FGvn/9oDgB0iY1iJWCMMY1GZirKG1IQQhAJutOsLgE5/8sWq91N7d2t3Z3NxaYQ5WSkxNnzp6ZGk86o/GUWGk41CZCcmlFLochKP+wHe9pcOLlUptZWUVGQO1tud7URRCCEIRgkQKSZDBk/xW6HueMYZzEYRukUspNaEYAtjrDsMwrNUro/FYG0P2U2JrtVqn09NaGwOKoqCUImiuXL4YR6P19XXmBMPxsN3ZA1rLIiUYG8F3N9dnZpuEIC55uVz2Z2bjKO33h4fmj/7sX/3ZqamZf/yP/+na+mYU96WUhw8fPnTo0JUrlwAAGpitzW0uCq21AQohurm5afk1k6DnJLF+GsPhmHN+6NCh7e2dJEmLohiPxwAAAxWltNcbHD582BhzZHHx8uXL/d7Qct8QQgSzLCu0Hhmj+v2JsEDleZ7xpaMLe+2uH+LFxcV//q/+UZGljgvTLEbYs5mEUmjGCIQmyxKtNUSGMmyM0sAetcWEx4SgvVyNMQ4jvu9RSiBSpbLveU6epbxQWivHCQimIKStJhwOR91BHyGU5xohFKVRrVbrdrt2WN3pd3q9DiYQQuQ4jtRgOB5BiLVWxkAAIAAIQl0UmeM4EKByObSuGmDfd3J/HWoICWPOXrtryyALWGut8yI9efJ4EARKieWVm5xzznMpZVAKZ2dnRoOhUmo4HFcqNZeypaUT4/F4Y2NDA3TvsaNZlkmpa/Wp03fee/P2185fuHTi2KlWc3pp8ajj0IJn4+Gg1mh29zrjUVJvztRqVVsfE4qA+cHdZN4BmOG7d+VB4t/BBny3IYZS7wDH5l3hnP+jrYrQO0Y6lhaNECAECWGMgmkar65242QUR4Op6Zrr6Jm50ijyinwIAdLav3XjWjQeLC0tYgSSKBoMhlyYPBONlgmMqdVLcRLvbK0LIbM4YswVBe/39s69+dbO9na1GgKoGCOrayuDweDEiVP1WtNzS0mS8KJQWgs5gSeazSZF5NrV6/VaTXIx7HcRkKWy73leEseu68XjuNvuOywohxWg4ObmZloYTKDjBRAojFlvMFpZWbHhn67rb2/tcs4933WcACN3d3ePGFwKAoRgq1FeWJoejrqd/pZSihBWCmlRyI2NHdsy7bV7CKF77rqbIByPE89xtQIIkpWVlWPHjhFCNjY2hsNhpVJzKPvWN7/OGDt8+FC5UfI8b3N9/caNGy+99MKpU6feeP1VjGiSpYPBKM/zXm9lamoqCErVSunXf+3fvPLaCzXfZwQ/8OCZj3/sx8Jypdvv53m+urbyne980/Od7Y0VaDSQ8ubVK9/8068+8ZGfzPP0u099O4pGtarX73aDoJSnRaPR8hzP97323k4cx7VaY3Z2dnV1LU2SWq1mlchJElerNZcy7GIb+oyxZdNza96KMRaFRAYgjIGBQltVrMGYWE0Y3He32IcajaXyWcowxAgaACdLFiFkMIRaayWUQhPTAKWkDa9DCCOEMIAWn0qSBCHEPBftJ7EQwiil2ihtINCT7TzZJcYYY6wxOkLEAGD5sFpraIBVyx7gj1rrosgpJUZZq6UiyzKxbwFhd4d1M7Rdq9aaEkdKyTUnhNiwBIyjMAwRQnnOhRCcC0IYIUwpozVoNBoLC4tbmzsQ0DzjNvQCAAAh4kWmACCEGGTbP4MBy9ICITIcjcvVygef+MCFC+e+8IUveF7Q67YHw97q2kqlFOZGIwGsJ69trZMswxgbAwjCFiXHNkhuoopDlFBEJlbaGGMuBAEqjyY9GISQMfbGW68/+/wz0XhcLpchhGY/gm9fepkvHFnEGEopAcLjKKIIBYEHIS6KwjZjSitljPW+BxNvh31HXc6hNqVSiTE2GIx6vR5jbrVa9dyAUbfT6eAKtplOCL3jHp4kSRAEFiQ9CDWy/1qr1ZIkyXNuVfP2KTiOg/ZD4e1bhvbD4uG+ZfNBw6y1UgoCoDnnAE2yKON4fOAKYvEsS7NljFFMG42mHSe4rq+1ztLCttOWrb+7s2dBEAsfM4dorYeD8cFvRSnVhHme12q12u1OUQhKgdaaIgwB4EpKqRmb+AXLSSanxhgbbQAAXBYucDzPA1ATQsZxlBUW0IQW1reQun33bYNt2bWO41jDvTRNOZf2NSyKwmHW6pGDSbzkxGjL7kcMDUIYIaghABoBA7QCGpj9iEJ8AOgDABhjjjuJ3LSe3fvrHFqeNaU0F/yAbw4hdF23VAoIId3e3j4XftL+WCAAIcK5gQCHQTmKR8Ph0K6BIsvL5WqpVLp9+zYAgHNeKpVs/qW90IyBhDCusk6nYz1VtAYecyA2WklKiOLi+vWbjUZtenoaITQcDoUQnudhDBFFxJD9MhhiAigi1oUJATPOM0v3gRAO+v00TSlBlHi+62mtKcWWQTkajdI0DUp+UQjbTgouIZQAIoxgEJRsQqC2ltccbG/uSSm1BEAhY6ASOo2HyIG+7xNCCSEY4ChKoighmAkhXeYZbSQwlAE7uoMQGwUIoowaYIxRwEANINQKQKOY5xSZhBggAqFRr772ytFjh69fvxb4VIqk0+nNz021d3bmZ6cvXNgCUBV5kadZrdaw1gd33HFnv9+/dvlakiTtdqdSqUxPz9qsUUqd0WhUbVTDIJSuq3V47OQR16NXr16GBo9Go1ajiR03y4okToMgUFoaIIuiWFlZ6fe7nuOfPn2XzM3NG2vRuO/7PjQoCAJBJATYZSxJEqAtBzNXKnccx3VcYwDBk+BKO/CzZ9TBrldKIQQKwV3XZa47MfRX2hID0zRFdP/QcJ3pUmg/9j0XAKClunn9hjFGawkA8H3fXjrr6+sAAKO1lEoIyQuJEEriHi+U1jrLE23S97//A3/lkz++uLiUczk3d6hSq3PO9/a6YViGED/22GNf+tKXtre3LdCTF7FUecHT973voRNLh948fymO45deeuXtt9+mlH7oQx/68BNP1mq11lTDdfylpcVadcr3/WazfvbVl5566ttHjhz+zGf+7hMffO9T3/3+f/iNX3v11ZcohoQiBHC/19FCGMd99NFHjxw5kqbJ5cuXL12+AJHe2lr7oy9c/8D7H3/yyQ91Ou3P/t5/WltbS6I4jRPX9+47c89HPvrhz372s+NoOE7qm1sb4/H4gx/84HA4fOONNyqVSpymg1u37OkkuGo2m08++eRgPKo1Wy+/dHY8Gue5BBqWwmqS5f3haH1988WXXlnfWC1VakUstZZa01q98ulPf6rf7//Z975bq1VGo9FgMIIQOs5Eo+A4VAiQp/tacwAgnMwvi6LIssT3wyzL9s9JYxQywFBMpFYQYkqZPc/srCvPc3uDG2M8x7c+T/u1CrTkU8bYaDxwHCfJEq11q9XwfX92drbX6xRF1m6nYRg6gQmDsu+HSqIkzrNMYIyLIrNOPlsbm+NSCQEshEqipNFoNRq1lZUVjLGSWhE1Ho+11lIK+ytxngdBYIzhPAcAUIrf+973SilzLqIo2tvbI5gmSbK7u8uLwrark/O2mBQwFmTEiDZaTa2l5b3SEs6yrNFoPPCeB7XWly5dYoyVqzUL4NrbUO5nyQolXcfBGI+iMSuo3Rquxzh3jTEIAd93tdYYQ0qxvejtedvvDS0SraU2GvBCAACsewZChFGU5zljrtXrWOoApa7jOJZzjRCCEPE8B8IQhuv16sxsCyKVZflwqDVEWutKpWJh7jgeJ0litzBjrqUhDofjNE6s7iFJkjDEhw8fPnXH6WeffV4KTSljjBGEkyThXAohJsMnrYUW+2eFtIkRB+quh9/70PT09Prq2o0b19/3vvf+rb/1t/7lv/yXw+HQGI0wAsZY4z4LYnA+cQaDECIE7RtUFEWpVHIcT0oNIZyZmXnih5549NFHrc94luVaaykLW37YmkErAKFGCEFkDjjUdnSRjLK9dtd6ZWRFoZQC0DDPbbVax44dW16+FQRBt9sllAKgy+XQD73FxcW5mam33nhteeVmrVYjhOR5bklpEBrGXK0tpVMaY3JRIAgtlyIMfYTBCy+8sL6+HscxISQMqouLx9KMA4OjceH7fqU102w2p6enp5pNSvHs7KznMpey3mhUDkuPPv74f/3PnxuMhrVqGSF05dLFjb3tKErmZ+YefeQDEBnmOhCaoigMNMwhtpJM8yxJEiklYdRolGccGMQ5l1I7DqWYYIxTleRZhjC2Vlf2X20GFWOsXq9evHhxfWOtUqncuHGDF8J13VarderUCc7z4XCYF6nVHgmJGGODfrSz3QZQa61rtVq1VHZdl+dFFEUUs0q5Vq/Xr127RimFSAMxgb0wxkAAIQroQmOMNpIEfvWn/9rP3//gw6NxTpmPfVquhVoADK2dGXB9hzggyjjDDGBNIM6ygjGHEKAUUEphgAEAEL0Drtkeyi4CeMBw3g/XtuCzFS8DCGy6IiGo1WoFQTAc9ByX7OxkKysrGAPXdU+fOvHYY481m00AQF6kS0tHXjn7gjbi1vLVvBi7zOn1+kLIPC92d9pGXwqCACEihBqPx8YY1wkJQZSyohBaAwh1nuf9fh9CU6/Xp6amdtvbaaqiKKrVanmeQgAQgVAi5tIoiS9cODcaDSrVqlYgSdJXX31VSfPAAw/4vt/b6weN4Mb1WwBqSsn169dPnjxJKb19e3V6OjXa6hxzxtjx48eVUp3OkBD00EMP3XHn6fEo3d7eefPNNxkL7SxlMBgEoUcICTyv1ajt7Oy4lJ06fuLGjRtKGQRJUeRCiFo10NoUnFuupdZgqjVz7Nixnd2t5eXlxSMLnfbO/PzMiZNHANBaiTzTSvNuZ3f+0CED5LDfG46zeqOytrbywovP+L5bLpcYQZTiY8eOUcJKpRJmNIqi9t7uYDCoVCrVWo0gCiEa9UeMuQiBtDC7u7sQmlE0bjabcRznvOB5QQjlvIAIKaWWl5dnZmZspsr6+qaUcnZ+HiFULlfjOA3LPi/kOBoao6XkmBBLfmy0Glrzk6eWEELMY/V6/fK5S+UqrVbrtXprdXV99faGH5aFUFICK6jBEAKAEYRagVs3V1oNl2IEEcmLTCrBC2GMKZVDL/TH0ZDz3PMcpczu7u7GxoYfuHOHDhujCEVCFDNHpx577LHnnn3h3/27f/dXf+pnfvmXf/nChUu3V9ahQfV6c3Nt88aNGy5CzWbTdV0lZAYwZdhiT0r/ubRA28ajfeD4HQQM/MA22f/7v4BqoT/vDAsnTBmglcEYWl22MRBRBCGkFFer1Z/4iZ8wWnz9G1++eP7NNBtPTbVG/dH5N851OnuuhwLP7/f3MPKU4AhgAGCRJ0aBQ4daxhgEDAS6FPr3n7n3+vWr3W5BCXUcJ4oLjIlWJs0SpSVCKElie5QIzjzXYb4rRLGzvYsQiuN8Y3PP8xzf9y0QiTG+du1akmRhGBJCK5UKABOy3urqKoQgyZNby9coZoEXYoSwMpjA0GcEw53dba31//Wv/vXi4rH/+Bu/fevWyt2nz6ysr9ij1t7NvhfMTM8eO3bs6aefKpVKE64fNGmaSskd1yXMsT+OMhZFiWUwDQajWq02MzOj9sOaLH6k1STiAACztbWV543d7fb29rZ1JCSE2CZca82LxPqcuh7hXPh+qJT60Ic+tLGxce7iaxvby5WqOzRJFEUAGKUExjiKEq01JNIAZZEIz3E9zxFCEOJkWea6E3E03Pd8ZIwBoOM4jqKxAerQoTkeeJazVqnUtNYbG1uzM/Pvuf+h5eXlt946F8cxBWWAked5e3t79Xr9l3/5ly9ePP/SSy9US2VLMx9G426nDyHMi9y+GjZjlyDoOE6WZb7jCiGLImOMKS1sfaC1RpAoJRBlSVxYghWEAgBTrZaHw6HWvNmsHz9+/LXXz2qt5+bmHn300Zdeeqk/7AZBIAqepjlCiBJGmCOUKVVq5SiJomhtbZ0y5+jR42+8/vbf/tuf+chHPvLmm+cffODh++56YDwcua4LgRzHo6mppuuEXBqpYFFI3yeUQqUn2+Tdj3fuHWjHPgfbZ7IBf2DrgXepDQ727wESjd75Hu/ercYYCMCE/XfAcdYabKytWiFSlqXj8bDX382zbs4HSdIxKo3jPddBw/7eaDA8dfyOqampq9cuRFF0+PBhRv2r127mee76olmvhKHv+mzQzwbDbjksCSF3r6xvbq0SDJXmCAXMQc1mfao1d+3adQhotVr3vMBmJVlsYhRH8wuLp07dpRTUUtjhSqUaaK3m5mZG8ajd2RuPUsfxCHI6e/1Bd8AoBZCkSUYpXViYK4X+2tpae7fjui4lzmg0whDOzc1hTLnQnb1RqezNNpqHF+d6g47S2frG7SyLGlM13/etqYjgKAwqpRCnaQ6AKYVBr9fb3NxGCPl+2Ov1XNcdDgbnz5275957l5aWBoOBUqLX60kpDx1aWFm+eeTksY999Ie/9vWvVsISAPrSxfOtVmt7eztLUtd1eSHm5g75vr++ejsMw9/93ecOzc8TSN5z730//9O/8MJrL7/4ystPfOhDnu+MRv1qrfzSc3+WjCMAzdzUdCUIX3/l9Wrz2FtvvbW1vfGBD7z/8qW37ci5Xq8HXkgItUBPGIZpmn72s58Nw9Lhw4dt3wUBhhBqITc3N23gu+3NEICMMWNgURSCS6UUQgQhqPX+qoTQGOs8oxFCBw4bFmKWWh+c+VJKOMn0M1JKYFv5fWblhCYJTLlcRpN4t0k5xRg5ffrBLMvWtzYPnCLSNIUQOwwDAPQkTlMDBDHAxhjbV0CA91FFbTE7CDSlzP5GBCKIsdZKCNHvdu0y09b0ilJtdJ5nB1NJIYR1LrZcJ0KI74U2V9beDgihLMuKwkJsyFIkEEJagfEoEVxjTBhzxuOxlCoIbGIEtOnnCAORC0YoxEhKCTGFADmOFwblf/6P/+nqxvrP/czPPnDm3tXrV48dOyZ5sb6+DpGx3mWWDOX6vgbAEnL3gUKYp6kEZhK9ghAA2jrbQuQYADB5ZzZwAOL7vt9qtTjn49HI8m60mLjNWHHbw7Ozc3Mzr7/5hpS8KAqCCYQwTVMxYZuiLMu0kZQ4GhgIIcIE26GglLbFtYF1Fo0VQnDOMaLW3JkX0nEMQshx3DAMtNbDbGh7QgsH2M+3kLENEkQIOZQRTBCSYRjaz5n8CIDQvnoaTcwigTHGgElq3/71BCetiLINMz9ApV3XFUIMBgPOOWMEQui6PoSwXK4aA6Mocqlr6diNeksrYBHST3/607du3XrmmWctBRghhDGwVCYAQFFwigtL7N0/bzUG2LIfIFR2rnPgDqm1znM+MYLMhSV3Iwx837fttyUpU0ohtM0YdhxHGzlhhAEgpXJd1wYwWpKXzQk0xkgppUgMgpYiCiEkZAJkTMYzaIJWG2OUmryAGhjrHGqnpJMOGSilgZTEws3v5pJPvspIpYFUXGlBKSUYYw1tf277YUs/3BcrYEKoPU8IcxAixhitQFFkGGMMyUEckPUSHA6HB8biUivHmdi+E2CqpbJ1gVRyktNoHcwhBOVy2R6GURRpDSh1tE7sywIMwBgrJYGGdj0QgpSQSukgCObn52dnZgaDwcrt2xjbow4AqCEyCCGtVb/fdT1WbzRmZmauXLnW7Q8dx6EIGyAJhcgABLRSyvd9PwwGg0FvMFIqUUpBQB2HilwCACiiiNpxEVRcKaA451AjbTSGhHNOMCMMGwWM0QghoyEwZnImUGrfSimlkhJhXKS5F/oEIwO047tLi4fe/+gjP/uTP/3cqy/8x9/8nVqt8ZU/+eKwP/IDN/C98XiYZsnq6qofuFprRt3XX3szSRKK3Efe94HZ2ek/+sIfpGk6Pz8PbJyMQ06fPj0cDqV0pOb3n3nI852LF654zEGArq9vayGVUkEQnjp9uuB5mkcFjxHWQigts2tXb/qsXC418mwP7Fu7+r4PAXYdfzyKiyxnDlHKGKmISwjEBRcAAAkkY0wpBeDEhtWeM9Y3xn4r13Ud5tkalfme4oI5DBqguOBSeL6PETbGYIw919FaM0JZqZSMI845c2ie5xhh17OWo4ZzWWS51gAhwhgRQlDqKGUIoYz6XlD/G3/jb9x//wNZUUiphVRhUMoxH40Gx44e/1t/6//zwfc/9Ju//Z+ee+45u8d7owGChDH09W98ZWV1eWNjSyntOM5P/tSntrd2//N//v0b169+6Ikn77zzboRNuRIqLbnIX3nlpV/7tX/1iR/75L333v+97z0tFP+jL/zh62+94vmsWioDrRBGRvH23nbYmAcAIEowo1vbG/1+lzGSF1kaR995+pvf+/5Tu9s71pXYYpeIwFIl+Na3vrmxsX70xDFK8Wg0AADcvHUrjuOZ2dkoigvBldC+H05Pz/b2OrVarTsYzs3N3X3Xvd/65ne1AhhRiEm32/e9MBpv3lq+7XmeH1b7/T5UWmuNCRwO+1evXvY8b3HpMATAANXr9TzPIwRpLRkLKCZZlhmj7DUBAKAUo0nkOAcAWf9lKbXnunkWQ4gBQMYIionluOj93G/buFnEGRjDGLOGEupdAbZZlrmue1C32Pni9PQ0hAZCk2ZxkiRpFudcpVFRqdQc6iJgYp1rDWq1erVaLopsceHwxsbGlSvXGHWkBKVSxa66IAjKlRLn3PKybQmB8f7zYlgIjRByHHbi1Mk8zy9cuEQphQitrN62GpdBv18qlcBEFCKRwUEQ2JMcAMQ5xxCdOn06yzLCSOD7URRprZlDt7d2CCEIkfX1dcdxgsCz54OFrT3PC4KgyPI8z5nLtNZxHAehZ6dlhJBmvVYul5MkgRgJIQAQEE4uiMFgEARBGARpkkEI4ygSQkhlmZpGa+26rhBq0q5SbP1IPc9L03wwGCilregIIuO47v333ydVMRh1PZ+N4rHn+fYelEg7joNxTWvgusxqd2ztByH0w6DT7iplqtV6tVo9tLBw8+bNNE1dxzfGCFEYRHNe2J0LIbVeJQRhmwhivwmEEBO7ken8/Hy5XP7Kn3zZdd2/+Tf/5r333vve97732WeftZPaA2MQe9Ef3H1SSqu3MMZMTU1ZfKwoimq1OhqMut3uzs5OqzltXzewXyBCCI2GBky0gIwxTCZLQkrZ7XbiOF5f27l1e0UDxKW0IzQLQTz++OMfeOKHjh5dklJ+/vOfL3jmuq5HfFPw2dnpnZ2t//Jf/gsE6OTpU9YSxCIMGGOM4cTRyeY2Q+k4LsaGEFYU2fZ2ijH2PC/wS3ZkK4Upl+qN+tTi4WONRiOcmWo2mxNtWRA4DsUQVcthEo+H4+jo8WP3nLnv1q0bhKA33nh9dWWll/QZY+VymVIMocEYcc5znmsoPUGlhFEUZUUO93M1CikJYVlm+ewkCEqU0ixLMKKOo6WURluCirSTD4KZ1toSnGVPbGxsIISarcZ4FF25drVSqz733HNJlpZKAUIoDPw8IWkWQ4ykNhgjxkie50Olq9Vq6JcAQDMzM61mUxtjtdQGSEoI5xw60HGoyQwhxHVdjaGf+8T1K6+efQPT0PVLzZn5melprQEkoFr3Q+4jDFwfFNw4Ds2LHGIklLYKC6U0xogQLITB2OaivWOacVAz2XDmvzT6DGKrdzaUIikNQjAMQ89lnsdOnDi2ubW+ubn21ltvVcvhiRMnbBFMCHEcmufpjZtXtSkg1L1ez9b9NmDx9u3bGFOtgeOwVmu60+kwRiuVEiFIKs45HwyGtpjmnA+HwySNKKWNZm00GlksyR4rRVEQgoQQa2u35+fnrQO6HTSNhtHy8rJSxgv9SqUShuFoPCAEaa1v3rxpdN5q1S0hwvM84rBqtXrixAlCQbe7l+f55cuXMWVZWmxt7YzHMQowpdRqHq2BXZIkMzNT1WrVevkPh0MbAaQVkFKur/e01ojQTqeTZ7wx1Xr44ffV69XrN65CqAkFpVL4ngfOLC7Ob2yu72xvj0eF77vd7l6nS6XQCJNarSqEhAi98spLxugg9HiWW14SZeTtC+eF4EoLwrCl1fBCEkYodROSDQYDCA3AwHEJ5/zatWuBX5+oUx2mhMSYWP8zpdTOzk6n07FjSaVUEkVhuay1JoTY6EXKap7HhOQ8SiTng8GAkOTwwlKzWfdCj1AoJT+yNN9strKsuLW8lqYxhDarnSBItDIYU6iNNtJ1fWu6FI9lq9XCjI7HY9sSSMkRJZtb60VRQGg85tgsciHEcAQBIhhjS6aQkjNGf+7nfu4733vmS1/60u3V9U5nUOT8o0/+8PnzFwfdQaVSOXPmzL333jvo9RHBlDmlakXBg9X+jo3GBLraB6v+Uoj5Lz6MAcZoCCHa1/wffL5SEx6lTTDiXCGCCAMQYCGENHJ3d3t1dXVne+O1118ej+Mf+dGP7W5v3bqx7HmOH7Dbq7dr9bBWK7XbbdfxETKcC6P0MB6EfslaTtdrFUrJ1SuXomTsegwhZCWlkotCKUKxPfEtOFur1bTW43EMgAZQI0SFKKJ+9PgPPf7www+ura2dO3cOIWSJaZPUF0qllGEYzszMDAaDNE2KonACv1Gt81wkcUwBIZ5HMQ1cp1wuMZc1p6ZbM7NT1ZlytZYm/PDC0WeffbZcrv4v/+v/+txzL9y4cStL81/4hV84dcdJhEhRFJVq6dH3P/r6a69aIAAA4HuBAZoQ0u12S6WS7/uf/exn/9t/+29Syoceeuh3fud3AAA2qJcQopG2HSJGAACzs7ODIbIzbagnI02r5DVGMeYqJayhuTU9fO75Z1qtxqGFmeFwACG89967GGNvvfV2u93xvZAxFwOkkYYQ2nykPM0sU3JfV+GNx3Gn05FC2KvZUpzieAwhyrO83e5YqVe/P2Y0TNO0yOX6+ka/Pzp06NB73vOemzdv7m0mEAOlNDDo8OHDS0tLb7/9Juecea5UXAEThmGaFcoAQp3xOM6z5H3ve9/a2lqeJrYysK5evu8TwoQQwCBrUm+M8QMPU0fIQojJ0zdGpanCGEql33jztes3rtrTVUrZ7w2Hg3GSRmtraxiSouAIIa2gFCbP21JK3/dqtZoQsijEa6+90e+Nz77y2tFTdy0vr509e/aBMw+dOnXKd73+YE9KTjGpVssQAy6ANECpCWS2z1P+yxycAdDaes6AA7tn8Ocvo78ININ3EaK1Btgm3P6lUQTv8ndmDAgBer1BwTPXY1LKcrm8tb22tr58/vxWs+nfceeR2ysrCPJ+d5Snme/4w+EYQ4YQmm61OOdZKhhjChgpZZHmkODxcAARdFwcxaMsTkajaPHwfFEUaRobIDjnU1NTDz/08KFDixcvXD9+7ESj0bhy9fKNW9crlUqpWur3hhjjC+cvKyl4kQSeRynWUo1Gw8Gglxa5dftijPtuUKRZFCUOZdANxlHs+ROTWdtmaCGjKPI8z/d9ZQxjbt31W61pSjysi62tzaKIy9WahlJpORpGw8E4y8V73/sYMLhSHqysrCKEjh09EgTBqD8OXE8pJXJhEUbfC33fHw4GViGulNIa1Ot1zos4jre2tlZu3zpy5Mjm2iolpNmoZVlh3eI6nR4AYDweimJ6ampqNBotLS31d7thuTQ9Pfs7n/ud1956W2l94dJ5hOCDD9x/fOnI898VeZbNz84tLiyOx/HZl17+9//h/xZc/eZv/Majj77v7/3dvz0UwqEsDEMldBRFtpa1VN/xeOx5vscci1i5jMEwFELU6lVCSJxESkuoIZgYj2oIIcVQCQQAUFIbYyhljuNora2MVO+nqdh1awEYgBFUB2MMbUlq9l9tap9SCu8zRBhjYaVkBe9FUQAAkZnIEdI0XVpaynixubl5AGMFQcDIhAugtZZSmf1OwKJdRk1sfMm+NzSjzBKCbN9yQHQ98MHAGPthGARBIXiWZRbADYIAY8wYMwZIKYWQEAKMMQMuZdgYk2VFECCr7uecSykRJFprQighMM9zy48ej8ee51UqFSEEIVRrDaByPaa1diizkkytgJYcQcIIhQAM+v2S4108d/7GpStKiShNLPFTKWGM0dZFOk2U0hans5iLfVA7qSbEtlvaGKW1UQpCKKSs1Su2xbIArhXMagVskGCtVsmyAu/bK0uhP/WpT734ysuvvPLKP/yHv3r85LEvf/nL1q9Ja21liY1Gy76PaZpCAC36nOdFxvOwXKIOy/O8SDL7RsN9ZahNjHRd1/M8203ZS8HCwa7rIiDsTwmCYDAYSCmtKtmCrb7vWy4txdbNMLPDBsdxuJy0dhZ+etfinKxAsu+yBQAIw1ADjTHmik9mFftO4kLqOI49z5FSIjSBUzt7PVEUwhUYY88NAADWiaVSqVLKarW61jrjBWO0UqkcSJizLKeUGqUdx7NforXWQhNnYpdhuWBS4qIoLPBhBz+EkNnZ2XEU2abx8OIhz/PW19c2NjYBAOWw4rpunnH7igEAMISEEGR0nudKCc5RlmX27Tb7vpAW0RZcHfDQjTEYQ70/StJaGzMxbpZaKbmvCgIG7TtO2qsKE4gBtSiGfanJu3I7lRZSTZJsqHCiKAITFB4XRba9HQshIJqwvaSUruvaWbtFhx3PUcrs7LTtkojj1P7Q/cxDY+dPcRzPzMxUKpXBaNhoNJvNupQSaaWUGgwGvd5A8HxSmfjO0aNHK5USJHgScE+I45A8zzGGYRjW63WHUKXMaDAsislBIe3Ol/Lo0aME4+vXr0MIXYcKntugAyWEBoYxihAoV8KcZ3mRGmMKWQCoGWNKack5RVAIISXABeaFVNLEUZpluZTS8zyKiHWVJQgZCKVUCBGXEqWVTXesVqucCyGUVgDZMEMttDZKCSEEBthjDuec5wV2bQ9vEEJGawABBtB1XaF44HtPPPFDSRJ98auf//a3v5PEo712e2e7HQQlAmGpXAWaS54u37z5wAP3//hf+4mV5dUXXngRAFCpVLKU20pVa12vJ3me7+xsfeCJD544ceILX/hCa7opJb9xfaU/6GqFMCL33nPf8s2bg0E/y3JjTLfXkZIjrLXWe53do0eWMHZGvRh4NAzLlNJOpyOlZMwphZVarbG6vCIKTilFEAeuY4xBcHJfYEy1yjkvrPM7BNiizI5L7apwXcZcx55IEzqhlI7r5lluEGSuY2tgpZRWRmtV5JmUshyWXMosAJ0VidbK1t55nguhrPgfY2zDGAFAhDCgAMKIZ7xcpefPX4zT3POCRqPp+X632w/D8OLFyydPHr/zzjsNAB/5yEfK5fCPPv8H3W63Ui37vs+5GA77zz3/jOcGlNL/7X/71Y9/9If/8x/8wcd/5IfnZw+9+NLzr7766k/91E+5rvvcs2e7va0b18/3+/3BsHf9+vWnnvrWy2dfUjpvNGvGSKWFATpL86LIPvmJH7u0vD0aRVevXP/gY49zzrWWlWp9qX740sXzcTwWBTfGtFotIQRF1PO8WEQvv/zyzMzUXXedJg6zw7bdvfbVq1fL5TLGRGvNmKuwQphube9io+M4fuaZZ6ZaM6+8chYCHIaB4no4GEtlrOgQAKBMnveHxhiKoRRFo9HgPP/c5z73j/7x/3Hs+NHXzr7quo7nO57nKDk5ePe6nSiKEJic21JyrREAwNpuTY4dTBFClr5q4RQIuF0DzHUcx9NaWljZHk0IIWAMQuj06dMzMzPnz58nhBFC9vZ2bb7ZsWPHut1uwYssyzjPlRLVahVOKDtACIGNzjOuFGDUJ9hRykAIm41WwfPFxcVqtXr79u3RaNRstBhz+r2hVClEQCohhIiiCEJDCPF9H0IjhGhNWXvAuFar1uv1ubm5Xq/39ttvZ1kBAEiSpNlsUUp93y8ynqYpIcTeVohg6ykkU12r1TDDKysrN25dD8PQ9V3f86anp+3abjQaQRCMRpFQ0vO8PE8tvcm+ShOqAYRZlvmhr5TyfOdgzioltzEMrutiSgaDgVLK8wKLLNVqtUqlwggbj6LxeCyFKHIBMcEYC67AhLYCEUK1Wq3ValhCsZ0Gaa3tWgIAUEorldJuewdT4LpuwXOEkFLScYIkSaTQFGP7K9lf2F7xACAIoZLG9ialUsn1vF6v1+12bcFTrVaNgZ1211559qoSQtonezCLsrCmndc++OCDrut+6xvf7Pf7/+Af/ANCyBe/+EWt9fz8vHUBPsjkkPshH1IK67tVKoXValUIcfLkyaNHj9pMmrm5OYc6rVar1WoVeWE1ZPY+PbgfyX7U9t7e3l5ndzwez8zMHDo0H0XR2bNnBQedTscW2wd1r9Z6Y2Njfn6Oee6zTz89PT0tZEEpzbJMazkc9t98881Wq/WpT32q3e689uYbtpqCEwMxzHlh9mNUXeogZOMYAICG4EngcJZlhDCtEMHO4+//4B2n7iaEYUxESCGErWodIUQRwhhrpYTSruchY7qd/vFjJ0+fPr2xvnLjxo0kivpx1/MCQhChaDQaIQxKpdJgMHA9xjmPszhJEoAmkiy7Zmw1zjBhhMqC50kax2MIoeCCaw4MwhgbiCiFlFIDkOsEGsicFzLhjkMRAoPBoMh5v99PkqTT6VBKZ2dn6/V6f9Dr90aUuQXPXMdXWhijbLVjd8Sh+cNJkkCArfcmgBpBBPQ7nbjneQDoAkzI6aTf0cPB5tTU7sOPLdbqLcSARsAYoBFADBgNMgEggEAAz7hAAoWAsswvhJRN/9vHmsE76NhErQkNItqASbkKAYbvNr4E2karISUBRhAAYDRgmACtK2VMSCsMYDTqfetbT83Nzv/4p/+KVJlXQp5vMjkiDur3xTBSRYx/5md+ruDZd779LRA45VJ94fD85vrGzs5OtVr1PMcKG9M01lorpev1SqVSAQAVWT4ajaQxzXqVMeZ7oQEqz3OFsTYGAooBAAoRzB54z6Orq6vra5sOQjwd+k4w6A4RQr7vj/qjeBSHJd8hTCmlpMgFpJRVauVut+s4zszMDELwtddeazQadvP3+31rdVoplbMkHY1HpVLJGFUuh0IUQhSVSmlnZ8dW8NeuXcMYM0a0lkkSHezeLIkRgggjoOXKrRvrmPX3hmHJr5dbRxeWrl2+2d1rhyWPcz5Os0ql0hnExC15rk8Js23bJE3bwDzjxqA0F4PRBoRQKYkQdl3P8dwsLXyXMOpFcZanQ865AkorLQupNWOuKwVIosihVEo5MSMH2IooCWG+V+Kcu45rNLDEHwSAUQgDTCGXIoUQCi4JIRg7Aot7ztx/8eL5GytXH3zwPeO4s7W1dfTokepUkPLh1s5OtRYyRqTkRW54kWNqEMQYIkigS32tped5UnKp4GjMKVMAgCxPEEKCAxcxXhTIeFrrONelEoviwnFCAODW5t6JE8fzvHD84Mat1a9/8ynPrYyHRZaqLOF/46//3PPPP//Vr355YWHp7nvvBQD/zM//jO/7GJFCCsaYgcAeTAhMljQA77LR0PsJge8S6U8khwhIZRCw1T8UYsJ7pvvxAIUAmEy0/zaAFWNoDMAG8FwgCKPeAFUq1AFplEBtOp3OxYsX33zj9Xg8XDx8/O/87f/l7bde+/wf/ufd3a0jS/fOzU2ffe2V03fe02wVu7u70SjGGGugmEs7vT0pDaMuwjRJc9t+uy6BBAKDEMgZRdxoowxCRCkDDPXc0HFcQrAQhdWZYkSxQ9NElstTq6t7e52RVAAh4nkeJtB1GWNEqoRzyXlWKlVc19UKuE7QaLSEKAiVXojzPNEMKGp64wEgju+VAHdXrm2+9erlZ555BmPYGW4+9shjs7Ozw+H4ox/5yJtvvP2v//W//d53n/7mN/50Z3s9DLxoNHzumWc5554bNptTAIBoPJTSYEROnjj10EMPJVnaGw7nFhbeeOP1P/7yn9xeW51qNqRkRgmjQJamkBgAAGMuAIBi4jiOMe5wOLSXruM4jGGtgeM4QkghEMGMMUoIcR3fANXpdaemWkIUWZYlWROgIAjdKg8gQJ6PqtVqIWyycIUxhhAUOsNGUkb9wNcK8UJS4oeOs7fXlion2HhhZWFuHhN04dKlLC3KpZrneLGIo3E+isZxHGOMR6PoxvWVU6fuYKSiUMogxBiHJX97Y/O/f+GPXn31VSXU5tomJJhgVwuZZ4Xh2kFMJfwzn/nlJ5988vOf//xzzz1nVdhcSYIQpY4oJIJYGQ0hKlWrYbmUZZnMU4qwMgAZjRBkzGcOwRhJKUulUm84cF2XUtLv95559nuPPPLIxXPnd3farVbLemJG8UhKkeep53mn73w0y3MI8fLy7UqlpLT4zd/8zfc+8tF+v7+5vdVoNb2yO0h7RZ5rirhR2AFpIgxERkGMkd1t+9jxASpy8D/Allg2xRPi/U/+8xY3dkseeGi8+xZ7xxUH/uBf2rrH+t8aA6QEUgGIAGWsVm+mWaRk1u92alU21ay3tzZOH3/w7pPH15fXo2in0+/leXzkyHFsyNrOllKaOkFnby9N80lQUh4jDAbdAS9kqVQhJgQGOY5DGEfMrfq00awIrsJaNQzLFy5c8n3/iScfS9P09bdezLNCytzzplzqKiG67W6eDo3RzVZ9bvFYkoxzXQgkhBCD0bAoCkYcBJDARWOqgRnt9XpaJMeOH2k2m0qidnuUZznnheQFpbjeqBojhOQQyXoQjEYjLsaYkgLGrUPNUqlsjOECROPE6hdXbq5nWbG0tHTHydPtdntnZ2c8jg0kWoNms1kYQ/OsKIRPCKU0jlJlNKXUSt3b/b1SvWyIgQaeP3dRaSGKxA9drVW/3xEiH4+Hq6sbS0vHfv7nf+Hpp5/GGM/OTUdR1B+0g6rz0st/ZoyZmZlpTjV7vfzI0nzS33j24ktCDis1Ooi2e0N/Y2OT+MBNi3/2z/7Jpz/1yVfPvs1ITcpOueQJweNooLg6cvhYNM6vXrnuu8QFrBaWtQCD3sg23lKoQvE4ShhjEBCHYSmlVIYgqBWUQkOIIMYAQkJxURQIKKWE4zhCQGO05XJaRA9qgyACBjgQQkIAAGmeQwgpY1JKZTTECBBsjMEEIwDzPAcIOL5rBE84l1JCjK0QAWEkpd7a3Vk4smihZAih0ppQCiCELjHGeK6LEJpoBIUWWlnjM0QgMQgZQDCmmAAAuOQQQ6GEhRqhVKFXklI6xC2KAkHcmp5RShQFr9fre3xvu9OeaU3leSa5QEATQhyMFYBcSQggQqhSrhmgxuNxUQjP83zHy5M+UJOUAyG47WooZb7vKyUt8WdCHYUQIwIMMnoSSVPk3KJ1mCKR5waBqu/4vt/Z2bBgq1DSuluYSYYbsF0ogLDIMgghQQgiQw22A1GM8EGfpoQBBjjMgxoSYAwHLvFykVPMRCFFISlmaZ5kWTY1NeVQppQ4sEUmhJy88/ihI3P/6B/9o5dfefHee84cPnwkywqZF7u7W0KI48cXwqCMECpykaUFQpO0ScdhSsmdne1Wq6WU1NAwRgspFFdSamAQUBgalGeZVopSqqWhmAkgoSGeExJElacsnG3HhBhjmxiupQh9yojH8zHQEEADAYTaQACQAVpIhjGEOMlSve+yooyGGmBbeSjjOo7Qucq5V63IgkOCELFDEuAzh3OulbZ/EARKmSyLi0IEfgkA0Gw2R6MoyzIGiSoKG56ptR6Po+985zvvf/9j9XotSRK/FIaVcpFmUqpoNIYGFHEOAIAalkolIxVCCLtYAiGVgBhqoDTQ4ygS0lMaeF5gn9P9Z+5/4P73aK0lz2/durW5vrE6vJWmqS5UEARQG57lGEJpdBzHFg4w++mIWgOhuDGGc6GlMcYoozHGE2o5xjpPCJoAxwAhpYGdSRsAEXEgJnmeQ4whBgf+GEpNPkCIYAwxwkopSqhBEBiAMNBaIYSQAUXB7YBBcsULWavUouEIYGSMUUoCQAnBvh9KKdM0LnJhcUO7O6IoUko6hVMqBdEoBQBATDjnGJE8Ewgpa6Fg9xQhyPVIa6ZSrrlByQeA93u7Qqvp6emyUxmkQ1kURc4N1D5j/WhvlHStuiAIPC20UQAjCoio1qvWxldy4fhOkWajwRhgEI/GFvyimO3s7CRxRghRiEOCpZSMEg2U1hohwBjLs5xQOh7Fb731FmZ0YWGBMLq9vS0NSPICQggMoBAYbbrdblEUSGkHYZVzAADFVCnDtSEAOIIAbaRUwEApJdBIGqWlxgASAhFChCKoCOccY0oIYwQqpbTQkECDoIZAagAA1EZhRDBj2iDHDdNCdAfpqRP3f/GrX33t9bePHz1mVO57xmWcUhbHvWgUS27+6T/5P3/mZ396e3v7D/6f/8ZT7DqlQbdz7fIlglkQNjDGu9sphEZwcv3a6s52dzSMtAKU0ldfeAshhHEgGYpHebMxVy1NXb9+PU90Z2eIGS6VAiXU3/z5v3Pq1In/53O/zxgJfJymfYTdWr2SJEkaJTFCkqeC5xBCWQjiYogRY9TKFyilxEEi0hThwPW01lwJA5CNS3UY83zHEiERQsBIo7XrEEMQZBgZooAxCACjEYBSCEKIFhJCWKvViqLIJBdKuK47E04nSWJV7pghCAznwnqzSqld4vq+r7jiRimhi4zPzrTe/9jDiOCkyC/fPDeO4mZr+uiJk29cPnd7d+unmj/ll4Jnnn3x2tWLQgjHwVIXBjIFMuaq+easkmivPfzan37bc6vHjp6ampoajYZXrlycmpr6wh/+wR133Pn9F1+6cP7tH//xT36sMvXM89+rls/5JUnI0GPWkBDmeaEN2d1rN5rTC8fvqs4vffjDH37uueeuXL20fvu275ehgZ12t1IqU4wyHDd833EoQoGBaDgc+h6ZnW14HoMQSs25St0AY2IMkIKnqVBhWIbSxMOEalYL6nfdd3R5eWU8GG6tbXd2eww7RSIZ8wnihUgoph51XNfRSsAsNcZo5VKEPMedn50RvHj6qe9cvnj58MJSvV5fX9vinEspGs1qmsVSaAwJIhNfewwZAEBrLaTG2LFXkpZKKi2lBAApKaCSCGkCEUJAFyIrlDFKQ4AhMUYGXiiEgARKLTa3Nwgh1Xolz7lSshA5QKZUCeMkQRhDgYwGaSJ25UAKGMeFEAACR0ohOGTMUxwrYLQsMAJxHK2vrVYqpSTJoijp98ee6zPmGoD2up0kSTzPAVBtbq+5Lsvz/PTpuxzH29vbqzcbzWZze3tzOBoR6jJWFoKsr62WSpXhcENJ7VBHCznsj4wxeZ4jhAlmGknOuZIaAJjnOWa0NlMrlUo3Vm4YY8IwLAWlbre71+5YcNOObymljOBaubSTxHmSuq4rFDAKKCGNMUmWAAQIRQYolzkIIWMgIwhDlCQZhNR13TTOh72YEhI6TOWcIMdziBJmGI+DoJRlWc4LrjlFFAEkVEYp1aYAWJfK5alW3WFOlmUFTxDBiMBSJSwKIXIhdV4JmrVabTDouZ4DDTIG80RKYrRIjTGY0hwApVTOs6IoMCS2CJScM0a0kY5HgpILkBmNB1JoIThCQCo+Gg+klIhYMasCQNuYYq21lJoQqoQCECilMMQYY2jgzRu3rly5tLy83Gg0RtH4D//wD7Msw5isr29YCZFSyk4NMcSCC4TQ/ML8wsLD165dt4B4pcIoZXleNBrNubm5qWarVqsNh0OtNWVIawkBVEoSQidlspYAAMdxMMbdbvf5515USp0+fXp6enp6esbz/EuXXmcOAhBShlUuIDJaK6DMyy+/9MYbrwtZuK6LHczCUGtNoQLCvHnhHITwoYceanfb129dz/MYITt1VpZSYGOBDWQIIZc6lvlBMcGIWagw8F2CxZHFo6MoGo3j+aOH3KavgfH9ADHPcRwNAYRQAUAIwlIRSGRSYGDeeu31N14/ywvBnMAJSpvtXZ7xpcPH0jjuDzqAqKQY1oMG85ETsHK5DPtkFMWSS8YYhggDjBnEGBdSGISlAfZMFhpmWQIhVMoQAil1ZmamrIXXeDzGUDPmaqExoIrDtMiEULZQRABqqXzXk5kYdgZKKEoFQopgDYAmmBRCY0SGcVJtto6dOimUXF2/3e7shkEAjCGY5jwlGlCKDVaUeFgzG34AtEBakpMnj3/sRz5+6vQdTuCzAEsNsA0+UpOgM7jfgZt35Z79eXD5nb59gib/OY7YPh4A4LtTBN/B3fapZPZPVgjXI9tb3SgeGqOazWaappcuXbr77rtP3XG02ZhjDlCCUBLMTFfuvvOhIktaU7V+3zCHFEXuUNzpdKwRnoWHDjjLVnpWqZRd1202pyql8vLychzHURTtdTqMsSD0CGYYW+UvsHLFOE5feeWVVnPadd1hb6i19jyvVCqlaRrHEcYYQF2uhLafSQtNjJWZT2zaut2ufY7dbtfOhSCEg8G40+nU6/UgCFw3AACUa1WHUAihHYhZToGlPZbLZWu6Z0NOAABCCEptQp22wTvd7pp1y1pevo2wAaaoVEtGI88Lp6dLo1Hk+z6jjjHQcbxBf6S17nZ7xhjLebEvkX2trPSjVCpxKQaDAQCgXC6naZolqeVa2k3o+z5A0BgjJ7GwajweVyoVo42VomCMIURWt+V5HmNMCuVV/TRLyuVyuTw3iqPt7c0kiSCEhxcXGGMrKyvGwCzLNje3T548LoXe2WknSRQEJaPNxsZGKawfOXKkKFS/N0riTCktpWSMSckxxkVRuC5DEGut07SAEBJG8zy10zDGmNFwOByWSqVyrWoQzPNUay0kT5K8Uqlkqeh1t95445zvVoRQvBBTrelmozU/P//97/3ZBz7woXvvuf/atRsQIK1MuUSoInkuGMFQIWv8+u7HD+aM7RMkf4DmbMdvSk04ywAAUZjJ2+E7ljhpDCAETgLbDEAIeB7VGggh1tbWShU3y7KiKFzX/eQnP3nP3Xe9+spLaRovLy8/8NCD5Yp/7sIbJ04efeOt16emm1prx/EIYUmW+q5np5S+5wuRjqOhVoBS52CiKIRgjGVpbHN1ECRJmgVBIPLcAHdqqtHptoPQk6McIWQZiw899EBexBubt40xR5eWADA7O1uc8ywrRoMxAMD1AoMlAGB6errb7UIIiyJrNBpLRw9DaLa2N6IoyjO+t9fZ3ekdO3ryxo1bGxsbGqhDhw7dd989N2/ePLZ0DCH0yiuvem7JagK+//3vl8thqVQqikwpZTmJNqDS5hhIKcNS6ROf+MSJEye++rU//ft//++PRqP7z9zXbre11kUhCCGu70spm81mxhPGWJrmRVEYDU+ePDkzM7O7u2snNO1226IVCCHLQ+ecC8EZY3nuuh5LkmRlJWKMWNZJu92enZmpVqvra5sAgL29PUxJnhfdbg8AQCnRSuTY+L6vVAwM4SLP8zwI/HI5NMADQFOKFxcXHZdtbG1tb+9gTKqVZpYVy8u3HYd6fmCMKfJ0YWGh2+lPT886Ts+K0RBAWZY988wzAADXdfuj4T333PMrv/Ir//W/fn7v6jUpZRpnnucdP37yK1/501qtMTU10263syxnjCkhoyiyseZKA8YYpWQ8HkspsZH7tpUcQihkQWj5yJFFqy+ZTuLxeGx9rg8dOvSzP/uz//fm9sbGZhzHYaXsMI8QAaFXr9eVEtvb2+VKrVIJ+v3+wqEjvu/zQm5tr0upHEYoQdNTzRs3bnQ6nVarJQuexbnnu3kOIAZSA4CAsiOZ/R33Fx/oXRZP70aT/4Ld81+yf9/9wQ8kBx7A2Ta90/69tZYajSJjBIKk0WgRgra3do8fPzU7O3/l6rU845gwrWAYVgM/TJJCcKm17g/b4/GYUIdSalXSQRD4XlgpU2uT5zpBVhSew5QSwijP8w4vzO3u7tp4nH6/n+bZQw89tLS0dPbsWUppkkS9Xg8AkGY5z3OMUbffWVILlWpAKW62SpVKZXV1lXPhu0F7t9PrDVpTzVqtQgjywtLx48eFEDtbu1tbW2HgeZ4rEfQ8J0mS6ekWk0Wapt3uJAU0SVLOxXA42tnZdZinlLIcT2PgCy+8dN999+UZH49GOzs741GEEHJ84vu+HZN4nkcI41IwJZnDSq4bRVG5XG00au999JGtra3l5eV2e/f48WOXL56nDIZhmGbpxsamMabXHX3iE59sNlvLt24TzIqi2Fhfnp5p/dW/+tMvvvhit9udmppaX18PQ/99jzxsjPr+97/HRc4Yabc7H3nyhw8fXoyidDxK6/V6s9n0qT8c9e87c897H7nvq1/+Yp4Px8NBvVLv9nt5IhFCCiiuZKfTmZ6etoMT6zbreZ5loDDmTpTpUhukAQCWbGgBLHuW2jPkgBdsWRuWHIEBtPuUiwIAIPZJNPukJKz30+SAjcaAUP//KfvzKMvOsz4Ufuc9nbnOqbmrem6p1a22Bku2ZGODMWAbHGaIIQHCkC/fd5MF935ZJOFeLrnkriR8EEgICSTEWbEJGIwBOwbLo2RkyZpaavWknru65jrz2fPe7/T98ZwqC4Oz1q21tFarhlOn9n73+z7P7/kNxiRJYpQCeqaUEiEMpTDGVghx+/btyXCEkIEaXWolVZEUen5+3ihFmaOkEcJNkzGlVCnNOLcWYWyQtZRSvxIQhHMjHc5B5uK6LijuD8gL0uhqtdrpzDz77LPf+cHv2tvba8/N7mxuffazTzFCsdXgYEAptUpKKTFhRVEQikB4BFeJcqatttaC1u2AV+K6bpqm8FeD4MzzvIMKBCz/qtVqr9dbWVnxPG9zc9MYQwiOogggY8YYItO09+l1phSUQ5RSULTAtS1ljkoJ1/zNVrlwT8F0qCzLLMs00hhjUAgCy8ZaOxqNkJmmwIHIWgjx0Y9+lHO+srJy48aNjfWtmU67Xq9vju6Nx+N6ve55XlEUvV4viiLHcTzPg5sLJdlwOByPx5VKpdFo1Ot1Y+yVi1cYY9ZgyEdNs7RarRZFAX8spXQymQghMEZSymq1CgUwQijLMs4dWZTcF1OLjzgGKwmYbIPULwgCDHFAiuP9i6yMPijggTJvLc6ytNvtV6sBpwIjipAsy5JThhHVqrRIY4KtRWB+Yq3NixRIiPtmMDbPC4owsKoRQsPh4KWXXoKlq7Uej8d5kmJMwOZiHI/hIgOiCtyrsiigQQqCACHUWmkfP34cFO43btyC2/rcc88xTna3tnu9HkYGjEQQQgC5TicY1mCCMLFWT2P3YAEAG0sIYbRGGDHKDELGWvBD3fevIEZpTAlD1BhjCaaYGKO0nvIOMMaNRm0ymcBSBMp/GI6NmeZtMsak0VJKu7+o6D65nlLebDbzotja2qKEM4cppTgXjAqttesKY1hZ5vBTxpgil8KxjDFjdFmWnDdALqmtcRxHS8U4URJUtNxY5TgOQubmzZthPKnXa1mWjCbjOI7nF9rjwRAhNDPTDIJg0OsjhFxXTKFZTBuNRpEWmxtbZalcl7jcBdpgmRdaa89xKKUzM00pNUXYaN1szAiHlTKHi6YNEcIVAjYxCksXuLQQ5AglGSD7AO5MaZj7Ig/gmFtrQS2NproQwjBhmAA6kKYpwdPJASxduFAwewMQAWOMkDEaKakxxkK44CSAwMUIk0azxhgdjfsznTYX9OatNz7z9J+/+vJLlNKbN286nAa+D6Os7e2N+bnlJ59859mzD925ffef//Nf7nUH9Vq7LMs0Dgf90cLCkpQaIaSMNkbB05rnKaUsSVKHceRhSilChnHc6/Z93y/ynGCmTB6HMeXUdd1Wa6bZmPnc576gtV1aOlTmRRpnlNMgEIK7FU/Vq43bN27Jwlg7pd6DSgAhVKlUXNdNksRaSylnbDoIAVGL67qgTIdvhmkT3C9E8JSVr8Bthh1o4DjnnU5nZWWl2+/t7u76vr+4uJhOop3u3sFT5jgOpSwKE9/3kyQrlPQpYRhPJhPf99udjrV2fXPj5H33La4c4q7zf/3yv3jrY0+859u+/V3vetfv/M7vaJlTjL70+c9E4eiRh862Wo1nnvtSnIRlWaZx0p6ZBy/sG9ffyPP0/Pnzzz3/5R//8R/79m//9ieffHLt9t1/9+/+fT8pzz54/8/97D/88O/+p+0jR2oV59atq4wJRolF0lpLCBsOxg8//PBMe/Yzn/nzBx9+KMuS7e3NN65e+sD7vn350Pwf/P7vzcw0XIcjhBYXl9M0RggjQo2ys5154mDOxNrdzclk0mg0arVaZ26+UW+PBsPhcOy6rEhzglkcRqPB6NDyKsBwRkupyqWlJWvIvbUtQpC1BrYUjYzv+4NhD5YiJrbIi263OxjuUUomkzBJknAS3759W0qpjcQYDYcjhJDgfrUaMMFBjEUpPRg3wm5j9z1/tNbgzYMMUNpdzh2QvGht4ICbSjSUYpxkWbaxsQHTUMZEnqd5ni8uLrZmmmtra0ZbwObKUllrt7d36/U6pYYTnqW5RUZK6XAHIaSkgSQGz/MWFhY2Nja63T6ltFp14ziWyszMdN7+9scvX7nY7e6cPHV0MhktLCycPn06DGMwXkMIgZN4v9+/777T21u7g8EATPYJNqAgSeIMdpUDPixlDNYtwbTdbgMccfr06SiKlheXwOBxNBrB3wtHKuSpViqVwPehyyP72bNa6/n5+Vqtxjjpdrul/prZXlmWymhjwjAM4yhJ09Rz/CEewjWHmSWUB67rYko45xg5WusHH3zQ851er7e2dmdxcWFpaWnt7l2lFGG4Xq/7XoUQdvfu3dEo81zmOFxrWRSFsXo47GNsjTFBtWItl1KmeQ41ZxiFCCHBpoQGN3CRNlDzMMZGo0lRFARPGW1SyjzPkSWEMACgAAEoS4UxZpTGcVzxg6LIGWNKSd8Nsizb3tmyWgnGBeOf+Pgft9vtfn+wvbVVrdVADEf3faUKVQaePzc3d9/p+86ePTs3N7+xsaGUuv/++x988MFarcYYazabVhuEEGQsQy0EVl3GaN8PYBkrpVzBJpPo0qVLN25eQwidOHkMlgfG+OGHHz5//vyBkAjY4mVZjEYjQki9Ue12u5PJZHa+gxCCPEAwXbl58+btm7cALJqWjtN7qrS2hCApdaXiOVwQQuq1OiGkKCTGWBmTJJngbqVWC5Os0Wqneam1DipV5ghCmbUWEwLHNNQx0mhMyWA0vHr1alnIu3fv1pu1vb29NMmbjVaSJMPhcNAfvfDCC4PBsChKsl+uOI4zMzMDcBxhmBCCLcrKwloMRl+waYD6M45j0KfC9PpArQU1LQylpJRSaih0i6Lodi2Ae2EYlmU5MzNz5MiRsiy73W6ep3A9wZXx+NFjd+/evX37Nif0xRdf7LTb0JIwxnSBjdJCiCROXckxRYRSiKZgP/HTf295eTmXuXAosoju+11ShNA+1myn/yF1EPn3Dbr06ecxwl8PTL8pSHD/B/8K03m/sVcK3b2zoW1aysTz+OXLV5eXl3e2u3/+55+5ffvkt773mwuVZSl66C1PfPC7/paUejLezLPsd3/3P1urXOFPJhOKkdbW4QJMZ6QpiyxvtJpSFrAn7u6uI0SSKAbTUtj7+v0+slPhPEgXBROVSsVo0usOojBRysi84JwnSXzkyJEzZx7Y2NjIi3R3d3dvb8eYTrNZr4oq1MTD4XA4nNTrFZgnSCmLQmKMqtWK44jZ2fbhw6uQnjk3twioLhhC7e7uQp4pFOtCCIhANcY0m812u12tBktLS6PRaGNjY3t7u9GoYUw9z6vVaoPBYDwOKbXVmj8aJa4XGGNHk2h3dzfPim63jxDZ3uqCZBUhBOZN0C1DF2cteLqbOI7jNMnzPAzDoig8L4B1BhUhpXRmZkZbMxwOoW5rtVrwZFqlp9ocIbTW4FWHELVWgYIYI9IfDh3PA6kgAHNpkoWTiDPBKHccr9vt53kJSLrjssCvLs4t3mX3tjZ3tR4RzItCp1nsCA9jCyQtxojriqIoGMeUUoQppsgY43nBdMjGXURRo9GwBCdJIoRIkgghRLC4c3v96NGjxuB3vuObZYm+6zu/5+yZh//Vv/oVSvnubjdL89nZ+TfeeONbvvm9b3/7DDjn7u3tuYE/NzebpmVZltVGxZi/Adg6WN7W/pXwP4gmcxxsFFLKUorLUuV54Xme4CQMk6Io5r35QkF+EdYaHg3LOY6SvLuzC9XkaDSSOsAYr69vDAaDPM/n5uayorh3755Sqtls7vX2er1ef7A3DgdHjx7hrsjiBHrgJEkqfrC31y1l6rjUWloUijKLMdl3WcJFUTgen51v33ff6du3b6+vrwsHnTp9f6vVyLJM6mw8GWdZduLEqeXlZa1Ns9lcW1+Lo7EQIo4jxpjvVwjJkfF2xjuEEOGgTqc9HA6FEI4jyrJstzsIoW63F4YTYxSjgjHk+77RpNfraW37/a4X+DdvXifEXrly5dLrlwhh43E4HoVKqZmZzrFjx0ajwSTMtVYYo2azmWVZFEVlWSJEDh1aipOk3ek89dRTv/Vbv9XtdiuVipTy1fOvNZr1erUGNTQsY5ju1Ot16D1Gw0m32x2Px47j9Add13WXlhfSNI3CBBBtqOe01p7nEIqKImOElkoDE2owGBBCatVqtVqdnZ0dj8eEkKIolZo6Yxqjg8CjBA2HQ9+vlGW2t7fnukEp06DiSVlIWeZ5fvPWjePHj1drAdpG4/GYYIEQEkIkSWqtnZ2djaP89OkH1u5uPvLIWxl119bW0jTlFAdBkGUZpRjKR8bYM888c+PGjfvPPNDf7d++fZsy9n//i3+JEKpWq+9617sOH1n5tV/7tTzPMVDPtKZA0VLFaFxijC1CZ+47MT8/n6TR5cuXR6MRyXGeZ3EcN5q1bm+XO1673QZ5b7PZ/MhHPnrjxo12u53kGUaUMaYLXcqi1WoKwbrd7ubG9vLyiiPcMAw9L1hZXU6SeDSaGIzu3LnZajXjOL5767YuZdGcyfOyUW9lpazW6o7nWYOEg+DR+Lrz6M3+GOhvwpf/5x9/3V7jrz/XMPiBRxtgCEpB/lzrdXfCaBBU6kWWnT79YOC5RZldvXIjjvO5xcaDZx8uZZplxebGDqXcGiOEaLdnkzRVyhDGXT/YlwCXGFPHIUraMBy7rk8ph1qkLNRkMknTPM/z1dVVpdS1a1er1erCwtzq6pGlpSVG+dbW1ubm9t7u9t7e7ng8uXP31lseOu16lLGAUrN6eJ5SJphz6NDi1avXh8N+pzN37ui5tMyjKErieGd3q1L1KSYIEc/zCcFKyvEoJpyEk9RaGwRBOEmjJOzu9X2/0mg0KOXVaj3Pu3leJnFWqzZ63UF3bwCVq+v6CKGlpSXIX11fXyeE1GoBuFTBuFRKORgNz5594JuefMdHf/+/SynbndYbVy5Rirt7/Tt37hw/euzYsRNJnNVrs+9+13uKQv7iL/7imTNnfvRHf/R3fuc/vu3xJ8JoHIaR7/vdbvexxx4995azt2/fLGWWpBPO+bFjx06evO+7v/u7l5ZWJuMEI24s+sQnPn7h4pU7t9e+6Zu+aabdmJlpPvTQOz7/+c8OesOi0FlccDElD4JOv1QSuo5p7AylYKZMKYXD1BjMGHMrQimVZRnw12BII4SA8HG1373Dy2qMtJRaa4umpkNmP5cP7cMleN+vzagpOKWU8lxXKQW7tlIaXBHAEGB7Yx3MDTijmFKm6d7e3uLyUjgKIRhncX5hMpm4wjHGMNfFGJc5TBanpGtjba1WK8tSuC4TjirKsiwJYVP3T0oYIdeuXW003vav/3+/8vTTTz/yyCPv+bb3/sgP/20EdqJKAWMUbjHGWIPOyWHW2jiOlVKeizhnkBsDcC3wfAFMh/8FMeOBiQfAowihOI6/67u+6/r161tbWwcA8b4EdRqWCAevlFJrTQglhFLGCKHGaLjyUGprrQlnhBBCOSHkgJgDNyJJEuFM2w/CmLUaqCIHQ/o8z2EGAPozsJ2BeWqlUoFkHmV0kiR7e3vz8/O+79+4cQMiAXzf9zxvZmYG/iKlFOcc/P6g53ccx1pIqydZXjTqddd1wbWwLEtrdRRNXNcFyzVKMSEE+FmO41SDilIKY6qUstYUMldGur4nBEuSiFLKBWWMcc4ZFYSQLMswtgQh5jiUUpvnlkx9ipgj9q1dAmM0QkhKpXViMSKEWYPhSuZ5jghmnDjM833fIl2r1eI47g+61mBIewcVnda6LAuoJ2/fvj3t9NK0KApiESEUTz2Zp/JwKSVjjO3L9uGOa6kcz8UY7+zsQM18795alhVbW1tFnmqluBCLc7OVSiVNkqIogiDwPO8AVdRyajzNOQUsG1kCTxyE11sQI8OX9s0upovNWswxpdQgpKVllBtjrNGIYO4IhNBBpB4g141GrVarua6AiTg4fmKFjUOstcZ+rVfknIMyDCBjjDHSZrppSANEFmst8Frwvr8NYIvQ5MO7o5QSTCmlmTZwGQkh2kiZF341QAg7jhN4frPZDMMwTwvGmJaKuwIMWxq1erPeCDzfIh1FkeNwXUohnGgcxXHsOA7GliDsCqdWqY6VLvNcM8YIJYQ2ap5otzgVeZ5vb29bax2XF0VBqcMYy9MsSpOFhQUg7iBEtC4RYUWaMiYYttF4QpgQ3FVkum1SSrWy1kqEkOu6SmmyvzIRQpRyh3FKqVKFMUYro6ymlFLK0XQUh7TWuSy54oQQrSU0/wwztG8yAJ/BhDieMMZ4nmuJnV9oU07H0fhP//SPX7nwYhZljsOrFd/lglGc53mv2/3B7/+BUuKvPv/SU5/5bFmWjNPF+eXdneHb3/aOY8cOKaU+9ak/m0wmjic4p+3Z9mpludvt9np7wFLyvCrn3Bpsrc2zwpisUWtOsrDISkIYwbjMiyzOKKX/+Xf+y3g8fOzRR9KkfP3Ca8eOHLUWjcdjR3jNZpNTUas1Br0h55wiUpYlUKYAVkjTNEkSh7uOYMaYHNQz+x9SylJ+bbZ0MFA8mHdSSg2emt3DGivLcjgczszMVCqVWq0GiMYonMBCRQRXalWjbSlz4TqMCc+vLC+vbNxbT5IkybOHHn3kgx/84PrWVhAE1Vrgec5rr51/y1veolT5mc98ptfr/ew/+gdf+tJTX33hy57PPau3u3cMmrVIZZkSTDiOd+HChUPLR1dXV1dXjwZBcO7cuU9/+lOf+MSf/Pw//senTp363FNP7exsiXqNUP3Ci19549olxqiSUjBhDSaWEkq0Krt7e0yI/+P//N9fe+31v3zuK+dffen2nRs/9VM/df+p+zY277344nNhOMmyGBN77uwZJXUcp9VaXSubJOlkEm5sbfq+Dx0lJe5wGHa7Q8/zOOf1ejNPsvXdnpaGczeOsrW1tdnFapqmyJKi0P3eLiUOJlar0hjFOeOUUYbTMnVdQQjK81yWJWVYyqJaaxw5crjZbMlSr69vbm9vwto2VhVFwZlDXer7FalLjK21mlJSrQZSSqWUMXZqxWDsAZsNMDXOHc4dOKMxxogSighCSGsJxQnBzHPdaq2GEBoOh0WRWWv9wFtaXoSlNZ6MKWGMMWMQjGbTNHVdV2tDKUdYU8LyopBxii3CGPtehVI6noT9wQAKKk2NMgYMUtIsbDSqD5479fd+8sd+9Vd/9dChQ4wxeEzKUg0GgyiaOI6ztLTUbDaf+8pX82wKLuM3QVFAoZtWVspSTg46oCiKFhcXpZRJkpw8ebIoitFolGXZQUgsbL+NRsP1nBs3buD9xS8VVIAIwmPH4/HKygpQc6zF1hqtTJbl2pgszSuVCrgsFqS0MTDLMNq3PkBoKuGqVusY0VqttrA4p5SSsrjvvlOdTgcOiFKWhNAkicw0tqFgDBVFtru7q1Q5027leeo4zoFuBgJ7jcVSFVprZG1eFMdOHwWuN9i4CcrAoFUpDbIYKRWYRytpCJnmg8DTDeYeZVkqhBuNBjIWbq7jOEmSOI6jjJZSuq5bFIXWdn19XUpVqVYPTKhgR4Xb5/ru4uICDOnf8pa3tNvter1+5swZSI+A6YiWCm634zhguwGTeK11FIVZlpWlxBhvZfkzzzyzvrUJs4fXX3+92+0+/PDDjz/++MbGxhe/+EXo2TnncRxrrdF+doIZqSAIYPAGhRkhaL/VwoEfFEURRQlomPYxMQuInEFWa52maavV4pwrZbTWZVkWhVTSHDrUNNYGtep4ElVq1Vq9QbggjDrCMVMDWEIIQhYRJlxGTZH3+0NlDCLY8yuTOBElo5xhRGWptbJ/8Ed/ePfuGkCRWRpbLwiCACEy7A8YmbJVoMRVSlHK4REAFoXneYcPr2xubqp9A2ugHwHplu6nXCCECGGEWOAWwPOCEIqiyGG8Xq/PzMxQ4XDOK5WKtdPwKq31TLOltb5y5YrWGhsLghj47doigUVRZkqZslSoyAmjOMBlWapSsY2de73R3tLycl0QhwlMkFIGIUQxOchWMnZqeWkQYt+YBQY85Sln2X7tS1ASIfz18PSbUWa0z0RjlNfrTYu8JMNZFh07dmRhYcno1xEiV6/euHbtxrve9c5BLzYn6fzMzI27G2k6fv755zfu3TaqzHODjC6UIhiDb1dRFNPuSyqjdZHnaREja4fD4e7uLjK2UqkQijAh1Wo1CIJKpbKxseE4TrVaRQZlWZameVkqSjVUOdDPXL9+fXd3lwu6sLDQ6cz0er0kiYoiq7ea4DZYqVRmZ1VZllGU5Hnpum6nMwfugYyx48ePLywsIGRv3bqFkHnooXOXL18eTSaT4QRc+aWUxqCDkPoDPlFZlhYpZyAQQvfdf2Km3VpfX8/SHGOqtXYdH7aJcJIp1b17956U8vTZ00FQ1Rp3u13B3UqlKqUZDHr1eh1S2il1sizJssx1wd1vimMigoE5YoxBVldrQZIkWlvo9BhjDmfGGFWWWZYVRV6tVqMoypTC1lLKwD0DIQyLm1KaJMmdO3e8SkApHY1GEN6ysDCHEBqOR2ma+r7PuQMxmv3eyPfdIKgqnU0m0eyMWllZicL02rW7GKFTp+5bWJxbu7vebM24rjscDgF9RghhPCXsKKmMVYwxz/OMRiAoE56HMU7TlFIqhCtlwZlnjNna3C0KuXro1E/8+E++/NKF7c3R2x5/Qil15syDJ0+etIghRI6fPJHE2dbO5u3bt40xDzx4lhAEyOmbMa9v9AEE5wPkixBU5hYhxBi2dkqFG41G9UoVtpLJZFIoWa/XheDWIinVYDBIktgYA4U1zAO3dzY553NzC0mSXLx4eWN9rdvt/qN/9I+OnTj6q7/6K889/5f1hjc733Y90R/1WMySMI3j6OjRo57nbW9vBoGfZVlRlMJhjuNIqRmjnDnD4bDRaBw+fDgvJ8ePH63VaggXC0sNOCSKorhx44ZFJRe43mi3O43t7c3JZIIxrta8esPLsmJnZ8sY5LpurVIjhLVaHcZYEHhgjae1phTX61WttePyOI739rpSlr4fuK7ruYGUmnNBMPV9t1GvnX/1lStXLtfqFd+pGIPCMCaYKaW+67ueOH/+5bt371ZrAWPMcThYRMEw31q1tbWllII8BGut7/swHeGMlXnpOALAAmvtwuyc67qjaNDrDcAepF6vj8fj4XAIYVxxHMPiH44G7ZlZQhAE7FCKkyQBzxBrjSol8t1arTYej5G1vV5ve2sX9kCttTIGYnMxxpQSKXVa5r5fabdb43HYaFbq9eZkMmk0FikNNjc3FVHaqHub92ZmZs6d86MoTpPyne98xwMPPNDr9SaT8ZUrV44fP3H9ys0oSj7/mS8QThuNBtLGWLWPkSHG8NGjx7vdfpy8ignZ3NiWUhLO0jRNhvkjjzyysrLi+/6N67eUNAhD1UXcSoAx3t7dIYQIz8UYGWu2dzZaM/VarfrQQ2/RWm/vbEZRlKapUkpqzUrVbrc7nc7a2r1er3/s2LF6vT6cjBkVWZYNh8NWq2UNDsNoYWG+0Whtb2+vr683Gk1CiJbleDhSRiIsz509d+XyqxdefaXZnJmbXbh14+YDD7it+gwhZHamjRnVxqCpS9TXDpGvkw68+Xz5G88dwIv/+mH05m9+8/cgBP4df12pACc38jwahqoo1dzcgu+L7a0Ng3BndgEj++ST73rp5S/v7qwjnLkej8MIDF5dz4tHI4yoUqaUGkInwmicZZlgnHNOKQ/DECpgKWWWGs8NJpMJpRQGeGmaYmxHyOzt7cVxfPnyxatXL8/NLdy7d48x9h3f/p2XLr929eql+fn5dnvGomI86SlVYoytxQSLwKsePryys93Lsuz69eujaOy7fpIks7PznuNaa8MwxIZQhuM4TZLMDfxud1ir1apVkaU5xrzTWdjc3BTcj6N8Ldo0xliLwM383LmH7969OxqNXNcHCGNtbS0IqgsLC3maAUri+36apufOnbt243oYRwihD3zgu7785WdH/cF9J07GcdiLQrjIWtmLr1994ol3zM+5L7/02u/93sf6/f5DDz2yevjw5vbW7PzCzt7ua+dfBZwoTZPv+/7viePw9YuvuC4bjrqe51GCXMf/L7/7u1qRUyfv/+Ef/NBwMnzmmb/84uefOrR65OlnPpekk8AXmKIPfehD/+m3/7MsJeVMSmmRDaq+X/XDOIKCG+AeiAfE+4THSqUCNRkjU2YNIcRzPSjjoPgDwhH84AGOjBBS1thCer5LOeeQh7Zf7yo9jQg3++Z9B2QlKJSlUpTSIJiqrDjnRZYKh1vLyryoVAPPcwaDwaGVpf/zl355Z2fnD//gY1LKPC+iyWS/VYNsTYQxmCzgJE3zLGsxCK7h1qI4jpU1nqAa2ULJ6S7hVgij586dO336/tFo9Iu/+Iu9Xs/zPN/1CEW+4wLngmBUliU8SkA/zPO84gfQqMN+CH8R7N4IIWADAKYPW1lZloxNG0vXdfM8v3DhQq1WO3v27LPPPgtDC2yR63oHyjY8TbEjYMQHn4ESXIhpzW2MwcB7BiZOUVhrwSa4Wq3Oz8+vra3lWU4ZxhhzjAknaN/jnlCqlGGEE0LyPFcK0GGc5yUwH8uyhG4qjZP+oA8zlTiOQXaTJgr+IaWcn58XQoxGI7AhBlQxy7Ld3d00zbTWQeAL7jLG0iye0pGMrTdrCKGiKIoiK4qMUk4phqao0WhQTKy1SZLBH44xRsjU63UmqLYlQkhrXaQpY6xWowSjoijysnBdVxkJACgwgoEXhy2avu08kVJja6y1iCDGWJkXSk1TOrjDXcfngltruaDWaqDbE0KMRkmSMELgCgBJXAjh+U6e50qXBENGC8cYK3Cd9j1VlAeA1762Zsop01rHcTyZTMpiOq44QKId19VKLSzMWaWTJEHYUk4914fIKcYY4YSa6XICtEVrbYw0VgMTFtaJ1JoQAqGU8JYQQmmcIISEEBZjiywi1lptsIU8IajNpCyq1WqtVsnzPAg8eHLnF2YJnZLpjDEYE+DsQ5oIttOkQWPM3t4e4FZT53RByrKU5ZTJgfahQLtvkyqVgaXrOGJ/WIUMklqVxujpUAGTKIoMpc1aPYzGnU5HKbW1sTUcj6y1GKP18aRer8+0OsPRMImy2dnZjf5GNQi0lv29bqVSyfNhFCWMUGRwZ6bdnwyM1EkYQyNqpHFcAU6m1trt3hY49oZhzBkjhAjCK37FKFOWstcfTMKoUg0Iw0ZZhxFrRRynjuMwJpRSnDBCp7uoMcYiDbsWkOKhBrbW6lIaUypkjSHWWkqYIaARxJROd0soUTSCkpscbNrYUESI1loqTTlDSGsjkaaeLwxR9XrVIDWJxmE8cnyXC/TEt37zF7/wdJYWLGCM8Fq18eN/5ycpFb/3e3905cobnhscObp67ty597/vO8Nx/O53feurr734kY98JE1zz/OUKZQ2lOHRaABHMHzeGowRVVoppeIkkVIy4lhtarVGlmUy165bsQpbiQK36s16O9vd8WiELCWYW2vhmZKFopgZY7zA16VBsLgwBklNFEUYY8dxQL06Jboia63VSuXGSCmNVbDtEELsflqsQRaAKowxY9Tsm6gCWJll2e3bt4NqJc9zZLFWplSyVJJzLhxnPJlIqYRwszwri+h3f/fDR48e/5f/8l8eP3qMELK2tnZn7fb3/MAPYmJffPn5ublOXoT/yz/8++dfvfibv/mbP/H3fuxtT5595dXPPvTwUeFgTuhzz34lK4YImVqthi2O48E73vFN//pf/ZvtrW6W5Rubm+9///vv3fvR555/9lOf+tR4PH722WdPnjqWIXn3zhsf/t3/mGdZxfPv3tkg2CIlC1J4vpMWRZKk//Rnf7bX2/vEn31ipl03SFWqjtK567GNjbXNrY3v+4HvvXn9xtufePx973vfz//8Py6lQYj0ewPXdfMs90RN5koVWCutVShlEbLE85yZmZl6XTjCy5I8ihJCqO8G2JLNza1KpbKzvaMUsgblusyTEvLrMDbcFUWWG6MeffTRV155KUzCSrVJGTaGHDq0fPr06dFoNNtpxnG6tbVTrQa+725vb1MyHRjs7u4aJOFmwVxtf/asgaYKICDsDAihIAg815lCikqhfaNbay0sDiGE53meG3ieB/kQWZ7OzMy4npPn6eZm5DjO0aNHJ+NwNJpgrLW2RSERIpxbaxHnjlK54zhlqTA2FmGjDaU8SfMk3cXYUkqtQQYbay1leDwe31u/dd99J4OKOx4PW62G67pKlffu3YNiwHE4SJqwJV997iuT8ZAxsT9yw1BU1Cp1+HPwNLCUMc7BcxYe+fX1daXUzs5Ou93mnA9GwzydehPDuO7sg2dqtdrm5ibgqvV6HQZUsPnPzMxYa+M4Ahm973nWGmSnc+44yQghZakgG1NrO0rGlHDHcRgnZD9aXFsFx0FZ5nlBJpOR7/tSlvBMpWkqlZJKuS7L8wxg06JMLNKU0rLMizKHY4tzCjggiG6BtVoqCbs957zTmUnTdDIZaS2FEIWdykEYw4yKNE3zvJga3WIKWB3UnEK4STJK49jxvFqt9gM/8APra/du3boFnsLVWq0sS6kkVCmMCa3LPM+FcBBCMDmmlB5UrZ7ndjqd02ceOH78+NraGiF0aWnp2LFjgJlCmWStFXxaR0VRdOnSxc3NzZXVZZgKXL1yLc/zJEmyOCmKAniQmOA8z+7cub2xsX78+LHFxYU4juHsDsMQbuhBkpzW2hjSarUqlcpwPICsXYSQlFOKpORaKQOEBsBPtdYgRFMGrP4ltiYk0RSIV3I8CouimJ2dX1pdOXri+Esvn6/PtJU2uVQucxgTpTacc4yRsZYzjo2mmAjB76zdPf/qq1lWbO92EcGO4xBKCaNJkhZF2R0MCCHNZhMKY5iCT0bj8Xh80H1obQlhZZlDx6GU8n0f4qmyLHvjjeuQewzFg+M4IEqAmhYaEPjDrbXTURNCnucZY7SWruvCHx4E1cF4VKvVms06QujOnTtQiWGMH3vssTLLOec//dM/vXb37pUrVxBCWBBmkNEoT3LGmLCCUlogGngVNEIsyeLN7Q2/4glP+L5QyngOkdIiPR0dQ1425J7Rv0mz/D9PP5s282+KUEN/9RUgxwlPPWqR55NKrR7FSBleqc40W3UlTeBXrl69Ua81n3/++Q9/+CO+71aCWlKaajWIJ/aVl77a7e1YaznzjFUEW2sRpUxKGcdpEASM0TAMMbFFUURZ2Go0kyRptVppnMRxbJE21gIBIQiCfr/v+5VapUop7Xa7WWpqtdqUVsMp0IWEEGkWLzQW8jyVUgrBPK9dykLKcjIZx3Fcr9drtRrGFBII5+fnDx06lGXZaDSKosmlS5fOnz9/5swD/X5/PB4bo7vdbpIkhZRVPxgOh2mag/IOY4qQhJIa+iuNS+7ysizr9eDo0ZW7d28/cOb0bGfuypU3kiRxhKekUVaNRwnGNsvUZBLNzs6OR3GnPed5fhBUR8PJoD9K4qxaqTvCIxRpLbXWruv6vo8xybJsbm6uPxhBbcE5T+IYUGPYzhyHTyYTRHCn07HW3Lu7Nh6PHceFQlkaLTCFZu+A1oQQEp5rDNiT4iiKHJdXq0GSpXEcA0avlPE8DyEihISYsiyTWR5TWjz3wosM0yeeeKJWq7Xbs41Ga2+3q7WUUhsrg8C31oJIzRgDNJ9Op3P8+PHLVy4ajVqtprLGhhHG2HXd5eWlq1evnjx5PIqiNIE0lbhWrV66ePWNqzfyvPzSF5/98Z/4ybc/8XieZ4SwWq02M9NxXTYeSYRQv99fWlqq1+ubmztZkTcaDYaR+mvPBfqrdEt88AhYhCyy01gAZAxSylBK6vVaWZZ5mgkhEPLH4wmipN1uwxNXliUh2Pd9IUSjWuOcCwdFUWatdT3RarVOnToVRZPr19/YWL+7vbd9/tUXXnrlZa2l77cIQVEU3r59O47DVnNueXGx0+lMJpNqteo4TlDxilxSyrKsGPRHYRjWavVmq56myV/+5V8urjSH474QzHFptRogWkqTTKKx47FaM+gPe9/+vm9///s/8G9/4zd3uzuHDh3qtJsbGxsIGcYJtkQwvre3l6b5ysoKePPf21ir1+sIWWNUkiSMiLNnz0IzzBjPs1KW2nV9oGv5vn/37t3+IKjX65RihNBkEsG0bTweu47/4otfvXfvnh+4QgitJSFEaUkodj1HKaW1IRQLymWp4Lc7MCcvCuifJ5PwwCKGcLbX74XREJw0i6JoNFpAfB6Px8JhnU4HY3zr1i1CSJYnjvAOJAiMT3VDMKqNo6herztwiAJpJc9d12OMO0xgjKUqILenWsVSKcfwyWTi+c7ZpdPNZnNvb+/6tVuNRgthwxxB9vn48/PzQkxmWmwymVSC2o986O985CMf+fQn/0e1UlcKxVHKeUkFa9UbnU6n29uFeWOe58KrHj58+Hu+93ufffa5p556amnp0I0bNyllURpZjazBb3v8iS88/fmb129gjLkQ2FjXdTzHZZw8tHAOYVMoqRTcL7u+sQbOOZ1OB2omQkilUpFaK2Vu3LhBKZ1MQpgw57I8YGMdPnx0MpkkSeJ5Xq1Wn0zCsiyLomg0msAHz/M0LcLV1SMfeP+3ZVmRxMVLL55XUp68/ySoT9y+W2+2Zhfm6w2vKFCpNaH060aeb/7Hm5/EN3/P/yOy89RJw+6fXWT6IB9YsR84OEMV0mw2Z9oVZC3CtFZrBEGdMfTwo4+vb9y6duP1dtuPo2w8ifO8jOO04ntlWaZ5gTFud+ZKrfqjcZJEDuMIU62t4LzTma1UKkK499Y2siyrBCBT9aTchTZDKb5xb33l8KH3v/87nnnmGSHc7e3N0WgwmUy+77v/drPRcV2/057f2+2n+aher+R56TjcGKSt3BxsyhL5flCve5cvXekNepVKZWlpOc9TWZRQWIyjkBOKMcnLzGLGmTscTLJULSwsUMQm47hWbTLGlTL9/giGtY2G/8Tb31EURZYWBDOtLMHMWGONoZjMNFvnzp3b3t1JkizNs6zIj5884fre3bt3q9Xqhz/8YUppvd6wFmd5IlWBEa1Wq2WpZBHevHFnZ2dvMok6swuPPPr493//9169enVmplWr1T75yU9Wq9U4CSklS0sLTz31F2E0StMwy8nCfGdxcfG1V18vCiVLrBX5Oz/641rb22u3u93dxcXZSlWcP//KTLvp8Oql1y/Ozc25rlsYyZmIY0MpBjIXRgQKACBzAQ8XWnqEEOeO3g8Qk1LB/oCwOeDalGXJuQjDkO5HwANImuc5aIySLONKwU4CzAVA0OD79/m/kGFiGWNSKkaZywVj1HEEMH/h4C7LklPiVANk9Pr6elnmC+7C3Tv33vOe91y7+kYQBIHrPffcczC6KMocIUQIAfK1JxyttTYmTVNjTJqmSZK+ibSiMbYIGUppmmfGmH//738ziqLHH398bW3N933OmTUKeqcgCJQ1URQRzDA2SimpCkqpK5woipYPrSKE8jyHrhjeA5RbWmtGKLaIEWoQVkoxSpXWUIrAzvPV5194/G2PPfHEE88991ye50KIRq0BMxhwpciKHOieBzriA3zfYoww0tZYZDElFgG8OKWrQyOEELLW1mo1jLGxagrNW0IoAuKzLUtCCKZT/rvrumCJgxACoxXf95vN5mAwCJMwzxIhxLFjx9rttpTywoULFmlCURrF4FKyr2jWAPFAnzDFxRjN85wzB9iyVhujdVFkQrBOpwNE7LIsEaZKyn6/Tyn1XQ+6dHCqxRgzRurNhpRFOMkOHzmcZEmWZZ7jbm1tKS2ttfVmDU0mCCFBmUYWErBhgGHfRDyH6o4SYMTYJEmN0vANlFIGlghpgRnlwpVSAstyMomggEQI+YFrkebC4YJqM7WXYYwh4OZpbYxSpQTixfSnKEHWKqUQAkDEMMYwIUWW5WUBlapSKgimqtskjY4cO3z86LEwnCRJ0qzXi6LY3toBManBEHZvMZ4uOfQmLidCqCgzpRQljlJG6pwJLo2WWgVOVWupjNRaKyMRIpRSzCggvNxhCCHH5ZhYqBOqzaqZGGNVUWZb2xswxoBFAhcTnmVKKZ4SEYgxCO6+0cjxpngKNlYIgayC7wcE9qClh20H0hcxxpQy+EWllHr/DjqO4zARBAHnzPO8Wr2CkNnr90AwUZal1poTmkxyYsaUiCRMN7PtoihUQ3POs7RMo36appw71uJarSGEqwpT6ExrTZAVQiBjrbWcCe7yNE1LJYusPDhHldZU68lkAoCmNcb1nPF4jLF1XbEvQZh6BzncyfMc8WkUEqPC9VyEcJKkRVFgTK21lIJz+PRyTQlWWhtjEJoyvuFxhgIPY5hq2f3GUwviIvq11FZKmbEIY1Rv1RuN2sLSXFpExEWLh2cXlpeKIjt79oGvPPv81sZOkZbW2ka9+hdPPXXj+p3RMDYavf3tT/7Gb/xGEAQOF2WhkyT7tV/7N1/96vOnH7ivWveFQ8sy1bqwVgvBIDj0yJEjlaAWxzHBuFat5CUfD0dxHDfrrTKLsjjFGCOD69UWJkibsihklhlGRae9UJRm2O1Vq1WtbRjGjVqjUqkUxagoCgIZP1kGaomDmQTGBkAHjDGydnpYcC6EkMp+7SkgGGk7HU8dfCgJYDQ8j/DNaZqBYBw80AtZYEKU1g5CwnNzGRVSlsqce/iRU6fvbzZmfumXfqnRaLiu2+vtfelLX7q7fuurX30WE1NrViilBiVr9y5neW8y2YiTrSTfqtTVG29cXV1eeeitD3z1+ZeOH33oQx/60U9/6tPDQYwR6/UG165de+CBM08++WSWFX//7//M/fff/z8+9We/8Au/oMr03e9+dyjHf/dHfrDfG/zpx/+k4jqcMYZJnuda5UmSep77cz/3v/3U3/2p//2X/4979+5Uq1WLJRf4Dz/20Q//l98WwvU8Z3d31w/ct7/97Z/97GevXHmj2Zgpcqm1DYKa1gk2ThxlSlmMjSpKQrAsS86daJJmSV6v1xkTlBZWoyzL6rVmo9USQtRqWZJkWts8TKUqsqzwXB8hKmVRqQXnzp3rdrvD8cituDPtupQFJg4ittvfGw3Gt27evXXrDmMiCKqdzgwoLBEi2hpCqTXQoTsg1IYdW2vNGDEGMUoRQkpNZ7owrYGBKGwp2hqoMaAsoXTqL6SkhOXabrd832OMgWPeD/zAD+zt9T71yf9hLaaUU2rKQjFqrcHAbibClGWZJBkhjHNuEEEIK1kWReZ5HrieSq0wptVq9fTp09SR43g0GO6OJw+dOnViMonW7m5cu3bN9yqVoCYcNh4O4iQE54cgCKydeuzkRQGIOVRl1lpg6QkhEMGUUt+vEEIIw5zztbU18CaF8gYhRBgtyxL2zMFgkCQJTNm11AC/EMohUn4yGjue22g0x+NRmiSUECV1nucIkaJUWluttZQZaOUxxpw50CJZg8tCYWIZYxhTbQC/ZlmWWmu0VqPRKAzDlZWVWr1SqfobGxtZnlhrEbKVSsA529zcTJIMEhopxcaUSpdEoyxL/CBoNps7O3uTycSvVhYXFweDXrPZhGIpCAJYDJPJBCHY7rDWOk0zjCkYkMIuCteQUprnUaVSOXr0aBAEh5aWfd9fPrTYH3QXl+YvXLgADzth1HFco5EqpZbKFY6UChYVNH0wlKrVqg888MD999//zne+c2dr5+rVNxCyKysry8tLhBAhuDHaWgOLlmJy9+6dT37yk+vrG0KIve7O1tZWGIbdbhdIYKP+AGO8vLy8t7e31+0Bn1dr/eUvf/mll17a2tqG8DC5bz0H1GZ4EHzfn7rZ7FfslNI0TSFNDQbMq6urJ0+ehDjcvb09iEmUUpaFshYFvj8aTUolsyzLC7mysnLivlMPPHDW9YJCqlyWDNmgVnV9z05TeQXsmQghjC0hhBJaFMWFCxcuXry4uDBXq9WSNDKIaC0tRhbzKMk5pwRTRoXRiDI0NzcnuLuzswO5x9ZCjNZUoCClRIhAiRWGIXCN86KgDAeeD8UkjBsB61BK5XkJNRJUDkUxTWUEvnatVnODqQIsiqJoPCm1YoxAKauU2t3dFUKcPHa80WgwxgTnoB8SQiCOkaFMOIootG/6l2UZY7hVb7BLly4tLi7udrteEMzMNDknZa4QQgSz/SJhP/4POnltETqgd+EDOvNBMz8lb76pUbcY2v0Dr4G/0skf/LgxSCkdxsM4mRhTEqq1wQihLM+rNd9xeHdvp9FolDJfWlq4evli4JPGTOOrz/4FsCfwFKRH2hiMYQwr5uaqcRynaRoEwYmTx6y1/VFfCDHo9zjn1aASRVGSRgdvIkmSdnuWEAK3B+I74B0f6GGLomSMW0v7vaHj8nq92mg0kiQRrlsURZYpIXSWpUDcgBEB5/z8+fOEAJGBjUa7skTXr1+v1WqTSfj88y9UKr7juLBFwrqEU6RerwpRgRVfFNni4kJaJjdu3GCMjEaDY8eOMIdduvr64UNHkySiFIdhSAgR3NXKEkIwLoFJJIQghCJE0jRN0xTkA1MfLm0YY61Wq1qt5HmeJ1m1WhVC+H7l9p07sO122u1ms7m8vLyxdm8UjqCNJIzeu3dPcEIpXVlZ2draEkJwTqMoac43kzgjhFBCpJFII0IIxdMuEQpiqdRoMnYc7rruqVOnpJT9/rDX64G0R0lDMLMGUyLyLMcYe1VPSvnwI2+5dfPOrVvXylKtrC6t39uIogRjCtRsxrhSqiwLoFLu7e0paZgjlDWLi4ueNwZ/g3e84x2+7x87duSNN964PlgHctOJEye/7b3vv/++Bx0RHD58MgxjZInrekHgv+e937q9vbuz20+zHMhHSZLAha016nya+PT1+NTXkfcRPAAH9EmLKEVKgWyTKIXKLO/3+2Sf+IMxktMTlMGTzFjd8xwEdkJGSsnCMNRG5rmpVquehzxv1vOc577y5fOvvlireMvLi1wsV2vu3t7WdnerXq8fObKaJjJO063dHav03NxcFEW+7y8t1kejcRzv1ut1QEx834+iaLA3Wjna8X0XYYWQGU8GSToGcW6RK62R5wVf+tLTN2/cGQ6Hx48fz/N87c4aJPlWKjVjkCwVQORpGidJ5nlOZ6YttQIsuNFoGS17/V2jEcUEYeL6LkCQaZo2m80sSzinYTgOgqmdC8YE2GFJkmGMb9++rXQJvpBlmbuuoFNTVEUIAqo+pdRxRVlIRqmU0hijS1niHGaYmcoqlYq16M6du1JKgjTSqCxKSuh4PPZ93/d9z6NFUYA/1OrqahAEURQVRWEtK/Oce57j+1C0QanXbM4rpZAlnDlgoOm6HjQ68Nw1m82ZmZnd3d0kSY3RWZYdPXLIcfjc3EwUTwaDPcrQtWtvnDlzdnXl6MbGRpalWVrUa+T06dM72z2jcRQln/n0Z37/o7+vlS0KqZQhhJalskVOLDLGZFkB6Aznjiz1+r3NN964/tprFyb9wT/69791986d3/zN36zROifuk08+CZbZnbnZsiyKMgMQM0vjSqVy//2n8rJQSsZZyjlDRjUaDSFEr9cLwzHnjhCiUqmMw5BSagwC40uMCcb4/PnzlFLX8UG9B9bzGNM4ji9dvDKeDA+YsNZaURFSSoxUFA5/5z/9h8cfe+L7vveHKkH9K195/sqly4888tZWs8mFyLLs3p27zfZMZ3aWc6r0N/S7+J/bMX/dN3+jf08zb9/8ml/Hp7YgQ5n+Otelvl/RGuVFagw6fPgwZezSxQt37l6/eftus9HO8omUBaWcUiuEAB6E67qMOwZhRnm1UqsE1W63u7OzkSTJbLvz2GNv45xfv3az2+1CaQXVkjEGsMK1tXUhmMPdyWSysLAQhvF4PHZdd3Z29nOf/0IcR0Gl/uJLr8bJaHGpvbLKilyOhjFE1IZR5gp/MokQSoIgYA4xxgyHgzwvWo1mnpcg+plMJi4XmHKljOcF21vdnhpVgrrSRZ5Kx3HKwjiOc/bMOdd1+/2h67pCuBcvXpZSW4vzvKCUEkKzLCWYvf7668vLyxjTMAyPHTsmS/Xsc89bpd/2+NvH4/Hrr78ONGHf9YSDKOWLiwuj4USVGiG8vbv37nd/y82bt77ne77vxIkTV65ceec73/lf/+uHjVU/+ZM/qWT2kY/8t+Gw//Ajb7l48fVqzevMNo0ujx8/ury87Ajv5s07vtdoNedefuFFhEh31Pue7/3uBx544L77jv9///H/euHCa3k66cy0B72+UmYfmLCE0ANrhYMCF55l6G20tnmeg0cZm3q7lxhbjGlZlr4f5HnueV673e4NBt/5we+6fPHSxsYGMM4O6LRlWTLGtTaMMeCJaJ0bowUVX+sHSmkoha2Gc764uACWVpVKhexb8QLtvVarYIvWNzcIIW9729uqjfoDD9xfKDm/tPjeb/uOF194wVr83d/93R/5b/8t8H1CcRzHsijw1EFyKmNCU98PDdULYA3Qk0Ad2Z7tbG5uvPrq+Xa7fe/evaIohOAAZwDmG6UJDOkJZkWaUEp938+SFCx36vV6nucQng5oEaDwVhvOpjEY0AADCkkObBC05pwfOXp4PB5/4hOfAFxJShXGESMUOKFlWWJK9m8iPqD1TRl81lqLlJIIoX2K95TdDMxluMvb29vgeJjnilKEEDL7h7IxhmCmpC4LBa+JCQIAEdBAznm9Xk/TdHNz01q7urpKERVC9Pv9Xq83Go3e+c53gmtHv9/f3Oo7jlOv1yuVurV2d3c3CIJSF1QzuL+qUEpJIFJoqRqNRqvVAFq9g7Hv+6PRKM0K8OOL45hisg/hkQPUiBCkrFJG+RU/aARJklR8f7e7lxVFxadKT939pCwQQoiL/Y6xNmWSSsMYc30nLXJjFCIYGVOWpdUG8AtKKWFUKYUxqtWqCOmDSQkw8T2HMzYlfcP3A7wIxzEihCJcltPsvqIoCGGEM8AE4cIyxrSdhl0jjGCRVOs13/drtRo0VKPRaPnQ4tzcnDIK+kxEUZRGgL5x14ElATWwMVPZL5pKXhEsOYRQIUtEbLvZHoWTSqVy+vR9sP5Bg+hyIY3e29tTSmJKDNIG4zRNpVGLh5YopcZYgGmSJAFoo9lsWmuBglQUBUY8jmMEVrkE7XP8kVIKvFaAb2WMmXosWgMjJbr/gaduElQIwTm3SIOlyT57GruOn6gEdK+gktF66om8t7eXJBEhRKnp6wsaaKnDUQpgJWxuhVCJyuMk5Zxrja0x1lCt7O5OLxonnHPPcy3ShEwp4RhjZQx4gxKqg6AKQk94NYuQxdb1nFKpheWFwaDX6XSMUdeuXavVapzzslRamkIXQgiLvwaswzMLLBzoY40xxE4bCjRd4nA6YzDDha0YIUQ4cxAB8QdwvWH7KpRECiFkEMHWai6E4wecU0LQaDQMk+HC0tz9958qVDoa94qi2N3d/eAHP/jFL3xl2B+/+53vrtUqn/3sU//i//6XH/vYx7NU/tDf/uFOp7O+vn718tXVlWNa27c++vidO7ejJJyZrVZrDkJsEo1r9cZoNDl2/PDp+x/odvtlqYaDnpSy05mp1WrVoDIcjoGFA2ZNU7xY2+FwxDjRWlerFYTwzs5elIw9L/A8TzCHUlpqxRjrzM5EYRJPIhhC+J5njcmyjBKitIGBIiGEUQZcZ6AiWiukKvaHGVNhNaEg1p4y7g8AC2OMMdb3A1h48KhmWQbKGGsNotTzfMdxq5V6lhVnzpxZWlza2+u5vp8VRT0IgiC4du3ajfXrpx84pXQ2DvcGg/5//4PfvXDhwqn7l3Z7tz72Rze1GXdmG6tHZl89//Ly/JFGox6G4YVXL3zre75jfvbIU0994f/9D/5hGIbf/M3v+ZEf/bvnzp29dOnqf/kv/3Vj/U6axfOzrStXX8eOmpv/fmxNGI48x614fprkZS61NqVMe73e3Tv3rty6+vKrryBsqECcsHv37lhjtDKO4xi/ur6+hjH+17/yK4N+v1FvJUkWx2mtVi9KJRUqilJLjRHF+GBoQQK3GlQ8a01ZKtf1JqMJ2A15njcYDIwxAPYqVTbqVacz2+12PS+o1RozMzNPPPnkD/3QD//iL/7iA285Y4w5vLz81rc+cufOrfOvvvz8818xBuWJKgoZBDxN052dEmTcylhssOt5CHPogGBLAQgJpoBZVkhrjdbWIqAtx3FcKnmguDIYGT217Z6ZmVFKgXVGlmWTySTLMs6mNizwMIIi/OLFL8KPlKW0BiOEIGUB2LV5UZQlQJAYWUKIVUoZjRibipaUyilnQlClyrLMOSsoot/ybd88Gg2f+fKXtMLI8t/9zx/u9fq/8Ru/oWSeJJHjOLOdeZikKoWA9JpnBTRfSZTCQQPr1hgjtTL7W4Nf8drt9rFjx3Z3d9M0BbwbY5xlWaVSgcjToiwzyL+hVGs9HA45541qHShTOzs7Ux8wx0M1KJG01rYsM4SI0Wj/gqM0TQlhlUrlzbNMa4xSijKG7FRn4LpuHMcALMBoDbpOx3HW1tYQQq4nOOdZN0JYHTt+9JFHHknT+M6dWwghTKwQYjyZnH3wwWaz6bruxsbW2becm52dffXVV8CUdTAYwGtCZUUpcOG1I5xqtWotzrOpYAjkNVJPh0krK8sf/OAHGWNrd+4+/fQXHzh9+tu+7duyLLt8+fJ4MhFCWKtlqen+rB0ATaiKMcIUE8Ko73utVqteryulbty4sXFv4+bNm2E42dvbG41Gp06dOnXqFABoo9GoWq0qpZ5++und3d0kSSaTyWjc397ehlQGCHIbjQf33/eA53nHjx8vlNRaF2Vmrd3a3siyrMgVsCLgL4JT4GBGrpQaDofGGG2nawOuOUIIJg1BEMzNzQFN3lqslDEGWUTKQsHbK0slhMjzkgv38JFjDz70lsNHj1DCwyRVUhey7HgOIB7aYsYYw0jpaSiIUlZQxgiKsixJEillt9vN0lRKmeZpEHhaQVgGBr7peDwGmQKMimEBQxsCGLEgQhMIF3EPnOiiKIIBcxAEAKlnWXZAMweVA9wv+BGouqGEgBqMMaa17Q0HYRj6fmUymVhrMcOQpGKMqVarp0/dB6sLbg3gdZRwhZS11mjkBUG1Wm2ydpZlgSfqVX8pO8S6e/1Ws+1yd3l5RWtEKbIYVIPTpppYZDBCGAE7E76A9xHnb/RxYN9s8b4B9EF//iam85sdnJFFRmvXo0WJpcJKqTt31yaTca1WH4/idrv1wAMPIERefvnFT/zJxyizm9s3B4M9q8MpdcgaKWWlUo3DaH5+wRHe3l4P7yeNnjh5bHl5eWdny/O81dVV3/Nu3LgeeL7riTiZZuAIIZQyQBCQRUkIaTQaWaqs1dZOffryPK9VGxjj/qALDSccva1WY2llOcuyhcW5wWDgOv7CwsL29g68h8FgALOyNE3Lsjx8eGV1dSVJkl6vV29WK0EQRRFjtNVqGWOicQRhX/Pz88ePH79+/XqWJa4rYJIQ9ZPxOJ2ZCaJo8sorr9Tr9aLINrbvzbTmsmywuDT/8z//87/30d+/cuXKo48+2uv1Jmm3UqlQwstSgm1CrVYLw9BxvDRNl5aWVlaXNzc3XVecPHnyhRe+OhgMuOtF0YhSevjw4bIsm82mNaYoin6/nyTRXLtTqdc2Nzch893zBAmII5z5+fknn3zS94NXXnllY2PLcb9mQAn7MfQt2iCtc8aJ73uOSz3PIQQjZBmjg0EvT4t6ve66PhfUaIjsoAsLS3me52n8+uuvj0bD9fV1zsX8/HwYDhHWlCElleN6yBJCMKLY8T1pdJjEN27fwBjLUEdRdObMmYWFxc9+9ilrzV/8xV80m/ULFy5keXL//aeiKFpeXtnd6Wot5+dnG825emPm3r2Nzc3NerOmTOl5HtwazrnnBZw7aZqPRhNKaTWoCEGNQRQj/SZa5ZQROSVz/1UwGr6KkNaIMZAvoThOHMZAU5lnZZZlMHbLsrTVqgHnhhAGBxbnNJpMJpNRURTj4cj1vTAcRxFWqnzmy08//8JXl5fmHjhz3/bm2mjcxcjf3t5mDg8qruN4SVzevnPr9p1bs7OzDuNwlD507qHxOIzChBDCmKCU5nmWpsnykTlodBeXZkfjvrUaEMbhcCxLYzTzvWocp/fubZw4caLRqF2+fHnz3nq73W40WggRwGQ1GGcju7AwK6XEmAxGQ0oZpawspeugNI0ZE8YgSvhB7Qte9UC6p5SOx2PPC7S2BAP/yVYqvtoPm5Ky0JrkeVarV9M0TdMYSoeiyKydCgA7s/VwHOZ5LvMCtgX44PuCdIyx47oM4bIsy1IiZK0xulSaqWqj1mq1wjBst1sAD+V5niY5QkhwPplMWMJgDLOwMFet1hDCZSl9PzDG9Hp96G0gSYNgRijK89zzp3p8KRFjotlsplk0Gve2tjYJtaurSyuHVvf2BqPRhHMnDMM8LyhlSqJbt+6Whdne2F1bW0uSqNVqEUJ831WltgZJU+RFaq0F6goXIs/zZrud5vmf/MmfIkwRdy5cuLi8vHzm7Lkf/7s/lkTxP//n/3xlZWVmthXFkyRJHJcD0ZgzIqW8fPmyMrrTafdHw8Fg4Dl838tp6uJXFAVhzFpIgjX7W711HGdxcXE0nGCMwQ77wQcffPTRRz/ykY90u92yVJw5wEUNw7DdbkOHnOXj8TjEiB9aPvzMM8/Mzy+97W1v+/Sn/pxS+p73vFdKyTnFjI/HY8pYvdUCdsNfN8H46+4Zb/78N3JnfvORND3+vgEVevoKCBk8zSMCKEojJI0hRhNCjh49Sint7nUvXrl8++a1mXYjSYeICGNyrS0XIstLhAzCGHJ087zUWidZzgivVpvD3liWdnNjdzj4nOu6eV4SQrjAzcaMUooxAimyOzs71toTJ95SluUrL50HBOf0fQ8QQt544w1s/cXFxbn5zpUrr8/MzDzy6Llbt65nufHdyt072xhjRkXQqc7Pz2RZUa0GFqMoimrVBjIIEjIxxrOzs5zz3d3dSqUmpZSl7nQ6RVFmWcY5C/yqtRYZ1JmZa7Vn7ty5Mx5PWi362msXrEWciyzL0jSrVCqMcUfUCKW3bt26c+cO5YIxhghdWJ579tlntdbnzp1zXffI4aNKShiLFkXW6/aWFg9pbZMk3dvtnTh13xNPPHH27IMXLrz66quv3L59ezQadAf9IAg2trZ6uxsgc7l9+6bjiCRJ5HY2226HYXz16rVTJ++v1ZrhJF9dOf7MF75cqzW+/Tu/QwieJpNub2durl2puozQNE3LXEGySp4VjDHQlnLOGRMA/UgpKeVaG4wNILMHrEOEUFEUZQnYNOacP/62t964fms4HD762FsfeuihwWD4wgsvGGQrfgDMl7IskySBjUIpdcA7AB4KpdNsUoIwkPVA0Y8xrlUqSimY8QDTAcxeXSHAo7bXndx35vgP/8iHlg4t37t3b3bh8GA0PnL8xNNPP/2F575w5v77QPl+/OixrZ3tra0tSqnUOs8zqSQ840mSSKmgcT3gjIBDnOu6yNhoEkK6CyCA0KQxRmGrnEwmnucxxuqNllAyz3OtCbxCs9ns9XpAQoTrAPvwgdMIbNEAmuxz9DBBmAsBJwvISEEdxRiHi0aniWGl43jAQoVXw/vm13Q/wYZSyhgHJ2KQ3xpjgB4Ct2CfGkynthildlwOWn6pKUYWY4qQPfDHNxoDDQR4ynNzc0mSXL58OcsyEMcgi7a2tmq12mg0gkp9dXXVGBPHcbVaBQgM7FC3dzbzIvV93yKjtRKCIW0QYvVqwxhDEHYcDuREKIBlnoNrB8aYYFyWCkzDANxECAXVSre7+9bHHzPUfvkrf5nkCRM0SmJrrR+4w+EQY+w5TrPVSOIUKhCklTG6KGQYWmhWOXW1lpgSgw0wkqcdC2NTvBiBbItYa3QpEbbWFpxzz/OMQUYqwEcopbVaTUkThQlgHxhRRgXbT65GQJZBiBAG/wvHPUJGmakNMca4Uq2UZQlrHiKYoH4AnsdkMobiU6qi1JwQoqzB1jDKDvBla7FFljJmYGyIELKEYIwwIoQgrTh34WoIwXqDvlKKUey6blDxAFUZT4ZFlNeDuuu6ZZGePHkSrLSstUpJEO0C9gGUooWFBWvtxsaG1hojBsvzYCTAuUMpttbKUkutDLJSaiEYLEVg6oEOAEojtN+UwYOcJCnnXFFjdIkQIhRhRinlulSpmcZrR1GklAyjcZ7nrutqLa2yFFFGmTGWEGotRog4jqeUchyR5wXnTHBXa+0HVaWUKa3UKk1TIVyEEJjDommMOZ8SWQixxHLXKXWZ5BnhBBGCqcXEYIyULdtzM3E6uf/MKWUMMuq4PVqWykgTjkJCiEcEQkjhaa4MxjhJ0iiKjEGEmCmOrA0sP7jLgJPCMw6gD3woazDGdmpUYotiCj8ZqygV00adYYyJRtZai4nlnI/GfccTOzs7aZGWquAux8SWWv3Ij/zE3OzhySj///z0/2t3sHv/A2cfe/tjmIowTA+trlqMhuORtqbVarTbsz/yd370i898HhOZpnGc9IKau3r40Hve85433rj24gsvI6zvrt0S3Gm160arXm+32Jb1Ws33KozwyQSBMRTGOE/SQhVG66QolC45Z4hgZfTMTEcpJaXmlGGMw3ASuJ4qVRiGeZZ6rj/FgnPJmeMILy+/ZqtKKSUUlWVptIYa2O7bGWFMDDjo7OvlMcZ8Pz5rf645nfQoKSELy/O8QoLXogBPT2QJZ7mU6sUXX/zUpz49mUz29vYeeughRtDHP/7xr371uZX7D80vdh57/JHdvY2PfuTDN29cqgSMC7W3d1uqWJs8qJKlpaU4kq+/duOhtzyGCu9PPvEpR3zp2NH7//7P/C//4bd+2xHBE29/h+/7r7568datW0FQ7Xb7M+2a53mE2HEy/r9+6ZccJnzPoQQ5nhNNQjDfH49CN+BhGP7sz/5sofNqvaJUSYmmBCFCKMXG6jAaV2uB1joMQ2Nto9UMqnp7a0cqMxpNlFJFLinh2kitFCZEuC4hELwGPuzUdV3KWTiOFhcX6/V6P9xyHIdS5AiutW63WkqZb3rXO44cOfLKy68++JYzw1H/mWef1kj98Id+8MaNG0USj8NBUPMYo0kaKYkwYuCCAlsiISRNE0wZCGtcxyWMQucFmwOMTgFd0lpjizCmoJuBkxfvR6Rqi/cRcwxRkI7jlWU+HA5hJuoIL4oia229XoWD8sUXX7bWVqtVyBFxHR9j3Gg0oD7J89wiyxhzHAcsbqGJDoIAuL1SFhhbTIm1plarGqPTLEHI3Lp148aNG4Pu0GjyUz/5D97zTe/5yB/89363h7BN0/h973tidXX1Yx/7mON4SmlAeJoN2uv1jDGe58HBN6W1aQWQOpxKaYprtQYIYUEOBfsq6NXAKBIuVBzHlUrFSG2trdZq1tp+vw8M6MCpKFWCLzClFEwJOHeyLGNMcD69jIxhGMNgjCnFQgjGGMJIKYUJYZy4ruu4hHMOXG/Q5fT7/Xq93mzMPProyXa7DaiLtbbT6Tz66MPt1sLNm9dv3bpFKa43qlmWDUaDpeXFoiju3r3barUeffTRhYUFzGir1YrjGMTTnDvgNVyt1inCcZzCbLJSqSRJlmYxRlQppZQxWvq+7/n+3Nyc77thGM7Pz+/s7GxtbVFCiqL49Kc/bRFqtVpFUSCCsZkGxO0TAozv+4A4VyoVv+LD7nH16tXxeDwY9KpB3WoDQ4u9vT2t9ZEjR7rd7osvvjgcDr/lW77l2rVrly5diqIIGEuAk0KAWZIk/X7/6NGjKysrWuvbt29DKkZQ8Q6cMRCylBJjprkXfN+kGOBauAhCCNdx4b6ACtB13SiKpCiDILh9+3aSZFCOwrReOA5UdFATMsZ9123PdhzfAW+9vFRCCIsMpdh1BcVIlQUimGJukeZ0WtYiBCe81aqsVStHjx3e3d4pyzKKI0TQdK6sbJrkmNg4Tjmn1qq9vb1Op4NqZHFxsVqtDgaj/l4XG8sQ01obq/dHsBgKJ6WUcBw7lQRRjKcMbjgiiUWUUm0NnrrMYdgZgGEGakuoQtM0K1iRJBm8PiqRRlIIcezEyTNnzgBRxlqrpFRyCqEYY5jDqvWawwWp6na7jRNe5pkn+MWLF164+AIrsnLtzr377jsduDiXSGvEOZbSAotkn6RsyT5qZg5ExGj67zd/EPLmjhzQt/0L/aYm/81iZ/gkJWjqGBgnUmqMyXgcDgfjdru9vLx86oRTqzbyvByNxh94/7czrv/4E3+wubkexWOKsqIo4Lj1PCeOY2Px7l7P4e5oNGKMNRq1sizTLFvfvCel5NyJ45QQcuzYscFgQLDFGIPhS1kqx3Emkwk0Qp1OR2u9s7OTpplS5sjhY3Gcrt/ZcBzHdf2ikHmeKl0iS3Z3d/f6exqZo8cOE4pmZmaA4Km19jzHcbzRaAR8DSmV0Wg4HNTrNYv0yuoyYYf6/b7neUmSIGRbrVbF86MogeH2+fPnETIgqEyzBBq/w6vLi0vz7XZrPB56vosQ2tzYkiorVFmo7JlnvvTK+ZcIIZtb60VRjMIBdFaMijiOPS8IAh8WVpYVw+Gw1+ttbW8opV577bUgCDh3INGy0+kIx6nVammajob9brcbT0KEUBRFb33b4+9973t3d3ejJE6TEI40Y8wXvvAFx3FmZ+eKIsOYsv0sTq0lpTQIPKWUma4BnCRJnMhHHnlobm52bW3t9ddfl1IGged5HqVEa20RIhRZS4tCep7n+66WstvtBoHHGBsOB5Qyz3PSNMUYGQN5OFYb3W63a7XaYNCD2Q4hKI7jZ599dnl5GfhZ4/FwPOlD6zIeJe973/v+6T/5hWee+UslcRhN0kw2m+2HHjq71+v6gWeM2t7bJYSkeeG6bqPROH369NziQlmWMAGTEuV5Xqm4ZD8S8Gv25WiKhf2NIBfGCBooY8yg26tWK57nSVVQhq9dvyq4yzlvt9tFEEBIves61hprrSuo5zm9XjkY9CzSnfZCGI6ttRcvvf7001/8iZ/4sXMPnvnS05//8pe/rHVZrTmd2Var09rZ2ZJynBd5pVKB/llL7Xm+LPXNG3etxVlWgAFQWZZKlb7vPv62t3JOonhy8/oNqQrHYXu9blFISkQlaFEhxuMYW3LsyPGKX/3LZ571fGdpcRUmmYACACKQyIhz7gdurVZfW1sbj8dBtQpznWqNG4OSOI3jXCvkOF5ndj6OY0opqEXy3FQqtXPnzr322utQ6UJXmed5muZ4GgFBtNau53DO5+dnJ5OJlEW73er1epMwZcDToaxer/uOG+IQQlohYYNzzh1mjImTZH5+3hQ6lbngrjGGC4osHo/CNE1rtarnO4FfrdVqSZJ4bnD+/HnOOTaYUUEJ5YQjg/a29+JaurS05HlBWZYzMzOeNxgOh1O+m0Zal1xQjHGeJYjgZmOmWqmvHl5GWLVajTyPT5w8NhpOkrj8sR/7sfX17V/9ld8qy9xY9YEPfODxxx/nzHvl5V9Jwqy73ddGCuHOz89HUVTmBefcWqyKEiFEELYYEUKU0ozxI4ePDUbDMAyjJEYIpWn++uuXTp687+jxE//nL/wCpXQw7CVpNBgNgyAQDhv1B5VKxXMFzJyTLI2i6OT9pzjnvd297l7/ABsyRo2jCGRQMzMzRVFobTgXB2gRUKGllI1GI8/z3d1d6L055y53HcarnQUu6IkTJ5599lnXdb/v+3/o6aefrtdb7373ux84fU5Ks7G+9cHv/q4sK6QulTJBpUYoXVhc1OhvOE2+Lh7wAEBA+9kAX/cwfiPL5r/+yTdj0FNHDjM9Bw/mSWVpETWEEIwwwQQRTAjhjjs/t9jpzLSa3suvqBs3LmaFieMIGYMxJghTyrQ1cZojRBDGUZRIKRfmFu479cClS5dkWZalkhLs5rnvi4PyQimdphm4GA2Ho06ns7JyGOzYXNdTSiVJyni4sPhgGIZzcwt37tz60he/4jjcGIXqrNmYK4qMUqy1NlZ5Puec73WH7XbbKKuR9jyvXm+Ck1qr1YKsISCKHTp0iBCaJAlwn3d2dm7evNnt9iil7dnOkSNHwjDc3d0FKiu84aIoOOee64DuxxjkuC5j7N69e8PhsFKphGF44cKFTmsmCAJCSBAERVGORpOikNeu3Tx69OiZM2cGw6988ze/a35htiizr3zl2Xe9611LK8tffOZLnU6n3W59/OMfV0Vorc3zvJT+8eNHrTXaFKU0ge/evHkzzzQlzpHDxxkVVDiY8mtXr1psGEfPfuVL6/duH1padByvXm1deOX1oiiQJp7jGoMMsiCtKAqIqlOUMik1pVxKpbXdd3zD1uKyVGUugesBSOLFixcxYV7gCyFef/31T3/6z5vNJmPsyLGjFJO1tbWDwhqISAe4M9xogHoxxoDu2X23NWNMv99njEFa0WQysRiiNhBjTFs8HAzdQFhEjh0/2R3007z0qpWrN66/8JXndrp7fhBcunqFE8o53+t1949LQvZpnkVRxGGo1ZT8SSBYBFloouANM0Y551YbbRUmVmlkrdFaGy0hq+od73jHtWvXxpOIxvFBk+y5zpQlZzWwYhFCB+oQRqb07Slbdp/OiacfpMgKZfQBMRyeeOicKaWIYKsQYF5Sy4OZN7wCINcHlC74jFJKGk0pVWUJsCCQWOG3H1BH4dcB4QshxIQAjR9CWEpFKQZlmLFTRepoNLp79y5UU7AYCCaO49y5cwftU2g7nc6LL351Z2erWq0vLi7OzMxQSkHwIaVM09h1fWtg+UF29JBSzikLwzFCCEpHu3/LKBdo39gamiUtpSsEE6IsS4Msoqjf7zkOb7Wbe3t7cRyG4dhaxBjL8sRzHEKIcPji0gIlzFpbapWmKYD4GGPPcwjx4jTCGCNklZKgWTZ6Sj2G4Qd3OGNMa22VCYJAKSPzkmFi9kltlaBWFEWSRICcAhWDUqr1FJIoyzLNM06ZEHhqWIExxlPuOagKANSo1+uc83E4AVwSaFwYY2OmNscWaSutUgqo7sD9N8ZgYOMac3CcaW2VUlZPlQRSSj1FKq1UhRAzQrDxeOg6DmOUELyx0atWq4zRSuDXG7VOp4PMVHoC9CWMcZblZt+unVMKM9rV1dVarXb58uUozDjnGE992JG1wHzUygLAByvQmGnlI40GXBW6RDiSoJ6Jogg6f/irYXWVMrc2QpbIvAAQpFL1McZKScYZzPXn5+dhVR8/flwV5tVXX2WMWasxRhgbaw3nolA5cxhDVClZqQbVamdzc1OqHGnheY4xBlPYo2zFE9JIa62yyhLruZ7jOBajnZ0dxoTgqFKpWG0PHV44dHhVymKcjPr9Lsa4Xm1M4kkWF2mWeiLQVlttDTV4Go1AtAabIDHtpfF0tgGu6wCZFYU0+wb3FBy6ZIkxdhxup+GKCNSijstrtVq91iaEWKsNsoUq0zRVqvRIwDmnTMRxXKrCYMQ57fUGGuk/n/zFvbWdwJt58Oxj93a2XVdwR/zJn37SGPTg2be4vpeW5dKhlfm5BUe4yujbt28L1wkqFULl0vLK7t7W5tbajZtX9/Z2S5m98caVJIlEk1VrPqN4cWk2L2QSpXGcjCYRIag600yjuN/v50XSnp0lFJk8IZS7vqeUWlpaUkolSaJ1KhhP49TzgiRJrEa1emW23U7ilBAiyxIhdPjw4TAMwziBpQ7bmjYSIeR7ntkvKuDzlFKMCcbI990gCEBA4/v+fno5Bb0LtJZKKTu9EdQjLtyLfREMHBpsb2/vl3/5l2u1mlLqC597Ko7j4bAfBEGn01lf31w+tLSxscmYKApZbwTGFr3eLqFqcXEuz9QbVy4WGRG8eu3qvTw0rlP93/7Xf1qttP7yL5/7oR/60KlTp973vm+5dOXGb//H3/mFX/iF119/PQzDesPXWlaqFerOTIaTPMtc4VtryjJP09gYE0UTbeS5c4+8813vuPq7lyzRECiHsLEGc06gAbXEDodDz/Mwlp32XK3WeO211/A0tUUbYyxSxiplYChSSomFYKXMjVWE4APs8sixw/Nzi4DmBEFgDIrDSCn1nd/5nS+99NJo1P+e7/nuixdff/bZL1PBc5l+07vfqbUuVIGJunnrmlLl8soC5/T69VvjUep71XanUxaFUooQZIxxBakGFcYEpVZrDZGAWZYd3Gs4y/R+yhAcGXia7EItIdoYY/R+lsT0TKzX667rpuk27JlSSoxIWRYA2yGkrl275ggX9HmVSg1C1I0xvu+DPaDvV8MwBkU/ITKOUsDFqrVASpmmhgmKMao3qp7nNZv1cZJmWfbcc89iTFdXDteqrccee9unP/vn//bX/10cp7VaxXG8N964vrGxZS1WSoHs7Fu+5VviKPn0pz+NEDLaAHbmOA4ga8B1A5YrDAjDMAQyHOzGcNwAxFxOAzYpZGnCTL1Wr9dqjdFo1O/3oaU1xmAMgy6i9ZSPyKhwHQG6K601pBk5jmOMgu3IIl0WZZbnFWL9oF6pVISDpZSVSiXwq3u7PRii37lzZzAY3LhxwyLNGJtMRrVardGoGWNee+01xsji8pK12hg1DsdQLUAusev6x46d0Fp3d3a2N7bb7XbgV8tCAZwSTmJZFECeK3JwR1FZloAKrSwVpfTw4ZXZ2VlrreO5BLM33rjy1a8+t72547ru5ubm5cuXCWZnHzw7Ho+B5oK04ZwbpZU1jHEYlLqu6ziOEBz+aoRQv9+fmWkaU7969SosSELI7du3jx07FkXRjRs3nn/+ed/3P/rRj+7t7eVlcRCpnaUFCVi1Ui/Lcv3eplJKSVNrtDY2Nra3tyuViuu61mBK+MGRN60RCYGCBGISD6aSsLm9eVoDP1jkMktyKTUA5cB8Bx66zjLAHKSU1pL5hSXP86IkHIWT3e5eFEVvf/JJQtjW1hbBqOK5rkOJUYxxji1hDNJHkjhGRudphowt8zwIvGaz2Zlprd+7u7fHy7JMstgYk8QZpdRaI6WUUpZl7vtuu92GheQ4DsNsb3sviiJGheM4iNF9eaU+WOfWGC4EQkhrzfnU1WSf7D9tHyAZG2pGyA+DTRuaLzgFQMkLJsOtVuvIkVUhxNzcHKUUHMajMPTnl6AKPXHihOd5yMOBrXDKXrn+wsVLF+68vpYkWbDMEFb53ZKNB5MH7jtTCxqjoeIuo3xKv8QUaWkJw0gbZLQxCKziCzkNanRdmpeGMXJgu/xmZA1NMQ+ECbDeDojRX+vhwbgWYyQ4imMJ/sWMSEwspdRza2fPPtTvd8+/8grGmBAkpe73+0ePHvZc7jqcU3b/qfu7u/fyPAcOjtZGK4sQSZLEeGjl8Kq1dmdnS2tZS6t5kWKMLKIf+MAHNtbXXn31/MLCQhSOlw8dAqmj7/sHoqG7d+/udXeazaY2udIZIeLe+u0ozChhnhfAIWotJpiVpWRMzC/N7u3tdXu7QjBjjOcFWk39j4IgOHv27N27d6No0mrVW62WUnJre+PMmTO1Wi1KQjgz2u02Z04UhaqQcRwKIcoyP+i4ijLPC8UYc/0qIajI5fb2dlFkFtVhu6zVAiHcslAvv/qyMWWel/fu3S7LErEDHoTknFmrCSGMk7LE0AnDpuw4jtY2jlPfcalSjuNsbm4qrTudDqEomsCbJGBJfv78+TAM4zjqDfrtmWa73Z6bm+OcJ3H2+c9/HkJL0zQtyxwUvmU5df1jjHHDEDJKlXmRxEn86quv1mpVi3RRZhhRyojjcIAesizT2lLijEYjhBDntOK7lJL5+fmyLNM0HY0mhFDHcZBDkKWcO9VKfRyFUE/Aswcnq+v6aZr2er1KpUIpNsYgbKY6ecvu3Ln5h3/0e4899vaF+UO7u+MiLyeTYSGDoOILwTATlcy/c2dNKXPyxCllysZMo9VqdLtdzmmep8qA8NOdosxgzryPQyH8NXzqzXgWFCuj0ShNU4pwnudxHFUqFS6o1nowGFSC2sMPP5xlWX+vG0WR77he3VGKGGOM0QgZypA26tDycr1ei+P4/IXzf/AHf7C3t/PkOx7/3Oc+q3SZJMmxY4eDimOM0toqZdIwtUjBjZClcpijMKLUpGlBMJOl0dqWpXQcx/Oc2bn2xsZGp9OijCJEAF7HliZhKAS2KkG2sBatrKyurKy++OLzeZFKlUmqdancwNdaY0QpIcZoeKx2d3dVW7VmGmVZZklS5rnruq4bKGX6+bQKUUodcg4xVuv3uzB9LYqi3W7Pzy/6/s0szS01mCBK2EHCbFEUUhqM8dLi0uzsbJ6n9Xo1z3lrptHutF579Qo06gDHeMKFzhbAXymlEIJghol1HC+KkkD4tVpjOBwCjZFSJgRRshwMhmSEB/0RLPVut8sJJ5ZAzF2WZY7wiqKwFulSb29sU84RQkUuMaKu48OuYogBV5A4CRuNWr3RarVaSZJsb+84Ljl29FCcjKMwcRyXYO/ll89v3tsucoUw8b1Klhaf+uSnAdiSUvpeRWsqVbG+vtZsNFxPSCnLQiJkKMVaW7jpXDgnTpxgjG1t7RxaXfnVf/Prf/zHf/zJT37y7Nmzx48f/2f/7J+9+vILs7OztVotTZM4DBcXFzHZb33NNMatVm0IhzUazSzLLWbjMJmMx5iQhYUFYwyjjrWoLOXeXrcsy/n5+fn5+Tt37lhroyi0hoAx62g0WV9ff+qppyilzWZzcXExixMpdadTL8vy5MmT73rXu7Isq9RrlIq5+cVWq725uR3HCaNibm4uy4qdnZ3O3HylUmnMtLngpQJu09dwZPumuFqoqw8eur/ub4PfFNr511FmtA9PI/tXPnnwmtZ87d8A8VmLhMDGEkIwIcwYQjApS1WW5dzcgnBIFA9nO8uzc51+b+e1116RqkjTVBCstR0MR8LzjTYWI0qZ1XhjYytvlRQLxKgjpnFttWrD9S2yBGMKu/Hp+8/83M/93O/8zu/cuXNHlrtbmzvVanVlZWU8Dj3Pe/KJd23vbly//sa9exv/5J/8kzCMf/3Xf41SGlTcTmeuEji1Wk3KgjJbljm4ChRZmadZWapwEgVBEMdxEFSLoojj+ECO12jUGs3a1SvXBoPB7OyCECNCCOcOLPKdrd32zGy1WgV3iH6/D7LKRqOBMeacKaUqlYq1WLhOkZdllo6UqlRqvm/O3H+61+tJWQS+7zhOt9sd9sfG2sA3g/4oiqJjx45tbNz70pc+NxwOPZ8zl9DSNlvVrY17L7/41Xq9/oH3f+eZM2eefvrpS5cuHTl86oMf/M5bt2/82Z/9yaAfR5EeD+/kuTLKaT66+MjDj0dRHEWj9Y01yhEXpFarxXHc3d3rd0dxHFPMEEJBUDXGxHFKMVNaI2OVUUmSzMzMcM7H4zEwNQCvARSMU6aRhn5vqtWII9/3i1x+/vOf397ebrfbxphGoxGGIRgEAzEBOhm6L5CHYS1gnQeVNJxsUA4CTGatNVoLITCxpdRTUw7Bx+GEcu54Xn80euXCxWq1urC88p//64fr1er61vrezjZjmDsiieIA29Go4JxDigjIolVZEoQAhoCiHHAcuh+BLSgzUlnO6vU6OCAhZJVSeZ4RQjhlMNT/mZ/5mf/wW7998fIl13XhCQqCoF6tRfGkKArKCOOEMeZ7rW63C2UGpojvuzMDiOw4zgFpETBf7gjgXAPkAV+C5rAoiixLAbZrz86MRiPoKgEfB2Nl6MOhLczzHCELhxSQO4qiADyFEApv++DP18oarQHUwxgbjY3VSkmCENJIKeU4jtVYaz0ej6HprdVq4B4LdxAg0TAM8zx929seu3Nvba/fa8y0CCFLK0u1oHLt2rU8L1dWVsbj8SgcaW2B56uswdr6vs8Ym4zG0BtA/QYDWkzJlGZire/7WpaEEC1lGMf1ej0rcq312tqaMgpG8ltbW6Am5oxVKhVOWb1ShbR3jLGx2mLMOWs06lJKRkitXrXaer7PXRqnKcbYC/xWqzUajVQpldKANcBqYYxxQT3P94RnuR3lMklSxhichiC4zvNiPB4bY42xCCGtDcYKYwwlPeccW2St9TwPUBVljOO5jVZz6qSBEPCOrbW+6wH7Hm5rUeQwPjHGYGJd17XWRlGUZCkhxHV8Y62REpYWpdR1fcYY3DJKqdJWMJFlmbWm0AUw1mfn2oTSve5ulqUIWc9zHIcPh33H8TDGZV6Mx2POeZZlMP11XbffH8AEZZriQKmS5s7tte5eH2MMmLKUEsLr4LRVWiOMQdFM9jMMD0BVTqeGObBcQRJE990hoVGUUoP7MxC+hBBaSowpFH7WIKlLhOzq6pGdnR0hxMzMDMYYBoRaKuFQrRWlhFKqLSpVVmaZUiW0CZ1OZ/nQUqfTSfIYY5yGMgxDizQqjOsKxxUI67LMW51WrbZQq9U4d6IoirOEu6zdbh1abHuBjxCq1uv9wU5QqczOt5hAvV6v1qjMzXU++9nPO8wrdWmkIYRppRljlHDHd6xFURRprZE2CCHEpl2xMQpGFGjfSggmdhhjjazRxlpNKXZdF2rRIAhKmRtjhBDWKkJ4VpRCCNcVeZ6CuxdCpijKNCkRpirXnlvxXNPr9SaTzSgsThw7c+G1y88++/Sx40cuXXnddb2zZx6678zZLCvzUtUbrUG/iwXZ2tlcW7/33m/9tj/+k//ema3t7nZ7/V6cjPM8P7S82mq1ut1epzPDGEuSSHBKKa5UgsB3l5YWKOVhGDHCd3Z2hmF/Ek8KlVUqFURQtVptt1uMsVE4GY1GQghGaFlKhJBSpbWWMCKYixGt1iqj4ThLUyXN7u4ubH1wTsEzCIHtQoi8KPIiBZzxYMYGC89xHGBKwlJkjGFMGDNmmkRtYLBUSum6Lt4XN2RZJqUmhGDPKlkSS8LxWEvpeV6qZavVatSrq6ury4dXtNZ/8Pt/nKah4KQok3q9Pttpjkb9vJBasSwtwrHcWO8LVsVInjzxwH0nH/hbf+u7MUIzrcXFxcVWyy8K9N9/7/evXbv2b//tv33u+a/82I/9GGXqlZeeE4KVCa74FVqleVpgY5M0YhxFUYKJ/uEP/WB/1P/0n3+q2awHNW9tfY1xIhjV04NYSCnTNEd0ygseT4bdbldKOTs7SwlTKrVWW6y0LRuNGmMsDEPHpZQSg4wyJbYYU8QxnZ3teJ7bH3QRQtwXShmgXKRpevHSBdcTly7f2draeOyxR//w4390Yvn+osjPPnh6OBn/8Z99vObSarWKjaEMLS4vbG3tZKk8ceJEWSqjJcZOUWSU0iRJHMerVGgQVCeTieM4THCgfB7gbrA3WmMQsowxMGy1BB94lx/MZQlhoPYGn4r9XUUKIaxG2JIkSjzPQwZRRos8JwgTwgjClKCyKIyWZZEtLy0QQtY37xpjMKackzzPETbaSE6o4zgYW2NcjKcFVVFkYTjM9bjVas3OzmdZdvTo0R/+ob+LLPrY7//h1tZWtVq31riON5lEMFqjlFcqFSHExYsX795Zg7QGKbXVBt6wxehgko0QGg6HLI6azWa/3+dc7JueWaUUHBDGmHq9DrcS3BUYJhhjIFVA/jDMUaAAUEqlaQxe2JRwhEpgCRBCXNctyxyQK+glS5ljjBGxlapfr9dbrZYQQunMaCQ8Vynl+wEgsUVRjMeTJEmazSaYCPf7/e29bSFExW0IBJGASAi2uLAEvq+UUsfx2u22Uurll1++d+8eHKB5aTih4/EYwBBrcJYW1kyXNICMjUaNMVFdrNbrdcFJnqfWWtd3sjwZDofDwdh1HFmqsiwd4TmO0+/3wQCKEELolFRbqVRKrbKsgGwAITh4cGmtR6PR6dP3vfe979Vab65vTyaTSq2ysbHRbre3t7dv3749mUx2d3cBageSvkWIMJqnGaUkSZJKpQKFHyEkDMNXXnmFTJ1pKdyRg6oDlvoB1GiMcV0XRrPGKsdxgOVmsYHxP7KEUSFLbYzhjEEBAzcRrio8QfBSw/GoWZ9xHOfU/fdFSfLSyy+MJxNr7crKyurqqu+K40cOv/rKiwtzs2992+MEWyPTQS8GX1zGWOD7jmAuZ7xZtTInVi4tLBbFW3/7t387jMbWmLIowF2aUqY1gkwLzvnW1laz2UTabG9vMyZADUYJRwhpY7S2GE+lWjAIMcZopUDTZowpCnlgMAKERUopMtYYROmU5IH25UF7e3vQu8FFqNVq958+3azVfd9vNGpSytFoxDlvNhqNRsMRXrVaHY/HjUbj1q1bZVleunXJhIhTdm3roh84R+eO+r4f8hHFpv3QLHv43FsffeRty8srGFPOkcWokIhSJJVlDGujHM6U1L3eXhRFFOFMU9/3m81aWVrPIaVCxnytY/96gth+u46/7gv7CLVS1vWw0QhQfMZIlkSOwz3Pbc008jzuzLRazerFi6//6Z/92aFDS4cPH46TkdJFHMdJYsFkRGvr+5UsK0qpBXMQQtZiY8x3fMd3jMfjP/7jPzp06JDnO+PxqCzLorSrq6tLSwt/9Ed/KARbWFiAwR3UrFCsQ36atbbb3TW2cBzPWl3kljJa9Srb25t5rvZLQPrIow8xjrMyqddr48kQYCWIAen1emEYNhrNI0eOzM/PVqvBe97znmq1YowZjvqc85s3b969d0cpVQ1qMzMVOM4RtoxTmBDCRokJEkJAWYywg7CJ48QihbF1Ha9Wq41HE2PM6uqhNM19rzI72+l3u9ZqpdTq0UOU8uFwOBwOCWEY0SxLGCOEIs93MEZSFSDigHbOWltmOfTPCGNjVZGAPIoR1+WCKaUQsnfv3gGyDOz7MPQ7tLy6tLQE+3scx/3+CGMcBP7sbAd4wTdv3ozCtF6vMsZ86nueg4kmhCitHMdpNpv1asNaK1VZlLlwOOeckcBaOwlHCPHJpLDWJEnUbrfr9bq1uNfrHz92BGMahalSJoonB9oBay20l2fOnLl9+y7GOI5jzunc3FxQ8dbX12BDdBwny8OP/eHv7e3t1WrN9fXe4dUTJ47f53rV+fl5LpxJPIFnLEmytz762GQyAdwElDhREuMUz83NwSNgLdIWgVe5sWjf93v6pTc/BELQ7e0+vM88yx3H2dvbvXbtGhc0SZIwDI8eOb6zs2OMabfbm5ubSpeYHOacKlUOhn3XFQiZzc31+XbTD+byAr300gs3b16v1oJf//VfP7K6+gM/+H0zrY4QjiOCza01Y4zDvIJobbUQQklNKS0KmWWFLFW92igKWZaKECJLPTtbD8Nxt9uN43Bn+169Xnddcd+p09OBEPUH/bGShhALS/2ll17s7u0RZOMwdhuVmZmZSRwBy7Ver/d63e2t7lvf+sjJkyfX7t0pimJ+YXZjY6Pdbh0+vEJYUeQSYzzojxkTZaH6/S7EDXuel2VFWZaDwehzn/tcWcgDkAXIZUKIoOJro4wmACJPJhNjlJZqY/NeEofNZpNzDihSlqTGGCie+H6MRqvV0tMoVAw2AoGoEEKsxUUh4dPGaM4dY5RFOs+LnZ1daOSAztDvDU+cOFEJammaGmMZY7LUstQYl5zzJMkopQgRSANzXfeRRx5yPfHGG28YYzAhw+GwKAqpCsZwv7ebpuHcfOct5x6+cuX6sBuNhiF33FarYY3a2trZ3d3tbu11FpYOry6sr68vLS1RZsNw3JlrT0aj4XCCMdYGua6LscVYYGmgzBqNRu9///u5I6rVaq1W63a7X/nKVy5cuFCWZaNa1Vrt7e0CQBDFExjOA6itta5UqkxQ13WvXH5DKVWtNsMw/LZvf1+9Xv/c5z7neZ5SWhBBCFJSlYXqdrvj8ZgxJmXJOS8LDdwrhJAxrNVqxHF6wMcslNzrD4oi++qLL//0z/wkY+yZLz939+7dN964090bv+Md7xCOs7fTfeWVV2dmZtqdOYTMTncvKcp6q8WFSwibuqkaZIzFGAMubPax4K+dRN84G/Ab2T1P8Wv7NXga7VtI2X3jdYSRMUhr7bqUEBRFpVRK6dIYU60GhBCjtCP8I0ePWaM3NuWRY/etHpr/ynNf4uJ6KVHgC1mkQoh2W+z1epwL4TpGS85YWub93sgAxoiII3wuWKVScz07GAyEwNaicBIvLojPfe4LOzs9rbEQ/mDQQ4jdvHk3SZKFhQUhxKA3FK7zwz/8oc3N7Ua99eDZh196+YUnnniiWvN3ttfTNKLMLizMTcbDLMuyLKPEA/V6o9HAlIxGI8qZ1lrq0nXd1dVDnPMsK27fvrmzu4Ux3tnZAYCmVqsBpcV13fX1dUrpyVPHIR0XtuIsy4AgkGelECIr8kFv0Gg2ISQWaXPy2HFA5VzhgV9N9v8n7L+jbLvO+0Bw5xNvqlu56uUEvIdMEICYk2RSkmVKMpVFS1a7ZWs0mrHXmmB7LVvTbVvu6Z5xq9uWZ2iPl1sSFUhJlkiKESQIAiRyfO/h5VC5bg4n7zh/fLeKIG2r78J6q/BQqFv3nH32/r7f9wtFURbS9/3xeFpV1fr6urZqOp1ubm2EYbi42n711Ze0lMk0rdebhJAnnnjin//Tf5HK9JtPPeMsu3zp+rmzdx955InP/8WTT/zAYydPniSEvPLKa74fPvzw40lSnD59+u7dS//23/7OzZs3jx5di+KAUo4xzZO02WzubO0jjqu80NpqrZEjupIYY6W0tTYVOWNMK2vMd6VpyGEjrSMIY9Dj28pKPwxAElGWEiF09uxZIUSn0wVkOc9zsNmF76GcUUoZ5zPY64B/gRCqqlmY3turKSlLay1mtF6v20zHvielTJJkfn7+kUfeMRiPsqLqDfr/5t/+zs/+/C/e15p7z/ve3et2p9Px/u52USpktBCcMJZmU+eMF0Tw1AMF1TnnjBWeAOJDWVXogMWG0AwHDP3Qal3mOfRgUKYbpbFDmLhGo/Gf/uwv3rp6JQxDY2xZlvV6HWOUZRlUt0EQVFUVRVG73e50OmVZelzAdJAQkiQJ1B7sIOvcmBnvg1JKhCBkJpyE/VxKOZlMgFsaeH6r1YKfTwgBP74Z40lpyhm4ChzSYQxynHPikNYGyDFQrCOEwGwNIQMNKrBK4TpoNbMxBXiOfpeJaaAXqtVqjDGlKs45xoQTLgRbWGgD1Pvt55/b3d3lnB89up4k2e7u7qbWEMTarNURslRgre10NL3vwgPY4ZvXbjLGoijq7O0fsomhSWOMGWeBWO17XpIkbKau8CC9w2EkNSWEWG2jejSjiDImhIA9zhgzzVIA1rXW9EBPOhulCNBVkCSdWqu5oJzz5ZVFxliapsi6A06xJQQ7jBwyWmtjxGSSpGk6Gk6stfV6nRIOHMrpNIFZC+D7gA/CmgeumRCCCU4IMc46iyxywJaCP0EfCpQOxliSJKWsYFTveQI+AtCBhWBRFC0uLl64//7pMNvY2NjZ2YFGtKoqabQjNBIcO1RVlTEOZg9FVRJGZSm5oEVRBHHUbDazLG3WG0mS5HmqteSUWq1LkzqMW62G74lSKkqpHwZWm9FoDPCc4H6rKQC1wRiPRqON7a3D6UsYhuAPBlcSY7y8vLy9vQvTd0opfBZrGWOEcwaL8EBd58hBOiilM7wVHRDnOedRVFtYWBgPhsPh0Pd9sH8Pw7BWi0H9OT8/5w6sRafTqTFK+DTLSuOo1lII0azV5ubmEELT6ZQw1mjXh5Mhouihh+/jnG9u7L366qtpUiGEMLf33XMvQjZJp5QhTGySjnd3d8tKxo3oncce8X1/eb6prJpMJnc2b2RZ1lDNaTZqNBpllW/tbC60F++//8LF1y/TgBlkHMLGGIIZRnAFLOecImwxgX89+M0tlGRaa2PcIVQqjQbpG8azKwPYgTGGUALsRWjOCaOUYeew8FhZllq7LDMIodFoEoaR1ogiPt9aIc7rJ/2jR4+WVe6FdLd79/bmpfbCfDNsKKN7/dGpE8cJQjdvbbzy4gs/+EMffu3NV0+cOLWxgfq9IaWo0005x416GyNeFNXt23d8L2y3F4aDXqW19bzJZIcQkiRZvV6/59z5VqvJGNdW3b0rCPGeeOKJ6zeuer5/7ty5JEthlGuUNpioSsImiTF2yBjjNNJlmepKe54/GIwoJsPhmDGGCGaHnhh05teplJJVhYg73FJgyTnntFaAyxNCnEMEYUgDswcvmGHMLriUHmXWOekssthq48dhGARZWsiyAmGBx4UzbjoZnT17tqqKl156+V3veleaFNNpXovDC/c9+Mt/++e//uQXvnj9C8ZUuzu9Rr0dBq31tWgyKpeXVx984B1GueFgGkf106dP53nuC3TjVueZZ54Zj8ed7v6FC/f+3M/9dHu+9quvPz8aDapCMsawI845yp3nM2OFdp5BajzpWyc7nf1aIzx69OjW9mZZltQJmI4raaq8skpz3/N8P8+KvCy11s1mnTEiZWmsJtQRahZX5qy1QjDm1Q/o4RiwM4yxF3rGuLwopJS+F5w9cXp/f58iHAeh8FijUev1emHof/s7zywuLT3xxGPc9zqdzuc+9+frx44+8cRjsphu3rltjKmqol5vHj26vrZ6FCOBEBLNptbS83i/34drC9BPlmWzFpVXQH2llEKZijHmvofdDCGBvQKsq2CfgVVEwArJGKAYai0PERJrkecFGLssLYQQzpXAZj1cD74vwBeCMbKxsQGMECkLKaVSFWMC5r5w3BCCCCVVqTzqD4f9n/iJn3j83Y/8pz//syzLGnHj8qUrr55+7QPv/6FHH310eWn9D//wD7nAxiBMUKvVarcXRsPxYDAAtN1oC/0+xo4L0Wq1FhcX37x0EQaxUJl4nnfi1Enf9+fm5uI4BIgZFJzT6bRer0dR1Gw20zSFB0EI4Yix1uZ5qVQfVjug0mhmmAZ6C44RPbiGhnMKSUKtVguAzrLKtVXWWs/ntVoT+JqUYilL2KuzLKOUgewPY8qYABM2IUSW4TzPCSdRVIuiCBuapflg2Gs26/fffz/n9Pr169ZapUxRjBcXl7/61SfTNCWEUeq63T5yEzBV45wppUA8BN0r52JurnWIxuZ5XpZ5NpUWOUKIHTpKaRzHShowhNLGBH7onBuPJ3oWeGA4mhU80+nUIJhU4ZWVFa11URSwfh577LFPfOInlVLXr1/f3NyENhwKs8uXLx+qzQ6p0LD5GGMxJc4hrU2v19daOzcLoHDOwRTf9/3xeDwcDoGXechIgEIC7pQ+SCe21iqlarUaIaSoQC0qqnKmhoFtMAgCay3AMoQQa3VcC+G+E0rvvXDPsaOn19ZXoygqqur6zWuj8bjf7w+Hw8Dzx+Px5cuX7966/f73vacWiDfeuLixsdEbTiilx44cWV1dDQRZWlqfTCZf/ssvHzt65MEHH3DGXr9+vdvbh0oMIVQpCUxkYzRloI9Eo9GoygspZZYVYIRNCCkLCXY01iJEv2tiBp8FSMqgrnDOMSYQckop4EOBBSV0EXBJMcbWatALwscPgsA5gxAqy3K/qgRlCwsPnzt3rqqqwPeVUpx529vbo9Ho+PHjL7/88quvvtpoNEpUtKL52zdv3ffA+QcfOs8LNh5PR/sd5eQ0GbKf+qmfqaoiT3LKGcZMW8QY0toRihCySkln5HQ8ypKRL8R0OtG4JoTo9YaNRsNaSghiDCn1/UDz973+887fOYQJYhwji6xFURRBAFctjDyfc04Gg05RTq2pBsPuN5768mjcIVR94IM/8JWvfO3YsWP/7a/+7f297quvvj4c5MaY6TQFYhGYG7bbfhiGn/nMZyilzWYTEZwXBSY0jKPTK8c+97nPzc01Oefb21tpmrbmGkA5hKkjTICbzeaRI2v1ev36zTc27m4RIqQ0cdTs9TvTJAuD2FrnnJ1O06tXryyuLHKBjQH1EPJ9HwaD0KWEYdDtdrIsm5ubu3TpYr/fX15ePnb8yIsvvtjpdCopoyiCWHbf96tS1eM4z3OHbJancAAQRyA6yTlXVtgaF9fqzmmHzO7ufp6XCJGXXnrD99nC/NLRo0eNUlVVcM7DMOTcwxhD+GYQRJxzZ3FVVY1GzRgzGIygc+OcI0essYgR57CxGtSjeZ6rSsZxjJBzjHpeXWutjBFChGGYl4UxBhimeVZiRMGlESEURWEcH8a74TAMjTFJknQ647Isz91zKk2nzVbNIkMIKor82NETzlpIXUcItdvtRqORJElnbwwXh7HAOVMLa4RghMisEFT25s2bngiVMvV601qLwAZEzFrWd73rXR/5yEd++7f/1xs3bnieBw70p8+cbDQaUlZZlhmrELaYuGe//U1KvPb82mAwNMb9yI/+9SDwS1UihLI82djYKCv1jW8+9c53PLq05Pf7Ckouylmz2fR9DkMXjNFf8Ry8XchvLZqfn6+qatjrG0rLsmw2m9/5znc63b3777//nnPnL126JIR49NFHMcbayCtXrjBGwtBXsjJG7e1uSlm+/NJzOxu319fXr964/sLz32nNNZaXl4fDQRiG165dm0wmc+1mMkkE84xx41ESRQFi1BjDsWBMYEyztGSEa22dw54XaC2NMaPRuNfrzrXrhLAw9BqNRhB4+7udXq/nMAmDeH5eTCdpFIVVJcfDYbNVP3fuzGQy2tzaOHbyOGMMZzM+WlFU1uIwjLIsT5JUK6uUcs6cO3fm+PGj1tpOd3t5efWRR47cvHHrpZdeqdVqVVXleRmFIUiBPS8oikJW6nA/hTMJ6qSyLFeWlufnFwAhLcsySarBoO95HszAlUZVFfm+7/t+URSVUdjiyA8AF2ae8BkDGS/SijF2iIMwKg6kZ2D3yTFmYMGhlCKYCc6dxWUpd3b2MHZaWeSIs5hyhmcZRLNGHSFEKV1fXwca2t7+BDpqKSWhdOa7GvvWEYxEtzN+8YXXsqz66Ec+hjH9j7/7Z0VRtZoxIeTRRx/tHOnKysZ+HUCls+dOLiy2gsAXHp1mk+l0ighfW1/Z3+tOJgnGM1WO8EOE0L3n7vln/+yf9fv9c+fOjcdjVZVR4FOktKq00f1e78zZs2tra2+++WYpqzgIFxcXGWOj0cBUljGR52VVVVHIjqwf+z/82v9pMpk8952X8iINw3AwGBTTcWtxEcYV1pZVVcVxXFWSMw+0DlrruBZag+IYSVnu7u4C+uCcK0uZ5/lT33g6roXve+8H7tzeooy9+93viWt1WlTHT0Zz8wu+F3LOK2URxuNkKi1aWFiq1bmzhyTl73nyDknN6G32F3/F6xB0/j7vZmfdd9E9MnOIcg5pg6xznsAIodGo3N0dAuHucCo+7A/iOD5xYqWqEELIWnP61PminFy7/lavm8jKKYkYo0pqSpjDhDGOMZ2OE2tQHNcXFhazJDfEHBQfxvM8WSmpyqWlFULopYtvhWG8vb17+dJVhFCtVhsORgTzsqiGgxEh5NrV61VVYYLW1tYefuAda2trL7zwwng8OXH8VJ7nWpWQd8oFybKqrEwyrSjlyhjPY57nBWHUbDaTJIGgZ8aolNVeZ295efnmzeudTqcoKkJIvRYBqcQY0+v1Tp8+7Xne3Y0NjPHGxgbo0RBCRVG0Wq2VlZVep4MQyrKsqKrpdBqGoeeHGKuqqnq93tbWliwroP1qI8uyFMIXwicMO4cnk0maJw7ZIPCa7frG7due5wnhN5r1MAhqUdis1z7/5S99/vN/effO9s/89C/eunUnmejhsDx37uGPfOTHgiC4fv36Y4+97777HqCUb9zdnE7LWr35T3/zv/+jP/6Dl19+IY4bRldBEDmNRsMJIUgwVlVVWUrnMIfg7INYM2esMhIhBF3B7Em37hC+RAgBBUNrDbU1xgpyNYFOC2kwwNeL4rDVahFC0jyLogguGsw2lJLWGnvgRjpDgd1MgoCd831hEVpeXs6KfGtrK8syGLDdvXv3gYcfunrl+ubmhtHu9ddfv3jx4srxlQ+87/3DXneaJR5lGCNpKp1LpVSWZcu+V6tH1tr+cBh4npSScR6GITCmEcZSSkIYIRQhBCszTdOyLPMig5HD4vzC/v4enPic8yPrx9566y1CiO8HaZEvr632er2VxaVaLa6KcpqMtTG1Wi1Li32zXxUlxQSOe+AcQXHCDvK+7EFYyndp3QdXgzGKMYH5MUCQwGZFBAMZBNIIpZTYISGE1cYoDY5DwDiG3Z4iApXk268zIOkYY9jSZ7ghosASgu2dMQpD6EophBDjpFarGWOm06nWEkhYRVEUpoAlIYTQzt66dePUqVMILWutKcVlmVtrw9BHCBnkonptfml+NBqBhavHvQ996EP7u52LFy9GUQRXAyTPnPOikhhjhzLOWL1ed86MBkNoroTws6wgDPt+6Bw2ymRJcu3K9XqtFkXRdDIBcMTzAyllZzJttxek1gwhwJKAgQswdJpnTHCMsTZGa7mxsWGtLcocGXxILqaUU0aBjwzyaoD2fD8ghMK0BsqzqlSUUuSwtdZixBhlhFpt4KbDW5NZzlUBt4nzGbzieV4QBKEftFqt0WgET5l9W9I63CbBqHMuTVOgGw96w+39bW0tYdQRzDwBZ/p0OmWMNeZaRVGVWX7IBgL4G4w7YFk2m01jVJ5bwRiZ5eoYRkgUBNzzCOPA/6JsdukYFRhjaIwXFhYwpuPxNAzjGUhnHfgyw8YSRdEh8RDAUzAWh29GyDmHwesZSHb8ILoNIfJ2pj80mUKIKqv6pq8PggcJQcCnaTQae/s7CFnGgixLylKWZam1ZoxANUUplWo2c2ovLDjn5hcX4zh+8803jVVZlkVRAA/juXtOJsmk1Wq15prNViuMfEi0Ho1GL7/8cp7nYRgjbGr1MC+qqzd3McbTJKmqKs2zSpULCwu3Nwa9bqcoqjzLVleOLK4sT0dTypkQQlezjW7WFVsHnsLQJiOEnDPAyUUHbuzw7OAZ13v2gBNChOBBEAACEvCg3vQwxh5nSinKmXOmPPAvBqZ5s9kUzBOexwibTjKeSy1No9bUUiXJcHFxMaqFf/3HPnH/Aw/t7o0uX7rdHQxb7dXO7t5n/vgPLl96dX6hZZx+8sknr1273G4vrK2t7O1vllXGOarKVCvHiT8eTrR0Uiopy/FoyjmnxDpnTp8+3Wq1XnjhBUq553nrR1ePHzt26tSpeiNMstSh2XgpEJ5GzB048GZ5Gse1Rr1OKaeUZglvH1vYuH1XKYUZB0tGUBlbqw9RP1hIGDvBhdQKsGZY6vCcGmPhH7DZ0NbClAhjfHAgGiGE54ler6cLBTb3sHLKvOjInj1ILlGVHPYHZ8+eXlpaqtfj0WjU6ex/9atfGY8nP/vTP/ee97zr7LlTNZ9duXzryPrJdrvZ6XTyqrLWHjt2rFhQZSkvX77ycz/3857nFWWppPE8v1Lo03/we8PRII7jo0fXrakWFlv7u5u9XqfRqGnpqrKEZ9kK5vssDJtx7Dfmzux2drjHCLVRHHicpenUWku09uZangiMzuGUsQghhBaXFhBCg8EAE1zJTEkDDUXc8JutKAyjnZ2dtbU1oJESgolGhFKlVFFmngiEYAjZSpa+79fCKHNZvV5P0gnIWxuNRpJMiipfXl4eDHrj8dALRJqN5+fnf/QnPv6Hf/jpl198cWlpqSzzIPSsocNBihC1dpbW0GjWnMUYU3BUUEqNx9MzZ854mIxGk3q9kee57/PDk8tqA+jz4fR6hrBDjvrM5hjNvJgANPc8NzPD9bSWCCFCIJBGwn6F8QzdgxT0fr87GDghhFMS3gVwFUrx6dOnRqNRnqfwoFHK4jBKsimldG199WMf+5EvfOGLadJdW1lJk+rixYta4uEgCYLg5MmTeZFWVSaEaLVaoC/86Ec/+kM/9EPPP//8v/93/z940hljQvC5ubmPfexjWZG/+PzzSysrYOXnnGs265xzz+NlWY7HY8Acm81mEAQIIZj9A7UZJige4+jAhAEqEJiDHpblzjnGMMFEKQUJH1C0wBfaSCEEobTm+5RhQgiwcUejAfwc2L0plb7vU8rBwBchZC0C2pnWKgiCdrsNJ8I0mU5m57WbTqfW2jTNoyjyfaG1vXH9lrN4vr0Ixl/D4ZBgUhbSOUfoTNYA8m7GOIAzVVUZNfOq1lozigibWY1hQhEifiBkVR0M+41SymHwJWcYY1tJOLyUNYxQjDEES8LcdDydMMaWl5fH43Ge50899RTA+pNkAhaLAD3BpXDf+wKYmB7QvQ8RZCEYY8xahzHBmCiltTZBIAihCJmDz0hhC4IHHx+Y0RljgPSNvgtqGzJLjXYwm/E8DyGLMZKy9MMAPAD9IHjooYfuu+8+QkRVVdLIuBa+45FHnNVZlt28fmNva7Pb7Q56/Xa7bapyOhzUIi+ZDNZXVm/cuFE/f87oajLoXXztla2Nze985zurKysPPvhglmXf+c53hBC6ktk0UUohJigmIGFEGIPCxCo7ykfgYLO1tYUxRQhRRjHmxlKMZzNmc8BthCEKkDD4AWkAnlmtSoSIc8Y5JwixB3IWSikhDPJj6vV6q9Uqy3x+fo1zjxBy+vTp5YXFhYWFyWSilep2Ordu3plMJmEYPvbYY4ABttsLnPN6LfJ0/P4PvLe26t26dfX2m7edc3mYGiNdtsJu375Zr9djRkiWRfUGJCMRghkBVw29tbVFCQ4jbzodX7l6sTL1CxcuQOwJpUhXSNrv0SP/FcFKb38RgrR2YBpirQGlWK0WccKULseTvjaFddU3nvrKlSuX02xar0dzzfjzf/GfLl++/ObrL/+9v/t//OQv/ALD7NOfvliW5cLCAsbOGYso7XQ6/+Af/INGo/Vbv/VbURTUajVVyXqzBkyWze3trS3neTQIgqWlJaWrsizjqC6l9LzA9/3JZFJVheA0DMMjaysLS/GFC+PhYPrKK6+VVUoFmWvXsqzIs2p+oX38xLmyyoejvhBMKQkQZFUqWelGo/Gedz+8sbEBmSFw10ejEYRivf7am4PBMAiCudZ8GIa9Xu/mjduNRuPcuXP7u7vyILvMOWe0lUZxVsBjiWmQpimh6OzZ071edzKZaD1U0tRrcVGU09HkWnpVSilV5XleGPr7vS48qO32fJqmeZ5fuHBBa72zvVdVCqLPRqMJPFRCCHpgCQdPYznO5+bmOGcYozgMrbUHJkF+URTIOi8InXOyykAFoJSuqunS0tI73vFot9udTMYQ3sI5PyhnmTGGEk4pFdxnnCTJJJ2m6TSFdb+2tgZeGePRBCF07Ngxznkli42NDedIu91WSqVp2m6386yE+Lg0TZ3DabqrlcWMFkXRaDTG43GappPJZDgcv+Md7+h2uxhj3w+VUtvb281mvdVq1Wo1qXLGiJRaKRnUaj/yIx97842r165duXDffXNzbWmU7/vLy8v1ev3Gq69vbu6cPHH8qFxM0immhHMOnV6S5L7vI0QcmXloAL/yv/wgHJiVE0ydE/Pz88PhME1TpeSJEyceeuih7e3ta9eubW5u/o2/8TfAp39tZfXSpTf3drfPnDlNKX7m2WevXr1srR2Oep293dffeG08nWKMGs1Guz0XReH73/u+57/zrNa63+0hZKWqfN/XWvoi8AU30gRh1O/3pdS1uNbvDTGmWoNHHqGUDvoj3/fBXfH48WNa68uXLxljWq12UZbI0eXlVWtAe4W9yKeUhmE4mYzOnDkThiGYOnmer5RJ0wnBrNVs53l56dJbaTpljAah126333zzzaLM5+bmut2+Vm5jY6NerxPCkiQB6I0RghhZXlqZTqdazeoeTplRWksF3J9PfvKTr7zyyt7e3mg4AXHT8soipVwWMgg9Y0w6HXtcVAWCFkIIgRCGykNqOZlM4jgG2BpAZ+UUFEaIEmMMNRR918SeIIQwopzB+YSF8JVS+/v7UEYgBMJ2BIQ7KSWlJKzVEEIrKyvLy8vf+ta3tJmpX2EoBYJf3/fTNBuNhovzC5zxbmfy8AMP/9RP/dxXvvw1BKh6VTUadaD1XXztzQ9+6Ac//OEP/+EfffrWrVv3nj/TbNU3NgZal61WbXX9eFmWSpdKF1HYuOeee7K0SPJs+OLomWeeXl9fP3365PWr16bjUaPR4II6pT3Po5r6QaCV3d/rKmkYFVB4LS8vF0VljCmVllIZ47rdnuf5S0vLvV7PGFMWsirV0uLKIx/72LPPPksp1lprpcMAMDWkiGGMaSMdchCNRShCjiTJJAii0WiklKrX60tLK5ubm51O55VX3rp27RrG+N7zF37iJ/5mELgoipqNOSmVlLI3GGEitHNK22mSSGUa9Qjj2QH0dkOn78OXv4s+/9ceTHtgnYHRd4FrjOwMOZwpddzBP7BDSkmn0+nOzk5VFdC8MSY455PJhFK8uLgIW4FzFiEsBO108sk4ffd7P7S737ly+c31taM7O2prZycMQ2epVFpJgy0usxw7rLVxBpx4kVIqqsVHjh3d3b09mUxXV9a1tlWVEUw9LwCVD2ijAJguigJj2mq1rbU7292///f/L8ePH/+lX/qlpYXl3d1tgmiWpRjRWq2mlOr3RkEQICyKUsaRD5EmAJvCUxYEvtZ6bW0tCIIkSe5/8P7z6rzWutvtdjsJgCNAk4THwRPCD4IkSYqiIoSGkQ9yhNu3b3uch2E4nSZALczSwhPBZDR2zlltYFQJDhVC+IQQn2NrbVGVnse7/Z5z5tTpk/1+99pbVz7+8Y9vbGzcvn376PqxPC8rWXz4wx++fWvrqW9865FHHv3RH/n47bsbN67ftIYeP3bms5/5nDSy0+mcOnUmqs1z5klNlKGtuSWt9U//9CeXlo5+8Uufy9JJXPO1RZzzubk5p1GRVwghxghlGBMCGxFcH6UUcg5jZA8sEaGjgzoPge8EQYwxMAdA2BJChsMhiDfLcpZPHUURpjhNE2N0GAZZlgLEprWhlOCDBCc2M82cGbYC7TQMw1qjVVWVMhpuVhRFhODpdDqdTtaWVy7cd++br77a7e1bdd73/W88+eT+9najVq9FQTKZIusIstpawnAtqMPIH6LMgyCo1WrIOnhTpTVCIE3FBzQfBOMEa61WM6cIa+3cXLssC+DE/emf/unOzs6v/8ZvzM/Pf+ZP/2R7e3t1dXVtba2qSmdsWcgg9Dzm57aYjieAGUFHxw5ca9EB+/WgCZmFxyqljNKYksM5EyHY9z3OeVUdOE4gBNnlQDS21iLrMMHwFjOKNGPGaOirlVKUskPaKbzg7wHjlpIURQ7gDlTwzjiLAPtT8P1+IJgQjFH4BowdDDtBmGzVzJi4kEWz2SSESK2E4HmZjyYjjInneRTTsszBwMEiG9Xi0Why+87NdnM+EF5WpJxzaSogScC7GGfBV8FoLasqz9Mois6dOzcYDPK8nHF20kr43GmjtTYOG5MGXpsgKrgfiEB6klOW53mSZ+2FJbjph0grXAcpS0xnDs7c2clkkoxHxjhKKScCxgOAaBBGYYlWpaaU+n4A2ATQ1eEYtbNQMkwP3GPgCQKfRIdnBibmbUGRcRzX63VK6XA43NraWlxcFIxDRATGGBjWQNazVkJ7GQQBJUQ7JKW+c2fjzp27ZTm7IIL7wOX0PO8QX5ayRJQ45A4f56qyxiggXDuES1lBGckOwiSDIECOTCcpIXncajjniqLwhA+rF1YOPOmNRgt0A/ALEEKMVmBF7fu+sQq67l6vhzFYGSCLEcYYM4oI0cZwdIgTEaCSWDtLUzxkaQHmArpPSmy/3/d9H2Er5UyCHUWhsQpjnBZFWIsRJaWUxjmLyMLSyrFjx65evSpViQhHSDvMLl26Yq2t1WpRFB05cvz69atKpmUhla5a7VoYhcdP3m+sklLu7W+BwIVS2mjU6vU4y5KyTK3VxijIeOh0u0ADWlpZRggNh8MwCM6cOQduD5zzM2dO3b612d3rYIy1QlJWAAoIxgglzjkC4mGLDrskay3GFGOqrCGEYISdM4fUXfAShXtRlqUX+Noa6pjWJkuGWmuLHEKIeQLCXQBEazQacVQHKL8qpJamUhJrt5tvx3HoCzSd9l9/4yVMXZnj55//TuDNXTj/gLEyK6ba6pt3rjdqtRdf/A7MJJrNOWP0W5ffkKVkjFaF9n2/HjeNMUVWWGudw5WWBOmwFo8Gw26nr7WeJNMgCI6uH5G6eumlF5rN5mQy2d7dwYgGUbi8vEoxsdbmaVaWpSwrzhlUuaPRBMotwKQYE2EYSqkd1mCoCC+tdVFk8NDBM6gO4kbtgT4AYCa4p2maajczXkAICcGjKJzxo8FeHxHOOcZ4kibGOKVK66ooqp08efLChQvPPffcr/3ar507d2Z7Z/PFF5/Psqwq0zDgzqpTp44/9uA7Uz3+1//2d65cufrOxx6qZLa4sjwajbO0SLPR0aPHq1KdWH30iSceFx599mtPY0z/2l/7wB/8wZ/+yZ98llMyP9988aVvK5n/9v9iO3vbnFOMnGDcOvDrp5QSqSvsMPVIViTcY0WZGWvH4/HFixcFZVRQjCyyGDkHJX1RFFVVwmcHj6kwDJVW1phf+eQv7+7sf+6L/+n8/ed//dd//fd+79NVVd29dfuwm4PNMAhC3/NHoxFC2PP4s09/KwzDw0i6p57+JugvwzDAGE+nk7TIGWNLbv7WzWsvv/T83u7W1atvzQSdjnAeSOswdnmWOovzPIdymlKaJFNjnJRlFEW1Wg3ilKIoAm992GZncLO1VhuE0GFaINxQ+DaYQxgz67AOS0F4wdjPWo0QAtCKMYYxtdYWRQEbXa/X8zxBCMmyrFJaa21BpucQI7Qe15LJdJRlURQBpWww7J6/714pyxdeeOHq9et372zHtXg6yaXUt2/fvfTmtX5v9M53Pv73fu1X//2//9RgUJZlubuzxz1BGH/hhRceeOCBxx9//HN/8fmdnR045eEXfvnVl7a3txeWlo4ePbqwsDAej/v9Pmjs0IxbTWCvBnfaspRa635/mKdZs4lhdF1ZyECb8f3hpICTEX4C2P0LzjDGCM1gPsaY0hUqkNY6rtWAbK70d/OcYXhGqVMKhusYrJOhmoLxKkCrnudjRqFDz/NcSuUcCvxIa725uQ3jQ0p5WZacec6pWq1OKbXaaKkFE8ZirTWUT0EQRJE3M8lxKMuyUTE+PLKh0QsDQR3K81xWqt5s+L7HmUdoDqehgXwLO3PhQAg5Ro0xWquZtMI5hFCn07HWgrVXo9H47Gc/+8wzzywuzm9ubgJl3mqjsIJWBSFLiMc5raoKDjKor2aFtDWwf8IvAMsY3rHf73HOjbEAMUExrJSEwcBhEiDUjQgh+FeAoSifxQDygxgPoApprRGanelA2V5ZWZmfn8OUdLp79qI+feoe7nvWWKVUkiRHjhzZ3t7ud7r7UjJGkHVREL7yyktZluR5/tJLL1EuLly4sDjfVJW8ffvuKy++9MYbbwyHw/FokOdpURRCMErjPEmhnifOGauVUp7Pwd4AGQ17ONwppRQhMxOYA+7drOlgCFsMxsUI2K5AmzDGQM4BLGCMsXMzggUQWQghVfXdsGVCiOfx8+cfWV9fn07TdrsNDM4vfvGLjLE4jOBGHzlyJM/zq1evXrp0qdcbwO8jMBv0+p29/eRq9+7mFV7Rer0etUPGRY2F7Mixdc55Y67FBCEEWYQYQ1WlKqWj2IsCQbB1yHYHfVWVo3F//djxoijG47EQwvcbjCF14JL5fUlo39/Pf2/yEgAExljw2YGeQQhmlA1CEcYL2zvTmh9kWXL16tW1tbWj66u+7wGZ7ubNm//qf/5/vfnmxaKoWq3WQbWBDtfNc889xzkXgjUajeXl5bLMh8NhFIenTp26s7nrjMHYOOfa7TbCsyQK2D7KmV6mWYvD0WgwHvYLNT179myr1ajX45Xl9TfeuEgIfde731mVUik1HA61LktZFYX1PC9NU2MshJz6vn/t2jVAeNFBinSr1fJ9//Lly0VR1Gav5mQyklJhTKbTZGtri2IM8S+cc2tcpSprUZ6XCJVaa4tS59x4MhRCUIo588Mg3BnuWUMF9bNUOScZJ87hqpRVKVvzbRCQEsxg+RJCBoPB5tZdSumxoydWV9fq9fpoNEnTtFFvZUlSFEVUq8W1ME3TqirKspxMxkEQWK3DMIzj+JB2VBRFIPyqqqwyEilrU6317lZvNBoBCdQ5B7ZHeZ4D8h77LS8Mtre3CUVFUZw/f2+j0RgOxyCFq9V8pdxwOC3LHFIKs1Q1Go3WXGNxcXE4HHb7w3azdezoiTCMx+Nxo9He2tzW2iplrLUOU6T1YDDK8zKOY98PL1++cvHi5TCMwIRxYSEajQbALaWUjsdjpauzZ48ghPb3us654XCY5zn4kHie6O8P0jRtNltnz579zrdfOHbiZKPZ7PamDiHf95RS4/FIawOMqlkf9b0kSoqQ/b5oMgcrHzmHAsGIz8Czr9/vPfzww3EcD4fD119/fW1trdlsKilXV1as1Y8++uj1G1efeurrQei9+forWkvGyPrKcpJkw+FQS7mwsLC+vp7nucfFV77ylarIWq227/HJZFSLY60V5HXk1TSKouPH60mSWW3KvOScY+wIQVUltVbOUc/zjh0/kmXZZJLu7/XyPF9cWPN9X/je/v4+pbzT6XDBxqMpIcQ5WhTZYNDr9/tHjx4d6iEUr0ApstYaq7XFDovA94MgYIxyTq9cuXL27NnRaLS91dF6Z3FxHsxJrLWAvQY+z/M8z4vAj+v1Rp6XHKI8EE7TTCk1mUzm5+f/yT/5J//6X/+b/+Ff/o+U0uFwHATB/l5Xay2lYcyFYXj8eHM4HEJ+OkBIShvgFDiEsjxJsynMQjnn1jlnHJxnZZVTwjFLacnkAAEAAElEQVTGdpYaD1ne3Pc5wB/WWoQIQoQxQRBG1lFMrLHKSUIpFA2MUWiS4zi8efO6lKVUM0E3OEaleRJFkTHm/L33NRqNq29da7XaHdTd2+3v7nRu377z7ne/+2d/7qc/9anfGQ76xiitNbK21+vlWam1rqri6ae/+QPveic4ni8szq+sLoxGk06nE9aiuWYdY9cZdKxBnAsv8Le3t7e2N6SUR4+tP3Dffa+88oo1vChLKWXAA0gKhtE9I3wyTpSEM2lWaSGElEz29/f/4T/8h0opmDBn4/Fv/dZvNRqNL37xi/Pz8zA0AvaNUspjnAqOKuucLcsiCAJrDWNkcXFxMkkOKWmbm5v1el0pkyQTz+PGuM9+5jPWoh/8yMeqUifTfGFhiVF/aWmNcZxXhjKqDUqSzB6wj9927jj0X9IY/NXsZkK+R3zwPZGD32cEhWfzJGjJhGDHjx/FDiVJkqQTa1yZZ4JRPww8jw8GqVJqcbGFMRoO0+FwvL5+1DlNKV87clw79CM//GNVVX3+C3+hlDSm8phXAZ+2UpyKJEniOEYYxfVofX399sbd2BdZVty4cQsm1fV6jVKOMYY4VkqpEAzohEHgUYpVhWpxo9/vv/nGpWeffdY55wfe1taGdarRjOr1uTzPp9M0z6TvxbWYLyzUer1eWVVhSAeDAcaYcmqR44yNJkOHGhjjzc3NIAiRdQsLS5w3wPMHKped3d0wDKM45oxhhNIkcYSEfmS1S6fZdDpdWllsxzGlTGvtcX9nZ8cAH5wQgF1AFWGMyfPcD0RU9wmjLddsNpuvv/nGZDKaJpP77rtveXn57t27UspmowHoQLPeeP21V6ZTPT8/v7K89tIrr16/doMQ9uqrr+/u7x85cuQdjz6MMH7jjYsvvfz6wsLCBz/8kSwrBqOdI0eOeZ53z/nJ177+La2zpcX1PL0WBAGj1GjsCZVlhUFOqQoeAW6oc/bt5ezbEVJ8wGtmhHDOKyuhMIBy/BBWO4TyEXLwY7MiRwiFXgi2D9DP+8KjB06a7iAhEIpIKMrLspymCcZ4Mk6UrsDkTkp59MjahfP33Lx+fXtjA2H08P0PPvjAfV/4whcW2s1hv1ck02a9lk7GiKBWowXDY2vtYDTsdrueCFZWVvI8F35AkJOVKoriIFTHsxhZa0sFFCfinCWUMCKMMWleaDuz/izzfDdJfN9fXV399re//cDDD507e+8Pf+xH19bW/tff/lePPvro9uYWtL57e3tQBEMxDcA6PjBWxgchigc2tbOuBuhFBFGgFPm+H0UR7ORFkQOdlhCCKC2tFZQhhCil1s0S6qFvNGY2zzl8d0IcUH3RgS8B3OVDrbHn+RjP8gln7DCHkHUWO0IIoTP/3MO7DJ1AkiTQQFIEdxM3Gg2EkMPO9z0gX+uZP4A13DBCoYPyPC9J+ghZwvhoMk6SFBnknKvUTAGNEJpMJlKbA5419GO2u9+ZjMawmVNKa426GQ5Hg3EQBL7w8yoniA16fe4JmBUh60CDUosb0+kU8GLnnFWSEILJLDwcMFmtdSGrvCwwxofOFQghQg7iHN2MUgT8R/gagACCmbXWIXvQLCH8NukrxhRAyUrJw8mKPshs5JxDOhAgQWmaAm7SaDRANHBoAmOt5ZwdsvMYJuC1xTlnnDvn/CCAlrJBmpPJBGFnnK4KA4MBa12lK4QQJZQxpp1ljBmLCCGyUtYZIXxCKbVOK2sNwtiVZRUEwXg8Bq40ZyXBGJbZoStlt7tflpJSShhFFiulCJqZTmqtEXaWWKMdZrQspXMOE8ooRchCE+4Ocg7hokGHDMsSHYDjM7SfCahStJF+IJwzlVaEoEpKaXFd1ipdEU6EEQghWWmllBA+xsYYdOPGrTTNfV94QXAISuZ5WZVmcaExneTJtBAeo5RRIhwySle9fgfElEEQ9fvDra0bzWYTQgtCPyrLcjqdcsqwQ9q4LCs8z1tYqCdJUkmZZ1IrxJjyuK+R7ff7FLMwDJU1ZToJaA1jwjklBHPGYDEcbryUUka5MQaImM45xsghsxuSY3q9nlKqVoudc3meSyn9MIDFAExDYww4ZVPBtdZhGMIdSdM0y1OEkHD+Qnt+NBlXRelhqo3Bgd/rdjC1t2/euPLWtSw3+/vpoJ889PB9SmecmyNHFrd3Nm9m+VyrPhj2rFFbG5sIG4wptkyWKmrVKCZOGy01w6yQRavVMsaUxdRpd+zYibyoRqPJ7u7umTNnEELb29sE4TRNkyQr88oTAbI4T3NOaRzHOIqcc3Nzc0EQpEXGylIIxgipZJEkSb1er9UaqpKEEEwZMAoPWMwzW0/YiuELeGCrUhHMMHaHzx1cWDjpCCGeJxBC4/EYAG5Yh74fVFVFOKOUZlmKCVtcXFxYWv6xH/uxuVb7k7/0tx599FGGkLTy2o2rC1XOm7jb7cY173f+P//qxZefifzg2We/FUVRUVSYYM/zosjHGL33fT9w6uSZpaUVD607pMaTpJSTMIi/8tWvfurf/WvrZFwLuEDveMc7n3n2m5//iz9ZWVlqz7W0lqrSRVHEcRhFoTJSW0UpLcuirCrP88qq8nxurU2SZGVlJQzDbmcP8ClfBCWqrLVGKillUWSj0SgIPK2ltc73vQsXLjz44IOXrr724z/+N44tHVtaWnjqqacBahRCgMao0WgoNQP7PM+31kJYy2QySZLk9Kmzr73+iud5y8vLlAKF0wWGY+L2draUUlEU7O/ve55Xj2OttTWWcFQUOexyFoAXRCtZIUSqSjnnOPesReCfiRDClAAqeuhABd0NoMagszlgPs6MCmGKdkh8xhhrPTuJCCHWEjCnopRWlYYuLwzjwxkYILNVpdJ0WlWVECFCzhkkDpbctWvXEEIP3Hf/sRPHn3vuuf39/QcevP+rf/mVT//R7/3+H/xetz9izGvEjeFwOBqNOMm1RkmSXLp0qSzz0WiUJInwOELElFJKeevm/r/4F/9idWXNWru4uAhuWhjjwWDw7LPPDgaDEydOnD17dmdnByEERl5A48UYQ8HJGLPaGOOsNgThwPPh8CUHrkTQ6MHVM8YdAutmpjYzSjlnZz4GQegd9kppmkZxDFalVVXlRQqdEdwFhBCyTgjfHLyklFATugN/CYSs7/uEULhNWVZY48DZRnBBMAN76DwrjTFZOgHZty88zjlYTDjEQMrgnMMIOYMIpdZYhyy41UHHx5iAbExjLMaGM2EtAvvy3Z19rbWzM3iNYEwoZ4wao2G0eYgyH1YsVVURNptRAeuo0+kABh0EAVQFYKtNKfU8Ua/XB4MBrJ/DuSnsQs7MHJNm9RjByii48oxgZTR2CAK6QdNWlhjKAPhc8LvN/iQHELYxiLgZzFpWh7WHEMJarbV+4IEH4jh+7bXX5uaaP/mTPz4cDmEsFIbhxvad48ePx3EshE8I2rh9x4AEyRijdL1eL4qis7+/sbGRpqkyanV5tR5HX/nSFy2Iw9KpoEQIRgiCIwxo4JjBoqClkowxj/I4jsMwRMbCUAfMsmHIDck98P2MEaVmShTnHLJWWYsQglNMa22VdgeTJISQlBL+d7hfys6i3RBCgGIJIdbWViDYwzn32GNPAEwJlpgPP/ywYHxnZwfwPRiDbW3tOOeY4MbZ7ni8e6OjtSbNKoqC+fnWyurq1JvUaqGeKlZr1sIw9COsFEIYEYSscYKQ4WS8u9VfWlpYWV24ffvWCy9+p16PpSnX1tZu3LgBHnxKNZxDjM9C//5rvf3boefDTt5aJAS2GhNBCEEOIcYQY6jUaH9/mwnjkNre3u12u+fOXRgNp3dv9xCyQSjKKiVYzLXmr127Vq/XnbHNZhNj53keF/TqtWtKVVeuXJ6bm1tZWQFDwBs3blira7Xa/l43KeSP/vBHEdJayc2t24QQKDoHgwFjAtZ0o9FYXGgTgtLpZGtzZzgYr6ys1GpRa67+Q3/tg3vbe+cvnJpMpnfu3BmNu/ff/+A7n3j86W8+A7TfLCsRIkqZfn+wt7evtWaMHjt2bGFhodPpQCW6u9ttNOK9vX1C6ML86m66DzkeWsudze0HHry/Vqv1er1+b6C1FsLXWidJ5jB2DitVIYSUrjY2NtbX1/v9YRQq5Bi22llCMCEUYYQRsZQSPxBaIcORMabX63ueyPJsc3PTGLW+viqEf+LEsaqEwwaoWE4IUavVgigSAvY71O12MUaqqhKMgYXRaDTMQaCElFopUxRV0wsYF4PBiHA0nRQ3btwSggVBsLKyAkxPyFFxzpVZnkyqZrvZ70+llKdOnVpfO3bx4sWyLMtClYWan2/LSnc7wzDyEVLGqk6ns7m5GQTBqVOniENRVCuKyjncbDQX37Hy3HPPZdnYIiLEzJUMBLnNZnM8nnieNxyOfN8HH32tLcYuSZJehxBCirx66/LVhx56qChKRoPxeLy1tZUmxZe+9KWf/dmfHQ+GzPPCoLaysva3/tYvg7QNTikQaxBC2u25MAydQ458/2qf7ZIOKCrfxZoRQkqZIKBVacOQQOMEc44kSRYWFk+cOLm+vn7t2vU8S++55544DoPAq9XiLBl293aLIjt16kRepMePH711fTOKove97wPffu65LMvm5+fPnz//6U9/GjtT5sWg311amH/ooYc2NzcHg/6xI8ev3LhclVJVqh7XRqOR53HGGEIWYUMJUsgag6KoXhZ6PJoa7e7c3grD8NzZC17gP/PMM8aY5eXFxaWlZrPurE2SZHNzM8tLWVVhUEeOTaeJ1jrPC0II5aSoFIBBIfeN0xhj8F4YDZOd7U6apmWpCEFpUno+l1JHUXT06FFC+K2bd7Q2nHmjwRC2Qs6pdcYoI4SACIJut/v3//4/uHzpSpFlXhD5fmitm0wyxghyBNo/GPzMnHYYTbIUOQyaSkBtKKX4YLYvpSQWRLgIY0wZ5oJiDON9B5A0oKiUUkhGdsZSDHv3zLBfK0kp5YjNVntZZlkiZQmO8KxCvh9SSsuihJUAydc7O3u//uv/58/84Z88+eQ3jTEZq77y5a/3ugPEeb0e3//AfU99/UmE0LlzZxkV16/cLAt58tTxdruRZpP9/f3Tp0/WmvXxdFrqW/Pzi81WXK83fS/e2971fYEQkZW21kwmE2MMdig4cqSSRZElqtJlWdbqdUJIMejDEeh5npEKqAqezzHG0mhgK2CMwzD49refrdVqGBOMMSLkC1/4yxs3rlMC15NTioXwOXdh6Kq8wNa1221KCWOEMVavx8vLqxCFgTHHmCptO93+7v7e8vJyFIokZZTwOG68+PwL21v7H/7wD62vHUVu1Gq1CKNVZSmhAPg2GhGYaRzOMvGBJ9V/9pf/Oy+MvzsxfftT7L73IDtkSZel3N/fN8bMzTVrUZxm02kyBiJwWWW+7yfT0faWxBgrozGx8/PtXn9fGenhgFJ24cKFbnf/gQcvZNMkTVPkmLUVIdSPfK1UlqSMcanKKIoQQpxTxuiV61erqvAXFhEi21t7xjjOA6jPoHoG45RZJiXFZVUsN5aWFuqDwWCuVXMYPfnkV9vtVlwLCEXIon6/Oxr1m80mY4RzLrhPCDNGLS0tZXkOt/vhdzwspbx48SJ05ts7e7UollKOx5ObN+9ySsKoiRCy1kZhDSEEcOF0MoECGuoEGOLChG8wGMAAxigbRdH8/HyaphjRqlSMsVIV4OQL7au11iJttW21WnPt5vnz559//vlpN//oX/vYL37yF37zN//JCy+88MhDDw/6/f29vX/8j//x0sLC7/7+f3rf+95Xrzd/8zd/s98b3HvvvWGt7vv+3/nV/+bMiaOTUs4tLFaleumll6/fuBVF0VxzDiHR6yVB0P7hj/34//a7n3ru+ZfnWmG9Foz6o9CPas2adtYYwzmWqsKYQT2ttOScO2SsRcC/CIIAEA2lFHZGIoQQshRDDfd2zRD0MBhjoHgDeRYwDlDzpWl68uTJwWCQpxlA8Agh6AbdbPqFCCEOo1JKNRqDNTwA9M65o+tH7rnnnmyafP2rXxtOxs1G3Rn5xisvj0cDqZIgCMT8PHKGE4wQiuOwqiprdZrmg/Go2WiC2MsiVJYlI1hrgxBClFiElJ0Fl6lDK1Uya2gJIXme50laq9W01pQRUKpOkqQoih//+E9+7nOfq9VqZVkyT1y6dIkS8vjjj2utv/zlLx8q/kAm6RwyxjBmGeOE4MMeTGtNqZjRig+yxRFy39NUANsUobIslVL4bea25CBDBn4x6IWqqiQIG+cQQkIIjMnbyVyAF1trgZ0KWKeU0piZ2xh2B0YTyBJCGJuBNYA7wN9A0iZcLl3p8XjIPOGU9H2PYjYajaALbTabEFUHE7jBaMg5JwKPx2PjrKoy6jj1qDVWa3loMIIxVsaCSoYQQhAhCNfqjWa9sbOzgxDRWmdFXqs359uLk8lkMBgcPbqOCzcZjcBaGqDbPM89ETQbtCxLqRU1M4twY0xmEmMMJxRaGnBgB9Ic0JEwotpIzgXnBBohQghGxBqklVIqB3wQI4oxAgAa2IJwhc33OpLDEwFfQ+eJMXYEO4IhdTZJEsbYiRMnrl+/DqeVPRDGqko656RWnudRyjC2RVEevh1FJGjWIfoM9jdQZI9GA88LCCHNuTiO48loure3NyOvWQPwTX84Epubq6urlFIjDUIoTVOKMEIYnD/AU05EfhRFnPOqlEZrYwwNMLFMSimESNMUpkrGaUopxggzihAyWucy57MwHwdJldDIE0KE4AdzlALAPrjXh5Yyhyv2kJfqDqQG1mgquDZaCIoQcgh7nhgMeq25BuyvSZJoZUERr7XZ3d2FCCa4pFJK3/c9L2jVvSzL97Z3u92O7/sUEV1pSnElESYMYU0wM9o5i7udQVXaItdDOzEKxXHsHPX9uKqMUnmvP1TSKVlOxulkArR0ZLUzzjqHCKGjwbhWa/heCExAGOsyPEM2nJv5gSB0oI+22s78KJ1zThtNKYU+5RDH53zmymKMIWxmWjLjsjnmnMWOYEyVNM4qwS2ltCzLQbc3O4Yw4YI6q5Us51oLVVU55fp7/axIylKGcf3UyXPzc9ULL7z83/6dn2+16h/+0Af+u//u//7//h//5+888y2OkLFlFHKtSkKILwJVFbVazUjlNJFlAUF/9bhWFZIQEgc1yrkuzdnTZzc2NpvNuSNHju1sbU4naaNe15VGxhJHqkoypoqsF4YesN5gXjh7ERR6YVFUd29vgEoPIDOtlS840KGs1XCtwNMJ8Cyobwkh1sycSbTWBLN6vY4xHg6HUkpEZ2RDe9Dzg1gQzwJdGQH7F+H5oWHcq5Tc39/f3N558OFH7n/wQYLQZmd3MOhhSj/84Q9/6et/Liipz9WTZPLtZ77ebDZFyNqLC1Rwz/MHwy5C6IMffH8QhF/5ytfqtbkPvf/jG5s3t7a2PvKRj3zpL7/07//df9DaBiHHxI5Hvdt3yMJiY2mxjpCVZUUIqaqUMRJFocM2SScWmTAMvUBMknG/3xdCKM2bzWYUhLIqqzJH1klVQfWitOWct1otRzBULwcnr3vsscc2Nze+9KUvjcfjP/3TP33yyW+8+eabaZrHQTgajcoD+47DQZpzzjmDEK7KMvD90Wjk+f7Ro0fDyA/DsFarbW5ulGWOEKYMU8q0loQgAPSXl1fr9Xh3e9saW6/XPVHr7L9llHMWY4yrqvIYL0uJrZOlKnG5sLAAXSqQ+GAfgJ4FITTDNI3BB3mt8J3OucMFUFXFgS0SRQgxxoA0JqWsKjUT+FsNVU2WZSCzAI0/Y6KqlJSlc45SXpVKeDCSn+WYJUkShmGSJLdu3Oz3+6dOnfrVX/3V7qD77LPP3rl1976H3nH37u1hr1+Wea1Wcwbt7m4vLqwEgXfjxo3pdOyQ5YhXZYkxZYytLK9ijKfTKVRloLE+fMDBAWlj445zrl6vdTqdqpS+7+d5Dv4hGOOqKCmdbaRwysPnAq1eEHjGGMYELPI8zxkjgJmiA4AVngXGGGOEC28mvTKm0Wh4vg8XXEqJHCGYaWUpnaEHnhCw0wLWDGWhPXDxQghh7IwxBrnpNDHGKKWNNICr+r4wRheFc86WRUIIQYgk0ynnPM9LYzKtLeeUEGesFZ4HBytCCLiMMH5wzhHCtLZKVtBlG62UrChnGKNupw9C8zAMldQY41qt5qzNi8LzOKTRwoPPDyyt4fCy1iKL4TrA3gLH0+FYGh0wbZ0zSqnxeHzIokAIpDkGxuSHjYBzDlNiLeznHMo555x1gE0Ta81oNIQMWGsQeGehg5BnhwwlDLJzoZzGB8owwKZrtdqJ48d3drbyPF9YWJCyPHn6xJkzZx588MHP/+XnyjLnvLa/v7uzs3X75vX7Hnyg1Wz39jtpmuZp4fs+FiTPc4SIc7gopRCcCR7w8PyFe4eDPqReLS8s9Tp702TciGtZWXS7+whBvCGeub0h5Pszf5WqKpxzDM/qSc69IJiZ7KkDo2dpNCf4sACAIpw6SinFDqmysgcxwodjacbgHWe7d+j5caPebrdg9tBoNE6cOBFFwebm5t27d+fn5/0w6Pf7d+/eTdMUoh2jIAzDcDQaHQCeWafTc3hmvJaWo5DURCgkqbxA3PfABWm0wtVeZze7M2Xcp8zDiCIKkmSLjDFCkKrMrZbTcT+MAuGx23dvFUX2oR/8SG+/s7Ozs76+7pzjHEk5M6L9K7KY/nNpM7yMQcg5pTVMv6FwVFWeZqOt7Zsbmzfu3LljLVlfPaXK3YuvX0TI1htBay5KpmUlM8/zfT+UUg4Gvfn5+eGoL4QwWh49svbYY09cunSJElSWJUT3ch55njedpkdPntrY2Gg2Y4QQ+Nn7vj+dppxzrQ3Y/Gmtd3d3jVGqKldW1siBIKveCJeXl1eX53d3d/K8PHZ8VWvV7e3eunUDSIv1er3IdZIktXpUFAXGhZTS88KFhYXRaDSZTKbTaRzXzpw52e/3GROeF+zs7GVZsby8VBRFlmVWqbcuX3nnY4+eOnXq0sXLe3t71qIwjItKQV2eZgq2wul0evPmTUp4VU6ccpTyxYWVNE3TNAWpi1aaMx8jJyvreVwqORp1tFZa60aj5nler9fhnJ88efKtt94qy2oySY4fP95qtiillVJJCv47DmPUbDZPHj/u++L27dvT6TQIgqhW6/f71lpQoARBNJkkjVbr5InTzjnP59BLSFm++eabWuuyLDzP84VwZtbClVlZj+LJJLl69Xq73Q6CKEkyQsz+ftfzgsXFlVu3biTT3FgJzbzWen19/fSps9948kmMt2SlhsOhMW5+ft5a5HmeMsA/ZYQA+8nmeYExlpXmzIujuicCpaYe40pXgnrTSYKw88Oac+5b3/q253mDfpIXT6ZJiZF4/fXXP/jBD9br9XGSOOc8T7z73e/sdbNCjkDRluf53NxcrVYLQ1GWhnCKvxeTevsLEGf0Ng4mVP+ck/39oZRyOp2GYRCGodbm6NGjJ0+eRAiB2+bly5fvuedsFPBer2udnGs3nDOvv/FqnqeDQfexd7xnNJq8973vLarqj/7oj9bX1+FyZUlGCDlx7PjJk8fv3LnT6/XiOJJSBl7onLMGnTlzdjwe3bp1A2PHGUMYB7UoCDxtHKW02+3meUkIkaVFTj3/wqta6+GwTyiinFHOyjInhFhjTp86e+vWHQjRHg1T62bxLA4jxmizWYNnJwxDpRSyGCHsHGo225yFybjrMF1ZWarVozxPtVJSyjRNkyRP01wrK4SvlOl0evV6jLGQqkKG1Go1qUrORaPR/MIXvlCVamXtyNrakc5+bzAYWGMNdoyxPEvvuWc59LlSam3tSFmW/eFAa220JYz6YaClAgRZVhXQPRhj2GDoXoRgGM8YHxjPjETBdsMYA7XOwf6GAdEA/SYQ8ZYbS3C7CUHW4r39HZD8tFoNjLG1CDAF7rFDgc//8tv/5rWXL62vH/mpT/zM7/7H//Dkk99YXJxvLrT/p//p/+n5ot6Ig8BbXV39iR//xB//wWe/8OefL4piMNDTZLS4Oq+sAQqYVOVoNKg36x7n+/u7zOPHl1c7nR5jbDpJTxw7nmbT4XDY6+yNh93JZLS+chx6sFqtllcV1EZVJTkhxpgoijBx2lmnXZZlDlsuKJzNBzCZt7iy8vTTTyOEoihU0mDihIisRZ4nZkkjRno+m5bZ8ePHl1cWp9Op53Gw9wrjWiUlQsj3/SCoTyepVnkceafP3CsrO50UN6/fjIPmkZ86MRyMAj+ut7jVxFhkrSMUO4Qo/d9X1RxCyc65/5q5+n/NA8q9bXT6dj9o4PQZo8bD0d7OrtIVgGL97k5RFNz3FhcXHVK9Xl8Isbdvrl67tLO9N51OCXbvfs8Tq6urzz3/7MlTx27dvPPpT/9+GHhalxS7wXRalaUQghNqMCEES6PzolS2UsZwQTc3t422YLMlhO8sdgg7ixGB5lAqZT1fnF47tbCwkGXZcNg/c/Z4FNWuXbvW7/elKjw/ZtxLs6IoUyFYUVJjTBBECBnGeJLYKLJLS0sbGxvD4fDeC+fv3LkDEHCj0eh0OlmRR1HMGI+ioMyLsiwvXLiwtramlX3ppZfAWMPzPGft6ADPKsuyLKSsNKWMcQzidy2NUmplZcVIs729bQ9MM7WUOI6bzaZxtixz66r5+cXdnZ0sy+Ja/d3vfjfGuN8fPvOtZ41x0/Fka2tLSVnJ4utf+9qHP/zhn//5n719+/Yf/NEfb2/fJYQRTk+fPnHprcv/30/9zgc+/KGF+cUgihHB73z8naPRuNlsLiy1KGFHGvHe/lgpfOz4mcGww7mXZZkfCGNtnudBEBRFNtduM0E7Wz1rLcYOvFMQQpQiay1nAnobyjCyGKFZxRzWavD3ZVmGYSi43x30oQq3SkNJfUgPQQd4tBDi+PHjWusyLw77VaBNzfAEQoQQymgIcnQEnzh9OopCq2WWZdPx6K2Lb5ZliZyphYG16NbN62fPno08Hob+ww8/dO2tK5PJZH1ttdFoSCmtM57XyKvS87xGqwVnOtgdJpMJIpRSKqgwxig9E9/RAytDjDHwZiijxlmGGaBgxurA89I0GwwGv/Irv4IQunTp0uuvvw4SCmR1s9k8d+4cLBLYh7XWvu97ng8gEQAo9XoNpobGmF6vd4CrIpggOowgHBi+AQpujDFwQ6SUDIzjZ5JY63EB88I8zw/deI0xVhs8g1FmBriHMKg9cMKF608Osuxn6L9xGGPGKKbcHSRrIYqA1mqtlbIUQiwuLkKz2p92q6oIa7ExxmHnY59zXsrCOddqN7nHCKIY49FoVJYFprgsyyRLGWGcc6ddkiS60tihQ5qhtZYxDl7VzmLOEJhsEELa7fbufieKoiKvJpPJ8vJyq9UaDAZG2VZjDrjM4LRw4vgpGAVZa33fJ5qWZWmQw6AdIQhb5wWexwWwqglnCwsLFjmInJqME2QRO4hznFHGkAUzDWMM2LtDfyuEqDfioii0podMZHegXocG2x2wGWYtMWe+ENZaMss7MoDLK6WUldA4wMcByR1nTGsNiwEhdPiU+b7viDNGAZecc04YHo1GCCEgYVtr0zQVPmeMzGJ+nWCMM2zLojLGEUYdJsYYpZTWxiGMMc7SAlYdo6LdbsNAXWuNEYN23Wh3SNsHj1R34LdD6OyiWQcLiXFGkiR52+BzRi81M1MRD2OH3ka9P6SYHW4gzjnnJPyNtdoUymJEKCOE1Ou1ej3Oi7QoCkIQ5QQ8shzCUmnOOaOEc0YpniYzdsg0KRvOOYvTNIF7BCGQzuGiVOHcPCHUaDTKpxsb25Rwa0gcNZ1BSqI0qazBqqw8z9vb2sfEnThxant7u9frTUZTdWBog6yhPq/FsbUWu1wp5XugnADMhSolsQHOAeRBAV9POOcg7BoiyJzDFM3QH6jEEEK+7yGEkiSZPbAYARIElDEhPGpYVZUYkyCMarVoPB5ThgVlmHGELOQWTEdDQQkn2EndjGpFVVqF3/eeDygj37j8Vqu5iDBbXWt/+CMf2NvdvHv3LaPy973vXX/46T8wZbK+vr6wsPTqq69SNFNIZMm03W4jZA2lVuu5Vqs9t3D58hUqxPzcYhhFF9+4dHdrW1Z6eWllc3PTagNmrNg6YxyjnFKuK40IgV1lVn8iQySq15qB51HC7t7dhOM4CAIpJcEM8DWMHQTMwvoBsd0hyMVmsyIECxVmUbqrPZ/Dg2yQg42aUvJ2nBrwPkA2MSVBECCMCWFpXj50/j7O+frRI4jgbz3/3J/+6Wf397Z++Zd/+eq1t27cuNVsxYxh4WHPDzyfRbWGc+7Y0RO3bl/rdruU4kuX3jp+7Awl/u5m55tPP5lNk053760rr+9sbZdVYi2ueQ0pi/b8AibGOsUZFZwpWaZp6gsR1kLrNLLu1KkTmOKt3R1ljB+GQVTTWoe+aLVaeZqWZQmkK8Yw5LVwygCny6vcmFmsIpy/nsdfe+01aG1eeOElQgjMq5IksdYBi7Msy8lkQilzzhGMZVUxKg52bLa+vl5VlZKmk3Q6nc5kMgaf8TAKsLNGlxhjSpBU5vbt2x6nhJBkmmFH00QyQktVBH5UVRUnVCmTZUWWFo1G8+z5M48//viVK1cQQkVRIIxLndu30RthygK7BwwqDsfYcK4VRQHNHWxHCFlCGIiHMMZBoK21SlVw5kIJFwRRmqZazxBASmkQRKDq4JwTTDE79N9w0Pj0ej0pZZkXjz762Lmz93z84z/R7e6vr6/evHmrSFOELQTxNeut973vfb/1W//DZz/zJ7//+79PKLYWoH9CyEyxNDc3B/lmQNxut9vwy8NkFIjkYCoyGo24Jw4ooriqKuxmIDhQtgGVg8sChU1ZlrBpc87TNPU8D5wc3z72w5hiNAuwNVaBDAsEvvCkVFVVq9XgpIN3h6fGGiN1BUD/24sNwF4xdhgSjA8Cga21GFGCGUwHlVKMcULIeDx2DhPMCCHGOIJIVZaU0qpUlGG43XBxpJRQbiGEKOFKKWOBmGwZY85hZxHG1BgHeyZjQgi/KKrA8xvNGnAHb9++DZ7UWVZQBPGMs2KJEGKcJZSATOQQNz+MozykhB/2znDdlFKIYGQMsti9zeDFkdlhZ5FzblYnAC0a+MsQiSHLCsoBhC2lFKGZ4gemJpxzbSRMT6FyhseBcw5YwZEjRxqNRuCL6XQMDy/nVFtTluXTTz81Ho+n02mSJM1m0/OZlNXO5ube9s5bVy5hRH3fLw9I4hB/RTk3zjXbc865/d0da9H+/j62DhkrZRXHsVISY5znuVLGIhf6ked57XZ7d3cXIiKhepRFrvCMGAG+N5QeWpA57SxC1mrkjEUzyGvmaEcpNdoxKjB3sF8dumpAtXwwHgAm0yzXGogU4/EQoWaapqurq0qpr371qxhjozRjrB7Fe3t7VVFCPCNw/BljQvhg5eec87kgjmilKlwdm1tFyE6n4718d29/6/zqvSys+cY4sD4zyjBGGcXOKEGp8cX29vbq2lJVFd3u/jgZv/XWpXy4dezkiVqtBhQShBBYRv4XX9/nsHHY1TvnEMJFUVhtijJDCPm+P51Ok2SKnXnqm18fTzrHjq/cc889w17aqC2fO/PO1YVTzWb9+s2Lr7/xgrayquSITeK4LhjBGCeTiTRydXWZEJRl2RtvvLa5ub2wsFAW+/1+PwzD1eWV6XT6wH33nzh3rtfZe/rpp8/dc/aJJ544enS9LMsbN24N+qPhcOx5XhRFeZ7evXNHqSoK/FLJPE+DIDh9+iSl9M03X8+SaZqmslKAkFbKvfrqy0KEBLO5ubkqtEmSBH4E3Waz2RRC7OzsQLkDKQqglm42m91ud9CfxnGcZUWaTqfTqce41skrL7/abDbr9frCwtLu7m5RVVlWKKUxxmEUWGtnZnPMsxapUkpkrSGt1lxRlEJ4SmFtpBB+muaIWc/zrA2Wl5ePHTtSFLnS1cmTx2/dutXtDpMk6XQ6eVYK4WHstre3xTExGo3SPHfIlGXJGFlbW7vnnnuiICiKDIIp79zZOHvPPeAWUuYStjPBfVlIG1vf90fDkTbS87zBYCBlCeWIM0ZbS7Gw1nLmETID3aqqun3rLmPME4GsJOderzto1FsLC0u9Xs/zPEhxaTabk3Hy3HPPbWxswWpiTDDGRqMJ5xw5QihptVppmoGQFoF/jRfCTi2lHAwGjCApJSaIc16WqqrKMGpFcTSdTstC3nffgz/9M7/w0ouvf+Pr3zpx4oTWZjyenD53tipVnuebm11ncakLrXVZlu12Owoj3xfWIt+npXJgCAMI4+EMxv1nQNUh/qUUmozGaZrCTp2mqVJKKb2wsNBqte7evesL7z3vec9oNIqi4LVXXnjrysV6PZ5rN4wxVVV4gl956612c+1jH/uYEOIXf/7n0zR96qmnvvCFL8RxrKri7Nmz95w78/TTT3X2dqbT6fx8e3V1dXV13ffFcNi/fv26tSoIAmsUIWAmQ4UQxDhCWLu9IHiaJAnGLC9kJY11hvPAOJmlubXozp074/G41Wq964n1er2+v9cLAkox8zgnhJSyqKqi0aj/6I/+8GQ62t7eTJLMISNLxTD3/XA8mqZpHoV1qS1jnpJmYWGhLAtCyN7eXp5XlDKEDGjDS1nleV7JvNFoYEsxxmUhYZ4R+NHaans8TinhURSXZVUUuVVa6WqxPX/25Nk3Lr68s7UFztRZkRNCGBewS0pCgOLEDmb4GGPKYNrsYFPO87IoilotQgeBA3DgwdeUUnAyBaINQhjKqXa7zThdXl7CGEtVdvv9okRpmkK+UxiGVaUYZbVazTg9Ho/r9XpRVEmS/eZv/j/e994PXTh/8s3XX/+TP/r0aDS4L7y/qgqpCuBw3bhx7cyZs5N0ghjO85zSQFmzs7PT73fn59tRFBVyaqzq7fWSSUoIf/CBd2htJpNJu71w4cKFj370o6+//vof/MHvxyvLJ0+e9DxulQPsWGtNHDp16hRC6K233qKMAc4VBkFWHvi1EcwZK8visAIDRAB0djO8HhGAhLIsAx0QIWQ4HBJOur397Z3N4XB4z7nzxmggViBHIFIVFP1zc60zZ86OhqNf/bu/oZXb3ek9/c1vv/ziy+cv3M859zxkHHIWaW2FoJQiLWdPHPCdzYGz0wG+/D3s5r8CbgamDnzz25Hr7xsdHf5M59Dp08fzvBz0+sJjGNdhYnrt6u2tra2zZ8+uri69+eabV65cOXP2lLb6z/7sz65cuXrvvff+7M/+zJNPPvmlL30+y6eXL7/R359oI8PQT5KsUQuqsgyCQDDutEEIJ0nCfYEQqqqKcCKVxZpEUZQkWRAEShqMZpH01umqqijFCDuE0HDYb7dblOJub+fU6WNKZVxgxhEmJknGUey155vLK624FnY6neXl5bKQ3W4fbGGstcaibrc7Go1u3rwJMPrNmzeXl5fn5+dh3NhuLyBElDSrq0fiOO50Ordu3hmNRnNzc0IIgrHF2Pf9Wq2WZyX0tHBMWKsP067LssymCecetCUIIeEFRVEAYmVUCd1dr9fxAyGlzLIMISKEf+XKtS9+8YtVVURRbTAYZGkqKPv93//9l1566dHH35dM0zt37vzAux5fXlr9O3/37125cuWpp79x+/bNCw9cmExGH/jgR1qt9htvvvXCiy8+8oj1BG025y5e2vrLv/zy3bu33vfe91GiXn/9Wd/DjFDiCMWCc+p5zYfe8UCns6eyGdSFKdbaAocCimmELcKWE0o4OtwTrNXGmPX19bNnz3a73Y2NDbDuBfjysLGBbh8hlFclMpYx9vLLLyOEgig0aiYKAcQKrgnGmDBKETjF206nE4bhkSNHnn7q61rLPM2cNs5qQpAnRFEUgjFBmc8Fw6Qexcl04qyJ4xiCJRBCw+FwMBi0Wu04jo1JCCFOWw0yWq0A0aOcYWng15j1ANbCznnYV0ArBYoWxhhjZn5+/vr164PRpNlsPvfC84HnnzlzZqHdunPnzuc///m7d+9WVfU2sJjC3gKSWGiE0IHXmXOOUmYtXF1DKRWeAHtrQKiB1QhtBjyw8Js456ixhBCKZ553b+/x4LNQxqy1nufD9gVdKLQrhzfoMLL80MMROyyltNZwzo2zxqowDIUvgEIFMxQ8S47VYRjOz8+nRQ5YJxxh7XYrTdNut3v06NFTp06FfvDWW1ehXDTGLC0ubmxsGKMRxlZbrU1ZlovzC2fOnLv61hWlVBRFwg9mvZnFWhUIIWgn6vU65WI8HmdpNhqNVlZWBPcPaXcYIYJImZV5kstC1mo17nmEEMoZxygtcuAUYwf9iThEk5VSzmIhBGcCpMFGOy01QsgYR8jMfFlbnaaptZJzDjA9fBHFAQaHZWSsM1prZ2eHaRzHjXoM2FmapkabGd2SM0JIHMdBEGDrjDFJkgA9SpZVlmWEEHCqNcbMnBwPKFHQdgohwLAlV3mWZXme+75frzcrKTEh7fk5oD7leYoxBQcYznme575Xt9ZqayhjlZS7O/uUYaVMURQEY40c1rMoiDiO47iepinkFgrGEUGUUlgzzmJKqcPocLZEDywmoWYgmDnnsizjzGOMSTkz8aQUuwPNBGMEHgcgGMIKhP7ZHZDsnHMAxDjnOOdhzfOjUEo5Go0oJb4vjFVxHFdVUSkJVyzPS6ilOeeUOGNUmmXOGSmNtdbnYjodI0Q8X0gpGSeU0uNHj1BGfN+fW22naXrnzkae5mWhnVP1erMqSkoZRthpl4wzSmlVpYuLi/V6nTI+HI7LUg6HY4yo53NtDGJY61RKGQRBrdaAJLrl5eXd3V1mDcJYa80Fi6Ko0agJASGKhlJujBkMRqnJ4GIa4yih8HQLISBNp91uf5fbJfjM4c1Ya60QHsUzrm4pK0pps9nc39+vN2KCMKW4qlQURQ5ZhF1eZAg7gpDTbjQY/8zP/fTDjz7yuS9+rirkrVt3jp888X/7v/79uxs31tcf+N3/+L/98Wd+/1d+4dc+8YlP/O5/+DdpNhkPB7oqNSKMCYoJ97yyzOfn5ihGk8k0z/M02YjDiHOeJjlMrEb9kXKaUCSVmms1GaFFmTntsMWzHERMrLFVUTAhQJlKCRuPx0mSCCrKoqoqBVvBTECNke95GM8meZRSRGcWAbAIYWUywQkhBBNjzHQ6zfMcAh5gkwSjG2nAfYUbYw6BZuBhVNJorYMgKKuCc37mnnv7veGDDz64fvSoMeZTn/rUxYsXOaedXvfFl1/o9Xpa6mSa1dcXpabdbveJs2fn5pf/4i8+p7WeJgPPF9Pp5OrVa5/4m78QsPof/9GfNZv1yXS4tDRfVdU0GZ2/cPaty9e1kVEMcXyOUkyoY4waoxihcRhKrbMscdg2WrXYjxFCYCUBBzdGFJA7SqmqSj3bPC2lFBECDsjMY5DsDRNHzvkbb7wBp3+SJ5xz3w8RQkbqOI6F8DxvGTjOqlLEI4LxRqPh+/58e3E8GU4mkyNHjgRheOvWrfF4TCg4FDlrXRB6aZrWohBUXwi5siz7/b6qinq9Hkf14XCInFBKhWEoKxWGoSorxvCFC8fe8cg7V1ZWj506WhTF008/DeaTUqksyxinMDY46FOQNhI5whkDz1ZQAnkzDmwBQ0eEYGhaQcPbaDSEEMaMKcVR1ITD8YEHHvjgBz/41a8+2e8PEUJhEBdFoZUERnMURchRsNOlFIN7uzvQxwjhc15dunTpN37jN27durWw0B6Pp2kmjVGUISl1ox7/83/+z0+dOvPiiy9+7WtfazTrhJAsS6RWWllKMRTtgA+oA6fpsixhMABnE/zJOe/3+ydPnqw3G9evX4dtE2MMfkd5Xh7iobBjMyam01QwjqlVyiBE5ufn9/f3tbZFkcHPj+MYWiSQEDmLtNZKy8PJIqXUITQ3NwcePkVRwBmkD5RhsqpMNeOrwlEFG1cY+tCNHk7QgQZkreXYy7LMOn0wN5qhqM5h5DTU0lbP9kZC8EEVOivYKKWg5h+PpoRipZRzMF+32CGjNKHEOWS0sc6BmBviFpqt+pkzZ6qqUpVcWFjo97tSlowRq2Zz0cPxHqOzTwHYLphlw9We5R84RwgGby74T+A3SzljjBFEsyyTUjI2K1TgN2cUw4EIiL9ziFJcr8dVpSaTiTMWmtAsz6DMgOUKMSTw7jCWO5xAI4Ta7Xar2QaD6TAMFxfajzzyyFe/+tXFxfm33nqrN+in6XR3F+/u7x0MAwxjPiFYShnHtTiOx8MJ8zlyBDnneyFCiFAOZsrWoKIqRgZ8qBElDHwzYFbtECnL0jgkpbQGtdvter0+15q/fuMtIDdYaxkmhxRsWAmHZaeys3qbIgbOZYctKsDNnDFrLYDs6GA4DTg1/BwLSeMYa63TNIVvoJTCMBgkL9PpNIxrWuvJaDydTolDSilIckYI1Wo1qJ21NWQWNqOd1QwhrYxf91utVn/QvbOxcSe989DD973/2PuZdYh72ChntRKcOaudM5UtJMpJZDM3TCqysblZJKnQ/kvfeG1x7cEf/uEfK7PSXxUEIU6RcxYZ5CwiM+3G9zLFwOnykD7mDv8OEYSZx+rxAiE4TdOcOIqdzKvHH/6B0WgyniaD4ajVWP6bP/03B4PB6omVkyePv/jC+vxqfb7d+MqXvvgDjz9Wi+NP/9FVo7RzZn5+PkurqjRV6drzzdNnov5gn3koqnNjpFQlQuTWrbvdYb9Wi7hghNgkm7z2RkdWxXg8ZkwQqow200mptfX9kFGfcbG300uzIoqKQX8Kfiie52HMjMGDQeKcE8LLsgwhCaQG5wihaGdrg1IQa9BsWhhpGKWqUsRh4fE4CHVdnr/nnJTy1p0dpdRoNDLGMBpYRxkVk5FOk15cS48dO7K6ury5s+uc4yyo1Rq1uleWJWPUWs0F7ez3lFbM84xWb1x+vV6v1+dqcRw+8QOPZln66qsvV5W6cOHeJJ1g7PI8k2WZpfnF165madWMFq1BVc459bRSnqhJWd64fdVaRyk3GhPCszS31lkniWABt+O93snTp3v97csX32g158tMIcsJ5lKWjHGMSXevizHOi5RzXrACW2ek8bhHCV1cXGw2m/3R8O6dTU6p4H4Ycup47EUcVUAdpU54NOCUj/sJ51wXlBICOSda6ywrkdFrq+ue5w0GI2Wcc44SWinFOfW4cA5RiiB2UkpFMDPGESKs1YyJspRCMOcccg4KrFqtVhWZqrK1lfn9/f1GnQ/6e77HfuxH/7rn13wvptGMOSgELVWqlJmOxoSQI0eONOpzjFAtLQiHOWPIIa21MkYID5ivFiNEkXPIOuQsIgB+wTOKkXWoXq+HYZgWqTmIELUYccr2uh1r0Tvf+Xgg+OXLl197/dXxNA+jliWo1myPJlPj+IVz533ff+ONy0HgnT9/fjjqI1MdXVuq0smk3/G84KXnns8m0yfe+a4vfekvfW449bS080d8SmkYtyeTyWBQQKfh4YAxrJRxjhljTp8+bp0ZjUZFmfq47UyptKxUFcX+yWNn82La7/Yp9tqtRYLw1beuUU6OnVjG2JVlyUkgpay0I4QURfn1p765sNBiHGOmCNeRoBihGgrTJFfSUh5xqpK05BxHtbo2hGHm+Q3OcZmrdDo2mqhSCepVqmCEIomyKuv3+3EcnzhxQinV7XZH/QEh5NaNK1lWRFHEEFYIUcy0dN9+5vlMpsayne39eiNeX1+nlOR5rlRljCHOhYGvZGXAPh4zKBGqvAAdKpCOjdIZcouLi4zQNJtaa6EDVEphzJ1zDjlKsR9QxkS9EUdRcO99F+7cueV5fhAEWV72xyPrKMJYKcyFH0Qh5ZVSFabl8aNH8qy1vb3bHw6CSPz1H//h3d3uZ/7sz/f7PeLX1tZPNeKFG3vXCUWrq4uDYXd1Zf3q1cu371zxIpTLESoUaOGllMPhRGsjaKAry4jfaNCFhYVjJxazLHvryrSo3OZ29fnPjbO0qAW8LKbtuVo6qfeSXqKSd7zz3R/64Me6nfHmxtY0mVy6fEU7R62rKokxscYhB7RBB5VEq9Vaml+4e2cTnLn47DBDzihMiFII5ucIIUGpNQgTEvDII43+YAfpwEpeJBlFnDllramy1PdFmRqGkC+EM8oPxI2bV97/gY+kZYU99IWvfGH16JFpkU02cb1eD2KsNZ2OCyllNhm02+00zcbjKee81W7PzzcBPiYYQl++CzpjTDB5m8/GgZ26c7MREbwOTytMEDnIXkAIITc71Z1FnCIlHSN0aXkhqnlKmTxvbm1tBJS/+52PLy4uXnr55ee/8+z8wtwD95x2zq22o2S57ovq2pWXsrxfawbDSTftJR7Xcc2vqlHgI4RNHIeUUmsNYkhbSzwmlRZCGIkw4YxSwhBBNApCpSaYWIcUJi7NpoxTxpg2GlmUTQut9WRcMiamRXpn67YQbHGtzgI5Gg+iOm/WGxizqlT7O1leoPD4XJF3jFHalBRH8wv13d1da53n+Ttbe1JKLW1VlDvVrsyrubm5Zhx7Hl+eb1ZVlY3Tb33zGUgCnJ+fi2sz0Id7vOHVEULCZ84ZTIgfB6PRiNuYOE4xtYQQhMvK5oUkzEfUc85Mk2mjUWu26kU5VboKfY+wJrB9jXZayzRN0zQPw5BRHNYbjDGrLAlYWZZLi6v3nr1A2TQvdy/c2zx/7/qHPvShbHKpFhX3n18Xwjt3+p72/LqVfpmivc1+0s+e+srXX2sva2leffXVX/mlX/7bn/zkn3zm9/r7vXZj3uNW6VJrE4W+lOrosRNpkd/Z3GjN1ba6A+Oc07jdbiNEIj/sdJIwDIUg0zRrLrSSJJlMEoMdZsRZJcvs6NHVRqN2686dMI6DJCHIYoytNoEvQLiNHdFKI4SIcRgTZJ2WmhCCKWaMO4y0tYQxZYzTGh0w+Ky1DGHhC2L1tUuXb12/fvvOTfDusNZqqQjox3ngENrZ64RhmBX6i1/+hpS6VqvtdobKaKD5ZElBiecxb2drq1Wfs1qpsqTOMejKCMEYYYcwspQgZy2QBMnBf6UA8fgeR0Qr7fuh53nKqiiKaoS8+PwLDz300MMPPbRz+/ZkMklGQ2z0aDAcDocYf1cdwjmXsvJ9LwhCa+PBYEAIUUoiJKoqn0wmM9dCIRBC1mqMsVHKGaJ0BZwXjIizmlBOCKmqyhgrGMOUIEIMhDoia50llBBHpJTEIaMtI1QTbDUQfCykMiDkKCWBV8MYF0VllHVWK5kKjzHGlDUGGeQQczNTC20tQoiDVNCxspCUcKUr50xZloPBQPhieXm53V7ws6Lf7zPMECXIon53UFapoCibjvaRIY4MOl1qKXZ03E3XFteOrxy7c/c25o4L5gs/9PyVlbVjR06++sJrRVGoUhE6Ns5hTB2e2VjL0bgsy1rcCMMw8CNrUFnl2zubjDEh2GgybjabUVxXSmGkrHV5PhWBoJwXRVGWldYWGSQ8oICVBhMR0kpXzjltHXaIYjqdpp7nAfteEMopqUrJGKWUFkVujLZOK1lyD/k+C0NRVRUllHFMCM7zrCxLzxOEYCkrQojwKMaY+biyFUGk1FJEQYBCYPVWVWW0lkURh56yqsiTwOeU+rVaLUmLfr+f5lmtUVtfXN/b2+OcW+vyPC+KgjGmnXXOMU84a51z2jhLqFTGEs2V4oS2WnNQ1U+nk53t7TiOjZa+x1dWl7qdPiFUa0ctcY4iZ2RV2MIekF4ZtG01XKeUFmU+TPseYYwxXwjueWVZeZ6XpYWeTSNQyD2lDMbaGAcUXYsMJpRyZq21xnm+SJNcaeQQwRhhTBEiWltgzWNMMTace845JS3G1KMcY4ytwwjcMzQlxBqpkYMBMI39VtNv8frxE2vDXj/LMkJFvV5HpNbt9fI8N85WVYEd8jinxmrrqqpwDjHMCVTSjjGKuaAIWSFIqSrOvUmeUEpLrQY3dsMw9j3iLGeUdjuDPC19FiqnKaVOIELJfKtdr8f9fj+d7vUHQ61MLaxRShnl1qIiV9hjtVpNq9JQx2PciKMkGXucIWtKU1JKm/MtmFJUVk7GU0oxIQQbFQRB2AhyVVikCWbGKWopwcQ5V6QZpVQayzljjCFyAC9iTAgpipxzbgyyVLTmmsbZclhqWW7fvRNw5jmilNKIYMzKXFHOKm1LZb24jjxPU4y5eO2Ny9du3R0MBg+cf3g8GQz29r78uc+9cfGND37o/b/0i3/7a1/72m5n/81rrxMWpLmimPAgdFYjZGuNuLvfyfMSW0oI0ZVrrrQnk4m0JTauLNJphprNOc/zsywz2nDGhaOltsRSZRRhXEuFtfZ9X3BPIoSQddp53NNaCcxVpXKVMip86rUW5oy202lalqXvM4etQ1ZbZ2AwYQ7rGoQhlBV0G4IpXSZF8jd+8sd83//GN55yzlVV1ai1Dqh2webmZppUjLEgYsQhqWxVKWutw4Z7TFtFGa034iwZtNrBlWsv52r/p3/xo7uDS6na9Kkfz6HnXvza8vIyFc46aa1dXTlaC5sL7cXVldV7Tp2RWeHhoLvTRQgfO3Z64+b+T/7E+z75yeb66tqf/dmf/Pmf/7l1Oknye8+cHw+Gg8HAGedMoCrCGbdWWWS8kIY1pqqqyPNKFVEUd/b7Aza2ylV5RRnGzjFGpZI2VWChENaaw2Gfeb5ShhFcVaUQQmtjpFWlNtouzLVm1kOVBLFFo1Gz1oIPp2bEYhPEPsZYqTIIPEBk0jSP4xrGuNPbL/KEMaZUpSbVYDAAVweE8zAMGaPtuYUsTyaTCeUiiptbG5va4NWlNVVprazP65wLWWkmJMYkYP78/OJ0mv43v/J3H3/8iXvOnXn99ctbO1fDmNca/vFTqxceOPPmm29aVBhjsDOC41Jbo7SWxuOhtZYzX5tCa62UAeSUUkoIM6bSGliiCHjKnHtS6ixLsir76Ec/+sMf/ZFPfepTaZr+6I/+6GAwuH37tlJVEARFmYDjttbaYWuRCXwPE5AHYYeYRRg5pIxV2lhbRFEw6PXLKp9vzOlCV6bSEiOEDcMUBZzG167fvn134w//8A+llO3WXBiGYXhyd2dvc3O7kGUU1TA2AB3gg6AzYwzAZ8C+xJRwT9SbrbUjR+fn57e2NmCEXFUKYxxFkVQOYeoQ0UY7a6QsKaXgWZrrshbVjTGj0Wg0Gk3ThFKKMKKUAtdbS2WcpZQqJSslKaVWUUI9bUqEqbW61WrlRaq0MlY7ZIqiQM4RzDzua22tUdogjLFWiDHqeyHjxPM4eOgZo2G2ba1lGOdlGUURpYRxBooszr2ylMgRawhjs6heuGsOWcKw1pDj5fzQC4IAiNVM0KxQfsQn4wRTbI3GGDOKpS4btUYUhoSg8Xhca9RqtThJJydPr8zPzyFK0iTb6+xZ6xAicLko5QRTTByi7sCnSENekXPO9yHUgUKHZQ2iRGChrLUWOYIJwOVA6LbIhVw4g6SRwJqHo984SKV2h4N/LRWlVJZKCLG/24ExYVoUxtlGo7GwuCKlFB5bWloqy9L0+9VBykgUx0DamGs3YUTh+/6R9fWiKNJ0euvm9fMXfuwd73z0hZeef/7FF2AgAdBwMplGQcg594WPjGg25gKv5ovo2PpJXd3Kskx4QmCurbKlZowZCUMdxTlTygZB4HlEa42A3m6cMk4Iaq0tsoIQ4nseGFjlee4xDwp7iqi1M5WS1jCwEdZqwhlBs7C6qqowhexr43Gfev6MY44JQhY5AzI4rTVk/Y1GIxhjwKcLw9g5hzABMjvIg1SpnHZW2TzJjTFxGMH/yAXFGPsBw3hm+YUdMsZpXWGMKREMOUKw1hxZ6/nMEb+zU/ZudaXWy6ePzy8cefm1a8zzkTGIUMS5oATt7OwWZYqpxURXZVrlRVmWW1sbRZZzEh49evRjP/bjb7zxxurq8sMP30cpIgQZA/7i381rQt9rKXDI8fw+wbLneQhbY8ytW3fKsqQMK6UC3282m/NLy4P+0Jhbj//AE6Evula1W3ODfjeO449//ON3bl8nhPR6vcuXL0dhPL/QRtZwzvMiXV5eTtMUIet5fHV1Repqfn5uMBgNh0OjcZaWg/EwCL0zZ041m41bt27dunXTE0wIEQaxUno8nECn5HuhYabdbs/NzW3vbHLOR6MBIaRer8NginMOIwbg8CRJQikpy3I4HFWVskozpqz1pZTWaqUqADoZp8vLR5IkmU7J9vb2kSNHfvAHP9zr9Z555hlKMaVkBuswTCku8mowGBw/frw3HMkq8z0RRUEch7VaXFWFNtI5F4ReOSyrKgO+cJqmvV7P8/jcXLNWj4piFmdUq9X29nZuXr+GMU6mJaWYEo9S5izmzjabTW1QlqWUUusoQggj6vtCSiWEH4ZxlhXHjx/tdHcH/cnZM36jMffai6/60V4Y1NBBgAxgc54nKKUN0VBKYewYE+BPApqXMAwNMpF/rizLwWAEDEfnjB+IssoZJwghY5Uu5YFTgc1zCXaWzVYdY6zKCiF0kEVOD93rhODG6PF4VFUwwqXWOoyo74eEIEpxWZaexytZUMEpdpRS54zRtqhMs1X/5C/9ypNPfu3Fl19Tmn/iJ3/x6LGzX/j8l7Ise+SRR27cvmWRC4JAW0wImZubAxpIGFJZoslksr+/v7a+GkXRdDoty9I612y24jjU2uGDAaxzCH8vUxIsjIQgnieEP2edha7VEeSMs8YszLUF46P+YH9//5VXXrHYWuSsNteu3RAcI0deffX1paWFzt7uC1V59erVuxu3T506dffuXWttFEXD4fj9733vJz7xic9+9rOj0eTB+++bm5vb2LyzvTnww6DdbtdqDSH8vb29QX+CEI7CBkLUOV0U+WDYb7UaVVVoVUmciFC04mZRcSFYoxUHMd/Z2vY8z/N8Z1yW5ZxzwggI98bTMRCgKKVJkpSybDQiQnmRV86huBY5S3a3trXWjHKElDFOqXzQ7/7T3/wnzWb9H/2jfySESJNCCNZuz+V5gRDihMVxmKZT63RYbzz66KOvv/FqFEVg5+2JoBHX8rxM0xzkwLC3OIxGk2GpSs4542RhYcE5B7HpUmJrkVIKeDQgwsUHGmo8yzo3cO8opQgR+JnDoYYcTlgDkNtDCInjqD3fMkYbq4aT8auvvgo+RxhjhDGIsIwxCDmYFc8vzDXqy7VabXl5cXtnDyHUarW2tjb/5b/8l74fxmF9c+POysrSe97zrv3OTqe7p7X0feac+9KXvnTq9Ilz95xZmazcvXtXa33mzJk8z7e2NyjFeZ5bjyBsGSPDYbq0vCBlOZ2OT576/9P131GWnud9IPjGL3/fjZWrOqIBdDcCkRgkUsySaIkKlkRJtuR0vLI8mrXH9tnx2NpzPLLGnjnrPR6vbK/WNuVAJYuUqMwIEiRA5NhodDc6d1eum+/98hv3j+dWAdLY9QdQKHR13fruG57n9/zCiVaz0+8Pbty+4TuuHzmLS23PZ4iiOI6lND/6oz/66b/wI6+/ceUXfuH//vqrL1NOrcVQgsu5UTV0sxohs7i4uLy8bKQqq9waDOK4Iy0YTFnMYdrD0T+rqvK8oNvtDofDwXhkjNFGY0Z1KeGsgPNhOprt7b56/NgpWYvxcPQnf/RHH/nwx199/cI3vvkkeJbNpsMTJ044jNzYvJ0WOTZmNBphTBzHg/lqWUrf5/Pr5v8SIXDEWT66jN6tPJh/8u5sT/Tf/pBy7llGCJLSUkqDIAiCoLu6vLK8gpDpjfuLayvHj2+8/OqrO7tbju/9+I//xStX35ZSthqNlaXlQa9f4YphzDmHIFZrrVCltXOV9FGAm5QSYzCGJ8aYupbK6CCIpJRQFoM6DATjBBHGWF3JPM+ramhYgRBKGhEhqNNtNVsRpKsN+j2E6NbWVrPZvHDhTc/nUuo8TzvtqNVqCSHrut7d3c+zcmNjg62xyWTicH5wsJfnZV3Xs8kkSeIoig56/eXFTm8wiON4fX09y7KsKDDGolaO43S73SD0siz1fd9xmNG3s3FVVRVjDqXEEsS5a4zR1gDcTynVWo5GI85Zu92kDA8Gg6IokiThnIdhWNe167p5XmBE/VaQpSVCKAo8qMkms/Hpc2dXVhcuX36rP+y/+PLz4/G0u7D2yKMPXLx4fTYdTCaT555/rdlsZdNZVWcPv+ehlfXTg8GgqrOTpzauXLn01qU3er19zmWZV8bKyWSytrbebrfvbt9eW19ttmJZV2trq5PJZDgcMUZWVtZ6vV4YBQghY7Xnu3DdgNuGECLPyu/7/k8hRP7Df/gP73n08U9/+tNPPfXty2+9Wdc1IxTj+faZTtIjRgyUUkc6MNhKtanRXDs/FxvO/zyhCNlGo7G1s22tdVznKMOQcgaJbUYjCI1ot9umKjGxjh9IWRdFBnuqP+mlaep53mAwIJiZyICGFIjEQRAwxgxCUs4VndZapTVQgRA2juNAJU0pRdoSRjmniCJkUCVqx3HW1lYvXXrrzTcv+L5f1KU8ONjZ2WGMJUmSpjOoDVZWVl566SXP88Dde+4wYIxSqqpqhJDneRhj8FYG5iZCCJK14YCq6zrPc2SJ67rcnfM9CSFCSnIYEQOfMMYgYu7ovJJCzvnRhgFeD34LzaSJMQZfBXxo/azm8UFIaw3Rsq7rYDr/EVJKaSQsV6lqIdRsNut2u8roXq/fiJPxeFyK0vEbdVUoJaM44C5HxmqtZ7OsLOvJLGXMcbCTZfnm5uaZM6cxQXmeVpWwCiNtyrIMgsALg9lsRgjiDuWuawxinKFDgnkQBGk2TbMpMNM97AE7z/M8IeVw2G80GpTSdrclhc7zvCrKLC3m5wxClFIhFMYWLAERQoQwxhjRimICRCFYJEopMFqx1lJCjDFaqyzLijJzXbez0O12u0BGdrgH3sfXr98A7xRKaRzHjuMQToBSB8qGoqiiyMdmTgsAgg90+Hmec9dZWVuVUq6trO7u9Ywxo9HIcZzjx48Ph8Oqqjh3AA4+8jxhjGk955SBEMFIlU1nAEEKIZSSy8vLzWZTKcUcBupshA3MTa3VnuchgiHBOwi8KIpgER7yajVjLAqtlRIAzSNNtOd5RVUeEYveUScQYgw4OFMwwqaUH/G/MMbWmEM21jtaeIyx1tJabJFBlkqrsbEIg8iAGKNhd9RSJEly6tSpEuVAjs4m2WwyxdZ4njcbj9woWFxYkEphjAf9fm+/by1hnFR5SSxSSlHPh52ilGKM1rVCFGktgyDwAxfs8rZ3DrhnFxbo8vIKtjTPy+FgIqUgFGHEQFPYXWivH9vY29ne3d1lnCo1T/U0c48asFQ2cJr1er2qKo4dW2fM2d7edR2PsxDiZBA2ZVnOzUy1dF0X4hAppRAPkGcl5xzJI4cfCzlI1hpEsOM4dV1HURTHcZZlg8FAz8NddW9vXylJCAGUynGctKrQYeSptoYiI+oSExtHQej7VVWFkbu9d1dJs7S0xBghhFR5NRiMuu3uyy+99gN/4YcuvfX25/7Tf3nkkcfOnz87GAyUUo7LsEWnT58eD8ZhGB/fOPbyCy/PZuNHHnlkfXVta+vu7u6uFJoQBtlicRwnSbK5uck4K4oCXhsFv29sjVWc81a7XRuVpqkQVVUp2LvGmG63u7F+/Pbtu0Io8DTwPI+57JD0bwghdS0cx6GQku06ruvC2tZaF0VpreGc/8iP/MgDDzzwxhsXyrJcX18/ferM22+/jRACpwg0H3kqTAlYNGCMKWMIIYxpFEUIISlly2+XVfrMM0//h8/+qlICOjbXZdLqui6Wlpb6/YPZdHri+MaHvvuDL7zwwng8/fCHP/zlL3+51+tRRt77vvf/xb/448tL61/84h9Mp+nZ++796le/euPmtVar1Wwm165dwxgvLCwEQcA5F7IejUZx4pelgd9uPOwJoebyFGNmsxmZO0HBckLAh/3Qhz4UhuHVq1fTdGqMcV1eFBUMYjnnwBWt62o2mzWbTYyxkUoaPZtNFhYWMLZggkwIk1IRq3q93nQ6PnHiRBw3tNagreTMLfKKEDqdzjAmnLtwwabZ9Pjx45CgPhgMMLE7Ozt7e3txGFHKMWJGWYxxHMdBEEqp0jTF2DoOo5QKWXY6jVu33/74Jz6sjT55av3LX/3db337qaWlJc/zxuMhIajZTPb39xEinHOCGSHCdX0ppc9DQojSc7seeujZBZUkdHOw3eCNBkaU43iD3tD3/SeeeOKF555/+umn79y5A5UAfCP4G1hrtTLWzvHE+c2oBcIcvsgYo9wBlUngR0Yqo4WS0lpCKS3KgnKytrZ26dIlxsni4mJRZNbY8Xg8GIyU1BhjIRQhZRjOHbEAMQCiOlzlUKvEcdxoNR2HF0V248bk4GAPGLIYHxVa9sh5SSoFD8H3/TiOMbazSQqiE7hG59RROp8xM8YcRmG2DeIMa7XR8+g2uK2MnfOXjUaUzqPw6rqWUiulMJnHPERRkCSJRdraueUFoP9zoitjURTVdZ0kHkjOOOdlWWutOWOc87quHGduVXx0JVFKCZm7VRBCwNBj7lOhUavVms1mxhgYD4Rh2Ol0MDJKqePHj7c6zdXVldF4QAhptVoH/X6v10vTlBBKCEMYDDSkw12lIRgDU0o5d9GhxxpsuiTxGGOM8SzLRK0oo0DRJYRgTEAYBK9WkBpuf2NMFEVlWR1Gmwh8KCxGCBk1tzEpy1JbxTkd9/urx4499thj58+fv//+81tbWwihb3/7W9evXxOiBoI2xth1o9OnT4MhG+ccsoU3N++Yw2zqq1evPPnk1w4ODrrdrutycOeA5j0IgjzPtdZKlbPZDCEExkRHLzgMQ9d1J+Ox1hr0TK7rVlXRaseEzEUkjIEFonP0LgBUcrR4prNxd2kxnUzzPD96hvBT3MMEdYTmvihQzcI/j3jxaZqCsfg77isYu4cfSZJA5KA5NN2GagSO7jiOVT33KqiqyhjFOZ/ORJIkQejhww7ZYsgktJjM59FGv2PkzxgjiihspJSD/kgpgy3pthZ3NvdmVytWlGXo+5ZabPXe/p42tUVyPBwGMfcDZ3PzzlPf/NqwN/Z9X5QmjuPRaBRF0fve9z7fR1U979IpJUdRgUfcsXdSAf9b7TqQ4TGhaZYzxrrdLjyy6WTQGw6iKDHGnD598sSJ4wcHfYRQXZfffvqp2Wz8Qz/4/Xfv3t3e3nYchqw+e/ZsVZeyrmpRDgaD5eXlk6eO37l7dzrLHc8Rotre3o7DRBsjpZ1OU43lsWhjdfXYyy8/v3+ws7S05HtOnud1LTCmrhcYi62Zm+tvbm4uLS+cPHmyKIoomlswA5MLvFqUUghZzhmobw6PbM05RQhLWSdJnOd5nqdK8eMnjimlzp49O5lMwBzdWluU01k69HxalhVlGCNMjKGMI2QwpmUhpdRII8aYNnJ3d3f/QJ85c9oPXCEwQoZz7vlOXWmMIEDWHDt2rNfbf/rpp8/ce7rT6SJkb9y4MZ2NG4340z/8w4Ne78IbbwqhZtNCKe1wr67r4XDoehwErdZQ13GEUEJIztxGM65K9dbFqzeu36rqbDqdVSWucxE3A9+L6kprU3meRxAjhFRVWdfVyupSu93u9XoImVarVVUV5B6UZU4pphi12onrLMZxvLm5nWUppbSuBUg1oXxUSk1n41qUxipttLXEGFPkVVUXDBMIkhJCGWQ5p8eOHRuNRnmeh2Fc1/XGxhrknNa1nM1SMFx3HEcIjZAxVrVazWPH1vM07fcPfD9ExMymxW//1hcWFjsf/9gnOQvG43FRvt1ut69eveoGYRj6xmLXCULHo5SXxQhaiNm0TGdZv99HCM1ms+FwSCmNoshoYNbUxpgkSbjH31nzGGH7Z+iW1iILVgCIwKbQUsPF4HE0HRdVVd13333Nbquqilt3bj762MNpOs3S6f7+zng4fPrpb41GI30YNNzv9zllpTFCKN/30zT9zd/8zZdeeuncuXPdxaWqyLe3dpMF5/Sp+4oyA2+WRqOxv9critwYw6jjOE4QulWV5TmJE380lE7Dnj693u22p+k0SaIoCeu6ZtSOR9O6rn3Xl1JrpSxGlDplMTfcxJhSj1prlxeXjm1sXLl6uSpqkFYd7A/6/UEYtLTWWgjmeqKWqFZLi8sf+eCHf+uB/3rj+k0TYCW0MQphrbXO6zphQRQHo9Hw4cce/fgnP9YbHBw/cYIxduvWLRBPSaUNNr7v1rU0RlGKyzJ3XTdwPFAMjUYjuLdA+kcIgfeRUkrIXAeEMZJSgiWltQYhTCklnFhtxuMxXCF5WSSJfzQhxBi7LrfWzmYzIWpMbCUEBCgrpabTaRTHADyhuTZNjUajNJuePH48z/Pr16+XlSCEhn7EuPfc89/RAuV5OZ1MkqTx/LPPRM2w1Wrt72/vH+wuLHQppbu7u81m0w/ctbW1drttrdVGJkmS5ynn3A+4EIIQRpmdZeOr19+mlCwuLzabbccl3YUWxnj77qYb0OHkYDTtLS6v7uzsf/vb3+52Vv/B3/+ftbYPPPTAW5fetBYTOge/hBAII4wpuMv1+/29vT1ikTEGLJXgKCOHgAui5Kg3tof2i0qZ3nCQJAlmdDKZtNtNjG1VGUtwEEeEkGmWJ0lzsL+HGX/rzUvt9mI6qy5dfPPkidOf/PhHf/d3v/jNb3z5U5/6VBK30tlgc/POxYsXNbKrKyfCKGo2W6BzhK4DtpjF76DF/40Az3dByX/OMQO/y7J5Dk//2e/FGIGUT2vtujTLxUH/IM9TazV26fOvvthdaDcWWoPJcL+3//zzz7aayU/8xE/cd999ly5dqory1q1bW5t3oyAo89yP/WazCb20qoW2xiqBMXUcBwwEoVLElEH1Juva9304Leu6DgLPdV1IA2eUc49LAS7J1FqJMX780UeeeO9j0+lIqlKbGiHX87zZNOMOnU6yMAznVbIhyDLOwvX1jfX1jYODwfb2bl3JyWRGCFtf31haWjVKl0UthDg4GCKEQkUocSi1rVbr2Mn1PM+VEq12Y3l1ZWdnd3dn33X9LCuSJPF933MJRo4x2BhjtcZYYoxd10MIlWWNMLIIayPD0K/rsqxyIA5bQ5Q0oGpPkqiqKkJRVVVJ0qgrPRxMm82W6zpVVVRV8dGPfWQ0GgzGBysry3EjHA37z724HcfxYDKejPMw7IwmO1/+0pPD0ayRdBYWFn7sx378w9/1XRKh3/jtL3oBe+XV53/7t369245+8id/4ktf+uLu9l7SiJRS169fu++++xBFUex0F9aLouodDA56O0Hguh7rLjRXVpYQQq++8sp0MkFk3qAGgee6PmMMIXP58uXpNB1NZr7vX7t2Y3d3FyPq+35dVlA0w1wHZI+Hsy6DMSJkHnd+BDqDlevR5kIIgaIMgoxgcQLjEtqVqqowwoRgcCWaTqdSyrW1tbque8MDxlg6nQ56PUxpHMdKCCklJWiWpXVVAfbtub7reHjOWEFH3SPgtkKIJElazSRNUyEMIUTUBSGkVjh0Hcqp1BJjVFQl5PJBtc05d13HIFuW1f333w+v+Yknnnj99dehp4XqCB1qAKG8hu6LIiK0MsZ4ngMFgzHGcRyMkdS6KgWU2r4xlDKEUJ7nlDOAqou6MtYgbaSUVhuErMEIHXaAruu6vmeMLsvySHE5nU4R6DYshhcAOKkxxlpjjLHaGKMZ82FsAO0lxxxjXBQFwrbdbmvdWFlZyoo8z/NGK+4sdOCdmkwmw+Ewy3MueBj53PUc7lnE/LDOs1rjmnNnPJumRc4cpxyUdS1d5htjBoPB2vr66urq4KBHCLGYMuZ4nqcNQlhFUbSw0MGY7uzsgEoXJhAIIcYIxo5Syhi9uLjo+/7u3l1jDKXc8xgRwmJiDLJWHVLGLPgGOtzBZG4dCEFYAEkgQCKItdYajMhcJUSjKJIqBouklZUV3/ezLEOWwIw2DIO6FoQ44OnsOI5GFmTdEOkMR6s5dMOIoggEtrBU7r33XnCHSLOiLEshBNjCXL58GSEUhiEhxFpXSokoAbpDVZWj0TRuJHHoc6ddVdXBwQFMFAAfh9LdD4LZbCaVUlKWVaWUshoOYayt4YQfjSscB7qGuQsQdI++71POZ7OZUgpR4jguzJMwJaCBresSIeM4DP5OhJi1+ggWt9aWZWkPiclsjhq847ejlDJGAVACEztYh0enAUQVYcaYRYSwIIjGgxEjRFT1bDIVVcUps9bWsorq5PSZ05Qzikmn3fJdL51MRVXCG+r7PiEUWlbGaC1KP/KbzcRxuEVaylpqoYz0Q8daM52kSBPGHIKdIAisocYYSuZkyaIo3nrr8mw2AckFpQzCqay1WltjLPyg6XSqjQT0M03zlZUVIdRoOKacE0om6URKySk+GmwLoYLA+r7POZdSO45DYgbzD2kkZZTMcc93wn7h5AEzDahbpJS6ro0WjDHuUKQ9yhmhFJiSZV5wghtRYIyKeYAocjhStrZEYWoZ5cxBo+lgv79LOW82m3HUMgbdvHn3n/3y/zGdThe7K0bZxaWO67Fer0cxEUKVZVnU1Ue/56Mu857+9rOO5xd5mWb5aDxz/UAIobQEUstoNDbGhGFEGAM0U2vtui547mGMKcN+4FLjSCm1lhjNE4MRQg8//BDnzptvvqmUoZQvLS3EzZa1FkRLIFYBybnW2nE8IaQ1wuEeZdgYo63FmDBGbt68+dWvfm13dzcMw6qqbt26VRTFeDwdDsdHGCWlzGID1xPn3CJijKmFILiCc1tWdVmWw2H/P//aZ9/33e+NEz9N097BZiNpVXXm8aTTalNGbty40ev1bt++GwZRWYgsK4QQLnavX7325hsXxsfS3/qt3zo46FutptPp8srisbXV2WxWlAUhxPO8JEnyPJ+Mp8sry2k6ppS2ml2tZbutRsMJTK3qujZaE0IajcZoPGg0GoNBH5YQnAOU0m63O51OAXwsy7Kqqna7TSk2BjxnzdGkE9clxng8HhtpQGVVFCXcX2VZgShhMpmkaRaGIaPOeDzVWhPEfC/Os1qbzFrLOGm1l1ZWlquqkKpmnM9mM1krIYSqbRiGnuuksxxjKoWNogbn2PMdrSnGyHFoVaXtTnTp8mv/2z/7xUcffXx3d/e5557jnEtZX716BQ5wzilCyFotNXIdF2NXKYMQwmQ+xgMRNtx3RwZT7DDWD5pEsH7SWsdh9MYbb/zqr/6q4zj9fv/y5cuQExh6vkb2CDo0BphTBEpThCzn1CB65F5FMRFCMOYYg4q0CMNwYaF1cHAAaBrhpNFK7rvvvjRPwZOKYpIWKUT2lcU7/mxSEih14BIH0wlADxljcD434mQ6nfZ6PSklYTQIAigSYP2DsT6Zz5IN7LJWq8UYsdZGUZRlmbV2ZWUljKNerwejXPjLk0bTC/yiyJrNJIj8six9J6Cc1XWZ5/nq6qrjOFVV9fr7BB8m/SA0Z7nK2lqM5+4HmHOOiYUrFASOUL/BvTAej+u6fvDBB7/ne77n7t273/nOs0cHtdFgkoCFmCOYUENSigEEZtSxBitpHE60UloryIYlhDBOECbcoZ1uy/O8LMsYAQ4fgpgiSrjS4saNGwcHB9Pp1PP806fvgeA4YPspIYwxURQqpTinWmuEjVbwFrAoiqzFjuNobTzPM6bwfR/mvmC1Qel86xHClFIAAYPWDahO0IbPC2BjGWOEYYxxVVXcoffec+be++5Ls+n58+eNMWHkOw49d+6+p59++s6dW9ZqIaosE74fwk8cDocIIeAvlkWtta6KHIqTKIl7vd5sNkmSCLKajo443/ch+K2upeuyo7+kLGpKqed51trV1dW6rvf39mDjQByd4zCMrahV0ogQQsiSMIgZY9PpdDKZSAkJrvNHDUOL3d1dc+iYB9UORDUc8ksczhm0DIA1e5xVVYUxvfe+e4bDYVmWdV1DnWaODP2QAbccsF45XGDmqOqwWnu+PxmOOIc0VIMQ4g6lFPuuSykihEqpGXUQNsZgpQWZJytgghnl1MIA3BiNNMOYYGYMyrKCa+fkyTMWi+3d3cQ22XTST2dE1iVCpipzz3Nv3bre6+/mxZRSdP3a23t7e1pYSlxK0d72Xmtx7zOf+Yy1dn8/azYji5BShjEyb9rf1dUDTezIPeD/GqFmDFJC5Xm+urqWJJDnUJfFzPM8pUSjmaytrlsI15oYa5W1uiiz73znO1978muWWM9zHn/88evXLud5XlWFw2mz2bxx40aj2ayqKoj8JImqisRxiBCOouhOf4dS+n3f/31CVHlWIkRarU63u1gUWbPZFrWKogih+bxlNBqBoczOzg4Uf0kSwdsMx64xiFFnTvjXenV1dW1tbTweP/DA+Rs3bvb29mGAdu+99zoOG4/HSsvV1VWtNWSzrK+vgzfWrBhzzt/3/sdu3769vbWvlLQIMeaDoKOq6ps3bgNnxxBEqMHYOi5rNBppOq3rKo5D3/cP9vt1rSila2sbH/zgB5966imt5Q//0I+2Wq3f+u1fPxqSEEL29/dbrZbjeNfKGwayqAgGRAmshz3uWYwZw9ZgxhglPE0zUZssnQpZce7t7Q48FvhuImoFJw40wUHgQ5BuFEWEkLou2+328tpylmVVVe3v749nk088+AlZ52+++VaSNOu6quvScTwpDTxhqG5hKA1gCqWUEpjk2KqqpNTKCkppp9PZ2NjIyqKu61qUmFjKsJDV4tICUFmPHz8+Go0mk0kUR2VZWQRhLEpKWRTFzZu3u912lDRnsxmjYRw1+/2hMeYv/fRfOXf+oX5v+uuf+69vXry8tnp8YXnpwQcfZNx1Xa+spYGCWFbj0SDLCuD4MMbKQ6t4gLYtRnD0E0IO5feHW+Bd4n3YAkdzGoQPQ4cQIhbVtXVdd+PEeqPTbHZbg1H/kcfekzTCfv/AGjWdnnzx+edkraBuBrhhPB47jEO8red5vV5va3MnjuN2uz2bzW7evCmULnL11sWrQlbHjq13us0oiBFCDvfyvJzNZkJWQRAUZTYc9T/2sY898dhjr772clWndzYnmFjmYMen2qjOQns2mxFlhKgRshhTxh2tzHSSIQTHtPWIu7Ky0ul0srTQ0jSbnaIoRsOZEubc2Ydms3ywP8CYBkEARKF//L/84v333//Ga29gQghhw2EfjlRCsFS1tLzTaHKHUEqffe47i0sLf+fv/J1Wq/Uv/+W//O3f/m2tNaQlUEodz1HKSiOZyzSWyFjOmdY6zzO4wGBaCwvsiJs8mUy01p7nGQv5GIRbdGhrZUshZCl837/n3jM3b96E6wrqKs4pYwwTC8wp3/eZKIuCAHem0WiY+fyJAxNEa00pLvLq7bevxnEURZGspZCV5wWBHzOCdvp7ola/+3uff/mFFz/72c/i3ASBt7q66gdOWeaNZpxl2cWLF1ZX1x3HyYuUUhqG/sbGWr/f831/dXXtxRdfcFy+cfyY1kKImlA0S8daK875eDoQVc09qlA9zUdn7j1x0JsdHBz8wR988YXnX5ml6Wd+4qc2t+5cvXYZEytkBd0yY1RoBaXkUUujkXVBs28qZImxiuJ5PDFl9IgQXc8NnS2mpC7L0WhAKZVSAHYABRMMq0ej0cLCwk//9M/+zu/8zr333r+0uOK67pkzZ27euLa02H3owXNpmmbpKAndG1u3L1y4EET+448+evzUg4QQCFxCiDAH6mb0zix2Tgt7hy46/8qfu6oOKc9zYPrPXFXYHjpvvPtbMEaTSbq/n3OHBp7PCB6M+s+/8sKdW7eXlhcoQnVV3Hvf6Q9++IPXr17hnH7jG1/nFHfbzT/8/derUqytrXWSphvjSpQaniolrVZLKYUxNUqXZc0558xRxmqtrcHGKK1UXhZgY1rXJdjVWYv0oStfWdTWWs5dxpQxptcbfOlPv/Lwe857Pt3b26OUCCGEkA4PWq1mr9fvtJf39/fLAnueRzDWWr/00iu3bt1S0nS7i8vLq/v7B72DQbvdvnPnTqvZtJZkad1uNxHh/eEsCF1MTBC6RZElSdBsto1BrVZra3NnNpsx5uR56bn+7u5+VVVxGHmhB1ieUkqqUspaakUIQZpSSqUqCUUUzVPLHO5B/QrFfVEUg8Ho0z/4wydP3vNbv/n52Sw7c+YM5+zll1/M8uzSpYuj0eDSzdr3/fWNtcXFhe7S4tmzZ198/hXHYdxBf/yHn/+5/9svFJX5/O/83l/76z/z6AOP7gwPnn3pjUpUP/CD388I/drX//S73v+Y59ooShhzlhZXnnjiidFoWBTZ/mD3zp2bjWaMLNGmXlxZXF9ZDcO4KovBoH/z5k0h5OLKYqvZ2dnZk1IzxrSWEFBDKf+H//AffuH3fl9r++KLL/q+L7TyKGu1WtZagD8ow4RwdGgqh8BdF2NAkxFCopYYz3FnMKK1hxkslFJMCZ8H3Wjg4EBZQiklCMM9iTEuy5JifOPa28eOHXvsofe8duGNPM0MsmEYGq2llIEfQZNJMVFKNRoNnjjwjQBcQhenrYHLGiEU+sEh1kC1lkpLSriRwvFaPvURQr7vS1VrpLgzp+pYazElFBPPc+u6/vEf//HXX3/9K1/5Chj5Aa/KHnqJBkHQ7S7Udb23t8cYw8ZSbbWSEL1iLTLGGmOlFHD5YowZ48ZYpWprLeU0cF17mKNirXUYM8YQjKExgMeLMfbDwPd9pSRAotB4V1VJKXNdV6m52oVSCgAfQohzTqit67qoc8IxpZRQRCh3XRdTaozpdBaTRqS1xphEYdLtLGbFkDKrpJFaNVpJEPkgqc6LIghjyozjuevr69NJPpnMpFBFoabTaaMZzfKMMaaMrIRcXdoQshqNRsx1mMurqvJ9HyGCkCmKQmvd6XSsVZTiqlCu67IQ0mgFLB6lhMWsqqper2eRwhg7DgQaOHVdV0JoIS2yURQBg6ksq6qqCcGO42RZ5vlzyQukgC4sLHhucHBwwBirqhJ4YYyTqsLj8RgUgWmaOo5TV3I6ncZxHASBlIpz5vs+wECWzIk2VVVNJhNCyGQyQQgvLCxEfgC5UoBiB0FzOknBo1apA5BEwNG3v78Pr9kYgzGJ4xgzCpm0IHZucw6Dh431VaP1Qa+XZalSamVlxQ/cWpSY4CgOgiDQyo7ZuNfr16XyfTduNKA9A2QKCmZwtgXq0xHXpCiKuq4JZ2BhCbTlIAjSND3yToVGERo/AIMAHymKCnzMCUV87k1oKHXCMNRaz2YTY+AW1pQ6jBHwMdfGHvKYGJiH6EMhcL8/nE1mxhirNNKWIlZXktKau7wsy93dXdflQojA98PII8ju7eyGQVxVFSPUWut5blVVxsyBm06nnTSiWTaV0gGKpes6ZV7mRVlklecFrhP4flhXWglhzXxUhhDKsgx07mmaUszrWuR5yRjBmCJLEMJa2bouMTGMIcbpbDbzvCAK4ywtmeMSirSRxCBESVVXRiqgpMD4amFhCY6UOAkxxqISRs3zJw2yhGCjDeAXWutKitl4AgsGABeOMZxmymjEuDZGG+v7vtLaC3xrtSXWGsMZ1kbKWlgwRWXUIlPXNeduEATaoul0dvv2ndFolKXl3u7B2bNnq6ra3t4ej/tKCCl0s9leWVkTQj76yOP/8//yj7fubJ6+576vfuUrZ86ceeqpp3rDgbXG9/2NYxvj8RgMnTHGiBAiJXM4MywIgrquPd81Vod+gDHa2trMa+ly1u12hawdhy0uLgZBMJlMbt26LaX0/VAoEzcbURRMp1OMLVArgiBot7thGG5vbxdlCYgJxthoxJhDkTYYMcb+3b/793mee55njBn0R66bw249sseFZygPVf8YYymNlFJLPRMpZbgoaVXlpcwxxr7vIa2sZdjKn/mZv6S1/v3f+6INXM4dAKWn09T3fS3lzWvXrdLNJBlNJlVV/cmf/Mn21oE1tKqEqIr3vOehdrvteQ6l9ObNm4SQ1eU1UcnrV2/Uomw1m0VWOo4zGAx931tYWIijRr/f73YXNje3+/1+nCS+7zcajY2NDYxRmqZBELz55ptaa8Z4ns/a7TYhpN3ujsfjvb09MN49kq8dcWmVokEQUMp7vX6aTqy1AAgUosKIMurOZqnRKE1TrXCe1aPRZGlpKYmSoij29nYxxkHoMEwYIdvbm5Rhxojn+AThhYWFIq/6/QHnHkbSGCOlCALcOxh4nlfkVRj50+nEdV1C0GTa/9jHPvbkk0+++vpzCGPXSRaTRaFqZSQm2hiTpYXnOUDxLsuCcwdjSwgyxhxaAM9z3uAUhRYJwHcAZOu6hpO81WopI0+dOqW1fvXlVzCmYRhXVaWFJITUSup5+Cc3dq7k0Eq8ezoOUBpBc5EQpbyuJTY2z8uqElJqa5W11mDT6XQmk8l+f3c0GjWbCSO0KIooYoHnZ7OsKAqMqTHG85oLCwtFUezt7Wk9t5KAKwDmENZaiCEBt64gCIAmiLEB2rJSihI+r6PeQbFrjB1wOQvjiLvMdXlZ5sYoIaowXCyKghCEiBWiAisPwIIIso5LGPebrcT3vTAMWcbyPIbD31qLLYHfEZ6PQUAnxxjjw1w7aq1VCkSfGFDCIAi++7u/+6GHHjo4OLh+/TrYB8P8EWPs89BxHCmnkDmEEMJ4nnIBRyW8rUeRIUdDO4AdQf0zm81ms5nD+PLyojEmy7KbNzN4Qw96e5TSKEwee+yxMIy2t7fhJVmkGXOUAqcLW5bC8x2t52UY5wwwNAD9lVJJkhily0poazh34C8/os1ijCFDCKoLcxgjjDHGFnHKzKHYiFIahB7nnDHSbCXdhWaaTq9cuXTq1KmrVy9NJrPNzc3JdCClFrKK44aUEni4+/v7c3WCMZDoWIv0EFBuS1Vxh3meC6MmIQRnzuE42cAo1BgEt39d13lWwj3CGBuPx7PZbDqdQmUOlzvcm/CCOefdbvfkyZNRFH3pS18aDAZJ0oRZOGMO53xvb284HMJdD00xsQiem7Vaa+26PjA8CCEME2RR4HplWWptfd+HEQhCCKJljqgYGGNjbJqm9lDeB9QKeAjmkOZcliWUIpRiQhEhBBkTBYHnEEKo1IgSrrXV2mBsEZoTy4zRBDOMMTZWQoFNtUZca2MIUkK7lgZufH3z8n5v6OkWm6WTMPSVrrSUQejevn17e+fOuXP3f+vb30jTKWMOw8wiYzXRysRxo9vt1nWdZTXnNAiCOCGHfe47Lf28ewdA7V39+bv1y4CyGWMajYbvu2VpCMF7e3vaGuZw3/eLrGScWmuHw4GQle/yM2fueeXVF1964Tv7+3tSiHMPPtDtdi9eLPM8T5IIVDC9/nBza2dlZeVn/srPjsfDL3/lT8IwRohUuWi2Gr/y//nXu/t7//Sf/lPKUBB4y0sr1iLPC3zfj4JwNsuAVqO1lrJWSjQajW6nk6aplJIxekS6oZR3uy1rMHguw3CVUgqF+OrqSpUXgJ9OJqNWq0Uo1kJD9O3du/t1LTudzv7+vjUobHJMTJpNVteW2u32qy++4XiB1lJrbS0ihOR5wagjhNBSOo5rqd3c3EySaDDoB0HQaDSgo4tjJ88qIarnnnvugQceOH369Msvv3r+/PnJZOJ5ntFoMBhduPAmtrjRaDzxxPsWF5dfe/VCWdSYUHQoDSjLgnFqlaGMGoRgGKKVNRpbSxj1OXMQQgRzg5HnOQQzRCpIjYA5TxQHGOODgz3OeSWr3d3duq7jODp16mSapteuXXM5Pjg4qGuppHZdl1JWV9IYa5T1PF8qZYxyXdf3/UMOEWTES4So53lGibIsIcDBDVzO6e7ubpqmrutijOo6LEt7/fpBt9vV2na6DYKZtTrLCowdKQU6zCq9fv1ms9n0fd/hbi3KJElGk/Fv/85//bt/Z5Uxt9FKfvAHf6C9sHDy5ElE7PUbVzqdBcKcVqvt82B/f78iJM9L13UfOHuOc57nZVEUEKDBmRMFoQnw/KB8F9SFENIWIXwIOoN/+REB8/Bfep49ii1C2thaiFpWnucwl33nuedefP5Z12H9/b2XXn6RoLkhHcLGlBohNMlyGJk4jlMURRiGS0tLb154Cw6pMIhlVVZIGoL7vXGe5xsb66EfYUKsxZw7o9HIGjydpPCUuouLrheMxpOFhYWiKre3d+/e3fI8h1DEOSPE49Tx/RAjFsWtvb2D7e1txgycrQudbqfT2TvYu3jxIsxjrEVK6DyrGwkp0kwIEQQR6II/+MHvGQx63/rW09PpeG1t7ez5e42W29vbUZi4rhOGywgZz/PO3H9mNJlWdflzP/dzrXbzlZdfuXTpUqfToZRnRd5sNvM8V0IibKy1dS2CwG+1mtPp1Nq56sT3fc6d4XC0srIClTfGyHGcZrN5KKrVGGMIWeZkPkohBME1U5Z5FAWTiThic3AH+4ELlY0xuqiruUyGcEqoE7owJq3rGrhIcJEYLYuiyPPCcXxKuYcdQhhEjgwGo49++COLi91Lly56niNEpZRaXOoyRtOUYGLD0B+NRqPRYGVlBaqfyaQ+ONiXUpZlube3L6V0PI60LsuKccypK5VKmrGSklC7sNyBxi+KvGY7mczKkyeP7+2P4iT8q3/1r1+7du355597//vfyxm7evnKwcEBQiiO41pJi+xchgi6ZjMXys07cIMBzYEq6rDnn5d9UNzEcVjXtUGWMDrLUqBPUs6UVJxzY9D16zf/h7/xt773k9//rWe+s7y88lN/+S/9+E/85NPfeebZZ589cey4lOVkNFxZWtzcvHPPPafOnz9/6tSpQmKEkJKIUkII0kdGzBgh+w7WfHQrvcMDO7yw/nzYwJ/9OPq/FgQIh3sZzB+UUsPhENL1fN+lmHHOP/yRD73wwvPNJDp+fKOqCqNEnmZPfu1rd+7cufeeMztb20bpe8+cEUKcueeeaTU4ODgYj0bdbjcIAiOV1rbT6UDGRRhEFiNdCYwxZUxKyRwsRJXnIBO2xmBwMQqCoNtdLMuyyGqEMNCaMNZbm/sf/ND7y0K+/vprx0+sTKfjyWSslF5cWA0Db2PjOMGMMaeqaq0rz/P29/ezrGi3274Xcu4eHPSiKDLabG/vtlqdXq9XFEUUhHHcGI3GhJDVlQj0MUWZj0ajra0dSrnnhsvLy2laFnlJMBVCSCE458CZQggZozinYRgEYddx3fF4PJlMtBaEzCOnpdBSaCUrbUQQBMYoIQwoJ9rttus61mop66e/8604jBA2xphrN2599KMfVbj8zE9/5uBg7+WXXw4j/76zD926uXPx4qXZtPrIRz5+/NhG0uiOx5Nr1671h+PJZLa8fs/HP/a9DRc/+c1nl5cXNzbWfvM3/uNoNFpYWKpLcfvmHUQsQpYSPplMq7oIgkAKferU8cXFpek0zYdpnueu666trWFMQGdjLXYdDxQVoNx68OFH7mxu//GffgkRTAhJ09RpNcI4Sqcz0LLMa9+6xogerdGjahsh5Pse1JqH8xIMn3DOldEUGjmKHGeeGgftk+d5eVZqO6c5KKUwRtkszWZpXddVXiRJopSihGqMAWs+6jOFkHlZYouOwBrox5TRwD0BgsNoNKrrGpwZNFQtWnPXMVa5rhviEA5AznlZlpThKq8c5Bk0x8jqun755Zff//73u647GAzALwV0JEdkK1A1wm8NclTgimqtGSEIGSOVlIoxRuk8tPDoATJOGCdCiFrVhFDgDmFjoYc5qrJgs1dVZYwGb2j4IiOUEAo/HSiQQM2mDicEOS7TQgIJrqoKxhhjDhx39pBgPhyMg9BjjFV13e/3pc4QWDxjjAhGiCRJsrGxATBlOp05jhfHCWOEEMM4Vkbs7O0sLj/c7bb393t+4ne6LSGqb3/724zz48c3RqMRxBAZmLY6DCFTlrlSxmHc+O4hTwcJIdI0hQiNrMh3d3fLsnQc1mw2pVCVhjSwudbVITT0fKVUUQtD4CTHhGjGmKiVRRpaVqAnD0d9e+iuGASB63EppeOwRiPO8/zatWvggQN3n+/7w+GwrispCRBOjTGEMs69qipgTOJ5AcbY9wPP8yzBpagNRpZgN/Cpw6XWszwbTydBEHrMg2UZReFsNgM6CKKEECrmKT1EKVmJenFxMUkiUdWzLJ1MJrNZVpWl0vr8+fOrq6t5kUqtEUJa6yiK6lrWSnaQ9ajn+77v+wBYAFgPLeiRngBExEqpNM2rLEUI+Z4HtSuAULDUAZUAUS18YowxBmktoHkDO1E71wPN852A+auUOOrMD5XrGCFDCLGcoUN5rMHEGmsMYowqZQaDAWFMiMoo4zKurSaEWjMHlfI8rypcliXptALXM0bFcZjOCs65tRphZJF2XVeq2mDT6bRc190/OJilkySJqqr0An82m1WFrOuaEm5NraRlzPF9n4VhlhZgOUgwoVRhTLS2juPVlVLSCKEQYhhhYzQl3BhkDXZdj1BDCGHMGYxGCGHMqLHKKAQd1pwhbm1Z18Qiz/PAEo1zDgeF63GHObUUMJnDh/mrGlmH86IsHWuk0RCUF0URxoQSZA0ilFhFlLUwcAUszw9czohSCltdFAITa63hge+4XlVVWZYxyvO6UEq1FxY9L9jf2e/1elEUeNzNZrO6LmVdZnmZ53nkRw888MDNm7cno4nDg8uXLz/xxHvjqPHEE08sLS3d2by9s7clha5k2e8PrbV5XiJkQKp1NJmQRlOHWWFarRa2yGBUlqUQElu3nB8+LEmSdrt95crVvYODOG4YhBgnk8lYazUYDIHLTMg8ZX1tfd1x3atXr2ZZNt+GhMBBh4whhIDshjGm5NzrbzQaAaRlDDjdW0BjucvApgZjqmUNeITRyCirlHZdl3HH87ydnT3HYWfP3ffEY+99/vnn2+3u/u5obW2tzNN0OvM81yDCmctcR0ppjFrodJqNhhTWoSxutibjmdNMOp1OlmUHBwdaqmyWNxoNGEfNZrM8z3d2duI4mk3SNJs2Gg2+vsiYs7q6GgRhmuZwPnDOEaZ1Xa+vbwyHAyEEMNLeeuutPM+63UVgwMRxzDnf3d2FUj8MQwDvYCbEmAOlznd94L6Dg4Pt7d0jgAzSlcpMKKV8N7AajcYTIcTgYFSkQinlcN/1uOsyKB0ZRVpqozAyGGMaRw2j6epKQAgzxs5mU0adCosqlwhNPd8p8+qBBx64e/d2FAd7ezuvv/6q53EvcHzfbybLSikhJEJGKFFXwnEZZT4paq0tIWw8HPte2Gq1ALsA7iSl1Np5rQ7g4+GtPX9bgeEbRVFW5GfPni/zoixriPhWtQBON8aYUg5cVDgbjTEYQ2zjPGHY5c4hDVkZg6B2jfxASpnOckqpRdpgtLS0IIS48vblosoRMlpLLRUhRFQ1MM/g9jEa7e3tAZILIxCErFJKCAUTYmvtcDg+rBw4HBdSSghThfJDKeW5EHwiHMd5+OGH8zy/c+eWMSbP88ALj1LN87IAOdfp06dhvdWiqqpKKmGMIZT6vlfXQoiq2Wz6/vw+ooeaGCk1I2A/q48ugloKzqnrumEYQliC1rKqqrqusixbXl6GiGnIORwOh3/0x39QFEWz0ZZSaA0kZSbVXLZYVZWU9dH8FT6BJ2+OhJKHH0opY82RQMd13cXFxSJLy7LkroMxPrJmooRXZdVI+HQ6HQ5HlM51rq1WC1lnf3/XYso4b7XBOkYIIYzRnhcvLCzsbO+l6XRxcbnT6ezt7SFNKOHYKkKplFII+W7bEEhIhutPSun7Pshx4B3HGENtJoSgBjPG0jS9ePFCXZdlVQghhqMevKHW4mYzcRwnz5PxeAp1MljuAKwENB0AzbVRnu9OZ5MgCFyXe56TpqlSAnillLCyrJVSSkiMCLbIGgOFvecGVVXVdb2ysiKEuHv3LlhewFIEgJRSrJTq9/u+70N6J3R2Gxsb7XZXaw0TrP39/Z2dHTjt4agxxoiyOpwKcEIsIQQOWzh4XdeN43hlZWU4HD7wwAPn7j8La3I4HEoJxiPzRhd2x9HuVuqICokPNyl2XU4IMUaFkS+lOHPPKd/3R6NBmc8YYTKvMXJrBfZTYE8376VhNGKVtkgTQqSokSVCSuHUSuiQOLdubg7x1HdimzL25utvPPzwg9PZeHvrzsbGxs7m3QuvvR54zuCg3+12Wo3GcH+EtFUalVkW+I12q7O3t7e0tABSXyHIu9v3o+Ycz1/NOyyxP8duphRZi1zOPc9Ram5KuLy8nFWzLC1EVeVFwRjjnDWSxA8X03T80AMP3Hzs0S9u3trY2HjkkYcppX/6lS8X6aCuy7Kkcdzo9QaUOI0k+shHv/fK5RvXb13zw8RxaT5LbcCbOHrmO9/62pNf9wMnCLx7771HKXXQ27fWGpOnaTocDmUtoEiK4qDVbiRJ4lC/1WpNJhOEUF2XWZbBkMpxnNk0g6plMpn0+31jDPjDLi0t1bW4c/MW5/zmzZuMsVa7ubCwIKXs9w+m0ynGVAjhuT5CiDEUBB5CNo7DdoOPTh3b2x0gzLWywJDiDoPJTFmWSkmMbZZlw2G/1WqCo5Dn+Z7vWEOD0NNa93r7WZbdvXu3LMs7d+5QymazWV2Xq2vLP/ADP7C5ufnKiy998YtfRIjked5ut4u8qpUEkUKz2SrSjDFGMMEeFcJCh08IYdQxxhiNrMXCKowxpagSFWXmSHGf53lZ5Yyx8XikrFlY6FRVRSnJsowyvLq2fHBwcPXqHcYcaxDG1PedulK+F5VFgTDy3IBxDcUrZw6cdFLU4NlnrYVhLCFkMhm5rrvgLi0uLmittFZS1Yyy/YNdh3uNRlIUOWOcEBLGfhR346ScjGcYE2PQYDB48MGHfuEX/kel1Fe+8pUgDD/y0Q9//vOf55xvbm7+//79r373d334p37qM4iy3Z396XS0sLRc1fnFi9uNRsu9775UiSgOEEIW6eWFpSDkda2KIguCYDkJlUWihmMR4o8QQsiad8Yw8y2AkbF/ZmvAVy2yDsWEgZIXaWwZx2Hk98fSj/zxeLS7tz0c9vNsVpdFFEVFllJCGcVWG7Cl29zcttaGYfjEE08MBoOtO3fb7falS5fgTAnDMElanLPRbNBuBSeOn7p2/TImZDgcuq4bBNFoOFtaCldXj43H4/EovX1razopMHFPnLx3a2tr7+BAG+t7zrGN9cB3Z7PJ4kJ3OplNJrNefyvNUu4gbFmSxNbanZ2d7e3tqiqlVAih/d3eQnfJaDKb5cXspj6MRoTI9QsXLpw6der06dOLi4u93v5kOsrLnLvccWiSRKtry57nvfjCy1VV1VKdP3/+R3/wR29v3/7lX/7lmzdvrqyscU663e6JEycuXHgdEcs5xxbBy8BWd9vNsqynaSqEIIQ2Gs2lpaXBYIDntrkesJXjOAyCYGtz31pbliVIXSgCDTLjnGNsgTsGaCNCpCiKdmex2+1CYYGQzbKMUur7oRCVlDKkYRzHxpg4jpNGNB6PpbCu6yohpdBSyvFo6rp+HMd5Vgz6442NjaooH3jg3C//r//ki1/8YqPRCOLIWDUYKN93m60EuJDHjx/3fX97exsGs2EYXrlyGT6pa+m6Xp6XURQ0m22MrbY6TdN+v9/pdDaOHZtNp/1+nzFWCfnSKy+7rJEkzcFweuPG28+/8Eyr2eGcTmfj0A86nVaapjBCazQaZZWD5AeqanBHrevaHFpMzlGeeVCngIaEM/eobXZd7njg7aVgAgz72mJUlnW73cYYv/DyK3v7+5Mse+3ihe+bfTpJkg995MOtbufF555/+9rVRqPBbvLJZHLu3LlWq6O1rWvjOBSTuVDAHgLB2r6DK79zKx1Bz4fTnXdfSe9mN2P0jgj3z+HR8J9aI8dBS0vdssz3D3aHw4FSYnd3dzDZ6+/sbN28PfDdg60tRvCD589+4mMf+eaTT50/e+7cuXO//uu/2Wp1oNZcWlqa3OmXZZkkycLCQpIko/5ge3vX9/3ZNBuNRoEfKmOB54spIHQV4xRhK4SASbhWijESRVEQBAd7vdFo4rousoQxJoWOo5as8KuvvHTq9AZnIUbZxvqJlZU13w9ffOFlpWy3s0wIBdZDXck8G8aNpNVqGWPevnKl2Ww3Gg3X8QeDAcxU6ro2SO8fHHDOlZTj8dQYk/dHwBji3N3f71EiGaVGSc6otQjYCgBHTiaTRqOBMfJ9b219xfddg7TSVXehWdeSEDIcTK1FGNGqqlzXh2pMa2OtTeLmPffc88KLz62vr4cxOxkuU8K3t3eXlpbvueeetdWNkydPejH/9Cc+81tf/I1r17Z7/f26xn//f/p7zz7zzNe/+uTBXu+X/skvRXHnZ37mb9Qabe7u15X+4JnzsYv3h8W3n3n6zp07v719sxaVMYY6HGOSzjKphevxbndRmzorUkrrdqt79+7dNM0IYYPRaKm79J73PPrUU98yGp0790C3u3zhjTcxYow5GPG1jWMraxtf+MIXXn39Dd/3/9pf+2vffupbN27cEEJsbW1RjFzXdRxGaQhgClwH1hDoEI7okJzN/drw4QgFFP2z2QwKdLDbgk4YgGmEUJ7nRiNQmG6srbuuu7+9hRCaTqdvvPEGzKqzsjDGOJxbgyHuRkpZ1wJaRGTsYT3qWoxELRBCoIufYxOEnj179tixYxcuXBiPx8eOr5d1BS6BcAjMZjP/0K2vKuZe5A51oeRN0/SVV145efIkQuh7v/d7L1++vLu7myQJoNvwGra3t2GgAr86oXNv3EMsniilGWYMM6WUFJIQ5DgOxRgjDGANbDdCCMZUa+07rjEGBr3QV0PyobUWYwSjWRhe1mWF0By/dlx2aOuBrdVKWaUFRRgg1MOmTiFEECIE4zzP8zzHxLqZC2is47ph5GdZJuoyiqLQD+u6xpa43JNUOCFvNZpKqboqGTNx5AshZllpjJqlk2a7MU1nXhAwzHc2D+7e3br3nvsYoXCYCyEc17fWEoyNMVmaaq05c9fW1hBC/X4f+qLxeKyUarebjThJSVZVFSHM8wKASOzhMQf9CfCMoGzAGCtrtH63F2cKW/727dv9fp9RB9Q8ENbEGPM8x3Xdnb39K1eu+L7vOE4YxISQvb29qqqgawKigOu6aM4nkpRihBA4wyKEQFsKP9RxXKWUEKLRaPh+UJaVUkozaxHxPEcjJI1Oi9z3fYKxtSbLslar1el2q7qExjLPs/FwZJAVQlDK4zjWxiwtLTmOczAoQPw0nU7LsoSZzuLiooMdqAfMO9bqHGRtdB4YRZUyWlfGGCWkMQZuQEo4wMoG2SIrsywD2yIoe0CgUFUV2KAB/oIPGfeMgKZ1TqQC9gC0oEe+KPAuUApQkSWWHE2nyGHGEcbWC3xGuKYgfSUIGSEE4S7EQjJ2qKu1hjHieDxGpNls1pUYjMYE4VqUBqMojIBwAAy1VqtR1zVGGCFMDOXYcbhjNcYOxYgmkQ/3PvBz67q2FimpkCV1LTFijHFoJTC2yBJ4VY7jaK3CKEDIIEJc7kipXYfXqkDGGmN9P3YcdrgSABEwnNOiKICxCHwC6jBEEOx6eCDKGmww/CcwMfXc3hRTSjDG1iJsMWOEEowpdOGGEuRQgpAJgujee+65efP6YDDwPBdphzJXixojx/PC4XBojFW18rjHubu6us4YEUL0+wcYmTjyFiKIDEn39/ezLBsMhyeOn1pYWiyqYv3E+quvvvpPfvmf9Pu9h9/z4Pb25mw2m+eRuC7M5+ZnPiVSSu65jNGynsN82FihFfyBLMvCMIyiwFr7xhtvQLFXVaKqqiAIYDdZa4zRBuiN1sL0CxhUIJFECB0BUoQQWUpKqSVYirnS1EjlUMcSa63VyMJDBlCGOXNlm5aaMQJ4ByG0qiqLVeKEBGNR6YceuvfkyROvvfrqv/o//78nTpxohJ0dMdm6c3cw6C0sdihlVSnCVkIpdbmTZtMiK7NZjgmL4xheGzK2yMrZJN3d3daHhpZ1LaMo3tg4fvv2TWuw7weTyfhjH/1Es9n82tf/FEZijUZzeXnZ9/3ZbOa5rlB1r9eDssdaWxQ5BDgZpQe9AWMcfuVWqy2l6vf7CGEp1XQ6C8PQWlTXIooipfQgHW1sHDeGFEXlchchrIQyCjFGvdDnnDuOWxa1VjPOfGvxbJJhjF3XUdK4LiWY1KKmjHPuQhUNITdFXoVh3Ol0q6KcjKaUEKuRlKooCjVQ/+Af/L3/x9/7B5/6ke+/cvnS8spirzeQsqac+X5gCaqVQBiNJ6P777+fELK5ueliN4mbQoiqEh943/uvXHm73xvC/A/U99ZaY6zWutFotFot4FrWdQnKY8/zwIWm3+87jvPqy6/AuoLbE+oQuGQRIjBas2h+n3KGlLEwG8YWaTzXfR4N1cBpUNQKAFBt5MLyguu6u7vbCFvCcLOZLC50bt++jS1P0xR+hNZWa00Jt9b0+0MERi7WQIAwIVYIAU6JcGJAewJHrjHoSIwCRYixCoZwZVkeHBwclU8IIYQNwaQsyziO7zt7f5qmzWZzY2PjwptvYIJgGAMkViB0J0kMFJyDgz1wTm81O8YYSrnVtTIW1NtQxRljAGv2PI87FLzXlLJKyXa7fe7cuXPnzj388MPf/OY3b9++/eUvf3kwGGgjT506BeXQcDiCq4RSiiyZq9nmLgcALFiYwx1R8oFMCVMT0DETQkCdY60NgqAq8sFg0F1cSJJkOp1aaz/wgQ8EQfDCCy/cuHEjTTNwLDx37hxcr8g643G/LIsw7FBOvMCVkkcoSpIEHsvpe06uLK9tbGzcunWn3+8LObfOMHr+KI68yxBCrutubGysr68/99xzVVXFcdxqtiaTCSwYKefO2sYYJU2n00mSaDwdlFVRVYXnOWUpLdKu6xFCOHdns4wxwjkVVq2vrydJYq0dj8dSSou0RTaMfM+nCKGsSD3PC+MA7nrArKFSzaq8qoTVYJzoM4attYxQqKvhMup2u1VVYYzLssQIwVwKklhh5QMGvb+/PxwOFxcXn3jiiZWVNUrplStXtra2pJSz2eTEiRPr6+vg46zB+M5oB+OjyQ1Y38CjgFqr0+nAM0ySZDabXbt2rd/vg1UONNfzjagUInOFAX5nSj6vfqGwAS626/pKi6XFbrvd1Fpyh3AalaUQQjSSBq6VlFJa8IyWxhitLbIEW2uRteArZw0MR5VSlDpIoXxW0pbLKCaIMc65UubC629cuXJ5fWPV40673f3qV74hRFWWdRSEGDlFOqtK224tIkuzPD3/wDljVLOZcM4QQkGAigIdLph3opYQcDnf9fHunt8YhIxlDBuDlNKcUyFUFHmW2DwrjUZwwUgp4zhEyGRZZqxcWFj4+Z//+bfeunjnzq2dnR3XdV3XIYxGYYIsbjYWdrfHSSMYD6sPfugDH/34J2/fuUaofvaZb9+9e1cb+Qd/+IUoTk6e3KjrejQezmazwWAAjwkoPNZaH6NGM8YYV1XBGPFcD7zYCGgnLPb9sN1uZ2kxm83KsppMppRSEOwjhA4ODt54441Op3vs2DEo4pVS49GEUtpsNieTmZSKEJNnBQoxxrgdtsMwiONQaxn43g/98F/4wu/80c52HyNWVRVCJoo7ruuABT7GGBFjjHnggQeCIJBSFEWhlK5rGYVRXau6kmEYSilGo8Hi4mJVVcPRFCGEEKlK8cwzz2KMJ2mWz3LPDUBXSAgJPR8h5FJ3ob2Au12tNTwZIUQQx4wxZEFbF8yHXchaa2uRg2EIkAsIIRbpPBdJkkRRZDDqdDp1XTsO93wnTdPxdKS1drifZZlWBUaUMa6VlVYgyzC2ZSkRsQgRKbUxlUUaYxwnPpzpcAcoWUHvV5T5aDRstZPuQnthsVPXdV3XaToty7quS7A0SpKYc37vvfdy7ly6dKUsyyhM7t7dOn78+IMPPqiV/c4zz23vbRZF8bf/9t/+jd/4jaKsrr59c3d/xJzw7NnzjUZDGe377gMPnLtw4YLWIop9UZGyLOqiVEptVXdGo34UxUoZhEGhQOHcCYiPGLL2v5s1BgT/I7SLEIQx0gZVhbAYcc4Zw0KIssotsYuLXUoJoY2HHnrgya99KZ1OGUFB4BAcKCHBRtBa2+l0ZrPZZDJbWVmJ43hra6sU9cUrF5ut5NTJe8IwfOGFFwhhfhSNbt86fvz4X/nZv/6tp5/69V//dYRQVRZCkscf/yAUr+fOHV9ZXe8PpkKiT37yE+/7wHd/9atfb7XXf/7nf06bWlT5t7/19TnGim2rnZR7+5ioRjOocqOVpQzHcUwImUyQtSUhjGA2maRSaJe6wL7RWldV4Tqe63Cp1Ntvv22t/fSnPz2ZjD77a/8+jEPPc2bZtBLl3v7ORz7ykbW1tclk0llYfPzxx3/3D3/3d/7r59++eIn5Pgi9Oee7u9vHjh0bT0bD4RBjHASe5/mc2pMnT1NKPS944823tra2gyBg1Nne2l1ZWVldXYBDPIqCoigow2fP3VeV4uDgYHd3H6LtGWOB6xyx8xIvMsZArYYQKqt8f38fsit930cYG2OFEIfBBgiqqLxI8yK99957d3d6nufxmGVZZgzyuEMI3Vg/8corr5RlPR3PMMaf/ex/zKYTz/MC38fEetxTSoJTpNICLhL4laHRyrIsSRLP86Io8tx4MBhgQmaTLE1tq93wfReHZDicOI4npez1ep7nWYO3Nnem02x1ua2UfOSRh6tKfeMbX2022xhjIbRRUtYSggGttbXURVFQwi2SlOL5cWTmLIYjOgNCSCMLwg64zFyHa60AkQFs2vE44GiMMQiVCv3A8V3GnLquX3nj9WPHjseN5M2Llz77n/7j/WfPnzp1qqzEQ48+YgkeTyeu668fO4kx1wopiT2PQOrm0VbSer6b/rucZftnsOY/ByUfffLnEGeE0LstNTBGVYVcF504cby70FZKjkajNE2HfX3pzYsY2/d94AP33XvPiy8+n06m23c3v++T3/vQQw9lRfl3/+7f3dzaefrpp7e3t7f3D3a2t8MgACccjzuj0UQpVeQVRogzRwh4ksTqSimltGWsXlxcC4IAMh8QIlUlrEFlme/s1EBTYowZjRBCnudZQ194/jXf59ffvtvb7//AD35flATXr1/fvLs3maRRmJRlGYYhiCRG2QgjRRCGWT1jbH19vSgKP3C73e7Vq1chtwAhZKwilHOHz7ICIUSpYwwpS5nn9Xg0DQIlhCqK0hgThrHjBFVVSFlZq4LQbzYbjLEg9BqNeH9/NyvyOI7zPG82mwiRrWKHUgZHupIg+iPWGqW074fpLF9cans+ffg99+/v716/fnNtvfvIex6VAk0n+X/53O/cf+4eY93Pfe4/S60ct5FmyiJnZXkj8JM3L1zKskKp7R/5i+KjH/vYlRtbo0mmpL21PfvjP/p9QogfOHUxEaLwHFpVxc7W9tLSUrPdHE+Gk7vj7mJndWV9e+duLfattrNZ5jo+5+6N23c2d3a3traQJYx53c4CpXwyzjqdrlJiZ2en2WwvL68ihE6cOLG4uNhst5aWlpYWOleuXDniCDcacZ6XgAtjjC22CJGjUhVjLGtBOQMjAnDcTtO0qiqQiyKEtNaEztWj8BWYBjncg4bQYnTQ7+Vlsb6+3ul0er1eo9HoDQfwvcBfM3M4mxCELcJCShgLOY4D46UjSw10yO6s6zqOY6CoNBqJMWZ5eVkptbu7WwkBzWer0aiqKp3OHMcxGimlqqI0yDLGELbGmF/7tV8Lw/DjH/84QqjT6QDZ84iIAf0YcP+lAqY/QRYRMo8MwRhrbSFfmx7m5MxrFU2P6mlrrTH6iN2D7JymhwhwvBDnHIwFoUMryxIZ+GXfkQMrpaw1yiprrdLC484heYoejdAIIdYSi4zWGht8JA5VWiOr4R2hmCphslmW49woLaVE2LRaDUppkU201kZr16GMEcdleZm5nHNODZYGU4OMG7ijyTAOI9d3pBbcZRZprRF35mM/QoiSqizLZrMJ44F2u62UApu4Y8eORVE0Ho+n01QIgOPJ0SjRGEUIMkYxNtcDCSGQNuawjWGMeb4Db1Oj0RBCTCaTZrPJOQeOGKXYgmUKpVDJw2I+av5hUKqUAgIHouSIwF6WJcaCUga0cWQJJhaw4MlkGkXR5uZWnucYY4IZxKBBns/hMGC++K21URwHQQBrDJaxHwZwSEZR0mq3KaUweIbxMDj2KKUgwrSuhSrnOZPQEtd1DcaO4A7hOB7AwUopRijG1GJKEMGIMsbm9HxrjjwT371UAP7I85KQ+ddgjRFEMaae51dVAUa9YRguLi5Ccux0OlaHeVaH6xwmU/NFfsiq1oxR4MpRTBgjqp5r+yinxhgyDwuxrseDKHQYRwg1Gg2A8LKsmGZTPwykkY04Pn78OGNsMBoQwggm41GapZUxhhKHMW0t1hrw3FpgocCc3fFBlo4Q8n0fmN2e59UVLDauFLDpySHIrhzXsdZGUej7vlJaa12VwmABtsXwC4KNbJIkRV7t7eyAHxoYHQB8o7SAvaYPA7sIQhghVQurNQjqIbocY8Q5K7JKyhpT0mg0HIfPZjMpSs9zXM5kUVhrtR+MR5OsqBFxhablNEMoq6rC8XhjuVlkpVRKSZvOCoxYu91UWlCMtBHj8YRx0iA+55wS59adLYpwo9GYZem1a5cPDvbG4/EXv/jFN998fePYWn90wFzW7DRclxulAbGCpp0wCk8PiJmtVlvVwhgb+sHpU507d+5UVRWGYZqmQojBYDAeTwkheZ4TwmD2M9efUcIcDgWt1jpNU5C6gy8zXOtg0Qs7Ea4S6oCa20opEeEA56E5HxYK3bn5uJSSEIQxdVyulBKixthBCDHCMaJBEKysLP2//vf/0xjzqd/71HA4vPn2FqV0PJpMpmPGSBI3lZRVWWY8C8O4rsssK4AIgi1SUqbTIkvzVqs1Gk0opUoZIeRCZxFCIKuilLVotVpS1dDIr6ysNBoNsLtRSt+5c6fTWWg0GmEYSimVNFDMwKN2Hb+uZKPR4NTJs/zOza25J2Sl47gxIhNrrFY2z8okbroOG4/HZTHUWiuBvvP0c3VdV6XgbZcxVlc5xsQaYjRmniuFthZ7XlTXNUJESY2QVqoIrG8DrK3BmHLmYYQwIlKADsB89KMfPzjoDfsjqKU9NyiKam9v39bab4QXLrz1lSefvHH9jtEUWU6JW2udF0UUNq2r4yS8c+fO7Tt3z5w5AxTdj33kY5t3tynlH3jf+9fWNrQ2O9vfDkMXCvJDAg1xXU4pnU6ndV3XdYkOTX4AUwuCAKZu8AGGA0ibo61HKAGKNFQQ8zqBzCX8lFIYXWutW63WyZOnb9++PRgMXNelhHCHaq2NVohCJPtAGaW0PHZibWlpoZEkm5ubSiopJdhHxHGIMS3ySmvNGUUIaaWlhVxHCvBuXUvPo5D6O592VxWmBP4M0PmPhvdwQWitb9y44TgOsHcXFxdn06k+pGpxzs+cOWOtffGlF/b29lZWVg41AYgxQhg9nEfiLM0OR4k0yzLX9etSzI/3dxnxE0IC3wfGLqTDaS0RQlqr9773vVrr27dvv/322zdu3IjjGObZy8vLUKtzhhcWukppx/EcxwHDtCM6s9aaYKyVAldPhAjQY+2howJMCMAJCt5KQOcdz2V1laYp2HZDrQitDawHYFgSQqIoUkpBK+U4DsA1UtYAK0ktJpOJUmppaeX0PSc77YW9vT1rNRijK6WqPEeUBHEAN2ldV5TSdrvdbDb39vaWl5fPnDmz0G1Lob/2ta/NZrMgCI/eqSiKkyQmZO6dSAiKogBho7XmjBujXMcfj4ZSaof7q6urnc5CWZb7B7vwSxljPM9pNJpxHCtb1XVNKgIs/jxPlZBVVQNHXtTSGMSYgxC2FqtDh3e4u6EYjuO41+u12+3777//5s2bcD0ppRwHEDwICbJSisFgdM899zz44MNSSqg6GCbY2Gw6U7VYaLc2Vleane7ly5dv3rwJeYNggQLXn+96VhtkLWfMGlsVZeHmIzGCOZCWIGKbTxTsoQgSxCqEUVh7AMRbNN/ycHo7DguCgBDEKC6L2lp96/Z1pQR3aCMKA+xrRZVUwMPAFhfZjFIsjdbaYkT5nE2PjVGMM4oYdx2pBcUOMSQIAkOFtpJSzpYXV7El1uLNza1j6+tRlGxv7x4c9F3OGnHzxPF78pnYr0bNxuITj3/XR7/n483VNWtts5ksLoZaI8ZRUaB38PJ3Nfl/LiHw3V09AaI3xYQgpRAY1XPOjEGu7yNEKilaSYNzAhWS6/IwCKbpeHV1tdlKrDVPPvlknucbGxsYGc74eDLtHYyWF9fvu//B4WDyoz/ymfc89nCjGcRJ+K//zf97OhtxBzPOKbPaiDt3bzabzZCGaTodjQZASj/ymF9fX4X6zVq7tra2u9Xf3NwkhPiBq5Qaj8crKyurK+uXL1/J8wLAehjklmV1587d3d1dDmkhtQqCAIrCbrcbhRGyuCzLPCuCINAMVdWYMZaVeS3yZismBC12um+9dZk7JGkEw8FUKQ2jP0qJ1rquBcZ4Y2X97Nmz/cEBIcRa1G537t69WxSFVpZzV+l5ThQhBMZ01mCtNWNcCHXl8tUwDI1GFmOl1I/+6I8WRfnk17+ptVbKKGWiqK7qTIi61Wp1u92D3l6ZZYwx3w84oaKsCCHNZjLJJlWeG6uMlYSQWmAyT42Yy/ySpFkU2e7u/vHjGwsL3cl0JKScTCfWWix9znwpJUK6LEA9zZElBJO6rhHGkM1KCKIMG6MDzssyg4qBUtpoNIwxlBFCiDRyf3/fcRgclOvrq7dv10VRNRoNx3E2NjYopb1eb3dv22gkRDmbTaSUSRLduXPn3/7bf/vRj3z8M5/5zG/+11//oz/6o1/4H/5H7vi3L92MG+2yRn/w+38ynhQYkXantbq6Toj8wAc+8Nprr4zH/ddeerksy4ceeghAxul0+p73PHr/fees1Qe9PWsw9/xG0qQUSYUwRhbN3TPevQvmev93BQYihIxFQojBfr+ua8oJIbiua2WVRbLdbjku27mz9cJzzywtdddWFy6/9WZVVZwyY5TjeCDHGAwGzWazrsu6LpUS4/HwB37gU7u7u54X/NIv/dLT3/7OM889u3uwu87Xf+qnfurDH/nQYDR+6qlnhv3xyvqxLCseuffh9733u/7dv/t3H/jAB7Z3tn7iJ376B/7CD7/06ktS6ihsLi2u33fffZ/4yCffunLl2e98443XL7199WKzER47tm4Ok3MxzjlhhBDX49Zq8C1CiFiDDcKUEIZxqbTW8zAHzmHMkFtCOedpWvzKr/zKuXP3t9rtWlRBEGgtgQ758kuvWou11pPReOvu1pf+5EsX3nyL+XPyIzRORZF9/BMf293dbcTRdDqllK6vr2MrtZZZljWb7fP3n3344feURf2tb33LGFMUBbJkNpu1Ws0wDK/duI6QicMWaH5brYa1CbCN4DZd2VhJJ1NrrR+4cRyDpimMvKtXr2JMrLWz2SxqJBhjISTwpsuyKssyzaYIY20kQqjTXmCMUUIp5VoUuazCkJdZOZsVnU7nKEncZXxhYUHUNUUEoflYfjqdMsZcj2dZkWUFjFWKogCpDsbEGFsXtdZaCy1kFQTe3m7f85zFpS6nTm9/IITg3FHCpOVUCCGE3t7edrg3GI2QJUHobm7d9lzf98PA85E2SZIgZBzH3dq5CwxByuiRol9rBeohaEjAsauoK0Dw4TIrqxz+TLvdHI/Ho9FACIaw4ZyXonIdP4oC14XcHtFuN9ePbbz/uz7QXVp87cKbm1s7vdH49/7g92ez2U/++I+trq197j//+uOPPvqDn/qhOGndvrPteQM/iTCmnU6HUKK1xRRb+87VY+cOsO9cPcBrttbiOYQ034/v3olHX0cWIfLfhq2tRa6LpESOg5IkHg5Hrut+8pOfJPV3f+UrX/rmN588f89Zh5MPvu8Dzz77bOiGDz74YFUJRp377j/50CNPdBaW/v1n/4PSFrCSH/zUX3jppVeefvo7juNgS66+/bYUc7weOCNQnoZBfOb+U8AqgiA7JY1SynX9e8/cd+HCRai9hKgwxmUlGGNaMkYdKVWn2zl1emPz7u72ziZ4xRJCkqSJEAJFW5rOrDWu6/h+yBiLo4ZS6saNG2fOnGGMvfLqM/fed1+n3b548eKZM/f4vge9x3hoq6qihOZZWeTVbDY7ZLcQhA2ldDDoUQZRdYph1Gh0D3WaMUJoMBgJVZ88edJ13WvXrt177/3Hjq8PB2Pf9zhnUkrGiBBKCDEajaMoevyJ98RxYGxlrHRcHCcOxvKgt1OXZDatfS+8dvXq22+/TR3e6XaiRlLX8h//41+UZckI7nTadS09z//i7/8u5v7VW5vf/6lPF0X1z/7Z//Z9n/jwT/7ED/zzX/5/Li2sbN7N68KUVUqoocwgrJvNeDxToCsCilPgR5iUolbAtdne2vGCiCJ69+7d69duJUkzSRpVKXw/3tnbHI+nXuATQt6+cvVf/It/sb29vbG2nmUZYwQIFwBTwrZCR82BfcfEGS5WRLCUsigKuN/n4Jo2FiNrLWUYuJDo0IWjqiqCmZ2brJmdnZ04jtePH8MY39686/t+JQUopqWUWtmNjY08z2ezmbVIgzExIUJqTAnCGA5z0MxCWBzGmHMuqjrL0oMDZIxGCFVV9b4n3nvpyuWLFy/6vs8oxYTnWZmnmdaGUUQOHT8P+RfGWpskSRAEzz//PLA4QSNCKQWf0Far5TIuq9pxHIuYhbAmC54AmlJKKTcGRJQWdi5wRV2XGzsPYzmiU1FKi6KAGTl41GKErbVS1kJLjzvAlCzL0iLtewE0FYDRwJNUSlpiGZuH/xx1qq7rNptNgFbzPBdZoZF1HAcsjyilFiMjJJyTQFSH7+qVBxYZazXSKgg9paTrciE0pWhxeaEWpTFaGcRdGschRR7jJJsWDmWewzmnGLzlraVs3vtpBWmKHtAeGXMIUZwzrQsglB0cHMRV0uks9Ho9sGd13ZBzrqXSRvqeZw9NPMHmD+M5DZBSptTc3BNmDK7rdjodoGTWdc0MqaqqEiU0pRBcCVgtaDmBv0MphcIbmM5gaQXYiu/71mKEsFLK4V5RFIwxQhFCiFIK1nacgUrGgIUULCfAvvM8931fKLmwuOh53nA4rOoSIRQEgbUoiMIgjIFbPZ3OYP2DahheKsOMWGKMraq6LEtm6RH9E9AZjC20pkoZ2LZSSi0NYpgQBARwsMUA2A7mNMDVgBcMOKzVptFo5HkJOALBzBiDEaaMAEiktcaYttvxUdYizN5grAKAyFFJCQcCLHLGSBiGfuBmWVaWBfM83w9G/ZJycnz1+MJiJy3S23dvlWWRJJHnO9Pp2HVdTlnSSpSus6xwfNZeaE6nabvd6ix0Z1kK9hFaqsN5AIYTQCtcV1rKqtVqAZdwMp5xzl23ZocRiITQJGkopdI0Be32EWMLTj/gVfmBwzhiHCulKGVKKSErwhBsvazIOOVJkgghptOp5waUz83uwRwDyHTWWgc72khtJEb0aDZ2RKgk4A5PKKVUVDXCzHF9jOEEUARhTpmuRF7WrVbLcRxk6IU3rlRSRnFMNMlnM8BVsyxbX91oN9u9/rDMK3hTqkq0m41xOnVdKoSua5mXPRBlGqNOnzjZ6baLoviP/+WzWuvxcGyM2TixmmUzay1QTedu5mUF5EHf9y1GBjQiUfg93/M9V69e39/Z9zwPGRyGcbvdLYoMIUQwhejLOI6V1NYIhAhCiGBmkGWcWaUOLRNLOAQwsYQQISvX43BC5kVqrT1//nxvMDo4OHBdlx4WckeXC4BWzJm7BgEGARm5GGNKDaU4CB1CESM0iBpB4FWijP1GVap/9a/+NSEkm5ax384zpURZCRFHyf333RvH4d3N26JWZVljS8qyNFZTTLRUhCBrrFGaIFwWlVamriqKeeg7UuqqysqyRMhwhzqcl3XR6x1wTv/4j/+YMXZoOImXl5frWk4mE1D/FHlujEEIMeoEfgjuPVJOhdBaozzPtUZB4JdlPZtlnPv9fj+KsDHEcYJWoykqDaQWRp3pJOXcxZiWZd1qBVGUZFlmLZ7NMmQAXqSe42mpRSWsJcZYpM1slmqtXZ9ZpDGSnudMZ6OyLJuNdhDEC52F3e396XQKhI8sLRBCP/dzP3f/fec+97nPvfTiK889+wKhuNVaKAuJEffc0CK6vzeMm7Xv+9NJuri4eO3atQ996EN5VlRV1e/3O50F3w+3travXb0BZzWwOKE+h/McIVNVJdxKR7az6HB8a4wpy9pxPNf1i6JEWgOAhRDCbJ5Qh9/lAwasW4dz2MJKSmvn0vAsmxmjut02pXQ4HFprhRJW64WFpaoqhuPBxrH1M/fd02o1jFHXr12r69poBFeDMbYoa6XkEfANfBdOuNa6riQhJFf5oTBOQ/2MEHIcThjIjgXnHEzJ4UCAQWPg+fDK4bgYDodVWWJCKKWz2czx3NXV1bfffhukfmBJD3qRIAjiRpKmKRQDQgjIeWaEKSmrohZCEMKO+MVgbhCE3tEMG4hEYD9NKXn++edhGgSXptY6juMTJ040W8nGxsbFixf7vSHG2HVdhDC8eIyxNaasKrhQ5pcC4VC2IYSsMVprwjmcvYAdG6sA0CyKoixLKWvY19D2zmazZ555xhhk7fwSZIxNJhPwOuOcG2T9yCeEREGAsdV6riwBU2yCaFnmV65cyfNXLly4cLC5g6wTJMny8vIjjzySV9nrr7+eJMny8rLnuTs7O3DQZdnswQcfbDabKysrEF0GL3VeCRAClIssy7JiaoxinECT54e+lgohAy5AjkM4dz3PCUO/KDJQM/i+q5QqS3ny5HGwYO71eq7rttvtg4MDqAmhIjbaCqEcx6OY1ap2uKeUQmiO18OOAFGpEGI4HDqOs7a2Jue+yaqudbfbFUL0ej0hhOu6jUZDSnn9+nXP8y5dusQgXgJjhFC73a7r+vLly5jxg4ODLMtgBQLqxRgjaG6uNWdIIFQUxWQywXQ+Nj7MeCQYY5dx6nr2kNFsjGGMQJtgDeacSzVXLWAM1uEUIWS0Hs/S8w/cf/LkBibGIjmdTpSoDvZHRVHUFULWIYRiDFwxzgnlhFiLLcYIY0IwQaRSmiFggrtGWddzlNSEYEsIw4QZY5IkicJEa+063qA/vHzpihKKIOI43uW3rpRldebM2Ufe894nHv+uxYXVaV0hZKy1SiGEkZaIETSPTjk00ED/HcoYQoge0sSADW0tohQZMw93shb+F6GUtdsdyNw0Bt2+fVtpQTnd29t75ZVX0mx69uy55eXl69evS4G0VGWhJ+P83NmlX/pf//kXPv9700n+9tvXh6Pdt69eAJQKwCBkrOsFURSAPK3VapVljRAihLkudRxPKTWdpshYIYRF+uWXX52MM2RsFEXGmMlkUuRVEje1NtPpVClDKQKCUlUJjHFdl54XQJm4uNgej8f+nH2pFxeXKcUvv/wKxqDotJTSupaTdLaw0NEKlbK8Mb7hOJ6SljG2tr5ysN+XUk6nEykDKRUhJJ1mjz76+Llz5/7Nv/kVzvksnSiloNZPZ3kQYEIw48TzXCk0pRjcabXWRqOiKDFGkMYznU6Lqrhx48bi4hKcMmEYW2u3t7elKmFBO47DqGOwgcYVWWIMwtjOZsggXckqir2iyLVAq6srcF0VRZFl2cLCAvRylRSDwWB5eclzg3Q248yVc/9E6rpzQgochVUllLHGGoJJs5lAJmS73Wq2ktVjnaqq8rzM0mI0GtWiopRyAm2sq7UsSymlTNP01KlTy8vLeV42mwmltCzzuq6t1a7Lq0pEcUAIuX17E1mitT1x4oTjONPp9M7tu+Px9Ff+9a8KYTbWTz3xvu9+4IEHlbY3bty6cuVKEHhvXbzU6bYdRp/5zreHw77n8A9/+MOf/8JvDwaD973vfcNB/9tPfdNzXM8P87xqJK2oYTnnCAeUMYyRwUgpwznRam4gc2QX+463xiEHGlpxhBDG1iDj+I7Iq9FoePvOjbouL771xqnjx+45fVLKun+ws7OzbZFijCkljgIDwfVlMOi99dabWTbzA+777vvf/8Sf/MkfVVX1oe/57vF4OJ1Os3L6raef2t3dfezx9z7y6Hv/5I//VCv0Ez/5l19//UJvc3/nRP/e+89fuPjW+fPn77///vF4yhj/S3/5Z13X7w/zfm/y3HderUp7+tQ5o0utaJbn/cGg01nQCmYbrCiKosjmxEyD/SAgFitpwXEfbnSYDNe61sqGYeg4ThTZNE1fe+017jKEreMw13Xvuece3w+H/RHIgfO8+M3f+O0oiha7S4PBwHcDhBDlhBDEmfvSCy8ao06fPv2xj30sz/MrV66cO3taSf3CCy/1eoMoTMIkuX3rrtY2CCJr8dbWVpbPlpeXTp8+/T/9/b/3ta995T/92q+HYcgYq+piY/346dOnL12+OBgMNjbWrTVZmSOEKML9fo9zZzIdWWtd11NKcc5FrVSlgjiCmM1DG2hNMJOqdl1nOp50O4sLnW6WFaqW1mBlDWPO5t3d++87t7m5qR3bbLarvIBY5CAIKl2BXDQMw3Pnzikl7ty5IxUUgjzLsqIogPpXFEWapqFLOOFGqZXFJWVN0T9AjltXEgRElFJKOGiRqlIR7Lius7e3axGxFnHm+j7ovutpLSjClPLd3V2trdSK0gCwDCklTMK452GMgyCYTqdz+J7OOxM4YDHGSBurdLPdWllcarUaURRk+QxaxEajEQTB4uLieDQdj8dlWa6vr//iL/5iluWra2sbJ05eeftaZ3Gh3+/PZpM/+IM/QFYnjeju3btf/sqXHnrwkcWFZceZvwBKIX0EGYMIQcoc2tP8uXRahIyxjGGtMUbIGGQtYgwdxrMhSpGUiPPDrxzuU3TooYHfhU0rBUZsSEjZiOI4CEajkazEY+957MbVa6+99jp3yGg00Fo+9thj/f7w2vWbG8dPLKys3rp69VvPPrO1u9NutzmhVtm9vQOtNUG4yErOuVZQHHuuOzfRI4T4vv/Ag+eabQ6pFHEcb29vi1ohhDY27nnivY/fvn2739sHzpHnuX7AXNcVFRWyyrN0YbE1Hk0vXLjVbrdbrfZ4MsOYUMqCICiKfDgc5nnuuhzYE7IyGNM8T7U2W1vb73//+8+eO/eP/tE/0lr/rb/1t9J0NptNPc9jjCHLKOWUcs8jRVEgNGdFOY7X7XbjOL7vvvsIId/61jf7/b7vu57n3blzp9FocIe+9tpr1tqk0bh86Vq70wyC6M033zx37tzyyuJgMEAIIWy1plVVpWmKkN3d3b582Wm1o8WlZlnNXI899vgjWVpfungzS5WocBg2fI9w1wnCUFiZp2PP7xojK1kwZEVdUoqW1xY3t29//Rtf+eBHPnnQ2/n6V57Ks6nS5f/+z3/p2vVLJzYWMdEWKcbwiZNrSZK4viONlrYUsnRcmiQJpJkpZRzHMcoWRQHOxYuLq4Ef3bh6HWOeZ9V4NP3Jn/yEE3zwc5/73Be+8IXTp08bbXv9uizLXm8fW/upT33qrTcvDgaDqqqqquLcRe+4oSnoMYTQgLoGQdBqNDEl+/v7jUaDMdZqtba3t2UtgiAgDBi+GoAwYKsxxghm8EWo/8qy7C512+12mmf33HsGIbS7vwcuGcjqI3dUCJkBGEhpiwzDxELRD9xAIC16nielZA57++23QauIEJJSPvn1b06nU85coxFGSGuhhFRKuZxrKa0xGCGtDcbkaC4EP4tSCo4BMPCbx/tQWpelIhJC3o2VGM/JFJRSyAtibJ4BC/2z4zC4XLS2hM/5Vg7nWs8z6I9sIpSRhFFGMMjGKaUYYaVUGIaUYcjOPZSpamsNtIIYc2kkwsbzvEbUAJAUACN7aGEMp5/vQWZOyBgVQuRlYRDxw7gsy7KuMLEIIV1bazWlNAh8MKZMkoRzSin1A1cYPhj28jztLrS7C+3ZNDey5B5dDLrYEKkFoRhho5UBH2RIQGKcc+pA51MUFUJzegu4lIzHQ6DKgkSm2WwihCjFoR/UtEzTikDEMbbWWujxjjwTGWOcM3XoZALlylE8DqXUHKrssyw78o4A12OLtJQGICoAfaD7EELMcsBS50T1d4XBWGAjwiOCRlppK0SNELIWW21cl7quq7Tw/cBxuLW2lmJtbW1xYUlKub+/L2QNlgJCCMa56zLP8zHGUprxeIIxhtvWGPi52Biry6oua0ZYGETGKGCiAGiCsYU0yyBwoO7FlhxxwynlWlsh5CG9yABqQw4/YDriMLcoiroeKGkIZphYrRR4YQACSwiB7rTRaChlRqOJEFVVVWDKDy0Gxtha7LpzEcB8DIOMMYpQJKVoNhunzqxvb25FMSe0pZQKG64b8M7ysVYnTrNpXma+73c67bu373ie1x/2g9BxfcaYY5AZTYYGO6PRYDSaQEOnhIaWVdWSc3vI+ie+HyRJ4rouuLXkea6scRlHCIGpnVIqneVVJWB+D6Gnh8edRgiMbjAhWGrFMJZSEIKSJGHOXHWqhEQMpWkKmClM3TDG2FrGGLDzoDipqupwliOPCs4gCB5//PGXXnppMhqvra25rhtFEWPs7t1tY4zveZxxSrHLndl4Ukrpum6e14Q4tazXV4898ujjf/gnf1pWOVXIc9w8zzlj2NhG0qorPZlNkbVAX+iJkbWaYB9ZhxJSCsE55ZzWtZqlU4R1FAVCFEop7tIoSKTUMJ7v9/txHAM27fkuHMWHEwWrlFlaWjl79vzJk6eHveHnP/95itlwOA5cJ5NGIs0Ycbjre8EcViNMCFWUNSEWNg6sT6UV4wQhZKyyClM6nye5rlNJ4UdBFMXthe5oOgEqgzx0z9facs6xsYwxZY2qKnzoP6uUcjwXpnR+wJeWlupKEEThJmo04gSFSqnv/b5PfPWrX71x40ar2RFCylpRyqMoCnw3DMPd3V1RK6XMdDxBDWStaTQbk8lISsk5raUCSFFLk1U5HA5JksBGQwgFQcAdWhSZ6zogI5nOxkEQRJGfZTnQwuBOBLH8dDqFM60RB74fTqfTdrvLuVsWMs8rhFCelVpZa22n03E9z3Xy6SRzuWMV1grlWUUwV0rVqqKUWju3BubctRZPRjvAGy3LmjFGqdVacwZMZ0MpRYjmeYoRXVpattgWRTbMZoPhUGulJFro0Keeemp1df306dM3b16nlC4tLU2naRw13vOe93zhC7+XpltBEDicE0wRolUlGHOMwuk0K+o8SZIkSWRdG20XF5ZcJ3j5xZfG4+nm5u7VK9cXFha2t7cZc7TWDnUAuoINAixXwKHggkCHw1Q43o0xcKrBXAcRqpHBjHLOhVYgGhgOh47jmUO4GWw34L0zWhsD5OURIWRtbSUMw52dnVrk1tqyLJeXl12Xb23fdX03CAKYkd+5cwtZSwiJo3h5cWV1db3X67/y6utaW0IRxo4xhnMYhVJr60NBGMSQzg0lYIppjDHKYoybzWYYhkopqJTgFwzDkBF6OEU2Qogoir7/+74vimNjzKuvvtrpdKqqAtk3bEzodqWUK2urDzzwQK/Xu3Xr1ubmJiXcGOuwuWTTWosxxVhbaw85WAig8AAGmUpVRck5DzwfIcQ4RdaGQXA0RiUYG61PnTzZWWi//vrrvV5vobs0GAyGwxGnDqVUCgF/4ZFLL+x3o+WRfROAy0opJSWgkHEcG0M4t0KI0WgEePdRdoXneYSw2SwDZkCSNOFJQoMP5ypzSLPZLMtSGUOQAZxaSjmZTHzfJ5z0er29vb3xeLq2tvbpT3/6npP3w0ERx/E0nTUajW63Sym5cePGbDZjjFirGWO7u7v7+/vDQY9gp9vtFkWBMUmSBGbJWZZhjJQWZZ21Wg3HcYSoKGdoPhszWmtKqe+HWtvJZHL37l2trbV6YWHh5Mnjs9ksL7I0m0G0MsYYotePTlprsVZGa0spt9rUqjYaVbomQO6F8bu1cRQhjAEAHI/HRVFYpC0yCFmYggOheLC/z/15aHZd15ubm1prl3GlFDiPw+gdfFrkIYEa5rJQ1QPIjt41oEWHoeLwtI0xLgehpABtAcaYEUodPqeqoHkcLiXccZyIBYdjIQ1VnFE6z6v3vve9Dzx4djIZDMf7/f5+XqQut4SSKHYnkz5nQeQnCFGLXIQMY45GllMPTgbX8aSsgwC71lNKSVtRRq3SjGNMbBQHgfbYZDgi1noOS8LoG9988q/91b9+cHBw4Y03HMfJZlmapj/+Y5/BmO/u9MfjseuEgtg4jh2HWYsImvtmzNma7+rqMbDIjjwyD794VEceqiD/zD/huxqNJudOFEXGIEwQxnhtbS3NpkVVSKkvXrzYbDb3dg+SuGk0qitDKR+M0r/5N39+dWVja3Pnx37sJ37rd37r+ZfHJ06ugI7PWossSZKkyEpzmHiTpnkQBKdOnt7d3V1dXQUXuXa7vbW9SRmhlE+nU6XquSkYw34QeGUZ+NHm5qYx1vMCY4rJeAZqQWuR0rXjeKBF8r3w4Ucee+Wll9I0JYSmaQ5xLkqhJAkxppRwpRSjbhR6WVo5LjFWIYxsXedZ1e0unz937qXqFc75I4889tJLL6VpFkeNkstnn31udXUNAGtkCSU8SwvAlPM873Q6URRlWQ51QJ7DJ6G1GhMrpSjL2vOce+65Z3Nz8+mnn/F9D6F5pipUqwQ7RmtR6zQdHXLrsFYWIY0xhQG4HwUnTh4bjQa+7y0cW24krTzPZV2PR1NkSRw1Dg4OlBaRH1mLLlx4M44jh3uU4UajMR3VdV0jIRGyxkrGeFVnjDlaG865ENWp08fSdDaeoFOn1zHGRZnGUbK6unpw0L958+ZD5x9ECGV5KqVaXluO43Bvb28wGHQ6nRs3bsxmGcZ4e3sbqD0Y4ygK9ver5eVlIUS73f7Zn/0rg8HoG08+tbq6+vUnv/r6axe8wP3Upz41HGUE87/xN//26sp6mlVa63Zr8fatu3fu3Ol2u67DX3r5ua2tu67rCIdduXKprnMhiheef6bZaGtt//iP/1Ao/egjTzzySAcuqrquHddNkgQZxAnBBnGKpEaMIXCFYmyOdiGECLLYYmstRbjd7pZlXsuq2WxQhxJqiiL/9tPf+NMv/dHyQve7v+u9r7z60ngwaLWTgx5ZWloa92ZlWQaB53ke/OIIGWPtcNRPGuGzz34nz/PJdBhF8WyaTSaTrJwkzWT/YGt3d/eBBx/68Ic/hBC5duPmC8+/8tJLrzz44EM/9FM/deLEsZdfeXE8Hb30yssf++h37e7u/9RP/+z58+f//2z9aZRl13UeCJ75jm+Oecw5kUBiIgaOIEhaFElRtsqWLa8u1bIltynJZburVHYvd62y3erSqpLdltx/ut0luW1NtkhblkiJMkUQJAUIJGYgAWQmch5jfvN7dz5j/9gvgrDk+IGVWBHx4r17zz1n729/wze+8c133n7nxInjq6ubo+EgL6bM8xuNmjEoz/asGTLGjNZ5kYJZPhzwRiuGiZ1JXA3GhDFWyIJijjHWlTbG/OW/8t/KSkMM9OUr7xtjlJYrK8c45+ura9eu3bDWMSoyVSBjOeVxENdqDWNco9GoqiLP0067derUyRdf/BPP8955550oisbj6cWLl2WVJNNUSp0k2XA8Ta9l6TSjTEDBQSkOg5hS9vM//w98X7zz9oXJeBQEvrUEIdQfdLWRzjlKyf7+PrSaUkqKqLU2SRJKGT10yzLawZxzOhoTzhqNhtKV53lK8Xq9nqZpXqRhGO7v7Y2HkyTJpuMJo761qCrV/Pz8kx96cjwep2nabre7Wld5Bjm2o6R/69Yt6KZAgOMcdnbGI7AWeV6gta4qZS3a3DwWBzHn/Nq1K/Pz88NhHxw2ZFVJKcM4UEopaTDGnhf4fqiUmp9rfvrTz966fVcptbS0OuiPbt++X+QlodQqrXUF5jB+EDo74+/AAE9rbQlhmIBSGwKadAXSLRRFkVIVIdQa45wpiuLWrRue50Wh5/mdJEk+9alnEUL37t2PoshI5XFaFMXtm1f/3W/99sra6omTpz7+kY++9957tTDwGDWq0qrstFqEkHpcX16ebzZiwbHv0U6n4/usrJzWxgsZcqhSiFL8wfPlELlAgKpYi5xzmGBIgIRJpzGIMZTnCjABTBDGSClDILni0ND5g18wMdXaBQEnDm1v9/f3901RIOx++ItfXFhoz83Vf/VX/7/nzj20093/5ne+k+XlF774Fx8T4u133nnzjbee+eSzN2/eKCcmDqNrV64yxnw/pFQpqa21jFKjNOecU1bKChqq7e37RVlXSnUP+sgRZzFwP2/fvvnWW28N+wPQHX/2hz+1srLk+96Nm9dq0cLCwsLOztbVa+/nxfTUqVNlWe7vHwjhtVqtXq+3ubkJa/ipp57o9/vIkps37jUaDeF5sjLGuOkkf/n7rwshiqK6e/duq9U5fvxEt9sdDgeA98VRXXgMThAguLXb7Y2NY8vLyzs7O1rr9fX1j3/8mZdeeimOQ4TQ6urqaDR64/ULlOKVtTWMab8/2ts7iOOYYHb71t1aPQJfUcaYc2Q6nSKEfF8oXS0vLzSaUVzzhaDTZFzk1fz8vB9sjUbTZnsOOd2o8bhRS9LMWRPENY/b7YODwBetVgNZTHnR7e2051dOntpotUNtsj/82n84//C5ybj37ntvRD41RhklrbVRFMX1qFJlVkyf/uiHb92+MRyN1tZWHn/8yevXr7/91jsHBwdxXKeUSl2BCJ1St7q2zDnfub+7tLjSfKLVbNbvbN1uNpvj8ZgQUhSZ1vonf/In33n7rUat9vM///O/+P/4X+/cuaOUCoJA6xlVB85ugPPgFIPHzff9UlbNZhMQ5MFgEATB/FwbiJDQJgFRBYHY2c5oyPA8FkXRPxj83f/x7/34j//4hQsXfus3fvPevXvaWqJUVSqE0I0bN6AGcG4GXsNLaa0pw0f0wKM5cZ7nCDmMsR8EQLuG1g785YH5opQiiFjkGKYwRIEX0W7W/IO7BfoAiwrgZiBbYecIpTOgwRhCiFTag2AfZcpyRiq0FnHOQY4K798YwwglmFSV7LRDY0xRVfD2gNczo0IjBOxvhBChhDGGrSvLklAETYXRBiGDEJFSEkYRcpz7CCFkkXNuMplYNQPHAZk1M2m5FEJ0Op1as8YYIwQbY9I01dbEUaPRqGOK5OHWCm6qUqum38JcWIwc5cz3EXL98URpxzmjFJdlrrUVgk2yTClpnGGEU0QJ53EcOYco4bNrqzVjzBCLKXFAvzUalLa1Wm1+ft4YE0T+LAmH0rIsjVGEEGQdJg5jrNRM6ueIU9pCnIlSShoNSl74E5xzsLCoqqpSs/hcq9QhMOGMMQBPQBWttbbWAbkVQGcpJUQ7uB9Y7ZOjiQvkl8BSBCgEkH1rELj0W2tDf2a2FkY+sMyWVpavX79++9YdZ1G73TbGZGkOfGpCSMCYzPMsLay1nFJGBSZOSikYd8ZiQjBGRtmyrGSlYJ1rfZgo5ftAXUdoFjAOtDiDZx7rnAMTHOPDgCbnkDUWYcsYg1dDCKlKOsacc6PRKAhjzhgQ2Y6WpVJqfn6+3W5nWQbwAXxwhBCjIIJmsOQIcQgh4Cc657RVWiujJSpNHIfLK/OdhShJ+4yglVaHcU8pleSj7mB3dXV5bfPsYDBIkolzZmll0RjTbrebrfjevXtZkTdb7dPB6V6vP+iP8jyzFvnCx5g4i3WlKRFVrgkhjCPOeb3RMMZmWQ54RxAEjuCyLBHCQUDAmxVugdYaE+cxj1JhtdHaGOO0lmlWlRL7PgtrESYOWUwpLcuqqkwYhhQTYywcLgjpOI7NYfYpxRgM6+G7VZETQjAiGNiFjMC9oJRih+IwkmXFOV9ZWVlfXx8MBlv37tVqESQ9OEuV0Yh5P/8//V+efvrpP/qjP3rllVfSNF9fO/m3fvpnfuQLP/bNb37rN37t15RRjUZjZX3l/t0dRHBUr1HMLJ7hWc5AmhHDiCmpMTKb6xu+LxyyxlRJOhmNu1EU1Wp1oMgNBoMsy6WUGNE4mqUjaK3jWqSkBpWeMtY5t3N/6z985XefffbZy5cvx1HdaDvoj3IPZg/OUWqMk7JijAlBGROVBGMcB0IZIYjv+8aATbaRsjLGIIylwTBBFIIRwlqt5qVLl7a2tqxBMGJxzsVxfWa8gKxBDgZ7cE6FYUgYBUYnxjiKgjiOfV+PBiMYo1Y7hdZyYWnx4x//6OXLF99///08z622lHJkHaW8054Pw8haVFWVL/w0zSaTSbvdjuO4SBNOaFlWDHOLrXFIW+Tc7FyDLHTQzzHGMLacM2QsQsIhc+gObw7JnuTIl6ZWq4FXGJySzaYr82qv2OOcF1mlKsME0xpVlYmiKIpqxpgoiK12cRynaT6ZJFVljEHGYLjmlBjf85RWvYOe1hpjIoQHdG9jLMbKGoCHCKVOa4UQCcPY87zhYGqcJgQhTBn1rZGBF1WV0tpCN0cIs9Y+8MADJ06cuvL+9V/8xV/c3d1dWFioqsIYg5ybJJO1tTVCiNay0WgoUzptnXPI4ckkeeWV1/7pP/6/P3Dm3P/yv/wTZ5yurKx0uz0HlbwqKzwLEMbT6RQfyu0BTgWdJUy2gIIGSc7wk5RSpaqj5x3Gh0qp1dXVPM/7/X4YRxhRzj04YpwzSkrnTL3earUazjnKsDbSIX38+DFjzO7u9qOPnk+yXJrSWm2crqoiSSac88lkYrROptlkNB0Ox/VG0/N4lhWU8lLq2WT30KwPyDf1ej1JkiSdQF1ar89c42qNEKSWUmoA2bMsi+MYNhBOGYj2KOVSSt8PNzc3a/X6hQsXkiwdXBsCQ5ZS6gmCDqmmnhcszC+Vhewe9Le2tqpSCYEpJphTxrizOK1ScLd1DooOC+0bQIEwlQGODkICwgzAdcr3/VardXBwMBwO19fXtdYvv/zytWvXTp04eWxz82DvQJYV8WcRF3C4gDPM0QEEf+JoagXrEGpLW1UIId/3kUHwt+Ccnc0SEEnTHKGZywRsobBRwMvCHDrmHryaUoogC3QESAaO4zjP81pUL4riwx9+6md+5udarZagodZ6OBy+deGt0Wh07Njm6urq7du3e70DmC8SQijD1ul+b7izu3X29AObx9a3t3arqlJKH2ksxuMxwpZy5Ps+INQIu6qqCCIA9yHkwjBst+euXr06nU7jOG61GkHgUUaiOHRIU0qNQUKIWq3GGNu6v1PkFaPUaFsWFcbUGE0xIYRBywz32mmDCfGjqNFoBEHgB4HWOs9zTBxGriolwG5SyrW1tU9/+tOLi4vvvPNOWZbQxc/uO8LSWhgBCiHyPBdCwCKcDEegvRNCGKkopb7vI+uOwGWosg4BVSyVPCqepZSEWCjMgHxgjOGeRwjSenZoOgTpBNg6jRCYyVCCqHH2mWeeOXZ87bU3Xr167SLC0jndmWvVGjVG/ajOglowGZVZWjDGCSfWEoOc0Y5RwrlntCWYU4oM0p7nY1wpwgRlRCKMUb0eE4/4vs+sNVme7O3tKC0nk8n1G9eeeOKJV195RVZ61B8/8cQTzrmFhfkTx8/6ft04zZjXbjeDgGKCjELOQYOEAH12H6Q2fwBKhn+QH1ymH7gK/Bn+GUaoXo/qUQQ/r43lnE+n48lkQhhZW1ur1Rq7u7u93qAo3jtx4sTpkw+8/vrrC/Mrn/mhz3X3ugcHBydPnjxx4tgjj36xVhfPPf8H/X53b3vn0UcfNUrvlrt5nluHESLdg32lTBAEq6vreS53d/eTJHnooXPHN4/v7u4OBgOldKPRyPPEOdTpdIBoYIyRper1ekrpqlRQiIM0IwprzjnLEHJkPB4///x3GCZSas65H/j7+93pdFqrxc65qlSMIWutwwxZ7BApisoPKCEYWTs3N7e0tFCU+fnzD3Y6nckkyfMczFvr9Xq32/3VX/1V4AIYA7O72bisLDMoDg4ODoTwms0mIcQgjDFyjjhrCaFRFDUatTzPHzp/Lptme3t7o+GEMW6tJoRJKTn3EKJ5XjJGCUZQczs0m+EQgrSZZRCdPXuWUrKysm6tvXP7XsUYpUOM8Z07d5xzvu9rZbNJwjyQP0QIOU5FGOI8T5WumGCcUClLTJzDiFCCsGIc3713q9msP/jgGS6IlNI6XFVVv9+H0Jg7d+4sLy/PdeaN1d1udzDAzWZzbm5uOBzXao3xeJxlWRQFUItwTqHaYIzVarXxZNhqNb/4xS8+88wz7737fq/X/cn/7v+0ur768PnHvvr7//npD3/iox99Kk303ALBGOdFap1UqvIEXVlZUlXuC0yIMtbcvHV1cXFxeWXxYG9/OOouLqwOhr3FhVVwuYU+anFxUSrlkOGcVhVkuHNGEASjEIYQmPo4RMjsIcEYI0Q5xWlqkiQZjYaLq/Oexx0y9Xr84Sef2N/b+fZ3vjUZDre3tw+6e0KIej1OxpkrURhHo9GICS5lSSlWxtabMaFOmTII+a3b14x2cVzPsmx+qVGvB1VVLS23D7q7v/TPfvH/9o/+8X/8j//hb/2tL7311htPPPHEz/6dn3vssUd+87f+zR/90dc/+tGnT5w49corb3z5y1++c/v+7/3eHzz1xJMf/vDTUsrPfvaHb9689p1vf3Nra8sYFcd151yeF0Iwh1CW5ZubG2fOnLl65TpyZVmW0A97HpfGYoSZnZnTLy7Nx3F87dq1PM8xIXmeh6Gf53ngh8PhOJ2myJI0zZJpxhgTwjel5FQQwkajkdW6zPJmp8k5VUreuHENYyxVqbX+xje+4TEvCILLly/Xa43NzeOEickkUUo9dP58Wc6cTxuNxsrKyvvvv//P//k/d848//zz6xsb4FYJ3Cuot2De65xBCBNCMHJGQd6C0soGQUAJV0px7gnhS6llIbt73WanyagQQlBKKOVQndPDJC7fC43BRuvRaLy5eeyVV14BMcSdO3cIQQShRqMB9Tq09PV6A0jExhjGBGMERs3QmgJUxyjrtJr9fp8xcvPmdd/3V5eXnDOE+4wx58x0OnWMOOemk8TzgieeeKIW+9baRrNmjFlYmGmrGeXIEmsPRTGQ5EuF1hphiw419UVRcM5H00mllUHOaW2trcryQ088/vTTT1+8ePHWrVsUOWttkkycc34gJlMkhJBGDYfDLMv6/V4yHjvnWq3WyZMnrl+//rv/4ctRvfalv/2znhCnjp+4c+OmldWxtbV6HBmrPvaRp621jPLxpIux8xKBu15VqTCK5ufnMEZV9YP55p9jNiPsZvICQmbfcw5Z6zwPI4SktIPBoF6vcxEChsUYRe5wbnp4PuHDx9YYeDWXptV4PJ6MRmEY1peWKll0Og3O3euvv5Lk2c7B3u3btw/2e1G9UZbl+++/f+fOnXMPPfjhDz99b+se1HZhGI7HY6CLNpr1KIyh0Lx69epoNEvWlrLUWnS7/fF4XJb5ysrawsJCHMerq6tVVQX+/rHN9Y2NDa2lsbI72MXYDkYHzrnV9XZejoSHG405Qogyint8eW4emsler7e9vfX000/PdBXIK3Kl5LjWqHMeQH717u5+s9n89X/zW/fv391cP2a0G4+mhFCEMBdUqlIqNB4PwVEHgBXw9tnbPaiqql6vU0oJZr3uyBjdarUWFha63Z5SatAf1et1a5AnZgoe5/CgP2KcOCCnWMwYM0ZNpkmjEShdORe++cbbjBOwXHj2k5/+xCc+trd3MJ2kg8Egz8d+zOIarzcX9rvdK+/f10a2TpzA2ElTcY8KhGv1wA/om69/b3F5/cyZY5cvvn3hre+1mmHoCS3N/fu7QrCVpQWtq6pKx+MBQKhAan7ppZfqtebnP//569ev9/v9LCvAOt8Yd+/+3d3d3TCsJ1n24MPn2432i3/63SvXr5w8eXpzc/P+9laSJAsLC0VRDAaD/+s/+Plr165dunQJLk6WZRi7I6AZGLLtdhs5AoS+oigWFhY++alnH3744a985SvvvPNOGIZf+tKXijz9/d//fYD1CaNQuVprkSP2MM3PHDqf1prx62+89aN/8cc+9MRTv/zLv5wVeS2OjXFUzrTSUFVjPHPqsNZqawjF7tAPd21tDSSooPjzPBFFURiGUqs8y5xzwCNgjEEeLkEEgLCjZgtOOmydxTNFJyw8sGE1xhxmNLUCz6OUQonFmQCTXJj8UEq1MlprpQxCSCkFmxVAzNZajCnGVGvlBWIGERoLVsKEEIIw4KfWGGsNrFgquHOOEAyf/QgZp5SCzM4cWj0yTrSjDpkgCLS1WVFEQQBAP5hFhKEPSK5VulAKY+R53vz8/NzCvFSacy4C1mw3er0emjFWMGOsKGWWl/V67DlalFqpqihUrR45Z52zUqo0Teu1NvdYpaTVyGOQKYf8MOBMKGWklJzyo94DCGuMc0E8gANm8wNjwK59NBoRQiC4FfgKjBNCCOeCEOJ5HiIYbkFVVUmeATkLUGaYRgCsLHyvlJW1FiM6C3+dMdARwBaHVF9MKYEVjo5CGgHpQ24GpzLANShjWCv5AxIrxloZa5GzGCHHCEWIWDTTqttZbh7NipxyNj8/v7e7v7u7C4UoQihNU2scF6wqlZt5zjrEEGMYWewM0kgzxghhBGFjjFHWKG0pK7JcGW2MRQjBPfV9P47nyrLc29uz1tbjBnYkSZIZ3djiI4E5QsgeyjyBbg8QGLIzfIFzkAE7APGPJAXz8/NgnwWBDdDPu1nLhJxzBDPgBWNMKMWYEHN4SYuiMEYhIizytFWjcXd+oQmWjqPhCN5Dt9/Ly+nu/vbcfFsbaUu9uLi4s7MzTcaVzOBqHxwctNtz7Xa7XmsmSSJLdXDQD/3AKosMNsoyJrTWwLBJJqnDEJEtwjDSzmilnXUYo5m42KAjhAUTxxjlnFtiCAHfF8s4I3TmLiqlRI5gjJXWRZ5yLnzf53xmHgKTLWutQ8YhYxEzamZd4omAEQxjDIwYwGfwdEsp33jrTWSd7/v7+/tJkuzt7SFsOUPj4UB4oRewyXQaNxp/+2d/5q/8xE8sLy6059fW1k+89957YRi++CcvLS4uYoeQY1rpZqPT700WF1f80L+3vSVVmWTTRqNmnKEIE0InyRA+LLJ2b28njIJ2u97uNKPYl7I0xikly1wK7rda7WSaU+JhR9JpkdjcauN5npIaVktVKSnll770pU5n/utf//o3vv4NhJAQoswLIYTWCujG8DDC42ktKkrQ5lsA3OFBm83wMJJSp2mKsBW+TxjzA+F7zfF4XBRFnucgNYujOsYY7jKUKLC6ZjuntTBAYowB0ywIAs/jUkpgZsgSfIF15AWLi52FxbnnnvvjW7duMIZklWFMkbPOIax5kiTB2PM8ryiqwAvX19dhcum029zc3N7eLoqqqHLBAzNj8lnQGeR5aYyZX+gYox3SRVEqowhBxiqMMRfCOO20RRhhwoBnZrQbDSeMsXqtWRSF0a4oCoQIxqQsCliolHBBPW2V0dZZJKUuiiIMY88LABmUUmJEkDWyhCx4hLBzFmttEpkRQiC3Bs4OIFNDzEMYelKWMDYjhCllqir1fJ8y7Jxt1NtKS2tQLsu4FqrDL2vQ3t5eEETd3n6aZmfPnkYIXbt+BROslPzwU0/+jZ/6m//+3//29vbder2OMWVMWG2MQ0bZQW/Y7w/ffPNtTvni8nIcx1lWdLtd52abM4DLsCEHQQDVCEwQoZDgnIN4yHzAQ+BoD7fWDofDNE2BJhmG8erqKpA9BeOUM4IFPPhJMrHWxnFsrd7b22u26s1WjXv03EMPNBq1N95447EPPbq0ssgHI8/jUle+75dlubOzgw6N+H3P09akeaKMBinVNM34rLVxzhlw6gjD0Pd9bSQXtNPpwK/X6/XBYDA/P3/uoTNFUdy7d28ymXDOwfgY4HXGmKwkfEBY26PR6Mtf/rLn+7u7u8L3oiiCb62vr3PK4BehgL9w4QJjbG9vTynleT5CuF5vSqmn02lVqqqqKOWHFdAsVQIuPhyjgJmCAUVZlsbq8+fPnzlzBvqsbrcL3hrf+ta3+v1uq9VCiNy5c4dS6nkw6saMWaUUJbwWewBJwWMCpw+c+/C/5NA8mhxmEiilZKUZFZWu3CxTakaOhucN8gyAbz6z4LAaMyqNBmMNYN56gRdFURAE+FBHxRjjHssye+/evZdeevHJJ5+UpUnTNAjD7e37kJL32c9+9qGHzu3t7XR7+4SissyxxJPJiFKqtRyPx/Pz85i4OI4RQlVVGqMRQtZpJqhSZjweN1u1qqowhXmtJYRprVutDvdErV7XxjDB/NCPapHDbm9/v5KFcy4IQNXhaWWT6aQoinSaep4HpGarHSPcWqskFDlo9rzgWUVdq9UWFxf9IHj//fcrWYCwBiY0YRh6nvdjP/ZjJ06c6Ha7H/3oR9944w3f9yeTCcaUMaYk5CjMQph8P1xdXTdG3bt3zxEKJbHW2h2ehozQowLg6B+wiugHg/8QQsgSBxxtDccx55QQAgx3zrlUFuMfmEw655wxlTaEkL2D/bffeWs06RpbRjFfXlk8c+aUccnW1vbi3Mr8fCPryDu3d2QFjmqOM09Tq7X2vcALhdZa8MB5mjpKBfeZTwnxrCCOpm5sCpOVGaPEbmys/MkL3zp58jgVdDqdRmciJc0X/tIX5ztz/f5wYWFJVirFWVzvtFod6ok4psbOgs4ONQWOEOzcnyM4o/+Kay36cyizO0QBEEKYIF2ZsizzPK/F0dxc2O+naTZlglVVsbGx8VM/9VNf+9rX7t3b+uIXfvT48eP37u986Wf+zr27t0+fPr23t/fWO2+dOnvqYx//MBf47r1rr7/+GmQFGGPSNC9LxbmnpCrKvNFoRVENtsvhcIixi6Ko2WyORqMbN24IIWpRHHi+VFlRVsJj1mknDSGEMOqMA9IBpdQYBzOKWq0GU6YsKwCeBkIExjhLC9hKAj+qqgrYN4L7iBDnMKWsqiSjAmEb1YKVxaXBYJTn5QMPPDCZTJJ08swzHz/oja5euaGdBYc7a5CdOeJRShgmTiklhDccjkYjCFIwSqlarYbQzKnHGIWwjeNwfWN1Op0SgupRvLOzFUa+s1gpXZU58CWPGlSYCZ86dWZlZaXb7SJkR+NBHMelKhrN2tzcXLfbfeuttxBCBDOQ3gjhJUmKMWaMK6WytAisB9PXNJ1KqaI4aLaOdbsHtVqtVo98LoTw79/bGgwGjUYTCvpms56WCdOk0WgIy+7fv3/79n3OvDhuDIcjKXVVqaWlhYX5pfcuvrO3t9doNMqyunnzJkbglG8IIeCbEwSeMaYoMrhuv/Iv/8W7774rhLe1tYMQefDBs0VVvv/+Jc/j9Xp88+adKIrrjUaapfVG0Jmr39+yb771aq97XwgiOLbOEMLKMr9+/WqjVod54EF3zxPRww8/tLCwMD8/X0rNuRCC+iG1FiXTEkK9fN9vNmNrEaUzyr9DHyT7Q7wPxg61Wi1E3DiZ7O3tIWTKKn3pxRfmOq0oCr7zreeXlhahaux2u2fPnj1z5szVq1dhgEwIWl5eDgJvZXVR6aLf7zUatXq9vu5WMSbWoMuXLw+Ge93eLmNsbXVDW8d58M3n/ujK9Wt7e9tVJQm1jXp45f33jm9uPvbow7s7W3u7u1Wpbt++0z0YTCaD99+/dOXq2SjyjJGduZbw2HSaUYqRs9ba48c3g9C7e/fuI48+0ul01AzF0BhjwZiymlPuC2YNCkOfEEYIUdpOkyxJUyHEvXv30GEwlJRSVXoySS68/a7vh5RSbLGRUimjdWF6rlavy0onSTevcutkUaRLywu1esQ573a79XqdOEIIFX4QxFFelXNzc4yJqtRBEGUZlJhuZ2fn+PFNz/O+/OWvLC4uYEybzdZoNMqyHLgqeQ7EKAJ9ZlEUvhCC+xnKqqoihCJH4NRPkiTLsqPsr7IsR/0Ratk0TSnDnPNSKYxVHIdKmXQyFTx0DnPGnUW+70+nE0opeF4Hgcc57/e7lFJpZ6S8ow0HY1KWJee00WisrC4VRTGdTsMgLsvy2rVr1y6/l6bpxrHNpaWlLE+n0ynGbnlt2RiFMF5dW2k0m9NpkmVFkVfvvffOyvJiq9VCyE6nU0ConXNKGYox0IWklLVajXCW56WzGEr5I3oLYECASiOEHnzwQYxdo9GYTqee5508eTJPx2maIhSCkagQIivzWq128+ZNsAlTqnLGDIYHvf4eY6zVaiiltu/f7fV6u7t7o8Hg7p3bG5trD59/8JmPfRSk31lW5aXsdYdFkfE8r6Quq8oY2+y0A58ZN7O5ODqGnEP4A6GdGCNCkNaOYIwxxHeg0SiDNqnVboCZxpHpzZ9lNWOE0exPQEhIlRqYHmOMx3nGOausfvutC7/3B1/VMr/16ivIOs49pdQf/tHXky//Tq3Z+Bt/429ceOete3dvh0JAgRLH8fXrN8MwnJ+fhxGa53n1Rm08HtfrcVmWb731VpZPy0IJj6+vrztn+v1RJQtj1YljJ9fX1znnaTpdX1+TpqAUWSezPL5y9eKFd9/Y3NzkHqlUTik/dmxjNJoopZxDn/70p1988cXpdJqm6dbW1tzc3N1bu0ppwYMil5Qywbm1No6o0XY4GGltv/e9l+fnO81m0xokBLPOaWOsUSdPnhSC1+v1nZ3d/f19KbWstOd51qK9vQOEUBzHS0srcY0L4SGEFheXEUKYQKy5NQYggyrPCyG4NU4am2VTa6gQvFabi2v+6toSIWhvb49zbzKZjMfTIAiee+75dru9sbGWl0PCqpXVxf1u99HHH+8PBrduXKk1W2tra2EYdvv9tdUN3w+jsPn5L/zFU2fOvX3h4j/7Z/+cOz8OmfPD6XAwHWqjNUEYObJ1f0/pIor8848+du/e/b3drtK2yHfgTN/d3Q2CqF5vPvHEU++++67W+syZM5ubx69duX750lWM6csvf6/dntve2241Gmk6zfNUS0UpnUwmF999hzH28ssvv/322/1+PwxDxpjv+wjJw5PawA7veZ6zGOJAsyzrdrt//a/9xNbO9s7Ozu7u7sMPP7y7u/sXPvOpNE1/+7d/WylVZRUwGpAjsJ9APwMAMTjGvv766//pP/0nIcRnP/u5u3fvvvn6G2EY8lqtLMvAmxHryKHp26w9MgZEnc1mM47jnZ0dQshTTz115cqVfr8HMCvG2CJnrEHKUsYAlzzqqay1xB1ZzTqMMWaUOAdpgQAHg/aQHkbJO2OAUAMlATA+rLWEYmMMRrN4NYSQtTOLc8/zrZ7RcOiME82NMbKUlDEhhDQaIl6NVCCixBhbY8BTwmldFAVxiFCEMSOEBEFgtUEIaazLogqiEEzVEMae5xmrWq0WWG0kSaKk5JwfyR7huuV5yTwGPE3g5ZZ6xlHgnDfaTa21KiWlPAzjwWBgjJxMstE0oRT7vtdoNLSaGSMgbAGgF0I4Z8DQjxEGsjlCGEYEJNKwBmBXsdaOx0OInYT3pq1Ks+n2tgS2C/hIkBlE+oOWxveDKIoQxlJKrYyyBswKQNsLimCgbHuB32q1JpMJRvTIltoYw7kXBL6Us7hLuLPw6/ZQwU3pzEUB4VlmFyGQOWO1ms0t4AVhEgNDEXNoxwmoR5ZltVpkDUIYOYsmk4nvBa1Wq6oq53Cel1mWzNAfwhBCVmtkEHHIGGcPfaiNcdgRgrQ0R1G3xDmslAI2iSyVUXppZZlS2uv1xuMxY4xTBphgFEVg1QIX87+gIBHHGAf4BiFUFaUThy4cGBujjFGcc0gsZ+wHMVaAv0MfAY4HsPIJIUWZcc4BSWSCA7B42Ew5qao6j+qNmDGaTMdLS0sI0yzLtnfuI0xrtVq73Q4Cb3FxEfTv3W734sWLxphkmnk+r9eahJA8z7W2c3NzCwsLQmwM+yOl1GgwwZgSQpnvV4U8oroTQgjDwLRACGlnj1pcALgJZpwx6FmMVVVVGaURmuEasCQom02DEEbOYodxFEWUECk1xioMQ4RsWZZKqSDAR3Raz+eKEOvcJMnqddpq1NI0lVpBvw3m9XBlCCEOO0ppgzes073+wRNPPHHmxOZrr78Z19t7+wOXVwtLG5/9wl/0wtYok432whd/7K9+6MmPvPzyy2FU6/eH8/OLH/7IM+12+6Of+PjXvvb7xpnjJzdfef21tc3lT/+FH3nu239cr8cIoTRNJpOJ1abTmV/dWIzj8Pbtm612hJADGwFnrDGWUT/PyzQZCeYZ7LQ2WhtiHaPcWYSQCzwPI5rn5crKyvLiyiSZ9vt9GPYUWQ6LvyhLRAmaMQCcc64oqiTLMaKEUMCVDnmUBGNcVSW41hZlVhSFNtIhQQghdIZG7e3tOefm5xbb7fZoNCqKSikFdFFr7erqqnPu1q1bMwW35xmngTAOgAsmbjweI4c9IRDCnucdO3bs+PHNvf2dV197RXi8Vo+zJGOUIWspZYwxPwx834exX5ZlQRBC4W11debMKaCpgkbH932pZtGdgKAFgTcejz1PYGIarcZ0OpaqZIxhQsIwpJSWVQ6jC0spIQw7BO0YOOZlWeYczvPC90KMUDrNEJplzTmDMENFUQz6Q7BTh0xCrYxWxn6AT8oYQ25m0ASbmBAhOlTqABhqjLG2oJQWZcY4U8pJKSGzhBBCMDXOGeOMtqWWBDnnXBAEns+1spSiCxfefe+9S61WW2vd6x94nkcILsuyLI3w2I3rVy9fvgzORQGLGo3GeDxO05IxIUv1r3/1X9+4cSPwo/F43OsNfN+fTBLYYYQQEJIL279zDloYiMVrt9voUNsBsfCw7QPwJ2UJd6TRqC0uLu7t7XW73TxP33//EiBogJwKL4CSRnjMGlUUmXN+pcoTpx4jBG1v34+iYHvnfqNVr7fi4aTvkPVDng+TyaToj4bTLMXWeZ7ne6EQwrnZ+FNrHdViRPB0VGgt2+12WZZ+IPxAQA8IdVqtFh3RtIPAq9fj3d1dmD/BtgNHA6Wz9HLQpgMtHSwjrNV2PN7Y2PjwRz/y4osvxnEMQCqyrtVqASU5maaTaQLdTRjGtVpNa82YKIqqyCt1uGKh0YeaCmaxgBfBt8CgCTIeWq0WTMjee+89KCowxqPRaHV19Zlnnrl169ZoNGrUm/BBYF4CJ2YYMjD3gDIAjg8gTh1NfI/gZkopJDQczY1gx2ZUGDvLq4BXwBiDsoccGkkrZbSyZVlRpH3ue4EghPiHQRdHMCjnfDgcTiaJtfa73/3u/fv387yExXb37l2oEpN0wsV6mk2rqsqyTOuZdgoKucGon5dZpcqiLBuNxvziXPfgwFhLCF1eXhaC1euxNhVjZJomzilCQPRDQBg0GAwwcevr63A3gSED1WaSJHEcRxGRUiGE5jvzjDCljFKVLKvDLZMT7A6fX4OQQ8hSSp028IB4vg+gPEJISjk3N3f+/HktVb/f39ra6vf7o9FoMpmEYbi6uooQSpKszHKoo6DAjqIITEKSJAnDGFEC+WRFmhkKEawVyEecc9YiKC3wIXJ0JDrEDs2Y7Aihw+ANSsGwDWGM9cxxC1trrdMIIezs0Wsqo2/cuIWQFkIwzp986pGV1fnBuDcZjxijhUyF720cX0nz7O6tHYICzwsF9xkTaZoTginFUloh/MpK6yznHDGtpESOEEal1FhgrS37j7/7lYcfPn9wsLe4uPjII4+89+6lO7fv+n64sLDyoz/yxevXr2NE5lbnOAtarY62qBGHCCOlHCGIIHzYkzvnjlyZ/2xzfkR2dh9ID/xgLtPRl3OIIlRpXRTFeDiajEfWLsVxGNdXy6oYjQYAoX7mM5956omnX3/99W8/960HH3nsIx95uqqKy5cvXbz43s1b1y+88+bq6rI25aXLb12+fHEy7Ye+2N/do5THYeSwC4Igit3i4jKl/Pr165zzxx575OBgL65Fgc9v3bx2/PhGWRQYY88TofU5p5PJaOb6Z7QQYjycMEYQYgQzYDVWVQW2ZZ43i0yBrgZjHARBGIbT6RQzCpbhSmmtrKXWISx8IrjHBULIcc49L9CW+GF8++bN+fnO/fv3b9y+e/bM2U578eTJk3fu3NN61pTC7JExUZYlJ5RRDF3TUaPIGJNSUoIRIghZ4TFj9Hg8nkwajJHr169trK3NzbWn0zRJMuwcFKC9/hh8RQBCMsZsbW3t7+9SSpdXFtvtVpYnGOPl5eX79+/v7GwFQWStVbIoigoePEo4xjiZZgA6F3mVjLLOXAumxK0W3tg4+YlnPtrt7m9t3RuMe047pavllSVrHNBKtLMCc9jdtrb22u2FIjd37tx3FnsikpXt94ej0Ug7jRFVSiZJRilFjlSygqzPIi0IIQsLC1LKOA4AOq+qgjFx7dq1oiiMc488/NiVa++fOHZydWP9299+4eVXXj9+8uzm5uZTH35ycWm+Mxc//MgD169dsk5duXJxabFTyVypyg/qnPOiyMuqUFpiRBBitbi13z0YjtJjm6cWV1ZXV1cpQ8agLKuyLAPg4HCaNAsJ/ODEBaZMAHsZg0pZeJ6ooUhI9M47F9547fv3t+6oYxsPnTvtlP6Jn/irg2H/V/7lvxTcv3d3KwyjoirH46nWenNzs9GoLSzOt9v1LJ+2O7XBoAdeJUqpqlSf/swn37v4ZrfbNcYoXUGw+917t/I878w1er3Bv/23/3pjYwMT9+ijD9+9e/PatWuf+fQX/tpf+1gYR88//61B3/zcf//TL7304p+8+E2rlZJVUaRcYM65cdr3w+WVRSF4s9l0zt27u9XvDmDCCX1RQJjneSsra3leDAfjvKw8z6sKXRTF+fMPck4vXb64tLQE6KoxDlnr+6G1VlcSMZbZmWGxc67Vai2vrOzt7Q0myhjlkFlaXoiiwBhVVYVzzmgdhnE2TWst//RpEI0mjUazLNSdO3fq9Xocx7DO3333IkKWc767u8cYY4yfO3fu5o3bVamg7QyjAGMsZaU1npubY5j1+33GWFGUxhhG+RHewRiQoK3vh86ZPM93d/eFEIyRqlSMMcqY1nZubn5jZfP27fuyVMk0RQi98847lJKl5QVKXVmWjBOEraMulxkhCOAYSAo6qgCstd1ud31jdW5ubjgcwqDYOWesWV5dmZ+fF0IUZQ7A9OXLFxvN+txcWwg2HPXDIE7T9P7W3ZWVlZMnTw6H/e3tbWNMq0VbzQXf94tcSqVVWRGCfN8/ffrkXrc3mSQY0bn5OYiivnv3blEUYRh2Op0sy9I05ZzfvXsbWHVRFPm+iKLIGD0/Pwd017AWwQZYVRUhiHNurOJCSKniRlzpinm0yJOykC+++Cef+ORnfvZnfzbLsn/yT/5xd29/MhwtLy8zxsbjaaPdOre8Phwl+/vdRmepVouV0tMsk5UGw3RymO93ZLj8g39jZMys2gP7pkMjZp3n+eracqMRwEMKDyM+zBj4M1+M/eApDsMwjiMhkFKoP51ev3Ll+W+/cePGZYxdHIdS1kbDoe/XECJamySZTCajbnf/v/lLf7Hf7954501K6WAwaLfbYehrrT2Pay0Hg97NmzfPnnvgwfNnL168mOdpGHtlWXJB8jzF2CTpyPO8RqPuHNrb2+n1Bt1utyjK48fXP/7Mx/r9A2PlZDKpZFFv1BBCjUa9LCuEcL1eD4Lo0qVLYRi988470+n01KlTw+EwCELP88+ePfv2229DgwqbElDsKcWcc8/zjx8/boyBYG7fD6MouHXr1slTx5eXl9PpdDgc5nl+7NgxIfzr125mWaY1+BvM+sM8L7rd3sLC0qmTZ6IoGk2mRVEMh8MwjIUQg0FP8BA5a6zGGGuFMcK+H5w//2C7U0fYbG3dGw2Gzjln0Prqhh8G3W53Z2fLumplZWmaaETI2bNnsyy7f+/e2bPnNjY2MOWj0eiJD3243Z67e+/+xubxM2fOvvXmW89989vYmGc/+fSLL75QFKlWxWg00lItLS0ZY0slpSrPnX9QcH7r5p3AbwSYci4m0+FolOzudjudzsLCwpUrV6qq6vV6Sql+f1iVylrdarX2dg8mk8mDD54/2D3odrvTNMUYz83NPfLYo5yyvf2d3/md3yGEtNtNQth0OqWUe56nrVF5cUQhSZNcCAEWPc1mM8/zX/iFX3jv0sW7d+9CS3Px4sXNjbW7d++Cf0UYhpzzNM9Onjj5uc997td+7deSJAGiRBiGs7bB87/8O7/DGPvkJz856PWDIMDWWfAuUEAvZVob4ywhBBHMMZNG4kOLuv39/W63yzl/4403gPQhBEcIQalQFAUWRMqZihOOXei6OfkBC8OCbRrB5APL7AimhHoanDFgu3OzADQGpDYltaUOyKGwtKzlQD3L08wdGkrAnmydmUwmwvcwxsi5oBY24hgy0wnCMwRTq7LKncRFUWCLw8iHjohzrqyDliDwI8oZMHcwcaWUZQUekdjzfeGxZDwpiqLRmKOU7u3tweeSUlI1w6AJQcrorCoQQrVazYNcF+fCMDTGTSaTLC3g+oB1iSr1WI88QQ2SlBKHVFFVuhyurKw//PDD167cMMZQTAw6NPJzFmPqh9wTM6uTJJlAMH0cx2k6pZT6YaC1XlhYKIrMGMU5/aANJaKUIcooA78LQggmhDEGhD7oWq3SUNcZo6EhVEqNRqOqqoyeQdXIEc8DDhRsnm5GKifEIaWVm1G/raXUzZphMkO6rXXgrzKTusPKNAZ+BbYRY4w7NGMB5jXQXT2fQ8MMtWuSJAcHB0B/dg6FYWitRsZoZY3WWlkwOvQ9j3MBwlJgiAPNQggKw9eyLIuiYIzV6w0t1V5vVyklPIEdyrIsz0uwrkaIHIHjCCFKMSFEW0MIhbhI5yzGDmMHMergDgEDlbIsoUmGQxOogoQgSjGlmDFBCLYWMcaMdgg7YwzGDmPqnMEUBgZUSmmsJoT4XgD+rYQQwf1+b5hkeVlIrSwTzBiLEE6SHNleq9Usy2rYm0zTJI5j57DRRGvHGI6iOjBXyrKM45rnecsri5zzPC3LQvsAehaVlRbMTIzTAIBKKUXgM8aMnIHvCCHsDg1zMDYWGWOwA78aBI09mrFbZgzcSsnpJBVCeMyrqiqrElVWlNKiLDjntVotCIIgCPr9ISw8GMPDVJ5SGoYhpOkI7mOMtbNHTiaz5hyhKk3OPfTgj/zwX5AWJ2nxuR/9Ky+89Lo26Lsvfv/YsROPP/5oLYocwasbx/7SwiKltMjyOI4fOPP473/tq/e39k498BDGrjvY/dgnPv6L//s/VTp/4XvPRTGbm29H4cnQjzj3er1eFAVSylocZ0naqNV7Bz1CiLXIE4HWOXaYMYEIqfIMdsvA51prjF2n2SqKIk3TIi221e4v/MIvcM7DOPJEoKUClrExhnAGjwZCiBASBFGlJFIKOYLxjNdsraWUOOcA7LLW1ut1kKlR8YMR0Xg8nkwmnHvGOq0rM0Dw2MZxDBKBRqPRbrdv3rwO1RHnXPgc4DzYCbXWRiqtDcZUSYOJw5ge7HWHw2EYCeF5k8kkmSSceR73CWHGmHa77XkeZWw6nUZRBLxa0BTCx4e7OR6ncRQEgahkopTS2hBCGo1aVVVK66JIG616u92uqiLLk3angw7lMsjN3h6EKkk12+6stXNzc5x7spTGGOScNUgIvyzA9RuMa6hzzlhdj1qwD4DUQEnFZlY2BDmC3EzgD1uTlBIT12q1IAsBhiJ5VsLiRNiSWVguA/AP6nnKMMYzo2RGZnINjOj8/DyltN2eK4oCdEG1MFJKJXnKOU2S5Mr7165cuVLk+dzcnNGOYjYZTdMkk2VFKRuNxgf7feec1hagRik1HKNCCEi6g2IvDEN4OuB2HxwcFEVhjMGYAnAMsyLKmNIaIYQpscYYp9tzncef+NB5pf7wa3+gtYazQwhWljmldJqM6czgW1KKKWPaKs8X+/u7WZZYa/e7e+CYur+/v7q6ygOulGp3Wl4QzC0utNvt/f19hhkhpBbVD6d0oDoizWaj3ZyHhRfXfIRQkiTz8x3n3Hg8JgwPxwPwoQ7joNVpwqQQY9xut4Mg+IDNMaKUw6wdyiRAe41xcRzW6/VnnnlmOB75vo8xHQ7HhJClhUXOPYyr6TRFiBijwVrNGkQw00oeDHtgrgVH2Gyei/AH4WYlDeD7MK2pqmpzc/Oxxx7zPG//YO/VV1+FTMI8z7UyCKFaXG+32/V6PfDD9957b2/vIEkSSjlCFlSAhJBZRAFj+DAU9AgRgoPJoVndAssVDnEAxI9WtbUUIceoADoO2O8AqAVYrZsB1pw4BMAupTSOY4yplLqqCmhanXNSzj57mmfvX73izEyBAY9nFEUvvPDdrZ37xmlEHOdUSouQVapyzllLMMaDQQpP6/x8pyzLXv9AVmWn06nVIs/jlSwZI4hQ6CvBWIPzmSQXxMGcM2utHwgohqWUSZLAhhlFESaOWKy19v0wz8cEUYQMcsQaJATFH0jJ1kYyOssovnfv3t7eXrvTwcTVajUYUSwsLACOfObMmaWlJcC75+bmGGMHBwdRFEmp08kUuGswRfM8bzamogwqGwCvCSFSlhgjAAcPUVPHGAHJH6i+LJqNt43SMDlACBPiPM+LouCwXtJQS0spGfeNMdYZ5xxBUHgTSqnwAm2k74dJOn7y6Sc2ji3u7d8bjQat9vypM3PgxTfs9SizhOHA930eloVECAUBB9CDcax1yUNuClNVRcULbBGRlS2roZ0Qj5oBZ/fu3TNGf+ozz7799ttXrl+7f297rjV/5uy5Sxcvb93dCcPw0UcfbzRJWpXKDpqNDsJgdukoJdbY2R5EyZ9vyGetxQch5h9ctQ/QmT9g6AwemtZagvDi0gLGuNfrOddmHjFGaa2LIguCaG1tzTvuq7L6gzt/GNcC4dEf+uynf+93/xNC9u/8nZ9zzr3++qt37t64fefKdDoVjG1ubmKHCKKM8W6/e/z48c7cfL/ff/HFl+I4Pn/+wSgOCTVSlnfu3lhYbJ06eXIymURhfOvGjbm5zunTp1999VWlIN7EzManmFhbFXkB2xMQfCilWs8G+4AC68PMH+g9EEJlWTLGhRCIssD3CdfC45RQpaRzbjgY+170xBNPjkaj57/7p4whxtDt27du377bbi222+1pMpBSaS3zXMMIkXPPmNkZjzFxzgV+4JzzhEcIKYoKITgnOEI2SSfb2/e1VpPp6N13e3Nzc0vL85zTYX8SheHy8lK33+Ocai0ppcYoxliSTBC2jUZ9MOwSQjY21joL8xcvvgvTPKBI7O7sT6cptohRqo2mmCGELUTWBBwUMR73NNFFUezt7yTpKAz9VrvJBZtOEu3sJJ1Upc6ywhizs7MnBKOUGKvyrGy3O61WJ/BrGBNTGUrJdJItLc+f2FjmnAmPQWfSPehPJpP5TicMw2aznuTZrVs3YHOfm2sPBiNjDKUmSSdlpaqqunP31uX380atvXV//5t//C1j6bVrt554+okgFsJ7dGFxrtWOlC4EZUpXBwcHziqMZ2k5vu9DFxQGkZQqjuNut7+85JdlORqNkMPC843RWZYxSjmjyDrmcWNmaYEzJOtw4kIIophggihFxiApZVpk2pRCsEaztrOzs7O1PRn0D3a2P/fZH2KE//E3vhUFtR//2Z/Y2tnBzmxsbDz//HcoZ1Krg1737r1b7U69Vgtr9YAQ7JDm3E+SzDnU7tRrUXNIJkHke57X7w3r9SbChjJUi7wiE/fv3b5z69rDDz/8R394a3d3+8yZM3t7e5/61Kc2NzdeeflFLtwf/OF/vHzxXW0yY6Q2KowElJuc+1rrCxcufOGLXxiPx9/99ncZFQgR4JcBb1dKaawKI5EV+XA8sBaVZSm8qFZv9gcj4ZFOpwPPiwi8spRWY2sRw0Q6OzspnUGIgiJhNB77vo+QNQYtLnUa7ThNE0xd7EXNZlNJRwjL49rScmc4HN67u1UUVa1Wxwi8LCpKuVKKEJznOUI2DMM4qn/y2U+cOnbq8ccf/+3f+ffPP/+853lwkCwuzSuljNHt9pygbDQaCeEhhEfDiSwVQZRSarVDxAgh6vV6s9nc399nTCBkAZuu1WrQT0mpkmnmt8M4jnfHe4888shnPvOZe1v3vvHHf9RsHivKzMd8Oh0zxoIggAqh0Yidw0mSQjF0KIRxhODLly9D4pM1CLyf2gtzQgilDEK6054jbJwX6dzcQhh5xphSVoSQXtrr9/u+LzzP297eHo0GjUa91Wrt7h688MILSmKMRFWoWhg/8uj5yWQEaALMtzzPE0IEQbC+vn7r1q1nnnnm9OnTv/u7v5tlGZAjQPhvjJpOked58wvNQhb3d7bn5uaEEPBuQeOjtbYONxo1jGtRFAWhhzHevt/LylxZ9drrrzzxxBMPP/xIu925c+f2tZu3rly/dfz48XpzrlZvDcc5YmJt80QlrTGWc9ZoNIyecQi0tpSSI3z5g6Kbo9HOIb/AcY6dQ9PptN6I5+bmrEVKOUqhPUbYIvOBY2v2Cggy0Ga4NvywlEgINNeo32Fsd2dHMJ4VyTidmqr62Ic/vLy8cuHCu6PhJAy8NE2//O9/s9WOjC4tMpzTLCsHgx68q939PaBxEUIuXXpna+sOZaTZbn/49NNCiEAE6TQZjQaDwSDNpr3egecFB3v7ShnOPK8RjEbTV155PY6DvJjW6/WF+eVnnnlmd3f34KBXrzfW1zarqkrTNAjCxcXFPM/jqN7vDUGAcuPGjXZznjFaVlnIYmutUpZzKiVyzllnknTK+SygEgKXez2jtb175/5wMO71DyBrxRgDQTd37twZjSYPPvig7/t37t3tDwdK5kqp7a39er2+trYm/GA8HldVVZVyfX0dIWKtw5gK7pdliZHHGFHSvPvuxc99/i9gbD/ykY/tbm9duHBhfX0zTdMsy8LQV6pYW1sry1wphVw12d5uNTvHNk94QUgpn6a5lNZY/L3vv7q8tJ5l5ZXLV7//4vduXHn/M5/45MljG9/8xmQyHnBBO+0G0P3G47GU5ac+/czZs6dfeOG7nHvjUSJ47CyuSu0sIZgjR9MkHw0np0+f3tiQo9HIWby4uOh54e1bd51DQvgnT5zeWF37rd/68ur6ysc+9rHvfOc7qpLjbKSU8rkQgimlEJqZkHqeRzGrihIgM8BMoUWE5lNK9dWvfs0i9+M//uPD4TBJpmtra2+8+trv/d7vdTqdWq0GJzKtSqizjx8/fuXKFXipI39no7XFWDD+py+8qCsphMCMWW2wQ8DidBghgogjANdSQjzPU0ZTSpMkGQ6HkLGjtW7NdcaDIaiawD2TMaalCsNAa1MpSRgliBqlAbgEsAMzQsisSmYezOcc9D9H7BstpXWAqc0aP8ZnBoVsFtit6aEjIaVUCCFlhRDYXpNDWwZGKS9NBuxaSBqcDEdFmlVViTHWSs/+IoXl7QghBJMjwrVzzmrlHOacd+baWV6WZRnHMaFI5zkgrVmWCCE8z/N94ZwDNbqU0lpoGKQpKoQQuFtqa01ptNb1MHZgGSxEFIbD/mgyGFmLEMGEEGecM5YLMLN2wvM68600naZ5Pkknnc7Cwsqq590fD8aScM/zAs8jhFWlllJqVQWBBIeTNE2lLI/oDmVZNlr1qioIYadOnQpDf2trK8/LH5jvH7JmAJOajBOYOoB1MHwXO1dVFWYUz7wmUcgihBDBDDN3pUF1rAABAABJREFURJvyvQDh2akNjR+gabDvArfOOWftzH0YxhIIIUyIlJJS7nF4BCxU1O7w6xAcBz0phtcBhQ3CASYEXCMxxqDhOHSBI1C5qUI5aykmjsyy9eBxgyUNb8PBiBJjY20ovNba5nAyBMStLMvV1dVutwu9NyEkSTJIpa/Xm4Cq2EM/GYsccZgx5nlCa/hcFNrCIAg4x8YYpTQ4Xfq+Z611zgBtMI7jLMvKUhJwNTkCs1TJOa/VIoRsJYu8lLQqgyByVjvnlDQIY+A5JtNsOBwiVDDKMabjcWINNZoaTXVllVLdvXtB0N3c3OQsRKZQpQu9OmOMIkEczdPM90IhPCnlaDT0fbFxbKPTad24foewMksygoUXMUqElFIZC1y/4XDohcHCwsJgMIA7PuPEUQY3UWmLD3M+EUJSKoxnoynqeFWprMwbjQb3PISyspQeEVpZ61xRVMYo5wxxaDToo05nZWXFWntw0IPGGzIJQXRFOOMOI4QwGHZTyhgD8AVjgrGD6dTq6vIoK/vT6d/7e//T8ZMPvPb2+7fu3N876Hb7g7fffvvzn//hzfVVzJlT1BISNhvNdvP84w9Tn4G+4eHHzr/4p982try7def//f/5lYXl9trKYhj54+FEUuz7/smTJ3d2tnq9nu+FUuq9vYNWc346nZZFIYvM8wJCMCXcKIWJUbJECCmFEcLEYUify/MSQCjue9PplBDCOev3+0opymKCZgxEEJ4bg4U/m9OUhbTWzJIpKaGUIusccTN1rLWAKlpssyzb29sLgqBWqzEm+oNhnpfGOGtRo96qN30YNRljer2DLEuGwyHYQXBPANUUdDPGWUxJkVaEEM/jgAhbY0ajcRiHSZKUZX7Q6zZqTSFCa7GSOhDB0tIS5xRjt7KyAufXZDQBOAY7vbW1dez4RrvdHg7HRVEEAXHISFUWRRGFNaWU5/MgqE3TSZpNt7a2tJb08IJYjEqlKSFCiKpSANCMx2M8y/Cgvh/SmTTeFXlRFBWlFFuHnMYEO2S01hZZqoi1ularIWSzLEGIcA7jQ2KMsR8Yg80wKa3TNNVaz8/Paa2qqrTWIWwppUVRUIYJIQgCQZyhjORFaozxfQFYIePUzth7JAgi2BthWiylAncFjPFcq+N5YjAe7e/vU0o597sHI8ZYmXWttVEU+dxT0hhliENKWU6pQQ58BmD7XVtbW11dvX79qlLK9/1Go1FVVVEURVH0ej1wD0MI+X4IZy6gxhClgLCF2M9aLR4MBn/6py/Mz89TTuJ6I46iZJodaTGP5MWEoPn5OYvseDzmnEpZep4ndaW0rNVqpZS9Yc+PfFVWhJCwFuejkhDSarWCIELGFkXBqYCYhKqqtDVaayFY5EdwI9I0lVIuLM1bZLTRWZGSioRhIGWltVpcXJRSep546qmniqLY3t6WUi4sLOR5Dh8TyMWA0lprIS+OcwbhKMaYbrefpjmM1pRS3W63KIrRaALHB3WYYGK0xZglSVHmZVFUzs2KN8C+DlkvR86ZCKQ5wLK3VoOB79bW1nA4rKpqOBqAKagnfMGdUur27dtSSjCnnkySJEmMcUqVgDXD8QRHHlggAroKxRU6VFxZpwGhmlHv0UwoD1WoUjDpJJQSa6119ogZDdNEY0ye5xYRxpjWlZGGUny0QoBaXpaltcj3fWOcOUy6g+lFFPiQBxjHYVmWSlX73cloMmy351qtRqvdRMTtbu80Gg0ogBFxnsfzPF9eXiSEbG93EbLNZn1xcZ5zOp1OEXZlaTAlR1kUWmu4m8aYIPABzIUyQGtdrzVbzU436EJamDOWEaoJTB0cxQQRB0NKWPDGGEIRwggTxwmlmCqlKKJlWaZpWpQlFxQ+2traGjS/WipwOHzppZf29vaazSYIBcAWHMot6JRhLXHOZVkB7l9ZjRASlB3m4Dp0yECHMRWf+TJ7cOoZpwFlNRSsCB0n9JDfQOxhzieiBG7ijM+BEcUEgEGMqXXYWsuZZ63xwgBggcGwu7y8eOz4yWkymkySfr87HI49FtfrsZJIac04kTJnjAqPaWWpcEZjKZ3OlEFWOpknWZJJwXghtKkKmkdsfn5+Y2NjZ2fn0qVLeSkJoZ/4+KcWFpZf+M6LtbA9neRZWmZpGUaNRr0dRPUjBNk5BIvSGPtfUDX/HOLsjgz7Dvv//yq1efbDxvrCG4+Gw1HWaNTm5zt5mSHppCwJJ77vc06Nwnmer6+vnzt3bnltfv9ge2Fh4bEnHt7fPVhaWtDa/t2/+3e///KL//ifvBpF0Ynjq51OI0vTqpB37t7c2d2/ceP60soKxhhjV5b59RvXOMdz8+1mM67XhRBCm3xpaQ47d+z4alhvGKvqjXg0HkB7YC0uyswaVK+3fN8vCwlGbEf8CwCgOedBEMRxrJTKsgweeN/3p9Mp58ITnoWULSIdUpgyjrhzTmszGk3eeec9pfTm5sp4PEyS0lrdatakrLSyUDYxxqjgziEgk1PKKeVKVc7NkqCh/SuKwlptrcXEYWk9j3NBCcHayPX11fF4rLWcTCTj9Ny5s1lW9PoH5x48U5Xq/v37eV4wzuIw8ASVUjaakRDMWptmk2I7n06nUP1fuXpVcA5SF4ZpnpUIEYQRpZwQZIzBGDHGu93u0tJSo9HIVZqkaa930GzWCcWf+cxnMCLf/e4LybSglPpeOJ1Oq6pCjhBqlZKE0DTN00Q6S4IgwEwbYwT3OfOm0zQM/VOnzl+6/N729vb5hx6p1+uCsSRJTp48GcTR9evXg8DzfV9re/LkSYRQkiRaa8oYIWg8Hh0cHPz6v/0tawmlwiE8naSTyWRjY/25b/0xeOOm6VRXWnBuLdLKQpAMtMacU4i9bjSiM2fOfPwTn15fO+Ys39nbN8bs7+9zzp2z1PfBOT6O4yiuMUaMmRnRHD0ylCDnQLVkECaeJypdjidpnietVmtuvr240Hn3rTfHw1FRVP/b//ZLb79zYWVlJQziEydOTcf973//+1pLzwsODvZ83+MCp3kqPOymUptyZ2dHCBEEURTW/uRPvh0HnYfPP4Yx6g8HtVotjuPxeKK1bLU7k8kkroVhGD740APf+c53nnrqKa31m2+93WrXPY+PJ71603v/yoWl5U4UkyxNm/XW9va2rAAVwVBs7exsvfHGW27WEDptJOAFfiCazfp4PL558zp44+Z57hxu84hSPp1O8yIFQpAxxllECMMUWYOcnYUvYWQJQUqqsqiKsgrDQDlVljmhNki5CGi9HrfbzYWFhTyv8rRQ0nmeD103TG6NMVB9TqfTQ8gRRkRuMpn88A//8OrK+nPPPfe1r/3haDTyvEAIEcf1NN29dfPOyuoSY6zb7TZrjUajaa0lmBV5NRnl1paMEUqpM05aZ7UZj8eA3fi+f+7cQ1EUAe6jlHHGFPmou9evSmVK+UM/9EMnT5589fVXyzLv9Q/OnDltnJ6rWlpVhJCiEFWlMMZVJY2ZgSOz8wPZdns+zaa+7888xTRootk0zYMgCDAdjvr1eswYS9JRFAXC5wsLC1mW5fnAWhvXa/VGA6Rzfuh/8Ytf/P73Xx2Psv29YZFLrW2n03nggQe+970/RQidOnWKMXbz5u297R3MaKfTGY1G6+vrzz777KuvvjoYDNBs9MqgVbBWTyYTkJ5du3atqiprtVJY+F6l5HA8WFxcXFxeMFYppSijZZVjYhqNxsnTJz7xyWeuXrnxwgvfe/473755+7bwgo997OO7u7sX3n4vjOpr63XMA2SNw8wgDKQlY5xxljGKKXgu/1fGn9gh7JCx7qjUw6A2IijLDMZ4dWU1DJGUiDGMEIIsMU4Qdcj8ORto5xAYo2mN6OxEcwjhKqt27209+chj2zu3Xrp+ybmq2ayPhv0sTZPJWHDWaTXm5zvDUf9X/sX/M4oiRqnnec1mczKZ5PmglDNdahyHypperztORz/2Yz/GGMmyLM+nVpeNdr1WF35ADw5ckkysUQghWWnGBGNeUeSyslNTVFI3G/7TT30oSxUlQb3WtsZube0653q93uLiYpIke7sHo9GoVqutrW1cv359NJqUedVs1kejkVQFIYRxFoaR5wsQ7vm+GA6HSlWhHyDr9na3uQhBUjMYjCjhQjAhRJIk29vbp0+f3tjYmEwu3r59c21jPQz9M2dOjQbDy5cvQ4V9//72eDRaXFmu1WrOom63y5kAYgKcL0oZcKIc98cv/Mn3GEdLS/ONenzixInFpfmDg4N2+9SVK1fCgPt+oLV2lkplPD9stTpVVV29cr0sJeVifn7xrTff3d3dP37szBuvv7V7b280GHqUB564cf3Skx96eJoMEXIWo0ajkSRJr+eXZW5M1R/sCo9NkpQwnueVnlRUCIyo7wlnaZLkVVVdv35jdXX13APngc5Jib+328tT6Sy21h4cHDz66INSyn/4D/8h5/ztt9/mgnqelyVpr5fOd+Y8L+CcV5XS1hjtWq0W7IFKKSVNmqaj0SgMw5WVVZjGSa3W1tbgB9599z2Zp1/8/BfWj22+9tprwO8I/aDX633lK18BjBWOaXSo7cWMAss0CqPMoaooRa1WSEkIAS6ncZZzbjE2yAEzxzlHEMaHgsoZp9UajLEfhQaB1c/Medn3/Xa7XcpqMBhY6xBChmAQ+lls0SFpGjuEKKIU60ofMowI1NMYY4IQNIGwtKBhcxisFSghGMKv0GF2CqDSxhhKPYxxmubWWs496JattVmSl7w8einOhbXGagMYAeEEwC/nHLYYyiettdYSO1pVCqbIhHJjDKQPKWOC0DPGEIKn04nWeq7VEYK1Wq1Wq/X+++8DHgo1IaacEKa1LarKaiR4UGZKE8UYK6uiSsvpNDVKUcKtMnmVcM49GltnK1l6Ubi4uBJFYZYlkR8JERrt0jQNo9pwOHYYKaWssgRTa5HWljGUF8Wsx6OzLCOtpRBMWzoajQDTPDjYY54gnAVxRBEYCPoYU6tNUVTWFjMOIILrw8A3TEoJsUIUUWMMcsTzvBnLkpCjOegPbIj5D27rjBxtLSEU0oSOGm/GGMVQK2JMiHMYUHvBPMgtMEbBSj5icmitYLqJrUGUAJGnLEs/CKDhBHrvdDpdWVmJolqSTIBrhq1DxhKHBGWMMeBtFVmO6AwLIIQ4jDCi0OY5LjjnjbgxHg8JZ7VaZAwEiEVBECRJUhQFzKgQQjOekTEYO0IYlL5CMEqx1pYQFATBwnzHOafVjJWidDWdTiGoqigKh4w2kmCW57lSCrD6qrJQjUwmE04w5zSKAuu0VCU8BVVVOYsB+MAEY0yzrJhOq0oWHLsoqvlh6CxTUlWl1NVMO7+xdqIoiskoqwoTRy1rrSciSoiqJPW5NWRurokdgtlbGPlAbeM+yfqTUmpKNKY+JEyMp5M0TRljYRD7UTgZJ0VeMUwIJtYagjDhBLp9xhilnrEKH7L8joZMMNgoq1IIwT1PCJGmubOuKHIhhB8IoGpprWVSQXgyXHlnMawiIYRDShqNDILtV0pNGI2iCBMKriOeEFrLMAyFx37/D74m4uYjjzx24szZ23e3/+ZP//TX/+iPP/WpT166dGlhbr4/6GJi1tbWiOC+H3IhpENxM3z6Y0/GsUhy9a1vPff2hddf+t63/QDXG6F1dDjqWtdsNpsv/enLFAvOfMYoUEeLVGbTEjxPtLSe8KpS1eMYO+P7Ik01Z9g5Y80s92k4HDvnoiBmTBjjVJLCPnm05KySjDFnHWyScAHhWjo3g5UJoWBGzymzTmPslFLgJKCUzLIsKzPwyvA8LwwibR0MRaw1RrvxeAyKgdRkWZFbrcBUQWvNBIezAPAs4yygM0L4cHJRQmY9qTK+cc7hJCngmjhLOAtUVWEkkiSxVjtnjNWQYAH3kXOGLJay3NnZWV1ZbzabVamHw2FZmTRNnn32U/V6/eLFi4wxZRRCCPaHIApdbieTCaIMzZjyHBMqZTaZTBhjShlnYLyBhsMhxcRaJ6VUylBKicMgy3DUWWuN0UYbUPcD/GqMoRRhzKSUzv3ABfXIZQiAHm0knUWwGhC2pqk1Rh7dpiIvQHLke8F0OsYYM4bCMKSMzFLWPZ8xnudFWWaDwSCO66A6SpKEEwr6UUKINShNCkIYxhUhDCETeOwovAHw0zwvPY8hhKjD0miAm2Eg1+v1gNIL10odZgPCf33fJ4RIqYFrAiz4Gb5BQLCCgGUfRcHjjz9eq9Xef//9MAyLohjuDg/HwKW11vfFA+fOdjqdK1cuG6PiuEkprWSBMK7X65RzlSdVVe3t7TVrsUFOjjWcL4RQjKmgTAgfWdfv91ut1gMPPPDq66+VZb60tGA0BoN7Qgnl1BhdVWUQBMvLS7DhhGFIKNJaMU7KKt/auj8cjkANA/bNGOPJZALzJ/g4hDBjFCiZhCBSysuXL+8ddA/HpRhj7BDu94cAF7KZgxZxzmmlkySx2sD2LqV0DtND7Q5y7mh0OkN1GQaWqzGqqqqtrZ08T+GdE4qjKKrXZpk9oIO5d+8eITOXJ8/zqkpRSrUCXyYDRxjAULOyCjuE7ZGPIMIWw9TYYowJRhRsrBBClBIpK+ewc5pSihA2xiBsKQg8KTmygKCES1lxzhEijGGMsbVIa5UkiRCChLN4BkKYc6bVamVZBodUURScYYec53nGaOtMXiqoS8fjYa1Wg5lQs91C1rXazVqtVkkppVRGDYZ9xpjvi4WFOc/zELLjyYgQQgnV2ihZce5hLOHVgD0N5toIIc4JyGohPZsx7nn+rOrWFdhSSSmn44QQopU1Rh/+DNNaU4alLIE4DN23MYYeXhBjZwoGhNBwOLTWZkl6cHAAywlI9ECmttYuLS3VTpyE3Jd6vQ4GRFVVKSlBX0s5o5RarCnls2bfWIwxWAPxwy9KKczaKRXGGIQMZgzKD4YJOTR9Jof23IQxmC5YRwjBlADhHSiq2NjD44PgMPS01ggjxjki6J0LV4ajA88nZZEMh8M46sx31na2h8LHvu+HWFBsCSdlWaZJmRW5NKwal4hiFLtKGac0RkwirZz2/ZCNx+Pvf//7J0+fevzxx6NaY2+vW683bt64/ZM/+TfOnj6zs7N38tQpKS0XQa3WEh6qqgK2IWstRgisQoCzOevD/0yTjxHMdY5YZkc/+V8FnQkh2qilpaVer5ck0zSdBpGvjZpmUyFYp9kqy9IaF/nBUPePbWweP7ExmUzeffftBx88X4vi7373u5/97OeMMZcvXxZCxLWo0+mUReKc29/fPXZs4+f/wf/4ysuvpXnW7fY/8pGPrK6u/tqv/R+nzxz/0Ice9T1+69aNIk+1KgaD3vrK6v7+blwWa2trzWZ9extXVdVut4uiXF5ZEcx74IFz6+ub3YP+17/+dSklLCyoLY6Kaa31YDCAIxxGVUdsCy48OKcffvh8GIbvvfNummaUcqgnwFOv0WiEYSilLouyFkd5Vhlbcs6NscaYMIxhzcEx4Hme1tI5VxQVQsRahDEU0VYpHQR+p9OpZJZlmUO6KIqlhbl2a+7u3ft5XrbbzbNnz+7s7N3bunv8+PFTp09cvnSFEJKnWRxH1mlrtbHIOZdlSVEpSgljPM/zMAydnXHxZAVwPFKVVsrEcSylJJQiR7RR29vbrVaL+LYsVZ4lg0EPYZem6WOPPt5qtawho9EUOSuED+Yk1GGMOCEIOUIpI4zleRkIj1Jirdvb20fM1GrR1tb9osy01tevX/c878SxY5ubm6+99trS6tKHP/xha/Xt27fv3LnT6XQgG6fX6506fdZae+vWLa1lOp54IgyDOkIkjOJ+b/hP/+k/jWv+Aw+cevDcOc/zjDSy0s5qQhAXVFtbFCWlxBOsqooHHnjgv/vJv/n1P3zuu9/97k/+tz/VbNQaeTEcDtvtdq1WQ8g5aw8Fv1Z4RGtE6X9B+YcnQmsLBU2W5xYjhKyUcjqd/udvvHjx4sVja2t//a//9UsXL/7Gb/zGYDDAGN++dffChXeDOLp5/dLe3h4cM/V6nRBMmbNOjSZDShzGzvN4miac8ySdJNPMqdAYZ4w6efIE90Se59vb27vbO+k0++hHP7q7uzceT5977rnhcBjH4c/8zM988tnPp9n4t//dr3fm6mfPngojrFQehOL0qYeLrOh2u7LS8/Pz9UYLNK1Xr16tqsr3gma9nedlp9ORZaV0QQiy1jQa9fvb20a7+bmVU6fOHHSHg/50Op1yQTAx1iLieYJzrcx4PPZYyBjDhGSZ9ATRRldVRVD09//+3/cC/ytf+XJWZZubm4vLc9NkIGWVphPKcJZlo9Gk1x0iS7U2C4ut48dOhmE4o3Edmp4zNuNlS1lB03LhwoWXXnoJ25nq0/OhKFdgnDpr1LVx2uZ5rqTpdDpRFE3HhXPOWuT7HsYOCjVrbZ6mRPDJZPK5z31OKdXv93d2dhhjiCJkLMbE9/2slJcuXXr22WdBaL64uDgY9Lr9gyD0Go2GqpQQwvfDfr/vLG42m+PxxBjDOScEK1X1B91arQZTZWutrCopZZrmjLHpNLXWbmyswcin3Z5TpoxZDM/p+tom415Vyel0en3nKufUYXfz5s179+588pOf/OYff3d0sO2HteXl5W9961uTycharawBNrrD1BdBnpXjXu/48eO3bt165ZVXDoEha60tigKYGkEQSCmvXb8yGIziOC6qUggLjq5gc19VFeME/E61Mb1Bv9aIF+bbf+Wv/uXvf++1RnOOCd5stX7u535ufX39q1/96nPPPRfWmqsbpxgnxBCHEHKzo0c7TBxxDhkNh8ifPVmAr+YcIhQ7h5SyVVWFYRD4yFo0Ho+jKAoCURSIEAQG60GAtZ6dWcTNHAAOi0ZnLQaLZ4hq0NpwThFCo8FwsTPXmas99vCZYW/73AOnw9D/zV//N3kpV1fXx+MhIURgb26uI3xWVdW5B88WeXXp0iXG2NzCPDCYlKq0Q9PpxFr7yMPnMXbD8WB/fz+KolHvQGu9sb4KViRnzpwOghgZduP6nVu37lalDsNQ8MBYPR6l83MmCBu72ztXr16Pomh5ebndbt+9e7fX60FOjnOuXq9biy5evLi3t+d5gXVVUcooDoIwBBrp0QMiZaVUtbS0dOrUiWQ6vXXrVq1Ww9jDGBOCGSNSllmmrEUAEk2n0yiOjp/YRAjt7e1IKaUs11bWT506tb+/n2XZeDB69oc+Hcfx22+/LbinlGJMOCeVMsY4rXUU1jl3AGTs7Ow6p7fu3T1z9uQD505Np+P19dXl5aU0nQJlnhAaBrU0L27fvnv9+s3TJ081G43SV/VmSxu8v7Wnrfv1f/ubn/jYM1/60pe+/c1v3b55M/YDI5PVtUWvT4aj7s79+zdvFoyxRx55ZHVt+dat67fv3hQ+y/OUoshoy7mHiDTG1uvN06dPXb58Wcn8xo1bW1s7cRxSynu9nqzsj/zIF8/+6Ll//9u/Mze3sLq8eO7cuV/6pV/6kxe+gzFutuqj0SiKIlVWIEusKnXUpXPmQaEMaN2RhtEYc/r0aaVUFEV1zr75zW/Ozc3t7e29/frb//P//A9+8Rd/cWd/75d/+Zeff/55IYTv+2lWIITKsgRKL8B8M2M+xj1PGGMmk4lRmnMOSw7UtTNGM6UIOc/z8jzXUs0wHTxz8SOHzOtutwt1ICGkkBVFWEqJHer3+2gWuCe1NgiEt9ZijDAmFjlsrSOOOKKMpggfKuRmAB9jDIw18zwnhOR5Dn9OcDCkAn4rBRUwQshYjbQjxC/LklIeBAHGNMsyeLcIOUAiZKUJRQCPwn7lcQHsD0Rnl1pbi+0Me/U8jzGiKmktAojT8wmGBHZCgGOFEMLYgpeCNopgmucp597p06evXr0OPT8l3H4gdRArjIzLJ1kQepAAg5wTjHPKirxCznHK6nHUrNfSLLFaeZ6fpmkhU/honkVwy2C+KDw8E/DOIoAc48T3fa0MMGIcMtYSSumJUyeTJNnf34UebG5ujnm82+1q7So1y5q31qpKYoyh0zbOKqWMUdZaSPVjjBlryCFjix9aDAdBILifJAnoQGcXXErrMBQ/8LtA/QPrA6iWpVQz3RKZYY7qUMFDD53HYZZwBGrPBh5IY0KqSiHsCMagzGVcwAF0FPAbBEFZSkIKz5slyBujIJ7EWgdOnXaWEY+o4BhjbQ1CiDNmkZNagWk40BTqtRiYU3Arwd4qCAIYCQP04JyxVs8afueAo2SthRguIQQlBPpPY5SVulargfIJkDtjTK1WAw0+Qgio1mCx6pxhjKyvbzJGgI/v+x6mxBP+cDjudWd2f41mTQhmjMrzXOnKYopcmeaV08RaghEpC8U5930hK1uVRhEnK22tVUYjRBgB3FxnSXpjMlpemddaW6eVUt3efhiGtVp88vSJIldamqIonXKEkCiKYJNx1kG/gxDiwmOMWUuRM4BTWGsZZ5xzXcoizwFkhjhBQoiUkgschhHcYnAbsNb6fkAIhldgjGGCGBFCiPF4HIaREKLIK4j3UEojrGFxWoMQwfiQeVrZCmGntcZBsDC32G638yy5c+cOCrPW/NJvf/krUdhcXFxZWFh48803P/3sp46f2HzjjdeuXr3KOW/PdQpZXbt9J8uKkyud5eXlG7fv/8qv/MrLr35/br75oScf1ya7cu3tM6ePZbn/mWc/gyx98YWXkXOczVjzWZZxDmgd1soyKvK8hCeOcw9jtzDfNlZNJhNVYoZnFjeccRHwCEV5nrdajWYY7O/vTyYjIbgQTBalMSas1RljeZ4ihI5gL5hykUPXCHgAYVEJLyREjUYjqUprbSlLWHJBEPR6vfE0aTQa1qLRaEIppZQj5IAwDg7jupLGGMIoQNvAsHPOgQMP8GqtQUe+xggRz/Mh0LVRb2OMCWFaWa2c4EGeyQsXLsRxXK+HCDvBeLPZxA4oIGoyHStVGaumyXhubq7I5UMPPawtKorif/gffv6VV179y3/5L/+rf/Wvtne3Oedxzd/YWB+OB3t7OyBAUUohRzKdIUQcwXmeY0w554YYeojIaGOcw9Yg53DkB9a6WTQxNsZohCixYK3AnXOj0UAIwQi11sy2MmPAQA8mlKD6IoSImZXQzL8CnmIgM5Zlee/ePadsVK9TzjYX5hYW5pSqOOfGasZplmX1eh0CXcqyZIxtbGw4h8GtzvM8p1ya5LAram0hks5ZnCQpY4xjxCnTyiA8yx0F3ivs8AIhIQRQR+HdKjVzkIBOB2O4UBjqEIRmXjcwawzDkIAoQZWNRgPIB2WZl2UwHo9n+irO8zyfX+jUa839/X1pSs/zHv/QY51WGxHX6XS2t7fhxY2zzWazVqv1h0Nof7Qx6JCTRwgz2nEuMHaCMoxxWZV5njebzd3dXSnL1dXVsiwH/Qk6NIuA/wohrNNcMMaYh3iv18UYwxq21spq5u1wOI8hcHYAQXWmADPgcutgUxqPx0oZN0t5IdD9wWAH7qzRjnvi8Fh0BFNMsfqAtTeQh44g5sOxK2GMgUsyqBMopSDBOfSFcLW4zjnPsgxSxI9OxjCMlVJpmmOMqxIISRVAQAjNZGrw+BNCLHKwJcIzS8Cd2RgDJk4YwVo65NLiGWqECMaH/08p5T/IePB932IEdZEqK3hleCKm06nw2isrK5PJJMsyyKQBwxDAxxkjgJIDz5cjBFOxpaUlwP2n0ynGqNGsg9nx7v6O8HizVU/SlDPGOa8FcVEUaTZzfIWgYzgy4J3AjYZ/u8N8WiGEMXCddVlWzmEhfIy1NuBSLSaTiZLaOQq0LTjoIcXk8LJjrTXBlBBirTFScs4pYwjBaMqMRiN4TAjC0+kUZqtg+mStbbVa1tp+f/D6K686NzP+no3uZlmXP3CBc47Be6CYeFFwNOxBh7x4AxvXjH1unXMEzxKV0YzaO4MfAW9UEJRqjB+EzlmCQVI2u7cOEUqZc9bYmcQtL8vpdNofHCDTjGuhlMlgNAyD4KMf/ej5B5+ykl+7evP27dtpNjJWWWNqtcgYNRrnaUYE5sY5qzWl3FlcFJXyDPNFq9Zho7Sw1v7Yf/MT3d7uwd72fDtotuj9u5PVlfndvYPllY25+WVjVRD7UlmECDt0EsGYYIecRQQTp2dUTYtnkgGHETmkPAOhjOAfZKMBxxm6+g8a2s6oKoQKj6xvLk2n4d7u7mQ8llI6i/fv76JjNAjF7sH9adI/9+Cp2sJyd+/eYDDY3d1FWCKEeqM7Yd1+81u/940//mq9Hvd6PXPSO//QQ+++d6HVWVlZ21xfO3Fr4X7v8qX7d24Lih564OQj58++/fZFI8uyzOfm2zCSKopCSr3X6z680kyzwUH3/oMPnRbC63VHnmCUiLJU77337iuvvBKGMeMEO4qRZsQ6Q1VZEYQ7jTnnXG8wraSjVBjnjLVUCIyxCHxttKqUK51FNkt1WSSU+Iwp2PWstRR5hHgIoShozHfCa9euZVmidCWITxAmhBCPUWYpZbJywMuRskQGOWcYJrLIG1E7zytnFME4EB4yTld6aWljd3cbYc8al5d6XnhKVUoVN25fGU76J06cGGTi5tbFFbPw0JOLvu+nSbG7009T46yPMXbGllJ6nscwdQ6HXmyQoZROJykhVCnFKMYICQFyVAm7DGVYK4uJy/MCZYRxwlwdY22M2b039umdOI6Jo2fPnr527YbwyIkTJ5JpdtDrTiYTjgRnjGHirAs9prWCbVRwnzLsFHUU+6KlsBqNC993N2/fibtdJsTNG7ebrTrGWCmTZsV4ksQO3d/ZTadZJa+sr2+cPH762rVr0+EUsjsRppQqqyR2TiZy5/bewb19W5XOVIRSRFFeFgaLTru2sLCwu7uLMcaI3bxx7zd/48uPPf604NGfvvjy8WMnvDCCKA+MXKvV5IRqjQjBiFBZOQgDRBYRgpSyQhBrkTYIEyI8L4yiIG4dHOyVVVkPm+PB8M71O/3d0f0b248++KRPG73dKeNea6714PkHXvrTF5SRMsmjMOSWYkM8PwA8q1JlXIsWF+cnyXB9/RQhNsmTsipwWWWqT3Sj1WrNLc29+86l7e1da1GWjnZ3u1FYH4/H165dQ9hxRm7dvHH1yvt/5+//I6PU137v97FE+3e2KEPLK3NplYyTQV6WzlfEIk2r4aSLLGaELc4vnzv70Hg46veHjXrIkMEcO4N84T300EOcB5SE3YNB4NXn59a05L5oTafTJJ1Qy6VUnIi40W41m/wUffftC1broqgIRc5RjDxdqYc+dPJH/8qPfu2rf7i0ujKajDHBvd4oL5LFxY5SSkk1HAyUtFEYKumMKfu9iZK3EEIIWa0ra21nrlnkMkkyjHxKuKPYOcwY6/f7jWYt4AE0OdMsV0qBbNDzvKpUxhhdScFT0N1iTBuNzmSUFkWBCJFKeZ6HMHPOtdrzH/noJ1944QWC0e/+x68tLy9SKigRWhmOGMbMWOV5RCw2b955/5/9i//17tb9zkKnKIrd3d3ewUGtUR/1M855s9H2fDweZYyxRqO9uOj39g+QQ0oZbAlngjqhncWICU5EAyJWUoRQmibW2kcfe/j06dN/8Ad/MBgMELKj/q4QHKS7mLhGo1GkRZY5KXNn7P/rX/z/OOfVlA32BsjoR84/wAXd3Nw8c+5zzz//3M7OXlQLlVJxzT979szVq9fPnj9PHd25txP7cUqmEMiunWWMVZXyfZ/zoKpMmSmPxmVqusWw0+k06q2CFkk6caYK/cATPiaWUez7/mTa39vffujc+atXLh0/vXl3e/va1RuPfeiJM2fOpNPs2Orm6vJaMs329g8oCxYX6qM+6u51DS2p4K1WKwh9axEFsJggYhFyiGKklWWCaIsQRo4gZBFjyGCyff9Ou92cm2vv7u4ahJeX1hlDRiPnUJFL7BxERrBANJsNxpGWiJAfWD9TjoxFmMwwaE4ow4gi5LipLzQcJjfu3D//yDOf+tSn9nd2Pv9F9ebrr925eyvL0uXlRT8QRupsXBijavW2H1Rpnhmjzi6cnSYjSiljgTGusbrped7KwtK192/s7++GkSjTjFOPCTEaTWp1rzMXG6O4J9fX1jePrdVejW5cv6PKKp9kYeC50oy7w1fffPHG1RtrK6vzc62F+Y6RZjqc1KNOUVSMcUywsRY79P6lq54niEPMaxqjyrLUpkBIc87BqFHpwiHTajXmF+pxHO/sbRey8kS0UF/EHCXpwFmNicMEOWwtZsxj03ySFONWpz4ajZQukyRzDlPLKaXNWstaTKn4wud/5OLFy3khERIIMYdYJW1RSIIowTSK6oRkmUOEeFLbqlJ/+2d/upSjS1feDgI+KvqXblwkjmmtj21s7uzsSJnKoqLIFWXR7/YWF5d9Hspc37276yyrBc39cvz4Yx978MwT71+7/fv/+RtTa1bmnMDi/s7dspStzvwC97Isu3btRq836Pf7lHLBvfn26mScMV4FAWOcGiNqcRCH0ZlTZ15//U2ngvbCWlWqrb0DIRoqSfa301ZtOtdZfefC5aiGtve2Tz9w+itf+Z2iqIwxFFGGmXO4Vms5xBwiGHEghsRhFAm/zPKqlEwIbbTUSjoTCrbb219fWX3y6Sffv3SZU7pz716/exD6dJhlt7Z3Bv3RQ489/ea7lwfD/Seffuz1115u1uqLi8ujfnL92k2KiLWIMkII8kLhnDPWaKeFz6w1mCFrHWFUGY0wctZZ63zP08oWptDYWeSs0e7QcBAYBoJzQAAxQkprirFzljEqtZZaA7hMKWUMvNEQoQT6AYzxrIfhhBlirHUOGWONmeXzGGPTvDDGUC60MoxyQKLND+KLZ8xQg5yuNMZUSYutwhYboxAXoR9YbaRWSilUMaUs40RQjglllGOMldXYYs6pIwhZjBHRymKHIxFWugReD1glYEyFH+R57oeB4F5VVUoaxrBzVjBhrbXUcUF9HhhjpNKDwUQIwYkIvdhaW1XKGSw4h5Rp7ojhyBnLGJeVQW4mWIE+TgikjNbSakPGk7IsTau1srDQ3N3bbrebgeeD4Yk10hjp+SwIPV1pSjilVCojKAkCLwpia7W0igsmcxnWQ0q4QloarZ3tdOattZgkWTppsCgQLjGKUFTJ0jmuKo0x5dxDjmltCGHYGUo8gpGxBqxgGXOEsEJWMzLpoRFKKQulK0YFY4xzMZlMilwyxjSrnHM4jqCuJoQwjxFKGGN5VVoMtSuiiCFjMcLUskiEgOciOrORgebR80SapggphIjFBGOMKCEIM8ys1sxjGNHyEDUglAZBEARekoy4xyplEaZlpZTSnHOEsbHaIossOuqiscXOOoG5c8ZZzRkD56VutwsgCNDoMMaUYkDMYS6CMaRkE865tlxVUukKIYudo4R5Aky6jZFFWqTGzaIICSHWurycep5HGeYUNWhAKTVKW6eptZXMEXaMg+UOqoW1k8dOx3WaJEmWlZRSIRhCiFG0vNSJI1GWJcZUKeWsYpRR7FlEtLUr88tVVfV6fYopJZw5YxXKizwdTiM/CIKAOSaVpBZn45RRLITIk1wa5xwe9isuGEYRw4JhjzguVRlH9WazkSRpujUxSPFQmJJWuXaWVpVEFgvsWauRc7IqLHKcc4ucNcYiYrSSMGRyxGqI6KwQdkIECDmrXewHYRApVSGnarGPLa1KpZRyFjlHKOWEEoQtpkxrbZxBxHohc06XUlmLGOWc+8YYxqmzxhjjnLGaBZHAxCFE83xKOfqpv/U3v/rVr/ZHw3/03//j5eVlQjkh5Pbt24sr8+vrq6vH5n793/0frVbzytXL3fH9paWl7a1dLbW19o+691dWVq5eufzuu+9gVtQbtZOnFqoqu3WbpWl58uSDr7z6zv0798tKtZt1rRVzsEkybClCiGHMhFVKCYY8jzlnksm0VqtFUWM0GjjDGMcWG+ZThJDFGs1E7mWe8zzPkbEe85Q0fj1k1LfWIoIrJSkXjAnnHAWvIocII0oaay0j1DqXl6XW2hFaFWWZF2VZEkZ830cGeSJoNtqU8Ok0Df1gdW19OBynac448X3uDLLYamOQY0o6h7DDBPpNwNpAj0IJFYRVqsLUeL6gzIF9DhNUK+uQgacMQlwoQ0oVwHn0hCeYJ0uDkOUxl1JyToUgQRiUlRexWhzEsnRaVtNpmqe3R1ly7NixqBaurq8OBv279++GYTgeD6NafPvO/TxPKfG1Rh5GAnOHnHFYa0UpN8ZaZ6xFHhfOIYopFHJKG8pZEAlrkTUGuwoxwzBG2FnrOBWUsNEgMRYRHBjtfM/D1hqro1qcZYm2leB+LY6yNGeCmspSzqKwRig6uj5az6hXjLGGH/yFj39y4/ixn/4//63f+q3f/O6LLywuz02TClOtyrzeEo22F/qRNdhaFMa+rtDe/g7GGEK5nTaU0qJUQRA0vLrlNs9zjq3UmjoVcG4N9kQ012nkeZ4VOaXU9xkhxBFHKa2qKk2n2XQCZvGUUofAlcghhDzGVVk1a804jsejaZUpSilko/m+WFtb2d/f10YTjJwzUeTVG7XBsOuQbs83o3qwdfXeJB1leVqr1T75iWfv3LlTbZWI5OcePLu6Njcej9Ms3969d/L0seXl5cGwb60VHh+Px6qqQj8kPrXWOkbSNB0Mk9APfN9XyhgjrdJCiKgWNtsNznmSTYMgUEod7O0nWbq8vBwEEWPskfOPVqW8ffu2MabMtOfR4XiQphljjBDsDgU3EC7lnDPGFbkqc1UWihBSlpJzTrBABEZWFiGMEJFSW5uEYRhFtf39/aIoKKWMCgBYrbVCMIKwUboqS+QcIxhhyiG8wUhjDGeeMcYBZ8U5hDBjMEF0R9PZKK43m01QrRmtKfUE41Xx/2fvv4Mky877QPTY69NWlq821b57ekyPgSeAIQYAQThBXFEQQQORSyko7Qb5FNLTvrdcUbsSSTGo9xSUBIkEQdCIpGBIgCDcEDPAYGYw3vVMz7Tvru4unz7z+mPfH19mzZCrFVcvpNA/vIFgNGuqKrNunnvO9/2+n1GD3lhKjV0mpTUGUF0tpUYGO4wj5hJUlmWJrGWUapBkTgcMWmuECLKWYIImGecIWaKUkVJpPanHMCFGaYkQ51TLidsDnRiIG8q5MYYaKgoZhqE11iKNraYUKaWMUTBHCYLg1KlTrVbr1KlT8/PzX/3qV15++WXXQciierUmhFicX8jzHCGTZ4JzrpXh3AEVfqPRQAgNBgPG2PLyMoDFm1vbWZZRggWRWmtrjNKaUCqkNNYORyNQ48FvMBbGmZYgjDCmmHmBr60BQ6EwrGRpgaYDCWSN6zjIKoeTYV9xjgmRGLlSaGMUY1xrY62BrOY0i0djYSdEWMyxtshago1GGlvOqFSWEtca1euOoDRFCDFOXMcpy7JSqczNzYGb2csvvxz3egvLK/Pzi4uLi1mWJUkyGo2EEAhTyohUxmDBOfjPlKFf5cyB0Qh3GEIoTVPGsLXIKo0gns1QjKi1BhGCCcHIQHWCJgFvLsa4KEuEEKGEUMIZxnhi90+Yp9XUmZNaQiiSmCI86o9v3Vq3SN15550CJd32IBsb17ZCXm3VF5PxcGN95/KVqxvbO2maui6r1qJ6zd+3rxGPi9E4IcwpssxQzLHTnJkPAsfOzRtM2GbIFhYWKpXKa+fPHTy47/nnn11caGFse73eZz7z6XvvfefS0orj0qIQwN4iBMnXfS/B3wyg5ynta/oVhF7Hkf/P1973AM0ToGetgVmDkyTt93MhszSNCcZKSdA+xMno6pX0njfd1WhWvvvYN186+/Tb3/HWzs5wbW2t3+8//fRT29s7YRj+4e//AUwIEUK1Wq3T6exfXj569Gir1Xzmmaf+5b/8l2ByeuLkybLIHn/88cXFxUOH+nE8mpubg1NhOBhba9OsSynf2e7t2xccP36qyEWvNyhLybBz48atstBRVOHcHY1GYRgKUkC1Nx3Q+UVRhGGolBgNBtV6FWPsuAxP097t1BHcYvvCCy9gjKPA585kIl1meZ7khw4dopQmWeY4TqPR6HQ6lWpoBIJnzA18IWSWZaKEJw1ZiynCGFulVBj6cZwqJYDZCseVMTors5lWoyiyNE2stevr69biTmegFNrc7IxGo7vffE+eJ0JmUVgzxlhbuK47GmacU2zxxs72wsI8Y4xYDOZN+1b2WYNvyBvWYumIIhecMYc7ME2FuJKsSDEh4OWHsdF6OhJnjDu03e5evnx5fn5+bm6u2WweOXJESaOVvefM3fPz86+89Mr162uAL1uLCUFGaTIZ5GBKKQh9KaUQRAkcW84ZiBQ83zHGeJ63sbHhhwHGGIhLu7u7W1IJIbKs6Hb7yKCF5X2MTYz8pJTr6+tKllpLP3CFEGEY/tzf+TvfevjbN9Yuv/WtbzcG7e52zpy5ZzzKXnjhxXe96/0f/OBHHnv0ye3t7bvuuRvOjCyzZVlWw6haDa1FhVScMYyRUpZyjDFCGin1+rPg+y4hqD+MgyBY37i5vb1BsX3LW96SjuPdne1vfetbtVolDEPHdxCy4/E4SRKldeg4UDrMz8/tO3ig3d45f/68HwbVSg1jXJZyd6c9Nz+TxVmWJ4xypBEhpNPpPfXUM/3eQEp96sRtt99+58MPffvcuXOu6y4tLUFGhxDJ7//+71frS1euXjp37tzCXJMRPdOqj0aD3qi7uLI4t7iQpwKc0UQuiqxExjqeF3g+RO5IKbWQwJJQypw9+0q3PxyP09/+7H/Yv+/QT/7U3/ngBz984OChX/vX/yrLk8Bz0yyO49h1+ZHDh+fmWlcuXup0Oo7jYYyRNVrrSq12/Phxxti1a9du3bpFKR3HQ2NUa7be63YXF+dd18nzfDAYj0fJ93//e9ZvbZ4/f74oCkhKmc6uda1eEUKlaQbuNBZpSrHneZ4baKmUUrkolTIgv90ruTDGjuOANYcxaHNzs15vWqunJCxZlijL8pMnT37sYx/74Ac//Pzzz//SL/1Su70DvKqyLBmjWhuELGXEGBQEnhDqypVr1OG+73c7/Var1Wq1Njc3QYjXUz3KsDEmTdP19XXXdR3O4zgGQByYjMqaLEtBHxeGYb9PB4NBFFXzPP/iF748NzcHpxRAOQLpJMmHw1iIotnMYcI/OzuLLTEQO66MRZo6rN1ux3H8tre9Y35+9oEHHnj00UeuXr+2unrAc8KXXz5XFMU73vGO3Z3O7u4uTFDRZCw+4XEgRHzflVIa6ZVlCXqF4XBIKRVaWIMRRUmShJEbeOE47ptUUcLH43G321/f2Nne6SDiXLt6+Yuf/9zalavvf+AHDh099F713tb8wtbmZiWsz7eq3d5Oko5jmTQaDSGENsb3/Swro8gbj1Lf9ynC0ljGCZxESlljjB9SihEmqNVqbWzc6nZ2KaWrBw/XK6zdTsfjZDhOrNXVKELIKCUDGimlGaNwSGGMKMWQMfAXTjRjkFJICo0sqdVrR48e7XW6URS5rnvq1KlnnnmKcZ6XRZwmaZ6MxoNms/7X//rfePx73wFre6BrcebAzsY5C8NQa33p0iWLDGOs2Wj5gXvz+oZFutVq+F5lMOgRQqRIe51Xlhb233777ZR45185PxqNspymSb4htkyg7rrrLk7ZPffc88ILL25vbP6Df/APH/r2I9/57iNRZUZImecFJaRarxqlHcqUtUJmns+bzTpjJC9SZAmldHX1uNKi02kTwjCmO1u7WmGJVZomlUZorSnynDB09OjRZrOJCVVKZXkqZV6tRq7rzrbmr127cfPGOrOsVqsBSX95eVkp9fjjj0LSHbjuOI7juTRLC0ppnicA5QDj1XXZ9x57XOhk9cjSseOHg8B7/MmnIj+qRNWigAwf3ZyZrdYa2KK5uYWzZ19hlBPsZVkWBnWC8fLy8ksvvXT15vX5+fnXXntteXk5L/DlK9eSLI/C6v79+4fDYX8wiJMMlJJzc3NlWVYqtTBERTEJDOGcM+o8/fTT1kJ+HRmNRpy5QRDEw/HCysqtW7fOnn3xTW9603333ffo49949tlnDx48KITQWhupDDLA+EiShFKSZ2WWpIwxznCa5MQiIQTGE581hFDkB0EQXL9ydW6mtbq6ev3qtauXL1trhVB33XX3Y489HoW1v/bXP3b//fc///yz165Txth99913/fr1OI7BIdFaZBW21k7UuCC6n6ZIAaUFSBYYYyHknkE8cGGgKdr7ijFGCLG0tAQ71d54Htg3sE8ihBijYHcrpcQWTfG1130A9/wHgIsKn/IefWMiPtVm79/ws5xzcLszxhSi5JRyzkHwa42B8TaMr6hmWmtrsLGKEM9xuTRSSYkJY5hIo8vSIGT25CzQkpGpQZ6dqqThRpVlKdFk1P1G7witlSmM77oIoSTJYAFjQwihYN88qeYJZdOwdaVfp95AEbjHgwMEXyk1MzPTarXAU8J1/DwvgyCAVxRCFIWsVuq1WmU4mEjslRKyyKvVqrZKaeV5XlmWQRBYg7U1WZaVpRRCOJS5Lvd9P03j8frQdbnj+PBrkzh1HY9SXpaSECKlIoQYaxDGSmllYfJEzDS20XF4FEWME2U0RC+WZSmwqES1JImFEMYqi7BSBlADzifegpQwSpkxllKqNawHo7XxmFcWEgy44f5LA5l7FDjL4H+9lyEJKxacnxFCmFGEkJJGG2WtRRhbayFmczQY1hp1g4zneQ5lcF6DKtYiDWQuQJwnq44Szhi8hCgFrDf4T1AcwpuEz0IpFUURm4YsWYWsw4FaiCYG4tRaiyyJ4zgvSzRNk4dVpIzknDPMXqdATqpbCn8pzEO0ssN47DiOMrQsy1JKNvXlZIxBgdpsNpMk29nZwRg7jguHMqUETv8gCKCecTnX2ualIBRD6ej4YEhqMMLI0rJQBlmCsNBoNIpdl4eRixHPsjKOM8aIKC3C2HX9RmOmSArG+Oxs7cbVW6Nh4nmB0lIpDYZae0xYOCU5oaWSWoM0CQHfiliYhMEwY/LRC6HyMkcIBW4EIps9ZNNaC2bE1lrgjG9v74RBZbKhaTuRLGBLMbgJaWMMJpNnjXOOsX3llbPdbvtHfuTjH/7wB2AGwx32jW98q9lsnrnrjm88+PXV1YOnbjsxjvtFkT323Ud2dtqf+JEfu//++3//Dz77ta//aeB5C3MtIQrH4Y899tgv/ML/et+b7v3Upz61tra2tb7ZaffuuOOO7c0dQqgp7WQBTPeNPfI7IcQoDW87TVMhVBBEwOnO8xwUsdZipbRSZjQagQk7pbTd7na73cXlZSBDgDLDKA26Ddi9wdECIcRdRysNkx6MsTEaJNu+74NfAdAni0J4nlerN4bD4Xg8BvKd0QhRSwjBsN0RixADQQBjDGMCViHwNCFjlVKyFI5jAMtDCIFa376u7KbAJO33+5y7UsrZw/uOHDkSx6OiyIaj/mjUr9frjDdqlWoQBDMzs5WgcvPGrTTNHcctynI8Ht9zzz0XL148d+7Va9eucc7f8573rKws/cZv/rrWkhBCKFZKYYuKogiCABHCuasEvGfHmbhVMGMMnvABLQTM7Ln3wkzTTvVxQoiyLBHGMFuCaRaQZx3Hw7K0xsRxvDC/+I53vOPhhx/utNt+MGGnClESgq21SZLAU/B97/i+X/7lX65Uqt/8swcvXrmcZRlCZGFhYae9gxAaj8dKmZ4ZVKKatXhhYYGHzvbOhpSTuFRjjZEGzHktQpRSSnhZyPF4HIYVazFCtt1uQ3S8tiYIggnJHRs09fbVWvuOixAqS2nwhBBqrQWXTsdxZmZmEEK9fifLMqRFWKvNz8+eOHFqNIp7w57v+wcPHnQcNnXxFv1+PwgCkIAwh7/vfe9zHOfWrVt5ns/MBocPHxVCJEna6XYbjUYQBIyxfSv7e/0ueE7W63XX8QAehSd9cX6Bc97v941B0KTAEQzUH1i6u7u7aZ7Nzs4GQZAk6erq6okTJ65du7a8vNzpdKzNRqNRZ7cN+09ZSsfhwOGd7jBy0qIqA1IqgBGMVXtEaTVNLJBS7u7uItTRWgdB4HBPTdMI4ImDjRQQfIDGCCGUEDSVZZg3SPunlRUmhLicgxYkDAKIr9dKwY8opfr9fpqmoBOFuZ21NsuyPM8dxl3XZYzvVW52+svhXuGJBfMksXmPLgC0Tth+9/AoKSVFFix/gbZvrYU0UfhxANnjOLbWur5z4sSJtbU1+KvTNN2/f+a++978wAMPLC4uQtsyNzcH3mtxHFPOnKlwDR5SwGHgheARk1K25mZnZ2fTNL1y5cp4PA6CoFqtClGCr5rjunulILB9zTRooVIN0VS1LEthrY2iyE69LEBSsFe+wqcMeilQzuV5TgjDiEL1CMdHtVo5dOiQ4zhXro72qjVKObiQWIKRRXv3HKG9Sm9iqGW10UQDAokQeu2119rtdqPR+NEf/dGPfPBD16/fePDBBxFCcRzD20aWgPuHQoYQIoV0HO77PkLIaKuUkkpgjDmfBFBzQuGDU2oiZGEAnmKIERJQe1trjbXAnJjIFq2Gf5hJiPcEPVNSSZVrLSMadNrDstQHDuzHyLl69YYoNafO3OKSFuWTTz4Rx3FRlFJYqZExUio9GMiiKI4dOj47O1tK1ydBr9cZqvHBA6vLlf3W6j7fLaQiFLFf+7V/lSRJe3f7tddeRdj0+/3nn38+CHwl1fLK4vz8PMYoqvnGIDNhJf9FG0trkUHITlIO0f/5v+59fS8Ybe/fb/j+SUtjrXUch3GsNZ+bncmyFFQkxihjyxs3rr/w/DMHVpcGg96ly681mtFf/+jHd3a2ms36Pffcs7a29qd/+tVbt2498MADKyv777zzzscff/Sll146dOiwVMXZsy9++MMf/c63Hzp//vzc3KzrusYKIUul3MOHVzc2b9XqlSispiiloHsqVSnK9u7Qc6tJkvR7wzhOPMf3/dBoMP1klagG/Wev13McL45jiOyAwybP84WFhQceeN+jjz4C4mVCJw1DEAT1WtPzvLWb1wnFtVoNGU0J930yGAwYdbBV165dO37spFJma2vr1KlTvV5vY2PD8ahSqlRSxKooStjdikJQSpUyDmXGKM/zbrvttqXFxZs314Zxf2dnRwjhBxVjVbvd5g7tdttFkR87dixJko2NjUolXF7ep7XO83xzY9v1eKfTAYpivdY0mu5s94yxjBAh1MbGdhRFzVrdcTwpNKV09fDh8Xh848at73vHO3Z3OhcvXJj4eWkNXkgIoTAMjVVAUIItBr7H8zwpy6LQH/3oxy5cuHDt8jV20mk0GhBy2un0KpUqYwwj2DQRYwxbpLXmjIDSYe+Bh+NBybJWq1FKYURhrQVlExy03PWslVevXguCQEuFEKKU33//e6zBzz7/vOO4Umg/cNHkIHf7/bgsy2ZrZt++A0Ko+fn5y5fOf/VPv/HJT35Sa/zUk88gRA8fOfG97z1x771vvueee1zXnZkNyxKVQkGZUkhR9mUYhr7PtUbKIMphNoAYIxP6v548O0lSxMmwKArPc/ft23fl6qUnnnwyLfJ77r331s21W7duHTp6aDDsSSkuX74cVSLOOVYKhCSdTscSfOedd169elUIsb6+zjgVooAcWK0IwZ5WmhAyHCYzMzOD/lAI5bo+Y85gMDhz5syDDz7IuVuWcjSKETK1al1K+dnf/owW0ve8siypx69fu1mrR0ElGPTi/jB1XR9ZFPlBImNFVClLUZTXr1+XUsO8wSo9Pz9//Pjxzc3Nb3/7MUyJFebhh7/zv/2Td0F23P4DK4uLi3/zb/wPV65c+eaDX3ccRxRyfX39ySef7Hc6lDKop6XUruu2Wq0szn7vt3/n1o3raBqeEwQuIaTf6yVJcvTo0WvXbmBE25ud73zrO1FUrVQqeZ4TQhcXF621WZ4YrbRWrVbT87LBYKQU7PBEKd3pdMgkaJthjKMoAjEvYy7sWtJIZAzGFCGTZVmSZIxAuDSZNpA4TdPnnnvuxo0bvu9vb20wzvM8n5+fk1Jkk4ApYSXEMsggCILAcxwnFyVU52kWQ1gtRjTPc2PVROYsZVEUe8ZMILwqy4I6k6iW7e3txcVFzjxGXa10FNaKotjZ7oDEkjtUKYkQItihhBqtRImqlQjjLE1zTtloNKKUthrNAwcObG5sj0aDIAgef/zRE/1TR44cstaurh6o1+ucBpXKKM/zxx79nuu63d02nP1AYLEIW2usxQC7wN0DyN51Xa1Nt9uVRjsO04YoJZLEn5mZ2dktoiioODxJkosXLh85cuTw6qGLFy8fPrBy3713FHnmuHSm1ej3u7VGfX5mZjToXLqg4yyvNWtL9WUY52xv7+ZZZq11HSfLMkq458E5goxBBKGdra08z1ngcUqUFBTrKPS1kPsWllr1cDiUa9eue17QrFeLojDYrKwsex4WAhljy9ISgjlHxiB4eGE97M1ZJ+IeY2dn52dmZl1Osyzzfb/fG168cmXt2mWtNXgm5nlqrNJaxvH40Ue/u72z2e12K5Vwbm6OUpqmaVlKMKPY2toqimJurgV2KDAYI4QJoXw/8r3KjdGtAwcObG3uKGWf3zxrJM6ykjrcKm00uue++xYW52YPNkRepHFy4+b1AwdXmvXaK6+9/Nr5s1HFUzpTWrsexxaB0Iw6XJYSY+v7Lia6Vq/aoc6yDGl0/fr1sizzIu31+g73MKaMIGtxf9A2pI6JrVTCmdlGvV4tiiLPc21Nq9VcXFgtyzyKIiHUqVOnzr386vlXriRJzD232WxYa3/7t39bax0FPne5MQpbVBbCcZyo4kgpi2LE2MRUF5ga/f7gjjMnTp445Efu/v0rg0H8wvMvcp5urm8wTlaWlsD/MU+L1dUKwXQ0ihcX6qdP3zEcxP3+kHP+0vPP/cIv/G933nn73NwCIeTmjY2rV6/7frCz3Wm3e91ud25uLghCGD3GScqYI5UZJ/H1GzcCPzywfxl0x0EQzs7Orq3dDFcqxqDLr17yKtEnfvxHH3/88bIsZ2dn19aujUaDZsufm5vL87woClUqsDLodDpg9+Z5nip1mRcYYwi+t3piWKGNNMYEQWCMKdJMCPHCCy+8+PwL4/GYUVqtVikmjUZDjOgzzz37jne+674zb95/8ECSD5eWlsLQG41G95659+qVtZ3tLqxPTKzD3VxCqaBcPuH4cM6l0IACGGMY43iqzbQIhm0Iv+GCdqXb7QZBAL5q0JXBIw8F956nmrWWYgIKetimoKCHGhcInlMNOFgcmD10G74CySdmaptYFAU0KogSjLFG1mcMY2q1sXiiYCWYAaGSUqqRxYhoLbUmlFEppSl1GAaIEq01m0AwBmNE8aQxA0UkdHGe5+GpshjA4j1oeNITgpZzCpFba7WyFIO5EAFoXgiBscsYstZSQg0CBGySgLf352utDbLQTkM3NR6PBaK+7zoOdxxnMOjHaUIIoZgKIaRWlWooC5kmue95lFKhJNclZZOuwxqkkZngFCYlFklKy5IQihFChHKLmNaSUu6FnlKKEsoIpZRmWWGMAfM0i43WWtmJZJVYQyn1uEMYVUoJqaSe9ORhGEopS5HnWbnXTxLKhNScc85cCQQtQkADqrWxBluLlNbGaOMSjDHDk/7WThIyJiR68NlECO3JiuFRog5FCDFCfN+HOHFrLSZk6m9oESJFUTQIQQiFka8KVRTFBKoGN2FsAZQJgkApkYsS1gDAdowwSiljTFlFLYVOZPog2L01ubdi/TBwXZfRicnjHoStkbUYV6tVsNABmHivj7UGa2VlKThlExCWkMXFRc7cXm8wHsfWoqJIN3fkTCOySItpAjnIdYUQWZa5rhvHMVjoANzg+z5FCNTigF8oaYhF1lruUKQNJpgQIotSI8s5x0YTTRQyYHSDMcfWMuJg44hicmYxxrjrcM7D0Lqe57oWqvpTp05duHBRCs19P01TbSTQsiifQHgIvQ5sWaUJIQhiexkDdgj3OGcMsA9rLSGsLMtRHkP/T6bWEMYahImUMopCWGawdzmOZ4xBiEglGGdwU+vVKqVg2GOUUtqqIAgcx/neE48LIe46c+fS/AxCyCL81W987Xd+53dc133r296WZvG73/2Oxx972HXIpYuXL1686Dnu7/7up7e3b5QiK/N8brbZy+Mw8AghZZ7+8//j/zhx4jixaOPmrbIUc3Nzd9915pHBo8PhqBrWhsMhkAOstcZMUkwxxgRN/KYBzwIUwFrk+77rupD4AusQ4lhbrRaZ2PHjCVKmteNPBlQQxrh3ozzPK2ihpMEWVqZFyKpSGAWu7hQh7DiOsmbqu2iMRWVZFsUk5nRCKrd2IszHID3G7A05VHiSq6asNgpJhBBllOwZhmIGq06WFtyHfN+t1+tCiHq9nuc557QoiitXLs3NtSzSlJIf/uEffuLJx7vdbpqmnLLBYNBp99rbu0EQLS4u7uy0a406IeQLX/jC6dOnP/vZzz7yyLe73e6hI6v5v87D0Ed4MuPJ02x1ddVau9tpI4SNQadP33Hq1KlP//pvBEHoOK7WGqHJAEPIElowNCHAEcdhyJJMZeDIhDExU+t5YwwmCHpYx3Ech41GMSFkMBi8+uqrSRzD1NwYzRjlPDRv8B3q9/sWoyAKf/X/86tf/vKfMNfxfX88HhcFM8q4ru95ajQYcu5IKR3HS5JECYmQCQJ/MBjAriWF9gnfv+9go9G4evVqnCZlXlDKoYTDWMMEF1NCCAH3vFJJjC0kn8MhNR6POXc5NcgSrTUhzFqkkSXGImSkLDmny8vLp0+fPnr06Pnz5y9evPjII49mWUYdMrcw32zWy7KsVqsY4+GwPx6Pz507B8fWsWPHFhcXn332WZh33n33PVrrJEnB0N/3wzTNR6O15eXleJx0u13AZilNtdacu0KLer3uuu6tW7cgTq1eqcLhC30EOOaPx2PGGKcMJERBECilHnr44fbubpGXCCFIckNTZwlwu4boPyEEQrgsS8jAhDEw4zBmplAdSTnRWgGFGSEEnNNqtRoEQZrkaDr/fv0RsBaaxymk+XrhtHfWvxGghCMDWwTBGGVZjobDNMuAocwpK0UJCD7GWFsThiHM2mEXhcZK63JCW5xOQ+El9DSjFVqwveJkAnS/IXoXT+3RpuvfwHatzcTkvSxLOEEgloNznuZJp9OBzWF5aenQ4cPW2ne/+50HD+6HxR+G4ZkzZx555JHhcMidSZ7Z3tsGEwx43bIsl5aWDh06lOaZMebWrVsbGxuQ6VqWJfzJcK/gZ2EZeJ5Xr9eTJImiSKoSUh8RQkmSEIShZobDET47a4AAwaYGa0DpwHmeY4o45hhTjCiyVimltaKUNJtNQPbhLCaUaq2Nef2z26vZQHv1xntLMIYROAxdYA184AMfuP/++xljr7766je/+WfXrl0DuQOa2qb7XiiltAjs2pi1Frx5YQNxXdcYBdGLSBvic8AdAt+HfRh2GOBWQpo3mdq2wPwezhdQP08+eoIpQ0pODkcpjdZWlGgcjxAiO1uDWzd2jatqtQa2eNAfWSTdklCKq9WQuwFCZHFxUSn18ssv+77fbrcZ8/YfWMkHxW5HMUYQs2kaez4nBGsjjdFsMOwaYzhnaTZCyCBsh8N+4DZcz9m3b1+/3y1EvrjSEkITRglFRllE3gAST70syfSLEwT5P5sHiCbcZ4MxsRYZYwmZZGtaa6PIQdhRSmNkwjBYWZlvdzrj8TCMHD8gjz727WvXX3U4btQrL77wXJYIa20Q+v1+993vfvd4HA/6o8XF5fvvf8/a2trGxtapU6fa7fb29tatWxs3b94UQoxGI0JwEDqMEcelg1E/8N2ZmRkhxFa8TSlHlqRp6XmeNdoYc+P6NsZYCNPvFq0Z1+iCMVcKXRaycAXGdGtrPUkSSNJzPV4WEqLDRKnG43G324ZRGCHEaJPnGed8eWmftfbatWtClYuLi3maOo4TBEG/34eUEmMMsuTixYuO70kpL126VKvVwjA00mhk5SRkGcO6ByID566RyhiUJMm5c+fa7Tay+sRtR+fmWjAYvH7zxkJzDkRMxpjRaBQEQWtuoVapRGHF87zd3d3Ll68xRhEy/f7QcdiRI0dGoxjW406/QyklmJVZaSooSZJGfYZR5+zZs+PxWGu9vb3d6/UwIQS/noOJsMmLgnNOKOKcK2sc33MoE6IE5xBrsMP5/n0H27vdUTd59eVXMZsMmhBC2CAljesSrS1MjWAwhUGTzJi1RiNrrUXSKqs4o5AePjMzE8fjoijyLOeuo5SCetRaW6vVRoMhpfzMmTO728n//r//79Va42d/9ueuXrn+5jff+9prr+VFyinVRlWrdd/3hSgIIV/84h8XRUEwL0vpe7Vjx05cPL9mDFpYXLl2be2F519617veVa2G7U6CIFMVITgFYcGD9J5MnWQQRRYhpe2kJyEozopev1erVfbtW0YIDUd9beQHPvThwHWOHzv61a98eXtz4yd/6pNf+MLnv/rVrywuLha5cF3Xcd0kSSilQqtOp/Poo48ag0RZpnkGkz0t0c5Wb3nfkqN1kowZZVqVWVomSfHBD37w0oXLjzzyyP59B+bm5hAi4FAMgXJJkgRBJGRplAqCwCippPW9ShTW3/Xud7308os7u7vBYnV2djZLEqfppvEtQgik9wKuWuSCIBSG2csvn+v3+3/r4x/f2N42mjz11FMf+chHbt3cunlz88WzL/i+Sxm+eWutUqlQSn7gfe+/9957+4PutWvX/vgLX9RaA8NrPB4XRcFddu7cuU6nwzl3HIdh5FAm8gIbLHN94dwlhBAh+PCR4zdu3Op2h27gIoRas/WVlf2DQS9ORjMzM+NRQoiNoiDP89Go1Fpby6zVcALVajWt7Z4VFDD0lVKECADQHccTQgwGA0opQgwRrKXk3BWi8L2wWq1cuHDhoYceMsYwzjnng0G/LItKpQKOooAmI0QZo4wxzl2tlcu40CKOY6210cga3JxtCiEgaxEG2pRSWYo9F0tjdJIklXoNvuK6fGPjFsE+YwxjWpbSWgxc1EqlmmUZbEoIocJknucjhIfDGCGUp1lJCPh1ttvt7e0djLHvVoQo0jS9cOG1NI39wKWU1hu18aBYWFhI0zSO4yRJoH41xhCKpzgRCCkmHpoiL4ASgidMSe04juc5SguMaVnI3d1OngmtrOtxUeicFYcOHY6Hceg6ippnnn7izJm7l/cv9HqdNItfefGF2db8ME5m5+fmlpbCisOdOcZQnhstJHMJo3RrfYMwR1sjtdGYcIq0NHlRgBp9p9/ByHJKsNVWCs9xh/2BUXZjc7dI0oXZheZMK82T3W5nbW1tZf9y6LtCYIQs+D4B1gwMhj933k2PQo+7nGMpLSVyZmZ2Y+OWMYZyd//qQbbFBsNuo1FD2ChV9nu9a1cvc5dUKuHhw4dXVw+Px2NIux4MeoPBALzzOOdhGMZxnOcF5y5ljDHOmT/oJ93OKArHmxvter2JEd3Z2eHccR2/MMJ3Pd8P86y8ef1mHMdLC4sQCFyq/Lnnn7JIQnCN0hpZXOaCMUdLA2S0k6eOnT//al7wMAxc14mCkBB2+fJlpTXnPB6nWicEc60VMYRSk2Zxq9XwA+Zwvr6+LoTCGG9ubr71rW/udrvnzr08M9PsdLrD4fi2k6dPnj65ubkJwxJl8rIs77n73kql8uqrr968ebM1O1OtVteuXQfPUzYNvIZ2HSHrOPjs2bN5Mb773juf+N7Tly9f7veHUMKKsgSMmDFnp32z/9hjURAtLzeRJTfWrllETpw4df3GWqNZG/Q6Tz39RLNRO//aa9iOOffica612VjfAuiHEKdSmTR4J08cllIuL++jlN28sS6EZIwzxsuyrNVqn/jEJx588MEorL75zW9OkvTMmTs7nd0nn3yyUqkopTrd3ZnZVc55nufYWKggCSHDYd9xPHj09rAqpRTnPBflFIc11mDHcSzG4+GIcz7o9eEhqlarzWZTCHHpymW31pxbWPza1762/8ABKCkvXLoQj4YO5/3hME1TwrEsFCLYCzzGiLSmKAqCkF+tQikfx3EY+aJU0w5qz6uOuq5bSPHGVgR2V9hwtre3YdIJtSyaEuugSwGkFVsEiNieNS2aOtJCTwb81j0CIPRmUCKjaXTbXn2/10GFYeiFwWg0gt8JS871vPF4jDHGuIRf6EylP1ojpQRnLiFEaZnnhee5lDJKqUV7/Zi2aNIWmkngG97ztSyKAoSHSinP84wxWiqMscaWIlzkwiLtOA6yRBSlpTbPS8dxKOGMoimKbRFCUImxaXo4nP57zSr8vVJKcOsKgoAyYwyyBmdZEQShtiZJEubxdmcnTcpWa1ZZhRlG1CorMUFpkbquazSilGlllLSMUM/zhCiUUlmWOI6jjSKE1Ot1z/NKkxmtGCNhNcQGU8KMstBeWovV3idFKCzRwHU454gSY3Se51KVzOEzMzMzM40kSUajOE1Tx2VSaGuNtQa40hZi/TDWCJXj2HVdrex0ycFnS4RQjuNoo/HEJYNA2cw5r1arlNLBYOC6LkwxKaVaKzjRYKNgjElZAlOMMAzGvdCwcc6TcSy1UkpZKBaNgdUFsH6pSkIIKhH0XfBxTBabkoRgjbSWGro+oMgRRvOyMMYw8jp7d29t76Gr1qK9ChDct40xRVFM08Ut55Ri5rkuZ2w4KIQQkzrfINd1IYzRcQqltEUMo4mzqtAC7owxBihaoDCAX2uMAaom0gYz5FCGGQWsSotcSuk6DmGMEzohyjkMEay10UpZywkmmFKtLaMUUcSZj5A1mpSZFLlEPnUcKgpV5IPl5X2uZ4rcGqOEFkWRI4SVUYyTIAgcZ4I2wuAHIWT0JFAOLIChGieEGAjV1BweE2ssnpIQC/H6/mOntid24nY6Ae5nZmb6vSEhCPiqQggwxEeItDs7MLRrNpulLKSUtVrVWM0YyXP5qU/9m5dfuXzs2LE4SZ955hlO9Q984PuvXbv27W8/9Mh3vvnXPvaRer26fusawarb61NEv/XgVy2xZR5fvXy+yHJC8NHDq7VabWd367vffRTEvT/90z+9MLf4W5/5bUrp4vxCZ6eT56nneXmeSik9zwPlAeyZZJL6pa3FjDlCCFGqspCgtKOUaiFhI7LWJkkCRSmlXFu7u7vbarUAj1ZK8ZDv3RygaHieJ6mMxymYKoClAOZAg6NT1BjMhU2WlogQKTXGlBBd5ALWMCYWE0soMgb8BzT8LJogXEDlQ/APjDEQL4xB1mo95XQLISjDzWYdDH8PHtw/Go0Gg0Ecx/1+d25ubjweM05uv/32X/nnv/LTf/+nnnvuOTQB5W0pcu45jJHxeJymsRNF33jwm8k4vuuuu5JkvLa29s1vfr3WqO/fv5IWmTFGAjQW+O9973vPnTt34eKlZqPhOG5RlBcuXKxUqhMyIHPgDcPbI4Rw7iBkCaFSaGs0IXb6CFtjtEUYHuQJAYVTAHQopZwyKWWR55cuXgQGiTEwpm1Z3aCEI4wstoiiKMhv3Az/7t/9tYuXrjnumSIvtNUIuYnRjXrtPe/5/ocefkhkbcdxKGEEsTLHxsha7VCa5KGvPcdw5pRlubKyElVbw/44T6VWDd93MCau62NEMNbGaGV0UQhCKHccpVWt4oJugEIIpDb1mioKga3Oc+U4NHAriFitJKWYUD4YWqWk6zlptnL8xF9zvbuefvo3KtVqECjmYofNJ2Obpanj8lqFhb5ACI+H0Xg8nm2+sxoeeuLx3s2bvBq9aWFhgaCovW24sySLMcclxR6nZZnGo16lGh45tP/29fVbw74ThVWlZSL17HzLoRUj7Q999Mfr9dr3Hnvy/PnXAPb1HWqRpTa0cohMwpDrRZRSVxaGkQDrmd3dvlU1ZKVR2sjSc8ykLMdIFK7neVYjbISUkjLmMGRYKaXklBNkXI4oJYwyxkHjJUQpjDVaIs91lTIuJ5xzZFGRamwNxZZSovEkhYnTCRFYSYUwJoQSTLDFGCFGjEEGDneEkMV7yK9FCBHMXAdZa1VJMkUwQg4lWmtsEbayVpHcYRhhg4zLXYwwp9bjBGFsJ9sCJqgw1nCKKMytJ/yXCe5sscEYI4qA6AeVFMKIcWutNdoQSihlhBLGCcHUaKO1oVhjjBil1iJGJHG1tWh5cZ/necPhgFqdjgqGl10mHTZ324kf0Fpjc2J3K5JSBmHt0vnOo4/uEHTKqCIrhDK6Uqm6joOM1UYjhJCWUijHcSLfadSWbt6Ie/0iS3OpQse5vVGlRVFQTAlqeL6bo7wsCiUtc7hDsVSqSC0xNvK1QcbjGCOsZWi15tQQppGhWkiEkEMspYwyhjGSpdQGI4u00QQTTHmWKFVmSEvOHISQUgYhy6lixDquo2Vl7VpukFayau3YaD0xswZDBm3t1EMZIUSAzYERsohgTCiFsSIUJ0qpAwcOuK772c9+9ubNm7KQMCJljAGwPpl5qFJIYbAxxgRuAOW04zhwDhKCwrAC38kwmaQLSlNrBG+snAkhUBVwTq3FeyxmWHJCCMYcbYwQJcJGlhIhxJnrOE6tVgeWtzGmaPcQQt3O9vLycqPZHI1GFGElS8+nh4/sX1lZaLfb29u7R48ev/OOu55//nmEJrpDjElWpuN4bJE2VmZZMl+fk7JEvrFWEWrwQ889/c1vfGM47M/ONJ5++glktdbWaudHP/HTt52822i8uLwUVHzKkDZISg1H1KTTthNMeY/tNUGf8esmG3t2GdPK8s99J7hhwi/RGnGOCEVxXBRFtjDXFFITgqXKPc8ZDLu93i5l6LXzL29s3KzVKxcuvLa2dm17q99oNBhjnU6vVm0cOLB615339HoDY8x73vPebrfb7bbHw/73vvdYp9N2PV6tRrdu3YjHo+WV+UolxMRUKuGNG9eBTmsMkkLv37+aZ+Vrr108fPjw9tZut9cuimJlZaXX6Y7HY88LYJsghLmuC7kfQRCUZV6r1Zr1+s0b64QQpbQ1mDo8z0vPc9AbLhBLMuYMh8OiyH70x35kY2Pj3LlXOOfj8ViIAs7sPd7Q9IAkWZY1GjOEkDiOy7IEMS/BDI5PhEiepGQyejXZOMEOXlhpNpsz0Af6jgsnaxzHw9Gg0WjcdtttrVbr4uUrt27dAoUgc6iUsihyYItA8owoSsfxKHEOHFi9cP7SqD+ilJYif/vb354VxbVr1yilUuoyK6BJ5oxBb1apho7rDgYDhCemNtxzyrL0HbdebwCSCA0YDC3hGUNTXa0xBiNKJmUQ9l0P1DScc8YJ7KRKSY3sXh2AsKKUVqvVO+44nSTJeDze2Fgvy5I5PAxD3w+Ac3149Ui1Wu31erJ0/tX/99co59baL3z+j65cufL0008rLWYajTgZKaWWlhayLPvwRz8yGAyeffbZQ6tHbt5cv+OOO9/5fd+/srKfMrfT7j322GOtVusHfuAHolp1MBjUao2iKIaDked5rj9RNTLGKpWK63KNJnFkGE+DzhTKsgy0kzOtCkhfrbVK23qtcvPmzReff6ZWieZnG9VK9E//6T95/vnnm80mFNwMWWMM4QzE6bu7u81mc3NzUwhhMbJWCyGq1erp06dv3LieJMncwpw1Znd3dzweP/DAA0Vevvrqqz/4gz944sSpP/zDP9zc3KzVGp7ngaMQY4wyBgIfbI2Rql6v12o16tLBcBhGwV1337m5uZ6nGaFo0OuLvBDawOSwyIW11uUcxsgH9q/+xE/+bSFk4Ff/7ad+481vetva2s3z5y9W6z5G6GMf+9jm5mav193d3T24/8DX/vRPhuPk05/+9Of+4A93d3eBEFeUmZYqCCLXdbWWYRimaWyxMcZQNnH0B18q13V9PzQaKaUKVViriyK7974zURS88OJzURRlabGysh8jtrm5Dfg4oBiU4mo1gtIZZiEwzYbs+DzPJ2Q0i8A3qtPpQPQQKModx2OMRWH16NGj165dH41GaZoAuAxNMuMEo8lc2hhTq1ccx9Fa1mo1pUSe5xrZffv2bWxspFk8NzcHyaJAidrY2DDGOJRBO4ExdhxurXUDf2ZmRmtJKR0Oh+mogPkTHDNkeiGE4ItFUVikW62WlPLq1avVZqNeq8HoCjh9ZZZjTOr1OmPMYAQi7vF4vLp6MIjC555+CWLN8qwE8H2P7SLtJBxj2nggrTW1FBP7BqqXJpw5kOPhccao1pNIK4QQY+TEydvi8Tgdjj3PcV0XU8Yc7+573tTvD4tMYom73X6r1brznrvnlxe5780tHplpNGtR1NntQuJflmVRveF4rramVqsghEQmOKUuoWmaDUUcj8ayzLUUSwtzZV6IQiJEGHetRWlWKGu0Vb7vNVozjUbNTLX2oEWAcg7KNjj14FlGU2+NPeQBpvLtTn9ra8MPnDxPo9D93Of/oLu7M4771przr51zHOeOu25rNBq93mBjY6ter0dhNU3Tc6++3O93a7VarVZZWlpyHOfy5asY46WlFYIw1Ci9XgekiNbaZrPZbLYuX75KMXW457r+YDC47777PvnJn/ynv/iPtZYry8tvffObN7fWhShgT1jet/LaaxfiJMszcfL4qePHT/7xH3952B86njMz09CmVEoaY7IkJYRGUbUspLFKSKmUQoikScG5S4nLsclERimq1cPTp2+TWnc6HSl0u7NTqUTW6motkrJkjMVxurPVCYOoVmtQSpW2juMFQVCJqlLK69ev53l+++23f/xv/vC/+Bf/Ynt7Kwp8z/Mo55y72KBqtToa99u9nUYzcgNKCCIMe55XFIJiojUMp8N3fN/3dTo9x/GuXL62u73LmCdKlSSpQXb14OG5ubk4zUCMeenKtV6vN9uKFhcXMcb93qAoilqttry8LGQZBMHVq5cZY0tLK6PB8PDhIxvrW9euXVtcXPQ8r93ZSdP0/vvvP3369JNPPuk6/sLC0tmzrxw6dOjE8ZOf//znb9y4EUURwnb14ApjLMuSLE56vR6lHNiLYRgig4UQGE26dymVMQZhDfsnAKaMOsDdw5hwzl3GoWmEJhkhhPzggfe+lxBSq1eiyP/GN/80SUfVih94/traTV0ahJjWGoZzCBkYpO3hHVrr973vfZUw+q3P/PZEoosR5PvBpiGNRtrsoRgI2Wk1MuHlwbELBQYU367rggJpsgNQGgQBnirE99g9eEpM2CPgMMZc1wWuB5vGp2CMKZqMsuCL8BJhtQK7WTpOjTEEYUaplBJky5VKBWEQHhYQE8RdByGEGTXGpHnieZ7ve3AHEDbAMEIIIYLhzkBgI/wDti8ggllrgbcLqXp7EleMcRRFUspBb2CtZczhnCM79Q8hdprZIuCvAzbinpkGAPTaGviw4M3UajXkKEKI43DXo67v5Hk+HA6Wl1eGg3G/P1yYW9ze3rHalKUUeRGGIaWYIGotVtIy5hDMPMfBGJdljrEdj8cGW/jsOHc454iVSmqMMRg3u8wdDcecu8hgRF6H/i2ZfLih57quq5GFPCWpSotRtRpBB+U4ThzHvd4AaETQhOzfv59z3u8NR6MR4cDB1J7ngYA0STIoX4FQHwQTESi0T0BlgsTszc1NQCFhFQHmiLHlnMNjlWWZUED10mC/o6Y58lprrWWe5/CdGFNYM7CA4bOe3hYO+B2lVBmNDLwKxA0xxhjgBfB0wKPqui4yE6su5nBrrVKCTciqYE5tYW5RrVbr9fpoNNrZ2YFDnHNOKYZAISELMuVl46km2hoshMqyjDHuuq4GWiuye0Q8DCxmSuERA4P4yA98PyiKwiJFCZ92pKQoiiIXjNIoioxUSZIQglzXVdYAvIikRQT7vo8IM2hPX8+MVUKUQhZwLguttNYrKyuUGUqpVmhnp61K5TpBURTYoj2+VVEUiGDP8xhjRiONLGSKKi2MmpjbWjvJ2yQU+b6Ppz7vFmORT4DpiXWDw7WWRZkhZLzAn51tua5LCLXWilIlSQLCoF6vNwlKzXNjjOu6tVplMBqGYRAEQbVewRhPnK+ZF/ih43vW4kZ95u3f944vfvGLZ8++uLyy+MADD/T7vdFotLu7OxwOoygySmdFaowZ9PtxHBdpdvz48cOHDg6H/c3tLWvt3Xff/euf+vRTTz/5P/9PPwvbe1mqJEnmZlqwqIQQURQRwjjngQdpmQLQNNiLsrTwPA+o0EVRWK0RQuB5Co0PPDIHVldvv/32l156KStTSN0sigKZ15Xme2TAfr9fCgUkTUIInCNAG8KM7i31rCjB5YBgVpYljEURQkBOBG4TzFFgJAYFLZTNYAkyQV4YhKEhCCKGplJrqbSo1SqzszPWWs93y7IsyxwhpLXEGIP2rtms/z/+wc/+/u//flFkx44dy7LCanP+/MWd7bbreoQQbLCa1le1SvXkyZPnzp0bjPqNZj0MwziLCSHtdrtRre3bt+/tb33Hww8/fO7cq77v3376zhs3btRrtbe+9a1f+tKX4MTZI0tO0HeY/2mUpinoaGH/gYs5nEy5+bAbIIQoYffde8+NGze2t7cRwpTS8XgMKnilaou159FfXX91/Xe9PA81mygMUbWKjEHjMdrdRUny3/ldOQ5qNlGlgghBoxHq9xEUs/+1Lt9HCwvI9xEIUuEiBA0GqN//L/7zr26+ScpbGFFKKbYT6BbRSS8PzS9UShZN0oyVEkB3gNkezHqTJBkOh5WgghCCzRaIWWhqgaK1JpzNzMwUaZYmebVSqVQqEC0G0is41CpBRWttlDXGUA6hlXgPVUCUgNAB3ieMz+GIQQgNhiOllLVmdnbWcdkEntYIY1KWslqtjobxxYsXwY7jzjvvrC5VHceLQl8UyXjURbjs93fieFSW0uFuq9UCP5AwrBmBkWVuFFDJbm3c3Bpuz84u7Iv2G2OyKC6UmOktsX5v1/f5889f3t50jVWckjTN73/Xu9/+9rdfunBj9dDRRsOXBimNtNa+T6V8HSDGb+B2vX69IQzQWkTgO/+8dYYxk7ZcKYuQxQiNx+PRaMAYCyKfILzb3nY4dV2n3+9KVWJsZJkWZax0ceLY4d3tW6+98jLjZHZmprPTa+9sa639MBrHw2eeeebatesOD8pS7tt34MyZM6dPnqg3qgiZp5568q1vfeto3EPICFnOzs60O1syL48cOeI4zuXLl5vNlucG43FMCT9z5vZBP7n3nrf8x4t/mCU5xvjDH/xIp7P7xS9+ccJPYaw1M8c5z/PU8xxKca1Wm5+fL/M8yxOR60qtYowl1hJCtLbArt8DYpIkI6SAYgsjurS09OKLL3a73SiKlDIAGWNMgBiIJoGVCKGJIxWIgBhjvh9Ya6XQ1mKkjeMwrbWUZaVSWVic01rv9tZB5FKWsp/nWkhrbRiG4Jt58eJFi7FSulqtAsbNORlLWY0qhBDqu4Qga7XnObVazXXCzc1Nl/MJAQTZ69evc9eFaTbnHLk2yzJrkbGWMKyUyvJcG+N5HqEISn9AlgG8M8YQzDhDolT93hBaTQgphxkYmigrJ4A7xtRaDboMQpEy0lqrlDQY7ZFclLHW4PF4/Oqr5xkj1WrVdT2ltDFWKQ0vihHd3d3dv3//pYtX9i2f+L3f+73ve9e7PvLBD7z3ve9N0/QXfuEXnn7myW9+/RsYo2q12u32oyh44bnnpVZ/72f+p/e//wO/9Eu//OwzL2Lr/dhPHOPMH41uHDly7NChQ4cOHdrtdkD4Zi0uioJzF/g1QPgdjUbVRr3RaMCEBlwy4bbkeZqmKSFEbI7yUtRqjYX5pf5w8NzzL37rz775yitnf/h/+Fgp0pdfen40Hni+I0WRK0UpVxA4oORwOLz33nubzSbGeGlp6emnny6KolqtKjHyHF8IJaWdnV3klPRHfaNtszHz8tlX7rvvvne+851Syk996lO7u7uVSgV4u9ZaZDCnDiY28N0sMVbbkydv21zf6naHQhS5KE+fvuPm9fWXzr5Yq1XCwPN9v8xyZEkUVgkhlGQEIeAWua6bi/LXf/3Xo6jie5V+v3v12uV4nFYqIUYyy4qnn37qJ37iJ8bj8e/+7u9eunTpl3/lV69evfq9730PKIG+7//sz/3PjuN89rOfvbW2oZQKAj8IPGOFUqqUBcFcKcWZL4Tg3MWYjobx0aNHl5eXX3rl5W6v7Tjea6+dD8PAGjweJQiR3d02wUwIwdjEB8NaO8miIQQI41Buvutd77p27doTTzwRBMGEkqMmIH4URWkap2mutYb6uyiKMKgkSVIUOUII3Jdgo4dHgFJrtHEch1KOEFJKEILC0E9SmRcpY+zK1UuEkAMHDvR63TiOo6gCPt2wdYBOFvYf8BRO03R2dtZxfCllrVYjlmithSgpZQ5j1lqMJ+230sIYg4nljPu+FwR+qzXT7Y84dcBsjlLiOA74dUB77AY+tPHVamVra6vZbDqOE8cjrScaNGgjtdYaa0ii2Gs8YMMiiBRZyRijjOyBCBPHKMKtNRgzQrDWWEoZhdWiUNtbu/MzzcOrB9rtNuU8LrJLl8/fdvL29lY3z7MD+5aKotxcvymMCCphKZjMM2flgOfwKPBd7pCIiCJTRnpBGASovRNLIRxMt3r9sihowKxWFKM77767yJJrneuc89VDh+I4jdNMZ2maJpxzXmGd7a321qZFFMikfhRSCrLTyf+A6Qz2GthaSjG4CCiFjEVpWo5Gg/5ogCnJihJZO7+4cPjwYc9zknF09qUXFxYWDh8+vLQ8d/Xq1ccefbIsJUak2ZpxHCdLC8acoiiq1SiKoq2tnaIofD8cDsYzzWaWFeNRXJal60RSSj/w0rSs15Hv+6PhGBDhbDR6z3veizHOM9lo1q5dXYuiSBTFwuIcxlYI0e1OqLKe5/lhsLm5HfihCKWUcnNz+7bbjrc7O+2d7ZmZVprmG+tbIFk5depUKYtzr5yvVKpAT5CF5pgLVRpNRGkJ40lcjMcJRm48LoLQcZ2wVm0QQqKgnGvNS6Vu3lwfDtLZ2Rmgxvf7/bKUd955j+u6m+sbzz/30sL8MkWk0+lYUzJXu5xLpeN47Pv+W97yltZsTagiyxNtFSy/ZBz3+/0yL+I4vnHzOsFsd3fXD9yjx49abRHaAy+QxYXDzXjUNRadOHZwdzd0HGa0JYQGQVQUIs/L9fXNkyePp2mKENHarl2/IYTo9obGGMJ4r9drNptzswu7dhsh+/LLZ6vVyuXLVx757rdXDx6OouDhb//ZaNx3PZYXCUIojuNWq1UUAoLF8jzP8yIMK0Zpx3Eo9a3BZVmCtNlaW8hEKEkIsRgxQgEL8LhrrQVZtLU2jmPg266urrJqLU5GrVbrqae+NzffUrqcm2sFPk/GKaXUErRHm6WU+n4UBMFgMEjTNMuyH//xH8+yzOXO4uJiEHrIEiGEMhogCShXOGcGKYyxtQiMTRBCe+U1oIFoasGMMcYWmSlaDRfMd/ckDlAH73EbKWVvrNeh+GZTX1oEWN0b8Ef4IkSSHj58uNvtPvf0c4cOHeKUtdvtPQVJlmXccQDz2qNma60pRhhjbElZgCEvUkpijDmbMIuttZwyTAmQQej0QpYA2A0o/8S0AWN4V3v4IJx3UKIgS2DzJ4QYq/Qk6wYDWO96Hny+e7JHqRXcdmstmLQaY0RWJlnsOHz//pXJCL9SbbValFLf9xcXlweDXqfTw5iE1dB13aWF+c3NzdFgTCx3HON7lb3phRAF51wjgzFGhIyTuFKpEGL8wCuKAlNUCcNms1Wv15HF6+ubWkxAGTtdP7CQSiW1Vnt3lbDXGTSe51UqlTiOrdVRFC0sLIRhKISI47jRrHAH94djjDHnxHE459xYxTmExWeUUkLo3mDDTPxhMRjUAqtXvsFVHCEkpdRWGWSRFBhT+GjsxOoXZ1nBGAEoGcpvrTUwZjjnjjMdNlgMCN0ebTnAGDj7QRD4rgeEEq2ltTYviz0CkXmDJwylxBgTxzFzOMaWEEJfl7JOREUwTYH3v7CwQCltt9vguaSUAfss0PwFQbC3bvdMGKylwJosigJaSikLNIUXwzCckk5iVULvbl3X1QYLIcD1zvN8EDIjg7WQaZpaazl/nQqjteYUI4IYI27gGoO0llLKUkiELDIWxkhSSsIoiK7SYrBv5QBnrNVq5nk56IyEENYigsCyfMK33XO5YYxpMbHTIYwiA7vT1GNUG6kMsRNxusV4yjRnewRnY4ySxvV4vVqTUgkhrbW1Wg1EFQibIAhq9crmxnZZlpDrIISwFh86dChNE9g5KcVlafcfWDlx4sRX//TrxhjO3TQvv/fEI9ba2blmlqX/+l//q+ZM/fbbTiMrPRdbU0SVsJDxcNBTqqxXotry0uFDB5MkKQrhMJ4kydNPP/2P/p//8OxLr6Cp1j6KolarVa/Xe+0ODFQmS7cUuUWwYxiNhFEUayGENjbPi9FojBByHA7uwjAfJYQqZXw/RIQdP378rrvueuKJJ0pV2imJWErJKYN9bE9BUqlU6pxZa0fD2BijpzY+mE+Y4EUhuOt4bmA0klNWL2zX1tqimIj86NQYFM4g+Fi11lqqvQ0QIaSlUtZqbQlhCFNCJlYDlFHYGy0yaRpTipUSYRhiwpRSu7u74/GoKOY+/elPj8dDa+3a2prWmlIOvIQ0SShlQRBQyrTWQRDMLy6sb9y02My0mmWZ73TiMPQppWHo12qVZrP5ve89tr29PT+3OBqNjDG3nz795JNPJkkCO8neXwFkIMiRs9ZmmZBST2GKyb2CMdJeTYsx1spgjJHVFy9eKooCUA+lVBRF1Wql3W7Pztz1l8JYf3X91fXf6GIMLS2ht78dPfAAOnHizyWodTrowgX04IPo7Fk0GPz3eVfveQ86cgS5LkIIlSW6fh099BB64gm0tYWmWqD/Py/PQ299K/qpn0IHDiDG/hPfsLODHnwQfe5zaDT6v/s7CWphvI4RhvNxj2NBMNmbPCHY8JHBE5ctqrWA+SKc+1A2hGEF2n84E8F7BAob+LV+FN5///07GzsXLlwIfJ9zWqlUwjA0RuU5nujqtEYIAYPETGjrelJDGkuQZYxlWQZVihBCK5PEKYhlS6kIQfV6HexlwKuTEpLnOaWk0WjkeQ5BLO9973tPnjyJ62EUhvVKdWvz5p9+5fNSJUncpwz7XiikXbux4bm8UqlkaXH06IkTR071495T333a9fi+/YuBXzWFwhgRaqlFjkvZ5tb6jZvX5xdm29vbYRiKIges4T/8h/9w6sSZVqsF0LDWiFKaptLz+F/4MPbQ54mBBkLI/jkYGr4BWYTN5B/W2jQt8jQryhxuNJD7EEK9vkiSJAiCixcvBEFAKVYiS9JRkg6TdHDx4qtFmRqjur022JYDGMoYU8rUqrWl+fDm+laW7i4uLo/H4xdffPHE0WNf+9rXXnnl1bvuOlOv18+9+lKlUrNWF4UoC3no8KGDq4frjZnhKNVSWYvyQkltxnF86MjhrZ1tqcogCIIg2NnZ2tzcDMMQY5ymKWPMcZkxOox8rXWaptyhW9sbkR8dPHiw0+4ppTWySKnp+ps88VIqQGrAn0UI9ZnPfMZxHEws5w4QlpXSUHlDfc85QxOnWmSt1lqGoT9xyiulUqooc85cJSZEAKi6Tpw47vv+tVt+vzcEdRVjfmc0ZoyNx+NGs04pdV13OB6DQy5oDy0SE72bUsRCIcgIxa7LXZcvLy8Wqeh1B0IIrc3m5qYfhkEQUMoBxU7TFBLModMD0KpSDSll8IRoZIIgCMNw0O3neS6FnujTMSuykhBiDWKcaQs9GHZdH3zNrEbAU4CtsygKgzSZvNREdYsnIZuUc54kidY6jtNGo1aWJahQPTdgjPm+W+TiuWdfmJubW1hYeOyxx8ZJsrCwsLW98Tc//jdWVlZurd/wfW91dZVQNBwO2+12vz+Mk+Rzn/tcFFXBw77bHzz/3Flr0NLS0sL84pGjhwGaF6IwxhxaPbp/3ypCSFsJcmnwZoV8Yc/zCEFTHo2YcBOmgog8STnhZV0Oh+Pt7d31ja2lpaVarXLzxrXvfvc7ge8267Usy4wh8DfW63WEDMb44sWLtVptd3eXc+77fllKzwsYczzP7+x2y0wVVCZJubXVrters7PzCKFz585Vq1VjjNby4MH9g8EoTWNKOUHYGKS1xgqXpczz/CMf/JDnBZcvXoGmgVJz4bWLhcgpYaPBWAnNCTeGaK2UUs1mMwgCoxQwMQ8fPer7/hNPPNXr9Rl3g9Df3t7wvIC7REoVJwMhinPnXl5Z2f9TP/VTg17/t37rs3fddZfrertbW1LKKIqAs2atXV5cjNM0y+MsS1yPF0WGCIRBgQ+mQwhR0oCX0M7OTilyl3FjFLJEKQ1eVcbYeJzCAwg/whhTSggh+v3+3ugiDMPZ2dnZ2dksK+r15nA49H2fUg6l6WAwCMMwiqpaQ1vFtNZhULHWrq+vCyGVUoxRkLUaYxAGIo+EM8MYLITQWnqekxcpbPFAxGO+d+vWTWstIROcZSL3Y26RC6U0Zy7Chk3NHyGpY2Zmpt/vMk4YJ5iAJ8BEfp7nubVg8MRc14F7deDAgTNnznzlqw8WRUYI4Q5njBmjMcae543H8bFjx5qzrVdeeUVKqRQ3xmxsbEx9xs0e50tKSRnW2oA6zFpEKZioTtBnAFy0lsYYx/dAAS2lRiif+KYxJoSmlFtDer1eEESjOOn2hxbTdrc3uzAf+gHnDCOTZnEYhnNzs34lOnX8+KVrVwaddqMSdXd3GGOe5+V5XiqpjUFaOZyvXd0ejUYME2yRy/jCwkKhizxJ3TDottudTof73pEjxxyPrG/vtNsdxpgX+KPBkGK0uDjvu55fq8NHwDDBZCLl2aM5T/9nyTSFo7M76vV6FhvXdbuD7s7O9sHVlVqtOhz1er3ezVsbN29c63fbhJAgiGQpXnjhhReefwljzplDCNvd7gaBZ5SxxoTVarVajeN4OOxbi41Gg8GQIDIcjOI4xZgyxsMwsFYTgsajGCE0Nz/b6XQ++rGPHDt2Qkr98Le/XZZCFHJ2dv7Vc+f371uOx+mHP/LBK1evPvfcc2WhkcFam4sXL+9ut8Mg4pwXhSCYXru2trp6YGFuvtWag5ArrbWQRbNZX1paXF1d5cwdDscvvnjWWqy1cdzQaHrh/FXOeSHKPFMY2yiKpNDbW93l5cUg5NbI1YOrjk+aM/WN9S2lbJ6nUlqjsbXYGnzt8o23vOUtL730Ume3w7lPicsoJ1RKI5N07DjOyVN3l6LY2Ni488ztne5uWIEsEZGGEUJod2fLIc7161cOHFidadVEaQ4dOnJg38Ht7e1Lly4BbkKodjxblIoiWq9FmJjhIFVKMWbiOCaEpGlaFIXWttvtI0sxJkrJPC20zmu1WqvZiKIojkee79Rq1bIsZ2dniqJIklGtFp2+/WQYuUJmYeTCcy2lHI1GWmvf94k1MzMz0O7KstCEUUpd19cKkh4QnI/KGsIJJxwh5DgORtRqbbTdw2oBcesNB6urq//qX/9aLItf/dVf/d73Hn3Tm+9eWp7VJglCL0tS1+XzrdmdnXZZKM5dYwwY4CwsLCCEer3eyZMn/97f+3u/8iu/8vjjj1+5csVxHEYdY0xW5HuvhTFWWpMpRgwP8lRa4QAPF6oa2Gd836f49TxAa61SWmsjhDTGIoQpZQhNsGY05XSgKZNaKQXTWcAZ9wpISzCxE24dIURo5TscAjabzaYXesYYwolSCrlupVIBaY4FjRQ2cNOUUohgLbTF2OGeNhIZjAmimCJkMaJQSwCp0BijjEYTwJ0TQvJsYl8IWDZA6mg6XdvbaTnnpEEwxkmSIYSswYQijC2xhFJkpo6K0GAgOiHKMcYgLxFjPAE9CWyS0lijlcUuMQbJopCqJIR0B712u40sJm0ktZidb83PLmCMy7KsNWv94XA0HHOXKCHzIgY2DUJIKaOskVIGUXDw4IEkz/I89wJbq9W0skWWFXkZx6MgiKzB1Wo0GAy0RoQzO1XQM8YwQaIsACIHf95GrR5FEUwl2+2dWq02OzsTBBHUfkk60lpneRyEbq1ZG6fjLIs5dxF2tUaM0SB0iwKVhXQcEAu+Xn+aqdkCQiiORwghzt09qg5QByCUyU5DLwkhGFFKsFa2tCUh/nQtGdd15+fny1LCOTv11MaMMeY4YBgKVEfP84BAHUWB1chajVBojAG27zQVShNCgqACmwacdtbaJBlDXc2nhuOMcYwRPPhQGqGpw4AQgmGKDTJSaUIRNlJqhA3GGGB6KSV40DmOY63RWmqNrLVaTeB+Ql5/duBRqgShdj2Ad4PAL3JjGabEaK3LskAIM0Ipp3maAxHYWg3odn80LIqCMoIxKcrcTLQHxhijtPJdTxgFdQ5jjFLKOLVWLy0tBUFQZKXjOMPhGGFDGTZ68mjDIzN5ijEyVtlSgyUx6JmwnZgBwgcBxjXUUKORMRbsFsHwASFk7aSvjqKIMkwpz4oUBhIQzO66bjyOx+Px3Nwc2B8DvMo5L8oSGkaEUJqmzWbddd3Lly/PzsxoVe52OoEfua5LPe77wcLCQpIkaTLEGHe7bcbYwuI8J5QQkqQjTEyr2ZifX/AcN03TwWBQFAVjThRVh6PRl7/0leXl5UqlJoTwjSWEa6273a5QEnhCShkQyydJQjDoWiTFGNqBvFRKCa11FEVKkeFoTCmdm5+FfYZyzhyn5nnb29tf/vKXETYw3UHTgRzcSbDRh/4RoOo4TSjD2GDH8aEM48zNsgxj6gW+VhbKMBhmgF8QPIPQzE1/P9kbMsHjZtRkaiil3hu5KQVzREwJtVMrdoc6rVbLDzxjlDFCyCIIPWMVtkRqiQgKKwEiEwPGPM+vXLkyPz+PMeUum52bq9cUY6woirQoPM+ZmWmMx0MhS+4w1+UY60IWcTyy1uZ5Xg0jSnFRFL7vem4lDMNbt24ZrUE/6vu+KJXSyhjLGefMhYEWqCHLcuL4xJiddpeYEBKGYbVaLYpiNBpJoaw1QBKP4zhN036/7wfR3FxLKYUJ/cEPfXDYX9y6+pfAWH91/dX1X/1qNtHf+lvobW9DrRaqVv8T3zA7i2Zn0TvfiYZD9Npr6Nln0Ve/ivL8v9u7cl108iQ6eRL97b+N2m305JPoC19A3e5/8Ut4Hnrf+9CP/Ag6cOA/920LC+iTn0Qf+xj6ylfQH/8xarf/8t9MCAWFkNYajBQ1stRahCcSvT0NBKF7PwLENYqxxZgAPub7oZSa8gkfCzZbONoopXmet1qtt73jnXefufeJ+HElJatUGo16vV53XQ68ZjIxB6fEEmOMUYYSYrDO80kcBWz+SZymaQrTdChprLUIEcYYInTKEuNClJy5gDNyxspCaC0JQZhoxtHKvoVK1S+4VxQm97RURGnWbCzOzy8yMhkDn7rthOPw8XA0NzefJNmtzY1LV18VQmijDDKez7AwGGMpS4MMwgr/j//wZ6xFzVp9PB6de+Ws67r1enM8lL7b+Osf+1tve/u7mk0vF5Y5WClLKUAKCP2FrL89/8o3fEgTuww8NatFyJoJMK2UEUIIWQLbHFxTkyRpt9tSjwf9UZIkENvVajaDwBkMu9s76/VGeP78K0k6WpibT9Jxr9cbDAZFkXl+CLSFLC1Pn76rNTOnlB30R9bij3/84xcuXPjWtx7ct3/51KkT586dm2lVm83m2bNnB4Pe9s6W1tJ13dnZGSllEER5nheFmJ+fr9ca/f6w2Wz2O13GyPnz58fj0fHjx8Fzqlqtcu5gjMfjRE1demEyUA2rCKEba7eyLDeIGGMQmniKo+nQGFDFqXsUqBSN7/uYWKiAYf3BuJVzjjECpY+UJSY2iiIws9va2hKlqlbrxpher4+NxYhapJVS+/atHDlyZDQevPzqi2kqPI9qbQghqtQHDqy4rptmCXAi0okvu4CROCaCc5dgBxAuyqzj0larubi4TDB/+nvPDQeZEBIhJEQZhF6l1oDMa8/zfMfr9XpxHDPqoKnVo7GqVquB4NQYk5WplDoIgixOHe5Zi7MsU8rUKtUwDDc2NiilhEwc6ymlEERDMYNWk1LqutwirbRWWlg7Tbp3J/wURLDWEohgmFikTVSrQoNRqVaDIIjj1PM8z3HX1zebtXq1togxzrJsZrblut4HPvCBK1cu1+v1brvzne98ZzDsGWOq1Wqr1frEj/3IzZs3b6xt/MN/+I963RGhXuBXMSJBEAShj7Edx0MhxNbOjjFo38rBWq3BudtougghKVEpBCHEdRnGEzE+oQhyReM47nQ68NSUReJwL04z149mmrN//OU/+o+f+0OMxMJco9PZjAKHYjQcDKqVejqOXdc/efr2hx9+GDBNpRRjZM/fcDAYAbKPMc6zElgwo6Qfx3GlUgkCLwxDIIAPBoN+vw+ZMwgRpZQS2lobRdWoGqZx0m63P/qhD7/yyqtra2v1er3ZbA6Hw06/43lepRIWZcYwwRi5rpuVBfgWua4riqI/GiwuLpw5c8YYE4XVra2tbn+AEZFSY0p8Lxz0u1mWaW2Hnc4n/8e/+/a3f98XP/+Fa9euVyqVzc1Nh9KiKCqVSrUWpWna6/UcGhijbjt9Kk1HFy+dJwxjjIyxBDNjECC/06dmEjwF7oSMMYQM4awsS2AW71nWaK0B2KWUKmWEKMIwXFxcTNM0CAKAmCFnGToihxJKaZYltVqtUqltb2/DtAYhxKgDal9jLOeTtPqiKCjDQFRkbELYJwTsYhQhiHFijC5LQTBzHMePQspwWWZKKUI4JXzPkcN3XIzxaDSCAFVCkcGoKArf944cOUIIWV+/CR0hvB+Yr0KXNYl8QQiWh+d5QRBcu3pLSuk4bGFhQchiOBwyTFzXnbT0ojTGSCn3HjSltCghWh1jjBlzJgydad66MYpzHsfpxGTTcoxxKfIJyGK077uQsb43EwK+CTQ51XpojKnXqiDSASU1NjZN01qltn95//z8Yprkp++869DhI1Lb0bg8dOiQ1roQped5YaVGKe12u0Jq13FGo5HrutVqtVmrR1HkugQevXa7vbW9IbXdf/DAodXW1m7xyCPfXV9fn52dbdbqrebM8uJCFISUIBoEYJdhLUL09XPNGDsddMFKQsYgIUSvM0TIYErKMt9u7waBv7JvIQz9J596/Jvf/PqlC68uLswdXt338ksvnnv1ldmZVm/QlVJ7rq81tgZDH66UqNWjpaU5xglwUQl2tLbWoLIsMabWYq0szC0QNtVqRCmu1kJjTFEUH/rQRz74gx/6zd/8rT/47O8sHlw5cHB/s9m8detGUWTf//3f/zN/7+9+5jOfSdP02rVruzudRqMRx+k4iZU0lNKVpf03b655vlurhYSQIs+PHzt5+PDRF198fjDsMUaKIl9dXUWEbG3uXL9+oxghjDHjRNmJlyhGdOowoAFrQ1grUTaatdnZ2aV9jYWFxVqt8dC3Htnc2CkKFfiVo0ePv/zSK+NhvHrocBYncRwjZAkhnutKMhHmz840CUEaad93GafD8SAM/YOHVvM8p5hUq1EliobD4Y1bV5eWlg4fPtbvDSGSvlKpWKR3d3eLIrt+Yw1ZUq3WXSesVmtJkhWZ7ff7sGnsMQIgdXx2drZer2utb968aa11Xf/Nb37zcNzrdDq+784vzDFG8jy1SMdxXK3Ujxw5opRZWVnBmJ47d+6ll17KsmzcH0VR1Gg0iJ3gYsDFhihpx/EwxllagKcE51ziEmPscU8pFfoBw0xKie0Ef0QYl2UptBoOh0ePHv3wRz/ykR/6a7/5W5++cuXCD3zgvUWRXbp8fjQYJkmihMIGj4dpkUtKuRRaKBlFEeBHaZrW6/XV1dWbazcg0hb6fGuwMhrGn5TSMIzSIvMdF+gYADhOkawgz3NI/4PyBkgc2E5ofQCoSamgjHkjB0RrDRNigDCAC4zf4D0HhTUQQADZhP+XWKTRJHUKtFC1Wo0xloySZBxrrStRFIYhINEcjBFUCeAXQkhPJkPMEoyQAd4cxtgYRSlhjBmrPM8Dj9QgCChnQghrXveUqNfrvV5vNBrtOfZSzmAcDuNJz3GVUo7jdrtdEJIDQG+xmZIMJsxxpRTnXAkJLEJtJ/Q64DUXRaG1lkYbI7nLokpgranWKxjbrMy0UXC7atV6JQwrUc1xvDROikJoLR3OR8N4e2MrSTJOnePHTm5vbAHWjBBSSmCKDxw6gDHWRoZVXpYltqTIhZZSlNLlnuN4lPC1tbWiKMGCiXMOCJSdMk8pw1JK3/cbM3WggTNGoHy1U/NihJBFKooiGDoajIxGWmvQmVmLHe5prYtCKDVBIRn14D7swceMMSgIAdWCjxJP0xopJ1EUGWOEUEVRAKN8CsUSxonrutbqssxbrdaJEyeGw/F4PIYc6TzP4zjFGEdRtKdsjaLI932A1KSUEJGGMZZ6QkIHAwqgujPGjEFAqEfGKqWYAx44FMYGQI0vyxJEM5B9BL8HSJpFmo/HY6VUFIWUUkIRIcTxPEysmbrKgBoXIkqQRoQQOJfJ1IyFUuy6LqXcoa/PaeCZEkUJsxN4xgmhkyWnNMYY5ErQlA7jcVEUnBJrrdGWe66UGhLSGGNGA7zu5WXuuq7jOwCLz8zWEEKiLCnhSuk8Lx3qlGUJUomJOyTn8FaLorCIIAQFz8QenVMGtjbGmEKUsNHt2ZtMo0cRgM7KGmMmGZ4IG8/zkjQdx8MwDIMgKMsyz3NIOGeMpWna6fQIIfBZKCX8wGWMDofDH/uJH/3AB96/tbX1Qx/66L//rX//7/7dv6Oct2bm9u3b1x+NK5WK1np2dgYaTMflC7NztVrt6tXLw3horfW4l2XFzbWbSpkwDK3BGGPuTszKCKJCiDCMrLWjwRg2T2st0mAmiydArUaTlQypnlprrXMx2QxDz9dIj8djSmmtVuOcJUkyOzvruu7MzAxCaDjqSykRpggbUE+WZekwDs2j7/t2YtbJhJpYDBljtIWBFhFClIVUxpqpYyE045AM5nleEHrQUOipPTSlFOY9sP0SNEmBNpOyBB7JwlpwRnIga5QxgjEWMqvXq/v2rxw4sPzKubNKSdhY7GRcpBlj4/GwUg0ZocC7h/kB2OK5rosQybJsmMTzs7N6mj4dx6NWq9lo1uI07fW78/PzZSEoxttbu1sb20tLS1oRIYTveVmWtdtt+GPBQ4MQgjGFswa2l7IslZyMPymD6ePkSHJ9Z25uoSzLbrfb7w3AXGVubo5zd2Zm5md+5me++c1vfulLX5pbmC/L/NChQy67o+j/2/9LBOuvrr+6/htchKB/8k/Qe97znyb2/iev0Qj90R+hz3zmv+G7mp1Fv/iL6NSpP5d58391aY0uXEA///Nod/e/4CUYQ//L/4Le9z7E/yIb9j933biBfu7n/vIXWm9/NM2ftQZDiYgQmvTy1IFx1B43mfFJyYfQhFsAumdrreM4MEFXpZhUFHLCPANV1m233fb+97//4KEjlSD8kz/5k6eefHJ+fn5pfsF1OaIITjEhRJqmhDCrJpVzWmR5ng/6Q5Acaa2hIIdTBt6eMUariWJMI8sIOn369L59y3EcU0qkEJTSshCU0qha2draevrpp8Iw/JFPfHxucYE2ljw3wNa+/OILLz7/VLXqhD6vVaJut1upVH7ikz9er0d+4H77oYd/93f+YDSKHR9VnYY0QjqyXm2EosIYUzNlVmYL8X6WJ2kUVVZWVp57dhPKI6ut57ha2xdfOHvy1B0zM4uEYKMRY4AZ//mPYqos1qAynmQAIoQmyDKUnRObS4owRkYjSokfeD7yGJt6XyJkjApDX2rJOW3NNhuNxqULF/r9rrW1N7/5zWl2wveder36lT/5UrvdnZlpaNW1BkOtSRirhFXHyTc313d2dsajdH5+cXNjW4ji1KkT/X53MOw1m81PfOIT8wutMAy3t7cfe+yxarU6MzPr++7a9Vvvf//7Mcb79u0bjYcPPfTQ2toaY+zW+lotrKZpwjlTSo3GAz/wa7WDlFLHcYMgeu6557K0mJ+fz7MCo3GtVuv0ehhT6nBbFFZoRjkU5ZpoUB7BTWSEaSE550ILKLCMMYHvAfgFF2RKYIzDMDDG+L4rBOMO1loXRYYxTpJxFFURMoyRWq2ajmOlZJZlhJD+oHtrnaysrMzPL9y6dctaxDl3XX/x4PzS0oIxRshyOBzG8UhZU6vV4jiG7tHzoTgoHMfzPI871Bixvr7Z3u2NRunWzX4YhgQzY4zR2OE+/CzYy2ZZBpVQkiQYY4QRlNRQZ0ujOedmqIVIhsMhQhgjyZjjur4sY0JYtVpvNPIsS6y1kLsIjyWehOfCrNlaa5XRxirf98BFUWgFZb21FlnkOF6ZF57nWq0t1tDr1mq1eqNBKceYeo4fhmGn01tf3zC3ugihD33oQ1s720mS/OZvfpoQ8jf/xg9funQpTkYed9IiB9rOO97xjp/+yZ/+f//8z//RH33xx370k7NzywQ7rosGgyLPc4gUstbedccdzz7/4ksvvbSycnCmOTsao5mZGcdxPNfR2lCCSmHBa1hrwxgtSwEJvKIoOedJrq2UjerM9m7bdXzfDd79zndVqu7TTz5aFEWRjSlGlODjRw+PR0kURf/8n//zarX6e7/3e9DwG4NarZa1tt1u1+vVD7zv/a+88ur29naZp0oUGUK5FCsrK2VZzs7O1mqVbrebpHF/0CtFSSg2xhBMCUGgoI3jkVICSOVf/epXHcep1SqEoOGwn+d5LaoUUpRl6Tq+FhJjUhQlJtgYRCmmlM4uzAaVoFIJGSNbWzv3339/vfHAv//3vxFF0Wg0IpRbq5USWkvO3frszDcf/Pq3v/3tYX8URdFg0K9WqxThsizzIpWqLIrMdblVqCzLdrvt+mxhaT6OxwBZIqqRJY7rQe1IGDHGCCms0pROOkZjMNLEoZ62r+e7YUQRmkyAtJbWEowpZGF1u916vV6Wcmdnx3XdWrVRqYbr6+tFUSglfN8vRe7JANKlGaMYY6005/z06dM3btyAJhwhRNkkDUApoY1i1MGYQFquUoYQU6nWhBCi1Iw5EHXrEO55QZ6n1sDIalLQ1yv1MAzLUg6HY2Ok77tKKWuw1ubGjZue53HuSim1tlEEuhvDuQNdx3RntlmWgWVKHMcEu57nlaUEZJZSKktRFEUUVkWpNLJKQ7LzTByPpZQYa0ysNpISjjFRSnDOpSw5564LAnwmhAgCr9lsaq09HmRZ1utJoZXruNy8zkSDXKOylNDDcO5C3zI3N9cbDN/znvf0+/1LFy5WK43vf/c7tzY2n3766R/88IdOnrjt1dcuYUyURFmcGyk3129ZjFpzs/NL881GlVJ07dqVi+fPN2r1ZqMVcC6zrPRcx3d0SbGxnPOlpblREiOEwjC8fK3ruu7W9vZTTz/9Ez/+40ZpANFGoxG2qMYdzhnQmaU0mBGM0V6OOXodfUYYI9d1lpfnEEK7nQ7n/OTJE/V6lTno4W9/+0t//CdJOjx06PA7v+9tS/NzD/3Ztw6vHk7TVCnjcBdjzhkwvq01JoqipaWlSsUfx0OEUBAEojQY4ywFox7QylghVBQF+/Yvj8dDz+eEIEpxGDb+7M+++fnPf35rcxs5bN/+pfn52SzLjh079uSTTwZB9NKL5yhxNzeubm/tAo0uDEPSxZRSeJSazSZlSAgBU4ezZ89evHg5z1NtJMZWa6W1PnHq5LHjR86ePeviBqWUYIqMtoYgizEhDqWUUKUsIxRjW5aKc1cr2+12R+nWlStXjh07fubMnVKqQX9krb3jjtMrS8tf/vJXtrY2Iz9gjAKH9NChQ3Mrh48dOzaOh81mvd/vPvnkk1IJ6rjVarVajUajwe7u7uHVQ0tLS2mSjMfjer05GIxeeumlIhcY0yxJCSHHjh8xRiVJ7HK+vG9fmuTGmMFggDG1CBmrCGaE4FqtBhjWXtb8cDgOgsBxPDiAzp8/n2QjSrHrtbIssUj2+/0wDJrNBqV0HA82N7fana1KVKvXozNnbn/ttdeSYQwJ2thYqBfBN9kY5Hme43hKKTaBjbCUkvoU+M4QNOeAp6fUxhilFIAT1bAipVBGRVE4N19/y5vvvnL1lcce/47rsrnZmd2djeGgRxEzCkTNBApfn1KrbaUeua7r+/7m5ubOzs5dd9y5sbEBtOIJ3q1Mo9FotVq1Wu1bDz70wb/2oWQ0Pnv2bL1eh7kylNpwZgGQtOdgyzgpUkiZs1CUA172Bn7cBCuklBKCAUoGwGsynDYG2NNkGqAHWyjgNUK/zilWSoG7EaV0bm4uHo0BtwUm2ng8doA6bYkxoH3BGCHGXGOMEpJSqrE1Glmk9hgA1mJAOjw3oIQjjZAlcLID6geWdhhjLdWen4Y78RMzZZGBfWqWZdZaaK60llP3XkkpMcZqrSFxDt4tCJ4QQowxSonjcISQ6zqwQcHYDyNalPloZDC2hBOLrJRlEATaqMFotLPdTtM8CIIoqFhrUYiaM/WZViOLE2OQx5lCgPpjBGE2FBdFMTvXoDyUKocGab42WxZy49atrEiFkp7j1+qVWT5LKd3d3bXWEkaZw7G1xirHeT1cHui9SqnZ2Vn4pKAS833fdd1evz0ej2u1GkLIZVwRJITgnDFWyfPSWIUQSEQn9w1WF8wS4ADlfBJtb4yx1lhLphuvdRxHW5Vlmeu68BVkLZkK//emzlobjHGv19vY2BiNYlh1lUrFcRygOwAwB0osyGwAlK0oCk4ZpbQQJfpzZBENYChg5bCeS1FQSgnGZho1CUvXGCPywipTa1QpJaIUlkwehzzPCaIYY8/z4PF3sIMIKvOcMDY7NwN6W2PMaDSiLgU8HeIcuOcOh8PxeCyEcBzf8wJVCoMNdJh71l7gdSClnJocWljAeZIWRdHpdMBXnVIKvtVFmjncKZASQmkDqPoEFiYYC2kJ5kppWypCMKa40+lgjMOwomTJGHddThHxvBpGtN/vp2nG6WQ4BGg+JhPyzWR+hhCmxCBrtILnF6BAsPiAT4pzDia6wIDWGmutYPafJoPFpXlwGEuT3HEZVL9w/x3Hm47eJ+MHzlxC0crKyuLislLm8uWrn/rNTyVJ+rWvff0Xf/mXdrbbsA2C0HZt7aZSolarpUn26PlHjx07NjMzg7kdDsYw6JqZmdnZaZeFVEq5rs9dQillzBRZboxN01QIgSyGwRL0dNYC04hhRMG2glJKLEYU1MMp0gajSSyHschxPK0lZIdQSqSUlUoFYwzVoFKKOwxhDOpVuLEUE4QQkJQRQqUU0JjAa2H0BocfjWRRKqUczqADBVzeWksoAr4RbIyQU00phzPCKG21sYRwzq3FxkjovxBCUlpIf5XKeJ5HwC9IC85pksbj8XBjUwtRgj7AdR1EgLXgl2VerVaFLHKVO4wDsJIkSbU6qceCIPB91w0DoxSayB0qc3Nz1urNzc3GzMydd94JDPF4OD7/2sW8SLXWlBCHU9BeQK86HIwBxQYCh7WIcwduPsEcYw1GQGVZUoaVktOFSkajUa/Xs9befvvtP/RDP4QQ+mf/7Bf7/Zsf//iP/NDH/sap226/eOnK9evX0yL9oXvu+4kf+8Wf/cm/BMb6q+uvrv+KVxCgf/SP0Hvf++esM/7Sq1ZDn/gE2tlB3/jG6zbH/3Xf1b/9t2j//v+7308pOn0a/Zt/gz75SZRlf/n3E4JmZ9Hf/tvogx/8L35vBw+i3/gN9Pf/Pup0/nPm0RPvSgnTegWHS1mWlWhS/UJwBSDOkFSE0MT8HfbqiU8sQkIIOo2/BjAa/DZhk4EGBDKiADSDGRjhDHDBXq83N7eQJNloNHIo397ajYtk6q/rwFDcIqKUgowWzjk0/pVavV6vI4SOHTvS73c9xzEGgWrc4a61OAgcpRRCxPO8Wq3OXE4dzjkX2hZFkSd5t9dDCClpWIUVQrqu3253r1+/3mo1v/vd73zj61+nhFcq1VKNy7IkHCstknRcjIt6vek7zigdZnnCHnjggf/4Hz936cLFLMsq1QhbXBayLKTr+qurq54bAFJsEdIaEQICaYSmaPIkG/AvrIApmIPx667NdurpjPAEd4anAohjBNl6NWo1o8Go0+8N0jT151q+e8fW1tajjz5SlPkdd5y6efPWC8+/zJkrhEySfHe3A5IuQojnBfV6HWO6sbnV6w20wr1eD06Uu+666+Dq/vX1mxcuXGCMcoc8/PDDL754tlZrjMdjgh3ack+evP0f/+P/9XOf+8Ovfe1r1mog2GJrsDX9YV8pRTHxPG88SmZb8/3+IE1Tzt2ykONRprUu0sJ1XZGLnWSnP+prbev1RhAE42KsVAlkHMCRYcSBpkU5YwzoqJTiUklg+QFNBk/DcxBClUpFiAIhND8/v7O7boxxXSfL0iDwOad5kQZBwBjRRgZBeOLkMSHEaDTo9/txPKrPNI8dO+Z5wYEDBy5evNje2VVK3XbbyYOrBy5ePL+xseEGfpqmCBupyrn5ljHKGARYUlGUtdpcr9+5sdZhDIkcuR7jzBVCYcwoRUqibrfLOe/1emB/1+/3AduCxxJaEY2sG/hqGiJvjOHc0dO4BqWk47nD4dBau3///rW1a0IIQqiUOefcGoMJttpyzgmjSgltVVmWjssWFhYIIQibar1eFGJ3dzfPc4PADhsVReFybi1ub7fDSmV2tlLmQqgUIYJMYYyllHHORWGpw59+5knHcaq12mDQO3jw4Gg8uHlrDYRRECYex/E/+2f/7C1vecszzz61sb7T7w/uvedt9Ubr4IFDnU4ny7LTt586dOjQ5cuXH3744ccefbLb6e3ff+j2u+588313bW9sIkp8328264Q4jBJkIXWUS6HGw5EsRRRFOSZxnI6H8Y2bt+5/4L2NRuOrX/lKVmZzc61TJ47cdvLIq6+++Lnf/+0w8OM463a7J06cePqpZ//9v/uNjY2NIk0r9bpSqtVqvetd73riiSeEEHMzra2trSQZJ8mYEFKWOWOMEqSEPHbsyM/93M+98MJzf/rVr1Sr1UolXFlZ2d7eXltbgyA4jHGWpkaj0UhAO+TWXCMVuG5C52CMItYyTLCZ4giIUwY9nq3VanEyeve733n58uW1tbVut/v5z//Ht7ztrZjossylLLESSZIUZa6NIppUKpW5ubk4TrUKpVDGmPF4HPkBJlYICdrVWq02HuV+GFy8fIFSPDff9DwvqkVZlg0GI+4Q7uAorMRxrJRwHEcpnOcSVG9KGYRQWRSO4zKXg9NLkiSMGWM10MyN0YRQ13W1tuPxGPwQ+/1+vV5vzcz1+/2d7bYWcmlp8dChg089/YQqDLIDaCylLMGwtD/oLi59X5Ynly9fBoMkgsg07IUrhREilHCplbWWEh5VPN8Lx6PE90MhFEYsTUqMMWWWUp6VuZ1aS2dZdmN8A0YsUIKnaW4JxhgpaTBSokz8yPW9QGs9GI48z8OE5FnGGNPGEEK01dDBhm6EEDp+8sTOZrfX62FsFxcX77777scff3xjY8MqMx6PmeuAtWhrtgn9eZIkc3Ot4XAcx3EYhpy5QElzHC/P8ywXQDtK0sIYEydA7NKccy8MdJpKKcGnZDQagTgoTXMgbsOJGwRBXowtJn/zb33iEz/6461W6w9/7z987St/eur47fe/491Jkty4eXNmfmH1yGEriSx1ozYbRcHazRu3tjYPHlp1XLc/jNM03dnaOPviCyePHotcP5yfY64zGAxyUS7vW9HKrm/vaK2VMo1Go1bxN9a3Lm1txYNBLYwuX7hYrVY9x8XW1Go1qZUQIgxZnhuEEOdEaySNdl06Bb5eP+ng/xKMtEYzMzP1OhmMza1bt9ZuXPvuI4+Mx+O3vPVNaTxS0qyvb47HCefc4V4lqjuOB2bNGBvX9WZm6mHkE2KA/+44Tp6V1lrGuOs5opTgckMpy/NidnZmInrFTpqO+4NutVrVWjseu+PMaaNREDoG6ZnZJiFEWzO3MP/QQ9++cOECY2R19XAY+ju7W/1+P83TpaWFQ/P7tjcGjGMhM4iIVFprrXd3d6Mo4sy1SDoON8bs7OzefvpOa7FQReRUZ2dnx+N4GI8B9/F9D5ZZXqSuy6GDLcpsvj6LGe12u+12e35+kRDrB26WFg89/I3Aiw4cXMyzst/vI2u0EYyjt77tntmV6q1bNwaDHkIKYXvqtuPj8VgoOT8/yxzebu+EYViK/OVXXlJCj0Yjx3UppaNsjMzEgNVxnEuXLkVREMdxa2622Whl6VaRl0UhXce3lrRaLQB0goA73IvjOIoi4FKlSaqk9lyXYsopi0dj4lg/8Pv9bre7U6tHSokwnHFd3m63R6PBaBRfvXqFc66UrtVqYeQvLMwfOHBgZ2dnZ2e3jqoA7VWrVYzBMoISQmyAbZ7DUyCFxhgTSskbPE8ttqUsJ5AoxszIu+8744fhdnv753/+/7W+cTOKfIxVo1HFRGslPM+Lh0meCIwpxw6lXBujjK3VoiAIAP4Gkfvx48ettWfPnmWM1et1oeS9p0+v39p84IEHnnnmme9/4P59+5Yrx084jnP+/Pk9FA/2IphGAO0CIQR01+ncbuIcSqaB7Hpq87XH7jRGc84pIpbgvf8KJTucL4AnAo10D3qGQlxKSTlTRtfC2mg0ypMcCPXwmwFPx1MPEHgb4LEO5q8YU2utLoVEGDOsjc4yRQiCI8Baq9lky9VaqynUBX8XUH1DPwCY2CA72Z+RVspiXECi4JS7PWngKCUIIaWFNQRKI+DRw6tQCgP1yY1ijMEfLqWMqlVCkO/7hKL+sEspbrQamCDX5Z7nSanjOM7GuVIGIWKUVUoPh8MjRw5VKiFCyqHOcDgWokCWYcLhEAyCAGGz29mWqoQdhjG2u9PJ0hRZUqlUGCbcZSEJKOWu6xo0t7OzY61ByGqk4M5bZF3fsdb2+314q8CgdF2Xc8daXBRCKRPHKUJIawuwptbaGmRcW6nUlDKiVNYiQJbLQiJLMMF7Z4EQIknGaVqSaWj25HmZIqAIoSiKsiwrigKCu7WapKXBEprQMAkhiJYi39neZlNjGUrp/Px8vd7c2tqCwhvwMkBpjVGT9YORUHLK4gShjwWnZmgmJ1x1IQ3nnHPX40CdhluxZ1XMGMvzHKSK2FggSRBCdGm0nvhK24lzCLNIU0pH/ZHFGAx/9zhTZVlmWcYY86MQJit7vgd7qx2YU4xQh/E4L+CtEsYopVYbONMBW0cITf8iaglmjPlRBdpdTBgjyFqrtXUcihASSjmEcu4Yo4QQCGPusLzIwjCE2EwplVJKlYoQVqs2Go1GHCeFKAlmCEGEozXwwVljptmMhOA9PruZWOhOQm6gaZJSEoInbsJKEc4grV1r7br+oD+q1WoO52maEkQdx1HSaK3jOM7zErDmPecfpVTgektLyy+//PKTTz559epVJfM3velNX/rS/4+9/wy39LrrBNH/im/c8eyzT6xTdSory0pWdrbBbYwDDGBwN8aehtvANJ5mLkMz3OcOMD0e5k53z+1munkMuEnGGGMDFrYsW7ZVylKpVCVVUuWTw857v3ml+2HtcyS5RY/xZeaT3w96dN7a6U1r/dfv/wt/tbqyLqVmzPF9XyvY3t7e2NgolQPGHGNMvT6xtbXdarWA6DiORSYqlTpjTrlU3UWQKWFSSlFIrQ3GGCNKsGF8nL5jAz/GCaIAaEePTClDO1Q413Xtp1nM3WCEEGLMoRTbNEjGWJZlSZJYdynOuTYSI2xPlL2yCsa9Og2vNsXt0G2nD621lJavLAHG1ovwGpd5K8Wzy9KxDRGAMcguhAmy2j6b8Dne7OWQUtqy1qbsZFkWhN5kcwIhE0XDIHQB9MbGhtbK8xwAkFq53LUkZXto9pammNg1l0WBpZSMOsaYcrkMRkdJZIwJw3DQ62dJum//XqXF5YsX9+7da4w5feplSmm1UtHS9LrdUli1tC1bwaZJ7vt+tVrXWmdZrpQql6oIodFoNBxE9lrb2AzLDkFofGKZw6WUtVrt7W9/+5nTZ22QyU/91E9duXJtbW3t4pVLlUrlf/n//K+/8Au/0Gq1Vtc3vv6NRwH+/gDY97fvb9/rdugQvPvdfz+s2W6uC7/4i/DNb35X8O7fa6MUPvOZvwfWvLvt2QOf+Qz85E/+n1s5aw2f+AS8733f2w+EqSn4nd+BD33ov/SaIAhbnbxSrgkh4kTkeW60tiW61trzPDve2oZfmsUAYJUiAGBBvzRNLccZdozjzE7iqB359+7de/fddzebTUwZ0ibL8jAolctljzuMsbRIkySJoqg/HKyub2RpgQwSQnHOmeNx18/z3CgFgIXSxhjGnfnp2T179jSbTUppv9+fbDSnpqZKpVK55F65cuXYsWOu6xpjPC8AbYxBhBDPJ2EYbm+1s0JW/TDwy9pgjSDNM+rQm2+++fz5l6rVqlJCa6mUZIw8/vjj165dWlld4sz1g1K1XMUsECMdZ5GVExVpobVmPs5VhrGhX/6bv2lvt2wZ7XDGGJOiWJg/xFklDMuj4VDrCsAYaEYIQI6dMzR6FXE2rzFrfp17hnk1WMm+5bWvHEPVBkArqbXWGCHSaDRsOd5ut6207a677vZcN47zbz567MLFy9tb61NTk4v7DuzdGwdB0G6tXrp0aWKyIYRI4mzQ74WhXyrVtrfa29ubn/69//DAg/c1p+pFkf3BH/z+5cuXKcMAIITYv3hwYmKiXK5MTk7meb65sb24eEAI4br86JHDvu+eePH4cNgHoJYiMT07E4/iK1euGoM21rcQIgjhwC9pIXvdMTKFENIaHMeJoohRRyPY7X7Yfr6lzSOEyE4uuQ33U0pjhFzXtZZtWutmszn2bsMoCIKpqckoHlKKHY/3ut3ZuemFvfNg8Nra2vr6hmVnGGMW9+/ds2ePUmJ1lWRZNoqGSZKlaRrH6dbWVhylyKgoilZWVpZXlprNRrVaXdtci+M4DMNyOcyynBOKMPV833G89fX1M2fOS1nY/rBT5sbgLCsAMEYIDE7iIpMiCAKLIDuO0+l0oijyuAMAmFFCiMhUnufD4TDLUltFFUVhUxCllrZhDgAImTiOl5evjSstYxhzjFHGGK2lBiVUQRHlnLsudz3u+14cxzOzU6M4Ho1GeS4mJyfX19eV0ZRS0CZJcgyAEArDcDgaZVnWaDQcx5uenk7TbGVlpd/uK6UYc6SQ29vbvu93u23KmSiyU6derNfrhJB733z3xSuXr127VqvVjh8//swzz1BKA7908uTJ0y+fpdSdbE6NRjHG+J577nnLWx7g3D137lyWZXEc12qVSlja7X1pUQghKhU3TbWV7hpj6RuUMadIiyzORJZvbrQIolcvXa7UazMzM6+8cvbkxbMvv3T8zXfdShH8zM/8zNUrl48dOzY11SyVSpPNib/9ypdHo1GlXt9F+b/85b+N4xFCqNVqbW5uWod4auPFtUYIb29vRsmo220jDP1+X4jcdd3+sGc5qpRi1w2yrOAOK7I8icf0NKWEQUYJBUhTRoVQlldrFei+H2I8juUJgsAYJVUhpdze3lZKpWkCAOubG9euXWu1WtbGIUliP3AQIlEUua5njBoMBkZpQlCmBcKmXAk554XILBCQJMloNFIKRqNRrVaTMusO+pVKuRq4lg0aBEG73S6VKlLljIWO46ytre2iFa7r+16otcmyTGS5ZefZMp1xGvUGgDEQ5FISVLxcil5vZLuLdtXa6XSUUlpIOzpNzzQ/+MEPfPNb3+j3RkEQ+D4PgiDP8+WlFUDo2rUrCBmt5WjUcxwHE5jfMz0cDkejIaHEaCQKQQjfkR6j6667YTAYRVGCgCAESsnBYMQ59vwx6JAXKaMOY0xqaa36OHcdx8uyTIGy1FrLEUYIjaKh67qEYvs/lWp5B/Gx0ZoFpTAxUd3c3Dx0aLG91R222+VGvdlsxnHc7/fjOHYcRyot0tzCx8NBVKvVwjCoVquUjidL1/WiKBKFchwnz3PHZXbhuri4T2u9tbU9Go2yLBNFaru4GIPWRmtjJ2alFMBYBw07ruV2tXn16tWj1183StIZ5t755nvjQfzss8/fevON73rXe2Zm5yUgg1C5Vk9HWTRMh8N1xli9XpdGdXudfr9/5szLzz791N6FPQcWF2cmG5wRx/NqkxPcDzQAMFKqV3udbrfXc113bXl7tjl18vgL++b33H/ffXZpavXswziKokgY47rzCCEr7kEIGCNSvjqpwWvUPABgABgHI9BgoPuD7oULF5QWt99+e5om8XA0ikbT09N/+Rd/7rquTbfjrtecnO7R3mAwMgYch1vdulL52toaY4RzV1AFgO0inFJqI+xaW23GWBiGvV5vNBpgYjqddiEyrdWBAwcNQKVSq9fr0ai/snqt3ep4XjA1NfXkE08PBoOFhQXf94fDPsF4aWlpYWHP9MxEnCSd7laapWEYlMvBnj17Ll++bEAxh+6p7YmiSIicOwwhMxiNKHOvXl1xHK8QUhuZZVlR5EhrK3nWRlKGLSyilGKccE7KFd9xuOM7QkhCyKVLFzCBiYmqMV2tslK5/pa33quU+t3f/V0RaeTAbbfdRhxYXl25/vrrz57TGxurnsuLInN956ZDNzqOc+bcWc/zjFFpmiZxxjlvTDSLQsdxXA5rAFAqlQBge3uTYLZ338EHHnhASvnYY48fOXyj5wUvHH+xKKQQEgCyLPV93/7yLMuKQhJEtdSu4yAAvJO8FARBecLTWpZKHiAtRMEYa3e2t1ubdtpqTDT37r1FCJGm+dTU1LFjx6Yac1LKw4cPM8bi0cgGBo4GkRnHidh4KGnrTmMMJsjO5qANRYw5jh1XrfQ4ExkAIOIiioTMz50/k8uRMTLNRpjoVmuMIh0+cHA0Si5fuJZGWV7kCEmMqTJjQKHT6dx1113VavVrX/vaM889u7CwcMubbr148WKn1/3IRz7y8z//87/yK7/ye7/3e7feeuunP/3pj//Tj083m2956wOXLl2yag/bgQOAoiiSJLEgCMZYaZEkCUXjjEFb5Fj4yNZ7lu5hOWVkHC1ltNJKj+UOAGBrLYsnWuasHRZgBzGxRhOYEkunXdy///HHjhlpMMae41oMlzHmOE6cWPdkDQDWkkHvKNYxMmjH0IAgBICNkUWhCDHWCWrn54AxhiCMGd4laAMAxcR6pBpjrNW1/UyDjVLK3jBCCIzJmBMtC2OMAaWUssklahymKnYQxrH59W4hhxm1zBTGSBAEfuAK5eYita5r9jH0fV8IwTD1mC+E0hK0NllaME6Wl5cZBULxxMQEpZhwJIXmnFi3K4yx6zuAMOdhmhUY4zAIPM9rA8RRVBSFUyrZRYXWWog8L3LPd7SRUiFK8e56yV7KMYhsjNXHWCNdy+gslUpaIQCQwnDmGWOyNBqNRo7jRIPEIEuHlBYjtqHCaqeP5/tuuRxSiq33hXVjgx2e+84KYkzhsVeWM9ctuXmeW3tlBCALwQhljHDODag8z60Hkm172OJz9zaDHczXwrWgFaUUU2aXP7aQgLFTB7aZ1fbHUMwwxraqYZzs3r1SSqSNXXDaKgLGDBKDMaYaW09y7roGaWtF/SqXX++6rBhL92YMc+YqOn5YLONe7GQnYgNy53sJIaBNMi6kQSktpbKhc2Cj9qQMgsCug+y3aASgbayooZRi6xuuNQC47riCchzuea6URaEk4wQwZFlGGRa50FKHYWhNLNMix0ZQwjl3CCGcuVmWpVnGOFFG26hOe/ns0GGx+92La/9f71jn7VznccNpvFxXOi1yhPBtt73pwoULFy9erternu8YY6IognGyukLI5vdiKQtKKcYoCEIDKo7j9Y0Nz3cXFxdbW9unTp45c/occzildDQaKYOmpqYYY5OTk1rrfm/ouIwRHkeDJI0wQxRhpUyn1TUaaWkQwsYubEEqpUQutQZKKGhEMbPPOMOEEEapHgMNQOxRjxvtjGI1pqWr1/jmC60AwHVdG4Jn/9W2H3ZLJkLG0ZpCCCWkVsoQbAwgghnGlgFtu4AIiDHG8RlCCGOCkCKMupTY3GbGmDE6ioe2s4IQ4pwCQJJkeZ5LqSgGRKkhyLrM2zt/53kZM6gQQZbHp7Wm1EEIeZ43NTWZpnEh0kqlJFShc52LAlPkOM5oNErT2NKGrAsKJk6R5cqoqakpjHGa5jv6mELEgnM+iiM7toi8sEWUvCAxRf3e8KnHnwrDMImzIs9FoTzXTdMUY6o12ESWJM4cx7nhhpva7fZwOBoOR1qBVTO0Wh1jTJrmhBC7nrV+SgYUQhTAWAFQEASe6wsh/uiP/khK+bGPfezuu+/6D//hdz/1qU/Fcfyb/+p//pX//l8+9NBDP/3TP/0//Nof+9+Hm7+//d+1+T785m++Ada8tARPPw2PPw55DgjB7Cy87W3w1rd+58uMgZ/7OfjX//of7PdQCvfcAz/zM2+MNdtf9eSTAAD33w933/0GhssLC/DpT8Mf/AE8/fR/CXTeswfe/vbv3KkUfPvb8KUvvQ5ApxTuvht+9EehVHrdi6em4Kd+Cv7oj/7Or6hUyoRND/qjJEmyOG7OzFjBeqPR2NpsWVjPBgMEQUAIUVrATvvNIquEkF1TODsaCyFqtRrGOIqiRqNx3XXXHTp0yPddJRFgUEq5rpsmWb/Ty7K03evmeU4oBYCddr7hrpdlWRqnGGNLiWg2m3ffeu/M9JwNaEEIUcrITtyLMSZK4iwdWj6N5asppRAipVKopBFKUuoYRBFiiHBCXa2wEKJSKoV+cLnfphRrUMaA0lJKgbA+efIEZdBoNBh1CHGqtVqpwvqbI9kTvajlu16lUnddbyj7XsAWZ/fQzc1Nz/PiUeI5roUDtFIbG1vzs+W9exfn5/YQDFIBAlBSASJsF1Y2Y8QZdqyb0Q7l+Q1yAl/zlp1aEWwIIUFgk7aMUVEUr164JKVkdJz+t7CwcN9990kpu93ujTfe+r73vf/smVOf/4s/O3XqlOMyrZXN6u11+lsb26VKef/+fWma9wf9Wr1y4403GmP+3b/7tz/7sz979eqVJEkajUbgu3feeefc3Nyf/Mln77333nK5gjE+ePDgn/3ZZ1fXlvM0+6H3vbdWK3/j0UcGgx7esTqtVqtam+npmUsXLre2O2FYEYUCwNhQDQCApASMx0EWnucvLCxcu7pcFBKMAcBpmltJ4C49J0kSG40NYKNIgFCEYCzlI4QMBoM0TT3PbTQaFy6cb041qtVqliWe5+lq1QJ5CwsLMzMz29vbw2GfAMEYr64ur62t+L5fqGI4HDiO0x+27C3uuUG5XJ6cmLh69bIQgjus3+8HQWDVZ0KIOI49z9u//+BgNMrzYmFhIU1yrToEs1JYs+HOCGHjoCKVShrGmNZGiLQoBEI2mcG78cYbjx8/DgTbUlIpZcWhSRLbstjzvPn5PZcvX07ieKLayLKMUlwUEhGstex2u2EY2scyF4Vd21gEE2PseV6lUkLYIIQajYml5asaYDgc9vv9JEmazekoiqRWrusiA47jCJF7ntfv93/ofe+bmZv77Gc/F0XJLbfc6vv+c88eR9pgTMFIx3E84lCHep4nhLjxxhuPHDmytdW6/fbb8yRt97qrq6uWrFetVm2XSQhFKcOIb29vc84Zd77ylYeeeeapO+988yc+/k+zrHjh+AmtteOwKIpcl9vGicyLra2+67qu6xJiZYXYSEURpg61lJMDBw54nqfBcI8/+OB9p8+8CKBvu+3WUin81qMPv/muOxAmN95407PHj9/34IOT01Nn/s2/t+60g8EgSRI7xiFErGeC7/uccykLAG2z7ITM3/nOd66sLT/yyCNB6GdZokFpUNeujRhjpVJQFIUxCkD7vtto1DvboyxLbAsEAAjHxiCrBx+PnoVNC1GF0oWSRglKaZYl83tmGSPnzp0Lw4AQWhSFF/inTp3SWvu+H8dxFI0WFha0ipVSRZF7XgCgXddlTI1GIyllFA2t4fIu3aPf7yLEuEMRMn4p5KrIskwIjzI8GPakKg4dPtDvDUulUp5bmiTG2MrJwZ5ey6U1xriuAwAAplqruq77rne9q9ttG2OKRC4tLck8pggnSWJllXmep0lupLJY5NbWxhe/+MU777rtwQcfPPHCyeXlZcYY43h6Zoo7dGNjw3HJvn0HpEpPnz5NeXmi3pxolBf2zpw5c2Z7q8uZhwkVItfaeB7vdzvdTqvZbPR6FzHinDMppMvY1NTUZLNuHe2jKAakpZSMEaUoHvtNY2OMGftY4rE397AlhAAoW2iYEFIqBdZ7x/cDpUUQOhijUdSfmW2Oon67sw0cJWm0tr6ysbm2tbXlOI7Fr63Sh1KcZdna2hpjNMuSmdmpycaU1rrfHwIAIJ2mqaXL2RWddcK1pEaMseuSfr+vNVhSzy4Dy3GcosishtdeYsYIIchzXUzYb/3Gb958y+2Li/tVVjx43/2+41QrpUZzkntukhaFMKAxEGoQnD33SqHkHXffYdkxTz31xLkzZ5NRJEppc6oxPTOVix2xPIDWyhBEHF5Isby2evnSpdDxFvbMHTl4YGpqijsO5Wxmvqo1FAKyTKdFEfUGnU6HMVavV+20xTAU5lWseTyXjY2dgRAwAK1Wa3nl2tra2iAa3HLLTWfOnL7huiPXX3+0XqtcunTxxRdf5IzleRqUQinGjW5bjqRp2m63p6YnNza6Vy4vBaF/2223jkapTa8qheWtrVaWZRSzd77z7d1uP03Tfr9biKzVyhEyCwsLd999t3VGWl5ZyfM0SeOTx08zF0/PzSPCXjpz2khdrdbuv//+bzzy9SeeeJwx8u53v/P8K2eXV5eU0ogYTI3rO71+SxtZFDlCNE4TZTQAVtJgikphRQgVRVFjYnIz2TBG3XDjdRvrWxcuXDBKFEpR5ttVMUIGYyiVymHJwdhwh2ZJrKW6duXq/Px8o17jnJdC13VdZWB140qvO/jIT/1Xp069fPjw4Z/92Z8DgHPnz3OHUcbOnjt9/fVHucOtWOGpZ55eW1s7cGBxfn5hY22dEl4UknMXI7K91Qv88tTUFEKmEHkUJdfdcDRJsgsXLoHBcZRxGm9sdtudfr3ewFhsbm4yxjyPWHrm/v37r1y5FkUJgleN2ACMHTfa7ZFS4uh1h6emmidPnqAM26U3IaRcLuOx1Sy2rVPX5Z1OZ3Nz88D+/baRPBgMtNZKaEqpJQrbupBQQJgaY6yXpcgLo5GU0uywJKTW1qMTsEmL9PLli/VGnVIKqJiabngeow5eW1nudvt5KqYb84P+aDiMjNQYWQcAIqVqt9teOHfnnXd6nler1azDwNvf/vbl5eVnn33W+qQ/9thjWZbd9+B9hw4d+bPP/7nruidPnrx48eKtt9564cKF7e3tUqlkj1FKae0OxqcIaWNMXuQ7OAihdNzPs0CJZcm5rrsb5IAQtiDsbqvJ+iDbro+FM3bbUfYxsb6icTp2e798+TIhxBgVBCWKCRhjAXeLJ1JKjWWkKq2UlloZg+ywiTHGjBnYaeFgV6Bca80wsVdllz9rR9i0yGz6BaUUGUjT1PZW7Q8DbRAh4++lnDGWppn9FsYYYLBu/pTSIrerjrEhwy6hm+xkddhth/lI7f9IKRFGllpicU8hCiGEy1zOeRIXFDPsMK1Bu5AXabcb+wGfm50BgCiNcpkXhTGIFEWktQ40J4R4vlMUmfV4TdLUKLBanOFgYKMgyuWyMTqKosnJKct23NraGkSjIAg4ocZgG+xmP4FSbgwyBgEgSrnljxeFtE8HpUZKzTkPgtJoFAPgJM4YYxohJQ0hjBCiNWitObfsztwGhtv1G+xEMio1Rup3uB3aKDunKGTA9gQoIZ7r2q6wlJYHbaw1TZ7nSqaUM8ZYmqZLS0u7vGnrogDWvYRQiokyIISiaCylfw0NwlpvayFyIQQC4GzXYxrbbgEhxEglCgGMWbWizVqwylmlFEIWEpUASGqxi9xprc1OQ4JSKoUApHMprRjIGGOksb+BIrzzUQhpI5XKsmzspa4NQjiOk9ecNwUYEUIQRhRThJCR4yTM1/ZRpJSMIQBIs8SGoQFAWPLiOAElESYIK0yAYqO1AECUglGAGVVKD4dD3/f37t2rlLl2dTlJksFgSAm33C5jjBQaIWu4ONYOY4wBjMU6d8UEO2vDMdwspbCPhlTFmCZsWz6IJEny4osnLc3WiiZd191RX5hCZIQQm/Sutc7yhHM+GBY2W09JCQYxxqaas8sr17a2WgcPH8QYnz9/FlO+ublpjNm/f7/lGVAcpkVRFAXBrFGvaW3WVtaLXPpuoMZ2zAYoEiAAsKVmyULluQAAh5Fqpep5nrUOs+nojCCNgXNuw/fsM25HHnv4uz0Ve5aUMpQihFBRyDzPYIc9hxAySiuthRC2RLc77UC02/bwvXC31QeAtDZKCa0AGTA7RudyB9Gxb0QI2QCDPM2MMZ7jvla2gnc2OzRpMLt0/jAMjRWAY2yM8X2OkMnyNBdJt6+4wzzPQ8hYYsTExERRZDbD1kpkQj9oJ6mltIdhWYiebR9iQjCmUivr0C0LkYPwPG92dr7dbrdWW1IrKdettAW0cZibS+k4np2LRaGAYaML1/W3trasz7VSShQWEjLlctmanyCE4ji2q3Vr7m+f67wopFDraxvLy8uf+tSnHnrood/5nd955ZVX0jTXWn7jG9+IouimW99k6ShvuuPOO+44f/bpN0avvr99f/uH3TiHX/5l8P3X7RwO4bd+C158EaLo1Z2nT8Mjj0CtBh/8IHz846/C05UKfOhDcOwYHD/+D/arfuRH4OjR1+0xBi5dgn//7+H8eRgOxzuPH4dyGa67Dv7ZP4PDh1/3+qNH4T3vgaf/i8/Rhz/8nQee5/A//o/w5JNv4I9x5gx8+9vwG78B+/a9bv8HPwhf+MLfSe7u9/sbWytZkvtBcP9b3/r+H/oha0yxvb19+vTpCxcuTEzM7N27l3MehuErr7zS6XSklEVeYIzBGCWNNNJW7xaLY4xNTU1Z2fR99913ww03TE5OIGSEEFKAhbz6/f7q8rKVZzHHcbiLKcE7sQ1aAcWKM9cJLAXTvXp1ae++/e98x7u3traEVgAIIaSkMGIcp0EAaQ0GoyhKHMdRxgSBZwmXSimphW0PF0WhtHG4S6jDHU9xvju2T0zUMORC5mHoC4w2N7fr9SpluNNpM8Zcl3e73a3WKO0V1EG33Xbb/OxctBJfu7aCKbrttlvvmXszRQZ837NFW7VW7vf7RuOpqakPfehD9957RElIC8AAUo4VxFiDMWNnDGzAvL6dsgsl7wYoYbB2dq/u3H3ZGIk2NjtL5nkejyKCCBCklPJ933E8hFCvN0iSRAhx/31v6fU6199w0y9OTX714b+55dYbB4Pe8889c/jwYesN1+q0wzAsl6pXrlwbRXGtXlLKPP3Mk51OJ05Gjss+8pM/PjM1ffr06WPHjhVF9sTjj8/MzFy6fHmyORENR+UwmGxOfOMbX6cUd7qtUqmSZYkUxjJ6+v3ecBCNooRSzrmDQBEgu7Wv5REghABQt9v94fd/cKI+9eijjxIgO5iy3q0AAIBzrrX0fR8hZSe2sORzznvDvhCFEIVSMssyrVWpFPS6/SgeNpuNRqMxikczMzNa6xMvnBgMBrfectvCwsLFi5eKtOCcDwYDKWVjqmEZhVEUAYyzhrUCxtj6+rrWutPpTDTqhHgTExNeGPi+f/r0aSGE1tBut1utFmH81KkXi0IWRWHJI4w5tm5O07SdtChzikKAwYwzC5RorTc3NymlBw7sb7fblhKbZZktTnbtHYtC3Hfffb/8y7/8r/6nTy1fvVav121iZpIkmGA/DAopEEJSKwC9G+ZmCcIAOssyQNpxuDQSEbK+sTocDqVUnPM4jsvlclbkSilGmQ2BHI1GH/jABz71qU8de+KpP/mTz87Nzb/00kvW/47a+EEgSinuOMYY3/ejaHjs2LFz586FYdkY88TjT7Xbbd/3kzS16k6CmRBZkvTq9QnuYsa8NE23t7ebk1NtaZ599tlyqYoxvvXW2w4fPiwKCWjXu90w17FLEUsKs5SccrlsLVYCP2xOTslCUc44J5vt7YuXzzMOP/2xn7x46ZUnnjyWpuk3vvkoQaCUak5NGYDVtbV+vxuGZYzHoXO27rSyjjvefPfGxsag27HrMbtKKdVKzakG5WRldXk0GmFK3vSmW6rV6qlTp2ZnZ3u9Hk5wmqbWB7bf7yoFY1POLBNCWPtQRBhGFBPMGKNECiHyPAeCfd+tVCdd10nTeHZ2Ngz9K1euAEAhBcLUaFSp1CcmJlqtLVGoIAhXV9fsCGJdZXzfAw1JmiJkpCykxFpLG7HlupwQNBikhIDWOopEgEs33XwDpWRtbaUQWZYlhKDt7c1SqXL48MGlpdV+b5RlhUOdXd53lmVpRseDr01WZLjTaWVJ9p/+03+67bbbvv7Io//p9z/z8ssv50Xu+74WuQUUOWGikHaqcFwGAEeOHF6+ttTrtA8f2adNceXKtSyPpMqMMWkWY6IoM3kRN6eqSimEpdJFkspbbr/xlfOX1lc2KcaANGNUqow7OM+T+blp7tBLF5dFkXueu3ffXLniIaxsW0JrxTmTUikFlqZHKbbTACZW7qfzPC+VSlZFbhsPnPMg8ITI0zRF2AhJGaNKKcZIqRRQBhubK6WS73m83W5fvXolDEM/cItcIkQQQgcPHiyKAmMQMu92O1LmaZpGg2Gj0RjrbREqiqJWnSiKwoCqVCpFUWxsbNjVDqXUavat/NN1+Q4nxiRJEgQBpdRxnCNHjmxurne7Xc45pbg/SLQCxxNPHXvsW1//RrVSO3f6zI/92I81m1Od3hANo6np+Sr3jMFg0HAYh9XSZmsDMHU9f9Te3traGo76zfrEHXfe1mjUMcOBGyLGNWAtFHM45mh7a2gdWofDYTfdmpudnqhW4uFgbTScnGoC0lkhq7UJ3yeu69ZCN0mkMhrj8bRVFAYIMuY/85ACAIBCmNXVVZseOTs7e8BbHI0GJ0+c+NEf/fA9d7/5hRee//znPitEjhHdu3dvtVpeXdleXl7GGIehn6YpgIni4cmTJxkjrusbDaNh0uv26/V6uVQZDAZS6jAsi7wolUqLi4tf+tKXLINMGxGG4WRjqtfr2UVgt9O+dPmi63j//L/9hR/5kf9qFKd/+Zdfevnl01cuXrlw4dKwP+h22kUuKaVxnGJEMaIK1NTUZL1eB6QtV1FJVAqrw2GilJJaMccZu+dL0ev15ubmyl7plVdeKZfLolBnzpyhDNeqFaVEDpoQvDuGD4fDMPSMIUUhXddfWFgQQqRZwh2yZ2G22+0mcTQc9rQ2M7NTQogPfOBDGCNC6HU33PLL/90vra5dvf1Nt5YrvsudmZmZp5957vTL5/bsmS+VKnEcM4drDVpjY5CSQDDzvMBxnFZry4C+6aabwlLpxIkTX3v4yXLZmZ3bs7nVA4NKpQpCqMilkkapzFhiqUZa60qlEscpwcR2GZXWlDOEjJBFuexUKk0bW8oYs5lXdoXPOS9yYXGler3ebrcrlcrWRodQvLG1niX5VHOm3+/HcTozNe37YVEUVgI/nh0YQQjZcpM4Y983Ya2LpASkASHKCRCQUsRpnK0nhJCp2cbs3FylGnR7WxaqbjabFy9f2d5oD/sRw4xSRQgz2CAEo9Foe3vbTuIzMzOu6zqOc+7cmWvXrh04cOBd73rXj//4j2utH/nGN6anp4XIP/e5z05MTBw4cOD8+fN2tLGiq3q9PhqNLAA3/v2gECBCiCwygphtCVjLLKvo4ty1g4kFjyxsIaVkmHBCJdaWarELZxBGtdJaa2tFakcbu/LPirFBmX3KLNdYa50LCQD26yzBGQCkBbKJAoOLLLfjkgFjPxAQSGmNaTFG1IAag29KK2MwRgA7PGdthBBFIYwxZsdOinPOKQVthDYAYDSyoWHWJ83aAUspMR1H5OxCObtw0i42hHaSEsd9ejBFURRFEbhcqoJIBBgIIXme2qOTshBZnsWZUjpLBKWOFtoYJKTSCijljDme7wOAF/ilcjlJcs/1TAwTExOex9rtVhj6mGgD1BZmzGUiLyYmJmx0sO95U1NThBCLkrdaLa1lo9FQqkwpY4wNBoPxTEpIuVztdrue48ZxLJXxfR8jKoRQ0tg6ASOaxFmWZdb5QSuwfnFaG8MIxtZ7TWmtEQFEMEHIRpZZqb5VwyBkXQe0vRMQIrtnzJ5GO8XbJ1FrLWVhdmw3xq1ZyyXXxuVO4JfSPLOOKLYes/cGI9QWJLs44E5LQFs3W4vcWRq+tYp2uGM/P8/zsS8BJpoiO8HZu5diMqasijGlfQybUqyMtlwK+3X21kAIkiQB6/AoFSGEYaaUkqjY7UZgoFprpE1aWN2StC7YcTxuxuzY9SBjkPV4McZYQ0S9E7Zm27RCK+scIoSYnJysVMpxFlkIHhMwILWUFkwFjABpISTCJij5BDhCSCGRZZnWUavVsZB3UUikASM9Go3sedNaM06NRngnhw3s5dTaYCS0MruaAjCWwjQeVIuxn5ttPiEgSmmHOxjR7naXMRaEfuD5Sqkiy4KySymlnAiRSWkjzVOMsQ25DcNQKZnnGgA67VaRZ7ffdvfFixfX19enpprX33iDEGPqrtSQ53no+y7nRZExxqwdU5oUBNHm5PT2ZqvfH3DCjUGcc6GVKKz3tEIIgdJFmiGECWKWJy6l5Mx1uCeEKLJ8h+L9aptBY21DaGCHuUwxZtzyrqQFhux4awnLRYEdx7Fjph2K0Y6XOnpNXCfaWYFKozUCI/ROnwMAQBnbzCN2WLb3m11B2Etjv253jrN/vrYlhqyD2M74hjEQQjGGoig8zyUUSy0Bq6mpyf6gZwyNoqE9QMfx7DvsVMI5n2w0AMD3w83NTUJYGIY2w9PzPEyI5wWwEwvkOJ7WRkqVZ7JSrmepGEUDirlQIokyKeXePROcc5lLo0mnPWCM2be7rjsaRb1ez3VdQoihaGZmptVqWV+RSqU0HA7TtLCtHSGEkzmu67oet00R3/fvvffes2fPfvWrX/U8b2NjY3t7mzEilHRd98tf/jJ3vOXl5YcffvjAgYPfh5u/v/3fs733vXD//RAEr+7Jc/in/xSWlt749b0e/MEfQBTBJz/56k5C4Fd/Ff7JP3kdPP09b9PTcNtt37nzM5+BT3/6DV48HMKzz8Kzz8InPgE/8zOvo6s++CA0m7C+/nd+y9ve9ro9QsAv/AKcPv3Gr9caLl6Ej34UPv95mJl53ee8733w+c+/8buiKKaMfeJn/0mz2eSclsrlvChcx5mbm7P+8pOTk1LKPBM2TWQwGNjEMgsWWwkLQnRXkEQIuffeezudzsLCwu233x4EnsWvbcs2TVNZCADAiJZC1xiDENHa9Lt9x3cYdcIgrFQqnLucc8Dj8dkPAs55u9fFjOZ5DoAsexIALCdASgMIYcqk1Jy7jDGlJCFEqlRKacC4ngdEIawpI2G5ZIzJpXCcMkUYY6ylKQoZuJxRQ7BDPWduzmGMrK0vVSqVen0ijvL+oHP9TQdvetdN7W5LeUUYBtU9lShK+nELY/Tcc0/TKIoQwnv37u13umkUE0OSNCuXy0KI55+9PDu3p1zjhAAyKMsKx+Fg2bw7iDPsiojNq94au1izsZiyhlctyHcsOABsSKCBHTvt0WCYZZnSYwo6wrjb7V+9ejWO08AvNRqNmZmZ5lR9arrhOmRra+vCBVqfqBpp8lykabq5ubmxsZFk6dTU1OzMfCFFq7XFmIOQuXzlYpZlWuvhcMgItWFfs7Oz3W67VPIm6uXRoJ+k0WDYGY2GjUYjSaLZ6bksy4osr9UCIXKESJalaZqFYaiEHg5irUErvTu1g1aAAGOCMUZAPv/5z1erdc8LrJhOa21n1tfGLwCAlAXGgBDCBJIkyfPMcj93O9V5nq+srHgBZ4zEcex5brPZtHP8DTdcn6bp1tbWkSNHjhw5evzZ4xYDWlnfpJQeOXJkc3Oj3W5HSVILaxjjLMsKkXncaTQao9FgZXl1/4HF1dVVaXSapnv3Lk5NTQ1Ho/Zma6vVmpqayvMMYxKEXpHbasNIJVvtflEUucoDSijTUmgtpMFolxyxtrZqI2IsNmeZ/JZ6CQCu69pQ8o9+5KPTU7O/9t//6pUrV6z8akxhkIV9Ji34a6ExY0xRZLZS7/U7rus4vpeJLEkjq0BEGCEgNgHZ8zz7SMsiT5LkyJEjH/nIR1ZXV7/+9a/3ej3G+AP3v+X06dNBUAKlKeVagAFtjMEGVldX3/SmW2Zm5paXl0ej0Vf+9mFjjDUHDMPw0MEjl69e6rT6dkm2vd3q9TuMOkIoy5i4774Hup3+Iw9/7b3vfW9ra9NxGMZ4YWGh0ShlAhwHpITl5XW76pBScu6GYUgYwwgIpowCpRADHgx6qciUymfnpt7znnfs3TefpINbb/nHV69eXZifffjhhx95+GtTU1O/++nfQwhVa2WMqJTFrmoDIRSNEt/367XG9va2wYQQLDJNCC6VStznr7xyPiyXwjDknBYyf/DBB2+77bbf/u3fzvO82237vl+rV/r9vgFViKwQhlKaZrnNZiGEgTaUEiVftbM0xgAFShGhaHp6ynGc9fXVWq1GCCqXy+ubG83J6Xarb3Wfa2sbvV6Pc6o1Q0AQRoSQSqUyGIwGg56NhRxLd6VUSmEDlttujHEch3GMEBYyz5Lo6tWrjNFdPovWKk2TjY2NqcbM9sZmnuSccCUNJdzqghEyWTRknuO4LM1GVn67b9/CysrGb/3mv5qZmX3qqacYHod076oa7THadaZdnRKCNtbWb7zpaBQN19aXF/fPB6F7+fLlbq9Vq9WaU1XG8db2erUWBCHPsmRmtmGMETqfmW2Uy/4zIuu0I8qQFJkSueOSSs01kOdFZCDHBPsBdT0SJ73+oGM0rdbKSZLkecqYQxBCQItivGBAiOgd5GLcx6JupgvQkMZZluSgURpnSZIgbMrlcDQYIgSNRmNmejqOYyHEXW++zfOC1dVVrWAwGHW7PSlluRzu27dvenr24sVXsiwPQu/AgQNC5INhjwDqtrp2HGOMR6NkMBjcfffd58+fv3LlSq1W8zx/OBwQQl3XM8akaVoqB3EyskCAUmNp8A4aHuR5mue5NhITLmT2Ix/80NK1lfX19ULpjY2tuZnmBz7ww1mRr7e2mpPTRqPtzVatPsFdXxnwa8HkdDDRn9rc3BwMBt1u95989B8/9Dd/VauWb7/zTkaIkoa7nhMEiOFcgJBa5tCo1SjAxvLqne+8efnaEmMkLPlFUfSjXprGYisfxUk0GE7NzlUqniWoORiUAqU0Y1aSAPo1JdHu3IcQFIUIgnB+fr5cLmMCQuS9nu953sunXjr+/NNf/epXep1WWPKtzrfTbSspXccRIhdFZiMN5BjMooQwjPHq6qYQpt8fMuYUhUx6vfqBAzfcfsczzzwjpfQ8L0kSxkgYlmq16mAwevbZZynDb33rW6WUSsiFgwd/6H0fdrxyUKrv23tgsjHr8CdPn3ppe7NFEDDmtrZ7f/kXX/IC9+Dhg3EcE4Js/DpCKAzL1YqTZxLjjFI6OTkxHPYpw1JKIXNKPQOy3W4z5jz00EMEs1qtJuSY3IoNSCk9L7DTLiEwOVnP85Qi7Ht+Gsd+KbjpyPUXL16Usmi1tpZXV+bnF+ZmF9qdzoVLlzc2tx75+jevXVsexMna+ibnbqHk0tLSxMTEtaWVzc3NPXsW9u1bYNQxoAiR/X5bFDoa5VBQisj6yjpCRmlpva1H0WB6ejqOE23IYDAKg5LjeDMzM8PhcK0/wJRlScyZaw0ir15dCoISRmT38ddGIYSVElNTzUrdy/IkTdMwDFzXHUWDSqWCEMrSghI+OTfV6/X6/b7ruv1+X2tdKgWEEIQIaHT69GmGabVatb1MCw1YXr/FsPI8xUBlUQAARkhpbUtJQBpTwjnFDBOCDx89BABbrU3f9ynD589fGEWdbq918803vvnN92iBn3nyxNrSdq02AYCLIlPamKLAiLquMxqNzp07xzk/f/58o9Fot7fvuOO2X//1X//Wt7512223TU9PP/n0081m06p2ZmZmrDdClmVpmpbCSrlc7vf71hZgBxozSimplD0WPE70HWNJO8c4DquwXEtLKB4r5Q1QSq2bmoURdz/TkivzPDdqbDIghOCuAwp2O9z2u/I810KCMZSMvZ4xxrDzXbCD8xpQ2thQOjBAdpHEMYAyBiXH/EoCCGEMYJX+45wJY4xRr+r9pZSO41LKrBOAvfOt9nyHp4mFEAQMxogSDkh7Ht49dbudBlux2O8tiiITxe7cGkWFMYZz5joepV4UDYfDYRD6RZpZGZMSOs8FMizPlJQqF2m9XgWkolEcRWmlUgoCd3JSIkS0QpyPXJd7npvlSRRFvudNTtcBwGKChBCH8yAIms1mnudSi8GwF/il7e0tjElRFNVqFSFHCDEcDkqlUhiGy1eXrVdbURQMc4wop6CERAhxyrJiDKsZUAZUmhYWA9VaayMJYggBRkYbZYyylbDWilLqBh4yYE3JzE76H7GRKuNQk7GJR5JkpVKJUm6MsD6zxigh8l3rFXuZikJazoQ1r7NWYFqqLEmjJB57AhhQBrRU40pjHDOojLDEaQSA7Y1n+6zGjOk2BpTSyoa/M4KMMblUADDG5hQURWGdc9I4sbRlzPGORECZsZcI2e24AIAQ48dE63GwgX1jITJtVF5IBIQKOk5u3WHi53kB2ljevX18tAJttNYalLJyAso4Y0zjcQuEEKIRjNcjWnHi9XoDjMFxeBCQLMvSeByASSkFQCIvDAKCkEGgpcEEEUIRQlonaSqybNOy3aWUhNBdBQDA7oWjhBCEX223aARGSq21QbDberEUb621yx0MiHECAHGaUEoxokmSShHnuaCUI4QxolIqpWQYlgwkBkye5QibKB7aRYd9/BcXF2dnZ7c2W6urq+Vy2XYCRoNoujmztrbWbnfi0bDZbAqRp2nebrdTIYosq9frGLtKiV63G0VDh5eCgDHCi0LlieAlV0mdyjwMQ9sf0loTQrXWRhlAOs/EQI/sURtT2BNuFzu23Whz6rTWWZYVRcEwwzvR8Xaht8NK1nisaRtjyrAL1u94jLx2aTk+k0AsamBf4Dhumtjsh7GHj1V72E+GHda5tSSShTDGaA0YU9sQUkpyjuzvlzuRWRYHoNSayXhKCeu2jDFutbf7Q66MrFSCf/HL/+1LL710yy03nTlz5q8f+vKli1e8oIQIoUBd19U7hnU2dtuS+/I8D4LA9307KtplvlHgOE6cJg73tEF5lmdJ7vuh1UYQjAsljYJeb1AtVRFCvUGPcUdrvb6xaemElgGNMT569Giapr4XXr16tdFo3H333c888wxCaGpqajgczs7ODgaDKIqEEGlKvcB3HMd16b/5N/9mbW1NCHHvvfe++c1v/pM//iPKGafEdfx3v/vdW9vt488++/u///v33/2xN8auvr99f/sH3RYX4cd//DsNIn7v9/5OrHl3+6u/gg98ABYXX90zPQ2f/CT8b//bP4CJ86FDQOnr9nzhC2+MNb92+73fg0YDfviHX92TJFCpvDHc7Pvw0Y9Cs/m6nV/60t+JNe9uUsKv/Rr8x/8InL+684d/GJ5/Hq5efYPXT09P//CHfunmm29dXV29dOnC5cuXAeCee+5ZXl4+c+ZMo9GYnZ397Gc/G/ilvXv35nm+K02zgzzZMXHWCrrD7t133nXPPffccMMNFqS2nkVW/Of7PgImd5IGMcbGIClVkRdhqXTddddJrSmlru8JoQBAg5E79rxJktg4FsueVtoUQkgpOWNWPCSkIIQoyUUhjTGANIAmFLQsXI8WRVGIEWLaYJGLCBPFPYYQUUogRJUyvd5AFCAwhF5AwBFCuI6DkLrxhls3t9eSNI7TYVj2HnjgARWpl06fWupcqZTDUJRnpufcxRtPvPhcfdCgUspGrd7vdJMk0UamSR6G1aUrV5/xn7nn7rcWRUExJwzyTDoOz7LcJc7uZUAIzGuoyrubMWOsGV7Ddx6/RYPBr3HYGK8xsOd5lsYiZGL94HKR+X7oed5jjz3+wvEXf+AHfrDd7mgjG5OVv/3qV9rtdhT3gtDh1JF5cW51uVKpTE1NnTl3uttli4uLXs57g+HcbNW2x5eWri4uLl68+MrvPfqYEKLeqBVFEZb8Ujm4+eabnnjiCc/n5XJ5dnY6TdMXT5ywhqSlUqU506SUri6vGWNc15VCFoUUMkdACCKEIGNAyUIBEEoJQS7zMSqEUK1WC2OKd6RqlFIpxW7T2NKmOOee50Tx0BiTZVkcR27g2za+ZXZMTk5IKUPth6EfRaNWq3Xg0P6NjY1Op7OwZw/n/NKlS8PhKAiCiYkJ6zZ134MPdLtdjNHc3FypVOoNBlmSWiWjXS9ZOnCe52trazMzM71hr9/vN5vNxkQzTXMgwB3KHex6rpRaFIoyHI0S7tDZ6dnGZM1x2Orq+pXLSwgRh+DhsDDGMNfRWlup4G6lbhdUtvqxJrCc8zyTa6sb2+32jTfe+J73vOdf/+t/XalUhsOhzZ62HZvdWtlxnCDwrHAVIcQ4IdoBgrMsybKEcVIul+19JQob1yaYY8+wZIx5jtPr9f7kT/7krW99a7fV5pyXSqXLly8PhxEhpF6flFImowxjnOappYY999xz1WrdcRyMqcO9arUax3Ge55NTzeXl5Y2NrUa9yRjbs2eBELq6uppmMSV8376F22+769KlK7fc/Ka77rprcnKy2+0aLfuDkUbQaDTQTgJSFEVZllUqFesPa0M2pG3eaBACAHSUxdvbm5ut1Sjq71vcs7a2srW9sb62hDHu9bxarRaUwmvLS9a6sRT4WZaLIicEGUOlVJRSXnIppc8884xdkxNCuOdKKeMsRwwGgwHlTCmVJNFgMPgP/+F3f/Inf6LRaDz88MPb262ZmeahgwfDMEzTtFKpZFQUUpU4cxwnihKttcPcoiiM1ADaVryANCHcGD0Y9O3K+dChQ9vb208+9VQhsvvve7DfH0qpEeBOu5vnglKCEdMa8lyVSp5NQcEYZ0lKCKlUalEUKeUWRUHNOKmjXq/PzMxkWeb6JE3yfr8/GAy31jcIwdWJquMyzhkjxGHM487W1hYCIoRSUgZB2GxOdrvdOBkhhG9804179y6cO39GKMUYu3ZteWlpaf/+g08++WQcZUaIcrVMKQUJBpSVOjLGjEEIiE0yIdQQrLu99okTJ8qV4O3vfItSihDUaFQHg4G9yUejwfZ2bEB5njfZrB88uNhut5M8ieNBlmeL++cnJ/PWdr/d7pZKfrvT7/W3qtXq5sbyZHOyOTnb6XeGo3ZYcuoTJdDunj17GGMry2sIIYLsBUUY8/Gy2Yx7DFmWbW9vU0q1whhTO52kSQFIE8IATJFrQpgQIknSpWurtVpVK1hdXpJSMsctCuk4PAh8Y2LGmDWoSdNUiNxxWVEUSmTxcOS6bhgizjkAzrLccRzLDnv7O9/xpS9+YXp6ulQqvfDCNqUKANI0LZdLzWYzy7LhcIgRJYRZsjmMqToojkeU4VIpJIQohbMsq1XL3U7r9qM37Duw//Y77nrL29/RH4xeOHGq3x/u23tASp3nwi9TAFAAUQ5RknX7/dXla+fOvkze+uDkRGNh77zjMkadTq/f2hqG5aofVDIpfd93MCIU8jTb3NycmWy85a0PHDv2bcrQ7Owsc2icROVyWRZ5v9cJ/SDgLiJIa1AKEBmHPBCyY9L8mgnOjPlY4PvWfLmGEGS56vV6S0tLg17/4TOno7jvu06jUV/fWA1Dv9PrKCmNZBhbE9IcE8BjST5IKRl1hBCjYWyBhq2tVprGjdk973j7u7a3tn7sx37si1/8YqfTCcOQc5ZnIgjCl146lab5fbfdc/PNN7/nPe/+7Gc/K4X3K//P/+FDP/ojZ86cMwCHDx9e2LP/xPMnJmr1Ik+zLKtWJqRA3U50+uVXsiwrlV0hxMLCPOe82+0yUkw155aW1lqtFoAOQgchkDLPsvQHf/AHr7vuugsvL3/5y3/b2u4YBHleMMZGoxHGoJQK/BCN78x8/9GDeT4ajoYOJQihldWle+65u9lsnj17+vnnn+/3+4DRaBgHR8Lp6dl6bePbx57yvLBUqZ+7cDUMqwgXVy5f9RxKCOn3how5hw4dZoxubKzt27ev2+lLoTGmShqGMSFk2O+1tiAo+0LkQcmfmKx3O8NOr1fkWgjFGNvutB3f8zxPFCpNUz9wARPHcWxpGEcpYKTBaDBFkXNgUgtCkEG617ehuHw0GimlGHWKXEZRZBlncZzaGvGVV15pNBpTU1NxnKZxOhqN6rUmJby91QIAi+Yz6mACVoJgjBmNBlJKLfRYRy+l1NqOjY7PATRzHc6pUIIxhimq1sqU0jQXUZpsd9ppFrfbbYwu5am2LmRSQr/bU8oQ6wetc0adaqUyOztr2WQXLpwfDIb1ev3q1av33HPPgw/ebxB6/PHHjx49urGxYYyZmJh47LHH7r7rrqmpqb/5m78J/JJtBhdFYQzgHQMBhBDsWLJijJVUFokghDqOswM+2yoRUfoq6Aww7tDbo94FqQ0CguBVot8ODrVbOO3Op+g1bqcEYwCgGFveKwAwxhilll1oIXJbjFmllNIaIQKgjdHGVqUAGFOEEMYGIWN2SILGwK4+RiBsyYi2qlHK7KLk9scXhVAqs5lgnFNjjAZlzQMQQpRoALBS7l242bI4ramfMUYUhZ13OOdSJ3EcCSXKslwuh5TSNItBK8YIQmR6eiZL8s218wXTjuOrXCGCEELVWt33/TAoe35pdXW1KAqMKSXMcclg2FE6rFQqeZoSQtbWNpQSu+4ZnuMmSWKZy4SQNMuyPM+ywnIMO72OMQohoqVqtbbL5fLBgwcvXLiQJBnDYxYq5449NMZYUQiDFIz5KIpSbIwCrXdOoLYTq8E2gAyKXHFn7BKg9Dgy0RqXW0sEKfVOV2NsXWINxO3popQqJQCoLSd2sWYr77MnOc9zG3LQ6/XsspAgjDCANnoHthvTpbXBBgCwUloLgSmx6JvaCZ3D43t+J8cSkM3WQzvGL2MGAKJmTOcfG0MDgFEaNEgtrbui2onKtA+O3axQaYdhqqw5BrcdZwBA2t4w9sUYY4yJlJKgMbfD+uaDwUYR2OW6agQMMMaIM1DaihdtRoVQMkkShh0DJs8yKTPGiMs8KaVCEIYuRRQAgGGEDGAkjQJDpVRZlmuttBq7q+d5joBgjJU0WmuGGQAoNfbEQK9ZKBpjpNFYjUcGANAIQNsmEJix7FU7LsMYx3EcDUcIIe54OyMJzbICQOe5UEqVygFCqBA5gA7D8ODhA1oryz575ZVX6vV6pVIajQaL+/dmeZJnQmtZFPrkyZNRNEziOAjddrstVbG5tWX7Fpy7jGUYQ5ak2sg0jZMkYTREBl2+fHXYG/pOkCcFxhgA5WluU0Y55fZIXeIYY3KdW88Zu/7SWjMyNl1BCI0VGDvJfZRSRqxX+Ku2y7YAttoXO8JIKW28p+u6qhBFYfXVenwzmPHQZDRSKi+URAghZGXIqVbjfp49h9iMu2j2Gy0uzxjrtnuEEM6547BdRJtS6jJOCJJG75odCSUBtOM4juMYBLbBYIzJi+yXPvlJpcWf/ukfM4Z+//d/P45HSRJdW1n2PK9er3e73TTNqmVPShmGYZZlvV7PwruWIG8tL4qiwIgWUthjd5irlLb+n64TGoOKQkKhwBArFUKIgQGZ6ZwJQgih3PP5xsbGxup6c2ZmdnbuyJEj3/72N4WU3V7P97xOt3Xb7bdOT0/ff//9Z86+/K53vetf/st/+eu//usnTpyoVqulUilJkn6/bxBorev1+v3337+xsfb1r399bW3t4sWLpVLQ7w8PHT4yOTX93NNPnb9wBVHa6/YnJ18Pg31/+/72f82mFExNvW7PaARf+ML/+RuLAj71KfiP//E1brcYjh59Aw+K72F797u/8yc9+uh39cYnnoB3vvNVpnalAjffDOfOvcEriwIOHXrdHq3hb//2u/qWixdhMIDJyVf3TE39nQd+7733DoeXzp07t7q6+sor5waDwfXXX7+ysrK6stJqtVZWVr7+9a9bezrrDWDhrzRNyW5AqzG2dr3ppps+/vGP+75fLpctCgw74YE7BE3Y5acaY5SStraZnJwsV+tZlgkls6ywU4wQwta6xhjP80qlktoxpqOcWdRxt1yxfE1GXe4EOlOUUkawVCnjIETsetwN3ObkZKfX3G5PeyUOSCJqtNaIIqV0lopklDWqM/sXD9UqVcZYrV6qVkub20ur60txHAtZlMLyl770l6PtWIPCFSVEvrq+ghDKi9T33Q+944OUE+o4TimsnD59Oiz5rusKIaIoKoqiVCo1GiEACAGMMSELxgmMyR/f6YyxqzV+bUlhdkBnq6p9lfiMQSlACCglCI21ZjwMEQKpuHXsTbYjG7P23ve+l2D+jW984/Dhw0oXd9x5y969e73ArVZ9x6HdrSHGMDExWS6HMzNTnNNcFABQLpd7g+Hs3EytWj9+/ITruhcvXlxdXX3HW94xigbPP/+8H3p3HL0NY+R5zi/+4s8///zzX/jCF973vvdqrU+//HK1Ul9b3YiiaH7fbL3WePHEiThOg6CEEHJdHkUWMDdZNs4xQ8h4nosJMLc0Go2Kwl5dZaNy7FW3p4UQMhqN/tE/+kd5ni8sLCwtXV1avuq6rlJydTVHY94rn5iYUEpwzj3fQQiVSkGaJnmev/TSS7a4HAwGALC13ut2e/v379dCe563urq+2dq+5ZZbXJcvLy95ntcfDrda29VypVar9Xq9JE1trWPLhdFoJAoV+KU0yS9cupjn+S0333jHHbe99NLJXq+XJBmjHsYsLPl5ntdq1SDwev2257G5+elSWF2Y2xeN0nPnzq1vbdoHplqt2hLBLmA8z7PrBISQNTzpwXBra+u3f/u33/KWt/zET/zE6urqU089Ze86K2hSalx6Wqs7W1K71ozPaOpwrZUxgMk49sf+08TEBAAIoQwC67drwe40Tb/2ta+98MILeSZmZmaTJEmTPMvG5CxboBBCmKJRMpJGAmCraGg2p9MkV0rXavVWq3X+/Hkpi5/86E/deds9L7zwwh//yR/++I//+P3339/pdB7+6iNZlr3jHe94z3t+UBSqKIqXXnrp5KkTb3vb2w4cOHB5aXljYyMIAgug93o9yx0oCmkPkFEOyK6xEaPIxSwIgmazMYhaTz714vPHnwpLfp6nWxubFsho1OpvefBtf/q5P6WcV2s1lSWUEitm7/eHeZ4TzEoln1Iax7EtOjHDnPNymbmue8ut17/44otXrlwZjUacU6mV1voP//APbaEZBG4URWfOnp1qNuv1+mAwUEppLS3R0vLUpDIAGKExAQdj0EZbXYYGlef5Aw88sLx87fyFcx//+MdXV1evXbu2vr5hDJJSWFZFnos0zaUsOOdhOG6uGKPsMnU47BeFFKKwNCjXdUHpJEnq9Xq9Xu/01q1vg41echwHYW2kAtC9XkcpVQrL3c4WGNKcnLYgyJEjR5999plGo1Eu+/Pz85PNiUr1rihNCCF79uxZWVn/1Kc+9dWvfP2rX3lkfn7h5Inn8rzAGBFKrFmnUooQBgZslqtUmda6VqtxjjudzrPPPX3ddddduHh+3EUI3G6vTQgpRLa+vrV///zs7NRLL5/sdFpxlt58881B4GGiJ5s1zt3Fxb1h4D7+xLeSdLSwd+6OO2/1/GqlXD99Om33twxKy2W/1WrbxX8QegQzbHAUxUIUO9OMYozbZTZCBGNsNGF0TJApRKaU4tzRSgIgpcBIw5gjBaytbfh+6HnO5vqqEKpSqURJur3dBkMRQoNBz64BEEJBEGxtbWmZh6HPGOv1etVqfW5uT7lcef755y123O33tNZT07M292BmZmZ9fd1qNtM0jeO40Wg0Gg2MKAC23BC7tM6ybKJR8zxPSqG1bDQmV1fWszTOk1QU2Qff/0PdwfD48efcoLy4uPjsMy+MhlmlUqnVG73esDPq1RoTtVK43Wofe+LJrbXl5aUrRZbsW9jjcufYsWOlctX3Q8cNRnEUZQIQ9ryAUdAatjc29y8uFkWxsra6Z8+eF0+eyIp0Y2NjbW3t9tvvnJ2ZE7nc3NiIR8n0wp4w5FqDBkAItB7PfbsanV1e8xgEQIAQEgIIATDYdd08y2ZnZ3v9ludPlgJ3efkaIYgQjLAhDNuHyHU5JuPFv1KqEEprQIRIqTGmnLuiKDABKXW1Wv/oRz/6v//bf7u93f7IRz7y9NNPP/XUU57nlcvh+/7R+9M0PXPuTJ6L1dVVSonWutPpYUwf/cZjpUr53nvvPX36zFe/+rDr+koZAHzD0Rtuu/O2P/3TPxaqAITzPM+yiFJ69eqS1npra6tSrs7P7avX60sXrl4rri3snWUM50UaBN7W1vrJky/KmDHGjAGEiBAyy1JMACFlkR1inCiKSqXgwIEDly6fJ5gVRZZlWalU6vV6j33zW8NoGCcjwuj+/QeVNC+dOn3pwsrGVqfdPvn2t717NIrL1Xop5JWq12mvRfGg3xsGQWAMOn78uB+GjNPhSy9pDZ7nZ6lstbYX5xdvueWOx459M4pGpapfiKzX62gtV1ZXpqamBv346tWldrdHKV1bW6nX65w7w+Ewz4iNClRKUcLtiGT7vrZwNCD27JlrtVqujxqNRlHkxhjbcLbqeMdxikJqHdtuq+v6hw4dOnz48MWLl18+9RJCqFQOlNAIoSiKkMEYUYQyTKBer1svKQurSQO2fJRS2ihIjLEC6bquAoUIogi/8OLxqelJY8zp0y9PzSxcf/3hajUcRp2tdmdtdZOTUpEbhwWqUISQMAy1lkJJh7q16oRURbfb9X3/0KFDSomNjY1er3f77bf/8A//cL/fv3bt2pvf/OZnn302SZL9+/fHcfyRj3zEc5xDhw4RQr756Lct1rzTdyEW48MYa6Mt/ksQBkA7eN/YBiHPheVc7NI9XuXiKb3LyINxxpckjNrTjncsmJWQtm5WRludDewggwThLMsMZbtVFqU4TjM9NrtgxuA8F1pLzukOJ/o1uWRguaXIICylVNraaiNjAJCxtTsA2IxTrDGi1LKTX7Mewca86jG9+8m7mLI150WI2VfvNtteS2O0g6HFpOzCw34F97BtomMMaZoyxgy4QhQYg++HvusZiR3H0crkSYoxNRhbpLhen8iFFL2eFb3ZJlmxA+Vsb28rIaWUiGHXdcMwFEKMRiNkQGmBx6GFyPqZMsbsvwZBwDkVQmBCa2GNMeY7fqVSi+P1HcewMaVdSmmBJyGzMAw9z1FKVSolh/F2uy0yQRg1BmGMKCV5nmeFJOM4C40QtqOE57oWcvV9v1arWRq1Usp6Pdn7x+OOUkpouXs32vNpz5W92ewNZk+71rAjbn3VvQRZQG6HmI8xNlJlNvBnPMiTXeqoGkdbI/sUIGzsTkyoJRDstkCklLJQeucFu17txhhr42ikjrLIdjJgh/lrvRHsC+zvt20JSmm/39dm/E+UUoPQ7oNgv5ExhgzsPmhaawRj/xY0JmiPb9EkSdiOWZDn+wihJEvTJE+StFarYUwBpBC5fYhcl1GEbaYc2JPGsDZSaIWAKKQIIZxTqQrGWJFLY4zrerYYthpHANBaM7qjFSNjwYHI5Q7rQtuADVD6tdeCcy5VMRgMLM9da11kOXddozGl2HFsBrLyPMfisAYZQkhzapJzlue6PlG98abrDx0+MBqNlq6tYIxLpVIQBK6rKuVap9NZW95MkuiGG2649dabtttbW9sbvudERkZRliRJEJRkIaQqrO9QURRGQbfbZ5h5nqeldhwXY5zn4+hp2yAxxmhhB40xEGDjKymlBGEgNit+3BGxyyU7ZlJKQYP1YJFSWhvNMAyr1arVfWqtfd+zULvnOWEYaiHjOM7EWA6LMUZmPJ5wxoFgKsY/wyIRSipKKcCrtzogtGuXYSHmRn1yNIh25SPj+1zvqlnGwSF2CkBk/IO11sPhEIPBGDNO/x//7JOOy771rUeLIotidPz4ilLqxKmTtVqtXq9PTk7u2bOwsrLSbW/MzMwopSgZZyfYR9g+C0VRKKUo53Y15/u+EjrPc4d7lPAkSZTSWgHGmHHH3vO2CaS1TpKkFIRaQ683mJ2d/9Vf/dU777xzenr6pZdeOnXqlFLCdd25+fnZmZkgCKJo9O1vf6tUCvv9/vz8/Cc/+cl3vetdtVpt//79Z8+eP3ToyOr6ymg08n2/VCptbIyxIRsEXSoF7U4ry4q8kAibPXv2dNvtxx57DOAtbwxffX/7/vYPtwUBpCm47qt7/t2/gyz7rt770ktw8eLrHJOVAs7/S9F83802MQHXX/+6PS+8ACdPflfvPXEC1tdfhyPffjv8+Z+/8YtfS3IFACG+W162lPD44/ChD726Z3MTer03fvEjjzySFscnJ6d6vd5w2K9Wq0KIarUqpbx8+XK73bbMDABot9sAYM1Rd+pGbVEmC2Xcf9+DdoIIgiDPc8/zdgX9dCeow7YY9ZgMofJcAMbGoDRNhRCO5+6WiJZK6zgsy8bNS+syZ4dQhJDSklNuPx8ACCEil0op3wscB5SIgtDLi4hQACQMFErn1Vpwy63XR0ne67cnGo1msylz6TD38OGj++b3TE81CDK9Trvdbm9ubr/pthuGo6RWm+j1u77vV6plAG0SZJAWPCmKIgzDzc3NOB6Va/zK1UvUCd1zl85xRjQRhISE+Z1WVJvwFxcPHr3+AHdBKcAIlEIMc6NB7hJV/rOLDQBIAwGEd1bjxowTlIwG2IkWxK9ZqCsDRgM2CGNkLFea4EKbNI7Wt3pGmk5nIGT+nh9457vf9da9++a3ttfOnz876HYpooNurJRCCBhjWsHy0vra2gZjrFqtikJduXKx3++fP+sLIZTR1VrgB87ExMQDb7/70qVLl669Uq9OKCWfffbZK1euHjl0+PTp0+3t/i//i1+1QhuE2ZHrrtvY2Lh04XKt1h0MBjZhmWIKgKvloN8bGkQQAkKoMMLzfV7yK9VqnqSDocQYMGYUeFEIbcBohBHFGAjGeZEaIer1+t69e//6r78UZ+mePXuTNDp37my9MeF5Xui7nXYvT1JKaRqlWZZxh1LCHcfPIt2SPdd14zidqE3de++9i/sOr62thaE/rsaQuHjxUr/fufXWWwfD3tLSUr1eD32fMQtIIcJZnueFkoQTqU1WFHEyklI6joNzXBQFRXiyPtnvRFJhhwe5KDAUvu9UmwHxkgIKTdI9i9POtum0twUuN/c0BJ7jIYqGiShMnhd5XEgptZECo2QUVeqVIAiklHme+r5fSBGWS19/9JF2t/XhD32oN+qtrK9VS2WE0Limp0SInCAioRAGaxAKFABI0JRRSomRoAHLXBCCldJpnhVSjIaxXZlzzkPfS5JMKYUpb9Qmer3eYDTyAxeQSKJelhWceUYjxlgYlJeWliilnu8DQ7YoBIDhMLrjjoWzZ8++fPpkqVQyGmmp0jiL+tHERHDrrUcnJn5BKfXK+Yta63IlvHDh/G//r//zJz7xiXvuue+P/+hPlldXOHfXNtZvuOnGfqf/9NNPV6tVO1hcf/31FnOsVCrMdZQSAJpzFyEEGEkNYIwQIgyrb77jgbXlreMvPJuoLM1GzUaNEpOkUbt1tdNe3js7ffTQkTOnzyVpCgBZWhiEhZKIgBdwqTJCmecaAKG1JhRhIjVAVpiXzr4UZVEuMuZQhLGtDm3ujdbgOAEyIHIlCjQcZJ32yC4vB4MRYwwjo7XGVGlVWHDEgMmkQkAc4niex5l35txLrc52qVT54A//6K/9yq//f3/n/3j4of+363oIIRtlo6UMS2VrJiClHIyGPOe12gRCBBGKCJWFwBjb0MKiUJy7AEwZNcoiHjiK5ArnjDnUwxQoISQaZnme2gp4FLXrFZ0mRalUc7g7GsUSjR499pX9e/cdPXp0fX393LmzrXbdGJXn+ebm5nve84O/+Zv/U+CX/cD9yX/8kZXltaWVsxura5Rhh3kGFCBDGVYiBwCHe0JoLVUuRLlcpYx7HqxtbARBMDk5efXqFYexPE2VEC53KCaB57jcb7d7ozh3vEpW6HPnL83NTDebzbW19VKpoiEXGiq1aiGUNmaiWdna3B5F7XKZrq0mSR82rnXrE9PtTkfI5JZbbsCMDvpxoVgulFZUg6IUg9EyTxBoyhwthUIqCMvGGCEKQozWCiHCOTdg1e7gON7ExITeBCVRc3K+0+n5vl+tlvv9nlR5PIyHg5hzjkFsra/9wA/8wOzs7Be/+EVDmRSauczzG0vL2wcP3XDu3LmNlbW9BxanpqaklKdOntBKEEPam12flwOejkYj3w2KWLWKoeOyZrPuuLgQWbniDIcCYySlTXHUUoo8T5XIRwShUlpIgV3dibrbw65QhiCyeuXK/J59k7PN5194MSxVFxcPFIWcnpnNIrXa3/7mtx7lDF1/3WGPm+WlS1cun93eXvZD74473xyUWb1R6/YGoFUYlHwfstxcvnxxfWP5phuvH/Z6y0tXDh88lAxG518+t7G9sbm5fmBx3549c44TlCs13w8By63tvsvcUqmEASmlCcdaA7X2GmAwRsTOdBoQgsIYTJGQmhDsuiiNk4N7Fwetza2lS53uxtW1S8Ph0OYlIaBCaamTQha+77vY970wz3PXCYukjwGMloHDhRAOwSCRMYhi5mDxza99+fFjX+Ge++ef+8s77nxzLujVK8t+UPnWY8/UJ5tT/S3Ho/N79j755AubrRF3SK1WGo3WlRw+8+SjK0vLzYmw2+0rmUmpDUZrq1uTjbmNjY2A197+wJtPv3R8NBoFTqnf78sBZES3290syybnJx2HUUqHw6HjuYSRq0tXNlvbm690gTHGOVJ6R6Kr9+8/uN3ZTrMYIUMdbbC4eOmyUtRx6hoPKSPTc00/cNI8wRnzg0pjYmqmuXDD9Te/eOLlp59+NiyVa2H58sVzBw4c2HN4r0OZ7wbRoP78M89nae6U/VarIzKtuKGIjtK4VCpR5vY2V4xR3a3W6ZfOERR246KW+zxzoziVKlpdWff9QZGDxwOH4izPGfLiSGitGGPaFFqKVGayUMSwLMpUZpTCMkMaKydwZ+YXDBYH9i0OOlu+74CRgV+ydjScOqnKueuG1cC2gZvNRhj6URRduXIFE33w8IHtzXa303eYW6pWYDRKRhF3JCCTiYx4JYFS4pmKU223uzJThKBCFdIUQmSBdhfmF4QsLl++rLUulYJKvVavVH3X88Pg0KFD7e3WpfOvBEFAqQu5hzSXxni+wxhSnEihtQAtiY+4w1yf4rSgOpVRPjj14nHqOV4pfOhr3/jYf/3fEKfx5HMvHPv2tx2HLa+s7z84d+zpb01N1w7vueX/+J3/WK5Vq9WqXwpzKZTRQkogmBhOiaOlEkXOGCGIOMANRo7nSCmr5fIuIzgHpbXUgBFGSmps8LjkMCCNzovMczgnNM9zgzAoTQwxGiGMObXmpBoRrLVWRoPWjBAESIKbbtIAAQAASURBVCnNKQMAhIjLXISIkBoZRDg3AEpoYwxQlBYCABCmjLt5niutOXdtD9tCe8aAUErKzHVdDKCM0RaMIRhjUNae14CQMggC6wIkslwRq0DXxAWtjZIaYcQIBaUxodbtrigKLbQxxBhTKCnF2KLXGMDY5iiSXZau7S5IaXN3DTKgQFPCUUFd7JvUpERryL3QmZ/b1+5sWs51nCbGYMCoSAtCGDGGu57jBEmSFEXKOIqiyOFBUUhA4HlBFtkAT5KMhJRKF9pxMSFcFCbLlDGmF8eME8DGnhxGPI0xMpgxxoihmJvCiFQEAQ9cfzDo93S3OlHKRCWKIimVMQgISRLLcASEkOf4lVIVAEAbrQEwMQgjQhnzGHUAQCkNmmGNMGIAgB3rEgAIEakMRtrqwDY3ty2gbM+VUqawmCzDSgmklcwzUBLsmwGQNnbdtStrHSOzBrSQhDMA2LXLcBwPDJZaKa0ZYwZAgbZ8Rqkyzl3YaSFYU3KlFAZk+UdaaikVJqAR2ARIpRQAspp9ALAuUoAwocyA0lpTxhDBhRBFUSglKSWe5439x/McY+xwD2NsNCKYOdxBCFnEc3p6Wsnc9qJUoQkhSigMGDMCYI3UcaVSiZORMYZwowqBQCKEMDaUcABACNuOjjEmEzmhRGhFspwxRjQmBvpJR+M8DEPOuTZEG0MoL4oiU5Z6rygmSotkmNuOEfcUIxpjCgAUuwghzDEhRBQKUYQMMdTkeU4J3yk2tdKKYkdKyZhDEQKNkUDGYGSMS1xEkVJCFoJSClobEhulCFIVv1zkynE8pVSaZ4VKDFIKFOVEShkVMqSB7/jVeslaaia9SIi8UqlcvnqeEMJdfuDw/Orq+trm1f0HD5fL5c3NTZah2iRrkMbkbHmru7a+uTaMIyllkQuDDUFEiNx3Pdf1QQPDzKcoGWYAIAqFETXUaNCUUo64KRRgbbASSkgpi0IQRAHAIBOPIs6dwLOPIUbA80wAYKG1NcEDZAjBjDHCqNX4ZiIzxji+Hf2EUkIpSQjm3LPIBaVUK0jiDFMiAWHCjNGYM0IR0tqGEChQgInr+XGcFqKwzxRoJgvQRmkFjsuUklooy4LHGCOMZSEajWohJldXV1yXGwFGKzsigsF5Jgi3juXYGIWQwYAYoRYcd7kzMVnf3NwgDA+Gnb/6oy+urC5PT0/nWVGtTNxww00vvXSSMkINUkX0/ve97ezZ01/4/F9OTlQvXLggpPL90Hq/YMIYJxO1eqPR6Pf7w8FASco5B22kyijhUhVpniPEMKK5yI3RRBiMqRKFMQgBzaXEjPXjSEgIguBnf/Znf/InfkKDpkC/1ft2vTGRxBl3giCsrm9tX7pwUcoCY5wk6SsXz3/t6w9fuHDhX/x3/+1jjz127dq1+YWZ+fn59c2VosjiePTww1/pdDr79+//6Z/+6StXrjz8ta8CgtFg2KhPhIE7N9P4mZ/5mU996n957olvHZz7f70WG/F9uP120BqWl2FlBQAAY7jnHnjb28BxoNUCIaBUAs+Dfh/+5m/eWNf/99qqVXj3u+HAAfB9WF8HhGBmBtIULl2CRx6Bfv+7/Zw9e2DPHqAUjh9/HZy3bx984ANQrUKawnAIlMLkJGxtwUMP/ZecHJpN+OAHYW4OEHr1VyEEa2vwhS9Aq/W9H2+9Dj/90zA/D4yN+bDf2/ECAMbwpjcBIaAUvPgi7HTD3/iSuS4MBv8wl+x72BYXoVZ79c9+H86c+Xu8/Vvfeh3cXK1CqfT/l5kGxnDXXd/pcfFdUpsBIEngzJnXwc2HDkGlAoPBd76Sc3jiCVhcHFOhpYRjx4CQ7/ZHfkfAIMavBif+Zz8pS/J0OLyMMaYEpUmysb6+ubGxtrZmiZtKqXa7naYpwcyKzm3zTykFSnObVECJ7/t33na7DVhSSnHKpJSMUJc71t6AU0YIaaVxlmVhWB70E4wdgzQC0FpyChiAEq2UxsApZlIpihlC2PM8rYRWgmLghFp7L0IZIDAagaFGE60QIYS5WpgR58grc8918mwYZ4MkTTw3wLla34w3NtaVpkePXHfj9YcpcZVxIzESMh0MtuLh4PTZ55J45HLicJyniTYdTvG+6bkbDhwslUqHjxz6+rGv/c2Zr9Ybk4Ffbrc2ISeUU61llMCxbz9LbaGQ53kprCilizy96aabPv6J/6Zcrg0GKY5RpeJKCZS9SuOy2y6Zy25jA40dH+ddyjMAgIHXML/G/4oxSAkIAWOADUiljTKUkrwQ1jwhDMN6tXzDjddRipUSnXYrzUZh6N5+x60vv/z89vYm56zX70w2p/fsXdjY2Nh/8EDg+UVRdDodA7mdlb/+tWNBiR8+emRmZqbdbt91110nTpxYW1s7evjI1atL58+fj6LRxsbG+bPner1eo9FobW9LZYIgGI1GtVoNY3zl8jWAa9VqfUzZ1oAQMdhIKVORBkEgVW4QEAqLi3ujZLRybTPLMkIYYyzPM2Mw58xynDFGdlGREnLixImzZ88Oh5HBZnl5OS/SNM3q9XqpVHIZj6P0ypUrtgGCMS46RZrnBw8ehBtgdXWVUjo93bx27dpoNPrwhz+8d+/exx9/zEqiarV6GIbr6+unTp3yfb85OS1VYT0udg3pjDF5ns/Pz+/bty+KRuvr66NoAAATExNJkly7cvXixYsrK1u+Tx3P4w6N06RWK8/P7imKZDQcJklyaP+RYF95bfWpra3WxnrbGFSpVESuWtvrjLlgO2PI5LkgBPc7fUJYt9tF47h51G63FxcXNzY2vvzlL7///e+/cvna1UuXOXfHPRmNLBF4YWEBIQSgtNatVitJRoyxOI6RBs/zLKHDcvA9z2v32kmS7Lp5hGFol22U0kaj0et1pCxc152ZmYuj1BiwMdmA9KFDh6q18rFjx9zAL5fLSZJ8+MMfJoT82Z/92c/93M8Nh8O//uu/5pxbavbjjz/eam9sbW198pP/Ymlp6a//+q9rtZoXBL7vnz9//nOf+9wLL7x45fLV2++84x3veFee55cvXy6KolarRVFkqTQbGxuEkDe96U2Wt8U5tfRGQjAAaABLF+31ekWRdTqdXq/n+QwZJYTudnpKCSH1xtr6jTfeHKXJ4uJiq9fq9/tGozTPEEKlUqlarmgtLbuHUmoLyT0LC91udzQa9dZbtVrNnmFL17U5OZ7n2ZAxZKBer0RRNBqNPM/TurDOcUVRMMIcl2llCCGUYaWFEsrxvTzP0zQNgmAwGLgB59x95ulny0H1yWeefvnll7XWjFGtdX2iUhQFd11jFGPE9Rwpi7gzAIAsy7RSVu5BMK5UKkWRHTp06MiRI0888cTVq0vN6alyuZznuecGDg8QwkbjdruLDHBOpSSEojAMlTRpmlZrZYe7w+EwiiJDszAM3vqOt22urwqZHT6y/+zZs8PhECE0GqUvnTr9jW88OujHWsODb3nbzTffrFT67Ue/maaxKHJCuNZaG2NpuUUhKcULe+f37JltdzaZQ2+46cBGa5k6zGV8//79oR/0+/3hcDg9PQMAhDDOXalUFuUTzQnOnE6nE8dxHKeO4w36Q0LI8rVrcRxbw+uN9a00TX2/lOXKdYJuPIyGxSc+8SNS5esby1evXUiGA878o9cd3t7qdTvDwWCkCk0pBsCUMOv1IcEmazMLqdj1ue/7SgvLthuNRuVyuVKppGl6+fJlY8zq6iqlC/V6fWFhIY3jXre/tLSysrzxtre+88Ybb/zmN7/dbDbjZJTnmVSSUo4Qf/jhhx948L5Dhw+cPn3aig2tA0CtVKvVaqdOnRJC7RLNsiwTMg1D13HLlPBms0kIs7FRlv3kOFxrbU3kq9Xq0euOnDhx8vLV5b/60pfvve8t07PlqanZNM6OHLnu4IEjV5dXTr54en1j89Zbbx1OjP7yi5978cTxtz34gDfTNEZF0dBz+cbG2tye+SSOMab1RnNrc5NQFwEedHsa+MbaeprGS0vXLr9yfmZq+pFHHj534Vwcx3feeftksxZWgiRJ9sw367XQGHj2xMtRFHnccxwHITI7O1viIcagDSAExCC0S23WAABGgQLgHGMKG2u9y5cvP/PUsWtXL1GiVzfWo3jgeY7nO+VKCTBqt7tZno6VQ3Tss2TFHGmaIwSWXEYIQZRghEqlUjTK/u2//d+TKP3wR37w8JHrCfYXF2/49//ud7/2yFefeuq5j3/iI41GbTDsCKHSopifW9jYXN7c3CwFAUbZsWOPFVlx/fU3ZlnW6/R9P7x8+fLS0tJHf+qffPvb3+50OkoppQznLudulmVOOaSUl0uV2dnZ5eXlRqOulIjiIYChnBVFVqnUbjxQWV5eZszZWN0ghDiMu75z5523c58/9dSTnV47CLzhcPjKhfOO4zQajQceuG9jY63da6+sLAWlIAg9rWBx7/40EadPn/3N3/zN3/iN33r8iScdxzFaDQb91OSz0zOXL76shcaEGlO02+0gLE00mkmWJkkSx+kP/MB7oyhaWVrl3H3L2982ipO79+z7s8997v77Hjx4dP9zzz097Ldn5uYY4a3t/kS93u8PLWhFkR4Ohxhjzwus4p5iVqh8h2xrCMFJGldq4YEDBwqV5HnqeR4YEwZly160/x2NRt1uZ35+3hYJpVJpamqq1WodP348zeL9iwcPHz783HPHh8XIahEcl2MMrsupovv27TPGdLt9n7uj0cgQbTBCxpTL5SRLoyjp9Qa33nrroB8Zo7a2trJCTs80jUFJkhw6dAgZVK1W9+zZc+nSFUpppVIplUoW9Z6dnRwN462NbUIIQaQoCiWN1sAcmmX5aHN04NDhg/uPvHLh4m/91r/at/+QlPr229909eqVUTQAs8f3guefOfnwl46Vy+WVa0uDcs/eimMeHCCNdZrFRmkLK2OCEEEIY5uTEcexHc+VUghjz3PTPOOcE4IBg5XYZ6KgGL3WPstOW9IAG1vXGcYYYGPNQI0xCEApRSm2WKGU0hhp9DiB2Rrv7tjejWnLeZ5rOTZc3oGYzS7Tc5dwakEcxliSZZ7nccfRWiJKCCGqENyhruvaI8J4HNAqhNAZsvRYsF7VAGOOIUJWqTD2VdBSCUQIyYsUdnz2YRwViAGAc54kKQDYO5NgKxow9usQQzoeZUVaKM91LYNSjwWSUmKMCEVSSO64juMgND4bmGApdZGPGHNFnudp25qSIZCEEIapAJXnWavVsn67Y1dWoQHJYZZZyae9l6xSrSiKNIoBoNfrJUky0ZxECHq9Hufc94PhcCilRNYgGFNL2CTY0sA1YGRTHO1ptOu0PBNKaca4NblGiIw5uQgZA1mWaaoskUdrXS5X7fnX44xcyItUS6UR7Hjjml2epmUY4R27EltuKaWMRpRSQone2aTUxggpJRi8E3qmCSFSFZRSAsy6HJgdC2lRKM6I9W62+jmtdakc2FtIKyWlpJRZcavVie44kivYCSG03XHP8wAMYwyhV5MMKaXAxgRS+2IhRF5kVsmHwGRpQQjxPNeaLQDG1txcSokQzrLcaGyM0Yow6ishjNaUcttmUMranRuttRUfWA5pnudSamsXgDG2du1mJ1HZVonWBNlqCi37nnOOBEEI75KsrdYwSZIsTyjhrutYOrPW0oZGIozBaGU0ItgAKGX7O4ABAdIucy2lepeNJaUhmHOX5cl4TVdIUaqW/NAVWmx3NpIkZoyl2bBc8QFJBDRNU4RQt9sdDvuu6169ehUhdMcddxBC6vW6Ump1dZUxNhwO0zTdt29vu9s5deokxph7nHO+b9/+SqW2tLSUxWmvOwiCYGpq5tKFi7ZOtsmKuxbe9qoRQhh1uDNGXe1Vxoj6nqdBxqPIEtIRUlqPxRnWpxvGIktBCPG8gHKSp4UeOxERO1jZq0zpWBECO7ISq4cQuqCU+oFLBGGM5UWa5zmjjkZaSo0pEkUGAFrbzEmjjQQAQrABBcAAtBA5IUxp2Zhozs5OF0XBHVqplPN8otfvgEIAWGuBLHGMYLsmRZhQiq2ZXprFlDEh8tnZvYhghHCSJJ/5zGdKpWBmZgYhVKtXy6VKqRQEQZCksVBSyezTn/50qVQ6cuRIFMdJmvp+gBBCCOwYpZSqVarWylmO3cyFlBIQ0kgzhufm9gyHUbfVHw6HjuPBWDM9tqwhO07o2pBWq/WNbzzyrne9Y2lp6fTZMw8//LB9KkUn325t2mULIcjaOkdR9NBDD11//fW/9iu/dvz48YMHD/7VX/3VlStXHnzwQRnnfdy3Hy6EePHFF+2tpbV2PFeDWVpaajabX/7yl7e3t8LS7H+OW/3cz0GzCb/0SwAACwvwsY/BXXdBrfadvD2l4O1vhy98Ab70pe8xt41SuOce+NmfhZkZ8Lzv/Pw0hfe/H373d+Hpp78rHqvnwW/8BrRa8PGPj/eEIXzwg/CjPwr1+ncCfErBU0+9AdxcLsPtt8O73w3XXw9h+Aa/KkngB34Azp6FRx6BF16A4fB7Od6FBWAMAOCOO7734wUAreGuu+BHfxQ+/3l44YXxzv9LL9n3vB058ro/h0PY3v57vP3ll1/35+QkzM/D1tb3/nu0ho9+9HV7jIFLl/4en3DiBHzgA6/+6XmwsPCdvxMAkgT+8A/hL/4CPv1pmJqCf/7P/x44O+fwltdrD2ZmwHXf+NohBLuCPEoQxnhzc/Oxxx7rdDrWf9/SHAkhohCEENtmtsqMIAj0jgXcnXfdPjM7ZX2EtNaFlBQjz/N2zb6smIlz7jhOpzPQWlMKrusKUWgjKaUYI7sy0VorBUZrx+WE0TiOa7Wa1cREUVSpVIzRtuqwrU2ttbXUQwhpDXkutOJZlq0ur6VZXKlU7GIcUX3PPfcYoJR4y8vXXCccpW3KsO/7r5w9c+HiK4167YYbj1RKYbeztXzt6vEXnv2JH/vR+x+479lnn372uWeWV5a+/dQxm4sze7i5sV67dupqlmW5FqlMp/wZKoRgzDGKxHHMiaMlD4LS9vZ2nktCB5NTTYxdhAFjEGIMir32MsCumlgDoLGlxmsVx1q/DmuG14DRdpyyhTelNrgAEMJJkkbRyHd5liVCpJigPI/zLNFGrKwsTTZrb7r9lmeee0IUWXPqkFR4YqJBCF1f35icbADAteUl60cRhuV6IzHGrC6v2PKo0+kA6CRJnIpbFEW328UYM0aZwxuNBuf8yJEjUhlrxbi6umqMYdTXWhuNpbaky1I0jDXSt9x6Q5YV7fb2zMwM99w9e+Zm52cvXrwosqQoCsbcjfUtQxQyygAoy6tXAABCaMrYuXPntNYf+9jHLly+9NJLJzHGYRheuXIVaVMqlebm5srlCmNMKavdQ/EwzrLi0MEj119/fafTGQ6HFpR88sknLbvQLtj27dvned7kZDNJknGYgzSUUkIoQkQpM9mYKlfCdrs9OTk5NzeHENRqtdW15SiKXNcdDodbg43AL1UqDgBQhj3Pq9UqpUroucH09PTJkycCv/bcMy8YgxwaxMM0zTOECDKYUlwqlZJRSjDDGOe5DEths9kUQmBGHcfNssyagA2Hw+Xl5Zmp6ReOv3jm9LnOdsv3Q1uoYYyRMNXJxtGjhxFC6xurShVBULr//geXl5dPnjzpOK5dQNIdZpDrupNTzcnpySRJhsMhd2iR24qK5Hm+tbVFiPU7xxP1yXg0chyHUpbE2fLyNQC8Z8+eLE+klGkUU4SllBcuXLjppps451euXPnlX/7lS5cuPfnkk5OTk67rpml69uxZhMhnPvOZ1dXVUqlEKc2yzGh09Oj1d91118WLlz3Pm5mavnjxYq/XO3fuHCX83nvvv3r16osvvnjDDTdcd911ruuWy+XhcJjkWbVaZYwBIEJAKsAIHId5nqOUv70d3XLLm6Znmo899u3VlVXP50kydB1CCJmcnJ6enlleXnYCh8f8uuuuwxgvL63axa3tdiCEsjyRRhdFUalUbrnllscee2xtbW1qdtI2HoQQlsptQ04AwPf9PM2EEBaGjqIoz/NCxqFfQojOzy+Uw8q1a9e0NpP1ieFwuLGxoZHp93uu6zUm68aoIPQmGs3VlY2JWuPRR7+1urr+8z//iwih1dXlV155hVLwfC8XOYB2XMYYSrPUBksSQkReEEKUkArUxsaa67qLi4uLi4vPPvss5zzLstW1FTBImRhjEni+MaheraVpmiQJpRQTMMYEoRf6vu+FSZJqkwUh88vh9EzzueefGA4HlOFKdc5xqRko368oiU+fPHPw8E3ve9/7EKYPPfRQp9PZWm/dcvNtTz31JAJHa00pBwAtDcZYiFwI0WxOzO9pGhKXK159wqtMHIyiqLW1RRnu9Nqt7W0lTZ7njuMVuU7iIhdFrzdqd4ezc9OOEywvr2aZnJqaUkpxSiuVil1XvPLKK4SwiYmJ9bWtixeXfS9EmAGk3/zmMdelH/v4T/UHt/3BH/6B0mI06g9HnV6/n2cCGwww5n1gRLUCjcaeJDtula5FnA1gu5qVUiwvLx8+fHg4HK6srBgQURRVKqUwDJaXl4uiaNQmgqC0f793+PBh63JulzdBOUySaDTMMMbayP37909PT586dapcLvX7Pa319PR0NBheu3YlSRJjjON4WivGSZ4LY2AwGCBsqtVKlhUAYBtvACZJYkKAUqq06Hbb83OLH/+v/9mBbx176qlnjr/wMnfKmJw+evT66dl5WYi5+ebm5vZLJ08M+qPzp89EUeR46vqjB86ff2n5Kv+lf/4Lf/Ul02ptzc/Pb25s/sVf/PnM7MLd/WGr041G2S23vAkjGI6yXmv70sULly+c+6F/9N6LF84/f/zpW25+0z33vrlUKadpMopiZeR2u1UqhyvL7c3NTYJQ6PtSSkrx+vq6Nwzm5ubsnLgrqTcGwNhFHUIIjIZ2K02L3PWCdn8wNTfvcrh87QKXOeUYsEnSkeOw5mSZYpRlBcZYKTkajEphJU3zKEldxrUCzw08zxtFA6ufpZSKQrteJS/00SM3YeRS5vV78X33Pnjx4uUnjn291epdd931/X4vTfJyqZqmuVSFxRqsy7Nbd622q16vp2laFMJxHEzANicee+yxD7z/fZcuXfrmt78FUt79lvtvvvnmU6dedBwvz4prV5bm5maiYYwpqrseC0pFUVx+5aLnBgcOLG6urROCGCN5ljzy9YcXF/ct7J3NijhORo5LMKJRFC0s3Nxub2dZBkoDQK/bjYa81WqVw/rhQ9f9p8/8SSmsbW+3KuUSInhp6erc3Aw15Nrla6NR1G13OHcBI9cLhNL5aKi1TpNsbnZ+qjl96cITDz74loWFhf17DxmDSuVapzc698qlW++4Y3Hx4KOPXimXGgThyevmL124bA82ioZCFQ4NpJRaWvwRY0yN0cZo63+KMUbIxPGo1+mUqr7jOEjy4SCyMJB9xPI8Z4x6nuu67mAwKJVKIpdnz549d+7ccDi0s+1oEFlRcBgEi4v7sjyx63wA4A5bW11P86zmOlprx2dSSsfxDYJSqSSlrlUnS2GtWmlsbW1R6nY6fYzx3Py8wbLT6TqOs3fv3ltuueWZZ55J03xubo4QcvnKFdtTRNgYUIjQLCsIEFFkhurRQCZJdvDA4R967we//NBXQr/91BNPb221PvaJj91+x60nXnxaa0kw3l5va4F913O5gwxoqRQVdrHtMq4J7Xa7QkhGiBAFxZgyBmCsfZhtd4FBQks7K3mhO9+cBQCboCjyQmvNGE/zDAAopblIAQAzKoTAGBGCMEYAGjAGBWNCn9bEuiBjLITUu2laSKtC2fJaF1prDQhhCw0DJoRQSkReWFsJY5TDuHU4tag0QdigccBGnucWQxJCIGRc1wUGJPTzPLdibSEE0gZjZC0C8izH1p/agPn/cfef4bZdZ3kw/Iw26+pr93p6L6q2bFmSZUu2ZYx5MW5xhTdOCHkvru8FAklI8sFLwIYk4JgEjGOMTWxccAGMjS0jN7Uj6TSdfs4+Zfe6+ppr1tG+H2PtLR0hV3j/fOPSpWvvedZae841xxzjee7nfu4btAQgGtSmPZoEDaoPfytQmID5HMOtNgCl8U1jlNm2StNUCo0R1VpzLnFfFxuyLHMcVqlUNJbLy8tDwwO+7202jBcGBwfnbiwgRBQCZlEpOcLgerZSSgkZ9lLL0lohkxdRjAFJijAXwhwRQmgNhFAAMH5lpqk/CRNQijFWKlayLIvCJMsyKQRCyHFcIbIoigYGqsbaOgh65qptz6aIZqlJnzhhWIHUm8aYhKByeTBN02632+0GUmhKWSpjrRBCiBDEN6VFzN0xqK55bxT1DGnIVCvF85ED0sf+zBdrbg1jTEJflMbgdIyxOI0RQlkstu6RAakNqC2FYhZBCI2MDgwPD166dClJ+JaoDiFEZBIBRFFisC2TaJgftv6EbdvlchljYoRojZqcwXA35WWRgb8ZY1EUaq2N+q6pdgCAQZYNsM5Ff8KYIM2izMzzfh0CISEFxjhJUsdxtEKgscW8KEoQolJIQ9pi1M6yDCFMCUUIYQKUagBlFrE0TUEqQphlWYj2RSHN1y6lNM5vsOlBpLXmmaEgAKU0ybRlWRoRw33e8gYsl8sG9FcSmGMb0FBJzTShlGJMtNaYgNFFEUIAAq0h5YnRWCfMBgCpFVWE2A7PUkSo4DxNIyDQ7bWHJnYQhgbHCoZnEAa92dnZTPIosizLCsNwdW3V933X9bdt23Hu3Jm5ubkHH3xwZGRkbm6OtzrGj65UKtkexR2FiSpXyyMjI8PDwwihVquVJJGXzzmOU60MAKhSpRz1ojiO0eYcQwgZuwaDODuOg4lxXDQe2hoQEEoLnk8QMTPZIPVCCJxtqfoghDUxUtdSqqSv3A2AjRqyue9bKLNZSSilvu9nPBFhxhhDSAMopKUGbNJMrvtK2aBRkmRmJQGNhUiNiAYgpZUSItFaM0aMkDSleP/+ve1Os91ujY4OF4rO4iJZnmtrLTTqu3QiI4hvkSxLCLEwRswiCDOlFGWkVC6urtVWlpcxhcHBKsY448aCaNC2nGeffbbb7RKKa7WaBl4drFaq1UI+zxi7ceNGt9utVm2ldJIkpVLJsewwDJeWlozEEAAkcay1VlpLqYtFT2u9trKaJsKyLGPVsymSQ5TiPEllhhFCmirGyOnTp3/91/9dkiTXblwfGxvbu3f3008/zbncuXPn9ultKytLrVaLEMIs+ou/+Iv33nuv53nHTx8/fvy4bdt/8Ad/0Gg0hBCj2yY8z9Nam6Tjm9/8JkLI35SYe/WrX33q1Kmnn356fnGBUmr0mszwPHjzm+E97+nTMP/kT6DZhErlhV5qzy1mBIaG4F/8C3jPe+CTn4SvfQ0ajecItt9/FAqwfz/88i/D+Pj3ZHq6LuzcCR/4ACwvw3//73DhwvfEdqen4d3vhte+FigF34cvfxm++EUQAt76VrCsm5zWnn/yH/wgfPSj8OijfRK348Cv/zo8+OAPOHPPA8+DoSF45SsBAP7+7+H97//BohDmen/pl2Bi4oe63g9+EC5e/H5YNsZw553wC78Ak5PguvDe98Ldd8MXvwh33QV33/2Db9m73w2f/CR87nP/NArIP3A4zgvh5pWVH1ZJw4ylJajVblIx3rnzOYT9xxieB4uLNzkQKgW2/b3f8A+G44CUz93NYhF+6Zfg134N6vUXf/1HPgJC/Gj1iQcfBNe96ch3vvM9Px9trvNKKa4UxjgIAlNcNwJuZmUWXCHU1823LMswJ2zfNjmCbduHjh5ptFunT59OkuS2225BCLWCIIqihbn5IAhuvfVWk0S3Wq04jpUStm0JIYXgzKaVSsXoNGZZSqkpgVtSojRNiZJBECilfN8nmJmAhBhhaI0RQpbFskzovmcJ8l2P2SLodq9eO69EGgQd160fPHgwy7IsyM6H5y5emnGdQpqpe++5f+fu2yml5XJZ3X3n4cN7d+/evX/P7s989tMnT5ymDF75yvs36vUPfOADQdAZGKymPCmVShFPa7WacLK9e3ZOFiaajfZjM98ZGRmbsrbRRr1ZLBYJpoqrUqXy0pfcY1uFtbW1kZHxiclpyyKcA6HPIcigX3gzsO4jyFtyllvjBb9iDepmTjTGQBFIBUIoSjFjwJgN5TIoHkW9brfpelbGo0aj1mzVtBRPP3MsDHvFYnFkZGRycvLw4cMPf/1bGNGRkZErV650Op1yuayUDoIegB4bG9uzZ49RWjFNnadOnXJdd3h4eGVlRWudz+dNcdKyGHUczkWv10MEGyGqIAiUgpxXSJNscDDveU6axkJkjmdXSuV8Pj+Ayfj48MBgtd5sXrx0rtmu79y13bHR/Pxit9vlIjZRLwIN0Fc2zOUKQgiRZG99xzuKxeJTTz0VJiHG1ITRWRwrpbK0JYXO+YVOp4OAGGORMIxOHT9ZKpUmt4/s37+/UMg5joUxNBqNRqPBGMsykWWi3e6GYdxstqMoMvyOQsE3NBMA3Gy019cuuq7renar1VpcnG+1mqY2blr/GGPYdZlFpibHX/byly8sLKRpunPP7ieeeGymGxw8eDAJxdz1mSDIPI+NDA5lWYYsvLa6euvR2xzHHx8j12eutZodE09rhdKEl8oF27aHh0Zrtdra2ppGSEq9trIeh1Eul3Mt2yjLIYQMLGLYNEtLK5ZFw15MGVpeXiaE5HK5XC7faDSKubzjOJu+yarZbEqthseGBwcHe72elNJxLcuyADLDYjN8BMZIq9UyPOss4wQzhFAUxdeuXRNCjI+PN5vNTqfjMOvZZ091u+3bb7/17//+7zc2NoaGhgqFQhAEuVxOKxWGmW3bV69eVUp5ntfrhVPbpgcHhuM4rVQqb3rT0Ua9uX37dsBoaGgon89fnbn+6KPfuXr1ehiG99xzz759+yqVSpqmpVKBq+fySSFAKk0IMoWHarUwPDzcbrebzW08k89QtrI0v2vnwRuzV1XMqwPl1ZX1Vqt1/fp1ilCz2ZRSrq2tuY6fy+VMei9VPzcghPTC8Ktf/Wq72xkYGjQ3ulQqtdvtOI6zLDNxbRzHPM0AwLKsXq+rlAJQGFAu72dJUi6XbZt1e51CoWASIeZY+w7uHxwcvHz5chiGnueur29knDcb3agXm7D44oULx48//c53vv0v/uIvLlw84/n5JIuHhwcHh6qrqyuO4xRLXqk8tLGx4Viu4zicy9nrNwyHo91uf+UrX/nSl77EGBsYqEipNYIojJVSCGm75GKMMaK5XG5xcdH1bMZYHMdJGJkuv1wu5/nDQRAwj+UKTj5X8bzpRrO+sr5ke2xwZFhJGieqPFy45xX3zc0v/fEf/1GzUQOE7nnp/cvLq1nGPc/T2oioSqSNqxFRSs7Pzw+PF+Oku7h8eWR0EFM3TVNAoISSinueZ1uulLIXhOvrNYxIZaBaKQ/24t71a3Ojo6P79xw4d+684lJJCHFYrhTNbqSU2thYFUK6rn9g/4GZKze0ooXSwNzsQhT3Vtd+rzpQ2Lt3b7vdbLdb09vGdu7cfvbM5aDVM9KoSIPWBGOEAIzMk6m4WpaDkDZQr/FjQQiklL1er9vtTk9Pjo4N53K573znWwCwsrKcZTyd3FatVoNu9PnPf/5lL7v7rrvu+spXvsw5Lw9UhBCOqyzLKpULp06dajQa+Xyu1WpRSkdHxwYGBmavXbdt++d+7r2f+cxnwjAwlD3btgFUu90GpMYmx3sbGyZ9FSJjjEgppeIGfywPVGeu3Xj/B/7ru9/13kOHb/1f/+tPn3jiCc/Pt9vtanVwamoqy7JjTz5d39iQUl27doMQsufgBNZJuehcOH/+S1/83NFbDn/9q7PPHH/KsqyMS85luVy+++57slSKLCoX81mc1jdWr12+sG//nkMH9/EsfvWrX7Vz567F5cXmuWZ1sEKp1Wy2x0an5ubsNOWT46NSSs/L+V5ea40x7fSCjY2NSqWCCcHYBCKAEOBNC1wNAAoMUGK5zk//zFte9vI7HvnG3z1z6ukkCx3HpkxznkZxnCM5yya241vMIYRlSZqmqUEckkyUC0WjF2mwZgNuUsKUhInpbfe98lVxkl67tvzkk08de/KZ2kYdMD596tlC0bnttqN/+cUvzM8tCaEQQrt3bs8yceXKlVKxIrnMsqRYLIZBxDkXQjWbzXq9nmbxT/3UT01MTGybnP7DP/ofoNDR218S9tLJien77r3f9ewP/M5vd7tBkqTdbse2GSXWxsaGVHx4eHL3rr0nnzkeRT3X9niWIKSDMBAyPZw7XCzkLJs0Gg2pslIxN3PloubZjl3boyjCGCupgzjkXC8tripJLGKtr6zu27f3ypXLWZbs3Lm9XMlfmZk3LgXlcjVJued5Y2MTi8vLjUYTaxgeHq1UKh/76CdWV1ff975/6Xvl//nhj/z0T//MS3fskQifPXcp+fgn5+auaSULOe+BV71aKXjqyeO2badxwnnq+/7gwKhlWd1uN4x6nucqoZKYGxxTaw4Anudora9duzY8XGWOlUZtjDHGPEkSg3tKKSuVSi6XC4IgjmNDBqzX61ojxmzP84aGhjY26gaV4DKrNzaq1Wq5XFxYmAOkm81mJ+gQQrMsQ1gjjDzf1YBMtKpAFSvlpaXlxcWlbreby/mlYgUAXb8+OzRSBQDbdTqdzl/8xV9kWaaU6HRaUqte2PV8p9lupElGCIl6kUWsNEkBsMYcUyql1BrbxB0bnmo2gihOl5cXhUjOnj+5tr4cReGTjz8JXO/fdfD4U8fAc0uFwsjIkF/I1+v1VquFEBqfnJBchGFoOHpccRFm+Xy+L0RBiOJSYwQKIYSE5pXBysTEWLvdbrRrURgBYNfy4jhCCGFMhJAmZjBgk94MHJVSinP0nBefjuPYeCwb7VNjwyWEYJgAKEoZBoSwNjKp2aZttxDZFnuXc7mF4CBK+merlFG429yOhWsRhEkcx5ZNi7kKYywOQ0IwAOWcE4KNsIZQUmutRF+IGfUXAhBSKt1Hw83/8c29mlprLZXSgAhs6jMQpLFSHCGitTb8FM45oUgpmabK9mjOzwmRGHodxtiIOLuurbWsDlSLhbJGEMVd3/cwxkhDPl8MuusiFRhRhvuoKyVUIR3HCUJIaW3IOObkoyhSSgMgjImUotvpbdu2rdfrESBJnCCETLAqpQRCCSEI4SzLsoz7vl8qlRYWlrTWzGJS6CiKfN9HWJq7aeZnmtJCoWDE3zAG6jAlASFMmZVl2RYAanS6bYtmoAQ3aVLfPw1jLERmtAWUUkr18T4ggDcllc1qabjGXHDTwYkx0hoZSROpuAS9pZ+7CbDKjKd+ruh5zu133LKwMJekASGOUa/WUmlQxioQISRlH6HWWjLGyvmSZdMkSbIsNWq8hrRu/oQQIgxDtamEa6YiAJgAbIsLb3LXTRXsBGOMEQipNyFI2Hwo+gUMzjNjcG3OUCmlpEqSLEmyKExyubxt267DbNtljFmW2HwctNaaUiTllkYkAsoQIWbmQ59030/StohdRpwEISSlRogYh1sztaVUZkZnWaKUcF1Xak0JIYwRBlXfKZeL5pLr9WYURXESuZatNeYiI4QgDJxnCKEk5Rj3DfS01mEYIlogWEmt00wAAkU0F0mpWqgOFofHqlPbp1ZWF2pr61PTOycmB7NMzC8shWHY7XY9N8eodeP6XBgFScIpta5du3Hjxo1CoaCEMKKLcRJ2Oq2xybG9B3abTLDWXGs2m+Vyddv2CcEVAK2tbfBUUOJgigHASDBblpVlXClpFiIzY7XGCIhlmR5W6vs+JVQp41aScs6FyIzXpZAZ1oYSrvWm1rYphpndn1JKqYUxNlQMQohSUill7qCh9vdptjIzd99xHK6kyUowxoSwLOOdbk9KKYQUXDFmcHAzbwUhRCplfJs2NjaklO1289vf/na+4Ns2tR0kpShXCitLQZamrmtJ0V+TuUgBGXHwhDEmtTZLBwL87OkzSsHtt92+78C+b37r4VarVSoXlVK1RqNYLOaK+W4YaC0BVD6ff93rXnP16tVTp0/fcccd99x37/r6RrvVbbU6w8PDOc9fX1/fzM0t8zgTSqvVqhBqcXGx0WhkqYqSGGmENSbE1GjtNE3DMKCUYo05l67rSqSk5Pv27ZFKFIr5bdsn0zQdHR0plYpB0EvjqNVqmBBrfn7+gQdf/e53v9e3/Vqr9mu/9u+0Ro7jfeQjH42iniFymcjZPBHlctlxnF4YmFt2+vTpo0ePnj590iioZslzxbAsg1e84jn3M0pfKDXwooMxYAz+1b+CXg++9KUf/HozPA9+93dvUvL9XoMQmJqCD3wA3vWu7wnVcQ733fccxur78MADfe2L7zNsG+69F77xDQAAjOFXfgXuv/+HPf+t8eCDkKbwgQ/8AJz9R73e3/1dePvbvx80qRSMjsKuXc/Bnbt2wbvf/YOvGjZv2dvfDrOz8PjjP/iU/vHDdV84l86f/9GUl4MA2u2b4ObDh+Ev//LHP6Usu+nTAACh5yb/DzPS9IW6FhMT35MzHkXw6KM/2hk6DvziL77wQ/7mb77n69Hm0Fqbddgcp8TSSmuFpNCC93EVs9obhpaRaWaMNZvNqampTqfz2c9+tlZbd12XK37i6Wfa7TYhBCFdqVSSLLZt+w1Tb4zTRIECjAApjbRGqlDMcZ5SpqWUGiQhNmjgnBPCAIARarq7ACBJErObGBDc9CEhhAC0bdue5xU8HyNx9txxjLNeLyJIYkxN802n02GMrayv9XrdocGRW3ftvefeu0aHd6RpmmXi8ME9lFpLS0sfeP/vzMxczhf8I0cOOTa7dOk8V/LgkUPFUn5+fj4Mw14Q1+fbVgOXi4Xdg7vCICoUSr7vR52IUswsxvqmKQCUsm3btu3aedDx8rkc0Rq47KfThGCzWfZvwvP8kQBuwpqfr7DxAgxab9KcjVugUiARYAyMYa0hSUSaRa1WKwg6gKRUWavd6XRaGKMTJ06cO3fGd71CobC2WpufX2o1e5cvzTZa9QsXLlSrVQSkXq+bqK5YLKZpmqaZlKrT6UopDx48qJRaW1uLomh5cckUQqvVsm3btVoNIdQJuhhj23YIZnEcJ0lmWY7holPKRMYbcej7bqVS0Vq5nmvb1rVr1xzHuXb9ytziiohhbW1leWlhcnq8UPSXlpZs2yKEZqlKo8yyrCwD13XjOOZJUh4c/OVf+jec829/67vzi/OUUpuyLJOU9okScZxqbchW2Fifu44vpYzCBADm5+cxxqY+3263c7ncFjvj0qVLGFETrimZAUAWp1JKy3IyKYxXppSy0+kQQhqNGqWEc660cFxXaV0slYYr5UKhMDo66vrO4NCtjUbj0UcfXd+o+37+6adPxr2YaGtkoIAQisI0y7KknTJi3bgx73v5Xi/uNDqWZXXbXcfz0jSdn5/vdAu33XabeQjTNDVRFAAEQYgQynt5QxoyWHN/lkiYm5urVCqcpxmPpZQXLlxUm7Qp47CXAjJ1b4xxGIZRFJl4vdOqZVJVq9VSsaIU9Hq9XC7HGOt0Os1me9euXQTwhQsXCGYY04GBgX/xz//ld77znWdOHDfSzxhDPu+vra0JIQqFwokTJ3zfp5SWSiXf9435XhRF1WrVsT1Kqet65WIpy7JWq/WHf/iHAPiNb3zjG9/4Rkoxl3D06NE9u2c/+9nPdjodx3EGBgaEEMZ/z7aZ57lK9d1FDbUHAKRWzMJCgeMQz8tJqQ8cOLK6uj48NPoTD732y1/+m5Onni6XBlvt2tp6LQyDoUqFICQBHMexbJrxJIoi0yVqiDaY4iRJukFnanrb0aNHG/X1Z555RvK+tY5JdaSUIuOmPmFiLymlzaydO3diW2dJKqXqBu04SnNePsuSbrdr2tYsi+7cuT2Konq9KaXohUESyVwul6ax4ziWRf/my19cXVs4e/YsIeDl7Fv2Hty/f/8zzzyNEOp0Ojt2bR+qDtY3GrOzs5ZllYuVarWKN7t3BwcH6/U6xlipvke54FwpJYRot7pTU1OO46RpigmMjY0hhIJ2h3Nu2yxfMAanaaE4RF3iONTxLNtjqKU1KMdxgm7bdTxKLYKtP/rwh01bZaVazQRfXplPkoRSkmZRLpfrdz5mAgAQYK3R4OCg5+X27Ttw+tmAc6mytA9YgMiyjFmWEEIIZeakbTmrq+uMsSTLlILBweHBgQGtLoa9dMeOHQihIOj4Xr5cKV67dlUI2Wp2SiU2Mjye88snT5xJ09R1co7jdNpBoeITQpiFx8YHK5UKJbZ1GTIeE+xQQqUUju2EUQ9Z/eSHUm1WOYMOyE17dEOLazabaZrWao09e/b87u+9/xd/8RePHXsCALmua7p7ms1msVi8evWKUkJr3Wi3gqjn+/7AQLXZbFJKsizN5fxSqdTtdvfvP1Aqla5cuZLP5/fv3+/5DrMISVG+4DuOE4ZhEASUYcdxMCZm22u1Gq12I5fLWZQKkWlNXNc1WdOTTz4+NTXxzne+e9u2qccee4wwdO7sSbOhxnEspbQsCwBPT1bDMFqev3a2WX/bW946NnJf0O4szs25rjNVnDp//rzj+lEUra2sPv74oz/zM29JogQ0X1uZJYjv37/zne98uwaZpBFC6MSpk8dPnBgaHvw/jrxpYGBgfn7h1JlTY8Pjw0PjmKgoiswTWiyUGbO9fM5QFG/a9RQA3jTCRSAUFIq5IskPjQxVymR2fu3a7A0uFLUcy3aKRUfKTPA0l/MYzcIw5CKhlBaL+TBMHNsBgChKUplmkcAEqMUIgOc5vV5PCpUK7rpurdYolesf+cifXLx8/dTx05VKeWx8/OV3v+z69Zmv/t1fR1FEmA2APIcsLS0Vi2VDnbMY0woIoUJkcRxblhUE/LOf/ezu3btd133qqae++91H19c3QMhbb78dIXT16o04TpMofvbZ83feduv8/KySspdk5xoXhRBaS5eV6/W643i7du2pb9Rc1/V85y333P2Vr3354sWLe/fuPnTo4COPPBKnGQeUpulAOb+yvFwslQAgy4TnFSrlIc/Lb6xueJ7X7XZnLl3euXP7Rm0t48mpUyeHBgZ379inEZw4dXJgYGBsYsJsfK7rDg8MpylfWlhVCgTXf/6JTx04cMDPFweGRh7+xre++e1Ht+/cc/7iZZBC6QwAgSZPP3UsDCOE0NDQQJr5CGlD7ut0OkIISmylkVJKY0QRBgCjBUEQ4mnGUwMDISkNOIUYYwZcBgBjqmbUnKSUnuelaeq7Xj6fv+22265fn7148VIcRjduzGMMlWpxenJieGQo6PWazWa32x0bG3Ndu1KphO2eZVnlcrnR6vR6YblSvHZtptvt2cwqFouu64RJCEghhJXQtUazWi3XG61SqaKUWl5ebnc7tm0zRuM4IoTkPL+llIkWCJBcrtCTCc+47+WbteZf/MVnSsXq0MBwnKXMQb/3Xz7wtre99Vd+6f/zb3/139Ua7bHB8bmr8+1Wc2R4yOyJhagXZ2m32y6VKqYPxqB1SZJohR3PLZarFOMgCLKUa9xXqxgaGS4NFLIsWa+ttlothJXj257te47fana4lJZlIQ2bLRG2+doBwHy3Rh11i0k6MjLS6/X0pmIGABhygClgYAxaK4wwxhhhbLsOwphznqYppSSXywEAJZmR0lJKgULG9lZrLblKdGo5DABAKUIIbCLFaZpKzg2HRQmBsLZtZlk0TWXezwkhMpWZlRaeB9Vt/apAm1NSSpnGTC0VKAWYGN6rqYhnGTfXtZVgp2lq2ThfKgJoobiUWRRFAEApVUpqLQkhnaCrtBgeHc77edd1ojSiFuU8pRyUkLbljw2PNRtdJRQhTPBMawVKcymVBIwR1gRprCWAQoRSi9qZSkzVn3NRLBa3bdu+trbWarWECIUQrmcZZJNzniRZu902FQIzE4rFYpIkiU644KbDhlBtEMwsy7SWQohWq+W6LmPE87wsE1JyJUEIoRXSWgNDtm0bwY2w1zM1AGYRrTVCGrTGBDAhjmsBQBAEWvdVU5RSoPvfuVLKtt1erweAKKI8SbVtmS+578JHLQTSZGWbuKqyLOu2227Zd3DP5csXpYp7Yct2KJJOHMeg9JZ+AkLaKGBIKW3b1oJjbexhOaVUSmHo0lJyQkihUDDVLMNvMs1nBmLe0pAxYS2lLMuyIAgQQsVi0Ux+I1Flqg6GXdHnfVPCGNMINj1L+xMpy/jg4GC5XD169Na//du/VX39aMV5almWlEhrzZhFKDKSCAZuNp6NAGA45nrT25xvzvn+rezjngo2ixNCKMA4zUSaZabtwMQeCCWO41iWpbQwojqWbXvMA4BCoWD4EEBwwlMAQAgbc2/GmMawRfFWWlCGldK9OEYIOa6VZSnDFBR1c6w8kGcuWlmdq9U3wjRoNPHIyEijVs/n84yxNE3L5XI+n79w/jzBbHpiexpnTx17BmMc9uKh4QHDNBKpUEh0u21Asl6vcyFMnb7TabquZ1G7trHRbnQIZkqEvp/HlHDefzr0JtZuTBiFEI7jkE1TRIyxIcUnSWK2BtRX79HGtsRxbMty1Kah6Baj31y7AQ6SBAhBm0os/XAOAITMuNgKO7nWyvPyAwNDvThaW93AfV+pZHVlPQl7yHLKpargRsNHW8ycCMakX5vZVO3QvV7U6XQAqX37ds/Pd4aGBsvlsmWtlkrVbreXy7smU8OaCJEo0IwxBVpLjRBsSpZjreXu3Xvf/OY3l8qFz3/+M71ejxCUNBKpuBCiUi01m/WB4YGHXv+65bXVZ889myTZ0urK9PT2QqG4ML9ULBaXF1fqUR0ATDtpr9ejlKY8cxwn5RlBlDHm+z6ChDFCqeVYDudcScx5amRw4jgmhBFCenFkOSRJ4zNnn33ggVfFcby8vEgImZu/USrmszRdXlky7qzNZnNoaOjggUOMsY3mxoc//OFisbhz5865uTmEdKlUMvGwyY9yuZzZqg4cONBsNxfm533fv3jx4uBg1Wxbnudo+RxgJgQ8+ywcPgw/xkAIfvVXYXQU/uiPfvCLd+6ET33qR/t824bPfAY+8Qn43OdeBNFrt2F9HXK5546MvYhGyAvHV74Cv/M7/Z/f9S54wxt+tFPaGm94AywswCc/+T1f8ONd75e+BO9+N1y//j1fc+UKBAGUSs8d+WGuemtUKvAbvwE/+7OwvPyjnduPMUZGXgi1X736o31CFMH8/E1aydPT4Hk/vnyzEPCRj8D/8/9Asdg/gjHs3QunTv2wn1CtvhDZf+qpH42y/f3HL/0S5PM3Hbl06fs5GW7KMyAAIMTaWuT1pgKb2dZ93zcKbysrK8YGECEEWKdZhjBeW1//4hc/X6vVKKVTU1OXLl06fuokT1JCkJF4On/+/O7du++886VGuEwIGWItZMIFR0i3Ow0hPaPUwTm3bccQ7whBhCAhMhNObHZQUebYvu9jRCmljuOY5g+M8ZXLV6K4s762FkZNJSFJ4kq1dPToLb7vr66umtb2t731LXe+5GWu41+4cOm7337UsqwgCE03YKcThFFn3/49IyMjCOl6vVYsFgvFXK1WO3/hrJRyx44du8eqQRheWbnUaDSChd7GxkabdwFLXlfUsmm73UZKTU5OEcyOHTumJB0anLTdnPG73IKXDeJssusX4MhbKhnP//X5R7a8AY2+M0LAOSAEFPePKwWdTnd9fS2MOowZq2iNkL569eqTTz5uwrjhofFGo9loBoSwXbuOnDx5EgADjgGg3Q0azYYhBMVJZGIjU/AUQpgWmMXFxbm5Odu29u/fL6VcWFjQWtq2PT8/b3QkhodHpZSu44dhWK/Xbdt1HBsznKksCALLYcwiGmnBs5WVJsY4jIIoirIsQwC2j6Iwa6BOu9ucnJxyHEcrgjHjWcw5x4h6nocQwTjmcXbrLbdXqwO//uu/Pj+/kPO9TqPBLSufzxtsywQcRiLARPZZhhAirusAQLPZbjbbBmiTUnueBwD79+9fWFjQCg1UhzqdTqlUCsPQEOVMD1e32zMwDUJoC/oZGKhEUchF6vk+bKbWc3NzBw8evHZt5sSpk9VqZWpqanZ2wfe8gfJAq9nuBTHn0rZ923bSOHEsX2jgmewFSRJLzbVlOb1e7w1vfGOSJFeuXCoUCotL8xcvXjSle8eiUhPOM9MeFbSDxkbDgJ4G+zDPDMbYt9woiqSUSCuEcZalExMT7XbbcHK11hQT03Louo4CrYXOsqxUKlkUGo1Gq94YHRkXQgjhGPYlAFBK4zgx0pZCiCyLdu/ePTIyQgjxHJcR2st6Jv4jhNRqDUKI0X0fGBjwPK/bakdBb9/BA1NTU48//ngSZ0NDQ+973/uOHTvGLIdzfvDg4ZMnT3/rW9+69Zbbjh49WqqUTbYwMDAwPT3Z6QTLy8uTk5Pm/rbb7QoboNS4coNUYB4ajDDPAGPQGISUrXY7TbJdO/cePHjwyNF9+Vz5J37iDY5LPvanH4miyLZtw9uiCA2Uy6YTTUppUDlKqeO6GlS5UmGMCcG//vWv7d/X5/t7noeyLI2TDJDjOMVisd1uGz4F59x3vYmJCYxxnHRt2y7YngH0bYe1mh0j1RLHcavVqlarWutut60ROI4TBcmdd96zsrJy6fKFUqm4f//e1bVFx6UpT5I0Wl5eTtN0dXVtfX1dA5QanbDLV1dXFxeXy+Vytx0AgGVZ27dvHx4YvHLtigmyu92eUsrYKFmEYiDtRjvv5aemJ1q9nu/4ihtumsU5r9VqubyvVNbu1AuFwtDEeJIkS8tz+/cfzOUKgqMwaL3//b87c2X2o//r44V8qdZoIIQsy2LMdhyvG7S0loRqznmahuZ7IxQZ4yOQcH12dm7x+sho1XacOOQr64uO42AMIJXjeFLr9bX1KEprGw2MqZC8Uh0YHBycnJycXZjr9bppWnzda3+iUqkIybvdbqVS6Xa7CIiUCgCklNVq+erVKwB0anpMCr28VFNaZFlvcPCwZdGlpYUdO6c63drxZ860W6nW2LKsNEkpZXEc25bDETffoZkJg4ODJtvHiColkiQxdU7XdSmlvV5vbv7Gb/3Wb83OzpqDaZouLC+FvRhrfM89916duX7qzLMmj2q1WoVCodfrraysuK5bKBT27t27sVEzLZ/Hjh0bHR2d2r5tY2Pj1KmTuZzv+16hUKAMU0pyOb9Wqxv5DimlZTHOeblcTNM0jpNSqcS5MA0EhOJS2b946dzyyly3V0MkA0gcj/m+VcwXktRO0xRkXyqnUik22iKO2d997cvbp7YfOnRoZmYmy7K3//RPz1y5tri4eNttd0jFZy5f+ehH/qRarbque/3KRc93KKWN2vLC7LVvPPLtt7z1n+3UuBfGQ6Mj169fD8OwWCyCyq7fuFypFqlmpWKhUCxVKgNRmGRZYlO/UikI0TeXUAqUBujbWwHFAAQIhoJPkgyiKL4x2710+cLy8jKllGMqpex2ep1uCwNQauXyXr1eT1MehhFo7Dj93lghEsZ8hBQhxLA8bTsvpez1olfef2+9WfvVX/2VN7/l7ZRhDOqhh16T8eTc+VPf+tYjK6uzI6MDQ0MDWSaYbWOANM2CIOCch73e8PBwp92tbzTa7baU2iyhnVqtetddWuuHH344S+X09PS+w7dMT21vtVpBEHRanccff5xH2eVL1zKelMvF4kB+aWkpU9xxvMXF1W43ogjfe++99Y1aHMeveMXLt++YfubE8ZPHT06MT9VqTdt2tAaDDxr+r5DSCIhTak1NblteXjMU5vPnz3u+s23ntne84+1LK0vHjj0xNjxqWTYieGpqChEyPz+/srZaKVUKhUKWZfWNOgKKEXvnO987c/X6tm3btu3e/jdf/src3AIhbH29xjOR89woFFGY/e1X/259da1UzE9MTG7bNn312iVCCMHO3NxcHMdao2azyZjNhUQaBAaGieNYQghNNEE0jlNCmJTawA25nCellFwwRm3LQghFYagBTGHVdT3bdrIsc2zv6tXrhNA04bl8fmwME0Kk4u1uZ/fe3a7nzc3NKaXW1zcKheKePXuuX54Jw7DRbgCCjMdZZtm2k8tbCJGqV6rX60KITrfl53JTU9ulQrOzV6vVqlUuDw4OB0EAShvOnVKqXq/FbnTHnbdduXhNST05PnXHrXd88oufUgI8hwDAlUuXwzDycv7R228dnRxeWJp/7DuPvucd7xwbGZu/dCPpJBZir3jFK7SWUqv777/vxIkTtx295eKVy8vLy6Ojo6Y8gBAGQFoDY1YUxcV8jlLKM4GMeg+FfCk/vX1qYWG224uKJR+hQrcdWJiZNjJqcBYEKc8QQsYsxRCHtdYIAQJkInvHcarVqm3RKO6B7svaUkopZX2FXNsx8Bm1+4qxlmVBX15VK6UIJkmSoE2wzEjaAQAimGxymXiaMdsSQsRR6udcz/MwgTiOtZRmAmOKHeKYyF4pBZqY0AJvytoKJRFCiGCk+0rAhpeNtFkjAGOsALRUm8APNpGesb8zAOhmNYswx3Ycm1JMLaJBpjzOMm2wZhOoSKktag0MVLJMdDotxHClUuI8zdJUSxApl9LY2SkALqVCSGeZsZUjAMAsSynlOA4AbCpCYMkVZoQRKwyiZ5467nkel5m5I1GY+L6PGbU0MbCpENwsI5VKZXR0/PLly2E3sCwHYQ1IYUyEME+8dBzLpD3m+/c8j/OObdtaoSiKKSPCuJciIoSSXEjRJ04afQ8T0hhmt6E/53K5KMw2exG02UMNfO84VpJgQwpGhsUtpMw4xliDxFqrzT5NA2Q7jiMlD3odJXg+58zNzTouLZVzqwv9tNuQoJMk8TyPUqq4wJhIyftQoEjN3ccYbfHoAUxcwQzWbH7YYtwbqkQUhaa6H8eJWRu31IHNNNii3pvPzERmaAGGtWSmiet6fTt7Laa3Tdx6660PPfTQM8cfW1tfGRmdWllZiaIoj4uYgBBSKgCJDDBnSiB9jjMYQQzYYnKZ/5sGAnPCYCQplaKmcRMhDWBMI1zXNUGa1ipNudGl4QKyLAOEpBYaJGPM9fNDI3s6nc7GxgZgjTQopfIF13w+QkhJ2BI/sW3bspw0Tev1DYyxRJyLNMlCOzfQS9pX55e7QZsxUioUl3q92dnZQqEwNDQehYlt2+1Wq1oeuP+Vr47jpNVq1et1z8llIuNcxlEquOqFXUopsVAcx7Zjua6r47hYyq+v1er1eqVUyTIRR7yULxFsEUS1xr1euFVXoJSaIoRBgQkxpQhkepmDoAcGQJdg7BCk5Ca6NvOEEKK1RKi/dBBCEJCtr3prybLtvriKIY8b9B9Qv6aCMSaUGCebMAwzwQHAbOtxlI6MjLz2tQ9FSfyFz3/JPCMYI6VAKY4QEonCGPMsDHupEAJjCqBtmwKopaWV6mCJWsx2nOkd4xhjIEJKwZg9PjV84cIFaTja/YfaMZ6ZUZSMjY2Njo6eOnXq6rXLt91x68jIyMzVK7t37+RKSskpJUHQsW126223LC8vtlqNoeGBOMkAo42NDcGlbduDg4Ory2sbGxsmc0/T1HKY5dgOcSilQRAwQoeGhrQGhHUu5zFmCyGQQpwnSivHdkxpysBAaZpmXGzbtq1UKszNzTUaNaN2JbLUtLwwxqIoiuO42Wy+6U1veuNP/qQxX7n//vsHBwff+973drvthx566Dd+4zd+8zd/821ve9vHPvaxEydODA4OmjdevXoVESSVcn0niqK/+pu/tiijFIdhaNOblB1e0Of9/KHUC7mcz1cSMONd74JKBX7nd74f1felL4UPfvBFjj/fcOtFB6Xwtrf9CATq5w8hXqgvsbAAf/Zn/Z89D376p3+cj90aP/Mz8MUvvjj0+WNfL0LwyU/CL/8yPPXU93zN96dU/8BbRins2fP/OtyMMRw8eJNPYBDAysqP/DkXLsADDzz368AA5HL/KLfACxeg3X4ObgaA+++Hz3/+h6JdUwqvfvULD34vmYsfY2zfDg89dNMRzuGrX+2nci869PPK2ELILUWjrXXGNGEsLy8bsNGYB5hCI7VMMU+ub6ya1hPT+/j4448jhBzfYxjt2rVrfX29Xq+PjY0NDQ0tLi53u13bdmybIaQ9r+I4NsIyiiLGCOfc9vwsS7VGUkpmIS5SE5YMDAzk80WltemsQpQkSSJktrJaN+q709PTUdSbnZtl1LYsW0u259ARx7EOHTo8PDxcLBZPnDhhe3673f6bv/krSq1Lly416y2LOQMDg+Pjkzm/YFto965tWiHJs127d9x5x61//ddfunj5QrvTtG1rz55duVyu5JU6QU9KeeHsBRY7lmWRPLYsZ3J0kuZyuVptgyJMCHnD6x+auTy/vLzc6XRGx6eMC5LWQDAgBEporRGm8HzEGeAHPNvf6/4R0jcMRAg4l1IKxujQ0BCzhoXIWq1WN+hojeKIr681DGKSz+e3b9vb6QQI8NzsMiV+oVDqRStT0xPvec97/uf//J8zM5eFEAiIKTXkcjnf9Qq5fJZlq6urxWLR932tted5S0tLxlTQTBSTmcRx7DhumqZaI0JYEAQEU5sgBlgj7TjW8PBQEHYxJZZlpWnKMxmGgVJgEUtrhDQKuwlx5cryhmO5QJAUSEqNCIuiqFgs+36+3W6Dxo899tgv/uIvPnvqNI+T3HD5DW94wxNPPLGwsGDbttbI8Jptm5m+LbOvm5K1EKIX8G3btlmWZXisjUYDY3z58uVeEHW73ZGREbPLbr2XEDBKHRjjTEjP87Zt25Yv+N1u2wg3h1FgMpw+vMvl448/XqoUcznfqEYMDVWjMJubnRdC5XPlRqOZxNy1PIIZwnqgOtrtdrNUDFUHSqXKyZMnh4aGXvWqVz3xxBOe5+ULvud5QnAAbQJx0GAATYaJUoIQZMLrUqlkaJXQpwVpmXFKqUY4TdMD+w/91m/91ne+853/9oHfJW6eZxLZfQJRFMUpT6MoyqWFUqlk2A29Xu/CxXOM2koBYywIelrrVqvd6XQZJlJKU/0+e/bZD33oQ+Pj47t27bpw4YJlWQZZa7fbFGlD0R0fGa1Wq4bXzDnf2Ni47777GGNLiyv79u0rlUqvfOUr3/q2f/blL3+Zc0kI+/u///svfPHza2trBw4c2L59+/Dw8Bve8IZSqfTkk0+VSqVKpWIsDSk13jjIRPxag5TaaKObB6rdjuv1OmPslttutSgjhFECR289EAbZpctnEWatdte2KLMxxjjLUtd1CSFpmiRhWCyXJiYmqwMDAPDYE4//1D33HDx48PLlyzdu3FhaWhgZGTl06NDJkyc5551OZ3Bw0LShmWa9XC5nMqsoihBCigghRBhEvu8zKmr1etSLtwJfrfXGxobneblcjnNZrVbDXHjt+pUdO3aMjt0nZBaGQbVaJgTGJ/dXqwM3bty4fGkmjtMHH/iJM2fPnj51YXBgoNcLXdsBBcZLqtFoipRfQzP1er1QLhnaPiHUROGCQ5YltsPiOF5fqy2vLNm2vbS4AgCmZTWMupVqeWpqzHGtKAqvXZuZnt5+8eLlG9fmJye27di+Z2O9s2/voXJx5OtfeySO03zObXcCI7NoWVbeZVGcUkowYY5jc84xBkxASQ2gNRKcKyFgY72jNd+xY8fYqN1qtZTUGxut1zxwq+/7ayNrOS9//fr1qzOLlsOKpRyzcDdoiCzSwAv54smTJ02k3ul0RsdGCoWC1rJaGSzkeRRFnU4nXyp0Ot182TMdG7afIyQ3NFS9MXvZttnIyKDWcNttR555+sxQZXJjrWNZNE1TizKlJSbPyfwRghzHiaKon+5SprU2+b9J2kulEkLoG9/4hud5+Xyec+66PkKoVJTLy6tXb1wP05CL1NIUY5TL5brd9vj45Ete8pJr1651Op1r1653u13G2KVLlzzPM0a9O7dtLxaLpvZDCMFExUkouDKCgyZ9NQj+8PBwtVpJ0khK2ai3sowzxgiDSjUPKPvwn3xoeXl5+/btaZoiUAAo5bB9egIAarUaAkhTaDabu3ZtP3xg/7FjxzY21rJsT7vd1hrShB+99ZZ2N1hZWeGcV6vVi5fOJ1FICBFpe3R0fKNeu3b9isjQ//Gmt09NbiPUKVQGz5w5fe365bm5OVDi6NGjUxPTSkhm+YVCYXhoxHapxZxUcM9jQvT3Lyn7nTqwWU+VSKQRb7ZbKZdpmrY6zVOnT5RL+Ve+8t7VlRsdkhVzuY3aSppwQGp5ZV3KzLhmIQRSCdDIdRhCtmWXg6CnpMoyZHidQaAMxD88PDg2NsI5Hxkd3r9/SCvsuv43vvH1B151/959O86eP+44dHl1pVarYYBKpTI6OvrII48QzGKIG/Vmu90OOj0ATClSCrRWuUrlwvlLF85fQgiNT4z2wu7ExMQ3v/nNfD5/5MiRM6efPXP6rOv5POW9XvjQa1+/uDiv9er+3QdnZ2cty+m0g/tecc/oyPi3v/mdAwcOVCpDf/D7f+j6zuTU9PGnTxw8fHj/vqNPPvmkSGOM8chYkfe627ZtIxZbW9sAENeuXQvDSGM9NjXy4IMPPvzww+1286GfeOjkyePXrs00m+1OLyhViiPDo5dmLg8NDRkxB99xr1+9EYZpsVByHO/VD7zmzW8b/LM/+7ON9frlyzMAyLFtKWSpUMiy1Pd9pKRSyvddQsjq6ioh+MD+Q1evXl1fX+M8s23bNN+bPcXoLgqlEdIYY6R1lnHe7GaJKJRt13WEyEQmOU8RQqBRlmWGdRuG4eTU1NDQ8NzcnKmIJM0sSvgtR44MDQ2lKR8Y8lzXFTwVQiwsLK6urm5s1BBCIyOFxcXlZqsj0iwIe65re55XrhaiKIw7gVJqeno7SMF5nKQJpZRzef7c5SiKlNBhr5elKUJoampqeHjo+PHjxnjs1ltvzfs5RmzPsaBciaLo6aefxtryXRcBFiIjVO/YOb1j504g2LO9u19697FjT/zCP/8Fi7F77n7Fz/3sz4JU52bOnzlzRiO0sLxCLFZvNQ3Zv1KpUGJduTITBCFjTCkIu6HWOo0jjLFWoAAppRCBer1OLMgX82HSdRy7WCw5jiNSncUciMaqn7ft3LlTa72wsECw0fpQABpjwlgfVs7n84Virt1smcXNwNmEEIRAa4UQ4koaE3Cp+k14WmuCCSaIMSY4p1SjTZbElloAxhg0PJ+5iYFImWZZZgsGCGkuCcIGTiIIEcuiCJKkLzILQqPn1lsilDTMR8M93JRB0FprqZRSChGiNWBMNML9k8CIS5EvFhyPQ1uHYQiguRRaa8cmWqtWq2VZ1HYt22GVSsW2WRQHRvAKIaN6IRXKMMaIIIVUvb4xPj6eENJudizb1gK0RiBBg6YYI2pIOgRhqrUGY3TGmAGFTUBi9twsy4wY3ZkzZ4yJjakfSCk1Rr7v5nI5DbLRSJSSxlzO9/Pj4+PP1p5lzDbJWJJI27YZQ57nMca0lsYMcHh4uFAoCSHa7a5je67rKKUVAp5wizIlpNmkMGZ9cQzZ54eazpItPq9tMwPSAQAhCGNqxMHMuzjvKx5gjKTkGAOz+jdFgmSMEUKllBgTpQSzSKNRv3jpvGmqs21SyPltVyZJIkTW7XaHqgNjw5MGnDWkVCnRwGClWCxyzpvNZq/X47xPgnZdVylt6kOGxWxml6EXGHUFM88xxhgT45BmyL+dTsf04dJNT7kt5JdZOIxSghljFsaYUduUDWyLttqNgcHy3Py1c+dP/u1X/3J+fv7AgX37D+wJem0h0zSNKKVSckIshAwLux8qAGAptFIKIYIw2syrRf/pAADARqREGlEzAIM4I4Q0poZgRTERwpTiCIAWQkkZI4SY1Ufes1QgIKEMOee+709MjLVaLcaYVLzdbtuO7dqOECJVqdIIAcGGe091GoQaeDcMfd999avv7fTahOpLVy70wm6WJaVSKYlSkIAR8Vy/1Wqtrq4SRLXWZ8+edV0vCEJTJwAAz/OisLeaZvl8zrZtKWSt0di+YzpNRBT18vl8LpcTmTx88HCj0VpaXNm5bbtSiKdCCtTtBiLrayIjhDAgBVpLJaXEGEvQpsEC+uo9otVq5XI5DAQhZNt2miqtte/7RhEIY4Q3xWGM3rjginOuuNB94NqI/IBZZzYbGjQAIIpdz9tMpXk+n7cspxv2BFeEsCRJDQl3fHx8586d5y9euPW2o4uLi81mk2BCCNXPGaUSU2ygxPiUMKk4piTNsna7u76+MTQ0ODBYpJQqnaZpWiwWJyYm252NleU1KRUlhBBLKegFke/nPbcgOJh2hwLknn76ac/z3vCGN/ze733g2DPHfvmX/+98Pq9B7dq7hzCYW5wbGhoaH9+xvFqTmVRaSykTngVBYNoWNzY2KKWOa1m2zTnnShPMhFRBu6VbTUotxhhhmNnY9XOcc8bQnj170pQvLi5TxrRGkgvHcZiLNUCxXMIY4jjkIkVYr6ysSKlN7m8q8ZTSv3/4ESV0vlh4+ctfvrS09KlPfSoMg8HBwaNHj1qWtVFbRxgQhjRLemFgOg96YeD6Ti7v3XLLLRsbG0ZXEBNkGIXPRzw2b9cLR68HH/gAHD8OW2I5ngdveQu84x0vhHFf/3ooFuHf/bsXx+ze/Gb4lV95kePnzsEHPnCT89vICPzbfwtHjtz0snwefuEX4P3vf/GT/F5DCPj0p+Hzn78Jmsyy587wjW+EkZGb3pKmcOwYfOMbcObMTXxVx4GjR+E1r4GXvewmnd/hYfjJn4TPfe6Ff/r7XO/v/i6srT135EWvFyH44Afh938fvvCFH/Zit8aL3rJ3vxve8pbnoDDHgUOH4Nvf/pE//EcaSsFb33rTEd8HE5X8SIOxmzD6chle9Sr47Gd//BPr9eCJJ2B6+rkj+/fDHXd8P3x/a9x++wvVqAFgs6/jHzssC37jN2CzgQQAoNeD2Vn42td+8Hv7azuBTSoAMhv6lh+D2cGNwwEAmBq5CaUopRQsqQVCaOtfc65nyrTlcnVtbaNQKCkFf/6pTxZzRUCq2WwQQiqVMsa4F3aDoFWtVkulQhRFUdDNBDBmFQvlfD43MTH5kpe8xHa86enpVqsVh1GacQNopIJ7nkcpMeDqvn17fWbt3bN9buHqsae+Ozo67vt5IbJrV29cuXx1bm6uVq/lcjmeiTAM4zSjlN5x25FCobC0uJLGXaQkwiRNI9PVo5S8cOHCM888k6TR5OT4rl274jhijC0tLdXrddtyKcIgUaFQTCD2vfzr73s9jePIpiyXy7VazW9+85vFwiClOYS0bTPG0BayrBRQgkx2DfBCxBmex19+/nj+r1tvRAo0BkoBFACAEP0N2+BurVbTcCcxYhrhfK40UB1dXFycnJx84xvfKKUulUq1WmNxcdGyrMcfe/JNb3vN5Nj4008/FYbhLbfcMjw4dOnyBUO1SKJ4bW11YGBgbGxsfX291WgiDVKpy5evAOh8Pk8IMr7SZkc3QWo/VUAYAwatheBKi2q1OjQ00Ov1/Jxv23Yulzt98tlOpwuAiWYAiFGapUJrzRDN50tZYvIFIIRiLDQmQRCYOLtYyifrURh173/VK7/2ta8tLy/u2rUjyxID883PL9rMUkqJjBcKBXNulmVpjUwhBWTWqrcSnvm+u7q6GkfJ2PhoIV+Ko3R6enpxcREATK3DkCYyJRljGNMsy3gSa7A93zGdgErJcqWYL/jtTse0+yGEHMoc5kuh9+zZgzEeHBxcWFjM58paYSnR+lqtWq0GQZD5XqVc3qitRWmXMYaxiuM0DJcN1PvBD35wZWVpYGAgSSPXddM0MSEX5zyOBFIAUmWCmwdYiAxjTAgyOmVpmpr6MABoLZUC1/GvXr7y27/92wcOHJjauSMKeoYEscUTUVqlaZo2GkKI8bHKyMgIQujKlasLSyuGA4UxMnYZhu5NKaWUAKLGfdt4LeZyubW1tTtf82CxWPz6179uMHqtda/XM7klQmh4eFhr/c1vftOQBbrd7v79+5555vj87Fwul2s0Wvfcc/fi4qJSanV1tVwuHzp0SCidy3uHDx9GCE1MTJikjjFWqRQz+VxqyhgSQhvZRFMm1VpXB8q+7zNqun1Ba0gSaHWDs2cvXLly1WKu67kEpd1ut9fpGgU33/enpqaGRkeUBoSQ1OrIkSNmSjiOQyiilF65cuXGjRum18NAxuvr62EYmu/H+M6laTo7O3vHHXdkOgw6PaVVEATdTi8IwiSKPc8zHnemn6BcLhPCwjAUXDgO8zwnX3C73bZl0UJhhHO+sLRwsFRSSlXKAzeuL42PTfyvP/rY8vrqX33pb/70T/+ovlFnzAKNtUJaIc/NSaHTLC4WS5JLZGHHcbMsE1xJaVy8qZLQbLZqtZpt26nmUipKLM4VQtix/YX55bGxsemp7XOLc1fPXUkiXikOaE0W5tdf9cqfvHjhxq//+/9k2+5dd9312te+9sqVK//tv/1BmkRRNzj4srtKeXb27FljCbVJ+5JSSqWll/O8fKle75+tlOj8+cvjUyPVynA3aFNKl5dWDU+tOjUQx3Gn0xkYHDxy9MDGxkan08ZElgru3PxsFIdxHL/xJ39q27Ztn/rUp+r1OqXUttnU1OTS6koQBaVSZcipChF3O72x6cG9e3fncn69sRZG3Uo112g0tNaHDx9+3z//v779jac+/Md/xqgzNTXV6bTDKKCaYow1gJH9NbIk+Xw+TVMpFaU0yzLPc+M45pxPT0+bjuBSqWTb7MaNG0olAwMDoIXjOGmamP7fKAoxxpRiIUQWJ1MHDuTz+SeeeNI0CjQbbZ5Ju+T+/L/8hcWl+SeffDJLU8NjHRoeABC5nLewsOTYvplsjDEh0l4vFKIyMFhZW8tWV1d5JillURQxmzDGSqU855IgtL66ign0et1cLocxXL96sVwuN5vN17/uoX379n/2s59tt9tLnSDLxMTE2LWrNxqN5v2vfvC22+64+557BwaGZufmpJTbt0/XaqtJrDSA69Mw6ZTK+VKp0O7G23Zsv3RlphfEt95+J+ey2WyPjQwuL81dvXxp+/j48PAAwrnB4RGEIEkEodQmLI6VZWFCQIh+PRxjAARKgtbALJqCDMM4SwVmNO8XkIZizvcdZlt4bGRQa96b7VKLALBeGIEWGGOMaRT1EEKEsE4nHhoaUsoCJFzXrZQHMKZXrswsz86/9O1vvffuexWCK1euvO61r//WI99klt9p99I4i3rhqVPPEqoa9ebK6jKl+Od//uc//ZnPLS+tloqVu1768ne/611/9rGPHzt2jBHLLP6u60opDK/K6HZhjJvNhlLq0qVLXArXdU+dPF6vNXO+DwBBq/n6n/zJ97z7vf/5t3+rWhmcnt7uebnV9XoURdeuXb948dLi7Lzn+ivLq1NT2zrd7uLi6hve8KZOr3Pl8o1SrhqT0NR3d+7cTSzb912NlAKZco6ILpXyDz74qvX1VYRUvpj/0Ic+pJHKFfLNjc5GrWa71pkzZ3bv23PgwIGVpSUMqN1qIY1tZi0uLg+PjH3q058dGhk5dfbsyMDAYHXAuCCmSWRZlm3RNAqZRRyLaddNsyQMep7nDgwMJEnGeZplCSHMsh0T1DqOw9NMSum6nhAZAIDGDBOlVKvZIZbveR4oJJQA6Iv8DAxWS6XS/Px8u93es2fP8PCwbdvHj5/UGkkB3Va3FyRTU9tu3JhjjHmep7W7srK0srqaZZlU4PseYzYCsji/ZDEyMTFhu5bvewcOHCgUCvV6fX52fnl5dXl5lQABIBhR0/NhAqckzpI441lCEAghRkZGSuVCvV7vtJsTY+NrK2txHCOEO51u2A09x5dCKlBI6U7QDMLu//WL/+rpp48fe+JJx3Fy1L909vLU5Pjbf+Ytd91118WL54OIv+Gn3uR6dr1e/8QnPt5otZOM79q1a2lxhTHLdd1eL+JJCoAVRoRQ06QPGklAGGPLYkEQ4Jq2HHzkyJF2u3X9+vU4TCvFQd/3LctZWavpTSlbs5tTSiUSSgGAllpRhPqqUAQ2NjZA9RmvXGaKG3AWhBCUEimFQlhrHScRuK5FmRBcgTL3tJum/T1dKa1MI3k/YdBag9SIYIPrKaUYtRWooBvaDqOUpjIFAMti1HUNAOp5mFIax7Ht2cg4dCGQUgI24sLCgKFb/GWEEIA2vGbYlBjeIpCmaWq0gN2c5+a8LMs4fw5UNeIMvJdJZVsONQYPBk61bRsAJ1GMkDYugICBuE6n20Ial0qlqJtGUWy+VSM2IrU0mnYGXGYI25athFRcYA0GLn/+3zXKMIbN7XmeRkpKpZDo9friJ0arxLKs5eVVrZFt2+Mjo7VazfNytm0TzAhFURRhrBHqr3UY4zhOs6xujN0zZMjLQnFhWY7hfm4x3M39VQowwVv6D+afjIq3VBwJhBBihBJCCEFaSwAkRKaUMIbS5huTUgrBhRCEIECgtdQapOQIUXOP0jS9cOHC5ORYLu8hJC2b+W4ahwEhZP/e3RMTE/V6vd1ue57nevYWBdho9SolzU00sa7v+71eaMDxrdM2vYZm0TDtRIRgI6JievsKhUKapuZrz+VylUolCIJWq4U31auV4iYX8H2/XKqmKQ/DkBAShgFCaHJycnxiyPdtDeLQ4d279+w8d+rGxsaaZVlcZJiAyBKkteQcjESMlAZHRhgQEISwcUo05AMzxwAhg1EaQQ/DceacAyJSchDSYkwpYZoOMaKEIAN3WpalNUihtVImkBCZBCyCoNPtti3LogxXqqV2u9Vut3bt2sUYazQaYRxa1DKPfJrGrk0BJCAJSMRZz/PsYnVMa9mL22tn1wkBkclt26Zd5qyurmtNol6ANCCshZDr6+uEWEpCFEVKQS6X41lAjA6yAIGEAh20oysXridJkst5zs7cyvIGwrhea2upRgZHarVGlgjQ2LJcz3FFJqMsYYwRQtI0k1yYgLnfLskN2V+Y4pMh/TjMxwSZlcc0P3ieJ6U0pikIYSEEpcw8awAAmILWRtLaCK0I0e8G6FPRtbIJc5y+EIdS0OtFjMlu0EOIGCKebbkEs1qj/of/839kWfbyu16mpUii0LIsIUBrZPY1w21i1JZSIYSFkAqAJzxf8BijM1eu9Xq9oeHi1NTUDn/CCDBqyIaGqq1Wc2J8mjF3aXF5dbWW8wtmxQiCXrO1ViwWASCO43/9r//lnr27i8V8GAZh1AMkH3jgAT/v1RsbSoliMVerbbTbAca4ubHs+zlQqODnMs6jKBoaGgrDMOMJFwJjXK4OYIyXlpfr66vUtkZGRhRShWKhVCplqViYmxscHBybGO10OvOLc3ESMWox28YYc5lKKdfX142Bp3Gp6Xa7vV5ECANtlGFYIVdsNptf/OIXK5XKww8/LEQ2MTGxZ8+e9fX1KA7/9GMfTZLkmWeemZmZGRioMEbiOA7DcGhoqDo40O12t9RyDDHd8zzXykPYhz487ybntK3x5JPwn/8ztNs3HYwi+PCH4Wtfgz/+45uIqwBw223wwAPwjW+8kIa5fTu8+c0v/HCt4b/8F/jyl1/44hs34Bd+Ad74Rvg3/+YmQu7dd8PgINRqL3KeLzpaLfjX/xrm5r7nC6an4WUvu+mIlPDv/z0cO/YiL44i+Pa34dvfhrvugv/6X2+C2l/xCnjqKZiff+7Ij3e9v/ZrN+FRWsNb3gKnT7+IqgalLyQvb43vdcv+x/+AI0dg377nDt59N3z8499Tcfifajz6KLzznc/92m5Do/Ejf8izzwLnNxk/Xrjwjz2x8+chSZ4T+qAU/sN/gLe97QeQpj0P/uN//J5+jP/IUSjAm9/8QixbCPi1X/vB79Wb7QlbnWemr8Ws6hjjLMt834fNFjHT5kI2S/tSSoIxZgwAS6mxBoaZkVryff/ChQthGFar1W63e+LEiampbZbrRFEURZFlU0ppp9NyHCuKe6ouMKJhGL/yla/asX03ZtT3vSzLVlZWW63WysoKIUwIRQjxfL9YLObzecf3BgYqCCHXs/MFd3CwnPHe7Oxs0S+maZalXEjx1FMnOp2WoRQsL63bnksIuuWWW4wpV6lUnJ2dlaFElETdRAhZLJaLxeLZs8+eOnUKAO6846X33veKdrv92GOPNZq1pCkzKbjNo16vQqsE0WKhtL5e+9KX/pp6tkN8d2JiQnHd7YYE91yXnT592vULBw8fyuctDJBlxlkCEHoenwtAqX4HsVHDMISvLWjMvGbriJTKtrGUIKQIg9C2bde10zSjlCIEhuLaaDQIIpXyoCHlNZuNXTsPILCPHTu2uDTfbHYPHjzoeR5X8u57767VatM7pl/6soNXr15tNBp33HFHFPW8nD8wMLCystLpdKDfQIRXVpbr9brWYFkWCO44jm3bSskgCGAzY5ye3l6pVJaXV9rtdpZwSmmlUuGc84xbLqMI93o9jXS32wWMLMriOLFtV3CgiCgJSmLb9pVSMosbG+1KZQC06Ha7UuhCoSCE4EnaC9tKKZrS6enxNA3rzdWpbaN0VS6vLAohOE9HRqZbjabxD5FS6hCUEv1KNwKTHgDitVodAIIgyDKRy+d37NhRKBQwxoSiuyZesri4uLKyUijmlFKgNcamUy9WCFerVSOud/jwwdHRobm5OdM+L3hKGZaSMsYwEEyAKzG/uDQyOryystJstzGOXCeX80uEkCxLEYJer+e4FmCthNCAkZZh1FHSqB3K1dVlx3F6vV4UYYNyWpYtZb8TwZhooU1+kWF5JEnfIsNIGLuuy3lqLtk0JF44e25mZsb3fUMtZ4zlcgWEjFm8sCzLyOY2m02tYHh4+NChQ34hP3tj3sAotg1G9zmO4wxM/oN933/JS15Sr9ebzabWulAoPPXUU2NjYybO833f2BCZnKEv/Y6ReXGtVpufW1xeXg7DaH5+fmBw+MSJE8VieWBg4MCBA0ZrgnMexkmn06kOlN/85jf3etHa2ppJKgCAIqw2ZQcR6pMNzY4opfZ8R2ttNM2lgEajrbVOorjeqA2NjD3wmoce/c43CaaguO/l9+09cG3msmnfSNM0VyxyIW657dbl5WWFwC8U/u7hr1+fuVquFPOujyrVJEtNLuG6bqfTMX47WZbl83nf9wcq1ZmZGc75vv17NuprUe9GGEYL80uW5QAAxjRJMim161qu65pGvCRJisViEPQ0ZJThZ599dvfunVqrpaUlg2levXpt5so1Si3Bda3W+Oznv3Do0BHfL1y5fLVYLJq0mXNp/D0cZpVKpSzLsIURQlGYWMzhWYgxxYRIyTNpYnomhARNXNcHwEIogm0gmGfpsSefefs739btRmFPWCyWAnmeE0fRV/72a51mZ3WxVltff83rXvP+//zbDz/8cLNZ55y/7BUvf93rXvenH/njLBUIMSVlliqteC7neSW7021lPDp8+ODIaGV2drbXa2NMCSHNZmvHjp1jY2OU0ihKbJulaTpz9bLneWMTo5xnURR6nm07FSEKWZZpRW+/4/XXrt6oN9aLpRwmCGlCCInj9MKFS5XBAcuy0jS2LGtoaGDbtql2uxnFLamiNOulaUxpSQhx7733TYzvcF3fyLN02r3p6alr15Mk7SEgnGemmwEp3W63zWPlea7R/cQYCyENmB5FkeMaoSiBEDLSe5zzXi+sVEoIESN8ASABQGtGCFlbW7t0/gJX0hCxGbWHhoaiKGq325zzZqO9vr5eLZXz+RxCqNMOhkfKk5OT9Xoz7EWYUSZYLucfPXr71WuXAGB1dXVxcZ4QVirlDbjf7jTW19YYsYaHhycmJhYXFx3XmpraliSRyJI4Tjc2auVyeWllBWPmur7lFi9dmgm6YXx9VgiZzxVf9aoHcvnixcuXdu/Zd9fLXhbFPZ5mDz/8tWKx0Gw2HZukabx3717bzWEaXLly6eSpC4eO3Bo9+dgjjzwiVZr3rdtuufXS+XPnzj575223c8jSNK0MDBLKhNJSatvGSvWxZqwB9w3qAWHQCjIOaSYwYrmcn6bx+nr93pff3WytfudbXxdJNDg2sLy8iLCymFtrtl5536uSsLO8vDQ1NbW0tJBmcZqmzCJR2nEsd2CwiICUyrkHXv26KEo+9KE/JBQ99thjnuedOH0qny+eOXsh7aVvf+d7Z2fnw6DX7TRnrlxQKiEUDwxWrl2dXVlai9Po3Lnzv/x//9L83MLlyzPmngJgSnGackKI8TI2hjytVhsTbdt2oZA/eOgIY+yvv/AlQEhKHAfhkVtvfdOb3vTxj3/8J17/hne86x0f/ehHL164HMaBY7uNdjNod4jNLJsFQdCoNzWCSnnwZ970ll1798xeu/65v/zMU089pTXRiDRanWRt1Xac0bHhKIp8343jVClFLFivrQ6NDGqtu72OMaanxM4V/I1ardGsV2rlxx99lBHKubg+u4CACKF+67d+67HHn3rymeOvfej1w6MjvBdmWdZqNITI8vm84LEGWakWJBdh1PM8p1D0fd/vdoMTJ07u2rmnFzZphMulkuP57VYnywQhFJQ2EST0rSYQpVav1+MJbzabjNB8wY9jrpQwJsDGlcEw+jvt7tNPP10uV/P5fK/XI4gFUfDMMycM4dFwGVZWVuI4tW3XshzbdqMoWlvdKBRKvV70irtfevDwoaeeetKyrEajsbKyUq1WBwYGTp8+wzMJjFBKUs673V4ul9MKOBcIIcqw7+fTlK+trE5Mjmuth4aGAODy5cu19Zrv5Jv1FsPEthmSCIAIkQVxuHvfHgD42Cc+trG60W0HnpezmTM2PNJpdT/4+//9E5/4xB133vZv/tNvV6vVjY31jdrKW972jnPnz9RrzaAXWZZltBQcRjMNW5VjZmGlFCWMUJZmme/7oxM7g6hNCDtw6FDe9/7Tf/r/7ty+q7HRLJcHKKYmatdaB+2OARCN+q2RQTC4DAD4vp8mHCMqdWZYq6A0JoBl32bNFKqzJKG07+xHMbFtm0sRRVEUxqbnkTHLMMERQloLE41sifEZrNnsjAqBEJlWRkPAAlBZliVJEsexn88zxvI5l1BLJCmlRHBpmuSiJDbZiEEVzXpraKrMYHag0zRV5q5R6joOAIRhDzhYFlWpGhoeQMjlQqRZrJSiyF5dXWU2JRRZVg6Urtfrlk0tyxEiM5C3lJLz1Fh9YMq0lnGcKqEJSjrtSHNkUSfJMoIUAWQUgDUChDAAkZJz3tf3J4QQrYHQvqCZ71+/fj2Xy5nFweCMfU02BZnsR3F40/4hjuNGo1GpVHzfj+M4TbnWmmDJGEsT3uv1PM+rVssmeavX68brxhACsiwjhLqui4ht7rgBVU0A30eKuaYUayFBa9uySkb/XZoIOSGE2JRlWUYoiqIextiyLNKX++eEICklxjA8UjV/znVdznm91TRF0zgJ0zQz0XKn0x0YrFgW5TxljJoEp1Qqpmmyvr6GEDL9EEbCNQiCbrdj5s8WQd7QaU1TrXk0zPQwf9dAjVv6yOaLNVISxoC0VCrFcez7/taNMJ+5RbCQUna73TThUmoDdwJAmqbXrl1zXTY2tjfote+++27Lpn//d08BQJJkCCHFFWO2UgojQgmWAKmQABJjnc/nEZAsy0TKJWjzJJpvXkMfejGXZiRczPkLgYHAJnFfYQ0YY5UpBJoQghRorbkQCmmlwDC5pMqwsWpUSHO8vr6Wy+VGRoYoxfm8H0U9hLQRZ7BdWykVhqHIEowBIX3kyBEhs+Z6N82i4cGhl9/lU0o9LzdQqi4vr/JUxDhBSObzPgButTqlUnn79p0Y0W9+8ztaQxhGjuNQCoTgoBvn836xWNw+lZudvc4z7VTzxVyl3ZhXSgYydhzHtd311VoSZwOVQckj5GHQGGGtVT9nAYyMcoVtYwCgmAKGrVKN8aLQUhtMWWu5xYDL5XJGykwpyRiT8jnGlVmONhcovVWRklIChr4AEcWmnC+l1BqEUN1eR0qpNSeEaIUywTc1wbGUaGFpvpDLl8oFy7KyVDUajTRN0zgGIdximRLLshjnIssyZjPP88rlkufb7Xadc56mydr6cqVSsR1KKe0GDaXT3Xu2VyvD3U44MFhdWVkxKxUhxAQSnU5rfu7a+PSEEOLatZnHHvv2Myefyefz99xz9y23HHnsyUel5IVCnllkda3ZbodCiCzKwjDyHH98ZPT69dlms8k5r9XXNQBjDFFCbQshwjmf3jF9+PBhy7KOHz/ueY7vu93u6tDogGWxq7MzpWLF9904jjOeaKQZsxDCURRxzjHSWalk2yxNueN4UZRpBRIkpRZBWAFBiMRxnKYpYbjdbruuOz4+Tig+e/ZskiQjI0PHjj2xbdtUqVRKkqTX61mWNTU1VW/Wrl69IkQmhMjlCkNDQ0opztOkx7c4lFn2IlZpn/88/MEffE94a24OXv96+MpXoFp97qDrwq23wte//sIX53IwPn7TEa2/nzyxUvCNb8DLXw733PPcwUoF3vWuF5en+IejXoef/Mkf8JowhNHRF57VzMwPeNeJEzAzAwcOPHfEsl6IUf4Y1/vXfw3nzt0k9IwQjI+/UMPXDCFe3NruT/8UPvaxF/8TQsA3vnET3Fwuw8GD8PTTL/76f6rxPAdZAIBW68f5ECGg14NK5Z/kjPrj8uUX0vAHBuDP/xx+7ue+JwRfKMDHPgYDA/+Up/H8MToK73vfTUc4h1/91RcWD/7hMH4b0BeP0rCprLXFJ5A3EQef18aElJLG2pdpraXiWIPSWmpNKY3j1HXdVqtjQtM05QihwZHBKOrZtlsoFJJkIwgCz3NuvfUopdSQSOIoHRtzXddttZpLS8srG8uCq2azWS5XHnjgAQTE9XPlcrndbsdpcuDgnXEc12rr7Xab2nTfvn3f/s43l5eXkiQCAIKZEKpeb4S9SAqIoyyfz0dhmi9WBgcHbNudnZ1v1jcAQAGUy2WMQQNnFm23G4xhDfzAwX35fH5wYDgJkxtXb6RR2uis4cSuDA5YLhsfHWUhXV+vhSTmMp1vLNL9+/efO39mcXGxmCvl84WxkYlavdtoNGZmZvYd2E8ppLwvkg39tLo/bjIA1C9y0Pxq/gMwToPARd9Fd3V1OZ/PSynz+ZzB9Wzbnp6e1lIzhprtIIqiYrFULJYqlerhw0cef/yxM8+ee+yxx/bs3/P617+eEFQs5h988NVRUu92u1GSYIzPnDnT7XZdxzL92tVyZXR0dGVlxWB8xWLJdV2EaS6Xa7bqRkYNYwyAd+/eOz09vby80u30wiDKMkEp4zymxLIsmxKa80vdsKtALq8sUkq1Qha1kTE47NtrIEO40AhJCZwLrbWRY2YW2bd/t+NY9Y2NIOh0u12Nkl7UiJLO8PAwZej48We63aDd6m5s1CUXho2vtOh2I8uyjNeHsZVQCjC2DFFFE00psyxmCIwIa8uy9+/fPzw8+NhjYRyHhsKsCbYsK18q7tmzp1IZCILgxo1rJ06caDYbSZIUijkjQ6Ylr5TLhUKh3QqyLLUsWqs1FhYWkkQjBC95yf5qZfDEidN+wa/X60ILlWYbGxnGQC0PIeW4LE1TDZIy1O0EzGIAIISwLCcIQsdxklhsZl9aa22U1gEA4b4/uKHzGHIopVRriY3bBldRZAgFLAzjwcHhWAX9UKxvUCM3u9IIIbTbCTbWa2tra9u2bZscGw+CoBcYlA2ZtcCg/+srq6a97pFHHsmyrFKpIISM/cXS0hIAOI7juq7necbow6DPph4lhKhWB4MgcF330qVLWZY99NBD/+fP/tzGxsbS0srRo0cPHz585cqVXhgce+rJyanpXC5nlJHDMGSM5fN52CT7Z1lmWCGu79mWbR6WTYADqU3BYsZYxuOV5TXf9/P5fKNR27F916OPPnrtxjzI3ste/tJ7733lyuJSo9Fot9tDoyNvf/vbh0dG4jQbGhlrd5rHjx8PgmB0bLhSqWAFJskxqQsAKAWWZaWpBpC5XA4hdP36ddPJ+O1vf5swHEVR0A09L2eAKhPIJkkyODhoFIvm5xfDTm90clwIobVYW93ABAAgjsMsy3q9UHK5trZmWY6pvEmpP/ShDw0Pj165MoMQ8bycCd8/9KH/cfLkyc9//vO25zrMSgWnxNJ9l1VmVPyEEIRggkiaciIQY4xYDIAqpZTEANpxPMbyGY+/9a3v9npdBE4YKMdxGust2/LWV9Yty3EcZ3B4eGbm2tve9s8uXDhXKZba7WbYbZ179uTa2hohrN9YihDnMstEs1UfGCzv3r0PE10o+mPjwysra8NDIyMjI2fOnz127Mldu3cMDw9vrK6EUeA4ThDwNE1LpSIhZHZ2ljFSLOUppaPj44yg224/3GhsXL48c+nyOc8tGKxfKVVrtDKhSuUCxjifzxswK5e3zYQZGdvGLF2pVM6fP//M06fO2lfTBCzmvemn33z16rXHHnuUUK2UYJYLiG4+fRbnqVEQlVIauQwuUsNARAjW1tZK5Vy1WjWLwODgoOu6WSos5vSVpygVIsvlcrZtx0loOLBBENRbLYRQPlc8cuQIIeTRRx+3LOdP/uRPer1eqVTKpBBCAkCaJs0mmpyc3LNnz+VLMwDgOHaWZXPzN9I0RVgtLfUMc81iMgiCYrF0z8vvWVpamp+fb9WbQ0NDvuMJJXtBhLCmlkclSsKo2eiur534VvR4pVKhdu7B17z+2JNPra+v97rx1NTuQrHsOB5CZNeuXXNzNy5dvnD16pU4iRBWCGkJWAKqN9tSNrtB+t3HvvPqV73Oy5U+97nPdYN2pZR/zYOvvu3w4S8pOXd97qW3vcS0a7h+rlL1Uq4wxXpTu40AINLX/OIKEALCACFoNJqcS8e2unEn6HZ50k3TjsjS/fv2lMp+u90cGBgAzBBzCLPSNC0UikaHVPe459lCZiYXjduJY/uEkLn5a7fecuehQwcfe+wxlegg7E1OTl++NJPGSXVweH5utlGrKy0tQjVlBw4euvOuOwHg7x/+1tLCsutbFLM///NP9u0NlVba9DQgSpGU0st7xuao2w2UUszCQmRB0ImjnrSsh37i9ZcuXbKptb6+3ul0fN8fGxu77/77tk1P7Dt4QP71FygDamsPU5ERpaHdri8uzc3O3dizd+/4+PhXvvLVT73z7dMTkx/+8Id37do1PT39l3/1KULgjpfcNjo6zGXWi4Kg2/N936L2449/l1KmFAwODWmNzpw/V6/XR0cmLIuFSeQ4zuzsLCN0ZGgk5xXsHd65cxd27d7ztre/4+jtL3lHN1hcWn765HHe6ORyOYtghzlR0HZca3x8fL22HoaBkctMkkhr7XpelokgCNM0YQwjqgCU6zm2rdfXaxQzIRTDREpumpobjYbneZbrCNFttuphFDiOZao4YRia5DOKokq5ahCoM2fO5/O57du3B0Ga8/PGo3h8fNwaspeWlq5cuWJ2OiEEpTTvFxzHnZiYKJcrzXbr2Wef7fWiOE7n5xfn51cxgntfcY/rFJK4gxQBTW2bCiVNTVqKrFAo2LYdRoHrFoTQjuMUcsWLly+02+2RoVGlVL1e1xIUaNu2k56USmU8Qwi97O6Xr66uIg1xL2w3mhT0QLnUarUYI6vra6u11Z/7l+/bvn0aAM5fuPL7v/9HxYK/sLhgOX6W8TRNCcIYo3yhv3pzzhHuqyELLRBo26JSinq9nsl4YWlhZuby+Pi45+a0Qm9+61vPnD57fea6acKQUmrQBCEATSkz8LGRO0MIhWFobIE9zzOk182dSxn9K6WUCSBtxrYamYUQKo4zwQ2TlCMUxzHBzLbtNOGb+M6mpx9Gmw3miAuhtKa2ZdIAIUQ+nwdQios0ySgjnU7Htu1isWg+BACI1YcOzevRplWg6Ugz1E4F2nUcmzCLZUZY34CbpuHJJDCWTeM02rZtWxj2whBznnZaPUwgTVMsoN1ul0pTaRancVIZH202m1JKi9qSqCzjhGDbthHDWaYopa7vBd2w2207NEcItR0mRKYUSJVu27EdIbK4sCylEBk3fByzBWRZBqAIQbbtaK2VElrLLEu0lgAqinqu328L3/qepdCbWrQ6TdNer8cw8f28UkGSJEr29Z2N2AhCRKl+/d51XSFUHMe2RRhjSmmlVJpGW9+hbdsY97M7A+FpIUFjJWUUJlI2hoeHNQbGqGUxrEFrzXlmWOG2bU9OToZhWKvVTJ3AxJPFYkEpJYSdJAnGyCLUdhgAtDspY0xrZTGnVCoRzDqdbpYlpXKh3WlyzpeWF4xoWBAEW6rHhp1tKgfG2g4jy2jpZhk3IL5pGsMYh2FoFM/M5VBKu92ut9lmb2b1VoclxthQIkwSa+YSIcR2bJ7JKIvCMIyjFKG+NBaAwhg36q3HH3/yxIkTUmXFYn5ycjJNZCFf6fVCKbWSiFIKCBBCUmieKbP+ACjOOUJCaQlKIQCN+pR8pRQChCkxJ7CFfhpvXMexkiQBrQkgjLBUUkrJGKPU5pxnqdjipxNNMZGRUMRBSimpuCFwKCULhcKOHTsMmctMQkMx8X231WolvThNU0SxKQ+cO3eu2WlSioeGBxkmlUpFpuLkydNhEDmOp7VmjLbb3Xq9iREdGBiUQnORbZ/elmV9UexeGGKMEcJRlCrVzbnFYr4aRhEGa+76cq3WGBkZ8X07TdNmr7tr5z5Q+saN2UKhFEcp37T1A43Ng4800lpnmaAUG8EcKTMzY02XgFRgeiYQ0gDApZBxJJQkhIRhqLX2HM98gtYaATFtqUmqTB0OY0wIAoySLLWs/sKolNzU1wo0IjwVnAuzdgmuUp6ZzkVT7UBI1+sbQbfd7XYLhTwAu+OO26anp5eXl++7776PfezjURRFUVIqlYQQmKJKtTQ0VFleWdBa53K5bjcw5RCEdLNZ7/V6e/fud2zvwoXLjXqLEGv/gT31enNjvWbbtgYbE5Ty9L3//GcHB6szMzOuZ331q39bHSgfPLg/inpPHns8TWPHscuVotb6yJEji0vN2auz9bV6zsthjBcXl1dXV81lPvjAa8+ce3ZjY2NsdCQMQ9f3hoaGXvbyO4aGhk6dOuXlvOHRoV6vB1h7nuf7Pudyo7YitCwPlNeW14QglFKMSZJkPMsopZ1OoLVMksxoMcm+TztzXNs8y5ZlDQ4O5vJeo9HY2NgApA0z0c97YRwhgjHG3W5bSjkxMVYsFq9fn708c8lEa4zZZoVRSgVBkAm5BTcLAc88cxMWWa/Dn/zJi0JbN423vhW++tWbvOCmp4HSFwJ5hw7dRAjVGn7zN7+fFR4ARBH83u/BS196E6f1oYfgL//yBysOJwm87W0/+OTrdXjiCXj72587Qim8//3wa78Gnc73fJcQ8G//Lfzmb8LttwMA/NVfwX/5Ly98zY9xvQBw/Tr85m/Cb/zGcxxnQmD//hfxiDt69IXa2fB9sWYzLl26SdO5UIBf+AU4efKHEiz+/7+xugpf/jK84x03HZyYgK98BY4dg09/GmZn+7hzLgc7dsA73gF33XWTjso/7di5Ez7xiZuOCAEPPwznz//g92r9nIAGwvi5nzcrguaIaW3Zahk39AWjj2pCLJvYSiklJWhQoC3Kol6Yy+UwIIxJp9U+cOAAB7GxsbFjekcCoLWmFO/evfu2227p9XqdbstocFmWc+HCBSml6/i7tu8YHh723Ny2nTvGxydWVlZmrlyLesHcwnylUnn80e8maRTFccbTQ4cOUYzipEeoBqksmwrBlYIoSgzQYdturdYaHh47sP9w0Os8+cTTSRJXqoWdO3dubGyEYUwIaTRqk5PTAGp1bflVr3rVtukdJ06c5EnWieOVlRXQeHx8/NDOW6a2bZeuOHfmzOziXBQmS82FwbHBfD5PFxYWeCazNJKZjkK+OL9x6PAdL3nZXVGYaq1T3q+fKAUEgxQA/U5/gH/gELilsAF9TtBzahtag1LacVGaqY2NNUJILpfrdrtZlrquQwgyrYdpmgFSWYx833NdJwzDbrfLGMXYfdOb3rSyuvSpT396bGxscnLy+vWrlUql1Wp2go3Z2dmhoaEnHnvslltuueOOO77w+c9FUaSUHBkdXVtdM6rNGBPT9McsJwxDzrnSglKGEEJIJUl6/vyFZqMN0Heo0BoIIQhwEmWYy1qtnvBMa6UkloBAoShLGKZaIaUkQgRAm2hMgTL5p+/7xWLRshhCam7+muc5nucWKv70trEgCIIgsCxYXZtrNsIgCEBj23Z4llHCHMdJ0ggQyuU905eUZRklVpxxAKAIJ0mEMdZcE0J6vd7cXKy1juLeysrK2tqKMfU2ZCtKqeflLcuanJzKsuxb33pEKRAiS5KkWq2Mjo5ShgHAoEgWc0Bj23Y9z8MYua67vLxcLFr79h0weUWlUpqcnNZ6z7lz57SWU1NTaZp2Om3f9zHA4uLi1PTknXe85MaNubnZpcXFJUbtNOWMMSWNZwvSWhMqoS8YB4AUAAKsQSET2m6GzrDFmsnn86qjNADn3LOd9ZXVzWo/xwhZlqUUEMwQEEMeQVoXi0VK6fLycrkcGTk2Ru1WqxOGkWkSLJVKw8PDs7M3KKWrq8sY4zAMmG0pJYV4zoze5LpmpZBSpmkcRT0TTzebdSGyOAbGWBjyr33ta5ZlXbhwIZcr3H333UeP3jo9PX3y5MkrV64wxu695z7Loq1Gc3193XE8k2BoDUmSxM8zFpdSE4JMW4CUIKUG6NtYUwoAyvXY6NgwpTQIOpcvXzxy+JbXvfb1I8N5BPratZl8qZxvt8Mw/O3f/u29+w7Um40wju995Suv3bh+/vz5fD7P01gIEbQ6tVrNZL9hGHpeznEcIYTW2rQUBEHg53NRGORyuVqtZtk2AAihADAhWApOCA3DcPv2HXv27H3yySc7nW6xWKpWB9rtdppwz7cxpoKL2kYjTVNMgPO1O++8M034/Px8kIZCCuyhoNuVQri2XSgUSqVKHMe1Wu3c2QszMzNKqSAIa0mtUCgYsjbGFDZLiNRmWZZoBEpJhGgUJVKiNOVZahxBkVI6DGNK8fpaEyFwaUlrnUWSYEtrjRCkacyYTTCzLXdxYbnTCRDSlNLrN2Zmrl5iFkmSSEmcyxWMdWenk0mVLS0t3X//PYNDA+fOnSkUCtVqVQgVJtGdL7m9Xt8Iw1CprDpQrtdrrVbT4B5hGCqlTOdBFCa5YkEINTJcPX/h9OhYlbJ99Vp7bW096aUAmBCSzxdMKUsItb5eS9O4XC5XBqyxwtDc3NzsXNcURW695c6LF2dyXnbl8hxWTKvjcZwkaWRpalkWwhpDn24GAJRaWktAyPM8w5wCsDX00QGllJHCMMKaWZaZPn3f980L+rZOWBOKBgcHd+3a1a53FxYWtJCMsdHR0Y2NjbW1tUqlUqlUVldXXdfVWmuFao0WQVpKWauvz80t5HNFxlgqOOfctlmj0bBtBhonSZhlmeviNE0JobVa7Ylabe/evYOVwW4vMNqOhBDOBSHYc91yqYoQarVaaZoB7t13/wNBmN1z733rG435+WXPzzcaje9+97FCqbywsJBlyeBg9dSpU9euzRCMkiSyLMvPFRFAJwiqlcHrz54HREulyuj45Jvf8lN53w3DoNftnD9/vpQvTYxNSg7DIwOYUakhy7gGrJXmwpCGAOt+Ww9CQEh/v4tSWSiXbMoqFcf3LCVS0CmX7sH9hyanRk6dfmZwcGTvvoPf/u4Thw/dQpg9OztbKpWazQYXsdYSE53LeXEcYgx+3hOpTLP42rVrD3/9m91uTwhRyOcPHzn4c//n+x555Ft/87dfHR6pbts2MTo6XNtYCqOe1irLsmat3mi32u32zp07C6X86dOnsyx73/ve9+ijj3ZaXctiGGOTdBmqnbn1CIFlMYC+TNpTTz3puv7evXuFEJViyfe9Trf9sT/703vuvffgof3/+zOffvbZU5PTE/MLM5RpjKAyVBSraa259tiT3xodGV/fWO52e2ESnTlz7nN/+ZkrM5fe8573/PRP/9TXHvnC2MT40NBQtxdEUc913VzOD4IOs92RkRGMqZHenlucHx4e9n2/3miVy+Xh4WGepuVief/efcePnwy67bGxidGx8X/2zndFaWI73p179335b7/SabUL1AraHYSl4CKNQ4uixsaGY9u5nMd5Gsa9JElcO5cruErFy6srhPJytTQ8PNoL4jiOKbMsynq9yLM9ACCECSEAJKW0F/eOHDmya9+okjKOw9XV1TAMfN93XVcraLVa1cqAMel1HG9wcKBWq6+urtp20ZRR8/k8pXR9fT3jKWMsDEOEkBSqWCzu3rWrVCp1u90kzjIR1DYapuaaxCLn+2kin3n6jG07BDs2dTTRcRxTagwkhet6GBPP8zzH2bZtqtNptVsd13XrGw0uBABwzuM4tJnnOHbU6yENCDRlxGbO6dOnOeeTk5OUkZ//+X/RqjeePvYMsxBIShh1WP7Mhct/+cVvFYuFbzz8VanJzNUbjk3jNBM8dhhDYBhtFCGZJBlCkhAtNQIAjcF0Vpl+IwUy6kWVykQuV0Jo/fDhW97z7p/9pRO/zKVkzDa9SkgpZjHDoh0aGiKEnD17dnp6+k1vetMjjzxy+vRpg9tKkW3BzVprTPoiemYbJX1MExkAWgkplCSYMsYoIUbNjDKGiZG+0QBAKQaMtO7770llOCxSa0kIFTKLY0VpX4uCUgoajL5tEATUYoxZBhUSggOAaZ+CTVKzQZ36OxdlCkAKsekRF0khsywCAMuyXNfNssSybaXk/Pzc8PDgxNR4u92OQ25ZVtLrWMQyBtFZljFGivliGPQ451IKpbTjeI7jEMySLLaIRSgaGhyanHCL+XK73Q17aZrEgBTP0mIxX6mUqO3Eabq4uOxQCptyH4QQYjHz7RmdMXMJRusY9cMthTHO5XKEYK5ks9k0HsIGIbUsy2GWUmCQd8uyRApZlkgpKaUIiHmmCBHFYtFxnLW1Dd/3HduTUkqpjOgBQojSPllebcojKqU825EazJ01PU9pwm2HmqiYcx7HsengkVImSUwINoCmUsrzPDMxotjYDgsT5uXzOdBaKeX7njFw11pKqev1BoBmFgNQAwOVtbW1XC5XrVY7nU4YASZAKIqTkHOOsEaAHceJYy24qg5VpZRRFJtZbZg0aZpGUWTsZEyw7bqu6es3Z7tFiyaYIcBaIdBYaSmfx14z+a3gWmvI5wtpmmapwFhbFsUYW5Zr9mshs24nEVnWriezV2ujo2OFQgE0RQBSKEos0Mqx3SAIALBFLMKY1tKoKyCElFRbZH8zKwxOahYx86BJyQ0ojBCyHSalxKhPUZdCYIQoIWmSaK0JxkaWV2utFeZSBknPYO6G/m/YG1FUxBi7rm3aRAx118wfSWUcJVJKv+AJIeMo9R1/aGggCDq9LHNtd2O1bnzdo6g3ODhsWdR187t27pufX1hdXtOC5nL5ycnpJM6Mx4zn+AghLbWWgBFFiAqOQJFmrYMQsmw37xfz+fzq6mp9o6kE3H33PULohfmlarmcxnGfva5UX6AF+oUHo8ENyqQyfcRBSokwVkoLIRDS1GIW7bcIGP1GhFCcJkiDITdoLRmzEdZcECOoopSSGqDf90lyuZzjOO2gCxjv3LFDaz0/vzQ3N6e1JpilaWoUgTDGWZYghBDqlzEGBqsHDuyfmZlptVpBrzQ8Mvgf/9Ovz87OfuzPPjo5OR5FUZJkLmau7xUKXrvTiqIeJoAx0opYlosRS3jiOM7U1IRSkjLI5e3V1YhpXakM5PJOLm/9h//wHxYWFv7XRz82OT123313N5vN/Qf2PfvsKdu2Dx069NiTj+/cub3X62Y827ZtW68XrCzPRvG5Zi0tFouVUoVzyTlHCgkhGp3OkbHRB1/7mpQn169fN/Ybu3fv9jwPY/z4448bIelGo44xBtC5nF8oFAFgfX290awPDoxM79i+vLCslGLMQToRQhEMcZSYLYAQxTlXChAQjCjCVCuhEWBKDPvHMDOCbs/1nFw+L6XsdDpZlnmObW7KoUOHEEJR1Mv7OWoxUy1otVqmhKCUcqkF3xtnDILvKdfw/CEEfPWr8DM/89yR7dthbAwWFp478g+t1YIAjh6FnTt/wIdTCp0ODA4+dyQMX0Rj+vlCt2Z85Ss/LIT66U/Da15zE232yBH4whfgwgX46lfh7FkIghdRV2g24d/8G3jPe2ByEj7+8Rc57fvvv+nI4uIPBRoCwNmzsLBwk6bwP7Sww7gvP/18IP7b336RM3nBiGNIU3Dd546sroJl/b8IN2P8wrtTLP5Q8+oFg7EXsrn/8XIWGMP//t/AObznPTdpmNg2vPKVcPvtIAR0uwAA+TxQCoXCDzjD72Pl9wPH9DR88pM3HdEaOp0fVrlbb25hyEj2K6U3u9K3GlC22pj0piySif0AwBTOtxr1UN/gmqZpalmOSXkwxo7j1etNqTOGCYAy3VFR1Dt9+vTCwhyltFwu+15+fKw0OWkojOXB/x91/x0nWXaWCcLvcdeGz4j0WZlZtqt9q9VenpaEDEIjNFihRWg08AHLMLADywzMwiwMfMMHYvCDEGIsC0ICIdeSutVe7au6vMuqrPQmfMS1x+4fJ7Ja3dIMEqOdb/b8Ub+MW5kRN+4995z3fd7nfZ5Go1wu2+gijuMTx441m83PfP5zvV6/0ajfd999WRppMA7DRmOHoTjquRSJLNVaGkNtxxVCiHO5f//+Rn2q0+nOz88XyqXnnnuWUocQEUUJY+69976Gy/z555/PeL7T3GaMRUnkOLQ/6Dabu5SyTrNz/fXXT05OZnK4OHkozfmDT33p9MmTNGKFsBSSouM4ASvQ7a2m4zhSyTQRBBttyO5O69LFy4evu851XQDQWlFKtAapgGAwL5djvgYxX8u3r/kH2pc2alFKcZF1e2mep3udX5ndodfX1zc3N6vVar3e8H1HqpxzDkgbMEKmBoTSsNtsfe7zzy/s3/+617/mmWeemZycXFlZOXToECHkk3/zH/bt2/erv/prv/ar/+fMzMzU1MRwOLTb+dWrK1mSNhrjsGfNEcex0lAul2u1mmWtOo6DEd7ZbloqrpTS8pQdxzEaAQBzPa1lu9VHFEkpHeZJKY1GRoIiBow2xiAMgBAhCABpTCwNQUrR63WNUdpISpHSYbe3W6/XSvMzmOgo7g2jrjGmXq8hZBAwY4BRwJgKITAhFBvHYXuGEm4ulNbSdX2R5daZWiruuUG5XI7j4YULF4SQmMLM9OTOzk6e55VKxWLECAHnfHNzM8uyTqdnNdFc13Ucd//+/a1Wa21tLY7jRqMhhBwOW4y5dh/N89xhnu+FgquLF05TSicnJ3d2NrXWxWJga+yzszOuh+0tnp+fmZwcdz06PTPBOd/e3lZSOY4nuFJIBEEgpUYISRXbMAhjbAzSRhpjAJDNxxBC19yZCUGEkFSntVpta2fb0qAsjjZ62pWwvGNAyHVdUBgj5LqeEMrzvCAIhsMhokQI4Xm6XC4KIYbDYblcRgiFpeLcwvzO5pbrjxYFG89prRkjhJAsy+I4u7ZYuC6jlHqOK7WIoggpyRjjPLcsA8boAw88cGnpypvf/OZisSglr9frhw4dunz58tTUlOPSVrOTZRnFxFpse56nlELIYEZd16UOw8giqnblAkJA7z07ADrLuOPQ8fFxz3MIITfeeH2xWNzY2Hjta19bquAnHn3yc5/73NzcvCXZPffsC612t96YuOPuu1bWVsvl8nVHb/jMp//GZaTdbg+7fRuAYkosmG6pWIyxPE8ppUEQhKEPMOpjzTKutbaPhhQKAzHauI6/u7v7wgsvtNttz/MqlYpSynX8PM97vR6hiDEHACYnx+r1+rFjx7TCt976KoTI7m7z9a9//XPPvtDt9rvdtjHI84Isy8bHx5u77Y997GOLi4u2jLG7K2zG6/uhnRLFYlEpE/UHe62CtpPRWKFA3wuNMVJxUMC5QMgpBRXOM6MdbRQgbI3ECaXEYISMVLrfH3ieFwbFXr+ldI4QEIriKDl69Lp6vR7HicO8kydPJsOIesQYePrpZxcW9g2HyanTpw4fPrzbaiVJcuS6RddlaWaYQ7MsLZUK+/btS5JkbW1tampaa7O72yyXy/sWFgCZra2dwEcA8Nyzz9dq9YMHrqtWq9EwxZiGYfHi0uXhcBgE4ebmBnOI53mMuY1GPc+zZnPXSj2eePHM1lbTdytK9jDys1RkWVwqlQjBXCR7NH9ss327jgmhGCZSaouA2Hi6VC64rosQElmW58KYNMu6NtOzCdW3f/tbut3uYDBojI9ZY8Ber9fpdESqEEL1+phGKOfp8pWVra2t2267LU1TrSXn0iZadr01xjCCBdec8yAIsMg4zzDRSgmtsZTSdXytoBCWPM9bWFj0ff/U8ReeffbZIAgwJVOT0wihKE0QAs/z7BIUx7ExkOfCdf1yufy973vv4uKBB7/8GGWu63teEC5dufzhD3/42WefnZ+fe/3rXzs7O3v58iXOOaUYIdTuRNVqeWpy5md+5me+9KWH/uZTnz577sXZ+el77r3doRS0+quPfzxg7tHDN2BNo2Es1tcXDux3XU8bMIggA4giu99h81KpFQC0AQBwKPaqRUIgTaE/6MzMTjQaY9Gwk0TR5aUrStIf+L4frtSqT37lxVtvfXWUZE898vmVlasA+sh1B4rFQljwT58+KaW88cYbZ2bmLpxfWrq4vLhwEJDmnA+HgxuPHP2Jn/ixnMvTp0++8zve/u3f/u2/+f/7cLfVnpquYzyeJNH6+tVTL74QVAuTk5O/+C9/vj+IdnZ2fvzHf/z5559fX90oFArW1GtUgRfScRw9EksxWZYRJBzHGabDUqmEEJw+fToMQ4uteIGLKTp56tiP/a8/euny0q233vqa19w9fiU8+eKJftQxSs8vTMVxijHFxAAy9YlakmQf/u3f6PV6Cwf2vfDCM6325lijXq1WL168OIj6i4vzlUplbm5ufX3t1KkTw+Fwfn7x4MGDJ06ctMzHPM/D0K9UKqCNIUwJvXTp6u5O593v/gdnz114/w9/6Cf+yc80m+3N7Z3V9Y2zp88poSVwIYTSuVYCGUjjtNVqzeybq1bHhXIM0r7vY0zTNAaAcrlsEJTLZYxxsRSWy2XOdblYPn/6Yp7nnhvwPFdGTkw0Dh89zEXKpcAEwkJhrFEZDHrWKtB13V6vp7W2zfWu7wmh9u/fX61WPc/b3R10u91yuej7vjaKUNyoNObn58+dOxfHcaFQGG80fN/f2to6f+6i6ziFkjc5OUkIQwh32peVJK7jIkN5rn0/VMrY5qdGo9btd5iDCCG+71PKpJTLyysa6TxPu93u9MxsHEdSad/3y+VqPIi1UkJLznPKXM/zmetu7e7aduw4TVud3Te+6Q1R3P/0Zz9fKtd+5V//a2Hwv/jFX/wPH/3Uffe/6T3f9Z21scpf/eV/jmJpNRwAaZ5njDHiMkDagELYGK0pdWyoPWqJMwoDCKGjYfb2t76Tc644evXtdxeL5YmJiaeffrpYLNfrYzaqsWbFAJBlWbPZlFzccMMNS0uXZ2Zmr15dwRgDoGswDdrTI76GixljtJWK+ComJgJsX4ZBIISIozTXGmOstbTopwaj5UiyGQC0kZ7nKbuCKW4hNis1i7SxUEKUJoVCoVgsUsqkknGaWIYyxoRa9BZRo40xYAB4zqXiVo8C9kzYLOqB9vRYtdZpmjJG4jj2A1dKmWVZsp1yngWBVygEQd+L00QI0en0XJe5rp9lGecCABzHtQ31PJcYa0CQJAkhZBeahTCs1CqFUnE4iDFCSomd3c3KWHmruSm44lwB6DgbbfqEMYORkaPvaPE+y8x1XdfeGkJInCYjNrrRWikhFBk5NxIEWEkzHMZWFNh3PYxxBspebYyRyHm/22OMIQJKqeFwKESOMRUyZ9S1dG+Z5vZCCT3iBdtbM1JQAQjD0GqRWTjSNivAXqOYxZFBG6N0PIwczzXG+L5nyfKE0Gse2gBgGfFZlkmha+WKPZ6kURqlpBAEgZdnuYTM7ju+7w0GPWuGgzG24lFSSkZdazpiawZ5zi04bo+EYZgkSa87CIJgZnrO0oodl/q+3+127ZSzG6WSI9kQK9rLOceY7k3e0WQGgDTJPc9j1E2T3KbBnufZnd33Q4xzk6FiEDgVxxgzGET9fr/fG1LqWN0SGSdhGAqhOZcIYUodRog0YHM0pSQYhDEmCEnbtomQlFLpEQsEY6CUCTGqpmitKaPGGIyBUkLwiLhgn+IR5wshBaOOOgBgrgMaIQJKaK01BiK57LQ6hUJBCUkdBgCWD2SD0mKxPBgMPM87eOCw5bEaoxkjoW8k78eDLE/5+PikDTmG8cDNA2MgjraHw9h1wizL+/0II0oIE0JQ6jiOl+epUspolERpPlSKi9ALhBAaGYc5GDmXl1aarZ0kSQaDaGzsfKVc2yBbSZYVi0WNtFaQJ9bpUQup6F59a6+fQRNGLQyhlELGUEoRMlwKkNJ1nWuFKNiroyCE7OVAiETxgJARY50QYgCs76udKogSg5HWut3uhuFOoVAohCWeSwBQ2AjFq6Uq2nOVtH9lwzzr3XLgwIHt7Z3t7e2NjfWNjfWf//mfJQR7PosTdXVlaXpqtlwJucg3Ntbm5+dedfutw+EgTYvbW62LFy+WSuGhw4v79u1rNpvGqEZjrNfrMcfr97tKmjvvftX27nqpEtxz76tnZ2fbnRYA9HqdBx54IEmSdqv7gff/0Fve9tYPf/g3L148/8iXH202m5Ti+njjxhtu393d3dnakVKnUWq30cnJSSnlV77ylSzL5ufn7VJvc8Nmewch5HneysqKELLRaJRKJd8PrnXA3HDDDQQ7SZKNmlMHudaAMQXAQkibO0opQF9jf48YRdrINE2V4ABgENhwMeeZAahUSwihJEmyLEMGpJRPPfUMQujAgQOlUmVtbY1iAgBpnqXJyAWKIvk1OO1XxYr6G8LOOIfPfx7e/OaXwLhSCd7yFviTP3npd/bvh337XvZXpRK85z1/95t/7Yjjr0NtfoXcRJ7DAw/AXmfs3zGaTXjsMXj3u192sFCAu+6Cm26COIZeD1ZW4NQpuHwZ1teh34csA60hy+CP//jrv+f+/S/DiwHgiSdgc/MbOp+trVda2M3Pw4EDcOHCS0e0hnPnXiku8fGP/933a20NdnZgYeGlI6urf4dU8X/n0PqV6tjVKlQq37Rg9C23vAxbB4CDB+H48f/ec+v34Y/+CIR4pYQF7E2qV0iTf/X4als4ALj3Xvid3/l7nsn8PPz5n38dV7kvfOFl9/2/MQyM+Mtm77TsBof2+uEsr9kCU5anBTDaUm2Z1jIS7B96nme+qgfOEgiKxeL8wkKhUNh/YN/S0pJVA3Zd9vrX37+1sVkqlW699db9BxZczwuCwBplcc6Xly93u10pZZZxjHGpVEqzuBB4PEs8hzKCAMkkihhjlBijJGOEOcTzHSEdIUS32wlCb3p62nL+8kyUq3UpdRylWZYPBzGhyGjo94btQltpbVG11dWrls96dXV5dnbf3L6Zs2fOR+lwbHxM6Jwxcvr06ceeePLyzlIxDKvF2h2vvlNWbz1z6fRwZUiNZknCCSE844IPgrAyP7/4+te/4cabbqEM8lxZogHGgPCIyfXVOfYrxNdfdpMMKGVAa+pgqRQhBGOwVjlpmuA99wz7Q7PZ6vX6hw4cJK4xoJWWCCMhMyEznotOZ7fd3tncWQ+CQhRFf/zHfxwNk2Kx6DiOG/A4jp988kmey49+9KMYQ687oAzbXiTruz0YDPr9IaUUALuuG0VJsVgul6srKytSasuQdV0fIYKQAUDFYmFEzOSKIoIQIQS4lFpDlkqKsFaKYmqUIYRiggFpwMYykoTgUkriMIxBSul6TqFQCQIfYSVEXi6Xr64sdzodMAgZ4/t+vTbmum6r1aHEFVzZKLZUKmlD0jSxjXvMc22HqVLCcaiUklBUrTUykRvrSxB6FhQYGxvjWW5jO2t/hxBYWwMppdXDtWyU4XDYarVbrXa/P8AYZ1mOEOl2+57nWZUJy3prt9c2NjZd1wmCYGNzzd4ym6dFUdTt9jARthrsBm4u87/+279u73avP3qDH7itZne8VIl1bmNBQgjnglGqtVRgjFEAdhFHGCOrhGs/15rpBUGpWCy2dptKKUao1MrmfhZtxxhLAwCgtTIIlDLoq2pNWZb5vu/5bpJlQohCAbseK5UKg8Gg1WrleV4sFjzPm9k3N+j2R64metQWp5QC0K7L7BlaYcSxWsVmQTzKx8fHOedxljuOgxCZmppqNpvDYTQ9NbV///4/+ZM/+cAHPnDgwKFOp3P69Onbb7+t1+v3B72nn/4KpY4UenJyepRggEFKaq0dgygdpejGmDzXxApGELZXOgPLcw8CL47TYRR7nnPPPffEcby2ufv4k08Jabq9Qb0+XigUer0BQuTZZ5+9vLKaZVm9UVtdXVVKE88J/UDlYlSdw0hKbZFcm2iNjY1ZmlIURRbW55xbSWWjtOf5imee58Rx7DiOFHp1Zd3zHSGEbaP4wPv/F8dx/u3v/S7VlDFGKKKUUcoQwi++eKLX699///2u60bDJBlGWRx5nue6/tW1dWPMLbfcUiyUoygaHx9/9rmnOeeua/VYuFICIWOrcPv2zVy9fNWydO2yboyx6Z9SQgtuF3rGCMZUCGXlBBUoA0YKQSjSSjiOiw1govM8S9NkxOoinjZCa+kHThQPjl5/xB0QY8xrXnfHYDB49tkXGKNXrlzd2WlGUVQqla6ubjQajSAIz58/v7A4Xy6X0zTOs3QwGNgIuNFo2FR2t9W5urqeC1GpVIyG5587/lM/9VMI6OOPP0mwS6nTHwy2Nneq1bEoSlzXARjJtszOzjLGLl++6rosimIApDW0232M3EJY3dxohkFoEJUyTdPU89wolgBQLpdGNH87bwDq9bpSKs0y2yxcLpfvvffe1dXVdrsdx3GephhjK7GhlBIiwxhTh544dTrLkiiK2u327Nz0+vp6FEXD4dCjgY28icM2NjbKlWKlWtrZ2bGpchAExpgkyYRQhDClFCXUdd0sS/M89wt+oRgAaMbwCFMQAiEshBQiOnbsmOd5s9MTl5evaFBGASYoKBQQxc1m065pFy9etDRqjKnruqdOnnn9W7+TSxGnyU233rK7tX306JFapfzlRx4OAu/MmVNR3Lvzzjs9zyOBD6BnZ2cLYfnM2dMPPfRwo9GYm5tL0ggB2d5c+8i/+4NyuTw3O42QNkbPzc0c3n/d8pWrUso4jiuuZxAhxEpLATZAMGg5cizAGNQe3AyglTKU0ijuGaSnZicohShipWrjxnJtrF5d3L//6sry9PS+3Z3WF77wBUz0q++4FWNwHCeOo83NTYRIEHhaYaPx7m4ribOlpSWHeUEQ3HDDDdONyUKhwLj8ju/4joceefjP/uxPXzzx/ES9Mb9w6Dvf/R0XLlx4+OEvLyzOTc5Mt1qtJEsuX16en1/UWi8tLWEMVhBjbGwMIRQPhiNBBjB5nnuexwUhgIfDyCrzBkEhDB0AsNvH+Hj953/+n/3yr/7yIw9+2S367/tfvvcNb3jDn/9f7fPnTx84OE8pXZxfOHf6nJKQZdzxgziOB8P+iy8ee+3r7svySEpx8uQJZGBnZzvLsuuuv358vH7lypVatX7hwsV2u1sIis2d3SzLASDqDzLBsyzx/FByUQiCN97/ti98/ouZ4cVCxfEK/+Affu+Nt96WcPnAgw+uray/+zveVSuVL8WJ47oYIWtZpjVRSjHqGY2jKJFaFAoFTFCaZKAJpQQZA4RFUWSF1/v9waAbS2mshwEY47pumqu5uZnGeG1ufnp17WqrtRVFke8HoyvGuQ007eqdZVmhVGZMW+cQQkjoB91Oy2gtlVhYWBAiV0opJaanJy3njxHWbrfjYaSVSFNBqO4TUiiUPM+fnJxutTpaoTzlhLA0TT1G4zQmFOb2TY579X6/hwyRUlPq5Hm+vr4RBL42cm5+tlota61rtdr8/LxRcPXy1bW1NYxxdawSx6lG2iAwUmV5hhC86dve0Nze+utP/ZUx6Md+8sea3X4/iQ4cuv6P//Rjv/xLv8UYveuuO77wwKeTJBofr2DIlJJS5raEw1hgjHHsoTy36wCllDJsodU8z+MkKxcrV5ZWp6anb7n5VQ9+6eE8Fx/84Ic2N7fPnT6DMCmXy9Z11sIKrVYrS9Lrr7++1WqvrKzYAonvhXffde/jjz9k94JrHEwrTGG7mM1X6SYbYyghSo+6GimlBDNjEg0jAWNCkEGAkFFKAIAy2hhjMCqUC0EQRFE0jAeANKEUGUAIeb4Tx3GxVHznd37Ho48+mmUpIiPHv2ssVCUkBoIRkkpdyzcwooKr4XAYhiECkmejUhyllBHXECW0MnvKvJxIx6XDYcwYSZIUNPY8jxAC2kSDYbFYVBRrBTs7TbsPaq2FUGAwoghjLLWxAgsWIHYczphbrZcRQpQYRIXNmvygKISuVKsiks1m0wK1ruta/GtEFd+7whbQtPa5dlYLITjP7YW1V97eFDxi06cEYYMdLiQAsjAcIdRxHIyB80xrTRCujzd6vZ5VKtSODoNioVDYljtZltkwzyDNRWbhbKWFQ6gVl2OMJXFmjOm02waNuuVGqR0mWmtEkcWpjTGFQgEApJS2kwMMElwxZ8SutbIeSoskSa6JICOEhsPhNU60DUfzPLeZIULkWpyppCFY22wzjmPP868pk9gsVCmlpNFaW//qEbXZC6SQcZT6vk+Jo1VmNAIwdg7YQqBFDBFClOFrBHP7TQuFAufcgDKgKHEtKG8DcqUMxlQJ7blhnueMOnE+cBxnGHU9N6DU0ULbjyCEACCMsOO4DBuEjFUgZI5jJ5XV+LKLGyBkDNic2Qo1XFv0rpFwAQAZjEd+jC+jd0mlLOXW8zzEtIV6CWZgFEJISaW0wDgjBPm+XwiKIpeGaCllr9fzSKDA1Iol1/U3ttbTNAakkTFCCErIbtxyHGd6dowxZpCO4ziN1NrqepqmGIgxgHGOgCAkAPJrpGMhlNXyjqIIaey6rh7JnqDBIFpb28jztNvpO47jucGF85dmZ2dtMczWvIFgIQRWWCnNOZdfpdcJoBFCBOFRPYw4YJTvuwAupIkQIs85Y9QWKSmltvKEEMaA7C3eMx/GljyttLDFNcYY81xrQG0fxrNnzxNCwqBkA2ChuO/7xWLRDwMh+NbWFkLI812CqVKqVCyfOXPWothRFJ04ceLDH/5wmqbT05O2zPCud73rgx/84G/+5m8+88zTSonAd33PKZdLDvMtya7fH6yvr+/ubo9P1MfGxqJocPTokTe/5dt/4zd+s1gMVlav7Oxu1mo1pdWV5Ysrq5eTOGs222tra4SQL37xwXq9/tjDj0b9+ODB65QySiLXdW+75bbZqbm1q6u9ds8mOEKoRqM8PT195crSF77whQMHFm+77bYz589ZMSvP83Z2to4cOdJut8fG6p1OZziMESJxnEopjx49evjg0eUrK91WRykzNjYmhbb33T5BlkympTYGaWUYdRljGFOlFHMIwy4AIANa65xzAJZl3BjFRRMArBOP4zhKKssWmpiYyPN8OIytfjchxCiwevF5nrtUwzfPM/3asbPzSqDz7W+Hhx6C5WUAgFoN/rf/7esLEP89RhjCzAxcuvTSkbm5V/Kdpfwm7AQB4MMfhltu+TpOiUEAQQCNBhw6BPff/9LxBx+E3/md/+pHBAG8730vY8JKCefOfRPnc/YsCPESKbhUgh/4Afj1X/87cOFvkKH8CiXl/wHj4x+Hf/bPXnoZRa8Ejr+Rkecvw/E6HXjooW/Budnx0Y/Cxgb8wi98HX2S/9qQEjh/2cT7i7/4e37618WaAeCf/lM4duwbfRMrdQB2hzYKYdA22sHM7tQj3SQb0O9Jbdh/ldEGjbZCw4ztzcIYw56aljFmbt++er2+uH/+4MGDi4vzWZZVKpVGo3HTDTe/+tWvbrfbnucIITY2Njrt7c3NTcdzbb9FlmXWVdVxHC1VGkeM4P0L83kWIaS63WatVjNSKJC5FELmWonhcJBlme248n0fY+T4nhu43UHXaOI6SEqdZWp8fJxS0mxtUYqXl5cvXbrEpVhcnN/YXNve3p6amazVx/rDgVi5MlatuQHtDvJmZ8vxcdEpHD/+QrO5Oz4+TjEWiTh+/Pj+uxYWFxe3N3dpkuQWP8JAkI/qY+NveP23HTx4mFLABBgm9upQSqxJ4H/jlsBXIc4aARjgSoo0yiXzPC8MnSDwOOec54VCwa7+lkaRJGmxWGSMXbp0qTFZrdfrnHMhRirPhJBDh/fP7Jvd2dnZt2++3W5/8pN/85Unn15fX5+cnP6H3/uWCxcufOxjf3bzDTeMjY1duHBhamJcShlFUa/fcai7vb1LKQ3D0Fbr0zxDCPV6vX6/bzG1OE6NMUoZrbVWxip8WYYgJlhLia5ZMystuEDUMQo0YKQNxti2qxukCSHEoQiB67pxHBuGx8fH9x9YYIxcvrx03ZEjWstLly4ghJq7rXK5ihDiw3hn64wxyHG8NOHDQSyEsogewsZxHD9wjTHKoCzLHOY5jiOyVChpycVaa63l4SMHw0Ihz3NCkUWrrUlFnos0zaXmUipCiOUZMOqWihUDKsuyLOObm9sWho6jnCBULpRzmQOA0cholGfC84I8z4WQQRCkWew4FABbC8RCodhsNh0Xzc/PCyEcBwkhtJYHjxwsVkqwuj49PUUwGw6HVrFXG+T5HjKgFEKgbO/YiJS0NzCmjLkYU61lFEU20LdUzWuhrW3wvxbWa62lVsYYKbVVurOCjEmSlMrFqYkJTOmlS0tRlMxMz5XL5Xa7PRj0h8OB4ziVSoUxKqXI8wyhUZJMGc7zPElzxpiVJ07T1FrAZVkWhMGtt90c+IW//exnpNTWmR1jjBB0Op3PfvazCJGTJ0+urq7+l//yf128ePEzn/lMt9vd3Nx+/rkXpqZmvus9/3B6etqG477jMM8lhKi97k7XZTzPBoOBQbhYLIaBp9QIRbfTzF7JXq/jur5Nivq9wdZ2UxnUarUdSicmJyil1crYzD41Vq9vbW1tbW3Nz8/3uu2t9XWthO/7dnonWZqm+cs0ExCyeXuej9heSimjjORCSmVXUdswaxOhQqFgJ1LBD6TQZ86cEUJY2qwFGnq9XqvZCfxCNEzOnjmPEa3Vas985ak0TfM0/1//yT/5x//4H//j/8+PvfDCCw8//PAP/uAPvv51b6w3ar/8y7987NixMKxkWeL7Rb3nvTMYDAghrssYG5HItAIvDBYW983NzXz2s5/1fdfmeHZX4FwZjYBwQhHnkjFKGQYwQnDsekooQzRhWCnlUEcpAQoY9bI8ocRZW1vJedLtNm+77baDh24olf3HHn3ScXyt0MT4dJZlRkM0TGx+WKuOVculc+fO2fkgpdZaT01Nx3FMHefAgQPb29vGoOPHj8/NzYkcpYm+79431aqTjuOcOHGiWq3OzMw8+sjjB48cXl/f7Pf7UsqDBw8uLi6ePHlyMBwWCoVKuT49M7l8ZW04SN7x9neffPFSnhmeDSYmpl5z773j4/XPfObTRw4f7Q+67XbbbniEkDRN77nnHin5pUuXeJoVCoU0TQ8dOnT48OFHHnmk0+l4nmekopTmUhBClDQEM0IIo3RtdZ1QXCyGQsmN9S0pNKOu4MrO9rGxsVa3MxwOb7rppn6/L2QOAFZ8UwgRBIGdPL7vG2mEUBhRQgGQphQjhAEoHukn9oUQw2Fs7YaEEGk8KJVKnEvqkJW1Ndvg3Gq1xsfH3/Oe9ywtLWFMtrd3tIZOu1cslLXWL548aYw5dOhAvVoxRh1/8YWxWmVmZgaBvHLlytGjR37+5/73j/7pn/T7/ShKCGKgjee4D3z+867nFYtFDei5554bRv19+/a9423f/ua3fNvVS8traysL+w6MTzQiroUQjkOS3AhuCMXGgOAaNGYEKLW6N2DwXreXRg4jFAOl2HHoMEoQIkCdw0ducRynUCCA4MSpszyXl5cu1qrF2v7rjh49+uSTTzLGVldXt7a2p6YmpTBnzpxdX9+Khtnk5FSa5u98x1tbrQ5jrF6u7+x2vucffg9j/q/82q+LLJuanQ4Cr1gK19fXX/Oa15w/f67ZaQ8GA0TwH/7hH15/9CaEzEc+8pEkil3XXVxctERLkeUMo9XVdUql67ph6GutMYY8FbfcctvGxkav14vj9NChQ0KIlfU1j1GN9K/8+q88f+z56YVpg/T5S2eJg9Y21yjDUzOTRul2uzk5M5nn4uKFyygXQqhKpRwW/I2Ndd93dnd7ftHFTqnVao2NjRXDwuXLy8bA8eMnOu1BY2xifHyi1WpNT8+UKuUkSRzOAUApE8dxvVI7ferUP/gH38VzNTk195Vnn1tk/rkLS3/00X+/tb7xwz/0gd/6rd9++smnJ8YaOY+zLAWtBMKgkbU6UAqtb2xXqsVCKewPOsYYz/WylPteMRHZWG1sfLyeRKnvB3MzzvnTF4eDDDRhlCgjMcZX16+6RZKpoRBpkkZZntgFE7RBgCwhS0qZ58Ky8ywcY+2GlFb1er3X61KKEFJScoxxt9sGAEqdqYkZzvmJEyeUsI0IAiOapnkUbY+N1cfHJ2ZnZ0+8eFqqbHy8nsVJt9cOimG1VlxeXsIUMYckkXJdt9lqSSEchzLmMDd0HV8p0+n2CaNLS0txnB5Y3J/k2aDbG7T7buhb5y4A4xC6u7u7vHLFocSAft8Pvv9t7/yOv/3bB44dP9WYnJhf2P/TP/Pj/+qXf+nnfvafLl85H4YugCQEjJJcSmOU1mCreoi4GCgIy40k2kgAhzGilLCYuwHyuc9+sVSqEIbvvvvucqn2yCOPKqXuuOMOKeXZs2ctXgkA999/P0H485//fJKkWZbfc889Tz7xVJ8Px2qBJevFcXwt7MSI7mFxymrKftXOpTVSUo0ourbjzRZWBefaGCWE67qVSkVrHafRYDDQWgdBgVLs+y51CCLAeU4IwYAsfzkIgvHx8V/4hV+YmZn5vd/7PT8MpNGWb2gjGSWVxS+uJR7X+MsZl7kYhP6e9jQC6x3CGHMIiqKIOBRjyFOulcrzvFQqaQ2FwB8fH8eY2Evkui4yyGiNDPEcX4PRWitpXHfE35RSeo5LncAYk6ap4ziY4Y3tjSSJZmYny9Vit9ulzAHQAAb22v4sImMjMfNVzaHGmFxwzAkAGASAkZEKYWJRZqUUFgLwyK7dodQiaEoapaXRqRBCa0QIchwHY2RAaY1c1/U8zxi1enV5OIwdx7GMliSNSqVSpVLe2koQAsZolmUGI89zAZDv+yLLrbwVxrjZ2lFCMsYQQXRPDwQDMqPd31ibB2Y0xth1Xds3anE6pZQxTqlc6PV6VnyDUspFNiKbW4K3QdbfQik1OTmprNu21lJq12Vaa0Zdo3kYMtf1ACDPudYmjmN7WSwdm1KaxBnnvFqt+r4/GAysz4rcM7UnmNlM1SKhWmvOuf1QO2fs93I9aut/eZ4jhvzAdT0WhN7a6obNYxFCQoxkxAGAEDQYdtM0VcrcfOuhN73p/mefev7pp5/N8sx3wiQZMuZaJN1+utZSKK21dhyXwAgVsHff1kWsiIo9PqJKKKWN5ELDVz1xGGPbpWe/DgAgAgDAYIQ7YwLIYAAAhbQxUihjjNASALK0X6lUMsTt9OAcZ3nCOVeeaTTqXuDtNLc5t4WnDIEGbZRSlNLAL7Zb3Uqlkous2Wlj6TuODxoPBpFSymEIwDiO47qOzHkURXabw3vqMVb8HSGkFOacAwIhxL59C74f9nodpRRjbGNjwzZVbG1tTU6NjyAGRhkgQZXZu00WgMAYCCEYYQMYiGZ0RM+3l9oYo7WhlOQ5x3tOUwCGUgpgpBR29VBaEzSS9bO1AcyoMcAYtcUeg4A6rF6v+07oeszz/bGxMSH5brMZx5ExZjgcBkFQmZxEBgFAtTrWbLbzNEMIYURLpbLjOFLqCxcuAYDlGD366KPnzl7Q2jDmbm3uxHE8OTlZbzTq9XqlUlxbv6KUane61VrJ81zXY/fff//NN988NlYtlSq7u7vdbrdUKnih12z2rly5Grih6/h2ies1k9///T+ZmqrPzs4eOLBYCqrjN80sLy+fP3c5dMJ4GGGEXNd3Xbdcpr7vR1EkhOhHw5X1Nc/zxipV13UJJlF/gBAZDKJWq4MxrlUaeZ63mh0pJUZoPdzY3mhevbxsDCoWy6CRBRDssmZbIY0ySmlKHABVKBQ9z+VS2HmFkC0gIWOMfYqTJEEEE4XW19cxxmFQxBgbOmpjStN8d7clcoEAS8G1MkYDozTLc/Wtwx17PUgSqFReOlIqvUQuThKYnv5WfRRQOtI3uDa+lic7HEKn8028J+fwL/8l/PIvw/7939Dv33cf3Hor/Jf/An/zN5CmX+fdXmE/iBBcufJNnM/ly6+Um5ie/kbJ2v8TjnPnoNt9iSZcLsPs7Dd3QQDgppte9rLdhiz71pyeHRcuwO/8DvzIj3wdqZavHUkCX/4yvPOdLx3pduH8+b/P535drNkY+L7vg5WVb+6tjAELuDGKbQRijCEEaW20NgYU58LufQAj32xbpzdI9/v9PM9LxSKl1HEDjzmDwYALjimq1as33HDD61//eqtiOjY2Njk5+d73fJd1Hff9sN1uP/vss5bgpZSK46E1hCuVCsvLrbW1Nc/xfdez0mRKC8d1/IABaEpQHA2KBd8PHM45w7hSLO5ubV2+fHliYsK6rfSjwXXXHQ5CBwBKpVKaCMdxCDFKqVKxsru7laap7zDbbjU2NqaUKRbKahzGao37779/MOw9+eSTSRKHYai1VCb3Q7a5ud5qtaanp1mVba6vE0W73e6JE/3Xfttr8qqgjfrUkcO1fr8fhoVCWPL94s5Ok+dSBcCl8XzkeUxIKaXCmGB8jcM1ugd2vIzjjMEYS2kAKWWapv3tbdf3wtAHAMao3bkJIRaVaDab589fIITce/c9SZK5flCrUgTgOJRz6TpenAziOCbUTM9MaiMmJycOHTpw+PDhVrPz6KOPXrp4eXNzc3d39/SJE4SQWq3W7w/jeMg5d13fcRxKCKOupXDaqIhLYeNyhIhVWNPKpHuyvGDMteBbSkkAIaA2OsxzTakD2mBMjdQGQEpNiMIMazBKKaQIArDmwhONiYnpieFwuLKynGWpVNz3/TAshmGxVhtfubpmMVNjuO3BTOI4TVPfD6emZlZXr+ZJWm1UgiDMOC/4YRgWtILhcAiUEEZqtVqn24rTdGFhwRgrwhucv3B2emp2anF6bW3NfsFOp8NlXiwWEXULxQLFrN/vE0KiKKuPjStp8syawg89N3ACHyGkRWykQoj4rquk0VoGrleplBxKketlWWJGnntUCFEslkulkBIvSTLHMXE8jOPUmF2eyxtvubFSrpfC0vr6xpcffJiFoVIqzxUjge2KNUbZB9NakFum8ChvRCNib5rmPqPFYnE4HHI58rRBewLtcO2HvQDX8zyMrSkNQhgopUkSKTB5ng0GA4w3FhcOOI6zublpZRCHwyHFwEWOqUMocTy3UCgkSeL4rpflSinOc0qJ77pSCiG4MfoDH/gApfTzn/98rVxJ8sxxPNd1k7g/Pz8vhNzZ2SmXy4888kir1VpauiKEOH78hY2NjX37FoQQKysrZ86cqdUblvwSBAF1MeeaEOL7VGvIc+kHbs7ZoB+1c4kb455HMGCtrcAf0lonaZzneRAUkiwGgIzrxcUDB/YvNsbKcdS/cvnSkeuuW9i/ePdr7/vs5x741Gc+3Wt3GuNVMEoIwfPUZQ4A2IRnxNfm3Lqit1otSwXq93tHjx4dDodpFje3e7ZN2PosSSkpdTBWWuskSRyXKi6q09VCWDp//jwhpFwu2UpgHMdCIJ5nSinX9QkhL754kiJMKQ2CghDqytLlX/lX/+fKyvJtt922tLT0mc98xvf9o0ePDgYDQpDrut1uO45jQojlT6VpLITwHbbHzQFKCMZ4dXV1e3uzXq+lWSxEHnoFyyfCmGoDCY984jOXUkodRiwjjFKimAQEVoUQADjXjuMrpRgptprdwbBXLDm1sbLU8fLK+Uq1urA4t7nRVkr1ugPHcTDBdp2hxDS3myLPJyenbOVwfX19ampqYmKCS8k5379//+bmJkIoy5L19fU8hmgg3vcDP6yUWFtbSZLUxvq33Nq78847n33+2DPPPFOtlguFQGvJGNGGlorVxf37Go2GVjSJVaM+9b733fd7v/PvdjZ27rvvtdcdOvjkVx53HBdjEkfZNW6aBTIuXrw4MzNlA2iLMy4tXXn88cd5lgWFQp7nSBuECADWGhAixWKREJJksaUpVatjlOJhf2BLEUqp+bm5JEluufWmLMueP3ZsfHxcSrm+vq61YYzlubJmR9VqdTCIECKMUW2kUrnWBoAkSUwZVkohIJwLpYyVdM9zUamUtNZxmjuOExR8SxLJslwZ43jeMI7PnDmrtd7a2llb26iUa3Nz86VS5bd/59+uLF/VWlOM6+Xq4uIiRiiKBhsba5zzsWrl0IGDg8FgfHz83e9+9/79+/+/v/brURQxRtrt9pEjRxYWFjY2tsIwNMZYac4kiW646fq1K+uDQa9eHy865Wanu7PdLlSqCCGtwRjIpdjebo+VKqVygDFIabQGjBEiQDXGeqS9PogjaWCsPs7cMPDBZZDn8PhjT3/xCw96PnVcFhQQhr42vFwp9nq9o0ePBkHQarXr9XGey92dDucCI9bvDjzPu/nmm//sz/5MpuQTn/js00+98OKpk9/5rvc8+ugjGFPO5Veefnan2W51O5euXDl8+LDn+5cvX46SeHFxcXJycn193RLP4zi23S2+42KMK5VSlmWcZ8mQjxAZIKVipev3e90BpaTT7tUbNddlfuAJmX/5yw8dvu5AuVqK0jjjyQvHn+v1ehnnJ0+ecCgjhPpuwJjreV6/PySYCSXjNI6iAec8ToaOpJgYx6VaqhMnTvh+4Pk+z0VjbJwxtr3V8nxnc3MziiKlVGt3N8my6amFt775zZViLU95o1b/60999q1vn/r+9//QZquVZnx9e2dzazsICmdOnfWo41EWp8bxPMFTYwBhbBBilPV7wyRLMUWYGgOyUilFg3jQ7483GvVCeWVlpdVq3Xv3Paurq+fPXtRaU0wwdXguXNcFY5rNZsr745M1J2DVYsEKNCdp5DCvXCplaZ4kCQCWUgaF0C6tjUYjSZKdnR2HBa7rSsnHJ+o7u1vD4dBSEQthCUCvrCwnSZIlqeM4Ugob0fIsS/PMcVwpJRhcKvt5FjsuShNeqYZ33XsXpeT5F56N0whjNjZW2dnZAQBKqR8UvMBPkuTy8tUg8IIgaLe6bejGUVQulxcWFjbYxvT0bLfTW1/fxHQkLCtk/vTTT995z52//Mu/dOuNr8pBluu1G26+qTfoVweDzc0rb3zTvZ/527/xfHrb4SO7Oxv9Qdt3XISMbTPq9QYICGOOQZixUBvpOI7nMkoxAYS0EVkEgBEi47XJXIphL97Zbj755FNZOrTkU0LI+Pj4lStXKKWHDx5avnzFSmcaA5TSRx95fHNzk1KqNWxt7biUCcd5CYxD2OKJUkq0F4/aNdBYL42RCQfwXFpyH0LIAFzrWC8UA4SxrTsCQFgqcJ63Oi1KKWOUMaq11lJZAqNDSJqmP/dzP7e5uWlF+bWRhBAgWAkJoDEgjDE2kKapUAZjTCiStvUSIwuCgx4FLUaD3KOC2oupETi+J7hwXJqnXAo5VDaU9Wzp3dLoACCOrTowCcIixirPhTHcbuVSoizLCMMIm1zmHgoOHJhvd1pC5EKkmchUHGuNAr9CMYrjNM+F67oW7nEcYRFPA6CMxhgrIa0JgQ1a7D4itbSkS0opocjzvGKxaAHuJM6UkNe0a62sFkJWc1lTihnzCUFSAkKoXC5qrQe9kfViNBgSRplDxsbGZmZmdnd311Y3siwrFAqVSjkZRr1e3xKECcLKRtqMYkzkSMQJEMLWtA3A5HlujQ2jKLKSApxzKZU9N9fxOd9VeyaHnudlWWr1wUeKHIDtF7R/fo3iYNnBYRg6jsOYY4nPCEi1EgLAVnMLADzPw4xKDZngCKMwDDv9nhACCM4E50pijL3At3RpGFlej8TNRmDuntYK7KlSWGgyDAPmOYHr28zFEmWUGhEyXNdShonWGmGaZdmb7r/nuiPzSqc7u+urK1tcxJRRysAqpxnDDFhjX+ucSY2WeMTaQJbm/NV2iLaBA9AIerZg4jU6NkLIIIUQcTzmOI7tl8IYM0atFF6e5zZOAMvGB40xwohqIwFQHKc0t8Rw4zgOZTiOY0CqUitrI3POrQImIQQjlKfcpZAkiVImTXkumrkQec55JDHGw0GqFbhOaK8t59zdMyCVikutAYAy7DhOKSxZkT2lFBd5uTpWKBTa7XalUiEEbe/uSK24FGGxUK2WK5VKlmXRcGhvh+W1Ka0t8I1GKhbWgYYRqy+516+pYSSgYW8oQsiK4dirbRn9CCGlvzrDHk0MINh2fmCMhZIGwb59+yqVSq1W297c7vY7PkLW126sXrWs7YMHD/q+jxAeDocYyMrKmrWE0hIQoZeWrlxdWeM8KxTD7c3tbre3vdV87NEnZmf3jToseTocpAjaCOOw4LsenpubI1QVinONRiNN062trUuXLpw5e/7cuQuHDh0aHx/v9XpRlPhFVioXBoPe5OHpf/5zP3/h/OV/+S9/6Xt/8L2+F/z1X//11tbO7Oy+Uqm2ubmpuInS4cMPPzwcxowx0EZrCAIPAAxCE9NTGsHGxhpPs+uuu25ubs7ma7It27ttiuggikrFCsGaYrbT3CWEZOkFlzqMuXkuKM4opVIohDBjzII1yIBUSivQSFPKtNa2rGOsZj9ohIzMiVTcNZ6Queu6ucgI8Rxn5Blr70Kv17MPwrWeD2OMFR1CgOI4wRhxnsNXWfz9vYeU8Nxz8J3f+dKR7W3odkc/Zxl87nPwgz/4LfigBx6AX/3VV9J4u11YX3+ZDPRXvvJNixEvLcEHPgDf9V3w/d8PYfgydeOvHb4Pvg8/+ZPwrnfBL/4iLC297H+lhOPH4cYbXzqyuwvb29/Eyezuwu7uyzDr/1e7+W1vvxIaPnQIHnvsm3iHIHilOMnKyrdYA2R5GZaX4QtfgLe/HV7/erjllq//aydOwKOPwuc+B+9978uOZ9k3d4vt+BZizWDdpAFRyoLAtVJX19Qw7AiCwIbrZm+AhbconpiaXJxfeM1rXtPtdJ5++mnG2AKhWZZ1Op2pqan7778fADCjmNFOv3dl6TJCqNPp9PvDu+66izHW6/WuBX6FQkkI7nhuFEVra2vLy8v7ZufL5bLtJkeaCmFVniRCQCnBBDyXIdBSylardfXq1TSL8zzv9/vDJB4bq916661T040sy8rl6oNfeiRNUs8LhBCt9m6z2WSMzcxON5vN+lhjbmGeELy5vUUdt9lsrayv3XHH7ZeuLK2vr0rDmUuibNDuk/HK7Hd/93svL6+dXTt9yy23HGocPnvm/Isbx86dO+cNQ/qhf/SjlWoJABbm96dp/tnPPDAcxp1Or1IrOgwpBUpJyjAgLKUGg9F/pUPEimwYDPirbrDWmjE2NzfX7rYGgwHnHGCkdWAVhH3fP3z4iOf5x44dS9OcUtpuDlzWznlSb1QIYUKkw2EMIIMgePHFF9fW1q6//sZarfrud/+DJ574ypNfeXxjY6Pb6fd6vfn5hZ2d7X3zs3e++o6zZ88+8cRjFn/U0iRJ4rou5yNJtZAxoaQtI/u+jxERMFIKU0o5jI20nEZafhowWPEyhGxGg0GZvdhCIoQCN8CYcMWNEKUwtOhYEASdTmdtba3X7/q+Y0V+X3X7rVpBc3dTCFkslpQyoCxxFSGEisUipc6lCxeYy+68987t7S1KScFxhFDtdhsBsdCbHwZS8VtvvfXZ558/e+5MsVhYWFzM8qTf74/VGsPhcHV11fO8UqnkME9qIaX0vTDLMkKURRw4591u1wbuFGOMaJqmNlnL8pQxlqY5RtRegXvvu3t8vHb23BnPo8ViODk52W53Ly+vaG2N8hIhpJSi3++3203Lg+AiW1tbO3fuAk/k+Pi44zFthNISEDGKUooNAmtOwhij1HqaC9cdtSTYwGukh6gZdZxrL22P5ygIG4lnGNtr5riu53nIYBtAcyHSNO73+1zJYqE8NlZN07zT6TiOZ/98ampKKSVEbhCyPZKMsWq1amEXLSTnfDAY9Hq9UqGY5QmltFwpMsYeeuihCxcu5Jl4y9u+PUmyTqentX77299+9erK+QuXkiRZWlq6Foj3er1+f3jx4lLgh+9973cvLCysrq5aBui+ffsqY1XOeZKmdq4yxnZ2NhlzMMZxkuZ57jgB5ypJ4iD0KGVZllhDtkqlZAzClOzfv//okUOUwNUrS1/64ufuuvMeLvNHHnlkfXP7wS8/ZDAql0v9/rC5u6mFGG+MxcMoTVPCaKVSkVIPh0PHGaVMSil72ouLi5zzTqdTLIVhGNq1lRJHSgmAsyyyii4AYDvKtdaNRsPqUQpIXIdZFgljrFpzu52+5Xc4joe0AUBCqFKh/OSTT7quWxqrOg6dnh75Z/7+7//+8ePH6/Xa+vqqMUZpoXPNRaaksSQUKUcOn1JKu9IgDGEYApJxMqCUcp5jTMBYxhnxPIqQEmKUxSGEAOFccGuqbgySkiMgGFMwmGCCKBJSRcNoMOxlufuWt74uy7JTp84ZowqFoN9LwCDqekLkWuuZmZlbbj6c57kQOca4WCz1ej1CyMzMTBRFmFKE0LFjxwaDAUJIG+V6TtwTf/kXf/OOd3xnr9f67X/7m2fPnp6ansAYAZiNjfWJicarX/2qJEnSNP7KV77iOI7vFbvdfvPZ5ycmGlLqWrW+tbVTLk7/2I/9xDPPPFculy9evLi6urpv377z589HUcIcbJELC8r3+92dnS1L77rlxptWN9ZXVlbK5eoQ9+38xAY7juP4nnU70RqCwA0KfprGWZbt7u4yRmyNMUmSubn522+/bWVl5fnnn+dSAsCVK0tzc3OcL54+fRqhEACkJMYg25pNCPGon+cZB4mJsa0JC4uHgiC4eGFJCBGGRduiWCqVKMW1Ws3zvFqtRhgFg8+fP99ut5nBlsV86tQZYwyl1PfCtbWNW2657frrb/jMw48gghtjY+fPnh32e8whkovZ2dl+v0sImpiYOXXq1PkL597+9rcDwGOPPRbHMcbgemxnN87z3BiU50JJ6ft+4Pmu6x47duy2m28JS2HK416vE5Tc6elpqTRCyMDIyTMMXWzGkv6w1W4iqzLvsEKpWCyHWQJpniZ51O41g2IwMTkphOn1o82trBiWdjY3Ll1eml+Y29hc2t7cKFcC5qEoGoShv7Ozs7u76/p+uVIrhKUu73ue36hPCqG6unfixKmZmZlTp07dedsbwjD8s4/9p+/9ge/fv3//sRde5CJNkth1/Uql9uCXvoyx84Y3vnkw6D1/7Pgtt9zy6KOP3nnnnTMzM82d3f3791+9erU/6GKMhwinaep74ZEjR86cOeN5DmOMMYIcdvbsuTiOGWMKzHA4RNhUq1WMAWFz/fXXNSbqUTowoM6cPVUsFtM4opQWajWHsn5/YMtRjUY9CArbW7siywghS0tLUvFisUgIiuKB6/rGmCAIjTF5ygmhCEGW5VmW2mpikmy3ux3f96rVyqGDB5cvX2nuPHfdwesfefDxhQOH4zQbn5iaPXBokCQbOzu//iu/+gd/8IdGqsANZM41GNDGYZ7SQnFhNKIUG40Zczs7zWIpWFjc1+22NzfXkcGrq1evu+F63/fPnTtfKhSNMe12mxjm0lApY8sz1UoxVz4Q3u21a6yKcQFAX9uDer2eVpb9B8poy5+1JmC28Tz0ipVaOQz9KIoKhYDzPIqiiYnJubnZjfWtM2cuAgDBMDs7OzU1tb25mWR5rVbbf/BAHMedTqdSqaysrLge6faai/PzCwsLiOKV1eW77rrD9R2E0PHjF/zBgHNuYbI4SgnFLnOVUlKOHLGZ41y6dClL0nK56jDvtttf/cSjT+zu7lKCeC4xBtu7c+HSxaBYbLb7y1evPvLIE6VibXZm/rFHHqpUSvMLM63mttF8YqLR6zStDwFjThzn0TBhrusDcRzP81jOY4wxdZjkecYzIZRSCjAGjYQQSmvHcRlxTp8+/a53vf38xfNPPPGE1vp7vud77r333k9+8pNLS0u33XYbAHDOPc/Psmxza+dtb3vbwsLCsWMvtlqtdrtNKcWMAgCl1GiUZSNeKgawJTEz0oKgxpicCwAQfKTbhq4pdWrteZ7jUs65NoZSWqvVGGPSWHsurbU2MHKJQNgQjDmXnGe7u+mly5fr9brneVwIhTVjTrFYzJM0y3KllNYcWQUPAxhj3wsAmyiKsjx3XVdKYYyx50sISGm0UsYYIQwgzRjjaaaRtshalnGA0aY8Pz+/s7NTKBRc17FHMMZ7VfkUY1trHzUjEkIQAoSxEKLf75YqRcCm1Wn6nsMcyjn33NB1mcN8gO613qZrNUWEkKU8YzaS6B0pWihlm+GE4Gk+MgBklFnKucWabZBm38e2+Y/ulDGAXroFvu+PjY1hjNvt9sSEm+ei1+t5nocQm5qasg1Stku02W5zzrutttbaetfZ2Q57dQUtlVXZvrbr2XN2HDdJUtdVNj+0B30vpAxzzqMo8n2/UqkUCoWtrS0b/9grYEmRsCeta0Vg8zzPc0EpbbfbYLCiyhhjJTjKpSrsYYi2im/ppbaf0vqCWimAESa79y/GWCN9jf+u9yQdbQBs81X7va5JaWMMeZ4KIXrtruM4dqvFmCplGMMIGUyxUQpjw0V6x523aZM/8ugXfb941923Ly//zYH9+ynxl5dXtAG7PgiJCSGu6wIBYwyjI9O/XAq7g2OMhZQW2h6dGzbXStqYUUpGPJ69tFxjwyy7HCHQejQTHJcqUCozkiulteOgl+gjGnnMySUfkaAtTRp7EILUYhj1NahGo5FlGaUl13XzlG+nW0oZx/EQsCTOcpERh3GZE1SIohgh4nmuGQnUoILvE0LsHKCUEmMsvC6lbDZ3bGHJNvZlWZKmMaWOUmp230ytPmaTc6WEDY8RNnGS8EwAYMWl0SPIIc9zK6Rgk8RRZqK1QhpjwhjTMFLftpPWMjyMMUpJKaWSEkY8cWOJAvatAGmEkJDSVvEBUBiGUsosy3q9Xrlc7vX7m5ubjsv6fZyLLAxDALD+NBjRbrenlNrZ3VXKuI6PEHJdX0ouhEzTdGJi4vd//3ePHz/+6U995oUXXqhUanmeh2ERAIqoKBX3PC9NIiXzQtFzfIwNzM7OGqOuXLnS7XaffvpZQp3rr7++Vhvb2NiwmEun2x70h+MT9Sga/MEf/EGaiCAI7nj1nevr6+Pj41EU7e40X/WqV22sbzZ3W41GQwmolCjCtFAouP7IsDoMQ0yAUhqGvm1qLJVKnU7HtgkyxiqVWqMxsdtq5XmOEL7ttld1u93Wzm5QCoxBPBNKqTzjge9ro+2CgBAilGoNCAAhbOsoru+51FVKKC0ArPo2MhpxzhlzEEKUOJxbQT9kGXKM0izL2u12GIa16lia5FZiyD4ag8FACCEE16JXm/ymUa2vHRi/0sYN45f4uRh/C1zdAGB1Ff74j78h1PWb1QW2g3P48z+HBx+En/gJeMtbvqE/WViAX/kV+OEffhn0+bXfNwi+OXM8Sl95Pf87bej+/zvS9JXo+Y03AqXfBIBeLL6MOw8Ap059q87uZaPfhz//c/j4x2F6Gt76VnjnO2F8HABgdxc++1l44AHY3AQpgdKXlRPsL3wtz/2/Pb61WLMVb/Y8r1AogJGMMRsYAIDc8xy2vVCVcs3qNCilbAmzNlabmJi45667FxcXr7vuugMHDiwtLSFtrA5GFEUXL140GNkmm8FgEPd6aE8MetQhhIiUulgsAeherxcEntI6igarq6uzs7Pvfe97hRC9Xi/LMsZIGIah72GAdnNnYd/sNdlorXW/1xlvjBljrCdTrVEvlUonT548fwEvLMw///zzu7tth4Ww5xchpbz1thsP79//9LPPKKVWV1fX1ta4FF7gYUw3N7e/8IUvraysIAKlUlgqFQaD/u133D5b3z9dnru8vOb7vtbywoUL586dy938xIkTh/B19I57bhVCuK7vOgFykptvvxkwcQuYecC5IQRRSrUCgoBi/Ap15q8eGoH9T6vvDABSCmPUMOkm+SAICsVisdPpxXEsZd5qNQlFs7PTSSpCvzA7PdPe7a1c3SSYHTo6Tx3T7Q+arQxAaiUxMlmet1utF5559tixY3/zV58AgAtnTz751BNZllFTuHLp0rd92xt/5Ef/0Z/8yR/3B91nnn1CGX30xiNa6263y3MRlCrGmCSO85xjQGDAKA0aQsfTyjiMGaN96imlKCbYYOo6dkrFydBojBnGyMGYIpNjQJhipRTCiOcZpgQYzUWCGdVGBm5hfKLe6/UMQlOzU7u7u0mSYcQYDRl1yoXCuVMXOc8clzjUJHEbY4QwEAqMstnZo9TxMXJefcddWcbr9Xq/3//rT/5Vr9fBGDqtXYT14uIiIs4wHh44cODOu+8+dN0h6+L1Iz/yIw899BAjzsbGxvrVFQJIC9nebSulEPFEjtxqyDnvd/s2xhWZyJPcCuFJKTHDrusKwfM8J0wCwszRCImgGCglYt7c7UZOYO6777WNRuPxx5/sDXtS8TBw8zxVStrSLsFOIRxDCPm+yyjjnA8GvUatsbm1DgCCA8UhBVaoeBjjJEmEsN2aI8IgAHDOLV+ZEGK15BDSmcRiMNzLgrA1iCOYaq21URhjA4ZgRKhBhovcANLGGEoxRkRrNN6YklK2291cCkqc+fnFIAh3d5v9/sAYcF0XE0MZxsTB2KRZv9VWtguSUJTwVKGMC45y1Wg0OJfDNPrYv//DPOOFcpjyziOPPOb7YZrkvV7/8Uce/dmf/dnp6el/8S/+xfPHjxFGmcMOLeyvV6fCMNzY3Lp0eYkwOj7VSJPcZQ6hKI36eTIMCqHv0Ga77XhurV6X3Bn0om6vI0SuRSrqtSSJEULV0iwlSHCuhJps1F3X73a7UTTodDqHDh1gjvfwo49ybb7tbW9FRv3+7//uIw8/sDg7LZXQWjf7sYtwbmBrY9vK4xT8QrlYGQ77vutIrRwHS2mEMsN4UB2rlKuVK1eu5IKLrkTS8dxQCKE1EMLCMMwyzjlHiFn16Vyord2dje1NSqnjOEEQ8DzOMp4kCaXUwY5DKACkaW5vlvVltWj1+ORUvVa9cvmKBiOEeOCzn+n1ep7nWLBGKUkIcx2aZRkmIGTueZ4ySGhFKSIOIYRoMAjjXjwEAMRcK7qaJAkhiFFijMGKiUw4LJCp9Mo+QkrIBMAkaR44BSN4limHMWokRQIhgwgRUiKgjNDrj9y1uZadOXsSUTQ+NV2uis2dFwPfd1wECDKeD3qtmE97vpcICRKUUl4QZll29erK2NhYv9nc3NxstruW/BUExdmji73Zwdbm2r/70z9K4uzLjz7Ns3x8YrHb6x0//sKtN990+PD+scqYQ+nmxraRinkkB9bt9qOoNRz2b7juhp2NjTe98e1vfOO3AWInz5999X2v/i//6d9vt7cLhWCsOl4u6K3tFYORQzwlJaYIY4aoyAQXIHPNC6VixnOMKGW+1a3TuQiCwvT0ZBQNcpVnWVqueHmeI99xHWIFWzzPs/ZTQuQXL1/c2txJ0hRjbEAZ4K3OWrHshEVstFASEwyMUc4zygBhwkLsl5nnTZRKxQMHF1dXrwAyXMRz8+PT07dqrdfXNoRQ1eqY5wYIoauXl7c3Nl3XL1UrWhpkMEJMKZianIuiaHpqamZm5vHHHy/4wTNfeYphEmperxa/73u/58/+7M/Onz/f2ty8fPmy5rfdd999YMzS0lLgezNT0//5P/4Hu9HO1Ot3vur2ldX117zmTWON8UGcXHf0+l63deHM6c725gYyu7vNrJPce9/rqtXxoFByC5PYRVSDtlp8CEBDngtjNAtc4On2zk4axePj41mclb2QhXq314mTTGqUpmgwkI7vnbtw/OSp45MTtSzrVeseUPfsha1bbr++02k98cTTR44cGQySNDWDQbsQFAthOU1zJSTBhGAIy0Ul6+vrq0899WSjMbZ4eLHdbBcqwdLSxccff3RhYYEQcuz481kq81xUKrVf/ze/dvjwwd/93d8dq1ZAq91O+7NfeKBYLEoMtfF6rgTZcXd3dzuDIQDuR/3ZBTa/eEQIsbG5ZgyAzhFCjUZ9OBzmea6RxhgoxW7AOE8qY2XHxwFyKAXKcDwcgBa+SxlzkiTRYIBCtV5N4hgy7vgQxylGTqVaGg5SCq7mOImwljAxWYnjodBSytQYJETu+c74RA0TY4xqNMY9z3NYgBBZPnc+TrOxxvjpC6cyY9Y7O2yn8lu/++GZmblauVLAmPHsucceHCsWayUmeAxGpmlS8IOAMYWpFjLLciXyXCYImyMHD7Q6TZEZgoqEBYMBvnL5YrlcLfjFs2cuYaCMFIwxg7R34ODi9Mx4r98mBCFSGQ6HPGdYOoQwrUBxw7BrFCLYKRXDoOBLKYZxJCWPov7YWD2JUqPAoS6iGpB2XDqM8mEUaa3BkFKxwjnv9trTc7VKpbJvdn5udj4Mw2E8UAS97vWv7Xbb/ag1O9dYWFjs9nZ2d7dvOHpTqVprdQarq+vdbnv5yvq+hbmpqal+pwVGFkt2idZZlt1//1v6/f6ly0uCc4eFCANCElHUiQbTC/te/4Y3hUFw5vy5QRwhjbKUD6KhX/BnZhfOXLi0srldqtauXl19z3veHQ+Tv/qrT5aK4YkXXzRKM+w+/9yJqfEJDL7PXANKa0MIcXxmjEqyfpIOvTBwGcEEhBAIEy6hP0i01gRxSrWURgrhOM7u1vJYfXzj6jozTGtdqVTa7fbk5ORP/uRPfvzjH6/Uqqurq1GeUuFFSaowHLnxxsmJ6Qcfe6JUKr3+dW/6whcfqNUqCJs8ywlhLnXyXAACaZQ2SikhpbRKFEpoIDiXCogEg4XBwMHzCpxz18FScUIdKYXS+UjTyxiJmOu6GAjnoyKlZaxoPYpzKCM118WUKmMQwkQDQsalTBKhdWoMAqMRgDIoLISu71FKtZaUUkcpjzkCwPpKGdBIj1ztMMYucxBCyihjDEWUc2lyYwxBBjAlWSYoTaenp3KeGiOUzh2HFYtFKXSr1eZcZ2nkeTrPuRsgAI8xBhqBMaHv53l+9tgZrbXr+ihzNcHAIcmk5pnjaICRC6sxJooiC2vaUrExRklJNCCEHcKQBgwYU9Lv98IwDAu+xbVtY6ZNtzABj3ppnFBK9wS4DGOMICOVlJJ7XsHzHA1GGtkZ9o0x1He8MESOIFmSa5mng1KplIkk7kRBEBRqBWHk1tZWMog8zyOISCkIoVIrYQATKrPUdd2JiYnhcGj1VS0jwWKmGGOecaOMbW2kCEuRI2CgUTRIMMbRMFUSPDcUXDOXCCEMl0QZAGFVJlwCbK8pamJiIo7jkSmxlAhh+8Ng2MOARuCmoRg5BLMwDAGNQGQlkY3JZc4JxghjoZU2EmFDKFJKajPS8AAAWy6x1H6lDGMEaS1yrpT0PC8XmU5UkiQUM+ygNEoY9kAjhl0tkEE4zZJao2CAB7VyeZxux6tXm6vIsOZmb3b/+J333Lm90drZaSfDnGBqjGHYYQ41RjnMKRQKw0GcZSkAaAVxlFr4nmKE9kQzAGl7bmDRcHAEF8whxmitOKVUGZ1zAQZLKY0Ba/SSgAiCIHT9vuwmcYoxFrkAAGywFNJ1XYPB8zwpuZDSACUIisWiI7wsHUguvMBPohQM9lwPARF5ErhBIlPf93iaK6mMpkZjBwUql4grh9AwKDiOk2VZFEVZliulEQLMqAasjUSIEEwJIYa6Nrc3CDHHAQAhBKV4ZmbKdVkcDynFxWLY7jSRMv1Bl1AqlKQOc6jbS/oAiCBqDBBMtQHQWipOKUVII4SYg8EwhBAmGBlpWwQwRlJKIbjjOABGSqkAiOcqrbkQGEbGmJhRW5gBMKVSyXUdxlixWMQYr6+vO46b6ezCuQtpHpcrQaHgAdbNzWar1TLGzM3NEUJ2djY8xweji6UgGsbGZBiTNMkxZamQrhf++E//75WxfT/+I687NH/TB973fp1o5WriKcd3EDUBKwiRY8SE1r3hYK46vdtcP3b8xVtuvZkxp1SsGGMcxsrFCqYUEVIqlZSWUonxibGFfVOe5/X7sdLind/x5nPnT7uu/8F/9MMf+chHusPOs8ee0hrmFme1QUk3DoLAcRzXC/b6qwwGaO20er1eEAQHFg65rn/mzIWrV68Wi0Up5KAfe26IgJaDctJP7nrV3Rjj08OzjTFKKU3TlFEPAdZaCCkxxpZfpcRIV0dmo4qOFKLTajHGAGmllAaltSZIAcJKGqM1Rh5GREkthEEIDDMEuQgQAuq5PsFUCIGwYS4tVYpa662d7TiOMcZAMPqWwMAAWsPtt7/syMwMBMEI9tUa7rzzlb//wQ/C6uo39ymc/49g+Dab8H/8H/BrvzbSfDhwAG66CebnoVKBIHglCgwA8/PwUz8F//pfv3Tka79vsQj1+jcBgtdqUCi87Mgdd/y/FWsGgCyDCxdexheengbP+yYuyOwsNBovO3L58rfs9L52SAmrq/CRj8DHPjaqHEj5srnnea/Uh7lw4ZsT9/gWY80AYSHAtMA5dzHBzI2iyAoDMMawxswhKc+zLJubm3v/D/5QGIYXly7Z2jAAJFG8vr6exhlGqBCGfUpElg4Gg63N9bGxsfF6vVopc86lVh6jhGBigWaMNcIWLPY8J8/zPI8BoFgMwzBc31h99plnGKWvvv32NBtYXNu2EwEYLwiCQqHT6RDmYkS5FBhjAzjN+PZOE1CYceUXgtm5CUrxmTMnV1dX5+cXbrzh1kqlxpjDOVeaNxq1euOe+fm5pQtLV66ueZ43HA45z+bm5wB0fzhYXrrkuLRSqfi+p5ToN6NKZWzYTr9w8kubF7YwpjnJOkm3RGulRiUs+27ouFsB/cxnPnPkyNFSqbJydXVtY7NaGXv1nXcBQJYpYwxCFGMgBLQGJTUh+Npd3BNrNnsvbbkeIQRagxAiiqLBYOC5jhR6c3MzTbOJiYmxsWqSJGmabG6tT01NTU1NUswG/WGlUjlz5tzBg4fGx8cRMq7rtNtNpQTBSGvZbO1sbW0tLS3ZZv8oih544HPdbhdTsjZc4VLccOP1Bw8efN/73re6dvVP//Sjfhg4jmM1U1zXNRo81/U9r9fraWl63YFt8AeCJc/zbHitUQ5jzDzXMpGrtXJ/qUuBSikZcy2JRilpDLENUK7rUoc5DgUAaUYlaw1QLJezLJNSWozG9vJorbvGSJ6FoU8py/MUa1BaUOIJIQSXR47Uz5y7OOgnb3nr26anZx966CFKaafTAdBCCNd1Z2ami8Ww1en4vn/nnXcePXqUc/7M08/lPP3c5z4nhBgfH19fX+8NolKhAIClzBGyOntICE4puUbxsLfMVtetD0ySJJzzcrk8vziJELrpppuUEhcvL42P11ut3ShKHMe7fHn56tXVq8srlNLJiel+f2ClxCznxZp3WQqAvYBTU1Pf/uZvP3ny9BOPPQVAkVFamSyzBp2jUr+tDo3a3EY2zcaMxNcZIdquRHjPCNs+xgbUzOx0v99XSiklrCRClqWUYaPNnrAO9jxPCMEYm5qa2G13jEYrKyv2HWwpqVAoeD7R2kruckv9DsPQkkomJycnJye3t3fiOC4Wi1LqNE0ZdSRR15jL3W7/ne9415kzZ774xS/ecMMNP/MzP/O2t73txVMnc86np2fm5uZKYfXg4SOVWrXd7XzqU5+anp5+9e138iynlHous53XueBBECRZ2uv1tFaO41y6dOmFF5577X337Ns3a4nq/f6gXKtiRKcmZ8IwbDabS0sXNzY2dps7m1trFKPnX3h2YWHfJz/5yUsXznzlqSf6/W6tUlZatlotozRjLE3TPM+FQYSQYqWcZVkUJQZZHg2mlBIlhRBxHA8GgzAMrT84BWztdAAAY5plmZTadpBZEUPXZUqqhcUFa3Xa6/Vtt7hlmdkOYin13NxcHMftdts2plFKOecbGxvt5i4A9Ab9JI493/d93y7TnHMroDbiHEkdhAEAIIos2cd2rwSF0Lb6KiVc1y0EIQD0+31r7eL7vjHKdd0kiS25klBiwDZvguVhhaGf5yLw3TgZMjYyR1LKMOZobT796c8OurFbgsnJicWFA294w30b6zt5nk9PT/d6wfrG6vr6uqVmgzaO40glMEH2Qet2u8aYQiHIc2HzVSm5w8i9995drVauXDlmjKpWq2marq2t+b5/+fJlAPB9N89zpVCeK84HNESu51BcnZ+b7vcHYNDS5eUP/qMDldr4d/eHDz/0hZMvnujvbG85nhLGdvQrpRDBjutykdk2TK11EHjHjx+38w0ZYTSkSYIxRtrs7qZKiSNHDmEHr6xctbfPrhIIEcZchMiBA4cGvY7kfGNjw3MD+9h6vm+R9HK5eN+9r33wwYcZDWxlFCGjtc5zHoQj75RmM0vSQX/Yy/NsamrK8x1tzG6z2Ww2Xdff2Tk/MT41Oztbq9WPHTuGMcbbu8VikTG33+8LLm+5+VbO+erqarPZNMYUCkUhxEMPPURdOj4++dAjD09MTwmtNjY2/UJYrJQvLF3a2NjY3t5+zWvuO3/+fLvd5TwrFotcaSEEV9YzZ3Dm/Nmbbjja73banV1K9O72RiEocc4xplzqiuMRBwkB1/hohCJjwFLhHMdpNBphGK6trbTbzXq9HqdJZSyYnJzkQnV6Qy5Vr9fbubj13PNPb25czbIxnkds/zTCanpm8p3vfOfq6qox5LnnnpufnVuOomuNGvV6fS1fHQyGcRxrDTMzM6VSKcuyI0eO1KrF9bXlcqVw/MXnGXMIHXHEbrrp5u/7vu/b2d269+77fvu3f/sTn/jrNE1d1/eYl+f58uXLlUplbWW1WAzBiMBnU+MLpVKp1eqkycD3fUbQvplZQsjZs2cJZodfdfjkyZNRFDGfMca0kZybwWAASO80OWNEKVUbq/iuK4QBwN1u167njuN0e20MxHXd8Ym60agYlvKcE8w6nd5YpQpghsN+pRqUKqVOp2W7YRgLpqYnrrvusNJ8Z2en3xuUSpUs5dvbO4NOZ3ZmjlLn8pWrd9xzX1ioDAc91wsvnjt7+dKVK5cvhWHYqJaZMcRorRSI/Kbrblxfv9pp7fq+H8fx4sKhtbW1UrE2iPof+MF/9IUHv/gXf/EXtWojihLPCdM01boXhkWtY5ELjFAaD0vV8j333NMYrx4/fgxh0xgfX19ft3t6lmWUOAY059z3w3K5XCgUMEWDQd/zPMcpdVrtXq83Vq1HUcI5F4rbdcbC95Vq1XXdra2tNIuNMdVqdWxsbKxeLxSDz3z6sxdOX731rhs3NjYef/zRYincNzv7zDNPI4RuvummtdXNpaUrw0EsuSqUQkLRseePT05vzk5PSyk7vZ6UMgzDcrl88uRJz/MIQUIY1/WSNNZaAgcn8Lvd7ukzJ8eqdc91SqXS1ctXp6dn9OZGLvN3v/vdbsE7e+7Ciy++iIC+6lWvcp3wE5/46+3tLUqpBtXr9Y0SW1tbjNFSoai0zvPcqitY/V+jTZIktBCMiLEYXyN67+3dxrpKJEmyffbU5cuXK5VKoVAslyt/+Zcfr1Qqv/RLv/Q7v/O7n/70p//qrz4BiGxubN99973rG1sXL1yZm13cN7vwfd///Z/4Tx+1m5H9FMbYcBApZdUGjDbK/peUlk2IDBee4yhh3bCjQqGktXQcykVGCJKSM4cS7FCXZlmSZInSIkky2zQNYKHjayGuAUC2Vmq/u62J2ohCCEkpxWgkFmehIs9YFzthbeiEEAYTDYYxxrBjGZAKNNobgstr4K8wkjHGiJNlGRCstU7TNMsTY5QNkBzHoVT3el1K3T0LaDcoBlY4AiEEoAeDQafTSdN0bGysUChoBTaOlVKmOo3jmHNhdSGUUvbMr23f9lsAJXSvpZExZjAopbjKKaJ7TaPacVxCEACkaaq1stxkq5hKCHZc6rqu4oJzxJiLMR4BmggopchAp9OJokRxQQjxPCceDKnrGGMirfM8t5KIcRwjhHzHZ4wBICklQcYg7Xme7a+qVCp2o7G97WjPq8cGqBaG9goFaywpxEjHQGphvymlVOW51grAcM6NVAgbhBDy2Pbmjg31PQ8KhQICsrOzY4whhF6jNVl17zzPEWYAmgC6FmNjjIlD0jSFPRNLIBhjDAZLmavcSpYjbdS1PdcC2UopG1ErpYrFYpomQgjFjZS6UKgwQjkXWJMs4wgUo8wgnfG03qgQR9908y0G+NLl85OsWqvVTxw7Mz+zH6Rz8uRJnoDrujxVVg7F1gzs4yylFFwBgPX83GPoWk76CA0nmCFsLCuZUqqkssi+MQZjYhAgQEqaLEvonmwxgGVk5wghjUArMNoAAEWYYkroKBEolQqYOAbpJB06jmOMZAznGbIXTUnTbu96nielNkpLqewlklIrpTSCa3EjACA0auywM8E+egCGgKGU2mfWtopaGYVrgtR2lwcAz/OGw4HtgRgMBgBgZb6Z4xSLRQykUqpqbgaDCO1p+mml0Z5JoAaDjUFAbAemllJqgRCilFjtRISQUVooaYyxs8WuZja/FlqBlNQ6ZLp+qVKSUkotcpElURxFUaEAxgDGmFASBAWlTDSM7KJkGy+azWav1xurjlZgxhgCkFIixLTWeZ6/57u/5/3f933dfgQAlUrFUqxcz2EujtMo44nlygEmQRCUKwWjseeWy6XSyvK20URKCIKCwzxjTK/XKwRBsVh0XVfqUEvhum6e88APXacw6A3arQ1K2ebG1r59+6amJobDoV8I19bWBFfGIABMCOv3+6VShVJKCJNScs4H/WG71Wm3OrbboFYdk1L2+x1CSL8/ZCQlhADg8+fPb23tWO4U5zxLc3tzbSnIpipZxpWw8voINGCM7XKnEUgpDSilRvZLgBnGIwn7fM9Djew53AwGA4zBdnVYJQ1MSLFYnJqasiFQnudTU1OFcqkYzsG3QpGgWn0lEHzsGOzuvvTy3/97+Ff/6qWXGMPU1N9T6/Z/zMgyyDLY2YEXXoC//EsIAigW4eab4e1vhxtvfCUWfN990Gi8zDnwa7/v4iJcvfqNfvri4ivZ0P/pP/29vsb/NOPChZe9LBZhfPybgJtfIdzcbML6+rfmxP7b4xUo87VRq72y8PCKL/jfHt9yrBkASuXy5NSilOrAwuKlK0ubm5vFYrFcLiulxirVOBkCwP79+3/0R3/0zjvu1lr7YbC9vT07O3vq1KnYRFEUPfLol8+dP3PDDUfTKBZCZFliAJaWlqank6npCQAoBb4NaK0/uTHGgCoUCtbJyfdd68NBCNnYXHvuueeazeY73vGOmZmZTmf0bFjrEbvi2f3FmsEIzqnDKpVKv98/ceJEUKh6XlAbK0dRZJN0hFAYhjMzM+fPX9zdbRaLxUql7HmeAfXUU08de+5YuVblnJfLxXJ5dqwxdvr06WE8qNdrtVrNBqU2ER4fH7948eL61nYjHI+iJOXxwSMH3/Ga73joiw8/d/mpwWBQES5dXl578cXTd915985O88LFpbe97R0bGxvVSg0MqtYqjFGtR+0bmiBCQGmArxJrRns/YQAJoPVLcd6oEUzkSqlSqay1WV9fL5VKxWKxUqlcXbnSarVc1y0VK77vHz5y0PO8bre7tbVuQG1tbdx8840G9O72VqFYGJ+oW+O4EydO2ODSCrTFw2h6enp3d/uTn/zk1tbGC8eeGRurFYvhhUsXsyyzW5fjOMPBgNXGxsfHAaDXHgohbB99EARhGCZxZoVRLIJg97ZOp2Nb/wiyjpM8jmM7DxznmtqGtF4TSilCiTFUStntdguFguu658+ft030GGPfD7IsKwaFe15zV5wMr1xZKhWrnu9iDHkukjjt94dPPvkkpu7OTvvhL3/5e7/vBw4dOvSRj3xECJHnKcYgec4YC/xCEPDhcHjq1JkPfvBDv/AL//zs2bMzMzMnXjxlEyStoFqtGqVsnMQ5ZwwhhIRMGSuUSoV+v2/vjlJKKQ0gCaFJEgsh5ufn3/KWt1y8dEprXSqVHn/88bWNjTiOjVFZlriue3V5ZW2ts3//VLlcjXlqpRUsBGxDLLOnMae1DIKgXq+vrKykadoYbxhNBDdaKcGVMcbzHUJGnBEbuaI9sxQAMMbsibpiK1hsjAIwGAPGCPYi+yAIpOQArlLC8x1CsCWAGGOUEtab2Pf9Vqu1tbXFGENAhsO+1nZyolKpCABpmpbLZd/3o0hSSi2pxypcI4SCIAiCACHUbndtak0pNQZZCU7PA4RIpVJZXFy8/dbbLly48JnP/m0cx3P7ZpYuLw+Hg1OnThLsfPmRhxGmhNC3vu0dt77qVZRSQYSUMgXluq7kXGqFKQDA7u5u0Q9Onjx57tyZ3d3dYy+8ePS6GwqFAqU0GmZcduv1uuuiLJN5lrTb7c2tjXZr++SJ5+64445f+IWfv7R04Q9+93d2m9u2irB0+ZLtOSUI+75fq9UAYDAYUgRK6WZz13VdqQ2lWCmlYRRXcc63t7f9PYWtNE0BaYxsly6llA4GvWq1apXUPM+h1PE87Htho16wARkA2KutuFBKWeHpZrN5/fXXG2MGg8imoxZN7vUGSTScnJ1917ve3ev1arXa57/4BSEEQiNtTQDAWAdBMLJMwdguLMNhHMdxp9Wu1+tSC2O8QhCGYdjr9QqFQCkdBAEAGNBWBJlSTAiRMvO8AGNwXNrebTPquYRxniVZHIShkhwhQqkjJQegTz7xjJApCzHB+OjRo0tLSzPTc57vWBYhIaRWrXPOW62W53lGadtIixAyGE6fPpWmqVKaMLa4OB/HsTFmdfWqF4Q33XTTzs7W2bNnXI8VS+HlK5eyLGs0Gr7vL1+5OhwOCSFjY41qbXIwGGgjMUDo+UePHD175uLEVLXZHTz5/LFGfbLZbjmULc7Ndrc2djbW3/CmN99x191/8Ae/NxwOfe3nOVTqFSFEno+ax5EB3/XCiUDmcjAYDNKEOI5SRoi810Pnz5+XIDnP8zy3l73f7w+Hw8XFxXq1ZowxGilpNNYWzUHa9PNhr9crdcNGo1EslhqNRqvZZ9QgZChD2ihKULfb3dnZCsMwKHhArJIj29zcnJhsCL41NjYWhoXl5RUuxOb2xur62sH5w1NTM4PBwCBk9T18LzA6eeyxxzDGgvM0TRuNBkWYc56m6aF9hxcXFy9duvTmN7/5wIGDn/jEJxYXF5vN5ubm5sLCguu6zz///Pb29k/91E91u+1PfvKTUsrlq6tcyZW1lbDg18ZKy8uX8ix+3evudRiJB/Gb3viW64/eYhBREgbDpOwDIaPAiLJRK0axWDAGCIE4ipUS8/Pz/X6fp1mv1wsLvuMQYxBBhmJkjIqj7sb68uRkhVI5MzU+HLTPXziLMX744Udvu+22++6776knnnzuuefCMDxy5IjLHNf1AcCqXiqlXJdNTDTCsFgul5MkubJ8znHRdUf3S8mjKNne2BgMhp7nFfzwuaeflUb9uz/66LlzF2an5xuNhi0wvP3tb6cU//mf/2eHYK3GVleuvubeu6enp5999tlBv729mRUKxXqtMTU5s7GxgRBqNBqbm5vjE/VCMchExnnGHN+CQXEcGaS73ZhSWhurOI7T6bSVUoVCoV5vxHFsF8ZSyScIE8La7XbO03a72+324jgVMg2DIiCJMaIUB6Hn+/7ExESv14ui6PnnnyMU2abpNN3t9+JuZ0AMBIXK7s7u1tbOxXPnj95w0+raVqMxoQE1t9dBinKtFHj+sN8ddNqO47zpvjf9wPu+59LS2cef+HK1Wr7hppunp+aXVzY+9beffd3rXre7PTxz4qLmKIvi+ZmZbqsdpcpozRirjzXSOOt2u9R19u3b12q1NjZX1tbWJiYmbHFLCEWpo1SCsXRdtxAWLbThumxrZ1sIDhhZAlqn07WzdDiIEdK2XHfDDTcIIfqDwfz8/OUrlzY3W6973d3GmMFgcGnpwvr6OqGoPlXs9Xp5nhaLxWG/V7u5Vq1W9+2bX1vZfP65FxlzgiCAAHueEwSB58XVcm1hYTGO491Wq1QqSaG73W6n0wmCYP/+/c4EW11dZQ5DiJbLRUKI4uLxRx/bN7Nv0BtSBIUg3N3dNUp/6EMfuu6668JyiTne5x744k//9M90+8PPf/6vnnv+mEyScqlgjPF9X+YE4z0TMEsQk9L6biOElDQW8bHwkAV6LOfCapBZyNXqpANGWutOp+M4jhQ6DIppkv/LX/ylD33oR154/oTgJh32737dGz7yxx/74hcevHR56bojN3lu8aMf+Q8nn3tsYnJcjbyYdJJEWussy33fJwSLnF8TlVZSG4MwyGgYe14AiAYu0yJjrqMVeJ4DoKXRvXY7LAW333xju9e+fPkycGUfPYtA+V5oIUWllK0zWaTyWqizF7wgC0BoBQCAMc5EZjUEjDFxGmmtHceBkTWfMVKB4yCECAa0p/qqtbbOCvbBJ4CxQUoag5CUst/vD4cDx6X1es1mFHme1uvjBw4cWF/f8HzHGKYVXGvDdxzKObcCo9aqbmJigmB25coVjzLG2O5OK89zpr1rkKItTNqCpX0TQgilDGMMStsisTD8GmnXMr5t2CCEwBh839UajDFJFI/mCTbWD0BQTN0Rh1ooKY32fd9qRyBtZJ5JrpDj8CRxHAeUAkAi5xiQAukw5ri0UCh4jiOFtmyGUcROKSEkSWLP8yzAbcsDFnK6BjjaHS3Lsj2rQOO6LmHUUpIxxpznFpJ2KaO+i/fGsN+TMpVSEk6jKMEYW4kMQohl99tYGiHkEtd13SwXQojEJMwhVozCFik95EVRJISyGgkWC1NaYMDX7r4xBiFijLGSg1LKKIrC0HddnzGCMU7TlDkBIYQgbAxQ4rCQEcKSJMtFhijiKnWCsZ3W2iCemNs3cZDsH5upuY6HjTcxNru+vNVv7WxvN3mqGPYIoZ7nYYq1lkIpLjJjEVKtbT3jmn6d67q2edV+cbQnUAkwojmnmdWOYwghA8aYnFHPTvjRLcb2942RiGF2LUmklFLqScWBIEppEDqOw3KRaSMNCABABItcOlrnMscYD4cxxth3PWNAgRBiVCqQUvJcXqvXIoQ4z4UY0WsQgmuzwhjjuj6l2F7P0PcJwNDqlRtjKxaEkBdeeIEQMjUzGYbh1atXtTYEM601Yy4jlDHXygEzxkTOEULUYUppY5B9jhACuyyMSkpKWFUHmytZHozIudXbwRgbjO2vIgJKKQaEEJTzFBPiB0Ge52ka2ykRx3GaJ8poK+CQ51wIsbq+ZtVpyuXyXXfddfz48U6nY59KK9PnMJPAN9mwAAEAAElEQVRlGdJaS51z6XthtVLjBjwvMADLKytJFpcrgQalkAGsMUUY4zSLEbj75hbmF+bOnDnzL37+V157333//Bd//s///D8j0PvmFgGQ1vrq1eXhMDp6ww29Xq8QuH7gLl1aVkrtXzhw7uylbifKMnHHq+8qhiVGab87wBQNur3ADTbbmxixOMqGgwQhNDbmNBqNra2tna0dqVS1OjY9PZ2m6dWrV6MosV5Q1mUkiiKKmRXdviZEiQBnWWYL2LZ70tZ4bFKJKTIKbA+QYxx7XCMwxiBs7ON8rdhgH2qtABFMKd7zdzGW+W5paTaotopb7XY7TdNisVitVoMgEIIb/q1hC9966yvJp5/73MteHj8Ou7sjXQI73vIWePjhb/T98Z7HNcb/jxCcKR29udZfn0ScJJAk8KUvwZe+BOUy/Jt/Azff/NL/1mrwgz8Iv/VbLx357/y+r5Dy2N2F55//Rv/2f86xvPwyt8BqFW644ZtwC3zjG1/2steD4fBbdm5/593/2nHLLTA29tLLbheWl7/Rj/t/AmsGgCRJrr9+cf/+/Y8/8miz2bIaX47jpGk6Pj6O8eTV9asHDx4cGxuLk6EVfpRSfvnLX37hhRd2d7ddx6GUAuj9+xdWV1d3d7dt20273a7X6xjjxvhYlmVGI9ehSCPLkcWUOg69cOEc5xnG3rU2sq2trY2NjVe/+tUzMzP9ftdGQcaA1UfKsizPc0rZ1NS0ENJ1IQiCXPD19fVbb7u5Ui0tr6x3Op3jx1+Y2zdz443Xb25uWPOkixcvnjhxotVqBUFw+PDhm2++cXNrXWv40Ic+VJ8Y/4//8T82m02tdZIleZ4XgnBiYmLQj4TMlZKTk5ODQbS2tra7u8s8txnt1qpjmfIuXrzAEra5tiOlmJufKRfq9LZbXzUYDJ544iutVudVt99RrdZWV9YYdRqNhuM4hIAQZk9JDJQBY0YyzbAHOl/7F2swxmhkt3xaLBY9z+NZZFHaer2+vb29ubm5srJy4MD+sVqjWCjHUVoslPvD/kRjYmFxVht+6vTxfr9bq9WkEmNj1eGg8+lPfzoIgq2trdnZ2de+9rWlUinP8y996QsbGxvT09NZlpXL5a2trU996lNcJGfPnqnVKhgQABhj5mamJyamnnzySaX0zMwMAHieVy6Xr3l0CCaVNlb1DwhOeW55ylLKTqfjuq7mduuS1vLL9Tyl9DWs2ZJ5rbCdxUCjqL++vm6Bf8fxCLGW6NwyiJ944kmMkdKi2+3XapWJiQbxHaNxq9UzWjs+ede73vWud707iYdKqamJyeUL57xiaIyRuZyYmLRslE6n+8DnH/jg8IOrq6uVSm1ra+ca6o0xthmQUoowNt6oCZQaY6anp5GBza11IaTnedyYMCxYFswocyN4Y3vrS19+CHRar9effea5tdX1KE1WV9YJIfsPLHied+nSsuehTnsQDfMRjCiF67pScUKw1kZKBQCEIoxxv9+XUs/Pzl9eWjl8+PB4Y/rpp59V0tj9Hgy2AbQQwhgFVlALgY3GLEtIay2EAKS0lmjPvNEmtFLqVqsVhmGSRMVimOe5AVWplAfDXhRFjuMwRqTkrVZrcmqCUOy6rkZQq9XzPM9SzhgbDAbGWNkNOtImpkxrBXtAj4VEtTbD4VBKbUzmui6jrvX0CIKgUCgraVZXNz/+V39x7z2vef/73//wIw997GMfu+eee2699dZbbrnl2PET7XZba5NzWavVpVaHjxwsFArbG9u+7ysplUKcc0SwFwRSK0KQAfXii8dOnTpljLr99ts3VteeeuqZO++8cziISqVSzQ08D9kzlFIiMAiZ7Z2VmZmZu++5PYp7jz3y4ObWuuPQNM1ec+99QvJz5871+/1Socg5Z4yFYeg47uHDh9fX15Mk7Q8HtVrNGGSQTpIEY1yvj4+Pjw+HwyiKs4yjUTcfaC0JYVrLOOaMkZ/92Z8tFAo//dM/rbXOc8G5GXQHw94w6iUIkzzjVmdcGmlJKAihOI5ffPFFSikhCEBLyRElcRbvn9+/uLh49uzZQqFw9uzZ5eVlQog9GUpdAJCSO44npcYYOM8RVtXK2IEDBx5//PE8z7XWP/RD77/vvvt+4zd+Y3NrnVBULpcBoNPppWksc+77LoBGiCRJgtI0SqPZuWlCaKfdlxryaEgIBaQR4DzPXdePowEXijFHcIWAuQ4ulf0sHyoldnY2ls6u1yYKCOEkyXguq9Wq6/ppmsZx7FCGEAJkpqampqenfd9vNptBEIyPjzPGsixL07TZlEKIZ555Jku51npyfHxqarpSKQ0GA8ao4zitViuAglJmECVSdyYmJrwCjaMhEqIcVt/7Xd/z2FMvHLrx1b/3h38kuOw0mwHROhl+//d897e/7R1fevgxjGF8fHzPxwA67Z4BZR2lpGTlQlFy0en3i8Xi7Ow0z8f6/X5/EGWZEiLvD+TU1JRTHxsMBsaY/5u5946z7LrKRNcOJ998K4euzkmxJbWCZcmybGxsGGNsAwaMEwzB42EM7715wxCHODPgRxgYPMAYgw0DDM7GclAOltStVqu71bmrqivfqrr55B3fH/tW2RKyZMK8N/uP+nWfunXvPWfvs89a3/rW9yVJevjwNXv27HnkwYcublwqFAqGuaZBYpy4jo8JMX6km41ma6NJbEcKjTHyAycIgvpQeXOzwUVaKFSF4lorz/MIQUNDNa3Vdofj2tqa0dFzXdfkpfNzCwCQZQwIJkTbtu1YbjBcXF9fb61vAMCha645cuTIYw8/kqZpEASLi4uTk5PVeu2ZZ0+UiuUjN930+OOPU0o934+ThFpWY30j5+zCpYvVarVYrvSa7X4cWY4NWuR5WiwG2LOmp3faDrn28DVT49P7912DiW/RQn1oXCgsB7iZUeoHy0KEQJqqJI0YY45lU0r7/T5jmeVaGc9MkXmj2VYara6uJiwaHx/ZtWvcpoJa2nWx65Z/8JbvQwp98ctf+cP/+t9Wl69qLYeGagiRzfUNpVSa5ocPH7YsizF++PDhmZmZ06dPh2G4Z8+ec+eez/MsCAqry1e1VK6FC155165dzz136nOf/bztOO961w888uDDm5ub11x/3X/7b3/4fd/3/ff93efOP3923759u2d2M55Ixm695SYtxROPPby2tiaEuPPOu6IwW15eSdO01ezsnNlNKV1aXihVKwhpIZjSQghKLEBYR1EcBJ7neb1er9/vDw8Pu64rpbJtJwxDADAQ0uLi4tTEZK/X6/d7pVJpbHyoVC6srKzkGe/1O7ZNW53mRmtNa3nDDTcIweI4XFi4arqMl5dWh4aGbcsP+4nr+o7lLS2t5nk+NjJ26cLl50+frdWGNiprABiEsAhO4qi1sVGvVG8+elu9Xm+vdR64/6uvf8NrfuzH3/+5L3z25qO3TU7tWl5pPfDwk+/8/vf86q/+6vEnnnV8WzHYs3PXuShptcOhesUIAVVKSEgWRRGldG1trdfv9Ptdy7Lnrs73er3x8fHJycmMJUopx/a0Uo7jUIo3NzfTNHVdBwAE41KqQqEUx6nr6qFabb3dyPP8mmuuOXDgQL/fP3ny5OLiYqVSufHGw294w7c9+OCDhUKQZXmv3ymVy6VSiXHNeV6r1SbGR6enp9vt9vLysjEDLBYDzy0OliNCnMm5uTmh+A033OC67sZ60yiAlUolhNDK6tKePXvGJ8aiqG8gyFarZR6giwvzIEmn2WYZT9NccPXUU8dOnHx2cmaHwqTZbI2NT9q2+8ADD6U5K7mD6hql2PM8qTghJE1TxjMwdFetDc4uicZbjhem+0EJqUEbkoVlWUZbod/vO45DKc3zXEiWh7zd7nqe5zh+s9n6D//hV+q1YYIdIOLIjbf87u/8wWOPPfEjP/wvL164cvbs+TOnzw0PDwsuLRubgmir1Ynj9MD+g+vrm4xltm0qhVhwaVlOHKczk/V2u726sjE9PS5YZrmO5BxTAkhmWSa1LlXK9ZHhzU53aWWlWKmKJDPGA0qCKWzDAE4VhjK5zZfEGCGEgRCEkBLKcGaVBGMuMVBji2MucmUK5lIa+WMTfCIYCBnDN/QIOp67jfEZVkTGc9/3wzAeHRu+5Zajq2tLAMqwIizLWltbiePU9z3P84SQUkpMsG0PPgUhNDU1BQCtVqvdbmutDSCyudkUQigpMUIYUZYLzqRlWZgM8DhTNMUDDVlECOHAhRRMCkyQ5di2bRvDRaUGJ25+Uko9z3Fdv1AoeI6bpunKyooQAmMwWHYURcSinucIzgahlOMqIS2EvcDmOYvCqFKpYEUs27IwJQhzJcfHR2dmZvIkbbe7WZ4SbGGMheBaD/gutm2bNnYT52yREqRSyix+EzIZpqk2gDECAKOcO1DLNdNBKCoWi77vm3pD1O8ZN0shzCRLrZAR3lVqwGY1YL1t21rrMEpMDAwAWZYBgPlVpVzRWgOkjDGeZYPVQwAhAoCU4uayY4tKqQ2sZqomGFNTfkCYen5BY1QqlQwlwuy3VCvEkNTC91yvUNyzb/etd95w7vypWlqgtjV7ZbHgF4/e8qqomxScqmdV+p0sVqlFXQyI2hbnLElioQUAwhRrpTAB445uBCUHRQsChNIBNQT0dsHBdQgAEGxRC1My0CMWGBAoAGwqTwhrrE2WqIyGnrmBDDeZUtBaI6nTLMZE2Q7xA5sxneWxlBy0wxiLo9Rcc+P3o4RSXALgLaNFyjnPGNNaW0BNNrQFNCNCsLlQSZJoITWl5leWZfm+j7T2PM9gB81mM9nq5LvtttvCMLx06VLYiyzLMkQK3/d5zoq1wujw2PnzF5M0sqmDB3LkbCv3IYQQAK215lIoCQDKLAOzgZg7V0ulKQWAgaYzwVoD41xJYW4927apZVFKXc8xOaYCHcb9Xq8nmDT1vzRNh4ZqtaF6mqZTU1MmoWs0Gp1OxzRicyECjAuFgiGgdLvd4bEJpRF13euvv/HJp45fuTQ7Wq99+rOfkaA0UoVyYDkEEiljhqiWUknGZmfnVlYanEmpXAzl17/+rUduuH19Y+kv/vLPK+XA971qtcq56LV7XMorlxdshwrB9+7eoyRpt0It0Y7JXSyTK0urtkOTJCQWrtVqsUoJwt1+tN3hurq0HoVZuOXEaHJMjGmpVJFCx1GWxLHj2QAaYym0ZEzkOVdKVSs123LMBmseMdt6ymY2hRBKIUywwSKwwqYORzFmUoA2YjuAEMLIIpgopZSpJgJCiCBEhBhkQ5xryyKUUq1lnuem33p9fR1jXBuql8vlPM/CUIRRWPvmVoFB8C0pDvs+vPe9Lzjy9+HRZhPOnXsB/HrTTXDjjfDcc6/8/rt2waFD8Ja3wNgYvPe90O2+8p/8Q0ehAB/7GJw8Cb/925BlwNjLvbjXg3//7+Ezn3mBQPO3fzv89V/Dysrgv/+U8z1yBG666QVHzp2DVutbPJX/TUeSvNh98V//a/jqV78lAYobboC9e19whJBXmKN/0PgHzT4AuC588IMvOOJ5kOff0mf9L8KaAYAz3u3ms1fm2+2uURow3g9KKSYFRbRQKFy5cuULX/jCe9/7XiHZ4uLi6dOn+/3+2NhYq7WZ82xyctfOnTvn52fPnj7jOE59qBrFfdumBw7sA1DdbjtJMs/zGGNJmBQKBY2QYUo9/PDDQogbbzoitbJsq9Xa3NjYuPPOOw8fPqyUEEIo0ACwvLjEOU+STAjh+36/HxkRfM65aYpCWN94441PPPHE4vx8t9eeGBsr+sHxp55eXlyyCZ2dnS8Va7feesuzzz6XpmmxGFSrVdezJyYmOs3W2Qvnjdlev9/HCXEcp1wutlod33d9r+C4luO48/NzSZK4rpux1MLuyPgIZbjT7ywszPNcYKJcj1oxos8+e1prvbqyEcdxHCeNRmNycnrfvn3Dw3WEwPhHYzzAl5XSpmnuG8d21WLAdAAEGrAGQjDGTuA5eZ4vLS3leYoQyrL05Mlnn3/+jCkRGO1g13WLpQCIog7O8vD4M0/de++9Z8+e6vV6c7OzX/7yl/fs2fOud72rVCpVq1VjOXju3PNRFP3Mz/zM2traRz/6J/2wl+e5H7iOQ7Ms0yALQbBr5548z69evWqi57Nnzy4sLEyMTk9OTiJEwjAEQHmeE2xJAGxRE+XHcWxeb4IDJRTLsn0HDvy7f/fv//AP/zDs9TudjqmaZiwfLg8PDdWiKAIKhUIhjuNer8sYyzJWLBZNZqWUDlxPyUGtFSGkQSklV1c2ut1+pVKybbdUKrmOX6xUPvCBH2+3u/V6fc+ePXfcfusP//DSysoSQsgrFSmxe73VbqdfKBR83z958rlqtRoEBQAEAJSSZrNZLpezLMuTbHh4+Prrrx8ZGVlsXFZKzczsajdbWZYUCqU845ZlS6kYY47tZSzXGiEgeZ7Pzc2Viy7nkhASRUmcpYRYruuuN5oY4+GhMc/z1tbWGBOEECUVISCEkFIDGOcQlWWZZrJUKk1MTCVJ8txzzzVbLcuy+70IYwCKGJfUMsQZxDmTkmECcZIEQeC5ASEoz7mUUn/d93nQM2tyCYMFE4IwBs5zE14IIb7/bd83Njb68Y9/fHjYTdM0yxLbdsMwlFuSi0Gp6HlOEASc8+HhYSFEo9HI8zwIglartWXpLoywOsYEABkhmzTNDRE7jtK77rpL8nxhYSFOM84Vy4UQLMvYw4886Nr0DW94AyHk8uWLXMl+P5qdmysWi4jQqamJu+56zdLK2iOPPHLl8tyNN94UuB4AjI2M+oFbrdek1r2wzzmv1+tkv/QD52tfe7LZ3LjzzjvnZhd+/7/8gdZo9+7dt95xqx8csW26ura0urp0+cr5EyeOC97DID79yb8+fvz4ysrygQMHNjY20iRutZsjIyNjo+NpkuU5cxwnTTOllG25oPH0jp2LS0taa8d2R0aHOee25WKMPc8Lw7DX65nOcYKwcRGklGoFSqkkSe66666DBw+ura0FQbC5vu4FwZHrb1hZWbnppptuuOG6D//Ob2dZDhLMfmeKGWYqDUzPGEvyTAiBBOJ5XigUqtVqr9d76KGH1tfXJycnMcbbcvucc8tyjJs8GNqX4muNlTvvvPNf/at/1e/3n3jiienp6d27d3e6rVartX//fhPNd1vtLMtnZmYajYaU0oQvCCEpdavZK5eLjPEoCi3LYlJYmFqU5jnP84jQQac2wTaAUgjyPN8xM3XDDdfVh0oLC0tCKqSp4LrR2PA8DyFpLpTh7jE+aOYtlUpmVzR0e0MNm5qaShLV7/eFUCb3FoJTSgiFNIuFZKVykOcUAalUqsvLq5cvX9y1dwfLsqFKdXF57Z0/+CNH73wjOMW1Zv/Rhx6emZ4Mm+utVvxd3/Uvdu7c/fO/8EvdKN6xY6ZUKpmZMrwb33E9z7MsEoZxFPXf+973drvd2bnLQ8M1JvJavT47O5vlydDw5NDQ0Pr6ehLGUsrORuctb37LL/78L8794Hv+43/8j61Wa2Oz0e12Xc8i2DTJaoyx7xUsm2AMK421POMGgJucGnVdK8t7Slm2Ve50WohSSm2ModvtJ0k0OT25Z9/es2fPbm42BVelYhEAhFCUUlBECOEVCu12u1SsEGwJIVzfO3jw4OryCqV0dHS00WiESfx//PT/de+9937kox955JFHhoeHl5aWlNTGcs1YhzebzbGxsVKptNncOH78uGG+eIVAKMk5D+N0aKg2OjqqQSxdne1sNi1izUzuzrm0AYTgnV5cr40IAlKC1kAIElzFUa6UYowRgoZqdctBlEIYFo1igOlaBQCE9KOP3I8I2rlz6vSpJ9ubS46Lbarnrpy2bdsiaGR4YtfOPU9+7WljQBFFUZ7zLEmTJMMYLy4uGa7N2tqa0Z5ijCwuLgjBeZ6mAEpq1ysgoAQ773//+++770snT57CGJ85c7bbbYdhuHv37kcefEQLef311zebTaMUJJi8+chNzdbG5csX77777gcffHDXrj2/9mu/YVHn137t1+u10fPnzztB6ezZs51el0k2NTUByMkyFSXhzl1TaZqMjQ13e+12u33bbbdduHBhbXXdth3zQAz8okGsDM/UL/jN5qYQvFQqTkxMIITL5aIQYmFx1bZpt9cOAm9kZKJQCDY2NhYWFiilruuY1iIpYWWlIZjGAMRzhRBSoDRNPepWCxWEEM9SrTUBCFwnTfLe5uY111xz081HT58+ff7C8xevnL3xlmtLleodd9293Nh49OlP9/pMIPLoU8dOnztnl8s2Acd35ucXWq2W6xbarT4mcM2hg6bASSnpdruOY6VJnsRsdnbe9/00EUmSAiDjqWbZBINttDWUUp7nAWjHcXq9vgFEuu2GFLpaLqesuNTpSimTJMGITk1NxXEcp9HMzEwYhocOHZJSnjhxwig4WZYlOL504eK11x0cGRlqNptzc3OB77tOsGNmgjNFLazVwEmsVCq1Wq2Fq0tHb7nt2muuv3/tfgPHaJCMca316urK6OgoQRgD6nW7xpJOST5Sn8yTvAdobHjE9wtCweL81VK9euLU6Vaj8eM/9VP1en1tbXN6ejrPWM2zjx07Zts2RVhIZlkWBkQsK8sTADAGVlwKjDG2Ic84JrCFxCE5cNMupGk66IiXUkolhCgUCkEQjI6ONtbaaZoqNVBPKpeqjuMIIet1/9iTx04cO+4USrt27apUav/tD/+kXh3CuillDgBhGBrEOcuyN7/5zYuLi5///OcZl57nUUpZLgEwE0pIevdr3lAoFD75P/9agva2ngRJFGsEaZ4XaxUv8JvNZpZy0AQLbdRmEVJbEsBcKf31+JYQABCCD/7BGMZY5NwUwhHCtm1zxrYL5OZSgFKcMaUUaInAtHVrQ7PVaGBEA1obgq3WCkAjBAiB4zgGnh4dHS2Xy51uM0kiKSWmqN/vZhnDGPuBm+cZwZYBUs1ldxwnz7I8zy3Lsm27Wq12u12j/VqrVRcXl8xqIcIypyaEUExRSm3HwgM5MvKNxFuz7zm+hRHSWm7rBiCkAZRlEdumjuOZj8MYXM9RoIeH60IwKbkx36O2RSnNhQTAAIiAEa+WGJBLbYdYo9Wa53nEoo3mppJSKUUsar6hkdow3AKtBxK3hllsZHPwlueeufK2bW0tObkN6Jt5wRhrBNvHza3n+77SIsuyTqfT7XYBIAiCWq2GMQbAhCgqpVBSioHn7QAyNj1flNq2zRizHZrneRTlGKMgCIIg0BqMNbehzRqcm25R2rfXFRBsuY6pUgCoPOdaS8d1jIuJUQB3XRcTwKD8wM9ZEoYh5BpjPDRSdTy3VCoFBbdWrzORcYmSjC8vL66uNrTWLNY8lwTcKxfnsywrlUoICOdSKck5F1phTDEGwEiDEEJwxqvVqtEnWV9fV0oRSkyEM5hyIs2ayVlqvruJChAiAJpSm3NDPVaUEK2llso4eGPwCMLbHkBKgdYINCYUUWIZlg+xwHUdamFCbIxcy7KarU4v7I+OjhJEjRaEHFwTs6tpzw28oAgAIs0BwHJsMnhMk60bVnwjzz3PuYH1tZRmLzUCFJJzYjlJkpkIakDsQIjnwrFcg/OGYcyylX6nq5Q2+jMsZ5Zt2w71PE8hMELeAObGkVslJaUUMkvUCDgMqOKgteFwgcYEgcZSSmrbjutKKau1ytDQULO9mee5UmJoaGpqaiqKotXVhlB8566dBisvFApJkqyurqZpyhgbGRkxm7BtuVEYZllWLBaNnM4dt94zd3V+fmmFc/knf/LRC+fOv+H19zY21rzArY/VLBv3o06cRVywYqmSpinWKAz7vV7Y7WVfe+L4ddfecuerXutZ1tMnH/3rv/krL/CLpWIZV0ql8uyV+SxjaSI8r6gQHhmebLe7juURx9Ea5znjnNkOVkpggZTQLGPtZlukRErlBI5SEEVJvx95gT/YwxnbaGy6rmthx3aQa7uBF+Q8N1U9wTkAUGIBAaPatL6+zhgrFAqVSsW0LGitheSmOCeEQhoHQUCprST02h3XdR3H4UpKxTHG5goTPGiJwFsVRa0NR0rmeW7cXDE2PGvQWmKCtmOAWq3GOU+SpN/v2+TrPlffaO5nRrH4yiAXAIyOvhgNPHcOOp0Xv+z+++Gee77+31IJXv96OH36FfikGMOhQ/AzPzPAdj/9aXjHO6DX+2fjOFMKxSJ86lPguvDt3w533w0f/CBcvPgK3yrPYXERdu9+wZEXKWz8o8/3da+DrbRsMB544Fs8m/99B8awvg4zM18/UizCO97xyiIhtg3/9//9gpWpFFy8CLb9cmvg1lvh2mvBsuCTn4Rm85u+7B83++94x4snaHMTXsYxbnv8r8OaAYAxefrU2Wq1anZvznkUhaaLYmlpqVqtNltN27ZPnz596tSpy5cvX758GRPieU6SJH7gMoYJIRsbjdXVVabYtfsPj4yMPPXUU1LKTqdTqVQM59Lw8IhNhBZEW1mWHTt2DACkVhsbjXq97ro2xvjgoUPj4+NS8jBMTFUyiqJmq2NZVtiPpZRZynrd0OxCGEOaJtdce2h0fOzBB+9vtVpR3C0UfCMO0euFjuNtbGx813d919vf/j2z8/Pnz5/v97urq6tra2u+74+NjZ09cypl+cjICMY4DHvdfq9UKo6OjnKeS616vY6JrxjjGBOlNKU0cL1GYzVGIbEJJpqxDAWwvLxQ6ab01HNnMMaE0PHJyf37Dt5809EkS7OMaQ16y20ZABACSpFSplIL+oW8ZhiAztiEyCYIGPSMASbY2rVrV6fTCsN+rVY7fPjw2tras8+e1Bre9KY3RVF45vlTyytX9+7dXS4Hr3v9a8Koc/8DXyqXy1EUNTc2DTewVquNj01+4hOfeOzxR0qF4vr62tWrV3/ntz9cqdYNo6deL/f6HSkZtbAJ38vl8tWri8vLy4VC0XDQEJDNzc0dO3b4vp+mqet6QgjB1bYwisl5TFxoPMQty4IgWFpa+uIXv3jdddd95jOfyfPcFJYd6nCeJ0kC1GQF2cbGutZQKBSVUpubm0KIYrHoULvT6Uiht3kQGFlSSoQwZ4oxIUWuFWq3Oxnnv/7rv95qdaanp0ul0vd+7/dOTo43GquMMYTIuXPnsiyjtqWUosQulxzjqBYEQRiGrVaPEIrQwM5xc3Pz2WefdRzn4A0ztdrw5csXpyamh4aGbNtNCDP8R40tz6KEExOyEyDbsnemsIyApEkuhS4Wixhr13M8Lzhy5OYrl+d6vZ5lDSQCbXtAHjEyI/0wBoCZmRlTZvAdf3b2CsbE9wpaI4wBIZmmqWUTx7WCol0qFQCg1wujKNQKFYpFxw7iOI2iyKLOdjskAACoLVo9QlsW8yaOfPDBB6+55rBlWfXa8Obm5tramu+7jmOBRpQSrbWhlxaLRc8LEELlctnznDiOzUJtt9vtdhtjoJSWSqUtarMSQhn1bYs6rVarVCrddvTmj/zRnygFtk2UYkb30HXdpaWFc+eeX1iY39jw9h08cNttR++48/ZTp04dPHRNq9WZmpp4y3e/9atfeejLX/6KRcjOmd2Tk5MjIyPYQu12WyglJOv3u71er93aaLe7SqmbbrrlO978L5568ulOp7eysnL8+PFnTj5z56tvf/233fPgg1+dm7/iupaUAhM9O3fpzPPPAcCr73rVgX0HH3zwwVtuvnnP7r1PPvlkr9cLfH+bL8AYyyRbXF6qVqtCqJGRkd27d8dxHEcJzznCAFr3ej3HcarlmlGgN0pnSoLxNjHk2Yceeuh//I//0Ww2r7vhho21xuXLlymlq6uru3btQkobqUczL6Z/0BRyRkZGPM/jSubra0qB1goRdOHChfn5eQAwbJ12u217rsmvzIZuaAiEkDxnJlHMsmz37t0//dM/nabphz/84Y997GOXLl06d+4cY6xerx8+cHBjdaPX7U5MTv/cz/3cRz/6sUcffrhUqZiFZCFHK7Jv36HLly+Ojo4KkS+vLAqtEWDHdxhTBHGCEedaSW1aD6te+fbbb81ZsmPn5NSOyU6nF/aTtdXNg7X9vh/MX73gWLbv+2b3QIBbrRZCyEhLG6VIA50Xi0UhRBxHWgNCuOAXOGfdXrtWq0SxzrJIKqpBAIjRsZF9+w4Uit6TXzt+9fLst73u9VESn7s02+5HM3sP/fwv/drTTz/TabXKnmU7uFgMfuZnf6bb7XU6ydjkVBwmPGeMMSVlpVR5zWtfs7y8vLS0ZNkk45lC+Dve8i+SNPqxH/uxiYmJ2vBQv9MtFH2puLHKjeM4z3MlwQmC//k/P7m+vum6bhQlnutmSU6xpQWUasVWp6OUmp6e1lopLYLAi9KkkW5keRoUvCDw0iwql4vUIp1WHoaxZRGEQGvZ6XSohfFao1gsMcYP7D+U5/zixYsYTFo4wAK41FLoNE0ppY7jUWwRRA8fvnZjY+P5558fHh7+uZ/7uVJQMG3aS7MLZsMXXBJCfN83ii55nvf7fSGEY7sIcLFYTNM0iiLOeVAoFIISIRbnMuz3opDVKu4bvu07d87siaM8jeNSKeBMNdY3KyPDCIFpdAYAxpjh1MdxGIZhEAS2a9m2Xa+XO50wTMIsipMkeuKprzVbjd17pjudlW53VfKoNjY+OTE2P08wxp//3H1LSytBsYgxsW2MEXIdR0soVof6/X6SpOZecDy33+83Go2RsRHX8S5duUgI8f1Cq9USXFcquFKuKwkPPPjV1dWVw4cPnjt3Lor6CMH+/fueffbEmTOn3/nOd05vjo2Pj1OK/+AP/uDw4cPEsp56+pl6vf7vf/aXX3vvmxYXFy0rOHz42nte/8Ynnnhy94EDX/ny/asLc6+6557v+763f/Zzn56dveIF9oGZ3aVSMYr6hJA0i/ft2/df/+APPvzhD3/lK19J09h1/SRJtEJ79+4lFAVBsLa2evr0acsiCCBOwvWNNdtyFYhde2Yq1Xo/7E7vGJdSAFIaZLFY3LVrp+O4pt1kbGw8jvKwezHuR7aFWa4YE83Npmc73/md33nsqSdbrZbNBbEoxjgXvN1p/dhP/qvxsclPfvKTeZ6/+S1vIIRcmZ+7/9FHbzp6O/HrufQvz17dte/gZ//ui8uLC47nAEU5442NJlBHCJXnKcL6zJkz1Vq5UAharZYQIk3TXi9UCnimdh3eU66WZucud7tdxxNx3FtfXx8bGwu8Qhz3EUIaEEJISrW+vn7w4GGWizAMtUJhrwdETUxMlYuVzY1WEATlUpVznqRkY2MjTZPrrrtuYWFhmxrpum4nirIsCcNwdHT47NmzCKED+/dLoQ4dOnTh/CWMMcKEc26cV0dHx/tR75lnnh0fHy8UCmabZSwHAEpJFEWlUoFSunv3bqXFU089VSwWC34gctZt94zMRalU0XIALA5Va1Kr5YXFD/2bfzM9NaOU2DEzvTE7SxF2qOW6dqlcuHr16lCtBgCG/mmy7gG/j5t2oIGmlkWowVNsh0ppeJrY9P0ppeI47q+Hr3rVq+q10TNnzqRpipB2XRehASeUELS+sVYdqnda7V/5lV/5iZ/4iXq9Ojc3Z2mGCUqi9Dv+xbdfvnw5SbJyufyVr3xlYmIiCALGc8AYMKEO6XYiAKzAeecPvO/bvu31b/6Ot/7Lf/nDUWxYJClCiFpUI8TSbGVpJYwiYzNFpNoOMAihtm0PlIK3HmTmpCxroNsrDKWOYItaAKAVopTyrTortbCJpgYkO85tgl3LRpTQLQYXIthwdTEmWmtCcLFYbrU3qYUxsajtIqQ7Hd1sNqVkSZKkaapA1odrrVYrTeNKpWZqFXEcGydeA7aa545R0zI/x8bGms3myDC1LKtQKCCUhmHoYXdLxsFQto2msDDYomnjUwNN4QE8ahIMw3o2AgAIIVPIj+NQKTD02zzP8zxVShg81tAzqaRSSqGVUsrCRAPkeU40aKlYlhb8gGgYGRrygoArudlsKiwV1zpNjVR6EARpmqZprrHGBAFShFjbQYI5020xkIF2Ic+01sQYrxnqKMHUGoDs5q9MbCCl5IKZuMVMGcWE+H4Yxkopo4yBFNZ6IE5lFqoBjhlDaZqYK0kIBoUBAAOyqQUAUZJwJQ0E5rqugx1DnuAiB0WxhTGhFkWuZ9u2LSW1HQr92LROSkJc160N17SQ7XabWEoqpjSXknOeu75XHxoyiHacpRLUyVNnEZbNVidLc6SVSwu2bc/PLvFMdVs9C7vFYlkLbdSTBzoDGJt/CyFBSyXBdd09e/YYSq9SChNQhny9BU4IoaRUnMkt2HSAIgzEqQGZy0IxohbWWiolpeIAoCUBAMmFGlQqlMHylNa2ZyOEhRAKFCECIQth4FK4rjs9Pd1qtSYmJvrdkDHmeV4ipFJaS2URC1NCsBExQ3YRm9YuU9Hfll8zGjhSSp7l2KImccjz3CIoDMM4jg3XhBKbICy1fuihR2zb9jyPUtvcAlvXiqZx0oxbWilTffQ8D9NinueEYI1BGrY8JnjgZoQxNsoMaptEz0WONCgtAAFSyORaGGOKiaLI932NABPker7pAJNaKKUKhcDkQRMTE9PT04yJfr+f53m5XO50OkqpZrNpxKx27tyZJEkSZ5TSJE1ty1JKdbtdpdTc3Fx9ePhrx57504/+meO573vf+z7wo+/5pV/4pYXFK5ZjSZU6gX3zwSOMscbKqhIyyiPLJnHEAKljx45VqvXrb7j2lpuvf/rp46aa0u12w16/Uqm/850/MDd3VXC9urp65cqlEyeey1LGclUsOpzJiEeOa1FE+3H/1tuOBn7hYnJR5CJNBULI5sgNXK21woIgsi1YlMQpJZbWWimglNo2kVppDYQQpJGUkvPE3Eqbm5smzXEcx+Ty5nmqtOV7geu6GNOoH+Y5R4hYnkUAJUliWgosTEwtTSnASG/P9aDYxqWU0rDlLJuYLN7Y2iOE1hsbnuf5vm+w5jiO0zSTUkqQ23CVUnD77S8AsIIA/vzP4W1vezmQa9cu+Iu/eDGCdunSS7zy4kUQ4gWM4Le/HXo9+OM/frn3f//74f3v//r7uy788R/D+9//z8ZxLhTgT/8U3C2Kt+/Dhz8Mb3vbK7BuhXixU1yh8GIC8j/6fF90wYX431rk+lsc8/PwV38FH/jAC2oYP/Ij8Nhjr4C0vvWtsGvXC46sr8Nv/RYk31xz/LWvhZ/4CZiaAqXgyBH4xV+E9fWXfuU/YvZnZuBHfuQFR8IQ/vIvX1lM438p1myGMs4ZSZJlmbEBMKbKpuaappkJzH7v936v1+uVy+WxsbGcsX6/b2Q0VhsrFqHFYrFSLe3duzfLsm63UyqVPM8lBCNkbwtPGTWnNE0XFhaWl5db7TZCKM9TjHGz2Yzj2HGtbq+9ublpFNLiOM4zrpTSGmFKTBt3FCVpGnd7bSm5ZdHhkfrm5voJnhWLRdshtkOKxeDIkSObm5tJkgVBMY7T+fn5z37605cuXTLeKpOTkwaBmZiYWFpdMVsl57xerY2MjVarlTiOw7DX74aAtW3bRsQfE6CeI5hI01QVVZokOMpGR0bq+/fML87iENHp6R179uyzLOv2O+4YHR1XSlWrrmVZaZr5gUsIMunBoKatQRt1Zg2AB8IaZmwrbGgNJjP/BlNBBFoZII9SOjQ0RCl9/vmzjz/++NWrVycnJ2ZmZi5fPq80t21aKrvf/u1vwBiWlpbe+tYfqJSqf/zH/31ubu5Tn/zM9PT05uZmpVTd2GgYDPr555+vDw0VCoWRkSEhmBCcc6aUKpYC23IXFha63V6pVC4VK61Wi2W8XCqlmWi1OoyxrZrzgH6ynUgopYIgEEK4lp3lOQiwLKvf7X7pS198+OFHb7nllmPHjh0/fvzy5cuFQmF6enpkZOTS3KUrV65QSjDGtuVhjIVgWoPhO0xPTCVJksp8q31MUEoxtQEgZamXu55nSSlNm8/VhTmM6Llzz+/cuTMMe/fcc/eTTz5hYpTllWUQCiguVSqmM1GDMn1DxsUCIWRwCurYWsiNjQ2ttSChY3ta6zhMisVymuTFYjHPGWiSZVmWZUbpzDgXjYyMFHzLUHqVUq5rVMPyJMluuOGG0dFRIdjVq1e73a5tuyYiN/eJycR8363VKwhrxrLZ2ctaa8dxsIWHK5U4SgEpjJEGpbVSmpfKhd27d2KClFKOYwmhWM7znK+vb/Z7bYyobVMtJSZ4m2JgAmMzcQbCA4A85wBQKBTOnHm+1Wq22x3f9yqVipTcOKcBUIWA56kpEsRxPDd3xTB2McaFoGLZA/1oxngUJQiharVq6uGVSsX3/c2Nlunau3Dh0uT4uOmtk1L2w1BJ8LxASrmwsGBoIFrrubm5QqGw/+CBcrk8O3sZYxrF4bkzzz/95BPtzeYDDzxw5+35tYevWVxctB2KCE7TuB9HvV7vmRMnlpeudjq90dEx13W/8IXPPfPMsxvrm51OS2npUCdOeseOPfnIow8grK699jAmInA9PDzUarXiOA17/YcffnhlZaXd6uyYnsEYJ1EqhLAtlxK7WCivpqsYI8nV/OzVcrFULBYvX55dW1urVqtDQ7UwDLM0x4hY1OZM5BnDGGsJlAx0Wny/8EM/9EOnTp0yPpalUimKIqOHSCm9dOnSmTNntpXOBjUMQmBL4C9JkixLMs5cz961e8bsxZ4VtNttzvnIyNjBgwe/+tWv+sWC6VUxSZ1paGg2m1NTU4SQLIv27N73xS9+8Zprrjl69OirX/3qOI7vu+8+rbVr2SuLS+3N5tTkjvrQUJ7nn/zkJxuNxtve8bbV1dWTJ086jmeS6itXrjiO9e53/9BaY+GBB+5fXV0NAjeJmWVRx3IBUJpwSm1EUbVWrNb8s2fPABGFomtbrpQaI5uLtNnaKBaLWqpqtWr2YlPSMM6fu/fsMt47xibUdDJ6nieFNkaRANrznTSNez09vWOqUi3Oz897nhcEXrVWWlq5GqfRdTceXL605DjeHXff/eHf/i+PPf00DapX5+evXrly3aH9WdSNWUQxPnTdtVqoL3/poSPX39jcbPc7Xb/odzodzuVzzz4XxhEASNCAsFDyNz/8/1xzzaGMs6BUfPWr7zx1/NlWq+W6bpIkly9fNs3CMzO73vWudz300CNf+MznQMNd99xTq1Wz9IwfuJZFCKHFoJBlWbvdsm17aLhGCDpy5MiTTz65b9+eV73qVRcvXjDb/rmz57OEBEGAsHYsr9NpIURAo7CbXDh7uVKrlQpl7shiUGaMsVwQDEhCmmZMCpPeE2KlaRqGYa1Wy/NcCDY6OnrkyBHG2Ec+/pFPfOITHPGp3TsQQqBRsVg0Utq+75v2xjzPe70eQmhqaopSGvYjjPHb3va2S5cuzc3Pq5489/zFJAoDz7t4bv7hh574kfceHqrXANmIeLblUWvQpUYp0ho04OHhktbQ6cQAEMdhHMfdfq9er9ZqtWanrZTEgM5fuuD51u37j/T6zdm58zzPgoLb2myePXOuWCxOTEzmmWA5xzQtFAqBSx3HkUIzxvKcGyK/FNqw/p85cWxkZERs+T+EYTgxtmPKLVFit9udJM6Uglqtsri4SCiUK4Ug8H70R390bGzsN37jNyils3OXnz31zMGDBxnPOv1enKVffeAhRJxmO/qlX/nNH/iBH7z7tW8eqpZPnjn7+S986cSJE2960xv37tv91u9+y6FDB85fONNsN2tD5WIpKBYLCOksy1rtzTiOfd9/5JFHgiD44Ac/ePbs2UajsbS0FEXRxsZGr9czuvxKqbvvfu3BgwfPPv/8sWPHqtWqRZ3Z2dl9ew/nLA3DLqFIcFatVr3xIAiCZrNl4qdGY6PXjqqVeqeVhGHqSaKUmtmxCymdp1mWMUKsreojGKpRoVD4iQ/82KvvetWDDzzsWmLPnr2O6xeK1bX1Jhd4x849H/v431y+eOnSpQvE84hNCNaMpRZgoaTUyrKJYHmruZ5mkemjT9NUCImRBUi5Pun3o6npiZmZmSDwU97a3Nyk1BZCdDod81wANLDFK5erJjAVXDWbzaJfcBzbFLBZLvKce55TKlYQQkLxfj98/vnn19fXDTRjpt6UqPM8b7fbnuctLi52u91DBw8//fRxhLXxNc0yCQDGGaJcrm5sNI3ik5SaEGXaOzhnAJAkmW1T08Qzs2NXq9UCCXGWdrtdzsT+Pfur1eqDDz/qOE7Gme06t998tBAET3ztqXNnzjm2J4ToN9bvvffehYV5IcThwwfPPX9WlEqGnmiEUwacTQ1KSIIwk9wAN5JaJuBJ09RUbSmlURRRSgAGLghLS0tS6CSJjJaOsfzVoKRitWJ1bGys0+mOjg1funjm//o/PlStVikGAqTdad5669Gbb7qp0WhUKiXH4a12M47jW2679cSJZ8yMCK6iKLn2mut+/Td/91W33yIQFCrjTNJcYMI1F9qxCcbYsSybWlpqGxMhJcGYEMIYN8xZtCXLa9bzAI0FIIS4rmNOR3EGgAC0EEIp4xBmeLgu51xrtbVKsclMjJQQ3nJKwJRgjIGgXLAkjYwjxfjEsO2MxnHc63XSVLquW64UGcsASoyx2lDdkFMcx+E5M9GRQXjjOLYdajtUyYFVGgCYHiOEEGMZQihnqWm+odSOo5Rz49Y1IIcYwoEJrrbK/NjUgbahxi2+84D9Z7Z6EzgZk3BjkW3QUoSQUiLLeJqmiGDOeZoP9GRZnlqESqkQglKhYDKNUrmohGxubIBUlNJM8jSPKXfMFNi2Ozw83Ov1er1wEGYojhBiXBii/bYvt0HYjWYCIluqDlv7xja7XG2JgQhhnjiW5xGllGADu8u4H3I1MPEzBhJSK9ORaa6VodAamNu2baS5Y3nYx47jIKzN+w94slwFQVCrVdzAT5Kk2+1KxRFGhBBAilJCKaHU0KUdpSQhNEkSBMT33VKpxBiLVhd1nFUqlTDhnHNMSblcHBoamp2da/e6tVotiiLPtnOWYkWSkGHQvlfCGCuhlWKFQsnCjmRSKZ2nTCvEpZBSKikUAkIQBiS1rtYqIyMjCOs4jqWU1MIZ0+bBv70ATMlBKUUtYoRfCCGE2mZBmhoAxhgRDBojBBiD1poS0NjUcswNhTA2UtGIYqoUkrkApC1tCQ4Ya0IQ40xKWSqVJifHGeOmyMF4LoTIMqaErNVKlNKcCc65xojigQ4DF7nSUgi0XRIzPzHGBBCogQSQEsy8XghRCErm34wx33GNsK+UkhCKMWUso5RiQNhyPFtJIpFGpVLJ8zyhhFJSfT3h1XpLsQWTr6uHm8/GBLQJJowwoBJaawoIYWzShyRJbNt2i2XLsuI4lkq4rluuBlrrKOobEkO1WrVtt9lsaoXCfmwsWEdHxh3by/M8zzho3OsZ91pba91pd9M0dV13fvby3NX5ycnJoeHaddffeP311+dcrW00/MBOs5DJHJAoFoNabbq1sTkyMlIsuQuLK9VaZWyygog+dfrZyamRZ549vrAwf8tttxR8++GHH5qbm7/nnl2lQvHaw9dIsKamptI0PXv2LM+ZEJClslQq2YQirAFJxtjV+QWlVKvVcRxHSyKlzDKGKHEcq1YZUlqYW0YrAIAwDAEwxURyhTF2HMf3/SzLeM5M+okQMkYyJqEzaoq+77uuSwjBBJkXSJm1Ou04TFzXL5VKxLZkopM0wRibBNAIQwk+KCbBltK3UgohcF13ZHTItu0o6mutgyBASEdRBAAG3UYIGUBfCKE1WLb9jXDV2bMv5imPj8MDD8DP/zw888yLRQZGRuD7vg++//tfjKC12/C3fwt/fywvwzPPvBjRft/74I474Nd+DebnX0ApNd56P/uzcPDgi9//L/7in1NPo9uFp5+Gt7zl60eqVfixH4M///OXIGhvv+Dd7/46RmnGww+/mEX7z3W+J078f2SL9796fPGLcMMNcNddXzfZcxz4oz+CX/s1ePbZl7ANrFbh7W+H973vBQelhF//9W+KNZdKcO+98H/+n2AeAoTADTfAn/85/PiPw8rKS6hk/INmv1CAm26Cn/1ZcJyvH4xjeOKJFyuV//3x/wHW7Ng2ocF2/JBlmaEwmh0jiiLLsqSSpofPBEUGB7AtK0n7g7bmKC6XyzlLnzz2dMHz9+zZ6zj29PQ0xljKgQCd67ppml+8eDGOY9txpFJpmqZpmiSJEYDFBIaGhlqtlpSyXC43m02EEGdSCOG62HGcfj8yDmRJog8dOnT48EEhuGWjpaWFSrWIMc7zkCBYWl40HlETExMjIyOmlWRoqDY2PoIxNoRdxtjs7OzclUtA8MGDB0dHR+v1ehj2zp49u2/fvrvvvjuKoo9//ONaD07Z850wipRmZpde769xyQJZchwnisMsS4BZ9Oabj4b9OE4yhIhlWWma+n7RiOt9ox+gUgohgvEASgYwolMvILprrU3YipDpEQOtNcuV7WCtKWOs2+0ghJrN5qVLlzqdrlLq7NmzExPju3bN2A4y5i1XZs+fPLmKEMzMzDSbzS996Su2bbNcUEoXFhZOnDixurpaLPgHD+4fGR0ahPWCVdyiUnStwWzb1lqCxlmWMSYAEMvFZrqRJrltuUbSrtluDdeHTCcUxtjzBrVQk5UVCgXP89Is5kIorYXkGGO/UIj74Z/+6Z++4x3vOHbs2KVLl7TWnOfNZhOQadrC5gokSWZIsia8SJJkbW3VEAQEFwNarlbGcKNgF0zgWygUuZKcc88zUKmM4v7fffHze/fuveOOO1ZWVlZXVwHjH/rh90xPT//N3/zN+vq6ZZM0ycyj1KSpesuQh3Pueq65PaIwKY5XkUadTpczneec85AQIoQ0SLEhWSCEKCXVaiUOO0mSKAWO7TEpbdsxwdPS0vK+fftOnDhx8eIl27YBsPk4k206joOQzvIEYc/3Xd93DYo9NVXGmFKE1TCkSd7v95VGWutSeahUKnCRFb1Aa9RuNzHGtu1Wa6UwDFvNDiEKAxVaKIm1Rugbas6GbryFPmOlGCHW0uIKoQgAJUniOM7Y6ES701RKSMkZY0AwQijLMowpIcQs9QE5hbhmWsrl8kCtW0Gn0zME5zzPfa8wMTGxutrgXF68eDEMe+Pj46bnfefOXZcvX0aAOM8pwkkSBUFQLAYpy8+ePXPuwtmjR4/uP7hvvbFZr1Zq1fLI0HBjZWNkaDhnaZ7nI6NDrVaLIFwoFCzLqlTK1Wrl+PHjRoDFsqzN/ubU1ESaxrYzmrO4OlSbnBq5//4vr28sVyqlJ772yOjo6NTUxNLSUqVSW1o68/DDjxJCqpUaQuTRRx+fvXzFLIwsy6IoqtVqlmX1eqHJBm3bbjc7URTxnIW9vpbKFEIc1xKcc85B6zzLKHEppcZAL0mS+++/37D7CUGO47RaLQTgOIMmUCP1aGbKBNnbza2GjGN7LiClFPT7PcaY57nGfMnzPMaykydPMMmSJDIEliAo9nq9N77xjb1er91u79y584Mf/OAHPvCj09PTIyNj7Xb39Onnz527MD+/sHR1wbf96enpe++999FHH221WmNjEzfccMOVK1c4z3fs2FGtlpeWFrrdvud77Y1Gfai6Y2biia89oiE7etv1/f7OjfXW7JWFNE3SlCCEbdtRSs3M7Bwbrzsu7oYbYdTZ3GhlWUaIMz42WSqVCCEbGxtKSIzxyMiI1rrf77uua+CejfXNAdkwzyzLWlleNfuD55Zt2wak4iTat28PwtBqbaZpiDGUy8WpqR3NZhMQarVaCJFCoVCrVE+fPn3w+uuPHD16dXHx//53//bsc2d2TY3u3DE+e+k8U+yt3/3dWcbOPX95ambnlctzV67Mvf3tb/c87xP/4y9Fks3NXXU8FyGEKKKUDA+Nnjx58pHHHp6YmKCOnTLmuu6tt96a5/nTTz+dZZlje3EY7tu3b/fuvZ/61GcQscfGxi5cuDDoJOAKIZTn3DRVFEqFnKX9ftfzHNRH09MTGKOrV+fX19f7/f7y8rLneQ7xwm5ICLEtVysCCiNKKLWzjCdR1lCbRr4/y1i/t2YRF4O2PRcY2xK+hLGxkUaj0em0OM+HhoYsy7pw4cKjjz3carVee/drxqYn+v1+vxcaS08p5dTUlCH7GBKl0ajZ2NgwU5b0okuXLqVp6tquUsqxbeTqxfmFN73pTS4NPv3pz7/1bd87OTVqO36eK2rhVJp+HcAIEAbGAGMol4NKJdB6dHl59ez5c2HY6/V6iJJ6vV4rlm+55ZY46RAqqnVXqqSxuhh4hUcffXxhYdF1/AvnZxXIvQf2l8ulMO7bCAi2Go1GkmSM8Sxltm0TggFwGMbTUzMI6y06oaWUWlttWpZVrdSJ5bTabUJIoVy44abrvnr/lymlw6XqG9587+riKqXYde2HHnog4en45Njq6uro+MjZ8+duuOHITUdutaj7hx/5kzzHv/Eb/+kzn3/gxIlnbrjx5tpQfWVt9T3vfe/lKxf/7r4vEApjYyNpFna7HQDpevb6xprBZdI0ve+++zY3N+++++4rV66cPHnS932Mcbfb3bNnz8rKytLqkm1bUZQ89dRTV65cAYButxv4RYTQ82dPR1G/Vqsa+de5uTnBjUwiWlpaiqKksbaRJcx1Sp4XILC4EAThUqm02Vj/0pe/altWUPQBQGtp4ICRsdGPfuy/2zb9pZ//pVtuueWpxx9aXl5+9V2v9YqVVju8dPHi337ysw/e/1BzdRUoLhU9SoCzhGJgLMMYeB5blLqe5XplA8lpjZTSSoJSQIgFoObn56XKq9VSnidAWKVSAwDOOQZkehowglzmcZwqpS5euOz7frFYbLfb1LF9ryC4QEBsG/d6vU6n4zgOgFIgheTtdgcGBq08iiLGWNjNtpVhS6XS7t27AUBpWa9XT548NTIMExPTYX+RMaaUCsNQKm3bdpYxACOKiiixtFae5xeLBYQQQWRzvdlQa2masjxPgaRpNjI8avbz8+fPuzYdHhnxAr8XhQtXryKAernU64W9KEyTfM/0zBvf+G1/+7d/e2X20smTJx3HzrLs8DUHjavkNt3Vtm1wsAFKDP3fKGmaviKMBqIHxiPFcRwDbmZJGqeJBpmz1HVdlnMAJaUsFoOx8aH5+VkA2L9///j4SKvV6nQ6GOM0SycmJnbv3v3JT37y3PnzRsag2WxXK7VXv/rVzz13Mk0zpZAUGgAmJycXVtvyqTNcsMsXz+7cf3hp/opW3POoECzPGBfMeIFoqRwTRBG8jaaZBAAhZMr524iVCSMJwhahSZ5JKbAGoRTBFsbAGHMdh1pYa6pBmnZ+Uxp3HEcLjhCSoJFSxqouZZlSqlQquF4tTVMAtd5sTE5OApXDI7sUWP1+t9FoDA3VkzQCrI1saJZlvu9bhMZxajp+tNacyW63K4RwbI9gnKUs7MdZllk2AQACulwoKq2TJCGEGmTEMg18g0ZGvdXUJYxIt4Fc1dZACGUpo5QqpRU21spUKTEw5NjmuQthAmCDnZnlgamlhZBy8BFpmhLTqM5YoVyqlitx2GdZHvX6aZpyLSUCy7JilhUKBQUIY2xSr5GRsdrwkAHRms12LqTneQghg+0OKI1KmY4oKSWXAx6JuadMNGvA9O1AxYTBX2c6C9AKAUJhGGINSilM7UGrn5TEoobab1qaut0uIaRarRr3YGVLKSUmUCwF5jQRQkaRTGskpcw4QzmRUlo2oVZBD0z5OEJaaca4YJwrpRBGTAgv8HzXo5R2e61er2fbVjEoUcPw8HSe51JBGIZcyTzj3VbX912WZgi0Epq6VEoei5RSG6TSUiNFlFRpmmsJ5otJKTEhjuNojAam3EArlUqxWLxy5YohigopYUtDxky0UspoiRBCEAJCiCEH2LYlZC6lQlgrBZblYAxaSwSmaAEIYcUlcWxqAduWNBcKQAkhgGBA0nEsSm2peZ5xKSVgbVnWxsaG+TKgkNYqSZKcZZIb4rwp35iFqyRSA9lizi3LchxLb0lYfKMTptljt1RKFCFEKyRBUkp93w/DUAiBlNJCKi7UFrc9z3OEiGlGAQAMiHPm+54QApCybbtYDKSUnEuDv2PLYnEiJEMEU0rA2NMpZVaaue+klIAktTBglOfcyOPEcZwkabFY9IPAdQuu5/hu8PTTTwJG+/fvZ4wtLa2YRI/lwmh0GmnKWq3WaDRmZ2dNhJ/nuW3bpVIpSdIwjhToLEtSLt76ju99y3d9976DhzzPa7Y2ur3mzMwOxqPG8kqpUrx48bzvF2xqHTx4sNtfn5ia7Hbi4dGpLJd790299t47f/t3fuvS5XM7d01mCSKE3HPPPf/m3/ybp548Njc3T12/UPDvvvvVpVKBZfzo0TvOnDpz/NiJkfpQlqXU8l3XvXz5MufcaCIb6IAQEvX6uFrSIIMgcBzb7CdhGHW7Xa11JrTrulojJLTrunEcC8ZNYc8gNYbATik1zupKS0AakGaMSynTJBNCZElmHvEbGxnG2LjWm53KJOZqoKZFvw5oIIWwpoROTI1XKhUTkSqlTOlNa20aV7RGcZpJqbMsN60Vpnvg5Yfvw3/+z/Dww/CpT0GagnnziQl4//thZubFCFqawic+8dLCApTCpz4F5TIcOvT1gwjBoUPwkY/AX/81PPUUGIcmSuH22+F7vucl1DwuXIBGAyj95zQMvO8+eN3rvo6BAsA73wnvfCc8/DA89BCsrg6+FSEwMQGvfe0LJDLMSBL47GdffPCf63w//el/5vP9/2swBr/5m3DzzS+41KUS/Kf/BAsL8OST8NhjkOeAMYyPv/R17vXgK195OddE14UPfAC2Co5f/4if+in4yZ986T95xdnXGhwH7roL7rjjBWIgZiQJ/OZvvoLc8zfDmn/2Z8H3X7A8Xn70+7C5+U0/y7YsTK12u83z1Dyv9Za2GN42x9YKAEwBzETmW1VGa3R0zHPcfrfXbDbTNE3SCCk9Pj4+PDy8uLzsOe7o6KhpzxJCdLrdVrudJIlpthsaGur1ekqpbq8NAJ4T+L7f6/WCINhyL0swxnv37l1dbURRUigUKCbVajXP0+uuv+aGG65Tmi8uXu2Hnf379548eZJSfNPNN2YpSzMeRYmUulyqRnH/qaeeEoIPDQ11u90gCAzDL03TjDOXuIVCYe/evZcvXz5+/PjGxsbS0tL584fMuR85cnMYhouLV1eW16rVKoc8TGILE+Oaq7haW1tbXVhCRF1b3kHjJIvT5MCBA3meLy4uDo0MO47jOJZ5OsJWqXab2mBYzBoBQsbf7Rt3QLQtd7D1YoQQkhIIgfHxsSDw4zhWWuzcubPTObl37956vfb4E4+6rm07ZNfemSDwrrvuular9eijj9brQ+12+8SJE1qC1vC1r33tta993Vvf+tZLly6dfO7E8vKybduWRaemJxHSk5OT7c7G8opt4iEpU845pZbr+LkQQkhCLISw1mpLC28g+J3EWbFYNHwik2CYYoLnO4YMiywwbYleIfizP/vTp59+2sh0+r6rtW42m+1+24hOIoQoxYWgDgDdbhthjTFmLO90OoQQrcH17DzPg8DPOFNKlUplrRVCmGACAJKxNI4lYzYho6OjiyvLJ06cWFtbK1eKp89scpEXS8Wf/Dcf3Ld//5e+ch8XOWwRSDlnQnATAFmWZduOaSdXCLRWAXH73X4UJUoCQoQxjhDKMyMRqBFC1MJCAkJo584dCGkD0EipERATpSEgGKMoih544ME8zwYxqBCD5HagnswsmyilCEGu65t5dxzHtq1utxeGoU3sQX8ipSbf5oK122mWJX7gup7danY8T8Vxako3SCPTH0coNQkqgNoWv5NSao2+rp+FcRRFBoaWQne7XUoJwsiyHEQHJg9SyjhOLcsyX0BrWymVJImpTVVrZcdxHMcxkgKMMSPhDRqzghgZGdm7dy9jrNFotNtthFC5XCTEmpyc6HQ6nU7HcTzFhbn+QoihoaHh4eHzFy9IKb/n7W978MGH/+qv/ur22191+OCBPbv2PvXk02dOnb7huutr9dsty8rzNMsy3/eqxYpnO/fc9Zo0TREiIyMjMzMzxWKx22vPzl4plf1Oa+PixfMWlUO1kmXRyYlpADh27JlrrrkGoV6tNrRjuiiE0Bp1Op1773ndG17/xj/6oz/qdvuO43Aue71Q6wGdBwCyOAEAirAmthY67PYopYoIm1BAoLlGEmGFhVaOQ2q1MqW03W5fuHDBENOEEIarRSyKNSglKMVSalPfM9Qws0QJIcbEyXXdYqVo27V+v99uN7XW/X6XMygUCkKLwAk6m51CwUcISqXC8PAoY0zrwkMPPRAEwbvf/d5nn332kUceIcSan1+I43xzs3Xrrbf2emGz2RwZGet0OhMTE81mUwgRx2ma5s8880y73R0fH37wwfunpidq9QpjbHNj881v+c5rr732+MmnPM93PbdaLQYFK01DxwOhJY+IMQlP8rQfdg4e3rXWWFSgpNSuW2A5SKE7nW4URSMjI1NTkytLa2mab262CCGlUsWA+5blKAVpmheLRZPD1mpDZhPvdvueb+U5KxYDpaXImRE2oZTecsutq6uN2bmFWm0oz4TnOXkmK7Vqux/+zu/9brE+1NhsPnfiuZJXrJcDnvYpEjPTE5ZrnTx15uKV2bvuuPfRh58QQn7fD77rvvvuEzl3As/zC5xzbCGiMWNc9iPXtauVOsHW+ur6A+sPbCwvl8vlHTt27Nq169KlS0IIt1A4ceJkp9PrtLq+7xuONoAyBRulbCH6rmsrJYOSNzRUS9M4isN+HNaHqhjhZrMphOz1IowtJQkXQkuEKO53QoQgZxIjCoRwwVdXNsrlMkEmuMelQoUQQolt6hZmc5NSxnEcBMF29Y7xzNjvjo2NdcP+7GPzxjN3cmLCUMzarZYRKCgUCoyxQhCMj40lSVKv1+v1+vLq8pkzZyilnuNprYkGz3FHRkZGh0Y9z9u/7yAARP3QcXWz3bMspzRUxxhgIBIFDgGEABBICY4HlUptbGTU9T2EtO96PMvnWvOOS5dWltc3ll0HhGTz80tDQ0OUWtVKnVK70WgwkRfKgUZys7mOmGZMWJbVbndYLlzXZcz8ZJzzQqHEWIYxx5iYPFYDCM7TpGEaazrdlpD5DTdeOzJa/dKXvmRZ+LHHHg2CwtHbjw4Pj7729d9GLPz617/+d3/3t6Xkp06dmpycZIwdf+aUlOrzn7vvmeOnAdQNN1977+vufuLpR+fmrvT6ndHR4ampiYuXzgmZAWhKcbvTtCLLkKqEEIFfvHTxSq/XwxgXi8UDBw7ccP2Ry5cvnz9/vt+PoijCiGoNURSFYVivD3ueRzHBGLfb7bm5hWIxGB8fb7U3DQE/ChPORa02pJSKwoRiy7IQ56JSLgmuEU/Dfvzcc89Jxi3LHhoaVkhLKYEgqThjmVJq9+7djz768Ef++CMY47lLF7VCr3nNtwcFWi/XN1bWH/jil4VQxaCEsK74vm2TXo8BUv2oV64U77r1tizLVleXTTzQanWUxFoDIQ7GRsZdlEqlNE0RUphAoeKgLZaclopSyyhTYUo6nY5WpoGaWoSOj4+HYbi01B0eHh4ZGV1bW9vY2MSUCNE27NSg6Hs+dRzXYBCU0k6nk8VcSlmuFDudTqEQBEHQ7nQajcbU1FSSiLW1NUqtnKVhGFqWk+e57bhSIoRBKUUpVgq01oLLYrGIEJach0lfa3333XcvLS112r1YpQ6168NDkqvZ2fnA9aampvxigXNe8N3Nzc1nmy3DIJMYJTKvlItRGAa+f3Vufmiobirxpii+ubmJtozaKKVScK211mAqtYHnb8OgWZ5hjEdHR3u9nt5SWFJKcm7EBwbPdM93GGOYQBT18zw9evTIqVOnrl4dFE25YIYVW61WH3zwwZzFhruX57LX6/3sz/+C1nptba1UKkspM8ZvPHLkudNnLiz/3l133Xlg357Xv/7b3/SmN/7Oh3/zS1/8rG0h1s9s23I9xzwQMWhTHZR6wIwysjyU0nzLPczAlIJxQgj1fdM6rbSmCG8nG0opsiXpq6gCGLirbZcQsOtxzrWUgLBSSmiltTKyuUPDw0kaKSXzLFGaKcU0tqrlOsY6y1KNFJeSEJJliXnPTqfDc+H7vtYII+I6vjXkMJnatm0R2u9FnU4HANm2JaV0bUodx3EczrkEiRCyqOP7Pou02uocB8AAA0KfRR1AaqucoIWQWksAwJQY3NmxXUoshMCyHEMQRmgA05szNR17guVGlatQsl3XDcPYVGgIIVJrpqRLB7YcCDDGmEmpEmE5NldcEyylxIgorTKWm7ii0+kAgO/7lmVlnEW9iEtBCLEAhGSmzIAQMvUYpRSXwsSoRujZnJ2JUgwwrTUYajNjLE0zx7IML9L4vBPToaWYmX3btl3f6/f7UkrXdY1kn+/7QRB4nsc5T5OIcW47ntnDu92uRR2jwc1yIaXsdDq9Xs9xLbMqlJKUYkA8y3IepZhic3Hq9SFCSJrkGgnb9dI40VoCKKEQ0djkXYQ6WZYnyXoSJo5lKaWSKHVsirW2bdujbi4R45wxgTRIqShCXHHJBQDehuC3gnytMc3zHFPkuO4W1Uam/T5sCRRsyx/LgYcbxhgBiCiKOGeVSrlYCoKyt7y8rAFpACGBIosziQBsy3XswLBBOR8wxxljtk210kpJU8UBpKTUGiAICkLwMAwN96vZbNfr9cnJSSXl5nrTsonv1jAgweV2k6XJzzkfmGSa8r8xszWJg4EJDIWfMUapRQgFkJxzzmShUDAAukFpCaFpmkqpOBdYYowRQYgiLISQbFBcIQhTSuM4Vmiglg4wwCIty1JKK6U0yDRNhZKVSsVA2+ZvXXvg044xtrBlgE7OOUUYAWJCKsUt6pSKFaSxEurM6eejKNmzZ0+1XOn0ukmchf1YCk0IVUpnWW6MMU28bZJZk+IBoHK5Ui5Xut2ubdtZnE1OT1GMPvqnf/Lu97732sOHO+1NpGWxFDx/9hIhKE1jwfIrF684lmtR+r3vfNvc1auPPfoE43EUJ2vrV3//v3742ZNPh1G31bJ37thh+qy/+tWvXr402+12OUIUE0KIxnDDket//Md/9Bd/8T/kLM1lbttWuVzEeFC0yHPZ7fSVtEzaOD09OTI+FhS8NE3W19dN8cZUYii1MBlw7SWShBAt1Ra2ILerR0KIcrkcBIGGAdXA2IT2ej0pjA4SppQwxjCmZmczfScmITLLm1oYQBlZZ/MrhFCxGDiW3dpscskMpUaIwR4yiFQJTtPUhMqUUgCs5AuA4V7vpZEsQuB1r4PXve6lf7s9tIb3ve+bsjWFgMceg8ceg7/+a9ix4wW/KhTgh38YfviHX+H9FxdfzHX9ZxnPPQcXLsDNN7/4+D33vATi+ZLj/PmX8AD83/Z8/38cSQK/8Avw+7//YkR4ZgZmZuCd73zld/jIR77pryiFH/zBlxYcP3oUXv1qePzxl/jVP2X2pYRf+IWXk/XwffjO74Qf//EXY80AgBD8+q+/wvv//XH27IulPLZHnEQadRHWQakYx5GxHN5udBvY0mpkni/FYnFLC0gaK2PbttM0D4Jis7mR57ltuRThXjc8d+6cbdsTY+P1et3E/4aNYTaWKIpMGGPZREow1hTmIWLiFsuygiAwNNkoinbt2tVut03XV55mhkXx+c9/vlQOwrBnO2RjY0MjpbVqNFY9L8iZSJKEcxmGoVJqdXXVsohC0Ov1wjBk+QDf82xHSLm8vHzy5Enj1xUEgZTyuWdPUYorteqVK7OM5aurDc55qaQRJZOTU51Wy1IWE8qUAwuFQsbSa665hr75zW/e3NwslUq2bQNGtVqlWHT1luSBeWzrAYSMBj8QbE/xVhy+5YgyCFu/7rVNCNYAQkgNyHXdYrFYH6qOjY0dPHjw8ccf7/V6N99y0/Ly1WMnjj9//nQQBDt3jFer1dtvv315eeXxxx/3PK9WHcpz/p1v/o6bbrrJdd39B/YeO/41AJLmKSLuzp072u1mr9fRWler1TiOm81mHCfVatX3Ckhj0y1oWZYWkmdMSAkKNjY2yuWyaQczQg0m3DSyKVrrOCGO42BCNAEAIoTwPE9rffnyRc8LfN81Tzuv6FWr1SxLhRDGM7BUKgkh1tZWKKVc5MViwSbULCDOhQloAts3xB/bthCiQoheFErGTLl7ZWWl0WgAwMGDByfGx798/1fjOC6Xy/1+/33ve9/haw8jDKPjo51We2iobiy5zcUPgqDT6cRxtD0LjuMIDnmWmjtESqGUItgigCTj1KVJGgFo27YLBd/1bMdxPGdnu90Ow5jlQkiZpUwpZeCeKIosixo3QowBIU2IsQInnudXa2XOc8uiQcHL8zzPc2oZhbuUc4YQAgSB50lpPF4wZwKQzrgYr9ZPnz7dbneLflEryDJGCNUKYUy1RiwXlBi9DjA3tgnHDUJHCOHcRHgUQJvkFgCEkEGpYNs0zWIY0K8sy3JMKGn8cwqFEkIkChOtda8blkqoWApMRGicAwm2TCIRRVG/HxmY1TTsd7tdx3HmF65OTIxTStbWGg61CCE7d+7s9Xqc8zAMBeMPP/ww5/nVq4vtZse1vemJHTffdNt73/3uP/v4X7RarW67U61XxsZGAKDb62ysrwshbMefmRkzaUme50vLC7OzV86eO7V//x7fwyur87aDXM/at2+P67qzs7NKwU033XLy2eekULbtMhaVCqXbjt4+Pz9/5coVI71nbmHjaqKFtAgxvaImLTSFCoPgS6kZY8bhGgAopSmTCKHXvOa1p08/12q1zBJlLDOdpIaf4lo2xlhKgTHClpMn6XanidbacRzLIvV6fd/+PfOLV33fLxT8aq3Ybrcty8ozxRgDpKTinu+kaWoZzz2Wcc6zLOn3I4zxU099LYqiD3/4N3fv3nv48L6LFy+G/Xjvnv35VH7h7Lnbbrnt6NGbT58+/YUvfG5xcdkkflevLlqW1Wp1LMva3DwlhAjD0PP9NM0feuihc+dPHb5+/8RknfE4Z2m1Vr7xxmvb3d7FU2tKKSDY9ez19fXnnnuOi8RyKEJ69+5dWbKAMV1bbYRhb3OztWfPLrMqut2u2WQwxlojxoShYnEuS6VSnnPbttvtbhRFg65Sik0vzMrKiuc5ExNT5XJ5Zblx6dIVrYzqKCwurlSr1Xq1ChZyfCfsdTYajQP7dyMpEWGtzdU06/vB+PyV2eHh4V/51d9cuLp66LobL12e9ctFDqo+NdFut0EDtiilVAgmpSKEsIwLIbTQhlmCgKw3NouFcqVcC/xiFEUAOkmSY0897bq+ueMIIXnOTHqZ59wnbpYxhNTi4lXHscbGRy3HYUnYbrcBBnC8kti2AsEV0hpjKhlIJCzbdohLqe37RVuIOFxfW1k3xGcLE4SQ67vUsszT2ixLrbWBNR3XMiUu09Rz8eKFNE3W1lY5F0Y1b329YVRujE+gqRWbLqGVlZU77rhjcWF5nW8Gnu+7HmNMa1X0g4IfbGxseI799LGv3fXqu6+97nCr05ECNPQBW3GcplKOjo5QCq4FcQzLjQ3OhG3bjmsjhNq97vDwsOM4UkrHsRob61evXs2yJM0iy6bUcp999lS7E7eaXZblWZa126sIa0zQpcsXFEjfd2WiTUNxY22jUqlQaiOkhVBxHANAr9cbHh52Hcu27ShatizbJj4gFYZhp9d2/dFSpRSn0ennT2qQpWowMTU+s2vHrp17R8emxkYnyuXqF7/wxcAteY6fZQlG6NOf/mTWT3/iJ3/qphtv/rOPfaLTadWHqlkSffJ//tXs5fPlcuG++/7uR3/0R5qttZPPRZjoaq2IY4VzFUWJMbsrFotra2sbGxuU0l/55V8rlQu+V7hw4cLy8nIcp82N1o4dO2u1mlICE+Bc9Hq9armKEIqiKE0zgzXMzc0tLS/UarV+vz8yPG4q4cVCeaiulpZWwrBpUR8AhoaGuu31BPW15NVq9dC11zYaDd/3emGv3++6ru14bpqmN998c2uz+dnPfjqLk3/9r37yC1/44vz81XptzHHpzPSOaw7sL5VKFy9cyNMo7neZBaBYxuNyJdi7b+bAwZ2EkPGJoZWVFdtyPc/b3OjkuaAES6kppbt2zQiZ9/qbWmvPcym1QWmMMcFYDchqSghpEeq6bprkxWLZuKXZlh3HcafTq9frRiU8y5gXuJRalBKtJcEYFFIgMSCpdK1SxYB67dVqrWwS6X6/3+12McblcrlSrX3ggz/8tceffPaZc4SCklAuV03TsdH+whgD4Gq1IoSQMmputi2bgNKe52VZ8uyzz77rXe/SWq+srHpB0O32wzAsl8v1er3f7ysuTLOeazsGfkrDPkZouFp+5pljjz32iOM4lkUppUHJ59yr1Krrmw1EBs54hJAsy4wCjMZKStnr9WxqmeIEZ7JcLps2LMPaMKXcQqGQZZl5DG0Fk9psIAYrlIpzkdvUkoKlSeJ5npQijvnVq1cdx7Ydr1DwKbU7ndX3vud9H/jAB37yJ3/SsPy4UEXb1Vp7ntPttZ577tm9u6elzH/nD/7gqWNPcs1B6EK5wDmTWisAYlkUQGvAGFtkW/ViENMa+0qTXfCcmQXMGDNaveaBaC6acXHUW509JicxvY0m1FTKlMjBNM7nOccDDWjWbjcnp0aVkkoJx6OYolKl1O2119dbnue5vqNBGu81E4vatt3vR2vrG9OTU4XA7vf7tu1QaiEspdD9KIrjhBCKMdZCKawEBgAwbMcgKK6sNPKME2IRMsC8AEAIgZAh2w58FzQdxPbmeyOENBegCMZYEaWxlhoUUqYbVClAiNj24D1NGcaiNAgCzqUhoHqeZ0uZmWCSEJtaCON+PyIaSkFBCSmkBIziLJUIlARq2RK0UAMpDM55LrkUgnNunMMnRic2NzfzPE/zTEqJ1EDBeTuAYYKb4CfLE9OnRQaS09pYKBtYfPsKUEwotTjnWoNtOxQjrXXOueGrGgNkxjOMsdIiTsJKpaKUqg9VlYQrV64IyYhFK7VqPwp7vR61LUotkWVKKcsmSmqlhVYojpnrOlIKDVxn2nVtx7FarabUwrZtQlzbtrTWmAAXeZpBLnKhc2IDFwIQMjJxxqLTrDTBuG3bBGGZS0SQzHgspE0tm7hSSp7nExNTLMuXllZc183zAYVzwLvHGiFsWVaxWGx1mnmeDw8Pl8tlQ/I1e8uWLspACsO2B/LHQnCE0E033TS1c6LZ3JiamhofHzl79lyn05GhtC3f9wMpYWS4wjnvdvtGvk8pZe6pNM9M7Q1RlOWJ6zpxHFoOtiWVUk5MTLgBWV1dtW27VquNjIwIztM4IYC0VFGUOI5DMGWMWZhS183z1GQHAFAqler1OsGW6WEF08fJuZlZ8x0QQkoL0JhSbML+LMsopQjh7aqJEY/SGpdKJYyJlCIXeZ7nGJChPAshJAhiWUqLJGWAkOf4Sqk0zQ2mPzI2un///oWFhXa7bSpnBhnfDpKlkoSQIAjGx8c3G5uMcUdplouC55uQBnEkuSoXywTTjY0mxlhJqYSyqS2EQIb4LxNQRQwYASr4BcPS9RzPZEntdtvYdBcCf2OjcebMyfGp6ZMnjt3/5S9qma+tLYdRRwhBHRrGfZ4zkFAM7L1791arQ+zilSxjt9xyy41Hjnz1/i8/+tgDvu9TCrVKpVKpLCws+q5/7tzz3V4IALkSEed5mnHObz5y5L//6Z/85V9+Ynp6xrIoQjrJE0LwRmtzbGyyWA7WN1sgVBB4xrIvy5PhkZrvexsbGwhphLQhCXLOEMKOazGmlVS2bdvUyvN8S0cVTH2oWq2Wy+Vev2usO0x7zVB9GIERt0QYIRgQzIXBhsxzx+ggGRxAv7Bn17IsyyJGoidNY855TonZJAfpp1CO4wJAnIbGX51Satu+bX/btwZzvfIQAn7qp74lZYD3vQ/+7M9gauof9v4vj71+o0QywIs9D19+YAyf+hQcPAi+/xKw4CuOOIZPftLQyV/6Bf8rzteMF0qhfKvjn3Kt/unj0iW4/354/etfjDi/4sgy+P3ffzlVZduG9XWIohd7NgLAyZMDJ8y/P0f/6NmXEu6//6Vlyr9xHD0KnvcPeNuXH9dcA7/xG/AzP/MSv1JKIgJaKymF+AYyvHkCmt4Xa4szEUWR2WmNzZ1W0G62tm0AEOJCKGxjmxDOZLu1EYWJ5wUTExOWxRyHFwqFHTt2nD592jzFtkvjptm32WyavNgwq/I8L5VKs7OzFnVWVpba7S4AppQKxoPAMzFnr9cjROecLS4vASjTxC9ki3PdaXejKDHkmTRN8zwNSkXz1DMpzKCSJ8R6YzNJkmqlbgyQPNcdGhpijGVJthgtYoyFkFoD59xyaCkorq82VjcbjmePj02pXFJi2ZZ+/vlz9IYjM93ujlarFcdxtVqtVksAoLQeCGKA1EaneWsM/P+2xjbvY+u3L15WQihMBgC01pCmabvTjOPYcZw4CR997NHTZ56dmpmqVqvFUtDptD772c/dcccde/fuO3XqdJ7z8fHJH/+xnwCAAwcOPf30k1marq2tUIpHx4bu3Hvro48+utZY0lovLi5Uq9UwDMMwjKIoCApD9RGkselQ9jyPpRloDBpTQoxTLQBY1MEBNchvv99njGmtPc+Tymhva84YKKVBG+k0KaXneUoJx3FSlmutEWMmDiuXi6Ynq91up2nqOI6xbudZ7pUcEyhjjDlnhOBCucRYVqvVNjc30zQyaoNIDfg1AGBipvX19eXl5TzPy+VSqVQyOO/i4uKOHVMLCwuANdI6CLxCwTf8PqMXAwBZlnmeV6mUTY6DMTbQn20jxVSe5wIpQogWEmudslRrOTxSdV13aKi2OL+YprnJHqXWJpyVUsJW6gUAnucYBQ+Dr+V5LhUvFHyE/JXVpVZ7s1IpOY6ntdYgjF+NWcRCS0oc026pNWCLgCZLi2uNtSYhNApTrZGSCAEGRZSCregWCa4Q1p7nAyijzYfx1/tzjVOwUgIALNfxfIcr0ev1CEGYAEIoDEPj1zw1NUWwtbCw0Ot3giBACBkNvm63aybIsgfVKtDYMFzSNLUsixDLUFowxlLy8fHxLMuk5Gka1+v1TqdDEVESVlZWADDn3Agiu1o98vDDoyPjjuNcPHd+emLHpYvnxyemvv/7vmd6ZqZSKZkdgVBsthXLsqrV6vBwFQCKxeLs/PzS0uJzp56xLPzcqWdsCmHUlZITAufOPb+ysmLb7s7pvZ/77OdnZ2f7/SjLWBiGd97x6sOHDz/22GOzFy4ElcoWQUmazcuojmqNCDEXkNjUYoxZhGqtESCWcSm1UsL8iZRKCBFFUbFYzLLMtikTHGE0PFI38RljDDT27AFNTGjg1jb3WRuxwjRNjSLq5uZmq9U6cGCf7/uGHxRHuYnykyS2LMt1Ha11p9uKwx4iltbassjU1A4A6PV6S3NzSmKWi1fd8epyufwnf/InCKGlpaX3vOc91157+NSpUx/60E/Pzs5+9KMfDcPQcTxKaZrwUKSYQBzHgvODB/fv3rX3kUcfKgTV82cuX7067we0UPSk5DMzMwXf8zy30+97tiWkFkJcvny5PlzVoVRKra0eQ0Dq9eE8U5wBQnD50vz1112ntc5zrhUyT6A0Y1IJQm3XA2PVQggBxozeN7VczmW1Wmu1OlrLcqnieR4lVrvVi6Ko3elJKV0XCyEOHNh7xx13PPHk45vr667rejYtekWQCWhYWW0QBISiN7zh9WMTkwuLjZmZmcOHj9x8a+fc+UtM61tf9ap3vPOdzx4//gv/9t/SIMjj2LVsm1KkkO95OeQUKAECAAyk6/qdTi8Mwz179qyuNtrtNtLg+z4ANu1CpqAKAJznjuMKITABx7MIQJ6nV+bmDh7a7wfDS0tLeZ6Dxo7jRWGupKbUwVwNhBqR6a8hIhMhxJTSYqHc7/clk1JLPWCShsQmtm1bNhFCmxRdKo6QNolxFEXVasXzXFO8TdOUAJaMJ1GIMZaWxRhDSmOMJGOZlLbnmQfzs88+29xsM8bSLJ6cnCyXK0kYTuwe37V7Jgx7p08+h5CUin35/vuSmN1y8x3jEzuGhmqO7XGEsNZaoM1utLraMFej1e6bDbBer3eamycvnRgbG9u1e2aoUsX7qONYvV5vaLgKUjz+2FMYeV5QCHX3lqN7MEbLq0uEoChNOp1WmmdBwe92u1KB67r1+rBSqlAINjc38cDCXhlgrt/vFvyiUkpKbFmW5zkASmnJ8uy5U88ghAB0sVhSSj344IP796099tiTtx591dWrCx//75+47faj6+ura5srP/CD33vs2LHPfebz7/rBd3Kmjj/9lNZ67/49CKv+4urOmSnLQs3W+h/98R9ynivNfdcXggWBNz4+evHiZUNv9zxvx46dd95558rKyvz8fKfT8Twvz7npCjp48GClXFlfX+90OouLV5XWSgDLcqWU7/uNRsM0vV68eLFYCjjnoPHOnTvL5Wqr2Tl9+vTk5KTneYQQIXi3295YbyqRCKF27JgqlGr33POadrf7xS99EWNcrJR37JhotVqdTuv48advOnLk2JNPvfGNb3zbO77H8gobzXaY5jWP1uvDH/rQh/70o39MMR/bOXblSj+KuwpJbOnbXnXb9Mz04tJlz3URQjt2TFFqO44rBeJc9vuhENKynCjumYf15OREmieEasYYY3meZSY7VVKnacqEnJ6aaTQaSsHMzIzv+xfOnUcITUyM+35haWnJwBacCw0yy2S9XjX+V47jYYyNzZHWulwpDg8PFwo+pbTdbgkhpqeni8XiysrK5OT00Vtvndm5m+e82WyXS9UgCB574mtJGg8PD6dpKiU3Sj6EoHK5nOd5nISggRDaaKxfuHAhy7JCqbi2slqt1hElQvFmexMDyQAgywqeTwqk1+sRjKhFM87CMN7q+BbG2FZrjZBuNFYJIYVCIc9zzgfSxhprhJBUynGcYlAwT3kTYlmWFUWRuWWSJCkUCkEw0MJzbc+Q3ZBGSoIU2kS6jUZjfX1dCiERrtVqExPjjUYDQO8/fHhu/gpgZMr/ZoNaWl15xzveceLEibGxcSmFkAKBdWX2kusEQbkwf+Xsf/0vVx564PNfe+IR0KJQ8KUSSZYrpRDWXFlKgQE0lUKWIrBV6zJfbBvR03Ig3/yNjTvbsAXGWEhlQuHtRq5tCl7OGMIaE6yVMvgdIUQptB05Y4Q6nQ6AFjJDSGdZGhQ8pRSmKGOpqZ/ZtukkE7Zt5zl3HKdeq6dJvik2AZBSGmPqeth8Mdd1FVeGD0gJJoRSSgyNd2hoaHOzHfZjhKSDg20yMkIIYGBnbTiYUqKtorLWWxK0SpkTHNBwtnXkFJIDnruUhl+plBIMLMtyHOp5HrGoCT8KSmkpKaVKSEKIRSnjMuPCcmyXWM1OO82yYq3kBb6jJJMizbNBnTsXoLUJOwe0A67IllK2bdugsRJSCFEoFAxjCDDyfR8Aur22IaobLIlSWi6XKaUm8jeFSUKI53nbUnhKKVAyNXX6LWIsV8zQnA1Onee567qtVgs03rFjx9z8FdN8Y4wcDNPfXEPP84g9QDlt2yoUCp1Oy/cDyyK2bdu2VauXe/2+aSKJon6tNqS1zrIszzNCyNBQPY5jznDOMqU1QpgQjBDmnCMNGFOWcdeyMcIWpja1hBBCKSAKI1Kt1lmWd7t9kyGbn4QQo+qDASNCJibHJicnH3n00Wazaa7MNlvWgLPK+BFh/CKm8MTE+MFrDs7NX1paWmx3NicnJ/fu23X5kmo02p6D8jzz/cD1nW6jJ8Q3OrELoSSAjuMYW9TCREnFWOb4NE76a43FkZGRoeGK6/iVcm3P7n2c88bampmjQsGPw6RYDAI3SNNUUaq1jGPGObct19wspWLFtm3DvTX3rDkFQoxCOzEYNNIEEAghjO2NUkrKgfC38Y03zdHFYnF0dHRzc7Pb7RipScH4AIunxDJm6SkjlAJArCLX9szdqhAplQqDCgdCQimCUBzHtm1rqba3CLRlSLNz505C6KVLl1rN1T179pWCUqPRiGXqOI5MZL/XwyGmlmWSBYyxKZ8oBYwxgAFKbpa3wUFGR0eDIFhaWjJXgEnx1rd997vf+56pHTvOnTv3oZ/6ybDbVZITqi2LaNC+G0RCZ1ly7+vu+fB//s1UqGeeOX3vva8vl8sI1MrSItJKclbw/WPHjt1///3jo2N79u1tNBpDwzWE4NLcrOM4QdHrtLJjJ55aurriBa5t00qtXCwGSvJut/OqV72qXh95+qnjjIvAt7GN3YLreW673drc3HAcJ01jy7H9IMAYG5cgE3fleT48Nqa17nd7pihiylqmaGQgY4KpOWjy0ygMMUK2ZUmhOeeGfEap2dKNzrLWGqQa+AMZNMC0t2ZZRikulUrmRtBblvV6S4cHIWRZjmmDMMCT1ogxVQt+ruT80DdFtuAFrlcvP6II/uN/fDmVg28cSQIf+AD87u++2ALuZcbVq/ChD31TGqnvw+joC478fbLqywyl4MEHQSn46Z+G4eF/wB8CwOYm/NZvwaOPvtxr/tnP14ypqRfjmDt3wpkzr/DO/8Rr9U8fSQK//MsA8A9DnPt9+Ju/gS984RXe+atfhXe84yXg5nYbvva1l64H/ONm32DNv/zL37TGYMa118L113+r7/ktjnvugZ/7OfjVX33xcYxJr99TWjhb2tJ64AGLzcPRdV2lhWHgGfm7c+fOmce65/mcyzyP85ybEqBBXYRQ5lEyOjrq+b55kpraYalUcl3XBA+cc8f2GM/Mrs4577R7U1NT/X6fM1kqVq5cucIYK5eqnU7HkCCHhkZsahlI07ZthUSep91umws2OjqMKU3TtNcNy+VqoRgQQhgTxjIEY2yUDLb3WxPk5Hne7XaR1iY1MyF3p90DACGZUsqybSNoRgjN8+zcuQtaa5e6FrV4KvI044EEhBpr6zSKwPeR4wzFsQG2NaGIYqQUaBgYam8/Dv+eSIr+hinBsGXB8YLjBCGEtDaexSLPsyRJhBDtdnNycnxmZvL48eMXLl8IAv+7v/u767VRUNpxnFOnTt1xxx2vfe3rHnnkET9wq5X6I488dOb5UzfeeH3O08PXHLjjjtumpidOPvcMIfDt3/6mT3ziE8vLi4Z4Mjw8IrjKc4407nS6CAhLGKVWHMda68pQZdA7w5VZH4YdbE5hUHYGaejecRwbKedWs2PmXmhlG2Eplhu1OMbyYrEoJTdobJZLAMV45rou58zk51JKISRCaGJicnxqotFoGM86IYRBOaWUSkqMLaWUiYkNcYkxVi2VwyRuNpuGQt+Puqury4uLi6BhbHR0x44dV69eNQtLCGFyWiONkmUZgARtvL2BAAYN2AINVAhhmM45Y4TAjUeuP3LkhitXrpw9e3Z5YVVKGfhFx7fiLKOEOI6TszTLuOPYAFCplIwAhSnIg4npkQrD/tj4yPXXX9vpdOI4FoIhRLTWrmcrpeIkRAgBspQEqViWZdS2iVYY03a7W6uO9nq9jCvf8ZAGpTClFkIII6LxloE4Ulk2cEQ0+YCh1kqptMaUYkp9AODaqMtpjEEqhQQyGbiRdm1utkdHR0dHR7vdbr8XuZ4teGZiDgOGFotFSilG1MSgMzMzeZ6vrq4ixCi1DbpqtLk7vbaUcmhoiHMeBEF7s4WACKFM2yzGNE1TjWAg8+f40tYWweVy2Xe9Xbt2Tk7vIBZtd1qdXgcAEMD4+LhtOYVSUQgwGUu5XH71q189Olbv9dqPPnb/lcsXDh7aKyU/efJkq9W67rrrECL1en19fZ0Qi1JqBIA2N9f//M8/Nnvp0vDEhCEV5jnXWiNEOJcEBEKDYJRS6jmulNIocZvrrECLPDc8bs45ojLP00cffRhAcckoIK3l0NCwsW4DrZMkQQh5ltfr9dI0dfxgfHw8TdNer4eUzvM8DGPHsUzZv+gHGWdzc3OOaxUKhTAMkzgblFsQ4jw36ShIGWf51NQUsZyNjY2NjUaz2SyVSm/4ju9IUvHOd77zwL796+vrf/7nH9+3b99111338Y9//LbbbgvD8O1vf/sTTzxx/PjxKIrm5q5mWWaa2vJc2FYg0n673Tt69HYA9IlPfNx27DwWCKk07U9MDs/NXT106MD0rvH4QiglcxyKkJJpHodxuVrWGkDjNM0bjQ1Q4NqesXOfm13YSiBtU6wqFApmnYyNjRk7EdMRIxSnFAuhBYXNZhuBCoKgUnGMzRdjIoqSnKUIoX37D1177TWO40jFq8OlYrUQuF7UjzCQcrmslOqU7MDzsiwrlIJbbj66sPh3J0+eXG/2Hn/sqUPX3XDo0CHHdQ8ePNBqNZHnjY4Op3GSJynL0htvvLFQKJw6dZICRgoYY1xJx3GMjbtJJqWUXOdSaqNHKaVM8yQIAs45IlhKTQjCFIQQGoQb+AVKQeNqpV6tVhcWFrRClUq93QrXljaxIqbDGmNs247UAmOcMh51egDg+77jeExlJmN3LFtKKRXXQAhxTOlum1Vn8kzXdYw/m+/7ZusmlsM5q9VqpqpkNmGDyGitHWoRhIVUK4tLiFiEkGplmOWi4KJ+Pzx1+uShw/u+53ve/5WvfOnEiZNnzp29eHm2Uh6emt41MTWtlEzSSAAqlUqNxlqvG9q2TSyqNTJYRhiGrut6josBXZ2br9cqRr2RENJobJSK9YsXzx+58dZLl89evHDadRCxiJK551LAiGTatl0ptWZocnL6/IULpVKlWq0aBpnJY41T0IULl+647dbAK7Q221qDFBmlbrlSyrKs221bFimVC67nOa6tpM45e+bEyU9+6vPDQ6Onz5y/cP5ic6kphJicGg3c4Cf+5U9813f+i7d+51v/+CN/6BWKP/iu752bm1tYnKcUNjfWJiZHJifHzzx/odfrVKql6667BmG5sHC12w2XlpbiOK1Vh4wtKuc8DOO9e/cPDQ01GhvNZtOyLCFkpVJFCB87djxJ4jxP/cAFgImJsSAIyuVyoVBot9s8FxgQpXR8fNxzgzAMZ2fnx0bzWq2mlDp16tTQ0JDnOWnC4zgcGRl7/3t/4v/5nd9jUqyuLS8uLo6MjS4uXq2P1A8e3H/rbbfcf//973nPezCgZ585OTEx9T3f833NsHn0jqMnnj2XcrHciC7Pze7dM5PwOOZhuta2Az1SrmoK3X63MlSVCJaWF3rdcH29Wa/Xr73m+oWlhc3Nlu8VLItSShQIRBwuWafXpTYtl4uMcWOtxnJOLWLbtmkukxqOHj366KOPa61LpVK32x0ZG/YCN0tYFEWdTseougspCaF5Lrrdrr1GC4VCsVjodrvGS4AQMjY24nmuZVkGTjU1lSiKVlfX5ufnR0bGSsWK7drlailLkjSLp6cn19fXW61NAMjz3CjGUFpaW1sDAMd1pJQU9HC5+D8/+bfDw8OlUrkfhbbrWIRiShRXGcsIwkKoUlAwxF4h2FaCLQ2qxbkSku2c2cVYlqbp/Py87/tGLZQxIZQ0ZFiMsY0syQcmdb1uiBAyagPtdtsEMIb6US6XCSFCSCm1tdXQQDCm2FJCAZKUEM91lbKNGnKSxAb8LVXKR2666dLli8akwaBmjz32WBKm0zunOGeMMUQIAuE4jtYq6qzt27Wr020RELfdeuTkyRMYhFJSKo4xBkxyzqXUWmvTsme0hvE36EEZFANv4bBGgsBg4gCamRbsgYLsgIRrroa5UwghxMCXZNCvvU2k1VrblBJCmFRKq8bqWqVStl1LacY5JymxbVtwbgJpE7VibPSRiePgRqMhhQaFOBeWZWFMg8CzbGB5AlKDBCEUQthxbIS2C/NYITC7uhDCcSxjWWYg0W1UbvsIZxJjrUF9Iyhm4DzTkyGllBIbMJbQQfBvcBmDSOItxWQhBCGW5EJIgTEeGhoihORpJnImBNdIoSQxC8MvFXtpvLHZOjQ6FuVp1O0GftFs+Ekcb08QZ1IgZdvIchzD2lZKZSnTWjuWbfBu27apbZmTBYAgCPJsQE6vVCqlUqlUKjPG+v2+ibqNX3cUReYslFJaq8EkEkIIMd7OJukyhQTDV22324cOXtPrdM3Mdrtd01lv23axWDSUoiiKVZYCaEqp71cnJ8frQ+VOp2UKM0Jwz3cmJibCMEzT1KR2QRC4rmsA8UqlVC4Xe/04DMMsY5xzrKhFAA3MJ5Vt2Z7jEiC2bbuOw7Kcc26QNZ6zXpIY0wXD1aCUKiVyzorFouVa5kObzaYBuI02neu6Zm1vXQ3YvixmTqXUtm0dOLjv0uULjcYqIBXH4dzclT179tx08/WNxsboyARC5Ors1dm5S4xx27NZKjjnOWeKMSAItJ7YOTU2Nnrp0gUvcEvlQp5njGVHbrphaKhmyMjDw8MszwnG65ubLMvL5XLRD6rlmoWJsRGmFkGAmeCe52SpMtmcAQENxd7cs+aO5nzA195e5CaNN1m00TSPoiiOYyOHYu6aJEmuXLliFOHMFHNu0Eli7s2R4eH6UHV9Y8NkbVmaBkGQpaxU8LMse+65ZwEbP1hBXddzA845QVRKU6HSUmuTvilbNZstE+6madrv95MkMfQsE1iarcbzLCGElBJjojUYq0BDjhnsRRjMV7VtmzFhWu4QImmeNZtNN3BX15Z/68P/qdPacCyKkAbQeZ4Tm8RpQim+41W3NZsbH//LP8sYOXfuHBfsc3/3mSDw6kO1cqXEs9x1vamJ6TW0NjIy8txzz1UqlUql3Oq2bAcTqsvlUhSGFy9erBRrd9xxRxpnnOc5SxGCftTjUoRRxIQ8cOBAc3NjbGy0Wq3mec45y/M8YzlCyMFUKSCWneaZIZJnWWYWnqkBwJakled5eZ73ul2zOxlZnmqlZrStpen70VgprjVCCGFMvhE4Nvuq3qLNmQ18m1pogjHjRrANhgAQrTXnknOp9KDqgBCSimutx6u/VfFfDmsGgGYTsgymp1/uNVkGjz8Of/M3cPbsy7/ZC8bmJnzoQ/COd8B3fReUSi/3yl4PPvc5+Nu/hY2Nb/qabhfe/3742McGbN/jx+Hf/buXoxu/5Pja12B0FI4ehWuugUrllV/f7cK5c3DsGDz11Cu/+J/3fM146CGwLPj5nx/89z//Z7jvvm/pa//Tr9U/cSgFv/d70GzCHXfA0NArXJBuF86ehePH4fOff+V33tyEd78b/uAP/l/2/jRa0uwsD0T3/I0xR5x5yqlyqHlQCTSUJDQgQAgM3Hvdyxho2+oGC7O84Ae+xm7Z7WuatpvG2AbZwjaDJJAAIYSGEiqoKqlUVaoxMyvnzDPkmc+JOeKb93h/7DhHMqYX0OZnx1pSVZ2sExXxffvb+32f9xnAPfdMfqIU+J3fAf/xP/4F5td/+btvDZRffBH8zu/8xRft9dfBRz4CfumX/uJP/pd/ffWr4Bd+4c+5ZRZBUhrY/fb4KLHDS4vJWlaS3TeiKILaNKq1NE1Ho5GFnqxFrVITq31jTKlUeeCBB97ylrf0+90oiooscxyHC3H69GnG2Je//GWrR7fuzAhCjYzvBpaxsbu7axG/vEj5UdCRta3nnNusiHb3UGkBgEnSSIiiXq9qDQ4POu12e3p6+gd/8AeHw/GLL764tbkNAOA8Z0fHvQUBzMQnQAIAquUyBFgpxTPuEAcDrICRkiNECEU2v1cbkyb5qOh7KoAQ1mp1rkQUJUBD6BOhckodMozHpVIJY8h8B2rrzKW1kYQQcJwK+GfzAP/s65jUfLwpH//wWLcCkS1SESPUoYRSeOLEsuezl17+BiYUY/Lv//2vaGBKLtLScC6bzSnO+blz59bX15eW5M1bVzudQwBMu3MAsV7fXGUeuu+B87s7W0/9yZOEAqlyqRQhBGMCgdFa9zq9wWBQKdfsbBkh5DgOMAhBGIZhu92u1WqWRwaULpVKQk/cQhEGFs0sl8u+49qqBSFEXQdKaVEGCCGAcG5uTgie52lRFI7jSMWF0FwWnucek0GSJLFMUqVUkiS3b9xCFGdZIUTHcRxKHGvLAjGyc1rP8+2v2PmGhVaTJEmjhDjUM+zEieVSKYjjWHB+/cZVKSbCNMuBl1Jat2gAYJIkRhhKqRTCYOA4jjGoUilXKhXKsOd5YegXRWGQ2dnZ2d3d3d3d9TzfujZbbjxGwPd9z3fyPAfAWJMHK5K1dRWGkDIMIRoMBoSie+45DSHs9XpxHBPCjDFhUK7WytbZ2RiTRFFRFFJrH0KtsdFFuVTXWktp4igtcqE1YMwFtr8yk4OfMowxLopMKUUphhBWKrUJkEepTW8wQDmOgwGCEHKeCymDIAgCz7oK2sm/xZRd1221WkmSWJzL1pSWw2tbFFuACiGWl5f/9t/+288+++zHPvaxMERSStd1LHnZTiP6/b4SulyuzszMrK1uEMIsZkQI0Rooo3leKGmyOFMCXLx48Z3vrCVp1O/3G1OteqnRmpqybYnjOL7rSalsPW97G1v+5hm/c2d1ff3uzMzs937v9z377NNzc3MnTpx6+OGHn336GWtiLiU3RjkOrVSao2hY5HljqpnnqecFjuNEUWJpOJRSfGRSOQmKlMKWvAgia36ilbbCtGq1PBqNXKONMUoXjuMsLMxpo6wlzmg0ghAKLpMkYdSVIkmSxPMCLwjG47FttJIkyeLEGJMkqFQSRVGMx1EYBkmeTE9Pe77Tbre/SXNz3SRJkiRyiGPbA2uM2G63rRv1D/3QD62srCyvnDl//vzFixfPnDnzbd/2bVeuXOl2O/1u+86dOwDoZ5555jOf+b2Dg4MzZ84MBoPDwxxBYntdzvniiRMYoj/4gz8Yj8f1eiNJ4tOnzrSmapu767wQ1m2jNTXV65ezVBgDSuXaLJuOohHGGEIEDMKQjMdxuVpNkliIAsBJqiSl1PJXCsHnWnNpmmitlRJCCCGLqemG9djZ2FhXkkbRmBCS52mj2VRKAACsYXpRZK7L7r33womTi9s7a+VKGEVj6miKjdG552IhlB/QWq0Rlrx+vx/n2Sc+/Ts37myMhlmU8Gef/Xq/N0rS4uKrr+VZ+tuf/MSNq9dOnVx51zveuX13c39vpyiK97znPZ/73OcUV9ilGS+E1JS5D9z/IADAGuIHQXDunrP2+guh/DAol8t37tw5ODjQWrqua4xirue4OAwDiNQojh544EEp5c2b133fO3XqVDROoii1kTtSGMIgnoTUA821HbDZMyxJknq9Hrheu91WSgEKKKUKSyu6P7bVwxifPXv2woULL774Yr/fi+P48PDw/vvvt9aZQGmEEGPMEutsSKA1XV1aWpJGb2/vQIIRYRYkotRBCA2H49Eweuw73vkTP/4PypWQMfe7vut7/+jzXzx9+szszKIUYDAYZGkxHI4r9VqWxKUwLJUCSh2t9c7uvoXkppqN2dkZAMDB/j6EJh5Hc3NzQa1y69ZtIQrG2Orq6tbW1quvvvboI/fu7qy/8MLXl5fmFhbmb9++Q6izsrhCqbO7uSeVsgTwoihKpVK73c7z3FJHrWbl2rUbs7OzFndACPEibR8kfhhYpCNLi8Fw2Gg0nnjinZcuXbp9a50x5+DgIAhKH/u1jz739Asf//jHX7t08Qd/8AeitPj9P/ijbre7s7/38MMPf/Vrf3r9+tWp6aYxGmN4eLivlEizsVRsa3tteeV7yuVqo1GP4ziK4mvXbgz6Iyn1d37n+0ej0a1bN60J/tTUNCHUIl9Gw/W1u1bsv7AwJ2Rx8uTJ6ekWYzTLsjfeeGM8Ht1z+hzGUGkpuZhammo2W/3+cHNz8/r16wghP3CjeBQG1anp2ds31x559IHFleVqtdrt9t/xjne8/Mo3bt26DiDs7m7f1Pyhh+8PPW8w6L/33e/9/Oe/6FA/CEqO5xlkwnJpa393emr+qWef/uivXW0fbiKmKDba6HKtHIThqeDkrdVbo/F4b/NulhmlwGAwuHjx4uHBsFT2iAMJISdOnBBCrK6uEoqs/GV//wBCHQSB60y8xTVUiBDX9R3XPzg4+K7v+i6I0auvvtrvdyuVijXutJRJY0CaphADABCllPN8c3NzaqrJeX6MP2qtIQRaKwihxZhc1xsMBt1uzwpfarVaqzl95cq1zc1NhHCWFvfdf+HChXOXL1++efMmhNB1GcZwMBjs7+9rrefmZ4wxEIIoiu677z4p+cMPP9pqNaMoCsNwf3cPEOK6rFKp8bw4OGiLvKCUKmA0MFxJx2GeV4IQjkYjQkipFPh+K8/z9fV1u1xtm20/vNFWDTNxZrB/r7UejUZpmlq40BhjQeo0TcvlivXTwJjGcWyNsCCCEEyk/Ue7UAEsiACh4zi7u7vlcpgkiXUlMgZqZUqlShiWjxlto2iMEAaGGAMxRO39rVqt8sB99/R6vcsXX8HY+oEScBz5hSbMR4tl2GbAoqtaf9PK2XJCjwtdCzcjraEBBGFCGAL2DkJb7Nn2Qxsji8Im71k6v32rCbarjJbcaI0phAYl45iQKqIEIY0xMUZDgC2FBB8lJHPO2+22ECJLC0opo8wSQijFnHOjtCgKKZQQRklDKTmic8JjRmQUxY1GA0E2HI6QAUpKa0NoN1uMqZTc1pP2DgIwgXYIIRgBW9YaY7SW9qLZtAOooZZKQWhn/7bc4rmwjAoIsSUqSiEMtIg2MRAIrZRQjCBhAGaOwURJ6fnhOIk3NrcABrY2k0JYAFRKyTMulOCGS61LpZKN7HM8b9QfTWjaBhzREYzdJK1Rnl3Gvu9j7A2Hw9FoBMC2jTOxbz7xRlDKfnHP80qlskWfj28oIhgAYN/WLnJKaaPajEbjvb09RFi96UMIrVtCGIYLCwvWrKPT7y8vLxFCCEGO4xwc7oWlEsY0SaKiKIzRURSF5ZL1eQMAtNttjInjMEsOsKRjP3AQNh6X0TguMg4gYYxBgxwkESIEYd91w6DMiyKWMUKEMZs6G9lHz/alxhgNlDLadd1Gq0UZFlKmeZIdpnZXt9wFe+vtBbEFqR2laK0BQABAjAGm+PDwkCvueW6WJ0pJA4EGyvOC6ZkZlzla67SIh/EAGYCJzzy31pxqNhsQQoBBo9GYmZ3yAvf02SWE0P7+7tr6HeaQZrO+u7ubpqkUwJ6D1WpVCOG5jECEISmKojscTTjaBqR5ZslGx0iipUEcr2Fb1WOMtTbHUj8hBIST9WxnV7b+RwjZOB+EkPW70JN0RGiBgyzLIEKlsMQY45IrLewbLi0vQAh3tratLLVUKk36MtfRCtgUCps6o7WmDhVSayMBAJY7BiEUWiGK7T6WpqkQgnP5LQnn2FqHRUlsP16WpfbTui5L0zSJYvv1EcGeJ6TUBwdtKaUS0m6PflB67vmv/7N/9s+6/e7W5trCwgxGUBQcEUgdlhapE0eNRu38vfdCpZ559mmIfYiAUsXc3IwfeIoXaTQul6uL84ujkXW6EA7zWq3W5s52liV+6FFK4/FIiCLwnFqtQgiq1SqDwaDT6UTRkDH26quvCq7DsJpnBTgKXx0MBnGaIIyMsn4UE69wO1aEEvGisChPu91Ootgmc6RpSqmT53mRCwCA0jahC9kJE2NMI6qUMkYgRAixJvV4MkFE2D7vWmvrsnrM2T+2mrHqBEuIUcpobaS2DuaTA8JAgAkUUtnerVI+WQt/9C/CtcB4DH7qp8CDD4K/+3fBysqf5aImCXjtNfCrv/qXMtD4b1/tNvjVXwWf/CT4m38TfOd3gunpP+vqcHgInnwSfOpT/5eO0scvKcHGBvi+7wO/8Rvg4kXwz//5/53Pwzn49KfBpz8NajXw0EPg/e8HFy6AWu3PfutOB9y4Ab78ZXDpEhgM/grv/9f4fe1LSvClL4FeD/yLfwH+1//1zzcm/nN/67//Wv33v/p98O//PfgP/wHMzYG3vhW8+93gzJn/yhuk2wXXroE//uO/8nXOc/Cxj4FWC3zoQ2BnB3zuc+DGjb84aPEvvPtFAdbXwVNPgeefB3t7f9nkRinBN74BPvIR8JGP/PWYlty8Cf7RP/rz/0iIAyGENpJSa6QDjbFUR2OPGDjR6xul1MbGRqvVssPCJEmUMgJhaSZlIefcmEmGtlXbj0ajfr9vjSgRQl4YHB4eXr9+3Q65gQ0SLwoAACHk8PCw3+9zzrUxlUqFUsdm4R4eHgZByZJlbWK5EIXWGgCtjcQYOY6nlNnfaxNqlDLnzl24dOnSU0895bouxjQXOaUOhJAQhjE2RtiPqrTAyJFSMEyOaQSWhogQEgAaZLTWgitDDQBAG0MQVrmEAFfDarVRLenKsDdaG9wyWAmhCIRWOD/BRgEEQCvHYVKKI+AYgYkvGwAGGPDNweC33hJ4ZHv0rSQIYwzCAEKjlQJmQvoIggBjSDiKk9H6+mpQDghmnud/4Hu/r9WafvmFP/2VX/no4uL8V7/61bm5mR/90R/NsuzUqROPP/6m3/6dT3zmDz793d/9/ne/5zs+9alPZHlEKBpHg53dTdd1KSWU0iwVSknGvP3dgyRJy6Uq1AYgkOe5JVvlee667vve974//MM/bLfblbCUZRmwRp8Y25osikda65WVlWq1mowjzrk2Ms5S12j7+S08NL8wOzU11e/3kkRWKpUoHgkhpDKUkTxNgiCA0KEethYiRkNKnNEwUsBwkXuei5BTFEKKiehSSgkNUtJgjKyWDSGUZRlC2PP8MCwZY+bm5wk1586dC4Lg+vXrw8Gg1+vRMiWYWaI+51II0e/3XdeTUmZZRgCxZnNhGFJKhBB5keIEMkHq9aoxqt0+GAwG1HUQQrVaLRkVSvGimAgVC5X2+33KsOUKIYS0lv1+f2pqSkqplCEUGWMqlbLrOgcHB0kSrayszM3Nra6upmmqFXAd33GC2dlZ3/c7nY5LeBRFoziyUK/tZZTSURRpBYw0QRCUy9U8tcYgRioNADBcWZoGxhOHXK0lY0SIQinhukGlWjLGcM65KpRStoZzXVapVJSSvh+srq5mWTE15drL0mw2p6enkySxJqS2nrBaCQvLIoTCMHz++edtoWlH6JZf4Ps+JjAvivmFWUrpwd5htVr+0R/+sUsX33jqqT/NsgJCY5S0ijYDAaUOwyxslh9//PHTp0/X683Z2ek0jZ3E9XyfOIw4jCJS2AQVozFGjGFCCHWcGzdu/Pqv/+aVqxenZ+of+O73P/vM12Zm537oh37oySf/+M6t1e3t3UaDAwAwQdVahRASBD4AoFZb3tvZ63Q6nOdZVjgOtd+OUVfpwnMdkRd2L0vT1H5OCCE4QqJzwTv9Xi5yz/N8hxZFASTyQ991GedciKLXy6MoQohQwmxnlWWFECIMy9bxwKIDGNOlEyfPnj5TqZSefPLJNI19309RhgiJosh60tcb1UcefSgMw+vXbnLOwzCslsvjUby9vb23tzfojxBCcRz/4A/+4Pnz5+fnF8+dv+8XfuEX5ubmpqam0jTt9/u1WrVareZ5yhj7T//pY+12ezQa3Lp1w2pdx6OUMba8vLi9vV0tl4LQv33rulLK81xKSbfbr9Uq95473xsd5IVz5p4ThGDqnL67sXfj+u1zZ+9bWFhYW1vTRsZx3Ki38rwghDz++OOvvPLacNjXWlOCjIYQYMEVhJCLrNfrcc61VqPRgDLsOHQw6C+vLOzs7FCGCQGeX5FS+gFGWJVK4Wg0UEpVKpV2m584ubK0PLe3v1UUKabSAEGACCoBBFRrMDU17TLv0muXNADT07N/50MfKlUaX/jCV5597rk3P/ZtWRLHo8GTn//CvfdemJudff3lVxbmZpfmF65dufzYI4/+0A/+DUveH41Go9E4O+L4yFGeptkDDzxw5cqVdrt97lzd8oLzPO8N+qZrbEUOobEETJ7zUiVcWVmJ40hokWd8fW1LiMLacZw5c+bw8DBJUiCJJYdxJWxRrqUBAGgIyMTNs8jzPEkSz/Ms1TFPMwhhlhaEEISIEMLSHqMoEkI89NBDq6urV69eDcNwYWHR8zyLDRVFEUXR5s62faKFFlmWAQgKKXLBLWhrjqKEIISVcm00GkmhPK/U6Q7TRNQbfhDUPM/7W3/770RRsrJ8MhnHh4edsOSHYRjHcTTqI2Bm5ucQxpyraqW0f3iwuLg4N9Podsebd+8uLMwVaXZwcMCrmaO8ubnZl1/e/g//4VdefPHF4ag7PzvVaNaSuNztseXlExBCANCwH+WpJNTJ8vzmzdtBEDQajSRJer1enueuy6ySw/O8UhBmWdZuty0SZIAYj2JL6qEepdRXShmFer0B53xv70AbaQw1UDgunJquC5P8v/+HHxgMBkma/v0P/5Sdrk3PLLz9iXdeeuNyb9CN0hFjBEJICBoMxysry4yR+YUpQlC73U6zuFZtuK5brVZr1RZCeHNz8+zZs81m8/XXX8vz3Gj02GOPjYbR7s6h53kIqSTOlpYX3va2JwwQWZYIwbe3t5Tk5VJw6uS3hUFFa726dqfbzbUGi0vLCwsLW5s7i4uL2sg8zz3PMQZOteZWVlYwhf/23/2K63tLK4tSyr29HUrJ6TMn0zztdtt3bl1bWp57443Ljz/2+IUL9125dH11ffPMA/cGnh8EwfMvvnzjxief/fpTDgVOgPNETs9NSykXFhYuvXERQNgf9QGCCOFGwxVCaQWCIHjk0cVyOVxZWUnT1HHpcDiEUAuhKpVKlmUQYEKhlFoRw5hLEBBCGM4LoYyBFy9evnt3a+9gP0mSmZmp0XhgTTcIobYcwhgigvM8Y4zVajXXY1mWDIeDRqMBIYTAUIKtU3mv1yuXy1IqC5okWeoaV0rZ63W01vZhHI1GAMDRaDgzM33vfeeSNGq1WgvzS6+99trOzo7ned6Rk0ypFC4tLTiO8+KLL47Gvbe+7c1rqxvr6+s5zzwvMNrkeVqt1ofDsZQSYAQNBsgoo5nrTU9Ph2G4vb2ptT44OGi1GgAAoQUwACOKMZZSp2maZ5wRag/QiS0VpZOadULLRfZJxBg7jruysnJwcCClrFcrnPMk0YQgY2zbjywya22yjpT7GgColOp0Ojs7W5SRo0IfC60s61Br7boUQggQ5FyEQVlK3W93OofxoHf4++NBGPoUE4udGW0QgNZxzxgjuEEQQYKLgtvC+pj1hhAiR4Q4KwmyV9XqDxihXHPrW2B/5VinL4TQxpAj2sGE88swAWSCfCmV57mRihBEIHU9VohcC4UQRZDlOTfGAAAxogTDY+qxxb9cx2+caCmlRoOxLcAtvEsxsgp0Y4RW0nI5mUMIARQSSilAREpVrVa1QsPh6JiSY4fcE6zqyExjwvCFAIGJuBICfcwEPAajLXCD8YRfAgA7gvAoBgzC1B4o9rIQMmGIS8ntSF5DoIHRADrMHUWxUkpoyVwnTtNKpUKJo5RK4sySjiwP4PizjeMIIFgOS3meR2kSuB6EEEGklGaM2hI6zTOEEEQAABB4vud6QslmqS6FzrKsKAaUMgtEQgghwfaCIISCIKjVqnb8iRBCGGitjQLoyMtYSqmlklyU/LJNqNNaTQBPhAhjEOP+aAgh7A0HjUbdhqDkeXrY3tdap2mcpjmlVEotRGGM0dpgSqx3n72nRcEtcTuOYymtxZdmzMUIGWPSNKaYYUwoxlpzbWgucpgaKaUyHCHNWNmaV2itLRaslMIYaK1d3y+VSgCZ0XhsgMqFhkeZB9b6xpjJoW/XA4QTe0o7/LCNXlFkW1t3m9NNOwgByFT9kucFW1tbruuO9KjI8xMnl+45eyrLsuFw2Dvs33N2OQzDjOee57ke297dOBIv5nmel8vh1NTU9va2ta2PxoUt7JVSJ1ZWiqJQygyHw3qlyhizhmm9Xq8oCsIoQogX0lYO9jE59l05d+7c3t5evz+w6IDlDwEACJmw1Y5WlGGT7BBuaf6WA2QddOwgyp7LjuNSTISSWmuC2WAwyIu0XC1Vq9UwDE+cOJEkiY1GLNeq/X5fClmtVqWUGJO84EfY98RPw85thJLGwDRNDYIGwVxwC0DbeibJM3v97dCFEJJlBQRYShHHMcUEAUypY7PTj6UV/X7fMv3t/sOVbjZbq2tru3tb83NTs3MzFKNO+0Br0B8Oy7XyW9/+toODPW1Us1HNi1hIUKs3Dw64VND3WaSKNE2V0LPTs2mcJHE2Gg9q9Tpz3Xq9PhgioEXg+Ts7O8PhsF5pJEkGDUaQaK1d12k2T3ieJ6Xe2d6XEriua7TY2rprIFDKWNKAVgZSlMSppa1IKVutFgDAQCCU3NvbQwDam8uYS4jNdcS+7+d5LgoutVJKFQW12e9AG3sfGWOccym13aK1AsdjUYAmO4YBAAIMIWDsmNGvrakjxniSpKq01OqI4YjskO+YvlOv3QP+cmzWPAfPPANeeglMTwPHAY4DtAaEgPEYRBHodv97WbGjEfiP/xF8/OOgXget1gTFQwgMBqDfB3H8V3irOAY/8AP/lxa9f/nXYACeeQY88wwol0GrBcJw8m72W1t34P/br7/G72tfr70G3ve+P2vH/Be+/rqu1d7hz2TZdQAARBAAYPQE7GOOAyHAmAAApFEAAIIJsEx8YIAxUkhjTLVWO3H28S/9Sfu3Pt2r13yMYRi6SppRFB8e9vq98QSjQxAdHfpaa60VhIjnhR2JQwgcx52ent7b3hlF45npmc9+nislfvlXFGOYc4UpKQWloigshUjaOT2AlqAKIYJ48ogZY8ymefUS+E+/rmq10uxMs1QOAFCjUZ4XeaczyrJca4MQggQhiIwx2tZLGBllCCGe7wnOCaFKSYpptVbpd/tf+Wrj4v+rujDXuu/++4fD4Y2bN1cWF+Ik3t7eLVfKSZpKKRGEpSAQnOdFTpgTlML7H3pkYXEJEowwcYijFE/j4pVXL9bnrly7dg1CgCDyvYBzAQCQ6tDAPQAAYwxCY5Vd9vS3YQx27Ke1tuUBxjhwvYRE4/HYXkW7iWGMldGWfWttmjqdzrPPfa1aChFCQog0Tefn5zmXd27eGQwGYRja4ybPMngUBGJPjTzjGBPH8Uql0mDQ6/f7xkCtd7XWlqRrjwnGGMZQSum41EJ/QkmDjBeUXnjpG3E89n1fAYUxLZfLjuNlqdDaFAXX+qiuw9jeXKAmFtLGAAAmZoKMMQAnCUkIEgMUxTjnCEHium4cpY7vRd2Dw9291E2n5qbAGBJKMec5pZRSNvlNDG3+w9HKh0ADYAC0Zhr/taHG8TD5GG4GAEBkAABaK2OM1No5IqpIaRDChJC8iDnnnPN77jn9QfJBCPCZM+dWTpz63Oc+Px6Pa7Xa7u4+l0WlUnr66aeTJP7yU398+vTJ+x6879VXX46zZDTqjaPhq6/d4jwnBExNNY0xlQqBgGRZoSQM/DLPlZSTPsf2P3meA20yIX/kR37kgx/84M7Ozh9+5jMecyzrzZbdeZ4rLSCE1Wq10Wi02+00ipVSQRBIDawyy6KTrVZrcXFxMOjbTCfGWLPZzPO84NJSh6wWNU0LShmjrm1IAADKGARJluXGgDAMOLdoCMEYG3PEJSmM0bBSCS2vgVEipbQkDs7TtbU1KeXVq1cJnoQYMOqeOnVqY2NjIkt3XIyxNUmUuSx45nme4zDOuZAF53mSRK1WY2vrLgBgOBrkeR5A4/qBMUaIiTgUGEQINMZEUUQoKpfLhGBjjFKSUmqVWRAqQgiiKEkSjNHJkyctGG2lRsaYIAjtyIVS6jhKSlmrlyE0Gc84lwXPLHHbdb0wDOMo5So3xlCKoedYm2YAKcLApocDoAkhlGEIIRc5AABADREiFDHGjNGEYCyRNtLzHZtbWKtVOefWvl1KLYTtQuXGxka1Wl1YWLAS793d3SzL7K5hmw07G7d6tG63a52LKaUzMzODwcBxaakSDgYDKWWtVvM8z1p9lUolAFCapoQyxkhRFAiR0WhUKlV+8sd+7PHHHlfK2EY64XmUjA0G1rtTaYMxphRpo/M8w4htb+92eoOvf/3rAMAPfM8Hszx6/bU3VtduVqulmzdur63ehhBXq3V7TWyvHoa+lML3/eGwPzs7AyG4e3fTPnHlcrXIhdba9YJms9npdMbjscc8Qoh9OmyTLLTKBSeEtFotCI0yVo1Lp6aaURJrLSE0aRqXy1Xf9/v9oZKxMUYJLaWGEOc596zjJCJSSmOkBQ46nV6e547jaT3JQEuSBEIjpeSymJmZWV9fHw7GttVZWFjgLbmzs+P7Pi9Eo1oToiul3NraodTp9Z9fX18fDodra2sXL15cWVmRUhglxmMeBN76+vqDDz5okREIYaNRQwgsLi7mOfcDKlU2GEZJOqCUUgO1kuM4unLlysnT8ydPzygYbO+sl8qu4/iEypnZ1nDU9QP31OkT4/FwaqrOufR8Z2d779Ll1wlBtUqFUjqOsyRJAJh07FqD4WCMCVxeXlBa9HodhGCaxTduXBOi2N/fQQjNzc/cd+Gee++9d33tbp7nQjTX1ja2d0aLS3NTU82bN68XPGUO8gPquHSx0gxLFY3wOEqVERub+5znGFNjzP7h4frOYS8eOaXg2o0bdb/czvNkMHr/d7znfe97393bt9M0HQ37D9/3wE/95N+HGG9vb29sbn38k5948o+f+qMvfH48jmu12uLMzNr6nd/4jd+glHiet7m5aYyplMO8EFprSyGx+57jezzPzt97rzGq3W5DgrTWnhcMBkOIkB9UkmT0wgsvWF0FgbBSKSsFB/22UMohjtbGIKiVAAhgipgbOp6rhMQY1it1y1vMs8xu16VSCUInyxPL3Dk8PPy5n/u5Vqt14cIFjPHi4qIdHbuua+OM6vW6lPLwcN9+Wus1effuXc65PaPDkk8w6/V6W6Ot2dlZRajrBHu7nX/1r//NBz7wAcxovV5fXl4ulxpBEHqeDwBIkmxhYZagOZuxoLU0xlBK6vWqBmZ2pjGO0v2DXSl54DphvU4JEnk27HWb01Olsrdx944fEMIq9UaotTpx4sTa+u1BP9rd3c2yolGf+r7v+xvPPfd88956qVSJotH09HSv14tjZHPP7YGFELLNlQX9KaWi4BTDRmsKY5wlOamw4XAshChXS5///BchhGHoZ1mxNL9EKf2ff/zvEMZ+5Vc+ura69dFf/bX1O5uUOB/96EfbnYPLb1wDEEdJGkLPcV2pOAas3RkImT744INppo3RXORFUezv72ttplozruu32x2j4dUr14UsrIOTEOrrX3/BHnlaawCg53nWzQkidfv27bt3N5qNWq1WcV13fX21WmnVarXFxcUkiTqdTpJmCBG7Rdcb1Tgel0pN13WNVpSROB5LrUbReHF+YX19tVwO3/2ut8/NT2c8u3375sry4srKyqXXL7/00ktpkidZ9tSfPFtvtLwgPHfhAnorevarTzWa4XjYNgCWSqHgajwcIYMYcaiDyuU56qCVxXMEszRNNze3S6USANoYgwlkDvrqV5+uVCp+wKJxRgip15qjUaS1zNNMFLxcCSkihAApNEImy7KCy939PcdxbIKo1rJerzPsJUkCIfQ8v1arIYI7nbbvu45LjVFaO7ZMqtdqwJg4jheX5j3POzzo6CPDXESwxZuSLC0Ev3NnDSHkeyFjLMuyOB4LUQRB8P73f6cx4O7du/Y/VxTFyZMnAdS1WrVSqSwsLJy559QbVy6tr68aow4PD9fW77iuixAQSnf6vW63DwBCBGtguBRpntfqlcWVZRfT/f1dAAAhBAAdx3FYKc/Ozh4cHBgDLbsNAOC6LtDGcsps722LbN/3LThiSaAQwizLGTOtVgshtLGxMRr18pwrwR3XkcJ+ZaCUgJAURWYRPUImRrpaa1mIEydOTM9MbWysSSnjNIcQI0gQJIVIGMOU0lazrg2klBkNodJxHGMMD3b33MBnRzyfCU9TAa0VBBpBQCixrBOlkJTWlRhbNYYy4Jt4MUKUUluY2XmYvQjGTIyej2UZ34pQY4wcx6k26hBCqA3nPB4nhRAEIkCRUkpxmSmlgOrzoeM7QeALpSjFNq/SplNASAhhjuMQzDHGZ86ckVJevviGra8AMJRSUVj/KCSFdQiFttez2OVgMICYhmEpTXKbRQERtLulUhOXD6UUQkSp4pg4MskIhxBjrKSyjQcygECkIVBaAg0xpZZvjgw0xnCe2zXDM2ENATGQIi8QAsYQY4zn+LaBQAgVqqDEoY6T5lmUJBhjDQyE0BLhrShQCQEAcCiDAFhjE6XV8SckjLrAqveMMQZhjBCwjmq2Q7O9SblcrteqcRzznI+0DsMQIlOr1er1+ubmpsWtjDFWvE8IsW54x6MFgrEGRh9lBtoyBmjjMG9zc9N+WoKJfZ/wyOey2+1aADQMw/F4HEUjYwxlmBCUZVmeiThKITJBMMmpTpOcF/J46Ov7PqUGQhiGZUJQbzAsikIr6Dm+MVAJjaEGiid5DiFcXJizg7F4kEiVlyt164IlRGGtMLTWEGOIcRiGvu9DjPI8HycxgFoLDSFgzLFGfPa62d7VHsp2Pg0h1BoYIwEAGON6vQ6hIYRUKmU/cDvdbhAEBwcHVpxhn9+TzSXXc2yS+UG9c9jbG6fOYDAol8vMdZIkRgjt7e1RyhYWFh577LHDww7GCUIkTVMptZSSMeq7QTROEAC9ceRQ5jturVaL49RGYjiOQx1m9yK72xw5gaBmszkajTjnURTZmsH6ItoG3l6TIx4ZAUBZMrWl79hHWCkJAMYYW9q7va1CCMmFgcAmjgg9kakVRRF4XqNRn5+fe9Ojj75+6cq1a9cIIcwBSk7kyQZBfOTJgzFGGFhMQucG6KwoCkKw0kIIASG2T7E1wMnz3PfdcrWS80IIhTHOisLYEpyoY/o/ABpjXKlUqtVqu922w5KJkgPjw0671aotLC/4Lo2iAThybrx9+3atWXv40UfOnDnd67b3D7ZLpTAX6fr6DasMLooEQtOoVyl1dra2AUAQgG6nH5ZKeZ77QVgqlx2GkiRxXV9xVS5VlYJaAQOVZfPZwXa9Xh+PoyQWmBJlNJog/ghCCAykdBKrq5SBEBsjut2uTWWkjChtCMJSyqIQVtQrhCCEAQ2VypTSEGMADOdSSl0UgkFoDGSMQQrxkfJdCGEtNTQwGhwHFAELMDPGGJ28s+UtHTGgbQAsNBoaAKTRAGiAVLNZr9VqjLHRaAQ0BcVfAVVMU7Cx8Vf49/+qrzQFaQp2dv673sRCt3+NphDjMRiP/9re7Vtffy3f177st/5Lkm3/zG/991+rgt/M+WvmSGUljzy7DHTA0TxYAeM4DsLUGJMXubVgsst7qXLuvgfe/OUvX9zeu97pu7aDQ2AyLDweJwMAwNFeBACwgz2gDVKT2B490uPYL9LMGHPYZsdqNi6o1ppq2ufYuuNOPAyMvQjyyFkeavDN7AcAAKOo28OdrjEAHA1B1fF4HmDLKcTWqgshNByPGKHT09N5AXzfl1JwmTfqM0FQGg53N7fiLJ/ywrN/8uwrBwcHu7u7a7NTw2gshIiTzJbNWRpXwtJ3vvd9nfX11Tc23vyWb/fKCyRkacEp8158/pXbt24URd493O0c7mFqkjSCBhFWxpRKqew1s4cgxhAhYss/C+mmPC0KK/cBdicHAOzs7FjFvBBC64kzm5RSamHfBx6Ff8RxTCmem56BEE5NTdVqtaIQKysr09PTOzs7nA/RUbrYMVAzHIy11lNTU6EfHBwcWO0gmUxFkHVEgBA6jsN5rpQhBAGDNIQGIYpcA3IhJHPwwsLC3NxMGIZKmRvX7xBCABDW6AMAAKGu1spKqXGWSikhMghhO1OYVFyEIoSMNtaBE0LIudBaY4Zd11VKS87v3LxFMrdZqZ84t5LzVDuYMNfBENk1jTGGyBRcuJSBCYsZAoCMBrbkhPBbfTW+aXgEjwzatJEQQhuBYnsPeESat+c6QpPahfOcMdJoNMJKlWAWBOX9/cNLFy+vrq76vt9qtf7e//R39/Z2nn32WcdhvWFvc2ttamrq27/925559k+f+pMnh/3OeDxcXlms1sq97gBjLITyXOK67t5uOxqnVumGMRYF55wjDDBEtjH42Mc+9vTTTx8eHtrSqlQq2R7JIs4iKaxOttPp7O3tZXFSLpcBRggSfATv+r4fxaMbN24URa6UKpfD8Xh88tRKmqaj8TjPU14Us7Pzo9GowEVRcEqoMRAAG35F03QysS+KyTMppYZ6klPMuXAY4UXR7/dtqqEtQ7Ms40JAJDudjjGm0WjEcTwcDrMRpz4pl8tZVlgfSVsaEkKUNIRqiNzxeJzEyfKJhZpbOjw8pBT7vu+4DELY6batzKoQNo3dKKUocZRWlFErChCyIIRUq5V+vy+EiONYa2ChqDiOpZFLSwsIwb29vSSJ8OSOI4d5hJA4joUQSZLsH+g8z4HSUmrqOJ7njcexEIIQaGPiHMcp+YHWut/v2pkGwkBKbYAhhFBKANAIgzzPLaLdbDY9zzvaqviEiEQRxl6zWZdSHhzsHxwcWAvUPM8hNLu7u1EUOcyz4cVWXGk/sK3vLRFSStlsNouiqNVqMzMze3t7lNIoiubm5lZWVu7cueMH7tRMC2N848bt6VaLLLMnn3zSaLiwsLC9vYsnlBYfQsgoJQgrpT75yU++8PUX3va2J77tLd/u+B71XS/wCWOOQyyRiGI4GsVxMhiP4ywtfL+UZdnKysmpqalKNbx2/fLTf/LH9UYty5KbN2/WazXr+Ckl9zyn2awnSRJFUaVSOXnyBOd82B9ZgxcbkREEgcO0lFIb3u127UQuLXLb1CmlECXHrBCtNXWY1tJlXp6NDVCdXtHtdpVSp06dWllZyYq81+uNx2MZcwABdjy7RJM8ywS3AY/2eb979+7GxobvuJQ6EJpSKXRdt1wJjdH77cM8T/M8/8ZLLykpq5W63UNee+01zw2azSbnwn7Icrn8zDPPXL58JQiCt739nVNTU29961uFEM8+/czW1tbs7EypWnnppReXlxdbrZbSQhvpuu7jjz++ubm5d7DZmq4Gfml17QaAtQ///Z/49O/+zv7eoRCZNqZSCRyX7uxuSj28/8GTiAS9/j4lwdR0Q3CjJFJKbG3dvXt3/aGHH1xanr+7sen5jpScQGLhcqta0EYy5mitAIKUYi5yxlil2qhWSwiDKBoBoD3PWVpeqFT95eXlVqu1tbWxubWmNSgFldnZacbccrnc73fzPPd8Vxve6XSqtfKp2Snisl6UMJ/94Wc/L1Iw26zPTM3v7u5+6lO/KxAZjOIzJ8++7+3vefujj3/6t37ntz7x2U/8xm9+4Q8/e+Xy5X/wDz78Mz/zM69ffDWO40ardfr06eeef+GJd77zH/+Tn2O++8blq1u7O8YYShwIsVIaYWD7tCAIlI6khJba4/u+hiDLMmBMURTvf//7nn7mK1CD0Wi0sLAYliovv/yylDwseVkWE4IrlarvhKIwjFFCacG5McbYKT0EtlG3KgEEoJTSdp5BEDguLYSyoXOlUsl1/CgeEUK63W6WZb/0S7/0xS9+8Y033rBspiiKHMeZnp6yB40QwiqFPc/jnE+YYhhPNJVaZzz7vu/7vp3tzgsvvOC6bqve4ly+/tobve6Ief53fud3njh5DkIjJEAAVutNSkcYQ4LRmVOn0zyjhBZSaaM8j4Whv7d3GMdxOSytLC332h2j5dnTZ1qtYGs8ev7551966UXHJVVcimJ5+/bN977nHWt3bjnMLZXKp0961Wq93xu++U3fdmLl9Be++DkbP2ujiprNZrvd1jqzp4zWGkOU54njOJbylqfjSqXCCMHUOXly0RizsX7Xdd352YW7WxvGmOXlxTiOjRGci1LJO3vf+dn5qStXbxx22mG5urW5+3/8n78MkXnuuWd1EZ08f5IyHMeR1noU9YqiGI32t7bvJkP95rfdOzXdtJ/Kc8PxeDwcjkfDmFI6HA6rtXKz2VxbW0tibpnjrusLURwcHDz66MOtVuvy5de5yHd2NleWFx966IHd3d2trS2bp9Hrd0+ePFkU2QMP+LfvrN65s6akybKMUFStVu/e3VhcXPK8IE3TNMtOnTrV7Xbb7fbC3LwBSgh++/bt/f1tQvHanTtbdzcdx9nY2Lx5Y51gZ2/v4Bf/9b85efrUT//Mz7Sa9bmZhuB91xGdg90oy4s4Axr22oOZ2dY73vqWl157/mB/Z3n+fCEFACgMw2632+t19vf7V65eXFyaQxgMhj3X8au1MjBUcEOpo7S25AuoLU5BIBS2AXAc58zMmUajAYC2W269Ue0eDoqimJ2dNcZkRV4ParYuH4/HnOe+7zmOA4EeDvuUkixL7tzpNxqNRr3FOR8OR57nZUVeq9XsNNTzPDblpGk6Ho09z4cQFjxL0qher+/u7nLOu91eXqR22QOoz58/v7l598aNa3t7O7fv3FxeXg4C7+LFi0VRuL7jMNcApZRwXXc4HHvMk1ISzABCWms/KA2Gw3wc53nebDYxhlyKfr8/jMYWzmbMHKm8oRQ6z7PjOtAWWhYgtp4bNj5BCDk1VbZjRULI+fPnr119lTLiOEFRFO3OIca4Uq4hhPI8s2oqAIAQlmoBhJQEO1mW9Xo9C9ZUq64xqNvpR1EEkRmPx67HfN8n1EEI5cVRVUDo4vIJpVTBM20MJljIwhigjsi/DqEQQmlrRYSsxN62BEZpSLFth4wxlsRqkY4j+pvW2nJxJnUvOBL5Ka3BBKkHCKFyuby7uyvygnMuCqmFpJRSTLRRopAGatdzICaBG5TLZS65DTqzaDKlE4qKrWzthU3TtOCTP7VtBkEwiVMtDdBAK22byYnnAISu6yoD0zTFSJVKpTTNsMCW72nLcvs3ahIbOKnw7S0+YoMSrTVQWpkJxQ8ZaBstS7Cg1CME2WAcayJhr4/LbFwEtkROuySKItVaU+IUgsMkgRBprdM8o5RCggkk/f6QkG8q3G2bZ2fYIhVSKUAwpZRznqcZIQRqY3nKQFsXcogQ0lJZqzrLuAcAAKDzNDvuXLTW586dsybOnU5HS2VLVutibK+PAQpCQo4mEK7rNpvN0WBoDVIsJM05l3AygKF0gnFDaOVB0HIX7FspBTjPjdFKTihLRkNjDKVUaa2UybLCTmjsAkBHhlH1GtYaMMaMAnkuoYMZY2kUCSEWl+ZPnFguigwhXSrPWtM/hKDrumEY2qkkIgRj7HleqVTSwERRhBmGyBQFV0Z5nscLDo9cKYuisJI+xlgcx5wnxhjHcQjBlvxLKb333nN5ngstXdeVinPOr1+7aee79hFIkmgwGrAU7+zc9X2/NVUvV4Kdna1S2U+LOC1iC1W0phoQEQOBvXpFLiDABLMC5HaKMHmmAKDUsROU8Ti+u77hBb6dY4mCa2Bc1yWEDIdD24RDCAiZzNGTJLGaUXtDj5jCzvFqt0+0LYPn5ubiON7f3y+Xy8fUK/ug2etjIUib1CKEMMgAAIUQ1WrVd93Dw0MI4b3nz9shBGNMcKWwEkKkaW7xo+NBiKX1HaMSzKUQI1EIY7QlkQmhrSasUqnMzM3aTHghFOdcCn38XIijaFOECAC6KIpOp2PdnGybiRASQhHCuJJAwDHPxrKIxsOpZktKtbg4f/rsPcRhoziCGHT2OkWeKpBtba9WKpXZmXmpBEYEYlirVF0nGI/jlZWVSrVaqZX9UliplTHGnosvXbpkxdcAACVkmuf2io2jgTEqy7J6vZ7nYjRKXM+3u5aUEiECJ1GH2BhFHWZ3HkqpUqLRaNjNFiAI9MRGPEkSjDFjrhDCUowtxZJ8S8ql0gAhiDE2UgmhJshIIQGcrCh7C9RRuCtlVuigwcS1XyOEpBLH48bjvf1o80dW7mzvuMvEX5EO+/+8/p/Xn/OyLLHjoxkc+XfZzWoyVZ2EKEykGLbxsXXR9vb2L/7iL0opCaNZltmaAUz+dWQBH2DLG23IUTSunagNum1gDGTMHjoQwlKpxDm3sjPbbVkAgXNu8+QBAHAi0Aeu63qeB47i3IxW8FsIqa7r+r4vlZJSBkEAALAAkcXTzREUrrWxb/vmN7/5xIkT0Wi8v78/Go2U0lIq661vf6vb7VqChT2Xr928US6XhZSO41nPuiRJHnnwodnZ2a2trZmZGSnl1sbdm6tr3cGwOxheff1qu3MQ+E7oM4IAMBoAQClOkkRJo9RkH3AcR8gCAMiYaweZeZ6PRqM8z13Ht5cuTVNCEQBgfn6+3W4fHBxora0KyF43xpiGwNYhFnihFC8sLDiE2hovSZIssyKniQcUwtheOj0JuUWVSgVC6HlemqZG61Kp5DiO53lSSpvgdcx1wJgqJRhzITRSaGXpv0pgjOu15sxs0/J0L1++EkWR1jBJUs6FwzxtZKVSe/TRh3q9TvtwuLu7m0QxY44te47fXx9ZVxszCZomhEgoAACEkEKlnucBjn3fn56evnzlIk5cwiA1BmAElFYUQyE4RTb6A0CIIYA2RNUeuMZYdBlAZCa0CW2rUmgQ1EZDQyBECAIDjIYaABCNRiMtsjwJAmd5aTFN00EyLHKRJnm7fbi1vV6uBo8//qZPfuKjL774YhwnhuJU5iWntNve7Q0PhUmRkeWSI6U83N+6ySCFYDweaiUwAgTBaDTOs6xWbZTL1STJoiiGQA/6HQAgoSYvIqAAJijPJGNYa+gQr0iLq5evUoopwwBq7CCNICbYrlrH94hixpgoijzPY4hxzhlFWR5bvTymxGCDGU3iTGtdq9WazfrG6pri2mVs4cRyvdra3d2294ZSB6WZlBIDoI2oVUr3nj/X7XaTOFXK7O8fSsk9L4AQKgPiTFDqGIgUJAgBg3Ba5JAXKEs5l0EQGKM1iCilDvPq1TpBTq8zRA4mxFlf34QQMmQnKsL3Q0IcCHShc89nM7MnMMOtVlMqDqm1tINCiCLneSa4gCqWjkcocdwA5nmulVRSYAQaYUuFAUIkL4ponBa5FAJgQOLROBvHBAGuyJl7TlTDpuPiO3fWB4OYMWx3KIch5pBavTTqD9rtNiEuxjiNAcaUEadaazJaiuPYGKC4aDQaJ5dXgEGHh4eddtt2rQQzbQqKKCHIcnySJAmD4F/+i//f1s72pz71KcvwSpIkShO7nfEs8zyvdzi0/5jHY0JwvV73psrtdhujLBonMUw9LxgMRhAixrDd12yRgTE2SjmUKiGKLNvZ2vrDvT0lTaVSaVQbLnUhMgXP+v3+eBQHQalVn84zMR5lJ0+cHfVHBwftg4ODd7z9nUmS3LhxoyikS9h9D9ybjGPGGAG4FlbnWrOu7wulAUYGAiMMghADaApRdh0EHYcRaSjnaIZUUuHs7u28cf367Vvbnl/lBRdCnTixBCHsj0fGgCAIhsPhgw8+CCG8fefmcDC+e/euMTCKkuFojCDDDCplOu2eQ6hSSoLcGktaNpOlsSMkgTah59pdoyiK9dW1hx9+WCm1s7E7OUgggwC0d8atymJ3pzM4yGQK3vzt77BQYDQea6NVLiXWE94BJBBCg4wxJuNZtVqF0Gik/bLvlwIhCsaIUhTkAELkOj4yGBiQFjnnA0rjsOS7IS2KIucjh3lhiUHEu73h1SuXHrj/IZexzY27vV7PVu3D4RAoXW00WzPTd7e3uBJ+4HR7hxBpF9MiTqtBqRKErXozz9T/9i//bZ6JX/zFX7p0+XKW5ZA4XMBKffb5F69JldcqTSGSxcV6WKoLITY27iZJohXgHOzt9dfWdygmjDkKKmvLwxwKoMpzI6X0g8D2nNC4q3d2iyK57/4LlUoYmbTZqKfpWBRSFfTa5TWE13qDbrlcdhw2jod+iWGMIJFTs43xmBqj41gaA9dX95OR8jx/d3d/dmaxHixkKJOGQYc2qt54PB6PhmA8+p53/NijDz/4wosvho3We9/7rhdeeMEghV1Sm2peX1u775E3NZvVTmfw6//lN99444oXfH5zc1MZ3Ww0vv7cc1dHHcdhjGEhC6MAhoQRZxxlWiMAAGYOJDRO07e/5a2vvvpqe3//8PDwgQceGgxGL7zwgirQxp3N06dPG66rpRqGcG556Yknnnjp5Rf7/X6lVuFC2KEURMZAY2lflDCjBQQQIwIhQMYwnwJiWtV6rVYbjNKNjQ3OZZIUlDgYBnEUzc7OTk/Rzbvbp0/d87nPfW53d9eeeVJKkRc2PJAx1mjUy+Wy0iLLsuN6CDkuQpgX2igw6I5WTq68dvG18xcuAINSrrYP2+963wfG4/jGzc1K9dKDD9zvu9QLQV7oenPK2LRRJYnrcSG8gBoFDvf3rl15wxizfPpka66VS1FfmnIdL/DAzbvjW5s3Or3RjWvX3vz4ww8/eOHJL/3RwcaNb3z1T3d2dnTOfeoFjakrV68uLC1Wpkrru6vXrl354R/+4ddee+1rX/1qGIaddns4GJw6eUYIwfO83+/3RgNCmOu6Nmxtfmlxd3d3fHDQbDah1gf7BxSQkhuu3lofjvqu60w3pg/3D7a3uidOrGglb1y+8+lP/N5zzz1HQSF1Vinrrz31+8AYt1Rxa9W4H1cqFSxJFsd5lnuex5HmBWee5AW6dmU9CDwDtTtbFiLf2d4Lw3KSRhhTo/F4VGDg+R60DERGYa87+Nl/9DNTU61Pfeq30yx2Xfbg/Q/6vn/71mY8isv+dL/fb3d7rsukFmfOnNnZ3ttYuzvq86mpxszMzNL88u7uztzsslL6yhs3lpaW84yv3nztcK+9uDS3srTw2muv3r5x4/Tp06VKi1I6GheuC6vVepbmRufSiLtrV9/y9u+4cuXi7VvXvue73vOB973/s38whs2WiOOtQffCg2fPnr9ndfV2URRrW+vd3mh2+uSdtaudTqcoCt8LL1y499z508k4f/rpZ+7c2GvUW8BACB3fL2GMM5NoArkoaSMppaOxKJUcx6VSA4SxkAUAJoniwPM9zxOFKgVekZog9BCuHxzuKSNPnDghVF5rhkmSDEb9JIlPnTqFKclyzhhzXOb5YZRmW9u7QmpKme/7CJGiEEADoDDPFJDZ7Ozs+bMXLl68CKFBkOZ52mrUeZFlaSy48l2PEifPIozx3u7B/Pw8pSzJckzJ15577syZM29/4i0r8Yn93b0sKwa9IUHUOiIwTKrVar/fd13mIadaKxNs8iwp0oJRZtV/eVpkRYY5JoR4zLGBY4US1k/giA8IlNJCSISQx1ytdZHmACAjhZQJIaQoxtqYU6fhB773+x585OGPfOQjz3zlqX/8kf/lnnvu+cRv/cbi4uKVy29s392kEBuhNNQW+YUYaQUhwIaAYTS2JuYYIdd1Oc+VKADBjDm54Ij6kDppmiKQKS0E4NhFXuAyBxUFR8gArZWURiljTDEJndNScEtdRARjTLS27nWFZetY6IRSS55VUkor52KMJWluDICITPLyjl5SKW2MRZqMMRghJfTazdVknCCEpOTMc4UWRhluOEBaatmcblKKEUKUkSSJS6VStVwZ9DrDLC+kVhIgSKU0Wgs/YC4j3YPDQX8MONJQI4QIgEYrZJDjeBxyDZQU0mUuY0xDDTBkrpsXmW1mKUGO41CEDNTKGIwwPqKJGKMQAsagI142tpnYRksHIwm15jZo2lg1JWWOFhJpgiCWSvJMaqGl0cYALQ3BEmiuhOIAIEILgRAiWsE8LcZ8NGHKYGIg5VxRQgihRCqgAYPESKO1Mpo4jqMt8Vza6GhDEXWpyw1nyDBkjOBpHGMAIUZaGwgwIggTJhWXSkKMbOz5cNgHQM/Ozh4edjAwEGApZBzHtVqt2aoOBoNxxFtTtVqtkcRZt9vDGPO8sII/pQAw0nVdh3hQc57JzkFPKYkQUkpwkVsusJGmWq83m80kS/M8hwTneW57exsVgwEuBWXJRSGLJEkMAZRShLAxCEiMoAO4SsYxdR3OtWbKSOz4VEOTJpHv+57rSiMJRH7Zr5XCfr+fpxkO3Vaz2mpUB6M+hBC7VCnFgRZFRoggPnEY47EolKDYYIawBzOVGGMQM0BLbDDShGIPFFhqpbSAUGmtmUMcN7TdchiWGXMnEYXIKCUUUMTxB1HXfnGpeJqm1XLNoe5wOBK5EcgIUWDCAq+EMTw47OwdHFbCmpSyXGooZZKoK6VSCgSBX/IDpZQq5BuXriiltAZG69AvyVxMEpPiuFGrlEola0McpQlCpNpqCC6VQZQ6ShmglDEGAeBQCgDQSkkOBr0+5zxNEqANowxDZICB1lQEIqU0IRP1rW3yAQBSaM8NECTRONEKAGC0lgAAKYogCMIwgBhJKZU0xhhpdC6sUQw10KRJjjFWxoxHoy98+cmlufmZqYadYQBjEIaeT9MkNwgaZKSRx2ZfSqmpcMowRDDEiEZR2u8NMcZaA0JQtV6jFFup6HA4tFgzMBOtulTKMrIxxoxRRKAxyEYvOY6TprkFmpGEGOFquUyAGXQOKQOuS0q1am6EV3Le8qY3Vaql61e+USpVKuXazdvrhLCpRt13WxiSRqN1sLevtUrTYhxtA4M5l0G5NL84N07GGMPRYHj9+nVZgL29PSklI+WN1V0LTzDGjNaUUggZhrTIhODcDwhCshxWms2m5wadXrfT6SkFNFCYEq01czwIACFMKZElueX3WYpfqVSy0Ax1mNagKIo0yQkhhDpYa6MhUAoZpDgABFCEi0kojtFaayGBlo7r2pmB0RpoCLSmiDA00aRa2I4x5jKktUYAaa0gAAgiKbUxBjvMWPgO4H53YGdCSgnlx17w56CHafEMAO86/keptkbFP8tEIQSXUriePSZAkXOjdVFwypgQkguxeHKmVCq7rjs9PZWl2e7e7unTp4s8j6Ix5wXEAAJcKVfG0ZhzIbiQQjFKkzSJokQJSQnDmGRJCgDCBGupkyT1fW9qaqrfH+RZlsSZBdQwxhhBBSZiGqWUMhpB5DieH3hSKKmkfVgEFwBqYAwm2GgNEVJKYoTznBOClVTQAGOMNWCFCAslmeMUnE+GOhBCbShARmkpCs05pZRR4nmu6wfNZuWxRx5dmJtVnDuMlcJQSbm3v3/txq1ma3pr72B3v73f6eVcZoVgzNVY1mp1SknnsM0F9xxmo6osYCWlPH3PmdmZ2a997VlIsAEGQU2IJXghAKDRRkp17ty5f/qPf67eqGoF0kz+8Zee+vznv5hnRZrmBnJtNEbIABtRoAhBVuyvtdLAaG0MMEpOMmMxwcYArSQhFCFIKEEIaWOsRYPtr61nhT07GDnbrPxv/+2CMRhKCCDBBkzuBWEIMQSlUdJorQ2CBGNKmXV4n7CHlUEYGqm4yrWRYRgaiDHGChOEECI4yzKllNQKGoQQUkZjhK1AxPd9AMBwOLznvnsffPD+r371qxDCpaWVd7z9HWdOn11dXf/UJz/V7/YIRUYBipHgPM8SS5IulUppmgaeZwyoVMvyKKHHdV1VKCXkEd+WKw2TtLCMZiktJ1UVBZ8QXiFyHCqECMOwNbP0xBNPPPDAQ1LK3Z398Xi0sbpWKlUIJHGc2gkuBhBqLfKcOUTydNjvOn5Qr9cRQq7rxnFcr1Vc5l2474HW7BxiDvNEFid7dzctj8qNo1aJ6JTmaaKMYp6HDCq7lTzP0zhG35Ilq5QCEAGDZcFzbRAlFlTFGFvjfqB1pVqyCP5oNErTGGNojIEGcyFclxgDPS8QQji+QyktlQIFTLPZrFbrURTlgnMlrfmSEELIIs1Sz3cs2TSKognxgisrUilEzjzXKEAgsRM7PHEAAwBoaLRRAEGDMBHF5LlTUhtjIJX1amNxfh5CeHdj/xvf+AYAwHd8WSitNYbAwJwxqgy//MYbGhieSsYYLJeKoiiXS3YBI4wmo3qgCcYQYq0BQkQIqaSgDovSEfCNLATT+PDgYPfFbaF4nU/bBw+Yo6oaIYwQtDl/8M+QmQGAEOgjr4yjn8DJXw1AEAEMAABKSa01RNB1XaXU4eEwTkZRpH3PjaIoTTMLB0xPt+qN8s7e5ic+8Ymdnd0gCAHAy6fu2dzc6Pf7Fy9eXJif9n2fZ7kfeNYxoN/tLSzO9Xptx3EIQYuLi3mW9ft93wuTJIuiqFarF4VYWlqK42Q4HEOAKXVKfri1ucO5oNSxq4QxBoDmIkcIQYhc1yuVSsPhMPBLtWpDSlnwzI5MHez4vi84T+Pkn/wv/9Ro+Id/9DkI4c07tz3Psaj0OBpCAMbj8VCqXMkwDKvVuuc5VvJjkZFWq6G0gFBHaVSrlWZmpmam59fWNvb3d4VQWoNCqCTOlRKO49VqZaVUkkaWupIXwmjY72et1nTBoRRaikRrXRSCUjq5dxpiQoRWWgPOuecpQkGec4zJwtLKiRPLlME4GSklFhdnd3d3CSS93mBndxtCooU5e/b07Ozs1WvXIQC+7+dJihDMsnQ4GjRaU4PBIEriJCsQQggDqRVQSmjDCFHAjEaj/f09CbjWulTy7ViGc05p2WLxZ86cOdzbHw7jvb09QmCWZUJwY3S1WnUcprWB2lgVQK/XI5gdkfM51zmESH4zWhohhNI0rVQq53y/UqlYvTnGGCBk08mPtP8KIbS4uFgulw8PD9rtdnO6aQ0x5FHQMJ68ULlcthsuAMDzvCLLtNbWMTZNU8aYwzwrx8vzvN4oN6qNt337+f5wePXq9Xq9YQkRa7fXbty4YScHd+7cmZmZKZfLln/U7XaNVP/wH/7Dxx9782uvXmy323MLS4QiBYBUyhhDMUEIAIyNMeUgBCWaZEq4CGK+OD81M1U5udRYu/WaQ0yaJWk0etc733n7zp1Lly47vidzMzs799prr/30T/90o9H45Cc/ub29DSFWykipXEatGtcYVXAJIRRGYoi0VhACSwsSQjiE2j4THsVluJQBALrdbjyO/DCwP7Sb6bVr14wxSou3vO1t//Jf/suvfe1rn/jEJ9rttsOY3UNarZY1HgFQp+lEBNRqtVyXlcrB7du3NzbWT5xYXlpaunPnjnVYs1i/QaTssDSNi6LIi9T+0dLSEi+k5ZKUSqV+v/8fP/bRRx9509zc3AMP3D8YDHZ2dngWf+AHvv/DH/6JL37p89euv0EICVwPQL20vHD51Yvtw16/NypXG15QAYAUOf/Yx/7ztevX3//+97/8+jfSbPTQI4/mxahSqR8e7nW7XUadO7dXmetUKpUgCMbjsVXLWt83KZVSGYRwfn4+y7IiVxhDQnCaJjnPHcdxHBsaXmACr169LGRBCJqdmVZKaC21sZktyPU9pWSeawiN1rpSqTQadWPM3Nx0URSNRm13b1vpYnt7BwAU+KWtnW3PDWZmpoPQg9AoJebnFs+cDrfv7g8H48/9wef+9E++Vq3Wtzb2zt937//8Ez/+la98ZXp2/saNG89+7avvfe97X3rxG//u3/27D33oQ5VK5ZVXXrl27drs/JzjOL7v3XPPPTubW1FnRBD2PCfLEkSoMSYol2wlynk+HA5rtVq/3y2K4qMf/ajVAUEIpVSvvXbR82ygigRKAwBu31qdPCz1+szMjHVc9cJgZWVlMBjEccwYtSbCcOJGil2XMY/1hr1ebyhEIaWwiWoIA9tmfP/3f/D551/8gR/4/k/9zu/++I//eLfbdV2XYHZ3Y8v3fUuWNAZQSnnC7aHIOVfSSMN5oQhhQqjFxcVT58+vrW9srK/7XgihMVr5Hn3nO75r8+72H3/5i4yiIHwEQFcqYYwqlXwlDEQQIBCEtNePh93+sN/N83x6enp2dpYyRhwUeCxJzZ1be2urG6NivLmx1mw27733fLfXFrJ47LHHXnnt5ZnWzLve8+7V1fVLT17p9/snTp38lX/70aeffTaPoy9/+ctra2txHFuzQozxeDzWWh8cHFjQ3FpUW5JspRqsr69zIdvtdprkAECpuJBFrVGfnZu26u9SqSQVt2+1urb2b375F8OgHPrhaDRijJy99/zS0sorr7wiJc/zVCkBgEYIui4DQGNEfJ8wRjbWN6u1UrPZBFAPBwMAgNJiPB5SSiEESuflkuuwepIkvV7f931tzOLS0rvf/e5utzsYjFpTDcaYEMX29vZgMGo2p7Isy/M8l0W1uuAwf2d7/3D/MM/5wsL0u9753ps3b9+5vTEYdhaXFw8ODuI4QZBUKsG27rWmps6cOXuw3z2xcjoIwsPDdr3VGA6HaZ7Z+86o02w2+/2h4zvf+8Hv+Y7knV956snBsA2ROXfh7Pra7Waz6bgIYTwYDJRSJ06csLxLPwgwQr7vx3HcafdefvllhwX1asP3/TznvV4PIZJQijAQQozHwzzPs0IHQWBb18Ggd/bcmUajlmSpVYNZ4X+WZb7vW1ygVCphjAeD3szMvO/7cTwGCAZBMB6PqtWq5d7aojZN02q1mmRpGIYEYQQgIaTT6Y3HY5silef5oN/3fX9hYcFx6J07d+67775SKej1emmaj0ZRs9kUXFVr5bDkY4y3t7dfeOH5VqullPA8b2lpKcuyg4PDer2+t7NvL10ap47jZlnmVeoYY8dxCKFKCQ2hDe1gjBVFwRVP01QpRZkNTtCMsUqlCiFM006e51LqMAzTNLXJ3fa8sCuQECKPGK2WaBMnie/7zz333OOPP/74448/88dPXb169Xu/+3t+//f+4Mknn/yjP/y8LDghCFkBBEIa6CzLDISO40xNTWVJmmUZklpDqLXOiwJRYgDgnBtgxuNxr18ozhmhmEDHDaSUeZ7zPD9mNR4TRsyR/5sx4JuKyCNPT0IIhijPC4tx2EA8KbU9KJWCxyQ4YCWF38J3Rhgf+8VbZPwIs6YAaAjpsSzRGGOLbSGE77uWV2uPWsZYmiRSSg2g1gAhBJGBEGZJfrC9X683x4PYGOg7LgLaWlVwLoWaROQJpI7mcA1rjGM7cGNgkY/yvKOUIoqAiZZ8gsjYD2kPXFuJQYAgNEqpKIoABcYY5rpAW8c8bYzBjGZ5jjHURhupudJ2hRBClCgIIQAgrQyXHE5SlKEQ3POdosi01o5z5HYtJ8pCeCQftopA6z9mOVz2kWFkojXU2kL/lBAieJFlmUWBMKKYwOOlOAGPXHdubg7CCe/4+DsOh8ONjQ1rFtxqtZRSWZbZEMJ+t8v5JKpufn7e7smW86WU4lxMHnxppBCUsnqrXiqVSqVSIbhSKgwDhFAcx9a37fDwkBdcShmGIZbIdV3IrGoYEoLjJAVxbIyxDoeT/4TIkQCUYgBAkiScc9/z7CcsByFjLBqNlVJTU1PGGF4UWmuVamOM5AIRrJSA0EUILyzOAIM4l0CbLMv4UfamMgoQQxyitYIIupgJYbiUPplIpwkhaRYDgzCmhCDOlRBCQz09Nf3ggw/uHt6O49RW1IQQglkYlqScKCwhRK7j3bp1Z2qqbrSWQiOEsqzo97cFV1mW24tcFBwn2PWYtbyAEPp+iCCJoghjXK1W8zyvVquEsCRJymEpTdOiEAAIJXW32wUA1WoNc2SSfjwmsffXfjYr7raLwXYotuA3cJL6KIStRozWGkKztrZm7eAJIVZrjhDCZKIVABP9rlZKaQiMmXhlup6nlOr1erZYRQjbyNY8s4kUyIAJB9n3fTuIYoylaWrbnyiKIFJag2olDMPKaBhxLiGEU1MzXuBG0cjiEZZbByFUR2GV9v8tDVxrzbANRp4YgNgrYIt2gznGGCGNINFKPPjgw8QhRZHdd/+9UTS4cvXiaDQajUZ9b+g4DudSa+AwDyFzeNhRBuR5MRxHg35c5KJarV+5cg1j6PheqVSZm1uIoqRz0AuCYNAfWvMKQkij0aIUIwjTNE2SyGIChFELOfm+PxgM+noYp4l9GLMidxyslNJaaKkmusnMsmQmTEnbnRFCDARWPYMRnWynAACo4ZG3pyXLAwDQ0S5nXzYJ81iJAgyy6DPCwNYGFpjz/ZKUfDwe28xAhBCl3/RUgRDa4Ee79ghh4L9OtDp+ERx96z9qkyX5q0kSaa0hAh4ul6sNQsjBwUG/39fKBCTQCIQVtz6lVlYopXI02h2lXUiTG3dec12XMUI92h90ESTUawQVx5EaITQzNR1Fw8uXL+cy9hxHaeAwLyDAaIAxVsqMon1lgkI1RskeAEDIPMsy13XTjLsuo66jDMyy3I54K7W61iDnWggxCVsyVOrC4hKGTxxpEUJZoY0xwFCEsRAijWKKEcZYGwwAsIEIAAAAteHSKAGkblTKD50/86bHHp2fmT595qQdlsTxOIpGvDgs8iFSNKgv1KZr0y0Z+vD5l764fXfbQIJMlMXjsFwpciEA3NsT0bBPHMdznEgASnGtUo3jWGmptV5dvba1xYSMgdIaAgjNsD1uNBoQ4MFgIIvCL5U6vX0Jv/eBB54oOCCYvPD1rSy7CAFVKinkwBiDia0WNGOES2UtcRGCQiu7RdhgWLvqrPiGEEIpJWriU2HrCqUURmgy05ISQqjon+/WYSn5SimtlVEaoonlizbGLmZp7M42kVtNShqjFJf2EfN933EcP6x4nqeUTJIkSmK7G9jD1B6y9icAANd10zS9//77f/qnf/qtb31rv9/9+Z//+Rs3bj333HNPPfXU3u5BFmdpnjBFOc8R0IRghMijjz/69/7e36OUPvfcc/fcc08cx7dv3bGJdsPhMMtsnoEWQqRRBCBMorFfLgdBYInJjuNYYfpR6QG0AryQKw+efO9733v+/PlGo3F4eLi6+tzBwQFm9FgMsbCwMB6P0zTOslQplRep77unTp2aX1q+//77oyhaXV1FCL3rXe/qdvrNZtPurpVKpVauWA+oLMuYM3EmoZRa7ZHFl2xstfoWPzRjjEE22EAZY2SRHz3yxBYk8Mg2LcsykRe+72qtO52O5wW2TLJTt1qtZtNZjIHMoUKI3d3dOI6lnKiF7H2kxPE806jWMMZ5ngdBYJW7R9HWCCEElCaEAAWOq9DjZQAhtGXJtxIg7KkX+u5UazpL883Nza3dHQhhtVpFCEENAQBZlkANlQKjcdrp8umZmfMXziZxtr29bU9DBQwCkDFXaKW1dCZ+UxgAlWUZwsRO1jGiXObGQMqY0TrlCUDG9/0JXf/IIgZZs7Pjj27s/xA4Ynn8N1gzNMAgCK1PHDAGGGMlMEQbZfV0J0+e5EXa6e6vra25LuNcKqVOnjzBGJEqr1bD7e3ttbV1pYwUenl5+cKFc/1+N88meBPPcvvJymHJ930+SYlV586dY4zduX272+nPzc11Oj0p9cJ80G6DLE8wRpVK6Ykn3tnvjbc2Ns+dO9fvD9vtrj2xhBA2VBZCmGVZvdZU0mBEbdXr+35RFHEcT09P+8zf39/HGAMDzp07Nzszf/L0KUrpT/zkh+2zaozRRlrATik16I/6/b7WamqqabtEm9njeowQR8hMiIIr0D3o9vv9M2fOYgdsb+1qbRzfQQjkOScEJOnYaicBYONxzBiTWsiC99qHzJ84AyZJdrTQkRQaQsy5pJQ6vkMpjpMhZQBTDQG9e/dunI6mZ5rNZn3Y7W1tb4RhyEWGMZxqNrKUX7hw4R3veNfu/uFcf8A5T5JEFgU0lHN+2O1EacQczxhdq5fTNLMIrNFaTdIW0Pb2tuMSgCcJofapm5mZCUN/b29vZ2eLUhq4HsaTZ9saDNn2lXmu1hpjlKbpeDymlGYqo4yhI/d6LpRtjC3iXCmXoyj6yEc+Uq5W7ITKNiFKSM/zCCEmDDHGeV5kWWZFiDba+GBvTx31GK7rQoiPGxtb9AAAbBq15zjHftx2C+Qip8YhhIzH41dffd2iP4qrchACANIkJxDtJXmpVCGESKE3Nzfb7Xaj3lxaXF5YnL969Woyjj796U+HfimKRxcvdpSBrekpzCjGGEBgjAHKAAAowUJhIw3USomCAnn+9LwQxeVLe82qU4xl2XUIDJv1Wq9e11q/+fFvH/bar7zyyrve9Y7hcPy1r30tTVMbs6aUcRxXKoUgJARIqfySDwBwIS0KobW2V8DWfFaJZsnOxzqOLE5+7h/9f//g9z/79NNPY0qKJJmen69UKnt7e8YYx3GiePSL/+e/llJqIynD1CFZlhVcvOnxR3d3d3d3d+024rrMOsD6vitk1bZMc3MLGxtrURQRSBBCRTEpx70wWFiYG4/Hne6hHQu5rjs1VUaQ3Lx5u91uU+imaRyW3OmZFoB6ZmbmN37jv/BEzsxMff35r21tbZ46dYJz7jnOm9/85vX1dT+scgl++Ed+bDSKkjg/dfLcyVNn643Gww8/vHRy4dXLZnq69WM/9mO//uu/dnh4qBXO0pgxFYbheBxrDaqVuucGNhcxz8cQwlqtNhwOAQDVanU0GvUHgzAMEdYGCAAVF0JIIIRoNGqUukmqPZ8CAEajkTGGUuq4OAxDz3OoQ4MgqNUq4/H48ccf10aura1RQozRfuCGoc8c1GrVb1/f7Xa7nhsghJQWSoswbAkher3k5o2Ly4snKuXGs88+t7d1mGeSMfdtT7z9oN3u9vv/44f+pzNnzqytrVk75i9+8YuD9oFSYn9/9+7d9TSNH3/s0ampqc/+4e8Grnf23JlSORj2e6PRCGL0poceTPKs0+n1+31CkNb6yvUr1u2HUu/ypUue79ui3DbeCCFrjH779ip1ve/+7u/+xje+sbu7iyCJh2mSZOVytd0++Nmf/dn777//I//snw4miciGEGIz8fI8tzmcvV47TfNqtRpFsTHU913fdweDwWc/+9lSqfRrv/aff+7nfg5jqoRCPiOEMEwghASzOEp9L9d1gxAej+JOp2NLKEqZ74VFIexg9Qd+6P9TCqsf/vCHXXf82COPtg86V69cOn3qpBRZHA1+57d/CxjxwEMPZnmaprHjuY7jUEpd3yeE7O7vF0lcKpUeeeQRY0zgesShGZd7u4eXL1/ptnuB54clb3lpYW3tmtLC931EUG/QPX3mzAMPPPR9H/yBz3zms0nKjQZpmn7j+Zdnm7MbcfSVr3xlenq61WoNBgNbcAwGAzuR9TzP930AJn7WCKGdnR2rblFKCa1c1x2MhwvLi81mo9vtSslv3blpgKpWK5xzCM3sbCvLCs9zleAzs9NxlMRx3GxVv/P973755ZcPDw8BlL7vJ0niONb20WIKxfz8Yrni7+7uM0asOUy1Wj15cmVlZSXP8163gxA6ceJEpdrYvLt96dIb29s7p06dun7t5n/6L/8ZYfLA/Y9sbKzduH6rXAld1xdC5DmHGLu4tL/X9Tx3YX5WcKgVrlWnIST7+wcHB/u1WmV9fYMx5jp+tVo/OGhjwmZarZs3Vt/znveEJf/qjZtRFAGMWq0mc6mNMSiVKo1aY3FpVmv16U//9vf/jQ9+6ck/+vgn/nOr1bhw71nPJVE0LlfKB+39bq8dBIExcDAYaa1XV1cr5TAIAt8LZ6bnL1683G53+/1RKSgTwpI4K4oMAL2xuWkZ3FJq13WlFAghz3M8z+v2evXmaalVksSu61rrzCzLtNaVCnZdBwDNeX7mzJk4TXZ3t4MgqDcbQRCcPXt2MBhUq1VRcMdxrOQZAuAyJ89za1WRJJoxUqvV7LE1GGR5ngshNjc3wjB0XXdzc/Ohhx6QUiojMUUQA7/kvPnNj1ny7+zsVJZlg9EwCLxSKbDT1q2trTzPszynxOHFRF1eqVSs0xyYSCAxBkBLxblkENfr9WE0ppRmWRaWG+Vy2G63tdZ2fuA4lKDSeDxOkoRSqo+imRBCWllwkBCClFJKa1sul8Lw85//PMa00+ldv3793gce3L67/Xu/93u9Xm9nZ+eRRx65c/MWY4xikmYxwtihrh+W9g/3XewRQtI8QxBorZjjGg0spiCVIoQYBO3ZZDAushxhIo4CvgEwBJEjqaY+Rvlt2WZVk9ZywWaFWYBJaw0QxBCjb/nd/ypVD0IDobbSwm8JNsEIYTLJMyRHCeMuZakNjkaQEWwM1kCXSiUbMgMwsBC/TVKQnCdRpJSAEEMNDTJWQ44pRAAFvl+rVH3qM+pyztMsllJ5nuO6BEllsRL77ZI00j2tjQRAO45j8ZEiF+Nx7Hke0ggBYMftthw6ZvQc6zeBJSDLiecpY8ya1B1RVYytSLW2rYH5FvhGO9SFAAthuFRaqOPG0nVdxiilWAiV57kUBaWO1trz3GNpLYTQejgemaFNYqKNMVxKu6JcStM0x1gw5pJJ4rH9ChwiijFGCCsllTSYTOY3EEIIsOtSIaSl4XPOx8PIftk0TYWwUl9XKeX5znAk/cBzXHL+/Dnf91ZXVzFGVv1jnxpjDMakKAop80azprUeRoMoHuVFyjjzPK/ZrLdarX5/WBQFgcgOXSyZy76J5WcYo4WyFskTk9mCZy5ypORFISCECAOVKyWl7/tKqbHScRxboBMcuRpmWTaKx5YVZYSARCotyqWq5wXWrxYAwHMvjmNLr8syTigQgmtjCIZaG0KQ1kBpIbk8Bm2NMYzahhxwzZlDhSzWN1Yh4VyISqXSbrcFV44DhJBCKACQZcMkSVqplDudAQCaIJIkWZrmNuyIEAYhBgBpreM4NibgQlLqWKQGI5qmqVKGUrq4uBjHcbfbJYQM+yMhhOt4lrFLqaM1yPOcEgchaIy2O4AtKsCRA4YtwI6fd3OE2lgfZ6UUpYQQIoS0N5QXmQWvrR2nJbW4HjPGQDxRVlnrIYQR51wejVKE4VyIUjmwXWQSJeooQVRbYwdEPW8yBbETPs75YDCYTFkUJ5i5rr+9vWOOjIzjOIYY2CGBvctScowpFwWjrv1G1u3hGGMtl8uc52maHnfrxhhtVL1RTdMkigdJOpyenbrnzHmEYZyNoyh64cWvQ6RPnV4RQg0HUaVSQYgAiTlPodARTn3fdRxPihHn3BhUrzeNMaurt5vTU7Vao1Ztzc8th165KAolte+HGCKMLcpPgFHGGKXMaDSq1Kp5nGVZdurUqeFg0G63ESSEURtjI5S0XIFKqWyhJXsfCUUQGUvotm3L8VCBEIIxwnZ5WzsjOLGmtSAyPEqDtDfOPm6TWZoFpo2x7YYxE9aRDaMWQgjBv9WdAyGoNURostPbfcmumVIpcF3vz0UPxZHl9/GnKoqCEOZ5DkKIUFwul60Nq1aGEIIpAcoYYzqdjoXJ7MyAc27T3S9cONftdjvdQ+o4to+TUjHG9vf3e70eQqhWqyiu7NjPGCiEYJRhjJtTLSlluVw+d+7cl7/85enpaQihjSG1UlTHcaz3twb2ZDR2hmFvilYcAIAhwhBZoBSBCcZqjNEKCMWBMRMbJakwpFJyirFQnGECDciFADI/d+r0+9777pNL89FoODdVCRhggQsAKPmVmUbp8PAwHhwSANsH23dWbziOU29NNeqVe+45fd9Dj/b6w0///u+3D7vtfISNhyl+99/4Gz/6oz+aZdmXvvSlL37xi1nBISZScIxxmmZxHBNCAEZKCaPh937g+2u12pe//OTS0tKb3/zmZ7/6dBSPnvzyF+dnZpvNVqtZVVofHBycWDkTRUlRFAYowIHrOo7jQGi0mayoI6/vycI4xlUnuwzUhchzbhzHKZVK30TMADBS6iOXjOOF9Gdeto4yxhilj/cfu4wzXVhdhTEGAG7/6+BIg2V5CRAZAJwwDKXWSZIIwdM0jZP42Mbd2rQaY+wItlwu7+/vc84XFxfTNP3Zn/3Zhx566PXXX9/f3w+CUhLFMs8BxIQQ6qAgqJw5c+Ynf/InNzc2FpYXl5eXtdbve9/7tra21jc2+sNBITh1mNRqOB7MzMyUKmGSZOfOnTt79qyUcnNzc3V11Rp0jMdju0VYIy/OBcZkenq61ZymxMnSIvWzZ5599qWXXpqZmZmfX2g2mwiS5eVlaMwzz/yphpo4VCm1uDQ/GAxqtcpwOLx+/XqtVnvkkUeEEHNzc/Pz891O/9atW2malstlC1jbgxIh1Gw2fd9vHxzGcex5npDCYs3oz6QlI0gwhMgggDQEWulvRUvsHmLlzlprhEC9XrdWtzZbK8/zxcVFq8W3G1FRFNJI+1tKqXI5tFfA/pExZnFhudFopPH40qVLeZ4zxnwvZIzalTPx9tFGm8l9B9+a3mzh8aN61e579kluODWjwEHnsNPpUeqsrKxgDMfjsVUeO9AzxiglEYInTqw8+OCD5bB07dp1bbgBOstyQpiGUBrjeb4xJs8zACAh2EDg+h5CSBkIFWSMcUAJA4FTQgByysfxeBynxO631rgTgMmc1hiIMTTGhowYCNDExtkYG/BsjlybwQRNnzwkNpETQmgAQAATgoCGUnLHcRyHlUoBwiAMQynlOOpbboLjOO9/33fOzS1ceePGuXMXrtx8YzwcnD135ktf+uLdu6BeLYdhOI5GWqr9eJzlyenTJ5eWlnr9zhtvvOF5zvrqBoSQc4kxzfN8dXWVc9nrDQAAruO/9NKLvNB7ewdIY2OgEIVltEopMUYQQqPBeBQDgxAixsB+f+i6frlcppTec/b0yZMnn//ac1zkISsDDH/5l3/5B3/oh1555TVjTBAEWZbYkwlAbc3UldGtRuu++y688uo39vf3lZaVSvnChQta6zgeV2slhIA2qt3ZZ8zt9A9HF0cIIUKR4CqOxwCCai30PG88HnOeaa21UUHoSKHLQdBaObG1tZXHheNShJAUUilFCNUAGAMBgL4fCiFOnTrFRRrF/TSNkjTSmgAA9vbjTndvfmEWQm2TQAjERgGMseOyYb/35Be/cNDuhGHYmp6DEMqiiOKRAYYQwHlOGJ6ZnUaEuK5bqZSTJFEcVRpNKWXOebnSoAxGaWQfPyFy+zB0u928SMrlsFwub23c1RpQ6kCEMIIAQtuvYoyl0fwo1NH2NlJKTCghqFyu1xuttbW140ZIKVUqleJ4bLHpOI7RUXQPwMhWIXZftvwyW9lzzpeWF4wxB50Dh3m2n1TKrl5jYWtKqZ2TWyqTreCt55HF1AghAfEQQryQ62t3syyr1xt//yd+8o/+6I9eeumVMCzbLs513X/6T/7J1776XLfb/ef//J9H8fgLX/jC2dNnms3WxYuvLa+cvHDytAGq1+uVy+WgXKIUag2M1MYYBQCGxEBUDpjWUckPCZK93t6JhanlmebmnStxPP77/+Anf+Rv/vDr165muVjb2Dx96szdjc1Op/fcc89fvnzFsnJmZuaEEN1uFxhoADBSAQDyIvV9r1ypSSl7vUGWfHO8T9CkObTf3dI9OJdPP/2sNayoVqvf9V3fdfnyZUKI67rWOOn69eu3bt2yHHNjjJ3o1pqNq1ev2gLR7i1CCM/z8jyVkvf6HcZYqVTa2tqyP0cGIYTsdeZKwjy31f/JkyetTTaltNlsdtq9PE8xxoJn5cB/8cXnX3jh65bUU6mUZudae/vb7c7uwcGBAWrQ7S0vL7/22iv7+/v9fv9973v/yRNnskw4rt9sTUdptnzyxIkzSwDKWiOkDH3lK1/qdDpGo5/48Z/a2Vn/zd/8Tdf1CWYY0TiOMca1WiNN00ajYTkRlUrF87zhcCyltm256zIIgziNZmZma/XKeDy0lscYT0kpu+0O59KubUoopdjzw6mppjYyz/ne3sGLL75UqZTu3r3ruu7KiSVrMbm5uXn+/Llh18RxnufcC1wITZYlnU5nqjVz+9bawd2IonA04MPeqNPuNZtT3/Ed7yRO9Z4L9964cycT4qVXXt7c3Gw0Gpubm+1up9xofOITnxj1BwCAchBevfpGlmX9TpfnqTGmXq8uLC3Ku2rY6zWmWh/5yZ/8hX/1v9+9e3d+du7WrRtRFBmpIDJKqUq1ejz1tQVWkiSlUsk2ftt3Nx+49z5KHc5lkmSymEwHtTJfefIrc3MLWgGCmR+4o9EoyzIbDS9ksb2zGQTBY2966OCgvb21y5glJ2IlTbkcjgfDQbfn+/6P/K0fhhBXyjVgAFQQQGQMMAaWSqUoisaj+E1vepMQAgDIGDs4OPDckBCS57wo8o9//OOS+j/8t/6Hf/WL/8d/+JV/L3h+6sTiT/3UT73+6sXnv/bVd77zO27dvv37n/m9O+t3zp8/X6mVqcM6vV673Z5fXGi3DwTni3PzWZaFrjMej1vTUwqY7e2tXq8n8uSxh+59/dXX9tvR0soi0Py5Z589eWrlsNO95557PvzhD8dxWik3Z+cWr1293Rv2apXqwuKcdQW5cOGCUoofkbCyLAMGYYwbjYYQIoqiY4+zw8NDz7NSrJL1FR2Px67rbmysDQa9JI0AhADqer02MzPNeT4cj33fXzkxn+e8vd/d2dmyCNHXX/j6iRPLzCXUgZiarEgMNNLwoBQKoQghjUZjamp6Z+eu67lPPPH2fr+/u7t94cKFdufg8uXLJ0+sjEaDK1eu7O5unjx1zvfDRqterlTPnbvw+qXL16/fnJ2ddb3yufMP7O4eUEoAAINeHyHsuh4vYJbx8aC3snTywQceC4ONa9euLy2eqNeanU6HSwUhcBiGCKdpPhqOsywJgpUb/f7f/pH/8ctfetL3Kr/927/9sV/71YceeWA47H/mM5+RUk81W1mW9ft9zvna+o1f/dW7AIr77j979+76s1/9k8cee7Q13RwMe4yxSqUJIdze3o7jeHt7kzA66HsAoEq5NjU1WynXZmeWiqJYmF9aXV3FhCAILXRrS3/PC7gUjusURZYVRgN1+sxJrXWeW48CQAgixLVPR5qmzWbTaK617vV6XuBSSiuVSqvRZK4zNzf72c/8wf7u3vT0dLfb1UqFoS8l93wnyxPrOct5lmXZ0tJSvd7c2toqV8JKtZTmyaw/Uy6XNzbvHh52r9+8EYbhE088MTc3Z2dLRZH2en0AwNmzZzEl169ft91RURS+76e9OI5jXkgEsON4pYBxzjHAQojhcHjcughRcM7zLJOGWjboaBTleSalXF4+YVvfOE601mEYMoIghAlJlFJITyAtrbWZSEeBRVuQMcoYhJB1uytXK888/TQw5t3vfvf6+vpv/dYnxuPxxz/+cZ4XP/uzP0upUUa7XsAYOex2PvwPfrI1M33r1q2XX34JQsCF8F3PQslaawC0RTzDsOy6rhKFEBxDBKA2Rw0DIRgiVOSFLestNHlMgjNHkXjHrbVlHNtGmhBiJjW8zdNDCNn4YoWQBSmM4naICynCGgKMsWVFGmNNhLnWmiJsEAYYIaDtiVmtV2dnZ5M0EkIADI7rH1loQi17V9frdV6oOI4VF0Hg+b4DjCp5vshyJTT1CEZIisIqGyB10MSEcdLTagCEEIQijMkxTGZnn5wLBJBSykwYWBbMVcZAe0n1sUKfMEgtQMYocZRSQmqCse2dOOcIWd3PxMIPY0SJQzBTinMucy5tc33c/7iuE4YhQqDT6VlbACEKz7O6gQlD3AKFR/iatPWhvWv2pghZaA0opeVy1bIBioJorTGm8Mjy8rgTMxoBg+I4thWgDSmxWK3vepRhALQGpigKY+DU1FSpVO73++ZIBccYu/zGRQCAzUdBCAkhIYQQ26BsPDu30Gg0AOJSijxPAdAIgSLLRFFYBpkxJvCcPM8r1ZJWE6xKpNz3fZtD67osCDybvAQhcF1HSsFlAbjSWgOoRSoopQWHxhjP8yjCnHNldK1WQwikaSqU5JwbqQUQFj23NgtZnhyXsr7vu9WQMKSN7Pf7OU+FUJVaZWFhcWN9s98dIYR8P/B9Px6NMcZCcPv1AdBaawkEAMbzXIRgp9OGpKhWq6Vy9WC/HcfjWq1u4WOCGSLEaIMIAgAiSLjItQYiz6CG5aCkNYiKKM94kQupuONQK4mzUd5FXkAoAYAYYwhQNI4BAEaDOEpc5mgF4zj1PA8AxJgrpdQKKKisGAghVC6Xtda2k7cqVa318Qq0C8wuDMkFwsh1JwI7uwFa+2al1DHNRWultDCA2rmjhWlsL5Dxwv6Ecz4cDgHUjuMADY3SFBPFWJ7nACBrf0GI5R1T2/7Yv7GPvC3dS05pPI4vXrwEAVbKeF4AgErTVEqOKbIMJ8/zbBZ9vV61RXsSZ8ecStd1KcP2i2OMLZHQjlebzWalEh4c7nGeK6nHo/jZZ7/uumz55NL+weYrr7zxtrc/UioFvd7AcSgEFAA0ilIIqLXrlFJXq3XXHTfq9OCgfYTaFMk4Odhvtw9743GcxVGz2XRdHxqAMImiqNPpcM5rlaoBKk1TpfUTDzx86dIle9BkWVapVJRS2kDbhQEDpZTV2blarSalHAwGvMgIRZTSNE3BUXLyREJOSZ5P1GwQfHOCaIwB0O7WyG7CdpiqtdbQIhWTwC67UcBJpCgWQmsFIIUAAEvptYeX5aTLo0g0hJjFyIBB0TiByDDGikJ4zp8LHgL9X8PN9nCxvFSEgMnMnWRVSmmxZosZEYIB0FYjtb+/H/gl649fLpebzeZwOCyKYnFhudvtQgjL5fLhYSeOY6O0MabZbBJCZCHzPOdcKimUUplKKWHlcsg5f8c73vGhD32o2Wz+we9/rl6vF1IwyPSRysoGJlNKCWEQKjv/PkI/J1i8xeuVUhhTKYRQHCPKGOFcaiUopUZpiJHRCCGiBGcIR71eo16+//573/uud5RC9+TKYr0ayqLwXAZ05iIXQgOUGEbDSkDmphq9Xq/XHQqlS/OLvut84Lvfk3NJmFlZmv7gd737Gy+9cvHi6NZep1QqffB7v/tNjz6yv7//pkcfe/nll4/IPQ4AgFKAkKOUBAhxbkphpdWcvnPnDoTo53/+59/9nnc9/vjjpVIwNzfzkX/xkcXZxQfuf/R3f/d342i0trGKEMEEBkHFutXbogYTjBASopDGGrgru86U0VJJRKB1LrZdTxAEpVLJDhTtGFUfc1GP7Iz/3AUzQTmPeKAQTn4CvgWdRkeG7PAozwAAU2s2y0G4vbPJOQ/DcDhO+v1+lmVRFDFGK5WK/Qyzs7Nvectb/v9s/WeUZdd5HgjvePKNlUN3VTc6oJEagSAIkgAYRFIkRVGZlKho2QpLY1szmk+2x5bXeK2Z+SQvW+FT8FK0RJEiwSSSoiQSJEACRCLQ3QAaaHSq6kpd4eZw7kk7fj/eewu0R/cHVqNWd917z9ln7/d93ifUarVTp07VajXXdT/xiU+sr69fvXr14sWL/X7/S1/60uzs9NLS0mg0Ckru7LHl/f3GRz7ykV/717925cqV/d19re2xW04uH1201nquW6vXv/q1r73wwgtCCMJZlmVK63e8+11nz569evXqQw89dOrUqeFw6HHn6tWrjUYDPj/YH8NKK4qiyLJ3vetdb3/k4Xq9XhSF1uZv/ubTTzzxxJkzZ97//vf3Or3hcEgpxcQKIb7vw99fKpUQss8999zs3PTzzz+/v984ceLEnXfeOTMzU61Wq9UqwDjnzp1bW1trtRuDYc9x2cLMwtGjR2+55Rbf99uD/uuvXWo3W5CmyDChY794bSaKEGMsohimSohzo8bPMkhOD++FPQy6oBSoGEEQQHECEBPUnDA0rVarvu8mSaKRpZQ6jue6brfbhcoHItMODg729vaKXEIKGtRCcKwDYUKPU53HLOzxJFWbw2Hq4RKa1LQ4T8Tmxs1h3LcW16pTnHOlhBBCaw0O3hjjotDGmOPHVynFr1w8v7OzM4rzxcWltzzw1sEgXl+/QTAzxhBCMSaYEEIZnZAzMKIIEcdxQh7KQslcO4wjS5TUcZwwbA1lVBsFlj3WYmsRY2MwbvwwYIsmy/wQWj7Emr/bcEMpnWVZITKjpNZaG8WoW4g0TYeOS7WRG5vbvu9DNbC+fn17e3Npael7vue9SZxGQekdj7zz+MnVv/iLP6vX69/3/g+89PJ5hIzDKcFISmmM6rSbWZJyRrFFczOzu3s7x4+fgPpPKdPtdkEGGEWBECIv0uvX21ojSrjrBkgaOqmPoSiBw4NhNhjE1lqQb+/u7hZFcfLkLSdOHn/99df39/cJIUoL1/MuX7nywgsv7O7uNptNpQSYdhtjkjSGuoFz3um0Xnjxea3F6rGjRZENBoO1tWtCCM5Zr88Jtf1+V2tTq9UZ5bBNVKulXm8wGmmllOM4s7PTpVIIYVlS6k6nk8apkmZpaanXHXQ6PWso4xw5CKooow3BvBSWESWMse3tzfmFqQ984H29fmOUxP3BqNPt9gfdoiiUkb7r+UGYjrLBILHapGlOCbvZb3OOHIe1kmGcZLfffrvWgnHkutzl7K1vf1tRFBdeuVjySsePr1ar1Xa7myep53k7W9vK6FvPnBqN+rRHhBDWIko5uF/Nzs5GJb8oMmNUpVLp94d4TIQcQ2/MI3mRun6IGZN5Ya2BdQ/9WyFFmidhUYbrrLXUWluEBnEfLBEn1SGx1hBCGSGIMw2bAkLVahWeQMfhSZIYY1zXPXXLicEoVhLeyDDGyuUSVKXgtt5oNEphCB8Abge0T2DBgTGOwnIpogcHB9ubO0ePrnzv937vtWtr3/jGE5RyhFBRyHq9PlWfrtfrSZL8yZ/8yT//Fz/3Uz/1Uw5lR44c1VoTzDzPEzCxpAQhpLTFxmKMKSGEYK0NwkgpXauUEDLtdkur/NKrL91YXxN58eEP/QCx5Mr1a1LqrJDPf+fF5t5iu91dW1sjFC8tLS0sLHDOoyiCnQugW4IwULhGo6HUClksZYEpophSqhEiBGGIlYfnWkoJ9JmvfOUrJ47fApPqs3feVS6XDw4OwCq3Uql88IMffPLJJ1utFvQwsBXCURqGvpQSrE5c1wUGayEyhJAQRRjW4jimFHue5zIXTmulFCYYJkYIIW2kEGIwGBw9enR9fX1ne3c0GoVhyQ3CUZYaY6VUt5455fue1jrPU6kypfHi0myj0WCMXL9+HWPs+/4DDzywvb399NNPB2Hlox/9iVNnVm/utSr10A/ojY2rM3Ol4bC/ubVOGU6SZNiPPTekxCmXakJJEBA4jsP5OPLIdV2CSBRFcRxTqkEvnKap63KMUbVafevb3lIuR61WM45jMHXp94fDYWoNhq2UUp6kebsz7HbiVquJiS2VwrXrWxYjx2GOG3Xaw7k53/fCamX6uWfPlfzFSrnKXc4dbIxijERRtLNzs92KqYeOLJ849+LLeZLW69PW4v/+53/x3g/9yG/+5m/e3Nv7xCc+IYSo1WpXrlw5d+7c/u7e0SNHPO54DhsOh0HgddvtdrttkWi3U611o7Hved6JE8czka2trX3uC59vNBonTpw4ffr0sWMrr71yMS/SMAxvrN+EoAlrLbKkyKUo1E/8+E9euHBhc3MzjHylzD/+49eMMR73irSA63PkyJGHH37Ht771rW98/XEv8qemprTWeZ43m43Z2enFxcVh3CcEXb9+dWdn621vewhjvHFjqyjg+XWATApUsiiKSqWS7/vtdncwGLguRQgFQVCpVDY3N/v9vpRyemr2+LET3W63cdDK81zrse7Jdd0///M//8Y3HvvHf/iHCy98Z3tzEyG7v7f75De/cd99b3rrW95UrZbXbqzfWLuaZfHSkWXCWafZOnpsNUkHxqpqteS4dDCK9/b2giAaDGLCWL02PTe7cPddZ1947rn1G9csM/VaSDEaDodHV4+f2G8QykcjNTe3srW1c3OvaTFqt5uXX3/1TPfkmNvCWJ7ncRwDAFGvTRNC9vf3sywDqgJMv4B9A84PwE0wxkhZhJHveZ5UBabo6NEjQeAPh8Nut93t93zfr9VLQuTD/gBMXYAKhLHd2l53XeeWE6vGmJs3d7VWldqMVoZzHoZhqRSura35vi+F3d9rnz59OhmJly68dunSpdWVZZHrq1cvKS2vX99otHvtdqdaqT/88LuyrPjmk9/+6Z/9+VOnTi3NLzz22NcGw3RhYYEgS+ioUql0O50804FfKgrxysuXjh07Vq9PceY+88xzhKBSqXTm9jOU4jD00zSXUnZ7nQcefPCOO+7+yEd/amtzDxP3//xP/zfCvBDipZdempubufe+u69dXbvv/ntfunDh6ModOzs73V4/zQaLS9MrK0t7+xsmlo3mrrHCGHP77XfmeZqm6Wg0Onbs2G233VrIfH/3oNXqHBw0up3YWmx0mud5gzXCMMTE1ut13mJ7uwfIYsYd7jqYojQdGWOyNBOStFqtSqV89OjRmze3i6JACKwSLGw+rVaLYOn7bhCFMMjknA+HQ9M3cLi0Wq1KpeJwzoNASqlUwRhJ4tHKygrn7u7uLkF4YW6+1xswQqMoAvJ7HMfgsHHbbadXj68ghIajYXoj3T/Ypxz3+t2be9uu60b7gZR6aWmRMZ5lWavZGQ6H8WhQ5GMAsVSqUEz7/b7VdtLiskmRisd1qjadXg/YgkUhkyQZDod5Looig8lEEo/q9boxDqV0MBgYOz7ijTGEUU6oMWMtoZTSc92RzEHI2Wo0fc+nlG9sbLVanSTJTp48/cf/7U9ef/01KaUSAiFUm64FpXJ6c/vytas/8pEfu+vs2d3dm+vr69VSWeQFwlhqHZZLntaeHyKEgF3eTUfW2qmpKYTNME7hw1DqcM5lIezEjA+qEWj/2Hfxgw4rW845pczaXAgBUi6MKXccxhiyVsoxzMQYowgXxkJhgzFGEwk/wFWMEUIceCOMkFJCa81dxyAziS83hBApikQm2Fjfdw0dd6eMMYIpxgZIErIQyHGMMYUQWZL7XiDyAk3ofoQSaa0x1vM8zyPWxNAOAQDNOeWcO46BE3xMRc+RtZZwimDMT+mknwEaioZth1KKwKyZcoSItcpxHM91Ye8CXAa+4BiFQRxTSjlXEtwGLJ6ExMJ4AOhFURQFQTAcDq0xmNJhHEdhaC0YuRg1ifumlBFCfN/nnIN/qzEGnA0wJY7jAkcVDgs4DgCZwmMzDS6lBKTd90IAEOGKcc6xxUVRIMwppZw7kFYHvkacc4w8Y0ypVAIvSIyxHwb93hAhRBj0e7hWq5bL5TCMlFJpGg+HQyEEYPeUYtd1KLbZ+MHJYcHkRjiOQw11mc8Y4dz3fAcuvp+6aZoWRTGMu67rVqq14XCIsDly5IjrOsNh3Ov18jy1VjOMCEGOwwBrzvPcYoQh/HliJM4I5a4DklCCWZ7nlOEsN7ATWmunZ6qMgbuVu3xkoRxVOp0OQgZjJI1CaOw/bqySWluqy5XAWouQlSpzXb9cq1BK2+2263taGyGU4zjWYGUNJ1RJ5XJPZIo61GjMmKu1zIuCUdfz/IkTNHGowwnjhAWur40BjgghlFLqeT40/1JKa7Hr+koq0GhLOXId31pr9Jg1AucjdOyH9FWAaAFupt8VenmIEXBCD0HJw3GIpVZqjSzBRruME0K0GQMQaMLoBzM6q4BZPHa0gEd+olBxjLbGIJA1K2WslYQQBzOjTFFIWAygqszzXAhRLlezrKWU4oyC5h0ighmjpShkjLVaDc6jY8eOwXc0hjQaDcdl8KvGSBZmxhiIOl9YWMAYG7MNDmBGySSJ8zz3vIAR5/VLV33fK5VK6+sbjCKA0Smlvs/KpRAjFnd34iRxXKSUVUpobefmZqwlYRguLs632+3FxfmikGma1WpT3e42MTqJUyUkdf00TaHpcxxXamWMQZgyRjY3NzGmjDnXr697Ll9ZWel2+r1ez3jjYNU0Ta1N0JgSPkbogiAAGytGHTMRniOCD4l7Fik4aw7xF4QNwQS6EvghNP6WWAAKYMfmnAOAArWWlBL8WGH/QQgBrQRN3PmNMUZB2Nr4A2utlTTWFkmSlqv/BHqIgc33XS+4fRhj13UxJrB3UsoppYhgePcoipI07vV6jDFkSRAEAHPiKAABAABJREFUcZwQQoqiyPOsVqsA10cpNRqlGONKpVJkOaw9YtFk2eMkSRzHwxgvLCxcvnz5xIkT1tqvfvWr+/v7oKIIQ99xnMl4pnAcHy5F4PlALYKr6rkB5sjzPNd1jFRaI6MMjFOtxYUswNgaIWINFkpSSrUqsNVFmmhR3HPbrd//fe8/e/utM7VKr9v0qMW6KIecU+w6kZSFw5hVuBYGw2F8ZGG2GoU3rMaIFsmosbdjEJmansE08cIg8tgPfPA97374LX/9pSeuXr364vPPzU5N33X3PSdOHD916lS9Nv3lL38ZUQK8R2MNYVQpxSlOkuRrX/saeM27rvfXH//kxo0blWr5T//0T2/e3Av80plbX61USz/4Iz/0oz/y0YWFpb2Dta985SuXL18uimIw6EHVnaSxtYhxhhCylnLODLLE2mq1GoY++ARaa7lDPc/TEzOow71lIpVTSin2T5ObETDvjEUQFme0kXa8XYCMW6txzcb54Y7kTE9PCyGOnbhlYWEhzUYrKyvbzzwPMNHy8vL73vfeD3zfB8+fP3/16tXV1dVqtaqUcl33q1/96uc+9zk4ODqdDoAh5XKZUpqmydz8zN133/WhD33oU5/8m6mpyvGTq6vHjn7irz/1+pXL97/pgVa3wxg7efKk43vNTnu/2VheXs7zPCqXwjC85eQtb37Lm8/cfmYwGHz1sa9Wq9XFmflWq/XhD3/oueee6/V6x44d29jYGPZ6zHU9zytXq9vb22BGtLe312g0vvR3X/I8b3t7G5htQeAvLx9ZXFz0PBdQ8osXL8ZxvLKysrq6WiqVHnn7Q5jRubm5oijCcOwCChccKiggVu81995835s8z7t46dJLL700HMbWWobJoTsrTB8t0oQQg8cnBdxBO7EVhVIEFFdwfyfMBtbrDZQS0NxVq+UoiqB45pz7vp/nueu6gLPrPEcI53ne7bY9z0ME53nB0pRznud5r9fDBFtrDwny8C1gzOO6DtRdsFNZa8Hi7HAOYSdGH4A0YoxFoZXKKHUc19daN5tNTFFW5FEQKC0AwiUU+a6fZ1mjKNY3rhtj/chdPb565rbTnPmLi0vPP/eCUkZq4XoBjPDQhJRNORFCGKQ10kpplSQZZn06RAiVy2WGsBoOBt1uH7xKgyAgmGiFJimsk/r7kMD8BvL8BvSMEMIYCSFHyXDYH+R5apFByCBkikKHoe96nBCbZiLP0zxPz58/f/XqZcdhjUYjKoVXrlz59refm6rP/ciP/OixlSP/8ld+JU1HO5ubb37zm7c3Ny6++rLrOg7j99x9t8Npt9uVStTr1TgezM0uLC4uu67baLT29vYKIUZJgjGp1WpSyiITKysrpajaaQ/W1m64roesMdhA4+daMHsiGCNOKGbQvUtCcLPZlLJ44cXn4c45lAHJ0Rjz5S9/2Vp75syZsFyC39NoNCzSFI3r16gUBoEXhHVCbK0eRSU/yzLPc5UWUkokTRiWHMfRyvT7w1qNlyu1m7v7aZoy5py85ZTvBzdu3Bj2B5VKJU1zSqkWGjw6n/72s67ru9yjmCFEKOGMGVEoaw1CNs1GhDlLywtJ2hsMe9s7m8dvOcL7pFTzl47ONBqN7a2bo1HMCK1W64297rAXH11eKfKmkWp+vpZlGaE4jlV/2BsO+9Mz9cx3YcgZRVGn0ymKjDG2f7C7v7+vtXYYS7OR0EWp7A+H/XanQTgJQo9gZi1izCmKLE2T+lTFdWm5XEYajaWXhmVZkSQJAJGAWxljMKNYG2PGMhwgkCZJIkQ+GPTAB9ZxnEJk5XLZ87xyuTwY9IUoYGQExYRLXDuZ9UEVYoxBk7hqwG6mqrX9RitJkjRNfd/nnNbrddACT01NfehDH3r+2WeTJAmCwPM8oAaAJM33/YWFhTfdc//6+vrb3/q22tTUP/7D1/72b/92Z2enVpuSUlqDHcdJRqPPfvazd91116/8yq987Wtf+6u/+quf+ZmfC8u+lCIIQiWNUgphqG7Hto8IYzIudhHCRGvFOcuyrNNpJemQYlQUutcdYuS8/MrrrV58y5mzXhg0Wx3M6LVr14B+m+cpmCBnWYYQApfSSqVyxx23YYxfe+0iJWR6ur5/0G2321JKhIiWCiFMCDLWUDzeYSeVHNne3qaUDofD1dVVx3EeffTR73nvezqdTq/X8zzv3nvvpZSm6ahcjvI8N8ZSSosiS4t0dnZ2YWFhd3dXKQUEL8/zKMNLS0txHLfbLZCxwOynUBIhZJGVRiODkDZGGurQ4XDY7XYZY9evX9/f3y9yGUXR0tISp5hSmgvV6/U4J0ePLj/xzW9EUbSyurS9vY1QHWkzMzMzPT3daLQ2Nzff/94PLy+t3nX23ivXbly+drkw4tHPfGK/uf2Lv/SztRn27AtfP3rkSJKkvV7vgx/4wHA4fP7556vV+v5+ww89x3GUkrCNggpJa12rVCmljUbD98MgCKSwUug8z7VVy8sLUsrXXnutKIpKpbK7u5emeTLMkyRjzEGWeF6Q54hzT0vUOOhbyzineWalsowxZPHBfm/Qz/Z3e4SiKAoq5dl0JB3Pr1ZLQqYY8zAMi6Lo94cO4xqx4SC/+457X3zxxSKX6SiZn5//x699/cc++hPvetdbZ2bmRqNRvT49NzPT7XYP9vY7nU61HAVBkCQxxnYw6AmRM4rCIJCyKKRQSm1ubn74wx+u1qdu3rz5C7/4i6srK7/zO/+1UiovHFmI+wNGKOHMqjGPD3pFmEwAY05JY4wh2BCKxrQgpbVUcRzff//9Fy5ccF3XDcB72uaZEFlxcNCcnp6+5ZZbgPa+uXHzqSefPnXqVBBEw2FcFIJSWolKXuQrpRA2hGKL5DDOCDHWylFWhGE4uzC7v79vsMlE8djj3/C8AMwfzt5739WrV5njSKm55yNCVlYWP/wDH/rkJ//6+vXrrUajzfj8zOze3p7InxmNRnfcdddv/Mb/8fi3vvnEtx6/dn1AKZ2dngkcItLh4sKMKkTzYJ8RXqtUjy4f0wYpa5jDu/3Oc88+tbO19f0/8OG8GLS6HWu0EFoKc+a2s5vbN69c284F+cLnv/ziC88HHqOMHDt+BBPlub4QYm1tTWvtui5GCGS/9XodbMoJIVAzQbtljInKlWp9qhRGpVI4HA65Q6NyyBhTSt515l4piyRJEDJJlgLq1+92GWNh5GdZ4Tg0z7Druo5LpSy4QzFT09WpQdwvCillprX1nBATc+n112ZnZ8G8/sL5Vy69dg2kYUkvbfnD4SDDyAv8wFrd67cwJmduOz0zN7e+vmmtvf322++9501/95UvbW1tK2m0stx1EWJJUvR7I4eHgGgPh8MXn3nhgYce/OEf+cFPfOITQRDMVKer1XK73VxanmOc/MgP/9iNGzdK5Zmf/NjPEuz/1V/+jeeX3vLg23/nd39ze/tmXgxeu2S01qdPnx70u67LhSgsUotLs5TSKPJ/8qc+muWDb33rW3medrvdY6u3bG3ujEajUjlECMPA2GJTKVURIp329SyVvh+JIsGY9vt91+Ou6yTJqFwuMcYw4nkuet1+fap05MiStXZ2bjoMw263QwipVssILW9sbAwGgzAMjTF5nmqtoyiSQiqji6Ko1+uLi8vD4bAosm632+v1kiT1HA+ZsXkoJ9QYI/MCTivf90ulUpbma2tr09OzUInOzc31ej0wXfF9/9ixY6VyJESxv7+vlBqNhtCrT09Pz83NHRwcbG/fvPvuu6vVWq/XazabUspTZ25dml/Y3Nzs94eU0ngQW4u1kod0P4gWIYQw5hSFFEpDR8q56/v+sZXjMN03BoF+KApCMGMBWTHU4kCyQwjJvDDGMsbAV60opOc4AvYKpXzftxZfu3IVYzw/OzcajXa2tjHGjsMKISB9u1ypnLz19K1nznz+C18opIjjge+7BhtLjCwEwcwYzRgLw9D3/aIooKav1aq+6zWa+0II2KCgWXA8F672IdiktTbIYkwO+UQAScBRSCnjnOeZQAgZgwixGDNCiDUGIYKQRtpoIc0bXsNo3PvZsY4buo5DqEIZRRix2ApR+L5fq9WgNdVaF4VUUgDiAyUNYwwTNBgMpNScc6N0nueMEGQMRogi7HKuhWQu45xLKbTWoPGy1jJG4YQ12GgjTaG0Jo7jADGNEq61zfPC87xCSfxdTtZwaxBCGFPOCaxGKaVFxmFMAXCjket4jsPHFbLDhCDQC0FUvTESk1wryxkmmFFqlVKAtVlrjVGj0cjzHXgj1/fSJCeTwDSo3wgBsAAderzABTxsnIDwRQkBCQjQ8Tw3ANAEjSmEb3i2KoWkhBQQwhjAR4hSqqUqCuH7PiEY/qHjOEUuW61WFEV5molCjeJUSA0y9lwUcK89z6MYO5RRh2cySbqxtdb1nTH8pITSyhbW933XdbVOoRE1xjRarSiKpqamjDFZVlirpZRZlhECrtkCITMc9qemZhYXFyljnu/4vj81NZWmCfhyGqUdx4HaCWR5kHNO+ZhMY7WWUhljCLVaY6WULBQhBBOSJIlFGh5Pa22eiyhyCik2tzfK5erC4kwYuY1GS4gcWuhCSaEFwsC6imZmZuDt8hzBHcQYCyEcx5Vccu4iS4xBRhbYcRHCotCBHxVFxigrh+XYxEKMCBHlUp2SJCky13UtsWPsBWOkLDbIZQ7GGFFEKD6cOjCGRC6zrMCIYoS10hIrz/MoZdAIQIuOEAJ+CVxtAPVg4AFNK51YxMAfCCFaKk0wHgu2NGMMU0opIgQppQjBjDGXuxhjZQwQCWWScM61lJhYBzE8CT5xXZdTLmUhpRRZzpijtT2UzGtlhRZSaGOMEgLGD67rHjqGb25upWnqOr5SRmsRBBHAQELkWZZFYWinp+v1ujYK0mWtIdvbm2EYFUVBMANo6fDrE0LiOAYXrE6nt7+/zxliFAee7/oepZxjlxDSavbKYfX06dtGcdbvj6rV+s72nigyz/Xb7TbCdnZuDhOllFhaWuh2+1mSOC5TOndc4jisUqkkSXb16mXPC5L+sGd6juNpnWZZcWhhoTXDeBybtLGxFYZhp9NL03Th5AlkiRACYyryQskx2Wg0GgF7LAz9KIrgHyolMSYY4zwXWaYIIRaPY+6gSrfWAgcXTaij/xN7FCALjRGZbCbQiSD7hs8pjOi4M6bOTBYPOaSRIoQKOX70kDKUUk2IsVYrk6Ypqv7P0GEQoGOr89/9kyiKVpZXrl2/zqnDqWMxEkKAe7jruoRRKYsoik6cOIGY3t3dvXL5mnBkkfUZY1mSK64RsiKXzazFOTfKJvkoCEIttdZGa6OUGuZFkmRpmgLZcDgcPvzww+9657sfffTRn//5n3/kkXf+wR/8webm5kc+8pGnnvpWs9kcDyzJWL2xuLgI804pJcUEUeZy77BDTNOUTI48URQYA7N+vHtDO4CRQQhJU+SjpBz4P/OzP/uOtz54fHlh2Ou8/sqFLBkKkboO45yWotBqaZRO49F4BMW41po5LnOcPBetdlcZbQllfK1UrXDXcVwXGVmv1X75F37u3IWXhsPRqZPHlhdnXnpJibw4ODiA2BbXdQlBlLE8zyilhFKL0TDuA8z6i7/4i2maII3SRPjLpZ/56X92/NiJD3/4BxuNlszU299+r5To9uL44uLiZz7zmQsXLoxGI0q5Upnr+BbpNM+N1aVS5AW+MaooCs7p0vKClLLVbiOMMCFplgGqCB03BQ8EjNU4zsJQ93+eQ8CLjHn3GBIjxj+06JADNzatGrufoSRJ7rvvvg9/+MNXrlxZX18Pw9Bx2auvvgqP//T09Lvf/e4PfOADUzNTURT1er39/f0nn3xyY2MDY9zpdEqlkjEGDGQAneTcSdPkp3/6Z0+eOvYP//CVxx//+trGtUHc//o3vnbmzJ039/fmFha452Kims3mc889t7W19eL5c8zhuShyUdSjkBDS7XdykX3zySeeeuqpOI6Xlpbe9qYHG43mcDgcjUYzMzPvfe97W63WY489hjFO0/Tg4GBnb/eP//iPg8AHO3uQOACyEQRBOkqmpuqtVjMIApiC7O/ve543HA5PnjjNOb969Wq73V5cXIwq5SNHjhhjLl++/NJLL+3u7kLZkOf5Cy+8cOzYsYceeqhULl+/fh2E5mmadIdxdaLcpZQqLbTS1lqNxtoI2MrGSLQdCxHeGGJ9Fx6trAVcOJeiHw+Z6xRSQhJJu92mEyNvQBWEEMONTWutKSOLUZYVWZYtzM0nSQL4mBv4sMXBf7XWjDlgmMYIHYNIgMvi8YhdTyw+0IQpTyhCCGPLPC8wGBGGCyWUkBoJ13Uczy2GGehjgNHVaDTK5bLjsjwThKBz585tb+2+/33fB7+zUiklWSqEkLIQspho5rRQkkmGKULIKqG49BESxjWFlEmSsYPGvhq7I5kRJhjRMPQPt2g8sW02yJIJzGzNuJazyKBJciDGmFAU+p7DSZryJB0IITHGR+cWF5fm47jvuCQeVLQU3/jGN0ajtNlsMka+70MfvHnz5o31jbe//a3HVk/2et3BSF6/fv3ZZ595/dIla7XjsDDyu+1OpVqCjDjGiDYKIVSp1LSWGxtbeZ5PT0/DhR4Ohwih5eWlhYUFQmjoR4N+Ak7NSTKqVmtHj6yCVVan00HGGqMwpp4XFEUh8hwzWuQ5Qqbdbpcr0czMdKfTBfPfsZMvNow6w+HQj0KQbmFiGeVayGq1WqlUgrLr+y53iJRFmo44x0pRxEnEAb7077jjtgsXXr5y5RqytHHQ7Q9iQmgcp0ePTh89ugIjcc5dKXUyKtI0JxYTzDCmYELCGMEYKyERNmYi0DFGaW0RRc3mnusxxtHa2lq/314+smRwcf78+TO33v7WBx+4dm1NFFoWAiHkum5RFLfffufBwR4Yh4WlqD49ZSllHDkOu76/U6vVKMZf/OIXLcFTUzNa61Gcaq0BXmeMOQ6JoqDR3BMit4XlnN99970Y0bW1dRAO53k6Ozt948YNLWWlUup0emlSAPcZZoCBH0mjoZ9hnkcmiT2DwWBhYUFK2Wq1gGYyGAzAfY9zLkQxHA6stRDXNhwOgWUD9JzvLhqgFIbdKs9zx2F5npfK4eLiYrPZjOO43+9Dg0opTZJkaenID//Qj54/f/7ylUvlchkqXehjPc+7/fbbDw4ONjY2jh49+qv/6l9P16e+9KW/U9KEYdjtdrElSkoWhm9924N33H5nu90eDAbf/OaTxJJf+7VfAxidUGO0IZxYiw7VNPhQRoCQwYg6zCBEGHP9EDM6GgwPWv1CUeaWHb/63vf/gEZUWzpMRtbaMCyB0xZCpt8bjEYjUPkBFJimo5deeimKAsdxuEOlVvV6tSgyrbUopOO52BIgq1IM9ovjMT50Vo7j9Ho9x3EWFhba7faf/cmfKjPO7tjf371xYw3aM1B5QN2MGVVKSVmsrBwhBDWbTYyxkHk1qFYqFc9zrR2TCDDG8ASxsd88yfNcSckYQwZxwpnr5EW6s7PDmes42Bi0t7d37NhKr99P03Rubi5N06vXLiuler3O7u7u7u7NIksPDg6WFpff/vaHL178zNTUzPvf/36EaZKMLl58+ZaTJ66uX97audEdNv7mM389N1+3SO7u3+x1BrOz83feeefVK+vW2u/74PdfW7u+tbWBkFVKQ8tarZbjOOacj9Kk3e5AzxzHMaWcUm4tVlr3+/G5F18eDHqu6zYOOoPBwBikhLGGakWswbFItVWlUoky4jqh7/tKiULmyGKHB8BZk6JQKjZajo8Kg0vlsCgyx6Wc05WV2Up5qkitEc6gn25ubJfDEudekRXpaHjXXXcpMvq93/6df/iHf3jyyScRQmfOnPn1//1/u3712lfbX16+646Zqak4HtTrdSnFmTO3Xr58WYocHEIAYRn0+u9//we/9wPvv3zlyt7e3uNPPLG7u3+p+5pFOnA9LRXnHvQz1VK5WvWKosgz8YUvfAE49VCslMtlrXWa5NZYx2FRFMWD4d/+7d8CawkhJI0+duzYfffd9/LLF65dv7K9fXN1dVUp6fvhysrxl1566fLra57nWYMRxnrs00L9wGEcdzqtWj2qeGVOWaXiDtOCcx6E7i0njhVFce3qmrWWEIYx7nb7Wus8F54XWKsIIc1mUyJy8pZb/vSP/zhL0lKplAyGv/u7v5tl2aXLrydZWqpGn/vspy6+9sqNjeuu795y4sTZO065gd/utkN/Yb/b2t7ZvuP0nUeOHAkCv5DICLmxs/3ss8+8+sr5+bnpSr12vLY8GMXlUu2F8xcQYt/z7u+NypXXXnv99373DzbWr2NsGvs7nNlSqcypVTaHAgUIC5QQKbQQ4ubNm1AbpWnKOQe8DCFJKZVCGWNIhTZaTcJwfbp27Njq9PR0pVLqdrv9QTvLM7CDB4shIbMgqOd5AaSYdruzfGTRYsQcKlTuEQdhPTtXZ9ThbrixsZmPUqWE47DhsK+UKgqZjFIp7erK8XKpntSTX/gXP7e7t/23X/wsZ57WqjYdzM0tnD59KkkH3W5r+cj8Zz7zqT/6oz/c2dm55djK0vJCFIXD/sCMLeSk72EgtkspEEa9XveHfugHn376ySzLuEsuvf7KaBRvbl1PkuQnf/LHH3r4rX/5159Z/vbqOx55336jceHCxYuXLt5+2+qxW1a1ya9cfo0Q3Gq1ttItQnBRZErnpHB6ve6//tf/8u677z558uTx48ebzebFi69dvXodkMd2ux2Enu87/UHbC9xabWqUJGEpsoaP4owxx3VYGAVCZqM0DQLvxKnTlUotGeWc+a+8cnE4aEspZ2anwjDsdDqDQT/LstFo6DjO4uLi66+/XqlUoOIE+GB2bmZ2dnZvb29ra8dxnHK57DhupVIzBtUq9TFDymKHcimlMTrLsrnpGWxsr90ph9GJW05ev34ddtG3PfR2SukTTzwBw1RQE+819i9fvuw7Lmyn5XLZ84Lp6en5+Xlrca833N3di+NRMsqEENPT0ydOnOh3uoSww/xJ8AuGlxISGcsYY4w5jCvuIA02CAgOlO3tbYsNTD6A3xGGIUgKCCGcU+5wLRWljFIKWiVrx02RmcTz+pQKIbjvp2nqOB4U63meU0qBcQOmZ7VazWLT7/cVUp/97Gf7w/5P/9zP/uf/8lu/+Zu/+c0nnsCICikIUTKWvh8cHBxMrHvHjgFWm3a7HUYVOMdHoxjIwi4fU0K+C2O1Y+O4ifCQkHFDyBiHc9AYgxABVwQpCUZm/BcwAKlWIzDLQ4QQTIlDKCFEo3FtDKhcEIWeBwnSBShtpZSjZAjtAegL4VoVhQSYLIoia9QYH8fYZY7VRktlrfUch1Kq1TgHz1qjzNi6REpdFIkQAhNLCcUYmMvcGAMmszCLYoxhS4mBqTw6pP3CxeGckknko9YaYZPpgmAHY6yUNMZIVcDRDy2KlBLYhdZarazA0ihrfYoxLDAy4SFqa63rOm+QT5XlnPt+oLU2CuxKxuxyQshY1mZtluVZljGHg0k6oQh8hzDGRS6NMdyh1KXcoUmSIDRu/8bZPmocWQxBgmhinwqHLKSJYMzARDsfplIrKAiRpdzxhTRZMVRK5Xm2euyoUsoYxVwCUK/WAhYGIcQg5fme47n9bs8YU8jMmDIsIc/zIPUB/neUJnRsBWOFENpI33fL5XK1WmGMwchcKXVzbxcu6e7ubp7n48KMcZjogIULIhjYUlZITMeeksRajLCRWEiNMYKwNc9zjTF+6BHMMFZxHEdhWUjtuqxUqmRZRqwBQ/IkjTGisJw4p0EYWqtLpSgIfGN0EASUUowtXN4oKhljep1umuZSaIpoGEac8yKXQuTNZstaiGQcuo7vcM9zA3gEoihyHMciTSnVWiVJBkAt5xyumJAFIhZZDIbarusCViulAqNMuLOEEGgoyNhJZlyX4olpb1EU1o4procYDezSnuc6jpOLIkkSmCJYi4RWsA0e7gmGEKM1bGvwRgghA8oJMva9wRPzHGsxIczaMSFaSkkww4gaa+CLQy6RlQLAuzAMKaV5kTLGAj+C4RznfGJwh5RSStG8SMMgWJify/NcFDmlNIwqtVoNgI+iKKRU1lqpgIXjaK2FECCHYoz0ej1rRBRFnhsYZJVSnLl5Iq9fvzE9U5mansrkaGfrgDv0+rWNNCnq9WnH904cXzlxciUe9UajfrfbVsrkRZom+cxM/dZbTz/yyMMI4RdfeOm5575jlfS8oFKpjEYjIZTvBfAQQZCa67pZlntecPz4kfX19cFgUC6Xy+XyYBBnWSGlHI0ShFCpXKWUuy4di4+Z4zrj6RClb3goY2y0MoUERp46HJcSgqx940SjCGMDheQ4lxUWgDSaTAZXxhhkx3MI2KiNMXkmjFWHfj6HMwMyUc3DO87OzPf6HaCvWoRc/k94NwuBwuB/+LnjuIPBAJpTa63FYCptYD+xAkEbOxwO55fmVo4e6/dG0H1AwBUliDLa7fZgcg9uLUmSE8I4p91uH0bXaZpSyqEUl1I2DppKqX//738DY9xqtT72sY89/PDDn/3s53f39wDE5JxjhEDFOxwOrbVpmh/CaoCZgucAIYgTOhnQYowROG7BKcYYwxYVIiuKgqDiHQ898KH3ve/MseM+RjvXr7/+yoXNG+uUWtfjRVH4rkMI0VIShK02hDB4Bo3FymillEFEGY0IsxhlJMvz3BLCHafd7kzNzhw7XT1z8pawVK7XStaY6Xrt2rUr+40mczwoNqQsGHcQQq7HVSEoQ1C0TEjl5t577uec//AP//BHPvLjQghC2IULL4dBdHVtJwgCbC1jfG5ufnp6Js+LwaAvhIJBBsa4Uq7UalWhikIIyjBheL+xh9HY1qYoCjl5EUKAYA6wPiwe8Kn/fy8YBDFpGC4sRghxQsdpgQTDCE1N4jFht4cve/PmzdnZ2evXr7/00ksIoVEyrJTrtVqt2+2eO3duf3/f9b2LF1+5ePEi3CzXdcMwnJubg0SlJEkYI7VazXFcY4zjuPPzCz/2ox99/vnnn3rqqfpU7fs//KGsSL/55BNXr19dXjh66dLlYyeOBEHw6c882u/3QX+AMSYE+aHnuu7a2trv//7vg2MGQmhnZ+tZjRFCp0+fZoxWKpWVlaOnT5++9dbTsFF86jOPnjt3zvX4KBlSSkvlcH5hCZhz+/v7Ssj9/f319XWt9dGjR6enpweDwXA41Fo/9dRT8GivHl3e2dkxxtRqtaAUxXEMcka4PvAdITx5b2/v05/+9PPPPx8EwenTp+qVyoULF4A5AescYpkNRoxQeB5hAxlLeycal8P5AZ4YmwAujCg1GNHJ9KVUCotCCq3q9Xocx91uVymFkJkUyRYzOhgMEBkzkZvtjixyWEiwluDnWZZBQBfwAgl/g7k8XjkYYYyZw+GxZYRiiASA8lhazrnUAiHkUIax5ZTUatV+v6+01lpPTU2BL1mSJLu7u8xBlFIhFLJsa2vrsce+ai1utg6q1SpCaDQaFgJSE63rusbQIArlQBcyz7NMS+XgoCgkDfjy4uyt9C6GkJKyyIvMWmsMisIyYyjPIZMa1v34axiEEPofrDOQJYeW/Bhb3+OZFcM4Vjr3fcearN1uU2IYE5Thg4Mu6OsbjRal9K1veZvrUYRQvV49ffp7ldRZVszO1W/ubT7++DfardbUVC0M/WQ0Wlu75vteEHqbmzfyJC2Vwzge9dqdcjmilA4Gg5u7u91eDw6JEydOzM/Pr6ysjEajNE273e7a2o3ALz341gdazd5oNMryJAiChcW5LE/SJHe5gxCRcuzQ5PCxl8X0TP3gYN9xHM9zKSVHjhzxuLuxsZHnuZB5IbJiUEDpEwSBUor6FFqmct03Rq+trd119nZtRNweVqtTnhcApr+3dzA7Oz+Kc61QKSpzztM8MdrOzsz7XnjptctJkvT7fUqpTHKEiOt6RhhCGEJESSgEx+XLeJZrwQlIcU7rU2WtldaSMW8Up/sHB69duuq61hgzNTUXhqGSJsvSclQ6cXx1b++AWDwY9ODzG2Sr1er80mKWDzc2Nq5ee10KnWWZ63qWYCFUrzsolUrjCkxLY1SpHPi+b62dm5vxQg+eHGNUr9fpdNqe533v+9/z8ssXpJSFyI22xJowDMulYHt7G0Y6GFEhBGbUWkQpwxhLrRhjRZpJKTY2bmCMtbbaQJQHz3Ppum6n07bWRlEEgCMY58ERNQ5D1xoOyzFzQes0TRkn0JX5vn9zf08UCrwsfd8fjUZJkkxNzezvN1599dX77r6n3++nSe46PiYCJJzGmCzL9vf3jy4feeihh970pjd9+tOf+su//Mvt7ZvWYNd1Qz9I09QYtL+//8ILL0gpn3322dtvv/2Pfv8PQERJ6fhcYYypcRQnBUf0/6ESwsgYpLV2PF6fnspz0Wj20wLV54488sg7f/iHf7DdbZ976VxaxDs7u8aYMIq0lnYimoDGCagNeZ4XRYbxxDzdK3ue1+uPxmMSjIui8F0PbqLMCxitDwaDhYWld73rXRcuXNje3tZSaa1v3LgBlCs0ppmQjY0NSin820JJQgihxPE8SjEhOAzDhYWFNE1HyRDa2qNHj9TrtVarBSq2w1Ru2KYRwlrnjDGkTVEUjsO1sspKMFDWWmNM4Ubv7u6maQptBud8lAxrtVqep71eT0u5u7vruX6tVvM8T0r967/+60FY2dra2t1v3P/m+65evzYcDU/eevK57+y+9tprz3+nxznd2bz2Mz/1c//m1//DH/zeHz/22NePHj3S7Xbr9Xq3287yBGMMpqNSQpKSzbJCiMJ1PWCOMFKyhmhtEGJZKndvHoSRXxQqTQvXiYpMSJFZS7SykMWIEUrTtFItB0FACCoKDcw1yPkkmGqlrSGUuAC7wA1NkgShIM/E5devV0rtTrvPmDM3V3n53MW2bbued9899+7t3XzhhXOIh0eWlz/36Ge6+/tBrXbP2Ttvbu889thjyKgTx49TihuNfdd16vUagiwdq0FqhAhEPNnf/u3fPrq6cvnKlb/7u7/jnD/wwANPfOPrFDnG6CRJmIcIwVEUaKSXlpYwxru7u5Rho8dRy9ZacKey47wphbF1HPbyyy/7vs+oMz+3eO3GtTvvvPORRx6an58vigJhc/nyVSHyhYWFLC4YcoxEJHA4B+dQMsrSXr+9vLw4PV1fPjIXx3GtHoV+oE1OXJ7n+f7Bztm77tnd3dVG3HXX2Zs7e+973/v29g6e/vaztepUmqaM8V6v9653vasfj77wuc/df9+bPvnXn1hcXCSUvvLaq3DYSyOfeebbX/y7zzoOXzgyJwrR7+4/8+Q3777v3lxml1+/ODe3sHJ0GUT0CCHHQ9Lwly68+tzz38mz0dzczPbO7vnzBxjjk6dO1evTnhvs7+6Jra1Ws1lkIyGyWjW6/3veOTtTe+rb36QOr9Vq5erS9evr/X6fc1dLBdFPY6EoQgihOI6VMlEUKVXA5ua6bq/XOzjY8333xMnjx46tai1vbKy1223OOaSWwfys0+lM1UvG2H5vKIQWhbIYZXk+XaoxzhmLEDKj0RBRWpuuIcSkFEKmSSo9z1OqKArheYHWtl6qCJnfftudr1x8qT8cFEVx771333HnmZdfvuCVje8FNzauKIkwKihD+wd7juMcPTKjdJakynVwq72PLLHaBEEQhB6lNNKhUoXWMsvj3/29/yJkWq6Fq6vLOzs7rXaMsZ2bn/vDP/o97jr7B/177rnHd9kw7p8//+L8wrTF6Q98+D31qfAzj356Y2MDvAsRsowjsKqoVCqNRuNjH/vYzZvbDz74oFJmYX7p8uVr8TChxElS4B0HR46uTk1XMKYL9x6xhrz44kvtVi8Mued5o9EwKoVK5UHoIWQuXDh3Y32nVpvizAPordVqNRqNJBklSeJ5HgjKkiQ5duwY9JBFIUHTOhh2Bv24Wq1ag5NRhixzXZ0kSeiVKcNgX14KfFCHHPaxjDlFEXc6HWvRQw89tLJyDCG0sbX53HPPgekTpdQipLRut9ta6yAqjUYjrU2Rq8AvpUmRJsX01EK51Oj1esgS4FyXSqWbN2/u7R3kSer7PjgWU0qLQhSFxHbMbAVanOd5nPM8k9BLgz/AaDS6dm0NnG1gB0YIpWmapimY1RDqSkKUkDD99VwXzLUAFACHPjielBCcUoYJwUQZA44NwGnNMqW1brYObj1zRhghlCiEqNRrX/jC544sTt9zzz2PP/747bedGg6HnWbHaGQxwtYIYKVxLgu9u3MTPh4cc5B+jhCSUlryhp8d/AHqXDTBxIHPCLcDOgcpgQ2NEUJaa2TGpQVCSEllrbUEw3uNMQ5KlTFWaa01pZgxZpAtl0qrq6tZPrLWxnGstXYcJ0njCQlawSmAsYWHd3Fx2XGcg9YBIpgQxBjzXQ9pMxqNkLGcUMuwKBQhJM8FIlYZo7XJCuBKW0AiCEVCKYQNY4QQAsATpVTrXAhpjNHqMMp8TASGfZtSSik240gr5vmOMabf73OGgByQ57mxqhxGjBFjCEGIYUI408gajaSUGFNrcZblE/h4zOix35XDwzmnnHHHk1IWhXBdl3oM2KPgLQBz9DEkRPAh8VwI4Xrcdd14mIBXJnwL+Nzdbldr7XDQtKGxxNsSjGihJNxZoP/AknAYA3BfyrElYpHlkBOrFSmXq5xTIUSSxvBvp2ansiyhlHCHWESNMcaKXCYIIW4DrXWtVp+bmxsMBu1GO8syh/E8F0WWH47zsywzCDuOwwi1Fvm+z3gIDs6wAziOs76+7jgOsiTPcoKZ63EAYV3X1VL1er1utxt6PjgMAETLGFNGQyEHl1Fk1mKktECaFGkqpfQ8z2qUpnlRZJy5jDlK6Go50Npwyq21UualUmQtztICY1wqlaama9bq0SgGWQYhBKTWGGNkEej/JmoAygOXIkopQ5ZorY1G2khjDOfMZa6eWA+DxM33wYGdG6OshUkP1A5WTWJUEEJGWyjCYf0opUGjYCeevK4LCgxuvsvw1BgDoG2SJNaiSak59pY5LLmFEGEYcs7HfDHGwHsEFhVjjFIC/xZP3H5hBXLOPcdhjIkCfjNhlABqZo0hGBPqCKmNsVob18XAKEcIQQUehqGrXIPHlneUUs/zhv0BCLOUUgiNddBCCNflkFpWLpd6vU6WZa7H80IP47RcjgaDWI0tg6jWmjNXG8kmSXrtdrtUKk1PT9dqlVajKYWmxMAsDag/VNLhIAtDv1qdYi7Z2NgocoUQ0wpPT1fSIu92u4VIrl+/vrS0JITIsmRxackivb1zg1LsecGJE8fPnbuwvLx8bOWE1nY0Gm1tbjebzcPJKJmYKBZFsbe3l4zSudn5ubm5PBdKac6dPC+UNAihdJRUq3WEUDwY5TLjlFEcws2CYwh2JMaYNWMtwuGzTAgE15nD5wiDohxha5GGc3rCTDTGWKVh+8VoTDIlk5e1VpvxWOLwUIb5AZ4I1YUQw7i/srJSFMXBwYE28rutdQ9fSqGf+4X/74NvCT7xF/8dIfQ3n/n0r/3bfzPuBJWRMtcTJ1b4zY7HCSFA9my3W8Cz54SpQlJKDbKGGC01JXzQHchccu5KmSOEGnuN8aZKuTGSEKakQQhTyqRUazfWhdIzMzNKqZmZOULIuXMXvvrVr45Go4nOWCutKWfIWODdo4ka4JBWedjDFkIYDFMZx04cReAQVLIwxmhRlKLooz/0g+955zuz7uDyhRcHB43d9TVV5PVquRJW/MiHZ7zIpc9dq43ruFG5SinFlDBG0jTtDvqI4MEgLnSmjEaMpUlmCM2VoNzNlRX2Uq1adzn9m49//KDdvfT6tXanVS5HhdQYI2MUZdgY7ft+miYuo0oVlBKpMoQNwSxJEt/3j584GZaqQiiMKdQtSTpqd1qda52bm7tHjhx5z/e8r9vp72zvEkLDMMrzTIgcAH1MMWWWEISIJdQAxMw5dz0/yzIpJTzCMPhRSmVZ5rveZOwxFhL9k683MERtLLGgL0HAZkXIGEPwOKgQzovXXnvt4sWLlUoljmOIxaKUJUkCU7RXXnnl3LlzEP8I/Gg4JuCDcc4/9rGPTU1Npdnw2089s76+4brecDB64vFvHTt+/NLrV7Z2bg7i4eLC0oc/+OG//tSnXn755WajI6W+8MoLsHPWajV4EkFmPewPsiKnlGZZ4jhOGPpaO3A0w6jS8b35pcVr62vW2qMry3meu6H7Yx/5IcclnU5rb28vTkbDUUfv4ltvPX3XHXceP368Wq1+5StfefbZZz3f6XVaBLON7a1+v+/7PpiSUUpfGwyh8ILzJS1yoGlC/QnrDa7V008/PRqNoigEwdDu7q7jOO12e7wPUFQOy4S/oYQTQozDxiZngRynBFMg98A0HUbIZGKsjDGK47hUKsE8GJ4j4HpCMZmmKdTSyJooiuD4BkYCsAbhyOacjwZDsBkBU3LAsigmhwcTDK4Oz76xgocxjC3CbAw3g1CbYYyxNhpT67gu8E6SJFldWQnDsNXsgJ2Xtdbmyvf9cqm6uLjc78V7e3uO41QqZaVkvV6dmakPh0OpFbjtYYzTPDMYGSy7AudptlBbmJ9fPPG2Y7NLM1PdBdZtd9bX15njLi8fZcwBPMjxHGNAPIgwRsaMU4+Bi6M1QgRhjCwC7SGy1qZJaq1GWAmZGCustX7ADMq+/fQ30jRdXFxstVoHB00hZBRFr7/+eqvVOn3rLVeuXJ6ZrV25fKnb6Stl+r1Op9dqNQ9WV1eVUu997/ccWz366quvnjv34pnTJ5999untwXA0GoG6f319vShktVbzfB90N7Ozs0tLS0qLZ597+mC/SSmdmpre3d2tVafSNHcdP0mSVqsFHAchBGUgnlK12hSshnq9XpueyvMUZo/N5kG9Pj09PU0pBQyUUjo9PZ3nuVYKVhia2KlkWeZ5XqlUWlu7DubUu7u7p06dWlo8urd3cHNnDwx3Lr7ympSqUqkFfpSmOUTNhGEApwsgcVprgijGmHOmrMEGI4QZx1laEDxOQcVja3BCKXY9vrq6ghlGeDw8D4JStzfM88KlKAj9V1++qrUcDvta66yUWmUIMUKI7n63Xpvyw4C7vlJmFOfapouLs0LkGSkwxlmWGYMocbOsKApVK5f9wFUKu25ojE7T0dTUjLWaO3xmZurg4KDdbluLFxbnhsPhtWtXKMWvXHxZSlmKygSTKIp8rzoYDOJhAppHreGpMIfHmFIKUYwtFVK6jHOHakOgK2CMSimA1YWwaXeaw+GwWq0GpdLhrg1MZFCMWoug8siyDBNrjInjAWZ0jEcbDBUeIcRxnP39fdd1lVKf//znYesxxigpMMYw347j+NVXXz114uRDDz30xS9+8aknn56bmy+VShDrCfZenBPO+de//nUQyD/yyCMPPvhWKWWz2RyNRmGpNLZvHHOp4DNjOD9glIn0YTWD4jhLs2xmduEd73zPrWfOvuMdj2RCvHzx0he+8MVCplaZyI+iKAIvNs65NgpE1lk2huDBbdBa2+12YV8mjBZSKCWlEmB0iJBxHJfhMd3JWnvq1Klf/dVf/da3vvUff+P/BNGK53lgm1uv13d2t5UyE5q58H1/5fix4XAIJh6EINC+fec733Hcca7gHXfcPjU1dfXqVeCggUUJIM4YY2sRCIGtwZRwxwFSkkIUQpksjPKA4wnmZVrbfn+IsQXTFc759HS9Wio3Gg0pZb8/tBZ/4P3f12p2tje+Xa1W77//zWmeXVm7+vzzT0tblCv+1EyVENRsHihpr13fuHJ57eGHH7l6ZW1+Yer1K5fDMLz33nvbnebVq1fgYIDxrOd5rutHQZgkSb8/uOuuuzZvNLq9NiHEGoQx8f1wemoasKc8F5AQCMx1WNsGSYSQEGkQOJhgqQqpcsaxtZQx1/Miz/MwQd12Z2FhzvM8Y5WUcmpqSimxsb4p8lG7Mex2B6O4YMghhBilQz8QQhw9erTb7TLui7x40z330jfRCy+ff+Shhy+9+trG5dejavX55581xqyursRxvLe3V+jCUhu5oRACCPZhGDLX2dra+rEf/WguChh9F1lOMCLYcu5Gkc2kwnj8jdbWrgGhj3OOHZwkSZ7JQzgAwCNrBfjAlqMQU5am6e23385c5/Of//z58+dPnz45N7cQxwMh83a7V61OJUlGsDMzM8M46UiJkKxUKsdvWdnbu4mtJBTX69Vut7m1tYER0loXChlj4jiu1Uv3vekDq8eO5pm6fPmy67rVanWiCGFKKZHkszPz/+7/+OdPfevJ5557jnMejwYY4zDwjx07trl5o9tv9eNWELpKSyWyMHSjwHnrW9+ysLxkKF6/caPX6x1bPcGIv7d30PFSPyivbW1duXY1y7I777jj/vvOXr162XMrq6tHQfvx0vkX95v7jUYjyxJt5AMP3P2hD3zgHe98+NVXX63VakHoffzjH6fEBQAujmOHcSD7l8tlxlgQBAcHB1LqJElgERpj8kJ0Op1REler5XvuuWdvf+flly84Lut2u0rrNMvgIY2icpZlGxtbyOoorAVBNBy0ECKu6y4sLAShT6llHLsuv379OnVcx3Fc1z92fGV7fcvzPNd1HYdBIpco1GiUYoT29je73eYf/tHvfuCD7z1x6vjdd9/x5gfO7rW2rl69qpV5/vkXqtX67PRc4NEsy0ajkTGoWi5zzvM8cbk/SkbWYGMiQjBQtqNSIGVx5cqlO8/esb6+bqx60/13C5nOz8+Xy6WsyIsij0puo7n7iU99/PUrr1GOXN/tdNrrmzdevzzwPO/48eNJnNzY3BiNYotktVpm1EmS9A//8L8xRu6+5669vYO52YX77ntztxNr0yikmp1bmF+YqdfLrfbBt7/9zHR9plKt7+81pUCu68ZxPBoNrdXVWglhk6bp9s6mlDLLklEvIQ53OJ6fn8fENptNa9EkUdb4vg+c5W63D/UAlLbDwSgK8zxvYkxKpSrGuNlsWQ2OlMYY43GvXp/udrujUUYprtenwdxtNEq63Z61aHZ+0VrcaDS+8+ILUsqlpSXHcZTWYRgOBoNKpTI9Pa2kFpmwHBtDOu2h4ziLCys7OztaEc59zwtKpQoh5ODggLnehFNJwCnIdaGASRgZg7NgigeNE0CQ0M9Aoy7ygjFSqVTgWAFnySAI0HeFkxhjpBSMjblXh23qJLMLv6H1w8YiC7FIAAkBoQMTWyqVfvbnfnq/efAnf/anQhVS6+PHj3/605+Oomh2bjrJRkIIi7Exenl5SQm5s7M7QRKNlAIR7AW+KOTBwQFjFDB0isfIETQn0GlkWaaMBj4RI9Rh3Fpj7LheB5z9ECSlmEA9oLQihGBKCWfQXSiwA2YMem+ALTC22hpijTSqN+wzMsawpJSj0QgEywCTgcoEIQQ2X4yxQ9cp4xlZFEEQGGuNxdZYrZWOk1KVeZxJKShmzPHy0YhSqrW1dtwIGasYY47LgCAJKnvf91dWpvf3m61WyyPuIQp8CC5gjCnFwHcbjUbaSMaC8efUZjQaOQ6jGEPMoOMwWO0YY993OSGaaWQMwcRMaKQYU8D+gsCz1qZpgjFGlgB/LQrLrusiNMrzwncZmtAV4b++70stLEbWGPg90LZZNAabwOMeYzw9NUsoKoqCIEwoY5xwxhFCQGslFBtjLLa5FIQQSJFEyDJG42RULVcAZ1RKWaSpQwhFUhVWM601Yx7jZGqqnonMC70w9B2HZnmitSYMI4M95uN4qJSixkitgOoFHFWlVLfbB0yWObxSriFKlFKIQJx9Ya0hBBlLGWNxHIPWED4MeNIaraUQnutGUeR5ghACSlMgVQAjEooTx3EMwmMQp5DAPSSYiEwarDnnjsP8IEAIUUymp2dd1x0Oh3Ecj0YJBNJSootCUsLL5QgqLkBVjFFSylKpBGysXq+PMY6isjbGGBvHMRy4QiitrMiEMRYjyhiTQiCDPcflnAe+L7WWUuV5ARgrALtSFQCqQkAlxhRIdpzzYTyA3QNqxWKygRwy8THGrusASRDAzcNHFYYKgCCD1Phw0nAIKYKDwditWwvXc7QyhBAHY8r5hG0AG5o5RB4BxYYxEVhYEIQZY5hxOgkItRMfT3g7+LdSSqXGhgN5nruBj7SEXt1xWZYTpQUSqFqtwscbjTIAEBFCFuk4zhij5XJkkXbdwBjKWdjt9YuiUEpQypQxsDvxsU86yvPUWlupVJIkGQwGMASCe4oQocwhhIVhhCzudhLfD+u1qc2NZwghZ8/eHQSB4ziFSEGgIISyFt+8uXf//Q+sHD124fz5za2ta1fXPC+s16br9Tql/MbaRp7nSZL2+/1RknDuBkFg7UTAypiUstvp1et1eECUIEoaa7CSxlq4oQqmXEopKEXAT6yQORnPI8fJV+AJc3jiwLlGMWGMADuEUgr0uPFwEdnDMcP472NMLALoGcBuOJShDKOWWqQn0AczxoCgGPZkGDwXRXH77bdvbW1dv34VTpN/EjrUWn372Wd/74/+cOXI8v/1m/83IJLWTkwVxuAj0soiZqxGaZ7meW4McjnDGDPmOMyVhdLGIIMVBp8cI3LNqXE51bJAFqcit9hSKiDND3mkKARsmEUh//2//42f+Ymf6Q77Uoitra2iKK5du5ZlWbVaXVhYGA6HWTbmdUIYGmOMc4oQAZSNTMIVDyUvcDfRWKQ7FrliZCjCxNqzZ+/6/u///vtPHx12O82tjRuvXZLxyLdoZn7hyOJSUIqYw4uiaHd6PHK01lpqz/McP/B9n1KskQ39qF6dKkRWL1V2Dxr9eDgc9gVCLAyHeS5tQr2g0+l4QXDy1BkvCFePLt33pjcVQjzznRcwY9oYhGmWZsbo+lR1aWmh22r7AYBrot9sEi+oVadfvvhKfxj/xE/8JKak0+xordutzs7Ozl133dXrd/v9+MyZsu+H73//B3d395988slarZKaFGOKkLbW5nlaKofMwWEJmF7jiA6EEGz+yI5nq0II0PWaSciBMW9klv6/X2YiOQLYUWmQbox3EjyRix0KNQADaTabdmIHYYyBhCr73ZxczuGwgCkasCR/6qd+6hd/8RexRYRrINrv7NwslSpXrlz71V/93xAyszOLaTr6gz/6b5vbO9/4+hP7+7tZlmNEkVVCCE4ZSJFgaotATaKNsppODItAfZIXqec7a+vXHMdpd5qDwcD3fYxtURRB4D3yyCPzC9OUmZn5qVarcf369e7+sN/tlsJodnZ2f3/f487C7NzBwcGVvWtpmgJUIrI89HyLDSMMIUswQQhlWeb7PmRKkUnoMRA1PM87aDQ8z6tUqyKXaZqeO3dO5gXnHLZiay0mdnZ2lnDWbrfhyAP8N89Txhy4s3BfDnkMdByyLfEk2VgIgbEFa99er8e5C3+45ZZbOOc3btwQYtycMteBmZzDKCgeEEJaay8IGcEQtiGldBmIfoJxNUupURDHbSiljufqcTr3GEQyxkhZHGZrFUWBtCYEWautwcAVhiM+iiKH8Uq51u12u91eEAS33np7u93e2d06srywuLiolQVND0TRpmk6NV1bXFy8dOmSikWeJWFQuu+++66sXbs5vOl4fLo8dccdd77z7PecPn26qKZf/PsvvfLsZfblv/siZ+6b3/yWJ7/11NLSkdtvu1NryylSY2ozwhhRCmZxyFpkNGJs7MML2d9aK89zKHG3dzYdhyqdF3ni+cxYc+n1l69cvoYxfva5J/O8sIbOzi6cufXOO++803Xds3fffvz4CsKq0TiQ8kq323vl4rnpmZmFhbkoCu6///6TJ04EgfeTP/mxI0eW/+LP/mQwGBw7vnLkyJHd3d12uwNsCKN1GIYwpGKMNRqNRqMBXg3WWt/1qtVqURRJkhPMrLWu64K/vhCF1iaKgmqlbq1tNtuc8/39/X6/m8lMShFFkbVWGc0573a7jUbDGFOtVnzfwxgJrVzX0VpBNZPn0qHM89wXXjg3aI/ufvOtrWY7TdOp+vTFixelsGmaEUIQwkJIx3Gmp2eHg9FgMPBDL03TOB4ghOJRwhgyVjncc31OMJNSuZ4rMyllXhSSMWaMMIowxoxGBgHLBpfLpUq1JE0B16Hd6nLuzs4caTbbqFC9dobMAeMIE+MGvNNsa60IIa5HEQqUli4LKaW5kMpoQtH+3r7vu9x1Ws2ew32jtTXaGoyU6XS6YR7MzU/Nz88aojc2NoQQM/Mzo9HwypUrSTrKs4JSDl3B5cuXa7WKUmp6etoaND+/7FAWulNHlldeeeWV9fUbWps0TYNSBAMf2BeEKBBC09P1ZrOZy9x3fMfhAMH3er1arXbk6JLr+9vb22maur6fZJlBaGpqaoy/G8kdijMMxQ08ckEQYIyKosAMl70yxlgKTSiU+zlg0/C0v/baa2k8uv/++7e2tvr9PnCEb7nllnK5fP36dcbYzZvbzz//7GOPPVarTh09egT+DqPOfffdNxjEr776ahSF1mJgGk5kX3h6ejorCshWgnc0E+UdQhYhYicu6RghSojVWuSSEFQul61FSVas3nKCe2h9c29ra2d3d+/hh9+WJsneznZXCyBDYWyN1XEcg/gUIYQQmZmZS9M0zzNoPwaDmHJCMUmSjHPXWmvsG5piMM+Noqgois9+9rNZWvzKr/zKJ/76r2COgsaBbKWD5ji5BYRmlFKHsiiKhsOh67qMEdBW33vf3VtbW4wx13U6nc7GxsZoNAJYHPZTAEo6ne5YoiWN1toqjTHmDifAJcMY0skPNUfAe4IqzXGcNM0RQkKOMwm9MPIQEso89fTT29s31zc3ZmtHfvJnfvq22878wR/9/le+8sVev1WulZTiWxvbFmml0PT0/KsXX/sP/+E/uE7wwvMv/q//+6/80i/9wm/91m+Nkn6pVKrVaq1WC75vHMeVSsV1XSmdKIqWl5c9z0d4r1qtZEWusgxjijHOMpCoI1mIYhJszTl3HDozVeUhCYJgf3+PUOv7rjEhGVmhhOu6hciVphYZh1HIWjxx8ngSj2CC/cpLr+WZOHbseLlc1eqmS7O3PPDWo0ePW4Mf/dSjV69evvvue48eXd3a2vnOM0+vHjv2Ez/xExdefOG//f/+oNVuUNdFCAG17erVq//m3/ybbz39rW889tidZ8+qQqytrVlrS6USISQIAoTIKEkIIUrIxIyMMZQgi4nv+55bkcMBxlhr4Xm+MahIwe/JgfqGO0ZrTSgihDBGtZbWaM65VkgIganhnPcH3enp6Y0N9+rVqzAs1VpyzqfqMxjRNE0t0trIfCSJRQC+dLvdMAwLkezv7zebB1rLKIrm5+fDINjavdnpdCrV8JWLFzrdZrczuHz5qjHmi1/8gjFk0I9h5WCMK1NTjz766K0nz3Sa7ZdffrlcLmtTSCl7w/QnHvqxR9791j/90z+enZ6WeSaVjAf9n/2ZXzl79s5OK99vNN0wWFxaEUJaxDrdfrvR56wTRtWXzr04Xa8tLb79zOlbqpXo/IvPvvM9D544cRwTK2Tx8Y//pUVycXHO4Xpt7WarUXvLg292mdtudbd39q1FxjhpEidJAg+sQhjm2K7rBkE0NTXV7w8plbfeemu9Xt/Y2FhbW5NqzK+pVCqN5v6VK1coJ8aoMAyDIHBdd3V1NY6Tra0dmIx6jkepE4UVx4mzLEOEUMrzPK9Uwunp+ubmxmAQHzlSK9Ji0I2Pr6zOVOu9Xs8P3KNHj25vb25ubueZGMap1jjJ4zDypMS//Mu/lBejtbWrt91+6+Pfunyw31xdXfVdL0nier1qkXRcslCe0VLVajN5JlzHIZggSxDCoCkZDoeO4zFGhEwffNuDYegP477nOQih+fl5zvlwGGuru93u2bNnLRJf+vLnlRa//m9+bXd358JL33nyyScX5+uNg/1Br1+vT4Vh+K/+1b96/oVnn3/+Wc8rCZEvLi6dPXsXY+zG5ka1Nv3Y1x/f3dv33MBay7kbD0fVank0SqSwgR/laT4/u9DpDqzFShlC0GAwbDQaS8tzABYEQXDvvff2+8PGQSfPYqg+B/2YMuw4jut6QUDAbuvg4AA65HK5XCqVO53OcDgcDuMjR47Ew6TT7illknhULpelsMZqIUTc783OzK2uHsfYpmk6GHYQwv3+gDF28sTps/fes7u7++ijn2WM+UFQKdcajcbJkye544yJikhRSlUhp6ZmGo3WcJCkaR5F0cVXrlikhTDJKIW0A993z549G6cZsUhkMOvVUINig33fF7mEzSrLMqMR51yKBOpmay3UDJy5CBvP8Yssp5RCCjYcstBtImy0kUJJcNfJ8xy2a+BWgPPmIQMRGlpjECjpAGFUWiCMtNZzczPnz5+bmZ/zPGfY7ilrpCqyTIFfdpqmg+GgyIWRhnOWp9nhGJ5ShjGyGLkeNzrXWqGx47BBE8YQn+SPobHjMNLWEEI5ZYRgKaWWUh86BaNx6jc04Ye/gVJqqTYYGWPshBmHxl6lGiEUBF4QBFmR94aD0WhUSOExDNwiENqO+yUhgGcEw28IDh1bVGFUSAG0Vq11luZaayW0MYb6nDGGMDXWYmMQJohQVSi4F1rZTGcaaYSQ51cIQVKKosjh9wghKpVyu93G2GotJ8KUsbibcw5nmTYS4rYg68JaTbATBB6lNAogEEkfttCccykLYxDG2PM8rSzgu2PyDjJ5nmLsHz9+nBB85coVKSVhFCRu0Aoao0ejYRiGQGklBLmeRznJhT7sqEFfDHAeIeSQjwgdJsJG5AX8BYLGXR/nDO41dGgYY8YoQshIBU0yQghTgikxxiijtdETEpM1WiOEOoP2zMxUEHkl6ud5RkiIsBkOh9VaTSkF7DDX8csl1w8jZHGR54wx1/VFJjCm1hitda06xV2HECK0whhjQoQQSihrjdYaY8sdepjYzJiT5wVGY2m/0UgKHQ8T16PQ6cCMh2EC0Bh3Ha2txQTk8ADjWmutpaVSyVqT5QlhxA+8NBlFlWh2bpoxFo9S6MOtRVmWVSqVLB9KpYSVmBKEsDZ6MBj0erZcLgONOgh4lmVFoaw1g8GAu4wx5nleOSpRyvv9vsxTpRTGBCEjCzVZutIYkySptgaYPUpJuE2ME6UQzFyN4daC2BxBJw9LS2mlFEjINaXUccbQCZoYYoyxRfw/ZG+qSTorGftWwuZAD3EBrTWlZMwDMMbljkXIIg1hUROWtTbGYKsZ4QghPaEWYowhXS3PUmQsVMiUUmSJEJIQgoktisJxfUAqpZRAy4XPTCmVRvuEWDuWXaZpurW1xVkQhF6pHCqloOFdX1/PcoHGrCbpOKxSLUlZSCk453Ec93tdpeGLj42PYY9yHGaMcRzPWt1oNGDUBOZvcBmklMQw7ngIYYqZyJTrRO3WMI2z1dXVEydOwUiMMzcZZY1m03Oji6+8Pjs7Pzu1+I3HnhgMBiDy29s9aDcGb3ngbTdubA77cbfbtRa4mWCsJxFC1gq4DiBsz7PMKOu6ynG8LCs0ONcrQwgpCnlw0ITWCVjzCCGLked5SdI3k9ZjzOCbwG2MkXE0KIaArDG7GZYJnDiMEPRd8bCwujiZaDnIGHkBMBpWC5lYstqxMSsCkBFh5Pu+53kIkYsXL2oty+UyIQTbf4rejJAxOhfZb/3X/6pUrpQBDB2sKrTWQMEeLzmkQZYqhBBOwQhFyFKKgyAihKVpKqWyFiNkfOZWKzWMsSikVkhr2CuU1no0SkqlShRFrusD8WV5eXkUp3/63/+83+8vLS0FXnjz5s1vP/WMtfbYsWNRFO3v72dZApRtYLHAM+I4HkyaMUaTqzLWUigwt1EGWWutQdZSQvIkRUo++JY3/8xP/XS9WrnxyoubN9Z7ew2P0lPHT55aXV2enws8P82z3iCmnFXDWjwcaa2NQZ7n1WYXKMNKCa0lJoggLFSRJMnszMyVtfV89+ZwMLTGUM8rpGm2O/O1qLG/3+8PZxcW3v2e99/Y2mg0d5HV2BDXdYQQhOC3PPiWer1+1113XL58+XOf+wxgwf/2P/5HhNAXv/R3ruv/i1/4uRMnjsP6fOaZZ7761cfW1ta2t28+8MADP/rRj0xVa5/73BcIIT/+4x976qmnd3f3S6WQUuQyHISO4zHKLGGIUKSNIQRxTgFjhb4PxhjgNEUIAQ0ZGgdREkrsP7lgDledtZYiDGuVMcY4h4kIDI3shF17OBEhhPA3InnRhFuA1CRbQmlNKYW0OqhVHMfZ3d39oz/4w1KpNDNfJYS87W1v++IXv0SwI6UWSjkOo4TV69PtVvd3fvv3qtXq/OJClhUIGQgQJoRoqWDNwPMFJ5SQues4QgiH8yxNMcZRFIEaCWalcRxDNBdj5N777sbE9vu94WjgurxSKc3OTovISdP061/92isXXvI8LwiChYWFLMs6nQ58fpiCSKlgw8fEkEkulOd5yo6H1nCa+L4fhqFF49wR13VB0YIx9qMQoAyMcSEyY8zuwT6MVyErhU7ckwkBGi621kI29SEZ6HAeY94ILLVzc3NHjx49d+5cUfSLohBZvr29DY5DoGCOKmW43Vprx3MPsZTxPVUSuMZhGE7NzLhsPEeEl+96oCqA0FTP86IoStN0wsXGCE0+NsaEEKlFIfOgFHHOpBHSSK11FEVGaa/sDQbDfn9gLa5W674XKtkUEg2GaRgkw+Ewy3LuOpRhIQQhaHPzxvnzL549e/bUqROvvPJqXqTdbjeJh1evXn37w2993w+/R2ubpHGzdfDZz336/MULM/0l9tyz33nTm95048bmxZdfaTV773zHe2o1V6lJsBvSBBOMxlgzQshxkDbIImu0YozZ8XEv8yIVIjMWuR5jzL12/RJjxBhRiJgxNj1T3ttrFjK/cWO92+n/4A//yPd8z7vSLN7d26DEXr322sLiTBB6jYPW4tLcu971rl6vHwSBUuKJJ56dnp76wt9+bmtra25uBrgMh5PMLC3avXaapkdXV4yxRSHK5XKlUoXHiTEW+lEYZqIYMkaVNEIoa1G73WGMYoxhsr2wOHdjfVNrSSnWWqfpSBiBkDVGcc7jeJDmNTj26vU6MEZhNZfL5fvuu+/8+fN7e3sw25dSZrmiPr52fb1WL5Wi6vr6hpIoz4u77rp7c3Mzz3NjFCzxNM0ZI7IQjJPb7rxTaYGQHQwGOzs7jkOFKgKPhY4vpUTMJpBVaDXCyBjlcT/XApofbQrXdaNK1GjEGxsbGFOjidGYMU8L5FLfdznSDmKWM2qEwh4TRVGrlR955JF+fyilHqXpQbM5NVVZPrqM7LBarXLmCKWbje721m6WjTi1xlhkibU2TbODg2YcD1ZvOXbrrbdee/16IWVejJIkdj0H4CoowSl1m81mXmQYEd8Pu91uJarsbl3b3d3VE78bx3GSUcYYS5LkyJGx3wLGdmpqanqmPhwOu80+9NVHV5YLKeGxD4KgXIkODg76/X5RFMaqbq9NCfc8r8gyjPEoGQEjKc9z4NJabF3fL5VDBKF/80vQ1B0q7KQsGHM6nc5bH3jLRz/60RdffPFzn/sc5OQMh0NK6dGjRxuNxvrGjce/+cTU1Mz9b77vice/1Wy2ECK+F546derq1eugh4U9aDAYPPnkkz/+oz8RhmGj1fE8L4oopsQPA6P0of4LIWTR2CTIWsstskpTShj4wSFbCBV4zPNJkhRJ3Lv48gVi0YvPvSBlEfpli3IhhNbScRgM39DE9zCKIs7dKIoGg8FoNBoMBlEUBZ4bhmG9Tvr9oZLac703KkJlwQW70+l85jOfKZeqv/3bvz0c9J544ok4joUQlOL9/X0gQwEoxhiDIbnB40ifcnlqNBo1Gg3vuhPHsRCFMabb7QLeAQnycB5kWdZqtcBvDkgihBBLLKXUdTxtJEIWT1gq8Lzb8QwMTjhqDJjASkhIm5mZAUNV3wvhIZ2amvqxj/7Y4tLss889de3668YWYeS5Hg1Db/XY0mAwaLfbRpqZ6YqURaPR4B7+xuOPbW7duLGxprVeWJgHZ5sg8CZ1JyqVKhhjiFbY3NwEclNAPaBUwMHjOI7jOP1uDxpRSnG1Wp6u148fP26JunbtWhiGc3MzQRAgbAaDQbvVFUp6npeOsr3WbqkUzs7OMsb29xoYmV6vN+gn3c6IUrK32+x2Ro7jYk0uXbq0snLsgQcfKJdKSmpj0Cc/+UmPO9i32zc2drY3l5cWzr/4AnEc3/U4JaXqVLfXSdK0PlXVWiOlWu32VKW6srIipYTAImSRJXhmenpvv8EYc13uukQKIUSRpnm5FHKHDodD3wsxxqurRxzqxHFcq9XW1m6ATgrOOVh+Sql+LwUiG+jjrMUvvvgi57xWr1ikDxEfKbUQot8fyrwgBI1Gw7FfELGEor29PcaR77uM8yQe+L7v++FwOJJSe57jeY6Ust0+yLKk2Wwz5g768WgYI02o6wd+NJnHYGPVf/6t/7KwOBf5YZqNpMyUFRjbm3ubH/y+95eq/nDYq9UrgVshCO/u7h4/frzRGfb6/ZUTlbBSa21u58VAZLI2NR0G5Weefk6qYnp26sjS/KsXL0xPVbUovvrYPy68OnfilmPffvpb09P1ai3ijM7O3tJuNq5dufz417/x4Fvf/vTTzzz//Iszcwv16fl242ZRANXFel4ghEjTfH+/cdttt4FiIE3TnZ2dRqMBcVjGmKgUSimTJFH7+czcbFFkRVEA42919XgcJ+vrG0II3/WFEJFfHcV5lmUY0zAqayO3t7cPDvYefuShPFMvfOcC5+zsXdMvv3xxd7u1eGQ28LnjOFNTte3tjatXrwolCaGez7VCrusiSwopfus//9d/++/+Pz/wgz/yzLPffuIbz45GowvnX4uiiBBy9fIaYTiKgixJo6istU6SdHFh+cb6TpLkIs6hwoMZsDGqWpvSWnc6nXq9vrOz++qrlwI/mpmbzfKEUCSEbDT2w6C8tn75x37sZ/+XX/r5z37xb9duvFrkutvt9vsDrXSvN6jWasaYOE4gFWd1dXUw6Akhr167jhA6OGju7u4PB6Pq0SnP85qNlpBpo9FgHDPq7u01pqdmJdZT9frMFGu2O5zTanXo+bwUVaQqRKF6vdb01ByldHZuWuSl3d19pRRjlFGmpBFEeb6TJCml7NZbz5TL5W63Oz8/77rutWvX5mYXrLV5JuIYKOqEcxdjqrXFmLVbB4Ne96WXXqnVKvMLc8ePHz92bKUoiniYtNvddzxy38nTpxcWll588TyldGlpSUp548aN0cIoDMNCCGstoRagz2qlsr/XLAqJEcWIDYcx4BHW4jTJpJSOw6SUc3NzEH086A0ppa7rGmNKQYlTFscJyD/jOBaOmp6eZoxRChk4HOAJ3/eD0EMIJUkKmQFQ9AO8RQjBlMCDRjCnlHbThEx4T4c9/GFRjsdBC0ZrDW28mjix1mqVbrf793//90eOLlXK0Z1n77hw4dz+/u4tK0eAKUjp2KSVO+7ly5cZYZxwzji24/CoJEuzPKHEGdN/tJmM58eJPRNmuoKfAOh2+NnGwBBGGBPOIEreWD3RsRLCHYdhIsyYQmkm4dpKKaE1IUTmBTZaCCG1whgFUUgI0SIDc0BCCCETisrYK5m7rgvEtDxPDxmaRVF4JRfMrJQyaZJjTIy2FmOLQPilB6OEcRcGwEUurcFwVS2BEb7wfRfIPlmWCyFEofJcOI6TxRkeZ2HhNyA2a621UhUTzK6Au+Z5XhBEcNmVNYyRPBeUEYQQJmNMBwSkSmljDSbgRTAW1ENDlWUptLgGvUH/lJM8QEyJUNJaiynBGElVgLjt8FMBV/SQXme0gd+G0BiyLPIURtGHCDU0fr7vIeA+gQuKEphi8PbhDqCEIityhI3WOooCSqnjOEEpAMYWxkjKPM0Kxlh/0JWyYJxTStNUW0OtoZ4XwONAMWWUutxBBmNjlTKWWc5cyhlUpJhRKBG1HOvbMMYIWaPfEPuD+wshGKwYhMjhMXcFjeNkvAIJZkEwWcD8kM8L6x++O6UkzzPHJXmhKWPGqIXlOcbYaDSEfPI0iTlltVoNFkCix9WjEGMeBucMCAFSyjwXlFKQrxFL8jwvhKhUKpRxIZQxAhj6QM2mY+APnCsmXGNrvgv0Z2QSlAXpf0A9QwgVRTYYDMaeCW/kHaEJP8Me/lDrMV7POcfEMjq+7wBH6olynE/yRWAxwHWmk6AXY0wQeowxEIBrZWHdmgnEeEghPNQBeI7jcI8SzkkBK5xMXnTiCKykkSrxff9wZ4AbzRgzGAEyDnmYmNh6vV6v14eDlDFqrfF9z3H4kSPLU1P1OI53d3c7nQ7kA8FNCcMgSeNGo4kQkkJgwoyxwH2E7YUxBqgrIN2U0lqtNhoU0HlNYFBllI5F7LqulOLVV15L83iqPue6fiko7d7cv3lz7867bj/Yvdk46EZRUOQIG/fJbz23t3dQqVQ487Ms0wqfPnlyaWnl8utr/X7fGIsxJnisYgRCXBj61trt7W1kre95U/WxNfnW1g4koBhprNaIImywKITnO9parW2WZVmW+aFXBqVUlh3ixWhsyW0BarfjvKw3UluttVq/QRGllEK0zOS7G0KIJeNQVu4QJBA87HSszLOHBxaZ5AQCs0cjyxiDmKXd3R14C8/zrHnDBu27X4RghAwcIsYY4GvDHsUm6gR4C62QNgr2Y+CNIkSszhhzjLbIYGyJLAQhxDqkXI5ANqGlyfOCMYYIxpgrqYpM+K4hhCBLHO7dcvzko48+urm56ThepVSGYKTRaFSr1ZrNZqvVgqkwmgxijTFgFwviRT1xbKCUATACF6oApQiiyFqrpDY26fXf/ra3/NI/+3mG7De/9o+dq1eKPL/7zJmHHnhwaWa25LoUYddxBoNBGJQQJb4fVsoZIUQpgzFGDmeMGcOMUZRgjK1UFFlNKD15/FilXnv2/IXWcEitZZ5XKBnHcalUyUXRabVfevn84088de3q5dm5hTjLS1HQ6mb33Hv2t3/7t3/jN37jM5/53D33nOXcF0X2f/6n//Tvfv3fffnvv/jFL/9tfar8yCNvd1wS93urxxZ///dfevHFF5UyL7980XXCu+66e319/f/6f/6fI0tL/+yf/bOZmZlKpRLHg3KphDkixEiTJcPY9bk2TGupJLbWSlnkOQXE8BBcthYzQg/tVpRSlBBr/mm42SB9OBQxBFuCLcIaWTyeiGCrzXdPTWA7HecHGFj86NDAE2OsxwHCDNvxEzEajRhjAIU988wzWqqpqam7zt4ax0mj2UVj3ivyHF9bpZQJoyAIvDhO0jR3HAdjyzkz4g22OyGEcWIwFVICSqCVNUaAZykk9xhjwElsQjR2tKbQYvd6vTgeJtkIY2uMOX7L6ge/7/1nT7/txo0bX/jCF86fP18ul9vtdpZlUogoDGEchRCqVGtQoGZZJlXu+z68O5oYaMBmCBmYcRy7ngddap7nLvf4JH9CKZXqFAKoKKIyz6H9L5VKMJv0PM8YhTFO09R1fYQQeM7YSe1HJm5ssFeUy2XPG2c2wNQnz3OkDXjAAmeoUq+l6cjzPDg14mQEZTYcKNAl+Z4Hc8Q8z1nEAhdMmcY7Euz241GY1v14OBgMtNZaSMZIvV4HKoNUCmMrVFGtVqVRaZ4RiiyyjHKrwYdwxDAx0hhp8kxsbe0QwubnjlDiIOwIaRj38ixljBGC0zQdN0GM+b5fr9cbjcaFCxea7cbKypEPf/jDqR1+/evfiLfjmZm5i82Xw3IUBB6zFl+6dLXIDSHOu97x7qWlmhCIMUQNQhRpja21kOpNMMMYZXnBGAtCWhQMY5tl6XA4TLORtYpQNBj0jC2yNL5+/eqNjevVaplxG4aeUubYsSN7u21CstmF6XvvvWt+Yebv//7Zy1cuuh5dv3ENY5xnxdTUzNbWxle+8uVjx25pNBpWmyzL/uRP/rhaK0sjL126VJ+qwrR8FKfUcYEwX61Wy1GFuw5CCCa3SZIJIeJhF6NmKapUKrVBPwaADxOilUpT4brukSOzRiohxJvuv/ebTzwJZBOEDedcazUcxH7g+WGwsbGhhOSc50VKKWWcjEZxtV4/depEq9Vst5tSFmHoY2L7gy4lbGZman5hWohMG9kfxISwVqvz0Ntnbzl+8pN/89fT03VjDMwrEMZaa4+FnstdN+Scz8/PRlFgDOr1ep1OlxAicum6rh/wNE2o6xDLCKFC5uDBl6ZpoWSn3zt//nyep1JKZK0xmDM/z4SUirt0ZmYmyUYOd5BVlPLhYJRlwnXk1Ss3rl27Njs3M0rTXBRJsun59K67Tu3s7DYbrUqtfuutt955x92PP/5k86BphCHcdZjLGClyEcdxu9f3PEdKLY1GWIdhSYh8erqW54JN0jl6vZwS1un0hOhxdkAptwXi3NF2LAORQiNKlBbGmH6/h5CVssDENlt7c3Nz9XpVZCLP80IVrU5Ha23ROJ6oWq1Wq1VwJjq05iGEuIwjRIDdgzF2XTcTheu6vu9ijAkdU5kGgwH0eGByB/t1mubAZfvyl7/8wgsvwClbq9Vazc7Ozk6tVsuyzBg1NTWltXzmuWfb3Y5SamZmLk3yj3/8E4888sjs7DwkYwBatLa29ju/83vvfve7t3dvnjx5cpRkMzMznu9gggmmeBJPhBACrNkgyxgTQiJjEEUGWWUMRWh6qmyQHvTaRZGuHF1qHuyDxZtLnH4eR1GolVBKeK6Pxkbe0Ailvd7+7OzsyspKkiSD/tAYU6tHpVLJcbzBIN7ZvmkN6MtsnuezU9Pvec97br31tnPnzn3xi1/8gV/+oaeffjosBT/0Iz/4j//4j/1hTyhirYV+3lqbZZmYRD5ijJXRcRxDkLQxZmNjwxjDGAV2OWNjihwaq7Q4uKtDxW+MRURhNNYhKi2Ax8QZkNEMNKJwl8H7SSkdx5njcKinpUTQtcKJOxgMKKWvv/7aX3/izyklaZ5hbOfna61Oq9M6uHb98jve8fDS0mKep839ZlFknPO5xbl777vz2rVrf//3XwnDQGsNv8R1Xa2tlNpxPGByzc8vEIR3dnYcx8FkpJUAa2bfD4pClstRpVIZDGJKKeeUcxpF0dHlRSHEjRtr3UH/5s1t6DYXFhaMUVJoSjm3OApK6Sh3HDdN8ywrjMk2N7fLpdB1fGOs7wVS6l535DiiFJSEEIPB4PHHH7/jjjseeeSh7e2bn/7Uo1prXQBPP/j7L/+dwcgPAxBlT08vLS4tdLrtubm5V155ZW1tDRHS7XZdh5VKJQ95LuODwSBJEpHleZ5bo3w3Cjwf8qA8zrTWaZZxh9fr9VOnTrVb3cFgwJiTxiO4oWjCq4IHp9/vK6U4c402GI8nB47jjfWzw6HW+p577mk0Gp1Ox/O8bqttrYVMeCmLMUcP6+Xl5U6nPUr6URQQQil3KeVCqEaj4Xkec0mtVoWt+7777suyQhRme3tXK2w0zjK5vXUTGkvw+kQE2k6DsQ1CVxlUn6pQZv7kT/5bu3MwOz0DkI3jOM88+/z5cy89/D0fvv+BBxaXj1y5toaJ57hBkaflSrVart1+122tVsPz3PX1671O5+bmmhT5xfXz733ve8PSbbfeekpk6Q/98A984XOfbTbbv/zL//KTn/zko49+9sVzF1555eLy8vLO7m6z2RbZECoV13WzIpeFyPM8CIJSqbS/vw8DcLAnBkkUyjNKKXTutfpMuVzu9bvlcgTVSZ6LTqcz6A+joJQmOaU0HqYWGZjkKwNq1qJWm0pG6fbWjtEkKFfOv/hKp9Op1qL52Xk/YOVymRCbF+nC8ix4QM3OTBPsdnqJsmLQHn77mRdW/+Zvw8j/5jcfj/ypyJ9K86zfG9RqFaW0Rx0pMOb4yPKxCxdeajV7Dg9nZxf+xT//X+I4+ZtP/fc4jkulsrGIOe7MzMzLL7/8pjfd+7/+2q9+/etf/7M/+4uwVB4M4jTNKEaz03PtVqvfj33fnZutPf3CU5//wqd2drY8l7WbBy53ojAcDkZJmv/Vxz/RbjcJZ6VS6bbbbn3mmWcuvX5lOBx6njcYvB6F5Sgsh2HYarVGo1FUCjCmUihK3SzNt5Pdbmu4sDQXx8mRI0dWj65kedJsN9vtbqvVUMosLi6PRqPRKC2VKjNTsyKXucmxtVoaz/Mwsr1O3xhjlPXcYOPGFsY4zwTAYUmSUMqLQkqpGXOQQcaYwWA4KYVNpVI1xmxtbcVxvL29HYb+HXfcEZXrV67dePLbz1DuhmG4uLBcrlaWl5cbjf3Tp08jhJrNpu/7RmuEJcEsCMJep9tqNq3BnhdlWUoIRciOkmG9Xl1aWtJadTqD0WjEd3YB2qtWq1mWFTZnmBRFpgmHLRoQliRJIPUF8BrOuTEaFCSHAQlJkkTRWKsIe75SCiEJbsVkzB9UhDCIbwKpKcR4GoQMQgxjhDRCRiOLzRuQIhxht9xyPI7jvf3d+kxdCQngRa/XK5VKWmshJCFjIMDzPIIIJ2PijxYSUayUAmdohKhRGvwlARgCt9ZDnjL00mM03FjzXZaI1lpMqdHIcRyXM4XHo1lOMbFIaTWW3WhlzDhjA2NEiAXj5jRNcZZhRkv1SqVWxRjno4ExZjgcGmOs1UKMQ8MATS6KArz8DrFmkReyEAkZWWvm5xcc6nVbfWOQ63oI07wQQuGskEUujSWcO+ChD9xAay1l3HV5nqcYG+D7aK2zTCgppVQYYy/w4YIQjOGTKKXyIpWq4BiSiIjvl0uVsrVWiGIC2yGllNSqUCIIAgtqKmwRwuPYaoQoJWPOirWcU2stqHdbrRYhhLvOIdIHfqyw8ZoJ851MAgP/J8gPTaBnrSwhJhMy9Hywj+ScSynTJDfGGgYjAaq1FlJy5gZBoJHNRaGMRMZiYjlnzGXEoglBjEZRNEqGUsogCKan65TSVq9JKXVd1mw2q9VquVLrdtt5nmJKJopaZq2O41FRFBjRLMsQwkEQEIRd1w09H3x1lTRmTACXeZICacZxHIyJUlIpCT22Gctg6QS4x4RQxrjWSgtppBIEMiRAK42k1MYIsHFM0zSOY8DcyVhqzaUqEFaEoFI1HI2GBuPZuSnHcTZubOYiqwb+wsLCjRs3pAp834dwSEJIlidKCaVzxpixwhg9HA5cN8gzwRjTYlCpVCD/zVg0GAxcxwH/ByNNnufIEjCyY8zRWlt7yBZHFHOIs/Y8F2NMCBZCSDH2lxjFqZKGcWItYox5XkAIgpBJa3MptcHYGqvGtuzA7KZoMh9i1DnEGdXE+hlwRrD0AYsGNDGN4ZxjjIBZDC2VlNLxXJjhHdIDOeeUjRdkIXU2SgBiK4rCKA3Fz+HUxI4N4qzWGlOCJ1gPwBZa6/HAQ2ulFOcURlxQLwGUSQjKssTznCgq9ftdz/OazYOtra1arVatljGx1WoFY8Q4GTWHeZ6WShXHca3BuZBSKPBtx5hmWUYECsOQEIbQWLVtLZJCI6zI2G6eWqS1VL00iaKAczpbmm61281mc31to91ut1rdxm6r1eohy7VijPpbm3u+HypJjabxUKRpNjO9eOrUbZdeu3LjxrbD8Zhh7fBKpaK1PjQ8jeOYYDy/sMAYi6IIIbS3t9ft9tM0dShjjCFLtLJhGGCM8zynFOux9MRkWTY/P08pThM8QdKJknDmKALWuRMOE9jIwPZuEToEi/HEevuNeScko8qx7bVS/3+6/jtKtuu8D0S/nU6u3Ln7pr4RwAVAggRAgiRIMUg2JVKmZEm03tiiTcmWZa95luWnsb3s99Yb2ZbHM47yzBrLCtaIY4UnRosCRVIUiZyBC9wcO3dXrjr57Pj+2NVN2qOpP7AueW9XV51z9t7f9/t+Qc+47RQRgo9OB6uUPYICKaWUzGaWWZwcMaDTNMWogujPgg8RYowJoTqdjj0rLeimlKKMzVwXDucZSis8szBHxiCtFeec0ll2peUa22QIIXyEMIBlUxoADQg5jkMw0gqsy5BSihJy9+7dsiyFUBjEcDgcDAb1eh0AhJxZZsnDuEVLWyaHvjRS8qMjUimFcXV0KYwxnuNWVaWNcgjNiowBfuxdD//C3/o5niVXr1we7exQIH/u4z/04Sc/2GnU0/HUpRRrw3mJHRbgqKhK5rp1x8GU2t7NCpAIIYAwBqO1BsTs0b+4sEA8793vfMd3XnplkmbUGD+qcS6VUlpBmiTDXv8Hf/DPA8Z3NjYwgrLMiyKbn5+/fv36K6+8Upbl3t6eVuhDH/rYz/7sz/3RH//RP/3lf5ZlSa938Bu/+auL8ysffPLDvh/evXu3KAohVDpNv/qVP/z2d77VbDaPHz/+Mz/zMx/6wAdvXL956dKlA4wnkxGixnERdTEh7HCEYyidnWK2KVaHL2MQaGPQbAwGxoDVS/3Z44mjp+a7j65NMxZC2e0df0/gk31JqTAmQsiyzIwxqiwBY+Z5ttQ5JNsemWwcRRdIQjBo4/v+ZDL59refnp9fHA7GlDLKMOdVWeow9A3AZDy1DbutD33Xk7yieMYksBvmbOpjTFkU9ikyGhh17aDf5nUJzgGhwPeNMQAYQPm+LwTf3t5WWsfJ1PddjLFWQCm9d+9eURTnzp27efPmYDAoy6rfH3iO22q1pFC1qG5D7RYXF4PAL8uCug51HQAoeMWVhEMLbLv/TCaTdrvNGLNSD4SQtShBCAHClGEpZ/4YlvN7uJ9U9urZcLIwDGu1WlVVtsc/IiyaQ8HNd8eNUnY6y5Y8Tin1fVQLQgCwAQydTuf+By8+9NBDr7zyitZyPB5vbG0ezc9qtZqUMo5jxojUymWzekkIwSlF2hxSPdARXYC6jpSSV5UF0zEGpbCFaDDGVZkLITrzHesLOlu/XkApZQ7pNFuD7qA7ntbr9fe85z1LK2vWA9aN2ufPn3/22acncd5q1MKocfHi/fddOPuNb/yxDV3vdrvb27srKyvzc4txHBssTy2f3ti8+8LbzwyHQ19E2oiz59bzKg9Sj2JDsml+69a9z/61n3n88fcMh2W97lnjZkBGaytew4Qgu8mkyURrmaWu63uYgB+4mNTCyBmNB2UpAZlbt27s7213u7tKiXv37jgu/cQnf/zNN966du3W+Qunz1+4+Oi73zOdJk899V929zbOXzhdVlkUec1mu6rE1uZ2mhcIm3oj6ve7BNHbt2+XVb6zE1dVQSmeJkmtVhuMJgihACKEiO+HQRAIoaQs9/b2hNSLi4u80mUu0jhTShtNXcdXygAgbJACBIi4DrNjCsdxfviHf7jT6Xz9619X0hBCEBDQCgC5nhdF9ZW15dFopBzHoczKTJaXl8Mw7A0Gm5ubOzs7Qoj5+XmMcZJlGOPTZ9ZXVpaYg+J4vLu3raRhDPtBdP3mrcfe/Wi7NTcej+0DR6mzsLCws72XpumLL74IAMeOrRGKhJTvetejxpiXX37l9OnTxpjpdDKZTLQS4/EYgSOFJoQppbmSxGEUZFmWWWZLKwdhwnmJkUKIuK4rZDkc92yUPGZUGdCS8Mrs7Q67B2Ot9d5erz3fDAJfCPHyKy/Waz4h5Pbtuwhv1evNVnOOUiyKKorqjLlGaUqJqpTnhlyJeJoz5jab7Sjy42RCKbVmNAgRe0i7ri+ldN1wMo6VAq2w77lCCK0UYTM9oEZQliUheDQaJck0CD2tJSEYIajVQ0xpUVVKqeGobwfCWutevz+eTCjDZVkSSuHQyr3RaJw+eerevXucS+ZQDRgAMBgpZZZJAIhqgTGGYGZN6yxKZYtFz/M8LxBCvPnmm1bSbtuDoigcx9FGWnYhgATwwzBM07zVaiVJ6vu+5wYHB71XX33d9/16ve77/rlz5/r9/ngy6fUGzz77/Pn77ltZXQWA/V7X9/1WveF6TIMBY2b/1cYgMMYUlUQIE4oAABvlUKq1BIIAoF7zz5w+dfxnPruysvLyCy+fPLn++uuve9ybTEYIM8clCCSllBBmjRqLokDIxHG8urrquf7pR87EcTwad+2+Gcdx4PuCK+u/bLfUmzdvbm/vWpfnOxv3nn322TPrxz/2sY9tb2/bs1MIYZT2XLeoSkuoZIy12+2Dg4NiGiPXsTiIfU+ttTFaSknpLAueEILQrI73PK+qOCFAqaO1riqulCCAAJCUBsBgbLWl9tg1lFH7ANhtNwhmyb9Sivn5xZWVJddjg8HA87xOpyOljKKQcz4cHfi+z2UVRREheG9n+9yFs+961zu1kaNBT4mqrNIsy5588knrFz8/7uR5qpTyvMbKyoo10R8OR4RQpbSU8s6du/3+oB7VGGO+74seL8uCMadWr3mexyt54sRxQthgMDDmuwEmUuqDg97+/n5ecsYYR3p7c7cqJaU0jPz5uaVbt25laYkQMhpFYcOKg6KolibpzmR/YX7FcbwiT3XBvbCplMEYB0GwsbHxC7/wCw9dfFgp8+pLL4W1RuC4FS+MMUmcBEGAEOKcR1GktNzd3bUcpaeffroois7SkuM4yuh+v6+1PLt+ulYL8zyXkhdFRSm12DqhSClFKJmfn3ccOk4nZ06fjsL65sY2Qmg4HCZJcvfuXct6s93dTC1rtMHIkoEIIwjNinJbrTqEggsbd+6urq6eWDtmN8AgCAiWNjtRa10UBfVot3tw8uTxXh8DwGQycV1HGYMpXT91ent7m3lkZWXN993pdHrlypXd3X3OZb3WisImxq6UHGGjlAxCj/NyaWmpTEUpCuag0HObzZrj4kYz+sbXv+Y4zi/+vf/XpUuXXn751Waz2SAtF9NxksbTtNvt7+71kqzc3d0fDeMnHnvP2trxIECuf/+9Lb9Wi1rtWrMR3bp2dXd76wNPvrfVrrU7zePHnnzrrbemk+Shd7zz//hPv7V+6nSn0+n3+9/85jfn5+cHg248GYkqsy0uxtjCWEfK9Js3b1oXNhuirZQCQIyxpudGUSREJSVvNFoImbW1NZt0dOXKlaIofC+oRw3GXM9DRVEURWWVX3b9RlFAKeZcTiZpPMmioCUqIASHQePUyVNGA0ZUa+26TlbKZrO+urrcPRjGacEc2m63FxdW3v++D+V5ee3G3Yceurh++oF42I/jmCLY3bmFgDZbNT8IG41aUWZpnn/4wx+9/Pb1ty5do8RHmH7fhz5y6fJLzz33Qr3RjHyfOXQymRBGMUXGGMfx6vUmAlzk5WQ8JRhhjJeWFufml4SE3/o/fp0yf3lpxXVYMonTOJOO1NJIKYMoJITVmq3JZJLl01defWkwGKyurn70ox+9du3G1atXPTdQSvV6XSml53kICAAuSzmdxsuLCz/6oz/2u7/7u7t3d2lIEUJFUdzbuAcAo9GQELJ+6rQQUiHVqNWFkHuj/ariQkilpOM4GNMgCKxW5vbt2/t7XVXpzmIbZra21hzfGjOYsqh4KewtDoKgyCuEQSswRrfbcydPHpdS7uzvFZVcWzt27dr1/f2Dy5evhGFoDFhNH0Ko2WzOzbfr9frW1laWZXmWZFnhuWm3PyAEu4GnleJV0Ww2gygcDLjvu57v5rmwT1GWTayveqvR1lqncVLxinPerLesIekMrBGzhuTIF1VKYyXASossy+I4thdT61lbhTF2XU9qK4EHZBAXpeu6RmqlFCFHfZXWCLRWGM3ib2AWlqsRwtSed8rworx7+3YQRRfvfyCI/LeuXK5E2Ww06g1/NBopaaIoct06AEqnBTbYQVQZBdpYUeFRFW7xIE1nLpmWVqMOnaPtfmUOA8fCMMQGKS2PumtCCDIgFdelZsSxlBmHUoTA+vwyMtvNMMaACID1oAaMMcUEkNbGEEoIzIJlXJdZrMSyyTCQwA8wxp7rIYTKvEiSBGNswxgtmc51ZwTtsizH42nJK4Y9oQwWajpNlBIKNGEMDC4LqY31EJwl/lnV+VFDaNEEzgXBrlJGKQ3IEIJsg6eMzAthwSAppZUtEkapQ6fTiUWEa01GMVYKgigoisI1xvpgwMz2VB3RtzTCBhuwvskYyrJkjLquyxxCCAFEpJQ2W8Kyqi3YetQYa62NmUHM+NA2VEqJMTpKlbQNLQBYSjjGOE9nbaTgimCmpZpZbGNjwPJPQSljQBHAWksALQ0YowBwXqSWFWXdqKuqwgRJWTpO0Go1HIcuLi4Ohv0g9LmQ9kGSQlvbB0IIJY7jOIQA59woLaW0BrIW/0WHRsN2rsBFiTGAllojQPYLznBShBAANkYfwToUYYytlwMgjBA2lFKHUFtE2Z+ybCP7bFugdgZzEKVBlVV18ewFoMZ12WA0zLIMMPJ9fzQaUOpQxvr9/vz8vKXIlWUpJZdSLK8sEEIEV0mSb93bF0JT4rjU1dqkSW6U1lpJY5DRjDhSaCl5VVVagTHKIuaHw4Mjw1xjd7yqqiychzAGgxHSNlLSGF0UJRWEMVYZIURijLI/btcvRtQyKZVShMAhEGO+Bw77Ls9rBp0XBaVMHIar2+9o/8pCA7VajTGGcD0Igm63WxQFcx1MQMlDNYYBo7Q9f8Hg7FCxjgwIJGyJaMn7diFQSg0CY28rNgYUwgYBQZRwXtlfbTc6+xkMKKWQlNKSXhkjUvEkHSfpWCl14cL9P/DnPvbYaPrmm29mSVKPgnoYFWVepIlL2fz8fLPZbjZbt2/dTUdjh3n2/auqohRrhQ6Zs4ckRK2MUoSiQ5BKKGUQQgTr+YVWGHnNZuT77O7djWvXrhVFiRB67bXXg8AHpBv1DjZOkZe8ygkhWVxhAlojJfS1yzfu3t0wCrCLOeeEzgI/7dUAAJsXsriwYJWvlgw0Go0opZEfCPFdQcZsH2AYIeRSqxB3gyj87Gf/6ng83t/be+ONN/r9vnX4PWoJtZ6RYCQXFoCeTRowNWhm6q21NcudnThHaCA+JNAoZb7XDNqOJ/H3kKktjAjgMDJjdGqtQQMiRIjKGEMZ/r/BDYl1GWo2mw8//PC3v/3tLMusCFIbc8SOt0+yEOpovCElt4RoxtwjCNiiYEIIY8YWxbZbzQxBE8J+YF7N/M2VFuPRKM9zh81mM+ww2cyqUuweRQix8xhKKSCwy8Q6xmRZZsFuirAW0nEcaaSlP88YQqKqh9FSp/X3/vv/nqfxK88/X8RxjZGP/8iPPvHEe0LP50VJXUcIibR2grDkVVVwjSCqh1UllNEYUaSlh4gxRhuDMTZGKaOVNEYjylxecmzwytLq6uJ2urWpKwEOx5RmWUGZAwC3bt1qz8+dOHmsN+hnecEln2s1v/8jH87zXHBVlcImrwohf/3XfvN//lf/fDIZra+ffPjhB7/2ta9t3tt63xN/2qi3B8P+E088ceWtKzYY40d/9FPvfe97H374ncfW5gMXTp48+eKLLyZJkue5UiJseE0vQo7je0yDVlogsPmc2kYZaTVD6gPPN4cCLws021uA/sxwSQAKmCILg87+wWzaihBCCAM6elqOnkyMZ6qFxcXFEydOXLhwYXd3d39/32ofrbvsaDTShyFy9h3skccInSVwomAyjimlCEFZ5UpLQojVOSEEZV7Yj4CBWGNMg0BIaYEUigkySCqhDsnLdk4jhbDos0PdWr0OAGmaksOsV0sPVUY2Gs3l5VXXdQ+6+77vX79+8/U3L7WipWNrJxYWFt7//vdPp/HOzs7m5iYhbDAaI4SiSNWbDSFEHMdra6tKqd3url25s5m0UpzzLMuOhvpxHCtpALAdhWo0U9sclRn2e1lSsC0DXNe1ZCwlZXO+9cB99+d5fvXqVc55rVazZ80R6G//bJdqVVXdbjeOY5vG4TiOS2er2ELA169f39jYGAwGGmbsBDsUtKQ6q9guyzzPc4xxp9W2p7ON9HCNJWU7CCHXdUvBLR5ia7yyzIWQfr1uF6/rMYs7W6GSQWB5upRhpVQYhkKIquBaKs8N2q05e8XW19cXTpxr1upPfvAjw9EXueR/4Yc+8fjjj/7xU19Ns6rdXrBealyI4Wjy4IMPbm9vdwe7eZHevn3d971aLQqcYGFhbldtOw4lDNGykFLqD33w8Xe/+3FjUCPypABMgFDQYBAChI3RWkpVljpN08loT2sdRdGit9jd79ebNQCIk0lVFZZceObMmWYj6PV3yzJ3HIfz8tq1a81WfTwe5lmRF9W1a9euXbvGGFlantvYYhhrx2OnT58aj6dJkqR5evnyWzbpda6zsLl1z6rRETKUYhuaRAjL85IQ5rkB56XWudFoNBpZ4YwSqtOa30q2pDQIaDxNHUdKqZBCjLl2U6YYSYm2t7dXFpeeeuqpyWQShqHgijGW5zkA8j3fOsoz11lcXLQom5RyMhptb2/PzbWLsggj/9T6CeYQy1mYn1+uhxF2mOPiqsqjWhCGfjzNCSHz8/NZmn/9G9/0g1qSZMYowc36+vrHP/7xX/k3v1JmpR/5QeDV6w0heJqM3n777VqtbouhJ5544tatm6+//qofhBfuP59O+cHBQVUKpUyeF9Us8105jmcr8nq9fub04q1bd4SSYMCYohEE1MMYA+dls9HWWsdxKqVUoJlDHOYjTYyERq1ljH77zSteGFSVyPJYa+j1+lpBe6GjhTJaAuB2ay6O40pwB1NKXMelRS4453NzbUC6Vgs5n9HxgiByXTadJpNx7LpBVSpjQEqBMaLURWS22elDcUezWQ9CzwtcjJHvu1EtKIpCTvKKF7YTppRqY5hLMUV5nkuFG42GTdp1HGc6ngBAnudra2v90TBNckvVOuQdSIwxr2RUC6pSpGka1iLG2KDfta5xYRhGUd0Yk0ymVVWlaRYEvjXBmZEpsHFdVxpSSUEE833faJxn1cF+LwiiKKqnaVrk5dLSUuCHd+/cwxifOnFKCtVqth999NEwrFHXYXkaxzFCaMGZ09oYAxgTjUEbbbQxCDAlgJAEDUoDAEYGAIPS0ugoCGu1mlLmySeffOD+h3glkzS/s3mtKArHoUWZamWjuqWNsbaDOMsDLYvK7n1cZO12+9FHH19YWHrlpVfseWAPv1Lw3nBw795rS0tLnfnFr3/965TSGzduDIdDSxm2OLXLHIwxBiS1KrLsxIkTdgb7xAc+cPny5ThJbVuFuKnValorxhjGMJ1ObZFdVWK2Bik1BoQqKMXW7BsAGLaZTkgphbABgJncEhuLWVPKxuNxURSLi8tRFB4cHKhKrqysPPDAfc+/8Ox0OgaAbnc/iqKoHhKGAWvm0stX31ZK+b7nOF6j1lRC7+ztClkFgd9o1Ofn23E83toyvu9XvDh2fJUSp9frXb16lVLqeX5RFFJoJQ2vJACMR9Oq4GEYxnEqpbLJ8hY+YIx1u908z8fDkZTSwg5VJbe39obDIRhy/30PDgaDaTwmxMmyqtMJjCbdbj/PS611EASeFyhlPDeglNZqtbcuXTKaFEUVjxKC6Q//2E/cvn17c2M7CH0AbKO3rl6/JoQI63WEoBIVAGBGXHDyIvM8DxkAZKwtg2VkHBwcdBbmwygSQsTJyCBtjAGCMcZlkYmKO5QoY4wSyXRsyYyDyZgx5nnOcDj2/YNmfZYFZ0uo9bPneFFmWWYwEsrokmsNUmrHcUArQKAVaKWZQ7TWlGKtJUKsHgadTidJpkKIer1uZQGUGIwxGPPud79bCDGcDqMoarWa/WGPUPTud7/b89wrV64kSXLi4omt3Z3NjT3H8drtpg0N73Rak0m6t7en1YFSQDBzHM9xqD2YhKgwJVVVGC0JwQZEq7UIWiJtOs1WEAQHB70f+ZEfObV+5saNGzdu3JBaZWl85a23n33hRcy8paW1Dz754bn5xctXr7/99tv7+7vXb1576OEHV5YW108ex4Df/74P3vfIQ88///z+To+Lcmdn7/mXXnz3Ox/xAvdz//lzWmvPd1yPHXT3arUaowgjrSQK/NDCfFaIWlWl67q9Xp8QWqvVLGBhjGHMlvVSKRGGYRjODYfDosgWFxcppXdu3924txmGYZFWjuNZctNhFo1EGAC0H7hWrY8QKfMqzyrL8VJcuU64v9udTqdFmtEAllfaJ9eP1+v1RqOGKPHGqRTkvvsertc6YVh79dXXr93YuX331kMPPXT+/IXf+I3fiGq1Tmd+MBhVokzzrNvd10Zubm6unzozP7+MkCnK/Df/03/85//TPyOULy8vNVuNNE0N10sr88fDlX6////47/6SFLrdXsjzstlsSyl5VVZVNT+/aLS5c+fucBx7fvjAA/f1e+7dXs9hzPfDfr/fbrc5l8aY6SQRUsfxdDgcdDpz73rXO+fnF19//c1Op6OUSpKEUCwlWD+fKqkG/cHK6urDD717OJjEcQoUCCH7+/uDQY8QorRgzEEIxXGyubH9+OOP9/v9Xq+nBXZdlxDFORdCci4IqYypRVH99Omzu7u7FSvsWLpWq41GI865PVYEl9NpoqWy6UmMMYwLx6VxPK3yMqgFVhnQaLSOHTsRx3Gt1jAmvnN3IwgCx6VaGzuophQf7Pf29/fzPBdCOIxIKTmujq+t3rx522GY+M59959fWVl55dVXG81ocWlBSm6MkUZXgltozErbfdejlIIy7XYbGcuKFbMOHM3qdVtMo0NNKMJGcjmdTo0xzWYTDgcklpFBGNVClKXQWhMECFHP80TJbY1rGxUFRqtDKjFC5rBh1VoDKIQINtjadtvk2ySdLq0shmHIx2VZllIVnucdBkk57XYb9HjajzVIgjFGFAC00ZQxRrDSglccHzKF4ZCxSDGuimLmQmCtFq1zQhCIkpdVoaU8YiyCDSkBkIprZXmU2LYExigpDCaEMIoxNRpprTXSWGOMDMHYGEDIYICqqqTRhGGhbfoicZljlNba2N7MAq/2ODbfawVAKAZTycoUxhhQBi3MLw2HU2MjpkAoJQCAKKUowlg7LhBCMTZlWXqe63ke56W1vaIMW/8ira2YymitjJr1sEd3RClVlqVSwvM8wiiA8Tyv3W7neT4c9bMsqdfrju8opRBFPvNcx7dPlOu60+k0jmMpldYaS+tG6lo1BqWEMWa3oCRLiyIO/Mj2wLZhNsbYnpBzbu3R7QsOXREtsw+hGX3b8zxKnDhL19bWTh0/UZbl/v5+URSUUjvvLIpCm1kiH4CuJJFSVlw2m3UpZV6kjhNEUcQ5V4yVWW7HML7v12phWebjyci6TAJAu92+ePHiq6+/mhcFZUwqlaY5xiTPSwQEIUIpJRRRhrWUkoupmHier2yoOoBLXSml41KlFMKEMswFWHBHSdNsNmkUcCktA9du2oRQjLGSRnEhwA5+XMaoVNzzPJvAmWWJOmTUHnmRH/Icy0MEX5ZC3P/ABeKQ8XR8rLXahqa1mDcGd7tDRmeMcq2gXq9H9drCYuQ4S7V64Di24nLqtfZr4aX9vUHgRMPhqNFoGKW5EAgbDJg5DqVOWXJRVhhRxyFVxSUXGFMAZUNZDl0vMaHOwkKojcQYGWOKvDpCfsFgMMZopJTGWElprBez0dbVXSMDNnDFIiZK2fgTOPQ41VIqQvD34ikAwLnQh4p1NPOLn3mblmUZBD7nnDnEthj2MjrM0VojAxgh0EaY2cDAdZlUyCICw/7A3hSMsWuRI4QsWKkP2eVlWRKKhBDUcax2xG4p9mUp/5RSm9sShqFSQmtLYiV2/6mqKs9TxpiQFcUYQIdhWBTFeDLMssQP3GazqbXs9Xqj0cjKJbU+wj6Q4zDHYXZzoxTHcYwxkoeeJBalnQ2WdIVAPP7Ye06fPf3qq69ubGxoJdI4UUbXajVjjJJ6c3OLl0oKcJiLNHCuhSgA6fF4srfbBThkkWt9ZJqHMbYRhUqJubm5EydO5Hk+Ho+1AqSN77hpwemhd7YtNaMoyrJMKr68vNxo1LZ2twCA8/Ly5csA8LWnntJa1+t1Rt0ij6WU9sZxLg/5udiq0yzMjeRs55/NJBDAofHF4UanDt1sABBIaY72Q3tWHiHO3ws9aw3W8p4AUUr51DfUkZIb+L/xRtBaa93pdBqNVlUJS1vmnFOHccEdx2EOATBSzmz0CaIIEBiwKQgu9SgjCGNkjD16rCl1yatKzE4lx3WllEaBVqA1aDxz9kMIGdC26wQAhLUBoxSetX5CA0gLo2utCUGzkTMYu5FaxC0IPGMQIcQou/RUlRfK6KqqXJctdOaIAVDyRz75iSKJX3v+uXw8bEThn//Yx9772HuM0lmaYjAGDBDMeVUURZaXaZoiSgAgzTJMiUZAGcEKhFZCCEwpY4wgYhAhgKRQCGGHOLVa7b2Pv2cwmcZFhoSsDKiyUkZrwAbBlStX1k+fnptr68HQMZBmxZe+9KVjJ08tLy9fv3otimonjq+XZfk//8v/xfOCCxcWKKXXrt0Y9IbGoD/902/zSgdB9Imf+6F/9A/+4X/5L/8lCIK/9Xf+tuM4GBBloBFEUfTqq686jrO4tDAcdj0vmOssSFMKWQjFMaKgQSnFubBkLIwoJQRTdzYLkRIf0rbsuNTQPzsqcPYgkdk4/Ah3Nodn5VF5BgDYgJQKsDm2unrfxQc+9rGPPfjgg57n/fNf/hcHBwf2vtvWTwihzMyCwwqV7ENuxSjGGJuuYW1mtZGe5wKAlf9iTO0owq4FAEwIs4tutsQQIIyQoUYZBAQjShizYO6xY8dOnz49mUyyPK/X6xsbG1mWUeokSWaM0RrOnbsQx/HKytojjzzy8ssv37p1AzCSUnazbp7nrVbroXe+IwjCehjt73fr9frVq1dfeumlwWBgsQuE4N69e3Ecl6I8ojTBIcUt8COE0MUHHnr00Ueffvrp69evW7KjlFLr2dDIbtr2gIiiaGVlZTQaWdTi7PppIcS1a9d83z979myr0+52uxaltatVz4h0M46z3cosviyEyPN8bm6u3W5zzkUpZnMIrYuiSIt89pwQEoSePXSqopzB4kr5vivEbBgvtZKlLIoiDEPHcZjjYAOWwV0kVZZl9haneZYkSeDZ/JgaKF3x4kifYRC4vuc4TrPZtDZTxpgiLTjny0urm5uboM2lS5dKwU+ePPnR7/8YeGFaFufuu7D44src3NyF+y5+/g++/IUv/gFjZG1lKYqC4WiSZ9nq6rGDg4Nbt24VRTaZjOIUuXOUUOQTt9vbrWoZogQToMPB5Mknn/yBH/jzCIgUuiqhqMqo5hnQBikDCiNkkMEEtIaqKrXhaZbW6v5cuzmZDvb3drzAdxzabNaTNCa0ro1AeMHzvDRNLUnzT/7kT5aXl6MouH1nczgetdtzW9t3MQY/xJtbg3aneerUqTt3b127esv2jQDm5s3rq6vHrFwLADqdTpIkcTwJgoBSqjU0Gq12a67f78dx7Dp+VVWcW70qnU4yjBxeSUocQpgQgnNBgUqljZGIOWAwl9J3XcY6RVFcunTJdhq5Ke2OUK/Xl1ZXijIry3I4HNpOLI0TQojnUErJaDSirtPr9ex80tZSaZqKslo+vpxlMaFGa1yrRcYgJfHduxsfeP+HlFLdbrfV7mRpkqYp5/LNN9/CmCwtrpRlOT+3VJZ8NBrEcTwYjRh10zTtHvSLorAllLW/AUQXFhf397um4p7nGmN8L4zjWCtkjPF932iitXVUwBjjVnvJ2mVqwJ35Thon03iMkPE8D/TMsIYXOk+zeiNaWVnLihGvpMO81BTT6XR5eaUsS14oAIMxsg80ANba0k9pEicA4DhkNBr4gXPu3DnGWK/XW1hY8H2fEIJx5vtBPM05F5Q4gOzcmDkzyh5IKRmjAJoyHER+FIVRFES1IIqC0WjUP5jaKavNrUYE22PPMlgtz8U2va7vCSHubd0zBjmOYwdONhAPY2xTj5VSUmhEcBCFdtHyqkjTFADiOM6yQkpJADmOs7y8bP+5jfGx/Y8FayilUmjFFQDYSZGFMo0Ga2HBmEtIsrq6ageGL730ktDq0z/5acf3GHObzeZ3Z8szmzCklE1jRIoaIzUYY23ttDLIIs5GAgJCiNSyMzd//NSZySRuzs+//urzX/nKlw0IykiWjw1IpWaxy67rAhjXZXEcF3k5Ho/LssRESSlffvnl42snkiTByFLRhS3RrMnycDh0mHf69OlWq3Xz+uXRaGT30Mcee+z06dOgzVNPPTUcDgHgzLkLx46duHXrFkLk7/29X/zVX/3Vr331K26r5TjUgNJaz4YEWgoh7HSx0Wi4rr+/vz+dTrU2joel4ggIQoZSQpAVI2PXY1proQUh35U8c86VSrMsrSqxv7+rNSil3NALQ//1N17d2NgwRjcaNa0RYaSqyn6///bbw1arlSSJ1S6sra0lcbl/cCcI3PXTp5MsDgL/2LFjb7zx2mA8AoB0nC8uLjYajVu3biVJfvr06U6nEwa1/f1uHPeqqmo2m0opXkkpEkIRYEPpzNyw0WjUarXdnf04jilm1lEuzwteqRxKwQ3GTqPRAcDWuanMy5il9Xp9Op1WlTDGtFqu7/uWAKK1dj12bO3UrVu341GytLTy4z/+aQB4+aVXEUJlwRHCDvOUFnaaaguSo2k5oZQoxYWwc1SttaU3BkGgjVRK8apSWgeRTwpUlmV/0J0MR9amHDQlmFrahZQSQEsp43iyu5vMLS8yxl566SXPCw7Jm3hpaSmKoldfeZ1Xlc1AqKrK/i3CBAFgjJWSWoEBifHMFdFWUcPhcH/7zeVjxy5cuPD2229rZRCgvCi2t3fvu++8jdjKiqyqKlWI4XjYarXOnDmzvb09GAyefPIDN27cLMsCITKZTAD02bNnAeiVy9f29rq1Wh0BtQmrZ86s1+v1a9euRc0QUVWkKaFelqnewYHj0ONrJ4Ig+LX/8BvD8fiDT34fIcQPg87SXKfTadejy9evLc51Sglvv3kpcMK7rXvtdrssy+3dncF48sxzz7dazU6rFXnuiWPHOaYInDCsN2jz5In1O3fu7O5uF7w8dvJYr39gpDh58lSWpttbuxbF6LQXrITlm9/8pqWLWqvHVqtleSVpmhpjGo2GzS3ACCy3QohoEk8xhp2dnfF4bIOPOZcEgedRjDEYFIW1NM3jOAVkonq702kBgFKmUasXaV8p5LmeUaCNybLKITjyopLnjUb91PqZhcVWEHgHg+5kMlESCAneePPlwWBsTQsxUZiY/YMtqMqzZ8/0hwOE8Pnz76g1omk8unTpjZOnjrXb7SSdUEpPrK+OR7ESUPFwPEml5J1OazodM9c3RvX7o6XlheXl5XqtmWXVZDxdWVlptRo3rl9jjG3c3pRGl3mxOD+HCL158/rt27e11u1Wp9lo/ORP/uSXvvSlhaVFPwguPvSO6zdvDA7u1OuR1uqb3/xmlhXT6bTRaFmqhZQyCD0ljTFmMBg+9vh7P/KRj+zt7N65c/fTP/GXPve5z5VV0Wq5QRCMx8M8zzkXRkN/Z0x8UhTVYDDSWkd+JKUECZ4b2E2pLKvRaDxLCkLI84KqqgaDUVny5eWV27dvW3AHI4IBBVFdKRXHMcbYUlKqrDx735nOXKvXO9jd3Z2bX/aD6OatO0mat9pzlpWGAJOZz7LivLQlx2Aw0FpHHkVadZqtixcvnjlz5vr16wiRBy6ey7MyS6eI4DieEILcwFeF0oe2qkbpsiyjoDY/Py+qSnBZ5oUN6UWH1i5Hh5RtS6SUZVlmeWKrnU6ns7i4mKbpwcFBVVWe5wG2QXMaIcMYw4AIYUoaRDFW2LIUDUb4kK1ji2xG2RElRGuttULaIITq9bqU0oAe9vpxPFlZW7W1SlnmWutarcaom6a5lGqmcdGglWLUdV2XUMI5B4w00kddlgWDAEAdBpRb8hoAmENTTvtlGXXs31Yzmpglms2ABoJmjGyMAQFhxJmRNDHSM5NoZTABY8mV1BgjQdlMRVswIIQ8xz/i59pRrnXD1Fozh6HD/EBrqY8JohQ7Lm02m63mfDYt9/Z6vhsYowEsTVIbBYbY7XoGjRljdeSIUuq42HGYAQtAYMvKbzRae3t7XIqZ6twYMwvfAyk5xliDcSmxn9nzvFo91EZqbITiACClDjzfIllGGurSKIqEknlZaK2NAUqJ5TfZmQKlFGFj8R0bXqIPo3XQYcyR7/vt+TbnfDyeZnFiAWhLyQGAI1z1kM+ohRCNRmN1dXU4HNoBjK05D8MYK21AGS0lp9RzXSZEFQTe3NycNjJJHMaY47AkSYqi4AW3EJX9SNSiBBQ35paHw2F/ONo72H/rrbc7nbYllywtLWmth8NRnpdSCSGQ6/qEYFGpw+fNBhYRjDF1qON5yJg0TW0wbJ6nyADG2A9Cz3cAwD5sxhiEQGtDKZJCi7KSUmICszgmpYwxVgzLOSeEAcwIbpZjbu+U5UBZdL6S+tixY6fW1197/aUkiZWRi0vzS8vLCJGbN29VHHglGo1wcXFxfn6eYlJvNpqtqKry/mC34iaKQq3x9s7m6dOnj62t37hy22GeTbH2fT9Jp9jxjAEpldaCFwUAuK5Xr9fjydSuKbtJ2hWHDz00AUBpkaaJbZIZcxzmAYAF7qXkSmljNMaYEkdrSxUXGI7Mc5GUypiZCS86fB1tX+rQYfnoYcCHjgd2l9aHFNeqquI4DqOZvA9A1+t1S0w7enOCZ7+UEAIINxoNDGg0Gtmd0GWsVqsVRSEOlRMGgXMoLOCK2xvEGPM8j5Boe3sXH8oXHMdRWiBEKGPKSIOAUlKv1zzPU1rYvXpj497bb789GU4ajUYURZ7njSeD0Wjk+7aBkp7nTaejQwjeIISU0q7rzDZVBVJWVVX5vssYk0I5DmWMOYwdXdgsm/q+c/HB85SZ19948dr1a1HN9zzv0UcfJYxcvXrVEim0lAAqCCLQQBmTUnAujVGADMJICCmE8kPamhEYc0uJFULYeafnukcewTXf1UgrpSilRips6fsOYdQhGBxGEGbT6ViISkrpeow57lNf+yMpZT2qW0zf+oxZSqDjeEd33G4mR/RGY32c8ffKaAAAHMc5UgOAmkl57ENiYVa7Oc/e1mAhZvbK9mjAhNjmVR/a6yswxoDRfzZ6CAC+72dZNhqNTp065fv+dDqlFFvntKM5hJTSgKKY2U9ytPe6LuNcloJbXvOM/4QQwkYKjTHYDwyAheJ2bzSaYIosVxzhmc6AHOYEAAgAsAb7CCErAXEchxBkETSlFCHEZvYghJaXl40xQqgqzTnnVVFqrRkhf/mvfkZK+eUvfcl32H1nzjTrjeef/s7k4CCi+OM//MPvf/xxxYX1XE+yFCEkucjTlCGSxrESiqdZXhaVFEEYGgSu62oD2milBJey5BVC2GikpEGIEYyDwJ3GKUP0/nPnX379NYYwNyTLcoN0UVVRvTbo9vwg8FzGCMYG5jqdmzdvCqGazdbxkyeLvDp+/PiP/6Uf+7f/9t/0egenT5/d2NjoHfSrSgiualFz5dza9z35fVVVbm3fe/8H3nvu3DnXc/I8Rxp99avPHOz3unsHv/iLv/itb31rGk9qtYaS+vbtuwqqRjOM6iEAMEarSiAD1DrjGo0ZI4dSD3poB2+MAaXJobrr//qa3S+M8aEN8XcBZm0OZ6gAANiA7dQAoNfrebe9N+bm3nzjrbfffvuZp59eWVu26+Uo8d71PXvK68MAPcaYkopSUlUVo57WmlACSDFMlCwBI+YgjK2rNs3z3LpM2GEYgKYUU+qZw7A7u9dJhLQxoedbG+KV5bVP/NAPD4fD3qB77969U6dOTacJAFgwBCH06KOPBkFgM40effTxV1977YUXXmh3mo898p6yLClxLly4oJTe2d5DhKytHr/4wEM//MlP/em3/+QP/uAPSlE6DusNB0opQv8rsRQAEMy8kNkM5Eajcd99921sbFRVVcxwdqsSmFVKdp/P8/zGjRszGFrImzdvAoCSxnWc/f3969evSy7sgUOpY784O5w4WndW68Vsx72MMRtsk8WJlDpJEis7swei67rWZzLPSspmtux2FN1oNCxn1959IYTLnHq9bs93e0LleRkEAQDYjluZwyEZo0EQSCl935+bbwNALYwGg0FRFQqMAhjHcej5CCHri+K67mQyOTpMKcW93oEQVXuxnqapAfTgww/Vo8bv/v4f/MnXv0EoFtxsbO39xF/80YXFuW9/+1sGMJdCKLm2tmZKyMs07hcY48gNKaVC8MCLjFH0Qx/68E//9E/Pzy9OJrHNEnFdd5b+DHCow9Wu69EIKaXKouv7rhDV1u4G52VZ5sylxhDOOaWUEJcyL8unCwsLvd7eZDqyJ/re3l7gR45L8zwLguD++y/4vhfVvLKKpRQbG/dGg4njuHOdxa3djW63aw1MAWB9ff3kyZO3b9/c3d0NguD48ePj8RgAR1FdSa2UTpN8WE1sHDwhjFdSKdXrDZQyCBGtDWOOFHbgDxhjOwgnhJQlZ4xghOxGnyRJFNZtwW1xGYJZWU54Xi3MzS8tLcWT6WQ6QgZc11VgbNFsh6u22kuShCLMTQlITqcT6wU2naSMhgjh69evt1qdXm/Qbjcp8zAp9/b2u92eVmD9tvM0rWRls9rAmKoSQRAJUX3n28/U6mGrVa94wTkvsqPMXGqbmTAMn3zyQ1/84hcpdYxBRVHdvn3bGKONXFs9DkhwIRyPAYBSVRD5RVFQhPOsdKgrhNLalIUEgLLQw0E6ibvt+blOp1Nr1PM8JwT7vp9M+y51kcZa616vhzFl1K2qijmO6/q+Fzaawd17NycT2e/3oyhyHX84GFOGGWNznYVWEy0vkbJQvd6gSMYWvdVaB0GAMTaFDWmdmS97ngdI2wyEIPDpoTOaMUaDIYc2bRarEkIMh0OMcZIkjUaj3W67zOl2+xbnPexgNSGoVqtZLDjJUjt111pXVVUWmeu6BBOEUBxPMaYuZVmWVZWdugs7sa/X61prXklpZLPZ1AqUMdaVjPMqE5mU2mhYWlqq15tbW1uf/exnT5w48fLLLzejTrfbfe655wyCRx59VxRFy8uLRVHkSWo3+iAIiMNmpw7GGgxiBLRBgEGDlRgrpbQBjBHnEgDPLS5oAyda86dPz+/tb2CMhQSEUOBH4LkVzzEGz3eKvKqqCmNaVUIqYdFwQFpK2ev1xsOJ53mCq6Pu1LaCUuqf+ImfmE4S13VfeOGFqqrsdmYf8rm5uddee+3g4AAAPv3pn2y0ml/84hfLsvzMZz5jK/vO8rJSytpxWHS+0+ns7GzZzEbbNVlOk506RDUPNPpuGyBn9Ctr5y2NtHb7ZHbUwcF+ryzLIIgajcb8/GJVlDs7O6+99prnOydOHHMcJoSYxOMw9F3XVUpYT0OMqBd6xqDRYJokGaUUgNy6eScIPSnljRs3/KiW53m/36cG93q9a9euaQVSQLvdjsL6aLi1vr7++OOPT6fT5557TkoZeD4AeG5gkB4Oh56nH7h4nzHGTsiklK7vGYOMAYIZAaKUocTTWl+6dAkhZOWezCFlXlpClt2FyrJ0HAdAK6W3tjc8l7XqzciLRsPhmTNnzp8//7u/8/tJkhgDhy7YxBhEmW3qBFhzFmOspP3nf/7nn3rqqbdefx0xtrS4aDU41uu84FWj0aCMTeOxlLLI8ng6BaUtNi2FJgQ5xCl5tbKy8mM/9qP7+/t/+qd/kqbpT//0T/u+77vea6+9cdTmXbp0yfO8j370Yzdu3Lh8+TI5jAsHAEKsBxHM9N2UHI5/lJR8f3/XGFVrtbIs297e9DxHVBIA1WqNJEkuXXpbI51mMWCwTKu9vb1bt26cXl8/eer4YDC4fuNqPM3s2n/kkUeef/75P/zDbzz22Dvvv/9+Kc1wMMVIY4y0loQQLsqyymllCEGYQJqnyEAU+EroUvMsK5qNlhTqj/7oj/7cx//87sFur9f70Pd937nls3lepKWoJLzviQ9qhVwWvOc97ymKQmrVmp9rtuqXLl26c2/jw09+cDJNKWKPv/s9iGLK4Ad+4Af+1//93928fE1p3qgHrktLVWKCGKMrq0su8xCQohQ2OnJmGaZ1EAS2Azkq9zHGo9HIXlLXZ7a9KYosqteqquLc+m9AVVUIEQzKcRxeCVuypGmKMQ5C3/d9i3KmSbK7vVfkUiso8wpjIqV0KUUIGHNrtYYUqiiqxcXlN958Ya+3CwAY0zBsGU2FqLRGjovdgAS1WqvTKNIsiPyGDCml/UF3fqmzvHLu1PqaNPLKlSsn1o4ppU+tH3v00aVXX32dMABUlVXe6x1oMAiZwbA/GBxkeex53mDYA0MXFxdt1PvZM2f6/W5VVSdPr4/G0/F0snHnDhdaCf3DP/QXQj/wXPeDH/zQfffdd+fe3fXTp9/xrkf+x3/yS93d61Lx6XQa1upBEPR6PYv2Og61WXm2jqfUcR3/zTfeeu7ZZz/2sY8dP37SGHPq1Knl5cV2ux3H8XA4JIRYTu7c3Jw1mvd9nxJHCKWUIQBCWx/VmV7PBmdPJhOMsSWkf+Yzn1lYWPjaU08hhChhSs1UqysrK0KIyWR08uTJ++670Go1Wu1Gq9WYTMZra2uO49y7d48cRpTYDFhjDOe8Votcl/X7fddjjUaj3+/X620hhA0rPn7q5N/42b9elfyNS28Oht1jx5cNYEuEtHxk13XTaSqEKPMiz3O6zOr1eiJEURQEY4Qss0kdEc3sI2dnYxYA5aIkhARBsLi4aLtxi7MzxibxNMuyRiNkjGkNeZoZI62ClXp2vIT0Ydar1hodmhIeorfYquatwAVA+56nQU8mPIrqrusajAAKhj1ldBzHGFEhFOeCEader1d5iQAIZhYrBIMAI644pdT3fWvOgzFWh/puK+Q8Qpnt/zTGMEwZY4CoFSECAGPWQ8OisdR67FrsSStlpEKM2vreIKKU4lIKIeq1kGGCkCkFl1xq0EhrUSmkjQFTlqVtb8LQtfCB5ZEppbDEru9ZAjVjTAmjtIqiuuM4SZKMhrEReH5ucTIeAwBCCs8wNY8yHwxGRNm7ZptMS0zDWGutlZZa63ga12p1SqmlLGk6Y/fYMwhjjAkwx2r7KmNs7gLlogTk1Gq13mQgpayFUbvdtohSmqau6y5EC1aFur6+Xpblzs5OVVWY2rYKY4wJcZhDLIXfIqFHIKkxxp47Fl+zxIJZXLuQlDLbudl/4Hku59xmBCGEAPTGxsbO5pbFj0I/sK4azWYTIZTlyXg6wRiHod9oNoMgYI6HsPGY5/ue1QdwbplBjACy0D8hKAg8x2WU4ukkOdjvXbt2mzGgFE8mk06nU6/XrQFrp9PZ3txO0zQMawgRIYRNFrGTwqIohRBaQ61WC3xHcm4XkTGKIGzArKysGIQRQmma2r91XdcYJESZZZnDPDTzrrX0Xqm1Ys4s68wOJu3oEWM8NzcXBMFoNCqKwg50LTKlNEyT5MUXX5SqpA6bTCaEouWlVYwpY87GvZ2y5CePn1xdXZVSxnHc7/d39zY5L1ZW51rtutZyMBilCS8zabQznU5hRpRTUsrA9ThQgqltsNuNpt36qqoKw5q9ZXZqYvt/hFBRFJYRCUjbqYMxBmOCACh18PeEQGKMAEyaZnaLMAYwIYRQQrCUynWpXS96FlCJESJmZrJB7MZi/0wItSLlIwDCTtHsA6+1KorCcal1aRNCCSFmJAk1Qxspw67rEkCUYi5BCYkZq9VqYRhqKY+06qoorOrC9T37mRlj0kgLK9snHGM8Hg/n5uZ2d3dPnTqllGIOw4RUVeUHLkLIOE5VVUJWjuNwzglFvu8nk9jzPMdxjh8/rpTgnAdBUJa560WO45dlmecZxphzSSjDGFPKjNG+71uxc60eMsYoxa7rpslBEARRFAW+n+e5rQnjRDSanUaztrV9bzKZEIJc111dXf2B7/9z02Q6Nzf3rW99yxiDEAn8KE0Lh7hCWBNRKqVmjlMWnDF3YWGp1YmsUm1jY8tmn9h74XlelmXWnNDzvKNxSOiF8XhiK0alVJbGZUHsbBVhmE6nXug1m3VAyHGZ1loJVZZllhYWyyaM2l1OHsUDajjCZI0x2Db+iMCM5zsD8qbTqf1gjuNoIS3ge9QzWtTMNolKKSUVRjM42N5EzOwS87C2Z70W0rK5/2wvXgRISSOE6Ha7zz///HA4dBynKDLqMGtSZH+dbYKO5qMYYztvppRyLoWsjEa2bTyEI5EBBWZWHgihLEpuYaZ6vSaVyvPc2usJIewmad2Z7eWy5mmEokMpz2xms7CwoJTa2tqan5/XWo9Go0ajEUUBVcYaxFNKV1dXv//7v78sy2eefnoy6K+fPPXCc8+KJA4pfs/jjz988YGqyEARO8hBCJVFUWSZQ9n+/n4ynjiE2tqVUKK5qKSYjicIG88PESUGsBJKA6aIKg1GKc/z0iwPvADLyiPsxOraZDqdFgWlVCplR5uYkp2dnVqzUa/XkyzXxkgpR8NJUKudXj9bq9VefOUFzNB4PO52u888/dy5c+f+h1/++81G+7XXXo/C5vnz5594/Ilud7+qqmee/Y6QhV8Pjq3O/e//4XP/5l/921Zz/h//w3/0iU888ZnP7Lz44otKKaVExQtE9aA/SvOkXo+cqPY9QgewNDUw2G4+9Ht4NjY26ahR+m9e9mE4ehq11pjY8+7IfGk2ODF6ZvwipTx9+vSP//iPX7t544XnXyqK4uSpU4Qii1NZcC+O46Iq5czuHOznFEIggKIoGWMECHVoWeWuR42xfFOCEDBGMAF9GBe5srJSFAXnlTEqz/OyLK15vl2MVq4aRRFoc//9929ubr788svGmPPnz3NZvfHGGxjjIIg+9KEP7ezsvPDCiwihW7duf/azn83zjDHmOv773//k+vqZKArqUcP3fS1NkiR379579pnnNza22p+dS/Ls6tWrb12+DNZSv6rQzOf6u9bJR8C91poQcufOnevXr08mE4tLFFWptZaiskWg47AjXyyr2LOjOIfQOI6NRo7jZFkWl9NarbZ8bGk6nXLOMaaWhmgPlCN9jP3tQggAY+fTSZKUeW7/vT0vAABR4jgOOpTf2UVq73uR5dblKUkS+y2UUl7Db9TqQghr8yCldBwvTVNLqrAxvHZ1A8B4PJ6fnz979mw9CrrdLkG4qqrBeGzfnzFmGs16vb66vNJoNGTFtzc3pZRBEFy8ePHK9Sslr65cuRL2pydPrAslH3308ae/8+y3v/308tqxMssRMu974vEz5y8wYgghlu5dq9WUkqLizWazubZWq9W613sLy0vvfMfDr7352nA4pJ/5zF8jzJVah5HruEyD8j0iFYBBAAQTIjnH2PAqlVIX5YB5aPegO02dwaj/xhuXhFCrq6sPP/ywUhUgs7I6J2U1P9/+vo88edDfHMeDPMvzPNc6VNIEnptDdeXqWw8++ODHP/wDf/zHfzweZa7rZukIYyxlIRVg7C0trdoFSYkzHI3q9Xq323ccb2FhZTAYIYRqNb8oEozxAxfP2Mgsx/HKgnuexxhN4hId8tsxxoJLYwyhzGEMAIR9krgEpPygboxxHKffHzqOo7F2HV9oJY1Os9iOuIUSWxvb8SRZXl6OwtZoNGx1ag88cN+161eEEJ1OK01TK6vBGFPHkVwDUJc2eZ5xgUUhEWMIYDKJ4zgNPH88HHme12q0szwZj8eytIHFpiwUY4SgQAmttSaIagEOicBzlUDTsajX68ZQRjiXAgAx6uR5LoQ6e/7Cb//W5/7B8X/wr3/5n6NGA2MgBBkwa2urURQmed8PKMbU1r6tRm31obWbN28JroSUlnSjNWCMqyzt51mlRbNBFBCKqE9oQAOKyXayK5l2XZcxByMjRSV5pTEWUruYpuMkmSTU1ESVGc2SSuEGMcRIAZMyVYLW6qE9cpZWatMJS9OEEtcgkEblSYIxBtAWbu4ddOPpqNms93v7o9FgcXHeD0IhpSUgY42UEMhg0AhjzJhDCCqKotGonz51and3t7u/35lr3Hf/md2d/TQtBFdSaoSw1mAMarfn5udRv9uVUmZp5iBmuA6cmpJKaKmUwgojbcB+HG14WWGMhRSAUJKkAOC6rhEAEp87ffqll162ZpqEgtHaII4o6Y+6eZENBsNnnnkuiYszp++7efPmT/x3f+n1S28+9cdfG8bjM2fPMtdJkkRLdWxltSgq1/V5zqVWjDGKMDaSUiS1FFobpRFCjDAFmlIKM28mxQgtimKUlNdu3PjS/+/zt27eXF1dLqucYBUEXq0dlrzAGFOSU1rESaa0LsrKaF2r1302ZzdhhBAYREBrqawYDQDKvFxaWvqrf+WnvvnNb/7+7//+oHfghkQjfWL9VDpN37p0dWe7OxqNlELtduf7v//7b968/oH3PXHlypU7t27/5U//5M/9zN8MQ/8LX/gCIej42kpelRhj6pBao74ESgihjMSI9HoHnJe2dWxHC1qrOIuB6qIohNEEMcGVlFKJyvNcLSTyXXqYCUOwcR36yDsfPH78ZKPR0FrevXvXcdj8Qgchs989uHP7njEoSfIslYxGbn0miEbIGKWFEJILDF5vf8wYy2IFOHVdtrKyUkxjWeCKMwBlZKiUaNTcG9duOs5d13UJNgQrx3MbzVAphRG1X2dxYfnMmXNnzqxThq9evXLnzu0i547jKQVSGM0JYwy0waAYMRqZTCpCESUEIYwUGGWQwarStaApkaympaQaYdDItBrNfr9fRAZ72K17L77+/MPvfmhhZa56WXier5H1BTWUYaOR1gZDoBUoLBExRpoyTd56662/8pf/8tV3vXNnZ++1115rNBqEkIrzosyQgfGgbzAyqlJKgQJAhFLPICK11lhXymAQRVHEcby3t7e3t4ex43nRqy+/tr6+7rqh74dCCIwRRtSOOl5//XU7bFdcMEKM0oCMRuC6VGsNSDHHxdg6ZgJChHMZBN7CwoJGsLd3sLO3G4QhYwRhpEBghzkBzfPs7Nn1NIv39nY8z4uCyGXuZJD09oZBEGkFW/e6gvNkehOjgOKmlr0rb29gs+F5XiuqA0BaJISgze2bWks/YqC063peswlItxv1zlyLEuetty6PhtPVVT2/uCy1GvSnRcKffOKDb75+CT/IBNKX3n7z2PGzi4uLQdTSCpKiTNPkwx/+0HPPPcOr8uTK8vxC58Mf+cDTTz/927/znz71qU/lebq5uXHr9rXte3fn2+1erzvuTaIo8Fi0s7ln6/5hOc2yjDl+mRfWSp5SevzEMd/3XeaEYfj225eKIiUI2TgUjHEQBI0gtLQCoSQvcjDokXc8ur/XG3R3EIS2ZUomlbUWqfKCIOw4HmhDwU3iPM/zqhRaa4wpJVQppbSijAgteGUwcx577JG8SBGCt964inTNhXa9Hi0sLXLOR6MhjVzMqOvi5eVlDcYakxVlVqvVACTX1b2NG1V1/L3vfd/W5vbe1tOTQWaM2uv0CbtZlsJhXq3eOjjoXXr78pn1s41a+87tu/FYp6PJEeH9xCnHpeHOwU6xbBYX1wGyNOOjfn71yr2P/9AnzpxZ/9Vf+w/Xrl3tLMwTyr7w1ad+/u/8wslzF7/wxT/4k+8889orrzajJd/3Oy3y4Q9/+PrNG1euvN1sNh0H255NCEWJU+XZ0sJi9+Dg3Ac+sLS09Id/+Iff+MZTx46v+L57b+PmaFwbDocnT5xYP3X6zp27cZz6brCztauEARfnJS/KUiMtJTBGlJFYI6X1zM5ZgedHWmtmlFLq61/7epVVoV93HDo319nb28uLcXuu5ddM24/aC25RTbJScxVPkgFjrN5s7O4c/PZv/59lWbbbTcehzEEIWcDXYISkKJvNJtZG5BwpAGFqUZQXRa0JiJJnnn2uNTcnhb63sYUxbjTnyCyIVZMMlVLkeW40WTt2Igi9nc2Ng/5uVsYE4ahRq/ISSaWE1goc5tnY7ooXLnXlUZIewVIrG8aNMfaYgwNY6CykaZpkWTLJMMas7VjUmNZnWRcW3p2BApwjhAhmxiijDKP0ECqyDGJjjAFkgBhMkJBi5s6qjeEaC8MUVcQgrSRXXFXGGIKw77D6XDNN06KoqqJUSmlEA9erqsoFSjAQighxpZScC8IcLZSUUgMxCCmDjTbagJ3pVlWFPOS6rpSqEhIAAWDFLYCLwIA2UszCHpj1/lOy5LLCFGGFKcWUUA0YO9SljFKMEJJGU82kUqYQzPdY4FpgK89zpQzGUK/Xkziz+hjHcRzPtex1x/EIIcLkYDBhHnODssqmo1GtVqfMMNf2otgAAKIGwJpoC87t+0spEQKhuTEqqgVSKsZcwQukIR7HQRDxSpZpXmnpuq7HPIqO3EiR5bMrJctSWbx+VgwLISptiQ7vfOe7nn/umSxPgiCoeJHl07IspdRSVAiIEgo0EERc1zvkmTLBlcP8xlzDGG2TM8AobSQhpOJFFEUVzxSqKKWuRwhhZcGneUYI8TyfUocRZozhShmMqetUVSFkVY2LZDrNsswVvh+F3AisKiON47muy9qNtlt3AUxUD40xLnNcD8XTZDwtGXOjIFRax2kqtaKUGqT8yJ1Op27kzC0vWEQbC51M04XOHCagtex0Wn7oWy6hMaaquBeEBqhSZjQaMuYszNeiekNKTVJUVVVZVo7jIY3KPCcEAWjGiFJgh+6YEivotK2KbVYJIXGc2s2Qc56lqeM4CDnSKAMGlPF8XyMZ1gKtK8Tk8toyApbn+enVY2cvnL979/bu7k4lOELIGBAqU5PpQw89lKRpnpeMMdev9UdjY0y70Xz4HfcPen3GYHf3tsU4uoOuhYn9YD1LZb/fb7VazRXv2rUbSmrkFEJVCHnIgBQaISRNxiVACffff9EYwwuuDS5LDdgQgiUXUnKEsLWYFEJgrIyWVSms77XLHLviAYxSAoDBkbWLQYRQMNJ6PFNGDqfbWJS567qNqJYkSWZREkwwwoQSoYXWms3QQAvDVUpJy5XGGFlAYWYqKmVU8y3ZyHLrhJJSmaLMrNM3GA1gpNS+7xvQxhjmUK1VxaU1Wik5ICMEyKrgUmiDADDSUgnDLXJnFGCEq7Qs4hwh5Pv+X/3Lf+XJJ5987Y3X/+iP/shzHGOMi72SJxNLfCHE9QgmBkArpYymVSnSjFAaYuq7gbu1fYdSDARH9XZRcl5VcZxMJ6mUmjEXa4UNMloghLIiVlr4UaiEzNMMISOEwERiLBBIAAtwKA0SsEQO95oIF6KcjHOVAQEgcmd/I8uS23euTuPhwtxiVZWgS4cxgKpMC0ocDBQjrAQgZDiXFy9e9ELo97v1puv6GqcCEGBwfb+ODTJGay5c4mqtp3zqOt7SyvLSUq0oop3tXjIptCZAvKAeGqQ0CMA6jDwA0KDBgJI6TwshBHOIVLOxMQZEHc8Yo83MfcgYjY0SgiNtCDIaMa01AcfYGBh7wBgQXDqM2IAZoTQhpBZGQoiyGBrAUiOlHMwcg6g2WIMiFEkpEAbmMS9wuCgIIZQhBIRhwrmyhFED6s+GmxGSijOHMkbKMicECcEbjUYY1iaTCWgwCqRUoBFBVAjBGEEIlBII4TIvHOo6lCmq7RkBBmttEEIYMYIBDvMMZxRLAi51iirH6YyvjYCAAYd5ShoExIIVdpW5zNFaM8qUEgiD0dZTQRdF4fu+tQD2ff+ll14ihASux1lx/MTKI+9+5OUXX0KG/+t/8c8feuhhn1F/cXHj7nXGeTEcrJ+/7yNPvJ8SV2goRcF5paUCqfI4ERU/GE/SIs/z/MhTe0bulgaMwZ6jkDJYY2rHbFJhYWPyJJfGVGAwgK41a97Y10lCGaukwIxirbQ0PJegBNQwdjxiTJWVYRhKUXV3J+fuf0DoKkmSr33ta6BNEEQP3v/OT33qU4++64lTp1Y//H0fuXr1epqm46Tv11y/5rznfY+PRqMvfP73FucW/7d/9+/yJP27/8+/+0M/+ESvK4o8J4gS8LViDqJFFpfF8OMf/9HVtYXPf/6rdlRvz18rVdQKMEJS67yqjuBm6xhJyJ/NbkaYoNkVsBvXjI8sZ5zcmT+MncMBAoORwcgN/Hc99ujHP/FD33rom7/+67++u7tr8AwKsyM3jDFBWIjKxlZQjCXnFrd2HIYQMkQqpQnBUmiEMMYBUTY1wXDEMcYIgJdlHE+TJCnLktEZ+U+ICoBZWufa2trxtWP1ep1zXq/X3/e+91VVdevWrctXrzgO7ff74/F4dXU1z5K7d251D3abzeby4iIyJgrCwWDAOd/e3g7DMPQjhM0rr760ubnZqDVHo9FBb3ua9JRMd/b2v/SV3wODk3SCCJZSIoyMAUBEG2SkIZgJIQiQWhA2Go3hcBgFYavd2N2lk8lEG+m51gKrNqM7HPrnCFFZSoE9kRHGUkrKqASpEKyvrywsLGBM8zKphMZYY0y+V3cFAHaM6vuu9aQRQnW7fYwxIcRGyWkEQiuMMUPIGGOFM5atzBxPa12WnFI6GY0xxlrPRqocVf1ub3dnCyN6JPCKy5wirISuRdHpU2d4Ud7d3NDSVKUijHphJIx66bVXp/GEIFxkiUZifn6Bc95o1s+ePSukllIKrHPDo/mmW0yitn/u/lO5nNy4ee2Z576OCCzMr336L/1V1lrO0vSHPvEXPvR9H/nTP/3TVqv18MMPV0XZPdidplJKgaHCRE3SXttf+Oxnf6q2Ej779HfefuZNjMFZxr2DgyBv0jAMMcOYgOcFQRgSCpxrPPPVRUpxh5HhaDCZjJmDfN/t9XrPP/8s57Iq+f5+1/f90WhUq4UPPXTx7r07aTZqtxtcVFUlzp45nyTJeDgKwzDLiizLKsG1hqIoNjc3m82mVdZbbsV0Oi3Lst8fBGEt8H3P82q1WlWKg4ODF154AWMcRVGapnYTnE6Tubn24uKiNSKwYwHf9zkXNl3EDgyP5t523GRtEIwxnJdclJSS6XR65Plgw3yk4lJxpZSQhBDs+x6RBPRsLLm0tJSmzq1bt2q10Lpq+r47HA4552FYs+yhKIosm7JWw1lW1Go1JQ3GWAjFXKqUchwvSZJarVbkleBqbfV4WZa93sFsVHX4OhKxUky4FJ7nWJELIQRL6fuB47lpmoZh+MorL/3Bl/5gcXGR1aKFhbler0cZbkQNAIjjmLrEcTwhhO/7aZJfv359aWnF2lBozZXShBBCsFKqEgIDUNcxGkVR9NZbbzmO02w2GKF2fmhm1mDaXliNjBCCa8MY00ofiREsnSEMwjzPLEGv1+sZUFafaylNh5OcCsDSWq1ACRqNmu97jkvjeOS6/u5u1+jA87yHLj6cZdm9e/cQQFWKLC0AaZsPU6vV9vb2G43GuXPnrl692uv1qkpYvSFCKEmS+fmF6XS6sbGBMV5eXrQ7dS1qYIw7nY7n+Wmabm5uCiFswWEzHI6miwghhFFZWqKKllLUajVK6RNPPPGNb3zDOjtbdQMAMOZqBc1m/atf/S8vvfjKgw8+eOfOncff+/hP/ZW/+MADD9y8fYsx8uabry8tLU1GY5cyQkgURcxzGWFZmidZipGMomiGkBqQUlv1qxACaYQQ8n1nEqfWjOLZp59eXVleP3lid3fbgGy2IsaY47j2UvcO+r4fNGpOr9eb7yxhjCfTKdFyMh21221CkO/7iJI0TbVGlk5lPYN+7ud+7uDgII7jIAgwIktLK0oZjOiR4hWMjuP4n/yTf/Le9z5eluXNmzf7/eFvfe7/fP3115974dl6PWq3mwSzKKJKyf39fcZmUkRjjNay2+3a/hMhNBj0wzAEax+MEMZYScW5xBi32+1Op53lU8t4klrleU4IJYT2ej1jUJ7ng0GvKIpOp93rH1CK9/b2srxECPFKWtW5nUnajUIIaYxRynDOl5eXZ6YEilcVXltbC8LQ9byD3VFZckAmDENjlFbCRnxwLjY2NpWx/muNzc1NbRAX5f7+vhDVeNI3xszNdRhjBSoJIUZDp9Oq19vbG5ugDUK4Etyh1HrGaW0RcDhK0eEz8zk1mUyC0GUeazabnFcVz5eW5s6eO5Gm6Xee/qbkZn6hkaYlocALTggRwlDqUEIErxzHs2RVx3Fwvf7UU0+VRXbfffd98pOfvHXrVrfbPXv2bB3jwdDYXlpKSRAgIIxRjLGdxs9ogEpRhMMwDEP/O9/5zuadOw88/PBjjz32rsfedfLkyc9//otWSUqJYwVWzWazKIqHHnqoHka9Xq/Vam1vb2dZBkRbcZMspW0Wj4BFm/7KOUeUnDmzXq9Ho9HI9ZgVPfi+73meMXo0Gs0vdKzGRUoZRVEtqN2+fXc63Z+fnw/DMEfIgHrzzTcRQlYJa7TJ87w2vxBFkV95nHMFyhhljGEOC4Jgfn5OG4mNnk6SjY0NpUwYhv3RcGll7Z3veuTiQw86Dh3H4zsvvrB+bL2scq3l5ta9p576qhfUr1y5Oj+/2G7Um63GSy883+3tNxq1n/u+v3n58qV+/+D555+/ceNaUeSe70ieLy8vJknMRe67HsJGKcUwm06nSpnFxUWlTF5mgPT+wU7F85OnzjebzdFoJChXSlWVAIUwYxghLlWj1b5w4YJSyfb29sra6g/+4A9+5at/lCb53//7//B/+MW/n2VJvd60B9xoNLCaY0DgOFRryTDjnJcFV9IQwjA2SpmZlHUmytNaK4TUNB6fPXu2qso33njjAx9437nzZ958882drV0/9ObnF3q97vHjxynFtVq439sTstLatJody/+d6/h37m7k2V2CnTfeeENrPRgMGo1aVRU8yRChRVHIqgSQjJGiyHZ2dgaDgef4Qggprd+lvH375srKCqH4tddfPnPuLK/iySTmlVFV1WjUfvmXfpkw/IUvfL4oiv2DjU5nEWN8+fLl3/zNX/c9hzF6cLBXq9U8z/vCF76QFenjjz8OAFtbW41GgzE2GGyAwUqYxcV6FNWrqlpdOXbz8uW5uROu60+n47KsptNpVfHFeb61tf3662/WosZoGAshlVJFXhnJHYcKrTzPQdgoK8vAUPHS6Jn0FYAg5Bitbty4LoTwPO/ixQd6vQNMtBe4o/EAE1hYWPA81wZOKKXLsmepf5ITbRTGeDqdEoIclzLGfN/XWlo7i7Isw3rN9/17t+8AgAFAiCwvL7darbwof+c//x7nfGlpiVIbXDaTnS0vL+91D/r9/sUH3nHm7PpkOFpcXLw86BZF1mnNGWM9b0Bq5XoMDM7zXGttNJJS4kPbB3V09Gu9v7/vMafRaFVVtbW1lZclxlY/figX1QgjSgkihGACaZra/59RV0ppHSr0oT/mjKtFZt55QRAAmv1VpJTW2lI4lVJZllmDZotQa21KwVEyVcrYRHvL+hFKWXpjVXEppUGEEGKDoqSUxqDDVk1pjYQQ1sHpaB+2KSCMMaWMkTMp69EvhUO1vlJKK1kUhdEoCAghDGNEKZVKLywsDIf9OI6jRt3ajHAhCCDP8+r1elmWouIazbiWgLSS6ggCUIexUUIIRAllVAgBUFoW8GQcA4Dlz8rDrDx96J+IMBwyRjEh2OaqCSEIQVmWCSFc1y/LMkkSrQARTBCxvMsyy488RpRSQRAoNQtXtA8DIK0OA46SJHnx+Rem0yljzEYqWRuuIAimcZwnhaUJW5Datm123qAUzvNcSiGEqKpKaGnbsO+lBSmlOJdCFAiIDT22b2Wp0NpI13V83/U8RxuJDTYaHT92suDVZDKh1EGIcF5oMEJUnjf3zne+M8+zq1evCiHC0OfcWj8bhwLnUmvdaDSSaWyLbcYYxth1Hevj7DhUS2WMWV5ePnZ8NU3jwaBXFRVo8P2gLKs4jqXUve5AStlotJRSBmGMaZ7HYPD8/EIcp/E0Fa7SUrqua4MZsmxqo8KTJLPXZ2bKJ4SeqVs8ezWszKXXP9BaLyzMpWlacck8LEVZVYUxijFS5AUhglC0uXWv3W5SSjpzrclksrq2dubMuW5vq1ar1Wq1nb1d3w/VYajRdDqVFV9ZWVldXb1x40ZZFJbzO0kmxpiVlZWtzU2MsR071cJ6WZZLi8udzrwxaHtrl3Mx12nv73cXFjrTaVwUhVIiTfM0TR3i2OfT4sj23tlHmlKqlECHXqKW1GnXmuO4BgBjCgCWOo0xpgwTTOHQPp4eRvw5vmezrewWQQ/TwhljsuAMk0Pk0a7xWQVijVmSJB2NRowxS4gz32NZgBAKgqAoCsf1Z/Ydh94dxhhsDGbYD8MkSSyBlBASBeHhXk3s2IBSiuG7ig3P83zfOzg4WFhY+Gt/7a89/PDD7370kS9+8YuHq5JE9Xocpxjj0WgkhJif77Q7i9oIzkuMoawqXnCPUQBYP3Fi2OuD0l7gGY04F6IUo7RvJVC2nMYIaTXj7hhjDOgsy4oiM8ZYQTfFXlWKqpxQmtvvLrUixH3g/ne6Tphn1dmz9927uxVDEQTB7u4+IWZ3d7/Iy6Iozpw5F/n127fv9vtDe5G11hqBAWVv5b1799ZOzBljpFSe53HOCUGeHymlECJSSkBGa8ErbgCCZtButx3XhGGt3xsPqpHnRYEfLi8vC8W14ePJ4JBsmCNEXMfLYRa/Zt2KtdYAWFQcEHGZJ6XEoLgqlTJBEBCwd1baWSMhjq3/EUJafzdYb2lpAZQeDAaMkTxPAbDdSikGwVUQeI16KIRI0ilCGCOkhc6yQojK0kXtHnJETjTiz4abq6pCGAVBUFUzg9BarbawsNDvD60VO+fcPgDWW8Due9ZYBg4jB44edbs67IzKHFrE/Fe9udb2pLNURzv3NYdRdVZ2bPc6yRXMvIOQ3ZMtgmmbiPvuu+/27dvve9/7fuqnfurf//t/7zsuY+yDH/zAQ+946Omnn675wXA4+va3v12v1x1Kx+NRjZAwDB9++GHH94qiEEpXVSG5kJzn0yRL06oo7bGVl4XS2hgjtNJaE5h5IGAti7LUCAijM6tMginGYNW3RhOXIWHsnsk5Nwa01hqM1IogDKCLohgMBhUCS8twqct5SQi5fecmFwohYIyJigdB8HN/62f/4o/8cJZLziHLsi9+8YsIm7/9t/+253laq5s3b37lK195+ulnKHEqWV2479xjj72bSyiqcppMu/0D1/UBtJBcIfmJH/2RT33qU7duXZ9MZqY3FlOyhZCtLuydlbOMR2Pdluzx/X99HVplgN18jv5rxfRHSBH6nlez2dza2vryl7/8gz/4g6+99trdu3cxxojOTMOMMTbe2Rh9mD0O5ujXHD5j9j3J4b6HtDnavb0wKIriyNiqqEoAoAQ5jmPZ5WU5ax6Hw6FRularWYnz2tqaNQPIsmxzs2cx2TiOf+/3fm86nWqtO53OwsLCM888s7e31+v1qMOklHmeNxqNpeW5V199dXd39+TxU8eOHbMmB7dv33711VfLsgSDCSF5WRzxKmzV5ziOselQUuV5vrKyYsnI1rvG8zzmuUoJjHGaFfYHldUxHMoapNSHdGl0qDPAjWZDSsm5xFjbImpxfiFNZ4WTUkqUlQJj9177YQB9l2RtZjnAwA4Tuc0he90cZuHan0Iz4Zehh2ml9pAyM/nOTI+utcaUSiGDwD9//qzWsLW7YxVIrufZHfjGjRtZlrmOxyhdWlo6dnzR9/2y5FmeI4TWT59cWFjYvLcxHPaVEhgD55WQ1enTp7WRd+7cierh3m7vW9/65l/4Cz/5xBPvWVo+Zgw89ti7i6Ia9Pqe72xvb8dx7HlGa+lS3Gg0mkHz2WefTWB8+a23KXb6/f7VP77qR26E29SPfCsdiqKAuaAUUIql1hiD0hKMsqZ1xigA6jjO5tadVqtRVWIwGCGs0zTe3999/vlnXZfd27i9sDA3N9fZ2dnL8+TChYvTafLS4LmP/9APDgfj3/7t33YcDwCfOnXKGPP666+vrq52u91Wq2W1BjaZx3qYWoV7q9lpNhphEByttOXl5dFoYIxhzBVCjUajTqcjhEzT3Pccz/MAZhIq9T0BkfZmW/jM9Ygf1JLENg8mDENMAAugBiultBYYGym1UsZ1PQAAbIliOsuyer1uLU7u3r3r+z4mMB6PjUHNZttmI2RpsbiwfN+FB55++umy5HZqp5XEGAcBs5XedDp1HJokyZEdm+M4thRQSiouMJsVVXleUkpntCY50/sYPZthUkzCMLRlxJe+9IWlpaVOp9VqN7I8EUK0Wk1CSBzHpagodVzX0wqigExIcnDQdYkLgBFCgJExyIZL2F+qlJpMJha4QQhNp7GWKghCLoU1QSOEUAJaa+IwYxAobR18tDaWlTM7xqQkhNp8bbuE/MC1d/kwyE5rDeTQ0E0IYVkzACiJs1Zrvl5vXrlyxXfJeDi5Wl49fvz40tJSvz+0YHVVSUn1MB9a4cO9exuO4/h+AEhIKff397NM/M2f/dmdnb1XX31tbm7O87z9/f0sTmxUoBB5vV7PspxzYft5IWbu/laFag9++wjBd/FxsbAwv7i4+Nprrx07dmxtbTVJUnvviqKIwvrOzg7GNM/zIPCe/OATb711ef9g99d+7Vc7ndb62TNXr185ffr83t5ekeXGmC9/+Yvnz59vt5seGExJr9+ljHkuGw7H1qMtyzJR8aPdH2OsjC5LgQx4njeZTE6cOHHuyfV4MviBj3yo2zt4+ulvTfpj06zFcUyok4xzCn4Y1Cf7Ny88+I6f+qmf+spXvnL23OkwDL/1rT856O5RKggYP3CllFopAG1HL7u724yxRruFMSYEDQaD4XDsElcpNZ1OwWh72O/v737ut37rXY899vM//wu//uu/+Su/8iuBH9aihjE6jtN+v898qrV89PF37+5tT+NREASEekWZeb6TZyUhmhDUqrcIRSKrlBKux5REmoDr+Fpru11WVeVRj3OuwRDMmEs9zzMG7e3tbW9vV5WMIgfAlJXVSwIhzBiVZRljrj2Om82mHdtM1TTLCitbPn36jN2IGXMbjVq9Xu8NulxUzMHMCZRSFhdGxkMIKamTJFNKaWNaLTo3N3fixPGXXnqp2+0GzWg6nTKHVFVZFLnrup4nlBJLS2uL84t5VhKCNDJGaStk01ojAEAEQBsDWisMCOOZ2SJjTCnBlXQJq9freZkjhDDWgITjmoODbcnN6srJIHF3Nna11hgDQphSzAgxRiF8dA4ZAAiC4NtPf+fFF1/0/dAYEwTBYDCgjNnfpZFmBiuu7RgJIUIpUmZWhVvlFKGk2Wzu7u4ixm7fvj0eTz/6Ax8tyxJjKLIMMHaY5FXFHKffH7RarRs3bm5tbfqOaytd+1ZHKMZRXpDvuxaGk1IeHBy4oSsVr3ghZOVjCmBqtQghxHllrRXLsnSYZ4cQQqiwXqvVapPJ5ODgAIPrOA5iSEpp+QK218WYJFlKCNEGCCFBEAghAJswqAklt7e3szzhvAzDUCnjuv77n/y+5559YXf/4My582XBtdavvPLarVt3tu9t1ButkyfOtOcWu73Bva17G5sbyXTwynAoRXXffRfm5hvT0fBX/u2/PDg4cF2XEBTH06XlhdGot7q86PkszUQt8u2kajAYtNsdY4xFRnwvQEgZpDDRFy6cO3782I0bt+JJYptwXkmMaFUqSlmzUXddfzJJs6J/cv30pz71o4vLq7/8zz78r//Nv/m1//ibcZq15zrGGISV4BywMUZxrm1Mkx2hJXFGCCOEcS4Z9YjFcRBBxNh5vuPiokyvXh3u7u6kaWrV4js7e8PBmHPeaNUd5nU6c/V63ffdimdaCs9zwoVmrVYjBG1ubgEi02kGJn8zfwtjOj+3oDSnFFNKGSOO44W1ejIdZXkspd7f33Ucz5ZTH/7wR0ej0RtvvBEE0WgynMaTlZWlyWS0uXkniqhS2nG842dPvvTSS//w//0P375yGSFcrzekgldeeeXHf+IvlmU5P9+JQi9Jp6LUlOHBsKe1Pn7ixP333//2229bZMHzAq2gzHNKnb29gzS5u721u7KyErXbRVEMb/UBGcehrebChQvnMJBLly4Fft1xfEIIwY6Sxp5uQgt2GHqWl7l13cUYuORB6CJkAT7eaDSCKMRIEYKaraA1d+bE+lpRFHt7u3Nzc1qbsqzSpJBS8krPFiAJDBVIz2LErl692m63T585tbS0VJal1tIeTGk8oRSvnVgbj8f7+10hRK3ZSLN8ZWVlGqfj8VQpUxVpgTFjLM9zx3NrtdqZU+vHjh2r1+s3b17P05hSWq/XsyTlsmp12vEk8SPP8xytgZd2KzZVVSmpCYBta1zqOJQpV9hyOc/LojiQUlZV5Tg2UqY6ODhAQGxvbE92SqngEiFkCwOCLdCDLaHY1t+25raum4ewlEJI2iGu3SisvliBoS4+6r4Q0jNYFhHf98OwVhVlVc6y0YuK8zITysyy8ig+DA3TWkv7tSilFoCwpbycmcwexrNIYVsyjGebpP3VUvKj9sz+YFVVWoPnuEqpPEn39vaEqIQQSikMyHEcMhsFjazjsMWL7ZFqf5fdMLXWnHN2mGYGZlaI7u93lUSgjBDK8wKMsecFhAj7STCm9sEDBUDAXmqMkYLZ91JKW2eYTrtjDIrjuCoFIRRRckg7xewwNdHeFMdxjdHWK8C2TIQii2Igo/f397XW1oWgLEuXMs45pc78/PyUJXs7uwihPM/DsGbnKABg/WrtmW45O1oBobMWV82MiWcFTxAEFvoHwMYYyoiQGhMgiB1hJYT5GJjWem5xYTqdWrU+QogQVua563s7OzsHBwdB6CmllVJFUWGMe72e67paGsfRnudRPLsChBDf9+bmOhST6XRs6+00zhqNhjZyPB4bY4qiGgwGYRjaBJEoqAklPS8tioLzUmtIkgwhJrjyPN8GnGitrf9+JQTFWGvtMA8MpEluz1k7RsIYA4EwDCnDzGGu7x32mWbVWeKcM0aCwGUuSdN4eWUeIwAA3/eLnBe5iON4MJhUPI2i4KGH7l9dXb189drm1p2TJ9Z6/f7Gxobv+yWvbP/sBv6xldXt7e1ut3v61DoAZHmOETLGtNtzS0tLhJBkGvOK80pWpYgniet4xpgwDKTUZZWfO3vhve99b7fbnUwmQohbt27t7u5awpwQQhtVVRpjjBE+ymRDyFilswUKLXMGAGYmtJhqY4RQUkoAbR9FG9YCMIu1s7oKixprYwpeKWUcx3Mcxw4qLHYPAKC0saxASjBmFjKwLiuNRp1S0uv1Z0+RAcfzbAtsy7PV5RUA6PV6h8l7FstTliudTMZKKUywlLyqTBRFnuOKIBBCIGSOXNFkKbU2lFKCSFmWURT903/6Tz/5g5/8yle/8ku/9Eu/8zu/0+0NTpw8ftDrLQCcOHHqzr27iOBaUG82m2VZMgIEGTBQC4MiEZyXJ06c0EamWVKv1whFvJKUsCwblyWqKmHXiJQSE2rtN203B9beR0jGZnainPOqKgAAIWIJgMqYVnPu2Nr6rWsbb7x+7WMf+0ijPj/fdC+cf7DbHQ4GvYWFhe5+r9lsNxut5cWVmzdva60Jc7TWYDChoPXMaPjevXuIFvPz81Kp5eXlMKjt7ByUhcAGbPAPsmYpXHNZ+X545sy5yXSTYnpsbWlvZ7es4igKRuOeMcYg67U4cz7RyvBSYEwR0o7jgQKDjNY6T3LisLIo600WRTXOq+l0WosCjHHguWVZUoq1VphhQhBjvp3XWioRpYxS7HlemeVB4JW8MEhrZX17qBSAGbKuEc1WU8gqy1JQGjDGBiPEhDBFIQDAGIQxRQiB0nBocfDfvAjBiFBjDAGU88pGWxlj5uYWLF/NzlMbjYbtJS03AmnDGAPAh4oi+r1TT3uDAb5LArOwsl1i9pm32Jltb49+0E5tjNJKzYp/KaWU3K6jLMtsKnuapjdu3Dg4OJibm4vjWFZ8PB4zSseT+Nd+7dd3d3dd5sy1Op7j2/2TMbfM0xNrq8vLy2maGg1C6TSeiqqimORJmiZJmRcAkJcFF0Ij4FJIaxKklMuY53lQ5JgS6njEwtCESIx810UGuOAAQFzIqzzLMuKwZrPJ06wU3K5cwMAQQgi01pUUjHh2FBT6ASE4z3OlNQBUeQZCxnGcpulBb7i00Hnr8rV//I//8TPPPHPy5MkTJ06cPr0upfzP//k/f/Ob34zq9TzPz50798lPfjKrYoThypVLt27dQBgqnhts0nz8xPsf+9Vf+w//6//2r3/jN/9jFEVHHA57Ya07tvmvrcMBAMifbaMxQyeN1oeRp0e30v7Blhzw3eE3sqenZdf+3u/93pe//OV0Gq+trTHGCl5Z0yFr72YBDXFIkf4euBkd+agcAawAYMOrlFKO7x19L611URQaZjGnnHNtR+8arD5DKRXHcVEUWuudnZ0rV64QQg563cMJysw6NZ/xwPDW1tbnP//5LMvsKpBaBUFgu8XihUQIUYsaBwcHe3t7UspWq/X8889Lo5vN5nSS0EPD5f/mcnHBLZuY5/lkMjlz5szGxkav17tw4UKtVrt557ZtCvThyxyOamyNZ3NcAUApZd1f2+2241DPc4ui8FzflqllyS0WbyvY4jCNDAA4t/NRdAQNH8qsZ6+jAhJjDAgJWRljkMFHaZCMzSyeDxe4OKpX1eELtKSUAmh7Fg+HQ4SINqaoStf3Dvq9JEne9573zs/NRVHU3d/rdDoAEIYoCMM0TU+ePN5o1P70W1/nolhdWzp18hhl+Nq1axrUmTNnfN/v9g+s+JuLPElLMqBgcMVLziuCMefgOM6xY8eEiEO/XVYJosj1vPFk2M32640ar1SnPX/27Nnb925m3YyGoe/7PmOUUqi4jXkhAIirimKkjBqNpgCGUDQdj6aTwduX3rp9+zZjLqVUa3PxwYtRFG1vb//u7/0O5+VP/MSPWS8/g5A2aBqnvV73zp07Dz/88Pz8fLfbtzia67q9Xo8Qsre3l6apkiYMQ0KqRqPRbs/VarXLly8PBoN6rbm0tGQzVfM8X1paqtfrW1tbWmvr2Ov7PhhqYRrrkmYdQjHGzJlFxBBKkCJVVdqlevLU6qlTp3Z3d+/eves4TpYnlFLP84SolDKUOu1OPY7T8XjMBRDMGGNCW8KLuHz5rSiKXJdZaNL1mG2ryoJLYVFXuHXrzp079/Lcjo5RWVaeGxhj8jy3gjKMsVJGKV0UcRRFVVVZqWye577vYoxlxS2Se+zYsfF4LKUkBGHAYEyWpjbruVZrYIyNVn4YLC0uDwa9Tqd18uTxF597rt5sNJvN1dXVXu8gCLxmZ55XklHWG/TLkvt+YG0ojbGbC4FZN2WZNcYgZAyy83/BBSEEwyw9YAb6O776nrAXWXFb9dq20/d9e/2tI61SkhDCmKuU4JVUMrUQOQAgbLc7U3GutRsEwcLCwv7+flVVZZUPBsNOp+O5UZrmAGgyicvy9gxnp9QY5HmBlIpRdzpJHJeGYS0IQgBdlGU8HQMg0PDiiy//q3/1rz/3uc994QtfcF13fX1dcXFwcGCMqdfrnAsh8iOKXxAESliZ/3cXs13eBgEA2GdsGo/nijkp5dWrV+v1OmOUUiKlbLdb586d7/UP0iSfX1jw3ODKtcuTeCxE9eorL/0v//JfnDh1yk4ann322ds3by0tLfUODnzfn0wmdQRxmtjBdVWJZrPJucRYNpvNPM3sUZqmaaPR0EYfHBwURUUojcL644+9d7S/e/7smU9/+tP9Qe/kyeO3b9++du1aEldlES/MrcVxev70+rv++vtOnTp1fPWkS6Jja6eSZMq5sF0iaO44DkIQhJ6USmsppWIek1KD0hgzzpXtAOM4dl0X27wU0BZcAIRu3ry5vLw6Y+h4NmFDjPrDcxfPf+SjH3r66W9P43G3e+C6TCkRhl6aJhgDIM0Ya7fbtTDMq9xmCTqeS11agRKlklLGcayU9Hza7w/tkdiZm1tcWJBSDodD13WbzWYcT2x3ZGOIpJTtZnswGkmhi6IqC6G1jqIoS1IppaXqOI6LMdnc3MQYK6UJRmVZ3rlzhwtOKAFqGo1Gt9stiqJWaxCErWjIGMMYm8QTQkijUT9+fPWBB+5DWEmBptO447dbrZaFcSkl9XZjcbFjlLx1+zpCOHADzqVRmjFWSHlYPWCtpTEGY4YxDsPQIC0l9wOXMEwIAgxh6OdFWlYFImUQeI88cn9VqiQu81xLxa1ZJEIIGdCMEYKVqrATzM/PC8F5USJs5ubbC3Pzt2/fLoqqXq9zIZqtFnNIv993fC/LEiUUIQxglkcByGACxmglFaU4r/J2u23rFdd1u939v/t3/w4h5Ny5CxjjkyfXMaILCwtvvfWW47jnzp27dOnS+fMX9vb27EI+wpIs3CyE0QpsKMD8/LwFnbM86Q0HWZaOx+OLFy+eOXvSGNM96Mdx7HnBwsLCmTNn7t2798wzzy0szNVqNa3M1uYOc13bxxqjCCVCKbsMjTG+7yNAhJBWq9VqtUajYa83DEUYhF5Z8vF4izHWajUZY57nLC4u7u93kzi/fPlyUVRZXg2Go9FoHGfJsbUTZcGLdFJxfvrMqb/ymc/+f//Hf5Ylk9XlBWNMWSV7u9tVOTl9+vT8Qmd7e7Mos+GoH9Xbnh8yYoziRRlXHAg2rXYNY9zv921whOM4nhdkaU6JGwZ+VVWrq6u1ejgej13XdV1ellWelQwzQAQAHMcLg5rRejQYP/6+R9qtuZ/5Gz+XxNnm9s7P/PTf+sf/n380HIw939NalmVhQGEMlDLQBiGiFFfSYES1Bq2VkghjZgxoZQmSheNS33cxAYxNxQsvqDebLULI2tralSvXRqMRQqTVakkpe72e49I333xjYXnh3Pl1pdRcp81jd+PellKi2ZgTSi8vuZNJaith3/eVJkJUnu+AwYTgwHN9r80cRImXJTmj3mAwOdg72N7exJgCaG1kVAvr9ejc+fWDA78/dDHibicYDuKPfvSjf/1n/sZv/MZ/mk6nQqiNe1sGwYMPPlCWpefRC+cf+cIXf58Q5DMmBAcwq8dWK17evHWj3++3222ttT0Ctje3LQsjDEMl5e7urtEoTXOEkFam0pI02GSUTiaT4SB2HEcK7bkBwoaymlJBHE8Jwa5HEQKDLM5YBEFQq4VRLRiPx1mWYYxbrYbv+/X6/5+u/wyX7DrPA9GVd6xcJ4c+pzPQyJGkwKxoUcGm5JFFSdcjy4r29Ty6M/J4/Ngez/jK98qm7ZFlj0TZIi3JpCSTkkjTzAQJAiBCN4DO+fTJsXLtvOL9saoKTV+pfuABGqfrVO2911rf935vqGqTBUGws7dFCDl+/Ljr0mq1srm9FUdJEJSUAZxrggHGpFqpAwDanUNb/vq++8gjj3W7bUqp5/mtVgsAEAReEARZngyi4cLCQnN6atDvdLtdSpjn+5Q673z2XXY3/vSnP310dFQqlbQG0IBer1etlpdWjr384jet62UYBs8++wzGmDFnf3ev02khgF3XB3KM5AKtlI2BAhoASw80xhQFAgZIoSnGFgNCcFSaM8a0UoRAIWSW5QCAMAwdx9VaI0iMMQRjzjlCth/GEMKiyNBYRTQZeMdxbF1BjYYA2WOxsB7BrMwswWfiPgmAUcAQoCGEjkOllIircdeNtVaT+fe4M7dxBbb3MwhBSh2LiJmRd95IcWKMQQhoCG0lYIyBUE/6vUlLZvurPMu0NBQTghDGeGdnx+qHkiQJgkAIjhAijA0Hw6OjozNnzjSbTfu0jOFgZVk/UitLY7FHHmOWlekfHXY5z7Q2lDp28E8I01pnWWJ/fiI+o2YUBw8h0EYboIQwlqs0HA6VMr5j0TFIKUGUTljStmuybdtYcA0AAHYGYKdTWmuXOXme2tGLdSFExjrCQWvfXC6Xk1rS7w9CPwBjC1QhhJQYIWRVYhBCx3F0YSihtiuzw37MMAAgSRJ7alQqFc/zlDLjinqE50itgBZGGN8tGWPseT2eENjZhsNzYYzu9Tq0j2u1GiaEENpudbWC0TA9OmodW1rWUu3t7VFKXddpNhuEEAA1hFAq1el0EAbloFav1w8PDw8ODur1uu+HUh4VhYiixM4wEEJLi4sAANvvGc8vcsGYUyqVdnf3+/3+BEwviiLTGiHiUkbI2OMVKgsCIoqsxbyUBXWYUlwIHSdDY0y9XscMREnf9/1qUGs0SwZISrEouJScOZgQorQwQPT77XJlSSrxxpsXWq1Wp93dXN+YnZ2VUvV6fa21UNJxEgihhfJtaqjWGkJUCkurq6uAIK11v9vLsnwwGCCE5mfntNZKGd8PO52OlPLBBx9cWlrq9TvayE7/iFF3YWm+2+5lWS6EElIYaRAcOc6rcSakHTxPyh6MsZSKEBIEAcY4TXOjNee5tbmwFR0A0NYetvzGkIhCJkkWRYl9Q0KINJrH8YQ8aKt0M+GRWUNFC1mO6xBjDMZofn5OShkP+0TKXq9XrlUhhM1m0z7DdslbHA1CAzUEFE3WqTFGcGFxLntnqcOkHIkSABiReQCChRSu6w4H/XubGx/9t//6c5/786OjozTP5+ZnMcZPPfO0EGJvf7darVphmTFG5IVEmjmIEKKl1qoIfCcM3KOD/eZUIwidrZ1NRv39vZ1+P6bMRtSOIAkBFQHkPlhKG2Mowoy5VnfCubQ/LKVElBBCjQBFbr76lW8irDD0d7ZbC7Nz1Wp9f/8wjbNKpRaGvWZzutFo7O/v37px++DggFLHIvsaKiit1l5iDO3KnZubC0t+u91eXV3t9+Ph4NB3qdSKIaLU2DHf0P39/ZdfemVhIZibm3NcUil5aZojIIzSUZJhjD2v1mjWOc/39w+1FFqJw8NW4HqhF8ZcKmUQwkaruB/7foAAnJma3tjaEFnyf/yr39jb2/n3v/Wb1WpFCEEoydOcUu04aAIhFVnWbNaffPLJq5cuWvgsjuM8z10cMM/jnEvFoda+71NKO512HEcUYcywUkpqTTE1AAquER6l8CGDrBL2L0QPMcZcSstiOXbsWCHFYDBYXl7e2zuwvGYLjNg1AiFECDNM7A3UY72L44xIkZggo41SShtpxqzJSbH99tKQ0p6SDmN0HIJqUWq7ISul8pzbTjAIPAssaq2l1JRSx3H29/eHw+Ht27dv37hZqVQAAFGcvvDSi0qLn/zpn+ZJ9taFNyBEve6gUg4C162Ww7m5OULI/v4+BEgDCDjnnBdpNhwOld1wjDEAxFkKKbGiVfs0KqMlMA7EBAIK7c4BANBaAgwhNIBSmvOiPxwkWSqUxBg7LlNxXAjOpe2DjNRKG4iNkVLIzHiB3+/3QQYIYX4YuJ7X79+Znp2em13odDr/7t/91te//rV3v/s9n/nMZ7751a/6lcp73/ueer32z/7ZP4MQ/rUP/+jK6jKhbqlUeuWVb588s1JvlHYPDj773/681T2k1CGUBKFHHBln/d/7+Mf+9E//lDLXd0M9UjYQQuAknACOsWZ4H2d28iX//19wDEtOShH757aMuR8RnsDEg8HAlkac8+np6cXFxQ9/+MP9aPBbv/VbVh9siZjj+Zl9z9H729H7fX8+emmlIIT2hBoOh6NVb78gwVJKYJTWGiOqgXFdNwxDW9LYkHM7RG+1WpRSgGCe55a8SQixtjBW42I7evt1HMfhSWwj640xlDiMulprYTOWXbfX61lrAatOllJihJQZkYiVEgiRcUVkMMYU4Xa7LYTgIgcA7OzsYIx7w4F1dQbjnXOyjiZV6ISxavG0er0+NTUldAIMPDw8tNZisYrx2BphAhnBESNBAgAwHt0mYwxQI0QbAGAQnKgTbBtrgEEIITD6PHZXV8pIWUzo0tahQY/ov8AuD6vV29ragOOgQuY6SZrnglNKT548/e73vT/0wjzP04QbjTjnQnGtpRf4Gxv3bt66cW/jbr1WqTdKEAKtpDLadd0XXnihWq3OTM+dOP4AZfhPP/NfTp56ACFUcNHr9gl2IXOUkNVa+cyZM1F0FA2OPJ8dtruRGGJMFFTGmB/+4Q899eQ7Xrz14pVrV7CEhFKS5xmAzECKEEAYcsEpxS6mWZ4KkUXxQGvBi+zK1UtXrly+cvUNjAlCWVGIEydPP/nk44yxXq/nOPTatSvffOH5R594OCxVlNbHjq18+MN//eLFV1955dsY48cff/zll1+xU4t+v2+pHIyxcrlcKdeOjlpBQIQQ3W736OgoSZJqtVoUxf7+PoSQUTcMyndurymlILLwKCmVSgihLC16vR7GlBInz212n2vvhBlrEJSW1J4Tikdxb/+AGGDm5mcghK1WizFWrZYJgVmeeL4VguFarZLnOUJQSg6QQRhAZYQQtgIrisJzHIc4dqRTiEIpY8nLUIOYZ6VSyXYvruMHQdDr9d7xjncMh8ObN29PTU2laToYDBAicZyGXmiNMlZXV23qOoTw6Oho9eSpM2fOfPGLX4QQag2M4aVSiYbUcZhNf0qSxPO8cljqdtrtbmd7Z4vznLkUY+i6TEpOKT1x4oTW+uLFi3meY0zTNFNKOcwz0KrpkS1H7OZnTxrHYzavjHNJCAYAA2hXDtQKADMSBSBLfIWQ+b5dVzMzM+Vy+dq1a7aroR6FEBJCLQxtN0o70pFSEooYZbZWk1LyQtq4FWNgvz+EEGbpQEmYZcJ6q1PKhJBFwRFCRcHx6IUAgIwxo02/NxRChGHouUHgl+bnFwaD6PLly7/+679eLpfHSeVcjwBlhDFJkqTX69nKEiHECLU7qfVesPuFGcdb2ymTPaF3drc8L7AosJVm2LlcnmdBEAwH8Xvf++5bt+5sbe4AACqVktZqfX1te3tTAXPj5rWiKCDAGMIoinr9Tq/fARhZZYqBwCHeAAwJxUVRZFlGMbIEKLuLxVFcFGIwGAyHw1qtNjU13QXgiSeempmZ833/r//433Bd93Of+9z6+uZ73vO+dqv7xS9+6SM/9TMrK8fL5fLv/M7vXL589dK1i1E0oBSXK4HWuVHKcZhUXBvJGEuLHGCgFNcaUEotXwPCwhjjesxu6UqpIk3s1X/4iScefPDB55//JheCUMp5QQgtigIYk2XZG2+8UfCMKXT8+EoYhptb61mWzc7O7u/uEYKYQ5IkSaKBNNoYhTHSWnEhOdfA2CMWzMzMJGkEYZ4kabVSm52dn55q3L59O45jSunMzAzG0ApkKCH2Qer1+ow4UghGqVKmyHJRcIsjaG0Iob3uQEopuJrk1xdF1h/2XJc1mnXEjJCF7/uWUy65zFIuhIIQGiCDIOh2u51O5c0331xZXZ6dnT7Y71JK2u12rVazRl1zc3PlcjmKB9evXwcaem5JyMKGB1CMCGbGGAMUUBoARCZaJ6jtlFJDDY3MCo2HEGHgOJQyT6kCIs151mhONRszSm5zzgl2KbX4vtJaMMaMgUKINE2CIMAASsWnpqaGUTQ1M93vDZVSpVJJa53EWS6443sAvN2ojCoYbAsORQhijPm+f+fOrVKpUq1WZ2ZmlpaWBJA2fOy55577W3/rb1++fPn46kkhxBe+8MV/8k/+yd/7e3/v85///Cc+8YmMF9ponmfUceFYsmo1XLyQEGbjDUcaBD3PfeCBMzai7db1a34pPDpqD/qR43jGmPn5+Wq1OhgMkiSz9brneXmeE8ZUUbjUhRAQSDnnpVJpdna23W7nSUopzbIsyzKlJIQwTVMrje92u0EQAGCMUaVSKY5Tglmj4XU7/VKl/PhjT8zOzz311FOdfu+BB86ur6+HLk2yPEuLF154ASHwgQ++7ytf+Uq73Q58NjczBaHZ2dqs1+tpnECjA883UhRZdHSUVWvlLEuULDAxM7MrxhilqlmWHR0dEux4nscLxZiLUN5oNBEk7XZbSi2Esjut6/pGKqUMxqAoCsk7GGPGWKvT3945+sM/+KM8k+ubm77vI8QWFxezPBkMuvVGtdvuSKkA0IgwislgkGKMCcFWpSS4mkxk0Sh6ywVAYgI4z6WUEPjlcvnkyZP9fo9SaoyyWt2w5Gtjtre3gsAfDAYH+0dLywsY48ONDucCAIAQHXa71nXHGCCF8v1QyHw47AOoz5w5UworrVZHaTEcDqea3nd91zu73cHt218Skr/x5uvN5lRzqs5cduLEaqfTyvPccRyjZGOm0WzODPrXZmamTp8+bSuHSqWiAbBJRz/90x/5o0998qtf+yJFkBAYBIHVgeZ53uv1EEKlcsioozXodDqDfmSJk0oZBLDWOs84JcSM8gOBEOLosNvtDLMsAwBZDr6QRRD4vu9kWYawpNRBxLi+w5hbqVTW19cA0BAZAIznsSBw5+cXNzY2i6KIomhuvr69vW1n271eb2ZulrGRatta/4MRL4MoZcZxVcLOaweDgev6mLDzF94EQKdZMjMz02zWCWblcnljY6PVaj1w9tTU1FSn110uleu1JkIky7KtjS1oYDksz87MFkWujC6K4uiojRkNAu/gYM8YGIYhZtRxnEG3V6lVpmenB70+xFoqgwkQYrQhKK20Uno8kLYzfnuOi5HuDxECNQRaAym1Q4hDHYZpDqCU2kgj8kIKQRxq2wwLUFq5rjGQMRtsMmLNWKdgiy4VRVEul4ui6HU6UmqMqdYgDEuEECFGukI4stTQaJSwqgghzNNxlAIA7RtOaF8WkCLjPCj7G23bo0f0amjlcXrMRUKIACQtG2hSVY6RaIQxBgBqZDE1KIAoisJ33ampKZsqIZUoirxerwEE+v2BBdeazeZo1jtK+WP3/ToEtFJKWdCNMQYA1BrYYBKecUoxMEgpRakjR2mH1HHg+B0AZcRSBGyn5GImjVRK+X6IENAaWK6AZSZqrQHnEEJmbdzHAlvbaIlRrOLI6SJNU6WU47mWwmkrOqNhURQOsQRSDADIsiwzVkzgGGiMUUUhLbXcSnHt39XaTGBHW4NlaQEhdHzHcRwbq+V5nqFGa23JIghBYwBzHQB0HMcYQ0JIkqWO4yipAILUYWmcZFnGGLOSNfs4xXHc7w5c1xWOlFyFfsmCkhhTx3HPnj2b55nNQ1ZaOI6TpmkcD5Xkjht4DuXcYETzPN/fOyyXy0ajOMoocREkvJCe52EMKKVzc3OOQ+Mo11rba5XnKUAGQZjmSb1er1WrnPNOu8cV1xBAiCjCwCClBUIoDMNqtUwpGUZ9LtLBMEuSSGvVaDQ4z7TWjGEINSEIYzdOhlmWc861NJVKIwg813V7PYox1Frv7+9GUWJ3eMfxlDJamiwrbDk6tzAfx5FNTEIItdtta5ODMQ7D8N7GJgDg9OnTRXFjb+/AcZwkyaTUruu6ru84ycLCQqPRWFtbs5lvnucMBkNCSLla0lpzHkMIARzLtBGYDDAgtBRXW2+bsYIB2lUJR3mAxv5nnudEIcaY57lZlkmppJTAjAKyeDHSekKAuc6llJ7neQ6haDRyniAm9rcLKW09kKapxThOnjwJIYzj2HXd5eXlZrP56quvEoJt/W8HMAAAQgjDCCM8Ac0RNARjPe4LNBw5G2g58oGZnK12PWJKuBQzc7O//4d/4DnsscceW1ha/L3f+z3rYGOVsoNoePLE6UazaQOXoLEgE3IcEhd5r9Oan1t2GTmxekwa0et1CGaDQfQ3/+bP3b238elP/RnzfTJCmC0+paUaeexIORJwOGQkNbMOhLbzMkAhSKwavdMWpbIzNT3bbw+OLR4jmH77pa9HUVKu1Ab9PgSo2+kJoYaDyEpRGWOMMoDt9EjaEo8xtrGxkaTRuXMP1uu19Y21fr/baDSKTCJM7CWSRiklXM9XSm1t7SgZ1GtNZMDq8eXNze3+oM2on2bccbx4mGCMIQKCSwRwkmRnzzwo8mIwGPheGA2HxgDB+ez07L/6N//6c5/77OtvXCiXAv/MiXqjPBiySiNEWBNpy8sH9nYPNje3S6WKixhQGmj5Mx/5qV/5lV/5oR/6wY2NDaWUX/bf+8H3rl/fPmq3PdcnjBaSp2ni+55U3HGpxX/HoO3IAArc54UA/xJqMwDA8/ysL/LcIOPaAI2iKFzXjaLIbnS2obVQna2NAQAIIQWMxfEnT9fk8BofWAAjBODISMrCmshKXbTGhIBxkNV/9zntWzmOUxSF4zhBEPzcz/2cUurll1/e29uJoqjX6ymlPOa8/K0XAQBWnen4Huc8K/gP/uAP/vD3f+hjv/u7lbC0vr7+B7//Ceg7yysr586dk1Im/YgwlmS5i0iaxnacOZqtAlMUhU0YhQoBoCGACGCIkdaaeR4i2BijbNIjQkabnHOCoAZaSonI6EIlBZ98CyklQEgBBSG0ACJBKBMiL1IAQJ7nhMi5xYUPfehDr7/++j/4B//g2aef+eP/8if/r1/9Xw4ODr74xS+maeqVSxCCGzdu7O3tXb9xlTE2NTUVxfGNm3f+2of/6srxxWff8aTL3G+/8vqXvvpfszxyA3d6pm6AqDamhc4/8fsfhxB6no8gmlxeu2loI5U0GKFxwfB2CaG1/ssozggjrPFkVwRj44vxXjrCrI0xlphr57j2PDXG2Gbq8uXL0qhut2u3eou9CCHssBMhNOHeTlDvSV00+ZfRMANAC+NMHiEtlVDSSkAg0QCNbBI55xBCK8tGIyEL1MAowRECQmirGh9j5cCqDbQa8Xyt+ZsZS82sySchhDkOBMBWa1EU2ZrBuowCABCABo0o3gAApTQbu44wTKwZjv0wrVbL7pPUpZNvqpTSSoHv1OTZH7M4HmPMcZwXX3zRQH7s2LFut6+1BhpKLfOcTwRhk1szgYONVBpqex5A/PYNtXa9EEKMRwWnMUZZY/mRnwmxqLe2IdvaAIBsgz9B0pTSjkcQgJRiSalVQkitPM87+8C546dO1mvNcrkMAOz2I1lwpbEUmmBHKi1E4Xju9s5WUWTNZj1Nos3Ne0opKVW5XD558rRSijJ25tTZtfWNG9dvcgnu3bv96BOP1qrLr59/YzDsUOIhgKJBH2FACOl0ekKm0hRaxaVKNU3TZ55+6oknnsiy7IUXXsjzfMqvk2HUZ4wAQDCBSgkhFHNor9cVovA8J0kjrRUlKIlFURSPPPLI9s7a9vaulQH+jz/7c3ao8tRTT9y7d/fOmnP5ypU//uM/Hgx6S0sLJ0+e1FovLCy89dZbly5dmmrOWKDWRqBEUdRoNB577DEIcBzHtv6uVqutVsde4iAIgDbdbrcoivm5xenp6X6/b5FQxthwOEyTnDFWrdb29w/sMnOckYRQSjHevoeWu22lBL5f2t7e2t3dsUkvAIByuez7LkJQKh4EXlGkymiuOMS0UqsmSYIAIIRihPDYl4NRBrR2XRcjmqUFxhgaCAD0PF9KKXMZuqH9bHZebdOi5+fnp6enr127YQcahJCiEISQJIkopcPh8Od//ufa7fbly5dLpdJwOPQd986dO3ocr4kxLIri+PHjjks2NjZ835dSOo6zsrK8v79/cLC3dueOF3g2KLbX6/V6PYv3pWlujCGEuq5XLtW0kFLas2q035kxzx9CyBgDwHrSA60FIZ4xhmBECEnSVI+N/NDIkswDAFTCkjFmd3fXWsbY8jEXHABQFEWapkEQYEyUUoRQIbgtxGtexU5fCUGWAYQRsT05YyPPjTjOCCHIAMdxlVIQE61G0agGWPgPGgMwpqVSKYoGg34kha5VgtWTJ7d291zHf/jhh7e2tjqdThAE5XJ5c3MTamP510IIYJDnBlzkthGVQk7mfoQQ3/fVOInYcRxLcPZ9HxMQ+CUppe/7tnp717vetXbvTqvV+uYLz7f3e83Z5tWrl/f2DqxyM3BLEMIsSR3PLZVKR502IYRh0uv1GGPr6+vDOJ1f9Kr1mt1lBv241Wp5ntdo1pVSSnC7I1erVUKwQ5nnOUKEQogkTl/99iu9VuuJJ57o9gaEED9wGWPf9dwHfuRHp3zfvXL5xo/+WOXkmbNCCKHV7MK8G/jtzn6pVLJsYq01hqRSqUTxYDAYlKtVK2VmLLAiMmMM58LznHrdS4ZJmubRYOBSxouiWqv97E/9zaN2e3V1dWrmKu72EUIPPfrIlz7/JSMEIHh7fX1vf3txaRZCVCoFWut6rWmMoXSUioMxtgadAANCSF6k1tMFAAghNkBWq83Z2dmt7bwoiue+6939fl8IdeP6re3tbWNMs9l0HKfZbAJg0jSFAFPi5JkoCiFF4fshgpQQqJXVeVFC6CQnDQCUJBmljuv4IcOu52ggSqWAcw6xKYq83qhj5EipE5MqowHCmCDGSJan9r4TQgaD3sHBAdD0zKnTu/t7ECKEMCEUQpgkSZZl8/Nz+/sHShdKKYIdoLVSBlg9KYDWuNPSbSA0hFAhCoM1pTgsuVzmAI6C3ZmDtdbQgE6nc+HCW75bW1w4MTMz0+3EUmgEAEQQISKEAgAYLKOIKy5K5cClrt0KLIC4vb1ti8tms7l6avXq1aucc2ywAQBjGw4PlJYQQqsx9H3fNietg8MwDNvtI611JvMgCHZ39z3P8zznwoULn/3z/3r9+nUex3/4h3/IGPvsZz8rhHBdZ2ZmhtdqUX9gr3+lUrGAizFGcBVMBe12yxjFfKa1vnnz5vz8vFR8aWnp3r17R0dHvhdqLQFABwcH42JL2wrDokhTUzMYY57lAADMsJSyWq0GQXB0dGCVXxaTsgN2rnin03Fd9/jx43ZDRggNh0MlrAV8gInb6fQWFhZOnz3zu7/7u+9+33tnZqYhhGtrm6122xigAVpePPba+dd3t3fm52ezJHr88UeM1pubm3v7uw5zsywLgpJQRcmtlso+BHJmujE9U9daFTyTUjkOW1xcXF46HkfZN7/5Uq1aZ4y8+dbVWq2OMe73h4w6jFKtwMjLHuERCUVIAIE2KsuLV759HgD0Sz/7CwsnTtSqDSEEpujkqdXrNy4TQmq1Gobo8LBlgTBjIIIMGFjkEhNtubqcF3YDxxhVqiXfd4siIxT1+31KyczM3Mb6zvVrN6em6wDoNIsbjZpS0kIew2HxkY985ODgYGd/F0G30+4OBlGRC8ZYFKeO43XaPUKoMcDOUO15bYyJoqjdbkuhMYG+729tbeVpEUXJw4886PvBq99+7cFzp5586inXdW/evMlFvrnZd133R3/0w0GZ/tmf/tc8L44fP/knf/Inr7zyCkTED9ynnnmm3W7fuHnt0//lT/b3d3mWu57DmD1TSFEUrVZrYWFhenr68OBof38/STIAUJ4W9VpDCJUlCYTQ8wLKzCRjB2PsOJ695p4XaC21ltrISqUGkdK6WFyeqk153U4/CMqCq263vbCwNDc3J0SR55njkCD00iTf2NjY2tpOIw4g8Pwn7ShaCLW2vj0zNy+lBAZqrYfDIefSZR4AwMYwCGGANrZqBwDt7R3U61W4By3bN/BDAMDm5raUfH5+tuBcG/PmWxcXFhaMgdNT/PCw9cYbb0aDodX2esxJkqxSKQ3jYRQllFJ/EC4vL7daraOjdr/fv33rztLSEmE0y9PFY4tB4CVxnKVcFBpkGmCEMYbUSPn2OGrSUVu6ILS+LcBAgCE0NmK7KAoAkFJm0nsQgghC+j7DQYsvWwB0hOOMmTUQIgihUppSVqlU+v1+lCSMMcuChNrkeZ5l2SRBxeJWWmvFHKJk4AbGUOvyjxAKgtAms0MI8dhjDWEA4MjowGK7Smkp1US6aHdmq/kw4zBD+5pUTWCsYrZzdym01lpybhxKqWcDGAbxEAuRZKklOMdxTAPXSOAyB1Fm6w07xrbvhjEmwFgqhn2SPeYRzKSUIhdKaWBG3spK5ZPPY0aGpNoYQ12XEIIQ0MAopQCElig18nMoCmCQ1pJijK09dJbbUtncp8+1lY+9LxgTuyLGXRCWUjqE+o3pgme2yrUcXkq1jQZyXc8yZ5VSdnAM7pvZ224zTVMuBcZYKZ1luTEjAEUpI6UslUpmlKao7KgAwZEIFyvral1wbhDBDtWc567rQ+s4B4GFLYqC2wsFAMKYJkmW50MAtDHIdX0IsecgkQuoTbUUMoIxpZjAJFF2RoUQ8bzAoTbnEPmumycZz4q+GCCANEBag6KQnOdaG86J67Fqtep5CxsbWxbQB8g4nlOpVYLAy7KMUooxKlfrrsu2tnbSNHZdn/PCpUxrYEY3SFUqZcqYEbIoUq3VyuoyY0xIWSqXoyiiFCdJkudZWPLzXEZRIoQCgPR7kQVqfd8vl8uEEM/TWZpLqaGGWuhBPzFAzS/O1et1aEC5XCmVSmma9vt9ShljIw3f+vp6u9OtVCqto06/N8SIGgX291q+77uOv7+/X6vVhFA7Ozucc4vezi3MViqlOE4d10EEK6Wk1MAgh5AJ3GCMsWICxpiU1n0ST6YalgQHoAVkRi+LxljTFdvtK6WKvDBmRAKzG5FSCkLsOCOKnI2dtID15LfcX9VbuCcIAkJGfoZKZADopaWFKDp3/fr1g929UqmEMTZSUUqR0WbsNG1LFymsqzKihEmlwHhCM/my9xPcIITaGN/3HceZmZkZDHp31u7uHewTQtrt9vHjx4+Ojiq1KkDw9p2bdvKkuKjWQsmlnaYoUWCMZmYbrsNKpZIQebfXFkL9ws//4od++Mf+5b/410BDBImxDm0IGaAVBGZMCTJjxpXR0AhDGdVIQwi1lkAZKXWuLDqvkyTPi6E2olYrnT9/XnJ5eNjyvODo4MhxHEIo5zKJ0qIo7OwBIYQogRBynmuty+UyY0RrTdwqpTSKonq93mw2lYT7e0dSKghGKnGEkNajHBcI9eFB9/CwvbK8UK9X7927F0VxteJUS1UNEcJOnvM0jYVQGMJjy8d/7z9+4oVvfP3Xfu3XyuWyVoZSYjRYWl68c/vWhTde7/ba73jnU3MLM5/4g48xhp991+NZEtdqC+Vy+bs/8D3z80v/4jc++vnPfr5UqkzNzPT7/c3N7f/4H/9jt9tXwAitHn7o0b/7d/7ev/83Hzt+8uT3fN/3/M7v/M7CsYXjx4+vrCy/9NJLX/va1yphyeJaStogVkQI0UYBADCACCMAAPpLrHh934lTVhRFAaANWM4F7/V6hDB7Kex8ffKsWtEwxhgaQwjWI5Ywnzz2FiabPO2TZh6OM3Js2pB17Jx8jPFJMYoWtGWGpd1sbW1tbGz8w3/4D3/yJ3/yK1/5ym/8xv9ncXFxf2dXGJBlmcUrGWMaEqmVA5x/91v/9xuvvfHmG2+885l3bm1tYYgIYVJKglmaZACAJIqiJBtKNZoeYcyV1sZIxTUEytKZpdSWuE2ZVYogghljEGMuhf2QQBspZa4kpRQgjBHUYExRLwoLVsIxP4wixhh2HCfKc6lllmWMuQDrohBH+wd7e3tnzpx5+umnv/K1r166dGlufmZzc3N2di5NU2vE9OabbxY8szfiH/3jf9zpdDBxNjbXz507s7e/NTcz+7GP/Ye99btBfapaDeuNspQFJDqOC4SgHVIbKBGyp8Mo7Wm00WmNxyYn98O7+C95YMB4qDA53+19JBBp+PbAQGtt4Wb79W3pKAu+s7OT5/mNGzc0NFaUNqlb8DjsAd7H5J0AzWPjNDiBhuzfndCi7aYNrIE4hIwQDYHWmiA8Yceb8bTPKkUopUIUYJx4YUYeI1pCOCm8pdB2A7RkC4BG9HyLcdsrQMcm1PZPXNfN0pF3q/14Cinm0gmwrpXSWnOtCUH2w9t/Wk0MhNgYJeXou08+8+Tu2Lm467ppmq6vr1+9ejXPc0xBFCVZlgmh8PjSobGoZbLW4JhiBcD9A9fveCEDlBKTn7d/BWE0phEAcN9kAky8WYwBwBBCIEYWlYIQGq1d183z3AtCAqiQcn5pcXl5mQuVcy6F9hyfAy0UUGrEbnFdP895uVQpl8OLF98UQmPOTI8AAQAASURBVFjmx8mTpyCE58+fD8KwWq1+4xsvvP/973/2mXdEaXL58tU8HRwU2d07t6an5gLfvXrl+rDfPXlqJc+4FwZZO56Zn3n20ee8IPzStz5//fp11QGDbmx594H0iONgSgnG0PVgUeC9/e1SqWSMzPPU8ymEABgFAHQ9Nhj0X3zxYutowAu9MH+sVAq+/OUvLy4uViolzvmrr78CAChXSl/+8hfjeHj27Nl3v/vdtVptcXHx5s2bjUaDELKysiKEiKLE7pIIISl0msZ3796tV+sE0cALd/lIhQ0BnpufbbfbaZK3Wi1jTKfTrVarYVjCGA+HkSV4IoSazWYUJeObAey4dWFhjjJsgJifny2XyxOn8OVj80qZTrsXx7HIdZqmhGGp51dWF4+ODgACUINyOQz8yuFhCwDwwAMPzM3NXXrrIhpR4uH+/n6z2cSI9vt9u7iCIKCU9vt9KaXnlopCBF4gjSaE1WqVNE2ffvrpvb29y5cv20fZ932tgZQxHiWYibNnz7700kuLi4tWtYcxRQjFg6GdsVgT21qtGsfxE4+966EHzr124TwhoN/vb21tUUrnF2Yr1VKv34/igev4vu9HUbSxsWWMqZYqruMKrrIo8xs+YO5w2LbkfzJyLdSj1gJBTMlEFGkpYJzn0ABbaU12GQihJSoqpY6OjiCE73jHOw4PD5MkCStlzrmLXQjhysrK0dGR5ZplWWZbl5IfYoYbjUZepOMZ2ijVh9KRHg0YhBHVCkCAIRwNZi2yb8ELABBCGADtum4huQUOIEwt0nd42CIQ7bcOC6E4F0qpOI6FEEWarRw7jjHudDp5xqWUQRAwSaSUGCKKyWQ8ODnFJ6c7AEAZrbV2nMCaD1o32G63u7+/L6U8ODj4kR/5kQsXLty8cXtndwsYxHk+UZtijD3Pm56ePnXq1PXr1/v9IUKEMTY3u/DYY48FQQAxsga71UpjZmZmZ2cny7KZmZk0jrIsc13WaNSKIg+CwHGccrm6sLCgtV67ey/PuYI4KUTUHgmykkLobs9N/IVjK2cfeoArxRhmDNSmKrWpcqnMtre3tZZQaIgUAKbX63NeSA2iKEIIBUHQaNQGw16W5wUvfD/0HHcwiAqeOA57/w9/6PaN2x/84Afb7faVy9fSIu12u71eByE4NTvl+fh973/PBz/4/vNvno+T4cMPP7S9vdmPOkWRp2nq+yGE8M6t29bKw+KApWrJGF3wLMliShzGXClkkXPX9VZXV7e3t3q9HgTY2r9EUZQkCQBgcXFxfn4+SRLf97VW9Wq11el0u11jgOX8KqURAUpoAK3DFGSMqUJJJMNyiBDqR3G71apUqyeXV+uNWm/QTdPhpALI8zzP4kqlNkEoAGC27y2K4uGHH3Fd+uZbF9I0LVIdx3GaZqVKOUuLciWsVKrD4SAM/ampxtTU1Nqdda2QFBJAJJUkUENI4PjsGefQqDTNMQGUUEKBH/qLjVlCEOdFmqZb2xunTq2WS36/33dddzAYxP2bUkAhBKMuwUQpZd1RPc8j3ihCyk5lbcrTuXPnjq+evHTpki0yZhfmn3n6mQsXLriuWyQcYzt8NVpLAzWlzHEpQhAiU29UbQXQbbUtdAgY6PY6jJF2u/1v/+3/df78G2tr60DroFb93Oc+izFeWVlpNBqbm5uLi4uLi4trt+988IMfHA6HX//687u7e0EQcC48z2sddU6eOrmzsyWllFLlubh7967re1P1RqMx1ekMrIgJIaK1rTnocMhtPoPv+0IozyMYYz9wrf0OAMAAJWTxwINnXMe/ef26UsZWM8YYDDAAoFarPfL4uSzL1tfXXdcpsnw4HHIu8rw7N7/4vvd94K2Lb25sbQghbl2//tZbF/r9/uLM4jCOFhYWHn/y6d/8zd/c29srV/xS2fdcJHh67ty5csnb3NiuVGrf/vYr7fbRyuqxZ5996u7d21vb29Xqaa319va267qEkN3dvXK5ura2du/eulJCG3XjxjVKmVW6OI5jWTwAIMchWgNgRvERhBBMRvqsUqlCiePMuieOn3I89+LFi57vXHzzrf2DbUJQNBw++OCDWoNkmFHqhGFZCZRmMSGUEJznmdIKQAUg0oYDiItCIAQghlPTswXn09PTCEPfD5USRVHkRVwq+WfOntzZ2SqKIgiqcwvzN2/erJRrZb92uN9fX9/MEwEhXFiaLoqCc+k4DsZsOBxKyaUqPJ+cOHEiy+M8z4SQcZQOhzEAwHPcnZ0dyvCPPPdDBwcH3/297zt79myaZkpzpUUQBHu7B8ePH//A+7/bC50v/rfnqzXwnz7x+7dv3xVClSuVTqdz/vz55WOLYRi89dYbzCG+7yotkygGADUaDcdx6owGQWDTUdrtNueSEFYpVRcW5zvt7rA/UEo5jgOAVkpY9iVj1E5bMcbGKCFkEAbT0w2IZJRGQeD5IaNOCSHguaX1ezutVssYuLCwoBTlIhdCOI7T7XY7nZ6SABGCEbl65RYhxHUCAMDsVP1g92jvYB9CWKlUymHJdf00TSHEzKFxPLThEEmSIAiN0p7nFYUYDCLGmDbG6l5tJmccp+VyudlsRsP+/Pyi53l3bt/Z3z8UQjZqTQywEKLT6Q0GA7S60u/14yhaWJirVCoQ8MXF5aKQWZY7nmi324hghA0A2g3cbq8NoDFGS6Mk50WhGMKMMQqh53nUYVJKxcUIREZI2/ZhzOtijKkiV0phjCYgZp7nrst8bFH1oZBFFAsbMcoY1XpESLTluBDSTjptbFEcx9Z8IwxLxmguhAdcI20rTpQqlFLMIQBCrTTnBQAgLXLLglRKUupZjDIIgjAMwzCwigejhDRSaWW1z9bQeczEwcYYhLCFWSdQ6dhcYmQxPCkSlNX7jwFfZYzQKs5SwihxqKNcKeVgMDDGWLJtu9/L0wwiYysiKw7NssweOsYYoSwXmPi+H4ahgRAogAySUmFEzYj7ZoxRFkqQUtr/tNVUUUApJWPEoq5Ka4NGTCKrMCUYAwCUMWCc3mbrmbFiDE86HNv/Y4yLglvEECFUpJk1GLV9TlEUFhYfYQqEKKWELGxk63A4SjWcQNWT1gtMst2s7SYAlnKluDAIOz7lnHMuiMPsEcw5D0thqVxN07Tf71pk2SeOF/hJFGdZgjFWyiDrsKfN+HjFaZryLC/5gTEmyzKldJ5ksuCjhg+wo6Mjz3cRQkme2AGJlJJSCgwaDmIQAt/3S2E58MvDYdxp96SUDmNFInihtZZCKIyhX3gQwnq9evr0SQjhIBqmaVoUmVIZZb7nl4bDIRdG6YI4dHq22W13Oc89z8MGSykLUYikgNCUSqHjEhvgvbi4aFOY7FpwXbcoCqMppSyJM+Y4CGWC8+EgkVIjSAxQjBE3zZvN5nCQFIVizJXC9HsDkXMNjcu8fm/Y63eCwLMy0zzNAQA2W5VzeXTUllqVy+WDg4MsTRlxjDHSCK1NluU1t7a9tRvHcakcNBq1UqXc6XS2t7cppUIojKjv+xGNKEW8kCPJIHMAGamMkySWUhLsaQ0QMjaBGQAghIAYAXvMjRcac4h9YrMkRQgZpaVUQigECQDa5s4RQhghCCEAtOJCGmV9Gu9He+20A46ft7DkK6WE4Fmu/JJny/ijo6NLly5RSq3hm30mEQKWKg5GNpoUE6iUtsC3UoqQtxmjFmXD5G2Om33IHcfRePRJhsMhQqjX67Xb7U6nUyqVnnnmmbBcmp2dvXfv3tLS0oULF7785S/PLs+FoXd37WatEoZB4DjOysqKXXHWcKzXHRDqXrtx5+P/6cc21nf8ShVjbHGnt/GOMRpl4SQIRjiX1jrnKSFEcWF18chamlCwuLTMVZrnca1e7na7GxvrlLjQgCAoIYTsBRdCKGVc1x0fkWYyxrO1rlJK6ujexj3GSBwPPc9dWlrIc9466AjBKaWy4IiicrlcqlQ7nU5RJECJfi92T3m1ernRqBW5rFQqUtNKUF5YWuQiVUr82q/92p9+5nO9zuDKlWub27vN6VmgpYKIcw4ReO2119I8eeSRh779+ktPPv347t7GUWv32LHFqelyuTx/59YBwmB5ZanT6j/44INf/sKXi6L48R/7H771rW/9+Z99rlIt/fqv/3qlXvvSl77QbDZfeunbC4vzP/IjPzK/OPeNb3794cce/vmf/3nL3f7iF/8bYw0hhBIKQYgZMRoKwSG1D8kIQno74u07X/EggtrYPhpCWKvVkiQppJj00fZpH6GQSk+2SosYIIQIRHDsY6DHapgJqmVnOROEazLmUUrZ08RW/mMAEVifDQjhJO/Edd1Pf/rTe3t7y8vL58+fL5fLFGGL/VkkyxjDOVcAIwLL5erFixdfeellDEnnqPNDP/ih/IknLr7+anh8lRLCh3GeppxzbaAGxticJwAUBNoYRFiRZVmR2icHQ8QocxyHEWKJApNHVymV5zmGCACAgMnz3EDkeC7EhBCCoYEGKK6sRhMhCDU0xth7xBgbRoXjOAAgyZXv0ziOP/nJT374wx/+zGc+89GPfhQhZMHQmdmpoiiOjo6MMUHoKRVqrdMs297e1loHIX7zzQvXb1z8+vNVCMHezl5jYbpWncIY9vsdDQVCwIqehc27BqNgNzXWSI2g3jF0i8aOVSME+S9hxGtt1H2jrAkWgS3wAUcgpr2b9mUziixXPU1Ty1jPRTG6jNhaEtPJ0MJ8J6I9/s3Qzvut8B1CBIABwKYBwbEy0tJyAULIaE0QFtDAUQqiNMbYzdw+7YwxiIzgo2gKe1vheIZnL4iU0o72bQkBALADWruF2gViEWpbrlimo0Xz7SBkAkxNoHn7L/YzIEIIRPZhLooCYGRjxkacCSsFGAsX9Nhk2V4xW2VZfbnnecrwohAYU6NsCq5hbHRmmfFsDwCA0OitEEQT4H5y2YH1hsIQKKAhGO3SEFquxhj3BwA4EEIEiQHGyo4hNGAkuQNWLKIV0NJomXleANDoWJRSXrx48eDg4NTps41GE2MKMYGIAogJRjZy03GZ5/sYwwsXXu0PBuVSAAAwBnAu9/f386Jgjvf66xd8NyyXKwjD61evbGzcu3LtcuBXVldOe74bx/HpkydnZqYgkG9d7M3PLVbCoNW9c+PGzawQSZJlSXxx7zLPBa/KUiXMOzlxPYdSKmS+udlqNGqOQwfDjud5QhaDQd9mqmiNPc+rVqubm5tFDhCkx1dPVaql6zevJ0myvb3peKxSLe/sbEGkpeR+4N5bv/svP/oby8vLa2u3FheXZmfmCSF7e5eTJPM8ryiKOEp73YEt2SmmNjpJjkNUtdaMkl6vBwyyi2dt7Z7neYPBwG58lUqFUsfSkQhhnPc8N7Br3vf9Wq1JKDp2bOmJJx5ttQ87nc6jjz1kZbaXr15CkARh2RhwsN/udrtFJnfMTrni53kurL+4NsAk9lGznDi7CVr7jpmZmWSYRFmilIYAG23yjEfDJIoiYwwwFkfTCwtzd+6tdbt9pcRgMNjf3+/1Bp7nHR4eUkptwAWlVAtuG5itra1vf/vbCwsLlUql2+2/8cYbQRBQRKUZuULXao0w9B9+6NG1tbX24VEu+HA4UEo88cQTc/MztlBbv7cpRCdJkpWV4//qX/2b8+fPf+zf/24Sp0FQqtVqVszImBvHXcs0GVN73h7IGw0BMnZZjjoEJdI0xdSmP4/mNlLKJEnsBqGUWj15YnZh/tVXX7WezoSQfq/3N/7G3+j1el/60pfSJPF9P03ToihEXjQadaBAkYvJvowxFpwrVXieZxFnPZbBAjAOQCAQIzzpT6SUCAM7NrECeQgxIaxc8oyB5XL13r2NIhcWPrS/vVGfMsZ0Oh3b6UErsWeYYmIHg1ZQaXeZSR9lDzBKKYZIa207QyFkFMVaa86LL3zhC2cfOP3BD37w7NmzN2/etKe+45AKKsVxKs3oQkEI9/Q+Iw7GFGMcDRMEiRBCCIUQcR1XjYL4oEXqt7Y3d3a25mfn8jyd1BBKiSiK0zTNCu44jh94flA6PGonac45z7JtCCFmlHO+srKyvLwIGXAg5lylUYGYWVqd41F++871EydOHB4eSC6FUd1On1BEHUYItmE+UTzwAtfx6OFhnGaD46uL9Ub5tW+f/+4Pfu+v/J1f+kf/2z86e/bsBz7wgbW1tY///scLnj147izznJ/8yZ+4eeu6KFBSRLt72x/96L/c2tr61Kf+8+LSfK/f55xXqhxCSClDCPf7/enpaUJIv98PAn9paenBhx7AGG9ubN+7t4kQZoweHh4cHO4JIRzXXV5e7vUGb7zxZq1Wnp6eDsMQALC/v5tlGSP43LlzHnMdx5VSQwClVK7j2EkqAIZzIaVEBgCDjIFxHCNEEELVWgMhwLkcDAbWoIYxIoUQQqZJMRhEw2FsNKAUC6EgNBgTpSVC9Pz58xACpUQYlrO4NxgMjYGD3hAYFEXR7Mx8s8mE4ISQ9fVNiBDPOCUuQkyKUZ1gn2HGCMbUphtDZIRWoevOz88l+fDgYI/zolKpGKBOnz5pgOj1ekEQLsyv3LyxhpE/6CS+b4QQACJCoRAKGJTnOdFSypF30Orq6mAwuHfv3sWLF3khH3vssXa7feLEidcunE/T1B5vrutKKYqiIBSUSoFX8uxOYozO8/zevXtZlpXL5YVjC8iAjY2NIheUUurR4bD/ta99LQiCUikQQmgjw5LvOv7Zs2fr9frm5ubW1tbMzMz+0eH+/n6e53fv3kUI2bXMOc/j+LEf+7EPfehDN27feP75r4VhaKABAFy7eotSWqs2Ov3e0dGR7/uEkCD0tNa15mIcpUWedzqdICjFcSyEZGRUKEjJsyzRWoZhePXa5d2tvbm5WaUBF1xr7fq+H7iDYU9yNT87Fw+jLMu8ag1ClKbpmTMPrK2tHT++srS08LGPfeyDH/yg0kWjVvkffvyvbm8dfvzjH3/mmafnF2Zn56a4yAhB0aAT+C7CZHdnUwixuDSbJFm9XimXy5iSUinIizQIgsFgEMWD9bW7NqDZ8fx+b6iUgRAyRnZ2tiCE5XKIMf7e7/3+b33rpcODIwAAIUgphQHGGGtNlDLGQCUNQohRtxAaAoWx7PU7/fVhEg/zAmdZQgjTUuQyv3LpyuLCchhSAEAURUIorYDVYyKEjFFFwYMg8H1XKel5XqVWbbVaVqh19+49IXOlxPRMHQC1vDTvh86NG1cclzqOOzXVOLZ84uVvv7Z2d3t6am5nZ+/Y8up73/ddf/RHf2QFGUmSaq2LIoY25pFL5pSNMRiTouDVapUSx/NKWZYZJSuVitLipZe/qbWenZ397Oc+02p1XMevVGpBEDqOMxzGly9fv3P37tbmwfz8wtbWjjGmXC5rIx3HOTza393b8n13ZXW5c9SKk9j3PMa8Xq+HMQnDcHZ2LklTQuj8/Pze3oF1ewdAb2zcMwZiArgQXKRC5DMzczMzM/v7+wcHh0KIcqnqeZ5UEiJcqYTSFKJIhciZ43ORag0qlfL29t7B4X6jMd1oNIIgqFbndna2KEMQopWV4xDsEOIeHrS1BlpBDSGETCpRFCqKWghgglGR5RahwxhXKiGGqNPppMlQcTVB+rTWUssJ/IcxPNg7XFpeABoYAKRWs9ON+fn5s2fPYkzvrW0BACvlmsO8eDjsdrta64cffhhj2Ol0EMEQ4jRKgSmKrHCYJ6UeDuMkyeI0Ygw//MgDiwtzR62DlKcagEazJjJ5cNAGCFHHIRRZBZiQAiBgUUWLukIIcyEn7fF4wDPK3IMQKiWUwvbiJ0nkeY714dVGaiPhyB0VjpOshMVl5Njn0UKZ9t0YczDGlDqIEoxxFL2tL4YIcM4dx7WT8rAS9vtDrgSUNgxZF0Vh7d0JIYhYhqwCQINxi4IxnezMekTsxYQQbeSE42O7MYyxVXdZ3lC73Za5xJgigMZ4JT+2ulKqlDAlR0cHaZoWggel0Pp6K6Ws+s0WYBhji20hBCAkmNos3BE2kafF4eBICKtQApQ6nHNoEMbW92REVrLSFkIILyREAgDm+z5m1AClwNjJGhKBhG3MpNQGmnK5bBshW1SDsc7ailIn3eAEI7au6PbuWOocgHoiALci/TTPAUKOB6uNKma43+rbewTv4/twLiEiBGIIMOcFJuPi0xhLMx8OYgC19e8lDnXdUr8/zLLMDwLfdzFu5LyQUs7MTDmOV69XrS/toNePoogQ5nrupEbVQlpjFiml67oEEa01LwqAoONS235rowghGGLKHILZ4eGhpKNjJYszkYvM5QCg4SCGEBHs2NrVcIEQVBhLyZWS2siiKFyXHD9+nDBcFGmpFCIMXI+mecI8jABMkozzwg98XnjdTl8pkWccABAEAXMqzWY9CHzmkGq9ZtU5ecaV0RiTaqUppVQy0hrlhbBdve+V4kHOuTQaCc1t19zp9AaDiHOZJnlR8HJQVUq6rm+M2ts9qNUrruMz5vT7w1Ip+P7v//7Dw8ObN2/bItNxnLLj9DpdpYzneVlacC4cx7NWNsNhPBgMKaV5xvv9IcLYdXwu0izLikIg2F1cXC6yghBW5CLqRxaf4nlhu2srJddjncRkliO18l1HK/AdnGVjHMqo5xcjd0vbhwMCgf1JijBB2AoUMLZh2tQOOazc2D60mCBCiDJmwhWwskUv8CcPfBiG/X7fyg2DIBgDzSOOv20KANRSagihUSMswBhjgNEaTIZPZBLvOcY+IMFKCmPMYDBwXXdmZu7wcD/P82azSQhJ03Rtbe2zW5sPPvjgj//4jzuOc/PmzSAIh/Hw2LHVqUaV87zZmBa5AAB0u92Dg4O0yJQ2OuF/9mefdb1ytdbIUy6EsOM9AAChSAihEcRgvK0hOgHvsizXSCguJsBHUWRa65m55od+6Pu2du8dtXbm5+fqtUqn1e0cDRjxtNGe5zGGRCExpmE4YuDa3FEp+QQPstdBKFMKwoODAwhhuVzO8qLf70rFISTGqKAc1Ot1yjBEJEncIFBG+Pt7R3furZ8lq1NTU8NhOogjggOI0jRNsyz5/h/47v39/XPnzv3ET3zk/KtvXr161XZts7MzCwvzb7355q/83V/+0If+yj//jX/uee5Ra+/SlYtS8yjtX7l2sHp8pV5vvvXWpd/8t/9mY227348wxoSw9fX1o4OjIknPPPPMj/7IXwvLwfve+4ErV678n//vf/bXf/RH3/ve57r97t/9n/7uV7/61X/xL/6/GOMvfekrVoVjjLGRIVmaUIdVa6Ukz6TURo1I9H8ZehgnsZA5IQTgtzFcn4a2GtRaY4xtm29PnAkUWKlUrEgaAAAMkEICjOyZON4wld17gyAgBGVZYftNu9Ds74LjXLIxcRJOhhOjKalSQeATQl577bUvf/nLEEJkNACAMWYfVDV+Iepihfu8DwAKgpLI8tZRZ2dnZ3NzO/D8paUljHHGucscyYWd42JKbENNHWYZXULZEakmiGJCkUFa6EJwRSTXChQFAABi67kEAFAAgIJzSokBIEkS7LgYAYwxQaBWqQ6zJM0zQDDGGAAoClGkmUZIC5krRYmjtSaYUOIYiL/xjW98/etft+CGRQnv3LmzuLhoz4vx+FbZxzsMQw00pTQMSloDY9T09LTFH5WS/UGPMBs8gJQyaZoDABDA4D6R0HhdEAihGtvQw7dtl8FfNp+wfKRJKQIAsOIAgyEAAH7nX4Jjq24AgDUUAgDYeF4lC15IiEZvZcEZIeQExpl8EgIRRnj8dVQ+foTu/0WTc3zyODFMRh5g2liHD845IxQAYy3ILJRnGZNkHHMnpQQQTtJ9bD05mStDCCEeeWjcj9La5xmMVFAqz3Obi3afEgtLLSxia0fpE5heG4Mo4ZwDPHJMte+DEAJjfT+6z7p6UvZMfszOoQlBnuPa9tkOAiZLbAJz29s3QpnN26UjGGPNAAClBMYMIYQhtB9Jvx07YWNyR2451h5Hj0VCYDQnGE0jpBidOULECOPhINbAIISaM7NPPPFEpVonhFLiKQmSOFfKlMJqEMic55RiwvBRa284yH2nHAblfr+Xpera1Rue5zHm7u/vP/XUU+9/z/dcuXLl3r21ze0NxtjZBx9aWFhOEnH10sWF+ZWzZx8c9gfd3hFjbre9f/PWTQU6R1tRc2ZaAQMA4lwGQfjUu5557n3veuX3z5M8TwkJkySKh4Nh1C2VSlKK4ZAjhHrdtu+7vV4vSaLpmabd2pJYYYz291uDKHaYWy5XEYGHR3uU4pmZqYJnEJlSqcQ511ptb29VKpVomDz//PPVat3WylqBJLF3y2CMn3nmWUbo2tp6lmXDYSyEKJfLQEPOeZIkwCC7XBlzOOdCKCGU4ziDgT05iDU/ggDbzs33/VKpVK2VITSDQb/ba+V5Wi6HUdQrlTylCistD4IQIzY9Nd/tdqNoAJGJhklYCjAuCSFarTYwKQCoVCq7rru3twchtEnZjuNMT0/fG9zL8zwMS0mcaT2ixDPmSsmta4ddNnYZGGPOn3/DViR2yUmpIRQUYcUFpYRSurZ2Rwjx0EMPHT9+/OrVq9ZXdAJ0Ci2klJubm2Hof/Sj/zpJIqVUJjLHceI4vXTpkuu6QRDYcQ0hjDH39dfP7+zsMuYcHbWXlpYghP1+P03zUqn0rne985vf/Gae55NDyH5gi+TajWmySpVSwIyyIBBCAIxsELTWPM/tCkcI/dmf/RkhBCKjjVRaIgNcz3v++ecdx7EqzjRKwkplaWm2SBNeiJ2d3Wq1oo0x0IRhGARBkQvOudbABvUwxiDAnHPJc7vybZk40adACO3GlKYpJCiKIvuxKYZFITY3N6UYbUBCSA2g7/sEk36/P3EgGm2aGtkBl70UloJkuyn7K4wxdoBmB8LWPAiOWQyEUGPM3u5BrVZ7+eWXB4NBuVzGmNTr9X5viHE27MdBEGRZkeftTqfHuQzDkGImIY/j9Mr1G6+99tq73vldumRc38vSXClVqZZtldzptDAcDS3tPWKMMUaM8ayB5qDXL9eqYRjOzs4ihDY2NvI8r9VqWZZ0Oi3moEqlzBhJs3h9/W654i0tz778jReD0H3m2Se/9a1vRX27xUlgCCWO7/uez8LQJxTkRQKgnJ1raq24iP2gtHxsTip+6dJbf/sX//bjjz195oEzQbmkP6H3DnZr9XLAXC7S7/qud9xb2/7t3/7t7e3t//1//8c3btwYDuON9R2ATJIkQqhmszk3t7C9vS2lPjpqay3n5+eXlhYhUkIUxjBb/WtpANAHh3vYxhJCvbS01G53h+0+peg973mPAerNN9+0LtuYsu2tnSRJTp84rQzc2tqxsNeImAy0PUqFUFoLziXGVEoZhqEd7vm+jzGsVCpKiSSJKGZSpJxLhNBwOLSJGcyhI1ADGt8Pet0BRMb3PQipMRAARDAdWWoieu3Kddd3ypXwscce7Xf716/fdJ0QI6I1wJgYlRsDLNdDa5mmsesxgwDGSCsupej02lke2c5HKeW4eHl5sTlVb7Va7aNWoz71wAPupYvXPd+xAJ9SSkujtXJdX/ARN3BEEWKsVquVSqW9nR1g0PLy8mAwOP/mG5zzwWAQBEGapi6jnBcQGULo4uKiV/K63U5R5LaoGg4jO6Mql8tzc3PHT528cevGZLsIQk9ryRgpioxnybt/4AcodazxmdKiKIq7d+9Wa+WvPv/1KIp++Zd/KcvyF198sV5vXrr0FoDwzTffPHbs2Pb27uzsfL1eHUT9o6OjSrnu+Y7NU4YQHuwfTs3Uz62caXVa9Xq92dRBEG7c2+z3YoxHE3QpOWOEENTv91zf55x7ntOcafR6nTAs2xDwwbA3GIJBL36DvfH444/2er3BYNBoNBBC5XLZGOV53p//2Wcajcbq8aUbN6/4vj811bx96+b6xu76xtp//uQfvHX5LWNUEDqyyDWSWT6MYr61mSqlAEAPP/zoz/6tn37jjTdf+NZLBoiiKDzPHw7jPM0cJzAGSgl8REslTwhVqVQcxyWEUEohBMvLy7Va3XGwkgWCAGkEIVTQUIS0GoVKCCEIhgAgCIFteG7dujlqGJSmo7IMI0hEJrTQ1nvu1q1bSRI7LmWMlStBUWTt9pGR0nGcSqUSxzGEsN0+SpL4xo1rauQbAE6ePDU3P21Asb2zUW+WTp0+sb293e/3AUBZKm/fvqskcFjIqPf93/8DBuQ7O1si1o88fe6nfuonX3jhxWiY7u/vDwYJwnpjo+f77NTpE7dv3+60e0EQBH6VF4I5bpYlUsqdnZ1arXb9+vUsy+r1OsEMADA/Pz8zPbexsfXRj360vXOEg8BzyzZTxBiFMOI8N1IGgXf8xApQEmM4OztfDkubm5u80L3uoN3qzs7Mp2k+NzcHALBGyXNzMw5l9+7dG/Zjx2G1WgUAEJb9Y6vT1WrF9eD8QjOKkv29wzQblMtlDVCU9pnElWpAqBFCSMmDoGRxB0JwFEVKgt2dPYzx3Px0UYyEhElSZGkEDDEaaKMwZRoYRonvec1ms9/vS8mVUnmeaK0Jxkbrqamp02dOuq7rMa/f7xPMHN+7dOlSv9+37k8QQgix43jdTh9jjAlUSvl+/+zsmeEwPjxs9YcD+0Q1m02gQJYWU43myZMnEULdQT9Oo1q1Xq1Wh/2ekhBDBrDBCGqtAr+kdJGm+f7+PkKoVCq59QBDGg0zfzhEgGojIXSU0XZL4ZwTihAGWgErvZxoFTEhmhe2BMcYWu9v13W1Gdnwrawsd/o9G1XEmAsAcBxPCFHkYnp6Wil1eHg0YbjYVFoIoeM4diiOEDo6GtZqNUtanMyeERq5bEspKGUWb7JIIgXUGCOlNiYnhEDrtQoAIQxCYSAkmCCEhFBSFoQQKTSCxGjAC0kIUEpJLsb1goFjfpB9VavVmfm5OI4xxvEwghBSgjnn1CGcF4RRaeT80qJ177ES3fn5edtl2bG0UirLEqt+sH0LIQRoo6QsUp6TAtgGWBpgLBFbQ4Ns6UIIsW2n7XxskWa5YEUhHEcpIDDGmGLOuRR6zHGWEGKEAACai1xwJaUEY8sLMNZ+WvmRvZVmJNq1jR9MkpQQbDF3Qgijbq/fsdiirXK11iP5ZBDITGRZbusl+wPWZcX2jbarBxJNPoABll1hKMOEOLbes6dhmqbD4bBUKvm+jwgWooiiiHPJGGs0Ko7jaDlqVsPQp9Tp9XqKizjLJ3QqoA1hxOLOAGqHObZENBpwzl3XhRqInHteOPow2tJvVRz3eCEBgBARPfLLdqTkCAOggEHQGJBndlGjO3fuZEWW53mpHMzPz3d67TSNrQs5QrbYFn7olUvVPM8PdjqEkGa9HpRKQhbdbs8YHYRelhVCCEJkWC4ZY7a2tu29UBwghLgoXJcFQanRmOr3hkmeWs6pNTWu15tHh21KmdZQS4UREUIFgYcg6PeGK6vLy8eOvfnWBQDQ/v6h1trzvF6vxwidmp21nngAQN8LKXHtGEMrkMSZVb8ZIxkjUhhiDKaEUocQVgqZjT3P8xwADgwKwzBNM0tGgWYEiAghECSEEAigAWPuHoBFUWBEbYFtt2spihE/mhAIoeBSQmKQYcwBBlkAzl4QQpEQWuuiFPpSiDgZRTiCMf2NMWaV7FEUaTPKCx0MBiOUjTEhhO3sLOogrC07Qkpri4w4jqONBAgprY1WrutaJiOh2H4SgtlITKA0sCc2YxgjCCHQRinpOE6WpIf7B5QyAWUpKENobty4Ecex57iXL1762Z/9Wa311NQUIvSZZ56Znm4Wefztl17sdHqhH0w1pw9brU6vRwgzEGDqeS5lzAMAUWqyLANg1DSZie5ev83yQwhZ02oppQEKUSql0tqmpNI4HlZrFaVzLuJKJex0DzpH/dnZWaCYVpAQp8iFEqOBk80im7CUJhOpra2tg4ODZrNZb3rlcrkQue1EjLEJ3ioM/FKphDBIs9iH/tz8lOu6a/c2DEUAyna7veHhqdmZVmcQJy1lpBDF1etX5uanzj384DPPPDPoDZu1yg/8wPs7/aN3v++5Jx57bDgcnj11+qWXv/XEE499+7VXw5L/8f/0iT/59KeKotDa9LqD+YXpSxcvl/35brf7pS99iUAnSfI0zV0XfPKTn2TMARgHQXj37towiW/duvWpT/7x9Zs3vuvZZ27cuvGbv/mbCphHH3/sN3/zU+VyGSE0P7/oEApAkReF1pI6rFIp+b6f8dEAQwtJCKWY/IXoIcEEQGqHkXaOCAAgBiBKRzC9EHaNQD2a5xFCrNrJjsowxghhSikhhDhs0rbbU8NxHAhNnufW4sP+/ITvKceG5lprI5WR1liGGGOkVpZcCcDoWBk93gUnhNh+1j5XaZqPPG3G+5gWCmPc7XQ+8Ynfn23W3vnUY6VSyQ4zRg5IxlDmYIyl5NB1EUI2NsAaqduBKyFEFNxOoBGEHIweMzJ+WeowtEceYwAAo0S1VFbSDHp933WzIkcA8rzwPB9Yp1ChFdZKGTtr8b1Qaw1l4RBqL5f9InY+qrWOoqgoCnsua+uSO7Kbw8roWqXhOE6WZQACCO1kGnIugiDQWhsNlTZSaOvCb/0pLNJq3+1tfHbsrz0BbaWUgP6Fz4tNlRu1rhBCCN6msaOxpS8YqRlGWI19hJAZccMtNsJFhhACgNinC4xtNPR3ekBDCCe1xGgfVhOOrSW6vb3Y4Tg8mRBipNJag4mrw9g8WuvRmTvCiMceL1prYAzB2D4Gk3n2BOq1T6MxRkslASBktIOB+2ISbU2CELIBGGQcg2m7fjsdYYzh8fxyMpUZl0B8AnBNwOL7gGA14QHYpTSpHyyRQo80cHqMCYyuIb7PkWxcsUNoDEJAKa2UhhCPdFcY2bAWW1hCAG1UoS3MJsWSDcMgxAADKKXGAGMBa6i1HpsTSAMAoMSJ02R1cXlqZnp9fX16bvonfuIn5ubmWq1WwVWeDRBitpUAACBIXCegDBdFLgVaOXZqfm5mb29nf2/N2kJ8+Mf+6vWb12/durVy/GSpVMnSotVqAW1Onz555tQJRJzdnTWHsYP9XYcxz/NmZ2ey3L9z66oxMAgqP/Sjf+3O2r1XLn3LKL1SWTl37uEHn3jg1Vdf397eIaVSIKVIs9hx6e7uYb/bhcjY2wkAEKLAGM7Pz9cb1aOjo3a7Oz9zdnX1WJrF9VqzP2gvLMxBPJMXUafT8nxWrpd2dra63TZj7OjooFarddp9zwuUMu129/Spswf7R0URVyoVuxsqpV577bVoEFNKm83pOI4ZcVzmWSedMCinaWrJifYeE4KNhnnGEZIYYyk0RMaWFBBCa1uGCYTQOA7r9tqc541GLQh9gMDO/tbR0VEURbyQnldoBRlz7TtjBCHERSGq1bKURkqNEdRaJ3EmuPIDN0kSa0/uOE7nqJPnBaXM6JEL0kRSRAiTcgSGDodDxlghivuXtNXbEsIwGA1qLOzbaDSsldj+/v7u7m4QBPZ9LNbJELMMlF6vyJPc932ttev4Bc8w1ltbO67LyuVyEAQY0273qCg4pfRXfvnvKikrpfo73vGu27dv3717dzgYaK0XFxd/8Rd/8fd+7/e2t7aqtZqtumwDcP8GBMaDegQhxhSgSUMy+hmKRjaCRVEcHh6WK2GpVFpdXd3d3U2ShBBy69Yti84PBtGJcyeUUj/zMz/zx5/81O7u9nA4hBCGYdBsNPtR33EcCHCSJBa+VkohBBECUGpjdJ5nnueNOvk0hiOPaYgxHjk3Kc0cxy/5URT1uaCUynHSkf1S9q/3o74tkuyeaFs7e65PdlLbL9mbMqGYjcZxwCglbfsHDOI8Y4yFJX9qamow6H/75VcJIYwxjI31hiuKQgjx1DNPH+4fHB4ePvvss4eHrY2NjePHj//MT//NWqNerVa3d/fOv37h9q07x44de+yxx4wxO/s7tVqtXq8yRpYWFu0AwxZ5tg7wPM91XSm1UmphYW4WEMZYteoeHfXnZhpCiKwQjkuHUf+tt96kFNcb1V6vDaD+wz/8BMZ4MOhgbF555UXfd6N+TynjOB7G2CHecBjv7fdPnz4RYAchYJQxRleqQaUcAgBrzVpRJAvLcz/0V36EUf+ti5feeuut4XD4wAMPGCD3Dnf+8D//p5mZqYfOPX78xDKhaGd3y/d9xlwhRCG474dRlGhpKMX93tCGks/Nza2srGCMuMrseY8JrNdr5bDa6w4oxg8+eJZSfPny5S99+QtagZXTq0kSvXXxjSzLANCMMdd1KaWdfi+N0qy4GwSlJEltlyjHw2QHOxnPAAC2J7dn23A47A0HQRDkPHNdpo06bB2USsFUY9YYaAW+Nm7I931jlK1irbMEhJASxgsFDCaQcCWFUpZtYFN38jxP4jj0S8vLK3fvbECIAEA2vVdrON6vDEKIMhyUw2aznhdxUeSIQC5yi6SUSiUhRJ4PW63W+vp6o9E42G+HQXN2dn5/ut1tdZlD6435tbvrWmlbsGptDDRSSqVFGIbXr19XSsVxXKnVXNd97bXX3vOe9xy2Wzdv3gzD0G599lFHCFcqFW2kUtKqLoqicF2vUqmcOXMmSZKbN29GUbSysmJDUPM8p5g4vu84rlVLdfLiaH8vDMtZlti6Lc/zMAzv3lv7X3/t7ydJ8p73vPf555/f/5N9zwsYc/MkmZ6eWVlZkVK2Wq0sS2xEdRCUVk+euHr1MudidnZmZXURQkMdOj8/e/v27Swr5ubmS6VSrxsBAIBBlAKEGMDIcZjvexoYQkipVGKMlfzAtQlHvrt7sI8QmJ6tZXH06svfLopifn6+SLNTZ8/Mzs5+/etfPzo6gnAVIVOr1VaOLR4cHOzv7XylffCB7/7BX/3V/+n8+fOvvf6KlHJhYS6Kh65Ler0OJZg5FEJGMKUU+4F77drVKB7s7e1ZfCRJ0iLLOednz561sTC+X7Lzxfn5ec753bt3t7c3jVF5ngehNz3THPQT5hAljdaKc660sEUJxpgLIbNsZn6uVqsdHu0zgmzqcZqmhDBKqBQYAggQWr+3/dDDD2ZZMRwOETCBW+Kapyms16vdbpc4XpJklYpGiPR6A0TsYuFFUQSh7/msXPGGUfvcuQchksNh33Eczw0ENxDQo6M2QgQS1DrqSKk+/vGPYyqee/c7f/AHf/CFF1748le+kMR5u9W3lbQqOGHAYhmU0lrNPTpqHx32ADRJFK+sLE9NTeVFqpSCEE9Pz1p6vrWLQZAYo374h//Kzs7wrbfeStM88F2lFMZQCq61clzq+TRN4yxOGGNFloOwAiEFAKVpgRC6fPl6FA2SJPN9f2npGADgxrWbMzNT/9s//F8/9alPaalmZ2cZY80Z1u30B8ODoBQ++NADu3v7a+u3HMcjDvC8MAiCPE/zPPZ9Xxt5eNg6ebrqUadWqzXqs5cv3ewcdYAxACGMUJalSZIYAIGBGLuUYgig57kAWGO7vDw7XalWR0AVQoHvZll27969VqsTBMGpk2e63W77cHN7e9fzPNf3fd9vtVpKqQCGFlolBKUpxxhXq2WC2d7u4crxY91u//XXX8eILMwv5Tm3ljtLS0uO49y4cSMMwyeffPKo1bq3tnbOewholMY8TQplQBAEEGMjjeeXOq3u4T5vNuue52Qx7/c7aZw5vos1VkYXPEcI2VBhSnGecy0VwcxAKLQUQthmVWlNoDFmJDMfzTIBcD3H991ut+2XXN93GSNRPCxXykIIit25ubn19XUwYt1Kz/MsZxAhyyuBFqa0DUKpGjLGkjzhnBdFrrUmlEAIPc/jhVUHK89zhRCDwYAxpoUhhBCKPMdFaMS+AQhRjKnjKDXqeZQaxclaP0PbYNjTtlmvdjodIUZifzyOhbFIk5RSaGW5CEpIyljBM8d1IUYZzxDBwzgKyyWL3volXw0Te6ZY0rSlT1oWT57nUmohBMHMnob1el1IwwuptcaYEgKBHnU4kybKCCP1SPtp2zloIKFQaskoMcYURdFoNOIo1VoTwiwR2PM832WO47RbXVsp2espJUEjVxOh1YhWM2m9tNZGS+sqhsf8I8/zMJ5O0khKKZTyMXYcZzgcZllWrZXtF5/4rRgDuaWNKDXpyr6jQwMY2ngDiKXUlGJCCOfStsq2zo/jWChprfzzPLfVnT1Sm816nvOiKCiltVoNVqpHR0fdbpcQUimVrRfZ7u6uMaZUDrTWWirCiDGm348G/aHjeIwxAgnCyGgYF2le5AghoyEAEACkpUF4lLBaFCbLE4wRZVhrY+PslEJRlEAIMUW8kJ1OZxgPHcexjkkucwh2bYmigNLahGEohBgO4jiONbQQamHDnTQw0TDSChljcm7RZ2KhW6WF1tJ3A/s1MSZ5nlOMlJbHFpdd1zUaKqU5l3E34SInhFDqQGjyLN7a3I2jdNiPuqp/b21jcXFRcF4OKwih4TC2cIPWACMYhmGRFp1Oz2EeBhhCbAzQCig5KpCwAgBphBAkMM95EvWEUEpxKTTU0BrZEUIwplZhQAgj2IWjNCQEAJBaKSm11sIo24ZQSoExlgajtWYEAwMhVBhjuzoQHK1DCKE2RkuFEIAGZFlmxsmT1pfAfheLl1joSgqdZZnF+5QZuakCACamW2gsrAQAwDEbVGlRCGE1B9Yfz3EchKkQyiBoNMyLjDA2UnhA4DLXdV1LcLPAmW2vLBVAa72/vw8hPH365Mzq8VanbRcXAIBR1mw2+4PhhTfP+65z2GqnaTo7Ne35pdn5hazgUZS4jp9luQFEJBmlTCkJgOGcW4fogmdwdH2BBYwQtCaQxlJnjIF2nwQAaQWUVgCAg4O9b3/7JUTl1HRtbm7mcK+9ub4T+lNeWBGySNPUTmgsjqbHfg4jlHJE2UN2B0tTWCoFrutCDBBC09NTWZZAQwhFlGHf9+J4mOdJFA+TOFVaIOQarfb295dWZnzfXVya39jciboDwpyHHnroH//jf3j2gdNSZRmPfu/3PwYh/tpXv/mrv/qrDzzwQJokxpgf/qs//NnPfvaVV145ffbUow8/XiqX+9HwyScfu/TW+UuX3wLGvX379rve9VwUxdev3DLjIErXdZXSAMKFhaW5uYWdN95Yu7t+9epVofQLL3zj0UcffvZd77x169Zv//ZvZ1nme+H8/HyRqyAIB92u4Grp2JLrssPD/XbnCCKCMZRSQYKtNuMvhpsJUQLCsbrfPuoYYwKtL8EoF4qMbxYYcc8La4s/PoyYrWxH27UcrS+LNVu2mT06wdghYQIOjqiayno4vC3qfxvfVMpqeBzH8R2XMwdjuLCwYAerCBG7hDE0o8WnDcKUQJKDTHJhP5jg3Nod2EgAxlxLCrFwbcE5BFhpneUcQSK4IhgkaZ7nuX04Pc8jDgYAE+rYc9loyFxHCQy0tBIfgCCGhGFSq5SEmNq7teE7ThgEgzgSBS95vuTKc1yjFTQWoETG5AhAAKCUEkFso9sgwMYY13XtGMZGUtnDzvN9K0DXWns+dZhnDDQGGg0gAlJKAzQmSEkFACbYAQBIoIAxQBuhxIR7bodYRVFMXHsRxgRjW+dAm5KK/mI6/Chp1YzWFxyzjMfrDhFjpBnn+I0lYlprrcd27fc9AEAbBSY04bcDAMdMbYWM5fgaId52iyYAavgdD9LkbSebAAbwv/uEFhy3G5rdILQeuYoDADBCegwuTTBfe23GX/ztxxIaoO9nN49Jx3av1gpMqgi79xpjH1IbYT36mmbsxQzHTOoJyVprDQHWWk1+ox6/7KIeF6Jo8lEtvn8/9K/HDOj/7gaC+1jJ9rMDAKy3DALfQXbGxlbWECEkpZogilZXbaldeZ5DhADUjUaDUmrp1WEYDnuJZY8tr6w8/cyzq6ur3/u9pDvo3r17+8qVS6urq1ohIaTjhgBoG0vIGNNKKmkQpC4NVx4+7roOBHRtbVOp4uzZhwb9aHdnTyvz6quvbt7djeN+vV4HUMZxfHi4/9x3vf/syYeuXr9Tr00jhGdnZ32Xfvzj/7Hd7mBEg8Arl2qlUuXpp94xMz21FC5tbe78+3//272o80ztHeSoddBoNILAT5JkZnbqhRdeQAg89thjV69eXV1dvXXr1nDYbzQaJ08d73Z7i4uLP/+3fvnEidWg7Iaht72zluRRXkTXrmNAzDAZ1p3q6uqxa1euWOfZXq+XpanWqFyqdzqdW7duAwBc10eIGAOMMXnOHera+rPdblt7F7tErTlGFEUjTgRXAButgJSFhZm0BkmSIaw558dXTxJCWq1WlmVEozxHWZYqrTzPG0RDTPGJk6sHBwe9Xi8IAggwAKDX62VZYR8jx6Fz8zOUUF5oJY3rhEJIKUWvOzDGVCqVZqMhRDEYDIqiMNIAQwAAcZxKqSFENplHa+sCIcGY7S+E8H1XaDUZK1mkWPFCw5GtISGoKIosS86cORPHcZIkjUYjTdNqtdpoNHZ2dobJMAgCzrmNYpidnU3TFAAktHJd17Znvu+HYZlSmmV5kqRpkhspASKrx0/22r0XX3wxy7JnnnmmXC7/+Z//+YsvvhiGfp6nP/XTH3nhhRds72E9Xu9fIW+v/NEyI3a3sRMeSqlrf6/n93q9NIsxIUmSeJ5nHahbrVa5XMmyrN1ur6wc/+IXv/jqq6//03/6T7fWN7IsmZ5u5kUqhEiSROQCQhgNkyRJ7BZMKQVASykxhtZKxdaIlI5yFdR9Vu547ElUrVYxxt12VymN0EgJa0lPpVLYbnfs1IveJ3krikJpUQpC2xTZBtJxRpnvjuPgkUOZsH9CHWb0aNpmb0qa5FrrpaUlxpiVytrdUEkzPz9/eHhYr9ePjo6SKFpYWJCF3Fi7t7y0cvz48cPWUavVfvjhhxuNxvr6+vb2dhRFEEKl+VNPPdU+ah0eHp46dcpxqDHG/q9araaUsgJeSiFCwHVLAGGEEC8kgiCJIwAARWimOdNrtb76xS889NCDi3Pv6Ar+4ksvbK7d7Xa783PTeZFApB84c4Ii3On0BFdKqjhKuSik0EKoMAylwo1mFUKTFTGEhjHKGDpoHZ44seq53tXr1//D7/2u1vqJpx7/r5//bK/f/tCHvv+n/8efevnlF7/whf/WbDZdlyUJfujcuSiKrl+/qaX2PI8gwnlh14XrOj/+4z/ued43v/l8nmdeyGxxAwDa2rzZOmwtL694nvfaa69wUfzKL/8dafTnP/8FjGhzutZpt6vVstY6TVNbqWgNci6VSTlXlmzCOaeUui5L0zTXHADAGMuywhgzkVQ//tijBwcHg0GPUppmie96CJE8KxDEDnMti9/zHISQfVv7/FPq2LE8xjhJkiKXUr49OEUaaaABMICb69du3751D0JiNNRQA2MtawyEBmNUKpWrtbIbePV6dX5hut/vFSLv9TtSehjjTqdz9+5apVLzAzYcplEUra1tFrnYWN+fnpr3vNAPyw6ljUZja3MnFRkjjhSQMYfLnHNutHj22WcBAC+++OLS0tLu7q7nph/60Idc193d3XVdt9VqOS7FGFupP6VESq613tvbW1paqlQqrVZbSTO3OBeGYbfT973w4ODg6OgIE8IYO/fgQ4sL8+fPn3ddtxKGDGMM4LmHHrh+7ebZU6e73f7FNy489c7nfuiHfuhzn/+vs/NzDz/8yLFjxzY2NtIi397erFbLw14HIfjkM0+7H3fTNGUutYu61e1El5Mkiay5JGO1hx568Obtm1NTjcXFxY2Nrbt37wZeWBQSAKhVLoVwXeYwT0qljLZUUCllpVJRSgV+IIQ4fup4c6aZpumDDz5YDsIsy77xjW/cu3cPAFAul7e2tpaWlh599NEkiYUQ3/09H8jztFQK4jgOAi8Igne+852rJ07dunWrVqu98K1vDHv9h889sre/1eu06/X64uJinuftdlcIcWx1JUqS6elpz/OuXbuGEWWUBkFpdnZ+e3u71x8O42hubk4I+frrrw8Gg8PDQ6317u7B4vyCUiYMypQ4nhd0Ot0kzoZZprl0PV+JUU1JGSQUZXmSpjGGBiEiROG6rjEQGGSMRgAywjDErcN2FA1EwSEGcdIHABRpMhz2tQaSS0q8TnugtPB9ryiyosh4mp19+PS5hx7YP1inji575cOjXUIIQqTT6RHCXCe8fv3WzPTck0881W53L1++CgEedDoAg9XVpf393Vu3bsRxWi7VHn3s3L17G4d7e0ur89MzjYODA0LRIw8/NhzGN2/elVIuLy4tzM1PTU1FUXTl8g1jQLVacZ2Q8xxj3O12kySRUr73ve/92b/1/7hyeQdjvLu72e20XJfVG7WiyAZRP8+FEkhL0WjWtTJrd+4NhymG2GUuAkgbM+gPtdF3b69VqlXHpQCAcrVUKgee5z3++GNra2v7BztBECyfOHH1+sb29u65c+eu3nhjf69FmF5ZnceY1mtNznm9Xr11+8a1a2sPPXQqDJxuu3dseXUw2FyYX5mZml6PthAilNJ+L4bQMOoBADB2tIGUUgQJhMJxbCicG0VRUeTMdYIgMMZ02j0IodEQI2w0vHbt2p1bd4EEAAIA+rPLU/Va8+zZ0+1220DAmAMh7Pf7nOcAjMiYhJCtrZ00TVeOrc7Pz2/c27QHolTSIU6axY7j9Pv97HY2PTPje+H29i4BhBfSKEQpGQ5iqbhBasabBka2Wp0zJ0/Nzy/ubu/0+4O8KBxmMHZdylrdljFmdnbW87w4Tl2XCSEQgEqODkcIIYQMjkkimCAzlplDCH3ft3B5qVTioiAQ15sNCKFUAkIzGAyDIOh0OpOBN6WjAXCWZQCYMbtZjo/7UQEwGUIjNCrg9UhEiVzXdVyaZalLAiELTNxCcClFqVSq1+sj2bJSfDSGHMk1CCGCK865AQojiiAUshgOR0ylCYfFYkbW7zgrUgB0IQWlFBogFUcISSWSPEEEKyENgnE8BAAZpTnn+dhbgIvcXi7GKEJIKBmWK5KLOEoFzwCASulut4ewY7OdAVDQAISIuc8HEEziCsdmyggTAEbBQUHohaGPGV1cWD44OEiSzGpIXdf1HRcTqLWuN6oY416vV3QKa31rycjGWK/GUcc4GcljQoCUEEAIkTFjvSeEruMrKqTW9q5pIwEEaZrKTMH7iD8TwR/GdFJhQoiMUZMWDo5i2aG94wAAKKUgmBCCILQRAq7rJlk8we/yPFVCWrdHIQoltDVbdCj1PM9CulKrOI4HvZ6V/ti/izGxmkspdZ4XeS49z6PEsfCLkVorYPSIRWgMxIi62LXjWIQQpbQocm0kJNAWqxjRQiohRBB6EBKjke+V43joOA6jDEFqDDAGAg3TPEOIVCqViXk3JhAAUAhhjCEEGKOlNJwrQggCxHcdA42WgjKsJRwOhwT1y+WqMaZWrvS1MUCfOnVCaZFlmUNxKoTiBSFEKYoQtEQwLXQ36Xe7Xc/zlFLQoK3NTeu9ZjELC4UYaaoVX3HVanWyLBNcEUIxQIQQrZWUWnBDiAHGCM0hhAgRUeQYYwCkFZtOqO73t/FWAWafT4i+w1/FBiNb/HdMnaPGGKCBUhJYbw1sl6qZ4AtjkyjLU+MAAOY4NrtiQt8TQoD7/AS0AsQlAAAgBEHY7iGWX2XGoU+jZ1UpKyJUxlhMSikVJUmpVArCMiEkyYu0y7MsAwhZtqaGwHZ/aZpyzo3R5XIFQhQEPoFQa53FSTQY9Hq9Y8eOHT9+sttt+65HxibpQhSH7cOD3T1j9G60E8fDY8vLC8vHer3e/s5+kmSYOkJroyFCWFm1tTYEIgVVkSXl0HfKZZt1qZQyEEAEjTaTLQ4hZMONLNWGuo7MM4zp/Pw8c3G5UqaUPP74k/s7nVvXdupV30iAEXWYl6apFBaCedvcCSEEIZLSothGSp1lBegpBMnsXFNqeXjYOnny1NLS0trtdUIwY3RubqbRPLu9vd3u9AwAxqi8iP2AOsRptVqOQxGBYcmbn1984MGH/MD91ovPf/Xrn282mw+cffCP/vgP7txZ84Pq9t7Gk489ionpdrvf/NY39g8P/DC4u7b+5a9+vVKv/NIv/j8fOH363rve8/f//t8/PNx/6qmnPM/b2tp2Xddx/H5vWAlraZL3+30g5Re+8HlC0Ob27oULF7TWBMHbt29//Zvf+IVf+IXF5aU//9xnDQBCiPX1zeFw2G53GGO2Ic3ztFCF43unTp06PDy8fXsfIxq4HmbgL3wprSY2oQDcD5ONCJuBO9Iw3c+mtOLmsdkusrofhFCSJGmaYowJJa7rEoLSNB238G8zOuF91DH76+Ao9HIEHUIIMYBWFGV3TgCAdc4yxgSBt7q6ur+/3+l0lE3qAwAAVBQFJJRSoqWCYHT02ML76OhopdGglBohCKFKKZ4LjLHjuUIIuygKwY0xheB5nmdFroCxAoKcc6CJo1EY+JCypCimms3AdXhekBJKoqGyzzBEQBtjBIbIZWS22egMhi5lsFROk0wUHChggxaBApggiIiUUkvtEDrZBCxeD6Cu1WqPPPLIm2++Kcc5e0EQNKemLBJlhZLAIIvzYEy0FlorbePswAizVkobAyHASnHPcy1YYc9ZK4ZWSkGA7KakCAH3kW3t8vwLXmYUrTk54ieIp7lvnGDRGPtcYYyRAXocIzH6K+PRwiSzFwA4wY7l2HQYIwghGfPqJufy2zUG+s7AST1mbY+8iS27ecyzhiOL5/EHVhCA0fcczf/ug5vtp8VoVGJNTgT7v5SSCCE4Lu1Gq0kppZR1PgBjm2z7PCst4H0s8gk4PoF9EEKWgQ4glMogy7cGI4zObpL3n1nWeHNCxJxchPvhdfvj910fAIAlJYyo6La8GR2CAMAxPdyMee429c8YgxCB8O3kRoTs6aYB0JVqpVwOKaW+7yeJk6apUqISlrqD/rlzD517+KGpqSnGGCRod3f39u2bBAGjxOlTZyGkvMgEL/IsceolY0zg+YhQ3/dXVo4rpcrlcHp6Zn/34PbaDV6ICxcuHju2Oj3djLOUQe/WrWsHh7uOS6uV0qDf39raOn3qoScff7RcqitlkiS6evXy9RtX7RW4cWtdRJ/5yE//tN9kn/vzP7u6eX04jAcmwpTu7R0QKeXOzna1WiUUvf76xRde+Mbi4uJzzz1n+RrXrl07ODhYWVm+efMmIeR//p//l+nGST/02u0DiKrlarnplKu1YOXkwj//5//nYNixnS0hRPAiiqIgKFVrDc55HCcYE2OgUqpSLjPGWu1DjLHneUKISqUGAHAcx2FewbN+v99p9xwn9n3fGFAqlXzHj6JISi21FkJwLm0qCAAgi6MgCLq9dpGP5s9xHFOKIQSEEuqw1t6RLbL39vZ6vV45rJfCACCbE6IxZlLKOI53tlVY8u2T6jhOnhdKWrWmLgrR7/ftI0sI6w17GFHXCRCSWktgECZ2zjtSKNiRkQUuS6VSd9C30k77/CMDbHSMkvKpp5/eOzw4vXB2c3P9oUcfuXjxItOq2Wx2Oh3PCxrTU4M4SoscAEAptuuzKAqMIXE8ZkyaxYQQ1w1LpZBzcXh4ZDkphJDveu/7kySxtI44jgedTrNZ/8Vf/MVr165cuvTWk08+ubKyMj097TiOMX3P8/M8BQDVarU8TyezUKXennQppQhBI4MCA4QQKjWcc8UFpbTCKlmW+Z6fpqklvJRKpWeeeerypauHO7tra2u//du//cgjjw0Gg16rBTA8PDz0AxdjlCQJ5zzLkn40FFzZEbol8KZZLDhXUoUlP45SpVSeDy0dyY7Z7X40kcDYtY0QEUWBEMIUh2Ho+SPIuFKpeJ5nOT4WbfR9P4oHRhClQSE4IYSwkWeCJTsghBDBQnADAWFj+gOmesx3th+DMtxut+2mY7k2SZLwQj766KNa62s3bvzSL/zClStX5ufmn3j0CQAAxbDZbC6vHNvd3d3e2ZqZnn3uuecAABcuXGCMzc03KaVhGHqes7a2Rik9fvx4nvPr12/OzMxY5qYxCgBQqVQghNpaZALgOWR5cY4xNhzGd+7cXl+7+9y73rmwOHfrxo2vP//V1157uVQOyqWwUi197/d99xOPP/XR3/hot9tOkhRCbDQUQigtMcDtwyOpciHTt956ww+8Y8cWiqLwvCAMKt3u8Hf+w++849lrFy689d++8MUsKxgj3fbR1HT9e77n+9799LtvXb9h6fkI4TiO3/HOZ9bvbb7++utBUMrzTI4CWPD8/Dxl+ObNmwsLC/1+P46jkAfMQTZsxHK3t7c3Pc975NGHn376yccef/TFl1+Wks8vzwvFw5IfBAECYDAYDIfDvb39qampBx946OrV60JI3wttzoC9X5Q6Ft22np52TjgzM1Mul33HtZsVQohRhzkh5zzPOcbQjh8Qhra6Got3RopFC/T4ftjrDYyGGNGxPBkAAKCCxgBeCPuQUEoRIogyrYXRkBE9Ob8zXqRF4gdMa9Uf9gqeOQ5dWVne3z+UspWlgtFCSjk3u3hs+fjNmzdv3bpDidfp9MMApGm2MDvXafeV0hBQpRFAqCgEZVgKgTB588IbEKP3vve9U1NTf/AHf3Cwv7+7uyulPDw81EIuLi4iDHq9nsylMYZznudxFA/OnntwOIz29/fzjFPqPPfc+27fvl0UoigEwQxCKIRkDB1fOXHUOsAYB65XqVRardbCwvypU6dcx/+FX/ilnZ29X/j5X2KMKaXf/4EPfuqP/nhl9Tgh6Or1a4QQzKhfCmcX5i+88fqv/J1funLlUrNZt+LoIKjxXETR0AA1OzvT7bb39/cxRevr97rd7tTU1NLSkud4/f7QYkNKmiiKOHdAkgaBRxi1ojzf9dvttpSynR6laQowaDQaS0tLr7/+2lSjUavVrNCbUjpMYsZYnud5nhVFsbu3/clP/uF73vOeH/uxH/vTP/10p9P52le/+caFS9/z/d83P78EIfS98tTU3M72/uvn3ygFQbXarNenNzc3z5556Oatu/3+4CMf+Ugcx9vb29VKXQgxOztbrzdbR512p6eUIJoUuUizeG9vn1JSqVQo8vI8TxPuur4QqlyuCiHK5dLS0qI1KAcA7OzsHB4eWjWMlHmeyyxLyqFvW3opJSGMYAL0aLsmhHS7XWOU6/oaFhBaIoDWUruO71WDJEmzLPd9Twjh+Q7C6tl3Pra4OHf5ysXmVDA9Xbd5htPTU1NTMwCg5aXVbrcfRzekOOgP4lKp8uSTj1tfBQPytbU1Y8z73vc+CLEQ6uaNW+Vy+My7nq5USgbITqcFAb5z545D/bOnz87MNMvl8t2797TWnIvjx09EwwRjDAxWSmNMGo1Gt9vt97uvv/7qD37o+6anm9evXxYym5udSpLIGHHq1InXzr8qRHHixIMYw8PDw0ZjKgxDzrVSBhiEIDFaeV7g+66U0nWchx56OC/SbrftMPKZz3w6igabm5txkkw36w/LxQfPnV09fkxJgzE+deqU0bAoBKM+Y87hYQsjGgZlGR/WqlNSyhdfer1emzo6bN+8uul5PoTQIdRoSJENyIZcaQCAlkohpaEmBEBkHEaLojg42C9VwsdWH9ve3r5z5w5CgBBy7Nhqr9Pd398vcr5yfLVSdYMgOH36NCG09/+j67/j5ErP80D0yyfVqdy5Gw1gMMBgMANM4AyHaUSKIiVLJBUoU7JkWZZ2fddBvxt0vf7d+3O4suWgta29d22tLa92JUs0FW1SpBhFUjOcxOEEDAaDDDSAzt2V6+TzxfvHV1WAKG391WhUnzp1vvS+z/u8zzMcIkyvX79ucX9brBoOgdZacjXKxtVqdXtzu1qtNurNbrcvlKQUp2nmMqeUJUbIOsaUhbh+7ZoBoFqtIsCkNBAiJRTBOBrnR4+vzTVbW9t3jADVagMhLIRsNFpFwSmlDLtCiMXFhSiKmMswxggBZWX1pFLaivZQY4DWEgAIkAEAoZl6KYTaKKXU7du3XZfZU7XgZcX1tdZTYJT7vm+5vRhbhZlJs5HjOFrLer3e7XbhhFNcUIrVxOaOFkUuhAiCQAhhfSMgRDYINEYttFtcoixOHIchhFx30qYWx3EYhmDaJQoAYIxACKUWEEHPdyzoZsNIq08K4aTVqSgyCLEtik8wL0p4UWAItZFFxq0IZrfbDUJfAVOtVhUwWTyWXNkeFGA7JdGkvw0A7XhuEARaT5zchZCcc4wp5xxAY4zBkBhllNYIyRmybKbMJoyx1lJrhDHGkGAMlRZmqmlYZtmNGzeyLMOYQogch7qUwqlQmOuyWSwhpaSEAgAsL9VaBlkgzCaOlBBrykcpNRDkeZ5lGSFWoVsxh1CMLUw7eziTNNi2x+oJ0cly4Wdoow3ebBI940NBiIyGOc85x67rIg0yUVgymsUHlZRoVt5AyIaCZVlGUYThhN5BMXaYh6ZKaMYYAqCls1jqOkKEc6k18LxAa1AWoiyEYVPM0SBjLB8KWnwcYwwhKIoMIeS4juOGQnCAYKUSAADCMBCFQAZrzctCpkmJIPF8BwCcJNnSUg1okKa571VIwDqdHi+lNJmcCg0rhQghSBNtZBJnAABt9KA3XD961HUV5zwIAmBknufEd9bW1g4PDznngVPJsow5FABNCGnW6lrr8SiOoghBjDDWRmoBIIQGAqUMMkgBI6XtX1at5pwdUKs4pLgSXDDq5HmulGGMSaGzLGdM2UhJSqml0lgaQLmSCENKKC/4zOGGc+4xJ6h4ln1mDLCVJ4sOGKNtpCSlNEYZOIMVlNEQQjijAwMAIATGKG2g0sBy3o0xEGpjjIXG7J5g6/0EMwCMNiovOMYYYUQJZSxQWipjdQYm0IYUGkBt5wNX0hhjCbyW+jpLLhBCvu8bNMFYNTAGAgiwMnAYjaXUvJRCSea69gcwKQsB7WibZTDGFBdCm4rnWyZ+WZZ5XviOyzC5dOmS5zlhGEIIEYEIoTxPEWNnzpwRgt+6dUsp5bg+wnR15UiRyyQrAIBGQ9f1pdRaaV4U0CjHpXkulVKWr2OxGDSVa58AKtMdQwFDHGbxOBshF7x8+OGHjxxbhEhWQvfi25e+8+qb1Wo9z0oKocHSoi22vgLgxPZqBsdY9B9CaG2mjFEIxVJKN6DGmLIsH3/88Y0rd4QQQeAVRTEejxFCQeD5fsXz/aIo8iKthI5l0dZqjXe9612O4waV4PBw/8bNy5wXR46sHj+6/vd+4W//t//22ZdffuM3f/M3PJeeOnUqjpKXXnqBMfeD3/s9RsOv/OnX6vX6Jz7xiSTJ14+cfOqJ93zjG994+KEz3/72qwjglZWVXm/YbBLPC0op3Ip78uGTW5s7v/1ffodSSilzPRaGYV5E3/zmN/cOdvv9fr0ZImKSdJwmOdDQGOhhFzs4KzPOC22k6zr9fodScvTouuO4cRwXyV/ObgZTnuYkr0TIbon2CLjXmDJVtoVwUlCxuve24mgFYcbj8TStABhgIcqy1HYzRwjZDk44pVHfVxiY4FkY4ZkerzEG2BUhJQCA85JABJhjBzdN87t3747HY0tdt7m/VdJQSkGtMCRlUXIu2/NzhJBer9dwaFYWvMwRAMroKE2gJIjgJMvHaRKnSZqmQivHcaTSXBteckSJ1MZ1nLIo8jhxhdzt9DBEnutKY+phGPg+1ABT5gJg1ynGGCJU8R0IG5s7fSAFAaaQKnCcIs0dxkI/2BsMlOSQuhY4FkooiAAAQkjGWBzHhBDHpWVZnj9/vtM5QAj4vjtVb0e2PxtjnGUJAAgYMj1nBedSStv9zGz/kB04SqnSgpfSYZ6FMI0x9qFBCBECUE1ahSxIaQDQU+bcX3whcK9IcB+OOTkuLUQDJljqxBAS3KcKPfurWZAAp7+cTYaZeBEABhF6/x/e+3Ob0t4HjILpbyZXNcCgib4wuGc/aPnLhkBkebsTtNsYMJXLmDWKTWODe+jz/defAvpqWi2bcrc1tJzC2YdO7xxgPPkiM/DKfqLS2opRIMtVv4fwIltVl1JqY4htdzMKTRvcZ3Tm2cfdNygzKX80C12M9fQD381bnyHUM9h69n0n/9T2pmwxQCmlGCMWuTrx4HEDgC2BlKUghNi+Bwz1M+95+vEn3uV6vpSSK0kRcRzqMkIISuOIl7nnV2phSBEWqnV8bRkCLITIitIY0+/3McaXL1++eOGtg8NdpcXhYffJdz32/X/lo0qJr379q7vb22EYnj59emGxdebM6cuXr2qlBC+uXr5alsoAoI2Ukq+vr21tbQEAarVar9f79Kc/Q0Jw8e23qioMw5rbchUUvu+TnZ3tzc3NhcW5c+fObW3d7ff7SqmXXnrp1KlTo9HoypUrGONqtX7t2hXf959/7oVq9cb8Qrso0lMPHdvc2cBEux5eP74WVoPRmCVJBiE00hDCpDTGAM6FFEYbSLALIfSqgTHA9/1HHzkXx3GSJIxSu+0iSHzfZ4yNRzta6yiKOBec89APbP+IEAJi7Lq+UopzbgxwXdd1GcYwSRIbMGVZBgAYj2NCEAAGJwgCqjW4c2dLShmGdV7IBCRCCIey+lLNAGQl1fM8Nxp6vq+UQpBAgMsyRQhZkQ2EkOtQq8YMALAt6r5fxcgqp1ADFGMsz3PHoRgji2pNXCbUpHjuuq4sS6/i/5W/8lfu3Lnz9//+33/xxRcv/f6Vj3/8h2q18MiRIxu3b968dd33fWOM1nJra8umUsYYG1EBALSWGgLNeVFmAADbqCKEjONYSlkJqsaYQac332p/6Mf/6r/9t/82yxLXdZnvfulLX+p2u+PxuF6vP/bYYwcHB+fPn4cQ2u54AEC73WTMFSK3djgQQq2FMRohCiHEGFnGsV0YSkmjlZRScWGMoQz7vu+6bp7nw+Hw+PHjH/3oR1977TVjzN/9v/1f6/XmxYuXzp+/MD8/j4wOwzDP07ubtwEwlbCptbY0c4xxGIZ+4Eopo3hke4e9SqVarbaac1ZoqSjKKIqGwyEEGAKMILBpljEmiiJCiJZGCGUMJxIHFY8SqrW2+tEQIivNbEnNEBnHcVxnIglidxPLwXAcBwhBKPV9v9/PoyiyODhCyGgJjEF2O5nKIVkSlhV7sntrzss7W5vPPvus69Q++alPfvSj3/elP/niY4+dff/73/vFL375M7/76U/88A8/875nlDJ5nvuBV6ux0w8/NB4MrZBcEAQrK2txnFrif63WwJi++eZbp049WK/XlQKVim+57RRDIUrGmOdQCOEwGh8eHjgO/cEf/IGDwz1j9Kd/+zevXLnUrFdbrWatHob1QEr+B3/4e3v7O8BgraUtoU91gkgcJyVPuSi0BuNusrAgm8253d1d16uEtcq1G9euXb+ZpqXrO7bq/ui5x8fD/pe/9KfPPvvBr3z5G8x1jx07duvWLaHkO5cveo5fq4eO40CkIGRCCEqJ5ztKqSeffPKTn/xkURR7B7tJMg6rntVKPnHixHgcSy7+X//gH3zsYz/4+7//u//sn/1Srdn4nu95djQaf/O5b3LOH3744TzPlZC2ciCFDcuA0XB9fd2S6xG2FSzXGMM81/d9q/OutZaSVyqVra0t6w6PAMQY81JggkUpAJiYLVhHBsaY6/pScnuW5HmuNajX65RSxlgG+JScNTkktAZWKkRK7boVrTWljHNun7Mx2HWZneG4JL7vdjoHu/vb2vAsS1qtljHw8qWrSplKpSaEJszpdUeUOqdPnwYAXbt6C7usLDlG9NbtLYaJ7Wx1GEIII0gQkq7rQmhsO/N58+ZwPAIANFutjY0Ne1gGQdBu1l3XHfb69sCjjGVZkcblA0ePRUm2ML9UFLLXHbz4wsu3bt36gR/4Ad+/ffXqZUJQe25pNB6cOnX67bff7nS6p048eOrUqW+98Fye8//yXz4NIfq5n/vv+v0+QuiVb73w9FPvaS7Nv/Kd13791/+3H/qhH/qN3/gNgKDve1mWuhXXGLW42F4/ujIcDhkleSHG0YggWAk9ALQQJXOdNE1vXL/leR7n4vLlK/Pz80YBJY0QJcak0WwUKen2DiHGEMKlRt1xnJ2dnUolPHbs2MbGxt29LWRAVhbD4XBurt3r9Q72dprNpuv61UYty/LhcPjQQw9FURRF0WAwyLJsa2snz/ObN28uL69ubm7X6ysf/PCH262Fa1df+vKXv/qBD7zvsUcf/9f/+lfKQs23K3nGtYLLS2u7+3tpkteqjSAIGo3GrVu3jh1fz9Ki0WhACPeGPUqx41Cl1MHBge2XNxoYDbTBrhMibIM/HkV7ttTkeU5QccbjcZ7n1ZqP8JwQ5fz8vOfWlFLrR9cqlUqvO7hz606r1RqPYyElnkjo4ulMQ1JKg5Td36yddBAE9Xrj1p3bQEouiizLHY+GVefY0bUoGSpdxIm8dPmdsgRagevXuxDixYXVvb09CGgQuErZ1jAFgM6ypCgKTMDKysrx48e7vcO7d7Z6vUGaFI1G68yZ04NhvyxzgjFCaNgfVatgeXmFMXb9+s2LFy9/5CMfhhCGlRoljtU9qFarBqjhcKCUWFpe4KJ47bXXeMm2d28tL829573v+s53vpPnOWXogQce6PW7UnLHCYQQ+/v7AAAhBM9zCxZYO2KrEkswdRjrD7rdbjeJx5yXAOgyBivHm9/zwQ9WAu/1156bm5tbX1+3lPO1tSMIkn5/LLiqVmtpmkOAkQfKUkAIH3nkgZWVtWefDb/xp39WFpJhopSy8KjWGmOHQGAQJBQgAKQQrZV53/ejaOz6tXE8zPP80qWLRVFUq5VWq1Wv1xuNhuc543ElDMMnn3zSgCKO4529bavkc/Xa9SRJarW65zu8lKurqxjjg4MOwshjQa1W5zJLk7xjuha44YIbo8bxiFFqfbQIY0EQDIfDrMiNgT71jZw44SAEHcdxqIshYcQNg3rvcHj75mbJ89OnT0+KuAoPBgNEsF8J7IPVWgmtGLYMGgkRIohqrYUwRhsDDTBG3++HY5DFs4jDBoNByYusyG1wXwjuQNsnJDHGlllcliXGdNZBYoyyRiD2eHVdx/KkbDZojWcxJkEQQAiV0lbooEizrChrK6vKYGOUQcYP3Ha7vXV3MxpFFj0xE48vBADUYKogpw2lDgCIMdeGPZ7j2GQeQhhUKlVQlVIKIYxRWkvOjVGaIswoNVpLLoqiwBQhhLIsgwSPRiPLb8IYQ20IIZaGRhkmhGAMldFCCMfxMAau40MGkiRNkgxjTImjNbBuMzPCzj1di2lTNiKTOIRSCg3SWkqloNFlWUrjG2OKPJdSK8Wtd5O0DaUUUYqt3q4lSRBCeCnLsrTaFwQTNTVNQgDPMjetdcFLGw5Z0pAQ1rPEZY6hjsMc146j7Q8TYtIAZCth2kwoAvdnX/Bep6q28oiTBlaAtQJKGgWUkEqI2HXdIPThVH1SCi2gNApoXdh2csmVRhO1NC6lVrmZprhaa4qwnMArZCLKRwmllGCGYMkYJMSGu9juJEjN+FaWbYQxRhgix3GCwEcIFWUKMbZRuuN4PJecS4d4CCNoYFkKIUS1WgMADHoDzwsCP4QG2d5tAMAMJ0KTtnc90Q41BgBQlBIhpJUCQPu+jxAqMgkhLAoexylQQAgRlRGlDsGUOdh13Xq9fvXq1eFgDICFtOBMhltrYDSEABsp0yIFGDDGHnnk0aLI33nnHdeLpZRGAmBwUfA8F9ZARU/1W4yGUmg7iJQyO/TYYVYR0uIXeZ4vL8wnSRaGldEosrgYQFAKOM234T0bJWAQRLOJwahbFEWeZUpK3/dt/UALOcM75IwCjyCCdjnYeYVs9sc5Z84EnpjhJpQwoyTGk1bIGZps72E4HEIIi6IgEFkiC5iw5LQlPlPmGGOkFmEYSimTKMWcl6UouUQIOY4rhU5UASG0JE1jjBTamqDaZ4IxtkZE8p7oIt092DfGPPromclahlpr7bouZW4UjYfDYa1WY4w5jkcIs0w0rY3R2nE8pZQWCgEAjSIEKSVso7RNfiHBWgEEEYITBEoZA7AxxsiSE+YKISBBCmitSgD1s8++PwzD27fvrh9d6nVHn//8n4xHxdJC0yhjwAQPNcYYoACciHKg+zjgMzTTomAUsc7hoNtVAOlGo4YRffjhR579yAd3t3eKopCKj8Y9jLE2sNPptObaJ08d39vbi+KhkLDXHaVJCQCScpjntw00rVarLHMtze7ubrfTSaLozMMPdQ73//k//2dnzpxxXRciUPDsxInjZx49N7e4cOHChee/+Wfy/e9/6l3vcqjru8Hly1cgxO1WYzgca60JRVLylZWFMAyVUkVRBwAppbI4UUoSZM6de/TkyZNe4Pqh+9xzz93dvFmt1pXCZck95nkV4jluyY2QmhJMHaK0UKpwHNpo1CGEQPngL33BSWlzViycQGDKzOjMs04RW4idbYkzsjOE0PO8er1OCErT1D5wXvJCTI4nrbXN3GfYn7lPecmOmjR6orJiAAAAsymp0wCojUEToWe7giy0jSxBeEq3hBBqLR0/OLq+3qw1B71hkkTEYVESC9FO09RjFGswjhOIkeP4Qsk8y6RWChhhtJCSa1UU5YQhW5Z5WRyOhnEcJ3nmEMcYU/GDerXa7fUIxkfX1jACzXrVZRRiBKxaKQBaa4JAI6xEyVhI6XsOw6TmBYHr+7Vwu3OghNREGGBd7CaUWEiQZRwDqCGEw2Hf7lHNZtMeEAYCLgptpFRaFMIYZQxEkECItVZlycuykIpDCDFW2kWu62OMjAEYY88NbMnNGGMNbCCEVoBxVnYFU+GF2Zj+5fNlWoe7H/+FsxaNKXkZA2jgBL40UlnIdgZha62txwaEBsA/J/Rs/xwhZIyW0vbuGCnlDCT9rhu7H2OF970AmoR5GkwGRSmlDbjHJgaTINDqUaP7CNr3v2b3813Xh4BIJa2HjdFQGWMxcEygMdpqAU2+kdFaawSJ1hoqDAwwYOJ2iDEu+SR/t8o0cFrX0VJZEFkbrZSaWX1CCM20jG0hdHtvyAA1bYLRerIowH360dMxmkDeQmsAASSY/Pn6wazCNF1Wk/qTtXuxq9XzHIyx5zsLC3NB4EdJrPSkQ7os8+XlRQBQGifr62thGPSHI0RIvV53PTY/P3+wt7W4MP+Rj3xECNHvjShGfuCMhuP9nd20yLXWRc4RwQAAz/Og0e25ZiX0jh47cuLksSeffPyN86+9/vp3Nu7eUYU888ipY0fXx9Hw5Zdf7vfG72TXDvZ7laBmtwhMUJ6lJx88cfrUQy+//PLhqMsM293dLWCysLAQ8Apjzn6+p6CEFJMXXnhhdXX1ueeeW1ycX19fj+NxFI3+43/8X//W3/ofnnjiCSnl5uampSHPzS2cOXNmZfVoXsSMoa3duweHu0k6uHXn+rnHzjxw4qjS/OqVa5Q6nEurvNzvjY1RYVgzBrpBYJFwCyr97M/+3BtvvPbSSy+1ms3hcEiJ02q1CCFvvPHGeDxuNBpFUXLOjVTGWB0caUOHaaEDO45TrVYJte5Y1HE8qzothcbEcM5d36l4FcdRZVmWRYYQ1QotLy9a/JEx5nm+lNJhjBKHS9HrDYoichzHlj7sNmF1YLMs4wVeXJqPoghjLIUBE9llVJalVgpjqDBsNGqj0agsc8dxKpWKlNwYOunLUDLPc4dQO+fOnDl948a1lZWlxx9//J133oEQfv3rX+/1O5TS7Z1NBImllNq8aH197cyZM6+88optjwWTTj+WpqnjOLZmHgTB/NxikiTVavXxs4/buKfb7SKEjhw5MhqN9vf3z58/jzEsiuK3f/u3Tp8+3W637c1Y3aVZJGFb6u4FwcZYW4mJz+ykwqOgpSFTZhnKZOJ1A7mSd+7cppR+/OMfp8T5oR/6odOnz7z66mvfeuGFz3/+83E8DsPgyPpqf9BRSlmsHyECNazXa0HFs8vVOiYT4hkIC86Lgg/Go/X1dQDg/v4+BHhGV7Hvl4WGEGoFEMCu6wJgRZ8Lq9nPHMKoq7VxXbcshPVh55xDCCihlgkrZGlDfzk1WOCcKyWVUtYtIUkSpRQ0NrUzQgpCyOLSwkRSahqZEUJKKZUWvV7v53/+5ymrKCXPnDm1effO62985yd/8icffPCB9ePrnu/0ep25uQXCMIRmNMqDwMPAlCp3mAcAsPqDg8GIkP7hQSfLsrfeeqvVaj399FNFUdqJgTE2BtoAFGM4jMY3btzgnJ89e3Y8Hv/xH3/unUtvH18/UpRHdnd3mEOSJLqzdSsIKkmS1GrhoB9hYiuE0EJUZZkboBcX11ZXlze3blerFUpolpZc6Lfeertery+vrOVZQR38wMLx3Z09jCmljsO8P/3aN69f/aTruv/zr/67L37xC9959fUwDG/dumWUmptrxnEchr7neb1ejzGKEBgMxmfPnj179qzdap955pnNrTuDQQ8hJBH3fbc6vxBUg7fffut3f/d3fd9dW1t58aVvHex30jzhnN+4cQ1bqyJEtda9Xm93d99hPkKmWq0WRXHY2Q+DWrUaRuOyLEVR8PlWc7oqJaW01+sYo5CZHA8EUQsQ2MRXSGkdt7Msw4hQClzXlrLQ0tLitOU/BkBLrjCGEGDrB2EMQBBSzKSQLguU1hBAXkoAgedNTL3LUiAEALTPzjEQIASk0LZieXjYTdOSMYcSz/MCrpJuvxfFg5MnHzx37pHRaHR349B1OEYMADRO0mat3mp523e3ISa1WqMsSkqp9SJzXXdnZ8cYE9aq9rEkSeK6bqPRODg4sMmJ1sY6egGAgDY3b2z8rb/9P1y6dG1pceX8+bcocc48fPba9SuPPfb4xsaGEGWa5tWg8eUvf3V3d98yo69eveq6rkNZNE6+50MfeuKJJ+7e3VpZWW23F/r9/k/9zb/5hc9/8dO/+Z8/8pGP/P3/8X/8x//oH41Go0roayGLIpubb93ddDudouU34ngopfTDwHGwlEYbxCW0xtyEkEoQaoV63REj1Ibg/X6vKIp2oxlWav3RUGuNcLder1fD+qA/qlcbS0sru7v7QoijR492Op233nrr9OnTRpVZWaytrVeC6p07d7a3dzAlcwvzN2/eLMvi3GOPEUL29w+feIIsLa34fsUg+OKLLz722GM/+qM/+q1vvUipI7hSyhw79oAoi1u3bvf7/aWVZYwxgBhT8sKLLzJKt7a2ms3m6tpyp9OxxEzGGGPMKjhVq1Wl1HgcY0ws4REDWJYlQtBxqFKi5Hrj9k3PcxzH4VJYJcp6vT63ML+3e3D58mXHCZYXl0fDhDhuUXCCmTRSA6WBNkYrI+0+VqlUtMZSSowphJAQVq1WkyQmEC4/sN5s1iuhu7TczvPkwoU3Wu36u596l1dha2trQoiF+aVXX311b+/g8LDLS9VotE6ePLG5vQOAGY/H+/v7R9bXTp061ekcrKysDQaDK5evWc5gvVEDQL/++usAGkqA5zmEUCved/7NC2kWi9w4AW61WpcvXx4MBpTS+fn50XgQyAAhqLVMkuThMw8tLy9fuHBhc2vvqafP1qqVvf27C4sNzsPDw/2z587dunVrc/MOADpJksPDgeIAQhwGoeLKGtFYHQnXZXEcv/jii4hACI2Q8plnnjFGHT12xBgzHg/fufz2/v7gzt29g8MBAPjUQ6ezrMjzHCEwjob7+/uUuq1W6wMfeGZxcXE8jjkvXv32G0YZhBDUEkAAtCEUW5KXUTbKNYQiQhAmuD8YjMbjsixLXljMsdPr2c3w3ONnhRAbGxtSyjgdRckweWHkVbAxZm9vrxJUn3rqqfZ8o+B5f9hN89RhblmW1Wq10+mFYUgwLcoSY2AxwbBWtTQliBGXIo5j3/MAAL7ypZScc4oJ5xwpZOcbhIBLSRB8/3vfByEMK5WN27c9r3L06AM7O9taAc/zOp0Ooy5zaZ7nnue0223rAs2LkuclYRgApjVACEJltfOAkIWlMUIzsbWwvbpliSymqYACRR5FkRUZ00hrrW2MhBDSWs0SGwtna60tJIQQgsgUZW4gJAQbY2Z2GgCAsuSEUAgVQhBD4AeeVGIcjSAmYdWj1HEITZLIQACgxpjaJmU9dSRHBGM8sekzxhCCbYFZGwmARghgTOz5zhyKMFRaGqDjJAIEU0K8wPddH0OYRJEQEhGIGWauQxziOA7U0KvWCGHdg0MzhQOyLLMbL2HU/rNWqwUB7nf7RcEZY4IrZQTGdJIGTxFniyzfn6chgC2XTWuNAJRaWXanjSI451YMWms7aU0mEsZotVaxWBVjpCwFAApCXJSZEDIIgrK0Hdw2N0Zm4l2kEdYQI0vdsgMHIURTR3tCCMXYVheEKDkvgMEW2bddPhhjBCawC/zzum1TqMUYYO2YCEKQTN1BLIGrEMIYE4YhZUQqbn8566UtS3H/Y8EYI0SAARYWtxiK1AYhzJijlLJxFJKSc2GrwpYRCKaEKUIIL4TW2jb2aa2F4ABQ6hLKEESGi4y61Lod2NHJs5JR15JAAUBKaSFURUMA9eFhNwiypUVGELXG5hXfHfPUJpyEEACgEIWc2nwRgulUCHtpaWFurp3neZlkUKNqUB32hkVeEsKUMhiXCAHHrSVJsr2zGUcpYy5GxD5Um8hYpBhN9CUQRtT33WPHjm3d2YrjMSMEKEARLg0wRpWlYNRV0qRpDLTxHJdgprU2WmOIbGptq0GIQMEVcwjUpuL5x46s22j5ypUrnudQSoFBnAsIIaJQa2DUjAE3AX/tGgzDsFZtlGU5Ho3yPLfBdlmWDLMZFm+M7QxTFp6G0HLZ8OxSSikpzYx1ZIzJysL2vOr7BMTtPowRBQAImdu5J7Qqy9JWhgghRkoIIVeyiDkiOAg8RElZ5EmWx2nmui6ChDgOpo4GYmFhiVJ6eHjIubC97QhPmHGYOAbiJCuKrDTGAKgZYwbBosgppUKooigMBAQja3IwHPWtb4fNbqI4Njs7GBEpJQQYQJMnKaUOIWRxfgEhkKRRkiQImpJLpSQhTGntOO4E0LeqO1BDAJVSkODFpbbv++Px0BKDKpVKr9f56p/e9TwqRClV8cDxk+ceqe3v9Ivc8IxbiXmLxczwr9nFEUIQYAgQBBAYYDTMMw4JFpwbIPf2Dhhzjx49fvz4iS9/8UtxPNZmYrYWJXG30w9rVd93AdBFVmitKTXjYcw5pw6r1WppmmqpmvWW67rPffP5a9euMcZq9blWqxEEAQD64GBPKJkkyee+8Fmv4r/3fU89dvbh5557Tor8c5/9w9e/8+0yTQ46fWCQFNbF0UipXI9qoDCDHvGarVqSJBjQxfkjW1tbfkAgMi++8q0TJ47OLbS5iKkHTj96/MbVGzDhR48sSKGTJCMMUgeVPM9yEFTmgtCPRvHh4T6lDkTfjaN9F5qmpxovYILN6RnVyf5yuigmvC4EoFTaAkNCiDAMG41anuczdXKMMdPEGKOh1QrAdq+b2WmaP0+hNRbTAmCmMKO1htqYmQ7ktHN3Wo7FVjzTokv2Jq0Uz+bmZlSNtNZlWWotkSiiJBZSeoxKo+rNhu/7GTd3Nzd3d3dLKdI8E1xOE/xSCMEYAwgrY0ZpDDGCmIyyhBFHZVmaZxQT33Vv3r7tMXZwQNrNehB4DmWUEWAm5Y2AsUY1LId9QonjOECYJI5W149Yhz1kdFEUWgOCMDAGgAkRuCizer2OEHDdSpZlrVZjWoUyCIE8L6SUlDp2vCzFXOsSmEmVGgIMDNAKFGVm5bMghEZPsGA7TAghIRAXhc3TwYTgDmZo5uzU+0snzKxm8F3vV1MRhtkyBLPtUavvuoK9VQO01hpgS7+FWmvbSGIPcZuAQwC1kQBqo2dC0xBCOJPg+D+74XtfCd1TNJ68Q2kFgS0rWuDYIDtJ/5zYMZpwlvHs+rNPsSf7bOLN9h8AgNHQGEs7NjPEFmOMDUIQgfugfPsFpk8MKCWNMQZOBEbuPUwzqQXaP7ER5gwWn51BtuVfo3u3Z98wW79wAuJDYwzU9/TBDADITFDmWbluCqljCDAw0GhtjKbEEbJECIZhSCjyPDcMK0WRMUauXr3Zas1Z81IbTpdFNhh2omQ8GMZziwuj8aDX6/Q6B1E0XFxoX718CWPseZWtu5sIO0oZ7FeE4K7rtlrNMKx6gU8QDgLf8zwANSHosLP7jW9+/bU3vlOtVh977LGoPxyPx5cvR/VGxYraaa3ffPPNU6dOh2EQBMFg0N3e3n7yyacuX766s7NDAlOrhyvVtUHeGY8GeZ6naRbDGDtot7NLzr/+RjwaOy594zuvra6u5nlelmWe5/v7+y+//HKv10vTvFKpfuQjH+ZSnH3sXKNRwxief+v1GzeuVEJHaO649O2LFyjF/f6QMSa4dl0fI6Y1YMz1POexx544fvz4l770pSRKarU6IZQx59//+38/Ho9Ho9HhwYHDPIxxURQ2X3Jd1/M8Y0BZltRyUadHnR1axpiNF6MoWlgKGQuVbRXW2BpAp2nqOn4lCDw3AAAwKipBze4UUirXdcIwHI/H/X7fdT1joBSx1gBDBCFM0zSOteNQG6YAAwHACLMw8FdXV4eDcZnn/d5IK5Tnpev4ZOpAWuaF61DP84IgaDabCJG9vT0ApOWPUEoRgFrrKIouX77cbjf/+I//+Gd/9mefeuqpmzev1+v1N998c3t72yoCE2ybWWLX9YUoe73e008/vXH75vXrg3a7NRqNIISNRv2BBx7gnCdJsrKycnBwEEWR4zgEoiRJjh49+md/9mfRYAAIsdma5zlScmOwNa06f/68ZWQoZer1eqVSseg5c4hUXGsEJmQTZJQ2Rk6XzYSpRGngh5VqtZrFie/7XBS2hp/nmeN7Qogf/uEftm9K01Qp9e5nnnnn0qUL588/du50FI2zPFleXrY2j47jJElkgXKEkFS8VqtVq5UkSeyRubOzgzGVUo5GYwihkrNyOrCHq93iLSnGdb2wGmAMtVZClspoSmm73e4c9mx2IZWYnhCT7zSrHgNr6aCUPSFsI4zjTFwLEEKcc6P0hLIBgDEmiqJms8l5GcdxtVq1sk31er3f7+d5XhTFww89mhV5luePPPLIV7/05X/yT/4xQvhnfvZnTz508s7m9mAwKAV/8IETjDHfZbUwoBRTSvKcb9zZLAperVbDSvV2esfzgg996EPbWzvXr98iBOV5Tgiq1+vVap0AhBDJinx3Z//G9VvrR9cuXrz40ksvQmROnjyxt7fDPGecDrONkeM40ihKGQAgz3OrNGK7Vo0ptJYQQkY9Rl3PCz72Qz88HPYPe908z9aPPKDVBkTk8PAQIfLImUfzXBw9fmw8jKJRjBBTCr7+7fPHTpxoNFrPPvu9WoPnnvtmv99jFENo6o1KWeZKl4QCLnKMEWPkt3/7t40xl965UmtWDg+7AABLsxqNImCQVurf/k//ulLx8yJdXFx87rnntre7lIIHTjxQq9WsyvnCwsLd25sIEYS063paGYTI7u5+HI+DIAgC31Y77QGws7+nhVxZWbGOi0EQWFqB0toYhTHmkmOMGSUziATMyAUApVmOIYYQ2uqCbSizdQuErE7OJCG38SJjrg2tjDaUkUnvFJjUWiE0BkJ7BaQMQpMpnedlnpUY07JQUZRgxKiHCaFBhXW6e5iooMKoC7jMidaUuL7vBoE3NzdXr9f39vaSJAJ6om6ptbRlfDMVOrQMIK31YDDAxKprIUawUMLYxgWI9vcP/+t//eyVyzd+5Ed+9InH33Xs2AMXL168cePGW29dUNIgRLQAiujtrd1arRGPhl/94te+/4c++sFnv+cb3/hGs9lEAB4eHu7tHtTr9VMnz1y6dOn//Q//kRAKMPbrv/6//cqv/Muf+qm/9gd/8Hutds0YJGT2O7/zW37ghtVwHPUNUOtH14TMRsPIGOi63uLifBynWgOtTJELzwuSKBVCCVHY5Zll6W5aEoo8z0cIdjo9a787Ho+1UqPRqFKp2JigVqsVRXn8+PHh6FB1uzs7W0qZ973/2bBW29/fP3v27Ac/+MEvfvFPhFCNRuvxx88JIf7g9/8oz/PWErj0zpVLl9557bXXbt26sb6+fri/W69XW63W5uYdz3PiNNG7O0ePHxOC39q4hRFTSrRaLWPMeDzKsrRaDTnnWhupuGUmFgVXUgMDpTAUS89nCKGDg93FxUXmEM55UWQa6FqjLqWMkpgxBgxi1CWY9fqHSss0jTvdLsUuL2UhCgghwgAAbbMC23rhui4ljutUxuOxUNJ6tkjFszxptqqPPno6zWIIdVFkg2GvKAoraxs2ao3m/NbdO71e7z3veY/WoNvtvv32O4sL88vLS4fdTpYVlNEKDqRQVy5fzfLUcRylhC1V2pnGy1IbVeRZJfCUUs1m1fcqu7sHVtbTq2DP81544QXbxoEQtIzjfj8VQlgoandnf2V57fRDZ1yflWV+5uEHrfDfxq1Nbczh4WG1Wn3qqafG4+E777xz8uQDgRcy6t+9vSXyCU2jLEvf9awRIqWUOU7Jc4RQs9lMkmh5afWdS29/+9vf9v06ozXfawwHSb1eGw7j8Xi8srK0eqQ5P794sN9hzHn44Yd3d/cvXLgwGAyGw0gpQBCyaIUBCkJrBD8RWUIEOg71PCcXuZA8y0ye50ePHmnPtS5deUdrGQS+MabeqCkt8yJRmnd7HUKI0bpS9f2q0+l05pcWPM9TQBGHAKy54lTR9txK57ArirIsS9fxqM+EEFppjEGmC+Y6jUajXq/bShhCqCjLShBoIy0sawzEkExDKVCWpeNS1w1efvFFZPtGk7x7MFhZXltcXNrf39nZ2RkMh/Nzc8vLy+25uX6/DwCKosjzHKBNmecYEdelCCEIcZFzmxV4rmUZK62NkUopZTmDEEJKaZqmAAPXdaM0soUWStT0/ZMkxPd9S0s3xiglMMYAGISw0gJh6vu+ug88stjr1AXLaK1dRq0s75EjqwihKMkghFrLtOBa6CDwjNKj0QghNKEiSmmQ9ix1tCgch9lLKS0wYQQSWfIZpJXnaZJEGGPfr1hxeUCwlqosS4JwEATtdns0Hmip6q16vdnIeU4IEYWQUgKlXdfNS2GTWDgluIGpYEUcx+NRPBqMECKMusZIpYwxktxnKG/vREytvBljhCCpJywepZT19oEQ2bKuRSUIBq7rZlkuhCBwIo4hhJCSE4IAAIwRzwvsEBSEx3HMmGO912wQaBuAlFKITtDYGfZtR8qemMQ6uQPlOI51BCGYTDclOEE3/rwQ5Axxtv9LKMCIQAjtKYwQVEoLIbXWnAtCsOcFZVkWZUYp1hAagIzRGFuXZipKXqjCPg0pNcYYIGjUPRN5MEWiKaWu62pgLClBSmkxFLuPSSmBNpVKxZ6YVk2kLAsuBNKAGCglF6IsigJgZCU+IIRZlrUaTaF5p9NBCBjX9Ryv4Nnu3jYhpF6vxnF69drlWlgnmAFlECLWZAIAoLVRSiIAKWYAaM9xNdCuxyjFrWZjbW213+93e4eDfqy1dF03z4s8z7XOAj+UQmMC86woy1wI5fsVjKkURkqNobb2xZPJg5DWularc85r1era2tqNG9fs6BRFoZSguKqkdJ3A5tq1sCrEvcBGaw2AsQR0yYUEAnDNGIuypFqtNpstqUSz1YiiSGnp+65SJs9LYzTCABgIgLHo1SQ/x/cImJYDpLV2mMdLWRQZxrhWCfNSqCleZgtOVnnU0iwBBAAjC+wKrQyaqHYiQoxFI4SyXOYZUmMTZtsbAQBAFEMDwNRZ2mpu2Jk8JQeUHqOVWl0pMYnth0MuNYSijKKSCQixVRuwZn2OQxcXFw1Qw+EwiiIpJv6HChghhTGGuo7dEiklWusoiefn55USg8FgPB77lYBSFscxggQhJITsdHsLc/O2zgcACjwPIZTGSaXiL87POz7NsqzT6eVFcXDQGY0i33ERYbMtwhgD4YQOubS08MCJ9eFwML9wvNM5ODzcHY4y4oC5hXkA5Hgc12rBY489sbu9hzEMQ3er17fPVquJHPysSjTBdxCdgTKTTZ45QpSUepWK64fu8eMPXLx48fXX3sizdHl5MawGSgkDASmIza87nU4URY16S2sNNMx4piRkDMVRKoQYqigap0Zrzou15dV6vT5KUus83Ot3kiRJskRJ/fy3vrF/sP3YY08cWVmNoyHP089/7nO3N24Grgc1jOPINiVrrTUwaZZwkbsehYHneqQowbEjR+r1Zl4kGKM0jQgBtzau37x9ef2BIwpmmMj55cYxd5UQKkszv9Cg1CnLMi+zPM8xxPV6vVqtdg66B/sdDJeA9xfBQ8sBRYQQS56YsiOt08Bku5uVFe2Wa/MIaJAtn5eC25r93t6edSGaoWAz1I8gxFzXTt37K3lg6rE2TerBDBcjhGphZUr1DOljjN0P9s2OKjvEhSiUUpRhBPF4POach2FICOGl7g76BmrP8wLfrwThnc27r1+6trGxMR6P3SCwV57MKGCUAaWQCOlc8LIsEcFK61KqOBuFflCv1gBEUuvhaFR6brXij6KIMeJ5HpyYKBCMceCWWgijNTI6DCpz9fbdjds8zx1GQCwBIMYYqSVBGCEEAVAQSMUJIVEU1evVMAwoxRZtFLJECBlDbPeSnlqGaq1tY7dFS6yYrxUFUkqWZW4HERiitf7+7/9+Qoj1xLK7nAXpJjvPVEpldhLNAM3vepn7XrPxmv3zu34wxhCI9FT4eIaZovs87gCEVmdsNvR6EjYAhBCcKllpY4nVU5x2+sMUutX2AsZoCBEyQMzg5vtIycgS7Wf7jzEAQwghgdjcJ988BZohhBCYe0ods2+ntZ4Kjt37gNnagWiC2/65tSABhNAoreA9grYdC2Og1ja01AAACJBttZlcHEwKqHpqxqi1Bvf8JKauZpPyDNRQ3z8K938XaI1YtTbaoGmRyX4qnn6FyT1D8l1faobv24ujSQtU0R90Dw4P4zidn5+v1WqVioIAZVl29uwZQtitjY0grO7ubh8eHrbb7aLI0iQ6/+brzz/3zf/+537+7Jkzt2/fTpPBw2cePXn8Aa11a37OGGM9BtM06Q8OhsMhhCbLk1dffXVnb8fxmOd5S4srPEuLMh1Hw6JMHMephmF1udHvDy+/c5E5ZGFhLiuydrt948a18+ffIIR4HvnABz5QrTe/9NznbA1+PB6CKqKYYUTJ2tra9374g3Ecf+lLf5Ln+VyzdXvzru/7b7755tzc3MMPP/Lyyy+PRqOXX3k1y7JvfOMbrVat1W46Hjk43PViCrAqiuzu5oZlQJeFxMhBBDmO0+n0P/J9H11cWvj85z+PEGo127vbu6PR6GMf+9hP//RP//qv/8ff/d3fXV1dhQakaRqG4Wg0soV9xpjWxrbjuZXwXjOXxUcYszTbmbHM+vra9tYu58IYMx6PbVislErT/O7drUqlEoZhGIaO49lBt2BiWZbd7rBW457nG4Ot7kcYhsvLy625ltay0zloNBplARAC2qj5ditNcoSQjQMgwK7rCi5sqgCA9n03z3MDdaPecl13OBxLKYuCQwgd5gkhANGU0larwTnPsuzIkSMvvfyC61eNUYSQn/qpn/ryV7742quvMtfVCphJawMAAOzu7v7RH/3R7u6uUsoKsAIA5ufn8zzrdLpLS0v/6T/9pxs3bvyTf/xLSZI0qrWbN2+eOnUqjmMwNbeZnTT2CLFahwAAz/OknEQSw+EQQswcoJSCyCA40X4ihDDGSmHLkhMLDtugF0WRKEpjzFS9GgAArGvB//F//O+MOZQ4n/jEJ3qDYaPe+o3f+A0gRKfTQQgdO3Y0juM4GXPO6/Wq7/uNRsN+r2qtUqlUsiypVquO48RRnmUZ59JxnCRJIYS2R0wpxZg7bbB1KaVZlgkhCMIEM8ogY1QqzmVJCKlUKlqBjY3bRVGsra0FQbC3t2eMqVQqRS4ghL7vQ2SNiSbZiP2BMWqz4kql0mg0Dg8PR4MhpUgpZYCxyUmn02GMhmGY53m9XrciBrVabXtr95d+6Zd+7uf/L+955ploOHrz9TeKojh//vwv/MIvfPvb37505fJhr9vpdJTR5x49e/r06YcePFmtVrIsOzjo9Pv9bqcvpFpcWHrnncvjcby+fuyZZ575whf+OEtzz3ebzabW0nEcjOlwOEqSaGdn54WXvlWtVt+9/PQ3v/nN/nDwqU/9+Esvv/D8t75RqXiLi4tZFkspMcJRFCGEKKVKmVqthhC2hodSaoyhMWZj43YQBD/2Yz/267/+H+5sbR45csQL3AceeCAvizSNNUS9Yd+lXhLHSpowrN29dfcX/x9/P4njdy5eOv/mW5/61KcajVq/371+40qv14FAIgQqYWA00FpmGY/j2CqT7uzsPPXUU1mR9gedOBlijJMkwZgarTudju+7UTywxZJOpzs3F66srM0vLLgeW6XL337lO1euXAEABV7IGMOYAYModWyFABNL6imLoiwLAaB+6qmnHjn98HPPffPw8ND22juOgxASUgBg8jzXWn/4I98rBd/Z2UmydDgYRVGklFHKhLW655GyLAlG3W63KIpGo5YkyXg8RKZijNFaAaARtm2eSGsjuECIKKUoJVa0GmFNKbahSVEUCiipgBBlo12tVgOIzHg81DojhBgDfd8jmIpSapQbQAzAAKpxNFhZWVhbXb+9sVukUklkDCwE73YPjx492u3ua82hYc1mUyklRKm1zvPcJs+WTDc75/RECD6HgCGEIILW6+OZZ57Z73Q/9rGPra2uNxqtz372jz/7h3/oVytScoyJ6zrA4CLnq6urXOSEkL/+Mz91/PixT//Of7514+4nfvhjn/rUT/7mb/7m/l73l3/5X/y3//q5g4PO1qVLjz766MrqEQPhL//yLxd54vu+ECXCYG5url6vljzP89R1HcbosWNHN7duCpk36nPVaj1NCt+v9Hsj694phKnV6t1uV4gJAMQYM8LwUnqM2m1KSmmlPHZ2dgghrVaLMZZlhdaSUrq5uVmp0tXV1TfffAthWpZlHMfW5KdarXIuXnnllUcfffTEiRO93kBKuba21lpafO2119I0vXXrVpblX//614xSvu9ubGxAqGr1OgCmKLKNjZuVSiWOx/Xa3Pr6MSm5krLf7xtjHIf6ft36QQVBxTrcQkA4l5Q6QhSexyAEi0vzlGJjlOsyABhhVAjR7/e1AhiZNM19v3z77XfG8Wj92BFZgmrYKnNZCQDnPBoOuShcl1lFS2trIaUqy7LICgAQNCjPynHe/5mf+Zk7dza+8IU//vrXDoSWRmiAQHvRbzSrly9fvnLlUpzlzWbz6LEjYVDZ3t6u1Wpzc3PHjq2HlYaUvF6vOo5TrdYJpuPxWAixsrIyGkVpGoMJKYBYOSAuyoW5ufmFNiHIcbx3Ll4ejxMEie9XrN8OhKZW81zXCQKPENIfdKMoQhgwx2HUNcZEUVSWoj84jEZDCPmxY8fSNF5ZXWo2FnZ3DuMsffHFt06ePPHggw8qZRzqQUAXFxe3bm/NwlOlFJwUWtyyLBvNxhNPPHb5ytX9vd1Op5NmcRAERjPHIYwhpZlSOk1K13UhxEVRRNGoKLOiKN5+++08z4fDMQCgUqm0Wq0iK3vdgTHGcxzBTVkKayZhjCHESkHipJBSCm2Q4ziVSvXEgycJpRffuWCbAbv9fnPQXVycf/bEs6PRaGtrizHmed5o3PU8p1qtU0p393Y451LKY8eOMeZWgkqeFTs7e7VGVXLBOafUETxVSslCKSO11owxSq35RKGlEVJSSgUvrFySEGLQH/q+7ziMskmldjgccs4hwNLou3e33rl8aX6hefLkg64XyG7XdV3mOFEU9Xq9PM8XFxe11omO7eMF0DDmY0xtF5FNdDHGZcml5BOWKsYQoDQvAUYIaeowyojvVbI8sZuh67pRlBhj7EXKsrSCabN0lzEqpWQOqdfrxEM2FQQAWplFSxQty9J+tJV48n13ArERmKUFhBAAiAG0+7zneZN4Hqig4mE60cXGGNrdwAo3A6ClVIQgrfVMT8MCi0WRWZhAaV2WJSOkyHJKaRgEUTzyfN9xHCFKx3EGg0GZlYxQ33ExRAihicMzc6SUGMOCl0EQuK47GAziOLYF4DzPp2Cube7HGMNZ/DZD6BhjAJAoiS1qiRCCEFHqQGgYY5aZiBBK09TKJc/SPD25bazgvW5rWzAIgsBxHM7FMBvbw1RrpbSZfF91T+LWsubtIBozgSOVUgwTWfKCF4QQKCY4tQ0mhZRWNdhmWTO0cYp9EEKBPR8t1RRMRcD1RA7CylYiAA2EEEMkp+wniyATNBGMllLPCmAQQkaILUFBg22lAQAopcaEIEiEFEZPxKynj8g29poJ6QTomW+h1rIsDYS25qF4WRqjrIhWmqYyFzaFCQKPK26Mdl0XEwih8TyPMcYLkaZ5kXNkIMZYSEUwmwScUtnGUMdxITSUEoM0ALrX68VJRBySpmkSZ4QirQulNMaUUWr77SAAjuNhMsmKle1d11BDZZ0zy0IAADClE4IehEmSXLx4sSxzpSSAxkq78EIiNPGJgQZZnM5G5oTYqjm0zgfGmCzLIIDWuEwIkaaxAZox1u12y7KEAAmhOBeznN8YYMA9ajPEk2Db2gAoaQAABFE8FSeZKdvOUE7bnz6DgezChFPbK0IIYSwrCjQxaAKWKWL3hxmaZp+2rcQwgBljRmlCCNTGNvlpre24l1JACDnn3W7XjrhfqYS1Whynw+EIISSEMEYCBJeXl1utVpkXd+/eZWywsDh34sSJer2eZ6Wli166dOnw8NB1XYxolie9Xq9SCRYXF48cXet0DgAAo9HIdldoKer1+s72XlGUtVrNcRwIYZ6XhJCyFGVZ1qu1H/rUpx4/9+i1a9eiNNrb20MI1Gu1w8OunvKOJ11TGEspp7KtemlpKYrGCIG8iKN4ADR44NTxj3zkI4PR8PBwv9PpDIf4zTff2tvZd5mPoKO14lzbZ2j39hl2b7Fme33LFkcII4S0AhhTRGG73T5+4hil9NrVa0VRVCoh5zzLIKUYIOD7PjBIiPLmzZsIEZdBQlyjNCHMmFJw5ThEaz0YjAiadrLWzNLSioao2+12e4dBEDBGgyDgvEjz8tq1q4eHB3mSCc4pJqHrHz+6dvv2baFI4IelFHZ6ZEWulMAYAqApW7QSZ/v7u61WA2NYZGlSpJXQbzRDDeT+/rbSpVBZoxlggI2GABhgJBdKqAkT1mEOxhMXOCFEVsYLNfAXXxhjoBEkmGkK0D15ZUtbmdU/5NSJ0W6JGCIAJym8A5jjOFpr64Rpn7l9P57qLM1mtV0as21zVhScruJ70DPGGIMZKienvePou/5cTMzxAADAdV3bhexgh2KWp6ntWXcxsOr5QTWcazQ3bt955Tuv3un0+8M+MBBphTEmCGZ5jhHy3MB1oa1Gx4eHCJE8K7TWXAhMGJe60WoGrhcwVq34BMIiS6DRVjt0EmhhhAgNgkAr5RCiMZ6fb68vHxl0e0rKibMIRpBiDDAmECgAAEAYCKkRQtZtfm9vLwgC12MYTJQuLHHNLv9ZEIKQbaqABiitEQAGQAiA0UABZADQnHOjFcZ0MBhY31e7ORA4aeWx44IgmfUhAQCs8slfMl0AmIkdz6DeCSo6bS+A0yq1mpYQ4LRbaDbcFha37wQYzRBMhCYa4vajtNZKT3yY8X3yxMbY3n4wSxjN/b7E2hhoc43vxsHtIYognP2vnpobWycPMOP8Tt8O733xP0emxgAaBM19FObZe7QCEECIJvC6PaeMmOhla60BRtZ91w7kRBMZTJ+nmWiXTy5r7rVb2SvM7mqKfSutNYGTx2idHGdfYfYFwQTNtyRUM5P7mK1QMK3Wzx6uuQdqQ2j7XDHAmGRZNhimGMNOd08pFVar7373u0+fPpOm6e7u/u2NO57nUWpOnjp9+eoVHcNKtb5+7OgHn/1A93D/a1/90tLi/N721s7OzpNPPnVkZfXLX/3GwsKSc/rhLMteeeWVLEvyPBfCOt4phJAfuNvb24uLC9V6NU6jxcXFGzdu9A53rVl3FI1c1y2JZNRDCLXb7bAaRNEQYdDv9zc3twAAfuAFFZhl2TiO6/W6liqNMt/3kY8NVEEQkIPB9qtvvvyudz39fd//0X/zb371Bz7y0b/xN37+M5/5DEX02uUrUspPfOJjeZ6/+p1XwjAsy7Jz6FCK2wuN+YVGkowdjMukaFbnsiyL+qXr+kXKCyAZLREwN29cfeWV1zY3t3e29z/+Qx97zzPve/mVF19//fXLly/duHZ9dXm11Wh5zOl2+0EQaGliHiOMtNZZVgihGHOlAcZAgogGEmKmlIZQIQSCiteeC5MkTtN4Z2er1W5S6vR7w6JMMHIIYXkmmUQEuqJUIzFOk4hSrJRsNJq1WrsoCuo4R46uWrkxjKgtfZVl1modYwTfuHUryzLPd3yvMhwMjDF7Ijcauq6rlGKeAwAooxg5gGAGlOScNxpLlM5vbm9RhkejvbyItUkcx/3kJ3+m383++HNfdINAKtgfxn5AhCznF9q8lAoKz3O7vYNbGzeSJJlvL3YODgDiVnkWaKm1rlb8V19+xZITpcoxRmUpIESj0Xh15cgjjzyyv3dIiTM3NzcajfYOD6hLz799YWVl5X0f/J6bN2/2R0O7eISQUCubL9mam90EhRCWgwyAUtNiEkQcAOC4LiYAY6iANsYAjIQQhSgQRSIvjDEYTnZkMNFKx1obgr1L71xfXFx83/ve98UvfvHrX//6eDy+fu0S8dmg04EYr68dGQyGVnMqznmz4cwttgbDLgbGaDAeRZRSyigmutkKw6q3vb0dRYnnMaWsgCBwXI8QRCmARipdaF66HlW6kKYcJZnv+wAHCCGMKUI4jmPPd1dXVyyCk2WZVgAhLIXteiaux0Ax9aeebB/Kbjo2aJufn7cu1WFQ8TxvOBz1ej2IkT0vKXEppcBgqTFhQSWorq+vKwnfeOP87v4/e+qppyhmjuOMkrg3GnphmB0e/MFv/uejR4/Wao08z195+bVokOzc3VtcXMTEXL169Y03zq+tH/vBH/zBy5cvj0aDD33oe955551//+//lyzLRuNhq9V67LGz7XabEByl/e7g8ObNm4NBvxJ6C/Mtz6UfeP97GvXw4ttvb93drIb1eqPqeW6/36UMD/t73biXJEm1GnqeRzASwjCXaEOLOFcGYALWVlfrc96Fy68Ykgqdbu/dfPDBExrIPB0DZQhinZ19nvNSCs/zjh8//rEf/fB///f+xt7u4eM3H//D3/+Dra0dKbkx8Cd+4ic+/V9+K45HBnDPrxpjPL+JMd3d3e8PhgY5X/nan6yvH6uE3t5eJrmglCqgRckhhFLq1dWTeZIKrk6ePPnQQ6cIQQDqYdJv1KtXr94kFC0sLLtOpSyFUQZCW6HhGnCItecRQjR1WRxn8wuLP/uzP6uUuXNnc35ptTeMSmmU4tIAY1S9XocQrq+vb2xsfPmLXz/18LFmvblx9U6tUqs36nfv3j37xMNzC+07O7cRAQaaKBqVhYyGhYNdhlvQlQAYoKzdPAJAK62MMQAqiDQCkwRJawMhJsyFEPKiBEYxjJXUUhpT0Nr8ojGmE8WaexAYBI3vOVpr6kjgYAl0qSQwwoEugrLkUWvO75txNM4IcPK8zMaq371QliVFDDLv1MmHd3a2Dg4OIISU+L7v2wRe8rIsc+YyADUGUIiCEKyUQJhQ6qRpihF97Il3//iJE/Va85//83/+2muv+b7fXKgfOXJkf3+f89JAYJTGENzZuFFkOUX0qXPPnH/7wruf/vDa+mHYOlKdP3r09GPv/8iRyvzCqCxubt72Xby+1Ip6u3ubG/1+P0nGzVbDCpxZThmlGAAUjaJz5841avVBGD744IMLC0udg+7tgz3PCzyXQghtBEmJgyCDADDq81IaRSHNgIFFkXOOtDYEUbfiraysbG5uJklkiQkaaA00pjjJYgWINmZxeQFjurFxs9/vSKlv3ryxs7O7vr6+u7t74/qGkl+XUr7//c/u7OyUfJ9BOopHx48fPzg40Jozl2nFMYZCmPEorlQqnldJ07Rz0DUKIGiKPDUaOo7juRUhRBKXUqZWAs/zvCTJRMkhlIxQYHQQhJRSRCBxQmO077sAwfF4XIoyjhKgIec6z1KK2c7mgTGmEtZVgR1Gk3SIMcYOcpkZRoVSslQEGgq1zW2A4mXoMuNnSZwhgilExgQ7m3sX37qiS/2DH/94p7u7tXMnrPp5nqZJhhCqVCqrSw1jTNWv1Gohc9Ddu3dG1y87jtPp7RPiVqv1tSMrWqFeb2ARrs7BIbBlSw05F1Yb1HUcbcqzjz8MgD7Y37/4+sVhjwd+yLBHHUwp9Ty3Wq1WKv7e/k6z2cQYLi8vr66uLq0sep7Hebmzs/PSt58nhNQazWPHzxxdO3rt6k2KmZT5t1/6s0G/63lemfP+4QhjPBpFWVpgTDHGjoeUNE+cPnvz5s1ut6O1ee+z72IeHg6Ho9Hg5q1848am47Hdg6EfuI7vUwg4L5UEhKKwEviBu7a2AiHMsmwz3drf62EI2u15hJDkCkI4NzdHCVWOPP3IA4888kieZWUhX3rx1dHBGFKHYJZmpev6acR5IvMs9+uVk6ceNEZ0u1uUirBKhCxdx6/VGsigO7e3x6P0kUceGY/jNI2TJAIG+16oFSxKIUsDDUGG1MMqpTRJxo6LGs2KUiZLc0JczjmHJaGkVgl9P8jT9O7du0sLy6LUGLpB4BJC0hGHkBJA0igpy1IAJY2qVwIppVC6Wq9bkm8cx0qp0WjoMk8KsLW5L6XyWEMqc3jYjeNYa5kmyfLiSrPRiEYxxNhIrYFJ88RqOrsVxBgh2tVaY4Cs0iqE2hiotDRKZElZq1WrYUUrIwrFgC+4iIqEUmdxcXE0GgEAsiyDABOCANAQEmMmLnOexyCAUmgBcwsJpWnKOTVSE0LKvFBSUkoZoQBaSImmRU4plWLCayMIaW2knErlQgIhVBJghDAgSgmtoUMZIw5AEBGstVYGYEqUFfggiBCmlDIQIoy10NyKSCJlgFTAMI8ZZJIyIz7T2EAIy5xn/ZExxkFEclECiBAi1mzNSCkNQAZiXKvVlJDdw040TiigiCAutes6k0wGCOsxqxTQ+p7wn9aKEGKMgsj4nmOMsf3XFnCEECqhbAsg5xxqiIzBABuIoGWGAmCUUQAhSAklRqthfwChgRgZYGr1SlmSfr+HiWUq2OZQCCGGcMK2tniHxTUQQhhbgA8BCLQGGCOKqM3uCIJyhi8rYJTG1Jkk0gZiiADQCCIEkVGaBQ7FBAGopdLSEMwIxEIooIDjMowxz4QsBSQ4S7mZNu4QiLgqJ4RrSEpZQm20kI7n+Z6vlJJSQYhc17NApPXdJAwDYJQWzCFZxi2N14I7lDIIIcQ4z1Mb2kKADcAQOhBigiiGjuvhOI6hgkZgUShjDNTQqbhSSsIQ81hAfQMUxjisVBzHSdN0dXleK5CM4zRNO51eHKe1sD7FRrUbsNZ8YwZPIAS1hvPzS5WKf+nSJYtTUEyVUABCilhQqxhj0izmSmKM9/YO2s2W54XGmFzm1YqHDNBaIoQKIbXJhRCgLKeMMAkh6feGGGOCsDHGgvsIcAigNRAThs9ADq01l+Vk7gGDKSmKAiAotFZcS6HzTEBAEQS7W4dKKWQYAABqyCiWUAkhINJCcaIdi0tAiDBGM6TAWkIBDfMyV0phgDFCmFCCLAaNjDGcc2MQRhgZZLTSE5wOEQgwggoAY1RRlAAApaS1dOacc15ijGq1qk12jLE8EmZRGIgxIsxANaN/siBwHEdpLbTALgNaAoyLsrSFqLCCfZ/5FS/jWa/Tr7WaUkqkVXPOp0wwF8s7yaWrWzc3fABIvdZcXGq3my2lVGbrvhrube+E1eDZ973/yafflefp5SvvZFlmGbsIoTzPq9VqtRIe7O82661jR470er3xeEwpnV9oSCml1I5HD4YHm53m2zcuQyj6ca9WbYyiYa/XMQZnaeG6EGPKsCNEiZHRUiJqmq1qwYcImUqloozZO9hHLnj4zKnB8DBLU6QE4Dweldu3dl3HVwXREEDAIMFSA2vAzhiTRhsDMKK2+DRDtaBF37TCUCMMtNG25Ly5dRsiXa0FGFMpdZpYzwBUipJSOh5GCEBITDQa1+tNW8cqijLLsihKKXGQJMoYhHAyHle8kGDv1MmjS8urnU6HUjyrqEVRJKWca7TuDpPOQffEAydd3+90OpAEjCghhJGz/BdDDQBAZWbGgzzP8ygaA6QAxUmZFiKfby03WlUuszRJpRGnH3m41ZzrdvvD/qAsM4SAbcmVUgshgjDMk/jW7UNGnJILALV1Xv2LL6WUkYowR5GJcj0h1nfXWLaZLYJOW4RzS6OUACjFEUJe4FpmtNWEVcoAMCkFIYQsY4wQgjGVkmttfXQxhMSYiXUkNIYirLXGAGKENJhg0LosCSEV3ytLISH03NAi2hgBrTWjju2DrPjMVh1KzRHQDiKtemM0ijrDPvNcaQyQghKWFEUBEfbDu/vdr/zpt/b29mLFCfO0gVmpDTSFKMo0r7jO6QcebFSqnPO8LA729iVXwFAFdT1c9F1GEKSQupS0GrVGvYaNpvNzWkiCocsch1GlhOQ5gBppWHEcZbiGEvMkH+4/tL68ddDL4oSXgHiugRgRqI12MNRGNRfbFqU9ceLk888/b7nb83OLg8GAEqcsS6M1I84omup3AUAwwwgTwoRQWk3gY2OMURACggFBEGJsKa/i5ZdeUkotLS0pKZXkCCGjtJaKIIwhAgBoJabIKYFA/6WzBQCgIdDwHvlWG2OMNsYQABGEyLbUW9gTAGSMNvaaljQ9UZ8wU397aCVs4BTZBNAAqPQ9WxepjdYazui9GANjoNJAa9uxZIyBANirAQPgtMJhgVtjnfHsE7MfY4yxQuEGQG0gMhaZBgrYjlsCCNAAGgjBRKycYKyAAWCi+1wKboBRRttKgL3gDCWfVWgIIYQii+NJKaGCM51xAohSEyNiAAAkwABjpnC5MRpBCBTGDEvFrV8DABpTCoDRyiLyhBACgNbGQKAhNFzJCTwNoJr8bHWcNITAcZitiAtRKqUYY9DoCT9AQWCAmpx9QCtJKZ6UAyFUclLvJ8w4HuacG2niPNMQuK4LtNOoV1ZXV/vd0bcHr0Jorly9RAhpNBquiy689SZGmmIZOPr9733i8YdPZEeXb7xzYXt7W0vzxS9+0RjTnGvnfPjiK18zOrGhiNa6Xq9LARECABBLTVtfX0cIlqIoy/zqtcu7u7uOw6bPXDOKlo4sHzu+vre3V6mxWq3W5lWtwM7OTpbFmKD2XIAIzNJiGI2rzebNGxsqU41GC3ixG7DvOf0hkhfZ5uZmlhXtZotS/OqrrwZBMD8/f+PGDfsgtre3f+RHPjG/OPeVr3zt+PHjgqcf+9gP+qGT5ePnn/9mUUqtdavVcl1/OLgjpVZCLS+vRuOkKIo7dzbLQq8sLTNGbt26deLECd/3r1y5ghCimDDmjEajGEAI8Wg0QgBSykbpmDEr1wUYIwBARKwHAkITg2lRq4UnT54cj4cAGAPU7u7+eByfPXu2Wq0SQoTgFkDknGMCpZScl55P7fzknB8eHhJCgiCw5n5WFUsKYUGZa9euCSHSPKGUclEUqVBKW6kHW+hmzKWUHh52uBAUM0OE1hojEkVRq9VCCBijHccxQAOA/tpP/M0f+7G/frA//LEf/4lf+ZV/eXC43ZprD0eHntfO8/zO7c3Tj57+0Ac//Morrzz/3AsnTz600Fry/Uq1Wo2iUZqm4/GYEMJLSakjpQQAQYCVUL7j7ezsjIbRE4+/66d/+mc2Nze//vWvvfriS7V2y1b7r127AiH8zGc+84u/+IvPP/98EATTehqc8XTswrDkIK2BpXwyMqEDCFkuLi46rjsY9mxGMWurkVJaRSSlFMWTWpAUwob7GiLGWKVSaTabVrEEY5ym6YMPPkgoKuKk3+/f3LjJuWCeK6XI83xgBCGIEGKkKAsBIWzUqwqYNE2TeDQajWwQaTVJHMeFEHNeEOJCCF3HgRAWubUYwvI++elZHb7X6zWbzVOnTr322mszYSY1saRnWmtrNckYi+PI1nctY1pPe1Tv3Llj3w+08X1/dXWlNdfe2tqy/oRuzW21Wtvb2/Ot9n7nUEp5+fLlI0eO1Ot1LsVrr37Hkst2NrcWF5aNMRTh/f39RqNRrVbX1lZef/3Np598V7fbfemll7ThWZatra2/5z3vhhB2u91jR4/X6/Vz585dvnz5e7/3ex2Xfec733Yc+vjj53zfT7McGPTII484juN57ng4QpA88sgjKysrX/vaV44cWdWG37hx/eBgd2V1SSlRrTYdx0MI9Podz/OzLGu3F0uhu/3NVrtNKe31up3uAcIqigZHjhxdP/rgxsZNSmkcxwcHB9WwBoCkxBVCFGVRFIXrutvb25//4y8kSXHl8rV6vfrWW2/2+l1CgNJFGIYQas9ztQIYE6nkgw8er9Ual69cpdSJ4tGlSxfn5+cXF+cJWT483McYWq4cQsRyZFqt1mAwaLdbZVkOR33E8GgUJXFWq9V63bHRsOKHaZprrQxQUhVh1TdG1es1rbVSot1uZ1l2eHj45ptvvfHGG2tr68PhcG1tDQCQJJEFONbW1o4dO3bt2g0p5TsXL7Wbc17gR1Hy03/tE7/zO58+OOzmIt/a2qnPNcIwaNTb+7sH9pxAiEysD6ZdngBgi2jAqd3QrNPHlo7t3g0B1tOKaBzHGxsbSqk4SxEGGCOtZZrkzCHz8/OG6SxLeFG4HsnjTFDsMtcYk6ZpmuYUyqNHjxPCNm7e5pxnZQGy4sLFt4QQgnM4fVk2RJZlEBoNjFISQMkYK8vJvpqmqSxL4jPFxde//vVedxCG4WOPPSaEeM973z0ajbIs63QO2612FEVZlhGEXNflefELf+/v/cq//Tef/PFP/T//wT946sl3zc3NHT96rBT81/7d//J7v/eZ5bUVXaaf+9xndVnOLS9ThputFgDaBtzaIMdheZ5yzoUsr127cf369fZ8k3O5u3Oxe9gtSxFHue9XgoBpoYa9vgJGKoEQCkOPNh0hRFCpjsfjNE3LUiwtLbmua6lJy8uLRVFnDjHGSFGEYdUYLaWOokhrXavVKHXiKG2320KoCxcuuK778MMPnzx58tI7VxyHlmU5GAy63e7t27fswO3s7Hie9573vOfVV1+1Co9xHKdpWhRFrR7aXN1qiY3HY4yolHJ+fn44HFo39mazCSEcj+M4jgEAhBCtQKPR8HwGgD5ydC1JI4RgnueYIkqdPM/LTEippcwEl4ZYnYEK5xxjFEVDQlF7bs6mzUvL8wf7XYxRmUtCmOs4WqlTD50EAOzsbQIjpAAQQuaQP3vu65wX7//gewg1jkceOHG8Wq3cunMrJDVjbF+5klJ+7WtfLwrz3vc/trS4GgSVLMuSNDs83Pc8z3HY7u5erzfQGuTjlDFiwUqLWvp+UKlUhBCB8MNK/eq1S0CDdmvRIXkSlwCAsuBSqEF/WAmj1dXV7a39O7c3146stNtt13VEAYa9w+3t7e3t7bBWrVQqEEGoYZYVWuvL1y73egOlFEE4N6UfVLrdPoSQYOZ5QZIkjDlaG0KIkkYKrSF87MmzJ048CLBcWVn5sz/7s80bnaVjc67jFUXBeVGrhfPN1v7+/mDQD6sepSzPysuXrtuzoNWcH4+yhYUFLU2v11uYX1JKLS8v7+xu5XmulOj1eg5jS0tLH/jAB7785a+pUlkkdBxFfuAyxgzwrVAVISBJUq3F4uJilieMuu12O0mywWAwHA5Ho5GQpYULs5QzxrTOXeoAgIIgaLXmoihBCFg6dr1ejaIIEzAYHjLqNFt1z/Mcx2m35judzmAw4LKsVqucc8mVUorzwlpR2/MRahiG4fr6+mAw6PcHZspptbbGaZo4jkMdYlWhrO7WrEsgHke7u7sVP7QMXAANIcxublZLoVavQkHzPM+zwmZNnue5LivL0nVd1yMY4263ixEBAIVh6HneYDAYjUYWdbIRiOWZWsRtykMsEPIoJZJzRI3WmnOBMc7T1HN9m5/kea6U8n0fE6QnjEg3jmNjjO180ggRTBFC1CFS6iLnYErnMVMTPM5Lx/EAukcmmrGJrUI0AJhMsgtlO5zM1LJPTSW57D3bfd513aIoNACO41iJD6Wg3aAgNFwKy2RPoljrMgiCPMmEUJS5VsoQY8yFRAhpA6ZJDgBTocAJ2RAZNNEmnqQuM97T7Biakd1m3wtOLMsIhEBKaSk7QgmkkcU74ji1SZ1Vm5VaSSkdhwKMbTpnWW8zXo8xwBbmMZn02tsbFloiQhxo+8QhvM8/DUJoHX6tMrJ9jKLkGiu7io2BtgkdY0yIb3t0uCwxgZhRxuhMUVRhiCY0NDRjJ9lVPOMA2p48o7TSkhclpdRgrbU2SudlRuzblCYzirTRABMNJn6MGN8jxkopW+3GjIpoqeJgylqyzDjrb2lvnnNuVRqiKCoL4TnO3NwchDiOY2gmdC07hVzXJYTEcVyWpR3uSqViadF2NB3HqseUjLH5+XkIYclraZru7+/7vm+3gjzPsyyTUgauJ0RJCBFi4nRi8a2yLJnr+L6f53meZpAxe5P3K6JwzgnCAEH7h0IIQifTrygK23MGANBGE0IIoZaZAQ2wssue5ylppJRTQGJCTzPGQGggnLSTz5osHYcWRVHmXE96mYEBBmMstbWXNHrKibOT/D45lkl9BRsAESqlmFH/rAW6hXEbjUZRFLbfCE7NCZVSlDE47R6/f0PgvBBa2YecZpnNKZrNZjUMhuPRmYcfXT2y/tp33tjvHPq+u7KyhDE0WgeVyurKSrVSi+OsyOVw0IujwSZjNlYcDof9vHj3+97zoz/6owDq559/TgFTqzWY41nDACm167pZVnQ61wFAzWaz1+vdunVrbm5OSl6r1ez0Lgp+/q03v/TlLy4vrayvLw0H4153oJQhhOR5Gfg1CGEcjz3Ps6sbId1ut6vVigWbkiSRWlFKbPRVlrnRGkLo+5VmbZ5gbziI0oxDOOHfTch8CFl1HUsvhVOBhVl4aX8WUrqECSEGg4G7x5TSxthuElTI3EY+VrfX87xqtaK17vV6LnOKorCyNnYhZFmmZEopJRBZ9YPBYNDv9w0xEMKyLDudIaW01WoNhj0hxPLS6t7uQRRFlaDa6/UiQnIrlg2gFDqzgpwAW86lxb4PD7raSAAAhmQ8So2BGDHqsCiKCp5hAo4fP95uzdv5kKa51pIQZFUvKpUKAChN035v6LpuKTjnIqhUHFz9i9DhbIHneW5PeZuGK6sSfp9nkn3Us3PHFvasmqhV9SnLAkI8OwjgfZaA9k8ch87msBDCGDirCNoTSkophLK0Oa01NLZ4qR3HcTGCYNKhYjd/hBDC9w5BSmmeF7zkabw3HgyDIHRdxqVUWlOEEMFQkjwr87K8evVqt9spiiIThdCmVm8iiIQQSkgtOUEOBvDUgyeEEBfeubgwNx+l2bgo87JgFDOCw4qPgFaS97qd8aDXrNcrflDxXc9x0USiXRpjGHVSkBOKYGmGwyEvio5XefKxpyuVSjQeVyq+YlgagBEgmGBk/KACIbQwwsWLFyA09vEOh8MZPKK1Ho/HeVkIzlvt9smTJ5I46/V6RhtjTBAEaZrakZpUNydEZqm1dgjVUDuOk2WZPV5td9rsDJpNhllqZi0W/s9es/kwO0/R1HEOQiv1e08vRUOAp+IXs7N+Wss0YCqiNYWCJ9PMsv7n5uYAAFmWjUaj2RHgui6Sykpsc17O7hkAoCwnWik7RTFEAEEAp7ou9p7tvmEAQsjgv+ANCAGaMrjvMabvC1EQgAoYe/CZqZEYmiqM25tXU/Er6y2BEAL6nuz17Af7cVayHEKg9UyGXkMIhRAQWeEO5brMPjFrLQshsqRkY8zUvPEeGdmustkwTQ+me/oes5VojAES2FPVGIMwwAhZ0Uv7h5gwzrnn+Qgpi55NYlpgAAB5kXq+s7FxC0LIeTEaD7TWR46sFkU2Gg2q1erCwlyapqurq9Vq9aWXXnr99dcvX75c5oXv+/V6vdPpMM994okn3nrrrW9967l6vd5qtbTWZZkvL6+WZUkwAwAijIfDgePQvMzevvjW7u7u8ePH2u32tWtXikIAAKrVapYn3/72tx988EEb5MzNzfFSvvnmm3menz17ttFoaKCqtUpWFuNhP4pH88Ei0CbLsrWjK4QQYqup49Hg6JH1f/pP/+nXvvwVm+yNx8MgCHzfHwx6f/AHf/Ce9723Xq8GgXdt6+ZLr7zoB05/cPjYY4+22rWXX36xN+ivrR3ZuHWnyApCmOCqXq93u/1Op+M64e7u9gc+8AHO+Ze+9KVaPbT7JkHYZv6+43peYGU+smQiBEkIs6caxng4HGsNIDQI4Wq1ZiWet7e343hsjOacJ3GGMb579y7G2BjNGJGKM+o6DpvGnfWwGqRpbAfeAqwikQghz/N839cKOIzxUlq9OaWF4zie70AIjcTj8QhjDCHWQmqtBRSEkDAM4yTB0GqEIZsd9Xq9sBoEFc92Pv6VH/jYqVMPHzmy7nuNuYVFAMW//JX/D0QiDH2MkVWOPf/mpXNnn3ryyXc3GnO/8Au/8PWvfu2v//W/cf369Xq9+kd/9EcQ7to41XV9IUSelcoUnue1mnODwYDH2dzcQqPRGA6HcZwG9dosDQiCYH9/9x/+w3947do1z/MQQkKUvsOsAZ09Mh3HsTArxthWQRljVmC65Hmj0VhcXFRaZ3lil4QN7rW+15WptZZWslZN/mkMRBRZXyyLNROCfN8Pw5A5ZDweQ6Ucxyl4CTDkvPQrQaXiZ1nCeUEIhgamaW7hnlqz4TiO4+RWCwVC1OsNsnTSKCcErdVqQRCkU/imc9jzfd+qtdpWMqsPEMcxYywMw7t373Y6HcYcYwxG1CJTWiv7TCqVgHMuBLdAucU6AQCU0hkN3G7N4zjKy2JtbW1hYeHFF1+EEFZCPwzDer3ebNbHSTwcDgEAq6ur+/v7Vgyd50WSJCdOnPjxH/vkxbcvfOWrX/2Jv/pJpdSZs482a3VozAMnjomS37xxLazWPvjBD37kIx9ptuvPPfdtQsj3/8BHkzj9xje+Ua/X23Otdrtdlnm/39/Z2Wk2m0FYbTbb0JoFO26lEm5u3t3b32k0GvYwmJ+fP3365FsX3gzD4PbtjUE/TpKoPdfAyJEaYEqbc03X9Uej4SOPnMYY37nDdva2d/f3lJk/fuLBPE/n5+dHo+Hh4WGlUrGPWmsdVENX+YyxN954QyvQ6Q4++tEfrFarH/jAU+vHjnz5y1/8zO9+enipRxnEmIxG0XA4DIIgDMN+f3jz5s2yLO2UE2UejWmt6mMMpRIQQgC0lS7p9QZpmpZliSgJgkJrtbW549eCshRhWI3G2e7tw+ZiGdMkikcAaAjB3HwjDD3Xc6TkhKLxOPe8ZpIk/+5X/+en3/feX/mVX3nttTeWlpZ2d3ftgNopnSTJ9es3h8Oh53l5Lil12o32iI5/4GMfe/ypp37rt37rxq0b0TjBjhtWm0mUU+pQRDUEGJl73YVgUtqdmh7I2fE5C82NMUJNziQ4IYVhpZSdMAAjKxPEmEMIQhgUBS/iwg+8lbUlxyGYmCyNi6JYWlo42O8ePbp+5/bOu9/37odOPfLf/vC/Xbhw4WOf+HirOfe5z30uTRM0cb4Cw2GfkAmXRykFlMIYg0mLE0AIxHHseQGA8IEHHtjb2/3D3/t9ruTP/dzPrR9de/7559944w0pZZ5nvu/bUyrLE2Mm+oZFnkspf/VXf/ULX/jCwuLyyssv/vK/+Fc7OzuDnZ2FY8fW19eTYffpp5+OouiNN1+zsBRCqFarKaVsxxDn3HG8SqU6HkXdTm9n91AJCQAihGDslmWJMZ9vzZUQY4wGg8GESQMVwsoILiWwS88e9kKUlNLRaLCystJsNm/evLm7t12r1xEkyogkSQEsKWUQ4sPDQyn02tpaGIZRFB0eHl6/fm19fb3keb/fT9P0zTdft8vKCsgyRijF29ubcRzXajWbq0PoGmPKQpRAQAhdx9daIkhsrKC1zvPS9ta1223GmNUW2NnaJYQoYAaDQf9W99y5sztb+9u7Ww89dLIoyq0bWydOnJhvLR7s9uI4BQYigLUGGFNjzNxc28r1VIhLKMzyOAzDo8dWXdeVUo/6UVFwQgFynLLMFxYWNm4DoxkEusjzsOo9+fRZz3NLnm7ubDz11JNZll26eokx5leC8XjcaDUxBBhjowHG+PbGzvXrG48/fi6sUIRpq9VaW1vP81LK8sETRzGmcZQqper1OqX08uWrZV6sLq0323N7e3sBdc6/+c7Va5cdSh966Ey74V6+dKMshYZaa44QiobJzWRDlApCsrfdu31tq7nQvvj2dVsEOnnyJADASAihvHr1+tsXLhHC0jSHEHuOM6FWKUQwU8oQwjgXCOGSy4C5BDsXL14qBG+35i16zotid2/zxInjxx+ACJH9/cNKGEBo8iK5u5lpLR3XM4B0ukOb6CIAHccBAIWVRru1dP369fbc4rlz5zY2Njrdg16vhzEajQZCiGoYXr50tdWa/9CHPugwv9/pX7hwEWMIAMCUMOgBgA72DxvNal6kEOpjx9eVkYPBoCgzQhCGBiEYRZE9g4wxRSqScc4YUw5ACDFmEFL9wRAhUJSJ1sr3/aXleau+msRZa3EeQrh5525/cFjyYmV1WWtNCXbdSp6Xo8EQQOS6hIvC9Zgxph7UbYq7sLBACOn1+jPkxQJGAABEIEIoyzLP8/JSMOYuLCxlWcIdJ47T0WjEmJNlGYGEUgtuOhACjDFGhEuZpmmSJJbBYwOher2qdSXLI4RgURRlwSuVarvtW1gqz/MoiuypjTG2+ifynsdgaTXoHYdhShGWlDjII5LzOI4hQJ7nAQBc17UHOkNMidJAqKZpPMYYTJk7xhj4583ZJ9gonAhccilmCYOedP1DS7ub5CrAmGn6bYxBCFp6hJ2TNqSEENqwSghhj0v7GyGE54WUYoOg1pIwjDG2WxalThJnQBlKHYAmEttCCOtYq5Cy3WMzBNk2mNvjGE000+8lsQRNUNF7+aFSNtuURiM9EShACFnFxpLnRVEQZgFo6Lr+4uLq5t1tzgVGNE0zhAiGtnSq7M4/SxSnTwlrrTHGEOBpcAiKIieQEowBsCQ7DZGhlEKMlNKW7WWMsgCKvSDn1vJxkiVKxe0XtziU/XNCEXEYpZPpASeKLZNRs9eZsS+LorCcVvvoyrKAECI0eYY2RoLTOsEMuJnhvxCj2QO0jbFWqdk+TMaYllJLBRCGyCCIeM6NNMxjGKM0zSglnu8URWGhuhmp1nN933ezLCGIWWwirFWtfqC9k5k7yMbGhjHGEhhtTk4p1VpJKUejURAEdtX4vs8YG41GM4swzrkQwnWZVtJOJ9sepLUGCFpAgVKqHWdGBzPGWJc5Ne3Ht+90XaoiYYkms4djv4sxBhBi/8vCzTCHtuCnJ2o22BhgpysyYFZaMEZpqYE2zHUatWYcx0BP2CEzrQyllLW4sOMCpyq0VrpkhrXdB2TDGRI3mTAQ2smjJ4iqb1eNxd0opRM1mKmZ5DRMEogSlXHXdRvN5uLSEoQQYuR6XpqnSilMSdVz2wttRFEtDBcWFnzPk5wXWRa4TjSMoNYUQcQc6mFKaa+bplH3yJFjn/jEJ9rt9vPPP//aa69lebKysnLy9KkTJ048+MCp/YODu3fvJuk4ywpLXRqOxoJ32+328vKy3Uj39/c559Vq9fH1cwsLC0EQFHns+36/34/j1HFcH7of/r4PHV0//pWvfOX65ctu6CMEmM/m5uaULjnnnMvhcCCU9Dzn2LFjWut2ux14le27W9tbt0WhPc83gChVGq0IIdAoBGEpCgCA0oJSignUWhkDECQYY4gQgBbKNBACypgxJgxDx6GD/rBaCy2MFccpArDRaEopIQSEkDxPrXu2hWBKIR3KbKRst1CjYZZlaZkbYzCBtTDsdDr7vX27YMfjsRClVeA0xhgN4zgmhFXDqpQ6GUcYY8YcLrUyHBiEJs4rCgBDCLQT0kZ3fuAqYSy2MBpFaTouRPLXf+YnDdLjOCrLEiOKEEqSYm9vh1Jaq4Wcy8XF5X5/CCdue8DuDFBh8Je9DLCO3MaYiXq41c5CyJKUjVKmLIUQytzXmD/DKIUQSZJMEgdoTe0sXmZmaLL9zeQER0hrLaWerVY01QtmjGmN722Vyj5/iLFmrmPNAu0islVMhIHkwhpiEUL0RBIXzT5IFCUmxPYr+L6PCB6Px3GaaAhKyRmlDiIOY0opz6/Eo3G71mg36k+cPesxShFcX16GEO7sdzxPjNOsECKPxxQpkQNd0lajvrQwF3g+I8R3PUopABoAgCnjvIjTpBAiCAIWsKXFua27dxXnEGiHYkJIrVJNAbCyxErxUihCJpj7wcGBUqrRaPCylFLu7u5Wq1Xf9+0DzLKMuU4YhjY1y7LM7oRWZsr2gdlxp5RiQiAAk8qrsmpmdCYD5TgOxnhK6Zs0WgGA7tPK+EvnC0D3yc3fP9YITvuE/oJEA54GNvf/0hitoYEQEmwJ75PyAyFYa7sH2s1WVSqVIk0t0GmfA0JIAWVPCrsnTw59OAFbIYTIAGOFp6x7np6EBXY+2i9CCAFQC630fT6ZAAAFDJhuucZGVdDYnXnyWUprdE/fH94HRk+/3SQIMcYAqC3ufP8b7/0hBOo+B7jZh0JgoFIQIqkEAgBCZ3LwwUn5AUJszESPyBhj9a+nJfZ7gze74FTqDYBpAGaXCaCAQGSApRFAKSVzqdYKYYIARghRyjjnECGljNDGoSx0XCk555wYpJR89NFH7969jbBecOdOnjxZFDmEsFqtWWBqYWGh1Wp87Wtfe/v8WwCAc+fOpXFy+/btp59+emVlZXtvt1INnv2e9/e73SiKCpELIUZbo+297YcffgQSCBBK4rHSpVAmSSMh+PETRx9++PR4OLKbVZZlu3vbt+/cshX3hYWFNE37/f6dO3cODw+PHj1qK4KnzzxUc5u9wejq21cRgPVGrVlrD7vDCxcu7I0PyKlTpwb9fhRF3/fhue/9ng/Kki8trfyrf/WvbHxcFIUbuL1e7w9//w8cj127FgMENzY2jh0/UqlUer3eaDw4OOh0u12MnJMnH+oedoVQWZYlSZYkCUKI84JSev78eSuzm2cl59xzXEKI53lSSsWFEGW73VTKCCE0VFLqNE2azWaj0eh0OsYoQqkUGmNQliXGMC9S0cnDMAwCX0p15Mi6EHw8HhOKwmqQJAkhlItMKcMY89wAIjNbMPgeOwNwXtqZoaQBk2COMMaynButbayfpJnd7rMsowjX6/VhNLbFRgBhWZZlzo0xGEBEcBAExNWcW2t79PIrr8WxWlg4dnT9OMLm6Xc/fvT4yqVL5ynFncEBVMRxnCIuP/07n3Fd95FHHvnqV/70wptvNZvNl156AUJYr1eFKCHE+/v7dpvTRiFIBDfjcSwlQMy9u3H3l3/pl1944QXMcLVal5KXZZkkiWVJvPzyi0op33dthc2GqnYFJqMoIajRaFgehCU4Qwi5EFbOP0mSu3fvHllft2VtQkilUilyzsvxxAXIAAihVkDJif69UgpjasNQy+VZXJy3oXZRZihFQoje/oFfCYwxBkFCEISmLHOMse95nufwInccZa3b0jTN83xubi5N8yzLHMcJAs+GuYwxKxGQZVlZ5qNRZNMN5hC7CdriUhzHWZYZYxzHuXDhQhJnNo6xG0EYhlprznNCiGWU2OdQq9VOnjxZFMXW1pbjOA8++GCe54eHhxhj2+5kt5K7d+8y5rRarfF43Ov1onFCCHnjjTcIIVrqQvAXXnihUqmYKdui4ge8yM+fP7+zs9OoVz/1qb9qQe319fX19SN/+Pt/GATByZMnPvThDzWbrSRJ0jR/443Xrl270e/3AQCe796+s3H+fOvs2Ufe9a53HR7u37x5czQaNVrzlNJGo1aWeZIkvuecOnXqpZdf+OxnPwuhEaJcWV38+Mc/fuqhB3/5l//pYNDHyG/NLdzcuFGpeCZVhKCLFy96nkcZvrO5UavVGq1ab9DJ82Rvb+/SpUtlmVvk+ty5c7wQ21s7ZiKySSmljuO0Wq1onLiu22g0lpdWDw53Ov3dg8M9z3PTNI6jQmnhUAIARJAqCS69cxkh1G63B4OB67Kzj5xptZtbW1uvvf4drXUYhkrqhx56CEJYqVSGw6HtKig4v3HjRpan1VZjdeWoMQCCwQe+7z3DwXh7awtCaC1Al5eX43hcb9QwDrrdQ8/zNm8fZFm2sLZ09OjRXq/3i7/4fzcG/p2/83euX7/u+66FBff2DsbjuFar9Xo9ZMioP9rZ2PrEj//Vp977TFAJVo4dGw6HGxsbv/Zrv3bj+h2KMTBEKYUhkpJbQ1tjoIEQTl2DbcCglLGx0QTygNqaxWGMEZpmU8YYy8YCBkKolbGuFIQwrUCn00mzYn6hOd9u3b51x/VIvV7N0uKdiy+eeOD0j/7IT/zn3/r05//k869+53WtAQucd7//mTLJknQEkSKUlGWupCGEKCOBQQYC1/eEKO0ZLaW2MJOVGQUIxXH8p3/6pxBCh9D//T/8h2e/7/sYY7du3VpcXNBap2l69+7dUnAIIUa4LEoITXtx4V/8i3+BCXNd57d/57c+83u/mw0Gz370o2d/8lNvvfXW5cvvPLh+5Nj62sbGhkOojfYIJMgAzgVXikJaq1Q550VeFGnpMrdIdRCEUkpGXa2B5zIKcZ6VjWYNAJPlSW84cBxKGeQiUVooDR88+dDp06eTJNm8uz0ajba3tzHG169ft/NHG1gU3POCaJxlWeIFiHN5eHjYbLQ3NjayLHvooYeeeurJ69evdzqdW7duCKEiHSlpoihpNBqV0Lf6Vo1GI4qi7e1tQlCep8bY2AUrJY2BFhqDEOZJbnReq9Wk1BcvXrL0fM8LECLjcRxF0XA4ppQRQoo8i+PUYd7VKzdKnmslo9H46PFjjfrctau3wrDWbi0YjToHXcfxIIRAaWSANWYJKo71AXMcmufpzZt9xhyMqAESIiUl931y6/b1TncPQTcIgjSNtC7XjhxfWGy/9NLzYbWytbX1t//u3/2pn/jJ/++v/f9+7dd+rWEARARAbDMfY3CWizyT/UH87VfeePJdj2GMPa+apnGSZATDbreDELbZ0bnHHrU65hjSSqVy6+bG4WGXEBQnEcGeFGpn+yBLijwXGGApJWOMICIEkKX2aAiA1hB4AY1HuZTcur/u73QhhGtra1xGlLDAr0quRibGiGgFCyEs8EQpdV0WBAGCpZDaZQxhogBszs0LIQaD3uLSXFEKbeTGxsbc3NzHP/Ejr/7/6frvIMuy8z4QPP7a5/OlqcyqLNvd1d4AbAAkAMKRI1KUCIgiR6sRpdGERA6kITXa3ZiZndiQtBJX0oQU2gmFNoYcaRiCRAggQFAEQQCEaTXae1Nd3WWz0ruXmc9ee+z+8d33qqjlvOio6KrKynzv3nPP+b7f9zOvvAbBX9YabF1/MGKMeJ5njZNSIoSQo4XURVlSTCjV19Pbo1GSZ+X+3uFoNNJGeZ4Iw+DBBx8MgiBLUgAsxuPh4eGtfn+AmRM+c8hJqRhjw+Ewz3lR5r7P4lowHo8pxb7vl2Vx+/YaciSKak5rZJxFhhCGHC3yXCtX5MrzPIwSQpHRJiuLIPJ6vaOf/MlPWqsHgxOM6eJSl3pcSjlJx4Hnnzmzwjm/c+vOaDzknAdeQBhGzjYatTxPtTaQjZYkydraWrvdBtYkRBkjhPIcjOMd6NBHo1Ge517AtDK7O3tKllmWaW3qcY0xRgjTSud5iRAKQ99aNJlM+v2+LIzRDhEsGNcacpKz1bMraTqxqU3yygqDEHJ4eDgajRYXF+v1epqmzjnwX2aUYeygZ7MW4EhcloVzNk1Tx9WpU6cCz5ubm7t+7YYQ4uDgQEo5Pz//wAMP3Lx58/j4eHV1tSiK0fFx4HkWYU4YDeMZOCWVtBYpXQruQ1sFCKZxVltDCAZGEmzL5J5MJ4wxaNesRcBdcs5pLaHkwNPAw9lvEUIwRYChJnTvGDvP87TTCDE/rCkt0zRx2jEmKMOMU4QsJg47ZyDpbpYo6MisdYGKBfydcYWYW4QQY0xbA3AeUAhnhCBQnjrnjDUzDEJrXUnxnCOMel4AyYG+73ueNz8/f3x80m7NTSZpvz+klEpZMM/BETaD8KAign4JY2SURpYyD2NCDa6QPmNsWZZw3GFEp3GGwFGdho9hSyiCr0EIGeNAFGytgoINgHVrldbwc4m1FtgDCDntrKuifyv4G00zJGcXwTnn+/7sGsJfKaXAJwF+LvS65K5i9669JiEEWael0lIZpRljVhs3pTUxxhij1ljppJSSUuycgUVLKzdJjTEOggAT1x8N0jTVzpiyJITE9Vq73a5QaYudxYxWGb+UUqVLGI1zzp3Gg8HAWkM5GwwGZVnmRQoIHefcGQt3eTb8oJRCOhJA2Iwy5xzlzBhTFAUjdAadQzEA6cdumhwD9iOAsLiZifh01WmtncUlLuEn+n6Ap+vKTEOxkK2CkuCfG2eRwwjZWQOvpZlMJpPJBDkCgsIZNYyxKk4ZOOPWWmwdIUTrCg2hlE5NtN30n0DCnpq1+mVZAqcErmdl6jrF7rFzCFLmKYV/bpyzyCGHgiAYjceM81qtJnwPY5ymaVGmURT1egeIsiD0TsfLnFBZ5iVBBKFhfzAeTbDWZ04tp0l2cNA7OjpxDj3wwAOf+snPRH5w9eoH3/zmN4fDoe+LOKqfHA/efv2dO2ubp0+ffvTRx8+tXnz/+rvHRydGW3CQxwhFUdztdglBaZoGocc4YYLC0c85PbV4MV/Mr1+/3u0uOIeMdseDHkL2iScf83x65d13eOB5jklZ5EUqZXF0dMQY7c53olrY7jSzLEPODYfDGzfW9veOBQ3SRMPcCm4f5KchY6Mommu1wTjY2bvxZXyaCFJN4KzDlEgpHbaMAffZMMZOnz59uH+wtbUJHG1MEUAYcOYqZaxVsEqtqTDUWUoY6Gwcpv3RkHs8iqIgEK1W6/j4GGM4TMujo6MoqjnnjHFJkozTFFsXBAGmnucFzmFQQFJKCWZaWUIYQtpahDHlLNDKTsYZIcRilWXFyuoKwSwr0zwtbt2+zSl3Dg8HI5/7SqkyK8MQDQejyTjxPM85jKxttzuy1PlEoT8NcLbGzi4RPGjTdX7XdXcGURljYSkihIypTJNnQCEMCGEYZqeGtng6QAX/5bK8awuJprPA2TNLKdW6MqPHjmRZwRgrlZRazUak8BONRZhUlgWV6sAagwhjjGCUJIm0ziDsEWKcdc4pYx0mhSylVqdOLV6+fPlkOJZap2l+MuiPxpNmVGvW4lOdTiA40gpL1Yqjoe+fWZzPpPQHw7yQrXbDKEkoXujO1aJgrtOqR7HVFT4O141xSilNU40parTqtVosPFZO0uHRQBUlIxQ7l6aTglDHKzI4ZlQ7i1W5uLj40Y9+lFL62muvbR4fC+4DWRAGdXle6qyIavUHH3z4+vXrt27d8jyPM88LfDqVgMCNMDP7bGuDwMMYj8fjbrtz5syZra0tgCxA6gro87Q3JMBwr4Zkd6P2/pTXbIrgpoxaN83Qm8X5wVe6exjT6B5atKqcVRhsjGhKuYVNEhChZrP5xS9+8eLFi8lojBn7x//4H6+trUFeDqbEaM0oNaYaXVuM8D0+0RgTB28D3oizyFmgAMMOQiFkGBHs7F003GIw8bfOMgqGSRjQZ4QqXPje43h24syuw2z/uefzYncPtRkeO1QBwRgTAOgRIdhVrs0WY+SMoZSoSmXFEUJWG4Rhiokg1RYjEMTMvqedsg3uXvDZlHQmpYL/t1NWGdxFYKLAaQsnEczKjXYgmS2kwsxaqZMkC0NfCIGwLUuNkD3s7XKBhVdzzl5+8L7RaJTnaeDX5ubm9vb2GWOHh4cbGxsLp5Z+4qMf63a7L7/8srbmypUraxtrhJDHnnj805/+9ObW7S996Uug1Llw8RKjVMpcCOownmRDQjDSttWqr5xexBQd9nYno0R4LEkSTFAcx6dPLwNmuLu73e8PJ5MJIaTdbud5vru7+8ADD3TmWg2v0zo5CULviccffWTl0ZdeellJCRRYtrm+OR4lnPPJJGWMJUn2G7/xG4eHh0L4RVGkaRqakAtKKIJp+ZnVpV/51b/xzjtv31m/ubu7Z6w8ORl0Ol3OWKvZkYU8PDip1eI8Lz3P8/3AKIsQ6rTbRVGkSbK8vLwwPz8cDpVSCBHfD5FvVVGenJxAmYIottZ6Pg8jf67bJoQEQbi9vYtJpaJqNttxbXE47J8+fToI/DzTWZ54ni9ELlXxxBNPNJvNF198ETmysLDQ7w/G4zFFd10RgGtGKaUEZCOac2GJJoiORiNGhfAYqFe8QJycnOgSg/xndDIMY89YNTc35wVBmqaUIWapsxRjoooS48gLhHEJxoQxprXd2tp+953r41F5/+XLDz50/yTrv/Pu68PR0eLCQlnKbCwxYoHwRsOTxNpXxsNXXn2pSMZXPngrCD2lVK0WF2UxmUxyVRSjotS5c5giCHHOlDRhEP/gez9cWFz82Z/92aeffvprX/vqO++8ZZAD0gfwfSilWZYhhDxWkZqB7vFzn//zg8HgjTfeEEIopUCKBTViWZaYOITxYa+HME6ziXMO0oQYYzPTZ8AaOK/KcTP1pgB7CigEMcZ5nh+f9GYbbhjHnDNKqUHGYau1RIjBAFBrzQm1xnm+PxpNLLZQhnqep5QZjZBz8FSHGOMsy8bjMUIoCII0TZUyICQ02lmjZalneESe50mSeCKIIqyUUkpHUYRRFR4CezfYg0gpoygaj8dvv/02xnhhYQFKTIBIrLVlWTabTSChDIej+fl52LKPjo5azU69XgeVDcaUIpwnaT2KtXMwqEzS8fmzjy50O4uL8/v7h9/9zh+dDPpFUdx///3945O33n59bm7u1/7W356bm0vTlBB669b19fX1M2dW1tfXnnvuuVdeeSXLsoceutxoNAhBoHBZXJovcv3cs/+p1WqdOrV4ZnWl3uzevn37j7/3veeff/7jn/jxz3720++//97VD6698cZrCNNmu40t01o3m03P84oim4zHhJCDwxPP8yjFgMlOklGr3Zhf7CqlhPD7/T7GKE3TLMm73a5zdH+vBxsoxEy1W3PW2h/84Ad/+2/9mvDy6zdvZFk6Gg2AqkMIk1KHYViWqt2eA2hDa728vCyEiGvB5ub6tWvXCEH1ep1Srom+ffv2wsISIazT6RwdHUFroZQx2spS7+zsRlHt4sX7+v2BKnUU1iaTiecF1rrDg/5kNBz102632zsecs7LLJd5sby8kmXZd7/73evXr49Gk42NjSDwQD8+mUyMcc1mE2h0SLnAj57++CdKJd/54IMgjINGa+nM+dUL9//Ol792sHvo1XxjNOAChFrkZhNjd+8xSSvhEiHEEUIQrgykAJe0tjqTQPvJGBOUQuXNOQfIjzFCCY8CkiX5ztbumdXVo+OD9fXtj3/849255cFgvLCwsLS0dO2dZ7O8eOihhx5qP/D9H3735rXrRZ4gh85fOm+kIYRsbe0wKpJJgklVREopGaOwrXletS1wzg97+4wKIbiU0qvVXn/9dWutUnJzswBUOi9STKqekHLGKYFUDT8MnMVpUWRFdumRh5588vGHH374K1/5cp4l6xtrN29dT9O01WoURREEHqV4NBqRKR+wyGW/39faIkQIFp5geaastYIT5xyySFM7GIzyIn344Yd297aJQ+1GnXOKcQVIbW5uDodDuPie74WRX5ZlluYnJydRFCEMZmF4bm4+ScIk6Y2GkyAIMBowxkaj0c7OziOPPvTZz3361q1bO9t7aZpLqXZ39hljoxEJQmatjaIQOH1W2Pn50/v7+4eHh54XgEFBGIYwenEOOzeCZUwIgbyj0WjUaDR2d3eHw6HWliDs+4EsNURmEYeMMZx5jgrnXO/guFaraWn7R8MyUxizTqcrpbZKO0SSJLNOfvgjTytVKF3mecI9hjEuy0MoxBFxvu898cQTV95+1/P5cDzIJ/mPf+Ljp8+c2t3b3txcd04JIT64fvNDH/rwjz39MYTE7bUt68hR/8T3xeLyvCA0y4rBxhaEVs13u488evns2dNSZVIWSToWjO+NRko6cFf0fP78888zxoo89UR089b10TBTGiFEorCZphNCiOCB82meDQkhgedrrY3TngiklNYgyijDmApaulJQpqwBOOnRRx/t9/uTUUopZXVvMs6KXBGEKeTSElLkRZrkYRj6XmiM8/0wz/MsmSBEAFRqtRpSq5defiFJRuDB8tprrzHGzp49f/PmdSEEIc6PfOdcoWRalE4b8K/AyOV5kRU5dohzzriAwKs4jp986nHQkt93331vvvnm9va2L3w4O7KxEgFfXT1nrTs5ORGBIITUqJBSHuwftjsNLuidtS0u8NxcO4rChYX5PC+sAZ4KVcrJMseYdDodpZRSyhmbTlI/8ADL09IQzO7cWT9z5vTJyeDk5OTw8HDx9JIxZpIMW62zyyuLWZrHjZhSHIZxp9NdWVm5c+cOpujSfRfSJD8+PpZSM0oRQvv7+5xz3w+CIGCMjcdjz/MAOk+SpCxLmK06bAeDke/7S4uLw+FwMBgoZZzDBDPlDLWWUkoIQ8hiTJUqrLWEUGudsgpTip1LkvT4+JhSzBhjmnvCQSWpVAbkUwBhMUbGWChalDSci7Is8zyb9VdCCGNVEEWMEM/zTk5OwJs1juM0zREiN2/eBlQUZvOVRSAhjDE4pmFQqpRBiAghrLEOI0qpcRZwQ4zRvQ08QJYY31U3AwpjkaW4clECavMMTSOMYkKgzgSCs5mabJRaxXHMMLNWO6uMc0Yr3/cJIaqUWhmMHec0z0stS8YEoYRSAu6I1Y+YejdDMwOJuGgajA5XKQxDwTh4pwCyQAgRQiBjCSEGOYJA/lm1zHEcY0qiMAZWqLVaa50kSVmqwI+iKAJEHsarQghElLubdDT1akTgq8agCSeEOIsJoYJj5CTGGPLljHEVRdghgiF8qXJ1s646EDGm1lZv795m0vO8Ckk0VZ+MMWGMg2BZKWmMIe7uW1JKccpmjCSKiUXOuYrCDEeYcy4IArBNA1e92fuZIchaVYGTGGOCsK0C6iyYXUzfIZZSGWMJoUYZ5xzl1DlLCDZST8ZpXAsZY0oZQhD0+TDSMMYQRAgld3E3aQghsx4bKnmtLXLEWZxnpZYaqHaTyeT06dNLS0s7u1tHR0fNZlMI4fk+ngZ8AY6MEHZO26nli3UVLxLGOWVeEEIAsMuyLM9zShmsfLhQFBPGeRiGsKLIlDtczWAQRpQiRCv+Winhp8MkgFJKCEXaWORm69ZZq5RGCLEKGmZa636/jy1GAE+jCgsw1lqF0dQQD+jeCFUSbFPF0xHoMuBEAPYluse7DO6RlBIhd+7cuX6/XxQF9DggB64o/1orY+C5UrqEx1YqNZlM4jiem+9CQruUknFUFMVwMmo0mp1Op390XNjSE6IoCqNUlmVlngdeWOaZNSYK/bmV+z760Y/OzXU3Nzd/93vPHO7u19vtIAgwrnjcQvjjcfLyy6/euLG2vLzc6sSnT5+u15sHBwfOYWDVXL16NQg8yB31PI8ydnCwBr0Pxvi4d+R5HmMijmNj7Hg8zLJseXn5E5/6RFgLW+3G3Fzr9TdeBSDSWru8vNqZa4J1DWNsc3NTK2wNwoh7XmS09ThDBIPPIcKVMqNer7daLaBXw9rA1mHrKMGcC0OMlFIbrZ1lFqXphOR4fn4OE+J5Aef84sWLn//zP7++vv6Nb3yj0ah5gV+WpVIlIbTRaBjjILcZYww0ZM/zPN/P8wHjFGPEBbVOh2GICFgnlZzTxcXFMI6MMePxGCGIV6Wj0S5BpCiKWtwAFykouX0fzCWcdRq56hHjnAdBEEUBdJSe52mrKaU//rGfKMvy5KSfpmm72S4K2e8PncOe55elDMMaReTgoEcIAeu/RqPRarWtQWLxgd7drOK7L+tsqRXU/85UUzprLULVMgb4GPYEM/Xfg3foeR6wxPI8z/Ny6glQCWjI1Fxi+sQJNPXBgDEnbCzQ3dOpVyxCCGNqrcUEa2Wwq7zRZ2w8e4+/AUH3ZLoS8DjCQnCDHNGOMoacsxZp4xQyxpi4UV9cXFyY6+hSjyfZydFxqWQk/G6j1Wo055qNWHCTFYSSPJkoJX2M/VYzLXJZFr7H48DHnmi1G4JRIZjPhSolIQQhSwgGUax1BleRoZZxro082T48c2r5wspZzjl3RAjhVMm5KI21yFKCMCWFLLXDRVGcWT393pWrO9vbcPWiKILpLDAU/8tf/mXC6NWrVx9++OEw4D/60Y8cMqPBECHUaLSyPLGmMuGEnRwjFIY+VCN5nh8cHAAT3BhjLSKEGiOn+QcIVdhl9QLFzJ+2YO5qNWbVBWMMaeOcs87he7Dme4FX9CehZ4vvDuHgJ5LpNgs1lZRyPB7/5m/+pu/7i9155nnr6+vQ7JRTo39HMUIEKiE3lZJU340SZK1xFjvsMHJ3ndxRRcQGHjdykJahjCbVe78LlFepfO5PfAr4f0LRbNA+HbdUf3t3Td7zwel00c7+tho240qWDb15JV3CGFuHGLJOU4pnUxnkMMHUWu2QM9YRCkfTXeYBqqYFzk3fM74nZhA5MpuYGlfOLhfGGOwQpmNyRAgry9L3Qu4Tg5zFzmOeLDWMRRFCRVEgbCnFxqr19TXn7AOX75ubaytVMoYYI2k2UQclIRSKkQ9/+KlGoxV6fpIko9FoeXmZELS3t/epT/3kffddevfdd95691U/9D7y+NNlXoxGfc55lhVd182z8v3334/igBDiedw5W8jcWuuLkFLs+4JzDl3wmTNner0e8IB938cYG6OQI0KI1dXVLMs2r7193B88/vjjjzz08GQrOTw8JB6aa8010zq79sGtz33uc3/lr/zVehT/zu/8h9defaNRb+VZubu37ZwTgjvnwjCM40hb0+m0knT4ta/97vFx77HHH1lcnN/c3ACCydbmztrtDcYE+JQRQgmhRVFgh6Ioarfb+/v7CwsLUATDjgZ4n9YyL3KP8crpUueYYCFEkiTXr19fWlw+e/asEOLKlavt1pyUMkmSNJswxnZ2dowxZWGklGHkK1VqrW7dunXhwgWgcgghOGcQ54qx8zx/xmLAGEVx7HkeAN/W2izPwzAcjUZpZnXpPvnpn/jxj3/sW9/6FjL03LlzSZJYLWu12traLWttu1M/Ot43znLBKeV5llFBBqMeJrbRCZWWURQNBpMil74Xfve7375+6/r3fsAm2cn8QuvRxy/1Do729245KwQhyeT405/9zMWLF//wD/9gMB6FjTDNxlnuhMcaTZ8y02zFzVa8dnsdBOzEeoQQrazneXEcP/TQw+vrdz732Z+mDL/77rtFIYPAc1PVHnzYMAyRsXDNgSRSluVHP/KRo6OjF559jjZq0N5XTzLBVd1HEELo5ORk9lf9fn/KPqgANUII9AxwkgG/b9rkIKXU7u4u3As6tblhwPThxBPcIlOr1drtdpYWG3c2CSGCsTD00yRD2FGB2+221nIwGFBKPS9wFhnjsizBmAKJG2PsMTh0GQQeUsIRQlBAO4s9EXgiWFpaAnh6PB5rbay1GFX2bXTqa4+mEyo4SBBCnU4HYzw9hwzUQHlegP4XWnRKabPZ7LS7lNLz588754bDMdCOwDJSyQLQ0qX5BSHY/fdfeu+993d3ty9cOGeMCgLv+ed/NBklSqnxeNzr9c5evASk/pdffnnt1g1CyL/+17919erVJMlarVYQeIyRw8PDk/6R5/Otra2lxeXllYUrV66UMrFObe1svPbaa6+88grcv49//JMIoWd++J9O+sece5SGskyPjk6stWWhilxjJAimq2e6aTZpt1uEkNNnljE+hQheXFx0zu3t7FNKlSp2d/Y9IYy2WSaDwIcGWAhGKR5PhsrYIIi+9vWvIjziQrzwwgtw36Ez9MMQtumTkxOEsNbSuKqK3dq8UxQFtLXNZrNeb04mk6Pe8d7eHhTQgByNJ6kfBpiSyWSitTk5GezvHfX7A106yDBQ0gTC31zbY4yNkewfZ4DIe57w/WB7Y/Ng52Bl5czv//7vO4drtRoU3/BznbPgoPr5z3/+4sq5b37724898Xhp7O/9x2/VGo2f+3M//+Krb7z2yqt/9b/+G3/4+994983XBeMIGWMVpRRP3bLAmhI5hBHFGBMMaVcYcnEJQjBhthhpp5VWIOMlFJgdFh7V2YMH9WgQBEaViCIoxBnlVqEorP/8n/+UtejTn/rclfeub+8cPPDAA+sbax//+Me3tze73fbq6srx8XGWpcZY5EgY+lFUW1lZuX79RjYeijA8c+bMYNAnFC0uLp6cHKFKVw65vaYsLeecY6ysoZQwFkgpCUWEIsYYJgSc/hinq6urp5dX+v3+9u7ecDgMgkAped+lSxi53/rN/+24d9idn9dFjrGr12OMXRyHwmNaay6oMQYTN0lGRjuMKSGgPKLAFj916pRVuizLvMwD7mHsxqPk5s1bWtk4jufnFxljt9fvdLtdI4v+0fHu1jZcT8753NycV697njcaUkDNylJl2XG73b544dLWlltbW1tZWdHS5Hnp+/7GxkaaTer1Oue83ojDMPT90Pf90XCilIGUnqOj46Ioz5w5k0yynZ2dJEmgUCiKwvfDLCuszcIwBCrW0dFJvz+UUtZqDcYANSuttXFcxxhbbYMg6J8MAdrDFmOMGGbaSMrEZJyWheLck0b2+2POOUjkoNaBqZIu9MuvvSYElapYWl780Ic+9PjjT/37f/flVqslhKCYffDBB9qpJz70+Pz8/FtvvhjESupBFDPm4x+98PzxcV+X6L77Hv5Pz7z0b3e++vxzL7fmOmfPnZY6Ex7TqcTY1eoRZ54Q/mAwoITv7e0j5AbDo4ODg06nYw3hnLeaoTGWC2StzfP0wQcfODoaHOzvcxZ5XoAcM9pw7lmrwYZyMkmt0lqDHRt21kJpaA1iHM/qVK1l6Hm+YB9cvaK1Kq2mlE7GhZamWW9BxzUtGV1ZSN8PW62O1D2PMYRQng3KUiWJQ85RITAzl+672OsdEIrq9fqd2+t5KQM/5NyrxY2j497McIBzwoTn+2EU1k5O+owxmJRTajn3fd8nBJVl/uCDD169enVra2s0nIzHY4TROJmEYUAYQQSVpRqMe/PdxSAKMCJlqZC2WZZgjLW2J8ejUqbNZgPWA3bYGcupr7VjjDnrwtBjlLRarTRNszSHygQ0v74v/CBEBS0Ls7/XSya5NThNs8PDw1qtBoOTO3fuKKnr9bhZqxeFbDRq7WZHa723t5ekCGOEifN9H7SxUso0TcNQhWEI7B7oYznnxmgpZafTWVhYyIo8TW/XorqzWCuLEZVSpkkupbQWYcphXqW1hsgjWeS4ci6mCFnrrBcGSinGvMCPugsLWus7d+6ginIlj46OlpeX4zgeDoe+7zuHnXPgV5skKUzKg8BXSlGGa2HTEWWtHY/HRV5WFY5BiunxcIQQiuNYa71xZ9MigBQN6BZnBjiQCgByhDTJAS/UWjNOCCHG3GXswqy6Ar+QBfYTnbocGGeddchWQ3rnnL3bgk2ROITgJ0IwS71eRwgpWUiEGCcOdF2chKHP4loySfv9IXLI932llMPIOaO1AXfsqptClYeAc84hE9dCIURRFGWZTxEEDD8XUAaAVypSMKqCfnAV6lUpwBAh1gJ9BlGKnXNFURpjEEoJHnMukiQZj8ecc7BRtlNbasAyoC5ijDFCjTHTFCwOJdOsT555WRBCwAQTTXlAlFKHwKIQWWsJZkobh8yswZtBM1przingztZaijC2bgqOOIwJowRP0UmASO76MGBMHDJGq4ruCr6TPI6BLasJYZxTQoxSSmuAe7C1yPMF7A9Ga6C//clRBEagYiZMK13YwhEM5ERnkePY8zwCoCx1YHAKDzV4X4CPubVaSgtTZ1nq2QosilIpDUJJxpjWBcAQwvfgWi0uLsJ7gDLJWjuFjCmQnQHURlWemDbOkmm3DGVVnmZwAYuidA75fiClVkpijMFmEG4T5xx8hGeVMFjoUcqNVbDePM8LgiAIPGApEULu6o4pmXXjwNp2zgH9klJKEVYGUUYd5FHCKWAtfOcgCCgLHJhHMwYrAS4ItBUzrlnVp1Aip6kVsFBppUfEjUYD9BawfqaKT0cI0dbiaeodpTSKoiiOEUJSyl/4xb+Ypuk3vvENrXW9XifUEMJA/NFuU60lQkhrRQhF1gXCEw1Wlur4+DgK4nOrZy89ftkY89WvfmX9znqz1VpePW2Mcc5qXT1EcLtbrY5zbv3O5saWbjabKysrZVkOh8NWq2WtHQ2Hnc6Fra2NLE+iOB4Mh9DHeZ63t3cAb9tnDGjgnicmk+TKe++8d/Xd1dXVxcWF3d3tNE2DwKvX64vdxSgKkiw1FmaaZq4z/8jDT/7+176JHEOOYkydQ2VROGcJIQhXXDxwg0mSZIaezGZLs80Hjg9tJOXM8zjGmBAahkGR56+//jrnvMjyej2em5vrDwcYu7IsW60O+JLNHlXjjHMuiqILFy7cuXMHPqnWOoyisiyRdUmSJEly6tTiUx/+0NWrVyEciDCKtYYdT2kVBrG11nEcBSHsM/V6LKUcjUbQFziLKKEYO63lZKKjKIIdHhGzuLSktd7f3wtDMR6PW63OmTPnv/Od74RegLGr15rIEcH9M8utO3fuGOkQQt1OEIW1MIwHR38qeIgIY1hVZ82U8AgutAoWKkDGFTRmLVixAV3MTfUTburJC1oHOIymZ7ebbfVwa2DsCps8AALwU6Apg4swmxpqrTEGXQKEM1UuzxWsZt3MMNpYTaizWkkpGSMOEUYZY5RzmmUZ9728LCily8tL/YPe/vGezNJ6GGkbXLhwIfA87JCVJbOOU2LKQmDKhJ+Hfq506Pmden1SlrrMrbVa+gEPWvWGLzwwD6FT+yNCiLHwP4xyTSgiiHmet9RdiMK6tDg/OclVWXVVVjPGlCrhQbPG9Q6P/t2X/n2WZb7va2UppTBrLMtSK9Xtnjt3brXebPzyL/9Xt27d+sbvfW1+fj4Igp3tPYzxwcEB51w5U5YlUOsYY4JziDDxPM/zAiDTwJWH05wxMfNYmD07FX5q/k/ZzTNBCfy22t+mxxmaDiTgAZyhtzNAFrZHwf1ZWWKMschhZ4kjzliY1MLR0Ov1EEI3r10vjGo0GoJxSFg1xlBKXMX8vcssnmGs2DqEkLFgD13NegkhYOflnKugJ3yPxQeBUvRPULMrnHf6je3MrIyCOKb689lgBmJypgdxdUGcc/Dn/9mVtNZqV2FcePom4YVYBZELAWICiH6xiNwzUEeAj2MwfZ49pM45gMJmz6ZzDt+jbrDWImSdq+xnMaIOBiaIOEuM0RiTWqNFGS6KgmBHnNUKcUEZY3meUooJRQgZh4xzxiGd5Um9Hl6+fH9R5kFY10aBHdDDD9/faLSMdsPhqCiKJE+IIysrp5aXl4fD4U+dWrxw8dwffPObN27c8EJ83333eR47Ph6dDI6McfPz88aoZit+/ImHoygaDgcbGxvGKoxdq9WSpWOMtVqtOI6SJEnT5LnnflSr1brdeYxxv9/v94eNRmNl+QwAYiKg1tooiuaX5/b2dnDCTp8+jUqHIPL305/66dMrZ2/eWPvgvat7e3unTp36tV/79X/+z//5m6+++snPfOaf/NN/9M0/+uaX/8O/r9ViJmhZ5kLwfv/YWnv79u1ms37u3Lkg9K5evcqoADy+3WkWuSzLAuz8BOOU0sPDfTu1K0ommSy1EAJM6J3D8EwWqmScNuPm5cuXjTG9Xi/Pyhs3bhBC2+053/f11D7Y5z7GTilTlmWWyjD0y0Jhgo2xW5s7B/s9aBWajTbG2BgNZzDGyPc9QqiUpdQKyrJ6vW6tS5IkiqLLly+Px+N+v2+tvXDhwtHREULIOq10ibBeWlpQWj740P1ra2sn/Z4f0Lnuqd/4jd/4+te/8cwPfhgEYTqeBIHnkPEjP02SXq+XTHJkSK3THY379dap84tnlUmcs9qqCxcuyNLFcWN3c9c5U6/HpcwpQ4wRTBzn1PcFJvbSfedXz5xDCHc67964cUNJY3KLHcHIhkHge17ge088/vgrr7xye+0mWBzCk1DmReQHGOPQC6WUyilK71o4tVut3/zN30QIMeGBKxxIJ0A2DmeVUlWcuJnatEGHOdvjbLUNoOnIiBPCYCtljADZEy5go9GYAv0WG2IxKoqCiajVatXrNc55rcY7nU5RSEGZ0dbzPUysF3qMkbLMCSEwuy4LBUmkWlvOOZiujsdj3/fB7FVKGYUebLXA1dJa+76fpmmWZZzzdrszHo+VUnB0KaUwsXNzcxhjwI6B2LWysjIzto7jOE3TLMvLstQ6hULzz/25P3d0dPTC8y+VRbG4cOqnfuqnvv/977/++ptRFBFCwjAE2iNMCKBs/chHPrK2tvbGG2+8/e57k8nkp//Mf3H16tWvf/3rSqkP/dhT4+FoPB5v7W59hP64tfb69esbG+txHP/wme9zzvOs9DzxwAP3fe9733vuued+/e/8d0tLS7VabXNzE2HzY08/df8DF59//vnf/dqX5xcXLl++/PRHPhyFtd3d3eefe/HW7TVryc0ba8fHPWNM6KFkPJZSS22jqIYxxZgm4/Rk0O925+Dz1mq1fr/fPxlijD0RaGUJoQTj7e1tjEgQ1AhmCGEhOGMsjiNEyLvvXLXWPvLIQ48+9sSLL71033339Xq94+Pj++677/j4uCyKlZVTzrnd3d2yzIuiEL53cHDg+57g/JFHHut2u9Bu5VnRnZs3Gl27doMLQSgNw9gYlQyHGGNI5zh79vzK8pnvfe8HxliZQ0OOBfGMdmFQt9aWpcKI+iKy1kpZgnquFodSykcffVwptb29DSsKVgg0ZpEfXDh77ot/84u5LPuTlAZBu9v95Gd+6mgw/t1v/MfP/9k/99f/ys/98I+/m+e54E4wTAi1RjtMwKwZAnAQQqA01PCskWmvSynjnDJMCa1G4sRRxgkVM1KDECIIPUBJgGwuhEDcCSEKVVy7doMxhjH/P/7Nv19efvbv/71/9Mwzz7135f2/+Bf/4oWL5/7xP/6HQcikSkVAn/7Yh5RSLzz34uHB0XA0SPqT/vHxF//2r33qU5/6yle+WhSFc3ZpaakoCq2VYByOyaIoOA+gBnUWcc6xo1prbSRkBAFuIjyPYCyl9Dnb3d39mZ/5mesfXHvtjTehzI2i6IXnntvb2Wm26p1OyxrlR75SCoKAkFNGaiEE4TTJU0cQQsgRFEaxcy7LCikls8gS+7nPfPK9995/87XXvDAsy0pQPxmnURxa67a39j3PK1O9nexhYjnnnHvGFFBGl2V5fnl57/AAWsfxeBzGNYzx4UHPaGutCsMYY1qWmhDqHI7jWCsLNuueCNrt9tLSShTWslTGsZel4BSvRoNxPxysrKz0ej3nMHifhmEMPuNaa1mqNMmUMmU5CsMQIQIxA8BxBhfyRq0R1aLxKMmyAmNsjKOOYEQxdkL4zjmfh0YbhQx13FplSoMo9TxhrJJFGfpBMil8P/z8z/2Fr379q4Ti48PRC8+/0m7PeV4UBDWtdZ7nrUb9iScfQciOxicPPXLWWiv1hHr8F37hF779R3+8v3fiR7W333q/M3fq3avvhLX41Onu5QfPb+9vrK3dCrE4fXqVMZrnMgprtVqU53nv6CDP0zRNOefbWwe+F5eFajY6jUYrSU8IRUtLC0We9ft9z2dGK6OpQxpErFIijN1w1M/zFFvHiAe8aeijLMQyVOWm01pyzq3Tw+GAUFSWZRA3anHNKGtU6XkeIcxa5LTBGENEwNLSwmQykrJIkqIoCi+khDvkCOfe0tLCXLc9HPYpw5zzw4OjJMlGw0SpE88Pn3hyQfCI8iqsgzhkjAMegeBMFqUQDBSBnAnGqbW62Ww//6PnDg+PBPeHw3EYhhi7bjc0RguPRFFUlrlShjLU6TSG40k9iFWprA3h2DXGOkuLXFFa1GvNhYWlO3fujEcZpcwawohwDjNG4FBTUvu+D6bkCAtrbZqUQRDWa628yOK4rpQhmKZpWhZKcB85d3x0ghDK8zJP0soPfTA+PDwcjxJjDCOcEi61gbM7CIJpxWycc0Hgg+6kKAqLDMYYViwjdK7dzfOy3+/DId5stCFaB5hYlMfIasaYcwZOPVkCjFi1voTgSTYRAcMIQ19Xq9Uo5VmWQZARpXh5ebnRaOzv74M5tVGlIoRiFHq+dqZWq8G5LITAzCqlirzijIR+BC0EiK7gZE+SpNlsYgTcGCKlms2iwjAkhEkpy1LFcQyjd4cM4NQnJxPfi7XWUlahWJxzUEQBBxxYZjNrMjt1uf0TDQyIJQmd9YHwiuN4NBox7PzAr9ViRIkxSluT5zkjEhMUBF6ZlVDYTNK0KArP86E8g3uEECIUYeIcqj4OzPunjRbCGAPkBMgFzM5B4wk9ErxBM33B12OMjFXOuTD0Z0+l1ho5nSSpJ+BQQHAEYFahe7OeClo+3/OzLANcYIYUa60RqkwmnaswC+YTZ/EMQSAUgev0rIVzoGO1DjmH8N2fZa22FjOMAaRDCGmtISkeSj6CiXPV14MXwQzHgWsFVwZV/C8CcwjOPTuFGtGUQgWzYXSPfSrMkwlh4N7Aq3YaOljKGDPGSakxxoSxPC8pxfPt+Sj28jy11gKHxhhTlnkURZCKWavVZFaRGSFMAjkAUitjZWBUwBuAFY6mgYRxHOd5PplMlDStVquaLhgLaOmM8FhdOuCT3xP7Brd4GlVUOTsTQji3nDeNUYC+AYAFXz/lYyKCsMGOUq61xoRVzmBaa0qNEYRUCsi70DwmEPHinKMBn+K/CDkHGU/V9yccY6ytNlZhQsIgnBK0K2UtzFqstTOqGuALZppsZoyholJrAYVtBtMwxq5du2atdbgSYjrkkLMU3U26A1DP87xavV6r1Q4ODqJa/N577w2HQwgcMsaUsiREGYeazWa73c6TdDQaWUMxYxSTVqt1ZuXM4eHR8dEbo8k4jKP33r+ilGq06vfdf9/JyYm0knFmje20WpPJRDvLKEHOIWSVMmmWCh9PJqO1tYrq2+/3PY8jhLZ2ts+cXT04ODg+7iGEMKbOmTTNKRFBELTazcFg4PEqGFNrlWXpQw899JM/+ZOvvvrq1atXW+0GIQSMs6XUyDitLXK221148MGHkcFbWzuc+qQySbeMCYydUpJORwXD4RDdA1zOcKIZLgZ/COYbQgjOBSJ0xq6N4/jGjRtWq1qtVhSF71eW5TCzJ4RQisPQhx4TIVSrx54v2p1Wv9+npIo4o5RKVaZpuri4+NM//dO7+3tRFG1ubkZRtLCwQAjZ2dodjUYEU2st7Pacc2MozOSMMZ7HYajGebVBWYsqIhchCCEm6Gg8fu655xBz3W6rKIpz5869884V4ggUA4EnnDNZVlhLfD9kjM215xYXF412N27cOD4YzMXo/+RljbGEkJWVFWPMYDAotaKUUlcZx8P8oNrWpISliJCFwNswDN2UXAlIItSl8HjOfjvbG2cDFUBXYL+d4cv1eh3yEqbHBAxNDUKOEMQ4AbYWpdT3BbLYWgvaFMQEJUTbUirp+4JQ7rQJG6EupdEOprmNRmNclGHgPfXEY489RC1GaZoPh0Nrrcozn/L5bhsj5AxyzmmjfeEx7mVSjYbD4/HY90WtVivLUktZlmWj0WjU6gCdw5h8OkysfH45ZVEUcUTSvGTCdBaXv/Pyy8NkIj2hi5RwAYsTW0cYRYiUpSqKiWAc2LgA1sNZOT8/H4b+7/zO7zz5oaeCIHjhhRcODw8vXLjw67/+69//3g//8I++ZS1EoVpw8K9Af8asdQhVtlSUUhhM0qn5xsyhaLYDI0eccxDF+ae+8DRhFU0R3mr/vMeg+d7Xf4axzv58dqpaay2q1o9zTvieUToIAsgGBMCkFkaIU1h7bKblmv5zUMTeC38jhJBWElukqcVgi4VnxcaMpD9Di21lyEKstYhgZ+/CxG46L6wOYmMRBNsaA1aVIESbbVAzrBkOCOIQeCDB8X1PtYOdc8oa5MiUjIwsRhhTCm+MzPjRxBiLMdIKijo3BaaJcxZZjLCdDkMrcQBCbgqDWYwxwQzKldm9Nsbg6QUkmFlsIZwJY1xq5Xles9m4/4FLBwd7Gxt3rDOYuDAKMMZCEExwEPjOGes050R4TGvZ6VzwA0+bsigy57w4DoXQjPKFha7wg/U7m6PJJPB8hFCtFrVaD+RFNtftcEG//OV/3x8O6o24tPnt27evXbvmnFtYWLDWNhq1y/c/GATBSy+91O8Xk8kky5OyzMMwvHTpQv8k2dra7HbnACIAp0rO+Wg0VEpDlTU/P9/tdtM03d7erjWDs4uXClmC0b+jaGlp6faNW9Cds+vX7rz80pue59WjeHFx3vfiV195c21tfeXshcXFxT/8wz86GZzMzc2NJgOikXUyCJmUcjgcJqk4PDy1u7sLabCccyjgtK4IAoQQzplTRprCaWOQA4S3FlcBu9ZpOU1DBpqGtdYpd/PmzUuXLk3GaZqmvd5Rp9M9Pj4O/AgopXCAQQFRliUhDIh1RVFwQYUIGGMYI0Jovz+YYs2eF/hFUTiMKlsZXJmCQZlVq9VkoUBE4HleURSvv/76Y088ure3V4viq1evJMmkHseex8+ePdNqNU6GJ0HgWSf/4Ju/t7W9zjgyVvKAnVpe6p0c7OzsOIulzOcXuz//5//C8WB49eqVk34P07rSmRBMSrk0fwZjVhbm8uXLRVG88847F+679PrrryHlOkv1xx57NAi9o6OjmzdvvvvuuwSzpaVTp06d2t87LKQqisQTwWQySpLx1tbWE088MRqNNjfX59od46zWWqkSiNtlWbpGK4qi0WgE1KE8L2SeN5qtHJd5nkdRVCrJOUeIIESCIAKv7algCmFMOWew4RACPgBQRFKjJGPMYQsVCZx2QRAIwe4+87TaMev1elHk1jqL3Ox0LMtSKT/Lcmcx595wOClt4XmCKGSxttgCMXNx8VRRyEF/VBbDoiiCIEIIQQSfz4WRqiikc45zHvjRjM1x12+6KGCSWRQlIMizPRdjbJ2RUrbbbWMMFPf9fh+OE875wsKCtW40GgOUr5QqC2WtzbNSSZMkydmzZ4Mg+oM/+MOiKI6Ojjqd7iOPPPbmm296XrC6ujoejzfX7xBCPvGJT5TK/Nyf/3y322XCP716hjH2sY997I+++53FuLazsxMEwdbW1mg0qjdbtVrtm3/wrVu3bimlnnzssUcef/zOnTtSyuPj48lkcuPm/jPPPPM3/sbfsEqfPX3mztat4RCdPn36J37iI8vLC4dHvV7vQGsdhN7p06e/9KUvffKTnzxz+izn/Dvf+Y7WenGx6fthnpf9k6EqZFiLlZJJMn78iUc4Zx9cfx9IWKPRpCxlq9VijPm+xwXGiJxaWt7d3ddac0aVkoQ6xkmrXSulPnf+NCF2/2Dnz/7Zz/5/3/2tM2dOnz69ure3NxgMxpOhLMqyTMMw9H2BkC2KAsTOS0unsiQ9POhlad7r9cqyRIjMzc1pbecXFoqiCMMYQBDPC4Dmc+HCpV/4C7949epVzjnFFvsEOUwRtdZag2D6O3PXEkIorayzQvjj8bjfH/71v/7XLUZf/vKX3VRRyznH1lklz5+/ePPmzf/b//W/f/TJp37qZ39u5eJ9mTbjrHz51deGo8n+/v7f/bt///vf+y5DFjtkrXPIEEIZozP/NYwpckRbPR3VwpGMq2vIOcIWU54XqdIlLDCIuzXG5HkulfGd4Jwz5odhqFSptS7VRFmhtXYOTSYTJW271cWI/93//v9eFEUYhvPz89euv2eduXHj2snJUZ4WN258gDFO80mzFc9124L7x8eD//gfv/7f/rf/3V/7r//K//5b/6bf76+urhqrhsMhI3h+rks5Gw6H8Bw55wjFhS6cu4sCYOswQpEfSKMdQAnO9nq9L33pS5RSazUhAhgiFLud3a0ovsQ5tdYqpeI4LIpCG6m0pRQXRXb+wtlVtgxzwTCMCSFFUfqBKHLpjCyK8qWXn0OO3P/gA8fHx0CVArSiyLWSTms9HuUIIUqZ0dJZrZWN47rwWBRF9XoMU8lOp9Pv92Gf55wzyhFCBItWs5ulRa0WOYOE72GMnDOC+5RwpVSWFbu7u73DY4qZ9k2eS9/3PSHKshz0R4L7pxaXKe1BgQL5BI1GYzyaTMZJo9HAk8qlFGObpbnneQTTvMidRcbaJEmMdkmSWGthWs5IxdgCuj3GGCOKNNJW42nQc1mWBLsgCBgjW1vbrVbbE5HTWBflxz/3Mw8++OC/+e1/XZYlowljhDGWl9kbb70mPLK0sLi4fGo0Gg/HSaM+d+XKFSH8z37up15++dX/y3/1l3pHB8cnh35EL9139mjQGwxO/ICfX7lQFIUferVGfXt7h2JmrNLKMupHoXDOBUHImTcajdI0n5tbbLU6hNooCue77f393UkiG3WfYJcXpS0q78VJMszTDBNbr8XN2vzh4SE0AFJKyhgHSg4yGDODnHXGISd8zxhDOfJFoKUhhFlr+/2hEMJj3BIqpQzCwPN4KXOtNcIGE9vuNJptVqvV57unxuMENoG5bvvChQv9fv/keHT1vWtBUOPMEMI4CZzGXPAwDJNkrLX2PK9Rq2dZEUUB55wS0u/3rSGUkDiMBoNBUqaHB3uBH8nCIEwYE81m3RhFKSnLSRj79z1wkRC2tHSqfzK++t61hYWl3sERZcQap5Qaj5M8S+OwtthdqUW1etT41CfOv/f++5sb28Y4gh2lzCiLMbLaYkecQVqarCgq9ySPQ3wNXFVCkBBCGlmUxerqqtb64KCHECpSqbUuCj3sf+D7PnKEUg5pk54XUG5AQQ/FuhBcyhImIuCeURSFNhYhOx6PhRBxHFNKsyxL08w5xxgqy9LzPM49hCDZFWlrPc+zDqncWOQsclxwozUQ1oFsCt1vkoyVUnEcg9uM7wvYq3u9ym7LGJOMhkoZSrMoilrtppSScs4FVVmptcbOGl3J4QXzgP6MMZZSE0Kl1JRWsUtQxhCGjTFBECmler0eY6xWC6WUoEMHgSdlmAmhjBF+SBxmhEIXOplMQLCFMfZ9P4oiUCxZa33fZ4xorcfjBIolwAuAiIescxgSDqiUOgxjhMCVGDtkAQrUSltrhc8xxkVeAOHaMKO1zPO8KCQiRGvleRU7715MzRjj+36e5xBoByNtMEmbvRnouGaGHraSWpNZR0qmxE9jDKUcst2BozoeJwQzbQxyBPBuiik00g4bqNzo1KaDc85IJWOaxcdhXA3aS0CsCMHWYVy9H4QQwpa5KjUOTLcwxlMVOEOo4v2BW4ipDEkIQgQ5ghCmhDrnlNSTuojCAAEAAElEQVSIVr5VhBDskKmsaYg1dvYe4FCDRsPzvCzLh8MhpYRMIxmRIxghaxxk41mErEEGOZBQVM2zrSL4GGOCMjjaMMaMVUGRxjhKqTUII2yRxRiXZen5PAgiZZUxOsurHaksS/jIYRgyZEajEYSnweYvhABHC/iaakUhBLTcab9tKOV7e3uQNjbjVXDKoEwCjA+wLIBT4TpYU7Xis28O1haQql2WJSccPpSprL0dQshkBih7GGOQfxPCADHPC8m5B/7aSik42jihxEEfTwnBlGKHESwV7YxBxiqNMRbMQ85Vjt4wdHTaWEsZ9UOPUmqQtaqKuCCEOIwQsoQga7GDTfIeqAXQCjNlesJyhU8NUyKptZQlLFE05QYiRyAqBpaKRRUStLOzs3ew32g0arValmW1Ws33/Z2dnSQZe57nSX3p/CWf+74fJuNUylIWZbfdqTWaeSH7g8HJoN/tLqR5Zgvne2G1e3hs2B9Za5eXT62uru7v70PhNx5PnNPGSM+jC4vzaZqCFAzsCuFzpWmaJFmz2Xz00UdbrdbBQW84HO7u7kZh/fTp00kybjZaUVhl28DG9fGPf9w5l2UZIYRglmWJ53kOlDQOYcxGwwy5wUuD1/u9IcY0CAIpJSGYEKaMhPpZm3IG9c5+ne0hgNi6aVoXxlhZ43keowKQU6WM1pnHRV7kZVnW48jzPM/zjk56cE9PBv3BYHDmzJl6XJtMJmmaLi0tLS8vc87H46HWGsYqhOI0S7rdrnNRGIa/+Iu/4Pv+tRvXAaIFC6ZGo7G5vuX7flnIosyKgjDG/EBYa4syhzmc8ARlGOwiKWbTt42kLKrRlCXEIC7CKPSNMfV6vd/vH/VOarWalBI72DOpKvWgf+CcO3f27MLCwmg42dzczrIC27k/FT10U9sWxlizWT85ORmPh0II57i0NvKDOI6lBMuFSpoMYCUIbkhF6rzrmw+o6+xgnW3poC+BOQ08+EqpyWQii8ILArCC7Ha7ly9ffuaZZyA2KQi8ZrMupSwlyMtUHEfnzp0dDAaTSaK1NtYRQnwuMMa5cpiSerPhebzRrJWF6veHupRWG4TQaDTa399FxjJKH3nwIepwmpkkSQbHJzLPKCFG6dpcY25uThX5JE08z4uiGioLL4o7nI7S7IO1NUpIHE+iKKjX60mWGeN8308yEExgQrExlesRQogR4I2ZIK71T0akKN976cXX3n3XMiqCsDCaOGSkohRjyrQxDjw/meecsxbIsNg5pKapvDs7O1mezM133n337bfeesP3vCAIjo6OOOfJeMKEZ4wJQh+jmZMSgtEacGIqrw9r4cCFW3OXJ16thrsS8ntP5P/sNR0nO6XUbH5M0Z9AqO9+z3uMnhFCmDiErUOoKFV1tmKEkSMEUYoZo84Zh0xRFlEcaK09nytVckHRVHhEOWOMlXkx3SrxDMN19/pEO0udRcjAJ7JumvGrNegSEKUwR8QYT2Vbd8fn1loYHcwQamstRVUQImNMm0qOQzAjVXjDXZsXKEKcNg6hStwFLtIViafCuJ21jFW2ZtBuw8NorcWoeqa01hhRQmBUX4UGV1jyzP+aAqCM4A7ju0QZTAmf3XS4ZdX5iyo6AuMEY2zN3RxgyrBDqt/vbW7d1k5i7LSVVlpKSRg1PE/UG5HncWN0XkyMUUEoTi0vCcHeeectkIPcf//9rVZnNBp97eu/qyrE1fO4v3zq9OXLDxCEbty4RgX/7ne/vXewf/bsmTRNj3s9UHctLCz0er1Op9NoNI6Ojnq9XhAEm5ub1tqL5y9cvXrFF16R5xsbG7VabX19fTKZQK3+hS98od/v37hxI45r4K1x5syZPCvn5uaGw+HRYe/84qWlpaXDdP/m2g00wNbiz3zmM0cnh/K6YU89+ZEoilZXVxuN2tb6xutvvPq97/0giqJf/ZUvnjqz+Id/+M0k7d9/+f79/W3rlO/7pZxQijFugBjzqaeeOjk5SZLknXfe8f3A87x2uzaZTHZ39j0vhBw+pZS11DjreQHAyjMOBdweoNSFYQylmLP45ZdeLUs5Ho+dw4EfOeeUU5x7wIYGLSpCJcYYYw3VFaUchkVKOoQsRg7H1BhpEVJGm3QSx/FkMtFScc6NrJJVAL/W2nAuiqKwyuZ5jhmWUr779pWlpSUt1Wg0YoyPRqNGo7axseF5HvMY53x3d/frX/96rdYgCCtV1mq19a31JBkHge8czlP66c984m9+8b/5H/6H/0mbsjs3p7WMo7pUBWMiz/Ne7+T4qO/RMIoiIURaprVabXllwfP4wcFBd2Fub3//4OCQIEIIzbLSGlQUkhDMPUYpVtJY6yjFb772CmbM87x6PQ6CQClFKXdOMyaSJCNESKm11lAIttvtP/Nn/syP/tOzU2PycjxOoFEhhABYM5lM4GmsqjQpWZVaYKCohVzaivI8tYKaznOUMdVzDgR2jEFRiKFWLgutlHTORpw3Gg3OeZKk+3uHFAuEsDVoPJ4EgU8EkhJiduhgMDLaaW1qtVpRTDkgVKiypF7oecF4PGZUaGVLXEJnODuNYC9QSsG0CuyVrbWy1NVuhQnGeDAYKKU9z0cIa22A2QEcjSiK4NJBe2YNoZR+//s/1FqHYdxuzz399NNvvfXOjRs3zpw5W5bl6dOnb926tb21myb50tLS0vKppaWlVqf9k5/8yZ/92Z8lhOwfHrzxxhtXr33w+OOPZ1l2cHCQJAkn1BgT12uvvfba5uZmlmUrKytLS0t/9a/+1fmlxVarlSTJ//g//k8gLnv22WcvnD334IMPdrvdc+fOra2tXbt2bWGh++STTzbbrTRNb9++/bu/+/UrV64cHByMJ8PHHnvsV37lV/r941u3bjWb9fE4CXzWbGKllLO2HodKpysry81WvXd0kEwya50sHUFB72BCmV09u6wVYpSFYXjhQtjvD9vtdqPRkLK4efN6q1MLgjCu+UbbGzev/sN/+BuU8M9+9nOj0eiNN97o9Xr1RkyQk6ocT0ZxHEdxiLDjQkRRPDc3d9w7uXXrVlEUhDCo6U9OBpx59XqzVgO3shxAYfA3XFpa+OCD69vbu0KIcTYGsy2CEKUMC5LnudVAbmKUmrgmsszC9oox9Tz+la/9rrU2z3POKUK0Gt5a+8QTTyCEer1e0j9udef+5t/+W1E93jkprt964/z5ix//ex9/5o+/85WvfBnJHHsMqB8Ic4SQNgZkHNCaIuygzq7ObErN1KlNa+2QMUoqpWq1mhCcUsIYm5ubGwwG0FVmWSZl2Wg0OKfQvDlaIoI557EfGYsoc5xxjOmssf/ud/4oDP2HHn6gzIsHL19eX1+3TlNC2516GMTLSytlqcuyPNjd+3t/738WwgeX8zvrtxFCUkpf8JOTEymlw4gxMRvOI3pXosUwIRxaC4kJnRbEzvO8ra0t2DeAVFWNqa1ZW1uLoiBJEodtkqUIWcqpMRZTgpHtLszleT630CqKwmGtLXbYKKMs1hjbdqdxcnIcRXEtbqTpRGvreR4hBJoo8LwhMCrHnBDknIvjSAihpJyY1DlnLVpZWknzPAzDNE0PD4/SPAt8nCQJQRQThzEZDEbOGYeQ8BhkyFhrgyDCmJSFCryw1ers7x8oZYwBjaqHENna2llcXGw12lmRY4yLoiiKYmNjAyMCPlacsswUzmlP+HCODAYD6IhmxQvnXp6XGGNOqNGa+b5zzmog6LGqfKGV0RjGYBPrOOeNRuPgsP+pT33qvvvue+GFF25fv37fpQdPLZ0RNFLIwthDaxmEfu/48OFHLq+eXypyMx4V779/IwoPa3Hz/IX7W63O5Yfu3z/c2Dvc687XO/PNyWR4fNxL0zQv8msf3ICHAnLeh8NRFMS+H2LMkkkWxbXJZDLIU0KIUsn29matGTTrtSRJFhY7H//ERy9d6g2HyaA/LqXd2NiEVdHtzqWThFIqhO+h2v7+bpmPiRAYU8KwJRRTzLkHcmkgRFqDOReNRhM5Nh6PCSFFUTiHnTawEqIoWFpaiOJgPB5lWZKMkla7cenSJUQy5EiSDtM09zxvf3//oYcvb2xs9Pv9z3z6p5Hj77z9HqWEUv7++9eMMX7IilxneWKUpjRdWlg8OeqPx2Mw5iaEIEeGg3GelePxGPxkpNQIYYww2GV4HhWemFtodLttz+cIod3dre3tvdKUN9du+NQ3RgGvk2KGEU8Tubd7tL6+aa0+c+bMAw88cPvGutKOYG6MpJhhjJBjWktrZVFIQohzhjCstc7zEpUOYaO1DIIAYYsxr9XiOG72j46NNISwXJYYEVmmGFHOAkIwxcwSSwgmhHJKrK7kFDOxLZz+wGoJggDLEiELhmZ5XnLOwaZNT19AFp7BOs1mUylVlDKKIp/7aZo6iw34LSgdxcEMEJRSG6NheOBPfWaLooATVmstKCu1htRowL+MMdpaTBxjTClFEWo0GsYYVWpgI2qtgVdDHHLWSSMppWmawgf0qIBzfDweM8Z83y+KzFobBNwYp7WCNgDaA0IIMlWbp4yewaDWWkKmzgmVKb9RyhhjZlYkQL4mCDsDRDCA6jRcopkvNrKmzIs8z7zQ8wMhhPA8b+SGeVYiaynDCFFwkSpLJaUkzlKEy+n8EqpWwCIxvguoWWsZwVZXwAScR3DumKnr9N0WyFUqeEqpBf271pQREGQ4h7XWjIp6vZ6lBUIEWYeQo5QhhDDj0LaRexiywJ5DU1Xp9BJBSm3FziZTZuoMrhJCwBWGrFpjlHPOOGuMFYxXEXCWIHwX5KKMoak3JXwHSyqCudYafNWcc6iiJjGlCogeJQS4S9hpSxFmmFljCUYYM4poEAqjHXyf0uZMCGMMoxRjLK1xzjljtbYYUcEFrqTQhFKOpnpbaxDBDBOMKLLWYoYpw0VRGqu4zwlBjFHBfcoJsJjTNCWYzbAGaK2VUsihNM3CMIQOVnCCEOKMYozBQRL4jDOuDIxbtMEA/Zd5AQ9mHMfGmMlk4qbFCSwAaKfNNMePU2Ztdb8gPUUbzZTywqDb7RZFMRwOK5THYcE4fA0hhDHSbDZHoxEYMweeb4wx2mGEsHPKKEopss4g43kexpgg5HuhsSrPc4QQJ5QQorWmCAzesVKKYEcZZoxxj3HOo3qslEqSdNqjacYYppUM3DlnmS2VopQywRHGyhqDHCOcMQajICB7UkoLWYJH6j25Mhj2B4yxCHyAbjjnRVEsLCxgTDFlUmopdZrmoA4vilRrywg3ymKf7uzsFIUUgtVqteHQCJ+fO3dhMBhsbd3OsmJp+TTG2DiXZhmhlDAahj7nXfjU9Watd7zvBcz345MTa5yG3rZery8uLq6vrzcbrVOnTt26daterxdFsbu76xA5OjoiCJe5PHfu3KULl8qyXD29OhpnjJGy9OI4ZpRaa+BJnJubu3LlvVu3bu3v7wvBx+NECFEWinm0VBJhOhyO+v3+2o11pB31gsCPpCq1NjCq11rLslRKOasQQvV6HU5DDQUhY7PRi5RAV0KwwKplRilCiGIGYHSWpHmRWWsFo81m02E4RmVZlr7w5ue6zXqj2+3meZpliZQFWN9CxqYQnJAIaoOKd8lYmua3b9++evVqp9Npt5vAc7p8+TKn7IUXXgpCfzJOfv7nf257e/vGjRt4yuolUy5idfA5BJEtcIhU2jhjnnzo0Uv3nV/fWsvzdDwe93rvREGYZRmyiDAyNUYwWimt7Nrt9RvXbxECChLG/iQaOHuBCBjc89Y31qy1jWbNWYwxDsMQuh7i0CziCIQ10HWKaYqpm7KbZ9R+eOfQOwAMDb8Cl6UoiieffHJ3dxch+4lPfOKHP/xhGIaU0sPDw5deeqHRqFmrhWALC10ppTYyCPwwDPMiDcOgM9dSurTWSin7/UEYxEHkO+cMdsZowhml1BNBnpW1WgNZRwmVzpRlub25VZZlILjKS21s73AwGo22NjcBSciS9KnHn7BGD0bjk5NBu92OGk1B+e7+vhdFQRg5QsZZphEy1mnjGGNpXkzSNAiCuBZ6jDNG3TQPCSGkpYlqMWU8ycuNvb3D3snb127sT0a83Uq10ggLUqGlThvnLDhWTzc9JGXBGGs0Go1GbWdnpz84XllZWV19cmdv5w+/9U2ttce9Xq/30ouvIIROjo6Y8ON6jTFGMAQFa0IIAvY0dpRSpSqzFDf1/5l1f3ZK8qX3GKTMjvX//9e9p8OHP/xhIcQbb7wBpyoUFbPiZIaiIoQ45zCjhaUOzsmzp5UwZqfBAwTj6uin1Ex9vbUpEaogXWstYXRmNzzrR+Bwr0BbhCgmBk1THKf+xUpq2Otg2kem2hFMKo+j2ZjEEeBc4dnynqFJWmsw88EYI1cpjfTUg2uGO83MkTDGICDwPH+GaGvnIE2EEGqtZYwDeRkhxxjHxMIcl1GhteZcUHrX/NpNLbOri+mcdZVJOnz8isGN2eyf6GmmcfXeOPN9vyzzIPDiOLTWFmXGOXbO5nk2noyP+9uEYc9n9XqcZhOjcavVXFhYGI9HiGjtjBd4nl8/PjlSqtzcXAdPpCD07r//fsbYwcHB8VH/9p0bzWZbcN+5xDm8s7OVpOPLly9H9ejFF1/s9Q6Wl5eSJMmy1BgnhA9QmOd5cRQhiw+PD6WUW1vb62t3mq1Gkefnz1+8ePH8m2++meUKrjYMIz/ykY98+MMf/upXv6q1Ho1GRVHMzy+urq4e9U5gIX3swx8zKbpy5cq1zavLy8uPP/EEdpSf5nE9fPedq+yX/8p/c3zca7fbKyvL/LP0xz76kY2Njffff+/FV17lb+JJMixU6o356tnTk8lQW+WIoJx2u3Oj0Wg0GgEV//DwUCl18eKlfr9/dHRYFBLeHMCUQog8KxrtFrSUYNwpVVlKWa/X6fTGZFkOT8tgMLDWKWUIFoSivb2DWq3meR6sMCEEQgAgApAEJmAYT8O44FHMsiFjzDrtBYIQkiTjoiiMVRQJpZRFRgjR7XaNcf1+HxKly7IsTckYY0yk2URrHcXxcDgcj0a1Wq1RbxZF7vthkmQoJ0KIZr1jYJVTgjHaWN+y1q6cPgX92/KZ5bfefv3Xfv2LhLDP/dSnGOfPPf/seDyyVh8dHRXFFkFECKGVnCQaM0oIrtWiZrNpnB6N8o2NDYzx4uJCmuYUU+ew73lxXMfOlIUqioIihB3VytIp8DSZTKAzxxhjSpxznHvAAobClDFmLfriF7/41FNP/ct/+S9LJfO8hJoM5qWNRqPdbjabzYODA6AEQmMJTzKUbvBIY4wdRkqr2b6G71FegPRMqsLIyiuqMgJDKAgCVFjPE+12y/f9o6Ojvd0DwUDPiAgiMJDHynketwYVRjqLy1LCcR743Pf98XgsiyKKIpAlYoyLXAJ8BmU0gEeg0kIIz/hBcHgjR6Iogo9MGU6SVE+TFqCWgoKeEOL7fprkjAqJdJrkjUYDYwpXZmFhaTAY3Lq1dnh4VKvVGo3G//z/+H9+9atffeP1t37pF//ScDj8/ve///TTT2/vb//l//Iv/czP/EySJDt7+2tra7fXN5R1nu//0be/+9577yGEWs2mwsbnYjSavPPOOw888MAv//IvP/LII9/5znf29vZgvz46OqKU/NIv/aIQ4mB3r9PpgNllocrFhZX+4Hhzc3t7e/vCpfONRuPg4IAxwjlFyG5s3CHE/i//y//7zvpaq93Y2dpOJlkURY1G/fj4mAs6Pz9HiH3rjTfOnDuzuLhYNnVZGFUelKXxuW9c0ts/abVrfr2mtaWUwUjD9/3l5YVTK4vrG2u1eoiQKwp1Z23jxnD9sSce/fYffTeuhY8++uj7H7yrVCk8DsOqbrezu7vbbs+1O53xeAIxOM5SrVAQcKMRchQ5MHIhUitYurNCtl5vjEaTZ5555pOf/GQUxc//6DmlFEKYUUIpY1QYoxVWxhguiLUG4QoWCYLAWpRlGRwG9XodEp+BQuUI297eds4dHh46Jevtzre+9a1P/tSfRVh0mp35+fnxaPDsMz/M0/Hy6ulkMiyz1PM5JVy7qf+stc5Vs1ZgxzDGMLlrpwXoCUJII7BKLDhnUBQClCalpJRxzo3Ro9GoLHMg1klpKDGceVpr3xdgFJalhdKFBRczpcuimIwmWqvHH3vMDz1CyIVz5//ZP/tnH/7w0w9cvu+Vl18rZco8KizFyFGKyzJHiGitwzC0WqkqQQVj7KCQiBtxlmVVdDXGDiOwxLLWWjuTLFhMsAh8MNCUUvaPTzjnxihCOIHYYWRmjxUczIyReqN+cHCwvn6n2+3Ozc0NBkNKKeMYIc05RphkWfKRj/4YcmR9faPdbgONixAyk//DMByofMaW9XodOZJnJcK2LOXR0ZHneYuLi7V6lBXSWsQYC/0AITccDqOgDmpKbQxCTmtLiCUUW+swZlobo3WRlfPzi0VRamWNdlopzyOFVcbYoigOD3tCcGNMo9WMoihN0yRJ4qiGK9t63m62FhYWSqnyPO/1joXwGeNaW48Li21ZllJqxgRFuCxLTMG0GjOIRsRVqWqtAXaz0Uo7RymGFK+zZ1fffvutk5Pj4+NjEYZPPvbE73zlPxzu7NbaLYKwLItWp/bQwxcvXDo1HPUODrd1yfb3DhgNGBXauMPDfa2l5+MXX3q2Nde474Hzu/s76xvXT506hRCZjHNhHCbOGMMYxxh3u3PO4Fpc59yf757a2Ng6PDi2zngeV6q0VgfR4smgf765MhicbG2uX7x48aGHL6dJ2e7Mv/LKaz/84bOeX+vM1QOfDgYjKXNllQjRxfsfPDo66vWOcqm5k0EQSW1LWSKElFK+8BjjnvAI5ggjz/PAvt9aI2URx3GzWV9dXY0b8db2RhSFK6dP1VuR5wmty1ojqMWN4+NBrcbyvByNRi++8LKxCjny6quvpQn8CJPnJbAMJqMyGWeQFd5qNk6O+tZaSnk6nhhjGWLGOplLMIz2/RATba0z2llkR6MJxjjLZL0RPPGhhwk177zzlrV2fXOb82C+uzA3tzg6Hhf9RPDQGIQxDoIoTfPxOHFWI2cGg/Hi4jLn/nB4VBZFHNVLpSml1oI5FbHWIuQo5UarXBWbm9uXLp0LolpeJGWZc+YZZZDGvb2jPM9laRjD2FKMsScirXWa5s44SimjQilldE4FnnEk9dRHUk8z5eDXIAqFYFBU9HrHGGPGKja0rbykESA1gD4rpYqi0Ea3Wq0ilwCGao0IQVx4MyeuaYtFpo2BgV/DMNRaZ1nCGKGESimdQ/c6z1qEKKUIO601YTRJMtDDwcYF1TMyFexIMfYYt9Zqh3wukENWG2QrsTwgKRjTPM+BLAZlCcVYW0sxJpRO2aMUEQ5bjed51iJw2IDm3xjFOWeMAdAghIiiKPB8pQwhhlKTJAlUv4DwwscnhCBngyh0zjri4CBACDEqnCscOEFrhRDK83wySeHKIIQEJVJKixFjFCHolMhMscswwZxgwRljUmshvNmWO6vcAKacdmsVMUdKyT0PvgATB3cT1H6eCIqi1FpzKkglLnHGGIaos9Y4Ddi9MUaVEuAbAINopdWAbrlyaUPWTYlRVSNtpm4PnAMaWxVdCBPnTKkKzjmlzBjDaIWxQv05Q46gnzf4T9gpQpPJKcN/0roXtAtCCOArwEjSGIeQKwsly4r/63le4EeYVNMOWKLWWq0NIEFlWdJ7nGqNdozS2YkPT4cjWErJHKGcFIWURlKKgygAnKjZbJ4cHzuLpZFCCIwJpVQpg8G4TGuELKAYM1we3yOmdvfw3EG7naapQ6YF5gxSAXo145dgWtXklFKMKNS0lZAUPqCDJL27PpXGmHQ8mRmCw7ptNBrdbjdJEuDkKqX29/ettQ4RjwsyjTe01lptgOsNk+CZsSxCqJRSSs0JdcJhhwilQNYDOw5KCZlWa1EccE8IIYIgTNMUGQubjDEGWQfWeWhqdcKYT0hFkYMrBgGbsMiV0VA9wpLwfR8eqxnJhhPSaDSGw2GaZ5zzPM8tcjBg1lpvbW0ZY8Ar0hOBlsoYU+byuHdCGCUk9jiN43qjVt/c3n3nrbe01vffd7k1708mE6V0OhzGcZxlyZRlZSjFxycHQRAEYeOwt+953ly3KUttDNG62NvZTieJKqU1ZjQaHR4ewiyfYKylxhgPBsOiuL67c+B5XpJkSZZKKQHqkpVfhBfHsXPuP/3gh9DpBL5XKDkajQkhYzuCakQqoxUJ/Cae6vattZ4vwjBsNptJmv74j//Eiy+++Nijj6ysrPze7/1eEERa68lkEkYRdE/W2izLGONaVVAMQoQRhBnFCBW5NNpxjxmrsiR1zoRRAPuP8D1KeZ6XhBCI7BZC5HlKKW02m61Wq9NpDYfDNJ1gTIGMZQwBIyZ4xP7tv/239XrsceBx0yRJ3nnnreGw32y2hWBFIRcW58+eXT04ODg5HgRBAPu54L41DqJKjXYYWym15wVSSq0tOIdrU1irtZaU4jAKgFPsebzXSyimaZpRTMqyHIxGRjtKeVkqjLFzxiiLkBJM/qnQIWMUzgvYW1ZXVzudzrVr15RSURykSZ7nqRDClc45xzm4NgGoh5xzYHEJobXOzfZSB/snwB8QTgsr3BiTJGPG2J07t5vN5j/5J//kJz72E7/9b3/7X/2rf6W1jqLo6aeffvbZZy9evDie9B997GFK6Yc//KEXX3zxpH9UFEWWJXt7O0mShVEIDRTnghDkHAoC31iV56mUaDgcCuFHQewQsRacrHDvuNcfHJ/tLphc7m/tbB/20zQdjYbHxydJkiwsLIySyd72zt7e3qDfJ4TUGw2L0c1ba8Tj8/PztXoTE2atzaRCjHPniEYWjVvIEYZRgAyyVmkoKrBzvu8jh9e3d958+z1l7eHJMDM2bLQMF5QRggjF1X8OI2JtqQxCxFlrEFg9sDAMG43GwkJ3f3+fMfbX/tpf+9Vf/ZUXX36pKLIvfelL+ztHMGMTQihl8jx3xjqMMMez0ekMjQXRyQyDgkunlHIIsbs5EHdjDAghDv3nRsPVno+qGQnsUWfOnLl58ybGGE19n93MLHia7EKmvskYEYjedc4Bm3jWh1bvwTlnrZoeKLPvMP0CU8VPTA+dqhzCGOwqpnuss9biKQbtIPHe8yrklyLY/2fTboQQIlW2BOB4QDhQSpVlCR7QAMTnssT2Lm2r+iDWmem1YowC2xrqHzDRgpw5xgS4usHF0a6iG8P+P3VEIDN0XptyceFUFEVFUUwmyQy+hzuuNVjQzII9kbXOGEswg/BegplDhlDknMWEYIS44EopQhEAa4yKWq1Wr4eME0Lc5QfvX1+/M0lGi4uLWZacnJyEOAxD31r76KMPf/KTn5xMsqtXr964cc0hpY32g6jZrCFs9w53CEG0xNoUnbkW7JO7u7vPPvuMUkZ4HigVkCNhGFmP7+xsKVVmWdbvH7fb7a2tLWsNpoQxDnUOdmQ8nGyub1mDnEPvvfdelqSdTkeWanNja/kjT1+7emN7Yzuo1Y0xnU7H9/3hcDgej//4j/94Y2MDOOBKKYiL2N7ePjg4IIS8+uqr5cj0hyPFiycee+yBpcv7u4fv3nr3zsZtjny2u7PfmWuBekWWst2eu3Tp0lNPPfHGm6+vnFkKQvH+B2+/9PKP1tbXut2WVIUQjPPg4KBHELbW7ezsbm9v9/v9NE1ng3fP85rNZhTW9vb2kuEkCALKRZqmQihrEec8LwqM8fLyMqzCoigox4zQwWCAMS4KiRBCjkAjAYkZvh8QgoyxYL/iwP7GYgICQ+cIoQRThBAAHYzxopDtuYZDBmMEVB1rLXIFQshYW6vVtNbGQNGfa2mMdhYaMMbCIDbG5FlmjCOUQ+hfkSsdueFgIk3lDjY336WUeMLLsqzTmQMp0zRm2maTLKpHTz7xof39XSY4YywI/IODg+FJTgW6eP6MlNIYlGWZtcohPEkmFi0WRXrSP5xNb8LQt9opBXgu8oUXBEGeecZYVeo0yQFENsZUKHBVkzrnnEUOIkE8zwvDcDKZZFn26quvfuELX/jRj370rW99CyBpuGugp8PYnT17Jo7DGzdu5HnKGEPIUkoZY7PezDnoWOB3BMa2MA0CHh+dRnwSQoCgJAQHQZlTaH51dWVl+Z133nr3rfca7VpRSEMRpYwizLjAxCvLQkkYs1ulFGOccx4EkbO4KCSlvB7Vj3MJ2MS0jKh6GJCnQX3pHMLYzup1kEtYI33fB4kZdEfgOUimlliMCowxIsT3wsCPtLLwt9Az12qtNM2Hw7FSBmaDvV5vY2NjceHU66+//vnPf/7FF1+s1+vOVdzP3YP97/zx9x9+9PEsy5599tlXXn1pc3Pzs5/7XFmWnU6n2+3CwFkrtbe357RJxpPD/YMwDJeXl1988cXxeLy8vKyUWj134Zd+6ZfS8SRN0/Xba9babrd7fHy8tLTMGDPGCu6//PKrlLOdna3vfe+7c3Nz5y+srpxemkxGWuud3fU0G4QRM04rnWe5g8652+0OBoM0za3Vd26uE0IQYlJbzrkx2GiHHC1Ltbx8+tSpxSDwDw73jHbHJ73jk5PHHn/o4Ycfml+YAwLyZJJAws/Vqx9Yq9udeqNRf/DBB+M43NneiqIAJvaXLl0Swh+Nx4uLi5PJ5NoHN6x1vh+EYQRmgxgjCHaQWsLxEMdxvd7o9Xqe53Eu6vXGtWvXh8MhcNW1tv2jfhzH9Vrz4sWLt2+vHR31oAjLsswY26i3fuzHfuy9994fJSPP8zBGlBLOfWOUUpXBWb/f930/jmNd5C+98vKN9a1fvHJj+dyFze29ra2t44O99958tRb7ZZmpMg0jXytriEMIWLYw+CWmynawhBAIugEKUVmWo1FerX/rYCFhjCGoELyJCCHgdgpMW4w9L/AppbzErVarLEutVa1WW1pampubo5S++/aV69dvxHG8cnqRUrq5ufkTH/1YPWx8+CMf/hf/4l+8+PwLYRiurd3yhYeJO3furHNueDJuNjoH+z2YQgF6SymnlBJGnXOtVqNWq+Wy9DwPgsInk8lMeQTVALGEYKQdJCcD1w+SdoUQzPc9wnCWZY44W2aUUusq5UdNxFpLIZgx+vr165yzhx9++MEHH3zuuee2t7cxBjpYYQqLMT4+6htjm81muzWXZcXJyQljTFmDMbbOYOcYZ935RaUUY1WyCqVMa0kwi+Oa1np3d48eEKUU970pFuAC3zfGMOZVsjPiHHJKGWoxmCcEQXB83B+NJtZiyHyg1Jspt8pCceZ1Op0kSaTMh8MhtPGUUkwqMrvvifn5eYzJZHKQZQW0OkVRAP8ry7KyVM45QQVmzFlsnUWuyj6u6kLskMV3CX3VrmvLUvX7/ahWf+vtN/74j7/NmIcQ+l//1//PcDgK45pzbjweOyRXzy42GjVRGEyaWT4eDCZaa0zIOJk0GhQhtLW9IbUMQ7G4OP/AAw8cHOwNh+NBfxIEYcBjSryiKLgQWktLzPzcvOcFSrqT4+FotD8cjIIgQNhJmZ0+swxxTaUse73ezm6yvbW+uLjwwQdXt7d3O3Pzy8un/4s/85Pf/vaz5y+cvnDp3O2bt9M0r9XC7tLFVqvT6sZPPf1o7/i4LNT+/mGWZXCRa7WoXm/med5sdSbjca93QCkGb0FAfIBpdefOnTPnzhweHhoj83KZMsRYbX5hrt1uXrlydW/3wDmyt7fHOScEW2uazcatW7cY9QFM5FxAugtnNa0lJtwaJUuzu3sQCE9QnuoEQiyBmCwEp5Qa7ayTANkAGqJUiQkaJ5M33nhDqYIyVyjZbDadw6PxsCxLJ5FzlhBEBBPMOzoaCO4bAuah5qknn8jSoiyUksbzvFLmgofOWYwdpWA160C45xxmTFCKa7UWIYiEBCGSZRljXr3eUEp5XkAI09JEUS2OY3BCt8ZJXZaFKpyEwAMkdbPeALBmRn2FGCjwlDTGCM8LAo9SenJygqxzxjpMtK18Y6WR4FYPUTnW2qOjk8PDfSEEeFIhQijns6NflRLy+oIgCIJAaw0/DiEUhiF4lwH2LYQoi9w5xxgXQqRpDmi4qSK8KrwSDByxQxhj3/cZE7qaRlc2o/CvoL23GMiMjiE0ySbg+ZjnCSg5PC+Y9e1gsMiZwDMfA0IxJgg5uFxBEBkDi6eaBBRFAUl1YRiCoQTghnjK+4OrZKb+b5TSyGNhGBqjB+OBLVwMrh2jpF5vImIJoZY5RgV2aKTHVhvmcSi9AG2hlELxCcUVRZhRQmgFRwIc02jUEUJ5XswgXXJPphCqbD2qztMYA04ODhnYzQghYCs0mUySSRpH9Rm7hzHmnKWUIlONDwkhgov5+fm9vb3peVftY8BUwNg5TCye5blX/S0MrY1RzhlrMSKYckYYVVpyzuv1OiEoz3MgWUL9CY8MZcQ5J1XhnOOcg8YXIUQR0UYDd1gTCvsnuUf8q5TK8xxbjDGmlBsjrbUEs9kHqS6OVdjh6ZFnrbOUUoKqhpyRSqVrpn61xhjGCUK48luz2FrNOFFGYsovP/xgFAdbO5uTyZhzmiQySRJKiDYSzFh1ld2tYOJICIEpY56V1S2Gd4ItxhWzO47j5eVlpeTm5iZjrN1ug2EudqhWqwVRaK1VRmvw9ajCPw04sUIvgKb6bmMMwlhJpSvZIrKmwlCKooAZgJ5aISul2u22lHJrawsSLGGYoVB1uTDGaArBzCZYiNyFY6wxVbI3Jgg5hKzFlDgE0gGLECMEhp2j0YilrNlp+b4HSgWYDsKeRimasenhWSOkwmXwNAkKFA/WWuPs7P6WZTXBwowSzoqioAajkiwvLzebzfevfaB1OTcvwMAhjupKqWSSIYQo1dhhIQR2lBGqpOUcC+alSR76URBESZYPTvpM+Gk+GqdJq9MOrSOEtHkcRzXY3Ky1RZElk0kQBM7Zk5PjosiN0fAwApyitbFWD4dZv9+PojgMgiLP8ZRv4YmgKIrJ+Lh32D99+nSelwD+eF7gcRaHUV6kWmuG2CSZ1GtNSnlZlrK0zmBdaK01dZYKTyuLKWNUMFZZ/SIH3tx6fn4uDMPxZPKhD33oV3/1V3uHB1/5ylfyPF9eXv7CF77w3HPPBWEopdzY2MjzvNlsgrPwjIprneaUOYxhSzdGWAeZQOLMmTOB5ytVUkohrEUp1Wq1OOcgQBRCNJtNgNcB46MUQ8kEZwSl1FlkjJmbm4vj2DnDPZFlCXRw6+vrvjhYXV3lnB8f9xuNRhgGZakwphDjnGWFEKIsTVlmlFLf97W2YShma8nzPI9bqcrD4/3xZCQEO3/+YrvV2Vjb2riz5Uc+dkgpneeFLJTgPiGEIOqcMxqIpYKSu0Fh976ASsIYC0KBMTZGTyZjXAl/SbNVv7vDE84IKP0rSf4MlZthYfA8wv4jhEDIUopbrcZ4PM6yrCxzGH9SSnu93mQy+kf/6P/1C7/wC57n7e/vjkajT3/607/92//mn/7Tf/qDH/yAstbrr7/WaDSWlhbTbMIY8zzeaCxdvXoVMG5CUafTgU2gLCV2BBsG1OmylM5RiqVzLk8mzhVW5rQRWISSJBnt9w53d5PC9I6PiqIYDIcWo0Kr51960Vpb5vJkNMYYT4rSIkyDwI9C5VCrPZekOSYkSXNtHCau02kZh4ZJ6ggmnMWCYUYtRhQhYy0yWgTR+vbO3slxc24B+QHBRGmtKs+fKTcWIewAqWR3MV8CiC0GJ8wgCDBxX/3qV4fDwS/84l8oyzJJEiDaM8aE8BuNBoCkYNlv7w3oc85Ya5wFWGC2Hxpj3EwRNQVPZ5l7pIqh+1NegHiCYZEQ4nvf+x78ocUOE4wQQqaa4eEpP3p2hEE3SsCLD1WcITu1YJ6+B4SmmZPwPuGUJxg7hBzGaCqXtPckglogEU0nec45QZhzhmEGKho+ZeILIQjGZurI5BCZsRngys2ONmCHI0SsNlNOEqOoooQD/6a6g1PEGW4pDEN59cYqeZBzDiEC8YbWVrgNXGqgCeK7E3Hb7XYfe+KxdrvdP+6/8cYbWZZBxG5Zlgi5PM8YJw4hARvmdCFV6DfIC4ibjhmolAV4rFEqhBDEWaVUXO8Ij/gBY9yVMhknvfac15nvttsNjJv3kTPLy6c7nc4HH3ywu793cLRrlH3/g3f29/cbjcbq6mqtVlNKjUYDsIj0fV/JYjQa5Xk6Hg83NjaGw2Gn0+nOL1hrlSo9Lzg+Pjpz5kw9rl+79j7UsXmeW2d9P7DIedwnhFCKx+PJYDAIwzBNs4ODg3SSdbvzSinOvbJUb731NiGkVmsQIYqiGA5Hzg2CINjd3T04OMAYE0JhgNrr9b75zW8qaWq12uLi4uJSZ3ftMC/lhYtnN7a23n3u6uOPPnl8fHx4eLhKz7PzFy/EcWicdRg5bPMyGyfkgQcvr6yuDIfHQSgef+qhp37sse9895sPXD5/7doHV957Kz8prUXjJKGY3rmzAQJnY8zzz79Qq8Vzc3Oe5x8fH+M5urq6uot2+sNhWZZRFEPBPUnHWtkoiqDuieN4d3c3CmKtdVEqT4g4qnueN5mkaZoZYwhmdEo5AQGOcw5uvzEOuRIjimB5ueoJIYQQiqzV+/v73fkOIbgs1dLSUp7nWZp6vt/pdNrt9traGgysiqIEERamlFHhHPY8AevJ96kxzhl7cjIQlO3uHGKMtdEPPPjgwsLC4eEh5ax3uM85Rwh7nsizklFhmXXatNtNY8yV995BjjTbrTAMrLW1Wu2+y/5cp9Vqtd544w3GmDY5aOoffPgypXRvb8ehhfvvvy/L8q2tLWNcOsmIQZi4osyM5XEcc0HzUZGmuTVuJjLyPE9r6ZwrssIPQ+ccZwz2ETj78zz/y3/5L509e/bv//2//6Mf/QjaJMBS4zgEJt/B8UGWJ81mc/Xs6b3dgzRNZ2ZnCM2mag5aIDR17zJGWXs3gQSqdkB+4Z97nr+0tKSUwoKcPrW8vbN7cjLgvpemJUGgNHGIUCQs5xwhRyyhhCNEgiCEABaMaBTH1o6PD3uwSxrtgKZRltUawIxia0F8BwS9qhUBoz4qiqLwPA8yr+r1OlDptbLWIEooRhS5yj8Iqp88LzGmRSHh4IeoOuAKZVlWlmUYhu12u1Fv7W9vP/PMM3/n7/wdsHg7Ojqam5tbXl6Wzr799jv/4B/8gy984QuPPvrozs6Osej++y//6Plnd/Z20zwLguChhx568fmXanHDKs0Il1J/+9vfPjg4mEwmR0dHzWZzfX19PB4vdDs3b9zu9XovvfTS7u7eQw89dPr06TRRcRx3F7tzc3Mf/4lPfvmr/+7atfcPDvaGo0F70MyypDvf8TzhB55U/tHxntLSWDmZ5BhTzr39/f3Tp09nacE81mq1tra2AIJgVHCCjS2NcfVGPByMkyRxTgNrRmnLGL1169ba2m3hsbm5Oag1V1ZWtu4cS11CTvF4PDrpHy4tLZhZkLFz8/PzeX5SlKWUcm3tTjKQiCDWYtABSinjOG61FosiIyVRStbr9aWlU9ZarWxZJLDUT05OrLXdzhxCRAgxHoyTSRb4eZ7JOKoDzFGv12q1Wu/oYDwZFGU6SQbWSa2hOaFKScBH8jw/OTkhhBjjPM/3uKCeGo+S3/4//s3K2fNloY6Ojpbm281GDZtSlnI2Uy2VYZxbi6qAIIJg5cCRRgjB2IF3vBBCO0aF0A6VhUKOUErLUvZ6R87ZWq22snJ6d3cXTQNDnLOl0jjLKKW1Wv3C+ftur90sSxcEQZpNNt9a84U3v9DtHdUmk3R+7r6iKG4dHXc6nc9+9qe+/f1vNWrN/b29OI6KolhfX2u35xgTKyvL51fPb2/tc0Gt0b7vl6VijIGynhEM6LyyBmqLIAggDWM0GsE8r+reCcPEEUcMcm6a/0MQklJqEUgpMUJh6GNGCUXWOUJdGPqcc0IxIWh1dVWpst/vSylv3rz58ssvR1GUZdni4uL8/PyNGzcsdoL7e3t7nAvOvDt37hhjmCeMNoBQEGrzsqz5tVymFGFpaK1We+qppzY3N69cudJs1qXUlNIw8KUqOBcMU8xB3K0dZBMZU43NLDbOIOysRUB3BUiXEialFNyfTFLOPUop+NFDWXZ8fAz3V5XSTEUbWZYZbcMwxMgdHh4K4TnnOPMCz9dar5xa7vV6QKcCrApbDHWVMQa0b/ge9ihheIaDWKDXGUUxcQ4PBgOEEBeCUoIQeuuttwghURQRghBlDz/yUGeu9t67V6K6t7jUSdKhtiqs+c12UOSaUp4XKaWUY3583L/+/vW51lwyKbvtpe3t3Y2126dPn27VmmEotC7SdJLn6anFZa3sxsbmZJyVpQrDGIaZfhCfOXOaMXLQOyrLHJE4DMNTK8tra2sYEy68VqshZSYEeeCBU4yh45ODvMxr9fDs2SVjzJWrV+bnFy8//Pjat65Hcf3Tn/uJN994pyzV0sKpZrP93pWrnAtCbbNZ17ZMkkQW5axc3trdoQiLwD86OiKE5Lm+c2uDCHT27PLRUf2dt6/cubNBiRDCJ1gYjXKVeZ5HKSOYa2m0Us4gypHVhjIspcKYWK2F51uLTOmG6dhay7nHGNLaOme1s74VFltjtfBYvV6fm5sbDMdlmYPSn3l0OBj7ARceb0W1yWRCKb///su7u7vvvPHe8tKKc0hJOxyPEbLGKkq5tXZh/pSz9Nq1W3leNhoNrbVxRqESjlRCEcY+CA4IoQghVSrkibXbG4QgzxfW6nEyqdVqrVYnCESe5wgRUBHBfCXPc4wIF0KbUisNggZG0axlhZ4B+gGw7Id8KkyB74zTNAU2BPBe4Z8ooznnyGFmwRQV5Xkus7sWVYQQwFacM4DhEsKhNm00GpPJBH4izKehqZCy0Fo7Yxhjvue5qfxzhug55wQSjIFNPNFaW21834fcP1kUMxovxndHNdZazLDvC+e4NooUZBpLRRGyGIJcnXNTVSyeeRpM2UPAk4WOAvA4cAMAXBVZBHhunmbWWkIYMFihrE2SBNBPQMoqGjhykEGtrEak8pgmhAyHw0Zcl6UOg1hK2Wy2J5M0yzKECYDyQAJCCHmMw3TfF7xSeExpvL7vK2NmZmhw6SqLCVJBFXBryrLQWiMCXShhjBHKICwOaq08LzgV1k5Go1EYhowxwVjgebkqYOrjrMUOUULp1DoDqixgBDtnlLL3yn6nL2BLWcZAD+3UlLoBdtNaa0KQ8IhzjlAEY2M/EDPs2BjjnAVyldbKYiSEwBZgKIMxpvgu9Q9uHJqyocuy5NwDw26LkLOWUmcxeCwiTIh22hhjnYaVgCnBxjlrEIYULEIIMboSJsPllapQuuScOoKTPMEYW2cRdsboWrPdaNayIo3jqCwzpVSaplEUEYyzLDfG1Go1xhhChFJZrTcutNZlWSqlwICVEIKJA1NXMuUmj8djyNWAtghhl6Zpq9EUvuec832fEAJRnz4PfC9ECEEEAuiQZngBpRRjoikhtuJqsKnFhzOVtBku+3A4zPO82+1SSoWA2ImKNV/KHGMMLA0yLbbvQmOIzTgwQJGjlAKQD0bMjhDOPYEcmbHvEQLNspSlH0XOVWRzQghyxDqNjIEHFp5ToPfiKhLwrsjaWmScRlP/a845SCHHaQI7pO/71rq5uS6ltFarPfjgg+PxGDliDeodHidJorXW2nDKkEUTnVo7AfwqzSZg6MwYGw6H4LzHuRDCQwgjhPOssM7U4phwoaTCGLeazTzPR8PhYDAIAn9ubu7999+D1Lt+PxdCLC4uEULScWEtyrIe5Fz6Xmiok1I6i421w3yIEFLKUMq3t3db9QbzmCfC8XhM63EQBBjRIklMaZzDtVpjPE4g39JaZAymlHOMMKKYc4wpoeBSYj3OLKoCjdbW1ghhUqnf+q3fmkwm//H3v3Hjxg1CyGAw+OCDD86dP//ee+9duHBBKfXBBx+g6chhtpFWmJRDziCDrDElIQji6IqsGA2Gvu9TzhgTYRgba+GzgMe374fg0nZ4eJimKederVaz1oJ9PEaEYEoYXl5eDsMQxC5KlZTyWq02Go0YY9bqjY2N5eXlej3+2Mc+gjH+va9/k3OeZQWwAo6OTjCijDHBubMYjPhhf4ZTJq5Fvs+4YEHgYeys1VmSHB0dMcZUKREi43GSZRlnnhA+bCxaG0oxiCecFn8qeojc3RfAfFmWEYLDMIqiCCDF2RS2rOji/z+2/jzKtuy8CwS/PZ/pzjFHvDnfkJkvJyk1IVmSbdlWGwM2nrAxZVOs1WtB9aJdtRZQvWyqq93QVYVdLk8IhGhjDLZxucpCBloT1pQaMlOpzKeX+TLfGC8iXsw37njmPfYf+95IAb5/pULxbtx7zj57f9/v+w1IK+Vnun54c/pv/SYJM2MlhxAWQrRardFodP78+R/6oR/61Kc+OZlM6lq+4x3PIoSOjg/+p//5H/rBWLvTfPW1V/6/v/0JLujmw/vnzp0VQty/f//B5r1mswlgNzY21tfXyczj1FjrGs3YAj4+Ps7yTMnZvEpKiTE12nk/n/MXzkYxQ7Y2xfTgaB81u/2DA6ftzu5uluda61qrpNlo9joWoao0mSxZHGOMlTG1ViIQQRQ2ms3BeJK02lVVKeuUdRTjg6N+q93othtFXdmxcc5ySpHRgnFCCQOujCNhiOMody41ulAWcw5We3zXHzPGWuu5sbNcd4QJeAEfAPgdFcBSSj/4wQ8GQfBbv/WxixcvPvnkk6/f+ONutwsAWmcY4yiKrAVjPCIB7jT6z3tfIKCI2LkAxQ8YtDGnyg/0n64IMBbRPxtu9o+VxytOEQn9Hf4bBgF6WzPkTt/T/84pNRAb8MpUZ5125rTws3PGsZcpkLmh8Owphpnc4RTRnmGs2vxnGLf282OMCZ1txadHBsJY+PTL/9QwxO/zc27WzDfG/4mqLOtqppj3p7l9u36Yf3NfRsw4XjOyv5e7EUKU0nruFgUEkzlXSMqacwYA1hqMWbPZajab73jHOxaWFnd39x483KxknSSJEKIsiziORMDi2HvZ47IsNbNKKT+yPS0UvcMbAFiry7IQgklZaVNdOn/h6aefHo1GTz755M7u8e3bb7TbMRdIW6p03uk0AdnJ9IQxtrq20T85sE5GUcAY2dnZ4oxIlSVJ0GiEUhbWhpPJiDH23HPPGWNef/3baZbVdbm4uPjGG29gjK9fv760sjwajfrHA8K4cbrdaSZJEkSBR7fquo6SRqfVIoQYa7U0AJBlWVEUSZK0223f5K5trFvtqko6ZxqNRlmWSRQBQFnXHn83xsxjHqLBYFBVVafTAcDtdtcYs7TYvnr1aq/Xe7B5e3d3t9FqI4K//OUvn22cS/NsOp3GcUxyQs+cXbXWKiU5p2Wl2u0mILe1/ZAQZJw6PB60ZOiciRpRmuej6ej4+Fgray1Y65wBSjg4JHi4uCg8oEkIo5ROJpPpJAuCYGPtDCIkz3PfYxRV2Wq1/PTAz5QYY4PBoNXq+B2WYKa1rirpHGBElZ8b1HpWV8EM0wGHvRYSOV/REISZm2mQfcCIY4ISB4QQrVUYhqPRZH1944nHe5Pp1Fp7dHRECBkMRlprb5TJBfVBGbNMdkqDgD/22GM3v/16UZVxFBFAMwM7hI+OTgDwZJIKIaIw8atfVUo76ZwjBFNMnEPpeLKXZ0EQjKcjQphSqtfrdTqtqiwPD/cvXjyPiRNCTKfT5eXl1dWlfr+/vLy0sbG+srLSbrcff/zx27fv7u7sHR32jVHe+Xo8miplGJ6pyYxxvhuRZQUABtxTzzyzvb3tra8CEeiZmwyEofj0pz/96quvPnr0iFLcaMRpmoZhiBlGBImZF6077B+N08m5c+dWNlZ2dnYcOKt1EAQeYtZaO8t8yyGl9KI5pWaJomVZlrKOoggT8Kk1nvQhhDg8PJpMJsi64/5hVhZVVVNKrZsn7c75IwAghGBIUIoJZtaaqqrSaa71Ybe74P3+TssaTFgYhlEUAcbWQpqmQDA4x5hvdGYkjoBSo51vzHweIGOi1/PE3tzXsujt3Qxb6wihRVFVlYyiaHFxUWt9dHRU17VSRinVbrfb7fbe3l6WZRsbG4uLi0rXSqnbt29vbGx0u90br9/89huvNzvtn/zJnzw6OiqK4uzZc61WMyvy97znPdPp9ObNN6y1q6vrjNAHDx564oZzLsuyVqsFFr300ks//dM/3e12+/3+vXv3tre3Nzc3n3v2nXXt0Tr1Pd/zPVeuXGFUOOdCLpxFPnK0ruvHLl86PNzP8/TylUtZltZ1GSfh8kovTflkMDRGtVoda9DBQX+Spv/9f///eLSz99u//duBkIwGUlUIIYSdkhUmjmFmDeztHaTZSAjmnBNCAAZjaBgJAOOVDc6ibnex3W6Ti+FoMmSMZVmaZUbWem/vgFOCEApCwTnf3z8siqLRbB4eHi4s9C6dv3b37r23C1aLPNsuikLfWTnnpuMJQqTd7gohFhd7Dx48kFLKqu5b12y2tbJMCAT66Ojo+Pi42Ww2Go2lpcXxZGidTpLguDh+sHnnwuWz41dHSldh1KxUQTBF2DkwWmuPF/uZGaNCcGZAYUJPDg/qumYI7e9sUTDWaIKMM7ZUpQWsaoUoY/zt5hYAPDzkCUmEMGOMsoYxFhICAEVRYIcIYZQKayDLMuccxiSOYz/48QwOL+j23x0Ajo9PJuOUcTwej7Wq03SijSqrYnVtKRiOh8NjrW270/rsZz87Ho+//eYbCEEjaYmABUFQZLkQLAjCvfHBSdqnjPV6vXSaV5XPAnW+lvUFQVFUOs8QQlJKH+rtYSbPayN+dkUIIATIgrM+IHgOH/AsyxBylayvXHmMcAbY+bb5sccey/NcaYkQOjw8VEr1uovdblcbGUXxuXPnHz58eHIyWFxciuNkdLBvY6CUVaWq66ExxmGktWacTNOxn0WFEbdOlZWy1lmDq6p6KU19/+mF9lJqYxyl3FgjeDib3gtujGGMGKOVF39YSximlGKMrJUY4+k0o5gZMztfOOdOa2tNJiuMIQzDMBJejT6bpSOo6zqOY4wIEFPXtdHq6tWrV69e+w//4T/kWelnse229aZGxjhKAVlnrSOYcU7quvbAsb+QAA4hZ60DrD2PwJ8sCAimGBEcsMDHbPq1EcUzYYe1WjB2fNx/sHnHuvod73xqZ3tPqpoQhxCEEe92u5cuXn3ppW/2+33GeSDi6aT8/Oe+pJT64Ac/fHI4iUS2tryOgOd5BkCTuEExuX9vizGW53mSNMuyTwjiXChVG6tu3HhVKSWSiCKwVtdaWuuMMa1Wx1jY2ztI00leFteuXUmnU1nr9Y1VSnjSCvf29rJ8vEqWj44fDcZHh8f7C4uduEFFQFmAtnfujcbHf+kv/cjNG68XRbG42EvTSRAJzphzLs9KY4x2yNX1PDGYaS05451Ob2/36K23NsNABEGilQlFbIymmGACGEgUJy5Ck3Fh8KyEdW5mZevLX60dI8R7k3pEESFFBQeAIKReIUgIZozmeZ6mEyllEApjTCtqIRwR6rrdjjSy2124detWp9Npt9svfe0mYCQobzUjKWVVTgSPKaW60scHhwe7eyIKMUHWzrwdtZG+F/KbMJlTQoxxShmrXf94RBkGsN5eWQp5cHDgmZJCiMq5sq6MswR5Iw4LDgFYRGY9ADhXFKUna582G16a5+Vf1lqvafDOg4wwX/rXdeWHYUppBFgIYR0y2mltAVDcagjB87wkBFlrhRBK157a74MQfOXmjbBgNlxBeObjMRu3+IMVHM7zXKnZTEgr4xA+bcAQ8s0UIoRhTD3422g0PJiI506XfjdgjHnTef8Tz3EzxoiAe8qjL418VeMBxMobLhGCCMmyrKoqzjmllDBaFIWvHBijVhujtNYaUwLW+cvI2Cx/GFlnjAoY17WsizJM4nlwlgIAcJgKGomYcubFGdZaSqEoCrBISxMFcTqZdlpto7SzdjqZ6DnrZ9ZJEmRnNhSzaClrrTOWYIwEkrXW8/wu79hDKWWB+M4eGCEktQQAxrjP1SB0Bk8jIJQiDMhHa4xHU2MMWOv5WnEU+T5Qz/NwfBTzKZhi5oE8fusiZEaqhTmC77+vHz8ghNxs+DEzQwhigRBRVlNKRRQAmZ1TyPfSRjttvEcTABgLgofeO8U55/PJ/RTBW27QebjQqUGKf5PTFv0ULLBWI0SU0tpIjDHn1DkDAICsVzADQsZ4JvasMwcAETCtNWMEM+xFdSIMMAXnoNZ1oxnvHexOJuOFhe6VK1fKKq/rusirg/19a60pTBJFBAfO1V45ofUsHpZSikPqHU58u+Gc8zpejSCIo9Fo5LP7/KLFGAvGpZSoxADgZfVhGOZ5rkCpWoowQHN90ukN0jNPG22tpZwBAAbszNvRfJ54dwqs+8oTIeThbD/49433DINwzgFYa72Pol9vzvjLNrOaRUAwEK/19nkqAOCc4ZwiRMqqghleaY0x02mqrF1aWiKAiqIweoaAK6WY5+L5AZjWmPiYSjjFX2b31yIHbydENRoNRGcxiaeO3tZa5+DCpYuc89t37mxubg6HwzRNtZ7x/bW2GFNrDVikndVaO4uKojLGLC4uZmlujKmKylM+/bQAYayNKsuy1Q58f+OZpz7eudlsaq3b7S5jglJujPPRQf5yZlnWaDS9c7r/J6fBj9ZaQhilCFmgCI9Go6zMlFKc07LMOaF+v0qSJiP8+Pi4KCrGWG0l5zwUUV2XmDLnHCbUOeeFwIyRU54EIUxKyTllnAvBP/axfzwcDAghXIhayi988YthGI7H4+Fw6JmeGON2u+23dD97oARpra0BizwZE6xFGHv7e+whAkxJo0EwxtM044Raba01vgMybmK857hzcRxzHjjnjC618hFQwAjde7Tf7naCgJdl6cAShhuNlhChcy5Ps7IsPQB6+/ZtQlAzTiIRGOE8RdoaoBR5OsV8kONV/4hSXNc1xjyvyh7tAlgpVZZlg+Oh72GrogawRiqGmQgi58BoB9R5ZFYIYQ0AYX8memjdDC6cTiv/7FBKoyhGCBVFkabpZJwSQqwFpSqP+DnnMJlpaDxI51WkZm687kl4jLEf+7Ef+9a3vvXmm292u92f/um/4pzz0+vBsG+dDoNwbW3Nd80ATojg7Nmzv/u7v7u3t9fpdIqiuHDx3Lve/c66rt94440333xLKTOdZsa4yST1+8DDufNyGMbdZnM6neZl7klmHAujdBgF4+l0ZeNCQOHwUVoZqawZpalOa2kdZlRpWWoZIgiTGGNaygHiQitV1pXRjjDqMCqriguBMTDOozimjEkpa1kqozEhlAeY4SzPGWNxGCKEORMOkAVXy/p4OEyllmpaSM2D0CEQlIGpHQDGAMZqOwMoAFuEfDDN7BpSOruS1rq60mEYUsr+3PveDwBf+MIXpJQ+DxwAKPWAZg1zb0B0is/OzDFYxIU02ls1xnGojIa6JkT4PWeWHX9q+gqnWOp//iJzd2B/0p1utjC318AYI5gdYTDHcGfNwvw33dxBdPY7Diy8Pcj3Nc/ckYx7+rzWM+2aX7Sn7+8cOAfWvQ1Ao7lbhXOOUIodtU7beW7EjIw49+6YvSE4gt6ORvTFzCkT3DlnfL9pACEEGCHrKCL+M4Ob8cFhDjGbudUVmruBcUa8d7PyAcXgPwJwzhG2/i6LgLXa8WOPXTp//vzR0dHNN95wznlcTinFKXWgL126sLa2MhwOtZH7+/uNRhzHjek0Ozk5wYj4o81T433tWlW63UkuXrxY11W73T6zvhqGvNs7zwURgrznve86c3bljVuv7e0PueBFUTBOzp07RzA7ODrc29tXSimtG43G2toKIXD27JnpdLq0tAwODwZ9AOwT8t58883xeOijVp1zZ8+eAYBOp9sfnBwd9v01TNMUNchx/7CRtJrtVlVVSpnF5aUwiNM0HQ9OOs2W33OiKHrf+953eHi4tbXV7XYZFY8ePQIAn3zW7XaXlpZGo1ExGhZF5Yn2WmtKcVmW7373u8+dO9fp9DxM8af/8YsLCwtPPPHE5z//+dfffA0KFiWNb33rNXCuKIpvf/vbj6aPeEDzPKej0QljDBNAGEexULrAmDgERZF5D5SvvXjjtRsvLy41P/f5rx8e7hpjkqShtc2zSinFeaCUQog4B4GI2u32DNEDIqVEiCCEu92uPzxEGBRF4b9qURST6Wg8Hvv5qlInGOMoSrKscM5VVe3dBr0NtLUaOXc64iOEYESd0xhjToPZEMY/8wR8EAoXVOl6cXFhZWVld3c3DKOHm28eHw2efvra2XPn7j+4OzgZdXrdq1cvD4fj6TQt84pSitws/ckflkqJLM+fevr63bt3KSbWOllWfomnaXpyckII9t5zXohBEa5UZbwxBcI8iTCmLUriOL50+aLg4csvv3xycixl1Wk3wzAcjQa1LFqtVrPZjJNkc3NTCDEej09OTl577cby8rIQ4f17m5PRNEkaziFnEcIUQCHkKqmRRZgyZ+ypa57Pwj537ky/fwRgKeVAEcGkKgshBKU0TSeTyajT6ZzuX1lZtHgL3nadd0Kwui6LIltcXEzTtofw/GaBMRBOEcKEEuccI6wapae+tN4xhxBcy3L2bAtxmnef57mU0mlTVRUl3NvfgAMlDQ25N4v0pASEPAAEeVkJjoUQKjB5Xh4eHlLKKMKE4LIsW+2GtXY8HnPOl1ZWgiCQslLKfAcePcvSqZQEh6ngtVaUCV3Luq4fPXqU57n/4n4RYjwLSPUbtG9aptOMsVoIsb5+ZjKZKFW3Wo3xeLy+vrqxsVGW5VtvvFFcvLi0tFTVxe/8y99utFu3bt26/dbdn//5n//e7/3eRqslpXz48OHDhw8vXrz4t/7W3/qN3/iNu3fv/tzP/dza2tqZM2cuXbj4G7/xG7/3r/51NpkCwIULF/I8n06nK2vLQohvfetb9+/fX15e9lzsL33pS8aYxcWl7/u+7/vIRz6yvf3I6Gpj41IURdt7D8eT4erqqtbVpccuCsEePnyQZZkQIk2ro6MjIRiAw5Qvr60KEa4sr1l0u9jc/q1/8o/jOOktLa6srByd9B1gjKFSEjOfjIzzvLROLi4sOzCEIMBeKVyXRQ1IIyBGu3a7bbQbjzJKUBwHhJAkWTo+Bj8WsxgzRrRyCLQxxuuLEULtdnt1eaUoiuFwNJ1OOQ+MVdOparfbk0ldFIWv5Mqy9vJeWanz588zJqIwKfPq+Ph4NJoYY5xFnVbr0mMXTk5OsmxqHW31IhbZzc37jSjGxABS1irKgDKS5mNKOWNMaqnGStYaY2wtaGXLYgpAoiTBiFijnNUJFxjDE5eu3btzezQZeZ1UXcqrT15vtlo3b74uZR1FESDrVx2l+NSG0vdWFPu4Z+0cQoiAc2CMA4QxMMwshvFoOjgZEUIIoYQSyhlCTikFGHHBqqLevP+AUCRYaK2ilF69ejXLUx9NKwJeViUhbHltsSiqz3/xc9ZSSmlvocOoqKvClxHdbrSwsPDi7ZeyrGg1exgxIURRVNaAssoh8Mp0IJjCTD+rjB5NxrL6jrAsSilCGGFrrbFGW+P9sxBC2ovL9EyZ5ZMMiyrHlOSj0Y3XXvOdiZT1aDTqdrtJkmTTnBBCkTg5HljtoiB++GDLS5nSNPWJRlqaVrtNODNWRVG0srLc6XSqqtrefhgEUV3XVVWVhXTO5Hkq5Ywlh5DnN2FCmNa2rg2l2DkA6aOBfAKVPW2AKaWYoGazXVWVtR4js4wKrW0YhthBUWSmruNuE2OoqpIQIoQwRsVxHDeS8XhsjSMM+ezyTNYnJydLSyNCiDGVtbbbXej3+3WtjHHzYpExRslsPjrT32EMehYuzPwp7uVpbuYkQKy1ZVE7BwgIRljKkhACCDijSlbaGmv14HafR2xtfWHzwSNj6qeeeSoI+eHh4cPNbSGChYUljMEjemVZE4KTVieO4/t3H8ZhcvH8pWyaW1eWZVkU+dr6Sp4WCCPG+Npa++TkpJYlpT3njNI1pRQwYYIEAeecpmnKGVHScB6MJzmlNAzDwWAkdb2zsxNFUSDChYWulHr30f7OzqPFheUsy06Gg2vXrmmtx+Ph8fFREISj0aARN9/z3nfdvXPr8GjXF51PPPm4H6c74zobvZ2dXWud1pazAEBREnAhyqqoShXHSafVtAasts6ANNqPJ3vNTpFXC72VJG7du7vlGesA1mhLqNVaEToDX6TzK4doHw1GiDHKGLW82u0tdJVSRsk4jieTSV5kGOOy1EkSYYwn06lSNcFsdWO1qsuqkr/zO7//zDOPt1rx4eHh2bNnuaDtdjNPM+tkVUlBQ4CZSUIURVpbY5xzihAGgADsTPwJMAMBEfGiWoyxMpIxRogPoMdpmlZVxdisdPecwVpKRKCqqrpSGCEE2BjjhR2+V7Vz5z7P4EjT9NQMzTcenjDiNHLWKaWkVITYeaPhIRhcK12XhdHOhygopWulOWWUYaUBUeLFwmqW2eVZbHjennl4ykRRFIahB81hnkPlw599d8EJJZz5qYA1s+7CKzP8aUIF90+NMcY3556tQwixTtd1HcWhNgSBoZT5xxBmvMjKv9WMxawNwtjbrPn5kMcIkiRpBGGWTwEBwVhWCs3z67RUp/RezxLCDpTWfhbivOGDsVpZcBgj6jX+AFjWqqhKaz3pMkYEpUU6Gg6iMFG1brValDKMZ50Y9nk1ztWy0kb5b+frLkppwIWUUlvHGCtUCchiRGZ5ADATnKnC+BLRF37OOeINjpUGgsuyRAgh7BhjjDLkYDweE8LCIG6326qu/VTeH2q+zAOYkbz8/aVzo2p/WMwFxc634W5OlbLz1+x7UUIMeN8YRAkVHPtEoHm0r39+T9kqMzzTaQBgjMA8T2lunuYwIG08N8XN/D39eiV+wYO1M7aKfwG4uZgXHBjKMOOiqqo0LTDGSSMyWvlexlrHMEOIWKfL0iCEAFnGGKVYWVVmxdLSUqvdeOvObVkZGqIwYkkzOjo6AHDayDSbMMbW19ezaWq0Zozt7TwqigKB9neKs4AQMvO2RhSRmSXF7GIiZObwQRAEjrK6rrvdnr/ak8mkLDKlFCKYzSIfpLW22WxyIgDAGQtz6zmPLXqM2LObvVpcSeOs9hiH/4nDb1Pb/NDLDxjMXCLtKcN+Ui6l9B7WxhhrABwGNHMXBYfpfJjh3QbwzGTZU9SccT4dd0amrutaqhpjTDGhlCLrEEKMCuXUKRCjZ7siOvWu9S8/1/HfAhOCtFba2nl4lwFHAcIw9LHGZVla63Z3d/M8397ZqevaOOOcK8vKSyCsBQyoVgVBlFKKCPJPihAhD/zg2QVBwBmz1g6HQ6fN2fWNq9eucc7qug7jaDjYt9YFQVAWpaolWOfDh8IwXFlZyfO8riXnYjJOozABRATlnLDtR3tCDFqt1mAwIjMnw9NoHMMJM2DKshz1+2sXNt7//vefP3/+P372c5ubm5RSKTVBeDQaHR+fUEq1MgihAheUUiFCqzRCGFlnnDbGOecQplVdqloRyuM4bjW7dV222i1fhNC3A3uMF1j4kaF3Y/vzf/7PP3z48POf/7yfd/pNlSDskANjLQaEkMPOOUiihuBhzWspa39gVWVdVCVo8KzbTqdjrSmKwhgjWAAAAQ+RAyFCaxzGtK6LqpLzJPDAI2V1XXMxWwDtZqvIcg81aK0//elP//AP//BTTz15cHDAOS+Kql+UjBNKSbOZBCHHGFMGStV+fG6MrmXZ6i4mSTQY9Hd3d6I4IIRNhlNdO4xJFEW61oUtrAFdK+OQ1pYpxBizYGunlFKh+DPBQ/BrnhCijXEOkqThXTeHwyFjTNbaY14zXxOHABw4DA4rrfzT6rdNY0xZlkHAAWZ+I08++WSn08nzPM/zD33oQ08//fSv/uqvWqelqrwSf3Fx4a233mo0kul06v2sMEaj0bDZbCwuLgCyFy5c2N7enkwmUkrO2Wg08ir7JEkYY7VSnn3SarXWz2yc7PXT6Vgqo/ICcIBCxJhYXFz8r37up3b3H7x+81sn48GkyJoslNZMs1xqRRjXZakdsDByhE6rsgYLjEhZERHwiBijWCCCIACCV1dXB4OB1CqKoul0ygWrlFRKEUZFyI1RCGNEKQJQ1tTaKKNRHAHn07oslEsaHbAAzlEA5QDAYocdQoQgRDkhZC6XMgAIO0QAg7Fqlh5JEar/9b/6fa313/l7f/fFF1987dWbjaRp5twUpWbu2GbmE4UQQjAfbhFCCEVaSeKpRowxxmoltdZCCGvncwjnwCEAIPPu6c9cLVorIXyilU8gnEVlelyLEMJZgGBGoz4d6J4WNqd8anDGYQx4LqCcmXDMXn5ghjGeTqczHic457SX34GzDmbV2uwAN/YUGiaEALLeWgrNL8JpITRnX719cTAlBGEtlZ2nL8wHfuZ02I8w9rCm0Q4ApJTEzSynsVet4ZmlNczzdTHCgKw2UhtADrxXYZyElZJxFHW73YODGX1YSsk5Rgg9/vjV5557jhBy585bh4eHSZJ0Op3JZNLpdBqNZDIeWqun6biWRZZlUtYrK92nrj9z5979wegEeZ9DMBj78gYZoxB2zz337NNPP52mkzPrq4PBwFp95sxqlmWNODh7bmN7+8G922/FSRBHDWMV51zw5KQ/DETj2tXrJyfHw/FACDEaD4VgiIAIg8PDg6qqlTRBEN24cePk5IQx1un0OKfaSGuNEEKqamtrZzAceuccPfdtHwwGhwfHQRB2FxaffPJJo92DBw87vYVLl688uHvn5OSk0WhcuHhOa339+nUfwudRC8YYJiTP83PnzgBAURRFXlFKMaJVKSnDeV4ihBgTly5d9vS48+fPv37z1q1btzY3N/v9PgsoZswj1BSjLCuOjwd5nEUuUtLQVjsejUbKqEplQcApJ36NtloNTFCkhIYLzZb4zd/6VYStcVYrv+XVWZaFIuKcnzrheKEiZdhzzoMg8toczrkxOivy1dVVKWWe51EUEYKltBsbG34Gu7KyYozL8xy5We3oidK+9Pc3mBDix9eEEIKpcwhjTDACZ5xzyDpHPIJgEQbGCOVUCPbgwYOdzYM/913vfc973nf//v37m/c6vXaj0fDAd6fVvnz58vFx//6dh0VRIesQwmEYOYwQAsbYcf8QrAsCrmptrfF1jBBCOxuGISFYa2mMs06bUtXOhEkDIcQwoZTGUdM5U+nSGPXmm2865xrN2Fq7+fD+9SeeLIpsOBxi4hYWFrK8nD548ODBZpqqZiucTMokEg839xhjhNCqqGXtjHGNKFlYXVItpaWejNN8mhtjEfiC3gCAs/bKlSs/+NGP3rt3bzweE0KSuNVsNvv9Pic4SRKfR3nz9RsII6VrzLFOi+FIechba02oYCyx1uZFqg80xuA1AnO6E/fMDjsXOxj9doAJQohzjihxMMtHDsPQ//Lpf/Ag9GQ9c4pVaY0xMsZ4c0ZrbV3XQDAAUkWpdRGIiFLa6XTG43FV1X7siRCa0z+tlNXe/qMwiDHGCHnfYR9cg2f2uLUmlPgxgLWAAlGUZa1VEAROE2tnHk+nc0IAMMb5gwAh5FWxa2try8vLyNkPfvCDn/nMZ5JGAwAuXjz/Ez/xY8a4W7dueUgdCJ5MJkvLC8YqbaS3I3DO3bx58803b/3oj/9YFEXvec97rl279tRTTyVJEgXBM8888+UvfuledudDH/rQj/3oj/76r//6zs4OofQrX/mKDz37oR/6obt377Zarc0HW4PB4PHHn/joRz96dHT0j//xP37X8+9DyH7ms3de/fa3xpPh/v7uaDTY299xzgyHQ4Rdo5FQihFGu7u7QgitgCBaluXdO/e1Nq12fDI43NzMHn/8yTgJ4yRM09SYWUcBAJQIABTFkRDCZ8T50ANKKaUkirlzJggigtl4PK2qIo4Iws4BlFUVxzGlNAzjmfUhGKVqKXUYikarQSgCZAGgqgspayGEr8J9I+TJdB5SVMrEUSOOG1VVv/nm7aIolaqllADYORPH4ZUrV4qiODje7fbaq2e6tSyKqt/pNS6z1eFx3u21AOmTweETT169d/eBcQjACsGsBYIpuDrLCgBcVeWVK9daneXXXnstDDECSxGejk/OntloNxtPP/Xks08/8y//1e9mWYYJ01p3u10eCu8V740vjVGU+kRTx7kXZVuMKaVU61n+j9HKa7ics1pbjGehW8YYSjnGWHAWRKFStSfuxQEDAEqwLCsqWC2rk5OhMQqQo5T6tMzRaKSkXl9fNqZOU9TtdpqNhjb18fFJkkQAcPfu3bqorz/1ZP94uPVwNwwSAGq0Mz6IBMAnwjtwvsoJ48hzErXWQRB4zIhSGjA+HedSSuO0w/759XuyButOmVNbW1siEmVdBFFIET7p9xHGrjY8CZaWlhuNRp7n/X7fv7lzhlIqeLiyutRut0Ma3H/wkFIqpbLcthfa3W632WweHx/3er2VlRUh2Orq8snJSZrmjLGtre3JOG2323meS4Q4FcYYox0LGKMCASmKYuns+nQ6HY1GShnGHQA4cICcl3w555xFRVX4xh4Acc4Z5ZSCcy5gtN1JoijCjColtdaDQR9jQIh6kxA/JAvDMAxjpYyUcn9//9GjXcHDOI59kpjPqHRzo2eCCAB46revZJ1zGM/CQ/zBX5a1/4kHxmdtu3Oef0SIdQ4Z45ybEfMJQlIqSnkjbMgarLXPPvtOMDDoZ7s7/UajnabpCy+8sNBbardbYRjt7x3XtTo+6mfZQ0JIs9WI4zAIAkxYVZU+N8xn+CwtL2itDw8P4zgmFNV1TQiRyiCgURSFMVpcXMTOptmkFfQ4C4bDUTotKBEbZ851e23O8dHR0XQ6TdN8NPIBOwQcgMP945GXbcZxo9tdODkZTMdpq9nCGO3t7cZx6D2LBoOBVytHQVQWNSGEEBwGsTFWa0wZbrYbXm+dHg0p4Q6jqqqdJb5M51z8/b//P966dWtlZWVne/8L//EFBBYcttYxTgFpQNo4Z63BmAIgRAlgjBE1SmEMiMCZ82fPnl2jnAyHw9tv3Tlz5szGxkZeFr4Ad85NJhOltHXw4MHDrCze+973hkE0GAxardbNV98yxhv4aqnKtfWlg/0+54JjVoMyekYKc2CcM36OjjCiDCPkEBCtvA0R9XIipRTGlgBqtuIoighBhSq7ja5HrCiCMAy9Vy1jBGMoS2OswnN7Pm1nnF84pefM8Ro6j7WhlGJK9NzaFQNFfhI1d8rChLl55EOaprXSBBFwWCtb17UImU8n892LEMxzIY3SSpk8zynlCPnkLufxLx8G1e/3PUsXM8w5r2tljGdeWjrr7YinqcLcptBZ65liJycnYGY9uV+fnuOslHLYxHEcxxEhpKhyD1NKqa2z1s4i15CbuStyziMRAcBwOMyyDAB8EAVCaDAYEEK8q4NPXebc+VGQ76+MMRhbQRmexzAqpTySLuVMIIIQIsghRKSUUtci4O121+tLnHac80BEw5NRu+1WV2fxNfuHB55IqJQiGLVaLWOM3088Ry+J/EogvmyOWDQYDLx3p6rrWtYeWZPGUkr8KNFa6+aB7xgQpcQoba1lnGDGwbppmkopi2IqeBEKEQSBbwKttZxwX1N5sP70dsCcYIXmFCQPUJ42n6ct7unt01o7BJQSSimihNIZn7csDcZYG0lZEIexp58bY7SWdV0zThYXF1dWlozRjx49SseFlMgbDWutMeA53YnOERwLc5/xtz0ZAMjMIHUGRDowzmEpK6WkEOL8hbMY4/F4mGVlkjSXljbKsjLSGGNGo4lHqynDStVhEsqyVrq+9viVuBHRkGkt0zSdTMb9/hEg22gkxumyLo6Pp5PJ6OzGuWvXrkQiGp0MiiJ7/Nqz4/HYx+6dws1KGq2155v72hooPW3d+/1+FEXrK6vNZiNN07IsgyDotJvb29tYE0qpn3z7mYRgwhdRfjZzelP8oyeEEGLmDGtN7eHjU74FAYQZtdZ6VaXnPfl/6Pm2QgjOKWPcbyan+wlQXNf1nP/lDTpnNDSrLPLuLRQ7ZwDP8BHnACFEKPhHXrDAe/chg0bDySkz3c1zq/yN8xujv30elvXF/+y2+uwpeNt53BjjibTOOS++Ho8nlNLhcDgaj4MgwJT4bsU7XyGErLEI+bRzv+Z1FAWEUYAZ9udtEBBCRio/upsMR3Ectboda7WUstFoLiwsZFm2u7svpc6zLIvSVqOZTtJWq5VNj7Ism06y4cmortViZ+nk5OTZp54ejSYPd7YXFhaMMXme+0k5Qogi7HWQ1tof/cmf/J9/+f+zsb5x49VXP/ZbvxGICCGkpdra2pFSMsYInrmIOAvWOOcsRcxTsjDCWkuEUFFkS0srqytrr756QymT5yXG0Ov1yrJA2NV5AQhhxlqtlpvvkwghpTRA9ZWvvHB0dBSGEULYu38wivxGB6e8S4eRQ+Px2DnDOKGUAUJK6v7gpCgqjrk3MVDSePMcf0J1Oh2E8HQ65VLJWmMglHKlFMYzcn2WFX7z0cogpBqNGAB8x5GmKacsz/Ovf/3rcRJ0e+3BYFBVZRBQhAgPA86pl5UAWG1ks9lYX1+dTEfOuWYrRthWlWq1G865LMuMMdNpUWRVICKKMTjMGEEIgcNSVg6jU36oc45iCeGfgR5WVV2rEmPsXWL8w+6HmpxzD5gURWWtpZQjb3jinY7sqeu99Zh+p9OpqiLP86WlpXe+851/+2//7V/+5V8eDAYedP7tf/HPz5xd/6t/9e/+w3/4D31Eygc+8IEXXnihqqreQsc6PRj2ff58WZZpmq6sLr366qs3b95sxEkSN9dXNuJG8swzz3zkIx/5+Mc/Ph6PKzmp63pxcVFbMxwO67KI46hJxff+5PddvXL9s5/9/NbW1pWrV//e3/t7/83P/1/fvH1roZOkRVqEzUpqR5C2MBlPailX19eXN9Yq42k0YeUqzKh1DoEBjCaTyXQ65pz3+0dlWeZ5Oc1Sa4BHPEmiZqftcUZMiXa2rmuMqdE1AADm2NlpkQ+zNGi2pdGNIJZFaawhDhxGCDmMEaUcCAZElKz9rIrhmQWrh48t9zZcTGuNEPn1X/9NY0y3u2C1M0bOoVjw9bv7jly+U6cIhBDGgCkCAM7ZqafiTIBCgFjiq31APqwXwduDt//8xTkvqlN6ygyVFkL4Uau11lhF5r7Pp9svzMe9pweu98TAMxNrjBCiAAYcgGOUOec8bDIaTgAwOPDOfqckYkDEzJJpHUJg58Rq+A52NpnnElt4O0UQzcU0M5ozmgcXu9mn9Zuw8W5USmlDCGbe8bksS61m03pjjLPWISAUYYw9DdTNR/uALMLIF7fgTaXxTNlkrW61GufOnUnTSZZNAVijEdey3NjYaLUb1uk4DPJi2ul2J5PJ2bNnG41Gu93inFLimq2oKHLGSNIInGs6Z7MiXV1dvnnzBsXEOh9LAIRQSrHSrtmKV1eXpSoazTjLpp1uEwCO+werq6vNZhtjuPHt1xBC3/d93z8cDl+9cWNxsR3wThjYK9eubm7e73ahVjLP0/HYOaco5RcunDs5Gd741s1ebxFjvLu7n+f5ysqSMaYsFRc0TdOyyo0xCNEkSSilaV74KxM24mazubSwvLy8wpjY2z24cOHS937vpW+9+ur9ew/KvNJaF0Wxu7tb1/Xu7i4hJJulIzBf41lri6rUWudlgfEsXNFv0VEUffjDH07T9Pd///fjOG40GpwFJycnPk/izJkzD3fuI8LKWhJCvHpGCCFZTTnDEtMvfOkLFy5cWFldOjk5PjrKEEIHBwf++IybCePo5W9+rbfQuHLlSmehcXCw1wwbr7zy6oMHj8DBYo94i26/timlVVXFJKaULi4u7u0dMMY45XVdW2ukVvfu3fOUGTt311a67nQ6YSi1tl4CgxAKgqCqar+s56QGi7CnvRhKMSEUHGKMAGBw1vs8KGtqWVprhOBxIjhnnV57OBw+enRw5sJKkiRKmUajxUT4+uuv+9bCWLhz547WttFohmFYVfJ0UOOvr9aKc4oIPjk+ZoRrbUMuvPMGxpRS4g0rpKryPKcIfDV27ty5dJxOp1OtdRgKRHEtK0SAMdZoxJ1OR2vpnFFKdbvdbq/jnNvd3plOp1KaOBJKmUYjttoIETiLlHSBSLQ2CEie1frwsJE0GeEIEWM8cYAaY5xD2mhA6NKlS35egTEej8caueeee66uy0db2ysrK4uLi0HIxV2RJEld10cn/dWNtZOTk6oqPebL+Iy9EkWRCJi1pIvbngF6WvNJKetaV1VhtOUkOPWz7/V6dV0PxiPGZxHYk8lkdXX1zJkzR0dHo9GIUmqkRsQL8QgJQsZYEARWSakqj+9bp7U0hGBve9RoNMDhU1IMnmvlfJ8pBBMiDIKg1qooMiEExtQvxSiKAJC1NgiCMxtLAPDgwYOynLE15ylz2rNp5kjTqQ382xu3T1BMp9PJZPKjP/qjL7/4jT/5kz/xQoNK1n/5L//lsiyfeuqpRiM+PDw+c/7cn/7pn45Go0aj8fWvf317e1sEsWdgjQZDQvALL7xQluXCwsLR0dELL7zw4Q9/+PKlxwb9k5/7uZ/71svfvHPnzu/8zu8cHR0tLy/nRfHWW2+tra01Go1vfOMbDx48iOMYY8w5v3///sc+9jFC2Obm5nSSffOVb/T7R8rJpaUFrSXjtKqqqip+9md/9tJjFz73uc8eHu6XRU0pr2u1vnZeCDEcDpWSALCwsBBF0eb9zc2Hdx892nYOaa2TuNnpdJrN5v7+/nRa+EmD1rQRxRjjqq79lcnzilLc7jSzLKuraZ5XShoAEsWxlJUnsiFEyrKkmIZhYA2MRhNC0PLyYpzEeZEyxnZ3d4RgXNCyqJWq/RPEOfUGTDM4ACGt7XA4whjnRRGG4eLi8srS8uHRbpZlnLPhqG+MCUIaJ/zipXXKYDQ+Lqvx0kpb0Gg05HHcIIxXlYyTUE28K1bhlRl+SKakA2N/8Rd/0UHwsz/1Uy7gjOC6LMJAjAcnX93ZfuzipZ//+Z//xjdeevmb36ScPbh7dzQeX7t2bevB5snJiTOGCur7tygKzFz7bMDNG3KKEJJSYoe1stpIT87S2hFAzjkvPlBKlbWjnHm3T4SQcxoAnENVVZsic87l05QFrNGIzVwn1em08jzngsRJMB4X/f5gMhnJutw4s2qMeuWVV65cuba/v7+3d3Dp4pU4jrXy1pnI8yUwIc6BUopw5onn/nFutRqTSer7TN+r56bUtaxljQgIEWKMldZu3s9bbQBAMF4pmRU5IlCWJbUQh5ExxmJCAE1H4yovoihqJU2EUF3XzmGjzLA/LPPcnjnT6rRFwDbWz2KMKWXKmoODg6Iosiw9Pj4SQjz22MWiKPb29upaLSwsNJvNo4ODqXelrJUC5YE5f6b6D/bE49e/+c1vOot8kc0Y84WmBzL8kDyM2j4d0YN6WlmEiHMOg/atbKcRh2HAGGGMTCYTPwvJitKXoWVZam0JIRcvXgSAra1t3xIbo0ajGSnezF1crbJFUSg5swvABDz53f9pT53gnGvlffDRKU7knNPKYkSrqmw3G09ef+LmzZtFUfi9CyNKGS7LutaKcfLiN14ZDoc84ktLS4QGvYUQIZRNU4yLKIrH47ExLhAhpRQjhAEVWY7AWlQHITdWHB8fa6na7eZ0kh0dHwBAo5FIWVtrlbbdbndpaaXX6w3TXQCLAPW6i5PxuCgKhEiz2dbaJs0mAKyvn+n3+2maHh8PCKGcNhgjUtZZVkZJWFVblNKqKtfW1n2Bvra29uqrr3osYDQaNZrdNJ0EQaCUyl0ODpaXlwGwNUgplWWZVmY0nBDqKKU+FMg5pJRGhHk3mLLMW63W3/gbf+MbX3/pha+8BErhKPYRSdZYYypKqXOAEK3LCiFCKcVYAEAYCucMofSxxy5qWz/cul+WZZIk0+n04OCAUqy1xZhprafTDGOI45gxVtfqwYMH3W730qVL4/G43erUstrf33/s4oXz589ORtMonigJVVVoDYsLy6WUo9HQT/KstVWpg4DTQHiqV5Vnzrm42fDOVIQgTAh1qCxzpcrFpd5ydzmKIu8M5h9qKaVSqhkkzqEoivI8L8vag7CUUsGFB6R8B6WUCsNw7iE7D9LBqKoq7+Mc0cj3/845rbU1DpBVyiBUn9KyCCV+YQgxc1RTsqrr2jkTcmGMYUyEIvCPjBCiKCQAUOrdIe1kMvFCKP8JvWdFkiRlWfth9inHx5/OdV2XZYkxFox7iNkYQxH2t/v04J6BjKFYWFgYT0YY40aj4TWthDhwfpYD1lqfAOH/YSrTmSuCEHPj6RlEO8OF50Ce923zNYMQIooSY4xWM9anV7X7ZcwYstYCxoSQOBRVVVFEAc9+zSvATo5OirwIggChqVLq8PCw02y1ksYBOjwFARECDMgA+IoLALw09dR+0Vrr9YJlWTYSvrCwkGeFP0AJzHpXv91512ZjjHNgDLZzUKOulLX1ZDJFCIVh6CxK09QXw27euHro2XPhT3+I5tRpMw8d8h8b5vZ3pyCm33X92iOM+qfeWOsRTAfV3MRJjsdVkVdJkgQB9yMEhJCxijEC4Dyv1mns3U4QQtPxpJIVQkiIkDF26rJ9SqcilILWp+YPWplTLou/s2Eo1tZWk0bU7XalrABsq9Wy1l567IKziCJSlvWLL75cVZUDzHEoBLPWPvnkk5RhwnCaphcunCOEGKMrWT548ABhrq1StSqKwmrDOX/0aDuKkmacrKysHB4eeiRRCOGdIqRUhBCpas4CEcyunkf4jDGEoiiMvalFM06azUa323306JFfaWaeSHn6raO588l3+jXbOeneX7RTLINzzhirsvx0fCJEFESRd0oBmJnj+dbJ/wlKqbW6rktfJ2M3w/qNdnMqtCSEAMbY+lkpMdrNZxIIAADPxIUzyAAAIUwIwQh5ddHphMDNg3PNd+i1/csYI9UsvcZXjLMyfm4B739NO1vneRgGfpMhhERRNJ2mrVYLAIy1dV37KY5f2378b7XDmNal9O9MKSWE9Xo9hFyaptPp2GhNKQXjQyxQnmZpGNZ1tfNoS1t77uxKt9Wu8sJjQwsLC2EYOodOTk6stbu7+95fxRgjpb527dqNV779vd/7vX/8x//2i1/84k/9zF+11nY6nWeeeeaVV17R2lBKrbGejfgjP/Ijv/iL/8Pn/+NnJ5PJKy+9nE/yeLWBEKpL6aVdflbh20Pva0QpJQ5bb+GKABMgBOtx+cQTT/xvv/prv/mb/+Sf/ZOPtzpdSjHnHMA98dT1C2cuJknSaDRefPHFg4ODwWDgi0N/lXZ3dznnrVbLW1hwzkFLaaW1YB0geir7cNNpXlXF8sqiV2n4bo5zThwBIIxxv/n4W+wDFfw+4N2BlTKcMka4rHWSJFpbpWoeMI+MRVEUhrHW0u8/x8fH3XZnd3f34cOHjTiuqrKuqzASTdqUUloLRVGMRgNKKWU4TafdbuvM2fX6fh5FkUazeLEZHKYBAIIgCEU8nWRWeaSYYkQJOEIYAnO6151uNf/ly/PkrLUOnPdCfbtLdVga6dl1fqRKCT99K+8x4h9eznm3271+/fqDB/dardbZs2effvrp69ev7+zsCCFWV1evXr366msvHx4e/s7v/M79+/etNbdv3/74xz/+nve+6yd/8if/3b/7d7du3VJKBSEviuLZ5575hV/4BZ8x8L/9yq/duHFjeXnZ8/8WFhY2NzcfPnzoH6ggiBCho8HJwcHBj/7gX9g4e77Zbv93//e/ax1813d96OHDh//gH/zSL/wPf//1WzcN2IXlJWk0DwQPhCpULdOyqkQUWnBSSkTwZDrN87Kua2es77cDxmdqITBVKff39yfTtNPtLix2fC6u35HKWhMEDkGtFQELAJTykKA0zw6P+5QzhKkFN51OQ8aN1oAd9mwgAIfBu19hZJydbXr+YPJqSK21P1/8/+WnNafz0dM9x+9FfrTgt000h5udc8ZYDNgfkZ5kKrXinHvGwH+5Nk7f/798eQWmc84P+d7Gf79jWGuQnx3NRCf+w7v5y/+mmdtqIb+xek9nv/VijDH2G5HfK4QQgE5zNRAAIP+//RtaOK0T/E/wd6QOornyFTCinIF1xiqt5zYjdBb05ezs972a0M0TF6y1COwpskmo0pV3bJ8Zjpi5XNi//BPqnT/9DaKYAADBSAhR1KX/tbouoyhAyGECStdVVTlnq6pcWVnmnC8tLXW6Z3wqZrPZtNZ0u939g53RaNTrtTGBssRSSuvMg837w8FICOEM9qeAt+nwf6XZbO7u7tayd2Ztdf3cmYcPH7z88stVVVy9enVj/cL9B/fSdBJF0Zu3bkdRQmmwvHRmcWFtcDL96gsvSlVEkVDKTz3U+fNnfR7VcDiknEkpvT9ko9FQyiDk/ITMOZvQkFKsasyYGA6HtZJCiOvXr1PCz58/f/nSlZOTwZe//EK71VVKHRwc7O0dbG8/CgVWWq+srgKy4/E4z3M2y1mZMeXrLD27ccYYM51OKaVGm7K0URQoVUdRdOXy1cuXL+/s7LzyyivT6dSPK77ru75raWnp+eeff/nll19/80boGkKIldZKnma6NFVVGW7G43FcNGjEl5vhUp3pRtgQnLz22muPdg/GoyxMkoXFxdt3Xr9999vra70//xe+79yZlVdfe/nWjbsXz15e6Z158cWXRoNJErtGMzbGEIIc2E676f2AlFIryz2tdVnWlCFrKIAnYVGCmNUA7lQtCnEYTSYpBgwOE4ra7baXmWBsT6sQNw/0JICQtT67yTnrEMUcU06xdTwI6rrkHDNGoygaDydVIQNOBRa3vv3G3u5ho5G0F1vt1uJoNOwfDwh1nPOFhU6R59oqL1m0BrRyTjqlIQhCpyTjrBE3lVLeH0pqjREVTFSVBEdUqSkVsq4xJ5RSMHCwe2CMArB5VStXBQFfWFhQqp5MJnuPdrXWGNNaacDEWbT98Kgs60bSjkVo6hQMoRhji8OAVVWlrOKUgHHEMUKYw85VMpNjjLEzDqzxSaT+UCdcaG2+feP1e3cfaCkpxoyQfFR+5QtfJRQlSTPP89dufruqKik1E4jQxnd/6PmPfOQjn/y3f/Stl1/K1BSQrWuBrJOyFkG6sbHWiCOBsQtmG5BD+ODgQClDKRfC9dZ6Cwu9dqPpn/9ms5Xn+ebmZpqmWZYRQOc2zpycnAyD8PDwsCgKIYS1GDmEEFGqds4wHDuCHXEUMyklI8IohKgfl+l2qxnEmDE/N2Z5npZZAcwEQYAQVkopBJxRwFxwbjQyWjGig5ArZSjx4gvcbicitFEUnndLWZZJqSaTFGFNqHPKGQ2EMOe0Mc7PLbyyw87zlKSUQRB4itDLL7+8u7u/u7/X6nTLuhpNJ//id//l6upqo9Mtlf7ma69++WtfXVxY+OgP/GCn01FKTSaTb37tK08/+0zIGgvdxuHh4f/5h/8GUXJ8dPDcs08//+w7Xvjil//Nv/7927fe3N7euXjx4nQ6feq563/9w//1Jz/5ydG9O3EYHw+OS5nfuv26MebZp55+6unHi6KYTrOt7QcAIAK8tbXFBX3yyccvPHaxqrOqzoyuEYWk0XrqmSuDwSDLx/6Or6+dV0oR7BCYRhIy3jpz5ly73X7llVfyMl1dX4yipMyLJGmUZR2FYmmhMx72hyMjlVTGrm2sxIlgjOpBVVWl98kZDMbD4cRawxhZWV1CDsbj6f5eP0kShBXnnAucZZlB1DpFKaWIUkybcfe4f2yMGZ0ceqJ6XSkpJQ8Ca53TblKUAChgwhiDEWKEaKktcs5Zp21nOcagwpA+fu2Mg5oLtr27jZBZW11pteKinEQ4cM71+4M8z4FzmkBts2xQ5dMajOOIYswZDdJxXtQaHMaWMuxq0Ddu3Hzs3GUAC3UNHCOQsqo1BqkVouQf/a+/ejIaOcCIcOzwk48/tbGxMTgcnBwPMcXWGo9eesgD/IHuMLEWGwdGyTwHaw2Z97raEkIQwrKUDrskSfzp6KxJp6rT6zBOpZQQBo04lrLisQBrQ8EYRwBub++RUYmv0qqynk6zM2d61jALpq7q0aR+9uln6rICiyYnessdvu893/PlL7/wrZdfbzbaGNFsmkulKGWOOKDgeS5YA+OBSGLnXBhGYcQWFhZGwxOlVF3kShlZKUwJpgghZGsDCOIgyfOcUSoYq+xUmZpRESCsDNEKEcIt9qaZ3FpFMKuVIZic9Mfnz59vtRqbm5sI+zBkOxpOnEXLS2tJ1Dk+GlRVtbGx0ey00+n946MT78mjdXHz5i2PLgkhxoNREEfLqytRFDFGcm+pO56GYcQZl1LVlV5ZWVFKK6UJodaAcwwcDVlojHKAMEIOLKG40YgpxWk60dY7MFRedWYsFU40O608z7e2tqy1Z8+ejePGdDrF2AFAXVaEkKosCCGtVktr2ustrK5KXUuj3WSSCsoooVpbhBCySJbSGGWRjZqBMaaSNaJUagkGMKbIOmddaRWjlGAw1nLunUmtdcoRZCpHKXrfe981nQ6LciwYqgFRRMBhwNZpbbFWpa4y4xwiVCDNDnePA7a2fmb16PggioP1tTMEi/7xMI4iwXgUC+dMXmZJo4VpUOe1UqbK5TSdcM7zPB+Pxz6fwBhjrInikHGqVKX0FJGw3WCU0qKsrXV5XVkL2uoyzwEgjKis0evTNw/2TpyDM2fPpWlq6qAscxGQJAkRQhTjy49dMEblxeT+/bt5Vi8vLxsDB/snXAQiSJJmaIzBmCKHGQ0O9g4RIp7UD6iOErS0tNzutnb3tilVYRhWlZhOpwhjaxVjASEoy9zf/8X/17PPvfOTn/zU8vJy3Os552olOeeqNEAEGIqQJQgiQT0Yp7VG1ulae8uKV166YZ0eT8dCsEuXL1ZVNckm84G0BAIIWxEExkpjzMXLVzHGh4eHVVX0er0P/18++Oo3X9nbO1BgGzwcjnbzQjqDrLScClmXYExAiTGGGIosUlAoKacqp4RrrQkWLGRKW+MsIw4BWuwuqlru7OzIojzcG169flFVdVmWa2srh4eHWis/UFlYWPAgKQCOgriqZFVUAMAo8SR955xWzlk8HqWUCAgJIYwyGifhaDSaubhamymPgc5YilJKqx0jyGqTlRIjhAnFGFOECXIUg7bYAbKACRbWas/YUkp1Oq2iKCworV232/aaR6WMw4pQYrWmgoRRXGQ54YRhUZalRRYIQogg6+rCYxyUO2rBOWSssQpqhByl2FdBVFBEUSnrPC+rUgVBAIYCscYYb78YRYFg3BgjbY2Ro4yGgQCHjDRAsHNoMplY42fMkedWY0phHuDum0xjFUIIWUcJc84ZcM6C0UjNDM24MobyEGpdSaPGKecsjmMuhG8aa2VYILTW2GEDuBgXrnZJkiRBrArNGOsu9JwDhIg0lgNdWOiNx2OMESIYENLWEEKMtgRTIYSxrigrKEqMkbe1UdIY7RB2xioH2BErdd1qdnBdA6BTCzVnLSEYIVBKWwBMqTVgpEOgy6IuC2/bTQyYOGpkaRGFIWOcEW6VlSD9MBgjGrDIAjgwziJwhGHktCTArLUYmKnBYul7Sz9LwBhxzkUYSCkRQdZaZQ2llDNurc3z3FodRQRhRCk3ptSmUpY654w0qEJxHAvGj46O0jRVSmKMW90WIZhHiCKwkI/HBUZCa3mKogIApZTxgFJOCTf1RCll5s4cnIdSSkI4oSRpJd1uq7vYmuaTncNNHrCoy4qyrvLirYc3lpeXMEJlnn/3R59/7bXX93b6MQs0MozSVrfpsBlO+1k2HVc8DIJAREVRYGSqUjrt0jR98smnlFK33rrdarXSTB2hsbU2VyoqTjgPALSxVlcGHJWlTJJGFAeMkeF4aJ2mQcwYy8cTjDELDaUkCMTWo23n7NmzZ1eXVzY3N/f3RgghsA6sc87J2jTbkdHO6BRjDMR42WdVVQacx145o6qWnisacJ6r3BqDieKcB0FECJlmhTFayjqOY4RgPB4zxprNlq+TZ/CZsgijgNGqqqyzUmuMqbHGYWTAgbLgMCCFLeWMWGNBIK21kSW11JjZkIkQekri01pbbLW1hBONDGdkPh7Avq90AAgR5ywAttYYQNY6h5gyoAqpmfUFvNbagKOUKqm9WYe1lvPAOhhPplEUJY1mUVYeXw7CsJxOJ5MJADQaDeIZ085aq1sL7el0mssSCJVGBpR2e93FhZYQYjjk0+GAixgDjhoJANRBvbq6DAD3799fWlpaX10ajvrPPndxMBjcfO3GcDiO45hSTjAhjhVZqqThNLh+/bE8L7a2tn7u5/761gd2PvGJT/y1v/bXjo+POaGqqjdWV37wB77/pa9/DQiN4xAhVFUVFfxrL37jJ37qJ6bT8WAwKLJsdeOMJ8oEUSyldN6cHiNrLWVEackJReA0muVoae0wFkVRR83u937kIzu7O8pUq2eXx+NxKU2n1f7oRz9KKZVa3rt3L4rCIBB+uOapNv7h8kOLdrsNAH66TwKqqkqIGGOilPFkRGW1HwZ0ut3ReJilOaWcYMEZIY4ppZTShBDGQmcdYGoNpFmBMQ7CuK5rTImqSqWMtZbhYDScOGQJRZQTHogwFNrAeJJprfNMe8ZfWVgrgNIwK6VBiAVBFEVGzkAdsGAMkrVGBDrdxaeeefbs2fX9gwfjyaFyuVKq0Wg04jib5kZrwcl0OFYSBWEEmoQBrypZV9ZaRxy3rmZMOCeVcpQi+LPRZgDHrPEDAEIxB2uEoEkYKKXKssQOByyy1lKCnEUIkNHSGIMoMVYCMpggBMQYNRyejEYjTkMw9LVXXk/H5Ul/cv/eVrOVIIT++I//OC0nzWZjbX25002Ojkql1Dueff7v/+L/8+KFiy+98K0b+c2YxVEYUcuvXbz+nme/687uGw3WXNjoqm9Xtcv3T3Yebj+UULTbbcSMIwZbaDQaF89fXOwuI4See/qZg+P+O9/5TgPw6c9//g9+7w+ww5PR+OWvv/rL/+hj//yf/9NvfOPLZY8wES4uddqCprIoqpGx9fHh+LB/DIhwzpvNZhyGrVZD1zLLMh/SU2tjpNGlpIheuXyl1WmXsiZ1iTEGwOAQOAYOlYUJwxAwYIyVswWps1KpSneCtnKkqGtMALxgGTAYsEYbpAA0AUQRQsCssz7hFgAMIJiPkTzhwxhnrSGEOANqPr0mM2MobxnsTaVmtq4eJaAIay0BQHHKCCmqsizLWtYAUBUlxlTVs0G1lkoIpqxEePan/8z1gglwQXu9Xq/X297eLgrjZSVYI4Swc2CtxQQsYAfOIrDWIQDsgWk7U2ZjAs75KGZJOGsmMefcWOXxZeu0NT5Ixgrm93PjLGCEZ6NBa43Rnh6uteGCMzZL4wCMHLLKWkppaRSllGDiLPL21kZ7MjgBmOUxWmMRwshhjJ0xxnyHIYabO1Abq4wxUZj48TOhyFirCHYAlGLArjZFLGJKURgExhiMEdMsyzL/wGZ5HoYhIkRwxhMKACxwRTlpd8OgQsYYQAHluD8cjtN8eePiu55/z/f/4I8trZ7/4Ed+sNtu/d6//p3N+3eiHWZ0VctsfbXbbDV2diZG1pgGFPP+0VBrK5DwpWDSiNbXl7e2H1ABYQyXr64NR4P9/lbQwDv7DyfZKAzjuw/udxcX3vv+dz/xxLVHjx4dHfXbrcX3vuPPUUonJ2OKcCyCS+fOxs341VdfkYV+5onn3/We57e3tz//+c/fv7ezurqKMU7TfqvV8s4qSqk8L3wpRXmjrmuL7Xg08eYzC72lk/4wTfOVlbVXX33t05/+LCGk3exsPniwuLg47h8xsEXpI4iZlPL4aBgEYRxTDBzAxlF8ctJ3CDBlStu8qNbX17W2W1tbeVlcunDxueeey7Ls337yT27evEkJ4ZxjhNNJdvf2vU6n9/LLr/zpn35xPMpQxOOAJ0nUiJuHw2OCjbU2SeIYJfSJJ64lsajqdDQeVqqcTlPGxNWrGwtLK+9+97tf/tYZytCHPvTunUf3vvSnX3jr9uu6klLqjY2zGCMppdK1MQHnVMp6qbe0sroEAEqZySQdj8eddo8zhAUGQFJqpRQCghEFcNaCECLLioOD3YXeUhAEaZrFIrDYSik9e+V0zowQ8joaay0JRRyEWutWq0UIKera05BbrZZUlbXWGG2MnU7TKIry/KSVtA4ODqTUcRJIKR/t7F174rGnnnqqrksRMKO0lLKIitFoMhmnRVZSJhAmFBNCqFK1EE7p2hdY0+mUMWGtAQzTae3JjLwZA4CR0sdf+DqMUpHnOUKOURGG0eLiorWWUj4YDLa2dhqNBgKilEnTVOYSUZamqbXAGOVcBEGAEHjqbhiKNM0dAAJrjFJKhYH3WBHW1o1GI8/LuS0sMsawINje3gaAKA5m7BKEsyzDBOI47Pf7pawvXbq0urp+8+ZNzvnB4d6/+J1PhKF47PLFvJgOh8OsKBFyCKCu64cPH549u9HttIUQo9Gof3ziEPYOUxhgeXn5ypUrw+HgeHDSjJPhcOjczsLCop/+LSws/PiP//jly5f/6T/9p7dv38aM+qEux8F8PkattUVRCCS8P28Yhn56xhjzo28AqOva762VqQkhH/mB791/tL+zs9Nutxhj/X6/ruuk1fAUDISI1685N2NMYIJ9azQcDqM4CMNQSsV5cNIfFkUVBIGuZ7xmf+M878PPNgHAc5QYY91ud39//8GDB3EYtVqtyWR0dHRUa+V9lgfD/vPPP//aa68xSi9fvtztdh9//PHxePzE1Wtn1pfPnDnz0Y9+VGt948aNj//zT1BKKeWf/vSnn3rqqStXHzs4OHjzzu2Qi62trcXFxWazOZ1O19dXP/CBP/fVr351f3+XUtrr9QAgz/M7d+6EYSiECIKgruvpdCoCoVQ9mYwXl3qf+cw30my8uNxttuKDg70/+ZM/SZJkc3NTK/vYY1fe9773RVH0wle+eHJy0j85YUxIqT0VrtPptFqtJEmOD/urq6utVmtra+fO3bce7expwHESEOLihAchyfNpt9ckpLe/d+ipYcYYQnCv19NaF1maZSV4L0XsMMYrKyvNZtNZVJWl1rrdbksp7927R8UM1vf6x7pSiOCqqjrtnpSaWsAYKym9bJBSGgSB10BhB6PRoLvYcdhJI9udhjfiYFT4UW1RFOfOnUOYYIzH46nDDCNCEJ2MS1Ub7Chjoiq1ViXG2MeDUEQBQETi619/YaG7+Jd//Mf++I/+gHEmBOsttAGgrtRf/Is/TCnb2tlFlPv6483bt/YOdrXVlGMAULKmQeQVl55ln2XZjIVHhB+EKmPQ3FFhppOdD4ellO12u67LoiwBwPsg53me0FhrzamvB9xirxOGIi+mxphpPvWMwrKo9vb2Dg+PnUUYk9XVZU5Zq9X68quvaWWiIDw8Ph4MRs8+++zmg63RaNLpNACwnk7BWWQdGHdaVDHGkHUWXJkXYdBst1phwB8+fKiVLvMKIeIMCCGklJUsk6hhjCKEANhGI262w/2DR+PxlHKOEXOOKqUQq5utptUmCDgACCGMVNYyxth4PM3z3HucKWU4C6MozvKp/7U8z7e3t/XWwyAIWq2Wj6OxBhACzjmyzmvVhRCNRoIxXl9fvXjxInLu85/70/39gzAMja4wtpPJ5MUXX/Q3whhNGQmCwNeXnnsehoHWOs9z/6SXZbm6uooB3b+/WdeSEBOGof/rq6urZVlOJpM8L/w7YIwBkFJ6dXXNa3IBUF3ve89cZJ2nNniEh9KZ4N0iwAi3Wo1Op/Nwe0tKiSmx2iilfEQcpcz6uGeEZtMvpx32YmqrjUEYnz171oHZerjjeanOOYyRdo4g6pBDCAglzkE6HXUXOk8981QQ4iwfS2Xa7db21m4Qik6njRCSVa2Mbjabi4uLx8fHJ8dDhBxlBM0dchljSZI4549gm0TJJB0njXh9/cyjR9uDwV6z2XYAnlUdiJBgGkRCKZmlRRAEe8cHlFLrrJTGWuSvWxxHeZ5SSofD0f37m+sbi5cvX/rIRz5y/97WaDSoqooyrLUMgDLGrAVrgVM2Ho/TNA2CKEmag8Eoy6atVsPPsFvNblnl1oJzLssyq60xZqG7iBDyDifPPffc5ubmt77xUtLtKqWCIKyqilHqHGKMeVcfxGdJ2Bj71CDMWBCE4Xg8VLpmjBnjtra2KKWD4+HjT1xdX19H2HnX46zIsiwLAhGJCAjmPNjc3Gy3u+12+8qVawTxu3fuM7yVTUtGOGMMEGht8zw/ZYtYsJRQMDO+TJZPhRBhFFLBpa4x9vQZlaaT0WCIMfAgsNbevXu31+sxxnYebjmMqqqy1qRpSikDL2RGyGrnHIqSyANSnsRnjFHS+B34+Pi43WkKIYJA6EmdZSlCyBhLKUUwc+b1jNQZw9QohDiA1VoFjKuqpAz73YPTmc5da2WMmlvxgJy/aOBNDLS3fpOmquu61Wqtrq6ORhOAWbbzqQUzQs5a7VEhSr3M0/lZHRV0ZuJsZ+IAv495xAoqqKsqV1CWJWWEc56maaPRON3rjHFK1YxyPLPax81msyyklz2FYQgEZ1nmk/Q8hU1r7RXfs5xAjC0CZ5H/LoQQ6pO4sC+TZiY53urEE5ARdkQT5xxF3onIVpUsipNOq+2cI4Q1m9zvRcYYL/47OTnxIwRMif8kHmv2t8M5J+u6KPJut+0RHyGEbyk9fdWXRoGIjNHOOa9cDMMAZll/s9SgsiyNdpwxykij0fDX31sBWqcrWSpVt9trcSMpisJbPcZxLCLPZ5cAANb642/m10He5mT5xVPXtaeMeb6eL/AMnFqRYM65tVgpxQVljIGHTo01zlprnUWT0RRjXJalf4d2u3XmzJksS/f2Jxpcs5lgTPOsUsYWRUYpr6qCchaKMAh4FCVFUZV1iRGxYBAmDgETtNNrF0UhjVSqPhn1EbUi4lEU9AfHnU7HOSdVZZTmnDFfugl64cK5g/2+Ae2UCSP+YOsBY4RxXFWVcXqxt7yzs1NkJaU8YMEom4Aj/eMTv0L8KiUYK6XiOCaEKWWMcbLWlAitVRAGrVZLGzlJp37zL8tSSqWV9ZlmQvA4jo+Pj3d2HimlL5w7Z6319Y9nd0opF5YWn3j8yf39/aIwslbeh8NY2+w0oyjp9/tK1QiFDow2EmFWlkVVl9ZAIMj58+eLohiPp941u9lsRlFclsXi4iJCyA8tKGW+TfP0ToyxUt6MaE5bc45zTn3IpzHGGK/n9nYTnh5L6UxI7uaKbP/InP5Qa00wIIT8jfDMfcb5zCmCEK01Qajdbnt2rTFmUuR2nqLpaSuEEGfBl5GeRBJFURAERVGUZSnruqqqpNEwxjSbzSRJoiiinFlrsyxrNj3wGJ85sz4YDHZ2dlY2VuMw6vf7zWbTOccCEYYh59zL+FqtVqvVunv37tNPP12W5c7OTtQMCSG3b715+/adD3zgA4PB4PDwkHPuU458PeDFBIKHL37j5Xya13X9qU99Ko7jZrNZFMVwOH7ppW86hzieRcN5h588z3/mZ37mZ37mp3/mZ35m5+HW3CrEAkAYhpWr/X+7OTfcgEPGzrwXMZZl6X2cPOExDMMf+IEfWFpa+rVf+zVCyPHx8Sc+8YnJZNJd6CZJ8v73v/+HfuiH/tk/+2dRFK+vr08mkxlXmpDV1VXnnFLSWuOc9U61Vy5fIYRube1kWWatwQQji4Ig6HQ6UtVVWQPYMBI+1NQ6PeeZ+soZjDGT0VgZjTFuNBpCCKVUXU+9DREmoLUpK0kIihsJ50G/358hBkBOy+miKFqtVqOVaJ3JWmfZMfgYTIsAKKOCUTSejq8uXX7uueeMLoIgyXb3LTZ5Xraai9ZQABpHSZ4X7Xa3yGWeVyGL4yjMsiwvykBE/ijxe7v//N/BNflP0WawxmitDaXEL0LfXXp8Y07ex1U1s+b3N0UaTQk3ThW55Jzn+Umz2X7ppZf8897tdrsL3Vtv3nz6mSeqqjo6Ovjghz7w3/zt/9tv/uavayOjRvJXP/KRsqwvXrh88cL5t+7ceuKpJybZ8O6929evX3+0s/cXfvjPA7Yvf/MbaZq++eathaUFETCl64XFrgjYmbPrUsq33rrNBTdG7e/vveMd79RaexHAK6+9eubCY3t7j772ta8WaW60CiOxvr76juffsb19z68rYy2htNfrDQaDvK59+1PLWkpZlWUURVZJLZVSqsjyk+FAKbO+vn727NmnnnqKCn4yHFRK+sPCFw4AgB14F8FT90vGYX4XtCEzirRWlv4nJhXYc/Lw3O5pNnN1iAD4J8K3Y2guVzq9LzA33fbePqct23dEIBAAsHPjTWutb1q9ptkZq2exqLOsQg/U+L/onX/+zAVjjPUuPX7T89x2rTU4sNY67xrhkFPawNsbpv+7GOBUcgTgTuUd/uNpNQs/OP1XpzTt06/vbTJmxGSM/Z5p55eIEKK09lfMZ1HYeRDOqUoMzZU0vhCaM4LBXxz0HV7P6DtMRfCcWg7OzR4rcODc8+96vtfrfPGLf+rt3LIs82CRlDJJEg+Dbm1vj8fjOIj8mzQaDX/TpVTOuWvXrn3f93//q6/eeP31W8+9411XLl9dW19ptVqjcdpMwm998+V79+4EfBaLnaXF/v6hcw4cWlnZGJyMAGBj42yWFgwIZWRpefnqtUvf/OZLRVG02nHAgqqSR4fH+/v7e7v7AJAkTULYZDK5ceNGs9kGa4MgeuzSZa+Y8QtMiPDa1dVWu/nazdcmk9Qat7m5WdflZDLpHx0vLSxev34dAB48eODvVFEUdV0rpQH0wkLDGjg4OPCnrbU2iZu+kh+NJp/73OfzNJtOs2az+eabby4tLcVxrIxxzkVRtLy8HIZhFEVnz549Ojp2znU6Hd8Cv/Ndzy8uLh4eHk4mI++v+9Zbd/I8d86FYZgkycnJyf3796MoYpQCwPLycqvZuX///mc+8xlv+N7pdIhmaZpKUsRhc319fTAY0BC1u+0r7BqNE8EFtYgtLC0WZXbl8rXX37h9eHg8zaQx7rHLF374L/7lldVOledf2v+SqhDGtqyy119/jVAXxYISVFVFXYNPenUW7ezsPHr0qK4lIYzR0nsq1bVKp3lVVWEY47nlVhwnly9fXVtbe3D/4cnJkGFapNny2qoPEvTX0V9ofyg651UzoXXOYTTzc4xCYxTG9OTkREoZRiIIIh+xAoAXOgv9fj8Iok4nZIwNBgOrzO1b9/f39xuNxsXz5xFCCNjiwpqztNtZHg0neVnMJ1eIceYVnAgBcnD18St7ewdZlmFMmKDO2lqWUdzBGBW6rivVW+iEPDytqJqdphAiy9KHD7e9fAZjihEdDsacF0oZAEiSpNbGW4MhhJIk9i2EEHNrGymrStZGaq2xxUUhOQ+0tp12r9fr3b59tyxLjInHSY1RVHCC3By3JUwEZVUh7PI8d84QQazTT16/Gifi6197EZDUWh8cTqzVgpEg4N3FrlKKENRrdxxYH0HQ7/en02lelABYa8sYE2GslNrc3BwMTjzrwSrtnBsOh4xxX02enJx88YtfPDw8dM7pWvodWSnlO2d/oLq5c71vnzwMp5Ty9PAgCLQ2ccyEEGVeYYy/53u+586bd958/a1ebyGOYw9YTyaTme0jxl6T6EWsMBtU1FJiTMA7nzAq1tZWms3m3u7RZDIBoB6zgzkHx2+C/khIksRr7gaDQVmWjUbDGFNV1cOHD7XWqio/9KEP/ciP/MjHPvaxF+FlZ20cx0KIM2fOfP3rX//g+z9wdHREKV9cXK5rlefpYf/4Qx/60A/+4A8qpW7duvWFL3zh+7//ox/80AcebN57cOcBQmh7e+ute2+srq4uLy/fu3fnu7/7ux8+XHjjjTeEED5i0Tdp3/Vd3/XpT392Op0yxpgQZ5fOPNx68LnP/f+qusAYHJg8TzGB4+PDokja7aaUuizzr33tq1VVh0I8fu3JS1q9+uqrt27darfbzWbTG6+32+0g5HVdra5e29zc3Hq0FQRRt5UYq0SAL185e9zf3z84TtPUORJHzdXV9Xv3NqWUKyvLzVYyHJ5Ms2mnvUgoPe4fWmuvXLnSarW8Mx3GuMirTqvlme9N0kYz225srQ1CXk3qqqrKsvQr2Vpby9IbN7fbzazMKMNKKwAgyq2uLSOs03TkzQcuP3a10WgMh6N+v8+5yIocIXT12hPayJdffoMSxCkqsgoBa8Zho9HJs3Jn5xFjTGlpZ26hFGN8MtivquLpp6+X5Q/tH+x9z/d8+KWXXrpz5954NPnq11/6tV/7jT/83z/VHxyPJ0PCkAO9vXN/VhzUNRHCgAECSatdlmWZpVUlPdmhqEqEECDLBTV+7n5aB/lOwBo/gvbyOqXUdDptNBoEYa0sI1wp5SxSqnbGJElwPDheXVtJWs2t7e1mqxsljaXl1aqSvsje39s5d+788fFhHMdVJbVzYdzYebTXaDRq5a1sdFVV/iJ7BMQ5B9Y5Y5VSlamsAWmlsXWajdI0NVIVRYWAKqkBWVnXjHPGmLbKWGusBXCD0fD8+Y3z588PxoOTkyHl4ty5c4yKSX4UBMFCtzcYDMbjiTYVOGCMPHr0SEopRGittRasxXVdZ6ms6qm3r+GCYkZHw4lnvQkhzDygAxwC54yRdV2HSeSbjX7/aH9//8lrT66vbxwfDYbDMSXcwxxVVRFCvPidUsp54JOjta79YJwHPpdZXbp0aW9vryiqC+fOa23H4/FgMPBIk7X2L/7Fv/Ttb3/7jTfeQDPrUulhqdMbV9d1GIaHh4da2TAMsyzD2EVJ7JxDnsHKic/YabaSZrPJBV1ZWRmPx1prLZWUmgACwAiBc0DpzOKZMqwd5Y4YY4jAZVl+9ctfaHRa58+eAwDMsDXgnFbKhVGotURAMAGEUFkWi2vtp599KmnwLJ8889xTm5tbX/vGV51Ba2srRlmEUBA0yrpSSk3G4/F4AmAxJnVdt9vtJEkajThN8zhuGOOOj7c9L0GIsNNeuPHa6w82NxmFOM56CwtpmvaWFq9cuTIYDIpsmiRJI07qum40Kil1r9e2BmTZd8RZDVEUdTqtVqt1cHAkpex2Wysra0tLC3mmMDo5f+4KY/zrX/+6v2V1XWdZoaXRynAeYEwHgwEACBGWZb35YLvVaq2urt+589buo31jiXMOOVhaWmq2ksOD4/F4yDnHyDWaMTgjZRWGoZQVQUgpOT+GPEamT20ZWMCKoqCK9uJFSvFwOKxkSSnNpiWAbbVbzzzzXFEU+/v74/HYWr2xsWHN4Wg0eOP1t9rttojCRzt7YRCDtc1mc31542D7KJMlcvjcufNL3aWbN9+gFGk5U/FjjAmjCCGGZ62On3cqq8q0NE7HcYgJ1trs7e06rcM4ZgGpS42BjIeTJIkQwUHAKaVVpdvtTqvV8lFCBAiAoZRHQWiMk1UZxzFAXpYzC1TGmNJ1lqV1XQyG9eLiIkLOWpckSZ6VhBqEsAODMWbcG/k5Tnie50YqQogChwkAAOcMY0QIV652c2meP4h96LQIuDaKCwbISVVTSjHhplJCCD/mOaVMevhjLjD0lcxcjIwcZcSDR1zweR+IPRfBORdFAbL+bhpMmNZyOBw2Ww3OuR/wA4C/tnPQ2ahKIUSEmIX/eKjXWI0QUEo87OVPJfCyTUoRJeBclucYzZyFT3tIX0X4mRZCyDmoqsq/bRiGgpGiKPK8mL+noJRKqQ8P+1LKNC0ajQbnXFtllBaCcRw2Gg3fcwZBoH0ehkMe+5419s74zXzW4oIJo8QHPfkaJssywQPvR5Gm6WQyKcvSOGusooT7zAyEEKHg3cmstYA8BAycz6Keaym1NcYo54xzptY1qlGIQ5j7SzrnADmLrHUWw8wWE2MspfJf33ue+p/7o4cQQgEZ4gDs6TcCAK0spdDtzkSBvnImGPvEQkIIpUhrPR5Ptre3OWecUOcMQiiOQ2dhUE6a7Xan00nTtK5rADcan6TZBAFBhCCMGaPW2pALjLGyCog1UiatmBBU60rlFROUMYYxWltfaSSRELyWpaxqhNDtu3e7rYX3vu/5MEi2dx9lWaa1NAZG47yqqiiO9/eO+4djhDDDVmubZTUG1D8aIoIp4lJqQlgYBZxzQrBRpsgKa7BP7+ScN5sJYKeVUmoGYwEgRBhmjhASRbHfsprNFkVkNBplWRaHEaWUAnUWKaMJoxjjLJ9iAsurK8fHx3KqhGAiomEkFpc6yyu98Xj86NG2c45KKEuX5/m5M2erSiKnjFVBEFg0tdZGUdRud059zBljGJM0TdN0Utd1p9MDoz3XNQgijKmgFCEyHA6NVJRSIDM3Z4SQtc4Y6fDsfaqqOOUGajtbPx7KoQhbimHuBN1ut4MgGA6HCDmv/EXIGaOMwUEQOuy0lkrVGAPGBMwsQIKHwQyQYixgoT/EjTGEUMaoL+OLonDWEkoJId6R3M/MirJ0zgG45eVlQkiv18MMA0Cr1ULGjsfjLCvSPFO1IpgZcLVWAMYiOOwf37x182d/9md/4Rd+4Yd/+Ifv3blz8dqlL33py1vb23/9r//1n/vZ//qXfumXbr3xlncdNMZmWZ4kaDQanfSH1to/+IM/CHnYbDbRPIHT80Vu3brVaDQwxpEIHEb+MSGE3L9//2O/+VuD476UmvO3vX0AgFLqPYI450EQeIMgQggCZK3VxvjBYa/X6x8c/Mqv/MonPvGJ0Wj4hS98wU/xp1map5mUEgGcnJx85jOfaTSa/f7J008/HQTBZDAQcUwINkaPx6Mnnnii3z8GAIKxMc4683DrAWe+MQdrkTKSEFKU2cmgTylNGrGSWmpjnfZwld/GCSHzqaqxTosg8DZu3srg+vXrVVUN+2mWTx1Ao9kJQ+Hd8MzcNgQBqatKa22I9r0h5Ww6zXxtzIg328UIUcCEUdFqQafTKfLy4eb9/b1+Oq1owIzmRW50rQ4O+17XhYBpXc5wIl1zThlL/IABnLNWz8E1b2n9Z8LNHvRXxoC1lnHiHK7q2lrrxxV1XXtczKNyCCFEScCwU7jVbCEECKF3vfudGxtrn/70pzHGcRx/+MMf/sAHPvB7v/evVleXt7Y3u73Wz/7sf/Xud75r/czaW7dvDQb9C49dePzxJ//w9/7o5pvfjqLox3/yR5dW21//entjY8OCWj+7fG/rrf/j//w31tpa5iJADmmt67W1pdXV9ePjwyyfPv74tddffwMhwjmN42B7+1Gj1Vwn6FP//t9/+atfe+r6MyJgeaqb7cbe4d5f+Ss/8d/9nZ//yZ/6iX/5sY9fv3jBYeSjD3sLC9XhYVVVZy+cb7U6h4eHUso4CKuiVLUPncaryyudTufS5ceQsVrrNM+dM0HACfGiBO6JXwQTQODbRsa8vRL2F8daiygVlGrj2b4zTN+BQ84BOIeR92aYPyZoNoMBdIop+1s8Hz8jhBAYi4hPmtX21KXHGwd/B8JrrfZWZrPWta4BAKyvHBBj1JsCWaURQlpbH+xsjDkduf0XeDOkZQ7I+irutFUEB27mXEEQdnbOThCCe2AXIRSGs9GygxmW7b6DSX06z/MviwDPf3CKAnsnfZhbhfiLY+fTLP/Azn7POsyIm1vqn1ZKXpLynRC2nevF/U+s92V2zrcqMB86Kp86C+DnrDzkRkt/eVfXVt7xjnfs7Ox886WXfbDNrMBQSgRBr9dbXl5uNBOl1NbWZl2XFy9etNYe7KfGmPv37z/19NPey+id73wOY/rCl764t3eQFYoxMjjurywtUowm0wHGeH1l/cqVq71ej2C2vr5RlXJ//3B3d5+zYHt7m1LabCU7OzuTySSO442NswiZ8WAaRc3HHkviuBEEwd7uAQBaW21KVb76zVcXFhZ85qQQpCgq7/gXx7Ex5t//+39/cHwgZRUEwfbWTpZlSZKsrKxhjPO0YJw3Go3BYOCc8+52fn8oq+pkMKhKaZ2OomhpccVaOxgMrAU/pASAXq9XVVW32yWEbG898qjxU8893en0jDGtVuv8+fN/8if/zjetxpjv/u7v/r7v//6XXn7xpZdeCsMwCPjdu3f7/f7CwsLCwsJoNPrc5z7nPRg558Y65GBj/ayUMs2zSToNgqDRaDhkq4nyN5RSmo/zOI47Z5pAUX6U0yBggGyjmYxGpXPu0qXL3d7K1sPdtTNn2+0mZe7s2Q3BYG1tDTmYjNPzF1uPP3711Vdv8EJWlaSU+So2z/PDo/3BYLC3t++jvTCm6bTMsowQYrQry1prDVD6U59z2khar9+8tbSwIBhD1hlnKKWTyQShmfs+zEfcfn3HcewzrOu6ppRO86yBUachpDQY40hHSZIAwGQyyfP8mWeeQc4dF/WFC5fSNO10OpTi8XhIDQOGykxOh0eH+0eU8IWFhVardXx8gk+t5ShGyCEEDrQHVvy1i+JABMTagBBWFEWz3V5aWtrd3aUYGWOeePLa2tra7Vu3W63WtWvXHj16dNg/bLepUno8nvjn8MKFC9euPnlwdEgIGQ6HAJCIeDKZ1JUiBFsLM8oAIwg7Y4wvrx3YlZVFbxl269tvZnkeRdHewf5gNPTHVV3XjHFrZ+AdocR7rQKAUjXjxCcaEUK54Pfu3T083Hv3u9995uzKweEeYwyQXlhsRyKo65qHotFYyotUzajiapBNe52u518HAW82A61nKRmTySSKwl6vVxSFxRiMzbJMCJFlWVVV/+IT/4IG1DnHOQeHKcLGGkJxHMd+XokxDqOQh4GUsq7rRiPxmcLW6qpCfjKGGfj3PHv2bDrNP/nJT64srrzrvc/fv/8AIbS6urq5vaW18lDyrOb4jk3NGGOMMlb2ep0wjMuy1EaqTKVp1mk1ZFlNyxoh5DV9vrj3ZZl3b3TONRoNz6YhhHz84x+/ffv2P/gHv+TPlZVLl1577TVP7L116612u72zs3Pz5s1bt26tLq7+7u/+rp9/LCwslGW5urH6/PPPN5tNxohndihVv/zyiz/wAz/wi7/4i5/61KecNv3jwZ9++fNe1O95Z+94xzuyfNrv9x1yWusgCK5ceez27dtaS84pANS6Go4OW61Y6arZTtJsdHLSf/qZJ9bZcqORfOUrX5FSRVGCEBqPh1UlSyHs7PygcZyEYeTNi322KRcCkH3ppRf39vZ6vU4QRDzAvYWlvBgrM11ebbY6j0tl3nrzLqPhuXPn0rTwVu9ZliEECLsoihyynU7Hm5DkeX54eGgNHOzvE8w6rRYACCGKomi325RSpWvfny8vL1PKqqrK0iLLp5zzM2fWx+PxxsaGlNXDne1Op/Po0Y4sgXJodxvTdDTNJhZFQvDRZHx8cmKM2ds/jOO4hUkYhmVZHx8f5lndaIjRaOocWuz2PEnTgQFkjHW9XrsoijgMGWPnzp27e/fuL/2//8cLFy/8L//of/qVX/mVl775ciXr5ZXV1bUzb9y6c+Pbr3/wwx/69Kf/wyg9WVpbfOzy+W63NRpNtNYHB4d5nh8eHHtSszHOR13hecoHYwQxZqwC63n31lrrDZ0RchjhOSRBwc24P/4BKbKinNkp6igOgiAYTVOM6aPdvYsXL7Za7YdbO0tLK0VVg3VRFCPQgSDOKkQoociCYyxgTJRSDXb2y7IkgIx2cFpUAcaAASEDylrrjDbKAEZgbJFmeap8odBudv7b//bv3Lt7fzge7h/s3rjxKmMCwLq5denCQsc51+y0F5YX1tbSwWBU1lmUhJdWz9R1XWRTQJpSJKVxzoLDAI4QIqV2zhEsKMGOoeFg3OkFlJI8L/yDvLyymGflafflO1WttVXaOl3X9f7+vod6J5Pp8cFxwEKM6MLC0sHBUZEXrVabMeY9WH2x6Ke4jDGtZa1qa52PX/d5qv5uTkZTwfj6+sbi4tLS0mR/f/8973nv+9///j/8wz+8f/9+lmXXr19/8skn/+iP/sgbvD722GPOuaOjo4sXLxoLx/1BwHAcxX7Pr+vaWk0p9ZAKINtb6IRx6OFpzqkQTGvpSzRjnJFKa+XtR2cfGzvswFqHMaT59P3f9ef+5t/8m7/8y//Lt197LUkahDDGqZLAMVZSOwDCOAGLMXDOe0txo8nTYlTLcm8/JQRZJzmLCUHOAGNcqToOI4fwcDi02od0Ka11mqZJkjAmnMsQIv3jw/FoAoAJpmtXr37rmzes1Z1mz1rdaXXTaTGZFAiN31R3L104l02m03HqDGRZVubysUtXpNa7u7vOUudq50yn0zl37sydO/dkreO4wVhweHAyHk8HJ6NOp1fktbW23W4BWK/hCLioS0kpBQsA1k9z/eXlnJ+cDPYO9geDMSGMC4ExLrK82+0uLS1tPtiilPb7R5/97KeNNeevXfZfjWAo64JzjgCVZentuY0xRVEEQRA3G8yJuZfIEGOstSaIEkTjKEEIJXHyrVdu7Ozs1GUBGCGM47i1tLD6aHsXY06IKLPaafzg7hZYQ/xsSjpGxPrKqqnN1tYOQojzwJhSyXpW0ANorY1R/r7Pmh2jjJUraytMUIzxeDxsd1bzPB8MRmAdpdQZhCjJ81LK6uz5c+12c3t7O1lMoijyPBFKqbWAHQB2dVVZpx1CmBJABBEXctHttft9l+XjsqqiKOp2W0rZIpfWIGuwVLMn0TlHEQ4C7pwz2iHr/E7u51VaK+ecNlJqZ51GCBmpvCF1WeaNRmNldTlN02YzyfPcIdtqNXzimW9UtNaTyYRSjnyGqpplmhlDEWiwVivja5jTBk9KKbX2KRGc+9OS+j0zjkNfUXBOLBIe3HRzF2Z/uBPCAMAaZ7+jl3MOWTcbAGhnMMaeWOeRXKUUoQgcYIw97+Hk5GQ0nJyiZhjPAhU97KvnUlzvve5n2Aq03w2McXmeEazjuEGAVaoKg9g5V5Wy1RYAkDQbXnjRbrf9pJnOU+AQQgTPIDMpJWWk2W6oWjJOjAYptW+G67qM43h5YTESQVFXGFFKaZIkzrmyynWtrLWIzQR5Usq6llqzIHBhKJrNpCzr/f19ZLMwDJMkci7M8zQrM0IIEEwI8hifHycAgC84fTOrnfatrpVACMEUWWu1Rn4iUtYzy3tMgBACMCu9nHNOO+1m9sqel82Y8Px6RoWzKDMZQg5jyjmdTqf3bt+5eOkCY3SWLWlcHMe93qIxDiGEsLFORmFEBMrSghDmjCKENBoNzmJjzGg0cqXjgjbaUa/3/6frT6Mkzc7zQOzu3xp75J5Ze/W+AmgABAGwiXUAghI3gcfmWIek6HOkOTJFDj2wrZHNkWds/5lDSpS4CKRMWhwIJEWIJAgCBNFANxpbo7vR6KW6urasqtwjM/b49rv6xxuR3RrD+aNOd1Zm1BdffPfe933eZ2lmZV7JQlvVDdrnLpzzfVHmFcYojuOlsHPnzh0pFRcsr9IwrA8nA9/ng0FmrQL3BofQSW80OJkI7nNKDcFVJZFhhLGy0Iw5hBwx2GMcDHCdsUo6zgJlc0cwNgghO52Nfd8DOxRMkEHGWuSUUkpx7g1HkzgKCCGTyQQiIrXWRVXOoVLPE9izTmstR9ORUlVeaGtNrR7jeciby/PE931KkeeJwWBQZGkYhpub6xsba86546PDyWyGECrLXHhMKXVwcABQrFIahBFpmmoNEw4tVQUxjwY5Z5S1VkmDrQOIGZYS4wuXDKsRIiBZgKcOY2ycPZ3onLKbKZ6z6gjB1hpAlBBCCM89ymG7RhQZbQCeoIv8QBA7w94CYA2Yp8yH6xi/lZlYaR16oCjFoGjxfV9LlRX50tIS7EKj0SjLE0pIVKsdH/WqSmGM8zzHiASBXxSFED5CBi3UkM8888ydO3d2d3fbK8uTyVQIr15rXnnt6u3bdzGmEDx43OvPZrMwDMtCCoOE8JMkuffe+5NJcnx8XK/XGSOw3n3fB7cBmLiDfbBS6kd+5EeEEL/927+9vLwKcdNKKUKY1nqulALN9VviE5VSRVnCN5VSGxsbv/Irv3L37t0XXnjh6aef/uAHPwhhGLBAgiA4PDx89ZXXrLW+74OswRjzgQ98QAjx1a8+BbAaxniWTAh2nBEpS0rnNExrCq0hXp5aY6MouHjpfFSLQPzu+wEqpeIc4TkUBdiXUgphmIL79UYDRuaw/JvN5snJCeiQKMNRFDFGqrLSWsMWrZV1ztiFES1CaDAYJGnueV6t1pjNnCxyQojvh5gK51BRZpWqptPxG9eu7t69s7/X49yjzm/VWsOTmTFqNsuNSZqNyvMCa5E1KCuTqqooZc7asiq0Uc5S9BZ6vjHqB6OHyDpkCEXWaoywc8RabTEkrrPF6WMQss4hxpgfBfAutKOdzpLncaXk6uryzs6dM2c2szwxxty5e/OZrz81Ho/X1lbf874f/qmf+qk/+IM/mOTDf/Yr/4f//J8/d/361ZdfffmTn/zkcxee/8rX/u6f/tN/ipCN6uEkHb/+1Vc/8YlP/Nl//uzBwUFV5efPn7dW9ft9Sqk26qh3qJSqKiUEe+TRh4QQN2/eGo76f/X5vyjy6ta1Nyolc6nKG9efeuopRji1CGMTRmL77u3f+/3fG54cT05Ojk76W61OmZWEUqBz1ev1ehSvLS+tr6xeunBRqera1avD/kAIAV43nPPpeMIIKYqiXIRhAtkLIFqlFGEIhs2EEErnoaZaVs4AtRbN53MYYcQWECqB8GTnnDWIsnnWJbw+/NOwecKr2UXMADxIFGOKMHFvuqQsKpA5qxQ+espZGIeB8CzFeZ5XRXna+kHLCcNUZCxoKI2ZJ/4R8oPNNCglyFjMaJ6VCFuQXGutqaOgKgA0GQ5K7eaEGGgiarVanmd5npdVTgm3i1jgxSpDBDMo0mCZnN4QdGoATTAhxC0QaigP3AKtXsyHkLXWaofAi93Z+XcWPwb1zykuD//L2ZwzjhewNRSQwE6wBhVF7pyzi5AJh1S9Ga+sdvuDnpTlj/7o+5Ik296+SRAuisoYPZlOr169+o/+0T86OjoSQowng7t374KOTWud5zkUfyf9/uc///kwDDGmX33qK+PRBNTFyysbzXrjwtn1paWl73zrm0qlP/G/+dnNtXWEkKy0MaYoqgobIfxut8s5P3N2HRLUv/zlLy0tLf3kT/39S5fPf/WrX7l58zoh5JFHH17b2JRSbm6cv/bGjel0+sjDj2ysbx4cHMxmqVLmcP9oqbvCqAj8iHD8ve+90D8ZFGnxrh/6ob39nTNnNh96+P7t7e3Dw0NjzGw2S5LEIWS0m06nQE2glGJKhBBxHAdBkGXZ5cuXGWMvv/wqHEzweUpllMqRI77HGRXD4RBKWRCmLC+vRlH0xhtvlGUJkdRSyslk8kd/9Effff452PARQoQgMOUriqJ/cvLmCMc5oFPc3L4FU4FWq4UQStPUUhfyqNLVLMuLXFU9tbq80gyXXr362sqsZFxQhLB1qtlsLi8vV5WK4salS/cIwfMqz/KxrPLXXr/69Nf+7qi3u77evXTprDWo3W4fq37Tr9dqDSjfoyg6PDzUehaGIUKkKhVCxDnEHNLKWmuxRRQRp63UlVKqypGu9LDfv31ruxbXoygyBjLBVK935HleHEdpmjLGGPOMMUpJa33QswFOD6evUlWz2UjTvNVuZGkxmcxms1Rr8/qrVyml48H4Ix/78Lve9a6XXnqpqqooiryASCnTNOWCWOuqSh/3Rse9EdxHPxC+j5zDFiuMURAExlpdlpTSaTLtnfRqtVoQ+Z7nNVp1q00ch+12UynVbNU559/73vdGJ5OlpaXtW3e2b9/MimIynmmthRDIsaJIDw6O+v0hJmR9fb3TXtrb25NZ1Wq1sqKCGkjK0hhTVnptfV14LL2beIFoNBpLna616Pj4qFarAeBuLSrL0hgH1ZVZ5DVTOuePBEFQljnnQltFCHnooYekKgtZWquPT46OT/aLougdHz355Hsvk3PXrl0Lax0q2En/cDDs+b7f6XQ8xvf2Es/zlNFrG+udSmVZYYzx/dAaJI0OgsA5wxjtdFoY0zzP8ySFCo8Q6kVzwjKEdNlFogLMJ2BvUtI4Up22ZyAahf5qNptRhqM4qqpKVhoChfI83757R5UV8A6maQLDmaLIYaeLa3VjTCErSnEYhgjjoihmSY6x63bbjUZtNJroSutKTrOpsRAJwqBMJIs4RNiUYaoxGo2Abw4BoB/72Md+7/d+p9/vR1HUrNUppd/61rd2dnbSNCvL8ty5c8YYn4tf/uVffuGFF37rt37Lj/0vfOmLn/rUpzqdVlUV3W57/2D3i1/8Iuf8bW9/7Etf/HKepw899Mjb3/72ixcvLi8vv+tvnvjMZ/54PB5ba/f39zc3NzfWtw4PD1VZQR76zs7OcDjEmAZBMJlMKpOLoE4plrqoi2B5eUnp4vbtWw8//NDFS+cn09H+3qEQ3nSaQI7T0VGvKErw0MAYDwaDIAgQcnt7e7BfG2MoIZ4nEHJaS47o5tZaJWOlizCKG+1oMk42NtcpDqVW7XZbSeOQydIizSYIoSSZRrU4iqIgCHZ3d33fj+M4mWXOYib4ce8EmlLMKEI4iiKp4GG2tVqt0WhIqXq9npJlGPrrW+vnz59lnDbajVorrtfr5y5uOme01pjYKArW1tYowwBVDPojKeXRUbK87NrtdlmOsyzLsjSKIo/zSTVGFi+vLMlKvfzyy9ZaKQ3n5G1vf0RrjawZDAYIqyjyVjaX7u7f7vV7586d+Yu/+IsPfegj/6dP/XNryOHxyRe+8IU/+7M/IdRevHTm0uWzccNLktlwdFyvNVdWukq1CCFKuslkxpkHvTFCyBFHKAE/BKvmmzW0UtZq0PsIzsncOGjuQwKCl+PjHiFUaa2U8jzhe6Fz2POCdnd9MDzZvn2XMZYkmZT7jAnh+UbZVqNGCKnX2lLPazhKqOC+UsY45/uBVRpIK4QgQohWBmFC6Xw2A3NsxpgzVuuKUMQYU5VOkuTg4IAQdvnyPU8++eTBwd50OiUEOWcRdvVGvLGxYbGVqjDGAKKhjFWqqCouS9nptGYzXpYlpZ6utFKaEU6Iw5hWVQXaWEJIs9mKIpLnOees0WhWWq2tboxGo+FwCKUJ7KVCiMooqGAsdlAadpot0u72er3hYPze9z557uylr33t6bmggXNrjXMOYaukUyrzfR/jeWpFmqZQDHY7S9qoG9dvWmMOD4/G48mjjz6KHLEGpUn+7LPPXn39mnPOWZxnpVY2CmtpmoZhuL62eXx87Cy+vX23lJW1ljGmrfHDwGqT5zlcIRc0SadciMFo0LTNtbWVW7eOB4MRDDi1MvMsDWxFIDilhCBlLRVAgmCcc0oxIciP/H/wD376s5/9zCsvvaStY4JAxrSxziIH6dUW40rLCxfPNZdN3PDyIgnrwdHRUVmoTqe9sX7OKnJ8dIIxVoppra2xjDEaMqkqbJCU5erqxsrKSlFUeV5OJ7vTaeL7MdTMN2/eQY7GUU0INh6PnWUYcc6D/skIYkhHo0lV5pPJhBGulR0Mhnt7B1z49XpzNNpHzkwmoySZvvHGdeRYrVbjnGb5NE2rWs2v19rt9tJkMtFara2tDEbjwBdnts5OJrPpNJGl1EoHQaQ1mMpRhFB/MDDzGEafcQF0mF6vFwZBp9uCDXxvf6cWNxqN2rA/EIwSwWthMB6PKeUIGYyQcyBnCf0wwNQySotKalsNxyOAHQPPBwujLMum49nx0Ym11vMiqNFvb98hhERhnWGRzYpZmiBHtXIe5kVWGGOQI1Hkg/HvbJIghMq8KBc4kUHOIIcoEXSeQkMIYoxWpmq3W2trK5haKWWtudlsNiki29vbZ7fOCSG++pWvlUlJOPZDzxdelmVhGDptIMcDzVWKtixLlZuiKDzCOPd838eISKkrKbnHz13Y2j+weYHWVpaNVUrpZrNxcjwuyzLwOMUEY6yNdsSBhvHkeHAqNQjDUBvpeR5CjhLmtCFuDjoSQiC09uy5M8vLyycnPWjVKKWVrpIs7S4vxfXadDq11lJMZFnBUev7XGttDMLYYuLoAqs1xjgzd1pU2jpjysJg4oKg7XlzeRNBFlGOsPV8XqvV/DAcj8fjyQgUEr4fCCFms1lRVPV6HSMkCwntZVVVxjg4FqGdWzxUXCnFOEHYEsKh4gdNKNQz9i1ZeVDbnFpnLL4/F5xKKTHHULZZ6wimGFOtLXaIcw8hEkWhtTrLsqIout3O2tpqlqTYoWazmSRJliUYUyQR5QzMPRFCmCAgU/u+r1SlkYTdpigySmmWZRUupNSEEIzdfLQcB1zQGq4TghgTgKQHoef7vmCccwZBzWGIa7UImljP80DaVRTFQuLgOYy44J7neYGHEAJ2nrXW6jm2hRAihGOMncVoHojKhe9JLTHGlM27VjMnNFnBuTWOOIKdY1QQguA25nlOMFMyn386hDHMQPIFy9Zaa6xinAWBhzGXVUkI01qFkVfpcpZNGWOMIyEopQJ8w6BfajQjY9TdvV3m4cqU1umoFgaBV8oyy7KyzJ1BCNvReOAXvu/7BGs4U5IsVUqFYXzfg5eLorh169blS/fW6/Vrr9+eTGYe8xDCBHPiHKYUOYQcMtoRij3mMSZUqazSCDtCI+e0MZoQWupClxpjFxiv2223gnq93nAOp0luDLLI5WVGKU7TGUYIY/TBD37gypUrN69d9/0AY4wcieIoyVNCqRcGk8kwiqLuSnc0miyAElvJMi8SmGm1O/W45hdptrGx5XleqcrA8/3Iz4Zjgmmj0RgOx9Y6xuaB9VmWhWEQx7G19uTkBGOUpgljDCHIo3OOYE5ZlhYAT5w+/4TAIM0QgikjnM8RKK01AOnA2EJvTn3e1HETQtI0naMhBDvnCHUYudPpERTwYBFDCGk0GnO0CKNTVLosSkQwrBFjjDGIMbxAOUlZyjjGVSWV0mHoz0c7hE6nU62Vtbbf7xOKVldXjTGYsCAMp9MpRm82Dspo0GeEcRTXa0VVXrn6uh8GSqkoqFmDyrJ8/vkXOf/9fr/v+74QfpqmP/uzP/upT33qz//8z3/jN/5VmqXvfPd7/sN/+A/bN27+wi/8AtDToOdXSk0mE12WiJBWpwO6tzAMp9PpjRdeaDbbb2n9qNaGU4YQ8jxeVaqqKkiFhcUYBMF/9bGPhWF47dq1mzdvjkajZ555ZnNz81Of+tT999//b//tv/3GN54VwoMdL01TEG/B+ppNpvVmA8yRfumXfinL0qe+8pWl5WWlq5df+j5gQwvCEyIYn26A4LHueV6z2axUBaQBjLCUJSOUCApjeGMQVGiCCyFEp9MhhAB5v6qqer1+8+bNNE2xY5RS5JxzhhAmhABqvOd5ShqtNaM0DEO4bxLJqqq63S5BtCgKp+f8D6lKa5CxqijGxye7jZawTjuHorC1uraRJNPJJM0ySYnvcVLkilGfc4G49byAOKSUBlUlOk0wmydnkoUe+3/9JbgoSkMpBpAUmnRCCKPMLL7IwoKJEBIEATxdvBa2uq3paESZM0b5gZglCiHnkL5162ZRFMrqG9u3PvDhDz300EMvvfTS9u61pZXOcHwSxsH29s3JbPKjH3r///h//3+87R2P3//APVHd3z+8e3P7+re/W79ze+eNN96494FLiJrxpK+NbDQ7hwc9JeX+3sG5cxd8P5xN083NrZs3b43H47IsBfelVpPZbJqkUmkhRJHPGGMI17RWq2vL/X4/nc2Y4K+8fvXsBz6UKqWdI5wzzpvNOnSXvmDjYV9KWeaFc05LRTlTUllrMwLz7HnQOtD8HbYwNYd2xvMFlBALQx5sbYkQ4oSXCwotdohQ7Kybl0CYYeqcxXOv4AXD11oLxsF44bNhF6YQc6jaOocXDj/OOvSmEQelbybmvflblDhjsJs7c5q5XyICpHVjY6NVbwwGg7IEXrsmhEC++g/6whhjhknlDHIYUjQF941Ub17eW64TLyoWKSVFuKpKhJDneco4gjCdBye8ec2Y4NNftxiRBblzjgW/iZW7U/AdYGn4sdO0T4QwvE2MEHZzox5YF/CuTzHKU8gbKiX8Fjq5NfNP51Tqh5zTWp8/f37rwvJkNG40olotOD4+2t7efuGFF6qqCIKo2W4ppYy2vu+/9NJLH/nIR6I4/NM//UySJNAkTiYThBBcOLAGsyxjTJw7c7ZeiyllW1tbZSHDyGu16gTrt7/jMSNVILyjoyOtUFlKz/M8EXTaK6vLG0Iw51ytEQI4+9hjj509t/W2t70ty9L3ve9HsqxoNutL3dUqr5zDAY9WuisnR/3+yejc2Yurq+tRlDEq2s0W5yIIgigKv/3cd46P+74fnj9//uGHH4b1/sW/+RJ00ISQ8Xh0eHi4ur6GEJZSMcYJIVEUWeQefvjh97///a+++uo3vvGN0WgSx3Ge50VRep4HcBlyjmAWhh5lApp6qLVu377dbrfPnj3/+uuvP//8881mY3V1DWO8v7//1FNPWWuDKKAL3xVKmayUdebOnTuCcTgLyMIHjBACjfnFixcJIXleSCnDWqimKsuzcDnEBkuZPfLYo2jFhHe3817OlJGUgqMNgjmtjynGtpJZFFIptZTVG298bzw5Qqi0jiFHjo4O6vW6UqYsKlgzAJyvri73+0NKeKfTnU6yyWSGEKpKPZ+QYEYwcXZeVXDOb9y4YYyJwpgxFkVRVVUYE6Slnds7RqfUeuD7TCYTeJOgA4KvO3du1+sNqBumk8RaRCkLBFNKZVmGEHrllVfa7TZMPIRgyHHOOcPUGIesZVQY4wghFowlDSKEBoFnHXXONuqxw6wsyySdKaUeeOC+e++999lnvxlFEUYkTfPt7Zv1eh0ha4z5/ve/L6WsBY3hcHh0dIQZxZhOJjPf97UuKaWCh3kmZ9PcWts7PK43G1JKYh2QHIFL6yCvNq5h4qy1QeA3Gg3wJvM8T/jME3FxVCBNsDMI2UajniSJdg7ZRZqfc45SXZbAz7Vonu2eZZkfiDAMtSkfffShaTqaZePlldpRb5dRvrq63O12tre3GSPO4TD0EULNTptzb3l5+Stf+Wq73V5eWvH9sNc7yfPcWQwNp8V2Op2SRXh9ISurTK0Wh2GY5wVCCHJgAWtuNFrWSUgjhW2rqioIn20sNTqdzsnJMexTaZqur66eObP5xq1rYRCXZamknE6nzmFrbVmWnIs4jkEmDwNnrRVUmSLwlQUTklJ4zPM8Luh0Os2yxPf9Vr1Va7WMHue5DIJAS326h0JbBT6MsD/CdcIkACH0a7/2a3//7//4Qw899LW/+7uVlRVr7bVr1zDGZ86c+W/+m39648YNrfVLL7y4sbHBOW80GmEYGmcODg4+//m/PHfuzP7+/id/9mcYo8888/SP//iPv//97//c5z73ta99bWVl7aWXXvrN3/zNhx56qNVqjMfTJMk6nU6vd3L16tU8z621FFFjDfR7rVarLEswB/dDbq30A39pqTudTuOaXxRZVZXHJ0fdpfbq6qqSRilNKR8OxtPplHNOCZdVTimDYxPeptYWJF1xHCtlgkAQQrQ2cewNBiera13KbH84mEwmhwfHW5sXpKoG/buUCN8PnTNllXle0Om0kmk+Go3geW42m51OZzyaDodjY+A5RJRypZTTNkky+Gi63e7Kysqt7Tu9Xq9Wq2GMO0sdism1a284ZHxfaK3f/e53bt+53Ww2Ll6+p98/Pu73alHYaNZms9lsNqOEg/iac7SxsVGrNabTca1W63a7YVBvNpu3bmxvb9/BRF2+59x4MtjevqMrxLhNsynnlBO6tNRhjE1rgUUmzPj/8pk/lFK9+4ff/T/9v/6fyNEorP3w+97R7x/9yR//QbhUby/V+6PD7Z3h0dHB9ESLkNZrTeew1sYagjEuyzIIAigE5uaYzmKCqeAYoVPWGxQo6HTZOoMQ9zyvKDPYu4yxujRh5FOECaVlKZWu/LA9mcyqUill0jRv1OppmnucRkGsuRZUYkoQQs1a4/Kle09OhuNJqrV2DmGHwAYTjnPnrJSSYA85jNC8vLALjy3fFw5RQsh73/ueu3d3X37xla/83VO/8Av/+8989n+pqiJNc4QsY0IpRSkZjQZpOkMUIWx8XwArSnBfW3d4ONbaXrp0CTQuUqo4jmkp86wE3rEQ3BinjWScIWzKUsZxXJbVNE0wxsfHxzB0PC3sjFVCiFqtVqvVsiwdjEdFmgnKNTIYodls5nnB66+/HnihLzytNcWkKAqMkUNGCIEwQWgO4EKfgzFWOh0Oh0KIhx9+uNvp9Hq9qlSzaTo5MwMN+/7+/o0bN0DaSSnt9/t/8Rd/0Ww219bWhBC3b9+Gfu/4+Jgw3u12nUNSAqFhjv5gjIUQca02noy0Eaurqzdu3JhOp86Zoqh83xeeZ5TWWlqnGRdSSU445xTuEsbYOWsR8Xx24+bVn/uHP/eNb3/Lj2pz7blVwucEsyzLs7IQHkvHw9Zy5/z5M6vnOOGkPz5Utup227s7B5XWnsdzJYPQ293ZN8YsLy8D7yED43485xocHvZms1mRl84gZDEmBDsiK50mOUIIoXIwyOM4TJIsTWd+JKIoKovq5s2bHhdRWGOU5lmZZfnVq9ecxe22f/vWdlzHZ89uxbVoZXm1d3icpGWSpMaYlZVuEMiqVGlaYJSkadHvnzDGt7Y2feHDBD5Nab1eT2ZZUWRC+Aihqiqcc52lthAiSWf/5bBEX716FfoWaJsZJ7u7u5RSynC32YElpg1UF0Yp45zxAsE4tshqLbWTiKBGMxbcK8uykgVCqKqUc5hzQSkvisI5BMwya60zyChUIZPnY4SQ1ZgxVuWSUx9bjQnN02JIxkL4QvjAFIPD8bT/oZQ6o6F1l7IUHmOYbmytM46McxopbPHh0T7GuLvU8SPhCf8973nPtWvXjo9OpJS7u7t+IB5+5JGiKHr9E7LwSIXqvygyrS3BzhgHQa+ex9NsmmXJ8spmd/khhExVVcP+cDAY9u1Ya2ctrkqLsYbNyg+Y0U5rQyllTCCEpNR5ngdBQBnWWkkprQUfT0sowoZUVSVlZa29devGAn9EGLs4Ds+c2YzjkFOBrIMx9ikjElHEOXdOWospxZxwxhxCXClFyYI1TBBCyDjneV6r1SqKwjnj+76WpTGGcwauFAZZP/D80gdcAJCUqqra7a7WGiEsPKaVhbrLOcU5lVJOpwl8HF4Y1Go1qFiggZzXLaVKdAZc6UW/espxnoPLAEwbY4ADiBASQkDPoN+0PkQwbpRy7uVirYHh4mQyGQ77nAprbaNW94XXOzkyBjTjmAqOENJaV5WUUjJGtrY2jo7SOZ4iS+ecEEKV1aJDcL7vW6e1mpOPojAI4wg81oRgYegb42RZVbIwloFL7NraKqUU/K8Yo3EcF1WhlbbIMs5OuV2A4oE4dDabKSW54MYZpRQycy8F6C2BcHQqxYVXgHOHEEIpt8b6vocxphgb4ypZMSrCIIZhgJSaYcIwM9plOqsq5ZwhmFYyT5O8u9RmjEmpGKd5lnNfRGGEqB0MKinzuNYAIaPWejabDYcnfiDiOEaKUIYwMePxkHLSbK/W67XipIAxIUVYSmmsTZNcay01UN0VzP/qzXB9fbV/fBJFQV6kCFswB8+TnBJhsF4wvRylHGMXhNzzOMXEEWStJhSPx8M0TUEKFsVeFDW73Y51utNpIYQoZ3lWWmTKQlOGkNRRVJeK5HnebjWt1cNhnwqOGdVaO6OZMlEUVVWRpjOHTaXzqgpHowHGOIhCIYTDFhGDEULEWqeCUDSbdSlzraVShna7cRzPZjOtre8FnHNKUBCErVZrb29PCAG1Qa1WU7qCpaqMJoxKrTwulDKFLCilSkoGpDZrHcYII4wx9zzhMYuMF/hlWVrnpFZzk+U5eRlDTMvpU4EWfhplWSZZekqUo5RiRDGjhJA4joHmD0Z2QghHqNa6yAtAWgG8A0bYKSwLqiattbUO6EeLgRAMZjBCqMjy0WhICNna2vrRD/xIr9d79dVXwTxHSuUMUAVJGIZpmo9GIwgTYox5HoewhyAIMMZFUZWlrLeazz77TaBdw054587Opz/9B5///OfLsvyH/7ufv3zfvWmaPvjgg865U+d0hIiUxcc//vF//s//OURItdvtf/Nv/g1C6IUXXqCUhn5gjHHWKSUp5UZpKgRwmcHLAnYDrfXKysrZs2fB5PrUXvaLX/yiVgoU03/4h3+IMY7jyPd9pdTq6mpRFFVRgocs5zwMw4ODg9/6rd/yPK/fP+FCzLMHnFsUORRcX61FlFFKWVkWyhqEDQwGnHNgTK8VXKGzujpVcVGGIZYGyOZ5npdlabR21qpKW+0IwsZaa7Wsqozi+aRWaeeckua0dg3DkBAyGo2MMX7kG2PKCsg6TGuptQ7iSEpZq4Xv/8Djjabf6/VGo74QIgrrw/6w1+s5Z7EjxhjtDERHwCyQMZbMMiUrZzEl3Fm94CYhhBDnHDv+A7FDQjCgGbB1YMzgxMGMYjf/3TlUirHFaGNjo9vt3r59O03z7ds3ZrNJt13vHR+k2WyWjKBF1RYZZKqqmk6nzz///Kc+9anJbNpeCT772c/cubu9vNLd39//tf/uv7148fLNW9f/b7/+Lx588L77H7jc6jT9Q/7qle9Tylc3lvr9/ve+9z2jXVyrnTt7YXlpTSlz9/adNM1lZV999bUkyUbDWVUqgplzuH8yzMoCEez7njE2jEOKSRh5UpYi4LNslpUFkvrGYPvl5fX1zpKp0jCKDo+OOOdRFCHrOKX9fn/YHwDcXKgKl1jqinOuVBXHMaKEUioYcwQbYxwmvu9XRckY474nuKhkCccHIUQwIYTEGCOHIM4PY2L1HOe11jrsECIUU0IIdsQ6uei2HKCnp0Xj3NsB1oyx2M7NiN3cfcJijB0Fkx+qtTrFDeAHYBQKZz3UnKDRh6JAKRUI79y5c8AwBVzVOeML+gMfGOBWW2spIZVW8ISUZelz75RG4JCzVluDEEJOGwRuFQ5B1CEhBGFL2Ju0Zbf4mr8bOi87nXMagUmyYwDEA1V5cZfms72FZQ1CyEEyFiEAN+OFoBxjjAiGK4dBIP4vDZ2h9YS2a85onuc/UThQOOfIOTDOOnPmzNve/mCZZ1/96ldPTk6iOPjil77QOzpBCL3vfe978skPfPvb3/7K3z2FEBqNRltnNmez2fve+94LFy7cvHX7C1/4QlEUnHun2FRVVZSQ8XCklDJGN+KaripGUDqdEmTa7SanrtlteD4TQjDqh2FMMMOYIOQ4Y1rLIPAwM+PJoCjKhx95cG1tDcaHtbhx+dK9zVYdXP4gE+XcufMPPfRwXiR37uw8/vjjly818jyfjqda636/f+vW9GBv/9zZC2fPbW1uro9n48lkOhwOirIIggAh0mi0Go1WWUqMaVkWcFAK4VHO0+l0b2//u999/plnnoGSe3//4NKly5ubmy9//9Wjo6PNzTOcssFgEIZxGIZFlkNoGUIoS1NKaZ6nu7u7R0cD59za2tru7u5gMJjvn26u+ymKQmstuFcUBWyqGOM0TaMoWllZWV5ebrVaAM+enPQnk8ncCpXi5ebSxXsu1tfrBzsHQRndubNTp9GDDz8cd1usqkqMcb0RV0VJKU/TnAuBMbaukhJpkxXlROnc9/H73v+u2zdvPffc80L4QogcODsIQb/BOeecxrHv+yHGSBspBIui2rg/sU47ax1GGM+d2ilmstLaSEKI73tRFE2n0yAIIAdTqapej5eWOjBS831hrQ1DfzabFUVmjLnvvvuUUkdHRyD5GY/HhBCEiLWWMUERJoQGQZDnuWb6uHfyJ3/yp0HgE8Kq0hhtGAPiDBHCh5rXWYccIQhVlZJyonW0dWatXo/LspDGgOleVVW7u7uPPPLIuXNnRqPJ0dFRkZe1qA4anyRJgIIOa8kgxxBGCHuebzSilCJHORdKKc9jQP3I08I5RxyajGdeGMCFwJHGBAXjrVqtluc5yKKzLKEU93rHjFGEDfVoGIZalUpVnud5oY8dAa0lY0xLCR8NBAohhHZ2drzIazTqhOoHH7rn7esPH/UOsixB1o3HU2ddWeYIobheo5hobcuyPD7uW6VhbJCl+V55APXcbDZTcu6qKY0El0DgF3BOLcXtpW6RZvMWy/MopWDbXRRFsxVzzp2V8BALIeBQKQsJszJCyO7u/tbG2q/+6q82Go3f+fTv9no9xtjx0YnnefCvUMqgWIR5KTRUnudLpZRSQgigTvi+H9dCrSuHTByHs9ls1B9NhrNWq9OotxsNnMwy32dA+QGYGyoVKLBg7yMLq11r7d7OztWrV5988kl45m/cuAEsA9/3V1ZWrly5cri3v7Ozc/bs2d/93d998cUXa7Xa1sXN2Wz28qvff+W1l5WqbmxfQ8juHez+/r//9Gc++x/b7VZRFH/6p5+llFeV+vrXvx6GYVFUYRgzJsbjqVKm01kKw3A8HupKEkIMcoUqZtlMKdXsNqnQXuAvLS1Rih1SeZ4WRQGEoO3t7bW1NXgXzuHNzU3O+WSSpEkKqSZgTZDnOaXM8ygwZ6XUQgjnkMMYEex5vlKGUSF1aQ2VlQvD+nA4zVKZJtL3IooZIBGMsYP94zAIPBFYa1eW15rN5tHR0fFxP0lSwTxjHKNcSokQscbJSk/GqfCd1roWN4bDIaSglGWhteaMzJJJt9sWgm1srvoBv/+Be+6///4XXnzxqHeArEtnU6XUyclJq9U6d+6cczjLKs9je3t7jz76aK0WaSNHoxEX1tiy3YnPnntvp9nZ3dkPQnbm7EoUxa1Wa+vsxu7ublIUutIIoUaj5nCxs5veunUjCKLtW3f+9m+/+N4ffvI3f/M3/tk/+2fjWR9xvbTcRFhOJsMbN3eQRF7EEELgxpPMcs49QpjwGJqHOSDnDKUCLDW11hAVYpADBy7OmFuYWEHFwxiLozpMyy5fvkyM2zvY930fM+qclcoc9/pcUOesM6geN5IkccYtd1e0skxw5CxyZHd3v91aEsLfWt/A6KTfHyJHgPaYpum84MCIcoYtQ8gZYyC3CkoEa62U6skn33/UO3j55VcxojyIKPP/9M/+/M723TgOVaW9wMMYqmQECzNPc8pwms66S+1arZamaZrkGFPkyN7uEazHd7zjib29PUlKox2gJCBywHMjb8GYDxAeQy7Pyul0CtcDvQr4fBGCwyAIgqDb7bRaLSBf+F5YFAWl/Gd+5u83660/+sP/T54kcaOhlCIEy7IM4qCqKk8EGGNrnKOLMT/BRjvPC5SqXnn5ZU8E9VoTtoIbN24Y45rNJqW0Xq/DRgpzwdO8QYQQECcp5UtLK6WswBdbSyVlGYYh/Bjs+bKqrLY84BBnGgSRlGWz2bTWVlUVxtEDDzzAGLt69Q3PA8M4C0IE5xzlxKNeVKuVpfzc5z7neRHlnsXWKtVqNYQQaVEaZBljWst6p/n+J98bhHw07Wmt4eJ3d3cHgzFy4oUXXsjTijPfaheGodY6z8uyLCeTifA5EGOvX7/ZbDY94XPGHMG+z5UyhBCjXS2qQxYio0Iw7pxZXVuRulKqQNitr6/XolgpVeZVrcZ1pTjho8lsMBhcuHBh80yr1Wowxvb398+fv3jfvQ++fvUaY+zt73jsb//2b4/SXlkUyVRSyl2FjKYEc63s3t4B3HMt9Sl+6pwDm+8KbAEQYZSvrCzneS44m81mjHpVVTlngWACCUsA0Od5vr+/TwmJo0hbY4z1PO4wRdhhihqN2DmztNS6ffu2tpVPBWVkZXmp3e7sbB9MJhPjTKfTQQ10ctKTRYkZhyZ5dXV1NBo55waDAcVMS0MxtRZ5XoSMjfxIltIq6zDR2iDsGKXaGK0tF5RgYp0T3IPpNWMsr0qMbRB4aTGrqqLSFcZ4MpksLS0RTobDoe/7XIhHH3t4f+lgOp1WVbV1ZiOOY3CbqZRy/ryD0toqZZxzhHvQGwCBrtttr6x2arUoScfG6NFo5Pt+o1nb3zsm2MOIYs+DtYkRtgaBGS7k8oHaYDpNOOeYUIyJc4ZQRx3GFtdqEcY4jkNMEAyb4zgGDROc4M7hyWSGLAYiJMArcLVZljFqMcZRFBjjdCWlBD9ryhj3A88YozUz85gHM+iPsjyJoqhZE5M0dc4FAcQClxYTwKSEYFBDc87PnDmzvLwMiRq+75dOGqMwptCZQOnV6XTq9Tr0kIIywgWiBKBq5xwlHGi/CwqPs3Yu2Ie4NkBMoC0khKOFCpUQwpjQ2jKGfS+glC82f0Ip9zxuLbVOV1WZZdl4PF1dXoFiBiEU+L6xC6NDa8IozvI0iiLfF57nQT9Q5AVjDMhxzrkqL+DnoftdtIgI5Cxa69D3JKFzGB1pi4zUulIyDENkHcVEa+WIDWsBoViaijIcUI+QACFUFIUxOq9yV7o4jpnHBGLa+Jg4IYQfCCHE0d7QIcM4kPgUpkTlSghhnQZ9MmBGwJqHHbkoSs8TRjtjFUUUqBK60owxnwtKmTFGa1CkWMrQcDjkggD1RkppLaKUMo8zThgj6+uraxurWZZpbRljXODBcDCZTAghhJussMi6S5fONVuN45OTNE3LsqiqElnXaDSttdPR6Pj4eH1to6jKPM8RQWk6yyvb7carm8vJbHzj5kxwf319TSlVVYXwxHLYvZvelaqgRJwmbRJCORfgGmwrFQQeZoQQ0l5qhDVvPB7HcbS1tdVuN4XH0nQ2Ho8WHu7CDxhCrk1isdZut5bD0N/b24tr4d7+HYfUxUtnj3tD55y1uiizUmEhCHIoSaZB2O0PB0xwMbebIZ4XNZsNa21epNjBWYadoVoZSnFVVfVaBNPHZJZaawlhZVkCocQYAxLDM2c3N7fWwQ640elmWXbzGgyTSFVVFLNTxBYhhAmhDDuMEbbOOeHNB2AA+zJG8Sl/8L+Mq4KNgiDk+z7lfD5YXQx4HMZGa9gnAX0D6kmOpF24Zp0CGe1221oLlhqwLqy1vh/SRfwp5xwGUVmWaQ3IQgDel4TiX/zFX9Ra7+0eDAaDzY2zcVxLkrTMCyF8Y8x0msBsZjHDRjBngh2SIDw/N41rNBrzcRpCvu9fuXLl+eefZ4yFYbi7u5skyX2X7vuzF/6sfzIEL8TDgwPkHML45s2bzz77rNb68PAQZjZzZ3+lHJ+PaqxF1ipYRwtkh8CtAIwbhvfb3/kuvGWYlwCy/MUvfhFkMSDfAQNMjJHWCpQc0AeBzqwoCqM1MgYhpKoKWRvEsVJSCAH+6VVVWYd9jOEJ8SLPGGvAGVJrjDGjXEltjMuyDPxt4aPnhJ+CVhDJM8etMMuybJFfCt3ePMsX8nuQdWjBeJVSW+c8zmu1GmNMCJYXqa6c7wcsCIPQm07HWZn5gXjXux8/c647HB1mxVDpTEo+mUyKIheCU4YZC41R48nQ931KWRCEGFGtnFLGYgDlEAQOWWvB4AshQtkPRg+1BjMowznlnHHuwcMppUTGnsLNnHNHsKAUXCXzPM/zdDQaFFmGidm+ux1FUSEr6Fg551x4/cHx0nJrMhsygVdXu0vLnaPegVJydXXVWru9vf3KK6912t1Zkly/eSPJJ81W1Ol0GGNxHK+srGDEv/71r6+srLTb3Vu3touiQo5ohbRyeZYoOdHaSqkRopQyay2htFZvbG1tIYJv3bjZajYacY0LqqyaTqelknlehkxU0r5+7Wb9iW5ZFYyz1Y118NKRymjtqUrC8QG9KmUYE8I5Z5wjSoQQwvOstcoa7gmojSFFiTEmuKCMwBIjhFCKOZwIFmPBjbXWaaM05wghQih2c9jJIeTwW3jNp7vN6UqBL4wxRfh06HU69wKcFFlrMYJwL+QIIRTSp6y1RVFAFi5gzSDBZ0zYBUf44OAA6i4AuN1c5PqDvZvBrGNeb2iFGMNR7PsBfZPTjNBbYv0A14YlwDlHlFinjUEczxNE3zrAw3OW8cJ/eYFvIIQgeBD+dAvKHbQwb711882NEKvfTBqcX5IBiuObnhtuMY4CjMu8xQMaY4ze4jgPRdLpUH84HA77g6efflopBXYNRV4RQh5//O3veMc7vva1r8VRbWNj4+joqN1uJ0kymUzOnj1bixtFlleVWlpaAe37eDweDoeex2tRvLq6WhVFo9FY31jdXN8YDofT6VTLqh5HK+sr1to0KTgLCOaMMVlpz/ON0RYZ3xfW6eef+/bTTz9dixs/+ZM/CY0eoO0XL17UWi91V4qigNqvLOeJ3NNJcu2NGzAhCv3glGv84MMPNRqNIPScM5xAS4jiIJZG7+8fpmm+urrKuTcej4UQQvhhGCmlZ70+53wynr34wku1uGGtTdO00Wi854fe++ijjz76yNsPDw8vXry4ffPWn/7pfwKiJGGMMZ6mmed5QI4ZjUZKqTDkxpiXX34ZPgog5dRqtaLMkyR5/PHHT05OsjQHpB4kNZ7nXbx4cWVlJUmSu3fvzmazqpJJkkRRdPbs2TRNlTOrq6vd5WXtyXa7LTK/KKo33thtr7TP64gxTobDoUMGRk9a61mSOOeEh5RJw4jevHHj+eeff9973/3Ot7/ju9/97u//+z9mrPSEDwsMbBAazToc9oTiPE+LYiwro7VVE4UstdpZ6xC1p3WGtdYhK5gHjoRZlp+SRNbWVhqNe0B4FddCxkme56AwrdUj5IjneWBxMJvNqqpySDUaDeewECKZZVZro22321VKQyyM53tA7qsqyTn3uI8x8LeMUVpbI7hfVRWlFCHirKGCpWl288adjY211bXlk729oswgWxlj+tJLL5GFCgAjBI4nZV5RwsMgRghZixAlnFLGWFUqwgkhxDmktVWq4JwbjZxDnHnWaeccRTD21ITgMAw9z+ecFlWptTFW5XkGQzAmOMYYY7e2sQzex1mSw5D83gfue+j+B+/cufPy91/lgibTtMrzuNHC1hHGlDLazs2vZ7PZuXNbFy+dnaUTfKLC0N/bu9Pv9x956NF6vb19667v+3mZOYyLohJCTMYnxhinbRhEzmFCSFmWeV7CbBw5JLjPAh7Xa51WWym1srKyuroK9uTj8fTZp59RSlunoYwA+/w8KxEq7SIoBjihlLIsy/Z2D6zTxKEqL6pSfemLX767c/vguDeZTO6///6NDX716jU8l71ACI8zxgD6Y4whMNBDKAgC3/fTNE3TlAvq+6LdbklV1mqNu+XtoqiODk8GJ0ktqqnK5HkF0leIIzDGAEIEtjjWWliiULYKIW7evDkej6uqmkwmaZryquKEvvbaa//iX/yLMsvhn67Vaj/x939yY2Pj5Zdfns0mjLEwjDDGSvPDw/0kmcKdBDOmoiw7S11k6cHBAUaUUHHm7IWDvb3ZNIXzRqnxbJZyTrnvSSm3b99cXl7GGK2sLMdx7FgZx7FzKs/lZDrFxNUatXSW7OzsAFAVBvGtW9uMicCPMKacc0xcrVaDZx5aGtD2MkYwJtYaEIspabIskyrb2trKMz0cT4xVnqinM5PnpdEIsP5KyigKGBVSlc4RjGgc16uqMMbcunV7NptJqRgVlHCM6Fw14wj0XVlWECqUNDdv3oT9rt/vA/upKvMoChgjm1sbjJHDw/1mu7WxsfLXf30wGg4xxrdu9S5dWl1f32w0GqPR5ODgqNlsXrpwUWspyypNkqtXr6yvr+dFWqtHG5urs/Gs19sfT/q1enDp0oU0TQtZ7R/sGauPj48FY74XhmGY5EWzWQvDgFHh++a3f/u3X3jhe0dHB7/+P/xfXrny/c5qs6xmec5XVpc2t1azLHvt+9sIoTTNjbEe4wQT5BAy1lopKEEIKWWxNRhjZ4k1yFrliKMYg3jQLaRbYKMRRREwxbSxs9ksTdMnHnubMlprPU0TqXUQ+Bgo6cR53Ov3+29/7PE8L1977XUhxGOPvm2WuNXV9d7R+OXvX6GUhX4UR3WfcmuRrqp6o+F5AmSSDiHtLIMN2WlKscPOOGScrcoSY/zKK684ZA72j5yxyNHrb1yjXrDUalWyOH/+vFJF7+QoCIKzZ89Pp0m3y7SW2pSYWEJQs1a/eO78tWvX8mIhW7M2DGoEs7kSH5OizIDywAUtisI5a6yqSqqVVXYeZQNFufA9a7WxSmlLCCYED/ITIcSZM2eeeOKdm5tbX//617M0DcKYUv7sM98I/NAYwzxvruFl5GOf+NitW7du3boFSCXUS2CGZa1WShmlPe4DqF1VFcbU5xxb7JwdDAacc84FFEnWznOugILkeR7GlHOPUtrtdkEripBNkmQ8HkPziTGWUjqLO+2lIq+cxePhGCEkpfQCWq/HWVZorRGyrVZra2trZ2enLKtFwlLuUw+maL7vKyURQuvr66PRzAKHlGFllZEGIYeJkVIi4i5cuq93vH9wsPvIO892Op2iqMK4trK6oRU+PDihToDrdOCFxszz04xRGDtIbCvLcmlpZWVlRVYqnWUQ2gaNrkOmkhoTRBxGCJVVdt9995WyKArHOUbY5WnRarT3dw+Oj0/Wltc8L8rznBPOPEEpvXH9ttJVUWRKKU9E7dYKIazX6+3s7HIumo229N1gMLHGxa1Olsrr17cn42k2m9WazfX1zd6kZ7QFMj4hxDmslK6Ubjbrvi/mQRHGAOuqKkooWxljR0dHh4eHzjlGRT2KKadRGBJCELKcEmOsdY4LTjnxPEoFyYtca9VebiGDmo3YE4HVrtttUec9//zzcDd837cWYUwpwqqs4iAE5e/mxpnDgx40MqcACmZUKYUQzvPCYXzKs3POcs7jKJ4bOFgFLjcYu8OD/Sfe8453vfuJP/mzP+n1e61WoygyoBUI4RmsMMalLDDGQehhUq83GhsbG8fHx0qpbrc7mcystXmSAwcBeiEngfyFhGCrq8tLyx0pi8Oj3el0kuc557wk0mjX7XbLQgrhKzkXihqrSo0E95knqrzgnNVb7TxPbWrTMg1JaK1hjHGGPI8Tgur1elmWcS0Kw7AoMoBIYCoPo9w5tQhh0CfBuoNVDwfugiinla6kqhgVCCGt8ziOldLWaowJrJFkOqWUGqmklLLSmLjJZArDVGkq3/dBzi+lrNfrtVptPB7fvn0b2nujNaEIYzYHjo2u16JOuzlXZMuyKCvGGEyMGCaOUJiTWYwJQoIxjLFWBkRap72ZXWhIEULOzZsrxpjWllLKuYeQooxw8OKj1BMCIWAVZGSerBCNRqM4jJaXl7MsOzg4iGvh+bPnDo4Op9NpHMcEo8lk0mw2oygiZD70KpWGcgjAWcMrrQx4r2mtQTJorbXWZFlWVVWzWQ8CD5YM1D8QeVSW+emf0Ntbq4uiOuXyl0oaZEQg4JqlKpWuhBB+5BPGnDFCiK2trVrYuHHjRlVZ4XvWmoAL55w2EoA5wASttRgB9c9gDMvKJkkiPMYYU1IShISA7Xee7kgQIYhwyjG2WhrGKSFYK4AXubIKE6SUYgyNJgW4ooVh5PuB57E4DjC2URRJBZQFTqirqiKOIsG58LzxeGKMkaVKkqRMM8EDIfxKaSm1MnJ960wYirgWck6VqqzSxlZCeJgwrWyr0zw5OXFE+7FXpIXRTvCAUOywdUhJqTlnDiNEnCc8zjkL6LnzG3Afer3eUW/H87woCv1ABKHnB4HWuqpUvRV4oq2UsqaaJUWrHSOEpCrvvf+yYP5kMlEKS62VUQjZOO6cPXdO6YpzkqZFv9+XUgZBQCkBWTqhCJOoHtcYY1LqKi+kVBhR3w+yLJOVrio1nU7LsiSYUcpmsxmMdgjBUpX9fl8IBox46IAYo4jQspRo4UG3AFPmS4AxRhl2CK2sLMFLOWdhPHA6AoGtktK5C7Ob6+FcXpZUKUJIGIYA4mDK0YJnB9IfOM4ajRZjDOpegCMB/RFCJElSFAXl87kv4Mtk7vVBQIIA+yRcc5IkSZIwxmq12l/95V8eHh4aawM/YoRCqLLvh5BAg91cl66lUpXc3Nx82zsef/HFF09OTiil2CEhKMY4yzLiyCmApTWK4xgIYlVVPfPMM0KI73znO1laRFEE9iArq6u/+qu/ure39+/+3b/7l//yX2bT6Tve/e7nnnsOmmWtNWOsqpQQoihKeCOwCZyCaM45hxEi2DibZOloMq7X68456ODgk4JmFnTDRVEAL1sr1e/1kHN4gUpTLoijGAwNPM8599hjjwkh7ty5c+XKldAPrHHWIkQcoRw7B8QgREmWZUHgLS8vI0yzbFqVMk0yaxHIWRihp1MBRgVGFICnIq/yrMQYaz0fRaRpSimHG8gYQQTDeADONeBJeNz3BcYUSaX8IHAIYaSRRYS62WxKsbt8z9va7frr1183Rkax6PX2KdfO6SxPkW2UheQUM0a0s5Riypjv+xsbG0opWWljFKWcUo4c02A3byyhBPZGePAI/sFWvIwR5xyAyIyxIPCshXGdswhThKFS9cIAOPg7OztHR0dA5AqCiDHmnC2KyvOCWtzodDrgVy5l2WzXhWDnL643Go1ZejybTVdXV8fj0Smi4gnfGKe13t3dz7Ikrnn1Rv3Hf/zHvvvdF65du+F7cVWpySRxjnSX1u7e3jk+PubMM8pqbaVUShpKme9xrTWjQmvZaDa0thg7z/MIoZ7nVbIopTTWZGkR+ZGVlnH/5u295e7G5c2V6XTqBb7N8iAIAt8HwQ0Mgcqy5J5AyHJPeJ7HOWOeYIwZ65I8M8a4RTCgw/PYYbrgk0NdBwsZ+OfAtIDyHmNwa6CILCDjOSyLEcbOYkg/RgvP4tPzGgoP/FYM9E1gd26/gygihGBEKKXA0EUw+3GOMQZDCOAvg1E75xwg7Nu3b8N5Cluf1prTH/zAOIeUUnEcv+c973nooYcPj3vf+ta3lFJOG+DbzlE0PJ/lw304lRBhRBF28HbsWxxC3P/qy2L4q8XUBBHwvCZvDv/grwghbEFA1lpjQuY05/+fPEC4aYxQi978X9hpnXPI/RfmIXaRH+gWn6BZuNPU6/WdnZ0bt17P87zeqDEmOOdFkQVBTQj/P3/ur77zne9A8bO8vBwEwW/8xm/kef7IQw/+xE/8xNbW2fvuu+/mjVvT6fS9730vQujOnTvra6s3btzwBXvggQd++IfeU5blzZs3y0ImSXJ0tNcf9D7woR+9devWnTs7mIqHH3r83nseMMghbCjDCFnC2Asvfu/pZ5/2faF0NUsmYGw7HA7LsqyKsiiz2Wx2fHxsrXUY1Wo1glkURWfOnAEjacY4WFJgjJMsVUpGcXD37t0rV17lnMMI/ORkUFQV5/y41z88PPR9HzmipBFCKGmsdYQw3w9XVtYGg0GWZRfPX+h0Oi+88MK/+91Pf/ijH1ldXb1+/Toh7Nlvfgs8iITwRqMRwqjWqAeej4gty/KFF17IsgJs+qHYDsOoLMv77rvv4OAgTbJaPf7EJz5x586dv/3Sl8HslFJGCFlZWSmK4hvf+Mbu7q5zrl5veJ73xBNPnD17tlarPffcc41Oy+To2rVrrEWcckf7Q0ZI7uf5fl7nHRYEnufx0Wjg+4IRXq/XldYIIaUy69Dh4WGa5FWp/uov/+bF514qy7LTbCFKiqIoy5IxVlVVWRXCo5zz8XiIEGGUc86Hg4nvh1orsvBSOH22oKx3DnFOOPOMVfBX4BLQbjcRQlqbk5MToF5qrTEWUmqMMecEMjQIRXEtVEp12kv33HPP4eHhzs4OpTQMQ3AS2d3Zl7ISwnMWU8yQoZwwZJCysBnNlx8j1FjFOEEOG2MIxchYSrgq5Pb23X5/aJxeXu4+/vjjN25eq9drWZGDdKtZb3Zby5PJZH/3AMLiIj+y1kpjqkpijI2Gegss1cGrQSilIYF30W5h55DFNoxia22W5Qgh5zxZVspIQkhRlHEceUGoVCWEQMgaK8sKEUK9kIXUE8zbOrM2no36/RNjVZJmH/v4xwkhf/M3X4rjunMOI8eYoJRi7JRlk8lkZwfNspE2RbMZc847nU6aZ0lSaK2rqrKGWGQ589Iki+NaURTUp0Va+L4H8WsIlcAUg1mHcppzGsaBNcJYdXi0v33rDsyfDXKEYK21syVsSZCaBX01xhjgHqKUNBpjXJYlJ9Ri7Hn+7dt3Dg4OPvnJTxIm6nEDbEbNPC6WwMgdRh1AmDLGwDFTluXx8TEhBBiX49G03oizLGs2G91uN18qDg97VpuqqIpUOYdbnbZSqphHUSM4NqAOq9VqsNVCDVqWJTTqoC3NsizPcyMlIqTd6aTTCZAdfvzHf/wf/+N/fP999330ox/97Gc/+8Wn/urk5CQIgjRLPI93Oi1C0Pb2thBifX3zwoULhwdHw+H4v/65n6/X65/+9B9kael7ISb8uN87s7klpUSOOOdmsxljDGPXbDa73Q54YuZ5GjYo3FLOeRzHUpVADjUmLgvZPxlK2RsOx4EfTVyKEDLG+r7fbrdXltf29/en0ykULsYgzjxwPHAWW4OUMs5hgoWSbn/vWBmttQzDkLPQE0wTjTGVUmql8yIF+4jLl+4VnExm09FocnzcB2dVwX1KHMVMSoWtA0TbGEsIhVsdhmEcx0xKwByjKEIIKYKEmHuDVlWmrdndvfvpT396MBjFce34+LjV8trt7lKne/369du3j2o1duHc+WazWVXFwcEBSM6rqgqN6B0eEcL27u6FQRSGcZ7n3/nOd/I8j+q1TmcJjMJHee4xzxizsr5WFrLX63PmKOV5Xj777LPnz29def2VOPLuuXwGMxvHMca42Whba4sJ0VqPR1MrLSEMIcQ5dc5ZawAUg23PaUcwcQ7DwscYvzWSmHMKLRNCaDKZcM79QARBcHJyMk1mzWZzmiYumfq+jxDe2tq0Vvuet3P7jirVJ3/mZ3/3d//dZDj9lV/5lZ2d3YNer1lh6zjB/LFHHtvfO0ymU/hksTVlkcVxnGVYLyoBYw0hiDJunXL21GOREEwODg6sUu/5kfe/770/Wm92vvKVp5/5u69WlWRMNOrt45P9Zr113wP3Mybu3NnhnP/Yj33s8HA/L5I0myVJAsOnm7d6lFLfZ0LY4XD8t3/7d0Iw3/fB+R2YfZzzsiyAkGgNzasStgio9fOySNNZrdbwBN/b27t48UK73Xz+uefyvCjLvCyUlFJwv6LGWmSNGQ3Hzo3m3ChCMMXOuSeeeOLMmTPb29vQ5Mw/FYshsbDZbALqChyT1dX1wfFJVVXQVkFdNW/UCXHOAd8Qars0TX0/HI/HMHxljCwtLWmtPc+L43hO36BUKaWUqapUCN9aVJUGY5xlVbO9BCHFgARdvXr11VdfnUwmnIsoipIkyfO83enAvYIWmlKqJKKEK6Uo5UoVZYkxcZRSz+NZngSRd/Xqq41m+M53vaM/2J1OswvnL969s5dn5cryhidq4/7EascYp5iBM4bv+5Rh6zQTIgzDNT9oNFpG29Fo5AzCmBpjtK6E8E/5DjCfq6qiKDJEXL1ez4u0qqpZkiSzm8P+CCF0cjyKolhKJYQntb7y8mtBzY/iACNBCRkOkqe/9nU/DIoi44JSSrMsk9W8R2ZUjEYjgsCv09fSZUmupdHWUEqV0UB4CePIGVsVlefxrY1NTBxl+MyZzcPDwzxVzmH4sJTSsLmlyaTM8iiqLS+tgm94VqRCiEIVtVrEBC1VoWdj3xfnz5+p1+uHe4fTaSJVMZvMvv/iy4KHCCHO2fHxEaxujJEQzFo0GAzu7dz7f/7vPvXqK1e+993nGedcCLxg6i3oG5jyud4WYA4hhNFGSekYk1JaZBBCnselLJFDZ86cmU1TSumZM2fW11cJw41Gwyg7HI4FZRhjL/CMMbN0NhqOEcZqboNLkHWB5wPf0BmEOcnTAjvDfWq01brkHmGCJtl0OhklyRSe56rSpdHIkSAIPc9rN9qFNMNBXypljKaUVDInhIhQNJtN3/fzYkYZcs5aqygnwqMew1VVWYMm0zFCSKpqNpvAcga6LoxeEEK1uB6GYTpLsiJHeB5KDmsTBsCMMTAmhroOcEYlTVFkpyIMrY0x6FRVNpnMOOdwXh8fn4Rh6HmwaueGb2k2K8pMKWW08zwPW2Ps3FHHOu17oaUUIRRFkXMOBFiUEM4YZ6QoJdDkT6faSilKKcGUEsMtN8ZYjIAhCN3a6S4Bpa9SCllq7Tym1fcFJpZRnOepsYJTobWC0EUhhNYEEiyMMefPnx8Oh6PxoNlsTiaTOI5BhuWHgTFmMpnU6zGorGZZbq0lhAIpLPAjEpLJZJJlhVISOmGonTifD2bYInooCAJcltwT8GHBjrcgkb3J2rMYGeSAknwKWgFgOjdmxdggk5VZWeadTruz1LHWej4HPb5eGAEDR09Jo5VCSBljT8s5yJ0HOoUQAiMgSSGEkLNYMK8yQLF3ngj8QDinAeuUUhLCKq0IIWA27fCc0Don52qOiWt3mlEUjMdmNOgTQur1eqPRADJmt7NEELt+/WaWlJx5goecuek04ULU4katEV+45zwhqJLZbDYJQl/mVZ7n6SzZ3DxTqzWyLAlCdu/955a6q9Npcnt7ZzrJrFatVgvWhXayVotggIGxS9PZZDJaWVmBwSfcw6IqtTVCsErKXq/n+/7m5iYXSBubJgkYNAGeWwyyLC0cRg5rxoi1tlarr62vTCYTqfKzZ88YTQRPSpuDeo9zWlVSysrz+Ww2y/PcGBcIn2DmkC2KQlZFkVd5XlaV4pw7i08fYEopJFxlWXbr1q0wjggh42mWpmno+VZbXSmtjRAexhhZR9ncl5ZQqo0kzKvX61orIUQcR0mSwLpzCw90eOx938/TvChyAG7ArxnAFK21JwJlzSmEwRiDLc5aZMw8vxSeSbhFZVkGgQe7opSSurm5Cewq8ISDmoEsguLBP9fOrZB1URS9Xg9jzAVzzu3v789ToIECaRzGViyynWH7ev21Kwd7+57nOWMZ50VRaG193y+zEj41AB+BVwH/EACRaZo6i6G30lr/zM/8zIc//OF/9a/+1b/+1/96b2/n7t27n/zkJ//JP/knwFaGXdSPAtDvL8bkC5ND5BBGDiNn3emWBVvoKbuQLJyyEUKwbQKULKVcW1v7yEc+Amner7zyytWrV+cjc4eAdvO+973vJ37ipy5duvSpT33qysuv5lnOPI9zDqbYcB8Mcnhhnz0cT4TvlaUsSzmnphFGKcHIwRoHRQhchlZ2TjqpKkIYIUDGJAvowDFG7Lzngym4DQJPcB+BotdjlDGlFKHIGUQIKsvcIffEE09sbW1eu3Wt0+lYq5JZJnWqTbGysn7zjZ4vwA3JGmOUlJW0UCu22+3xeDwZzxgThDBKqVts5ozNpYHOWSj5PO79QPQwCELC2ha5qswRclJK4ChoXbBFwi2mxCwsm/I8D8PQGEMI87yAMZFlyaA/Zoy3Wq2V5Q2tZVEmh4cJF7hW96OYSTVdXW+8+urNVqsVBMFJ73jnzt2qNIJHZV4555RSh/tHqxtL9XrT92LfC8tCG52ladbvDx55+LHl5eVrV29QwjGmGOOqgmkTopQb4yjlWmtCWJlX1qIo8DkVVmnonRljqtIe86x1UOQ4LHv90dseumeaJkywiMTc94y1iBLKCTCsfd8vqhIhZIyyi41aGW2NY4wZZ6HlPy3CrbUWwkLdXElAHILiARngkWDG2Kl7MkIO3FcQItiCZPcUWsUOA38Xw7QDtgWnjXsLIReONoSQMfPcKSiGKeZwCAILOs9zSjEhJJ3O+r1jeJgZ9wgh9U49SRIAlTGjCM0xKETJ/1+rb4QwRsaY5eXl5eUVKeU/+vlfuHXr1pUrV1r1Blo4Y2DiKGXOKYQYIYQQzDlHyBmjrTGwP2FE8SKLAuY6p2cHfB9bjBDCBDtqrLXEEWstJRz2EPDRhjZtXibNnayBsGmwm5MvYVexC2kFQogg7Iw17k3oDyGEnHELmdeceLr4X6iXTj9uuLeM+evr3SDwnHOT8VQpJUv9rW98S0lTrzel1ErNEELj8TjLU8bYzZs39/YOLHLOoo997MeklD/8w++LoqDX63mCvfHGG0f7+/ff9+B0krz88svdbvc973ni9devHBzsGWMGgxPrZF6lyawQQqysrNTiJqWkqiqGyCyZDAb9MPSrqjq3da7T6VSyyNLi6tWrWZIqXXHOsywJw/DChct+GMD55XvxnFZYFICaTqdT59ze3t7SckcpdeXKq6PRKI7DqF6bzWZlUTFGYD+00mplCSOQaALdyvnz59/5znfevn17cNIXQuzs7Fy/fj1NU2PMM888C2zrW7duQ/qXcwgMEo6OjpaXl42zcRBEUTSZTBhjzWazXq9rre+99961tbUbN26CtMX3/eWllZs3biktm82mUqperydJMp1OtNa9Xi8Igs3NzfX1DcbY0tLS1tZWURRf+cpXfN9fX18nim+d3Xz9zpWrV6+Gtl4opYWJ/SgOYqZU1em0rNVFkXXbS7NZqo1sNpuMhUU1ycvh5cuX3/Wud333uedOTk6Oj/u1esCx53kcIUsIC6MAmEpQDRDCqKCUsk6nk8wKSqmzzlpjkSHzICSHMBLct3PfZEMpV7qilIRhaJ0eDgfOuTRN2+02YwwAflgqnHPn5uaeYN+JEIqj+snxADmy1F2hDMdBGEUBxnQ46lvlNNEEUUq4tUhrQwjDCOQLGBbS/LglGNIz4BTB2GKMsaVlqjC3o8EYO3LP5ftu3rpOCLHaTkYT3ws59+6//8G3PRYuLS09+/QzSZLA6K3ZbEopi7w6XT9hGINWC1adc84YRwhA3rgqFeWKUJRlWVHkEBDhsEUIceZhTIwxQRD5vgD8PZ3N4HXiuF5rRPv7u1euXCWYdTvdJEnSPPnIhz763HPPg8rVOUsYDKWZctVoNFpabgkhsLKzWRoEHsb08LA3m2ZKGU4FoYJSKstKKZ0kGaVUKVNvNWGopVSFsYvjuFarZVnGOSeUaK2Pez2Y2uF5AgxxFhdFFgSRYFRrjRzFcCog7Bwm5C35qs4Rh4yzDJO3sl2isN7pdO978MGrV69++ctfrtVqZ8+eGw6HWZZhjKEwJYQUeQU3CjZEyixMY+67777j4+PJZJImeVmWw+E4nWYbG1u9oxHGleBhJgtj7IULF/I8n81mwJuAfRMWLTST1lqYrMDkA2r9LMusUvc+8MCDDz742muvQaE2Hk9/+qd/+hd/8ReNMQcHvSAIfuzHfuz1my+vb6xZa5999pmiYFEUcM7PnTs3GAx2dnaWllbW1tbG42nv+PCXf/mX6/Xmc9954ezZs5ubm7/7e7/9/PPPg57X80Nr7dmzZ+/cvTlL0jRNHLbGqCiKckXNQrpLCGm32whbikmeFwjhJEkJYc1mEzlSFJW1zloDfdfa2trDDz/8zW9+E0pt+KYxcRAExriylGEYel5gbHF01MMYB35kkSPYUOJzjmEHxEhT7Od5ibAdjvrOuW6nNZ5OrHVQHTIqnMPG2EoWlFK7sP7EmILyriyrNM0Y4yBWgMjQMAwIdkky3dq6N4oipYpFvCf1uJBl1ag1hRAnvf7B3iHGuNHwKaWDwUBrrWW5t7fn+4IiLCircvPqq9eMQZfOb42G6WScW2sp5VvnzoOHXb/fHwySMOSglR4cD4jD9ahelDZJM2utEOyod7Cy2j5zZqO71MyyrN/vX3ntYjDxYAABAABJREFUGsZsa/PsUnfl7t27ShmQSAvGZVl6nkcoJnheysNhQwizCDE8j6QA6g2lFL/FVAse/rIsKcOgf3zjjasPPPDAybAvfE9rzTgHmfPd27c31tY//uGP7dzeoYj+vR/78Xaj9fzhC7dvH+3snHDKOu01jLxABAXKlZRYCIxQmeVJkmhrlLbc96y1FFNlJLIGMYQJ1s5ihAPi+YEwxuRq+vGPf+K//T/+d0qj5ZXNW3d25CzD2D3//IthKNqdxiuvvPbkj3xgc+PMa6+99tprr2NsrFNVVSXT2Usvfl8phXBIFk41hJBGo3HaJBR5WSRZHuZg2CelopSVsloUHKIo8lJWy8vd5eVuks7W11a3tjZALmqt9TxxeNA/Ohw4gxj3KOVGO9/nCCEwbRRCgKwLYfs7v/M773rXu6IoqkqFMQa3k6LIqOCMcSEE8MrhGAYqMbwI5QzOhdOpO/wJgBQAtVmWSQlebK7Ki53bd4AEFEVRu93WWudJLrhQVhltrAJDT2StRRaBEIxS2qy3ptPpZDJRSi0vr0yn07t37wohLly4IKWsyhJD9oi1URRmaQJ7oJRSeKKqKoTtO9/5BPfEG2+8kWUJJqi71L59+5YmZRjEV1+/dXBwVJbldJQxJhhjnaVuVanJaBLFgdaaCzodjRqtuh9EtVoDsCrgERunyeKdUkqlNAhZa7VzBmMXRpG1djQcPPjQQxsbG/v7+xjxNM0RosgRa+h0koVhSDAyWl289/L62pnJZCRVcffubSZYVpQWYSH4wcEBY7SqJMF+t9sOgmgwGBhjjFReFPm+r7WezSZ+6AEmBZ8CQGZFnvsB01pleTKYHsdhdDQ7stZubW2B24O1VgiO0Nyqzxh39uzZ/vHg+LhPqPWDAGEL2RUeYlzwldXOmbMbVVVNpuO8SDB2URREUbS+vr6/PQCWNNx8oM4RQsDyK47j27dv/8mf/kdkLaxuPTfpc5BTg/CbZn8OOcpIJUuMcZIk856HIWNMltkgDtbPbfb7w97JUavV2jq3lSRTytnu7j7ouFNla7WaFwQAvVDBhsNhHMfGOEaoUgZYvR73KWZSSo8XCKFGo+WHntbVZDoYjfvtdpMwDF5YzmGCKEaUcY6towTPZiPmB93llpjRIs9rtRr0KkqplZVunufWqnanHsZBp9NJ08T3fVXkkEwI4yIAKaqq8rxAa5XnueCe4B7G1POCKKpNRmPnHHLIOOt7AcYYXD7CMAShNBGEEQK06DkXEjNwjtYaAd4E5ZCUFmRPCBFPeIQQZ1Ge557nGYJhQwBRAgzVtNYe485hpSRYhlKKGeYIIWescwbIT6ccn7IonHOce3D2gWkDpdSaeevlnKOCCwHXNpeUYfymQ6KxyvcDTjAhJIgD4uailjASRV45q412Cz0+twYFfgRVh7V2Y2NjOhvfuXNnNBoFUUgIaTZbFy5cKGX16qsvZ1lB6bzNg8OFuDlLtNFoZFlWVROMcZrkIG8ihIRhjJCtqhKQHUJYFAWMMYfR6fQdHm9gjUF1VKoSze0CsHNOCM8YMx5P+Vy9/CaA5ZzZ2d9hmEXx/I4B6cFiixmmghbTyhnDmQes/1NlOqWUEHxKlXLOUYarUoFWwFojqwpIghhT8N6tVM44jqKgXq/PZqmShlJUliWlgba6KPIgCBuN1p3bO+NJzjltt9seZ77whBCdTieO4+l0ygmv8vLl771crzexxUVSogBT3w983yAHMSrG6Z3bdwnHzhnhMRAwUcqFmAd3G5t3lusYUe655aDdbNaPjo4Z9XzfPzo6Ho/HzhnMYsIposgiZIxmbF7CLS8vJ0lSyopSWpYV2IsBWbXX68GAgTIU12pZltVrrcFgUBRlEEbO0jAMT44HRVHUGyGlBAD9o6OeNaTdbh8fq/FoGgSB1tqYIUKof5LDckAOC8q9IFDKWGuLvCqKyhoH9TxyxNp5uQLWCmEYCsEqJRfa1qBVb8BZaedyDWeMAYW7tdYho5QliGitkyQJQvFWXxe8+ILvOOe0VPDhAgxn3HwjLQtJCKGCE8eggTeLyErgizBMZrO5LSG8lLU2igKYVM2JzAgbNzdVXwj7DJrnqc51txQTRijlcwdkPwjAtpUxliRJlqTw8xZjt7C5ZJg46+Dtj0Yj8OKA0wEsEQhhnudBRiK0Fc45sIkPw5gQ0u1277vvgZdeeunC+Us7OzuTyaRWq33pS1/6yle+Alf7hS98/gMf+MDv//7vg3ummRt3EEDoYJHCi0utKiVPd61TAGjxhU4poqdr3BOi2Wxmed7v98F/76d+6qd+4Rd+4datW7/xm/+zUopxgjFmLCSEZGVZKvn1b3zr9Teu/8Tf+3v1en39zJmPfvSjz3/3RefczVtXoygqlfR8z6OIMUY5SdM0SZJ6PV4g6RZZp6XinFPKgJbBOXMOF0UlpZzNUoQQRM4AzrJAoDjwiI2Ze6dQSpF1nDPsEEwXAGUmhGCGZSWxcZRh6+QTT7zjv/r4B1977bUkmQVBcHg4+sazzxGmKEVxXBM8sob4odCmKstSG8l9D/rZ6XSaJAkQRLSGiYKtpFxZbV28ePGNN26ORoMgCKySxiga/GAzDWPN6vrKbDajDE3HE0stZ54x82i7hZrHwBo53QajqIYcsaZyzjUaLYzddJL1jk5Go9HDDz8Ux/V6Y8o8d+ny2byY1evRUtSsiur6G9c3NzcJJ85hY1BpJOfYWhtF9SyfHu2fMMI//5dfUNrec/n+o95BHMdxVEcIfe+FF6fTaRjERVZaOxeUEMKdc1orz4vBz0QppVMty8oqPUurJEna7Xar28kLabWFMZAzjjIxS/K8LNrdjqpK5mFrbRT4HvcYY4EIrEFpkROjjTGWYISw1CrPiqqqDHKUM4SQw4hz7vE3ec1aa8qI53lgGFWrRceTlDFmpCYGMcGMQUEgYKTqnDMO0ucwJgiDsdrpl3vztIIBDMPELLYj2IVgEgBtGsbYWgSWgwihKi8KXBBCELanv+JzcebMGSjOZ7N0Y2Nj69zZL3zhC7DdwVuAPQfeEaM/2OzbGhuG4e3bt9944xqltFardZotkIkjhGAAA3RtRigTBOpzuzDPqfQ88diauSEGwLvwmUIvcwoTm3mMBMGQT8iYIwBnY2uxMXM+KHqL3xFs8ugtHtPwH/P7uoCzMcbIgnx2cZQvSFZ24TGygNfnPGu8GEDC3zpLi7yae7cWWmvDOecsYNQRQpxBiDjfDx988P4bN68XRcGEl5fFpYuXtzbPtdvdJEnKssQOtRptzumT73v/888/f3TUCzzv0UcfXVlZcY4YY6tKrTfqh4e9/uAoSaaU8VotvHb9irP0kUceqdcbCDkkXRj5WquzZ8/+5E/9pNOu3x/u7e9EcbC6suR50CSqXq+XprO0mEVhfOfOQEpbluXR0RE4PuV5DptJp9OhzB0eHqZpGsehEAJBoDBC3POh8OGcK6M9HoZhYIwpiiKKooceeuTChUuvvfa61hbkYVEU1etNKBK82BNCTKfTer0eBpGzttfr9ft9IQRkgDGGYc8Pgnk2XhzH4/F4MplorU9O+lprIUSeZc88/TXG2GQ6W19fPzk54Ywu0t2YEAJkuGVZ7uzscM5v3Ly5t3947ty50Wh8fv1io1V//sp3T4aDJUqhd8vz4iTrs9FoFMdxrR73+31KcKPZmiajJBl3uk1K0dJy27rw53/hHw76R9/+9rfbnTpkCFOPS1n6PnMOM1bLipwwKnyvKqS1SFYyDGPOAq0twxRC22D8WxWltcjzHKdvcnwQQo1Go9Zs5Hnqh0Gr1ZrNZsBsWl5eiuM4zwswH4A7DpkqC8UiDYIoioJWqxUFXr/f//73vx+GsVKK+4wRBgAmxpxSYo3DBGFEHLKnNTE0a6f+eqDZtNZSQjzPo54F24Rz587dunWrLCqlVLezPBpNptPsh39o6eMf//i//be/PZ3O4NiwSlprrUFsboEKlROB/ciYOYIJBRxCSFlHBddaWwXnqAG+J6WilAXnPnK4yMskSTina2tr9XrMOS3LssyrOA4nk9Hu7r5SFcZ6Ohsji3Z3d/+3//XP3b27++8//QdG2ygO3cJmUUrp+xEimBASx7F1flmW0+kII+ocQY44ROaRUHg+xIPLppTGcTwcDq21IvC73e4999yTJMlsNtPK5kWqF774ZVm2Wi0glKVpDSHkFm0PxtjzOGT9ucVwDCo5QjAjkIY5D1LzvGDYH37uz//qpz/502e2znU7y1LKzY0znudtb2/D9TAqtNbKzXMDKKWMMaVzoB0dH59QyjgXxiDPC4qiODw4ydIKIaykYwR5XqCkhrk9FBae5wGUDC8Iu8Mplemxxx67c+fO5uY6xnhtbc3zvJdffvkjH/nImTNnXn311e3t7Z//R79YFAXh7IUXX4yi6MMf+ugrr7zyuc99ziH7rne9i3N+eHh48eJ559zBwcHjjz9+8eLlp5762g+9+z2/8zu/8+Uvf+Xa9asf/eiHX3n1tXqz9sBD9z/xxBOvv34FY3Tp8uXxaPDYY+975zvf8Ru/+T9LrYLIZ4wMhrPVtWUvoNPpNM9zEK95nud7HmOiVqvBCN1aq5WFcYuUknMCbI4XX3yRUXHaoALKaa3N8zyKanArKMVZbrO0EEII7pQyIznzPI6wEYIJjvNMUUZq9cBZjBAaDE+yNKWM+X6I57obW1UVFJQYUYTBIxgAVkwpJYgRwvK8zNOirCprECbOKK21Kooqz/PxeNxoNPvDAUIomWVVYRljjUZDcM+ahGHqeR4MbgIRwD9w7733TiYjWH03bu1PRyiuoTSpKPGn02kURY1mLfBDZxEimDG2ublUltIYM5yM48BEYb0sJMU89HxptFIV51G3257OxscnB1euXCGEKYmKVPaOhvWwTimvqopzz2rpnAuCQKoyCAJjFBzk8GA76wxyHp9bvjjn6MI9jC7Y+gBTwkYHz3NRZlffuEKYQAiNxmPP865eveaMnQxHs3HywSc/vLm+kf5QTjBrtTr//X//f71292Q07D/11FOvvfLy61evW60YwdiRoij0gthLCGGcKikpY9oqQhCizCEDklZjnFLKIVOW5QMPP/zBD36wquTNW3ea7eav/tqvbb967fBo9+VXvrd3sDsYTt7xjnc8/PAjL7/2GqLk6tWrlDrKkLFqbWU1juPdnX3KsJQl2NFSSoE7o5RNkuTC2XPvete7/vqv/zrLMs48rdAwm2pnfd+/ePEiQjZJpgcHe2k2XV1dTZJpHIcbGxuU0pdeegk2NM8TyFHEoenCRjtrnUUaCDjaakYZwtYYN5lM/uav/7rWaHBBrdMAfYRhaJCDztYY02w22+02xng6moJRBqWUEQrDMKgUlapOEUbY0xhjkPjneUJKDEMGQNnyPHfOFUXheQHUx2EYYkyHw6EnAmcdo6KqytFgXBTFXbsD4sRmM67X6yClB4EC6JphqRKK6jUlpQbFHzDOMMYIY4eR74t77rmQpFNQ41VV0Yy7zWZrMkujsGlNgjGv1RrNWt0X3sHBke/7Kyut6XQ6no6Wlpbe9rbHD49Odnd3tbZaWYII4EcI4yCYe/gao4B7SAgJw/Di+c1Kq8l4liTZ7u5+kiRBEOVZxaiPEOFEOOeUMpWuOp3Oma1zB4fDweBkNDginArhcc6N1UL4QQjnmqxKTRkypup0GmHEnXFpmlYyU1lV21hudeqMsSzLHLKMMcYJF1QrAh4gx8eHeVIQjzjnHnrgwZWVlbt377bbzaKoEEJFWRGMGWNRVLPWDscDKWUQM4eMw9ham6Zpu7thnRqPx7NknGXZpUuXGo1Go94+6fWvXLnicT+kTUopZ3wONVorpVw0Zuill1761rPPEs6DODaLvBS0KKjRm/wOC1AFWai5QTDknEMcO2escY8//viZs5s3blw3Thtrj3t9hG1WpP1+3+O+c9jnfp7nSZFGUa3b7VLK8iS1FnHOy7yqqooRzhiwq50QYnl5mRDS7iyFceCcpsxoU+V5Dt7KQvhKzqlAhCiPcS4YISQQhDHmSRb4jXanCbJirVmajcMwXFvvVkoGgfB8UlZI6YzzOdEPukFAkSjlAHV5wpdSW4vCkDuHkySDRgiwe4RQVUqtTK0eg4IE6griECwoz/MqpYxzCFuCGWOIMZ8QAomFp2gX3EzCuVIKok5E4COEwGsP7ErrteZsNivSDIbWSklCvKrSHFPgmRpjsIMuyJRlDkaHvu97fgiiB6UMXJ515k1ujnUAZONFwA5jFGoJQhEhTCnlecIYY52uqoIxEvo+oSLPcz8MN9Y2MaJ37uwopYTwsixzdk4sajabCKHxeMwYk2V1nBd5XvR6PS/whPCrqjBmfhMQQtaiqszjOHbOHR8f5/mcTjhvBRGlBKTWVAi/qipjLMiQnXNRLQZiHaUU5u5z3NCB9zcD5gfwJ+DNGqMAj/Z9H+P5hJWCUzahaaqhbvQ8j3MuhKiqMoqiWq12e/suaOGNsfCCCCHnLMaMC+ochVrR8zzkiNamqipVaSASQhujjESESamXlldbrUaj0RiMRzt39+D68zxHyDLCfBGc3TonS3Xz1hWKw6qQyGZCsK2tLYaZkqrKq1RlWtmqUrNZypngDFpxN5ulFts8z6WWGDvCcKtdx9jN8hk08IxwR9FoNCnzYm2zVa/XpJRFnhmTCuF7AYvjCCO6trHksJqOZ9pUDnmEiCzLprNZt9u11vb7fYyptSjPShjNMsY9z4/jGGM0nU5HoxEhJI4C0G4zTjjnUiprLaOMc+/+B+6BZZJlSZYn4A8rRIgx9f3QOewckqVSlTZGOedkpVZWVghhVSllNasqRSlV2hRFYY1TyiFHGKMQPCWEqNdrvu9zQY1RiGCoWDzGEeN5msPDQxCyDnQJBIbnxhkATDGySlcmlWxhA3oKCkPVBAgySMJO/6qsSoAeKOGcc2UNHLvw+SpVwdPYiGtzLrzvFUVhra3VatZqQHtPafVKKTjK56iKc5WSaK40J85ZZMEbAzogZIwySmNKEHII2bKUi6WNCcEMQ0LoXLwbCM9jvF6ra6fzPIfJ2cLWWVcVGg0GVspGpwOPtBAMSMrO4TRNr127dvHixf/h1//l7/3e7/3HP/7jzko3jrvgH50kyZNPPvnNb35zNBp1u908zzn3EEKcc1VJAOWZYZRSh9EpqnUKMJO3epWIBSd0ATdzzgXnWZalWeacAznFZz7zmT//i/+cpqmqsm63izFlnrDWOoQ5ZxjjyXRUluWFS5c+/olPKKX2dna++tWvcs4v3nP5pN+TeUkZrsUxDEvKsvQ8DvMh5zB2SCpVlpIQWa/PXaQwxmDyBkNKIL8DgT2O65RS8DaEIDKQVgBpHW6F1rooKqUUF2KxyRRGaS1Vms2qqrh8z9nd3duf//xf+mGdc+EHsVJVWdqyLAcn/UbcAcjVOWwM6HIZ2F1OJhOltUUGBMdSKcYo4+b8xfXR5ChNJ84Z66Ql1guE1tUPRA/zIlNarq4t9XqHk4mFQgDgOTO3qSGEIGu1MfOTRQjBmDBGWWc450HgLVxiFGce56IoJHKUUs6oH4asLMs0nXkishZNJrPLFy9trZ+7evU6wdSoEiOamqzZbCtbGo2vvXG72WzW4xZoweu1plLqtVeutNstjIk1BjmiNUgBUJIkcS1qt+Y6YGMMcagoKyEEpC86i2fTtMhKoyxCCBmElAvD6LjfP9g/euTRh3qHRwg5xqlzzvN9Sojw/cFofNg7cs5ZbGEhY4KQdqWS1lpqDaYEHgA4QK02jDFomk7VNg5Zz/M48zC2lHKLHEJYKgO5XNZqZOeexVprZJGbT3/nEymMKGB8ACDAHgIfCqPCmjnmbuckXEYpgovRqqKUImO01owTrXUch0EQ3H/PvWtra3fv3i3L8vCw1+uf3N65e/qEo7e4T9D51w/2bsYYTycTQqlT6m1PPHF8fDwaTdrtdiELbN3c7x7ZufgP0vCshQdJa034/OklZJ58s6B7I+DGnfKcTm8m7LdWG865dhaoNouxOn7rhWEMiZ0wx3rTIOitP3P6fud/ujmaevr9N8dgiCKE4Grh10/HzIQQbZDWGDuJMbYO3CTAsWQ+wNbWGGOOjo6ANYwQOnf2fLe77Jz77ne/+9orVx5//PFHH33U932r9HAwlpUWHjt79hznvChKhPloPL146Z5HH3vw83/9F0dHB6UqNza23v3udx8eHj311NeqqlhbW7PW3rhx44033qDMrqyscM5LWVZVsbu7e+bMGYzdeDzOsiTLsu3bt7zAh0dISqnV/KCEogVj3Om0nHOU4qOjoygKkmRKBWMeh7jaeqsJN4EQXBRFmqbg1miMJoQhhL/xjW+89NJL4Gt/zz33PP7447dv375+/Trsisk0YZzfd9/9P/dzPyeEeOqpp/70T/4EIaBlICHENEmDILh0z73W2tFgmGUZUC0vX75srTVGd7sd51wQ+Nba4XCIMJGqkqo6s3UxDMPRaFSr1ZRS4PKcJMnOzk5/MNjY2Pjwhz+8s7OTJAkhpMyLk5OT5eXlS+3L1tqZH0gj7diyPM/zIqvXY8bQzu7NbrHikOWCzZKBRsVkdHzl6vcG/aOsnLa70dra2sHuAWO4UW9Op9PBYAAIwqlzXFXILMsw4oRoax34LfQODuGIEiJyztaiGiEsyzLkaFUqQFWEEIQgjHFZ5oOBOXXOwhgjgiFXlBCyvAzOxVpKOR6PgyDQCmVZUq/Xr1y5YrWGpnE4HDMqHHLGOOSINpZSyxgDahFakJrnT/s8NBYCPgnQV0HbVRaSamWVuXLlqhC+LNXhUe+jH/3oz//8zz/33PMvfe/7zVb785//616vBxX5cDj0wgCCE6FMZ4yAFVeaplVVni62UyqK1tpahDF2yBljKAU/IMM559xDiCiljdEWWSnl3t7e1tYW515VqbheGw6HtVrt0UcfNUoTQpNZkSav9fv9X//1X4/j+h/80R99/evP/vEf/r8bnQ5CrizzIPCXljvT6URrKTzmnJFSIUelMgRj53CWZdjNNZJCMGstENnKMhOCRlEAI+V2u3nlyhVoCLOsqCoJNqzGmDgOnTNKVVJqPxBZWiilGBMOIy6oc07J0z1FQz3heR5UD1BEcs6tRVVVcc8LguDzn/8C5xy212vXrllrkSNaWaOd0dVcj1MUADdQSjFBxpggCPM8X1leu/ee+7/5zW9GURRFsa7kZDIFnYjRSDDBmVC6WnwKFjoftDAKnEd+aV2W5dvf/vYPfvCDGON/8A9++s///M8//OEPt1qtT3ziE//pP/2n5eXlD33oQ7Vm4/XXX19fX//GN77x7W9/++DgYNAfPf300ysrK08++eS162+EYWyUHg3G9Ub8Mz/zM4yx6TThnD77ja+fOXOGe+xb3/nmu9+tv/XtZz7/159bXV231rZajdFotLG50mzF129eoxx5gbfZXI+igAtqsRa+IMQtLS2BFRrGOPQjoAP0eidA65hOEs655wWLbtzWahFCpKqkkiWYvUAhfiok9H3FOZeypJRbc+qRajDGZVHlaYawvnjx3Mbmymg07Pf7tVp90J/EcWTtvFoHEIFzjrFVyhhtMEJVVWHrIJGJCm6tlao0xlR5lZpcKws+A87YXOetVuuRRx9CyNZrjcPDw6KofD/k3POpIYToSlFE6nEMsmWA/8C/bzAYfOjDH3jttdem06nnecvdrfNnI87FqD+oqorzQIhQGTweT71AwAgREbyxsZYk2Wg0kpXSamqtJcwaI52zfsAoxQcHB8PRyWg0pRQZLRkTmBLORSULzjVCqKoKRubUWkL/i8zi+U121lonnfE8D/B2ay3RiFBKGJnLD41B2HJBEUKAeGKn0zx/73vfiymTr7xycHDYP+4Hvs8cvru9e/2N6x988sOMevfe/0Crs1RVVaL8Xq/fbHSWltaUUvs7dxnFxiintQh97RDCxFmLMKKEOuecNdZoxDEhiLC5wjEQXrPZTLzZ8fHx3bu3VzfWKaX3PnD/rTt3jo57v/CLv3Th4v/4S7/0i9/99jcGo8mdnT1Z6WazRairN3yf85N+r9/vF3nl+0EmS8YZ5x4sJc45qBPiOB5Oxj/8w+8bDEZf/pu/yXMJw2rCiJTSGDUYnkyTSXepM5tNTk56CKHj4+PdZmt1dR0hwqiXJgXUuwgc892b2TjWWossF1RrhRCah6d5nl0YhBFCms1GVVXaaRAuhJGPJYaiRMoShoXwUqDlUUppp2GxzJKJ1hrInnMjbECUCLYGO4fAxxYm0rDbQTc+Go0QIgADARvCMbRz+26r21FKSalazY7R7vb2XaUUJdxhd3h4OD8HoQ7WDmKvKOXIEkqpXpDItNbj8RBjbK1tt1sI2clkYqTrn4yztNTSYcM6jS5jtNfrJdMZQqTbXarV63d3dqI4Onfh3HA8mk7H9XqcJFlVKsYZQjYMQ04Z5Lmdnl+EIIDp9/cPjo+PEcW7d/fyMjPGVaVO0xQ7EoUNiolSyjlMCJNSPv/8i3mhnTXIYYxxWRRllhHBosgbjUZxzW+32xvrZ497A2Ncnqe1uoeU4wIppaIzy0opY8tAxL7FeV55vggCTinttBu7u7tKqeWV1sT3ZrOZs246nYKLEcZ4Oh0bh6IoisLY8xRy6ObN63leMEY5Z/VWY21tbWNr/ejoaDIbc8qMqYwxnU7n+PAojmsH+9dGg0lVqrLQqdIIEYcRVPZQ8sZxbIwBWm4AD9vCFxhWNBTh83IaI0Sw73nOGYqJUtY5C/U/MPbCMIQu1zqwA0ZlKZU1vu8hixu1JuQ0Rn4kKzVKJpTyelxnjDEm0jTHDjmHscNgcAQwqO/7QBYuiiLPU22ldQghorVtNutWYcGtC9FkNBVCpNMJDgJjdT2OZrMJIQQ5E8axUtV4PP7/svXf4bZeZ30oOt7Rvjrr6mVXbVWrbRVb7g7YxjYWIT6QwAFOCsWXJ7m5FxJubi4HTpIT8qQCzpNzSCghIBtsqm0hbNkEG8mWLKtrS1tbu+/V15r9m18b/f4x5lpSCOuvrb2X5lrzm6O87+/9FSklIQxjLGSltXbOGMtGo0GWTSilSGFCiE+/PEQPQWvd7/edRRhjj/ZKqSn14cDYOeTZys55lTFY48bjsbXW3++cUB825Qs2rXWpZ9Nlxvy+sPgt+fL+18Mzu0ALQJ12NOCMESGEFIoxtrCwEATBgTY+QdEjp5QyHjCEQVtjrAdSjRc3aK3DkFPGhKg8+dczgJx2WmtKZrQjYwxQQg7d0nythxCibJYOZJG1yBmnPE5UFIJSqqWM43h+fh4BbG1uIYT87dloNAb9fQDIsmxxcTFN04P9fqvVcs4BgqIoCCF1XfEwwBgbA1JKwCRJkjzPwR6pVunc3JzfgBaB1gYAUwqiVpRSIUs7Ew46KaXWllLOAu4zDA+9WWZNozGG+Fb20JPRz7mPbCsBwHsQJUnCOZdV7R9LXpVKSaUkpdQ7HlqrKQ073dZ4MHbONRopId7NWTHGrNNCOIy9/F9VlZViphLwm4scqoP9MqOH1mf9fj8vaw8cTLMibcSUMmPMYDB6/rkXnUPz84vGGK1tHLNjx04ODnqj0UgpVddCK6uUabU6WmhrfNOLhFCUUgpYKhkGAcJOaVFMK0qxlFqImjGFMQ445zRI5tLpdHL58mWtDUIIA8WYjsdZOB6ladpud06dPtHv90ejUSXKJE2JEMa48TjDmAKAMdqrWf2yD8PQW4s454IgjKJ2GIb93q63Ddnd2Q/DKIoSZ6GSlR93aa19TcU5D4JASaOdAofSOLHa1HXt2cphGHtiATLIGntw0EcIc84Z5Qgh65AxvjmaQSF6FspHlBa1MACOBdwXyaKqZ9CPQQDgrPPRREeTNkJIHIc04NZqAADiuy3lnAPstFZ+m+NDo2fnnEXOOosQIAzeRUprbcAAm3FfGKfGsEMXF4kQbjeb/hUsgSiKOp0O53x/d8cfQUfMO99x+BfxETi+gMQIPC6DDjXjR12AMQ6sVUZaa7XWnIf+l6TwpjO1h05mPWNdR2lCqbx+/TrG2DORhRB1PX3wwQeXl5efffZZvzE9B8tau7AwVxTF/HzXGPPLv/zL519/lceBl05fuXJlcXExDGfR5X6RU8qPynVlNGE08A7yWlqrMQbOfamDj7Cbv4wTWXeERGutnc9hstZLtTwI7i/p9lzXAtJaIIKUMoQQgpnU0gGaZKPHv/Kl0XgwmUy++IU/2djcbLZaC0ttIUScRgsLC0kS9Xq9drvdajU8Q9m/i6Orwfcdvt/0g8lGoxEEQb/ft9b66ELOQ2+v559VXk6NtUEQerzsiCaPj4hlyMcCc0LIdDrFCO6++660wa1Tz3z7hWanPehPmo1OFCVBEHEeMyLqWlISa20IxVVVCaEQQgbVzpkoioTUnNOFhQWlZV2XKyuryOml5Ts4p2HkLr5x1TpV12phYcEhk0/Kvwwc+rLNqr29Levmx5MhxsiBNVYBzIA5xpi1GgAZ4/fC7OgWohKyIIR4qY1SytddQqhXz50PQiZEGcRUSVSBff6Fl4piur58y/z8POfcM6tuPnPrzs5+VapaiAgCKfXyyrKUdTbOKOavvPzayTPLAY+uXL7sJfNhGDtjQx6Mxxlg0MoiBAg5pWSvvy+lZMAiHgRB4McShJAwbJZlacpCa62UAatDHiGK6rLGGGdZtrK0XIyzuiqEEMJUdV23mu1sWkzyYjIthKqFEA4ZhCwhGCOMfAiJ04xzzrgX3GillbFpFPM4pJSCQ1YbIFRJ7fGWPB80eAIY+4pC1NIha50D7AVPgA8Zu4d71mhnkbJw6FPMCfV/8CcSozM9um9m8aH5A8bYm2H4bzNCVFWFMe52u0mSlGV5+fLl7e3tvb0Dwpk4OPBnoP+hR/CuX73W/Y9Oxm/5+tCHP2zsklLq/e//wEMPPfQXf/EXf/RHn+ecO+z0bM0DJhgjMMYYM/s9GefOOWOMBeSQUUpZI+I4LsvSO9VorSMeGGMAnOcfO4QMzLBmYwz15/Cb8YNwyOx25K2GWodHytF3Hp0w/hveqhc5+k+EkEOzdwwAyGHkkEMOIWQN8t6bHjeDQ46z0YgQYp1DPpkRz9QzaDatAYxgPB7v7+8SildXV//m3/qBW265ZTotnnjiG5/77O9Ps+yOO+4IKHv15Vfb7Wae51EUtVotTBgCEifR7m6PEPbe93xgNO6PhhkGFnHitPvzP/uzuYVFa22vvz8c9YfDYb/fp4xm2eQrX/kKQuj7P/H94/G41WoVxfTalcvD4RBjRAMaJbG/DnxjyFnS7XYHg4GUtU/pEEJwTrWWlOJaiUa72Ww2y7JstRtKqbIQhJAoCquqysvCXyvW+qgS8NZng8EAY5JECTh46qmnr1+/TgjxwW/W2qIsX3/99eeee67RaHzlK18BAkmScMq01lIKBzO7TmNMWVf+Yba7He+p4NM7vBbNjyVYwKuqWlpaUkptbW1RSldWVowxJ0+evHDhwqVLl6y10+l0MBisrx+/++67N3c2P/c7v6ussZFdXV2dT+ebzbbulsqq0XM5XT+21uvtV/U0TcLhUI5G++PJRAhRynxpaf7q9dcP9nasEw+984HFhc7Gxsb8/LzPoul2uwf7F4MgMId2TnVd8yBQQjlnjVEOQcgpEBs3Q0KI0ybLsjgJoyQqy0obo5RcWFhoNtPxZDgti0k+ieMYG8iyga90fXFQVbV//wHj1qKiqHxO4vr6+uXLl/v9A+dcv98vy5J5/x3MMMbeltRaw1mIENZaa40wxs46h/6yO7tz4PekP/oJIcgZYzTG2PthVXlJKd3e3h33xnt7B7/yf//qmTNn7rrrrl/91V93zilZJ0mCrCWESKGjEPtbASGklMrzzG9U79bq9Z7eXO8Qz0V+sofxkeG6s9bFYQwEjDHTqaxFyTivKqG13dzc1loSQpyxk8kkDONTp04ZZQD6d5+9d29798knn/zpn/7Hd9111xNPPOG3pRJVs5XyiAVBkDSinZ2t0WgURpwSTnBAQ+A89NMhRrEQVRzHc3NdIURVF4R6kN5IJay1QtQXLlwQQvR6lFJKMJNSGquKokjT1DhLAAklJ9mkLgUAcM69ya9wRyU4BnDGIO+zSRkmBGOCiiJ3FrTWUmrOOafBxvVN46znhjebzWaz2ev1fBXuJ0W+dpydsN6oBHmfMnAWtrZ22u3uXXfdc+XKlYAFVlrkfIKzDaMoYKEUigaRRw2stX56fEh3UjDTa7MgCF599dXpdCqE2Ni4/sQTT7z22mvf+73fizF++umnv/u7v/sTn/jEYDx65JHPnD17tt1uv+td7/q3//bf/tKnflkpdcftN7333e/b3tp6/bXX4zidTos8z9dW1t/3gfcLITwZ/9f/669jjD/2sY9duXKxlNO0Hb1x8Zxz7qMf/aiWKgzDfn9vZ3fTIX3y5HGErFA1Anf77bf7aK8gCIbDYVmWFDOrnXPGWttqdoQQjNIwDIVQCAnvP9Pr7ZVliSxwzi2AvwyMMYwRSum0yFfXjnEe5HnukLGz/p/408c/FmMUZShJGnGcjsfZ8vLa+vr6wf43wSECGMGMrzerhpUhM89NDYhwQj0oQDlBiGCCsAsAAAgLw5hSWtZVnk0cMknSKPJq/djqrbfe9tJLLxGK3/mBd/f7/f2t/d3dXc8rLPJZVCkm2BPqq0rEcbq5sd07GFBKRa2ci+pa1bWaTgu/+2qpAuyM065GzWZalqWPdtVaTqcFcT6uiuTFmPIwiFiSRIQ6bUSr1VJK1LUMk5DzAKGiympEEQ9IFITTrCSMI4QxDoxRhyIs5pDxVbCzYK0lzDvEEYT0UX9ljJlMJoSQKA7einEQQiimWZ6fO3euO78QBKGU0hnrLGhjMQaH8NXrNxrN7snTt4zG4/3B6Auff3Rtbe2OO+7c3+8NBr203c2Hg7jV/sEf/MFnnnn61XMv8TAESqxSQcgwxo12bJw1SNV1jTBwzmWtyrKMwyhJImPVH//xH84vLTfbc07WK2srcRzefNutp04v3HTLrYiRv/t3/+65c+cqUbe7HcbR4kJHqdoh4ywgi9bWjh2MDsbj8dmz98VxfOnSpatXr1KGjTFJnGqtf+mXfung4IBFEQAoIYMgqHRJKd3b34njaGV1MY7j8Vhxnk6n02l/qqUajSYYE2eQM9hoYCGhlAshhBAIAec8iiKtlU8CIQSsdcYo5xAi2GjHCGCMRqPBqVMn6rq8euN6d659x9tuO3funBD9ubm5Oq/LsvQiDE7ZEYallLCAGGOeLo0QGgwGURT5qYDRLkkSAPBWoVL6rhscBmttKWpljTGm05kLKIvjeDSaLC4G7XZb6/ry5ct//5N//2tf+9rGxgYAKGU8w8X/FM7DQwHdbAi6srJy6623njv32tbWFqEAAISwJGnu7u7WdR5GHCE0Go2O6IdlUUupozhN05ZS5uLFi9qIRpK22+0g4BcvXRgMBknj2HA4nE4nzXY3jpMoyqXcsTMNta2NqMsqSZIjD03nvE2wBmsAEcbZeDwGgrTWRVFEUWyUpQzFcZxPS0wQtTTPc6UUcoCMWD157PY7bhsMBgf7vWarwRhoU1V1cccddzQb7YODA4IBM0QIjqOo2Mve/vYHf/lTv/gzP/Mz33z6G+vHFjFOB4PBysqKMa4sy7IuqrrQyiqlPESSNlIPRviHUFQlADQaCaE4ihuiqheX5ieTSf+g72p1++rtQcBffvnl6XSKkI2ScH5hrqqKfFwQQrJJyUgwzSrkGCUMW4wxts4hBH4eQQjJcy/+VQDEz1Sk0Nb46DwKAAhmowvnfOtCGo0Ie3cUF/rTdTKZYIwxod7X6+LFi612o9lsRklUVRUxxM8wjq2fyLJsNBiMRiOtjFLqYO/ALcBce05WGlzpRfHIIq1NHCeUEmutMlrmEyklJYHWGoHhISMErEUY80ajlefF+trx9M7kmWee8VchNTizjoTUNxvj8Rg7ZK3FCFHAAQ+Gw+Ekn66sLDmjHZ75tDISYQxJ2sgnWVFUGGNvrKGk9jw1jHFRVFoqATUAMOyxKksQUVppKcMwdDPlE7LO0IgIpSsheBh6KNkYV0lBgQYBAAjnnDOWANLIGqOMcYQQ4wBpB4j4fJrpNE9xI01Tra0xAiFz48amUkrrmZGx93NoNBr+s/Bloe82fTdLGDXGBDx0syJtdtTcuHrDt6MUz4zdzaE16tErME48RUtKycPAB+XRJOQhMypyziljQszKopbCFkWBEA7DKG3ERjslq6qqDg4OTpw4sbS44o28PVIEZEapFkKEIY+iKM8z3y1zzrFDVSWOyJhpmmaT6bQs/P3i+0POOSZUKSFldXTI+Lm7p9EBzPpNNwvbYACOMQbWHflTB0EQx6lvub2HgPMJ2Ag459L4MACYRb8il+Xe3IZHgfTeYqIUPgnHO+kbY5QWCFlfic2aU+yMmrG0fIExG8cCWKfjiE+n0yBgQIlDZmlpiTE+HA6cM0IoI5VS5uqlK4SwZjdqNptVVbVbTCs3GmbOYYI5BhOGFEBxwgUSdS2tNX5wHgTB4uK8w64si739HYyx8SRba7XWNA0ZCwkmRitGIeDp9evXG41Go9FQ2nBOkkZcFnXZLzjnzWZTylprGYbhNJ9UdYURlHnhMVnG2IkTx+648/aiKIwx/X5fiNqnWiVJQikTwpuoO84Da8FZMhxknHNCQGuttPDqSXCYUEaAKmuVVVmWcR74cZcP/MEWnHVJmCRJyzlHCPMnsxCCUj9p0BTRI7dcKWUQcI8K+b2ADg09ZV1TSgPKhBVen+27LV/YIADOWRiGmGH/dwZp65xUtZ9P+HFdGIbG+sUGRzCHfwXv+OH/xg84/WNXWgB+Myq8qoo4TgFgdXWVMfb6669LWSM7e6ksy7SRAEAZxkCV0b6t8x4gAIAQmZkrHnqJ2sMArhlca0FKTQhjZDb6ZXimWvDgkVJqPB4XdeVvnDDkP/zDP7y5ufniiy8CwOLiou/GZVX7UBm/WXyTW5Zls9lcXV1//vnn/+JrX2u0WpTSu++++5Of/OQv/MIvLC8vP/zwwz/yIz8Sx3Gz2bTWek8D55yyxivo/d6MosCfBl5bcBSoe4Q4I4cPZzSWoMMsQec08tlCzBuAWGtpwL3rDj2MXvRGunGUEoahdmEYpGny+S9+/tHHHl1eXv6uD3340uULVVUoE7e7rbm5TpJEmBJtVRRFLKChCkQltdY+7TMIAh91AzADj/zWPvKcjOPYbyKMcVVVxlkeMs8Z92MADw5wHoJ1YB1y1iofmEaIz3dSCmN00+lT73r32wHrZ5995uLFyzxoRGFqjHPOebNdxgLkWFUKyrRjGiEMQLSzyJgwDLvzcwghxkgUh0zjTqdx5uZTc91mFPO6zh3q7O9PL126FHAaxZSxKAm7fyV62EgjQ/BBf08pEYSBNcApJ5iXZe0VGACOEIYJohQzHlJK/R3CQ26tBeys09ZpQqgfmvqtgRzTAu1s9vd62xsbe81m7BweDicALgxDSjkllNGgsMJPdDjn06yoRclYsLd7sLa2Jkpd17UUmlJGKTVKHz9+nPPg+eeft9YqLZqNdl2X3pMqikIADNYJUVmrKWaUsWazudc7QAhpbeq6DihzzjnrkiQeqwkg1Gy2FxcXr1y+SDCAcwcHBwf9gTGuKOu8rLw4hnNqnaaYaGl4GARBgA7dJwARP6gmZCYrZGRm8cQ51VoHPPrxH//kN55/9Q++8GhzrsNY4JChlBijtNUIkMOOIOwQIITQmxiL9aHfng2AMQbrPAxnrcVA/eTbYaBAjzBTfRjC4ZsC/+ckjJqdtqd+y6r2QgoehfTIb/qQyYu9iyils9pPaw92/89f//gf/9Rdd6GiFF/72tf/23/7b7//+78vhGi1WpUQytbYIcYoIIrxm64U9tCp1dOTPcdxaXGFUhpFUbvdHvUHSguFZug5OXL2MBYDsDBkjImyAgACCGPspRL+EnTO0rcYP8KhFZL9n7Bm/w1HtZD7H7MEvfpzBkC72dFEEABgi5Cz4GZ6d2+cZQ9Hnof/C8zwa2946Bsc5Nw999wjZJ2m6erq6sXLlxYXl51zURjm0+l//8pXX3vl3MWLFzFGx44dO3HixJkzZ+bnFwlhm5vbtdJ33nN3q9HM87wqNaXB7u7W5sYeINppzy/NL1RVdfrmM8656XTaarXKMh+NRs8884y1qL9/4AP37rrrrpMnT165cunpZ741GAw8iDTKsjzP59oLhADntNVq+f5itlTKcmFhwSv2tJHNVhpFEcZ4d+eg3++laeKnZWEYMkaUUnVdS6k97hEEQRIlCKErV65MppkXznrapT8Zsiz7zGc+QyhGCHnBbl3XRmmtNeWMENLv9+mh+ZJfBr1ez0/xrbWDwcAv3SiKvBhIa53Vwl/rQoj19fXJZOJtNHgQeD+rJ598Mk3T/qif7U0Jp8tnFvv7B4NLI8YCvo6TdsyrmGpdhxHtHfQuvP7S9RtXO53O9Rubr776KiK4221tbV89eWqt3YyvXr62uroMmFbllGAaBNHK2olsUm5tba3OzXub0Uajkee5NSbgkVLGetaIdkkSSSlxyNqsjR3O81xKrbUGQM1mkxCYTCZzi/MnT55mjGXF0D8Cv1sQAkIwY8xoVws1zQ8YpUtLS/t7vX5vOM0KxomPVGo0GmWeh0HsHLIGOec4C5VSCM28zH3+DAJs7ZtKLjczl1HVtPSUY4KxVsITk5USmGJC4F3vfc8//af/v4985KNPf+tbX/rSl/KyePyrf5am6WQ8TtMUE5bnubUWgdNKD4fDGSsnoNpIY4zP6cZ4BttZ6xBi/sr0SL1vR+M49iCdD1z1J5r3Stvfl0brMA6zyVQrI6UxVlBKW43mtWvX9vb2GOMUs6oUaauJge7v7/7SL/+Hz376d8MkkarGGJIkWVieV7ryiksAsAZbQEpp5xylQRiGp06dophoI++///6NjY3xeBhFS57rt7i4OJ0Wo9Ho1VfPe36KEKKuawzaWitk1W63pazFsD6Cbgkhadwoy5ISHkWRN6Zgh37NgB1FAcZgjJZSlGUxO7ic53c75BylPGDYj90Gg5FHmX2l5S8DDzOZQ2dYb89vjC3yCoA8+OA7MMatVuvatRs7O3tOmzSNgyDytGWhaqU0MrMBw9G0/K1NozHGpwMbY65fvx7H8R//8R8nSfL000/7QFKE0I0bN37zN3/zkUceabU6jUZjOBw+9/zzURwrZYIg2Ns7+A//4ZeMUdYgpfSJEyc4Z4888pmnn356aWX54OBAiKoz15VSfvXPvrS+vr66Nm+tlSrPJzlgvXZ8JRtPtrZvRFEwmQwIcVES+tTBOJ4viiJJEiGE1lZLI63yR3m73ZybmztK4/FAFcYkz/O5brfZbDoLGxsbnvXmx30rK8vdbnc8GVZ13ev1goASEnDOj62fGgwG/f7Q1+VhyD0Z5erVa9euXRuNRmtra9ZgUSmfaGGtRQD+MzLGWIvCMGw0GhjhqqqstBhjwK6ua4Qc5zwJI2NMnheIgdZGSxVFCSEwGo22tzd3t7fLsjx27ERRTL/x5FMAEBB20003AcD21q6Hw/I83+uNV1Y6zWYTMErT9PmXXh6P8uPH15yx1mhr7XA4RMb6wrEsC8pSTHGjkWAMnU67KPIkiZ1zy8bkk7Isy1arddfZ+zinURR5s+YgChuNBuWEszCOoizLGMfv/Pg7L168OM0KxkIhhLYqYCFC2DlnjUYOOXAAgBmhmBqLvH+Tr5gp5d69mjFGOIvjOC8yImexxR5YBABjdCNJhsOxto5Q9u53vudv/I2/8fk/+sKkPzRKaYW684v7B/3t/X0EJG40V5dXTh4/4QA9/a1v//Q/+ntRmvy7f/dvfuInfuInP/nDn/rUf/nZf3reOuCUIGNVLUIeWKsZJzGPHDIOoUYjKUGMy+Fg0FtaWOi22i+/9NITT3z93rMPNjpzp0+fbHbaOztbzXbjzC03p83Gd37ww+9693u/9hdfv3r1YppyY+v9vS2t9a033d5uzc3PLfbG/cFg+Nprr4ZhaIz1/Yy3Qeh0FibDUZ5nSdJYW1srpnmv1+MBVUoh5DCFKIofePC+q1evnj59uiiKL37hT6qs5vORNXh+bv5v/28//thjf3r9xpVbbjmBgQoh8zxfXl4+efLkiy++sLe/o7W87bbber1enucWEMFYWSWNUgoefvhh58wLL7xQ5BMhq1tuueUHf/AHu93uF77whYs7F2cFIWJSSkxJWZZKiZm9CcOMMq8bSJIkTdNWq+Xv3b29vWlWRDyx1mpnnTaEEHKYWH2YgiU5p71hzxjncYfBYHDmzC1Xr15/xzvemWX57u5uVVVxHBME1jql1IkTp/b7PV/FgoUwCGUlr12+4oOhjDHWIMoopbzT6og4zKZDKaU1yLsWOKMBiHVoMpoW02Jz64bK5dl33NHptpQ0QRANBgOLnHNOWxs30rX1lcuXrhJC2+2mFJZTXlXCGFOXlR+tI4Qo5cZHdTlQSjoH5TBHGAVNes+9dzLGwiCejDKMWbvV3dra2dzcBHBAEMN4YbHrnDl7/x3GmEYjOnHivjiOX3zx+Vtvu+X0TSefevppgC3jbBRFmET9wQHCbmlxORuPP/u7vzeZTJaXl5UyWTailE6nRV1JznmvN6hK6S0yrLVhGBtjOp0OpVSqWhu5urrcbreLorBWCmGybMI5j5Pg7P33OmKUkZdfv+KTiquqkrUaDcej8VAptbKysjS/KqVtNfPxKMc0xMQhhJwxlFLATinkR+AegvR4WV1JQgj1BExjCCEYCCKOEIIx45wyxgwYIFDV1dxc1wPWUSP0rgLD4VCqWmkxmdiHHnrooH+w39sTWdaea2MsvSf4dDKRQlljGAusspxwjKmsVVWJgIfgjAUbBAHnTFujrRFVpZSyyIV81mnXtYyiyGi0s7knpWy322mSbG9vJ2Ek4rguK4zYaDrmSRjHMTintTz0WJdaW4xNVQmnXZVXGNP5tMnm6H7voBICQBZ5hRDS1jqlKGHWWg0GIeynZRjhI/5vQJlfyf7mYjTwt7zv6zzPoKqqIwjYE25mJlHe4A95SxnjjDUziRiRqqaOMhpgoFoZQEQKtbW5rbVOG8kR9ySgrNVqVVXdavGlpaV+v+/R5xlGAyhKIkJIJSqMibaWYxeGEQ8Dra1zzqIZRuN/Gd9QSSF88aOUNMY0Go0giDHGxtmQYMywcw7Aaa211q1WKxtPpbQBhem0UCrzw13nbJZl/i37CNksyzjnHo7BmBgjgyCYFjkhhHOWSelrm9FkaoxpNRIvevB0FSFUI21ijJ0DQpiXcoUhP2pujXYWLMYYANWVVEo5QMYewW0AAJR6FuEMYuacazdzygqCgFJaFIUxzvftvpPxlZ4QAiEXx3EQhdbaopjWtSGEhHFYTAv/NIpi6kV+AICQi6Ko2UyTJDFG1bX0JaVW0jnHGCGHXHKvpe10Oo1GVIsir0QYziw7fLKIEpYCBsoxOOUZn47VlSY4mOsu7e32L1264lc156GUhX/UlHJCvFOKppxprUejkUO6qop8knXm57qd+V6vX+Y1pdRZmk8rSglg5/0o3v++DxZFcfHiG4QQSlGr2Wm3XZ7ng1G/FmVZFoRgY5TXgxLCrLWT0bDRWD9+Yg1jPM2Ho9FI1LPMT2+axGiAHHbWTrMSIQyIExxWpdbaIqQ4Z0HAOKfWIECz3SSFVkoLUVvrhJCcUOywFjqO4ziOhaicc2VRWWcwEOS0L30BCOcEOU0PB0hHbAxv4Hs4kFDGGADCOQghnEXOWMDYYedJMxhjIaV3CVdKMUQAI2uddfaIKogOube+4zNW+xRN3/R6Xo7WyssfjTF1XR3BGULUGM9wamfBSBWG4enTZ3iSeGUb59QfDlmWRXHgFwyl1DrNGMGY+nglFnAAADeLujJKW2sPqbLVkWuWMcYZRChxh+pYxBggBIdBWONptrCwcP+ZB8uy/OhHP/r7v/+5+++//yd/8if/9b/+1y+88EKaNhFCf/InfwIWCKF++3iXXsaCXq83Go3eeONSGIaduTlP5r106dI/+Sf/5O677/xX/+pffupTn/JjHyEEUFIrKbTinDOCtfAHo3XOaD0zzfDeRM5ZdKhLOMSa/R2EnZvFKs5wokMC+EygIKuIJ8YqjHA+68ucUdZaW9WFRyWiiMdx3GymQlba1De2rt56x5mqqj784Q9+5c8eN1Y3Wo2iKDBxZTWlhBujB6N+FMTeWMwb3BP0ZnwZOozcsG9hu3tcXtuZS6w3DHTOISAzfzbk2RvYR6B7304AmJvrfOCvvW9tfX1z49qlS2+EETt27ERvdzzNNYaQMSJEwQNinS7Ksq6MUbrViGtROUccBp+fRmYGRNY5yLKMUmys2Nq+LtXc6uocoWhra7uq80437Xa7VZkj0JQD+qsIq/OLczhYmEzGouIEMwBKcFAVIgx5EATT6URK1Z1rJ0mslBJCOldxFi4uL2GMdnZ2iqJAM6nQTFMSBEFdS2vtZDLd3d2jlCwvHdNaFrlACHU6LUajJOZVJbvdeYaD/f19i7UQ0lpcVZVW1q/zq1dv+IMoirC1Oo0TStm1a9eKooqiKAziZrOplPGaPGOsUpIgMFYRCsZoXZvFleXTjdOvvX6eAKaUNpvN+e4cJ3x3ZweBEUJQwEkcz3fnppNxKUrnnKhrpdFkmtdSYowZZ4RgLaUwhlFOCCGUMsYcBqGVXx4Bp1EYHYkOvRM6Qshqq50OEP6bf/MHtvYHTz39VGdpHiOiPJiMHGDnOzKEwAGCwwHMm/vC7x9rtXV1XXsemzYaY4wBaik45xZQQKmXnfkr76hIQAg1Go1jq2s7O1s0SQiCa9euFUXBwsjzQ32ite/E3ayGmVlPAICzf5n76L+++MVH9w8azz333Gc/+7mHH374E5/4vkceeeRw0gz4zckcOjxOnbcvG08m3/Ed3/G3fuhvvfLKK9a5H/xb/+toNPrZn/3Z69evI2P9Were8vXmsCqMWBhUeWGt9QotM2NG+rNxlgnxVrj5CAhGb/F09n/2QLN9i3G8O/TKeAsADQgh7BBgwBgjYxygo1/PH9fIYWOMQwYAwBlnHbKWYHJ0iWCM4zheXlq6fPXy+fPn//m//D+1kB/+8EcevP/tP/Zjf+9P//TLLzz73OaNDSEqxlgxzc+fP3/27NkTJ0780Re++PTTT3/84x/7zu/8kHboqae+feXyDQKYMmwtZKPyW998dmFxbpxN8hdfmk6n42l27733njx5/Nlnnz046H/6059uN9p33333PffcY4za2tl+4aWXd3Z2siwrigoocYez0iiKNjY2hsMhC4PV1eX77rtva2vz1VdfLYqCBxSwE0J6dpq1VkqxtLQUBEEtxeLiYpJEHkjRWmOMfHFLgGitfQXb7XbPnj372muvjUajJEn8hxXH8XgyYoytr69nWWatDcNwIia1FK0o9PpC/+j800uSpCgKAlgefmGMm82mB9n81UMA+0HmwsICpfTy5cuEYOfQyurqXXfdde3atZdeemVrawsh2+l0Gu1mq9u4dvmay4kx09HoADG0Lk7Tr/7Zl9ZWVxiDy1feeOON1xkLtLHD4bCohJRybfVU76B/4bWLhMA0k5cvb3Ya6bFjp/q9YZZv3H33vY1GqyhLj9YhZBGK4zACIM6iiEdVVYH1BAEupQzDYHtjq6pUFCYILMGs1+ulaWyQGwwGc3MdrbXDyqclhmEEgMfjcRiGola+1AYgnU4HOdzb6SOGgoC3241Go4kxrivZac8hBEa7sqwRIgAEwPonyzmlGDlnHRBj1Fs2gLcMtjffdltd15s3bggtgUAY8bW1NSEqTFiWZU8++eSP/uiPfujDH/43/+bfdOa6v/Zrv9HppNbadrcDDtV1DRgja4QQBHPnnC9rlFSMMS9o9dnIRwUWgLbOOmQAqEOGYOL3HgCEYUgpBcBFURRFEcXx2vpyp9PqDw6qqsqyMgzjKEqiKIjjeG93FwDleUFIzQgHRHZ3d7RyT3/7mSzLEccYY0pJng2tbc/NdyYTN5lmPqVHCCmVKspaVPVdd921vLzc6x1sb13/4Ac/6Jzb39/GBIpBBgBzc3Mrq8v5xcsI2aWlpbnugnPo4sWLGDtvAR9HaV3XxiitzR133t7tdqWUKyurURQ99+3ntzZ3rNW+jWTAhRC1KAkhSRL7QtADx9OsqKrKl9fgAFOitXEIcc6bjbgWZa838EkRZVkiMju5/J7xxx/nHFlNKYsY7Q0nSpqPfORD3W53PMr29js3blyz1gpRAaA8zyilFll0eIz68uKtfaPv9DzV1I8B6rp++9sfCMPw61//elmW8/PzPmHsa0/8xdzcXKvV2djY2D84ePLJJ3/8x3/8e77nex999NHf/73PjkYT5wznYVVVV69cj+LAWnPt2rUr166Ox8MkSYKARVGAENre3pxbat90001RzF988cU//9pXb73lNkKIdTKKAmPVzt42D1gcx2HIb2xtLizMGWPyPEfWhWHor7RGo7G2tlYUU28G1G63x+NMCCGlcs61mivtdnt97fja2lpZVtevXz9z5kwcR9vb25Ns5Jwp60qqmgesrutpPqlyV4kaANI0BXCe+kQIc9YKKeOosbPdu3Z5s9FopEkw111QWvAgcM6VZVkURZ6XUsokaSRRUpZlXmR+Lq2sds4JUdVF5YUR1HEAUEonSYKQk0JToNev7h07ceLv/ejfefzxL716/lyz2ew0Gp1O58KFC2WVL62u7O7uFnUVhtg3BpTSaZYvzC+eOnmmKAqllDR+qANC64BRh+zq2rLWkjBcVeX68TWfJxZF0T333PPKyy8P+JCyhZtuOfPgg/dfuvSGEEI7stfbGo/q97//Pe9///u3t7dv3LiGsH7v+95+000nV9YWXn3l/HiUrx1fqwuRTUpwyBhHCHVgrUUOY0oIZZz44bN6U9uo9Wz26zC0221M0CHEbKSUmBDOeRBQhFAYM2tRMc0P4ODq1esA8K73vHc8HDXandWVY2m7iwljUZx0On/vR//Oo48++sy3n/s7P/r3/tp3fLAsy7////rp97znXfsjRYIoaXdEkWOMWRhiCAg4bWQ9lc12M00TPyimFHc6HQK4KKac4yhNHnvs0a99/YkPffS7/87f/dGH3vWOrZ3tk2dOf9dHPvqNb3zjM5/97MrKyvWNDaVlJbTsTaM47nY6vl96+eVzUSPQWl+9eAVhhCltt9v+7hRCNBoWExTFgRBVUUzDKOjOtYF75lq5tbURhOxDH/6OIOCPPvrF97znvT/wAz/wud/9gyKvwjAd9MfLy2sf/cjD/9ev/OKgP4qiqNVqe8f/+fm58WTIOaWURlHAGIkbabPZ3t3ZZ4wh6zDGW1sbZ86cede7H3r0TwdlUbz66qs///M//8ADD4SM/+w/+dlmp00ICXz8jnPOGY/yUIa9pzmlhHPOORuPR3t7e51Ox099pJRKG+fciROn4jjc29sjBIIozLKx1lqIWsiq0UyWVxavXrkeBMHuwW6nOQdAfud3PvsjP/Ij43GWZXmj0Wi1OlVV3XrrrT69UEpJOl1jzAc/+MFvPPnU1vYGgFNKASVSSs5CKXQw738xGgaxs1ApYTRyDojD2loM1EMSgeMuEePxeGFxTtTq0qVLnsM1Ho9LUYURf+WVl4bDccCjNGpwHmptZtMBxnzGmg8PQwgDwjxgqhZa25NnTiNqOt3G6upKv3+wuXXdGTceZ532nJS6KCcIef82NLcQHzt2zKH60uVL7db8arj6+ONfGvbGo2yAKYzHYyFUs9nOsjFCVkpJwPzCL/zzg4O9P/+LP7/w+qXjJ487i149d+WWW05dvnTDOddIW5RyztK6Ms1mExPpnAuCpK5rb4Edx3GSprUop/lkBlXUMpuOm0m6srpQG3HuldeKogrDsKqElDrLMrkpgSKMoY+H07Ho90bIUc4jZ4+G1NhaCw6OenjPAqtKQenMkRM5QA5hchiZ4pwD7x3hNNLWWGsNEIjTKAgCIKjdbsdxTIBdv3691+vVWfnwJz7xgQ984Fd//VeDICjLHGO8uroaRVGZ55wFKELWWkJDUav+wWBrYxsQppgCQvQwTr2sKz8G01oCBqPUZFKGYex5vnUlEUJKSueMtSjLsizLtJZxHIM7DLRBNAljrbWzyEhXqlprHQTgsEMGAcKjYcZYYC1yjmhp8mnpweI4jtO0EVDGOS+KYjwee5KB1SaKIkKwD0qy1mrt7/FZMB0Ce6RnN8ZUVVWJmeEV51wr5I01HTJSakptwN6ETfFh6rrxHQtYbwOltUQEMxYkSTLLZbKIEmaUklJ5p+k0TXd3d496oUNUJbLWVlJ4TNkYM5nmnHPnQGqttQ7QTMQmpQSEfYNBCGGMebzMD7PrulZGe4My51xtkRYSIYwQBkQwUGUcMk4pzRn1SLR3feWcV1VVluWNGzd843pUrng1HiHEGKutLorCw0yEkMlkghDyVgw+hGM8Hs9srAjxLAdCGCEMYxeFlJJZivVRNeWcAxJwzmsxM8VmzIO8s5TFt/jFEUqpJ5n6VRcy1mg0/Gfn5UdKKW1NKww9/dCHOUtZM0YxxpbQKAomk6lSkhAWhiGlWEqJkPXU3arypgcAAIQS55A5zG7xkouyLKWVxqg8z70DGKXMGM0ICYIgjkMldZ4VFFNKZ/5L29t7RTGtpWEUrIG6En6R45hEUeyHHJTiIAjCkAM4IWSWZWmaNpOmqqWRDmlMaSBLLZUIk5BzWlciiriqobc3rivTaIZaWSkEZUxrXZTTNEnm5jvTrADAYcjrWhBCAPjcXKfTbo7HQ60lYFfXuda6OzdnLRK1UsrUovQK7kajNRlPy1JwFochxxgLUVFK2+22VtUkn1JKMRBjpFYCgDBCKlkpqQ021tokaSRJo6oKhKCuK+/H4vnFHuZzFiilYcjAIYSQ/5S9wagn9xmjgGCMqeeeC1UZpZXSlFLvR+83oJsBEN40D2GMCBzZ2COP6fiSGw6Dp7TW1sz+xh7mIngNtVLKYWCMNZvNoigGo2Gz3WKEZlnm6W9KiyAIRqPR/pUrhJDTp08qpXwL7XVOnnvodzdljDHm6fnukMtsD72zpNTOKQo4CAKwrhLVoTEOeO8gP+tyzrs/g0ZWKy2q6rbbbvvQhz505syZhYWF3/yt//pT/+inP/zhD+/t7HIe9nq93d1dQljEAyFEFEUrK0tBEOzu7iLrg/4456Ef0lRV5YdYa2srP/VTP/XpT3/6i1/84u23335wcODFUtZarzEihBDOrNXGIOssQYAQcoAAkMPgvXeJ84EBeAZPHW5zQO6wFZ19EAjACwv8kO8QTnrTjsMfPpUogyBA2NWyIhgxRsIwmExGhECrlZx77ZWVlZXJZNwfHHjyMkIIsGu1WggBuJlcGACcnn0uhBBwSNmZvalnhh3JQSxyPqPYk4Rmvj08QIhWVWWdZYwhhDkndT1jCltrl5eX77zzzq985Ssvv/Ltg95es5nMdZcm49LYMIkDAAOg82LMeWidsNZFcaBUxTg2Ds1MBpwTSo7HY0KAMaaNwNgmabizM0GgoghVdX5wsNfupPMLTSFELZyQJXYi+KvMeCmHIArb7WPFtHIOnCVlIbLxlPMgiRtJElmn4zjyZt8+jcN7jBhNraGcxwSwMUaICiGMMfa9HmPMGEcwW1tdl6re399X0kZxIISq61Ecx1ob39JSSgEcdihNUyErKbRPB6lEXVUyjlKj3cLcnLX2ySe/mabp/Px8Ejcmk0lVCc55GEZSKgAIQmKV9SAjZdhZEEKEcWStXTu28l0f+vCz33qmzCtp66KYGqPqomSEBkHQ6baH/R4hEIahRSIvckpp5LOULWiMOAuNVQGLGGXexR4ZZ60CzqMgIHi2/BA4QohzxlpwzjHKjaO9Xg+ivU9+8ieH2XRje2MWkAMEAyDiZo2V8VDzbGKqnQULGGN0CDtXRen/2QOF1pi6rhGb7Y6jyZNzDnlb4cMqpaoqb1wWMj4ej/2V57tgzzv0Vzlg7K/IQ0XFTP/xV8LNv/3Ib//2p18t8ipJ0ne9612PP/5VfzDOxMGAMQYMsyPVOect3bMs8/FRS0tLJ06c+Nh3fzc4/Oijj3LO77rjbZcvX/akYB9P5ZvQo7dclqUrCr+/vOOIdTNON/kfec0A4A5dRxyepSy+9QsOk9Ux/sub4WhcZw0CcASBgzf/L3iLp/wMpcbIOsdmN4uf5FjnnNNGOOFrlbIsn3vuOaWk5+1qrb/97W/nWVFM883rNw630kz+zih9/vnnG+3ON7/5TYzxc88999prr1HKn3/meU5iKWUrbd1zz11b2xsEmXc+9O7BsPfIZz7t195LL77y0Dsf8KSxlZWVj33Xxzjn29vbzz333IUL58MwbLVaUmoHBByuK6Gk69lenmfb29vS6AdvuX99ff3ll19eXFw4efIkZbjVam1tbXnNqFJqd3c3DGI/bpyfn0+SyBhT17XnLPvKzZ+ZvuBc6M498I63S628072nP3qKwMLCQhRFt956a7PZ9Ot2c3Oz0+mcO3cuz3OPSnsJ9RHu7KxLkmRlZWVra8v3ep5yAQBZlu1u73jTainltWvXvEKlrOo8z994441r164dxk2xkIV1XU+3plEUN4Ku1nplZeFgsFdeKuH/+Hf/nHN68y2nvva1PxsMe0VeDYaTutZFJeI4/Ef/+Kfe8Y4Hv/z4Y5/57d/Kp1OMsZVlURRKmbwq19eOra+vK6NqUWotZyMj610sKQWqtREa53k2GAwAIWtQtzsnSjEZF8bYY+snGAt2drakldYaU2nEEAlQt9vxhb4Pzwl4FIbhZDIpiopS2u12J5PJzs5OXYogCDBRCwsLWhujgSCCHEEIOweikv6R+c6cELBaY4ww9ZRnBADauEOttG21WidPntzf3xuPBsaom2+56eGHvzsMg699/cnXX3+90Wl0u92iLN/2trdduXb9xo0bYRgCIsaYSTZyxhICSktknRQz11pCYTYo0yoIAh9J6beuMW96zwFAHMfeV4gQkHWNga4eWxdC7u/vCyGUlHOL82fOnHTIZFkmlfMHX12XUtbTLPOMM0IIAT8LckVRvv9937m3t/f662+ARmU++ejDH213Gi+eezZNE8qJt2kuymo8zoqikIX66MMfWltb+/KXv6RkefPNNw2Hw0bTZwNqDzUuLS3t7OxVZd1qdaIoWV5a3dvbP3fuNc5C51yj0dBGpmncbrfvuPMO59zGxkZV1dba61dv9Hq9KEyiKGGMgcF1XSstkiRutRuEkKoqPGHKWlvklVKa0cgfLADEOudLEOt8xPPsiDRoFq4KswArw3wKkKgwUADyjne9++qV63feedf3fd/3/cZv/Pp999/7zne+4z996pefeOIJ72LpmTiHzB0fOwnuiGpxmKvm/zIMQ1+edtstHgbD4fBDH/qQtfbll1+u63o4GX/iE5/4vu/7vr/4iyc//ZnPnD179h3veMdDD71rYWHhj//wj37t1/9Lmqbj8bgsc0oxZZhS0mo1kkYK4LLpWBuzsrqcJIlxDoi87777zr3y6vb2bpVXM6K3nU1Ea1kjhDxxQxqZJAkyqKqEj+6dTCbe8DGKIilrQoiXHfR6g+FwCIDf/e53Y7D7+/uchRsbG5Qyb4Fy++23vX7htclkEschpbjVaR8/flxK+cwzzwwPVBzHhJG5uTnOqTFmOp16QIFS7kn9zliEULvdbrVaYUQRQKPR8P3wZDIZDscAhFM2HI5ULZBPYw+4V0IRRGe8cmsQQh7YopQIUYEz0+lkcWnh2MljeZ4pIxuNhhFiMpkAoYQQxgI/cGs0GqdOnYjj2Fr7xhtvGOPSNN3bOxiNRqNh1W7HnPNWq6VlXYr61KkTAK6WtXU6jKL5+flr1671DwZra2vj8ZgibMEhpB948L65uc5zLzyf53matL/91MWzD9xy9uz929vbWotWu4Gx3dnd6rSXBv1Rp7WwtzvY3TwAxIpc+LE2AouQtYC8OzwC4pxjPrd9pl1Qzjk/xjfGEApet4gxBjzTZMSMREnsgDgEw+F4NBoZ45BBq8srH//Yw0qp5ZXVj338e06eOSOMBsISFFzfuPGf/8uv/cAP/a8nT91kAWohCCH/9Td/41P/579AMY84QUYyjOdazSBkQldaq6WVZR7xPM/Lsq4rRRAQh6SU1uogjhrNdlZV997/jv/jn/9z5qL9/f3l5eVTJxe//Gff/I3f+I2Pf/zjr732yn/6j/++1YnjhKVJwAivSjXuT7RGSTNijAUhE0KkaZrn+Xg8ruvKY6ME4SPT9lMnThJCKl0RQqI4GIz6nU7nIx/5rq997WvPPfec1uYf/j//3wtzy5/77B+8/PJrTqFbbr6jqsTG1htp0pRSGmMxxmEYxnFUi9JajZDtdrubm5snbzrz4z/+yW8/89xXv/rVPBv60JW1tbWz991zMOhfuXJlcXHhve99b7c79wef+726rjkLr169GgZBq9WqhRBC+GqDUGCMaWd8Gup4PN7a3EQIBWEURZE/hLWkmKCVlZUkifb29hqttNlsbmxcH41GANDtdpuNxs7OzrFjx1qt1ksvvQQ6IITUojTGdLtd/7JRFB07diwIglarxTl//vnn67pO07Tdbu/tHhAKYcg55wcHB1lREswAgHGCkL7l1lO7+zvj8RghSklgNGBXS6mqUnbm54+fPKZ07ZAoiswhUxSFs8QhiOOUcOKcFUJEMQMADBw70my2tXLTSe6cG4/HbGauagGIqL1bKzNCrB1bvfnmUyRAB73tK9cvai2bzXbIIyk0pUG/NxwPJsCJU6Y9377nvlNhGO7u7mpli6KuSn2wMWQNoJy226lzbnl5VSnT6/W0rrWR2Y7+zg9/R6fTGU6GeZFdvXatvzdkEYnjeGFhaWFh6fXzF6qiZixYWloBgFKMZ1LlgAOAdZoxljaToih8KeacK4pCS2WkwhgLq4UQGKhzYC2SdQ2EnDlz2hM2t7a2+tv9oNG0hlASWouIk2YWMGCN0UdkMTQjQ2FfGiI0K50BgFBfrztvj84YIQFByAFBrVYrigKEYWNjYzAYpGkaUm/cPEEIffKTn9RaP/Wtp6ZFtr29uXb82Pr6apIkVV5kWSaF4JxLgeq6rsraQwk+6Ng5J1UNAIQRxliUhN5noNfbLyYZo0Gj0QIgtZBSSoqJsToM+Vy3ba3ORmNCCLJuMBg5bcJGY2Fhwccu+TLXQ4qU8rqulRJA8OLi/Nr6an84LMrpNCv9CUYIaTabjTjxKA/GPnbGDvsDxtj8/LwvivJJfniPOy8tRAhhgvzwuCgKKaX1ZqmUAkAUtr2CUolaax1y5reePMyjdoAopQbNOhYK2HM0eMS9KEEppbX0K8Eo5ZslT4ZlNBBaeOGCv/cJndlqWWulUMZZKTUAGOSQwwghZvGRDyklLI5jZY0QwhjtURvGiUeBtVWUUh4xNMt/55xwrawQQgnlnJsJU50DnwDFGCFglPXtKyHEO+hhjP20Qyl10O8BQF3XFtk4Dq21ZS055wFjXqXunBuPMwwEeYN7gjFQa20YzZJ2wpD5BsZfvn5Q4fsWBygIAuu0R7j8vzo3A6Y9TGkBv9kDU1pVFUHgrbQ9/8szoAmjSZIY4yMifASfcc5ZYzrtOUaI0XY4HBZFgRBtNBq+NrBg48BbCkoPIhdFoaW2FlFKCSGj0ej0mZNxwqf5OCsy/5aFUFGYEEIZmbnrhmFopKkqlU3yuJXceeedMzZQGiGEwM5CEf0jbbfbFBOtrT+xgdCFhTmlhENekQlZljuLhDDIEUYDAHDIaCMMUkmSKOmEEJggHlJKcaMZEYIxBcBOa42sYywARJRSURRba3e2dufn5+cXOlKWysggpHVdCiWVMqsra0nSYDTq94e9Xh8DTZKEABVCTbOyLCXBlFKqjSLEhSEGMGVVMMYoYVojJW0SJsZKIYRWxqs8PS/PT3cwxn7+4T9QD2I6y3z6k6jqw8UGWisASBux31MWOQ9bAEDWGxtjhRBhEBvjPDffM+sZY5ggjFEQBJRi72Ho6Jv4hV91Hl70S8jLUu2hPNyjMY1mUtd1LWUURbfddhtCaO9gHyGcxkme51euXFFKM0yiKJqbmwMWEkKKYiqEwBiDQ5TN2NnebZZS6pEMP+7yjjTokM2qpfKJcwFlq6urCKHecHAYwPBmtp5/d/5dMMaMUVmW+QHnz/7szx4/eeIf/sN/AABSyjROhFAYY85DpRTDnrtJO51WkiSvnXvVbx+EiTFGCq208GedlPVHP/pR59xjjz1GCEEIBXFEKcV4psQ/hIlnCUBHALHf1/5I9EAQdh5uBuechRnfGb/VdBUh55zS2k/7KKXenx1jLLXw0yallD1kNYZhGEbcz5Pa7WYcRt7+hXMeJVEcx0U5HQwGSTPx53kzaXLOkcOjwajfHyZRihCSVe0/d2+/wxiTRntpgnszSR7p2fY8CtMmYRhiBN4yHjsfWkOcd82Oona72Wi3tJZpI97Z2anEQMpaa0NJyFCTBx3GWJTg9jw1ttDaDPr5aFAToOAUAoVJw48V/doghHBOgyBAYAhxx46vpg3ebEUEW6kqayWGuTyfTqfTqi7qsqLonpR86X9GD3n3xyr1TULBSGStK3JR1woZQmlgDWq2fDqr3tnZ8rNMa+3K6lpVif298XQ6DcOAUkwwLsvcd7tRFCVJMj8/r2ZXmC2KYppPKAuiIMQEWWswJsjhsqwRwshYxqDRTKI07PX3EUIBj6xFg9EQABYX58mhUfvm5uby8vKJEydGo1GelwghrU1RFHUlG41GECEhhBZa1CoMI0y5EKKoakLI/Hz31ptv2d/ZHY9GS/MLr7zy6sLc/M//g39w681nrl65dOPaZWvt1tZGUVQOcFbUlVDWOoQBAElRhSEn4MBSTIm/Yf0B1Ww2240mBkcAG6miMGg0Gv6KYYwxAoWC4RS1lo/PLR+7unnj3//Sv++0EkqpMdo66bD1aXbYEr9OjraMstqfP4CdqkUcx+9+97uzLHvmmWcAEUbpyspK3ErG4/F4PPYRhV6irZU9GspqrdNG7J32/Zav6xozqrX1BaHf4LWYYaNHwxu/zAJ298nlv2LBbO59z0//ow/fftvbHnvsT++55x5K+c///M9ba5UxtSgpYEIwIOTNNPwX52FRFA+9853r6+tJK7npppvmFxZ+9zOffe211973vveNB8Nvfetbh9CH+Uu846N528z+ghKMsbbGHyb+PDFKYzIzifVEZWutrpR2b06t3gSOD7Hmo/d7+G8zbNpZAIDZhOxwSAkAGnn3rcO8U2v8yXxkuXNo0EGcc0ABADinPKBa67IsSBRqrb/zA995371nv/ynjz/15Dc6nU7AuGfsYoy9xEpZhxBaXVtDzkwmk35/mIYNAtRaO9futNqNkyePveOhB++++44nn/rG//0r/8kBYozFadrupBsbW+Px+P77Hnz3O9/5+OOPX7lyZabVOExc1NbWtaSUKqUZQcYoC4hSeuLEMYyxlOL222/f2dmZZKN7773XGDMYDLxeYTgcxlE6Pz+fZRnCbjQaYYyjKPLBgNgbG5YVIbTVat18+qalpaVmp/3oY3+yt7e3tLSEEMrzXEgZhuH8wtw999wTBIFP87vttttOnz4tpfzcZ3/PJ3/WdR3HsRcOEkLSNO22O14W9vrrr7/73e9WSu3s7Php39zcXDNtHBwceOtRhJC3mLv9jre9+uqrm5ubAMA5T5JGu91UuZ1bnO/X/XwybdguxrhIJtrJcLtFT94+//iXvlyb/XG22x/0FheW/x8/+RPPPvvyr/3GI9tbe//qX/3iP/tn/+zs2Xf/0R8+KoS55ZYzN65tZsU2IjoIyObm9t7e3vrx9aXlBULIaJyNRiOrLca0LnNAhHNOKZtOirrUPpg9TdP19fVer7e/v09C3Z3vCtucZgXGWKd6be2YdqUxJmCBUopiYpWmBDA4QHZhsQ0AYUgmY8UZhM3w+PGTCNPJZAJIhxxLocsywxgzwhgHbSyhIKXiARa1whgTxngS26oQQiCjMcaArUMOIdzv96tKNBpJuzNX1cU0z3/vD34vbaW1mJJQByFqtePxpPfYn36RsQBjLErjYQiCnFeDIoSllt42ClsUBw08U1tAVdXG2DCMnJ+naQkGrEGUcK1rVQvv2KCUAkS1Nntb+zPgCWFOgqyfnS8uxHEEADTEccDBAQPWG/QwJl5OQSnPsgycA0SwQ08/+YRWFmmttKU8aDQ6zuILL15pzM81GolFzs+IkKHEcR7gcy9duH5lezKslMgvyMuU8/FodtNYp1utpY2Ng52dPUppNq1arZbWutfrIVDamiiKjCvTtMFD2mynNzaujEZ9bWQcx+NJ1p6LnetI4ax1UhhpJghQ1IzWj6/5WQ2Lwl6vNx4OnUOEEIKZLyCstRhhX9shhAhhrVZrMpkQgp0DbAljzGpLKUUOrHZaOx5FQJkQYjqZ9PcGD5y9/wtf+MLGtev333c24fG5F17NsyoKYqtdUeYAQDkJeAIAxvjClwB4i204Onn9uWoMIQQopbu9YTON4zh95pln5ufnjx9fP3futel48uTXn1xcWP3V//Lr44Pe937PJ5zD//Jf/sJ3fdd33f/gA1949PNCiDvvuuv++++/sXHtG994Qsr6oD9gk3EYcqWFMXp323p2v5AFdXg6LUytnUFSKeeQkiYMQww0CQMpZeCjQizO+qXVLgiCspbOOUBMC5TbOp/UYRguLrWLohBSKqUpZWtra0WR7+/vDwYDWQt//jLGDg6Kqs4bjcbcXIcFfK67EMbRYJgLpZPmQjHpSykCCIaHIUVpkDjnJpPhxz72scuXL54/f77Z7lpry7I0xgRRKITQegchlMYJY4whVle1BYstdhaMMZ3OHGW4KHKwYCF0BgAAeU2AtoWQlLo0bRTllIfNcVbUFy4lSRQETFMlrQiTEGO8trbmSVK333779esbo/FwmmeA8N7eXq83bbWiqhIf+MAHup2lC69ffO2113/4h77/5InTn/qPvzQe6yAEBBDHqdLVZDjoNBvZaDwcDNKk4QAbo4zBzz3/cqORdDotgoN+f7iwHJ0/f3E6LVZXlxuNtCzLjY3raRq//tqNKEzyrJdn5TSrogg7aymmFFOHrDYGY8cws8hqJa21mBGgoKySQjLGCKXKGgKE0LdMj60DZ5FDxuncEMzDKOLWaqMr5GQUhlVVj6bZ93z/95256Y5f/fXf+k//+dPvevf777jjTsaCU6dXTt96+tiZmz//6Jdvv/32i5cvRVG0u7P5xS9+vr26WBaZFEUchkbL4WToxg6BCmI+GPbm57uY2O5cmpdFWZbKGI2Mc6Q2Sk3GWqO/+PJXf+Lytfljt/7NH/iBQSEu7fZefOMqbndP333n2+6/53d/79O6zhtRkzoos7KqKuWURkZUFlwYJ6HnFcZxvLa2dv36tck0a3WaYRhaq41V1BEB5bG19aKQGCMemKXVNevcCy89qU25tLR07erW5z77+f/th/8uwVGz0QaAIMWjfBSliUGGUGCcOeekqmyhMIKyLjHGu7v7ysLBQf+R3/7Mytpau9s1Slirm812VVV7O/tlWZaTYmNa/coL/0VLmTabK2vrQiiHiTB2UpRazGIDATuEwHv+jMERQgajIQ2oFloUlSjqOE6iKDGqqkt1OZs0O23GWF2Kfv96VVXt9vzp0yd3t3c2bmzlw/HiwvL2eFuWkgY0L/KIB41GgzGWZZk3KUrTWCn14ov91dVVh512WjvdH/XDZpDGCUKWINBaEwQME2Osrk3aiIcHU5lbrDnBGDtCLRTWKKvXTy899K531Loqiun6+qoSYuP6JqfBsDfMJlPCA0KIdU5q+d0f+17vTRbEEUIoz6eA3YljJzY3yWAwaKatoiiqqgQAa01VV42obbR78smnT5w+trA4ByZqxt06rwXUhDBG2X0PPDgaDbZ3t0pRL6zMa6uuXT+YZnWRiXyqrLA0TMGgkAStpKtULUV12203Hz8+f+nSJevcqRNLL55/cbg9ChrxTafOgAqQQOvHTxw7duzSpTeoIaIoQh5EaRiG9NixYxeuXp3mldUV4y4OQiHsdDqdZsX8/HychD5vhwB1llgJ+bQGqkKK6rr2w/n1tVXGSCudq6pqmld1oaNGg3NW17VzyjlrHQKMjDUAANhaZ7wnu7W6FbeazdSYRAihrMunpbWWAqacUIq11pYgpRXhLCA8SgMpS22q/mDYarU67cbexn6NhSIaIeTALCwsXLj46o0bN4SqsywjBJpJHAfhxdcvYIxvu+22jY2NoiwpaRAaRAlF1vl35+Fd40wURs6Z+fluHMfWaowxX1ydNrrOGOSwNQYDYpgg5MAhZ6x3OvYZcdNJhh0CSo2SxTSjlDsHfpCvtbVWV1WFkI3ikDEWhHw8HlutKWIRDXWlrDOUE6ScqKQziBBKCWWMTafTOI47nU6z2fQzDGcsAnDgCGOEkCBklHPfoZVlSTnHlGshrbU+GFOIOgzDujbaWiDEYiKtAwDECEHcOccopYCwMTAjLSI4TJQyVCFinTEh5zOOjwVKuNaas9BaW5a1MQYhHfEkCKjSyhhrLMJ45unqDAoY990UIQwh5JxiBhDCQiglTW2UNUgbZwwKCScUrDW1FAHjVmhntDE4CELsEAFcTPN8WnLCrLWIYIQQYG8IjjgNpNJOOkAWWaeFSluRLiohyrIsEaYs4EBIkiRKa6EEQcRqhzHxwdReCyiEmEwyygPnQEnjAFFMqUeiraUM84AZZ7U22mgPuslaey8jAIjCCChoibTTlFHCKRAU0lZd10VRKFV7JFcpFUXR0vKCtyzUWgshnZgJ8y3SURIkSeKcGw8z31YppXxhZYyRwnDOrUVK6TBJnVZCFIylGCMCxGNYaRojhJRSZaV4BNZapQrGwmaHt7uBEAIh620KlDJxECdx7Jk7PiR2PB4rpZRVLHLtpF1llZMuohG13MvzgVOhnLXOASlyxRjSWgMLpZQRN7UooiiiNHIWTScZMlgrAxZTSgFZaywAIIetwrkurUGcc3BgagsUxnXZbjcRp81WHDRYXky1llJWhFEEZm6+47h1BmV1rmoRBAGGQCuhanCObG/1kqSMgthaULWtiswpHCdBwBlqBFU5res8SRphwJQ0VWEBMKVNZ5BxyFkLYC0YZDAnoZGVlNIS4pEsQgilAWMMOWSVIYRLpTCmyPlQbgMA2hqllP8QPWhIkM8WdthhrGlVCWtRXTlKGWfMOUDYME6t1VZawI4yT0jU1mprqecMeljCSOOnlUHIjlAPP0bCGCNCD7m4jvHAOOyAUgpCqDfeuLS4ON9IY6VUWY2jOOh0k+3tbRolSSuM0tAgUdc1C1CSMg/3VFU1nU4ZY80WZ4xzFg8GI4QgDAMhhJPIWuvRVXCYUp4kNJ9kRrvJKCOEEIs5MGMtxthYY4i2yAAB4zRyjmHqGTk+1y7P889+9rNhGDLCu92uUkpqpYz1yievy0zTNI7j3d396XTqiWxaa+St6iLODPFjD2vRwUF/Z2cnTZudTud//9//96eeeuqRRx5ptFuUUuFnjVIi4yjl2CGtDVBPu3ZaWYQQshhZC5RopxCyjDIpJAOGD9PSEEXOes6TU0YDA0uNN7KgFFmLlBKUeWvsylrnxzlRGGJwIQ/KusIYC6GstVJJY0wl6slk6oc3IUsZRLLUnHMlrbPaGetdp4AgQojWmCCCMCiplVaIARAktbDIzM93rbXjyUhK6ZCzDte1h9UQckBiJoRAQBjDCFlRqroqMcZhFEZppJ31XL88L42GiK9YVVgnwQEJmHE5w9yiMI1XgmB9Z2eHAIojJ4SgnCMXeoY+QshaRDFWQhLAjlpCMQAihJ656bayyrLpCOO42VycFmOHa8aB8eZ73v2+116Bqv8/g4con05G+ZBSxllYlnUcJmka5NOyqKZra8fa7fZkMsnznAUhIHDOhmHYabcwTJqtQMjMIcF4LOXMLt9zHltpw2njbfT9INhZIivEMA4pj2LWbKbdufa5c+em02kcpZSH00JohYiNpazzsjJWEe1arWbCYz/AGA6HnWanLuper0cxJuCcBS0EBRxQBtZZR5VGSlseRZyGSjlQLCH09MkTeTG+duFCs9PGQDc2e/Pzp3/u5/7FfauL165fXlxYu3HjhrElDgi1ZDyZaoeCIFBKG2MoITQInZGUs0Jb7py1ioAihDaidicNwVlniQEIgiiOI4rAGRdgFCDYlOFoXFLaNGNb6TIgqyfX79/ZuhbGjlIEVgMydVmnzZawxlgD2mgNxiqMMcEIIYscsso6p0+dOnbrrTd95jOfQcg6ZHkYdec7Rrp6WiGNEEVVVbEwqCtJCUUII4ed00EQAmEGmWmdYQJGY2DEIofxDEX1DDbnnPUdrlGYkhmFBRln3V+xXBDCFL9x+Y33ve89/8v3fe/mxvaFC29oLTkPhai8+wQhVGvtZV6DXg8oZay+6667fu7nfu53fvfTX//vf37upZcHg8H51y7Mzc1984kntdbz8/NKKGUUsigKwziOhRBCVMpqbeSs98SAMGCMtJbgAwnBMUBGO4wJJRQDVkohDJTSWtaOOLAO0IylfUhMRgAIgTXauUOP/tmEbOYV5nzOobazkGFnnbUaOUsJIZwecZmtMRhTbTECbJxzGpDFPm8QrGNACQWnwQJ2iHHW0HV9+sTJhc7CVx//s7quV1dX61oWVe2Nao12ZSExxqKukyRJedzpNKgDpNyM2IdwmAZbu9sPvOPBtWMntKXry6diNieECHkkxurq9p4QJqKtvY3h7137/H7vwBioaslY4F0TEEIBJUgTayGgQZiGSqn19TUp6+FwlKZpq9W8ceMGpTQKkxeefykKAmOMFApjnKbpwlwHg5N1aYzx03LO2PH1E1Krzc1N7+6IAOYW5teOHxuPx08+8/Tu3h5CeJLlzjmt7cLCsjFmMs5fP3/RGLW/v4/A9Xr73/72t7SWBpG01eScee4CIUQJqZSoiny7yKWU4+HkO77jO86cOfPCCy9QTBxxt9568wMPPCCE+N3f/ZxSijKe5zkm9PiJ00VRZVneaLR8xX7y5MncSKTUcDja6m0gTOa6yxTw9b1dHrIQNejFixfSNH788S+1Wq26Lnd2dv7oj/5oOJpijDBBN27c+Bf/4p+triwnSfKpX/wPb1y88LP/9Ge73W5RFM7l7XZbiOrg4MDTtRqtZlXVzliMqXNIazUajU6ePPX+97//6tWrZVmUZbm6utJoNLrdjkfWyzJfWlqKoiwKk+FwyDk1Eqx1dV0nSZJludPGIPDblRDKGJ1MJmmaWmvHgyHGmHI+Go201o0keeD+t1+7ds0rIoui8PLY2QoImVTKOF0U0/X19VaaYIKstQcHB7u7u5yFISW1mCpdLi7OGyO2d/rAHNqxKyvLaZqMxyM/Pl1dXT19+vTLL5+Lw+js2bMvvPCCECJO0jzP67oyxgDhyOGqFH4m4GOvjyYz1qE4ji3jQghCnA+A9j4s+DCa2Vp7RAgyxnhmgddrEEJoQBbml5xz/X4/CCJjfM44sdZGUaKFFEIa7YTx+d1MKXX69OlvfOMJIUTQbFRVURRTB7bRaFBKMQEfgukHLMYYSjlyhFLm5ZxBEAhhNza2AICxwA/MJ5Np7d9gd2E6nRrtMCCtjRPo0qUrUpXHj6+vL6w759qt7mAwJogXRS2FtdZ15lfQTJaFJpMpQqjRaHS73aqoldKeOeV5DQghgmdmZJTSj3zkI8NR/0//5E94GFprGaFH4zhPuSKETafTqq6jKFpcXj5//vwbb7xRTKdvvH7hbXfc/txzz33lK19RSsRxyDk/fvz4ZDKhlBqLjmyGPPzttZZ+xj4DxBlls4AsF8WBdtYYVRR1p9PxjNpWq3VwcPAff/kXHRAcBp/73OduvvlmB+jXfu3XKCWDQW88Hh87duw973kP+qZ99tnAWitLGUVRluWU4marwRgdjSaMEcbp9esbw+HQR1zWdU19q0eptci3dt7U21obx7GslVe2ekatZypxzo0xo9HIOVdWlbHaxz0PBgOEnNYaU9IMW4x5J1YaBIHSwvdmWZYRwra2tq5d2uQRWZhbKcuyrmuDbK/Xa7VaQRBYqynhzz33XFEUlIdFUfj86KIosnzq8z08JOH3ZhxEvmPxi+r2O249e/bs7/zOZyaTCaaMEOKs8Za1UkrnTJJ0fXRMHMcINKWYcFaKejwdE4oWFxe93MG3Q5ubm71eT0pZluWgP8QYdzoJANS1BYCf+Zmf+bmf+zkhxP7+3u7u7nSadVk7y8owIpyTKIoI4NFoorVFzmJMeRhQmgAgISutZavVWV9v7O091el0wjBCCE2n08lkXNWFUqLX2x/0jBUIGZR2EsZZXZeAMAJwyFKKKSd+rqP1zEuHkOBonowOaSmMsSSN/CmHEAJKvIwaIeQtQTAGKWs/VAQgjWYTY/qff+VXHnzwPd/+1lPa4pdfPjc3v3jLLbfdd//bFhcXCYJPf+a3CWZKC4RQmU8XF7tn773/63/+VeSTfxiRosYYY+ICHmGMi6IK4gAdiqe0skEQWIusRg899NDGxtZrr7x28dKFZ186f+LEsc7C4rnXz0+mWV5kn/2dz7zr7Q8sLy9tXs04oUWRT0Zjba0y+tDVwU2mRdqIfUsmpZyfn59bmE+SqK5rKeuytMbKnZ0dAFC6TNP4xNzSM888vbq62u7MbW3ulaWI43RnZ++Xf+k/HlF7zp8/7+sYD+p5WysvM1xaWHzv+9/z7W9/m3M+t7h07dq1kydPXr1+/f3vf3/vYPfCa+d9stbrFy6IuvbARKvVstbyMNjd3VZKscBHb+UEoTd9Y5HxuifPcYjj2BgTd2NOg3a7s7e1J0Rd1yKKoqqqfPIqQohyliRJGPILFy4U07wuy/nVZSEERmh5eVko8OZReTb1Zo6eULC/3+Ocpmk6HA59qTQej9M0bTTbfuhtpHjve9/74osv7+0exHHCGA3iKK9yyjDRAAhrpY1xlSgfeudD73nfO7N8cnXjSrvd3t3dZV4biDALgjAxlFKhJCE4bcSXLl0khLbbbatsv9+3BsVhvLd3IKVWQqMUAYDvdf0wdTIZZ9ORUXWa3j4ejxgLrLUHBz0A7DMVhKpbrVar1WriZqfTKfJhs9nMJlXWz5FDiPHZ4BO5dru9u7eh8rqqqrKsb7755iAMjaZ3vO3Wr//5E7vbvfPnXsGYLh9bP3ni9M7uVr8/7Pf7PAyMMWfPnu10Oi+8+OJg0CMEpXFzeWku5MHVq9cHe+N77r/3tttuu3r1srGqrmVd10YDcbTZSkg4sxeoqgoD3H777ZcvX7585aKUgjHWaMbez8Q6hQGHUWA0stZ6f0a/Uyil1uq6tlLVg6Fotrud+Q5CuNvVGGNk7HQ6raqCBj7gSBZFUVS5GxiHJOP49E3HKSVx3D5+0+rGjZ0oirzd0Pr6KgD0Bwd5UXiqb7PZvLFxfTQaLS8vI4T29/en0+niwjFfOQAgIaS/xMnhF8bMA2qce2tdE7KQxcxoXeSlF80YowkBa20tSilrwkk5zldXl/M8z7LcmzX5ZCeYyckdY8w5w1jgZc7+hzrrmw1I09SfbPowa8sYI4Q42mged55MJp4Co7X2OtNGo9FoJu7QpXQGxCDs7z7/goTAdDqdeSk4LWTlkPHKPn+XATirtH9Zf9b5n+KcsxYRghhjBJOjWbI/NBBCnqztgxY90zwIZqEOHunARya2lDIWwGGUDaXcwxNGOymlVjOZlDGGBwFjFJB3I52d9kopCphiBh7bQ4YQoq31d7fn4BzRFUVdSykDTNutpi8UhRAOCDM6TlNK6WA41EbFcYwAGGOlFADgfbQAwBj/0Bih4BA+ZCpZH2Cr9WGz55zW2j8rb5JwREA+4jcRH8FljJ7FDzrPpvF8rjiOtZFH/2QOTVQRw+12VFXCs7NHo1Gv1/dljF8bfpEwRjFGYRgynByqEsFXX55J6unM/oP2xMbl5eV2ux0ngX+1RqO1s7OTJEmz2fR7tq4EZ4GUUgoFAEZbSphx5sqVy96uVEqhtaKUaq1m9G1MPJqjjcQIBYwQgryqVCtTFIWoJaUUgBR5RQj1hb2nhGutg5A1G00ppdbauVlYmTFGSzUc1kkSBeHsuGMB964CjaTpa3tKqTVmOi0o5WE4Wwl1KSajaVUJDNR7jjmkwzAMeJSmaa/X90pbr2lAh6QzH/vsUULsCMaYMB/gBQDI44ke00RuluRJGD3id3vp9xEH2U8F/FbyjwIQ9vbZeZ4TQv2SZoxgSrTWCFl/AlhrDTKAZ/oP5wNXKPFr0tPh/Ub2Ewhrrc935SHDh76cfiO4Q8uLfr8/GPR4QKMo8iqlpaUlY4z3se31eoiYMAwYY84CZtiTeLTW2GEgVGurZIExZowDxkrhUhQ8Cp0zhGAAJ0TtHFhAUcA6c+2QB6PRSKjaOg2OOQyHFCKEMSaADZr5oXlT1JWVlVardf78ec75iRMn5ubmXnv9fJZlUkolZBiGcRz7/9fD62VZHmX9+R23trJ68623fOtb3+Kcv/zyy3Ec53n+sY997Id+6Icee+wxzwfP89xTy9M0tUqiwxhhAOw9nYKQa2W92sM47XsoXy07PSOPOzTzY7XWAkGeCuAPjSiKwM0EJUKb0Wjgo+kppWmSHD++LoQoiiJgnHPuPa+OBoQEqK8QlFKYAmPMWq0UFkJURamUpBTnee67GM75OJtYa4MgEEJ4Gas/+TGBKIp8mmKe59Y4f4BTSsoqD8MQKcsIIwS0ltZSQlgURZ75WxTV4YnB/Pas6zIIIk9494qcjY0Nr9FEaGbj64WejAQ+gwoh4d+1rzb9DTvoj86dey0ISavVIBgfHPQrkS0vrkhpnYW6Fow1q78KPRwMh8Bcq9WSwiYJWVpYFkJagyjVXvbe6/X8aI1i4pwTQuzs7NS1IIR1u10v2GKEFso36TOLhvF4XB+6dPoznBIK2BXFlLFmp9vyVPRsks+o7gZVM2tprJQyylLOEdAir40xQRB0u3O1klVVTiZTzrlzRgvtnEuSRFBhtNPCgiU+MNC/gh9V7vd3l5YX4nguTRuTrJxMx//f/88/Wl07/tKrr0xGvRMnV5utudFQGWXjODUa6sGg0srZmVG7Hy6VZcmCphA1OEVDFgYxDxLnQGsFVgcBo4QgZIAQxmPARDgYZUIjjmmgHOiqCiPabHVubFzlFgmhGIFsMrVOG4d4GFtjCKLOIQwMAwbnvPwdYxYF4e72wR/83h9TGs51Q6WUEOLSxSvOWkppt9MJoygMw1dfPx/xQErlh0yc8ygKMcfWamuRMdo54vm/xsfrHf75SPpmrSaHDsXGGET/ajMNhNATTzwxOOi9613v+Y6/9sFGo/nII49YawGIc8q/mj82y7L8nr/xNz7+8Y8/88wz995773A4PPfKa9OsiKM0TdO//tf/+nQ63dnZ8ad0r9cjhDRbjcXFxSAIDg4OikKXVemLE29Xa6SGgB9NAX1LFfAIHTKyMcYWkOdnaDMzx/DH4CE/b+ZQesTG8N+AEIKZVzxyZsav9t8MbwlUA+srU/+CYK11SAEigJAD55D1rvQIGevAaee1cQbNyOaMsa2trVdeeYUTmiRJs9kej8dzc3OMsd2d/TzPmXcYn59XSt24ccMXgUqpqhLdbldrPZ1OH3vs0dOnTzabzc3NTa9C9gjD4XuBXq+ntUaAGGMUzxLCfbGkRM05pxRXVaVzfcstNz/wwAMA7sbGtfF4rLVcXFwcjUaj0ajZbG7v7HJCm80mQjiKEo/AVFVl0Mx6oSxLo920yP1aCoKg1WqHYXjl2tWLF964sbW5srJSVWIymfjGwZ+BUsrNzU2EbBAEaSPxyzWKkqTR6na7cRh6bYpSyiiZ53mSJN5QbnVlhTL89NNPt1qt+fn5aTUdDAYbGxu+yrr//vt7B/3BYJAkyf7+vod35ufn/S8mhKhUrUoJ2K2vrxuHsMLTbMoY8z+LYoJO33S8Fvl4MC7zapKN/viP/7DdWViYW0AIFVU9noyyyfA7P/jXLl68eOHChclkUhTF0tJiu90UdWlMKrVQSmZZ5vPfwyhSygDgqppWVb2zsy2lIITUde3rlTRNz58/P5mMKWW+c3DOKS0AoNfrhQlL01TWAoAopZBBZVlmmZZS+mxcrXUaJ81mczKcXL161QHxDdVoNLp69ep4PLbWBhEnhOR5DuA4p2VZYkowQYA9MCrnF9bHkyHj+KF33l+W5RNPfMNoQ6gDML3+TqvduPnkKedsUU6t08YqTBClJEmiIAhPnTpx6Y2Lw+HwQx/64OLi4mOPPbawvIT2Zse9MjN3myKvVleiU6faL730UhRFh+0NIITc0XgZWQxUa+2sAbCYIGfh0BIIO6cwxowFxhjkLAA2xujanD9/IU3TqpJ+6Xe7Xe/XQSkCi6x1jGKljJbGGMMC2h/2GGNVVRijAbuAM8Z5EPIZhIrAX12+lImiZHl52fcZQojxeFzVtbU2SdMgiMIwopQSwEmStNttY7QPy6Y0cA7KQghZcc6CICrLKo6jPC8uXbpkFQDQRtqilHHKwjCcTqcHe/tKqbqux8PJkeoEEMEEGeMQAkqpVtJIND8//33f/4nz58+/8sorhDG/sqPAZxbpfDIJk4QxppSRUt5xxx0XL17s9XorK6v+cPzIRz6ytbl95eplSinn3oSBeaBcSmkd+GLaVzPwlnBVa+1hLvasqbDWIue01rnVnNAbN64NBr0ji7Moioq6opQKUWfZpNNtXb9+BWN88803nzlzJs/zX/21/3zHHXecPXv2m9/8pn+8jLGFhTmvBPGHRVFO/AchhDgKz/Egl+/rms2mx0eUyr2Dnj84ZgsKbBAySgkA+CokCAKlZxee1lory1nkkMGENJstX98X2TTLsh25q53lnKfpXhCFy6vz1lqlhL/VMCYGm0qoSg4oYIRgvzdACPlAM+cwxkRKhemsXlSi9k9SCCWEaMSpUso6bY1ZWloKw7DfH9x77708jJ/5xjfvuPfO5eWl8+dfnU4FIawWU4xpEAQYI4dgYWGBMuj3946fOHbs2FqWZePxeDKZRFEkhOr1LnrNyKA/iqJQaxsHPAiCk8dO3rh67Sd+4kfzvAjD+L//96/WteScYoJCzAlB/X6fUbyysoIQMtpWZQHAeBDESRiGPIkbRTkdDodRlNx8880bN7aDIFhcXBwMet6ItdlsHju2dolsZFmmBMpHBSIoDEJOA4xIEBBCSC2FUoJSCtgRCpxzbL0WycBbZEQAoKQ5StHxH7eHm6fTaVmWhGBrbRRFi4uLAEQpLaT98pe/9Cd/+AWatH7wB37kyW9+6+WXXrh65dJzz32dcz6dFvn+PkQR5/z9739/WUxfOffCM089JYocIdtstQJOg1azKAoEVgiZ5wXnbGl1iVKKgRo902OWZdlqde6+585r164FcZBGqaPqt/7br80vr2BKH3znQ8W10W/+4r/b+V++tyrzKAoAACOI49g4Zya5csZ6+gyGupJVKaI4cM5Np9Mg4IPBIEkiQsja2poxZjKZHOz3m832669dv3JxczSe9HvTm8/cSnCInPvev/7X93b7Vy5dvfeuu7/1rW/1hgPGGAaKwTrAzrlG2rLW+jU/mWaUckLI2tqxB97x9o999OPvfOc7f+ezn71w4cIP/sD3e5VQURSEMB64JEl8KBMyxscvEM6iKFpaWghDroX0O843bNl0XNcVQlhr3Wk1G42kqgQBTAgOkqAop81m0/cGUgnfgykllKLb2xNZVZjQ+cXFRqPBORdl1e12LeIAUIvSKm8WNBs6MsY4D3wR43+roiiEEB/5yMeefvrpq1cvd5otP5V0zjFGwyR2zkRRNM0npaiTIAGCrDELc/OLi4vPPvvsN5568tip9XvuuevcuXNKCEq4UXZxYcE5lDQSrrgyem5h7vr1G51ma2157dKlK5PxlACRtR70hlbrpNEqikoI6dtC/0CsFRjI4trKJBu9fv41D3gAeXMN93q9LBvPL84pIQ8O9o0ufOW6dmolSRrZpBB1XdcVYDMaDTY398/ef8fW1nZR5D4AIG1FjeaZt7/j7Fce//Nqqjud1k03ncqy7I3XLrTm2kCQc1Ya/eqr57RVu9u7PA6SJEnTuK4kOFxXElm0srKKgV28eEUoEQXcTyhDFhZlZglEUaCUajQa1prLVy/uHew5ZAhDRZXFaaBsubw2x/nKjRs3CHFQe9LcDLIBgCgKCCGME2O0ECJOAm3EZJppZRqNxvraqiO6UjmhCCxQS2upMEJC1JQ5WVTT6fShh97+8svnoojffMvJJG7euHHDOZskSVnlzWbTOjfJJidPnahFdXBw0Gw1alFdunwRADqdDsZAiE+fQwicNspoq5QidGZn74V4nU6nruu6rgEJD1XMQvcIdg4bo5WRtaRhGGipgjiMG3EtBaYADgNGFjljFEKOENDaKmXSNA3DkDKCEFJGU8IMMlprzjh+S56Mh0I8Hc8DCn77+xm8EIID8/kNYRT52a1FqCxLr1zxQWqUEITw4WlpMUEIwOvCwzD0Vr++b6QUA4CQymu0j/olX39ba33ihefyY4zhMGbQ42hhGDqnfB/obzGElD00ufCVg+/Vj2A4AATgjHFHQ2tMUBTGjDEhK2NMEEQEoxmGgrEFb0rLMaYYzxwJ3GGAhLXGHzUGGXBOKeOPAn+Pp3FY1QWlVArtPMpprRAiCLk3+nTOgTNaGuVfB83E/kopQphzzjnj3Kxe8W/TO1l7bFEchhwmSTID6QiCQ4mosxY5p1Tl8d8Zid4YD2vu7e21Wi3GuH/X2AFC2FqnhNzfP9BaM8KDYMY4ttYmYdRqtYq68p4VcRz7ZGNL6BHI6N1aEUJa6yRJOOdhGPp3FMWhsXo8GWVT5I8aQighxKc5jUcTpTTGeDAYeINshMBrjZXqOeeCmCsxO5/98MwDrAisNrPhol9LzhkltSDSAwSMMWOMEJXf/h42RQhFQdjtdhvNxGhXFEVVF94pG2NECDHg/NgmbSwFARuOR3Vd+3l5kMQIIU6otVbUM9SbEBIGMSEkz4vZ3IJHnHMpVVmWzoIUutVqS6mqWgLG2ipCmNVGaQ0A1lJrK1++8plWgBnjpBAE8NEkhmCGsbPWGmeRmZXBRysf45mHsrVWa0cp1QgZY6zxqaHga2PvA6OUoDwhs4g/5JwjnDljiPOmhcZoAwDYzbL1/F5ACHkRJ5AZrcT/pVVaOosQ4pw7h/w0y69Z74QDOAIAQsDXSGfP3j8cDm9c37TWEoykVEJIcE6PZrg2w8w5h5xDyHnTLSFq65AQwoItiqlzjnLGOQ/joK7rICBAQClhjPIeOAY5hBF2yMEsYmcmMDfGl9beW8M51+/3/fu6cePGZDLRWodhyDm//+x9a2trX/7yl6XUfsDg4Sc/QRFC+Ia/2W4xxk6cOOG9Zfz459lnn/3bf/tvf/nLX/aIqv/RfjwAAP5gV0rNzS1IKX1GDoCUCvk8PQ/s+rmCV5kQCtpZM/tSFrkgCHyXyhhJksh7g2qrpJSdTqfb7RJCWu1GVZS+3QAAKWvC/NSAericcx4FobfiKcu6rIs4jv18CGMsa3E4mWDW6iRNEUIwdUcOcn7XNxqJMUbIWkrZbreXlpb29vYm4wxjnKbNMGJaawxECMd9bCjvTsZTjLGUUgjlx6KMMQRESonBADj/3BBCUtYzqj4hRTHFGGMAP2lzzoVhmMQNY0wch3EcTyYTz+lJksQi45DNsjwvskYjFbUSstra2lhbX1y+exUDv3z5yquvnlfVLeyvgg4XFuZ3DlS71Z1MpoSwLMtErZ2DOE6Hw6GvtI0xcRx7UwshxHSa+471yEfVahMEjNJk1i9jrKw5wvL8hcsD6r1rptPp5cuXCSFhGC4tLY3HmT+RnEUAgBFBFiilhHBjoCjysiwpxSvra4BIGEZSyqqqoigC6lRdA9TWIGOMU9g6ZKRzWFsjEEJSaMBODnMe4TBeyctiZ6//4Y98/L63v+vcuQvFTs9Zqa7tNJM2oFEjak7zLOB8dXnlYDgqisoicEYjYwkGQigYG/EAwAcGRlq5XFdJGHBOnBMIEGBWOwcGVYUcjvMpnac8CINmrZCVpjmXfNd3f3yvt3OwdYWHxGmTxO044dIon7CFMbHWAlBnrLE+uwtRwgAAEJ1mpZ9+FXWhleWUOCStRdPpxFiLMUEIlNIAwBgF7MKIBSFR1hhjHALnDnEMAIfxEVPer21/YFJKPaUXIRRwHsfRX7VeUF3Xk+lOXZR33HHnbbfdtrW17Zc3xQTZWRCfn98HAX/44Yf/zt/+4ZWVlccee+zll1/+sR/7sTvuuOPFF19stVphGP7Wb/3WYDDwJ8bJUye8f8L8/Hy/39/f3/WHPKWcUuznlZxzDLjU0tc8R6WOtRYQquo6SRKhlT95vC/2Edb8l0BnAEDYIbAIOcCOEGysOxrbY4IwzAw3yMxCGwNg5ww45+DNUEGHEGCHEMLOWWyRM2AdYEBIO4eMQdZaC8g74E+nxdIS7na70/FECGVMwRgbDocYaF3X8/PzUohut7u8vHzp0qU8H5NZhQPWmslkMplM8jw7derExsbG7u7u9va2MaYsc4SQMU5qE4ZhLWuMMabEOUwIUdb4w9wjzjwKKaUBJUtLS81uY3V1FcANBgPfLCAUtFrtySSTUn3gA3/t/PkLB7t7ShljzHA4RpD4Gz9MYj/CnJ+fn4yn27s7ntvhge+NjQ1PRFtZWTHGEAJpmlJKZ+e21lEU+otJynoymaytrd122y1hGO7sHVRVdf7VV4uiiOOw3W53Op1jx47de++9foza6/WEEMurS9PpdO3Yal4WdV3v7++nafPmm2/e2Niwxi0sLEgpJ5OJjxnwpseeLaG1Nla1k2ZntY0pO3hjIIRgKSMMhyikQpSXLr6+s7MTsfDkyeOXL1/tdNpxElV13um2PvTAd169cv2Ni69//g//6M8e/7IP/SjL0hgdhRz5sh+stU4p7QAo9ZG+ti4rKSUCNBpl/V525ubjx44d81jA+fPnr1696gk7xtiyLIFgSjjG2CKjFGKMKaFHwwnBzDljDVLSGO0G/RGltNFozM/PTyZTX+YSFqRxXFWV0vq1V88jhBinzlhCiHefKOsqjEN/ChhjtHK9/V1AcjqdrKwunjr9jslkcuLk8rVrNxYXFprN5vb2NjAdJwwAKLNSaqVUs5kyTiile3t7f/rYo1pb58wjjzxCCLXW3ri+mYQRBu6sc8740Btr7ebm5urqqicP+oYHAMoSCCE04ABAAU+nBYDz+9wdOoh5Qau3QgMAa73ZtLMWYYKNsaPR2Ft2BkFotCOEVlXtnNNC+hcBABZwLY3URTasOgtzYRpSrQFAGYUJHB1/2lh8GAYNAATzqpRFXfk+pCxr57AX0oZhbIwCB1EceXio0Wg0m20ljVJKSQOYOAtSqp3tA2t1d64dhmEUxFNRIGQGvR6jwWg08jUimg35CefcWoeQ4yy0slTK+NOcMWYJFUoKWT3++OODwWAwGPiosbIsZS3SNJVS/uAP//C3v/3tjY0NjPHDDz98/MSJ/z9b/xllWXpdB4Lf+ew17z4XLiMifVZlloMpGAIgKIqiQCu0HKelJtnd4gxnematEdVy82PUlNQtrdWSOKK01rS0RHkNJYJNI6pbIgECAkE4AigUUJXlTVba8ObZ+675/Pw4LwLVEmNhYSUSLyNe3PeZc/beZ+/HHntsb2/v3r17ed5RQr766qt/8A/+wf6g9zu/8zt1XXMelFK7u7vVookxRliGBKIE6hwBjGcOaNjHnpu1A4XlRDZjDKCqqhDIecWZM9q2LQE3mZ5MZ6fveeaJ9z37gS9/+cuXr1x8+umn7917RymxsbEWgsNjllJurc3yxHtPSKyqinNpjc+zQmvdtmbZ30Ko6xrhZpwLPq93Y4xSSut0URR4Egkh0BYTZUrGmOgJCRAIkSIB4pGW9M6Nx9M8z01jCKHWekol815Q4Y0n3HPKWmN98JJRYLTVLURAINJGH2PM8sQ5F4LvdntCCCCsu9b3wc5mM2N0fJc/IADUuuGcCyE01/v7+7j9j4+Pb9x87EPf/cFI7OUrG/PF0YsvHl28uDGbls8888ze7sHu7u76xur6+vpwpXfjxpVFVdZ1K2XiXDDGUWoZY1JKIHR9bSOVyenpaSLUM888E2NUKj04OHjw8F6/3y9Lk6Q8yxOtdVWVg2E3Rlt0OmjiiWqVEEg5ryKUySJJM7Wy0u92u23bPnz4cHVl/cqVK3VdV1WjlOKcEQjW6pWVla3vu+h9HJ9MCeH1vLl79+FkPOtkHal4XdeEEKm4tZZLkWWZMTq4EJaxyHQZDh5jCGE2mzHGCCDoEIwxuOQ4UN20ixACBMSPKGXWOgb05s2bhwcns3n94u3nSdTaLNrT6gc+8bHDw8PNjbWPfteHvvjFL+7u7n7xdz7rvQ3eZVmysXEheuODdc6h7ZcxhglOCIQQT05G3vs0T9JUoWK90+l0u93PfOYzh4eHIbha1xRgY31gzKJc6N/4tU+trAy2n3xs99H9w/1Hg25htc7z3DkfrZVShtYQQQIQKQR2R4uyllKG6FD8e/hQr29vvPeZ97z66qtvvXrn6s2rhGQXNq7tPLrXz4fGtnff2c07xWxaF53B5rOX7t95ZzafCMmi8yxJXQiurTnnicpWV1fLskSEwjn36U9/mlI6mbx0dHryd/72/0elSVmWz331qzdvPr7zaG//YLfb7co0GabDZbfJ2RJA5AwgWqtHo5GPgXgfY0Tn3zRNKXBCQCm1trYlEzUc9kMIb7755sHBQZ7nvWHfNo5zakx7TjVLxa3VlBIqxMba+srKSlmWZVk6bebzBRMpNmPBmSW3D4AAEOJEmHm7trZy69Zwf3//pduvnJ6ehhCqqvrKV76CoZTTcr6eSQasahbW2yRRta6BMMq51u3Xvva1spoWnc7G6sZ8vogRnA3DQZcSVi4WqCbrD3sIUclJdXh4OjqZtq1JZBIjLOYldmvOubpcIIgMMXLGsl5/BiPjHWXk0aOHMk1M0zIpKFnaucYYi6JomiqSsLa20hsO8iQlhNy79+Di1sWHD3ayXPR66WgUKCVNu1hZKVZXV7/5zW8+++yzSqlXXnnFxvLGjWsrq92NCyszWV3Y3IjEHxztZ70OoZEQIlNZjueHx3tPPHnzAx98r7H21VdfJdEPBqu7j/aaxvTXVu++83B//+vGaSEYoSxPEiklZWQ0GrWVnowcE3ByfHIeGrO61t/Y2Lh69QoA1PXiwx/+8Ora8Nvf/vbzzz8fbKaUwswZLPfbti3LWaRcCDbo9IVgi8VCCKiqBVShXCgCpj/IgHJrPeMcnU9VIquyTHK4fv1qXVeLxYxStrGxORkvjG2dcweHe0Lw4eqQS97tFZ1OZ29vDzcsHv5SCcaYUkwI0TTaaqN1gxcTZ1y3Sy/jEAiS+s4554w1LsbKGQs0cs4JiZxTytlkOk0zeenS1ng8lomYLWYm6CRPAwJqEQiJnIkUwHvbtu2FC9cYp6iYxjwF4BhgvZRX4GLGFxRFgeM1CCsgIHL16tXT01PXakKIdc4517Ztrevz0Dl8zmdXHsOWm1LKJe4L0u12ELvUumEMQojOGc4lbp9z5jiEgI0fQmkhhLqucXGewcfkDGHkQiCIzAlZ8qaRAgCEgGJtRSlFpBVLfzxFcUxNSsm8jwBcULSfxrl1rFiyLMnzvHFtIiRa6CqlOPCmaQKJNAIhWHJE5yxjnFFKKcm6A9220/F4Op2urVzrFV3n3Ik+DS4KIeqyPIft0LACTzMghLAl9wyEaW2stSHE6L0DoAyrL0AGOp5FU8QYOedniaA8xohZRG7pZobDZoSSYL1HOaoQAn2ukUILIQRPgg3uzBoyeCCEQOSBEGuiEDzPM8VFjHGxqPH+RbhnOaYWzfkk2bmMFAubEAJjjHEKlPjgqqrinBMShBAxAtZgTdMEv5yFl1J6bxAdWPa3lDMG3W6v3+9PJrOyLGPUUnEggFw4pZQGCowCRNS5E0K63S7iL8Y4bx1+9CwR7ixBznsvBFdCtpU2zkayNBIBiCE464xIhDHWWnt4eHgeH4/QWw60KArvoxIyhDibTNu2nU/nnW6RZVmn002SrFocWGs5F0II7wHBPkzSYhyscbikUSfrMeFn+fu6yMH7gI8OLfucc/WiosCXbBBnlKC2q0Fs+hwOeDeMFc9GARgF51xd1yGgUNsjJIr9QgiOMRaAQAiUEn/mxYwwOjCK7wQ3I6VUigTdk/FlOODlvUcyzBvrYkBqCs7swmNkwROtdZqq6XS6WCyaRiMI2+l0tKsJ2oxSyhjnXEjGsSsWQjVGG2OTJFks2qqpgdBBvz8cDqVSk8nk9PT0HGy9euXKfD6fTubOO8IIi+BDNMZQhg0ao5Ri7DCyHVhpO+dQ8CSE2Nvb29nZSbIUI3z29/fxvkiShETS6XQopRcvXjw8PLx+/Xqapq+99tra2trp6el8Pp9MJvg08No9PT39zGc+gy0G51y7peO81no+mRDvv/8HfvDmzZuf/exn3/Oe94QQ3njjDXtmKO+DJ2cOqpTSosg7va5SCi1xnDOELi25rbXW6hAEfl74G1FGuaCMsX6/v1gsrLVlOcNggxijM/a8EwnBZ1kaXIgxCsk3+uvW2sl02unkzrnpdMIotdbiTFiapsPhcDqdbm1tXbrEDg+PUXcJANie1E2VJAk5S4i9dOkSqpVDbLS2o9GoLMt+t9fpdCkFIVlZlmimPx6fFt2+ShIg0TkHxOG6FQJXHYtAnDPWUs552zR4v/T7/aIokM0aj0sSKeeAUV1Fkbdtq20rpSRAvYvVom2aQ2PMfNZKNXrzjXf6/cFoNLl39wHEzrX13wc9dC6ura1prbW2QpDT41PvohCKEDqdTr0LUkqpBOe8KhdN03gfhsPhxYsXp7OZtSPGGAkRFSc4fYsLACcVAADvNdxHxhiAOBpNypJvb28LriZ1WdftoKso51rr4D0mp1FKgie6tUY776JzZj5fxOg5p5SRNM2UUs5VhEA5r7xH/yNLGQBQTpnBtldGHx0Avffwwf1Hj5yHjY0rP/yjf+z+/f2j05LFJE2LaTWdzcpcdbuF021bNVWkwCBSSoAFxmWwLvpAIErBtDFCCO9jOdesm2RFikl1iRA+uEBB+3gymXqaeV442mEirz1trGcsThbz69evf+zj3/sf/t1JohiJ5sf+xCf/xJ/8I3/tr/8PAYIx7dHxmKC87CwzE4cq0jTFK2axWDRNs7GxcXBwUNeLbl9R4K2xo9Ho8PCIMkEFTaUM0VFKhACcr8bLBRhnPOJRickNGNeJKiIsfvBEJWcjI8iC/OdfnPNGh9PT0zRNtda/8Ru/cby/3+kPSYi4GCLgQJIuy/LrX//61tbWq6+++pGPfOT69etPP/00AC3Lxf379//RP/qFb33rW1mWSSn7vd7HP/7x3d3d27dvP3jwYH9/vyzLNE1Vos5Gbxn2QVpr4oP1zjkXnSeEWOOlEMZaVOcYZwGACR7CcngC3/a7/3B+lbz7fzrvCSFAAoGAGgJCCAd6/hpEhmIMmH2CtnWEELcMGHAxRljmC0Jc5gz6EACpF0LI8fHxcDjknGOVhZSebq0xBvvZ2XR6cnJyenpqjPHeMMYwDcK5QIglhKysrLVt+/zzz6NkOO3kZVkuq2UCIQTGRYwhBmCc4syEcRYl0ozBhQvb4/GpSNTG9kbTLHZ2Hr7+xstsGbfoAWB9fX1lZUVr7Vz4r/70T7z44ov//t/9+06nc/nS1QtbvTfeeAPnupAJ0K01zmJJnKZp27YnJyeEkKVDSwidTkfK5OjoCJnF5blNKV7P2C9orXd29k5PT6fzeapUjHFzc2NtbW1lMGya5sqVK+vr686527dvHxwcXLt2bXNz89GjR/fv35+VcwDgnG9sbI7H4+l0as0yyNSfhQ22bYvDMWVZnp6eipYmQpZlyaWq65oxlqYpoZFrzt986/XxeDybTNONrayTb2xsSJFZ7+ezxWRyOhodr28M9w/yIkvX1tZiCA8fPMoyRc6SwaqqnC9K55wxrW9JURQi5W3bUsJwokq3FovXvJMWNF8sFg8f3ffBrq5urqyshBAAaGt0VVVGOyllJP746LRaLBZl3S/63nsplRAKgBnT2ugXZZnnj6+tbcwn07quBVsOnuMmqauWEOKC7w36Wuu801GZRAmn1hpcBEKtC9PpNARzfHz4W7/1H67fuNrr55evXEjTNM/yon/TWj2fT7lAdhRjClrvfQiECwBCAGKSyr29HedCjMRaN1lqjQEAYiRorDOfTvFHOxsYFYEGAEBhKeal1KbFTYgbiZxx/medD05xBikT1PNzziECALjoOPBGt0Io5xxxBAGj4AljlFKO+xAIW7vQVVkqpQzBt20rlDyv3qzVWmusmTB+lxAqhDDeee8PDw+xQAnBW+tMa7Vs8zxv0T2QkPl8ppRK0w5QWLZtFLxPtG6Ojo6TRI1Go9XhmpIpKZg3sXYtIUAjtFWDCo7AgVKWJGkIATwwxryx3kelFLaX56f2wcGBc25tbQ3f0traWrdT1HV948aNGzduPP/889YYEsjGxsYnPvGJxWLxxS9+8a233ppOxhTY7u7u23fe2traQtDEWj2dTrFRBADyLkv7czUHCrLc0luDYopRjFEpVXR7eC47Z2yrAcBaQ5eDh1FQ0BDbtllfX/3Dn/hDTdOsrw85J6+99tLu7oMQ/Wuvv0wIGa70QiiWsQ/Baq3RkrLb7U4mI4QJEFSNMXrvqqpCi0kU4yASTQjlXLZNuRgtLl68WHS71WLOeSKWbtdhsZhnWdbpdKy1jIrhcDiZTJz33hGtW4AoOnLzwvZrr7zStq3gqfee+OANMW0TY8zzdNDr2hi990WxAsBOTkbVomaEYavJOVeJ6Pf7aZoa7dBAwGkDAkKISknOqbEtF9RoJ4QYDIZVVVNK79y50zZmfe3C4eHh6fToe77nu7u9PBLdH+QXL/UvX94cvv+9UmSvv/66VLzX6y0WC6COc6pNc3w0yrKskxdtozEbhBAiJBNUbG9d6nUHZ92pS1OaZdnHP/oR59yLL79ysH8yGPTW1tbSTGnd5Hl68dL2ZDIKgVjjpExi4IwJH60QKk1yQsBo1zZGa01BrK+vdzrd0WjUtjUAyfJESh4CYQwAYHPrwvHR6Oq1K86Fcl7FGOt6ca7IE0L4GFH0gb3f2a7HF7jolsNWEU2b4TudnqCsKApKwRjT1vVOhcO2KYnUGKcS0SPZ/Xt38k7XtotbTzzxvvc+9dWv/O6f/bN/7id+4id+67c+8zM/8zP1eEKkJKa9+Ni19z7z1AsvfHtRznBE0VobI7SmoZTEmJTVXCqe5hljQqkU5TDe+529HeetVFwKOez1AxAXuXI0OG1Ndf3K43s7jziFRIi6WZwcVeV8obKcAANgQKFt2zwvUFSyWCxms5lSCggDGlQn1do8erR3eHi8sX3hD3z8e+8/mt16/MbXvvKlw/1HnKaRsqb2jCf/v3/9b/7EH/0vvvu7P/q//ca/W1lZKbp51WjKhPc+BvCuunfvHu4ga22WwdHRUVvXTIjpdPqpT32KclZVVd7vTyYT652xXmtNKal1Oy3nkvGiUDbE8WyMpIiQjNCo62bQ6TvnZrOZMQYnQPM89yQMBoPh6sqdO29tbm5ev379zttv9/rFbDZzDrrd7qVLl1YvrGI12el0jk9OTk5OOGNojuG9dy6kMul05OHxuC5LJmUiJKPCh2UnibVpp9NBbOvmzZt5ns9ms4ODg/FoKs7ZQUYYo8NBf3V1CCyEiQEaYozdfi/4uFjUrtWz2Wxra/PqjUtMsLfffHM2nm1vbydJpoTs9/sRSJ7nLoZer3j9zTeOd+dKqcZp55wSSTmfo6CPxpBlWUMi1nCEEO8tEPFdH/vI7u6uUmJjc01rjX4gUiacsqZpnDNF0aEsIBb22muvrPY3OOf1on748GHTNsboybgOITx+80ZVVSsrKwf7Rx949kNXr14FgERlJ9N3rNWEUO+NdW25mOR5DjTU1UIGduX6levXr66urx4c7G1sbExm0wcP7xqr9/amN67fyvM5Y2Pn3KNHDzqdTi4yrTWJJALNskwqnudpuWgR/anrummaJEmefvrpk5OjG9cfv3nrsf/9P/zvo9HJrJxfvnxxfWM1zZPRSR0Ah+9jr9dLpKrrxXg8dt5yTpMkUUpEIJRSoeRwdZB1skZXnW4GwKqq9tEkOSet41xsbF0eDHOZ8N39nayTWu2Ojg584Be2LkgpgcKsnItWEEJWVlbG4/FsNqOUTqdTrO3QjgwgAkTOIlUihNC2LQCVUnImGKeDwYAQUpYz770x7WKxgKBQa+ODLYoOIaFTdAiNnUIxQV2waUd6F0kU/WGvWjR1VTnnSATBGAUKwPKik2ZJmiWo7vTeU2AAEH3kjEXniQ8QIiPAgEYKiotut4slB47Pt227ubl548YNY8xpfZR3Opv9Ptp5RYpB0zTLsvMagDAO8TuIyZl2JsQYrUXbSotYJ4IsYemLhXaxS2gvTfM0RZTE4y0fz0LSsSDGs45Rbo0TkmHbIwTzJMYYpUzIclhHt20bQmBUKKW4FM45QjxjDBjjnBMKAKB1i4hMVZfRY7CBdc6leYJwWNPoVKZI8wcgeLkjSUOX+Ww+U4mUsloscLYJK7ezsoSnSh2fniiluGARoNHae58kCZYueEFHCiRSzvl8XobgYgQSPUQGZ5H01lr0fsL/MMa8dajTYYwxtiTAzt7Yd9q//qBrzdK2BeUtmLHmvY8uUEqxIqVUnAm+zmwcbAiUEBLbtnXOAEfiniglu92CEdo0DaJs+ADfjacQiBA451wo5b0nlFJCrfXYVimlgFDOwRiHbuxY0HImjTHeRQCWJAKnZTmnaZrq1gKlwXkAIBHtOCOESBkjJBACPuD3b0MIgnESotbWOYciEpSJcM7TNKWUlmVJOQvRIeuDdDsuG8TTUcPYKQol07XVRAiR5tlkMvXWSS47nS7ncj4/NcZ0OmB1UEoEF612RFBjDAeunaaUxhim0ynuKcpoJFHIJYbrQ2CIyzNGCDXO4RuAM/mwlJIWyxWClsSImMdInPNZlp7p/T1W6XghltMZwVRtwWOEtm6sNsgJUUrJklaxhBAbPPGUMaCUfYckOINo8XaLcYm2MC7RoQVLaNQzuSVYzABAimUA13kplWUJYyxJpVKqrhcxwmQy8d4nKlssFoRGzhhjAiFRIQTxYbGovTfOBR8BD0lKCZ6NgvMkSwBguDqUKUebgnI2b01rvc3yhDNZNXVdt+Ccj1wKdu5GEmM4/72QrcFdjOu2ruter3eO49+7d293dxejutDaJEmSoih2dnZOT0+fffbZjY2N+/fvE0KQTsAz8Mknn8yy7Pbt24vFgp1ZUYtEOee01vPp9Id/9L/48R//8R/8oU8cHh7+5mc+PS3npqmdMzEGgBhphDO4RymFKeLee0xNBEYkV2dvGwCWSVzIEeKgAAmxaaperzeZjGKMMS67JM55p9NhjIXorXNCiCRRhBBnbd7JxuMxViz379/Hy6uuKvyl0L26aWvjjPdua3t7e3v7pZde4pxyLsfjUyQzKKM4D93tdlFwiiCDsXWMkZAAEIFGKXnbuo2N9aLozOdllnbqurA+MA4xRMbAOx9jzPMCodhW15QxJF2QICGEdDqdwWCQ5zkKt/FMNrYFSvI0lVKWZck4htJ75x22+c5FIJIzNR7Pjg7HVdUQwlDs9ft9waC/UtdtOV8453RjABghPoSaAgsQnVs2UCREDF41xhwfH8/L0lnLGIsAiHKgPPwctcQVeA7nWeOdbSLxAAyAzWbl0dEJjbSTZr1ez2hX1aVpNUBUCWYPELzOKKUqUTQSG4K1PppomnZiRkY7Y1yMgGILKTghkVLCBY3eRwKCM+KZJz5Ju95Fu6g+9t3fv7px+fiovPXEe6Yns+noaDQ7mRzsbq/m0VQCUsltbVvOWZIKH85dfcFb76hjjBVFoVSKe4RSGoMPQBrjeKqmdVsZ3kISacFVl5KOjaSpXSAQrA6w2D84ePzJZ/6H97w/lfTBO28vqsmv/Opv3r79xtPve6rVEWikS/9r6p1DtJFRrq0JITAKPjjK4KMf+3DTNA8ePNjbfxhCwBKCScEYk1J4bwGW4mLnHPGEggRCGeMADo84Ami2tlQiE0K01kVRaK2BMiFEFB5v8993uQjBo/MhhBdffPFXfvWXf+u3fpNQmiSSBCTOLSUkkiiEkIp/7j/+dqfI/spf+Su97mA0GlVVLaWczcp//I//6euvv4oG8dGHwWBw+fLlL33pS9PpmFIyGPS2tzebpml0S+Iymp6fzUBTyjghjLLgg9aaC9rUizRNW10zxoRkzrngbTxLHFxizfCdsursqI/niHMIAWPY3o260EjgO0Xdd14fz4ThSwwa/wsYIV5QfvaCALA8b50N+BONMa+++mq/P1xbW8P5EvSyR04dr2B0r82yDC0vGGPowBMD6rjbg4Oj09MxbixjHGG8MZYDpVwYlDZTCCEIUDEY6y0DID744Blj6+ureZ5OpqP5fN6087fffntjY+PixS3r3WSyYIy9cPvFPM0ef/zWxsZGlmWMCSpEALh87ZqSFgBW1tdQMhgDNLpN0xSn2LXW+N8IBiqlGOdZllVVcx7Xga9xzgmB0RdJUeRto998462T0+P19fWk11tdHV69erXT6bzz9p0HDx7cuXPn4x//+GKx+PrXv/70009rrV944YWmaabTqUyUtV4ItbOzU5al0RZreCFUt9tdX19vmgbpQ7xWptPpiuzXdWUnRltHLePA8T1Xh4c8SeSVK5fc5tZKfyVReZKl9f7hxYuXr1+/fnhw7IN+5aXXx6ej4WBld3d3PBoBkIsXt4qiAELqesE573a70+k0yzp103DOh8Ph0eGJpwGfSJ4uI25PTk7wxP/ABz6A4qy20d77yWyG7ZMUgRCC1G70JMs6IUTvw3y28OCllAAkBDsdT55//vn3ve995+N1OHFMzlxojTHGtodH+1mWFTTfXN/ALEXUvgUqklQ6ryllzuvx5HT6wjjPszRNW2Oq5rjf70spJ5NJiAwVKwg3EEKuXLk2HgfnnHN2sagS1WnbVmvzgz/wwyeHJ6+88hohkbLveHtxmSy9tJSSUgrJkHbA+wxvDuKp955zirhq+I6QhJ7tLuK9PVMceEopIRST9JSQThvigxAMGQa6tDwjjIEQSnbl6oXe9vb2yclJWZbD1ZUkkaPRiJClpWOSJAzomZJ66X2j2+b8EIwxdrvdNE0nk/FkMkkzdfPmY01TH58cFl0MOTVSKspBa1vP20CilEm/3z85OTHaHLtRjJEDtyYwKgmhjAIV3HtvnMuYTNM04YnWejqfWrtkokIgOKaGNXGWZecigqZp5vP5xz72sT/1f/ovf/mXf/nSpUuf/vSn33nrLZmmw+Hwueee+6N/7I9hJ3nt6tXbL7yg0jTGePv2bXR6JYQIoaRcxhZ57+Fddmznv/J3agSATqfT73erqkKv58Vige8EgAagNBJs+3HYhBBCY1CJsK7d2Xk0Gp3MF+MLmyuU0slkwilNUolYtrXWh9aUzXTaTian29vbw0HPGDMcrmZZu7e3532NVQW+EWNbZ4NSaE8W27ZllJMIQOnq2trjN2/O5hPnk7quXHAhBMppwpOqqmIEClxrXZZV0+imMYRADKTodbVuO53OT/z4f/2Lv/ivnfOCycjAe8+5NK321mxuXaCCkCAJAcFFnqcxRqNtt9eJMXY6nZWVFQDY2dmZzWZCCGu8ZFJRUWR5gEgpeg1DkpA0ydM0a9uWSdHU+vbt20opzpgL9vj4+MrV91vX5rl6/PEbbWuMbR48eIQEzNHR0Ww27hQJY8A41W0Yjw8JIZQSY0x0UUrZOAzmIgiNnR6PFovFlStXtNYHhzvOhiJL3/ND3//yyy8fHO5du3ZNSr65dQEtYvOs432kwPM8pcCBLxVCbWvqum3b2nu/u7u7u7tfFMVoNLp587HFYmG0U0q99tprTdNIrm7efEJr+42vP7e9fWUwGEwm04Rm6DCFjTchy9lFBoycEblnlzQLITCAcCb5YZQDBQDwcQnrSymyLIvEOxu0s1VVexfzvNC6ti6EENt2RoidjI9efvlbz77/PX/v5//222+9dvnS1W6mmhIYDdmw+6M/9Im33nprMj6Fpbme5pw7F4VQ2jR13ebdPM9T3ZoQgpQSqayjo6MYozUuz7Kim3NGjLMUIJE0z3kIIc/k9ub60e6DUXTDYmnPAoRZ4xmX1uuVlZX5fF4URdu2nEscbc4yhZqscl699eadTtH5O3/n73zyk5/8u3//Xz26f7/fWxmfnF66uDUr58fjieCsXMy/+c1vXLt8KXpdlRPTemudYipRWVVVyOgaY6qqStP02vYVxOYihbqu/92v/ioB8rE/+H3f//3f/5WvfKVtG1SJCsGqqhJC9Pp9xrmu69XVVWNbY4wQSlvNBVtUc6yKxJmZeyRgg7//8NH+4UFZzkIIw5X+1etXJqNxr9frbQ1v3LgxHo939vdQ4z8YDK5cuTIc9A8Pj/Dim8/nSZJZa+PMG+MpaqO8k4zHADESLhillFMWQkiSRAgxn89feeWV6XRa9IZ5koboYvQAkXOxvnnhypUrk9l4NBnJhGWdQgjBubQmLuoqxtjrFWtra0Y7W1VAeJJkzoXNja3RaHTr1pPXblz/5je/eXyw/9WvvhNCYKYH0betVkpNp1MaCeWEMQ5cCMEAsrqunfMUuK4W+Wbxkz/540dHR7/ya/9rCE4IhgmHhMC8nOVpluUyEtLv9621o9FJW7V3Tx4AAKVEKs45Y0BDdFeuXlldXfXeU+CP9h6urq6/8MLt3d3dp59+enPz8vHxadEZvP/973/55dd0rbWpVM6efvam1q1zejQ5CWAW1XRy5xTtYrc3t16+/caL374t0NiB+MtXLjrn5mWFR73RnnJxejIqFzPKFMoNlEqtPWZMHB2d7O0dHB2dvPrqq4fHR9bqb3/7lbquHzx4tLuz38kHJycH9USTSJqNemVl1ThLKe0kBWWgtbbeKaWUEt5Hre2snKZ5RilJErW2sfrw4U4I4f3PPn358sUk5bu7D32ww5V+v99/6613rPFS4jAsR/UZUgJVuRidnCZSWWslF5wyPHsfPnx4fHK0OlyRUlliOacrKysArGkaKbixOk1TJMsXi3nbts4bxVK8Uo1tQwj9QefC1ob3xkcHNGrfsiUjTrvdrjGGNoQxkFIJIXRrIRKphPf00e5Ov9tDavNcraO15kBRhXc+iBNCaBaV976bd1wMACCEmEwmX/3qV9u2hRD1eIxwEnDmrDUGxQEW+zRKuRDUG4u4VQiEBEeAOOdms4kxqUqkSqQxxgdvrSWEoqoIACjlMRDGCCJZjDGcGgnBdTodDMM4H1FcyiepsNYKLoGSEALnkgLi2svpUaz1CSFnRgrLIXpCSIw+kghAQ4xAI2UE4VfJBTp4JEkmJbfWSykXi/ro6Kjf7ydJ0mjd7/eNMdq1QEgiO6iUKfrdIuvgeH5d18fHx94655wSEgMSGeOUeus9qq9VmiRK4ux8PIujsMEafS5BihiDTAgJzvtIOF2CZf7Mn5cxBgElPAhRgmJCCBEJcS5wxoQQKQUpJSqG6ro+i1gkAEAjcRHzx8B7D0xaY9NMoaKZ+GBcRMv+NE3zPMfQdsyNcM6FuByh9Wdhj/jkIwnlYl7X9WBlZTAYWL+sDyFGFKErmaDON4SAA2feR4AAaFQVwhIWdJ5zmJ6eSCbTBIXGgQlBQnTOx+iw1QfJIokoJZnPKqWkVJyEiBI/LJVxSs9aZ61tW1j60VnrgsfRAQAiBA+EVItGqgQgMlYwBm2r8UJXSrV1M5vM5vM5JSxPckppdCCoqisTo0akg3PBOW+rlnPuosOWxAWPE5NZloYQGWOReARhSYBzqeN8PmfnVg8hgLWUUqAEG5PzRgNpewS8ltqREFF3fA6XIBBgjIkROJd4JwKjlLEQnPdhMBgU/d58Pq/rRTgDssmZuA+/AxM8xsgCJyQ2utXWUEqBLoem8Ud7Z84YI+qN8d6jgyoAxDOcAt8t5xKpJt3aZepjAG1tjBF1TpSgyB3hPA1nAuE0TbNOHmNczKuTkxPvbZKlMfq2rQkJw9WBM5aQEIFQDvijhZRcKGeXaUAMKIgl0odrFQ24GWMf/vCH67ru9/uvvfbaeDrBgj9VCTJVnEu0VldKvf3223hUXr9+/fj4+NGjRwgaIt+zvb39Xd/1XVVVvfnmm/P5HCsQVDsKzmkk62vr/+Pf+J+efc8zhJBf+7Vf293ddc4QQgijBIi1BldIUaiVlRVKl/bcuPsiLAk8hCu1dkJJyhl+RoFEHwNjzFrNGKvrGltCTpn3fjAYLP8n5z4QFFIgejsYDKqqunjxImPMmPbpp58khFy9enl7e3M6nRrjyrK8f/++P7Me0nfvHJ8cBR9XVlZijEIwdNdpdbOysoIQcF3XEzfBHccFDyGsrKxdvHiZhCiE6PV6aZpKmezs7EiVbCdb4/HYGFNVTZqJqtRKqU6nUy5mSZJwWZwzi+V8zhjL8xxJghhj27aTyRjhTs7FaDTy3kfih6sDPO2bpolttAYTfZLhIE8TzqgazU+qRQOEoY//f/5FgaF4KMuysqyQBosxAqG4N/2ZlSqjlBCLdAV+6Iwx5xyFpW6REGLMUozyLq5ouUM5X/q9xgBaW0Zaay1WC1JKq00iFadgncZkgulUG2MYB8pAShmCC9bhKgIa57MFACRJJoRSMqWEZoq3WjtvdOtdIN6HEIn1QKhwIbqyvvrUBz/5yT+1fzjhNA8gWN5V2ibFQk6n79x/MMhZJ8UxFwlGCyE4AdNaKmiSpwyo9abo5phWwoAG66J3Kk8jCZOyJZY0wTlW8KwwIZUhFSJrTB0C+OjLumzbmhAiuYjGXdjYeOo933V8vH9w+Oj//N/9xW8+/7Wyno8nJbEWe3vs9gljJASRJZlK6romQLSpP/Pb//HWrVtAedsEpQRnMnjjYrDWUwpCcggRgIUA1joSKWFACCEefFx6Y4flfA8yx04I0el0hsPhbDbTxmBh42NkjP++C8b7wDlfWVm5fPnyr//6rxtjbj7xRFmWujF4tCIqSyFKLk5OTrIs+/a3v/3aq2889thjf+SP/EjTuC9+8Yuvv/ZmluYQadvW7/3wh//g933vpz/96YcP7/d6vb/6V//qU0899Uu/9EuTyeSll1/d399HPdDBwUGWZVmanmnMl0adzaK5dPlyjDGQqLXGysB5D5GeQVUQYyQRCIFIlpz0u7/OV+xyRyDE7JcizXdfMe+GnkmIkS45b0J5DDFGFgmLEd05kDIBT5Yz+t57SrkxpiiKPEn39vawVV+ibYTMZjNnLfq24a8WAmGUAfHWBJUIF2IkNElUCKFaNGmaxkCAUEY5AcChNGMM+umh4vjChQtSysOj/cVisba2duHChTRTb775hlKKC//kk7fe8773hhDu37//0Y9+hBDy/PPfms5nt2/fPj4+rqt2Pp9TSpMkefTokdHjsq46nQ4QJrhK01SlyXg8xkrAOZ9lmVIJIorLOSfvrTY4sEIpdc4jSeNccM7keZ6mOZosra6s4Q1+6dKTaZrfuXPn9OQEdQwvvPDClStXnnnmGSHE66+/PhqNkOczBisiAQCz6Vwphda76+vrRVFUVYXIWIxxdXU1TdNUJSSSxaIqy7kLsesH/aLrvZ/NZkO+yTnnaZoTBVmnmI6muzv7uFDeeefOZDJ5z3veW9eLEFyrm+hjnucXNlee/cD7hsN+cP7u3bu7u7vYPVprO3le13X0BJcjZ5IRiBDRTyTJMpUInKP03t995/6jRwfdbjormzQVG+ubZ0S6ytOOc4Fz4VpHIvXeGe84k0Aj56IoirpqX3rppVQqBPiaplksFjFGEqlUPM1UCMJau1jMy3I+GPQoJW3bdnodF62LS+uDJFEEkhAM7u2qaZMkI4ROp3O8e4y2Kk201hjP8thjj12/fn0y+baUEghzzoeANvNw+/Zt21rGIMZlPRSCx8sphKXyOs9zTJo6l6ikaZLnWT1vGAPGGGWEc4GbkNGlmQbnwDn1niJCilQ5HmR4R+KfjWk5OjczsMY6G6SUzoTGNGIWut1OWc0DCU1TleWsrmus4LXWlIAQinOepsJ7r+uGcCQal9NVg8Hg6tUrTdN4b5q2Ojzc7/cLLiilZHNzYzodcy7TNJ9O5t5bAk43WrckS9Jhf+X09LSuWmscRCg6A+ciIeF8TABBfJyjLMuK0mVoCfpLYN0GZ86DWBVNJhNUBLz44otSyj/5J//kZz/72TfeeIMQ8v3f//2/+qu/+ou/+Iv/5t/8mxdffFEKsVgsil4P01dRbIJnEH6aePScXwyEEAoc76BIYozBe49+Z1VVbW1dAADcVJEsJ+uRTXny5q1+v//CC7ettdaafr/f728Ohr00k3s795Mk2T94mOc5IaHoJmeaFxpjjMSEaHzQUslBbzjod8tyNhqN1ta3scnhnK+srDJG67qJEY/4JUXhfQw+6rb2Pn7ko+/P89zYtmma9fW1yYSPRiNKCfZCXdEdj6fBkzwv5vO5MZZz6ZxRSlltjHHPPff8fL4oimJ0OonBMyZipBEC47zf76Z5JnNhjQ+BYM8DAK0wly9ezrIMrbcxgTA4RyklEBhQQuhwsKpNA5x0Op2mrYpu1/vY1hqVH2vbazGC5AIA9k7vP/XUU89/88XdvXsXNjeGw75Symg7m03m8ypJhDFtBM8lq5u5UsppqOsatWwA0C+Ktm3bVhNCyrIkIZ532g8f7gAAFR4NQAaDAaV0Om3u37+rtQ7Roz/GyfFpXRsKwmgTo01zKZX03rWNE0JImSBhKITY3d313t+/f39jYwNz5Pb3T6MnjFaHB19bGa6PRtPTk7ngCQUZI3COMTUhTVPw3ngHwM6TiL332KKfs1OEEbIcaOKwDJui6HuDwhNCSJZlwySp2nY+W3jvrdUAjFHSNgvG/Hx++sUvfv7WY49LTv7ZP/lHve6gbZpEcWuts2Z/f/fNN1+fTqecL3N4tLaMS621lInzpixL5wyXoq7rLMsubG6srq4+uP/wySef3N/fv3/vnrVWQHQ2OIjzRVl0u865aj6/euVSOZ3ceeNN3zprnBAY2yUJQPBhe3v7Qx/60O/8zu8AQJqmHK2Ws4IxFmxw4Jx2e6Pdn/uff+7+vYdf+N1vPrp3r63mj1+/9vjjN77+3DeEEJSzDsnefuuNB++8ySk5Pa2DJz/2E//ttKy/8Nu/Rc58b7BHRasclBIAZ5PJhCVJ1skfPnz4+uuv4yHQ6WTDweD4+BAt1yPx1mqpOABIxQA61uqUyqouy2nlfQCALMvEmZFoILGqqrqORZFbax8+fPjkk0/WiwoBrNFo9Nprr42mY9QHjUajnZ2djY2N8XicJKkQot/vN402ximlmG8FFZRSZ7/Tnyul+r3e4eE+Ikda61deehnPnGo+d85xQVBaRSnJ83RWTkejExeNbiwAuXr1KiHQH3bqup542+v1jDGT2dR7SwJkqsOI4EytrmwcHpw45+/euftoZ8c6JyVXXDjtUpnqtmGEESAhLJOmp9N5URQYABiCJzQ+fvPG6trw9ksvoGogSWXdNDEEpdTqWr/bKQCgbpvT01MAUvR6aZqPj6umrWMkurWlLfM0/fCHP6xk6pxLk843v/m88+QL//ErMqXeh+ee+2Z/JSWEXLly9erlK4PB4O2jt9JM9Hq99fX1ra0LdV3fuXvn8HDhgqWUFkWeJyu7u3uU0dFolOedNE04p21bUUo7RUpBzGZl27YH+4eT8SiGQEjNOO8VvbZt66qJge5V+5wL7+LR0SjPOquXLlfNQoqUMf744092u53ZbFbX7f7e0WI+C94DoZxL1O9r3Uyn0+hg9cJ6W5mD/WMm7Pb2phDMOr2o5t1ecvX69eFwqG19762HJLjhsE8p2d87rhYNYwIhj7ZthVBra2ucLqVYOCkvhGCMSymDC7rR165cq9fKo6OTtm2Lopv0shCItUujA2zUe72i08kIuOFKvyg6h3uT0WjkgzWmsS5eKjaU4j74qmkpQIze+cC5YIxr3SwWCx9dmqeJTEMIjoMPMVjnnJvNpnmadLt9Y8x8XqJbhbVeMp4kSZIIziWyxVobrSfIbQePpFv8DrVsjZRyPp9LKW3wOEWEQFiMkXN5DlQhy44tUCQohwQUtmitnXPoF4F0KQJMnEVsVEL0xhjvmbXa+2VtprVGEwCEivBIxNoaITmsbIVU2MZgHYKMBWq0W10vOXsqUNeDb8N7j9+EUhp98GdeW91u1zlTtTUoGp1HAwQpl87LQjLClJQSGCFnd/1sUTJOiedKiKZpEqkwcDXvdB2c9WYAwCjE5VwwthZ4D1JKBSG1a/1Z7t/5F8pzlFJorurPQtsQiET4Ly51STSE4K3HyS+8nrTziOxTSiFEybjW2ocohMCg6RijENK7SCPxxjbWxRhijOhZwRg1xqA/8ng+NsYoJcuyZITDmQg3nsUY4kPO81yexRgiYd80DSM0TTIE8nCbAICU4rxSQuOUJQQTY95LsdhrjZsvToiPjArCCAAlJKIOmzEGQK2x3nshU+ect1778K6FxxBrk1K2rW6aBilPlKdwziMNMUatjRBMygTTL9C6mpBACXHOO+eThALQXtHN0850NNXapklGYlBKAYFAibWOYLZKa7F6xDXW6/W4FCF4AJjP54jUo+kHIcQZTwiRIsG6oizLqjKofoIznZ0QIgbAh0zOhqDhbPw5+oChCzEut9jy4gvBWk/Css9HHwWMNjkTygCq+BETP4chkAQAAErOxRzLBPgkSZRQra455yGEGADzhHERSin9WVYbMkNaa+NawcAGj3KQGCDLRFmWzgXGgBDStm3bGgiRc26NJ4QwxrmgVV1SSnHUum6riOYzQIqi0E1tnA3BNU3lvd1YW2alAqFSyjRDi2EvhKCYdgUEWSg8DaSU3W4XP+i33nrr2rVrFy9efOmllwh6oRJACr+qqizj+DmiaTh+gv/23/7bqqpQW4B0IMo4/uW//Jf4YswYJIRg70YIwXy5v/t3f/5P/+k/NR6P//m/+FdZlg0GA+/9YjFHUo0QFCtItIxrmobQ2JoGny2eA95bAEjzjJ5pDJegv/f4fvyZUay3bj6fr66u4rLB7wCEkght3VpjnPdNXQ+HQzT3PDg4yPPTPE/xfOv3hyhNU0ohQOa9L8uSEJIkSTARj8319XXvfdPWqCfDbYskn/c+haRpdAghSTIgUJZVmqZ1q733EULTLoxtKAMheRJEURTbWxeEENi7GWM2t7YIRBRZ67bpdDoAcHo6wnNjPp+jEKEoivX1tQsXNiil4+lkNp1jv4OBOs4FQoJzRCnKuTo9mdRVa4yz1ue/vxMvCZFMp3MAAGBSJhoNDI31LqDTCxqnnH8onHNGhZKKC4wlWJ7GSF0Y4/CTOsM0ARcSAAihjDFAo5DMNLYJTQhBt3Y+W2itg7fL66bx1voQiOCUxKU7h27qGCO68W5srA0Gg9FoNJuVQJgQyhgXAFqjCRAKvA0mBj6bLUikTGTrFy70ByuewH/7Z37aWHG4f1R0gVLRal8bl3R6a1sXXVuejHa1ZVJSZ5YUBWfCcBMsEUxwyoQUhID3hjMSQwBKOeW1NjZEmQ9LG8vGWQIiEOB0Vs45rwkhPvoYPQCp2opSzoCZxlJQR0cTZ5tef33r4sYf+P4fPh0dv/3a8+ibjyCM1rau66Ojo729ndmoJlyQGFXaqxv61d99nkBMO4oxGklcNA0AGQ6HQCMFHiEGT0MIMVCClsOUhuhQMEQIcTHg+DR+oMh3Lj0rKI1nWcqR+993weA2v3z58l/+y3/xpZde+Qt//i81TXv2cUdKmQ8Oj9AQwrA/uHTp0i/8wi/87he+9AM/8IOPP37zU5/6X//JP/5npm2zVGFX8vDhw9/93d998cUX8fuPx+Pnn39+Z2dne3v7DBqGH/mRH3nnztvf+MY3zg3NrLU/9mM/9rM/+7P/8B/8f3/t136Nc+6Ct9YiBEwpJQHgzLXs3ffIOdz8n+DO7163jED4P94O51jz+YI//8cUOBOCMR6dR94FPIFAfPQhBMLRbDYwJnA77O/s4kRRt+hLKTENzxgDhCxnRJYULLmwtWmtv3bt2t7+4Wg0Elw98cQTq2vDb33rW4OVfDYZK5V2u5kQYjqdlk3tScRbiVJI07ST5x/+0Ic+9t3fPZ2NP/e5z9X14v79+01bZVk6XB3s7s0WdTWdTnd3dxBzm0wmTVNfvnzFajMcDq9dv7JYLDqdnJB4797dSFprLQWOJm4xxul0Oh6PORdKJWj4o5S6cePGfD7/2te+NhgMSKR5nmtrOOdJkhljzocIY4S2NScnJ2aZmM2QUDfGPHjwYNhfed973v/bv/3bs9lsff2ClMndu/djjMfHp51OJ0bQWgOjaZpa43DeRUp5eno6HK6ura01TTOZTMqyrCrUb7n19fX19XU3dTpUtrVMSNvapmnKuHDOXb16lXc63clommedN9546+233okurq6uHx0d7e3tOefu3n1nZXXQ7/cTmTImjLE+VK+8cjtJEgqADlOUUqkSSh02CQcHB977QW8Yg7NLx0DnQqjbdnV1VbfV0eEryNtcvHjp1VdfzTIpuBqNRpxzSjkiziHotm1ZZNg2RAJSys2tjfF4hMUNZQTTFTiTw8Eq7rrLly/3+/00U/v7+3VdG9NqrXd2HrZWa62tdUU3C1oQCJ1OtrGxMZ1NrKUBAqHUOT8eT3GTp2nKJXPe6fmC06WT5sOHO/fvP9zc3Nzauqi1nk3Lw8OjyWTCqDo43Ovk3RAcYyIAUEoABNpUtW3LgTClytmESYHGbcZoPIbSNGWMU0qtNVVVAaf9wSCEsJjNueBCgrOY3M2k4oxRxiUQYq3Vxigl8ManlDAmjW3XhmtbW5uLxWJnZ0frBme+fAxHJ8eoXsHIKfwihIYQsiRFK5Il1k+ZdlZQwGKdc2atmUwmeDEwDltbj3U6+dHxAaVU6wYALlxYB4Cjo4NWaxLpcNiXMqmrNsYIwLrdwaVLl+69/QDVRjEAZ5wz3ratt4ExVi+a8kx0hiURlm4IdqdpSikxBmPuDACxVuNY6+/93u+9/vrrq8OVfr/f1PXzzz//8z//85/+9KdfuP3is+97/3Q6PTw8BIC6XgBAjGE+nzLGVlYGITisKuBMebH8M4TgCQBQhggL6nz5YrF44403sOZu2zYAwe50e3tbSvnWO3c6aQeW06ZJVVXGtLP5eGv7QlEUaaoCN/geKKMCwFodCQUAzmmSSMZ6IZA0TXGUW0p5ejJ2zvV7Qy4oGiN6H8qyPG903dL8l2I80UsvvYTlxYULF5xzSgkpeYwxBMe55JRTSjEN1hhLfAjBW+1M9IyDcxaLY+9IVnTxsTdNRYm/eOnC5csXd3YfvfH6vWvXrt248fi9e/d3d3c5FRfWN7RuZ7Np27aLxaKtasUFT1JCCFCpWzscDgHg9PR0uLbS7/fdqdPapmlqmQshtI2pWb29fYlTtrGx8b2f+B5Kyec//4XJ2MZ4Wlc6hPCRj3zkgx9cJeTb1ngmOJri51kvEh8ZSdMshKCUhBCbepliH3DWlREUdKysrLhloHxgTDgX7t69yzlfWekIwZJE1lWjZJKlORDeNtPFYiFFhhaQ3rGmbZ2zw2FfqRTLbq01Ao5NU7Vtu7MzXywWjBHOFaVciqQsayVzRiiJLE3l0urRhxCCMSUhJFKgFARhAJQAhGDfDTdzzhkXmCx0NqqJWMl5Rlb03k8mE865TBMhmW+8lBznTxnjhPDBYNDv5geHe5cub9b14nBnT6apEGp10C/L8lc+9W9WNzak5EtdHmUuGOwl2rYSUr73ve91zu0d7FIqQyBN3e7u7BFC9vYOrHVtY4InQImPEShkSarbFgDuvP324d4upzRNcq01APgI3nqg4H0Axu7evT+fL6RMvPcQgDJBCJnPF4NBrygK7DeyvHj11dff+Ot/Q/U3wZv3Pv0Uix6ngWL0q6trd995W6WS+lAv9Mc//tEbt55Z37y8t3+MNDV2SsPhENuGRzsPkOP0Jg4Gg7YxbduW5YIxlqcpJeCsnUxGp6fHIYRbTzzOgY7HIwJgY0gSubq6Wi5mg8EAIB7tn6DRk7XW2JYxRhgNzhNKYoxNoynVvV5vUdbexxhhZ2cnxmCM6fV6zrk0Vc45KfnJyQmCXHi/oFUO4iAoDqKMhIhTbNQ5d3x8jHQONhh4UgnGfYiUEe890CCkGA6H1un5YgYMTN0arxkHH2wn71Ias27iXY9QaI1e4ndUQTQksNsvvIKBIXfeemdvb08oKZNUa12buVKptcEYg6k73hGEpW7devLNN990zqSpijGqJDs53fvv//xfPDo6KIqCMhKId96WZfn0k0/dunXr7TffklKuDIYPHz4kkQY0wQWWJpl1JkavRLK6uhY8HBwcrq6u7+0dcKa4AORfVSLquh6PypWVFc6Sb37zW5zz7UsXm2px997bdVMumimltFNkzhlgWdu2Dx7eO37wBgFCPBEdGWPgnCapbNsagAmZhLgM2q7nrUgVgaiE9D6ggHQ4GORZ4Zxz3kRCvPeUwWQyy/M0uIgjVpzB9avXiqL34gsvv/jiS7o1nAprDSXMtLbX61VCa21CoNZGW1veh9FolGXJB77rWSllWc5CtHfvvX18fNgpEuvMO3ffWl/bLDorWZY1jS3LJZdZFL08zSaTyWJRSSkBqLUGRYghBOTX8a50zoUQnXN11QIwIRTKhymlJydHZTnpFFmSqDRN27aOEF1wja68t/1Bt+jlp6PDCDEEh8bxurXGlMP+cKEdp4wnKssyY8xiUZOAxVjsdDo4cmRMizAfIZQDp9F76xpfR49X6hLAQn0Wtj2UUmdsG1r8tnAWpDNblFgDkKWYYqk4xmMcCMVTsW10JAEgMi46nUxK7rxFVCKEQCljBJRS1nrdmhjsEvMNhHKK2K61mlJKSGCM4fANtoLot8YZZ5z64CACQlfL7xB901RCCCEkGjsg2BRDjduTQEANCATCOaWUSslj9FaHEAJ+cNbapqmn06m1I9tqZJJOT083t7e3ti8IJbGP2t/fr8oFIWQ8qQRPkiQZlQvBoG19IhUALBYLIZOT6Xg2m3EhqOAIPxljGJP40PAxoh68V9DT8QQhe/wP+jygXqGqKkT5ESLH+zRJEmDUOo3filL0+qT0LNErhCBlYrUmnlBGnXOcC7wr8WXee+8iF1Rri/1jCJFAIJF4b0MA1BVSSvFT0NpIqYI9c2ihBKt655xKpA8uz/NeUaCA2VqLlm7OBwCPqOg5MJqmKkl6SZI9fPiQkCClMMZsXFjpdDrTcj6dTs+qAicod2fR3CQAExRZk3PHueCiWCahWe8940tAFgtUFBmdcxWMsRgJMPAuRoJOIwINJay1qFVcX1+XiocQ0kTpxsRIsqzTVi3nUlDgVBAGMTIAatsmRIKkLCGk2+065/pFH9FDIbj1rtvtpKkaj8fW0qIoGGMkEM98VTVN02RZJpUiZQk0ckEZX0LpiNQrpSL5zlwjFiHOWIiEcYFeHNj2B+sIoVqjG5hnQM8U/TRGj55mADCajqq2CiGsrKxgu4GqDgBAXa333sfvFN6EUBSgLAE1zkgkSLQAAESSJglw4gPEQBljOGd5enrqvGkaHaNXSum6kTJxzjHCKI3aWs45AONARbJkPuBMgJyoTAhRVVWnyBils/k8xoh+CwAgBCOEhRBms9l8NiORhkCMMZzjJDclxDOgCI7gFsASDtulc3OGo6Oj8Xj86quv+jPLae+WINQZCcTOGzHsPnZ3d5GRimce1owxHNZBsooQgqQX7k2sCvI8//VPfWp9fT1Nk729vV6/j5OX1moMFUcddwgEhzIZE7Ny+u7eBwtIQs/NzZeEN54M3nuAiHTU5cuXJV9alOzv7yN6fv4EjDFRxxhjVGI2m6FIC48yfA1+djiqlabptWvXhBD7ewfIXQ0Gg7pqEATMskwqkWbDeJZEKoSw0S3r8EaTQJxxp8ennaKYzWdltRgOh/ihIBnpnG3bmnM+n48FS7ENx0PeOhNCQONsvMUIIVmWAhAEuwmJeCzfvXt3a2truLrS7XZxsyPsdU6A4UBsszAkAANpbUuBndvR/idfQBiJECOp69Y5p1QaA0mSpG0NIdA0OgSH/aZ3jlKqZIq/EbZ7lH6HpjEG+3dy3hfg/kKiKwQXo2UsOm1i9DiFADSWZYl+JkqZPM9jYMbaGA0ExijjnEvJQwjWaUICgdBW9TSGXtEpsnxnZ88TogQ32tXeMKp0qyfjRZL2BsNL733PB579wIe7vRVC+falSwf7R2+/9bDXXWlbG4ObTufetTzYYjBc+9B3vfEyWcwPdWsj8VmeMwbWWkYYBvxAhEhipNE6TcFLzimAi6Gs7bx193bu3nrmAxcuXt89mLQmgnWMK2dqQoh2mjEmEzXsD5wLxhqV5paQ4OLpuNw/HY/KxXShty9t/dCP/FdJktR13TQagbk0TSeTyauvvvrg7jvz+fzw6OD09JgxCN2imc+asmqbikmgNOn2izTLIvFNVQNhwUcAyqgCGhmFSIkPLoZ4dqGQGCnKGckyHQrm8znWG957vxziDv/5aiGEpEo9+/6PfOITn8DDeXd3F7t+yRUWEpShNZm11mZZ4q27ce36wRNH4/H4z//5P/+1r30DAFbW1kj0SZIY096/f//RzsNer4gx/vE//kcff/zG2tqG9/727dvo1zccDn/qp37qf/v1X//SF76QJAmQJZ3GGBOc7+zsjE9Pi14PL3cMx4tn+vp3L0VAccr/EYB+13LFnpcAAGf8XCcU3uW8AcsRFiSnAQLEGBkLjDGAgE8sSRLT2rMLhWAN5r0PweHHSrnodDpFp6eUQj9uVOZOJ5O4nEwKUkrvyBNPPFWWZd7pvu99G4eHh88+++ytW7dOTo9WV1dffvnlGON7n3kP1htSJkkzM02L4B4hMVGKUvrgwQPv/db29mQymc+nnV5nsVhwzo6Pjx88eCCEWFtbm82mR0dHBwcHVVVd2r7IKaVKjkYnX/vaV9vWCAmLsmqahouIaLi1FoB6H1zwjHG8YTnnZVniubq7u2uMOT0ZowEUA4qSlJWVFaxeiqKYz+fj8VhrLqWklDVNyznhTNy/9+Dhgwfr6+uPHu0sFlWM5J137iIhRynt9XrxzJ2sqhvOHIkQY1wsFujTu7KykmXZeDyu65YxwZjBu4kQkmVZW7dNVaZpyqXKRDdoC4DFXoBf++I//tQv/XLT6J1He2maU8qbRYU6U3Ql73Q6nItuMczzYjKbzuf73W4XxzzzvDg6OgKAEME5v1gsOJfeRe+9aS0AcEqBITu6vAlQ8FUURadTMMbG4+nh0REAwzLCGJOmueTCGOtsYGQZL97W1XBjLcsT52xRFJSSejHHNUc8u3DhAhPcOYf168HhXl3XaJrTG/be//73ee+t07/5m79ZTX2SLi2Qtre3O52OSNR8Pp/P5yiCcM4ZowkFIViaKQQICCF5mqEr5VNPPTUaTay1RafnnD8+PjXaOReqqo4xJipDxQdewADASMR6NBLvvS/6PXbmtgEARVFgV9C2dVVVQOPW1pZSqqm1lLKaV7PZrG1bLDJ6vR4AkEBwYhf9aAgh1mnGGADhiq+trXHOi6LA4AvvIxP0vHrAzay1xmMBx1WUSpDjNcYwAjY4VBaEsJxSxH3FGKysrAyGPa3rp595UgiWJElw5mQ0QnnvgwePGBVCSKXSGABvyvX1jRs3btz+1u39/UMAsNYrwZF7Ob8yAYDSpeMhAmF4NOOpTel3NBdhOaEZ67r+oR/6oYsXL37+85//0Ic+NJ/Pv/SlL2FhVy/KjY2NtbW1o6Oj6XSKFIgQYmNj42Mf+/hzzz2H8BZ2MtqacyIOr4Hzn3UuYLHWIv+/1Gswaozp9/urq6vW2qOjE8k49mkxRq0b59sQvJCYTeF7axnKkfCXRe1PXddY7jgX6kXFuUSTEOecMbTb7cbojTEhurW1tTRNx+Px6HTSti2lnDGB4d4xgnOOcae1Vom4evVKlmUAEVEqrfWS5jWuWjTGuOiCMSZ4euXKJc75vUf3vHf9fl+pZDwexwBpmkspnTNUEMZAKrpYlJPRuNvtfe/3fu9zzz2/e+8g72dCKHw4bdvSSEII1ro0TYMnhBBvyerqKjCyv7+bdbM8z65fv/7aG68bYzY3NqtF0+12775992d/9mf/m5/8rz/72c/+3je/dnp6+q1vf/Pixe3d3UdZntT1YnPzwlNPP/HGm2/6M6tKZEfKsrRtpJQCjTFGGslS8pCmcumthiE2QSkFHJqm4Zz2+0POOTCWJMl0Nh6Px9vbm5ubG/1+fzwel2V1/96O9wGIiDEmWUpIAIByMev3e91uRwixv7/POCA8QQhhDAaDAefs3r17bRXyvNPvD2fT8ujoVMkUW99gHeqXnXOELdXKQgjqz4aGgDhnsJfwZ6b7TH7HiA1P/FTheARg0RlCqFp0l4sAoJTCf4gtx927d+t6Eb2/sLFlrTs6OI4xCq6SJJnNZj5YQoh3McbIpcDIkfMF770frA445/NFiUl3KOjDajuEgOo5EZwnMQJxMSAT7bz11jECjPHog3OBRMqlAsK8Dzaac8iJUooLBk+AbrfLGJvP5/FskAoASJLruvrIhz9AYzg+PDodj7Tz3V5vd++RN/rS1uYzzzzzt//W3y0X+v/53//l+w92qF/gSeuc297eds75YHE3DQY9491P/uR/8+abb37j698kFJzzjCKGZX70R3/4zptvvfbqK/1hD9U3GPFECCmKvLUtDmmmaSqZ9N6/9dadptaMccyhRrhZJiKRGKlaD/uD2WzmjSeEKKVcRBaBUkrTNEdwpG01huKiyAWlNLhhAYAROIdyOD13Z2bY2+OhZEmA4AkJGxfWNjcvFEVBGNs72CureQCX5SrNEwBQMk1kenJy6ttwhgtEEkhVVU3TQIj4cfR6vUuXLgHA7du3B4NBr9cry3J3d9fZgGJS7yLnwhjj2uZ/+Uf/qD/o/oW/8DNc0OFwUDeLGL32GP3kh6uD8WTUNBUArK+tOOdmk7kUSYxkUTUATKm0qirBMwYkEu+9Q69PlMJlWQcRea1boYQQTCUiz3MXXL/f5ZSVi9nGxsaTT946Pj5+8803AGAyHSHbzxiLENI07ff7j+4dHx4eA+GUsG63r5Qwto3REwq69Ub7tnUxxl6vqOsFUJLLBG8ia22/P2BSoJUb3n2MUeNsmqp+v39ycmSt7eRJWZaMybpqQwASKSGU+KX3rspSQgiGmNmmeeb97//u73vv17/+e5cubW9eunDnzp29vR0si61rNjc3Wt0wxvqdQSfvHx2Oj45GiNH0im6edwK6zZQlEIaIrZQSXbDxbnLOcQHOYWg4w0n/JMkIIfWislYTGrVprly5vLIycM7VzcJ7sbq6yhkcHOwniSQQrNcAkYsl49s2piprBkxr67QbbvSFEFob5xzubu99keVCCOeCblrnwnxW0kgx3xhTmrHEIoTEd2kAEdLF7mKJSJKICJNzDjPBpEw450KIpb0GgHdRMIZnaYxoUESAEiZZUeScU6Ck2+0eHh62jQ6BBBu8jxQYKmNi9IhxoFoZGxI0YUPoGWcS0VzLWhsjI0sS2sUYOedccSwDzoflsTlCHbHgavkygSOlkTEGjC7VtdYhXo2oijW+1YsYoS4XzgUEK3u93sramlS8amqsdmKERw8epmkqhOBMlbMpCZETyJXsdgrvvbOhcWZRV4FSoFQkKpAYgg8hSOAhLm8T9HGeTqdaa+sDPpDz/jBJpHNOUGbDsixHz1bOGSEEuWdPlp1zCA7xXHbmVEsIoZS3bYtWFULI8+Yz+CWHGkJgIpxPdDnnjGnxcRFChGBnUH7M81wkKoTQVucEBmr5GVaqXCwtGhlj2toYCYL+3nh0jsY5uRh9r9fr9/sxRoQVZrMZALRt2+/3NzY2tLOnp6ezWYlOIIRQGkFKyZn03nPGCAk4Xde2DWMsUUUIIRJPKWb6LvWnzrk0TaVUhJCmaYKzxhghBDDugmOMEQhof22DRcSZUprnOSJcAARZQ+898YQxVk7LEEia5m3bUuBMLhMghRAhOHSoVErl3TwsEVobYyTL6KmlswcA89a3bWuMI54AQIBQFMX5aA6NZDqdtq3BsgonJ5xzWmvOJGMsODQewXVOQgjEB+xCYTlx5clSUomJkz7Pc611jN6TmKYpDmUj3Vs1NSEEFy2eA9Y7xMXIkmhfit1wdeEDEWcD5pzzAN57r1uL0l1jzGw2I7CcksQdFGNsG4OAYKTgvYdAcDUiO3LGY0UpJZMMALig3W53XpaLaRkIKYoC52MYB2yFmlpHTzAnQ7e2brXgihBK4jKgCd/hOR56PvmEj+ZM3S8IjYRQiN+JTCSE0LjMP4AzySrCNwCA8dHnbMf5jziHd88xnSzL6roerG38vb/381tbW3/pL/2FBw8eZHmSJan3Fs80FOoWRW8ymWCH2+gWN6+UEtcnHtQ+Bu89fnZ1XaOaOISQ5+n5JUtCxLnssizPN3XTNMYY3NfnFQuSi9g0hYg5GXQJ2kY4B3B7vV6aSWMceg0BoUi9d4oc0XbMrkAyrG10CIEBV0oRCACgjSnLEgCyPKVnOYQ4MFGWJR7s3kac/rbWMkazLPNxGbfb6XRIWEYF4IN1zi9LcQYoN44xck6TJFu6ijtXVw1iYiGELMsG/cJ7PxqNq7qOEXqdD28NP/2fo4eL8Kfz3gOt9cnxhFIqhUB7DbxE8IcuhXQAQJYHIyEUrS7RUx45PGv9ORkQQsChfnrmUeBDbYwBoDSSGIBSpJiYaS0ea/iz8DABgKAtXrjYVWljsF7y3uKHDgAY14GnQWPifFZ3uoP3vfe7fuSH/8TW1tXNzYuf+e3P/97Xn/tDf+gPX75y9d69eyGE4dpqgzGMbZsmcnXYfXDvra9+4bfHp3vrK51OwlZXu1ZXieKZSrC0oJQCIYETSgLnELxljAGVjQ4n4+r2q3dOF03eWfmBH/1jg8HGeNoQogBoCLVGD71OPhyuWhe0thQEpTxJsuCj9956RykwKbIsCW2Lg01Xrly7ePEiaj4IIUWWD4d9Lqi1ejaZRhK8t6+88srBzpuPHj04ON6r67lUjCtIlbTWGt0CQKYSoD4ER8AvMQ9/PhIEnLFzvg1/SjyzicBDKYSQJR+4uvmZ/3zBjOd/+i/+5R98+umnF4vFP/2n//w3fuXX06IghEguw1lk7hl069bX13/mZ37mB37gh9bXL/zVv/bX/uE/+IdFt58mubWWMzyOzI0bN4puZ2fnYQjhiSdu/viP//gnP/nJf/tv/91f/+t/nXHpvWeMb21tvf7yy601eZ5bayMh1trhcLh54cILL3zr/GyPQDDQAgAo8HP6KpznA585Pp3/zXlL65xB9IBGSs/G3OOZlg4AiiLHKxWPbmcJzo0licQw8+i8lEnbtvNpmSQJAej1ev2VYdM0xyeH+E6eefKpp59+uqqq/b3Dvb09xNDqugaAQb+vlEjTFIn2W7eefOKJJ7Y2t7lURVGEEPr9fpZl1uosy7785S83TfP4449HH7761a/t7OxsX9o6OjrKsuzatas7Ozt5liUqffvtt9u2fbT7qN/vf98f+p7Tyentl14ois7/7f/+f33++eeuXL3U6/UODg7efP3109PTtbW1eTkty1K3lixHSSCexTVXVYU+8pzzyWTinEMVQprko9FoMpmcA1NnTiCBELK2tnbx4sXpvByNRv1+H+fvnQ1oI8xwHcYYYxSKRh/OL0c8w1FlOxwO/ZklLJoxTCYTY/1gMOCcz+dzPKlijGmaDoereDJLKWezGWNMcBVCEEVCaxK99aknlKamoD5O+AmIeMnf5Bc2tjc3tz/32c93u/3pdO5d8NYCgBKSSyaEGA5XvPePdh6ECJzzzc3e5cuX27YVnJ8cjy5d2p7P56fjycnJCLnZlZW1Tt493D+az+ckAoJE5w1Gp1Nwzo2xs9lsmQ0dgDGmVLq2toHP0Wob40JXC8KWvQowjl23MbqqSkKI5Muxsr1Hu+PxOEkSlSZ4wU+nU0SjxrPxyfikaeqnnnpq++Lm933f97711luXti5dvnz5pZdeOj4+ddFnPj85OamqhnNuTFv0Oo/dfKzb7c7n06ouGWMkUmPM+sbm44/fQnnOeDwejcZFpzsYDG7efCxJsvv3Hh4cHACwtm05S8/K7ki8l2na6/VUIhaLhVKqrius+JUSnHPrTSLVeHzqg01TNRgMjo8PGWOXLl3a3z8EwlQifLBBO+dsq2ulFKU8L3JrrXMejTXyPGvbVpu2NnE2muf95OrVq3knHU1IDI7zpGmapllOTc5msxiBMco5J4EEiGfQJCWEROcDoGtyjDGint8aTyAYEw8Pj3d3d7u9zvb2xfl0MhqN8jx9sPMIFYVpkmtt2rat67bb7ToX8jxnjB4eHjy4d48wkiTJ+ka/LjVWD2yZ1BlxDjf4cP43CDqfNYffIdDOygKPBM79+/fH4/H73veeH/uxH/tbf+tv/et/+S+H6+uUdOq6Pjw8XFtbK7o53nmLxcIH2+12mqZyzlBK0zxpmiZZ5u+Jc5Ye7wAUOqFmKkkSQoLW+tlnnx2Px3fu3CmKQjI+G0+EEINuD1sCFKHHKHkkIXguaFHkZTk7Ojre3t52zmOJg62R9/H09HRluNbpdKbjsq7rfn9gtC/LhbERz9ler1cU+dHhUVEUQkjMcZ7PF0hPhRA4l1JKAjrP840La3me1XXNOR2Px4QQrTUAIwSiX/5S/qx4AoD1jdU777wlpcDeSSnVaruoy4xkeZ4SiISE46PTuq1YFM6S3/3CVwBYUqScy7qupeRpmqapchqVxVG3dulHBuF0fIKbvSzL2Ww2mUwoZVVVvTO7O1xZ+dEf+tF/sfcvut0uIWQ2m33ta99cX1//qT/z333wg8/+7M/+7O7uo8Gwu7V1aTKeTafTJJVZ2nHOGeNms7ngihATQqCE4hntnPd+2R8666TkSZbiWRFC4ExYZxhjlAvn3Hg8Zow9+eSTSqnpdF6WlbW2bU2n09nc3Or3h++8887paFJVZZ7nQoiTk1NCCGMQQlgdrBZFMZ1OAUBKjsc950IpwPXDGCMkGtsqpWL0wCGEQBhx1nmtkyQBoFo3EgSit4Se5+ouE1oopRAYpRFxXryKzv7AbfDBYovIABilERUN+KPrsqzK6bDf7fe7xpjZfJIm+cra8OTo2HljLOn2Ohi9AvQ87S0URSEEOzPuDKPRaNljFB2lEu89IVRrS5faNOec80CSJHHeM7q0Q43EO+dM0+rWUqAxRMo559wFolTCwxIvwFVt26UfJaUUiwA8LbHmkFLO5hPJxVe/+tVrly+NRiOtNXDx8O23f/SP//Ef/MFPDHv9R492J9MqLwZ/8S/8v/7ff+Vn9+/fSzqd6AEAmqbpdruLygohlBJN02hnV1eHa2trAHDr5q27d+82VQkQTdN8/KMf+5/++l/96Z/+v3zrG9/mmxQfo9ZaKXHhwgXG4O69d9pa1Wna6/UFFVmWYbRUPZti5qoQwtnQ+AYbj9PT0xCI4gJjExjBI2uZQkYIqeuGEOKiY4xRCmU5o8t8JE5I4pyjcdl/4unHz6oB7z0THEhodcOkoIJurK0Nh4PFYnFwfJSmmfW2rmvCQoj28PhgY2Oj6PQwvZ2D9C5SACmUtS6YkPAEgCVJsrKy8j3f8z0nJydf//rXbRskS2/eeFqb6sG9hz4sJYFZ1gGAza2LDx8+/PRn/v2HP/xBLmiaJkU390HPZnXW7SVJkmUJMMLmbHV1FYfaYozYAWVZVldmUTZN7QihNDqulLOOMhYj4ZwXhTLGLBbV1ta2EKIs52U17/V6TVtRCmvDftM0PEm2trYYg/39/el0qlQSQriwsY2XmtZt0zTXr94QUqayCNEJnp4ejzFcNE3TqqqAQJZ1qsWpnpcbly+///3vfbRzP0af8gT9fPE7n5M6kQLCMRSot3E2mc+nldZ6MS2djULY4CFGkFI6G2KMnMkQQl0u8IyNzlJGr169/PLLt4+ODm49ceObX39uZ3/3sRuPSymdtwcHe0DE1uaQUkojraqq1TWlJEsyy2wIsSxLwVUn7womm1q3bQuEkgDRE8qXng9JklR1WVVVDCCEoJQDgNZaCXnp0nYIYTwdEeigmAtoLIoiRkHAAxO9QbdpKq0bQjyBgPcOluMnhyfORtOY9fX1TqeD9zUA+BBQcoKTiUqp4EQIVkppW0sIUSqFGJxz2MMj8HrONoV3SQJxJBDVc845pZQAaswMr6qyLLH2YIwpIbBaWEJdeFoGx4FzzpUSZy4oSD0G73wIJMIy94KcTa0CAOP4Zhj+ZZqmMcrNzc379++fnJzgAOnZUUyEUNZaHDfBp0rOMt9ijIwJBPiMtsjMOY9OuMR7j/mBxhi0HcDfWnCV50mvX9R1zQjg7cMYq+uaTadVXTa69d52Oh0EJUMIbdsGr51xnFGgFBgDRhXnScqr0xPvAsgzoCFE70MIXnuPSD6eIUtgEpt5YOg6gk1j0+gsy2zbAACNhAq0RwDvA6XgnEPNI2WRUoqWa/gE8HpyLhCivfuOzSJ6I3DOgTByplQKwXFOOaec87aNxgRC4nlsACYEhBCs9d63UsrhcNg0zcnJCWNsdXVVnGUkEkCKljrrvXEIg0KMWdYRYqkV9Wej4j44rXWrmzRNe/3uZDKRSozGp2mWZJ3O6uqKlKJttVLpo0ePGKHOa8Zot9dB1GO40uecP3r0COM9UB7o/dJrJSynkQRqVIN1ECKijUop7T0DVtd1t9fpdotFsyBhCSIxxmOEqmoAIMsSEqk1pqkqoy2lNLgYAgm+oZR64lnkzp+bokh87EmSNIsKINa69d5LKUJ07sxNsiprRIqNccQHtLQisDRVRxo+UwkApKkCyPDvsakRQiCeDABYWXkfrbXEk/OP8l2AKQVCGAkATCWScxojJ4TbsJwDw/1OKAghlFIyUYt5udyDVOAzfPd2xk23hJgpO3/IMUZjjVJKdiWJFBHMNE19WOo/kIE4d7kBQFQOIiy/OUKEqK0GIE3TCM/SfIloeOeCJz5YFP966mPkSZJ08sSbOZV0sahJZMY4ShgJQCm4QEKIzlnUlCFS785Cxc9F3Ows89N6E33AMbd4JtwLcO49wiilwBl1McbovU1lil3wu3UA+ORjjPhh4f+L0MN8Mf/pn/5pIcT6+upgMIjE46mF2ZX44nNsq21byiiyUEopvKlx7yDijIsE2YU0TRlj2BLFGJtGl7O5EDNEwOFdGh2ttTEWLyBcHt5HIRTCYTEQEkG3qPuR6+vrqNPHaYzZfEzIkr7yLgyHw+WP5rRt2/39fSkl0gwxEOccBSAQMDnw3MnkfGVGH7EkEEzOp2WMsdfrAwCGwy/XQ1iK2RljzljGGJ6HaGDifAgh4P2Fdan33lodo2dMWGvTLLHGITNnjBGcOueMtZRy59yZVd5/+qW1hbrOso6UVQiBRKCMpqnCMMnJZKKUcs4AAMRlMYyZLuBQChrxnTAmcLMseQvKz1tmgtcACYxxyTiJaN6KiB3Bkw1ddHCVGm2998h54VQi59wH65wXQkQKVaWTJMnSTozRR982TV3XjvZ+7E/91Ac/8LHgWaezSmlnZ2f09p2dG9efuHTx+nQy5yxxxLRVS4FkSqVFaq3+1V/51Le//TXi6iQVVx+7SLw9OBoN+x3G0qbWjFPBeQjBR0c99cQDMMIkEbK18WhS3n140FjI037d2N/6D5/+ro9+/Jln3n94PGpqB9zlnSzLMuBCa9vUmglOaLBWE0KSJPGReOOsjXpelkoS5y5evLiysjIcrMQYCQQfIMsyEMpGCJ5aR7vDNVz5f/T6rY4Ca+2sHL/+xmtf+crvvvzKi3t7R8NhV6mirmYtbZUAAp6x6IOljECg2JSFEIy16HGMOW9wph1BYdmZsPf3jwq0zv6Tf/JPAODk5OTkZCQytTwTgAIAAWS8IqV0Pl/8+I//+Mc//ge+/OUvP3y486lf+qVO3smyTOuWUhpCpJQMh8N/8A//l1u3bv25P/dnP/3pTz/33HMvv/yyMQ5v26KrLl26tLq69tJLL3ElcymMMXVdJ2mapqm19vXXX8f2B9+2j0vP93P+7AzJWU5IEED8Ac5haHyxcy7G5TWKpRT+UnBGjQPET37yk88///wrr7+2tXVhfX3dNvH2Sy9kRaZ90+0Ww2F/MZ9T4EBtDCpNspWVtV5/OJ5NT09PvYtZrlb6gw984APXrl37+te/nmbqyaduIWL59ttve+uw4nr88cevXr1aFMWtW493Ol1rLaUcKIWlr5pljGpTv/d9T9d1vbm5uba6ceuJm1/5yldarfv9Hh5Ked751re+NRwOZaKOT0fD4Qrn/FsvvExZSJPcOf/pT/+25OyOfmd1dfU973nPydExahr29w65WNa35wxQjIFzxgjjXDaNrusJEupujiGxM9z1iCP1ej0sjbCcS5JsPl/EGPv9/sHBgVIKRQD4za21QEiIkTEmmIh0ae2CwJ0xJkY0rfXnyFvbGmutdQRvgaqqzjNLANh8vphO551OR0oZA5BIgyfaa+dc5dse6zHChKBCpdSJ6B3nnCvqS89//dd+42D/yBgHAEKIcj4BgDxNcZCWEHrv3gPEsCljAHE+X7zwwguMsWtXrx6fHDZNk6iMc5rlCaMiTbODg4NqcW9lsKqUii6kWXb58uW9vb2Dg0Mh+PHxMf4+Wdax1lqDJx0rip4S6vT0FD8AwZVSdkn1EeK9nc0nVc1QZNEpMmuBnKW11HVtnIVqgSdmnuchOuNcmqbWaq31888//9bbnfX11Q9+8INNNR9PjoHH8Wx8dDr2hhBChCJWE0JJ1kmdc1evXt7dI6ej404nS9McaYfJZIKKG6VUr9u31u7t7e/t7T/11DPDlT4y/NPptKmXqkbOOePgnJuX0xhjnuecs2ef+IDW+v79u2VZBhJNaa1qtWmEwBqCOGe73eLmzcfrut7d3U/EstDEAR/M8djc3Mxl7pxLEoU/y9i2m3be94Fn27bWWlMKjdYXNtfn8zkQ1jTN0qI0xizLYgRrrRLSGHvWYPjgCaXU22ADztYRQkAIzpdz3MR73zSVc65tx5/7zOfP/2HezZt6kSRJmqbWBoCoFPfep1lina6buVR0+/qFcwNKJdPZbGaMCYGEGCCSECKXggGgm4RzzhqT5Tlmi2Ha9rISXQ5LUinlo0cPsNv85V/+5b29vS996Usqz9u2ZQxiDJPpqGmrbrfz+OOPCyHQmvDtO69zQfW8oYz56FAdTAjBmwkAKIUYCToqIJ4oll7bNkmSvb09rTXqW1Es45xbLOaUUnwBYnZSSiF40c23tzdns8lb998Yj6edTgfffFlWSilng5LpaDQZj2dbF7alyKeTaZJ0WDQMXFtrSqlu2ul4MptPppMJnm5ZkpMAMYL3wVgLkQbni36Cxh3T6bRtWxd8o1tnLCFUymWrr5SglFtiQgipSijEO2+9zTlHuFBrTRlTikiZr22sdzr5w4cPJ9NRjIQxlZAUPPPeMx6USp544laaqoeP7uOYPyFkMpn4JvA0gRCttZ1OB8WA+/v7vrHAmDGWUSJFYoxrq/ZXfuVXyrL8+3//51977ZXXX399Op3+0A/+yGxa/tzf+XtHh6Neb2VlONjfO047HPe+No13sWlMojLvY5IkqICQUkrO353E6r13jhRFgZHZ83JW17VvQ93qUDdJkngfvPdAmDFmOp3fv/+IMRIjiYGMx5ONjY22NWU5wwaGcVBKjcfjTqezvr6+traCrUWe5+vr6wCwtrbmvT/anwBEY4wPFufRYnSURUKISuhisRASiqTARIhFWQcfgNFAInKM55KQc22LoIynKXZQSinnjfdeO5zbXZquJEmCjpDn7HGksdvpMsaOTk6EEITS6XTKGO/2e6j18CFYt8QGQgjOBcZ8CAGApqmy1hNGvdZ4h1Xl4qknnnz88cc/85nPoqYSzxAAYJQD5RAI4xx3Sr/fT9OUEfbw4cPJZBIjiKX4Igoh0lR5752zIWCgOcX5YjQJwVk25xzufQDICWjdSCkf7u7RSCila4OhZPx7PvbdH/3Qd88Wi7396Wtv3Xv9tbdW1zaUSvEWuHnzZtM0Ozs7/UG3KIqHD+/j39u2KYri/e9/7+c+9zl8pL1ekWXZaHTyN/7m//iF3/38ycmJzJk9y47AKeP79++jxk1r7WezBw8ecs5jhEQkgVCcJHq0u9O2bd7pEELyPJ/P58Y4bF0w9spaW9aVtVapBK2cGGMUlu0BfnDnqk/GgHPJgSP5hxaQgCFlJBII1mq8oJlg3V6nMe3Dhw/rutbOCiGFlISS3kpBabx2Za3f777zzl0lUykli4qzKJiYTacUOCHUW++9Na2mlN6+ffv4+LQqa86ltfHLX/6qcdoHiufwYNDbvrgppdi8uN1bSXYO7v323/oPUZPLj12azGbaOCYUpXQ8Pt3YfIpzyjiVkntvi07n4cOHSZIJrqz11noSKQmMAENyLkkylNho3cxncynlxvrmysrKk0/dyvNsOp/E6I1tHzy4v31x9ZVXXomRW9vu7Z0Mh6uUUsFTaz0QWs61ll6bJgT3ysuvhRCuXb/S63Xeeuudbj5QCZMxk1IeHhwLJVdXexcuXGj7w6tXLzNOLl7cWizmiqYPHjyYzWZSpGh1IgTzLlIKwMAEh4QrY4yCYDQyoIR5RqV3TonE2yC59MERQpw3ABEgOm8Qd/viFz6nYcE5fO6zn+/2OpnMxyfTQGivXzx248lInK51mqpOtzObHVhruCBZ0p2MZ22jCSGBgzP+nJ3FjiXGGBxRqex0OliyC25xYgkBDrT3tdYKybpFLpRAiet0NgYAxhPOOdp6ZmnKGHXOWeNCdIQQ3dpmYZq6DTZInmZJ7qyNITCgjFEQS089yeS7kVylFCOMUo4zkngvUEoJhfAdU6AzW1jUAp/Z08cYGBOcc+0sIcTZQGIAwmLwQkpsrc/5KmstkCUY4b2llKO2CwUNQihKfYBgrY+BYDsXIzkXEuLHBADG0BAcBnJImSwWNWIHWOrgP8HbnJBlvY5FIPJk1tq6brF1XA62i6UW1XunlEqkwsGpSJZQO4kUFXY5SwFAqbSuW6VUURTL1i5JIhDnlproXq/Xtm1dLmIkQogYPB4p1lqRZYJLmShuLaHgvfcmAgAJkYQlAEQiAEBZVTFGcgaSopK6bUwIIUSHVz9Oa1NKc1GQdw3sk3MdNIRzsUiMUWtzdn0wwRVR6F5lzz8mdjZWqZRUSjlfoXROay0E6/V6i6bGSUdjDASfMYaPFIs0IUSn0/HeO2fQthUnw4KPMQYhKP5DnL9EIT+SzVh4KKWAktPTU87p+vo6IYQxTikBIN1ux1qtDXjvszzp9YvgyWDQXR0Op5NZ0zRpxkJgumnLcqaUWkqraaRAKGV+Cdkvb2pM5vFmqXVViUS1jTGGc3b5ysUQHJMsiYm1Fh0Vm1q3TUkplVJyoJzTYL13gXOJKnggS65xyVVAqKoqAiRnSRWj0SguXcgtpdQqmSSqkxVCiDM5agQINBIfITgfYyQC6rpu25YRCCHounHOATAlJGMs+hCcjz4QQgLllFIWgRDgVFBKIYANGMq4TMI8WxVL9SUFHoLFKvocEo1nwaH4ba21EJcS3WVDd6ZrO1e0Mca8d0v0WQgplhsf6/C41PNSFGEhZh15PD9PGBWBWu+D98sNjnuTYGpVdN46QpepGDhdSiNt23Y8HhMD1rtQVVxKKSUwCsAgWnSC5sAaU+EEsWfUuaXjEB47bJlMRYUQ3W4XZxbPYXS0iWeMZVlWFEWMETNjEEmM1IcQPIlAiAAQQnBOCSHeLAl4PCHx+YSz8PRutyuEaNt2fX19OBzevn1bcra2eQGpeuccUPBxaQGcpnmMsSxLa0ulVJ7nVVX5EHCoHJbBp80ZN0wppdY7/F0QrW7b1lqttcVCa6n8BeacPQc90QXiHD6LEaz1SZI1TcW5jD6QAIJJVNghG5Tn+WQyOTw89N4LSdGC3Lvl3EAIYTqdatPiiYctBrauUsoYrNa2rp3WWmPWHNJgnkQfgick0rZx3pO28THGPHfYs6NeUms9HA5Ryo3yi16vx86mZ5RSlJ1J7Kk4c2gleDBKKdJ0pdfr7e3tGasVKJx5DzECMMaiECJLs98XPQyRVFVDCE2ShBBwxiLEg8t1bW2NEIJ5jNGHEAJypSEQIJHG5ZBQCITS79B7AGeCLYfoc6CURsohROOIcybGGAOEuJyrAADGltpbQkhVLSilkhNCI3q4GWcxoc5a8J4CZKNRe9DuUZ5wJpVSFy9e+y9/4v/xwQ9++PB49Nqrd6Twg4HL87zXH2ZZVtWts7apayEYJdFa0+sVen76C//0F47274MSEdj2tSs/+Wd+anR88K/++T8LIRadAeUAxAHjEC0FyqkwLgTChMxq407GVUtEf23bhLHxXqjYGvt7X/6d4Uq/6K00TUUo187mWRECmU6n1aJRKllZWQnUUhZCcJxBJ0fLrHxlZWXr4iZjzBrfmlZrzbnQWgfi54vZ0UnodgvvnLVaSu69V0JyH/M8Z1I888xH3/Pe79o/ePTcc1/7j5/795PpSVGkiaIhame0sVZK4UIA4Eg+YWEPhJRlOTo52bp4EQM2kajA3fT7LhX8AqBvvPFGU9cEQAjV6/WCiwggOm8pRcdF571PpfrG733j85/9/NHR0XxRJmleFIUz2lvjKdTz0js3HY//5t/8m88+++y3vvUtxhgAr6rm537u54QQxtnpZBJD6Pd6gjOkwNfW1p5+5pnd3d3T01PnnEoSRpeiqBijjwH4MvEeuckz8oOeXwTnfz6vvs5EYEvpQHSRn/nCc85j9DGClGpvb4dJ1u12CCFAoyOuv9LvFMliMRMy5h0ZiCCe9Por1648Nhysra6u3733KDvNPvaxj3W7vXoxs9aurKwMBoM//If/8GQy8d5fvHgRj53ow61btwgh6+urq6urzjkftA8asw0ZhxhDmgm8KWKMGxsrX/vaN6TkhIT79+/fuHHtc//xd1599YUYj3kAAQAASURBVFVE4dtW13X96NFuojKZZDFGoMQ577Xzkc7L+ab2165cPTg4aGr9hd/54t17d5599tk333x9MpncfOwxXAN1XQshekUhk+Thw4dCqNl4ZpcrJMQYg4+UAsbz5jnHCO4QiPcRgEnJlEpOT0+ttSpdjgbGMzUnnmBt25JAGEpOIhAC3ns8QihljIksk8455OCWZq2UhoiYsAqBhEDO0hoAfwQhhAIm28fzxRwjCZ7YYCezKXd8YytjjDnrsqzjwbZty/d3dykhH/vYxx4+fBhCHUmoq9Y0puKtECJ4b63tFEUIvtU6yzLvZds65+rxaMo5R+JR8lQpNZ8vOGcXL27t7u6XixlnUjA2Go1u3LiBVx2mtGE4r7WeAkfcxDk3mUyn0xmSnCRSQoigDEMnGGMhRkphMOihOs9ay6VCtoQxrq0Bv8xpKYriypUrk/lsNptIhU4IgRByeHi4v79/82atTY13drfbMcatra3NZ4tZOU9zuVg0+/ePm2ZRLiaAoRZhCecb44KLk8k0hNDtduuqRehKCPHCCy8WRQcNE4DGJMWhGyJEwmGp4COEzGbToihOTk663U6e5ypNAMB7q9s2y7KVlcHq6spoNLp48WJRFHfu3EnTlJCAg73nCwgzNE5PT5MkiWHpsOy9X11dffq9TyeJdK5zcLBvnOWc1bV+/PHHjPb9fr9t26ZpCKFKyKpqam2aqh4OVxA8BYBFWWPaCaWCEMLY8mQ56xUZITRRmWMOACgJWBM7cNZEzkXwlERKIpVC9PoF1r5Scq2bkxN96dLWzZs333jjjVdeeYWTDD/3uq5DQB3fEnnBX7PT6bzvfe87OTmJMZ5Oxrqu4pnRfozAGA+BlGVJKcmybDgcHh4e/uIv/qJSqtfrMQbOmzRN1+hKVVWj0WlZzvv9/vr6etu2p6cnMfr1C2tpmh4eHgYXpOR4zZ9V+dFoTWIUSjkXhOBYTeLRg/p09D8JwTlnqqqq64W1Hse1vPec09F4niTK2LZpKkSOUFzGOW9qLbiiwDudZD4/8I4wBnlW6HaaJDlxhFEpKGRZ5pw7ORlxTi9fuurPvNuMNd5HIThblkTWObeRDeq6XiwWOGw4nk6yrBOSQAlwLmKMujHeBUopk1xEiDGU5Rw7NGvdYlF57wEzl0go55N5OWnbtlo0jLEYAk2k907KxFoNnNy7987GhZWnnrq1qOYvvPCCbu2161f6vdVvfesFJTPb6Nl8lBZb129en9f/f7r+O9qy7LwPxL4dT7zxxXqVu6o6o9kNAt1IzBBIAhQpjQxCtIeYNbJIjseUbS7LGkvL9rKsZckyNZKWpKFGI1IMQw85Q1IERVIkksBGaGQ0OndVV3yvXr1048lnR//xnfvQmsV5f1VX37rv3nP22fv7ft8vZNlikfR6xhj0YQi4qMqyyvO4l1y5evmLX3r+wx/+cNno3/z//cbG+hY+6UmSVE09X0y811EsMbNOiCAIAsGDum7R1LIrbQmJoogxUhRFGIZJEmVZprWeZws8yZgQg3FQFCVjrK5rzlkcJ8fHx2EYZnlOGRgDvV6UxD3O+Xw+s9YNh0OcxGK4PE5cnHN7e3tFUeAmtrGx8dhjj924cYMxARSMM+DIeH0UxsHR0aExbRDEON0dr/XKsnJeRTKoqoYy76ynq4KvQ4rf1l10/+kh4EJr3Vb1+vY6IaRtG+99FAWnKlRCvHOmKCoAEEJkmVoul5zzsiyNMZxLJkUYRmkUo/KxqgrVKMo4pdQ5EEKmaZrEPW1KJASdSlmxrn3rrVvHx5MVz4JgJp5u2lYbhzZyxmhn0Rkwz8syy7W2hDDOO3kmZVDVhXaceFjNYENOulbTGOO9HY3W3/e+9924ceOtt96aZ8vBYNBL4zAQeVYyLsF5SnyZF4GQX3nhq5QE7/iu7/7hD//47Vt3v/jFr/3pJz+9WMzOXboUx3Ecx1tbW0dHR2VZpmm8sbHRNNXOzo73/pd/+b/L89IY8+prL/d6PUpFmsaj0dW6Kf/0T/+EMRYnIfKGgiBAxk1WFk1TIXaM8VZKqcFg9PC1R8+cOTMer8dpslwu9/f3XnvjdUQKLpw7P5lMmqZFcB8BNe+hqmrGOHjKqADfFV54fZAEjaeY1tZ7zwISBAI7LsYY8vXoytsHz3gmCKWEc6l1q6yhlFnjm7Ycr48unrvYH6WUkpdf+XYYxJEMtbZ5VVmlkyhZLnLJJCMUh8c4J1gsFvP5FCgZDsdVVeVZkRWlEIE1TkopA3Zwcv9973tuMJSEbXoCvWHw0kuvLPOFJ+M8KynlJ9O7hJDz5882TXP//n1CYXt722g3HIxHfbq2tv7Ky28opQEYJdwYGycB9pM4dUBGT5nnW9sbN9564xvf/PJg2AsiubGxce7c2aeffrqsj0fj3ny+3NnZiePk/v0HZVH3+6NARnVdn5zMspMCGMQDtrY+Wlsb5WUmA/744488/dQ7l4uyrhtGgysPPfLyq6+UReW9f+yxx2Qg4jj86ldfOjjYj9iIEKKUjaJAylBrXdetlFJrQykHjGJglBAeRcL7yiodyLht2zBIENBRSjlwzuk4CQbDnpRCmxYoLatcCPHd73hPf5A+ODg4OZl64ou8dg5Ma53yw1FPyOD4eIKDzzgO87xkVKRJIoXQylprtbYIQAAAkM5TiHMeSMk5Rz3yzs65/f39xWJxChQqpVpVq7kKQ1lVlSe+rktcVHVTeOtQ4sM2aByHURBmxRIRRd2aZZFFUdK4xnt/dHi8cXaUJAmjXXyc94RzNl4b5lmJIKy1vqlbbW1IuffWU0oYBWRBr3wJ8VOtZrcWj3ssn4zxhIAxxipNPbXWWO8Z5YBR4ABN0wSh1Kv0YGtcHMce3PHxzII3Rkgpez1eVZW1HqzjUnIOWhls198+z/MrmiZir5TSyWRy9+5d7z0GQuDAaTXVRqSSooEJdolYKljbNVRaa+QRhzzB6sUYwpjwnqhGE6AMISRr3aqask5jKHEQBP1+P47joii4lFvbG3lZHB8fEkL6/X7bam+s1pryQHBuO6oxhr/TWrWCS7zRzhNwHrGqgIvWaBlIZU1bKVixRJGJiEjubLbLqJABX7WFnBCvlFHzOSFkPB5rrReLhQPPHeGcE8KtQ9+JDm9CurF3xDtFKSUeGKEd0ke7xhK/YK/XUxqKomCMUUbqtqGUpmmCUF3bKpx81HWLYJxSxlo7Ho8Rj26aCvdJhFMRrTNd7ggAEMF429aU0qqqnDPb29vrG2uLxYIx0jQNvgna/eGJY62tiuw0OjgIxNlzW96ToOZB2NNGEUJkxLVufWOjKCCkn88VFZwxAsAQ+ENJadtqxjBBq6nr2liNZWHU6/cHKee0qFVbtoTAacunteFchmFIvEVokhDvPQvDqLG1VhbAW2VaIN47wiihHuPUsqIIpcTxpzOWUnAenHNCeLR3dE4tlxmgS4OyAJQCIPHcmIZ31iUCgDpnOWUECHYW3nucgGLhAc7jrMWYZqWg78hrWBgQ4vnK7K77Jyus4XTeAKsYZEII8aBbZbXBVB7vvTYGAJyljHe8ZtwiGOO4hLz3QIkMA2ttWZaEeCzCpeTWdDHvjDFjOhWwVmiL3AnF8GFHtBRHm5RSpTr7COcNAMUpfp7nxhhJA+6Zth63GsoZ5/wdTzx1cnJy+61b2bJgjFZVo1XnZ2iMIZ0Kk5zaICAF4d69eys6vDmdRb396uFmYq01xlHBPZqDO4eoOtr7FMtCryzLsRIgKx4x9lw4mlpbW7tx48Z4PB5tjp1zqA03parLmhCilArDcDKZIDSAFSxylintkBQkvONBgO9MKeWMbWxspGma5zlWkvirq6oC5ymlZVkjW7ypany+KAWjNOffOSC6YEwR4ldADS7nHMCjbHR/fx/ffzgcgmNGKStMGEZSyqos8WhQqkUyWWtsXVacc0Zor9dz3tV1jUJy/ADeeU6FI9o5KMva2g6BpZ4CQD7PGWONafDDBEEQBCETzFq7XC7RiSUvC+fQI5V5zIFcRXbjoqrrWmvlHPR6Ab7JYDBwzsVJxChH2jghtNfr9Xt9+PPoqgSYUjYzBWPce88pwykpOpz0er3u6XaOeMDcAjxlnNW6QyHIqfWNlCE64jrnwHZLBZMGnCLI5HCWee8phUBESZIM+ulw2CfU37l7V2vz8CMPK2VOTk6cba3xTIB3tK5bQsJWuTIvAQgAvXj54Wee/u6rjzw6Gq5LGY7HYx6uzZcmWzprJZGR0i50ZGfn3GIxy7KF0ZpzLqVwRq+P+2+88dqv/+t/bp2hjEWxbFrDOV3kmaO0ahUn9Hg6T0I57McejCfgnAfrOBXakKZoS0s0SMpDTyugAqz1YDnzUpDn/+yzf/HH/3LaCxTh4Mj9BwdoJqa16fcDYwwj1GpNAZIk9d6nSX88XuecW6sxcKJpVFEUnhBr7cisEUIGvaQos6IoGIHT3SPhyXSel3WdJMnGxnra2/zpj//Me97znt/+rV+9fv3FxWIhpOOCBCLw3oN1aMeDO0AYhmVZPvfcc5cuXfr2t7+NBT8SLt8Owv45ywVASvH444+vra19/OMf/+f//J/v7x9MTyZShijciaKoaRopJSc+SNM333wziqLt7e1BPaCUE84Wi4V1hgJ9z3ueS9N0uVyaVn32s58+Pj4ej8cIWb755pvgLHA+7A+yLPuTP/kTcC5KkizLRuPxX/trf+1f/+t/fePGDTTa0rqTiBFCCBCsNMh/7NGMw2kCQHzn/kcpxcnW6RjSe2KMk1K2pvXWImSHdEaMW/vCC1+K4sCDlQG31p6cHKxvDJWqh6P0/IWdMOTT2YFRSsr1PJ8LIT72sZ967/ta52A4XrfWfe6zn3r55Zd7vZ61dj6f93q9zc1N3G3Ksrx88cK1a1dwXI2Pf6sqABgMhv1+X4hgsVwSQsqyfPDgflmWTdO89NJLWZYxxubzZZkXrXJHR0ec8zTtaeuDKHEOlPcMqAwClNVyTosye+973/9X/spf3toafuELX/jEJz4xnU4+8N73ff/3fu8br7527sz5qqyx5f/ud75rOp0ul0utTCRD7xlKqCnnbhUIoVvjCaDDhnONUsY5VDb4zhJNiCiKeoP+bDZjFMtsgxM+ShmlzFqDFS8emsZYShgBao3TypDOm15jAezBhVHEOZeCa2Wt8YIHdBXRzKiQIkTlBxIWF4sl0sUYY7ioCWFa6ywrRKmp86qq4n7IOeeXLl1KkmT/4ADARVFgbd87qPLKGVIVDeIXSlshGGEgpQxkXJVNEg/29w+CQIxGoyhi2hjGSJrGbatDHp45szU5ni6XueMCgH71q18VohMjY1qdc06I7kPXdYvyRq0sowLPZmMMcd16BeK8d+PxcH193YMtisJ7q2rFGGuaBkDgswcAutE55Lv7+23bzOfzwaBHKFq8dU7BL7/42vp2X4oAAC5cuNDr9QbD8cnJSZ7nFy5ceOutt8oqT9PUOWeUFkLMZgsPXQ611a4oil6vlyTpfL5wrorj2DkYDsMkSYqiwOmoEHisMgakaRoAH4ZIQoyttXt797p6OkDch0RRdPbs2aLIyrLCBXHz5s2j/XmYsiRJWqNNq5HGiAAErqFer0dJl66O9cqbb765WMyUUpRTIcQzzzyjlMJES+cNZvK0TRsEgZR8Z2cnTdPFYokDcxx0UwaMEQKYCI+lsD9lcxBCjPGUck6otbZtLOcijuJGN9YAIbaqmjiO19fXMZ61KDLOE8ZYGAbGmEU2L+tiOB5INiizHL28vVerPch2/YDW165di+O4Vi3OtLHeMsZgTSulRF7JdDpFeAhZxm1bryzpPaVEBGI9WuOCtG2rTXv33m1CCJfCWjtIBufPn18s5k3TpmlcVRUX1FpLqO8naRCsYduDxz+eEJwHWmulDOdScKCMae0AIO3FvX6SZ+VyuSyrHIzjYUdJmM/nQmxubW1pUuP6KcsSHRWDIKiqGoX5lPLr199qmjYJEiGElCE4wMNgNBqdP38eQ88Z4wikorlPFEUYjrFYLKIoCiNUXHqkY6OaTCtjjdHKalNVRe2951wGQdCPo/ls6VeOJUgv1VZr3WpdJ0lAKQ+kDGVojMOSkTGmddu0FQMIo1hI8LR96Nq5zTNDKUKtzbWrj7325st1UY631t/xxJPW2s9//nmlFAb3oW+sYDKOY9LrHx8efO/3feAXf/H/+yv/5l//X/7WL3zsf/PTf+tv/a3r19+SUo7W+1Es27ZO09habWwrRNA0SojAWrs27nu/XC41o5RQbqxSugHbid+rqtjYWCOcIiJQVjkQEkWRt5CmSZIkqKfL8zzt9xrVonojjPily5fTuFeWZZ7nly9f3j5z7qtf/SoQF4oQXcuxfO8P+sPhEGGdl156qWma3d1d7wgGcwnBmqY8d25nbb3/xhtvXH7orPf+6OhkPB47S/f39ssq18oa44inbz+esbJEgBu7r47ZBNB1tsSmaRqGAb46TdMgFMssQzdVrIqwD1dqKqXs94dJEmltlFJSOuNABNFIhkFc5PNO0Ioun0opSmptaqXU1taWruoV8C0JsbPZbDqZCCmDQFAvvQHqgXPeNIXWfiUEc5rQxXRmrcccJLaKXMd63RtdOy1Yd3ByzlXdrFSBjHPeNNWXv/yl5TI33qVpenJwcOH8xWGvr7QlhLZto1QjrRaMXH/9tbPnLl6++tj/9Luf6PX7L73+6t29u5LTOKBScgSDzp07t1zO67pDnI+Pj59++ukHDx4s1CySore5VZZllmVtW1++fHl9fT1JYgyV1aYVQUCY0FaLINCVpZQbYym1m9sbjAqjNaOiLMs7d+68/vqby3yBzncUSGtMFCVIPLTWorTWWsu5aI0GT63xuDUxJuI4rqoCjz+82miJgOS+1mhOKGZkMdaZv0MnuYUwCfv9vghZ0zTr49F0inp8E8iEMN7WanIyX1tbe+PGa5zwteF4Op3PZgtnSRzH29s7a6P1669fN86vr68nSVJU+cHBPg+ksopzuSiXbdkaY3rpqKqKOAmChNW6vPzQudbkr1+/tbGxRgg7f2HbWKVaf3gws9a3bQvEUsbu3LkDAA8ePAAAzsR0Mjl//vzBg6M8a8qslFQ6oITSIOBOq9ZZpQznYIyhlPd6SRCymzffAmKc8/OTDDwc7k1eefGNzZ3RI49dECJI0/TSpUtHR8dvvnkjjvpKKWeBeCp50BtDGEnOybA/8pbWdS25GI6Gf/b8Z+ezrK60lBEB5glFxfSb19/o9RIp5cHBgWlc4SrE8Yui4pxb27XEKCKz1jsCnFJKOGNMcOu1xz4EdalIxKvq4uKFc9tnNgkHIVkQiDzPr1z7QBiGi8UijmNGg8MHE6OdB0YJOz6aHR2dDIbxpcs7YRA754x2ZVm3bWvqnAAjwAAsA+bBW0JwE+4nqffeg0fIr55MkL8AQLe2tnZ2dmazWVs3o/GAMXZ0VDdNQ4iXUnoPGGGktXXO6VYppbiggknnQGsDjiIkkZdlIKR1QAirqsaZanNnmISJdtYYxzmhlHLSpUFYa8M0tNaqVjPW9efIQESgBABOGYhYSyDS4ZyrqoqxjiOplCIESRbUmi6CD3GiTg9oHJCuFKGMLJZz7LrLsqQUS3CHBFKnDVIRAYCSzmX4lHSJnwp/KWMsCCJk1MZxjNsXeZsmVErJWIdR4hZNKUVpEV52SjiWW0mSSCkRzUFdNoocO5zd01PMnRBCCRdCgHP9fj+OEgAvhJBB4L1PkuT8+fOLxWKxyBhjlJAgCAx6zUlBgYBzxkHZ1Its2RsMrXetMpxz6rxpjfeWoLtRx21hWmsZ8CAIyqJumrZtO6+900rSrAx8CCFNrRhjHQzKKADgV8B4AOeYs6CVLYsaEXnOwDlntSGEnjIh8O5zySmlhIDWCjsZwhldmS91oSaMRVE0GAxMq6xdYOOKjO9TsiG+Hktfqw04D+ApMMaYYBzX12g0KoqMMRnHQw8uyzIkcS+Xy4ODg+FwSFbkUO9JUVTWtmRlWJQkCSNkUWSOIMe2O5EBwFnvANeR4wRgJbGHzgiiiw6zSuOh7MFprfv9vkyio6Mj7fTOzpa11qMbBRAhhOAB51JQ5sE6x53Rqm2t45jB670HIJ6AoCQME+M1AKT9vrEqz0r9NvsCSru4v7a1UjoNtq5ra71kEhg4pz0i/54QQgxQdF1TTYsSGU+dd4QQYlcWEKZLSWEABBxxDqw1mNoNnnLOhaC6MyGF047AoxQdzUZWU3N8xLAvNV3kI8UiB+8japi890Z7yuCUw9uRAQnBOvaUY0EIYQwQr0cjDgR5KaWEcGs8tn5CyBX8/R3o2WqsNCgiJhYMAKADab2os2VBKbXEegJhGGpnB4NBGEfvetezbd3euXPXGv8DP/BDL7300ny+y5lEC4LOcsd7v1pX2J4cHh6iSTohBPP3EFzGZVOWNR76GLWHGDrpaN2nI2dNVqNovCD4AJ6C+7gANjc3f+EXfuFrX/vaN77xjStXrnhv27Y5PZLwwzSN8p50t9t3rmvWauccZ5HRrq0bLFSwY7LaKK3Q454C0a3K83wF6bLOp9p5rTUAxS4enFdKRVFEKWGM1VXNBRVSWstVa5y13ltK6Xg8/sEf/MHj4+PXXnttOOpTxuI4LssSLYMIIeBdEARlWXVu7BaaFgn45LSpQWq2tTbP8zDiCPU2TQPeO9sNPAhhYci8J95YQkjbGsZYmqbalE3T1GVdNTUQ10gppez1+5QRvDV4I9CaOS8LRjsZDQe0LQbcCZumQaA/z3O0Men3+852Ybb4dYQItDX8z0MPGWOCSK219x311ZgW6dV4F9zKDRw8UNoZT1FKrWfeasAscca8J851pypizbZzpOm2cc6lMcZo5z0RkgshGCNCCOvdIltqrTmXzqmTkymWGZRGR9ND3WrwHECura2NRsMr1zYef+yJy5evvfvZ925ubCtjjYayrIqi8ET20jhbaGepp6zVdjqfDwY9ICYvlpyyKIr6aSwle+XVF3/jN37NulbKQATcOxNINp2dPP/85/b29oqq9dYnZTMejz1hVVnEkTTWCE8chUaZ1hMN0nqulJktCgdEG2O0attaBGFdZa+9+tIjjz5ea0spb9tWtSaJ0l4vxfotCKSUUgjBOcOI2ixb5MulBgOeon837czfQ93W6IaH4gMKJAgCzmlZlq1XznnC2DIvRRDJMDo+WS6WzcOPvuOxx699+lN/+JM/+eOL5eT3fue3hWBRlBoQSD5FefRTTz318z//84v5/ObNm2VZjsdDuhLHYNf2nfv+H//0+v33ve8DR0dHV65cMcbcv7fb6/eNMXaVi35KjTfG4El67do1NBGuFplk7P/+9/5uVVVPPfHkBz/4QaXUV7/61V/7739jOp3i+dvr9X78L/3Ec88996lPfeq1V17lnP/Ij3woy7Jbt25VTU0Z/IP/z//7pZdeCsPQWAXEAaAvB0MGqzXeWaCUeDCEdruWtca7jjt16sC2IjU7/LK4FwFAkiTUA0JYnFPGGCG+0ao/SAGAMXp8fNQ0NZMkL5cALuRitpjubG/1+/393f3lYu+tN+8EMrl86eF3P/ueP/7jPzmanHz0ox999NGH5/Op1u0XvvB8WZZPP/3OixcvxnE4nU4vXbpw8cLFTscQorayKYoiz/O9vfvW2iwrTk5OJtMpRqah8TGOeYbDMaW0qMpBf+3ixYtN086Wi0uXr4RhHEaJlEEQRGfOnu33+62qiXNFme3sbMdJ32g4eHDSlu1f+IEP/YUP/VCSJP/Fz/38W2+99a0Xv7G7u/vDP/yhZ5991y/90i/hmVvXrbMUtZXgHaYred+lnuBFxhPTakMAwiDkQlDK8WxiVAgeoIgEGZ8IN6ORDvK9cGC/KoM5Up1wD1SqwQOaic4OHiOj8GDCCso7Yr3t9B9CMPadUx55bIQT70gcpzUrF4tFzw57SWpMhoQz/uUvf6muayq4ECKMuDFyajUC/MP+uCzLNO1fuHR+kS3atsyrMl8WZZUP+4Nz586XVXZavqOIbLmsvPcEmPc2jkMGbJblTW0Hw7hRjeQCn2pki8yaBSHEGCeEFEIg6QNPGiGE08bhtMvY8dqwP0hbVWfZAi99r5dgZ6iVP42dDeJAO7u/v08I8d41TRNG0nsvhDx37tzd2zc3N9eW2TLPbqdpGoah0lZprNXsweH+9pnNMLxQluW9O3ejKCmKilJqXNs0XkoZBkGP9HA8hRtKKMJGq+3t7bNnz77yyitxHC8WC2u6yEHiMJTPx3E8HA6VUsYq6wWeoJTHuCyaCqEZ0TQNEgMvX7585crVvb292WyhleWUOgvWeqM1JdyAAoBlXsZB2O/319fXlVLa2cU840KGYUg5S5IY8c2qqVW14JyXRWaMG41G/d5wbW1tY2OrqqqXX34ZmY/W2tNHCzxOVP2qtAXOGaG+qS3n1BjTtA2GxbmVxZUxxhhHKdFaT6bH3vvRaJAkW1mWJUlSVEWr1eb2Fua3DNKtu6qtqho4gALnDBp+4Roonbt69erte3dv37zZH/ahC6knRVEhDw4hV621c2Z/fx9NKsJQSimzLOOcE+qVblpVowfC+vp4Pp/P5/NlnjVNZYyr6mK+mG5vb+/u35/Mp5Lx9fW18+fPO+cXiwVnEo8rNBbHrdmubJ3ruqaxpBS8M85TVbfe+/HacDjqn8ymeEHMKoiDYGBF7DmnWmshWNtqZ13TVgRYGAZCiDwr0zThXBDnq6oihFEJznnnvDH24OCwaRqlWhSCYQl+CiunabqxsV4URVl1aRjD4XCxXGJLWRRFWRSqNd77QIRSSudM0/iQkzgJ54tMCNE2WplyfWN86ezFolxk2UJwmiTJYrZ0raVAgdAwllJKyhzX/tz5rUcefShKZFHOj6e7Uso45CLk9+6/9dz7njk+mu3snBv1165cubJczufz5dGDQ2NMIEJjnHHGOdfrJWfO7dR19Y1vfuWDH/z+l17+1pe+8uJz73kXEPvgwQPnDKHG2JpS6A8GxpjFYiGlDIIwjmPGyWI58ysFCJKDtNbEee/tdDZpdHv+/HkhmTaGS4a2G01VA4B1Ok7CLMsIo9hRV1UVBNFwOJzPl1lWNFUdx7FS6vadmztnt/f29mazmdaaMVqW5Tvf+bTz5v79+2goURTVG2+8kcQ9xmgch1EUVVXlwTZtFQTi6sMPBVGwNhpvbW1mWe4s3XjnM21lJpPZfL7IZtWq+/UA3R9wFz0lEK0qSCqEUK3Jfd40tZSSUvDEnRKCgBLMs0LwBcXsVVXHMUHWkmqNs0WapuPx+OSEEmB1UaJjADhfFXVTtcbVSZKcvXBxd3d3uVwK0eHaYRh6YykFrAmEwOLbhaFEMS9+wpX5Q5QkiVaWAAHwQNDDsSaEkM5YQ1urjWFtWyOWVBRl53bnnKdY3klgjIL78Ic//Cef/szu3n1t9Nmd7ezk5PDgZPBwv23bvf0Hd+/v/eEf/1F5sMd7UdNUh5U6OTmhlG5tbSX9XtxL79y8BbAWBMFiOXvz+utnz54til5dt2VZLBdzxnkYyv39fev0aDQMw9AREDYwxjjXeO89oTKMmOVY37eNbZrSGEM8HB2dGGMYI56Acy5NY865lEHb1pNl0TSNZFymScp4URTO+ZCH2muw4MF60WmHhQgIwejtju2FBp3YLqpa4X1HRKzrrsH2+sOtrS0pZV4t0zSdTCYXLly6fPnq55//IueyKGtnIc/LV15+jQvYWN9eLpe6NUmUbp/ZAefbujk+OHTG1nX9v//5/92tW7c+8e9+/8y5s0DdYNRfLnMuRZyM8yxTVeO8Klu1rCrG3f4BfPPFV3/og+/a3jlz/fp1IeXm9oZWZLy2sbe3b7QjNGRUHJ8c9dI+57Ioqtu3d42yO2fYbJrt3XkQR6mUobXeaOe882AoIUkYaYdsOJok0SOPXt05u/7gYE8Ihtv1g4OjwWAEAK+/dh0BnRdf/Hbbtpubm5TwyfF0XizaRgdBsL6+vrG55r09OTluqiLoc2QoP3T18r07u0VeHx0ubA1AACR4r41JisLv7x/42oKkjAsEDjx4Z5UHH4ZR3Iut09ahCQhlTAAxQLyQrKy0YEybljLCBbHgymLxyOOPPvb4w3Vdvvr6K8YqKcWP/uiPRkn4yU9+8sG9k8GwNxgM2kY7B0nSq8qaMb61vU2p+8bXXv/Qj7zfWj2fL53zRjnnrDGttZYBoyvB8unElxDiiLNOa+M8caukUI/UqCgK4ijQWmPYGiGkLOvBYEQI4UxisocAK4KIOAAPnEnBWasUpbyqSiFEEvfSJJlNF0BpHMdRlGxubDdNc5rnqazShARBgNyTpqmMMWEYek+s9W41Hj7tmk5B5w7cpFSs/OhX7EV2isxKEbguAQkQgLa2QWGKkNxatBFA1Z4dj8dmlUhDVqEIThgU7OP7IMDsVzJ//EhkpQcsioIQkiSRtRY5OIjXvE3X1eUfHhwcJEmPUo7CI4Npoejv4Iy12nt2ekBjQUUJt9YaaxlDYikgCoy9FqK/Td2GYcgFK8uSccKlAHBJkixVxhhrq9oYR4AaYygRlBJrrXLeuM73I47SptVmBRoST43WnAVRFDlntdaMd92CDHgcx5Sy2WyGESO4ohhjYB1irwFF2UHGJao6/Ol1wBNnNdvovggAMcY608GgneWFs5RScF5bjSCLZz6IEwCXpmkQBGhJh4xLrOU4ochS5JzHcbhaFeg6rRCwk1ysmPsUwTfOJU5MAaJLly4p3dpVGJ331qxiw5fLJTa8VVVhyKR1GmcYON3BrgnXpHGOUQHWUMKwmm0aZZ1pWosIe6M0mk0zxrwjgDl34LXWzlvGWBontW03z2xevfrQMpsdHx87BzLgadLnvCTAvCe6abWylHgpZRCIssJEDYHR3BhOyznnlBmjlG6stdZp7zleCjDeGMOEAE9Na11MwyBsrPLatVpTSsFRYzT1QDn33gsqrXIilJY64EgqbwE8pYwQTK7mXTI8gHOuqdCikQIA8dQi5Rg6BjQutNM/n9bGWJcaY9qqxeMMu1DXqar96SAHMQjsVymlVnSltRACfV/wfU6HDZwhIcsaayzt3gefMhzxsre5uiNXpuuwgFhrtVZKeRQwOe/QMl6vPKwIIUIwTyAMImZN0ks/8pGPLBfZb/0Pv+2121jfeMc73jEajf7gD/6wbVvBBecch1Z4BTC3FHl5i8Wi3+9vbGxYq0+v5ylmyphdkeJbzjmlHUOcrwzWrdUdc78bPMDpc3c6HnPOtW176dIlpdS3vvWtixcvxnFctEskHERRVBW11hq3rLIsV+/g8PeiEaXWFX5mNFsgpwHpQJIo5lKgsWxZlsahJU4vCITWVmnMbkV3bzDGVGUpBHvooYerqrq3e6cj5xK0vrGE+CLLRqNRr9cbj8dHR0dRHFDGhBCz2YxznqZpURRpmmZZluc5pXTQHxkwUoRCWASCnXNIVLergDsCDHvzsqzBWe8co0iy5s65OAiQdW6sUq31zmjbDIfDp556KgiCqu0aQ2vtfLEwiVksFsgrR4sSALDOKJSacerdirPPhDUVABwfnXTDSw4YXah0CwCBDBFArMs8Sv4c9BAduykQD4AHDfqXrsYDDXY01lriQQjGmDDGeHe6ftCryuEBijeuawK6zZkSD8SD88Za5cETSjgXQnRBBb6x1lrviPfgrDh8MC+qmhAmg+T8xScuXLj88LXHtzbPbm3tbG+d2z5zTvCoLOusKHf3Zx6oc1BVFQAJQyKEmGdLC15rrbXTpgnCtSAOrNVcCO/9cDgUgn7qU39qmyIKU+eNt0YIplRT5/ozn/kMBYij1BJ6eDIry/Lc9tqwHxVVxaivrdLGag/G86KpJvPceSEYc0K0C+28idPEEWiK5ujgwRNPPJHP8rpsjDGC8zgJAxlZpaI0RdIVYdR6b52dTqdZluGRRznDgDvEFoRgbVujLoFzTjwQQpqmsdpgFy+lJMDzPC+qPB3EB4ezF7/5rfE4fvTRZ3pJf3J8+O2XXskLFQgWBqmD7m1xa7py5crBwcFv//ZvJ0nyPd/z/ueffx7AAXxnUvW/BDcfHhz8/u9/pizLz3/+84eHh3GS4N33q+S3MAyt0oAz/lbd392/c/t2mqb9weDRRx/9+H/2n165cmU+ny8Wi/39fe/9r/zKr3zu88/j/BUfrscee+ynf/qn27bFkPMPfvCDdV0XVdnv93/zN3/zxo0bPJC4GzvnnPlOGYBdCRVd1Pzp3n46OHQrTBy5RwhA0+84I7urV69eunTpxRdfXCwWQgj8DRYcZdC2rfcOwEnJz53b2dvftc44Z+fzbDKx4Klg0jupmla1pMyyf/pP/sXOud9v2/ZkdnL16kMf+199dDQaHR0d/c7v/E5VVXfu3Krr8pFHHonjeGNjI8uyZTZv2/b+/fuYDHR8fNg0DaW8rtBsmgElSZIwJtGshlJujDs6OgmDuJ+OKKXew/lLF3fcxSvXHr544XLdmihJ0bSWMSaC0FvDg6DVHqicT07yRf6Rj/zEBz/4g9baqirObJ199OFHL1+8/K1vfesv/cX/5PXXX58eL613jDGtgBDPu4PGW8BymjrnrHWmrPHYEkxobTjnQRAqo5DrwBjDNexX0X91XTvnKbWhDDjnSmGHi1urd8brVhljnLFA8LjhUgZBIPzbrLcZY0qhC2UfCb74/gBgrcvzHF+Jxk3ee+2gVS04Y4RxnjRN44xVvUbGnDHBR8P+YNCTUs6zZVEUWbZAYgpjXCubxAPvbbYsrLNIl3AtcBbmeXlyMl1bHxLiKQXBOwe9OI61ttbYNE0JYaGQBghj5dbW1ng83tvbU027s7MTx3HTKOfQUdtNp7MsywIG1loeSKxFGKXOG6MMZWQ0GiFedvHixbqu5/P5crkcjUZnzpyZnCzRaB+fInwYdNMChaIwlPbRiC+U8sknnxqNBtN5dnBw0DRNVSvr8iCIlFKUgTFmNpu0bcuYiOPUWhsGcVlWjlghBWXgvAeAKIrDMASgTruiqHq9XiCj/fsH3hE8bi9duiyEODg4yJdLxknbqropt8IND5a5oMVPSFyWZVigB1E4OZl5sCtqDOFcEEKGw/FstkiS5DT1vsuFpJ5SipNnJmVrOt3WhQsXtGmdc8Zprc0bb7zhoLOBE0I8/vjj/X7/7NnzX/va13Z3dw8ODubzJSEkDAMUmuEFRBUVoaC1EUKEYbCiMfpWVd4jw1F4b09lqlTQ9fV1pZu2bZqmMZYCuJMTFQQB0mTW1tadc2+88SYh5O7d3SQ8xjRYShkRhFpKCPoz+jTtr62tffrTn/7gD3/oh37oh37pl/5FFEXbG2eMMcYcZ1l2OtRF4oD3frlcBoHwPsGiQemGgk+SAaV0Oj1ZLufWm7ou4zSq24oxBtAeHOwnSbK2sfFwcvXo6EjV6jQharFYEkKkCAGgaToODj6op81k01TeB5wzoxRWdSi1WN/avHjx4gsvvBDH8TPPPHN49ACxeC6gaWohBCFUCEqpkFIul7m12lovJKvqgoCwxgJxposFZ1jC5nm+6sSQWBFSSq01WHdiUooMmTbt4eEhDmZPTk6wbKKUMiYwYZYCXTG2eFEUQJkQoiwa55zz7vj4uK4rD5pzWuWFN94b66wFT5yHssyBRI898ijjLk4ZUE0oAFNMGMLgwfE9RuX29rkLl88u8uVkfnh8ePye9z77yGMPf+WFrxICbtWvckIXi0VZ5pS5L73whf0Hdz70w3/haHL07W+//uGP/Mg7nnrk5Ve+gazbKIpGoxGldHt7m1JqtOv3+50xel1zzj3Yqio45+fPnx+NRkq1e/fuNUr1B6kMuK6bIBTSc20VlyywQinV76fOuTiNjo8mGxsbUZSkaaqxF/GeMRanycUL57IsA8LRivf4+Ng5xzlbX18fj8c3b904PDw0xkZRKKU81WG0bcsYQ0e/PF8CBUohTeO8zO7e3V3MFm1je73h+mjLWid4wLlCsOAUiyEr1hKCF9hdrIY9FC2XbOeOR4zrtrheL6WULxaLIArTfm8+neGRQz1UZacjRi8X/JzYMKM4VzUaCKUerLHAWaPN4eFhXdeMCTxjAMAbK4RwztR1HYZSqSaMulMtioOmadpGE0KE4ABUtwpw+OmRtuO5oEEQE+I1oDyQI4/DtArbG+xIpeS10kmSICQdhPLB/b2vfvkFxtjWzpndu3euXLn83p/8T2bHk3c/+96X37j1wldf+IEPfeTe/r0vzw97/dC0VjWASNbR5GSTEs550k+qtrnYi8+cOaO1Xi6Xh4eHTdMA0CAMcQ/p9Xp5scyyXFmNWoGqbg4PD3u9nmo14zQIwl6vV1UF+ro2TeOtW83YXJTE/X6K2FMYBkEw3FzfCILIaZOVRVmWhHNmnTVeKaOUi+NY1aosa0phe3t7MOgdHj0AAACPgWllmTMqOOdUUAYMS2FrrQgDR5y1Ftu2u3fvUgHe29Ha+Gd+5mdeeeXVz/zJZxiNhJCM0eWijGL26KOPHB8ddCbaXJ45c+YbX/vmg9v3kv4gEJJz/s1vfrNuq96wv7Yx0tbkWRklQduqqs099SKCzZ0z22c2CXEW1OHhfpry23f2Hhyc5Hl++9Zu07Sj4RrnUkiW9qIwiKUMTyaz+XzetlrwwBoHnl1/86bRnjMJgJ4DyM3xQZhgQ8gJdZx7745PDk6m99/7vnddu3Y5TqKmaeqq+fo3v3V4cPyDP/jB5TJ75ZVXVAt7uwfjteGZM2cmk0naiwGAMXLmzM7+/v5yPsXElTiJxuONOI7SJBoO+8S7k5N5FEWBTBZZBgDL5fLo8ERItrGxkYSDsqwnk4nThjASBEIGfG1tPB6PsSZDz9OqqrjwmJoeCdbv7xwdHRFOrbXatZzzMA2KOnvplW+XZd60lTLq6aefipLw3/27f3f/4EHgewcPJocHE8aYCGRdNWisvD5ei2JRlPOmaRezWSjDPKu9Y1prCuCtbVaZ5lZbY0zSSwghhHpvPdKWRSARF0AxAUIS3hmlFE41TqnEAICTLEo5dWCtFUy2Wu3eubexscEkL6saKHEW4jgmlI9Ga4Gosiyz1uZ56ZzTGjcQGsdxXde7u7uXLl9AI4gwDJ0DrZxzBk9MtwJ58bdzzk+nKXalIcWe2TmHAKX3XitDCbPWolNrByRZ8GDjKEJbZGOMcfrChQvee2s1AYHl72g0Wi6XbdvirhWGMWOsLEulWkykdN4DeAJdcI33ONztWK44v8PPhmc9YxTLKs65p6Su2/l8HscxZ7I16PCGlrLOe4uyVikFfmWlVJFXWC3g3Oh0P0fWz2nrhR1ao9RsNjNWXX342v7+PjqQWKWFCCjlBDrTZ0eI1RoAmGGeUG27ZhjvL6dMyE4wYa3BubvWnhAfRTFKIBHgWyzmjz76+Hg8fu2115DdTClttAIAZB41qlZK4cHhnMfiE2+WMYYQigWq63TfHaLtveecIdO8aRpldBQHyPZgjNW12tjYcs7s7u4mScoYA/BamzzPe3EShhLNoPFCIQ8jCILTFYXgY9M0ztkkSbS2knlg0LbtbD5VusWCUEoehsho47PZrG2xKVJGW0op3jJGaBAHjjhjHOdSa6W1ZVIQQox2QSKcc03ZFEUFnnIuRqPEGFNV1WAwmC8zPFXB0yiKGCHAuTEKAAaDQZde7t3WeMg5M8YMh/2yLHu9ZNAfFkXZNsq0xqFPF+MA3lqbJClZ1Uk4iJVSGqvKompNe6Z3Bo9UrWye561SpPVhGIL1hNA4Dr2HoigBiBDSWkuBAMWwYUuIF4wDg6qqlstlNySwHiyCthYAWue6bYFSpRQGvq2khB2SBV18zgrvI945A0AJY3T1IJ8uZtTMnVKeKaWduE2IU9IGeZszuLPgoSt6V5AFOeXzMsaMaU7rcGfBGCMCmSRJXdcrFRG6wIP3Hkni3nvdGkIILkilG+T9JElCKS2KggmBZzelVHKOuiS0uXjp2y8rpeI4ZYQu8uLrX//6448/+eyzz37lK18JAuGss6sCrMPhOyKyGwwG+A7uNGx2xcwFAO/h7djx6SUyxvgu5LBjeXvrv3PlTyURqxDCKIpefvnlN954o67rnZ2d5XLZ2BIAvLfL+QIvNdaKb58EIEkC/x6gO4hPa05C4HRywDx6tRmEe3q9HjoxEqKM0lVVIaklicLeZue58eSTT+7dvxcn4a1bt/I8s7a1dS3i2Fo9GI3qun7hhRfSNB2vDb33Gxsbyyyz1jJOoziMk+jK5Yfm8/l0OsvzHKenAJDlZRRFxmi/Uv6hFqGu68PDmbWHVVVxJilnzljG0OnYtW0L1iVJ4r1m1Bmv5otcBpHWdjqdbm5uOufGo3VC/Xw+J4QMB6PRcEwZQUEkXbmW2Y47/x2li/c+jlN8QnH86VZmSjIQlFJt1HQ6LeuKk0348+Bmq3B2R7jo7HHDkGOnhoM3/I0IdyK4DJ4qq4zB2Q9d3b5uGtE9L853KwS6Yao2pQyZ4EEn8WGdWw4lrKhqa31daa1cGA/e9d3PfuD93/v0dz939crDANQaKIpGK+8JnUzrspxVdUspJZzVdVGUVdcoJaI1zVtvXb9+/a0nn3zq8uXzk+nJcrmM4gAAdnd3n3js8cFo9PznPrN/9zZQwTkHQq2rq6JK0oAxyjnjXDgLQBiTwaLIxZRsbT9c5bpVtbcOKDUejNaS8mHad0R4KpkUaT85PjmsqhLPnYP9/ft37rHeellk1trt9e2AM93WlHDqfRiGrTKu1YSQvCzauiHUh2FotAFjGDOEkNoqGfCm9nXVohVhFEWUcskFjgS89yKkylpvPFA3mR++9RYFgKQ3YEzs35+sjc/9xq/999PZQX8wZMQURc0jYa1rmhp3id/93d/93d/93Z2dnR/+q3/1Xe9656//+q/PZrP19fW6xpGqjcM/30xDKd20SwBYLBZxGDkHSMAnzDuwQnBjDHTGCMZbd+3atefe8+5vfetbYRj+9f/tf/7T/9nHq6pAYHEymXzqk5958cUXTavathUiCIKIUvrf/atf/rVf+7WrV6/+m1/+lb/zd/7Oz//8f9nv99/17HNt2966dauoK8YYUEqdb9s2DGKUWznnPMLNqyflFF/GfRsX6ulY0jviLFjwAOAdQaw8yzLkWXtKesNemqaLxcw2VgihtQKAMJQPP/xwo2oZEOeBMRbHo/39g5tv3QPHdG2sJaGI+2u9hx66NBgNXn/jVSHYn37yj8os/4mf+Innn3/+S1/6EoquLl++/Oabb77++uvWWu9MWZaTyWQ2mynVPPTQQ5FMtPKEuDCMMQrCe2+dK+vaWYrIA6GQJlEa95Ik8cTNsyV4+u53v3s2Xx5Pp73+uGoUit46ZIYxD3w0HDtHvCM/+iMf6fV6qCzkNCAAs2m2ubHzEz9xEYBOJjNj3NbW1oMHD8ARRxznHGeiYK0MQ8bYZDLBShULIdLNfWnbtlEU5mWBG0jb2SVRZDcbYzgXUsowDIUIqqrKskyphhBCfCf7wzNUBHI0Gq3K16ZqanRQQIY+QgdhGCH0bK3FkGRsNFDyghNczjmOUpwxhhjKJcY79XsDa03TNLyqKuPM5c3LUS+ezxZFUVlLnPRWkzJrcKRW160nxoDx3goStapu6zrP73lv016S5/P+sIdzY+w5k6RHPOWMG20uXbpw7dq1pmnyvNze3saEYs75cBgzxvq9ISHMWjefTH0ohRBKazxZcUtlEW3a9tat20yC9/Dd3/3MxYsXnHP7y2w6ncZxmqbpcDisqspaa7QLk9iDjaIozzM0LDZWeQ9lWZ47d24+nzeN5VwOhzEQIgM+n88J8UAcjm3btpWSUGDWeADnPYniYDxePzg4yOpC8gCgy9B897uf293d9d5nWbZYLBhjddV6R4qiGI1GURQhH70oisVicXh4iL0fE4IQgpzZDj72TLmWMRaEghAym83u3r0rpSSEDQdjQphpVa/XB8CxjzdeW+sZM4TQPM/xiNJaIX/WeRPGQdu2xlggpDWKet+2DdqbfulLX7p37x6qOymlhDDsA7HToJQao+u6wopfCB6G0nuPBEZKQWtLCY2TULXIXCBSSkK81a03Jk3jJI2cM9gBIgyXLQsA2NraGg7Gu7u7QrCiKLBAlFIGQT/PStU0mAKPwdNU8GvXrn3v937g137t38xnM8kktmf4CVejOY0e00hLQew+TsJef22xnJZlGUUBFu7L5RxZUc45QoBzGoZhni+t98aYfr+vg1ZIZrQry9I5q7XJskxwdC8RfGVmTwhZX19njHnXYDvX7/ctmMGwhzF9xto333yTUqqsuXHjBmVAKR0MepS2QSjwXltrqePOWSm596QsaqVaAgzToVFMST14YxkQ4kEIqbVmlNZ1Hccxo4wQMhqNkVXqjbXOt6ApY/hM3bt3j3GOBf1otBbHMTi/WCy8J4GQ+BrCKQC9fOlKkdd7Dw6QqbpYLLRpxsN0uLlZlaVqWvCUE0491VYJ0aPMedCHx8dxyS5fPdsfxMuiJcRduLidLavXX39ZKXd4OI3jNJajP/qjP8Thm2o1AK2aXIhQezLo97bPbj842JWMU0q//e1vzZYz5/3nP//89vbmu971jPPmxRdfXFsbWWun08lkMtHKbm9vg6dhGE6Oj9M47hzWrCuK4tatm2EYnjlz5uz584R6AMBpWdu2W2c28WhcTKd11Wxurh8fH9+/fx88nUwmw6Hb2NjAXRF58deuXTHGpM49ODi+efMmpZ0AE2u7k5OTOI7f9a53bWysta0+OjoCT/M819oCOKUUBoI3ygF4pOGvbFh4rur7dw/3759wIuM4JZ1PPwCA946/LYIcKWPubTELlFJCqdZKCC6EsN6gK5Hr3OJYmqZBEAkhkjjNlsuyLL0BTzzy17wnShlrS3SDYowN0t5otJYtlm2rCbrUceKcu3XjBpMhOgACgNOGUgzItmEotdZCMtW0QnBtbRRFWElorcHzXpo6B1lWYP0dBAGA07oVjGN0cigDnJBZa9M0jeMYMdauWCGwXObOubIse4P+5sbmfD53XH7gAx/YvXj2S194/v3vfuajP/lXrIGf+um/9pWX3vgX/+qX7927d/nRa/n8ULeKr4J9AQDdAJG6iMckHiVJkmxsbBweHq/mkd2RbMEPg7RpamPseDweDAbT6RRrFAcOCAnCuKoavI+OeKOVc84ToG2LEYgAMJvN1tbWKLDFbGaNN95VVdVPet4Ra20UJYtFhoR6B945d3Jy0jRV0zRpmiZJSilDxlldNehGIrjo6FdSUO+jKMAX7O3tLZYzEYgsW7Rt+8d//MdFUf7wRz7yZ5/7ogxD55xRurc13r137/DwwXd91zN3b9/Zv737ge/9ngsXLjy4v48DSwru+eefv/bIlSeeeGy2mFtvZCSNMaP19ZPjqbUloz5Jw/l8EsVBEMnBYBTGUZZli/lJa9rRaHTm7Lr3vizLjY2Ns2fPEmsByN79B0Vej0ajsmiaRhFKmkaB8xQV/TK01jrbbddShhi8FsnIe12U9dqoV5b5t1968cyZjYcffjRJkkcffuSt67veOsGTjfUzlAIQC+Du3r1Lgaytra2vr++cOTcer33lSy+8/K3rQOHJp65xzntpTwZ8uVwo1QhOo0icOXN1fW1rOltUVTObzY6OjuKo9/C1J7zlt27ePd7fE3EM4KzTFy5c9t7O5sfeW86ZdYYL4AKCkEkpjXaEkCSJTiZQzguZhsbptqyCOBwMegCOMLcRrwVBUKv2D/7oD6fzWRzHJmeBTJRqGOPedv2qB2etbhrz0OXLZV5obZyDfn+YZXnTtBxHRKY1xlDoZlFt3SRJ4r1r25ZwIgRzxmqvnW07wFHQprVIyRFCIJyEymXVGkyuo5R761GQKxi32kopLTjviaA8CMIwjOq6psCY4N6T/miIzylGbiAmVRTFclnJgK+NN5xzQRAgLI/SSdw38JHB1sI5Z1cRCAjPnKIbuEeZla2Tc07KkHNeVZVzTjUt6vXOnz9/69YtRFtaTZC4tLd3DwCA0X6/X9dlli2ECOIoIoTgKNd1wdz+7S06YpqY69sVAFqfJhxGUUSpRlrrKelVuw6+yfMcPG7UKHL0QRCEEZpseLvaGIu8MisSAP49XcU/4LgON39nvbJKa90a1bZtXddFUaytrTVVvVgsmqblXEZRpFqNjSWTnZwfwTtCiCOdlS3eFwAIgwArTGstEI/RtW1bex9aahkVvV5vMBg8/vijBwcHzhkA79BHRTf4fcMwVKb1q9R47F7wJK3rGgluyNFGKOYURNNa4/gALzVlHRQnRNCaVkpZVVUURTs7O6cyT2yKFosF3hq8C7By/mWMIWUBnMf/lDJMkmQ8Hh/uH86WGWPMGGd9a4wZj8fOmbJs+XechZmUREpZ5KX26HUI3ntGeZr2AaBuK+99EERt2zIqjDFCSACoqsY5iMIEQxol7Q7iwWDgHdSqbVvtHXHOeUcIRaZtB7YmSRKFSVHkB4f3B4OeUg32gVlWZMtSK++0A4AwEJ4S56xRSmlKKbW681LAZemhQ5Gcc/1+n3N+dHiC699Yhc87Fdw511Q15kJSwinF9dZh9EKIftqb5XNKWdsqxhgDapxFMhQAMCacczhxD4IAIX5Ttytjh+5COue0c0IypC07Z5RSxjmKj4Dgp2sS3YeBUcTjVkAqW028LADYldwB77VzDohnK3cX6DLQ3pb117VLLAgCKQW+EsXOjDHMnsE7ZY1HkixjjNHTvMqAC3SZ5Cgmw1+Bc/eiqPK6Qzm993me37x588qVK4PBYD6dcc4/+clP/tmffR7PZdwD7Sq9kDEW9+Iw7MBFnEk3TROGkq6CwmjnFETQoeU74LQz3ndCXvq23A5jjLNuRfFxp/Qa3EZwI63r+sKFCw899NDNmzeFEF4YKYKtra0yr46PJ7iLMsas8QQY44Qx5r09vQViFT6PXHLaZTYSQkgnbJcMcTe8TScnJyj3nE5nuMKDIAiEPOUnHhzu53m+sbGRJPHBwUFZWu/c9vb23t69o729eDhM0/jOnTuMkzNnziyXy9lidu3hq865+XwehuGNGzeOjo7ruuZMLkiG3x2xD86Z1hrJ/kEQ4NGjlW2axnsCDKx2lDJCGEInQSDqugwC0TYNwnlhKBkXUsrZbIEQM5OiP0jR6gTNGE8mx/v7+6PRCJe6WVm94V62umUdzRm7WqTQZFlBCAmjLpgXh77kVHr4H/84391WvOnOurbtDPFPn3TcBlXT5nlJSMfARSLL28cD3vtTlYlfJQci1ZkQ0uuHzjnvrWotJVzKiFKulTXGtq2uinZ9fecHfuhHfvhDH3nm6XcxFuS1my8W0+myqVutPSW8rOvRcM05p6wGgLKuFsu5kDKO46zI2mq2XBavvf5qFMZnzmwJIeI4XCxmxqr93f2iKAaDwXw+/8QnPgFAZCiN05R4SmkghDOaAsVcKMEDANDWDIbjKA2Ndti3lrp11retNpZsbp3bObvVGlK2hoeRPTJFWXLBjNLeWiGiuqpaM2/bdjwYxknorOaUBRFyOZVzkBUlACilPPgoiCijzKEXgEGUgwwHbdvmxZJQjy2kM7poatyBwDqlWs45UOK8DUK+zBfO2iiMnXO7e0eb6xvvfe8PfOlLn+71ZZFPwDvbqXMAD6+2NZTSxWLxb//tv/2X//K/OTg4SNMUgQ7vfRCIlaHN//wnTVMhe9baMAxV0xrj6rqOosj6Tghb162qGyEEI5QQ8tGPfvT/+Xf/b3/37/69P/zDP/jKV75inP6e7/meq1evvvDCV/7BP/gHVVW9733ve/311198+aWdnXOPPvqotfa111+f7U6yLPubf/Nv/t7v/Q6exf/hP/wH730URSj2tdaeO7Pzl/7SX/r0pz5bVxXnfD6fa2Nws8JvAStq1NsXKu6B4CkaMpzudUCAEHJ0dHRwcICEOezg8Do0TWOtcc48/vijjzz28Ne//vVW1XEax3GaJL3ZbJktK2jgmXe/n3p2/96Bc85a4j3kea60unHjejYrLl++/M1vfjOfzwdraw8ePDg6Orp3797+/j5nREqZpmlVVUWREULm8/mZh8+fO5tq59fX1+/euaeUCoLQE1hf32IMSVHOe4+Iv3Ou0mXbtkBYGEe0KJdZMRhvGuMp6+ouRoWyOgqEcb6qW8l4mvY6p3WDWUeOMSGlBYA7t++9+srrUZhwFjpLCVAgCq8VnuCOAG77qGC2K9GP7aJ3oSgKIIQLhgR/xjlb+ZWhYMhaWxSFEF0kCaMUde1oZ9cVxoKHYYgyC6UUMsNOT2HcmrA1Pq338PGBLh+lI5E45ywAGJBMGmaMtQLAWrtcVpYaO+HcMx7HyRvXbwSCpml6bmfDb9Plol7O8ziO6krJMBkMBtZqrdu6qRiVQElV12GULpa1dZTz1NlAKxqFg975NSBuuVyic1NZNk3T3Ll7yzlnrQZvubR5uXBQU0/A014SBkG0tbV+fHyktYmTWBW61Y3ROpARIZx64JR461zjrDHcRcWsuXdzN04jQnwch0Zp5/Sgnyil6qq9sLP9nvc+26j6zt2bUvI8X1qwYRjWdb3IZ0xw4ZwMvLUNAc94PBiGZZUjXjwYDGTAOKOccqWUd1RKTq3nnvWjwbjHKaUE6GI6e/e7n7t06ZIx5ujoyGgnmbTWggVBxWw229/fT3sxY4Rzpl07GA+2t3Zu377rPQSWSQ7U8zSRUnLVNmVHfSXZsjDatY2VLAQLXHDvXJxENhBCBJRS0cqqqsAxaxtMxrTWaG0ICY0xy2XmvZdB0ConpeCCad0yTr23jsBrb7w2ny+cBUIwYpQxxrwjBDglAkinLFNKG4MSUW+MFSLsJ+lsNlO1Jo5KRjll3jpGgXGGw/y2VW3rgiB46OJDcRIuFouiqsoqd64FoATg6Ph4MplcvHT+u55+x3Q6ffP1621tsIyOoticGlcRKOpsnk3jJPzkp/7wtde/BUQHEavLwnvvCXAO/X5qrKpr0zaeUbDWUkIcAGdsPBphm5T0Bsaoomooo1s7W2EY7t29N5nMGOGcBVqTIOiphlCugyBYLAvitLWWC5ayVFnjrQni0FrniXfEtaYlrpObaa0HgwGlaZYtZCxFEhBDoiBq6toRt5jNnPZgrAV1sF9TAekgrHXWH7Jz584xAtqaLGs5B+JFVVVaG3BE4TCWMsaZFKG11lqnleWsy2gWQlhrgkBS5mXArPdV20gZUB5Y55TyUBsAzVgE1kdBHEUBYSRJoo3NNezxHNSEEMGkc4IAy7KMcdfYJUizcz5mbGCM2b9/0DROGZ/lrXOUBoK2jTIFATIY9XqjJMsyynxdtdmi2d7cWWTz3d17XIp3PDmuCzI/bijwjeGZUEbG1vfu3ojjlAt/+eFzbatxhg8AUUSy9jhvl2fPnqGUchbFctCYw6I2a5sPXzh/6bOf/g+9dKCU8dYFQiqlAsm8094Z56EomyiKKDHeGeddkkZNU3lgSlektuiogFwSxlhdNsTTKIrSfrC9s7Gzs/nam694b/v93sbGRp6Ve3t7QojBoMd5aGxz+87NsszLsozjlHNCCAhJpeTWKRkBD6rRepKmg82N7VdfefPNN19/4oknNrfGx8fHi8UyjlPBg7apvCdCcOL9YpEbY65cuVxVzf3dB3lYq8o5y3RlHGhCKDIOrHVGO845ZRyos1ZT2pmiYuys90hultY4QqigEoiJwlCpJmvrfr9f10UgKQFvfZ0O5Mb2IJtUR0dHjAamdeAp4cQawqjwTgMxjJN+vz9bzjyHpmkpFcwJTikNgBAC2lMgzhlGqAdwzvX7A87pbLmoWxtFkfbeWd/UhhBCiRz0+977MI6stYHmhBAmwBnsjjweiCKgDAinjMcJ0skReq6qKkmSOI49JUEQLZdLBJji81fe//73H9x/8ODNO/0k3Bps/9f/+L/9f/2Df/LYO576r//J8NLlax94z7tfffGrk6P7VTaVggIVnHRTX7Awn8wZCFWr/ftHzrmf+qmPXbt27X/8n34ry7Kz57aUUlVVLhZzIHptbR3tVpK4zyg3ynLOvYUkjoGQXpJ2fUVPntSZEFEQpYSI+WxpvLPK5QutmiKOozTu9dOO2XT9+ltpb5imPQPEWhOGIXGeMYLMFuoIF+HaYH0+n1eVEuBHvaRsm7atRuPNICyqqvLEFc2SUsqFsNZQygnjMoqzrNDaAo2tafPp8l3PvO/kqPih7//Bfjp48auvHR/sv+/976WCZdniaJ7HvK9LOx6dSZM1U5Aza+fT8M1GGSFkqer1jbWNne3793en086EhDI5O5nUdeOAelA3bt+w1g56/TSNKQNjNDjCaRCnva3x1qVLl7RuZcCZoLu792bZ8tqVa9s75+7cvAuWqspRwwmh1DHEvAhZFaDMK91YsI4A57xWta0tEOONG46H5y9e2N/fvXn39p29e3GUEsLOXt546c2XmqwAAGzzdnZ2RoMhIl9S2rJavvLqi71e7x3vvoYJrnVd51lGKbVWLxf5hYvnHn38sta6VWWvH+4/uDedLvppP8/qL3z++XJWAKdC9sBaHtJHHr16/uKZ3b3b4zSy3s9nuXGesSDtrZVluXv3zlPPPP34o48dTHZZeIFSuPrI1SzLdnd3wbr+IGwaZa1kEIHmr7/8mq7VaLwOAEFojLESQvDUO1o3ui4zpYtlNjt3fnu5nC0WS05FGPRs44kWQjjM4iDAsYvWWnMp0ByMMiCEmNZQT7131lpPGAChHoIgdOAa3QiQxBJrrbdWYRIUY1zGtWqtxmk1MCaAEu314fGyN0gYlZzS9dG4rkuragu0KosklesbA920p2oMYwyy9Skl0+NsbXAmkhGl9HB5IjmPosh7ny0L7y0h3lpkvPJufkPQFsYThl0dUEopEONWzvWMgPPOqta03lmUjFinKRP7+/vYvVjrwPKD+ydM0KrSVV1KyVXdcM4DIaIokFJY741xWivUgUnGqqpC4NQ5xynjnDMChBLCaJ4vsXrGtodSKhg1ylHwSimkZlhrOeGOAJMCkRrrNDgrhKCruHbOpZRh1dQAoIwmjFJKCaFNUzMgbaXCMGSEMsbAOw+WgbC6rKqGUk4oDVjaFnCyP7/6yNXFNDPa8UACuLJZghFCCINWD4x5YAgtpHFvMBgcPThAhQzlwjgfpT1KjNZtr58wRoyz3julVNsUQogw5oNe3DTqjVdfm06n3njvvRDceysZN0p7Rp2mxANHEIpQzjg42lSqbbTWmkEAlAQykJIjoIxLVAhhFEqFQCD+aBwFIrlwYLmg3ouDgwPnXIdTG0sIMdYQT0xH82wQzPIWBJOEEK00AAQBJ5Q6S4x23nvG1Gy2yLIMHcPCMOBhMBgMCCF121jrlaqwMZMy3NnZwX4pVnGe51q3nEtgrmoLKaWxWunOqwR8a60NgkA3bT+JEanUWtd1rj1wzvujmHAf96PYJ5PJFLGetm288YSQKAqVMY44ZiRUVinllJ8czsMwjOM+8wK8Dbih3lpqm6axnlW19t4DMNfWnnQYK5fcE19UXcS0IIGqzHExMcZQT3txzzlnmEF5ODMYFk/AAxBivXGEINToCAgph+Mx51yfHEopBcXcsM6ivev8wVEKlBIAourKghdCWPC1Uc65IOCUsg6MlnLQ6yHUa5QGR4h3mHTX6C5rjgouGA/DuG1b0xrjjPOOM26t5pwZoygF5xxlSN7sOHGEAHjmHTDGve+UDegijciaJ5QJ6b134Al442zdNs44SmkURNgYR1EEzmvVEHCM8iAIMAEPAKzTlDPJCQCIgAvBUGZhVJXGoWBkPlfGG2I1IUgk8sdHD7SqrW69I3EYcd75oaPtMuNWSmmNR9aYtb7RaiXfEd0n9oR66o13xAEB3FiMcZJxpZQ33jprjBGUAQAllDhvfIfdUMK9Aw/YhTmEyO0qVNB7d+7cThRFD44Ol0WeJEkEjBB44rEnwzD8xCc+Yb1hjBmtHQEuuLMerAVPcQlRkFRZIYQhAMQ58IIHnhKtLOXMGCMEN40ejZIwEuubo9lsspiXYRgOB/2LF85/9KMf/cY3v/nNb36TMfbNl782zY6TfnI0PeScV7ZMxsk7zr4jFlGapt7b9e3wzrp0zhJiRyLiVGTZfDKZUMKdptPpdLHIhsOh1jUe7k44Qki1rLa3t5977rm33rpRVdXpJNIYc3x8rFRDjQxFSAhzBDBOr6pzKXkUyM2tdUbocpnXWvEwIZYppYOUtrYej8cylFprQqmIeKsab129KJYZbVvNOc/zXEjpnCOeUEqtcda0jFNOubNWtcYqDUBtYywYzrkzlnrCGGNUgmeCM+8oAQ5/vnUzMEoYpwCO+8A515jGGSsYpyvPAWcdOG+dQbM75xTlLowkccIYxQmg+RjipEo1aHcDxHXjGdpNUpNwvW3bpqyY1UHIwLSWa+WctpJE6x/84I/+zM/8Hy9dvHByUtybqPn8fpG33jqszAkF75tAyN0H95qm2dzcBIBssdStVrVSjUrT1Cp4sH8M1jz6yOVeX7ZtwTklhBHLpAgFa0LJvvb1Lx4e3Er6odK1Y5pyDh6Aikb5WMSCCbDWewrgjG4bTXxu9k4EZ8Q5QmuprFLGNVYfzI7PXn0ESBLk7e7+/WyRC8q8Nd46cBBEPc/DOl+mYRCHITgPhHIhgkAIwZumatuWOWe8I95IHnDindbGKkqptyCEGI1GAFDXlTEa7fU1zvgpERw8cbVtbWOTJAmFZJ5GnBrnPRAA6gDypro/nfzIX/yJG3euH+7f9Y7rthFOCcaffvq7vLHXr1+PeKKMK5Yqm9/11Ca9mBBLCGFeUCIpCBnIP3fBSBFeuPCYc+7u3buq0asQDs+ocNY6B5LRD/3Yh/+Ln/u5X/mVX3n+c3/2J//+j7Y21//T//VPJbH89V//1S9+6XP/4bOfOnNm69//+z+7eevGcNh/5NGH/vl/849+6Zf+xYsvvlQVk+l0SZ1dH6xl0+zXfvlXkzSOwzAIAuNgPB63bTudTnu9AQ84eDo5mSmlfvwnfuLWrVuf/OQnZcCBOOq9VloIwRljgVjxkzwhhDhPiOeEOmMsBgUwitwj7xglFIn5ddVyzhfzwnmk7RPGpPVEcDmb5t/6xssnR3MuKRjKQTz+8BNXzj780ksvn9k++453PHPr1q3Z7GS5XD7+jqvnzp17461XRSPOnz+fyPh//K3fnU+zze3z3vsiq7/0ha+gWst60jo/OT7QNQySzaZpyqU5mefPvPu9586dy/P8zes3nfNpGIRhSClY8I1WeG7WpnHgrbXG8arxo7UhkCBOhmUzLcuaS0HAESDeaSZIxITWreA+TULbKBHKIBSqrox1ebmoqwLpYjgR+bEf+7GyLPf2HxDKcf8H4sBTrSwIiuS5gAVee6u8JyzPau89Y0II3lqPxk7GOQewvrXW6/UODh8YrSmlKB6kQGQQIENRay2YrMr29AhG8A0ZtEjKNAY4DRgPraKeckFE3dSeQKmrJElGo1FZ1s55RqTFURnrBkXOOQqUWyVYYLwDKpjTxDjO+bLJHCWx4nw0GnFOm6ZqqvL4eEIpDYNkfW2tnw7zrF4scvD06OggioLhcMg4Va3NsgWau2mtJ5NZEIhWhYPBACtspVpnIU4SSulkMrNGV3WBKSJJFMZxHEeJtV4rvVjMOQ8J48dHs3JeBL0wjuNlPjfKrG9tNlXtPQjKqqrijAEQIOTrX/+6EFxbU7dNr9c7d+7CbDJFyYDggRTh7u7u4eGhjFjb1qPxMEkCwplzEASRUnnbtsTTKEr29/eDQFRVM1obhkF8dqeXpJEQIlsW4IAQ5iy9fftO25pQ0uUyR/+ptfF6nuf37u195Stf+eIXX1gul1EUoUnfKZOOB/yDf+EHp9MTQmBjc+3LX/7ye9/7bBL3j08Om1oNhin1EIQiz5eDQS+Nk1DZ2WyG06d79+5Np9NQStRNMMZOplPGWBzHaO4shAgZj8KwKHIpZV1rYxwh2nuP+gWtlJA8CAIRcEp71lrvbFVVGAJOBQdHrPWINwMDQr3zhkCHqEopkMaP0sWyLPtJylYRQNZaFjBrrSfAKdfaAMDOzg6WBZPJxByauimZEHGcoALUe49LGWM0OOcXLpxL074xxlloWy2lbGqFlEPv/eOPP7m/v3/9zbdeefk1GXDOeVO3SZJYq7V2VNL1/qZuWufcbLrAy26t3dra6g97i4Vt29ZT8N4XZYbZNWVZ4li7bVtDndaGUn75/PmyLeM4LquqzJZIzdBaB0F4/vz5w8PDPM+t1hZ0kg6SMEJ/yaLI6rpMkshYpZzQtjW2CVRACHn44YfhChTL8saNG0WZBTGJouDKtatr66PjyZ2iKDY3tgFgPF4/PDzEMApKKWP88uXLzgIAmZ0sVGvCMKyV4pRIxrHhwZ5ECIGpLGTFmKCUCh4A+KapnXMiEt67MIiHw0FvkFRV1dQKw3/O7pxv23ZyPMUveOHiOQD04QKUiA6Hw6psHjw48N4fHR1tb2+vr69HMjg4OBgMBjs7W4eHh3fuLDY21xgjg0HPWXp4MGFUto3+3Oe+AJ56T+IwjaN+FEUO5HJZ37q9OxqNrz507aMf/WjTNN/61jeybGmM0aZ1XjNGW6Nu3LoxGAzCMNJa7967bxW89dZb/f5Qa22UllKOx2M0tTg6OcF5vtbaGlPX9dra2sbGxnwxxTFvWZZVVY1GI611HIdZkTdNZe2waar+IHLOzefL4WC8uXHm4YcfnZzMppPXT06mGDmilApkpHUbxykhzFnY2tpqW53nS0PdcDgaj5M0Tuu61Wp55/Z+nlWDwWgymWmtUa9EKWcRj8KwKOs8r7igTlmU/Y5Ga7N4UeUqioKmttYBePDeekLAM+iknw6IM0Y5Z5CBRwh5W/C0ZYxwzpfLZRSFm5vrlBLGxMbGhlilaWnbkZGzLFPK4Y6EgrVuZ2BACAjZWS+N+oPZMkvS1GjnjV0FrngCwPlKA0UA13wURf1+33uP010hAyQWISzOOcdZPa5J772xhhCMAWwGg4EMO0upwWCwvr6+v7+/t7dHCPmxH/ux27dvHx0djcfr1prBYAAAeZ7v3b/3O7/zgBMK3oN1FjwhRIhw9+7u//n/9Atchk3TlPmyLPMwCObzqZRuJaf1CG81TdO2DaX07NmzxpiTk5PlIr9959b5SxfPnDsbCnF0dBTH8e7uHq7wqmyo4N77uq492I2NDQ9QVgXCl7atAKhxOi9mo9Gao0Y3DThDWdgPBkDM+sbW/v4+Y6zfH0rZmc9676MgpJTm2dJ3WuMu+/H8+fPGmGy5nM0nQFzrFAAss2kYht5bRlkYhlVVCSEIpdZqgKAq86apgyBKkqFq8zhOX3vttSJvbrxxPc/L2ckkiOOjk5PBsH/v3j0AuPbIw2+99dZ7P/D+97///b/yr35lc3MzSWKq6ySJLq2fXS7n3/72t6zVmxtrRVVqretWzecLKoR3hDOCuTeqaY0xYACIb5pWSvnII48uFosXXvgyY4xzplTTqLrRqsiay+cfiqJk7+4+8TwSiXOOUOCUeO+Aeq1r4KC0so0GAmgfubm1de7cuarKD0/29/f3klQkaWgW+nB26Cysr29ST502W5tn9/b2GA2ssSfH89FolCSJlH6xmI1Gg6effmo6nSZJz1p75849pRTj3DqMVM0JoXlWBkFwcnIym83H4/V+v7+/9+Dpp5+JouTll159cP/A+TaQYjQebm1tTU9mShkAur21c24neuWVN06OJt6B1lqGkbX2pVde7o/CRx99dG/vHnF+e2NzbTQ4Pppwzk9O5saq470J8TQIRRrFlIIQwoBzTlMqwHPrLOe8bmrQMB6vEULKsrLWgmOlKbN54R3t9dEQXPb7g6IoJpPJiiuHzBGCzKxTxaJ1VkpJnK+r1iGSwewpu8Q7TxhxFrRuMSDsbeCFB4Cmqeu27PUS77r3tNbXdZHn+Wi01jRNU1aEkFP2MarsGWODdIAmA2jt1+/3kWqhtWVMcE6897DKjcFHCWUHSHWhyG20zrnOE/C09vUr01KEerGH8Su3Ssp5WVe+6kTrSPeTUvb6Y9zP87L0vsvXAgCr7IqK69/+9aEzMDWwyofAv8QPyTl34LHzZ4xZ/50vYowxtuMeRlFEKWAxXFVVqxUANG1NCInjWMoAPdxxc0bUDLyP41jwoGmaqmoAgK0QB6XU0YMDrCS5oMYorT1xDpCf5T1nknaysMA5l+d5r9crq8r7zqnDGANEe/BV3a6vj3sBR2lqWZaogozj1HtycHCQxCkhpCiKpqmQyYg7Z9U2XR3LBbY6CLtrrZ0n2Ft6b7X2ouO+dAQZvBeEdDynKEyCQNZ13dgWLyki9WVZEufRRw5XVGcfYQwqFImnq7IHSCeg6aSaAKAWquCFcw4lMsPhMBmEqBIFSoQQ6BsgpfSeoAutNQ5ZVHgNjbHgidFdxY6s1c4kKkK5qMKojDAMh8NhFAaL+bKu6yQx4/F4Pp8HgXTOMcbDMFzmS+ecJ5CkEefcelcXFYaLEEKcaxDMwq+Px9N4PK6qKiuWmJSOsL0jHk9q/If4aCPhCA8UvLa2My73K/KvA+i4sQhS2FXCnrW2oy9RYleW4vj3pyfUqcjAOaeswRYU13wYhlEUYT6etVaKU+9sZKB/xwyd0S4k0BjXViW2rPhlEZ4mpHuWwzB0zjWqpStvmdUb0o6KtbLdQK0SHpeMk9PX4yMchiGn3BiDNPk0TSmlWZadMk/NKmEPuVaMMQCilBqNNjnn9+/ft9b2eoPBoEuQNugibY2Q3VbQ7/ebss6XhSXO+xbn4lwKSQPKTJr08ZFUq6A2HDYjV9FaSziPeylmqhdtiaGylHLEBK31p7RW/I7aabzXhBCxMuIghJxme+CSxi945cq1w8PDg/v7g8FAa11bY4z78he/zAMJQIkH9JDBnYoCI5Q6bwMuGGNN0xjvrFZCCK0N5UzrlgchajEJIVq3KNTb3tkcjUaLxUIptbGxcebMmTRNX3311Vu3bnmwo/H4ZHJ0/fp159x4PL5w4VxTVngWEEONUVLyKIp+6qd+6oUXXjg5OXn22WdVo19+6fWTk8lykR8dnTjn0rQvhKjrvLtr2uFnPn/+/Hw+n81mHSuKsboum6aZz6dBEAgvFFquh8H6+joT1Bh189ZbTz71xJNPPrmYzYMg4pTPplmjml6vR5jGgB/GWJZlrVJxGwNxusUooM5T2xqntOGchzJwK5MTYTmIjl3oKWnKGiejHUPZuV4voZyoVbK3tVbw/wV2s3MUIAgCb+F0fOvf5o+PFtUIQnVDsjhO07TKK6U6QQAAUMqRk4R8PkIIAPEerO92hrZtrdWEk16StG2rLSnyKivr5973wY997D9/4qn3EhLdvLmnlMnz/M6tm+CFEIKLjlAfyoBT1jQNFh5hGALxKF4xSiOteD6fnzlzZufcudPkMSkl2liVZXlycnT37l2K2hRGlM4Y46EUqy3RIZgghGBMtnVVVY3hJA672AlurbUdRjmfz19/47Wnn3nfye3doigw94VQR6gHTpNeXBSFNnZzcxM/SRR1KbhBEKHQQWvdGo3bL9KenEebHY47m24a1bTeOt9J21Ht3aWdCyGM0fP5bGdrOwyjyWRibSeMcM5QzgCgNfpjH/upf/qP/2HdqCSOPVhr7Hg8Pri/X1VVGEZYjTBGHCFAgIABALDImlfybUEXb/8hhJRluVgsijLD3grZqcYYRqlSzdntM3/v7/29C+fP//2///edc6+99tonP/nJnZ3tzz//RSHDXj+5d2/35ZdfLkt15cqVk5Oj+3v76+vr/+gf/eO/8Tf+xkvffrltLedcyvBnf/Zn33jjjeef/9xf/amf/MhHPvJf/vz/YT6fX7x48b/6r/72aDT6Z//sn73+xhu/9Vu/hTlhn/3sZ/UKssc1icserDmlNnvsFf9jRyC/yijCnpQxdmo9ZK0ltCv/lNJBEPR6SVVVWb4ghDS1ooSfnJx87nOfu3rp4Z/7uZ9713c/+w//4S/++3//J3EcP/300z/6oz+a5/kv/MIvZFmWpqlV9k//5FNZnmNBghjrI488whgLgqDX633hC1/oJveE5GX5+vXXDw8f/PW//tcBQKlGShlFATKyoQt47yzCcKvnnCc4kCYuSaJG9abT6YVLXQIh3qO2bYVgQRDiuba/v//FL33+7q2bjz32WFnm4O14PH7ppZeuXr365JNP7d2/d3x8vFwujXaUUuK7w9oYM51O8XnB0Swwhsx8KSWeaJRS9LYihPcHfaVUVVVvy4AFzjmjDGXKWFatdM+dYsyvZEl1XeNGhM8F3iattXcW/4m1Ns9LKUPEYbDqOLUpx/JAa015JyU0xnBC8C5DF/nL+HI57yfpsNdvhLx//z6llDiWLXKjgXMhJavrdjwaYHb23u591EEHQRBHkdaKcx7HYZ7ns+k9pZt+v7+5uemcqcoWJQtlWeLuvDoIlVLOaVPXreDhwYND7Txncrg5UMocHx+d2Vnf3Nx64rHHb968vXvv/qg/unJFPrj/YDKZRFGgtS7LGiiAg5LUr792w+i6qpqqbKIo2trads7v7e9TShj3k8lkNB566qMoQhGQs84Ze3BwsFgsnfeDQUpYtrW1tbOzLYQ4OTkBIJSyttVhGG5ublZVVSyzqqwZ5bdv3anK9vj4eLmolouKUJCSl2WJmhdV6yCWjLFHnrj23HPv/rf/9vdG497Fi2eD8P0HBwdra4P3f+DZIq+0dlbpum5ns8lstuinPcLIj/zoh+7evXvh4jnv/XK55JQuFh2WimnZ6JOyvr6OoQ1NU+P/jeOUsVY3rWk1kyJJEs55miRSSmedta6qS6XUaDRKEt/Uqq0VY4xSjoX46RYGgFHULgzD9bXNg4MDZyEM4rIs9/b2wjDER+60QzsVeRFCZrN5VVVCcCTtG2OYZMPhcGtre5nNq5XL1anUrp+mGxsbDx4c3Lu3ly0LIULvPSGsrmsw7rnn3nt4ePjiiy8WRSEEGwwGxXJBCBkMekVTEEJOdShxEsqAV0VJKTSqvnt3AQDAMF/LoU3bae58VTX9fr8s6iiKANxkerx9dqcsiyxfhkKcFvr9fh8FFL1ez8a2bZVRjREsiXuEeAABAEo3UgpKoa5LysBas7W1LSWfHE0Wy+zixYsXLp6L02h3926tmrpRW1tbmLOEZCjGmGoVFlK9pHf+/HnvSNO01PPJyayua08JgCecrdow3RHAvRFCiCBgTJRlWRQFoy3nHIACuKpstGmTJDRWNaoej0eDwaCqqvl8Tmm1XC7LvCiKMk1TIWmv16uqKs+XQoi1tTXG2PrGWAhBKWNMOAtBEIAzQrL+IA3DIAyDINh86KGHjk8O61rf3zu6fOlRY9Td3XthQBfzzGgdB/0sK3bv7q1vbD/z9LObG/t1Xe8/eHDr9u3zF3bmy+loPCjzLGbJO9/5VF3XWts8L63xyjkp4vl0ceutu1p3XW6t66ZpGeOoCgnCsG1byoBQH8c9a4ExORyOAMhsNi2L2nmDxXeaxt/zPd/z2huvfe1r39Ja9fv9uimcc6Ph2sbGZhQlzrmvfvWrbYsS186Ksd/vU0rAUylCQ1y/P1QKw2RImg4YFYFMjIbbt+8tF0W/N47CxDkXhcl4PKYU6rpt68Y58K7rcxgQQkjTqHyZX7r40O23Pg+GSRYBdBLyDtH1hDFKWXcAo+YRgRE0fCDAdNsSwbQnSitCYD6fe7CEkPX19TiO87wcjoZVXWit8zyv68o1jBKOC8ysKjwPnhDvbJf8HgQBcT6KAgXKM65Ne1o3rEwbwUOnPnbOJUJa8HjRvDdxL0Yj9VCExhvvPWc87sVKKae7aKAojdqWEgYijGLrsywLgujcuQtlWSqlwjA8e/bsjRs387yM43QymRDOhsNhv9/PsiLL5tRDr9c7mpxcvHhxc3tjMlsIIW/dvIHf+sH+7pnt9Y2NtQsXz7326ltBEBRFUVUV+nELIeJ4lGVZXdd/8Ad/ODk+BA9BHFVZteTzjECSJOfOnaeUXb9+fTqdOgueEut0GIaCy+l02h/2vfdCsCgKZmVlqhYkXV/bDALRH8S9c5u9fmSMKoq8rKuDowezxdwY2N17QAijzGHHbnXneYq32zlPKNVav/TSS0opGQohxHK5DFJujeGcG92+fadFhJpRenJy1JXpzFvhCCHj8drx4YkMeFFXQgjCmZRyPp/PFzNjHFD/5ptvFlk2O5698PkX7u/v3r11Y317s99PGffLbHb5oYt/+S//xP/wW7+5e/fuk0899eDBg7osPFhrvVJm0Es2NjYYY5Wo2roBcHWt3vPc+9K0f/v27d3dB2VZS4mnhpNB0I8Tr+HkZN7WihFOKPNgUVvjnLFOC0YvXDn3Xd/15N3de3VdUiqWy2UQBFKEg3H00LWzT/hrs/lxWWWDQW9zc/2NN97gXF66eGVvb//w4DgSTRTFhLBARm3bLhfVdDq7evUKav16/XR379693bvWQBynQRDkea60rut6Y2NzbW0jz/P5PIuiaG2N53nuLDBBjW2jaHTl6oUH9w6StfCJJx5L0uj11189OjryBIzxr8CNM2fOZ8u8bTC4OPDe3rlzp8qL9//Ac5PJ5Otf/8ZLL7Fnn33WWPVg//DChQvnz58d9ocnx9+02qVp3xvUuHtGOaOOOIagnCM+DMOLj1+5cOHCWzdfR5KmM6RtWkIIECjLkvM2dmldd9HYWLVjI8QYCyNJCKnruiqxcHSCMk8wvoMKwRCeQBW/ECJJ+9ba5XIJxmnvAkKDAEtATwhorbhk4K3W7uR4qtuaEEI9Ren86VQJtzWMwOacE6BNVaP7njEGESKcTzPWeV5RILByVEBgCJFIRNDAd3gTOoc6NAJeAa9s5ThBOkd7RykllDrnqPdxHGvdAvFIo9O67fV6o9EwTVNMmUNKr/cevwJCOd0xaqxbGQhYa513p/gylsjgOka2Aw/QGOOstWalZwcAyjp0yXvvnJEyZIxprY1RxINzzhl7isoxAkyIFZztnTfU06IoKGnQjRHDx0/ndsfHx6PRIBmknvr5fGqMAeMppc6C90A4WZ0dZDqdSin7/b6QsixLZTQArHzGaRhiQKtFjzKcDxHiyzIHgMGgd+7cuTiOX3755dk0R4DDEUcYZV0UW+cubb3TRoOn1jlCCCbI47mAEDDub5RSzLDFa4tuY7g2aMAw466tarwjhHcuCm4V1oQNBQDkeU6BnWKR1nhrvoOKIkwAHoBRKaTWejKZODpwzskw6Li3xlEKKAfEblOtROuDwYhSWpY5LjC0UDgFj7D1dSgm4Jx2ZtDSehul0cb2hhRBUZQHRw+QCq+1IoSgk2+SRr1eMpvNAAC/COkSwBQ2h5gWjqFJ3VAkz9HkoTPtNQanQaeWcXjvAGAwGCilEPijq8ySU7sDpTrtPy5gXNi4VpFSQAgx3nlPGBAw9hT8wseWc+4pAUI54R07Mkmstcjaxqf+9LHFHwz35pRZ7wCgqhrOOSEMHaORsYXuIrCyr1mlwnKlFG5ibOWb4dEWAYdAtEPf8F7jK63VuMDAU0w0csZq4k9xGTS4wOYFn1BjDE4dKCVSShkExihkn+BV1doK0fURAMCACDQgwohvT51zveGgKhtr3A//yI8cHBzcv39fAG/bNo7DRivGmHb+dBvBBYzFJACEYRjHIfJs4jqZzWbgPN4IQgghDpe/tVoppZ1dW1vDi6y1dsR56r33QID67hMCQF3XcRhVVfP6q68dT07Onj374Q9/+ObNm1//+te9J4tFBoxGUdw0DTFdOCoOpfCzIb09jKRR2lpb1yUTvG1bKriuyyCMCfFhKIuiGI0HD129TCmpqqYoijSNKQWlmum0fvDgfllX+NRsbm4eHx+ura2FYTifzwEgTdMHe/fn06zfT8uy/O7vfubw8PCVV175vu/7vihM7t2+vlwup9NpVTaU8jRNwzAsigKpPCjHFkLEUUopvXHjxnK5xMWPqdTD4XA0Hty/f79c1t4Ra80oHTFGgkCUZQ6tu/rQlUcfvvbyyy8rFYcySJLk5lt3W1v3ZWyttc4JAMoYul5QSr0n+MQzxihhBgmCjqw2EOG9p11gqVHKVFUFFuI4xomU9x4YlE2tiOEU/ZTwqPrOynz7jzFmWUwJIZyitrWbQp1CcnhYnwKL6GaAgK/WWoSBALDWE9IBSX5l9AEAnFAg1FpvjHGmjKJgPF6v69p6Ulcqm5bf/6Ef/5v/1/9HEI/u3XswmeZtYzY3t2eT6YMHh9vbO9p4pREE0JySpvFKNaPRIMsWTROmaUoZoY4wTo3VplWIL+P2gtcHjwNrba+XTKfTvXu7uPxkIFhrOadhHEtt2ratqqqumjhOCCFcMCEGqqmdbeu69d57Z4jzrVZMACUkoMFkMrm3d28yPV4s81bVQnBjGwDPpegSZeLeKTTRtK30xBiDBk2npjdSSkqJVt3wBjd/vI+YJ0EIAe85xqcitOc8YZQQUjW1M7aoK3zMKaWt1qos67ZhnNRNc3x8fOWhCx/92F/9tV/5bz1QQoSU4u6dvSxf9Ho9ax0hlnQJkSgqEYBxgZYQQo3+8800jNW3br+FSB/u+Yg8ckmtNoSQVtVvXn/9C5//s6tXH/qrP/mxLMviOL5x4+YPfvAv/PiP/9inP/3p3/zN34ijXhgy58329vbx8fHf/tt/u9frPfroo0+945l/+S//Vdvoxx574qGHHvrsZz+7trb2sz/7s7PZ7OzZ8w8eHJ6cTK9fv/7xj388TVOlVJIkZVn+4i/+IkZrOm9Wo45uzOxXk8jV4JN0M7NVNNHponU4FwHwsHI5I44APd2NTxeVsUoIAQSyLHcOrl458/GPf/zy5YfKsuz3+23TYG2jlIqiKO7FvV7Pe8+Ave/97xmvDb/8wldHo1Ge5/1+//u+//uDIKjr+syZM4TSz3zmM1VVaq3jJB6sjd/97nf3R4PlMnMEsFYMwxAYdcZwzhkViJITYIQQ40yr6j4faq2MdVEczGazyfHJ+uaG1aZqa5wbITcLgHzhC1/4/d///eOTwyuXLi4WC2v1Q5cvcs7Pnz8PAP/0n/7TpmmSuDcej5fLpbNAaIdrn5IwkLh5Omw+ZSUjQYFSxxijnAnBer3eyruJ4AnLGKMEeSTf4W045wC6ao1SmvRSSikm/imltLbWWvBd4DYlHlU7AN5bh5N49Mw8PalPjZsZY87rtm09JZZYzhkWhDSh6DLEf/D7vn82m12/fn0+X0oZeuvQhdM5AANFWSRJbzwaLxZZluWPPvzY3d07mOLNGA2CtG3bPC8BqPdEing+WxZ5NR6Pd3Z2mqbZ2jwL3k4mE2NMf7TmHVksFmVZMSCEsCiKkoQ66EyU8jw3xly5en59vPbyKy/e33tglXFGSRm2uvWrH8op0hDKsjw+PnFeU0od+GxZ1M2eEELwgDKoqjIIBQEaBGEcxYzy6WQex7G1Ls8LQujm+lqSxNa72XQBnpZVjgScQIRhEFtr19bWtra29u7ulWWplEGuZRBE586fmS0WXWHkQBkFAM889861tbX79+/PZpPf+73fbdpq6OM33nzVWj2ZHM5mkzTta+UODya6USiEwWmbsiYMw2efffZXf/VXGWPeeEUIcgQcgGTswoULVV3cv3/fgy2rvCxLrTUBVpa1MQYs8jUoscQb2+DuP3fGaRxTNE11/tzF2XTqLaA5qdbVaDTC8Hp0Bjs1vBNClG3DOa/rOgzDJO6bVqnWeE+0soxxay1jnFHmrAegxthluzTGUJpgzB3n3ANBoBN3EHwGDg+Or1xNNjY27t65OZvNzp49+853vvOrX/n68dFJECTOucFgdPnSleUif/yxJ29cv9nUCjzJs7quKmA0GSTn1s+1uqWUVkUJjAh0vI+isiyrqlw5WgqA4MyZrbQXz2YTJIzPJ1Mp5eR4qpTSSltri6pwxGfZolEtC0JsexCh9tY+9NAlfPyaRplWzefzyfTIWoce7UJw50lVNtqq8XhEKZ3Npvd39+aTeVmq8XiwLBZCMCbZaDSczWZKuwsXLty7u1fXtRABuK52Z4QppW7duqVaM59nUoRBEHnvW6MBwBjtvSOEeOdWGwTBZPO2bfGM9N4r3YCh/3+6/jzo0uysDwTP/q53//bcs7Iya1WpJJUQAixAGEk9YzAG24jF0EwPHtu4p6ObdrQNHTMdE+Gho8dDxCwOe8IYaGzGboOQ2habta+1SKot9z2//Pa733c9+/zxvPdWweD7R0VmxleZ913OOc/ze36Lww6aau8x8qQuK9TvGWM2N9cRcvfv32eMBSGnLC2K4v79++vrA8hpZYwlSXL9+nUhQkp4FMVRFGRZkReyqqper2eM2T94fPHixXar+/jxXhK3GWO7j/b2D4Y/9mM/xlh68+bNtUHy3/7yL7/22mtf++o3fvzH/8bb1+5u75z7u3/vv/pf/u2/efDgzmvfeuWLX5pfvnLxJ/76j37pS1/40z/90zNnzimj79y9e+7cBeRJPZVSVmVZTadT5MnB/hFn7MyZM977O3duh2EgBEfIdzptrbXWhmARBvHx0RBjnKapEEFZlgh7OHUIIbdu3arKcn2tK4Kgqot2q9fptubzuVK20+k9uP/ozJlzQBY+ORlqbTAmw+EIIa+UStNUCPHo0e7aYOPsmQtHR0eqsq0kHQ3n9+7dG40mQZhaswjDsNVqCcHbrZbzqmnXnW0GFd4sFjPvHcVEa310eFjXOhbcGOM9RcgRwpqzFTfxSvCc3zUNJggR5Am0oMYYbDFlHGMyn2fOmTAM57MMYwxW3d1u13vf63Wn02k2rmWttbbe6xXEQwmy3sDZABwKQohSNaXcIphyM2utlA5jIBU2hDVCiFIKbJuECJngWmtvzNbWFszGANWC/pxSupqUZrM56BWiNAmT2Fo7Go2CIFDKQCDDb/7mbydJcubMmX6/P5lMqqKcO48xfuF9L7bb7ddf//ZPfvJvDE/G/+pf/e6VK0/PZrOA8W6SzkYnE2d+4sd/9MaNG9Pp/Od+7j/f3vzWH/+H//DXf+pvvvzyywcHBzBycw4RQg4PDzHGIoyDgENrPRpOprPxCy+88Pbbb49GIzAlRNgRShkPgiBAyCdJ2xorQg5lx6C/gfooiqK0nThvYysGa500jYKQLxaz69dvnpwcMhZEUUywYUzUdW6tZow5jAUKBeeEMIypUkrJJvEVpLJayzAMndMQMgaUCqiZgiCEqqsockqwcZYLOl9McIatQUopKXVd6l53sHNmh3N6fHxMeaKVpqxxlSVUTCbTg4NDhFDcTpN2EkZCazU8ORystR7vPRKMra2txWGYJEmn05nOZnt7B6fPbF84e4FSCuhG6U0raXc6vU6nd/v23fv3HhJCAhHXdRkEAXDei3KBMTJqFgURhGUHATXGCMG0MTs7p3v91s6ZjSilzzx/sSgzWbtO56npZP7tb3/bourw+HFRZu978T1r653xeFgU2alTp86cvjCbzJ5/9j1b62MA5Q8ODtNWnCRJmqZ37t7a29vb3lmv6vLb336NENLtdp3FtWxETkVedbv9OE4JFpsbp+7du5NnY4xxWeWgl7x+89rduze11k+/98zf+Os/W9f1P/2n/zRb1FwQRgQXTCu7v3vMmOAsBNgiDGPGSJIk924/sNamcQshPx5PCSGdTq/Mq/FwVtfSWqu1y/OceAwTKSo4JxzsSJXSxmiEXbvV2d3drUoJp1hZKK0VpRSzpgVyFtV1DZok3PQpjfxN1iCUa2pKcJIBpIwRihG1FkZllFJqjVe1NM5CGcowkcowRq13mHhjDMIuTdpCsMViUWZ5EAohBEIkCAJvmup25QSnlNFaO+utbhIagiACwLSulPc4ChNrG7dibx0MpK110DZ7h61xyBNGBVlaWFRVZbWxBgL6VqalFNBh2K/wsl0DNof3llKapHGv1yuKDGSz0A0qY7TWSjUBXNZawcS72ZSeer6keWKMKX5H2g+CYsEpJRzYVWEYApzHgwBOYW0kco3zBnAPoa0CgEBK6T0dDAZBEJRlCQEvcRJxJsjS99MZW5fSIwm81KV7ALQQ2Fq/WOSUkTSNOeHEI6kt5w3EzBhjlEKbAUBtvfwggq3VStmQhgQ545vAYa21d0ZqCYkd0+mUc8EEV7q8fOZiVWdvvX0vy7KQCsHFCsVogAzSdICMEwBzlVJRRBuI3EFoDOGUMcrs0u6fEEIpAzxl0F+f5zPIx6OUc84pxStOE11aEAZBAPN+xpi3QEdFRjdAMFtafiPUEMmtxsYhhAhCeDqdijBYJeIihCBvBhBYwQNQJxDCkiSBUUeapkEQQB0FCxCGlNDXAWETij2tdVWXUI0zxmbTeRgK6Knr2lBKO51WEAStVmS8qVRVVVUqOpRSwQKKGUJqSRrVsIig+3LOtVqtKIqUUqoyhBDOBXXOOLtyD2gWkfer79z04aoJE4Y1JYQDP5MV/AS3d/Vmonc1/Jg168th5Al2GFnksW/4s957bQ1tyMjaGMO5Q54opaQzcLgzRrzncLJjhAkhMHqvK5VnJV7aLsOeaa0lxGutgTqtlCGEWS2tM4CYwMc1EybcGC85r43y3hOEOecNtIEoYEBGa2Ps6kUl7xpQLSdGwN0GT/MmGANeD0r5YrHwHgdBABRFrTXnAWME1kucJEKIqpKLxWx8NEEOfeh7Pvx3/+7/4dd+7dekrLZPbw8Gg/v37y+mUwhihV3CY+SQr5XEGBNGCcLe2zzPtdYQswEfij3GFDNKlt8WYzzYWO90Ov1+//Dw8MaNG51e952dynuHEeDqziGKWVVJa+14PA5FoKX61quvTadT4FODkZHThjgiiLDWWm+RdbDX6VpqhBgj3ntMURgEde3ruiScEeQIo3mxaFASZJWRUsqiyKWqWq1Ot91TSkFoOSHEahWGYZ4v8nyRJMnp06eLotjf34cJSlVVmBARREzwixcvHuwfvf99Lz156cr16zdv3LhVlhUcXpRSXUviEfLegQUxYUqpMKTnz58nhACfpt/vc07n8/nFJ85zzheLRa/Xa8eeEKKda7VadV0rWVtnPvFXP9HptH7jN35Da/3kk086643RHmljtTECY5ykKRAdAOTFCNmGcUwYZxhRSRSsI9REXgPo+A4BGWOMOQZxPeccIwcrurvWdc5ZbSAwABH9F6KH1jmtdZIkVjdcKNgTABJqBmNKGWO63e4qNgZ0En4pIPC+CWVddQrwYxATSCklmLXSMEkjrawQYZGr4dH0yec++Lf+1t89PJwzbkbD2eHxSZq0rFZXr1611sMpJmWNEMIeZVkmpSyKAm5Fr0e1lnDWE4KMAY9px8MAIQSRA5RSIbiuZdqKvVN3796dzmegzx6s9XusrWqJiXfMiSiO43Q4HKYdQSmVUiZhQEKsDbbOG+M4DzBS1jlKGcwsRZQeHR3M80VRFMbWYSSktISQJO0CQNFb34abALVElhWwuODecs7DMF7hYu/GmmH/X/J7PLwYdJk2QQihhGKPOOcaocViYeKYCmatU3VhnC3KjHM+m81EQHb3Dj7wgQ/evnnja5//0/XTg143RYgIHlaoqOvaIs9YjAlEPiLQYUJUGPqzaOy7P001IgTG2FtnLSS3I4RAmIIuX77c6/VkVf/Df/gPNzY2kMMYYy5Ca+21a9c+97kvOE+/+8N/6Y033ni0+6DdTtM0ffDggTHmx//aT9y9e3+xWAz6648fP/7VX/3Vg4ODJ5984utf/zrnfGdnhxAym81+67d+6/79+3t7e1AsQWM1GAy01trI1WBvOf9u0MlmpSzd+TFCoGPz73pd6bIA894TikH+Ajs5IcwYk2VKCMGogGqZ0aDIF4eHx+PxRPDo05/+9He+88Zzzz/vvb93795v/dZv/Rd/+xedM3meJ0ly9+5dEKN0ui2pqiDktSy/+MUv7uzsXL58+dq1a8BMyheLbr//t37u55648kQURZzzRTYzRkujOkHXeGeNZYwZ7bSqmxPZO4QIQVLKKm2F7XaalxWSemt7YzqZp2UsREhpbIzhlGLsozC5e+f+V7/61X6//2N/7UfrIn/55ZePjw9ffeWb1trt7e0XXnjh+7//+7/61a8yzqMoOjk5CYLAWgdjJzADIIQAFqedxc2tRSu+MF4qfqBMguzulTgMIeQdctg1g6iGHNAcnpS/UyYBGKi1Xp6ezZjfe88o9kumBcbUKEuIdw5liwJqCcYYQphgxqgg2FVKChEhSoyrjfEwLFGocs4VRcGuXHn693//9x88eOQcioIQjLGNMeBpHcWi1Yopw3meB0HwkY98xH5RTSYT2OuNMXleQA4SI9Q51233i6LIsjLLyiRJoigKBAz9UCCiLMvrWhtpHGGcY60tD5j3PoqiRTYLwzAiQb6Yl3nR7bZv374tSzcdloggHpDeoG+MsbnrdruQB3V8fIwoYcRXpdSqRA1xBhFCkHGEUCVNWarNnVNZNj85GQ6Ho3Y7TdNOmratta1WJ8/zqqqkrGazbGdnGztdF3ou8zRNMSZAP0nTdp6XWlv4v7S1WOsoimCorqTEhDz99NPb29v37t2bTqcIy+lsJARrd6Ig4G+++Va/38myIsv24khsrm0XHkupq6oKgqiulfHqD/7g96Mo6Xe6VVUpa9rtNqR5KGM45/PFtNPp9PvdyWRUVAo5xDnyHodhaKRGnhDCPLHW2iKvMPGaEESJ905LQymNgvTxo4M8z9vtttZ5lhUU4SovIF9RO2vtOzIcpVSeF0orOA7BYi/LMiiYVswa+q5o44AwYGEghChllBJCiEcQkxX14z44NoRhuL+/Px6PnVVajY6OjinleZ5TxmHb2traeuKJJ/7jf/yPRVG0Wi23THZ2qA5ZaK0tqmJtbU1KOZ/PvXUbGxtOm+Fw2Om0nXPzfI4QyovFmTNnNjY2JtNRlmXj8bgsS8hJq6XqdFoY06IqKaVZNo+iiDCMLEqSBGopzrn3VlaFRT6KolODbWdMq52Mx9Hjx49rWWCMtaEWB0HAGSKLxWxzc3OxmMlKxa0YY8wYmc0mnHNl1Xg86g26RVEf7B9xzhkTZVkyxoIgMKoZ4NW18g5LKY12lHKLEKVgq2alXJq1C859s7OvOgpAE5RS0kiEEKEoTVtCMI9sWeaPH+2mncij7VrmFy+efuKJC6CVKIri5q37VVVttFtRFHHKQLQFjvjz+ezo6FCIQCnDOXfYaafzRfbwwW4cjw8Pj8MgPn/+/PBkapT+3X/9ex/7+Md/+Zf/O+/9z/3kz3/v9/zgi+/90s/81E//9/+nf3z//t3FIh+Nx6+89iplbmOzj6n/4pc/Ryna2tq4efO6Ma4o6uFwaI0Pw4RzURZTRkPvPfY0W5QEs+dfeNZaDWH0PBDee86ptXqezSil3W7XWnt0dARsPoR8EEQYYyn1rVu3jDG9Xu9973/x2rVrx0ejTqt7+dIVjOlivnjjjbeEEOfOnXvppQ/evn379u3bYRhCq5kkIopiay0l/OjoJF9Uo9FIymqw1gnDIM8UwYG3WDmHvDF6ThkuyzJO6NbW1ny6GI0mDQMRkU6nJwSL46TXG3ASHuwPF5MC1gscIQgh78HsHyPkCMEYN9Rj55xzHiGPEQJDMaUUpQTig8IwMkaDtc7u4yyOQ4wxwg6sXTH2vV5vMc+NcXleWusJxpyxJmzc+6IoYIwZhqKuFSHIe0cpBq9VQpAQ3NrG5gkhsmKfMSaEQJxQSwiltN1uU0rb3Rb8JNSdjFHOWRiGwFvRWhtltLabm5tVVRXDbG9vb319/YknnnjzzTe992VZ7uzsPP3008fHx/v7+1rrJGm14mQyGbU76bkL5xxyDunh8Hh7c/2HfuiHvvaVL3/Xd733zTdf//B3ffAXf/EX//iPPvfv//2fWFk99973fuITn0jT9Df/xb9ob28fHh4CTRj4X1BfCiGMsYSwbrebZdlinnuHKef93hoNmmiFoigQ8kVRcE6LTDLBjVFpuw+jYK11nASEUmPkcLQ4f/7Mzs52EASj0eThg33vfJqmeV7CDmm0Bk5fXuVRlIDM0DkvhCAUWYs4p2EoLPIcY2uUrHUURU9efnI8Hh8fDde3NhF2WZaFYaSUdKqq6zqOw263S2kwGU+LosCYFmV248b1upZIaxMEH/nIR77znW9jjJ966umvfe1r9+/fJ4RRRjHGQojz58893t9NW/He3t6v/5P/55lz2/1u786du51u/9TO6cVisbm5/tSTl8IkzfPceFXXuRCsrIsYJa+88trR4fHa2ppzaDKZCBEihLOsYIx5i7VRURQFQRAFPFM1RJoQisK0c/7C2UoWJ6PjoprvHjw8dWrbGjyZDxEi7X6yKOaqqquq+OM//eIzT12AGX6ZV0ai119/e3vr1MWLT9Qy39t/mKZtjF1v0C2KglJU1cV8Ls6ePa21fvva1Z2d094hjGkU8VzbCxcunjl3djKZHBzsV1UVBJwxRhnmohNFQV2XGPuklWitW52Wtfbhw4dRlGSLWvDYWYwsDpgQBBvvGOUIO62k5ZQQ5JyvSokQooyFochmlUfWWitrXVWVc8hbgjGqcwnLmWAdU+CZegAK4yC0WI+Gw53TG62Wmi+mg8F6Xe87YL871+m0CGFFUaxmRUmSoHexmewyaBQgYMYYNIfOOePgZ6CLJ4EQ2mmtdRMmBvCrEM5Zj6zRutvvnDt3jjE2nU5ns1kgwnarI2VlreEicACvSmmbsDvhHKrrWirpG7kkfke3jlEUhJTSw8MhpTSNYzAlQMgbZ4Wg1nhrG68ASqlfisQZodLUQJiC6/oz6LD3KywMuke4FVEcgkNrkiRBwK211vtFngOgAAQN8CThhAPxCu4exphxDtH23ntgaMJVLHE6urrbGGNCkPcEgfODN4QGyy+JCIGd3HlP3lURedgwnTbeQm4qQt4FYQR7uwGgFGPn4e9vhJNwpmOMVC211AuTOeeCICryjCzFj1prutTaA6O8qZGa/twaY8q6wt7XsqTId7otq818Ph/0+sBHCwQTQYAx1lKOxyPv3ZUrT04mk/F4XBSFEIJSTimtqoo2bFkDQnvrrbEKO5ySBHnvvcUeAUvZ+uapxXEK+AhCFnpIgOxBcA3kAGutUmVVVRC1Ct0IAL62ibn31vjliB0hgi1ocL2jmKyoPWDQFMdxv9vCpBlFsGVOGmzXCCEYrDImqqoqssaFA940eNzQJP85fBZeAGDr53XmHa6VSpIEURyFMTAQI0Yohaje0BhDHX7mmWcODw+H+xMhhPfUWucNwp4gj61zs/E8TVNCUb7IVC0xJYA7Q58FmLu2pqoqrcHG10GpoLWmlCZJoqVSqHHCh5EDQkiIkBACMgi0zJcDWh+soJW1ArwwK3YngLOrq6Z8ibZItcSslwMe4r1Dyy7XIYQwXi5Ph51vXIb9MoYILdn6qClgCAuEUgoIAbRJWvOrNQ7m0bAeoQgH9A3MQCglVDBMkLPA8zJumaWMl/xrSqk3FlmHHZRPDr4hIGIO+TSNjTGwqQJiwhiDzK7FIi/LOogirTXQTpMkSVrpz//8L1y4cPHf/bt/9/f+j3+Ps4BwRhlOWjFhFBFqnHVm+Yo2onsDpg2QA+zKkgsqVQURUt576ywhmBBikUeUWOcIxqdPn0YIAe367Pkz4/EYMUYIAYa1954iCjZcRZE754IgALCyKIpr164JIbqDPtDWTKXhuuB/BLzPOY0xhvwe7xrEzVnnid85u7O1ve2cWywWh4eHUla1kgihJ7eeGAwGeZ5BXuvG2kAIZoyJoiBJklYr6fV6jx49ur577dKlS1rr2WyW57nWcrEokEaXnrqytbWljbxx63YUhE888cTx8XA0mhwcHMLDZYz5hmXvvHfGIoyRlLLb7Xa7bSklWJN1u90kScqy7HRbaZoeHx/P59MwDNutFhDzrfVZpra3t3/gBz5ijPmjP/7seDx+//tfNFofn5xMp3NlakKYtSaKwqouYUUAqo6855xTwmRdO4uiSFhrJSJCCIw9bKTI2+VYEcGuIqWMooQx0u12O52O86bf78/zbDqe6CY1yywjIf/8BzbANE1DEb17ezHLSC4AbuDXsDxhvKe1JgTDfHGleFiJkhFCEBboLDJaI6TTlFNKvSCHB8OT/fEHv+eH/ptf/j9P5/VkUpDAFEUthJB1vb+/v1gskrA1Gp0EQYB94zBuLZKygkwChFCWzcsyj6IEyuM4jgllkJ07n89BgAuaBkx8yMMyp5PJBGPc769pU2FEOGegNTGq8bqZzrP5LDt16hRGVBqFneMs8t5ahwNCjcU8DI21mAgeBAihPC+t8VEU1dJ7b4IwTtO03193lgEBnDFmjS/LylrHWOOcA8ufc845VdYC3OwsSlvxSohglwZBTQ3zLgsIeAfgPodhaJSuqqqRl8UhJK8aZyhnDx48wshhb3/mb/3nRVVffevlJGmRSle1VNYIITzBCIFs17oGcjXOIYIs8mT5GP/8Z7DWv/TkBx8+fDidzjEmMMhDyBOMlVPGmJPRiDHyQz/80bX+OmNMKUMJRwgdHR3/j//T//Tqq6/u7Ozcvn3vwYMHeZ6fPn3aGLeYZx/72McuXrx48+btT3ziEy994Lv+5b/8LYTQ2trawcHBr/3ar/39v//3T05OYPXlef75z38eIQRtFJzOK/UMXabGrQ6ad+Pmq99iMI9cvqx+qfVsXl1CyLvSUOH0995T2tiGYEwIgUaVDQZrX/va1977wvtGo1FRFM8++yy4nl67du3Vb778/HufB9nQdDHPq/K973+fiMJPf/rTrVbLWvv2jbfnxbyQRVVVnU7nR/7ajzx48OCFF1546rmnEHLj8RCySSnDlGGMcVVV4IsIl2mtNcZhSjB2tawwcYd7j9+Oos2tnSCI2nG0WCwmk0mv11NKhUJ4QpwxwNj7hV/4hc2tdWPM/+PX/++j0Uhr/eJ3feC7XvrgxsZGq9Vqt7unT5/+t//L7ylVt9vtBlRUaiUqgvIA6gRKOcxIgA0M26BDLohC2MaBJATHgbWWYIrZO1X0asYJZEqEEOhv2DLTO89z8OqBTW85ykUgtoayFhx94Z8glEIRBRHZq7oUK+yXMi9UI1B3We+UUuxX/9F/XxQQWkI6nQ6ldHNzm1JcFAUMgctCaS2jKCiK+rOf/SxlCHjpi8VCiCCOY4SQt84YB+anSdJaLBbO+N2Hj40xHikhRBK3MlRkWV7lBSEMeaKk0cqqRS4EU0qFkciyLAj4fJFDcv2gv16HJaO82+0PButRFN27dy8vFlwQpSsRtXtr3clkghDtdDqM8cU8B1fi5cAKeeO7nX5dqd3dPSmlEExKVRTHnPM4jsejqZQyz3OMMWPCKLdYZJTSupbzeQ7836qUFFHOebuVTMazKIoQJZwHaZoCN4HzKgiCXq+zt7e7WMy63bZ1NfjuOeu73f4HPvDS3bt3vSP/2//NxzmLXv76N73HZVkyJnDjro2MVI5x7VEURRsbHcCDoihChGgjgyBYXx88+eQTr337NcLyTqu9WGRaW2Q8xtg57BzCnhCMrbaEYWcdsQheDhww5XWeF4SQbLaw1lKMrbXT6bQpxAOBlswR2A6gXtFaY0KmszFGjfAN6khKqbUeoYaZAqRO55DXjjFotJz3yHskpY7jWMommJ4xtra2hhAqiqIqsyybId+EVnviGWMP790/eLznEOGc17KM41hKiYlvp+12u22Mns/r2Wzivc/zfHN9a2tr6/DwEE4FwkmSJLUs19bWsPfT6bQsyyAIvvGNb0RR1Ol0stm83U5P75w5ffq09a6u6+FkvLu7G1px9tRZpRRIt8oy15o65/KqhOl6r93x3vd6HWt1URSU0vF4XFXu1Kntc+fO7h/uZfmcUrq+MdDKdlopJazVamVlfvv2A0LRbDFttehoONnZ2dnc3E6SREqdZRksb+8dpdQ412q1llwe4n2zzikF4SpFCBlns7LkWgNwJkQwnU7jODp1aidNW/P5vKpKa7VU2hjFGJWqyvbH89l4e3vz9BNna5l3uqkQoijYybC7t5fPZpPd3cXm5iYjvNvtTiYTrXWStqCWdc4nSXJ4eFwUBaVsMpmPxzPvsDXV3bv3KaWeo+/+0IeNMp/+g3+fJMmZnQve+5e/+e0Pvv/D7XZ648aNX/mVf3jh4tlf/uX/+gtf/JPBWjcI+XB4TCn93r/0fUEU7z46SBJnDNJayzoLw5AQpmqJMcYMI4v29/f7/f4LL7yQpsnx8fFsMR2NRiJg3V773t3dsipam5uCce+hIHAiYFprjIUQghCBMR4Op/t7J+PR4mh3Yczt/f3Dne3TzrnzZ8/t7e3t7j6eTKYwMcaI1pXSWm9vbxNCjFWLeZ4vqsUsd85hTI+PpoBYeceNxlJWJZGdLsyEtNKZ1jqK4iASggUYY8qD97///c6ZP/zDP57P3zi1dRaqFmctxghTAl0u1F62EWU3MLRvLJINQoiSpnQFBxgYZHrvORfGaKUcpMxXVVVWebfb6XRaGLdvX31UVyoMY0KII8ZaSwgiBMFfBl19EASBEEEQSKmlNVEYBUEQRgIGTghhIMsYY7RSXAgIWTbGSCnzMo+iaDgcLvIsSaL19fVz585Za2/cuCGlXOt2W2mKMc7y+WKxkLWeTCZBEJRlzYMADnJjTBzHMLPMsuzmzZsg12KMtdutBw8e7R3u1TL/0pe+dPfu3StPXSaIBDRIk2DQTxnxP/uzP3Pj5rXv+/6P7pw6ny3+RFDT6XT29vbqut4+ffrpp58GdANuMnzgRFBKgVfM4cGx9x5KVUJIGMTb29t5nvd6PWN0URRVVQAqoY10TjnnxuNxWRWdTuvpp68EIWu1N+7cuXv27Nnz5y9urO8YjR/vHnJOu902Ichaa42B7Qsz6r1njPb7fZDvGOWiKGi1Eostx9gbgpFhibh48Ynt7e2yqKtqlxDS6w3SNHXOMUaLKu9220C9r2tTVRVM8qtKamnOnDkXRdHtW7fA8Hc6nV6/fh17xAgPgsAhY7w5PDzUpnZIA7KzuT3IFkU2K7e2ttK4k+dltqieeuaKlHJRZNevX6/q4vTp04KyPC8f7z+MglQEYBRuoDcOuDDGCBFaa5XSCKFIBBijKAqtdR5Z74n36Btff7mqax4hItB7Xrh86tSp4+Ho+Pg4YCEYMq5vrI9PXBjZ4XhEMTl37kKxOLh9+25V6t0Hjx4/3Lvw5E4QcEIcJrqq59s7m8cnj6fTYjjyStsgiJAXo+EcUFdCSF1K+FbD4UmeLyjDVa1arWRjY0MIrrV+7rnnKKVf+cpX4ji5c+f+zev/b++9YFGatq30nAeYAC1Ucc4FIxZha4mqNVAgtzbOjMdDo1VtTVnMO902IQwhT3AAEySCMeeNGM1oVBSVECFeUhKMMZUuDw+rOBVSld776XTqvU9bcV1p3jjiIc45pQo2B1BBDQYDqPb80oN4GefLoV40Si/JWQ0Zgb7LiBb+F+89F0xKizHe3Fzvrw+8d0WRa603BhuUUoKo8poRzCjDBOmlZ64xDiHLGOOEO+yg8A3DEGNa13WWFVLq1jJMbPXPreA8pZRfGfsA1ch7mHAzQldXtJJfQKoM/DxCCBOCnEONoQfhghFCsizD2K+trSXtlnNOa3l4eAiOWEmSLKVIHBAoKLUB1UUIOeQdUFV8AzWuoCtjDBaMU7a6jQ47JWsQtMKOgZCDyG+ttfeMMQGuedAY5HlppAKlSxjGyHljDPh6gQIMyCMYY4oZKHahGVBKEYLiOIyiaDqdEEIAaXLOAcpsjAFngVVJlrZaw9EIEDcALHggoig8fWqbeDedjBijURAyTOJQxEHYSVvzPGOMGavybEqJA8fk7e1teI5gwAotFuAajDFQGEOqe6/TK8scXiGwOHTOLrkIjYmEtZYxUtfy+PjE42bUQbD1rgZiFKVUSjiJOGjzhRDGqKIokOUQhwVPZFkUeYyJ9X6FNnY6HdaEsNecc0aJdw1hCib6i8UCI2Kt9R4LIWRVV5XknHvvFot8+ZqRqpIwTXzXN2eAjcJoxFnknAUedJqmXNBOtwU/AGaLVVXCCk3TBObHxljn4Krp6hiCBwTqNGcRRdhoyxiL41RrXdelMYZRCm1FXdcwdWasidSTVQ1s2fX19el0KqVa9n4VtIjwesC1Ay5gGyttMMNp4F1gOSzdXfBq6ALkZc65rGpCGoihYTFj7AjBHhmjTON1HlDeCNg9wUsFAiUeOdvM1NESdO52u6WsoUlWSkFoJzTAq23qXbIGskKiYdk239Ba6CxWGwWsaO+9kQq+AVQs1sL4nDgHmzEBoLkBOr1HCCVJUlUVIQwhQhFjzMqqkkYqrTudjvf+woUL/81/+1+rWt+5c/tHfuRH/vE//sdlXUznU+Pg7lGQUMBtBMQwDEO481pTQgimCBjZjJMoisqyNMouGQaNH2gYhg8ePADMrt1Oz/XO7CX7+/v7CFoosCtEDQXh2Wef39raAJ+u27dvK1UHAReCLxYz0ghQqHcWW0wJwQhppSjFHmPnDKLIaK2NZIwxzpWycRyfPns6DMOiKFrttNW5XBTFtWvXL1++vLOz5Zyt6zpN2tbpPM/hAVVVpbXudDrWWmttmqYY48VsPhmNrTayUkihH/zh7//oD3387r3bV69eTdPUavPgwYPxeHr9+nUtZa+/vhS8Y2vtfDENQtEKU/j+Ozs7GHvG2A/84EfW1tZ+//d/b29vj1LcbrdhuXEecM6rujDGGMuVNBj7k5Ojq1f93bt3J9NRt9vFmA6Hx9bawaA3m02NMlLwZ59/xjnnkD85ObHWGIUoIQghWcm6rjGiSikL+ZsYHpAjCGPCCWluPmiJ2u02vNiMsVqWwOYmlEopl2Mttpri/LlPmrSS9innnNIaqIsA2WBKEELOOh4I6xwAO8poZTQs54hG3vu6Vn4pHYBdrmnbrbMr3BkzQkgUx4wH+/v7w/Hib//SL//kT/7vstK/8dabhImYBkVeaSO11tniuCrKOEysNsqj1VgL2JRwuABoG4YhQs4YQGwjSnG321WqBsTKGEMpFUJ4axFC3W633tgoyvloeOQRq6qKBi3BeBiGEjPkvda611s/OTlR2vd6gyzLvLcBx7KunHPWEU6F4MJh5zBCRCyyUlsGh3WStr23jGPGuFYeI8R5CKTmsqiNcxhRay0hrJG2NEbMiCJMKQPLBkEZsk7X0hlFEF3FtK62GrS08LLWemQJQUpWeZ53u90kiKSU1juMkUOu1WpB13b12g1G8cVz5/7Kj/zEnVvXj48maSuwpmScWyuRdX4Zo+eQR8hhRAh597DtL/j8V//lf/nKa//y5s2bnU5nOp36JUqjlOY8QAjdunXrV37lV37+53/+iQsXvcfb26dkrbMs/9Z3vv3mG29vbe4o477x8qvOyJ/+6U/+1R/7kd/4jd/o9XphGH/qU59+/vkX3vvCBx49egx++kIIreUTF5/83u/93qvX7nzxC19CHltrkzh1zjnvyNJMCTZ64MPCtBs2aqeb+Fm65BuuZrewgtxy/kcIcg4OcbYqCFeoHVqK2LyHZGAK277g0Uf+0g/0+/0bN27cuXMHpgVRFG1urr///e9fFAvv8ZNPXv7a174G5fTW1taVK1e890AST9NUSrlYLC5dugSRDO973/uUUoeHh4P1btpOjLNlXSwWsziOrdNRFGmtCaHOayjVCCPWOqXUcHhUlEW32z05PPDeX3nqGcb4xqB/fHysZdjtdDjn+SJDCDFCNtb62EeYeIzx93zP94xGo4997C//9b/x4957grC19vDoxCPU6/WstePxuCxr0Cb2+60gsISQVqt19uxZFojd3b3V/UQIQYo1nO9lWVZVJQTr9/vdbhdjDEXdsthuzOjghsPfD+8tVAtQR8EvgAyxRJkbC2a4jWg5iYESq3lq1rqlxUcz9fQmRCEUrpyxOI5FwFiKN7e3SukYJcGpnbXZbFbXtXd4USw450kS1XW9u7trrd/c2MYY5n5UKT2fLABnSdMWKKmjIC7LMk1jKHGUUhjR0XDinFssMhFgWcoqrwIRMibiOMaYeoeByfvkk0+MRiOpKngkhJB+bxNjrJQKeUAiCpc6nY6PjqSUVbud9not411ZzRFCYUSxY4SiVitljM1nGbS+a2trH/zgB996640gCJUyp3bOEIpOTo4wxoyt1DEkSVrtdjfP8yiMjg5PjLGtVsyo19gb7Yx2GGOMiLUOmO3HoyFqWEUUHhVkniijrXedXnc+n29vDaIo0kbWdT08mWxsbD115fm7d+57x4zxH/jAh+7fv394eBKGOI5D57CUTV0Lz2w+n9PlR4ShNg0l4Xh4fPnyZc75nds3rTWci6qWlAjnLPgzIIQRQhQzhJ1HyDnkHKKIGmWII5xyWSuE3WqIB9IkQZmyBm4I0Ez6fUEpffTokZQSI4TJn1fuQE8Nf2KtZXQ5jyUcMeKRdc4RSo0x0+nce+uQZ0xFUcQo8d6vDTY4C/xoaowzxsIJ4T1mjCCEGHHO2yAItK4oxVHEvQe+YcMJBfpSWZYPHjxw2oAfNJi+RVFkjJlOpw6hTrfV6fSiKIqiaG1tLeSCENLvd7/yla8QRre2tlrdVprG16/fSKP0H/yDfzCZTP75P//nxjjoDEUUMsbG4+Gg28nzQkoJFmZa6/NPXNzcXI/jqCizOAqSdItTNplMkiTBGOd5nlULyujWdqeqKm0VyGyHw7FzDSc9idPFPBuPx5RyxgTyhPMQ+MUIOcoZIcQhSHfFIPBU0gRBpJSSdU4pxcT3er3z58+dP3+eEAR0Tm3kbDZjjHDOjk8Oi4IQjDCmx8fHXNCyzDnnCPkoisCqwlo7Go2M0qD0h34jjlPGWBQm4/HYOcM5lTUKgxhmBsQjACvPnNn4lV/9Rzdu3PiFv/Xzcaf91htvMyYe3H905+b9Ui+kKspadafRaHxsnT483O/1W2VZrq2t5XlpDR70NyaTRSBI0ItaUev+/ftVUYOiljE+2FgLAn7j5rWTYe/UqZ39wz3nTRiFZZmPRietdjgQ7TAUWZYh7PIi55w/88x7jo6Ojo6OWmmHYIa8q8ri6197xVoUtamSZlRPRsNJp9PpdDrnz593zp2MRtAOQQXfbnejKMnzfD6bzueZ4LH33lnEGMXYUiqECLzTzjnwcqrr2jmVpBELSJZlo9GY88C5uTWec/57v/d7GxsbW1tbx0fjm9fuI4KSMPHEWaORB/ICRQgkfSBc9YB9c84x9gg1p69zjiLwvjSMMeON1ppxpLXx3lMOBt+MMqyUarUSSunOzs5oOMmyDFzkPHZMhEkUGqc9aqKxnHPKqTiOibPUNX52cRzDsQeyGmDHVFVlrYNK1LkGMoOfl1XtjJ1O50dHRx/60IfOnTt3+/ZtWddxFAH92XvPWFVX7uDggHMK1oqj0Wg6nfb73V6vo5Q6OTkBpw7YAOfzufV5v7925cp3ffu1b1tr4jjGGN26dz1JeBAFnX5nOBxiLKIwPdg/zvL6vc+fvX///u3bt7vd7l/5K3/lR3/0R69fv/6bv/mbR0cHMO7CTZRBTSktyxLuJOfMe1yWNdzkVqsFXKfBoC+lfPz4Eagaqwo7r7ngnW6qTT2dTm/fvouQe+bZp/b3hg/u729vP1wssjRpb2xs1LUaDAbtdtsYUxXV3bt3AZBFzlEqWq0UYGvOqTGKsY4xZjDoRyJcLBZnzpw5ODj40he/Usraetdut9ud9PAwW19fPxmdbG5uXrhw4Y033qjr0igvGP/gSy8hT95666qu9cc/8cObG9u/8zu/8+nf+3eI8X6/X5cVDAysNQZ7qEgm01l/0LHWp0m7qqShpKqr0XCeZ9Ijm5fFw/uP9vb2nnvfU2fP7Thn+v1+HMcU0S9/+evKVM8988Lu7u5oNPLIqswpXJCAVXkWpvEzzz4VhkFRZLJiWZbZygohOAtqrSgLophWeUEsMprcv7eLiY9ErJR65pnnoijq9/tOG8jyOjo8FDwcnsyGw2mn08aYpkm7rvXFi+fn82mnm25sbCSt9HJ9+datu0aj46NZGCohUmsc8ghyn+q6vvbmzYe7D4SgStdKudNnBhefOKe1dM5GcZBli2effe6nfupnbt28U1dvPnp4hIxDqBZBhB3WyiJnrbWMU4I9pZR4aylFCBFKnUOtqDVGY+eQMYpz7oxjggkmHEXSaMaokoazEPpzhBAG0AQh+C0grUmSbm1t3bt/u9PpWacZY4xgzgLnHMM0zwugWnDPgckI8sCyLGFXWJEBrbV1WQP5cAUewYcQAjtqY//HuPceQmpFGFS1QthXdQFmx9gSSrmslNGOMRZEkbWylrVSNcbY2obAwgkwasG1gDiHvDewT8paW7MQQkRhbLSezebee+c8xohgijzy6M+IKP0yAM0RukKLVsCV9x4AslWBCxdorfXI2dpora3VcRzXda2siqIoy4olammMKdky3cUbq7UOgmhFQIb7AzgvIcKYd8LNnHPeW2I1WnZ3dBkUsyqcMPaEAN6kYIiVpoQtk+gowgHjkQicc6GIGKEiFFLK8XhirQUQHCOKKczmvVGaUioYN8Z466zWVVl6i5KGUJZDhUkZg5ZMG0MJIYQAuj0QotVqwf5sfeMa3+l0oiiKBJd1ORmPkDWkjeqyAmkF9pbzAOoKSikndDIcXbp0qdPpOHeslNLKUkq9s5RSyhk4NUP3Dlxy7xu6E0SxocZG0FRV5r2nhCOKrAWGqQ+EgBeVIMwpM8YYrT2yALdB7iXU0sCcrQu7ekaucUJ9xxECml5KKWMcY1IUJaIK6nB4hawpq7LOswIkpc4hpWrkPEKNhRRCzhjjMeJLl2RCOG0yc1wcx61WC4iEIBoQorHagDabYMoYA/DU2BrcSJ1z1rr79x9o3bRF8K+vXmnAoYqiydUUQlCKgyAUgsO2ACJWjA20h957CArjnOd5BlgzSHayLKvrGmMSBAHgVt6rFai9oua5ZR7gqjP0Hr8Lg36H8UQIQQ45YyWS0NA55xAlxCOlDFqGZ1ZVAU5ZMKpxzoE9y6p5wRgDNkoZZkws212rtQYDwCAIrNWUihWgs9qpVu3Patkuy9EYvs8qfZEurW+aMQzCeAlVL2+4RwjcaZqEPeMszNEJIQCvlGWNEK7ren9/v510mODtdtxfW6tVRQiZTCbj8fAXf/EXHz58+OM//tfn2dwhd+782TNnzxZlNhlPYawShhweUF2roigQQs1gzxPBuMUWIeQdVsoQQqx2q4EfIYRhAsNjaTTGuNVqbW5uGmMIohSTFcpPEfXee4cxoh//xCeCkH/zm9/c339cVLlH1hqDqCWMRJGI04hTkc8XVSVDEQBm6hymnIBEur/WG6z1wzA8OjpaLBaDjR4TVOq6rLNutxsEUdqK4+R9nAVFkbfb7WZERAJjbLfbd84tFjMAmI6Pj4ui2NjY4JyPRqNlTGLw/o++/7nnnnvtW688evRosVhQSuM4rooaBj9hHLdaLXiHKfZ1XW+E62fOnCE4qKqqKDJVlXVdP/f8M2dPnb59+/b4ZDg+GSZpdPH8+Z3t0+Px2BhTVXK2mFrjW2lqTSPsqMtSVpWgYm1tDdLCRRB0u92Dg4NyVq9tDF544XlK6f7hwcnJSZZlQRA4S6GvtNYyKgCsh5Gtx4hiAkCzUs0qRp5A1wnb4HA47PU7g8FgOp1CmiG8k/g/YYyAEIqThBAym82klMuxhHbOgc2L9x7+fDUHCsMQrB4YY1Jq770xzjkHwzmMMRCQPfIwwuQ8aKXtNE3DMNp7fHR0cPx3fukf/MIv/NLu3vTGjUdZIT1SRVXXdZnlc85ZXRXz+bSTtpyIjTGME4RQAAEMZbbqqcH+u6qqIAjg13medzqd8VjZRo6DnXNlnqdpSjFiARdCrK+vz2djYxTlIk061lrrPRhkUcbX1jc8wicnw3a70+70kLfeW0KYVjVhglOhjYmScFHk+aLwWHAmlFIhj7x3mNAwCIUQ3lFMeFHWlTbWeEQwpRRkMZRitMy6cEtrfgy0c9/4ywPcT6knjlGEMcIME7rMgUTYCUYMRc45gNEbXAtjQkhR5gDwYe+8NXVdF0WFvbt+887axvZH/tIPfe7zf1pXOowFIRYJZ6TEGOwxEcYYEUwwAVyFEBKF0V/4wnzjG9/4+je/NJlM+v015xznQinlPUIe5nA8iqKqqr7+9a9rrTc2tl771nfu3r1vjJVSOowwoxzxF198/0/95I//1E/9lJTVW29e/a4PvfT48ePbt29Xpbxy+dnDw+PBYG00uuWcxZiOx+N//79+9g//8A/hJV+dBZwL5xoJy7IGs1BbwtBXSllrZZcOD2hJefbvYm6vDh30DvfZwUb3LojZY0zB7Yk18e+WYGGNHWz0OQ/m8+zu3fvQfgK54fnnnz979uyN27e+8IUvvP3220VRnD59+u7du5/5zGdgODSbzZIkmc/ns9lsMpk8fPTo7LnTL774Yl5m0+l0Op0mSfTiiy/2+2vW2t6gn+e5977f7xPMGKPGWEI9RqQoS+99t9tFZI2M0JlTO1Kbg8e7CCFZ69lsdu/eg16vd+XKU2EYntnZ8d5zTrx3SlUQa/z+97+/1+t98IMfSJJkND4piqIsy2eeffr1119P03hv78B7/+KLL5w9e/bJJ588Ojr69Kc/zXnw9NPPIkreeOMNqEag/rHWwvtsrUXEcs4vXbq4tbUVRdHjx4+BzgW8LkC04OfhxAScrdPpwFZDCAHGNBQ5UjbB0e7P7mT+XWMYqBvxMk6DEEIJYZQ6a533lFJnHOQ2R2FIJMEe9ft9pRSlAfOe5HkVBCGlDGMURgLoXVpb77F3aDyeeI8xoq1WxznrPRIioJTBO4E8abWSzc1NuKePHz9e0ewPDw9FwIyswzBEHpdlGQTwFtpS1SIMX3zuxfX19a3tjXv37kFftFjYIpfOOdKo82Jr7Wy2IARtbGxsbW0oLSnnlOHpdDyfz53XxGMpdRjGCHnrNOcMVFFSVpcuXcqLBcZod3+X0GbqDvt5GMZp0gY5JOc8z3Own5ZSr3wzKOVaW6mkEKKq6jAMOOcQ/Ko1Buiz0215hORuDQ9AqfrevfuQWhbH8WQ8Pz6aUMpHw/lnPv1H6/3BuXPnBA9PndoxxgBZgBCSpqm11lpf13UYxrCvwR7NBTVGxXGMKe50Onm+AMFUVdUIYa01chRjijHB2INp3bIpohhT7zGloG7zlHJKsZTSI2+0QRhBk2+8A+XjctUTKIidc7qWlFJtJKUUikuosyl1hKAoSp1zyDch14QQ58HQufKmAakhMwR+DYeWUqrV6hjjZKXKsiKYaa0p5c5YzqmUFadU6TKKosa82LgV4b+sK0q5YNh7P5vNjFRJkjSArFWEEKkq4hFmlLEepXQ4HJ8/f7YsS5D8jybjnZ2tt66+fXR00F9fI4SsrQ2uvXXzn/zffv3SpUugFVoJk6MoYIyMZ9NIBO12G6jNzrn5fJ5l8ziOev1OEHBGmTGKMeKc0loPh4eEkM3NzZ1Tm3lRzGYzpeosmzmHMKadTifPCoQKIUQcpxhjrW0ghFIaLHI450EUIoScq7TTGkYRiIKfJsZUCG6tFkI899yz29vbjx49GE+ODw8PL1y4cOrUmSiKhBDHx8eddj+OWlEUWqePDqdSVusba5cvXyrLstWixph2u33hwoUsy0Yn4/l82u/3IW+N8+Do6KgKq6qqjdEI4VarC+yDZ555Mo3iO3duv/C+F8sy/+/+u3+glPrghz+0v3dw4cKFg4Ojdru9v7+PWMkoNUbVVfm1r355PB6eOr0V8Pjq3Rvd9mDv0eGbr7/dSnvO+UAkyCniQOHY4zzAGAMPRWvtvJtMxkpXHjtCUFkasEkJI75YLObzOefEOcfp2s7OztbWThRFk/FsPl+EYei0ayddG1qMsUWNd35VVUVRQATH7u5uVhTg2wivrpRyOBxqrY3Ry36SUhKAC5CSxujmdCSEWSu9dcDsCylmnEWMqRroWhGlNLDR4eFhK+30ep2MlZwK76iSRkOrTBnyBAwKOacIEa3lckOnGFsIusEEwSFR1zXnVClFOAPTSYIZYShJU85FEAiEHBd0Ps8IQVQk61ubFvliUThnkiQJwwAQTI/sfD43RhvvjbRwLG101q21x8fHo9GwTqtO2gIrKx958G2cTueQCsII99YRyghh4MPonBOMV0X95utvYYzLvFK1Hp6MQRaDPPEOp2kMt1dpHXKxubnunIOoUuccJSQMBWNNLpkQIq/qoiheeum7JsPJvXt3Nvvr9+/fe+bpK2ma7pze/pt/85Pf+s6bBIdKe2OcUXY4HJ46derg4OCTn/ykc+6P/uizL7/8stYScsMoJdb6FbcRYwxOygCWQf00n2elvO+cw8T3+/3Tp09xHpRluVjkvV4nr+aYkOeff/bq1euj0WQ6nTvnvvbVV4MgcI4+engQRRFGFSHSWp9l2WQyWesPCMFxHAFWaLTTWs5mqqpKb5RyCGH8eO8RD8V0OtkcbHU6nTffeBtR0uq16mGNKbpx+xqgV0cnR2WZLxaD2Wx27eq1Xr/XTjtpmpZlORwOiyJLW+0bN2585StfMcaEaUoIKYqcUUowjuNIlpWxJgiCrVPrg0GnUoVStbU+z0sltbekro3WFUJOW/fgwaMgCIoiGwx6l558YrGYaa1VJV966cXxeD6bj9qd+PBInzt36uLFi2ncStP0YP/o4e6jShaIGIQN4SiIuTKmqMtAIKVMPi/XNtc+9rG/fOfezfl4cWJkVecA9AwGm4vFsK4VJ7SqquPj4yRJQhFaa1vtNsaUIEYZzgu7uXWmrCTjYbvT+/KXv9xudwKRaCkZDSgJncVKyWeevfL8e56eTievf+ct541Scm9/3xjEBTp1ajvLprCJ5Xl5/97j69dvPPP0e65evV5L1e506rLW2mJMKaEIYectwhDczIySxlkmuPfYOW+tvXP3BmOsLnKLLcLhYqGjKLLWMSqiKCrLmnhkrQGjXmut1hb8DR0oN7GD7I7ZZN5ud/r9blUXzjlZKS4YpUKVmnOqlBFCYGQhWaGqqt3dXfSO/MiuandPmh4AsFEo9EMhltgTVkp7j6C45Jw5Z3lA42QgBC2KYrGYccKTuO2MXczzqqoppWEYBCENw6DdawNSwxhjhFZljRrleGO5xjDjLAiChgcB2GgtpdEaYDulFKHUOUcZQwgDhQXqAYw8wcRqwxhz3nnrKF3Sip2lhCKCm0LIWkwJpcDw9QCmwBUpVWNHARGD1D609M+pqgrI4M454a0xTYL2slyBfsZjTBuHgmXKzYqpwTl3uAHU4IFSioUIGGucK7y3QoRAHoEzmvglI9g3wF9dN6gB3CKKBPjjAzi2QiRB8EQpRR5jjDudnnOGc+4XhWoiyJvOwS9Zn0CvboCVKgdiWshiq83JyQmyhlO01utWZRmKIA7Csix5EG5tbGd5bomtijJtt6wzSZKMx+PFYmGMA3/JFXRitbEIEYo4EwTRqighAZUuQ7dQ46jhQFnoHW42dvbO67e5uem9L8uyqmprDcXEY4IRqaoK4vjAtxQvyexw32ABxlEI0AxomcHdGCEE0SCc86QdaG1nM0j9raA8hm+YZUUQBKC8hKUBhh6z2ayqKkY4xsg7jylkfjTyTyl1Vckg4KDmCVjACcRjemR9VRfT8RheMOxwXZayrIFSxzkP49Ab4j1DCFgfy27NeKVVkRUYY8KZc6iqpNYWzJdWZiOcc6WscY0OAP4wDmNvHay76XQKKA9gN/ASgucVYMd4mdsDyCyQkoA/C79tCvWl7ABBeD0YXFirtWasAdYxxmTZrDbUMwLexKiZPyGKEGKB8MugMIsRxd45rLVGyIHTV1FX1moYsvJlGBp+1we+Enx/+AG0tAsA6HmF4vklqRPGP4I2MxhrLWwpcIHQVcEl+0ZEHJZlCXzMJGlJWaVpihGNo7Qsq5hgrWhVVeuba4vFAvDTx48fzefTL3zhc/v7+2fOnIqSOC8WVVWlrUQpxTiNoySOY84DISSwybxt2NnWOmBordDDehn/aK3FzitkF4vF+vp6HIQ7OzuVktPpdHd3lxDCCbfWeo8wZo44o5uh17/4jf8Pxtg5QylGzIVBmCTx+vp6Z9BhjFntyqI6wL4s81o55Lz33npfLCrj7M6ZnaefeWqw3meMdXrt3d3dfr+bJNHR0ZFzzlqNcRhFgdZyb+9xFCW1LMF7hzFGsJ9Op3fv3u33+889956iKCaTGcY0DPmSPWeTpHXq1Kl2u/tHf/QnyjTWauClGcfxYDBQUltjjDGLxaLX7xhjGaOtdjKdjeezHAzZpZQbGxtJknz+859/6603T05OtNbIJ8OTMab08pNPee+/8Y1vYESDgGJCnnrqySzLEEJXLl353Oc+t3/wGHSKxhjn/eHh4dnzZw4ODrq99uO9R8658WQCGsEg4Fa7upaQUksowpg1sDJCGPztEMKQ+wwDXou89zAhgJ0KOsowDKpaeu+hX/4LcUP4lEVR6yH4Y9hl6inU9sB6gZW7AvXgiMEYK2VgJAxsD+BUcU4JQUopi6wQjPOA8wC6+8NbR/Px9Ac/9qMf//hfvX//4GiYl7VJkmQynSHssyyTSjJCyrIMODVWSYWFEMQ12mUwsXm35/jqK0G7ZIzJ8wVsC0VRUIadc604kbKSVW2dyfNcKbWxubWYzxBytTaMMc4E5j7PMmi4ut3+7uP9LC/X1/rG6LpSPIiUUggz4xzCvKh0LT2mIadhUaogiBnjzpk4jmBkK63lRChptVSooQAKwSFUjK1cPhrV/zJdBi2j7fCSzswFZYzB8/UQW0c8OBEzhxxGUkllDaWYUmyMcs541zhfFUUBmYRRGDrv1te3tfYXLz199t79+3dvcCEQsdoYTqlrajPkvYeZnLfIe+uc0dr+hS/M7/z2b5fqapq283wBUA9s+946bVRZlmfOnPpH/+hXpZQf//jHHz58+Fu/+T//tb/2Ez/8wx/79uuvP/v8C5/61Kdms/GHP/yhn/7pnwlDXpblD//wxzmnmxvb733hA+fOnXv99Tdu3rx1/vz5Tqdz8+bN4+Ojg4Ojq1evnzp1ahVLCxupMUYIDkXgEjVGoG+APDO08hB/xy5jabKBEG4Gkc3HObuyRMMYI0TfNSnEzjmMCRzg3nuMmbU+ipIsKz71qU8VRZFGsZTaGPXyy9/odHre+xs3buRVCXF273nPex4+fAgDklu3bsF8FCEUBGBDUZVl3monu7u7r7zyirUWggGPj4fPP//8E088Ya39kz/+j0AtXVtbg8tXSntsnrh0odVqHR0dnZxUm5ub88X0zu17i0V+8+ZNjDHnwfnz56fT+Te//hXO+cXz59773vcGglDi0DJjo7c2+J7t7d3dh/fu3bt2/e0HDx6kabqzfXp3dxe8OPr9/vnz56uqeuWVVw4ODpRSrVbr0d5jmDHPZjMwgVlyv5pD0HqAENthGO7u7gL1kHOutcWYcE6h8XGuoZkzJlZjXcaY1hoiRtbW1lqtllImiWKllMMNt8wTAk4+MLwhhADtklJoqBFCzlrNGEHIAWOAEEIYrZ1yzlljjLYJTfYO9skwZqPjWRgGlOE0DZWSRZEFAQ+C2FnJGRacIoRCEXnvlaxs4/3nMMZZlmFEgyCYa7063YGtwDlfLGZJEjlnnGZg/dPpdIxRs2wRBmHaSdfX13v91iKbAR5fliVGtJbKqppSaq2hlFalpKzRbqRpfObsaW3t3v4umFmHobBWl1UJ726W59bauBV7ZLWW3/zmNznnG5trhOAkiqSRg8EA2OZhGI7H06qUo9HEWluWFcaYMe6XoRlLzSOCfccYwzlzzgVhEEWBlBI2pnYn5UJAqyClhK1H1brITxB2UVh734QXCxEmSaKUevToURiGvV6vLHOlaFnmYRgxxrS2WmspNTRysJ15jJ0ncAaEcQhZB1cuP22M/da3vlNXimDukBcUO+cxJpSC9rAZOVLGnEXOG+c8CAaNsRhjjFgQ0jRNoyimlBpj53nW7/e1spRwSHVvt1s7Ozv5fAFmr1prSjGIB1dVbBAEnFNGBTR10GY457zD1mjHaBAIqCTpUulprdWqYkzHcSgYT9MUJn4Y0WKRATPCeysopZQA7Mh51G63PUGTycRZyxhrdbtBEM7Gk+eff09RFA8fPqSUMMwqWRHCAkF5GICkoq7r0WgSRZGRtTHm4OBgbW0NvCNAixHH8aXLvdu376Rp+lOf/JmvfvWrNyfXgzgAxE3KCiGkrLHIYYK88x450PACkWGw1rNWQqpyLatOt/vs2rNZPt/c3Lx06VKWze/fv489GB5hKaV3iBA8mUxgvTTZQc5FUeAd5ZxWVVVWtfc+DEOIuInj2DtcljUhCEaOsOnfv3//9u2bZZVzTtbWBlmW3b59W0nT6fQWi0Wapt6z/b1RXZeYeEqx4PXdO4+Hw2EQ0ZOTIaTlJElrfW0Nhr15ng+HQ0ppEERaa0x8HMdFURrtut221tOTwyO6vT0ajV577ZVer2ccmIiJssp2Hz/Y3NhZW+tb7U4mD51zHonR6AT8Z51zVakI5m+9eeODH/zgoL85HI7SpP0DP/CR3d29bDFb3xhkiwJapnY7nc1mtZQYe4ccE6007WTZnBBycLAvZX3q9CbnNIqCi0+cLct6eDza3d2ta+U97nQ6VXVslYX331kkBG+lIeV8MplACQJ7xalTpx4+fFhUTdS7NZYxWpZlGIZBmq6vx9bgLCvLAly/yArNgU44CAJjpNGII+oc5py3Wm3Bgtl0AS9GQ0Qq8oCH/X5f8LCd9ozUWtnHuyfGGM4x8gQhC8pW1wQfEZi6Aai9XDJeKaU1ZoxEgQAhp5SSIcYZC4NIa0Wp5zwsy2KxWGBXwmXykNvCQpBUHIdhOIjioNVqSaOgH1BGL/JFli02Nzc3NjZAoDQej+M4gfffaNfwB5VijCkjGRNOu1rWlGJrjCfYOQQkF0ABYPNH1hWLzDkXiYBwAbRiSAKCfkyqyntfVwpcnwhBkONU17UyVVkWr37z1bffvMowqXLZTlof/9h/9mM/8Vdv3LrzwvteokH3+rVb//j/+j9+7k+/IHi4KPLn3/uC1vo3/+ffnkxGlNJikZ0+fXo0GgFnH4T/DdLksPdIhGEYhmWVMyaWMBOxVnvjj4+PZ7NZGIZCBMaYLCuKcqGU2t7cObW9MzoZY0cFDa21VmHvCUJMVa4u50ophPzoZJgkiaxqaJidc9a69Y1BnueqVEkS9XqdpN3yyBKCn3rqqel0/Nqrb+zvPkYcIYSUbiHiklZgjAlCHMcJ8q7f7yKEDg4OBmvrlFIjVWFdEARGqk6nU1Xya1/5EqMCIRSFCUIIeeucMcYVhfLeU8o9dkWRxakwFhAKhwnxHhNGKaWy1nU+72+uM0bCKMiyYmtr69GjR0rVYRiGYbyzfbrTWTx8uMsIPXVqbXtnTQSYCcQ5OXN2O0j4cHQyPD6czWatVotRSqhTRa210coi54qiuHfvQcDD9Y21Xq917/5ta+1kMnnlG99MksQ599xzz2mtZ7PJ0dER51yIoNtrV6U0xi3ymdXBqy+/eXD4yDp14eLj4+PRZJytr29REst6DLVXGIaHh4dBSI2RrXaCMR4M+ts764zh7/7wd92+fbPTacVxfHx8fP78xTc33n79jbdv3r4hQh7GQbvNsyw7ORxZKykNtbLgJEp8Y/yKCCbGtXvd02fOKaW8yZxz7c4F50zcSoEhpaTZ3z9ECCtVCSqUMpRy7x2lhFABcgGMkLXOOIuQmc+llNIiTSlvt7rOolBIa20Yxprr6QRARWh6EcBe0IKGYeiXtrbQCVhvVsdrw9b0TGvtkZ+Np8CeW53XCCHCKEIoTVNt6oDxNIqVMvP5nCAupQQEx1rLeRxFoa41oSRNU8G4d8g7NJstGGNOGxDfUEGdc0A+IARVVU0R5pwTjGG6zBgzdrkhN9Xqn/FdhX8OuovVsLwBpBB23kOj65xzxlJKPbKYEEybbFJCaBAGURRNJhMgf5FlwgE409V1LaWslKTIQPMJ27hemnuIpoRr0FvvEXSAfqklhD2fcwr9ErQBCKHh8BhCJpbwVmgkEAjYbDIPwxAyzSilkKOCwI/VvuOjjZYGefBwvfeEYCGEVrbd5qPRfMUfYYw5YzlvdKwARBJCoijK87yscujZWq3WYGPdWGW1pQR5iwhnSZI47UjEGBNpFEdpMpvPkUVSalFrhJAI+NHhEaUUY5okkda2rmtGBfbYImutpZ5iDC0619rC2wgVsrUGLwOBvMPAd25cDoxhjCHkZ7PZSniLEEYIM0K01pwFy5AAByIwxoTGatl8vgNKwrNGnhCMgwAoVzA+4YQwKTVCjW7UWu+codRjjIHckEQpgJJRmAQiAP/N5VHujbHeY4ptr9chhBwcHdqlVh08vggWGJu6lt77up4QQhgj3qG6kpSysiyrSsZxHIaxlNJq56wjCHFKIGjRew++h8tBtQ0IR55452WtvfdByOHqzDLMByNKCFql94BtkbU2z3Nw7TDGCBGgd9wnmgUOnyUi0KT0rF42ePmVUo2p4rsAXNJomdG7ynhEKUUUYYthaeOliwUwYxBCFBiFy3goIBU62yT1gc7Ae2t8YycN14gxhWkZfAFYrfCPgkTALXnZS2CdWeswpt4brSVcHeecYSKlXOnl3fJrgOc1epcxKKOMUopQqbXFWAWBQQiVRQ1yq9VAaOfMDiGkLEsmKOcMRJbXr189e/YsInixmIGrAGPEe+ocLqvCI0dwRTEjyGsFC2EFoyBYCGBYAV8GO+8JbrdTMDF3zly8eNlae/vGzbIsWSC01pxwIUJ4EJwF3imARJ1zxhtKcVVXmOJTG9tXrjyZ57myNUKMi4Br8sSl89rI44NDrSzsfu3++nve854nnnzi9Te/c3Tt0Hgz6PauXHkyDMPFYjaZjFqtVq/XK4qCkMA5A7L6LPMIIZgDaaUYk9b62Wzx7W+/Xtc1Qi5JEmgz4zgFrXq3271//76UmgmKEOr1emC7QSgOw7Df789ns+l0SinVOuaEJGnsnJlMRkUuIQEYkjAePXo4n8+ttWtra3Vd11odj4ZHw5Onn342z/PFIqcB3t7c6na7o8k4X2Tvf/9LxpjJZAKBK1lWpO2EMaKtabfbZ86cQd4dHR1CYE+SRN7bqiq9hyEHopQRQuNWXFfg2CExZZ0k8b5xp0mSyBiDESWEQDG8hOHw2toaISROLGTrAULH/xNmGh755aSTgVwDEPa6ruM4BkCHLnn6GGMQPSCErHaMMe8xIU1JGYYCY6+NxMRzQeM4tsY7jBbzLIriSvpzl5//uZ/7OwcHs6pGj3YPw7hdyZpQb0yNsKOYeI/y+TyKQoQsRdhIRTyCcGCtrDUeQq2hogCIHGppMPmBYRtMl41RUCkdHByMhiecUyEYQS4MwzDazPNcW4s8QYQh76M4BZfLMEpOnz57eHiMMd7cWEMIyboMopYQ3FvjHIQuUoZpVasgCGGQDI/MGOs8FiLEmFRaWW8559Y6zhG0XYyJJU+5KYDx0pmHLlMZ8dLZGe65R1Ybo02zJdJG7MKbEYJ1kQiQdcCFopRSgpBH7VarLOvJZBIGgbMoiVtVKQmiL33gQ0dHB9pURDCMqXaaE8ICobVZjbG1Vsg77y2nf3G2pAhDwhPOm1xW14zZPPaEYEoIyfNykZfe6rfffvuf/bN/9uqrr7700nedPru9trERx/HnP//5pJXmZfG7v/u73W738ePHW1tb29tbWutnn33u4cNHDx48+Evf9/3j8fiNN954++23x+PJxsbGK6+8WkkJYzkYAi3nZ01u7bu/oZTy+PgYtm7jLNxh2Myx8zBEIZi8G25mjGFMVyP2ZeUARwzBS/EKWlpFCyEIFlprbeR8nmGMZ9kCO48QUUpNJhO0TL7FWBNC3njjDas0FRxjDKUyYwz0TPA0kySZT2cvf+ObdV1TSi012uhr167dvn37ox/96OPdfSBJNFWf05gwQlEUJ2fPnnn8+PHdu3fKYj4cDs+fP3/h/HmP0Gg02d3d3d7a+p4Pf+jWrVuDweDg4OBbr76aJuH3fe9393vtWjJCSJrGh4eHX3r5c5/97Gen06k2EiyzvHut1WpVVVWW5ZNPXXn7+rVvv/qac+7shfNRmniCt7a2wOkU0LDVLYKJr9YaESelfPz4sZTSOUQpr2tV10tkw1rnUBBEQRCs8mDAYxpOJeBgNVWxw1HQiCqgCoBHA9Ga3ntKV6HWfyauEPjRTaVKiQi40oYQIqWkmjlnrl+/Tjnr0hbL87IoilY73t5ezwsXx+uz2cwoffbsuZOTEfJES0MwxdRLWWGMi7zQWjuLoJqENl5KuciyOIqMUXVdN9xYrbxvDJ1LWXZo74mLTyqlRqOhMWY0Gu7tPdba1HXtHHIWAVqNneOcV1VTGzlpyrJst9P9/f17D+8zxghF3lvGCExXlERZlh0cHCplXnzfc/3+2uf/45cQMsaqsvRllV++/OTpMzvHx4fGGCPVfD6bz/FikVelHI/H1lpQ7BFC2u22tTZJUmB6Gu2QNxjjdrsF0ZCQTd/pdDABDEhzzgnDWuv+oNvupHdu34vCFLZmrS3AKxhjraWqdH/QSluhc05rSZpcaQGXCQzfKAJ3FQszGeu9sYoQ4pxnjIO4DOLLozCpZgoJRwiRZUk4d67ZQFdlqDHGWgmnFGMcOAhQAVtln7i4nSTJ0dHRfJZ578ejqXOu3+9bp2CaSilbbTGwVoOQew+c4+bTarWUlCAsxcttAigGaSuilCVJrLXU1lCKnfXOG0I8JoRQ7LxCiHAeSKkpRYO1ntZ6OjVlWTY8pkAEAffOz+dzOJuX8D3yxlVVpaTJ5nmR5UkrZYwyzEQokDNOG4SI0TqO0ulkXgQFdMiwTtbX1/v9vsNkMpkQghhy6+vrCOEHDx4opYQQRruqqqSUzsGXob1e13nf6XbLsuw74I+YLMsW2azVStbW+u1OK2klSRq12+00D4fDYa/X6fU6ly9f8pYlSbJYLKqyNsY8fPgwCIJOpwd0acaE4OF4PEnTNvIky8xsvuCcAyEuCkOEEMIO2K+tVidN40U2sw55b6q6aLWSpJUEQeiM18qORpPHu/shj0zfU0qd8shQjXShqiwrdncfM0ZrLSlFjDGlTJlXVVFCc5hl2WJRhSGFYV0QhBhR53xZqLxYKKVG1ejBgwdhGAyPhicnJ2fOnlrf2CjLcjDoRRFn3Od55i0KRWCttVpLKWtZU8wWs6IuNaXUWfW1L38TEdxqtRDyb199syzLVpK+973vmc/n3/jGy0qp9fV1TwzluNVKpaq63W4QcCkrGCafnAwp8xsbG0dHRxcvXjo8fHDn1sNWKxqPx0EQ9ftrg0FfVXI+n2pt0zTt9df7g1ZVVUqpXq83X0y1kZ2g1esO4jjWWu8fHkLtWNclRHkIjihlnEWE8Ko8QdZ45CMRGGNg+waoAmGIjUZhpxNFMWdBt9PvdvpVJV9//XVAXbvdPgHNNqIY+3avI6Xyj4611o1UnGKwxQT1bjNO9Nh7RAiy1klZUcoZY84ZrbWZzXnIATevqmp/77DTbYVxGEVBkVdlIZ3z09HIGAPIo7IqJKFSCiE3Ho/VobJODzbWm1YQI601Q5hhEkYxIWQ+n0/kyJhGJbdY5BRCirTN8xzsNb3HzjktNROCeEw8skojhLDDGOM4iCmlkFwURZEQQSnrVqsF7kzGmMl0hDFeX1+vqmptLXi8uw9TKClPwI7GI3PlypMPHz588uKTzz797J/8yR8/9eyT7XZvsL71Q+cvjafZnXsPf+df/9uj/aMkDRljo9Hx7/z2b7/3fe/92Z/92S996UuTyYhSvLv7ECByyHGCVBbAfQghly9fPj4+Hg6HYC4EzHGMiffGWS+99g5DQBbGKghCjMm9e/dO7ZzjXMi6pJSnabuqqoA1Bq+cUMq5MQo3Ml7HOVAmndZyMhkjhLQ37Xb7mWee8d4HgTg+Pv72t1978cUXP/ShD1299tZsNl3bGERRsL7RD+NgxUTL8/LkeGith7rTGKNVM3IXQvR77clkMnfQwyCEoSCmCDnvXC0V59x4ZRWWBimbX7pyibHOfDIfDAaj48nx8dgZ/9TTTz3zzFNf+9pXxpOCoCgMIqXMvXu31tZ73W53OBzeunY7z2HkQJC38/mk3+/M5qM7d289evi4t9F/6aWXNja7d+/edcbGcRwEhhBCsKgqefbZpw4PDyaj4c6ZzY21wanT27Pp2DlHELHagO5yfX0gpZxOx5zX7Xa71xsURUEYzrJM5ZWqzJ2bx4ghZNCNNx6yGGFctdI+pRxhyzkj1BOKyjL/4he/FIZMiChNkygKkSenT5/GiN69e//ZZ5+NY/L662++9tq3CaNhyIejg35/bWNjg7M4L6Znz22PTqZVWYVBSBCv69p6H4aR995Y6yzKFsXe7mNMSRTITqcVBJRxESXR9vZGHCdhGH7n22/dunUHYVeWpRChdRrsm7XRUJZRTIQQqWBMUELReDwtqwWl9Ny5s1EYzqWklBpZI0SDUCilrDUeAWmUQh+Fl6aocPhCCVgV5YrcB4UHzCONMXlVAgrDGNvc3Ox0OkVRHB4fJmlEKbWOEMI4D6zFnhhjXBQEGBGlFDhNS6m9t4QTznmeFdZaxkSaplVeOefAE1YpBZmmK5B3ZTKIlharUDxoZ1d9C9CECSEEY7/U5K7mVUsWjEMIIefxMjV1ico1XDBMCVk6GkOXGMcx1AkwhGCMgYnzYrGQUiJC4AeAUBYEEey6AHMLEcDYuKpMEAjI+JZGw3UBSQTuuTGmqioIZQ2CIC8rhzwwTGVZeY/zRaaUAqyZEe4pIsR7cLyl1Fu3KsPgWqA3xhgLIUDXkmWZ976qK6218QjGh4BYAR4HKPmKbwKdFdgvRAHHWHBGrFaL2VRXZafTieMQ+gFEidEOY4oZMUaNRqNFrouiQthjgrqd9unTZ8fj8dHRCXi8UIT58h+yymKHMcMI4eVooOlJlujzO2pZsnRgg2bGLG0f4W43TYtB3mIkmsEJSOMhqpExRgi11sqqJowyKhgVTe1qG/UeIURrq+a5RxBlCXaEzT1ECKVpG2D6yXhmjAkCs1gsNjY2MKLgiNWQlDG21s5mizAMKWYIY4SR9xYQH0qIMUZLgxCiDLOAU8y1kqb5OEY4dkyWylpHOPVWmxVpHcNipAihqmqgUmMMdaDdb1YQ4CBwda7huTTWMYvFgnNOMeFcYIyWdUJzA11DQm/utl9+0NL72DmH3ZI1LCVmDY8b/ouXJEr4E62R9wjIxZBEhDzx3hOE4F9skOYlgL58/MBBwYQISin2Da5trbbWcs6TOELIL0md8D6QlZ0GehfkbRvKf+PpDBua93plm04pR8g1jjSEMIIJY35lsOs97HUNHs2ocw4CWieTCdxna+18PqeEOycXi8WKOk0pnc/n82xWVDloBLXWlJMLFy5gjOfZwnt/fHwchiFyHnxLGSGqhhhVaoxByBPCATdsROIWVXkF5QeIq3qdFuccVN51Xa+vr1dV8eabb2dZxhjTtcSYSlkDBd1aq3RFGSaeyFIabzinTNBTZ07113qU4qLKC1VyQRCjR8f7dSXPn73w3d/9wel0fu/23VOnTrV73el0ygSTurbWThdT770QbGtrgxA0n88BPlssFrAlUkKSKJ7P51LXQRA5ZzFCBBFVq3bankynN2/carXTtbU1hIhShlLabndBzLFY5JPJLAxDwrCUVa/X0VovFgtOGeBEznu4D1m20LUkIwQuPc67dift9/uQKUoIgSAN731/fV1rfe/eveFw+Md//CfQCBNPjHEPH+6maUowBkJfpSTnfIU8SGkxReDisrkxaLUSHgiMcSX166+/vrOz8+KLLx7sHU6nc1nVUur19Y3pdDocDq3TSdruDwYIOVnVeZ5TAtqGxuPFQQ6B94wF0KMZEDtjDFOcPwfJrT6gwQ3DME0jSim8J0KI6XS8Gk40dkxLE2EAWAijFAn0ruVtrTZGi0AYo8MwdM5rbZ31cZwoaQiJf/qT/4UxTCo3HE0xDcbTSVnmXFDnrNW6qipvmqh5Qhv2DBxDRVGpuob3E6awy5bEK6UCzqVz9B03D1LVRRyEyz3ER1HEGMHYO++NcRDESzkXYYgxQdgzLCjV1nrG2Pb2KWv9fJ61Wi3BWRglyPtaVnW5wBh7gjGmzmPOOWUML6sLay1hlFGmtfbYtdvtSlaUMowxBOWBunRlZ0SWH7heeHyw763ocQ1CupzSgYxGCIYQ5Zxi5IyWxlCMMfccwC4jFUAKFPmA8aqqTu2cWVtbL8vSWrO5dfrC+Sdv33pLcBKI2LqaES/Ligq+QszoMi0ZtuL//0+rlZZVoJWxECmMm8hK5DxCCCPCOX/99devXLly48aN3Ud7URR95j98xiK/vb3dbnV+/df/SZwmlFKn9MHBwWg0euuttz73uc/FcfzpT3/mzu17gCGenJwkSfLsM89fOP+EVNXR0dFssTh9+vTm5ubx8TEQ0eA1WD10QgjBjfRESomazbyBj2EfRtY1I2drEMGMMaCPwzjwXYcUhWPk3SO65a8bmBtTuF7qUYNveoKwQwjhJf22GfLB93HaUNuI/zDG2oMxGtjnNpQCOKGMMUVRVLWK4/jjH/vP6qr+5je/efbs2fPnz+dZBqvVWhuEYVUV3/nOt772ta9xzttxpKV88ODBmTPnzp8/v5jPndUEu9u3rudZduvmtSAIOt0EE3v/we1HD+6Azcj169ffeuutO3du9dqd06dP13U9mY7msyxJEir4eqc9HA6vXr0qhOBhEATB2toavKvtdvvatWsga3iHNeWxbeK7GeUMDqzhcAgHNHS+QoRaWzjN4XiNoogxFkUBvIRKKVCqCcadc0bZMOSEkPF4zDn3HgOhAd5PoIgs58qUUnjQTXsBaweKECklxtx55JyzBtBd45gVYQBgNPfIgqfB2bPnw1BUVXV4dJIkrZ3tWCk9HA6z+dx5QwhSqraGaGUhbKGuaxCYQL04z2a8yZTUaZpyzjDG3jGH0Pr6epqmo9GoriswMIJpdnPOUe6dV8p4jxkm09mEc6pNw9xmjGfZfHNn+4c+8n2j0Wg0PhkOh0dHo37fbGxsrQ3a4/F4PB6vD/pVVdy/P/vLH/vBO7fv7e4+FqFwzs1mc2ttWeVBwMfjaVEXhLCyLI12ShlrHTKOcUaFUFVNOIOOhVLqLGq1WshpWJmYUahBRcA452CQZ61NkmSwtialvHXrltFOU08p29zczLKFlNWZs6fCUDx6cL9/dsta67zGmFirlTIwfy7LWogQ3FphrrKKQOWUIhQyTjqdTrudSq0wxq+//qY1vigKxJC1FlnL4wCCjClt2idMkXWu+Qu9IZxoq72xwCUsigJ5v7e3t7m5Cc+CEKYrKYR4dP+R9hLG0ZPJxGnjvQeSCHwlwKyR9x7ZQhakIjKvwSaGMrayg2GMeYeBhhlFEXfGeUM5N9ZbV0qlkqS1sbUWh4nW7sH9R1VVBV0G/QbYq1HKOKFGGiDte+9XVbVSqsoLjOibb7yBMW63u1VVGWZarZRz7rxSyjjnIKADMCaMKKWeENZqtYQIZ7NZUed1pay11GvK8O3bt2/evCkEpyKIAx7FQRzH3tsbN24UU1WWxfb2NtiHydoyTigNtJbOmLAfeo+rsiaMeO/LunDIC8GuX7/qvW+1WhfOXT4+Orl69SrnvNPpCRFiXADilmVZrzfYe3xAKZVShkGcpnFZKbDLYJw6Zzlnzvk4CY0xxta2xmEYMI6iKNja6SmlMOHWeM6D+WxijBU0wphnWUEpJQQh7MoiR9gRj3ZObV68eH46n8Bs4+H9B4PBujGuLBchF1EQrPXTSkkhBIyairwihDDmtFbGaIZJv9+HlZu0WxcvXAoi8dTTl5VSR0eHV69eJYQIxrV2UlYI4aqqIQ/TmlorhzgoJTUhhHPWH3SdrYcn+7cn2YMH9zHGYSzSdlxUmZR1r9cJIxFonueLumbQYERRRBBdzMvp5N5kMpnPirIs4yigpDn8iiILwtCout1J2u1ulmXW1Q61RBiGkUjSaLDWAxrC0dERnPTtNJ1nmRC03W4756IoWMwnR0fHmxun1tY2p8Mpsg58saM4wMgTQoMkKIrMNgcYCXkYha3Hjx/fvH6HELq1tUUIrStVlUpJC3iHtaaup/LweDabERxxzpoxknEIITDJHQ7H1nprm+l3FAXLQRSUs1CGetNk9XBwUivyyloLx4asVRjG62vp8fExkAgC1uARCJEsK5wz7XZ7Pp83ehzkKKWC8CzL19bWkiQxxrbbnbIs8zyHHRIKZe8bYgUhxBksGF/bOvULv/Dzv/tv/r93btxIu13oE2DOCcMzMNOECaJzptVqGWNoQLWsQF8ZRdEnP/nJL33xK3/wB3/gvWdMQGtdqHm7k1hl//c//7fPn73wpS996Ztff3Vj59T3/+WPX3n2zM2XX//8F76yyLPpbLy9uWG0TJLIGAUdY6fTunHjmjFmNBvJsuIs4JyDmQYhBMbISiqM8Ww2s9Yi7Lz3WktPgF3YVPnLNh4VqEoTniRJXamj/YNWnCRBgjGN4/So0s4iQijyHnlCqYeBs7UWIUcIXywW7U66ubVujT85Obly5emHDx++/vp3KKWDweDevXvGqC9/+cuDwXqrlVKO01aYJLEyVYAIZSSKYyFEGIrFYqGkRs5DjEMYRqA4BoCpruvhcByGxHvsnNnZ2egPugcH+wibbnfDGKMxXltbE4JJo9Y3+qBfkaXq9Dre+6ODY4Rcv98FeC6Oo/W17fls6hwZnkwo5cjj4+OhkjYMQ0IQZYgHDPJRGSNByD0yN25eDYIgSUJCyPbmTl3Lxaywxi8WGRfu7Lmt/f2969feWMxP/vCP9q1G7W66ubnxzDPPYOIpYyfDo3v37u3s7Jy7eC5fLGbzUSCiMORnzlyZTCYP7x0lrQ6cKc8++ywh5Fvf+hbjWOvKIznP5kLwJEmqugLeCeesKIrbt29Tih8/fuz8V3u93t07D05Ojh8/mvbXWbvbOntuZzAYaC2FELuPjgjVabv9zLMf2t89fnD3oVaSEII8dtY75xDGUEXBabK5KZQK9g/2rLVRkpycnFRVFcfJk5eexhgjT4KAO+cJZtY1Nqmcc8YY9ogxEsexCDkhhIXMe1/k8ujomBFCMJOyws4z5uM41soYUwJ1gxDCeTPogt9CcwhtQBCIqqrdUhcPfVQta6iswKwA6ORKKSlrKWV/0I3jWM+lNgYhQjxxDnFCGRPIY2MMwl4r61yNseeW+qVXhpSaEwpYp7Vea8CQnfce0XfgRQx6yAYhon5JeIGUVO+908YTxCkjhCDa9NEU/BOBvUMJQkQ7i11DEcUEEYIZI4GINRhqGIsYCsOQUbZY5EEQWaullPZdekOwa1gJaTnjSimgZa1warhj0J0iRJIkARm4c67WasnmaDYEqZW1NjAmCGD2jwALq+s6iqIwDDkPhscnnAuEEF4G/SFPPEaUOsYYxSSKIkJIVVV5XvolVx01Q30YJqmyLAmh3hltVAO3YQxoHZyG0DVVdS2E6Ha7AJwBdSsQbF7UsiqTKOSceu+l0YD+Y8qZsNpZ4MUXZVEU0hgXBLzV6pw9eyZbZN1uu6oqCE/2S0ODVSuolV5CjWbVzzMmtLKg4Xfv8Ey9tQ6GJQihsizxksQNelWEkLWGGMJCihByxjvnkf8zcZeEEEYowZgSAg8XLQcPzdeD3hJhZxFGmNCGMEUpBRdCqRu2Gtzn4+NjtLQJpoR7561zGGOtq8Y9YJmahb2XUiLo9iGxWVuMDPJEKYcQMRpZ66mgMFoQlGGH/HIVEEIIbqi7VjsoYr3D1nhPDCV8uTreIYURQsCkm9AV7Ou890EcBrwR4uR57pxaQbTLwdM7AWLvph1hjBmjCCGLvIhEmqZwdQBbu8YZVgIuDI+MCY4RxbD12Aa29shT34yR4NKs9x6BOJeskAJCESHNdJyxCCHEQ4ExBjMu8q48KNSM1d3q7+RLGAs+8DPQWq+AeEAoVvAQbIAALTVHNgUHP8o5a9T0VnnX2AbCJTuLCPaEEGsdY9xjRBlR1iwWi3a3FYYhkE6WoLbPsyIKQmU0xOpg5KIQcoyUdxghrJQiFCFPvW/Aa2MUxthSSglVqsbYay0ZY8qaMA15xLHz2zubVSnfeOMN4DEopVggPHLAYiOEUM4CSiilFtkkSMJQiJDvnN7ZObW1f7Q/X8wwww45UBtMZjOCUFUX4AG9vrVhkRuPR0cnx48eP3i837cIqOKknaRgmDCZTIxxRVENh2PBuJYG8E2M6Xw+QyjHiMRxzFmglcWIpnFLCBFEAiNCCQN3ZmjhldQIoShOLl68eO/+7SCIGBMgWZZVPZnMhBD93gDazzRNN5+4kMbx4eH+fD7v9/uXLl3a2NjY2zsIw/Dg4CDLMmm0lHJRFOvr62EYOovGoymlNAqTuBPMs4UzljF2/vz511551Xt/5swZaAyV0cY4EXKl6jxfYIxPn96gjGGMr1x5epYtFtns+Weerys5ngyrUjLC4zisqlLKutfrYUIghw12YxjjQUEYhqFziDEhpbZWaa0Xc8sFpUvXC3i97X/CUoNzHqKQAWtsSZvlnEdRAlNG8GNBS3YzfGAk5myzagjGGHtKMaHUewf4Q1UqxkLGOfJsMp78zM/+Ur+/s7s3jOP+g0f7RVUSgtJW5JzDCDlvVFVZcC7yxlrUbvXwUgzhvXKNqqMJAF0tvRViA7YjsHcpXcPWCpoJgr0xxhjV7A8eY0bDMBZCONsYAYdBZJ3hTBBO+2tr0+k0y4okiRjF3jtjHFBTjTEekSAItTGEEOeNs+9kP1DCozRhVGCMkyQFZYx3YMWAnXMwAFiho8sZPPHeM0akbLY+2DZXmw9AdXVdYww/JlcDaYyaSRi2bgnWN5qSTqdFCBsMBlVVWe8IY2VtvvvD33d0fFAshmE3cN4aUy3LHrKyCfLICcHRf8Lv2xrvLMyYKUIISH6EIEJEWeYY44/+4A/9D//D/6XXa/+H//DZoq66g/4HPvDB97znPR/4wAcAWIS6CwXuueeeu3z58tWrV4+PhpcuXfrMZz5z69YtxlhVVVtbW1DtCCH6/YvPPvP8wfHBD//wD7/yyis3b95ECGGCOBONzRdC8H5C3wSbOWmM+ykmbjkQgQmlFUJQTIyzvhmgeow9xn/mFFgdVcgTjIlHzSkGiLTW1hoJ+zZCCBMow7zHzWmyWiZQGjnngJSNVmEPzRFDEPIYE2u91hI26mWzhsBi6+DgwDmX53lVloSQsswnkxEQHZxzN27cCIKACzqbzeI49sbeu33n7bffVkpFUXR8fGytns/nh4eHaRS32+nxwf6/+df/qiiKSmljzGh0sr29/dGPfrTdbn/1q1+dTqeMMRaIje2tv/N3/g4ckZ/+9P96/fp1IUIp1Z07dwAH+NSnPgWXCTMhv5zWr6ogJhrXLKsdRDoJFlhrjdKrCoEsvaqCIAgFV7Wsihp7Aq6ScKQC9xlqY4D7EUIwu7VWe/9O9DdInVYTbnimq6dJCDHaeNQsRkqp9xZEh1EQsE63lWXzw6Ph9s5Aa3379s1aamPsbFokSUuIwDlnvbPGBAFnjJ0+s5VlWZFX3W4XSODdbhcOklqW82wx6PUGg4H3/uGj+3Vdrw9Ox0l49uxZ7/21a28vFvPV2b9YLChlGNMiq5FBCKGtra04EUFwtq7rR48e9fv9Xq8DcOfR0dHe3t6ZM2d6vd5oOFEKHR8vjo5eTWKepunm+rpzrijzKIzn86nWmhHKCC/rcn93n4ccIc8Yowxra6HGMtISQrD3TPAkSRrpFsLY+VJWq77OIySNDihJk9gYs1gsnDdCiDzPCSFJkhweHu7t7WGMHz9+HMcBQk1uTKfTyQvvnLGWvPTS+5Wq67rmPNjfP5zNZgiRoqgGg4H1XtZ1GMbIulXuPPjxU0rX19fBC6ksa2PMg4cPZ7Mced/rdaMoqus6jeNTO2f29vYPD44NRJlRqqUSodja3pBGc84IoSBmrOsaO885h7/z4cOH4O+8as+KoqCC5llJMPPaA66xWtWr988YY7wDOQNFjdZxpVSFM9VpY5ABXYYQDEoZigkNKGeBc4ZxUpTZZDyrZeksWiwWhDQWqzCKDMMIHBhhFOMJorRRKhHMMMZB0nLGOueCMNzYXMMY51WJEY6iyHpvjAuCSEoJrEDBmJQyy4pul2dZNp7OwzAGqqagoqmACYZGzpcWtuDBYIDxhHM2m83g3iLCYUITsMBTZq0/OjrC2BNGHLJBEISRyMvKe4wQPjkZTcaFM3Y2W2htT05GaOnBt7a2FsfxZDJhjHHekMWCIGi3295bEXBKMUYOITQez6BRIYQYq+I4PH36wpVnLoWhuHr17eFJRjAbjUZVWRPMDMQleKs1Yhxt72x894ff54jGxBlTc4Ha7bNFUeztHWxvn9Jae2MZZlmWYeJffPHF4+PjdrcXBFFZ1pTwRZ5bpxkVoCnHGEVRFMeRiMLxeGyc7nTTMAyn07FURRAErXZ7dFLMZotWq0UIgzxloC0IHlOGOccnJ4dhJF5477Nb2+uXrzzxxptXj4+PpZRPXHzy0qVLcRLevXu30+loLUejEQx+sqxYLBahiDDGgC0GIpKV9hYLEWqtz58/65qmUadpPBj0giCIY1EUxXgyjKIoy7Kjo6N+v9/v97e3Tt28eXM0GgEWHIeRMYZgHydRK40pQUVRT0dThjmcnQANAzVD8DDkzEWRNrjX65w7f6bS5XyWnxyNnEUE42LxMAgCipknqCgq7zFjylpLEAVZN/WeMRZygZDT2sJOOBqNCGkaGGAcwFT5HS4PBrIDoZTKZWi19x42Xuc8ISgM47qu60r3ej3vfTbLjIEtDhmlVS09Rltb6Wh0ssizU2d2wAqqmOVlUcPUtNVqnTlzZjKZ5FVZV8p6xxjToJMSHDvvvSeMlln2k7/0S88881wUhGjZuiulGKOQh8mYcA4VRWWM88SXpcJLERCYrTPGnn/++aOjoxdffPGLX/wipTxNUyoCKWVrEHzrW9+qsnp3//G1a9em8xlC+Or1m1ev33h8ePzpz3z2wYMHm5ubD+/eUbra3FjDuAcK0DgOsyzLi0W/3z8dnN7ffVyWpdI1RpTzwHsLGId3+JVXXknSKAjB301DoWneNcBvTPy8t9bOZ7LI606nA5ArFpgx4b0nFJVFDZNIYwx2GCOKEZaybKoZ4rvdbquVtNvty1cuEUJef/3bMlM0Inu7jxFB/X6Pc14UWZqmQcCrqkTIaqsGa704jqqqmk6nJ8cjziPBhOZ2Pi/a7cQoUyuFvTfaLRYL73273V5auCQf+u4Ptrrpe8zTx8PDTrclBDsZTglB8zyLA7HI59bavMi9I8ijIGSdfmv38f3/16+/GrbjKIrm87nx/vKVJ6JA3Lp1bXh0Egbx2bPnz545N5lMCPXW1UqXewePJpMZw8Hly1cKVRhjKMXDySRJkqouDg+OvUfYk7yYEgrj2NapM2tayyQN0qiLCZpOpxuba5TSsi6Kovje7/1wr9cDRoPW+s6dO+sbgziOu91uEoedTqfd7p45fV4pc+vWrctXLn7kIx8Rgr3xxhthGOzuPr558zZGNE3jxSK33qVpmzCqpErTdDAYSCm9Y+3W4NnnO+fOnU3S4P9H159GS3Zl54HY3me6U4wv3pj5MpEDgAQKqHkGi8WhRKpKFocixVJrsobulizZlGzrR8teklpabbkteVnqpe4lSy3K3U1S3bJktdWkOBRZpIoF1gAWgAJQQGYikdPLzDe/mONOZ/SPfSMyS6LjB1Zm4r2IG/eec/be3/7296WtqNXOiDGzvX3u1q3bx0eneTF+5tlLUsp33roOTCCw2uglWRIgAOMgJBjjjo6OHITd3d3FYn52NgMLxsy/8dVvAoM461S1iXi0FCnmCKEholpDAKhxljGQLlos8tlsNhmNe/1Or9dRXDkwzrmyLBf53DkgQRvnHOcN3ElLFZeD7VprU9eU21CMtg2hwPf7/bW1NVpF3vvpdDIaDYnwW+bFRErnPAQEB4g8lqqx//KBi+YpGOuZ4EoJSitJAJdQ5na7a4wh15pGBAACnQRUGDUJ8XK6/InqIjQFQ2gsyFxdBQg+eM4FEbvYsiQDABfAYVglsjSqzMiEDojE7xGRM26MSZI0TVshuNFohEulVHLxakRUBeeOU1atVGPuR9ucTlQpZQiO4Bj6CnmeKyXSNDXO0pflnHMp/JJsRseaB7fkmHsAUEqCB/IE9w4APDB0znkPiKHStVIqa7eydms2mxHKKblQSlnbaNFSfUXIPn138I5UPghHM9YCNAw+ABCSZVnGOa/LMl/oSKooigJD0ribzmaImCRJXi6EV51eez6f29JkrVYA7r2PozRN0+HwFBFD5fN87j2lYcy5QLOoiFiWJRmKEMopBK1JkhxpqppVDckFArAoUnTDQ0MvCog8yxSFjIY2BRwArKsBgMRQvPfE6sKlJSaVx26pu0KlvnOOMWjaOYjW25WtJWdyNl1UVcWW3CtSMA+h8dshlCEsZ/6WcK1GopkH5mxQMnaOJvbsSpfQ+0DUqhCABeTAODJELqUiTIfezVnvyfWXBLctPdPHQNIyqW5Sa8Ka6XE7bwCALx10nXNVqEkamF6rm0w8lScJYg0sgoiIUvIkaUwyqaheqVXg0uqHTMlI1UQI4QM2UD4wFppOAwJ34GDZ8SBVamyGoxt0wAfrG9PyJhMj9gxR5OjrcM6X2uvwBKzwuONCH70qp8m7gsAjekxEYqX1sFoJ9NCXTbimxqZ+RlVbD6HZMsYsn6DnvOnM+QDgnBASOaPNhQyct1KlrVYLQgAAwZWbz9vtdpZlSazy+YJEt5WMyYDR++Bdo7VtTE32gHSeaK2t01EUbW1vICLnDBFUEj063N/fPxCxQMudc7FMqd/grGeCcyms1SKSzjkpeKvTXl9f66/1VCxPhidHR0e9XgcYjs/GRlecScm5FOrkdDgZz6iJRTQFcp4cDk87nU6/30+SqCgKumPOBWOc1QvBZLS2FkUxQN1qtYKD+XThfUDGtbaFpgpOSRkR7qCUyvMcgVVljTC33gEALbO9vb3JZEJnDp1LAHDlypUf//Efv7B70VlrjDFGk3YWYiP5TefqdDqeTGatVittSeqs53lxdnZGioK9Xq/T6dR1Xbm83+9vb26QXseVpy8/fPiw3W1dvHiJvB+t1SQdubGx4YNbW1vLWq133nnnlVdfIT7W6XCYz+fT2UyJSMXSGT+fT7kUzrnB+poUaVVV8/kshOBtw+2VUnIuQ2gkJgBAStHUoYFR28R6D+CXoNy//0qiWKisqqrZbEY5PwV6732v1/PeF0VB4GYTJkMjQWmMCb4h4JOsNCIyxq01AcH5wKXiPBI8PTuZ/uQX/6NPfuqH33nnZpJ2rC+oro9iPptNIiV67Y7nApfD74xDq9WirbeUvglCUg87gmVTx3ljnQb01mkhmQ8WGVpjnDcCG94rY+id45w710hD0FlHvSLnHECjHinjyBQur0rp5MbGJlkNcc6jSErBojg5Ox3LSPV6vbo2znvCwhAhMPDeMSHiKIpUwqRkXND5SdUxADgXVkP9AEADD3Q9xLaGRh3LOwd+Ka+xOvypT6aUQESiiCZJUlXF0s5Ba82AM+qxMcYQfAihrOqNja0oiub5IssyZMJDYFxdufzMt77xMGtJhtwBo/SAlLOstYjABXPOWfP7i2kQSeixTe4yahhbK6Xmk9F3v/vdb3zjGz/4g589ODh45pln/uJf/Isf+cjHsiybz+df//rXhWDPPPOMlBI9897P5/Pt7e1rzz5vjPnQhz7U7XZJQWI4HJ6cHn3rW9+iNIZz3l/vV1X19ttvV3VJtufee7lUWyY42NvlNS67LBQjfDCEm/HlJFMAUmS2AYCyU4rU9OtNLAROeDQAQHiMODeodPie7ikiIgqAxy3wZThzpJpiw78fDf1Sn43yELec5mGMAzARsNvtvvnmm/fu3UuSxBpzcnJiraZGmvWOjh364LIsGbCqamKoxyZGI4ZHew/qum4lsbV6OByenh1T2u8COueef/75P/kn/2SSJL/8y798dHREqVocx7PZ7F/9q39FPc7xeNxut8uyllKS7O14PKYURUpJ5wNfvnCpMCYYr0u96t8vQz83xkVRhCHQ0UFxv9VqGeOKoqKfX7V46alR4zlN0yW/szmInAsATcLAGCNt+2VORe6Oj+8zMM8RORcWqaa2dAH9fn8r3hKtVrK7u3M2PBFC3L+3d/fukfOQJEyKerEoWq0WjQ612xnDQNmJtXaxWJC6K52YSZKEEGpdAoAL4fT0dDabtdvtK5efDoFprW/cuFGWufUuyTJKmJBzLqKyKNI02trc6XQ6RNPIWlFd13Ecf/jDHzw5ORmPx85ZgKCUfOutt0II/X7//Pnz585v0/xLXZksSTqdzunpaZIk1ti33nqLgyLGaPAoRMRBOG/KvJJSmOBqtEIIQPAuSKk67U6cKADgnJ0/f74sy1t3btPD88FyKajPSWuCc04gu/d+b2+PNIzKok6SJEnSoAKgMqauqtI5fe3aNSm5qavxeGxMzZfCuKen0+BAxbzfGyDyxWJmjJNSouCpilQkFotFWZbCufF4fHh4OJ8tIICKpXMOkZ/b3Vlb6+m6XN/occ590CriAaz32ED54Hrr3XMXdvJiPlhfn8/n3lNt5ubzuUDe7/cRcTZbwMopvtERF7Tt8zwXyBAlBAaBBe+R8eAhIFJT0ZkGhpZCSskhRCusnDJgttRkzPNcax4nSkoZRfLcxQuLxYKhMMZqrdM0PTkZFnldF3Wr1SKjEiJF0mYQgmdZyiRf8o8QAFBwWA6lWg3W6tMTtGC73W6apIjchQDARqOxtY5zypY4Y9Fstuj3B3GcSlkRqEREEkRMkthBYIwyTFjkuZubwcZ6p9cZj8e0wdI4AVST0Xg2myWRJAV6p11v0OutdZlgIbjjo1PGxKIqIqkilXmP1tveWn8xm5MSixBiNpuRiTwR7ZWKQkDOsSwqKXlelNs7G7u759IkGo2GW1vrZ2dnJLVz4cIzvbUuoB2OjhBDq62qsrW3txep9Lnnnr19+954MWRRQieg1vX29ua581sixqpaHB49HI/HVs+kjFqtFgDTpabO2/PPX0uzOI7j8+fPyyg+PR0658q6KopiPl9QNai4IoKt98GZejg6lZF49dVXNzYGKhJlWT711FNHR0fjUWmNH56NfWj0+KpSU+GRJO2qLjjnUimh+K3b7yJimsZPP32FbHYn0zMVbSKG09MjRKyqMopia31Z1AgSAivLOo6jVqtVliUE2NraWF9fPzs7KYqKsgRq9NlCB3DrG/28mBWFrqpqsVhYa8fj8Wg4MdpVVbVY0G0H2s50iJ+dnT1z5ZlrT197+GB/Mp4ZY5Ikcd5wzrx3WuskzmiMV6mIMXF0eDKZTbXW6IW3TnARAphgERE4E0w5ExADx2YEHkLwQW9ubRDEkGWZc95ol+e59zZ4ZAyRNBOMYYxUg4KUXCmllHDO+WBjJaIoQuDNOK8LSRKZ0nQ6HYeeZ7E3lrKENE6cC2We9weDv/yX//chhL/zd/4LZ3SUJYvJItnOjDdCCBp3qOt6OpkXeRVCKIuaTumGaMN5HEec86KofB1kHP/8z//8V77yldOzEY+iFeq9ak1RXKfQjoI8MDmlGkWlMbg0TUfDyR/6wh9+/fXXtfOdLGr3+qenp2VRb7Y6Wps/+5/8x9vnNt787hssYh/72Kff9+ILX/7139h79PDF93/w7/7dvztY633pp3+qLMjV0wL4d9566+d+7ue6vfbm5qaUQmv9Az/w2SiKrl+/cf/+/aoqhFDG1FVZqihJ0ojmWDc2Nuq6Ho1GZZkzIH+wJpQCAGOCMcGCNMaMR3NSFXfN7KFiDAI45w2AXLXTlVIsQmNqLnCjuxFFsijyyWS8tramtbly9dLNm7dc7YEBIhDa0m63i3KRtdP13rZztqhyUhADgNPT4Wy2wDA7f+5CVVSRjHSly6ImKmUk2Gw2A2A0JUODLC9/43ezdvzMc5dFBJP8zExrAfE0L4w1AYA5LmXkQ6irEj24EDqdFnhkjNG5dHp6Op3Oy6J+7trza2ud+3t3kzh7+unnPOD80cNnn36q3YlVBFVd7j868J5tbpw7PjsUQmRZO1HRcDg8OT6jSkMqvrW10et3pVJCsn6/O5/PW51sMSulUkVRHB4eSsnzsmi1WufO7Q4Gg4cPH7767df7/f53Xn/zpZdeaqW8qqo049/3mU+88Z3v3rt/W3B169bN55577s6dW6PxWVmWFy/uDtZ7X/rSTydJ643vvHX9+s3zF87leW6tV0ptbm5T8mmti+PUOXN2NpzOWJSI3Qs7k8lIa/2hD36y1ep85Td/+969u0Koq09f9N7fvPleMZ0LkUSRqKoqcHC6ZILFcYKcTSaTy5cvbW9vTybx3t7hxau7H/vYJ25efzdfVIeHx1JKjjwEF0WRMUZFDbU2ICMqHhrNGDOTmfFOSm6MPz0Zc87Pb29VdTkv5sY76713DgDiRCE0HJwQwnJkPHjrGGMcmeeclt9KYFEIQTpdjDGlVBzHVVW1223S4uz22saYqigDgrcuBOBccq6893VZAbIG8AohhMAYp1Sk11tTSlV54VyguYqwHKwLIVgiOEMAAAcNpxcAhBBmySAO4I1z1tpISmSMMGRCwZZfrakT2KpWoWtYVl+ccQAfrBMI2nmqwSajMXLWG6wR+6Msy4AQp5lgDaeSbt2qBBVCrBxXcDk865ei0s457y3ZMVVGPymjT+9Afm50twNJ5/AQS2VtoxTJAmu1WnQShuBDAGSAwJGzpdMsIz1952higFHORlTcStekBp6GlHPOhVQxAXCoXYMS2qXQLcmLhRDiOO73+kQj8N474ytXxbFqd1rW28WiKOuCMaaSuKgKYXXWTitdAgvtfrsydrFYMF+bhSmKglQREbmQ3AdjdUDkjAmttbMBgDmn0SAXyDmnxlsI1ntPJCwGYMlaKgSyeqQgQkRyKg6FECRzUZZ5w/ltbIW+R1NFINfOkqKFUvGTjJ4nGxhCKCGaXBGdgwBccAKg6SazRli8EYUktVZKeokNtApVRG1WSpHPCr0/EXNoRYewEoVoXoELIRronBaSR0dfHABCoMlyBAjee44MJDH3gXAYABRyiXuSF5hzARp6Pu0vWBGfOUfOYEkHpqpy1ZZYXRLdZkRs9M+hkTQNIWhrAgJy5p2bL+ZZllnnwKOMFJeCVSyEEDxNMoExtVtZaIWADFbvH5ZFLKEwq09efnpTi1prnW3ALOroICJ5Oi0L1Mc0NL+001wBbcTaDks+16rGJh1RbID44Boi5YoEHYzRUgr6xyzLgCFxVoQQxNcGwBXZHOAxa7LStfCMcQSAsiw77a6ScsV3sdo4Yy0XRVk77yVXZVkuDbECF+gDBHCLfEY3h8ukrBe1rpxz7W6bSx5C4JK1u63hcHh0ciiUYIxZVwML3jtgwXpD16adBvA8WOvdC888P1hfOzw8vHPv9mAwODo9CiGcO3fu4f4j53wrbgNAnpcWfHB2oYmkRjMxHICvra21OhmdDLbWnPO6NlpbU1vBpLO+yGsGM6XKsizn00UIwLkQnJMVdiMd6z05UKVp3O33Tk6OCLsHhoI14GkIYTKZKBnHUUx6Na00G/TXQwhf+9rXirysGrUcmM2miEiNzNj7e/fuee8Hg412uzscj21dLxaFEKIoCmsd4fVc4Obm5tnZmS2KVpqcP39+kc9uvnudcbx0+aKurfX1ophbb4oqR55dunTxIx/9cF3Xi3x0fHw8nU5n+QKA0TR2yViSJFmaCq7mJq+NVtggyPSsm20FwRm7WlrOOWOc9+SuKRGRYC+/jHcBYTXl8++9rPfGGte4/2nG2ApcpkXOGtXNRr6JTgBi9zcdTRcC0MnjAwQuhTEGUSDwOOoMh/P3vfCRn/7pP/HOO/uMR61O3zvgUhTzKTLFgJvK5CwvFiWC54zJpYmllIJzHkUx9YTiOEYEHywAWNcoIBGpgvpGhJQBgDeWxnRCCN47QujoJytdW1chItFfKcRTd2HFNaYeA+Hdk+lIKZG1W1mSfvBD73v99TeGw3Gn21dCeB/KshRCMIaCcSZ4HKUyTnRtja2zLJNSGe1CCJzLKGo8A+jWMSaWvGakpildKgDQ0DxlaPSiPllRFGEpyENdAdkY1wcOAJwhovGOJrIQgIbRScKlgYy8j5IEnLl85dn33r0+PDtaX0+dDavHSqQ6751zDjFUrvp9Fwxj/MksiIIjPX1rTdpu37l7+2d/9mcHg77W+j/7z/5PP/zDP3R4ePKd73znlVdeOTk5+cN/+A91Oh2tK+d8ni+iSAFAp9uKougnd3/yn/+Pv/D//Tc38yL3wSJir99xzhVFsbm+bpz7tV/5lThL+v0+XbPzHtA/GfUYe1wlPT76l1kW55wvPc/iJIqSuKqKvCq/B0ReIukAEJZw8PKv+L3s6cbqY2XhSIGV1MWohbBMCRzJqqzu2yoYhRCeJGgjoluyi5RS8/l8Pp9zxtIk8d6TEybFXKEkGX0xxqgDYaxfxSNH1Htvq8qi4MEgCm6NBufLqmi1WnEcV9oS/vC1r30NEYml6pwj35rJZHJ8fFxV1eHhMYnYkIkRrXmascMlC9stLQ0YE6v0m85eRCS9BM6RsIVVT4vuj3XO2BoR0XrvPThPomQ2PB6uoqdADL9V1F5aarOwHDujQbtlRgS0yykOhhDSJBJaeGiy5QSToijKsiR9WnF6dtjrt5577tn5fBpF0bmdDRJbSeKMMoa6Lkk4XzR5du29p7F64vCu9ILrygSPR0dHHNlgMLh27dpkMimqnHOOHGSkuKMmAwYP3gEiMC6Nduvr6+fPn9/b27tx44YPmjit9FSm00kIodPptNpp1kqcN/PFtL/WlVL2er21tbUir08Oj6SYSymNtqenp4Jxa5y1LnhOPoxVWTPOpYiddVzFzlrvGANgohlTLfJKSJamyWKxcN7EUjEpCNWiZ1ZV1Xw+px0hRWSMgQCddq8sy+AxTdNOpzcYDBaLRaVrqZJYRXVdOhs2NtbefvMNa62Q/OrVq4i4tbnd7ayVZV3k1XA41M4hMkRWlhVtY46BxKPnp6NjcayUYo89GLGsTJpknPOtnc1zO5v37t07OtqHwM/v7szzSooIWUh90ut1fNBRIqezEWMMGTAuBoM+Y2w8HpdlWZVaKaW1RZqUb5qTzkMz8IiMV5W21qYpz7K2c4aYU1EUcRUtrGCBAAEAAElEQVQJ39iCccAVm4D2sHMBIBDjj5SjKdtO0zRN08W8QOR1rTmXFEQ3NjbOYKQapyNodPghaFPO5/PaNBogHoLzTggRPEAILnjFG0UtABhOxj7Y9fX1Xq9zdHQymS02NjapgUnVTs2ZEiyEcHR0ZI2XUlnjOZMQmjzYY+Ssc85UdWGs3d7ZXF9fb7VaWZYyxshAjHPOUBKNghSBOeeMC3IzL+ti9+LFTm9wdnJSVSbPKxrdzbIsTdO1/jqE0Ol0dnd3T0+Pz87OkiTxHhaLRZ4voiieTCbGGGOBHC0Yeh/M5SsX6rp85tmnFouFEEIoubm5scgnp6fHgF6EkGb80uVzSdz21o3HQxQ0+xDiSF64cHF//3A2H3OFnW7CuF9bG8wmZn//kDGBHre2tsg8M0kyRP/mm2+98ML7qqpaQuF8Npt1WgPywNwc9AI4KaW1WkpW1IV1GMXxdDYuisJod3x0Oh5NvRcAYF2DPGZZ1ul0BFe10dbaWut2twvg9vb2Tk6OkYWtzR2AcHh40O12rTVxGluvT4cnSRx3u33nfFHMOZfB2TyvyFxOqShJ0sFgbT6fHx4ezmYzazWNpHnvsyzjCMZoGnYmfTrvvbVOcPDe3bhxgzGeZSmlUHEcr6+vF0VxcHAyn1S2fheBhwCInKzkKAnb2tqqa81QjMfTuq7Tduq9PzkZI7Kq1MZ4dMz5EEVR8AgMyZcVFEN0aTtVSsVSDXr9fDFxtvKu7vTb3W63KvXUzhig915wAQHBA0POOAB4baxnHoCT/jKyQEDSbDb72Ec/0el0Xn7564vFvCiKfr9/4cJTWuvRaHL//n1d1UpFzoUsThKVTMdTW5sf+ZEfGZ2e/fe/8POL2cRa6w+Oo0iCDUmcUWfOWXdycpamsZCC2EnUToOlB2C/Hy3GpTHm+PCw1W5fffryyekR5WpZlhGNnZo3lDp7773xcRwDoBBiPp/HcVxrd3Rytvdw/8/9p3/+gx/56NbWzkc/+tE33/guBPbP/tk/+3/+k3+0d+/o7v299c2NpKNEglGLb+2s39178MYb3/nwhz/8ja/9u+Fw2O10br9zfTGbd3tJXdciim7cfKfX6y43ZnV2ctRp97Ise+GFF0aj0f0797e2nup0Ou++++7GxqCuy6IoHj16QMxogtgMstoaghUAWAiec249qCQ1xlTGOufA2aqqGBPUDwshGFsTDTCEwAWmWdZqbRhbz2aTophvbq3PF1MucDSccC52d89xznVtoyjqdHp1XS8WMwisWJT93qDXa8siunv37sH+qZQyjlNTBa3N3r19JWMWYD7PLTqSCXJRFInIOTc8Pm71elEUeWuDD8DV3b3b69sdpfjh2aEr0Xsfp5mScRwn1DYvy9L7kEYpAhpr4zhWMk7TdDrJa1PNZ7P9g0fWFZ1OWwj5+uuvHhydWGsn0+PnX7hSVovNzfUPf+RDd27fHY1P7t6+vVgsOu3eYLBRlzpNsxCIOcKoqTlfTBFxOp1KpeIkYxjFceScW99Ye+/27W6vvb11bjya3r1z/5VXvn1yMrUaEOHenYd/7P/8p37p3/wvv/Eb3x6sbb/99vU7t/c+8YlPShn9xm98JcsSIXgAd3x83Gq16sqkabZYLC5dugiMRiNrpeLDw0O+BBn398/a7SyAm07HPpgQcDDoF3n9//4X/3Mcx/fu7T311IXj40PO+YVLO5Pp6G7xIDBT6IWtS/AcnPUIjDspow996IODweD4+FBb89GPf1BwxRj75Kc/9eD+g+FwaIyrXS2ZdM5KKawPvtSUQBMbF4wDhgiccbQ21LVm3J8cnFV5sba2liSRMUYpZYPhXKRpC4GXZUl4wQpu08ZQdUcEOsZYmiYhNPRAUmNYAandbodKYpLJoqi0mBdFUQohkigyzgia2QwueAgB3RI0TOKGnVrXtXONfxeRFq1pELpISAcN7sMYCwBkJLhMTwMXjAzZ+VKUWXIhhIhVhKExElzRD4UQwVuGNNyzqnO49yG4ZcXiQuDMEwu7sogoIkUJTJTEnHPkIkpiY4wEeLK+ZQFIkq8saXwEVognZS/kxcoYIwkIqkWVejzGiIhUmZN9dJokSimnTV1W1gYAyLJksVh464g+Q7AFByJkI+mSEQhLmT3tR4I7sZGbQGt9VWkpLRMxXfyqk7c6YFelVKOObUySJAB8rHUcx91uO2u1kIXExOZEM8HH87EQQqZqXsw7/U6r097bu6+t7fTaVJ949M5YxpRzDhEYk1Wp67LgXHIukSFn0oELITgLuCxBaU1683iWlu5kCIxzTrJOVK3ZxinOk1syEYQ5Z4gMnDd1jY37H0NE73ywj4lO1DCmtb2qcr33RjsER6wo8gkEhox5IZoRaeNccD6KJDzhLEIfQbpPoTEUQmK8UhNaa0P/Na7knAcMTCAGXAZDHkIgkRMbvHfWOVfXpTGGK6m4kHLVRIFVjiqlRN5UyEDGet5I2aLnbqx13rglbgxP6MB+D8D9eFCAATRWTvAE/4tzFCIKKzUSwWujuecrdnCp6yRJPv2Z70PEW7duzcYTGvA33Oi6lqJRQljyFhm44L0PvlFjwCcGaSlzbi7VE+M7cECS5cWlejW1Rrx/DArjEyPk9C+rh+KXY2pURKxOPGJcEmq8ZE0uD5zH4i2OJsCoVOGcS8XJs7FpYvknpFqaQXBwzlmrhco453VdeQztLAMAberZdFoURRJnq/FQY5y1nroVRFpHRK0NIRrtTufa89eiKHrw4IHWWhsDLLz/xReFEJPJZGNjEMfxrdvvlmWpbR0C6qqWMlraDLI4jglG1LpCFPl8ISTf3N70wQ7HZwCwv78vBDu3e16pmAGPZExJVghoak/HfhRFdHZ570NwcRx3253FYnFychKC29jYUkI64432CIKjD44Z7YZnY2MMoI+jVCnFOQsBGRN01gEAYzqKoqIoaqMbsQLO2NKQiiZCbPDeeCHcyckpQEhiMg6ByWQyGo69c1LKJEmqqg7BR1F/bW3N6qqq9BtvvOWcA8aEEMPhmCqmOI5DqOn0G41GjpqCHI0xN26+EzDkeZ4kUa+3Bgxms0lRFN1uWylW1/V8MTs5OfLe37t3Z7FYzGazD3z4Q4h8NpsZY45PTwFAydg5R+kfAallTcWfprVN8qYE99S1IclURPQetbZUbpBaEazYJP9/xDSqsqxMgYjUVApLx1rqEZZlSVZPK1U62nr0VxpwtFYHH5QSnAvrjHMOAgKiitLJdIEQ/9Ev/cmT4+l8Ydb6WxBYXi4QQ1EUyEJwHpyzel7XdZqmWhd0AS40TdaqKp1ztTXGWLobuBSrIaiXdB0JhvPec0Dr/aorpuvae691JZREzoQQUZQwxpTyDkJgCD5Y/z2QOj1WOkV7vV6ipK7tj/3Y51761Ke+/OUv/3f/w/9QV9YJ4JxLEYUQOIl1yghRWuOZEAxA24Dg6RrozlPTnTFG08lsqQeCSx4uNuKzXKmmJUlhpaoKEieh5x7HcRwr5wxjDDlTMmLyMTGcvHxI3ylN42637byRKgZELqXWGgP0exsvfeYHXn3ld6pqRBS2ssqTODPGzEZDcC7pZGkak+3qf/gikd4V6EyifRYCehCSpl58FMkLFy50Op1ut3vv3oOiKL7zne8AwJe+9KUXXnievlRZFhcvXlwOYfgsU//Nf/NP/tE/+kdlWZ4/f24+nxEvczQad7vdL3zhC5/+zEu/+Iu/eOPGDbqTUkr0pq7Nk0c3wb4rSDd8r6/v6n9RzSglJ3IwLB0FltIWCAQuPzEA90R0g2VqserfPAbfV/GCtO4al1pCZumEXzqIrHblCs5mjEFgzjqKnoimLBwAkKdrmqa0SqlpUS3qFW9jVdLSKMAyVaNScQkiebDWMwZpq2M9MKGCrnv9zunZ8XffNn/iT/yJTqezsbHx6quvkjrNZz/72WefffbVV1/tdHpSyqOjo9XUjtaac8m5X3W+KffOskzKZuifLtJ7AiuAsln3hKxW06nyni2peMw1eP0qq+ecU+tLRA2Estr7jDEWQCCz4ENgzUhh4yq80sKifgAgcMGFtUZiBIGUfr2xzYz4ycmJyFMB6PYe3D07O1EqzrJs51yHqJfT2ZjCNkkQ1jUQ6idlRFdJJBddWwAgj0hjDIU6WnNHR8fGmHa3XRQFQePGGKViegeyMJYyAh/u3r179+5dqYglzvO8lJITCWVt7XKv1yvKBTXSh8PTEEK/349jVVXVdDot8jCbLbTWa2trxGcJAZ2z3oOSsq6dc44LhYghQKuVBS5Ia1gyGcUkgWoBfFVVcRwhC5LLq09fni0W+/v7RDpexVRj7GrbkJuEUooU58uyOjo6juM4SSIAIJvI69dv3rp1WzJunZZS3rxxR0pZ13Wn0/n0p74PAL797W/fvf8QAKifD4BxHLfSeDQaOee63ZZxjjEhhIrjhFZPq60AwJhaiHZeLopi1m5nnU5vMa+1HRFKyLmQMatN6bwRUnrg3rnJfFwWOpJxu92ejibNChPCW9d0/mkj0blsrHaWhlxW28xaTyR8DlJKGUUtIQT4ZjIRYXUQ0OFiEdFakwRAhLooy0VuqroOuVIqeJTS54tysciljLIsgye2cRRFVGemaQyVrevag1NqqbcYUClJmbU33gbPOFNMWY/HJyfD06OyLF1A7wNnsihrBqgiDoDzWa6UqqtJkqQc0CEKoXS1AIDAoCgKgKYgB0RrzXQ6RQRjNJXodV0DeORqY2NjZ2dnMZtNp2MiYnsXppN51k5Ho8nJyUmiohCYNR5BRko6G6J2UpalrmutdavVCiFcunQpjuMHDx6laTq3+Ww2y/MSEblQnGO7ld65+x5jfn1jICWnSYrnn3/+7v179+7fihOxvt7PWu08h7oqs1aXs8hqH8WsXnhkwAB17Y8PzoTi49GUKaiqnIvwmc+8NJkMO1kripLxeDoajq9eebqqqtdffx0xxIm6d+8eE9IYN5nMFnmVxNkXv/hTV65cefnll1//9rfTLC7L+Qc++H6tq3kxj+PYOLu/vz+bLqSMzs7GnAshmbEeEVutdDAYcCnKshxPJt1uF8BLKfNiXhS5D/bixd2iyPNinuf5cDiuNXz0oy+Mx8M4ji9cuCCEyOfFwcFB8Ny5UFemKrXWdjqde+9brdbHP/7xBw/2VvVtWeZFUXKOSikmJefi+PiEcxFFUqm41WrleX50MJEKWq2WMWZtbW0wGAyHQ8ZYu91utVpC8OPj4yKvoihmKIy1nHMKcnVdW2s7nU6+KBu2i9NFKXq9br+3fnxweJaPpJDee2cRETlwxnjtHDio6koXOoolIvZ63RdefO7WrVvdXqvXb1tTI/Na1z5YyoKscd57xnE1aaq1RgxUP1inybKv0+l88YtffOWVV0ajEWlo5Hn56NGBtVYwudYbHB0dgQMppDGOAUvj9B/+V/91EqU/9EM//Au/8IvUaJvP86riqSSJkgaNWt/cWFtbK+rCGLNycKbQTlvAObezs5Ok6f/6T//Juq4Xi8Ubr70mhJgXuRACOROREssutLVWCEXKbt77KEqE4CGEvb29cp6/8sor9+8/6Pf7nMm9vb3//G//7fMXLqCPfuzHfvLr3/jq9ZtvXbx88W/8X/56UVQMxOy7o6uXL1zc3Xn5d752797eD372B+tC37x5K0AthNje2SyKYjwedzqdKJIXLpyfjsedbmt9sHl2drazszMZz05Ojuq6TNM4SaJ+vz8aybOzswAuihvuFWOMA3rngLNVdsKZJDHHJiViXMZy9fPWWsRAQ07OGedqAJnnOReYZdnZ2WnWSkJw16/feuGFa+uDTed8WdbDs/H58+c7nd50Oj0+PoyiqC71g/v7MlIAwDB21gWP3mhr0GksrbGs6dTGaWaMkVGMyCbzWRYnX/yZn3n33XfvPbh34eL5c7ube4f3Wt00zmIZ4fObz0yOiul0WpQGFQbGT87O8lmeJKnkKo3iutSCyRDAe3jvvXuccxWLk5OjrMWmi2GSRFtb509PhmuDXl2X88Xs0aMHw9FJrc+H4CprgPvd3V1jTKyS7a1z77xzfTKZbW1tlWWptTk7OyuKYrCx3uv17927V1X1tWvXXnrpE1/73Zfv3Lt74amLn/rUp05OTobD8Y0b7x4cnCZx1Gu3qV47PRqdHo3u3X3IAH7nq7/X6/WMhv1Hp5xzBLmxvqMiknQPxpi9vQfHx6cf+chHer3eu7duF0UxGAyMMULyuq69dZQscs7X17fquh6Pp//ut1/f2mpdu3ZtMqrHh8cg4P69h2kWdTrtOFbtbvLS933s+ju3JsPp2vag1+ttbq4P1vudTmc2mz18uPfw4d7RydHW1tbly5eMMaPxyaNHD771rd8DA0wKCMwEzbkEDBC4DR5dIFN4zjkA8yEAIAKPIgnoGfOzyWi+mO3uXpSJn80WSqkoisGBtbYqC6r5V0k5RxYYI4RRSknDy0II7xtKiH/CAIcqrlUOfXx8TC67iMi5IENgABm8k1I6bxyl6wECopIySSQip7HK06NTY0wIaExBrWKqG4Ez8D4EEkwgDulK2Q0Zb1zFGABrjEdYkiRpnERRpKuiKAriETtnOOcIipAMgo9hKVNL281ojVSsInPGRFEUsTgErCtjXc45Z4JTdUGcIwBgyAjIDgH9UuKDhtVWY4MryrCUqtn6vLFJqes6LwuioMJSG5dYlt6Huq7oy3IpjCmNqWWcdTqt6XhGsKFf6m4gImPwJMWmuS3LIhwAiNISQkUnjPeeiUByhGHZruBLjQW2lORDRNLVSZLEO42IKo48hLIs0yze3N4abKyfDM+Ojw9lqrZ2NofDM6HEYHOtMuViXs/n8ySJtNZKMQ1sbb0/my3AQavVCQGHZ5PFooiE4JzXlSF2KufIGV/RZxB4WNKFlhWjX8r/cSEaqMBaSywzogshomQcPZqqZowpGSmluGj8OawzAJCoiLjzRJZZYdm49AKiFogQgjFBxSapFtJtcc4TKWmFYzZstSVpaNXCgSW1pyxL0pfw3kspqY/olm6cyBs1BnoQBAkBeM45V9IjSBlh46oXvPdLTnBDUQSk+TzvmxlhcM6QBVwUJI13w5LhG55wwKMakjEmGOd8Odq8FM1Y/YHoHXLpIYmIpLlXFIV2ljFWW0Psp1ardXh4uFgsZBxRLVPqGhBqa2zwThtiNgEEDwEYevt44YUQgDVCOpFsYCNEpPNKIBOiAaoAkQrghr69LHRxyWiGZctktSloizkXOIfV417+boPHheAQORlArX4rhBA81q5GjAjij6IIWQDWnIHOBgIIGrtR4FLKLMsKXUSR6vTaxmmtK3qmiHh8fFzmZRRFHGvBea/XAwClYmv9dDq3S83lXq+3udanJlaWZdeuXauqYjwdFUXRarUuXbr4wQ9+8O7du2trPc5xOBwCeCFYu50BsHR7E5Eb7YyxZAbVXesLIZyzjLHZeJK1klY7vXPnTlUVs9ns/PnzFy9eKsvy5o1bjQgPyHxRrjTrrbXWuEjFtI+63W6r1RqNRrPJdD6dxXFcFXW6lnHutbbBAWMSgNW1S1SSqMQYY7W1wUIknLXGNApCAECjFJxjQAghCCHCEqx3ztngDREYAyvLejDom1qTWpH3njPRarVCwKooyRImBFws8iiKuu3Me5+l7cOTYwyI2Fi8Xr582Xt/cHAQRdF4Oi7rMqojrXWnG1snnAfkIAR4b+s6RyGtdUyiUqLb3bbOcI57e/fIXCuKosFgsLGxZa09Pjp95/CdPC844PHx6cXdC3QOJEkilAxVCezxUmSMWQTvnLUeoGZMEBgEj0maXutAPVfSsn+yj/Lka8VMJOTOLrWbGGN5ni/nP7xfCt3Q9l8y+oFzFoIEIAptM9DAkBSY4ofDgz/8h35mc+vim2++3e5uegBrNLLQ7bVPz451bcEHxXhZ5d5olsYEXzrng0frSFFKsEZtwCRJLKWsa0025tYaesSE0q5aTcvsFyOpWBxHUaR1RVt1dWQBZ912x3ur6wqWYxZ0IKwYwVojoLfWnJ2d3b59+4XnX5QqETxGlJwr2mV0jhljGBNSKOMDQ6mUMg1HGJ0L3ptVWk4H/irncUsJeAgsQFhBh9Q/oEul4LJq60aRpHAglFgUuXEhhljFAjkjSk0aKSal936t2w0MAZDEIaSUFq0Eli9m73v+A7duvFWWozhKAFmSRhQ3vv+zny3L8ua716WUzz33git/nwVDiRldEh3tlKUoxp3zzvl8NvvIRz7yN//m3/za1762vb2dpmm71XHWf/KTn/z0pz6+f3AYQojjuMzzb3zzd6+/c/Pg4ChNU875b/7mV/7AH/jc888/f3Jy8lu/9Vtvv/12URS7u+f/wl/4C1/84k89deXSb/7mb7722mt0GXk+Z4KvwPrmepYCUI+TUjrAA0PWAJ3E9S7LsqjyVbt0GVOWfoDhe/yEH0c04Mia8bhVHHwyWNCVuKVLAWmUAQA4Gphp3pNeq7+QdCqufpiEhq0WS8v3FSPYLR2kGXBrfBRFS1E7LiRHxvzS8ZAzRqcZY576NGKpz07Lkghbm5ubn//8551zJKN66dKlk5OTy5cvP/PMM2+++ealS1d+5mc+fuXKlb/21/7acDjmS4EXIURda1ha+1ISQmn/clU0RI3lD9eudoIJ8GBKAwA84au7LbkAAM4aYY3Vdl59FgfULvClkalzLo5jZx0AoA8QQkDSOWvyMbqFzVGJ1FYWXAKzrK61404gY8tBCsbQey+UEnGsfHCMsbKsJ9OTZugg0IHIjbFJkm1vnWu1WlWlR6NRWZbz+VypaMVzEY0rtOj1eoPBoKoqCGGxWLRaraJYkEIT3SNjnHc6SRIEUdclY0ybipoD2iyF8Lzv9TaffvrK2dmZMXo2mxXlggbE8nzuvZ/NJu12+9z5nTTbPjtcjE7PZrOc+pNCqErX3ntEbq2P41jJiE7nWlecSx5FVVXHcZJGsTGNCIu1GlkIIWxubjLGxuPxdDolSJ2e/RJl5tRIoYsUQjgX1tbW0MN4PLZOL2qddmPOeVVVzngplTEGMFjrg3dlMaOs68Heo+++9Q6NotAassY7bxnDPM8lRyqWGGOCq5X9RZZlQoiAEsCfnZ2dDQ+vXL2YtdLjoxNjjNEQRbIsawB+/sLu+kZP69L52np3ejKcTGZVUS8Wua2AcR4JRdOF3j7mRzRJLZPOBy6U1VUIwVprTJDSLnc7d84tFgvOOYm8eFt7H1acFGyUGQO58VS1K4qCtEqoJyFTzlAoFXsfqqqez/NuR7VaLW8tAXlRJBED54yWZUBTm4rarc4D5xwBjakZcBr55Y3Cg6dGMQcnpeSMV1XlXcWlkFwYU1OJS7UE57w2zrlgbSkYAADjvK5rKTkAcCGMrb33nDPvPYFlSRLl+byuHQQjGCftF875eDwVgsVZghysd/nxUVXpE2PQY5Zk/X4/TSOKeXSYaq3fffdd7+3m5qb3/uxs1Gq1Op2O1s0JwgGKPL958wYy54MZjU8JpU2SZDg+CyFEMZcuGU+Gb7x5N8uyne2LWpdCiFYru3r1yuh0evTo1HHhvQsB87KKY1UvSsaCVPyNN2/yYFqtVqvVybLs/r29X/u1X2MIVVGqWHrv67pG66IoyVodFaVFXt2/9+AHPvtDn/98dnxwEMBcuLDTbmcAye5T51QkZ/NFnue97lpd26rUq3O/221fvHSxKAprbZ7nVV3pU5ovDkKy9fX1JIm63b5zrqwWnW53kec+6L29vf39fcZBKeUdmNpSXlsUudG+qrRS0Xw+n4zna4P2yy+/vL//SCklJCNaCl8OAYxGo62trZ2dnVu3btXGMSaMMTs7O512bzBYf/HFF3/1V3/16OgkjtMLFy5Q9qCUiqIoiqLKeGu8czXZxdR1SWOkVVUNh6OyqBE5IjrtFmUJAHVu61rHKnIugAPrNCKPW7FHL72qtQYAY2pkodVqjccTxouNzb7Rjjrb9+4+mM1mznlnPQ3oMca889YazlFKqa0DgFYrtdYGkGVZjMejTqcznY2//e1vUwGGiPmivD27u7Oz093oVVUlcGmm5EJe5VJGdV3+/b//91ut1nQyl0oBMCVk8IHY34KxwIQQwhhzdHRkvOv3u5cuXTo7O5vnCymFMcYFb5ydTaZ/7I//8bffeYsQImvtZ3/ohx7sP8qy7OjoiPCvEAIgyjgKZTDO0XwonZl1HaIo6nb71vr//K//9Va3/7GPfuL27ds/+VM/deHChX/8j//xb//W73zskx8JwFQSnwwPQYSvf+tlp8P1t2+20/bW5lq/13nAIEmSy5ev3rv3MI6bvITqoqoqKJRarbXWeTHf3d2dTKbWaaN1URSdTudnfuZn3njjjXdv3eCcR1FEw+yz2YxUC7S2zAdO82KADj3FS0psqqqiA1MIhQ2qJagnh8zVdWVt3Ot14kT1+90oFgcHj0IIzsGlS5d63bVXX33t5OTs9GC0v7//+c//obOzs3yW+xa5hIWyqKIoYSCytKfruiw0ouAcJUqtNWeBc+Gci+KYhne+//u/nwX4h//wH/69v/f3/uv/6h8cnx63++lLL31qfaszWpz4oHtrHW7O4jTJ0m7wOJzM1tc3bX3onBMsQOMjzD/6oY+//voburZxLJxzG4PexuYgbfFKl+PxsNNtydqUpRCydeny7md/8JNlWWhtnAv5ovDWMcBzO7vz+aIoql53TXAVQuE9aF31B2tVVd28+W6r1YrT9rPPve87b75x/fp1xvjJyUmr1Xr11dfr2ivF2q0sSbLgoNPpmtpOp9O/91/+36MoWl87Vyz0oJ8++8wLd+7cSZLkE5/4ZAjh+PgoX8y3tzdffPHp27dvKxUfHx92Oq3v++z3LRaFN/bu3bvz+VwIhpxxzgaDAeW0P/SDn3vttdf29/fns+qN77yTxuvbl5KimAWwWZbVdX18fFRW8+FwWJSzT7z00f/VH/qx09PTWpdKCQ54+/att75zAzxgDNY+3N7erKrq7bevv//9H/iRH/nc8eHJwcGRMaYuqhBsrWtkLTIFgCVECMDIf8yQ/huC00YIwTl79OiRiB0i73a7da3zWb4iQ1GKRZllo8y7lKKjXrX3fmXDsqq4aFOE4MXSdKGqqSUPiIzCimS81pWxFpsRdce5sN4xxrIsY4xkNPMVxElFZnjCrIwG7VbQNhUk9AcVSSkVsaJgiZAKxjnn2lS1Lnc2N6qq0LqiL4hPoE6rmoExpqRcEalYg/kGxhgguuAREUJgKEiZlwg7WmNdl5RnL+FCRnBYCMH7BsmCBjtukFMAoGNfRIqSW8YYIpByBSwla1cpPiJzzpm6FlwqpZx2NORrtWv+l3Hgm8KMHpN4QmVv9T6UiLKlD6R1ji1JW8RL5ZxbY0IINIZJqg7E7Vhho/P5nKHvdFuIqLXOsjQvCuN0d60vJX/q8qXZbFYUebvXVUqUZRlCSJIoSaKqqgabg7o2LAAZHxnjTOWSJOt11+7f35tMZolK4kRp23B1Qwg0Hs45F1wwzp98cJSur74jsZ8axHZZJkViZcalV4ApdXYJfF+ZAK9UI1ZFqVsyBBUXpHZira11RfCEYoxo6U12bW2FNYbmEVChRXeekJ3m18khvFHolkKgtdYDgdQCl00LoG/UsGfUCn1GxCiKvGPBY/ArgJivEGEaHaAEybmlyEwzULACsJ5URWww2RXoIIQA3zAfYdmDWQEBq99d3WellHaWSWGqkj4OAFQURXH88NGjBw8e5EUxWFtrGIuEozmkNozkspEetpYxxpbUZmOt946IQYwxYmXShyJgAGuDZ54JIRwEDLD6LrTISX98tQxWa4a2/6rS5py3220hxHQ6JTr/k4zLVZ3YLDXCu4EDeBU9nqD33iMKQCzLcjabSRG1Wi3nvLU2ePTeRlFU1zXjLISwWCyABc65DY567Uo0QwMcRZIksbVxHHOZBGjA9MFgwBgj7V3n3NbWVlUVD/cf7O/vMwbb25utVqu25tXvvJ4kCWMwnExKXZPyz3Q6JWbl5uZ6HKVlWZZlhYha10WRx3G8vb15/vxOlmXO1FmWJEmS53mWZYh4eHhYFEW73Y5lXBVaCEUkjBAC55JzNp/PW+3MOUdQ5mw2894TcQ8AZrPFYp5rrTEIa4ssbXfaGSIuFrPQsMXR1to74IiBMbrbj7sscgm5QvDeVVXpEUmpqa5rDnx9fX3QXxsOh9PpNIBnyL2nekqS9HbwwDhqrauqRh+89zY0HgA0MLq2tkbbPMuy2WK+vr5Od3g2m0kVzp3byfMcOQjBqqqaF3mSJM4HRJzMp1wwzlEImefzyXSka3vu3Llut3v//n3nXF3XSqnZbD4cjqz1Wxub9L20NePxOIQQAjOucSFqlpl1pCtC516zHRijiEaLn2IrY0ws7YX+w9dyQSI9KSqZacBi9edVt4m2fJZlUSQJJgMAUhxumltMIHJk8ujw5NzOhT/4hT+8v3/kLCoZpVkynY9m84JzJqXMZ0UWZ3Vtgl0RgRsvrzRNhWhCtjGOTgyqUgGabeiW8/ha6wAuUikHDABU4BMRPo2So6MD770QfIUDeIQkjq21ITQDyrouaRdTf4tCQ1mWXGCn08my7I033jg8OD0+PlYqFlwy5GkSCckJbpNcCakQuYcQgJExgNMlnQDLZhhrhJWX0Yc3EtjWey+4EpLEAejIghBcCI7cz6iVterVrQp2WMo10GG4yoLqquKc93o9rTUXylqLEdfGWGMCkwAwm822trZGoweIWhuTpBGxzf723/7b3/+ZT//Nv/W3/sE/+H9cu/bc9Td+n9XinGXIuWS2aSP5Jw7MIARTSfTyyy//uT/356qq+p3fefnFF97fbrfv3LlDhLk8n1+9ejXLUgbwb//tv/3VX/n1g4OD2WzBOd/e3v6RH/mRNE3zfN5uZ/P59Cd+4ot/9a/+VdJ6/sY3vvHmm28OBoOjoyOCTeg2rnj3AEBQKz6BQQda2MFyaJoxbumyAGTrFzw9oxX7fwVS4xOtx9XbBmjI0a6ZmG+C9eoaVg9xmWDQiBKg+57O5ar5QZRq+hTOOPLVVFCg5LMscxKpWEUrYxxAEFKutnxYCj0BAF0YjyLnPWeMMeFc4FwKIbgUzdquK84aC8pXX311MpkURTGf5YyxOI6Pjo6uX7+OiCcnZ/v7+71e7+TkhPIgv6TqAzDSQ6cSgK7K2mZ23C790qiJLriK40blublRofE9ZoyRon2t6xWkvsqF6GC31kopjTesMSGPjDFgGRdNN1cw7gC9N8szChuGOPBl4tf0b8Jy3qgZcebeem+txec/foEAAkq2qqqazRY0uESaaHVdMxTnzp3rdDpVVR0cHY5GI2tdp9Ppd9fefffdZ5999tKlS0sNnLosa2RsPp9PJpMQGkJHWZY0eUQqbLR8V2kBJb5CMHKv9t73er2qLqi2L/JKqRgAhJCccyE4zZW32xkpimqt9/YepGkaRYmtdVFUValJS87Z0O32t7a2dnbOv/HGG0VRpEmrLMsoipI0AoCqKuq6RBY44s7OzvteeO723TuHB8elrqWKnHNxpAiFaTIqEqZf1g/oQ7fbU0pNJhNrvFLKhOYYpRTKVDVDsdqWnEtn7Cp0EVIPAB6cEEItXdRRIjSDY3z5i5zCA2DT3yiKggsmhKBpIMTQ6XReePH56XQ6m00HgwEinp6enhwPSY9PV8Y5D5YcgVYZ8Gr8p8lcA/oVAM0Yo3J3WWoCIqJA772QrFmOzntP/iJ00DSDtJ12FkXReDx2zshIMsaMN4gYmG2327RgiqJ44/W3pWT9fl9wks/miBjAtVotpcR4PF7KKgETPFIJIgqhhsPxfLYQTFrrhVDkXRKWovJ0wdpZmu6nWyeE6Ha78/mcc6RODo1nCslkrIQQnKPzhkvC6ZqGZ7/fz7JsMhlZa4ej07quwcZKxWVZIjKq9p1znLMsy4RgyIJzpq7rXq/bbreTJJEKnQvz+dxY75yvqsoaX+R5HMe9dkcp5b1FxMCAhOFVLMkbsywK7yCKorLUjLEkzpCF3d0dJl27E2/v9Mez01vvXXcWNzY2g+f5Qgcr4qi7mFZ3bj8o56UQMZAEjyePFAghMO6jSJ07dw5Z2N/fp3GESmtKOD75yU8eHx/fvXv7/PnznHNjTKkXf+bP/OmPfORD/+O/+OenZ8dpGuXFfDGbXnxqdzaZArDJcOIsjiZzACa4YgKt9ZKLdrtDKXVZliEQx8sJIba2N+idObLpdMoYe+qpp7S2iYqGw/HZ2RlXfDqblXX97LNXrbWH+0cYOHo0tUWPFZBgJUQR39gctNuZUmIymRCRQalYCKVry7m4dOkSY+J0tK+17nXXtra2rly6ioiPHu2fHZ8cHh7fubO3tbVB7cdW1jk9Pa2qKlgyK4Jut+2hydeJk+iaQXIfHPlKcwAI2HjghMa1xkkp41hRLCzzyi9nadfW1jY2Ngwe93o9UoteX1v/1rd+bzYNDIEzBUGY2rXa7WvPXzs6Pjg6OgCAiMUogg/6/O727sXzDw/2T0+GZamlSEhkkwNiAMaEkhE4qGy+Csar0G6tpeyQTv9lRtiEBLp+YwyN+ta6llE0GAwGg/58PhdCMA5VXtBQiK/0n/2zf+bw6OG7t2599od/FGTrG9/+7nRef+ELX/jv/1//rQItQTtbIaI2wXug0BhFEYECjDHvwAZvjFEq2tnZ4ZzPZrNnn322KIrvfve7F566YEwdx/HTTz/99jtvHRwcrK2tWeOXwFkwto6iaG2t12qlw+EwSVUIgUgx4/F4eDqkc9p7H4Jz3nU66Qc/+IGDo/2iXCBit33uy1/+8r/8l//yr/7v/g/nLu8S3BxJAQCxUhDYw4cPtTZFpTmXAAwdMg5Lsgl6722AqqoYijiOucB2mgBaY3Sv31JK8Lj2HuI4hcCdC3fv7RljL126dPXq1W9+/RvT6dwaL2UURXEik6rSwes0TWttmRTUv0TEWMbz6awuSvJhqIzmBEhBYIwnKspasTP6wx/5oNZVksTv3rphnOaKf/zTHwMZHNrh9LSo89lsohd1v99/7rnnbt24dXR4cuniZafdcDiKZByp7O7de9NJ+cEPfOTw8Hg0nDHGGcuzLHPBF1Xe63WY5MjC2dnJ5SsXEcPZ2cmzzz9z6dKFxWJxOjpVSrlSfvtbr7TbmbOaMbazc/7qlWdu3brjHYujDFE+fPgwz/NBv8c4GGNOjkeDwWA15dNut0ejEa3POI7H4wlFwCKvyrK8ePHiM89cu3v39vHJoYxkCK4/6L3/A+977733JpPRfD6/evXqC8+/+PDhw35/7cu/9utnp9MPfuz5EEJgAcBHUdTtdWgLx1EyHo9NZT784Q93Op2vfvWrSRy3220hQwiBoTg4OHY2cC6d8/miHA6HX/zpn/rABz7w1ltv3Lh18/79+0VZJEl0brBjjJlM50SNUSpmnJ/tH+8+feGjH/1wns+tq3u9TgDHGH7zm18vp7yYF4gMgTOmMDCGDV8DGpgGPDgCSeNYbZ7bWCxm/bVukkSz2ZQkm7wPksmq0s4GTp5y2jCGWuulCBVCwGXy3WBq1lrO0VpLpjSEzACT9FnGmG6rnaYpMiCMzzeOC4ZSRuAsSZJYMe+A0tk8z2vbkA3JrReWg1n0AyEEH6yUMliyNhWcPUbJm+jsLcnjjkajwWDwR/7oH//KV75y69atSClj6naaRUoKju00Mbqqi1KbhvqKghtjkAmtNQrpvbeuyYuIe0HzWERHJSlnrTWTTarjnJMiYoBVVYelPSBl7SQjSOkoyRSyJeN1VRpZa42pkTdRgPQooyhCgd40aB1H5r0H7xkKZ3xdaq1NLGOtLQTGUUgpF/W8ycVtcM6h4CEE4ywiUu7BGKtKrUlBL7CgMJJCSAbO1nXNUWRJh+ydjTFpK0LmtNWMMQhY6poJTYT3KJKbW+s+hKJcIAJXst/vjqcTay2w4L0PiFrrdifZ3NwkZY9O1vLez+dz8Mg5n08XVVUNBluXL1569duvx3H66NGBLSMiDNLzNcZQcWWtFayRG7ZOU1rIGEPRkCdgqQ8YluykpQERrthPdV17b1eY+wqaAWAN3rFMWVdlsBQJxQXGGAvgvXfgOCf9ZMIaLBLSSpcUNcGOugjOWO+bwVXKElljJcc5R+cc+oYEYwNx8WoaArBLNWqGAj00TpvAmBAEh3vvnbEciSPPGmIXYgDHOK9tjSwQ61sIEcDZpZsiY0w0nCO/wppDWFpoYlPOMcYZPG7w0EaIoihNU2D4eNG6oLWmy1shQUKIdrs9m816vc50OnXBU01bVRW5tFHyT30auu2RkOSCDr5BfoVQ3nsPBhE5Pibae2uFEHGsvPdRJK21gSFio2QSGml3mthtmNGMQZKlDZ4OjXkjVUPo/GKxqKpKcEn0RvoKzoUlUGgDNIR3znmSJHEcr4RARdSI1ZAiXKSSEAIGLMsaADrtHkssja5yyagWE1zleam1TZMshDCbT4GFy09fTpJISsmkn06nSsbWWrIsiuOUULM4jieTydnZWQhhMBisra1Np1OHBhHXur2qKMuy1GXV7fazdvfsbFjXtfNw8eJFAJhNx0SUbrVab775ZlEU165ds9ZOp3OBrNVqWWuroiR36729veFwmMTxWn+9ri05PXKhViuBTrAoklEUbW1uJkl8cHBAnTOFQggxm+eTyQyAWeOVioQQiEBdtFqXtOAJEHBgnGuQDsaYc4FEEZ1z3tuAQGTbKJJKKQ+Bo6DDxFodAkIzcIPWepKnXywWZH0UCS6l5FHjKmmMpmNEKXHx4kUqS6tKk5OTtfb4+CTP82dfuPTBD37w3XffpdVOhoQ0CU09A9omrVaL/nx2Orx48WK/3y/Lks7tVqtz9+7dhw/3vfeddk9EylpHGzmEoIARDEJ4KNH3QghVVWn9WDpmBQkFgCiKSKZdSpmqDw06//N/iB4+PPliqV9rSmnfQGkEMQdnGhYnQ2u1tRY54xyjKEqyVCAYY4z1yBRDYnI4BI3MehsWCzh7sPhL/8f/4mMf++xbN64751pR3O/3T05OxrNZHMcPHz6cjsaMMcGZ9zYSkqyhyLCu2+22Om3vgaEAgLrWUka+IU4GWkhG1yxACOCMBR9MJFUkmPPobBzJVpZ470ejs7PR0FiftlsyEtZaj+Cco84ufVPBONGPnHMkdENHFoEha+uDVqtVFMXpySFjTIpICBkCBk8WoNJ7b2udpinhA0t6OA8MnXPBI3GWtbaccym5J2lgzpwLxlrvwTnPOefBZVkGTduYzedza63gyBiztaYq0kFIsyxNUwdhNhqGEGjZewfOmKJYOGc8grVma2v7/IXd4BG4ilSi4thLFzznKE3pJENTL3713/4LXY2VqhGMEjhdTH/4h3/wB3/4h965+c7P/bP/9sVnv9SK/6f/cMHsH34R8J1Op0PEx6oulVLaGCFkVVVSCtK++Orv/Ha/3/+Lf+F/0+v1qqqqa3P//v27d+9WZb2zs9Nqtbrdbp7nd+/e/aVf+iWOGMfxSy+9BADD4XA8HsdxpJL47/ydv/P8C885527duvW1r/7O3/gbfyNNW9S4BXjMEw5P6GKHxlmxwYgBQEpJLn/9fp/Y+vTvNCMrRKMMA5wReovIiQuMiAxFMyKPTdSGZvSraay6ldQyF4T1K6VWusOrfjwiUv6w2rlNvuFg1X4IT/SqERHcYxsSZI8dRJ743uixMY1gy7hC34tQI8LNqEe1eivOJJ3GcSIaGbHQmN9SL7PVamVZtmI8kJwahTw6P5c3vPFpJEMRSllDCOGxg2JYQuHNV7aGimsVQiCyOWONlWtdl9Y2GUXTDg9AbWNcMkhsaCYjiWUlBFv9MDRdAbbig8OSeovL+a0AdQIt64NLDQsgFiKEcAxHXMnt/CnhIXgI48l4d3d3NplqbaWUg8Gg0+mMRpPhcMhQCOHv379P2urW2yxrMcas8VVVbW5u6tq+++67w+Fwd3e3qiqtda01uY60221JA60egvPWeudKpRRjPAQwxta1llIQvuY9bG+f01pPp+Pj4+MAIY7VqqcBS2o950xr44ypqqLVyvr9/mAwWFsbhBBu375rtM6yLMuy2XShC9Pqdj7wgRfr2uzvP6RHmxdzxpjzBjH23idJopRw3lhtzs7O3nvvvdFkXFY5E8oHR6kRkc9XSRIiEi2ormtb6zxfFAVzzgnJa106CMu25xLPBYuhUTAxxpDaF1vyoxER0LNlVHPOBXDoGveAVT+WflJrzRinLqgk1qcxiMHFcbuTBe+PD0/m8+lsNrt7+26v12OMEbUzknGs0qrU6APNNLnlvMByazU7M8Djf1zm0E9MqwUamQ3G1sT3iaWC5ZgbkL8WIgCsWCqMNZkufWVSzHj48OHu7q4Q4uLFnf39w8lksrmxTT+WZVmty6IoQogofUzTtNVqAcOqquazHAAGg0HwUCxKApWQCw7B+8fjHlJKDlRvPyanz2YT+nTvvRRSSsk598EqLoWSITghIxqJol7QeDwhOmRRFN5bZ4NSqqgsAK2HZrMhIvGgnQscUUYqa2fkpDyfz21pnXNVqQMCESu8bxyBZ7PZYNDv9/vOW2BssN7P87zVbvd6PUQcDYdVVZ2djjhHxriU8vjkcHNzkEaRtZYxsbNz7sLF8wf7R2VZ6dr3e+t79w72D+4JTDq9KM2i0clYqTiAW81XVlWFLERRTNBhp9MBxqxzdGQDsFu3bmmtp5PZbDYj0Y9Pf+YTp6dnv/zLv8KYmM/ye/fuIoZnn7nsbLhy5Updm7qoh2fjVjtBYEmSWYfT6VRKUvz083kuhIgipa1GFFtbG0TOeuri5evvvDMcjjlTEA7SNJnDfDweVqa6uLN75emLjw4ettpJFMVHh4emMrFMlZS2tgydrg1XsLW1HYJfLIp2O+t0OiGE6XRqrRWCcR7Vdb2//0hKKaKwttaTUh4dH9y/d68s6uFwGKwPAUOA4+PTYEFG4tCdeOdVpMAxKpOSJJktphQ1rbV0yDrnokg546uqUkokSWKcXYUoXPKS6BTlXLa7anh6RoH56PigqovN81GaZowxY0ycxj/0Qz9w5/bejev3jNGcAYBbzEbD0fHHP/7hl393OpmOtGPeWKmQc35wcDQbz4jY55yL49TWldZ1cL7d7vrgaMycogLFJr58mScckEMzu9rED8LTsywrqpIxhpxba0ej0Xg8jKLo/PnzHHBhZy+88MLp6Wk+nn7rW9/66Ec//Kf/r3/u2gvvr5zIev/LOzfufOub31ycnmWdCLmTQgAwhbAoK2stOS9R39Fay5kMxknGpZRkKssYO9zfBwCh1MH+w3a7DSFMJ5N8voikqoqSMSZllMRxVRUQRJkv9vOFzovN3e1Wa20ymVhbSxltb29LLrTWRMZEZJtr65ub64PBYH1zMJ4M8zx/98b9v/JXfvb09HTr4haAJ1a7I8AIXKuVPPPMszdv3JISSYQLluRHGq9DwWnmOYQgBFNKAAfaoPv7DweDQYpssSicHXe7g153LU2z8Wg6ncy/8pu/PR3PsyyNokipyNkwLeZSRgjMWt/pdKI0qWsjpXz06CBdT59++umb71zXWpMVlfMeWfDOog1eCJp//8Y3v7nIZ0kSP/fC+zqd1vrm4Po7N1780AtSyERm8+lMggQpT44nD/a+Wuc1Y/zhg4NzW+c2N84xwPm8mM9yAHbjxjtCxIhBKclZqygqY60HMCaA1wDh+eefX19fOzk9VEqlcbRYLAD9lUuX9o/217q9z33uc4NB/+hw/5VXXjk4ODDaIYqyLIdnk/m8NNrWdV2XFQBYXau4SZuowz+fzxHx4sWLRVHUtaasC4FXVRXH8XQ6ffvtt723zjnmmBBsOBy++cZbJ6fHUso0bb377nujs8nh4WHwqOs6jqObN+45Z4RgSRqvrfVaSStSqTV5t9vt9dbu37n79W+8fOHChc2t9RACMpjP509dvNzr9Tc2tg8PTkejcafdOj66KYQ4eLT/8ssvV1UhlYjjuN1uS8WljLrdvrHeWmKYmkqXGxc2Ocf33nuPc0TmEUOv30GEj3704/k4fPXf/Y5ggiFjjFntaLjbe08afC44Ugl3zk0ms7XNfrvdrus6jhXnnOir3riyrK11gqssyyQXM22WAhFBCGGtFYIz5MQEhGZ611n7uP9qrUUMZFlMgKy1djab+eBoUgeaIdnGGU+QZ6Bt8hBCK2h4GhFp+IMyaYovdIYIyfI8N9rFZHUdvHVeEA2YZrm4XAEivV6PzO4DOMQQRZHz1hhA4FrrxXxOirwMeW2NYiiEsC4EthLuCt57YIhPoGnuCYUEKWVgFpGRECEEJnnjJEGMYGja7A0RwxgTJ2pV4dA3JUCQMmwatfZLBgDBkbgUDvJkabMiMkMIIZS65tA8R2McHcUhoFASDdbWMcYYIC6nGgEA2VJqFnxw6JjjAhFASSm4CiEYY51zSRKF4HRdAwPn3Lnd3bquR7ODCxd2aVSLC4HBMsaM0Tb409NT42yn0/EhzGYzOpnjmHrnvMqrfJZ3Oh0hVF1WIYRut6u1zfO8t7a2u3txOByvr6+fPJxj+B5R3eCDdRYAPPjlQwFjDfqQpmlghNQb/gRxlV7YyIm4xgqogfj9k9nmMsVqRsupXUpRjBats01EY2FJmA3gnMNlRh2CI5IIQ2SM6cooFTiySEUh+Np5YzR/Ykh81RdZlr4MESujkyRJkljruqoLambAUirRW4vAoiipKm00FTgAAFmnZYyRQujaCsGsd955JrCq68BCLGOhuLXGabOqb0MIGCAgI1h2Wf6I1bUJxVZscWfdMutmSyfD3ENot9tUiLW6nUwl7713h4A2MiCi3T2ZTBhjVEwGCABAEtt5XhK+TPANPRSi+ZPbCixNAlcjyc450tWkTR1CAGuNIeyYOQjBefKGD0uzU/rFVR1EW5IgTmsN55yq5aouIqboSrxrfBrpd0nUxTZ5F62mpvJnDKy11hpE9CiokUl3qRmxrY1SsVKKGslVVaVpKiPBOY+j1HvvPcznZ8ED3ShgYTIcpRfOMcZ0rXvdNaXUcDg8ODhI05bWlk6PxWKhtSZfVjocaMUmqSrLkjOmlIpEROFPaz2fz8+fvxBF0d07d4pisbu7e+nSpfF42uutORfu339QlqXiIkmSdrvd7/cLGZdlqXUBwIRQwWOe58Z4xli300fEvCzo4ZKCCkHP0+k0iqIsywgcr/JyUeSTyYSwCdIAcc7SU/bBkrusMaaJxaKZUyEAgp5vXdchuOUDbQbnqaIcjkdaa6XIkdUGR8vSUvNv1WdyzhjvXOXQBZLZieNE6zpN06effhoRT09PqU9MHG0hJAE0BD1Tu5o0phhjNBdLeXhV1kVRnD8v+r01Kt/G4zHVqpxzzuV0Ouec93o955yzPp/NORcouKFZByZgaVXinCNWbFji+BRG7VKynBZxVVXOWqWWMeL3e1mraasiBikEYoOR0akVmvanB/AhBKN1msZxHDNAresGLHPeokFgEBygwxC8x7OD44+89KMvvfTSK698xyOWddWOE2rwELgfRZGDIBjzITTkNsY8AC7N2eraMMZgSV23VgMw4MCQWWtC8JU1HFBwbr1tMGLrnLUMQ1npqjYhhLz2OggRCcalrp33XsbNUK9A5pwLzgfWYFL0+NxSJZmmS8E3nr3dbltrmqUOnLPAgvPGLHXnbbDBB845CnTgGDBgQgm1YmsCAGPce0+SLxiCtz4EzwMgeBZAcEXBKzD02rolYz3LMnB+ZQxA8dcaQ10HzqVrBqR8XdfOGe1sr9ddX1/XWguuaKYbG+kYGXyI49hUZbvdvnr1mRvvvKpk7FyoTa21/q3f+nevfPv3bLDdTr+qq1b8+yyYLGvVWpydndHUDjbqH8QKZbPx+Jlnnvlbf+tv/cIvXr7z3u0f/dEfXV9fz/Mckd+7d++f/tN/enJ8+uDBg3a7fXp6enBwQEiXt5Yx9sYbb8zncyK3ZZ3W+9///lu3bk3nk9dee+23f/u37925yxir6zJJMufcYH2dNCJIqPD8+fPvvfcea0yVm6avWMpwAwLnvNPp9Hq9vb09AJjNZpRnUpZorQ0QqKAmT2bCtcieZBUUvPehMatuTp7VE6GPJhgnhOCf4Dsvw2WTM1B5S/FAPNG6pmVPoUQIwQTS/rbOgWs6SSvstUkhlm/+OEY/IUXdwGjeB4QVTgiiCUVVVQHN7gBS5kJZvbU2z/OwbFwZY+hWLFu5Ypm9ICXb8MR4HN2YBgpfXgBjgnNgTABYH7AsSxUJDhwRhViZATLy4XsSUl9Bc7QrCX+HpYIHzdYjIrWIkiSh3vnqDKR3o5OBMYZcMcsYhFJrW+vMtTgy0C7IxphE2KUT4tr6xp17D+NYMsF9wFrrqjZpKpng3loXfFlXTR7sUQjhHVjj7x/f997HiXr06FGapu12ezga5Xm+s3Oe8HvGHGPGQxACtTbELlFcIKJ3rqhqzjn1MPudnkoiijGtVotxsNaGlJ5BQ/kGEADQarWs1UKsZDQ5TTCdP38eEevaeO+zrfb29k4I4fT0+N7tu1GaMgbGaCkjY8zx4WGcxlmWWWuCJ+U+vr+/z6WgznAcpy74uqSBAgIKHR066+vrcRyD8+S3SA0cpWIphQ1+sViEsFzQ+FgYzjmiwQMu1zFjLMAqf+LUQKZe/bLbA1EUdTod+r90qCKi904ITokU5zwEx5kUXB0eHDtv8rxgTNBNqLUvioIjZyicNpxLwfiqUn0CTaZFxuk4oEx7BaKFEFZ9nWAfa5sqpbzzCJwhNApDjHGSGXKOPLso7HnvueSMsSQhExV/fHyUpunW1paU8uTkrCgKgqU450pFWuuyrDlH72E2m+V57iFwznVt87w0xnEm8smUx4n3njGjuCCKHAkjeG+pzxECTQSzFYEL0AvJprMxbaqtrS3OuffOI/fex2mMiEw0VatzLs+LEHwzzAIsiiSNHREdYHkoeBessz4S0tZGSjGZTMhdEGlMEgGRGVMj4vpG/8qly3Vde2N3d3cZxwcP7lO/yzlz6dKl+Xx+dHRETydNU4DSObLFSIyxvd5WWc1ef/07m5uDzZ0BQzmdDM/Ozq5curq51bNWY+Cdbn86yYXsew3WOobKuWC06/cGs/LMeDcvCkSgET9rbV0bGiAgunF/bY0mL9rt9sH+0Ww2+/7v//4f/fwf/I3f+PXf+I1f73Tbw+H0zp1X1wf9EMJsNnvf8y8OBoM8Lw8ODpyLu+2u1nZ//9DWtpN1gLH5YqqU2trZ3NnZOTk5nkwm57bPB48MBUJ0fDS29pijW9/ot1ppAJtm4vKVCyEEo93m9kYkWuXCzccLZ83GoNfv950zH/jgizduvPPOOzeQwdWrF5QSw+GQmhOTyZhzaTCcDY8q7ba3+875g4MpVMBi6LTTvKqcA6W4rl2cxtb4XrenlDo9PRXcMcaMrafTaaVrEuSB5bAPQQMeA2PgXJjPcxkp55qyEAC8J2za1rXZ2Bg451yw3jprNHIcT0Z5Dd77brdT1+Xxyf65nd33vfDs9va5g/3Te3cfPP3Cc4jhvfduTWYb156/ePdeNTp253d3jNEqjoqiMNpLlEmrjcABPUYqBBe8JyFCAFZVjXiWX1KiVrGBLSdwl7lyQMRWq3XhwoXT09PxeEyd1bVuz0Egys/w7ESXjXXyhz/00ddee216Ntk/OLx05XKn03M2aG1+9md/9tXXvvuTP/ETvc1NtMV0MsrSOI5jrd1/8h//+ZOjR2+//fZoNCmKgmhxTdumKC5fvvKFL3zhX//rf03k9FXaTTnW/TvvxVlGdz6KojSNsywrCjmbzeJYTWfjZ198rtvtPHi0R7t+/9FBf22t02qnaWqMKYqFlLLX650/f74oCusNAKytrX3ko71Xfu/r586d+9KX/sj16zdff/11IdTm+sZkMi3mizRpLRYLzmVV6yxtW2sBrXMhimQIQTutuAIIxpQUs4xhh0cTxsLTVy6tDfrtTmv34vaP//hPHhwc/d/+y7/X7p5FKhFC3bu9BwykFHGcMsZ07UJApWLvIASoSo2sKorK+GZS/uzszFtHTXVrNQouJPMI3uhICM7g4sWLB0f7nU7npc++lLVa3/72t2/dubO9vXX/4f1S11GkprNhmkXndnfWr1x49913q+J0sDbY2dqRUkZCJkly7879k5MTKaM0bVVljRiSNPLOh8CDl1LKLEuSLDLepJmSMjo6Oinz/NOf/GRe5cPToZB8OByenp4e2/HFixcfPXyolHr26Wv7+4ejs5GU0aP9U5cDS4QvbdpthRCCda2sg4IRyYUxZq0dDoeMcQCcTqfD4VDJmIiZQihEXpZ1WdYAXkhurU2STAI/PR122l1EPDs7m0xm09Fca6tEhIgAGIkWU6yu88VU63pcFloqgYjDk+H2+e2klZW6rLQuFvO1tR6iuHtn74X3fehg/+TBg0f93vrpyTiEEbXq33rrrVar1e/3qdSpqiqfFpp7H1AIpRRLkqioyrZq0aBDrQul1OWLT8VxfHi43263O51Oa6v1Bz//+W9+81tgQWuHjPngOHKpRJPtIQsBvW+G6w8Pj3q9LmO0T4P3QaloMh8hMiFEUwQ6H0LTwXXGrMA7RJSh8W2mMf+6rrWpgw8kWK+1VrGi+hycr51Bcj+W8olAzxC5AwcAVVUZCCulGiZFHMeEQC0HrBnBE3SqDAaDKJYPHz5MkxZjLM9zrXUUxatgqlRTmbgQWp3OeDb+n/75PweAXqdDxxQgS5LIWT0cDhkGzrlQERciiiJjvTZGO0ue8LBMdjkXhJfhE/Y13ntCzYA7ko8nuDk0WWSDTYcQAMJyHtSHEOoKyURklcc/Wep4cE/iksYY0m0nvEkwLqUERPCgYmmtdYJx5FJGjtQ5AzPecimCA621tZ4xJoTQ2jvn0CMwv6xk6CZhCIwmxhhjjHOGPDjHGIQAZV1IhWtr/ePTA0RM0mhre2PTd2g20TmzWCy4YCqJtDN1VXW77bwsFvMiy7JOqztbzLW2jAkEWS5yACYEryodSVVV2jln9SSO093dXQJVz87OnHMrHUQlBANOQ7IkMAUAlBTRKrJO2+DRh3a7HRp6eKNPjUtu4KqyojEOxlgI7N9LTWm9UR+FmhyUJ9PyLp6o2RCR0ukQgnjMM0D6REdkdoZ1baTkvpHRc7T4nVvRo/yqiHLOOQguhFartbOzTXbNWZwgotYV57zdzuraxFEKLhRFlSSR8QYgAIduu+29Rw5SCC6Z0c47Cz5Ya5jEJEldcM41Ch6k6t7A90017p8sfVd/BkAp1XLlE94HBMc3kiw2VKUuiirwoJQqy3q1mNmSiOSXdCTKq+ExbYKTSg8BVaT2SJPvttZRlPBGetVa7xg8HmoODBiy1WZx3hd1pazQzoZAipMoBKy+GjYIcfDeheAZ47qqidrMADmy4LyHJqdqJhVqQp2aM8qF71GvpttHdLMQAmMohKhthbahwiwrc6dknESxc55zZAyKoojjuJEZUcpae3Y24lwGv8T3hahNNZlMLj99+fj4CFjY3d3NsowxcXY2oukTqgpnsxmdmVQSbm9vdzodYUUkJLWyQkBnrXNhNpk452azRas1NcYcHBwgYrs9v3/nbqV9K+vks3w0GhljggyMibKsJVch4Gy2IMKKEpFzrigqzlSkIhoukZxsBjWZkZRlmed5WRTT6TSOY8TmC45GIykj5wIAE7IhvEvFrbVGmyiSZJzTdBqCZUtL1SXC0hAsiGpNO9EYM51Oy7IMAQH8anKuruvggDFBcCotLc45xTvgILhCYKGRNgrG2MVi4ZwbjUa0NajvwhhP0xQCG48mB/HhhQsXSNVzsVjQkUIhxlpLrEMCIqqqEkKVZTmZzOhYSJKk0+mQG0FdmaqqjCFXSToEnA5IfUohhPdNFe+XMu5SRiEEY2q/HLYDRkGcUz6j8TGr4997IQbGBAQHsGL6B8key8I4a1E8ln6mj9BVjYhcKmctAOMcfbCI4K2fTsr1c0/90T/2p/b2HpyenjIps7TNlgaDUsrZbJYkSZZl8/lMMu6XbLlmR3AmVLTKHOg7IqIjFXTwhC8zgYDoMRTOyOClEsF59B4FmuCNDQHRyxikBcY98MCAAaAPzgUEjsBCcLiU9wGAJW0cqENQVRXhXCQFzhjjnNz8WPAAAEIwUMiZpPZ28AE5MKEAgAnhAR0D74FEG4iSaK2VQlpPS0KTmr/kXIlIRpFzzlFvdOl1EbybTqfoqdfoERHQA3rwtqpKY2yWZYyliEiNjTSNwWgpJfXJKlN11zK6bCaF0S6WkdbGBZ/n9cVLlx8+eK8sR4KzVqvz3PPX8nz+6e/71B/5o1/6hV/4hbde1/D7dSgm08nRwZ0kyzqdTpr1y7Ks6hoROWfOWQhhOBx+/etf/+P/0Z/4p//0n3zta1/7Iz/9U0rFt2/f/sVf/MWv/c7LcRxTOUydcjJLACGoH+a9Jx9vD+HNN988ODhQsTw4OKAl/bN/5S//+I//eKfdu3Pnzs/93M/93u/9Hh0F1PSiQMyWdMkng3gA0Fo/evTo4OBASrm7uzuZTMqyTJKkrs0Th3Do9XovvPD+R48eDYdD51ygsdcll3k1gwvY4J6IKJCtIE67lDRpejZPuGvS6QTNsHtjW8KWWl6r0OOXjN3wxN1fZY/LzLAhZjHGVjr17AntWUQMwS21FoEj45Kv8oemBgfTwHrLcaVlHAdjSDwNV9gCPNHqWDVWCRNbJairi1xmp/RTj2nX2KiROMbU4+tfysLY5YQZ/SQCEkCPiNbaUte0g9xjSYNmyI+ORP6EHAouaQF02jzZ8pWcKa6CdcEG4y0I8EZrrUWr066qqtPr3r2399KnP/2Zz3z6wYMHk/FsPJqmaev8+fPGmMUiN8YgcIAAwqdJaz6fr62tgw+0pgkR6HQ6nW4rz/ONja1OpyZonzjeWtt8npNhFAJnAbW1nHPGOAJ4BxBYWdR379w3wXjvSMY0TTJYstaXGF+zqjqdDgAMh6da67KsqLrodDo7O1tEzNza2phO53t79/M8t9aJSGpdEV5kdBXF8cVLFxeLRV3XywSFOecCBKtNFEXtdntnZ+fg6HAxWzzxaJFaZ8bYdso9NNJ7cRwD+gCOccZD05mnh0EyhSE47xrXVEQUQlFyCQCA3C/TpqYSQ0chnCKcbUzh3WoRECzrnKOZJudcFKVlWRN3BoAhSIYseB48YggcZF3VECwGsBYM0NTe46212gDeW2AclrolNAKAGAIGANoGgSakmJQ+WOccWACwdM7ShvToJWs0XBhjROZiklFaTwJkFG4Xszk13tvtejZdwBNZPm34oqgZ04jovK/qAhEjlTAGnKO15pkXrg3PxlevPnN6err/4GGv17PWttttKeVkPqGBAuu0dbqdtp032tgkzqy1RVHESdxOM+dclrZn88liseCcbZ/fllKSanme54Irhh4BGSIwUCr13pWLsqqqKIrZ0lMiABhndVn1ep1Lly5ZaxaLBSK6YK03prQhBOSMGtqUlEwmk6oqJed37t4ej4chhCSJqpMqhHD//n0hxGQyEULEURTHsZTq9HQ4HA7pCz68f6BdHsCdno6s9Y/2D+q6vnr16vHx8Ww2u3Tp8lqvP5+VnW6mZHJ0eDY8m1ULU1WWM/m5H/3R17/zzZs3b6ZZjIjtdhsR83xK24dOHErIGhlrzn2w0+n09ddf33vwoL/WS9POvbt7ZWHOnesZHfI8P39+9/nnn+dc3rx5U2udxL2yKPYfHeZ5LlBwJr33DFW71XUWr79zk0YjJ6OvI2IUpfOpZYxb49a2B88+99xgvd0bdOJYPNx/YLwr60Wv152Ni7Iq82LhHRQFJEkyHo+/+9Y7g/X+Zz7z6be++8ZwOHz66ae3trbm8znpVGhd5bnp9Xoe/Hw+994PBjEGkDI6f+6pzcFGWdZRlNx6987dW3cBYX1989q1a1/+8pe1LhhjQqjJbCyEWrVVaASGKrTVQeTc41YhIlJ4o83lmT85Obl4cffS5Yt7e/cvXb2wt/cQPDx97VJVLO7fv7826FhXjcfDbmdQ5mZv71G5cIvF9DPf/9LzL1xelOM2T688/X13bp6FZpZHtlqt4emM8yh4REZgvXWhMRJUMiZNicdQC7iw5FyvwsMqsMET0DM1HRkE55xSsYyb0XjJlRAKwC8mM6UUQzw+Gm5urd169717ew82dy/eufOeiDpK8I9/7KPvXn8LnKP+kDYuTVvXr9+IBVw4f3E+XZR5oZRyxjPGAkCWZcfHR7/2a7+mtX7++efn8/l7770Xx3FlyyiKpORCZNZaKXme56SxSDlTFEnnXL/f39jYKMuCDsA0TZ+99gwxsxDx3Lnt09PTAC4E9/DhAx9st9d78PC+1vrypautVvLhD3/o9Ox4sZidO3fu3r29iVBGu3xRzqZFkiTeO7LDjqLIW3TOAAdrLeNgna7rSkXSOScVj6JofeMpIYFztnV+t9/v7+3tPX31ubXBVjX3L77/8qVLVwDg4ODg4cOHZVnWpfaeZru4CU6AQKDQE6qqyst6PsullMHD/v6h914Ihgy9c94F4MA5csC6zL/whS/cvX/n3/zyL31IRgFZ2mqfjie3btwCxW/fvI8s+NrJBK5dfn46qXSNnXRQVdXJ8QQAJsNRHMdlsZhOp5zLZV8aEQPjwRsO8Hi40tgqn0+LxdyYcm3Q63XXrfEVq2az2dnZmfc+FuLu3bsI4Jz7vk9/5sUXPmitPzsbvf9FvHHzvfv3H1y4cjGOsvF4PJ/M//x/+pd+/Su/eufOHRKhrqqahH37/X6RVwicRFdCaOhqAADOouD9fp8xBgxarbTV6Ybg6rouCi2YFCKSHEl3OwQ0uYtSqUSWRCgU6sqZWguFIYQ7t+6hwFYrLcsSBc+rcjab5Qt74/p77954dzGts/axlIqqXMFZb627trZG9ITa6Ei1q9IvFoUQqt/vTqdTAN/ptLSpa13FsYqieD6f3b17d7FYTCaTZ599bm9vv5uut1qtJEnKouYcnQ2AaKymTYccCNfgXDIWtLPBI+fCWlPk1frGWlUVpqqjKNFaC8GDR6uNCU0NjIhKCJpJpOO6cUf0vqqdECI0k85Ru92m0k5wqbWufOHAkXEZ5bKUhq6ycM4lZxIlZ2D9knxhrJeymbsiPJH+EJbziePxOC/m3ntdN0pWIYTFYkHSE1JKclhpeBAsAAAXGEIwtp5MJlmWbQw2J6PxtWefPjw8nI6HKo4Q0TjLnSp17T1UlWaMQWOmhB4CW5E+2GO1PkJ8QghcgVINZTU4TzA6ZdmMMfDOOe9CINycboXgEhFdqMOSXEPlllLKOOu9XU2QrFDRVRnT1CQA3rI4jYQQ83lO7GNtbAhBxhEGJKrXkzgO5QZCiOA8+FWpg+C8kAKAcWSMg3fBOFfXhnPkHNM0kRE7v7tTG6N1cXw816Lqtju9Xm+2yK23pg55nuu67nQ6/f6gKCqj9cw1eoIhhNNDR6PoDc/LNHLMiJhEcRyn89ni+vSm91CW5WSyaIuuEhIAMIBzlqPgEkWj/mkQSUCpEcqr6zpJIqJVUrsRlnJnRPcOjwk7VEBCCI+lkNljOxDfRCjG6G5TqblYLIyxvHEFdA11gzFGiqucMQbeN9QB8J5zrh2Nr4k8z4k265ZGUvRa7Swax3HOUvTXWqdpqiLhnKvrEjGKomh9fX0+z40xDAUpHjzYf4iInU6HR4wDi3lUVZX1NgjodNpCiKOjo6zdevba0w8ePLDWclyxvFcUE1yuKwrTzbUtF6EkFbu6rBjnNJwLSzlR2oyz2cwYw6Q4PRnWtVmxz2jEDZ4A8a3V5ASFjeliEEJQOsE5J0soepRWSsUFGTOSTgLNNFRV0dw0RFLHhmbkgtvgQWshmuKZdj21tB9XB8s6NoRAhwMA+GAR+JMgwqqsNT4AYmAIDnDpqEb4MmnIABpkHgEYZw5Ix5kBiDSNi6JijGWtZGdn5/jgpCzLsix4wjmnEWxelTrP88lkwrmUQtHJWZYyoCfRZADIkpauzLieZFkWq6iua0QGgFVVcy7yPK+qenNzgwrnKIpEpBbTWZ7Pq7JcLBYceLvdDh5Q8E6n45wjno03tlzkj/IiUlmSJN4BQwHB6dqCr85Ohotp0W63lYwQWHABkTlnQggQHB0gRBQFH1qt1traWlEUWuuyLOuqLMuy3W4rpTgXpBBYVyYES8ThNE2tNaYgrQmZpqn3niyXoihqlPEfm+PBit5rrQXwwDCEsGo65nkupVqJ0oQQPIASzLlADSla6SEE8iYBYCR/VBY155wJdnx8QtsNEQEQIDAUCNw7EIJ5gPF47L3P81ybutPpkAACra5+v+9doBLPGBcCICLNoRtjjHFp2pIyms1muqZrEFmW0TGyLIeZWWri1bUhrIfaMMYY7y1tB2JqM8aMtXxp4+ack2Dh93sxxhV1IgNSYzWEwJcAAl+OFnnnOeexikJAqiIZYz4Acz74AOCBseBsYNxoBIz/4Od/Mk3aX3/9O3HcAUqZODOe3h8qXQNAHMfD4VllLKDP2qkLXltT13Wr1aLGM+ecobPGxEkSAgAGMgkEFoAFoWTzrFmw6Lh16D3heJ6aRZ4Z54EJF5xzGEnBhTDOOheUUs5oRATGaOwHwK2i5KoGIUZaU6Egl5LRkW60s9ZyyZSKSAyw0JYLGRhysVQ28BCcJ/tNRsZR4CifqY2ltYaIHFFyESvpG7QRSGGSnhqj7shyZRJ/iA6WBgoPwXu7lMQNRVGISJJLtvU+UqSr3m53MiYFY2I2nWMgNZhqY33nuec/8Ntf+eU4Cmtr/U9+4lO/8mu/cnR08vP/3c8/ePDgp376f/tL/5/fZ8Hsnt/93Of+FCLevn17/+CRlNIvsxEAUGl6eHj42muvlUXxjW9863d/9xvzeX737t1f/dVfffM7b6ooSpIkjtN33rlhvQEfEJHCvRAiOEds2UprqYT3/vjkxFqrIsEYG4/HX//6140xn/vc59577700Tcenp731dYJuvv3tb7/vfe+rqur+/fu0rZanvQjgrGmkNoi92u12f+InfuKtt966fv062dsIIYyuOedra+sf+MAHnHM33n47bbcjlaxiAW1k2iDOBcF4LGOttQshePQOOJPWafpc6xtUlEIY55yIGrD0pF1CNI7AsVV+Sxezyt9W7/B4HT7xCiHQOBEspdtXSKtf6krTm4MHat8iNHHTB1gmLU1wXOaNsPwtTsETl9p0y/X22BqRztsncIYns4LH5hDWWkSyo8AkiShlcs44R6ClCU8oYDTbp+naNs2zFTzNlmJlfknrjuOY8iUiSbilvAaFb9oa3nsiTFhvHTgppXDCWhtlWW21EELMZ3mr1bp6ZTPLsqzVUlFkrH/06FG322VMzCaz6XSGwKWI6EwXoIi071yoyyoEVCpyS347BOZsQM7iOKb7y5AJjpGKS1Z6B94BYxgCxHGy3DyklSYBYDyaZL10bW1A442rPMk5R/0GOqrKsjw+Or341O7Vq89Mp2OtdVEUtIUe7T+8sHvROXdwcPDo0YGUEaAPwVttBM1kBQvWra31fuInfuyrX/3a3bt3s6xVlSXnKKVw3iwWi7LMgQMeh26340wYj8c0SUoNQAA4OjpaTGcAgZqrnW6LNaZ/EEhfqTFnR8EFke+0s3Ypj2itZkwwxsAH6uH7hmphGWM84quppVV0XzVvGWPz+bzVakVRRJUwDTtwzquqJpWPJEkJLLbWeQecSyECehRCOBusMQBkkL3ys14NHgZiKTfbLwCAB0Aa9iRZHLoqgcwzFUJQsVjVXX5pd8OFpICtYokIUkqVKCGEcVYgtb5DCK6saq21EJIaX1VVIXLGHGIN1OMKNl+U7XY7yeK27JLMk2h8Kdlf+kt/6eT47LXXvqO1vq9va+e3N7el5DT3MZ/PkYVYxt67xWIeRdHaWl9rLaWg2bH5fO6ci6N0PJoW5YI65HEcq0R1u93ZdDE8Gyml0jQNAaxzWRYJwYxm1jb9AM6kECJOI2QA4Hu9TpqmyDFrt4QQs9nk7OwMAkfGIxWRBXAcx4zh0dFhXdfddkaPiTFwzk2nEwAYjaf0RPr9fqTUxsbG0eHJwcER0ULv3dsLwSEPSSqzVnx2Olnk5cbGxtXLz14v36Y8j84Fa+3Dhw/ns0IbY0JgkuWL+Xw+++E/8LkX3v/i66+/Wtf1bDGnlQM+lGXFGGu1WkLIoigYY42UjTez2Ww+nw1G6wx5XemN9e3LVy5h8MdHRwyjSHWqMvz2b/869XvA43xW1rVJo6yqqvFoxhjLutl8XpyeDq13VVVFUnnHQgg0YV3XZRQnadIpinr/zf2D44dXr15iArNO1mq1jqZHDvT2+bXx+CxKoihS9+7d8d5PZ8PN6fqFC7uXL10tq9x7f+nSpdFodHZ25rxttbNOp/PMM8/cu39/e3tnc3Nza2vrze+8EUVJkmQPD/Yf3n8Yx+n5cxfiVlzNK2Nq763WFTgISMwaao2KsqwZE1RzOmcCOIaSNSY5SEk/0YuecMEFQPTePnh4/wd+8DPtTtzupJcu70wmk2eff1YINpkO59PhyckRItx67/ZsCu1EXX7m3L27ew8f7X3yUx966vL2ohifDY/PXdx8+PDhaDR1Fr3jcfT/o+u/gm5Ns/MwbL3xizv9+fwn9AndPZ17ehIGEzADDEhCkACCZokUXTZ9YcO6sekLFYkquVhlX1iFomjKtIugZFhlQlWk5BIJGJAQBiBmBpjU3dPdM93T0+Hk+Oedv/im5Yv17X0ORPjHzRmc//Te+9tvWOtZT1B1ZZ3FLMuaugZwzpuyLLWKpXQhgNQCEV3nJOXpMu3i+1awyPp+onroo48+UkrFcazjaDAYzGYz4umE4AiCaVvHpfrWN/4shBClmUfx3k8++M//8//rK3/6rZ/72i+88fr3P75+52e+9KUffONPQKCUnPNICNUY96df/zp4K7QmEUYIgR5XlmWI6KydjM8uX748n01PTk60kta0TDBjmjRNAYCwrTiOF4tZUUjvfZZl+/t7jLHJ9OyDDz7w3mW9VEqZZdnW1tbp8Ql9wDiO9/b2JtOz09NT751U3NguEPzg8KFW8QcffNA0rTX+9HRsjTs8OObIlYriuKN5MgFCMmAhSqOyNACgtCBD0STRral1pEIIwBzjfjjcqJsyBPfpT7929dozb7711sHBwWe+8KkrV64ghvv370spL1++5D1CQKWiR48OTo7PhFCLRaGZ0lp4G4IHksIIYOf2z7Vte3x0lKapc4Yx5oLlSrZtG+lka+vib/7mf72xNfrlX/6VKIm//Z3veI8siEuXr1lrZ/NJXS6uPXvt4oX948PTee2rqg4hLBeLk/qMKvRyWfYHvSzrMcastcT/xQDeB8YBfFgsJ0UJwGE4yokC5py5dePOw/sPnnrqqdaaLMtSPegPh3W5AETv0Jn6+sc3FouiaZr5fJmlvflyORoNNjY29vfPv/fuBwssbly/M51O63mZDnP6itu21Sr+6MPrAJAkCSJbrVIRAlRVJVlgUsxny/MXzp2OT09OTnZ3d+fz2fb27tbG9vhsgoEzENYF8KCk5oIHiviQggMHQKm44EJqYUzDOCwWxf7+HgBY247PZhDYj95+X0qd9XoYmLOgVeqckZGSXBvjnAttYziXrW1ti876xXyplFJKlXURccU5hGAQhffW2vboaInIoih5790fO4d5fOJ9IEQPAAJ6pRSgWJEGYH2lMikUZ5xDsayKcnHu3B4GJqVmunMkRGSMd805Ywy9JwzUd5l1zHtrjLHBCSEChsYYzrlH1ELUbau1TrKsreumrRnvSKZ1XbPOZ4MoRV3OAVnQSikl54hMSu0waET6W6JAcik4MGttQNRaOxum0ynjaK0liwYhBN0v1tperxfHkZSyruvpdCoVj2REoXxt2zZNtbEx/PSnP/v8889fuXTx9373d8/OzmjhPX3t2e293XfffVdHyXg8FmRWj0i1/QofRCll54Nswbkud1dK6bxdk2o5PM6ZUYoxRE8q/ifm7nTihRAEV4Ac0VD1laapUooFhsi8R6Lv8Sey47XWSqngPJ23EAIRi5blwtpWSpnqGBEDZ8F6AEDWMVMoaZm4J4jY2WmsbG2jKErTJKALaNFTQ8Io74FLEcDHWRwnaraYl83SWt/w2pgWOEituGRt0ygtAKK9c+esMRhAcOkdYoBIxYQwWhsQwdoQnGcMtIqpUQHg8/ncu+m5c+eHwwFw7howURPpZE1rUpIS2D2sY3ZCZ7UhlaRuryxL6kupxFq3OiuU06+bqPUcFFdxl+tfpv9Jq53qzG60zKNV7dp5H7O/YP4GnHPRuaOEEEI/61vbSiE5BmcsIaDeP84sojrfe0/lcZrFm5ubFFdOrz6fT0lIF0VqsVgsFou2tVrrc3vnq6ryGPr9/NVPvXJw8HA+nyLDvJ+0LVcqInc74+sLFy54b/M8nUwmUopVAhVbrSiGCGs1J+HCHANnwLHD2W1rnAvEpyMQGREBudKxUsJ7Hxig92RpaIxZJ4vyVSLZuptdI7Z2FfNLyI5zzq9A/+5kYICcUXm5bn35ynkGAJTWkgtEpNBRzh93tfRyUip6NXhCxrvqn5GwBuecde0KDXdSaY/oQ0DOZKTR+u6lOWBgAMA4sidSE62zUnLSNVObT6Oy0WjE+Zy8gIuiMLbhAoQU5KEBAIDcWIPIhFAMOFGCOGfD4XBrd2NnZ4vW8Hw+n81mdAyWZTUajagRS+OEFu2VK1c2NjYODw+tNUop7n3btkcHx8aY4NwLL7ywMdo8OztzLrTKtm0bR+moPyqKoqoaDoyjXs6XAKClbuuWM25a711ZK2OMY9gRYwE5Z5ILvuogOI304jim7LLFYlHXNQTkTGZ5Qs/ZGBP1ehrj6XyJiIwLFavGNojetSZJEiEkonfOUvRWCIEL2tdAVIZ1DSklEQklBGhXi4GSJ9bUKBqhkUkLlwwCJUc9tiv03gcIJBylBEIfEDw2bQsAgMwHL6WUShpnPYLWiNwjNkVReW8ZY2VZkvMnoWlZltVVQ86cK8SQhYBax6SJ4ZyfnowXiwUiRipSSkVRFKnYNMu2bYk5t6bfrhatXJ9X4QnqYicZlGIF2aDWWsUR/GU/1IpzIeRq63HO6dtc4/iccxYYkl+T8x7DStDsLTjwDgAsB+MdMOWD6g/OvfTyZ+/cPVBxVpXV7u7+3t4e8m7aapwjSZZQsmmauinTiJTQHeQUpYkN3rROKcaYdc7JdZwvZwE7/Rl1Ct4ZYnEKAOQoGAAGxlAKZl2A4Jl3goOEIBAEF8iFFpox0XE/V1AGIigVGdPQIiFq82qw5JVSADqEwIBzxqXkjHEqlYiCprigKEAlZKAwQwyMMS44Z9I7FzxQle5C572jhIzjVAjBERA653fJGbpu4uVXyQF+7dsgOENwzlVVSapowp0ZQ/K4d85t7W5774uikFrnucDgGcN33nmrrJrNze0XXngxeN80rnXWB/7UlWejuIfQTCeL//a/+9dlNb99+za97idf+Y/+0gXzn/4f/9P/4D+4+Kd/+q1f//VfJ8c/u4oooHsweP/f/NZvkQeFEOL69evE/xiORoSn03netq0xxtQNhMCVCtYCY0KpjY2NwWDgvG3b1vlu5BwCjkajd99999133/2t3/qtsqgvX768ubtLH78sSyL9PPvss8654+Njxhghv+TA4JwTq8QL7/14PL548WKe5xcuXIjjmILZ+HLOOY+VfuN733/xxRfFX2HXr193NlRVBYhcguKCScWRgC8vEk2Sa7GysuGccyaFEHVTIiAtaViNscm7lSpreBxiFMLKKIM2OBfABXRD0hVxmK+4l/BYS7SCxZwHALYKpX8CN+sqlrCiHncV5sp1CoIEAPRdlbhCqLtf6w5zoKx4oBTQ8IQKga38Q9gT0j168fX/XJdM8Bdgd44YED0L6I1lTICH4AMTawCA0Sei2kkIJnScSblKiwlE16Bp8bpOW+0Cv+5oqAKBFVU0oJU87syBeddTYBoURj3Rk8aY4+Pj8Xi8s7Pz4Ycfah3P5/OqqprGADJrbdtawTxjgjGeJJkxhrwaTHMKwACYtU5rZYxbLArye6rr2iMopfI8d9ZT65ilPeIRCGABg7UE4ROCHKhlUlq3jd3Z3kPwy+WCMWFtF6QYQiBAmerytm3rqnU2EOEFV16ELvibt24cH5+0NUQxFIXjnDmLIADBAzDOGSp+ePTojTfeYAy3tjYIXKvrajQ6t7O71TTVzdu3lrNFWZZN02xu7NGUmL5UazznnGEoy5J6TvpiGGPkPxBWkdy0Vhx2opjW1GtjIFqfjDHkTDCxXjSMMWCBxgx0SdNHJnkRCygZBw5CdPnddBEaY5zzxlhCxGhiGccxIU513XrvMQAHhmGtESCsmVNJvd5UjDFceat7dOt6l3MevHXei5XOaH0Hiy741VZts9bs07oUcrWqBQ8hIIMkSRgXWus4iqqqMsoUy6rfH5Rlvd429NEAwHsbRVEcp96jtT7Pc/pbOnPRh3/zb/6NFPro6ORrX/vaYlHc+fjj8+fPX37q0snJiWmclJLCqej9KyVosD+dToUQzvlPfepTaZp+79tv2NYlUWq9qaq6aRpVqvlk7pxzrWfBtcImOjI2zCfzJEkAGAAED0qqEEJd13Ea7e7s5b2sbUvnLAvcWGOMqaqGc5nkGU0psEWpFOc8jmMnJePonKvrmnNeVVVZlh5QSimkJEodPbuyqG/cuGG7tDpIk9wHyzlIJubTOk70zvbFfi/7469/EzHs7m1XpXnrzo9CCEp1Vn3e14jQmhbQHRze/0/+wd/75//8nxVF0ev1ivESETEA53x3dxeQLxYLmmEAANmnDrf03/mf/+03Xv8BE/ILP/3F73//jbIsn3/upcNHBx9/dFsKcffO4evffw8CRIkcj0vJJ4wxKZVpHANBfaJpg7PG2oAQ0jht2xYDj5U2xjrfRLEK1p2cnB4cHHrvvPfvvn0LJGxspl/56pcAjrjwL7x4ZTDUN2/ccK3dO7cVQnDOzmbTtm0Gw95wODw7O5vNZuRzN5lMtIp2tnfjON7bO5+maRRF9+49uH79Zp7nQijvcHd/N1bxYjl76aUX33333aYt54vJ9s7GaCPL8/5P3v+YrLlJeGHabt5jrY20tsatKDmMoUVgAAEZ5XjTjYLeNqPN4fbOhrHlhYvb1jV7ezvP5Ve++903rlx5yocWBGR5WizLK1cuKpGnUf9Tn/rc22/98M//7Dvf/fMfOf+JOOHHJwcXLgMXxthyY7TLfFQIW1cTJcRiNjWmERGz1kSRNgAAnIEECN3oB1BqxfCxofmTiPPjexQ4UVyNs9h2P/RXIQTGkINAD1rHP/jB27u7u9tbO2fj053tvRs3b7///ofjyfLjj+8+PDje3d5OhwPTLiXn3hpjDAamk5yFdlVoMsSufHcrL4Wmaa5du3b9+vUQAun9UUK/v6u1Xi6X8/mUrRLtERkVT/P5fHt7mwwZokhTqAupDpfLUmudJBEx1/b29vr9/NGjh+PxeD6bJVm8t7cXRdHGaEupKI6T4GGxqCbjaRRFHPmTyUW2qRFtlmXe2yhWTVP1+z1r2yTNVCSHqielNKYli8OzyWlZFPfu3fnSl740ny9+//f/AABGo9Gff/tbBCTRAb6xsZGnPc7kcrmo6iKO0sEg800nCmvbNklSa61Ioueee/727du3b9z47Gc/e3Dw8OjkOMsyyqriQQqpdZQ8enh87ZmmLNrFpCiqMk1jAs+2NjbV7s5wOKyrdrEsKuess+ghSWIppW1apeK6KglnlJKH4KMootynqqqk4qONwSuf/JlHjx6cTU57/Xy5nJdlGal0dlo1pbve3G4qBA+vfOZF5vVyWV48f0FKdfP6rffe+yDP+nQplNVyf//clStXv/3n351Op6PR5nwy/91/89sgLUh48cUX79+/P5vNbGMt96s7Ra8GllIpTuvQB+ToJpPJfD6vm5JxHumYMbFcFIACgENgwLliwgTrnOfMs4CI3qlokPc8CABACKaxWa/nnOFMCB4laYSIvd7gjT//UaS11hHVzFJyIbgQEQNeFvXR4YlQkiKVrLVSau/RGDMej7WWdVtY1+zv7wnBlsvl2dlZv99/7bXXjHFaRT/60XtN0/gQpJbd3SpYxDklDjmPNN4j75dlVXrvAblkvCkbCXJ6NiFN9OnimHdJIMAZAgvOesk5ruSBpGgOLDgXKHQurI0F2ONYBSml1lGDFVsF0DPWUQKpT6AbJ4SAjAnvnXNKqTRPe70eCH50dCRElxvh6HBk3OPjWBJggQswxhKBMdKSQISyLPv9vkfvMVTFsixLobl1TrNIRXq02b9582Zrzc/+9M8Nh8OvfvWre3s7RVHcuHGjaZrlfLGxvbWzs4PAoyja2NiqmpLK9LBmFnsEAA8Iq6k8PuFCwFdmfwwhBAehK0o6lHqV6w0Ee60CamAFh4Hj3ps1gMJl1/oKITgXhEgwBoytIAPBlNZ5nhMHgnMxHPWdc4IrSiW1ENAHjrxpzGJaNFWLCCEwKSV7HLPOhJCAHgE713uJXKA3zhjDheQSAwYhxWR+du0Tl7hkdtx6wKotLHfz+Vwn8d721mJRIXAlo14eP7h/P3TU1MC51EK3bWutF8A5dMwX+tBKacZYHAmq4rxrqYK6eOk8Y6yZNQ5NorVSyjtmrQ2+68E4sMBASpmpDAB8sJxzRE/FTJZlxAqkq2cdE7T6vI/boBW/XqyLTOwIHEqpLngdVpJbBmSuAmLVaDFBfoUSGQnYeUTWh0IKIa5evXb58qU333zz8PCQ/pbcOYqiWo8olFKIRN7BJImUEkkSGePG4zGid+GxiWfbtiH4ONbe49n4pCqbSMtz585tbAwfPLgT0G9tbjLGZgsEwHkx55wneVKWy16vt1jMokj189F0Ml8sFt47zkk6sHI5RxBccM4ZMFjBvm3d1HVn79gxlZj0zhNYtir4kcxJiJO14g53tz9f+WZQ17rm8XWdIVXX9PsrEgkAUDGplGKKQ+C0krx3aRoTTZJUmG3bMs5iFRdFQfAxIgjRSRuJtbN+oVUz0gECnPMsSUDLqgqAIIAJKUxnQ0E7uotqpzWzbndFZ6MhAAKXwji75q0DgPdIDaZzIQTHuVwu51ILat8cdtbzzq8eHXClIrYavyWJZIwVReHBSyknkyljbHNzk4SAaZoSi4icJXq9npSyrZuDh482NzecsYuiQI9Jkpq61SrK0nxjYwOR3bt3b3o2llKP+qM8z7XsHAWrpWGMRVEUR4kcKMLH0aNOorY2VOqEVfYy5zymYQMAneq0BiZn405Kr6UQInhom7bCho560zo6oJbLJfFp+v0+KQP6/X6e55PJpGzqtq6VUvwx134thguE6dCYhEpN+q6991RMUtb6egbAGHPOM8ZoDLCCgYhCK6iTFUIzhitTNWK1d80plX/em6qqZBQGgwGi39jYqqqCCwrs1XmeHx8fHx0dYQAhFAEXnPPlotRac06ie1GXjWlb1f0CNdFdnA+tT/SBjve1xIo6rw7nesK1loBU55xc4QCcc7JJ/Xd/mqZ2oVFKMa27LenWfjC4HhhzzoN3jWsIVYSAHgN6sMEKQM7QO48eTWBtw37x3/+rSbppfdXLB7E0URSlcZL0k0ePHhljgHOCRCKlhsPh9O64n6U0Bvbe2+CJNUg3fgcrh4Dd3eqYFJwxbx118N4GxphA8GjRO+RcckCamfqgIHARJBe8uxCRIePAIKAPnv7LNMddTacsnd6rLoM5Z4Ui5+sooA0eJHLBpRABADCgbV2apmmcOe8FFwIYeGAoGHOcSexuYqVSFcvYWou2kVwwJKN5yYVCZA647M5AxJWiiy6ptm1Z6O4dmkojdqldjDHOmVLS1O1kMmmaJumc/SrvPVsVV/fv3L59++6Dg8PBYPDBT378hS9+Oc97bd1M5vPtzeHLr3zmRz983aNoyyXjIstyRKzr+utf/6M8/rv/7oKZzCacX3z55Ze11sfHx1Ecr6faNP8WnNd1TUhRCKFt29FoZFoLnbd+h6umaXru3DmtdS/Lj4+Pv/KVr2it3333XaXUw4cPjTFSKbpcaMpClDv6n71+9ujgQZZlnDPiDWitb9++fe/evUhrT/C34PTqdAjTjqARwnQ6ffvtt4UQ165dm81m0+m0qqrhsH/lyrUbN25orb/0pS/t7+/fvn17Np1Qtbb2rlnjUcvlUinV7/c/+9nP/vCHP6yqKkkSkj5sbe5IxR2Gtm2Xy6W1Ns/ztq1XBQOugThc8TMY54KxEHygnA1EhsCAAVABt76PkDEW2F8Ax9ZFiF8ZTZAPMq2Z1d8KOi5CAGetdw4oh+MxLMwRA8AqnGO1/gEea9/XdzTBt7giedC/x1XWGl8RkOlcosOK3pL3tpumIMNVagstdf7YXz4AQGCU28Z8COjMGqwXKy+y9Qdf06LpcKa9HFbeXGvSgAdvgwXGqOuhN2aFQWDWWrm7uzufzw8ODhCRNJsAMBxuMMbqqnHGc1hHVbDZbBFCSJK0rmvGmVLS2WC9IZlzCL5pDCFoWS9njBXLUkqN6BmSb1RApCxIRnsGEYMjAJejByV0G5r33nvPB5vnuZTCmEauHhAiCgFxrK1lVVVNJhPGWJqmL7zwglLq9PTYe99UpRBiPB63zDsHQoDWSinQKn7uueen0+n169e1Vs8//9KDh/fKoovO0Er0er1erzccDouC7+3tLZfztJeHELx329tbRbFs6oYLEbxBVIxxIRkAKKVXpRIZqHU0+PVSsMFTggQiik45zZ9Ef55cqVJxRHTYifSHw2GSJG3bLBYLdF5ICQDW0eg1ICLFTdIUa333EzORFOghBM4VIgIGxM56RnRWbn69fFfr77HiPnQ5N90uEZKB57GUwFgURWunf2ut4JxSbtaFBWPMA0ZK+dBNiZ1zTWO0i7IsS1MRvN/Z2Wnb9uDgoNfrnZ2d0ZZxLkgpGFsfbXEIKIQEAMmVEhJkBKE7zkxw3/nOdwD5r/zK/+w/+89+HYD/s48/vnfv3mI641xKBt5bzpSUSPLDONaEVdGcDRFv37792muv5XneNA0GqIt6MBx6dEJIRAyeJXEWQrCNiaQWXC8Xi7KogyePm9LmmdZx2zYHDw+L5TJAEIJpLaNY9QeDgH65XEopOZdEOuNSULAArLgYztiqqgaDwdNPP+u9Pzo9qat2tDHs94dNc3R8fBxFEQTW7w+iyAquyBlNitg5U7aNlOr83lNZL2+appdv1nX98P5pa+okihljeR7vbJ/P8/w0Hx8cHEdRtL29DcL9P/7Z//3Pv/Vn/UGPc07IbFmXeZ5//qe+IKX83d/+nbIsB4NBFCvGGPrOl2cwGDCurly51uuNfv9//MOPP7r12ic/eXw8fv17r587dy7P+m3btrUDQN0XAOAsZddq55xzQYjQ2pV8EnnwoLkwxnkfJGMUlWNr64EFB8CUTiSCa2r/xutvPfPs5Y2NCx9ff//ylUs6vnp64ObzubUhYEBwwMJ8PpdSNo1JU2mtnU7nnMvhcGNjY+P8/oXF4vY3v/FtpYS11jmczZaI8MILz73w/Evj8WQ+mVZVtbk1qJs5F64/iF/71Cdn0zkX4F135iilqbUSgmkZIYYsy4whJ0ouOQNAAM4gIIjVxeR39rb7g4zzcOnSft0sUp3Ny7OD02UIZllMh8M+5ygEn02XTW1aKBbz9vDgeDgcxYnmwh0enly8uP/Ky5+eFCdZP9/2eOvm3fnY+RZ6vX7b2IDuytXzxycHjEPbGggGc0jTPp2WznWqK8kVjevWFyfAevxLqTKxlLKqKrrwDg8PxepHKUX8CypxLl26nCfp3fuPQgiMieFwo6qqr//hHwFIqaJH924rrbSQgM4Dl1wYH9A5Jam+7ORLsKKP9fv9LMvOzs7+9b/+1yGEtbZ6mA+UUPPJtGkaLWS/36/rOtgQMEjGnQ/zyZwjxDKubOFaixykRMl9YSvsAsQNtZdxojc3R6+++sk7d24fHh4OesPJdFo3xxjYyy+/+tFHH1//+OZwuDUYDJxB1xr6pIieMfQhxIl2vs3znvcOMTRN9fIrL5Z10TR1FOkois6d25vNZicnR977JE3TLLt3/+GPfvTjyWQshJjNplmWtW3LOSrFpWRFMU/j2IV2tJGd298+O50cHR0lYhBCR9+z1hBaN5vNHj58KHT0kw8+KMtSR7Ku2zxPNzc3k2z4wgsv/Okf/4nW0bf+9JtNUaT9vmYitP7o4aON7Y0XX3n5+PTo/v37QvFLly6welnX3vtQVQ16xwUguDxPvfdaS0QkRyZEb61RSjjftM6X1ezi5XPXnn0qyxIAePjo/snRaVUXVdk0JWb96Nlnn93a3n366afze+rWjdtXLl8bT5ZSRL1en57MopinWYzoPvXpV29cv3149GBrdytLe/Pq9Od//ue/8pWv3Lp16+jo6OOPbty6dSuOY6UULRICOEjTI4TgyIieVlWV1hFd7lLqqjqKlIbAojixtTXWSEksP48YvPcYVJZljIENXmsJnN2+ffuFl57v9/PxeDw5neSDfDKZ6EhdvXalruu7N+/KWAZr8qgvOC+LyiyN9yicIm4+ALkEsCRJuGCI4amnrijNkyQi6CbPc+dCXbfFshwMBtvb28vlcjmvnHNaRVwgA06QWVEUIQQAYUyDSAYbjHNujbfoiZBlTHN2Nq7rujcY1GVJNZhSCn1Y+AVg6LJQZOQRSd6xKi0c0TC7GlQLZOAxLIqirOtUa4qHIvJCkiSPb23vCc6g+4kubgiOSFtUzsax9th9OyEwzjkZCJVlSV26ijRj7MKFCyGE6WTOrBFCkAiMSprW1OPxmCIWfvEXf/Gv/eJf++Y3v/lbv/Vb3/yzb//Df/gPv/azP//eB+9N5otlUTCA4cZob//c0dHpZDKROoqSuLUN6bJDWIVIk1xxValT7yfWEeQADCHWEQ23pAAhhJaSddU5ypWzng0WA9KIuiudfSdUp5IphCC5YitYk0om70n31jGPuGAckQAUarCVlk3TcM4dWvRBKO6DkyraSPvBedPWXPC2qRkTSknBFXmhIMJK2+2btshUzDk3aDwaZ62O0zxPRptDpfdOxycqVlzxqipVpL1xWsjN4UipaDyeRkrHcTydzmxrKMzDe+ylmQEkgDXisZLRcLBBwVxKiKZq8zzlnPvgABnn/OjoaDqdbm3tXLp4+eDew+Pj47ZqF9O5krHkKiBY5zmTjDHBIYoirjgi1k1JDNm14gqe0IoSGZNU83zl/bdunNbY1pOdHn3dhCQyxkg12PVwnFOMOOuE24wxJmSH21Ijl0TRYDCoTX3/0cNHR4c+2CRJ6qZJe/ne3t6DBw+stTS/kFKmaR5FGgCUZsaYqqmdc1yyOM6pxer1suV8QdukqgpERndokiTlsvjud78bgtvZ3dGJfvjwYbfFgFxrvDc2juN+v88YM8YEdFxAt3yEoKmnAEY2dNRDwsoi05rH5rDee2cDJVoxxgIgTWHXPBhqNNYPaj2don/OGGMMEHDdrVBGTpcGjui8o+4MyMpZqdVktBFCRJFClMNen15rTUOx1rbGSKUY5wQDCZBCSgSPoRv/+JWfABH3qHn21hrTEOEUAJQSQuhmWaz1y0JwMuW2FlaEdCRvPSIyew8qFk3TOAdkxh3H6brpFUJIqWlX0t0HENI0IVFg3ZjZbOY9JnFK7XRT1YPRkHO+nC+M0SrujKdowDYYDIgoTfMPCh/a2tq6efOmc5ZzRru+rc1iUTgXAHgcp0dHJ3XdOudWsYfOez+fzsqybuvGW9c2gaxOtY6jKKnrdl2zMUZR0KSjlbQRmrqir7VwFWPMe+z3+9vbu3t7+4vFYjodU11HHSIiVmXT6/U2Njbqul4ul0VRXLn6VL/fXy4X/X5/c3OTpuPn9neb2iwWi7JsxdrqIYQVrP+YzQcAEB4PEpRSaZoyRv4ktFos7XQhBAYGTAR0QMMtDrRyyJZXSk6EXFxNAeklwkr9TK41WsW9zc22rRljSpLgYE5vyRqS6Sjv0VoDyBnjUiq6GrwPHHik4yY0jDHnAmOUZNhB/NZavprEPKm6WD9/7/3aqpveNp1IxHCv69rYv9xMg/1Fwxxig9LHZCtRxep5cnTWiy6K1rogheAInDEBwQQfArSN39q5/OWf+avzudVR2mAjI50lqVJqsVjcv38fEbMsJ4itcW5nd+vm9Y8mk8nW1halxEMI5OICXJJZs9KdEYH3HoIMNoQQmAfEwBiKAOA9MMYlgy7Jk3lrQ/DoHQNQggOg7zJyOcPAARiyABwCsC6yTK5gNSlldy1S9h0AUMoRB86ZBhZwbV/LuvkxFYTOOQzBhQBI57wAYBhYYIIJpXSCnJumMa1b8y4ZpdoyhQycr0II6LCpKsqgds7Q4Ss4Q0QfHM22OjtajppLhuittc4AQ4Sg4ziKInI7kVI2VS2UPRufSMnP7Wwj4uT05PrHH77y8idVLMtFZT184rlXfvSjt6xD54MiuxLnkyieTub5/l+yYP7Lf/5fbW389T/8wz/802/82ziOn8T+aMusYcF1Q+esXw3CJTnQIuJoNPLef/rTn/5H/+gfNVUdRVGapr/6q7/6e7/3e0mScMlZCKSPl1Ia74BB07bBOhLKr3FPYMF5z8kDjYWmqehFve+Qx/WEjyYltCtJB3N8fEwKpxBCFCU1zbE4v3//fghhMpkQW5Y+2vqqYl2wpBdC/vRPf2Fzc/PKlStVVfV6PWvtnTt36LEA82maCiHWCUCrB8U4rpiV2GVjrvfaeleS0wj9hCcsvDreAa5DPjw5sFHh0etlBLiJJ2yO1y/N/oLoBzkwWP0CX93p4AM+8XLw2EjWUrXJV4P29dv7n6wQjoAIyDjhSYQK0gmzjvtDDPCEpI9zDo9xAE6IM/3QzmqaBgCpk1r9WvceRMeY7h7gOmxp/Tzpns3yjJvIWMuF4IwJ26HSKlLee3n79m0AuHbtGkA3LWFMeOsAWKRiIy0A+W11+elZllnjkighZ4w0TasKRqORsc1isaDv4OrVq1EUzxcLQFZVDXsMdKpY6cpW3jsarEkuCFpd+2ZwLhlDgI7FIASn9RdFkRCCNkBVVVJqusOKorj+8c39/X3nwubmhsvys/Hp5z73OSnlbDo/ODgIAdrWOhuYFEKrOFFa65deeum99368WNwG1+1YY8yNGzesa5977tllucjztKgrAOAc9vf3qqo4PDyOomhjY7Pf79dFSaiu6FJiDHXsjAklFdGyQkeJB5rr+pVDE1XwT35PQjIBj91VkDPCc6fT6XQ67fV6igvLyYXDeY/kbZSm6fb29hpCtRaIGRqCDyHEMWUaGHCWd9HenpFTdghhZTFOwr3V3kPOOXuCTkLLi3LSaW5f17Vb+dVSyVi1rZAyjuMsTjwgFZFUk3EBSiljWtc65wwZKaTpdgjhxo0be3t7nHOtZa/XOzubAIDWGoBpraMoptoIETFACKFpWgBGWVvL5dIYxxhXMtrdPfdLv/TXf+d3fucTzz7/6md+6sGDB/P53DkXRRGT3BgjFXlfWMaY1jFjFhGjKGYB7t97eO/ug6cuXtU63tvbuXDhC2+9/SbzLDiM4zjWrChrxhgGb41P04zArLqqL1y4YK0nFrBSUdvWVVVFkQYhsiwbDoeM43w+T5NsuVwW8yNqR6VW587tRlGUpQlj7OigrZqSMTGfL+MoG21tXrv6rBCibpuiWCIyRNY0Jk+zEJDOOM5lURQAzBivdbK1tdU2qCMfPMxnBSKWhdnc2tJSLZfL8dlic2PPmmCMHW4MELFql9qIjz784PyF/TRNDw4OqqJ88fkXQsD3f/zBW2+8efXq09Z6CukaDTeJqzIZL77xp39++fKV1rjf//0/fPTwkIqAP/qjP2LAoyiazWbWeNta4LLX76eJaprGe6OkttZGUeKcM8aBgJWXECq1FmIo543WKs9708mceYySzHvvjOOSP3Xx8tVrF5fFhM4ZY5pnn32mn5Y3b95eLBanZ0vvoa5LIgoB8NlsNhgMer3e7u5uHMf37j24ffvuweFZ0zSIkdZKa2GtB4Bbt27MZjPB1YMHDyTnw+FwZ3ezKOfDUc8Y84Mf/KBtDUO1LhMBmOAKArEe+Kc+9akHDx7dunkbGArW8W4AuYfHjXHTNL/0y79QN4uz8fH2udHdeze8b7M87Q2Tslz0+1kURctlEQIsFqVpl/NZdePG7eBh0OvlvcHPfPlnPrr+4aNH48FWsr29mz7TN80bk6NbUaqsrRnHT77ywv75bffe5Bf+/b9xenrGuD48OPvwgxtF0aZpGkWKpkGIHSgTnlDorK8izvnW9nYcxzdu3OBcMIakkRkMBojY1o1zAYCRXyo6/8u//Mt5f/RP/+l/cXhwFKWRECJPUiaUN15FkeDggyEYyHuvhAqAzlPmAwRa04y1xgBAUZaXLl168OBBl5UkusFsURRlWdZ1LSWXUgLwXm8QRYn3nkz6QghNY+JY17Vo6ibKIiGk94FzvsbRAMA5Wzfle++9f/HieaV0VVW3bs5DCMPN3u07Nz/44APGhBTRwcFDBpJQJM6Faeo4jlUkfbB1XeV5GseR1tl8DrP55MGDe+fO708m47atrbX37981xrVtu7Ozo7Uejyff/vb3NjY2nn/+eephxuNTpQQCSJXFcfzaa6/FOrp587Y1/tKlSz/1U599//333/ru+10bqYQU+rXXXrtz5+43v/ENpXUURdPpjBpXBPJaZe3B5PjotK7bNM0Z8jzNGKJztmzqOIoSHf34/XdPzk6YgP2L+401++e3gg2IeHBw1DTGu1AWBXKJ4H3APM/JqfP09JQzqePIWVMtind//M4nPvGJj29+vHdu95UXX+KcGdd88pMvT6ez8Xi6u3NOSn12dvLqqy9n6Whn9/x0UsxPy/7mcDGvpG5v3739+Z/+zNWrl3/3f/i9vZ1zl546XxZmOS8HF3b8QX16evrbv/3bh4eHeZ7vn99D8OOzKeGPzq3F3SHP87ZtWegsR7WOhRB5nu7v7z98+FD1pDEOIATrqDdwznNgUkkCX1pjHj08bE0tIzUcDvf29oQQd2/feemll3Z3dn78kx/P59MsS55+5rKUzAf20mvPCMmUjEIIh4cnrSlcE2QUaS1JQYmAjAcAQAhxnF28eF4IdnR8QLx1xkRRFCH46XRakJ0rF/1+P40zKaVSESA7PTnBwLbP7Y5PTpumWSwWbVUKHam4Y5f7YFmQiKCjuK796cnYDI0xJs/TRClrW6UEV5oG2FrILOuleV5VFVlYAEDb1lLKy5cvHx4eGucRMUooqQ/J1D5aMYyiKKLKioAAurgJZ/EITdPSjosUX1YlqUa89ypSwZg4jtu2c+4yxgTnm6ZzZG5MS18HcceGwyEizmYzyvva2t7oD/KrV6/u7u5+97vf/sxnPvXKq68++4nn3/rhj258fL0/HL3x7jvvvPX2H/zRH6o48cZiYN/8xp9RTC7ta3KP7UoUzpmQiMiIlUmmeSRd5CuCs/dUN9Z17R1yFvTKVxSe6EAAQDKJokuOYSsNYwhhXQJR/0bYBIGYRIwVQhDyLqXkgllrzXJGvRz5YOpYUXcttQARWPCNqTnnQsFocxTr+N69B86amEc6kj7YtrXed0RUrbmOogsX9nSinbdN0xw8OlwUy+defKY/6i+W05jJxrRSq5zni0XBQe5ub88mi0cPDk3rillJHot0kaVpLhmntcoZ8YdVL+unaWpb54wnymTbWjL4CiFkWXZ6emqtn8+XnPM8iXf3N7WOr390Y3w2B4RYRUIowoMEE8Y2oQ1Ci/UYw67SLGHFwaRKkh47rowUV31deMLjtSNeQOdNHOhS896naTocDoUQZVETr0qtGu8AwDgKycLKiJkL4b2vqiqEUB7W0+mUAqujKEIMRbGczWK2ioJ0IaBtY4iF5iGEsi7IkiJNU845QWnOubquoiSm2KU4jtfdEwa2XC6NaQajvrW2qAuCqJxznMkoirwPWsjxeKy1llxY22otGcvaxgIA+eBZ62n8ufrswFf0JVrM3byHTFlWOA5d01rHDoO3ZMAd1p0h/dBZSqW+UhIAjPMhoPdBKWGtY8yHjrskQnDWB8UZcCa14kJw6PwECBR2zpVNLZ1dUatQa03RLIRqIWJHQmdMCBHHsZDMOEu2eFEUJUkSRZo6diUEjcDXJipdQ8sC42siGAghQwicI+drM5BAI2EAAItCCEqm2tnZ45yfHJ+RgiRgSNOUbCJwxfiJebK1tVWWpfOYJNl8tvAeQ3BlWUdKog9cd9DJTrRFh57o8hIfJ7rTWaeUUkoqJaNIb25uUqNKzX+wQQgFgaGHxWwZAOM4zvO8aUySJMHhYrYk/nqexG1r0zQFD9ZZjlwAfe8KEatq5ecbAh1B4H2XAxaCgy5d/OLFi/fv36fIZQLZnfNSaiF4kiQbGxs0G9jZ2QFGriAFY2w2m1jbhgCIYTQaLeVyOp3SmmGMGdOEEJzr/PoBIKDztuO1eQz0QpxLWgaIsm2JaN+pTKjwREQGAsGvK9LQpfU8RtUJH6dXoRkGfVlJEnl0AKBkxDkviqJpFlywJEmGwyEAtI1hjCSVPIkzctamzBVrLQemsxyAG1MgMmJrcWAMgRY2Q9609Woxs9WxszKUWN87AEQs4xyk5N7btg3O+RAChscIzpM/UaSRSc4ZeOdX6URSSlJl0O+skRCtY4JEkTPOeRRF6DwHhIDgAZFB4z75yk8N+jtHx/cDCkAex6ppmrfeemtZzq21W7s7TVMrpZxzd+/ezZLowoX9+3fvOdtyhs62CNzXfjabJUmmlGIchRCtNRQbwMXKnydAQC+4UFw53wrOG1trFXMROed9cMEz8DygQcZACWQ8ABPAI8kVoncGVt9+8EA3KR2Y3lu+susFABqJSSkQPawY7SEEzpABQXhYVUWe99dajQ7kAoWc0qpYQNa0Hn1bLJfgfaQl8W2V0kpH1qMxRgpO6nAiMgIE55zg3HsLwIxtEVGurnUfrG1ag8g5AKSwAk82NzfJYXU4HOZ5XlXV2dlpEsVNVaM1k/ns2tNP7+1tNW0VkEdJbI3v9Td2z108PLgZaeGdRwFK/eW+K/QzHp/96q/+6tnZWZxEaZbRyeMB0XviEZKWXSrlrFVKWWubpqFBHYk7ad0eHx9TS/Xxxx9/4ac/+3/6P/9f/uTrf/zDH/5QaoUM1gMAKaXDoLhy3ly6dOnKlSvXr18v5gvajLRP/RN224QySynpEqJDgMa664mytfb4+JhODzpGhsPhYrGgyj/Lsvl8fnx83Ov1louSEMJ1PUDkyDWj9r333ptPZ9ba0WjkrJ3N5zQdp1PFYUDo3JMFsO7/EMMTWC0VHnRi05FCG5n4+x22jCiEIBUamZCgc1105DoX19k0y4hIRMza9WpcnxKcS4L6SKLkVwgb57IjpyIorelelsBcJyIKAKC4EErRpUlX23rotT4oOALrci4DvTFjqHp3IQTJKXcBMNBljUIIipViINDTCQKMscA48VZxZdICHWoMpO2wqyRGqu3XBl9UirMnhGj05xBCPhjs7u35EOZ+Zo1hbbdgBoNBsuzLCxcuHB4eI7Lg3GI2T9N8e3NruSyapgnosiRXShnj0lha69q2dcYJzgVXi2rBGJNS0xLXKta6GQwG586di+P49u3by+Vy0B95G2irOOes9fzxowdKBVeqswYPITDB6c9KSe877onWqZScRhllWZJKixSpcRx7DycnZ9Pp1Huf5cne9hYDfnJ8GkXRyy+//Morn/z61/8EwLbOvvPOO2maDof9oqh+8NYb++cunJ6eGmMQA2PCOVvVxd27dxeL2WQ2TtM0SpOmadr2dGd368LF/SRJyrJUSp6cnDDG8jynt8cYI7sTSiNgLOR5TlCs995aJ7qQvU4VDgAheMaZkpFzjgtYo+2MMa7k2pKCEgLruhbQFZRCiN2tTYqYoG+dXBFXt5RO05je0vbO5tHR0aNHj6I44ZzXVUuDDe9dpDSAoM28Hp4AZ4jceZQMETwRGwEC5wpYYIwRI9h770MgRS2VArAagBhjVBzxlciIITkigfceGcRx7IInAyB6523bKkmwI+OcC010Vy+EGI1Gs9msaRophbMAAFXZWOMpxK/rFZFb4w4PD8+fP/+n//abv/Ebv7GxsaG1tk2LgTnnBDIVR21TI/iyLKNI7+/v53nv6OjI1E3bWJpmn5ycOOcuX76qlHjsnOBqpZTkArgIQUiuvHOcSUCO3r/44suDweC3f/u36Ux/5cVXHh4+nC+mw2jgjKfIjsl4FtAZY7yjRpRba5fL5dbWFpK1ljHGWMl4COH+/Yc379zd3TmnlJotxzTBK8syieI0TumInM1mAFzraLlcBg9V2Z74cZqmgbW9Xm8w7N27+6DX68VRbowBlM7a6x/fVpEMIaRZ7L0fjUZC8CztN01TlkvbNnVd7u3t7W3v3vr41sOHB2dnE8kVl9y2ZjaZ9/t9L1xRGWtCHOW7e8Mf/ehH4/F4c2t09drljz/86PT0uNdLi6JCcLv7e6PRZl3XwVvOeaSTuqjDSmUjhAgsUBlKxygtKts6BtDL8rzXc84B8qeeeurBwSOpuLXm+PCk30sHw2x3+8Lu7m5r6rPTpRDiqacuLhYLxpgxJs96Z2cTY8z29jYikkDhwoULBwcPi2LRNE3bNkmSMIZxojdG58qquHjx4ny2+OCDe3HMtnc2KYZusZgBhGeevXZ4+KgsS86ZJ09t11HVYEXoUEp98MEH3iMXjDGa+CFn0gcfEISQVEgtpos/+ZM/+cxnXx3Ppst6XDflcjk1Nh+OdqbT6Ww+OTo8TdP82jOfqJa1NfjwwaG1fjpdlM2yNsV3v/f9+WK2ublZtNHpcXV6Oj47Gmc9FUVJP8sHw+y1Tz93/caPn3vh0mAkt/YuDfpbt24+uPfo5umRaSYN1XDee4RAZc26PlvteqTM2bOzMwAgdgnjbGtrazqdki7vzE3atiClvAD24P79b37zW//7/93/YXNz8/T0GBFN66QE4YOzXgBDAYIxQAgBmeTAEF3ggj8J7phVPO5isch7vZ/9uZ9LkuT7r393PB73+/2iKIpxveY3IYbZbLaxsZFlGSJrmlMhlBBAtwDVAdb40TAPIRjbOOeTJInjeLlcIgoAbYw5Pj6VUqZpdnJysre399TVc3VdN40B5Nb6u3ceOGtkLBiT3nsptbWWfIQAcDAYScmXy6VUPIqi4+Pj1hrEQPgXmeEwxsuyamqLQZR1K/hSa310dKS12t7eQkRjG2puIeBPfvKTBw8eWWvHk9Mkzp599tnBRj6bLgAQAmaDQQihqkqlNed8c3OzLMvFYqGUQpTehuPDI8bl2dFBkqS9Xu/C/h4APHr0SErZ7+dFsTh3btcEc3J2EkXR+Gy6ubVz5alLZVn95Cc/UUrk+YZzIY66SpTij0h13hv0CDQHcGdnZzbY773xRprpolh8dOMDwRjjfjY/e+XVV+MovXHjphAq9uo3/1//5Wi488lPfqqu2s9/6Yv37z+s63IQR71e/8OPPsp6yWjUZwLH0xPBoiSLvGtaY9749vdFqn1lWCROT0/TNOWioz1yTmL2aMUwRSk1bT3NsLFGCJXn/SzrFUXByDeDIeMQvOcMGAPrkAsNgN75pakRvTW+qg4Xi6U1rlwW3/jjb736mRdfe/WVH7z1xsnxYrSxZW37zLNXNzdHxjbD4RCQg/BJEo/PZlGUOes559aRoVZI097e3h4iDofDu3fv3rp+L++n/Wy4Odp+9OBQSIkB6JQj7kCcxsFhUSy0jgFgNp+U1TLP8wsX963dXsyLebEMAUKg3HnBsQtDS5LEeDObzdq2yfPUek9pzBR86pzTWnvEsiyNMQG7vG+lRJZlRVUaZwG41pqkgt6TWpaRpSNd35TmN51Oya3VGCOFQg4kq9JaTyaT2WwqpaTRo1JiI97s9/shBCn5mt+BvquV1zS669evEyox1EO2Sht79tlnL1+59NZbb+3v729vb37hC19o2/bNd969dOnSX/2FX/zSz/xsWdW/+r/9jw8fHfR7uVQ0L3f1ZELcGedcURR2pbXknDPoypJIqjXNhE6b4AMXIKUUXMRx3DSN4GpjY8O2Lf0mPOEdTDeU915yaZyjFouvoq7otqLiR0mRJMm6C/LecwDkQB1gQJ9EmfeeCDt5ngOELMvIckdKCu1gVdNIJpum8cEiMuDAJZim1dHg4lP7jx49am0VvEfAXn947qlt54yIOILLenF/2EuyVCglpTo5OUburG23t7dDCMuiCrj0TZiezAgeSpJkc7hZVRURDDseN4iqLOnMDyEQ156aN9bFf0EUKc5hrTfXWjvXVFWRZb10GA/6I+f88688d/jwsKltXTbeMVPXnPMoysmo2rWGMYbOM97RxNYwJeddGBdfhdETiYRmGIRRrhtOeIIYSCGNtK6oiFr/WyEEX11tyAKDdZ/R/XMhBAu4XC5b77I8BxZ6vd6rr74ym83ef//9yWySJInUqqoqAIzj2AdLPQVpWEOnlJfz+ZxEMEkSb29vN01TlmWk9MOHDxExjmMWOHApU9nWZoZzxkEK3dQF5yKKorY13ljXGmu9YHxzc5NyvxkziCi4YgyoiRVacUcKA8PWhhgQxMrC0ntPnMHucuEdG9R7D7zzhRRCOGc9hZk/9tHqkIIQgseuXwUA6n5XJKbHxBGloihKGMM17TROE/L6Q+/Qd7nExPRMkmQwGDRNY7wjz01CxmkNWGt9AM65ijRY670vy9KYlrZtGsdSKuIVVVVF4wHqehhja98PAp0ZY3GckoMHAAjJupWm6BsHCmidz5b09qgxCSuOqrUtVxIR67ouimI6W0wmMzpaAUCpiFzpo1hxzpumccFrHaeRLBfLuq5JWUtl4UoDgdPp5PT0hB5CkiSbm5t1XZeLsmlM0zQcmHOhLGvnTBzHSZZub28D8DROqqqhCHrmGXkgUIsUVlw/Wr3eue3tbSqiqOWsqkoLvgY7xCoo8u23314sFmQxQecPfRe9Xi9N4yzL6rpumqbf7xvbTKdTKQW5gtAURAia7+rNrdF0UlJ4IIWHk+6o40shJ8SfSoiw0qjVdefXT0cK5zwEiCKJgXnuqfwj3+0QgtYyTVOq2WjkHMdxVRWIPgS2pg+v15hH1zTtcrl03iwWC0QvpcyyjHPe1G2e5+StD8gZZ0pp5wJjom3btrWC8el0Tr2qEMIYo4Ss3GO8jLFOF885F4L5lbiTPvIak4KV1IAu4hUL23POu3Hlv/OjtQ6grbW4mqLR7SMEKCXoduMcyJtkDZBxYCCFEGI02vDWmKYqJ62zTCTDr3z1ry4WDaBwFgG44Ork+OTo6IhLiKKoXCyVUpFULKBpKlMtvfeCYRYn0+mYBk5JmgrozHAFsPl8KqWkjgasp+6AMaalDuht03hnsiwTguBjYZznTDMwi8XEh5ZHIpI9JjVyjggBmPdGMm5WPE16IcBu2COEktKSzxIpXdI0NcZI2bl4Ged0JJ1zUkmSUukoQQAhpXMBQhBSWGs9k956rYVzXgvZVhUAcEQuZQBsrQGAsq4IbGnbtqqmAJD3eoyhEIxz5YNFHygRgNakMaY1dZYn6+kyXTpCsKrqkLG2tjRaM8Z0tm/exXG0mEwFC6atyuU8ihIuIkDRGKu0eOXVTx0e3GEcnLf9LCLbFv//Zz5RVZULfjDsr4cuHlBrLRlfN6TdQdG2/cHgF7/ys9///vdPT0+psKfvbj6fW9eC99Pp9Dd/8zfff//9f/Ev/sVsNgNO1L2IEGpENN5prZumqZv6l37plz73uc/92q/9mvGOBfTe0629+uIEAHSuYiswVKwyPwhWovaza/xXRy7JSqhwIh+Sjz76aDwek7xyTfMHYCEgY2FdzjVVfe/OXRrYL5dLeSCV7g5eGnkCgCfrjMCQIV06VGyQ6uLJFbguRWgvE9ROz5yqC0qZXp8DDLoEJL7ibNV17U99VVWS8wBAyOR69LgGXmm86r2lvwoBOPc0xqCMULlylRRcPFkOoXscp7lee/TwO0IqkuaAMRoOr0qj0O21tW0mEmGLnip9BOc7CSA9tHWyou8chHANCa6HB4hIqqCmqawlHwsXVlbUBHOvN0hRFMKeBcRalpILEYT3PhpGQoi2bWVw2Mvyo4NDa+3W1laSZEKISOm2NkIIzmSvNzg8PGyadj0QCCEksc7zfLksi6JARKLup2k+HPUBYLFY1FVLSE0URVEU1XW9WnbdYU2figtOq5YJTkYKDkMc6xCCNQY4Ouc2NjRtP2MbxpiOZF01zrnhcIOWTpZldEJVZXO/fri1teW9n0xmTWN2d3cZYy7A5uamc0R8Ezs7O865o9OTwIBzPhwOtVTO2StXP/fUUxc/+OCDrJceHBwMNzf29vZOTo7v3r2dpikXYjw5ZSCopnVp3rmnIXfOIZDknJxTQp73aD0RSF0ulrR0SJZLxZz3XkeS7HVoByJiFMfrq5o2QC/NqBuk3RulyVpuQPUfbTmtZQghSaPRaJSm8bVr1y5fvvTOO2+3lTu3d/74+Pj09KypDecU2sA457ZpRjvbXYZ7CAyYlNIHq7WmIE0ObP0m1+ynsBI6dWIihogMVzJJOmiUFt5QmLhN07Rsau+9d07nuRQqsKAVOBvqamGMlVJzJgE4FW9NbdrEbm9slmU5mUwYj2kesFyWnAPV5UopxoRUyln/3/6r/8/bb7+9sbFRFMV0Oo2k4pxb44c7m5xD0zSIDJAbYyeTKWfLxXRBz9a5QKJjpdQbb7xBZT0dl865trVUq5HXlfegtNBKKa2PDg7v3LpNz997v1gs9rZ3dCSLYllVxWw207EiuVwURQwc1SuCi/F43Ov1KucWi4VzPo7jpjFCRJIjuHB4eAyccR6EEFXZUDE0mUyEUHEcY2DeY13X1lryeZjP50mSOdcuFm5/f997Z4w9Gx9NJ/Nz585pVE1jmIAoiqzxzvmnn366ruuqbNq2Nm0rJEvT9Aevv5HnPaWUbZ0zNo7Ttm2l1KQtMLal+u/27ZsuYF2Xu3uby+Xy7t2bdbNMUtXWnoswSHtpltRNUZaVklJrzbQwdeM9J0NzKu4BwHsbx7E3NgA454RgjTFSccZDf5Dt7OwYY6p6vptvB9eenUzfOJryBHQEOztbnEOcJkqyKIrSNH/++ec5EyGEwWC0WCyklBcuXLh164YxzWI5bdtWR8I6yLJESIbot7ZGzz/3bJYlZ2eTpmk+8YkLjx4dGmMYCMEVj3kURQ/uP3r48IALlqZZng3LopnPS84FYvAOKaQrBKjr2rlAVaazPk3Tom6klF0aUQAuGZPs4cPDRweHUQrDUbK9M9Q69g6EYIPBYHO0FTx75+2Prl0Tly9cefXV127fvr2xsXF6evree++dnJwcHB4IwaMoOj6aFYtlUbRasBdffLEqyp3dTQimKMf7F0Yq4YfHt4+OT/fPPbWxdW5zK0cnivli7aWFntL5OnUPPJ6R4rqsoeu2P8h7vR7J8Ywxs8k0y3p5ntMgUEl9bv/8ZDL5x//4H9dlub2zM55MtNYYgg1BCYE+MOwuPwIaEFBJFXh3k62bdrXKen799dc/8YlPXLn6VFEUbduOx2PGGOeSMYbIuQDnQtM0jx4dEjBKezNJkjzPq6og9SUIvlyWSRIxEFXZjEajqqqstaSTkBSO6hrOxf7+hSRJENzlKxeVjO7du392NhmOeujZfFYKDFqngnHvWXB0yLHlbBGYXywWm5ub5B2vpYqSmHMRx5FS2nu/mBdKJnXdArDg2WSyoGtRSb67vWud8QYCeiHExx/fOD0Zc6HAhaKsi7I+/PYRGmFss7W1tZgXs9nk4OCAgRgMBj/3c1978+23ZrMZLTNAFGR1amsleBJJCP74+AgAWmciEQ2Hg2vPXG2sWxTLPOsVVck5e+WlV+fzg+98+3tFUWRZL4qaNE4YY6PRiEu6jNjx8XEI4eLF/atXn3bOTRfjp64+FdCfv7AvtSiXiyhWe9s7ZVlyYEkSvfXWG86FT772acbYg4f3ptPmz//su4PB6OqVp5++lv/c1776wx/+4PDkwdn48MaNG4jovV0s53GUm8Z5h9vb23EcE1nVGkMTKe8940g3OBWRSgmK32zKhp4AYzyKovl8/vHHHzvnyrLkSFQjJ6XUUqFAay2gDh4QPCJJOAVAAMT5rJSSE7r34U8+sm0LgVWFSfv13v6uQxO42dkdee+d9XGskizeZFtaJhigqqoYoiSJ2raOY21MQ4mIh4eHXErn4MaNW5cvX94Y7VAS5mQ2Pre/R62Is362mB4dHGELoJhW0Wg0unLlSp6kQoiiKB48OhyPxwBcKcW5bMuWLo7WtVLKJI2E4IwxY5skHZxOxsG6NM+SJGkbS3eQlFJwFcexcfbCpac45w8fPiRJfvCA6JqmbRvLGCOThBACJQeSXpX07x1eHDx6rKpqOBxqrc+dOxdFuqoqYKFpGuPsdDodDjsTACklol8uC8EkVfNKKca45BTSjR5901ZkmzOZnm1ujYqiuH//PqJ3zrzwwgvXr19/93/4/c985rPXrl27d+/ew4Ojp5664ow1bUvkTcYYExwQvEePXagyIgUdr6R8CPAXVYfdBB1Z8Dgcjro1hjaJIsk5uZZTfU+9FsEBQgj6K1z9UJUf0HnX4Z7c+xACKVKJteptI7ig8QAXjGxStNZlWQJAkkQE2gYWENB6G0poGiNZQMWt9xiwbqvG1Gmus14CzA6GqQ8NBXHvn9+2zpyNj4Xi/UHKZC9KQCcSEcbTcdNUPljvbZ7n1vrlvPA2gOdV1XAOWutYpVnWUyoickae5sGGqqmEEEJK5zwwKMtq1VQEAOCeC8lIFuNWYVNhZW6ztbWTZLFOhC2Mcc32/pbkqq7scraYTeZta1tTJXHqfVhTMTgHIYTQipol/4TrLn0FlHq9psyoSFtrYRU+zVZqU2rMOkKQlMQtcs7FUUov5INF9FxxSkNZjwRW9x0E1t19QrIoSi9evDAcDtu23d7eJhmp1jqK9Irb2Bk0a60Wi4X39OY7XK8sS6V20AfBOABY76RW1tdFVSYic75RsWIMqqpK07TXz6y1bWsQQTJpg0UMkgvG2HK5TJIIkRF0HifaGBOCD8FLCYF1BBTGSH3tjfHA1Xp2S8o/xphQsgtm5xwR1yorqtu1luKxFaN/3FgywIDUs4SVC02Hc630l6FTTBOLooUnvJLZSpi8xnOpiyG+BSIGBsYaKWUURZJxxhg9ZHgiojCE0LZmlRIGHKAsa8r3Y08QdBg8tvZet+IdBUwyeueyy/IVtAFDgOlk3jSNlIq8NDjnyJgPDj1yqdI04Zw3TU0/bdvSDnDOSdnZazZNwwRjTCjF6amTiF4LKRmfno3ruk7TFBjXUjLGlnXnHKp1tFwWBEU5Y01jlVJChDX8UVVVv59rLSkksCxL5pmUmrbq+smvR2tbW1sXLlzQSXxycnJwcEBkRrZyGKCeRcURjQ8ZY0mSEMRPX4eiaYQjfN+s4c66aqnjU8pube2cnh4LoUiSQpX/srgbwGutZOeKZjtm/WrNEB+Qgv6SJCGLnqpqyH5AStnr9ZwLiNjUFIkJaxBKKUW+XgS2pmlMIpg0jY0xxKMib7TVf40Td55IS1LqrmtzoViWnHNSnVLMI02kALqp4RoJopXT0S8Crg8iWle9Xs8Ys26xqdUVQtDpxJ9gbIRVrNH6slBKcPjLvZuh8+VTyDqrdEIA5Mq/nt5DHEvGxJqsBgCAoQ7BG6sEd94Ez01lLj1zZWf73Ml4EQJIKW2wIYTBqF9V1bKcE0LKGKuqygerhDw+O9WSJ0nknAEAySAwDN4HbkMIHENlDE0ftZYOUQjeere1tcUQ6roOFk8np1kSuWWrE90bZCF4CQjBn50cXDq3NdrIF/XyaDpnksfxwBhbldVAR8634olwQsYYQ752vKVnYq1tmjZNOYFFgmFrDFgk03AZaQCBDC0ErRTIyHnvAZmUZd1kWWariiNMjh60VQnBb29uJVnqNXeIgYu6tVIrF3xTzCMl989tv/DiF8fj8Ztvvtnv90mJJblwIQgGbGUUQwPRs7MzKSURh1cTL9Y0zebONm1MGoyRv3NA520bnI1jVRQ+OCOlaJoqzSL6fpeL8ty58+fOXzw5vB3HUVU2nKHWMorjv3S1UBZcQEzimHzzGYMQgsOO/k8zmBBCWZZCiMlsWlTlYrG4ePHi9vbueDy+ffv21atXheLPPvvsgwcPPvjggx/96EdNUyslr1y5fOXKle985zs0NQQAWDHDtNbf/va3v/e9752cnOR5ToOu7jM+8a2t71aqJ2lHu86Evbtrnlz51GOS9Jyu78ViQd0N6Yxp0RKWGlaOT7RT6JMCwGg0oneiVcRW43AyrKcmQkbaupYeDqy8dzBga6x8ImeYc05B1iEEzqVfpRfgEya361vSuS43yxkbRRFwFkKo65pgt1iptm4454HBKsaj0w135siPD5+u/GABA3R3K70fxhgCpU935Da28qkIK6f7dYnOAgZEcm+L41gIeuAeAKwln+guSxkD1U6PjfIxOJqH0WJG6FIN8Al2Nq4ESZSrRwcyFQBCKHJdp8Nq/RXjE+FzZVm6An0AG7dKSFUoRGQ5eIaySuXdu3c55zQPCQGaqnbO53keAsxnS+/b5WxZ17VznlIFKMubJs+Eo4UQSBLinDs5PrOupRLQe09ZBGs2DSICkJKrM1gjPdd67AAA4B392/3z51kXnecoGEZwFbAz9ZdSCsGenEJwLgQz1jqKnRVCHB2dTKdzF4C4ctbafr+/tdED4JPZ7N6NG0mSeB/CJEgpIqXv3r27XM5DCL3eYDis6L9DjcTOzs7h4SHN7QVXhIkY61xrgl/lMstoONiYl1TiSLUK4WmaZufcXpqmdVHSDvHeUy9K9zEVhfQE6FajlUQEOu88AQTGmNPTUzsZr62ThSAbLz4Y9EajkQ+2bevx+PThw+rg4NHG5vDc/u7sbHk2PkHwcRxxzotl1bYhjtMoirZ2NpMkOTs7Q8S6LBGdsTbKtBAsBM8Y+OCZYOt7l94Yke/9E4Y1nDPgTEhmvEPoJl3ry7tt2zxJW9caYxazuWs6T8MQkHOhFHgfMGAIHc3ZWT8bT2yTrWbjynPvfSeFYMELIQWTxphYx3Ww/+pf/as0TWlLZ1m2HhxxzsuyVFw1jRVCBBsWk4XWpPaiLR2cc4JJApSVElSlLZdLIYRzgezYlFKMSUSUihN76/2fvJcm+bron80mVaWZYnEcV5UDgLZpiCNAvBLiB9VtIyWfTCZZmgohLLoQgIGgkggAuJAAIDgICp9V1NW7KBJt2wLy1QhRMBas8RhCWS7PX93tZT0d8StXz89mCyFgNOpzLnkNQrK6akMIw+FGCPXDB0enp6fWVP3+kA5f9EsQYrlcYPDAgpRR01RSSu8tsIAs+BB++vOfjdPk7OxsPJ20pqrqJSI+OngYKY2ISRIrpUKApqm8R7oDoij6m3/zb/zeb//e3bv3lVJKCcY0k4JzkFKvGqG2qev9/f2vfuYzLvj5fN7r9eI0/dGPfqQ0q+syitSFS+estZPJpCnCg/oMGACD4VCFEPb395vabmxsPHlzUItYN5UPpt/Pi6LgIqSp9t73+4Pd3SFyk/VHxyftV77y5Vs379a1HZ9Nq7Ld3Nzc3trVWh88fBineX+4gQje+KoufNsA5ypKiDniO2sqJSW0bWutQ84WZUVibUYjemttW+b93gsvfuLuveuVWV66dDVJ1MVL57a2Nsezo5OTs+Dh6tWny8IeH50dPDq8cfPjLMvOn99/5plrSfrJDz/8+OHDR1rFvV4SZdksmfb71fHxmbH1cDM/Or4vFW7uRS+8dO3o+P7ZeCIV3Lhznd958ODhg/mZVlyRwgDpwuF8XXOvL4b1GBOhG8xqK40x5KdGV7JzhnPRaQkZW5bl6XjMfIjTJKwqb2utFoohBQ6suiMlBXJElFJ41rn+rTtMOuuUUvPZ7M3vfe/N178royhJEgBI03Q03Fos5uQPQGNq+orpgI104mywtgRgSkUhOGe68JyNjaG19vT0tGka57pqjBpjrRNr7aVLF9I05bpUSnhvrz19OU3TA3ES67QsbrnGc2BxnDZNE4LlTAvBI93zWGwMh23bIuqrV56u63q+mKZJzjnP0vz4+Liu27JsaWaslOIoWZCRSkLwH314E1iX13Hp0qXZbGZtcN7HScIYa9t2b29vMSuQ46c/96lb12/d/PBWNhgQtHF0etw0jdDKtCZNYucQnW/qupeJnZ2dRwdHbWuTNFdxFMVxY01t2llRLot5CGF7e9c8erS3t3f/1v333n8jhNDLRm3bQmjn07lU6oWXXmzb+uDgYVEuvPd7e3t5L/3gw/dmi0WcqHv3bx8dHb362it5nvrQXjx/Ic9zxtjp8cnrr7/+7lv3vvyzry0Wi9dff+Pzn//8T94/nE+nGNjHH9/gIH7w5tt1U966defipb2d3eHx8VHTNEVRAHLJo8BDHMdrNgFjTElJQADtrDTrWHj03WktmxLoz4wxqSQiUsI1C8hXuINzDlknGwpMhxCQWHtUVQVgHrRWAMBQcG4ZsI8+vLV3bueTr17pbeU7O1t757Y/+PC9oii01stF3bb29u27WmVaNbZ1nPO9vR1j2+Fwo65LUmqfnZ1pFSmpAaBt3O1b99Ismc+njKEL9uHDh5/5zGfKcnkwPpaS53kWUhiNNnurEc6dO3eOjo6Ch/5omGVZ05B9pAIHzpvVdFmfv7ArlAjBcStu3bpVltVwONgabSyrRkodAJMsHQ6HJBah3VcURZIkpnXGmLY1TdMED4GBFAI5o/N5c3OTMVbXdQBwIXDOPWKSJMZYMtmgslBKGUWaMYYAUsr+sEf/z6pthJLBhzWoR2jRunX33qdpOp1Ofe6+8KUvPnr0iAu4c+cOGR9tbb168eLFo6ODt956c3Tu0j/9p/80SZKf/erXzs7O3nnnHSXk3u72bDxhCOgZ0TWoIQfOgD8GnhBRMk4mGjRC5k9w0OgXTk9P8zyXRFpZTcrpSJGrZJs13xmxo3DS4dYBXghPEqLX/4qAC+q4dKK5YGtsjkh5dV0b09AJxuQKKEcFKJvWNLX1NmitR1ubzw8/sbGxMZlMlvVMaLG9Mwwh1LVm3Ppgs16aZUmSahu8qwpjQ121i8XCey8kc84dHh47GxgTUkbIPQp0zrk2FEWFyIRgUigqGuu2pb5OSskYBwCOIAUXjAPjRJ5VUiB65BKgc9ddLktEPH/+4v7+/rw+qdt2Z2uL+B8oQpTK0cbFS09dvH3rTlXUAoSUzHvkwJxDEXFEDNaR09oaLlzfAuT5KIRorWGMaa6I9RMCevTeBe7JeROQgXVOSUkXMZ0bjKPSQghhDDqaQhDhdwUJrVteepVequnbmc/nd+/epYOFNj6t/K4UlxSnKdq2E8y2raUFEJznTHjrxuMp4fJSK0LMnQvgu7BroQWir6ACANuYqqgiGSVJwrk0Tau1JlaHtUYIKo2kc4Z8k4QQJEegPqLjzwoRvGerNpUxxiULniEDWAXw0sUtEFDw9dpeRe90DTU1kyqiInzl4IfIQFCm9/okCasUo9U2lyt9Y1i3xKY11AnCE9g0X8nkGWOkTfbeI4CHjpm0hio6BBm74sp475xjiGRM4VzwDhljIGD9y3KFCnkM1rXWAudcys5sZHUOSGttU5v1qNt776GzCRZCcAFaxzpW5ATKGEvTXHC98je3CIxGSsEHKSUTcHR01DRNr5fs7+9LKSmcij6j1lpwwRgb9gbUrKVpenp6Wte1lspyh4jeBZSQ9fI0S6xtJcdAQTuBjcdTyWVgoa5r9JCmKXD2mNfMOv/08Xi8KAsCXOjr1lpLKegjr69RkoqvFwPRIem84pwjx9W+i42xNDUUQiCCMWZzeydN07Is28ZEURQQt7a2iqIAzhABAq4XBqwEc5xzj4GtOr5+vz+fz621ZNhCe8F7L6X23hPQQfuL5haEFwOEKIryvKNw0WYkpz56t5ThkWWZRyjLZQgYRRGCt9YmScaYsNZLyYwxzoU4lhR1s9akk1aVGm1ambRiSZcjpSQe2JoeR/JT+itamX7lJACPJy6d/Jx+kzABxv9d5PAxIqO1DswRGZZWMu0jAjSf6LI5fSlaa2Ma731RLCKl29Y6zwGjr/7sX1MqqaqZlMo5odIUgm9MM9ocCgmtoUcKdV0H7weD3uTsqK7LXp47awRnSgpjHXjnGCoVScGSfk7OAw6dimJAJoUUUs4Xs+CsMfXVZy7+9V/6JdNU/9/f/p1IAgNopvPNLP3ZX/iZf+9nv7S7O/j49s0/+c733nj/I1MYwSMRibqtR72+Z0DUq/AEHZKOBWo26eGHFTeWcVBcuG7IBErGyCBJ+7kidBWM9dR7ao1FUbjlWRbJV6/tv/yJp/e2N09OTr77+pvjZRMNty3naZR7BMaFkGxj0P8P/+bfiGIeQphNTu89eOSdI7ZZCIH6u/Wxxjhr25Yy4IUQIbjFYua9J7nS+oij0UVdLq21FKHpbK0jKSWPI2Wc01oiKGd8a9vdc3ufePbFw0d3uVAAXkccgndPePE/+VPXVX+QEwNpxZ+lmYSgG8qvXHSef/75z3/+87u7e0VROOeMs8ONwaKYnzu//7/+1f/Nl7/8xaqq/uW//Jd/9mffevXVV7/2tZ8bjUYHBwff+973qEhzK18gQvPiOL579y71LF2pE7qXg9Xdum4k12USHSO8cyZQYRVt51d5obA2cUWwrZFcFNUSvA9RpJQChlKIEEKapqa1iCi4QN6FdpJYBwBee+21X/iFX0DEN998k3QYAb1U6qmnnhqPxz/84Q+bpgEWIp0QRGmtzfOo3+9LKReLRejMMDtvUiqEBBeIZJvmSfdDb5sJbr3jnAP/CwI4zrr6c32i0kZ2LgToys71FIo4moiPKbYhBMDHnsjrfpxDZ7LMOTlUrK2T2fox0jmPrktWR8Q8z0HItm3TNE3TdDw+LYqCIzDG6CGsgWYy0wDAtS0VtcZPws3rL9QFD5wJLqQQdMvwFbObfhmegJjX5xv9f5RSwouAwVsHARUoOogaZ4YhllmWUUICeYqfnp20rbl8+fJoNBqfTSGEqqrX76OqqsAAEb1DpVSSPA6bpuXYwakOCacjJiDBdkKIYB108bWdGfb664HHYQhdqgPNbZRSZbUEwMGgxxgjFk8cu7axNPZ0rvuQbVtTVmZZ1v1+HwCiSFnjdRJTUUV+gkxs0FpM07RpGqVUXVfee87QHrpHj3SSJFwKKaVHnM0WyHxrTWOMaVpKiGKM7WzvPXr0qGkaCoulx00uH3t7e4eHh2VZIiIhuVSO0BxGRrqxxrlgTRtCULGOVVfjaq11EtPFtj716rqulkUIgXQETdNY7/iKXEDhHADQtu10OnXehOA4Z865xXJmXRvHOhLp2dnJfFZt72z0evnOzg5ZWFDbWVVFHGtr297ezt7eXgjh/oPbdV1yzr1DIhfUTQOrg5jIh2voKoSgpEBEcmiiypiQlDSKlVJVVXVHUmCImCRJEmvvvbVeCCEZdxgAWRRRVFSoysbalksoy7JpGsZRRwkACGAMmBQSOdUoIY5TZ4MAJrmgV+EC6qpSnIa0ejZdBHQrrA2oBjXGEeWcGBnU9lCrsE78EF1ai22ahoo2KXmapgE5MFZVJXC4fPWp8Xh8dHS0ubkRxzEKbNsmhNDr9RhjXEAUp6Hz72/LqvLec2CIrK5b8jur69q2nW40BA8rw+71fUw/tFepYKrqwjlnjQ8BAoasl8aJZgyvPXPlww8/FEwmSXTh4m7bGmv9eHzqXGCcE4aYJMl0OrfWt62dzWaj0YjOLGNMpBNQLEbGmRRKGtMgoFLi3P7ucDi4+NRO0zRHx9W5vQ2pzp2enj56dJimCQdWlrXQQqmobawQgkT6ZVWUZXnr1q2qbYRgxOOIoohyjymtXipuHTx15VIvyx3WaZZ6iFtTHt59xDjmeVbXBoBffupquSwX85KBB8GdszqKsizN87xp2sXikEzuiqIif/3r16/74KJIGdPUteACXOPapvXecuGuXz87f/F8r5c3pv7Wn3+zmDchBESoazOdzoVQWZZs7+6dnp6cnZ0lSepa19SNiLk3wTaVF1KpiK7k2awCFpRSUSwBZdM0LrRbO5uc88Vicemp/RBClkfnz5+/eeujF1949dlnrlnXYOC3bj6cLB6WRd3LzI3rd+M439/fPz09jSLdNOWyGFf19jPPXhlPjm/e+khKVpTzAGJjs9fr7V19+ny5WD46uK0jnqUZV+iCvfTUUxevXG5qd+f2we07D5WOOXYq/tVsjxMZfDabrSsGAAg0YmUsuBBCQPAUekN3p7XWmU5gwZgwxiRJ8sLzLyLirY+vz5cLF4JQ8vz5C1mWffyTD3xn4cSllA55CODRcwTvfePs+nZcX7q08MgywnnDV5po731VVRSWFbyjvUn1Pf2TECQADIY9rfV0OhUiklI3TWObdrEo+v3c1i2uSF5aawoypnTjg0dHjLHKHmdZ9sorr3DOi2K5uTUCL1599dWDB4enR7MQQEntXSu1ytJe8HA2nsRxbIw10i4H1cHBo9l0urm1EQDPn1eMicViETwCsihOjXHeBq0BkRnjmqbVWjPGTRvu3H4gpeRMS4lJnG1tbXABvV7v/HkQQnzimWdeffXVr//BH//4vZ9oHTeu+e63v63juN/vvfbKq9/59rdN3YyG/f/ob/+HNz9+b2tr6/Of//xkOn/9rR9WTa250HF0Np3MlotIac75dLyIVBpa/PC9j5znSZIJLjGEqjQ0Wq7ruiyXG5vD/fO7HvDs7OSjGx8aY7zHRdEiYt5Ldve267re2dp+9OjR/Tv3R6NRluQ3rt+TMXCusnjw1a/8/P37D+/evn1u7/xgMFrMlkVRvP76660pfTC9vH9u72Jd11tb2/vnLp6cnAkmJ5Pp4eEhKbtpNUZxTPgR6Z+yLJtOp+PlWApNsCBVbEoJxtC1BhhIKQUwHsG6UF7Hu3DOkVmEQDN8gQCrqsi0TmutlHSOpUmshyMp9OnZ7O7hPYBw+fKl+WJWFIvFoigLn0YKA28bGyy31nMmT0+ntjUXL17sbeWPHj1q6zaKIoqjAQAOwjm3mC9DAM67TvL4+PDChQtCqI8/un7+4oU87d25c880ZjKenZ2d+dYoralZjbM0BKiqqq5rLTR16SCAc8h7PWBYVQUibu1sRkvd1ubo9ETJiIEoyyqOo/l8TgQ9qvKjKBoMBiHYENB4Zxx1bsx7dC5EiQLOXPCj0Yhzvlwu+coWtm1bzjtclVDXLMuUkkKI1hgdR23bAoQk3xrEA2Na8vJiXRx2Zy4RVrQ1Y8yzzz5bFMX25tb25taHH3545cqVf/JP/snf//v/ya1bt+JYb2xsAMC3/vRPpVRNwDe+//26riHg7v5u03Rlg3MO/SqnG4ExFlbUjK5MX5HLcEWoWfNT6M9aqSSKsiwjjd1iseCcU3dEfT5Z7pLhG/33xcpqABG5ABY6xId6Y3pFQgHoRRw67jj1ftQzO7fme3auZcwxKWWsNbCEIys8oyFKFCmAEFhYVvMkj4xB51yAwBnoiFf1XGW9JBkAc1XbUDpICF2ws/dGCA3I67IB5FEkMQAEFhyGAIjeG2+UIZtj4qcQjEMXHzUwuIJUVlxRD6BDcIxhL+sJIeq6rlk93Nm5fPly27aP7h1GUZToJM9zep4Medu2kYqvXL10+9a9prKmMZwJ65A6KMJr1qX+k7UNIZseg9YabEeVpb9SSpG9hjGPkxsFV4zz9jEoLAHAre61dUPBOI8JpcUAni444JwLLUmARB0y2RAVRUHfeFlWdV0TiQwR815KVyEik1IwJqzxHLnUESLOZgshSmpQoyjKejl5O5jS+uCqtgIPUaTapq2qiZQyyzKlIqUiKTWFOQOAtS0y4FJo0XGE+8NekiRt3VRVY6113lCzx1Y2F953dKfuGa4CLRG7lB3ayyEEG3wIQQvJVo2h955zUEoFeHwXd5sFOQLCEwa1azARVxpexhjnyrmO6da12cYrpZiAACiE4BSqCcgE13GkvFrTG6njY4DU3wFIhO6LE4JKxcfwOiIY52lXAjBEcK5rdC0ZPSu5vkeUUkJ0XYkxlCdmnO24tx2xCzGK4iiKOAfgDBgGRM6kMc18vuRc9vvZApdtawnflFzQLMd7Z73z3jPOkyTJsl7TmKKYGGOUioRg1PLUdU0GRIiMcymEKorKWstB2dZwYJHWSkpjjJBcyi5hdblcTsczxkSsYx6klDLpZVrr9XlOCi1q8ZB3tjCkDqHTI9hORu0BcUXaXS6XzjkBHTrPGCMPZSEEiE5kTNaFiMC55EwqGRVlFbmobdvpZEaGZlmWta2dz621nY8clwqAU/BSVVWIwIRcO6U0TUPWbVGklFKj0Wg8Pj08PI7j2Pt6JVxDRLqPvPdWiG6z09jpSVxyPfvhq7CBOI6PTk6rqujI9chpe9KDqut6sSiklBiYcR2Xi9aMEEwqTWOPrh4whjGmdUSP1zlHSIXvxFWdeTFZiFBLTmMefJzvx2ntrYEkxhh/In3ryR+x6tmNcW1rGeN5nq65pWv+Jm0T7/1aj0iGV2TUyx0zy+b51376S1/66sHRSZJEWseMB4bBmqZ1No6i/mDYtq21hnNeliXBDlrrsliE4K1tnbOIiBCE5IILyYBjiCJFs2fgTAjWGutcODk9dMZGmrf14ud+5hdefO7KyenR1iCbTw5THf97X/rUX/nS57dzPXl0+8HRextp/B//zb/yqRcuf+vNH7/zk1uea8ajAN65x9TmJ2FK55wQyvsSAPr9PjXaiGjq0iMAF1JqpeMk70kVOeeNMUmUOGM0Z64pvbV1WVw4f+7LX/zia6+8cOX83u4wP3z00D69vZPBd9/5yY/vPIB0JLIhIpdKtA5OTo6mi+nTmxf+7M/+7MaNj5um0UnMmGhNrYX03q0ZSyGAkooxBgyEENOzsySJNjc3z87O6Myp6zqnwANrG7LvIE4MC7P5VHBJVELgZAnouWSxiMui3j9/Sam4WBaXLu1ujvLFclIWf/mA4pmnn/FYqZUpog3dsUwVV1iJAr/85S//g3/wD2azGY3P//7f//u/8Ru/EUXRr//6rzvnRqPRN7/5jT/+4z++fv06Y+y9996bz+d/7+/9va997Wvz+Xw8HgMAcY0558F5AYxegtY/KbQQkeNf0Akxxry3XV7jKopsrRigNUxWDLDyHFuf/0QdqOv6i1/84oULF4wxg8EgjlOt9R/+4R/evXMvyzKqx6Io2dkZWW9OTk6yXi4Y/+CDDwAgy7KHDx9euXKl1+tVVXV2dnZydKK1vnjx0mQynkwmy+WS3uRLL730+c9/HgB+/OMfz+dzAO6MpfslON/Lcs55VTVuZRuFyCl5CBlgJ5EJjCkZcWcsuTYhC9Z6ggFpPq21ptOVdyhTV057b9enDWPs8aUNQE91fSaQcRAiBgZUQILgK2yXsVWGYZZlQggBbDAYxLEuFsu2bRvbaC2997PZDJFm5NhLM98pJNB7FwIwytvkAQMXXNHNS4NVKtettUj86xVLR3DJOWcApMihI24N3q5r7HVRtz5XIYgQIMBjaRoiMoA0TSUAv3jxqXXOYNbrGTOZzRaUn0tTDipxSDjQtg0AkHMIVer0wRjrZp7icXAtqZx0CKH7PniHpq8hZrfyKXYYgg9S8d3d3dlsFjyUZelcaJrlcDjsD/KqKgFCliek7+O8tsbT2Gf1BrpnHUIgZ17OpEMbmoYO9K2tLTKs2N/ff/DgEf2+c05plUcpItq2kZ0AkLfOcibjOAbhiWylIt0fDDiwqmrmiymVbohgvEPESHQ6ptZZa7qmyzskWGqlE+fU8dJ3QyJZqqi6+T956oeQpmm/33/vvffQebK1gtV0KE5iay01gbCaaYcQiqJgHJum4pyNRqPRxiDP87oul9MyjnXoh6IokhhDCL0eN9a0bbuOs4/z+Nlnn75w/pIx5v7BHcYgSWJr3WAwcJYG6WG5XCJQVjbnvCP2Sim9M1JKJrj3ngEopfI8v3z58g/fehsAmqZO05S4n+d2zq02njWmpiURbEDGrLXehzhKpXRr2DqEoIRi6IN1VGN1uwI7AnVYJbRGSjTW+BCee/4TzbI+PT313nnPcYW7rRV8iI7etm0NQ3DGIuN2MRdR5JuaosbYE8E1dLhba6uq8ug2NjZe+eTL773z48GwhwKX9fLv/C//zjvvvPPee+9qrZUSo41B3TQAEILTOqawcu8cJ02Wkk3TMFzXOjpJkmeeecZjmE6nJycny7INtvOKStOUqAEAwZimbbnW2to2yzPnQlU2/X62sbFV18sQwsOHDxeLRT8f0DkohBwMe4t5oVRU+HK5nHPOtY6zLHPOeBcm4xlVh7GKuyOQMeAoGJOKg2BVVdx9cOevf/qXpHTXr39w49btQX/U648+//kvDIe3bt24qZOkLExVNUpGnMvQZbWlrWlMa7/xjW84G7TW/f7Qe1vXtfFOSCalstZ4H8ghMU3TG7ev53mepulsvuz1+tP5DLhkjFnj79y5C4FpFfc2M65EWVdZlsQRn4xnX/ziFwHg+9//PmnfkDizkqJXhVB6WRZRFGV5vrWZR5Ha2t5o28qju3nz5k9+8kES9wb9rfnixDnHGCynVV0/2NjYGI1GQojNzU3nXJLEvX76U5/7ghDq+9954/Dw2NqWMSElf/Gl5/v9/MMPP5gv5lvb23vnt27fvj0cpYPB4L33jq2rn3nmac752+/8YDJdfvzx9el02rQVBY4lvTAajOq6FUKRZ85g2C8W89bUZTUnO4Xh5sa5C+dOjs+ggo2NrWVxNp0fCMGE4HsXNoVkvV62vbfz9g9/uLk1stYyFj98cPr+j+96B0qRTsUhsuA8Nc/GNP/TaeTqWtFaee/5Y40Ip3N+PTqi/TibTDa3Nr7w01/86L3333j7B3fu3UPBHQYhRJrn4Hxd1x7RWc+liKIoeEdhR3Jle+1X4VoEczzmuAnOGJtOp0mSRFFUFKuzDkmTvtRap2lO2d9MdPU9tUPEKBdCKKVZwKIorGullN53jEVKPqRzvq7rqqoCb6uyvf7xrSzLptNZkmTlohmPZ71kyBhaayMdr+y8F4wxRMjSfp6xw8PD6x9cdxik0uPTSd7vlctCa33lyjXvfbksm9q0rY1Egg4xMI7SWs8l7/f782IZRbI2RikllBgON4bDjePjwytXrsyXc2/9hx999NyzzyMHYJ17V5In9bLSw5GOZBzrtiwEA2fahwcHjbF/9a998vyl8Oj4rG6Mw7AolkmUhhUNIXjPEYplJYXgTJHOVAghhBKKj8fj69fxypWLSouqbazt9Om7u7tnZ2fWMaXUq6++WpfVzRu3oyiaTudnJ+PlrPrUpz6dxmk1qW7dvPd/+y/+2XPXXvxb/4u/9eKLLza1OTp85B0mSVJVzntkjL/15g+Xy2VAj1i99tprkseLeQE4DwGco36SEZvPck62fcvlMs9z6vYRg/OGeUH9nnNOaBUlMWMsWOe9j+O4KIpOcy3UquQACJZSfvjaPQYE51yKjo0SJTFwZqxtbVtVhRcmy9I7dx5sbW3t7lwaDU1Z1E3ZVlUDyCEwKaVt3enxmeDq6PBMqjCdzjkXzgat47Ztsyzz3gqukAUumJRcauG9nc+XiI92dnbyPB+Px5Oz6WQyQcfAORElSsfri6YoKmctBZpZbAGgdRYN5nnqnAvokUF/2Kuq6vz584hYlc1yXjXWOuc8OK6kDb42bVmWUiopZWAsibOmqKqy4ZynaY6PJXIBAMgok0gT1MrSnzvnFgC6auu6TpKYymKCjIRg1lopO9IA/VvGmBDcWquF5LEk2d14PCY3qjfffPPs7MwZe25378MPf0LbcDqdPnr06Pj4ONHKGMc496ZdzqZZ2pufTRC85EIAN2SpENCvCcucPUYtAz5Z9a4b2g7YoopLRZwJDGBaSxmkcRwTQYn4LwSa45rfISVfeWhQcUVTN7pYEZEKdFi5h1FJRNAGtRlZlrWtpGQtKWWaZt7btm0pGM07mSd5FBXT6dTaVkUaBAAD403ramPMUxcvLhaL+XThrI2iyBpnrW2awgej4khw6RFozpFlvVhHPlhvyLpQBIdBMuBsNBilaRpYQPR121SNHwwGWb9HxLo1FR0AFtMZY8x1ubLoHNCSSNOYxn7ee6UiUzfXP7yulFIisq2/deN2mmd5nkopm6ZxtSmKZaSS7Z2t2XgxNsYZJ7kC4M51tSLn3ZVD39GagElfITlICNEZ7FJrRz4biB11l5qUtRZQKUUawdB5I3ZAD/33hRAgOA8QAPhquEVfnLPBOdfvbxtjvHdRFNV1I4Q0jZFcCCGqqkIMLHBnLBcyjuO6bi2VGd4DsBB8CFiWCyEEecvAiuyZ5jlXXLeaXESUUtQlRSqmvpGGFjSxcKHT4aVpCiT+5TwExyXL+9lkMqnrFjhTMqJUG8a490ZrqbX0ofukzvE1lXXdUgGAZDxOUnpXQokVQxOVUkysqUzrP3TfC2UtcM7JXZfOTO+DVJwxxoEJJhGQAwvOhxCMs1EUYQCyjCQt8LreBvEYa6BLXykFgpOxiWBd4+q9BwEhMCllGifkTRw6Ci0DYPRh100Qgm9butM4sZVpWQGA5AIQnHXkfALdV4/EArbWJlnc6/UQfVGVjWnR+eVyGcUpccDX68rZllYTvXPGmFY6SVLSHoWVwa5SEaIpy5LOOiIYlmWNiPP5XGstgWymkw5CbVvrTJJESRZrrff39/v9fnCsn/dN5R4+fFjXNR1T9LjCykyDKxlCiOOYc+69rusSEauqiuMYGAQMruuScO2HyxHoDOecCyYZY4JxEOCcaxryJCTiOWH01npzenrKVz6h0+mU2BVKCUTeNMZaC8ARUGoVXJcQyLuMRN7Nhn0gN/mNrVGWZVmWeO8fPXo0HG4g0pRLAgT6M2EINALXWk8mE2ttnudhle5DD7ltW4QQRVFZFfP5lLjJiKC1TuKMgRBCeY80oSFOelEUJH1OaAt0+UkoRCfSpxMmrLR9IQSKRijKhQ8WQ+f2iYjeP6aZwxOuTYgYAobQOY/TSRbgMQn6yR+tdYCuoibudpp2udbYabXF+hYjwISubEDLOafJp4MAPPpbf/t/ZS0zxkxnYxpyDAYD6x0B02SFxzmL45iKSaWFlLxp6jhWDMgJkI6LLIo1APjgisXcOBclcZ73m6b1zlvjvDVKMGt9BO7jH78dYXnv7i3Zzv7mX/vyT33yk5d2t47v33zj335/eXYs0Fy5dnUj5V9+7qlPPvv07/zbb//uH3/bqeB8KkTCnhgDhxB8cOshcccxX9mxTqdTjpBlWW84YlwqFRkXHDrnnERwVVktppKFC3vbg3zzpReee/Xllz6xC6YqQnNy7ycftPWy1xv8lZ9++atf/cI7H9377o8+evuDG4gSPVMc67b6r3/z/3nx/NbH168DQJymWnLBpXPOOeM9Er1dSonITOu8D0xwcsxgAEIIom1x3q0BY4xezSqEYFKw6XQhGbjgTFtb43XKm6ZhTEqhpVJta7a3d1995bPvvvv9OE6Nd0VRJHHyly6YL3zhC//qv/sf+/0+XdlksC+EQN65fxvvojj6wpe/9LnPfe79998/Pj7+lV/5lZ2dneeee+4P/uAP7t69++Uvf7nf7//3//3BjRs3qAuTUv7whz/8rf/m//1rv/ZrW9sbUvG6KckMlq3cG7jg9BzWFQ4NWoBGuWHtT9A56UupEJFm2ES4LsuS6J70ZNYUOjojGIL3Pk3Tv/t3/+7LL7/89a9/fTqdHhwcLRaLJEnSNCXOH+cyiqLRaLS9u0UGZca0WuuPPvqIypXJZEKkAapbXnzxxWeuPX2b8el0WhTFlStXzp0794UvfGE0Gv3gzTenk0no4DVBnvXUQTRNQ6elX5kLcS65ZOA7RwHWTXMNxLizs7OzszOdTzjn4/F0NptRm0wPlsZFAAA+ALDAu+eJj7mDnC5lxrtjZIXdOedWRQtbMSFWg/MQOinA9vY2vZlY6X6/DxAgoFIqV4JG5kSk4Fy2bbusaljxdwN7PJwm2JcKagAQq5xSKkv8yg+a7k0GnDGmlVqpNzofZ847adr6oz0B+aIQDGxAYFJKjl01EkLw1nrvJSmDqFw+PT1t2xYZUEIRvXpjTSS7SMf1geh8aJqGc7d+oBTVyh5n3FHKH80HWNu2igulNTU5uDKMd84FBlprBB/Qk/QqjuOz00kIgXOpVMQ5n81mdV0BhK3tjTRNp9Ox95ikkfceQ/DBCiGjKOKEtTNJdRvdWIQ2riVj8/n8+PiUVj+NZKWUo9GoaRqZZ/TxASCO0hACTW7btnXWAViCHUn+gIBJGpnWea+MsRatjHQIgWxk16jlGmchmp73nrFOZUZ1DPgQgkfEsqlDCDTHo8BTrXVtSvItEStLMv9EruB6lVPQNrEDtra2er3cB9vv9/v9/kbfNU0zmcym0/l8trTWLpdLKSWTlHfMHHoB6sc/fu/dd3+klNrcHKUXz8daC67m80VVNm3bktR3Xc3Dynrm/0fXf0Zbel7ngeDeb/riiTffWzkAhUIGAcqUIDFIpGRJrURKshVsS7Zm3D3tHi/3Gtlmd/9Sr7blaa2etsZrjWyP3OOWNJQtWsEWRIuiSJAASAIgUqEQKtetm889+YtvnB/vOQfFWez6wUUU7r049/vesPezn6CUYtTfjto3n0KIyWRCKX366aevXLly5tTpdrv90ksvPfLYo7/2a7/2z//5P//qV7/WbDYQaFVW3vuYBcLHwgSibDQajLHjwyMeBog4nYzBTcM4Lgrpk/188885d0Ccq51z1mmnEa1xxHW77ebWac/1lnVpnI2jlBKupEFEB4YQorW1uva3BSJyIdZPnVpa6hRFcf39a96RRynFmMBZqC4gkkqWplYjChcfOhe2AgP6+77ve99+u/PWW29aa0TIR6PhiRObxlqP0zHGjFHOGUZpt9vN8tw5xymLOh2rHefBeDwOBAtCXsuSC7GxsbZ1crMoir17O56s3e1267qmFFdWVqw1Ozs7cRyfv3D23vYupfTevZ3e8QGgvfDQyXffveYcSZKmEAEiUUpZOzuhhAiTpHDOlUXtnCqKQimDiNkko5Qa4zCiSmkAbzzrGGOCB5PJ6PTZU+1O87C3f/j2zd3d/XxaZtM6f3/vuDd+6qmn46i1vb0jGCeEZFXBGPf1ojc9oJSCc0U+jcNIa++EJokgjLEwDACcMrVS6ubNG5vrG62NhAk+GA2tw+NBXyrFCInjuCql0VqIgBkUgvOQK1MlaVBkWV3Xu7u7ly5dsuDKuqrrKggCzgOvKJdSAUAcNQkhURilSWKMKopiebl7+uzpN954Y3l5WfA4mxaTyUSIoNmMOQuKMlNKDQbHztn19fWyyoVgFFCbMs+nJ05u9Pt9JWsAYy0opZaWuh/+rqfKMr917876iSVgKs9HtLKNTljpaaWzuq7H2ZByIISAtVbZulLdbndjoylrjYic0aIoxuMhISRN07SVDobHo2mGjAsRXjj/AKNCKZU2RLO11Go3trY2lpeXjVFvvfWWA0sINNutezt76+ubw+Foe/ue0ZCmYTGwiwbSN6hecYL4baZyeF/WLRL3QfCuc1JWACC1TqLUN/mrq+uU0i9/+cvXrl27dPZio9EI40QZc/fWnbuEttOGddbT8zmjUZp446CxHnkqk7XWWUsJobMAQJcmiTYmyzJCCGP8iSeeiOP4zp073l7AOWesb03pyZMnj4+PB/2eCKJWq+U/oYePAWwQcK8W9/s0LwoHxpfadV36CBpP8fB9GqU0DDpI3HRScxY1G10AOHt2Y2Wl7B8O82IahQ3rjLE6jIJaSm0kIyKfFtoaawmllFhjtAOgjUaz2WxLWRHGnHPoMJse+TwlMUuKgyRpILo4TutalVVNCFGqEiHv9Xpay+F4+Mabb1pnzpw5c+P6tZs3buztHnk8K0mSMIzTNNVGfu1rzzulCbHH/eP/8Af/7m/+yt/+7//7//43fuN/+f1//4ed7tJTTz1zb3c3v3lNGil4YI1OkwSM9fA6BnFe5Y1Gg3PqwGbZpFamqosgY+PJMG01zpw5tbe343Mym83UOD08sp32Up7VX//6N4uiaqTp6vKyYHEj7Vw4+9Ct6/ecPf7RH/6xw4PeX3zxX8hKfejJJxgTL7/88t7Ofp5lvlEnTADYm9e3Aex0PD0+HLVarThM6lJ7bM5PCxAxy4qyzIO5D914PIZ5ZAdBZqTy/hvOOW9G7GerWlvn/OR/Jm2DOVNyxvwk4FOM/P9njChrnHNRHABY7WprtdZyeWN5ZbWDiHle3rp5JwyjdqMtpfSEx5XlJcbY8VG/KuqAUQQ66g8AtTd+QUCrdMBmgnGpKnCABBFR1TJKQmddWZbj8fjMmTO3bt3Z3z1wFoIgsDwwxgkReFiHc9poNJQ1HvfUSnmGsjGqrKtbt261u22pijSNh8OhaTbPnj177b3rTPAsL6pKTqejtbWNKIp6vd4spbrWg/4oilRdS0q5L2rJ3IYSGSqtwyiMgtBXFMPhkDkGAI1GAwAoneWh+Qc7A1vDIC8zYwwyQQj6L87znHqtvdJ+ds554JwRlOV5lkbx9u07aas5mUy8DvpDH/rQ11986Rvf+Mb3fM9H1tbWXn755Var5aTNsNBaj4/7TqlcjfwBlYQRAKBDAHQzLI9RSpVVvo6ngG5uh3dfZTL730XdrLWeTqceXvcFcVXWlM1QMEppq9VqtVqU0tFolGUZADBOGCcAYrG0YO43qu2Ms+PrSQAIOInjcE7FkDD3EKCUWzvzn42iKAy1p7A5bQghgIYL4oAqXY0zJUIuBFNaOYS8LKeTvMirOAi1AgtGGVnVtVQFqeooihB5VdTOQRRFSRRpzYfTISGME3QWfJXuEIFCGqeVLA97R0rVyvqsYJ8wjtPp1M/hFsigEKE3BORM+JWgVKYUSKko5QAkm+ZxHCsNSmtKUQgtK4UUpKoIMqO1MdYYt7y6ZIwb9yd+Al3PcUFKv63zWbwj4yzOMeK6rpHRBYucfvsQNIoizoI5CukWgNRMtztHnB2A85avdPaNQCwhxM3w6JkueDgYI3EnT55khPZ6vaOjY0KIUibLCuJsGIbOGOecCMXy8mqv18uzkiL1STseXQpExDgxZmbvo60piiIOk/X1VUJInufeSc/7PHrwy9BZlLRStVLKWh3HcbvTIhQnk4nW2vvCWWubjVZV+XOPWKeVNMq3rOjFuA5w1hB6gu0cWlWEME8UdYsEOUotgHeQ8y7cjHCcJRpp8AM5igDAqGABMsYIMl8GL3B8qx2A8f2olyvBfaa3iOgNl/1V69XxiI5SZtAspIQeVjMzr14ihECCTlsA8EcupbSiFTgCSAFRaQnoCEGY07G9KNg5dIB+dOQNJX0BMOv3jUGgnAL4sfoMvzNUcH8pKKUsGM8FcdqAI8a4qqwJYYtpB2fEpyyWZYmURGFMGB2Pp6LCVqvl8+gIAc/vi6Kk210uimI8nsLcaZpRkcSNZpLevn1ba8M5rytlnU6bqQiDOI4ZI2maNhqNWzdu702yfFx615rFW1u08dLMBsmLjaDmNuj+RXtxGMx9HjjnDIlfaR5bsDhjbaN1YKxV2jm01DtVGsRwMpkAQR/M690P6rre2toKoqDRaoyH4yzL6loFQUQIMdrVtbIOwREzs/WcLYy6LJ1zh0f7WT45cWIrSZL1jbVaVuPRhBBCKUf0IUCzWC1/Ji/OZz9h8u/RjwN9vcc5dxbKclQURbPZ9NCVx98ppZ7JDo5QwsERf5P6BSY4c86BQ482zOsEKIrCO4hO88wY3yynlFJAW5alNspr4v1v583oZsOSWYExI/QpVVNKAebxWfQ7s5v91ezmHhqUUk/KdrN56kwuvMBuAKyfABHrgFjGqVFYjfNnP/lTDz/y1HvX7n7rW6/duXMnjuOVlZUz587OYCOwfn85R2abFwwiN8bkeZ6mMaXowBirrIG6LoMgoBQJQWutsSqOWkbVZZYRQk1ZWq0cJXWd2zq79VYe6+lHPvzM0z/+Q40k2t++9cdf+v1iNOwf7I77/SQQx4d7dZ53V9fbJ878+Pd92BnzhRdfIVATkvjdZ+a+CoRy330754xxQjDnnHcDePTRR4+Ojvb2DqSUlAHnAUWHYIiVVT62VXl+c/nj3/PhUxsrS+0kjTiBMju4Nx6O6mJ6fHjQbDQeOHsSAwRun3noxOOPPPCll175ykuvXL+5XdQyjlNH3BtvvJamaaPVlFI6Z32ONyHUOXMfKgd+MU8mk8lw6DedP7I8890n9xhjsmqWNQLOTOq6rmvGCVgQImSMoXVKKSGo0rWUklOWZ/WZcxffufr64dExpUqqkmD9HZfLX/7llzxldQZSBaKua8qZm5l7WFnXKysrH/7wh2/cvjWaTh55/LHjw6Pf/u3/93Q6eeSRR37zN3/z7bff/vSnPx0GQRgEg+EwDMOyLCnD/f393d3dnZ2d/f39paUla5WHPu190XkLnhCZ8dBnTqrGaUQEBEcQgMDcRFhr78WCDz/8cKfTeffddwHA3wUecSKEeNsiWddSyhMnTpw9ezbLsjRNfeyqtwQ4deoUAJw+fbquVb/fX19fL+tibW2t3+93u93V5ZWtra3d3V3O+e3bt+u69udDFEV7e3u7u7tlWfYH/WazeWJr6/Llyw9ceODa9fffeuut/f19P5kuiiIIeJZliOhPgIVJ9BzYNJxwb1vvb0D/b6MoaLVaaZqePnuq3W4fHx9PJtlf/MVfeDW8j5khc7/NOanZIvor2u99A0CMNfcjaR66XZBufXkmhKjUTJwB80TEheqCIRmPx9PxyCPmSGAymfjTySONC5cPmHF/iZ+2+YkFcX5s7M9L9LeptRZnwVR2cadYf9vPEwsBwCedIDrPSrFzO9n7wQRnHSISX+nNeAaEMVYbZa1lWydPFEWR53kSxfv7B0dHxysrSwSZrOu6UkmSaG1FGCASMLYoCgroELmg1lDnPvDiAUBfZCz+1HVNAakIOGfzO8Z7Y4Nzs8wE7SzCPDZwzsnnnFmngyCSUmute72+tZpxBLDXr19fWuqsra1RSsuy9j3PcDh0zgUs8PeBVjMKj5e6+Jm2r//806yqigmulGSMXbp0aTweFkXhnPEqMcpZGMYWgDFR1pW1rqqklDVieHBw4JnIBJBS8PLKMAwnkyzLckIIZZTSUGvNmLBWz5nngIhlUYhZLo1bWlry5CxCSBTHvnRWMy9wRMQ8z69cuSKlZOhJDTirFRARZrfUbKA8ZzQIIZC4IIj8aDeOY0S8cuWKKrUQodYaAOMkzKZFmqbSaK0lIURpDQDW5kqpMIgZI4QCEjfJspCH/X6fIJPzbFZE6id7AMQPuAgFoxQAGGsAnJcjDYfD/Z3df/pP/+lv/dZv9Q4PNzc360L97E//jNb66tWry92lsq6klFrPzBaNMYgzY2I/rift2Vjskz/4ySKXL774oo9Xeu+dd6WuPV9eCEH950fKGKGUV1X1jW++1E2X7NxyLg6jH/zUp/7oj//YSBmlaZKknJGiKOhMqiB/8qd+6v/2q5/99V//de8g9t7bb1vOO51OWZZ5Pgv98AsWwLVX2qPhaP9w78ID52/fvXXy9Km/+iM/9IUvfAGIe+SRR65cefP4+HhtfSWKotFkuLy86hCY4FZpr0rT2kZR1Gg1BeNlWXJOPRB29Z13PA7earfDMIyDMI1iT+7wUYcHB/tBEDzz4Q8hohBMri9pbVvth95791pZZmWh1tbWOIv8rAgcabdW67omSJVSlJq1tVVCyLVr10bjzHNGrbMiDAh4yyHjOd261mCctQaIYwGGiXj08Ye1lm+/PZS1URLqqY1a0f5e/8XsFSllVRqFhnNOKFhr6rrSVmfZhBJRlmWr2Tz71Plbt255Yr40GiqLCMYIQoiyKk7CEydOLHdWCtevlZTKWoCqqghn4JxxKgi5qlR3qRWGa0f9o6VWq9VNbty6HoogSsLbd2/d293O8+nRkU5TrrVOkiSKImttFKVhJBCxLMuylAd7R4yR7lILAIbjkVK63W5PxoWPyHMAnPNHHrkMYO/du1fXlZSylmUQ8KoqBGPb924N+pMzJ88tLXUJmWTTghBy69YNQs1HP/o9XDAn5IULp6KEvPXmlSBsnjy1enBwtLd/N8/L8agAC1EwywfPs2J1ZXV9bakoiqqqDg8PfRnd7/c7nc7y8vLa2oafdjDGBoPR0tLK2trayVOrR72DIOB5PvXG2c12c2VlZf9gF4BcvnzZWtAKl5eXz59buXH99skHL+zu7k4mEyFCSmc2Ml6gsOjzrXPeahAAjJ5dk/O7Tfl2mjFWqwqRqrp66PLlVqvlv+Df/c7vURbwONw8dfLmu+8D2NF4xJEyxiwQirTIq2xaWD2jhLh5QPACJhBCbG1tRVH01ltvyboup/Wrr7765JNP+v7BNzwhE0rVWZZ9z/d8z5UrV5RSiDNCCsx8P+egJGFV5Xl5Zm19pdVqDYcDKatGo2HBIHGME0KDPM+8OxAXSRxGeZEdHgxEwOI4WlsJnn32Q1/+4vNCMABb155YFCExFJASXpa1UsZabx5O0VnkQZ7nu7tSa8k5X1vbMEYrXQMA56mUEsBtndi4fPny17/+Yq/Xo5SCAT2LD9Z1XWfZpCzzyXRIGPP1HAI9d+7c8XG/rpQQAYCNopAT2khDCnh0aP/b/+bvf+Yzn0lW1msNv/J3/94f/6cv7tw7eOLxp48Pj21t0iCqVZ0mcZlnKysrUsqyzLWRrVZjc3OzKPMsm7RajSAS1ilC4KB3+GC3+e67V3u93hNPPNFoNXu93trami4IGv7ay1eGe9UDD59ZXV0nhDTirjNub28/zwtfQvx3n/3szVu3PvOZz1y/fm377j10hBDgnC4tdZrN9Pj4GIhLeINz+tSTz9y+ffu9t98LoigMYhFGSikpNWOzUAfGWFWU4Ajn1COtQRDkWQnGBkGgnPKlgi95wzAELqTU3qgKPCHcN5u+WSPgSx9KEBEdAvWMY0aYYOvrq61OSqhLmkkti6WlpXwydg7jqNFutKeTApFGkY6iwFnTaIpWsxmFVFZZVSprLeOCksRox4UPOyLOWU5Qz6o9naaJx57qWnW77Vartbu3U5V1o9HosYFWNSJ1zlLCnEUugiSNfMsdBFEQROPxOGC0qio7Uy+6MAyRuLIsJ5MRC7gDm2XZ5oktimKH7u7s7MVx7Gl0nAvOQSuP8ami6Pv6xLe1HqGoqmoy9SFLrNFoMCRhGLZarXyaRVHkH75zLopC3xcsLS0JIaSqikJxwWdABmOI6JWk2WRiZh6CM49UHy0CAEoZ51w2ngCCFy783u/9Dud8Y21dS7Wzs8M5j6IoaQh7pKZ1zgjLq4pzDg59OcsoNcSbzs/wJuOQEOaco0B9k+zu81m281gV/5cLvphHGRZfQxAFEzQgabORJEmn0/HBGFeuXAGAIJwNQoz5IEKNzD7GzPbUdwj+74UQnhkwGAwImTmJ+aPJR1j3+8NWI02SxBlbFaWv7oqiYIKnaSIikRV5XZe1QiEEAtnf73HCCXJnvfhaOeeCIBKCUYY8iJQyzgGllDgw2jrt0DmGhADVRjlEIGQ46k9ytrm5PusE2OzFLaosD6w75wT1XBNBKSg1g4CV1LWsPC2JUg4A4DCKImMcc4xx7kBzGiqlVVkxzhhjpTF5nkXdeDQeesYQUFRSefGKr6MAwM69NBZTAWut9yucvymHiExwQogBh4zGjZQxVma5u0/O6ckNHraYHSOcw31Z1rVWzIPciISC1tpZSwhR2laVZIxYa5M4pkiyrJhMsrqu0ToptVK1EEIpY23p21FCSBQmYVhqqT0Lwc5l15T4GDE1GIwIo4SQrJgOx+Lkya0gEndu3a5rtbjTPWXHGC9p1444QCKNmmRZVhRaaxEwRxxDgkjHk5G1Ngi4P998qR8EIaXUG8s65wgiY0wIXICkWmvPC5pz7Z1fxdrbrMytS5yajU+8xND/8f8J3wsvJjduLn6nhDhHfCSRxxcAfDbULOXJm594galzzrs9cM4QuZTSKM+BnXlrLH4yOOKIRUK8rkXWWivDGPENdlmWPlvezUOc/DgWAChFD4ULwa21Dmb4iJLS2ZlqxPp0FEodmJCHQRAYZ6uqKusqTWPPjLFKt5qdKEmscZ5J4F+uUsYY7afUnoFkLWiti6IUPAzDEBix80hMANDK9o+Hk3HGOQ/DKAwDQihjnCERlDltpZTOYrvTXN9cB+K09lJ0t7u7e+vGLXDY7a6laeqDv3DukSKEQDbDevwSqqpKzrPgnHP+/3tKh+9zO50OY0yWladaE0CYewHhTEjq4QO00kqjEZESA2iBeA4WLkTDQRAxRpxzZv7eGWPWzCIoFxiNnw95kJpx4jkKVVUiwurqcrvVaj/62OtvvgFugbw4a5kn2UVR4t1+FgRM3xd7TYCbUfzsQozi34jXyTnnvBuGd2VttVp+ku0RKL+k4T5Zj38I1tq6LjwZi8zYhRiGIWXMM8rdTB8DczfVD0QA5D7vJv9lkQgIIWq2Nr8tIe3+P1obqzQ6h4z6+YFVwOcOigvY3Re3/kcRQgjhMB/LHR8cXHz0mb/33/yD3vHojdffunXrltZqabk9Ho/u3r7T6rSjKErTpGAFUAIeWkH0Z04URdbqqi60NUKIqqq00UpxYxQhfDanMdpaPZlM6lqhdWVeVNk0pBig+4Hv/a6/8dc/fe70ZjYa9u+99403X9+5e2N3+zZaVxRVfzhe6S4DsldffnVzczO9c8fFnTNrrYcvnLixe2RIy92nS0BEJM4fF/5RA0Cr1To6OvqZn/mZxx577N7uzr/+1/960B8lCRSFE5zKqqyKaSviH//4sz/yAx81xfDo3o3hdpaBZhSIKyfDkffsevTRy0jM9q1ru4fHveFYI4/i5l//q88Os+ovnn/x6ns3pDRrKx2HVNVVEEZKqSCMy7KSqmRUzDwlrHUOGaX+1XiWG8y7GK11mMSI/vYhQZwqLQ8P95Ws/EWWVxWZMdVASs0CT5o2s0K3qtfXNk+dPvv+tW+lKSWULIqT/78/R70jt/CSJuhvkBl2Nqd+Li6CtbW1V1999f333wdKfuRHfiTLstu3b73wwte0Vve2t33kWNpoBCFvttKyLH/t137Ni8/8e2Gc1FXtgSZ0zmlDAY1UAEAF9zj7Yn0u/syuDTubB9d1zZh47LHHLly4cPv27cFg4BP8pJQXLlyIoijLstu3b5taxmmqtf7t3/7tCxcuVFUVx/HTTz99+fLlw8PDupLNZvPy5Ue8zGJ/f//td6782I/92Pr6+ng8Nkr3+32/uw8ODjwWHwTB+vr6pUuX/PTo5s2bvV7vxvWbVVnfvnXn6tWre3t7SMDvgiiKjFHnz5/vdrutVuv69etFMYsAbbVaxpi9/f26rhn9YOrmt2ee5/1+v5GkG1vrS0tLy8vLW1tbSZJMp9Nms+nlL4j3w6HzeCSyCOl1zllnP6A8A/iEpBmR3K8Qf/bWWi0esnNOa+3jJYQQ+WQ6Ho+1rP2Rq42/sNyCom6t9SRdRFxMERa3PFr0P0cbWZalcXZGQaAzrBzmoJyvxGYWIs75y8g55xVFvjxeLAk3n5ISHgoaWQTCCXEQkhAdSFaLMIggYleuXPFhDnVdN5vNzc11f6NQSlvNYDqd+n8LgJWptLOeCh2lCTgynU59PpK1llLW6XQAwOuAGBNWaQBw3h0iCL2HrP9whDAP8C1YDJQx/3rG43EURUmSKDmjS1utCSPWGsZIXat5iJDI87Lf7ytVW6s9mdppV5als+ivXmOMt7uyM3awD4hjfl7k/zfP89XV1dFg4NeDUZowqrVRxnjaQl2Xvlur69o5qEzVarWazaaWqqoq51AryzlnbOZGzb7NnHpWJF28eFFKubOz4xfhcDhcWlryDZu11k9dzNzezr/UqqrCMHTa3B8ZobVGRnwFTOeu55xza7VvFCnDMJy5fU3G2XSSDw9yH5bb7jTiOPbmwoIyRK6NNIamaepJItZaLuhkMtrf37fWEmQMGeeL7eEt4Yz/nJz7/YE+kXkWtYlgjG02m3mef/aznx0PR2EYvPHGG61u4/d+7/dardZoNGJEVHVNKBhjldIAzhESBOyhSw+Px+PBYMAYW9naOnHihDHmR37kR9584+qLX/3q5uam9yNb2G/ZGf9fU+RVVWxsrJ04ubm3t5dNMsaYv92CIPjoRz/6Ez/xE7/zu7/75S9/GQE6nU6SJJPJaDqdEkp/4Rd+4aWXXvqzP/uzc+fO1HVNgyBJkh/6oR966aWXut3unTvbWTZxzmXZlAf8Ix/5SF3X47Ivax3H8dtvv7W9vT0cDg8ODjwKL0JOGesPBog4mUxmDD4ujDFhGG9tbb322mu9/jFFEgSBEOzkyZMAYHa3KaVBII4Hfd3XAbBGo8F5kOd5UWRlWda1CiM6Gg9arcb6+jpjLAg4Ij7x5GOHh4dFUVkLUurppEDEqJEopZ2DoigfeeQRRLh161ZZ5pzTujZBIJY3TpZlOXN3AfAogwdAjdEWzEMPPbi00nWgb9++2R/08kwWhVxb3Xj0B5762ldfMpXuH48RaRgGBNFa5cARglVVoAKt5bQoLl++fPrUqUcfefyP/uiPbl677ovRKA48FFQU2ebm5oVz506cODEdT27ujU6fOr97sOsZuHVdh0HojDXKOaeCgC8vt3lIsyJ79PIj3eWW4Jxz7kn3V69ebTTQWru6uupPBj+BlFJmWW6tM0ZTyqMo5DyghDtrm81mHKWj4d0sy6pKRRGrquKdd95ut9t1XVmnYTbNc9aZspSj0XBj/cTt27d7xwOjCQDUZQEA169fH0+OL148315Os2y0sbEixOPb2zsAyDjWsjBGrm00lDIA1vu8x1GSJMnOTu3Hucaoqqqstc1mMwiCoiiiKDk6Ou52u9vbO17InGVFnNCbN2/evn2TMUIZEUEQhuFwOBxPhqurq8ZZB9jutr5rbSuJ24cHvfX19clkkue5M9YS8BNBY4zWsxxta60D8EF8AEApt26Wke1vLF9mwUxyWHVWVlZWl5Q0S0tLGxsbn0d6+fLlwXR8+vTZ1fWN5e7Sl/7zF4rJ1GvNiOXGgZVVlKRpEhRZprz9orXeRZdyppTy8RcbGxsHBwcnTmwi4muvfovyGbcoigMhRJ4bY8w777xdVYUxxkgf+8OllEEQdLttfxR4czopJaWs3W6HYRBFm4PBsQNDGSuLIo5jQkgURdvb21JSY6K6MnkxNlYyBpThnVt3fvAH/+qHP/zhV7/xLXDqJz/9mbIsv/L8X9ZSNhoNZxwiZQyJcRYcpUQbY42djDMuiHcePDzcX/h6O+vCMCyKfDgcvvvuVZ/bluc55wFl1DmXJEkUh8fHB0BtHMfGufF0ypB2Wt0kSQCwfzyUUkqpJ5MJGEsJGFmfPnHyV/5Pf2d9Y/OtWzt/+Id/uLu9t7N3oGv9n/7kT8MwdNpJUwnOGKHoYG9vBxGlMc1Ou7vS5IIFlpclMk6Xlrvtdqp0vXe4e3i4P5mOvuu7viuMIzOLDbFRmA6Hw4Pbg1MPbK2vbTUarXt3t4uiQIAse++hBx46PDz8wz/8Q0+s6A96WZZpJRGJ1rrKK7TuEx/92O//wb8HA+2VbhDwZ575LsGCe3d3CAqGzItntdZ+spgkURzH+3mBiJTwKIwZY4zyMHRKqTgINegsy7TRRHuqkUbrkqRBCHEWkSCldCYQMw4RhW8X0RJCCQEHBhEBLWP8woUzWTlJG0FrqXnjxnsf/sgzRZHt7fQHg1GadM6de+De9t7hYa8s85XlThBSraXW1anTm8dHR1U1EJwpKS1Bzpk1YJ3XlxGtdaOZSKMJwSAUaZoqVSMlxjiP5ty4caPd7mqtEWlVVUKEgQiNVFrr0XCCZDY5NuCiKOLExXEcxFFRFEjh/Pnzg/HxuXPn4kbcaKTb29vvv/9+HKdR2HDOdTodwcFrzwkhRVEIHs7BKTZvdHVdqyCYB16DHI1GjUbDOVfLmYUaE9x7tXsrupWVFa8o93OLza31K1ffrqrChzMfHBxsbW3t7+83Gg0/xhZCaG2FEASIL9CfffbZg4Ojt99+m1IahmGtVVmWRZH5PKjxeOxhXKVUXlRREFIktdK820GkRVWC9QzOGfMLkBJCYJbFRMB8m23CbLp8Xy7cAg5YYNALjm2SJHEU+Rral391Xe/t7RFCxqMJozMLUW+MuACs/cdgjDj4NqhFKVWWkCRJnudSyjgOAYinmRBAigQIBS46nSVj1OHhoZSSMrTOEArWams1Y6GXphVVmWWZsyhYQJDHcaprjcjCgBNqozSgFKWssrIq8so5p2ttqSiy3BnjLFrtqioDQEUUFdQRDgBSSip4lEZ+GXhE0kvKYJHwEzBv+edXAqUUEYqiUFouWkprnHWGEIboKHKkCEDqohYRY1QoXUVR5CIXBXEl60FvTBwFyoxXoeEiPwe9om4B3PtK3ttEzFxxGPOJgov6ljFGKdNas0BorWWl3ByG8+wWDwf4v2GUmrk0nnK2YBs557yDM3XOWkcIsdoBNdPp9P33r3sQgQI6JM1mrLWuqoIAMsKtMQBkxvOVc521lJRSADobtNDAq20IIRYcIeDzQhuNRpTElNZFMXOyUkp5vapzzhHHGaeUeAdz/+sbq6SUIARBUlWFc0iQam2sBURKyIz37Ren1hrc7Dn4Qbvn0dt5+h/ONP7WGOM5VlJKfzTZeR4govNUJ+ec0c4R7QgY75G9oI0bA3NmqHfMsDPZLPXjZK21rxmEYN7hyjMHfb3h5xzOzMKj7Nzb3TdxzjlrCWUoeOi00XObPt/NChFKOeuizQfZj4jorAXGZoYGHjz1HZ+P9gK01lkHXok5c8ms6xoIhmFo3IyyTQVPgmSRJO+JQVEUITpGCaW00UjG42lZV1oZgohAZwC0c7511Up7eHTQH3lzpzCcbbcwDAHI4eFhXddZljMqVjfWl5Y7QRAMx4M8nzJGjo6OAMjFBy8yIkbDLG7Giw569vrwA5zO9/Me9lqQxI1xfiNsbW15tKWu606zNR35vL6ZVtrX+UqpuTXnIs+GzCteFFwQgpSSoij8EXfl6ttBSFqtlnOQpmlZ9n3q7wIl8UCqlNJ7XjFGtFLW2iSJCSFCMB9itL6+/qEnnxqOR3UlPY/VgfXVZllUx8fHiOhZL2Tu3r74TcmcheaXWbvV9ihBHMfezBQA/C4gBBcs6YWvd11VizMc3Ae5975JpJR6Oz7/u4RhWBbFTMiitZljKF405V/E/QiLMYY4b2IzezWUfJuI8IM/1hrjrNWO0MXPcYw4PWP6L6ZoZO51O99uRtVyPMjTTudX/9Fn4yi5evX1g4NDIUQY8TyfUsqn0wkTHBG01V7jH0URY5yHgZSVUiptJDwQVVUVRTGTes/NMH0Fm2WZsSrLJk4bCi7Pi4iLX/k//5enNlZCap+4dH51ta0m/aPtu3Z6vBRTsbXy8MWTu7u7b1x5Txq3czgYT+vlRmMyGkutVs6cDzdPh9QxYiZ57k8AMrd/9b6xnhYahiEhsLe3V5blzZs3z549WxS5UpJQiOIAAOqyHPWPzp7a+KWf+5m/8uRD5eDgzsGt4f6NYngUCaersrK20+mcPXvm1KnTx4P+YDCaTCaHh4eHvf5wWiATq1vnLjz8xN/5+Z/ZORp+45svv7vX297e5kGkVG0teGrIbIZX14RyznkQRH7vJI30eDphc4dVLqjnL6Zp5FcdAfQ6AErQWuvjuyygv2QdzCYlHtUB6xBpHKdnz56/evUVQnhVVTT4znAz51wb8gElfB7W53f9fKKvvCmzb99+4Ad+YHV1VWt9cHDwc7/4C5//d//+S1/60tkzZzqdzoc+9KHxZNI7PkzTdG9vr9fr+TGtvyu11ojEJ5kBzkZo/oQ31npmt9+SZG7Fe/8u8JevR6VeeumlF1988fDwcHEBUUpPnDjx/d///cvLyy+88MILX/3a7u7u0dHRF7/4xbqu19fXn3zyyb29A0T82Mc+Zo3zAO7q6mocxzdu3Ogudy5evLizsxMEwcap05cvX37nnXeUUv1+/+zp09Pp9Pj42GrdbjYfe+KJ6XTa6/V6vV6WZcvLy91u18+xVldXCUUfWj6djouiOH36NCFkOp2madPHBvoTL0kSn/NRy9JbNeKcr6CUyor89u3b1trj4+P33rvmdxDcN5dd3G6IuAg5IHPCqHMOgcC3z3H96mLz+PQ8z40x3qbSWotIfVOslPIIvveo9J+Kc44IupbIFkMyIkS4mFfReZDD/GUZuxDAgSGchWRGQfBwM8zzfq21ZqZlwsXtM9/I4B2AFwPgxRdQSgkFAtyAgwCIA5T+mTh/YTFVV0WW++OeMXby5IkwjLTWo8E4mxZeRVJVtTVQlrWUNuQMwYKGSlWEEGOUMX5cCTMgoNX2xBZnbFVV2hr8gGhNjTGI3FpNiKCUJHFkiWe9WZ+0YACqWlLGtDEiIlqqKPVFCSLi8lK3yIvr17b9G8rzXBPXShuBEIJHRVHIagbg+pE+WrQOKBVKWyES5wiCA0cYAXCOU1LU4zbGpy9ulGU5Ho6yTDqkpawp5cW0zqdThyIIQkZElDTTNNZGAsBoMGRMaD0LCCYEEB1j1FqNTsUhU0oRav0D0drcu3fv1KlTZ8+ePTo6Gg6HADgajTc2NvK8yJXydZJWjhDCKQMDggtBBFhASqNuopRyzna7XSGErpW1NgyD0WhknaYUODWauFrmAK4VtzhnxtiqknUtm80WQ+45AhcuXOgd9a2R1lpGOAKNojjLMsGTNGlnWSZlVZXSKKVr6ZzTTgeNBiIQ6ghF56zWmlCijTLoZF1VuorjmLNAK93uNCmlTpuyLJ02R4fH+3u9MIyHo4IQQll0/cZtQBsEQZFLa5216AwyDIxxDKnKjSzliY0Tk+HEKr29vf1Lv/RLK6tL//Jf/sutra31E2tVVaRpasHlskKkYRiiICIKoHTGGELYYDAxxhmNymjCqEMwoPvD3pde+NLv/+7vn7t88cpPX33k8sNZVrz22muhCEvlnnz8u06ffujLf/HllXa3fzBod5dWl050u+3X33xrmmdxmmye2FBqeXt7O2kkXBAuwIGT+RA53TzVGQ4mb771cqPRDkMh5k6XB7sHIggajQYh616yowABAABJREFUpMjyAvJ2J3HoEF2/34+iZGVliXHYP9jmoTh1tmmdbnVPChFXpVleXtndOfRgtHPOKhUGKRKGNLfWHBwNalM6qlnArLXayO7yUnM9rMfq7p1r3/d9H/uuZ57+4he/dO7M2TwvX3/99bquOWWnT59GB5yKQldBEAkhAJUQwBkiYhAEFEhdlrquOSGIhFAynYzWN1YI4curS2EYX3vvXhS1wrD97Ec+8dYr1yb72yKKkBJVmyAQgNxZo6TVtfr0T/1UGIrf/f0/GA+zN/pvv/7am4yx9a1NzoOqqjqdzmg0mkwmnKXZtP7WG1de/tYbgK4s+/lkyjmNgqC5tOQcSmV6vb6xlgbh3vHR8WTgQFPmXnv969bp6XT64IMPhkHcXkovPXSh0Wh547wrV644sEqXeWGcc+NJHxEbjcb6VjOKojwvGu0Ygb755pW6rlutzmOPPXrr1u18moVRYHV9uL/DmKCUWrQArNlsqyrRykzH+1rR4TgrMgkUwELUYhatNra21ZvvvNHqzBqnjY0NyjQANpq81epkWbayvEYpHw7HB4eHcRC0WsnayZWD/W0AawwwJvKsoJTHjRQtEgIUTZIE40mvKEeEEG3qnd1hEKKULo46lCITvNlsHB0dHR68e+78mbyoGa89oaOqKiTq+77/iaP94flHOk/9lUvP/8U3ykITJAAWsF5aSYbDETBitSXICaD3tKWUgcEwEErXyipKKSNECEGATiaZrfWli5d/45/9L3/6Z88999xzSbPJI9HuNH/pl37pIx/5nueff/7xxx8/v3ny8Pjw9de/devOrSjkUkrLuZWqUMYYdEgqqYJQuPnlRClm2aQosiDgcSwuXXoAEXf3d3zX5DittZJGOyRUBLv7fUrp+YuXO83W66+/brTlbObIwTlN0uDe7lhKGYSccrG9s00prq2tdVY6jBGl1NJKd3l5ua4qa+3Dj15+7bXXevdGEoAgQ8etdkhplWVvv3797NkLK+tbo9Ho1p27KysrxjCCxFmepMloNJJKMcYIEGMsJcJaS4gQKAgCGlJLNTUVF4xzTjSz1kahkFIeHvTDIHUWmo0lrbUxOgyCdtLNsswWFJGBC7iIqrowFCe2qso+45QFRFlHrENKCQhroZpUw8r9P/5f/59Lly79xy9++Wtf+1ozjaMkXD25dOfWzUA0wUlGWbORSKXKspZaOYJrqxvdpWWD5TifIHFRM1pdbkdxkOeTbDq2tRFhuLF0cufWwXB0zBhZWe1QSgyyUk2iLk6z0bvvvcOZqEsZhuHy8rJzrpB11EgfXFmeTqej0ejevXvWwqkzp+u6Pjo4Kopie3t7f//wwx/68LtX34tpfPv67f/t+v+eZVnI4ziIjTE+xM8YZU1tTUWJoZR62U1Z1kWp2q0WpQFDJkLW6XQMIXFSFlkuhBj0jqu6dMbWpUQHlKKn6jDBvQW51to4igQBKBCkIVemsmilVQ2GwMHVTgixe3fvla+8R0Gsraxe2Hrij177E61Gt68ftlqdJEmqqgIapq3O7Rs33zvcWV/NjIvTBrcGlMoZJQjgrEYAozQhIklaYRAypylDJEQbBYR6/dbe4V4aNTc2giRuCBrv7u5HUcSQgdW+WfUVQgUySZJWklirlatazWaj0dAyIYSMJ8fjQf/ShY8cHw/efPfq3t6ekSpPpBATP3ckPGGEOOe4CKzzAvPYKI3oPGueMYbovJgjSZIoWpmMc1m7ihpCaFbUXFDnLBB0SIwFShBDvnF2rdNNp9OxFWZq+o2lgGbWKSCAnHBXmhBZt9E+3j9SShpjlLHNZltrDUDiOO0Nhnd37oVJ7Ef+hBAjFWMMLZZZmSQJQ84Ir8u6QmSMI0MGNIyYc86CK8vSoXMAftztZgndhhDiHAIhXhTP5mJz35X51GJjDBBAAtYZZ51vCK21cdTwloILvLWe1sYYIbjvwDnDOI4txYXh2/2tQiVrh4zMEuGV0YAIlAoDNisLSjgPIguolPLJdUYrr/snBCaTSVEUWVaAccBBCMHn8K5/GkIIUGgt+DbPalWhVkaFPExbqf9LYy1QQggkaZAkDbTu8LBnKTfKAqEakIQBBaSGGWPAgrFa5qrBw2bUysuMUZaNM0KIqozWmrMAHTjrwLpAiIV0wCMd1oKsjXOOU4bebtAHmktdWhWSkDCKAE6RWmutScxZEqZnzpx558o7rbRdl7JSigrufAAdoDaGIqNAHFjCqNXGOUspKcuCB6KuLRWccQ4A0dzcQ2mN6Bzasi58+w3EioDWoJ21jjppJXo3YQLWuqoufKfHI661ppQAODAWrEE3s6O11gZIEEytai0d51xr5YxlSJ1zrWbaWeoSAqPRqFIzBoYs9VCNh8PhnKGs/PTBSycBAIEyyhAoABgpCTq0UE1LdMxZWlfOaMKYACAAlgJz1unaGWvDhCdBQgxzzqhK1rJKkqiz1NVa7+8dGmMZEwioDRIHhDlCndJFVWFRlEVREKCU8EorahkNGUEUyC2zUkoCSAX3mmhppHOOOGKMtRYIEQgouEBAD2Y555B440UDSBkR1tq6yikhURSBQyUVhRnTRAgBzCOVxDq0xhGqKUWtJWOM0lDKqq5LqWo/LYjCWEoJYCknSAgQtM4hJZSgR+e9F6JVOCOREOvQ1aYmjgRBwJAorbgglHApnbWAKLx61VkHjsvaVrIWgjFOjLUOCKJBSjz9hXFmF3DJDGEkxlhEpmqLwGPBQi4Q0Vnv2kwpA0KRc+GpYbXSURInjVRKORmNGTHa2rIoJKWAGAQBoHVgyqqs69o6SwlRsrZGR60OASyy6WAysM5Gzajb7cZxQBhMs8xqZxQYZcuyXllZ2drYLMtSyhpRx1GjLOooTMoqd8RpXSFyMg/Y9IyNZpJ6h+LhcNhoJM1ms9VqXb58eTgcllkupez3h0VRARBvsk8IIAULxqH1wCgAABhCkREw4BwYRMIZq6pqVBRhGFIqpJKU8JTFqrCcc6UM50FZVYSQsqg9+kAJ5Txw86g9RBScxnG0tLJsjAGwTPD93uF+77DVakVR5IgZZ8NaFmEYI2Ke50rr4XhYVOX66loYhj7P3DnHeYBoELmU2kMbjIUrK6udpeZgMJhMJouTfzweE0KSJKFIptOpUoZzbiV6qAUtnXOW0Tln6IyU5+W/w+Gw1WwC58YYToVzrn889CQwSjkhaIyz1nkKp5G1h4EWCJRzKK0JgoBSQEeMMeQ7k5tByxqsCbiQTi3Aa63BaW2tduAVwwJBMMoJaLClA0mIqlhc5LWUyf/17/8Pj176yItfe/XWu+8LB4VUGkyjkWhdB4kANR0PRlJKMCwM41iwIBCytIbxfDrptNonT2we7O1qVYHTYcDKoqJgKDjnyqq2ta5FmFSl5YjMmPWY/IP/8m/84CeeVaM9LgBcH7IDTs2lyy0gS0ZeqrJJEqeA9OcL9c57N2/f23njylt7d26NdvYDGkhlokyK5Y0QwWqtDARxhIgO0IFhXGitkdi6yiaTSRBwXUsA+NM//pPr777XG+/UuV1qb/Aq0kVBiulPPPuhn/zRj2yssOGNLx0f7FbjiakmBwd7qi6N0VvnL22du3zy1Nmd3d18ko/HBVgqFdHaNqKQC9FNoejfRN3baqR/8yef7o35t9648qXnX+oNCxbEZaEsckeZtGgZa7RSRHTEKqWE4HVZKQeEUHCkzMpiUjnn0lbTOnSMVKCLoijKKYsCYkw1rCMqtEFdl6JLCFYiTLSuypKGUaOWNggCZXV/lG+cON9ZPlnUx0HQJPw7LxjGqc5ls9GpKknBgnUENIJylEUiAIA4ClqNJJ+Ox8N+HMcBD7/+wovtdvuJJ57gnJ89e/bnfvEXfuM3fuPNd956+OGHz5w7/fI3vplPs2w4lko2G20DbjQZc0oRMcsyLdXKykpRFAjWOOucQ0Z9YCUjxM4j7ygAQeLA6YWIkKG/FyyCUurw+HBpaeknPv1Tn//850UU6lq22+0f+P5PHRwcfPMbr3ziE5/4rmee7vV6X/jCF5C4n/1rn06bycHBQX+0FwSBhbpSMisn7W6bclLX9YkTJ86eOzUcDo97Rwjk4YcuW2svXHjgypUrJ06cWl5ettYeHR2lafyxj30sCIJer3fj/VvD4QCAXL9+/czZ01sntzrdVhon6+ureV4aqfI8pyJotzqvvPLKY48/RaxTSu3t7fUOe0EQMEobjdQ5p8qqmpbWWkqReSdb5BELHcGDg2NCSBAEACQMY2stIUAJOGccmCAI0iSd5gWjoTSSUC1lFYbxogKx1jrtnVtmsjyv+6nruigKZT+IELx/Pfj5a1mWnCBjTGrjnJNaWSRAmafPz4eyHlymHpz0366U8vImJGjQu/vyOAiNMcvLXcbYwcEBzmQczI++Ztimdc4aZJRzKmUVxhEhhFrjz2REp6XyeQbOoa4roIQqWFpdYm3S7w/zskrTtNnuBBEPpWCLKA8/KgyC0BhjtfHe7UkSlWUN4BjjACVjnjPPKjVz6fZ+IlmWJUly8uTJsizrovZQV57nOA9bq+uCMeaN7aWUSBylKASjgqu6YIyFYeQnYHmWe7ZanERzc0/m52AAUJYVIvqLbVaDoiYUOp2WUZrOfTmSNKrr2qc0FEVljEIEo2QURUrpOAmllFEUxomI02g8HmpTtdvtPM855whcCCdrq7UWIqiVq6oqL6atVrPZTInz7u/oXaGTuFEWtTGm2Wz6sYDTAJQIFkaU+ugDQkhZlu++++6ZM2cuXrxwdHR0cHBACEpZO2f9c5Zl1V7qel42hVkAMWOs2W3GcTyZTDxZwI9ftFbT6dRYn2ATNhrJJM8mk0mSxJTSyWS6sH1xzrXb7bIsjVE3b97kLHDOCREYY7SpraOc88lkDABe4h2GoTEuCKK6rsMw4Czw78sYu1iC1oA12nd62bSgtLbWetvcVpp6sVIURT6MYj6X82wgUEo5YwkiAtJZypBDdIyRu3fvHh4eKqW8SvG3fuu3PvKRj9y5ve2ca7e60yJ3Rc7DAJSaccGMKYqCE+p1VYi4u7u/srLUanX6/b4xigeRKoqvv/TNr3ztq3t7e5/5qU//43/8jz/3uc+99ebr1ikw9V/76z99+eGLrVZjb39HhHEpa0LI1on1wagnBBsO+0mSpGm6ubme5RMp6+3tbULAEVxeWaJUrK4EAY+LolS1Xl5areval0H+QDHGeD2X1tZaOxwcUcqTpDEYDKqqePqZJ5dXWtpUWTYBIHdubzMaMRY0Go1pNqykZYxFSRgEwXCklaYbG5siINN8mqZps5syxtI0Hk3GZVkWRTUaDQeD44sXH4zjmHO2u3tPa4nodnbujUZDyjCO4zD09uVm0O/7hY3oaynlsyOCIEjDFNAywUej8eHhQXO/8eijj7bb3YO9w5Xu2tmzZz/5qe//7X/1v62sLE3zrFK1NpILDyOCUualF7/xz/7ZP9NAP//5zy9m9Q899NDW+sYbb7zRaDQ8ax4RJ5MJoVBVJWMMCNy7d5cQEgS83WkhkKIqlXRlWXvx43BUSGnWN9qPP/GUEGxv76AoivFoikjrsgYgQoi7d+8qpRqNhjHm+PiYUrrcXYrjmDFx8sTK8vLyF77whTu399bX18uyJsjiKF1f3zh16myR5deu3SizPIqi8XjMWOIsEmSj4YQhret6eXn55s2bRaEAgHF4/OlHLjx4EYnZ3b1XyyrLJg9dPndwcDAYDG7fvuPd7j7+8Y/3+8Nr167VdR0EJE3TDcS8KAkh6+urWhVFUUwm2WQyMdpSSqWUlZA6qxjvKmO01nEcV1Xly25PRWy325RSEfITJ048+eSTSikpq29+85v94yEArK6udpfaSZLUdR1FwXRS3L59s6xyb5hsrOp2uz/8Iz/w/AvPP/PMM4SQutL/+bm/yLK80WjNR9QQBMFSawWt8XCMMabTaTntXnv9WzduXv+lv/nzp0+fQiTPftdH/un/9D+Nx+MPf/jRg4ODr371q+12+73r7929e9cY6+P1OOXOmUrrSASUcuecD0CAuTuN1lpLGa4uX7hw4fmvfdWf7TzkcRxnWVEUhZftO0eEIAAgZR0EgnNeVSUhHMD2er1ez546dWp5eXlnZ6fZaDswUksp5e3bt//KX/lwHMf7+/u7hzuHBwda64cffvjUqVPDwfho+9UZDY0ShsgYC5aWfud3fmdtbePixYu3b9/e3t5+5+p7/nbL8zyKA9+3+5EypbMptCeOccGds4hUCGKMIdRJWVHKwzAkjMpae9IZIlBK6lr7Ean3SeSMF0WBWitVA1gkMbVopdJaGqMoo2EQESLAIjhytHPv13/91xHRoQBKe3WdtJqHh4cAZDyeUJ+gZSShtNVqjSZDY0xVZ++/d1BDEYR8ebkrGNXaHvcGZVneuXPnySeeKPKqdzRcWu48dOnhyXSkVOmpLq1WKwmTulaEsKqsAx56mwVEXF1drarqK1/5SlVVP/3TPy2lvHHjhhCkKNT+/t7Jk6d+9tM/+/nP/+EP/dAPb25u3r51tz8YeJH1jApECHHMGM2Y0LKmlE0mkyAIEIkPQkiSpNNpHx8fB5y22l2pqqPBWDAO8xwtzinhfiVUhBDviOqJCQAQx7GXq3NOWcCUqUXAs2LabjdXVpb6vV6r1er1hl//+svA4RtffWt1o3P54iMUaCHldHKU5+XS8nJZ1Ae7B6quj48HVrvdnb1QRIyFMBMtaWthAUT6a6iuy6IujDGUE0Dn0HJOlVLTImc4WFtbI4T4YFhnZum+Zu42Y6wilHHOtZZKKWA2TZpVVTbTxFo7HA6tgddff3N//6DMc7AYpQ3KkHPug9q0ma3GVne51ers7e2VeeU3VBRFnoyp1KxbyPO80UjOnTt39+69PM8JIc6ZMBL+i621zkFRFPJAxgmLEx4EQTbsD6QuyzIQUa2rbnc5TdPxYJgVxfjaNa9Xi6KkJcTMqs/Uk8lk/+jQo9vW+pAPQgip67osS49sRkHoIV2HH/CFvfdrXSsy1yzD3BvOfhAHRwghPuzB3ceqcHNzBs65B5t8+QHWhWEIgNba8Xjs5oYYMw7ynDDIGHFO1HVNqVgAzf4P3u8M7gMTrfXWyc1ms5JDMNaLzX0r4UnEAeczXz8HvV7PWotALNpA0EYjqaqKUH+GmForZU2tlXHOah3MzToWHrj+vwgAnr7KGGu3u3VRFkU1GU/BotbaWSSEhHw2inNgnXNFVWGGXnDqf9m6rhGJ9yWEeay3McZ7Xvkr2+81/3z8O5r1P9bTWIiUUhCP0ddVXXmWkDEGgSIQxtggGzPGwXnS34ybiTMnJR5wUXubS8b9fw6IR2QUD4TPVITZtTQLBly0XrNRw9ztAQCcB4AoAYPGmFLW1FA2j96a8bOB0vl3qUL6cDkvkca5/tQvvzzPjVFZloVJ5Cmc3qGCEBLHMaXUWuNbQU+KvP8L/Po01lAKpazz49p7+Fo7G/zMV4gBAEq4X+RZljFGyrKcZpMwFGEY+utPSmVMDc4Xy2gVzH6II4Qg59xqL311eVWWZRnHMeGMzFEAv3T9t+h5JOOC67Rg7vtdNiOAAyx26+LJzOhdSi92ogP/heish97oIn/b+2JTShtB04tZfaemtfZlgP8kOOfR+78xWvrLFOeGxYu23FrrvZWcnUko6lr5AQYiaiO1s9ZqABFGaRgGVVU54+4/CjyKHQSBJ0UbY6WaWX9QyhCtXwZeNEYZsW4mLfWrLo7jJI59p+kNc4IodM7leV5LmaZpFAdhGDabzTAMj46ODvYOCSErKyudTifPCudcEARLS0srKytBEOzs7B0dHTcaDe8jxDnf2Ngoy/Ktt68EXHi//mazwwUZDodRFCDDdrsdhHxv90BrzZjzvLlaKyhmP9wHVARBsLu72+v15mvYaxE+eIN2bi95/19+sK0QPenYnzwL94A4jp3TSZrCjBSMXoC/urJCCEnTVNXSGDUcj3wALGOs3VrudDoWZsnhg1Hfl1Ked7y8vJzn+dHRURjGXp2mtKaUKaVGoxFjTGvr9WpVVQC4MBRFocsyp5QKwYxRo9HEWuufoZ57nmqtVS3lLCaROucWmahSVv5i8rpeqWu/KfzdnWWZkrLZbFLCj4+P67ouq3wekkkW9D06m1lqH4nmj2KllHfT8h/AJ9iT/wN2s99llFKKaB0QQhGos4ZxLkQ0P4dR1lpr1EoqJSlzANQarCflz/z8L/3ET/zUrZt3Xnzxxbt370ZhUlUFUChKF4azwhgARCCMJoShtiphUU1cXdc8EGEYnjl9rtc7dN4PGr1wRNR1zUIcTTMuImuAEQLWEKu//2Pf3W1EX/mzP0m4azcjRgxnxBhlrSY0IBQQ9M7tu2dOnQk6Kw9//GMPA/nR8Xiwt3Plm9945aWX7+4eRms6jqOtrY0bb/bCMKxLLcKYIKmNLEopBLPWKinzfNpurne73SLLAeDmzRuQ0JWVdTBueLzfjYNf/MWf+uhHHhkd3/zm898wMpeVOtw7vHHt2u7ubhyJZ5750COPPEaAvvrKt7IsG4/H/V7v+Pj48PBwa2Pj1JnTZ86fi5K4VIo4zKdFWdQuaH7v9zy5vLL0wjdef+vdm8UkD5IWWBExFsZp0kiMMcZZxoQDMMY5UAYAiNNaOme01ugg4swqraU1UlltCDhwxlptnAF0RDipSwCrjF5oXwLB/VqSUgaCPf74k1/58p+uLW089aHv3r/9HRbMpQcviZC8/M1vIXqijtVGM+ZXEHqxzqOPPvq3/tbfiqLIOff888+/8sord+/ePXPmDA+DjY2NS5cu/d2/+3d/8//5v2qtX3jhhbfeeNN/rxAijCOrbavVIoT0+31r7dmzZz/+fR/94z/+40G/h5RQSpFRP9WH+T2BiAgzpwiCswEYceCvGD/g9JDdj/7ojyLi5z//+Uac3Lt374UXXoiiyHs8PvnEY+fPnz9z5syfPvcf/+AP/uCjH/vYiZOblx683G63PXFqY2ODMSalFCyglColl5aWHn74YWtcGIbj8bjZbJ44cUJrvbm52el0CCGMkSiKhsNhnuecU38ytFqtc+fOPf7EE1rV7XYbEQPGASAM4/2jw5s3bv3wD/9wEIX3bt/xiMS7777LOW+1mmma+GvLF4pRFHg/Xs8CpowbpUkgfEhPq9Wo69obIztnCGFhGMZRagHv3LoFTFDmut3u4vhljIGxLAh8n+If7cKMgRDCyOy4tnNruEWj4QsPaay1M/2HMUa7hefbIrTJ3924qJxnjYbxygzfiM3iUtvtti8y/cebH0SzO95/I2PMu0ToWaoZ8yeeEALAOjr7XmOMNUbKejldSdN0f7gbRdGFRy90Okt5Y3rrzg1CCENgSRJzzsHRnXv7iAdhELRareXl5YP9ozzPfdahc5UPbJ2d1Fp7faInPflfeDwel2VZTAuvJfRAswVvnu2stZShVBUgWGucQ0cCETClqXM2TVPO+fHxsXWGMlLLyoHotNruPmJ/mqYe0/HPxT9upDafTg6kVkqBtc1m0+PanHMgpN1ur6ysAECv19/Z2ZlMRwBw4uTG8vJyUWTnL5y1YF599ZvaSC1Vp9OhlCtprMVAkCqvtZqZKfvfUSklpfLlYLvdBkdGo5GbuwcGQVCUGWUc0SHCk08+lqbpG2+8cevWLSEEIr1791aShOvrq0WRTSaTPJ+maYqIRVEEcRiGgVK61V5CxH6/r4ySUjZcw9MoLl9+qCzLLMsOdve88kUptbW1JaLZuu90Ot6dY/Fw/HPI62mSROvr62malmWdZ6Wd24EjohA8AFFrFUUp53xnZ0drGwRBGPMgCIy1ZVlq/UEkhTVABQ/dbABCCJGqEiL0w/l8MllbW1tdXT3uDSillCIhjDFiLQGwxipjNGMfmFX5zYaUbG5u1nU9Ho8ZYwA0CNjOzs5zzz0XBMHhcY8gc86zgwNELKZTHoZRFIGBSs4SILe2toQQf+Nv/M2rV69+8c+/FASBsiZqtIfDyf/4P/6TyWTc7Xbv3ds9ceLEuXNn9vZ2NjbX/u3//q+nWX91c+l7P/bd167dLIs6DPkk63OBw+E0iiJCoazyhSH9eDx+5JHL+8N7QRBfe+/6yvJGEIRFVjEqsqxoNptK9RCpYKyulbcSJoSU1aQoSuec1nY0Go1GAwBbFFVRiF7vSKpqf+9wOBwlcYvz0GiM46CqKm1MSDgSu7a2SulaVRdhGCyvdqOYR2kkVa20DAOBCNAgiPjqq6+++uprS92Vt96+UubF6uoqpeT4+DgIuUe9V9aW8zzP81whVUTN7VNAltWiyl9fX7dOZ3nuEdssy55//nnBWs1mEwEee/jy669+69nv/chwOKxUESQNa3WtJCGEE0Fjfuv2vX/0D/8Hy6wfk06n0zgID3b3drfvAUDv4DDkosoLRwHQKqXTNO10WpTrixfPX7hwrtFMLZh33nnn8PAwz0pf6bU7S7UsW63m6TNba2srUlZhGL722hvDwZgQlkTJ3t4eY6yuVBQmlPCyyAbHw0ajoWPLaFiV1auvXPnkJz85GpZra2vg+OHB4L/40R8fDodX3nr39OnTdVWNx+PV1dVm0nz//fellGGc+CwfX2VSSpvNtJgMgwSe+fDTTz75+N7hThSEDz/ywEtff+HEydVOpyuleuihy4i4u7u7t7f31ltvd7vdhy49nGXZaDSZTqfGuCgIEfHdq++MJwMfduwvSDVV6xtrRVGcPn0yiqIwFL51397eBke2NjeNcYKHccQYJ9qYulI79/aNMb1eL45aURQ5tONxrrW+cuXK9vbxhbMnlYS9neNnnnny+rXt8SBTSjFOwiT8zE//mJSld6oNwh/64p9/JRsXs3BVRhuNxsUHH9zf2TXGqXpqrT114syDDzz0wgsvfPYf/uov//Ivf+uNN/v9vjVOGfdvf/d3pkX+/jvv/ukX/sxpDYQgo05LKoRXrQrGhWDSyNhHfnnhNmMAgEh8D7mxtSm1IpxZtJ3lTlVVURIDWm0q52wtc4IMEYUIe8eHB7t7vsq31sq6YEJYa7e3dyilBIm1ttlsVXVRFZWW5ubN20VRbG5u9o/H08kUDOST6s7Ne5PJJE6SoiiE4F47ppTybhvT6dT3aYgYRmI6GHdXVy9fvnzr9o2izJzFhfRsdu8gwHzmTClyQtE6q63PCVRKcYKPP/Ho7Vt3j46OFsiO0vVkoo1RjDGHlnJinBIBASDGaGOU1xgxxqTUxhhrJToSJ6ExLU/SJFTEcWyjKB+N42Q2WldGg3K1tM12g3MK1mkth8M+ACxtdDZWV5RSeZG9+eaVJ554oirN+trp5e7Wld0rWV4xkQ3ffjfLJydPnlheWTm8eUdLSdBn5CpjjJZyOp0qpTY3N2/cvNbv94tpdebi6dX1tS9+8YuUuOGov7S0pGrZbjeeePqJL3zhC88//+UHHrh01DuwSrm5FBEoIZQyp41BbSQigiNCBM4B5zRJ4iiKrHX9QS8vphBGURQWRdHvHXtwsK7rSAR+1ojgfDKV58d5phJjrNYKuVlZ7ThnK1lyEmirOp1GGAZ1XSdJQpD2j4ZOYxwlzthsrL75jVcQCefCaKhyeSCPtNac02ySAQA4RIdlWQcMlDRKaUY/AHQWUJ3WEn3MAuOI3tI39M7s1oKS5vbt21ZbxgQSooxijjFOlFLGagcIten3e9Za42x3uXV0dGSN6bY7jLFQTLR0o9EYgXIRUcrjODLGBFwAEGNcI2l41y9v29JImloa55wQglJujLmvXgKtbZ7nnmjm4Wb/u/iaMhBRnucEGQAcHBxQCmvrS1EUV6VEmIWVd7td31Q0aMNa22w2B6Mh57zV6pRlWVeKECKlDBjXzk4mE2/JqrVW1cwBwFftoQh8DeBd1Bay/QUu5oHpeRgaXaDPykpXG8aYEAIQ/TjHg3TebM4Dmwv0CtAhold8+ym+/wC+ek6SZGVlWQgxGg08fbWWcoGImVmaOSGE+GnHHMQEJDMQNuGJv0mdc8qBc9o5IPOc7qoq/X+OMeaHi81mc2V1qSgK45yHVsMw7PX6SZIQZNNpFsdJUdVVXnY7S+DQH0o+sT3LCp9MNRlO2NweOg6TqpJFUchaG6uttg6dx5elkWVZ+qPGgzuefj6DowGklMbgIkmbCe5BVa8u92Me/11aazBWKQWUUYpSOudcXZfej96nojPGOOeI3kdYhQEPmDDW6blTs7PWaqdxlraH1jnv3Uwpp6yoK2vtfBDuGY6eQWN8S4ZullPi3Axw9IgtJRQBCSGOICrlyYmefxRGwhrwQmn/jW5us0rmqSdmHutd13Ula2M8oYHW930eT2ioqkpr5cW2CwMN3yTHcewN8SgTPAy8bY6z3jpcGWOCKLTWggKcg6FKGmuLKIryvLQW0qRBCDs+Pi6LOgxDSpmUWiu7wIJ9vb2I37HoVylYb8uSZ/Mi3SElhHmrPercbBTnW80ZRjCXZs//fmaObIwhQCilgnOcvzU6d+1DRJ/qiIg+GA2QEcq9nfrMGgVpHAufEOUXjw96gRkX1RlrKQHPUpodPsR/2czl4H5TV0IIZ+w++whnjKKUIwUDTiktZSUES9N0aWmJECyKQqk6z3PBWBAEfnkY55QxvgVzTi0wROvAGEMB+dxvGgB8te97E9+H+xbPYzSdTidtNvyOLmamkcxrGZVSrWbHGWg2m54uwBhrNhpLy11rbVXJoqj8M/FR7X7g4ZyLoiAIeJnneT6llPJmHMfhdAosDB944IE4jsqypIxNJpM8L40xXpOda82QtFotKeXe3t7e3t4iH+/bIWbr3T+8OZt/tvfPEhav3tPr/Mbxid+c8/F4LCg02q1ms0kY9fJtQshkMtPWoLPWktOnTxtjRqPR8fGRN2kdT8fdbtdvKzcPIpNS+hav0Wh4MFdr7W3o67oejUZa61ar4+sxP+4CgCSJFv9Y16UIg3a7W1WFb2H8LpZSpnHiq0proSrKhYTFH1/+SPe7mBHOBJVS1lVljVHSWANMEO+K4JzzSUILYgEnlDHmoUY/lCKceQoCIkHrreo0IvXjw+8IN/vXIaW04IzxNREgUCFEHIeIrq6VUrW/pyiljAnnjFYwPs4ef/q7/9bf/JXbt+595csvvvvuu5wHeTE1RhljkjQgBJ2zxpiqqhKAqNHSWqusds7IujZgiLWHvSMli7W1NX+YKGORstF4ur7eMKDTRjOO2krpOs+NLFoCujF/65WvuXLSCFlVTptpEnDGKArKSqlEyIE4SpGxwO71tAGkgVWSW/Pk40888sCl//yXX3373oEe9jKljclH43EYxlk+BofTovTWK9bafDrJp+NBQOpqEkWRNbrdbpOlJbAuFixo0Y8+demJB9a//sU/LLPedNof9IdKw9FR//BoqBT55A996szZU0eHvTwvsyzz5ND+KHv/+s00TaNGK4wb0yznIkKLRVZSLoQgDsaHo6MzJ9Yv/MJP7uwPXnvj3W+8+sb23kEQxhQah+OBCKO03SEWLRBZG0eUM7aWhTUsCLgxyhoVBSEB55wNGXWI0uq6KtFpLrCUBRKHxFS6asbtotYmL8O4aRG4oEY5ANDSPHTxkWvvXLXKDIej77hger2jOB0igrLGaUMpQaTWOhYQSqmUWkoZhmG73f7Lv/zL995778yZMx96+slXXnnl6tWrS6sr58+fR8S/83f+DiL+7u/+7vra5u7S3nA4ZIyXZZkVuUXgQlBKq6ooiqKqiy9++Yu940Nf1TDGfNCuPyvpfPyP1rjZWekWx4gn/NVS+nH43t7eN7/5zY9//OPPPffcZDJ56KGHDg8Pf/mXf/mRRx753d/93d2d7WeffXZlZe3ihQcJIV/96gtrays/8AOf8jdIs9lGoEppAEA3O8qMMcvLy4xya60QAoCcPn16bW3Nu7T7xBf/ocbj8dmzZ6217U4zCIIHH3xwa3MTALzOwWnjmUD7R4c+Z/i111575513/MkTpymga7RbT3zoqf39/TfeeONTf/WHdnZ27t69bcAlzYavM7MsW11dLetqOBxaq6WUeT5d31gVQlAkeZ4vLXVqqaWsHn/ySe3s0dHBysqK94lNkiSO49LmbpZ/BoiwKDXtzN6ILk6MxdXsvt3mQiEKSsnMDHM2Mlzca24WYsMXXac/J5VyABAEEaXosWZEbDQSz92J4zjLstlnAOsrBMYYseANnXCeYmrnsYQ+GUJbI+vaf0IDToQBAOzt7Y3N6KGHtraWtrKsePvtt3v9w40SGQCbTnNvZjcdT/wv2Tvqnzx5stPpVFU1Hk/xPm8swWPKeMRFlk18HeCvZ2PM7u4umFlCJVjnydjWWocghPCZy15iQwgpZck4ybKMMaq1HgwG7Xa7KEqk2Ov1EPHypYestT7uABGHx/26qDihygEy5p+1NYBgEGiuc+IIAAgeZllWFCUXlHI+mUx8TU8IaSapi11elVk2iaJgmo23t+8kSdxI02azqVTdbnfLot7b3a4rc+bkmeODYVVlLAgRgTFWVfXu7r6PciaEyFqTmT86c86dO3+m3+9T1vDIhZLqyttvnjp1auvEhtI153w6nabp+uHR/lHvgDHGBRUBM6oOIxbH3TzPj4+Pzp+/uLKysr+/7yt+pZTPHRoOB3fv3vU+g1JWfhs6xDAJW62Wd0/XOjfGnDt3rtFo3Lt3b2dnxw9kGGfNRss5F4Zhnpd+ZsAY8+Wlc966Ra+tnXr8iUevXLly5a33jDGM0el06gsF38w758CSehaHxdHOWDMiYM5ZzhtKibIsj/tHgYgoZVZ6RyrlHBFCMMaMVP7smN2+TnNBnTRK1YeH+/7enRuTM+/OqZSpRqMPfehD7Xb7C3/25z6Kem1z3Tk3Hk9DLhBn2+zGjRuf/OQnn3322T977j+rqhJCWGU0GsHDb736epJGx8f9z372syurnQsXzn36Mz+2t7P99a+/ePWd1958/Y26Viury5Nx1my34jgeDI9X17q1VsigqmpLLDICxnjfQ3R05+7+wf4xgthaP3V40O90uisr3SAIsixnjFmLRV56nYXW1lmilS3LGkD5gX8ch4eHR86Zs+cuvP76t/b2et1O11rgLEhjkZWDtBETQuqqTpKo02kB2hPN9Uk2sU5aSyfDUaXrJImiKFKqTuKGNVAUZbe7TJAmSUKROueyLJNScRY8/tiTSMnBwV6RV2EQp2Hc6/Wcc4SwIGAMZ05hlZK7u7ve29qBqetqNBkjuulk8swzz/QOe7/6q79qrR2PhzduXW+1GqtrS4PBQHpLe0ccgW535e69HWCm3W5XeQbWTiaT4XAIAHOPeSqEqOsyjsKqKvPp2Kg67YTbO/em+SRtRITA2bOnl5ZaeV7u7+8rZeKEI9HG1sfHR4PBUb/f7/X6jLEwElr5hMywKmezvnxaDAejMIhlrXtHg+FgYq2N43Tn7tHG2hnn3D/4+/9w/2D30qVLn/vc59577/qdO/dULetKH/eGxwf9uvLqB6W17na7URSFYRhyUdXlxQcunDy51ey0b9y+FkaBc+a4fzQYHBuj6lpFUdTvD6MoevTRxxuN1ssvvyyEcBYRMYqiqqooBWOMD6MIopAxJtgHtJTl5eXXX39dKbW2tnblypXNzc12u3V42EPklAaI1gGrla6V94rlBwfH97Z3B4OhF1G22mkjbVVVfvb0uScee7wq9Z1b2+sbKw9dfmBnZ6/XK5rt9NSZk9vbt/YP79S6BHBRlJ7cOHfhwpmXXvpWwCEIIikrpcI7N29NJhOlFCIFq2/cuHHz+jUp9fbd219/6QVjHCACMCCEMf4b//P/DADLKyu+vx0MBqcuPHDu3Lmf/+s/+0/+yT+5ef16kiaAPv2Ptdtta22v1wuCwDnjKULj8dginDixacGVZW4cG02GgrNGq1Fkue+DtDYhCZMkIDGxFrJpEYZhc3Pz3s5dROoc+CwmtMiQhSyMozTLsjvX7hBBq6JWUgciNMYURbW7u5+EUaezxHngUWbnnKenUcqNkf4fZ2CEEMaYra2tnXt30QEhfj7slUro44kIIdYAocRaU5aaEOKc5QEFi1mWPXHpQeecA0ModDvLo/FAK+U0sVZTSjmnjiAicuIBBRMEfHm522w2q6rK83w4HPvYbmuhLiUS5wMwEQNrFTrXbKdFUfjcY0QC1Gmty6Iu63pm2mhdp9M5dWLLI7POwurKWqe9fLA37HbWXv3WW08//aHxpP/8l78KBJZX0ihMD46GURBUFj3AFATBZDxlhD/55JNvvvnmeDL0CWNxK1ha6rz88stxHBNqBoMRY/SBh8+NJsM/+IPfPx4d37tx983XvgWE8igUsTBovEFQVRfKyDiOCRUsDABm3sp+kSilbt68CQBCBErpO7fvWWPSKPYVbTNJ/dsxxmjnaiWNMd6fqixLHgbWgJRV0gyCiDNGIsuKqghpVNdlUU5dgQCwfWdXaxuwRNeEOg6IlBLnnK4sJxwZt9YKxhklPozA1lJrGwRRWdRpkoAFwFk/aYxxOMtUIIQgoWEoKCfGGE59fULCkFlrBQ+DILDaOocEMMuKKi98d0oI0W4my6WcOG0no+kEpkkS3b61rZV0DqqqAg261tZYTkgQRJ1OJ47D23duTqfTsiXnxnPICPW3cxh6eUTlrSH9A/TnsLW63x8iIiHMWos4yxm21nJG4jgGgKycdNpL58+fV7rsHQ+GgwFBxmkQcjHNM1VLX1zyQPjtY5SVUlPCy7JMouiJJ566e/fune3tKIq0sq1mJ47jgNPxeHzv3r2yLBf0VWutqqpFST0vdr2joufiWYJ0AY35peIz2Tz8LTj3ALfffTPUzH0QIWjtjNAB94VoL7i9VVWORiMvp9PWWGstLPw6P4hY8cjIAqe2M8kCSimBGM65cxYcUkCptHMuDCIH3kdPAMB4ODLafySmrLIAjoBRWulZ2EBdqyCIRsN7HvTM85IxrpQhhHgE/z4UjChlrNJ+pME554Ray7QWAOC0s2ADMctiqZTnnkc8YP1+n8zycNx0PJnTUcEY5eOGGGMUiYfAAMAZC/chU9Za9IxUAsaYsq4831CIwFpjtJO1vnfvntZaKSdEkOelRI0WCXWcUGVnwSRVVZWl45wzpEgcAZBgrTbSOTDOeKqg1FJKSglQBtYRoNpoQqgDp+ep63YeB+1RZgBwgBRnUWDGGB+eEbKQMTaLV1JWKUWs85RzVUvPgoe5ASUAGKeDIDh9+iThbDgceADufiKSz5VZELr9qeX5mB5C9Qear2MRUWtNCDIR+i9mjAE4LWeUbcYCv3mZYAA2z3NhvDXwjGpECfdKIDePEROcLcYGc9SYLpjCzhlEBIsA4I3jF/X2oheFRcrT3Nh30ZFaaxEA77f0deB/tYW7Jdw3bEP3QUbQYgtba72kz4sqED1Tx2uDKOfcWbsI5YvjOInaxqqiKABAKbUQQ/i2VhlttTTOIqAB4wgaMH5kgug4581mY3ml6weKjDGlamstDwIeBFJKC+BBRmvBjxP876uVseAopXbOPAUAH8Tq59D+09Z1XVeVPyHb7XbanLF/OOeUzZw6ZpiIdgiwtbXlCxsppWCi2WwOBgNjbRAEW1tbURjv7OwoLReEfc7p2bNntdZ9PGq1WgcHB4PhURiGlpiVlXUAc3CwxwQ/cXIrCi9ev37z4OAAZpY7RARBo90ixFaV9OzCuq6t0r6CnT9D7d+Of3e+Dvdnl39Tymq/5aWUftTkuf9kHg7GGM/zvCzLrZMniqLwpHUP5hJCtFRI3GRStdvt5eXu0lJH1nWv16OcLqZ0C5dYMg8AVLX2yLW/CLzZdxLFSZJEURAEsw8wg3GJ8KeolJJQtNrUZVUWlTFKhAHnvJGkcRj5LoZzrrX1oYKcB27OKTbG+UwwzwFCh3mW13UNjjjnPBGnKAprbRgFAIBA/XVEAZH6iCkWhmGe54wxwYWyxgfYIhAptXOOEFuWJUIBK98RP5wRAI2b+aRT6kN9nVLKY8cAwJhw2gEAINXaTUfTja1H/6u/+9/u7R7fvbNz/ebtrCyY0owxaaQQHImtZVmUM0GA1jrLJ3Ecx3FSFIVPAC6y/K233ggDHsfhYnBrrEXilNFE2zhuSqmqomTOuiq/9MCFbgztTjsgjTt3bo/HI1mVcRjJIkdniWOWOumUiIPrt7cdFYJHBNlk0E8560TB1tr65Ucurz146T+//Nqd/cNGc2NtbavV6hiNVVU3m+04jhljALbTaUtVtdvNleUuomu3W6urq+/cO3j1xa8l1j776Pd0uf3GX/zRlddfYgyBYKHc+zfvtrqrJohYFHdPnMq0K8bT40G/KuVwONw7PBgOh0mrtXHiRCnVjTu3tNbr6+tCiFaz43c0TZHxIB/uW+yvd1d/6ed+9Ae//yNfev5rf/nlr+3uXUtby1EaUWOcpYwGjaSbTw+qqiIdSJLk+PhYa00pgjMIaGXtnGEUZaWOjw+0rDinSCwlRMqaUlorhRAqa1pB4JzRWhJErQ1jlBG+1F679t5VHu6utr7Darl1+8548mIYp0IIi444RwkXQkhbEUIQnRBib2/v3/7bf/vnf/7neZ4rpXZ2dpIk+cQnPrG6uvqZn/2ZkydPvvzyy1/96lfH4/FkMvFOWVVVGacJIdpZN5cxNRoNryz3wUicc5gnblMADzfPZsB67mAOs6uEIQPQi/m9b/P/+I//8PXXX7906dITjz724z/+40oaf2MeHBx87atf7XQ6P/ZjP3by5Ok8z5966unPf/7z9+7tt9vtj330E92OqKoaEQlQQom11lhDCPH+ENbaIAiqSiKidxPy144ngMZJtLq2QgDW1leklAdHR3lW+MqQ8wit084eHR298MILR0dHYZy89NJLd+/e5Zw3munS0mYURSdOnPBHlrX2J3/yJx944IEvfOEL4/FYCHZ0dHT58uVOp7O/vy+EePPKW5RikiRnL5x9+qknrl59e2dnJ04CSkklKwD8mZ/5zNLqWr8//OY3v2mMOTzsPfLIY2fPnj3c27969arPGyAf5I4C4gw0J569PoePF7XxgvEwG5M76/ktMKtRPwgpXQwRzTzkDOeEQkQEsJyH/mWlacw59+p239n5i97OCamEEAfOaO1/QhhHKysrlNLBYCBlRYjQ80QQN4+Rc2ittbWqG52GMebg4KDfH46n4yAI1pprbDwcz8VW1iPifna9s7OzubnpwxN8Qa+U5Jz7sDIpZbPZLIoiz/P7S3CjHWPMasPmUhcAsNrxiCNikiTT6TiOUwCL3NV1rbXys5EoiQ8OjwghRil0kCbJ7du3fddx9tTpKIqctu+9/V6j0+CcWwMEiFKKEkIgILNADIcA4+F0NBlGUZSXtTqeYkCiKDLGBIw75zY2Nh8+ufHGG2/cuHkNAEajgRD80qVLSFxRFO+99950kiMyZ+nNm7esRSFChwjgCDLnTD63vbcWyrLmnDMmtJYrKyveTkSpGhGci5RieT65cvXNRqMhhBAha5GZB8JgMNCack7RGqm139hhFDRbm4ju+vX3y7J0Dp2zQvAsm47HI0LI1atXPZ8lCGkURUo563A4HJ44caKu6yzL8rxM0+bu7i7OjaUYo+12m/rHPskODvacm6U5e6YhpbQoCqkqC/D+++8TCqdOnbp1816eZ0qpKiuBQZomzhnnIAzDTqfld/tkMqlsRRnWspxOJ7MsYzDNVloXJaFgrbFOS2m1toiotZxvrRk1Q6rK00McWs6ZdZqyAImL4kArWykJQIgDzjkYdXBw0O/3G80kSZLJZNJqN5xzni1FKWfMIVKt9euvv/65/++/GwyP40bDL7wkbly4cME5xwPBOCEErr33fpyI99+nZ09vrW+scEHancb2zu5wfBxFycbmSqORRA1WVjnmIFWR5ZlWVmubpnEYiVt372RF1u8PNtbWV7rrvV5/cNwnyO/dfuXhxx79r/8vfz+Kgn/zb/7N0c5BNpoEIm61WoYqQpivj315yjkf9Eebm5t3bt67fWMHDPZ7gzhOlrur1tpmM5VSj0ajVrOztrY2Go2Oegfr6+vT6ciC6S61l5Y6woiiLn2V44wZjcZa26PD4yCIpFTZtLAWZFUr6epa9/ujRrO5v3f83js3T589ubHWcM5JqdM0TJKENygilrIej8dSVgCwuroqAnZ4eEg5K8vyY9/7PR/7vo8/99xzt27c+NznPvfZf/TfXXnzjYLT7e1t55y2hhBGmKGU5kUuwjCMsaoKfzkt2nul1NwXUpVVfvrMiR/+kR/6kz/5IyllkPJsWgwGx7Us4jg8OjpgnFDCy7qilFd1EYTCOXdwcDCdTq3VnAcAJE2S6TQPgqCu5draWpo2G0n6/vvvDwZDKVUSJkYZxoWyyhpy3BsZg0VRPvvsxzzceef2zuf/4I/HItdSMU44D4gDzgNrQTvfCkKeZ4eHB3EcSyk3Nzev3bxxfHxMCLRajbX11b29nUG/HvSPorBBkO3tHnS73fFoWlVVmjStAc8B8S1fEDBCoqqqkID3uXMW8yzzO7Esy9Eou3Hj1r17u2VZJkkjDGNrkCAdDkZRkpb9gdYqTkJEvH7ttjFWiKjTFv1+fzwq6a774R/+wU432T/YbjbbRmeTyeTihYfu3L0+GB460GlDNFvJq6+/OhhNz5xtRFGARF+7+e50WLXagWBJVdWc0+l0PJ1OPeHCGqWUKrIpoYAOfvzHflQb1+0uj8djni5fv/7+z3z6M5/4/o/9i3/xL15//VtnzpybTqeTLPvbf/tX7t279x//9M/G43EYRwCWUnTOINIwFEtLS8aY8XjMBPX0mUpVQogoCQGsQ6CcCiHCgBpjytKGgnMqELEsa0Joo9Ua9Uc+V+3ixYt37tzxvUrAQSnV7w329w+jKEiShFhiLVDHiKWCcmMMo9xK6wAqpzDS3W53PB7768nPUD3pQ98Xwexbo+eee67Ip0ZrLoQ1KhDCzWPHAMDPhxmf6Yj9j0rTZqvVOn/+/G/+5v/6J3/yn668+RZFkk3Hi7mxMc4Rx4AJxqMoarVjQkgYCTZvyYQQvV7Pg4MetEqbSRBwSrnHmPb394M4iEVCiCvyXFlHAf1A2/sTMCaMMSzgVaUPDo6EYEvd9urKSlXKr37lRUrYeJz1D/aX/+on0ybvLEdpKx0MRr3BMAgCo8pARM1m2//A9bUNrfU/+6f/9//67/1Xb7zxxubW1srKyvHxca/XI4SdOXOmltnR0cGTTz4ZivDtK+8cHfc2NtYR4eiop6RB6vJ8HIYhYeixG4daqTJNU+3FT8ZZa6XUPlcaEeM4MdpZQ+rKIRBPJw2CwPtmAADhjBBiy2x5bbnVbWVlVlWVd+AFsIThaDJcW1tJoiZMrJQyDIW1YC3s7u7WpQbDtHJgSBhyJW0QoTFgjAWHOBfnOoeUYVVJRgIgmiJxFGStnHNk7s7oERB/nSE6i8A554HQWgI6awARuaDgSFmWBLGRNjn19XxwPMsZdsgoA6a1lLrmyBkjhPgATJVPe57AQhx4s1REKMsS+gAGqjQaj3Il5dhOnHNBEHhmpxBhEIRgrCyrBU3P2+r5xxgE3DnMsiIIgjzPKUVbKSG04CGlVGuL6EIR1nXR7/dPntp6/72bWZZHQUxCptHu7e35Br7Tafld4/06yrKmQBEIRRwOh2VZthoNC+BZb0dHR8009fWox3kHg4E3i0Bn70f0OOc+DtRDk4hIKBrtcJ6mwpxHSQxDQikFRL9/CSG+Mtda+0C22R2EXunsQ+e+zUyAEFIU+SSbAlg/fHLO4X1iRs/08af0LFBhTiGRUio1nGZEBBiGoaeNurmI2/8uKysrhGJZVDhDx2gURVwwmPcG1trDo4PdXUMpF6KcTqdxnChlCLKABXleUkqdNVprVXsyNSGEUEA24yVV1trSlIwJX5eqql7Q/bS1Qog0TdvttggDpUxRFM77Ty8UlxaNcYxRxqivCpgFD5V6ie6C/AvG6ZmbEAEATpmX3IJ1hJCVlRUhxP7uLkFa14ZSkiSJVdZaC6gRKQVnCVBKnKO+n5HGB50bhgQYWRAn4yBUSlkkdO516JFxN6eZz2Fc4wlBi3/lwSnPFgevg5FWSpnnuVHWOUe9xQQgRYIElVJ1VSEiD4RfG4RRpWoAQEallITMoRljzOx3n6FgzjkvQ/EvfYaXJYkQwlilta5K6f9rSimkZJ4STxibGb9acHaWhkkcgif1Tqfjoho3Go0gCIQIEZESbrXOrF0AiNrZ2YJHtOisB8xmDweAzHheWlsAiYx6xGAOMVsP/mo9m/8553z6H6UUkRjjjNLSOmfmaD6jjHHGmEMftAZWm4UdgbWWOOfbNP9k/M71lvoLnuZimss5N3MbIk/sklI6Y62b5QGSuVU6mZmk18bMel0AL9pgvr/WWnMeck7bnaYfrhRFQQgxxlHKfXr24qf5+BBt5++RMGWUNTN38rIsrbVBKIAw35b7Tz4cDr0fjrPWGOMjGeu6Vlr7yYH//HXtCCFpktR17cu5LMsYY5wzf/xOJxMTx5PJZMa0NTOvG+fc3t6e1rrZbJ48dcpzFSfj4ujoIAzF448/+s67b/f6R2tra3k+JTNswQFFz4yu63JvbyeOvRxKeEjXOUc4s0Yjm1noOKP9k5+dS5RQgkiYA+MAvXDag8J+1/tFvljqVVUho55M1ul0cO406pw7PuoxTvwOlVKGUcA5D0TQ6XSMM4QQrbXRzp/zWuuqqtrtNgEcDsdVVU2n0yAIkFAhRLvZSpJkaWnJA2f+wRo7i2Fst5v+HpFSBiJdzDak1M1m2mw2jTEeNJFSE8AF4AIAdJ6NSCmllGttlSqNMQu1ir8p/I4WVFiiAcBZtNYyRF+PMcYImZn++5PW1LMbBO2Mu621llIy+p3Zzd6vGRGddp43jQCcMYrUaOWJ9p7jzJgghCCybJpREv/CL/7KJFO7O9tSqrW1TWNgOOwTQpQuwohJWRFCVFVOpzkiZpNJ0k4FpUm7QwBGx0d1mSHYMKBHR/tRFJ05c0ZrXdeFdY6x0FoZkbTKK4I0JKwaDb/7sYd+/qc+9cCJdhITsOVTH3o4L6vltRMH2/emw1E7TVShXn3ztVffem33aI/FMROR4DFD5rRKGDkOxc7B/oXLj6yfv/hzv/jXeLMzDppHR0eCR0tLK+trm2EYFIX84he/eHR0UJb9p5956vTprVpWqiqllEoNdq6/enDzTTMZPXtxabm9dgeVoGTnYH9UVcOizrTN83Fd15yS//Bnzz144XxHsOF4enTcu3v3rnFuY2NjY2PDGFPpWhdyOBxO83xzfd3f4O1mixrBOTXOUtTlaG87O+4ur/z1n/jodz/9wFtXb1y7ufP+jXtKWxY0GY2wNAIFMBfwyHMgtPXW8EZQHkWiqiprpFQFOhWEzBhDHGRZtrrWQOviMJwWJhtPAhE1momyhjhLHKGcWQdPPvX0zt5OntfwneDmRx55OC+y7d0dAMizmgSBoMzz7u2Mqs92drb/1b/6Vx7p86q18+fPP/zww865dqd59swpzvn+/v7Nmzeff/5555w1hlKapqmfmjjnkiTxR6KcyZ1nh/M8MAPmF8dssgsfgKGzcAtpJHirGZhd1mEYHh8fr66uf+pTn3rwwkXnHGUYiHDhF/Hcc1949dXXHn300TRN253O2uqGVnY6yT//+f9w8uTJdrudJI2VpeUgCFZWVqIoYpT7ibiXR1SV9NUapehFBv4oZpxeunSp1+5637+sKLa2tpI41UYppeIgvHv37uc+97m9vb1ms7l54uTDDz8cxzEXbGlpqdvtNpvNy5cvv//++2fPnnXOnThx4u7du3Ecf/d3f/dTTz316qsv37hxwxcY77//fpJEP/dzPxfH4SNPPNJttV559cxv//ZvF1VujCumw49/7Pv/ix/7kd39wzRN33rrrTt37rTSxqOXH47j+OWvfyOYO2mY+wRGi+qCCm7nxnGLSfCiDoG52MgXsXAfqXnxjtxsMm0W30VmxIuZwgMAEF2axsvLy54h6ks+OuM65P6yY4wQQo3VXh+fNhsbGxuIuLe31+sd+pzwmcXF6go68IuKMDRTGwQBYTAYDPIiz7KCxezUmRPRMGJVOZucGzuz5CcEnQNE2N8/XF1d3dzc3NnZmU6ncRxvbW010o6ed2W9Xs+vfgDinDVyRgHwTbt/ED7/xMPTXixc16UGrZSy1lRFGabx0vJymqayVuPxmM4czXJPJYtEcPPmLURcWVlhIfNcD48zegEjOuoIQWCcorV6Ms3TpDmZjME6oODAKaOdcVmVgyPbd3ceefzh1dXVGzevh2EwGk2bzWR/fx8RsyzrHfUJoYEQVVUR67MFPDvAIiKhQCmjlDkPg84HCB7OVroG4trtNhKdVzpMeNLsLopR58IoCY3WVZ2XVTmzvYmiZrNpZysGKMUsHzkwYSScRa2lvyKTJJlOp36VxHFsbOlDq621k8lkZ2dnMpn41Xnz5k1ENEZ5V0FCSKvVqsuyLEsumDfG8tYWSqksy/xd6xwKQR3Ajeu3dnf2G40UwOR53lpOvWCqKArnbKe7HMfxZDLN8hGhBFBXVQ4Ap89snTp1ajjs93o9rfXm5rq10Ov1AZynSfqyQAiGQI2VnnnhNxLlJORJUeSbm5vLy8vD4XCcTQ1YJE5w7u9v8f9j67+jZT3P+zD07e9Xpu/eTsFpKCQhgCTAAoKgaBISKduqlkzZka4iR/L1TdxW4uvYvikrzro3UWRLtuW4RKRs2ZEdKrJlySJIiiAogABRiXp6231Pn/n6W+8fz8wAWub8wQUe4Ow9881bnuf3/IpkvV6PMco5Y4y2262yLARlQrI0LRFChDBCcBRF4/H4qaeeikIeRnxpaUUrO06me/t3KaWdTmc4HDRbde91f5ATpNPpsN/vTiajrZ3NM/ecxpienPS0KbXnjWbEhReCTSZJFAWEMK2scw6MwLDH7Wbn3D2XTp06c/PqrUDUxoOpUerOzTvr65sHB3vW+ieefHI0Gh0fH3NeZmlKMQ9lqJTCGKlKDctKSvnay2/AqN974pzrdJajKMqybDJJsrTQWp/aaReFOj7ulaW+/M51xki9Ed8Y3pmME+fN1tbW6srylStX9u+eUMoIYUbrLCurUhdFRSnHGGPKdu8e7d49kkGglEKIHB700mmBEIIVRSn1mJRVBVHUQgTOueFwaK31yF44f/H2nVsXL5y7evXyqe3NZDy5evXqnbt3YeXD6MUhHwSRc7bUJcK+qKbaIqhHQxF6Y6vKQslurUZzfhA4JW1sbGRZ5rhvddrWVY1GPS+mg0EPIO/V1XWlVJ6VBjulVJJkxrggiKSUWlnnkPeoLNWpnTNJkh0fHh95n6YZxjQOAmt9s9kWPNBaG+/G4zGgh//wH/5DjHGSJN/+9rfLSWliB3yuMEDNZpMWZZqmskaXVzoYETD6BHXF/v6+cy5JkpXVpTt39rvdfhAEW9vb1trBcDpJUsbYeJrcvrtbFfmpU6dWV1f39vbw3EFpNBoJEUBNX1S5c25zYxsTMhoM1tbWQJGQZRkMgSbj6XSSDQZDIYJareYdRohgTKaTbGVlOcty51Ak68RXoYyzLJuOyhdfePnxT340mWRFdrfZWmk1l7vd7pkzZz704fdfu3YzCuXB8d0wEjvNVlyLN7dWnfFbm/XuyfgTj3/8aG/07LPfpkwGQTydplFYM1orVZ4+ffrTn3riq1/7SpakGxsbzVbnp3/6z3Mme6n61jPfbDbrSZY1m3VjzMHxwV/+r/7q9es3n/ra1z/40MN/+IdPY+zr9bqxSlelczjLsslkIoT4i3/xF/7RP/610WgURZHDSAgGbpbAn9vY2AhCkadJURRbW1snJyfWm06r3Ww2e70BjDaVMlqNnn32WSGEUZDMSxjDWmtGaZ4WRVZeunSps7x0586dfr8vhCCYGmu8RUVWSimtTSeTCQCXCy5PUVTgQvuuRRel3vmyLINAOCf8jP5GyNzEiRDS6XSazeZ4PJ5MJoQi75EQQZIkP/MzP9Pr9X77t3/7zdffghZuMplgjDGZyfw55QghRLDHqN6Iu90uoXVC6c2bN6MounDhQlSL83KIvPEWBUEQR6ELJfakKApjMyE9p5ZQE0YUkyCdZg5T753WinGOPaaUaG0hyfbkMHdeR0HsXXF0dFRVBfJUmQly6Kmv/t6Zc9v3vf+itfr8xfM7O2cw4qPecVVVtVpjeXn15Zdfvnvn8sMPP3z95o3haCSkXF5eXllZsdaenJwURfLii12MPULkpRdfrtVqkgfeW8LwhUvnL9576erVq9CIjsfjJB02Gg3OAy6RtT7PEmMMxQwkt1pXRZE5NIsXrsUtr7FzmFFBUKm1RvNuzSKPvVVKPfbYY+cvXnjqqT/I8gRM6JRSXFDGZt/Lxub6/uEhoWjY6zvnhAgkC7vdviocspZxqbUWTFpbwfjHe0sQEUIwyrz32GOCqPeYUl6WSgihlaaUYjyrDhdYs/feWq+dTlMUOEgSRwQRhJFWFmPXbDYHvcGt7i3kMPTzpVYWeetsTUigOBGGl5eX2+12luosnZZlyQiniKpSEUIo5Rg7zqSzVZ6VeXLIJPPeByLW1sLNboyRjNejGGPcH/UXNSjGmCBk0YzIj7GI43h5OdJa67IyRnnk0nGqlVXKQC1rnR5PxrdumeWVTj1uQPljKoMd1to6Z1qtVpqmiBJknTGGEU4wIoh47/OseOnFly9cuMCZ6Pf7VDA41vr9fqPR2Nzc9t6Px8OqqsC9FNMZN3mBbBLyLrA4638IgqcN9TRsVRFGgAU7hBilxuhFqb2o0a21ZJ64vZh9ztErZK2pNxv1ej1Np/C4GGPGO/hFcD7g+cvP6Wl4LiCFQrfdWVKVBpSNEIYxtdZMpynGfmlpCWOqtZZh4C0yxhDCqlJ1T3paa+et0tpaZ5SN43qWToSQ1nqCaSjlop2I41qapkYb770xCFxEMCZ5XlZVhR1mjAkReG8JoY5SY8BkBnHOGSHOuSzL8rLw3ksudKVmH43wKKxZYfuDLI5jcLmFKSA8h8W0eNZ/vsvHwZTyIBAOeWs1xlgGErwRBWNVqbxXhBCMkbEIjPphZgZRXVB/GqMEBc6p55zzQKZp6oxFbIZaOueodXZOeLdWe4yklJQKUK2CGBa6Fa01pczPtSmweBhiWGIphKpM6fOyLLX3lNKAiTnhlzImAD4DYrIyGnDMbrdbVVW9XpcyAJHf/LEj55zWWkoZggMhQgs6vPe+LEsppXczQjFCCDQMM6Ku1naWKW+9R9a6vCwJweDqDrhhUWRCSiml1hYgZmDpzkc7njLspRDOW2uRd3MXcm+tRuTdMYkQwpOZJwmMauzcqcbNvWLce/j7i/1CEYXZ62wPYrR4qkIIQgiAqvBbFk0smQkCZmcjPCWttXPI+xmuB2C0857PjAjAM0rleS44BToCfBz3HtObrMiEEFIE9D1Iuvc+jANvHSbeWpumCfxGhJxDnjBKGMWEeISss0abolKLRApCCJ6LhZ2xFmHGGMLeWhuEYbPZDIIAHrhzznnjnAN7XHBQEVKC6w7GGMYMjDFKCBQS/X4/z3PvvVEa13CWpVWpQd1y/do1731naWmGC8xQYw6k2jgOi6JoNBrr66vnz9/DBY1rIYSOQrs9Ho/xzPJlxraOwgjI4PB+tLaLL4VzcHTEIEdACFGMtNbWOYbYnBuO53w3ROYtLbIOY+ys9R554suq5GTmuJ2mqfe+VqsVRQEsaa1KrS249ASCAUpCMQ3CEEjQSZLUarVa3BCStVqt4XBotJNBsLoq6/X6ZDIZj8dZmi61O9Cu+vkrSZJpMgFQyTkHnxHWIcDieO63sxj/uFkmpLPOwc1irfUeO+2IR8C6B7i/qhTIEeAos9YqZRgmUkhrbZqnjML8iVMyk8LA37VWg+dnGIZxXB8MBnuHB8STKIq0tlmWW2tZ+L2zAhcWuIBWw8ecz6qFpLioPNiJe4e1Qsk0s4r88I//BEbByy+9Xq/XVWUCGd13332U4ixLD4/2j48PyzIXjE0rVVWVlKHWlermKsuK6QghpIqcMUI5ZcipLMXI1GKZJApIJMZWCFtGKSPcGTPoHl06tfZTP/JDm8viaPcGx6UIaFhvxa3GYNwT9Wg1jgTjSXe4dfpU5lX/xWSSZNzgXpk6bVvNxtipKk+dM6oWPX/92vkHHzp//wf+v7/yv7399tvekeWl1Z/5cz/jPX7ttdd+53d+R2tdlvlHPvrI933f+7M88d6n6VRr7aqMey+MfvXV516vyt7R8fFJrzvN9wf9k/FU1GKSp+1Gw2eVv6V6vaOdleUsy0ajUWd5aXNzE1gLZTqdZqkqK2UNIj6qR3mack4Rct4RpQyl2NnSek9tmU00da3z2+1zpx5LC3fj9vF337j53Teuq1yn3f0qT3nAndJFlmOMHXJY0KAeFUXBCTVOl6rI89x4FxCudeUM4oRjjxnB0/Gg0VmPwhrCDphS3hDKWakMI/7U+fP3XLx47crx91wwFy5c6PX3r1y/BhNma61C2GPq8dyEnVHvfa0WQXO0vb196tQpSulXv/pV51yv17vvfQ8ghL785S+//fbbjbgmpSyKgnHe6XQQJUopISVISYwxaG5VjNG7C3hRTcHWRggRPz/t/Qzfo5hijBElDGPwlbLW1uv127dvTiaT7e3t0WjEGEuS7m/+y3/9rW99Syv11ltvBUFwauf0+9/3gfZSpyyrCxcuNBqNP/qj5771rW9FUXTx/AVVVgihO3fuBIGw1t64cQOgtnvvvVcIgbEnhIBSYUaWRc46E0XRuXP3wOFAKS0qBVOoKAharfZbb739xhtvwnb8kx96uNlsnjl7+syZMzB5hRvw3LlzURTVarU8z1dWVh599NGlpaWlpaV2+8nV1dV33nmn1+stLy8/+eRnPvGJj08mkzfeeP3y5bcP93erqiiKzDkkBF9ZXZqk04uXzl9+5+rdW7e1Ut77V155BRrMBXyMMZazu17PqBWEeG+ds84Z7633MPTFGJMF43gBQ8MyWBSri6/Mz4QOdlG+IoRA9oQx9t4SwjFmWus0m8IYJgzDvCjgL7bbTUIY3IDG6DCOYZ5HKc2y5Pj4eDweL60sc8qUUvV6Hab78HUghI5ODokVUrCsKLBHDC2trKx4YqWcyY/YvAQR8zMRUcqCQMLpnKap96jVanPOjbEgVIFbraqqhdESQkgVJQDWgvG5OazDmBhjTGmO9EEYhuDq7awry4IQ1F5qrW9u1OtNjHGv21dKhUFQFAWUaMQTYyz4eNy+fTsM4qqqgKlkrQK+j/UYVC0I2aqqKCebO9vVnWr71HatFnW73ZOTXihDx6QuK2f8888/TyltNlrOOdEQlNLhcASbpFarZ1lRlqXTziMEalNGicPIe+8dxmTWtMAVixCilBjj8rLA2FuntVbLK40wlEop72EL40aj5pw21hltt7Y2HnrowaIoqkqromw0Gt1ut9TKaFcUOUI4CERRVEpXSqnv//7vb7fb3/jGN+ALEkJg58MwhGoDLtfd3d2F2RkctULMvtPpdHr16lVGCJg7U8KyrMAYa20hw2ox+nDOMcngZjUmjWvh6tpyEIjhcFBWeasdY4xH497xSUUpjaKaMSb0otFoFEW5vr567tyZPF8dT9YopZzwF57/zmQyETwgFLF5IjD8L1AxFvPwrZ3NTqfdH3SbrTgpJoXO2u0mISRJsiRJMcacS4cspTSqxel0UlX4/vvvv3HjxsnRESU8CKRSGiEiZTgfmeg0y2QQEeIIddjboqyiKDrpHjrn+v2CUGeMvnJlqlRZq8cPPPCA82YwmHpC94/29/aOV1ebm1tr83GADGSU58WsaScEY8xoMOqf3Lp+K5aN1dV1QlgYcE3FaDj5Z//4n22d3rp7/ebf/Jt/655z5z73uc9VpY5CXpUV4xRMzShlGOOqUmUJPTDljDebDe/wZJxMk3FVlXleEMKuXb5VFAXGNK5HnEVRFNRr9SytblzdVdqlk/Jov1eW5X33X8KIDoejLK2Ojk6cnSkWwSxStgKEkPe4VmtorZNkBvwB6iqlbLfbg0EfWn2wjzg6OkHIrW+sWmPiMP5X/+pf7e/vX7jnwmg4+Qt/4S9srG9934c+dOXKFULYrKs0JUIojHi9Xk+SCcUMSD3NZmMymXjjhGQLQpDzBk5JyF1kbGY/xzHFmDTqHSnCqqpUZevr7fF4XBST8TiZTMbYo52dHW2qstDWWiFomVdZWjlLh8Oh5AE0cgwzra0UIWdSCIk9zrOx1hVjLBD8n/7TfyqEAFp9a62TZRljHGNcllUcWxlFylqC9XSSQodZVQpj7D2aTpMgCM6fv/DpT3/6qae+kmWZDEJIVUW4qtfrzllKaVXqbnd0/uKl6Xhy9+7ddnspjmNoSwaDEYhwlVJAuYrjuBbV6vX6yvLqA/e/bzqdfvvb31ZKMSaCIBoNE4/oNMlrtRDupCzLCOFShroy9Vqj0cDNZvvmzesYu93dg9/93d9bXm612o3pRCtlRqPB2vpKWJf3XDidJBljLG6sal1pUyXTqtFoxHE8Ht/6j5cv2xQjZLKx+dyf/aHtrXt+5Vd+9eLFi4cH+zs7O0cnxzAB/vhjj7XbS8k0+4M/+O0f/NE/u7K69rWvf7XRqL3/+x68eN+9b7z+Vru99MD743/3u//h8OBobW3j/PkzN65dPj45ZJxhjyjFZZ5rax5/4pP//j/8bv/4WLRaDiNjFEKu1z0WUm5ubVy98g7cwWEYvv/9DwDWjxBqNBpJkt29c/ehDzwchvVvf+s5hDEhbNbzaD2jmWDCmGeMtdtLjPDucQ9jbJSVUlLOPAML11l+ep7nwFlGCMVxjNCsIV8ciYQQj73gAcG2LEvnQF/snMMAcuE5TXImJaHCO0cxU6Z46aWXxuPxay+9QhhvNpuj0SgIAgzpssQzKaQMmaAgXEqm2d7uQbvdbi91BoNRrzeIohqYBxJCuOShDCkjyHqt9DSdcGKjgDvnnddCMu99c2fTWm+MGY+m8JYchORUhcUeUUYJ7nb7eT611gaBFCJYWlkmxGmbelyurS9TxpDne3t3z565BDa4169f39s7ONg/ZIz1eoO/8Tf+RlUVGxsbd+7cAeSFcy5EUJYlAJ3d7vDoqBcEQbvZYoxxTjudztbWWq1W88gWRdEfDNbX1xvNeqtVu379ZlFUyCEpwrNnz7722msyCiklnU4HE3uyP5hMB/XaktLaey+ohT3rirwsSybFuN//iZ/+wqc+9am///d/2TknpDTOMEQbjXqSJEWuyTKr1Vq97nAyHFNKG41Wu9XZ3d0Fx8nCZZhRaxXn3LpZajGixDu8CKhihDjjvHF+lm8mkUfzDtY75xB5V6VOCHEYcYeMMXnqmKAQjagKVZYl49RZm6apUUqImeZXSu49W1paqtVqzjltVRzHK6vL4/F42E+yrCiKAlngdQpnrNIVIcxjQwnhjBlrvUOMce9QwGcYkNVaOzKdpJRSZxHGhBI+r8FmiPMczyXtdrvM8jxMlcIIOWttkWZVpYUIMPbGKOwJISTPSjwzUrOg/2CMDQaTZqetnVdltlCwWWsJgekappSeOnXKWgtUNSkDjNHy8jJANrC5Op1lravRcFRvNkCn796TZgbQw5zKAO6iFuoucNDz3lvk0VxdaOZlN8aYMAomv/CC+h7goYWiHIb3Drl6vb6gh0Drgtks92IBCmCMRTDTZS8QOqDiMsZazfZ4PM7zHGPKuQd2DyRKlaUKw1CIoCyV9Q5jmmUZdRYhFAQBpSIQHGOsOVi4hlWlrLLGKoIZJZx4HPDQORdFNeC+zRjW3gLRW4ogTzNrfZqmWlvGGPFIWwtp8nAL51maZyWlNAgCRgU8gSisMcaQc3matloteAhCCEZFmqbWeIw8o1SKAPAdgpxFMydBqIW0th47QijndOYKbVU9imGsW1apdxQ7ZK3FxFFKEQV3Ag5UX0IopbSaV1Z2JiRnTPD5P1NCCGYUjIAQmTH/vbcYey4ZIiGmxFqL3MKwe0Zp1FpjMKRWymiHgNTDOCg1scNotlQsNFqEYWA2VFoh5AlnsG6B7ww4KRx6CPlKq6IqsyJnKYP17Jyz3jk7WxhFUTrnpJSMMesdIthY5b1386e3uGLgxllYH+CZ14SsKg3fZpqm3ieCCpAmwNaA/4YQUpYVMgicNgmxYMg4w+A4o5zD3bRAteBqgGYNhJKwuRYbZ7baCRaEIuASQ2KNQhprPIvXo4t2D/pcKObhVzNG4EExxgDIoHRWjgKlK89zjBAmhJJ50tRcpj2bIQkBP01BfChCa2srMD6ApegsiqIA3kNRFEVROGfBMLeqKmMUIhSGB4BlL+bH8Fe01loZh/UCYZeBiOPYe6+NofMXDGCEEHmRQoomIzMlskdIBkBA0wAWEoxrtRrkoOZ5XhRFs94AEME5h4lnhGRZBqfKZDxmjEVxHIVxq90cDodAiM7zvNVqOTdFbrK7u7uyutTr9wHir6rK2jFCMGabaaSk5PVmDWM8Ho4WY4zFQA6+oIVaC4D+BZoPg5nF1lscj7CYgfY785WWkhAH4+eiKhF6V8pstWFUcEEXo5RZT8Gl815KORwOtVFCCClEEIRpkodBPCnHWZaFYViv12u1mpQSo1lJDAse4IXxePxe7h74YTYaDUqpVmjBgIbfmGUZIUgIEQQRUO8XAxVjNDRc1lpvvFUW0dk+grJNSkk8skrjuSuOtZ5ghxAiHjnvIBbYe69UKYSo15txHOd5fnJyMpkkxM9EFbPvGgOl4Hu8MKZgV00IjNBm7xAhYOdQwrx1mjGqKks417a6/wMPfeiRx9652vWOZmmllArDMAxihF0cx5j4waAXBIIgBFmICHnsEXImm050nlFKCcFOI8nqZ07vHB/tlUXmrfbISkHyoghDSbClhJd5Ou6fnNla/X/9hT+/uRS/8cq3qulxGGJMyLRU4zRHVC4vr3pjB/3+/u1d49zq5tr9H3jw6vUbeaHzUb/b7Z8M+pShuB5ggp757suIB1e63eL3/+Mfvvoda3wcxOl09Fv/5l9GUXRwcMCYCQK+vr6uTfrd11/knFunAdNgrsjKwmD84pvfycdpGNRHSTop1KDyLqopQjlG1uk4EIxgp9Rht+ec66yura2tYU49JdPpVCtzdNKrimx7c6veahprG+1mXKs5bCzyyJiyVJRSTBz2ROIa0qUtiHEF0u7eneUPXLznB7//46999+1XX8VPP/daPk60ZAzVCXZaaxFIYx1lPM1zbayQIaHcGDdVaSAEZ4IhjZzVquwNT4xxDz/ysTSrilJRjJAUGDPBGEJunOcPPPTQ3p1nv+eC+dYzf5SXr2DsEXKEYO+8tdZZLcNZCk6e56GQeZ4zRpRS3W631+sppUajUb1eL8vy6aefPnXqVLPZ5IQaYx544IGPfvSjCKFvPP11WKtgPY/mgdVYUIIwsggM+v0ibHlmu29nCxk7O5fLIIQIJkopgsiHPvShBx54YDwev/LKKwcHB4yxp5566r6Ll4BQn+d5XqRRFJE4fuSRRx77+CfW1tbW19fzsvjAB75Pa22M+8QnPnH29BmIPAXS28HBXpZld+/ehVi4D33oQ5/97GdhZgPHFHwQhL0UclbIOVcZDcIOuA0l5/Va87VXX//qV55yxlrvxuPx22+8+QOf/1y73YYaAERpzjkoyGGm5Zw7d+7crCzE+NKl+9bWNry3ly5d8t5ev379G09//e7+LiHo6PjAG72+sbayvLq/f7i0tLS5ufnWW2/dvXtXSjkej0GXT+cW9nj+gmoWYAEoXayezZUXNz7cwwh5iCF1c5MN+Id58bD4Rt49shZDOO+9tW7BHoCq2FhlrYyiCExiYdURQuI4NsaUpQOchHNqDDwNj3Fw9uxZGQZg2HtydAw/HBaS9a4qyizLIoqVchWpkPOiIZZXVpJ80h30V8zmLMFZa42JX4h5IWm3KIper7+wd4H7m2AB4iNIzABjJu+9ZJzH1M6ckizcWPg93mGmqpyUhLAgFK6y7XZbSk45G4/Hvd6AUpomGUIoTVNOqNEGor2hS6eEU0KAoYkQgh7MOccoRX6Wv2ytEQHdObW1c2q9vRxbb9IsWVppTafjqipajY6XAeccEnIIoVAilGUuhNAaZgu02WiPB2PGmNFusaOw8wBmIIQ4k957ox0hFOpIhDxhmDEahAJjpLVaX19TSt25c0drDZpEKOyMsY1G7YEH7nvrrXcmk0m72TRGT6dTKSUmfjQaQZI7eFN8+MMf9t4/99xzaZoi5Ly3cSg7nQ7hXil1+vQZY8zu7j4cBFpZ77AyyjlXqy1TikFoORqNsEecs2SaEYKdQ+CXQuav+VWqCCEWWynDKBaMESEYQj6Mg43t1QceuE9rdef2bWMMJazRaJSlOjw8NsYoja5cfTsvkqoqut1up9ORUhLqKUXWaUoEmvskzgtTigk2RlFGhGBLSx1C0dJSezgZIoTa7eZgMEiSrChK5DEhrNGgGCOtq6IgjBNjVZpNa/VIlc2iqKy1UgpCgDlLGCMYc0xIWeYn3ZIS7r0NOMXYImQoxR5Z7xHF3hivtc3S/NVXXuMhWV1d1XpG7UmSiTFLa2srSqnhYOI9VcbCMMkjJMOgVY/qUf1zn/v8c88+/8Yb72BEFxs1y7If+oEfarfb3vvf+Z3fgZQkaz3n0jmD8Ix6gBASPACbhbIso4g755UyMBssC0NJaIxVpfKeOGeNzoIgoJh3i5HVmJEgrNFRP9u709/aWqMUR1FUr9cZkx/84Afv3t1bW1unhH/nOy91Op3BYGCMqdebFJPRaKTV4vzySqnBYAARz5Be4r3HFPhQSVVVJ8c9SulkMIyDECFUr9eTJFVKaW0RJRQhIUSpCmO1lHx9o72yspRlNaUspbTb7WbFNK7JKAogNsdaxwjJc2OMrkyZVQnGuNGo4QB1llq3b8/SeeEArdVq167ePDg4yPOSM7K9vU0pLctKCBGFgbcoyzLvqBCyyKuAx7MTnBDvLSUcKF2jwQhjjKX3HmV5wRjrtOudpaWzZ8/dvn376OjIOZNOM1fZsBFZayglUPcQwo0xCFHGBJS/Sqm1tbUf/dEffeGFFwajUb1ex5gwxur1eqsdd7tdCBCw1krB3nrrra2trY2NreFwCGqgKIpAAXRycuKQjcIa5Cdcv37DGXv9+vWNjS1rLca02VzSWk/GiTKGI0rACF5rSmkYhpNxYrSmlBZlhjwpy7JWDxG2ONNWGV266TBnwlpngiDY39/vdFpC0iVZp0wA9oEIvnTh4tWrV8eD/fvuuy8Ow0bQefWVNwhxb77xxsry1uc///nl5dXnn3/urXeunBwdfOELP/XEE0/s7h/84Of+1K07e6Mk/Wt/7a8dHOwdnxz9wR/8/v/6v/zP99133yce+2RUq//qr/7Dk+Pu8Pj49MXzjUbLWluWeRAIxgSmpNFpjkaDv/t3/26aphs7O61W6+TkyGljrS5V3l7qjAbDjzzy6JUrV/bvHKQ0fRNd3traiON6WZb7+/vTaYqMt9b+4i/+YqPReOabf1QVM4diQvG84amAIXV0dMQ5V0URxLGeB+kuVGMeO7hcZRA458CVD80n+fCj4BJ0zmlTEeQBZ3QOYUq8d5zJIAgg2nQ0GnHOgxkMBHAl+va3X1heXkaEeO+LoqB0JtSQUgIVLggC6w1jrNPpTMYDa/1wOJlOM8FDQsjtO7uNRsM57yl0XGkNx1AVCcmLZJxlBWHMIu+RJ5w5jHjAqeOroXDOBVwoVUopnTej0WgwLJBX/d6AMre5td5sNtdWNzrLbSHpwdGNzmq93ggqZfZ2906OptNJWSTTqqparc5gMLDWNpvtBWJOCN7c3ARwTSnzvve9L03T27f2nDX1WrMsS8YI5QwTJIRIsynCWNkSmqt6I1pdax8cHLxz9Y2q0p1m533v/0AURNPptFYPw1CGEW+0GnHj/tfJG6NhkpUDyUNjlcSBM6aY40plmV964IF77rnnH//jf3TtypX1rY0oDiElCSHEGBlOsju39/Z2D5WqsnSKPPrIxz/qPe0eD+I41tpmSU4YBlPUVhR7go0xeV5qVXiHLLYeOYfIomXlnIN6WiklhLBIIzIzdsBz0a73XsqQMeK9BwvgoqiUUoxxa0wyTaMoCsPQahfHMSj3gyAADy5jFScc7uKrV69OT6bAumfz25ligtDMTXgmpUTIeQ+kNqMd5xR5wqiw1sIQcfGu3lu5euQxolprVaiDZI9gluc5pKJJKRkTFs2mwsaopaWl7Z11Y4wxthZGg8FIWY8xXV1drdVqUa0G1EUhAuOV1Y4T5hzC3itjESKXL1+GPVKv15VSVVUV1nrvu90uIaTVajHGut2uNrbfH0KYIYBNtVoEY6RZQzhXCDrkQAeaFjkCdNu/2wVRNjPt9d7T9/jWYYzBAdDPCc4LQYNxhjMOea0L2AXNiTzQCQB1Dqw5/JzpQykFx4Y5Rdo6cHLDFmOKkGu32+vr67du3RiPx9BjGONm0VWeIKWjKMLBDLkzxgDHA1nvtCuKKpQBZ5CBw6uqwtpjjDElztmqSoUQjJEszYMgqNVqZV4Zo8C8FTB0mDEs/EPwnIsNnwgQJeecVSbP86qqMMOMsSKvsKD1ej2O47IsAQWjlM4OLs4JYYRYY4zTM5t1yhnGXilFBcPEM8zKsqzX671eL0mSZrMZycg5lxdTHgScc8pZFEWEMIxxq9WKZHzt2rWiKJTVVpXee8aoUpUxGgBKhBDGHmOCCGaECcG01kXxbpKb99Z7izw4tGCnDUVQA3jnXFkUThvvMcWEYoIJt372FSPrECXwK6y1xjlrLYQeU4oxIWCuYpz11cyrklJSVaW2ZgEHKKXAM2HBxsUYc8rgycdx7JAzlfHIEkKgUfLzNwBfBKU0TXKMibWmqqqqX2CMOafGO5h2zIA9bBhjfB6X6ucZGM555YHzbhZfdxAEnsxwZ0AM8TyjzHtPKQEcHBBn6BEWW2OGLFSWco4QgoRDP5f6Wq+hREQIUc5gNDcv2BRjTAjOGNOVUmVl6UyBO4OQmADtbVmW1hjnHJ3rX0EJV1WF855Sqo3RVnvvgdDabDZbnfZMS+pwkiRJkjjkrDEeMYQ9wh4RDPc+DJKB4wNJfWEYurkPCWxY72a2QosbX0i+aP6hD4JVASgwFxTs1AhaSCLsgvuM3IwSiBAqiqIsS+RxLaq12x1CMBDw8TyhDrTGzWYT6m1rjKoqbQwmiFLunEvTPIqQKqtSVaWqOOeQGFFVOkky51CSJN6hMIzhqQLq1Ol0ZhngWsM1AeMfQgiwmIuiKvIUWYsYE0JA/qGde5E75yjCBFLfVQlrBjB3QjCco5BLhj1Sylibz05IP7uMglCQeaQYDD4pY1mWSSnBXmYwGDDG4FFAPQZ8MshzQn7mQQS4LUwI4Ogui1kYoFYVRiQMIqO91d4ZS+eKckAqxuOxc0gphbyHFQ7kemOMoO9ODb33XnvvPSQPIeQowg5j6Lthc8359UhbDX0fPA3vpbUGBPWEEEo5bFKKmVHWGc+pcM7NxgH/ycvMAz+NMcYoOAdAik4pxZQgZIytMKPeI04bxthPPvHZJNEAmUEMqccIT0gYSozxdJJB6pepFGfSGuO9DyNpcoMxlpwbqxhi3lpV5EvL7SeeeOLOnTtpmjJKq5mDSiUlL1RqTLG6XP/Lf+lnL5xavvbd543KgkDcvXPrpNc1iAyTnAkZ15vO+SzLTo57XDItyM7pU1G9NU27HhMWSEdJe62DGTbYJlZzTktdaO3vvfdexphTDmIDijJZWW6trrRlwLXW1mouBVA7oyjyDle5FlEDE6+NlmuBdURpd3g0NIRjjEMZ7Gws6zyNCIIZAguiznI7CAJtbKV0WapkMj05Oen3+xtrK0EUt9pLlFMRSOM0IdwbZTGmjKpKOeeQd+PhpF6v1+MYEWKMCaLY9fejWuv7P3L+0x+79Cef/PRXv/H0W9euHfXueqWNykLGoihiLNC6p0qrSq0qx1lYKecxoYQm6ZRLyji2prh65btJMnno4Y9srq0XpSlK6xBVxhNGiUdRs3Px/AOm+h4LJkmSvEwoo84Z7wkm3llHiQPuINR+Dz744MWLF7/0pS9FUbS+vjocjkejERwOQRBcuHDBOff6d9+E43Rvb+/jH//47uHu5WtXF/R/xjmlVEimFJ5NoQhxMyN7tCh4nLWMMWThwEcIz64MhBD2GDNqjL1582a9XgfnNDwzPzj5jd/4jb/zd/4O53xzc/MXfuEX7ty5s7ayfvr0aa313d29g4ODlZUVrTTBuCrKUZ4HQfCRj3ykKDIAi2/cuHH9+vW9vT2t9c7OzunTp1999dX3ve99URRBgzYre7CH61IIcfPqlf/ry1/e3j71yU9+stVqp2k6HowP9o+++tWvXrt2IwgEVOC3bt06ODg4f/48MJDgY8IzgdvEz8fDi5FtvV5fXl7mBE/SJE2nk8lkMBhIKdN02mo1Hn7w+7a2NweDwWAwmE7Hv/d7v/vKK681my0hRL1eD0PZ6XSKoqiqoizNwplN6yrLnNZ2AZZ68sc8TBYtBkDJEKywwHDmOPVMiOY9sGFmrOdFWeucc84ATksox8Qj7ABZ9d4lSeKQB9llkZfABw8C0eks93o9uElhVNloNcFPiTFmjDHOgr4HTkg4o+I4ZpYzTkMhVanrzQbMyKMgmu5OGdhmMT67nODANXNzLu89JRx5ZLQLAznXY2Kt9fHx8WLsbyqFCEQfcIQQYOuEgGZqJntBlAohzpw5U1Z5VI/LshyPh8TQLMsYE1mWcSacc8hiYx0l3DsM2C7BC2UfnT15jyjlM+wOI6MMxpZQ/4EH3795ap0Qj3k1TQvGnTW2vVz3FoeihiwajcbWoFJXUkrklUcuCGJKifeCIKjCbaPR0NpgZBgTxjhrNWMCYx8GofEOYxyGIRReZYUYY1orbx0NxPr6+nQ60SbFxJ8+sxPXQq11r9fL0gLNwFY8mUyeeuop+IaUCqESjeOYSWGtzbOy02mfO3d+b29vMBhcvny5LDRjFDDrsix7vZ6MGCHk2rVr7XZbzPOyy0JB8VeW5d7efhiK7e3t06dPHx0d3rl1WOUGYRRGFCFLCAFbSWsd1GYzIoa1CKEizZxXy8vLeZ6nacIFxcS/+uqrWqu1tTXn/XQ6uX37dhjGSinvcbfbRchXVdHptLy34/H46ChVyimFKLVGl1FYR2iGcXvvKeXOWyFEUWbLq0tSyl7/qFBFEMggFELwdqfxmc/8idFoHMfx0dHJrVu3lNYYE6VKSiln5PBwv9PpLC21u92+UkhrjRzC2AdSKmW0VtZqa72nM4M5xrk11crS0tr6irV2Op0Oh31rLcYB9LS50lHYqNVqjXqrXmtygWF/Li8vY8SyrHK+8hRDMUQZdhbFcXzlypV6venMTO+gKu2cXVtbe+mllz70wUdu3br167/+6zMqgXPGKCEE5yyQEfQGQJz33jMmylIhhFrthpTCGEU981p5gwUMNrxBHmntp5OcUkwoQp5VpcOYnNo5fc8990wm+2+88daDH3jo9OnV4XA8mYxA7xaE9H3vv3Tz5k3sEef84ODAupxQRUngnBMiJIR4j3d3d2dlmRDW2uFwaIzBmCpltE6ccwGX1vhGvWWt290/Oun3CCFgIkmoX1luI2opRYy74aTLOfWYWGsbjdg55z3O8wIjhLGHdDUqmPFWCF6U2fLyshDcEY0ZanZaw14/zwtKuHOo0671ej1rSBjG3rpmo7203C6KQko+GmZpmaVpYbRHiCHEtK7geZrKaG0Ymw02NjY2ptPptBwghIMg4JwzRhjFWuWVyjCx1up6I1xeXt7b29vdu9NqNTqdDvMxNAbW4KqyRjtrfFyr/dW//tdeeeXlZ/7omfe//4E0TbVWQjQ5Z5Tw46OudXo0mlirT5069ZFHP7Jzauvo4PDrX/86tAHe41arBYxmUFMOBoNr164nSVqP62EYX79+HSFSq9XiqF6WZVGURalQyKRkMMdGiAgREPyubZ+1uigKxinFFhPfbi01Gy3OpXaVqTTnoTXWOYSxM85Ggu/sbCnt33nnyh12UIvbv/eHf/hTf+b0Umdlub7y6CNiMikOjoa/9o/+0WOfePynfuoLN25c2929+6nP/InX33x7//B4aWlF/ua/yvOq2eq8c+Xy5vpaEATpsP8P/8GvfeELX1hdXT134WKeFcP+8L4HH+r1Tv7dv/t3nPowjDlDiBFjHKHUWvvWW2888sgjN2/ePD4+pJRi7JvNJpq6T37ssV6vV6ZZI4pbKyvjk15v7ySZpjuntvf2Dqw2jUZzaW3t+vWbX/ziF7e2tn7hF37hi1/8YpokmOAgkrBhMZXGWY/8nd27zhhZiyljmJJKK8ZYVuSUcOffvaTgFpxZysytrwBk5JzjeXQ7nQuBhRDaGuec0iWAg9DEzpTODiGEq1IZXTz68Y//xV/8SwcHB//HP//nt27eDKOoKIooisAFtC7qjDFGuHMoSbJ+b0QwD4MQIeKNJgQRhPK8YIxi5wGwa7ZbWZJCJ8lby9aPrHVwX0S1OCtyKFxqtVqtFknJRBSura/UatHx8XF0kO7t3cXErm+s7uzspGna7Xav3bi6d/uwvU6e+BMfn2OSmFLa6/VqQqhSSy5Wl1cDHq2urxljgKRPKQVb3jAMOcfTadrr9bxH7XZnMhlbaxF2xphOpzUY9IQQXLBev+u91VqfOXNKaz0ajabTNI7rw+H4mW9+a6nT2dnZDgIR1WWn01Q6X99o1+ofLvIqS4qD/ZOqMulJ5b3XxoRhKAKZV/l//Tf+m4ODvTfffHPr9CmCZ/kheZ5iipTSURA764qypBRTIjDG16/chNoRuIxpmgIZ8/SZU61WYzAaLy0tlXlprb32zrWqVM5hbT0nDPaamal0jQgk0OiA3A3/1jkXhmHA6BzvZhxzKAgBHlpwEOr1eplXoDKO4xiETZ1OZzBM0izTWk8mE0JIrdMxxjBMAP5wxkII+AI5gn9ghLg5tR/65Bl6wjmeJfF68h5zCYB4rLW61IUn3uGqyqzxxhRCMCHiKIqyrLDIw4fd2Ng6dWrr6rV3JOOTSaKUIoRNxkkYxFtbW9pUYRB774lHmbLeeeQ9Y1xX4ClBBoMBVKVgSWStdd4Cixn6BABoAM+daXGsxRhrbTG2QgTW+izL4D+Gl/c+yzJMZ8g72Gs4b60zxPMZijp3DyBz2JEgAtCGn7NK/Yy44621/X4f/iL8OcYYUaJU5b2XGHHCHQLaJuOcch6Ceg9k9fA2EELgmLSon8uyTNPUewygJHjaWOOdQxh76qmpbObzej2mgtnKQXCc1hY5LLnwDltgi2httDbOLUgbQrLSVB47xlhVKFWOYAw2A1Mc9t4TDClz8DwJpcw5xzmx1jmnMSZA4ltEBGfT5KDU9Xrdck4ICaQMhCjzXCmVJQkASaVS1towDCnByHiCGQ0Y59y5GRnce08Ist6UVbq1tXbm1A5Y4nvjCF+TUnqMOBMPf/hDL7zwQpYV1uqsnELbAzgpIcQhvxCOQN/FEUcEC8G895VWZVlOppMoimq1KAgicAAjDlfzcDmKiffeaOeNdc4RRDFCwFH0HnMysxuG3QFbA7ytAP9FyCFKGGMYe+sdzLescwBlzlEhBAgj/C34v7CwGaHKKlgtRVFgipVSzps4jgHj895zQb3DUsosy2HI4JyDL4sxRim21tMZ8RcDrEApBW80+I0eY60ra2cNP3w0T7Bz3iLvnUWz9TCPHpq7WnPOm816FM0cGKqqgv4TDjE4x2q1msoKPPefqYxGcxcaSsF1qpj1dMbCczDOIsQQQsh5RiiPIqgnscfQWWCMrdVZlnDO20utZJphjIuiAD02Y4wQFEURUEQ9csjPRjjNZrPZbHrvYeIeBMHSchv+r3POWGsNhO5ywmbYa1VZhJHShnNulaKMNVutqiyTJIFhIUZkIW4AaJVxSim1zvH38MWstWAAWuSVkIwxliQJcl5rbb2DBpAzabSGLyjPCvAY0UrxKAJoG2NSVYpSH0UhxghjZMwfs0i28MUYwzjHGDPOx6PJ7IziBGNqjHUOgZAIYxzI0DlXFEVRZJTiJKnCMNSYzVJwvAf+LDy9er0eRZEQwWQy6fVOMMYQI0Qot2YmMZw15hg7ZxAiC2zCzN0yi6JAiMgoLEultXbeU4YZY86AlTl3zhntZEC9cxjjMIgIxtY5sNqr1WpKqbzMYXvCzAOOfYyxdwhgIzP3JUdzlj2UZAgR5wD7JmWpvJ1A8QYLWzsTBAFk24I+g3MeygC40oA9GWOcdbBQYbfCvwV8BGPG+bu2RYyxLMsYEd5jBxMNhJxFhLggFIvpIKWUEAYynTzP8fzYh8eO8fdmN5N3JTsYY5bnKZmZh+Bao46xRxi1Wh1jjNJOle6hhx/d2j59++ZhGEr4srQ1eVZ674MgyPISY1qLm0pVmGOMlQKhOmM8klpX3lahAAs4r6wZjqfGmKJScb3hMfau1No2GhGlHCOMqPnFv/Az955fu/POq6qa1OqBpBE9CKdJmWdlXikqxXScZHnBpLAUZ3nOBsOkqlTlqBCUy1arQwNhnDXOYSloGCpECKPG2Xa8hBAiHoEHkbVEm4pxrkxFKGaUe+/jqI4xPtg/SZJEK+K9QaSMQraxscYYcwGvvEfOE4Q69RbzNAxrTpWlUSIOV1Y3O52W0dobPRlNT44O4Cg4s3O6Xq+VeXXr1p2NjbWqqpr1GkIIbkBGaJ6X2NkKXrfvUoo31lYwxkEgVpaXJ8W41WoJIR68tPq+e39y96j3H//wm1995vlsqiQ2xXiSpMdpUhpjvDMUc2u9s2QymCKEmq3a6upyUSRpMiIY79693u/3T505d/rs+XZ7U2nkMfPYe8w8Musbp/bvfI8Fw7mQXmqn/UzahQjm3nsuuJ8Lv8qy/NznPnfp0qVXXnnFe7+7u4sQ+vEf//HJZHJwcEApffHFFw/2j4QQ586da7Vav/Xl3+r1oH9nsJUIAcosWqxt5DxYN0BL47zH3hMgWFinlHLOIgpKI08IqdVqMCXKsuxb3/oWHOlQQxJCrt+6+fzzzz/22GPj8biqqnPnztVrzbKqqqpaXl462DtACLVagMNWMD0qigzuPoT9xx/72JkzZ1544YUgCB5//PFWq9Xtdl977TX4auD+giSMIAjW1ta+9rWvff2pr3S73cPD4yiKVlZWnXOd9nIQBH/qT/7JQMpnnnm63+8vCV6r1fr9/oULFzinGCO40J0znDNQUHlvCcFVVQghrHXeO2ttWdrSuiLL4OQJgqB7sLe5uX7f/Zfajfobb76+v7+fZ8X169e3T535mZ/5mW639+ZrbweB6HQ6jz/++Ne//nWlynp9JgKDywvskjnn3jvvrXMIoBgoihbD0UVDqrWCzCowxIcwqnlxC2PjGWcC6C927sgEJ1hZlnmeww2YZWlREI8RjAmllM5bmP1orQlBoCOM6zWl1MrKynA4hDeztLQkpZxMJq1G08yjyOH0kzIgmsX1yIaBM14IkaQTxJxSBjvGGKOMsTiOi6KAKnw46NcbzSAIJpOJn40BEcbUOeQ9hggIyBEGypVkXJNZZjdc1dgj77Exeg6zEoQQl+zUqVNpmmZZ1ug0ZjJMN2tvgiCoSuWcc9rCXlr0/MCcB/bfrHdCM7UkPE0pwTRH1+pBFMmD413vzdracr/fN8ZxzvO0YoQdHnRVUWkL1mnKOSSlJJjoQnlkt7Y2oSYLgvDw8HCsp5xzIbD3ErZ3FAX23ZEPKooC/L45Z1pXztpBr2+9dV7nWZlMs5XlNe99LW4ghPI839vb44x5h2AwBXeVtTaKouFwWM0/tdYG2OWvvvrdRqPRaCBKKWcSIdSo1fI8T3Lw8OLHx8eg8gbzaM65R6ReryOEzp49u76+2m63L168uLV1YzIcZVmBEErTHH6pMRb03fDwF8MQzlmWFoxOZcA5F1qp0XBinbbW7u3t12q1dJpRSq3FjIp77723014+PtlPkgnntN1pdZbahwdHGxtb/f4wS9W4Py3ygnOJEKqqysFv8Y5SFsUxIWQ8GWZZQgUjFE0mo3vuuecD3/f+H/vRn3jnnXeOD09Go9H6+mqWl3mRWmudmQkPrbXYeSgHlVJlVXY6S4JLNJM2R0rBiEZjorVWlGHKPOfUe33PPaeazXg8HnPOgYDmia8qNR4fPfHEE/fff++zzz2jVO4cyrJCStnvj7EnIOueTCZLy23OOefiD7/2jWajTQhxDpVZtr65/YEH3x/F8W/91m/9xhd/fXlzTXBeVtp7ZXQFm5lzCsdiGIaTSYIQsPXBrNDPjxJdlgpgLmstRpQSjhDCyFulRSg54dpVWqn19fVTW6eyab53fFQW6tq16xizN15/azKZ3Lp1ixBy730XizJZXqpjjCkjiCzHdZYkybBfRnFAMJtzXixCToZBo9WE0YVzLgpCWOHYI6sJY+zq9VthJM+cPQXlPkK+KDIhxfJKSwbMeuWRUaZSuioKSyk1xsZxXIvq+khnWY4p1UYZ46yzHqM0zxByRZWfu/C+0g+KMmk2Yyn5/t0DSjhjgTUOI0YpF5xGzUgpMxyMGSfdbnfYz5xDVaU5l946VSpjZjlRiBJsZqaEZVmc9LoXLlzQfunw8FCpSkphjB6NhqPRUAjRajRWltunT59O0zTLx+BPZG2ZTEuAEpaXlw4PD1fX1yiljKP/8B9+9+7d2/ecO/XkD3zma1/72t27d41VRVGsrW40m83hcFgUmXNmMpm+/PLLTz/99OnTp8EebjyeGmPG47FWRko5mU6zLCuKsl5vbm/uBEF0eHjYbCwppcpCaTXBGGNMORUIEWMcwgZcC8q8WF1dXVtfuXnzen8wYoycvWcbeJ316B5rUJ6XzmkqZ+lJlMpBP3FIN5oRpfSkdxyG9YceevjrTz09GoyJR//6X/7+Jz7x8N/923+ls7T2t//Of//yq29HtfCFF154650rYRha5CdpNp4mb7/5VtxeeuoPn84zxRhbXdt86KGH+oPe933/91dF/tRTT12/fnM8nq6tbyDvH3/88ef+6Fv9g93aShsTZ1RVqZxzft9992lt79y5MxqNgC2+tNSmBNVrtWQ6vnz5ys7W5je/+c2NjY1f/IX/6stf/rf3nDujtX755Rd/+gv/2d7d3eeee84YF9fip7/2tUc+9rG31eXJYBA1GkIIQhGkrs1AUwCL5z4bMDoFRhJ0vwwz2I+AIHuPYZy7mGajuSXWbBqMZt6XHqNFXwTscqgVOOfIe4RQHMda66LC33nuhXqt+dNf+AJjbHllxTn32GOPve997/vVX/1VJmhVVXbqKcUAoGCDmBTOEYwx8sQ7zAWlnHBOnDdSyigKrNWtTpti4j2+e2vPO0Iw+cDDD1VV9eqrrxJCEHJVVQQh56LGpDfGdvuH04Tfd999m5tkfavT7R5WKr9+/RqlLAzq03G2trX8p374ybSYDAdDo2291pyOdW0lRspMJsl4PAlktLKyMh5OpmnCOV9fX8vzfPfuG1vbm1KGWuuDg4MsLTDGzkmttZBMKZVlydJSezAYUErX1le11nEch2FcFPrNN98WQlASFLlKJ2lRFMfH3ePjY2MqEVIh6NJy8557ziilGGcra0vb29s3btx4e//u8upqu92WYXDnzi2d6q9+5an9w73l5WVGKGUELoIwlFmWIYQEp0KEeVYqpSQPnEN5rmBhHB6cMEac9d57KXleZnUfaauOu0drK6tF4e65eM/B3YPpJOFMWu8womiOWiKCoeIkFAEDy89jo0utXOXgMsLYAxWx2WxGAZ26aV5mlDJjzGSSeOustVVRQDSHc246nfZ6Pes045wQ0mkvMSJ7vUGepPg9/qrwFc9b2RmGjD3GmMC7gD9G77FSJXN+ymJfwF8zxFJqnJ2hLUD+BTW3tV5bTyiilI7H4+EwVJXJpmNjnBCiqjT26OToOE3TjY0NTmkczLLavfeMsqqqGKGIeMYokDehD4HGBhMOe8dCXujcqoJRTiheiKMBC1haWgK9HpC/ZugAIs45U1YYe8Fm7DY3t3nFc19mjOc8HeCG+HctCOHPnbMIcY/8Qne1eEoIoQU/zc6DXAB/hG8hCASwSxbU0eGwmEso2Iz+6fx0PEHOM8IpZxQb7z32iFJKCBWCK6UKWwVBRIhTahZvxQjnkjtt8ryEo4li4pzzcy0kvBBClGGCqGPIWgNTIu+w8WYO3s2i1cmcQLpA3uFIhGEGYgRjLKX01BnjwLYIGhiEENBCnXOlUkII4ETDM/Eeh2HIJLS7WiuNMXIOTE5iqxVjBGEbCZFlmbY2DiMRSCEEk+L5F55Nk5wQMknHRVEqUxqnCaKIOMaEQx6QAhmArpFaa40uQW0aCR4EATSZjUZDKdVqtZxz3b0T5DzGyBnr9Dxz0gGzwYHnO0GIILLoFxhjHOJGnUEGYYxBrwDEImutQzPTCYSQ1RpWMsYYXBeAqO49mrs5Ke99ICSwooKAwqUMFw3yZNHFzBjKpV6MNsncqBohyAPgGDA3572xDBOPZuHeYDKrlaWCwiQD9FUwb3DOzQx85uRQyJVd+P9QSgEkBVR00YUiIK85hxACtmnIhDIwOdM6tc5aIgSlFBMPjFE/t3sGwNT5GccZ7CYYYwg7hJ3WmnjiPXYOw1viUoQipIRnWaZNpcpKSsn5bCbHGPyAme3m8vIy+DRWVWWMGY1GcHq02g3K8HQ6heF9FITgEazK2YVu3oMXI4SUUh4hLkRRlghjNrOZIQtcFR6OkBIeHXwdiy3DOSeYioAkSdLr9drtdrPR5JyXZQkZPFVVJdOUMcboLFjSGAOaBmjgKUXeWym5EGI6nUIzCJB3ICMRBVCKYASTNuqchyB6POcpe49braazXlVDqGGgiGKMpWlK0GyuMJvZuBk2sUC0oyg6c+YeY9Ri9kkZA0tGqPYxws6967OEMTZzG33OIXRRzUi43jPKMOwYAigVQwipymhrQJW7GNjDJyWEBDKENqcqlVIzaQIsoTRNwyhoNBpSyrKosixb4OaEMPCGcQ5hTJyxSVlYa+NYAkwD415AakBZn2VZnmZw/8LPl1LqEvY7B6hlQZ2GZQxPgFIK8ws249EQhIjxRhcazkOtNTioQBaRnaeSEs6IBdUR9h5ZawH0+E9f8A6VUoyRoiiNMWEcgXLfWiul0B4VRRHX6kqXQVh/7BNPjIZJqZwQTgjGWOQz1O/3sywLZBSEgouoFqOR7oG/DlyCjGDMUJoWxpi2aAspSqttVWLCLl++Vmq1tXN2PB5biykWRa6TaSFJ+qlPPPJ995+Z9O7aahKHxFX21p19i8TD3/fRre1N59zdvb1hMjnp96/fvN1PJ/V6/aTfi/NSGYsRI4yGItCm8h5p54wvvZdUBsZ5R4mrKoSQZNx5kxcgsqHOa4QR0AoB7xyNJteu3WCMuarOpFeu2K9GkyLb2TmNMb7vvktWWVeZiFGvlaOotDqtKscYOToi2AvKVFlMh6MyLwIpa3GtHsXe+kpVSTIpimxldQljxDgpytkJFgWQuaWTPPXem6I8ONpvtxqdZqteiygm6XQSClnkCRfhzkrz//lzP/nxj37oO6+9/fJ3r155553BKEeYb23vSCmxNUhbhvD6zqn1nY16PRpP+gcHR9Z6imk9DJzTB3dvHh8ebJ0+d/Hi+2v1DmGiVIWQstWs7X+vBUPIrGCjlMMonGBMKWGMwIJXSk2n03a7/dBDD73yyivOuSeeeOL06dObm5uvvfb6hz70oW984xvtdvuDD3+YUrqysnLjzo3JjQloPha3m/fWGaznJSJCyHmHMWaCs/fURWDlAUNcMBiY1aLzWwDKJJgWI4QWmFJZlr/5m7/55S9/+Ud+5Ecee+yxt99+e2dnp9FowHZotZvJNLW2J4SoqgK8dp1zCHtCuTFmOBzW6/Uf//Eff/3115988slOp5Pn+Wg0grJ5PB4754TkaZpCINB0Ok3TNAiCJ5988kMf+hAhFKoXox2j9Od+7mc/+tFHd3d3i6o4f+ni+fPnta7eU9jMMufs3E1xcVAs6mfvPQfRDHZKmX5vuLm59fjjn1hd6zz7zLcO9g/zrEiSZH19/QeffLLZXjo4OCAE5Xmxvr7aaNS2tjbW1la++93vtlotcI/QWkNhD5WPcw5RorWOosjN+IgM8N8FjgqnFmOzTBQhmHOz9wu2E3iug+R8wfLEnEfee0JmuHNRFFIKeBtZkaO5Oh9+MqOcMXblypVarSbD6GMf+1i9Xn/66adBSjKZTPb39w8ODtw8rhmmg2Ci5b2VUq6urqZour97cDA5CILANExe5UvBKmMM1Bke/jfLiiiO19fXrHVVVUG1BNx7mD9bpXVVEY8YY9h5VZRIzD4u7AGAm0GeBdWMtdYhTyk/PDwsy1LrSjnlnCOEMsYixoHyA+ZrUNp6gh1Uy94h5zDx2GFIJfLeeY8tMtgT+D78LOPFXr589bU3XlO6uO+Bi03b8h5vbGw+/+2XxsMpdsw5LKnUdkbkbLfbcRz3T7oQxXhMT6DCCIIgjuM0ycsyl3JmRl4ZLUIBHPgsy2DArlSBMKaUSMkZJ97bKIqarU6SpGVZQTVMCCnLoqqqMIzKvGCM1et1hMjx8XGZ5e1221pcliovSyEkIbQoioODg+Xl5c997nNCiL29vd3dXT8j88fnzp1N8uT4+Hhvbw8KTXi8hCKEHWccUoCrqtrd3YdwiTRNd86cHfUH+/uHOzs7eVYaY06fPnP58mVVGWttVVXGWoQ19BsIoYOD4zAM2u0moRwhhwhp1OPBYHByPGKM1aLQaK+q4ubNO3DlE0IGg4GxOgzD9Y21RqMmRKAqW+U3tDbeW875qVMX0jSdTqeSM22qUlXj8QhhLaNQSqFN5ZAPorDf7/+vv/T/Y1SMR6NkmsVx7LwBi3G4UBFCyDrGOeTaFUXBqJhMJpSm3uEgCDCi3lHvIbfHI+Tm0rPSe98f9KAG2tnZqdVqzz777PLa+ng0LZF56cVXbty4cfr09p27gyBgVamGw3Etbm1sbN+9s6eMPn36NKX0eO+EEEoI6ff7CBEo/R966KEf+dEf/ve/+7vgOVOVmlJOiMUYC4KrqnLaGIzn4yYYsTg4DijFnPOyUFmW5XlmSs+5BGu7RceIMTJGVRXigkLnkCTJq6++qrUWERIi7p6Muycv1Ov1er1ljLHW9LsDVVZhKAfD/gc/+BDG3jn16KMfHPT03t7eaDRy3mHiV9dXpAwxxlVVgfcLI7UFaYtS2mms3d69DZX3eDymnHY6TUy8lMv1ei3Lk+XlTpJNCEWUN4+ODhhHWiljzHishBCnT++Mx9PhcMQtIYT0eoMgEHHcrtfjM2dPSSl7yZAxIgPujb/nnnvSpCSE5VmV53m9XmeEKl0eHx+HoewstUajUZHBfeaMKgAQhNsXYzAkMhKD9YGbTCZpmpy6Z/vUqVNAHnTOVlUlJNOmohSvra1m2eT45PDCpbObm5vGqt3d3e3tTcYERtRad+du7n28tb2pVEUIarbqQojnnvujixfPr62tfef5F7Ks6JPh0lI7juMwkoSQosjKsjo4OLp582h5OWo2m9aYZqPlvR+PTrIss94KIVqt1vr6pmCyUW9954VXpBSdTgc6DUKw4AFnHmLiCbFpniCExnqS50VRZpzz1dVlyvx9918QQnAuk2mRTPMbN+6cHPdX16Nms+UdCcM4z/P+sFeVVkhXZdn+/qEqrkwmk2ykMUMYoT/6xqu//Mu/+jf+33/zJ37iJy/e++Abb17++jeeOX3qzHdfeqm1unTr5p2izOL2ErSRQUSdc2EUJOk4S6bd46Of//mff/nll1955bVyOvUraxcuXti9c9s6I6KgKArBiVKqudTs9/vr6+tlWb7yneenm+uf//wPPvvss3t7e2EQpOm0Ede21jee//YL/93/57//8R/7sV/74r/+K3/lr2OMBoPea6++/l/+l3/5vvP3/u3/7m//yq/8g+FxFyEEcv6333kTYee8MdZxTudYDCiPwBODEMIXnRLciFJKTmdkNGjkzPyF5qrJBbsHyqZAcEIIYTMG9HxreIwd9Cdaa0pIo94EKZlOFOX8+rVrv/RLv5Rl2aVLl7797W//6I/+qHPOGhPVQoxxMp4gikyer2xtPfbRx57+xjNKGcaYYNI4DVdMFEnGSRhKQsidO3cQIh/76GM7OzvDwWg6TZMk+fjHP56m6csvvxzV4qLIPPbTdBLGQlte5Fm9HstW/eVXXzk5Gm9srtXq4eSgjxApC726sr3UWX3woQfrcXjzxu3D7oFSSnCZJEWrSassr9cbqyvrN27cGI0mVVVNJkkYRZBYW4trq8tr3uN+1vcWhTKkDBHstzbXYbqulLp6+UqpFKX46PD47NmzlNI0TQf9McY4cWUYxpzJZFQIFnrvB/1ECJKX1QMPXBoMe6+O3rl48eJ0OuY8T6fZ9Ws3K02n06m1lksBuZ3PPPPMytoyqJJr9RhIjnBa5nlOMQsCKQNQaPHZecuotZZRwTllzCLklK4mybTSSutKKZXnqeRBs96otWJjVZFrhAh2GCHskMcI3IOg+lzgv7PAIu1mNDGoF8GhYjEvRwgVRcE555RZZK21hDGl1CJmGWMMWVJlXjnjrZ0CbrIAPhZ46Aw/RWi2zjHCCM8ZVf7d3uA9lm1u/ncXbYwHkMXNTCoIQd5bMCPyHhOPnXO6KOL4LKUchjRCeMbEeDhxGBlji6wY9ofNdjPPSqOd5IFyCnlEKWWUMTEzXwZADd4JY4xxuhjqAPQGfbtH3hrvrIcP5d5jjgw1N3xqwSW065UqARMBaGBeT1NArBbbFjA1QhZWmp4QTOYKPBFI2PUL7OPdR+Rn3FU0D+kSQqD3aKQx9gjNfNthPQD/dIbIOKK1ztICEw89mPdeK4sQQg5Za7Qnggvn3GQ4RXjGvKOMSSkDLqpKV5W21lptLELOGevAi1aCxbZzlmAuRUjZDJp3FmFk4RdB/aZUhecaTJiQwUgGkDtYPsbOYuIdRCPOnXxBW7o4A8EyFUrKaTIuigIjWmnlCSOE8EAKLDCZfcsyEJri6WislJJcQpRIkk1Rhu67777uoP/6m99dX19vNpu1IAojyclyr9vvdwecS0osxjgIQsYxQkgI4RAKQtForoEpWX84iKLIapNlmXMuCKJ6vZ4lKbLOaeO0A6AfI0QxwYwi55FHbj6N8Wh2pAshCJ/ZQDvkMcaEUfiKMSZo1knjxQuQQf+ewD1CCELYuYXeloA/LJrnwjPGnLMzVjV6F/0k87BK7z0hGCEwhUSUkjlW6IwylGFKIRvGMQaIrauqimAWhqF2GsSjlJL54TCbMxGCABIk89S1BQoAnwXA4sX+WrwZMIfBGA8GA4ZnUgAYnsFegK3k0WyLLX6OtRao0Ni/6zJhrLKzYBsKSD1CDvwArdWM0zCSLGGaamMUILAIIUJnWCckVQRBAJFJcH2AF2dVVbVabWtri9JZtKBDIEm24LJtjKGMezxzk1RKA4WIEAIKUY8WzC8GDy0ZT8HubEF4R3PXnTl3zHuH4zDyy8ubm5uUszRNOefIE1VVGM1A/zKvZuM0ZofDIfRlrVZLawXyoO3tTWs3MMbHxydaa+QJJRpjLEQA1CVknLVWitA5RyhSyhDCAhkaY6aTZDqdlqWq1+thGC4tLcFGJoQIJoHMCx9z0SVVVZUkCUgrgOerlCIEMQT8fQzPkHgE39risFoAT5RSKSUhLC3yGd0YTGMQojBbY2TOE68A3RAikJJDdwyvWq1Wr9ettUBRB3ULCCxgJAmfwhoHliBs5k6D5sCWBagIIeK95Uxaa2HsQTnDGMNtC3jNbDCDCfBFKKVlWUoZqPckWy5kLgsqN0IIYszhKI7qNedcWSrnHOFMQsKn01XlhBD1ejzzbKFMWYMQcs5g7Amh8xryjyV3LV5CiMlUOedAi9bqtBqNBpCyB+MR4STAAaHUWl8U9qMf+yBh0c3bu3GtQxlGCHtHgVDZ6w7u3r27srISRVEc16fTqTZVkRfe41oUW2uHg6OiyjHGua4cxZhSa9w0y7OiDIJIVbYqTZEr5EzAZe/o+HOPP/Sf/+SPhD7LpoMAGYf8rcOj7mAcx00iwqJ03larq2vr29trSbLfHfTv3E6SrL20pNU0Lctmsx2GcZmWjLJGuzZMp5k3WjuLFWYcM0aMQQh5hCklxhuEEQtm/CrKqHdeWS0oOTzct1YbY6SLi2lGQx/IaH19m1LurQ1CRgVXKNVFEoWiKDKlFGVMOVvk09u3M2xNHAShkGd3dhhjhFCPUFVVXMoojrUpxpNJWRZCMM6DRf0mhKi0KpTSRpVlWVRV3h30RlNP6OrS8ub6RlFZlOe45idVwYv0/rPr95499ad/4DO/8++/8pWvPn3Sn5jpce68MiZgtFFvbW9v5FpdvXx3Oh03Gg1vEKE4r3JKKaalq9J33hwe7N154H0PN1vLp8+e0boijdb3XDAEz8jvlM4GljCrJmRW8CCE8jx/+eWXn3nmmaeffvpzn/vc5z//+clk8p3vfKfVal27duXq1asIoWajtn948Mab3x1NJ3NAcJaQsdikXnlMCV2oPP+4/zjGGGEEUgzn0IK+Dz8BhDJKKbDpXyCzcABKKZNkAlq3Z5555vDw8Pz581VVWWcQ4kAQNnOnQWA0EzqLYSBzX6OHHnro0UcfBXgdY9xutzudztraGlQ7zlvAT+/evfsbv/Eb4/H4z/yZP/P5z38e7PIh+M17r7XB2J87d+7ee+9FBFVGc84rXS5EaX4eoovmBTN8ikWROZtUOagExHg87nSWP/PZz5w5e8ppPRiMiqLK8/LJJ3/wh3/4R63xveOTl156OUknzWbzM5/99GAw+MTjH5dSQkBfktgsczCVRAiJMHDOIU+8x3FcA3Ek1G8QA7B4sGSu1cAY12o1/K5bmoc7cTKZtNttON+kDJVSSpUzJsTsBkcrK8tLS0txHGtr6rrhvd/Z2UEIXb58udvtAkdkdXV1c3Pz9t07b7/95k//9E97b7/znZcAi7t582ae59CCQX24vr6+ubk5Go2uXHkHVeTg4CDDSVEUWLNms8lqWHljjGFxLQSkXCmVZYVzbmNjizGmdVGv1wkhECuXJBNA1kylGGMIOWOUlBJjr3XFmCjLEg5iSqnziHMGMJC3RmvHBPfeV5X23nMua0EtrANDah8CeU+fPt3vDYQQRZ4v7rwFdm6tpQJ7Y62Bu9B7jz12oJyC3YE9OznuM45lJI/2+8dHfULIwX6/3x1JERnjkGdaz9zTDIj9lM7z3BhHCO73+5xzXWkRiMFggDyBBqYyCKJ4u91uq9Xa2NjIi9R5o7TiAlImXL0er6wu5XlqjMmS0hg7HSfj4aRUFcY4CEQYhrpS3mPnDMbUGPPII4889IGHvvjFLw4H0zzPEQWrEGyt73b7HhGMR4GUd+7cSZJkFq8pA2vtOBnXarU4jtM07XQ6gAKAcKmqqn6/P5lMtNZFUW5srA+HwyJXt2/fhU7GOffIhz8ynSZZllFKEQLMZSYagsXtLPLaa6zG4ySKwqWldl6k00nmLKZEYESM8ZwxzmialFLKnZ3TQDDH2FdVhTlJ09Q5kiR5kifOecYIpRjSLdrt5jQZOmQJwdbpQlV1yRhjXLJaI4ZV7izSTjcb7VrcSJKkLEt4t+CehjG1mFjrw7AuZVivNbMsy/PEE+wrSwPZiJa01t5hxgXGlnESBlFZlgcHmXMG7Pa89/tHh1EUpVnKRlPvsXMIot6996PRZJqMz58//9/81//tqVNnB/3RU0997d577/32t58dj8ej0RWtTZmUcb3hHLLWa+9ffuWll15+sd/vI2t5GG6try0tLV29elVrXakZVg7NdVmqeUusZuonzinFWmulS+8hk8RDM0NmLvVeykgGdWO01grq5qIoCMFRFPFAeO/jIIiiuCxLjBFFzJhiNJwWeaV0boy2BvV6g8O9w1a941G4s7MVx+HR0VEYB6A28B6DKq3IcnB38d5bZU6fPj2eKGu9lMIhixD2RmclWltZaTabQSgYcfv7u+PJSJmqs7QUx/V5s4qgv83To0F/QghtNTuj0YQxsry8LATb2FxzzuVlzpmoqmo6yXVpvSNZVqjKAk5EEBZCAGkgTVNw0/NeQHSSUhqaCrgGYLdGUeC95wGHkVU6zW5cvXH//ffnVZ6mqZQcdJGcU8ZIr9dD2NcaMSbWIx3H8vz5M4EIDw+PNzc3bt64s7zS/ou/+AtvvfP222+//fjjj7/y6ktvvfXW8fHx3du7nMsobGDEsyzr9Xpnz55uNZY9svfff2+tVtvZ2f7ud7974cKFVqu9t7eXFTnGNK43Op3OqVNbSuk8LzutpevXbp7aOXvp0r3Xr19P0xyY7B7h+Q3nCCHeWSEEXMD1en1tbe3wcHd5pVNvhDs722VZHh4edU+Gly9fdxYjhACGQJ5KiawjFy5cmkz7zrkwDOM4HvSmUVCbNPN0UkyG06gRD/rjf/Nbv/2pT/8JY8yNGzcuXbr00EMP3fvApa9+9avYezDCds5RyjglshZlyfib3/hDIVj3+PB//7Vf++Ef/uH/4j//+aeeeuqBDzz45JNPfvGLXxSUSCnbrbpz5vHHf2j/ZO/ZZ5+9cuXKaDQK6/X+oPvNZ75hjCEUeW/TNP3EJz7xP/0P/9PP//zPt9tL7c7yBx9+9Pd+73dfeeWVn/1//Gef/ewPFLkeTsbGuHa7/dgP/ekbN2689urreZGid0OrNA0CYw2az3Wh/Zg1nxQrZQBtmUHSlBhjKGaSE0B1MMaM0EXBsWi34CIHLw74t9DGGO881MveWjNLN5omk51T25PpGFkb1evAO3j00UdffPFFhNAXv/Slfr9fbzbjOKyqymiNKvPEp//E8vKyMc45ZyqwV1KUE+dcq9VAyDOOer2eEGIymVjrn3vuua2t7aLM1zdWWu36v/gXXxoMBlpXVgOy45N0MhyOpeRFkU2S6d7BYTaqGh0Zxdx7v7m13u+NM6V27+4FQe3kZFDpvNWuV8qkaVqZEcHMaC8IbdRbjLHV1fXd3X3vPbDM7ty6WxRFHMdnztxz5fLVPCtGo9Hp02dX19puFjxSSSlHo1FVVZyx5eXltY31qqqEiNrtsN+7CbBXMi2dyZxBSnnBOEVYVYZx3j1JisJqXd3lJ0qZyWQyHs7q46zIS1VpXTWbzXa7PU6mjNJOuw0ozMnJSZIkS0tLtVrde5yOR6YSjFJvtbI2CCKEfFkoIcTa6moUx1meQPzFSfe43xuGEQdOlnMmK/JGq84Yt8b3jnvee4KpcwAqzQBfMvffh+VhkfduZo4MQw5ARgDuhLsVtNUEzZBQ0AhjjOaHPFVKw2wPJpEYY0LnZEyHrdUzuMfbuXcbzN3hLSGE/GwUj/ECOcXz3Of3gNQI/jNjDJrlhxGP7Hs6BFYqRQVHGKdpel/nwrlz544PD1WlrbVBEKjKeuMIZqPRpCiK9fX1c2fvuXr1qnM+DALnKnAbwHOJwAwsJsh5WxQKUGa4IKBi1lpjQhbEOuQRxHxNJpM8z6EVgW2bVilCqCiKQArybq4ahxNAGQ1/wuae2n4em4b8rC9abGo0J5YyxuZjJ+Q9RujdGLdF/TkniTio+Bf10oLLPGfEeOccRhQ56MuMcw4TD9RjhBBj4IdrAMad92YE6PBARVyg8/AoKKVCCG28994qDX8FxIjWWjA3QJ4gP4+vnD9zgJyKoqCUwXMOwzDPATNy1trKKMYYZtgZw6SAIkTP3W9h8MwYw5QKzgFwJBTBz6m0KqtcaRKGMogjIaixCj4UoHhnz549OjoqihJQpywvGWNvvvX6mXvu+chHHrly5UoQiFRPa1FdGdvtnYQyNAaObh8Jab0tyoxSyqVsNto7O1tCSsjCgv2eTjPk8OryyuHh4cHensksfE1zfJh6axerGs9JSYv7whOstXbOIIIJIUIITAml2C02DvHIz3Ao2COLZ2uMAWIxLCczc3GlBL2775yzjFFr0Xwagd4LzsJPo2Q2bqmqElYjQigIQkqBVGvmFrrwYxGllDEBkk5YnED9wQiGMYgQOEzIvD0mMExdgALwPr2f5RQtrGAA3oWzpSiKsiyIJ8C6sshzzr23yCHGufcekxlI7Zxzfh6wiTE8ATdPWFo06ov36b2nMzr5jLEVxzHGHgJ4IPoS/jBNU611q9VaXlkpiiJN06qqGvXWeDKE0wNjPx4Pa7UI+KmziYtDCCFnLaXMg9k9ZdbasiwZmx3XCxI3/uOAIJB8GWOUMOyxt95qSzE1WhNC6Fx4DpyMPM8pZ1rrQEa1mOlKTyaT8XjqjIUVIoQQPFBKGW+Ai8MYAZ5KnpfGGCmD8XiSJEktFkEQVJV2Drx0NEKIc261Y5wQTIoiQwhJ2ayqYjQazZsI770Pw3g0Gqh5bBIAyoQQ8OIk8+RGMGEDRAMOLq2d0rng3M71W3AGch6AvgQeEfz5YgTiF1x4751zbD5FoIgSjsBhUsyPYmNMmuZAM4LPBb8daEl+HhS0cJjBiKRJprWGr55zDkR+YwwECTjgW2IchbV2u239LHSRcQ5s/clkAoaE8Oa108AHhEVeGW29W8iS56cEhp0CU0NrNQ8kwN90buFqDJsvdeM9tVY3m0u1Wm0ymXiCJZlxwBkhQSAppTIUxqgojNH3em1urZ89/+B4PE6LlHO+tLSUZdk0SUDMIYOAMUYYr0q7RNtnTl8YjRNtECUCekOCGSGoVqtNJ2mapvV63XvfbNVPnTrVPT6cTiaM0TwvMfYW8jycK4oCYSxEQDnTytbrdaWMVZo4GxBknBsc7997773/xU/+WMOr47s3hVUe+5t3d+/e2fc8QMqUg9FhtxdIPk0n/fFomKaZ1mfOnBn0R8k4WVpdXV/vKKOHo5GzNuKSJnhzdQ2F4nb3UBPiCSEYe2w451oXCCEquNY6zw2QFznnQA3J83xjY6NWa3S7XenJam1VI72y1uKCw5xXVYUtyphzR7TVRlf5eDitNVsBlZXKKML1OGq26gRhZ12hCkyZR9h6XOSF99ZYHcWiciZwIsRYEF4WRRCGaVmNx+Nub4AQ8gQb45GrBHOvvHl5e2ODiNCoaqVV10keRZEucp2XLAibMvpLP/djn//Mx19+5fU3L1+/cWdvMJxoh4hOrr7xcjfNEExulPOYGYMYl9pVXGAmGKFsd3dw++a1IKrff//9jz76aMQ2vueCIQwzxryzsFC9t5RSSt+tZMBn7F/8i3/R6/UQQjdu3Lh27dqXv/zlu3fvPvzwh5599tmiKHZ3d+/cuh3HsZ1vo4VHMLBF8bzlgR3vvLfGoHk5sdgvAER47+EP3HwsZ61dMGrJe9RUiyvAGGON3dra/shHPvKlL31pMpk0mzP7hbIsnTEIEc45TKYXd66fj8k556rSc28DvGjN0JzkC5eXUioMwxdffPHWrVsLfZjDCCHPCdHaUUqtNmVZWmsoZ865sBZnWRaEQZGVGGNKQUsxUzXZeST4u7cGxlAxWqU551lZdFpLn/nMk9sbm2WhOMWqMmma//Cf+pHPf/7znPPCqt///d9/8fkXgiD4whe+cOHChePjY+fc8fEx57zf76dp6rwp8opzHtUb4DpACGFM4HnusZSCcwOOeWBjBc8WSjJA2/3cxkdKXqvV1tbW0jTt9QZCiDAMh0PwQphRcq3VCLlTp06fO3fu4OBgmibD4RBjv76+DqXsQw899Pzzzxd5ubKy8uf+3J/b3Nz83//pP+n1evDYX3vtFSDReo8btTo8kKWlpTzPd3Z2rLX9fv+4e2ISG8aBXOJnzpwJVY1znhPwvjKMzQykqUdoZXUJeSIEg0mylIJS5n2BEMIaU0rKsiQEGaM6nU6n04G4DGOMc+a91yF0aHBjVUUuQyzEbMa4urreaNScc6UqT7onWpvt7e0zZ85IKTllYNprjAGChvcOYxJFIfzYsqyMrwjC3iP4FYQQ5AlyHmHMObeWIueKRKXTQkhuvbPWhmGsK+MdlYxbaxlDxhjG+WAwmBK64BBBdLIIZk5S3nkpZZqmDjOEvFIqDKVSam//LgxzkHNRFEVRCL2lEGI4VMNhH2MEs3RMeT2WxhirrSbGOeScdQ4FQaSUunt3b2trZzyeIkQxpqpUPsBcCIzxYDC4u7trtccEMUaMcV4hTNHly1cpRZSyVqv1gfd/IE3Tfr+fjCdJkjAp4BZ382ThRqM+Go2QJ1EsjTHjsqSIjkaj559/Xko5HI5gyWoD1g0YYUcpsdY6SzDGzqIizUB+pZRyyGKM6/Wm1lppq6qCMUYpM8bWGzIIZFEUcC9WVcWYCMO41Wq+733v6x51B/2RNtXh0S6MQYTgRWEw8SKU4JujraEIdzoryTQ7c2bl8KA7Go0YYQghrfU0TcpCSSnjKJqNs7TLsrzfu1mv1x04DVkXBLWVrZXBYKC1BodN5xzGyFmktdETbewsXtMY5ZwrVDUcTsNQDodjIQSlrFartdut6XSstQlkxKi4ePHSm29c1tptbGx+7nOf/+3f/r9feP7bf/Uv/5VPfOLxv//3fvVbf/jNeqvDOeWc946Pz1+69Ff+6l/95je/+fWvfAVGF8DTJ0KgWQQZcXjW6BqjGCPOGcZEEAg4T5EnyHvogtCCriIo4yRqhGEoq6qyTnNOrfHEEO8xJsToGcWmLAxjgQEzKSowFloZ5zhG5OlvPEcxDoPG8dGAyxBjtLq6wgTjXHS73cFggBGFqyjLsqqqvEcMz/JYtSniOOwst7UprdWEUKVUXhZFUQz7fYTc4eGQCrS5vVyrNaDqNcYEAU2n2cnRsfe4yPX29g54BiGEjo6OjFG3bt/Y3t7a2NpURqnKaG2TJM0zJXiYprn3mBHa6w2k5JRS67TWOkmyslTbax0hhAzD/f1DSgl0dwBANJv17e1tKLsRQpPJpN8fMkxOTk4wxkEcYIyt1ZzJssybzTrGmHHGGHXOXb9+3Tnjvb//vouVSh588AFAQ65euzwcDgkhv//7fzAc9qeTNI7qWnnknTFWyiiIQlDllGVJKALjbM7F6ura0dHxyUkXCmhjDMEMedLr9Q8ODgIR9k9GJyfdbvcbggdhECPP5vcNg2sVsDbrUJ4XS0tLdm4KKWU4Hk+TZMIYqdfrL7/8MudyZWWp1x1euvdcXo2Ho9HG+nZcq12+cuXqtezMmZ3zl04rVTbq9dM79/SOR7f13vB4bDXCAf/+Tz+ZJGkcNe69dP8//z9+o9m2L7/6ymg0UkqVeQ63bygkcs5YjSsn6hEXhHiPEL517cqv//qvr66uNuqtn/6pn/zyl788Hfdv376JPUrT9Ac/+5kPvO/9L7zyPCSDnb3ndK1Wu3nzZnfQr6oykmG330MIDQajf/Vb/2dl9K/8g3/0j//JP/uxn/pZjOntK1e+/H/936124+/9vb9//erVN95442Mf+9jP/dzPBUHwS7/0S3/wH/69DEOMPcZeSj4zYZxzRaEUQ4ssC4yVKinlUsosyzLnF54YUFKQeWKvtRZhREFpayxCyBnrCMYYQCVLqSOcS0ytZdDsWaU9slWlBefr6+tVVY36gyovSoLfeeedXq83Go8Z5y+99NL29jYXFFIpkNVRrf6DT/7A/fff/0/+2T+fjvp/9s//+eNe9+WXX/bI1uKo025WOte6areb4PtsDc6y/Pbtu7VYcE7DMHbebmyuL7K5ljqd9bU1pcrheFRMFaRKhM3g0v3nhv2+MQZjmiSJqmxuqzQtvfdhGKbThAtSa9TbLTlDIpi8e/fuwcHRRz/68b29A8ElxjhNUyGE4JIz8eJ3XppOU6uN5IGuzNHB8WQyIQStrKzs7x/2+/1OpxWGofd4Ok6GwyFlgjGWZfna2hrnPE+SsqgY4+CHQKmkSFpjjw+GlNIobpwcTxljVtE4ajnnRMSNgZwrCn01dv5gdw9RghAqyxKQplarBWysqignaSKEpIJzzKzSVaUrrZxzB/tHjBNr7dJK5/Tp091u3yrnAsSY8N5bPyugW50WxXQwGGltITnMv4fsgGa+rx7qMzqvreFsQQjPWK5zSwfrXb0e1aI4iiLGGESP7u/vO22EEJhg7z0T0s7Fyx5755wxzhuLESUzyAmAKqj4PQb+5Tw6fAGo/acvPG8YFn8yayT8DG9edBRu4VqOsKE0imKlFGQpSxn6wkgpva4sYRhjhsmgO2g2m0ppUCwaYyANDGHrnDVqZuUGSZ6LLCCoOuAnwz7FiDmnKJ3deuCckCQJiHiKoiiKAkjaAEipqpw3YP5dhprz1ln8HqgdcDFrLaPvsq0XOLjKNVxVsOtnOCBC1jnrnffeeUvmRgdgY4fm5PF5xQjKa7YYDKM5D2jxNpAHLwWwiYefhjhn8Fk4Z9ZpIOXBp4ATHsi8xhhGKCEE4QVeiTgmVMzCvWeIp9VAogWoizFWlBkmXkgWBO35R8N5nkH5HQRBFAeAMRmjYPixgAV1NTMZAEEYmj8fYxUhBFNCPJVEgrkhosRabS2seFRUZVE6QISn0wRGenAsj8fjydQ/9vjj2urxeMQYwwhlab7UWmq325PhJIoahJB6vZEkifeGYGqNp9R0u93pdLqyslKr1RBCQOMwxpR53jvuFVlureVkJnzzDltr3XsYKgs2sXvPdvBGzRwnCAZHA0ExooQRYozRs/Tvd79EyTma2x875wibjTQWeuH5ehOcswVmB19HTYhC5bDUweFkfo554KJqU1WlhmNNSgEdkzYVhAqSueQZY4oQ8Q5ozto5Z4yFoRG0XVAtLK6/xdQK5DuL88H7WbPj5qIBhBB8icAYhdqjqioH6tWZu8LMQZIQ4rCFqYO1QqnSOzQzgpth3ODjMZuIaOWBKLeAnhenaKvVcM7oSgnJIWFy0SqnaaqNGY/Hfq6EsNZGUeS9n20N70bDAfGIUtrpdMqg2N3dJwSMKxcOuXTxGQEEx3P6+UIIAktCCIE81spY4szcXwL+bbPZhI4GpkGEsLIskMJQq+P3CCnou8YmzloLpxyEWxLCjo+7MOyJoqiqVDZNqKdzVj5ITC0hZGZ0QwPKZu72nAqrjSorThlGmCDKCOcULFwsrChKCKMCzxOSGONA84KsRZDnwgAJKnwOjsZz30tvAFiB0cLsO+Kch2GIGSWEZNMMAB00D85Sc692g4lzDjMMM0KtdVbk4HCNMSaEW+uVMkqNjTHgDI4QgjIDVgV4eiyGEPODaDYrcs4iRAidjUw8sph4UxkYPKD5R/becz4jFy/aeYRnoiLnEFif47l6ZrEFFk2WELMP673P85QQZowhBAFZ3Fpblrm3VutKO9lZ6SCEhsMhfGvGu1BKKTkh0vtQsNr3vogZJZzISGKBnHNFVeZl5RAWgZRYIOwxIc6i0SR///sf3d45d3e3v77VoUQI6q2ZZVBjjJutOvSVVVU5FzebLex9v9/Ns5QSBA8TwH0uCBwyxlSMsuVOW5UV0gV1ajw4Egz/6c9++s/+2Z+8Z6WeDE+4M5TiCuG9o+PueCxqrVGuiqKiBGXTqTbVyaBfGosYCwRf29wc9vrj0bRm/frO1mA4ttoEXGRZNr2bdTbWAsq91RgR7JzFyFtQOAllDMECqIcSjJs8CsOgLFTUiJrN9s7Ojil0GIbGmzCSMKjgIXVakTCaDPpZniHnBWMUs4BK5plByGHEpeBSWq0LZcuyslgbixFjaZoqo5C3tSqSnGKMWo2AUipFmHX7GNO7d/atRzKIEEKUSutJlhaCk95k+sbly2EUlOVKo9GYJFUYMGNVp9PKk0Ga9pfqzc9++sOf+tSjg2HSG0yyvMqy4ubN273M7O7uHve6lbKl8oRy7xEn3Dk1mUwaraagRFuPTPnK8390uHvjI4/UEPrYf7pgYBRK5yNDj6z31hiFMYfdSojJK2X7wyCIvMfGuF/+5b9fliUh5Jvf/Ma5c+d+/ud//t/+23/7tae+LoQgjGZlAec5dC6qKDHGEBXjFkOYeSn73noJIQR7572vRUm8wIgXbxtWHdyYlNIsy5eW2kEQNBqN55577lvf+tbq6qr3/uLFixhjXSlQIbBFMvN8ou+BUIw9F4xzrpSC2gngHUIxpaysCowIIQQjIkXAKN/eOfXEE09gRm1uKaWFqmpRlKapYBxjHARSWxMEgTaGUGqN5yBbdB4jAhNQiyzwISya/Vuo+ijCFHsmQ60153Jzc1sGgUe2UWuNB/1+b/TEJz/9Z37ipw4PD2u1WpZmd27d+ehHP7q9vb26uqq13tnZTpJka2vz4GB/d3f3/Pnzd+7cCWQUx7GyUGQyhBCyziodBAGTglKqtYfiGe4UiF7A2MtQeOwcslrbMAzrzQZ4GcX1Gpfi6OQ4YOFwPMqLUkiGjCeEUIqJxVEo4jh+5ZVXut3uRz/+sXPnznrvi6K4evWy1vaTn/zkPffc4x16+OGHId78/PnzQog333zz+eefBz8uhBD2CGMKtucAPL755puMscPDw1otHifTMAzrzbjWqAdF5JxL0xSqSjYej0HTYYwJwjAIIqtNUUyLIgO/AucgJI00GnWWEWxxFEUrKyvOueFwCIUIWL/N6TWYMQrGGgghSjEokqC4ByDDGDUYDBx2rXaDEHp8fDyZTB588MH19fXBYHDnzh2tNec0igK4xoJAAnMTY2SxJe9Z9Bh5hxzyRClDCGWUO00kJ8QjrRWjXJcWHrUxCmNaVvl88IKsA7Y80koh5EUgZuvMWjb3RtEOe4sIJ2EYGqvyvCCELC11wDFZa50kSZkV3nulS4htEYJubGzCGk3TRFU5EkzrgjG2vr7SaS8TQr7yla+89uqbnU6LYhF1amVZVkZrnXnvS1VFUa1WiwghvW6XMdRcanaaLc55VVWDweT4uK/UKysrK1rr8XhcFNqPS0SmiKK4FkCZCK2O1opxghCK45hhlud5v9+3lau1alVVQVMBrn/wPI0xjHAYXoVhKKUEWB80FFlWQFnjjPUeKaW99/t7FeOkqopaLQ5C0CTq6TQlmK2tre+c2YHu0RiDiUPYRnEAcXxUUO+9CGStVvPeTyZJVVWvv/5mmmbTcUIICWSEMaaEc+6sMWWhGBVxEItQMCq8m+Z5AdT7S/c/YIwJgmAwGGhfUkYxQtjDANBAQY8QBWyCEFxUBSFCcK8q611JCJEyMMYMBkNvDMPszNlTR0dH3aNukRa/9Mu/kmXFrZu7aZIvLa/s7+8Dmoxn+Yree0+5vHH1epokv/7rv/6lL33pv/sf/4c7d+4IIR5//JNX3nn96OgEmlvtNHyJzrkgFM45TLxHllCEKUHeEUyZ50BvYVK0Oq0oDhDyGHsmKBO0UkWZV1DQp2keRRHCHtjcnPsZbI0Qpcw56xHBiGPMbeUQpeNhglei//av/8Xbt29/58UXjVFRFN1//31Xrlwd9EfDYR8ij5xzVV6QMNTKXnnnKgt5XBOM+0Jp67RgrMqr27d2OWPpZKoLtHlq6cEPfsAhi5BDBGHknBlXpQaWjXcQrl0NBiPnUFEUCDmrfa0pGSP97kmpCoyx1rYodFmY+mq8tLR25/YuTEFA1MY55zz0jhLs+/3jKKq1cbvIEkppvdmciRnL8vBocvvOzSiOCWHNZpNSKgJOnDcWlWV5/vw9eVUWRTYY9FdWVpaXl7WuwlB67G/fvm2dJoRsb2/nee6ce+edd2q15ng8fuP1t06fPXvnzt1utx/HQaPROHPqjPfo+Pg4CCKM6MX77vnwhz/8ta89tbu7i7D75je/Za3udDqwDYui0Nqqykgp6/V4MkmmE8UITZIsmXaN8dZ475MgCIBhhzEFzg74WClVGlUi6/IkbbRbeZ71ekYIlqaJkPTmjbuNZq3eaBljglA2O/VmJx7c7E3Gyfd/6r40TXv9vkqQsdeCmJ8+vfX888+f2j7NcTgY9ifjFHvy/gfe//Zb1779wvNhrdUbDC3yvV5vkkx7vZ4zlnOOrLO6Kq0OpXCqMFYVWHMmMMYUi62dU91u99pgiJz7pf/tf7l69bJz7pFHPvzO22+eHBy++uqrd+/evXXl2qmzZ5AzcRBKKU9Oju+///7hcHjx4sVPfepT/+bf/NuXX3vtjTff/tmf/dl+f/jmm2/+j3/rb0Xt9tLmZp7n991/6Y033kgmU87Fhz/8CEL4rbfefu2112Rc91aXZbm6umq8GQ6HAYdcFANAs7cObqUgCCQXeVlUVaFUiTE2yvJ5RBLGM/3XH2sM3tU7E4ing9uNMebwTIdLKZaSI0SM92WWhbUaxvjZZ5+N47jdbiOEkiRRRnW7XbAhbLUbrXYDE390dKC1juuNT33qU//6//zNs6dOV2UR1ILd3TvT6ZQQtLTUWV1f0aZkwsugOZlMlqIl74f/f7r+M9iy7DoPBNe2x17z7vP50mdlFsqgCt4QQBEgHEGABCmSEkeUMNMSQ9HRGkrD0UwrukOabkotalrB4Q9FB0eUKEJUS02JYtOCpiEQBGEIVyigkGXSVPrMl89de+z282Od+yoZQ70fGVWZz5x3zj57r/WtzxSLJk3TPO9DsFtbJ8qyZIzdvn37ox/+yCd+4OPf/OY3X/jOt0ejEWP9yWSyeXKrruudne3v/d7vdaH80pe+VNVtnsdveMMl78n1a7dUawhhZTEXUjJOLz32+Nvf8eYvfemLt2/fnBzN3/e+973//e///d//w9l0vra2VlWN1pZzKURkjJvP51htANDxeGpt6733Ts+mCy44CbSqmizrVVU1m80o5cY0WutYRpgaF7SQVOpWM8aCD9rqJEms90LEQkqrgxCCU04jZlTrgRBGOJPYOs7n88Vi0dHoiOecOwiU0ljGznqj7dramvehaVoILM9zIaLxeKy1joQA8OVixhizzjZN01RtuaikiCnh3gGlDMDP53Pv/YULQ1zhIYTjmD6PfAfwLnRZKN3EYmmxZ4xCB4yOGboEcBllTdOgzRmW1EmSxELqoJ0LiH3EcUSIw6+yzoYljbqjdVGKgVHWAnq9AeVLvT8L4RE4CYB26dXEe7JczoT8eY4nAAlLR2MhRAiY1xcZYwSP8CW6fv365tYoTdM4S4NFDTo45wTjaKY5GAz2d/cf3n+Q9vIoitq2tVYb44A4hA+OURv8wIIK7Xe7EzCOQwgE+BK994QQZ70jHUF4Mpl0CB3lyIcKISyT38IxPotv8fFf4u+It9pay0inRcV/6qBqZ43pEOfu/ixbqw7gW/ZXiL5RClLKzimOkLA0yWWMEc4E7RSXyKSGpYsFWyLd+BQBQEoaQpCSC8FDCNY7FPe3bY3nHZWoduoM6LRWEBiCO3jlknMmBC7+R8hE1ocgJIvjiAvQ2gKAkMwrywgZ9Iez2SyA44IRGjineZ5aa9sWQhBl2SKK5L0njIAHQkgURTKOEc/SpiWEeOjWD6VACOeRjCLhvTfOitdBmdYorZURnKvWeOIjIUPQSRxvbK0DCa+8/DKhYX1jdXtz68aNW9WijATPsizi0hqv6ibiETDeYfoOvLHj4tB7v7Ky0rbt3u4uBHq0f6RbxRgP1gkhCLDgg3HOLc2IQ2d52bl7BwKEEgDvwQUfSKBCCBFJ55xx1rctgGRSeO89dJwmHPoezyMjIbANJkvWPPoC44KUXAADOAaUwSE6AMQzTuKQYISjDxYH2MfjKACIhNSqi3JpW8WYRfZ6CIRzjopaSqkxzlojeBSl6aJ6XdmD3ED8b7zCJcrsCGHH3fvxv1IKuLpwcWLhpFT7KFhwvFdQ2jmEeGNxQOsZRQoYl6/7Nljrg/PWI5exS3hDYrX3nhAqREdBwEIOABCQzfO8Jh2hdTAYEEKm06m1Nopj9BpyS9dpvD/9Qe6cA/Dj8bgoiiiKhr1+HMf4GkoRYQSrX756x5sPtqjHDiEhBMEEUlmRAIu9Klm6OSOWtxw/d3UC7jNRlFhvcOdfIjSMU0YpD10HbryxeZ6D984G561Sbdu26PTtnJdSYlYkX4ajgrPeuxBwKM5kyh8x9Gy1btu2BQDOpfcep5UAoFsFQLgQ+HthohJZEtnccujive+46ktDUqM1i+MkSZRSdVG6TlkCCOjjltixRpzTWntvkaG//Oau8xkPzGJiBE+X550NwXmHK4EcD2OcA+Qp49mH2nA0QE/TtGmQeU2EABT+Hp9Tx4Yh4JE7347Hh71+gvaPuJLRIAgnzVXV4E9BzjvnHCgRDMMqnQUaC3n82i6faYiiKB/00dYZf3RVFc45AEqIFkIgwW5lZSXKIudNnMgQQpJGnPP5fI5WPc5ZZVyaplmewV/k3jxfzO7uXo2iKIB31nsPmDfonGMCZxXeExonvXe+43sWpXq4e3Dm7CUpEtMU6GIPS3sTJoW1Fpxv23YO00iIc+cuHB7sTY6Omlop1QohPAPvHAGgJHitvG/BKeaNKk01O3jjpTN//a/++F/6kR9UTV0+vKnb2tj2aD596cqrD6fzFsje3p7S5vDwkHMuMAaZ0LLVlLtWq17sB4OV+Xx+eHjoGZkupqPBEARp6xZfQxdsryP3OMMjYFy1RllrXAiBGuOFiHTrvCchBKOcoNJo6LQajPpgOZDJ3oE3lnNeKc05b9v26GhKA8mz3BF64tQWOGiaptU6klI5UjRKGesdKCJa64FJa4kVfRoF3aqjRUPBUBLmVZOmKQm1McZpp5SiXAYqkyx1IQAX1WJOeVwZsz+bkalzlpKjo5PbW8pyEhxjcy4FqLbVijAhZDrI+WiwHRxwJj7wrmenNdy5d/fgcPz85ZfidGVcqFaDcrZoyziNGm04k4tF6bQ5OjpQuimq2V+wXADQpIsD810hCs5Z5y0FjhIxfEEYkNlsFsfx+973vqtXr06n05MnTxJCPvKRj3Aun3vu/ae2Tj7/7ReuvXYdN2Tc2bTWwTnGGCzrHG+dDsF5Tx+hDx+fp/4RvjNeDHlEAAqPTO/oUsGwvb399re//Qtf+MK5c+fOnDnzT//pP7l27bWyLD/3nz/fH+S7u7vveMc7Pv7xj2dJ2jQNzr8JIUtJEjp6kOBDWIZXPzpPxXcBPQCxCFRKPffcc4899tigl587d65qG5zd4gQxSZLgrfdOGyOkVKoRceKtPf41sa2TMrZW46jYe4/fAQAoA0K6WlHwBADmZWGtRWVzv9//3B9/9uDgaDaZ/8t/+a/H48Of+ImfSJLk3e9+96VLlw4PDz/zmc9cunSREFLX9Xw+v3Hjxnvf+17G2Gy6SNN0sSinR/uMCUKwhndI91bWzGazY7FFFEUYqBtFIhA4ffq0EOLatWvnzp3DKuWtb33zn/7pn37lK1+hHVsRhBBpFsNydIGxh23bvvTSS0qp97zvvadOnSqKOcLNh4eHb3jDk4PBQCmVZ72iKC5fvnz58uUrV64QQn7rt34LAEajkVIqOO+8x4Qz732WZWma5nl+584dxliaD1biVRkLRZqDg4MwIVmW1bx2wa2urvLhcIgodb/fxylomuaMsZWVFa012j8RQrIsiSKptYriOI7juq7R8tg51zTNshIlx2sOXg8J9MaYfn9YVZU1vm30ynAV02m9teODcV0j/kvv3bt39uzZslw4Z+JYhhCqukDHr8FgEMBzTr1nWK8QimQTygVY6yEAOCDBOx0oUEaks4YGapWVkjttoAuWbQNB802fJYkxxmgnhADSocxYGNHjmE40IJNS1eV0Og3goihaXR3hC48mG1mWScmVUgCEMaYbnfQzSiTlEIL2PkRRjHKY0cqaFPErr7xCCFlbW2/btm1b4kBrQyl17nWTciHE+vr6ysrK6VOnBoOelDLiwnv/8ssvl2UpJZ9MFuPx4sKF04899tiDB/c2Nzf39/fbthVdvHiqlHrLW94yHo/Hk8Ner5dlWTErOOc1rxU3bdtg//NoWxiWil3OKcrusiwdjFayLDs6OiKM1nWN0okQgvcO2YKU0rpunTNVVe3snGhVHYJjTARPbty40e/341gSkmutlWq8t1mWJEmOCiytlbUWzTeVUlEUF0VZlU3wRMgoBMK5SATlnOvWtG3btrqJmzzvaa2DJ1LE3rVVU3/oQx+6cePGZz/7WSFEAIduPgx4FAlr8aim3hECAlF4KQDfMc4Fcl9wdmStFZRGUYIuPD//87/w1JPPVIuKyeiP/uiP8jwf9Fe+8IUvvPLKqzdeuyXjqG1bDELE0uf//XM/l2bZT//0T9+6devTn/609+Hy5curK/3JZCJlpKzRultUlNI8z5E1r1RLKMP6knPplWNMMEmcs5PJZDYHGcssSzKWUAbYFOnWCBFtbG1qrcEqTrn1XuuWc5FlKSEEp0k4EbFKE8KdJYKn00n5la98yQX/8iuXz545Pxz2HzzYHY+PGOdZNpQynk3m0+k04pIAIwB1XbMQtra344RTns3nc8bE1vYp1bSzyZzRyAndNGoynlunhqNBUS16WXbm9Lnr168rpSkw5x0jbDaZM8LTNHrzm99cVYUPNorkeHw4mR61LfJo2Obm5m611za63xMkEGttkmRsaQ7uXfDODAer589uStFhIg8ePLhw7lwghPHu8Lty9epsNuOcW5vh4cqBIL3o6tWrjDGZSGtdXbVHYaJ0AwDaqqqqQnCrq6tl0bRN0e8Nf+M3fjtNBoP+KM8Hi3m9vXVqdbTetNXR0SFiJZPJJE3zCxcuqKb9t//mV+eL6ekzZ4pyXhTFxsYaqhEHg0EUJd57Z2vnQlnWi8VidZQnSVZVU2sx+5Rwzo2xDEgcx8C681suSfEAVAiO/TYANE2jFK2qOgsJIUxG2YmdU3mez2aTXi/zXk8mc0LoV7/6Z9bpnZOr6+vrh4f73vvd3b3bt6Z3bk3f+uwbGIQoAqdJJMRHv/8TZaVu3rzb6/cJsKPJ/okTJzjnIopNq4AGQbgQDLyNJReCWbCq1UmSIfe3n+dpnjdN85Uv/AlwmvXS3Qf3jDGM8/v37z/c3QVKZrPZzsnt2Wz28NoVQsiFC+d+6Ic+8cUvfvnVq1dW19ZWV1en0zkw/qN/+cd/7C//xH/33/8PaRorpS5duvS1r31tNputjVattf/+3//7xWKR53lRlFmWGasICb3hYG9vl3j01er4+ILxwAjOz2/evGmMUXUNlDIpAACxQmxlyTIu/BiMe7TFTdM0yzIPoSxL5xzhTCxNXXEPVKqmjCc5ep2btnVFUTx27jz2flm/t1gsCIMkTRyEW3fv6KY2WoNzH/noh/6f//e/97f+1t969tlnf/JTP/nJT37yW9/6Zr/fz/M076XT2dFw2GcgAGB9fT14ODwcl5O57YemNozSrU0DgUU8KWbVH//x569du97r9fp5TzV11svn8+m73/M9Tz31VBRFAP7gsI2jnK5Izvljly7u7e7HCXfOGKPiNB4Oh9baENx0Ol1dXbn/gJ47d+4f/aN/NByOfu6f/M9xHFPKsQs9Ni6IhET+EZKC0yg3xjguQwghOMYIp4IQhnN4xqhzAYsYLA0hSKsNeDBOU0oFp87aNIoppcZYLigXlEIg1CWDpFW1bkOSJAj2hUdciYUUKHYpm5pSOpvNMKpRac94TBhvGqU1YhwMN3lKgRDCGSc+7O8+lFISzqz1AGxtbY0QODw4ODg4uHr1ahxlCDkxQPAR6+9w3Kbi3UCGtXPOOYNYM+1E60EIISgzxhDJKaVt3aADNXjPhKABGBPH+I6zAYBiILAQgCLoSCacdDxESh755gQIoZQwQpBRGPjSs9iHLidtuXUAIezRRQ7IFgMKS0Y/Xf4Hslw7QM1ab9rvfve7Tzxx6fTpk/du33POIXE7hM6eMpjAOXAeC8qGw2GSJDdu3LDWcoA0zx51FOngsBDiNMVh3hNPPOGc299/6JzTKoSlWJvScEyjQ5yXECJFhKAbVptojGOt9c4R0UFjx9BGeERuCUtzbfzz+G+WMJk97pEIVvrLbuq4CRGP+NviIAGbkA689sFbx2mkQ5CYH6i1M51skPw5ihB+E8IYpZwQSgijjIEgSQgxMm2Jf92OwAPgwINS6q1XzhnjnXMBvAzCOad0g10WMprZ8gNXSJahUYMKIWRZFicS5mg82sMXwTnDGOWClWXJGEHTCOysgFLBGFZHeOsiLvI8V0bjKSkEDlo6IxesZ4InhLIkyYzSxrhEJjs7a1pjhmSo65pzfv3K1aoqpJQHew+9dbppX3rplUSmEY8ZE9ZoAOpsAGc9gSiKjNHGOWfDbDw73Dusqur6tRuSC0JoLCJCCOXCu9fBI3yyhDBjjHOBMRIIoNENgH99rhA6d2DnXNXUxijjndOBUkoYPHobl8eCQzjSex9FEeUY5uYffb60y61RknNg3SLEyhYJyIQQpQIBQqnDEp0EIOAphSgWlHTpjlJKKQXjDIChRTgAKKWqqqGUe6BmmWKHds/evU7nPKashs6yWR4jAlhBRVHEWOfzCEta7qPAOmMsyzJltLbGaCMlo5TqpsVM9eWLFpSqaUtFJDmncRxbA1qpEAJGfnlvl68hwyzPjptPII4l63IvXVmWSRIPhsOyKBB4RSBbRNKHLr4Pfx3VtlEU9fp9LOeapkKoBZdrCEGK2DnnmY+iyAekxHY5nwG8t/74u+F3QGIKPmW+jIbrKoelVQhuNZj4F8DjnAxNpagnSZIg4RTXCcrXEJAlPgB0ZHDXOMZYFMcYIue9r8rGsC4o0hhzzFhCXGN0YpRmcVnopqlQL2GtxQfqvbe2xetcbmXdfoi8aa0NbrbGGM4bWPrA4JXwzhC5uxWdPBfgeC+lFEgAHwLympHZR7uMSqa1woGdc69HZoUQUNrfYfRWHbPX4RFJTXDeW0cpVcqUZY156ZTSNE0R+3DOo5MnvlNSSpz9EUKc452BpzaUChywxXEURf3pfIYjh+MvZIwlSSRENBqNqqqaTCbYz+IIkC9Nlh49oBljznF87k3TIPOsrAsXLJ4JaI0lBMuyREYcABijcRyFEFZXR5zzXi9XpsUmRTVNHMs4ln9hWGCrGyaYttpaa60jINJUUsaMs9o6SolxUCxmzzzzbsKSF7717V5v3TlfqjKljEmRpvlkNl4sFm1bB0o4503T3r17dGrnJCQRY+zEiRMkQFXdYUSCBwbMWqvqJukP0kS0RaVU086nb37XW3/4B/7GJz76/uEgHe/dv3vnZrn7oCgK7d3uwd7uweFC6XFVH02mjWoX5SLLMqKBBOJcECIihDgBtbVWhzzriyjZ3d0FSngioixeWR222mpvKQWn2uB8XVUT7SmlyoTR6uapE6dabe/df1h7RSnHOeLmxrpuWt2qRTETlAIJMk5ZcK9cuyFp55YTqGxtAC5P7Jx66qk3MkJV09y8erUwDSexAzZdNItKa+PSXj9O+yCYMj5wEfVS5xxjDZXaO+OtaZx2SlLwxWJBIQgkkBMfKIoSSDbMkzhpjXVeUSA3dm9laRqYz6SMuWi0cs5RxnrDQZr1hHGqbfMkjYTEPD1B0qfObV48vba+mt/eneQLRZPhojUOiHF+Ol8cHo7XVrcJCevr66otzX8hWxJPakIoAQrEEUIBGKGBUYG0OTyValuORqOf+qmf+omf+Ind3d0rV668+53veu3mjbIsX3zxxStXrtSLubXae0sBeCQxHC+EwDv3deRPgyfgXQhAgHSvsENcCF9nnGseJyozitUkpTQs3TNQoIY1TFmW73nPe5577rmvfe1rjLFPfOITv/RLv1RVxcbG2ic/+ck3velNv/iLv/j5z3/+G9/4xsc++v0f+tCHlFKs833GyPSOH0AppZQd1/wIzeHdQQTALpUQURRtbW1tb29TgNmiABIopW3bSim90Vq3GOWaJIlbRoPij+DLIBA8l6XkyEbCLYIQUtWFUqqqKgSLVetms9ndB/fHR5O6bTC1dTIZ9/rZ9Ws3FsVsMBgIEUVR8va3v/P27du/9Vu/lef5M888+61vPf+Vr3ylLMvV1bV3vvOdd+7c2dnZOTo6qtqGc2mtFTwKIcRZLISI47gcH4UQer0eRhMhPoli+s3trSRJvvvd72ZZ9tRTTyEi8eqrrxZFMRgMsCwcDFbW19ettWVZHh4exnGc5yfato0km81mXIq9vb2vf/3rFy9eGI1Gs9ns6aeffvbZNxdFMZvNVKuzLFNKvfTSS6fOnH766ad7vd7Xv/51733btpx24bQA3QQRJYnr6+vz+VwIvjbcUKadLSZSxkk/CyEMBgMd7Onh6c5h2Tl3LHWp65pLkcYJnh9LIyTOOR0O+6Y246MDa6213tpO2IKf6bvaDg0Ku56hK4y8l1JWZeO939vbc94QwghhUrDt7W3nXBTJw8PDmzdvZlmCYQLW6VapOI43NzdxEUcxskhaAHQr66z04lga4wIEzoTWlhCim5YKPuyvUE6apooTmee51TqOY88CGj7QAEVRlmXpXCciO666AIDSzprNgbNKASHeOSZoksTHFhPYxkRR5Jw5LvjiKCWeHB0czIsigOOcH4v5Dg+Pju+Pcw7HAq7l3vuqxnSFYK1G5sViUdZ1LTgvinlRFN7YEII2Kk3TqqoAACzcvXt3bW3t2WefXV1dXVlZmUwmDkiapmmSDwaD+/fvF0WFOcht2zIg1tooirBIdc4aZYDCskwn3VTHWhz1cM7Ksqza5sknn7xw4VzdNkdHR4yRsiy18bgFRFGkWgsEOJdcyIcPH0axkFJq3XDOjXZFUcRCoh2wlF2SUp7njLM8z6xNyrpCzFopPZ3O4iit69a21rnQ7w9wRcVx2s9FWdZ1XTvn20Zjdd62Ok3T7ZOnfvu3fxdxfw/BWeucJkQ6wC6UOReUMt5BFKXeeyytAFwUJfiIjTHz+bzf7ycycs4aYw4ODghhr7x85eXL13q9gXOBybSuK2PMzvY61qzW+rXRettqa601llL63Pd+4Pd+7/fOnz//tre9/dO//MtOqaqq3v3Otyil7t17wCMZx7ExOssyQh369EnJjSHGdSaAzgVtPZBONK2U9k5rG3EO6xsrVVWhkKptSjytKWFUEK21jESa5ZzFAORYrYaOZpR03nbBsyzLfuf3frdtIXgoVudFUVy9epVSynnXV8dxnOc5eCiKIiCtOPKDYU4pjZLIGDOfF1XVWOWrspRURhEtFs3Xv/RCPICTp3ce7u/ubG0NBoNBb2CUo5SvjgaHh0d13XImR6MRBYLxj21bLYpZWTZGcyEgSWSxqKVMyrLRehd5OozyNEkXZqFaTSkXItraOvnUU5eOjo7Q2TOE0O/nTIoQwq1bt/b29pTWSPeYzWZSShFJZ4yUvG3btjW9Xm+xWIQQZrP5fD7vFjy4LOuFECDwQX/1iUtnTp0998K3Xp5Nix/+ob/y3e++dPXKy1sntjc3N8tyUS4Wr732Gh51i8Xsa1/7s8Ggj1rCyXhsvVlZWcEWyy9FbRajxJxFLUgcEWSfWWvrsqGMee2kjFGoYoN3zlIKuMbw4O/1er1ejxDCrS5qjXrPqmq0NWdEvFiUSqmyXNy5e2ttbXXQX63qedM01rXnzp3e3Nx8+zvfxhj7ype+fOHCxsmdnb37Byd2th47/4ZvfPmFz3/hj/enY+PcYGXwO7/zOz/5qb/+03/373z961+P41gI4YwKDiiF4AxlhHMqBRccgidFUUY8ampDKVtZWTHGUMkphaaqr127AgCDfi94IoTY3t4OADdv3uScEwhJkvzRH/1R3u8V1eLf/NKvjLbW87y/KKt/9cu//Du/+5mPfexjW1tbWZZ861vfun///sHBgdXmTlESYAf7R//6lz/NBY3juNfrEZrHsWyaxmkTRZFzAZu3xWwehJdSNk3zsz/7s3Vd/8zP/Mw/+Af/4NVXX/3f/t2/41IC6ZLW6ZK8RpZE1EfgIUCyHgAYZ7EzwcdIlhax+CVVVRHfAVJvuPT4+vrm17/8Z+/73ufe+c63l039i7/4i9qapmlG62tRJO7cnAKAjJOnn36aEBLH8fPf+OZ7v/c9zz77zN379zY212bFYjqdzIuZkIQQuPfg7tbW1tHRhAB/8zvf9tprt9pGe8K/+Y1veWuzPE+SzNnAqECbS+8tF3Rra6tYzG7duqF0e/v2bWtt0zRVVayurr7yyitZkj7++GP9/vCFF769mFZWKwBom+bLX/xinPCLF84LsWKt/dSnPmWtPXnyZNMoPBM7PoU26LbmPXhjvQNPghAyGBMYQgwuimJnbJwm29spNreHh4ecS8oIF1KrrmeOpQjBQYBAvGprwqiII8aIdypQyjgJoLOEO0eMMb1e79iqUmsdvG9ri2ODR/lc+/v7SZxZU1jTPVbvfSIjRG2W7EKOpaT3njvuILS1un3zzvb25sWLF7XWddXMmhml/HVnDCEYYwLtGinQYxPSpSFpt18t2ayUUnA+hJCmaeA0hEASsNY6aymCekARBfDeU8KRQ42QB85K8SKNNd10xGq/DOwijBLCCHCEkhkDhDwIxeGlcubRtv/12X+HJoMHIHRJyPXeM0aklJ3TKzAA0N4LmRweTpT6zgc/9L1xHLeVbiuF2vlICGNQIkCtd21ritkca0jnHKPUOXfs/3ucNOC8n8/nWxsbp0+fHg779+7dQ0zE2s78iixjGBFrwNuIaMIxfoTvLBZRj8LKywYteOKPIS0sDsG7ji2DUWxWhxBc8Mf4C66c8OdBakLpstvBXcIdgxp4MYQQJjtitbXWE2RuIh/w9YBHv3RSZowBOMZYlAjOORcUeTRoBySQFGZc2+DWxAAwWcNZYzrnE9bZs4DVdVMfQ13HYD0S9AhxiA8CQBxLVKGi1yelYG0A8E3T+LDcylgXfY6sQ2s84Vwt4xAAAIhPshQliVEU4TNCmXMUSckY5xQZGwDQ7w/rurYBmkZRSoOH4EMcx7ptZ84iSY1SePjwoWnVxtrq0eGsLpr5rOFEhlCGQDwoIQR0BruBMOqcu3btmrU2iWIAwgl1zpFAkXDt3OtmkdZ6gC7k0L1OlCJAgXKGM2BG+DEsG0VRHEtPwFqLNJTlk0J8sMP1vPdi2e4S5+iSl4qVBvJz8RoopS50ImLM7VGtAddZB2DTiPE+jABjrK5rbR2Bzkk2BGjbVkgmBMOhDtJv5/Oiaao4dUmSHp9WnHNgFB8EvgvHfg7HmBo8YpWjteacHpf69hFHKbza45bNGBMI4ICHLkPz8LZwQsMSCPaeArQ4CQtLP5kQXo8tpUumm3OOdIFXhHPqfedzkiRJHEXGGK1bpVSapr1eD7NqUD0QQkAoFpHitm2R8R1FUZIkSZK0bcuoeF2Kamr0dexebW8BIM0y1BSSpf8mPou6rsnS2PpRIAO/HACMMU3TRLFEshtyckXEASCSCad8Xsy99xhYQpa5EZxzYxR+TyklGCp4BMHgDTStwu/POUfeMaXUOr22Prp06dK1G6+1bX28C+GLBh01Gy+Vo9UD4qfOBds0dBmwhAecMW4JBwD60XdQ+NJfFSFmQkiSRN77OI43NtYE4/NigTMqYwzKhqSUk/miahv6CGE5LI1ZhEjw2GpVHZZWQkJ0UYG8s3mh3nv0Tq7rOkkiVLfgfTbGeE+11tiDdx4+8LrTC640Z0MSx6OVNQCom+KZZ545HB+9/PLLVVUZY9I0HQ6H+GYtFuVwONzZ2Tk4ODg8PKzr2moXQsCxHCGMQadN0VoLwbCuQ0ejNI0BoN/v4y/FCM/zHAmSPljGGKVkNBp5b9HfzFq7srIC3BdFUdd1qxvCwPr/EnrYTVKttQAojQcUnUSRAEbmszLNRk8++fR3vv3dOE4uXny8KluRMm5Co5o0TY12ZVn2ehkVnFJI0/jxxx9v62a+mErGAciJEyfiOJ5P7+/u7obgYxlZbcpqoepmPj3qp8lPfOr/9N/81P9ltR+11eTh7buvXH5hNh27VjMpDifT8XzRWDsu6+liXrS18763MmSUmlYZY7wNlHJJpWUQPDXGgvPGuyiKgmBFXS2qMosTEUetMkW1cMZKSq0xEyuchyff+MwTb3i6KJUP9uyZnnO+adu2abK0v756kpEwn02euPTk4eHhg3v3BU3379xIaCSZjyVttW61SbPB2s65x558GoRcVJUxZPPchfb2Td4A1oHaBW2BecqZdIF5To0n3tC61rFIk6zvjHJGM+4pCcHpXo82zcyDK+oCuJOegfdxHEfxsCkrRrkHYrRbtGPtWkrDIMuJ9WIi8zyPoqi186hoGGNSsJiziAYagrfGO6tsZQDOnFzPB4O7B/X1ewdl2RAua+2Mo2m2UhelFNQ7QllUVgvxFy0XRpnzncAuhE7Mxhlz1h/XclrrYF2WZZ/85CfPnj599vTpc2fOXr9+fWf7xGwx/6Vf+qUrV660ZRGnadcLLxP8Qgg+2BB4CAGQjgAB0HDfI8t4GT2NsJR7nVbcXVEIYakVWx6XAV953LFfeeWVD37wgx/72Md+/dd//e///b8fx3HTNB/5yEfe8573OOcuXbr09W98dTqd/u7v/u758+fPnj2LyX6MUe89BNSrgfeBdAPy7ohZjsfo8S6K5TeOJdzSjtIY44IDAGu1WKat4HQKUXIuJQ+EUprKCL95WZYHBwfWaiHEYrGYz+eEkNl8sru7W1VV0zRKqclkYnSw1mrr8jw3ziZJQggZDAbOOUp5lvb6/X4sZJqmhJAzZ848/fTT58+f39k+cWM4PH/+vHN+NBr1+/23ve1tt27euXv3vqCsA+iowF8wy7K6rjGYjXPOGJlMJvv7+1LK06dPDodDwuidO3eKohgOh/v7+/1+f2VlpdfLAODg4ABT3O7cuTOfzx9//PHRaJQkyWKxuHfvXp7naTLIsuzg6LAsy7W1tZMnT3rv0zS9cOFCVVXHIQFVVZVlefr06YuXLh1TiquqSpLEmS69kDF28eLjGxsbmDC3ujLSrcoH2ekTp2/evtG2LaUcj92qqvqrwwcPHvDbt27keT7oD5zxALSYN23brq6uJiv5/v5+UdSEkM3NDe+9EHFZVXXdFiWe00Apa2olpUTFH2edFbIHj2UuISRNsziOtdZ13RIIBLyz1hsHANYHznlbeOf8bDqrqsZ7aiWzxmmjtG6ZhFOnT0RRdO/efaNdFGVAuJBJCMo5GyAwRqXocc5bW4CAQH3w1oMDFrZ2RhsbG2VZahsD0DzPvQ9to7VulLJV1VJKSQiRTCCE5bCaG2cJIYQEHTQVHEUrnPPhsL99YjMEP19MnXPaKJQ3hkAoZ9s7J5umWSwWWpNGG12WPcgAqFUKHCRJ1Latt04yyTqftdga7yzJ87z1TtU1l7GrW4eTeWOJFCSAVmo2HSNLgjHaVI5yECQKnspY5mvZcNh/6uknRqNBW5fDUTIvbD1fUFBZwssq7O3tjcdjxsP9u02WsSROkyShlG9srEkZY2EhRdy27XQ6xQentY7SXpIkSS8py8I4XVVV3RaEur2HD8cHY28CYzzoEDwJhDHGkogkSYKVKxts2ODbtrW6MSoIERMwVaMJi1IiCGNK1ZSBA59FiffB+xCJJBZsf/9QaxOCMDYQIyhQ0/i5KpMkSQZS8jhJYrR66EAE5wIJMuUWNPGumM1DCIwJ4r31EtOErNVlWwohGKeEuDSPAKzTujUGRYhxHIfGOaVoBG3TckL6W9uLqvSeOEec8zJJKCWBWU5J8G0viwikgiYf/YGP//hf+cu/8Au/8Pu///ucy+B82ovjKN3bfzibzX75X/2rn/zJn/wbP/VT/+E//AfTNF/72te6qZTkzjnO48FgEEXCOWec9t5bXzFgAD4EQ6iXqYDgCAnFoqCcr66trqwMzp8/H7ynwAAgOBAjqbXWquCcN9oBMGcheMfi4I1lnlJHvKU4fbLWegiEhMBCYwoWRtIb7+3RfeXrfWoS7OqQ9NVL88OHR0he4kxSSpVWt27eHfTz7e1t16jF0cw74jTEcRpCCEA4F71ezxN47dUH4OFO+1CKyebm5vlzjzPGptPpxsbGwcEBABDqFsXk8PCQE962LYV4kIiNczvr6+vj8fjg4CBY4621wXNGCQHVNta0VVUxTqz1UsrZ/OE3v1Xv7e2F4LBd3H1+d3V1VUrpnI2iaDAYlEVdFBWlQASjntlgKaGeAOOccJaLHNEu74EQB4EzEjstjLGSRdUcdu8viuJuGq8eHBy0utGuJKI5Orp9587LJ7bPbK3v3L77AAK3hkSxWNtY45z3+/lopad0O5sd9fv9LMvAwWxWVI2p541xjnPujGIUeiu9NFspy7KX5So3jDVZkjz22GOXL1/2rnKeWOO894FyEseEMEpJ69vxYjxYzYE7RlkoSb1QRgfOaQj6O/rqxsbqopg8eLibpnFdhjjJCKU7p0499tgFY5uqKorFWEp+9vxmnl/wDubFlER21u6vPBaf7W8L115/+eobh2/9zO//7id/5Mf+5n/1N7/1/DciSZ2phCA6BEK4tgQl+57wlV7POadaX7eVlLyqit1d621gngRPSaBMxFtbGydPn7z/4HZd13GSYf9grAJGBAHC6G/91u8ED6OtTefC5GiexX1N9fhw/L/+yq/2enkcJ9S71668urm+ZoxpVR3HMY7ljTH9XvxXf/InvvTFr7z22mttq3jMvPcUaD5M+73hvdt+Pp0DJVLG//Sf/s9PPfXG6bQ4c/Lcx7//Bz/3f3z+YH8/TikhgVEIBAsvQihjS/tvxpizlrGODqlUQ7nAtocGDw6Ao01l4JxxmYiIq6at5gvwgYJ97/e848Jjp37wE5988smnf+Zn/p5uFJMyOEg4f/973kPf9x5jNef89M6Jg4ODv/23f9pod/GZd/2ln4C3vvv7/uAPf//et74eRaKXDxfTJooi6pJhtrkYay7EaLi2uV6Nx1NrteBS1aGazBgVjpEf+PDH7ty/eePujdMXTk7mh/GarKrq9u5rdVnN50WepN7rOI6bRhWLB9vbO+9+97u/+53LZaFlnCyKWiu1WFwOIXzwgx9s2/ZP/+xLH/zgh7e2tp584gnO+b46JAEEkw4QRhHW2s7wsWt6iUffWEEb3RDGZotZlG0MVtIsywghV65cc8F7ZYz2nEtKnA+GcWqDD8gb9sAYdyHEjFFK26Z1jsVp3Cq0BrIhkEYJ7zgAYYQILpy1EJxTwoOUVNpgVaMBysGwf2Lz3J27tyaTAwdGSrp9anUwHCZJdvnFl9p5K5KMOEYItdolMgYPwIEEoMDu3XuA5j9CRJKDEALc622/J8ZQ6sBpjd4+UVvVxaIrzjiTTjvnNXmdduewea7bjnTmPTDeFQAhBMqY9Z4yapbqbOt0HMcMRK/fs9YWRWGDp5JSRgNQoCDjTgssaBeD6b0P1AMnFrRubV3XknHn4Rh+6syaKKXEI9BAgiSEAPEBHAB450Lo+B1RGnlvGZCIJlq3hMVAeL1QTa2BMu2s90A5Be4JBEop+spRCuPJURiHKIoIA629mpWompeSUGKUNSF4GfHRaHj2/MliPj04vD+dTjFN4dgaG1MQMQLROSCEauPQANRaKyXv7CxIsNYIxlGedcw17tBh6NKuQpfb5inxlDEI1DnkzlDnPAAE8JQy6xzn+E/EWhs8UNGRPQUS9n2glJrO/A7rWwTLAjL1GGWUQQihbVurENqm1qJEXQBACBSflBAMD0EfvHMshAA+EEIJENW03rml3WpEAgkhWGedcx4CZdR7H2xglBttvffEUckjTrhVlnDSNVqcOW9F4FIKDz7r5ZIzErx3ulGFtVZIGTj1QINzjDBvbSpiT5mUsq7bgL7EDLyx4AOBwEnQptWO6kqmSQwwaJqGUmaMBfCMC/DeNDXEkX1da08inkgmOachBG1V6yrvIOvla2trN+/cXiwWWZrHcSxFlm+t65bMxgtwNBBKPHHW8UQEBxEXCKZDCCiVtbCcNATghIeluQeaxVHCrPXEB8YEEHDO0ECZZEjhEKyDg23wgRtPPCKD3nT+GFEicT6Ba2ZJICUhBG0DAPrVADbaXptAOjiVBGCMorOO9844J2UUPJVCRDJB3I1SppTCUCNn/dHRERaf/X6fywhCgwbujDEgXqmWiywEQoiw1irllHGEoYiuCxdFCAxV80ka+WVei9aaC250yPKEUqrqJkBgDIyxlBJrnaARY8xZBx4EFTZ4rS0KSfEKgfhHYGintfIehADCCOHEOwiUBEfw7Q4+WO0oXdo6e2T0k46hBp5zZj1wCJSC9U7rlpDASEQZA+iA1CRJEiGc98Q4pUxbaeIZCcRbTwJxxiZZlsYpEGKVhcC0NrHMPAEIolGuUaUxxoMbrg56vV6SJEb7+XzWNA0XlALhnEZR5D0IzJT2EAIhAbvXbvDQISkkBPBAAmMsS1OtLDifpalMYu+9FLKqyrZtpYqsCJAy731VljhPAmI7eQmlNlgeSaWUcV4yblqF21Fb1YwxJkWj1fEPjePYOa+tKerqpVdfGY/HgkeIXBAi0F0NgIbQSQoIIcYYTigDhjbxDpizuHQZAMcEnbbVnNA4SpVWxzxxxhiXPHgHANGSX4Koa1EUWZalaQzgF4uFhc6eIk1TmaTWLnX0EJx1OGWRUjqghBDJZKsULktCiAdI4p5SCsBzLkmAEBgirRQYp/HKYPVBeU9rTaH1wWIYNWcMedDBW3xTuBCoujbGcCkarYqmsNZLAcbp06dPpnk0nY7v3L29s7Mzn0/X10eUwsr6yBi9c2abx6oxR45YyiNKKYVAmA/B1VobqwEgTdMkixhj0hEuzcZWr/sdeRpCsFpDoMaq4B0QwoQQQsRxZIOv21qblujGedOagpNIa21aE7GIelrOq5z/BejhaHVNtCPvPaFqPJ5pU4WWeA/D4dB5bywEnr/tez482Dx/ku2c2nksOJZlxpsQdO0L3paGefbkxSeEJEIQJjkXUBTzbz7/1enReGtjM0vjwWDQ71GePcXzzXJ+MN69WZdTE/Qbzp555pl3fOxD73/7m585ePDqjZfHjW7mi8X+0VhpQ7NoNlkcHs1b7e4dTOazhXGWmiC56MX5bDwhIQjODFhtGy8tM5HxxnjvPQmEJf0tQphqtbd2vGj6qbDKxE6AB05Ayh7NZFEpVxFVR0olbR2YSCEQTo1kpapcWciynL/vuQ8+/cyTRVH8x3/9Lx/evz8rvIF+2TTBE5ms9Qerj73hqZWNEwGoc8FYUrVe8KQ3PBef6uOu1bYNt1YbZVTHM4giSQI1SjvjTEQJkYEKq73gkMSC+IazWFDblrNi3hLX5L3UOtXLUpHGTV0ySpgMiV+1jVXcL2zDGIsiUk0nlNI8SRljvTyTXHBC95p2ZdCTUlrhvDXE+ow0Z/rpehoPRPrtq5PbR2PDcwdcgYl6ka0XVlURg8qZvxBu9twrU4kgOI18gOAD8BjAg1FemUCAMfY//sP/l3PuF37hF372Z3/2x37sx/b2dr/85S8fTSc/9VM/de3atTv37zS6yVYGAOApsd0sn4XgQyDaewaBcQoADpN1IdAAYTmRYkAgUOt88BA8I5QG6gN47wMFwHQB7zzyKhhjwQfnjQ06iiLJ+J2bt/7083/y3HPPcULv7N7LsiyKoi9+8YvOhb/6V//qhcfObW5uPnz4sK7rf/Ev/sVP/dTfunjxYud54PHXdQECod2EDLqcNhI616auKkffOEopF9JaSygQQoINDASSzaWQrEvfIT5YLolSTVkWxcG8aUshmZrLsiwPx0eHh4f7+/sQKOfy4OCwrmvBI6WbNE0o8yGYKJaDYTwrrG1ClmTakcFglctoc3OTUmActjZXZcT6WZr1BqpWIYRMpu981/d471tlDvbHVdlubW+srq5maQ/dnBqtyqpkTOCvKYRIksh4MxgNer2etR6nd/v7h0qZU6dO9XoDAEodIdav5P21wUoiQzBNVfEs6+XZUGzwzY0ROH+NvEaZIJRffe020CA5Ga32hnn24OGec44R6q3Lkqwu29l8PhqN7t97WNd1v9+3xg03hz64vJdxyg73D7TW9+/eWxkMsU6O8ogR6m3YWNs4cWIriqILF85dvny51c3K6rBqi+l0fOvWHUWM1fPMeoQHZ7O5Hwv+1FNPxXF8//7u3bt3hYi8D2maxlG6u7t7//59rMLTNI3j+MGDB2VZsoCnIMX4mjiO0TT6eGYuhEjiaGmGIhEIR7ofyjwFJYZSPJ+897sP74O1JI4opb1ez5iGcWKtlREXEUdSklIK88RWV9cpYQvnAAJGdaNTuJRS61ZrxzlvWrWzc2JnZ2c2mzVNI+O4aVRZVnVdz2dFIB67E8aYoIxzLnlstOsUPRCQr+5JZ3Ozsb5x4cIF54x12hjtbHAucMId6VqUyWQyGg13drZDMLu7U0oixG0ZY1Gea62NcVJKzz3eB0KIRfZoCKPRCJM8lFKMg2kd2NBfG8RxvCT48OEw39nZQaeY2WxWF+rtb3/LE0+98f6Du/v7+7dv3/zud+fOKCl50zTWWqVnVdVESX5iZ4PQsFhMRU65EHEcZ1nmPWxtba2srE4mEwTZseg5vjZtWiC+ta0QnHPZ77ODg6M0TqaTudHOKE0p41wCxaQ7jpb/ONVvmqaoK2TmIqcJOSAAUJYljqyzPKGUTKfTLMvyvLdYLLS2xiiAQCnTVjMehJBY9Le6CbVF/o6UgnVOdmYwGDRNg+bR0+kUN2j0EoFHmFA+eOTgoJrbLd33UKChlKKMcCYJ4YR4YyxWwHSZEYR56HGchONgFsFf/M53dnd3P/CBD3z4wx/+jf/w672VLqQRQrvftoSQGzduTCYTpKUwxoqiQKUGA+IJQfMyrVtrbZTEzpk4jsuyTJJUCOaco0QkSVLVpXVqOBxubq5rra9dvQoAnEnvfVVVQgitbFlhQjGSDkBEMZaVRnfEJZxBYvYRZgJ0DB1CQgjYCzFGAMAaL6Xc2NhQrdne3j46OmprVbfTrN9XVltr0yTZ3Ny+e+uu9x48jePEe+ucI9xLKaI0euMb3wgAV65cu3fvbgB19/5dEcm6rBeLxdmzZ5GJXBQFAJ3NFk2tKOVCiE9+8oeHw+Ht27eRFIZAMOc8jhP8X6UMY8JZ431og1kZxZhn7ZyntHOUw6aFELKyslJVjXcwmUykjL13Ifg8z6WUAEMZcb40XZ1Op1jIIgMXaeBFUVRVde36y95DHMcyTn73dz8zXMk5k/1eRinf3z/0jgZPAAilhFJOKZOSB3D94WA4OHXzJomiSCkznczmk7kxwThPKeNcSBmVZbG2utUb5ISEJI5OnHgqhLCxtvbe9773mTc++5u/+ZtKKQCqtabUai1W1laVUr3hKM3i+XzsvA0eFsWMEDYY9I2xzrnZdDEej0OwXEbWwObGqXkxWSwWN2/eJATOnTsz6A0/+9k/CmCfeeaZXs6ef/6bTzzxZL83rOv24oVLq6vrd67tlmX70ksv/fzP//zzL7z4O7/zO7h9CdoFAVtr0ZIeCUGtKqMoEpIxw5Q1SRKFEIzTzgUpIyFk3bYHh/u9YYZtyWQyQf31ymjQ6BYpXY1qBZdSxti0G6usdVEkZcpRihVCeNe73vXss8/+7u/9dj2t+/2cEFfXdRSJWTH7+te/MpketKqcjSfpII6iCB14tdarq+t13YZAjLff/va3X3j+hf5w+K9+5V+fO31mNBod7O8jBcx6zznv1pJ/Pd4XWaLeB2MMHnDGIW/RE8KRxNq2bdbL7dIxkFPmjQ3ev/rq1dde+//8zP/j7/7gJz7+O7/7e5///OdkkkRR1DTNrddujieH/7ef/r/evn37g9/3obe//Z0//uN/5Qc+9on/+r/+bw73j06ePHnx4oX/9d/+qjV+ZSVv62pWzq21p0+fns8XWutePljMipWV1fF46pyjQOI43ljbLOdlUcx//ud/nkfk7MXTbbu2vr5+MD6Yjcdaq/X19SiK0jiOo/TBgwdV1RBKDg72Xn755YcPH2J9gzu/blsA+PznP6+VAkZOnjw5Go2ssSgoXsxmbFWgOQZS1byxx6Q5ABtFEVBw4OJYtrqhlPb7OWPswYMHBwcH5bzJ+nkUy7pSQgj0jAohUM6QS4ubkifI6Cfee62CcxVA4Jwro1GqnOWJc07VDaE+EE1YUNamaQ4sEO/rsvQgRquD8WSfEGdsu3Vic2trY3VtxVobyeSZZ5658drt8eGMeCt4RCn4gMeWMNZ47ykht2/fxp1KcGGtJb7DjpVSSJu11ratNcZYu2BAnHe2VVEcW9fxPpBn0WFb1nrvG22QStnBZwDQsXTdUpuIUCkPNNR1CUAxUpVzjnYl+JgIpVopFEx45rM4QUJfoF3sGCHE+9gbC8QTwjuKSghI2HSuCwojQB9lYWNKGGZ8e++jNOKcp1ky2NlRqimK+cOHD3GPzbKsaRqjnfIKJXEd1AKeAGOCRlEEEHnXIllyaUFgoyjKBn0gfmVlxWm3v7+vtSbAKOFYHUFHkyFo8YlvInnEQh0PKTwaECxADqUx5lhI55dFHWOMMHr8OAhDxADD0zpBAwCQbtLhgl0apMQRAFRNneUZAYaGVCEEY3SXK8i6Z4q+BHjPjbHee+/BWmuUBQDOBTIZ7dK+2VqPQWbW2rrWeOzi1oE1M1KxEa9xzqEDA9qzYCgcIQRCQDAauZx+qZ5RxjBOCCEeAqXQ6+faWW00AEAkJWfeARI5gRAhYkqo954zzoTwtgs3Q2Yi2qgAgBSCUGiaCklVVdskeba5uVlVVdNUxhjnDBdoT2egBSp40zRxHA/ygaPdBaNUv65MCFa39tbNu0bbNz79ps4SlDKl9PaJLeIJeGZNCA4SmvCoW8/OBkYpurf5ZbrXMbFriX/hvCRQApRyD957yxghhAdKCCFxIpM0VUZjMe+dQ+91LMPaVmGZobUGH0IIwJACj8+RM8aCe90TnC6tjZ1zzjtrLQkQRR1UjXTdplmecU3TjUPI664s1tpWtbhL4EZhjX9d6c8YjqZQFCKE8ABY1adpKmVnh4rdAYqcsFg95nxhy420L1y0RV0t755VCgAAm1tjDOGMc4wm7qB2JMvjTZaRSJLEufAoBI+DluNb4b1HJm8IQOnr+xshwTlAohYmkXjohESBAGdMqdYYk+f5MXOKUmqNGU+OvAvHhwIsucZKa+ccZr8rpdAxP8tSuswXRYwyhNDr5W3bRLFgjAlG0fFPqTZNM+dcQ9umabqxAV7P8vfFkL0QAgG0+vaREGmaIkyDDwV5c4SQ8Xjsg8WBIqoKAABnAtgHUUqzLKnr2mlFCOmWNASn9bEiB1VxhAamCHYxSNLqGjHNhIiSJMFvjmTG7tilQB+xxcd3Dfdzs0ykEIwbq6zThER+yTU2xiA6Q5fSFgAwxsxms7Zt8zztShrHqaR4N/I8R08nv9SC4HALWGfejSC4cw6PLZQ7YxGFjaGMBWWsbVvvLaW0rjEJg/pgjTFhKdrozpRgEcv2IaDLotaaCd7v9wlhaRoHb77xjW947/N+9uSTTz722GM3b91QSg2HwzzPjTGnTp1SSk2nczzUgqOUUkYo6tWQrr6yspKmKXiHfSsAEBqwxW6s62UZIcToVikDAJyJNE0tsW0bkPvlvLHaaN1KIThIrXWgHWH5vxDZCyFAnqRZlnlqGMjFvORUgg+UQiDAged5vLm2Oej1n7x0iUDsNVhtYxlRYpxzkrOr1678wR985vrVVzkHGQnOqTHKOj3sD8aHY5Ums8Pp+vp60y7SiBmvUvCbp3c+8eHv+/73P3d2ZxOseunyd6p6enS07wkooxdFmff6++Nx0zTT6fTh4dG8rLSx2hrBpIjiVpuAQxpHhczKuq0LTSIaySRQKtM0z3uMx8a4pM/Qy3Qxn1IqrVZgbdVUvqrqOAxH65tbJ31gIfiVtRXnqTGWUl8VLQRz48ZrWreTyROE8H5/Jc5ykSTr2zuz2azn3PrW1spo7eTZC0fTRdu2znc0EcqFDz4QUZZllmVa635/sFjM26ZCoyTvPXopMHQoJp4xiXNra1RZqiymUiQ0tFLGnpGqVZSB5YxQSCMpIgk+EEKsDliaGmMYJ9Z20AQizouihOBDCIKRyWzBBeVZ4p1jwVtrq0b5IPI4esszT1QvXL17OE/zkbdd8ANlFKdI4P6CBYOCHGs8cY4Qhjo7vzSEKevqxIkTb33rW59//nnG2Be/+MXnn/9GXdfT6XS4Ovrn//yf3759Gz2LyVK1uSx7OoUWDq5wL8L6Cj8nEFhWXwQXM1YOhBA0tsXyQ+sWDzXJuFt+INCBenrn3OHhodb64sWLKDX+8Ic//NWvfvWzn/3sW97ylqeeeupv/+2/XZblpz/96fF4/Ju/+Rs//dN/ly1pyHSpLQvLDwBMyMYPBiSgt4Ffmpt1ilXCJOeBheBRG0GtNYtZrU07Hh/M5pOimEYxPTh86MAp3Rwe7o8PzGKxwMoqiqIkyQgwA4ZFgjASiQQ4cQGiKHLBN3Ul4v7Fx5+gnG9tnlwZrS8WiyRJdnZORDErytl8OlnfWCuqRfA+iTOgBLcma+3ll168fv362oO17//+7//Cn34emzKyDALpbNwZo4Knaco6jyYoy3I8Hs/n83Pnzg2Hw7ZtEcsqmzbP+2maK+OOpkd2f1wUVZakJ7Y3GeN5Hl+4cMFYiGQ0HA4pgyRiBw91XddnzpwZDod7e3vr6+uj0epgMFhbX3/++edRP3pwcEApPTo6AhI6ORFQNA0eDoeTyazf73vbyUEYJ1VZosE0OgQYY1pVPbyxvyhK0kOQhFJK8zxX3g4GA/7mN7/1T/7kT+7dfRDHKZIyEK9p2gpFxPiB5GrOuVOeLZMunAvOe0q7eTshxDtnKBnlq1VV9Ps58prR+5J1VvAEsWnGWAieMeIdUCkZoYGEOJZJyvI8Gw77xjaTGUIV0LYNAY4LnTEWRTJNI2NMmsWqwYJMM8aQhHD69OlTp07evXt3Np8kSaKVxWr42GQgLL16saypmpIzGQgwQcWyqAXnGWM7Ozsbq2uz2aQsy6ouqqrCC6CUAsN6y0nJi2LeH6Rnz53aPrHx8kuvWWsxapPEEj85iqIQnO0+POUcNTu9Xg8AtNZtWwGElZVBnudZlgGAsYoBQysWANrrDZ588sn9/f37D+6U7fzPvvYn9+/tYkHGGIuEsNbmeZ4kPeeM9zAeH02nExT64QtpvHvw4AEhbH9/P0kyzrlqDRqDYCWx9EVxSinbutOnTxtnq6oSIirL2hiHwgvoMkCCdc42mvAUy1ysRXB3QBdv/NGEBPxXLByLomW08xbE3r5pqigWSikpeJJELaVlWTHGuCDeuabUdVECo1mWYuEVQhgOh3neQ4FDVVbeewCKQfbobOW91VqnaTpc6aNOEACWZs1dslCn//UYrwRt245nU0opFs1Yvtd1rZRaHaxyRmezhRAi7/UO9/f+2qf+ep7nVErsCrTWzaLaPnkySRIAePHFF7/zne9g9ygkJ8t07EGv5yDM5/OwVFyKiGMHi05k6/eqCK0AAQAASURBVOvrcYwyarq6NmCMjieHxpi6apu6xkE7WYraOOfWABI5ETfpBOPaAcVn0YkHQwiEBOewtaZhqSU3xlDayQwPD4LRDhkiwcHFixfPnDnzpS99KRZpABc8uXP73nxeQKBCRN55BIBkzFtVc0Hni+nGxsab3/rMs2+9uL+/P53MX331NUphe3vz4OgQPAkhlEWltdbaChEZ7QiQ//zZP1GqQeOIJEn6/T47NkzHOl67KBZlaSnlb33b20IIqi3DUhyntUZp3v3797F7OX/+vLW2P8gZY4xyrdskidI0HY1G+/v78/l8OBwWRYGBY1JKJhglDGWUiGILEVFKAcjmxhbjQIDmeT+KI2sgeLWYN1ieItyw+2Dv1JmNUTYsiurw8PDqq1ejKInjdDKeeR9QXGOtbVutlBKC3b17L8vlBz7wgfm82Nvbc84d7u8DwIntneOuMo6ltZZHzFpFiC+r+WOXnqmKiHOeZT3V2i987iuMiUim86IihEdSEhJcsEb7YtFSRhljs+nipe++9ODeg6JYGGucM3fvPJiM51Ik5aJiIOu6PTw8vHnzdk+O3vjGNy4W7Z07d/6//8v/0hsON9a3xpN96ywAUGCEUCmosR6Id94AIVVVJEmSZQke/s4F773g0Vve/o79/f1Tp04dHOx996XLTzzx+FNPPXXlypXr169vbW1kWRYo3L9/11qb5j1CiLMmErExTmuXZjHxwRrrg5URL+fz77z4wnR2uL//0Ht7ePTQe8c4yYerCZGvXvmuUiZO5I/8lR/+0p9+eTqd9vvDNM299zyKL1y4eHBwUFetVZZLSUh47bVrX/rTP+FSZoPceRsI4YyhsthDCN6GQBhjlAFl4HBcL6gUEgA8BOcMvi8iFt57GUfW6hMnTozH07IsKYrvGZOZbNv2fe977/7hw//hf/yHbVONVteNcZxTIfKyqG/fu/+mt75t88TO17/+zfHRXCn7lS9/7cvf/tabnnn2n/yTf3zntavnLl4c9Hv7TctZXC8m1bw6mk7Onj3/3HPf+8IL37lz6zZ4MhqNZpNp27ZWOwbEWTtc6588d7JqFi+/cnlltW+DOzjcO3369GPnL5RlTQMRQmxsbLzwwguLRRmnya1btyIRr6wMmkZNp1NKaeD84sWLGxsbX/nKV7yzSK11xs3nc60NEILFHBojtG0bKGGEAgAJEKdxCIEQ7yDISCb5sG3r+XyepjEhpNfrbW2dAKDT8aw/yLQyLjgPjjIk0HmsCymljBCw4CBwLnB7lFJKGclYeA9ZmpFAtfa0J4xplVdNowkAMUEVRsaRByOjeG9vNziglF56/PzFxx/TWk8mY2Os4PViUXPGhBA0UIBAIHjiPKGSRdphYdCZtcUy6rC8tiPuMcb6/aEQrK7rEBrbmV0GIVgI3RAC62PCWQidjN+GUNQNFkv4cdznY4ONLpmIYggh2rY9PDwkOMYjBFgsCfXea2s9OCkl0KDaFkmyTLI8yYkPPOq8yI0xaSSDjBDJwtw678MxWBYCthDBOUcBpJT9fh+twHCKYIwpm1opFcUidF6uPcz2MMYdB2SDw5klXTbShFLgTEDo/LjC0uEax5xxHI+Gw/l8erR/VERzSngccWMMcvcI8TiadctEcrL0nEUozRiDbp5ICI1iuVgs2rb1xEesS2zDqXaHUzPKlh4ClNIAwXpHKedLU0JKqQdPKA3EUwqBUpTHdhAeRJQC54QLqCqF9YzSbnV19Rjd895S2rGtH4XeOOeUUsY6rD8EVEgo5zrAiHPuie31enEcW2tVq5ZNIGMs4K1TShFYUuApJaQDOp016CeTJMlgMHj48GHT6O7Y8gGnyyC41hrDn50zxlEEhf9cz7lUpBLGvPcAgXhgjNkuC8hTSj2B0AFA3njHAeq2Mc52iBV0TjWMEbyYXq937dq1YlYgqQevnFMGALGIrAlNVU8mEwfuiSei8+cfm8/nTVMxa4HRbJDGIlKtiURMCGvbtq5rFOeibBNNaY/hZlwe2IuSY0z/2FSWUiGl1q3gjEuGVWiUxPgaKmsaVZFlfiPtXkjijLUIp0Jnu3EMrpHwuiH4McyNJYrDGY7zmHu2vDAipbDWHNfexr1uLei8OQYHj4HO0JmlAGMM8RHnDL6AQCl+kyRJ0I4ZSyPf+YGAD8gKdXT5bXE/yfO8rutgHWlqyiD4wBiLZeycM6ZFoNMTQJZJHMd4ms9nBen8c4/tbv3x/tZ1RsdmMojrc45dDW5rcRwLwVAZbb0jxuBbQJZGFvhGoNPOMU8FkUos0YOHZclKkiTJsqyqKoyZpZxRSpVSUZr0+/0QPKU0TdMzp3bKsizLEpWanHOtWrwYHHohkphlWZIkuD0yJgiBEDz6TjLGuMBpYhs84JwDpJdSKtsZyxDWrUDnXCcZoZRzzoWQUVSWpfMG/TeHw6H3Pk3TECaWgJSSRxJnDLB0VRYCQ+wAjezI0tCZccq4pIR777NeigYRdV1TTjKRIBXAWm2XizAsPUadc84ZzqmUKbYztDNjAecdoQSIpwwYE3hvce1FUURIWLLjLVbCxhjddnQxyWJAoczS3AO/HMeNhATGBFnG7hFCOBeMEca6dE1jcIQPjBNjfFkX88JRCkKyPM/jJLLKj8dj57oAZ3z1FkWx9OLoXtVjaoLzgC6I0+n8ypUr73rXuzY3tm7cuHH16vVTp05573d39wCgLEvOZZZlwzwej8folM0YY5ymaYpB4siXMsbUZUVol0gWS4FbCu3ytRSQEEJwxlIg1rq2bq0zhJDgaGMM8V0QZSJjmUScRkvvzD/30VY1MEUp17plVI6GI0JIWRQ+mCiKlYPZpAghLKaLb33ttxM52Nk+SXxommZSHlhjqqq6+srLZ06fPH/+7GIx2334oK2rLMt6edoUJadsfzpN42S8f5Axl0T8zW984t1/6UMfeM87Tm9veq3Ghwff+PqfPTy4X9WLQPz61vqsLCyE+3sPG6sPDsdFXRV1BYQERhmJAqOO0KZWZdlSJq31oFycDon30XC13x8658eTWR6PiIxAmemiZIRubZ2Qg/U8ScYH+2UxH8QyOM/z/vrGdm9lTTsaiG11Y4yrqso7M53tD/q9zc3Nqio+/8df2Ns/nE6ns8Oj1a1TAHR1O8RxDEC0tXfu74tIWhe09SFY47xxnlIqs8HDB7eLouj3+865PM2csRhxhC9+CIEyMNoySykXAVyAEEUykmkqWTGfOOMjnmqtAZj1QH2om4YQIigllMRRpMBKAs45pVtuEX4N1tqjyZiuUe+9qhul1MpgmOVJQqO2NZIST6BZ1BAqH4iyJET52588By9dv394EFHpnVMkUCqUtWhC9f//4QIlBGc5QAgED84b6xwQ4FJADVrrb3zjG//u3/27oijW19eNsVmW5Xmunb19+7ZzDgkEsBzGIwgTArHLtAO3tIDDlqd7vzr2A2WEYhYcAKD7PO9iGyjnfDQaIvzS1b2ERFGEU23cz/GnoOFMmqYf+chHfvzHf/xd73rX5z//hStXrgwGg6effjqKolu3bv32b//2vXv3rly58pa3vAU3orAc2iCBgBByjDXjdRIgAIFzaa1WqvuS4AF5eFeuvtI0dVmWt2/fns/nSqnpdEpIAKLXN4ZxLrSpheCPXTw/me4z6S5cOiWlnC7mhJA0zZtaWc4oEb1eL0myBw/uQYAzl84TEm7evPn008++//3ftygbSvlsXrxw+Ts3btz4vu97v/PqYH9XSn4wfjhYyc+dOb+Yzp5/4XJVFx/84AcvX76Mfq3W2j/4gz9QSpVlyZnc2trCoxBjvfBwwZ2QUgrgy3KRpvF73vPuOE6NMU1TDYdsPi+8h95wpagbVTRGu0VV9/LBcLRaFFVIJPFhZWV1vihPnDjx/T/w8S9/+Yt//Lk/khSkYIMVUpZlURRbW1uYufLajRvo5o+VgPf+8PAwSZL1jbW9vb293b2Tp0498cQTcRynad40TaBMKZUkSV3XR0dHJ06cmEwmCJQRQigL1oIQwhHnvSeU9Pt9n1rX1tZ4/oU/+eLD3X0p4yiKAIjRrloUcRwH7yTjRV3RpW2TFDEA2GAR2MKzgXJqtcFFYIzJez0mqFJNnueUUhxcIxfDKw0oanMe3wQfPKWUBKxgvJRxFAnr7PrGihCsaezFx843bXt0dNTr9eq6SZJkNBoW8zKQQBlJZby6urL3cEoZBHCIRzMgnPNr1663bQNAVWucawkhjPFatYJHhKD1pPfeUcEYoc4RyoDY4L2lVGK5Rkggxqi6udfcKYoCunh6kCL23kNgwTgimFINY2Rrc71tm0VRr6ysZFm2WCwC9VEkkNjrjEHHWFhm10hCZBzjTYsTzrh47OLZfr/fthorrfl8jhMP771SCr1dFovSe3/y1PrKykrTqEU5nc+L9dWNQX9lMpmqurHGBa9CCEq3IhYh+DjhlMhTp06tra01Tfv88883bUs8AaDBExwdcy6wiQKwIQCn1EJgQLIsm05n08lMclkWjTHeG0+AhgAI7mPtWFdtnEhYxl9mWWattdYcbw2UMpSd4gFAtafUCCGaZtY0LRNcW4Px8U1bSRFTQeM4AiA4P7EWCCEkQLUomexIIlVVK6WTJDHaKWsifsyqIKxLSe5mCdZ4y7yQLI6TOE6QTIGzh47n6z0hVMpoyQvuuC3HTGet9WQywRKnaVQIbrC62rZtCKSX5SiAJYSJOD44OHDG/OiP/3ie5/fv3weAuq6F7SJNkI0ipXSA3mGtUirLE845Z2I8P8LthlBvjUlS2eNpVVVVVSENs60V52h+J6KIIkSrtU7SjHMeCdkZd3JhgnHGLaNaOgbdcQ/sXBes1I1elhniRVFMDo94JBkTJECv13v22We/+MUva2UGg15bqWuvXrPWccq11pFMpJQyZqPVwWRuGYPD8f7R5OD06TMyCufPn6WP8UuXLl2+/HJV1dg/Z1lGGPUepIyMdkJE3sPR/oQQQwiLomilv8KWpZ5SOgSNIwrVGiliGYv5bDGdTo1uNje2jTFH4wNKaRRlOEbCkVhVVZTCcNhfLBbGWiFFWZbT6fTq1at44qZJfvHixW9/+9vY4aRpSmhARSq+axjhJaW0zvQHQyGJtUZrvba21u+v3Lxxd3//gHNOOeUcolgs5mWW9u7f2z08HFtrg2viuKWUWhOShIcQ5ospfZ2gZ0+cOE1IePjwwb179yjlbdXuPdxfX1/P8/yxxx4L4IUQZVMeHOxZ166urty88+DoaO/C+fOz2SSO5aVLb7hz88G9u3uM2izLnMe+lJZ1tba2wVlkQ8MolUIETwVPdk6M6qaUkg96/a3tzclkUhaLtjkkhPX7w8VicXR0dP36raqqQghMSoQaiQ8BKAAaoZI4jiWEEFzbtlq3QrIoFoyzzc3N7ROb16/dGA77/f7QmKYsZ0899ZETJ7dv3r7x8ksv7e7urq6urq2txXG8v7+/qAqcCsSR9B6U00tQxgN4YxA9sZTS7ZMnOKe7u/c3NkeM0QDu5JmTIbj79+855wL1garzFy98/w984Lnn3v/P/tk/29vbW11drev6ySeffvrpp//wD/9wpT/Y29vb399XRpOGJFlybD+KwJa1VpllNjHxznvE/o7ZWz4EY4zxJssyZVQIIQ4xFzQACIEpN8Z7r7WhASDQ/rCf5/l0Ov3H//gfvfTi5f5wZWtryzk3Ho+VUs7xJM5+4GOf+OxnP/cv/+Uvv+d9z50+e/6/+wf/kCXRr37637R184anng3gvPYsCKcd5/F0Wuii/W//3n/75je/+eM/9INHe4enz53zvq2q6s3PvPnu7XtHR0cikVVd7+7u8hhGvRVjzKKe7+zsrK+vLhazYENRt9ZaStkb3/jG6XS+u7tHjGuainPZ62X9fr/X6zVVTSm5ePGxW7durq6vITOCkQ4nzXs977tyD5ECIQQJQCmVXDDJuMB5qncB+1WvdbuysjKdzpMkM8ZsbW31895isaCUTo5myjXeBU88eAjgCaBvabDWgvMMIsYY46yX95MkcaBCIAToZDJx3kaSalMPV9MRzdtGe09kHAkRbW2vbm6u+2CttYQA5/zu3TsnT57c3X04Wlkri/nNV27SSBLCMM8Y9z9jFIo/gAFjPAQnGMd3AUvtrvZlVAiRpjGXIpHReDxuW4V2PEAohMBkyoUMIbAQkK+6rOM7j9RjuArnZAAg5SDLMgTRjOnmvkIINCpx0OWFUs7QmDtNU4xX4pwbpRGtLooiZoCu5d5MMY0agVfkPuPJbpcCeUqpswhiBmNMWZaIYHIusywSQsyKWVkujHZaGSH5wcGDycF+FEWrq6s4kiGM6aCJB/Q5BxCIPVFgwQEAdbbFg/4YZ9daLxYLZC5jeKPuIgRZCC5OIkKI6xK9usRCulR0Hndffhlo/Oc4iYSQAAjW4/pxzgElxzQZQkgImCnijYdjrCeE4Jwx3lMKUkiZcExZbE2tjZIRa9rWOYODRdRDHOMslFKkjAshjmmtKDNkj1gZYlUArydmAyEkz/PR2sg5hym1XRnsfYdbLTmP1iCoZPGCOefEh9YY5xzWor1eb319ff9gDz/neI1R6GwZGGNAg7W2aTyx3jmX53maZZ6xqmkC3k8gJECrWsEjwagBh14NzjljNOMkBCeTuBcJoORY/RaclVLSmCJZHsGpoihCIEVRSBGxJRcSH9naYJMJAS7k+XAymXz5S19917vecf/+LqEhSaJY8KwXU0KiNEujVCnVNM5aDSEgOQVHHSEEziSWKwGAkC7ICHuQEILzHoCgr65x2jirrfK19+CUaeky0CaOU+s15xyz77z3RmlcV2zp5e2te3ThwTL5PLw+tgkAQIFwIfFLrHUheMTicebhl+lGxw2/UoqyDrbDUuSYCuCcY5wc7xtJEmHvZ4ziXV8GWJHiwjZL6xLGhbUWadTWuZgQvBtRFPV6PawbT50988orrxSLSjKOXyUltXb5NgWPP7dt6w5fZpQt3avhkTweJJ8uwW5LCDBBQwhtrdBYhnZ5iSBljgwM8KFpNGLoxnWQtDEG36PjvD58iEopgiMEQpeDFiKjCGt1xGcRaeCcr49WtVZa66Zp+lleRgKJO8aYoi5Mo5xz1mprdZrmQgiADjrBtxjx8ZXRMI5jtC/DBYDYd9soozUA4MZFCENXFqQxOucQmsTdNU4SxthkMlFKra2tYexm2+jjcQUV/JgyjxMptH+xVhMqlkMUF8dRFEVFUTStopR6YhhjUnLOeRxLJPFjppHX6njTSJJExgIAlDLOehSZo+6QMaK19sYKEeGqQ1zDL8Mqjhcn+IAltBAiiuIQWq1LpRofRwDgALUmjHRkdgMAyC5HrLbVSkq+trbGOV0sFm2rrXV5no9GI4xtQMkOZvGhYiwE7wMIyTmnbWNarTjnHgLn3FhzjGFJKa21ADQ4KIoCDxTJGSGEAE3jbDZb/Of//MdbWxtxlNy6eXsynq6treG6dc4xyjkTUiZpmgIJ6KW+JlYRDquq4ngD9xCCCwFCFKfGaa2bXtaP85QCaVuNz0gbW9d1BwNpGgCkSIgPeKAYY4x2aSIE5X8h3Gydt6ZtmsZazzlfGfQJDULwuq2AkEb7fn9IArt69XpbwmhnqywXf/blL7d11YRSSrl7/4Gqm/n4YHtr68Tm5vqw3zbV+GC/KRbemqYqklgu9h6cPn3yo9/zzCe+/6PPPHVp2ItNVRUHD+bz6eXLl7/xra8rr5VpHIRJXRrj6rrhTC7KQju7+3CfCNkY7QhtlI6jlHC6aEyUDrN8wFnMo9j5YK3XTC4UrevWs+xwrrJMGkdpstIqtTepIbhZ7aJ0NBpsRJKvrKwQEEyIom6VtZVSrZk757wxwVsfDGVeCJYkSZLkN2/c894n2aDS3lpLmNAEGKOERA5cW2vnXFVVWIRYFyQThJC1tbXpdKq1TpNESDEcDg8O96y1ZVla20WhatMGcHEcx1Ja75xzZdlCkhrjjQaeCi4y1S5a46x3rdbO+TROJOdOkNaaLEkoZ0C8t67FLF9rnQv7h0dSSiFYrXV7cCDnIk8zksbDXr+XJMAc2lKBM76acanfcunEvZvXjhZt3FvlRATKiBCCcbB/wYIJnhjjOCWBEuuc994a55wzTSuljON4sVj83M/9XDWfR1nWNE2vl9Fl5ClZcmYZY03TEaTwvVhawHfDTtrFkLjjost5h5sDoYA1GwD44Aiw475pNBptb2/evn27aRomBCHk7NmzDMiDBw/w80ejEaLMKysrH/rQh8qy/NrXvnb37t2VlZWTJ0++6U1vGgwGiAp+4hOf0Fp/+ctfns/nCFjjvoo3QUrpLBq/Q4czA8H5pe+mmJSQ7h20xhFCnLVf+7OvvvTyi0ADY0xbTynyw8LW9qpMWZoJ6URRFA8e3HPORD2Rj+IQwlCkaZpWdTvMsvc8+e7BaHW0skYp/+pXv3r58uWHhwd5nvZHKxefvBTl8UoaF4t6f3Jw4sz2rJr+4ef+4P0feN/f+Ft/MzhFCamL8j/977/+6quvtk3zvnd9z3Q8uX79+s2bN7GG7/f7n/rUp9bX1z/zmc9cefXaIM+EiI6mE2QuJ0niPaC+v23bfr+/urqaJIm19uHD/aPxeLS6KqR87/e+//79+/P5vGyrlZXVH/nYD77h0qX11bX//T/+WlMsnnj6qXe+8537B0ff+s6Lr7z08s3Xbpw9fUY1JVgjGVfWtG177969e/fu93q966+95r3f3Nx861vfev369ZdeeglT5aqqUkpRxk6dOnX27NmrV68eHR1kSa6UWl1d3dvbm06nOOV1zrVNg1g5YYGGyBgDEQx6/TPrZ7Is++7ed47m0+GB4q9du5FkaRzHlDKnHAMikkRrDcQTQgZ5r23b8XgcPEFOBOKA8IjwignujOWct1o1qj6/c36xWAjBjDFKNSgBW11dPXfm7NWrV8uyZpwv+x9AMgVlBADaprr72oIk0B+keZ5lebKxsaGNQWu5Z555dmP9xI0bN0gAHC8r1RhjQvCYA0MpqNa4AA9392XEOReYQae1zvNcax3z2BgDHNI0PXb/IJxI9FYmePp6zrsOKkmSqqp8wDm8I4RwzpwLlEpCCCHCWYPtXFEUlx6/cH/3zsOH9weDAVYJkovFYtE0DQmBEg4ErLXwSA4V/giAznmQc25tiaIqs/wQQvR6mRCiaZr79+/GcXTm/IgQ4I584PveO5nM7t3dta5t24YAYMAlAAguT508vTIaTCZH589d4pz3el0Awre//SJ6aASPNhfEew+BUsK9C9oayxwQFkURSjwZ4XsPj0IIDAilHJYvOarroihynmiF0YLUOefRUMx5jIiER0Qc2GyjSsA5RwnVxnll2lbhFhbJBGHcOEutdTZ4GhjnwdquIlxujgECJcCMdseMCUpp29ZRFDkI6CJ3rOXH0nY0GmFMYprk2EC6Tj/YsbEI60xa0TMRy83BYBBHadtqojE53VrXtcqcc6tNv98visLajvWwsbWFQXZN00RRNBj0jiZjROGNMVp3fh02eABYzOfe+/4g9871sl4v6+lWFeUB5vV5b5VqvPchWFTn4XVmWbazs1NVVVkWiCMbbRwT1roQQts23gcqqbPeQaA0PCrVQRYFVp9ois8Yi+MUx0IySZHyVhX1t7717WvXXtve3s57g7393aJpQiBpnGptCYS6ri88dm51fWVRTNbWVo1VVbNQranbKk1Ev9+nlHsHGNkxmUx3Tpza3t5+5ZUrZVkvg0AIQIjT1JnquDWNhfSMe9LB37AEH5GCcfv27TRNoyhCUsza6sZ8Pq/KRkjGmJAy1rq9cuVKr9d74ok3HBwczOfzqqqaGsXvFuGABw8eTKdTY9xwMCI04Jsex3Fdl21bU0oxoUkbG4tIm2ptfUtG/P79+1evvewdJYRnWaqUqqqCCyIEtTbcunU3TfI0GVhrGRPeOmPMcDiMYlGWixMnNgfDXhSJ2WLetlney1555ZVbt24JEUVcZKtZWVQPHjwYjUZNW2f9LOslMqGUuc3NzdFoCMwfHBy9+U1vevLJJ7/wJ1988GC/bMooEkJw3S1gboyRUm5tbeV5ri3nTFZVtViUUiaUimqhSC4qYibjoq7VdLLA1vrO3bvVAjiqhmksZSI4rdrGGyMk9946EwINlDJjjLZKSp4k0faJda3VvXv3z5479ea3vPHBgwdZHk2n06NpOxnPhJD//tf+bZJk+IIvZvMsy4bDYdNU4/HYOZv20tXVVSGE1rbfp3XdQCfsUgEjFSH44IUkq6ujJI1G66vGNuPxYZpGJ0+d2NpeffHyd2azIu+lOyfX/rdf+9WNtXNvfdubvvjFL7a6Ms58+9vfnM0mTVP1elmSJ8kiapqGckIsHaz0rbXOOEq7mCmxpCU65wMlgQYHjgmOdZuxliwHTlxQrQ0QnyQ5oRSb/OFwuLKyOj48skqDJ1VVXbp06fLly7/yK59OexlKnufzgjHx+ONnZ7PZJz7xic9+9rP//T/4h+Ws+OEf+Us/+Mkf+k+/8Zvf+NbzeZ7Kfg7eR1Ls7+8vFvPgfSwjbO1++Zd/WWu9v/twdW10eLTvnBIiWltbO9g7zPNcqaZtms1T69s7Gyboqlk8/tjF06dPGqXH47EnFgMuzp+/MFpZ68ArJtI4I4SMx1MpYySFKaW++tWvPvfcc//n/+pTP/uz//jo6Gg+nSml0zQvyxKhSaWU1pZzSQh11nacJk5kLCkDQpgg1AcbwOVJf//hwe0bd/qDflmWVrv19VVjFBd0OOprq9tGUSCeAPU0eOK955RTRrwn3kEInrhQF3Vd1GcunJxOp3v7D4ESSiHvr6SBnz59cm1t7XB8JHgSRcnJnVMvv/zyzZs3NzbXJWdoFn/16tUQADzZ2923NtBIMiZo6HxFfQiR5N53pvCMEU+AEIoKA1QksM4Jwaqqwm6ZS7Y2HJw5ewo1W3WrsbIvZwsex5x3lKzOVTk4SoHz6BimxHWFe1GaJ1VTF/PFMb+vOyg5y9IkSRLkGGprhBBZliHvAN9cJCdqrcfjsWRUNy0hpGkalMlzLiMhjdLgA2UUHsFeGWO8A1udUm1T1S50sWOYNxLxKGQ9SkEKEXyw1i+qcns72djYIoSVZRkshBA8BKuxhCMhUG+dCYiPSNvRHmGJ0IW2bX1wOIfGnYpSaq231nAmAnhrrXWWM4GEx+OCAU9hQjpRXgihKAq05ztGAAkljHPKWdu2LnjCOtzWe0tIWMLUwbsAsLTYIsEFR0jw3noCDJgD54N3wXnio4hFkfDeRjGPQOZZL03TmzdvK9VIKdEiAI+hEAJjgjGHLFvvfeiAhg7zxU9Ac2q/pIV2tlHGe4McQ0AbYqVUXde0y8DpqNAhBE6YBYIG34gWIdlz5+SJqi4xNVowcQxKWqsh0BACYV12XHBOijiOUioknv5dqmOAWEbCmkjyEIigDJjHUogKDPJSURJnWXJsWmKtT9IYn6BSjfXuGHfrZbmq1XF6Hv6lblulNHdeRlGa5m9+01tv3b350kuvAAMuyM7O9sbGxo0b19u6dq41Tp8/d456tvfwgZQxABBgOFPwDhy4ZdkALnQt6HKNecZ4FEVcirZtvXer66N+Py/Lsm6qtm3rRuEOFkURCEopbduWEQpAjvvwY8Zu14pbewx6kiVzIjwilbfLuDbSkZo56yL1OqkfXXLzgS6JvaQL8XuUFM85J7T75GNmEwDEccykoIQezzm8h2OGbLc1udc9LjjnbduiRx/yuZxza2trSHnpZQkEaowBwFWk0VDO+84Z0y/tfcmyVueUHZOa8W8wU5Qxhgw4zvnSold0kx4ApRShIUkSD4xSiggdWkkIIfCm4Rs0Gq3MZrO6rhHd5st0u+XPYtglUUJwEoxSSIyO7Pf7i8W8KavjB4Qb5uHh4cbGGgAsprOicM65uq45ZcY4KWOtOtcIa22Sxqh6PBZVOAdYagYPEALut23TEsLAAGMMKBFC5L0Ury0AKK1bpVZXV0+fPo2/RZqmcRTt7e0B6RxscA3gpEFGnCw/hBCEgLY6EUlv0Mcdo0f7LsxwSaODpfdWSi5EjxBSVZX3NssSa21d11EsByt9Sik2s8NhP45jpdR8OjNGOef6/QFjTCllWkUpQxgHozXDI/zB4DwKERB0RjKKlLHkkjIerKPoS246DwFPwDsHAMaoRrX9fr6xsTEY9Ky31tu2bdM0TdLYWK10m+XpaHUFAsGhKQoXCIUkyb23R0dzwdOTJ08aY6bTaRxLKZMsyzDquSxLxhjnMoqioirx7cjwycVCa93vDeumnM0WSpnV1fU4jkMgxjhjjFFI6XFRpI3VONvAAYztwpAILs44jvHEx3PZWhvLJEkSEjDWzxMM+eimpKjrouA8jmqyLHPOlWWNl7E2MvFf5N0cLOAISfCk1WoOhZCEcqK1NgGc5Wtrq1r5YMn29s7aaP2Vl757uL/nvFWhtEqnMjq9se6sbovp3YMHq8NhP5Uh5zWAVS72fjgQH/vLP/bxT3zsnY+fkpLNjw7r8cSodv/h3tVr11+4/OLe+LDx1tOQDfOH47H3gXNJrK7aZv/wIDBeKxWYBCa0s8Peagh0uDXY3NhJ0542rqn1eDpbFAvHKWPBg3DOtcZoW1MmGANCRGsDpTyK0tY5wmgc9QoVwPtQt9a5WpvGIPtQRYJxIRgPxqi6KSOZEMJ7PWmtLVVBCJFxGoBqoLGIlNaqVTSAVo33IYo66VWgRBsTR9HaaBX9QAB8CB5PWCm5c6Zt6ziOOaeUUqUb55zzPo7joqxNayLJCYmcJ1HaB0qcawJY602jDOfSWtCq8swpZwVnjMsQlLUaLWEDIVXTWO+ll5BwZ5SjQK2hNQE3a+smjSMONDhNifPWUOMjwt/7lsf/jz/56uHuPB6s91e3RZJ7w91fBDcTIox2JOLOWeT8Om+9ByGYUo1z7lOf+tTHP/7xGzduXL169XOf+5xzwbnggBDC0DBDiAjDSPF2dUens8cZughZeO8J6Yy8Xv/xPrjgMNEaurG9w9F7CKFt28lkdmyagTv/eDbdPrkTrLt3795HP/rRd7zjHZhNd+vWraIo8E+lVBQlxpizZ8+eOXMGT+Qf/dEfxc0TTRvs0lET0B+VcuiiCyl0pz4F8FJE6KtGl+bOXVWmKQBN0zROBZOiWDRRnA1GK4R6LpyInfGN0s28mO3t7aVpDlJW9QwAgJLpomobHWf5jTtX1psTyjR5Nvixv/yjZ8+f+cxnPrMoXb/ff+Xqla2TO4wJEbPv+9D7rXXatt99+YXJ5Kg3TPv5xmwyiSIZp7E2Ski5WCx+/Tf+EyHkr/21v3b79q0bN268853v0Frfvn0b2R51XRtjpIxjwYl3cRzjNoUD7ERGxIf5fA4AOHVolP7ghz/yzJve/Gu/9mvj+fzjn/yRJ598GlX1G1ubn/ihT2axWBsOoigarawJEX363/4qhPD2t7z1xe+80M+zbNCfzWac86ZpsiyfTCbYyWZZNp1O9/f3sX7b3d0lhJRl2e/3P/7xj+/s7Hzzm99EkdDq6mqWZUVRNA0Vshu14hlkjGGCcC8opdZ37l63b9+eNtNWt3Ec8+FoBEvqLumcOj3nPCwrMADw2hNCPGU47qBdxrfN8xyP3sraVtWEUqf0ZHI0GAystVVdWGddE6y1dVlJKTmXIVQMvR2MIRwjGry1IUmSvJcqaza3Bs7Z+WJa1cXh4WHbthAoBXqwd1jM6lu3bvX7fWPRL8yVZZGmMc432lalWRw80U3bNhp/KWMMUkjQ99ZaK4jwxq6trbVtU5YLSgE1NU3TRFlEHDqWBoKxCwAugNY6BKCEByCoIXU2hOADBBro1tYJSumVK1fW1oZJHMdRnqaxc2FZU3LnHPjXHUgEj4QQNnhjTF231tG2bb2fo1cDclR7vZ4QoizLQDwTrKgKa3Ucx0DD/QcP2rYFgKapvAcuyLRYJGnUFG3baiQipWlc1EXTNEo3L774YpZlSZIaYxaLsquVvaehs/8KnnjiQwgUw22IMca03t++cTOQzluTc04DdFhQCN47QkAIQQUJZpl2bYMPxnhHurhnrKiI1tr7wBhlDCil1hBrCBAaxRnjtK7LplaEEqUMvjNKKSQ4pEmulOLAAQjaJnhjA2HWOprQ4XCIHq+dp2QwjBJCA3g4bktQHKmUxmRRKWUUiSzLyqLGMZpf+vR5AmgkSmigoWtIKKVVVVHChYicC5gaL2gUQqCUnDp1amf7xNe//nUhBKVdi7W+vn7t2rWH9++ubW6ORqPv+Z7v+Q+//h+VUriTcs4Xi4X3FnW4j128OJ/PIXTbJZoyy0RUVTOdzpHDEscxpSSKIms9DeA9HB4eEAKj0WhjY20ymRSLpqqqJmmcc4QAcgQIpYEYir4i1HtjvbcBtZdwfHM6PzhrrVIKnEvyPEmy0XCVEY6Va6/Xm0xnew8PKAmMkbXVVQh0Pp/nee5DmE6no41B3kteu3m1beu8Nzh9+nRdVZPJ1NnQtm2SZG9729sB4PDwcDweM0bW1kaD3vDg4LAqG+dCCI50gys/Hh+iIVRVVQ6ClFIIYWwghDivm6rJermMGAGCB15HBLPWu+CsozFFtGU6nRZFkec5oSHvpffvHh6rBLATa9uWMZbneZbm2rTI9VtbWwOA+XyOifBJlvZ6Wd5LR6v9EHxdF5PJfGtrnRBmTSMj1huuWKfLcuE0jWTiPTiH2aW8NSqKo0C8B0u4O31ue2tr82h8YEM7XMmsMlbZtjIQ0/XRZhzHnAk0mjgcjxfVwtpV721dl7dulXH8eC8fjA+PPv/HX0jSqKlV0xilvIijEAINRGuDum9Vt6+++vKzzz67MloNDhazopf1jg7G3gFjrCzao6PJlStX8zQhJESRmM/n1QySFLwB55x3ygfGWZTFifcO5dJL0W7rnAMaAhhrTW8Qr2+t17pc3Vh54cVvAfEsYpP5WAi5vr3a1EbV7dFRpbVFVtFiUVZVlabxcDgsisXJk6fzPC2KAtNye71emrrFYtGWLlAKAKPVAQAcjA8fHuzFsSybYrTaJwRu3b4+Xxz2Br0sS4WkQkplmlbXX/3aF86ePZekbL44GgxW2ta+fOXFYX949+5txpgDBwwCDZub60D8dDrV2idJioMWxIxaoymlRVEQQry3aGTJGGVMMsYC6ZhEKFV+57vedXBwcP36dQwjRu6AaU1ZFGuj0d/5O39nf3ygG+NjVlVNUd7BHumjH/v+z33uc//Tz/2TxWKxtjZaWVn5sz/7ysOHDy+/9G1Tzz/4wx+/dOGxT3/6V8qydNaqto1jiTVcmmff+c4LzrnNzXVK6dra6GB84I3/7B/9UX842tze4pwGGtY2Ry60hJA8z1VrXnnlCvhQzOZxHLetGQyGs9nswf2Ht2/ffetb395UTWEKHIA1TXPnzh0p5dbWiXt37p4/f/7KtavOudlsFrwPIczn82q+iLIclrp17FFRaes9gLd17Uaj4Wg0rOpisVgMBoM0yW/evA0eqrLNst5iUc7nU+dNkiQySozTTBJGqNPBEyAQwHfeoxCId44B8yRUVWOt1npzPJ54H7Y3NxflfG1tjQmytb2zu7t7587dEAilfDKZGGPiJLpz6+bm5jYh7Pbtu8aEWzduS5FSyryzDITTzqM5BqcADum6aZxiPjDnyIr1lNIs68WiwTki+jA4Z6y1URIr1XLOer3+aDTSzlpry6JGgEBKQSm3S18pQkgUReCACH7MXUXI1Vp7//59ZFdRSuM4RjMN/KqmaXCPYoyJSOLXmqV5KKVUt+rw8FAI4Z3Tzk6nUxSpUBqMcRSclPL1wl2KY9oLY4wRfqzskVK64LHTns/neEgRThC68sGuDFbauqkrvXdwRAPxDvJenuf50dERcCBAnUOLLbTCICGY14vGLuKcYhk2m81Q74WHjjGOEEJJ8MEfXy2SQwkJaAPVQcUBXwVAOM+TwJaGS2Sp6McBJGLQjKHzqj9m8D163nkSGKGUUqDh/8fXfwfbmp53oeDz5i+tsPfa4YR9Yp8OUksttTpYATnItrAN1zZcGy4YG7B1Gaq4NcxwmWJqqKmBy3C5VOECxmN8xxgjjHEcBMZykKxs5ZbU6tynTz5n57Dil948fzzf2t3c8cwq1amj0zus9X3f+77P83t+oSh6hILxxlqrlGCCumB1qZ0zlMKZM+d6vd50Oi8XlRAMTY1PycuoVcLbtPQ2JBGQMcTwrVJKT10RfOcKQlqj8a3GJZgeQnBOn8I9eIvxz7cOKrAhxKKlrqrj4+MYO/8NxhihHTofIb6Vmht8DD50zNPokywd9vtt24Yk2KZ1zj109Yo1bn9/HyPgKYQAmInnsywDCDhowYvMGLXGLV3pgpSSRKgWpfdxe3sb6UXgodfrDVeGKhHe+7byeZ6PpxMR+WAwGI1Gi8WCCdI0dVU1SJyMhI1PTpRShNKnn366aZrbt+8qmeIH1NoubyDt2Jhdx7y8OJxRSiN6S4Jnkg1HwzRNVtdH1unJZNI2xmpdlbUxxtkgGBdCBMZwkorYHzvNOQ/h9JojpTcuXS/eCj3jjTudCpw+ZqcM6Li0a0e36BCdXRJpEa/HL+6aIAAhRL/fxx/PGENvXM4EAOC6wLQGhI+dcz4GAp3HNwrdTn8pAE4a3L17dznpSLvWGZS44WfEzZwT6nBsQ3hHfHERiaVoL4PM4uXshAkhAkQGBD+CMS2hEV0aMEkFJxxN2/Z6PeRN4wLOsizJ0qqqnHNbW1t4dOKYM4SAHWxVVW3TOOeCC7D0zhacI7UedRi4drDYxm2K806PgiTH0cbw6tWrvV4xG09DCE2jtba2NjHqIu8hrM857/V6hMTDw0POFG6/1pmqrgleDaBIl575oLV1PkgJnPBTEMQYk+U5YwztgPEZwBKCUYrkyiRJhODUA0BntSQ6b2ucW8SwnBMsBxWk1xuORqMYI0bdUEa8OzXw6RY7/kYpZZZlbeetFNJUZVlKKY2R572MUtrr9VZXVwkhx8fHe3t71lpOaAhAqcQ7QpfZyFwKpQpKoSzLsqwZY5RySjljnBEWOUEcwXjnvc+TnBOCl917KwTb2NhYWRlMZ5P5YpGk8upDV+ruVYYQkDojpFzn60XRG4/Ht2/fklJeuHh+Pp/OFtN+nly6dAndQgTjlFIU/eDxh0IEKRNtDZ6bVVUtFoter8cY0dZY69rGqESkaYIHJqU+VWLQGyqlUCUcQkA+TZIkTVO1bQsQmsbgasIHiZ5quGUihTTGoGg7hECIBaDeO8G5NT5CFEJEEo0xpjVta3AUhI+l8x7+RLg5eG8socw0mlJimtZ5COCsC96aqtaXrw5PjueJWtlYP3OwfxBCeOqZp+pqVqQ8UWJ1MDzc3Tnc2/G6Lc2cmqm14UxPscHK5sbwmafe/f73fcfli+cIIe3s+GBnEoyeT8bTyeT6Gzdffv36tCwdhZgIniat83XTehuMDqY1lHkTog2eiKRsHRFsdfNSf7RZV9pZOJnr8dxZ660LIil6o6zVhnMOQC9cvBgjcTHs7R5472FpwkMJJ4zJJK9aLaUULCGUGNtq53VrgQQc6TlncSs7OjpyNqyurlMmhFCcJS6GptFZkTPO66bBAdhiPhec50mqW22tJZzZtooxdrZs4KuqEoJZa0J0dV2H8CaIe1p0EUICeBkk5xwY5UJFKrRrrLOUch9pDBycD95TahWHQIELjnY6jBJCKecSABgB7yNQ1ho7W5T9fiG5AOp9VfayvLS6pQ3pD/IsA8Z5pDSaGJ1u6rUi+d4PPvOl5166d3jQLwpCo5Kk/hOeF4g++s61LAIESnFS1SnkxoeHQoher3f58uULFy587GMfs9amaW5DZ2calogT+68NkXFmisv/VH8TwmkcbvfyAIQwgDdl0Kd/wVp0PB6f/iKl1Ouvvz4ajTY2Nm5ef2M2m/3xH//xzs7O448/fu7cOe/9D/zAD+R5/vLLLw+HQ2v9f/gP/2F9ff3JJ598+eWXAeC9733vD/zAD2RpMZvN8BhFBy0cbRIgdFlGouYPj+C2bVUi0dIHj0i80W1tBFeMSkbl2x9/vD9cY1wlSXZ0sn9wdH97+3qa0aaZGuOStEeosK6dzx16+zRNHWLgIhwd7x+Pj7/+3Fff/a6n3/u+Z7/3w99fDPr/5Xc+Trnc29vZ39s5c/b8YrE4ODj45Kf+6O7du8N+7+Tk6M6tW/Pp9Itf+PwT73jHB//Un3ry3e9+9eVXzq2fefjhh1fXRvv7+//qX/08IeTFF1/8wz/8BDaGhBBCaJ7nWnfLAU8E5xylsNIfWGvbtk2ShAoex1Nj3MMPP3z+wsWDw+NzFy899R3vv/b2xw4PDyfTuZK8aZrz588rzlzTjE+mR0dHVdP+5b/4333+85/97d/+7dWVwcbaCHfUXpZnWba6OprP5+PJBJP5bty4AQCrq6tCyb29vXo8z4a9H/uxHxuNRtevXy+K4vLly0bryXh2584dpdRjb3vk3r17TdMgHbYrWYkXRAglrbKEEK3NbDazxHImvfecErRdpm45Nu8a3SzDOTBnMtJojCPBM8ICDSjkxE18fX19a2trMjmZTCbOmccee8x5s7u7G0IAiHVdCZ5xzqtF9cXP/3He79OlelQppZ0OzhFOgJAsTwaDQZ7nIo2LxcK52LZl2+C4NXAuDw+O5/O7nPPxyb3hysA67b3d3NzkClpdU8I5ZwCkahq+tDbjXAhOnXMQo3bd5XDOOcd6WZ7nWZoqHA5nWVYUfa31/v6BrjTnHINZQgguoJETs8bHGDgV2poOIiRhdXW0MVo/mR0uFtO6rnu9HG3L2tYsFotqUUqJZBDmnONAsLXrmp8QTdPqxgOla2sbWAgyGq2pF/OKMBiu9Ou6Oj4+JIQwTigLQFyMDIBX1WI6vUMprKyMHnnk4WF/9bmvf3tyPGtqvdPsEUJs1ADBexdC1+1gFk2SJME7QoiPMSxdCADA++isFyJyzkKIhFHnHBOMUpqm0htrrY3OQgQgQBhIKYSSnEkSu4AL5xxlHdcDTxS0EsYITvzgIYQYOTZplLEizXu9PE3VcDg8Pj6u6zLibIESQmiSSC6oNyZNOZrLOBuSRHoSq6oRolzi2rTXz7GuJeG/Gt0v+ctKyoR3DvcGlctYtjrnkMWAc2zGmJIqyzIpBb7bttXlom6ahgRCgBFCUSIMAPu7e0pIznlVNdgXee/v3btTzmZZr7e+vo68ws31jb2D/bDMwZNSpumgLOcPPfTQP/y//cNf+ZWPfvpzn8UeMlHZ1SvXJvODfo/5YNEayXvvbIgxZllmWs056fVGq6tDlbAQXJqp4/1ZsK4BDFyiWZFyzr2PisngIwVy2kExQgmjnHFsq3A3x5M4y4qf/Mmf/J3f+Z39B9vf+z0feu65586d23LOvfrqq8ETCpRzQins7x32er22bVdXVx959CEg/nhycOvWNhd8ZbSKduQnx7Om0UII5+JsNv/yl7/MGJtOp0WWr62tDc+veu+3ts7duXNvf/9Aa50Kaa2lnIXgx5NjziSSfYrR0Hu3srqulGCM7e5tG6ub1ubZoD8cRB/KshZCVVVV13WWZUXem06njAnvm5deevnChS2puBDive979v79+8fHx5x3+FqMJATY29vjnK+trY3WVnZ2dvD4ZJhYBd45ow0tIKnrSiWibVvKQSlBqbTMcs5H66uc09ks29+bGtNWZYMiZmO1c465MFw5KyRZEz3ndd3Mq2qhlHrnO9/5n3/r4845KRVjYjqdCiHyXq8Y9FZXV0/GR/fv3y2KxAc3nc53d8eTyeQ9Tz4zHK6enBzkeQ6g0zTV7cJaHSPhTKqEAQne2SxPFvOqLOd1NT05GVPKvI+MChccehTmSZ5KBRCKosjy9Nq1x2L0e3t7rzx/J8nZ+tpZbcJiXmPxDSRAIK1tEQtrmqa1FfWEC3oyPSoG2dve9sjFS1uvXX9VayOT/Mz59TzrEcJ3d6/r1rPIpUwGveF8Pq+qyls7mcBHPvLTr7728suvvfLoo49+8IMffO216y+//PLq6ijLMkqpVLxpGiAQY1hfX7948cLt27dDcE1bjccuBK8SNp3PKKfDlf5sDqurqyGEfr84+x3nqqp6/B2PEGB7ewc+6M1i1DSacEppzPKk6GVSysViUZYlpRQgaN2E4BhjNnSqZKVEWUZKCVaTb0kXiJQRLsRpFM/9B/fGJxNcON774+NjZywDtrKysr6+/slPfvLLX38OmGBURcAQJ9q27Ve+8pWynO/s7AwGvc3NzVm5+NaL3/jMp37/yqNv29gc7Ty4+8xT7y562XQ2LvKcUrC2S2MjhPcHhRAiyzLKQCSsl/WqqloZjZIkG4/HMfprj15TSvlIZuX08PhgG3ajd4SQJ97x+P7+vm7dzCysRaW2+MZz3/TOBQ9dZyVlv99/5JFHZrPZaH31xZdf+PbL305VwjkHGuu62Tq79bYPfe/nv/ilpmkA6OmWywjFPXlrdBZIDCHMZjMgIVXJcLi6/WC3rQ0hglNBAmOcXLx4SSiuTVMbLVMpqNCNmU4WQTtKeYxAOYFlUhyiOT56zuX1V19LkkRQZox96KGHY/Q33rgVA7374L6UyhsjBHvhhRfOnj3by4vg7OHR+P69HQBKCaNEGu2F4IqnlkaIXawWJRwo1doKwZSgqUquPHT1xo3raKC/DCP16O0PAB7iqV+t1i5GSJK0bOrxeIzkDh98DMTHICXjktW1Z0AJIS5YDgL9dvEAwscmhCCkwKdIW6OcQrG/tXZ8dBxjjJRgAS1M56+Fh6n3vigKDDrTbUsoxRbde08IM60FsFGhGzKL0ccYTjnCsTOH6XILUZNIAW03CSFEt5YQEk2cmikACMGyLKOULRblvXv3i6Lwxggh1tbW8DSPGA/lAhMcAgkhGNMCiR0iuHR1wPRzTHYVgsWIOTAgpSKEWNsRHq21xmqI3ZTLdzMAhlm4YZloR3gHxXYgHef/Xw2VR3gOOm/TLnKQEEIpwW6Lc8oE7fULF12oQ9vWMSqgBO+Oc67f74cQjo+Pm0Y3deu9RzYoomynrgJxmVETUXFFAr7P2CUcMqwiCFmKUkMgkRpjOGWnwB9jVEp5SjIlb/FZxuawQ4U4X3KRiLZ6Pp9zzrEOd845GwAI4yR6R3wgjBJCQwCCH5zxqqqpFEIqoigBmiphyhpCyGXShrapKkR+GUYK0+6iRQrxLfxZEqE2rRCCMhojiZHUdeu9V0rlWSE5R8M9pRShOICRbb2YlxNCYlnOP/HJP4gEpJTGx6Zp79y+jxW+1tZ7AsCff/4l8ja2trZx48YtSikhtG0N2r9EQkMMEAFDF4FGABIhYEKyMQYYBUYJA0KptrpsOt2AlDJN0/HJNEm9NY4tMzyFEGkqkOIanSch0gg+dj4JeGs6Oudbqsq3ws2nzxX+uezeuwevI2F43+iWc64Swd/yrLLOOHs5GAk45co5p9batvOVCtZplMSFEAA6vLJbC6wjR0spkUibpqnppun07NkzmGJUzRfeO/TYMcYE1+XW4ON0WqvjjxVCok18qhLsGujSBwb7HeOC79Kluu8CQqRSeBxjNnhcJkrFGLEmxPJVCOETj/I+AECyW4wRIwHwzMXwwBBC22hcxW4po0FoA6Mj5/M5PmZIOCCUHR8fl2XJCG2aZnt7G7UUZVkyJrDsp4R5HxkTOFrQWh8ft03TZCnHnbbVbas1oO88E1IIiF0y5HJH8s651mpKKSzjWPI8V4k8Oj703p/fOndwcMAFO3PmDPoRO+cigFIKYZEYO90GAFDOjMFhVfTeSilw+H06u0IMXQqFBZK11jkdQkDHf7w4UkptWgBQidSmLcsyS/ONjQ3s3+uqms3naabOnT8zGc/wBJEMtxpxOuwkhDBG2rYFoGjVDUuzZg+RMogQqeAZJVrb02GGcyZAXButZllS1WXVlMa2OGEq+nmaJ2VZzufzum0iAYi0KAoE2c+dO7d14RwhZDodZ1nW7/esNd67fr83nc7qsppMJlmWcc4xxEgIIQTLsqSugzFt9AG9JSmFANFaY4zhfNhf6xtj2rbtF73BYAUvYFH0l6oU75yzVuPJlSTJacYAyko451ImhIASgkAwxmBGqHMO2V3oeQ0EpEwZE7rW+Fi64HHKEmN0LrSNLtSfgB4a0+mlIBDBBSEk+Fi32npoynZz6+Ef+P4fckZdvfK26aS68dqrW+c3Vkf90XBQHWy/+vKLn/38p3Ye3L925eJj1y6967t/YLRarI16a6u91ZXe+fPrkhNndDPfjc6Oj2fHx4cH+7tNWe3t7R2P58fzmQaQKlN5FhlptG6Nq2tjahsjodJbILXxta17w02R9CJJpnNft6C1zTJhtDbGqDTp5fnq6urJ0RhHdIzSleEoQAQfFouKEBIA8Foh/Mc5Lxe1VIAJXowxdP1iJOq6YSQqkTjnxuPjRGXj6ThRaX9lCECjszJRFKK3TSKF96GeVwRAMg6B6LYNwXPCgmmB0dZ1ZcbGxlpVlcbo+XwuGM+SFBcaHtkhhFNriKqqOGMR4PD4RDd1CK7I1cbmiogCvHGEBGtabSASIonVNvoAWaKkwP4/hEAIJcQba5YDtmjANroFAK+1UkoKNSsXzjnBuSCEM3BGQ/Ak6LV+8qe/9/1/+KkvbW+/wXiyceHSn4Q2Q11rTjlKspjgEIExBjFySiilZ7a2/uAP/uDTn/609/7hhx8+Pj5O05SKDq9EI1303klTtSwk4pvr2keEO/F3nZ5BZGlDSill7L9S9jjncACJqC7u8N5bxhjeXAB48cUXT05OOOc3b9586aWX1tfX79y589nPfvbKlSuPP/74l770JVTgXb58+bu/+7vfeOON6XSaZdknP/nJW7du/cRf/slEKdTtLV10wDnHuOzAsgCkiwAEACAUmqbBnFIsL11nuc4BGBcKKFdp/+Klq3kxrLVWefbI2x/eP7j6uc/+AeeFHPRJpM6FQS6R4ra6uvrkk08eHR3t7R8aMITE+XRy8eKW9554+11/6rts455//nmrjz75yU9euXLlypWHpEoXs+nKoM8oVOX8l37xF+fTyeb6+jNPPZ2qpJrO3/WOdz722Nu+/e1v/+Zv/9bXv/71+/fvJ0ly7959NN1ljCmZdvIXSp1zuLMppdI09UYjqa6jkEP03jPBAxBCeQj+8Xe82xhzfDy21lNCcFXi63d/7+Nf+uIX9vcOsyJfWVnBWzyZTL769a+/68l3o3N0MRggkL2+vm6M6ff7WEUEiJTSjY0N2Nj40Ic+tLKy8pWvfGVzc/Ohhx4aj8f379+fz+dXLj/kvT8+OGRAFBfD4TARcjweK6Ui53pmBivD1fXVuqwODw+d857GRIm2bbu6oaoqEiKl3FqbpikGaiHdMniw1lLKYyQ4ksK9lTGWZdne3s5iMRsOh1LyvFCz+WRzc+PcubMHh3uz/TlE8D56a4VS1phqPu8Nh8YYRVWkRAjF05RSinH2OH5k0jPGmqZRKuNMWeubpmkb07bG+0BpzPIcT0Sl0n6/f3BwsFgsKOGEsBghEcgLo5xL732MHqcxpwwR732vGDjn8jzL8/S0ubXWoGWBlNIaE0JQXFBCiZBYbTDFm6ZpWytlYoyjlPrgF4vFyy+92uqKK9622ppQN8eA+TlAsD+HJeRHOZNL0xw0KmWMAZWEkOl0FmNUSjVNDUBd8P2iePbZZ8fjk+3t+0CCc+b8+fMXLmxdv37T6LgyXHfeSMlXVkaCi/39w0RIIURTG0p4iLYoChedJRp3hNO9Bs/atm05FzECjeBs51yGSaweo4djkCJpDKIeWgmRpirPMkpBSlkUhXNuXi4AIHgMw8FxGcFNCqsrbN1hKTxE8ywhpBDDtm0C+LYthWQrq/319ZXzWxuHh4fW+u3tbSlBqYQxOkxWnHZN03rvdWsZY8iKIoSgCq/fL3CRjEYjgDibzXRVoxkobkr4J5awWZahY3KSJGmmqqrCQhAhNny3mK2BnRIAcC4o4WVZm8YQ3O5IJ3u02kwmk16vhyUvbnZt2xLO68Xi7t27ly5dQmMNThmlFE1CTykwZ86c+cIXvvDqq6877UiIyG577bXXnG+GqyvD4XBtNGiaqixL55wxLkmS0Wi0MhgyxmbzyXQ69d5mWda12c5RwQL47jiJVjAOQDhj2E2dcnMIibhHCyFCAM5psKXoiR/6gR+8dvWhGzdu9HoDY9x4PH7hhReSJOkVfcbYdHbCGCuKbDKZOOeOjo4CsZTF3YMHK2v9q1uXy7qaz8rxybRtgjWBQKREBm/nkwrDEJIkO3fu3Pb29t7ewebmJiGRUiIEhwhdzxDRMNcxYCGE+Xw2GPQ2NtaEZCG4zTNPzBbz6XRqDaD27e7d+/gMUMpihLpurfVGuxgY4cz78MQ7n9zf3+OSMUGRowRAlwdSB1Cg4YbzBgCARsYZIzTLelmR5kXqvXvt+vUiy5Mk5bxuGru5uZqozDjtXdS6Ga2vWxsOD477g1xrQwnDWAVtzOHRbq+XjdZWjDG3bt47ODj03h/sjxfzFs8VawIB2yv6q6urXNA0U2fV5s7Og1dffX0w6BVFwSicHM/qpiqKbGXl2taFc6+++mrwFCJ5cP9AiCRNU+cipTAcrnGhjN6+ffsuJbEoiuDjYDDQ2kpJg3WwDO/C8itL8yLvpWnqHZz/8IXWuls37yshj/XEe18UeV7kEJAMomOMK6uDzbMPt7ra3d2WCRutDTmn0/lkMOjtH1ZlPR+s9AVXEMjKaHiwe+xaw5hYLBbWegIsK1SM/mtf+1rTViTEl156aWtra7FYgImLxbzD3JO03+9nWbZ/tBejf+aZZ7a370+nZZqpxWKRpolKepzT+Xxx/sJ5XqOSI22MNWYcQiiK4tKlyweHe8fHR6PRKMQQA6FUyUQ65xpdyUSuJSPO+dHheFFVSDXCmgkHq2iP1XHqrbXeIUuQ+A53QNhib2d3Xi6scdhyt20rufDWr6+vv+vJJ//dv/t3EJnMciEkY0xKwhhzzn7m05+mjPR6uXV693B3ZWVlY3O1beunnnrXxYsXf+3f/+o/+Sf/iHOeZUlZLzhlqNDM8qSsquPjNklloGF1dZUx2uv1ENstioJzfjw5ns/nZb2Yl/P9492iyC5evCAkk4yfO3tJt+HOnXsAJAQw2gcfIRApkshRmwYYwVTXNaWAp+F0vmhCk+dFcH53Z/fZZ5+9du3aZz7zOXx+EEFD4JIQsrGxMRyuzufTnZ29lUH/2sNX7969W5V7Ozv7xBMhEkLYfF4Ph8V0Om/bem19dWVl6Jz3Phozdd7GCJRCAIg+AkTGKUaneDSQzVIlkuiBUDqdzNM0fbC9HSDs7BzUlaVUUCIW8zJR6aA36PWKqqrKxYwRzhiTQhntvY9tZSilCIRZYyJjWmtKqQM/WlnfWFm/ffv2zZs3z53burd9bzKZDAYDXTdIYUMCgqCUK+m9tdYCCU3T1HUt0wQPPnwMIEbjdJJIKSWlkGVJnuda63ZhT6ltp9I5rKqxV6FAUKaDJF90+kJoFdHM0/m01hqMWcR4dmPzwrnzL7/8cl1VLnAhmHeBkuh9VEqFAItF1W1wtLPpxEaibWsSOe9ynwIhBCiBEEMIwQPHmFkSEpE4TAJuGkZVmkjGiHcxyXMcgg4Gg8n0BBgjDaGMMMYIJyEwa20H6y45nt57YARIiECTTOX9XnSec2qMidFTyjjnqNPCB8y7cPqGYckVpZRGCCF6Rjt+9ylA5kLwMdZtmyC1agkLnvLj6rJyAdlXhBASgwuBKaX6g57W7WIxY1JwLkMA02rnvRCqbU1RQNM0xjhCCLpgW9v5a/EuD7CLsTpt1ZCRDWjUEiPpdF1dCjGigUgcIiQG6K4PpRSAaG2WnEdY6gYCQqK2NfiLurm4t7AkhZDOblUBgDOGMRZD5N0kzKGHg+SCUxFDiJEsZrPFYpH3isVsHr0HFx65dq2pFpxLQUhgzOFbhwgBGBOERBIJwQ8bIQJwwdfXN0MIdV3GGAb9oZC8qdtEytXBSlmWw8HqYDCYL6bHx8cheKuDca21Ns2LtMilltaHtm2jj/3+cHV11drQVvVkMpFSEuDjk/HnP//HwUOisrbVADR4oJxZ6/HCMU6YkEoJIVggEIKvqppSGmnEGAxfO5FIkYjJ4cTYtkgzpZTVjgB7+9vf3rbtnXv3UGKMC1xxiQcB3ikGBGV8bpmnRJevt9zoNy01Qhfd5vAfrbWMUTwsTkGu+BZyNCwN3Cml2EymaedVYq1dLGZpmgJ7c9hwOlZhjKF/Lrb3zjkWmYse9xb8Lc5a732/3zt79qz3fnt7+9lnn+3nxZ07dyaTCYbWYNq595aQiIWQ1dpTgvQLHH5wyuIyawQ3wFbXhJAYOnidUIgQfPSRRCE5ZSRJlVIqN1ld11VVCclxwaZLwwofnK66rNGyLEMI1locsOEcLnRJld3Kraoq+LgcpBHcMAkhTdOg/w92FviejY4USJakMcbJZDKZTFZWVhUX1vr5vNathQBNo6XsCLAY9gUQ8jyHSJxzQJYaiuU9cmjnFwLnPOsVbVsDQHCeUso4B+8RcxGSo9HH/v7+3/t7f48x9tGPfhRCXFkZHh0dUUqaViulsixTiaSULhYL3bRAo2kMNpsINyDRmzHm7TJ1xjljjG4NEv2WKLlFFnxVVW3bRh8iC865LMtOEerhyoBSOl/MQgiMsZWVFWwAx+MxTu8iEEGZUgohfjxlYozeW+8DIkc4v5FSOmcQ+c3zHvpuNY02ThNCvLNIETs+OeKUoczfWBsBrNOnjjEhBGfdbDZDp5c0TRkV88W0S1v1ZlYuSIi9Xi/LMkbp9vY2FyxNUuyzmqZBaGyxmFtrIXS4TK+XF/1e2zaoNDfaGeMIsKbRMU4R06BLr8XTGdJpgg5jzBjXtm3bGuecEMg1p0vQI4QQdFOfwm2MBZkknAlGqTVok8URXX3rhtAupyn/mxfiDCEERmgkoJ2NBOrGGgdA1H//0/+7SxceCpbvPbj38ouvNNXi9njndjCT6cn89iu6rt7/vvf+H376x9/zxDsubJ1JBEgRfTAkWkID+Gp/b79tagA4Pj68vzuZzWbOm+l0urt/MFtUDcSs6LMkCQAkUkLYbFES4JFxCMT42FjHkuLa1SuEZY0hJ5Mq44pSmWUkSZI0JSE6xnmWZfOyjIEkKmOMORvm87lKEyEUQIWPKyGkXlTFoG+tM8Yyxpw31hGA4LRhjGVZbo0B7iMERlSesXNntwLEPM8jJfNZCQBCCMmBBkcZEG90VUVrwYe2bZWQeZ4bo1tdBm9oiItaY11als5aq02TJWk3mUYBSkSno24MBjEa7Zy1hBDKWX9lCBCKIkPluo8hgCCchGC1NRECYcFaywUlqOoQjJHOsIuwTuo0nkyUUlxQ3Mq895qatjW+H1OpCIQiyyKhhEOIkdKYUviBD73/jz73xZu37hyx+6sbf8IDo5s2LUSEGODUi1wQCs7UCMgi2yNJks9//vPves+TFy5c+MIXvojFCboAW2uLosCo6VPgeAk329MTLXZWGxz54IjkcM5P5WIdPUIIsvTfYIyREKPzJBJggHE4VVVZa1Op8Ovf+973Pv7447/0S7/0/PPPD4dDnEnXdT0YyPe+99mnnnoK7S7xbdy+ffvOnTsf+MAHUFK57NY72dzpGgyAtmoAQNumuXXrxvnz59fWVo0xlDLvXYwc7VwDcMaTXn81MlkbR6W69tjbL1w889nPNZHms3Jq23J1ZaVXrF69PMqy7MHuDo3CNH42rebTBRdqPpk/8shj73/f+4LzR4fHQI6s9Xt7B5TFajH/zB996j3vmf7ZH/lhwWlZ1qrIgqVNVZez8r1PP9PLi3JW3r556z3vec/zzz//T/7JP2maZjqdUkrRnuIf/aN/tL29/av//tdoQk/nr5TSlZWV8xcvofZxb/tBlmVnz55dX19v29aF4L3HInC6KFWSLapSyaSuaxqhbmopGAWQnH3qU5/83Oc+s7G+XlbV7u7u0dFBr9e7+tDl4XB4//69r371q48//o6trQuT+WwymRRF0e/3pZSz2Qy7D5UmTzzxBKaIN01z8+bNfr9/fHy8s7Oz/eCBcy7Pc6l4PTez2Qw/FKW0KArcDAejQb4xpJztzHasNiIKJWQv62lrhBAdrwQAnHNFkXGeoAfK8fFxmuT4TNMuyacLEllO+31VGSFEksjpdLw6GsYYjdE7uw+klBcuX1jbXLt3755rxGw6Rdr/G2/czPMiSXzTNIwhCOjOnz9/eHxgtCuhXCwWIgUpZZLknPO6WsQYF/PG+67CwK7MGE0IXV9fr+uWELK+Pmoa3TYOixgUtsRlyi1SUfBfrPWckfl8LiQry8V0MV1dXT137pyU8oUXXqjrFnz0LqZJUhSFZLyqKt1axgIlXaAnpdQ5QwihJAJjWluAwLkiIbalr6spZoJxzjmXSdIFMOIY31rb6/USIdG0xXvvnOdIvLUOAyiSJI2d5yC88O2X3vHOtzPGdnYebG5ucspeeem18aQEiP3e2mCYI4P4i1/8SjnzqZTeAaPCOp8kijGuVBpjhh7cuHqx3UUplpSJtTaEqKhwzlnrCaORQPARIEYA70ySSkrppctbvSynlArGnfP4FO7u7kcA/ESY+QsAPljaQdsRdyUcyyN5AeMsfWjBWSFBWyuVINQvypMkpUWRb2yuEEL7g2xnZ6daTIUQZTmjITltOwkhIUQSISsypRTnXAh57txwd2+7russSxMh+UBYa4MH5xyWAWFpeYlFVQhgjMnyRCmFjhkxxgsXLnDOj46OtNYheAxlAgDv2xAdAyKE8C5iz4+mH23dEEKs9fhO2rbF/fpHfuRHHnrooS984Qs3bty4d++eMaa7Ph4QcUah3HPPPffFL34RQ13QUy+6WNd1oPbkaDw+nqyMhmh1rVSa53Cq18OdC/1kJpMZgGCMkRgpY/1+kaTKOQdUhAAQvJBcCuGNreuaM08p5VQt5ys2RkIiCKlm48nP/dzPPfHEE6+//sbrr7/+kY98RAjx8ssvj8fjYH2WpU1Z9fp5kWWnfuj3bt8jAlbWimeffbauy6PjsRDK+CCYBM4SmSwWixCAc5mmqbXaGj+bVrb1JJDJ0YxSygmLEAhhlDIpuXPOoWcTCdbaelHWdXl8clgt2ocfvfzoo49cvLiV5+nNG/fu3LmD7yHG6H2glMVAmtq0rfYeKOUQ2d7u0Te/+fzh4WGSydFoNBz229bgbiZlh0Qg5Z9SQLNLSiklnDMpZaq1Uwo4l3nWKxd10xhKZAx0OllIqbkU4/EJY+zwaHL2zMr58+/M857RyN+H0WjlZHz0xhuv53mxNtp84YWX6qqNkcYg7tw6VCAFlzFE3I4w/fLw8HA6HWOjJaWklIdANzY2cO0Ph33rwnQ6vnr18muv3njb2x/7/u//wS9/6Ws3btxaWVlRSqH5/Wi0fnR0kiip2w5bX11dPT7cR6Z80VvHbLEHD3Y2N93t2/cZof/2l//d4f72v/h//Kvd3d0iH6ZpYowdHx4m6ZbkwnsuRGjb2hiCA5IkT2bzw/v372ZFmqYp5RSHNDHGk/ERo2o4HLaN+29/+se37+5+6lOf8TZIpUIIQvDXX3+9Pyh6vd75leGDBw+uX78OksTYWR5ZKQvO19fXs156+/btL3/5q7iBU8J7vcHq6lAmMgTnvNnZ3nfOpWkscpiM5ydHByGE+bx86OoOYyzvZUIIIYhzLgbvveWcCcGQzAJo1kF8VVY+QIRonS/LsLa2xhir67pt26Iohqsrp2ymEC2Wd0opJaToDwihe/v7dVUxLrF66/f7hNFvfetbXEouuhFmlmWE4HxeFKFnTGuMcaVDigeldOvi+el8Mn9levmhq2VZYsL1dDoVeU45I4xq3XDOtdatNaKue70iBEYiJ4QIofr9vtZacXV8PK7bilJ45snveOJd79je3nbOfPjDH/6t3/qtk5MTwRPnnDWGMQXAKX9TGYfl4/r6urV6Op1ibOBgZXU6nUIg1trhykqv1/v2t7/NOYeOr8kQPgveI13u7p3txXzqXUOBbD/YPdg/amdaJIpwFjyA95JKp8O9W/d7KwUK5J1zi8Xi+PgQgDJOKKPUQ6AAIYYQsckcjVauXr26d7D/9Hue/PjHP+6CTdP0zp07ESDN03JRCyp0rbVuqlk9Wl+pymYxK/d2DzhNEdsNISQytdYyICEExkjKEyEZbh3eRQh0OpnPT2bGmACeMRadhxhnsxkDglxCvLlZljVGG0Nc8CyEQMDZQHlQMs2yrOhl+wcHjLE8z1dXV7M8Rceetm2F5PVsrBeltXY4HCLBB1Enq01XZYo37VMXi0U0gRHOOI8EYow4GcPtmgEjKos+Hh2dXLny0KOPvu35b3wDGHHOU8pIBEZJCEG3LSxdJkKIAAjCejwHOZUI8eDdP42QJUulJOOEECKAEZ5xTjnLnEfDJYsm5sfHx5xzIZm3jgoquQSP8WU0zRO3dMBExWsgUTLGhZCSZ1lCKYBkggpCo7OhbRvEr5TibWsAgFAgkUQAv3TODSFwwUIgOLQOS/8rRKCEEKurq0mS3LlzxzlHllPVjjdgLZDAKUuVsN5RSkMgrW05TxmhMUalUiEYFdwaT8B3M2oCk8mMUop56JzLJX+nU+ZhF+SXGYyc87pqKSXLmodgdQdLJiPSiLBxohTtaCJZuoLgrJpG4Eog5wV/LFtGz2GJEiFQRjnhYWkDjRsaSpjx+UmSBIIDoME71iVnADAaQ6SUQqRNoynlIYTo/LXLV4b9AbHGuTZV0hgzGo0iIfvHxy54CIFTlhU5atGC81mSAEBZ1k3TVNWiKIq1tY2TkyOOILsHzmSappTBfD4PwVPgQojVjSEl/ORkspiWWVZQClmWGWOKtPAGgTYDgTgda6eDJa1G32cWY/AhUkpjJITSPMsieB/jYKWPeZwAnovOb2SwMlRKZb1iGFewysWnGsmwFJgQ7Hg8Rkdm3M9xHlA3FdSdmQZezxgjA/Ymj9jYQDpzDBxP4tzoFD/COQTnHF3HCQmnbH18DtM0RSrG6Xzi9K7h39M0NV1ip/AQSQinbN8QQgw4s3QAgXOJb+y0A3fe48iQEgwbtE0Ti6K4e/fufDx74VvPP/300+hrYW2X1Ddv58iDibGzqyacnbIuGOt8kxEujDEy3tniRQBYunxiYQ9LDxB8ULESmM1mhJDBYIDfjm/4lCLHuEBLDTz3jTFN06B/Av5MRF2XDu9uWad5rNm6czx2jDzGondOSolgel3XqFEINlx66Mr29m5V7gUXrPVK0abpcm5j9NYZ9Iox2hFCuGCUsVSyuq4p4XVTxZBOJ3NOaJ7nq4P+blsj+4/QSABwI8rzXJt2Pp/jAODXf/3Xn3766e3tbQgRmdfz+RzpsSurQ3yclJCm1c5a02omeFwSYxEsJpTTSDjndV13ew4FnG6maToYDJpGG2MoEAiRYopSdJQQgKBUhtzwk5MuLYYx1oRmMpuQCP1+zxjd7/dPjqdlWRZFoZ22waZSUYqsfBFCoNSHEAIBD5HjpE0ElBvWdck5BUqsNyEEIRgAKCUIBf+mlCQySnXbVlVlPVru4L7X+Zgzxhljk8nE2HZ9fX2xWMzL0ph5nudm2nLOV4ejK1eu4ONRVVVZ6ojULQIrKytSylSlHdbmLNL2V1dXY4wRPKExuHgynTLGer0eQjNogYqXFGVGs9lssajwDp6u4hCCt86GYENoWw0hCsk5l1o3uMNzKTinIXgSCZDQKbNJtCEKIQhjEKMPwS2nJv+bVyQxkOC8S4T03nqIhHIADtb89Z/+mfMb5/7Xf/kvZycLXdWTo5Mik2ujFUJDWc7f+8i5/+4v/vjjb3tsc33VNiX4qdFtlNSYVio+n0/rui7LEnO9jo6Odo4WLnoX/IODo+PZVMhUyIQmCZMC97AYo5Kpc94z0lrTuMBF78q1xy5ceuRwvIhznRoBREhFY4xSZZSA9UZK7kKglK6sb+CRRCl1QJp5abUe9IdV27gQKaWcSxS+MMYBgIAPzmWpFBwn7k5QZmIkQIw1w+FG3stCCMY73ZrG1M6wNJGpUM4ZToh3Vlc1Izwy4p0FpXzwhEQKRFsL3jHGCAHntdYaKwTJO9iBMeZ91Noy0YVIUcIjAIBjrLOlQueZGGMAiN4DUWku23oWIfgQqrqWikspgofS1BxAM8IITdMUFWa4NZ3q4QBgptskSSmlwnVG/JxAjCGRSiXKWisY98Fnkn//d37Hei95bfdPcm4G8NYqpazz3rlgXYwkVcJYw5VstfYQ+/3+tWvXrLXTxTzLsmvXrn3ta19rW7O5ufmP//E/3tjYuH379i/90i8dHe2lqfA+4pmCfS6WRrip4vAmy7LZbOK9P3v27D/4B//g9u3bP//zv4AulG7pryuW0ZoMSDh122cdsCalTJLMG3vu3Nm/+lf/6pNPPnnjxo3JZCaEWiyquq5xLo7Q4htvvP7YY4+cnPyp119/vd/vf8/3fM93ffcHOZO6bbGAfAvmg/+jASA6571fLGrGKUBYW1sdjVYwLSZNFWWKUm4bp03bGi3ztNdfUUnOE9Ub9FdHo0WtVdavNQwGm9/3579nY2Pjdz72saPDuUzNaPXMnTt3ZvPGWmssME4pEUmSUcLzvDdX7bee//ZnP/vHjPHVYXF8eJQkyXd+55+Kzl+7cvXd7373yy+//OKL326bdnNzM89716/f+Oi/+eXFbJ6m6e/+3u+97W1vK8vyM5/5DKV0c3Pzr//1v/493/M9n/3M54uiKIpiOp1i0Yo0UBzLNU21tbWFTwImwGnntdYEqEoyPGQp4y5Eb1urTZGoYZER7/71L/7yg7t3vu/7vu/w8PDrzz2X5QlayLZWj2eTtMjfdebd586dM8bs7+8772azWZIkjfchhPe85z2c8wcPHkynU/RfCiH0i16e57du3ZJSXr58OYRw8+bN/f396ckYCe90mVExGAxWV1dXNlbaE3v7wT0XrZQSCFRVpZn2MXjv+cn4KEmSEFFgwrEy2N3dRQYQPmeMdbobAHDOhBAghDTPY4zOma2trYcfeWgymbzy+quCccKYi84Yo5S4fPliLje++tWvnjt37n/8H//HxaL6B//gHyRJcnx8LIRYWRkQQqqmzrJsPB63upZSLmpNKd3a2jo6nEynU2xVrGmVktb4GKOUgPVTXbXee0JJr9cDoPPZCWM8xoiMHvKmYR9D+TxOcqz2QMJ8MSWESCl2292qqq5du6ZUOpnMJUNrEdLv903TYjgSY54QAm/R+RJgMUZAE0CghDBKKJ7KgVoAiLHLneC8q02LvK+1djY46BYwllNNW6F3GH6L945LgZDo/v5+WZZ1U86ns8FgkKaJMYZzZYwBONnd3Z9MJpcuXXrs4Se++Y0X2toLobwFKVWMUNc1tUxKLlUnmsuyLE3TjfUzRVE0TWdMaa0VlFPCMcYBACBSoMQ7IySTUnLOlBLrG6Nbt24dHx5VZcO5oJS22mLIKed8OBxiBISQDOtgbAix1seGCh8nIYQPdQiBCUpoVIQMBgNK+4wTIME6bbRLEnnt6pX797ePjo6SJIEA8/nc6FOhhMdaaj6fv+Md7zg8PNzb23POzcaTwaCfJIlUCllaCKazpWV2d95QIoRwziwWi6W2MRJC9vb2yJuudhZdF7CKTaVikWltNdjgAduDpmnOnTv37ne/+5vffB7LXJTFtVW1vr7+oz/6oz/yIz/ysz/7s7/zsY+lRfFmX8oYUjMoFd5btH+FpSQT933tnTHGG1cvquF6/+1vf3vTNJPJTGuttdVN2w3bqWKMBW8IiVKq+aJZHfbPnTtnvTHGVFVlnNnc3FwsKt1q67SQjNNu+oJtPKXU22Cdo5QKKT/1qU996hN/JJJkMBj83M/9HM5pNzY22qre29tjjIzH48ViIZMEGVUbZ0c+tDIV29vbh4eH1gVCWNtoSXPGuLXO2u6UUioRlI9PTtqqPXPmLKMyUblzwTubqH5wneVfkuakC7/WBFigwXtXV+21R65cvXoF5ZO3bt2ZzRbe+7Y1zviOaEaFtdZp430MAWKkwIgQycH+SZLknEdMJFhdXSvL0tmAGvkYO8qD915rwzlNskJK6W04PDhmgo7HJ6eTKqUSiE63fjI+4oK2bZukKRe0aRpny3Pnzm9srH3uc194+NqjVVW9+NK3R6PRhQuXyrJ8/lsvWRskK5yLzoMgKnpnGp9kglLmg7l///5sPkYfOq2bLCuGKyPdtnXV9nr94XDYmjEhZLiyEoLf3Nx88GDn1q1b1gRjNOfUe9u2McaYpQUF5rCfE3IymSg1lxIzB3zTLO7eXbzzne/s9fLt7e3ZbLG2sj4t5//6X//ydHzwpS98ZTha+fD3/6B14Xd/93effu9762px9+7ds2fPWmudC8MsWywWIVpgoSgy3AabpiGMYAnCGFtbW7t18145r65cvra6uvoHv/sHrm25yhgnly9fKcv5YkGRVHLlypXhcKi1RlbXzRs3IyFCiEVd3t95ICVHQDBJEsaktTbhMgZWLpoIXkphtE6yrK71G2/cvnjx4upg7fnnn28ruHt3uyiK0eoG5zxNEufcwcFBdJ4yBUBwPEMIEYqvjIYyEc5gBDNorff397GHR7kDYyzJOh/53b3D8+fPF0XxzsffeXBwcHh4OBwOJ5OJrdvIoveeCxYp2d7erssqhOC8oZRGcD4YznkE76zDjOxerwgEpJB5nqdpqo2x1i9m8wcPHuBgSWubJIn3kRCmlMQ5VlmWrW11a+/eeWCdZlFgeA4hZDabzWYzmSbWmqLfS1V+99b2N771HAA0tX3pxdfSNM2yLMZIQFhrrXWPPPywtbaqKiklQFhZWXHOHR8fI2nOWvvkU0/PZ+VXv/KVPM055//5P/9nHHsY49C/uGufYuycN4FGIBB5OV6UkwUAUInDG0YZw1DZtm05l7oy1bzOVVYUhWQSPHgbtLbRR8GVbTvpdJoXZVmmefLse5/5/Oc/v7Fx5qd+6qc++alP3L9zl+ciy5MsS4Giv3DNOd+6eG6xWDy4t+29F0IRIiGCs0FwrrUOwXEhpaKUkjSVRS+RIqmq5vh4HINvmoZFLO7da6+9ZkyLShSjNQAlS+ooTtyTJPPeNmWlVArQ5c9vbGy0bfvII4+sr68TQu7dv9vv99M0ffXVV3d3dyH4YAXSx6bTKWIoKJrGRwL/E547HYp0ypaKcGrCi5GVMUZvXfBeMD6bTPd397iQzntsHiilEKLV9i/8pb+YJMmv/MqvKCU4F5GA952lMuc8egSAAgAB2gHN2BchsNVF/oYQtde1T3MRQjDGOW8ZI01bTaeTM+sbKilUkad5tpjNkywhhjgbGKVoK58tNXNluSh6WZ6njBFCoW6qjt3JeTB1BI+jeXx7uPSC91IqfBOM0+gCQk6MsUgjoRFNwLHMQMIjTo7LshwMBtYayThSRxFGdM4BYYwRgMgYUVTRpS0y5xyAmMa0jdbOxhglGvv60DZdxYLXB4AicnR6ZCMtKFGZ4ErK4L2PAM45Qjr3PfwahL9P28jT2X9cmlLHGEmIhFJC6CmbFr8XMIEdvz7E+BYIHk/wt/4dB+pKsKZpjHeF6DEqrDYkeMkFAyaEk2lGSHTa9AfD9dFasM40jfd+kBfZZtEazQR3bjitFkCoEIIC6+V9Y1qZKa11WzeTeeucM9b2+/zmzZuTySRP0qIo8jyfTqfe++FKv67r+XyWpmlRZEomQAgTvDwqCWFCKIDgXZxNF4NenxGeiJRmrK3rtmogRCkT770PQCgPzhhnOZNcUGDQ7/cD+P6gxxit6sX+/m6kJM1zTO/Qzlx79GGt9Wc/+9nz588Oh8MIvel0eubMGcZEtSgPDg5OkXq0J1oZDHDGc3I8PnXBRp4BCTGEEAkQABKitgb/k/cegWD6FnsNujR+JYTEGE5lrbgqhZKU0uADF91XxiV3mFJqtLPUAwn4rBLCpOK482NdNJsuqqrCJXAK9WZZhogkIcQ7v3SEs5zz8+fPl2W5+2A7SRUh5NVXXz179myv15vP5875zsfZ2rb1aZqixYFzwfBuGdZ1g6UvtkshulZ7ACiKIkCwxmIWHHJNQgjWOTxNcDqCRH661BbYzo39LT7XADhDrevaWoMdOAoB5/M5SlcRo0c8aD5bkDdtZ97kr1DrCCGnMZsI3wuhGFASCKX86OhEikQK0VSNECJGUlWV9z5NFVpIGavbVretyYusbVugkUbKGHPGfOhDH5Jc/sav/VqWFHFpxI8UP+t0jDHPc0KpMWZzcxM/Y1EUL7300te//vUsSbGwXF9fd84ZO+96cusIuou29erq6srKysnJCcJz2LGj74eiopzNqeBsaWbirLXWCs7ns5kzllJKVLfelVLrZ84gKI8er3ia4FMqhHDOYUJG3iuY4PuHB01tsixbHQ37/f6yo3fWeNyybt68DQAkds3+6VnftJWQEkAMBr08T9u2rarq7NlNSulkMukQWxcRS8LtjkTqnSWEEM6M0d6jxpHOZnMcWJ47d45Samy7KBfee8k5HnBIQkcm8inmoBJZ9DYopZxIoQRjbDabHR4eJkmyOhriI0EIaVyDyUn47AFAjB4b7fl8vjxwXdNoFJEIIdIkExx7PieEgABCcBKD9z4GNBzjOMMAAGQUEUoZJ84BIREToU8x6/gWpvNbX4wxPGSBgouBUO5CdDZ+13d/+JGrj/yHf/PLt199SQJcPn/2mUfefmZtVUk+n0+feOIHv//Zd547d8bZziuDUE8p6NZprQ+OFifH48lsDpHO5+ViUWmtj8fTxuiyKRtneJozoVSWK5k4o7EcquuybspIuHPMAyT5Rn+w0jj+YPdkWjYh8rw/cDYIygGAnUYCxBhdtMELGbI8x8emqirTaqUUk2IlTQBoWZZJwpVSbWMSlYYQCLScgrdaMJElCnyw3lDSZYDNFvOqqV101lqVJpRSygJA0FpLzhghzgQKLIRgrSOMexp001rdOKuDj4wwQn0ETylJUwWgYozoghIjNoPdURs8oEMxoVFwHqOP0QPEtu1OpQCMAPPWARDKVIzeg3PeE0eda5vYJpJ7iBYA3QU554xLziRRjDFmO6dQ74DWbTecXlRlXdeSUaVU7EXMVQohOOuEgJU8ffrJd/gk25n/CQ/MmbNnZ9UbQKyQAiCQyHH/t9GjQAQ9CX/913/dWnv79u179+4xxrRu5vN5nuc3btz4l//yX85ms34/Qx0GIV23G2MEiDiqR2otcpPRsX00GhVFgT/k5OQExZR48GGPAD60zqBUnVJqnGOMJUIGHwDIhQsX3ve+9yVJ8pnPfGY0GvX7fQydy7JsfX39u77ru97//veePXv2F3/xF7e3t/+H/+F/j25gCICWZYkk6Bgjid0SDiFESoQQ1Wxx48YNY4zzFodAhMTDo/0n3v3O/rB3/fr14+Pjra2tlA3KZmpsTdiwtVokIi1yKnjjWiFE1dgf/MEfed97n3ns0Yf/6BN/sLt/FGw5GAyuXLkynTf1/snqaCXLV9u2FSrf3tn/h//TPz53buvSxasf+MAHpcy+8dy3QmhjjJcvXx6Pxx//gz+cTqdPPPnutMhns0X04e2Pbh3sH/7D//g/zcbjPM9/4zd+o25bIQR6W//4j//4+973vkcfedt0Mr9//z4mtGGhRwip6/ro6Gj34BAAiiKjEdAdCK9zrQ1lIs3yZV6IDyHYtmXB5AkvUnmwe/9zf/jxW7du/czP/Mzx8fHr119NUqmUijEYo8MiAsD5C1uCi3v37j148KAsS5kmaDnlvEd9DDKu9nZ2+/3+uTNnKaWbZzZu3759yk964YUXZrNZnucMCDZHvnOsFWfPno0xXr9+3c/BQzTBzGYzmMQYY03m+WA4HA45WpAxxoB3hmIY2Hq6e5K3RFgyJvgyw0QpQQiZHFUn46MffeJHP/3pT62trTFG5oupt74s53jokiIzTfVXfuon/9yf+3Pf/va3vfd/5a/8lQsXLvyzf/bPxuPjXq+ntVZKra2tod0VIcwYu7OzDwBKZgh7JUmGHkyDwSDNVAj+8PDwypVLeZ5X9UyplBJ5sH9CQkR4F0PDTiv7sJR2dvtmgCzLsyINwVdVNT4av1S+FCNwQinhlIamafb29iilXEkJXco8AFDaVf4AwblIKacM89jezHWJwaJ+B00as0ziLGI4pEr1j4+Px0fHtDNEA+8ilcRaE2MQQiD0idwNSqn3ZDqdUyAQ+eHOBACAw5kzm4nKylnTNM183rx0+PpwfTXhuYMQXKcCY4QKThmJ3vsYhBQJEmyTJBkMBkjdvXHjxtHRkTEuHaSKS+cNrm3gjJAoZebACcGranH/QXP39s0QQlNpQiDaGCPlQsRIALrsaQSUtYG0yBmjyP9FusQpCQLvyOrqKmPMR8c5H62teG/39/e1bgeDgZRyPl9AiL3eIARQKu31+pL0Y4w1bUMIOKMLIaAk8PXXX2eMKKWCM0VR4PuXmAIfKecck4uwakdzH7xFWZYJ2R3/zlljkBjbaUY4F8ZY57zWBplxzgZjnPddgzqZTJzWV69e/cAHPvDNbz6Pdb9zTggGjP3bf/tvP/WpT62vr3vvZZ6dEmestS50Dv1YKSIaa609c+YMghFofheCAw80BcF527YnJycnJycYe0jRlJFSAiwGkCJlAk3KChTNARVYCuR5zzl3cevCnTt3Oy4Mpn5DJ4pnhLa+DW9GCnSudgi1c46PaOScKiWAdJn1eHR1V1XJfr9XlQ1jrNUeomdMOOuQRxADIcCCh9nJLIQgeGK039necy4E3wquIArdOsYJoZRywZhwzqFnDiEUImWUSkmytP/HX/jKaG0lxnhycmSsl1I6Y9F5FoBE65tWcy5JICQQAjF40N5KKZ2Nq+v99dFa27Z13Y5W1zmTd+/eBx+UFNpZPEqxZGSEK5U6Yq0VHoxSKk2V9346XUwni0SmVrvV1VXnDefUBR8CJCo7OZ790Sc//8gjj+xsH6RJb7FYbG8/2Ns9GAwGlPKjg3Ge9YkkgmeCMWu8bWohOEYMC0nLZt7r9VZGw729Hc6ptQ4iTVRW17pctIJrJoQx4eaNuz7otrXPPvPez3zmCy+++KKS+dbWFo6yCCF5kQquqqqaTmd13XDOp9Np01Tnz27GKLcunN/d3b156wZnwlrHqNzZ22OEf/pTny16Ki2SXjFomubW7buubf/e//n/9M3nvvG//M//98WimM/nP/RDP3QyOb7/4Lb13upGJeC9x5R2Y2xdN977ixcvxkD+9t/+2y9++6U//IM/+k//6WOH48O0lzsXCIkhuCxLVMLyPJsu5q+88pJSqtcb4OTm6kMP3b59e7FY8I5jhSsXR1kCgBjjdnb2GCONrgGAUjpcXWnbdjweV2V77uxF0xLOFURh2xhUrNtmMZ/3ej3OuXNW61ZKSSlJ06RtW6loXvQ2N9cp5d6G2Ww+nU5nJzNCWAzRWr9YVItFxTnlUsQYKWHjk8n6aP3OnTshBBzEGmOAcdxUvXXOGYAgFJ7unhBS1+10OsYYdGRUSSmFUDFG72PbuPns5PD46Ny5c0dHR9PpXCmlVMoY29w8W5Yl7pkhBKVSG2JdGym59xEixzA6a+0rr7xy/vx5znlVVUVauMb+8ee/CACUM2vam2/cXl1dBwD0q2UMCKGjlVFV1ovF4uLFi+PJSV3X73jH21988cWqqtbWVrFLfHB/p65r5xy6sNV1PZvNOJepVI2xrquq30zNAh8ZZYQKwigXdDAYEM5wqONcME3LmfSh61rv3L5H9yPCHGfPnp9NpmkK1lpnHMm4NYRwIig5c2atrss/+qNP7O/vcyr+/v/1//Lyay+Y0Jw9t6nSjpaYFwUBuHjxwoMH2y+98LJzIc97wQRPQAgWQyAkEhKTVDJGKYReL0sSWVVNWc3yvKDjkAjpnJNcdX2Cc6SLvIsqSdbXNycn46aqMSotTVPCmbWaMRECSCmpoFVV3bp1q2ma0frazs4OpbRuqqZpDg8PF7M5DpsJYzZ4RiliTLjHInPtdMTYNM3m2rq19vj4WPL0FMYiS2U3AEjOvfdMYmkR7t17cHh4TAhFlhliEzF4YOQnfuInfv/3fx+8JURKKSMBa+NpRceZ4Jz76Ky1EDrfQzwinXM+WOI7K2e80WVZYtGkEumcCR4AiIvBOLe2tialLMvSBZ9kaVPVbdsQKpBmSwhRqaIChJI+hhgg+IDWASGEQX/onDPOJaIj+xPiGWOC8da6ELyUAi1rCSFaN0mS2OBPnTRijJF4IVSIcTydbG9vV1WFXp/OBu81IQQYJZwhZ6TjnYZAl0ksIYQ8zRrdNk0TA3jvnXZCCO8jIQGXmFKpEArPU4T2Tkfp2C3zt7xOoUxCIlY7p5DxKe5MKfXevhV6JoQIyqKkeLAaY0Lg3ncODKcI42lZj/dr2UB272fpk0Wd8xCC99G7WFctISY4T1QimPA+FEXfOTOfzykhjJD5ZMopYxAoBckFhQDORiCpEsYl1gdda0yfDiHMxjPd1gDAWIq/jFHRtga5bOPxtKoa7/3R0dFkMrHuTZH+0fa01+sJLglhWltrPUQKANF3ukPBGJWyrWvf5dEzlXSkqqzIkTnIBbXO+egCiYt6vrI62Di3mQ3S/f394IJIxHA0lFLu7e0hApWm6fd///cPBoN7d25NJrP79+9PJhME+BCUZ11clcNJ0mhtVWttdLe/saVTCjBKAq4FQKID3miydEo55bzjwSSEwGkNpeQUqsN1h+zy4AGtzPHg9t4b7ZBuhphjJMR7SWhEAFcI0dQag87wREDy7ymfxnvPOcN4Bmvt2bNnCSGT4xPUL+NXoucbAFRVyblYAp0R+xTvvRC8Nxx478fjMVrM5XmO1ATOGeKtVVUSQoSS+LlOIXV85whklGXZGQRLiXhEWZb4f/HzMsa0sWRpiEyIvHjx4qVLlxDgXl9f39zcfHD/PtKfEQo5ZTT7t7ywoUBeBbreU0qbts6ybF42SiXW+IP9I4iRUc45QuEeYXqsbBlj7aINAfIiw4vgbDdMPX/+/GAweOmFF4t+P9rOMJoTGhBtAYI7P+ecMtbU7WhtNc/zmzdvJkly6qSP/phJkvjxBHdaPF8Qvjlz5gwWOXme122DGLp3gTMRPVEy9cESQgMJKKYcjUbIBPfBOtfF7eAW3e8PAQAprs7hAxmMafGsUUoBBCk5pTAc9pum0ropiqxp28l0CiSmKkGSFjYFnNOu7yfeOZskCZfUWhtJVEwxRooiI4R4XzRNnqapD4h0E2McpcwY09SGMZak6nSlcMY8pVobSukpA0nKeHR0hMNXXDsQALFgayu3jH7FbVYIfkojZQlDgNs6zTg5c3ZjfX19b2/v5OQEn8kYo3OmLMssQ2JEx182xiAMfSpcoISRzqmeLPENJrgiNEIgxjTB+6LIhVCRdGYC1lr8LYyxvOBWcWffdI+NkQrJ/kS4GV+U0hg9UOpjKBfN5ub5tz36tn/9C//rwYMdFd073vbIX/nxH1kb5FbXzWJ+fuvJh689KsBMj3aAhOCskCwE76MzxhwcHx1PptZD25pF2R7sH1vrZ4sFI6TRumqbIJhIBeWcMsYFqxbaWl035WQ2syYAZ6VuuVAPX3uXdtZYX7Y+AtfWEhekTDgjFBBGj4xQABoCOO1O9AmubmOM1rqqq9M905hWCBZCaMqqLMumWgghfGiRbB69towmiuu2kpIxxsbjcdHvJUlS1jVwiucCsAAUN7pgfGhb7V1kgrtgREIjBR2M8RZ8pMAJUCFQVNrth845zHjE4goAAF3GQocFeWcZYyG4EANjjHFCGfM+QIicC6FyAsa7NhKaZUVDY/SOMh59sD4CAUZiCMETVlZNkkQpJVDClhMj54ilQIBQziJhxhjBKCdSm3a2CIlNUOlCgMYYgYSVYf/hK2d3XvgTHhWVyLAIXDGAgJBOtDFGYIoxxtbX12/evPkLv/ALs9ksTTu+P6U0z3Nj2r/7d//ObLYIISAxDjEHIbr8PdfFt8ZTCikWvbOTk7/2kY88+eS7/tbf+lt/9a/+9Z/6qZ/6p//0n+JsFX/4fD6PMeZJurm52e/3Hzx4YK1NhGyaBsFKlO4999xzv/d7v3dwcHD+/PkQQr/f/5mf+ZnNzU0UwqapIoR813d918c+9rE//MPf/8hH/gbiYzFGzroUXDyareu0zsH7+Xw+m82Hw+Hm5uadu7e/8pVX+v3iiXe/c3U0/PSnP7W/vz+fz7XW73rXu86d2TK+5opRHnuDQiaSCBCKee+8d+9693t6RdbL0i9/5Wu/+dv/Me/119cuzudzlQ+++0M/OFxZOTo+vHDh/De/+c0XXn6JUnp0sj+ZVa9dv/nK69e3zl8UiXrk4WuRwNHh8e98/Hf39g7yPOecV2UTCRuurjz/wkt5mr7ziSc450brnZ1t9Fna2NhYXV211j7//PPzWfne9753c3MTlkRDrBCRIWGtJoTM527up7jPd6VgBCDM+86mmVLqY+BAV4qsLhd//LUvv/7yC8boLMtu3Xxj48xmURSMMWtNXqSU0khI3usfHByMD47LskR0znjHGMPKeXNzc3Nz886dOxgD2+/3nescXL/2ta8dHh4yyr1zZVniERYpwW9cW1vDsny6mKNVoDNxVi5CFs6ePeuFm81mZABpnhay4CHaqrS9fqGUbNqKEo5bKk7X3zrAR/jJe3/p0qWHH36IMda27e7u7t7R3q//+q9nWaq1vn79NZUIxliadoG/N2++8fBjj7z00guvv/HaK6+8sr4+2t3d/rEf+7FnnnnqY//x/33pyuWiyE5Ojmaz2WDYmy7mMUTOBToJOh+0tpwLfNyLosiLNAR/cnISgrt3756UEqX3WVqQECM9fbdAaYcLx+hPTeJxSSilklTGGI1vlVAmmrpuKKUUmLOWM4YN4bKdkNbqEAhAoIxSnKdHAl18ENb/aCAbY4ySd7NZ0zSe+8HWAIcGnPO2bU5PRDxHQwgQCNZAGAHUGo0FHx6uba2Nsagt894HHw73D/r93rmti8ZYSkVV6nLaUsJJYAARImRZMRjkra2E4BG8NR6Aon2PEKJpmu3dHc45UvSxn6wpJSFyQY1xnHPKgAoOLhISOedSikhZWZZSCjykrXUAAtcJIXQ+n+OgOERnjAGIWJenaUpIbNsW0RPcSs5fuLa/v18vdJbR6aRsmmo+q6uq2tsdS8kZ4Uqp+UzXdR0CWDPPJUVWO4KchBAXg69rHPGR4DHKGQsXbEoR/KUYFhY9emdjMyMljzEqpXywWMlJKZIkUcpMp1PvIgHmXeScR+esdSbGGDA7PqDbKZ5t7//gB8+fP//tb39bSn6wt6ekEkJUVYOskwcPHuzt7fkY0jQlEQJEQolQ8rRLlJKvr6/fv3//lMeR572TkxMpleD07NnNvEjTNPXeLspZWc1RwRdjlEqQSDiTlHIUYDrdpmnaajRA5FJKSkivN7DWHh0cP3Lt0Vu3buMxg3A/J4RzwTkPrssdCp1/E8GZ4Yc//OHbt2+//PLLSqnxeAw+MMYIpTFGmSR4K1dXV0VCe/0k72dlveCcGz31gRjjTNt0PTBExpizvkEL1BgYEJwiUMK1Ns4FzjnnXeQO0l29izESHz3hDIBkaX/7wV5da38wFkJQIhkzWVZkScSREo2khZbz5FT76ZznkURKqqpZLKqqGa+PNrKsuH3rftPcS2UqKGNCEUJyTJNglDHaUcKNybIkL5RzVKYsz9PBYKXfW/3a174+Hc/OnDlDachUYi2t24YxrpSyOpaLxcsvvJHn6fVXbwEJed5jhC5mFedS8MQYB9FRqjFfNIQAMRIAIbi2Nsuy4XAohJAy4Vw6t9Da6sYyJrTWBwdH/80P/+nXX39tb/cmF6Rt3jg8GBNgGxtnGBWofrh8+bL3fnf3QZpm57c2/dJ7y3vrvNk/OozOrm+scc7HhzXhAABSsERlbWuuPHRt0E+axlhrP/eFzy+mC5Gmv//7v4/C2ZOToxjJwcHB4fHBrFxsZKOVlVGEtqwrSjijsly00/kM70sxKN7+9rdv3985e25zbWV9NBrdu3d/Pit13ezsPJCKKyVb2yB4J4SYTE6uXHno5s2baZq+/e1vu3XrFgD0+/0QnLUWScfWdjFBhFBrHQRCOYsx7u8eIJVpPJ4eH5SMsRihmjdQEGMcIfHo6Ojg4HBzc/3hhx8+PDxsdGucdYv5YDCwVlsPANA2xmpHCBsWw3Ja4/ZCYyAsuhi0DqxtOeeMcAjkzu17s/EEu2vG2NpoA2cqhNE2BMZYMRjQCCgviuB7fTsej9umklKmiZQiYQJnb76tqpdeegViTNJ0+/5OiDFJcyURqo5Xr1y7c+fO7u6uMaWUsiqbGKPgColgjDHvPJ738/FYcvH0e566fv16VVWzppVCEkICAU/4X/pLP7Gzu/vZz32aEOl9EEJSSrW20+kBAJRleXhwVFYLY4yUvCgKY1xR9Btdv/zyy0mS/LW/9td+/+O/jxAq0q+MMd6HU/iMLMEyBiySGDwkSdZfLaSUztmiyL0P81kpRKq1FVyA72QuVtt2Ml3kpWASEyoAQtNUSqXaaiYp5yzSyBM+nhxzQe/ev/O//LP/eWfnPhewWEwffvTJW7dutW2rdXvp0iWl1LlzZ1975XXOubOgRBq9Q6yZc5EkktDgvc2LgnGineacHhwcHB8fOxuFUIgvc861tYyyGAGDmLTWV65caaq6qirFFeO8bVsPUQhGgCilpJSREudcNa8Jp/u7u0CpEIxS2tYtPhs4TQyEBRMAQoyYkK4RcQagjHESiOKKJjTPe/P5nBD2lkT17hojXwpBFoBIKS3L+XSK4npBaAecOddSzoQQf+Nv/veTkzEw1oFTgqIVjDEGQR/rHPoMxugZI4REAGK8o4yGGG3wiZCEYEpwahxyrv36+rr3FiAACc5ZAKiaxseo0rRpGmKttoYJThiXjOE1pJQmWUYo+oIA54IwSiPLVAYAWVakad6UDTaKyFCz1qI1P2KR2pq2rYuiwL7FmDaErnAKEKWM0UOMsTU6zbNIuoSiCB46d7iiahsuhBCqc7QA771v2xpJf96FGNDsghrjrPXRhzbqjqcWiGCcEFJVFWLokovoQwiBMso5F4wjqGqX4YRkqQM9LThPuRrLErqbIuCLE0pZh3+FzgvuVI5NCKEYL4ZrH/8Va6GO2txptrAEBe9929SUMCFojOBdIECs9dG3QjLBBCbr5olKpDKtVkUejMd5w2R8nKgsequYyKRyAK3zTWsw+BddLygFkaR4JY+Pj6XilFImFSEEg7CqqgEAIRiK6owhzsbFvE5TwlkCkXgXkTsZCdRlSSkgB9NayyhB1wpCCJdCpYlMJWOMcZ5mqmpr732RJ4eH+5G6k+nJ2vro6WefvnXjlnfRBTs9ntVlNR5P+/3+o4++7f3vf/+tGzcOD4+n02ld1+iXRZYcVUS+ACOUlwi+EJ3hySmOHzxwwpcVO7XWc07xcrGlfXYXqUgp8sXw6FzSLQHpOwBQFEX33HqyDHMJbdtGB0SKGKPRDkiAJasUey7kNadpWtc1XSZhxgghdHbesYv9jDjziDHOxhNcRMhdwKA59LfFSAD0Xm/bNoLHaBD8+MVgeOXKlcnxiTGtt857DyEwwTylACClSNOUMBpjXF1dnS8WdV1LKZWUiMR577HUF0IIKZHkeWqOAcsYsRAB2b4rKyvD4YBSimUwSge01tYYREmwPZFC4R1Bh6IYCTa3xjjGRJYxNGLmnAcfvQsrw7W6rq0xEImUsjV17FTkpNfrjUYjSoGQiKVvnqeUYt6ma3QrhDCmlVJ+6Ut/TIFdvXp1+959BM1xeTZNoxdVvjLI8i79TLct+oHUdZ2nGeaNO+dDcNPp+NKlSxcuXLx169bOzs5gMEiSBL0yOaEuhDNnzmitnfPjyUQuX8SBtbZtAzCiOEvT9HSqNx6PUQ5fN2WMEe/+/fv38XIhiIDyLK01Rq0ir8V7j0TFs2fPMi5R8OS8pZQCJT56JLNDhM2zG0dHR9Z6RmlR9NM0L6sTSiHPc/yxXHZiWedcQpK2adALCK3tnHOCSwAg0PlZdbMBLpUIbWswD8OYFtsopWQxzJRMUVIKgXjvm6bRTUspHQwGXAq88j549Cdp2ooyqOvG2k7jslgscHqEzw+lNJEKndnRyTCEBgC8P73peZpkWIg656x2AEADJZGAA0esc45SgIAKBmiaxjmHhgyMMSGo0Rb1Rt57ANbN+jpw/P8f3BxCsN5iTJKUUjftf/rt366nc68XF86f/em/9OdHPTE/2abBPnppq9/P5vt3Gu+jD1mWhOjqJlpva91OptNF0xydjCmXh0eT+aL0nlRlEynh1uIWB4JlWc6TVGu7WKAktJ0tFi5EIoQDrrJsbf1sa5kxPhBqfXDOI3dSMGKCYYQSwhin4CgABSDWw2w2VkKgVWv0XglhrWGMRu+9NUIICJYyWuQJIZQxpq0wxpjWxuiNMXmR+mAppU3bUs5CcEyIXq9X13UI0ThLOIToPAivLaeCcmVqTaMNEGP0LtiuaaXE2+iDh3gaU8GxfnDeUegChwNEEsnpdkqARaAY+0woBYgAIBhvrCOEWWuZktb6tnXOtjEXjCnvvDVecmpdCDEITn3bJlIa53yM1nvGKJ7OjOOv4ACBMxYheO9JDDrEEL1zLhCwPkgpU6kiAD7qEEZ/4qNyND4KEAhh3nuIkTLKE+5sjNDZEOG6K4qCdK5ozHuPZ5Bzbm1tFcs/rEy6tSlUXBpwta05tTnC4kRm2Ve/+tXbt2+Px9OPfexjjzzyCI70TkFPQsj3fM/3/Pif/2+3t7dv3Lixu7uLO09RFEKI4XB4eHiIv8sYMxwOx+MxvsM0TdEawlqLg9innnpqa2vrox/96Ne//vUnn3zytHCiS0dpSil0VD8DANa4s2fPUkqPjo5ee+21R9/22Pd934fKcv6bv/Xrr7zyskrEpUuXfuRH/5utra37d+9luWi9HK7k88XJGbqptWOCaut3dnYO93cnJ+PJ8dHtW2+MT45++Id/eH199JnPfO7yQ2+7evUqIVGofLSxfjL73Ml4JqXo9fp/9+/+3b29/d/+rf94dHiytbX10ksvbW9vb21tveeZp7/4xS9/8Du/07pw6crl7/vwnz5/9tyvfPSX7925e/HyFedMkeWNbnYe7Fy7du2ZZ5752Mc+9sUvfnFzc5Mx9vf//t8/PDzc3t5mjNV1nWVZCB4DsFvrCCFt26JEryMccIGFCiqDFWeECyETzvni4O5Lz3+LGP3Mk+8qiqLX600W5cc//twLL7+UJMmw12ua5vj4OM3zqmq0sU1dY0xRx2Og9OGHH7527ZqU8vobb+zs7KAsBosKIcQ3v/lN/EfORAxBCIH4JKX0/MULaIx25dpDk8nkwYMHRVFwylrXYrne7/dn4yljLM9zwmgzb/j582cODw/LqsStUzGyBAeXJJKlNqobIkXYebDdNBU+6Jzzra0txtju7q6U8qmnnhJCvOvd7/zEJz4hBNNaAwkf+chHRqPRdDr+yte+3B/2fuwv/Pgv/L/+1R9+8hOXrl69evWy935n54HWOh/kYRaQLKy1Pg2Fc84Fax559NrK2mg+n2ndjEYrbduG6GKMda2Dh9qXSZLgGjwVgsEyc3OZTk4IAaxXYiDGYm1jkPIDADEQNJf0wQohgEYgMbwpiuzCXDB3RSkVCRDCYDkdopQyRiHSalFzztM0b5rmjVffEKkIIRwfHxtjnAtdfRoJBiVzQbTWRbECAE3TMEHzvOt4ORU0YwBNMIEnEoXthJpyUd+5eZsz6SIIKlpvgEZOGQA4b9u2lpICJTHCcDjCTInx0TFXEgvf1jTI0scnuG3rjncTohDcxXD+4sWNjQ1r9cHBwdNPP50X6Z07d7bvbTdNEyzGd2ALBIQwQiIOqKXiMbJ5tSCdF2S0VgMA0v1w10vT1FmYjGfT6RRrBQCQUilJYmjbSofQGoUdWshUAo7VrjNNk1KGAM45v0xQkZJzIrXWurVAAir0fQxyid0Y3d27EHyKpsYA2By2usZ2WimFtQsGoFPKSYjRxRgB4RVKKSEMORGYNVfP5xcvXkyk+ui/+Tcra2tFv++0wUEfThSx+mGChxAixLDMdqedB7pzzjz99NP/4l/8i9/4jd/4zd/8TWNcWCrgLp87u3XpYr9fjCfHzhmZSCH4YlHGGJtae+9lR9bo3AO9tXVdC8miCzGStm2Pj48vXbrUVO18vvjGN765mFdCpalK2hZpnhQgUArG4WygC14/pat86UtfokvzU8YIw12QhICRL94zJqx37UI37Tytk8GwV5al94ESmaUJp02/Pzw5OjbGUEpCtJRFHwyllHJOKAEWXDCRESEo55RSXOaAixfnZhHAaY3kyoheY9Zh5oeUSa/Xw0rIWhtdEEJgM4nMmscff/zk5GRvb48BIYzpVn/juW+Tpda1bVtKGXmL3hNYN0tr27ZpGsrC1tZZQr22bZ5nIThcjwBQ1/Xa2upg0G/ailVUyoRSdnKgKUnTJF3MFyoRADE6ypRSkmtt87zXtjo6H0gbY2RM8ERaq4FE3L5ihOls8e4rT+CH7feGzoW9nb0OyyNxOqln01qKrOglbVvvbO87F4bD1bXRxmQy8d7nRXpycnJ0dMw5Pzg4ytI+ISRJZNsGLhIppffWOL+6unr50uDo6GQ+L+uqjYGura3P5/M3rr9U1+2gP8rSwtnAOPmt3/oNY4xMEkqplMmXv/wlwkjaU3VdEwbGNs45xqBpTFUaEoRp3de+8pwQ/O7tew8//PD6+hohcT4ZF0Wqde0DD9R7oK1tXWuyLBsM+jgreuihK0Kwr37166PR6Pz581i7jMfHznWCSrxTeOylaQIAnFNtDQ4yseSyhnLOGSNNUxVFlmWJkCxJLzZNtbq6gl0fABVK1lVjtJVJVDJNlUxSabSejGcsckppCKAU60q3SCjvIk/TNPc+zMazlZXR1tbW9evXASC6TnxKgRVFkWUZidA0DePMe1/X9XA4XBmSo8PDsDSO5xGsdq3R1lpkY1lrh8NhVdeDwYAAoCf+eHI8X0zxFHsT240guHLOEUqV4oQQpdRofWN9fXT9+mu6aS6cO7/SH+zs7AAj0Vul1CuvvDKenpw5c2Y+n87nU0JIURTlfIHr+ubNm0pKwbu8EaXUysrABe9cmM/nzz777IWti5cuXbp7534vy7W2XbdGlnlrS7gZS1UuWIi0aRqYh9a0lMKFC+eLYe6jraqKhiCY0G3w3lPBg3eqkNrq/f3Dq1cvG2ezIqWcpGlKWNBaA4nGtTGESMl0NnM+1K+USUo5J1SE+w/uHh4elmVdVdXJyck73/nOsqzqqgUghDAXIMsSxjAHqemGyibgCcVYaJxWSs2mJQTiqVcqjR6wPYsxZlm2BJ7E888/r5sW7xSJIIQAa22rRdbBRs4HQgjHmNOOqhwYARscRBoDTZKEeArQAWp4ijnnnLVcCMaEbTUysLTWb7z2GkRI8zz810qs0z9xhoQdNTLRcAcLLAQIwEPKkHDUHOwsgDGZqBB8ow21NE3TJMmQhgiRItsXz+gYY6SkKIqMvcnecs4sG4CQ5VmapkhcUooxTiIAOmy3RrvQUT4JIQSfc85FZy8bvfd4zjJGpJS6NUopiFh3qIsXz9+6eacoislkwpcGpoxS7HBCCFVVrYyGf/Nv/o3/8l/+izEtlzwEjmp0znkkXXvvOvNWEkIQSvT7fUboweGe934+nwfrpZTGu8Z0HghdSBqNVVPjDJ4RypUgPWhb81b5P/Z1dBlLiARnvDLIg6OELsEdj+uUUkopW/Je4a3n/pK0EQE6wgEun1N4EUvDU9iaMcY5h+D9MsgO3wZeP+d9fNPlsEM8Y4yMcu+9D+i9QSDEYA0FIh13NlhrKbC6bvOLPUVIOVsAsYyClBJ8YCSG2CGtTClJWdMatEtKkqyuawDivRuNNgghN2+94QNP0xTluUjR8D5yzrXzkRLChLcuEXnbtgtdcsq994wyQgkJ0XunY6T0TfSccg4AnEkUmTZGG9NSzhjhpmxkopIsARqN08CLixcuPPTQQ/PFdDRaXSzK0WjknDs6OsINajab/fuP/vsvfvGLuH4RmketLiyttK21HAd4Hak8ME5PeaMAYIMPrjMKx9k5pdS5IARBww27dNZGgifeUCzM8Ls4552iDLpJ5Ol3dfhIIJRSEjvRGB5keN5BpNb4sqzTNO31evgDGSGcMWstYQxT3ZA4fAos2hYl8wFZaRjCHJcFc9M00QcAwL7ROcc44Kh+Op02TdMOV0bDFSHYycnJeDw2xjBOJOc6GmRFACXLliri88mZCD5q3WqtYwDKOGWcUta2mhACkbSNlkILITCUj3IGAKg98ssZZIwRHZAXi0WaJAgsdtfKhVPqIiFECImKQCQLo49Q02hCDCEEK67oy6qqsOTD75JcIP9O60YIsbo6tM4MBgPGkLcOUsq8V8TotRbGtJxzxgQlRClVlQ2e9bbVH/jAB773e7/3Z3/2Z+uqLXoZAs3T8SSEMFpZnc/nadoR851zw+FwZWVlZWVtfX3961//urV2bWUVfDDaHE6naC7cNG3btpIrzkWMsWm0AMo5z/s9xLgxx7iqaylllucOISqANMuQb+iDklxwylKVBOjsg6SUlEJd19PpNMYoExVCEEamabp14dxsNptOZ+vr64gQMUIvXLhw9+5dxqgQilAACJTSNM9C8JSzjdHq2tra9vY2ACSp1FpPJpMsy3ywuCta46xxAMCYdNYKIbxz0XN8M5xzItD13i8Hb525uVKKM0kpWlJya8x8tmibhhASY6iqmhmW57mUMgSLxxayNQEAh76n/K1OT6NUURR7O7ve15gqhHOL0208BoBIgIAQIgTwNjjnKJpXxWi0NgDOaDzRGJBoowVnreU+xG5Fg9aaL22UvI+wjFOLMVLyJ1vxxtPUK8KstZxJwVldl7lIs1S0DTzz1DsvXdg4un+DuvrypQuZEm21GI8nkSsppbYmSWTTNPOqXNTVwfHJZDGPQC3UZV1PqwoibYMhkXHjuWSJyoAzKSUldGFaNM81xlgHVCSticCS/nCdq/5sUXofXfCMc8IJY6woCggeQvAQBCOcy+CdDwEoA4BEcqubhsQQAqdUMK6j91ZTSpNEhhAEY5xzC1FK2bZtolJKmAs+VdJ7v1gscDf2IeAKnc/neGU4FxSID55QEWMEQhjnwdoAEUIkEUiMwXkSPefcR/DexgjBx9Pt97RM6ga6MZDYnbbQadwDQPA+ENJZD2utGRVSCJVkutHWOWs942JRuqZp1kYDpfKmaQJQzkPoppFgQowxeGJd6JzBlYiMMSCMCUYCDRAFcCqYd8bqlhBifYiEBtWpNHqEUCljjIn4/zGfIFEminFgMQbvSfCBUPyAyP/tTCeWNvo4hMPN+T3veY+U8uWXXw4hoPktEg0ZE4QQVJixpSc+7uS4B25vb9+8/kav19vd3b19+zbnvNfr4brDChablw984AOPP/74eDze399HnhDK2UejEXoiIYDQnZLBD0erSZ5Np1Otta6r4XDonFtbW/vO7/zO6XSO0GeM0Tv/ZpGzXJKUsBgjnoBa6+Pj4x/8oR8ara2Mx8d/+ImPv/HG9SxPyrr+Mz/8Zy5evPjVr351dTB84l1v/9aLLxHqQmx3du+vrG/GihLGOKdbW1t7O9uz+WQ6nRLKd3b2rHet0WlWRKBSqouXHvr0Z/7o1VfegEivXXv4J37iL6dpeu/One//vg855772tefm48OdvV2l1Lvf89QP//APP/XUU8cnE6XSixcuQ4x/+sM/+G9++V9//RvfYCQ+9eR7fvInf/JLf/zF1157rSzL7/iO70BD7X6/9//8hX81n8+11xK4dXpRWiEEpjuqLMUB88ZoTal0NBqJRHEunQ33tx+M1tYvX77oQ5gfHx2NJ/1+f7b9hq4XF86f2zq7LqVUefHN//L7t2/f3lg/AySUi4UU7F3vfOLOvbuz2YwLmaYpVgh46zfOnnn88bdLKb/5zW/dvHlzZWUFYhScX7506eTk5Lmvf306n1JKi6Koqqqt27W1NfRIGA6HZ86cuXv3br/fn81mx8fH+dII68/82R/0kfze53/3/v277sRzzhllhFJjW/6+9z/bNuYb3/imbn3bmkU5S1TmfWQMvck8VlEAcanIB631zs4emiIlSZLk2frG6KGHrj388LW/8Bf+wq/92q++/tobWA1Qyv/O3/k/Pv3Me37+53/+R374zxESn3/++eef/2ZVLYoiGwx6r7/++sMPP9Tv9xvbVFXV7/edDW3bSpkopaqqAgAaQ39QZFl6fHDgotOm2dzcRJqG9z7YQBU12uFK45wiCO6WMPHpdh9DRHO9xaLqylxrY4iCC4jAOQcGQIgQwgcST78poIUCPf05hDECQBilhOBIzTnrAzDGGBDdOO8DuiVGAlo3i2YBMVLG0jTlgurW0ggxgu98agLnAqPkOad5L3vssceqqrp+/bo1hlEBQJ23urXBRSGEc0EIZY0LzBnj0G8xBh8IRGe9cx7iwcEBpZQw2tTW+RaWYlv84EA7LjDird65qqrQ6z3P8wgeiCPUU06m88mDne1Br39yPCHApEiSXKGC3nnDCWc0et954SG9gklMPvUxBrxBuDli54bq4xhJlhXYGHgfjQmMqUEvF6yeTRftogFKBVfBUwfAGLpvBzS4CSRQQoRgMQZBO9IEYywE8uD+jhCit9LDAyDGWNd13dRKqTRLCSHW+QiU0BiCR/XfbDbLsiyEQAAJWbat2iRJCKFLAjtu6UAIQUmR9U5m2ac//eksSfsrK4wx07R0KcxcP7MZo5/P5yEEFzp9Fp6vsFTgEhJ1q3/v937vz/7ZP3v16lVUteB2H0LYfrBntF8/u5bnaZbJnb0HjLHV1ZUkSeq6WcwryZXWtqwaRgWeAkIIiOC937n/AA/E69dvxAic86PDEyFEIiQiFHHpP66kxNWBnjw4mo0xkhDx+FdK4CfHjGYXu8wWdDk4ODgA4px3xUBapyeTiXOxyIdnz244Z05Z7XmeX7hwnhBy//793Z0H1rYERIDgQ+Rcegie2uA6hhGhEIizwVOgGImz7NNwNBKNdt57KoLVLjAmJROU1U4TQqzRRreCy8cee2xldfXo6AABCxojE9Ja573HzwiMJkmCwE1dV6j0dJTgdu+9d769cuXKrdvX8zwviuLGjZvTSYkECrzFi8ViOBxunb94f3v75OTEtZ5zqbWVMgno5BsJpYJSniScM5kKO52N0QiR0OCdU0oF8GkqI1XaVCcnJ9PpVHD12KOXvfemtd66k5NxnioA+MY3vikly7Lc2rbX621sbEyn892dw7t3dpNEAMDLL70GAP3+UIqk1xvUdYnHP2NsUc6891tbF/M83dnZubh16bHH3i6E+tpXv3H/3vZ8Pp9MZjEYwdVkMgHCQgjGWs4pKjkIkBhjkmWExODjyWT6YGc7SWSSJDGiyShnjCmeCm5CdIeHh0dHR8Nhvyj6dVs2TZv1VK/XY4zt7e8QQlZWBniRj44OYiTPfeNredbjnE6nY8aYcRqLRWQrc0KVVNiHx+gdxDRVAKAkH/QLxvl0OuWcJkqsjla0boYxXZSzs+eultU0L3ps7gmN+we7VVVxLkOIQghrPRMBSNg/3AuOrA7XYmCHu0fGOMlTRlgIwdkAJHDKKQFggkbKGffMYsk77A/m5aKqGiYFHn8IE89mM93WUspM9sty4X2kQBgVBIh3kfBQVY1Sqq0bwqiglAoOAHt7O977h65efuaZZ77yla+0VXnr1g0AGAxzZ2xZ1s45JPhQEgMEjnb/TfPBD35wfbQ6Go2cMScnJ6++8tI//+f//Fd/9Ve/9OUv9VdWVCo///nPnjm3yRgbjztb0tlsZrXBWlxw3qlHKcce7PjoxEff7/fPnDnzoQ996BOf+MSXvvSl4XBoGhyTMMaYhxiXcNgpiAaEGNMG8GmRbmysuWCtb3nKi2Ha2HJRm94g8RYIIyQwa60KuTGGRMIpQ0ZbliVJnhwdH41GIxrh5OQkFaqua8nZ5uY6Eezpp989m0+919ba3d39NM3bxpumPDw4+cL4S8g3T5QKgXoXwLuNjXWt9fHxotc7Z60dT+aE8cGgF31wtinrVnAVI2GER9/xKYw1WZbNphPo5prB2y7yCzfM6AAgcM5R6M0YWdTVks9IrLOYmw2EBu+5kAwICYRwxihB/BpRvFOLNKebJf4Iwfm86OFBCW8q7OAUlISlqoZSKqUsimI4HM7nc21NhAaHmpHRXj8lhMymuFkZxgRu2nXdGuOQPZeobHU0ROSFcx4pQZVMWZYYekZIBEoUFzH6qqoSIACBkIj2aDIRzjkhOfLI0pRxzpXiJycnAJAkSYzWeoODbUJIBBiurEghjGkppba1Sqm61ZcuPlTXzWJRrmx17jGcc+cMDmxQADGdjquqeuyxx0ajFQD45X/30VNjE++9j1CWJaU0+KUrhRD7+/ucc6WUCx5CnM/njArCRIxRa4PBCVxQzmmWJAgyUkoDkBCQFMZCcIxh9YgJaZ3LNpaUAMCoAAIEOodrNNhGTBaxPGzeTlE5urS9wxuK7gQhRECDYNJ9WYwRGHaM/vQBQCBmOb8nPkasJNjS1hBncgCdVD/GyAj2p85YRMApAyI4Dy5GHnESYxtPQgwkOmO5Ah9C27YI9BPOYvCJVMaHsmzqujbzUNc1FzRPUqVEkhdAQohxY2MDfbdOmkmWZTQSHwEo8xFiJJRyQv4/dP13sKXXdR8Krp2+eOK956bOjW40GpEBiSIlkpAYRNF+FstjWdl+0ng0U2WrnP5xzdieGstv5r1x2eUnzzxZdtGmbD+NZfGJwUwSSUgASBAAASKjc7g5nHy+uNOaP9Y5FyiX3ilUVzf69r3nfN/+9l7rt35BIEJV1c555jGKlK2tZ1YIYZ0zdj5UQETyxSbsMooC721W1t474FDbSnHRare1rZMg7Cx3T509DQBFld/dugMATIAHT6YKVNYyj1feeod4Vc5YyYXWWiiJ3gNngs0jAYUQgDifZ4fhvEz1c+ToGN9Eigy1mgjL9IDQsJPP6cbI+fyGUrlLf0XIlJQyVJFfzAwWA49jtShDj845Bpwxuq2OfhDttHaRbUiwozzGCKxFRIDALkYOnHPmERijA4KGQLQUCY+w1oLHY1BGzC3UyAlhPi042N0ZHB6trCwnSXLp0qXZbDYc9cuyVErSkuOcG2f7/T4CkMsKoZ/kvySEAP5uyhMiykDFGMMCZGcLeRDhy4yxdrtFWAYdUoyxJEmIVUd4K2fzAQDnnDQK89KOc+/9eDw28/S/+RQrSZKDg4OiqIJA6rput9tRqJIkqSsDc38/bshShtNcgfziQuN0lmU0juUc67q02jHGOt1WVWpaWqSHGw6HrVZLa91oNKy1w+EwDMNutwsA4/Gw3W5TAFQ2nb7w/PNR0vzsZz979uzZW9dvJElCoaYHBwc/8zOfdc49/fTTw8G40WhURekoxYxBLLjTTirearWkUkVRaFNXtWg0GmvJKvGH6CQChnWtSQTmPQIguVnT9SRCfRCFKysrxHHrdDpBHFi0RV1EURDH4WQyAoDllaW0mZRl7dAKKessc+gPDvaiKDp5ar3XW4qiaDJJG43GysqKlHJ3d7csy8FgJLlK03RqZ4gsVIFSYRCmam5Iipxxxjg67wGPSfTke+sBmQDO+Wg08YawAm61reuaM7kguwjJpTXOuVIb4/zclZFWURBFyHxlKocLerv3aZpGUdTqtJvNdqvVQkQ6r422CwqqoPXGuXRufqR644lIBwBCMaYUmSh6SrznAhjQYYoMtNbeYqW1ri1HiKLEew/OO6IVsz8/KtAjkMaaIxdMOmu5QMGZ1oVgvNtOH3nwwclokOezk+srURRNZtnRYZ+LUCUAnIUiLCo9GmdlXe0djSZ5YRwz6DxgVtWzPKcTPEmSOE2DKGQcPUBZllU9rSqd5/ksyx2gRxaEIXLGeOx8NJnYIGQebBApIYRezLTCJM2mU3RIJTEAMCGkVMBZGgklQxo7lWXpnBOBogqECx4qNd/ZOALzYaTyynDGGAMPLAgC5wQAAGdBEOVVGcYpUeustc5oa60KQ8kFfVsEn5eZtZoLBowxz9Fbb1Fxj+hReCaZ81Jy4Rc8+uOxH93uRb2KizMW0XkhGTBmNQRB4AGdQ9rgLaWs1DW62mjUVeUdttthI02dM7XVHLh3zqNg6CQX4BxwrhiCd2BAEFpqF8YAwEIVgFSIzKPzHouqVGFAExotFQAIzp1xf+6CkYGsrGHAOaL3niFD9IwJaw0NUWheCPO4CHbMI66qam9vj0x4vffHsuZut0sKJCIa0vNC9H/6JnONS6NBG/jJkycvXrx448aNj33sY5/85Cd/67d+iwC66XR65syZbrd78uTJ1157jSY9JD359Kc/fXR09Pbbb9MeZa1FzhDxm9/85ic+8QmKwNnOZltbW5cvX0bE973vfdeu3TjezGk0O6+3aULPOT1P3vs8L7XWFy/dmyTx0dHRzs7WeDxGzvrD4ac//WlE/PznPz8ajc6fOX3l+rXJbJo2k7X1HpNxEARFWTIQG2trjUZy6d5zZZb/8MWXnn322YP9w/3DPaXU4eHhwcHhuXPnOp3OW2++02y2P/axn/gr/4efvX371h/8//7zpz/96QcuX/7GN76xdfeWrcpus7W3s/v1r3zlx3/io+CgmbYQ2de/9rU7N2/VdX365JkzT3zI+frNN16/dv2q5OLcuXNRFHa7Z4XgZVnUdd3ptC9fvi/LcopMo8teF2Wz2Txz7p6TJ0/SVe33h3Vdt9vdo6OjV155NS+Lu5tb4/H41Nlz3W4XrfmvX/6SGe3UVfaSd5/6xCc++9nPfuNPvvPWW291e2tZWeiy2t/bv3Tx/E99/Kl//3v/sczGQQQa3fEAPo5jW+tbt25tbm5mWba8vEyV6ubm5pUrV27cuLG3e7CyvkwHShRFP/7hH3/00UeJ8kIREdba3d3dg4ODpaWl9fX1CxcujMeD4f5QqPDy5cuvv/qqUoFSynrjvWOMyfFkEoXhAw/cv7t7cP3a7biRKqZoZyR0iZ7fxUCbAZOI6NBb4722hS+KLMuy7Nq1a2+88caNGzfG46G1VnBF7lHPPPunv//7v//444/f3bz9X7/2lboqvvCFLzz00ENnzpzRWt+4cmVr626n15n77lnjLBLW7L2PoqgoMrQuYsGdO3c8Ws+8lHx/f5dqrKoqrXXWeMaYMZZYb44EDoI6au69Z4x776kSoguqtSFNHz2o3gF6ppSSTIZh6L3StvaIYRjyWDrniPVDO5r3HpFJ5gE4Wc47ZwE8IrcWmJeSSQfoPSDzjDHFBJPi3fkn52id9yhlAMClCIIgEIJZpy9cuOfMuZOHh4e1Lr0ziA6YUFxIEj9qq7VmoHRNhyuQTsrUmnNA9Iw7RFvXVkWJtV5wNR7lCJWUMk7C42w06w3nXCoeRVGz2ZzNZkVRtNppu90Ow/DwcG80Goyno6rUg8Ho6GDQarVbrZZSgRCSwRyYm2Yz7x2iVzLCRbwyLgwNoyigCT9dbUQMArYoEIdKqTCM6dQnLSN68OCVDMluC5w3xpVlzRgjttq8bZMs4AF9zyiK0Lo8z0kaSa/lpSUeitlsRv9fSpmmKRV5BO4ThYRaC+ccejYcDonabIxjTCC6sqgZYyogvTMNJuicQu8Nl4Iq76NZRvus974sawBotVp/62/9ra9//evPPftncZJwxo/LbnozzjnqXeMkmc1mf+Nv/I2lpSWqio4rcufg6Gh0NBw0mrEKWFbMNjbWrdVFkVnrPfqqdqSNUurYLxLDUClFmkq01upaE+FXMhnKUKkAuZBhxBjzRh9r3/ic6cwl41zxY7O8KAoW4YeMceW9jaKE/jYIlDEUOco7adrtdYRknXY7L2qy1vFgqqpa7a2sra3kxczYutFIL1w8c/rsKk22Dw4OirwqisJ5F0YJ56Isy1qj4EoqzoVgIDgHznm73bYLq2jnnNG60+0ur3apgbTWMo/EboB5Vri9efM63mDWOcYwDJUxxlhgjIdBxDnosrLGM1YC2WDPey1tvKGpfpIkWrO33rpycLg9j2M2sHn3SPFAyshov7W5JyR+6lOfKstyPJoO+pMobHnvpRTeWx7KIFDWOq01INfacjQL8rVhHDnDMI0ajcShAwCDdaPRcOhefvlHiI4IGuurG3Mgb94dMgToLrU4bwDDdrudJI3L9z10587WG2+8Acgn4xyALy0toxeBSm1Y1XUdRooLmM5wZ2dnMpl89rOfPToafP8HL3KAOErJTcVaHwSCg6LHwSMEQeCRe2/J4sQ7pKUbRVFtS+NrUhhEUWM6naJ3nU5zbWVVKu6creqsLPNZPuv3+8NRv9lonzlzEgD6h+PTZ04KSeQOl2WzRqOxtrbqPW5ubhpjmo12lMTHfEZ6TASIIAjCcO67yhjQSjC2Jm6akrzVTMtKS8WtKzxqAL+61jU2bzRiLmBj41KSJP3+YNAfzYbV8nrY7S4nSUMGxdJSb29v/63XbxxsD6Mk9h5DFSECeuBMBAqc93TiSc5pmiW5qmtz7doNpZTkwjgrGZNSqEUaT12XKggQMc8qwcPZtGQwB4M4587N+bNCCIfeWt1KIu+1td6V5dmzp3/yJz/+5S//ka11r7c0Ho2kYCoJN06szWazPCvzPHfI6KmUMkBj/ubf/JvXrrzz1S9/+aGHHnr+e8/9v//H/+lXfumXn/2zZ4r3Z9u7O4xjt9OSUmRZxjkry8J7v7S0tNTt7u/vF3mpjWGMeeecc+vr6wBQVOVwOEQE7/1v//a/EoyTH1wjTRHZbDYDQFIhUjsh2Nz0TQm5vr7aW10JElnWZVHN0KkwEirkxlXIDVNRI46jIM1mZZYVwjLGREM1DJq9vQNkdpKNHn/8se3d7a2tTc55p9NZ6nTGQ8EY40x6gXuH+0U5XVnuTqflZDKTQpeFpmTRMAoWxBZWV9o5RG9u3iwQsbZue3vXemfycrfY7cdhq9V64P77o7B58+oNwUMQwjs0Zk4Wnk6nDzz44AMPPPDNb36TBGUEGNHn5Zx7cMaYMAy0ntfrBDcEQWC9Q0Rd1UIIEjx5541xSdziAZDnHW1TYRjGcRwHYZYV3vsHHnig2+786Z/+KdFGrLXAGTDg8K5r87stK+DcxwPRAzr0iHjy9Focpd77RqOxtLTkjd/a2rp69RoieWEpIRQVHtZ4Bk4KGyehX7gYB3GUJAnhLAsKNg+CYKnTDQKZ5/k4G5eVFgsDAeujoiiquoyiSEiZF4W1ttVskmZoMpkkDaWUAs6CIEiimN5YGIZ5xnd2dqSU4/GUgXjbX0EHo+EMmAPne73eY489trW188oPXz5mJyHixXsuFEWmlHr88cef/f6zzzyz0+ksnT9/3nufFfn29u50Oo2jlK4Vxf/+9b/+169fv/6Hf/iHaSMGBOt9Wdecc4eICIjeOSTD6yAIjNUMuBDCVbXWhuilnHOiF3A+j84mfhBbSGT43KjRci5UqAhBq6rKe3wvxHw8Zob32DfTH48R5OP2GJHxOSotyKiNWmi+4NV6AEpYcgubUb+IlzyGs733RhsAEFwx5gG4FIJ54kBJdKCN1XWtpKyKMpIiiiKLBSIaYxQlsgjBlIzjxq3Nzcr4ZrNdLcjm7XYbEbWtCadbXu4a47Isy2aF1kbM/WEoogMBeVnpIJQCgDHuYM4gJiGz956UBMcFknfIgDOphOS10VmWVaaMoqDRbjVaadwIR7uDRic9c/ZUUZbj8ZhzvrOz02q1llrNvb283+9LLgXjIDljPIpCYuBHUVyWhXOkpPecWBh8vokdz5benQrw+RU2fm7BRyMlALCmomLDublxs1pgKwDQbDbDMJzNZrgguBzfF5ouUPV7DEPT5sk5p5pzMVm3IDii897XRgOAEpJKHecceK/nQU+Lf4vOG0bUfq01k0wptbKyQox7TqkzDKgUR5wrIAn1pqKdPkJVaqoBgiBgAP2jI2vt6tra0nLn3nvvNcbUdTWaTugRy8ui1Wo1Gg36nPQPic7GFrYwbCFnJEaLXWRs0oNDOxiJaGlqQghIq9UKggAWLjTzy4uMyBwk7iToTnJhjEmSRm4KdGDRMcHp2XLGe+uSKHbOdZc67Xab9L8QgXOurgprpfNzUyOlVBAwgtrzMjtekMbU02nmjBfA0zS11oZBfHBw8NUvffn25t1HHnlke3t7dXV1lk0YY0mSXr5832w2C4Kg3W5yzldXVw/398n/ZDTJvv71r9d1fWJtfX19oyhysqUaDofLy8vTSQbOF0UVBIHgXCjJcO6oo0JZVpV1rtFMnYsQQBvjnGu2WvHCbohzjm4ua5Bzy+ywqEryf0iS6N5773XoR6MRFe2z2aQlO1EULS0tWbSj6YgW22BwpFRoTN1oLJ85e4rmedPpNAzDpaUO53wymUyn06LItK7a7Ta5kdChJIRI01QwSfsZGRTAYiBN4BG1XdPpmPpoznkYpmkae+sQaN4GVldaW4YgBCxmP0zJ0HrDGTtz5kwcx8NR/7Dfd9ZWpkrQRmHinK3KuejE1PVkMnHOLS+tMICjoyOtNdkl0bycFp7Wuq4NQC1ox/WMMSYYZ/NJiSMaE2MMEJ3xlnnvvXb+eI8lPzy06BmbW8QsXseP/3/zosgcAKlA1qZKm00hWFnWzHqvbW9jbXltef/wsJM2mq329sHR4WG/NqzbiSU6AFtqf3Q4OOwPpAqnsywrytoa4PJwNCCHEyZ40kjTJAqixBjjjHHOVbo22hW1Lqs6jNNCa2Mc84KJACEyRgkVaVdpbYUSdW2t96FSVVWh81Iq4MiY0Fp7ZMBQW0TO0ijlUhhjtLZFpa21MRe0BVnnueDGW8E4SGUQFOeIVjsngJeTCdmsI6KzbjCaAMD29rZSKoyU0yYMVRyFAAKtZ4BcoPPOMe3R1KVJ4wZz3tZG54UPBIDzaBnDujZeAZGm2MKD2y9Ix977Y3cyRE/tFGPyeHgsufJ+7vMDAB4dY1joGhiXQTKZFcYWQgghuPMgOXPeewYBSIPOWeYQvPTOccMdQ88YCyUqEXMQznkrXBCECMIYLQRYcsMPhWBgrAZESXrfP/9F+iS03rn5TNEyYFxKree2GFSjEgRBExr6l8Ph0C18mTkXBA7ec889L7zwErkzMcZozZIHN21xtOXS7CeUyjmntf7lX/7lCxcudLvdn/3Zn/3ud7/7xBNPvP/976efu7e3N5lMlJDO2Kqq4jR56623Ll68+A//4T90zlVV9Qdf/MNXX301DMPnnnvutddeW19ff+KJJx667z7w+JUvfdk4+9M//dPnzp0h5qWU0pDISdGYdm7FIzmjVKckYWmzIaWoa03Bg1lRJUnyUz/11Ps/8Mjv//7vLy0tnTlz5oUXXpSSI/ggFP3+/vrJe05tnJBBYzrLhsNBWeZxpMJIffypjz7+6OPewzf++MvPPvu9p59++vz5e86dOzceju67974Pf+TJxx9/9NVXXvyX/+JfRFGwu3m312ln08naSi8bjwif3Nza/vKXvvT2m1c9sl/5lb/24vMvvPn6G1EUntxY21jpPfzwAx96/PE333ydKMOz2eS73/32eDxdX1/v9XrEl11fX7t48SNUyfT7/StXrhR1efPW9Zdeemk8Hvf7faXCtbW1RqM1Go2M9c65Xm/l9OnT9917cf3kibIsd7Y33+nfisMg4Jyhe+bZP/3+95+jKYIxzlqbpulwOP7Kl748HY8vX7rv7Ll7tnc233777dXV1eO57+HhIUG1NCEgSsfLL79MVoc0yTs4ONjY2EiS5Ac/+EG73V5ZWZnNZoyx9fX1K1euXLhw4X3ve99wNHrzrbfefut1qHi7uzzUfSmlVCpN07450takxshal4FSiLi+vj7oj8bjmQyktW5e7C4q7+PxEfneWGt7KytCiOFkaBYkEUQ8Ojqq61oIBgCcSQB48803iW/yrW998/DwsNlqKSWOjo7OnTv35ptvApsXamVZek8wjSCyw+rq6u3btwGACzBGC8mCQMowJAIB9QBC8Nq5Mq/AAw/mXmZhGFI5tcDvGAClK3DGGD3EQggBEgA4zGWPxpjZdNpstUxmEHF5Zcl5E8RROSudc2SCQ6Qb8tNBZHaRRkqHLoLz3guU3nsmuRDcITLGGWfWe7JXPzw8HB4OOFfH7zCIozCMq6qwzu7t7cVpdPXqVWPnPTBtog6QAW80Eu8TXVvvQWtNqjYO7IEHLhdldufG7fsfuHThwoWvfe0bpqoAhbV44vS502eX8jw/6h9Q8Lq1NkrmIOmxSmJlZXl1dZ2Eh+1OMh5NJ7NpFAdxHFLHVZZVIKQQQhuzvr7ebDavXLtCC44uwmw2O3vu9KVLlybZdDAYjEYDukFkHk8m6I1GFEVRUU+KvFpMtCAMJWPcWFvkOQNyOWC61oiec2mNoaKNc56mqQznxbe1FhZRM957OjwCpaqqqgtNpnWtVqvT6RAOTmNYxhhNgNnCaY6o9JzJ8+fPjUaTnc0d74AWPM0wGHpHbcCiaaSen8aGJOyK43h1dZ2Mir71rW/t7+8D2TUucOpjtjV9arbQkSHiwcFBGMaISBdKSllX1hrPGYxGY61LGbLRaGRMTR3ayspaNp2NRloFAYJBZzkPoiiKokBKWetyPud35B4498S01rbCDn1wXQL5FKOfZykEQUTcDSpzvXdVZQj14wIYKCEEaTPpdiulkHlOKjnGWq1WGIZpww/6k9FoZH3FGHhYShqx8XVWTLN85JzpdNoXLpzb2d1a31gOVLS2tialGo/H1965LQQvitKY2hoA4FIqDoEQjAKsiUVy+vRJY0yr1bKunkwmNE2l8FYOTClFHpckLLWOdAA07ZhfcO+9WBiuBUHQajXJyTQIpYdoPB6PRqMwDJ1279y4JiKQithGPo5ihpIx7j1GKnLgfvSj14qiGE9mSoXOGbKZEhL8olXw3lsDdW2YR87Be8s4cgStK84UY0kURrUuQxnKYJ44P5mMDg4OdQWbdw/uOX9qbaVH+L5xEMeBc0YFKoqiqi6twYEe9Hq9ld7awcFREMSAvCyMUvzG9TvNJYzjmJSw6FmaNPOseOP1t2azmbXWGFfkFSIQhYRwfMaE9U7JcI6Hupox7pxTMtTWxCqOG2nCouGkzzkoFTrrvUMhVP9wYGobRUGSRkGgWq1Wd6nl0Hrvd3d3u0ttKlmm0/H6+npVldvb2whuPLaNRqPfH1y+fDmO0zfffNMXSG6S3vswDKWUaRwXeVUUOSE4VVVKxT1aGUopeVUVNJCIo8ChQdDGlmkaJ6kytnIekiSp6szYuizLdrud50fDwUSKqNtZcaLY3t6MovTBB++78va1qqpilVBMDeOMc47eMwDnPaEqgquqKsD5MIqIzaeU6iy1pZS1rSnjwjmjlKJtwXsFAErxpW6HPjs92nEcx3Hc7/etMRTg49HGSbi+sfrHf/LNssrz2WQ2mzV1s66qqgJCbZ544glr/Xe/+90iywOplpaWqtJqXv3Lf/kv93d3hv3+wcGe5GIyHf37L3z++88/d8+FC93lzg9f+1EsE6k4MK8CsbK67JxbW90wWiulukthVVRZllFdMp1mzWYTkUkZTCazMFRCQKvV2tvdXemtPXDf5atXryMimztpzIlmnFESL01bXZZNYxYD9ysry/3x0WDUr0253Ov0essMBUd5dDhkHNrttp5p6W2cRjKSeZlrW2qnt3a2KQo4jkMuIMsy4wxDds89pwtTjMfj5eX2Yb9/69YdU3rOvJQhub4qKZUSRAQgfgR49Nwa7YQKqkojAMgQOOraDYfja1dvnTt3bmdzz9aeMaGUSoI4yzIuGef87NmzGxsb5FOJbk4oJrDJOcclIx03VWlhFAVB0Ol0xuNxIAWdxeTuigaZmEuJVSDopBALR2PvfRrF3S7FkI6H/QGxnsF5jmCc4Zx79t++nHNKCO+ttTCbzcoyd841Go0wVFEsV1bWaNtniJzzlZWV0WjkLBpjyH2IgaAaZjabFWXmvY/jsDI6tEYpRRFqSimKnYnjuNFuJGGUpulyr+sZVFU1mUyooApCZZ3xCN5Ywkwn0xn15+1Ol3FC4mQYqlanXRVlv99PkqTf7xdFkWclRw7Ajg6HcZgoFU4mE8n4vffeS3y9oiiWlpYAwHvrnHvkkUfuueee733ve7PZ7NSpU6urqxsbG71er6oqZJCmqVKKMymEyLKsqiqy3v61X/u1M2fOfP7zn/doJY+ttegZZ5IJRPTI0DM4xmq9d97MWclU8RIORRWC93P4zDlPTOo5+waRsXlC2jGdeQEcz+W9fJFWfUztZEwA+GM4hgEwYMd/FMD8u6i0cM5Ya1uNVEppvbd67nByjOMsAI53nZ0JSTTG1cY4j1IKIRSAF4IDQJZlyLz3XgXzrV4XZc20rXWg1DEaGAa8Lqujo6PSYBeht7qqtZ5Op8QlV0lAy9gYI2XQarXiKB2NxkVRAHDqYZxzTAhwtq6McPNLXS9aeiZlEsdBFBzD99Y4LZwDBtYe9mfW6U6ns9peNt7FcahC1e/3a1t/4AMfWFtff+WVV6SUMgws+uFk3D86MJURQtRVTexgFapWo0lZbcYYa52UglKa34P/zu9+GAR+kb+H74nopP1NCMU8hdbKZtScM4sRiaoPi4GQlHJtbSVNm1evXmVsnuQGC9cOPQde5wgvkRXmzdT8xalOc+DJs4LWgFKK4Oa5fw7nVIYRE41QPCYEZa2TdoHQB/KHIUycau/j4o2W97yzUNJaR0AksaeLouCMcDEYDYfT2fjkyZNRFAHA+vo65/zo6IjiNTjn1jnCkemdCCEYzsUZtDzmC5WLeaEVBMYYShOiTo0xRgbN9AG11lJK7xxZPFHZyZk4dkQJAkk1Huc8CCL6Ed1udzqdGmOAs6rSZVlyLo0pm81mt9tduAPN9W3GGG11rTlpcxuNxHugq0rXiuRKgVTO4cHeITg8efLkRz7ykWeffbbIsl/81V/8d5//D99/4ft/8id/8qMf/ejgcG97e3t9fX11dXVvb+/kyZN1XRJ4ffr0aWvt4eHhZFbked5MUnKu2Nra0pUWjP/Jt/544+SJZrN5dHSEmvYH2jR8Xde1qbw2YZpsnFj3PgrC0Fprna6KIm3EZZVHUbRxcl1rzRwnqhaVxM75KAhbrVZd12trK0qp2zeuk4gzSaIooqRHn6bxbDbz3neWlxQXQgha0pxDmja11rq21EdPp1NabFpXh4fj0WjU6XTSNK1rQzbllAhAbZlz6HxJtVCjkdJVtdY657M8F0IsLS0xxqIoOjZtr3QlhHTOZW4GQBpl4lF5WlfaaBJpSSk9WgQ3yybNZrPRaGithZC9Xo9WJtFopJTD4ZBzbrTmnBtt58oJKUnUSI5JjLEkijmX6B1jjIv5BJGJhb0PGbgbzxjZ/3JK1iKgQ3HBOHWRxfE+/7+DGwJQqhJZP6MQUSqFcOCSMEDp83yUpiljLIjCMI0Oh5PRaGZBtbptUDHjZZ7nR8OBrn2e57Ny6DyMpjPrsPbWLoAXyUWzkTDGSqOLoghDVeu6KAr0rMhLj1CVlQXGVFhWdlbUnU6Ly1DXYCETQhhTSxkIZNZaKQIAbmrNOXfOGGdVEEkhDIKSErgA4M5hWddCKeB8muehtZzzKIoseikDJaQ2lRCi1HqWZ0qpIIg1Y7PZbDabdbtdBlypgLbT/f19dKbZTJe6XSW55BF6r0JlXF2WOaLjCkKuOAcOzFvrtJHcg0BE47xlTAIlYyys+RkTSomF+sTSbsnnuguGCw6NEAI9c4CcI7C5e1Vd1ypQkUsMMM8k53WeZ3fubq2vrTSbDWtKBpwx7gDReEQU3DonJWeCMcG4EAxs5Z3hQgFTDsG4+XJSgnMGk8nMpy6JQqsNT1NEj/7Pp8MjAJPCoROMKSW9I1M1q5ha4MXveqDTkUFKCz5nCgPMndxrIcRkMrl+/bpz5viL6XiiTXg2m9GDI6WUjDvnqIWsquqpp5566KGHXn31VSHEr/zKr3ziE58IhASA7e3tq1evaq2ZgjlYWZSvv/76lStXnnzyyYcffpjqZFjELB8dHe3s7Lz++uv3nD4dhuH29nZRFGVZ/vzP/zyNggkDcc4heillluVFUSwvL0uQdM7KQDHGrHUAPkmSfv/a2bNnP/HJp86fP/uHX/yDkydPVlX1/PPPx0G4vNwdZaNmM5WK37p58403rxsrz5w7v7zc2d8/ajaTdjNdWV5dXz+ByA73Dxj6T/zUU0899VPTycx7/wu/8AvT8ejp73znz/7sO0udbp7P/tff/4/f+kZ3NBp96lM//eRjj37rW9965tnvNRsNY91LP3jhofe9nyGYWpdlqauyEYUXL148sbHR6bRbjeTy5cvf+c53Xnzxxel0et99912+fBkA3n77Cl20vb09ALh9+/Yrr7xClz3L8k6ns7q6ury8fPr02ZMnT66srN25c+dbf/ztdrv9G7/xGx989NHhcLi5uVkZfenSpWz/xtbdO0EoX3/91cFgJML45MmTuwd949FoLYSw2ty+fVsG4blz5+67fPnM2VOHh4dUCVDelQgkcSnqWr83iLidtsMwNMzkeU56yuvXr1PPsrGx0W63Dw8PsyxbX1/XWn/7O9+5evVqHMe9Xmvt1Mm7WzuFLqIgaDQaxhjtdRhHQgi5s7UppQzDOAzjRhJYHeq6dm7uSsw5dw6B2UYnDQKptTYanHOn1k6ePXt2OB6GA0lVXSBkXeu6qNI0HQ7GKlaIHL2I0tB5+9zz34+i6J57L/yNv/Hrr7322srKyi//8i//xm/8BgQgIzEej7z3xthGoyEEl1K2281OJ14rO72VpTiODw4OqqoQ80ju+TyfHhvJys5S7IElSYLIJuO8Mtp54Ay9dw6scXUcxc4KBoE1oEKN4Bln82AZJWUUaK2B8b/6V/7q7Vu3Xnn5VaXUsD/y3jebKBQnTw8CDQGRMwaMO+84IFJaKZPgAVEITnEnHiwyzqQQzoGtLWM8FPHq0nrAo1PrZ7bubpZlWZUllywvhrWeOucBsCjynb3dNE2VktYBY5wj0wiILOCKcamkjGLGOa8qPRqNwPk4bXCpuAhByFLzj/7kpx/70E/87u/+bhiGS0tLL7/4YlmterSNRiNQwBgaW6PjgQyNrQk9oUf9oH8wp2ygmk4oYFqFPLbGW+9snVulqFwfjoeVrpaWlr3H6XTKBHeAIPh4Nt073A8C2W0301hpXc1mM+3qOI6BSa2tkCgVNGVP14cIRnDWasW6dtmssLVDL5zTkosiz6VS6EBx6b1Hy1GwMIyUkLqsqkW0sfVMCCVVyKWgtHdjbVkXns3NLr33m5ubH/nIR5588sn/9J/+U1mWJNCL47jT6RhjCFYoplVRFpPhxJQVeKeksLYKpERKJAdGFUaZ5zIKEZFZVuM8+lZJ5b1nUqWt5nAyLvLs7bffNtaCUM6D5FxwYWxNJlbH7wqAHi6kApquPwFtRVEIzrxDaSVYiFAxy2Z92+g0W8uNpV7boosaURgrwUSZ51SDJ0lEJB3uA2bRWcqsZ4vprhfk+IGwaKuYswiANCOdDzYZMKkEgK1LRGLhyaqqmHdMineBZkQPGIUhCHDI+kczLgIVCOf00nK61It1IafT6ehoMh1NuWQbG6vNVjqd1lmR39m8OxoNiHg+Ho9Pnz4tBF850WrVcVXV+bTa3NwHhGacEo5QllxyQBQAPJsNTp08AwD90WA4GnoPoYqstVwpIq37GrjgxBBEZmtdKkmZ10JrjQw55wjeMYfI0c7pPDTXnU5n4BhIMRiMvYMwSRlj7aTJmeSsJl47egyEtNaCFQfbQ8ZErJqmNkx6a5z38woABFNRFMdxUWbANJNyrrDmgXMOQOS69BMQgjUajVbSjMOwKvXd3buIMuKtMMbKaAaxsfL0mbM7OzuHB7cefvghrXVR5MaWSYKTyYQ0AdrkYcSsrQC5EmDqWnA/7nvb5IgVAAaBjOJASDw82nXOMY5SAQPJmNDaCC6klLrKvUchhEf0HjhyUh5wLuNmIrQ2xlCGJLjAW15pWzMnRcgZjyJWFFlR+tGYIXoh2MaJtTSNna3R8ru3N4UQjPPD/n5RtRpJY2lpZWd7TwhfZv1JllVVub6+FgQiK6YqYIgsioJGo1XXdWmsA/CMTcZTooczL5AxV6MB5FyUlU7TNAilhVJrreIobrbyvEJwgVRlOeIcaDR17p6NJFWj0dhjCVCcOrF6dDQwtXXCnb942ht2eDjwDqx1DLnzLozI3IoB42VtwNeXLl1qt7ovv/wyF4qoLVlZUIcQqsB5I3i0WGzcCZxOx977OF1tLTcH00M0XkqJ0q+eXOlPjpRQp86cklLu7OwYYxB9o9H4xle/1Wi0QtUucs2kOHm6B9xm5XhnfDWO08aqYlFsjGkm3WY79QxefOVlFTDGQDbCS/de/t0vfOHy5QdE0vjunz7z/icf6y6vFHWmtR6Phx/66Ae73eW6riej8XC4F7dZmiYC0uGQYAV+587m3jaoNAhUxLlAy3trS4P+6Kd+8tPD4fDNd67UdQ3gGTcAAN4zzzgTDIR36J0C6UZZNsqmuOuEZCsrvTAS04Nsdpg99sTjSol+v3/h0rnt7c2jo0Gn0xGJi8IkCJi1TgqFnhcze/3NW2kanjq1vtzrem/3D44mk1Ecp2VVhYnqdrtbm/uRSla7Z30b0fmj/iHnoE3BhOr2NsIwRrZk3aDUhkHgnJNScGQ0GGaMo3YAzBm2f2d3dDgWQiBzTCATSGajDNhKr3v1ys3vfPvPoiiKo2ZRFOTsn7aaZZX3+31GWngQSihkYA2UlTW22DhxqiizssyNYFyis9YzH8dxq910zllvO0tNNoG6rJQKBTDOuRKSc17Xfnd7yxgTxoH1NfFcAp5wzoVkCx4oASUB5xydR2R1bZKkEcRRmqbAcVINa6hSnWTDon/YR89M7Uk8ns+KIIySpCGlVFy000YQBKPpZDQaWG+UYsxjICFKw+VOe+/wSGvLuYzjtNdbHQyOyqAG8Bsn15VSo9FoOBqJhS9zEqfOOeroCBuiAokheCcZY0JI7/nB3j75ZhZFVWT1eJiBRq4kRV849IGA7vKJusyBy6ef/rMyz3q9XqfTHU9mg3HeXT2ztHFh7zA/PMrfeev6SmvtL33qL3ZXw/Pnzz/zzDOuHn/io489//zzo+HQA7SieGjrDz36xE98+LFut9lqxu9/34NFUSDIa9euzY9dwkMlAY4gBCPyhPfoAWUgrEUEDwKMs85Yxhh5ynEumXeMMQ+WiMaIqJQ0RnvvoyBcEJSBh4rY6YDovSMrDMHAoXcevXeKk3DEz0mg3gGAUMG8yierbuTee7QslDGN0o+v8DGOqRk7xret9cbM2UzCc/CIxiZxZK21rkiSJM9zRPTWKaW8E9pzETUKRC0DUVWSh5xJihgVMkYZVUVpNIKHcX/EUZ44ddJpPxiPwlAFOMcTBTAVhA5BBDJWwnIAzsAb5ywAmJp2C3TOLijhkmBHEmZ7h1wJQaauvg5CYb2zzpTGRXG8cfpMnEZ1XZZ1MZ1ldV1vrG60kvb1t66NDoadVjsJI57ZoihCFZ1eO93udq5fvznIBkop421pawceODPWMrL1cJ7iGhDnXkBUwhlirziHjAGAc4555JwLop+jBya998DnJDTGEABJ40VpbARQj0aToqgI1iScbuEpzGjhoeXAuNXeoGOMoZ/TexlfuPdY7T1qNBBKKWXAFCAcWzAbYxwyJhRY44wFj3M7P8kIJSAKMKHhRNEAzowxqMkx3yHhC9xbNEpJ4Nx6yySL4yj0kGVZZUsLRmLokal5dgLs7R5orT33zWZzbW1taWkpiEK6oXVd51lWV/OIZmetEIKBMN7MhxlOe1hYPMvAeuMB0YEIZKgiJri1FLiFnAvJJTo0tZNceAN1YQB4GMbIKC/LBEE0DzAEAOYJ81labp08eeJHrxxZa6MoUUIaV3kwK2u9bqeztbV1jLMLwYMoLGtStvFmq5U2mtp46yqPvior4l4gMgA+nWb9wwHnPFAqVEEzakz642bc/NzPfG7v8ODtt6+8+urrb7zxVhzHzUY3z8pvfP2POeeTydRakyTJ6mqv0lpItnFqY6nX29vbK8vycHA0mUwQIQzi9nKPc+6QPfbkE/fce/HNt17funkXFAOPayc2Lt57j+BqeXkZGXAOOzs7RZ5XugSAJIm0rgBgNBqtr68D8qzMRSDDMESG2mpCzKMkbrVaiGxra6vIcsbQezvneyKGYTQcDkfDSa/X6y2vW63H4zEZLaZpyqTwzEYNKQxWVTWupifXNzqdbmW0c8xZBBfonFWlYxAZ5+qionGXMcaYmtKJ4khms1JrHcYB51w7GyXx6upKq9WK41hrPZtlJN3wBvjCd94YIxfJt5JJAarKtTHOgdaVo9BLbkTEYuUDqJkrPXLLmwwAda45Sm90lhdE26dDU3vtrOUgHPPaG3TAENIg8d5z5LbWjAldzfnR3iN6oIQnB8C5AM6c9wwFInIEtM6zeSzb8XCRAE0hKLHgzyerMu+F94IxxMozXlsZxamuatSGOR1z2w7Be+HrrKxrYF4pEQVKBuJoqmd5NhmX06LMy6o2ptJ1WZUO0FrLOQRRGIYxF0JbcvWsBWO61Ea7orJlUQEXDhkCByYYhLMs147XXodgHPdgGeMcrXOgBVeMMQYOwIPgMgis9RyYDCIpZMB5EISUJYCI6FwQBGSmThdBAQuFAgR0XjKFDiVTxNcXMrFOAwJjbDweN5tNJbgSvCzt+uqqihRNmwrtkpiIrh4d6zR7+/v7aJlgHMEhtyzwKL1jPAoiXzOGap4IyDznHBAZQxKcSC68dQy4EoH3HoAziqpGpxRnnEsmjTGBZOQO7AG8dZIzb52QrKpRmypJ08HhWCm1fzByHjrthvO1QSecZ4IJJhiCQ4+OGQDGKPQlDFCZ0kiOKWM02OCC1bUB8GEYTsrSc8EYA6OllHk++/MXjNUxBy4COnWMN4TDCmBoHZ/70tRSyjielx+EJGhtaY4rhACgmZ+sKj0e7x4PXYwxNHWN49A5F8ehqerJZNZotqIooCBuAUjycSnlhQsXvvWtbz388MOdZms4HH7xi1/8gz/4g+tXrqSthkPvASnCXUpZ6vqV115tdtq/8zu/88L3v99ot9fW1i5cuHD79u39/f00TQ+Gw9lsdvneS5/97Gfeeeed6XS8srKSZdlRf5/0lFGYRFGkBDs62PQ27y13SdPZaDQY5/NRh8lb3c7nPveX0zR9860bnc66MeJ73/tjzsOau5mtm91lFOqVV1/94Q9/GETxZz7z2R+98q2qqk+eOP3YY0/oqh4MBumZ9H/5//6rl1989kMf+vDjH3zIlNO97c1vfvOba2tr0+l4ND5KwjAK+HJ3PY3E7u62lPLlH35vdaWLABcv3rOze+gRojRqNtPuUtNjzcEEoTp5aq3TTmfj8XQ8UEIisuXllc997i9fv351PB6PJ8MbN24cHBwsLy9rUxhbbm5uvvjii4TLP/WTP/GB9z/R7XZbzc6dO3fW1jYAYDSavPDCC6sryx//+MeLfPrP/qd/euPGDWNMq9U4ceKED5OxwQxx5KyGIARZj4b9weHly5ePjo4Gg0EYhkwqFHx7d5sJ9uqrr00mk0ajQenBQoilqEvoq5QyiiJyarLOeYEikudOnaMwBWttu9sxxuRZsbm1NRiOd3Z2sums2Wzevn1HKn761Kk0TVWozp46W5lKj4o4SvPtwjkn2wFjICWXXCqtzWw2VDKKg3Sll964fhuAC4HeQxBwxlij0Vo9saq13t/fq+sKwVlrJ5Px0dGRYMA5NJup0240GtV1a2lpiXG0tXaA3W6nu7y0tbV1cHR45tTp1dXeCy+8MJ1Of+7nfo6wzic/9MTR0WA6ncZxHEWxlLIsi7W1tXvuOTebzU6ePKlNVRRFFAVhqEjyEIZhFEXLy8v0RMVByDmP0mR5efnll3+0eXfXWrfc6506ffLWjevOufvuv3Tn5h0AZkwdBikXc1YIFUnW2qIo6rJc29g4derM3btb1ruABUVREOuBS0bTUcLalFIMOI3RYGGzSC/v0RjDEaSUWlfaWMVDbSrGmEe4e/f23t6eUurMmTNMcBmIy+fvG4/Hw9mQMXb69ClrbZZlpJBVKkR0dV0HkqzEhFTcGisE2oWz4draynA4rKrixo1rziGXcv9g9+mnn/7Kl7704IMP/tZv/dba2tp/97nP7e0e7B/sGmOc84yhVDIvCyl5GIWxjIhDkWVZv9+nQTQ3khiaxljB547Mx12NtbautfdHVE8DgK7rJEmSJKnq4saNG0owIcSFC+cvX7588+Z1B0jOD3EcUxhIu9NrNpvaFJxjURTW+CSNVSM02ldVlSTJ0nLnYP8IwJVlJsMYF+pR6m/nWLO1fF5mSyGEEIzMsqWUuracA3o/ODxCxDdfe/0jH/qxNIq9sbbWpqqdNnVeH5O5KOdnZ2eHwzzzmjGGDgDAGMOkoDFdGMfI5hpGqo3Qe5oCVVW1tbVV13UYRZPJ5Nz5851OZ3d3lzK4pJRkTEGNOmfSOYfMv5cSRSRQmGdOAhdzAyPvPTiQQVCWZZQEg8Foebk7zMtGo+Wtk0wopZyP8jzPs5KADCrahFDvjR91zpGXE/EUqBnwnpTxnNji4/F0Ia6UiO5Tn/rUK6+8sr+/j5xVZZkkycbGRp7nszyjhk0FwnsnBDs43Ot02s1mCsxHUSCa7aIoqqqwzqP2R0eDsixrXeIYy7rw3ocqAO9KXr322ptRFK2u98JQRGF68fzKqVNnDw/6s0nW6XSKouh2u0oIxtjNmzcRsX80ZFKUdSaEaLU6iEh+1kSQ8QxCpYiJQ2KiNAna7fZwOCYvRDpZPVqt67p03thLly71er2dnZ2yPFhg/j5QEU2zjDHek7xazKcy1jPGhQAhBOeS7j4Qjg2Ai4x4RKT+MHelB0vkkfmEVsraOe+91jZJGp3OUpnl29vbCzEy0GxgNBpJKY6OjoypnXPXr19//PHHw1ANhkc7O1tra2tJ0vjhS6+AZ2maam3JuV5KefLkOhUTe3u7iFiaGhGDQOZVLoTiyMFzRPAeBSoByjkXR41FicyPFyQ1sHEcp2laFEU9b9IY5+A9O/4yxigfgyGiELLdbmqt83yW57m1JlGJc0YJpbXd3d5Nkkar2akqjdYFoUyj6PaNW875drvd6/VmeV5V1UpvTSk1nY6rSnuLuDAi5Jwb672xUgqLVkrZiJrT6RQZqNjHcZym3UBIXVZZliVRnKaJkMwYs75+Is/z9fX15eVV9Kwoqrt3x4yJZtpCXw+Hk5Wl9W63d/PGXWMKxhhjQH4dIQ+zshCC29o8+OCDH/vYx958882yLBlHRKHLylrbbjdxoV1QMiByZWU10SuOjo64kkQX5Zyfv+csol/fWKWIntFwQsdZWeatVufUuRPFtGLMFZl+5KEHnvqpn+DSHA32hqO+EOLhRy53O70b1+68/da15fbpc+fPbG7fZYw1kpiBODw87HQ6SZJIKaNG49q1awgGmbO+/IVf/Ln+ZH9/fydJktpUDz54/507m1prAezMmTNLS70iy6MgLsuKsyDLsslkxjzSSfTUUx/7L//li8PhsNfrMYZVXgjJGGO4oFgCIKIBz7hgWltrjXR8NsvqWnEWzLLp9uZ2lMTD4YBzWdem2+2madpup85hWeiq0IP+OIoSYisI6bMsC0IZROrcuXPGuKPB6J1rV8JIjEYTXbtOs6NkHEVxEARKKecMfWR0Xtd2aWnJWbazs0dkKMYYWfrS/iakIG2H9z7P87q2XEqPtqx0rcsoiowx09lYm6rZSp1zUvI0TenZd558tAw9v4yhQytFgIBaV4wrZL6z1D6VrGdZdnfzThSniBiFMakT6rpGxFajOTK2LsokSay1M52TH+vKytpoNKh0rRSFuIISQW0qyQLGuLUWhBAwD/ejEyQIhIpUGAsQuigKXc6s9W9fvYIWGfAiK7Npic6HKuZSMsbKMvceyOG02+12Oh1j6tFkSB6aiLlSqtFoBIORYXNvIlJP53mepnEQyiiODw8P8zzv9XpFUVDMA8m8GAPiHtLJaIxBhmEYVlVljPF23u3UdT0aDu9/4MH3v++DLz7/IhFnjlG5VrNTltUciwQEDmkrPXHm7P333/+Zn/n0qy//MEmjZ557JhD89ImNJIzB4U9/8tPT6TTLZnvb297YtRMbV9659r73P/D3//7fP3v27P/w//pnHtnHn/rkl7/8lfG4T3uyc444ccbWduF4e/x6t8zwljNBM2ba5OcMYiXBkThJUKAfVSPzNDY2x4L5wkDDz60S2PGBS0nTVHHRYeMAOemA2bsJgYgIzDEOnnnv7XQ6J9LS67hEEYyJhffx8a/eezBz8w26v4yxPM+pMEibCefcGWtsfTQcNOIEwVttvfdRxMMkBsayvBBSpWkahmE1q5WAPM9Ho1GaptM8c84Vhakq7b2PVFRVxDNViBhFCRPcGGO0XdTDHhEdeia45CIIAil5lmVVVQjBlpaWojQ5OjqkC1JVFZeSSRZKduLECc75aDBE5smwVQq1urL26o9+tLu722q0+/1hXZSj0SRUcn19PYoiXdWwMCkWDkpRyjlXlHtvvZ/nH1prGfPHWwEhjJzzY0Ix5xwZcjZn6cLCSsV7T8xLIZiU0jlL9925ubRud3d3oX1kbpEfSApIJKcOwrIX64GM4BGRC4nvMcSHhZCUMSakOKatEWLCOWeLBUYcZPoI5DuBiGSaSRxzU+tjq7Hjz8vVwgpmIdbUWs9mOcWNKKW4kEEUSUZYsJdSBnEkJOOcZ1lWFLlQkrAhY4yUEoPFs7NQktJrPmN4j6WMYBI5A+HobyVjHITzxhqjtXbStlqtqqrqspo/Bc7JiIeNhMZaQqi6rIAM4sFRV0yXi3YSKlfqugrDMEmS8XhcFMVcpce5ECF5TVLXQIWic64sS4qxiaJICEHKUa219S6JYsnEtRvXb968HQRBs9n86te+8vWn//j555+/fv366urqYJDBgock5FwsWBTFnTt34jjudFtJkkRhQgwvxli32+VcICJnc4Lh22+/feHChZ/7uZ+7c+dOXddnz56N4zgKk8FgYK3d39+f5VOSWZR1yTl3jpMDf13Xw8GYwrgmkwmlkTPgDHhd6RnMwjjM87yuDWMsVJFS80hJrqQxhoEgZ4MoCGpE6hrIa0IA48irSkvJe70el9w5T25LjUajyCsAyPN8NpuRbTFdfxrNjkYjU9VWWGp5aPIhhBBCdJe77XZnNBrt7x/QxSd/f2+cExBFURynWVZ4D1Jy5pFsbagHB/DNZjNN07IsSfFNXiK0sIuiKIqiKkuqFzkI8JQASc4HIokb9Dwek28A5w8OhaVrrcHPGa/WzaOGjh98JMf8hb/T8do+LumR5pHzwdKfDzcLzi3Rpb1jgnvvZ7OZYBycE0KcOHFi/mGrCgCEkq72la7LyXQwHdSVzqsyz8uiqrW1lJ7JpYiiKAikCgMhlEesqiorC0RH8e+Tycw5x6XIy1oGIWMiCCLjhfVAlkfWaWv9/FgioJzNudLWWmDv9gJ03HvvnbPeWrLfJJ2EQyRBxmw2IwkXXWqaQy/8auZBvoIJuuaHh4fUGl++fDmKotF0ZIy5fft2s9mc992MSc6I+xmGITpP/i3e+yAIhJib5sNicIjwLrWcbgQXc//SRbEKAMAElyA96RiCOAxDybmzaNGjR9pPiqIA5oMgAGfzPA/iyDnHvD84OKqrYmm5DSSQqmwYKBCCAyAD8EQmQ1NbZ+bZd1pbJTgAWOcR0daV9z4KVaVrqw06lySJdX8+u9k5VxYZlyJUAQCnqIw0TeuipOPAOWe9AwBj5oIV2pPJ/4SOJ8YYlbJxHB8eHlItSqXgsUovy7L777//f/wf/p8/+MGL//Sf/lPO4fhYrKrq9u3bzz333MHBwa1bt15//fUzJ0998Ytf/MIXvqC1VlFEV6zZbNLbU0oxKb74xS8+88wzd+7c4Uo1m83f/M3ffPjhh7/61a9+/vOf15pymBi5S3/sYx9zzg0GgytXrhwe7KXNxj333NNIJeec2NP9fr/VTK21Dz748H333ee8Hw7HKysrYRJvbGwg4sHBATr/gQ984Pd///epAKvySoCYTrO9vb2yrsqy7nSWGo3GX/iZx15++ZUr71w72Du8detWXdeC8c3NzRNrnVar1Wq16sp84xtfu3795u3bNx944IE8z3/08ou93tLZs6fzPA/DOIoC59zLL7986d7LTzzxxH/+L3/4zttXpVTj8fCP/uiL+zu7ZZX3lk99+tOfPHv2jK31aDw4uXFChNHp06en0+mLL/7grbfe+pnP/vSv//qvF0Xx7W9/e2tryxiTZRltI0mS3Lp1q5F2aQ3Xlbl79+7e3sHt27erqnrqqZ9K0/Tf//vPX7lypdfrPfjg/Wtra5ubm3sHu3Ry1XWd53mWZXmef+jxJx577DEhxNNPP01uHt47pdTOzg5VC9574rNT9Z4kye7uXhzHtJl77wUAY2xjY+Phhx8eDAZvvvnG3bt3vfc/9clPpGla1/Vzzz2XZdmZU6eJ7ByExDIRHvzm5maapheX77l9a4scmWhJF0UhR8MJ57wqNKDJlAlFHMfNujKIXoi5PUWWFYM33tFaNzvt8/ecBQBj9HDYbzcbtS4n06ouc86ltzgeDpvNRqOR1nXdaaVCMFri6GxRZCsry/sHu51O57nvPTMcDoNQHhwc0KdaHC06iiIAf+vWrdlsFoZhWeWI2GgknU6n2WyWZTmZjBF9XVeTyURKKUTQ7/eDQLZarTt3Nq0xIPhyb2l9fZUzd3i4f/Hec5PJpH8wCMLEmFJxON6kjs8VJsR4PP7n//yfk1FppWsuBRlVOmeFEEEQkDJL17UxWoqAjhylBIWnUbUqpeQIzhkppdalsfr02VP94aCclUwxjzrLynfeeUspdfr06dX1lTiNopmcTrL9/V1ERg44JIjjnCsRCCGtrZ2zjEVScWd9EMq6rnnIrPVpI46cqyszGY1+7ud/cWNj4ytf+cpv/F9+A4B/7nOfu3Pnzq/+6q++/vrrr7766jPP/Olw2K/rGsF1e0tKCaogm+1GEAStVms8Hg8HY4bcW1QqAAD079pHOucECEpNpAoPkAOS3hBpctBqpEJwrfV4MnznnatZlgVBsLS0RNQbt7BOLoosDFUQpmEkrLWhirxjeVZn5awoM8YREe+7fOGhhx5xFr/znaezrKAjyjljbE13jXMuhZSSjkaNiM5T7ANQr8u56HQ6ALC9tfu1//qNzbvbv/RLvzSdTv/95z8fxjHVDVWlq0pTAaq1prm61loIJYDNT6njzwsAnPgxxJhjVKQeVyT0wNPx3Gg0Dg8PCelgHINgrhtSSgEHLoS1eKyIXDhaBI1GQylV5oVzaLzlCJxzZMxq56zd2tyNYmWMsda0mk3JVRrFR0dHg72h1joIAmSM6gxEFkXRmTNn9vb2SDEnF3nK9JQxxgQjd+B5vgq1h/Q2HnnkkeXl7lNPPXXt2jViNLdaLepykdzbgZGaJ4qCKJbIUhWwWufNZqPRarz1oxvDUZ9zHoZhFKd1rauqpjES1R8YemPy5pnlxx79wM7OznQ6lSJQKpxMZkEQ3HfffT986aW9vb3V1dWyLA/GYzpHtbXoARzEHXXhngveeymDzc1treswjHCRriuECMNwMpkoGRK0VBQFgEdrpWw0W2mn0ymKfH9//8TaehAEN27cGI/Hi2dZcc6NrQE5WqfnDDhBwmolpZs7RJMFGPPeC6HQO0rMo+QT2sdns1mj0ciyDAAE41VV8UXYFOPcOR+G0Ww2u3LlCvmB0OWdl0Sc1XVVlh7AU10+Go3ffPPNjY219Y3VOI7v3r3bafd6vdXpeBoEkZJMSQvOO+fzPK+qctHQgjVeKcVAATqjPWcSkQmhiGfnEDhX6DQXXIVRGIYkH6nr0nvvnBn1B0Eo40Y69zfQTsyTqQDmkzbqY5l1hnOmtb3v/L1VXXhvy7JE9EmSKBWUZbm1tWM0bt/dkVyJMLJOew+c81F/lLbSKJLT8aSoSgAIw2AwPBJMomeInJpD6pQAoNR1N20bZ6fTcZ7n7U6TCxmGYRyqujLOuW5n+czpk5wz59ze/s5wMPbeT8a76AUiG43GYex6y6vdVtjppFHYKrLi7p2tuq6lCBgy5zRjotPpCCHyYqak5En04osvvvTSS1VdxEm0GDR6DjidTsNIUaN1dDigcrCqKueMUpFzToby9OnTs9msrPI8z2ncSDUc57y71PbeZ/loMDhqt5eiNCqGY6VEXVd7+zv7h9tSYdqO83wWRsF0Njh/8cSZ8+uvPH+nqoo0Teu6dM7NZrPJZIYW797dIlVQZaq0Ea+d6HEJKyvdEiaTXOzsblnj2+025zwIol53qa7N7Zt3tNbNZuvcufM723tpmvZ6vSvvXH/z1dfjVuu3fuu3APjKykoQBFpXyBkJ+hZUET9Px9KGKc48ChDM83xS5qL03ksR7WwfeXBScmt2kyiRSn3gA+//8Ic/9B++8B+9xW53eW/3sCqKpNEgw9w8zyezcaOZcHkEHNbWV6xDXedSSl276XSaJH48HgdKWWuJCE/+VEdHdz/46BPnz5/f2toKZbDgjVKykKChSLvdXD+xcXCwh8xWFZEufRAEXInJdAACBLAghChoWOsBsNGMqIecTWfTfEr5CnS+e+9lKAQg59yD29y6KYS4/4H72p0G3nVx3IrjuCrrLCu01s1mWleV5XPyaVVV5LlBWsIgCAC4EoGUau79xQqyQHXOGT+37k1bTQFMCGbQJEkcxjKIVLPVEKJ30D9ARMaELnWRl41Go9NZMrU9PDxi2jrhOOeCySCQxuj9/d0gjIUQYRgbM0ddZ9PcRI4xFgcBY2w2m92+fZu4D2VZv/POOwAQqChOEyFUkjSiKNrd3aUo6k6nwxgriooAuLIsoyQyxnDBnLFBEM4V2eNZEEZ/7+/9vaVuDy32ej3qWMIwnE6zKi/2drclZ7PJ9H3vezgvq7LWH3/qp0Sgfu/3Pv/Tn/nUw49cfv7ZJJuNAH1/b3Dzyo1PfOIT672VP3vrrXNnz/7cX/krl++//5/9i3/xYx/+8Ucff+yZ5174/vMvvv+DT/zotSs37+ynEUUUMMrO0Fpb64ChEJI80IRUgIxE947o6MzSUSKYWHAJBEGZCkMAYPjufJEKACbmRg3UaXvrgM9v4hys5FwKCQBK8DAMvPdlra02x14cC1RuvrsKYMi4997jPGyZsONjHEQIwf0cJhCC0cTaGANmXlpIyYVg3s89x1qtFuccPIoodIUheDGJwjht7uzs2OF4ZWX50uX77t7durm5yUBU2qiQkwx5MDgyppaSl2XB+LyttdaGUpFTkAoDJohapb33IDhYzRgLwyAIUvK5CoIgVKrRTK21KgzXTqwzxgaD/mw2I9tf771znguYTqdUdtW6nHNynT7cP5JCKBFMJ5kSAgDOnj5DXff+/j5BiktLS3lWWmvROgM+SRJEnM1m6ByAp2qHL1KdCQrxCyPjY9YILJyzyUTYOIcAHi2ZCVHeibV2NpsBMMbII4URl8BaCnGZ16gAHBcWapxzBHdcTgNjQjBAyPOcLZT4C1DYM8a01iFXsDAAoTkH5xy9k1Iim5ciC04u0gKmhZTnOcFnjDEphXaWsWPp9NxUl2iBhNz5hTU5p1XIEASgZ956ByjFHJEnQjfBzbQA3nvdPCPz0ndRObEwfOcLc2HuOVOBX5g104tih733s0lGt0YIEamAcTGZTFoSGo2Gtd5qEwSRUirLpktLSx/+8Ieff/75yWTivY+TUAgRRUGr1RqOa+fcwcEBcVwIBEFEs3iI6HEry5IYRdprEagwienh1Vqjxlan7b0vimpWZFEUC8GNMdm4+PJ//epn/uJfIHrmMb8VABCcqXyn01FK1nVtrWaMGe3G9XQ63aUvS5KEzR1aBI1CqSZ/4YUXrlx9++LFi7PZ7Nlnn93Z3quqahFZwZZXlqSUwDBQIXAEgKrSnMt2u11XxlpL1HjryTRPa60B0VkLC1sYEquh844x59CDp14jTdMoCPr9PtmsRVEURVGSNBCBvNF7vZ5kstK197XVTnAVRVGZV3Vdl0XlPdCMhNYhlbgAoKKQc16WdRQFcRwbZzkHKSW1z0QEoYp3DlkK6a3TVe2ck1wAcEnGczBXp3nvGUNb66IotNZokHtezkpTGqVUe6kbqMgqX5VHxxDwnAIvFADS56I+a2FqJAjQpPtCLjfa6PnGS7PqY+9QOggEd84ROfc9zyPxe47d+emn/7ngIbDFg+wRnXfAmHOecQBnQqke++CjcRSNp8P5dAQEl+5oOCiLejQdaOu0NVVt8rLS1tAEKIoiLgXn4ByWVWWt1c46h9Z6721BImDGK11zqYQMUISV9rXxAIzLeeKFdZpz6cFlRSmEohghrXUQcUAw3pDBi1nE0iqliiwjdIL2GQ9A4XJhGBKYGCxS6Ol2zGdIdR1FkZKhYMx7PxwOSaEfBEFelhfuufcjP/5jr7766tNPP10URZqmUgqrdVEUQSARhVKKAbmyOCklY+QVST+CprhkqAHHkAUwQDvvdv0cUp8bKM27YMGFENoY2sPohhIFzXmDiCAotFxYa1UUOVPVRgMTAF7rKo5DQNDWoPNKzYXvxnnGkLoV563VOkkiDsw5h+C1dT7PjQkYE87YqZ0WRcHFxp+/YgDmRSAYWpNoXTHL5kCztQ6QMWatrqr5EUa7qLU6jtO6ro9vhHOurmtq/48nmrQrcs7jOB6Px3/yJ39y8+btqqriOLTWdjqdlZWVw8P+zs7OM888s7W1NRgM4ji+cuXK1772NV0UabvN5xZenDTTdV33er2f+PjHKMKNck0ODg42Nzc/9KEPkeOQlLIRJ4899tjBwcHv/u7v/uW//Jd/7df++tNPPz2bTs+ePXvfffc59C+9+PJ0OiXrtqqqppPR/fff/5GPfOTW7dtf//rX9/cPT5069dGnPk7uw91ud2NjbXt7u8jyZiMxxtx/7wfu3r07PjoSgfAW0yg+Ohr84PvP//QnP3Prxq3pZHKwv0/OPABwYn2VgSGDu9FodHR0JATr9Xr7+7tbd+4uLy9vbKwzxuq6JtO8sixHo+nBwUFvedXUOkmSD37wg4888j5E9rf/zm9eu3YtjSPO+ZUrV7LpuKqqr371q0KFly5deuaZZ/70T/90fX39jTfeWFpa6na7RVEMh0NCk9rtdpZlZVnmeX54eLC+vu6cb3eas2n+1ltvSBlorX/4wxe3t7cnk8mjj36AMba+vr6yuvz8D75Xm1opJSRPeFxXVVVVj3/w0c9+9rOHh4fPPPMMjXDOnz9flsXW1hblu2RZhohEhAKALMtkGHQ67dksI8CBtjPv/WAweOmll/bnV0ycOXNGSpll2fb29u7u7vr6Oh3raZpaNw/OHYwGdmpa3VaWZVtbWylrMsaKooggEFrL4XCaprHWjmI3C5vrUnPO0TMZSFqmUso0bTYaghCx2Wza6XTiOLx+46r3vtForPVWqqpaXwfw6NEKIc6cPRWn6a1bt/K8bKYJB6x0ORwPzpw9tb6+/oMXnweAdruZZVkUxsPhkLKhFBdZXdy9e5fOMI+21+sR2YrQZ+cc52xpaWkwGDjnsiyrK3902FchB9iVUi6tdJaXV1qtxmQy6i63tcm1KT1qLlBK8N55S7E/7870aJc5Bn3oRSX7sQQJF/6/Rmt62gGOS384rlOdM855MnFuLTWDQD38voc73dZ//frXy7L0iEwBVYhZNXvrrX4QBM1u3GzFwHwUJvfcc5EJvr6+XhTFD37wgzKf+4dIxq01lPWnTaUCieBUIJa6q2EYvvHGG0EcjCf9Xm9pb2/n8//m36ydOPHX/tp/n2XZt7/97UuXLl24cP7b3/7j8XAYxAGRFFZWltNGjIhFVvbLYaPRUDKkq2qcds4BUnS18B6E4FIGAGCtttaKuWkdgmfOe6E4Q6iL0kYBotDaKBnWlbl69Xqz2RwMRrPZJEqTJEno9jEpgDkGmCSRc242y2fTctgfo2dcyqzMTaHjOPrJTzz13//qr3/04x99/pkXuBLOofeMYoX9IienrmvEiuA/BAcAQrAkbcdxqrUuiso5l6bN1157o6qqL3/5q8YYoUIhlLUuCEIiTVBtoZTiQAYU8z2aCmWLcxqyc67b6SZJMuiPCJckjzk392Rkp06dAoDNzc2333ij2eksLS0dHR1RwV1XRgiBMPfOY4ucFqql6LPQqJ9zXukSPDFokHmPwDjnK0sr2unRZLiztf/4448eHBwEaWwNHOwP6torFQRBdDx4N8bkeb65uUnHHlvkJxxjzeDRgYMFpYsx+nHOORz0+/1+/+jogFZ7GIZRlMRxSN6dhD5LyZutlElAcGEcxolCdA4NcjuZDoBZo32SijBUURR5HyBiUVSchXEUeu+L3ADArZtbw8HMW5e0VbsdHR30yT7/9uQWnc1UzQ/H09XV1fUTpyhhcmNjI21FnPOtzZ12u91uN3MpGcKCx82NMdTxImKe56PhkAlgjCVpcvLURhAERZEzxnq9XhzHs9mMODJpI+50OkVVzWYzY3woQj2PYyJ830ZB+O5oak5e8946D55sWwEAkAnBgkAx9LRtaq3jOJZ8zpWjO07rHJBPpxNnTJQkRH+ez+qVRPRShlEUeO+1qcIwjKJwMBjs7u7dc8/Zbre7vUXgKWhtOXNJ0gDQtjZam8FgYF1JXCjOQYpASokIggecMQBujWdCcI7O+Xm75H1VaV7WKohUIMIwJCiqLHMEZy0wP6eDFUXBGCuLOf+Rc05zCvr4RVHWdX3p0qXRcHL7zs2HHnqo0UhGo9He3r7Wtq6MZBCFidbWWvIdEro2deW0nljrT548LYQoiowxFgVhVVpEkJJ75BaBSVWbWioeBEG708yKWZLEUqExVQOajSSOoujFF1/eWF+Po2g8ni4vd42pW83u7mxXa+sdzat8mqZRLLxn21v7YRhz4IP+pKq0EBINGlMLIRFxOh2HYcg5UIjT7u42ACd3S3JrUUpoXUspba1L5/tHQ3pYJpNJWRY0JS6KQgTCWluUmdb6ypUrURQWRT6fxERRGIbLy8tbW74oiq3NHaVCemDfeefK9u7dZid+8iOPNZvx9evX4zhuJunsYBIGcaMRnT17dmdvezxmAByd7/WWy6wk1MY5EydhFKuVlaX2UuP6jStWmtFoNJyMIxkPBqNOu7e7u3ft8PZwONSVCcNwYw3Gg9n29jZRX0+dPjnoD7XW5WyWNNpa6/F4TE2XMQac51wCcOu0swjAuABjDCDnTDrrLFW96JF5JUNA9J4XRcUrGB9Of/t//p+zLHvthbeTbtLrAedchKFUYnl5qaxmTDBbu2lWPPnkw1yK6STjnKO3w+H4rZeveuXDUDWbTatdkiTGmKOjwWyW15UWXN64dr3TWQqU8tpTSx8EgXNGSCkD5Zyx3vQH+3Ez/uDFD4xGo+FwOB6PqU+I4i5VzEKIrJqFMnDW1jVzrkiSBucQByEIrnWFiCKUcRA7dN57D5aDDzj33ty8ebXTbqdpbEwdhiHn0nvwyIo8d84JYZQMpeR1bQTjxDUry5qUjwDcGc9AhEFgTUmFBFeylSYEF0rJrbVxkpxYXQ9Crm3VXmouLXdlINZPnpjNZt5BEkUH+4ejwbjV6gBwEm5LkIwJRASGQRR676uyZowJyYQQzhmtNaHVQRBQEhfzmE2mggzxPQLO8RpvHUNi18o4TqkZGI1GtDMEQRBFQilhtJZSbqyfYKuMynpjXFVVvV6vLOr/6z/7h6aqu92uXERTcC6stYyJ8WgUJ9H/7R/942984xv/6rd/p/9jh7/5t//u66+/PhgMTq6v//wv/SJ4bWrNCn138w7n/OT6yb/4F3722s1rP/OZn/ne89+///KDP/dXf+mHr7z28iuv/s3f/LtSxb/9r/4/ZWU4Wu+RsFqtNQASfFCWpbWa+mSiX+Ei0mqBRJAVLRDMR6czDyRDZN5TiQjzQbhDBmSeyxibuycJ4QiS8wQj4hzdVgopxY8zokbxBRIBAABkGQ8MkbF5h0xH4fEhQtii4PL492TfTIe4DESSJHEaEXBAmH5Z1jSTllwURZHlOWeotc4ClYZRkDSxrsdZqT07f++lH/3oR9oYLqUSQgaKc56XxXgyUkpwQF0j51xwZY13urLWEy3YmJrOBamEwzkWH4Zhs9kgVLeua20tCFBSBYHc3tlM4kYURd574yzzXkoVBKyqKjZnrqEUARdAB0Y+K4JFKEXSamtTGUOZBxPOeaPRcujJ9Y6O6fnVkFIpVeq5v2pVVUJwImMe3/E5FjwHKxCAUlG8R8+ACSkZ4869y3+ndp3wDr6wQj6mHYDzx00+8SPn+DJyYAsi27uZY3MkegFdISIqJZIkMUbTNIjqTynlPL8dPRMc35MSSS0rLCYWiCgWgJ1SinngyBmD+RMn53AzLrA5wuPId6iu67qaA9Ccc1QSwRkzn5ocd0b0BX6h76SVyZRy9l0lIl/YiyMi8EWNzTkic27u7XCsBgPgVhsL8yBE5onu7Zyz2XRmtcnzuQkGAPzSL/3KE0889pWvfIUx1mq1iqKIoigIuHOuPzw6btmKouBCJHFsrXXeM8bSpFFVFTBkjE2nU/qGKxvLdV2PRiPvfafToRb67p0th96D41IIJWqtPWJ3uRNF0f/2R38ohGg0GrUuhRCS/KC15pynaULnvpQBXShEbDabURT1+/39/QPnHOG85I9PJN1mKz08PJxMJmEYHh0doUHFRbq8TLV6GEbG1FVVSaWjKEibDWImUtp2FEWBDLz3zri53sIiIlZe19UoTVPG6aDyjLGAs6qoZaSEEOhcVVU5Ivn7A4AgehOTWlcAnDFhra+qWWUqIYQVTmtdZGWeFYJJ771k3GnDOQchju/4eyrD+TCDC66UCkNlaj0ajagkBgAKM+Sc66pG7ylIhuO8HeMgiK+Nc29iN51OiYeOyBCZtc6Yuq6N977MchJsEf8JAQGBeUb8jeOFSrso51IybgUSAUgIEQQhzAPSIyHE3IhmMSzBhXbkeLRwvFcvkGd5jGAuvuR/B3Gm4QoThB7QwYfG9JrNS5cuSVsqperSMMG1tpNZluVlqY22Ni/Luq4NAggUKLiSQRSGcWSt1brWxllrjXd1bcqy5CLI88IzL6U01jpgwIVjIs9rraGyXhuMA4aeWau9t46BqeePc5ZljUaj2WySm653yDkyxnRVOIdBFDHGEB1jyBhYq/M8V1HY5KlUnHElJNNaIzjrHCIGQUBTOrr+QRBwzphnJErz3tPu3R8OP/7xj3c7yz/+kY++/MMfDQaDOI4450dHR/xdtYeR73GG9J5ctjkwwMVhcTwMgIUkBRkAZzQOeu9LLrKIvZ+bUBH4aJzlnEVJXFeYZZlzLkxSLCy31jlnPTTCOElSa81oNPHIolBxLgDRegTvhBBCKIZo0Vpr0c05iJwDGXMBw8o476GRABPcWGe9Rab/3NVC++3xb5QSDoEEytSwM0BcSHZofEJYP+e8qgohlNPGM6a1N4tQVtqTiW1KvQa9wyzLfvd3f1cI1Ww2aTJdVdXbb7/9Ez/xsSc//GPf+c53bt++bYz5vd/7vTzPvbEf/uhHsyzb2dlJkijPS6LTAUC/38/z/Mknn9zc3GQLlc9LL71EtvW0H9a8fvLJJ8uy/NGPXv7e975nTI2IP/HjP/6BD7zv9ddf/53f+Z1Od/mRRx554IEHXnvtNcbYgw8++JM/+QkAeP3112/duhXH8dra2okTJ4QQV65cuXPn1sWLF4UQvZWlt9958xd+4RdUENy8fmupszwcD7SxVVVZ75hn/+Zf/+sr71xNkgStfP/DD/2dv/N3BOff/vaffOl/+8PhUf+f/j/+yeFhf2lpaW1tRVfldDput1sXLp7XuiqK7N57L41Go+FwlKZpt9sVQmRZtrraW11dff/7Hr7//vsp2OChBy/v7+9fv3ptNDzy3l+7cuWFF56vtKdMhV6vh4jT6fTOnTvf/e53r169miTJZDKhjLFWq3Xu3Lnl5eXZNC/LMoqiKAqLolhZXR6Ppp1OazabtFqN++67t9lsDkf9W7dv/OjVl6fTycra6vnz5995623O+a//+q/FcTIeDMuyfP3119966y0hxAc/+MEoCl944YWiKC5evLizszubzVqtVpqmWZYVRcE5M94holJBnud0N6mauX37tjVGKZWm6YULF+6//3JelG+//TaFAZRlWSf10tISIlIh1+/372zeiTE66B8M6qMwDNtxmzAWKgAkcDDGSBkFKtWVC8MoDqJFCpxmwJUSzvmyrBmI8Whq72bg4dEPPdZsto+2hwBw+X33rq6ul2W5tbWFzudlIaX84Ac/uLu/X9fEoEnbneZ4MkFwm5ub/f5RUeSEgzCGwPxkNGo22tZaYyyIuVaFCmV67Isic84RZ9N7VxQF9cBa60A1m62G88Y6R2Xc6dMnnTeMwWw2idPA2ipOgrNnH3779WsIRsnUe48LS3LgczCOlKrHz2EYht5bAHF8lpAmkfIHENFZXJw6wN4jvuOKJ0mju9RUSoqA3928ubz2wUcfe9/+/v5kMpvNZoKruq739/YA4NTpk5yzKCK2OQeOhBVStUqxoc457y1pb7XWXPhWq0GDvulsqKqwu9Q22l258s6VK1eEZFyJg52d55//3m/+5t/+J//kn0yn40uXLtV13e52a10CwGw6RXQXWxe11oGK6spsbe04cmJiTMkQ5t7EgsB0KUUQBN5bq41DT+EJQnApFQA4pH6VTcazOI6N1XPtG1e6tkflwKMFLnVtN06stVqt8WwsVei91tZURTmZTBppKzixdrB3qKQIghha8Xg2/vt//+/dunWrqgtg1I8hMH98nREREKnIo7vAmWQcvffUwHMurfXO+SSJaGK5u7tryjpMU62tNQaRtKhIKA+JshE97ci0yyN/t6pAZOiZswjMCykA0GlDxGqqsQiMMKb+6b/wmQsXLnzhC1/QpkJjQATE8OKccwFzZ5wFJ2Xxzee0IPoyh3R0ATigTzQeToJISa6EZOPhtH84nKiZ4kJrw9g8XpzKd/o+zrmiKI6jAGDOgRLOWC4EHb6cc2JDzy8g51JypdTNmze9n0sOH3744cEODXx0AAEAAElEQVRgNB6PF3AMc+iB+dpqV5tWO6mqYrm3JhWTgWAMt7e3Pdb33ne63ekMh2NrHSEvxqBzFSBjwAMlqVna3z1USpW1nIxmdGo2Go1utxMEwWyWHx4exnF64sQJqkuazXan08qybFZOAPHc+TMnT5yeTCavvPIqADDHaH5Ojw+VvN57qRSCjaKo3W4xBlrXe3t71tpIBXVRxnF874WLzVZaVGWv19va2XnpxR8KJngQHjNqpZTgSebmPVqaCkZhgogkaSRrEe89bdGc03WdM5qplAnDkABozrkQivAXzqRKlJSSAzteDEEQeO8AYHV11aMNgsA4PRoNgyCIY3t0dHRwcBQE0d7evuBKydA5zPPce3TaSCnjOO50N6ibYkx0O8tRFPf7/UF/RAQ7j66u/aL6RWs1AwDgiEzXta7nGc2kd7ZujlZEaSqEsMZTxYAIxHoAmG+epM2squrVV181xnTaS4GKqkoT4SvPc468tjVngXMoBEiurHdKxnlWWacH/RFXnDIHlpaWup2VIzMoC62koroxCGQYKmOrzlIziKTQ/gMffLDVao7GA2Ptzs7e1tZ2EgXZbDYajBljnU6H8moEDxlgksRSmvFo6gQKHtaVE0IUeT0eTrS2adpwzjnmpJTW+rquta6s1cSXUCoQi8iLY6zZe0+TYWucNdrWWghRZTlapMGklPLM+TOdTmc0Gj3xxBNa6zt37tR1Vdc1hQ1aa1ut1nQ6nU7yIIiWlyMaj7myhIDNJnmYqP7R6LnnngtDdfrU+TiOq7w6ODi47/LlBx54YP+b29PZJEmSVqPFORhviK4VBDyfZZWRN2+6U3ZdCKaakZRBq9nVhTUaxqM8m5mD3QFD8BYKre9W20mSNJvtKErG42m72zl58uRwOBw6pFgnKk+dQ0RGPgOUJEm9GDAazDAGZIfKhZAcBaKva8cYMGdA8WlWPPaR90dR+K9/598BhyIvR2J0+syp0WjUbKa9Xq+o4ul0HHfi7b3t7Z09emSWlpYIOF453RUgjPbEmXXWM2SKh2iZ5CpIwtFwOB6NgImQB9RbxnEMQOw8JpUcZ2NVy/efe8R7211qetQffPSRqiqOBv37778/iiKl1Is/eOna1RsOJAooy9yYuXWdlBI9Mo+6rIIw1bZSShmnOYcgDmtdhkwao7nkJ06ub97dvXH9preeyQA9+IDqKzmtMwEsCKLaaGupBqV9lwMAkNU+YJwoziEIAs9ASJY2Gt77LJ+ttJc3NtbGk/6JU6dEwK7fuHI42AfwSdAje3qTpFLKoiqHw2Gz2V5e6XnrZrOMItQYCO80dX00naUN4VhAqlRIv6dCqK7n+V1RlNBTr7Xd2zugg6bSdbPZKorCOWTMLy8vp2lK4CYxErS2QSA5l2EYc9AnTpxkIP7dv/tCHMenNk7cunWLxvkAnjHpkTEmkmbD1NUf/MEfjKfTyw9f/qu/8EvPfu+5t99++8033/zUJz75f/4//R+TqOutFi3fWloZDAZhmqycONNZPrF3OPsP/+sfPfmhD7/x5o1//bv/bv+w/8u/cvHoYP/BBx88Gg6K0R6d6cQS4Jwdi4oWUPtctKSUEkJ5b6nsWSAMc+3aosZg6BwuzDScc0wIhxT5g844q22SJL1e73BvX9dz+iGTgoy/6drOQzIWsfLH78E5h4ue+ThB6D00rnkkIP3oytYyDGhwVdemKApEDMPw5Oo6gZK0ddPLOTyGUVQYtHgLAJw3CDCj8YMQyPnV6zeDIGi2u4PRMEp4EARRFKkwaNnmaDRCdEopW/uqqr33UopQKdJEH7MFOedBEPhF1WStGU+GZM0BzDtvGEPOhXPGGKN1VWmjlGKeWWuDIETEKI2lUgznYjittTc+UlEgQsZYVuUAMB6PoyAYToZaaxEIRIyiChGN9cTPOB6uW2uVkD4MafpLV5J4PTRsfg/QDAs4aY5XLOAk4j9yKgaCIJIyoPH2AlNGCsEzRiulpFR0JkoA78HyY0qdPx7N0o2w1iK8G9x0jGoJEYRhyDkTcm6qxhnziOgdLnIXj9cM/avFuJ1xzjkwBxCG4Vz/bm0YhsTsVkoFsSJYGRGFUnzh+CxlsBjR+bo2zjshAyUEdUDvvj02B+DmH0SIKIzn6LxF5+zxB6QpGv3qKamPcaaYtxYABJOCCU7f1nsGQDcOESXj7y1ZEXE6zY7R27/0l/7SP/gH/6Aoiq9//euf+cxnXnvttVdfffXy5ctr6+uvvvoq51LKuQ4giiKy18jznC/CCeu6NsZyJgCY93Nvk6WlJWpUCQjjnDcaDSqnu91uv98nEGd5ZSWQSiXhnTt38jIPgoBLDgziOIqiMIqiYxytKIqyrKMIl5eXV1bW9/f3p9MZuVV4P38wj9XxhEF7B0VeBSoyrk7T1KKnMYDWOk2bQgjnbZo2GTKrHXpCh5USisZ+eZ5rbRnOlxbR6ouiIEKMCoM0TRlw712RZWVWHk+AAqWUlHmeCyHKstzZ2WGMxWFSFMXRQb/RaOhac84h4HWljbaSK+894cJ2YR7COSclAVswV2ibohBLUMCYGI/HxNvw1nHOrTaAaK1RImCScQSUIe3SDElXMJ+LgLXazd3AEVGJoLY1OpBSMMaqotbaSim9n5MDaPcGANrDbW28p1hCDw7EIp6UGGa0xdEOxhdF+/HyO94WjrE/9h5zmMWvCED/eQDERRLsf/NCD4gMEbgUJIBA9N5qW+vLj15qpY28PyP7JKPrcZZPi7LUxmhXae28Z5xLxgVwH4BQMggCohLXNOxE1M5qbY216CQyAUwgMA+MCcWFmmbFUX/WWV5D4GVdJA3m0dqaiCMBzUEZE8bUk4lLEhMnDUTv0QmYv1sA760tF/O8PM/DMGw2m7BQYtHzSyv8+DijDbTRaDjn5p6HCGVdK6V0VZV5Psvz7e3tP/qjP9re3r558+ZgMEiShDAfa2273aTGcH5bwQFnwJlzHhmIRSYeY4wzTnF/x9s4AdPH7Tw7znJ875ctLLC892RqBYDee49zya8QQle8LIp2pxNIYSyoME6bzZs3bxprfSOJ4xA4Z4jWg2fOcRQeOOfOeykVQ2+cUyCQccaBPFEF49paAOTAAhXohZ7pv3kxLtDORybOObQOce7yP/843h5/NPLHIACHMRYpSiNj1jrjHRVy751qH+MPx5s5lRZRFFEOVlVVzrm7d+8OxiNyCg6CgDy1Gq32xYsX7969OxwO2+0W55JuFj2ezz77bLfbpXBsAi43Nze/9KUvXblyBQCEEM0k/f73v3/37m0AGA6Hzz//fKPRyLNsb2/na1/72urq6q/86l8nnx9rbZqm73vkkSAIaq1v3LhR1/X58+c/8xc+g4j/+T//5xdffDHLskcfffRnP/ffra6ufu5zn3v00Ue/99zzVts4Se69cKnWWkgWp+nt23e37m4++eST6+vr+/v77Xb7yptv7u3vfPGLXxRCzGaznZ2dOE6qqpLWrq72hGC7uzuvvfba0lKn3W6PhpPBYNTtLDPGyA1v/2B3qduLoqiuyzfffP3f/Jt/nWWZrmoiZZ86darWZb/fX1rpMVCHh4dSEn2Taa3/7M/+jCLEFriBW1paarVay8vLdWUQcTabSMl3dnastSsrK+RDmzbilZWVZrN59erVKIrOnDl965a5//77u91uGIYPPPAAWSY8/sFHv/zlL7/00kvXrl2LoqjX66Vpur+/55x74IEHDg4OdnZ2jsXuUkrvndY2ShMaD9x77737+/uTyaQsyzmEsjDcYIzleXHt+vXJZBLHqZSyLisK5AAAbVBrTSOihx94+MTpE2/dfWN353B8e7qysnLuvnO3794sikJGkQiCcHlpbTzIHNp8PGo0GowBDYFpMOK9B+ScS6t1t7fyi7/486+/9eZgMBSx5JzvbB/094d07NWlppD3H7z4Q5q6TKfTosxUePL8PWfLsnToKl06tOhACVnpen//kMQautLW2srpOA4//OEPj0aj61evzsaTsrTE+HDcVHkxmUxqa+ghUUp5V3sP1mEQBM6bWpdZPm21mpPJyNgyCFTSSDY2VtKkGSQyLwrJ/AJiEwCcA/cMOJ/vR3EcIyLpkvhCAubeY9XkEQWROCRlAQpqCYyZ8wusqzwG1pqllU5VFUWdP/PMn8VpVJRFq9NotJI8LyDD2lTtVqvRTIJAeO8nk2ldmxdfeN55kFLSg0payyAIqJ8kgJ5EKMetnfe211sqy/ru3bvomXN+eXl5dXX9x37sxy5cuPCxj33sm9/8epqmGxsbd+/eDoO4rHKGrCzrVqtzcHBw5cqVZrPpLXImBJNVVaEBXHhReU+cek/DuvccsexYJ0gkbxq5G1KqIvMenUfn9IULF4zR0+k0L/JbN++cPXu2dlU9rRhzVV1QhnIcpUIEcZhEUUResSsrK4D8d37nfxFCBvMMa2BMWjtXC3rvAefzakX+DgAMOXpXlzqOQxKtg0dnfKuRFEURyFAkEj1yYCdPnOacD4dD592xo/FxD+C9R86FmpvzEuDOuZ+Mx0OyXV6g3nwhcQWAw8NDrTVaO5lMfuZnfubrX/96HMcPP/zwO29fPTo6omqJKmn6PZ0QdJbAgmNljLGopZTIPHhWG8MRQqW0pvmqtTXcuHJDhsFsmksO3vswCJQSQSDpFpRlbu3cWHBResK8t0F0fN4T4kIOTH97POCBubOPaDRaWZZVlaaEd+eMUiptJmmoPFprLRc4mU2UEogYhFEUB4PBEQDEadTqpFLxRiPhXPb7g6rUjUYriqIiKyaTSRjEnMuyLAMVhWEoJWeAgZLj8QQARJPXdVUUmeBho9EAYMaY2WxW1/VoNFhbXymqwlo7nkyGw+FwMAbwJB+jwhcR6qqSUjIQBOuTbauUcjQaRVEUhpEQ1tTaOVeXVRLFURTRqHY6nXIJcmGrNx/PAqNtkJMi21tnEdVcK0rHqhCKMca9RQaUCRmlUbPZHI/HNPezi/hgxhgSacdazjk5P6ootNaSh6MQQkqhtd7Z2UnT9OSpjXKcnz17bjIZk27UGCOlAuSj0SRpNeu6rqqacw58buVJ89Ll5eUkabRararUZVkUZSalBMuFEIwzSmOXUnr0DMllEuccEOM9ODZPsZfo8ehw0D8aiiCkkpQ8SNmCGuY9eA+MAQMRBnFV1YyxNG3u7u47Z5rN5okTG7tbO/3+mIEQwgPKstQ077XWI6KurRCirvTdO1thFJnKBioCVBQeQC2HQyc47yy1VcCCkHe7ra3tO4iu1WoIHgdSrfZWAhlub+2S0dxwOI6iyJiRUmplZQUA0PMgCIqims1mrVYnSdTh/kGWFb3eSqvV4kzm01ld1wBaqYTUVVScHffP3lvvfRiG9CxwzoVgZVkWWfZTn/zkr/7qr/6jf/R/v+eee954+43+/v75iw+cPXv27t27WT59++23T506dfr06Tt3bud53mw2j1uXbre7efdgNJp85jOf2dhY6/cP33r79f3DPW3Losiee+4F9PDY4w+FQXJ4MAyENBqGo4P/8B9/sL19CByqKsvzPJABA1GWOee8KHSn115dW17utUaj8fLy0tbmnvdoSuc929vuTyd5IAIlY/CMSYzC0FrdSJuMo9aGczEZjZMk7XY6rUY7DOOiKI6OBrhIIAEEYxxxXmgf9ohScs7FgidIDE7FGDhvQECSBkrxKA7uOXf+3/7bf/vH3/pOmDacM8RBS5Ko1Wrl+SxJEtbu7u/vW4PvvHU1baaEoUghiqK4fO8lKYPXX3vDOQPADw+OlAjiOE2Slvd+NBqw+Vns0XkPYK1lDC1654xDG0ZBmqYnTqzf3bqzt7fHBdx/32Vr67293aIqX3/9tV6vx7k4PDrygFprAMaFjMPI1vScWmNMHEdhGBpWNlvp2vq6sdozv7GxxhgbHvVv376rte4fDZvNJmdqMJgwLoUQSjgCDqSU1ni0zjmntW0kibW+KAoaUSEAB4JBjZSSB1wwcGgZ9400jBP50EMP3b5z8+rVq8PxsNVtDYeTyWxaVYVkg+XlZQHs1vVbZJsQBWEQBK1WlGUF1Q91Zaqq4lwqpeIoIcY9cT/t3Ps1JBBkgcgY6vyPO/DjOocaXcH4bDIVSpLYpdFo0JnS7XazfDIej7XWzWZzZWXFaiOEbDYau7v7Ozt76yvry53le++9d3d3VynBGHPecIRebzkKlff21p27jUbj4oVLAHx/r//Nb3yXc/4H/+XL99//8Ec/8uN1rRXIpaX1oNEzxgwms7wSX/rq1yYzRJ7+q9/5/He/+1ycJH/n7/3df/yP//GDD13+wQ+f1xPBGHPGqjCIosjTiS8pwp7MuOegHgAXgjtA5xz6hZcu5+CBJmrEhDDGkKyXNkC2SPDz1tXWee9DqYieyRibE2mlINzHGMM5MwvbXL7IWjge+iJ6xjhDdOgYBw7zXZ1mljQErevaaEtyWs45mSDRlkK+e5WuCUCBxfDAL+wLpJTNZjOOw7qsal1qrcvKciE8Out8PZ2urvSm2SxNU2TQ6XS8t0VRJEkUhqvIsaqqRisGwDzP67r2i5xhMjonVb4Kw2AulnKIKBgju1VEh+gZA84F54xzxQSPkhgA6toYbxx4+f8n7E+DbU2vs0BwveM37fFM95475h1ykjKVytRoY9ltu21hDAYXbQiKIiiiiKb5ATR0EYZwVRMMBQ0dQBAMpcJu02VTxsYCgW0syyVLsiZLOSg15HDn+cx73t/4Tqt/rG/ve02bqPNDkam895x9vu8d1nrWMyjJGC6X86bRl5+6UFXVZJJrqYJnRV0KYODbtAxTNS2zwXNCXpRSgiumGC3sEEKSJN1uVzB+cnKS5zli6Pd79GRo7AcrB2Ra6uu3sAaVGGNkSuxaKwbtva/yoq5r8IABIQTrmwoD9fPGGBklazZ6S0rAFvhY3yZydf4DPnamon94cklwbNlt8BgKb9cDJ6PM1dKlr6ZpIqXTNKW4lDX6sCbEMFK2eU/AkBLChbByYSZTVEEDg3bSsvoKLcn0CZ4nog8BvA+uHUJzaPHi1WfmjOHqE7bVFGOMEtWo3qDPTmhXq/azzmPLyybI0jvrPa4AiLC7e/ZrX/vapz71qZs3b/Z6vYcPH/6ZP/NndBTduHGDaLDeIyFfSZIQpEgK4rIsiUFM55uOI0QphNAqnk0XGBgGdnI8djaQbSNjbDAYENBM6vIQgqmbLEueffZp732WZctl4b2ncIhYR8SYJrCGc16WQetiNro5mc+s8Z1OG5JhrSVTaeKTrpYZAgBHAkZpEsakbM1SGGOArCxL7z2NqZTUxJJePUnPcI2pcc4Z+FAbS0tGy0gJXVUNAABnAT29U+9c41EIwYDXVRNcoDHt5ubm0uXz+VwKFUWxMSa4wJB5GxhjkkkP3rRW++ACeaxxUjPUdU07izHSgQRnrBVCay2E4lwuFgsakGitIaC1DaWaK6UE40JyGufQFlhtT8skpydGfSjnHJFxLhgD9Ogov479LoyYPh6E4BEk4+CDW5neEtOfRNvOObJVoQ21nlTRSl7jdPSo2coImLYAANAuQVy9pv/CF66d4mU7hgkuMASG+JEPfVgJWRU1zcOq2uRFZZzPi6K2Ll8shFacS2AAjHPOQghlVZF5Ds2KGme9x4AohMwrE0W6amoHLCCrrEWLk3luERAE56CUEkoS0Mg4q+oijmMMgOi0jqjdUzq21pJv3ooVzgGCMZZ24snJCQAMh0NKLLSrcQ79jmu9BazIuXSqEAuNXuvJyYlzjhjrN2/evHbtWq/X293dpb/rvMk6SfCBes+NjY2Wg98aP7YFSXtmMgIAwrqrXb++J4/WVTgNvQUdQvCrt+kxcGj/OQTbpoM445wDwbmObPCuMaIrjEXOoTfYPDzaa5om6ySdTtrrZkpJ50zTNMA4FzIQtxq4tTYAEwxIrCwEc+jKeiYYj2Mdea+7+vdcMFJIJ0RrAEL6bSB1svDeBtYilXRtNU3z+3//70fEz372sxyhcY6YZ4jIOKMQEbr94zimOoSe5IrgrxVXNAUnJetzzz3nvZ/Pl+PxmA7P4XDY7XbffvvtwWDwhS984ejoqNPpVFUhhFq/YgDIqxIRiXxAePF4PD48PFy/hfl8/ku/9G+IkPrxj3/8a1/76uHBQVPXt27d+r7v+77v/d7v3dract4bYz74wQ8yxuqmcd6//vrrd+/evXr16p//83/eePfTP/3Tr732WpqmIYTrN969c+eFF198sWnqV1/9+he/+EUMrN8daKUuXrz4h//IH7l58+Y/e/ufpWk6HY07Sbo5GL777rvfefMbZVku5wvvcTFb0u6ezSZCiP39h4hoXdPpdJIkaar64f0HjAkqru7du0dT8OVyGUdpEsez2ezRo0dkz6W1RuCP9h7QQbG1tdXtDNf1cFmWCoUQYjAYEMrX7/fLsjw4OOCcdzv9r33ta8CCFJrMmh492icOlnO+qqrZbCal9N4Z03i/e/bs2dlscnCwlyTJc8+9xzk3ORldu3btc5/7nBDix37sD3nv5/P5u+++e3JyorXe39+nQ5Vc+K21Z8+e6XZfmM/nDsObb7559uzZl156qSiKH/iBH4jj+Hd+53e2t7evXH7605/+dFEun3nmmSRJBOeAyIF564xxe3t7jGGWZYeHh0W5NMZcefrKH//jf/zdG+/uffXgYP/oA89/6OWXX/7ava+ORqMXz31QfvBDr1jjF4tSKux2E9vU2zvDxXRmjEH01lBshaAeCQDLsu71Ng4Pj2+++3bW7yN4a52pGlr9QnDvw2DQByDlmtBaG1vv7e0pLYbDwWQ2JYiKMSzLcmtra3wyAYCqqtAjIvb7/SzLDvcOx5OTsix3d89KKY2pCUB89GifMVRKaSlBcyFEnjeMQxzHQiL3GEXRcrnodlMhGTAVxzHlEC6Ws6ap4Ild2sIlQHWVIFbLqvH4XTo16kmosN7c3NRK0cHqHa53EaXx0DFXVQUTKMaQ9dKNzcG5C2evX7/emApZiOOUvK1P7+40TXMyPmaIIbSaCCllJOVgMIjjeDweL03NBVR5DR6STmyMjaKo2+3v7R3QYNYYc/HixcFg0O0i53wyns1m836/f/bs7s/93M998Ytf/r/9X//cq69+bX9/H1Z+PVrFiGgb+9a3voOcZVkHERjjpO0ij6kVsYa6YPDeow/rksI5RxEodDcLiQyEs0HJyFkXAiilqfo3rjk+GgV0REMOPhwcHCRZXNVFFEkOAoCbxi0XI62STtqtK4OIRNNL4qzb7c2mi9WTRyklJefSR+KU5YOcPPVIqCiE8g6Ncd63BCVjzGg0cs6RVR8AOBeo6FRKlWWJ6IKUlBMoV6GI60oiBAyhlWSSWXNZ5uvLjKoQxhiRf7XWqNTXvva1n/7pnz45Odne3v4Tf+JP/LtPfuozn/kMzbKcdRQiR40orsbmBOi3nQFCYMEbL5hM01Qybq0NTeMN6kQDgNTCObOzuRUnujKNrWtg3vkGwQkh40RXlUfwOpIAgYIj6OyjC3tVCLYerPSaqTggOTAAz/P8+Ph4f39/c3OTliWQksCqfr9fVgvCPSuTK8Wbxlpvm6OKcUzTzubgdBRF0+nMugagkVL0B91etz8+mTRN/cQ4x0mp87yMgxoM+91uUjclopsvpvSyKIAxSVKtNbF2oija2dlZlNHJycn+wZ5WERcsYJjNJkKoQW/YNE0IqLU2jVNKAIB3jgnIi0UIQSexc957H6wjcodzfn9/f39/HwT5XrmtrU0JkXOurihvnXnbxiasqkxJ7cqqznlMTAbg64pnPUaGJ8gRVAGAAK01Y+icYyu7xrBykAwhDAaDqiopS6Gua6Xbvca5AGBSQpp0vEetG+8DY628WimV6Mh7b2w1mcyiiNKonHNua3tw8amzh4eHh4eHReWjSPX7fW0QAIq8ETwGCIgtIw0RAVEwzqVeVXiKTGaytCulXObjdTXPmBDAOOM0q4jSyHsRQjg8PBJCGNM4F3TcSzrpMxsbZVkfHBzFcXT27O7Jydj7lragdQyCK54opZqmKYt66QtExpV0zgFjHDxj3ljosAhXAAdRkJqm8a5QKjamOH3qzGJeNo1hIJUUdWVDCHVlGIhOp1NVFSKz1jaVaaoRDQ+iKC7Lkoz4OUJZlmTETMmQpA9K0w7V087RBSeUikJwcRx3uxlpCG7cuBHH6Y/8yI/87M/+rAn1hStPnb9w9pvf+gaJhObz+dHREbG/kyRxzjPGaa0eHR1THf/uu9+5feedCxfPfM/HPrQsZ7PFdLlcnD575t7d+ySLKYoKPACy8fHR5atXnn72KtH/vQP04FwYHR9CA6BZr9d7+umnD4/2xqP5Yp6XtpFC12UjZTSdziTowCi1CTmHoizjSDnndCSLotja2iTLpk7WA4DxeGqtb5rGWSvItngFQyilpJDIOTJSqoYQAmeMc4YYlJI6ksZAmsb9zX7TlFVd/Ntf+NSf/NN/7Ed+5Ed//dd/PY5T09iTk6PnnntuMpkcHx9funQp1llVGBZEr9fbGA72j/Zv37ybZhFHHsnozJkzWZpqFU8mCwjMeKcVa2oaQMoo4nSDsxUP1AafJNFw83RtKsSQZvHewaPpeJZ2IgZwMj55+PCBtZZreXh8dHB4NBnPACGOkwCYxgnJ9pExIYUGThhBmqZpr3Px4kUuWbe7E6URVZ8c+XJZoGfesRBAyXg4HDa1lVoJ7tI01VoncTyfz2ezmdSS+2C98cELRagWt9YaW5H7DUhwzkotOIPJ9DiMfafTOTzaowr1/r1H/AGP0kQIDT4Y4yZ+RonEkotu1hsOh9PpVEq5sTE4vXOqquqyLCOdIOL+/mFTNlmWIXgSUXHemjMKxquihFa2jwxBMB6cZ1rSaUZY0nr60rbfwDiwoiicc/1+/8qVK3fv3To8PCTe7nK+qOuGgVCq8N5HUXIyGadpWtfl+uKTSgKEqqoYw06WZVn31Ondw5PR//0v/9UPf/gjV59+7oUX3pcvlp/4xP+33925evWq6vRKjOZ53e/3QwNf/u2vPTqanzp3+T/9xucfPrwfxRki7O7u/szP/MuiKKqqUiHQzT4YDKg4XCwWLDDqvgjzZa17Rss/9d4H5zjnnMtWke2Bsg2Ia0wnPJUT1reu3K2/QcDFYlEUxcbGBpn+W2udaVYrE53z66KRvkkLq61aR0QMK+tbAKBTiD4qvYWmNoRm0vdfLpecS7KpRcTJbJqmqRDCOWOtbRqp4qiuTABIk0Qwtlwuq6pgjAEEYExFCQSHyLxvOp0OAmOCu+D7/X5d1yE4rXXSyRB9UeadbqZlVz5hOsdJeQY0eEIXAvde/P/p65VSWiecQ0BPjyJAG0LlrOdKMkn6bueDo9KFAHoI2DSNdwgeAbjWGgC1jquqII8UZJimKSAHZLRuQwhVVXU6nRB8t9vRUh0c7HPOsqxHb4qWK5Vz9CHXFGNYJ02tRvXE2KXzjd6vY8avQv+yLOOcG9sIIXqxDiFwptaYtbXWWs4CUr0E65DVlcc3rvzN1oUEYQfeeymFD/w//0gcwPMnYZTVK2AQkANbc2YJgpdSUu40X/HiQx0cWnpEzjm/8gGHFeUtijStc2OM924FwQTEQITftlBB5KtFS3+YMQGhnX9ordfevt57rWWadgka87TLcEX6Ca2HiXMNY4xJAc6vHp2lKJ1+fziZTJxzUZR84hOf+Mf/uCqW86cuP5XnuTFmY3Pz7bff/tKXvtTtdtfkD4qVq6qKrdxCiEtBpG/aXK28oKqqqqKcJfpxa/7gYrGIiSNNsgClqqqKpaTHm6ZplmV7e3tJEpVlXhRL27i1swpN7Jqm0TyJ45TqXucNmTJvbAyNMYxBUZT0HLxDAEDXAsGkKCLugnN1AGQMq7J2zinlut0ucf/zvOx0UsaYFIKWQgjgGuOsQUTwIIQIPNC54YzXWnsMUipnbNM0jDEuwTsXHGoZOeuEkM6G5aKAwDppVwkthQQJkYojFXuHpjLkFfAYQ8RAow6llI6jYFvDQGoV69pEEQohZGuaxBiCaUwIAQXRLziVgiEEwbgQao0Utyet4EK1yTHOOcG01uI/w6PpNmGMrYyU2y0jhLDWwYqtSeMNxgQ5cqzHqCSQr6qKwiTXmDJ9B75i0a536LpWx5V9/5pnuv6T/9kXWZoAgDPokPJFPdbNzubWSy+86IxZLpfB2uUyt+CMd3lZ2uCLqlRxxGhuw7lUGhHLqqJfZy3jAOCMheCDMY0LwhQFkyIYbzFUtZ3Opshkkva999aDUooOSc45IZicc6GENd45is7is9kkTTuICCwgckSP2D4QGqWQhonQTGrYaUhDFxl9Kupw6TChM6E92YSmJ7mxsXH69Ok8zznnTdNQ8AmwwAXUy5qOsiSJAKLVHKXtVddlHvXLq1fDCJyl/n2N8OCKHIOIyKhzQSFayIVzuT7iOFkaciZ566MiASKdBD+y1us40Sq2JmjNG+MinSLHomqMN9Y2SRoTlUeqmDOmhGQIAEELTmuOnomxlghMCMwHzmQcdzsw+j0WDAUe0NIh5TKdJyROZivXmvVSfPPNNznn4IN/wscfEX2bYRiehKfpr6zni8aY6WIqpbx06dLm5vD4+BgAZrMZY+K5557Lsuyb3/xmp9N56qmn9vb26L8S0UpKbox78gKNlRZCJEnyvve979atW865k5MTYsKtNiaGgN77ra2tH/uxH3vllff//M///OHBwR/9o3/0R3/0R0lyRIMrQgk6nc7169e/8pWvXL169cd//McHmxtf/epXb926Rd6bOpJ/6A/9oWefffba22//2q/92r179wYbp06f3gGA4P2FCxd++wtf+Df/5t/MF4t+v18UxYULF55/7rlP/ft/b22Tpqm3TscJnSFJHDUNAEBVVRTJI6VcLPIyLxCBczTGKaWCh6a2Suk0jTtpdu3aO01Zaa1PbW2WZY0Boyg6f/58COHoeHT/waM0nkZRxHlEFyWCJyiJ+F6MsX6/j4j37j548xvfWi6XaRbv7u7ShIA4zsQViOPEmIaIHcaYt99+ez6fDofDZ65eVUo9enBvPB5/z3d992Aw6Pf773//++/fv//uu+/S9ChJEkItPvaxj+3vH9y6dYuq96Ojo1deeeWFF1749//xP6zKAHzppZeMMWfOnHn/+99/4cKF/b1Da+321ikiz1FrvD57Oeez2eLw8JBqGCnlaDT6jd/4jd959XfuHN45f+7i6dOnv/71r79282uqF29sbMgQvFR8MOg451556YPnzl345V/65LyYduKOMWFlSuA4k1IyRDSN++f//J9zJZmKiuWSSxlCAOsAgAkhleplWfBISLzW0Ww+CiFY505OTjx6770QLRIdx+n4ZHzu3Dl0OJ8tvW1HpkVRTEdj6u42NzejKFoul9baJEnOnj2bJAkF1B6NTowxvV6PcWDMV3VO37xpqgcPHmSdZHNzWJYFIoJi+/v7SZJIEcuQ0pUfVqKP9ZHNOZKFLlVLcazoQvUrtw36kzQLbb8DtDMiomsppXyAtJM+9/wzRb3M82Xjyu48nS9nFy9dCB5ms5mK4+CQWoU4jiVXRVHEsQaAONZpmlrvgPlz53e72TPWWqWi44Pj/b2jfm/IGJvORkpGzoaqNKZxj8T+1taOEDjob1y5/PRkMv361167de0GMH74cP/dt99xwRIemmWZEArAYGBCqMl4FsfxpUuXFovFYrGollUURZGIAgtVRfWuXpMyGELTVNS20RwiBKB/5RCIqxu4ZExIKb0PUmoAFkVJUVQ0TlRaMMZd4xpp4yg1tt7c3EzTNLhQiWYxz/NFNRj0kiTxxpdleVKPpYiEUHGs6PMb02KI61uHcwkr+AMDRbcJpdrmTWsZQssmoFun1+sppaqqefDgARkvSCkpkIeWATWTVJFY23ZN61qcJMPHx2HNWqUyS2tNOQlU1Wmt/8OnPsU4z/P8p37qp8h7ZI05rgli62YMVvivdxiCRxGEUJxjQEySSIAgj7YQgreeSeaMBQ4nJycyllmWJalqnG1c4xscDAbDrQFOQlU1iMA5CK2ccwwZVUKMMVwRVBj7XcwaMgfodDpax3VdP3jwgFa4Xbkhe++XyyJJkqqqZSzjOC2rHCWvKyMk8wixSpyzla87na73njJJW30iCwGN0owBZ0w0zVIIYW0D1vNOEkJYLBZCglJCKj6Ih9PxbDKZM5Bs9XaEEFVV3Llzp7fRvXLlChFA6rK6ffvuf/Pf/KnpdPorv/xr2aAjpWJCOx7ojAZEKdsGoGka58gPjlnvg0PnQl3Xg0G/0+v6YHUcR7HiQVrrQpgSHE/Wd2IdCbV6jEIIsv16cpIPKzaZMY6uE2vtaDphoa14hBBCS0RMkoTxlsREo2YAYCAAOQY2m82V0sbYyWQ2GKYUBdvtdl3wJ8fjIh/Tj3DGaa2VjAK6EEJlGlgR3JbLnJ6wkDxJkryY9voJsE1aonGcACQ726eEEG9961ZZ1DRUIxYS58p7zwXLsgwAmsYCYCQiAFaW1WMqtA+ACLylOQshJJNZlhlvjDE+2DTNQsDlchnHcZplw63NvMoH3UG/ny2W07JsEKxQxJ0BOlgAQPLQ6WaMMeOdFIrwuMGwnyRRVS/Lsjg6LJxzwEIaJwBQ10YKvVgsjLFax5FObGOdC1IrpXgcixCwLGvOBWM+jjVDUZalUpwc3azxh4eH6L2O406S0kCY8zYjl7pTuqppy6+17dba27fv/uAP/uArr7zy9//+3/+Lf/EvCqEYE71et9PJ3nzzzcViwVodjMTAyqKOosjZYI0nkBRDUxQFC0wyeHDvdq+fNnb2la/+1tVnL33oQx8YT+PGVgH9YrEoS9PLemknY4zZJt/Y2KjrmsoU55rNna3N4Vank9a1OTo66ve79+7du3nrel267d2hTvQzV64e7B8fHZ1sDgZlWUVKeo/GNAgcmGmcEQ4dMo9ORXI6nk+n007W297efvDgQTCOKaWEZEhLFIRoi1zGUQgeQHiPgiGTwLlEROdsVRdpNmQsOn369DKfP3y4Z20DAnq9wa2bNwRXUaSFiAXH6XhCvlIP7j1EhCpvtI7B8/HJrMnNyy+/FKfReDy+f+/B/XsPullvms+X85xzybksy8pUVJYJwCA5R0AmhAsWAG1je4Pue9/7PBO8rqvZcpZ2OmRIZU09mUyTJJFSIbBet++9T7O4mNV1XQ8GG3GSLJcFY9jv9+fzeV6X4IMPttfvgG7u3r2tIkkKuHyeTyaT5bIo58bWSy0jJePGGuOsVnFwXiUsoDe2AYaDjcHO6Z3ZZHrr1i2AgnMuhGSMRTqJtUaHUaSZZBubAybYcjkFFtI0sbYxpn748KFgwhvoZgNA5kwwAZTogbLoPQuCCxYCEMKS53lT1WmaCqGcc96HSFutdRzr6XTumXeNWZ9dUkol2pHVutVnjDEmGEMuREs9EyKKosViQU7NonVehhCCrxuttZL8+OjA1A1DsI0JzgcXBoPBo4f7SZKdO3dhsVjQHJFzfvXq1dHoOE1Th1TiF01TGWOu37jxzDPPve/lV65dv/Pe97zIeXL2zIWXfuTlf/X/+dlP/rtf+R//h7/RQPzF3/763t7e7/t93zXo927eezSaL5++eunR4cH+4YHWMngXFi6gU0poJXxlmGhxPQLUpJRcgPeWOtM16ZKCT1fNJ6lxPQAE/9hm17XpBRJX7dMaUQ0IrjEAnP7AbLbQWnMOxjvwQSrBGATvBedCCM7Y2jyRPyHT5jSuQWyhkIABkIyGqWCIdBw80jgffAicUZ1Gv50gpRdjRbEkKeXx8ahpGq2jqqqstSKOq6YRTmRJFAJorQUKCAIgSEnOpyGKorIsF4tFlEa1aYZZTP5CUgkAqJucWx7QCInOWQRuPF8UOfHUYqnJwHf9JL3DEJqmadI0Hgx6UkXWNgEQvEX0TVP1N4aRToqikFKNRqO8dEkSQ8CiLpqy8uiCQwyM9Id0F9OjoHmtUhHph9YXk5aKKe2M5Ula5kWByBgjJhTxLon52+v1rLUEdoQVrxlWQBXiukxaY09svTuof167dUslqIC31pIedg1wKCUYPi4jn5htrJm/uMZwVz8rPPkBAEBSPG9AXM17AICuS/orDAEZrItYGmMoIZqmgZURLa0QKSXjsIbM1qGX3jtC/6nUJBul9eekTxgAxer5SCE6nU6apsv5ki5KAgoRkczBhKAkG2+tTdO42+3WdZ3nOQ0FibOyZuUHQMZEVVVRpLJ+jyp2AcwYEyGYqlRc2OCJGAsQeoNB0zRJFnd7vZ/+mX/Z7/evPn2FIGnJH9P5id+nlDo5OaFDjP6Vr63YObfGxSpeTBccOREgwip2jzFGNBF61CEEj1ibClmYzWbWNr1eb2NjMJst6rpeLBYrMgqse0bOeSftpGkaGFRVMUgG/UG3KArnWjCaMK+6rqXQkVRE8W7p51wGCCSLmc+nDgOiJygnjuPpdLpY5J00q+vSew+InEyBgEEbZ82iSIYQBBMkeKcuRihm6oZOQueCM836yTDGtI6NMfP5EhHJzd+YkjFWV0vJuGscPQp6GrT4NZfYKgFYcB4AtJB2RXl2zjEmjHHG5ACPLSnYygEAGBAJ3bnAtfQYnPU++BCCkAIZWGMJyKDPDCufhCf3KZfCe884xxWqCyvrIc4lVYm4GhMSNEb/FRGpTiOSwZpttv7ftmh/bDL+WOD75IgorE1y/gvmzSQMaLdSYIxz9LU15uqly+fOnpnt71lry0VeVrUDXze2sc44L5QK3pMRAwCvqqooSyJvrbe/BxZCQGCMCQCOGABQShmQmdqYBqxvmwIQEKxpjI2MVqgYrTd0rXIakDPpvQ8YWKtrdwAQR+laUUFdj3NuY2PDe19VldCKkgCNMUKIXq9HGT9CCHReCOEwUP9O+C9jLKDzni0Wi83NzTiOGWM0GKOjmBz8CMlBDIzJNE05542pcJVO5L3na53u6iijd07LkK1Iaev34jEgmXat8ngCkA/SKid2hZk6Bx4DTc6USo2p4jgTQmRpxhhzLqRJx3sIyAQwzhEDFHVTmYZSWHupQ0QtlRAiiSKltTHGec+EtNY2tdFap1FU17UP0N/cKmr7ey+YJ9aRX9l7AoAHBAbsd0twOOc3btxI01RA+68rq4Tgsa1b+Cqqmr4VPXZa+VtbWx965UMHBwej0Wg+n9K1OJvNvMfRdPL8889fvnz51VdfvXXrFlu50AitFSrvrZRqvTXo3AZrvPeTyWT9yWnF0qJNIw0AlHj/sz/7s1mWCCEuXb58/sKFk9GIMLGvfuUr58+fv3jxolJqPJncv3//D/7BP3j69Ond3d3pdEol7mKxcM796B/8Az/wAz/wmV//9G//9hfG4/FgMCCDUyGZ1vqTn/zktWvXOp1Ot9O5fOnSn/yTf/LmzZv/4B/8g6qqkiSajidpmvY6Xalb/mhdl0VRAAZTByWkbYzk4vTp0/fu3ZNSC0FBHQ29iEjFy+VSC+mlRERa9gAcBA8hVGVDW2a5XI7HY63lSy+91Ol0Dg73GGNlWfZ6vQ996EMPHjwg0wzvMISQZZmQrCqbCpperyeEaJq82+0iYlHkjLHRaERXgJTye77ne4fDflUUnPPLly8LIbZ3Np1zzzzzDJXZh4eHa3YjIj7zzDPL5XJ7e/s973nPvXv3JpPxcDjc398PIXzlK1+hBvyLX/ximmbOuTNnzqRpOp1OHz58+Kf+1J+6devWZz7zafrFt7dOCSHqum4aQ4uBCgwailhrb1y/hYGdP38eEN56662maZJBJ8mS+/fvy5OTUafTydJulkXnzp+6f//23bt3AFgNtbWeMSF4xCAA0FDaoTGLqQGOEAIwCN7wWEqpaeHSDWStNcYKwYFDFEVZpyOlJEKNEKJpqhCC9yil63a7o+NxsKEoKsmlEK3qcGdz64UXXlgsFvt7h8RIrOu61+sxJjY3tzmXUurJfJYkSdYZ1HU5nZ0wxgaDnhAi7WQQWlor3Qfdrj51+ky+rKbTeTW3XIrgEICxx1gzRV7wtaorSRK28imDlcaN6lrnnGka+osM2vwWAED0vd5mp7997txZioei/Xb79u1ut7u7u3t8NEqSxHsfEExRkPCcI+8kHeNc3ZSdzoYQHJiPk0QIwXjo9bpZ1gke7t19OJ1OT53aDZ5AHwnoANh0svjyl34nirS17ty5c4PB4Py5c/t7hyEEzmWe54QHkdTRe6+UojtJ6xiRzefLPC84l8Y4mt4g+ixLLl268vDhw6axnHOtZXAeIPhgAUBpYY1vq0RouVEYmACGgjsXGBN053mPIXghJGMYPAgJ3gf00FTOBz+fziOVOOfLwlR5zTm/eunp8Xj06OG+EML7sLXZS9OomC2q0FryWeupkiO4wzmnRauFVEq1frLBK85CQNcYKaVWynvfOI/O5/MFwYWSga0bqlpcQA6MJHjGWCklfR8CWOM4Pn369GQyKctyNBqtWwJc6YZol5I4q6WTMB7pqF1XobXVcyuzJGCB+kwqmNacF0De3sdcIiJnDBGm0ynnUjzhvGGaGgRIxYcb/eFwwKTgwibOIcJoNFrm08HwYprFVVNzDs5ZkMA5xdBxrmTTNCKAEIquIgIfifcthFgul2VZdjo9upyiKCKH9BULIAQfJpPJ1tZWliWBB6XUYNCbTiZXn76cJPG9e3eWy6UQqizczZs3d3dPDQebR0dHvjW9tQBBSFnkBXmcbW1tPfPMMyqSCKEsF3kxt65aLGaLxWK5KJABIhnYK611UeRxHNd1zZYwm81IvdVJs52d7f6g+9f/+l9PovSXfv7f7l48K4WGyXQxmT373ue3dzavX79GraYHYCDyPNdae49N1WZk1XWTdTubG9vIsWmavUcPCXgVQlAKKKV+4WpgvqoyW5e60OpMKZFiFZUDnj42XfCMMQGMTgmLVkqptQzBM6ZW43qQUnqHVVUtl0v6nkrGzhuKCUmSbHNzuyjLo3CCiM6F4JFxFFxxzgE5ABjTOOc4zzhnKoryKt/YHo7GxwfHD3d2dgLAd33sw1pFAHy5XBrjvMPXX3+9rCxwHjy6gHyV/BNC0DweDIZxHFNgrnfeLJfGu14/llLWdY0IQqgVONW6pGmtIxaVoixL9OS8iSzSCee8LIutrU3v/Ww5iTKhks7oZKI0T9JOXTdVbTAELoSQ+Myzl3q93o3bt7K0qyLtvSXBeJrpzc3NSCd5nh8dnTy8/yjLup1ufHIyTpIkjiLGmJS6rq3zITQ2juM4SnSkAEJRFHQgf+/3fu9rr71GwXohBHIApDnt6bNnFtPFZLLf6/VCACmVta4sJ9hmqfG1LoEx1u1mGxsbjx49oiHW0d5e3Ol1Oh2u/Ww229raBEBjrLWWgRCydbEEAMRAJVoIkCSZqQxjjGFwzo2Ojje3h2d3z5RlWZbl7bv3Afjm5rY3vqoqwUQIwTTVV778O1rrbrebpqlSKgQ/HPam06Ss8tO7WxcvXvzKV7+6tX2qrsvhYOPZZ648erRf5MssjQG5Vp0VH0eE4LhQnPMkia13s1l16+61UMgQwmhxOJ9MO0lWsxqAe+8xtLBICAFXLH4hhFZpXdcOHYOWXywlZxjm8/lg0EPE2WwWqygEZMz/y//lZzc3z29sbCjN0jQej47u3r2rtU7TTp03ZVkrGYFni/EyBNfpZtWiKapyPl8y5Jxz58JikRO6YQ1qLcGTjo9igpB6asaY1porXpblvQf3u93u/tEBY5imaV2bJIlIIgcAwEFF0hizWCwGg8Hzz7/XWsuQOxect01tXnr/e19//bV8WgOHwVbfYo22uXL10t7+/u3bt9O00+8Pr1x+pirqN17/JkOBoVXcO2PpFPUghZRcCC6Z1MK5WmrWG2QAsLm56T2iD8a4uq51GlV1waw4d/5FqcR83jG2Pjk5FkJxzm1jHx4cgGcM0Aa6L4SWSRswgI21VkeSIbeNi5QOIeR5SYrbEIKtDHgELTnX5B7OAgYPwQOTpDbjVOPhihPUyn0E0FFGqATh9aGlZCJjLYdISGatffDggfetgWMIYWdn58qVK6Zx4/E0z3PqRhYAw2FfrEiCAUEplW4M6W91+r3AWtrvZz/72fMXn/ra1752cjL+/X/gR/7Vz/6v//Sf/tPTT7/vy1/+UlUXr73x+rDfe+31r24Me2+9k589d2r3zM5odKwjbq2VXKAH2zilJF3B9NPpvuMChGCIntD21fSak00FwzYnyjkHAYN/zNMkSixjjDlHXXEA0FozBI/0i7f6OUSsTBNFijEmpNRaeeuEkH7lThZzzjhvjFl3a5ywxhXAQU6sxHKyq1hjAEZMSQLyhFZrK+GEisaAUsq6LolEA4KzFa2JJBp0DTXOAoAzTgBFYYPWNJkVUsp+v0t2bUKI+XzJBCglbO0YB3QYx7FSIkm6eZ5zLnu9Thxrxhj9eVix/Ohp0y3pg/XeCsF0pJgAziGO416vF0I4Gp1sbm5vbg2tcxuwIReS4n2yLN3e3r51/Ya1DWOCy4ghQ/TGtO0TMBRKx1pzADqT6cZhjJEnm7WWmCUk3VssFlTMU7WGiPSBafy/xlNg5S1G13pAx4EYjtgu+VW4NFsRUblgnDPnnLUNMI4QmtquCZKKM9fmoDx2al5DAPzJCGJEAIh00u1m3jsAsK5ZE9DWwHdLgLAUji2C80/WpfSdTV23sBprPzCtcyJYITy2LOfOWe+FYELIpmkoao/6OHJBoSeGDOjxaq25EFEUZVlGdSyxCrTW5CFOtyQtJNoIURRRogawQN4LQknGGPrgvSUwFBHjNEnjiMryXq+ntXbONWV16tSpyth79+5FkaaSVQjGBFdKJUmSZq15dJqms/ncOUejYnoma1KIMablNmIgSQcAlGUpuUAGcZxwzqUUABCss9YCMK2jqmpCgBAccQK89+i59/65557b2NiYzWZ8vphMJkWxJBBnslgooQnR9t7TmiEqAJ0hxCmmzUt6ETJ9Dh56WYc6aGNMWZZlWQcEWsAAwIEB51R6jkej+WwphJgZqyLZyTIhhDU0NmPOMaXUislLrx+FkMgJbpMU1YgeccWcAACyNgYfEh0ty4K2c5IkBECzEBw64quuJy6kqHDOlU1NdS9b23w7b7ynAQbRsIhPZ4whfpzigjFmqppAUuq5qBILT8Rg0pFLz79tozhSXBJNarG1dHPeO2M8EZ7o7RMuyVY053UvH9a+dogkgScd4RpcXh/IovUAEX5lQ8xWfuLELGaPR0eC/vH3hA7hCfMNRmxT6ziwEMLO9iYV2LPZrC6XALisy6qpXfAuhKpq0FsmVBzHLtiirJ0LNqBt6ie/uZK6NjaEYD0yybxDBPDI8qKpGxdFmfMewQFDgGBM6XwcKUVjcGMNTZiEEFLI9hwKLauGTN7jKKV9R0eW1qRuAedEbWrOIUkia5uyzNM0pbRbyci2InCpCG2UqwwbAAAWpOJ5sTg5ORErK0tByUNom6bSWlmLwTpKJXG+jX8XK401Y2BXEZdPjgFw5fhDjN61JGh9bK4PYU6HCOecc601W7nDIyIg42ztsO85F1pHtjaeczKEiXRSlgUTQkcSg1FKMNbui0VZ0iumby0YzTw451wpFTj3jFlEEUW9fn9eFneuf2dr6/deM8YY8I4eDm0NKbUNJCVppzWriQ6jgATFSVJQ8yeMrde/tVwZw1J1R+/99OnTP/7jP/7n/uyf+3t/7+/99E//NOePJ+haxwjw9ttv0wW6fs60IxzS9djK3OkPSCkxYLFYtntBtL8+rnKY6TrWWt+/f//WrVvz+RzRP//883Vdp2mapumnP/3pf/2//W/nzp37M//tf3v//v3f/uKXz549e+bMuel0/uDBo6Ku9vcfzedzIcSZM2fe8573vPWtbxM3Tmtd13UAcXR8UFbdpqkPj4/OnTv3zDPPUPn05ptvHh4c7Wyf2tjYWC6Xg97wh3/4h19//fXFYgGMLcqcAJA0jXu9Pufce2SMHR0dUftP9YPWLSCT5zkiVk1FZlAEaXpvL126FEfp4cExEf8lV+fPnz9z5vTHPvax27dvHx7tU4zT1atX79y5c+PGDSnlxnALV6nFWZbRG6zr+rnn3nNwcHB8fFzXDQBTSjvnQwjb29uIuLW19fDhwzde+/qpU6f6/f7BwQEF+sWJ7nTTK1euvP766xsbGxcvXrx+/TpxIvM8DwEPDw+Pjo46nYxz/tprrx0eHnb6va2trcFgkCTJq6++trW1NZlMTp06de/ePSHEq6++OplMaA2sflN/+fLlwWBjPB4fHx8zJunJOOfYKgelDqWSChGrqooGEa1/iUEA8ul0iiFcv/Huo4f7OmLBS8aYUpF3GDwiWeNi8MHLSG5sbMhYbmwMz58/Px6PyzKXUtrajkajsiyTNOoOOgGdda5pijhJ6HzRSnv0dN0CgHNGS33mzBkO4s7te4ioIm3qhhxsdRLDKvVbSmkrK7gq8mpv762qqoQQZV0D8sU8Pzg87nazK1cuM4ZCcWstiaarwjrXtHNsJre2BkoWR0fjosgJSl5vRXrNdB0CBNJJAQANY5844OgW9+Ts6YjegpyUC3RonpycIO8TrrFcFpyjUILw2bKoe70e53IymRXLJQFMTdOAD1prAfjsM89LBYhBR7JqyqoqvBfG1o+u7z16eCiEyPOyaR5JyaXUTV3rKHXOBETXVNWi0ml8/dpNJeVaq2JtI6UmeRFjjA5KxhjFhiAyAHZ8PIqiKAQfx6n33vsWRVVK9Xq90WgkBAMAHUdCMmNYW0pKInQjo5MVOWPMeBdsAGjBd3IpCQGSRHe7XWsbunVs5aTizoRlXZjqkRTaWucdgoAH9x8FdFtbW/P5Ingxmcw4kxLQGyuEitpMEoAnzA2C86v7ow1jWZNfqDNc60r4yjtvXYlSw0kkC+IUrP+MX0UfrGfgdKYTgYIeI2HcdVHIKEL0dBkAUP6STpJkMBhwzg+PjkxZMqXQ2p0zZ5I0KoqiKIonfxwgXx83yDAEaIyNoogxaBqjuKAxjJYqiiIhGVf88uXLTVNXprKuobwgACyqcpHPA/g0jUMAF2xAVBIE1yQaYoy5yrKVjx79dmmaxnH88OHD8+fPP/XUU2+88SbhhlThrbtH29jv/p7v3jl96s0338jzsmmqc0+du337tvfuRz7+3LvXrz24f1TXZZp2Hj08sjZgkCcnE1Nb55w1LYunqohsxGgfHR0dXX32MmM4nR1tbW188EOvfOELn1ss8iTO7t8/lIJJLU+fOT0+GWmtm6Zyzh0fjRFBKlBCdrvdEMLP/MzPvPjCS3/1r/7k17/+ujU+hBDH8UIw65q/8lf+yt/5O3/77t17g8EgjdOiKDiXRdHOyZWMfLBN0xwfn8znc6GVEIwLcsVBJaM2xKsloAmqYNfcivUkgK3mzAGDEIJJwQOukegoVk3TdIdDxYUxhtLpjWno3qVBNPlwOue8R9pB66pXcF7kVdM0SZJ0Oh0SlhLf2dSmbspMZohoLWWKhqqq0jTOOomUGYIPwYzHjVQnURRdv/6uEEpw+fDhwdkz57OsEwIaY9K0k2UZAC+KggwJyJBrPp8vl/O2bUt0CBLLdtFqIZEr2oZrhEXrSAhRFMWyWFpr6ZTIC690zskCT3D0ZjDs5zkTXL38gZcmk+nJ8dh7nE6n/f5wd3c3nx93usmDvftVlcexNmUVQnDeIKI1frlcGhMunL949vTFg0fTInfO5VLE1qDWQkrZNIa1zvKsaWxdj5M0fqx4iOR8PqeR1XA4pP/TWUFe53meN86qOFoFYwrym0NkdObTXyyKwlp79uzuT/7kT/6Tf/JPPve5zxHQU9dlp9M5d+7MbDar6xIAkiRJ09Qa7xydXIgtachTpUiDOsaFlklZ5B/56MtnL56ZTsc3rt+13imua+OuXrqa52VVlE1jDg4O8kXBOI9iP5stheDb29v37t1D9CfHxx//4R8piuIDH/jArTs3G2NOndoOIZR5NTo+SdNMa314eBjHcQjm2WeeRgZ5vmCMAaeWGC5ePP/GN980Y6PTmCkVQiiKpRDC1LWKIiY454yIlsUyt9ZyDs4B4zJ4wNAmBSIA50xIKaUkV7KmtlxqYb13bDgcDgaD8fikMT5L4263T/zupqydQw4CPQQMgulI6nrZXH/rWogRANI07XQ6Wuvtze3JeOa9l1I3jVmZXXrGkZpxzrn3lopzF+y9O3eRgZSitgYAOknKGBFMVVmWzz//PBOh0+n0er29vT2t9c7OxU6n88Ybb5w6tZnn+cHRw83twcnkaGdn4+L5C8bWjcUHDx5MJhMhNWPi+OjkrW9dQ2RaJtZ4oRh4IKM3F6xztiwNY2zn1FYcx1VVIHoXnE5kp9PpdDIl5WKe16ZSkeQMk0QrnSmllsvl/ft7UvL5PO92u8PB9r17D2ztMAgtFbgADKXg6D2KVi0+m82s8TSHk1IwJjqdpKoqIVwIodcdKKUmk4kpaxDCOSaAaaUBoKoqJaUQghIsaOW31aGUxlXobJQmaZrV1lBtwzkQ8Nbinq5ZLNrkPSFkvz+gQ9Jae/36dWItHR7uax1DS4Gx3W6mk7h2tWuc9zaOByEEMlq9efMmE1xrcfvOjd2zp3XEPvtbn/7sZz+T5/m/+bfXDB8mSRQncjGbLhajLItv3yh+33d/5D3PffDtt17fe5SzONZShhCc81pIxj2dTi0jGCCgM7WTkkspVpNjIsRxROQAfH2qAyNneSJx0FQWEf0TckImuLVGCRVFEaEnBJMxKdh6Uhu8M1ZywTgGR47MskUqOS+KggsBAOg98Zo55xBawV1wYd0qYwDGQEqZZdlsNgshmKoJAWhXUhaTFpLmx8652WxGlW3w0DRNCEDWl2vMSGutpQrBASBvC12mlAiBiiJLoBgTwFhKJnhKCy6Y4i12EEIg5Y1SajKZNU2DEKrK0XVP3BE6SLXWeZ73ZY8BCCHPnj2bZvG9Bw+cM1Jy50zA4EOjIjmaLPvdXmNrLDDtZk3TcM4COi6088E6K6VMsiTCeA3GCQrTWwV7hFWAXotuAGitO93Ue8+g9TpYLpfGmCzL1naW9LfWc2L6kopb00afucb6YInAvuYcMA4iCBI4KaUAWiYpwRYt3Be8lKpp2sQzWDmiMgC3HiQgOktpiswYyn0iukJrC0tz5fVsu60QfLA+rJARt67ZbOv7pNiq24eV65fgGlhY6cr9E5CEY4w5h3SGRJHy3npvGWu5gZT+lGWZWKF1a16Ca/MGZZJEpIMUggmtaetZZxgA5csROEUo8HJZVFVF+siWu8oFUgYWBo/BBT8YDN738vs///nPh5XjnEfXyfpay8l0TE0ZFyIgIjCtI2/bBC0hhAs+AAbA+XJBUAhjjHwq0AdTN/Tk4yhi2CLRxB2RTNR1BT5ggkKIfr9vjJlMJnEcCyF6vf5gMLh9+/ZisXj6ytXpdDqdTq1thsPNbrdb1ybPc4ZAyjyyxm6ahiturbWu8Z5MzJn3Psuy7e1t59x8Mm0R0mCpFa2qyhi7emvIOVdaSCmrqiKffcKpe/0OrV4MhuNjlJaGxOujg7E2g7F9ZUoHsU5+Ru+RBQyrCDh6s2TETJbxcaJp9hBWGhHycyAM10NL1ffec2ynNUw+lv3RoIJ+VghBcSWEWIVsg5StQwLn3GGwzgKAVJJIBlLKssyb3GLwXArO2g2+nr6QZdwKz/W2RRuh9UkIT6x8IeAJfwz6IvkmrBBhQuXWYzP68LbNbnlsl7HuQNc/muaC7Im8nCe/hBDEyWuainNONFzBoCiKhw8fHty9XRcVBszLZRDMIyyLajpfxHEsuWysYVw21hhjAmufPKyMjL0LxgbvEARHZEIypaLpLC8qax1DZIIrLhTnYExtXcM4xFoSOE4Xn3MuiuIQgg1WCEU8YN5yawARG1NRciohwmyVeaCUElrRy/Xej8djcjHyhswSZQjB1jUdEXRmUqTkbDYrimJzczPN4qqqRqORd60/++h4Utc1kfoBaeTWHndh5QIRnjAg8o/TAh/nBHrv6VdjDChoBFbmJ+uZomBk/8055wEf6zZWKAFBXr7T6YxGI+8xi1MhhDWuaSxN49oZBmBRllma0p0LHExwSkgEDE1DODutsU6nl6Zp43xjSiHEsjw8Pj52+OzvCTc751xTAwA9RqpetI5pp5B3zfpRtNtKKQAA1/4Kpmm4EAGDiqIkSdak+OFw+BM/8RNZll27du3q1asPHz58993rn/jEJ37hF34hiiICfLz3aZqWZU1sBlJ8rh9vWMl8KZXTOcexXY20HdYvCwICBAxIHALGGGVLrgWjNF27ffv2aDQ6Pj6+c+fOv/pX/2o6nS6Xy//5E58YjUbD4Waapr/0S780Go263e6P/tgf+s533tZaX758+fz58+Oj8Vtvf/vVV1+dzWZEvgEBjLHlclE1tZR8e3vTmJrCQq+9ez3P883NzaIoJuPp888+P5vNKAl2PB6H4LSWH/jA73vmmWfG4/E3vvHNPJ+XZSmlpl+fANnJZETP3xmfpBFjLARWlnUURd1uZ7FYFEUVgNOQJsu6SshOJ42i6N69e9/4xjfKsqTtc3R0dP/+/Y9+9KNZlj24/2g9JKNmxzlnjJvNZkmSxHGS5wV5YSulNjY2ut3ucDj85je/6Zx79tlnn3322du3b3/1q1/t9XpPPfVUCCEvy61TW+9934uc8+6gH6XJcDiM0kTF0XwyOz4+TtOkqqrDw8M8zzd3tofD4ebm5pkzZ65fv3769Knz5y9473/zN3/z/v37dWV2d3c/+KFXinJ5eHgohCirPE06Fy5cUCq6ffv2bDajxmG3u1vX07woFoeLxjVqQ3hXRGVCy4aEU5IxsViU1jZJrPM8P3/+fHBw88Z9JdNIJGXZ5HkupXTWBGc2dzaff+HpKEloUn3z1tu44sIIYFHM6sZlWY8rXpZ2MOzVdekcWtdEcYe6a/GExXtVVaOTCc00ptO5UtI5W1ZVCOH+/fsHj/aI8LIejAghGMDx0SiEoOIoy5I8z9Ne2ullWzub3tuiXCpQtqHJIYSAMpKMsaaxzi29x1OnToFpi4AQ/MpFTdCPcM5FkUrTdDAYIKIxFJKjiLZAMBaZgrVXr0PvLR1Yzrler3f16jOLYjweT7Is7Xa7UvKqqaqmHI/HiCyKEmNMUzUAwEBURT2fz7cHZ7qdfkDXSdNHB4+qKo8TvbU1eOmll27duCmEsNbUTclAM0nkjoCIUpGEgXEu3vviSyGEmzdvSq4AnxzlceccQefOueCDx0A18cq71hGATieaWHkIVlX16qtfE0JprZMkAQhNU8WJRiaBowjce24Nt9YGDIxJxgEYrChR3Hvrgl+ZoAV62lIKMlCTUnMGnDtEVhaNUsEaSkjTB/v7Fy+ed8ZmSeoVG59MuVBprEjV5axVbToKwIqGiQq5b+kh7fnL0AMKzrmSiN4Ga4PlnAcMAkSAwLigeFpBieqhRaLXYDR9H+99HMdlWd66dSusfI5gxXOniso5p+LYWguIaZalaZovl3Qfd7tdrfXR0dF8PldJ8sM//MN1Xd+8ebPX687n83X/sC5f6IAGAPDAVlnnQoirVy8rpW68e8N7r7MkimOlRaffOTo6cs7W1riwfOqppwDAt4k0rN/vm9iNRpMoUkKo4MnHoxUYShBreQV9DPKtu3jx4g/+4A9+6UtfonFOVZaMc9c0Ko6pnQAAOvEvX756cnJy9+7t29fvUgH0r3/+l4ytEdF7yL31DqVKDvZOhOBxIgeDDWNqKlCs9cvpEiRwKQebvQeP7j86uBPAWxOeff7ieDoyzl65comIn/t7R4vF/O7du9baNI6895zJNBWdLDl16lSeL5um6fV6iPDX/tpfO3fmIud8Oh01TXPlypUoio6Ojn7qp37q6OjIGLMsKigquimpEmrJXyzy3gfw3ntb10opzpiOhHcYggOkKVQ75H9Sbb0qMVG20kUMgADIOdeRZCxSShlbSymqylBjAACNs5GKKMynKJZSZquqjq1KujUCQhZy0lrb68VSyr1HB5xzoSQxuVqXQEdWj9T1qaIwi0VeFOL/8hP/Fec4X0x3djaAvWWMyfN8b2+OAYQAzth4NDPGYwAVpYGFLMus9YvFQkptrcUQKOYCODJG25PoCWIymSilIqkIPEIk8hw15Eha++AdFystG/L5vLDWb2wMfDD9fjfNsqLK9/YfbW5vcM7SLNrZ2RkO36+UyvP83Nmt/f39mzdvOwdNY4jKh50shDAeTfO8DE2Y7o9lmjqDSmsSN0VRJIQEYCEEH0KrI/Oe2IWMMWPqgK6q7Le//W2lVKfTwZUHcbcbI2JVtkUVaZfqonQuSKnpiiS8yQbPBIfAQ1n/n37wB7ZObX3///n7v/Gtb5w+ffrk5OTD3/VRRKzM1GMAzvr9PgADgBLqqlpyzp2znPOyLJWMHITWFzURAOC82T19jkH0G7/++eFW7/LlS0mWIvqkk9VFeXCwly+WURSliUangAMA6IRFkSrLsmnsq6+++tTFix/44MuvvfbarTs3u92ObGrn3KOD/V7c+e//8k/+5m/+5osvvrcoil/99f/kfX3r1q33vfTC9vbm4dH+cGPjzp1729vbW6d2XnTh1ZNvGGPABRAgtRwMex5wuSgYQ2Bw+vQO5/yhMwG8C9bWRhgqkpAhA0bETIkYqIVrGhtCAA+IIopUt9uv63IymWBopGC9Xi+SUVGUdZ7HSZcxIZlAwBACcia58sidr5XUgqlIRdPJVAodxylNENMsssYb32itOWfGWuCMghwdBilkv9uXkviknnp4pVRdGQjEy04indZ2Qbln9+7flVKejA4Hg4HzzXQ65ZzboC9ePnfhqVM7Ozvdbial5Fy+9tprJ8fjS0+dP3fuglbJq69+496t+8iZ5rEUGpATZhTHGlE1tjG2Pjg4iGPd7WbWkY0S1HWptXReKS22dzbLol4sFqa2XR6//fa7lNzdnplmWeV+Ps6dY0pwyuACQAy+LBZcsjSKO1mXcz4en2wMt9IsZoxxzh4+fGit01oTns6ZHA6H1trJZJbnOTokxeVqsuVxhQcBABMcGXh8TIqczSaIKAATrUC0nBrqMynLhuavT2JYtMV2dnbouTHG4jg+Pj6eTCacA405EUxd1+PpZDAYMMHLuko7yfd///ch4m/91uffeON3tndORzEcHx8jIhMu4jW4usmZYM3u9rBu8iiR19759lvfei3PF3GkGARja6215MJa611Ymx5QuxRCcM4IEfnHtiE0f22zf8kgy1tHH5ic34QQDLGuaxIWcAHESzDWG2M4MFM1dFkgIpPCGKMU+QPouiwjKZI0QwQbMHjPpZCMQ0DifLXcwBUsCAHFypOUMBdk4JzDVXQqcZkZE8zaNSDSQvwB6X43xiBndO9QbUZeUm1ygCdxDwueMFDOOTembhpc4U2hsRYRuWB0rnIeISJjHiAopReLhfPW2Zan2e/3e73eZDIJIZDDIKG9pBPCAEVRSckZcACI4zTP8wcPHhR1kSTJ8fFhY9358+ejKGpMkcYJIuZ53uvxzc1NIWQ+z+u65sgZ43HcMmWiKFJaaKGfxH3syu0qSRIi1K+Jz1zAYDBQkSYKgnOuzAulhfOGkj9wNfJfo8kAwAXHwJIkCSHUUBHFDxGFYLSWWgUxUHyfoCdMbhvGGGIzCK2ocvDekylHO/t3rd085xwDbb02X0QIX9eVc05pQY20Nd45h6uM7uA92WsQdva4RVrROQOA9V6vnDqotm83Zutm0krrcFWLcs6RgY4iJvj6KTERJJcEQAyHwyiOCT8lbjgNpUijDQBRFPX7fQIU2k5EciE11c/W2qPxSGgppXDOKyVCiBAxOKdXX3Xd5rlZa6uqiiP1la985dGjR0mSAKBHLyXv97vO2+VkwQQw3sEWZ1ec84pEpRiEkqmS61KNytosyzqdTtPUHj0gEKxGqA3V7esuIAT0PrjGWMZrWQJArDRHAIDpdPqrv/qf5vP5xsag0+nQxILS/8gzZL0fTWNLLAeDnlJpZZqiKIA9zqDTOqIuiYxZhOBVXUymlZQy0gkt6fU6EUIoVIhIfUG304/jmD9h/y2ltHUTApAuAT0AgNStchExrKi+nN4ytKI0JqViARt0tHhs8IQJ0tKqqobIkt401DnyFddyfUAxKeg5O+dcQ/NILhgP7LHXBC319vgSQgjhPc2G6ZMwEI///ApH/l3A7hqSXuMy9I19KyhEZMD5Y9gR0YcQJIqw8vel94urcMWwUmA8CUbzFTsPVkA/InIO5JZJ0PEalAwhMKTJINDnwf+CdzNZmTPGYqUDAyllgyCz7Nadm0cnx3lZNnUV0CyKfFHkjrGiMQBgrFdJBOiNs3lZVVUFnDnXTpK898CYUNJ6DMzFUZJmamkWs9l8PFsKniAq71EoppSk1ocx1IKH4D14rbQS3AXnnI8iAOQ+eHKEE5wRMZ+v/B65AMCWYkX4cggBRBtYSu8IEeu67qaZaLXIFhG5VOv/5Jyji5iKq6Io3n777TUFHliYL6aInsjCEBz13bByLIEV9WddWtA+bfto9LgaQjw5YEOKIwAeMHDOEFrCO0UMrr8bLQYQXEBLU5ecAwhjnFIR5dszxhkTgIxSBJSSIVhrLecMARC48xgCAhPOIwBKqYCx2jrnPHAxXS4WRU6ES/opIYS0k/6eC4YWN7Sp14wxZnywdUXQ3rpso71PU8ayLGkPKk58DxnH8c7umel0THUL/aZVVd28efPo6Ghvb48x9tZbb925fResSzqdra2t7e3Nw8PDEALF0hhPUo/26/Fttfqinpcxao4fvxf2hNcNAHBgtA1DCNRNh5UsWErJufjyl7/66NH+nTt3msZ6j8PhphDKuXDx4sU1X1spNej2tra2yCZhOp3OJ9NXX311Pp+rldXtcDCo64oJjujp6q+qqiiqS5cuaRXNZjPKDWaM3X/w4LXXX9/a3JhMJuPxyYsvve8973murusbN25cu3ZtMpl1u13ngvcNpc7u7Oysp1ydTqcqSgwMOJjaeO+73e65c+eWy+XBwdHh8XFd1y++eEZKOZ1Oj4/zu3fvNk1DxdgHPvAB7/3169f7/T7n/ObNm+PRdC2WStP0woULm5vbn//85x8+fLi1tcU5p3knlRZ1Xc9m8zNnziZJaq25e/vmycnJycnJYDB4+tlnpdZZtxtCODg4eOmll7TWi8Vie3t7xQUR/X7/3LmzRHCmN0V5RYwxQrre//73ex9+5Vd+ZblcdrtdH+x73vvcbDabTqdnzpyh9eOc+9znPjeZzNZUDCEYORh7j1oogaGpG+dcBAkAVFXlgtPLTM6nc0RM0yRflg/t3tNPdzqdTrfb7XY2RiczKXmSRN77KNFKJbtnzmyf3hyNRrPZtGmaxlb7+8feAeewsdHpZZ3hRm97d4tzKOsoSaL790d5YZMksd5aQmaBRGeWc6GUWiwWLk23t7c3NjYQkUkmI0mVgRACQijKErANG2GMEUyAnFlry5KdP39+Y2cgJJ/P59ZVk8mkm3UYKNLU1LUD4EqReVNdV8573+22xBC6L0lASrdOkiSIgSaZp0+fzhdLY+tlXi4WC3rEs9lMCNHtdgeDwcnJGLhfH4WEI7z77rtlvez1O089ddHZYIyZL+dNUysVTcZzxJlgknMeRQkGzJeld7iYLauyrE01Ho+cr7ni09kYILz8gcHDvf3peBY8KKUABUhWFTWEx5I6zrlvmve9733nz5//e//T32VMKNVqkSg9gC7p9ayJXOqTKKZaXEq5qrHQOUueCkplZD5ATgKI6L2LooiwEq2VUkpKRfSQIq8EF6tryQMAcMCASRRVZaG01lp6b5dLQ6NLpZSpbd00FP0HAiAwwVikdBLFzvN79+7VdSWEtAaff+9757PF0cEjKSXn4AOsqFXktYecAyIaZyIZAbRTd2ivEKQJwbocZ+3MHxDdKqOW7LREWGnK1jCfb8WzljFkDFbNKq0NCStqiTWGqES2rmeTCSLKldMrAIzHY0KWh8PhYrF4+eWX33nnnXfffZeyX6lLWam64IkqipNJepIku7u7SZpWRaliBTUslsVQSmvteDqVipd1kXTS/qBfFjUBc51ON4TAQIRgQghCKAY8eEOwKdFjRwcnRF6u69pau55GTKfTT33qU5PRKOv2rbUXLl58/vnn33zzTWobjDFcyhvvvjudTj/wgQ9MRmNCQklmUpmqLQuCReQMFAcVacUYxlEiRdzbHCzzeZqmwARxx6Io+uhHP/jw4cNvfOtV7yDtcC7gjTfeODk5GY1GnayXpp3+oBvH8WQy8R4Zw6aqMUBv2Nva3NEqThJPa3I4HOaL4ltvflNq/fTVZ+mIZ4J3B/2Dg4NlUZGWkzHGmKARCwCQkY4PNiBKxZEzhgE4422yIgNA79Chl1xQ98j5k1bv5PXB2pktgJBMCAWiHYT4YBtjpFJSSsZgOp0QeEHXJI2a6dqjcto5zzgnmScdR6sKGJ0LQrSWcwxbe+iiWAJwLZWUUgjK+RFJknABjLH9/Ufeu4DOe3tm9+z5C+c2N7a01p/97OcOD4+TOBuNxkJw4NzUpQnwoMojnYTgLCIAF4oDghCMCRGCc95UNSZJoiOZYgoAgrcpWGRgzRAa5+q6jKKIHBvjJGaMVVXpA/Mu1LUZj6dRLHZ3dwFgZ/v03qODL3/+tbjL+v0+saistQ8f3feGDitQihdF5VyI49jUVkq5MRzaxlnwQaFzhgkBLFAD6b2PoggYm81mkRBSSvKY894nMo7j6KmnLvhgR6NRsbDEnmAr41SCRdgqOkwIUZa1B2TgHTpEEbxL0my4tVlV1XQ69d4C53fv3n7jjTd+8Zd+AVjIiwWCHw77QogHe9NOpxPHcRynD+8/PDw8ZCCEULAKWPPeI3rGOQNE8IE5xljTVPM8fOVrX0PviyqXStVNBQK+7/s+Jnl49rnL19+9Np1OtzY3Ez1UkXTO+eDqusTAtdZN48uq+of/8B92u93GmIODozPnzg4HGzb4g/3R5sbOM08//+ILr9y6dXM5LSpTdbppvqxeePGlw8Pj/UdHd27fryu7mFdbW1sbGxuT8ai/1ReC9zeGaRovlwXnrGkMAJxMToQQO7s7caJPTk7GxycUpUW/3bqXpnVrjBNCIGdsxYY4OTkxxggOAdR0Mq/ruikrQJ6kHe/JhYksO8B7zxkIITgTnMngwRq/XFSM1dRme+8YYzoS3HHGPOei1SIEZoOnEi2KVVlVsY6KomjqRilV2xYWUUohsmvXbjRm4ZyTiofgkyzOc79czq1r4jg+f/78xsaGMWaZL92hqe5Wly9fXs6qyXhW1/W1GzeXy3JjuLW7u3u4d+w98dadB5QKgCNjHBgqpZw3nU6aZVnWy8qyQPAAQIGlSkWSizhOqvJgdDwWQpgGpZRpnCEjmQWrClcsZ5JpLVufXwHEFvFpqo1FCnnfPr1NMydASNI4iiLEh7ZoWpTn6Ihq4q2trXPnzuR5OZ1Ol7Pl+t0h0rsLQI2BJxAN4rgl1yCiEApokO+c95ZJsZZ2kaZqzXdbyzYBIMmU4Go+nwuhyB+z1+spJUIIUayoUxcroWuaxtaKX/zFXzhz5gznQQhczE8454NhPJ/PJQuumXX7fSnFfF4Xi5nW2jS1rasQHG9lcxYRnUPGGJNMoYwiTcwjax2wIISgc3id7EoYCLRoNMY6QkShHwvXvLUA4BDprkTwg8GAzg3ySrIrvw7OuTFuUeQXLl40tt5/sA8ctoeD//q//hNf+cIXD/cfCalUQtwo7pwBB1oKs4JCGGPoV1pyhBDQoWOMcSJirwoP732SZESVqK1ZN2P0CkBw75wLnu4yQJ5lsZSaElCMMdTLAguk7uCcC0UAkHCOVGhyzUwUXCED50IIoJR01i2Xc7qMpFAgGfEoy7L0vrX/DugEVzqSSRoVed3iklr2ep2msS5YpdTJyQnnXGhhTAsYjcdjxpiSycbGBsHWtHe0VlEacc6JoxSrpC3koNUF0xskHKSFkFb6LURs23vJGJPOORc8Y4z8H8iLnwhHAR3jzDskyjb9gmuMYx33ItZkYXI8A8I7HkPVAI+tLZRSABYxBI8Ey66a9ACAQki3UiIjIoa2SycBjfeahmQ6aoPKnfOMMcB2lTJkpNSj7mMNDPmVrQGdFf8ZD44aqxCC963eHACYaB2laDjXIgsMkFG91jq8Z1mSpnFR1pRwQ79JpLWU0qMXXBhnyrok0wPrbcvSUCKKIiUk5zwE1+mkUaSsbaqycc6F4AWTOo6ppAdo5ysAQFMTAIhi9cyzV40xQkpE1JFSSo0mS6mFUkpHsq5Mnhd06ZMz+PoUWuP+SZKkabKzszMcDufz+WI+Jzfz4HHdIxARwQa/rvCFkAAwGo2owIiiCBuM43h3d/fs2bPUwNI46tSpU5zD2rOrfS+CETxE0Ll1Dax2ulLq4sWL29vbRVGcnJxQTz6fz2ltR1GDrJWbENCZZRltWGqj6CWWZRnQMWgdIJ1xVJVBYBRNwbBdD4ieUbD5ysXbr+R33nvwwXvLpI7iiDFB9Dqq/JvGklVIHMc6iZVSrjFEcw4r/xkmBE0mwsrQmdaVFsLDSrW5WquMscCAPYaSZQs5qZYyL6UMiD4E3zTBexqPUZ3mvUfXDgXpKPa+HZmwJ230V5gvYwyBrG5h/VLWHw+fMAeg78kYo9+63ZLo1/t91Qt7AE86mJbNDSyQ6IDKj3V03e/+WsNzHtphpJQckR+NTt78zje3e718NvXBevBNCA7QeR+QOWNCwACA1hJV39qgtGScOwxcCs4kAAA6qSIVRYB8uphPZ0vOBQK44HUcEyVZCMY4hhCEZE3TpEnMOUfGFGr22G+Enr8AJkKwNBijkoym9ev7jg63wGA9S2CMpWlKdQI9yXZMywUiBus8ICLSFSkEE4L1emTsBlprAawsSxZQCcHpEgkBn2Dz+FXMHX+CZuu9J602AIQAiEwAB9aOc9aHIeecra6JVt3sAxHM2x8EwLn0Hlfs28e8IsFVK4jxKBlzAUDwXq83mR4ZY5qmzIsZAEi5cM5tb297DkpI7z269gKleQZlpAYE62iELwIGLiVnvzcdnuzdOTAk400paKcIwWg6FVZmmOsl6lbWVSGEy5cv/9W/8v9AxH/+if9luWy3mPeehFBf+MIX6Gn82q/9mhAiimOZcAAgki9dQM45KYFc1KVcw0rtYmaPmeBtD+wReVjPAFaU89XFxFh7IgEAKUjWL1FKubu7OxqN6CSM4/g973nPSy+99AM/8AOf/OQnj49HFy9efOGF95VlWVXFO++8Q2lAi0X+pS99KYQQK/3d3/U9ly9f/rVf+zUAKIpCCG4bo7Xe2dkpimK5XG5sbG1ubl6/duPBgweXL1/e2NgYjUY0wtzc3BRCnDq1rZR6/fXXiQyBiHGcXrx4ieaINH6Tkj969IhupV6vd+XSZcbYjRs3dBKj88vl8vbt29QObw6HUuvx+GQ2mw2HQynlxsZGURR1XW9vb6dpWhRFv98n0Hkxz9czm62trXPnLkip33rrrclkwjl/8OABAFNKffzjHz88PPzmN7+ptZ7NZqRVvXfv3rNXr5ZleeGpyy+88J6tra3ZbEaUr/l83u12oyhJkmQymXS7XQA4OTk5Pjjc3NxcLpcEAMpIk3HHbDZbVw4UMEjclOeee+67vuu79vb2bt++TfPIoijKsgohDAaDtciPjsOyqK2ziUygBR4VQ2atB4C6rquqkivUFcgBgKIho0hFsWDcC6XipOO9J3eeg8M9zwupuNLKBzg13N7cGjpjiWuwXC6zLJOS13UZx5ox2NrZYqNFlmVFUYUQIqUbb2mNkm3FcDgEZDISsYiccy+8773vvvPO0dFRlmX9fr/KK3xC3iK4AoC6Ka33iKGuy/HYDbf7nENVFcACel9VlZKUH5LM56QEz7yv6FoMwQUGTAqNSHiZX6U20wZO08xbs/fwEYUeTCYTF1odEGN0RWJZ1hSmR1fL43oRGboagzeNOzw8qkwtBGMClIwFocCBHM20YNw7ywKTTBblUlnFGFZVnaTao490WuTNZ37jfwfkvX4fkdVlzRgxLpU3jnOQQltrQ3DA+Wc+85lLl65EUVuFryfeq6VTUS2ytlPAx1KpUnIWgDIitHPGORNpHQIIodZ188bGRhSrxWJhrWkaMm/S69jZ4NrjZl39xonc3t4i+cZyuSyKAgCsa5pFpbWO44QZ5BzWjFEyLOMCYqVDsErzsqh9sFevXs7z8mD/XlM7pXWsotqaEAIAKfelsbVSSmnBOGOBUR6yB/KVBioa6Cxe83lX/Ulb+mitaTJNL3Fdr5A5xnpt0BHZ4vu+/U8ktGeM1UXxP/7Nv4mIf+fv/J2dnZ04jpumGY/H9AqGw42nn346hPDWW295750xIY4pQI8sNaSU5L3b3preoxdCCcZYni/29h5aa2OdpP10MpnUtbly5YrQ4pvf/MZz73mubOrlYrSYVxsbG/3e5nQ6nS8XZLxAzh4MAJAbYxbTGXUa9PFIZNrqChGFECR5FkoxxowxRVH84T/8hzf6gzhLv/zlL9+/fz9NY4C4aZq7d+9WVSUYByG9dZxxzoW3ATjTOhYqEpIGm15K5R1ubW2PRif7e4fbp7a2dzZPnd5eLOYu2Dv3bxhjTu9u0nRnNeXmIWCadJSKPvzhj86ns5s3b82mi6pq6rLu9bvdbr8s6yzLzpw5U1XVu2+/c/r0ac65ijTnLc64WCyklDqSMlKxx6qqiKAK4IUQ2BqohUBnJDrGFVeScymUCL4RTHDGQkDvrHMOJEihEPHJddXWuIKhp6mM51xJKRvXGGN0JLkQSZJYZ3SsGWORorHkbDjcWEMDxlArrlrBgQeKiVoV4lwpIRU5CJchhMGg1+l0jGuo+UHEXqdDtZ2xNfUwcbyT5/m1a+8mSUKOmf1+//hoDChOnz798ssvv/vu9SiKtre3iahyMh4Nh8OyaO7due+D6Xb6nMuqaoAzKVpiCANBjIYoipIksdZCa6CBnHMlWlMRj0DVz8bmoDvoWWtDGDaNWSzmGNA2Jnh2587dfr+/vb3d6w07neCcqyoznc4Xi0VAJ4SQKgohbG6dHh2fBOcBfZ0vul2ME80YS+N46QsAlmUJY4wxTnmGWisheFlXXDAKUgBkJP7lgiVJjIjbm1sbg+HD+6PRaEROvk3T6CjK8xwBaNzorAHQGxuDPJfWekKp6rouioIE41LyLMuijcE33nw9LxZREp27cM4YAxzuP7pL1tiI/vDwWCmVFwVnUkpJTt9VVeW5SZJICO69paMsirn3TkciYBOnGiBwyY5PDpZ5c+WZM9PZ8Xw+vXj+/Ivvf8/d23dms5nETqrjbq9TlmUca+uNVuQF5LzD/b1D611V1Q8fPNrc2El0cvP43v/w//xbW1tbr77+za9//XcQcWt7Y3t76zvfvu4sHBwdHx8fV4W59c5dEe/1ej3GwlOXn3ruvc9zDst8PhqPhQLpWQA6/Rzn0LhKeNYbdIpqia4VynhjMSDn0nvbNFU74+TIkUdRTH2I90ikA1PV3ngDJo46zjln2ngrOpeFEJxDK9DmEp2vbV0XNUeuokgIsbExSLP4zp07wPhg2HfOcS4Qo3xZskjQib1cLpd5SJIkS9O6qiKtYXXIA4BzwVqb57mSaL0LgXMBxTKfB6sjyTlPsmw0mQilSC+mtIzj+Oad28XUGGuzTqq1XiyXk/Esy7rOm+DBSSciQUgiE0woEcUKALTW/X633+8Ohn0AKIqllPLOnTvHx8cXLjwFyA4PjtFDmnZCCN0kS9OUSTGbzaqiFEojIgNBW4y1HS8CBi74zqmt8WRhC1vUVfPoUZZled7Ude2PLXn5xadiIUQInjGQUjhnR6OTNM3iON3a2qqLuqmt1hpDoMsHQCBb9+d0sVNvLNM0obkj9efESNJC17bV9nqHNlgpJeNs1Rx6753WAyGkjuTh0bFYcS2l7iKDurFRvHJ5co5uakLlDo8OKB3OekemNFKxuraKO9fMyqWxxqZpEryPYx1CIFoogheCulkRCKhl2gM603jvWUDG25pNKSFlhIhVVaEPFKZUVwYk4ysdXiSVRb9GeFciX57nOZnVEtyTxanjggNQoVjUxQc+9MrHP/7xf/Y//4sf+OHv58BObW584P0vvfblLydRjErQOL+2xnt03jPGtBQhtFmyXCvvfVhFNpVVSX9gDZeE0I6928bZ+zRNyUi3KAompJCMOk8qV/wKTYPWY80Szk5ZtUIIH7wtK+285AyRGeMQLRNCqbanZQDeBeJvQrAYwPnQ7/fH46kQQimhtHYBnXfIQEWa2qe6rJRScQxUvDPGaGwcRUnwmKW9qi69Y4yxEDhiKIuacw6JpFkd9b3WWs5ElqUhQVtbpSIlJPWo3lhbNyCAaHTUxRC2qFqbC44rg2Yp4xDCfD5HFuI4NqathZRK67q23nMpBONSAqV/r6t6Jrhub38uNOVRSwit4JKKbbEytQcA5OjB85YHh8iY814wxjBgAAGMC+HQGWsCCwIYAZqIDDj4tssgY3Agw4R2Wa4cpRnH0IZbtlFsuEr8c8TGkJKvDD3FKsd4jazxFTDGGGOeWWZCCLjyHnHOIWtZJsQ1Xi6XFPNFJKayrsqqqJt2vMGEbIypm2bNCqdxfpIkSouwcs1mDF2wkYqiRJ/KNAA3RsRx7Gwoi6KuWqI0vUdy9iTHKq01+bHoKErS1DojuFCRrKq81+uEkCKi1rEUuihKa/3a2YxSdqjQRcR+v9fv9+lKGo/HBP075yh1CiEIIRBCALTe8dWy4ZwDIPUvSikC2kJAAGZMI4SQytCH5HJtgkyjl3y5LBhjSZL0B90kiaKgVKLWMNxyueScT6fT8XhcFAUiSsYBYDDoSymn01ltDXW7WZYwlnLONzY2GlMBQOv9Yjwt4LwsIHhLGgsEziVjAgSy0J4VwVraxUoJxpgx9J4d8XZXU6UgtCJQIIqipqnKshRKNrapjVGR1lJ1u13OuTHGeWedXRt3AABJ6b33K//5dvqCiKFFetu29In/RJsDCJ6iz0B/BZFsaMgRnZPsRoAA1gL3sJLzO+dCQDrt9YrsiY/NNLgQAlbs6TWCiSuSNXsi93vdGhOuio/HkHx1dvk1HEMUJfoCYDShWYGevze7+fGRAgiIcRw3TUX//O233/quV16xAkLAxnkHrCirwHhjmiROjXNUVwfa2wIY59Y5pRTjIiAyJpK0o5OkKpujo8OiaKTWgkfOM6UVlzEd8pwDgg8hZN2+ZCrLEsZE8CiQHDlQRlwpQfwhRGKewvp9WWtZe60SHYSFAPRyOZdxTLx7z5GTg207SpeSFoZzTgkhlDbeAQTa191ul+pGW1cGMUligOADw1aELekD+JXxI/vdhNkVIrxO3mrPbfQEf3PGV8RbetEAGIKQIoQATKyREAAg7AA5I48TzoGtlvfW1hZlYCilCCMi2RCToqwLhHDx8qW6rgeDwZkzZw4e7c2KuZQyZty54BqKBJAOA11nUso4SxHRWyeVRE/ThN/jSzDG4THP0nnPmJBKOdtQh05/jIpqOtmUkmYVynf16tWtUzsPHjx4++23lXqMgdD2JC8jIptzMqTG9kVTxBe2AmsPK6yZraJ0n7xN6MmFFauPrdY/ISTrTUFPUgILDDhrBzyIuHrgjFza9o8Obd0Mh8MLFy5EUfSlL33pwYMH3uPR0ZEQYjKZNE0znU5ns4kNfrlcRlFy9erVbpog4rVr1yhnyFprDALg5cvPMgFE7TLG3Lp16969e977zc3NKIpu3769sbGxu7vLSMFmqv27d09OjtI0/fCHP7y3d0DgJGOs1+sBwHw+nU7n0+nYuUCOUkcnx8UyJ1cDSuTrdrvo/Xg87na7ly9fvnPnThJFUuvRaETXDSLO5/Nvf/vbOzs7733ve69duzYajfr9Pm2ETqezubm5XM6vXbtB1hPGmK2trfPnzzeNIWyXfvSlS5dee+218Xj84osv/pE/+l+9+uqrnU7n2WefpyPuAx/4AAmMbt++/clPfvLg4IjmzbPZjNbzU089deP2rd0kzvP86OgoSZLTp09XVZWmaVmWRJfsdruECjLOP/vZzx4c7FdVSZcXXxFM1xN9pRTnyrUxD5rm4tT2Ovf4yJVSyjxfJkkipUiSZGNjyzamrutON3WuiWIuBJNSGOOBWakYGL9/8ChJkgsXzl15+mqe5wcHewTETKflZDJ56qmnGMOyrqAumeCbm5uz6XI2m8Vx3Ol0gvNUVQTngaNSqqlqFWkOYJ1LkiQvFoeH+8YYRE8JIUoJopdSn8aIbvoEy6NuqroJ3lsGPo5j70m2w7wPQrSOhHQqWdfk+cJUAACBgfOGwVpE1oZHc2AOUSl1cHBA/08IwRojVum9tGkJo1dKUSLQ+t5ljEVRyjnPl2WSRiBYABRCNFVDRK3gmVCCBayq2vvgjKPpUBRp5xyGCAKXWoXgm8YxJqJIk0QLAvR6vcFgYzlbeu/v3rm/XFrwQcfRaDSajMZEDVv3JOvTYT2bJR43ABpTG1N777Ms894H8CTO5Zz7YOvKSCkbY6nHXS6XjOFiSRPyAAAguKP7II5SBjTr9t5zAXSmJ5200+/GcVyNRmVT1bahWmqN8ArBnLPGNMiAc8E4b4paO7mxMeSKdTo9FWk/nv/mZz+zublN2nbTuLou6XrzNgBH01gAMOijKMo6SVU23lnOEBmQvoberFhZb9MchnNOI1xcM5WQrYV+griczlC9Tm/fPJHsR+BgHMcUZIyIaZpyIX7913/9b/yNv/ETP/ETv/qrv3pqZ4cS9hBxMZ0KIfb29vI8p9pXal2W5cbGxkc/+tHr16/v7e1Za6koazckMIchOI/CH41OEDHR0TJfLt1ic3NL6+jkZLS5s7Wzc+Ynf/KnPvWpf/cf/v0nN7Y3Ngdby2X56NGB9940TeiBUirN0m6nH0JoyqaqqqqqmqZpVq3L6dOnt7a2xuMxaXBoDZMhzIMHD86ePbuzufW3//bf/rt/9+9yBI4hkgoRJ5PxYj7XUYSrIfZ6vXnjOmkmYknlbJZldV0LwaaT+dHRcV02BwcHjamuPH3p4uUzTVN3OunJZDzYOr+1tXX79t1QBSn14clxpGNEjLQbjY7ffvvt+XTR6XS73aybdTY2tmazufeuzCsGYExtrb1//36/tzkcSu/g/v37eV5GkUrSaNVBBcraWtHZgrVWcWFtEBxCCD54zrmMtJCSAaMLGDxgYBiYtZW1NghYmb23KwFZa9PGBQ/BrUqGgIg+WOugmySDYZ9cgAk47g97jx48PDw8JK8e732WdbW2lJ3SkjCQUV1Cd3Yctxb2SmkAbJomoGOcdzodWjBpkpRlyYCtxDjOOEiyJEqipmnQQ5plcZIGZNduXD8Zj5bLORNQ1osoibJMnzlz5sX06V6vd+/uQ8adbfDwYFQsCyEU54oxwUIg1kgIrqktBsYkOudoR9MWa4tRxjhjyEKSJGfOnNk+vUMaLiFEr5dVdUG/Tl3XJ4eTycm8aSzppB48uFdBE8daSB6pmPNoOBwqFZ3dPXtycjI6HAml68oa06orkijyiFLyEIKUrK6rXq8Xp1Fd11kW9fvZeDydTgutY611VZcEiCDi3bt3j46OIjXw3pvKLBaLpmmiOE7SuD/oU/MZEONE101JnR4AGFNzDiEwaguVUltbG4ONvo5U1VTdbqbUoCiKTiedTEYEqvZ6g9lsZo0TQpA9a10bkt5nWXZ0dJCmqXNWSBbF+uqzF6qqcjYMN/rnz5+vmmo+n1amqOr83IWzJ6OjfLF84cX3OOeSJONc7mxc7A8GZVmWpe4PN27evAkY4iilcmSxLEcnUwA+X5Sf+60vCq2yNJ3PpwcHBx/72Mc+8pHv+spXvrJcVM4eY+Df+Ma3tNYMRTfrN8YkSdJUjRSiO+iNRsdZN/XofDBxpkEEF6y1hjGGjDe2zkdz732cRqlO0zRVKloul6PRuCzq4APVmTu7p2kqEMXq4cMH8+lMRVqyCHyght97T32LR4rZJF6qI/8W4CCEAI6c05EStNZKSC64MQbBbW9vSMXJ6FMq5T0Cx+CZMU0ca9p6UtrpdErCwE6W+VVGU/Ct/V9dmzRN+/3O933/9xpb3bl3+/btm2mnQ8Eah4fHjTVSShq6I4hub8PaxtomXxadbnb1mae9Dd1u986te1VZRFGilADOpJaMo1AqEvLpp59+8Oj+0dHRMl9IKZUSFy5ceOaZZ37nd75+9/ZdzuR0vOBcYGDg8czlU7u7u9a7Zbn15ptvmnw53N6ez5c+oFScjBcQ0XvbGLfM8/5Gn8LljXEhBCZASpklHWNqiooWkjOkQoiHELIs01rXdVOWJooi79BaG2kZKMIIkGFbNjAp182Jc26xaP1P6XKkrR1F0eZgkzHWOGutNaYOwdCozznHuSI2TYAglTp9emd//5D4TWVZdrtdKaXzkCSZsaYNUoKWrSmZsNZY68jZc7FYKKUinTDe+GCRo4p1CJ5MJ8C3HY73LUkT0XOQQjJriKbNpeRMcAiBCHFks0NntvfBGEP00qYxknHOOTrPlCJqWGslCUEpIaX0gGszd/LAVVqYyuhIYWhDtP7Xf/3zH//4x/+nv/W33vrOt7712hv/+B/9o1ios2dOn8ynwVvGBAvIOaQ6Ihcm78iWTQkhOGOBc6o22+KtBY9wdQEJmlUTOj8YDACAUtoiLQE5IAeGbpV4vlgsOG8N0wCAIj3JQYIL5T00TWOcVaKl9HpP5vJUY6OUggNzxtrGeHRJkgihmsaXZZ2maZJoIjviysw3TWOtNf0UreKyLMlaMc+t8yaKolO7p62tlYqMdxQlTyinc34xO4qiSEohpVwuFsBYmqboUEpphaXMlSiKEh1VUCVJYq0nOGPNDIBVMlLTNGZF/vLe07BLRa05DE3ctdY0+QshePRa60hFiEgoJ/XW628IIdAbES1s+1jyv4ZCOG8l+SF4H1o/aAK+ueAkc3mCL+YRqXEg53tkK7oluSJw3tYb9CO892zl/uxsG+LHVyNwKiCFUqsPEGjz0m+3Hk7Aip6G2FKq+Sr6zHsvFPl3R2tAjVBvKkVc8CGEU6dOxXE8Xy6LouCMUwwglcdc8cACcvQO4yRJu6kxhrgoJOcPiAy41lJKjR4irRd8OR6P0zgTnHvrSl8IIawxiAgBi7KMkyhOY1LzuOAhD3GsEQnGCqRkpRkMIE8zvb29LaWcTCas9c9BivPN85zUFZubm1LKJEmapqmbBgHA2jiOuRBVVQEQm1tQJAOu/F5JDKqUzvPce980tfc+zeI105YxprWI0+R0Em8aT4+afhHvPXFl6BDrdvpFUUwmE9rFaZqC95zz3d3dK1eu7B8d7u3tV1XVybobGxtUn1N7QiQeMnJdwZ0cAENwIbRjwva1BgwBOEeOLcbkPdZ17bBlpAohAFpcQIh22kcQ+WBjSOrpNfrPOZeahJsNYwzRO0TBVWDtsEdrLTQ1WY5aLWqduGoBxyd70kAfF4Bz4GEFIltLphyrz4ZMtgYX4CGskDIGInh04NZbj3NJsQ0t2ogooD3YKY2SMbZCTls5C7QucO1zWG+xJ0Bk+m6PWdWr3U2XqmrXGwAEFIwIXoTT/h+kBRprumk/TiPg2MmG5Wx2PBkVpu73upPxSeNs450J6L1xPpR15UIbLoWMS6miJPbeqqi1h2JMAJfz+WLv6GS5LPKyjNMIGTiPURQDV1VVr83ljPfWesYEE8IDQ+8Z4+gCcGmDVSrSWjlHXsDAGBdind/gyrqmLSClciv7EXqeq7YarbUCWF3XVOpzzokTQ5tohQA4a+1iseCck4rde08KDCoMdJuhBSvEnwnGWob+6v3Can6AiCA4x9/1hNmKuAAAROgmHQxfUew5MORsDYlyziVddi00zThZfiPnXJR14zEgcB8AodVAhBCKojh/4dR//1f/8iuvvP8nf/InX3nllT/7Z//s3/ybf/sz//tvRBEoIRljOomDdUVdrYn/IYRWD8qEEMp4A/+FeMlV4CGsfyMuJGNsczBMOtnh4eGKuP04R4oYM1mWIeJwOPz0pz/9+c9/3hjDeUz3Jl3Q1MWsQXxayZEkEydHKj0CFgE4I33ACuD6zxbzyodprcx+bDXJVybm6xWy2mIghAwBmJRsNTMYj6cAoJSKUql1fP/+/Xv37t2/f//k5GRra2dvb29vb4/gfuIXv/j+F9955x2yve12u9984xtkOh9FSW3rpilpLyuhILAQ4PDw8NGjRxSue3h4mCSJVOLS5aeSJLly5cpgMDg+PhRCPHhwj+QvP/dz/3p392yv17tz+651xjmntRyNjoUQ3W7/T//pP/2d73znm9/85lOXLxVF0Umz06dPj0ajXq9XlmVVVU1Tvf32d46OjqSUUreCZudcHMdkzb+zs3P//v3bt293u92XX3759OnTb7zxRqfT4Vx2Op2NjQElDM3n8x/6oR+K4/hb3/rWm29+g3N+8eIFADg6Ojw+PuKcP3hw/1/8i39xcnIyHA6Xy+VHPvKROE7ny8W1G9dv3Lhx7Z13i6KQUpOKSym1u7t76tQpUnQZY6bT6e7u7gsvvBDH8e3bt4nwR9kARKdwzp2Mjvf2H0VKU/FPbzPrJAxEWdZ0NTjnABjZcAdg3nMQzHsM4fG+Y8C897KTJVrrKNLoQ1WUdKWlaTqZTJb5OIqSbrfLuGu8r+u6qqsPffj9Gxsb169f1/F0NBrVtXHONdwQV242m62N25TizrnNne3paNztdqXUZV5IKdEHJ7gQLfogtaL08N6gN1vMNrc3syS11uZ5oZQanNrxvoUpjRmGEBprSRXovU+ydLFYKCWiWHDgzrmyLAUnKxLe7/e9d9ZarZnWcVGUi+UMvAaAQM5WUgqgu9DRXLooCudMK7dnLUlHScUEPVMgHjedU8YYyUWSJHVdhwCJVjQvGgwG1htEBAGuabwLgsuW7xCwKhtT1UVRcMYAuBatFi84jwhKaY9BiZgBAAv0yqWUDp2KlNRcCCyKEphTmgMoxBDHmiH3vm1O1nNaOq0kBwAUWsCKNUn/KY5j542U8kMf+Mj9B3cfPXqUpinYgNhaTxjbisLG47HSgjEWx5HQimpxrXWWpVLKeWMQUUohhDa2Bs7jWFtXPbp9zzsUgsexNnVNUQMh+NpUnDOu2Mb2EAC8a9PtheDOGwBnTN3vd/NleempK3GcfuvgUb/fj+N4uSgMCbfRCxXFsR4Me8vlgiHb2to4ORnPpjVDy6UOqxhWanj4Ku4vhOBcoAxxqpBMVTGpm7KUUbRqH1q6CrRSHSAbZXr1nPOqakiJQDZts9ns7Llzb7z66re//e2/8Bf+Qr/f/5X/+B9Ju4eIH/nu755MZz/0Qz9U19Uv/uIvhhAChmDteDymQ5+WmY6isLJoYIwpJpCjsU2WZWWZl8vF/+v//Y+uv3vjk7/0yx/64Ed/67d+6+DoaHt7+z/+h1995+0b4HlduYcPDhaLhTE2zuLe1qCqqkWZLxfFRExojDTo9afTKan26IHQh5/P57TAKMyBWMZZln3wgx98+eWXf/mXf/nnfu7nAMLFixfTNN3b21NKa603t4ZPPfXUeDw+ODgg7KAsiv5gMOx3ZUfNZrNev1cWNUUYP3r0qDGVSqIoEnEc1U3+/kvPL6t5VRWXN84mcbq3dzAYdg4PRkVR9Xq9umqI77u//wgRO52Ocw6Dv3Lpaggwnz+oqvLRo0pHMk3jwWCwXBZlWSoVee/r2gTnKmcYxzRNut2uaRawauGqqqZXyaQHAM4kcIYePWAURVk345xbk3uPLoQ0TdOUhQCtdJS1BRApTPkKZ+eAIQQKNmGSRZwxjs77siq4YFmWpWlMosuqqqx3DMRingMLRMIlXeSyyAUwJSUTzBoM6EIIwrOASvBICKGUTNNEKYHgrXNVXVCQS92sb3GXZRmiKqolFcRUTxjjhLB1PVFaRJGyNnLeMI7Aay6l9QsZ4tv39urSXL5yfjbJ79y5p7UOPvCVpoyBQvSIAhGtRW8rRAQhyZGGAyP8i8BuqUVVF/fu3Q0MaajufPXeF5759re/7b3f2NioK8NAHR2OkqRz986jNE21ypq6Ehy1jpraDjblnXs3IYhu1vMOrfXOhSRKbdNEMZdSCSFD8EBtSLBKRgG8MTUxXilkPM8Xy+U8TTuMseVy6Zwpi6W1TV3XtikZY865ujbIsFrmCIEEFtRx6Vj/pb/0lz71qU+99tprURRxJglMT5IUEQPgslgsilmSJJ1Our//6MKFC1mWHhztc86Bo639dDoFgIQycgM455QSy8Xiv/vv/oz3/hP/4p/VDWRZSppcYy0w5tHtHxw476US3UEGKnAFt2/fLqtccPWdb7+7nOVndi/0uz0l+endM++8c+3W7Rs6SpIkcR43+0MAMZ1OFovSO26tFUpnWc9a64L16H7/H/j4H/tjf+ydt95FxJ2dnbt3747HJ3EcB3T0+miXccaqqrx3795yttg43Xv2+aeTLM6rPEqjrJeNR1POWxmQ9q3Co5dEUkjOIcOoaVLvXV036IL3aGwJpet0Mq3jjc1eYA1iUF45G4SUQigIlp4tFbikrYmZomvXt97fIBjnOk5iRbhep99BsCHYNNNc0qndmc+WVVXrSDUlBf/G1P/buqnyAhE5gmT8/0fXnwZbll3ngdhaezrDHd/8cqisrMoagRpQICkSAmdKsrutsNUKtxSSGRTlDvmHrAhZosKttiPU0ZYcoYHRUkiyRKnl1mCrJUMSCbLZBAkSDWIggAJRhUKhppzHl/nGO55xT8s/1rk3ExT7RkVG5qt3p3P2Xnutb33r+xDJEiGi0phIPV+0UiTegff0wXtXP/bKi6+88trHPvax47PTJEl8CDzRVhTFvXsPQghSysykWmuiLEa/sTkmiKeTE29DYyshpdKQ9VIpZaAQgaxrfIO3b9+8du2aSVR/2Odt8u6772qdJDqxrW990No4GyQIQnlyeFTXNVEEgfv7e1LKZ5555tq160eHJwLUerw3gHbOLcqm9QHYSnE4ODk5It+NnW5sjEMI1rUdOmzr4XC4Mdo6OztbLBYhxNl04ZpgjNFCszIJccOLAhEGIBkEAKjE9Pt99uw2JmVL4aaxLPIeQoMolRLOWk4bjNEMqXM7NskMSkjT7NGjR21jhQBuwEQ2ElDKJAlKAB+V1CFEaz1J0FoHH6zlaXpZLKq810NQrq2lUgGCC5FnzK13nCXHGJVRkmQIIQKhkEBkbUfWAggsJBAAJHRstbiy2eEqC0gwo3k9MsxCPXmehxCIuva89z7tdYLIjGm64IhIS+29R6n6w8FXvvY7SqkrV6785m/+5nIx+9Vf/RUAGI8GxXwhAW1rpdFKIhJqo2KMVbMCNzECASIw0SxYt+55R6AYuuFTKcU6M1SJ6fV6rFMMKy4YPysGBjQpxs7aEVeSo0TEsksRBUglDWAMkUBITLTm7k5dt0IIohCjklIAoFRCy9S7UFcVACQmAxLexbZtcVX0x+jn8/nGxsZoNGrbenKy5NOB9SgQRVnUZ6fTXq8HEMqq7pALBGR6o6fKVkmeSCmdDT46AB62AwY0iT+289ba6ENZLln2jc/BdVm7RuqllLqTr1WRvJQoBEiJLJ/CrAKlVNN06g1CyeA6+xNE9DG2zlJg46NOJFcJyUsCgACi9/S4xpYdzssQAwqE0InwAoBUwrtO1mBFLBWdnC6RdxEwaikjaOdbRnC4wcMVO3M++Cby7VZCcNubiYS4gvaevBRrBA1Wk924HhWXUvIW+N7fSdNcSjmfz51zDM5yIQoIg8GA53Pny2WWZZ5nuYTIsmw6nyvRSRdG8oCmKAprGynleDxu26ZxrZbSGElEbd1Ya5vGNnVNMbZt200YNA0n2x1ipY1SPIfqIlCMXghYLBZSCa0MJ59SaCJCkFmeaY1NUxtjNjc3pNyu67qqqn6/71YkX8a5RsPh9vb2aDQ6nZww17K1dfAdFz5N083NTV5yg8GgLMvFYmESlWUpReVcIKIsy/M8G476eZ4vFjNW1SBmm2bZaGS0SoQQ1WxxenpaFAVLBLRtSxEZieNbVhQFEZnOliY0zm5ubk6nU3Zd01qXZdnv9wljluVcMnOFYr13ztnWxxjZ/TYGIBe7FkLHJhZESNAFuhBIPDEnwUIEa4fYEAJBSDJz+fKlEC68++67y+VSCL0uJ2P0hBAeO1JGIrKR07+uy7Kms63BMlrNZKwX5AoXDmw6S2ubvihQyfWC72j1QnKqyXtQILLQBGOCqzYPD/XTCqNUqygXAb6HffUEBNYp0uJKgmZ9FjyxfboXDCth9G6XoeRN5JyjEKWUEYiPZv2Ey+jveUf+C8OCeZ4/++yzs9lkY9ArJpOrN2986ge+zxEs6tJ7HwCXVWWMIR8DoU7SLMt4ClkoJZQCjFKpxbyYzWbex8l0Nl0sBar+cNQ6HwMgBk8g0BIhYLeqEaUxKYJIkgwAkLXwV3glDy9yB1oKjCsNekSMnfmeDyGkeuVgJBAjwhOdNtbEoJVCHfs6CKEAOt5e0zTsD1kUhfdeCAiuRRR8fPPrS9WxJjl/g0hSyvVYlU6S9V1b3VaMQAIAVwUaCOzkLFYPRr2UVDHGEFsUijnRYkVdX9+mGGMAEkJww0JKSSCTJAmSDWwUQQCBWZ4Twic++caf+dmf/cJvff7WrVtPP/10Wdbf/va3mV/sWqu17vf7YdW851CPQozHeZqm0+nU2e9xMvs9DylQa42imxJQSocQqqZOlUwpz/NcCJFlPdb5YathjHE42tjd2xaAX/3qV51zZ2dnW1tbIQT2GGMIizMHXoerc/Nx60UAOedGo9H3f//3X7t24+joSGnDX+rJdtHq78QcxA7Hx8dC2Ouv9mQ0iLwciSKCWr0UEXEpwVN0y6o8/e77g8FgsSgQpUQ17PdZi5UXYdu2d+7c41j6zW9+k0+0VBuWp2jKqmkaYcTDh4+Gw4EQIkvSeTNnwJAiTCaT8xfOfeITnxiPx0WxODw83N/fv3TpkrX2+eev3Lp169d+7ddDCK+99lov7//Wb35hNB72+/3ZbKa1lgo//vGXpcSdna2f/Mkfdy7cvHkzydJrN65Pzybb29vOOUQ6OjqaTCapSbTWLNqyZj1KhUVRfOtb3+JbEGO8efMmiyanaXrnzp3lcs7aHVmWbG9v1nVdFMXly5eXy+WHH3643qrnzp1j+uDR0VGSJA8fPvzsZz/79jvf3tnZKYrF0dHR9vb21s72YDDY2tp57733nnnmmZ2dnVSbqqo++OCDJEkmk4mU8pVXXtFa37x5M4TAu5KXfZ7nHORNavI8V0IyPcsYMxgMlVLVolr4AgD44KbVZLNAoUCRWA2X+FVzHSIRqfF4yPkoQVgsFnzCNU09HA6uPHe51+uxtVG/3z86OgLAH/j+H7x67cPpdHo2mUiFLAKrlGJJdedC0zQs+AWAk8l0vLl54dKFYl40TSWljL5Tf0cU3q9FgXtJls5mk9PTU9f6Zy8/kyTJ2dmZtS7Vpq5blrtlMFcnycHBQZIkzz//fJKlnhprm/n0VCnOtAghtm3LxhFKSSEky9Qmidne3iavGb+PAbiaXW0kEUKIoRvgWkci0fl7AEdeesJnAFciv0qpGLud430simK0MSYKNnhE673nQE+EEGm5XLZVo4QOIYToksyk2pDAfr8vpJYKKXjngiA0RrWt7fXyPE+JKEl0nqehzZ1zzB8JHquqjgGQhBCC87OmaViubv1phRCJ6kTfRexOYudbNmm8eeu6Umpvby8ET5Q2pWc6PZ8BsOJHEAXuVK8FDa21s9msrkrOybI8WRSEgrSRbduORqN+v59lWdu4crmcTqeLeQEAdV0lSZL30v39/RjjfLYkgsFgkCQGRaiqgiDGQE9duqCN5BBflqUxaYguOp/2etvb57d2NvNeure3W9f1cr5oW7tYFOfOnZvNZtb6daITAgF0ghgcXtu2sxhOkmRra2s2mz399DM3btwgIkQKocsz+BYz/SGsxK8B4Pz588tl+cYbb/zoj/7oL/zCL8QYNzY2jo6PgegXf/EX792799prr33j619vmmZyerqzt/fn//yfD5GI6B//43+k1krZSjVN8+6777LZaAhBIJPHu5Ctta7aSgixXM611gHg8PDwb/yNv/GTP/FT5aLs9Xr/4T/8e0T5a7/2uRBCkveDg/l8SQRCKAhw+fKzd+7cKctSAjbOl2U9my0Sbfi+r/fRWueEv1qMUWt9+/btpv7oueefr6rqZ3/2Z69evRqjT9P01VdfXS6XN27cQERt5Kc+9SnumN27d284HJZl+Z//iT+R5/lnP/tZ49h9dC6EFKDYU0IIESjEGAej/tnZ6fUbVzd2hsti4nx69+5dKZS1HiAmic6y3uaGJiJrG2dDmpq2tkXRIMiiKKbT+enpKQBwR5sbnknip5N5CKVAbVsHiEDArSNatda990VVJlptbW2F6FJtxGr2czabFnVV15UyChGNlkligqdUp0mSGp1Op/O6Zh3w4Fcbf32aImIEkquTldVd6qZBAbx45vMpR5LT01NEFMIIIQDRWjuZtEwe0VpLofRK0CqSstY656qqHPSTfr9flAtuLIXo+sNeno8mk8lisTCmydOMl/f+/r4x5s69W0KIoqhgldbP53MpZUb66OjIJLLXS/LeIMuS2Xxy6/ZHL7784uufeFmC+Se/8N8f3ramB/08p6Cs9ZGHGhGAlOSWWIgRoxZSSsldQD5muGghImstYLS2/e53v6O1fu75Z+fT45vRZ4m+e//Aex+DmEzmAk1dt7aN3lVSoRS6LOuqqkJ0qFFIXCxnk8kEolDKCKGYzuMdtJUnjNpIISQi9Xo9QsiybDI5vXf/zsbGxs7OdpYnu7u7i0WhteZoMJ1OleRxSEAqOH/VWqEE0zfOW0aXuK44Pj6+fv1aVVVMFlPScKxjcEdyJu3aui4XC9G27cnZcVIkTHscj8eujQcHB0pqvkSrYT7c2NycTCa3bt/Yv3A+SRhriEWxmCwma6rdvXv3vv8Hf2A8HvvYK8p5f9RfzpZHhyf37j6KDoI7fH92fTjCw9/4taKw3oHSYjgcOxdOjk7rqokxKmW0TozJtTEIKs0zgbVU4rvvvXPr1o00zd94/ZPnzp37whe+AACZ0f1BznU4hZgoBSEYY+q2Mj1FFI+Pj72323vb1nof/fmL55bLUkqVaAMAaZoURTE9ebi1tSPQLJezuilHo8Hu7q5zviiKqqoWi7lUEYWTGgeDvLU1VZ1+KJdwvnW0IqEg4nDYF0Is6yUAkCdvfSIMECqpCFiPVVVVpQ340NSThU7UYDAgwjRNB4NR27rGeM7k6roUBHE16Nq2zdHRYa/XS7KMG4fMzxWUoMRiWX339L3D40eAPutlgWg0HvzQpz5dlrVSajjcODw+q+s67w9U1AHkbDbZ2ByAEFVVhOiVlq+//mqM4uDgIITAuGee59Y1y9ni8PAhq+VQiBFBCHQuVNU8NalAI0AGT+RJGOVsWCwW1toAERXs7e2lvXQ6PTt3bjcEPzmbz2dTwXh3RJQixNi2i7zfA0FtW6/ZOi5YFzwRscRZliXb2+eJaGtn+9atW9OjmUhV9CSFijEGH5JUhxBkxxniapwYqfRSzOfztm21TnjjwEpqWa4mzJizAwBaarnSd1NKssfsWg2zrIo86/V6PdYxq+s6TdPxRj9EkDJvasvxEyJ575EgTfIQQllU586dG45HDx8+dC6EKFCIJO3F6GMMgFEIjOAQwXv2klJAyJgOKgq+a4Z1Sb+E6Iio+yGswDghBJvXW9skSXLlypWyLNmChvmzxig2O1o3QogoBJdlyf7++ZPDI3bFNEaWxfKHfuiHfubP/Jlbt249ePSQnJ3NZk/t7ncVe/S9fh5Z1yIEb20gghi0liFQCEHpjuIXnY/Ry5WOLQiMgXhGijEdPrLJOXYn44FNrsq4eucuDkt8xBgxEkjW/mUMiEIIzloOUSBVCE6CApQhOAZTkiRJtSGiyKwoabwPMcamaYUQxmgAqOuaWwhKC2stV9Yxeq0TY8zm5maMcTwen5ycsByHlJKFAgGgbFhgLQ3kOdHic7mf5XXbOOdQwmKxGA7HWiqtdetarmqIQnCxbR0iSglEyFML0CmlsJM2IVFcUZKVUkoYABYPZbVWw/S9GOPqOCPnW2s9ATHXm2/3+rhfXdLmSWggBs6sJK5cm8RK5kJKqQ0DO9hF2gjrBWmM4V4trBBAIgIIsbNmAUTomgpKrcoNXOdU3cJ4wr9arDoKvFCZXUgrPf24oubx3xFRSAHYKZDwdTNGj0YjKbVSamNj4+joiG2IhBDOuayXxxiPj4+n06lgU02lzp07xzqKi6LgKW8fLHaCxSVH4729Xe9Z0S4QEYWgjUnTYVOdLJdL53yUHb7zJBkWEWFlqMhDZePxWGvpg4sxJlmGEe7fP2hqb23o5YPNzU0falbljjEyKWRjY2MtiMHLgMuKGKMxZu/cOS0lF9vGGATJzDIAWC6XSZKwGWCWJ865rNdzTeTjQylhjA6eNXZy7z2/C1/bsiylsIhohNjc3NzZ2SGCk8nZYrFA6KCfLMvYRMe3dri5IaVs2/bmzetZ1uPPOZlMeCpRaoUSnHPeOQ6ni8UieOL12bZtFEKgCsFL6AbVgVYAGZGPj71b40rfHJhcvLLZDCEkqbY2PHr06Pj4WGvNVaTzFgDSJOmkFGKkENeUeSEII7ngmBWrtUZceRhw3YRdG4aeIDxiN00PQohEJt57YbpfMBm7DtB6rBuUBhCwArHjyh5z3WGCSEyzJYH8fzsbIYB1Nbd+3ychM96nXBA553hkgftAsbOLfDy4gKu5xhDC2h5NSqlNYowJFL23Simjk98HOwQIIawaisAU1GW1tK5JpKzb5vS0PTo9zfI8nJ5WjSXsPnYkyPuDPM99DLauF0XBzRjnHCsyzZeLprGt84P+CASGEFDIAB5B2LpOkyzv95wLJNFaL5RUUnM7xAeKMVrfpkkfALjcIEKtdQxOSilXMg7cvWZ2S9u2WiRiNUfi8LGdYHdlInG1tWZoOedYmtJaO5/Pk0T3+yzZ7M/t7UkpF4sFQ4FlUSulpAKmOfNrcujmkEUdqSV+z4ri2xdjwoKEK5fR9R1/cgFQp7kh1hQZDu/BR6UgAMUYAcX63aWUzpMUGmTXxGVTS+/rPM+vXr36F//iX/z2O28dn57Ml4vP/fqvX79+vT/see9ZbSmEgJEEgeiEBTw+YRXDgY6nYX7fh4AIKFj82jnH/YrlchkR9vb2tre39/bOffGLXzw9PWW+mpQySZKNjY22bdkLdDwes1dtCMiQMb8UU+jEytRKKR1sd44gkiTkN+LzdH0fn9w+6/RJCLF2sTOyU47mCLD+/TUYBTEK9jAQyPGB85PV4IjmtFChYDFSrfXJyclyuTx49JCb/cz9enD3HioJENefhEkhTdMQYZ7nHEtPT1uWQByNRkVRcKct72Xb29tpmp6cHO3u7p6dnf2Tf/JPsixJkiTPU+fcZDLJ8/zw8PDjH3vl05/+9P0H92azGZE3iZKgHz169O///b9nnY3T01Nmec7n8zRNj46OjDGpUS+//DIAbI43ZrPZ3YOHTAGOMZ6cnKDo2idXrlzx3j969IgJUjHG8XiTu4+np6fnzp174YUX3n777du3b+Z5f3d399KlSyGE69evN02zv7/f6/VOTk6MMTxt0Ov1Njc3P/WpTy2XSyHg8uXLu7u79+7ds017cHBgrR0MBiGE0/npdz94v67rXq8npTx//vyNGzcYtmbtDgb9kySRslMDZ5PJqqr4ZnXO1T547xV2swhdbpAldV2jZFG4bvBddjpjQEiIqGxLaZoChYi+sS1UlCQJzw9euHixqqrpbCakZsJmCOE3f+Nzdd328mHTWOeiBw0xM9rsbG0RuNlsIiRRDD74aH2a5K62Mk25VR4jjEYjRESSiKik9NYJEgLQNXY+n4fGCYU+Ol+Hk7PTPM0nk0lbtVLKwWBQFIuz2XRvb/eZZy82th6Mk36/VzXi7KxGYVrrAYSU0gersBsyaprWWm+MUUppbV566aXT45NbtyZE5EMgH4VKEHnbk5QIIANFlELpBLpShKQ2MUYhpPdeooielNDWW1b9DYGXezeEWldFjCnn0OBIRa2l8c7n/dR7XzVVW1QA4MkDQJ71ScvaxSRJACVX3UqxvA3kvVQnuigWwqJSKsnM3Xu3T09PgcTR5ChPe6PRptKirlprHcSY5z1EHsZ33nsi0ForoZxzzoW6aZlO28VrkGmWEYBtXFSB2zsPHx6AQJ2YGKMAJAIlBLmoJDpH9bRUSgitJIEijM6lWlOijVFJKpumUJoGo75SKHjEVdLp5ERJ4wJFkEomfBgwF+bw8NB7HwGstYtqev78+e3tTRusczYE19jCQ52L/NLzOycnZ85WyYD6Ot/e3hqNRkLAfHEaQ9O2rbW+bZxSajgY13XtW8+ag95baTSAbFunFCVJopRIkq4pHUI4Pj69cOHCP/tn//Rf/at/9U/+0T8ygwGtmtscwhhj6vf73JhlGThF+J1vvf3Kiy/XRfnpH/rUSx//2Oc///mT09O33357d3f3Z37mZ/6v/+V/+V/91b8aY7TW/rN/9s/+0H/yh7/xjW9863e/LtMUIBIFJUSMoV4u9vf360VROo8QlZQhBClEoBBc4LPGYIYBIfi/9/N/bzjY+Lm/9Jdn8+kf/xP/2cn0+Fvf+lZiZNM47vNrqYmCDdY27r1vfxcRDeouEEsKPtS+lZ1uppcSvbesVxZCMFJlWcY8EdtYieLhw4e/+qu/KlAmSTIYDJxzv/EbvwEAkbw2iog+97nPlUXd6/WEMgcHj/7gD//wH/5f/Sf/8B/+w/l8mVOGiAQhyzLvbV233oFSCUaoSvf+12+D8Ngmu3vF1k5/0Os/bI+9L5XURikE2VZ11OHo8IRrbyThWZg1xvsH95qm4c8cI6ZJ3+j+Yl5lWQ/j0jcNYgQfAVHqxNciy7LYaufKpip0qs7tj597/pksS+bzedsEKQ05vH3r3nLRKKHboq3mh3liklHfGLDWwlDoNMkG6db2+ObNm5PJXCmNiEigpE5MQoRt20otNQpEUkowFm+Mdm0FBP00b5pmNpkDmzl4CYgR2ZOETCIJI4roqVY6AlihhFJmvDkuFsvT0zMpZQyolCqKoq7bGtqiKIXAGIRvKXpCEsVi2dZ1b9Dvqd7DwweDwSAGRxGNli2XmSTybDCdTueLpdI4GPQWS7mzs7VYNk8//WwI+q3ffStRvWefff5P/ud/+t995rOnJ/PEZFIqY0Nds+klEQF1Gp6UJzkn/etcDaUAAGJeWAgxRCmlBBktXX3vng328KDZ2NhwlT5aLga9fqhjxJbxEQECgqCIGBURCWnOHtVCCEm9REUAYa1FQWiEMKiUct4rJQJQW9dN01y+fNmkyd27dxExWHF0cHZ2vNzc3BwPhtvDvG3bxeLUtzF6KdJUS9l4HtFFLZLMJEopFx0Ej4RKyP3dHURcLpef+cxnlFLD4dBaqwCd89F5RASlelkulGzbtixLINRKL2fOJuLKleclCu996Ze5yo1JQwgQo4uBKBAEnejf+uKvj0aDvXNbddu0ra+qdn46F6CzZIBRzxdzk2SHD84g4HR6Zl29v7/rXECP0cF8VpwczxKTNY00arS9qZbL0jnXlh5IuGC1SnkFOusIvPfeaI1eek0AeHJ69rA92dzYfnDvfyqLupzXg2GvaXy/r9qmKYpCCMiyzDmKSInO2rYNXi1nLgS/s52fPLoXYxQ7JpVpWZZ3H93LkpQ9K+q6Ho0uIOokG+dRA0CQJBQO0lwbIQQYYwRBmg76w15Z1oV2TdUEokA+gJCK6wfmFsXpdCqM0MYEiiRQJcaHqLUUmpxrpEEbShVFvbCf/OQnb9++fTo5qRu3f+Fcv5e2oZUpjYxpK3pw/0DJXOjMNk5rTQhSxijComjPjbaSNL374D6iDGggUgKGSOZGFPNGKiiXZyG4o4NHxXR5cnKqjRkOxwmYze2NQX/U1svT09NBbsB7o4QQsL23ub29vbGxEYFkHu/cubNolsPhkJCEDNvb2xcuXJjNFsdHJ1nWqeBR1AZVcEGa+OyVp33rP/romguWEBsVHYXxeLyxsWGSZFEURMF7L0wcbBqZxqZpVSJtG6wNQohMGfRxuawjAkvISWkEyOW84gnKqiqX88Xp8Umv1zs5PmyWVhsjQOg0iTEKEjKTMQInNgIUIoYYMEYeiqorH1luSEoBUqIKwVGIIYROjwIpRheCNVna7+fOt21bc0/a+5AkBgBaZxFxOBxydy3GKKRK85HWunEkhEi0RsSqqig4oRRRpBCFkPPppDfo/+Af/IEQwq3b14UUiK2SSqCXCom0995bD4/lswRb7QFA8MQ8qSzrsfYO/zMisGNzjFEJJWUiJUqQrKQZQUidvPjyxyeTyVe+8hWT5oDI08Rt20qFL7zwQlmW5WLpnEfAfi8b5f2pOosxmsxIJY3RRVGMR6O2rL741a9i8EqpzZ3NVAkX2gwsSrAheJQmSSaNiyhQGELQCqWQAEIC+uC9DdETIYDA0ca4qZrKVZo9GCECAoF3PhhM2qrMkhysN0nfQwCMjKzx902ShJUZAgS2QQMQRBEieBcx+oiolBIChNBMBtRaG6OYVRqJQIrgIyC2gQInSBF9iBS50Sj8yhZJa7YzknkupUzOzuYqEWkvjVEMfU8aoaVazAujdFs3SZJ87PkXb9+7ZZuKk7ratvx054IxWYwYY9RSU8AQwDWN9z7RMkkSCLGqKvbj6AQuVobYSikpVJaq+XyOQmjNNPygtU5SXbfOWt/v94UAIZDAO98AQJKKvNcPPjZNE3wDIDx4RASLClFIgYAgu/4EdqaUHjqLVEBEEuTJBxsQMQYAEkpKwdoF1CldELGyqGdp7BCC0IKRO+vaACSVbLlQB8iSLDUJ1/MsDQQACFKg6IbEiVha0IXAvaX1x8MVVVMJQSEoIbQSEUVHl4OAoDjP9z5SxEQl2shAlEjTlo0xPhuPevlw0M/LuuDlZBKRZzrL0tNTl6iN+XyOoW2Di9FrLRFpNOidTM7QU7AOEVtZKiGcDySwrWstpZYYhYoCEaUwKjXJzt62EGIymccAmen5jivnUEShAZFi00qt5sWMlNjb38dctyH0h+PoQ1s2vrXehkRpQYDkKLQqS0gJafTRwwezyUSKC5sbl4xUZVnN6qnzHgmlEJEIBZV1LVGNtrcRcWO0yUbfOzs7SZ4dHj48Oj0KEPo239o+3x/kx8fHEKM2oI1qmqa1MZL23p9NqvF4OBgMLl26hIj7+/vXr147OjpSOQHAaTEbDAY6zbXUuVM+msVsoZSRUlZ1EWPkqBhj6Jik2M6WJxJxODIxRqO8Vr22cYtJXUxL5wIiac3C9CAVSj9MUUQKFANGAkkokAL4ELp8SQuJ6F1NFIUEZ3MAkKC89yAxEgRJIVrrG9fQYlaONrOLly/XdR2jRJRnh0vvffSirVFJSSKConW3wxjtvS/LOkanlAqEqcYQnABhkhQEhtDN70uQChXTeozufGUR0ccglISu0SLIUxTRe0+etNCBwooME1f7jhApRh8BQTAxP0gphRTOtdSZy7FeAcQYYsfA7TjdrIcbIxhlutclAkJWyo4EEFpW740RCU0gQkCpDBBSlK2zUkpPTkoJKKVJpDGeKEZoQwQJWnwPjfoxdGjQW0cYRUJRy9afScIkjwIwHeNkMnvzg7efffo5Mx5XEyQXpezUThuqF9PF/TsPQxOEUPv7+9basmqCgDRPdi/uP3z40Fae0EOQAmX0ToMQQpKUClVTOaV1miVCOyISSuX9LAJJqZ1rtcqFlCEEbYyMwIMIgNH6zsxgjRUIwNxkRmjolHwjRpJAiBiDRyG0UmlinHNt6yhC6LQj/LKqsyypyqqua4nogz06fiSRUKlisez1etGH+XTGgJdSJoQI1OGwSsiIsapKNhnLsgwZspRipS5NQFEJJBTcURVCAmCAxy5WAKCMAaAQggTJoK1YDXnbzo+UEFESAAEK1FIhcsIQibSQRqgYghcKpTRSG2oFkDw9Ovs3/8P/UFbTc+fOffOb3/jyl746Gm8i2DU4CxBd9EIIoBBC0FohQghtjJYoRIxCI1v1/McPVDqgksiyyy0SGa1jpBCoLuplslzOlk3ZJEobqaJ10miB6Kw9enTctq1rPTdVAcBaGwK1rVsRKKVznYod0Qpw7zjdyO9YVc17733AIDKykKSQ1lppug4EKwghihg9QGR9UT771Mr1ClYtLim7pgURBSCJoFbj4+uGLkDXZiAiDzEC6cREYvnfFiKcnVV8ykspleIFoFAgefIUPYGRyhMoEcYbm6gkcwUWi4XUqmkanZh+v89jrGwq1rbtYnHLWxd9mE8Xo9Gore14PEYSWpp7d+7apn399dd3drffe++9+/fvcgv25OSsKIq7d+8bYyBiv9+31iLJRGdb+1v7+/ta65deejFN04cPH77z3oe9Xv4TP/ETvV7v4cOHDx48uH37dlEUr7zy8aeeeurdd9+zbXS28t6/8MILL7300t27dx89ONgcbdZ1e/Xq9eeee4EInn322Zeef+Hhw4fXP7o2PZv0h/0f/P4fqNoGkbIsm0xm8/mcWws7W9vbm1tPXbh4cHDw7jvfZU1g5mXfvn2bewzkw+Zo7GJAxLOzMxe8McakSaAotSKEwWhIIS4WS9aSsrZ1rUVERAGAdd1UVc0dnaSnR6M+ivFkMqlbJ3XvledftbZZnpbHp0dOtN5HqrDf72uphNFZkyhamWms7nc3ktC27Ww2++ijj/I8V8pMzybMZwzOJUlS1k0IgRnKxijnXJoZIQwbAM4XM2USdleIpLz3kSjLMiZlcNxXXW9ce+/Zk1oI0RsMskFGRCcnh0opa9v5fI6IGvXJ5ARXUxtPPX1pNpvcuXNnY3OU9wZEtLGx4b1FxKauy7IFAKW8aylJkjTNOQ9zziPi2dk0xpimmdbUVg2PDfKH4XQQOv5/YOWa+MQkjhAihsjcXniiWbr+YETEjSYWDmPWIbfT67oGAP6T47hSamtrK1BcLpdcG7TWAlCaGZQyUmya5mOvfOzOnTvvvvvOeDyGSIeHh9wZ29zcFiBOT0+DDQgSAI1KWE8wrtyBeTN7FxGk9ZHl2HiXMgHq9HSCiFtbGyHgo0ePkiRxznsfeDgIOKWQkEi9EhJhg1QEkHXbyIBKqfFokyDoxCRJUjZlrzdQrN+BEFxcLpdV2URPACJJTVVVAkWSJFKoumrrpuTS0BW2rmsm80op1tm8c85THIwHtraIuLmxtbGxcf/+ATeU6rINDlAAIm5v77bNyXy+DNZxb401T5jvw/xBnkBhWkFd10LgeDz+t//23zrnVJLw27FKHTd7QwhJkpRlefny5bIsDw8P0zR96bnnHx4c9oeDK1eu3LhxY7y1+TM/8zMfXb36z/+7/+769evb29s7OzuDweCP//E//tM//dOf/exnT04njx4ejXd2QgjL6Uwq4ZpGaF3W9dHJCSrJ57r3jjsxLGVoreciioj+5E//H774xS/+P/7aX0vT9A//4T/0z//7//6jjz7y3rdtbYyhCAKJG31PrkNEGWMAQCEkz42u9x13ONfdRS7Ume4hpQQpWFxfCNG0NcYnmCYrn+sQwmAwyPo9vj4xxg8//PDk5ERqba1PkgSI2sa1to4BlDbet1LKLFf9/nA2Pw0hlGVd1cumaQ4eHHoXtzY2vAPvW2eDlJrNbxKdam28984GT75tndbJcNjVVMz3QTbnNQpaIEFSqOBcaGuQ0nnhg9WpvPTyC5cuXdjeGX/7nW/xpptNJ1U1Ay+EEHmeUtdgIBt8M5/zCd00NYsSNk2DkVbnK3LfzzknhOISd1WrKyGgaZqmqZU03E6kiFmWeda6Iw8Aqda9fq/fzwFDv5/rRFV10Sk5kqiqboibvV+VUozdAEYiklInSeK9XSyskMDScoEiswjZCff11z7GAm1l1RweHtnW8ymLjggJUbatPT4+1VoKPJBSG51/5Su/8xu//j9fPP/Mj/3YT0zOll/6wlekMKwFQR17ERBRoGY+uHjCjPRxerQKkusVxU/XQiMBC78yosQZA/+alFKsBPsQUSrF4m6rnZvzcmXicOdcZOsQAtc5x8fH480Na61EwVR3RDGfz6PzO9t73fxvCFk+4NYRq5Hyh/Tee+9JkFJqMBhorVjbpCzLVbe8tNY2scaV/D0rPyZZymRk5pgQkdZ6NplycjOfTPl00Fp3g3XO1U01TsdbW1u9Xm82m4QQ8l4/z/vee1tH773WCYKUKBaL5bKYx2jTLDk+PjbGKGWsLaSUw2EuUJkEkiTTWuf9XlPVh4fHoXZoFFVLk+S8I7I86aVZXddA1LZeSmmUHvZzJURdu+DaLOeY409OTlynWR+KouDtz3hTcIEMGJNev3bTGJOk6eHhcYyx3xsGF88mZ6ARhRgMBrPZLITOcVVK2VTVolz0+3maDfM87fV60fmzs6kQ4vnnX7x146BYLikCCumtx0hSyhB4gtsIrXywTdMwQ81a661TWjK/JjgfRTTG9Pv9/+0f/aP/n3/9r+/dvO+Gdm9vzwUro4S6Do2TidKpiiG0oUmz1HvPE3yCAKRczKYueFvVSZpCCDpLW9cQhcGgNxj2iLzzbSQCjI8eHUopEeV8vtRaOxuWi3J3azPLshj9cy88N59PhZI61b1ez/uY5/mrr776/HPPffD+R2dnZ2w2onwSAV966SVjzNnZGbfrhr0RF2NSwMbGhvd+99xuVVWLxeK1V19DxPl8zlaWiCSl4rWttU7T3PtoG9fUbVFUSZKFxp6cnLS2Fko5B1LK1jWNpTQ1Wus8T/PeFoV4dnZyfHQCABJY7EJDZDKLtN4LoSSKGH0IXhq9ubFNECeTCSC5zjILpFJCCJbLb9tWCGjbuLm9pZRo29ZkKe+a4XDI02MAIKVUSgolc9GLMTJtjU8ZRAwxOt8iyz543w36gCQiho+JaDgcPvXUU9/97nfv37/P6TJXUKEble2GQHn2dY2yrblL/HDOCaFXcSpKKdPVhL5tWv48EjCEjv3UNM0v//Ivc+bmnHvuuedCCIeHhy+8+NzXvva1LMvKsqza5vze/v7+/rVrH129dU0IBVL0ej2lkzRNe2n2c/+XvxR9ePXjH2uq8ubVj77vlVeCtUYlVqBtW52m1gYUcjjoHU+miBIQQQiKMXivUMQYIxBKka3sfNffDllWUwiTaERkq4O6rp333scoKcsyR4FWmmBSSiGQaUG4mosnIqYErvCXuKJ0Pfa8imutZ+iYiVyBM8OO7yZnhs53r6gUexZpHhrFlTJjkiSj0cbrr79x6/ptJc3qVspLly6VTcG0IBus1joQG1sJ7z1nyzxIyw0MAOGcm51NuiLZeWvdupRdY1IePSeQ0milFFHUWmd5IoRwheOSByB67wGJeAxcdhaOfKGYKEdERMCSpYCPrcZiDGLl+7I+UOJKYJeIWHMZAHClksxsr1Vu9hiT8ivRZETUuktprLV5mq6ltGHFP13T7ta8S75WtJL5Xq98KWWMFEKE1YsTCexaMkzTk2tSMyICRh9jCMFam6YmInQTP4h8JrL0U1mWx8cnfGoLJadnk4tPP621rGsnRHLhwoU8z4uiUKPOhp3p+Upq17myKxc8G00rIUoXymWllNrf3z87ndq2cZGSRCOS995amyR6Y2vTeh8w6jzd3NxsXDObTL11O1tbZCKvBILovW9sm2bZoJd4607KI28tc6+KolBKLZbL1tq4IvZaN+31etbZLFFnZ2fOOa11ludshsxLIk1TfoXj42PmznM2wjmhMYZTXz731ojJ7du3l8vl7u4uc7ZAxOVyeXJytrezt7W1ZXQqUZVl7ZwjgiRJdnd3WXq4qqrhcGh9vb25w4JgIQBFZuIDUIwUVefnEZumAiQlE0suBBshStVpP8QYmXcVIwkhKQIBAuq2raRCgmCtlV3A1IAihDjeGEk9enR88MLLly9ePO+9z/N0c3P77t27nOq0tuZ97b1HKaRUWirAmJjMOed9ZOUEANvGCABS6AgEkWg1PbzeofxlmY7Dr7naUxGgaxrBSn8gPta1wHV1g4hraTv+eVj5kq2prJzgsVPletsS0SoD7PCvFQWH/IrRrJRKTNY6y4Ow3nst5OZ4g4icb0NhAwt0CtRaS2GcbbqJHyHatlbQ/r7o4YWL+73Fdt02UrZbW2MlwDkrogjeNzYGj7dvHS2mzfnz5wUJASS19L6Nwd17dM81Lssyh5gnvRi9MiIjgwJi9MtiBhIQqXWtUQaBhsMhorQutK0VQgipuI0BIGIMidaIkiKaRAshnQ28qhGRJWKISOlEEhF1zrdKKcZEuEhsQwCAGAlW7hd8U8qqytKUCfWAyILyVVVJkyileP4GUTjvuDZXSl2/fh1XFsEhhKqps7THZ26SaiFE8IFvH6fZ4bFMEL/p9zjRUTeS1S2Y9fLoODHISi+utQ1PJ9DKDRJWkyXM4HbOpSZB7EoSpZRJFFM+hVAA1DQNO1I0TbO5uZnnpmka56NWWZZlvXzAHFVmp63D9Rp+BQBBQAQUCYAi/P5WgesaKs/TLNtomoYHLplqenx83DTNo0eP+JTXWgul8jwvy3I6naZpmuc5e6LyeZQkyWg04qkFpn7LFeAbVzKeTPZXKIiIu5u8R1jJN0kSG3xVVTw1tb68IcROExLQE62BZo6oHAPZDYv5yxKFoMfvS0+wpEOnRi1o5QsVOsfpuAYoHucuEWL0MUaVmHG/v7W1tVgsXnjhhSvPXHjvvfc+vHbVOZdlmTHaenf+/HkO2kKI4+PDGzeuDYdDRNRaa2maptna2trb25NSHh8fc2LD3+6tb7/d7/fZjDqudN55kadp2lQtSyFpbZ5++ukY47Vr14qimE4n+/v7X/3qV4uiaJrqzTff3N7e3traunLlCoPdu7u7H3zwwXw+v3jxohBiNBpdunSpLMsHDx7EGLe3t/NB/9y5c/v7+++++93T09ObQh4eHm5tbSkhLzx1AQDquj48PGZjMyJim8Hf+Z3f4avHS6WqqoODAynl1tZWmqbnz5/XWt8WcjabaaOVUv1+HwQWRcEJxosvvtjr9QDg9PikrhteumKl7h1jNxg0nU4ZYNzY2BBCNLXlxMkYs7+///Dhg8V05pzDFPM8HybjEEKaplEEKaViL9osyyRJhjK5d8F5w+bmppS61+st5wv241ZCSMHjSFSx1ntErRXr8nAV4FxwoQ6e+K4456QQ4/GYB9Y4pwlBaK0RkBWQ+YvxrT2bTghhc3PMQroPHjzQWmut5vO5ta6si8PDh0mqNzZHTds674UQ3rXb29tKifv371+4cK5tXVVVJlF5nmdZ1raOR7ru379vrR0Oxr3eoCjK0EagGAJZ66VUfK6thgEjInIzZLFYJEnCQuDedrvoyVBLK2EmRAyhi560Un3izaNX3g68XrXWeZ7Xda2M5n0YghRCbGxsDIeDZbVcFvPlovzOO+8i4mAwMiq5f/9ACJEkWZqmg94gBOr3h65xDw8OiSBgAAkMgTFdn61jpEyklME5AAzOCaXYmmalbxVOTydKqfligYiDfl8pobUKQRORFCJGr1ONHlWi2rYB67MsE7pz6PbeRwcxxrqxaWZ6vcHJ0VlvkDMkxwg+UNBGexd9aJPEcD+fXUQRsWxqIQAxaZr29HTS7+dKKaVkvzdUSk1nZ5wC9vv9/f191kg5OnrkXAwBJAilJYKM3heziogUCpUkvIBDCCRwLVGkta7rWqwsTXq93uuvv57n+T/4B/9gOBzyCBWXmn/sj/2x999//4MPPuDnBu+Hw+F//V//17/927/99a9//Y033vi7f+/PsKD+z//d//ab3/zmo0eP3nv//aTX897/yI/8yF//63/9b/7Nv/nzP//zvV7v05/+9Fe/+Y3Lzz5z/cZVa602BhF/6n/zU9/8xptExCbRfB5IJcuqMsY42yJinmeLhXfef+ITn/jUp36oKIr/6Vd+5e///b//a7/2P7311ltrOs+q0Poev5rVjAk+WdWs1iqCIIyPR8yIqPUu1ISRApDQj5UEu852R30SQggfmOkqgsCqbWrb8ja5efNmnufPPffc2dmZbd14NAD0ZbkEIGFEa0sguHDxaR5LfP/92dbu1mIxf/jo4P0PHmzsmq2tbdfieLxZVc307BFAu7GxZZTmbWKMOT4+tdYulyUisWKMlJIoWNvEyOYGivrZU089jYgnJ6dE1NSWj9WXnrvy4ovP37t/Z3Lt+PDRcZZl3tGjR0e29Uol0UaeLQrBJQnToHye51KKEAJ7uSoUeZ7zagcigYL9SJUiKSVFjBC9j84tAWLbtkLCcDj0PpRlaa1lcbwAjgUoh8Mho9K9frZYLKxvebCAiLTWRVFNp1OuM7nbgSImqdKRdRuD91ZpoZRKEi0lKqObpmYOvpSbVVXdP3iAKLVKmsbyxKWUej5fAsQk1RBRommq1ioM4ezpp5/e2tyfzRaZgbff+ujbb320Md7lRJMtqldjrRIACAIgCOwm6Xhbrcvd9XKilfE3/zPVqQTkEEdE3jq1cjp+MtvgcGqM0Trjny8WizWoEWNsGjsYDPb29tq2vXnrel03/X5fKRWc39/dq6rq5Pg4SdMYg5Ty9PSUcfZLly4dHR3Vdc3jsURRiK4y5DELwKiTzgO2bdt+Px+NRt5Pp9NpCHGN7HTfkeeOvWN8H1YN+dlsdnZyiohtVeV5TwjRtnWMYLLUYGcN9+jwoGlskiSIEhHm08VgMKAArAXvnFPKpGm+tbGNIua5KetCaVwjO1qhMalAJUwYj8fO+aqqLj//zAsvPV8UFRGdnU5PT06Ws/lgPErzNMS4ubNFRCDQe5+lOaJEEqPRxtwkJycnw+HQ2qbimONarTvF5NYFAJCASinvo/feNlaA8NYzADHsiSztu6aDeChAcLGsq36/n6apD6Hf7+d5igqUUqPRqCzLclGenp5Kqbe3p961PH2vlU5N0rYtBJASsyw3xrShTXVqkqTX6znnEm2g35E0kaIX2LbRGDMaDL70pS/dvn0bEPq9XpIk5awIGIK3Ht2sXMgEo3NIVDuHKDEQIkqQCqEpKwDoZWkIQQI1biGl7OX55WcvVVUxnzchgjE6hKBkSkSu9QCiKhZt21KEyckpUcjz/Pate9Y1Tz/zNHn68IPrLPib5/n+/jkAfPrpywcHB9sb28tJ85233trb33/9jU+8++67Ibjt7W1E6vf7ra0BgBAa2+b9zPrWO2LR2+Pj4xBC01TMBUbEXq+nlKrrVkrpo1Na7u5uI8rUJCpRDHxMJhPnfAQKzjlXK6XG40v9Qa+tqyQ5DwBlWU4mc4UiTVMeDFrpYZDQGiSESOT9fDGLRCHGEKPSQghhbcsmJ661K25L7KpxnfT7fRLogw2BF5FgJwAAsLblwoOIOB6y8xg9FjQE3ozOOWeDwNDVJEIIIbIsOzw8rNuGY07aTQjxpGpXeCABrjhltNI6W4cUCYgo2IxIa22bKsbI7UOlVJA+hCBIxhiFAEThrFNKt9YTiO2d7bqub9+5+Uf+yB/5P/4XP/ud73znS1/60re+9a29vb3XXnvt0oWLt2/fXtTlxsYGkjDGVE3NHdamabRUSd67fvW6lvLjL78CEY+Ojo8fHe6MUiFVjKCUCgQYKVWSgOV31xWgjxGEEFprCxBCaOruqI3MR0KMMZok48HGtm2lZAUqGyXlec7ZJgco7z3bSK5jNXVTyRRjRMmOSVEIVuqkGIK1lhlJXGCsK/M1RsMNgq6el0DUla+s5FjXdSTfKeCRt9ZCiBLk4eHhYrFgFG88Hvd6vfl8/txzz6VpiojVpIKVsmQHKxCgkoJEMWetTyGAaluz1ygvA6BurfDt5kxba+VdSPKuY8r4AsfqRJtAnSxsCJ6IuAOEiOzwzNmmALlcLkMIJjUhBMDOXilGTwQhED0xZc+aU+tkK8YosCNthfgk4NtJBvHo5e+pt7mfDSDWHVZckV2EEEJIxM4P8/fUHXytwsr6iQ9luXYraZ2UMhDVrSPoAOsYo0nUGp0XQgDrbiIKpVBJIQRHgLqul+Xiwf1Ho3H/wsWLomkAkXWKvfcXnnrq46987ODgoKpL/jx5niaJ5q7AcrlcLhvGbWMgBJElSbNctHUrhOiluZRcysYYfZIkRBids9bG6NPM9Pv9Xi+L0UOknb3dJM98sFVRRO/Bh7aoUmP2d/eOj4+bxj773JUQIyJqo+fzOUOZAGDShK8k97kHg0HbtoEiRmyaxlrbzwfMrmitdd4bYxblgq8ql8BIxEKWRDSfz/u94XA49G5WFBPO3nd2dobDITe/uY+ytbU1GAyOj48RcWtr6/T0lDUnvfdKmizLmqb7eFKK6XQCKwWYk5MTTqtY2WM0GoUQo/XeRSHESm3cEiGAQhDOIqADdBBjCLhKqzCGoJSOMbJyLkVyLqRpbq0l0Q5HPedcolbm0s5vbV2SBnSKW1sbw1H/5OQkkm/aAtDzxhJCWN8mmYFIUqIxJssyXC3C4bAPIMqyrpaFF1FKSQgrLsJjydd1RbyuVvgEQVwJgEAnfcMbOT6haPG4HmE/EezCO656Y+uAvx4Mz7JsRTJ9bCK3gibX6tXwe/6v5nOBImfRduVJsDEeLpfLaFsiit7FEIjIBq+UwhW3QKPI0/Q/hg4B4MK5ra3diw8e3s/zLEY3L6pEGaWyovGLedm0sdfrL4v66rWbidbbO2Nj1FOXzs+nZ+cu7oyHY9/Es5Opb73QkQQqQA/BeteGdntnpxn0mqJdzEqphVSopAoU0QJ0fuM5AJS1FUIanVFEabQQkqLQWiFyl46lZrCua5Nw1t3dIMma4I/BfXqic9BZ5/HqbTuF6Md9OKWUVGrdqoEQ+VkMASFBCIE7N8poBnYBQCqeyInBda/MeBYTwmglnoDIjWe/rjX4tq5DHK00N/gpEoV7QiCl+7VVFJUrdV0AQClgZeA3Go2kwpOTk9WkVBZ8MHnWywezWcmHoFJKCgwR1ut5XRnxYyX0JAStWyaSo98aO/o9D++8UsoYY0wKAEyO4fDChzJfEz6LjTFJknjbDfGcO3eOiGaz2Trp2tnZefrppx89egQr2ev1kcRvt/60QBBj7PV67L2xmEyEMVmWDYfDyXzGb6dXuiWdrRGRtTYArtlHDJ0BACsi8Cdc77UQOoNc+L39b6JuOqGbaBBCsBr4enevtzxXlK13IMX58+cvXrwYQtjZ2dna6J1Mzl577bVPfvKTX//61+q6fuW1V1944YX333+/KBaTyeTy5cucnZ6dnT18+LCNFhHPnTu3sbHx4MEDrjqJaGNj49HRYVEUfDZx1sq3e29vj9Hzfj5gNGkwGNy9e+fGjRtZlo3H4/l8fnR0tFgs+Nw5OTm5du3axYsXv+/7vo9v2XK5TNP005/+NKO3SqkPPviANV25aN3Y3hJCHB0d3blz59atW+TDM888c+XKletXr927d+/DDz8cb20CwGw229jY4It29+7dqqpCCOyaSERsabu3t7e7uzudTj/66KPNzc3t7e0kSaaLudb6xRdfLKry5s2b1tqLFy9ubm6WZcktc+c6RIJPz62tLTYDPDs7494zZyksP1WWZZaktmm/8pWvxOh9y9w4maZpXMa2bW1dB/RZVal1HlnWZVEUWmulOtUerfV4PJ7NFgcHB6z9ioiJTrj1UdfzwXCwu7tb11WMsW1bay33MaSUrfUU216v570NIXafDMm5rkvmHFOqUSmBCEqKXq/HY4BbW+kaptna2VyWRdu25Kk/7OV5Phz1k0SDIJNqwhicl0KkaaqU4CvFi8naZjgcZmmvqqqiqGKM3gdrrUAVArWtVdL0eoO2dW3bxsDEza67gthle1rL7e1tWGETbdtGH7TWvBufzPmeCHm0Pj5xJaO27uUqpZy1aZatwXd2jSMirUSWZbPJtCiWm5ubWdrz5WIxW3rvAcFa1+8P2rqp6yYx+Wi0kaZpXbVNVZVFvVgsXbAEBiHEsDraBerEQFyNKlgrtN7Y2HDOtbZeHeoJo5MhUK+XoxDKoFQi1xlGWttn+cKF4APFJNVpL4kxLqtl69umacgqY0xVF1mW5YOe97YoCstu1IjcEiQibaRC0TQWQB4dHe/s7IzH4yRJ6oODECjPswsXLtRNWVUVy81VVXXp0qUkSU5np888+3SMsSyXeZ6f29v/A3/wB66+f+3w4TQAACFGMiZrGiuEEICBPAnk3DmuMhu+QbxDeCf0+/0QwjvvvJMkWdu6PM+ttQDeu/ClL32FiH76p3/mnXfeeeett/LB4Ntvv/O1r33jjTe+71//63/zj3/hFxbL5Z/+0z/9+iff4MBx9dq1ixcvPnr0yHtfFMVf/st/+WMvvzydTn/1V391OBxubW39uT/3527duPnut78N0UmT/MW/+Je++NoXf/5v/q3heKyUEkq64G1rub+6v78/n8/7w8GV5164fv36rVu3vv3tb//cz/1cv9//3Oc+d/36dbVy1GWiFoXHHs2I3Phlbvjahj4SIXPGEaNzVgiBUmhuRAMwsEgCjTR8chBxuhCJIFAgIkGCInKFvzbQkFLyjivL8qtf/epP/dRP/ak/9ad+4/NfzPN0WcySJNkcbUhFZ2fHbevygcp60vri/FN79x7cDyG0FaR9laXjxbwpi+rKsx+z7dFyWSOJ1NgyNkmiWahoa2P74OAACXi21HvLzG9jjDIyxpj10v3ze1mWlstqf3+HiA4PD+umUEodPLxtXfHgwQNGHIqiPDubKWnY7iOS10YSBGXUslpqKbXRPO2xbqhmSda2VqCiGLi+CyHGGInaGKUPxFVcjJGtKTFQWdRl0UmpSvankpzcx7IsjVFNUyWpPjo6IQrFokQp+Ot4H5Eg+qCUTBLDxBYpZZYnZVmWZRsDRIIsG+nESC110N5zXbfkKZMHD5aMS1rrbRuip7N2Qjxbhqau7HDUNyZt23o6WXp399LFvU/9gR8py/b8/rO//cWvnjw4How3SJFzgdsYiCjlY+vRdQK3Lp6fDIPrhGAdDyFE/4Rs37qKwJVp1bqcQEQIUecpHz0xRuZ653nOTLfZbMEqVyGEEIL3YTQaKyURcTqdCqlYvJUTqcV87px7443vA4B7t+5EIAodQNa1A7tJ8xQkTKfTEDzTUc+dO5ckCZ9Z6zAOANJoQcSNxhWXp9MthUgxxo2Nje1nn71x9RoJBIC2daxvUFX1zg5KKfd29q5fv3bx4sWNrc233367bV2/30+0OWucEAIB8rTnfRyNepPJ2cnJo5297byXLZdLINzY2MiynndxXp+YVEegxjbHp4fPX3leaIEorW2WhZF6I0t7w8EghCCkZGJaVVWL2cK72Ov1tNBEqJSqqop92xCxbeter5f2ciKaT+ZV2/AMm5QYiKTUVdWJw0IUi1nZ1K0QxkjlnGtbW9enQogYqG1sWRVC4WuvvTIY5tPFtKqaycmEiAaD0WQy+eijj6plMxwOsiwjQgo0GG4u5kXbtiCFyQ1YYBRgOBz2ej3v/WI+U0JKiULoqqreeOONl1988ctf/vLnP//5pnS9jVRKee/OHRssYRxtjjDPk8ycnJxRYSVgkFAsllobGaUQYG0QiACRAlAITdNsnBvs7Ow8PHh07cb7o9GGSfVsVgeK0ZNSxrYOhUrT1OhkeyspisK2rVJJ09hbt+4YowhEv5+fHB+3bZskWbU8u3f7/s7OzrA33N3aPTudLaeVNsnRo8N38TsoIU1TY9RoYxhjNJna2dmRUp5Nz0BAb9B7fmOUpIaxZk7W29bFaLkPyrl+27bT6ZyIsiTXWjtrNjZHW9sbAACC1oz7wbA/GAyQJ+Zci8QzQNsbG9ssap9RFgNUVbWczYnQ+jZJEhdsPxsmieH1cP36deeCUgoVBueaxguhUIpAUeuuq9224CmaRHHLdsVj4rAQq6bmYoM3flfRIfKk3soySClUCCEGC0IopdZOA1VVcQRYF5lMTAMQACtMuStbRIyP0bd1RHKuTdM00QlRqMvy9ddfvXjx4m/91m+1bSugo1ZxScMCxVJKdkThUoFjy927d4uieOutt9a8gel0euPGjXKxHIyGAqRU8tGjR6+++up4PH77rXfK5VIIUS6WeZY9/dQlLcV0vsjy4enko43+bp73F8VS6qRtbFFXSitA8N6TAClloNA01sUgpVakWh8iK34LgUJgBD5/hX48peS9Z2lIoZAAmqZR0qzqOmLYmp5w7noyVnNM7mxdvScK0Hk9uXVayy5V2HFmHSt9xxX3mYfluRiLkbhJwCG6bVsoQWvdONvUs4MHj/I0k1KV5Ywx8UDx3sFdIprP5ypRAOC8E0Kw3KGUOoZYucp7nyWpMp1LFU++h+DXVesqz3nMwuZkO8bYyRSIjnhlTGptQyEKpRAVEXEM5FWa57mSmqnEPeg3VW1rBwBEIaIUWkBU0XkAYEdBXNE2Od+WQnfwDXYQcAgBVyrbfA0j27etLv46IxUrJU0mTzE5bg0fa60p+OBcfKJPQyt2+ZMnLzwh9xFjDEDeuu5IXZ1fuuush+5aIRih+G5qI5XW/BZlWRJCv9+/cHF/MBiweV2SJLC3NxgMBoOBFOKdd99eLBYh+BB9VZcI3SRQkmQ7OzuswGuMaWubprlAI6UeDEZGKmPSuqwWi4LnvinyiSOllGna29reUEa1be2j8xQNRWhrRNRSaRDgg60bCHFnZ0crtViWeT9TxvR6g0cH913bCkQhBK/Jk7NjKXTrLACUdcOKQ87Zqqq01kWxSJJEGdm2rfPgoqMn2O4c4rjw5qWilOJrvpgXiHjxqfMAcHJyslpFtm3r5XL51IWLzFY5m531+0PepPzWINB72zQtZ/I8xaK1nExO67rp9QZSSq1NYnIgSREDkYtNCEFQZ5uplKGI1jGR0AJGguCtBwCtEiSgGClEqbgl41GJ809d3N7etNY+Orw3HA4vXLhIRB988EG1bJSSEUIvzYfj82lmTk9PyrIwxlRVubu7Mz1pETul7+Ajx+3BYAAACNC2rQ82eFLK9LM0M0lVLTgBXK1HybvABo9xTV/obNL52orHLGPgmLbeVrz+w5PTKgQxRsKOjLlC7SVziVi8K4SQmsQ2rdb694gndP2e2G2fdcuHOq5ZJ44fAddMdiAqi4UCsk2FFAViIgUJ1IlBRCEpBnJtlSdJmubyf0FMI8QGRN0fShRWkXj+/FMU9a3rt09Ops6CRF23QQgtFY62xv1xT2m68PT+7oVRWZbW+oPZo3RgGgGtbZVQ55861/gmyZM0zw4PD8dZv9RaShk9heCMUVmWKGkAldAmTdmCiLTWick4ggZPIZBSxrlaCBUjO8qy0k7rnEMUXB5yj0RKSQC2bWNXR37PtA3TExkS4QvrnEOUWicRoKoa3mtqBUOzSuxwNKyqSidma2uL8dx1DORhRO+9El3njNlgUkq/GreFTs5oXZU89mOEVW/jcdkCghUzeGqzYzAgUozY+XZ2vDReP4hCagWi+yQxRlSC50Pa1vlI3kcAgSABhBQyULDWKmXapmZF/hXkwCK2SIQQHg/3rxe2wP8FMQ2B0cUYY9M03ls+Dni+Z80zEyuXKRYSYIebltzDhw/Xwy4AoLVOkuS55567evUqZ1zMAV13BdafynuvUHDQ4y350z/7s4PB4Jd/+ZePz055r7VluR79EUIwFSmEEEJEfNzPhhWuTURMb2dXCX4Xfi6J7sBiRJ7B9LUS9Pp4Wp/vfIx2dCUlUcmnzz+9u7trjHn//fe3trbu3bt3+PDOzv7eX/2rf9U5++1vv22MuXDhwrVrH33wwXvT6fTixYt/6A/9ISEEywB+4QtfWM4Xu7u7dV1ubIyyLPHeVk0thNhTuxsbo+n0DBHrut7e3n7++ed/93d/l8kTg8EACYQQm5vbRNQ0zfXr1wFgMBg8/fTTZVkeHR1579u23doYRe/Hw+FiNnvrd383hNAfDrXWly5dfuqpp+q6bprmnXfeYQB6uVxubGzs7e1NF/OiKG7fvs2Jwdb2zmw2m06nwfnNza0f+qEfCkDXrl07PT2t63o8HnP/hlM47kPwheI22L179xDxmWeeuXjxYl2UBwcHADAcDtu2ZRkGpj+fnJzwSccxkMn+IfjBYLC5ueW9b5rm1Vdfffjw4e3bt9lCAAAoIo8z8r6OEHp60FaNt1HKNlrg5RowxBg7Gt1yuWxsw0lJmqZJoo0xDJHw7WdCqJTK+ziZTEhgnmdPP31xZ2fH+fajjz6K1I0zA4BSpmnbLqFxpLVmG41E6zRlcgQcHh7yEDSv+MBojfcPHz3Y3NgGAOcq5rrv7Gyxi2KIbmNzNBwOrW+992w7q5R0ziol5/OZlHJra7Nt2xBir9cTQpTVsqktUWCsGRGdc1XVlGWVpT3J1hRCB28B2N6TY0HXd2UMnXH6EEJd11zvcezjfYVPdPP45Fufjus8kl82WOtCuPDU0zs7O865o6MjHtw2SiOiQMUaEUJAmqbDjbG13gUbggshUrRtbQHA6Kwum7t37vNUhSBOrwMRtKFGYPNcDQCZMXme12VT1zWh1Ina2dnZ3NxcLpePHh0QCedcCFFK5AEW9jRL+zrP8+FwyIkya+ObTAuPqDgkWZWYtbK40pm1liVspqdnWb8XQmRrCqWUEIqo7WIuSEKUKNq2ZWGdjY0Na91kcmZMSkRAYnt7GxEZZ7x581aeZ03TLJbLk9Ojuq6yJF0uF5vjbZUYk2hbR2MSCAQkpVQ8tyhXofDJLDw+Qf7lP09PT2ezGfcP18Fxe3v7z/7ZP/uZz3zm4OBgPp/3ej2dpqPRaHNz8zOf+cxoNBoMBtHZf/AP/sFn/sMv8oDGYrl0zr3wwgvHx8f9fn9jY+Pg4OBb3/zm5WefTdP061//+h/7E//7X/mVX2maBohUnvuq/tt/+2//5E/+5A//+I/xMBHLxXBFceWF54f9/Dvf+c7JycmgP2JU6Jnnrvy/fuEfW2t1aqaLORGhFDFGyb40Ap/8puuzFiVQRwEQSAIQCQCFgLiqORFlZ5wCbP3cOUFrHVYGmCAQIjEW+OQpwkcdLwA+8Gzb/tZv/daP/uiPnj9//sMP39/YHKY9YxK8/MzFcxd2UNDm5hgADg+PB4M8xnB2Nnn2+csh0OHxI62TNO0fPDi6f/c+RomIk7MpS69sjMZHj46Zk9K2ba/XM0ZpLZkqwpbHiDjeGPb7PUTsj7LZbJYkiVDYH2ZVVZVlobXq93u8L7yLCDpGYEjRGGNt61vrQ9jf39nc3Czr9uTkJK40Lr0PLbRGpzEyhdmFGLnzzwdnoA6X5NxaKRmCs9YLIVgvP8YoEFCK7iLXTdsiQDw6OEIEqU1VNWmaaq2jJ4lC6S7JQ0SlhJDsC+2SRCPmIQRjTK+XW98Jv7C5a4yeLVvrtuplfe/j8fEJhWBMSgRJkgohNjbGIbjgQ9pPtdbW+lu37t+7ff/u7cMQ4IXnX9rfOXdveX8t8sW1DfvJhBCUknmesVbmkxuKFwZzyfFJoLn7k+xqHp+IGJldczafzCdCoKpqmqZCxDRNAYRCQT4YqViccXp61jQNqwz30370vpgvdGqyLN/b2y/LW6GzO8MIMskMEbGmgTAmcHMPKE0yY0yEwElVCM4HbwtLEIjiYrHgA5v9haSU4EGnCQd855xJk/F4XFUVZz98xFKIdV3v7u5+8pOfvH79Otera/eqP/AH/sCNGzemk/nBwUGaZjdv3sofHVZF1YhmPlkO8gEAcEU3ny/92bRY9E5OH+lEBxejjwKlNHJjY+PcuQvvvvvu3TsPhBAXL15CxHPnzpXLYrksZDc1j0QyxrhcLofDYQxkW7eYzdep7dnxCR8NjMXwQFkI7o/+0T/6la/9jnWNtVaniQqemxx5njZN46KDSKlJpNTWWtc48hSd91FoaXwIChUK2bABLwUl5Gw2adoyy5KjoyOm6z58eFgVVqB8+umnpZR7e3unp5POmibG1taAcTabcQK9XC6dtQhw+/btZ565fHx8vFzOsyybTeevvvpqcK4sy3Pnzt2+fW9jY2Nja3w2PUvyRCq5mC5e/NiLMcbt7V0tTVPb+3fuEVGiU9+6tnHeeymElFgtKgqwd27nyiuXkGC0OTg7m9rW90d9IiyLmiACoTGp9961Pk3T0WDcy/oHB4+AUKDIEhEhnh6fTU6nKMV4vB1CAPJ5KotF+ebXv5llmdY6S3pSSpnnzjkjk+VyWVTLPbeDIqKSo82Bb33ZlCGQ1Prjr7yyMRhev3rN+ZAkiTFpjFFKHSPxMBDjzt5btpAKIeRpj2mkGxsbz155ZjQaKSWstWvZriTRy+U8+pAkibWeEExqlFJa8Z9quVw+enjEG7Y/6j/11FPOuf39/b29vVu3rvUH/aIo+v2RlHK5LFnEfE3c2draIgqLasFqP947pXRHdAXwXRQF3j4MEKyboHxwAAECSSONMaEzHe04U6xtxbFFarVKsfic7/AIJKAVcLAKR/xf9xCIjHsKCUQ0mcxYU4tCBCl5Via6ztUNwGEEB7COUUQ0Go0++ugjLs/WJgdSyrOzsytXrvzp//xP/ot/8S+OHj187bXXmqJ69tXXg3XvvfdBoIiIIcb7Dw/KomA0xQwHhAJQCmVijCE6JUALRCkEIVIUICMgUBAEiOhD6EjEq/NdCCQiF20qNA/POucIQRDxdWNxZyDPiStDZiHQWo+Ciz2/0h1Wqhte6kIxxdW1FVzeA4B4Qk2OQTRYubrFTujZICKfWQDA3nHz+Zz9ThAio0tJksRIHGO994vFXBkNGJkAW9QFEaU65SKC02xvnUCVmTxLMyQCAJMYLq5gxSyGJ6hSMUbnXGPtuiZnxT+lhVICIFrrYwSiIH1wwcYYpRJrBnfbtmA6Tp+U0tpGa2mMcTE0TcMycT56Pu3X5DWKANA5TWkl18BWl4iuBrqNMYQovpfOxkAkY1uIKGWXrHJeyquaFYciiBg9POG3ts73OMFeYXa0PpdXqAoLm0ZAYKqBUir4FV1UCJQdFw8wsmh3CKGx7XK5HI+Hvd5gMB5praeLOd+U8WCY5/lsNpvNZnVd8mj56it7KZT3frEopJRs1bucF7u7+4PB6OTkpLVtjLGhxtsAAEpoByGGjhcvhACISguUyCBLYSulVI/IOedbC0SCAH0kETzZOzdv1dYprdvgpVYO4t7eHk/hMN+lqooQyLuYpom1jg9ublprLZ1zVUNpnqVmrZ3S3bvBYMCWbtPpdD6fa6WIaGdnR6DyK7MvIURZ1NZNEbHX67Ev69nZ2fb29v14nwt+ho+llEYZIcTtW3dPTs6C81rLCxfO93q9mzdvtm3rnOj3+z/0Qz90/fqtoiiARFFUnIl5b0MISgspWcW7DiEg6OgJJUQEJIEAUnD+qRElkUdECh4lRhGCa0AMq2Z5/sK5rI9np6f9fjadzlndOMvyxWIxGOZHR0eXnr7IFDmGDzq7GoXGpIiY57lWZmtrSxvlvT85OmafNyWN91aQ4EYRDyXzOgxAniL71mIHQrMja2dc9uRewBXvsjtBvrdDtq6paSX4sy52ACBN0+3t7aIoymVBBDZ6YxIiAuQWlGDUO3apO64z1W6zQIgUMaLseNmCY5SWRmuJkRCi0VKrhIgS09FLiQhFbNs2xEQpEyOl5n/BKpDaAEWgIjWSYhQ6KkRplFKKIqRJLlVs2zrv901PW7KNd9/+6O3RaAAOAUTez+fTOUixubOZ93tKiUQnvUFvOBzOZlNEYYyCXtK2VoGWUvCGdg4BJBK0jQMQCNqYFFFQRAKU3VzLGh8Unempc0SU5z2mGLOSIQclH4IE2d2EJ7J3phzhY5Z6V1EiIqyEmASBSUwkz7zUwaB/7tz+0dHRH/yDn/7Upz719ttvf/7znxcrYjJXEx3nb9XUlFJ2PjFEAJ3gMhHrfj92g3yyUH0yMehgGeAWhcCVTyatVpFbueF5H5TqhnoBuwUppJJCuRClVFolg8GwLCbedyrhQgijddu2Wom1Zuy63QsACkXAdU0EiCgACVCK3x9u5vKEj1fn2nVzl4GptdYEt/A5FaROJAqWfpmmqXxCRuPll19+8803p9Mpx/knseY1KoJPsIZ5s2RZdv78+Q8//LAoigBkjGnb9vXv+77bt28z1dp7HwKtbnoEiIgEQNghD2vXR6219J4LZ1rnfqgkfx5cTTPwRl71hCLi91yfJ0tLKeX58+d/8Ad/8NGjR8wLPjs7u3DhQq+vn3/++X/37z7Doenw+Og//Id/x6ajbHj71a9+dWdnh+HBN954YzGbLxaLO3fuHB4f7e/vv/r6a3t7eycnJ9baxWIxHo+ttU3TvPHGG4vFoqoqCnF8/oIx5nRZzOfzoqgYq+WJlk984hMHBwfXrl3L8/yFK89578cbQ76YZVky1l8WNRFFF4+Pj+u6ds4VRcH3kQ0AP/zww2VVHh4eNk0zHo9ffvljo/7g3r17d+/ePbe3/+M//uNlWd64fZNrK9YAuX///uHh4WAw4PFBTl8HgwHnJwCwt7e3s7MznU7v3b4TY9w/fy5Jkps3b06n0529XWvtfD7f2dkZjUZEVC4Lvj7GaGupKIp3332X88kbN25sbW1tbm7eu3cvy7LT09MYuqErhoOE0rayxhhIiJ4YL5BKCmaeMoaNUnBTN8boHKfoC25Ne+9jCLPZPM9zQWIwGLW+ee75ZyezswcHdy5duvTUUxcWi0JrTYGFyR+bTmaCEW1LRL1eL+W3INrZ2To8PGYFNF5MrbWI2Lbt4dHDjY0N76K1VsoGATa3xhza2raeLdjntOXzACKtBRMQO6Bd624wsG3buqkQpDFaa80FrVLCWlfXtSCBKEN0vCvoCfknZsuORhuDwYDZQOsNiU/Al+sHrGoeHvZcv876jIwxPvfiy6x1m6bp8fFxWZZKqRC6ocWmaaL3TNqfTmfz+SLt5anJhv3R6ekpSFOWpUIhMOZ5Xtdt09gQAvmglOJdAQA8SiiF5gnKoigAYpKpVe3kptMTUJANEu8lVZ2yu5Gy1095uRfNYrGcWdfwYlDIsUCEQEKAEFIaTUR5nud5KoTI0tHBwcFiseAJR9e0AECBENF5Z2ubZVldt1m/50OQUtu65f7JvXv3GNlJksTWjW2qJMuWyyUngtbatm3Pzs5kLqaLeQieKFjXLJfL48PTJDGXLl0qC3t6PA0xYnRKC+paZ12ywleViLx/XBG5ThA5sIaRc24wGP34j//4d77znfv37xfLZVEUu7u7t2/f/qVf/MXReCylXCwWZVl+/OMf/yN/5I+8/fbbZbn81ptv9vs5AJRlWS+X2WDw1ltvEdFyuUTEoigAcW9v77/9b3/+3/7bf/t//6/+b1wTgpQXL1z6kU9/arFY1HV94cKFT3ziE++///7XvvY1KaXSwvp4584dowRHpe9+520AmWTZ3/7bf5vnCc6fP//cc8/du3fv5OQEEVtveZJrnTbxyuQiXwgRQgQA1m8KnpjJtRZ1iTG64COQXBF0hADO0XF1ASECN4RWZ/nj9K5jWK+2jEkSoeQXvvg/Z2lfKUlEwfrSh9lskfdN01b37t3b3t3e2tmcnM2yXvrC9osXLjz1O7/zdSW0lia4ePXDq7jylDfGSIFCCHY2f/hwzi3ZxWLWunQwGCilQnAs7yMV8sQQEV258uz169eFELu7u1VVbW6Ne3kSA8RI3lPbOCk1e6UOBoPRaBSj/+CDD2Kg51545uLFi6zxMhz179+/Hzzx1WNfUym1UhwYH3Oa4kqTa53WcFasFEuFCpaoUkpyiUtEDAeEEIxJQgBBmKY88wtCiCTp6nYOI96DkYKJYIvFomnqPM83tzc3Nze11pPJJMuyEFyM/qmnnhoMBuPxeDKbvv/+h0dHh94xiEnkCAA82WK+HG0OrWuYjICIy7JYHFW3rj6AAHevPpAm0WkePAlE57xgtw7ZpTV8bHgfeBOtc83/OMMLq6kCIuJyff1DChERnVtPu4t16s9ZJpFTnU9xp/4/nU5jjJubm4jIY9dh5T1dVy0iBulijOPBkKUhbOtRI2dCd+7c8d5zAtxBCBJ1othzAhFj9Bi6qM5C4YvFwlorZScgIxKDKLVWbVsTkVKyaZrRaCSl7EqyumFo7/T09M0339RGehe4NuOJlosXLz548ODixUv/2R/73/3Yj/3Y//uf/nef+9znpJQoJcU4my2MMcFGKWUxXaJWTXNmTJ7niTGpbb21nsjdu3evruujo0dSYKLT+XTmnKuK6t1vf+fVV19Nkgz7UJfN3bv3hRAQYWu8Y709PT0tFsudnZ3nn3vxrbfeAt0ZT50/f34+n9d1nabp5ubmj/3Uj23vb3/mM595/vnnyrI6++goSZJeP2vaCgWmmUFBwVOMXgLG6BFRS0UUYiStE84gtUp8sJFilmQPHjzwwWVZVtel1om1fnI2ff0Tr2xt7Szm02efffbDD662bcOha1EsIlEkMklSdwJQ8ujhI77FJycndV1nWda2LSAM+/2NjY0f/dEfvXHjxo/8yI/8p//p//p//LX/8bvvf/fajas6TSKE4WBcFIV3rpcPNsfj7e3tYX/j6NFxCzawhBQFBEiyZHdv+/Lly1G0AJCn2dbW1vvvXX348KGRqTHGWw/S1HVrGwcGY2y8n2QmIcIYKUmM91YKkSRJURS2qprSAoBr2939fa2UEnq5XDbQutQOhwPe1LPZLEYvFB4dH4KMRVGenDzK8zxGWCzrpmkvPf0sOS+lapq2CYAo1zYMUmpjlNa63+9vbdFkMvPes3t4XZdSyqLgUfG6KBxAZI+m1fCpRASWzwqdGReFEKghY0x/2H9+2C+LqiiK4XC4KOZt22a9dLaY7p/f297Zms/niUkTY6qymUwm0+kcXcdfni6mXCd473nOwHorhGADa02sNPrYM4CH1rlQ56RrHTSklDwD6JyrWss1DBN2lFLBBwAwxljfsTJXcPPjIYl1kyzGCKEjsKGU3ocYo1JGSHH//v2joyNvW47txhiMxCAsRweiaKSqbWuMUYpBCsf+H/w1WSKMY/hyubz6/kc/8Mb37+3tvfTSC3/rb/2td7797cPDw3JZgEBU0gY/Wy646pNSuAiLqpZJKpXxwUoUJKQAhOAVUDc1E0kCghTE7L8QEZGQyblKCPTUoSG9Xo87xAAgpFJKVctCIA4Gg8Rkk8mEoUxrLY/ycEW6BiXZ7pV/zAeZEpJWc7uclXcZr+jKdVzxlfhF+Cdq5WqQZZn3LIYQ10cAo9vGJEIIlgBi4BUApJaJTFn8Ik1TkxnnnGTxbhIQMNgYPGmDFAKFoLTm6w9PiFljx2uOq+ScIjwGx7tEBSN4uWpOd7K23ntnfSAvhBASOd313hsTESW/S5ZlTnhmmaxvOr+7DE5IZZJECCHZ9Ixi8M0aRKPVmCOX0865+ATjgS/RmpsMTwA3iMAmnG3bCgIUwq9mwAV2gAt/dbGSN+H0fp2biU5tjEII3nMazELVUWrFgAVF5GoQlWSMmyBwtOFbvC4Gl1WZUWRjGD6LMZJzgbWD8rTXOhs73QPQWiupptN5URREGDxppVSWNXV7UD601hIyUzi2LYM7QkrJtV6W9ZKkU3l2zjEPBh22bVs3jRRQl6UgEASOAhIEIeqmBqmstW3dEMJocyP6AJEIAkghpRwOh+OtzeOj0+WyFFomUc9mkxhBSqQgWRB/jV+0zqkVHMNCaiz3ORwOHz16hESXL1/u5YP5fE5EN27caNt2sVgMR32mTDJ5ZWdnh+vQsix3dna01hSBIvR6vbKoT09PZyfzrf2tna3tV155ZTAYzOfz+/fvV/P6k9/3iT/3f/ov/tb/8+9MTk6yft8koqnrEJ1UKsvN05cuaq3Loj5+dFxXFlfGQoSM9QhugZCnSB6IQFOMESl63yS5ns4OG5cONxOCuCjmX/nql/q9odb6woULWZbMlzNEMRyOi2VVVTWD6QBQFSVSHxGday9duvzcc88dHBxIJTgddcFrrYQQwZNrWh414P5LAIoUY4gxdmMHHCsCAK5+IlfjlWLFaV3vAlo5f4aVKOV644BEhY9BA7kSjdnb2/v4xz/+u29+M8syhrOttUopYHwaupE4pI4WvU5ZefPBCteOMUipQXRjH0YrrbUSkKZGycQoyb4CbKIOAAeHd5Z1lSRJppX3kYKD3+9RVwtImrynUcbhcKSlAKJz53b2986FVhRFMzmb1bXI+qnJ9P6FraZdtq46m098QTs7O2mvN5stPcWqqVHJpq3SXvrg4YOqbbSQ/f4gSVIilFJGG0JoASkGQSAFovexbR2C7PX6UqoYQEolhAohxADacPuw00zhrJvFA5hgQfFxM2+NCa5DXFxJanC443CklAqMAESednJ8za1rmKpCRFrr09PT4+Pjy5cvZ1n2+uuvf/Ob32TMmgtzPiOcc0FKohgpBh8xsBdR19KTUgbnCWj9AZ5EUdd/EbBWdn5CdAhwDc60bSvlYwIN00LXtQwvs9gh8kIg1nWrpIkRnA3KgHOtc0FKqaTifvCTp0+MkQWR1zAREgCbe4ag5O+7Xjr4YnXISikfM8loNRtKK2o5Myl5L3jvt7a2AhAL8ggh5vP5W2+9Vdf1WmJrBVXB+s6u0wPmw3IyFkL4l//yX87nc2k0v85zzz331//6X/9H/+gf/fqv/zqPrD1uVGPXE19/wvWYAhdKrAu8Rrq7G/TYh4P43RmZ4acQkaf45EkaY4wIUuphP2/b9nd+53eWyyVHabahFjL9znfeqarqk5/85Cc/+ckHD+9/85vfJKILFy6cO3duNpu999571trt7e1Pf/rTly9ffu/d747Gg5c/9uLZ2dmdO3f29vb29/cvXLhw+/ZtzlWaptnZ2dnd3b1///6VK1d+6id+cnt7+7d+67d40Nxae/XqVa31a6+9tr29/eDBg/F4/MM//MOj/uBjH/tYVVVXr30YY7x37x5DwDEAX9579+517hcU12EQEUN0t2/fjsjGJ2o0GhXF8vDg4enpKd+Cz3/+88vlclmVMcbT07PZbMbDWNzsZF4sq4cx2MggW9M09+7dS9PUmCRJUsbfuF4uy3J7ezuE0Ov1+v2+c26xWHC3PsYoAbXSdVGxgGS/3+/3+9y3WAcBxh6ZuhHIM8rhwa3vrJTSRwcAilsQUkoE5LbJOg0Sq3FyFtwUQh4eHj73zHOvvfbKweHDZTH1vn3p5ecBYDZdWNuEEJA495XovVLK+Zafzqt5HegBIE2S4G0AWDPdjDaImIkMVlJWXdzRmj9Mv5/zqGZdV+vZUhHRtU4bFVYK5bw0nXNJkvR6veVyKQQNBpvL5VJKRKI0M8R2mS2rSBMLma3DhOg02vP9/X3OyYqiYBlNLmxWAxf4eLOt9i1vOfGE+q2UsotTQmxtbd2+ffv4+BhWwwucyLIYISJCAH6jEGOa5DJVADgajU+PjslHjwTWEVXOWSaMIEYfrJQyyxMAABKI4MGTpAChaqo8k1KpJBNZ1osATdM0ddM05ebm5iuvvHw2OUHEqqoePXq0ORqfO79z76BeLiMrD9R1LajDK3lhsJAIr+C2rWOMec+8+NKVt996R2i9olqTRBkCIYrt7e3FYuFsTB3UbSOESFYuMQBwenrKjaamaZQWiEgCY4xVVXL5NxgMeqNUCxmUjjFCpPl8rnVa17WEYExijHIYYozeOw50kiFma1d3pOPgcPLBL8uKZlxdLBaLN998syzLEMLG5uZnP/vZxWKxubnJfScA4L10/fr1P/Wn/lSe59/5zrfTXu/hw4fW+meefbbf7w8Gg9/+7d/mVcdnlQd4882v//N//s//yl/5K888/8Lf//t/n4im0+l8Mv3yl788GAwePHhw//79nZ2dpmn460spU1TlYjnzbbAWiJJeL01ytpEc9vppL2cfwuvXrxtjAKM2eQhBrByBOgRwJTqllGL+vZR8DnlBwIKb/AuPg74UKISzFgWGGFk0SkrkSyTgcUeRj9J1lGGmjFaqbVuhZAghTVMpSApYLGbnzu3lw/zqR9eLunzxxcsoYTqdjUajpmn6/aFS+urVq8aowd5e0zRNY7VRAmWe54NhXwBa29R1PZtPsyxTWqQmbZoGQKzbvNyr7PV6zrdVVfF0DNutVFU1Ho+feuqpNE0P7t//8MZHWidSaO+jtbVzrt/vO9e2tuz1ei+9/FzTNM8/f+X69evMoeYTV6CKMSAK1riI8fEBvcobghAYVikLX8sYI0UMni2bY4yRx3gxYgACgEDE8zi2cTpRtvVSSmEEF4G9Xg8ReFwgSZK6KYnCcrkcjUYM3CilEMXGxgbrJ/JZfu3a9atXr+Z5vr29Pd7cenjwaDpbDHpDnlEVArnszDLY2dq6dfdWmLjt7a0QvGstIAiBqEQMELxXqeGDAB5TlTGETjuiLJcAj+Ujw2qki763Sf4kDO09txAiUedgg5151+pZq6jLh27TtIiodbL+BR5nm0wmsKLUSZm2bVuVJQDwEcMJYr/fbxvX6/X4+GhbBwBa66KoOJFlnN2kCacRiDgcjstyGS378GgpZZqmiMI51+v1pNAxAvtiE4JUKoQwnU75LbiAadu2qqrt7W1rLcs18otnmUTEPO9/+ctfJaK/+Bf+z0mSfON3vmGtl1KHQElirLUSKfrAM8h5r893nwhs405Ppr1+SjEGijyfJaU0Mrl57RaTC25fu01E3/3Oe2VZKqHTNO9lPS78mrI5Ojqp61pKfXoya5sPvI8hBKO0Ufov/IW/8OUvf/mXf/EX+6PBeDz87Gc/W5bFiy++8KlP/eBH165eu/GRSVUg5yOTBElrRWRDCFrLtgkUgxCKq0iJJkJgAejeaLS1tWlSOZ2dta4ty1IIde/evcSkr776+ng8/u3f/u3RsP/KK680bXXhwlPnz59/55132RoBVmObMYB3bRtbFqRbAVvknAPbCbpNzmYS1EsvvPiNb3zzi1/8ktQiy3ouuhjo3p2HgqBpGtwRiTJVUZ+eTpbLigKkac4rtqyLNDWvfOL1EMLR/Oz0+HR3d7dUTVVVm6MNIcx8tuTpLts4IUSMIAQ2ZVMuSh+4vR1ZWA+RtrZ2JpMJizNonY6HG1Lh2dkZosiTNOkpIABA693GeNO6VijKcoMYLlzcDyE4643Jgxflon3n7e/2M2mMSUyGiBKVt6F1Vim1ublpbSOEMkaNRqPd3f2zs7OtrS0tOwkL59xyOS+KBT3WXJMsVZEkiUdPBE3TykSwHUW5LIbDoVLDxWImhAAQeS8jiCbRgHR6dgIAUomqKtLUtG1blEst9Wg0klIvFgvrnATZzufj8TjLsqapXSDrbL/fhw41e1x8xpWza4yxKEtWY2TKyeOccOVR7lq7LlT4WdC5YoS6bkCsKkaUAhBWHVBOpYQQGAkjwapFysGWa9ReL48xtk3FeBOXvuyaxek1x7Q8z02W8vTYquAU7PHC7xU8TZaz6elyNl3u9LZ/7uf+0r179/7Nv/n/hUA3r12fLRdKaymM9w6lTPOsNxwsFovaOaRog2g9aSWMSJVSdVkJiNFHLQVIEQgQSaSJI7QuwKqrJyXGSAAeUdNqFJfVFXnvMDSjkm4xtI1r2zbLsizLrLVNw1yErjhkeD1GCCG44NcKfetqlhOENdZDsaNoee9jZNuljjucZVm/39danZ2dMayplDo6OuII37at1gZXA7MAkPd7nBhb54yAEAI75SZJIo3s9/vRQsvjP9x9DAF0IlE2VSNy4axrreUbGpGJ7SHGSBBXPXOSEgViDB0OAshrj5ERyLIcOk6x1VoLwsiwWIzMBCcigg4o995b21jb9Pv90ca4aZrlsow+cHXNvfkO7hcCqJPvkFIC4fo24YoHzat0DYjQSkZgNXBN60IdV1Rxo7tZge7+Shnw8a+tUYP1sRtXOs7r+8W9FiFQay2UDHGloREAAAKQJALAuCK2r5/Ln3axWDDZjevYNE2rqhFCcQ5vrRUIWZILIVzwFIFpLsaYPO8v5gUCCJR11dg2xBgHvT4KoEDOedu2ACBQIcgQXJ7ng0EfEa1rQuBNh2uSY9s0bI3snIPg8zQjIueC1omnGLxXSps0wUgHDx+41iZZGoNXqRqNBr1eb3snCiFOT09RiY2NcVXVeZ5vjjcQ0WTdMFlYTWglSbKeDqnren//fL/ft9ZjJKPT09PT+Xy+u7vLU4kvf+zFra2tsiyvX7+utb5y5cpyOX/vvfcg0rlz54wxddUopfr9/sODw6OjozfeeKOu64ODRyjFN7755v7u3mI5C9GBgZ2dnV/6pV+yriJwRTHXWm/vbPvomrbaP7ctFBD5NFPjjWGMc1sHQCkFtq5r4QshkDp8FhEQIk+JmAR398YoaTAeNK5oi2CMKYu6LMtLly4XRTkcjk8nZ0VZX7nyzL37d4eDze1ntgeDwWKxePjg4Py5Z7TWN27csNbeuXNnNp2fnp6uEz9c+RUxKOa9F1qx8O2658QlGAcB51x0nhsJvMBWgn4sTo3rJHsNVaxTbrGivq4r9PVmQcSyLL/xta+XZclKPrxsIMRAHXG+A6064Q65apDEDmtesaWF0vAEe8w5F4LTUkqgQZ4pIX20FEJbeyUAEadnEyVl7Bgkum0fN5CefESMSol+bxhlACl0qhKVz2ZL770LsCxmg2G2vT/WWglNQglbunzQryeN9bQo2nIxaWvmg4u+0oN047vvvzsc9ZMsy5JEq6Rclt5H8iH6AIBKKJQqNalUmQ/A+mm93gAYnxEKAIInLoEZqPTeS2VGo36WZUzXWy6XTd1Z/vLRXJYld6TW94XD1wrlgFV8kyrp3JKcayFEngpq2s4n3HsXV2Mxv/RLv/TpT3/6xo0bt27dGo1GPGn95KULncrwY3SFPzZHSIkCAeLKOnIdDOEJeSWkddX2uDkaYwwspSVlWEvYr77UeqVxK7Rqmuh9jDFJMiklRCuE4oVtDMQoAFrOu7ixsf7wREQ+uCdwcApdiOZwHWKA3++BnXRVx61WKmF7Cyk7UdB1IUyrxKmr5qXc2toqm9qtnGC55by6Ap3LAqwKtDVU1e0IQERcSy1775M842ORIfg333xzuVyC90yRXB9bCoUQcp3OMd6y6ka4dYXIv7A+rYjrihCcc9y0YxYmHzrru8wPpRTLknBHMK584PhdnHPf+ta3AK1z9o033tjY2Lhx48Zb3/4WAPR6vcuXLwkh5nMCiKPRaDgcfvDBBx9++OGD+3eff/75V155JUmSL335y/1+vyyXRVFkWba/v79cLr//+7//6aefvnXr1tnZ2Y/92E88++yzH3744dWrV9u2PXfu3GAweP/995umefbZZ3m1vPjii2VZDvLeaDS6fv26EvLeg4PZZKqMlkJzj4q3BnMpzCo76vf7dV2TD03TqMRwVjCZTB4+fKiF5H3hhWRgitNR59zae49njHiwlRGMW7duOed2dna89/v7+6PR+NGjR3ydJ5MJ178hhOg75gS3f8qynEwmnNptbGzMJ9PlsuBBOqGV9/7OnTsryx+HIJnsu56ZI4xJkvroQghGGl4MIQShheh6XDHmeR5CqJrHDRBu/Pb7/bIsq6K8dOlSXdfHx0f3799/6aUXXv/Eq2+99ebmzvAP/vCn3n333W9842vPPvMCEbW2ARK8UISEEELADjvm/JUbp7xwGTRhsgMfPKPRaL6cccashOampAPggYLlkkWsnfcOIrW2SZIkBBJCSKGCC9567/1wPGLSx3K5zLJsZ2eHiPJe6oM9Oi6jw9FoJAS0TQjoUUQI8QmlzuicZz2a2Wx2+/ZtPsn4fQGAh6rWZRKsAOh1gPA+rEMkl3zrU/PmzZvXr1/viFpreg5iCEELqXVnMA0O2K790aMjVkjUWtvWS6GJCDy0rvbekw+9Xi/NshBCPshDCLbt2EwUkQi0kUPd19ILIZJcJ5lumkYbLKtWKsp7pmmLolicP39uY2MYo3POnZwecvWolMnzfDmb8xdh18EYI9NIq7bhbbO5uSkU7mxtDUf5bLYw0sQASEggEKOr7dbG9r/6V//fv/N3/s5v/sZv9MaDqqrIN0wUIoohUF1XSqksT5iWLo1co9tJkly8eBE1NE21vbXrXbtcLq215bKybQSwktrRZr5clG1jI0Y+ZLzziPjJ7//+uq6vXbsRY4whmCThtbeuB4RQMVr2Jzk6OuJ7kef5Sy+99OGHH/JkgTHm5OSkKAohRFvXn/vc50IIo9EoxlgUxf0HD5I0/W/+m//mwYMHX/jCF74nMZIAKP/ZP/2n8/k8H45Oj46Hw6FCURRFWS3v3r0LMQLiycnJ/v4+f9MYozKmruvQtM9/7OW/9tf+2t/9u3/37Te/hVpzdmXrJjNJnqTkQ6I0qG7sRYT1gREidCouXKgzcYOpskoJllFbt1XWFQ6spP2ZQ83KDPREM3adexE9fgprcmRMU5KMawiiQBBDDEarxWIxn89Ho82dvV0AMRqMQNDdO/fx/8/Ynwbbtl3lgeCY7Wp2f9rb39d3at97koWEQAhMp8owGDA22EmZcvgHRFJVDlONI8PlyAqXoxyOIhvKOMs2riwI4wLbmSBDJkZYQiA91Dzx1Lz+3f7ec+7pz27WXs1sxqgfY619jgRE1P5x49zT7GatOccc4xvf+D4hNja2jEkATq9evYoh7u/vey8Gg55zYfvCVmLs8fGhcy5ENxgMvPesramUqmtnKAWAsizzfG1jY4MJJtzF1Vqzy2qapvP5vCqbqqr29/ak1IQiYLvNn332WSkhRBejPzk55KL05OT46tWr0+n01p1bR0eng0Hey/tEwvuAEcuyZO+m1eViV1yllJSr7LQzN5BqRdZQSglJbV5LvDU1H40A6ILP8xwA0WHlG5531lqvr68rJRbFjAu8LMtOT083NjYuXboSowcpvvCFL56cnAwGfZ7h0FqFEJflYuj7BwcHZxAwEAFKaYhIadE0NSIu54tZMe8N+kpJY0wwwlceFEmpTaJDCEYnQpx1/tteoLVd8zxyoFtRveS3UkXOsiVOL84IBYwBIXHnnIgQSJzz7tBaa61DaHnirEfGfdoY2d00cPolpczyvK5rFhlIkkQrK4W2tmUkSal5LGswGHgfeRd77xeLBS7mq3flnKuqcjQaXbxy0VjFhm/8SZ1zhEJb3cxni2WRJO2xukLKimJutJ7PCmgtWdIQQkB/dHRUVU2M7cfkPfVLv/Tf3711C4hAiCzvmcw0jRckQ3QUo1AmSRLfOLZM8aGpQpQOQdD29mbVlFJKY1RZp6PXiQABAABJREFUlr5BLY1JLK+qxCbBxSzJKZCvG++Dd9HqZPfBQ6VUnvaqpkTE6XSeGAtC1LUbjPr37t1j+L4sy6Pp0bycNU31iU98oqwK58vrj1xWnTPbjRs3pNBp38YoqqqyWT/Lk7quMUSklg0nUNZ13e/njz3+2HDYK+slUogx9vI+6/hvb1/c2tr69O9/pjhcUvC/+Zu/yRwFrbXUKs0TrWyIUYIKMSBinqR81CbGSqH6Wb4ol5ub2x984cU7t+/lWf9dzz7nnP+Pv/upk+npYroABcpIgTKGQA5ISquTxaygCMtlJaUejUaIcuV4E4HqcnZ4dHL5ysXDt08PD09G/fWjxZ6rGhqKdz373Oc+99L+0cmFC5c4ksToBoMBJyoaVIwhBkxTK4TgAYCNtXVWiELEw8PD0LhEt+7nVV0PBgNr08Fo6L3PB2mep0JiCPX2xlZZlkDSmKxauF7aLxdVU7jRaJQm+bwoiFrfkog86aVCcFrrvb2DGGNRFFrrPB0Yo7rdKp1rOBEkEkoBKy8roVwMGBEApAYMcX2yFpw/PDyUUrLZCHCfWAkhRL+fK6VYRNuFRhEXpaJxLjHpeDyMMTIUOxiM1tbH3O5FIGvP/Me4zllVF/xB0jSFjg8L3bRskiTUmVs0TeOaRnR2Z6KdluW6UXnvgQQggGAjuTN1LH5d1qBQ5/1LSfJ0ixd+Op1RjFLKEF2WZUQgiRx60Q3wMqmCe9IcWDjH61yXlRQaiOq6rqr6b/3t/82LL7747d/2HcPh8JP/8/9yd2eHhJjOi8FoKKV0ISohlsulTRMKcdjrcYbjAI5ms0GeZUk6yHoSRKgrkIKIkiSJiCbEQKp0LqDTJKQEj6ilitRh6BGVUgpEVSyVlIQEAIk2i7ISosPQpRGdigh01iNaa9UOL7aYo+iGVSkiQtRWKdmCm0opgE4iM4Z2HcY2/PKIjxDCuaYsRa/XYzs11nc6PT1ljqGUkvVAmWzIBxMXTvy3bNbKnBpmZwswPJCulNqYrC8Wi6au+Z7ykmORXAAwRp8pOAktlYhErOgNAFJBDFFpobUVQnDTHTGExkmjz8AIECFGpLiiU3QgNYXoG9cYY9bX14fDodSKx9SqqsmTxHuPEbnK4gVPUkh15plB54SkAYDzqxAC1z4MrsmO17naKcxUatUepPLUsk+klEAkhcDOOWMFjqy2QJeZtOZdvH34zUSKEIMWAJ0QAbuhemyHBpRSIToppZJSa82K/01Va2uyTEfnPQit7bA3tMo2TaO1jTFmSdpEp5TW2rgmeu+XVam1nUzWy2XtXXRsqSK1BIEYl8vKJrIKIXjs0AfU2hqT1LXr9VrtZmpxeW2tRSnYTlYaDUBABEK6EMkHpZSRBiNYm0bC8XDk6qYoysVicenKxV6v50KzXC5dDMaYp55+4smnHv/SF19WVl8cjRAxzRIhhFCt1PVKJYYvIBEtFkvmghRF0ev15qfTz33ucxsbG/1+/+joaG19zDjydDplbcCjo6PFYjaZTIbDYV1Wp6enrFgKibh9885yuWTFre3ti1/60pdOT09jjG++/UaWZc8///xwOOTKIs/TqgrrG73rjz66tb0REeeLqfceyXWTqIIIhSRB4EMthFRGAQBhy2oHAClF01QRYprai1e3EYJQOJ9Pq7rUmF65coVQHO4fFUUhhHQ+PP30s3fu3U7TNPi4sbm1vr4eY7Q63d6+pLW+f/9+WdanpzMBkoGYFkFopx2l9x4QjJFKmdUCW7VhWEgTEXlSezGdNc1ZaO3ARFphmnAeKOxoDXgOEOTAco77KZRS8/kcQyRqVae01tF5eU6vg5+NTWiJuu4UMV1ErODmFWtPdMIdWZZliclSq4XwvokxJkbFGObzaVVVzCTTWsfghBCNawbwZz7keDw5PD7UqUysbFRsqkVRFMt5XZbOSE2gIipFGFy8dWNPW3U6mwFA8PLw4DS6gAi9LFcmOTk+PTo+dC5MxutEtCyWC1wKkiEEq6zSpKQFAFc7KRItBIAw2kpjpdDtW+UyUAippEQZY5RCSyVX0Q8RV2pdUkquNFVnA7hK/lc4IB+OTF8NIXj0LONbVZVAYpVSbkCqVn9Jcz6zubk5nU7/zb/5N1LKwWCAXZuB7wJjXqtwx/2tVcxvj7MQQQrNCDjJ1SLpZnSkUor7MSvCJhFZa9s0CaKUkgCYvMkfKoQQEJVSmvWp2keCCDFQDEFQlFKHSEIIQvCdumCMUYgzy4TzmU+boUWMsV2Qrab0n2MVuLoRoqMeC6GSpHWf4vtyvuzil0NEFuGdL4vVbmIS7gpuom50YIVcMU7KtxgiMqu32w9SilY2c3Nz8/j4+Bd/8Redc+ONje4UNm3GRcCyP6uOEf9oNpuNRpOPfOQj3/jGN1bLBhGZv8w5W+xA8BAC+1ctl8vpdGqtTXt9pgl2FChk2lboKGArSKd9aRGU0q+99trp6enx8TFzvfv9Pn+ow8ND5u+XZcl1ItOWd3d3Nzc3szS9cOHC3bt3EXF7++Lm5maappcvX57P57dv35WgymL50ktfeOutt65ff/SFFz6wv/+QbWA/8Ym/ePHi9nQ6vXLl6VdfffUzn/nMY9cfYQx9enpsjBkOxo8//vi1R67XdX14eJjn+Y0bN/jNA4BzToEoZnM+epRSs9mM4xu3Fvip0jRtmtpHr5Q+75DJUh6j0ZAJSXxgZVn27LPP9vv93d1d59zm5tbR0dHR0dF4MPDeMdV91VqezWZ8PCGiqxteHrx/m8b5zuozILLuB/OyjTECVOzUwDgD9NGRa5eZ9950Q4cYAyJqxn9Zmjlg5KcTQrASKFsQrq2tjUajGKP3sb/ev3HznfHG6PEnH7eJfPhw5969O0VJjavSJOdEFiPUTcmXktsRREJKwdOdXKM659bX11kbCxGZCc+dyaIoYnTLagkA8/n80qVLMcYQ/KpbUlU1IqZpEkIwOgshlKWTEnh8oFrWPgbe9tjJwThX93rZ1auXdx88rJuyrlzTOCm1R+6vEpAEoPF4tFgsiSgE1FqfHE+FJK3bq6SlWrW8VlnmKtWDc2I9DFgLcRZuuuyqTbW/6ZtCCiGCb+EbVgtiLCZ4L6QEqNI0laCEFEgRIxhjjGlda0C1e1tKKRWwKBtnvXmeI3GbqxkM+nmenZyc9Hq5UgqArDXj8YirVha4MMYIFOPBuCiKelnmec7vsyzL2MGay+XSGOOqmojmYgoSD/f3r127BvGe95EEsGY8kPSVK4riwYMHjHg+99xzUsrbd24c7beIWAjh9PR0OOoT2PF4fHp6fHR4KjSMx8PxeHzhwoXp9HRezLz3w+Ewz3Mlk0EvHw/XZ9NF0zgislbnvTWuA51zt2/fFspgCB1sJFwTGGs2UkE3s0BdT08IoZTmY0wpdXBw8NJLL0kp2dOTKwSGwBDxtddeS5JkuVxUVQVSJNa88+ab/+gf/aNnn312OBwyR280Gi2KWV1TjBFl+Hf/7jf+4vd9//rGhFVc1tbH73//+/M0+/3f//3JZPLkk0/OZrM0TR88eFCUS0IhhEjy/IX3P//YI4/+b/+L/93L3/bypz71qRs3b3JsvXnzJseRuiklyESbGGNEZoKgtkagRGyna8umtNRy8JUWWsjEKOciRh1aXWDNWTXHNRb94fYsgF1NDVM8O/xCQOecTZMQArOoua+jta6qytpWmpOPeeZlj+zokQvX3//C+8pq/uWvfNm5gIj37j3gBe9csEYtFgulVAiklFgu5sd1zb4fHIit0tbaqqoQYTQajdfW6rpeLgol5OWLV6qyPDk+bnFeZZQEIVTweLB/wuW9lkZrSwQMFD711JNra+Od3fvaqsvbFwFwOp2+/vrrd+/vbmxMLl28cv369bt37y4XpZRaCts0rpcMECGEoKQRQknNqiICoE1S8YxhJImIICipWVGUBUO7CxikFBRJKaM1g/hxlTzxIqyqSiro9fLhcLgsF/P5PAbK0l5is4e7+w/u78YYpQLf+t0hgPe+6ff7ztecLly4eFEpdfPm7dnJgskASF4IQYgh0Ne+9jWlRJblb7/5Do9fWmufe+45rezx8fHJybSuaxA8m6wAQCsrJCFqbtojohJKCAFIgJQlKZ9JagWrR+SohxEjEh9pqyvAGO6g16eOOeI7ZRIeZAEAIRQAsasvF5/GGK1biXCWMhAChGgtMgBUXTkptMlbeIWZsDEWQggpdVG049v8TqpQAkAIXRfHOZ73lARV2SyKWZ7nPHDDEoqDvJemaV2XZdEY9suOsSjmfNMXi4VUIgY6OjqaTCZZlvnK9fv9ixcvJyZ9+PAhIh4fH3vvIaLNsjzPKTJPAqSU3oXt7e3t7e3bt++2TATnSRABWa1JUi/r9fv9Xi9zwbOAj1fYZglIpIlBCimlkWaxWEgps8xSbBPcEBolLVAwxrjQEBFIMZvN/uk//adEZNKUJDVNk+fZtWtP3n9wN1I4mZ4EDC64CxcuPPfccyHGnQcPEBEkDYdDra1AKssyYNBGY2dWxo2u4+PjopgdHO6NxuPhqB9CSEwqSC4X5Rde+mLT+Gzcc75G8hzNdvcebm1dsNb28oG1SVlUJydTo63gfhZAVTUIvOrkRz704SeeeOJf/+t//QM/8IN/9Ud/3Mf49//+f3n37l0AuPvgvgApRLDKcMEZo2/K5vT0dDgcpmnuHVqb1pUripIECkE6yR482Ll169Zzzz557cIjp6en89OSUDaVK4qi3++72lVl4ZrA6T2feoGQeejc35KtyAApJbmW5jwhSZKInohC8EILFzwbVcUYe72s30+V1sPhxuHeyWuvvfXss88kVh4fThWYyWAkZBiP1oqiYOokt6iWi+Xa2prRiXOuLGvEAO24pZ3P51LKNE17PWZ1SSnbEw1AShDFvHBN4L3DZ+4KuYsxzmang0GP9ek4/guheEf3er3hcFg1bNSWV1VTYy0ka695DiPWWjYbSbLk+eeff/hw5+HDfd6YsRMWZFCmKAr2MU94SNY5Pj6sMUpK/CZeLfDkVtM43v78TeyYPiuuHJzDhvhrrfSqtOvKoRY+xkiJ1RFYUEs0tSeIx7P5xYsXuS5iow6tTZblMUYFxK/FoYn999JUCSE4//zO7/zOF174wPF8WRN9/w//0Gc+/0cH+3upNQEjc0fZm5QiLhcLxeQDpZd1JQAb5yZjSlJr08Q3lRISfRjkeVFViACREqWCVoDBk0i00VoLpVwIIaJq58eFFCLPshDCgtMVrcqmpRQxcYyVdlfgPiuxCrEi3rIDhGSKOGN8QggQbY+w474JcTa6K7UWq1qitRzoSkd2QkPEXq+3mplt6iCFXiVdsZsRZnMqntPiINae1yJEH/r9QS/Nh8PhoN8/OjpqSXbSxBgpgjSK4x+TCWQnyZJYS9COZiqluB4HAM5MWAUICGI3bSmEQCRAyns5A46xo/HyRUuSRBBooypXYdX67FmrtdRZlrmqZkYnlwMrRvxyuZRCr2h0AGC1lgDsGbjKvqxNuPyW59jEqyoaEQO2rkq8lFvcQUCSJFmWcs5GBOwCzfedn5ABBV66kUgomSgNAEhBwNnkJUcqbpwbY4w0AOBd9L6oqgp5rwnJFxygdfVQQrpAZb2UUiqhKcLMLREX/HJNE0RmvIuTySS16d27d4VQGGIgStOciGIIUmit2b+6xaG4di3LkteG974sljFLQwghRimlMXYxW4yHg6w3dM6VZSmlCgiuapIkkVIGFx7e3w0hxNqPxiMlZFmWy6o4PT29dPXyxsb61auXEfH27fXpdNrrJ8tFWZaFMYZVBLADR0IIMbKtCRt7OC6NU2PFaEREIJBzrbIse73ezs6O1npzcxMRDw/3R6PR1atXP/jiB/b29maz2fr6+nQ6d847F5rGb29ffP31N+/cuae1fuaZZ46OjpyrNzY2EmsfeeQRngoXEmwCly9fRHLz+Um/39daAqiiKCnIup6GJgghEYOAqJRAQEGACNpogSK0Hl9grGqCY9JY7Tx25ACuuAHg6vVrTeVOT6dINJ6MEmPfeeed973vfft7B8Vi+eyzz+7tHMQYT473b926s7a2lqV50/h+f8g1rPcekUUGUJIUSgihhIgEZ7Qb3br5tU4kPFaoN/T89IQLLo4tq3DN63ZFaV+By6t6ecVv4OxRiDM2tDjHTuXoxNsNlFjFMaUUe4cAwHnGJRGpc8aD1A1xEpEi4iYoUMzG4+BqiBCBuHpyzuVZn0Q7AhuxWokefMvDNXExb3r5uAqlFMnx0XxvZy86AlRKaSDw3m9tbQHA/d2dsq57kJEQzjlf8+5OkyTJ89zVTYxULEulZZJkALhcLqUQwO6LLMhjJEaZ5ykBZ7kiSRIEDQDsRRFjFFILoBijICGFlloBYsdSBC6uV7Wh7vSy2IWMP9EKH1wBstQJpBBG58JsNosx8oyt9x4E8iGrtWKZRy4ekyTZ3Nx0IXByIjrpLRaj897nec5EHGNMlmVFUVBnvkpETMJbrZ/VPY0xGp0gBUQkbOc2lFIhoDwnuMHNbABgi6x28cSYJwk7/nnvFct5RbK2fa1+f4jRZVnmfSMVQESI2ASfZb0Q2hEofiCiQJJSA0gePOCrtGqrrK7nn36Irlm4+u/5f7tD/Gyt8onGE7okAM91/blGgG92lD2//ld7TQmRpimKNt2iziiVbz1jX1wf8R1pX9p56GRtGKzkC76+vv7BD37wXe96z87Ozupgqut6lYrwwypNkkKMWmt2a3/llVe4OB0OhtzM0J2YFXnPh2YIYVXW8QZExBBbM9hbt2498cQTH336I7fv3nHO7e+zHHMxGAyuXr16enyihDw9PaWIZVmdnp4+3N3/+Mc/Xpb1gwe7aZo2jR8MBkqp6XT67NPPvf+9z7/22mu9Xu/g4d773//+Z5555u23375x48aVK1estePxmBOeV1555aWXXur1egxjWmuvXLnSywd8MQ/29t98+60QgrUJn9113SB+UwJQFAWzlfnacireuBbHd3WT9XIpA0nJuYr3nsV+e72ck20GnT/+8Y9PJpP79+/funXrqaeeijHevHmT7QFZsbbVvohRCOEbJwhc3TDlmWsBBnAQKQIpa1ZZPV9w9ttoas/Y2oWt7clkcuvWLexUIqWUAkWMEZBEKnjN6Ol0MR4PLly4cHx8zMa7zCkDAGvtdDodDAYhhIcPH/Z6vclklKZ2Op0uFrMnn3784d79nZ3dW7duXb06AcmLMl0uqyQxUkFZlmlqszTjz9Cms0ryh7HWshABABwcHDDHcz6fu7rh1RNCYNcv59xoNHJOx+g5EkkQTeO0VL1er65QCGW0UVoIUTkXeAxKKdU4v+pW8eoEgH4/7/f7RVGyMqaU6uRk6msvhcqyTGuptWzpdSistathbd5XqyNthVeuNn/3C3pVC9G5B3xTQtOyUFchW3REQn4J3XYe2piIeG4EDwgRtdCDwVApGdG7uq7OcQkRXV3WSqk0zZRSvsGiWAohpGw1JZh4wh+BZ7TTNOtneS/Nq7LmKYqDg4PT03meZ9ba1CZEIAiU1B5jkmTWWpZlQMTjw+OmaY6Pp+hRCi0kEHGaH/uj0YOde3/7b/+tLE8G44FUtLY2eueGS/LEN40PMU1tXTsmoW9srL3wwgsHBwdHp0fcrH74cJeILl7alkJMT2YUwRib5r3FYt7v9/NeaEd1hLY2z/Msw2S72d7fOQEpXvv6V6VJlFJJmsYYFYgQYoxRGsWDBqvwJCUwYsJV3Hw2k0p17tX+ox/9aAjhj//4j2OM73nPe4qiePPN17kaQcTBePyVr3zl1VdfZXXaxWKxtrbGPAXvvfeNc+4b3/gGIvKU0GAwaKp6MZtrrX/+53/+e77ne958880XX3zx537u5z75W781nqzXVbW9vXnjxo2vfe1rf/Wv/sTf+Ot/7X/8nz754z/2Y965NE0X8/liPs966bkCOxC2JRxn7bwMUCB6jOi1YQpAiMADlRqlYnSYGz+yG3agrpksJYQQ0jTlZjWgYNk+IYRSZnWM8WLjrZplWZqmDIJwvttywaQ8Pj7ef/hwsZz3B6kgUMrE6BbzInifpb269GU1B5JJkrB48Wy2WCwWSWK01mmaJTYDAKMUkDY6WGt905wcHRGRUSpN0+JBqZXNBznfUyJSWsWIJCFJshBQgCZkRoO/dOlSnuevvPLKbH7c6+VCIMtuXLhwaTqdlmV5cHAwGOZbW1t+Eo4PTxazeZrlhS/gnNwVAUtJrFKcyGQOAGA7Rmh1NmQEZD07IYSUwJEBgSOh5yOcU1WOAEaq0Dih9YMHD5bLxeOPP761tfX2W7ffeecWvyJ0xGqllFQtHyfP+9bqvuhP1kbe+zRTdd2MhvliNp1Pi42NSbkouwaY4HhblKVW0ntPgqyAS5cura2tvfPOO6enp0RRaxsCxBjaRguFGCNF5PCLgqy1PAc0Go1aGC6EVYneQf8tR0m32nBt+52N48qyPDo66iCMs6FgDim209vhQ1pKDRBWv9DFVWD4jAcwGWVeNc8BABGUalMofnvQTsmt1I1g9ZxFUbz55tsAGAj7g7zX6xlj6spVVUUC8jwtS9sUha9rZXWMPnQ+S23OJGm5XHKOO52fslSWBJUkSesPWVYs2V/XdWIse/7WVbO+vn758mXnXJKYpmmkEogkQChjeXd3hzsF5/N+dvny5bJoELGu67IsQ3DKyMTapvYe/Xh9zXvvfSBPVVVFIgQEksZY752QXI+dq/MxPv3kk+9697P37t2dzk5mD6bWmiRL0zRdLpe7u7tG24997GN/8Ad/eP/uvclkfTweF/MlIoqigBCApJACCLQ1zsX5fH58eggRgMBYK4QAklxmz2ZLRFxbWzPanpzuCyF4bj1gPDzcHw7HxljnAjsHGmVVK7iIABBc3NjYOjo6+srLr/zH3/3Ucrn8R/+3//vug4drk43E9j75yd9OswyUuHTpinO1UDJGnyRJUcw5U0SMp7OTLOlX1bKqmhXIFZEe3t8FjPfSAQhcLpeAUku1XJS3b96hiDG2RsFEHOigC/uBiCJ650gpYS3jpXI1OhNjRIFGKymlTVRDcXv7onP1Ozfe7vUSqdI0M9HjydH06PAkLuGdN+8O8l49r/t93ZQVQRRivr6+rlVZlmUT3Gw2T9NUS11XFUWIPsQYe72eUYiI3rX7lF3mm8YjgtUmhFDMy6ZpgKQQrB0PABB9kEnqYuC9trW1lSQJ+8Jzx5EnCZjRwLVrCKhEy+EKIdQ1g26WiA4PD0EgAFwZXZnP59vb2/N50XWG6DzixnIf1OFcSqleno9HIz5BfOfSY7XRuWK7P0YoQgiqEyjrpVnlmtXzc7rcNk2FFLpFlqGTPtRae0dZ1uOA3NS1tazYUy+X85/92Z+9d+fO7du3Y/TcXk2ShP1ghRBaWRDonFtFNtu6pYsLFy6cnEz/m//mv/v7f//vf+PGnd/65P+UGn1azCfra5cvXzrcP3B1CQAAyFFGGyOBgmtijCgVSzYvGydOp/0sQ5DRu8QaIpAEFBEjptrm43yxLE6XSwQiiiy2CxQJJCJKEMvlktsbGKOxNk3TrN+r6/Y04YKQyz8mnpzPRYm4H9qKb/IXcUV51qLD9CURYpesWmsRI1/klYvjql3NZQ/vAr6bdV0rpYUkpRRnEQCwWCysNayTE2McjYZ5njMTRUrp6+C9b8qKrC24f5b2qrL1Smo/V10TEWJwMVilmS0hJERgkW7dMV3axIbZN+K8YIv3MXhQUgjSWitQSklWZfWNawG1TkB8Pp9rreuW32CNSYzSRCSShEW0vfdCK/5E3CmPIXJ5Zq2VALy5QgiJMSDl6oiMnaG86GjpXFTz2mbJUdkZvXbqs+0wGV98IooRWe6JL/v5TaeUWrHnhOAToKWFFotSa61BqK6slQqUUkaKLMsg4rKuWHYaETUvyxDrquGdQhGMka5uhJAsyA4dgRQDVlWthGIfGue4Y6G89xSiUkIqI4UkIEGSiCACAisbhBCC0pwgReUCAAiE4F2NlBirtW0a732wacYgiOzkd5TUQsvlomjKOuvnh4eHaxuTj3z4w/d37i+ram9v7/bt22maai0TrWazWZ5mjDE1FfKiTZKEWhtSYPaWECI6z4OkjH4yAM35Rr/ff/7555fL5Ww2e+aZZ3Z27o/H442NDYq4t7fHNL3Dw8PFoirLMkmSyWRdSj2dTpndNhgMvvu7vxsAimKeJsnu7u5nP/tZrbXAeOXKpa2tLZ3o2ex0OjutyrqqmtOTRQgkUSdJqqSRHSeJBAoARPCeIHJCRRFjhNjr5QQxRm+MQoAmNEKI2WJ6ejxdX9/Y2FgLLk6n0+ns9PZtKsvCJPrOnVuLxeKpp54aDca9Xu/u3bv7+8eu8cViaW3KaJ1zIYRY1y61CQeGJFGcfQkhkL7Jz4MTGI5Iq9F7bqlwQrjizMYYeTKYH6um0QqTWqVbZ3lX5ye2WuHnoTSSIOgsCPAvY4j8ovyKsW1mGNnRaV0MPC/Svg3Csq6A4kj0FssCo6+KJUXsjtxUSEMUhVARIiIp8Wejh0iS0GqVDNNsd+dhCAhkmroRRKlRIDWA0jrd2dk52j9J83x+WiFQmqYQ0QcvrZZC15WLGACo3+8vikVVVcNBz3StQfQh7aUcT/KsH9BgMCBUOS9doH6vB1K18ZmIewBSSpAihGBBsT5SVdVSStPOHwsQIASoNp4w9HHW0+JHlmUs6EREHOSl0YiBc3ghQCkV0WPHKQzB13XNVpxMoNbWZsYwwREQObVYrRZumippvKt5SXCo7KLl2XqLHbWFDwullCQJAl2MvDU6hAR95xvRLlcp67oWQmmtldLQVhlCSsEjks45IkFCSmq97DjaJ0mmpW+iBIBEJwIJv1nshTpzwrbWANFtinapr9Qvv+XBT0Lf/OgO7vZBLAPdrTBQZ+tfArDm9vl3Ah3ELLupmhV+JbrODQpBQFJ0w2EA3PLn/bh69RUOxtkRYVw9IXZGfzHG3d3d69ev13X9ta997eDgoN/vc38COoUW6iA1VtKovauqirFmNshhbIEn7Vhng5/Ed0qn8pyIrpTSmpQF5Xu93rvf/W4AODk6Hq9N2PDJOVeX1RuvvZ6mOQCw/9lwOPzu7/5u7/3e3p6U8tKlS8Ph8OjoiCPhxtrmzs4OADz99NNf/vLLb7z66lNPPfX//pe/vH90+AM/8ANC0Ouvv/4Hf/AH29vbaZq+9tprutWErPM8BxCbG9ubm5uLxeLmzZvLqgwham1OTk6cc2mactXgXMMZ2pUrVzY3t55++qnX33rzjTfeYFKIMcoowanF2dXwztpWTHk8Hi8Wi93dXUY+e71eURRf+tKXXnzxxbfffns4HE4mk2984xuLxWJ7e9tIabPUe980zcp+XAixXC55xw0GAzw3PuJcu1N0NxvHQitskoSIw+EwT1Luv0opKZI4N24lu6jM60dP1vrONWwPzXhNv99P05SIOSbk6taEFwCuXr26//ChUmJnZ8fH5sLFrRjpwoULxiSTyQQDGWMYIObzm3Mm2W5mQUQCiLtkjHVyAre2tkYd4ZR9GLTWTWyI6OLFi+vr69xh5r4NIKVp3mI3eGY/akTCAxGIwPhsL8sR0Vpd1/V8PudFELzzPun1MiLR74+XRRVCY1KjtbFGG20rU8UYhSBtNcZWWrpl7It2EjCeGyRZXVn4UxLs2AkXwDfPu/Gz0TdDLauf8m+ORqOAsVMQFowWxRikPiP9NU0d0XPk39raQsTFYgEAS7EMgfI8r6qqaby1aVEUe3sHeZ5rrRFFkuTOucPDkzwfKHU6O1mEXuAlBbC02giSWspqWS0X1aDfz/Ocp1qolVsFjloRg7IGwDe197XPsozle9pJFgPj8dAFhxS2trZtIkGEK1cvlWU5PT4BgMlkcnx8vFwuvW8ODw/n8zkR2cwWRdE0TZ73hsPBoD9ommbQH4cQiMR0Om2apq5PktT0+3meMxVFVlWhtbl2/YpEM51Om8YrIZuqSTIthMDY3kEtFBfV3T53IeDKJUYIYZOEY1lomo98x3f8vb/3937rt37r7t27d+/e/cpXvsIJbpZl3ntA4v4SAMxPT68/9thHPvKRV155ZWf3PgCkqV1fX0fEW7duZVnW62VJYopi/vDhzgvvf/4973nXv/23//bhw4fb29vvfe97P/zhD3/966/u7u5G577v+77vypVr//yf/8vFYvmTP/mTb7/99mgy4VyNXys4P+wPlBLL5bLxCKAY5uQdpBMNgFVVGauMMTw1NplsWC1Zn9pFVEpaq50LvE9JCu+9JEBELpaSxEAnWm2UFa0sjBBCBYzclDbGrDDlpmm4niciKS3GaE1aNWWa2clkOBwPqnqhTTvmxkmgFLppPICUQidpIoQyRsZILlTGGJ6H4IUdYwyKIGJd+XLZgIgClDF6MV9+/ZWvSymHvaHHSCSyrMdvhjcIImmpQ4QYA0Sw1h4fH52cHDrPJwHs7uyEGA8Ojnq9HiINB2Oul4bDISJNRmv7e8dHR8e+qXkgtz22Oyvjbzn7u2MYiAS1hvJAnPdKIFoZyksppRCdbYWSSZIMh0NOsKy1QKikWs6Xd27dunz1KqFwTbDWCiEJWgvWJEmkhOgxTZLReCSECME1tbeJDrEe9FOMeb//+MHewWJRDcZ9VzVlWTJgpG3a6w1dE5xy4/FaauWDBw9u3LhRFAUItInWWlpreRpOCl3X2BEElBAIwAwFzSPGPBuxSoxWOQevRmYP8QGJiHmeMw+IzTDFOVHLVd7DmY3qRhrH4/FyWTHvaVVeYifWrLVumgpAIsJqQpyV6aAV6Azni5PVLSOKbJMrOqsNRC+lJEHFoiyXdSsTwePw1vZ6Pa6etra2GB0j7qgr1T05OOeOj4+VkU3TTKfzPC2TJOn3e0qpUmtOBYwx2prgPCJqo/7CX/gLy3L+2U9/WiesVS0Z0pIgSaAQYllURwdHUksh2uuZ97PBYFAURWdpqDY3N0eD4YMHD+ralYul1lqmupf2iqJAH0NJaZpIBURIBINBL8/zvcMDKTUuS2ttURTDYX9ZzXu9njFaGLO/v980javqo8PT4+PT6XQeCaxNi6LsD4YCQEm7WCxijHVdKzAhcJsH0iTLsgQRvY/ex6IovQ/BU2rTGON8Or9w4YJSptfrpalFRE61B4NBVbq6rJwLrgkmt50M2ayp68Fw/MM//MO/9Vu/devtGyoxRPTa177xf/i7/0cQ4ru+67vYuGk4Hmip8/FaCGH76oSH4I6Ojm7evNmUjdG2qvzsdA6AvX6GIXKIAGP7Wb67eyAlrK2tbW+N9/f3i2Je141S0jnHsqdKGaXaOS3nnFYW2mIYjcl4iIpTTAaPQGCaJixJBKQkaB/jhcsXslxff+RyjGFnZ3cxrW+8fVcKnfQG6HCJXksTfOOcI5BV2Tz12DNaLe7cuZckSWozxOh95BChlGLrUWtTNqcVQkihKBIgGGUwYOkqAPAuEgpmVa60+gFkXbs0TdHEzfWNZ59+bl7MBoPBYrHgPeVcO1IafUjTPLgYYwx0tlWlgkE6WCwWRVEghTRJmUz9+uuvhxDG43Ge5yx7xYkpz0XGbmiaqQxMOOBoxsc957JKKmPY1piccxRiawPXVTLOOyHECs5GRApRCEGSGAEgIi5HRSsxqRFbRJ6VdJWK4/F4f39/uVz+g//qv/q5n/u5m++8M1lftynVdc36swBAXMFi6wVijCmWlVLK+3D9+nWt7c7Ozj/4B//gqKyODw6NUYnVw+EQO8t17z1IwVfdGMU0DgBwMUakgLGu64Lw4uZGniQhBCF17R0RaQkxkhQ07GfRu2mxSEwCUiMIYY33wgdMjG3BAiQUxDeOiy4OcSEyMbQViAzhrCY/n6zyqoZOhAHPxnR0CK2kiZQgteoGio1zDfN/V1Rc6mbP+W5y+ic6AgQi8WfXreJk1Ikhlp6Q0iaaxwK4XsAQG2gYmQ0hzGczAYqdclfnxXmuRqZUx/0FIkJqP0I8N2scYxRIkiBJkiQ1Vem7ppHSWpvUcM4gJAAAJwYAwMUYL9QY0FoiIl4G3sfZYi5BAEgjVVs5t52YmisdIdp8zHYatTw72DK/pIwxLhYL771A0tYq01K3vgUyNqJFLpqmcewrqHjOrCVBd2gCrNBq0WnL8JZRXUsGAIxthVZ5lpa/1qADMIdaImJkQ2OTpDFyZDNaQ2uiEObTmTFJnvaIWjYWIXkXGdvgW8HH93K5lFImSVaXUyllmiZNWSVJEqOHltYHQsTzORU/IdKZJu9qpaXGaq2LYtk0jbHWKq2k8iFicOxchz6ExhmQutcriuUHP/iBD37oBaVFURZ1Xfb6mU10XblyUUynUwA5GY1Ho9F0Ol2Ws/PNcgoRESmwwon3niUpY8fHdAJISrl94cK73vUu7/2rr756fHz81ltvee8Hg9GwP+AxbW7GX7hw4c03bp5UpxhJKhFCsDYVQmlt79+/r5R65JFH3vvu98xms3/7G//+3t0Hk8nk6Scfv3TpEkHY3d/V2laLZm/vYDZdKtBKpkLp4CW1cJ8AIIrtsB0igpBGKa2lixi8q1x87PpjvV6qE7F/uAeCvPd14UejwWg0jOiLZbG+Pjk9PV0uF0Tx8PD4woX3PPHEEw93d3/1V39VCGGULRZLPhSIPHsMeRdDdBIEk/2FEAIF0w8xAqKHc3AzALTTY51QDBFhCIgM52mtz6TnRCe5xlwf6iRlz0Njq6dd/Zd/1A7SRVxV07z6xTn4W3SE6y5RbPFurXUkZIySVbAinIHURKSkrGuHMWqtahdCCAkSOJ8kiUkskowEiEAQQf3ZcHMMYjEvfaDhpNdPx2VZN0SJtiHEqgxGSa3lm6/dKMtSQRKaVuLGN7GfDxmTZVvgNLN5nm5tbY1HQyUkD4amadoS1xontCqquvHSqL42KYsjGWPyvM9FLhdHAO21NcYKwZJHgRPd2rm6rrMsWzHnEFFiO+CCgiMwcugTQrBlHO9T7sS4cimEaJW1qFUn1i1/nJWI27l5pXTW6/FdSJKMiJQg51zbm5RaChGJfOP7/YSAYoxaaIxeCg0AQBIgrlCUPw3LSCmFFEKwp5igth/TKg5JKUEAInaJgVqBszFGY3iI3DRNQySI5aFl+2s+Bu+9MTJgy/3iLEios5V//qilc8byjNwx2vbniWmsjmPqHqsf/em90K7wiP7cwgbFgxvEahXn38wKfRJ/CrzCViJSnn+h2E2qfcsnagu3rvvSAemtmTz/+Wc+9anPfe4lX9cmTcuyzLKs62SfDf7yd/r9vm0aF8O1a9f6/f5kMnnXu95199btr33ta0qpyWTy6KOP3rp1i485pi8IIUDJJEk2Njbqul4sZlpLrezHPvaxCxe3Qghf/OIXhFCpzZ5+8inn3DtvvX3x4uX3ve99b7311s7Ozk/8xE/0s7yu60tXr7z22mvf+MZrly5dEEJcvXr1+eefX1vb2Ln/4Pd+7/e01hsbm2+++daDBw927z+4e/fecll89KMfvXTp0q//+q9XVcWFMAs2HB4eN03z4z/6Y4899vgbb7zR7/f+8A//kA+FZ5579urVa1/4whewE5vmNcC4nJSSOXNvvfX2G2+8QUTj8bgo5saY0WAwn89Ho5HVJiJIKXUMIYThcJim2XK5LMsl86C55emcm8/nJycn165dY5h+b++hMXZvb4/9S1gWjO+acw5AMA4+GAxGo9FisVguW5ULbgFyWGZOOh/K3IBpg4mS+/v7q6RLCCE7XYf2XyRQoLXWjz32GJvUX75y8e6d+2maAQAPyiGic14nii+E1pppCEmSvfHGG41/VFsjhc6zYbGcz6YLXuNCgOyUvIuisDqxNmka35pHI60GBDj3CiFwMR9jtNZubGywHspwPFpbWxsMBkoJY1SMHqDlqUkpWUBzuVwKMEIS+hCxVUZXSqWp5YuCiJPJmhA0nU4Xi0VwXkixt7eX57lS5vDwcDxee/qZJwGgWJQQqWk8YozohdBaa09+FZ5ijCDa1tlq47EOBqhvCgqrEEDnWHurVuoqosHKY5B7/Z18FTffyrLU1jAhmvNvLYXW0oeGALyLLTJoMyklkKzKxofm5OTEmhQjONdUVVUUBXpS1oyGE14KSiklTVU20+n00UcfTZLk8etPHh0dPXiw0+vlGDExellUxhgpdCSvFWNPQgpd1ZVUbRLP2QNRnBdlYgy0uDxZq51zCGhT41zTSzKbpU1THR/v7x3uXLlyJU17xhhuHjBiwouyqio+O22pPcYsy/I819pMp1MiklJZa0Nw0+l0Pp8LARFhc3PI/BGiZm2yUVX1zs59ADuZTBaLxXJZCaWaulTaGq2YzMtvfrFYMI9JKYUeo/MAgN3IiQIBSFevXrt76/bJ4dHf/M9/6pWXv3L7nRuotI8odDeqY4yScrFYABEQ/eAP/uDf+Tt/5/u+/y+WZXn9+vW9vd0LFy7EGDc317nnsbW1Udf1crl4uL/HJoFlWb788stf+cpXjo+Pn3jiieeff/6rX/3qa6+/SSBPp9P/8Nu/zQDTr/7qr/7CL/zCH3z600SUppaImqbimxJ9kEpJBYzkggKhRb+fC7mCwCJjwSxHwIuZLTRjjM6FQK1DOkKrEMR1iHNth0aCYkFGpVRdO984KSX3dTgs8EUzptP2dWSM8THkvbQ3zMeTfu3qCxe2p/NTbZVQqRLKuxgEMkQopcyynhAiBASIUqhAUUsppXLO13UdQlDSAEAICBGNhVVB++DOzmDC1haGlXN157rTNE3VVCTI15U0RmsptQzB8eguYmiaBhrw3o9GIyDVywfcKrRWIeLdu/dCQywowUNV/OkIUcDZCY0d5er86SsICRAxEKEAQUDnPQYFnQnsxBgxtpMNSimtpbU8LBaUkvfuPtjd3QWR8DgCcu4WG17GUhrvnFLK1S7L0sSkxXKeZ+sx1GUM4/Gwqpprj1wTJIRQs9ni9q27i0UxX85zBK1NDAJRHh4ejwbJKv8gKVCADw2QB5Cs4y2lTNNUCY5gvq4dZ0s81Ma9Ge4snk/0GUFI01SZVolofX0dAPb29rhn+y0JzSo7YbMpzneFENeuXZtOpyxWuyrI2RiBhZuZryqlFEKtzC+x84HhTFfI85J8hOfGM4NHQtbZtwCopYxA4ptlZ6UExHjp0gWemTo9PTVW+87tMHgP0EoYeZYTgrbf3jSN95ETa35XnGWGEPr9HEAS4J07d4TWjEQQ0SpMsV5KaMJsukhSQ4K403b1+pXBYMDXcHNzM8aY53lv0B+MhsqUVVM65xjsaMcgrK3rWkhyzhEFXIb17fWh658cT5W1R0dHu3s7SWq3t9ezPJnNpgcHR0VRGKm0tkTi7bdvoI8mSe/cudPL+7PpnMl9PJYVIy3nC621zayQlCS21+uRwCTJlsslRkpMosCUZYmIa6Px9vp2JG+MsVZrrRnKxxAxhvl8HiMBCkQMhBqkEMKmRgjxyU/+9v37O4PJhLP/uq6byoUQ/uAP/lAIkSRmuazefOPtpim3LlwwA3ywe399ff3BvftlWY9Go9F4KGVh1Fqalgd7B2maJloh4sbGprV2Yzurqsq5mmm5WdoL0cWIxlgAHzzyPu2KNIiRNXxljHE+n/OoAUsBgsBeP9NaG6OVkUSRiAY25z9/13vfVRazLOs//vjjv/PJ3wMHqNnoXAkSWkvnSt4HaZodHBydnp5KqbW2ztVEcT6daasESCGEVgaQloulq50A5YJfzIpK11yuB49tugKSw773vJ0VIjLooLUGkGtra8vlsi4bY5I8Z68nrOtagmDQOQS0aSKEFAJijIBtQ8gm2jo9nVUcadM03d87EBKq5RK4p9IpNfE2ZPFH6gQNsfN44dzGOcc8fCXVCjvg7Wm6kSz+vnOObQ8UCKmUFBIFoNYAoLUC4JlKwaULRyHvWtTMWuuIiqKVw5ZS/rt/9+/5hGWnFT5TWr6b1dpapOBcm8vVrkEKRprBoH98evId3/kxrdTrr7++c/jmxa1NANQS9nZ3EdEmbSeMUECivPd1iFqQi4G7dsAlOAEIDTrRSUYBowAfUAplUyuUJ6LU6Cxl6QqUWkiQAYSQEiAgkDFGKqCI3ntk/YGGpxIlDymGTlYYEVfn1/lyUXQqqwByxXA6i8NRkGiJn1rKFVQKnSzmKqFFCgTRJjpJDXQedIzsaK25ZzMej601i8UCBbCEsVJCWZVnGevgZ0kaQnDOiQjRB2VZglZipJWOoWgFSaTVSimuCKCTNSYA0kJGdUZzW2WqojOd6w6dtsBrmqaql9BpyOrORWOxWPi6yZNUSslu09TqYGDTeM43MJw9v1IKiYqi4FkfpVTwWJZlcM53npk8SRZXItqITe1QgCCUQQIAn6Hck+DPpZRWWhqpVuNBSilptOi4QquKQ0ophIRzGNzqFkQiKYXWSgih9JmcTmIT1Sl4SgCltRQQQvDRYZI2rnEu8O5jATcByhgl2ulMBAB0KEC4EKuq0VonidGW8zTHA6myoxlJqV1VM5tbnvEQxaoUIhBEUWuJyOc5IMYSau9iarUSghO8k+PpyXSa5Ul/MDDGNN4hoo0mTRJOhouiyEfDxx99TGu5t7f3+Zf+KMvS7YtbPJhvVXN8cFSW9dbGZoy0s/OQSEippCQAESNP2UtmX4ZOxuSsyR2ilBIEJUmSpenXXvn6/QcPvPfT6XRre2MymfTznpR6NjudzWaj0Yjl/i9sXdzevJD30tPpNIQwmUyquuSJ5lu37uzs7PzhH3z28PCwaRoW4zo4mlaNL5ZziOGZZ5/up6O3XrvVS4cxgBRWkIyeN6kiCogAoIlAgASgGGMAIqQY43A8WlsfGSORgvc4GPRPTo7Qu+FwNOj1WX1eS/PoY9fDO05pPRoP0hMrpbTGMKYQXGyaxmoOJggArglCCCmEBDZ8bqSUShkOIhjBOScVCCQiDNQGE3nO8fV8RbyCmb4JID5n8kEdhriighKREnIlD93mxN0IPxEFjKL1lOMnETG2tMeu3G6hyXPZ3UpWkbeqJ1KIGLDldvgYiKRzlZRZmqba2kgU+W3HyILRAYkQhSBzTv3gmx5RGpWOB+unR4dV5eoqUFCEUqLWRscQqjIAAEYRY9Raaa2BdGosRUxt0ngXY0wzm2WZMVpKILDOBWt14z1is7GxgYjTunae6sY5Jwf9vkJROgdS5WkfgbiMIiJ2yOD4vGIH9/v9LMu01jwsHOOZACtz+ICdzzUTLJQ0VgvgjcmBiHPmLMtiUTTeSymttUrQqi5DbIW2iaiu6/F4DCCMtUqppvFteGfrVxQIks5pZ5VlycsjxoiCBUTPuLqykwVQSvE7dFW9+g50NHmP6H0wxggl2dhBAAgpucoDaD2QQEr20WWsmVkdni+aEjFG08900wKs3CqTXVcvyZNvwX/YWFt0cQ8JZdd6/7OXCv8t/ikaIgEAy1N3FVNHfVptotXVEELwEYjsI8qnuzjDnUT3WIHaqwMFu3am6HjQLS/t3GzB+bequ6k+rSXnBnzN2cr4ufe+99FHH9/d3b179y5rKK+KPt7a7WVB5EOZJdeGwyEAHB0dvfrqq8vlMkmS97znPU3TfP3rX+fkij8jk4gnw9GlSxdu3bo1GY7m8/n1K9cnk8nB/tHb77w5Ho+5F3L37v3v+Z7vqapma2ur1+u99dbb73rmuQ88/+Lp6enu7u7LX/zyG2+88UM/9EMf+chHPv3pT7/55psXty997e5Xv/zlL1dVzUjO0f7B8f4xR62Njc29vb1//+///Xw+5ynwCxcuDAYDY5I333zz4OBgd/fhycnp/fv3Dw8P+v3+T/zET5ycnEipvvjFLx4dHbEh02zWdjo3Nzf4IpTF8rWD14QQOjGDwUAIMRpd9t6Ph0NeitGHNDNVFRXwLEJV163cK2PuvV5PCBoMevfu3dnff7ixsfXgwQMGdqxN6rpumpIFDKfT6fl+BufnzrmTk5OqqkInCMFAE2OevV6PF0NLNYhARNbawWDgMTrvsiyDCEJwailWXWREJElKSK2UyPO0abxzbnNrvawargNX4BQ/NbewfGiuX79eVcu0l0upb9+6F6ITQsTQORoL9C42jSMSApQAxUqIQgh2rCKKhLRYLFgik7nDHBd4dRqlJ5MJCUxTq5QAwMWy4KpAKKl168vJebZSiqfhYoxSArMyATAEqut6uVyORiPW4Z3NFkqp97znfWVZfOMbr4WAV65cPDk5mc1OpWQaslBaFcdz5yuljGt8CDL6yCQ/zlaN0avteh41Xm2Y1fe7PP5Makd10zorXGa1daWUJKXsaBr8CCFIrbojMIbgIoHWWioppUSiYlFmOc98KQB5cjL1vnFNCL5kq9TT42MppRRaCwkE9bKWRq+vbwoh7ty5U9fua1/5epano9GYFw1RC8ow0ENEMRJiLMplmqac22W61d1GRK1lkvRMkkopJxODiIP+6OjoyLmmqkoAyPLkypVLSZLUdXlyenw6P919+CCxfSllZpMkSRhuYCIAWyGzs02aWOfq5XLZ6/XW1zeWy+V8Pl8ul5yHrK+vSSmns5O9e3MAAAk6gWVRX7x4cW1tbTlz0+k0y7I0zYv5wrkQAoJUq8vua5/189VBkmizSitXcVZK+e53v/uNN9742Z/92b/yV/7K0dFRr9/n7RdD254NIQihjDEf+MAHHj58+NLnP7+/v7+3tzcYDJLEXLt2bWtr6/j4cLI5bppmuDaMIu4f7+/tPdx7sDveWNPa/sAP/MC8WPyrf/7PQYj/yz/4v56ent6/f38wHn3yk5/8mZ/5mdu3b9+8devixYu/+Zu/ef/+/cn6epIk8/nUWst24UIBQgRyhKSUSJKEoXAhiZ0/m6bugkXL92maJkYIQXMCl6a2CZGDS5qmUrRTZlVVNU0TAiIGJbRupZlte3FArtgxHPe9971ej0mXXlNVL3u95MUPvV/IeO/BHWXxwcO7Qog0yYWQQBajc64dhxFKT6fTfr//bd/2kaZpPvsHfxhCMMZoY4CI4TnvmGaoQCmAECNyuZX0Eu5wmjRZLBY8bDIcDl1oXGi0ljH68fpkOBporUNwwTdSAouTEnLxk5bLoFxprb1wYauua++x1+tvrG/dvnlHKWOV9i4YYxGBIgrReiSujsyzkmk1rCRb55Eul+XN3iY9hKJ1aJJSGxbad03TToExf4ogxog8T4AguTDmrL3tyYMgImtTQlLKAIjFomgaV1dOWcoyG2NcLhdEYjxaG41GNjXz+bTXz7RKsnRQVc3hwUlZ1kTCubLf7w9HfUSM5RlKK+nM4J4nYrh3ze1QppuxQS0rzzAUKIRgljEiMo5gEsubmqd1VgSEFfyxSqqo7f/DquxHxJs3bwohtJaIAbrh4hViFWNkLAwRiAJxx05oJVUMcaXmR0QYWyX9Lg4rQaCEBCVCjNqwIo3U2mjVZm9tcKbIkIsQggAJMM0S9ljTWhudRGMQsa6dq71NEwEYQ1vtiw5Nk1Iacw6slLKsK+fc7/3+fxRC9AZ9wPbud0AhaGkihRhJBcLIOuE6y/Tp6awoSj7dnnkmH41G3/jGa1LKsizW19c3NjY4Oh0eHmotvfe5mRTL+WIxl0qNRmsBo49NwIDRSZPsPNyVEpSWUkJZzcuyRBKpsdam/X6/ruuqLLVN1tfW6qqZzWYUY94fjkYjcs3J6Um1LLW2LjotpRLKOWfTZG1tzTknhRIki0UthPA+Cow81aVy7V2tlHDOIYXEZgcHR7PZAhGVUCigqqqimAtBxqrxYFiV9f7+PoM1rOvFFUi/35dSDofD4+Pj2lVSy0uXH8t7vcP9gxDw9s07zrlePsjSGHysqsra9OLFzSQxs9PpoqkvX7x4+fKV09PTebHUWjZNXC4XXHlK1AQkQACdWVxy6nKu0wZSGsQgpeEAKCQpbbIsixgiBasSIUyIjgiTxB4eHggZDvZ2jTEb61tCSJBgrZVSa6G8d875EAMAKZ3Utbt161YIIbFWa01kYoS6rkfpgDlcsNqkQjMPyDlnpGEXtdXQSYwBGAtrfVQIAARSIKyqumlqIrp9+26SmLyXc3mwXC4BJEnRNM5aG0KExnO4IiKQwIdgaJwSYn19fT6f835n63mjLWtVccK2yoh4/pHLNpbK4XXuva+rRgpBGHkeX3UPwZiyMSudDdHZAYGgFaMKWgWeFpLgQ4q4o5xnMUYFQkgQkorlXILQWhdFwXpuiPFXfuVX1tbWeBqRA0WSJLEbBObAF6N3zkXCNE21VsaYqqoaV9Uobt2+PUiSUC+FEFmepVaHEIxUeZLWLoACDdLFULlGRcU8YCMVdaLJCkTV+OiDr8q14UAoIVgxSRLGGNErCWliG+8kGKVUiK2rG683RMIYQQoA8N67GEiA1cYYw8obfP2FEETifJhdffEt1aMQagXjtIg/RCKKoZUV9t4L0bYTeNXZRGOAVZOspb2g4PFqRBQCrDX9fr/X66GAGD0734hOj2U+n+dp1lKiUBCywqYPgZsEKQAoo1eeUdg03PhcxUliLQzZ6k3JruvI7wcixlY3pIkhJGkKoFjJSinFWnmMQ2U2kQRKKoitO67W2jkfQvCsiq5VJ8IG7FUgREtGaYLnS8SQDWFQovWq4WsFnVap6PqO7felaFxd15Dk2eqd8/sBnqiIAbuk1BijE7sqK1Zw2+q4WdXwqhu7UbK1U2NqM9/ZJEm8a12kQgg8Ue5cQAxWJ9wdlFI6FwBQKgnUqmNZmzrnnXO5zaOKAEC100JqLY0xSiqQJIRhZPno6IiF46TUWimttXMhRN9peQsBqi0Jgc5/IklAkTx6CqS1HuS5AGVN+sgjj1z2l1kIqHZVCIH3o5RiY32rd/2RsixL74jw1q1bf/LVr0R0169fXS6K0+MTbZPpdDqdzpXQIcB8tuRwQRSVMgBQt66GrTqH1lqb1hdBSilBSGMZtmZMnAdKyuXywvb2e9/73ul0CgBlWa8Y7lYbALh/b284HG5ubmppBqNhr5czuar3ZE5Ep8cnr7322nxePP3009/7vd/78ssv/8mf/Akn5IO8t5i5d955R0GCXhplEYF1+bFTD5NaUhDEY/8CBCuu+ogU8zx/z/vf8/DhA6VJW7VYzOuyWRuvg0iLoowRAcWli5tpkmdpb1kurEm11rdv3bp7+97a2pogGWMgkuwNwYJRrcBuFzesTQFQgWQSkg9Nt2iJiASSACDBaTCP2Lcpn+w4xXCOOCnP0fClPJvlX1XK7daIKKUEAStcjJM67ET8pdBCSNHNFnNSuuLysz7ZKldf7UchJWKoqlqzfZ5uS30iQgSSBCSbEKkovfcxEgjQ2oLQZV0rpRgBl9pobeHPegx6vf5g3M8HdVVNj5fFokxNLgldCCBISaOsQQpN0/R6Kb/VNE2dc8pIvlA1NXy6SSmdqxGRYsiyDAkQoVjU3vtl0YQIRErrRNsMhMaGeNmkSd5+UiW1aEcuACCxGV/bNMmFgGVVcQuBWeoclhl6llppobuihhDRC9KkOeZ3B3FbmgmkgIFrHClZRptUJ1N5enoaQnjssccGg+Hx6alzbKAFi2VhBARWGod23t17z+qmWusksVwiNWXFyya26nlSKUkSQUpuVgVCApLYxucVDsOIllJtEbE6BLmcF2z+rDV0MKtSSimTJAm0Y05seKOlhDRNQyhY3VQpFWOQQq8WM3bKqKyg4ZzrzGgUtAeV4JbLn7lgVo+VXEa7aM+BTl1nBVYnwkrHgKiVXZV09tNvSQDOXqLDvqnTGFj1kldsKl54q8u4+ho7ZRLqpspWpEkm2/7Mz/zME088VVXVL/zCL9y4cWP19s6/NC+b6XTKy+Dg4OCxxx67du3aJz/5yXu37wyHw9lsxh4hIQTWLH300UdHo9HTTz89n0+Zm/jiiy8WRfG7v/u73/u93/v888/fvXt7f39fKdk0Tmv9iU984qmnnrpx4+bbb79z/87dF1544cd+9MfX1ta0evBwd380Go3H47puTk5Ot7cvvPzyy7/xG78RQnzuueeee+65/d2HhwfHL77wQRZlqpuy1+stl2VZLpMkGQ77WZbN5/OqqtI039vbS7R54403NjY2sizb2tp67rnn1tfXx+PJV77yla9//eus1MSo+pUrV1KbLBZzY0xibBWqS5cuZVl2eHKklGLF2vF4jMGNRgPv0/XJ2oPdh3t7eyZJeCNYm0jZOu1575fLRVmWnIrcuXPnwYMHTeNZXdo51wniOda5YsaqlJKTHNVZgDKws4rkRLS2tsaYEvOmASBJEqOT0WjEsgr3798XnXGr6NjNnX4jZ9ExxqgZOaq6hw9nLr18JCwXRZqmw+GwqpdKqUAuTdOq8ft7xwhRSmkzOxgMEaP3XndxP0YSoPr9YWqzqqqM1Rwry9KH4KSUQRvOF9u0z3tO8WtX8UoNIYAU82IhpTxT8wRKjCISUcae7KVpylQF3g8sPqK1zbKMwcS6rvf396uq8d5vbW0JobROn3jiKa6RxuNxr9c7OjpYLpf9fr/XG/hQTyaj2WxprHJNTRGkMBwjjDFGtV7YbeeHgGRbwp1t+C7tW52R/G88Z7m7yhEJUXeugzz2wscnn458iBKxX7xh55kYIigI0ZdlyVM2NtFJkrgYONuQxJJtsqm91rrXywAED7MP0qxelovFIjROIGV5hoiHh4fGGCVkcBFQRBUD+2Mak2nNsu4tMUFK52vRMoBgfX19MBoqJYqiqOtmPp9PpyeI4Ly7eGl7WVWzo/lrb77xwgvvf+rZZ/Z2d+g2ee9doBCCawGsFk/s8qeYZRkDNIhgrWkaX5TLZbn00YNAF+Kjjz76yPXrUuj79+9bmwihvv7KVxeLYv/Bydpo7dq1aw/DoVJqb29PKytblS7NLWjdDbRyBcsrnD/dKpvhWOmc+8IXvjAejw8PDv7ZP/tnq5kaRFS2bRt4771b/u//zt958cUXX3rppV/+5V/+xquvDoY9ImLN8XfeeQsACjcfjSZpmty/f//Klav/+B//4y998eXPfvaz73//C03TvPLKK73R6IUXXnjyqaf+yT/5Jzdu3Hjk8ccef+rJJ55+6omnnxr1h8899+wv/dIvrW9s1E1DEJXRja9JAEJMdKse0zRNnqf90TDNrHOuqipjrTJK+paKHkJwjQwepdAksawKItLKCiFASF7e1qZa69C4pqlXHSClDM+eczLRcsQ44VaKy0XerawjiYiBAAXWob57/06aqWU9TxLdNGUgSGwmpUozDUQr/Q3vG++jauqjk8PZ6bxxdX/QIyICFFIYqRGjcw1PZBEKCcgCo3zjpBQkxWKxKMuCiHx0w3Evz1PWfJvN8MLFzccee+Tw8HC+mI4G60RUlnVdubr21qQsTSZINJXb2zswRiGFJEk3Nzfn08V8XkhozZGkZJM6IbpCXZ2pW67Q567D3LE2hBCSBHaEaCLiJwHBpL/IIgnn40N7rksCaFsg6IORSgjBFiXQDQszBOSawJMBaWoRaXvzUpZlx8fHgML7OJvNTk9PlVK9QZ7mWZ71i3lZFPP1jckmyt3dPY+xLGvR6nVqpTR7+DbBa9GWW9xpZ5qDlJpPBzrXJwcAXhWqU+LrangIwTH7rCyLGFtru/jNxsrngQ8iGSMhQpYlW1tb3nu21jXGSEksx9w0FZfEfH1gNXpGEgGkOGsGnA/FbfgFjr2IXd8oxhg88kyuUgpFi9HwZ1dGElFd13VThXiGKYRunJn318quXcmVxit371pPFdCKLapWxDQeFVLSlFUhhMjzXBBYa51rG8sxYowUJArPpzhIIYKL0WNdN4LkfLooi2p6Mou1H66PrU6Ci3Votrc3H3/0sZu33tFKKUsjO7CpTFLz6KOP9nq9nQcP67qeaqmUsDYligS4s7MzGg2uX78OQpVlqZRKkkwQrK+tb2xsjEaTmzdvkg/5qA+EZVnwed0b5IJkjEpISrIkhFAUxfr6ulbG+2K5rNo6QehAuLPzMLG2BjdfTC9fvphl2e7DB1euXJnNTlPby1Plmja/R5REETFMFzMIKs9zDtdcpYQQtDTOOdYuGAwGSbAe/XxWTGczlkSINSmZuipOj+eL6XI0GvT7+eXLl52vj47ry1cvbKyvVa6URkXwzkehyRqDCESU2qSpaqUMooyxcS4oJVJj+WjwyKYFrECHMcbRaPTIY9ePjo6apmlcDUJoI6VWRBEDIVYHh0fLZXHrxtt83t1L9rK8X1dzVxYgKpOmXTUCUiogCQAxEKGIMdbLsgmNUoKVVdM08T5wB04I0TQ+8hd1U2GVpilPpCJGrTk0iRAQ6IzO7yPFiDE23gemAkitelKmaRojDQaj6XS6mBcgWroARXDe8S4zxqRWU4zOe6211VprXZWl17rX77drWALvVo546iwhjAzBSBCApIQEpLqsgMB5v5qe5j4Tx3YjFXUGOBxhWiSdzqR7Yowr4QJ+LaVUIHRNjRUAQMo2btZMp0sMMU3Tb//2j/R6vd///d/nGmM2m3HGRUTWWlfXnA9U1dJjTFPLYnYkoKqqqqq11oPB4Hd+53eeeeYZY5VE5BFdV1eCILWJUNI5V1WNtsYYa5VpAlJAIASigEEIEQMJBT4Gd3oqkET0SqlBlkQJRCQApJShaSBGraULoixLlMrYVGrjeJICUQoBsiX7gWRBFeBWMQN5uhMCPu9Zfa7mpPN1ozjjAAK3SKWUPL8cQoCmNf9hh2rfWQIqLXjSAjrbKP7XWMVGMfz8p9Pjsin5aFvZmmutKUZOdOvKaa2NESBUEIFd40MIiCWBRO9XAdw5F6PnXrdSKvgIiERklTlfQlPbJJR1qNu3IYUQgmWOu2Maer0eTwFOJmOtNbuo8bqNPlBE56JzTictLSYEdK6SUvrGEZGRKkkSoVveN6/e0Ljo4yqZ5GXZ1SZtIYcdxzNJbVmWrKAqOp09rTWLnHjveUgClNSi7TfzpVtVE/yIMXQHblgdyjFGFiyKMfrQ8Cyg7OicHGzhHLpHRFXZaCMjoVIqTVNW4WE9w8PDY+ccawcrpVjhHQCt1coY733jKt21Iubz+Ww2U0ojoqtqnedN4ykiCBKKJKgIQEhEJEApRbo9j6xVmnHJLOv1+31pMcZ4cnByenqapelkMumlWYxxydp31iZJgjFMF/OmaYzSMQY2QeoPcoCMiJgq4epmejKNHrOstyxKIZp+fzibLdO8ZXk3Ve1ZDdYjAPv3MOLJEiVSKaO1raqmqurpdE4UR6NRCGFjfTNNssX8wXK5LJYLItrc3LTaTKfzqqrm82I6nd+9ez9N0wsXtgAgUuDKdDwaSSl6vV4IYTgcra9vGNM2YLwPJwent2/dk6CsTckDz2JqJZEoBIcYEFCQQuJmQZBSSi2IJDdsau/eeP0tISMA+dBMZ7Neb5jY/qJopqcLrW1i0rp2t2/fXSyWxpgYaTSc1FWIMR4dTaOPwYO1tpXABIjxbAOuwGIhhMAWZpJSKi1iPIP2iEggRYirGM4LTyu14owTtYpn8pzR33lMcxWaeL+ztid7dK/+6nxZ3drrdlYnnCcwLy/GKHQ7ZCM6cXNig18liTQRKda/Q0JEQYJYuwaFlFAu63l0VrEGFAmlnAu1q4wxidVSCoxng4zf8qiKpU2buiyaRaNJWpFQgDzNrMZlUfX6GTMGjFFJYrMsZ/hCtgyhyK2vunLe+/X1LMt6ZVmSFGXpeAx9b/+EizglSRnV602MTgiNMVBXUWnL8/JKKa2N9y6EACCU0qtBdkaslG5dc1c3UWvNd4aT6lXPjGsZF4MMkksDvgWNq6TQq5ytadpxDY78McbZbMZq+Pfu3Vvb2BRCaK2k5JhjqqJI01RoxZBFCG1BxHe/YxZKFDySQlJq9t+LcIarsIJT+7oE5z8LfwRmLstOVkW0/l6wIlEJZVYfM0mSxrtECiEUoSCJnasHheAkhNgphBidoAzdwm6lZQGA56e7wq3lLPKTSyHh/79HCxmfs6I870q5Arixg/yo025e4cJELdkJzsg9crXvVqcJnGvZrnYfFzurJIFW+odIIcZun57ZdRART+XOZrN33nnn9u3bDx48KMuSwbrzINi56y+ZKXzp0qUPPP+CTqxSKjFWgqiq+vN/9DkXPFdeTz755A//8A/z2OhisXCuXltbW1tb897nef/pp59N0/SJJ556/JE3Pvk7v33l6qW/9bf+1vvf//5f+ZVf+dIff6Fpmve+5/0/8df+ulLq+Pi4nw++62Mf+9znP//HJ18MHh88ePD666/HGPM8Xy7nRVF47y9fuvq9f/H7H3300aZpjo+Ofu9Tn/qjz32WxbtBSkZO9vb25vO5EOoDH/jA0f5hr9e7fPmylPLilUt1Xb/00kvG2IcPH370ox89PDx88423rbWPPfbYcDgc9ge7u7sPHtznnj3L54YQARywpQGFQd5j9bksy6pqCW3+xlMWrdduCGE2mxmjptMp3z6m3/X7fQZwmNkJgIeHh4jIMCn/Wl03q8XAuXoIgWEWIeXG+vqlS5fm8/mtW7e891mWXblypdfrYQQ+avf3951z/GyRAiBAN0+gguLsmgEcXZblYDDo9/tlWVVVJZVZbVTmr+VpNhqNeAg9yzKr9HxexBitTXwIzjc2k7ULFH2aJkJQlmW9Xn86nddV4LF95LxWKStlURT8VmKMeZIIah0wOXnVWrPBmrU2YFRSxhgCCVf5fr+vjQUAqZWrPRckLvjEChARQOS9bDDsBx/ZOZ339my2cJ1rdlmWX/7ylzcmG9rapmmkgslk9Oyzz96/f/fBzn0goZR473vfvVhUSpmdB/sYyBhrk4T/XCnlm9bThk8pdjUVnVDpas+Lc60kcU7DfrWx+dd6vd76+vrx8XGLXABwJyoCSUQS0AVEz3DKqq+FiMEj68kqBcFj8BUiaiOJSHR9CQBgtWtOMQHg9PR0hQ+GEFhHydqcIjcPIUbik0ZKee3aNUR8+PBhuSydcyxOUlWN1rLXyzjPM8YAuZPjg8XS5bm9dPEyIgitHn300du3b29tb1RV9eUvf2Vn5+FoNMjSPE3oeDrjt8dFadM0VdVgmKZ5xmJ5MUbHHP6+0lYdn5zYxFx75CpQHI+H3vuT6bESGpGmx3MBCkiHBiDC7HR+n+7dvPtgPBgaY6ans9gEk2RETNqhGOMjjzwipZwvF8vl8sqVK7u7u71eTynFJVOHpEs+5vf29vjuE1FZloRok0QCusrZLMUQQOpf//Vf/+3f/u0kScbj8fHxMd9x9piuqmUIYbw1VErs7u2czqYk4PKVK//Fhz70Iz/yIzdv3vwf/odfQQHPvvtdP/3TP/2Zz3zmPe95z6OPPvpb/+G3rj/2eNbrTUZjIqq939ra+tCHPvTrv/7rR8cHfIobY7IsmUwmREQQq6oCJXmGjQgXywUsgf18GToHAG4bCNGOc65IUlLq1YEEEZum4WYgfxAlZFTtDl0sFgASEbMse+yxx45Ojvf29jS79AjBZZX3XmoVMBaz8s035t/1vX9hvJ4LrXZ2dg4Pj5U1SZL1s/5RPO4P8NLl7cVicXwy896XZfHSSy8lSbK+PumqVud9AwCCJM+uKWWUUkZYJqIy8B0IRSC2A46E0KCQZBOttCjrUify3v1bIdYbG+taq+PjozzPm8aVZa2kkdK26Ea9TDPrG+c9Jam5desWRkhMmqZpdAEUEAnoHK4EnPWWiEiABCIAJgJLABRCqHNKEVJqpniEEGIg1jMliADIZzcfFYx38Bf8zMYqpinFyGUhKSKl1Mo1GAC0VmVZA6DRCRHs7x/2B4nWenf3gda6N+hz9eKCT9M0S9IQ62W1qOpFVS8z08ty4wvCTkx5OOqz5MVJNZVSxRC5PUMReZRLyDNhgdB5Fk8mk7IsWcwXz00p8qrw3rNSf13X1qoVHt1y28UZEA+deiMX3kVRfuhDj/7UT/3UL/7iL37hpZdIay5autQT67r2vmE6iZQSqK2i8Zx+NBHJc6OUEbHtW1AUIKWUWZZxvecj4x0qTW0T/AopAIWcM2HE09NTIQS3xHjl+OC8CzHG0WjCJya700gpOagzKEcUiSQZbZVkEW0++Fn5N0t7ztdcyPnGcWDnh9aaEKKLNkt5ltnVBZG0KgUFp0ezGKMkbfLE1e5g72hzc+Po6Ojenbvvee+7rE6EEFluFotFRFfXbm9vJ03Tvf0D1vaJAbKsR0R1XQoJ4/GQUHjfTEbjXq+3ubnJUfHVV19/6623jDEykeW8SPu5kMZYPRoPNzY2CGWSGERUWsYY33777du3bw8Ho6bxISARSYKIKKVsqvrVV1+Vucbg3/3u5/Ye7hweHscYe3lOCKPRqFiUTJNPU5ukJgS/WMwCCiFEhAgCBIrxeCylnJ3OhRBHR0fMUpRaeO/n87mxqh/yLBn0RpZLAlchomMp4Y3N9cZXCOF0fnw8PZyM16bTeYw+TXNjEyUNEWAg7yMIFSIpabQiRDRSq07qhKRSShAJKUEpW9d14ypGSJ1zHWdZxhg9eqmlCC5LdPS2rhprU+99ufRa67W1MSJOJuvj4dg5t5gvd3YehhCAKHYarDEGKUGBiDESwGIxHwz63gcKUSAVxbITihWIiJHKsna1N8YASKWctoaRcd5oEVoxSj522+yCEBEPD4+ZHDEYDID4ENSRUIDUUgNE730IDiIa1VbpDCxOJpONjQ0hROMcm+1gaImrHDd4h2NEiqhbMd/WJw1adfVOWNYYcdbDa0NBN8HQMVUBlJBSSAzRISJiCB5az4l20KQ/Gv7Yj/3Ypz/96a9+9avvete7Tw4PWQ3gkUceuXPnznw6y/P88PDw6tWrWuuTkxOuf2SnkMuMDq2lEImGmCSJ1rKqGh8DF2Wbm5vj8Zi9NJfLJZDj91w1pRDCaO2c56rYkMUQAQWgcK7m8xmUVMrwjcYISKiE1MZOiyVRzIxRqU6M1koCoLGq3+8jUKgbF4I0bWuNBAgksbL5BRC6Nf9kqpHRcoU1Y0eVXUUVOsdvOg83izMWoe7wUKU1V6hSSi4hWpngJ554YjQaPdzbuXfvHkf+7m8FH3YoUQgBApCCUIonqIwxxyeHIDBEF2NkmQ5eAFZrIYQxirdSJIoxNp1EIHXEK6WUUkJ2SbgQIiKKlZEsizG0bDWhhdbaAjhA4kbOCmwVgjl3KKUcjUZam6qqTk9PEXFtPAGktvUViXEfFJDa3JjEe8/GsIhYx0hEyhoWCLLWSpJN0wiBq6aj6DqXKwSNL7jWxhjD4gxKqYBtJxLaJq7qin+pddc6VdKV9aqVS+cmopRiCw06fyullN47fv7GsQ0M6FbZoDWT5PMUBPs7Ca01RlSmG+BTChEXi8VgMOCPkKYpkCwbx91THqVHCgQohJBKCAlVVS3mBREpxYooWJZ1YiwishMgYkQQfEdalKrxxhilRIQYY3Au1LVbFlWQFbHHI8n5fD4/naKAGKNNjU6s9z5iSG3inJtPT5RSoE3tqqpahuh6vZwQpVKEWBZL5j9hJKU0oTg+mhljQqfvUdctp3vFt13BKxzQhBBcmTrnptOpMSbLsgsXLg2H46OjE56MxkhCiMQkaZqWZVVVdZqyX04wxmxubrMg5NHJIbM7J5PJzZs39/cPeHBnPp+zlXGa9Lz2wVEIQaD0IUhJITjn6ghRSqmMpgAhBCUYUVMIYLQRQviAQhtEfPhwX0qI2N70+bRcTBuPJITxDkNTu2Zfa42EWpuTk2mapsYkdVUIkt6TkomvojaIbWUhzi9mIorRdyVqw9IoIYQO5hWrME5hxVQNShmttYQzwAvxbCy4M2RCAOB6cxWpVuGFTxY+tnQrB7yS6Qdus2FHLFVKRfRVVa28QxJjmWrGx80KpzZGJkmeZZlfVsuqpBClEEmaMq+FW1wAoJWVWiOJgAABV8KmxlprDAX/55FVF8ViVt4hiApTKWVqLGsJCiFAhKoqEIggTjZGROSCixSXVSlAxcDidVoIWddl5RqYTq21mU2W9TKEUFcLk9g06SEioVRaKWmsSa1Ng1cNBZOkvV6ftd2UUlIrALEySODlnec5IoJq8SamcdAZjYb4ohGR8zFhMSOlpJTWaq3aDllRFASxvUHYQmCqy2OVUhjibDGfTqc8DsuCeERkbWqMkQRaB+gmtHguRKmzTh5nVrxarLXsNiSlZG9Hee6Mk1KyrRf326TQbf3Sqfyt4uQKt+lOlpbzZ0ApY9qq7UyaCYkoOioIuYKTUlJs7WclKNElIbLjZnGhFAgvXLjASgUArYyVUgn+ed0JAPYhaHvJ5+nJ4tzmOqdUTl2TRqiVQhGdO+m6x7e8yrkx/VUJJv6ssV3ZEclX329/GWA4HEopy7LkkaPY6eAzS+/OnTuI8K/+xb/I+n12vVKdNvQKcRbnRNUZYYgx/o+/8Ru3bt3C2jVNw/zRwWDw/PPPf+/3f99TTz01mUwODg7m83mepyu+bZ7n3//93++9JxK7u7vHx6d/5Ud+9Du/8zuvPnr1j/7gs7/zyf+Q5/lf+6s/+ZGPfCTGOJ8XvKLefuvGb//2//yhD30oy7Jf+/X/b7/ff/LJJ5l9/PTTTy9OF9jDu3fvPny475x7843XvvjFLzbOpWnqnA8uHh0dcUuyKIoXX/zgT/zET9y9deerX/3q5z//+V4+GN6+uba2dnp6ur9/8Jf+V//Zt3/7t//SP/3vpZRra2uXLl0SBKenp3t7e865S5cu9fv9xXLJeiPW2qKYHxwcpJmdDEePPPKIlLBcLrkuWyyr4XAYY6yqChEvXbrknDs6OlBK8UWeTCaTyWRnZ0cIGo/HTCESQrD4hve+aSpeG2VZslFfOGcxzQWC1nprezvLsr39/d3d3XK55KymFf6qau99URQHBwfn08jzq1F2gkVW2zat5HSKJTi1afE1Jk4j4mg0YhS43+8rpU4OjxDBR4zOIZGUajFfaiPXxn1rbVOXQMH72rtorV0uSykFsyF40SRJYkyfKK6yUoPIl4xP3JZBGbwgCCGYNCmKgvet1ho4rvmSBd0QEWPbShoMBlnWc745OTlpmsaYRCl1/fr1GOOdO3fqZV1To7XaLR9Ko9lCbTabNU3z4ovPP//C+2/evLn3cJ+HSTc2Np579r03b97a2tg+PJoeHh62E+LnJNhijGdcc2If9TPP3PMbFRExRiCC7pbEGCnG0Wj0vve974tf/KJzjhtuAkBr7TE65xCIoy2/VaVUoDNtdS7MeE0AECtIusYnKSuweGuNlJKna7GzCl1NKvHmpNYzBCmydKzWWkRS3nvvPM8+p2n68OFD5xqe38zzVErJF4HnT9fW8o9/98fu39txwfd6g+FgJLQ6Pj5hfgoAWGvv339wcpI//sijxhhp7MOHDxmEGo1G9+/fl1LmeU4CYoxV5ZJEA4BzjiW8077N8nSxWBB4Y6Rz7vbtO71seHQ4q2ceALI8/+mf/puvvPInd+7e4sNyf+dAJUoINVlfr2sXArLXcIzxmWeeSZLkU5/+/aqqnn32We/97v0HDGGEzveGj4oV7B5CyPP8ypUrIYT9/X0iSpLE1c0nfvAT79y63TTNP/yH//DXfu3XXnv1ValUZyzGc5G5MebS9e0YqanqyWRU183f/On/9Xd97OOf+MR/9tWvf204HPIU+cHxUa/Xe+KJJz73uc+tb21/x3d8x6/92q99/OMff/5973/rrbe+/tqrn/rd/5imKY/y8SHH0Xm5XEoFWZYGwqZp2P9BdCP8qU201s45XzuttdbGdS5nIQTCWmsNEBvvAGC5XFJrjdVmbKsDhk9opRSA5LDQ7/f7/f5sNgMALnJ6vYzfUtmUk8novd/xQZ2AsaCsCsE9/vjjaZo3tU+SrK7rh3u7EoTWwvuGjbOzrNfxQ6mf2iRJjo+PI0KSJHnWD97Xda2ksdaGurUqrutSaJWmaZIk3jfKaKXEYNjb2tpqmnowGoYQQnBlUd28+c5yOQ8hzKbzLM3q2nsHUtgYqAxNlqVZ1pMKhRA+NACQ2Ozo8KQS9XA4NsYsm6pNtYGj55nEFREpqTnNZVYFgGBzVDyz39WcAQDJQC3zSEiByKJmrYDJalgpdhIWQLLf64XYMBmBuzv8uqErthn8ZfyIUHoXv/7Kq0KLfr8/HifzeRGj99EjBqXEaDSwOhmNJqPh8J23by2KU2MSHn7n9IbrKPYcIBIBULB4hVLM9JFSCFCrVcGusOz4uvomx3A+vRBx5Ry7ygV5c3ExL8+UCrrr2SFZ1trbt2//2q/92ltvvQXn5rwQkVlavPa6HEwJgaun4lpaSqnkN4VirbUEi4ghICHWVRUC8vFsU6OUyvO83+8fnhyy24+1VhrFFwQ6xtx0ekIkmNbK4LjqRDC2t7eN0sfHx0qpxWJZlqW16Spch+BijEmeCaQQ2may82yxAhwwkyThOkQro7VJ80xKEUIACQCSCLU0MRDF9pTRQmujmRvrgvO1c1UthLp1845N9Nra2sn0ZD6f5nkulESIRyeH82J29fL1y5ev7u8dVVXDr9u4+ujoCDGE6I6ODRF9+MMf3tnZPTw8dM5tbq5fvHiREE+Opzt3dpumunbt2vXr1wFgPluGEKQSBwcHHD2qqjo6OuHmEJCUBEohIEXyxuRe+OFkdP/+/cODPQCYzWZG2RjIuShAcWTjikIoCVK0poKBXchb5dPVyueRJpCEMfR6vYje1ygJQyhDJI+kjQyIzjf37tw/Oj0M0aWpXdscb21d2Fjfunnz1nJZGGNixHLp6mVjTBICsKYnRSQCJY0QwKMbxiitE6LI3QKuYIejPt967z0CtuhzwBCc1kqAz7Jse/vi+trWw4f7N965hTGWTa2G6uKFreFwGAL2h/13v+u9X/rSn9y8cZskiW58QSlFFJUSRmlQkojKRREjCx+HVbNEStnr9fK0d3p6ur+/731UCohECJXUylqmozYh8sZMAJC3p06l0VZ2vq8xxoe7e865NM3rutbasgpTW57FMywsroRuAdI0FUIkacqbIkuTpmmaqub7tZpj4DyTEw/d6WBYa6WMfDTDucFM3t2MjjHpAQDyPE9twplu0zTBB6FavJUTaE5Qe73ezs7Ok08+eXJycu3a1bXx4PT0dG1t7bHHHrv/4K7W+qtf/SoXQisjb+89UmCJwF7ejzFyF7AoihDc9vZj7373u1974/W9vT2l1NHRAbfWlsulUlooAEnBe5tY3zRdE931skzbJDQhOgcRRQAAoVjsivNAkgAIUgsJQkCk0PggERMrbTte6rTWSrdcM2OUcy7Vlm1LIJ7hL0jESql8SbGbK1dK8X+dC3AOA+pq1zN8Gc7Jqp6vRYUQWitq9eJw1XRhHslyuTw4OAityIYQq5FJrflWsrmx1rqpKn57IbbS/957rbRkni9SkmStXSQFrXW/35+xk56UiJgP+u3h6DxDpdA5cwpQbOdIRHykrqawl0Ul2tRFMpVbSSM6OIgV7bk8YzNbY/S1a9eUkGtrawcHBycnJ6t1Llod2KitGY/HFJHrt1U6LTp9YfQYQkgS1o5wLekvRKtNjFF2BD1jTC/vI2LEwNdKQIuk8N703q0ODh7VWh1hfAtE5+6Ypqm1NsbA9drqMOV7mhhLRASRP0XoNG0wtqSftpYRyChPJJRSCpLEDHRrGfrhNDhGZM0T5wKFCABI7RVQWhEh12LeewIULQMxyu4LIVgMLWIEkEorzRvcBcfySgJjIwR7/za1P3Uz1SOjtNFaC8kYE68wIVsRcKmlnug0SZyrg/cxonM1YiCIgCwSSIv5siiWPFQnQBNG76MQsmlc3ThOFegcVXYFf0gQGLEuK4pI1gbnbZqNx2tHR0d8GBHRfD4XQtR1NwKiNV9YztmamnhcLMuwKIrp9KTNM4mOj4+5DyqlHA6Hr7zyyv7uw4BREEkR0zSvo9MqqZdlkiaA6EIjJCkgkCzeGLVWhI5lNIQUWZ4YY5rQqlASkdYqM73lcslmKYQUBTHyliaZcy4Ep7UslzUJPD2ZCiGUMhQBSKCP1qZIS0DkwT3q2hurOjeEgATnQ70ELYRgo+MVoiRapK9zFOTzvfuFVd6L2BqZrPbUKh/gFlcIgZsW2Hmf8kvzkSSllJ1q4grGYvkpfrmqqpaLgog4c1udO1wIs4KoRsAYkzQXWimjGeUkorIsQ3DU8jjB2hSJnPekMIGOGCj/XEFexBhCbdJEkjDKIpC1NlZVWdXeu0DAfsvecxtYYwRrrQClrQmEIYRICEpmac+7KCC6csFdJ6V0XQWMst/vl03dlIWUuqrpwnbPJkldo9EGAIRQxiRStzMTqlPp5HyeKwvWBeZ0nbP37lw4Qx7yPFFKCcAOMZCsCeG910ayrCtHEs7hsbWl0Xye8oJHxKZpjo9PFsvleDx2LpjEbm1dUEpJa6WUfSUBoCjKGGOv12MrdQ4sxhjusrMqMU/6iI7wtLrgRIIIudoVRLJrY7gQEstuz61aNHWzlbKdRCHnHEYQ+iwd5QsSY+DlxHXGak5RKRlCACHquiaNWus8z5nbWxQFb3/XH4TOeKxb9oQYSf25Cs6i1dbij9N+Fc9Z+dH531yJ5HajbOxq2IrPdFC7AoHdn6zKIjiHD0I3Korn/DllN4q6yhZW8LfWKk3TRx99tK7rN954jfNzVhYajUZZln3mM58pinKysaE6tsH5V+eSh4tE7/1sNivL8vDw8Etf+lIxn29duLCxts7X8Nu+7duSJLlz584XXvrjr33ta1evXn388ccnk8nK0ZcXtmuQjWqEUH/pL/2lixe3iejOjTuf+9znBoPBX//J//zDH/7wyckJkdBa13U9GgzfeeedJx9/4od+6C//8i//i4986Nt++Ed/ZDY//U//6T/9jb/xN5ra/7e/8F/HGK9evbqz83Axm/vQNE0jVSurtbW1tb+/H4IzxgyHw7fffvvnf/7nx4PR1tZWlvaef/750i1ffvnlpmm+/ds/+sIHP9A0zfHx8Wg0StP0xju3rFFN05ycnCSJnc/nK6E5odVyuQwhDAYDEHhycrK2Nl5bW+v1+iaxd+/eHY1GnPvx0MnJyYlzboU+K6W2t7eHw+Hu7i6TDpkdVRRFVS35smNn6QEATHHjbEe2vp3JaDQaDofMqyiKQvJcc5c5H+wfsa0a//loNOI01cczPejV0uKvY4zaiiTW6CgooTKbEVEgMkqTQkdNL8s5oQ8hsDpqdEyJtYtlI6Wsyspak6WJiMI3PgYI5JxzBKSUVcoEXyGKqiz4JBsMx1VVIQEQ+ABaK0IhJCklMPjgnFBSCYk+EKLRFiOVp0unm0k+BgBFBoJIdMLULWMVAYYolVIhgvNBaZNlvfm8WC4bdqvIsuyJJ55YLGYbGxtvv/3m9LRaG/SbsqKAy1l5v9mxKh2tjeq6lFrZNKmqympo8GQ4lkX9ECXkQ2VMTp0ZyHg0CSG4RlTFMkZSQiZJZhWrKLYYuu5yjvZaI00mE0QkYEtHICEfPLi3t7crpE3TVCmjlHFVTUQigoxCOGqobisTBVIroTQhAgUfglSA0SuJhE4IEdEjiSxP+UWV1f3hcG1trSzLxXTOyiyrKtFauWpqXb58uSiK+bJAiD7EEIJAEkIkqU3TRGs1mYyN0Wy0uIr1hEoK7b2fHi98KMuqaZomTfMQwmw+nU5PGEQGqUejkZQghXIN7jw8SpLEpjZNciIioeZFORhNtjc3y7KczWZZlsVAQAIiSqmyXj9JElTl4eF+CDgaDH0NRhn0umgq9Pgd3/XRNM0+9b98qpeP/tUv/+uf/MmffOedd5RQxiY8DPXud7//4ODg/v37RDQZ9ufz+Zf/5Evj8Zr3fjJeG48m/+f/03/53/7X/4/j4+Nr167fvXuXiKQU3gdENKYVpdJa/tRP/Y1r1659/vOf/+3/cEcYnaYmEKKQ4/H4jTfe+PznP39wcKC0TLLEGNWEZuviVn/Yu3LlysnpcTFfCECV9gaDUePcrFj8q1/9/7x1+6YE9dWvflWS/JG//Jd//Md//At/9Pm/+3f/7sP7ux/86Hf++I/+1f/nP/3v/uU/+39913d97OrVq6FpE9kQAmJAgU889phJzMnJkTRSZmnDDVgpllXpXVBCZUkmSCwWBZ/0LgaSYl4uiAiDUSprnEtSBQTMnqvrmlu7iIidmWdsJ2EJCIVg6yEhCSDiW2+89tQzz1y/eqUsSxLgvS+K0kXcunAlwHRze+Pao5feePMbu7s7zz73JAs/GiM2Jhunp/Mbd3ejx7L2s2lJJJJM9nu9yXjNOVcWVV274YWL1ljXHAElgElVea11nvV9aOqmVGBAxCTVpDQRTdaHg8FgNpsh4tbW1tNPPz07nX/m5c+sr2+iD0mSbG2vXVi/tLe3RyQS2adG9ExehQojKBmEkr5ZSClNmtg0TdOekEGlatDvHx2e1HUtssxkJna+QCDJCNnBJZJLSt5NSZIBgG+YqZcgYlVV3jcmIQ0SAISMUiGPfAkUAABI0aMS2tq0aRrnWiEdPov58EgzY4wBaNUwhVbeexFW6X5UCtM0yzITne9neolSSjHIBsGTcyiUGfbGja+khLSXgsB5cXAw20+GNkvH5dIPoo4x5cot+LiMrN0GiKgFcNECBIiCE06es8ZO3BMizk5O4YwzxcCE11pbq0MIwXmllJYq72dCiNo1dV2z8wyc665zJx+JuOSQEiiGm+/cePuNN6VSSlkG8TnvKZvakm0wgFHoUQjRZsRE7LkaISolCKOn1pRGAAihtNakzXK5JCmUFNFjpFA1ZfA+kuXzYjabNWXTNE2tXV07onbcWxsdQgAECQoEBOd94wWJQb/PprUMo0+rE++9QiUU2lSRcFxs+RilUForRECBkjNISSaLTdMIoF6vz+JORTFflIu6rqVG2wMhwKDx3kspKIBDjN1bCoQQGYjXGIEQ7915KJUYTHppnma5eePtt8GByCHr9yaT9SxLrly+DIB7ewd1fSJVFcJCaQUgBUgpjJBWJ5IQlFIvf+WVqmq2N7cee2w7TdOdnZ3BYPDRj360erH64he/qKXCEPO8/5Vbf7I8LaRtNXkoQmISwhU+0nYg2jxbkkHtF2G/PnJRGjGgKBoPxhjnWmZrWRYhNkmppMQ8yyCaEAIhAgERlGWxyoOVMlIKH52RJssG7OqeZmJra/2ZZ577wz/6/PJ44aM2iR4MR8bKJFFr66MLF7a2NtePjk7A149c3q6qS/fv3z98uB9jRIQaWQhCRg6AAEQxBJISpNHSmEQbAEWSCAABtJYI6HyDiMNh3xhVViClMIkUkprgbDroZX0plFRxPOmNJzkiRCDE0IC/t/8gT7NiVhwe7t++c1srENADACnBJNr7ZrWtIpJraF5URJTlicDY66WIuLY5zpLs6OioKZrFcoYQQUqlWt6Wa82TjTQ2actOESOwnmMMoqkcBvYJgegIAHpZHylIQWzsoyMFxETqqIyUuvGklDbaMmCa2wR96Mg0LgbnfUtMlgRaSq15d1PlHCEqaSQqie0sNiLW3mPkdpEARCkkITVlpbX+8Ic/fOPGjYcPH0opn3nmmbIsp9OpMjrGSAIQqClLLpUjkM2s0EKnqmxmf/ylz168fKE31vsnd4bJyBghJbzzzlvHx8dPPfXU9tbFL33hi8tl6b1fX19XrdaBz5OUO0xlWdS1l1L6uvnB7/tL165d29vfnYzGp8cnzM+t68o1y8SyG6RWQktjiECZDEAFFAhSai2lqH0VMESKQUQeJeaXk1LynUIihxAEaSFPq6Y2GhOj875WpI0uquqwkZVMGQIwRmEIICjRxqEDIZQyQiuKEbwXRFYYhAAE2qgQ2JBEAcBqIp43DrUK+Hr1X24Wnqd9YYhCCCRyKJUWUiki2fioQAihmsa9/PLLSinCIAgoIkQBQgiUApR3MUmSvN8PIUQXS1///9j702DLrus8EFxrT2e805tyepkAEgMBEgAHcQQJUrQGy7ZcUlm2y0PYVtnRjHZVOdwuuyO63XZFyO2uUvlHuyJsS7IiylbYbassudS0qKIkEhQlmfMEEgQIAsjMl3O++U7nnmkPq3+sc24mZKq7q8Pu+uP7g0xkvnfvuefsvfZa3/rW93nniWjlVtzbAEBO+wORbVqFomwXSCJIaQEiBBOZAeQMX+ZZLEUn/yoUz810Daeua6KUlFKgNJEOoRLAJxQZJay1EkEAWu96ijQBYNNWXcLjYTjMVkXpvd/cmozH4zzPJpPJcrWgadCRcpbNpkRoW0KBQofGxzoOOkgpSXR6C0KAUkJHqgm1B0+BmOighIIAzgetNQFo9tLwwQVigJIEOg916xFD33xFKTV2mk4EENh2kcNjsM46K5UKPggAo41vbTFfhDX77YGmQtu2Ou7gEs7YyQGicI7FDTi5I7aJ5t9yZAUJCVoaKYQI5IJrhVDVahVskIBtVQOJAMhDs8ILKSTJjuiAIJz1ArXR0MN80lkrhPAEWosQtA8WkUyCjzxy7nR6XFahKFoKSF4ok4AnRIkCalemcUpeKSFC40QcWddGkXbeee8xIAghReStL1fNclEgovPeQ4FBRlGmZEwEIbgkNeC1a7LpSQlOohAAVmHrIWgtg5fQ9y+1ioQQAlUURUqzFzoBeCVlACrrSqIghMVi5r0ry6YsC/JeR9FTb31ykF98/fXXgXUnHIEEBB28leASo9uWgnV3b92N49gY7QO1db1/+ziOY5CwMdn5xtdfaprqeDrDRimlbNm21HBqFOeSyIMUUmjPFotBAEopFBAwcxMRpUQiHwJqgcEH70mAycwohIDOA4CWEDBIsiAVs5KZasAubVJKDRoBwYNzTkBAidaVUrI3RoDgeVCMvKMu442cc65vQ3IeB4CsZEEsHtTVvwEBtRBaoKAQvAu9oOeanckGy/w+iLS2gCZ6E1+40yTCTomF/3I96MC/i9QRPsqyjGKpFHNdu4G8PM+V0WuQmsdpyIXgPQCwPrV1jUSNiNWqDP0oYWwS7pN5b5FssDYxQqIKbRAO4lhXrWttA9/rpSiGNjUYgdGAEkJYFWVVVTZ4KVXwQULig2+r4BqvkL+LklKgAPTEqEskTPAAAsABkOgGhkhAoND4wi6FEORqF4zyOMrOOicDeU8uAKGE2CQC0blWS0kEFABBswAgo4RsDmuksv1YBsOs1jZKSSk133Bra2OMECCBMFBRFQDgnbNNiwCRNs65QBRpzeLdrbPSyrop54tTZ5uqXEQRae3K1WmwtioIhara6k5VDofDOI610YlJ0jQGOGbiKnNx+p40M+gRJAAGSQoBfY9EryFyou4rSEAZobW263ZL6dqWEIhAKBmInHMmUt1keX8OoiAMFEfGBus9eIetA0RRs9KdFUCaQkCwUiESRjoNRIQWQAPJECAEYDKEEGJzPOF6UAjFFGDsKNguyO9NcBYIEsE6y/VLxz9A9ADkg/M8zaN6m9zObwYAjJKM9UdRBAgEyMYw7IQkBPTEoF5amliuhHehYMHGtu0Y7t5b5kIholKdXQE/DiEEAHnwrW/n82mSZFGUNI1VUfyhD3+fc+7V1757NJ3ZtvXesxJUCE6IrsXYPS/nbdO61rpgGTDN8/Thhx9+4qknvfdve9vb3vLY41/96lfLsrxw4eJ8Pn/j6pXf/dy/dTY8+eSTtvXnzp2bTqfjyfChh8547621UoJAiYjb29tSYl23TdOcnEw/+v0/9Cf/xJ+ZTCaz2YLlwriTUftmsDF8z/veXZbFs0+//YMf/OBgMPjqV7/+h37oj5KV//1/+98KIf7yX/7fX7169dVXvvvQQw89dvnhz33uc6ezRblsNjc3QxMMKusaEr4oS5RyPp8/98c/+Of/3E9+61vf/vrXX3z5pa+2bfujf+SPfPjDH7Z18yu/8it37t4ajzbWbWzrVzI2qPW0WFbOeuowwwsXLmxtbN6+fTuOYxr7+bJaru5tbk1OT09PZiej0UhrLZVUQlZVBUIYoxBpOB5prReLxf7h0f7hUZxmRdHZdzdlBSGMRhNEZHy/qioi4OqMK3pmEjCDxBizXC5PjqeImESp72TZOvpzURShm8KUkTK+9RK0bW3jGtVGIKTFRiiJSATB+TYQShF1+WVVVWmaMoubEPmzz5w506cwgW9NnudN2dy9e1coJYRkAc00TXjYhH3kuQXCI5l8irRtwzkQj7QAQBRFRVG0bS2lNJFKTOJcy5/ubBtCYH30xaJgXYKNjY3FYhFFCXddvPdKCea2SNnNDDoneRqUoRNE2TTNjRs3tra2Ll68uLk58d4//fTTvH9v7O1Np9M4iaqq+sY3XkIFGxuDfDgwRimlXGuPjk58a7XWg8HO5ubmdDqdzWaqG1F0UgptpB7l3lHg/ho5Fqd2SJ4oBNdUDUophBgMBpcfetg5d3i0X1VOCIHOEXSuOyhhVdo0TobDYY1QFEWAoCOWnAchwJH3rUeLgt2le1jQ88Srt+wtK7Rg05uqqk7n0/l83rE/Qlf+EbFwasf7Ww+JbO5sm2XsnNNaFkVRFRURaa2vXr1a1zWB5+c+ngxns1maxpONUVVVaZwEn4QQlquTsqyHwyHPxTjnTk5Os2yASHGab2xs5Pngxo1btnVHhweAYjDKhvnA9HomG5sbSRKdnBwpJbTOeSTBORgOB+kgN8Y0QRoTM7OJCfLj8biYF4h4+/btD3/4IyaJ/8W/+BdPPPFEVVW+bUmiVjKEIE307W9/myN1mqabm9ve++ODgyeeePKRRx5561vf+l/9l39lZ2dnPj35qZ/6qSTpMgnbtrKvhLXW4/FYSnzxxRd/7dd+7cknn9y9ePH2vbve+yRJPvWpT+VJWtXVP/gf/ofBeDyZTFpn0zTJde69r+v6+Pj4+ORoNVuQQCklSiGVetfb3/H4409cu3bNtv7Zp59ezovr1/aasvrqV7967/btza2tN95443/3sb+0vb1969atf/7P//lP/dRP3bl92zv3oeefm0wmv/AL/4SnzAbxYDQaEVHtbAiBO5Jt23oXTG+Lwb0HZpIul0sdaa01sJWTFuyoiYgS8ezZs2fPnmVpHuw1tfl07+hpgRMgyUJs0+n06tWrFy9evHbt2l/+L/+L69evf/xf/0q+ufHQwxenC3F8dPTrv36zLBdpFpWr+nR6XFWVVpEEffPmzbp2fSaAZ8+eUQaVlIvF4uTkREvTtu7o6IgTWb74KDZGyQsXLuwf3K2KldEpPywSZK1dLhaIeP78+bquT09PX3/9ypXX36jren9/P9bGWnt4dFdKqZRBkK5XAdNauw5I7eSAnXOGVBRFi2WRJEma5JMJHRwcLZfL4XCUJKauOv0E8AH6TiCPg61WKyEEQAAQOlLkuwx4zRP3HoXohhJs07lqrBu8zFzg7cn/xEAt9zl9aBljVUoxhY1Jnd53Y2vsoh7HkVJKCymlrJvSWiu00FqhFEKJQTzQBpRSgI7r88VitirccLDZlA2Ta4hosZjxuCirRAXr5vMldEKW99nuD7Aegux4u52XkRCiNzIL60qAKQYbGxtnz5792je+3jaNVGY9a3yfkMWdc+xqZk6GZBRh7yYhe6MSHsDkikJFJlhnfcv/yn7iRsqmqYSSAlmcgEftPM+oxLERQkjoZheaxkqlnHPz+bwoFqGfIgQfXGhRIfOPhBDOW611kqR84vJINWc2R8fHg0G2uTl59bv3hBDoUGutSIUQpEQeCwjd5Gb3lQUqKSUBGmOYKTafz723aZoGDBsbG9a3HX2bfReEKF2NAN38MkJkomBDXbeIyPVXHMXWt0R08cJu66sL53fQiHW3mIi0juqy2r93yIdpkmVKGmu9cysip41GaZRSVdUsFkujdFnWy+VquVzdvn3bObe3t3fuzFkAOD093d/fV8rY1qNRWuuOSum4NkMAwZJ8zjkpk7at+fAK1GqthBYxiLIshZJaakRupzXOOde0EDwmUZJGSTJoa7LOEYDrJ8EZXmdeOWOpWkfGmNVqNRgMJuN0Nlu8+M1vLhYzIGsidX73zHCUKSUeeeQhQJJS3rxx68tf/opS8sz2jomGh4eHVVVFUSKRAkJdt3Ec+9aGTqyddSQ9Oe8CVT6YJFZCeAIkFuyae2+dc0dHKssTonDuwtk0TXcf2pVK1HUthcqT/PXXr9y7c7CxsXFwcEQCmVNf13VbNwpVURRc/JNrTRxBNxgRwf0h+jKEIGXOzsbj8UhrrZTgKjrLsu+++jp4WDOJeNGyj5xSSmix5iv19RiX66GPUZ3hD4eayHTGZb521DTMxgIAzwq2xOWNEkKwqLQ0KpfD0Iv+IyLzEIkohM55hoiAPFM+OQ73+ELvq9NTZrTWu7u78/l8f3+/LMv/5r/5b7a3t//qX/2rre+Mocbj8XQ6HY1Gly5dunHjhjQqjuM4NmW9StMUEcqyDiEQ4Y3bt3jIgE9zIPH666+jFEJJdC7P8+FwsFgs6rrWcQT3m6wopWTjzdevXrly5fW7d+9y3oWIOlKikUQkpPQ2sANqnuda69A/gnV+ZYwJgbzvRvXBhwCc/QkCEkIikkD03kpER2G5XNmmjrQajwZxnFazKfVKx+sjY80ghl7u39/XT3zA5lR1jinwAB2p7wPB+j/XbULoeUzQS+8BQGD3uRAAuE1CUkqlGa0G5z1XiQL7+RXR5ah8Xti2tb5zzItizQia6wxvO/phsE4p5VoPAHmeq16gczgcMlUCERnoZwjJOccqOgjy+PjYB2eMUVIKwDRNlRJMPRZCKCG54GcxBAAIgRBhMBiUZdk0DRtWO982TVPXiTEmTdPvfve7rCLlvfce10SNqqpYJ5Q6b21CJJlEXIcDAPmeeiZD01gWH+sr8/s8aAba2tCGEAICz6KtnwgTiPoTEIUQPGozGo2klBKQeU9MYuI8ra7rgJCmKdNBQs+A62MXBQ+EnjrEQRB1onn3l7TWPlgEwWFcKeUdoabIJPWqns+ncZRKKRGFFDqEQIEYmaVgocN+OuNErbUxqNSwqqrpyWkcG5CMRGPTNIDSREop2NraLMsySVMh5c7Ozv69o9msIEsCFTGzW4APDjB4L0PwPghE4EGHLphIhYhtW2eDWEiltV4uGwjAo0JSyjwbrFYrY9RqVZ2eztsGtUpCCNa1UqLUCkEqJZ1zKDqMie9PIOe9pJ7AaK1VSiBBa1tPXfrXtm2WZW3btkXVNM3zz789hHDt6lUAOD4+llKWZd11hfshZaYmrEnoVVW1bS204hVlbdPWjQblH5APWmNJAMB2012olD0P0fsoYgHMwDx0fqxKGXpAmgwwUCdiK5Gg/3731duJyEFAT+tVwScI4n1i44PZGvVOpA/GHI4o65XMSMA65rgHRJN4L/gH5DLWV8KraB3ovO/QA/4VTibpAWezNdmTE2alFCAFTwhgtGaHGERkGiB/tdVqFZznz13PmXX8id4wifkf8MAr9GYhfFT1E5+AiKzsb6015k0K8uuXlDIo6YIHB66tV0XJU3HUaxPxicBRhc0AABwLYVHPDQQpCMjZsB5uEEKwDWyLiIgKBSknUPNhtFyuWDiRFW+BBPTs1BBCIGRwhgeGHlTaUb0gJz9i/tYcw/m7sA6stTY4J4Rg0U4WDe/z566dAAKVUtY16xCHiEIgEWltZC9eYUxc15VSisOsDoGIGH0uinKxWAyHQ54yTJIkBMd9dCNVgOCo84xZbxbvvZSaDWkFIvOA+aBk9jQIDKHvkLGNE6wlUqnToeAzlJmhZcv4YNu2AKiVnk2XdV1HJgh5X+PUWis0QQhNQ2kaSymJfBrF65OaHzQPYiIiZ/bfc8Fkaeoc57pivcus98pE3nskbrEEfmq8bKSUTdPwUJRSKkA3x8AlmJTSeW9thxSHXlIV+wquk1NQ2LZuTTjrNRbk2bPnWOpnPfa9HlbTWt+7d897/8QTT+7t7b3t2Wd+/Mf+2PHx8Xy5KIpFlqZ1Xder8vj4GJGUMuuCcbFYaK0v7pzP83y2mDdN8xM/8RMf+chH8jw3SfzKK6/wt37++efv3r27XC4Xi8Wjjz66vb19/fr1jc3xaDxo2koqFEIcHh7GccxqzhxVvPesI6+1vnDhQhzH3HLoS8jAw+Jfe/Fr58+f397ePjmZvve9712tVteuXTs6OsoG+Te/+c23vvWtP/7jP37p0iXv/Q//8A+/+93vfvXVV3/sP/2Joig+/vGPnz179uLFi//mEx8fjQdE4T3vefb6zZshhA984P0Xds8JIc6fP3/54XNN0zz66KOf+cxvffGLXzw6OmK3vOEojxNzcnIym80effTRLMtefvnbdV3tnN0uy3IymRRFUZfV5cuXq2pVluWVK1eIaP/gLis38GocDocKTQhhNJkMh8PpdJpk6YULF65evfrqq6/x0xHQjxp0pZPgiTfqtLYcr8w1i59P/6qqDg8Poyg6c+YMjy+j6E4T15tDJEkCAE3TyJil50spZRzHSFJqY6HhgyyKYpdkwmhdaMWZ3zAfSK2yLKvrmhCZtcdFAxF5H6IoYhMScmSMcX1dwYx0ISHLEggUiLVWLAUmK8k40qH3v/LWCiF67FyVZVtV1XgyJKKqaqxt0jRdfzQnDZz28Tfkry2EkBKFEIGIFz33SYqCWzrJuXPnGEQ4PT3lumt/f39nZ+vixYtEJCQIAcaYjY0N3jCXL5/xQHVdCiGqqkFsIRAipmnunCtWMzd3RVGEAFrr0TjbmGxVVeU9CSG0UAcHB+2qVTpu2YbO14gyUNjY3hiNRm3bGh0vVoujg4NuraNS0hARR0mA4J1rW2xbY4OVCgWJEDwKAAwE5L1jXEaSFEqiuC8/F0VRFI3yPB1vTJh9zAOA8ID4OguAGGMYo1n/K6+qZbnKR8OdnS0emjbGROOIq6+mrTiNbpx31A581jSrEFrEkfd+tpjb2uV5LlASkUDZ1M2qKAFgMBiwPbf1frFYRFG8s7PT1NY5V9etVigkWNdY1wDq5XJeLhdNUznn4jiNIu2ckVLGiYkiPZmMg8yGg1GWptevXydqvPeTySZ4ABCnp6ef+MSv5oO0WBZ/5+/+X5umiQdpcD5QCAiCfFmWfEA2TfPGG2/YpkkHo729vcViEUL49d/4pFbmx37sx7Is++t//a9zcxsAdnd3P/jB51544YXNzc13vvOdv/3bv/3SSy9575955pnBYCAPu5yPgzjXgd775bIOQEQ+H+WcrNy6datpaw0i2A46rNvm8uXLu+fO39y7XlSLxWIhED/zmc/803/6P376058ebWzs7u7WLlhrr1+9OhqNJpPJF7/wOWPURz7y/NU3rjz7jrfnec7yCydHx4ShbVtQEvvkT2utFapednYtjyuEGI6HGxsbRExOBWetlJLHIqpllaZxnqfb25tEvq7vwwF83mitbct4gUdEGRnvbVVVXIHfu3cvhDCYTJDgzp07VTvNsiyKoixL0szMZguj4ywdaK2Pjk4uXrw4GW/Pp4srV64Wy9IYdenhi8H7a1eve++Da6TUdV1xTimEEBJ5+y+Xy7ZitYF4OByWZcmHR9NWzvuzZ8/u7u5+5zvf2XvthoplHKdCCAEijpU2QimuKxQRrJZlURRKGinRWksUAJQQ4J3rpM1QVWXjHbXOewqeQlmWbHEQyLGgBj99HkDTifYrautaCNFntJp1xBy7dDny3gvR95/71ET0A0qhH4DiPED26sZ9wSnXyLUWcjgZ88ARJwRRZLiBxPB0I4RCwVi81iqAD8ELEZxvZVB1U3Lr+NHL0Ruv39x74/b8dGorL7sZtLCeDuMLyIdDIlqtKkSMEiMAmyZ0gry9o3cAkNBnbDwtRYF5kX2N1A08Hh8fE1Ge5zPneGbnwTJGCME6/usx70C96ykA9M05bh0JIby3KIUxyjbWBdcp8blOf01KTLI0hADQFd5CCEQpAEkFPlYjpUOvMhSCEwK8t84R9dN/ojfO4jK+8waxgTEi7r82TTMcDmfz+XKxeNvb3iaEEArTOAaAwWDEXdW6aqxtEJE6oJlvC+N0GAI410ZK823ndtoABk1bQU29sEmfu69vBQV2pWEhb76L/BQAAXzY398vm+Ujjzz81LNPLJfLK69duXt3//DwUAjlrU/iLI7UcDDgZPrwcD+ENoSws7MRQmhbt705QhKz2SKEOYMdw+GQ67HrN2+U8xIQTKyt9TqOpVTkQxKnSZJoHZ0cHbOr0mw2AwdZnoQQlDJ8ansEpTVKDMGluQnkpPRENByMs2xwejo7uHnPZDGgGmQbEiOdOAfOAwn+poEAupWAKIWQAND1A1AZHafZ6Pade5d3Ni9FF69fv/boY5e2tjdOp9PhcHL79t29vb04ToPzQIqCXBbNAGyaZEDIaBdXXOC7Eiv07Pt1701KVm2WAiWAtN5JBVIL6QWQXy4X2SA9c2Z7sSq+/OWvzufzPM+3NzazbPDNb3yradrz53aHw+FiVRBRmiTb29vkw3K5KuaF1AItsmcDQLC2IaIoTbjLta5YyrIcjQc7Ozv7+/tNE0ajjRDCqqiMMUx1976bIg8hgOhsh11wvpcfud/gCYFIdP0Y0UU2VtVYd7Wbom5sV2vZwEV+AAIhRNs67wshhElNqlIplZBg1sLjgVgljP9XCBE8EN33leIMBNYQpw/YxwSBuFwuT09P+YIPDw+/7/u+7z/94z9x8+bNa29cWVtDb2xs/NAP/dBnPvOZK3tXEZHIE9BqtWJjKACxWCyEUKPR5Hh6SgFXVXVn/14axYPB0JhICBGncVEUDCbyFmuC9cHzeiOgT33mhd3d3WeeeaYoV23bSqVQCqPkZDJaLle+lynkuK2UQiURkZNS32nZs8dpR2ru5jAEl7KspCGkEIgkgKTAAKHxvrHW+sBCVvK+zrUTQjC1nBFgIut7YU3OLaHn+gUAzYCvvS9AsS747//BB+oVh/wDo76yN1ylECgAiE4DSghcf19EQEyEEECCb4VQ3aXy1VKPb94HsELg2tgYszEeW2vrsgpCaq0Hm8OiKDh3Wq1W3vs0zXgZ87KnXuMrTVNjTFPbophrra0FNs1O09R7hvZcCOHs2bPe+6IoOM/njCgyiuMkD5nWdV2sFsxqR8SqKqfT09PTUwBgM/emZlEs5DY/1yM8Lj2fT4kojQz2UnVVVfEQUugsZG3AIFBVdWOMCb2nJRGGQI4YB0R8YOR//buhv1HOdepnVVXFccxfpwfmcJ02EBA7rLCBKoPsa5E6AIBA3dns/brR25USgDqS1HZN3Kg3LOHHKrWWQrdtK4RERASJKIXANV8+hEAs4yZI9FCUlDKEKEmSslzFOiaiEFwIhEI456q2GbtRPhzUTRknRgjY3tk4PT1tbJXGmSMXoU4yba2t2sZ5yOKobUulhdLKO1JKeSDvyRiVpENAMkZtbIzqZmEgqyrrrOdiezzJmqZaVU1TW4QYkY1ApNBKCGGtR/RCCGU6wwxikwBElsXrIlnoanJjDErR44NBSrmzs+M23J07d375l385S3Nuos+msziOWX0b+nFjXsbknfWBiNhL1jkgawMCa8tGUeRbIqJ1b4l3ehRF1tqu7dyLqEDfGuwXA4No65OiBYC2WfMAum3LWkzee3RI9xfRWnGxs7jkuNERLN5s5rwOHT2weH8Gn6jzyuMfI4S1HAA+oLSzbmUJwbrZHXYcOoWN+7rkiDxU93uns9fwIufhiLjW8+mbOl0zhtG3ELqklLMF55wSXd+FhShZ4okzQ/aAxhDWvSX+XI7qQgitJSEGAEHdJGjbtkVbA4Ay3xs9DACEaJ0j7zwF61oACChY/bn/OkHrmI37bN2swVAissG7EICHApGklEJJjhjeca2kAACUAIDGtqz4x4GC0WQKnVQ9MTe8w2CBS/XuEQhsveP4xucaW/7wV+AjBgTKnj/LQY+ct9ZKhQC6O5ggSCkBMXji+xzY369X5baucc4xDGJtq3TEKiKDQS6l4CQBAIRQnHgwXF5VPHkpGUuUUvoeEuevEHoZHL5yXkjee27D82JmEEYZTQT+3/HZggfaHnxDpLi/Vjl4xnEshTw9PeWnY22LBK31RBTFkQ3cCWhns1MpZZJG1vpQl1k2WG8Tbt2G/vU9F8x4NEmzczxWzgGES3JCiOMkSRLyoSgK1v7kY4Wrdd68npzkTYRYt43Wmh1BrCWOFr4b3e4mnNI0bZx1FExQCpF8qMqKiCRIASJLUwm4e+58URR7R1c3NjbWEhZlWdZ1zdJeVVU98cQT9ar8u/+3vyOEQCF+4id+4uGHHjo4OMiTdLVabW9vfu5zX/id3/mdPE+t1SG4Rx556G//7b+ttf6H//Af3rx5k0ktg8Fgb28vSZJf/MVfJGff9a53v/jiizdv3lRKfexjH9vdvfT1r3/9LW95y6VLlxgH4HBdVdVisTizvQUAWgoAAYLHVoKUWBRFbCItFaOIbdu+/t3XXn755eHm6F3vepcxhpWUT09PDw+P27Z18/nTTz/91re+FQD29/d3ds6maW6du3DhIiIeHn7bmHg0mhydnIYAVVVNJuMf/OEfTpLkl37pl37lV37l1q1bP/ADP2iMeuaZZ7761a/9g3/wD2/evLmzs/PEE0/cvHmT79t8PrfWSil8266AhsN8Mplsbm/xPznXnkxnUuJwODw5OeHo5GwwOq6b0rnw8MOXoygy0mxvbx+dnOzt7a1WKxf8bDYriqJpKq2jtm1Z5ZMjmnPOA63raCmlc4XuJTq5n8SaQtg5hCXWNc636zSDd0HbtkDddjh79qyRan//kHN1UmGYDS898vDcz27fuIE1jsfj0VbeeNfeA8V9sNVqJaWs67ptW0aWnXNxYnzb5SVt2x4dHQFAlmVSa0FkrevZKyHLM/a49z5EOlZCe09aRUTkg2U2FrAiF4Tux6JICMECHRxH0jTnmCuEcK1nFt5oNOJvVdd1ng/j2DC+Tj1yhojz+dwYk+edL9bw/IULFy7cunXn/Pnzs9msKFZEYMxMa/3EE48VRdm27e7u+aOjo6aRk8mocZaxbGU0N3O8DcaY1aoKIZR1zatzPB7v7u6y0oKJBkVRIMhiMbe2lRoRKR3EiBiTEUIMBgOlVJ7mIYSqaqy1o8mkqaqqbDpxFkTJhglCMJIynU59rw3N2I174KRHQYDsdQWdDw+RMYY/iLFm51zHNBHIMRoRl7M5AMtnd8KI65Zs46xS4vBwP0mSyWTChGhydPbs2SSN4tgcHu7Pi8XTTz0egjs6OhKSAGk6PfGenAsU0HqnjYzjeDpdOtdybcAAZZrnaRYfHhzv7e2NRmNtlDZSKVU35WKx4MwjBJckSRYnrATvXOucM8ZkmXbOzRdTbSQIso3dt3Z/f9+oaDFb8hyB9x4FtG2bJMlkY5Sl+Wzmlss5+CCkjuO4aawxsfdeoCyXq7/8X/0Xo9Hop3/6p3d3dyfD0WI6+8X/x7/4A3/gDyzf8axJIpD48COXP/axjznnrl69+swzz3zik/8LT++uT/0XXnhhMBiwd4T3PkkyQdA0DUiutUSsTZ5neZKGEJq6aq1FAXXbMvUbIx1F0Te+/nUltTEGAl27clUJ+Y5nnv3EJz6xmM3f9a53nZycHB0dPvbYYx/60Ae9a0MIr7/++snJiRDi5OSkLAtjTFWtFovF4eFBkkTj8Zj7UW3b2rbk3EuACCFwAcbnipDy8uXLIYTT09MsSzY2NrRU0+ncey+lqFflyekRgXc2tG1rbWNMfP/w1lpIaSIMXvUoT9cHZr7kr/zr/3nn7JkkSabT6Z2bt0bbSdPYOFHD4ZbUUNWrJ554glUCPve5z2fp4PHHH79z6+7e3vUnn3qiqqr9/f3lcnnn9j1jtGs9YvDeR5HgdAgRkQAQFotFVTVEXqt2tSoXi3nVNnFsBoMNF+zJycnNmzcBwKTdccs6dUBCqYgC+uCtdVk6GA7Gzp5aa6XUQggmX3jvPRDV3ntvYoNCSm0UWOaPz2az4PxoNDQmWq1WbVtzY7+1dRzHUZqMxgMgsZjO6rLQUWJtw6JI1IvQERFrxIUQlOjJBby7sTN/gL6HwckrIrKQk+jpZpxUJUmyXC4BSAgMwQMoPgOYEB2CdxDYU65pK5RgjDKRyrK8aVdNuZIYBIGS4pFLj1TLcOvmXdACkdjWkg8Yfu5lWbZtC0RCAHUKFRSniW1aa7u5NvFmw+J1uoYP0OXWuWDbtgcHB4QQ2vbZ7/u+c+cufP7znz85OeFqgSEAJWWALv8GYOZlJ1iptfYUqqoKGPIs01q3zrIlQHAtRRICEAajIh9CABIoAgYhhIoMAATrAILQGkUwWhIF1DiM81VRlWXhXMtrvq+X2PNDCSE8UFU14ME7L4VEQEHCCNU460Nb17W1rdRq+8z2latvKCXSNO5YvcFKh2kaI6IvHAUI4AGY5868TgrBWdtEKuK6ke1J67osqtL51vTuKG3bgsCqLJFAGW07Nyyq65Z/MYQAHes8AEBZlovp4p3vf/ahhx4+3L/XNO1wOLTWL5erYlmVlW2alQ9CCAMA9+7dc66tm/Lxxx9//PHHnJU3b97c39+vyta3Lo4S+YBEqTHq7Nkdu2lDAGPMvXv3qqpBRAGodZSmeVVVdd1mWZdRWO9JoJBKaNE0TWx0nsb5IKvrsmqKOImtbaTCjY2N0XCyOdk5OTltmmo+XcZRtH90KoQQqkPZjDFIaIOLNfcJpFKKW/c2gABptF4VReObOMs3trd2M310eseHeu/668WyvH379nK58quARuX5UMlECNE2VEBhjBkNxovFAkDUdS0BAt3XAafebqWrN4KtqgoRdWSsD0IIrVXdFEWx+OCH3v/2tz+zt7dng8/z/Jln3v7CZz5zfOfuweBomA8QRZrk3nuh5MZo3PqW+bautYPB6FgetnWTZQNoVVmWITiQQkjkrgcRjcdDqZW1VmohpDw8PLpz565ScjZdGWOOj48jFbng2DkTAoUAURSZOEJkej5wDbZGK9ZFPvTCmkywCiG0rSOy/K+25vIJHDHLT0mQTAPkzWKDdatQV60L3lqrJDIukyep6BVRjY6ttew3tw4LTdNYawOCeoBA5zv9MXF8fJznuTFmc3PzF37hF964dvWpp576g3/wD/7dn/o7y+WS6/PlcvnJT35y/+jQe19VlbVCCIESnHNGGCnlfF6N8smjjz56dHRy8+ZNa71SoXG2bW0URaPBkCicTE+FEIAB2iCE8OSFFOQBBLa2td5VTT1bzJk8AlJ4oCxNoyhiWxFbOl6fjPkaHfNXW68crpzXbTNAQgQBPL8X2NKDJZaQz28pCHxwvg4BiYQU60OBiIInB476ARIictQJm0qhQQYfPCAIgRg6gGwwGNR13TT2wWp2XWY/AKfct+4BFoqhTk+Df66P6hiCty0GFZSSxhgl5Bpb97ajwCjV8hcn380PEZH3JATjsE4yoqd0nueL6QxRnp6eMk7KJBeun+M45hEi6Fs+iNjUlm1FiUgKAURKaG9dsVjGaZxlWVVVcSwF4mRzE4hm1jKEqqTkjJGvIXSCV7YsV1tbW1orLl95uApRRFFCwUopWZfcGIPoB4MBV0x1XSvFNn6ASNyNi+N4tVpN53MptZImOLLBSqmt9QGDc/cbyV1jmEj0fonc7g29yQoiZlkGYPjr8zxNsJ3iVrc9+dFLyWgaEfEzZFPo1WrFwAT3sdcAB/bkWf5QPoI5qSby1jYAgu6zTdl9yHEzg9mUgahHP2UIEJz1QDwxBD2HVEqMYo2YBeuqqvZ1AwAQx5HQxphskHPqXjWV0VFRlOkgXs6LOFODbJzn+Xg8TNN0tVq98cYbZVnqKFJaA6D3LYIMPsRx5L0fjyejydD5OgQ7mQyLpU0SZUZGa5mmiZSSPXtb72KF7KIjtBJCAQkE9L6Ookii8NT1nhnc+ehHP0pEL730kvcWwLR1I3iqzHatMtHzfoajgXVtWZZtY1mkmNFhIYhZk1zJCkAWsw7BCyE4jeyI/AA8NYjchYZAeN+qiwFl0buf8WNyzhEIpZTu+uKEKKXqtOxDCEwgZaVWBtbW0R7WCqoBQ+889mDath5WU53L8X3B1nWyx/uRD2JEhm49IoTg14EFAal7+/u+c9Sbvq5P1XXwX4ejELrpByEEjy93jCspeY0TAXarkdaVL+PL/OmMu0E/DkX37WegW59uTYkQ6/Q7hFD3W08IwQ0D/ns+mHhHcOQBABFFPHRF1CmHMAz3776scz54QkApEt3ZD6CUvaK6b2wbRVGSRGwUwbAvhfU96aKElBI7yJWMiUMIPNXOvTTnXOfmbTQgWu+EEMqY8IBFKgFIKZSCwJpaWgQEzwQRANcJyIDrSSHQddm7STW/To18WC8SbTp6LC9F5zprDdWLeperJRu/t21blmWcmJ2dnaps4jgOARrbAgnn3PHxcRzHk8mE9xrDIMNh3raOJ1EYFFuvwLZtpewchtfLm7+mlLIrvzAws5ufneMpQwReV/1SEaLXoIcHZk85FEstepibCwQKvXS195X3PjaRDz1LHR0gNW2bpunjTzx+586dg4NDLd4k5Q8AiB2pCH4fse9iVRA0LnjHj6Z3KzFGnT9/Vkq5WCykGtRVW1WVEB1u1u0vCkp19HNGVFwvOeWc4w7RcDje2Ng4OTmy1i5WRSh8Phhsbm4W8wVf6sWLF9M039/f52hz8+bNH/mRH/nJn/zJX/u1X/vsZz+rtWZa4en81HuvhZZSXrny+rvf/d7z58/b4K9evbp78WKWZcvl8sknnxwPhnEch+Bu3brlXDsYZD/5kz/55JNPvvDCC1//+te3traef/75f/Wv/tXv/u7vWmvf9a53fetb36rr+s7NWycnR6+++iqjhUKIvb298+fPv/vd75JSLpdzDkfWtnFs4tjwA+r9KmzHAEAILiRROp1O+UD52te+9vnPf/7OnTsf+tCHvv9dHxUEn/vc5+I4bap6tVo98sijhHDv3r3bt29fuXKlKIq7d/bLqmAsyDviJGE8Hl+9dr0sy9FoZG0z2dq6d+/g2Weffvvb3/7KK698/vP/9ktf+tK5c+fSKJlOp2xV/eEPf/jevXvck2bTyCSJ27adzU+FEFGsnW+vX782n88nk8nGxjiJzWq1Yg8zNqjnBtLZM+eFEDeu32qaBokCAJckURTVxZLFY/M8T5KsaRrbtHwc16FNTMSe0lprfjRtb3rPA3lr6roQoqqq2Ww2HA6EkHyi8af3vTEAgHPnzuVJenJy0jQV//1wODw3Oue9v3nzhrd2d3s3juPCz+fzuV2wnhdRXdecdidJUpYlSOiabA8MUKyRCA5GrJuutQYgrSImYXHEn80Wy+VyOBgbYyggDzpxECcAKeWZM2eWxdz5Nk6M974sy+FwyPBo0zRSaggNEXWoImuQ6WjNQOG7g9DBstygy/OcT4UbN27kec6GKpPJZDQa5XnuvS2KYm/vBgDM53MjVZrmnBo657iJV7dNmqaRSVD5xbxYzord3fPvesdjN+/cLorSRGpVLgEgMsloNBwMsrIsq3rF7C0pdJZlEoWHtmkaQBcIqqZSQrLHS1VVy/m8cwDobRNCCB46+QK+sba3iqYHXogosIunUsrgu3TBWltVlQ+hrmulBSfr/YyDod6DtW8VCqbpAYCjUFWrrox0jqfC4zh2zmWjTCocjQZEPssfjjMzHOZlWT7++KOr1crWtijq6ens+Pi0rjvPa++IAhKhEGpra2xtsyrK09ns7Lmdxx6/XBQF8+NCgECOAnpHKDiaw2AwGKTZ2oxLCJGmMYBYlituWPGJhYjcTrDW3rlzZ5Bmk8no5GSKgpxvwQlHPsqii6OL0+OTuq6rpoyiRCtJpLwLQLSYL//iX/yLZ7d3/tbf+ltS4kc/+tHv//7v39nZYeLeeDy+vrf34Q9/+L3vfffP/uw//qt/5a9IrYUQn/viF3xrmelARKvVKmBnO9s0jUKBiErIqq0mk222TVutliTQ+Zb7tBujMVN1hBMeCIg8OSYqpEkU2nB8fCiE2tjY2Nu7OpvNZqeLZvf8j/zBH/rkJz/5hS98bn9/3zk3Ho9Ho8F0Om1snabpbDZ7xzvecXx8OJ/PU5Ez4hxHnXVJoDeVuygECjg9PWXLzcio6emxUmp/f3+5WA2HQ14qzIvM83yNOHMCwf+0Tla01t4TgGgaS+TTNGX2mW1bABgO82E+ihLDA3HBBSXNrVu3j46OpZSnJ7Pbt+7eu3fAQGtRLHd2duqmBQDmIAvgRohSSrJvRTfB7f14mLu2XS4LnoGt2oY9Ci5duuSDnc1m5WoleCwZpdayrWoUGoDa1pZlFTw0TTPXq9FgKKWu6xYxgJCqZ08HCgoV7xcuTVklg6dr4zhmhejVqhCioxXEccw+GzxWOd7cGG9ugIeDgwPmqjyYtax7g6xQty7s2WfjweKfMX3WPIWedFZVFY+unJycVFW5puMR+bathRBZljD9CjAoJZSSNtT8h6YpNzazycYOCjg+PuYQeny0773f2toypIiobOqiKNY5JUu5rVartm19a9cxFoDDl22a+7ZFzjkIa/gprAX7fC8IxWkrR7YAJKPo+Pj4zJlzly5dappmvce7TnuPhUnZTXLwh5o4CiEgEirJmZMkNxxOlBJtkjRVTRSU0p6ccwFZf7wvCENwjW20kFGkhRJRZLz31rZLa+u64SduTJfLcnWxnhhSSmkpd3Z2lsvl0dFRCCFNY+cEK6hIyRwCDxCkFADBe9u29WAwUEosVwvywNQ5RhBAEILEdZPD+yRJGG4rilVRFABhtVp670DCxtaWYv3r4LVUSgk+NTgn4CoFAJQymmRwxCQsPqzf+s6nnnrqqdls9urr312tVnGUjsdblx85e3R0cno6axtXliV7HCWxiSJ95syZRx+5XJeVd/rq63vL6TQbjVCItm2FZBxMWtusVssnn3yyKIr5fK6MPnfh/L27h03TgBB85Xfv7mup2ra1tkWU2si2rQEgy5I4HtR1fX734eFwsCymBBtRJJXG4TCv63q5XB0c3R0PN9///vfevH7n1s27AKGuGwxOCDEcDpGwCg31wlBCSAhECJwDsFmoc87ZQmt5de9qlkWPPvpo01RKqfF4XJaNHscwkk1jhVBCKGstjyhJIbTWm5ubzgVEbMqGmx/rIlwI6Khq/Zbs+FCko0iTgOp49fQzb3vXu97x3de+8/UXXxyPx/P5aufMueef/8iX/+0X6rq2bcizYSc5onQUx5GIrLVIDAHLk5OptZbITdIzjbNGGiIvJCiNNjTOu8lgNBqOlVKI8tatW3vXbgCAs6FankhjjIkhdPVnCEGiShKjlBqOBkKI1WrF80MUAgqFhBh6XiWQBMRA2E89CxQAwa5J0AKlUrQGyAABApPKO6QgoHMBJUip4lhD8B48kHA2IBJTNuk+WHlfsYF6QzNLnlPV0NurAkAcxZzAKKWEVp/+9Kf39vZu377N+CAAMMd5b29PGr3mYnvvBeJysTpzNv3Yxz72i7/4i0CKleLTNPeeqrqezeZMgDh2TvbOYETBU3DOc/LNB5+KjEnie4f3Wt9GUWSSmLk8Z8+eTbI0G+Tq5KTEcg0xcIXsbPctOClf4xR9JdzVk4gdfxgCAUJXUClJQgQCoSXHQaGUkBIfuIFc/nG+vX4roI7D0os8IE8D8MTlvXv31ku3r2cD852llDxRInpf+DXw1NE9178QAkNPXJV77wE6ASjfGUJCa1ue2yWCtrVKSSAIIRDQGj/SUhqlOPLHo2ixWKxWq7KslZBa6yzJ+KqYX2mx1VobpUMInpy11rWWwV/ZDxjxwWqt9741xgyyfGtj8/T0tK7r+0RdAK2iOJIOWh8st+iKojBGa53MZjPdSVV6Lnym0+lqtbLWOktpmhMRyzho3ZMZiwXnJ1JKDx3tRiqBAra2tiTI2WyhlW5c27ZOagUAQCIEYocrImL3Vw9rmDhgTywFeHDZCM7jONoPBoP11Nr9hdQne6HnNSulQhCckfbd685MiYjW3GiOcoGct6gMg86Rc05FigJqrdM0r6qTEChNcu5w8IUhAGInsoucdxF0MUQACgAiqcRwOEAUiU4Wi8Uf/aN/9EMf+vCnPvPCP/m5nwuDOEmiLE9MbNI8vn79pnPugx98X5ZlTWODt1zI+FBvn50cnmQns+PtncmZnQtCqOl0dnR4wvia0oIwjMaZlNnxyeGqnLetstYqBaPhZj5Iy3KRZdm37r4OJHSumfDVJSqegMS6qPQ9XsMLlUkeSRI1DYQQGKdQSmnZsQiFAF7860wghMD9jDhKAYAVn1jZnJvo2BuaCSESKbk/BzyQDrL2dfBBSA3A4tpERN46fkwAbGB7/wUg1H2UjUII5MKDCwn6JvEaPuYMYQ37crwFRI88EuE6584Q1rDCg1MRoWdiIsp1zxLRPxAx7jcUCTu+CP819ZqkDzLrhRDIP0fAfoeIGJDWpy3nYmsAkeHmHrMLSkmmduLa2rGvU/jinXPUW8lhP5jI4YUHEKlHkP19rbMuM5dSSikQEVm92rtAQdDvlRZBCUQkECXGwXnba3T8nlcIFICUlExwYWSW+WQ8FKKMjqJIKmWb1rlORqNvcbG4k1Y9d5XHaqtqxUuUqLOTzfM8APrg4zgWEgCA9ZQABEhSIENwbh1YCENw1nYUN74DPAnddyzEg3e+YzcTeO8nk4lEURQFIobg6qpm1G/9LJhXzrhN21R8x+q65ivf2NiQUo7Gg3JVM2MXSBgDTWPn87kQIslybqFxyCqKQuuIAaj1ygn9LMi6xIB+BoiI4jjmmSol+wjppUCFaEUf/voTGe8fcB1bXxKRJwdNo7WUUlJAcLZv8gUpTRxHzqIQElC1ziLIKIpQUABo22YymfDdq6oqSeJImbqqrbXeO+Y5rUO37CXFfs9rtSqK6oiPGL4w0ekMhtn8VGttnW1bB4JMpGzLJDBBCEQi0ffNtK1t2tYrpby3UiKHO9aXUEqdzKZNVV+69PD29vZoNHrqqaf+2T/9J9Spq9FambYsSyHEJz/5SUR8xzvecfny5Zs3rz/zzDPXrl17+OGHd3d3oyg6s7X94ovfevnllweDwZ/7c3/u8PBwuVyeOXPmwvnzm5ubbVV7bw8ODi5fvjwYDN797nezZd+rr776yiuvZFn2oQ99iOG+V155ZWdnJ45TpYz3tL29XZYl4wCIVFXVdDrd2dlJ05QZdetBkC7iATIXPooSXthKKQLxnVdfvnbt2rNPP/Nbv/XbX/zi5/f398fj8fHJ4a/+Pz9+fHx869YtIVQIoW3bCxcuEtHp6SkFXJYrDtdM6QMAhbJt2yTPVnWttW69M0k62pjk2bCu689//vPe++3tbe/95cuXNzc3965cPz4+Lori0UcfffLJJ8+dO7e3t1cURRRFSsm2bZM02tjYYEXv4+NjNOLSQ7tKKYGqqeuqXhnTyYBwdI3j+O1vf3tRFCcnJycnJ+S9lDJNO23l8XBUlB2aR4RGaSRYQxBZltlgeQi7qioiOnPmzGQykVIeHx+zuEU3xeuc1np7e1sQWWvrtmlby9m4997ZwG0MheL4+Hg+n2vT6QZHUTybzaaL+bSY7mxuee/v3Lkz08c6jQfZlpJSnp6eOufObO/kw8Hh4SEiCa36XqtgOJKRZa6Qra0ZZ2E+HT+JQE52trPQNE1d12ni2DS5rmvvA2us2LZtbX323E6aptPptJ8Xc/PZ0tmQJEkgp7VGAC7R5/N5FEUsvWetZV9FRjmdbVkvmAnaa+VBT2E2mwGIpmkEqq3tjTzPkyRZzqbf+ta3SYAxWgJqfToaTay1HrgEUgTgHTXUCJBZljnnWWYrz3MWAEFEfh4mUsHDbDZVSmRD7hLUCUUbm1vLcm4S05TNfD5tWwckXOva1nFhpkRHEPC9JS67TjvETrXAuxCCkoK1HbA7FBF8h15powEgEhERIVLo5/r5EYRehAVR+NayWxonHB4ojmMd6yRJBoPB/v7+dDoNvVzLdDq11g6HQ6MUCrO3tycknb94vmmae/eW88VsMpmkSeaB4thsbW2dP797cHC0mBfeM13FOxcKVzZNg0gPP/rwmTT5zne+c33vZn82ozFxHMfOsmmslwIik4QAAQV7PXMLGVGmg3yyuV2W5eHhYdM0RGCM5ui5ublZ13We51mW6Thq2/bw8LCum1DBQ49feuyxR+fb49lscfvWXYEAgpAkIpkk+Rf/7J89+/TTP/IjfzCO4+Ojg1deeeX555//mZ/5mQ9+5Pvf/773Pf/885/5zGd+/Md//Od//ue//OUvA5HWuigK7xyEcPnyYwDhxo0bGxsb0ujVanXx4sXj4+PTo1POMnlrNE0FANa32kgSmOcZTwwAAB/h1WrlnNva2nr22bdba7/yla8gSObIRFG0qsoAtLm9+dprr/3Nv/l/4sW2uTXhX5/P5+cvXEiS5Oq1N/I8/5f/8l/+/M//3P/9v//7g9HQNq3W0RrvU0ICANda2pimrYlguVzy+imKxWJR8DJuW18UxfmzZ6XQHE2ydBBF0fHxMQBwCFsjpw5a74NSSghAVNZaIbS1rNASUIjxeLyzs1M3S+/topgfHh3t7Gzs7p6fTRdNc1QUhTGx93T79l1EjE10cnJSVdVwPBoMcyXlarVKotTZoLVGlNPpFBGZzFtVlZEqeCAHjgIzygE60UOlBRdRRsfMOrfWqSQPIbSts62v60YIIaUOISyKFUvlEFHwjqhT5pFIWusoiuq2LsuyqipjDDPBsyxjUbytrQ2l1OHhoW+d1to7qmXrwALgfD4fDofj0Ya1ltuGPY5x3zK4TyTwwewcgG276D59oBNlRo77bdttcEaBy6ZGhDRNQ3A8IMlZdWvrRCVJGnGq2tg2H6RxrKPECBnKsvChZabtfL48OV5eff0WQiyFGWcDIrJN0wFVsnPx2tzcjOO4ruvFYjGfz7kla60VQklkBzCxxlAcOeBkvUcu1hg6Z5msktQ0DY/53759++7duw8//HCaxmVZEHUD19yE7/FEwQKFABCAGTdOCKG0JvBV3RBAlmU8E3T75p3T01lgHQChKaCXpKUWAqXEJMnSNCXntdbCdMqncWzaqgYAqTB4CMEhCSUkCHTOBeeDCNhLEk2n07IsbV1LY1gcAO9Ppzoi0FrydDYqKsuybiqOz4688CClAlBsDRICU1a6WaRgnUwS3q1t2zbVCoQQRg5HIxNpxg6YxiWU4F/g2yu1kpLVqD0RBArUWX5RZpKdnZ39O/vXb96Molxm8XQ6bZsjBHF6eto4a+JYmy5KNE2zsbGxs735hS98qSiKLNkqyzrOc5aBEhLatjVGOYdCgpBw7+BuWZZFUSZJefHiRSXNZDL57mvf2T+4gyiTNBkMBqvlyntL1HIKuL29zTNZSiMJXKyKsq7i2AzGk9PTw40oPrlzb2/v+mg4ufL61d3dh0JwBM4Hm6SqdG0+yC9evLharcR0Tj6sFisppUThXDDGRJEejkfWWjZKzjbSd7zjHcVyPp9PT09qAu8c2bbNshxRWuuFEGVZKmWixHTAjRBZljVNM5+fJElSLosoiljvQAggCgCC0w/mPYMP0+lUKHn2/Dkif3R66L09mZ186jOfunr1qlJqNlvEcbq3d/3g4FBJY7QgwrZ1XU4ixO2rV3d3z6OSs9msXtVt69q6iaLEOWeDNzrWRjpXx4nJsth61zTNdHpy7949oyOto2KxQpRJknnvyfimabQIrfVKgfceSMSZISJ2jucRYCYBvVk/8U26PRx8WJJFCCUEEXmiQAEY7GCtc++tRIECgvco7yvSEgAFDERt0yAiOSqazi5CShkCECFCN44mpZS98w/0jDl8YJSViLwjKTuZyAgTrfXp6emnP/3pUT7gzBNYNs5oa23XaQMQQiql6roGEr/z2/92ejovK/vud79b6ejg4Ojhhx65c+eOs1Puk5VliQiGB/+Jv523vUZc27ZpEsdxDBCYz6Ijk+bZYrFYVeWqKrnlYLVVvSjeGoN4gGx1n74HPZr/YPCnB6AfQpIoCSEEBCHCGg4OoW3btmmstVJ0xZX3FEJ4YBx+fZoE7u2xdMlsNrPWchhhWAqAeNSa30coPoAEAHimDd5vlHrRD3qAYCOyAIBKSa218y1j0UJJHRnu2615i6HjA+rYREQkAFivwAfLaF0URVoqrmq4AsferCn04nt8InALUGudpikAMNOtv0JCkAjofYdJWWsRxZkzZ7rMsGoPDu9FUZTE2Xw+393dlVFWVZV1zWg0iiKDiGmaRpHOsuT8+XN7e3tCDPnTnfNVVSN09lNrp8eiWHBKFkURQKiqSip0IThvDRnnXBwlmzvbZdkGTwBCKhN8kFJBJ3zU6dVy4QNCsL7Eg9Jn1Hdl1qAe39g8HyoU3hOrM6lek8p7L+E+ArjeUPxnJh9w8ua9J+e9FFqr9SoN5Iiog8BczW9ropgFHJum9d7XVau1jqKkI6w4S+QCkCIE2R/3glCAtc1aD0EplUZZ69ssT27cuDGd/ptVWwOCNmq8MZrNTuUKjk5PWHZ/1RQ6NlGs5vPl8elh8DaO48YVw1F6+fLFNM1ruxrkkziNXbCISBjKup6Ewf7+PRS+KBY/9EM/uDW58I//8T8uls25cxOpgon0fLYUAhAkaxzzGew7LRrPyslSSomS2aCcq7/xxhtKdRIxSkgTRdbaYrUwUaK1VkoAKO89QeDaUCkFhIpTNRvWUD70rEl8oN/G0ABPn/CnE5G13rmGdV2dcyy/Rggo0HdBycjeE091KFUg6hjTAIC95qx4QIpX3ZfI7+zL1pexjh0SMcBayqz3EANq21r1SgsPvDqp/TVUt4543aIFohAE4DrIAAAzoBkWfzArxh7AvX9/WKWF7QEA+c255Oftw0cV/z0iAZCUGEXZfU2hHnn03rNl3APdvk73Rgm5vgl94tTF2/XuQykQUfaKcNbaAEQURB+WrbWR6hRXhOBtEMH3emmj0WlAauqaA6COIsHjBYF1FbprIyAQGIAE24P3Ed6T861T0gSE1tnG8aQRtrYFAKGFVpoJFlGkpBahB81Z3Ma54JGC5w4HoZJEYIPXOuKvKARqLZMk0Vpya41Td94CHKzWs9e2aX23qslby0Bqfx+A7b75oLdtzUG+beu6rre2NjY2Nkyk9vb2KLCCsx5NNoBIKVXXpXOBS784zYjI+8Z7MsY459fhbh3iOGdex701jrxObEIIPLzOV940DSMea8BXdh4DToi16jTrgQAiWGuzLAEAKRXP3PAgiEDBbW8lfaAghJBCCSECOankmTNnLl68eHi4//rr3x0Ox5PJRKG88sY18QD9CMJ9FZrv/XpzXiSEgF7KzDkbgnfO+27lAAgCENZ3zSQppVKSM4Qsy4wxLEXF6hlRZNq2vbN/jxODarn80b/0l975znf+3M/93O/+7u/yxymlbly9GkXRH/7Df/iXfumXiqIAgCRJPvnJT/7qr36ciHZ2dj7/+c9ba3fObx0fH+/u7tarTrn0s5/9zI3bt55//vkoisrV6sqVK6+++mpb1VLit771raPTk8lkMpvNfuZnfqaqVvv7dxHZH57+6//6/3Djxq3Pf/7z73vf+5588q37+/ta6/Pnd774xS/Wdf3ud7/7G9/4RgguBPflL385iqLLly8zfsg3lleplqqu6+l0bq1tGntyesoT/7/6q786GAw+88Jnr9+4xk5pUsrDg+Or166VZZkkiZSotY7jmClZQggUcjKZMDhjTMRuw3maDQdjXoRxYs6dOxfHUSCH6JM0ms2mdT1/9NFHUVAI4czZ7fe+9wO//ZnfunTpUl3XL7zwwhpaSaK4buu2bQfDTClRVTzZry48fGm1Wl25ciVNU4kqy7IkSZraMuLPLOaXX345ywZ5nhPh4dHdpizjKN3c3BRCaK3FyTED8U1jlZCcFPFKOzw5jiItpdQ6IiJjjFKyrmumwPLR4L0PHpgPioiBY1TTsrVS27YU7o8y7+/vB+5z+pBlmXOuns+pRA8URVFr62k5reuyiZuW/FBsKq7wz5w5MxgM9g8PhADvgy0rodV6b2xtbeV5viY5vvHGG0pK9kmQUg6HQ9+ranBmNhqNBvlonfHwgsjzLIqipqmqqmL9FPZAdM6NhhMekbDWsvK6kDLpFdaFUFJK/iyGYLz30BuSKGkIPDOUudGxvb0dPDhrm9revXt3OBzeXdxNkkQQbG9v2uCLorAuOBekLJIkGQwHdV3b3rVWCFGt6jRNkyQdZvmNm3shBBCKaYx1XbObmZImTVOlNE+dR1GUj3Kh1JkzZ+I4fvnll+u6BhBt00LohEejKLbWt22rtUbsnF4QJI9LhgABWIMpsEdBX0cgu/2GAELgOvpzCcG2aZw/Qe+xsO4fluWKBEVpxDV201Qc34wxTz755MHBweHhIecl1lqOSm1dKyVCcELitWvXpERjFBEtF0Ucp3k+TOLsdD7L4gwACDxHYY5xdV2XlZVGvPHGG8PhkKcaETEEKopCa6uU8j5obdigmYgODw/LVX3mzJnWBRQKJSxXVd260WjEAc61rfO+LIqygO3tTS2kyVITm6JYsIhtOWtBw6XHzwG6k9ODslxtbE+kkeWiLpZV21pkC+a6Ho/HH//4x8+fP2+Met/73veZz3xm/9693/zUr//27/xWFEWf/I3/5af/u7/39/7e33viiSeiNNVaN02T5flf+At/IY3iT33qN9iNahRNlFLHx8fMyOYZn7c/88z+0eFiMeM6KpBDxLquy7LMk3Q06vYCA7gc1E5PT621xiBHTJ5qQSWJ/GCQHR0doSBjDIH6Y3/sj1V1/dnPfpbTKWl0Xdc/+7M/+/LLL+0+coFrRd4LHCysta1royQiokA+SRL+S06j69rx+vGOgMBaa1vvMCwWyxBCmuR5no/H48WigK527dDDKIoc+jU3gdsYLBdYNfX582e3t7dZPqmsiqpqIQBfT5rmbesQZds6IlxzXbMse+tb38pSGMvlDEAkSUQxtm27XMz5djVNUxQrcn7m59RZYirO4IlC09g7d+5475fL5Wg0ykbZalVVVR2r2AsfAieFLo5j7zthSj7ppZSEgYlXAMBuVyH4qir5UBECxuOhMWZzc5IkyfHx8XJZz06nbdshMsGDCy2AIOXiKPYeJpNJnmf37h6gwp7NGhDVm8AF6qyW8IGBBg6QPf0kQCDZSeYDQJfmEknrmjzP8+GAOuIwi955IaGbb1AqjuPtnZ3Fcjafn4ZgQghxYiaTUbGae2/v3r2bZQPX+qODo7YlqCqIQmgsz+nYpmFX4jiO+cFxrjmZTMbjMQ9AhBDmp3PrndZaCcEJTffVBK6hCibDdtle0yDiGiBQSrXOMoPsjTfeSJJEax2C11q3bSOlFEJ18ee+ejUP+NddQ4UcgDFGu+Bn8+lqtZJCVVWlUBCglBIBnbUSBSlFBBwknXNlUzjnEsV4sU1TzPNca7NcrHhIFjtRM04Hg0CeVIWmaQ7v3QUhAdE75z2xobzSAhHzYW6M2tycABOzZTgzONM0zWw2a5rGe2qaRqIyJsYe1OsqLqT1fZZSSymLolAmlhI3z2wKKQN5AG+MMsYURUHglZFGmAAEjI4JEQI41/AAa18q27quv/CFL549e7YoChI0HI8ERqfH09WqGgyy4TDnvKSu67oudWSUUt999cpsNpdSUrtgRIOfow82ikxrGyKvtEjzdFUWAB2mYIM/c3Zy5syZulnU1WaapsHDcrkc5llRlEKIKIqNMXEczefzsiy8D6+//nqSxEqJql7dunULgDbHZ/au3V0s2qY8EUJ+5zvfMUoPBqMkmSwWi7YSk8kky5OmaeIk8s5tTTYuX75srd3f379582ZR1AGtjqMgbBRFz334Pb51X//Gd9vWZUnurOe0oak8CDY/kVGshMLBYCCEeOPVK5tbW03TIMr5fB7CNMsG1lrZVcud2WMU6RCc9+g9IXb+9VrL/f3Dmzf2wMKqXJblYHtjO8kz76lc1XXdVGUTq0go6a3jFAWRZrNZtWiOopM0Ta+9cc25MMiGxkTBhTROi2XBJPfBIBuOcil1kqVEuFgsDvb3oPYAoDM2AW+MVEJoGck1y0OriNkoiFhWVd2UYj1FSxRF0Tq14KgOD2jF9ojtfeoN5x9sYm6tlQhEpOL4PkTiHSKCFOwVFrzHQEIg3JcU75G1dt0mEeuMJYSAPRAAPTMurO2nPFhrQTJVkxnKKYcO/l+hlbfW9S7nnDovl0vCMJ3Ov/nNl+7evfvMs+/Y3t7e2Nj4zsvfmc1mHCept74gCpE23jPlAKIoEqqzaY1iXVXVYDDY2to6OjriMytJEmZXMJbBKcEaFoTe+64P0QGx+7Id9gQg4H4fDgAEQgBCBO+dwo6UVDa1lJKDPwdhPvoJ76PLHUINuAZ0oOM+h+4hEnCBvVwu1wrI6x+DHnzx3sMDszUAAF2lQbhW0nhgPTAcxO+Gval4HMfs6ccSqAD3Ua3+cymRSZKlLEJlrTVKR1G0vb29f+du1/CQQgjBLeQ13Lz+aGYfP2io1fFdvAcAE3WTSVkcKRTTkxPXtsG549NTCsgiNsweOnthe2tzc75YGGPYakkpwe0K/i7T6VQIURSrDrkQktnB1Cu98OhPf0pavoFKSiG6gcX5fH54eFyvWgQVHKFQQihmifKBBgBCgOiLoxACkzYYEeBvvWYPsKaWlJJrJUZPAEQIHQUJANYewn3TiEQ/IrkehcFA4APbUwoU/J58JwGViaM0TRGxKFqhldZRFJn5cnE6mxmlEYVkAbG2lVKiYtw2OGeDkBJJSqUjpQ0b1jWNrYUQSRQjwnK1GGT5fL74xL/5N4CweW7n4ScvC4VJEt26vTg6PYpjo5Qoy2JvrxiPp8PhcDo9WS2Ww1HuyaELeZ4652bTU2PiprYHB0eBgtEGPBmhTqfH55NzxXL56KOXP/CBD9y9fRgnkshrA01TRVGysWE2NyezacnrqnfgQKWFbRn6D9ArXWAP4rMpVicw4oNUSNANYRijOJ/RWjtveQKY8Szy5Jyr61JKyRRddoVneRNu2GBvwzAYDQeDAVtgrbcSO9f13OQe/ZQSAiklpFRrcI06ztp9ajyzg3nLhAdezjkiTyR5EA1YVbkDB3sNtDdryPL78y6+/zOIa32J9Qny4MVwFrLObB9MfXvA16939Po6H/zEPpR1sRQJkEAArsnITGXt4uH9USeBSGzYK6UEECE4DlN8U9b6trJ3Lwi9rDb1Msa/57IJe8JI/+JRBuecc63o/4kPlO7pExn9veFmQEQlQ/CsnlE1jS9LPrKrpl4slmyLx5udQygHGT7NuUgPCEo5pVQgV1ctT16yCDi3Gjw51zQgUl5OJFAKoUwUmWi1qgAgAAYA6uYsYH2OM5TMhAlrfdPYuq6J/Fr1fp1CKCFRM9MzIKJtXFEs+fwFgBAcp47rNcOn6mIxWywWUaQnk4nWejFfKmniLL58+fKqKu/dO6jrOk1yjvP89YOzfN6FjpD+JpY99frmTLteLwOgrhbmbgQROU/OdbkH9fNScF86fF2CvUmUPPTf2nqHAdlAu7GNRBFFUVM1x0dHgwHGccyiLN6Rc44kKcTd3V0iGo83jo5OeEg02LUlpgBuC0E3JP29VwsAdIOkyHUrLzwk4DMrSRKlgCEgbVRdee9bRORTCUBwBbpcLvM8/RN/4k986UtfunLlSlW5zkhDK1+XWmvvbT4eb25ujkaj5XJ569atQZrwWPl4a+PSpd1vfONrx8eH3LHQWiqVOmfOnj37h/7QHxqNRr/927+9d+sq9vIyZVmwxtTelauHh4cXL168cOFC1z9u2jt3bv3AD/zA+577gFKqKlZFsXjuueeuXr369//+30fEH/uxH9vd3X3kkUeffPJJ7+nk5CRN0z/zZ/7Mpz71yfl8fu7cuQ984AOTyeSFF1748pe/ys/xox/96Dve8Q5O5ADgxRdffO2111bLsizL6XTatM5aW5aVDZ5j9eHJSRxHFHC2mAshRkrleV631WAw4JjAA3NxHLOOolCGc7m6bp55+7NMWs2yrA/OYjweE1FVlSE429bL5dw5H0UJABTLcrGcHR4eHjx+apL4ueeeO3fu3De+8Y1/9T/9cts4gVSFyhiztbUFACcnU+6iZdmASXjj8RhBBu/5AIoTE0XR/v6+lHI+nw8GA+fao6MDhkOVUkkasWYaAIwGw+VyuVpVZ7Z3+Hw5Ojris4xBCcYMpZQszyWE5AKZw52SxkPn+blcrJAcn5tSKg/c1u9WMoYWWBafPAA456qqan0TUx4QbGi0RO6La61rZ9u2VUmSMCB18+bNAJ0zWDcNQYFJPbwbOWNDxPF4bIyxvayzMSZP06OjIwrQesfEQGbGMZbNtDh+z86hbjnnn2EyXWQSFvEkojVPgfPRyWSTVRRWqxUiDodDfkIHR4fcumkbVxS1dQ0XMJwvZukgSZKzZ85PJpOvfe1r1gYtYTIZjUYjuyrSNJdCk/esAiyFjiMxHgPPnQHAztkzTz7xlhs3bt67fUcq0TYtiW6sI0my0ci01gqhrHcghHMuTdNB/gj4C3l6BhHu3TnR8p2jcVgtl8kwsm0bPIlYAAgpnRQakcW2BFFAAq1VROR9sG0DEgERfOC4JISUqAAAQn86Co+AUqnhAEOgtgnQIAIlsSByXXs7BCU3BsPh5kRZ32qjpVSnpycnJyfeQulFtRLejuL4zEMX1XQ6rarKKM+nrgASAlGAEOiJpBBI2DYNAMwrV8yU0tr7QbFAIJQSldbeB6OCcy6JAJDiLNZKsV04hpI6ga0gUARPsdZEAYPxFgFAizPB0e2bFMc7URyZWDRNW63askDvXRSdyTOJiEVRGK0ExBS0ieLgaJCZWFsC73dDnmbjzY26qgEhMpUx8SBtsgTa+p5tayIEguHI/N2/+6/btn3Pu39490L49U9+6a/9tb/6f/wbz8/K5Ve+9OWf/dmf/dRv3PhP/pO/8Tf/z/+X27funtn5iLU22Ol4tPln//Tf+Z9/5Vecu/LYo2+5dft2XSspZNs4IB8ZiowI5Mryocicy7NzABDAIRIKYZ0fZGo4HBqjm6aNjR5kWkq5Wq2++pUCYLS58XzNSgKEQogkE8EHCCAQtKZAQWlJIVy5qj/4we+/9HC0t3dtY7Jx7gwURfGrv3olz3fSZHA6ncXDoQATvDeSHLjgmjRyQgqtNRuIl64ykmIdb2xsVOXq+PgkUkLElggQYTFDKZWW0lGwrVjMZQjnImO9D5FRATyEQF7ESYIxutbxYgyehMAoAgSIYqorOD1NlFRabW1O5JSKs+c3JxtjCGStT7TFpPEh2NZJ7ZxzUlKweLy/s/vQ2To+HQ9OlTZVWQpUzjnvSoFyc3Lp7t17SdSiJimj4F0SAwkk6Ex18jzXWnoZog3K84G1zlWnCkBgbGLDyUNZLlkni4iC95xfc7qvtJRCeGYbCSQKdXVTJ/MLF86Nx2Mh4ObNm7dvr7gNU1UVCMzzvCyrytUMU0dR4kQdgJTW1louQqy1NljRCZJ6gDfJioVAa0CHOgFEAADvCcAhgXiAXgEAQsgoEs45KTQDZ2maAgQAIdV9eVmuVOfzOUqoqoqN2qpmdTxNtrc3H7l8aTweDwaju7f2lYoefuixyaB64/XrYB0oHI0HTW2Xy6X3PvRJHStpAgCjCUIIbeRwODTSHB8fO+dk1MEoa+bIOiUNofPdJCLW2PXdADgiohKSU6g1X4zzFSYOEJFSIgS1flulFCIxJ7J2NXhYrQqllI661Pzwzr5QJo1S70mAtM7x1KEQwjlb1wCwrFclz+jUTiJiFMVFsSrmyzhKkyRZrarGlf2Vk5QyStPBYJBlWVkthsMLQggEOV8u+uGyIkmyLE/atiHyAOLg4EAqHA6H1tmyLLO4S0qMMXXdhl6WCuG+uAoAoKDGeaa+dgiaEADY1HYwiqQycRrVdUnktUYpo+FwiKTYM72buBSklLJkJcjgvO/t4FDA8dFp27atDxRUVbdEMs/zhx+5tCyXzDS3RT0aDaqqOTo6WRW10SkieucFu08CtbaWUtStHwwybSRKFAK2tjaEUEKpLMtGo4EQdPvOjUcfe9i1tmma6XSepFvB0fkLZ/NseHIync1mq9Uyy5LVallWhRfmkUce2d+/Nz9ZcsHwlS99qyo8eBWEzrM8NlZrOR4P8jwfTzILipx//fXvrpblxsYWUajq1f7BXSICDCaSJs0QcTTJNraGURIXq9Nr166bREdR0tQOQVWlk0LXlQV0ARyi2b14qawqY0SWZbsPXbp9/UacpiEEHSl2btS604U0sXHOmSiKkqRsahs8WfCeEGh6cnp4dK8uy8n28KGHL4UQHnnkoe5Zt+7b33nVuSBQAYk8y6TqtF+bpmrb1phqenJ6ejwNNqAQhS+UNImJUEotSEqy1lX16tatwlo7mUyCh6IoJBpIOM/DYFvw3lHoChiuk+G+Pztn+auV5yKk71opVg2mng/ve/1W3r9vxvgIiFAAglAovG3ZRDpPYyJaLBaoZAhBSA3OB3IAwnuP2H00v4lrrWs7AUGOUdaiNvdVX6zj9p7oZ+MC7wIG0HkiuFP18V5KuVgVHRejcfVqxf1d7AhNQggRx/HJycnWW7Z/9Ed/9Od//ufJ00vffIn5DRy4zNpOx3sJyFO34BgKpF5tQJRlqbU+Pj5ea0dorctiVVeVEpLFVZla1Q/weeccBVxba6wBHehZVETEAqwAgcm80OmKdRZq3nuUgi1SrXVN0yiCNWuva8YhF58BADzcB5q7P4TgvU+SxAa/7grzrYM3gzvQi2VIIbCDjbwQKJiXSPcBIN8x2XnMXHT4FbzJsAux06g1OhZCONVywsx2zSGwrxExHiZRCCG4NLW1ZS65EKJuG1YPWF92R9gRQghRlh0xkENc96UQEJGpqtwJuH37dggBBTDOfnZri4eTRpNxXdf37h6kWRxCsK0GAaPRaDjMGdY5ODhgs9N79/ajKAqOsiSvG8vtDWZ4Mfhlm5aI2D9QSFgzSQNRmqajs+M7d+7x9SupnQ+MxbDALt9GRCVQeOqUlxFRqyiQY4CPizcesOOvz4pMTdP4XivWdX7OBLID+Bi/WEcAtiUWBEYq7z1bfjGcugZVoyjywYJQbMAbQpBGeR+iSLfWOtemaVyWNXlCbPI8H2UjAJgXSx7kV5p9qYXUIknjfJghUlEsWIckgLatJQ+LYn7h4i5hWC6Xf+gP//DTzz4zHg8//enfRCmzLOuo0AgQyNqmbWtE1HGkowTJV02zXK1ik2xubq5W1apcGqOaZsla5IHcYDhBpCzL0jR/+eVXrl25qjS+7W3PNE21Wi3jOI2iODJZkrCoi2eNuwBeCFAadG80R0RCSSkVg7ze41pXx7v29PSUW01CihACg1ZSiUylTKnps7vu5b2PooSoGz/ooUwJQFJzywmZg1ZVlW1apRT1KgG8ltYIWjdc0kvHigesa/mRrVHj9dRCvzFxvZzWGZqSmv8QiHqQmdYiG/DAC3udaI5j0AvOrvHu9d9zVGH8t1/qb3ofuk+mVt7b9X/yv/+eHwYA/jHvPZv1ud50FBGb4NadmHULjcE16nmOffgFJrmuL3i9s0LHYxOdQEHftKMeNCcE8CybIPsBne4+8weBFJzLrS+fj1GEN0nkr1+ttVIBIpokKYpiuVwqpbQ2KMVwONrZOcNJMrdz0jTtTJhQpYN4tlzUbZPneRbH2A+ORIkxxsRpRETWAvQnPqAEgrqxzoUoirRJtNae7tuAAwggctZ7Ty74qM9FeUlzoOCAue4NcO66lhsCACQPALZt67oiIgFIwQlWxGIcv9N2Dkqi720neQydD/e2bX/0R390a2ebCD/5yU+enJzY1vNgK58ao9FoMpkEACH4Aoz3lqsAfICHvt4piBg8MAjuwa+PjyhNRC2cs7yejRYA4IIHQNGvojWoLTr2NDc2CQCs9UkSuxD4nthAkdJCiDTLjHFCtME6RKmURsSyLUPwt2/f0VpPJpM4TqqqrqrK1W/KrwSg7zwq7heDv+clpHDO6ThSSq59IwNQnMRaSCFk6O2gQwhK9yYZxiilWltbV00mk2fe+bZyWXz1a19eLGdS4ebm5p07d+IslVIDwGq1unTp0g/90A9dvfrGl7/8xdu3bwJQbduN7S1jzJ/6U38qSZJ/9I/+kdBKRSpOYmstAT33/HMf+MAHtNZZlqFC51ye50LCpUuX/uyf/bNXrlz7+Mc/fu/evYsPP/In/+SfHI/Hd+7cadv229/81te+9pVXX3313e9772g0un792pe+9IU8z8uq+MN/5Ed2dnYeevhiXbVlWQ4GAyFU27Zt47a3t8+dO0dEW1s7RPiWtzx1cjJ96aWXBoMBl+Sj0Yg5oHEcv/baG1/60lcgkFJKSB1C8AAmiRUQkJAKN7OUO0bW2u3NSZZl0+mUE4nd3d2tMzvOhb4d1enYAInVapUNdJIkURzHSVK39WAwYFuR3oUviuNBnJhisdzf35/OTtI0NSbSKiqK4uWXv33hwm7Z1C+++KJz7o//8T/+r3/5l3lPzeezM2fOBAj7+9MsT4QQdd0KIykgIAby49GIn+np6SkrMjNqCgBVVdV1/b73vS/N4iiKXnnlldVqlef57du3Oe3JtwcXLlzg0cbz589XVcX7mumD3EFfL8LFYiF6BlIgL6Vie8BAAN4LIZIkRcS6dYhBKdMFfOeJPJFXSgGy75dtXBOcUJFR6v4MinMOBTrnFOO8fJSWZUmq2wNEpIXk88NaO51OY22MMS6EjY0N731VnbIRwWq5LBaLbi+tjQsxWGfbtp2MNx9MEBE75/TgvKfgnMjzPIkzpoLGccykjNBpkKksy/icYN4EK05ytRx6h0ReGdzM50i9XC4PDo5ic3ju3Lk8HwBQliQ85B48DoeTp59+mpyfz+c8n35ychKAkiTmmuHo6GAxmwNAURRxopUyJNBay5QiZwMIFMKFQGmabe1s23qymXwJAMpTAIBMQDYGAICt7xlJ/v/6MgogAATYHsD24N/5ZwfbA4B/9+//Pb0m8f+HHzg3+f/ujbb/nb8JEK1bgw6Kg+6PCGAr4H95ZPd7vNPxMQDA44/Dr/0a/NqvAcAWwCNPPvanXvgNAIAnLv/W/R/dBQD4638NAP78cPDnAeDJt/y+F5gDbI5//+vPH/jj79P//v1exSn85icA4E9e7G9CNur/kMBGcv8n4xg2NiDLYDiEEGCxgIMDKIo3vVuWw1YO/+FefI27mwAA0AAApAY2zsNgAELAfA6np9CPdAMAzG6DAtjOAAAmpv/bze7/H/teT/D3fSWwMwTVTQdDCPD7uP7+v3u9fvett2/fLMvioYcvAobp7IShRgCQUm1ubiq1qMpGSdX5JicZInrrDw4OOAaytHpwLfRi0NRTdOHNgs5EpFSXwRMRj3GsK0nOq7JBLoSYTk+Ycye0BACGSFAQp3FCCI6f3AI9d+5cXVfGDMcbo+Pjg9deu1pVq8cee0wrFUXJKy+/Pj+tpOB10yk1CymGw2FZlo4C63ETUVVVobdpRUSlRV3XRsRrHSuAzkEFHrCR6UfevO29wrlUkFIy/URrbaRadzFDuE/nAQCigKhUpwh0f9xMCOHRe++FQOccIbSrJkkSJbRJYiMMAJAPXHBIpQggWBe8q+qmKVfUJ8G2DSEEIBlC8K0NXmituerg4Ut+BFmWXLhwDhEJGqYKLRanSZbu7j5ycnJy7eastbWbNyiF1pI5E8cnhyGEwcbg9GQ2ddPxaDIej8uyRkQplJQyeELovm/wIKUUiFJLQARHRVEqZbjedM4tF4vJ5iTLkrJcxHEcx0MfXGsbDG44HFjrq6qy2s+m8+7mWAsI3LIFcN5T01gAVGBmsyKK9ObG1jDPn3j8LU1bnsxOjDFXXnNNY5MoroIlIq1N8KANtt4JLZq22tnZ2d7eEgqbdrWxMUnzZLFYhBCGk/Hbnn3bfLYMIdy7c+PWrVuHB/d42ShplDICxKuv3hiPNg4OjubT2WA0HI0G3vvIJMPJphZyc7xBLngbrPXTkyUASDRGJmk0jBNN5LWWkdZSmrtHJ6enM9u04/FwMhpWq6KuV9dvzIhIGfP9P/hhHamyLuM4zobZnTt3iur47e942ln81tdfnpYlktIqEShRIYBoWre1tXX+/Hn2nJ9Op0KgTiKUIo6jSBtm8AmFbMEUQkjSSEqZZvGyED5YCQmjOFW9ihKNGt76tqfOnTt39erVQT7ev3e1LptLDz/UVq0QwmiFUgaE0XBc16USIsuSLMsiHV+/fn3vyp5Uyshu+LouGwhSx6AltNY1NTPRxOnJojPxs8FoQ0RSC6QAgrO9rgBr21apLsJwksd7irxr66aFRinVVDVvOq21tZ6o5cEs7Cco13AkIobQaW9iIIEkWMNOyZ2t7ePj4yiKtNYqMuyZzMNAgKCUbppGKimEappGKGZeG7oviCmbupEKuXmGiAJRSQk9kUf3Ph+IiCCstWtAvGkantF5sEjjNU8dHyIYE41G46ZpDw+PhsPRiy++CABRFD300ENamqOjI4EqeJKAPgRPgaExJWRwhBqEFEx9ipT2zr/lbU/evXt3NpsxJ4ORR0ZZmHm3rlQZl4nimClLLI1H1PGaOexLKYEUt0sJietjCgAIAgARPRE5DwJd0yopSQoZYF0YdHTC7gGR1hqCZ4aL6BnWUdwpxYueuv7gOLzohUqpJ8BKRCll6BXJu2eEnT6V6v2FWrf2kJFKCaWUD8AegPxo+Lnwm/PZxJ/CXTTozSH54fpgu/vmgdFPbiGsYSy+DH6y2BPGdW+txl7N3Q1RUgA653u6iWQEvuMDhsDUUe+9iaMoiqxtFvNCG0nktdYQiPsKo9Ho3r17x8encRwrIcuiwq4tzbOHxK6k0hguZ0IIqLr5D9FbYiohvAv7+/t13YKHJM6dCwygSCl9723OZ6IlT45AdtuN7z/vQepZh9wUUUo5G9rGcR+xgxq1EkIEBIm41vpjIlL/iH0URRLe5MzGj9gGL1zgdm9RrSaTCQNAzrVCozEapUi0unDhAhHN58vT09lqWeR59ugTjwLA7/7u70ZRNJoMl8sl8FAP4Ob2htZyPp9GaWKDq21TtXVdlm1jNzY2WtfkeYpIh8cHg8H7H3740tHxoRDi7NmzJycn1loppFCCxfSSJBsMRpPJ5PT0+ODeYZIkT7/z2aqqrl7d29zcXK1KqZDVvR577NHJZHL37l3mKX3ly984PTl4xzueNYbbNDGCWpVN67x1wRhAElKqtm3iOLat17oXoFOKgwzfybqu1y1h55x3br2MoefYVlUllWCRB+hNd4ILzFkry7KqeFpLW9uwWDw3VMCT7G0b2dYlihLGtZumWVuxQQ9+8bUhIghEZJZSxy8m6uy0pVQA7EUM62yqW+H9BXes3rWi0QOkB+Yse9/pYTKwxvhj3yRjS8D7rAL+Xd+LV6xD0JpAQD35gHoJC+goFILZxCGwiej9X+To1N9nwRQEPp541wshEMn1b47MXaButu9B5P1BhBpR8u/ydfIZxHfYEwcc4m4tAfAmZZqOlN1souj1pvoo1A3qMRNitVqFEJwLzrn49ynuQvDgvRDYthYAoyiWWrFZFJM5yqbuWmhC8x/SKDbGeHJRZEaj4ZNPPsVM57ppFosF+yF1j1IJlkVGROcsS9o5CkrqJEmstcyV0cJY16zhHRecMTHrUq6Resak+KRj5t+63cVVgABO19lzaxWcByLAwEuIiHprhwAUpOikS5j93TGRg3fBS63u3Ls7HE8Wi0VRFJPJZHNjez6fF0URRUlVVWVZshAEdIu5E2xBFLwjuEe4Pt1CCJFJeBcrVD7Y0A8Vtc7auuJNJ7DDbQHwwZUse2PDEAJKmSWJUma5KjKVS6Gpaw4DqwK60HX0OQggCmut7/0Jbt/a11oeHZ4457hQ0kIiSkQSApEgUGAojIitMr7HSys9Ho9XddW2racQK9M/CxkQ4b5zZhcrlKY4jlEQCpaXEY48AK1WxcbGxvd937t+6Zd++aGHRskgkUIRdYTx5XL52c9+9rvf+Q44p7NMa03khYDRaPCFL3xuOBzWdalUh+lpI621y2L+m5/69dlsJqU8ODhgXuk3X3xJo37uueeeeuqpyWRy8+bt7bNn7ty586Uvfemll15aLBaL6YwIfud3fudkNv0bf+NvIOLNO7df/YX/UWv9lre85cknn/zlX/7lCxcuvO2tz3gfnGtDCAhysVi89a1Pv/3t7/zABz4QRdHm5uZjjz320ksvveUtb5lO50dHJ8fHp8PhUGvNrjaDwSB4SNP07NmzOo6rps7zPEnz1Wr1yiuvPPfc+zc3N6enp1KK0WD43de+c3R6srGxYYx56KGHHAWGmrm85f2NiFRQFEdRHFtr4yzdHm4ZqbjozrJstVolSSSEGAyz8Xh848aNs2fPllVxdHTclGUURSaOZ7Pp7/zOjWfe+vR73vOeL3z+S3EcX7hw4caNG8fHx3t7N46OD/NB3mXCQsi48zFK09ToeLIxYuIXk5d5td+8dX1ra2tre6OqVyjo6Ohof39/MS/SND0+Pk6SxJh4Mplcv359NBqxxkUURVVVHR0dtW2bJJn3jTEmz/Oqqpqm7QWyer8W9OuhAcHeG+SUZPlsuQapjVJKqbouiZ1PyHEDOzapDX7dPzPGeOGtDwCgLl++XFXVcrnM83y1WmkddY1rpYhIoWLGF9/f1WplkpijFednTdNkPRMbAAiRZRA5NrFThxACO3HSLq9yDtvWKaWkVnVdx1G6vb3NNFvWJvbeV6GGfpaFHzwP4B8dnRyfHnG3LYoiAZIzXZ6jadvWO0qSZLEoTparmzdvTSaTKIrOnT1348aNsixtIOfCiy9+CwPNZrPFYjkY5wDggnOu5bciIts4IsrylBOF+XKJiNa54GE0GQyHo3sH+23bAIBt/XIZbSbfM2j8x9d/fP0HfykF58/DBz8IP/iD8OST8GC79OgIXn0VfuM34JvfhOn0f5ur+oEfgMcegygCAGgauHYNPv1p+Pzn4e5deIB78e/nE9/3Ptjago99DL7yFfipn/r/5U0ifT7QrcVy9t3vrngQ1XtvtGZWWttao+PJZLMoyqaqEeRwI/feo8HBYMAlhBACSCyXy3JZ9MN9Xf0MAN53vp0PJtnr/2TW0zoHwl5iNUkyjoR9/k3GGBTdYC+HX856daTG47ExO1KKql62bSMV3rt3sJgt4zi9uHv5Pe96bu/a7atXr4MNJk4D1Ty4pFUEALZuSsQ4juu6XbMG+Ca0bbDWaqw5pHPiyDxr/prrq0VE5wIiKKWs9VzA8KRPnqd8NACARNFz/ADW7Jse8+KYz3OgWutVw6YNCABpGoNA78WZM2dWy9IYUy0rLQ37W3IJ5FzbzQcQudqi7uoo8BIQm8ZKQCHUalUZ413LlDG2+Q0AtFwub9++LYRo2oLrk7Zty7rkg//ZZ59ZLBZHR0eAxOzvEEKe53Vdj2F8/uzZ6XTKORCAGA8ndV0DIQkiD1pFiAgKpGSNPBJCEXTcnI7iLTwRFUURJYoXSSDPZYMAkaSRMVEUjauqWS6KxlnnLHkvpQ7gAQGl6EjlQKHxkYy8t9656XR669adqi6sbU5OTjY2trxb5KNsVRxwARYnkVQy1zkALBb00EOXLj60e3i4P5vbxrbtrEmSaLlc7u/fDSFws/baG1dsC94dRVE0yEfxKK2qajErDg9ODg9OtdbnLlwoy/L0dB5FJgQACvPp7Ny5c2VRWXRaUlt5IvI+rIpGYTE/9XVTbGxPuFo4PDhgEsd73/MeALh+4xpIYD8xF+yrr71yfveCjnW1WJ0sjp1r9/b2mqptajccZSHAYlrU1SKOE+xIT3B4eFpVr+yc2fAhHB0fHu7PpZRaKwDy5JWW3kshRJKmdV0TQD4YaK3LsgSWsQehtUApZQSjjfRCdiYEd+3atdl0/rWvvPjdV99QSt25vQ9eWOvyNIuynDs3VVVmWRZFibV+NIjPn71wcPvAtt6YxLdVU7Vc19X1ynu/MRoneYYogofFoihOTwMIEJpDB/kQiCRKAkKukYiSOG56OxHeOFprCkFrzZp9rlOkdVLKum75rvL/PrgB6c1ClhCcURoRpVLBWQR44/XX88GgrZvFYvGRj3zk0qVLL7zwwnw6Q8RYqbpttZTBe++9FpJ6HNN7b21DvYqFdQ1/iumck+nBrhX/gVlRIQQiLwGD6Jh04QEnqzXXaT0MaK1N0/Tg4OATn/hE27ZxFHES3NaWPf3IeSJyRAShruvZ6XRzc5PfqiorHStjjJQsYC3Gg+EB3LN1k5goTpKWIIQgCKz1jElFeq35JhA66P9B7tKa+ctXLpUij8FDIC8IALqBBv7KirFIwWVwAGKdhvs+itTbcCmlSEhhO+gKAADE+kOFEM73plg94088IGDaKwbgGpUOvaYqAKu6dax5IiLoGI49UkrWWsBONxa7kRQ1Go2aprGuYQScy2PdO75orZOktx8XCgNpoX/P40YQhJ7YO4wCjx0jgAteCEEYCEgoRCnJhra15EKS5k3TeOeIyCElJtNGO+e8s2x7JYQQSmEv6CQQEMB737bA8VYKmSRJXdfeUxRFwYXZbOY9ZekASEghvHXeOiEEm5n73qVQG+mc09qweJoxUettVVVNY5VSdd002CBK7zyPIDCSyOlZdy+FAHEfgKZAATzvF96t3eHryIbOv5QtcNYrH3smOAPNrjeFE0Lw2DX2xnHrNSC0MkIgQtu2QskLFy5sbGwcHx9XbZWkiRDEmuw7Oztpls1mi2yQnzt37uTkRADOZidVVQ2Hg52z25PJ5MqVK0pHxhiW+K9rt1gVxug8z3d3d+/du3d0dPz+97/vD3z/9/+r/+mXGKE4PNz/6le//Fu/9cJ0OpVae0ej4YRjzsbGBhGtVisppJL65Hh6cjIrV+1jjz5ZlvVrr70OAGfPnn3ooYeSJHn55ZeGw+H58+eFUEVRHB0d3bmzf3JycunijpT6+PikqqrDgxPnD20r6spKqXmPekcCtWX7rNaurb+11gFoPfewjoREJPCBR9bbygmJTEHN85yl6oiIWFG9Ey4nIYRrnZSaG29IQWsdgquqer2phRC83Vhie534Uc9I4BhCRFEUCUD2AYLeG0T0chZpmupI8bwFt36FUOtI7n2nx1Kt6m679aNp65kSdjfh7iA3CKVURJ1HyAN4cYcyr3fu+sgQonNLXkehHjeXIRBbVPGcbheyUKwbh/0B3d0Bay0P5UgpO8ng4J1z5B2fCw+28dYPBfvJxdBLfHh/H/V+Uwhdj3f09q0PXgB1aun3aRDrO7A+YRmD4wDunGMXDWu/d0kjhGT/5NCrQlOvq944y6sueHDOCdGs92mSZ8tyfubc2Z2dHef99Rs3mCPMhmPOOUBaQ+fIzGIhI5MOhyMptYmRZYIkz8WgrpuSaR/WO6XMuXPnFGopVF3XITipujuwbmECQJqmnHmGECSgB898Qeesa21rOy0R7y0PxKxPmfVt7BpmzhGRMlFVVUS4vX3m2rXrrNmopBkOxtxXyLIMAOLYcEenR9UxAAjhQwCO1QDQS9L7dbvIukb0EnDrs4yIeuHmihAUz4wi8gLpfkAp0Y8RKKUCYF3XUSLG4zE3F3mn89xSXddJFCulQqik4L0AiMK2rZBc2akQsK7bB58/dHrfwGo2bAVPRE3bfM8Fo5RqbRcBjDFa8SkfnA1xHEvAtm2DByIk6Fg+vJKtbRFRSFgsZi+++PWN8ZhOvbX2Ax94/7e//e1hlnsgIMHkztVqOZudmti0DdlyRUnsgjyZnp7OpkkS7e/v8xmKAlBCWVVRFH33tdeklI888sgP/MAPfOc739m7dm1ra+vqlb3BYBACLBaL4XD43HPPkcBvf/vbv/mbv7lcLqWUWnDxS01ZJSa6dGH3ox/+SJYnly5d+tVf/Tc//dP/nbXuLW95y9kz542JiciYWAhsmqasyo9+9AdYlKNt3ebm9vd933s++tE/cP369a2trTRNkyQhIim00TGLCp6/uPvMM89WTT3Z2FBKmSTe39+/cOkCS/BdvHhRaWmb9sUXXxzkoyyRg8GgapuOhaRk2zZlXRulEXWW5cvlsmkaE+nlqkySZDzOobfsExBG4yx4iKOIGR5sz/71r3+9reqqarQ2WZYVRfH0U299+9vfnud5sVwmSTKdTu/dPUDEOI6ff/4jxyeHR0dHHGra2kqJk9HYWntwdFiWpQ9Waz0cDtM0VUrkeX7z5s3lcp6m8Y0be3XdLpdL70hKuVwuoygaDEbe++vXr3O7joeijo+PiWgwGHjvuce5u7ubZdnNm7dsPy+13qqCzT9YjiaEKIpWRVWjM8awFmjHJFOyrus0zZ1rhRCIOoQglVBBAQkSFgl4WWqthQCttQohRFH06KOP8iehFHVdGxPxJMVaW50PAAY1xuPxeDxGxNVqde/ePeda7wMi6ijmFHwwGLS2ZoU3IYF6W15r2zW/mscPM6Vc8Kenp6wYy4MA0A8Thd7dgn+dCc7b29tN205np0KIoiiSKI2iaLVaVfUqjmOtdbmqq6rx3ocAWurVqnIuXLt2vWkaIkQQi3mxXKygIxEoItzZ2fIUtre32rY+PDz03hvTWVo3dau1juOkaZoQKM8HzvmiKLa2tk5PT4+Pj1dFpWEDdr5n0PiPr//4+g/42tiAP/2n4bnnYGsLhsPv8QPb27C9DR/+MMxm8Mor8JWvwCc+AVX1v9lVRRE89RQ89RT85/85HB7CF74Av/RLHd/838vrP/vP4D3vAQD4kR+BzU34m38TyvJ/Hcd5Y7Khk4eVUkmS3LhxY7VaAQk+8geDEXk6nZ+uVpW3HhB8sN3oSp7zyAURJUkSRVGSJMcE7LnBLOC17iSXhaKT7hLrjlrfWkRACiEAAfy/2PvPoMvO6zwUXOtNO5305c7d6AgQIECQIAlmQpRIiZeWRF25JNlzTVnyXNO27LJmrmfKNdd1q3Qtz7VnbFfJku2xNZZtSZRkU6RMZYpiAEECIHLqbnSjc/rySTu+cX6sfU43aChQlucX9w/U1wcn7v3u9a71rGc9j3d5XpKJQafTsU5rbfI85xyXl5fjOK6bsm6MNV6KSApLCN25c+dWV/aoSHS7nYP7D29s3CxlLqX0Dl556Wy3s+gsggVG8/XWqlhWVVWFWfZW1N4DubBS5A/BIWIkpBJKCEXpPn1/K60zfl750POp1iLVPNrhAIB4TE1Tt9Rsmppkt8kjYTbaJmbqnyEEzlGpiEmRSKrN5mIdvtfr7du3ZzzMWcANs8UQKfXPMmWMkTLx4JAIX94igHeAwIFLAAAHxrskSUKwc1lAqm2cM4SJ0OYd4PagKA1AVbrOsmxpqWX7Anh6YVnlWuuiKPr9fr83KIoiBOykWV1rBAYI4JFUrqg47PV64/F4Oi0QA3CGFiG0Oag33oEDBpGM1aJyzgAGwXiZF0VdSik7nTDcnVZVAxiEYIIr3VhwXghJwJFHTwqwSRIBgPNQFnVjq68/9nhTNiAhSeJIdVaW9jAmNjd2iKcjJY/SluIRJWo8HXWGyenTp+M0yjrpaLSrlBiPx8trqy+99AKx9jAgw7CyvJZlWQi4tLQyGeXrN7b37NlbltXePfsHg8H58+drqxvQ3vuNW+tCCO9cPh3n0xI9B48IyAFDgPEo964BgZubO5ub20KwNFOSC56xssw559bqOI5rXQEE59yNW9c9D1LyC5cuI4L34DU4c2Ntdc/q2tK999577uy53Z3JzvbINo4xEQKvK1MW28PhGDEoJbqDPiLSvDnpgHW6GSmMkRsYmRW3pg5V5QoIIURKdAepipiUvK7rmzfXN67vIBNSRoLJna1RFEnr9Hg46TJBxNhut58kUQjhmWeeSePMamsbG6vEGAMOIiGR86qqgIU4ylQSJ0maJHHTND6YTndvCFBNq8l4GqmEC+W08dDeNXOuHEMMAKRLMOO501R+NIMGuBCB1BUp3yPeZfCAcJsyBq3hDColAbiUMo3jTprdferE5cuXH3nkkZdfftk6t7m1vrOz9eM/9qN3nzrxr37uXx45eOjixYvj8TRNU8LQrLc8SMUF+pAkycGDByeTUcsm5oqEMggPDa/XT4SZF1OLuZDqgw8BQN/hnEa/gu5NeoQGfq3xwQYbLMfbCvI7OztOm7baZMw5V1f61MmTjLEXX3yRMbZ3797BIFYRZ4wxBlrrqqm/+MUv0uAk0ZQIrPceCO+gJeG9Dx7JMW1+AmeI1W3f1DBj+ZGrZ/Do0HNox+G9m+uEBkFD63dwCec1fAihBVIQg3XOtdPNIbTjG3NxlTlePMek4Da8cucAu3fOW+9CCMgEMYgRkUELJ/lgwYi5vnNLhHEaQiDK4Uyc4XWgT5hRC+eAV5v5kxUaojEOZhKBcRxXVcWZmEOldKKoEJp/pRbymLUZiBVILHuta6O1ErLb7SZJYo2ecjYXeO11OjKKyirXxkghvfdJkjRNZYxJktQ5e/XyNWPMYDBoGr2xsxECJknc4iPtpuDm3B+CJltGTivKKpRS2to0zTiX29s3vYMZ1hYAQCnhPSDQnth2lwEAAQML803Te48zstttiijwAO0aIDYMBEabrnOO3L3m9eEcQMH2YzAwjiTeN9Nnd8YgNUakYIy9+c1vjtN0NJn0eA8RheIE5OVFUZRlHMeHDh0IAbMs2d7e3h1uc84PHdnvXCiKYnV1VcXRvn37NjZuDYdDFORSJeir9vv9gwcPWGu/8MUvbg93+p0eOSY99dRTQojgIVGxSuLRaMQY63Z7M4q6BwBdGSFEL+vvW147fvT42bNnz5w5e+DAAQDY2NhYXV3ev3//xsbG1atXT548ubCwUBRlPi2PHT2xtrZw5cqlfr+/tbm7uTWyBjiLhYhncsDCm7azyyFwzr0xfqZN4WcdN/t6zWLOW0hXMk5LtGkaqQQiEmuYsCqllGe+LEsSuKSyXIB0zljvgjUhOKWU8S7NUrp3OLR2Z0XZ0ILhUtxx17eNK1oPTdNEUnGOJB2P7TwZWKu73W63m1nvKLOaDxzQD6EePMVGCn3eeyFbjYhZtta2LigXpScT524OKNMuA62OgSM5XbJepCm9EMJcHANndOA5zssgMCAiMYiZPPE8zsNsicIMzRFCaGsUQ2BIrRoppQMEYO37wYziHQKxkuEOF8T53/Oe33yLCbOhunkLYd4EmqMNbXBslYNaNuvsrVq4X2uN2G6mtJF5/8ZiGk3TFGXunONSEILZkJ4FQ6cdJf9zUh1dgul0urOzs7S60O/3h8PheDwmRZd5m9A5531rYZWmMcFVjbbeyTjtBM84F0Q+dc5JGXnrAaCua8455/LAgUMMhfdeW+OCD94Hg5TuipkRpbWWlHy9t0qIMIskhrJM1gZ5bw0p0XPGCUmfn8P5xVVKWe9mHuzZ3j37jTGj0QgADhw40DTNZDIhaAwRZ9o+ltRUhBAiUpy1mLX31lpPLjtWt0IfIbRi64wxhq1cQHsPCkF7BCKSK4z3Hu5I+4XgdyY/tNptUVhr+/1+oQsUQkWRNo1QUSxVmRdN0wjulOQBnPfBzSMGtClHAM8YIHIWgEIiiY17DAjtbeK9j/gbyzcba+gWJrrxPMlRgnvvBW/NA+q61sbNrlebCgZwiKLb7QohlBDGmAfe8mYE/sILL2itO/0eY2w6ndIqIqnbk6dOGWM2NjY6vezd7373xYsXr169SpkPAAAG64zzFlAJKYwxb33bg9/14e+8cvWys+Gj3/OxCxcurC2vxXE8mUwIdAaAj370oydPnvy93/u9Z555Bn1gjB0/fvyjH/3o9vb2M888NRgMqrr41Kd++dKlS4gYx1HTNAGctZp8rSkUJElCigW00uI4fvjhhwnvTtPU2eBs2wagtRFn2erqWtrJZKRWVlYCQ+TseO8EKZ71VE8wroSo69pDAIbdbhcRx+MRcialTLI0TdMsM85Y0g0DgG43A4AoUkKJvJh0Op1ev+c9qQ4C58AYEEp+69bGM888Y0wDznMujXYXL7529OjxY8eOee/H47FS6sqVK9Z4ImV/x4c+eP8DDzz66KPnzp8djUbXb93knIWAu7sjYxpgWBTFPfecmkwmWmspea/Xo42maZpLly6R9pcQglJF730ISJbpRPwfj8fj8ZjNxjLMzHUZAK5du4aI1joAIB8ymI2gUVgGUtHhqtaWK9larzpnjCFq3dLS0ng8tk1NKzbP8yzLyEeKcx74bUVQ2hdCCOK1V89FabK9vU3nHQPcf//93vtr166NRiPvLW2oeZ63RAkpqqpaWFiI43jv3r3r6+u749GgO2BCOOeyLBOCR1E0HO9mnSRJoqa2UimY5d+Msbqu6d3o27TbbVGsra0h4sZmTtmYECKg51yQXOZ8/wsh9Ho90tVCRClEFEV9soMzdVU2dKKVihgKzpjgqqoqGUkhVFnmMsrStMM598ZOp1NjDAJfWlphArMsm06xHUP2aK0D56MokXFC7knW+qYxiCHP8yiKqqb23htr9+wfvGHI+Pbx7eO/38EY/J2/Ax/6EPyxfgPtMRjAe94D990HvR78/M//d/xWKyvw0z8Nb3oT3EELeIOj24VuF44cgQcfhP/1f4WNjT/uyX/K49d+Dfbtu/3Pt78dfuZn4Md+7Ft7k6XlZY8d6tgjYl3pKIrStEPlQVM1RVE4a1WcUOdQqraYpwnEeXVtbJN2O9STQ2RE8uL8thIfuz2liHOG2qyEuE06q6oKwMdxrJRAxACEdIRbt24JIWp9myQoVKS1FgIFV7du3XLOHT5ycM+elcOHj25s3Kyq+sTJk2fPXHj19EUIILhKksRqc+Cuo4yxm+u36ooYDcJ7X+UFAHgEcB4RORNScnJ2NT5w70momvA4i+R2PZ9cmXOiufctB8cY8/f//t//0pe+9JnPfNrPACPOOQs0Iop85kYyZ/TQYJdzrtIN9zqOYzKbFYJpa7a2tkJwk8nk0qUrcZyoSNRlo6TIslbrQ0pJpmRmdoDHJEmsb+vJ4XBYFgUyBj7MkW7G2NzNsi3OvUUE732UxN1uN47jsimLYooYVCyFYEmSMca4wMFg0Ol04jQuiqKumrKsvQ1TXhJfI8/LTpotLCxorXd3d+d8pdFkHGy7MXvvIEiS5BYcda0nkzyKZF2X2tRSym63Bx601nWl67qu64auTpwkWcbqutZaI8ckTjjnQigmeDWZMMbQsrKpOeNWeyYkAgbLN9d3nIHhcFgUhXchTZJONza+YJz0H3F7d2s43s3LaVkXN66vr6z1e72BUsp5n6YdSly4Z/fcc8/6+vr29m4cJ9eu3Bjujp0Lo9G4Lhtnr29ubiJikiRCiLqu89HoyLGDdTmdDIfOeYYKkUNg5AwuhPCScxFCcFLxpqmttYcPH7bWnj17Ni8LJvi0yI8cOSwjJaWM0mhra+vq1asA4BwMBp1ep3vixAmBzNhmd3fzQx/64Pb27ssvnTl75oK1TqkUERkHIViSRORafOTgIYL+b968SUEgz/N8WtDft27diqLo0KEj3gNjIvCQZIop0LaJWRJFst/v7e6OBssLo50JIgdgUka6qqXkujQjGJUq11p7DG95y1uasvKVy03BPWPAjXECGfHQ0TnOuXFcJRGCrKpK6ypKxeregWC8rpumkzS6aurae2CeE18vgJ4lmjOqjlJUcvjgGaAxjtJ3AHDaOGif4GZKkd4Fik5zVIsxxjmyVjFWbG1s7L377u/7C99bTPP3vPt973r3O+u6PnP27DsffvfNm9effvrpl198SdfVZDwSAAzDdDJijMVRKpWcTifaGimiWMf79+//4Ac/+Id/+IeExQQEAE94N86AiTCjR1FDi7XiDwABCKh00P5YnFHbwmwQmJCCefxpObbQzr15uO2IOIdiuVDf/ZGPvOlN9/3qr35qNBqdOHHCuopUer33HNmg1/fea2MdgNWGMcEU17bRdeNdsN4Y7eYQ2xwnIgjAex+CJ/R/XnszDBgAWOAMQ7gdfNhcR3QGQCMiQ7TMAyL6Ow0GbyM482fCHYPtfjYdEmaMFZgppcwXSQDHGHLOwPk5OsAYCVi7QEuBSH+AQgg2k44l91TuMQQKj0YyLgSHAHk+dc7fds0Skj6ajIZYAA7MezfnobvZ0Kj33hrHFPfeE9hPnzX/5iGEOQpDV3N1dTVJkqqqGmfRByl5SBKOrKqqpq4SFUnGhWK1aTm/QjA6a01ZRWnS7XazLKmq6sqVK3MGzHg8oR5hFEXeAWeMc+5nsB2d8ztJx3Vdd3s9wsGRuxCC1npra2NnZyeJMw6MiKhSRN57FFwEAeARgTFoOXYQHDictVphBvTMBTGcDYzdbg/Q7hzuYM1HkaLiMI5j78k4s+VX3oFJtdMA/LaXoPcQgrVRLJ986ilC/JlALsRkMnbOMc6nec6kiKKobOqjh488/O53Pvfssy+8sBl0SLOsruuiKJaXl723w+FO0zR5ni8s9DuDwXA49D5cvHjpxInjg8FgOBxqrY8fPco5N1ZPJpOiKOI4HgwWq6qpa20aY4zhwImr1Ov1OOd5XS4vLwohBLBbN7cuXbzW6/QFk9euXY8iFcfKWru6trx//36j3bVr17a2thcGS8PheP3WjbvvPtXrd1544RUAJoTQtTbaMs5JLkwwicB54BY856iU8jgz1oOWpTufSJglaS3gy5AR7umD4zzirZdGTGdXa10WpdaaoZhHGLBexVEvjjnHsqm3tzbiJMmyBACsjY8dOzYZjl5++TRjTIkYEZ0LDJEBuuCdayXj5W1bi9tCPfPbhOKk1rrWjfd+xuVsqqqhPXqOIzdNo6RUShhnGQOloqYxVVXNCc60eGgjJgivKso2H+PCYysCIKXkvMUxBeMe0JoWbgtIELCfJ7SU1HFkUZpGUUJaq/RxWus4Tu+MS0C3BUNgaFx701VVRa0mKWWsIrpN2IzWDRC8N/NdINzh+BdmAjXzZDvc0dGcd31CaxcJ853lzncg4GKeoBIMegdOjYhcCE5vJflcEPB1R6fbQdHVWhvvHATn7KwfGUII5PlGNwgAdLs9gtiMbSjukcx3HMdaaxLBT5KEuAuepn94+wWiKBUsGwwWjZFN7bW2pLPhPbkJBs55p9PJur04Sq11ADQIpViEzjlde7r6zjkyRSfPwDiOsVVH8SxgCIFEhOJY0XXknLpiAK/X2kYMUSTJoJgImMFjFEUky0bJ9ng89d4zJnRd0s5D2PF8Y4qiBBF5wgljHQwGeVkQEo2ckdYzIs6FoenizsWm5xfOWgveM8FtY0ltec6Fp/NMuzYyLoSotaG7KesuMJTOe+7bgRLSUWHIvPeMI+cMAVrxfdM2q7hAAARnSaiKMUEaEQAAjINv0TAi3PzXR0AkoR7E4L0P1jHG6NzaRpcz8iXtbmE2sUQTrnGipJSRlDKKwHsp5bPPPnvj+i1EXOuohX0AAQAASURBVFxcjKJokpcAkCSJ954Q/8OHD586dWo6nT762FcefvjhEydO/NzP/RxNbBirV1dXm6YZj8fT6bTf76+srCRJsrW11e123/Oe9xw+fPjEiVNOm+l0ioEBQNub93Dy5MlTp0698MILO5tbR48evX79+qOPfvkzn/nMzZvXFxYWhqMdY/TS6opurNNuYWGQJImS7WRtOwYagrOOc84Fs9ZmSUqAZJakSirP206h1tpoLYUgc6N+vyeUNM4uL69wRTCr7cadYEOn02GAZOZBKQQVtkVVcimEYEkSJz4ajUbgQ12XVVUsLA1QoDP2xo1r1hdve9vbABxiQAxCMoY0hquVih966KEjR4586Utfunb5itY1Y2xc7Gpt77vnTd1uL0vSW7duMcYOHtprjNne3n711VdPnzlz7fqVo0ePDiejNE1oBe7duyaEOPPqWWv1q6++GkLwwc6Fv6gv5b2v6xqRx1HKJMxKZiTdGylVURQAgXCMuXYl3VyzTiRmWUbTxoSaUgvft3MboJQiaVC6oaisjmOJGOJYIQbvrXbWG6uU2rdv33A41E7H0E5hIgJJ2UspG29DCILcFZumocqcMVbrhtbZ0tLSnL9AYbfX64DgeZ6XZck5Li0tHD9+fDQaGeMmwyEiu+eeexYWBmVddMo0y5KAoBSjxqyx1mqSZ+IkUomIda29B6UEw+CsZtj2hOfRinANur3DbMqs2+32+30ScSYDvW6nQ2eQxtySJBuPJ+PR1DR2TkxL05Rz7oHRfoxcklDRZDK5dXNDRqJurlKe1uv1lZCj0cSHUFSNUHG3l9H3qapKCEbza7GKoiQ+cODAQv+QHb9h0Pj28e3jv8uRpvD3/h5813e9TjrjTzz6ffjLfxnW1+F3fufPomv8p/lWP/uzcOjQn/b5nMN998G/+Bfwoz8KLQ/4z3p8E9ZMx/nz3/L7SM6feOp5IGPoJOl0eiGE4XBIp4sjZxxUFGdph3OeZVkkZJ7n0+G0cc080RkMBqPRyDnng53Ro4I1xhlLuS9DRhPD89Q23EE6oyICMSAiR/SATdM0TZUkSdyJvXd13YTgrLUeglKKc0mz2gx5EikILonj8SRfv7WZ53kUiW4vcybcuL5hrU+TlIawjK4XFhb27t0LAGVZ3pjekkoRHY8ocuAcGVIpRdbeaIxLOklVNSh4xBhVNd7DXO55jpXPkQ4muORicXHxs5/97NmzZ+ta40xuDFpp2NvF9uy3B5Ic4Zyj4OictbaqqrquAKDf7y4uL5Vl3jTN1taWtfbWrZuKy04vA48+WECRpFFj6jJvr4gU0RxiW1peIXAtTdP19XVn7Hwqk/5ARKKcUwHAeGSMAQYtkZC3vBvjdL47FZLVTVlVVbfb3bNnT1EUEIJpNGcskqrQlXP6wP6Du7u7ZV5ILrIsI6LcZDJpdKWUEoI55xmgZ8Fbb53mIuKce0Rnw83rNwMGoplIKZcWBwAgucrzkgRMuZC9Xi+Al5Jwz926rhkPaSdZWFiqqsrWBefcB5skidaat0N54C3Uhb7VbGpdc8E63WxhoR9FkQKgRkJZIGX83W53MpnICB944MFOJz1//nyapp1OBwBeffVVzsX+/QekVC+++OJ4OP3IRz7CmXzttYtHjtx1/tyFc+fO3XXXXZPJxNgmiqIolokKSnAGqpMlzgbnwBqPjDS7wQcTJUmvlyZZ3B/0Ll++6Gy9M9wlaP7A4sKJkyeN1YwxodR4PEZEox2ZcozH4162sH9tXyxTa/VoOHnmmVcuXLhgtfMekXnG2jxfirjbyyQXprHoQWszmUy1NkmUMGRVWdN6gxB2tre98bVrrl6+IoSCgDJCExpo3OGjx44cPTQtp9b6g4cPH9jPbl5b39oaNpUG5xkTiALACRB1aZyz1tTXr1wzxsgkDg4iFXkbAAA5RwDBADmr65KLjDNpnI0kk5GQkgkJzulOL+31RFmWOxsjBtwDeg8INHpxW982ADS6IqUAIWW/1xdC7ezsICILAIh8BkfOgVpL9ylj/jY1MoTQcuLyvNZa727vFNP80Ucfffjhhx944IF3vfu9X/7qY1ESd7udL3zhCwf37v2+v/C9dT6t69o//TyVf2VZFkXxoe/6zv379//mb/9WWdRnzpy5ePE1GqGz3nHOjXFCyEAM29djAXO1B3y9eqZnfo4p8JmqI/0c4n4KZJy3DH3nAhetLE/wQNQMnDW3AKBpml6//+N/7a+96d57P/WpT127fvO++45rram8t9ZGkaQSjuaRQwhVVWndasfdCS3BjO8251VA6x9l6LsxxgCCD60rVwtAo0cHAK1uKeOIiHOPJkQk4lXAABZgxhYBCDPOXYsk+vnwuPdIwo7YIikUA+fR1XsP6CXjnHEEDAwQBVKR36pM6BagZK8jSoe2J2eFUEowRLROe8+p7jXaOec4b88G51xyTtzQEAIH5IJToTGPt0KIbrfb6/VokpSQvjDjUYY7+NHkxsZmIhJxHJPnTxRFYCCEwBC8dc6YfDr1xuo0jVVEOpvGNt4a0wALAM4Te66YTB0ExDCd5kxwAKiq1uYXAIJHzliSJHmeCyGauiafPTbDzmbiUWyOBpKARlEU1njBlZSKSy6EaRrTjqiDn0FYMyB/dolna5Ua1S2OrLXWWlvjGWO0xc8luYivBzPBE4ILlZLWojGmZV3NFH4ZQ+faNcA5k1Jw2WKpUkrrvQzBOAu6Er41aLLeRREXkUrTeDqdjkajhYXBQj6odX306FEhxM7Ozs7uVlk1LvhBr09KI71eL007cRQ3UQMATLFikksp963ttdbeuHEjTdO6qTEwq12QsLu72+sNmkbXtW6aRsqITvhkknezjq6bfFJwzrNIEQ7qtBvujoUQZV4AQJrGb3nLW3Z2dj7/+c/v7o4eeeQ7rly+9vLLp/eu7en3F8fj4frNUZTIbq+3/56DeT7p9/v9fv+Vl8/ubo8FjwO4NItDsACCBfC0zu+QGKaRWbrWtdWcc8WFQ2RKAgayr0/TlBIVYxrnWs1NRHQ2WGspoxGKJ0mklFSJEpHYHW7e/5Y393q97e3tEydO7N+379d+7dcGg54QIk07k9HYWh1mjpqMMZjBiIyxJEkiqfI89zNzM4IGiOxW16VQkjGwVgMopZTWJd7uUaH3TkqppJKR0lqXZUkTbHNir5hZOnvv88mUAsuc1zVrhOj5BMMdWO1shoMFY9vI3Kq0O0cdTM7Ic29uktFiuHXT+ND2nwAAGc6RU/p0Y0xRFHOKseTizpx5BriLEDwlzPOvNNvLbgtrzFPTeSC9ExOn384AA5tTpG/bvRKGiLNklU5IrCLrKe61XoJR9MZw86FDh2q9MRqNdiZD2oOSJNbaGGN6vR6pJxtjiIhAqsTGmH6/31vo50Uxi72eJqXyPE+ShM+MIkk/nXzAjIHuSpfETZWKJ5MJQVQhACmmOieY4N1uFwKDEMgYkw5rjbWWaRFY8N5rbZxzjIFSCSPjUyGc0yEEZ62x1jtDF0tK2ogBwIfQOpcGhACBSAbEyah10+30Z50YHsdxtyurqiJrBKtNCAGw7TTPcf9ZH4QxMiQI2PISvNfaCSEs9YY5J7iZIrxA5o2dBWoEoImWxmsPvm3VkF+CaRrHbmsT0W/wEGjClcRY6G0DeGtt7fyg34/juK6m3nvnDQADJiQiBGAMnQNS1SBu7Ay/q0lupe09Mxr+/CO1m2mvBPB1XaMPzjklJSKCD7ZVC7TEKgCAsizp53POoiiqyprUFbz3nU7nyJEjly9dHY/HzvnNzU2CRyMhyf+WehiXLl0ijWBr/fXr1w8ePHj8+PFr166laVqUfjgcvv/973//+9//W7/1W48//vj73//+PXv2vPLKK/fff//e1YPOubIsBTK6Da02XCghRG10XWlEvPvuu/GeewbdXhzHv/Ebn5lMJqurq0IILpaVkmk3PXz4sPf+Yx/73tW9e6bDqVKq7SXcIRYUZt4SdJ+S9jHnfDBYvPvuu0ejEQ2cySR2zhpjsm6nmygpeUDX6cQueAbIOQ82KCmbpvIQvPfLq8siUuPpxAQnJR/n093dXSEERyY4B/QhOGMaxIAsRGm0ceXy17721Xc89PbVtWXvvTVaKYbIlBLEzT18+HC/378aQlnWxhiVij0rq8vLyzMGOiwvL9d1TS6Fjz/+tbW9a/v27dvYXjemsVZ7z+q6ruv+gQMHOp10a2uL4FBAH6uIzcY+qqrKsmw8HhObvtvtKqXStENegjs7u9evX6f7qChKGmaizIrQZwAMAZSShC/jbEwn3CHTpHVjjIFABABmjGEcFhb7zrnJZOJDpIe1sYZxQJR333338ePHn3766RsbV/tJ3zqnFecMgmaco+xw1HWkkhbDRe+stTSMUI/Hc+oxwbvUWhRCWJtyzpaXl7udjvf21q1bjEGWZdtbu0VRdjod51xjdFVVi4uLXDKtm+Bavl4cx5VvGhK8iyJK4EgSmmJKURSMsU6nVUuhBLSuNUmQEAuGFJ18CHme06uctaSeKZWiK5rn+WQymU6neZ5XRU1Git744CtETDoJFWbWGClVr8cr3UynUz00QrBut7sw6FdVtb29qxvrjHEhEH0dMMzbTXEcr6ws37hxAxFXV1dM5d4wZHz7+Pbx3+k4cQI+/OFvDWumI47hb/9t+OIX/1vh3f/6EAJ+4Re+Bax5fhw8CL/wC/CX//KfUco5SeA//kc48C2ZCv7Rx5Wr14pp3et3ORNWOylZnGQArdZVEsVlWTrnAtiyKrWpYpG0vGbjfLDWu+FwCACEBgrG4oQjcGOMV4Ix4W07k0gZnkDuvfd3aBbPsVpE5BwZZwiB1IpCO+YZWhCBoWCSXIaDB4ZcRty5OgQQArMkFVyURT0aVdtbW9b40WjqHRMgGRMYIABYq69evXL//Q/cfffdN27cYoyFgM6F+bpq0y8P9BsR0YYZz6vRc6ZVcK3/LABQzkdEb/qD/F1/53d+h3YBaw3M4CTGWMC2/Jhlex6ROedpC0g6WZJGsze0xpjN7S0XPLE/JpNJXhYAQA6K1pu6rsu66PV6UaSiNG6aZjrNmzoP06C15lzWuiH7FM45hnY4mn4sm+kSMsayrIuIxhhjnXWBc9HUpqgrG3wUyWkxcc5xgY0Ga20xaahzmee5lCKKotXVtZ3tYV1r58J4PC7ynLawnZ2dljziDWX/nX7XGlKZsqTjATMlARJ64wKVSga9JARvdPABmtrU2gCwLE2iJB4sLnCG1uosSxYWu2VV5XlZVdXOcItqQKoTEhFZGZdlzZBxzrWz3gPYEMnYgbFWCyGk5MbaKI2cDf3FgfdBa5skCVdbirON9c0XNm51u90Q8OjR4845zi8eP3b00sUrWut/9v/+5z/zMz/zl/7SXzp54u6f+Zmf+emf/n/+9m//9ic/+Tfqpuj20hAS760QmEX97/u+v5Bl3bNnz33hD75YFCXj6KwNyKyzB48cXFzqLa8uJ5m6fuPK4kpva91cvXwTPICA1bWln/jbfxs4/qt/9a9CCDdv3irLstPpHDt2bHFxhQWw1t64sXH58lVrLZmG3bq1o6RcWV6GPptOK61LKSMpGAbY3R0JITnnW1tbDFpqDACQpSRnLHg0VSWTxLlQlbWKgpRRqSdKiQOH9r/9nW+vTf3apYuj8fiBNz949uw5Jni3m+naOO8FV856zoQ3Hh0ILlWmbly9IaRkjAcI1nrwgXOulEIO1mrgkPZSzhOpmNY153GSxYCubkwIgaED8CTHGZhF4B6tQEEdLOCtqVRjakR83wc/eOnSpfX1dQAghTFd1TKKAMAG75wzdQ2IQG6nJJgDc7TXz0JQO8i1b9++H/qhHzp48DD/2uNf/OKX3/3e9x05cvTv/t2/++ijjx48uP8HPv5xXZbveOuDkVRNVX7j+ZfOnz//z//5P28a8/a3P/S3/sbfvLWx/sgjj9xcv3X56vWnn/7GK6+8wqUglIRy3Bl+EeYEzHAHQ22ODocQgvcMBbLbKEAIfhajHGWtnJGejJcycq6+rVQQ2mR6TuUzxnzyk3/zAx/4QBRFf/EvHjp37tzBgwdPnjz0T//pPyVXFsZYnk/pxCK2IJ217XAGQ6FkPId+KIYQajDP2uehHmZQBZBLXsAZisQDIgJ33nOGwDggMOQAgCwAIp+JyXpPxEo6LXPw1xMyA3Nq3gxDccHMhfH9jNNNf3CBXCqK2C3ojcAYnws9fFP/j/47M18CxpiMpJCMcQWzctoHS1fPe9d2WC1BVw4ABM6QmuAF4/Pafm1ltawrxlgILQYdZgAQzDCsGaLUeiHSmw+HQ2oZcknMJ27RBOfiOPbcBuepZyg4chYhZ0IpAMAAdD6JAwWcaT3kLvgW4EOjHSIqKQlz143VWsdxzGdW5+wOYZA4jhG5tVYlsS2pIxgdOrK2u727tbXFAouiSMyt13HWJqGgTIuBM46tfNNsGXuammrL7NlsPs41OGaDscjI7JHcz15nREx3UwsAzh4JwTsXgN1G7bmSjIGKo1Rk1uppkTvnGCprjRABnStLEjbkV69e/dpXv8oYe/O99831rBCxLEsI7siRI0Y75aS3bjwceQ/OuSiKjAnem7Lcnk6nRTFtmiZJEmILORe889ev3kiSBACUiCRX0/HEe2+1KfNCqZhYWq6qOp0OB6Ebu7y0evSu48sri9o2o9Hw2Weffe2114wxH/rQh06cPHXz1sby6pKU0bPPPN8fZIOlztvf/va11b2TfDzNO1JAr9s5cHBttDsmIVGrDWDLDfS0PrHt+tNdTPumlNLoGgAqbRhj6I2woizLNE2rqpKyldeoqqmUUpJl3x2JXAihrksHrjY147CwuHj4yCFEFJIH8M+98JxSKk1TXdVVVQS8za5tUVFoRyXmBOfQamtgCC206r3nHDkXiMF74uDfjjm2tQ8BQkWBIeEylEze+VkAQES/4Dx1O9iMIupn1HvGYH5yaGdpdBXAJWlMaLWMBH1uHKWzRhEgCqLmVVXV8jZ4e96MdSTgAHdQLsJs0M21DpatIxw9yGeDk/M9AgC8J6WH2/LK0A4LthndnejVPCrOTiaf62oEH1jA20Ldd4i8zQMj/Y0BhJTBtlxOzjmA9+GNWTxbuztlvUXnjchqzjmhRH+hv7K0HEKggNPpZJzzsizzvOj1egcPHizqikgV+XTa1Jpm8COlwkyTiTOGrXCQYUx4D3GUNrWm70jgiRCiaUyapoSSLywsORuc01IkAF7KQLthVVVlWei6cd7QLmmMIV/Epq6F4NTZNcZorX2wSCInEIAc8CA470LwgMB4W8UwCLQwjDFSycFgQPP+iGitq+umaZqm0WmaKRU558fTIdEdWjH0mSCYEKK9JbksyzJKUgDwRJkUiiObpwoUJMnt1ntP5NamqSiL4JxbTzJilpa3aRrq6d5OPBgXQigVR2kSPFprVZIYY7Rp4sECLY44joe7leox0pgRSmitgQXOGTImkHlviZI8P5O0oc2WLifCkJFvjB1578uyDMGFEFhod+EoihpTA3ouBBfovZsLRllr0zSl9kySpIxhkVfW2umkSOLMOWeM5Zx7Bx4sADgXgg1RlGRZd319fTgckmWrjNSv/dp/7na7dG69991ObzQenj59+m/9rb/10EMP/aN/9I/yPF9aWmKMra+vD7rLQoiqagi/tg6UUtoYQjDp6yVJUuvK1M3Bgwff/vZ3/uZv/pemaYRgD7zlzdaacT5+73vfe++9925t7Tz11FNLiyuL/UVrvZTCWktMGj9rx9LNOxqNXnvttRdffHE8HkspH3743Q899BCFtZ6KOOdKCaVEkkRCMQeh1pUQgksJ4JM0FowvLS05o6Xk+/fvnxT55vYWY5BXpTE6hNBJ0jiK6HpFsex0Uq1rzlFIBgC3bt366tce/a7v/I6lpSUnGPrAOCAABiQguN/vv/nNb37yySettU6b0Wh85sxZpdS+PfvPnTuX5zm1IpQSnU6WdZJuLzl38axSotdPQ0AhmTZ1UU6rqhoMBsY21I6y1mptt7Z2lpaW4jitqqqTdMq6TpKEc769vR3CDqWUzjmiu5Gr0Bysj+PYOc956+PinCOpjSQhWciWkOG9F6JNxZ1tZ++cN1mWEQbd7/f279+/vr6+uTnNss7y8rI29WOPPTaZTHq9AffcOue9r6sqFEwpNd0aaufEJCNpzsAYI32QNE2jpLU5ppkX+lSa4Oj3+7qqGGPWNACwu7sbQiBXosXFhW63nSwzxnBgjakYYzTB6GaKSLQEm6axxiObqYm5dlBOKcU4U0pRyk59jPn2T9C+9946R6g8yZATGFE3jdZ6Op0WRWWMkSImah41uxptq6r2zqdGk7eDZGS6bRCxKKq0k1DQL4piOBxPRhOlIvTABKOZu24vy7JMKZGmaXsnhGCdHo92ux3+5+p59u3j28cfd6Qp/O//+xtgzVeuwOOPw1e/Ck0DiLBvHzzyCHzwg9/8tBDgk5+Ef/bP/ty+jxDwrnfBj/3YG2PN9K2+9jUAgPe+Fx5+GA4f/ubnHDoE//bfwr/7d/D4498C6Jym8Ff+CvzwD7c+hP/1MRr9ad/q9kt2x91exxjDuQwBvIe6rBBACemMhQj6/b7WuqoK721dawttNc4Y4xjxYI1z29vbnU4nEpK2wIXB0v79+yk67W4P/UyhEmYSQzCbqJoXG6zNfxkCBOsQMYraEjTLUuIBWd/uDXGUxHGstUXENE2d801jEGRda2s1oBORyrJUyjgfVbohXT+RZR3v3WQyocmP/mBAM3fEJUDgAIxzQWUtAx6C44xRWmyM8bMpXSGE5IpsuNiM8EKtSsaYtiaKImcslZpkriLu0H+Z5/S0O5DnNRXzAKC1RhbSNO12u5PJWAiBHCaTSVUVNOOSZf3t7e2mbowxHGjE2+f5tLEyTVPGQCkppWxYAxoAvDGN97YoCiUi5xyA55yIRGxWuXF65xkDSHPOHQTnAhNCaxMliqAHIZW1tt/v9/tkimj6/b6UggoGxphSajgc7+7s0E6Ps+lOLpDzWCklpeACpYhCCLo2Ukry+0LgQjAbPIBXUgXvjG5HL+NEhYBSgrOewEpjjIXgnCmKKXEne71ef6E3Hk+n0ynM0uiqqgCYcw4Cc0T6YEFGkrRirTNUPLvge5304MHD67c2q6quqoYgXWvt7u6ubgzrs1u3bgHAdDrNsuzUqVN/8Ad/UBbTX/3VT0WR/Af/4P+hVPz+97//2rUrv/Ebn+Ecdne39+5bS9Okru3d99z9XY888sj7P/BzP/cvh9tbknOBzAKE4J03cSwHC52733Rya2d9ONqtzKRohp1OJ0kSD84YU+nm//vvf+Huu+/eGQ63trasNt5D0xhvLhw/dtJovbMzunbluicqnxCdrJ91kk6nIyXv9/jiojHGTSb5dDwsy1xrG0VJlnToJqpr3e2ky8vLzrmbN9aDRxZAyBg9shDiOAMAUzcezeGjR44cPTKaTJ78xuOXLl7jknU6/aZpyknNgHlvhRBI1ChgwUEk44DeetvrDmrdmEaHgAGCElEI3nonGLPBm6bmgqnYgZciwmkxycvxYDBIksQYuzUZd9Jut9df51umqaWQQijn6xbUaIFNW1flO9/1ro997GO/+qu/euPGjZ2dnapqrYdmqFMwTXPk2LEPf/jDn/vc59bX1+MoQQZzwAtaYNQRzHrs2LHhzk6n02uaJk3TffsOPPH4N86/9tpdx4/91R//8eXFwdLi4Lmnnjp37tz73vWu/oH9e/Yf+vSnf/3QoUMf+MAHHn7Xe+JE/b/+8T/5nv/howcPH3rllVcmk8kc+5jDiPPbnzCyefRjd1CcAMC3zDvHBRL4AjNDUe99Xdd1XcdxDI7cmJjWOktSg9p7T7rKXCEzAgBMbay1daNH08nvfv73Nzc3O53O8y+9vDuevPLKM6T/O51Ox+Mx9dicC4y1k+bELyvyiu5ldge5eD4FCHdgzTgDKFuGKRJvjgOEgAzAIbboCaHEtDMwxhDId6sVbyUtfwjtk+eYC+f8zggGLR3Mew+CtXLSVPDPgZIoUiR3SGvGex8YMgZMMAROq8kYA3doPXEWmCMzNO+9wyB9iwsH5wxdzLnroxDCGTtTlyJOycx5Ejk1XEmd0xgzHo/nhDUACHcQD+nc0s+cc7SpKAgzeY0IpLdMKZUlkWI8N65uDLQ0TAUAPvgwq1Sdc7GKCAULIWS9LkU2qZT3bYPTO9c0jbOBM1IRARLBHI/HdV23rmXOMRLwjYhGqucwR9PoKIo4l7bR1lrOW+7h/M4CaiSE29P6c0B//gQiTUdRxLC1rqFqk3M+U8XgRJqm3q33kmpyzrkQghwjIlLZnhvKwesEVYEzAC9U1G7Z2KYf1jkEXmsrQ1AxxElM125lz4o3tmrqSKrl5eU0y8bj6Wg0YhCqomyN35BXVV6WZZZ1rXYGtUiSqiiqovQ2QAhGa+/pO7Oqqsqi4kwsLCxknRQAAFhdl1prBmi1u3XjppQy4ow8BrtZ561vfWuSJFJIzvlGswEA999/v5Tynnvf9MUvftmYZnFxgE5Np1Mf7Pve9z5EOHf+jHG1ini3E+el48ILid5ZBO6cZdx7j865OdxMq91DO5xO/4yjlHGYDEchhHtPvfnkyZNPP/30eDymm52MWAeDwYwvDMHTFQ8hBCmF1toEU9c1EyzLssuXLxpnO2lGgtec8zRNisl0a3szSRIW2pU0a9gDx1az21orubizJ0f+1d570qrKyymhmYzxpmkol+CzaQDKWuu6nk/fszsmXeYhQglpoeWK3ol9z0Vp5vemtRbQkxLxHA+Ko7hteLAQbHsaQwjGzCdLJAFwsyQqCncsy/kf9NEU/Sgy0Eco0SpQ4+sV7WdBGOeCznQ/YgB/h6zzbbB4Zpc6D4x33oZ3vv/8p83RrhaaIDVSodK03Ynoo9+wrNjZ3rZhmmVZHLc2AGTHIqUs66LMCyEU55yYztPplH7+7u6uRzDGTKdTO2PdhRCwZXUgIWtSSkxR28YYU1Sh2+13Or26hrLUiBhF8UyxChBx3759AFA3xpqAYJ0zjLG6ruumbJqmaWoMwDijMR2iICCiEJzGx7Wz2lkTDAdaGI7E1udwrbWGMQEANnhrrWrxekiSJM26aZpWVbO5ubmyskpMFDdXFZ+5E9MYOoVBkoemx6XgKOSsVRmaRtOch/eWlLGIvMkYQx9ssLTe6PLd7sYFpOlGnDXwQErE2/4xFI+Z4CGEPM+VjMlCcxbiUEmVpunS0tKNa8Y5QRWQUIoIlOgda0+L8d4BMGs9TYvemYNB60yO7I+gjBljrNXt7WPd/IVCcOcsKVnRuiXrICSXGmuFECdOnNja2rpw4QLVXC+++CLnotvtGmO8A6VU0xgAS1Wq1rrT6ZC4RBRFZVmGEEhgwZhGCEHqRmVZ/tRP/dQnPvGJj3zkI9vb2wDQ7w2c9a+9dnH//v1JkgTrjHZkw7u4uGitrevahkComhACnK/r+gd/4H/c2dq8cOliWeb0nRcWFpIkef7553/zN39za2vnPe957w987w/GMS+LmjGWJkld19QGa5pG63o0GnW72SOPPPKOd7zj0qVLtDucOXNmfpWXVxZ7vR4AjTsEhtDtpSEE8CClLKbT55997rmnn1tfX6fPZVLQ4JLW2lpDaGdZTBf6i2maOmcRsdHV0vLq4uLihRD279//3ve8K01jzllwFhAYg+ACYxiCs1a/853vzMcToof/5m/9+nA4fOyxxwaDwZWFq03TLC0tTUfDpmm8d4C+1+uE4LIsDiH0+p2TJ+4hOtS5c+e4QMahl/YIsdSNNUzXdT0ej70DKaWuNSKORqOyLPO8hNa8pM2r51molFIpCQBa6xBg3v+YB6u5uAXdaNR9oZ46TaeNJ8O9e/d+4APvX19fpwKHc76xcWv//v1KqeFwtLu7q5gieLYoCue9BetciKQUQjjn6WYTjHFjNCG5UsokSZAzYjrTPUm5VK/XoyEOHomyLIO3nPPBYGCMyfNyzpEp6wrqAOC1s5xTtcBop4SZG0YIgaHwvu6kHecNTSzSJxbFNE6z+UY4TzFJT2MeOEhs3nu/u7sbWhJ0XTcN7aycy83NLWsqAMaY8N6G0DpvUFgcDodCiAZRMmG85ZwfPXpUxTLP8zRNNzc3m6ZZWFjUWiOypikJVp5MHCKurBwMIVBiISTjQU2nU8GKb51m+u3j28ef5VAK/pf/BdL0dQ9OJvAP/yE89xzk+e0HX34ZPv95WFiAj38cfvzHb8PT/T78wA/Ao4/C00//uX2rH/xBuPvu1z0SArz2Gvzsz8LZszCZtA8+/TT0enDPPfA3/yacPPm65999N3zkI/D443+qj4tj+O7vhh/+4TdArv8bDwacMpNZYtqWkd6HqiqJ7VIU0zzPo1giECwTKDu31lozq885S6OkaZqiKIxtaOJ1ZWUlVsl4PM7znHgH7fsLjjOlxXkm1FaYyKx3NPKGiEIKGg2ZN+FE61wkGPNJknBRhsA8iYQSMRB8mmacc4bKJcCZj1U0WOgJwabTiRDi+eefZ4xlabo7HFtrlYqdc862Q82coeSCRiMZgyDIu6mZTCbBOC5lHMcY2nkcdodYJGVIVKubRk8mkxACgOczoeq2JEA2z/7jOEYM84F0zjlAqOu6aZp2v7RGKUEsm9lnYZZlzti6rhUXhKIiCzQESi3MPM+bpgkI3vs8z5VSDNHYhgtEx733nONcDIRzXlUVDX0bZwFQSmWMFkJlvcTYZnl59dChA7du3aqbUgiepglpOjPGSS1rY2NjMpn2ewtRFPW7PZLAg8DoRzEO3mO/3x8M+mVZIoY4Sqz1jWiiKCEiOZ2ifqdbNnVVlZREsgD9fh8gAAQlo5XlVSHUrY31ra0tazTnoW6a4ODYiUOdTmd7Z6eqaq1rySLJBXH0vAfOZVMbqgC1qUMISRI3ph50B4uLi0WVV7owxnChyrKOVby8vHz16lVallVeeG9fO3MZOMzpUb//+7/vvOn3++fPn3/ooYdu3ry5vb29f//+a9evPP/Cs91eJoS4fv3qvn17q6q6fuPK4499tSmrz33uc29/6J1vf/vbv/LlR72xnHPOhHO2KPJb69dePv3i4WMHer00ioMMKwCAiMPJsGma8+fPv/DSi4TdG+uTOObAR8PJC8+9UBRFcE5EknMuuFQqTjvZ4uLAe29s3bhm0O/meT4cbjkDUvo07QqhArQ6g5xzKaLJOAeAhV6/qqrptJhVrcITrxb4Q+948MiRI1VTnz9/fn1jiwlUSp0/f76b9Yw2adRRSjgdhBDtOKBvb4dIRMYbwXgQgnOJPoBvQUPttFA8SwZcoIpaN/mrV3b01O3ujiEAYxKR9TrNnj17kiSpXOHRBAiAATFucUbGjNFcyve+970vvPDCtWvXOOckzkDjWUTyctZBCASccc7Be2RAZIcWuQ6tri5lXx//+Me//thjjdZVVQ2H47U9+44dO9YY/bu/+7snThxbWOx/3//w0dXV1WI8un79ujh0SEbpYND/v/7dn/zej3//f/zFX/693/u9uq4///nPcynOnz+fZFkURY3RpBsIM6SDt0Yldo5vUjSeowNs1oRzwQd/W4gzhBbt9d4753VVM8bqSgshkigNIQQIpBvQog/QdsKqqjLG/eIv/qL3/vz583v27GGMnT9/PotDv99fWFhgjJVlGUVRVVVKyRnaonBmf0cB2fvgfaDSD2awID2HAKPZT/PztBYRAVwICK0ZoA8AjHPvvXUBg2WBcQjETQ6s7U0KIYLzwc9bArf9rBCRoIcQAjI2g7bb/Z76XqQQYq1NkmQ+5z57LQNOwkHc2UCDGqQ+RCefJk7a34uOQnYAT5FzDvdwKflsZrOqKtY6x7ZEb9oinTUuBCo0pJQbGxvGmACtKDPeIayEM4nMOenEzvx1Z9gBOmfL0mRJao1xjQ7OO298sIJxgQx9CAyD88RaLcvyzjIEAEzdZFlWVZXWum4aY1ysIusREGTMyKSIlPRJqri1BOAcZ9dxNBoNBgPg7VWo63qajzmyEAKV+nPlENr7QgiI3HsPgZYEqQ0EWjbz1gVV+yEEMgICgBCQvjyBGtZaIUmv3MRxTNP3hEeLmQoNE4IIqgEBAdkdOJr3nsS4qW1TNTWhTkII73gIjPQE6LIqJTkyQB93lZTSQzBNc+zYMc7lmTNnIsGbpinLutPpcCYZY1GUzAu36bSgmziKIqPdeDwOntPi5EwQtdlaG6m4rApqZhCLnhyJnXNVXYuZjuJzzz2fZVmcJYhBuwoRlpYWlpaWvvSlL924cTOKouBh7+oq55Bmylpz8eJF43S3FxtbBxRFUV27frWuS18WwGW/n1lrGFeE98+aXhyABecB0XhvrV1aWjqwb//efWsEN7NInDlzhjGWJAkiCsHmPqJKKY7MGOtCINjLGFcUBUrUuUaEgFzr+syrZ621dV1x5FJKwXiadnRd93q9uq4FilmewOI4JjZxMc0bo5eXl5VSJPHhZ4ouALeVpokpaoyJ45RCEwCQmkFZlt77opiStSbMKNihHfjgpIdGxFWcadoIochgrWW6OUebCOGe1tow+3S4zZwIdGszxhhridVlUVAyxhhzLtDpagF9xhDpjrm9Pgk3JPmvpml864opYQb1upls3SwIe34He2MeQChwuuBZaIPhvLtD7y+lbJqmLEut6/ZV9DTnA0MS05htPnhHcyiAD9ppxhhzfjAYzGi2TMWdNywr4iQWahDHcePkSpwIIcghkzFWFMXOcDdWUafTmUy81nUIgViGSRL5QAwS19Q1Zy3sTtdIqdvxljHW1PXOzg7wRQrdZamtAaWUEJyASAa4uLhIbD9Abm0AEGSfMBqNnG/BWcE4Y8TTLIixQbsY/XZjDLLW7IHoGjCznKF9HBEdYEBEj5xzZ0wURVGU0Ay6MWS7Eoi/uGfPHufcZDIh+i2F+n6/zxirqormbbz3ITitJeecA1hrs6zTzDCr9oojsBlI6pwjKBwAAkPq2dBHhxAE5yqOptMpXVZtbayUMXqODjHGfBuNhXE2jlKKwFLKaT66Vd9aW17xg4U0TZEJa62QwTln67pdb0AcfDuPtN57IRgiD+H28ARtH3Lm5/zGpehsoMdT5uZcWZYwExMzRgOgEIKgWMoV7rrrrosXL55+5Wxd1wi8rjQyr1REtx4Vp3le0llaWlrq9/u3Njecc2maGmOiKDp16sS5c+estd1ezxhVlvlECCnldDx9+htPvXbu/EMPPbS8vIIBjxw5sra6urU5Pnfu3MLCwl2HDgcfiN575swZwqmXVldaaTLtJONN0zhj3/e+D/zVH/+xpqn+3S/8/O7u7oce+pAQ4itf+UqSJA8//PBwOLxw+dKh/YfSNE2SpK4KuvW+8Y0n1tfXieBCdeLKysq+fftIemFzc/vxxx+PokgqLoSIlKh0A63GmiB+qtWmqqpXXz3zxBNPnHn5jLNWKTUajVQSL60sl7Xt9XplXZpGI/oiL/LJtNcbEI8qTdOimDq3srq6BzEkSfLcc88eP37s0IEDddUIIYSS1gRvae7WZll233331XW9uLhIcLAS0TseOra1tbW1tRVFUb/f9951exkiTvNJt9sVkjGBlDCMx+ONjQ1qPhljhsMh7ZVRFFlrjXZN01CnnGSgtNaMzZtngeYnKH2iW5UQVGstYisaSaudc+5mXibUs/TeG9PKqYUQiqIkUYe6rrvd7rSYJEmSJNHTTz2V5/kDDzywtbXDOWub3BZM0ElIAdg8nzHGyEw6BCGEcOC5ks45KgCEVG42wBLHMSlJl3VdmzqKIo9eMkb7nHXBBxt84JyzmNFvzqcjylqQscBBSo4YOKpYSeccQw8opOCCt1MzBAo0jaGhJADGAI02HAWAY0wIPqvSUQgZOQ/IBACbTqd1XU8mE0Ts9rJ+txfHSggyCI6TWG1t7ngfRsNCSlLttHGaCogVE0pFzhtrLEQ8jWIhxOEDB+u6QYvOOBFEImIWgPq4ECIp0DrtrJ+M85s3Cd3naRZ3Oh2lhHOmLKadb+PN3z7+/3J89KPw3vdClt1+pGngf/6f4cqVN37+cAj/7t9BnsNP/uTtBzmHv//34ROfeB08/Wc+9uyBt771mx/8hV+Af/tv3+DJkwk8+SQ8+ST8tb8GP/ZjcCcb4P3vh9VVmPl1/XGHUvDX/zoMBn/27/xHHcEiaCa55E4Eb6ppdRsQsVjnja1dXWl0PDQ8iTOMVZ7njHOhlIhFqHxZFLGUkoksy5raKBkzFLTHLC8vx4kwViHLiqLgiIyBEAwgQAicow3BBAQAZw0AY4ieo4C2/yellJ6jB4EsixM3MZKL4KEoCkQODIWSZYHOealS50wSx6bRQqTB891R7pyLZbS41DHGbO9uAYBSMgCsrK3ubA93h0PCyYEYx8wLxkLwxtgQnFA8iqT3vjQVcvBBx7GyCM5YYmvGUnnvg3dSceeACe6codqGxuKY4KaxjIuAiCz4EABCY3TMY8plKR1UqUCJkYy8d3Ec13UJoAI4RB9F0WLad94QlhEnamVlhQV57dq1LEm9D8PdsdY6yzra1OPxVEqZqCgE6MRdXToumDFGYGy141wgoneWDAmpkheStESMMS2TMYoiL0zV7CJi2ul3uslgsObBTfPRYCHrdFeMdsPx6MaNm93OgjFuuDviLACA4kkad5dWlnd2dpxzWtdaa6+dFKIoqmCxrqzgsTEmjVl3z8DXeTDBgQkBpeTO1gCga4vBc+CktZplmVIKlG+axlldVtOimAohFhaS6dQ2TT0YdLTWQsgLFy8Suanb7QYWGl1bZj3DKIrQeMakMYYKN/QBESMZK5lsbY4YY67mZVNfe/XZOE0El6SUBS30j6bwa/tW3/nud25tbVVVdejI4RtblxhjVy5e8VXY2NpYW1uLZTwdTS9fuPyWN7/lpZdeKqrKWn/l6o0DB/fdfc99n/313/mlX/4vIFn62qV+v1+HAMiNdYiccbW1Pb50+Urw9sAh0e107rrrBKAoy3J7ezuDSNRs7/41DOz69Ru+cVmU2sZVdRmMdwo4qqyTYdRQzZMk0crKEpkBEklra2MyHA6dQQDGmex0UqXUbjEUiWCM9TvdpmoAsCrqYAMikyIhVF1KBpyVZX7krkNHTh4NIZTjOpYRNEEYZSsnuYpkogs/GuWMC87ABo8cAR1xOYVU1rUofxzTqKgC9NoYY7USYjAYkKab5ybLMkTs9hfz8WR3d1QVpXOhKarhdHOyM2ZMMIyD98gUhBBY8EgueEGpWCn1i//hl1ZXVzkKDIxcmpVSZVkqpTxAkkRvfc+7EPHTn/5P4/FUxbFzLlGRMYYFAEAAzhEb44PxVV59/dGnkrS3cWtTRaLTS+KMf8/HPpx1+/rfu2effW5ra0up3oED+48eO8kZ1knv8qtXKqu87D7x7GmQ2X/+3O8ppaLO4mRUdnurAJ4FlkplnCOhAeQawXvnAW6XtRAcsFaEzTkLyBttlFLAHVdCICc+lNXWO4QAxoF1LAS0wJ1xyAUiJ4NshSxiMQQ0zjDJPMkmCgncdAcL5y9estpknZRzPp2Ou2myGIOpq51bda2bWAkTPCrlGPAkClZyxqumJp4XC95Z5ywEUmN0XhsPAIER+OJDAMY4Y1zMxRNCgMDJChMCEq+5rT+doxpVMMECBOMDhhACjwU1q4IPzrdC1d57jnwOU85K1sAYWmuxBU28D1aAkFx6a4NzgjEupfe+KpuWpRssE2yGTnKOzDhtjeEBbN0wxgQyCOC0QwGIpMAEAGit45wJJiWXIhL0NZxzTVXHcUzwMRXVApFDIHCK8CwppQ9QlJVSDhnvdBMVyclk4oMTQpDCjDE2hGAa7YxFRB7AeMcAwZPlOpeRAgdlWUowMokioXSlmWcChEwz723gDoRjSDKkwRRGOIZeeOMZsogpETgapxuN3tuqAe+kYHGiECPnvaTsP+hIxVEUX71+BQJTURKABWCI0PL+NBsOd/r9PlA8NSZJhRDCWuO9Ry55EADgnWeMQO8AwYXAEX0A52wrgxtCIESgqY0QSvB4VhMypSS9kgnunGt9VJ0z1tO8UV3X4/Gk2+1EUWS1trpWgjEGDKzkwXogJA5YK7FCKCR4L+PUW1dUejLNEXmn04sjZXRZVSUixrGSyENjqqpGDIC+1E1dFU3TeAeR4pxzZ6ve4r6yrKfTggPHEDKVlrZ0EILzxmkhhdY6BJ5PasaY09IEJ2WEiELKpmnqWmu9QxKi1hjvUfHIo+8k2fLiknPu+pWreZlzzrU1oqmTTlxVhYplmnTysphM68n0xtbmKEs7ZA2qQ762tMaRXbt23TnvNW7dKEJAKNnGer55qzlx4r7/+9/7v/3+7//uZz7zmTRNHQIKKaiHBMiR3R7Ml4EogVs729MiT5JkcXHx0sVXaURDRioEQIyyLEuShEAcFUfOB2NqJYQQXAiRJJFzzkQNIVm9fn95edlae+vmTarGwfmiKJqqQUSODGXwzqHAEOyBQ/vXVlafe+65yWTCEUXg4IADV1wZ7zhH5AwcGONC0N5bBpIxJ2VEHYhWEEZrABhNJ3NTROo1em8JaAgtwNsYYwFopCFIzhmKqiqRBYbMO09qsFxEIQQMGInI2IYFFqzzDJ0znU7W6XRMwLIslaCmqUXkZV7VFQ1JY90UnAOXgBh6vR7nMliX5yVnomkcAt2vQXIF3qdx5Gzd79FYGEop8zyvm9b5jTJV41oPOnqQAVoHnKsQguDCGIPcYwCYmT3WuiGsh6jriFjXJYMAPghG8vGSMWGtVUJ557ngAYK2hmI8iYdIKY0zzjkZC+vLvIYQgpQCedRK7P9Xx/La8nAM43wiJOv0usYYFUdKSKK4ShkxIfOy4o2eFiUXQsUJYywwrpD1O11wAX177YQQwJj1lgdeNWVAYIwxFGVjC+2yVDIeA3LnjJAReOdMcMY67ReWV7J0UFWFFJG2RirWNDljmOc5oBsM+s65aW69dc6htVpKzoDOniPZYgCQzNR1I4TgyC1jAMw7COA5l86FORNcCOVD8AFlklHvgXPprPXO0YKkIDbncdPlMM5ygQFcVVfW6TROQghN03jnnNV1ExJEzmXTNIwxwbgxhgG1aR1joTfoe++BofUI4FEJYmgmUVzXNbQeuWCM5Uw554IHDtzZAIE7CooQAIFcDThCGinv0RgLrIlisbS0NB5NhpPx0uLAey9FLLj3ruIiCO5Q8CiKIx601sgja22kkqqqSHCJiPWBEZ05BB8CBEBw/o3FNDAgBxm89R5QRI3WUSQbY5gFpaRzjiNjjCkeeevBo7G2TUs4bG1vZUkaR9Jay2XUtlVqUxSF0brb63nvQvABzF1HDx46vO+pp56aTsZN03zsR37kvrfc9/M///MXL1xYWOyzIHtr+5RSeTE5dvz49vb28ePH96ztf/XVV5976oUf/uEfPnbsxNpSvGd5z5UrV86fu3D8+PEkSTY3N3/5l35pmuf9Qffhhx9+29se7Ha7iMKYxoELiIPFhfF4/JWvfOXmjfXB8lK/v/jEE99I0/Tuu+9+7bXXlpYGp888942nviqlXF5ePnDg8LFjx37xU//+ySefzLLsL/7Fv8gTtjPd/vrXv64be/jw4ROn7t67d68G6wVY5rWzdV16CFIw8H6h2+NKNk2jGzsdTpUQ737o4Xc/9PDpl1/5lV/5laYquJLWWiW50ZyhYBI9T7TWha+A86KurLOTaiJkyPP85rXXVleWX3nllSeffHJ9fX3Pnj3AeNLJdja3bt3auHn91sLC0kNvfSiLZRX8pQuvrd+8ddfhI1fxKmOsaaqqKpaWFm7cuFboWkayLA0IvjualFUOiFygtVaJnY3N7dF4V1sjPDdNwznvdTqIuLi0MBwOc+vA226WJXGshPCtQchMbASCda6j1MrKynQ6ReTgQ1EU3oHgkeBRAEdkNaLHISJxd4gZ1ul0hsNh0zQAqJQ6deoUcre7u/vyM6fXTi2V1eTmjWsHDx5cWhyUZTkYDKIoSdNsZ2d3Osm1toyxALZx1kGouI6l0sZKKTyA8xZZEOG2ehGTUjqijPjWHDlJkjiOy5s3i0mhlhXMEHHKkmHWxZ1P6MBMu5Pucz9zmqbILqXkkaQIwlqbKbKiUiQ2T/65jImmqYgQgdAiIIS1R1FEfrhJEnnv+/2+917JCDmj3aMoptNpISW5BtdRpKz1cRzt23d0PB5Tj5dax51ORylJ7dyrV69RD8HNbExDCBAYoFcR895LJvbsWZWK7+xsAYC1hm5gusbGOPgjxvm/fXz7+HM87roLfviHodt93YM///N/JNY8P37jN+D7vx/uuuv2I3v2wE/+JPzTf/rnIOJ84gTcoY4AAPDpT78x1nzn8fM/D8vL8H3fd/uRsoR+/0+AmxmDBx+E7/u+NxDQcA62t2Ft7U//xd/gCHCbHIGsNQlxs/loMlfhLd/ZO+eMrRgDpZRUnDEhpRDIyD9aa03hi4JhWZbr6+ucQRRFvV6PMdaUDfUA56Cnc44LDoF57wNiAOCAwIn7jDjzYKEJzSzL9GQSQktPEEJwZHXdCMmVUs6hM5aEokgGEQDAhaZpyBzcWQfYqvX1ej2t9XRazDg+7aRhCK5paCTFhSCapnHBjUYjNtOFAADiCye9HgAURVEXdZIkhw4dQgyTyaRpHNk4wEywj3heJL48D7bzRmjCo7ly5Wwuzy8vr9Z1rSKhlIrjhaqqtnd2yqIeicnetX3W+slkpFTU7XbpI/Ji0jS1976c5pwLJcnzvfW/EkhCnIaqFOqPOucggLOWGtpRFJV1xQQf9LsrKyvXbt4YjYZaN51etrDQr2oO4FWUcOG6PiRxZ3NzO5/WwfvgLCIeOnRkYWFxe3N7NB4vLCxwLpumSJKYcxnJuCwaY5x1umm0aTRtIrN903vvhZLeOvKyCDPBAeoBV+PSWosMdnZ2Fhb6CwsLlJYRriqEHA6HaZouLi5SfyKvSjrzDFvJTucCtcGTJOEcaYyJCU7D70U+QcR+vx8ASR2bc261M96kUWwADh8+3DQmz8tXXz2z/+CBJMleefEl770S0WOPfT1W6mPf87EzZ15ZW9u7srJCE1vFbn3izSd+9BN/9dChA97KP/iDP2jq+tq1azdvrC8vLFdVlaadrc0d40xT1cFaUPjisy9/z/d+l5LJ5auXOOcrKyubm5tXr15N4nhlZWV7O2IBhFBZ0uFcbm1sbm1t88CLYpwwFUVJmqZN01y7doNoLEopKRSNGiBjSkofLGkyLCwsCCEEsqIonXOCsaZpdFVLGQHAnF8TxVGv14ui6Otff6LX6Uqp0CMJ8AWPLoTJJLfWksKv9x5YQMa8Dyi4MQadI8+iNsiEEEJI00RFEYkmp2laFMXGxkZl835/YWlpadDtLfQW+v2F8XDCmbDGXLp4xdUGJCN7GVobOPM1otSoaZpDhw5tb28Ph8Pl5WVEHA6HWmtiNxtj4ljt3bs3y7L19fXt7V0hxL59+6bTabVTAbS6AZPJ6OTJkySh+M53Pvj000+ffuWlBx54QNfm5RfP/MOf+un3f+ADp1956czpl5SKn3/u2SSOBOeHDxy8dvnGl770lT179mxsbO3s7PQG/bWVZWttmY+n02mappQ2cs48BsAACD5wCNDCbVxwIbSuOUpnHaIACJwp77wUsbM+ThLtbRRJ5gFMSIRqGsMVN94JhiGANboVOkRAhoAeGHcIzlnOmbU2MESPptZSCASOKrLIGHBa0qY2iUxCCFVVRkmMnHttg9UiEs7YRMXGmOC8M1Ygq5vae+BMzBlzpMZMJeWc9kt7Csz+pmFzypbnOsWEzNJegGTkQpXvLDYiA+Zv70QAwAWbsxrn6woRqbcHMz61nw2tw8yVjv4mkhoABNeuRtNoRKS6xSNKdnsc0EFgjnYhnLOeSZR5HqDCTNE1zHSWqXlgjZ3P8lM0oN9eFMXc8Y8CYJZlFMqaqt7Y2KjrmsFMiVgIySWh1QgoZUyeqwAQdEGjSPSjhBDOGSWE8Yb+yTm3VjfaIEpAcNYaY7hA3VTdbpcLjjMup9ZNWZbAQq/XEzxO05R2NM5lp9OZTorZ1WlplVzyjpIhOBKvIIb42tra6uqeS69dvnVrnTHGZCvg64OdA3w4kyP37vYYEM4kdGe0/RbBd87BzMmKc06PwUwZILQWYWzfvn3j8agxxrdKtTDT3m3JziGEAI4hn5VdoSiKJMl2dnaqukFEujqCQ5qm3lttzdre1UZX0+mEVG7iOAL0CBzRT6dTSse2t3ebpmEorl69msQZMQFbqRZoGeVEVtVaC8kEVxSL6FdEkaQfS0vLWmsbTRxtP7NMFkImSZwyJH6rtZZZXtc1lWzkZ4vIkyh1zt24fvPihUvO2izLOJOTyYQzqbU7c/pVRL62tvb2t7/tw9/9XV/88h8aoz0kTdPGxnlyxVoDxsIFv7a2xjnf3d29deuWIwuEWGZZV0qubau4LYRQKq7rFttliOTmxJkk6E5FQkhG1EulFDXL19bWaG64Kavt7W2llK4bAADwxHlknF+8+NrGxgZNu4P31mnvI8onjbOUtGBgnPMQHKGok3xcVZVzRoh0eXkPiXVYa5cXFsumprmxXq/XirDFMQA01tR1PZnkRIVrvfiAe++llIC+LdIjAYExxog6Nx6PpVSMg/WeqMzWuqbRWWdgG03zf845ySOyu6RzlaZpCHZpuZ9lGS2MEIJK4o31LWDcW/pR1KiDqi6klFLyGXQOWZYxpDzFoCAjEN00jWthC0SGNNCttfEeEIMxWinlfRBCWN/qJlM6aq0GACEEAaAANALga11xzo3TUsrG1AAACD54zrjzhknhIERpUtclY8CFQkQfgvVO/NH264hIUxQZT7a3t0MICwsLy8vLO1u7k8lkZWWFBqZbrJbWv/da68A4oSuMMd1YZ0MIhnMOAWkCL7RMbaGIQuEhy7LhTs2YqKoqkkopjsgZAzHTvy7Lkk4FwTIkTEoxXUpZNppI3yScMgs1bha6wXsfPM4FuBhHaz29OQ0vEmsbWDv0iYiktpSmaaOtlJKmW6bTKVnyUoVCYcpaWxQFhe7ptAjBdbvkfOib2gRfKhWjJQ57KwsgJaddaR5XgYNz7cgahRrOCVZqeNwGn3mVR7+RsmXGGUArxi2UTGQUsJXyIHrpYDBgCNQ0dc4xxr0jGrLTle71Bp1YFEVpZsonBw4cCAFv3rzZNAYRQjtPcNvKUnDxXy0WoF3AGDPLItw8nQihlYf1wXGBoWkDFyAaY27dukU44NraWjHNQwj7Dx64fv16VVUQ2Ac+8IFOp/ONb3yDhgaqqrpw4QJlxYcPH37ooYcA4Pd+7/ceeeQRIcRwd2wb/eCDD/YXF5w3n/zkJ3/7d35nz549i4Ol1dXVi+cvdrvdXqc7ctMQwsmTJzc2Np544okTx4/v27ev1+tduXp1PBmePXv29OmX//pf/+txrMrSyDgKDKfT6de+9tVXXnnlTW9+U6/fKYpi//79URQ9+eSTN27c6Pf7cRyHELTW58+fP3Jk0zn33HPPIeInPvFX3vWud507d857n6bpxYsvv/jii4OvPfbjP/5/DuDI+60s89OnT3f7vYWF/vLq0sbGxteffOLKlSsf+o7vWlpaklKWZfnoo48+89TTly9fTiK5sLzU7/fLshRCBI9RFBHMmKbp9vYmMGCM7ezsPPfsC/v271laWjp9+vT6+vru7m6e501TnThxIk3TsizPnTv32rkLR48eXVtZPbB3P+e4tnfPvn37Xj7zQrffu3blarfbvXjx4tmzZ7v93p59e8+cOV3X9fb2dlEUzpsoUcvLy2VZ3rx5c3l5mb4nAyzLcmlp8fjx43XdrK+v0/2CgsdpCoidXo94x+PxlIrxoiqTOO12u7u7u9Pp1HuIpEqSJMzsoIzV8/Fi+oPyBynl7u7ucDikmAAA5M/80EPvAIBIqTe96U0nT56M4/gLX/jCc889V5UNYv3cc88B4Hg0DSFwLimNt5UJgnUH3WIyTVWmdWOFVYlijAmKNUIIWn/TSY6cAQCVZ+vr61EUKaWiKDK18dzz2cQEn8lL0YGz6cJ5Qua9d9aydgqbhRCs8d4ZCihRFGVZRgYjIQStawoNnLfCGkqpNOk0TTOPwi74LMsoKsWxosFAY5zWjdY6iqW37Qi21nowGEhZJknGmeScnAZZHMemIskSP5OHtgBw7do1Spf9bOiPpLKNMYojShYlyYmTxwjmVkptbW2Nx5MQmNaaMVgc3PdHbTPfPr59/Dkezn0znDqdwqc//Se/UGv4P/4P+Nf/+jabmDG4+26YJVr/TceHP/zNX+kP//BP9cLHHoPv/M7bTO1+H+6/H86c+eNe4j0kCdx/PyTJN/+vz34W3vGOP+VX/iMPmogKIbjgOdyWVGazY14dEYJsIXDOO900SWKnjfFOSknIoPdecMU5B2BKxTSVFgJZpjRUvcDMEKktOxFo6Ml6h+gR+TzVI7TI2IbmYuI45kpRacSZJIPs8XhsTcMY62adg/sPIIYLFy6MRiMqyBnjjTXgPNX2iAgQnPPr6+sM22+CiIwB7RxSciESpVTTVPSLrNMiUUplcRQRI2mxtzidTp21nEnS/xJCLC8vk2cF5b5lWWqtiemsNbkPRQDQ6XRY69rcrkLG2Hg0pUJodXWVcx4CDIe7cVz2+32lxM7Ozng0lVKaxpZ5tbs9vHD+cl3XjHEhmiR2vV4vSZLBYOC955yZulEqyvOcMSCgmwBWIQT9xhCcMTQwDgAQRZFxNu1kTdNEUeSc8+iOnji298C+J598cjQcnn759OrexcN3HXbOXL58WQgRAh45fNfu7sg6LbhiIAHgxo2bVy5f11qDscW0XF5Z7HV61prgPOeCC2RMkkRDCGEymRDozxhTShAuwzkHP8swg6cOgfdeRAICcs6EEvv27HfB1rVeWlqg/YsciimbJgcJ7/1UGyYlA8YFU7FyrvDGk8eUtY7w0J2t7Vo3AKAYMiWEkCEEQZQxBw69kknw0On1zp591VprvPM+PPH1J1WGnMulhYFzTqloaWHx+q3rm7c2T58+vby8uv/gwWeeee5D3/Odf/cn/y9PPPHEz/6L/8+tG+v79x64efOm9jXdRMeOndjdGZG+mxCSia4PJkrE5q3Nc2fO7ox2EHFpaWl7e3u0U55vXp2OxqsrK2naaap6PJ6MR+M4Eb1eVua5d2Y61MvLq4uDxa2t7Vtb1xljaZJ46xtbM8bEHYq30+m0KIrVvXu2t7cZ4O7urm1MnKQhoFIKsbWwp4yGA9bW3rq5UYV8a2Nnsb9oGstRlk0Tq4SjoAoWEchRDRmfhw4hBOc4l1SjLMk5VxRFkqaRSibT8ZUrV0IIeZ4DeNvYYjK9KRRjjAFXMkpiFFylUVr55ptgSjYTOC6KAhEZYz/7sz/79a9//ad/6qdIwAfuqKmSJAHwv/apTx08coRa9Wtra8R9RsE9Ak0OVlX1kY985NKlS88///wH3vOOt9x36tlnn//sZ37zxo0bLoStjW2t9Y0b1z7yXR9aXFw8ceLEieOnxsPpZJTv7OwcOHj4wIEDSZb+0i/9x1OnTkrB/sfv//jucPuzn/2s1R4AhJQmMC5lresoSoKX1lrOhbMBkTW1YUx6x4IHQPRA8BwPATiXzrJYMVM2wTolJXiGPgTvWQAXAgaHwclW3BMAArBQByeFRIZVVbRhlnOJAB6ttQKRMVXlVT7KOeciimXWreuyt7hEOoZZFnW7Xe+9N7YoCuYhlioEbJyleX+YTcjSNfXezuBmfhtJ9IGc4qirNH+yDS25FWYOpYT6AeNSiduoNLXEJPN+pg3tg+et0BO9Fl8veD3/GwAQAiJSjWppFYILgBCoTA30Ds7QZ82gT2ppIJA0YSsnjTgDr9uPoPFnNjMuZ0xSTJuXNKTRTNWB955UHbe2tugr1XWtTUMQeRzHg8HAmGY43i2KQgiBjJqsLAQPgEJwRNKwbsV8OOcoImttsMFqo+smjmMWQCmluCJZGGoacynAg9bWemOtZaisc1VVDRYXiHGiYnlw30EXPBmVR1HU7XZpyjvPc0J8tNYhdAAgBKeUcgEZY2maksRqL+mRFCkVOE3TZGnMAqOv6pwjHAZnSrjOuZlzQQvrzyMGQckEyBILL7TK4I7SgFmpxQVHKo/p0iCijBIhmXPO5IbPwh0d1oUoirwA7712NoTQNE2tG+etd0HrHUSMk2hhadDrLRMYF0LIskxrHceKpndta2fLAEAIZrX1DhBxZ3vY67mlpSX6RWVZjqcTmNlRcM6plYWC4DNHGArdPlmWRVEEIQAA1WWTyWQ8HkMriQuITEjBGANgQiAhC0oJ6iZyzne3d2jBx2mSxpm19tatW01jGOBgsBhFEQ9cayul/PVf//XPf/7zm5ubyFFKPljaQwuA4iSJRo7H45MnTw4Gg8uXL8tI4UzpCwAYo66hFEw2TjsXmsbUdds4t9YyaAWFSZ2SRAOcazsfJN4yHA6XFhdpRXlrqfVOqzqO07W1NalUWZZ5nm9urkdRIhhnQtR1zbC1OaUtDAJ66+a5E+eYRPF8kL+u693d3TRNDxzYB8Bee+01xYUQoq5Lzvldd93V6XR2dnZmMb8xM4Ovuq5NbWhdUdfLeo+cc8EZ58QWTDqZc65uqiiK0iRjjOXFZDyeWkNO1t57DwG0084iYygEW1lZWljsVnWuYskY5OXUudDrZMPhWEViYbC0szOqq0pKaUwjJNMau92MuiPee2s9YyyOldY1gJecEc+jjZmtbmmr1YbYuj0xJp1zHgJHtrDQJ06fMSbPJxS4Op3UmAAseHDOe2tL50IURca4pqk8MZqbRkquuKpqTZ8ohDxwaL+U0ntb1aUxpq5rH0LdNN03wg+NNp1uWlciBEs9NmoDWNsKEHc6HbrroyhijJGem/c+VjFDTJIEgRvtCOWEGWJOqhXGWCGs954FXF5aGe6Ox2Otm6BkzBgbj6eMsdXVtW63T6adIXihJOciSZQxmoIVdS+0qanbkSQJY62a1RzGbZqGsddJHrHW8Jb4N5YxPmuVaQxMKcVYC0MLKYWM6oYwFrG2tkZAP21e80wJgXMmecy11sF7xnhRVISJIxP0wxUXSinCoEOrQg5ET6YvT5spkSo4MgetEgsiWquJf0DiSCQUEFggvDvMzMMpwGqtyVOXI/PgdWME5wLZvDtI2FfQ3qNXKm6aJpg2rbWGmD2WOr4tNB/ABTs/b3dCz990cI5zwUD0LbNHCOG9ZQEYQzo5tE1oY6y1aZpmnWR1dZVySynl6urqJkmXTEvv/Xve8561tb2nT5/udDobGxs+WHKh9N6fOnXqX/7Lf/krv/IrL55+8cTxU1/58lcl49/53d99/vz5p5979kd+5Ee++Idf/k//6T8pFWOAhx9++JFHHllf39xc//rJU/cwxkiSeDKZUC3z8MMPv/TKi4ii00lPnz79v/1v/+DAgQM/9EM/xKQo83oyGcVx/CM/8kOre/e8cvqlffv2PfjgW06fPv2lL/2hECLLsre//e1f/vKXJ5OJEKKqykuXLtZ1xTl/+eWXiWJ/8ODBtbXVlZVHXnjhhedfeOnll1988MG3OW/iRJ08foJzfuPGtb171x5//PFf/uVfXt/afN/73nfq7hPBY12W3X7viSeeeOrJb6RZrA2bFNN3vevdRNRARCEi2l5b+UrOGGNKiLIsr1y5sr29jR4P7N1XG/JS1V/84hc//vGPLy4uZlnGBF6+fPnm9Vsf/OAjdx+/u2mq5eXVN7/5zUeOHPnsZz979erV3d3djY2NU6dO3XvvvdevXxvn0+l02uhKKhVCOHHiRAjh7JlzRVGcOnVqz549O1vbu7u7TaO3tran0+n29jZtYYRMMsbKsqTNizI351yapgw5NSmNMQjQ1CWyMFdqds6RBI0np9ZZ5KQnxHG8tLREVDlv7Pmzr66sLCdJlKXd5597cXtrd2tra7g7xlYHBuu6oV4yNZycc86ZhcGyypKRHX7gAx/YurB98+aNo0ePTstpZjJBGDZ93nSS53lO3ScPYXV1VUqZF1MhRLfbpa5scKBrI4QQsZSCBXDlNCfkV0gJvGU600mhm5+YECRxTdswIctKKWOwLHPnXBwrKeVoNGJM4IyFUdd1VVXUx0ZE5IzcYNI0ZqzjnKuqSsqo1xt0u92trQ1jvdZ2eXl5ZXktiqLhcHT9+k2PUJalMY7eh3lO97mxrfk4NZzvqC3Re9/OawgB6Ou6mk7HX//qzpEjR46dPHHt2o277jr22vmLRV5NJnlT1s3q1rH9bxg0vn18+/jzPLIMqgpIqYmOf/EvgHirf+Lx4otw/vzrFJOdA6W+BWu+NzyWluBNb3rdI888A88//6d67bPPws2bcOLE7Ufe9jb4tV/7E1712GPw4ovwS78EKysAAEUBX/0q/NzPQVnCgw9+K1/9jQ7GWVvhcEoIbAiByVYvkhIR55yf8Z1ZcJFUnSTpdbqT6ahu2lZh02ghhHeeaJJFUVA8VJEoy5JquUhEM6DTew9SysDQWhuw9fyhhIxYMMQ10I21Nk+SxCOkadrpdKzxWmvwwXswTUMOCZPJVEqVJLFScZZ1nXNSKqpykWGn2yWvW2M0uFBV1Wg0YtiSI6IosrZCxKbxNA3a7XaNbay1pBSWZRlHwq9Z4xrGIQBq3WjbBAzdbtd6Nx6PDx8+HEK4dOmSMQbAA3j6TX5mP0sANGnnUZJHOsshBANmOi2qqgCAujLXr13f2dm99957vcebN2/1+30A5hw4FwBoQxHWeAIQ4ziOYrm4uBjH0ZUrV9BoxpjWFWNCKaFNwyVTkRSMkxkg5xxYO1ukrWHeGdMknSxTmffehforX/3iyZMnv+M7P/Dyyy9fuXZ1a3t3Wkw550tLC8aYsqzX19d3dnaEkFLIWEZFUTS1cdaDdVGn3+12ECTnSPjvZDIheoj3NsuS8bgODIG380BkSzIHaxhjnNNg/ty0BxGZ4BIAbt1at9bu27dXa/vic6e5xAfe8mbO+WQyFkpS0UIgdb/b4Vw2jTHGVHUhuALESCmSc6UCRnJlrYWAYCGflpSvG2MoxVFcxXFclqWzEDxCYCG4PC+aYfXggw8cPXr06tWrwds9e/bs7u52+p3z58/fdfzYfffef/Pmutbm+tUbL7zwyhNf/ca+g3uvXLxE81/W2qayWTLa2d4GQM6Fbiwyz6XEwK0Ja6v7qqrZ3d29NLyaZen+/StUqhljLpx/bTQa9Xq96Xiqta5rs29t7eTJk69dvLZ37z4AUEphYILJIq/axRZLiTKEgB4h+MlwdPDIYavd9o11cACSSxVJKclh2FtLlRKZfQGA4sI7H8WZ4sI7rEqtax2rhAElf616gPcWiEmOrVqrc857Rrez97ZpLCUeJKYxGAwm46kPM1dkxCzr7tmzZ9BbuHr16vULV4ExCIFzBQCcS/ABkAGAITzIMiIWSSmbsjx0/DjdBe9673t/+qd/+hOf+MT2xkaUplQEEl9GRBEA0Ogc2ZHPeUDake6wPXPuVUS8fPXKv/rXP3vX4aMPPvjWvX9j36c+9at33333iZMnn3z6qbsOH3nrWx64//77OZdloVeWlr/yla8N+ov9pf7Fy5d+/dP/6ZlnvsHQHzywJ5/sTna3FfPMa62trkOUpNZqoWRwFp2KeeS9d94wxsADBs8AvXXaGD9zwQohcOToURe1954BE5EERM75NM9VEgvJrPVKKSQvFAjAkUnujW+MBgAbvAzoraurQjAegpdEAq0rAeicj9NUSVlru7K2f+/evWU+Wb95qyimigvwnozOOJMheGA8iqKm1hC8nznatdQjaFmu8xuWMYYQcEaM9a1zi3LOoTH1bJwO54rVzuNMqd/PZpPpAsUJo6hF+ptSSs4FFcxzTJO1MsHtwCKQhmmwAN4jNUFasIAxRnsNIhI8RGg8ZeDWe4bAWeuFiLODKmScybnexsTBgScvpuAdTZfLbrcLLpAGKw0GdTod5xzBzc45xpEQh5WVlcXFxbIsh8MdY4yMRCQVPYHP1Gxpg6bv0DQVlUwRcu+Ac5BSBueDM957raHTSR0ErbWxGoAUn8HWFQYfK2mtkUoiBiFYbVzaSdb27b3nnnu2d3cmk8mFCxfiNMnzvCzLOE0WFhZ2dnYIsCD1PKUUsMAYz4tJmqadfocaw1EUjcfjsqxpKMQ5Z50m0Ju6BkRSa39OIIyGzNTbrgPOyDp0tOxsT+0EAOBCqHnPmxacEIIxYYyJojjLOO0dja5sTLAjCMGAoXfgjfY+cC5sMKT0EgLs2bOnLMumqaSUBLIvLCw0TUXvQwu1aXRVNUjFNxMh0Ly8AMCiLkgTI0oTAJxO88bqwWCQdjIuWdXUu7u7kishhIyk4NJDyLKMmtAhBAxADGjG2Nx8mHTBiQ68b8/eXq+3s7NTNTVjWOdTpRTyVm6eMya4iFWUxsm1a9cYY9Ik3UHPWuvcOgBbXFxaWVm9dXODTvLm5ib993u+5yNa669+9auLi8tNWXljCVhUSk0mk7LMqeScTCaU9kgurHNJkjD0JFIBANY7ujXmV5AzQY5nRrudeoduQ5xxypxzo+EQEJ1zW9vbnLE0TWmWeTQaUc9AShnQa1MLyTjnq6uriGi1894jgLGNd4CCMwfOuYCtAnuaxgsL/SRJrNNQtvLraZqurq7SvjMajfr9LueDjY0NQm+n02me55PJRCkVx+nSUody1MXBwmg0acqKxp4CC0Qdnd2Dao4GTCYT78G5QO5NRgejw0hPokh637YZvA+MccQA1OxkwAROJqMQgvGOc76zu+lcOHbs8P79h7/22ON1bX0IKhKMMWt1XbcRxrfEYUYuFIS2REoYa723nONgMCBwn0jEiMgEMoaE43POnTPeU7zztanzMpdSBht8aRljjIP3vtvLojShlxPmsry4qI1JO1Fd19NiAgABPfE3aa9vdG2dA0TGed2UsXrjaiqviqyTKKWiSPZ6vaqqptOpc65q2rlwwow45wgseAAPGND71gkAG1NXlfee8mfvgMvWmdB7752ra42IUkZx3LE26MYo2UnTrC7LOEoHg8Hi4tLOzrAsas6lEExGUgiptd7dbaVsaMEnUTzr5MkQHABYS6a+nhJ1xowQwjsTQqDShu5Z51wI/nWhieTFBQNgXCghWpilrpsQwubmJg2F0Pqci9fFcVwUhVJKisijabcJRlGBFtXteSCYDXkAgPeWbtVwpwi4sTOjAkNrJsy8fOeIG8zcIKnF224xOHMa81p0u7efLyVnPE3TMh9670NgQggftNZa0fDTbCTROYfIr1y5cntnJ94SoUyk3YHo/wgxDWNaeQBH9g/Y6gqEEMh7VkopiBCpVJplnPPReLeoqyxOOOcHDhy4/743b25uFlV59cp1ik7/+T//uhDi0qVLBw4ccM4laUwcBQB47rnnfvu3f7vb7QaPe/bs+Tt/6ye+9KWv7Nmz79FHH2uqhm72Xqd/4cKFNE0///kvbN7aPHz4rq8/9rV777v4gz/4g9vb23me79+/f3V1dWd7u9/vvuMd7/jKV76yuDiQkk8mE23qhZWFJEmmo2mv1/uhH/ohzvE//NIvPvf8M//T//R/iuP4xRdfpIh09OjRe++995VXXrl27ZoQ4tq1a3meW2sXFxcfffTRJ598MooiIURRFB/72Mfuv//+vXv37t2798yZV8oyR+QbGxtveesDb3rTm86dO/vv/+N/qOu61+udOnXqS1/60sJgqd/tFkWxuLi4vLIYx/FoNHLBb+1s9bp9ISUFihkf31Alq3UjRWSdvnZ1fXV1VXKe55M9e/YkKjp1/ESe57/7W7/90EMP7d+/t67rl198pSiKz33uv5y/53yapu9553uSNLpw4cLXv/719fX1brcrpbx+/fq1a1cpl0BMkzSaFhNj4Pnnn7/nnruXlpa2trZeeumlffv2OReSJHMubGxs1XXdNGae3flgdWMR0TugZW+tY4wtLi4i4u7OkJKHZGbqMAOF7exWbaeKaXHSNBIpntFtnqho9dChpmnOn38thDCdTqy1W1s7ZVkCYJKkg8HA+7C9vS248h6EQGOc9xAgCMniOF7L1iivO3b0rrHaffHMy865NpOjZV0UBUU3IQRnrJjmSinwAAEYIAPk2Ao3CyEk50IIY4xzQcqIc5kkqXOGRTGkjODmsix1Y+u6JnIcIeuUHzPGiqJYWFjo9TsEBFdVoZSCmVBpU5s4vu1LQGy1siyrqjLmNmOCc9HvDwaD/tbW1ubmZpokOzs7UkRNo3d3d6fTQleaCOdCKSEEBqT6inILuqUp7WPYBj7rLYX1EIJzNssy+sLr65t5Xg6HQxklzoWyrLwPyGVdfTNHNE3hbW8D7+HqVbh2DQCAMXjXu+CRRyCKYGsLjIFuF5IERiP43Ofg0qU3jDnfwjEYwIc/DMeOQZrCzZuACHv3QlXBa6/B5z8Po9Gf9n0OHoSDB0EIePrp18ksHDkC3//9MBhAVcFkAkLAygpsbMBv/dYfp+Swugof/zjs3w+It78VIty4AZ/+NGxt/dl/7+Ii/OiPwoEDIGXLh/2z/V6Y6TNwDs7Bc8/BfCLqDS9ZHMN4/Odzyf4Mx113wcLC7X+ORvDKK9/Cy7/0pdfBzYMBdLv/TWIajME73gGrq6978E9JbQaAsoRXXnkd3HziBPT7MB7/CS+cTOAf/SP4S38J6ho+9akW3f4m+8Q/20EFXsDbhZ9SSsaR954D0jwHIlrnbMtKyKi3GcDxmQn4AAZRFAPA5sY2NecpoTTGGA2cSyk5+jYrmn+uUioYBAAuhDEOEaMoUkKS8Bz5SiOiBWu8c6Rf5BF9MHXjXAAAwZhzARFH26Ot9Q368q1vAGOegeDKB0sBln5gkiSdTocmT/M8Hw6Hs1zRG9Po2gN0Bgs9LmJrrRAcBa/LihBwpWRdV2TEF8dJ0k0Wugt1XRfF9MaNGz/w/R/P8/ylF1+Mk4TGeebqSUQrIMQkSZJqdiilEDkiaG3Hu2OtayFEohJjjNHu1bPnrbVKxtZ4znkSZ03TOG/o3M6r96qqfLCTyaSuJWNMOxu8D0DCcSZN036/TxhH2slc8IRgErIv4wjAV1UF6NMsdt7XutbWvnbx/M31G/3+woEDB7Sui6JABjTbs7y00iqTahf1FO3rbsZK9NqPd6a7flcpsbg46C32pJRbW1u9Xo8LSV5kdIG01g4Cej9vec5JH3NAChElVwDgjQeAaVU4cFtb2/mlHAAZE1ubO1zg4cOHd4Y7dV3HsYpVjIhV2UynU60t0XDiGLIsE4KFytFFYUxQLsuQeR8QERhzLjgXZiqH3FrPuayqCsA757iSTW0A2eWL1zCIpqnqpjx79uxHP/rRhx9++N/8m3/z0EMPXb50tSjKr37hKw+/8/3j3VzFmW0spU3OOckVIm5tbTnrI6mapmEMWcSDc8Fzb3FrYzefNlKkiwvdKJJpmt64cePw4YPbm7tXLt9820MP9Pv9uqyiKHr11fO9bm84HE6L6eOPfx0AkyTxwYLjkvEQMNhgGyuEIvtpKaUUUZ3XO8UwijLGmMfWqs57y5gIDFEgBBCRkowDeADWAgqMB4dlXgEwY3USpWT/Na9zgCGJGYQ7eKYhhLIsibHSQk7gwDmad/bGQ8DgfZKm995zX7fbzadFJ+3EnU5daymlNy0sSIkiLYZISDur8ZxzUZpeeu21n/iJn/jH//gff/CDHxRCfPKTn/wn/+SfjIdDJkTUyg/5KIq2trY2NjbiOC3Lkiy/ofWkFs657mCglPqJn/iJ9fX1Bx54QMro6tUrDz741g9/+DuOHTsWp8nvf+H3h8Odff8/7v4z3LLrug5E54o7nHxurhyAQiRAgMjMYJKoLIoSP1mkbMuSSXe3Lcmygt2vrW63RMmyrX6fWqmVLVtiEiWhSVGkKAYQicihCqkKFW7Vzefck3Zc8f2Y+5yqgsBo+fX73vqB796NU+fusPZac4455hj79r7+9W+mhEtRppPsiSceW17e85Z3vHnvvqtPnrq+KCelzqIoePKpJ375g7/42jtvf/rpp9/0pjfdd999n/irv56MxlSQdrsbcGmNMmXpnAHGjFWIVFIKVxzcL7m4cGE9HQ0opZ5zQogTwlkP1Be5YoJb6rEH3IPVWgspdakYl8Ya58FaoECAEqO0IEKXKhSSEKCUC8aNMYyzoFHnnJdaxXE8Ho+9C4b9waC364xRupCM5mWGiTdB4FZbJihUBveeMo+GjPisqahSVriEwURJtXpjwW/WbjzjusIl8qMyEHwqfIyQHwbeBIiv9OXFLFWgl6DYs8kGaIFyyXHrrKeV/FFFmJrSjRllSBKbnQzqSuInEeaeLkTVcTYVdqiulDjwnrOLrkeMsXq9HoZhq9VyxgBAUeYyEODl9vY2woiEENQDwbwI8Z3BYEC4b8+1Ee2KZITBPxCHvDmg3ntvrTa6aqkE7yw1JAgCweM4zNMJGsRb64FSZ0FrS6kXgRSCNlhdAqWc9/v9UAbNdgu3+263GwTBhfW10Wi0vb1NCDl//rxgHDXWKyAminCnULpggjJOAFytVgvjOAxD78n58+eZ4FGtPhoM8dkppSTnjHOEDKy1WhusRjBWSWbNJsCl9YkZDI3IiLPWE+c9A4AwjDnnShVIc/beUwZIwcYz1FoVRaGUpoSDB0eMcYQCrRyArXVAnQVngXNKGdu3b1+/v7OzoxYW5oRkRw5fMRwOz53brNfr8/PzUkZ5kSL5JsvyOI7DMNJaG2MJoYQQKUOtbZ6PGOOOgPHOe3DgvbdhHDVazX379k0mkyAIylxpo7iQmM9PxRb4LJUjhDBMRY1nhDAqlFKj0SRNc+O0974sdWkUpZQC895iwMCYkDIMgqBeHwEAeKJK3Wg0anF9NBrV641GvbWqLwgREGWstTrPr7j66l/4hV/49Kc//bef+5tTp06hIFVZlkCd1qVzJgiCF1544cSJEygmiVV2fHGA+CiKrLXIZMe5IaXE+U+mPqJkSrlVecEDCUBKU+JjElKi6pedmimVRne7XUopLsVFUWhn8zxnjDkDkQwoJ954gEoZYPbyWucAnDG2KMB7LwMe6jBNU+Z9kadAXBRFtVqtLMvhcNjpdLTWrWbTOqeU6vf7iPRprfN8gH+aEAKOYA2+KonxKhSpgk+j+v0dKWVZlsZU9qdT1RfPmCDOeuO9swDAOGOMMiqMdwAwngx3R6rZiqlgjUaDUkYIGQ38ZJIOJ8PeM33jdRgGhBCtjfcuDEOUKrbWohoGpY44BuCEZJSSsiwZI41mzVrLBaXMA/eO2tIWnHMmmPOWCFyoLedcex0FUVEUxiouqDYlISTistPpjEYjpVR3YY4J3m43ZwW5er2OsdnG1ub6+nqWZa1uo9mpF0Xmva/ValSEXLMoihYWFnq7uypvwSspahCoXOmieq032DWlQuSBMdZoNos8BwAC1BpndA5TEBbTDa0tSrVY64kH58A4axVSUhhuFtZ6pZX3ZM/KvuWl/c5szXWXm412WWRBIK11k0m62x9qrcNINptt42yapmgMK6VEskUUhKXKsywLAmGtJcRHQWCtUUppXSI6FASEUjrDSL11qD6MnpZuyoYGAGV0qVUt5pxTIaS1Ls8LrGnh60OnrTkVg8c5AGi3u0IEk8kIALgIKCFBAMaYPC/DKGIo61/mcVSjFLTWKF9GKpk4i6Wg2QY6q7Ljglkt4EqRSpjIlGVZGk2mtuo4VaxxztppHEIZEOc8BRpIyRgjQABgd3cXvJMy1EYJIXDflzIUpCrMJJOMCWyU5zOgkBBPyEWJEvoVqM3VnJlq+jvnvDYAoJ0D8ERwq7RzzmA1i1KlC+YYMJokyc7OTiSDWq22trb2yCOPxLUGq/r15erqKiGk0Wgh5Lo76DWbzUajcerUqclk8lu/9VuNRgMYP3jw8G2vuW17u/fbv/07Qog4jj/ypx/5Vz/7Mz/8wz/8kz/5k6dPn41kcPXV177zW7710IGDzhMsDeKOP5lMGo3Gnj03H73yiltuufnzn//8qVMvOm8OHDjAGM2ydHX1LGPMeMNYsLA4lyTJPffc8/DDDx8/fhwAut3u448/fu7cuaWllaNHr9ze3gZweZ52Oi1j1C233Oyc29jYePHFFxcWFjjnSTJZX18fTyZnz57F7pPheGCMecMbXvd7f/D7/X5vaWnpu9/1vYcOHVpdXa3X63/zNw89++yznVZ7//79k8mk2+3OL84TQrioZmCaTowx1nrGSKPRMMb0VWmMyYtcMMYpRXXK3d1d7/3Jky95b5995viZM2fm5uY4F699/V3rFzaefPLJkydfrNfrvV5vZ3Pz3nvvLctyeXkZRYG894RLTGd2Bz1CaaNV39nZ2draBPD1WssYUxTFZDJZXl5GwRnkjwPATGcSALgQURQFIgSA8XgsAo/ZDaoqZVnmrO10OnhbRqMRZqmYLGMEgkULnKIAgKvNYDAA6wxlyA+YjLEgQdrtjtbaWny7ScDlaDSypSWcUMIIgC5KQgiTTEp522237eTb937+C2+7/e1JMnlm7ZlxNhFpzO1UDA4DOIzdEYfVWqdpChc9XqmzXgophAi49FNf41nTLrYn7N27F9nsVU+ZtrPAmnNBKXPOY/celkkbzdpkMhkOh9iyXZaFtdZZ8N4mSQIAyJIgjM5qRJRWzXS1Wk0GsfO+3+8HQdButymleVq88MILjHFrvTceSV6BjOq1ehRFu/3JNLYDjHRR44wSjueJxTT0MLTWcC6dJbVaA1/7NM2lDLEshVGy4BBeSjedjve/HxYX4cd/HADgwAH4R/8IbrsNOp3LvNEAwFq4+2742Mfgz//8m/Rt4xzuvBP+6T+FlRWIopd/f57Dd34n/PZvw4MPfl081iiC/+1/g50d+JEfqY7U6/A93wPvfjd0u3B5cx5YCw888Apwc7MJr3kNvP3tcO21UK+/wlllGXzLt8Czz8JnPgOPPQbj8TdzvQcOgBAAALfc8s1fLwA4B7fdBu9+N3zkI/DYY9XB/66P7JseV1112a/jMWxvfwP//JlnLvt1YQH27YOtrW/+fJyD9773siPew6lT38A3PP44fPd3X/w1iuDAgZef5yuOhx6Chx76Bv7Q1zmssdoaNlXxY4x4Wvn/IkaJpS8A4EIQgHa7zTnv9be11qgOkaYpeBqG0TQhKSmlQSCKojBagaGeo6yYmCWWGDDN0ktKCHb3KKWa9UZVsadVd5WyhgABT7Sy1IMxTikjuQAAAoxQitAYcMB9C8MvwQPCGefEGECEESWDkAgTRVGzUflBE0LiOB6NRpxzo3WmMlnKKAoFl5haoLqR9Y5ZKkPZDTtCCEKYLpVnHtklQRB86EMfiqJap9tFCq2Y+qHjjcVoHvHWubm5PM+3t7e11pRISqk1Bk1vsMuPEOaMUTnG3NYqG0WRoEJQUaqcMUaAEVoRE7TWRWGNMYzROI6FEDRiCwsL7XbbGj9JhozxOol3+0MA12w2Z3l+WAuNMR4sDygTbDQZWGtlBO1OC6v37Xb7wIF96+vrzrnRaJRnhZRyM92Io/rC3HxZagBIkokqFThCifSOaFNSzgFIWerNzW3O+d6Dezc2NoajUaPRIMRHccwYw1uELAY6bYefhe/+0j5r66SUxqFslLDK7mwPOKf1esNa0+vtRlHQ7/eN0WEY7u7udhrt7tz8udG5Xq/HGIvjeqPVYIwZZ4qkQFVf773KlQUvhbRWV9uiNSiDSCm1ylpqnQVGKSPUOC9E4KzhXFIKo2HyzDPH4zga7Q6phNvvvOPBhx46c+7sudXVL93/QJqmPI5//dd/PUuLVquN7HXnoFZreOuQr+SsL4qCcsoYi2TAA+q8eeGFFxgjgse1OFa5op6v9TfH43RL9qIomp+fX1pceeGFFw4dPLi7u1uWpYrN6ukLySQHDSAgGyWyFnhrKeFCcCzDIDMCAPA0dnYH3BMmuPeeAvGuAgu8t4QAIZ5SgsqAxhjQxlprFXjqR8MBpdxrz3mAlnR0alAB1AM4a5GiiN2ojnMKQPK8JFOJgzAMo1qMgFGSJIyxIAj279/fajZPvnByPB5bg4wnIhm32jHGrKlwSecc9eCs01676YSp4K0o6m1tFUVx9OjRn/3Zn73rrrtWVlZGg8FUapCSaSEN6z2o+BzH8cWKixDtdvP48eN/9Ed/1O12X33zrTfccMPq6rlPfOITi/PdO99w53333X/NdVd/7GN/kSsrZO3YlVdTSq+55po3vOmNR48evv6GayfJ6FU3XDMa76yePRfFwXA4NM4vrey9I6q/7e63X3nkmGTB7bff/uEPf/iRRx45dHTl1ltvfe65586dO5MkyYGVpWYtPn36tJTyzhtfNRgM8kGPlNncXDeKoizLz2xtVzdBMkmCUisqqFMl51xYAO298YQ64gjx4J1TZYZovvU+4IFSWrAqtiaE6DKnFIrMGKvLZDgeTzY2NuI4zLJCSHLDDdcpXQhOnXPjZGKcTtK01epQylSpi6JgTFSmo845f1FQbjqLLhJyL4YQxFtnrEPwGiRntmKpekKATZ/OjC/JORWCsarzunI0ZSwAAPyVTAlZs78+K2Faa4y5SJ71U4l8BMimIqcFHr/kVMmlX4Kh8uwPeWspALkEKMcZVZGw8PPUSRliV77HHa0SN3Faa2Tlc1EJT+NWOxzuGmOCIGjW0H9bVu8UgFfeec8o9c4hKI+gW9UNYJzllBDCKQnj0Ntw9gisUnleGmeFoEZpEfAwlMITY0wUCEJ9EAhCIQzDpMiH62ulUrObzzlv1BvNZlMZPZlMWq1WlhYerHVOBoHzBoB572QUhlFgjXXgZRjgymk0UliIB+eJcN6gPrtzzntCp0UCpC7i8usv6a2crSQzqiC2iiOS4hyEYai1RcGCqvhtUusc4xKoLsoyKwoAj5QlQokxTmsNnhJCclUY7QAAiLOOzi/OG6M4p7V6RBmsrCy32g3rdBCKSTLC2rkQIgxidAgsC82YI0iqAuecS5PCWidloLVGb3ljtPc+zbM4DimFdnt+z57l4XC4lm5IIYqymEzGhJA8z72HwheMUJTJRsaPFERDVdSnlCZJwqZSAzTmMauXZQEAhDAUk6GUoogz3g2ttHPgPdHaShmur22unrsQRTVjnAWijb37W9/5m7/5661Woz8c1Jvtg/sOcs6x9VbrcjwY4vKCF47xXhRNPWMl09o6p6bPizrrrHcEjKWVwJGzllFBaTWRMG4UYeChSjbLouCcR1E0Ho8Hg0GFvnHuvZeMU9xulMZXhlCfqUwQUZYlAcYrVfRK280Yi9Q2QshoNBqOdnHCMMbKshgOh0EYt1q51hoR5E6nU6/VsOEd2Q8AgG1GKMbtrbO6gkGJ84yJsigppYGQftZ/4z02cTPGpjZo3rlK0oc48N5SxlHvmxAGlBLri6LY3sko87V6IKOgVqsVRamU0driTsQo73RazvgiVyjg2Wg0Njc3lVLYXeScM8ZwwqWURpvc6CAQnIeM0TiOPCVFmafpBACWlhYIIYjUIH+80WjV63U02+Qp98QXRZEkSaPRmJ/vRlEUxoExxjqTJqkI+MrKUq1WS5IEgQWtdbNZN2Z+bm4uCIILFy4gebzbbXvvt7e3rffKmDiOdUlfEW6WgSzL0lu7vrWOKGfAxdzcgrU2z3PvnJSSAEXMy1qLVisYJ2MZgDHmPVDGOGdKKTS7cpU0v9daOwthGDrngyA6dPAK77jWNssK5BRvbGwVuZqbm5NBpZsXhuFoOEH0oyxL7MVKswkhVb5jdYngVFmWzhlSSW8XzjlswKgqH4RqqwAqfKZKYSif9sRQISRmFriFBUEwmUzQv04phccBgFLs5nFopzEaDVAJHTdBQqAoCpwYQkhcUbEUAeBMJTdRcQerc/OVGRjGYJJxsE45fWmlVle7R3Un3VTCCKbtm7VQWGupn26pxqOl22g0otNNmVASxpGU0iJqpvWMQA1AkTlECAFwuMYDgPcWtTTIy8CF6QjDwHmBwjhKWYCK9pFVaiRsetNwHSAAWoSBUioKa5Lx86trz554nlG6vYN9OZQxFsextRbFalD1viiK9773vffff/9DDz585syZdrt97Jpr8yTtAXv1q29eWlra3t5mjGVZ8bEPf+To0aOHDx8FoN/+re+87bY7er3eFVccI5T2+/16vT43N4d3TJny43/xGcYIpXRra6NUOef8wQcfePKZpzjnw+Go1WqVtjxw4MDp0y9RSsbj8WQyCQKB5kBpmu7bt29paemFZ59jQJCO0+120UjmwIEDS0tLcRx3Op0sSzY3t8+cOd3tdq++6ipCabPZPHv27GDQf+yxx8qyuPHGG++8887b77ij1+vdfffdoZB/9Pt/sLp6YWGuu7y8PBgMrr766ma7ibn22XNnezt9dAJAT5eVlRXvvbc+akZFUcx1F8bjsS5VGIa93m4ch5zz3d1eq9UaDAa9Xm9+fn7v3v2NVv3GG2+klA6H49ULq+sX1iZZury8TDgjnHEid3Z2hGBZRseTYVGW+w/sXVhY6HY7Ozs73W53cXEpz/NTp06FQTwej6tmX63xxcEejqxI8VZ7X4EVTHDqPabn+C4Lzj1jCFlguGuVFpQZYzipGgX8tDMAy8neeyllGMSc0CRJRsMJvuBYcaeOWmvjICyKwho9HIzLUhFClDLOqSCI3vKWt9x6663aZ23ZObe2/tz5Z/fu3Tvo7z7x5OMjtssi7pzjFbfXerwenP34s/eEUsM5p1P10nocW++dsZPR2DlHHPHecyaMrVrIi6JYW1tDp6x6vc6YqMkIX3iYNThY6z0VghtjNjc3lW4bY/I851wSQtKkLEs1beiogksZBnwagc3ycFz+tHVpllhrrdXLy8vnz5/HwNcYk6ZFJEMCDK2i0J7LmAGuCbhxRlFEKQVPPfgZkFTxPhjjnAcyyouUs8Aa46fyQEZXEks8CLz3jFxEYeMYvu/74H3vqxRpf+u3YHcXut2Xe6nNBmOwuAg/+qPwvvfBH/8xfOpT0O9fJNh+9dFswjXXwE/+JOzd+3IgeDaiCI4ehQ9+ENbW4P/4P+DEia+I7R48CO99L7zjHcA51Gpwzz3wZ38GxsD3fz9ICVK+8sn/6q/C7/wO3HtvReIOQ/jX/xre9ravceZxDHEMi4vwpjcBAPzN38Av/uLXFoXA6/2Jn4B9+76u6/3VX4Vnn/1qWDalcOut8IEPwP79EEXwwz8Mr30t/NmfwR13wGtf+7Uf2XvfC3/8x/DhD//9KCB/zRGGL4eb19e/XiUNHBcuwM5OpUGB4+jRiwj7NzHiGM6fv8yB0LlXMPH7KiMMwdqLT7PVgp/4Cfjpn4Ze75s/q/+WQVilkoxLcBAEQVCxXxGKlVIihouLzMbGBqJRhKLdkNJaSxEaYyaTBAAwHSrKDDwwwaibkci8Qw4eAJUIbTPJuOMAAIxQ8F5rDc5dLLNxQikFVsGRnHOwkCSJt85RoB4I9Z5UqwcBSgnxwJ0F7SyjDgmSlFJKOVbssiy1yhhjarVaZV/LufGOSVFvNbUpbW69c0WRYwpsrfaeJElCCIlqIQBgXy2As9aFcTAeTsbZmFgCQFdXL6CI82QycdO2Ndw48X4aY/I0BUpXVlaiqBYEkTHGaiOjiASBc85ZoISDp4R6zqX3nhDGOepZg/cEgOKtxuLltP3NAaPOOcRbMRLijAdBoIgqjU5Hw/n5BeBQpmUURUxK1OCz1gL1ZVkePnyQCUoplGUpAyaEOHToUJIk1rjd3d16vRmG8cbaZhiGFFin211Z2TscDp2x9XpdCLG93ev1+qOdERMBJYEzDojnjDuwW1tbmcqcqyjVUspWq+OcC4IgTdMsy7SzknGYRgPeX+xbh4opSSuhPcQ4ZCi8d8QZ7Yw1XHKlzKmTp1FxbpImZarSNB8OxuB8vdWcn5/HEjIAWOnCMHQWlDJOO2Oc0Y5RFgQyCAKhtQWL8zyKIuecUZoIQSmnnmBDvXWOOBbwoN1ueuZ1Qztn/vIv/u88z6+84qovfvFLWVa02m1ORZrmnW6LABVxHb01MBKSXDBGSqUI93Et5Bw5eVapknPOOWVUoCWO1lZrHUc1DCWKovire/46rIdnz65aaymQ0XASx/GBwytSBoSQTqt71bFrTj5/8rHHHpdUEuIxPrHWMiZEGGEYQAlVhWaMMMGllKUpKaWUEyxUYDjkvPHeOwIWvJRSCpEmSTnOqBCUEExHaUUsddZ7h8A8pUKgF4cDgFqthgwylDj3pLKGG41G3rlmp7O8vCylpISMRqN8kjEpp0kOZQys8Ww6B4jzXAopZRRFhVbowof4COIgH/rQhx588MEvfvGLn7znHh4EQRTNYidrkd4eztKVRqOhtcb6OqW0Xq/ned7v973311133Z98+CN//Cd/+tM//VPXXn/d9vYmYfCPf+xHvuXbvv2RJ55+8eRLv/7b/9dP/Pi//K7v+q4wEDfcfKPW+tzZ0+fPnz937tz99z947NixW2655cDB9b/69GcXFxbe8sY3ZEXhnXvn29/2Xd/93Y1QPP3Yw3uXFvavLP2D97zrs5/97MaF89ded/Wtt9767LMnnHOdVvvee++tSfYP/6f333zzLVrrP/3TP508kHoCymgLfjLsh2EIFrJJUotiQanPcsmoL7UASjkHSizlo+GYEMK51FYRQnBhpxSMLsHZLMubjfDKw4fOrZ59+1vuPHblrc8+++yzLzz7Cx/830fp8Dd/+ze4FJPJOC2yRqPxQ+973+c//8Vz586HImSMOWfIFJallHosN1CCLXp4nBHiCfG4Jk9hXLzVs18vwrXOYeg7o2gEgkkhAaC0dsaMJoyUhYaLavuVSDS21k6xCcQ37UybAfPzKZRZZbzIbZnCFhcbey+Byz3CPdU/nF4sFuFR4dxaO+XOV+qZeBVaa8wdut0um+oI4WtFp9bflFKtS6iEKR22wwsh4npdF2VZlpRBwAJjDMbnlHLGRCxktUcLxinz3qPIbBxHxhg82TwrkR2JN9xbB8yjAWOr1bIoP00p5U4ppbQyxuBbP6OdjsdjyhlWlM+ePescqgkQBsJ7J8IQuzY9EEJYHMdShuk4I4RwLgghxjilFJsy7yqsn1V0cn9JQ+ulNQN8x2cdr0iIc2amUlrZMCKGglsqpRR784MgMFbhbohNKvVGRIg1xiRJEtVrnHOt8ziOj1xxRGudZcncXOf2228Vko3Ho7W1td3dfhzXlpaWsM8pTVOsCOIpYc8+6ttQyo1RWVaJMc729EarWatFDnyn0wrigBCCog2E+DRPsqTE86SEMM6c9d57XJG898YanKtKKU9R6Jw5ZxCZytIiroVSBs57WhlXIre6tNajXiIlwXg87vV6SqkoCJlEpUvrvS/G4+//oR/6qZ/6qfE42d3d3djYetWrXrWyuHT69GmlCnSnn224Qgbee+0sIWQ4HEa4hDJgjCEUyDnnfCp3A1DNeQuccy45vmhKKZycnHNOqnw+SRKMgrQxBEAIUa/Xx+MxAHhBlFJJlkopPXjBBfGEc55OJpRwxoDQyszDe4z0nOQc4zlCiLMkikMkfnlPhAgoIcjZklIix/zAvoNloU2eIR9ZCMGYQJAFXyK8A1prsCAEoZxaaxOdeu8x2KOkUgJ1xnAmvbeMCecMIVh58nhzvLeMMeuJr3J/KJRyXq+urnJOR7sdKiQ2YgMQzoQxzltT5CqKIgBSq9XKUpWloh7CMLCoku88sKrMxhgxxihVWm/zPCe86tULQhHXas65RquOMWGWFZ64vMwiGjlng0AYEwjB9u/fOzc3Z61dW1trtRoLC/t6vV6hyjCUiFudO3cO6eEiDAgh80uLrVbLGOMpiaKo0+lkWeYpUdak48HW9sZcdyFg+185r3AVZoTi4MaYgAvkGTjnKCFqSoCdgviOMRaGYVnmAFMLQV7RkJGXMl3nidZKK2QH0yxVW1s7qiCq9Ma4ZDwCguGxXF5ebrVazhtj1GQ8yrJ8PB4XWSalbDabGBphBIsOIqqwSZIkyQRfQOxKBw/WWucdwOxBMGSTuKm6BdbOGWOcSet5GEQojoFAtlKqLPRMoWWGtyIfBYsZzrk4jnEfdOiI4A0KXCA+HseB96QoClxUvTGE8OlqSay14DypFGa9lNybSnvag2GM4yVIKQlnhMwSt8pNkTHGKKec4TnoUnEpHHiEiXDHnOK2ORfcOZ3nOSGsVMqWhRDCE+rBe+cJ8eaiA/DFBZ9O+1cqWY2/M+I4oqySdMcWHOwZqrWbzx4/wRjzxgZBgHi3955JwaYMyEgG7XbbGGONiaigvHKEm+UUWivc8QeDwf333//+97//u77zez75yU+ePXs2DGN0tbn+uhvuuuO1n/rUp/DRbGxsPfX4U+94xzs21zYPHjyYJAnnUms9nkxQeR8TrvF4/OBD9z/00EPD4e7W1lYQCA82DIPxeDxKRjiHd3fNPff8ZbfbffHFF6XkUnLvPRo5aq07nc7Vx449e+K5tbW1ZrM53+0ihMo5f+n0yTSbfP/3f//+/fsHg8FLL730+OOPHzlyBaX0sccexeldFMXJkycfefThRrN5xRVXHD58+Nlnjp88/dKJp49vbm4mSdJq1PM839jYuPnmm1dWlidpgvwhM5VzwZ/7/X6r1arVanEc713Z2261tDHD4bDf78/NzUkpN9Y218l6rVY7dOiQc04p9eKLL547d/7Nb37zd3zHdzz++JOf/9vPnT59SjB58803J0mCtGjvvRAMU7AgktgoUxTF3NzcXXfdlSTJmTNne70epdSD7ff71tooDBljaLYUxbEH2xCNKIryPCvLEjyfgRJal5X1XV7gLMUStdYau2bDMAiCVq1WG41GhUawWOFqTyn1jlDCG3ENZ+yUbycIIWEIaPajlLHGM8YRNCjLMo4jlJ/CYmQtrt33+fs++enPaFHMdedG6UhrDRystt4CZ5QjyowkHWutEEGtVgcAsI4FcVmW2rlarVYUxXiUGI/6QQbJdzNOn3GmKAok9OFji6IoiqI0LzBM9FP3bYwykbkFAL1eVVPinAsR4DqFqs0oTgqUNBoNfL0xTQUAIZjg3BqT5QXuPYQQLIyUuarV6k8/fdxpsNRrnXMuDhzYX6/Xz58/j1Cyc5VzaEUfIFPY3QEh3jlHgKG8qbNU8MAar40pihxXTC6oUqUHr8ssiKJOqzVbJpSC173uovsZ5y+XGnjFIQQIAe9/PyQJfPzjX/vz0yUJfumX4JWo1S8fjMGBA/DBD8IP/dBXhF+1hje+8SLGWqvBW99aaV98lREE8IY3wGc+AwBAKfzLfwlvfvPXe/6z8ba3QVnCBz/4NXD2b/R6f+mX4D3v+Wpws3OwsgJXXHER7rziCnjve7/2VcP0kb3nPXDmDNx339c+pf/2EUUvn0vHj39jysuTCQyHl8HNr3oVfOQj3/wpKXXZtwEAIRcn/9czyhKmCXs19u37/zZn/NKhSoXrJm4h3nvjHVI+lVLEVbY2WAkPggBbWREFUKXR2npPyrJMRil4AAqUo7VpIIRI01RrizAaZvFV95a13HEKBIM2VFClhHoLqKBn0GiCM0qBcMaYKEtVFEoXpTEGgIJ1mJsKyrXV6FgFHlFizN8Mk4JzgSwVOq2rl1oBIeNkAsmkXm+FUUiwdzgOfGZnC3VZIk+kRgh2WWrKGYBzQBmlhSqdc+PxuF5v7tmzZ7AzUMoIQZMkIaxqE8Z1m047ZwHAGCOCwHuyuzuM4+r/yijAXLqCYFCxknDrHKXMGEMZIGY0jZ2MmEqLUkpx/zZWAUCSJM66LMsQiRuPR2EYYpbS6+1Y6xyBUTIJwzBNHSGEcRLG4fxCC6g1VluFDbwUtSk55+vr673e7vLiEgAFoNZ6zmWj1jzz0mmkkDSbzYXFzr79y3v27HnqsafHo4mjjhImhABwlFDG6GQyWVhYQPAP83ZrbdgMCSFYz8D6BLk4wLmL/ETrKhlT7z14b7yhlAomCl2Ap4wwBFvLIj9wYOXQoUOb57fWz68zIYQIiiwfjUZJkqysrHDOtTKqLMejROWFtZ4STglB0hxSXDe2t5BAo4z1njDKMS6ByvmKME8IIUqZPC8LXRAKlPKHHnr0wIF9aPGM74VgbC7soA8e9VCrRcaoJBkLIbRVQMC6kjFCuCfCUwppmlpvOKeESEqroNzYUgaCUjh89FCzWR9NdoFCURSggUhw3jtlWYveevst1trh7shaN57szi11lvcu9bZ6AGQy0ddcc82BA4e+8KV7yzyP45hzGlC+uHjQWnvq9EsyCpvNpgi4tTYIJRCCV0oo5ZTaQidJwguDztEuklpZpANPjdGrzIFSSjnHgK9Wq4wr8eEGocjz3HmPsb61Fh3SDh8+rMryySefNIURQlDKrMK2MI5MTs4DRHO893QqaNhsNt1kjCaTxph6vY4MoC998Ytf8p4HQRDHdNp8h+kWIZ4xhiEZCs7med5sNnEhWlhYOH369Bvf+Prrr79+//79V1xxxS//yi8R4ktj55eXLSH90aS2ufOZz32+1Cpu1UtV7tm/J6pHaZqW2nzuc3/bCYJDR4/cctPtZWEPX3G00+m8+ubbnj/x7OOPPfKDP7AvCmRve3t+fn5j7XyaTv7xP3zf3gNHiqJYWFj46Z/+qa2tjY3N9cW5+Rtv/AGkj91x150bGxsrK3vq9fpgd/RP3//+7/ru7z2zek57BxwefeLx17z6xixJ7//ivXmaNZvtvFA8kP3+IJmkSpWmNO252o3HrrnxplePkuT3/+CPgjgqlWq26ocOHeScrl1Y/Sc/+t49K0sMvHfuuuuumezQwdbOTe9+9+vuuONjf/4xcLbV6uzZvxLV4mPHjqGgvJQcvKOMwBQmppRa7521qBSBOXA1GS43VpqtVDOgWVAKWDt0Tk+l7WAqryQEwSWCOE+c55xOk5YqvTfGGKPRThYAc1pAWHhKNEPs2DFGCUEadYVmznDtl4HglwCgcMnPhFDPqcB/S71ngmI+jxvljKirVQVbJ0lidRmGcRRFyK+s1WowZe2ZygjRuosNHM5Sxj3Oc0KmIlTOeKzPoWqNMYYJXsEThjhwWpXWaeJds1F3zlHKUDVIFxpCCqAYI44RrUoRRGiZoJ0ty7KwejROLAVjLWMsLfImY4xz71ySjDnnDCTKPuBjw30fTQinpByfF6X3SCTckixAByeUr+XTna5iyQCQKYFuhs8SclF1B6aFRpwASBHF/4W6WN4TZfQUj66EdAghAAxVrfAhWu6tLRhj2ObCGM9VORcvdLtdpYru/Jy11jklBCuK4sLa6oEDB8pSDQbDWi2erS2bG9sAuKV61E/w3hMCWVYYY4JA4MlP00ZhrVWqrDfrlNIg4DKS2JDb7/cJ8UEgjKmEd2Fq9kjgov8kIUzZ0hYG6/2UUu8JGI3fgG0cZaG5oJRSZZxzLkvzKA5xafXWccoIvUz0HGeaEGIyTlvzSz/9r352Y2Pjl375F7e2tl566eTevXvPvnQaMQ4EfLvdLuJuuHpL7GcX0mnDGNO5tk6HUmLJH4E2xL+8I+CJ9w4ukYUVQnBCa7Vakme45CI1wXmPyieYIyeTCW76lNJCqbKsQDSMDFVRWXcEomKDuarX33POQVtKuLVWei85t8ZrbfBZoBoGo4IQYr0Lgmh3dzjoD6svd37WQ41vGfFASFUXoZQTRow2WjshRBjK+fl5IdhkMqkKt3m+u7urdDFbx7DgxJiwVnNBvWdRFFnji6Jij0VhyGXsQTvnxuNE8Mj7jAtwDpwrjNJxVD948GAQhFvrG6PdgTEukpHWZdXVwfnssXpvnXeEkEKVrsg99c1m03kzv7CAxWxCCMpeo1pUlmVFkaXppNPpBJEkDDjntVptNBl677VVxtlClcroKIoajcZkMvFTA17jXUdwVPbAusixo1eUZYlufpPJyHtSlAVFfbBIwlfgHnHO6/U6DyraLycc7ZEFV+Npq5xSCgAd9irbWGst5zQIarjSIhOzXq/rUnnrjNLGOG+d4NxoZ5TmnHsHeV44y4fDYRRIIUWr1RIiqMUNbUrGSJaVlU53t0u7XWxPx1AkzSbWWq3V7k6vKLM8z43RyKT23pcqx/4b5xxjIggE1tTrJNbWVIkM50EQBUHgLDjnavUGTnVCiDGKc947v4vNW1me4ucxt5JScM4LrfBWY5Vda404KgAYZz1YpbUHK6MwCIIwlMa4MAq0YlhVwmWkUkZ2Do3EZuJjQggPBEtxAKCt1dpg+iml9OAwzK42ROedsYQ6a61HX8bpVq61Ho0GQggREKMnzjpCSZZlhHLOpTEzOnO1FGCdmLEKUyAEBc2JMcbYV9ZuxuUFADDC9N4jg/PQoUOD/m673V5fX3fa4Dfj2pJlWaPRCIKoLMt+fwBA46iOWK1zjnIGQAEqlRilFGUUAB599NEvf/nL3/kd353n+a/8yn9cX1/v9/tFri5c+NKzzz67b9++u+666+y5c0oXCwsLva3eI488curUqeXFFUppp9NpdzqzavepU6eef/75Lz/8YL1epxSUKpRSHkhZllEUUVFpvmldbm9Ptrc3X/va14Zh+Nhjj62srGit+/2+c45T+tBDD+GrMRqNVldXlVKTyaTdbjcaja2trc997nOLi4u9nd2HH354Y2Nj3759Ozs7/f4Ae/XyosyLLAzDZrNZlNmFtdUv3Xv/yZMnCaFKqSiKvHUAcODAAe/dqVOn8jLb2NhYXl6mlAahdNZzzrEm5JzD7/Tej0eTs+fOoEdLGMZXXHEkiqI8Tze3t3Z2+kII720cx1rrL33pSy+99NLc3FxWpFEtnGstRFE0GAwOHTrQbDafe+H53m4/DMMoCur1urGq3W5feeUVL7300sc//nHGCAB1zhVFnqapkIw77ryPwrDeaAgh8iL13jNGkwRjDyt4jVLa7/cxrMrznMKlfVE0CEIUCEcxCUpZt9sdjUamVEwK3HS01tZ4/AHF/dvtNsYn3hNsjnFVjybA1Jt6MBjMzc2ladpqtaw2Lz7/XC0KH3j03q0zPRaEjVZrNBrNsbl6vW5EaZC/i9JUdqokjRyi0WhEPTSbTZzx2HaHZ2a8c1UVhaVpzhiZ2Q058GEU4KKptc7z3FprPbhL3LerghXaluCGajhao2DhDg0ui6LodDpxHMdxXKjK/VBrjZ8BAOLpeJQMB+O5pbl6vZ6nWVqk3nspRC2qZ1kuhFBMaa29B+/I5sZ2GI6TSYZtBXjJXFAAwJqVtda5SlQUnxw2GmdZ4pwjtOJreLCIm2AQAwBKF2EkYYr6GQNPPgmvetUrbzlffRAC/+pfwcoK/Pqvf+0PHz0K/+W/fGPfHwTwp38Kf/iH8OEPvwKiNxzC1hbU6xeP7Nnztb/zE5+AX/iF6ucf+iH49m//xk5pNr7922F1Ff74j7/iB7656/34x+G974WXXvqKn3nhBZhMoN2+eOTruerZ6Hbh3/5b+If/ENbWvrFz+ybG8vLLofaTJ7+xb8gyOHfuMq3kgwchjr95+WZj4Ld/G/7X/xVmBRdK4aqr4PHHv95vmJt7ObL/0EPfGGX773f4KSiAqxaubOhqEklhrZ1MJriAwLTs7GzpnEVxHqQNLi0tYe9PvV5fWVnB/rUkGZdlqVO7s9M3lbiEB3BhKKe4AKXO5WWJDSWCCk/JaDQihGAXFhOcMSYpq7q3jXXOOeM55x5Z0lNUF4CSKUDppwYjgjJsgazVapNklGdZXKsJKY0xQspms0kIcc4GodC6xAWt0ahj5IQ914wx54BSKkSorSmKIua1sszDMPSeqUJvb2/HYdxoNFShkyRjTFhbxmGklFKlYoyhxyA4DwTAeQDKGfPOJ+MJpmdK6VmWSKYzA7c3o7UQQmktg8pywBgjBPfeScaVrXKSTqdjrKqYdFGESJ8xBj00giBotfz29rYqVRhFzgH2KsqAYzveyp6lVqeVZePBeDAajbY2+uhPsG/PPlWW3kKz2Y7juuRBmqaCyXPnziulOKGUQTqZANFZlhHC0mxMKKEUJOecM2MsZYRSygSjlLba7dXVC1tbOygQJoTQpZrtKRfb0gnxvnILwTnJwVNCyjJHurcxxvrKT8Z6iKM6ABiwxsDi4jIhhNHdKKxhTdU5v7PdI4Rsb+3Mz89LKQXnZ146y6kghDlrgDHvjdYQhnJ5ZTHXORe0LEtTGMYE2hQKIQjxyriK3Uk4bs0MGBBgjAkJO9u7lNIwCpBtobUyRDMOnFNKguFkWOpSRtJ7XxalsWpuqdtqNY1RnbkuIV4ppXSB0R4lUgihVGGcLYqiUMX6+mqed5qt2tx8ezgcpkmWJeX8Qvumm26K43gymTz99PFer8cILTPX7MS1qO6Is9aazO49uOe2O2959MmHR72duYX23r2HAwiKokjzDJGvuF6L4xAopNnEWkMIcWAFE4QQKZvG2mScO2cko5m1XFDiAcBxLtAY2jjLOSeEkmmMMRj2dwc9MpXhq9VqfJo3AoAxptFoFEVx/JlnkNzBGUc4gFZiu6RWa1aZp3Z2ZpvjvdZ6fX0dGMXOaITzEFMWQcCnnjkwTZPw/bXWUsqRGsmYU6qQUrZaDc751taW97bbbW9sbC0v73nggYd+4zd+42f+9c/82Uf+bKe3Ox4nX7rv4fvufwQVtE+dfPGGW27Syn74Y/9VuzIMaidfeHF3dzgw/szpC69/0xvf+Po3zy8s9Aa799xzz/79e9udOevJdq9PpFiZ32OAvPqWW9/x7e9stpfW19d2er0Ft7K0f//q5ubmYFdTEoahbDSXDuzfc+iIUqosddD0c1IGQbCwZ3Hv4YOFLd/yzrfPtVrFOHnz61437g/27Nu73e8tLi2ffOnMs08/U2bl+vkL5zbW3vrGN1z/qld94q8/vbIwx6R49c03vvHuN97zib984YXnX/e6Oz/wP37g5AvP7Vle2bO0fP/995988VyWJXff/R5v3fbOplGKERoH4ZVXXFnmxWOPPMwFoxQEZYiU4qvKhLDTrmRKK1tIRISdMbigYTY+Yx8jXbciZyFE6D2GwbgXTN8dnSQJFgbwS4gmxhjjHfhKNRX7JNxUlAkDV865c9xXhl1uxmzCE8ZP4qaAKTQnlMtAVyo9jBDC+Uy8DqUwLADBS3DY3OMNVgVwoUZXW4Te8JKDIHCMALjBYDA7KynlaDTC08a6GiZOxpii0Aiv06mf4azxsWolzopqd7aeMeodOPCUAGHCOl1qVahSSkEcXEzygVAPFMAbS6ciTsqaoiy1dY6AjELjrAfAXb67ML+70xOcS16l8cPhEM/cWIsdEhwXMh6EYciFbDTpZDJJ07xQhgcS5bMwNvDeg6eeUqSxOesBLrM9vBRinv0M1jmP5rqVZ+xM39+5Sp8HYwZjKt4xIYQxoZQBcJxzbJTx3oclz7K83mq22+2yzAEcl8y6cjgaTiYTrfVoPLiwRk6cODEej6+88sogCLIsS5LEWVSmMkoZQoh3ePLgvPMUG0BBKWO1xf0LOelhGNZq0e6wr5QK+oGUIo5jQiCMAqTxrl/YQU6ic44ShvZciIkYc7ERntJpac0DABTaMkZwTdPKEmpwoQOAPMtgSo0EIIwRIUQQiFAGiNY556TkKKrw7/7d/76+vr65udHr9brd+TCMQfDFxcXJZHLjjTceOHDgE5/4BNaA2VTaEm81Vjsw6qKUgodcqYp1SFHoFgAuyirihOGcC8pGyQTXbeSLtdttY22r1cIcsyxL532j2cRf6/V6p9OZejdZxpjVpt/f5ZwfPXr03LlzhuCaM9VHZsx7zwj3jhDKrENNGxYGsZ+KcTnnUMI+CAKrjdZaa805JwRw08GQjHGJbzpjjDFhrS2dY54659AYAy+KUti7dy8Q505aIUS33UnTNE1zjNOcd8bpMtdSyjBucybVTt9qt7CwwDgpilQGDQDI0oIQqo3NtTbGSC7AM+9Ba0ecGg7HyDajlAoR0MqcQDPGjHHGKGwe8t557++++24q6Pnz51948bkwivDqarXazs4OANQacRgHnblur9fz3qN0CVqJ4OKDMIUxJk0njBGlTL8/yLIMMTKtNfVAPRRpNhqNpJSScbRbIIQFQZTnaZJkrXpDSilEkIzGjVfqu1WliqKwFsWDZIiq9FhTkSJsNZuT0aRqWyGMTt3AcG2nFMIwjKJQiACjd3RexcXNWouc2dmo1RpJkuS5KQvfbDaXFxecVzMSBpqCFkUOxHEeMMbBuTAMsXvAg0VxLdQh4YLV6zWllHPm0tUpjmNrPSLFGKD6qRYQXkUYhtZ456DbnYtqbWxnybIsz0tKy+FwCIwiuRLTqDAMkeWtK48uvAkW+zO0NYxcLMXh1rk76OFpUyKxD0OKQAgBjjijpQxnFT5KKeeUOI+8E+dR99wXRUEoDQKBywihMNt5hRAwlSQOBffeteodzvlokmqtKQ0xydKmdGDAWyFEoZUQzBhDabVM4eqBJTpKsehcQWFsanvAv1ID9VQVcBYq4OcZY2trG55QYxznPEkzMnUYwkJFnpda2zAMa1HcbLb7O71Z1xF2eMgQ3R2NtdYYjSJFf/gH//nRRx5fXt7zxje+kXM5HIyttZSQKIxffPHF48+c+JZvfcfKnj1FmW1tbXnv86yklMZxDJ6g1cHi4qJz7vnnnz9+/Pi11177zne+c2dn69d+7f/NOc+LVErR7LSFYCh5jDekVHmjWet0OlceO2qtLQelt/Zb3v72sizvu+++brfb29kFgOFwiN5CvV6v1mgUhfr8575orY3j+Morr2y1WidPngSAOI7TNB2Px9a7I0eOZFm22+83mrXPfvaz3mHB3oVhqIpKK+P06dOnX3KMMeN0o9EqigIJwpzRbrcboc6Y1mmaaq1PnTrVbrdbzfb29jaKwLz+9W+84Ybrz549+xd/8RdbO5sYVOC+5n15+vRpZCg3Go2sSLd7Ww7svgP7x+Mx57zbbaOmggdLKeWcYffPzs7WwsICpb7f77Xb3aIotDZo6K2VZYxpU6LuEJJ69+3bQ4ifjBPcnnDF4JTBtJyPWf+swavVauFWOxqNZu8RpZUbH64iWmtdlOhea60ty7JebxJCbrjhhiRJNjbWsFSMwdWrX/3qubm5p556anl5mRJS5Orxxx/f3NysxU1HmTGm02nzjFt3sSbNETopimI4HM9YFcR57VxZlhgR4gKNSIrwxDtvSmWsIYTkuao8DaCKlZGJjCVi55zSZhZq4/Y83c8q/oVzjlEyW6oEl4SQRqOB2dpwPEKXg0ajgSg2bo1JUSKfgoBr1GNV5t25Nni6sb6eJjkAAQuUcOc9oxwA0jSdNlHSmVIHoxyI81OlPPxCxljFGnAE2exaaylFqXJKaRQF3luMJAC88U4rvb29s7d7caXwr9weAYBswMu5nJcqCeD4oR+Cbhd+4Re+GtX39tvhV3/1FY57/zVouZzDD/zAN0CgvnQY83J9idVV+P3fr36OY/ie7/lmvnY23vUu+LM/e2Xo85u+XkLgj/8YfvInv5rO71enVH/NR8Y5HDv23x1uphSuu+4yn8DJBNbXv+HvOXEC3vrWi7/Oz0O9/t/kFnjiBAyHcAm/H978ZvjoR78u2jXn8Ja3vPzg/1MyGrMxTd4q+WYAkOgGiy57xripADHu8YwxRhmhFRzQ6XTm5uYopQsLC957LmiaTqSU7XazLMtBOfHeWm8FYRXxxFouKOPEeWOdjoLKdxuLjbg+K2Ow5Lhnz5719fWiKChAaYz3hFJKPWhjsHeGMjFtx0auisJmZ0qpBY8RHiZFSN/GPzSLkNzUcmpWVMdWuzCUZVmur6/X681Go4HiA4T4cTLZ3e31+4M4jmtRfTxOdvt9TgQ4hiutENUWM4OPp/+tADV7SXkftwk6FQ3Ag7N/xTnXuuSMOWPDIAAAbVVhNVLngiBQzqbZxFiFdGZ8HHmea60jaRFuoIIfOnRoYWHhueeeL4oijupRFMmAIw9iNNnN8vH8YlcItrDYbXcOBDReXV0NQlGWZRjEYj5QRbmxtglApJS6UAxoJAPGWKnybrdba3HOpTUQ1mU6LKI44oyXZUk51aYslWVWFEWRpHme51aZoR1674kHzNWd81jyROjKT23TkIJECKEEKGWuAhoIY0wElTReJCJKubW6yErJ5ZmXzhln6kFUq9U4F9rZ3d1dYwxlLMuys2fPdjqddrMT12p5kgvBueDWWsKAc1qU2dnz57QuKPVaq1otLosKGgNwlDPqNGZ9WpWcc+9nTfYELDHOhiFjlOdFVqtFURCXKrfWOm8o48Zp4zRhBDwwSSJZW96z6L0llLfasdY6qgfd7kFsMT5z+qxSiknCieCCCNEsimL1/Lk77rhjNBoxxlqt1ng06Xa72AH34smTRVE0G60sy2QEhBAu2dFjh44dO3bi+HOf+eynPv/Fz6bDfM+R5f37Vw4c2GdS/4lPflLnpYxjxliappzTWqNGCMGeBsaocVryAFkPAng2Ged5KQTDMrwzFq11uGQcHdCdI84ivowGTYPBAHOz8WTipo2NtVqt0+kMh8OiKCghiNpw4LNI0XvgnBqjKKXW6lLr+fkuY+zgwcPD/u6LL74YBIE15uqrrx6Px+fPn8c32hiD1AF/iUbhrHIzW1WQkYEhJmYRhJCNjY0oip56+umnnnoKrH3yqadOvPDM7//u7+Z5+b/8v37+P//Bf3nxxRejWmyMbnbbzXpDmfLxJx59y9133/bW2+Y68wcPHm5Z8kf/5Y8//VefftNb7l5ZWm7XG16rPYtLjz700M/9m3/9fd/7rne8422cc281ixtxreYDWZub35kkvSTtCBm0OoEQneWlNE0v7PS77TkhiHGeBWHAuOWCZMXy3r1Oska9LYrMWdNotyXj9NChxaWl+UHfevfqbvOmm28UDoj1v/sHf/j444+fO3fmwtqF/+Gf/dhoMnzNbbfIUFw4f/rYsYPf+67v3N7ePHX67Ktvvg1YcMNNd3zHt7xnMBw8+ugjhc5vvfXW+x740m233vrs8yc+/cm/yvK83W7PtTvD/gC89c4wThypzPcYY5i4AlQ+exXQMy1eItIKgMugFwKzzqrVw1rLGJnGMxQrSZiNYHMr5uGYupdlqcrSo1X2FJGc/VF83N57a421hjFOpxEMm8ry4Ixwjnjnp+m9J4RIXG8ZQh64602JoowwqNjOOD8ZEMo5pbRWq2VZVpXHXNUvjH051hnOJGFsfnFxOBxORiM8AQSjOaeMsUajVpYlyqSGcYQFGKOMMUYXJX5+OB4JJumUmGmtmeLRjnNKGQ1YENYiEUhdGlWWShkRBsw5BkRK6cE6Y0DwIKppZ8eTNMlSYDQIQyEko9Q5zRjbu3cvvtRZllHwQgjnPePcXJS2IAEPKklQD6rU1vmy1P3+IM/KWhgZ7TgXyI2d0dNUacqypBQfBE4MM4OYMQaYMYXxWTEg1lUkWZhiT2VZpmkeBAFhFRvd+wrucVPt0QqS88CYYIxJLigFrLMCOG2VLpzSOSGk2WwAANKd+r1Be3/36quuX1zqHD9+YjyeDJOxUgbnoRQBat1SSqMoQsxOK220ddPtm3POGEXXtX0H9l1zzVWl0Q899OBkMqGUpmlKCVuYn98RQ6SISlHRenCvz/NqswPnjTHWVg09Fir/1TCMcB/EuzErJ1R/nRHGmLEGQaUoCKHyigAACILQGi9lgKIfURTv27dvPB6Px2NTZvg0P/ShD3384x9/9NFHhRDj8XgWh+DLMnvFyFQK1irtLEhZ1RVmLXGosMk5R1mYEWpGSSmlNFZhWFVvNLz3zlvGacwj1DHHQIsyzzl34IuiYMJRYIX39XqNOCjLnE4p8MZZpVQYhhQqiw7M1gmvVKeLQsElAp1+KpQBruqfQMisAgrRiYTQ2SWj8oO11jpPKUV91TCSlIKU3HkTBEGz2azV4jAMgQJQUp2GKuvtuhB8OByOkgkYLOf7VqctODDeQgQELGRp6bQjTESBxFpUnpfr5y9gUMq5LEvNOQdAFNJgVdsRsNZST601xtkgCII4EEKsra0xznu93tzcXKfTwS5yfCLGmDxPFxYWjDHD4RDfNbzAOI6jKOr3+0mSdDodgHJjbZsxVmnCcz4Fu0mWFWEYG2OSJCvLssjyai3yBiuLFVjJ2SvavxFSya2UWZkkSUYzj03VgWeEYbxNKcf+/Y2NDVxjEaacwSmMCZR9A+CMRs45VeKiga7OledenpdhWNu3dw+l1Oicc6a1SpI0y4qyzL33HszU6QRkEEwmlV6z0sV4PFZK5ckEl1ZKERut2ukopYJx5wBnO16yMcaBnZVUCWGqNKWxUgTWA6MCVY9mQBN+T57n1uqFhQW8dgdQasMptd4yxoBR5mlZ5mVZCsmct1prNCDFbEXrSjkKLS6cgyiKanE9CCrtVnwlEWiz1gAAgr/WVQ0W1lpEo3E1c94ikl6dj616jHKTN1ot3GexEMWZzPORMYYxEoZSlWVRZFRguZc5Ah4844wB84R4SogjzhnnABcfXLfdlEaNSll/d+AZIqsG/zoXVEiWpmmapqoo0zSjlDNGyrIUYdCMutjdorWmni4ePILlFmutEKLX21VKtdttCkxbtXfvvhtuuJ5S+vgTjxrt3vCGNxhjTp8+K6X8lm/79ttuu+2pp55av7C+ubnZ7/cvXLgw151XSu1s9xkVV191bbfbXVpcDGR4/vx5zvmePXsmk8lzzz134cKFAwcOvPGNb6CU7t2790d/9J9+6lOfbLUbxuj1rU0AKIoiigOU5isKiRvK5uZmHMSNWs0odfvtt3e73XNnz6+vryulOp3Oza959Z49e5544ond3d08TZkQe/fuRWWFnZ2dsizb7e5Mmg+jo42NDQyDt7Y2GGO33Ho7AJw+dRpropj8SilVWZRlCdQPh8PRCDtfmVZma3NTCBFFUavV6qysoELvl7/85TzP6/W6T22SJP/hP/yHw4cPR1FQliXx1Dkoy5wQ0u/35+fn4zgeDocoUI6JycGDB6MoOnHixN69excW5nZ3d0fjAaKIvV4PE1ssn6Bm/WDQ51w655rNJgB4V6aZmp+fX1hYOHXqFCEkDEOlDMBUWdHaJEk45/grvq1oCYOdZ3EQDodD7HpJkon33lMoUuT+k06nE8hoOBxyziMZ4BKttU2SZDSacM7n5+e992tra3j3tNZHjh665tqr7v3ifWmabmxsJJMJVow457Ww1p1bGNlBu90WqVw7v8olK1DjqywrawVsvXFT7I1SXpYaoMSDKFfqnMMeMcx70WMHAAiDQIhpPJRisIVwA7I5ZsEu/uq9Ry+FKvAF5pzB1YFSurKysr29DQBZlpVatdvt2WKXpqm1NgpCNrXYHo1GWO7Lssxb8N5LGahc2Up031HOvSdo6Oy9RWOE2TsMhDhr8d1mTEzjftbr9XCFsr4w1oLWjUadc2qtjaIwz3PviSOAcidGX9YQEcevuIBAksAHPwiPPAIzgCWO4d3vhh/8wZfDuO98J7Ra8LM/+8qY3fd9H/zLf/kKx595Bj74wcuc35aX4Wd+Bm644bKPNRrwgQ/AL/7iK5/kVxrGwJ/8CXz0o5dBk0pdPMPv/E5YXr7sn5QlPPggfOYz8NRTl/FVwxBuvBHe/na4887LdH6XluA7vgM+/OGX/+mvcr2/9EuwuXnxyCteLyHwq78K//E/wsc+9vVe7Gy84iN773vh3e++CHOHIVx/PXz+89/wl39Dwzn4/u+/7EitBtP09hsYQlyG0Xc6cPfd8KEPffMnliRw//1w8ODFI9dcA7fc8nX5+L3mNS9XowYArb/5k/n7HX7KG0Xs0hgThrGUBlfwKgjgMs9z5whjBIGhOK4Nh6M0TSilqPo6Hg8B3PzC3NzcXH/UU65sN9sIkjpvOONIjiak0kHz3ocycM4dOHC0199G/oUQQhXlYFAxLxgT1npOWWm1px4jPzSzBxQDBQfOM8ZIhR1Qaz2WtdH3gwGx1pGpzpqrnKk47l6YyzUaTWNMr9frdForKyvoL7F//37nXFaktVpUr9ejIHzxxVOTfpKI1FsglBrtGMGqnjUVDRaRF04IoZSjGOgMkYFp2mmtxYuASwhfpOqM8dMfquZra22z2ZShMEY5J7XWzmkKHPPbue5CIFmapo1GAwCo98jkooEYj8da6zAMG41GGMTGGEpBCKFUrgqj8qRWC+tL80VRbm1tjXYL3KPKQjtrjXZnd856TzhhZgpqTyZjQj0h5NSpM40OazQanfbCnj3LG7CDNikM9RXCGMNHa523jjFBQ+6t4UIAQFXbsE4Zg5II07IBR4gKhyMeiJvNT+89Nk9hQGCMyfIiiqKlpaUkSaJAAJDxeIKZvDWeURGFkfMGY+5zq2e8I/V63RijVEmB2EqFPBoPRlhOf80tNz574kUPlvLAWq/KUkpeq9UKXQBxoZCEsOmUI9Y6Y7S11lsnuUjGSSD4wny3LLlSpTYlIZyLGmUkz1MP/vobrknTye5oW0rJGFnfTA8fPpwkydmzp5GCZKzu9XeiKEJlLaw3Ly4ueu8ff+yJI0eOLC3u6Xa0Uuq5Z09qrbU1hAilLKU8CCIhWBCG84vzQRSs7FtStjhy5MjK0vJwOAQALsgX7r/PWhs36xZIlhVzC/ONRmNjc12GolarIdAmRACeJmmKbNbJZEIIhGHIGDXGOUqsd0xUffFSSuodMj0550Eg0d4G266Bgvd0br4bhTFiWw888ICz1qEJm5RGK8aY0gVyRpb37glYoJS6cOGCMePBaNdbcA6ySUIpJYSqMt/Z2dm/f39Zlru7u9gwiEHnjNN66ZpGpkxn771zllUdc5XNSBhH42SC6h+EkH/+z/855/x1r7/7W9/xzo9++KOPPvro4cOH643amTNnWo3WiaefEWFQi+qr5y5YpYssWT17qmHFwYMHb731Nc6bdDKan5/71re95a//5jP333cvADXa7ewO73zt6/ftP8hqoYtC5/Og0QAulKcKYP+hI71eb5zreqOVJnluXKYLQkihUjRJ23v0auNsbsvjz7106tSLVxw6OF9vOFXGYbCb5/Vup7SG5AXVNh9NqPd3v/0dWmsuqHb6rrvunKRjbdW//0+/vLWx8W3f+va77757a3t3kuQvnVnft/dgbviff+oerXUURfc+cP/b3/7Wn/u5n9u/f/+nPvPXJ7snn3766WySSSZDGZRl2WjUvPfDSVnlvU7LgAuJNGQiJENkHxXzMbJljAFU4hhYTMKfZ6T16TOqPIgopYwJxKlx/mATNAbSSinv6YzAgVoWusydr9LU6QRwhFCU18BdBn+guK5xQmmFEU/PEO3+CNJSgFLE+DjhM2YWLr8Y58/Kk1pZRKzwM1P/Gd7pdJCgNBqNCGNT1QwLANjbgVB1XAs551QK55zkghGOZBcwVfUXqKeceVJx3KqDjHJCnTXKuqLUjDFKgApOnI/DwHvijKUUiCeeEcEllTIbDsdJqq1lQEyaE6VlGHDOgVFr/draWpIkgZSeEFsoHnJKqbOWkArZp4Q5C1wQa0xRqCzL0rxwFhjjhFAUx55xuPD+5FmJjx4HpdQ5iinP7IbPKGyUOuK98wa8d1MmEc4WvOezPX36hyqt5ziO3/zmN29vbz/xxBP1KC60EkIQICj+gVJUWisPVmslhHjrW98ax/FLL50uCz0YjOJYnzjx3FNPZ1rrQEaETAghhFSPG5cOnISYGHvvsW1ISpnnOaV0aWnpyiuv7A96N9346rzMHnvsMaVUHMf9nZ1kku5ZWZlMJpxyCpRTjiD7tDrCAKxzThWlqyRNL5qv4mZNSIUXD4fDKa+zIlRiFMGYwHhBl2pWvqWUI7DIqPDer6+vTyaT8XgchgHq1Saj3RNPPXPF1ccajcY111zTaDTOowvNlGA4ey9wVC0LzhFgqEg2K5+0Wi18K8uyHI/HSMMiUyF1pRShHhX8GefaKCSpBUFQq9WUUtooKEDpvFareQKDwUBrLXkAAGEYWmW2ezvY+zUbZVlKIrwn00pGVZZAUG8WJFRLPyWEEKMMpRQA7XArjhchZFoFmUG0zk5LLIwx9FKz1gKQsix1X1MGYRhOJmOESBhjnAeEAJMc9X+zLMnzjBBqvBWUFUUmWzXGqLWaOI/fJkVYOlUqwwjHoLqwxVQmyAOQ4XDXVjKbLAzDxaUF7V232w2CYGdnp9frOeImkwnnPAgCJuhoNNqzZw+uJ3jcEwdAu90uPiPEbRGLUUoVRTE/P7+ysoLrJ4p0I2iVJIkqdBBJjMnDMGy1WtZaXSpvoYByMkkJIcaV9Xod9ays9ZwSeCV1BK2sMrnWtiy0VpYxrPyRIi8JUM65cwDOc8qsNkZpwaoXxDuDb7iBijWCpSMahlmWZVkGnqK2Gy4t2ALe7XYR26UEMB4rywK7JbRW1lnwxBCDSCvGmdhSpvLq/uR5LiRD3xohmPceiPOeg6siCkS1KiyFV6uE1tZZyyQPZBhFtbLUSZJUtRZj8EWYTCaLi4v4OLIsA4CZF05eFJxXsrDe2Fk5nDKwlXBQJWdkwTvnyjLnIAkhQlSdQIQQgNB7j04wzjlrK+M+xhgQh/eHTM0DGADHAjyvhMWqVAiqXgROUOYuE0JSJlDnBFkOk2Qjz7UUxFNJKcdMh1I/280ppVJKx43W4JzztKr9o34UngPl9BWmy5R5Q6gXnDnnrNPOud3dXe2rQiNjzGnlHBVCWGNbrQa2nWmtB3n/qaeeqsc1fH+TJDty5Mj+/fuffPLJRqOxvb2ZpmkQBI1GQ/DgyOH9P/MzPyNE8Pu///sf/vBH77vvPltanPDf9m3fNhwOX/e613HOlVFvfOMbT548iYLmYRgOdoe9Xm/fgX1lWaJzwPd+7/fW6/Wt7Q1Mqfbu3XvDDTe85pab/uRP/qQoim63e8cdd6XZaG1trV6v1+v1kydP3nrzrXEQI2uYUnrvF+/b2dkZjEfKmv2HDh48eLDbmX/yiadffOEUJdwav7y0AIwKEWxsbIxGk2azORqNlFK4MmutKeMoaOa9L0ujdXb/fffleU4Jc86hVlIQBFpVvQtJNqnXm8eOHbPWjsfj3nav3mohFNnpdIQQW1tbzz77bG97e3nPHmNMLY6brdZguHv8+HG0xo2iIM/zAwcOFKoMwxjbHBljhw8f1loHIlxaWjpy5Ei9XpdSal0WRaGUOnjwoDEmTRPUceacY0v0nj17XvOa15w7d65Wa7Tb7ccff1wIubS0hO4+vV5Pa91stkaj0ebmJqVUK0iSBHFeToX3eVEU2M2AQWbVcMNoXKsppYq0EEJQwRmBublutzsXBEEcxzNHAUKpL21ZapzGzrkkSf78z/9ca42Fkvmlxclksr61+V//639Fqev++T4ASCHCMLRKYxPnxuZamqZ107DWZlkGgnpvOb7wdKoVhV172ljvjZ9SzygFXMGllEi1qHJjCsjDUqbESEgIjoVTdLN2UyF5fIWmdUuutTJTAfXpNmkJ0ZzzSTKSIpwF0ECrHVEp1Wg0nHOTycQYa4yVUmKkhc1uxNPtna3JOJVMlKVGYU3wDgCk5PV6rLUuK/C8am/kggJQ74iurHIA32TccRuNBiEkjCWGyzIQWuvhcFgWyoIvlZIixKYG7DLDEceXOafNxgMPwL/7dzAcXnYwy+A3fxM+9Sn4jd+4jLgKADffDG99K3zmMy/n3h4+DN/3fS//cu/h3/97uOeel3/49Gn4wAfgO78TfuqnLiPkvva1sLAAOzuvuNC9whgM4J/9Mzh79it+4OBBuPPOy45YCz/3c/Dgg6/w4SyDz38ePv95uOMO+JVfuQxqf93r4KGH4Ny5i0e+uev96Z++jPXsPbz73fDEE6+gqsH5y8nLs/GVHtmv/RrccANcffXFg699LfzBH/x3Vxy+9174B//g4q/DIfT73/CXPPkkaH2Z8eOJE/+tJ3b8OBTFRaEPzuHf/Bv4gR/4GqTpOIb/+X/+in6M/w+OWTo94xzh0oeBtdYlepdhcqi1nUGlznnty+3t7SzLhOBBEBDqAaDRaBRFdmF9e5SM2u25zly72+4wxkajCQPCOc+S1FpLKfeeWGucd8ZoQsjS8sIkm4wmE9xNi6JIzl+gnHlPyqKIoxhVCxlj1szK/ng+lZIGUIyriPfeWYuBK/UQhrJer1trMcoHgFqt5pzL8xy9gBGtCMPoyJHDTz311ObmdprmWZYpZc6ePVuv13f62xh1Wavn5+edc+PhxFEf8rB02lfagsIYhUqXuLPgHZ6lr5ce8VPR0ksfxKU/4BaDu49SaE/vO50OUjaMVajeJBnfe2B/q9kZj8dZljllKQMEKQhAnmZGaSyL1ut1GXPJeFFmxPlWq3PkyJHOfFNrlRXp9tZ2mqacxPv2HijLErzvdrta2eeee64sVBiFuCvt2bPniiuOZnnS7bYZYxv980mSKFMuLC1nebmzs9NqdRY7C0opRmgQBJRya53Rbnu7Z60HDrMSrHMOG9Vnbt2EEEo90tMqqIJ4FMXD/+W9V0Zz8BhjEeKt0vOd7kJ3jnOe5/n6hVVs0Q1kBAA4i7TW7XZ7aWnp1KlT3ntBmbW62azneS6YcM4STrpzbaWKq666anV1FcCFYcAoI8QRIhhjyiohWb3eoo4WRaGUgUtAE+yvR3mH8TjJi1TrstRlHIeHDs5TSpf3LFhrX3jhuY2NtbgWBYEgxNXqcRRF5y+cSyZZUShKaRBERltnfVmoQIbN+dbGxgYBag18+aFHy9xsbfV3tkfeuTTJvPe1Wo0TqZRinHPJvbedTmc0HuZnszOrZzinhFhjit7uzolnjs/Pz+d5qnThsMpOWb1et9q9dPJ0GAd7V/bt7vaM1YxzXaowjNvt9mAwysoEES7stcIHVxQZ1mmMx5y88oGZTCZ5MQ6CAFunrXeoBuacU7pcW78gpVS65Jxh/J1l2WSSUM45hXa7feyaq+r1epqmc7UuC1j69LPJaNJstXd3e0EQNRrNyWQihFg9cwZpJmyqSIYKuQg9uIvCuNWLRqZ9qTNkENe6IAq999gJi8lSlmXd9vx4mPz2b/1fp158YWmhe+fttxw8ePCjH/3o2uZGFNXytBjvbj3z5FPJd4/7va2//du/XT95ds+ePf/kn/xIHEVpMmg25Otfd8fahbMXbrn5TXe/9fd+/4/+46/+2k1fePi9/+gfHzx65cJCDC5rNBqrGxvWw3A8WViYa7a7xpi0MFQGua7kGqJaA+PAtbVdANge7HzoTz/6xGOPv/n1r3/P972r1VxsNGpE0Ky0yjhr6GR3BMYsduZuf+0xrfXW9sbS0oJ1ttVpf/SjH37sscf27V1GFf44qme5/rl/8798+7e/67u/+3t2k/GXv/zlH/2Rf9LstgbjyfU33Ly5duE1N95yxaEr9y7tu7C2+uTTT3PKvJQYaktZIfXNZhOZFqaSJK4gFTPtGiaEaE3DsKJfuKmdCT4XV1mNe+eAUjd99ykjtKIlAnjvkRiB4TelFLwF562zQByhQnDOSJjnuUcGHGMzFHtWuvPYiYAqswAwU9ElhAKdLbnee/CEsmqGqKmxJ522Ks4SZvBUEzTeq1zs8C+ilgBjVCm1tbVVr9ed87VavSxLrRXlPCsKwgkn1Fpbq0fdqO2cG6WJMaYWxWmaWqsjGTiOerh+ti8zxqQIMMUCRp2zxHNw1nibaxMKSSVnQFylTO2N0pwyGcRciK3+blmW2oMn1Di0EFSlNnEcU0JmBRsyxdwZo5hl4A1zzpWl9t43m/UkKYwxAIQT4QVhjBntKFDKKouqNJ1QetH31bkqnKCVOIDBBX+KMk/DUItvrPfeU0LM1MWIUkqop1R4Aqjde+nWiVv25ubmeDyuOL/WgXUWKCEe5ROMscqgVimJ49rx4yc6nc5knCZJxhjL83J7e5tSF4ZhqlNCWBiGRaGcc444/H6sgmRpWvVoTyWnsSl7WkfRn/zkp7Z2Nssy7y7Mt+rNRr1ZCxsoaTjcTbz3BJgzHjyx2qHlnTGGeKCMTe+V8b4q8yPaONsBG40Ghj1QJWvMOfDeEWIAwCiNuLD3vigKjHwIYU6VRPpnn33WexcEQZ7nHmypcillsDCXZdlP/uRPPv/88889c0JEAQJS7nLrszAM0asjSRJGRRxxY0xpNCEES9e1Wi3P816vl6YpcsBxxuJk0FoDajdbq40Zjgb4+mdZ1mq1ELzTRnnvx+Oxg0oPvULSCa3F8WQy8a5K1Zmzs61ktp5b8NZetJS8uObjYuIp1rqmhytEzGP921+k20NV+K/+L3jHGaNCOGeccUC9c4ZYYkziK3Eej8+lXq/Xwzp+Q6PRSNNNKUMgDjjzYKI4KIpEqQIYReV4II5SyhhJ05QS3263kVIGziF2+apXvYpwduLEM61ue25uLoxkqUwYyTTPugvdw1ccbrVaeZ7v9LaYoNTL+fl5rTVnrLA2lBHOxiiK5ubmiqLobe9IHuyOdxljgsn2fGduYX5hYQEANjY2BoNRWWqtLCXMWI3BUpqmlNJOp8MYy7KsUasLJinl3vtkPBFS1hodIQSSP6y1wVewsGeMaeexaNRutxlhaZo66ymlRaGyJKVAENzAQA5LLzglcDZ6XPuM8ZxzxvBltNZ656z1YRhjddMY024vYAwJAIwzZDg659CpWAjuwQZR2Ki3hsMh7lnOuSLLUJUbF5Z2pymEYAwjGUsIAeKsteBmvYnUGFeoEgAkkcggppQC5WEYNhudWq2hteZMUkpLlSMj1RiDWBjy2dE22V1s5/LGGK09WokKETAmKMVQn0ynemCtJTAViTKWMSlYpb8020yxvjsr5ZZlCeA8IUgZlFKiIQq+DpJzYzTnXCvtiPGUoIZvGIZKOUppEATGe6uUtdaHolarMY5GOyUVnDswxlUSHGAoJyKozP2std5Wat2Xbaxg/m6+c+lwzhirBBUIf2tnAWAwHmkDtVqNMmKMspUkDomiqNfrxXG8sDDnPSmzfHt7e9zvNTtzReGs9UtLSz/2Yz92zz33nD59et++PVLKY8eOLS8vv+pVr6rVai+8cLLf73e78+9617viRv3wkYMHDxyOwnC3PxgOh91udzweR3GIlzMajbTWZakKVKxVqtVqtVqtm266CSG7fXsPhJEcj8cXLqxee+31zzx94plnnimN9t7fdtttjz76sFbWCOetzdO83+8rpazxF86vB0EAnlLKBoMhpbTZbAkhP/vZv11bW2OM4QIbhtFgPErTlFK2b9/+zc1N7N3MsgzAaG2IdY1Gw/mqgwElGeKolmXZq171qqWllbNnXjpz5szi4sLCwsKZM2dQBH88HnvrRoMhrqitVss5d/z48V6vRxlbXFy89vrr8X/hpCVAjbapTZ1zg8Gg3W4rZRihkosyL/I0S9PUGBeGYZbkrVZra2trfX3de9/r9QghYSTb7bb33hgdBMHu7q61Fl9eIcTBgwcPHTqEgjCbm5vJeHLttdeORqPHHntsbm6u2WiNxuPxKJnmjJUMvWC83696KJHs0m638QHdfPPN/X7/zJkzYRgeOnokCIJerxcEwRve8AYp5Re+8MUXXnhhNBpJETLGyrIkziPjgUwNKvBOFkWmrBmNRkVRWKeDIEiLnDgfhIISzjnHjwkm0Ko3250kOuWUeA21pfDHf/zH+SxFnLWLWWtdJW3OsEmEMYL3glKKGueYWQEis+BxTyWElFq7ssS92VqrdMFZZas1DW01Bkj6EjekWZBqhaeUptkECFgLQAm2tjUajakzofHWIyUHAxFCnS6NLk0YhmEQj8xEO805Z5RZ64A45wDxfkKI0gV4PluSZqdtrZxF/3TakNjpdACgMxfe/Jqb8jzHjK7d7cZxzVo/Gk6McRsbG1obyy6mc0q9glXaRz8K/+k/faWFBc6ehXe+Ez7xCZibu3gwiuCmm+Cv//rlH67XYe/ey454/9XkiZ2Dz3wG7roLXv/6iwe7XfihH3pleYq/O3o9+I7v+BqfSVNYWXn5Wb344tf4V48+Ci++CNdee/GIlC/HKL+J6/2Lv4BnnrlM6JkQ2LsXGo1X+Lwxr2xt97u/C7/3e6/8J4yBz3zmMri504HrroMvf/mVP//3NV5mKjAYfDNfYgwkCXS7X/uTX/94/vmX0/Dn5+GP/gj+0T/6ihB8swm/93swP//3eRp/L+NSFADDcTdtPMQ1DaleiD4jY5dz7pxxjhRlRqcyFPgPoyAK4kBIxjIWxGG73Y7jGJ1tqSdxPZqMxlprwh2jlHJiveGSUccoY92oplSBTT0IcAshgiDQ2lpvgTLkCyBxgIeB977UZSACa612VkpOCNUWoQSwAM5YQggCFYQQSrinPo7q1towDDnw0WQ0nIzTNEW4EC07tre3ccux1tbrzTwvBoNBkiRCCG/d5voG1roBqK250c6wFCWl3HuglFrrBK2or3hvwXtkynjq3bSRk2CrIaaGlMyQkQpgnTaQzjJA7ERGlcnzq2ejKIqjoFCIBRQAMNodEEuklCuLS2tra2Wp4jiOYyEDnmRFp9OJoihJ0kGvP94d48UiPXlTb2uttVV5kQJQKWPq5WSSaq29M2gr770nlAIj9WZzOByO0wnhsLW9MclGKysrUoSvvvEYIQzvgAcbhuHcXAu7FD1x1ps0zVVpvCcAHltEvfeRDBitSIsY9PuKHycohSnnCzuBtPfeE6DTlmpjlNYlFk299+Px8OzZytwSBYjRC6KCvZyXjIdCxkF49NDhCxcu5HneajfBU2OUdc4RKMosCBsO3OqF1Vqjtrs7NNqBtda6auYTJwPOORsNk6IoUHaTOALOCSlRXcRaPVYqz1M/ds1u/VVXX9Vut5xz9WYjSZIsU/v27zVGLS0t1Zq1jY01Y3Wt0SiKYnt7NQiCIIiKvMzzMs9LQtSxY1fPzc1tbm7HcTQcjorcyCAaD5Dky6SMiiyPgvry8mJZlpvbG2mWiIAePny42Wml2UTrEpkpN91w00c+8pG1C70oqm1uvkApbbTqlHBrPVjo9wflZNTpHFpeXHbG9vvGe2g2W1ma5+MsTzPkLHvvgVDJQyR2VUoCjEU8iOMYvU0AwHrnXOWTjJEc6rtlWSamlHYpZT2uNRqNTqfjnOv1er1er91uLi7O53k6Gvcnk4nggVLKEkM4JYwuLi7Ozy9Oxslrbr71/MbqcDjM83y0u2s4x2tEvu1lGc50YMyDrWxlmSMxBPMu7MT03jMq4jjGD+/uDrMsO3s2q0Wy0azd/8AXP/8FNZmkACTPc/CkLNVzJ57b2tpC2sAV1xy75pqrqPBPPv2Ytfpbv+VbZMBvv+PWPXv2MB7ecvOtjz7x9BNPPCXjjx05ds1r73r9yrJ7/vnnz5w5c/ToUbDuzJlzB/cfwNBLKcWYazRaONsdgHOeeDoeD+//23t3zm6uNOevOXK15CElkohYG5VmheBMUBGFulWrd1ptw73zbm55T1CPsyzZHU32HDj8C7/wK8Dg937v937nd/+QMnlhffPFF065d/pnn33+0JEjVxw7lqny4OEj4Lx1bmll/5cfuUdr/cY3v21jc+2Fk2c2t3cWFxcppVlR4cthONVz1BfRrqog4T1G7dWGAsGsQ1ZrjWwPFEWdosl+BhNLLoxx3nulqrZHbBb23mObM9JBAi4454IyyYUBguqlhHjJuZtuarzS2fR0Oh+mEDMxU+T5ErZpBUs567GhwijtnOM1Vg/CLMvKaYKA34mFJcQ18J9rjWwVJwTXWnsPWZbPFIGmWydVSpFAeEpKrefm5lqtJt3a3traSp1n6CvoHPKmnTOUMkoJpTwIAimlsz4IAgsuSxJrLTBulNXGyZAQRsGTMi9xRTJOUx6xQHAZbK1vACDyQCgFgu48lFHCGGN5lgNxwDgqBQshtC0BgBBhNLrXVqzJRqPltFPKSCmlDIyzKHaM2usz5M4Y1MHCF5B4T6x13msAwBb1KaGHTnFAqp1lQCijsyCkopAzIIQqrS6NTIzRzgGemDHmkUcew7pXUSghAsZQwwqs9ao0lBHGBGOE0lArOxpOBrsTxhilPIpq3ntV6rm5Oc45MogBaBBUO2+eZUVRoErILJNH1XgEizEOOX78BJe8LEshAs65N34ySaWUeVn0tnfyvDTaR2Fthi4554QQnlBOmakMAwkSssqydM5wGTDGnPeSMTJV2sXsz/tK14JSyoBRTwEALwTnMyEMwHtjjbW4voVCGGOMKoDREHgQCKsYxnWf+cxngiDYc2BflmVYQMKEd7Z646ybjIdaa0oqVfR6FBPOGGNpmmIeDgBxHCOghhdip7UB59x4PIZpSIOAMlLkZqX3ssyxqTmOY+ect2ArZeGEUgpAKKWMM2UqPBR09S4j5ROmgjl26pRICMEeB5xpgl90kYIpifLSiOsS0NkDoKcZmotq/E4GzHlLCAVPwkAAgDalMdZ7aLXajtiizIwxjM+I59ZaMkpG+8VSFLfHHIqsZNwTToCB95ZTFteCKA6OHj2iivL8+fODwUDwwBF73Q3X3XTTTU8+fc3G5pr3fjIZhVJOsgkATJJi3/49STZZXV3d3t6O4/iuu+6668470zTd2dn54he+hPIv4KEsdRTEyTjFojh2zTeb7TiOvfcvPPfidm8LfVbiOC4zPRjuouApISSMg8XFxTAMkyTZ3NzstjutVosx1mw2KZDFxUVPidbag0XtcgqvrO0ohdRFpS/ECNNeF0XBmJCSWW1wbddaIyCLJ4ZRt+ABAeIsUEqmLYwmz/NqcwFGKFjrnYWyVIyxubm5hfnlLLHWEq21VtlwODbGtFqtLMubzSZjVEoJzK+vbU4mSSxlmedKqbLMkTsYx2Ech4wThMPKsjTGAgChODGoc07PyIKEA3H4pmitZRjHcT2OanG9wZgklKPkFLNsui3aIAiwOpVlGaXT8gkTWVbM1AvxZhJA2l9L61Jrhjss9g9Za5EsrPKpmr9zxGsnBJtq91VxGjDcanELxjlpraWUzBYQXENmhVJGqCUuGY/LPAcqGWNN1sKcBbfykpjpmhARqghhRaEo5ZQQ1NahU1NZ/E4RSGMMVhTwrXSEeOcs5kSvNAhnhDPjnTMaXTFxW2GcWavTyZgxFgYBZeCcG0+GUb32P/yPH/COfPaznz1y8NDGxtbJF1584YUXOJdRFJ05c+Z3fud3RqPRwsLC+9//Y1EUvfZ1dxEgHjwBMk6Sfr8fRTVKaRBHzz//fJqmOP+LohgMBkEQxFFte3sbFdvG47G17upjVzUajTRPvfe1Wg05tqiAfOLEiaIolpeXvbePP/74cDAOakGeF5/85F+VZVar1Zq15lVXXfXEE0889eQzjLEsy2+88dVXXXXVeDw+u3phrruQZdn51bUTx58b9PpHjx5tNpvr6+vekbULG5PJpDT6rrvuuvPOO//iL/5iz549nW7rs5/9rFJqbm7ulltvvXDhwvnz5wnQyieDMMH5t7zjHd3OPCHEatPr9bQ2/X6/2WzOh4HWemNtvdLpBdLr9VBMaTKZSCmXV1YOHDiAM7zRaJw+fXo8HqPEOQAQoFdecWw0Gp0+fXphYSGO42az+dRTT+V53m53g0aooVxdXR0MBqdPn15eXrzztXcRQjinw8Egz7N6vV6WZaXaRymVst8fbGxs4bR55pln8jy/4fpXSSlXV1edg/E4oZQTT6MgxiTCM3DOOWMJD3A9xxjs0KFDZVk2Go0gCDjnKysr4/F4eXn5yJFDJ06caDQaURQ98sgjo9FoOBwppbrdrioNvmKEMzf1ifHel2WJm3tUrxVFgVwoIQQBxhkXoWBQ8QD2HziwvG9htJGcPXfeOXfNq6/bX99PCJwav9CZ6+qiRMUM3LA8mYqINet1DGjCMAzDMMuSmQXKDJI2DqWCDPEUQVsZhZQSDCA450AcMwwjUVepQldROOImGF7gY8YPEEKs07hMeLC4qmCgAAAzagCZ9vRJKTln6Bhb5GPqSavZRHBbK2uttdoCsXEtbneatVqtm7fOnjnPprVBonBv9dNQG2angRUDSmmejz/9159hUlx33XWU0s3NTSGEMWUYhkmSeQ9aa04uLhnGwMMPX4ZF9nrwW7/1ikvKZeP7vx8++cnLvOAOHgTOXw7kXX/9ZYRQ7+Hnf/6rWeEBQJbBL/8y3H77ZZzWb/1W+MhHvrbicFHAD/zA1z75Xg/uvx/e856LRziHX/xF+OmfhtHoK/4rY+BnfgZ+/ufhNa8BAPjzP4d//+9f/plv4noB4KWX4Od/Hv7tv73IcWYMrrkGnnzy5Z+88caXa2fDV8WacTz33GWazs0mfOAD8NhjX5dg8f//jY0NuOce+MEfvOzgvn3wiU/Agw/Cn/wJnDlT4c71Ohw5Aj/4g3DHHZfpqPz/znD2omDijHbkvUcfalaxbxwGT1ior9qiBZ3FPQhCAYAFXxRFUbpms97tdpNkwkM6GPfKsmzUmlJKJpl22oKL67E3LoqDwEKa5lpbACeEOHT4wGjYOXfuXJ7nGARjfIJlW2st8pGdqxSlgVJKCZTaOScCKRmllBrvJBNKKbAoSubQd4US70Ejuy1N0yLNCGc6d5qWVHD8/tOnzxBCrDWYxgghhJDY5xrHjXq9qZTS2oLVnLB6swkARaGQnQVTVhohMBOA85fQsshUuvQiVw6QP3GR2gyzJmRCjDHeaiYECih57+db3Xa7vbp6ljFGOSaHMBgM+r1BFNX27du3vLyMykjNZnNzc9NT75wLgmDv3r26KHe2+2VZBlIa48KAEAfHjz8XBLLVaZpqZAAQBKLI8t3dXcYYoR4tuQF8q9VkjKTZpN6s5WV+/NnjjLEoqmVZDgCHjxw5QsgkGRtn5hfnwzDMkmx7q7e72y/GOZcxZ1KB2reyxxiDMilFoWZd9rQqDFTaeVV+TghQRgh11npPGCPWWqWq9j2tS9wukZUjpex2u977JEmNVYyKysvL+16vVxSFUmUcR2EYGGOyMitM7r1vt5valEEUXHv91YyxffsOfHLwya3NflAPgyDC6YQPMS+LcTIB57GDjHoghGmtUUfMGKXL0hMQgdy378DK8v7jx5/e7p2P43j/gUNILm4267nKzUjJQLSi5qlTp8qsFEIEMi4LXRQK3wKMZtbXN/v9QZokQIhgMo5jZ73kQVEUVhshRJIk44G0xGZpkk/SQ6++Wkh+9txpY60MeJGV9Xq9KBQBvrAwV4vbyUhNsr4QwuQZY4HWpXeEyWh7Y/vzf/P5g4f2KWXa7XY9rl04vxZFNSGCMlfeE2NmSgLOOYfLgpQyDMMoDoJQxPUIq/3j0RBbm/Etw3DQltpFbn5+vmITeEC3kFqt1mo1CIPhcHju/NkwDIVkUkpvXZKmUnIdmCQZG+Mo5da4l86e2eltUkp/8zd/81Of+tQf/9EfYXTIp1Ls/u+0Ebip5/OsilMlYN6h3Si2o83sRLRVraheq4fj8fCFF15ADc0giCiX6PXU6XQareb7P/CBuW77qquu+sf/7J8cOLBvcWHhuhtv+NznPguc7Y5HSuuFpUWt7fxCZzjYedPr3nz19dekud48f3p7O/mbT3/mzjvv3N7q5Un2xS9+8YYbbviu7/hOrXWt1jTGWG8pq2TTwkjGNf7wg0+dOvFMS/Bb77jjwOIitV5bO54kTLBarSEYd9bKtozCMFEG+88IZ2nhh+NSW7j9tW+p12oPPXzfvoNHH3n0iR9+348kEyW+Xa6dO/PwAw/82Pvfe/211+7s7KhS79mzzzm3sbF1+11vuPfeL5x4/sVbb33Nj33gnz399NOUwt/8zafLQme5DsPQe48pNAAg6oSpO2PsUiUc732SJJRfVHZ2lwiM0qlJFEwRYeQyY2cGAKBcBv58qfQqZhQwdR2YcULxiNbolibpdA2Z4aEADkX+gWKnjrLGzYgmAGC0toZ472ZcS6R9YNGCTVWn8ZXH0xNCUMrcJeaEOKkwg8XPGGM4r0AxpbC469IiA0YmyVgGgjFGCTPG0GqnSwDAGEUrEQZqDA2CoNVujsdD54y1jlJKueBSUiYscY4SkBy8A0cZkYXWWX/AOdemugOCMko4ADjwjAmttacELXecsywIEP1Hh1RjFOO03epkWdHr7RaFKvILQghPiTE2CCJKubLGEW+M816XKgeAKAqstVmWe+8b9ZZzYAxmOpQQT8hF3H+2x+ENI9R7D7M0x2CtkXoAoNbPcBNcdpxzhDCsD+GjQcQWuZmcU9w3tSYRj7gIUP8UAFRpGadlqQPJpJTgvTPOWj8Y9NM0rdVq+IyKoqBAnLPYcYUwhDGmKApnqyYJ63zptFZjLujc3BylHAV5Kt/4shiPx8Z4QmgkJacYw1DnrLUuCLgxCsFQbNHAhnr8lUxZjWmeUSDYUpDnudYVnIp3hXFW9aJxQir9ClfRP41Frpa1lrLQgyXEg7PZZFyr1Wb3sNls4kqO+q3Ytjy91cI5KAqVZYXRpXfOUUcpRSv7rCxGo5Gb+nmwaSMaUsBq9SZWcTjngZCzJdfYKu1F7lie5977RqMhZYiwAiGEMVKrNaIo8tapvBBCMsoYY3qqdGHBc/AA4Cu974obPiN1YvB0adxlDGa4M6WdSvIFr30WZvhpcwYuFWyqClJFZY4QxgCgLHUVLXs/HiXrZJMwJYSI6jVK6cLi3HiUOGeUKvJicmGj1p1rlmUO1M8tdLlM06QwRWmIW1lZqdfjIKTOw4FDexuteHX1QpGbtc3zR9PD+/bv2eytp0lKBfUEqCP1ev0d73iHc+5P//RPL1y4gKtKmqYvvfTS6urqcDgsyzIZj8uy3LOwf2lpKc/zLMvQcRQbzFHJJM/z9fX1JEkY54IHgYzKXOEVUUoJg6Wlpb1796LHl/d+OB7h/GRMoGaIspYQopUryzKIIuPsK7ZrEkYdeOOsdzCZpIC2Q95mquprdM5hDI/IDrp1+cqdu9od8O0wCrQpsyzjlRkp4dxba01ZLu0/tGfPHmcZ50QpNRgMVJlS6judDgDx3g+HY0ohy9JxMhFCou4W1oqCQJBKPcbRKVEahTiqigH1lFLwFzsRq7tEK6tPbHDhTHAZcM6tsc558A7Ln977KArS1GRZtnfvXoQy8eZYax14LgVlDFy1oHlPGCVSBnFcA4iTJJEyLMvcaMMYE5w7AoSQKAAHHjzF7lJnzLQhterapFMxqBmg7L1F0gCuY1JKfD+MMe12G63YpjVdKoIAr5cQ4sA577yzhvggjryfBAHNixKIE4JRSqWQBkrcVoEQhiVb57Amh38Rpn1Ls9N7xTzUT6vUSAOHqYBGGNXq9Xqr0dze2ZwMR3Fcx1ecev/UU09dffXVb37j6//84395xdGjf/3pv/r1X//1//PXfgO5BQ8++CD2z/3hH/7hv/gX/+LBBx84fuJEq9W68sor9+07MD+/+MADDwx2R1dcfYXWOgzkYDBYO7+mlNre3l5aWtre3h5NRlgOoZQePXoUe0RwDpipyNL58+c/8YlP3H///Xv2Lr/tbW87duyKH/mRH11aWvrcF7+QpUWela+56Qbn3N13371//4ETJ54Nw2hra+u1d73+Pe95zyOPPKKVNcZNJilj7NWvvvkLX/jC3NzCv/gXP3HvvfeeP7+WpnmSJEtLS3Ej7nQ6L7300oEDB/bv37+2tuYsdDvzURgnSdZut4uieOnUKSllFEZoEpulRVlsjEajwWBw+PBhKaUxuiiKtbU1FHvBqxiPJwhIIgBYluXW1hYAoNbH2traaDRaXFwkhKCEiJTyzJkzKOgx2B12Oh3vPfZynT17djKZoPP5aDSK49h61+v1oija2dnqtNtlWeLW5r2LwtBZm+f51tbW6uoq4pCtVmvfvn29Xv/MmbPr6+vNZjPPysk4dQ6r1Mw5AmClEM5BkiTW2mQyWVpevu666+bm5h5++GFCyNLSEmOs0+ng3HvuuedOnz4dhiHnUkoZBEEUhVEUraysnD17Vqe60mRzGmHeWbgIjJalppQbo9EuCNvsyrKMZIB5x87OTlomxW45HA59zV155ZVvuvFNUopR8Nq8LD71f36KTwGUyrUcd81Wt1OPYhQJxdYDlHp0lULWRcjAesc8AQAytbFGwh1lYCzBjFcIYYx2U5/fWX/6DGKYgQ7GGMbprKpsrcUWNkQ6OOdSBmzax6qUSUaJjCQCLt7YXCmMQqz1ABBFIYlpEASdTpsQ0u/3ijK7GG2DNWa66TrCOVeqkpZ3zqHbw3A4HKW7k8mEMuj3B7OVy2jHmEDjVAIXGyVecUwmX1Gu4dJhDHzyk/Cud108cvgw7NkDq6sXj/xda7XJBG68EY4e/RpfzjmMRrCwcPFImr6CxnRl73zJ+MQnvl4I9U/+BN7+9stoszfcAB/7GJw4AZ/8JDz9NEwmr6CusLsLP/VT8L73wf798Ad/8Aqn/eY3X3bk/Hk4fvzrOp+nn4bV1cs0hf+uhR2llfz0pUD85z//CmfyspHnUJYQRRePbGyAlP8d4WZKX/50Wq2va169bAjxcjb3f7ucBaXwn/8zaA3ve99lGiZBAG96E7zmNWAMjMcAAI0GcA7N5tc4Q0q/hn/jf7+BWd8skXbOUSAECOfCGGPBMsamOphV0BCEAlckrKJ777GXIisLap1zoFSByUlRlFao8WBUluVQDimljNCAB4RBUWRBEMkoKLMijuNWq3Pu7OrW1pZy3ntSpllUqwGAcyAo895zQl99yy3W2oceeEDrkjDKONPGMAdhKI1h2hrmuBCCcOamXVemVMg38d5TQkQYFmVZsSoKBbTC1inhK4tLxhh0EUEKpNYGIaxZsI7BcSSDoig9oVLybmfeWr+9uZVlhS4KoJRh/kfIFEDG0O3lJmb4A6XUEaD+UmC6InnhPkUpdcDiOEbpj36/32633/CGN/zlX/aVKj2BIAiwS45wZq09e/bs0tJSu90eDPu7u7vOuTAK03TS76sizaIollKqsrTGA5B2u5skY+qoKu1wd9xstawxznrrDOd8fnHBWU0ImUwm3ntGqbU6iFDFUgShKIpcCKaUfe65551zrXbbnjrVG+wyRuNaSDjJ83R19UJ/e0g8o4FklGmtJYXxeHzo0KGrr776kUce6W/tyDgmhIDzQJG1ZAEqmhtjzFlKCUGhxQqbqJy7DFKbvXOUAg+EMcbostAuimphGGRZ7qYN+9qUg0FZFDkAtNoNQqE05bg32nt4TxBEtVpEGTBB4jgWQmhdHr3yCqPBWjDacCK9s0WZZaXz3mMaZrWx1oPHPBaM8ooQ610YSu0sY/TFF1569ulngQIA5OOs3R1wTvv9nTAMN3c2m83mkaOHoyhaXl5+9plnhYiMcZzLQDKls7m5uWPHjv1/qPvPaN2usz4Uf2Zd7a27l9OLjo7akYssyU02xlWYZpM7IHECDjekQEhuYGTcO3ITbkZCSwIB/oMwEm5CcTDGGAwuyJZlq1iyZNWjo9P7ObuXt6826//Ds959JNmABb65uWvow9lLe693vavMOZ/f8ytSyi9/+ctamUCKiYmJKEqKolCFttbUG0kxKpRShSqvDrueAJOs3o63tzbW1q8XWimjBRdFrsHDEw9+fXJ+Jg7r3a1hGNTn5+XGxobWlhBHgDFGAMBbm6XpS8dPBrHc3tgsjeFMMiJLrQCoUqjW0mPCqajVaugDlmbDvEjxxqCHRhWwLAQuBykFKYPG7PQOubgsS0ZovV6P4wjAFapsNpve2/6gm+UjrllRMGNMfzsLQmm0AlNVknFU39xcarXrWZa9+OKLiD/u4Iz+Zb7nL1+wIbKgtU6SJI7bfkzChTGAZYwhUDWWtNaWqLX1Zc45OC+CSAiGwT5C0CCQ1Og8z7WrAaNXry13uoP/7Z/GlAcPP/YEF2xpbVN9/dnv+I53eMaTWpSEyf69iz/wfR98w133ZFnx+Qf+7IWnHvnRf/JjH/4bfyMd5Q9+8ct/8id/4j1ZWd7gLHzb296m9CjLMiFZs9nMlSqNYVZa02+25Afe987B+tb05OREMzZeMR54QWU94YSCdZxwKqVyjnBhjRZUFkp/8pOfEoF87/vf38vcJ//0kwcP7v3g9/4vjz76yC2339ZqTURBuLy8cvb0OZ2XW2sbnPGVpdV+P714+erJkydb7clrK+vveMc7lCP7Dt40t2vXn/zxHw+zvDnRPjAxi53I3bt3z8xOnThxAu2VCfFCMErBlMaNtb3ee3CeEgpjFmElotcVx4K8TMzhjNVWcSGtsR6qpEE3zpnE0aDi7zC2c+vJOCgJj4wxSvhIu7E6hBDivcXBHBWKjOAqHmBsiVMUha/cWgEAOOWEACMUeZeMMdT7V7bOUtZqtXFXgwAAVsj+ZaxJTP/G88dKhhAShQESJ72nw+EQk+sBAEUAxHnGmPecMQYStAIARwjaFlf0cET6sGL0hAL4wljrSu8tQ+9ND8TBsD/q9LrOApEx44xSaqwF54UQxDnUhVBKkyQBZ4sis9aDt2EYKp2NLybJ83I4TL33nIlqwgLmPdFaO1uFvnhCCKGcSQ8VpxVL2Z0Fxhi5wwrI7FDUx3RUjkj0DTSnuqwWgLhxaIEdu5GOz42idUMFqo7JrcgH8t4zxwrvCWFcChy16vW6EIAijDAgvV7POwcAozQlFLANxjkPZWAZR/8lxhgh1dcco2AOAOdcZ5V2jDpHe71erV731jMmjHaCyYuXL6mybNRbYMAzb63liF3yyikRgBIC3lfe99hL3vkiCKshw+nwnj2Li4sXLly4dOlKURRJGBERVFfeewLMWovJaTuDHl4HKSXWs1Jy7/3ExIQMeJIkcwu7Tp48uba2xqRIwggvTpYVlHIA6r1DLQiugpxzgRRBENTqTQAYDAZLS0vokb3jP4a/TynlgiINHPnmO8tLAECU2Tk3Go3SNEU/We/9cDhEvDuKKudZVuV/+lqtZq2jUDnb+Mq5u2I0+woirgwxfBX5AB6AUqQq439APN2hW2H/AO8meZn/hn9Z/0MwYq31xHMu8A8BKIwdXzz4sXEwWOvWt7bDwGIoZavVmpraPWqP+r3h8sp1QWVRjrKMGqsJ0CgKk0bChAgtj6Kw2ajVarXtzqY3No5rNx05PDc3d+LEyesr1x/56iMorWOCGuNgPJE99dRTW1tbw+HwyJEjk5OTzz///FNPPvHSiRODwaBery/OLd58001zc3OOkjNnzly9eh1hO611HEZFVgBAqrPhcMgoF1xaZxBKa7fbs7OzUkohmAwDSulg0CvLUusyjsMdyqrWmnjIsgwJqqVRxhjrfSi/mXMzQJrneZ4rZXSpAEAwjrFyjAmMvgAAxgJr9Q7Qie+gN+hXw6x1RaE4p845VKqBRyNgIIRQxmQUHThwgHN55fr1fregVOJztXfvLs75Cy8cH8PcVmvVbLeazZYqDTAMCKHIXi+KAgclyjCQs2rqOOcwkpQA4NoAxp0J4isf+TBJwjAGzK7MFQABT6VkO13Vbre7tbWF/06SBGWFxlmsJlDIDo4opYIg0rokQPCl2OG4UErTNHUOg9BRDEms0p4ALlq899jpqdUaOBVSClVordUAEAikBOEQSgghQggpBfbgcVCNokhKdMqSSb2dFXlZllQInL+c9Vk28N7W63XOdVEOrHNhGDIWcCYFr0ZyAMI4YVw453TpUbTkvfcvs7vx3rNvxFwAAMCNsx/xauM19N7neQrg7nv7W8+eDZ5afqJWS8IwDAJJCHnooS9tb2+N+sMTLx0PJB+NBj/zMz9TrzV/5Vd+Db/XYDBYX193ziwvL//O7/7WVx9/fG5uLgiiQ4cOTU/Pgqezs7NXly/X680izTiTgZRFXkZRhFkpu+iu0WjU7XYPHDgQRZEyWjDuiUeqxPb29szMzIkTJx577LEgCDbWt5544on9+/eHYbhnz74kSYqimJ+f/9CHPry2tnbrrbd9+tOfvn5tOcuy97z7fT/0Q3/r2WefvXZt6fu///v//S//UpZl7373e3fv3v30M8/9vY/+yJve9Kbnn38+DEPkvNfr9Xe84x08kNevXz98+Igx5sKFS/joTk5OYt+u1+26cWprkiT93vDChQv9fl9Kefvtt7cnmpzz7e2tl156CdN98FLneW6MnZiYmJmZcc5dvXrVe6+NWVtbq9frWZbleR7H8dbWVhBEGHqXZQVjTIiAMyaE6Pd6hJBGrVEqRUCtrqyFkcARo9lsAvVXr16N47gs83Q0MkbjOFxLouFggNy10SgTQtRq9ampqa2trevXlxq1+vr6urW+KArvSJYVAEQIYaty3HhP6vV6s9kkhOzatevOO+/sbm0/9thjnU6n2+2urKygTDnLsm6322jU5ubmVlZWwtC1Wq2lpaUsy4IgPHfuXGWFIcSY+kCKouCUO2eUNbi/2WzefMvRK1cubW9v72Q25ACScUrpcDjc6m3GkERRNHKDP/2TP1mMF2699Vat9aOPPrq8vMx3Zhd8oBHjH41GhJAoDPEFAwDkLzPG0EOajSN6cZlrjCGAnkJ8p0eKq7ecYGCIw4Umws24vMMFNLqAuTETh7GK62GtNRWBi728XqJjebsxDqwrBso5J6hotyfw5iEnxWm/vLwshJShHAwGnU4HiCuKkviqBQ0vC57CHIkdjIkxNhwOz58/b4yhkkgZOmdG/RwAgABlZEwlU4yhvu8vgpud+5awM6Xgz/4M3v3uG2BcowHveQ/85m/e+J0DB2DPnlf8VaMB3//9f/nBv3FL029CbX6V3URZwgMPgFLf0gE3N+HRR+F7v/cVO2s1uPtuuP12SFPo9eDqVThxAi5ehKUl6PehKMA5KAr4z//5mx/zwIFX4MUA8NWvwsrKt3Q+q6uvjrDbuxcOHoSzZ2/scQ5On361ucQnP/mX36/r12F9Hfbtu7Hn2rW/xKr4r7k592p37HYbWq3XbBh97NgrsHUAOHQInn/+r3tu/T78xm+A1vCjP/rq/4sP1ausyV++vTy6EADe/Gb41V/9a53PX2cTQtCS7tTJjOCSDlfwVRgLpYDZIGmaYlGxAxMYYzjnRVHkqhRCtNtt7x2lUBTFtWtLWpdkoDFG2YGlAJSL0pRgnRCB97YsSxEEhDApQyqYsyaOY8aEaE9gjC/nskizsigAoLfd+Z7v/76NjY1LF84JHmIJaowCqLyAq4rFV7QFGANPjFXRrEijaDQag8Eg34EOrU3TdDTMSpWnaSqltM7urMaw5UYxpkxp4sAqg9eqzNXm+iXBAywaQUprrS70jYs51hFQyry3eD72ZR4xOMrvDPUAeCMq1SeiLcYA0syPHTv23HPPnTt3bnFx8cCBA1evXqGUFqosigKAOuuNsd77jY0N54wMOICPoggIel2JMsvLspQiFEJoZY0x3e2OtiYMYyZFvZ4opaz1ZVmin0kch4R4rRRKX9NRnpfF9vZ2WeZxEjpn41o0MzNjSuh0OkVRDAYjAKjVasboXq+XpsMsK/JR7gEoIdY64wylXOuy0+kEQTA9Pd1ut7fXN51zxAMVwmpjvWNMUAoIWYZhqEqMuqXj+beqz9N0mKbpRLsdBFUqHU64JjdFoTjy5cAa43RZAgEhuFIqigPElONabTQaHTp0KM/LpaVrTNA0Gxw/fsJ5oASCQAY8VsoaDd6PkCECzIVh6J01xngCnHMGiNU6RzAyQUoZOl0YbeNabXL3XsJA6Y0oinbt2t0b9OuNpNvtWu0Yp51OJ03T2akZxoQ1jnMZRzWIiNIsjkO0Gp+cbK8tbZapjneHszMz21tbrCF6vcGoPyCEOm8IBaxJavVERrLUZZIkIYSlVt6RKEqKTPFI6tIq6gIeBjIyzk9OTo5YlmUFAcoo54JZq50jlFKHfCTvgUGn09mJCxsTVRAS4miGwDi31mZ5ZRpQFAVicFJy5wyXbM/UriiKarVao9HIsgx1edgtwI5OURRBFM7OTu/atXDy1InBoM8Y6/UGjUZtcraZjfJ6oyGI1NrrwnTyDiGMc95oNH7+Z38WKA2iqELxosiNjUfdGDT0Y74MVi/WWu9ZURQYvwyW4JkwxiihMIb8GPcWiKfEaC14kOdKhtJ665yxwJ0zQpAsH01MTEgRbSyt/OGn/vhDH/rQ8ydeWlhYWFpeW15Zu+2OO2emJgSjFy5cmJ6e3L24kKZpb3tl7frFW2+99eKlK0tLSw98/gtlWd5xx+s/8pGPPPzwwxtb3eeeOz43Nzs5M90fjr721NOdztYtt906NTUVBup1d92RgCy7A6dcbo2sR7yR8CQ01lqrAyqtddZZ4x0AEZw7IFevrbx08mxp7Tve9b5HvvrV68tb03PzH/+93+lsr7//ve+r1eKvffXxt7/lrW+5+64XXziRD0cTk1NJHF+9evWzn/3sVx77qgiCw4cPv/Gee7PlFUq8scUddx7r9TtFUVy5fA0v74kTJ47owwsLC51Oh3Oe52m1PJaAdgdIvNClqjjLLzNT3vkH/nvMefH4CjPGwFNV6oIXbOxfIaUEcDvUs525KQrCwvuxnwbivzcM4lxlfzl29neesaod6MFTSgmvVtdKqcrRg1JkjeDyHgAQlyl15ZvhnONSIiRECNG6CtfFrz8ajaKoco03xqBZJ8KgzrkgFDtI7A7ZB1GhPM85oY1GYwd8AVBIoEPgdTDorawsMUZQcqGVMd4ZZ713hBNCnXfgnaaeBjyI4rg9QQhh24PMOMvGHrVYd0gZEELiOJZSZqMhElTRMAGr3CwrnPNG94tCoe2G98SYitTmLAAAY8xaLwRHxyFCKzSZMWaMU0pRysU4pYoxRPcqn64dFo6UlBFATbYbuzZ7QhB41Vp7X1UfALDTJaKUo1Urwp2YjjscDp1z1mrnHCGBKY0xhosAPzFLC2OV915KXpYleIszrAcQVDjrlS7qSW2M1FhjTBShYsPA2BeeEo51fhImMpKOgPdWlaajO9ZawkgQBHmaO+cCGam8CILIjV2hjDHAsIzSOx9hrS7LEp8ERKAor5jyWDPic7Jv375Op7e+vu69JwQQm64iDTjbWflQShkQR6rgSs651mWeayl5Uou63Y5SZVJvIiJsjBnlBXGec88YQ0j35SUqjqtxJAghRZn1e8PBYIDfAicF1LQppTY3NwkhcRJKKZW2L19AknH/L01TvLk7yB0uq/w4GKlWq+GMUBSFt07bkjEuOQ7SnDGWlQobAHhw516houCcMsaYqOpxPxa7YALnePyvTmln2NkZgvCN896DU1X/srL7r3Qz+Pjh22qsEkIkjVipwpvhDnit8kIIsbhrvt5ItC6EJMYpTighzBjFuYziYLJWj6LIeYO2zt77ot9J01QE0U1Hb1LK7N27tz0x0e1tb29va626/Z71ttvvdvvdsiynpia/8zvf1Wq1jx8/Tjy02+1ms6mLcmZmZu/evS+99NKLp06jPTGOgRTIUAaVdMOYwWAghIiiqNFoNJtNpRShAABRFDjwRVGgegxzutD7GOmKaZqC82EYGsrwxeScKaUC8Ypg3p0ty7NRnhFgjHCttQXPedUgNGNCrpTSOa51FWKGUKNVVTwgjgbeV6MWQhaUUgAPAGEYhUEyOzsLlbzGG1PMzMzMzU56b5944olOpzs3t9BqtSiFKIqMs51OhwDDzuJoNDJGIa8fgAohtCn92Dp8LNChYxgGPfGr3gkhxHkWRzUmhTGGM8E5NkE5JXysDgyQDxFFEdrKTUxMpGkqAkm8Q/OZMfUYxt1TztGoxBHU5DnnKCVRFOV5nucl4Yxz7q0mhHDGCOVaW6218JRwVhQFsno5F5RSnNF2zH84lzvfrtfrBYFEVBeNs3GUDsOQc97rdSgXYUAopcZWy9p0WKUdIFPeOgaeotaisBYAkjC8MUiOsxOqZqGzgvGdduxfUIeWhiKpFu84jrSM8zzPv/zlL6+traG533A4nJuby7Js37593tizZ8+UZXnq1KlPfOITH/3oR0+ePLm9vRmGMTaJpZTD4fB3f/d3jx49+qa77/6t3/qtra3OhQsXgiB693e+981vfvPzJ54lhO3bvWdmeu7zn/vc5sbWj/zIjzQaDU8AwJdlOTExgaR4a+32YCvNU/RuxrzTylO3LBuNxl133dVuty9dunTm/Lljx153331v8973e8PpqdlP/eEfP/jggzMzM3Nzc+9857sAYHt7+7777pucnJ6ent27d//999+/srLyd/7O37n99mMbG1vvf//9jImvfOUrb37zPe9+97uttddXlkej0enTp0+dOjUzM3PkyNGyLOv1ZpqOrl27popycXERQ/BWV1eztJiamkLK7NramgcbRdGTTz5JKd29eze+a2maEkKTJDx48KD3/uLFi8jZD6MIrzPGSI5G2fR08q53vassy263yxh74YUXtjY2CSHOQkXRsDYKQ/SgKMuSEIKxtFIIXDtxTos8xxxOXCPhzZVSsjH/oNvt9no9BPr7/T4hzNmqwUwp845IGWZZRpm799574ziem5ur1Wq9Xu/MyVPHjx8Pw/Btb3tbp9O5fPky+pwkSTI7P5eNhpiFOxqN+v3z2N3MshyvFXbN8dHFaG5daE8Zp4ALgKReQ3YOvlzYBs6yTNPK3zgOYpLjmpB755566qmrV6+umOsvnTq5KPdwXeiqU0QJAseUUq3LNIU0HbZaLcqgKBQwsMY65xwBS8ETj3NoIAMhGEZxCiGqXjqOF4QzysKYlnlhjOGCeu8lk8aA915KylgghFClqdVq3W4PWdzlqKgWx0AEk56AtTrNKzUEp0wpY60VIpDMW+tBu9KUlIfGUQAXJfVRlhmrTKkKnfZHPQBwFrDRJ7gEj7M7OAfEA2OSURi3ly0hhDKutTaeCEEZk9QJ5xwjYSQrFVuVqlxYyTgllIBn5BvsGP5K2/r6q4HOD3wAHnoILl8GAJiYgJ/6qW9uQPxX2JIEFhfh/Pkbe3bvfjXf2ZjXECcIAL/8y3Ds2DdJSoxjiGOYnobDh+E7v/PG/i99CX71V//cj4hj+Ft/6xVMWGPg9OnXcD6nToHWN0jBjQb8zb8JP//zfwku/C0ylO03b2P/P7h98pPw0z9948fR6NXA8beyleUrsN1OBx566Ntwbrj93/83LC/Dv/gX38Sf5M/bjAGlXvHgfeIT37bz+atsngomrdXeGwLgiWdMVh0jQhgTpiyDMPTea22LohA2wGZjILm1OpDUOl2WBQUgxDmnZ2ZmnGufO3fOeyJlBCqRgoUkcNYQSrSyxipKgTFuKQNqAiGLvEjTFIgxtgx8wihwQTl1g+5AhjQIg//tp/7Z5ubmtavXP/eZPwZwQBjxHIsFxnyWFcR5SQQY8OCc0Zxz75ynlSsDhrobQnKtpDcYSgtVFl8QBJG1tt8fIiCVlxblt9Z5QghnHDwIQbXWYRiEQhJCRqORtc45Z6y21CVJQqFid6bpcH1tAwAE45SDd8QoW+qCUM7JjWYnBeIBnPOOVcsyzjn6mxFCUJ2NEa+NRqPeSJaXlycmW//+P/ziT/3v//Kp505MTrajettazTwJHMW0XyyltLa4qAuCkJIoChkn3Fgto9A5zyRzBFRZEEKAEslkGIZlmQ97fe21c07wOrK/o5g1mrGUEXYatra6a6tFQoNWq5Gmaak0GMZBNCfqzUbDOXf23LntzU6z2QyCwGs6Sstmc2KyjkifL4qi1+tpnYMFYJCqzqNfe3Ci2ZqYS4b9jFKhtQ6CiFrvHXDOtTWOWK0KRrkF55wXPCaEFEXGGSuKIk6C+d0zMuCc836/zzSHnNgcijwDYxSHyenmG97w+jiOu9vd48dP9LaG2hom5fralnP20OED7333uwDcyurVKBaU8jhcZL7f7faNMlnqcponSQK2pIQQZ43WMuAmV8ZqSlkSR5TINM29IwQ4oU7rkWflsEynZuLFXYuUybmFXWEYd7dmjDHWQRI3rSFGd+OoHvK6V6LWmOhs5QRC57w1kGW5I1Cvw9R0c3lliRIxO7u4ttoB4mr1tifQ6W3fdNNNm9sbqSoYBAQiQihE5cz8TK0Wa60CVezevZjn5drKer3W4lwuX1/J89yDS0fbpehOzx0cdSV1en5+fmtjsyiKJIm9scq7UhvJQu898+AZAYskLkqslpQyQgxSxZ132mCdgy4wjFNjnTNW5cb5sj4teW737dvdbrevX1u+eP58vV6v1xoEgFDrvRUi9IQ6T4vSOM8pkO72QBXWKDbsa8btvr0HDx8+6MEGQtbrdUrkxurmqZPnNtY7ZZlvbTrGWK3edtoYbYgnQjCTK0opUgYrNgCl1irCGLEo7QLjdKat8cpCUZ9qxUlEPLHWjnqZc04ISTzznoBTDLzVhhDivAkiLJOoUg6gqt8CTho16XQaJL4zHH7sEx9/29vvfd/73vtftlceeuih+I/DD3//hxbmZpwzc3MtCnbXXC0g6U/8rz90x623/fNf/DfO+e9+711/8sd/2grLyRpM1YUabn3lwVPvf//91Nl+v8+01sPhk1/68tFbbj58ZB9IawKIp2c5pRNRDXETKKnxzlpPOabAOc6EA2/JkNJgcXfrH/+zH/viFx/+9f/0a3meHz5y0//vV379+IvPUQr/+8/8W2PM1tbW5IEjXQhkvdFqtRrNZtRsayAHDux7+umnO71uOhxevXxFhiGh9PHHH3/9XW/6zu/6wc989rOnLzxUq9WoB0rp1WvLSRILHlinpZTgqjjZLC04Y4wyXSrvifcEHKFAgFLn0NMZsBpHmSQhnAAljCZhZLTS1jjnPCXKWckZ5cRrb8EyIKi3QBd8Qrk12lEXMq+9cs4xIalgzjKlqjMRXAK2qtAkilrwhAABDwyoGEOcIoy8J8YYSTkd5/4ZY2QoQxmuLq967+O4xrmw1nJBORHUUyZlGErElJ1zjNEsyyglWZYSQtFvBwAACNalQiChm0omra7AryiOCRBJnQINlJXaME6pYJSwSAhCSJ6X1hpbWqShVZO1NSjNth5BRs45QzsKrcvClYSS2mTNUwLOD0YjSoEA89YwyTkS0LTp9bqEEMZJu902xihjOOcCaKteHw1XtdaeUMoDJojSVutSCOGsETfs2hi1xlvMHySEEALCe++8oUA5Be81zsUUBDjiPSHApAwBlCkVRxmQBcIYoxyPUVFwwFNAFrD3hBJRaauVr2yhvXcWFKWUESDeeWs454KAMdp5AKAIthLiTZFzSrWzeaaqB4+SUhsuaBiGxlpjnNXOOk0p7fcHURQJITgXjYYsCy3CUHAYDAZ0rH5wuvJX4aJi4XnvQyFRUKVNwYFEPHTOiVCgTh+hcwAg3jtiTOlw+YGAqS7KMsulDGu1GkV5PueY38gIXVtbW1lZiWSQDUeCMmuttR4xayw8PWgC1DlPnGeUWFfRydFFgVJuwSvr1jY6b3jDG7rd7uOPP16v10WVDWhMqYwRSik0lm00aki6wsZDWZadbh+d+hFIQjw6juJGo4FdijRNGRDrNDIPCDhKvPPeWoOeV5giaK1lgtFxQ91Z74HYKizN4LUFFCJYVxSl1joUkkbclco7RzyVhBHjHSPeVaZk3lfe65wzxgjlBNshWlvjHaZkOG+tMd57yknAJAVCaWXJ5Rz+OdsByLz3hAfVzQJqHXhwjDHOGKL/zhvBKSVM69wpEnLu+RQFKDLYMgPrtPd+ampqcmaSc+pBDUe9PE+tN5RR70rOaeFUQIhzVnISSzkcjuK4Nje/2Buls3PzQZxsdHurG5vXr16bmZ6M4ziRjXJkZqbajUatLIvN7a1+v99qtSnhtXrNWM+5YIG/vrp07vLZzc1Nb3g9qSGan6UpumkXRc4YN8ZwxozWtXq90WgkSeK9z9WQeqpMWGkIPKUMlDL4mFFKS22EEK2JdpErKaUA7Ry1jGhtG1GD+W9ekkmgMZdlWVjng1AAeOcVdxIsIV6D05ILW6Zoc6/ASRGC8954RiQBQSlT4I3LHPHee04lA+EtgHNap54S4H5xz4HWwq4Tpy4O0zIIgl27Zm4+fNPW1taZU+esdbfccsvU1FSWZdj1PHfunBCiVotYo6ZU6ZyTnGqt+/2u89R5rbWCsTIAgDnn0JseiKGUUoIIODjnjSOMN4ByIJwxJmQsRWjBF7okRDFS+Z73u72trY5SCo0y8OD4FKEv01a3U5aloIJyAs5ZqwFYnITYOqWVARQIIUUQItWUEgY0pMRbAt55Kjh4wgSz1uP4DAB5nkspvbeMOGsNpSSQ0lrrjCeEMkKdd7rUlFLiwXqHWgTkRDoAAMqcs5EGSxkRxjjOqTWlUWkvG2idTky0dOkopVxyIDqwlDHGCHhPGKFcsJcpUYj3wCkXQjAO4xbRN0ecCfEIiGFd5rwnlDLOCYDgvNvtEkIo594DIdQYSynbWF27VlxxzjWbjX42fPzrX/uu7/vurX7fWZvlGeOyyHOt9ZULV69cvFZm5Xvf9+7D+w8xId77vnc/8IUvXLx09isPy/mphYOL+zjlzz/33DPPPHP//fcTCqfPnsGeU6fTnZmZzrJsMBiUZbm1tbVn9+79+/bleX7ipZeazWaj0Zibm3vHO95x+OYjn/70px/56mMzMzP33//+ixcvPv/88YmJiaNHjwDAteWlXJXtdvvo0aOf+tSn3vjGN95xxx0zM3PD4fB7v+t75+bmpAz4ggiCwFmf6zKK4qNHjx48ePDOO++klG5vb7fqrRNbJ7pb3SOHjnz4wx9+5JFHlpaWyqzsdYfZqDx48GCr1VheXh70twb9bHFxUamiLEtC/W2337J//74HHnhAqWLfvn0eWKfb895HURTFseD82rVrZaHTNAtk9N0f/N7b77g1juOLFy9+5jOf6Xa7sWQTjfqw2zlz5ox2Zt++fbMzU8NBryxLY2DMQ9WEAOfMWhNICQB5XhpljLKUUmMKQghlAI5I6ctSeczOdV4ZTZ3wAIWync3NWq026pebec87SRljDJDXS/3YH0KrOIxrUUKALC0tX7x4cX19vdls3vOWt9xyyy1nzpzJ8yKK4n6/Tylzzhtl+v2RtcCZtNYwSsFTa6jgESVclZU4RmuNHaayzL31zUZDaw0CCGfbm1s7NbtkHBgAc15IpVSe52EYOm2Z5R4oAEjJL1++fP782byeeU5L7TkACBFYq421O63Onb56v98nxO+8MNZaLqVTHoUJAKCUIkRge8oYZL1Vaj6cOZngcS3R1kjB8Ag7kxnn3I5jQzEBE4+prSGEeEIoIUEYoAukJ2CU9mP/OCFAMsk55GVBKel2u51OBykDHqygbNxSRjmhE0LgZ2llbzSBndOmJIQwfsM1Dyq31moVKTh1Doz1Y2JIpZUghAB4a+2fN178FbZeD7IMWq0bexqNG+TiLIOFhW/XRwHnlb/BzvaNPNnhEDqd13BMpeBf/kv4v/4vOHDgW/r9t7wF7rwTfu/34NOfhjz/Jkd7VfwgIXDp0ms4n4twopQFAAEAAElEQVQXX203sbDwrZK1/yfcTp+GbvcGTbjZhF27XtsFAYDbb3/Fj9vbMHbQ+vZsZ8/Cr/4q/NiPfROrlm/csgy+/GX4ru+6safbhTNnvp3n81q3SiMItMqmr8ZWQinlQiil4jiwTgkpszKjgiMG6hxBUgAhxJTKe4iiUIRonsh3SEnVuOE82gQJEYWh8GCxe49wQ5YVURiHkq6srHDOtSlL5azVk5OTx17/uocfejgM6MEDh37s7/39ycnp97z/fcdfeDGqNQjlzHtMCQAAT4H4G/bHiMgIGQjBHFRKSWVVURTOVBWgLkvKeRAIzmVRFIVWAMA5ZQDWEuccEOes06YUQkQ8krISVyLVpSgK55wMJJMoPgUAYIzt379/enoa/Z031zaUVdZbIaUxzoKVjHtPtdYwDkRCk2h4GR3Aj33ilCqstWVZ3vWmNzQajc3Nzde//vVHjx75+mOPEWp1WXDOrdMMCKF+LFgRnNuxWlkXRUaZRLdE/KyiqITnnFCkuqD9sfa6HOYikZSZJI6UUsvLnX4/2r1ncWNjuV5rXjh/xRqQMgRvhQgA6GAw6PU6jIkkSRqNBud80BkNyCCO4zAIOOdZNiJR7D3BMKJGo+a9D0MphLj5yOHl5SWl1LvvefdTTz195dwyMMK5lDJEc70KLDDGgyGUCM4pBe8doa5UeZIEwFiapkI2vLdSSkIN5zxJ6r1eRwixa9dCrR5jHs7i7l1RlBS5unZtyRhrrS3SNMsypYrTp08Ps7xWq3U7W1GUUMo8aBmK6elp7/329rb3FoBEUXzgwIHNzc3RKAPvCLAiN95r7xgA0Vo7Zw4cPsiljRvBLbfdlOc5UDLRnt7Y7qytbayvr3POa7W4KApMlEqSRCszGAwQF0PmI07ct95y8969+z//+QfAYzkv6o1kZmbmhReeGwwGK8trShnGGANkbDmd5+3WZBAyo0olGABNh6OyVO0WN8ru3r3nwoULSEBI03RleS0fml6nI4KAAsHjF0qj2/JYvMVfTjChHigFPRZ6W++0LofZ0KoyqidxLY54EEWBEMJaffTo0cwMvPdzc/PdTn97c7PISykCTjOk7czPzytljHF4i8Mw3NxYX1vbkFICJdZqLuTU1MTa2lp/0K3X61sb25RwU5o8U2WRhlENgFijvbeEkiAUADDZngjD8NKli3EtMcZUoZ3OBTLK85yAc5ZQClrbVqMlg0SI6f0H95VlOewPAOgm2+ps9DiPgEKel85X3VckW5Gx9yiyser1+mg0IgS6nU6/3xdCfPFznxsMe72tNfDm4sXzc9NTcRxLGW51BvsP3LS+tkIZgBDzew616u0wDG+/7fX33XffO+57h7P0M5/57KXL1/bvPzg3v3vP3l1S8sGgt3//vjuO3XLh3PlrV69477NcEyrrjQgoA0pLoymlzntrFaWUc+qJBe8peG+tJ8CFLEtVqzWCqHnPPfcMh+mpU6f+63/9zSJPpZRS8ieffIIQ0mi0Pv7xj7/trffdevBgW4REhM1GdFMUb3W6L750cjgcAqPPPffciZMv3XnnnRfOn3vm2afn5uauXbuGYz5nDDm5g8GAUaAUCOGSS2SuYXK3d05KmecYPUfQBnJnoEPBPg6b3nsHlgDdYSAKIZgQ3nvKgDEGzhdFAZQh/zEOo+nJSWttFEXZaOicayQ1WynsoTQGzSSdA2+dwGIXgBFirXekerZhTPXFG82YUHmBz7xzLk1Twtn8rsUgEM65IAgYI+12u16vr66uIvUPnM3zFImlzjlrDQA4Ywjj3hvk9o4LBIM5LsgRA0Lwr3bwSq01BcAaJOYRAGijiryUUgohifOeVs8hAo5FkQGA1jqIwh3yLJOCMaY1dQ4AKmvgerNBUKXuCGF0RzrpnCNjiLlHes45Sri1eSBIo9FijGVZ5oAAUBkEk42Gcy7LMuccF0IKobVGzY31nnJGCXEWtNFIcIOKeYp66jHs7ikhzhkghFAx7rwS4sc56q5iEVLBCBv7dFlnxwYUO4AFoRQYqzBo9NH23hulEC0aEwNvOIAFlFrw3ntrqzMsSoMsTqtNobWQmPoIQvAoCgkJMCewyjrjBIAzxpIkYVSUZZnnubFqR0VRGh2NGcGUUgI3MiTRpnbsIVOxmBGlRYwVoVg08pJScisweV5r7YxF75QREIT/kDPuvUdmIowdTp1z1APyrcw4xhD3M8a0NjMzMx/5yEc+9alPPf203yFpWmuNccaUExMTi4uLCwsLQrArly9vbm6iP/toNNLGAAD6lu6UyZzzUZ7hAwkAYRIT6nd8V51zaowdI2OOUkoJcWPBnAcwxpiq7IWdO0vpOO1qTN8wxljria+ctbTTaLhPKqp+5ZOOPGvC6Biku7GUQis2GDfjvffgK42vH/Oa6ThF0HsPsHN85x3Bc6jil0JBPJqEMKXIcDhMkoQQShkAmFIZDxYAVldXV9bW6o1kcrJlnQ2CiHLiLCiFGAItCmW1acQJOucqVXBOw1ASQtJ0uLxyXeWKErKxvjUG07kQIssy5Kc+88wzX/rSQ8PhsN1uD4fDer2eJMlgMOCC7969e215G19VAEB6Pr4jGKyHO5vNJiJoQRBQRjnno9EA3Q+CIEC3Cnx/gyBgjDEmKKX4djoPQlARJ1pbAsQaA9+MaqONsdYyxhkb31xSZcO6saa8KHJrLSotcIkCQDn1hDIGjFFwnhOw4B0Q8N4aYz1oysBCJXDpdUfZqJiamtq1a9f09PTa8sq5c+c4ZYcPH8YRDJkTvV7Pe99qtWq1WlkWQvA8z50zxiguaJ5bAI8GF0EgpAxx5OFV8h4KbhyloXN4hoQJxhhllMkwoAy0wZAbC0CCMELhIE4TCKE654xxhDAP3hhHqWcMqAdrbcADHO1xLsjzfAd1YYx677OiwGdAVqixJoQoO7Z6ByqlRLk5LiARAZBSMkK0VtZqbQwlRAhhrfPeI96NziFcVFgzIdQifsUEY6wsy1ZSL3ItRKB1uba2NhqNGNNJkuDKDYdZY40fjz8YfI4TK/qE4FyDrxUqLwFA/DnK+DGvvApI997DuO9LxkYc1lpKmRACb2iapkqVyDUWYbC2tvZrv/ZrJ0+eeMd7vrPdaD/88MOT8eTk5OTC7NyTTz7x6KOP9vqdn/mZnxmMRseOHQNPf/4Xf+HQoUNhGA4Gg9tvv703HLzpTW+ilF69cq036KMRynA4TNNRGIZTU1P1ep0x9tRTX7t8+eL2dverjz++uLjYbDbf9a53/e2//be3e93PfPZPJicnf/AHf7DRqP3mb/7m+fPnjx07dt99bwOAO++88+rVq1euXLn99tsPHjzIGFtcXFTKIN1YCJHnRa2GTAKHPkiLi4uc88Fg4Mex2/1+HwDe/OY3o8JPCDEYDBpJjczPz8/Pr6+vDwYD59yuXbv27Nnz9NNPMcZ27V4oy/Kzn/3s+fPnwzDudHrWeSxAVFmGQUApHY1GRjspZaPROLhv/21Hb0mL/LHHHoui6NixY9evXL106dKFy5fiOC7Lotvt4vgghABP6/U6JnnmeTYGRc2OBxou84QIAByhPoqiWi0OdbS9vc05I4RopRkheDTseadpWpYlRv7iGolzIITvrNniOJ6dnQ3D8MuPPHzixAlUgz399NMbGxtPP/10r9dLkoSPY6hXV1f9WNeFiCiMV1lFUbwcm8Vh3zmXxAlOQDuLw6r7OKb2Y2u9LEtrjOF8z97FtFP0+kMCQDzUajXGSFcQ5a0Qgo8faCDOE7bz6CP24VBtzRhDJjmllDLCOQWo8Fyty6KwAEA444TtONzjy7Aj/WOMkXGtQsbSMARZWMXkkkmSbG1tqSLHFTxQKmWQ5wVjtFarhWG4ubmZZRnxVUIr5gdiFy6KoiSJGGPeVjQ9JLobYyitTD9xjqGEE0LwSymlrKlAZDr2bt+Bkv3LXNKc1d4B4xzP3CNnwVNTLeW/PYizMfD00/A933Njz9oadLvVv4sCPv95+MhHvg0f9MAD8G//7atpvN0uLC29wgb6iSdesxnxhQvwIz8CH/oQ/NAPQZK8wt34G7cogiiCf/yP4bu/G/7P/xMuXHjF/zUGnn8ebrvtxp6NDVhbew0ns7EBGxuvwKz/P53mt7b2amj48GF49NHXcIQ4frU5ydWr32YPkMuX4fJl+MIX4AMfgPvug2PHvvmvHT8OjzwCn/88fPjDr9hfFK/tFn/bN3SZgGqFvTMeOsoJoTaKhdYlD7gIRczDsiwJeELAOq1UpRfeGY45l5w7NP7HEstayzlRSgM4GeDYyzjj1njKgFIeBCIzWb/fT5J6o9HK89w7AsA6neFHPvKRf/7P//nnPvdnf/RHf/Rbv/uxt7/jO3/nY7/30olTQMB6R71ptVpZluUpdo28I5SNkyjw050zhPAkjAijhHgLURzHxFvvPTBaFIU13lOirGKSRTzAIoRQzwixFmXOwfjKIH3LW7DeomUhD4IQD4UOjwBuMOhpk0dR1Gq1cNJdW15tNptlWWqtvAOF4y0nhBIAB4Ai8Rth7jBeeDnnOK/MSS9fvnz16tV/+A//oXPu6C1HVlaX1ldXGCdZNgTvQ3Rn8oYA5nTtuCRppayQla8IVg5YBtfqMbEkTVNCvBCCCxrKsNlsbG9vU2aCkM/OTm9urmf56PKlJQBYW+kOBjlizVo5xinxBDw1xjNK+71hWWhlyrgRzszMNBqN4XDY7XfSNE3TYSijZrNZr9ePHDlCCLl27dpNRw4RD+12a2NjI81Gt912y6FDN3W2+6dOnE3TIWqGCCEYwxvGMssycLkUodbaUSt4wAPJOUPrRqVKoJgkRpvN9p49e44cOVwU2eraclkWn//85ycmJubnF+656y1FoU6dOnX33Xfv3bv7ma8/+fzzz3c6AyaCQX8Ds9HzfJQk4XA4tD47dOiQtiNrvHNQT5L9+/crZQaDjFJprTHGMGDgK8H+TTff/J73fsfaxtWoJgfDrWeff1YEQaPe6vUGvd4AQ0W6XY1FexiGzUZLSnnx4sWiUBhZY4yhjlIqlDJFUcRRsrq0AQA8EFLKM2fOOOcCGa2vrxPCOBNWGwAuhDCeLV27dt99b8vz9ImvPV6L62trm0Wu/BQ9f/7s+993fzoqL126JETguF+9ugaUcymdc855xgQ2s2FsPSGEoJQb7+zYC5XzwDlT5HmtkVAgYLwB77RuTNSjJLZWowgat5WVlX7ebTabg+65tbU1a1yj0QhlFEe16T3T3W53enq63Z48c+ZMnpeM8rW1tbIohJSUE2ttEPJWq3Hp8oWyLAeDDBRKmiGohZOtiWazub29neZKMO6Ic84B4YKyQhXaak+gUpQDRV9RAIAoKtUQAYWkGe/bv5sxluaj5eXro9EIAASTk5MT+SjtDzYplZwyRqgf67VxQBjzdBzWaRj2HDYaSBI8dusbH3nk4VMnj8/M1M+efPGHf+TvBkHyW7/9O3/37/6vC3v2JI1pIVi/22lMsdnpaa3t3/uxHz937tzv/d4n77n7LXOzi08++eSHPvShN91979bW1la312q1ZMAIgUYzec/73h1F0crmVhRFwFhaFN5YKWUSxR4cYdRZxxghhDinkb1LCYDnQKgUsSfGe3/TTTedPHkiS4dxHCmdFWXGBT2w/9D09Oz83OJ9990nmSCc97OiO8oEZ0duve17P/wDD37xgdXV1a8+/igh/quPfaXZbLbq4dryFeJ0JANOmRACE0rCMKzV4k5ny3ubYyo9BvcxDgBajcOpUUhHMAgUhz4KQNHXF58978BZG4YyCALKWaFVtajmwlMacOGsLspydnomDKX3Hsu/OOBCiO1OpyxL7TxjLE8zRhkFQjlH82XvvdUabRY8qQZYDHd1znGC51yleaP804IPGMPWKdb5yABFRGCUpWVZCiFKU6JSEFfRURQxIPj7nrJx0WKtpc5ZxitXUDdGqLXWw2GKXEtKuPXae08JQ97lGCZDZNBgV9h7gpAEpSACCWOXf86lsc7a0jkXRTFOzcaYLB1Z69zYk2IHZ6eUc8aMtnmaYgwX/n6cyNLYIAxYIXRRykAePHhw165d29vbp0+fVrqwTveHaRiGQSCUMtbuOGsLxolz2JRCS30KlHj8SeM1J45UiAb1r4j09N5TzsYFlNsBHz1QrTU2d4Fhh9vjJ2IJg/pUANCEaGMIozvTKGKUVT6NUpQzTAUIw9B5g0OfdRZTbbx3YRhVlaS1SPdDYNdXGb/UOcuo4JzLgPvSGmPwF4IgoGOElFBKgXJS4SaEMQaMc845hZFDIwvUaKODyrjFwvB8DBnnEQXhIB9UkI2phPDGGEKsc0BfVl0qpagHwlhRoAUzYH8XV0EoRLh8+fKP//iPa62bzSYd2zMSQqampg4ePOicGwwGKysrw2EfEfDBYICzdnc4II5oZ3kgi6IIk1hrrazRw+FOqcs5D0KB/9hpF+Flx4s5Go2wA42IuUa6MRAPYMcmtsYYDLkq88L7MggCp/E18cRXrAjOuScVpc45B2UFOzLGZBjgO2itJRy4qzA77yprGkqpc2YHYuaU6Soa8YZJJgDs5JQCAONY+4MHJgTjnDujd+hcnEfeeaDo8WKc1xhumWel1nprq3P+9KXp+ebC4tzcwnSv1wMAxoQUVCmFAd2EYG6tvnjpvGc8zTNtgVIaxyGnIgpCcO7a0lIYhtvb21qXUoq3vvWt29vbTz751MGDB4UQ1vp+v69UgYvt0WjkvSUEkiTClNHqxQGCplvjFgit1WpKKW2U5LTdbt96660bGxsXLlxCFohSqt1s9Ho9R0ApJYTDW1lLGvi8EQEAJMuyMu8lLzNm3Nm8QwsK7yxQQhgnjDGwDn1gCCFAnPdAd3hy1XDnlU6BOMflGItwBBx11lPvfMEYdcRxLpIkMcY1Gq3Gza2JiYmiKFaXli9dusQYm5qcwleAU6q1stb2et2DBw9GUXT9+jUUnTPGVJ6Ryubbb2xseG9RxmeMIgTQc8laKwQwIqIoyrKCUI4+40ppfAVDKZCoRymVnAoh2o2Jc+fOra+vG2P27zsYx/EzzzxjjQdPtbLOOUuds0CAhUFN8CgvhkEQeOuMMVk28t4LnNQJWItsQkcpo4wIyYkBB14IIcDjsm0M8IX4DEspjVFKKfRoVUpROn5fjHPOhWGIhQnn3BMmq6Vg1ZwLw1BrW42rpQqCUMpw0Bt1u91AcsY1DtiMc0KI0kWe56EU/gZToQLp8N3fAY59JWminHMGf1H+0k5nCAdSXDpUswOlhBCrDfI1tda33nrrL/zCL3zhC1/47//9Y1EUZVn2e7/3e0dvvu1nf/bffPnBLytVlKX+X37gb/zNv/k3f/RHf/Shhx5c29j4nY997Pz58zMzM7fddsf09Kx3bHJycmlpaZilx48fP3To0N69e4UMBqPhzMzM0aNHn3nmmY2NDSmD9fX1c+fOpaPRk08+sXfv3jzPZ2an3vDG1125cuXylYsXLp67eOXy2972tuvXr588eaIsy8uXL2O0Jl6BN77xjU8//XQ2HO3ff7Ber3e7Xf+yHAv8dpUVJKNVV7X69l4Ige1DSun9999/5513rqysOOfm5uZ2794dRRHahly+cPH7vvv7Go3axvbW5ubm9PSsEAw8PX78+Pr6ujEWLyylRCnV7/U450EQDIdDY0zAgiiKdFF+/OMff/bZZ+cXZgfdntPm1ImXRnk2Mz83Pz+/b9++L37xC8YYLqSkNAiCMIzzPAfnKWNRFOFQQxg456IomZqawukA7dGxS7Fr1x5KKaOXe70eYwyATranEG611g6HQ+xh4wOJdoXOOW1K9G3HL3v16tUzZ84sLS1hUGG/3x+NRqdPnYqTBC8F9ti895zQwijAkDzGtNaU8squ7WU9TkoppVxQ4rnH2dmNI6Y5Y1gHGGuxgvbeZ9no7rvvPnbHHX/2Z3+W53kcJ7t27zVBGQVhsV5sba4DwKFDhxbS/RV+ip03Oo6YwHoP/8EYo+NEe8aYHjud46IZu1XDbBQEgTEMK3l8hwGAc650WcncrNdas3GP3XtPCRdcIikjDEMpRaNR71tjqiaARBuvKIk5F1qbJKk559PhCIACWFUicEiSMGq1G2EYjkYDRwg6WO/fv39mZqbX621ubvd6vaLIKeVBIGdmZg8ePJim6enTp4sikyKAsR/0zktOK2t86z1gV74aPohnFLyn1mlr7M76Bi3t/vobpa+OcaP0Bj+X0m9DqhsAXLsG//k/f0uo62v1BcZNKfj4x+FLX4If/3F4z3u+pT/Ztw/+zb+Bj370FdDnN37fOH5t4Xicv/p6/r8bQ/fX3PL81ej5bbcB568BQK/XX8GdB4ATJ75dZ/eKrd+Hj38cPvlJWFiA974Xvuu7YGYGAGBjAz73OXjgAVhZAWOA81e0E/AXvpHn/j9yqwIxCAHYWYyCA0uIlwH13mlvszwNIzE1Nbm0tGScRu9NQQl4sMRSgSszR5wPgnB5eZlSGoYhBl/sdOal5OCILrXnrMyVMWZE8kaj0Wq0tnV3c3PTW6CUWuLCMPAdePb55/7Lb/7X++//YJbrn/u5n/PAv/r4U8P+QEQJ5zwIRKvVGI16bmzh571zhFAChBACXpvSGUD+HZcMqQ1OBo5Wsem4uOScY6KOoILSIM/zsiw450IEQjAppfVOa+2quFfKOaeC8kAaY6x1WuskCoUQo9EAixRj7frGRpqmcVSr1+t0Ny2KkgsKAFi4ek84Zcj6IZQYrcm4wUvGltM4IAdBMDExYYxZWlrCFu53fMc73vnO+z73mT9ttuqTk5O9Xhes6/V6xlj81jvTGa3cPwEr1Ua75b0rigJjvigl1jskh8ZxsrB7V5LEo9EoriVa51KKsszHBnOec85jiik7AOA9gAPGWb3eZIy0WhOc0zzPOed5mWFSXBCKuXB2ZXV10EkX5pvT09OEkLPnTmVZtry0duLFF4TgeaEnJmoLCwuCB3v27KWUyoiZ1BIGYMF7S6n03lui53ZNdXtbeT4ACpwyY/JOt5ibm5udnVM6c97rsqQMykL3er0sy5aXr29srE3PTE5NTbbb7TiOL126tL3VXVvbKAbFg1/44tzCbKe7pbWVAQkDDHvR1mptSil5lFDnSxn4O44djcKk2x1cvnT9wS8/pJTzFghzYRhSCgEXRaG8J5TTXbsXvv71r589d3J2cWpra12GYnKifeXK9UCGURiz8RLHaFtL6t1ut9vtcs6VMkqpdrvd7/etJUk9BoCVpdXrV5cGgyEXNIjCKEqiKKIUomBCCLG2tqGU8QCOYfwOBE7GUS1J6idPvNRZHqw21sCRbFRevnylSJUxwGgAnlMqGvV44AdOG0IIIxwoFEVhjKG+6hsRwjiXwACUAXCYSE8oo4xN1hLvba7T6fkp5wxh4ME65+IkAfDalMNUo7OnsTYI1uq1BmNMl8Za36xHWtvBYJSmuXObo1E2Go2cg7XttTzLuBDWWq/d9PRkGEmlyt27D8zOzjLGlVJPP/XM+vJWkkRz89Naa8ptwzpd6tFopNOSEKs1DAZdIULOubUasUt0JIzjsN2e3OyUtVptZmZGOzMYDKw3eZ7TyrAyuuWWWzpb3UuXNBDnvfaEcFYR5XxFkbPeO2O8EKLT6XhvjTEH9u+/++67r1+/etddd+1fvOmF57/+zre/+cf/0d//yZ/8yV/71f+4vLJlHd9/4JbWxK44jjY7I21EkZUXls+0222f9X/jP/3X8+fPvu/97/kH/+AfJPXaMB1QBmES0r4bjQaMkSAQt95222jYf/TRhx9//vjk5OR9b3t7GAaCMuJs6UwkhbWWB9JZ7axl4/gQQrz3AWdw8cK1eqv50kunfvVX/+PyyvWZmUnrSkK8lFQpN0oHhw4dOn/+/B/90R+97q57u93uc09/3VobBuLmm28+ffpUp9slxM/Pz2bDgXXaFCkPA+pMyCnl3FqrVFmWhbXWGhUGQgjhPfWUlGXpvRNCAnHOQhTH1qRlaXGQHuemEkpRy++cqxb9jDHGGfHAODHGGFWGYUgFr6BqRyw4tBcAcAtzc4itlHleS8Ldu3e3Wq1ut8s4j6JkZWV1eWnVGO2JIyLgCMxxmo1MWSoZRjglgSfOOeOrZT+aiZOx1SyC5qPRwFqLC2xjTH/QXV9XzjnKGcJkraiB1USFYTFOKpm/J4R664xFq2JLGUgpOaeIUVJK0alfKfSKdQBAKMH+IqMMAMIowFOK4mA0rALrtLbOGUopIRz5JVhcDIdDJisbNWc8Dbj3dnu7qwuDmI4QjI5xgTGcinZYO01TKoTUtjBOBzRM6jXKOaYVZVn2wvHnkKwHY+flMfoJzjullPcFASY454IyTjDda1w3EWCcUE8ArDVal9ZyTiphKN0JgWQVQG+0A2IoEO89si+991pra6xldgfKRPgSxspRbBnCGObAIxNGETailIKzVmnnHI0p48xW7sk2DMMwDJrN5mg0wlZBwIXThgYBMpEBoCjyLNOUUupKSimhPuAC2yEIN+M6BJ1hd0wnsbOiteacek8cASZFWZZUcAykOn36tJSSUs4Ywz2ZLgeDgS5Vzgu2k5rjNEBlgZhlmRDBDkLkjeWEAtlpsVf7sbxHNSoO79ggQdgCExrm5+cX5xY3Nzc3Njbc2DwaPRYmJiY2NjbyPC9VibwwtIIlhIwtYjleGTLmp9Ox0rdaVo4bGzuPHP6mtRbG7u3OOYTp8XVj4whQhAY454IKSm0gQmttnpf4KQgoEOI5pxXcXBFRq41SjKQjzjlTqh3+MhlLVaoBE7z1zluDfho7j1PlNU+AUlyH0CAQQggpRW40vrNxHM/MzBhjhiOdZQqIp4zsrKXjODEOXGAIyCLXve6IcQFAwzA0TgdB0B9lG+lGFIRFUcgwcM47QkajURBExIF14C1MtNrTE9NJvZ6maX/QRZOEra2tPC/a7bYqTbfbNcYZoyYmWseOHROSHT9+/NTK2VqtNjs7a4zJsiIIAjTzKYqCc47hCqN0iBYTQoggYLt2LSDlef/+vWfPngfnAdwoz3Fk41JYq4fDysrZWKUKPXSjoiiscUn0SjrPjVuA7UbrvQ+CAPFQo9FbaSwf5wwArHfEghDcOSiKgjFjrfIAiMYDqQjwxiohuHUlgKvXJ5yDOKrPz+0aDcjp06c3NjYEZVEUJVG8tLQEADMzM4yQWhwvrazMzs465y5duqSUoszV63VCfBjJXq83HA5Go0Ecx4i+7TzJjDFrMZSSeO8QrkLtuDGWMVYWOqrVGRP4wBivwzBsT06sLq90e9thJOfn905OTL/00kvoik4pxdAIDAwsaenHzF9kYVttvPdxHFutCamUATAWEGAv0HrHcXKhBGcxIol3lVoI9aaUUq1LzDnAliq+eiKQEeVYWWitmeB4WDw3jBpFtiIOXEVRtJMGeh9rrRv1gFCT56MwlKa0hBCgPgxlFIRsLPpEqcBOoxSnQiEEDgPYUUDdwzduZNwLITuJGowZY7RSMI4cw3/gqzoajdrt9p49e4bD4fXrSzyQs7OzN9989C333v17H/udM6fP9Xq94XC4sbUuBP+1X/uVkydP/vqv//ojjzwyGo1efPGlZ589ftutt0+2Jx96+CvOOcxxAYCTL51y4G+77TY3JrdiB9p7763vdDpJkiDxeXJ6ajQa7d2791Of+tTpc2e73W18hPCXMdq90WgkSd17f+XKyYmJqZsP34wGL48//vjZs+c/8IEPKKXAV1OYMUbKQOkCZTc4vWI/APvcH/zgBw8fPlwUxdTU1L333gsAGNktpUSlAobUnTt35k1veCOO8CsrSzyQX/rSl6ZnJo0xX/va18C6LE211jMzM81afX5m9ty5c0jtx/7E448/TmiVokEIEWEQx/Hy8jI6IEdJ7Kz33qdpKkSAY2wcx2k2woYf6q4kF9ZarHqUUlqXANDpdM6dOzc1NTUaDikhRaEopd1u11qL7F78REopIZQQYpXGtGccmbXWxlpjzPb2Njb8GJDSVnERjWYTj4BPCPXAxoRaZ8H7G8JN8jIS8M4jxwDLW4s1EdrdINyP3RfUSSDN3Fq/sb6O/tHPH3+2GU7MzS/WWpHVpigKVRrLbFEUSqmqZ1VNk25s/e6ctZ4xCgA4rcZxDW8ApYDJs9ZaQqQQwlithhVGgMbYeEwuBWhijMYlSDX/EcYYk1yUhS5Uhi/SzpvTarUmp9ob61uDwUApTQgLgggc6XX6VQMfmBCB1rrIFQL/SRRFcWAMTjZqp3+Cz3oYhtPT03v37l1dXVWlabfbjLFer9vr9QiBOIkppVY7Y4x3ZNy0r6RqOwD0GH6qBiMAsNoQWmV9vIwC+dfdnIM3vOEVexYXIY4r2Nc5eNObXv37f/fvwrVrr+1TlPofwfDd3IR/9a/g536u8nw4eBBuvx327oVWC+L41SgwAOzdC//kn8DP/uyNPd/4fet1mJp6DSD4xATUaq/Yc9dd/1/FmgGgKODs2VfwhRcWIAxfwwXZtQump1+x5+LFb9vpfeNmDFy7Bv/lv8B/+29V58CYVzx7Yfhqf5izZ7/N5h6vdRuXRRgmRBhjQD0nnnFQtqTMUeaiWExNt8IoqjWSrY0tykAwyRjlnEVRhOtv6sEYW5YD3EMp9R675UoKwSktC537PAzDOA5R2ec9rKysli1Vq9WMcbpUYRiWulCqAAre+0E6WtvcSvPy0vlL//Snfso5B4SFSQzWtFqNOA4x32NnCgEA6z3DhY4QFMcup42psqS898qVOOJ573B9VqvVarUa56wsS+cs5cDHgTnW6ohzpRRqZ7QpnTeMCkze8N5j25lz3m63lVKEesZ5EATbnc5QZo1aHcOCms3mxLRTSpVZjtyf4XCYK3yOGTIApJRxHCPFCa0bq36+ta1WCwC+9rXH/9E/uvJr/+k3vuuDH3jooYduueWWkydfKtJscXHX0tKSs0AoocCQEOrBYamqlBoOUu2stZZSEiWhlDzPcxQOG2NarWaSxFk2Goz6k5NtQuuDwSDLR3meq9JIGQZB5B20WlUin7UWwAMQ731ZmjzPd+/eHYaFlDwvk36/2+v1hGS33357s9nY7nZ2797NOe1sbff73ZWVbSgBKNTr4czs1NrG6osvnpucjsuypFQYr40uGCNhHKmixMXH/MzUna+7TeuiKEd5XmZpmY7MyvJGGIeFKvft33P9+lXpvXPKGNPvjaQQeZkDuKWllX6/12g0pJT1eq0/6BLi65MJ53ww7EVRQEjBGK03GnmeZ0WW9keiRvbu3y8k27Nr0VjNmVhdXY3C+mDQK9OUiECGQZzwgwcPzM3NXL9+/cVnTwRRwDn/8oNfAO+DJBoNiyK3w1FeFs5bxgLpwQyHwziOFxcX9+zZI2V48uTJ9fVNvDUAsL29jVYbiKHMz+4aDofpqCCSNWr1I0eOoEFNktR7vV5RFGmax1HCGBEB55QRDZLLJ5946syZM0Dh6qUlIQLGuM7tRHvqqcef2t7uMMaoY4IEkUgUZFpbJNDs8Fys9ZRya63WJadVIUoIceCV0UEQKKu8t7VaMj07BcQA+OXl65SzuBZa6weDQa0WD4d9AAglb7falPDBYFAUSspwNEizLNti29bq0SglBLwDYBBFERcsDKM4jqNI7N6zKCXDSv7y5Yv1enNudpEyBhSAuKwcMSD1RljnHDw1pn365FmtLQCISHLGOedgqxAtjOTCKg6xkusry5WAFJwQQgjWbDYRYd/Y2qSUUsE5cM6ZM4ZSAOtstUIdS7ABOOedTqfVbBJClpevl2V59erVL37mi0WR3XHHrU8++cTkVHN5bbXZrGe5/6+/9duf+OSf5kpTzt74xtcXWm1sbNx0002i6DogTAa//Vu/OzU1tb6+Wq/Xz186b611QGZnp7rbHSnlha8/9fijj7Xbba3V8eMvLCzM33LzUQDgTHqAXBshhLKOUkYJM9YyxrhglFJgSZ7nJ06dfuGFF1548fl6vd5o1PMiDQJGqPPex0lUlvmDDz44HKZPPfVUY/IPtNZ5kYLzRTa66w1vuHzxYq/XaTZqSRQGochGJeW819nCZXOQ1Cgl3lcxqqPRiDEyNTXhvUemBcZuSxlwJjnnHixlQCjxQOmYt4GL7Uo1N3ZIwPMrCo1Faa0WA4VarT4cDos0C4MAwCVJZJTSWvf7vUGvPzs7S5x1WtWi0OnEe+K8nWi1hv1BlhVlocs8U0UpJW82mz5yhJCsKHG1zOiN3r73HvWbACDCwBFAKSgAoC4Qyz/KWJyE1lohJa63EXpDn4FxZUGtVc45gIr5yyQH4hgT3ltjdpq7N3B2qNAZRwVnjCqlglDGcYy2Qox5KQNje5GMKAXQEIYhVqRYzuEBpZTOgQOIokiVJks7zrkiV6hVr7AJQpgl3ntVlJQQwTjeKWUVFiZlWQZJw2itjBEykOCTJNnubD7/wrOVU6FzxmjGWKEVIYRLwamPogg8TdNUKY18dWOMCJhH031PkMVJgAIAYc4o7Zw34KjbYZp7Zc0OK5YzRggH751TO/Qu540xxgHgj1gWkrFSE8bsORgDoDtVnnPOedC6xHvKGANnqBecCx5Gyppduxb37Nlz9uxZ760zio2JfpQyR4BSam3lhZLnKWLN464JRWSq8osYezI4CztYEhOciQrl6ff7iBQ89NBDveFgdXUVtbpxHO3atevQoUNPPfVUodXY+coi4oBxEWVZZllWr9cbjYYxpigU2oMQh3hogHRsSvlYVcZ9ZQhgBWWWWFElg3nvfa1WQyeHp59+GodKxlgcx7VaDQA4p1LKOEl63S7aejQajampqZWVFZzLAF72BZGQ7gieAAI0WmuEgLGbEkURGeuXER2wYxjaOZfnebvdbrVa+H9rcZIkiTFWa+21F0IkST0bVRx8ytH6hlEKOyw2vOz4LjuCxPZKgL/jJkEIGQsFKv49Pj88kN57Qpgn4MCTseiBMHyiKIoSCPHa5HmZ+fE7i5MmpZYQ6itnD0KwPUtlGAS1Zs15ZY0bDtN6PcmLvN/vtyebFAgQzOVjnAvvwRqvvYmigDNhvIsCEQRRWZYrq0uT07PD4XA4HI5GoyAInn76GdRblIVO0xSJHQhlztan77vvPnBka2sLF/Y4j1tbNRIQK7DOAfFKKa11EAjOg263e/369TiutdttVeT9bieOY8TTKaXIyyYNhpg1Cn/G1GMCf47Q2TmnlMGegXOARHKtLfUexzprNXhGWSXMl1Ia4zjnjFlsBAIwAkCAEUrBWcaY0Vo7HSYxIYQAe93r3kAc6fcHAKRVbwJAmo62NjZxwRxKaYzSWoeSh5KvrC71+/1Go9FqNbz3zpleZztNU+fMwsJCEARKF0opSljlY+McY9x776wlhI5GmRCBVlaGNM9SIYKpqSnOpXeEMUaJJ0C8I53N7ubmJgC02+35+fnt7e3NrXVVZh4sojec4/DGwHkCwCmz49hkTisGvRAiiSJrjbVWO4tselIZSoDKS7ykuMc5hznk3nv0ZMOhfgxeUc6x50eUUpa5HTiYuMptSQihrAEHQgilFCdAhHDOBXFQIXeU1ut1Kb02KRrHEUY551wKIYQnYJxFdrb3BCN27SsTfRFuxpfuzwOPKCFVIcqqyN6q/TN2jUfOKRrBe+/DMFxfX/+BH/iB55557tBNh26+9ZaNjY077rjjp37qn33hC1+4+eabP/GJTzzz9a9//OP//fbbb33/e99/5+uPyVAwwffuP2C0O3Pi5Eng589fjJPg/vvvf8Mb3iCEoIQlSfL88Rc+97nPhWG4e/fupaWljY2NLMuSKF5YWFhYWOgfOfL444/fdNNNDvzJkycPHNhXryeDdIRp1SjmIITcfffd29vbURR95StfOXfu3NmzZ9/5znfe/77345j/wQ9+8E/+5DNPPPHEfffdNxgMtK6Wl8ZoAMKZtGi0TRmKmqz1+/YeqNVqwwEGMpM4qgVBUJZlaUtCSBAEd911Fw5ct9xyG9pWLC0t7dq1Z3p6+uqlq1EUnDt3Tue6P+hOTk5+9KMfbTQaX/3qV69cubKwsFDkCuP7ECinDKIostZmWTZIRxjtrpTinBXDoXeVZiXPyyRJ0CPR2MqhpZ7EhDD0icqyDMcZ7A4GMmSMdTod/FKCVe091NlgN5RU1sSUAdHO7ZDJsDcMAN1uF12nYCziGau7eDW5AGFAojhyzqVp6lzViAUAKQNkcQFUsBjWQTDOELA3bMcZjpbGIFRrhAiKIsO5r57Url9b/oNP/OGBAwfe9KY3jbbzM6dOu8SoopRpldE6HA7TMsWAdcDJ2BtDCEMoOc/zIAiCIDBGl2W5gyZwyaREVpoXQgDxUHp0TnHjxHbnnDKacpbnOec0iiK8QIwJBCM8AU8A68Z6va61pgwEZUoX+bBQRnsCWmspGWdSKVUWqbUWXZm0sr3RwHu/ky6KBHhjDCF+Z4nT7/eXl5ezLAOge/fuFUIY7bTWucq11qXKkyShlGVZVha5H8sWvPfjbjQZ401kvA6AnTELABihZGy9Z8w371C91q3dfjUQ/NxzsLFx48ff/m341//6ZUMShfn5/5e9bv/irSigKGB9HZ59Fv7gDyCOoV6HO+6AD3wAbrvt1VjwW94C09OvSA78xu+7fz9cufKtfvr+/a9mQ3/sY3+lr/E/zXb27Ct+rNdhZuY1wM2vMm7e3ISlpW/Pif3F26tQ5p1tYuLVjYdXfcH/8dsOUAvIPQMg4ABAOz03PyWloAySWi0IoizLDx7ae9OR/aura4P+iFPhHKCwV/DAW43Ld7SYKIqCjrWu4yNbrbUplXMuTfMwDBuNhjd+c3OzKFSr1WKMDYdDxoBSCgbe+Z3v+qc/+c/+wy/9yi/98q/WJ6e/8MUv2aIQcaJKwwVsbGxsbq0DAOWYeU92CtcqtchW6iEcqEejESbeeOZarVYcJ95DlmUYG0gpDQIJAGEY1mSCDVspeafTQRc8VyUUeexzIvEBF3ZRhPI0tLS2CsNJOHdWb21tEUJmZ+elFJcvXwaAoih0qUQgpZSMUZVpAC+kBACty9HI4XoLJ3suRaFKGQZ5nlprp2amV9ZW/+AP/mBxcTFN0wcffJATCgDNRjsKkzzHcCRGPCApgDEgnFrr0zTtj4aE+qSe1BoJssCyLFNGW2d7w97S6tJgMAQKQSBq9WDXrl15ng8GgzK1zQlIkoRywjh1ufdgCDikdeOlGA6HnU6nKArkcFFOGGMeJNZI09PTKytLeZ5775mgzXZwxy2v27Nnz+bmxu59C1euXDpx4kSapstr1+q1drPdCIJAawfO4aIzTdNaLRaClUoFIZ2dmy9yu7HeL8tyY2NlcnLyypUrzittNJ4SzrbNZrMsc0oBl+9pOnTONxr1+fkaErK890EQ1GrJ9vb20vV1KeVb33pPUWaEwP79e5eWr1HOVpevDwbDTqfnHYnrQRCFzpKFhYWZ2fYoHVxfubi0crU2yYu8LMtS1kPviDJm5foqUB8mUVm4mZmZstTbnfVbbrllz549165dC8MYE8Odc5xLxiwumCokiNA9e/YwJlZX14tCMUYOHDiQJMmFCxeSJOl2+/3+0FofBpGUUinlnAlrsdBi6dqyNiUFTiURQnjjAh4YA9b4fq9DKSWEYQ/DWguk8tFCP0rnnCM3hgILno1VftYbZ60IAkc055RzGUSSCwDKAdzcwmyapisrS/PziwgyCiGazabkgRBCyrDMzWhQWJ3rUgshGEM9Ade6VEoRRvMsr9VrYRi2Wg0hWBSFQSAog7WN1VGWbW5uZ1kupQQCi4vzzlmryzhJcmutU9a5hd0zg95QirC33TfKcsvAUyBgnD6w/+D999//sY99rNfr1dp1Txin3DugTARClGUeyLAotXfu6aefVUpxIZXSDqDQyquKyoT3BYOzsbqmQCghRVGcPXv2woULcRw+9thjVvl9+3b9+m/8pyM3H1TGxLVkfX3lnnvfyXjy+T/9PFgHUly8cpEQsN4989wz99x6kFK4cvWqs/qX/uN/vPW2ozfddNOzzz5789Gje/bsGwwGM3PzZVkuL6/e/ea3HDx48OHHH9naXAdvKQMhRBRFnAs5zsztdvqNRgOItQBhlDz99NMb693bbrvt2tXrn/rUp7hk1pVlmVPmPEAch4xxxkSW5kktmpycrjUbV1fWcGmXZmk2Gm5tb1irhWBKFarIPaCNvSdMIM6IXIokSRB3M6aWRKH3XhtVlqXxlbMBGo9orY3TlFVGvUjItdYjWXinUziuMMF7cN7KMJChGGZDxliWjZRSFEBrNzs9M9lub2xsdLa2tra2EEyp10R/0O1s92q1mtHaaDccpsxBKCT1FNNgyBgc9GMJP/FAwFcOJC/rVsK4NDDGUAoo0cV6CQC4FNHYLg09MpAWtENwxtat8WidbwFcGIYyEMYbrUvnCIDzngjKgiDA6F1cyaNHBAVvDAppAc1zfUWxd0FQAdBJkkRRNG77AYxFM5RyJK4GQZCmabfbE0JILpU1knEpQsTdgBAKlTsfpTQQXClFOHHgB/1emMSNVr0sy5WlVSnDQwcOG2NXri9xzhuNBkqYOec4StRqNe89ZVYEgZRSRmGW5WVZ2tJWpw3eEwLeeY+OfMZZD8wCJQjqIRkHUM3ibihbEUgFj01NY7WGMXxGKfWE4MPz8ueHC2qMUbqghI/hSFpRdhgIGQjJEL7X4wuODCYeSMZYt9tt1RtFNioKPIJBxBOPH0VRkiTGqNXVQrJKAY3FER6kLEtc8FS10pg/SznDKppLkabp9OzML/zcz7/wwgt333337bff/hM/8RPpYIg9s+Fw+Oyzz3a7XU9JGIacY7uukIyPSuW937t370//9E8/8cQTn/70pz0lYRKWpa7Vam983Z0XL168du3aDhtrB2cnhDhnGGOIbCKm7Jyt1WpRFA2Hw263y7nkhCZJgi/I1tbW1NTUG9/4ptOnTxpjGOeEMedckiSHDx/e2tqiFA0VqyxNXHQhToQWAVZpQGbSuEWHRFqjNYxJfNXpIas9wKreoBV+kiRM8JqUACTP8zzPnXJKFVmRa2uiIGRVErpDNR6ldKdK9d47ggGBZAyGeyTR44YmLXiVcA+2N8YANLJBiSfgifMOKKVBKJCFVpblaDSyzgEA4wLfsrIsAUJKqQcOAFzQKEy8J0WhOJMANI7jNOtpTVbXlrvd7bm5ORlAv9sPAhYHbUoFo6IoVH8woJTSWJSlxrEokDxN01F/QLm844477r333uWV61978kljlZSyLEspw4mJCUww6/f7p06dOneezs/P79u/vyhL6xw4fEGYcwY8qiGkc6YoCsoIshmCIKjVamVZpmm6vd194bnn9+8/ePTo0dXV5aIoFhcXNzc3t7a2CGEUCKciK/NABN4BoxCGobOYsvVNNmsdDkfYfjDGIJ6AN2en3OAswLkMzdCiKHKWOOetuzEmE8IIAWcN5ZxqaTSUhZmfn8qz8sXrL0bxbMCFFxZbPgsLC3v37tWmvH7l6unTpwkhExOtfr/LGAsFl5I755y33W6XAWm3m4hj5kWKDyqj1cCI61sA4FxaaxkNtHGU8zwra7XG9PSsQS0lod6DMRZh/W63i+SSAwcOOOfOnDmTpilG1Q9HfUIJIaB0QWhAKMchIhIR5xxNCRgLrNVCiLwslVKMU2xqIlarlFJGO2MQpCJjLUUtqbuxIzwAxZmLUip4QIgyppRSam0GgwEAQWE9znFoDuAIeO+NrW4WBWqMESKQUjpt8lHabrcbjUY6WlM645wXRVZr1MMwBEqUNaBURf8sFWqVYCxlwDYPjkn4qgJAIL6Z1TcAoVRQQSpPdmetRUkUNrSwNCOESMZxeQYAq6ur6SgPwqjVnPjhv/PRP/zDP0zi+srKyu///u8DwNra2vTc9KgY/cZv/sbDX334zW9+85ve/Kbr16//u3/3H2amF37x53/xq199oix1Xgw+/vGP/9mf/Vmr1RoORkm9duDAgcFgsLW15b0vy3JxcXH/3n04iM3Ozn7hiw8Mh8Pv+77v88SdOHHi9OnT/X5fRiF+WXyqm80mALz+9W90zl25cm04TG+77Y4jR44cP358c3OzXq+//vWvf9/73of5B9g25kxWgxhYQj2BigXmX2Z4i4WDG0c+4HUgQJyx1lpvnXMuDiPOeZTEjz/++Ne//vUf+IEfWF5ePnHixMmTJ5G8vG/P3o9+9KOTk5Obm5tJkszMzLRarYn21AMPPDAYDPbt23fTTTdpUyqlzp49iyUztrfxJVVKaWN3WkRYufR6Pe8sBcKqOpqiwYVzPoqiqakmurug8bdSGrFWra0QwjmNvVJElitCdJ5jkwwnfXyWarVas9lEZBVFVxgf8rI/pzurAmOMKg1nUtvKGcNa6z3Zma3GQxABqAKr/Mso+ePOQTVbISI6MTE1Pz/frNeGwyEOa0VR5GroSsjz3IAKhER1r3O+LJQHz/EWkrFUgXJuLVDKhWT4NcbztDdGO+ckiEqMIAQQbHuyWhQRQtI0RYSFMRZIScfkbWxhlWVpjLPWam2wBRvXata7rMjR+GynMTsajYwxzvvRaOQiIISVpZ5stZUqenoH+yaMVUQbXD1QSvM8txqAAucgJfR6PUq5EGxlZcUaj1etMVGzTodx7I3HyYlSaq0nDAAoPqM7F5SONUe4xkWWAHbSnDOAtjt/bkfzNW933vlq8unnP/+KH59/HjY2Kl8C3N7zHvjKV77V46M1h3NA6f8jBGfOq4M7981JxFkGWQYPPggPPgjNJvziL8Idd9z4vxMT8JGPwC/90o09f83v+yorj40NeOaZb/Vv/+fcLl9+RVpguw233voa0gLf+c5X/NjrwXD4bTu3v/Tuf+N27BhMTt74sduFy5e/befzV9vGi2/w3hJGCfWEeODQrDcXFxdX1lbajSbnfDjsb211GGONRo1SwjjRWnEq6vW6tbYsdD7KKaXtdjsvUhxCAfP0jNXWUSBxLYlj771v1BtJmGxvb/c7fe99USjn+qjyK4oiQFVlAP/tv/237/7g9+dF0VldbU7P1ev1QohS5ZEIjNHUO+8sp4yKyoYJgJCKFlHNGbgo0Vp7D0ww70FrBR5QE4etV6wn0a8zCCRjzFsWBkGjVldKba5vhYmQUlIGhDBcLNsqRRqEqDxwjTHGKGttlqcImtdqNfBUCq+17vU63W43yzLkoE1NTSFwYK0NAkEMs9b2e8M8z43TlHLvcJ5xNss455zTer0+GPaQ3fP7v//7+/fvf/O9b+1ubT///POEkF5v4D0BoM5SQkBwjmag3lf5Qt4TdBlGnlGr1Wi3GisrK2is0e12lVJTMxO1Wi3LsrwYoK2tc5YFwDjZvWdeKbWxsU6oAqK44OB5npfOYUvZZFnWbDY55xur66ABwNTq8cbGRpal/X6fS1GWJc6JQRAZY4bDQRQHCFDe8+Z7lpaW1tc3CHNJLZycnPSWbm9sbW12oiCu1+ub253o2tXFXTOU2f6wJ3jYbCf1XmR968rla1CCqIFWAABRFNXrdSxovfcTE5Ozc9PGaIw6AUoKVe7dvWdycooQmJubM8akaRrGQgjeH/Zmpqf7/d5jjz3uvQVPu91BvV5vNttZWsRxbTRKt7e6i7tmNjurUvKYi1tuv+ngwYNZWl65dL3XTbXyV65cpZJRSvft3S+lHI1GAG5hYeGd73znM8888+KLL128eBkb59Y6a/NGoxHHtWyURkHU73ePHDkSBMGwn1+/ujQ52SaMLi8vv/jii5hLprWllDPKKav4JpSRMAocp8uXr4LkARdScmOM4AEhTEpmjcWwIKUUpio1m42izIbDIacMCQsAVIRBJIN+v08FHa9xLQZscs6BOcYIE7RU+cLkTFJPLl26EIYyDMN6vT4cDimlQSAAoJbUZ2ZmqOOdTqfISqW01w44dxao5FKErXZDqTU0LasnNU/c9PT05OQ0IURKfu7cuTCUcwvzxjjGWL1eT9NUSFZvRZ3Odqnyoshm1FRzpl0MSgosSeLbbrkVgHY2eisrq/1+P+2nPJBMsvnFubWNVSoq00Csz7WtsrMckGE6klpyzvq9XlmWvrCzuxfiKDLa6UwVRbETJMI9CCFYUCVYKq2KokBReeUzI8RGpxsnwdeefmZtaTtphnnqNjbXpiYXwloY1xIA0MUI2zDZIHv4sa9QSjmFQuXT05MTExPnzp0bjkYHD930r//tzyqlfuzv/YMjh27K8uIrDz9y4fzFQ0cOvP0tb73vrW+jggcyGmXZlUsXp6Znsyy7dOnS5OR0O89RX3nmwsWPf/IPz7505u/9g78/MdlmgmbZiDIvJFOq5EKmaVqv1/M8LcrSAwnD0JRFM4lUWYZJLJmrRfziubONRkNIRoE44gQVlAGKOkFwYwznAsa6N855Uktarcbm5vpwMMAxX0ZhkiSCS1UU3oOo4CEAz9C4GWsD78B7sONClFI0YuDWUc45YQwbgVjnJFHkjJVSNpuNtbXVfn9AKmNNkURxWZbDQc9ozTlvtyaHwxQAAiEpMJVrQomzYHWF4wj0l9yxiaxwKK9UAUCdc8Sh2xJFuBxZvRWY5T0OwtZaKaWz1llLABilzlprjHfOjqNNtDVxHNYbNe+tL23pHGMopvSEM8kDQjSOzyg1dZV4liO1kGOej6oMrKMoAvDWGsqlddaCzcoM63P0iMSWnta6yLIwjBYXk9FoNBqNjAc5tikgzoMHpNFgaUcJWLCCybTILLiFXQtM2v379wshLpy7pHXJmJibm+v3+8P+AGcQzjklGM7LpBSUaS4ZE9w5uEHfoyIbjnBedoR4C84Z5BkR4ryvDHgR98d21w6DiRDiPEJRjHPuyY34XBjXKXZcZ6F+1lhFGSZPEgrOW+uh0m57ygkQ5KdjKF9ZltZqCiQdjpRSYRyN+v1bb72VUjoaZs45Y3IpJQDBq0opnZ6bJYT0+0NrLfpaVEwjSwiliOMj585aq0rjKVBeMfWsN0YrY1RRZB/+8Idvvf22n/zJn/zRH/3RlZUVRHy0zpIkGY1Gm5ub7WYrabXSNE3TdPfu3e1G86knnuBBgO3hc+fObW1tLe7ZPRgM0jQNQ4JWy/fcc8/W1tZgMGBM7PhL7PAcsXTVWgvKmBCcB865Xq/nnIvjmjGGUYaKXuy7b29vf+ELX0BDyCAIclWidP3pp5/Ghx+RejPOuiRjMw0U63AKgglgYIwBQvjYr9mNVfA7Q4eQkoyF86PRKE1T7KMgjBKHMX7QME+VUuhjab3DXAdCPHFjtxZKgFAgxDvHxoKwGwrmsc03AGBUGgDsgOb4o3sZjW5noxSEZFQw64yxylEnQlELAm+8tU6Gwjkghjq0LwNOGRecCRFRwp3NGGNlmWd5JiSA873edpq5vft2CWnyjKhCJbVJBnw0VFmqA5kIERAiwiCw1g6HIwIQhmGSRJzTM2fOhGHIeHWtZMBVaYIgmJ+fx1Ul4pVUweXLlzHiAjGEMi+DIEA7NVQvYc4VeDI2V2HOudOnT4cyIoQUhTp27NjRo0cXFxe9948++nC/34/j2ubmJiFMShlIWRYltli0JkA94cE3LSte1kSkO2tyQoj1HrsiO2MFACBvmjERRZF3ErwnxAtKtauSY4FSZgkhHkIqeECJ3NzuXrt27abDt3a21Pb2dr1ev+mmm5Io6vV6ly5dunL1Uj5KrdVoAOLBoigkT4dFSXGANWUBY1PXbm87CIIwiD2tWimcS8RnjDGEWuWVVa7ZngqCqNloW2up89Za46zRzjkQhOVlMRgNBffT05NpOrxy5UoUBVEUpKnhnA4GPQxkRj5ErVaTMqGUKqMZY2EY5mmmlMrzPAwrX1ZrnEe3cVpxwMMwTF3FNRyfJycUjLbeKxy18GHGu2CNHzOgab1ep5RKGYRhiLpGQkiuSufcDiUZ4UulNZqfEKBZljEO1lrGSUCDWiKzjHMpnHMAHgiEYYiX0RBCiMMB1o2NfQAAoGoi4sXkxP55pejLQECPcDPOAnEcI4/EOeeNLcuSM4m+Ahivt7m5+S/+xb9YX1+/5ZZbnn/6qa898YQI5PT09Mz8bBAEW1ubn3/gUlyL11fX33TvPbfffsxZ+Pe/9O/Onr6wtLRy/sKpU6dOraysnL9wYWtrO7+SYxtpY2MjjuOJiYkgCKIowiC+r3zlK4888kgUh7/9279NKJ2bnxkOh8gKR1PvbreLKOSLL760sLBrbm5ubm4OLTjW1zebtfqBA4cI8UVRLCzMDYdpv99H6F8RlSQJAHAe5HkuxQ0bhuphsBb38LGR1HiEZ7gaQSUf/uYf/eGnkKD91Ucf++znP7e1tdVqtdI0ve22O/7pP/mHi4uLWutarTY1M33x4sWnnnw6jmo/+IM/2O/319bWtjubmEuf5zmCuU4b75xVSkZhWZacMSFEq9UCT40xqysrlFJ0aieEhKEcDAa9Xs8YwxhHdzXnXByEqRsyxso8J96rXFFKrdLaWQQKcInCOa/HCa67pBQAREqJzzDmwepS4byJUwk2woMguHTpkvcehyZrLQG2Y/xQNR69x2xGfB0Q1bTW0nFk0s4iBIsgpdQOqhOGYRiGURRJKUejbHJy0hhz9uzZPM+NL4QJoigagirLkhYEzyHLsoIWnAB11iIOzsbRmUEQeFf9aMYZEYwxAIQSTBiGQShxccPG85kd21FhXwhnX+tKtE1BGjnADY6wEAIfjrIsOa+uoPUVJC14QDkpikJrywnd3t7GP3fEOQeYm8QEN9p6TwgnhBCkduOiPAiiOK5RSqWUw0GKnh69Xi8th4QQAowQQjgLgkArSykWDJV6aGc+2IGbd350zmGHHMZOrMQDVnF/3pYk35LjcBzDD//wK/Z8Izy6tQWnTr0Cfn396+HOO+GFF/7y4+/fD0ePwnd/N8zNwQ//MPR6f/mfvNatVoPf+i14/nn45V+GogCl/qJf7vfh//g/4NOffoVB8/veB5/4BCwvVz/+db7v614Hr3/9K/acOgXb29/iV/mfdMuyV6cv/sRPwIMPfksGFMeOwaFDr9jD2F9yj17T9pruPgCEIfz4j79iTxRBWX7bzuevsxHiGSOEEc7BUcIY5ZxfvnqlLIterxeGEgm8o9GgKEfOgjGOsyCOYs4DVRrmWW+7QynFIHVjDAYDwrh3hSwwxhiXQoowDOLOdi+QgRCCEm6M6feGjJMoirw1lPCF+V1LV6+985335YWJ2y1tSkopF9RoopQSjOBqR3srA3ljgUXHSedje8qd6sJq48B7T0C7tJ+m/RQLm52Cx1ADAGWpcKRdX9/E6Y0SHoUJFud5nrtKAsI5F51Ox2jNOBeCY+ETRVFZlKo0AztqNBq4MhiNsiAIdu/enef5cDgsiixJop20K7Ck3xsqUxqnpQwpJTjSOucI8egz22q1sMsIAEEQYdl24MCB8+fPa62LQhljsJzA9dlOEYhUDu8d59x5g2QWY0xZFNjZxq/vvQ/CcHJy8vTp04ROpmmKVCNrrVLl+fNnJiYmGs1YBtS60mnPGHFOGIP9ZNdsNu+9995msz4ajba7nQsXzgVBQAgkSU0pxSmLoqQsS62tlOG1a9cuXrwwPTtFqB+mfQBoNuuHDh28fPlKoXJrnaBhmET1MkF1zspyJ8tGMzOTlJmrS9cjGdWSppDQasdJcmBzc7vX6TMOgQwprXRM2mhcIxZFMT8/t7q+Qhg1xhDilNHrm+tCiPXNDaWUKnIuPBC7ubW2ubUxHIzKopBSvvDCCSEEo4GUoLW+evVyGIatdvLc808ZZ++9927rCsb90srV0ShrT04ktdrZM5fAurAW7tu3z1q11e0455hgHuCRRx++cOFCGEpcJ6DbzNTU1OLC7tFwuLS0tLx8/ejRo9vb3eeeeyHgSRwnlHJKYHtrK80yIYQxjjERBAGBynpPBoIxVqvFWysDIBQsWGKd5QRY5WFOneCMEOa8JwQIdXEcW6dRiks8oPUWkiKNd444ySSlFOt4SoBSyqQwpMyLrBk1D+7eOzU96amfnpvtdreXVlestWmaEi6klNPTswcPHmSUnz99eXVpNR1lnEvGJCUUHJjSaFbi6jnPy4MH9x86fCDNsnq9jqXytWvXBoPh2kZmPUxNTeEyEQuw/fv3dba28zzX2m12ujwSgrM0zQIZpWnKmIhq0Z1veN3a8urJkyfLogyjsDPopOWo0W4Os1FejKxTQkitS2spISRKYilDpD0u7JrXparVahMTE3leUkrLvsKaAfGUatQaR2BhGicuzNI0JYRoABlwKEvvXWuyGQThRCu+fOHiyRdPRlFETFbogglOHSOeh4LKKGaMFUXGGMuK/GtPfv3ypUv3vvnNjz761Se/9vWf+qmfPnLkZu/9nv37jh8/PhqN3vkdb3/j6+/q9fuSgBegtf7ak09q569duzYcDqdnZg4fPjwzM/PiyRePHz/eHXVuvePoAw989sSJE1k+kFJQCkCE90IpBeAQMAIARkmep0VRGFVKKb12AQNBmI9DSjwFijdLW0McwVgRSnm9UQOjrbWDwRDACyHSbIgOs0EUal1GSRyHUaWedg4IACOmVN6D4AEhFQbImVBWEUyUIh6tk7z3AC6IQ6TrJjTp9/uHjhzKRunq6ipYV5R5kiQTExODXj9OQpUXg17Hm0xKOTs73+v1VGnyNBNMUFB5WggZ4huXFXm/NwyTcEyk8MQBAe/H/n3WOSEEDqTeoodmiJbNCM5qrYqiQMtmrSmOLWRs04ygMP4bxm6b2lbjbZaNjFGIs2MVAABZWThdSaTDMHbOaK2105Si8wDVY3ycMea0oWPHAxR6a62RR+O9zfMcANzYhQk8EULIKASAZrOtjRNCCE6dNjvTseAcXS+yIi2MGhYpl+zON95x4MCBE6dfkIG45557rl25XpZlHDDOeZHllXUvZd4B0leVMkqZMCK1mmSMDVU6HI0YY3EUMSqgXsNksDzPlTYVqAwU2wyMwNiRwOIcBGNSG2MMKMWqxBhDXkaGeznVCxFDay2QitmKdRZ42GEkUUo5Oji7CrBGRqf33I2tirHkuXbtutZq5zSU0taOBA+891xQlRdZlvZ6PUKIsgprfkQHtLNIJKx42dY6nyN+hANIEASKEC4FTq//6l/9K23N7/zO7zjn2u329mgbW6Sj0ajdbDWbzf2HD7/44oveE2/s9PT0bceOoefs5ubmf/iFX4hazcOHDzvnELpSaTocDvfv34/QAwDgg4FInzEKOyj4FHHOHalCienLNcjO4XOFMwIhpNPp4Jkb4xiwMi+tsiMzCIIAsTBnrKAMiEOzcgwyRJibEk6AEeKDIAB0TzbGWstoNaTgskoIAYSYsT2X9x75tlh6c85LpZAYTik1FRwMnHNlPSGekMr+0b+M+uTGdqvjwcRif+vlzLWdChdDmPD4O08LABACFjzhLIrDpJFwTovSeGPDMEgS4ZxzFjiX4BlYm8gkS7W1ANZSwrRyWqUo1h4MO3sOLFIWXrl2tlD6wIGF7/iO75icnGSi3NjYfPbpF7Js5A0dDkrwgktJgHtHi1zjqk+r4ujRo+dXlq9eX8WvwDhhnIdhaLSTUuLlwlVuvV5HCKnf729vdxHs8J4wyklplDLWOiE85wEuw4Rg1rgsz8Iw7Gx1BZONRqvRaFjrn3nmuRMnTqJsOs9L78loNOJcAkCv24/j2DkoS+2cATTwHOtsXrUxhg+YBSCMEVxmWOsIAco5AyJlRe9FyiSGLuR5Tr0EAE88Y8T6G24thDNjFOeMMEoYp5QfOXKks93tdszBA4dr9ZhS+tJLL339619XukDmMueBsYq7CpxBu4Cp2ekoivr9PjZIqhfHU2dhgBxzSgEoIrnOOe20EAH1fGFmNgiiKImd86rUlFIu0Sg5Y5xSBl75VqslBZUyLIpCiCBN83Z7Ms9z1KmvrKzg0LS9vZllo3379tXrdWU8qt4xBK8oirLUOAOysTERweQDT8CTOI4R3FSqoBSECP04zlQp5X2VAVOWOb71GB4wpt+wKIooJWmalkaXZY7vRRBEURRVYQbaoJcUISSQAedyOOp671utllJAoGy1WsZZHJmF4JwLY4wuFbY0dgCxnQGZEHwAKM5Qkn1zZpaz1vhKxVKpJXwFvuGk6b0fDocBF7WkgfwVNEhkjOV5PkhHSZIsLy8Xo+H8/IIDjzPmYDAI46jdbn7+859fX1//ng9+z/lLZxtJy1lAccCtt912x7FjlFLv4dKlSy+99BJagTsHL7zwYr1eN8Z463q9DgDEcYz8qrwo3/Oedx85ckSb8otffOD5F48fOnTovvvue+mll5aXl4Mg+uAHP7gwv2swGGxtbXjv9+/fb4xp1uqoiFpfX0fzDaUMTnl466MoYoxxVqXH7/TAkBdlxxZJVft/7OiNDwl2FpVSH/vYx7A1qJTqdrtveuNdDz30kGD8fe9579vf/vZWq4Wc5Xqz8f9n7k+Dbcuus0B0zHZ1uz39Obdvss+UUpIlS3IrS7iDsquMHLhMBPFsQ0E56hFAEK+qcEAFrqBeGZtXD2MIg6kAXBiwH7ahDJZlpy1ZqV5Kddnevr+n3+1qZzfej7H2zpvplGTLqoL5IyPvPvuss5q55hzjG9/4PmTAmWSMXb1xPa/KU6dOPfbUY1cvXb5y5crdu3fjOE7TFAJOxxOtdRxHdVlxBMZAMg4+SMmrpgrWBQApha2brJOMjo5m01wIIRkPznuEeVklSVyFCsFTndIYo1W8LEQ558goKI1i6qwlEwUAqKrKOXIF4PQKc2hlfl1oTWLzPCfQ3y+kMPxCeWPJB1+8I0G1/knIFl0vBDfjgqkW6wgRAwbOeb/fj6KI2FdUc51PZ1SRHY/HiD6E4MGJoPI8d7FL40T5lnhugrfStR1nnHMZt8JPIo5pu0UPwF6NF5cxzWJmmCWXmbVyz375HUJSAmn+SzabzRDZAvIA2UqHaIA26CnLkjJ/Y0y3263r2llsGqpQcW8sHdwGzwDTNNNaW++stYHKtqAZYxceOrexsWGMGY1G1lrShZlO5kSdE0KEgA4M5zyO0izLQgAfhdk0DzW1ijAkJBt4CEEIboxLIqGUMgBL6h9bUPqXRaoH9/gHzf1odLtvuJ68fmxuvh4NfOklGI9f/7VnnoFv//ZX/9nrwfveB1/60lfhk3IOjz0G/+P/2GK7v/7r8P73w3T6deM4SwndLvzar0Ecw3d/N3zrt8J/99/BpUtf5ayaBm7fhvPnX/PJ6xQ2vubrfe97odd7zYe/+7t/yKv5z3dwDvv7cOYBO4puF97//q8uEqI1/Pf//WtmZghw6RJo/ZXmwDveAU8+CUrBr/4qHB192a99bU///e9//QM6PPy6NQp8zYNzJoRQWqSdJMsyAJzMJ1LKsi6KogAALqCqqrSTrK6ucslM0whBYq98MpmUZQPIwQci2L6ahAcmSA6ynANAQKjrhnPOG3Pn1p1TZ06TkiClfxTYKRlba31wZJSUpul0OkVkSrfpUwhBRzJY6o8GxiQXHJEJoUi2KIRgnImUJp4OAAMgyaAFyiDIk921uajUxAJGZLayQbRiQQh+UW4EZEbK5uTJHUQ8OhrN53NgQOCvsxYQvbFE8qUkU4CQTBpjynmZJElgkCRJ2yUqRBRFTVPt7u4qpbSUxXyexJ3GNMCC1rppqm63L1oDqNa0pK5rkg0RgsdxzKS8d//Ovft3pJQcgWDHyWRCYK6ScRLHbcuzt8YY4EwpDQJ0FGup9vb2ut3uwf5u0zSrq6ve4dbWlpQyjtOPfvTjs9lsbb0vpez1+hSjV1V5dDReXV0lf5WqiuvQIAalRRzHTWOFiKxtrl69nOf5hQsXOLCdnZ04jg8PD0ejEd3GOI6TuBV85AjGNFVVOW8ChOl0srK+1jjb7Xa9w6ZyeTkXTDIGXEAIIERUG//8i5cZd1KFw8PjLJ0kSca5TNLowoVzx4MpegyeW+ud9QAgnciyxDl3cLhHDTlEJ9da24WRL5n1ZVkWxSp44FwjMuiySMVRRCbLbjyaCcmapvbeeu+3dzb3D/eqxr/4yiWlIUnF3t59dP7JJ5+e5VVeTXbObzzyyCPz+fTOnXuccx8cMJHFg/393fm0khpWV1cHgxVEVpZlPi9Hx8d3794djUbOhX5/eOPaTd/42hnOgbGq08mytOu81zomRRfOxJLlR3SAa9eumRy41Iyh5NJZK4SQSlFyQtylEHxAwxiLIrG1tXX58lXnQpZ1Td2QeXSn07t3705LLeHIGUf0HoAJ9ME6qLa210+fPt0b9kgQhkKUJMkAwDvW1FZ1IvKYevHFF7/0+ec5F0pFABwAyYUJMTSNvXd3lyJOzvnR4Wj7xBbJf5Vlefvm3bQTC66nkzxLe1pLqaT3PiOzacbJhLppjJbcORfrRKs4z3PnghR6MpklSbK+tTGZTM6cOeO9rRq3stZXER+PRmVZ5vlURbrX73a7/W6/U9f1fD5N00xKPhx0hBBVPZdS7+/vjvZyxhgyUumRHsEFVAyklEVRUAKAbEH9BgggqqpyTkBAIURTl4IZpaIsjQBc8AZ8HQKzAaIoAeRWBcE4zT2qh8VJdnw0/d0P/X5RlJ/97Ge3drYP9w++6Zve/Wd++Ifu3bvX6fRu3Lz5gQ984NrNG9snduIk/cjHPqq1KutqOBwaW+3t33nl0vMrq4Pv/S/et7293VXpz/zMz9zdvRnHsbGlkLKTJd7bgD44hIDW2jjWzgXOmTG1llJJugRKXbizTWi9QBLWQkJOCCWlZEwENAsrbO+9R/C3bt3a2tpIkoQxpJ5TChWV1EdHR01ZUv+7D55QbAoppZQYAufcehuCQ+TOmTTtRWlErlYe8dSZM29+y1uuXLo0Go3qolxbX2dSpGm8tr7S6XQk42VZzufFYKA6nc5wOLx1887e3gHnwhgzmUyE1FIqFUWBzGDjCJElUVybZgnPCSGMMQjgnLO2VbkxxjLWStYY03jvSA+Bov0FEYzTej6ZTCmlaQFHF+hzFUnn3PHxsday0+kUdQVA+shWCGatYQs+pVKqqgwILhjB2ZbI9WmWEB5aWuutTZLEOWetQ0StZdO0bexVVdBstLaJophWicnxSKkIIHgbGFq0zHsLAbVSkZaMAbCALHgIxltn7Orm5lNPPyWU0FqPx8cAkCTJbDYrWZmmGcHuzgXGGAJwIZ0LHk3TNIGpPq4A8Ml4SpmCdUFoEJKh4NxDp9MRQiAy59x0PPOLO08ZIOGbVM2N0wQAODDOuQDWIsQL4cXlzAFaWRb/RADCHSg3EVwscX+3UBPWWkt6czkKJYXQAEBNuGXVcAHWWs6F98EYI7kUWhN3nnDJyXjWmCpKYmMaziSXEgCqsonjWMko+DY5IlqTcZY/MITiIYQ4jpMofumll/L8s+TEEEXRbJbTtKELqU3D5/Nr165FUVRVlbV+NBp98zd/8+rq6kc+8hGlVNrr9QeDw8ND2t8550mSXL169Wd+5mdojyPGFuE1IQT6L1vUVACAmIbLTURKRSgGqWeGhb4qEceW8uVtiUJFS3oWLVyvpskBACFWLfIYQmBcBI/IEABphmMIZJ9FQAAdgQtBOAJB1XRA2ukAwC1OjIGQkQ4heERStoQH/CqX0Dn9z5JA0IZ82L7m3nvElu9MF0iIc13XYdFhzRjzAEqJENAHa5ydzudk8pl1M84FIgquhFAAPNKxMcaY47zIkyQpqqqTZN6jtVYpef7C6YuPnj5xauVTn7YvX7r0zne/pduLb92+6jEvimpnZ+vSKzenkyqJBhhahc88z4UQcawno+m5c2fKsgQhnTcEx2itEWDBLLaDwWA0GimlhsMhqWEQFLXA+6R3wXtk6IwxTWOzTBjjEFEJzRg456RQZVEpJc6fv/j0008///yLzoUrl6+ura6SVR3ZxNV1rSIdPIYQiqKSUjtnnLEkaY1fJoFRSsSJRBQAGAJqzZWKsiyhMIwYiwIY3XxYNFlKKRkIaxsmWAhBSOYZCCFCcAiOcYdMGFM7b9/y1jf1er2jo/GJEyfm8/krl166ffv2dDy21nZ7WRzHxBpZFhs4Z1XVnDp1am1zY3d3l2aZ962DIpUAhRDUPk/EwbKs4jhe2VglDTQlNeestsbZgAy5kA694pwrwTmvbRNnibBSAHMeozgdDKExjnHEXe4R+oMhcEaQ+mQymhf58y++cObMGa3T9dW1EIISmoo0BOYAgLW+0+kwFkh+hOaqlkIpVVtDK0AIXkotuKQ1li5hUbCxy7cjhNaBs66r2pqFQqDrdrtpmpIHOL0vnPMojqixxlnc3NzOOtFstj+f3w0hcIb04iulAvgQvG3McjUIAWm5xoVmDp128MES1LaoOf3BgdQywjhhYnSQpmm0UqRaTk+TvPWWj5VA9izLsiSmaqtgzFqrIi2lUnFknHHOfcM3fMOZM2fu3r2/urpqrZ3Pp3XlnHFHRwdMsFOnTtGK+o3f+I1vf/vb5/M5IhrjfuEXfuHatWv9fv/4+Hi4ukL66Xlecs6TLH722Y8+++yzRVHM86mtq5e/9KWmab71W799Z+fk1atXP/OZz2xv3X/3u9/92ec+/corr5w4cSJJkhujkQDW6aTr6+u0+1By6hduz4gIyAk5pRWJGlMeBCRx4f0AbeW11SSgaPnjH//4F7/4ReecUupHfuRHvvM7v3N3d3cwGGxvb7/97d94//79D3/4w5ubm5tbOxsbG91O/7Enn7h87eoLL7xApQizW588eZJCu93dXUS0ZS0Yq8tCCS4QfEDGGQeGPlhvOLCNtfUkSSaTcVHOm4rVVUW9U4iYJCntL2VZtIHWQsKXc66ErEwVgvfWMqk219bX1taKopjNZnTtURTxBYNNKeG9i+O4Luv2wTNYblLL6IvAWJpytK0Aa0Uvl6vBA/et3RSgde8QBPHTdoCMUVWPVK1ISUwwzhij16fd9HXMG9HtDbDjJRdJHO/t7WmtN9ZW19yaNE1DOAh4AIacc77gHVAZlnFc7j0AwIQklfcQgvOWFENEu6S2Ohst4UhrIaRB3+5z7FW/TgpAEbGuK9rR41iTdyEFB1EUOVci+KIo0jRlkSbsXAZORG66iVVVKeDdbpfg72tXbxR5dfbcaQAoyzJ4mE7mDgMIHoL3zjEetGhlVmhB0VoDC8Yb8ADgGQUf0AZny14nv5gW7IHRLiLsNaBaCPDOd75m4cgy+MVfhB/4gTdcVdpx7hz80i/BA4p5AACXL7/BNy9dAudewwj+038aplP4hV/4Ssf/0R+FH/3RV48fx/ALvwA/+qNfN45zpwP/7J9BHLf/TFP4e38PfuAHvgrr1rnXO8V1Oq8nIH/N1/u6G+7cf9Yi13/IceMG/Jt/Az/+46+pYfz5Pw/PPgu3bn2lX/wv/0s4d+41n+zvw8/8DCwWijcY73kP/Lf/LZw8CSHAW94C/9P/BPv7b/zNr+HpnzkDf/7Pv+aT+Rz+1b/6Ty+mQQVwX+PpsydXVgc22BU3aJoGAe7f3xuNRr1exwfrXHDObW5uSk7Fc1fm1a3xPVPWWseMiTim9h+7pJxQ5pPEaVmWEAJIQS0/dV3fvnnLYyC4mZSh+MITvJiXWcaNs3VdMw4MGQPq9ywRMQRoZT6D8N6zwEBQLqSW3JYAuFyZ4QFKVAghGCukZMgZAkMuhJBcAYB3nhxZGWOcCyXVkkcWHJZ5NRlNh8PhymDIgdW1mc1mdd1AQBlpSlqklEkScy6VABRowBpjGeNRpJFBXddXr16ldZ5zrqUUCyJPkVdUcW1MzZjw3lI4TtU+5wzdTimFUlGapjZYpWLVOlDbLMtMXSfpRl03dWUQ7Xg8Vyry3mPb7ceklJ04RY6z2VwIPptMAUCreHQ8mU6nN67dVJHs9nsL53o/GAzPnrnAOd/b24vjeGfnxIUL5w8O9nrdlUF/7fq1a0VeCcG4gDTTk8lECn39+nXn3J07d6NIJ1m6tbVlraeYtSxqZ4MQgkvR7XbTRF+9ui8E8+hm8+Kppx45d/58WZZSKAGiLGvB1IvPv1QWdaziKI4BeTGf1pV/7PGH5vloPJ5uX9g+f/78eDy9eeP+5PBQyjggS6O4rg1AQ83vVVUdHc2FZHfv3Dt/4ZxSFfWaEYdrf39fa93r9Xq9XpppJSNE1jR2OslHdkzOSNZazmF3715duiSTm5srR8fjOE6tr4+Pj3XEVI5nz51JkiTN0gD8TW95kjFhbB7QdHup9xZAGGOeeOKJLMt+93c/VBRFr9czxhRFcXQ0amp75/ZtQKa1TqLk+pWbRV5LFYMHAF6VTZIkvV6XYAitY8qIqJOJMWadcc55YzXLeCvyFaRUjCHt45wjgkfuBQeFrKqqw6Pq/T/4Xw0GKy+99NJoNIp1QkJy586dOz4+LMsySrQQwjlTO6eVTtPEY7hw4QRltvNyevXqVe99EmfElev1+oOBzPN8cjzeu7f78ssvz+cVeECGpBC9ZLswJr33ICBgiKJoMpmUdVWb5qWXXggB4lhn3cQYF5A1zSQEOH365HQ6Dd4ZU49GoySKy7LSOk7ijm1mACCYUFw21krZ9oHWdS0U7/Y7wFEK4Zwry3Jjc63f69R1nedlt9cTQozH4+PDkkvR63W89zqKnLPGNEopY2suIMuytpjknBDUJ95wDtZaLgUuukebpqICGGc8S7sYHAjgyAcrQyX1/u5uFGmleVnmDIKzLk26IXjvQ2Uq15hvfOc7N9c2P/ShD0VRJIXe29tP8lxr/dIrL0dJdP361Q8+8x+zLHvf+77jmd//3d/8zd+8du3aaDyeF3lRFCqO+sPeY4891u1F+wd39vZv+uDe//6/iuh//8MffOWFl3/rtz9YNzMhfQBMdYcIDbGNBefWGkKWGWPeGcZRCwk+ENZM7fCMcSklA+AMuaCeCUdEWkQfbKsaqXUUGDpnQLB7e7tZlp6/cHY6neo4DiFIoRWXnU4Hwc1ms1gn1rq8KTlyKTUXnFQnFq3xQCF+XdcGjNbahUAcvS984Qvj4+M4jvPpLMsyKfn+/n4cReBDZZszZ840dTmdThljVdlQKBs8egTGpfdBiJZ6TOt/FEXcY8q5C54xxpwn7MyHEEVRlmXzsjDGdDodaj1mCyE/QjMl6XsKRhw0yhe0Vk2Dyy5XFStEbKyh9kxfuvncMimUElmWFcU8jhNEFsexd8iwRTcaZwEgyzKtpbW2sTVjzDR2fW3DGANYBWBaRyEg54E4O3GsvUfvfaI050AcZ0qQmtqQOgFjDFA6xrQSnIN3zkKQMmGMNU0TEAOglFxE+vGnHg8QvPd1Ub78wov97sAHWxQukpEScjAYkGyOpy9Zy7kEko0OjJziXSupyY0xDAJtT977JNFJnEkpSel3NJqwhYou55z6uKkSvIxJGAIL6Jyjzgy3UPuFBSayfC4IAMAR3TKP9dim5WLR5UO/S0mcEIJ5D0oppQB5CK0kKIZgauu9FUzSPyVXUZRQmup9BcgVFzxOfOOpb5WwD+Qtm492bcaYM62CJy2SnLO1tbVinh8dHALwbrfbNE0T6izrGmNM05DbsBCi0+mQZUKapomO8jz//Oe/ePfu3RMnTuCC5jadToUQlPpSLAG+JS8vYevF/2No3YIXAoksoG/BwSUA3QJMUeS9dxhcXYUQ0PklU4wDoyScIibgSNk7qTIusd3l/Q9t/3IIIVBeKQQTQsDCWREX6tIt4Rr9klRO6xIDHrwFaA2ptFKCtw+RGn3CA/rLfGHlukzYlz8iPA6RIaIA1qKWbQmjbfZf4ul+IZiplQyA3jofQtM0KysrWTcN6Ou6rqpaKRUnSVXVnPOmqJumMTZPUhG8i2Jlg5dcFsW810/6gzTryqwjd06uDNaeBGaPjnfn+VgqP+j1D/aPR6NDJTsBTQgOWBhN5h7BGIM+dLvdkydPF0XhLITghsNhlmVaa+e9Uqosy/l8HtABwGDY72S9+/fvHxwc0D0IAZyzwaOU0hhXG09xJoE4UnIhRGicCz6EABDKqnjzm9/CuTw6PObApRB5nlO3eJ4XTWMY47axzgbgDDGgDxBaNMBam7yxlgZEsfIgAjrOhVYx3WkpqcDBEYN1tnKuLkoKDpcAojG11JILMMaAJ+cV50ODYAYrnU6ns7a+de36nlJiOp0e7B8Vs/F4PLau6Xa7J7a3GWNKC85BAAMWmqZZW1sry2I0Gp0+fbrT6ewfHVJ/ubPWWkdcE6WiKIrquva+lm3uzYRgSZJ0Or2mNpGOmVTeew7ky9dCRgRxLkUMAAIEoQQtO0wpXRR5J+tpFVdVRbC11n44XAWA2Wz2wgsvSa42Nze73e76+nqapr0e55zv7+8Te5dgR3q5Op1Eaz0ZHcJCr580/QAgoA82KBUtl8oF3TAg0MMKSyYscBbHMaIXIu71euQT41wguTAt9OrqKiIz1pdVef369W4v2dzcPD6+joiMC0REFzzzTBBg52DBRCSYEhYiNmHpABxatunyWv7gIKiGjtC49sLVAraik2+aBnwA5PQEOefdbjeKIjIzo6yHEccIuXc4yLK3Pvq2zz73mUuXLr3jHe8YDAbXrt3wwV585PHxeHrj+q3VtZVbt2+TEHDTNKPR2JPPZBwPh/EP//AP/8qv/Mrt27e/4Ru+4cknnyTN209/8lNKqbWNdUQ/m81IQqtuyrquJ5PJM888U9d1HMcvvPBCJ+s9++yz48lxCOGnfuqn+v2+91YA45y/853vfM973jMYDGihJjXtVucWWdnUkWx3LkqN2UI67EGsmbJOWir5glh3dHRkjOn1et/7vd/7nve8hxioP/ADP9A0zXw+vX//7ssvX/rc57+4srJy6tSpp9/2VkT8E3/iT5w5c8Zau7e3d/Xq1d2791ZWVuI4ZohJHG/snLx48cLx8fH169fpLlVNraV485NPzWYzUtVACMaYPJ/du3M3SRIMDBF7vd7J06cBYDqd3Lp1azKZpFlCa5GWqqlqUzchBKEkSYeFEObzOd0EgtdpN2SLBlzCeW3jKbIK8CpECQAEpdIuoJRSspWLMcZoIbHlFrR3cgF9sOVcpUEZlnOOSyGE2N3dpVLfYDDY399P0zTW0UJvGUl7ejDobnS3pIpqVQbnN6INZHA9v3qm3z8Rn5KICItD095Eew5beBzjgskrGeece+4oGqCwlbPghV9ufrS7E4LcYucUm9vAOQ/Ok9QiEdbozy03abfo9WaMVVUlhOj1eqRoSWKLnPPhSp9cPubzeVmWkdJrw9WiKGglcs6NRqPRaOScE1p5QBVHvq5J14ZxhsFzrgVXS6LcdDqNojhJkvmsMFUdvANkTHLBpG1bSwIihkXP2nJH522nmKMS8YMrxYsvvp6nvL0Nv/u78Df/Jnz2s68XGdjYgD/zZ+C//q9fjzWPRvBv/+0bLEN378JnP/t6RPtHfgTe9S74O38Hbtx4DaWUvPV+4ifg0Udff/xf+qWvp57GZAKf+hR83/e9+slwCH/xL8Iv/uIbELSXX/hzf+5VjJLGhz/8ehbt1+t6n3vu/yZbvP+rx2/+Jrz5zfAt3/KqyV4UwT/5J/B3/g587nNvYBs4HMKf/tPwIz/ymg+9h//lf/myWHOvB9/xHfDX/zoQu0IIePOb4Rd/Ef7SX4J7995AJeOP9PQ7HXjrW+EnfgKiByKzooCPfez1SuX/SUZVVt771dXB2vpKUUxv3L7FGNs5eWJ1uDab5XmeSylPbG177+JYi4Xt2I1rN3rdlbNnz+7evV/kFS0RIQQA3ka0IZCGV6qjbleVZW68oy2zjRsAtNbErIFFQ0m3262KqmmaACiEiJViUtR1PZ2OW+4SCCaEYBppiebCYis6z5atxyEEBky0p0EyGowzQeCXh0WLZVvMpy0gUlF30IvjeDqdGlNLKSgzYgwB2PHxOM/LONakQXF8PD4+PrbWPdjW5H2Yz/NYKMZYEsVOeedcUZSMMQ9IyU9d1xxBSEoMQhzHuc1Ho1xrRQ3a1tp+Xy9PjDEWxYox5r1zziF4pQVAcK42lQFAqdA4W+VVUVRJnMVJcurk2bt37+tIFYURkgmkByKqqqhdTY3haZo2jW3KKlaJVxhCmIymSZYyJpI4u3nj9t07941xVA/o9/tNbe/fv3/6zMler3fy1NlI6evXr9PzbYwpXB3HemUwDN4jojXu9u3bRMNRSgmhOJdaR9ba/d2Dk6c2oyjy3u5sn9wKbjAY7t69v7u7e/HCw3T5ZVPpWM3npQdvg+v2Br1eTwu5vzdCMBcvPLq5uUVxiXPGuqZpvGm8UnWkSOTLjcfHbXm4Dkrr4JGo3977CxcuFEVx5crVKNJJkpBsiHNO69i7EAIMh/2yrKfTab/fTZLk9OnT1AvpnAvec6aszzdWV7e2VxHrKIo2Nzfv3L7PQDgHTW02Nzc7nWxlZZim6f7+/sHBwdHRkbV2Y2ODbuZodDAaTYRQcRxzxqRQJDkwHo+p4ZQCTYeYz0vv/crKSq/HJ7Npp9MBZER7dM7lec4QlNbMMRK6eZA4QI8cGbBAJFwUOrPWXrp66V3velev1/t3v/ZrSZIIIfM8f/bZZzu9ro4jACiKOdc8SWKyS9JKDvvd2Xx6/fpVaq0VXCFiCJimWZJkSqlOp3N8cDgd503luAQZxYy1HmxLygbn3FonhZScp2kSx3EAf/v2bcaEkN57H0UJ55pznnU6vV4PAOq69s5Sg7Dk0jQhipKVFVwZZEKIqmoYE5HkyAStUVyK4XAYQgjBNdaQdsTpzqmNtc2rV68mSeKMHxfT2WyGiJxDPucBMZ5Fx8dHQkhKsEMIwNNerx+VFanXkUwzoUt0h7XWnAPdcMaY1rFk4D1XKnLGZ2lHSzmJoiTRUkFeeOdM06DgjYoyKYXGGD0URfXC3guIaBuXpWndNFrI/nDwrd/6LWfOnLp3/8bnPvdp5+2Nm690uv35fL55YjXua+/X3vrWt37wgx+8efPmzvb6eLTvnOv3u8N+//ee+a3f//3fT2Id6eTJpx4ZjSb7hwd1Zby3SaTbPBPA+8A5F5xxKYypGWd+QT8kMG5J92jJy4jONr4xiAhC8KCCb03bkLPgLCJWTWWtOX325MbW+nQ+meVTCEwplSad7qAXsCHXu6ODYyl5JCNrPWMCKSEFlEKSVCNjaIwRqNY2NvI8n85niFiWZRRFvUG/Kat5Pn3k4YtFns+mUy1kWeaIHhDn83mvOwAAa70UikDYOI7ruvEBXGUAOTB07lXGEAstzSq0/jzAGEuSxAZfFAVxtMuyPD4+FoJ3u904jl3wzpkQOHleGVPTakOU0jiOIpr5jBljmqom0QBjmwD81M4OaRpeuPDQcDh87rnPO+e0ipHSZtUK6zHGXPDIgJjLcRyPJuOqKMuydC5EUaJVbL1fQBsc0dGzWEC9AADWUF+tECJ478Vi3gIi59AK7wbvvfcMnHNxlnT7naeeepIJeOGVF+7du1dOXV0epXEURakAUdZVr9OrqgoZYLCeecEUsoAhJFnqvSnL0vsQ6yiEFhrG4KSUURTZgNZawIr4QSR3DgGBteofLSbIgD3APOKMeXyVBLcENJec9LDQcWaMAecMBOOhpYAFAkBf5X8Ry6mVyDSGUqE4jrXWkvHAyCKVviwIRGtqS/VmoVor+BbfsXZph4ULL3sPSNXuJYhJ4AgtgGsbq5ILMpoD4FprDowJSaiWrRtavra3t3u93uXLlxtTkYpxlRdKqfv37+/u7sZJwjlP0zRKkzzPO53O9vb2aDQaj8dyASgTDisWHolSLpwSSRGRhSUsy19tWoUl+qO1Dq0/kodFMi8Et7V5EOMQxKRb/CG2UKfBBeOYpCQ8oPfeOCqOSnqCxNynk1QLAyjvgxAijtobSE95CU5xzoF6TaANmfiiv/ZBfBkWgMurU2gxlmgCFzw4ySBooanAtvx1xphSlKfzwBn1qaysDKQSAWzTNBsbG2mWXLp0KYRQVgUpmaRJVlXz2s44k86B4lGW9ddWN2bz6Pjw7pWrZdwz3YGfTPfWNtY6Xe0d4wLHo1GTmPu796NEV2UZADlTcaxOnF7f3z2Yz2bO+fWNIUCYTCbT6cx775xxTnEhaN+n5pLZbEZy5AQwAXDvHWPCuxAWjh1NVVO26H0rtrbQqQ7eW8YYMvAuxFHS1KbMK2dDmnQYY8G305tqbNZ4xqzggiY/gR4BnbWW0MY/OHwwdZNba1ZXVzudaDabM87KshZCONdWaELwxjvBF6Uj5IgYpSIE7xy1X3OtddpN19a7WV9wYfvDwd7+dGNzNU6T/f2DEKDb7a6urmadhDEGIRhjGEelhLWWA0kJ1yRTwDm/e/fuvCjjOO51+y5q9vb2SFsgiiKq+hDTuRWIsFYI0dTOmJCmqfWeCPvWBr+QhSGABBEk4xQPK93OZCXk6nDFGVI6jYQQ83xa13XrnOmc1npjYyPWkbX2+PhwNpukadrr9eI4Xl1dXVJB6f2l226tjaLYOauURMSq8svZjgGIBL0sotAKRjEMieq0B1SSaoHEsMzznFQ4tNZplvBAWgQBmIjjuCiqEMLa2kqadHzwwdcheCrrChAe/TJPEUJxbheMXSSguX0BvQBoKz1UHvuDI1CUaJqmabiShMBSRW25cGmtWUDTuCXLczAYEF++bGohPGNMcN1YA84h4p3b98bjcdpJb9+++7f/9v+8sbHhvX/lpVf+m7/wl5549IlLl1/O56XW+vj4eHNzk7IPilVomarr+uzZsySxQvis1vrNT72pqirjbNNUhBH3hv1erxdCODza//mf//krV65479/97ncfHR2dPXv2scce29nZyfMZPZTR4ZFzbjgcUpspcReoh6OFEAMqpYDz2ppYabppFJ49uMW8Cu4vUkU6zvr6+pNPPvnud7/73e9+93Q6pVoCYfekEYcApD7hnNs92G+aJo7jra2tw8PDqi52dnbQeVM3q8Ph+tvfzhCzKOHAVocr+mE1nY1feeWVTrd/4fwFKXgSx5zzpq7qupaS97IOP3kSOYuiBBkbj8dlXgglETHLsulsTEEOXWyc6OCh0+nEcUyyNt46yw1AK6Y3nU4JFG33HSFa2nJbecUHq4zLSbLc74gUS4ADAarOe+A8BIfYlj2oUyvQ5FsUSp1zTFClHIUQpN+9urq6srJyeHhoG3pSpBHU/rQumk4U13VtG5PbAgCc8VeuXAGeSCKjYQjAAZC6qDjnHB6osHEUHMEHX9d1u0/zlhocQjCNlapVGbML4RWKjEN4dVOn66RpQRghl4IeP22oxpg4jk3TCCa7WUcpzTlPkmQymUjFgYWVlZW1tTVS7CbQPU3TPM9p2hEdwzk3nk3jWA/j7Omn33R8fAwAt27doUioqqo061IiEadJt98TjE+nU2Ncp5vWiqNF54JzIQTHhRBCEA+dv9p+BcvqCmOMk+j1Gy4Yrx1pCn/378KHPwy/9mtQVXQc2NmBH/1ROHPm9dhoVcG//JdvLCwgJfzar0G/D4899uqHjMFjj8HP/zz88i/DJz8JVK6QEt75TvjBH3wDNY9XXoG9PZDy62kY+IEPwHvf+yoGCgA/9EPwQz8EH/4wfOhDcP9+e1ZCwM4OvOc9r5HIoFGW8O///es//Hpd76//+tf5ev9TDWPgp38a3va219zqXg9+6qfg1i34xCfg2WehaYBz2N5+4/s8ncJv//ZXck2MY/jxHwchXvNhrwd/9a/CX/7Lb/wrX/XpI0IUwbd8C7zrXa8RA6FRlvDTP/31FJL+mkeS6Vnhijq/efP6fD4t6rKuPRO80+kgekqd9vb2lJJKM0TkqCeT2eywyOdmc20j0kmOtWCcAfMhSMkoNaLNO4TQ7Xaffvrpj3/84/tHh94jY+1+iYiIQQhNDnWwgKXiNJnP51prYtz4xjjnlBYsIGBrv0MkJ8YYcsbhNa1VZMocFg16AMBli3kReqKlWnynhVTYQhDp1fo/cG8DAlMqqkzhWGAcm6aZz9lsNltbWwvBdTqdTqdT101VVcv1vK5rrxIgsE3y5ZmEEIzxRD1TXFAxnEKHtbWVrS2dpmlT28PDo/msmM+nSpEbtQ0MBGcBg/FOgDcukgwJXOj1M0pBsyzrdQdVXu7vHzoXTp8+hYgHBwfkkBZHEWXa1nrJJOd8fX2jl3Xu3L6HgVvnlVLAuFLMWW9NaeoqhDCtZ8BbEtP+/f39e/tc8xdfuKSUWltbeeihh4bD4Xg87vd7J06dXF1ZDyE8//zzvm3RlQLRGttgs2Sdp2lKd+Pw8LA/HAAErfV83ty6eU8pZZrwwgsvCSGKonj6TW9ZX98QQoyOxleuXKmqSmtZjcvJZMQFWjsoy9J7m+f5uXMXup3B3r2DLMucxaIo6JkWs0JGEiB4DJub20KIQX9YlDnnfDwej0ajtbVV732e56PRSErNGPNuLoToZj3nHOdgbVPXygfb6XQwsIP9I0QELoQQZ0+ffvotb8qL8f7BHWc9BsjzfDLOGcherzeZzI72D4qi6PUGIQRjWNPYsqxXVlYQcTqZUVSAiMCClBEDJhgLGAA4R2ABvfeEgNS1sdZube7oSO7vHzS1iZOIc64jJYWoq8o7LqUU5PnLWzVSLkAIwQQPgEpKBEAGaZwSleyFF164efXO4eFx2umEEKTkKLiWESHUITiLth/3NrY2rW2sbbgUly5dqitjKiNAeIZSSAA2HA6dCwDgjWWBDYerzoWjg2POxTL9YA9wzRA9V7xpGh3JNE2Ns1LKra0d7/1sNmKMGeOiqDXnmc7GB4eVd4b0E1dX18p5U1dFkdfgRp10u9NJrS3H430hhNRxnueImHVTSlGUUtL7xgfG2GyW7987vHd3l+5Pp9NJkoxzHseaHMOmk7ng2jt/5/oucAAOkhV5PkNED56r1u6GzgTRS8m9t8b4tnimBVYVkCtOwBDgzt3b4LHX6yVJrBKxwvw8n546s1GUzWg0i3SKGKIo2r17L4QQ64g6zxpbJ6nmAv7FL/7vm5vrGxtr6xsrSRKdO3fuzt4dGUNej7NOHMe9hx85d+3auSTRN25clZwnSQLBNUX+3Gc+nc/n58+fP3n6xImT24OV/ryYGWM4Z8Y2DLjgfF6WxhilpBDKL+TtkAshREDwAYFxpSUgOmfJmC5Y9MZ47zgwYCw4FwA4lzZ4DiyKFBMBrE8SferMybWN1Y9/8mNNVSdJtrm5aVxTVDlwhggcWdrJvKEVAqxtGOPAGQcG0GKIzjkbfF+lnHMXFjKvXCRJwoFRdyD4MBgMXGPyfCaFODw4QB+UjMZmpCLdNHbQH85muVLK2MZjQO/pXQsBJWMCXuWzOOdC8O16BWCtzauSUogFngsEUBJ3XupW+WE2mxlbc84BuPe+2+3Sek8wEOPtdtNG4MZ0OtmZ0+eUFlevXh2NJmVZG2Ok0N5a55zQQkpJeUGcJoh+f3+fEgfGBCmxMiaUEt6jBx8CAYtoTE0ZOAAQb45zORqNOKOaAQOAOI4jlVprAQJnxLcV3jvrHDDmvVNKI7KiKGazuUf70d//SD3yK+tdrSMOoizq2hgWsNfrra6vHh8fg2BaKsohEcC5hjovGWBo1QUFWyjkOudmRe4aQ3yX4FFpjZ4BLCSzvTPGaK3ZAxp9SyixRaI5C4jBI19YTsEDHGeCdCXnBAYxxkSLpYoQ3BIJxQeUtenEaP+NoigExgUu5ReMMdZ4bLU4AkBwgRq2FIAG9hqxaUTkXArGpKKSc/Deeh+8R8aQEkPKyDiXq6vrZV5Ya2ktIqUyFUccW9+nljYk2jNhUviFoMcSi7fWrqysvPe97+33+7/6q7/O2Cww5IILEMQTWt4c6o6lWxQYsAUdapGuMwAupVji40TzZExQGZ7WPWstAHLBW+SXM7agJ4uF9HZ4wAiO7i3VDyh+oIdIOP7y+RL6LxYNzmLRKt7yA3x7/0mNlFDowIg7jRzEElCjER4gvLPFePCnYaESQP8jJUPBkcTE26JGIMMM5xww9N4rJQCgruuiysno6PSZU2k3rapqVsyUEmmaem8eeeJilkT37u56C3u7h7WdIesybi1WjfcPP3LO40xpPp0db2yulVXpve10OpFO+sNenKQM1N27u5FWT73p4aax+/u34hQ4i4+PDz79mU+axsVxura+NZ/PDw8PPJI1iGWMdbqplBHnfDQa1ZUJIRjjSBoOFhxz1sqqAKkrOGeEECG0kD1jwnvPOXDJP/6xjwHy+/fve49ZlsVxPJlM2m4AyXCpnsyE994YR8A+vXoC3timaTjoPfL4W6xthBDXr98sygkA50wmac9aDyiIEicEzRUCKDljzPl68bwEPcf5fAq8cCyKUhY5laTykUeeiuTmpZd2s3TAIanruihIehulYN1uL03j27dvjsdjLeV8PiPOxHg8RsR+v4+IvV7v+PCQDK7J5K0oCsLWEdF7hxhIu9ZUnnNRV5YA4rKoi6oibJoHrpSCEEJAB5whaKmSSK+uDItiXpalY35ltX94FB0d7hNjVCmx7GinRs9eJ0vTWEpJZUtEJOUiWmRYQCVFANY0jcUmhMA41nUjgl9W4ACMUpGUqq5ravainR0CUjuO1prqBG2bAiJAWz8jqiYiCqFo/jd1bYNPO11njdTJ6uqq0qxpmuC8lMIhp9cTQ0DOtZCLRQAYa1G84Dwx2ZH75UoiuHLeGGOSlL3hhGGMOduaiMIibyJAf/kFqlcBQ0JpiZ1J5Tq/UJ9wwdNPq6oIDCKdQIBv+ZZvOTg4ePbZZ5MovnHtxtu/4Rvf/e5vft/73jebzT733BfG43GSJIyxwaDPuSBeCKW9zrm3vOUts9nspZdeiuN4ZWVFciGUNMZoLbXWWZZ5wE9/+tMf+tCHHnv8kfe85z2dTuehhy784A/+4O3bt6nvZ3199dSpE0Q6jpWez+fL3Y3Ke9R2uUxjw9JjAABdWCKtBDpT9kclo2WLBr343ttz5848+eTjg8GgKOYAgTEOHBHROrt9YufUmdNxGt2+fXtlZeXixYvPfOj3EPH+/fuHh4fnzp2Tit+9dTuJYkblPQDvfOUK51wURZJDkiRnzpxZWVkZ9IezyVQIEVqBfG6NscZIyX1oObyRUtY7a83x6Hg6nRJlRwjW7WYMX9VG7w+6SZKQesxsmhdFkc/mSZL0Ol0yz6CHvqAq28UmTqz99o61bTGLjCN4sKGBRaGapgeFHNZaxtpC7GJ/AATkiy4oqdVia0PqckPEw8NDAsqts7ggmjDGmqa5fv26L6HbG8zDJFK6qMoQwnB1ZV6V0/lUCtGWBZahSNvK4Vwb5XBura2q9qBCMwr+IhErqRpbUymJMxFCgBBsCMvyO+dcSuUWZqMLBIQv4yTOeVGVQghjbAgQRUmv271/b6/X66Vp6px3wRvXnD9/Xmsdx/F8Ps/LeXDogyXpK0CMIh1Fmq62Mk0UqV6vd/bsWRLdF0JkWcIYe+KJJzqdzsuXXrl9+3aWJVVVdDrrSqlOL9u9t0e1XNfY4KGqmuCQGNxCyBAcAAfgIbhl7Eh7D+cKEfXSbRwAAKbTN1xAQAh473vhve99458uByL8yI98WW0E5+DZZ+HZZ+GXfxlOn37Njzod+LEfgx/7sa9y/Nu3X891/bqML3wBXnkF3va213/+7d/+BojnG46XX34DD8D/bK/3P+EoS/hbfwt+7udejwifOQNnzsAP/dBXP8LP//yX/ZGU8Gf/7BsLjr/97fDN3wwf/egb/OiP8/S9h7/1t76SrMf/nYNzvro6rEy5t7cXWIjjCLHJ8/lodJwXM5O7JHXD4TpAmM7G1lqOcfCgExU8HuwfKaWUkLBglzCGyyRHqYhzXlXN0dGotoY2SymFECIETzv6MlWARaIyWB2m3YwSv9A03GGiI9pTye+UOvSBt82AVBfz3pKIPGXgS/jY+6AUlRjbJhr07enRNkbZo1jI8Zd1Zb1zwVvfyitJLhFRMh6CAwEAQE1VSikKOKqqXCaEtLFJKQMieMY5FyQ1aNq/srKy0u12q2K+2IPC5uY6uVTNZrOqKoEFD5jGyjkX8cQY0zSNcxZDAC3LKucWpJQB/Jmt03Gip9Opc8Z5018ZKKVefPHSM888k6ZZVTWScS0kC4SYWArogwn5JJ8ez5vGRlG8cPDTUdr13gZAayrnHAY4cWLzTW96081btzjndW3u3r3bVA1jbPfWvvf+7LnTtWnGt2+dOXM2itvumbIstdZxFGHgIQRCtytr67ouxyUw6K5m/ZWVEELTNKPRxHufpikiq2vDGMtnRZIke3t7WZYNBoO0kxjXRCzxDOazGTIXPM5ms7Qbp2lcFMXZs+zsuTNHR0dZGhkTsiyZTGboXXeQWWu73f7axnocx/N5wRjDAAdHB3fvmjRN41hvb28zxqz1ddVQMEHkYmK/JnGslajKyjRufX29qpqiKJyxa+uDTiebTCZ3795689OPM46vvPLKbFrGUQbAp9PicO9YCCV4fHw0Cw69x6q8FscxCaJZa8+ePdvpjEhrm4MQQkCAqmzQhRACya0y3tpqhRAOD4+dM5PxjHE0TUxqpwSqBk89WK+m34wKwosACxFB8KauiXzBBN/a2Y55enx8TOwAMpCgIo0QAgSsra2tb673+13rDaIHAOsyIURRVMfHxxQsJXHKGCur/LBuNjc3iZ7Q7fbn84Jzrrh2zgEQnGQp/nEIwbs40SGE/f19F7zWOonTKIo4l/1+fzKZFEUlBCtHuTGm3+/ubJ/knM9mM8mV7CXWBleHprFXLl/nnHvvvPcgOCICoo4i42wUlWKhV0OYzp1bd9Gg99A09ebm5tbW1nw+r5pq2a8WRQn1WNjEA4A1rshzX/rFguCAc8ZYbWuHjrLEpJswxtKFA3ucRp1OGkI4ODiw1nMuVRSBgia4YpoD8/3ByhNPv6nI65deujw6niCEOI45h3w27w+6UsF0dswYOzrawxFL0ujq1ctFOTt15uRTTz3xzd/8zR/62O/85n/8raosT586G0L42Z/9/37v9/6p/9df/2s/8RN/84UXXuDAjhujlOJcKhnl89I6d/XaNQLHOQcEX1WGyhJlWVIxQOu4NhVFp9bUhCVRxC9Eq5pLKyS11QvJJKGo4I1HxZn3Djgzrjlz9sSTb3rS2ubuvZu7e3elFDxLlBJ5OWcgsixDx72vdZIOpK7rui5q8ME5giZbYk6bejkbaxVFEUk30jLOgOWz2Z3j0db6Rj6bf+ITn2iaZn1lNY7UbDbz3gfn67p0NshKnr/4EAN+eHhc1g3VJhljcRxbR9zSjHMOAZcIlwcktxZK2JrSUhxO2LGUcm1tbT6f0UYZRQoAmqZRWmxundJR9OKLL54+fTqKEkR0xlPqWNcV51wq4QJ65+I4TpJ0Op0WRdHtdi9dugQAgJzIa4rLONb08mZZ1u/3rbVpWjjnqqpWKmJMAPAo0s65o8MRACRpZIyTUg4G/dYexwchiDCqAFme50pFANDp9KIoQg/e2xAc48j5AlMDYIxFUcIEGO8Aw4d/98P7R3t14U+e2VJKaRV75+azgpaFylT9fn+4NgSOx8fHtSkYY2maMsY8meJIjdDyizF4QjfKsnSNCR6cbTiXOpIAfAmDLsrGwVorQFKBBwDakgAR+8jml2SaueLQLinwQJcx5VaIaK0FxgLnLcLBEFm7JlIyKThXCxw8hMCZBC6BDO4WAAclbkopREaT0CNZx3trLRevanoQ4EnAgeKCECjjWwYW4fkA3ocGQzsPCdaB1wiDMI5gTD2dzkNwhGK3qixKgQ+InghoiEh6Jtbaj370o3le7u7uUg0mBEAWGGcCXkXtFwCEDwzIqouCtCVMjNiWeYiWRGEVfYEwcboneiFrS0vi8pIfZAcvQjgeArb48AJu5lKEELzziJ4vfDIfBKnpn/TuEDM6hFfVFUIIjIklnQAA3B+g03JOk8o9+FuIqLiQQtbOuIUaL002wuIJuPHBc8GBoXWOBSSAT0vFOJRlmaRxEsVVUx4cHAFAFGsBjGjxAW2nm509d6rX0Rcunh70V/7Db3zwxrXbyBvr8p0T69/13d8eReL5F6+89PK1lbX4/PmLaZo6G06fOnF4eJh2zuZ5OR7NnnjqkZ2dkxxYUaCMQn3s3/ymC73eyuHBSKtUKd3pJi+++CLJ0TrnhGTU09zr9UhUs6qq2SyXUkcRYmghP+ecVkBz0tqGMWQMpKRSDRCuGlqkKty+dddaSyUBKq0FazjnWZYxxpxzgITUO+eClJocXwGQBWy+jNd5Xs669WxlZSCE0BFb31gp8lKpKI5V09TWOh9IBZtZ69Ejg5Ysz0E4h4T+e2+dcw6aomrOrW76kN+7d2dt9azg+oXnX967Xz31xInz5x7a29tjHJMkIUl6DizPZzSklEmkOedVVTVNs76+zoTUWlNbW5LE9L4TZYTWECI1s7Zt3aEX3vvauW6/nyRpMc9jKWKteBwBAOdMs2h9dUj0BWsbweXR4d3xeBwlcdM0TdN0UjXPR2U1HQ6HDDjJBURRJDmzTY0QdKSstYBMKa2U4ADTSck576YZVYVDCFwA48hZq0njHWkaWTpnUuUWXNJbTOfvjV0IfbTEbXptqfOA3jJggSCd5VsDAFVVJVlHKSWkRMSiKJtmMp1O+wOhhXQYao/Wei4FrVTGOETHGOPAJBdecM5bkShCkBaccemVTdP0DScMhkB7omQ8LDDEsiyJcEniZtZaby0AKCmcc1tbWwBw7do1wmpJX8g5QwXsXq83L4tut/vf/MU/Px6P796+20k7pLJwdHQ0m812d/eff/75g929EydO9Ho9StwYgORiNpnGaRKCIwrp2bNnA0Bd16PJRDEIgBcvXlyuNmvra1/4wucPDw+rzxU7OzshOGPM889/sSgKRByNJvfu3TtxYnt7e/vWrRuba+udTucjH/lIvz98/PHHeUvLZaTlIoQgLyVcDCmE1rosS7pAIrwyxjhjMoqoCEQ/lVI2jUHEoijyPO/0ugAQXBvU0Stf1/UjDz385je/OY7j4+NjxpjWcVVVTz311J/4jvcW5fxX/3//dnR0KIRQQgIEBshQSCmdM4iY6Ojk9g7nvC5zgsgBQAnBGSouvLfoABkPzuZ52e33QlHM8txbxzhKqaTk5BZT5gUAkBVEXZS9rMM0I4dbHcl7d3dJiZ6QXyozOLf0/BC0E1AKs9hGQxwnJMtpjGFS0PRLksQHi+iXKT8iSg642O6hLXQJSiVYaAvSWdalSUsHnM1mIQStJWMIgivewgXQWlDo0WiUrEer62td12WMHYsjz6AZN3KxP6FzbV/PcnFhDyi10dzt9Xq4kHLmHEIIlCK254qMM0GhB+ecNmvOOQAjLJuuWUey02kBFM5ZpCUXii2435Jx2k4Xk0acOLHT7XaiKJrNZnVddbud4AIiNk1TlVYyOZvN4ji2wVNCGAKTUu7u3RuPx2TpyBgDxp5/8UsnTpyoqmplZUCllcl01IL6zJWVieN4MOgJkKPjSTEvAYBsFB+oEgsimsMDzUoIspv9F2+4ZHwNwzn4q3/1q+jw0viRH4F/8S/g5Mk/2vG/Mvb6oEQywOs9D7/y4Bx+7dfg0UchTV9P1v7DjKKAX/1V4PzL+sv9X3G9NL6MmfBXGX+ce/XHH5cvwzPPwPve93rE+auOuoaf+7mvpKqsNezvQ56/3rMRAD7/+dYJ8w8+o6/56XsPzzzzxjLlX8P44z+UgD6g6fU6ZVlGabK+vrq7vzs+yvf27q+trXW6kZTy3PlTnU7n9u3bly9fjkQUpclBfsiZFJzbxi3hXS5aOwva20Bwj3g0Gh1+8pPUTSalTJIYEaMooyTKOLuokGWkg4YclZLOtU7lACzR0XQ69a7lT3lPNoAIEDyiN+2uE8cxY0iUDaVEFCmKw+CB/jIppQseW/0N4BwCQAgeqfskCAitiQ1bMJg4501TUQlUAnfOFeVcKdUYN54cJ3FGaYxzgnYB7wInEYwoUomiPIr2SAA4ODgYjY7iOF5bWaF+3vl8fOXKHRswS7tcSVioLbUeShyllCH4EJxUnHLnXr8DgPv7+3EcT2djIcRslh8djtBBWdYhYFFUWsWKt3Va1rojuiD4yspKVVVNY5IkCw7TuGustdaEqkmSiCPWvpBSKy22tjaOjw+kQkTHhe/101pLKXUURUVRXbt6YzafdLvdxpjnnnuutdWqHGOsk2VZll28ePHw8BAAnHN5UTDGjDFVVY1Go263L6WMo6Sua2vcbDJrQyspq6q6fv36xsYGTc6dne39vUnW6Q8GnaKcR904y7LAIPgQx53Dg6PJZPKWt77pcO/QmrCysnF4cHR0eOh91tS20+sKoQ4Pj0MIUnLnXL83qJuqaZrZzHS7fbrJTW1IoULLyFLNgzHn3HxO5fTq8PAYEb1HKVQ+y+/v3m2autPVF86de+WVl69d2dveGQpExkBxlfTSqqqKeY3IvUPvcTyeI87G4ymlMdvb2/1+/+LFi5/73OfqsomiKLjAFs1D3lspeUAA4IwBIB+PpwAhiiIfLACQMkMIEQBQOUcAAgjngjGGMc4YV0r1e8PGVKPpGEiMLODm5hb5nBgROv0eSaZOp3PKw40xQgtj6ziNZ7PJvJj0eh2pxO7urmk8PTtyONnf319dW0nTVEi+t7t/796dOE6VipIkuXDuYlEUh3vHxBtjDGApuokEJQQppXUuiaM0TcuynE6nzlsSxY1j3+mkjLHhSl9KGTxsbe2EAM995rnJmFjhoigKdBYEB8EhABMMQgCEAEgosxIKQtsknudFXdeKS+qRHAwGzrkkiTlnk8mIXnMCv+I47nR0XTWRDlVVBWOdtyCF4Jxxcp0PdVOePHmS3s2mqbvd7tbOVl3X89E0QOAKsl5SG+NcUJFUkTKm5ppPptO1dGWWT8uyjlPFpiFispPoyWRy5uyJf/a//9Pr16//9E//1FNPv/nqtRtf+MIXdLTyyKMPHx0dXbt2rSzLLOveu73nG5dP8+Po6J3vfPfVq1fnk/kHPvDB+TRP44y4+fR2CyWzbqcsy9FoVBQFubl674Vg1trGtY5YbaM644wJAGQQnDVCiIAeEQO+qhVIkyeEEHMtpKYIu5OQ1Fuw1jCGPoQ8n82K2dH4eHNz3Xgzn8+jOOqmXe/9xuba3v39xhopdcDAGCP5P0SknFAIItlxGWkQrW3saDQi9BQRvXXBuV6vtzIYaiVGB4dVXnSi5NGHH5lOp/v7+5FUzrnZLO/2+ydOnDCNvXz1mtY6eLCW+WA73aG1qioKhgChpX8SQYRjCKG1PnMYiGnOOSfehpQykooMvWHRIMwFZHEWxfHBwcHOzs6ZM2cuX75srZdSWu+klIPuoCqbpmm8b98sY0y323vyySen0+mLL7y81JKOtSZUlfzoO73udDo9Pj6mxm0upTGGM9nUjVOBA+v1emVZTSdzRIwiUMNIK137GgHG42lZlt6RxrS01ioVzWYz4j5nWaKkcM563yZIPgQhVGDQ1IZJwZAd7h855598/LE0zqjj+86de2knCwG8ty54ZOHcxdNHo6OD472dE+tJJ0PEbrc7OZi1i4wLUrLgkYSGQwiCqyxV3vumIe+HwIBJoTxr8W7OWz8osAZEKwAKnHMEDMgYegCBnCYJ0S21kNT/iguCUnitkq9/VZlRkGjVMnV/MBLgTFICL1WLwDrngnVCCK5kS5RrF9VFtzILjPFFtMcBWkEJ+mn7WAMKYAiM4QI3FzqwVliMc8k5o0I4MeKp7sU5Z1IoLrz3bMEHJCYjOkzTdNmDS2jCrVt3SB8giiK7MPQTQjDOBS6JxkEIQSqolLriwg0JWqe+tuhCf8vahgAptvDDpC9Lzmj+Syk9oPUWSBtVySWJKrR6zWi9IzQTOcMAIQRwLSQtGA8h4ALRpix1+bDYa/wMAZFh648GjAHp0lDmb0x7K9gDA5G3b/ECWVZceKoQLNTSnGt1b0IIALjAnUlIOiAiMvCAWgDjyIApKVdXV2ezGSXm8/l8Ng+ch3Pnz7z5zW+6fv3qiy89/7Hp4fr24OTJ09dvXHr08TNnz+7s7x3t791iQl27fklqFyfx93//d1dN6ZzL0rTTgc8+96myrh66+Oh8Pq1M+aZHHqJ9amdr+31/4ltv37xz8uRpQGFttbKyvr6x+fwXXzCmDugGgw3ytlJKbW5uHh0dlWVZVVUn621vn7h69bqzPkkSKWUcx9YYY4zzDQJyAZFUUkqOAFwS1Ki15FzWdV2W+cKsu1WnIcyFcx7QiaAYY9Z7aPV5CcQA5wzjyBGCeOMOTcHh7r2b40m8srJ6+sxOU1shFONyNism02kIPo5j0n9HbFgAweWCtigAPGnkCC4YQ0I1J5NJ0UyAybq2n/rM5zdWH/3Gd70tUr26rldWB5xzEnkoq3w0Orp35+50Om5lWDlf1CtgNpvjopdxdXW1rqsQAnWlEO8YICyo7pRMhUgLWp+Hwy7jsioiQqittVGsmqaZjscHB/N79+7NJmMhhLFFnufW2iiJSbZ0bX19fX3z+Ph4Pj3UOuacO+vRG/Sm10lcU2OkI6nKsixNIzljUgFVjyTzIQR0wIDs0xlj3qGUMgBYZziXWtN7ioiYxCkZM9B7rTjBwWbJfqXPgycWjvLBGuOSWKVpqpRiTKDzVgItLAF4EidaxzrwPD+01jaNq30dFoI2ztiSMTIfRkTg9JaFxWrgW3RPtklprLRSmZLqjeYLRHHsIWGEm2FbiyrL8ubNm5SLUTpGf4uKWzdv3qTXYTgc3rl/j4rEpKBCH6ZpevPmzU998jOPP/HowcEBVR1OnTzzvvd95yc/+cnf/u1n+v3+29/6Nr6Ut7UWAKIoIu2sbrebJNHOzoneYNCWHr3n6PKimM/nm5ubpFXyzDPPXLt27Tu/8zvf+ranf/u3f+vu3dtXr16+fOWl4XD4Z//sD8dR9oEPfOCDH/xgHMc7OztveuLJS5cu3bhx48KFCySG0+v1yrIeDocE4MZpBwCIrJ2mqTGGM66UIgEfstpmHK0xtFaT4w7nPM9nN27cqE3TNM2CCFUxxk6fPs057/f7dW2EEEpE3jqvfFmWWZxYaweDwdVLlw929554/NFIKm+dloozDNYzxpx3QjAGIJUi/xtaQBhjfFEZNaYVXEZExoWOoqpq9vb2Dg4OVBQtV/s0Tano3ul0iqKQkhezalxWTdP0er1ynlPUt7G55myYzWaNNdg2JQM9esYYIC3WCNi26dCeTq54VB7D4AhtsNYKDtbY4D1C65ZE5UnKEdgD2A1dl+Ks2+2Tuk5ZlkvxaCEEY7jcUJw39DY11qagNzY2OlupVsocG2vtoTkUkY519CrcvNiVYbnjLt+QZeWcmt3oQ865cwYAbOOAIz1sXHRpkaIxLV5USloywGGpMgZAwIqzASISgDO2qqWUwTnilzPB41gDx7Iu5sUsinS3251NZkKwEEIax2VRc84b19DBvfdZJymrvDGt+CkXgl68uq5v3Lixubm9tbWR53kUK8T18Xh069atJEm8t8ZA8IAOG1MBC771CGxjCGiLz69KqgFgQLG98dMr/f/HGy4Zi1jhDwvA5Tn8r//rV1I5eHCUJfz4j8Pf//uvt4D7CuPmTfgrf+XL0kjTFDY3X/PJHySrfoURAvze70EI8Nf+Gqyv/xF+EQAOD+FnfgY+8pGv9J2v+/XSOHkSkuQ1n5w9C88//1WO/Me8V3/8UZbwkz8JAH80xHk2g1/5FfgP/+GrHPl3fgfe//43gJtHI/j4x9+4HvC1PX3Cmn/yJ79sjeGPNL4uDwXRegxVVdGi4T2+9a1vu3r1SreXrK+vAmBd1y+++HyWZcEh+jCeTZRSSZwxAGu8lG02skyHPHmNAtIaEMep1hIRy8pCq+jPQwjdbrcxlWQ8oHMmdDqdwWCQ5/nR9NA5J6XuZh3vfV03vvGcSeQ+BPDeUVcgcobgAQHd0hYGljkSod7LLJSozdi693BEZEC973651Ekpm6bCRTMKLKxT0QeyD1JKbO9sxFk8Hh9ThyztjlmWzOcFW7TZUp28qirkLI5jY4x1TkguhWSMVUVeFE2e55PJBL3PskzFAjljCPv7+9gAjyWwQMQ9IUSSRr1eVwgRQitYhh7v3N49cWLbe9A67mS9u3fvdlLHuZiWhWQySWIMLASOyLwH741SKlbag/C+lbzuZNHKcHh0eBxHsVIqLzBY13Be17WQbHV1dXNr9cTJjcPDXeFsfzjgTK6s9o6PxmXZWMOrqqqq6sTOqTe96U2T2ThJEgaQz0tg4Jwbj8fe+8PDwzzP19fXQ3BlmXf73cFgYIy5f3g/0gkH8CTi5LxpAtllMI69Xm91dfXu3du37tx8xzve0Rt0XXPDB5tmsdJcKRWQd9NOlCTzfLq/f9zpqrrZnBWT44Px7dt3T+ycjqJomR96PyPUvmkM54CIddXESUS2GL1Odz6dWe+2d7aODo+dNxhYCEHKyDQOWPDeS6Hn0xkpFpZFJaXEoHpZIhX/yIc/FdAnqWJMKRkTUDWbzcq8QgRng6k9ABdCURYcRYkQrCzLOI47nU6SJLZxxtTBofMmBKdUxBgDAUgawkyqWBDoQNQtzkGIBSLApFCCMQHehJbm31bvKbCxwVvrvHdcivl8vrW1xYBfvnIVret0u1naFZxxzpumUXEkBCcs2Ht/fHysYzUY9BprjyfHJgchhDF1lnVns5zeLOqMYxwAoK7ro6PR+urGyZMn93b3GWPk2QILQxtrmxBCQBdHsfeeyERlWSIy1zQyikbH4/6g1+93e/1OHEec85dffqWuzJ07u1ub29Z4AA4eGtMIIRwDYMgYi7KOjlvvlJXVoZSymOdAAghVQ/4WWmtjqzTprKys2Kacz42UknGMYhWB2Ng6s7u7a43PsowxoZSaz+frG2uvEsS07nW6xpijoyOAqNPJ6rouy9IFn2SpUmp3956zwUNwvvbgtk9uYGBHo3HgbnVzVUrZ2EZFOs9nxrg4ETsn1ovJvNNNymLW7aWMeanCP/xHf3/n5Mm/9/f+t099/NNzPT2XnF9bWzsejaeT/EO/95Ein4KXg+5aGvd37x0IiA73jj/5sU9ba3vdvlBCa+2DrZrGOXc0Pa6amjHkXIbgaCmzjaG6GmPgnCUeFqWXjAWpWFUZG1wIQWstpWaC2BiOMSaZAgCpIqE1A2AhKCWFEMiCrx2XeOfu7fsHd4bD/vbOVrfb6XazS5cuheAa1zRNc+f+3Xpej0aj0EOttbc+BK+1ttgETwSTsAQEqf2lLEtrrZRyqemP3m+trnPOOUKapvl4WlUV8So219bRU9fzBJko8+LS5SvT6bTfHy5TFCllrKOmVwnJAjoyGkpUCi1MttR7waV8LUGHtm6cUiAY/YhyLdpfjo4PEPzpM2cvX748n8+l1MaYJElOnjyZV2We52maeu+bxgDAfD5/5plnLl68OJ/PSCeK4vaqqtI0jYUWgjHBi6KgPNk4lyRJHKfj8ZiFBgCaxnS73ZWV1abZdc4Lweu6Ho1GWmu+kDW0hjYIgYhKRcYYZ0NT2043JoAgACJ4KSUTCo1DRM5V0xTSY+OauinOXTj76MOP3bx5U+t4Npvt7++fOHEKAIqiccGurq/kZT7Np0+/7U2PP/7oZDK5duN6p5ec3j595/a9u3fvWuubxnIGTErCmjnnwTrvUQgFpMAgJQRkwAGWqg7gMaBD/qrcLucIyLCV6wVUXNDerZRCH+qqoV7PBztkF2nkq/rOzjkERhTd8ICZMAAwECQeTcx98AEXzCZEBHQEvdGXiYXtvacdgYEA4KK1AeSLucMQgTFOVsmwwE+B0qcFZ8ottO0YI1rSq7LUdCsW4CkutNSZX6CrS9KlUlHSyRb/r+7fv0/fJ1CMMUbtCR4855x76ZxbUsKXGD3Rt+nWEfbtvYGl6OqCg8U5Rw5U3qMq7xK1FwsFDGjlFoUQKISwdRVCYCS0ABAWD84ZSxdIjywgsoVmIwHuhIDTzTHOssCEEExwDG3x3nsST29D52WWitjueqTNAgsQhOADGWn6pvcekS3+oqRr9N4TmWBJsRIA3jqSUTo6ODLOEEjNOW+Mmc/HjIfHHnv44UfO7+3fvnDhgkr99euX5/P8sYceO3Xm3Be/+FxlylNnzo5Gxxtb/dOnz3a6UW2ao8NRlRkMLGCztjYoypnQcH7zbFUXx8dH1tqqKB5+5OK5s2emk9nh4fFgJbl559LLl79gSq61ZkzkeZ4kSVGUJ06c2N7e3tzcvHz5sjHmve9975kz5/7BP/iHprEUhsdxTGa5jLEo0pwnAhiZsXHOKcgRmtZ/Rt0VTdM4F6SUwTp61+ihtLcaAnByAvfOIWMYglcogC970l8/zp0/XbuT09lxVefeuzwvNtZ3kKG1jZBMaqGURIQoihAZR8ZAkGC9jFKNcUBjrRGSg4A4juKEJ3GmE5kX9uh4/u3f8gOx2hodNePxHHqh1+80TTOfz5xzpFMHAMPhkHoQQwhsYRVb1zVhV1EUlVVJ7xRVshGRkHqSr0HELMuyLFMCy3KWJMl4vHvp8uWqqnq9HvGmdSSLeZ7ncy6gygspeZIkwGyWQhz3jXfOVfO8CFgphVEc+YBppqRQRKRtTFFVjQ+W6INNU7OFXoS1hjFNArvL/cI5S+VDIQRnLKAnAC6O46axURRxJijhoi49WtDiOKZmmkV9vc2JKH7jnAvJOOfgAxeCUhodR4jIeFt26ne7eX7YNA2bh6qcMIbdbhcE9x5D03B4UDMXqH6/WOUYY4wjR+e9D5YcBIKBN+I3x3EMPGWMgQ+zIqeEVC08GOnk6ZMF3Il5MQPkzrnpdEpnOxwOTV1WVeUD3L17l1b43/7Ab33uM58NJpw5fe7w8DCE8LM/+7NFUa2vr3/bt77nm77pm1544YW8mMU6wYVAthDCB18UxXA4jCKltABAHyzjTDJJ1GBjGs7F/v7+3bt3n3zyybe//e1ZJ1lfX3/++S+WlSuK/E/9qT958uTOpz75uU9/+tPOuTiOv+3bvu3GjRuXL1/+vu/7vsFgsL9/+KUvfck5d+7cBcbY2tqac+7o6Kiu6+3t7bIsr1y58ulPf9o1JoTwnd/1voceeoi4WVJK1enu7+9/6UtfQsQTp05ubm7O8vnJ06e2t7erqrDW3r9//+WXXw4hjMfjp59+muTCAQCRSam9DWmavuMd7zg8PHxMPPaRj3xYcP7pT396PpkqItj7oKUicwUKxrgPQjBET/pXtKUSKMo5ZwxbFf4kuXPnTmPaeNJ5XxSFThRjWFVVCK5pKiWk92iMAR9oZRsOh7Ru2+DTNB0dT7Isa6w5Pj6mKckY63Q6lWmCCZy26QcwRprP1ro2QlswgEMIWlFEpDwG71vKrLXUSNSGBw9WR5C1e0dZlqQISrOOPJziOA4hNE21/KNCCAEiTdOqqpq6ro6qqqrCINi67oYgl39AMB4gLFVRcCHstawVU1wutBALoQxCNJqm0XGrqEXVM6AebUUevi3u3DTGOZukEWOM+CB0cnEc11UhOGecWe804xSbOu+llN1eVptGhOC9TZLIe2yaqqxbbdOinAfgDh3Hth2GpilVuRHROZN2sjzPdSStNWdOnnHWXbt2bTQanTl7KsvS2WyWJNF8PudAZWdmKkOBmXOWbvRrgXhOCncAwASc3P7/fGWsGQCOjqCu4dSpr/SduoaPfhR+5VfgxRe/8sFeMw4P4a/8FXj/++H7vx96va/0zekU/s//E/7tv4WDgy/7nckEfvRH4Z//85bt+5nPwP/wP3wluvEbjo9/HDY34e1vhyeegMHgq39/MoGXXoJPfxo++cmv/uWv7/XS+NCHQCn4m3+z/eff/bvwgQ/8oU77j3+v/pgjBPjZn4WjI3jXu2Bt7avckMkEXnwRPvMZ+I3f+OpHPjyEP/fn4B/+Q3j44fYT7+Ff/2v4x//4q4hf/+Gf/mwGh4fwiU/Av/7XX7eb9nV5KFrrrDdcW9uYTud37t27evWq9WZzcxPBCsGTNMo65Fzs67JRKipdw0BIwYTQSrVx/CK5ajXyaAGkRMIZUszwlLF7D1orANCRdM4FDFprBmHpSrc/vu+D44HnZaGEllLSlkPt+bR0BwZCAGMttXtRC3QAEMdx3ZTG1j5Y79rCoVJKSu5a8terYogUYorW0KztEjXGMBaEjpxzgEEESmKRZNAUF2TlQQrCk8lkdWW9aZqqqoyxKysrkkli6RblHFgoyzIgZp2USutM8DRNF828dDms2+12u/35fN7UfjQaV1XFQBDcDCxwTkZejPibRWUB+LVrN5yvrTXnzp2rqmbv/r6zIARXWksWeY9N7TBw61xA23KjlBRCHB4eAvJet3t0eEwicZSNU8Od954jnjhxggs3Gh0Nhl2RuxMnNufzYp5PkzSK41RwXZbleDwNITz//PNSCyll09g0TVcfWd3a2hodH9+8efNLX/qSUiLPZ9SemefzqijWNzdOnTrlbEDvq7KOomQympbz/bSbaq2VFufPnz9//vxw2L905fLu7m6/30+zeDIpwfiljOCpk2emeb67uztY6ekIX3jhS3Vd55Oasyh41u1kWus4SudFzjmjaxwOh6RCvrKyMhj28zzf3tza2dnZ3d09ONrvdvtpkuXz+eHBcRpn3vtOp2OMCSK01EvZ9uE2po710Fl0zkmlrSmUUvNZmcSdsqydc2VeeO+t9c4EzjVn2nOvFEuT9MTJ7Vu3buV5fubMmY997GPGmChS3iN6L4CJKGJMkK2llAqRYWBRFBtjABB40FHMWOuAQROSMcEAMNgirwBASo2tYYgbjUazIgeGAAwDTMbTL3z+i8hA65jJ1mmQsC2dxIjIOTjno1irSAnBXGhu37nVuCaKolCBcyaO0/HxyHrDOUxnk729+9baEDDtpNYEhnB0dATImqahBi8q9pAQJOl0x4lGxMlkkhdFVRTAJTjHlEIfHGK321WKHR8fScnn83lRFBjY0dHR6HiqRKsbRlB1rNMoiuI0iqIoz3Mqw4cQIFA7LffGNkRwE7ppmihWcSIZ97PZRCdxY6rhsO+9QERvrRDcCxfQcQDGcGNjzbm2lZsCVhrD4ZBzfnh4SBlI1k05h/l8Sn+4aso4kYBiXkz7/WGSRJ1eP47T8dHx2XOnOYeDg700STpZ78SJ7b07+/N8eur09uho73v/5He9+93v/Omf/ululp48td1fTdc2to6Ojhjw1dV17/3R4QS8Ay+VELNxnk9LpVRTGQ5CKc45IAMbvPdex8pXzoeQ5zkVHjgHSpyAPLglb5ogGZdRROuk8NJaG0wFECSXTIhOt9XRmxclaT4KLvmiAd9aG6yfTqdcCs5ZkkTWm+FwsH1yk/GQ57ODo10AcN64OiBiHKecs4ODg16vxwQ0TcMRQkAhBI8iZwMtOADMBg/OtWL9GLwPnCNVVoxpyqJQWzsrKyvB2EcvPvSR8TRNIiEEC6iUalxN2YLWSgixu7tLSK4UetnyLwTXWgd0wXnGmQueElFrLedtbJ8lsRCCrOSoS9QbK4SQSkErvm+iKELAEAIGjOP42rVrs2lOxqchwMWLF1dXV1+69ArBFnVdL8JyBgAko0ELC2XRHKCua4cmiiLgDKBF+X1LxgxRFHEE5zwiWmuvXr1KeBkAc85NJlOlFEeARa2XCqskIyOFlgLiLE0iYYxxLkglGONLoZumcVVTeR+cM8ZUURpvb+4cH47mc1I0OhBCHR8fJ0niMfS7gyzLdg/v93qd7e3NO/fueO+FhFu3rx+JMaEn3W7/6OC4MhUlhwCArpWQds5hYIxx7z0HJoRgiCF45IAYqC5N2/FycUNEygZhEUsQ0FAXpdZ6Z2fnytVLnPNOp0MKDGIhCEP3Flp4ETlvyYyUT7YYN7SEBc65rRuD9TLloa3ZBVhilCEEZK0sPgCJ1rbCtTQrALhSLU/Zk43W8jjOkW4DIzQ8eAAIDIh3TfVsOiVqA6ciECz4wiEELjggwELImIKcoiho0aMaZ1g4BlHMgKLVGlpix+QLt5zGoh2tdyKdqlhYEHHOyR+V3h3nWlFRQnLjOCKW33Q6XcZRAKBUJJTkUiilGmfBOSU4l4ItLoQ0vkNo4+klR2H53I1x1FIcRRGJg7f3H1r9dO+9tQsy+ELWAxZi0PRESF2E6hN0+XS9NHmWZGrOyZtu2fJPms5SKWWbSmvtnS+pVVxJIUSnk8aJrOoyiqLDw/FHnv3wE088dvGhC9772lSbW6tay929u4eHh6dO77zzXe/Y2tiMYlk389n8qChmX3j+89PJvN8f9LqDU6e3oiSVItqOsiKvAYQPdjQa1VVx997t7c2t8+fPc4HWVmmmVlb6h7sl5+XaWvfe/b26rtfXN77t276truuPfvSjIQRyJL527UZd13GUMMbyPG/quu2r1irLMgITCYQlLrwUmiMAxyRJSO5AKVVVDSIa65Z7h44kPeI4jrmS3qFzzhjjvQMIwAW0TVhvMITk4MPa2spkkt+5e+v0qbP7B7v37u81tc+yTtO44JAxrlSklJJMYGBNYznn1gTJkQui3qOpy43NU48+cf7g+O58Vh0cTk6ffqrXXbl5fc81sbW4v78vFc+yrGnq2WwGLGxvb3c6nd17d0meqCzL4ByJwDrnhFL9fn+ezwjJDSEcHx+GRY8XvUFRrEII1jW7e/dcNaWJ2jg7m82EEHk+0lrnuVFKGFNrJRkD1Y8UbTcicM4bM4/jmHOugRtbXbt+WUktpZ5MR91OnwIWxpiORKRj2jQJ5q7rkno+iqLodDpSiqapCaxkjNV1LbhGBBC4gNio9IXWWsExSRJEICUoAYzksxiI5TwPIfjQKts8aJZFaFsIIUpI6JY5a0sss6zLGLt165YxJorEMsvDEKSUUgpcdsx479yrIjm4UKkVwKhlhcIS+WW4YkVRWF8LYNZa0vVeruTLdY9zzpValristQDeuiCEdAvHeACqPHlj8uAhjuPZbEZ2371ejzHWNPbKlSvD4WoSZ0VRfO5znzs6Ohr2B1tbO7QcEZUYOKNaBZ2Dc47abQXHmMXdbpd6IldXV9/97nevra2WZTnPp1euXGmaZp7X3/Ed7/nGb3z7F77whV//d7/KOAILjz/++NbW1uc/+9z3fM/3HB4e/sZv/IYx7sSJE9/zPd9T16Ysy5dffnl/f78/XN3b23vllVdu3Lhhrb106RI675zTkXzllVfiOH744Ydv3rxZl5VS6vr166PJeO3mjc3NzaeeemIymZRl+cgjD4UQ8jwfDHtXr17NOsn+we7G5hptWJ2sU9d1URSRivt9trm5WVWV1u9TUn7q4x872tuLOl3JuA8uQMiSxCO2RUoW3MJLkzZcEltnbR9wux9dvXp1NpvFUVrWVVlXHjFONOfc2qYsS61lCKGwjvJN8EHrWEo5Ho+jKCIwdl4WTW3jOGaC9/t9WvYBwEPb/7qcM+189h4xUJpG06bbSYlu0u12g7cEi1N3VFt+fmDRQkRER+JRjLEkTqqFOLsxZhkGEGBAezpjKDgnKgMTjDl2dHTUqCp438OelLIOFZMCACSXAql7BgIDzhmDALZpS8dkXuIxMGAIod0glRJCmKbuDQdaa04Nxs5TDg+MaUXq7Og9NTK0xHKllBTaO5xOJmmakko9uR63LeecB4/eByaFoPpbVQGAdyZ4jyFIwUMI/X6/aUxj3Gw+j3iSaN3WYZh/+OELWuu6rqVURZ5bC91OojjOpodNbe/5w8ODfR2rNE2vX7ohI7myMjixfbLoFffu3RNCdLvdSjSzWQ4AaSeZz+dEyEJEuShfI2KWJYgIMFwd/OgbrxYPjNkM/vJfhje/GX7sx+Ds2ddzUYsCnnsO/tE/+kMJaPzBcXAA/+gfwS/9EvzQD8F3fRdsbr5eQGB/Hz7wAfg3/+bLKkovh3Nw4wZ8//fDP//n8PnPw9/+21/L+RgDv/zL8Mu/DMMhPP00fPd3w+OPw3D4+qs+PISXX4bf+i34whdgPP4jHP/reL00nIPf/E04Pob/+X+Gn/zJNxYmfsPf+uPfqz/+GI3g534Ofv7nYWcHvumb4L3vhYceeo02yNERvPgifPCDf+T7XNfwT/4JrK/DX/gLcPcu/Pt/Dy+//NWNFr/q028auH4dfud34GMfg/v3v87OjV+Xh3LuQpZ1Lwot1k/0T11YG03GUsrNjcHh4VFVmV5npSqb+aQJIQDwixceuYf74/EYOSJ4aPsdLXAeiAuDATEAMMGEUsx7S+QUrVRgbU7IAnBkTdlILlnwDCFL48aavMq54hIFA442RHEcAgJAlCZN2QB4xphgXOuES6opcgAAQZgFOOeEULV1LnAmIvCMMUPWt2TpMBmP67pGCcYY05hF5CQIBycJDkSUkocQWLBasBCsASe1dN7XFm5cv80YU0qurg15IlsFQFMz9M7UweNsNo3jRAghIkFEUSmF4sKWtVLKVQ1n3ANyrpxzQusAAg1KJTQTG6sbnHMIbjbNpZTWoveOBY7OewTjva0tY8wa8N7nxzmT7KCa1MWVs2fPMhR3rt/3Nrio0YnIZ7POsBeCreZzCAjIPEAwGEcpYygklPWcMvN5OQbC6F1NOWicmiSDbrd/5cqlm7dzqThycXx8HOkEOARvMVjrqrqeKNmvvRcRy7IsgHn0yYtCiP39/W/9jm+6eP/Cxz76cWvROO4tat2LkzSf2/HoetA2TdMLFy547yeTyXCly/npfFblsxoAPnbvM5dfvn7q9PY3vfNd4/FhXs5X14fG1QQ4WmuUwul0//79+6aaSUzBskQMdeoGHW6MaZpaqixNOrNZzjlYSwSfKM/znZ0tHQlKWldXh7v795MslVKOjiYsqK2tE3WnuXf7sNeJnKuda/VtrTGM4yCJ07RTl/L+/QOwuVQKGIQmJDpBRCnU0cFYtvZrYC1HzxkAY9wHy5jE4GIdF3lVVHmcRLd3b+4fHG1uD7Is29jYOj44vn3jrpaJdyi1YiIOIQT0QnJjK8aZcyaSggdODFxA4Iwrzay11taCg1bCGGdNzZkEBmXekvSZUFoIRB+QBYcA0JRlp5OEEIytnHNSZUR7quoqTVOlwbuaQRComrLxFmQUMV4JIRjwpvaMKQSGgZVTn3WSAC6L0sPZsbdBcHl0MNY6Bu/qqrS2BsYaU3S6URxHMmJCoFIyylbiqUg6qqk9IjjnpGilY44OjqbTmXMuiTMeUtcYKcAFa9EjhiiN0rQ7HA63Nk+MRqPx5Hg0mtdNRVCXbrSUUpO6CGfdQY8x5r21NubIvfdF3iilwHEAdnw0T9OYMTY6njMmGIp8VgCEtJMJGREw0TR1CIEJDgBCibQXCyFQeK4hSmQca+cckeg9OqVVXtRRpJxl81kZRUowj75KM5kkqt/va6339/eFkuPphGmQsaq8NVwOt09+x/f+V//il//dE088MS1d3OmnnS6xkgM2AW2AQiqlmQwhkGCc8+ZofIDoCUvlC86aUlEsIo+hbmrjqYOegw/GW6UUY4AIaRQTmsMV994KxrJ+tn9QmODTOOl1Bt5hXfmqagBAKckQnK2998iAwNAQgrVNFiUqEkJxE3x3VZ1/bOfgYP94Pq9dzZEDEzpKGFfGBsZYZ7iCAJUJPODKYOiMcQ351DVcgAfAgMDAMc/AScm150rryhqhJBM8TlNvnDF2bbCytbIqAnTiJI3SjY2Nly+9cu/evdXV1RO9XuCi2x/GScq5ZAFN4889fPb2vbtCRWVtcpdXdSUVl1xwwTWPQkApVQilcyZNOqQSaIxxPigVeY8A4HjwwBRHFtBZx710tRVCMOQCVD6tGlt7wMZZrXW320l66e7RweHBMcmqUjMmAT3OmEgqxgR4BiC84845ZOA9c8JXtgIfvPdRFFnrOOdOeCk0CO6BCy4R0TUuBFSCC0wwoGIaMCChuAxDAKUSKokRA0ZHfG1zQymVz8ZCAmVT3gMgC4FyC1fXJakjcZWmaToeT8qqsqZqqtrURos4OLC1Z5w9+vBjxhQHe3cffvghHQneQFWZrLty597BtRdfYrEY9IcMtBQRhsY7pkUEADIiwQpfVVVTWwDkXAAgcHA+BEAODJEheqUUBODIWWBSysBCCB4Es94xBK5I75gDhKKuHn3i8b/xN/7GP/2n/3Rv7/7NmzcbqqlwHlhgkgnBEDxjTEcSfCAIibAPybjDAEwQeNqipd5qTSU3LrhyzkVRykSrscAYBAhI0omB2PF0A/2y+M1YIOKg94ExOk+AwMjXDhUhMgKRCSZDCAJBCAzecx4AHJJkiAMBAgOGhdIIAaoA4AGRAeOcca6kQECiMRJaygRordB7axtaCrI44RSXBc8YYyFwBAAWBCIiCyyEoLiCV9nWnJBuAt3iOBaCofOSASIiB2MaANA6zrJuHMfeIQOfJgMhWUA0tnbOcM3JcTFJhwT3eECChJwLnAshVAjgPVofiBDBOQcQUjAAQAaMMSJocym4Q6rWCMbbHuqA6ANDEAwYUBWjrQVSpMQ5RwTC7MAHInQjMpDABaur2jnHmCDNEERyZgMA8B69d1pI9LYuTay1M5ZxqbkWgvlgEy03N1Y6nU6e56hja8fHo1xGutvTlZmXNmTdbmns/du7JzY7jzx8TqvA5X5ALmUYHd/JS7O9deKxx4d5nkdRhEx/4hOfHw5XpNArK2uTcX7r1u3gudaxMeHOvZFxqizzlZXBNz39pvF4ZJpbDusAzrpGyZSBePYjnyiKYjIZUafOxz7+7HxWrKysScm9N4yDC844I7lI04wwpgAIC8zBBW9DxaRgZCEYUGsdpwkyEhGWrQax1HE3Jj6EjiPnHBe4stoHf6+qrBQRegCMvHtjbYT5bMIUu3D+sedf+HyWJWvrK8ZZpVmadkMA5Rmia5owy+fnz11cX9+8fvUaSF+bKgRnGQMLjLE4TpVigTWXr17ZP9pnoGN14pve9iddEbkSFLcb68Oy8Pl472ivvPTyS0IyzvH+dRiPj5u67nazXYAQQhZns9nMGKNUtLm+FmaFqGufT8ezmXNOaumcU51OKiVyBACbO+dcE0LTNEKRIjBqITZXtPeec2TMYIQADmJpbI1ta4WRgujeQUgIvlacIzIhkCvuXOHqmauhmdyn944a9kVv0zknlE6STKlIK2Wdr3zDgA16/aqqnXGdtOeck1yuDHpFNW3bN8tashaK9d6bxmrNi8oopYzFsqzSNBVROs/HSikplTGmFQlB5j1g8FyIOI4jEQkQHsA570Lg1gO4JI2VYnVdBF/s3bt39+a1WEbc+phFXAJDYBhCcN5DqByxyJVSiIEhA2DOewGMA+OMkixARBMMAAj3xmSo4D0ilqYJCy0mpVS322WMlfM8koqwRRcCX8i6LstjAEEAMvRlPnMBPDKK/KWWKBAZFk0xyccowg//8A9b66TQZVkfHR39y1/6xW7SfeSRR777u79bRxGB8o1tSE3bNqZdYhBYQHRexcpz4BEbrK42TRMryQL2AIIPcRS99PLlKq++4Rve8cQTT7z97W+/v7v3+x/5RLe3Akzt7Oz8qe/7/kjp937nd129evU3/t2/J4+KRx99dFbM/uN//I/UTmS9O3/qHKXJGxsbW1vnTJ1fu3bt3PnTly69vLd313v/0Y9+eDQ+KopidXWVBGEeefQb1tfXP/6J379169b+/v7Kysp3fdd3PfTQQ+9973fM57MXX/rSvfu39w/uDwaDwWCwsbGWZVnSV9Y2jAUHZjQ7CjzsHe8b9L2VFfRORBqkcLaxnKTzWaISWzex1CEQx7l1egshHB4edjodOue9vTt3D/aGvf6snBVFIYSItAQI3hoAIKBSa51kHYZAijS9Xk8Ac86VZU5s+l7WCUkgecay9MGHLIoaa21ZISKDQDUh70jBLAjGTpw8HUIYjyeIGCnd62ZatejldObojzqPxEFGRI4QPAIgIKDzUkrAwBFXV1YefvSh8Xg8Ho93d8fEvZBckNwcAHBgztjeoE86S1VVOWelBxc8SkAfjGmSKK4E+GCTVC0E8hcWVbSt4xLCX7RBhRCcp/Y0TrXfOEsBwBgjtWqahtyu4IFqPGsBF4BWG+tVzh3VV+kJtW9XCC0ZGzgXrG4oxCd3USl1tJALYcGD90j7qFIROL4om6NO4hDC7u4uIfF0Xdbauq6ZZwBwuL9PztdxHNtgAzrGGBU8V1dXp9MZovfBxrF2LtR1E2URON40dQiAICEwxlinkxIKo9TpP7hMvOGoa/jQh+BTn4LNTYgiiCIIAaSE2Qzmczg6+uMSPKdT+Mf/GP6P/wNWVmB9vUXxOIfxGEYjyPM/wqHyHH7gB76sRO8ffozH8KEPwYc+BL0erK9Dp9Meja6a1IG/5vF1vF4azz0H3/mdr1f+/XLj1p3/Z1W/yDkXEh57MiRJlGad2XTmnFNKUtgHAAHBGutcxQXnnEultNaI6KzHNtMgA5PWHgSRkBBPVVZGFnDQxpLwgPk4Y4zcZ4AxgMAZf+kS/M6H2P/7p9X6Wi/LuisrPc55Pi9v3rl/PBoBx0jLtY21uq6r2gTvnLeDQXd1dYUKcvfv7TkXEp2FAE1ljLGS80tXgo7V//YPHAcWkDnnPHoquCilNrY3okiPxyPnXWOMX7Qmra4Ouv3ufg7/7vfq//AR2Nne2N7a7PaSuqxnRXWwu/fylZvgOWfcGgfAldDee6lgY2s9jqSM5Nbm+mg8juNE68gZtzpYu39/7/kvfklKCcgq2zDGtndOFEU+m06l1AjgjbfW0n1TkXzibdDpJp1uFxCPjo6DR855kqTW2LKqpBCIgBCUklEkheBRohhDZwzyo62e6/W2b9+7fefenXPnzj399NPT6fSVl16ZTGazaR6pK01jqqoRXJnCdoaZdG1X3YMLJhWllpQTYuK0/SmhjQy4kkmSKKXQ2Xb5RVBKYfCMsSxJjbOmrtfW1maznNiXSZKGEKqqggCcc4YADJaEXGdCCCGLI1hUxYypObZO69ZaFpBs/bIsQySzeCbjaDAYNE1j6wYATOPIomHJ0xELQcaWehOw3+9zzpuyog6Sqqru32uGK/2trS26A8OhvX33PjnLN7WNYoBFPOQ9JXsL5SlA6gSiVwMAatNY7xprut0+SUkMB6tpmu7t7R0dHTWLfcE5l1cl51wxzTkHAUIIciOZ59OLFy/WdVmW5YkTJ4bDVeq3amprrc1ns/msaJqmaUxVNlGULIv2pGlLWavi3Horpe5kyeHBZD4rI92VKhmNjy69dK3b7Zu6nk/zoqiIFTUcbKyvr4/HY6HwiceeGE+Od+/vJ0kym+af+cxz3c5ASm0bM5/OETHSOnjvvWuapsaym5rdaFcIEes4hLC1tWWH7oUXXqLzuXfv/t7h/Tv3bgELcayTuE9bYafTcc4fHx/fvHlrNpv1+z3ngkDWG/ZW11e2tjeuX79eluXG2ub62uZv//YzxlgdJdS13emkcRxXVeG87XQ60+l0Mpl94XOfX11dnUynu/cOr169SmTMqipnsxnnPE4j58yjjz5qXVMUhVJK9nqnlDrezY2pdRxlWcYVF0IggzwvfXBSKoAAwI1vALgxRgvpgyO8+2h0lMYJE+zw4GgwSLc2tpMk6aZZEZXdbn8ymkU68c4zcEmShBDKKkdE0rgAaIlFUkravsuyLMtSKeWwJW1xzhmphTJkjHMpED0AE1p0ZYTgdRRtP/FopEVZV8RQuHXrRl3XkmN3kA5WBsaYqrCACAhZtwMAZVkrJQw6znkUSSEEBKybkjHpbIiTOARI07QsTBQrKWJ6Qbz3jHMAmE2niCgE9+iiSD38yMWqmm1ubhdFVZalFLooyrLIOef5bF6WBfFZELwQgidxkkaLTEYOBoPt7W2l1O1b946Pj2fziTEmjqOs1+t2u8YYkgr1zpXWRlEUxxG6EKuYGL64cEhzGOq6ns+naZp2Op0QgG6skFLJyBo/n0/o7djY2KiauizLPM8Hg4GUstfrZUlK77L3KKVMkkSolv8rhIgixRiz1hBDkMK/o6OjujaEpFRVRRFg0zTz+fzRRx+tquq55577V//qX1HT6Gg0UkqQmGZjmiiKjPn/s/dnvbZlV3ogNsbsVrfb098+4saNhhHMICkyk00mlcySDWUhswpqzISrABkWYNnPQr74B+il5Cc9GKUHSS5IgFBVlgVbLkhVVFVWUpmUxEaMyIggo7v96bvdr252ww9j7X0vUxRgwYLhB28QxIlzz9ln7bXmnGOMb3zj+7xQKGKXuIrOd8Qzy0MIkKicc01jmY+8Zv10/uBEtBF+1VohYtVW1AYASBKtVFpWSymlMWaxWkiUQgilhXOBATXgTFV2H1Cg7OWZ0iLvpSACyZgk6uLi4vp60uv1d8bbZ2cXhDIxabWqtE6EovF4DETVcvXaqw8oxJ9/9JGRRmuNUgKRFqKxrZSSkOqmHGfjRIvGtopUkqbMSVVKXV1dWdsOx6Pz41MAsNaultVisTg+OfEu9orBYrG4desOiz4niQhEg8FAnkkppXNuen0lpRhlA4lCa01rfdtuLlVrQGTBTVSSSSF1Xfd6PSFEjC7GiCC4KOCqg+2e0jRV7LcmME3Tx48fX19fz+crpRRrMs7nc2l0rCq1tp3hN7KuIYBeMTDGtGElpTzYPfDeX15eGkNsD4sJM0MxsMQBgVyzuoiIKAAIQNajEJuIDOv6pQu1RIw+U6dRy4lVJIKmsRvGmdGmLMuHD2cEYLRwLiilWTIyhKCkuLq4vLg+NTIry2o5W3oXjUmMSYfFcD6uvPdN01hro+80BnlxrqlhwlobQmT1iRC6xGnDg9O6Ew9lrHxdl/GnAcbLumJPiOFweHl5+Xf/7t995513vv71X/1bf+tvbT6jDzZJkrgWKSbi1IN4O/DFaK1BCu+9NpLlm6Pv2MGb1IUoRIq8gRBRdPJcgIgCFK6JsazmyX+dN8smBQI+hQGAzQBo3WhfK7d0F6l0CI4ItVa2aY1J17/akXY37ynXghv8/c1TBoDwEjG5g7GUFpsRXtnN5oYQBIkoQKXY8fedYwYAfzT+Xe4nWUuBASMhAgUmTnHIqKrKWhsD9Pq51jrEGKILgUvm0LYtC04SkadIRFonaZoKJReLznKTiKIPAGCM0VqH0DG9Npx0F/xa6lpoqZibtqZUxhjC+rDNEJHbBkwS31TxuKbJExHZ0BLF2K03ri+4taOUAlAKhXMiRrbwoBatlEoyQK4luRBC8D42TZOmqbVtr5d7avv9orWLalWOb4yyJOslRWHys+OTTz/9+Jvf+CqBW8wm52eXF1czBDMc9lM9wF5qbXNxOtse3VgtVxfnp3nvWkkjRbY9Hl9cXKVpCiSfPH6epma5LE9Pz09Pj3/rz/7511578198/4+Hg3Ge97VK1yPeSmttXZOlxc0bt3u9wdHRSV0v+cDMsixNUy3VBhnY6LbzU27aCkgIIQIB5xjrw1DKtTdVnudt23obeCAjTVPn2hAoTdMYsHFRRK/VC4bsyy+ptNT6+ORwNNoiwtl8mSTJa6+91u8Ny7JeLRs+gnrFYGdnJ0bYPRj70DjvWOXEe6+V0Vq3rlnMV8tqTkR1U77z9muj0ej0ZDbopcYY5+vnzz999uyZa5sYvfc2eCsEDvvFoJckBqWUSmgiSgwqaXZ2tm/fvsEU+LOzs4vLsxijECCUZDJyCIEiWmtXq1VVVYBCqmRd0VDnvrvegCgIERWpjnsLKKRkCeMYIyBzw7u5SYbShBDkg1zTkZqmWVSH3kVez2leFEU/BjGbzbVJJ9OkrussK0yC1nJXzKeJ9h6JQq0oxFhkusiShV0d7O26EKuqCc5KERG8bUtEVEqyiJYQyIRIhAgUAEhJlaTaJAoBAVDrVGsNQo5GWzpJ67qG6LmxnWWZhFYQhbWwjFAIUljngnVc6DFWCy+5fHHEMUZxIhSdB4Ao/h1wc4zOuy6PRTTGME+oruvatkop31pcK7/zX1yjdy8U+aWU1gX+db6AJNUhhP39vb/+1/+69z7P86qq/9Jf/F89efLkv/gv/k/OuV//X/z6u+++y9UQH3QhBCFlaFsfO7dVAOB0zjkXJQKARMH9fimlBEzTFAD6/f7v/Wf/6+3tsVLq9PT080cPf/u3f/vTTz9//Pjx7/3e7/Xywns/mUz+n//3/0ev1zs/P9/f3xdC/L2/9/dYgJe9+z5tP//VX/3Vtm0vJ9e37939y3/5L//Nv/k3z8/PR6OREOr4+NS5tq7rb3zjG/1B8bOf/SwE//HHH//BH/zBhx9+yDD98fHxZ5999lf+yl9xzn388cfWNf1+/6OPPmKJsLat9/b2vvSlr1jvtU6Ojo5ms3mv15tcXhljdnZ2FrNpCKGqqvlsliQ6rut331o+bJnWzYcrB47ZbMYhGJUs0qyqKiLq9XrsQC6EkEYDgPUuTU2/39/Z2UOCpmm0kJP5rGkaLeX+/v4rr7wipTw5OWN+8WKxCIFGo9FyuewlCdfynOIy4uw7vaCO+M/roW3byWTCPOgkyba3t1erVdu2WZZxv23dzJBNY8NajyvLMtfa8Xh8cHBwdXV1dnaGKHjWzXdKm61YyxWy+wjnV7lJw4JsXdd1naVJggnHYgBoW6c4ksXYtazxpWGQLj4xOmxUAkZKyWRSY4xOE/5LMUb2OkRECRjxhVvF5iI2e4+vkrPeTVJS1/V8PucDLlGGPwz3zLWRvV5Pa8VH/OXl5WK+klJLqZq6NkoTCQAwprsXjx8/5nSHg3f3JABb50IIUusAQaepSkyqUqUFAF1Pp1KK7d0dVoveK/r7+/uPHz198uRZmqZCRhRBCUkUEEBKU9e1UkKpQoh/P5u2qoInT/69fuPf71VVUFVwdPT/0ZswdPsfUBRisYB1ZvUf+PUf5PPyiz/1/5tk27r5Wd38GNYzBU2rpjPgjNZ5xScP/6S1HnGNfSBmRZ4kifX25bNpk/FwESUUS9BENtXldjoiRv+ifIKXkmxY45sAUJZ0dRWFEEonWZ7UdV3XJXmnCr1/4+69V0VZV8dHp7P5xIa2DcVslfZ6xe7u3vXs6fGjk+2trTu3Xnny5Kltu+aVa9Dbbmt7FwN145BJqvF6JAS2bS07U/tQN3Wv19vZf02q8+OTk1W5vH//lWxQXcw++fDT8xBCURQPHz1ezBf37t5fzld1OxdCSVm40NgYt3a+NN7q37x5cHj83oc//0GR94usN53O8zSfz+dNXfFsYN5LB4MByIut3aQYtGmaamnOTi8Onz2TQgNAa8F7v1hBPs8Jo1FJWZVS6tYpaztgl0/noshNmkeMPiiTqP1bI0S8ODsfjQcEERE//fTTh48fpWl6dTFZTQJIWEWXF1meDUMIkOvVvE6E0VqH6DblkBBKCJkkiVRoW57FEwz4hhDAh4jgYlBeCSEyo6OUMQQuvRKlQwBFmJoEQnQ+KCONMZzpNk3bDUJ2dvaCD8lAEdaWDr1e0bYtn7eImJrEU/TBJqnGSDFG65qMEuepLqtNpqK11kLGGJXshj03w6ebZc/L4M6tO9vb2xjp/Px8uVx2ndXgF/OVMRMAAOJxm6i1AQBlNKCUQgYMfCBrrdS6aprP50KzGw/D8V5LIiJOcHkjUESQIusV+0Y758uybD0zngSiiORjgH6/VzZ1CK7oZc610+n1O++8vVwunXNEQUpVlksizIv81o0bs+ni4cOHQkggQYQMbEkpEYmNJjiTJu/a4M5Ow/nlLAR///4rO7tbK9VSMItZ631sW4toAPVoMJBolnM7m9RRVB9++PMkMatVWZdNkuRNZavlRZbkGHVd2eBC7duqbBKliWKic9fGk8ML1mFMM7O3e1BVlU6UThQA5L20tc3x46vd24MkSebzqTEpoyoAoVcMnHPBE0XRNK1S6upqUtYV99h3d3c/+fgT/cVkb2/v2bPnfG5Ya1lyARGvr69Xq9XJyYlAGUK4vpplRSoGwjZuuZwrpaqmTDJVr9o0K77w9rta66oud3d3EfHy8hJR9AeDSPnV1VUx6O3t7TW2ttbmObCHNQAoJRyiEEiekkSTFM67SEFIUEqlRfLlr/zKeDx2rk3TfHo19c6NRqOri4kkT4Qh1FKhMUpriYjOOYwhvrBjCoyfMkVRQAQkIhQCeR0SEQgUAoiCNFpKTDIjlXAu9gf59t74+fPHiChUdnBjPx2oq6urwaCntfTe90U2Gr3aNPbjn38qE6WkAZTOMulMBx+NSatV6VfRudpaW1VyNB5kaZEkJVEE9EKAwwgSBAkppa29bf1oPNBaKaOPj86ttYt5hYh37tyZTOdZll5fXQKAaxk10JtzPk3yJNW8N7e3t4nikydPin7v+PgYEfM8b5rGOd8XyrUOAROT8sOVgHpL6rxool+tVkLCuhsaYxSs8ccoM5eRSppILYTAAiBVVQFAv98vy9J6F4JDpLouQyCm2vGk5/b27qDXBwChTdu2Sgv2jbG2QZSIkj0qre3GeIuiqOvae8aAdJLIe/fGx8fHf+Nv/A0Gvtk6taoqa5E5B71eDwCSpHNU67iHJgEA5mwul/PFYpEkoNkxDCgCO2AHACBC0cFnHVLTOCujC9EpJYbDASFcXp/3+/nW1k6MNJsurAtIECNprWLEEBzXWmmaJ0nCavzeNXVd7+7v3H9w98nh48nsclktTaKSJFHKKGkaZ3mamwhDHRBlkiRFUQTyT58+QykDBBEEA1gxRqEkIpLAlOXyhUzTVEXyMTRtG7xPtE6lvppOQghPnj1dlmV/OBRK7uzu32tsW1ulTNPYh58/Ojs7izF6H27curWsStbZVEqFjpIKSarYG5CIApAxBkGC6DIQKaXUmtF5ztiVUohAhMRAGG89jIBIGAFjmhjrHQCxd3nbtlmRX1xdzhbzG/sHbKCCKFiUsOgVdV23bau0jjGG4IQwChUi1rZG6rDargvYCf5SjMwPAwAInrRW7BDOujqbUAVrsqpzriiy7e3t+WruvW/bluEVxqGgUwsUaZoK74uisJ5FAzRZkgp92yqpoo2EzmSmKHKC8OjRE0A/Hg9m18uT4/du3rz5K1/+0vHRqWv9eDyeTCbeeSUl63jEGNMk2bTEeNaTRQ/ZLJ2PMk4RASPAOqz/oo4fo6UxxE3dxE3H5XL5z/7ZP/s3/+bf7Oxs8YwOwxCpTn0XKJHvAwAIrcw6vvMjRiHkWpBhk45yiYiCkIRfe1ryM6J1YYidFSFt8tuXswV4qZZce6BRBDb96qBh2CgOi04EUwjBrg8shRRjFLorVvlz8U43L03wbZB4vn6pJKOxmzfn29vZh0rJUOym2aB0wg+C7wYJAiClBB9rIbxQXxWyO3YQUUpWLXfWek6f6rpeLpcAoIxMkgwJbOsDReG629U465zL85xvBYXO2YkihY3ZlBAMFsFafmTzrHu9XpakiFiWZV3XRnWaNgIxTVOVGCk1I0RyI/Wzbsip9ZQ3VxPgQaEAFESISm7aM4K6m0nUpQddsyHGiIAYQxDOuVW9dNGlqRmOR3fv3tnd3zq/OPr0s08I2t29kVGyKcvRaHtyNb2eXHrX+/jjT1arZb8oDvZvtdZcnF9/8vNnVfWp9S7LskQbRNza2tt+685suhBCeR+9pehkEKIp22VZm9283+9X1Wp35+b5+bUUOknSPMsQeP9CnudpmlrbFMV2jPH6+nq1qpqmsa1Ls6STjnHdWRpCWCwWrN/COTnnovxwAYHNVoTEpql41a07Q6ED4X0UAqyFuq6VSbK0qMqWmsZ5p80vryG1lp58VYU86zkfm3YBgFVV2dYXRTEcscM2bG9vHz4/Pjk5uXfvHuBWNhGj8UFd101V7+/fOD+7LK+rprEISikstvIHDx4UWaIwXi2uLy8vT0+PB6nfHqgQkhs3XlnMpzEG65qDvX0iShItRKdrtFrl1tqtraFJKVINCOPtvD+8HUJomgYgRujEH6qqCeSTDEDIGNHZwOAUsIGbwk0Bu9nRspPjI6Gk1pKxVwBACUDc+FnbUYYQYgAkvsPeeyTUShKRD9Vq2bT1ighXVZ0k2fPni7ZttUryPO/2DrFiGKZpSt551ywXASjEGOpqJrXRkps0CZJnUEzpiEih4XMyGo2IIkbg5nT07upq6ZxTygghYgAp5fXkKvi4u783GAwQaWdnvLU1evb4015hjJYx+tj66BDVC0miTa9rc1R2qPT63IsxBk+InMz+kpfznZYO30yllHfx+mrqfNudaQK1McG6zRG3gR34MOxaa9i5oXKtl2VZv9//1re++du//duXl5d/5+/8nc8+++xHP/pRU9vvfOc7X/3qV41Jl7N5a+ter0cvbFpJqU4k2jlnrTVGC4FSyshqSpGfIAKAlspae3h4eHV9YYN/9uzZ9vZYa/3gwYPxeHx2dvHd737XKF3Xtdb6w/f/BBHn8/lrr732F//iX3z//ffPjk+GW+O2bVloSyl1eHj49a9//e23v5hl2T/4B/+gtm6xWL3zzq+EELx/dnl53e/3f/7zn/PB/sabr8UYp9Ppm2++eXp62rbteDyuqurDDz/c3d39xje+8fDRZ9yGZ9fiJNFCiE8++WRnZ+f88vry8pIxfSOV1qqqytVqdWN/b39/vyrL58+fX16eiTWL3DUtH6rs3codO+4TS9NpVIIUzjkB6JyL5NM0TdI0SZIAwceQ53mMcTaZVlWVZUXdlJwjUZLoNLm4uHj48GFZ1nt7e5w09noDIURd1421r7/++mKxKMtKCMGcoRgjUx7btpVSDYepEGK5XPLau3v3FSLa29srq+rw8JD1OjYw7Hw26/X7r7762nQ6VUq1daPzfLlcfvDBB48ePSLCfr/H0pqutRueB3QqIuicGw6HSZI8PXqMUWqtFagbN26EK1+tStDIDCHFaUSXf4QNSkwAEJmYg4gCkCSTPji3Q9VJvEkpq7pmq19EZJMB0QlxIAjBWvsQI0QKFDcOut77+Xy+wWLk2oqhcVYEH2OXawpUUkpnAzfPtUryHJRQZVkDCSnRtSESOefSzLRtG6AzUtiwp6uqUtA1exERYhRCWGuJtJSybKrFatnr9Tbs6UC+rFdZnrz24B4r3cQAtmmmkzmiaNtyd2ef7zv9f1Op9///+v+ll3xhHBE3wRW6oItcz3B+vyE7W+sIm4261yYCrRNNQBZgeilKrb+IAPLlqgNegpg3P8b/2u0uQWVZxugB4vhg+9692/sHu963dVnevnNj/2Cr18+NkdeTy9Y1UuOdOzen02mSKkLvfevIhSh6We693xB2lRaCUEp0Dpxz5yen4/EoLXJECiFoRC+NAPno0RPvfdNUkfxnnz18/vxISjw9vTBGvv7664NitLu1r4Q6WZ4qZbTWPjSAETAS0aC/9W9+8ic/+OOfoIBrsZJSxABZyiNsUBT5sNfXmRICkkQNR8P5fH70/HCxWEAApRR5YuAJEQWIEMJgMEiSTEpd13VdN10C7YNSglFOIur1BiG44WB0fHS2f2MvBnjvvfeUMVmWS6mcc01li7y/Ws6QgAggYJqkwiiXhBUosBal1N3h2z02ztljWId8og1NSRgtO3l+180f8aOMhAgShTIGAGzTutZ67xsLs9kshBBBWOuklEBrrnHo+FBs08zJGxsX5HluXdO2LQrSgKnWZVkaY7a2xgytWuv4nIwCufCOMc7n8xig1+txUNisKF6NXYUWYr0qeUlrldi2DJHtgMLF+RVnjdIYxA7vq+u6KIoQozGG+b+TyXWapkVRAMb+qC+EqOuWSY5FUaAIiGi9b1er2WLBfXomFPR6/RA6kFFrzeNXAKC1tsEWvUQppZTY3d1ZrVbWttwQns1mRBQjtW27Wq32tg9eeeWVLMsWiwsulblIc6611gLGuuneEwVJAKFz2zQo1cnx5WQy535y28SqqpIkA8QsH1DUjfMXFxMicr6x9YVUiIjKSKOttZbFo5XQwUUAgREoEklUmLTWG6PrsgUgu2rbpu0EKMkqabz3SWZef/NBr1+MRqPJ5Ors5JTdU5qmpYgxglJmPN6t69q2Lni3dMvplOq2+vKXvxxCODs7S5McUXLM4sdqLc5ms4ODvWfPnl1dXlvrY3ACxWg0EorSNBUDUZWlMWZvb280Ggolk0RnWXZ8dkqeZrNZmmTTyXyxWKSilyRJ3u/1+30XfFmWsGaySym1Fm1tvbepNsYoY5SNIc/M3sF+01S7+3v37t15fnzIhXq1bK4urz/+8DOIUPSGEiQRCnBNsyJKjDEsS+rbTrlSCOF9LMu6bZ0SkivwNSiF3VgID10L9BQVkjJKaakMSq0Xq+l7H1wpLYwxSS9ZtUtCf+PW7nwxNSrPM2Ot14m8fffVotf75JPP59PZoD/a2spDiMFjCKRkkmgzmUyEkIgCQCwX5eR6xk/Q2jaEGDx558CFmCRp0QcAKZIY4sXZRTVbiVwBxF6vZ4y5vr7uRAalVoJzuI4nyFxFX1prbVmWq9VKG7NcLfzpiWsCkQcioRT5sJjOlDREJETZNA0EkEY3taW4MIkSQgJ0bcsQQowNIRN5NADWdZvneW/QB4F1XS8WK7EW75NSLlfzqq6ZpgoASuiyLHnaABHbuklNMh6PL68n8/k8SRKtpZYqoBICog/B+bptOCEWQrWtC6FERO+C1oIJ7EVR5Hm+WKy8dWxmwucndxoYcV5Vy3UppUVnPgZpmhKFNDUAUFUVgON/Wi6XEAOLoXEo5iaV9761LUAM0WktR1u7450BEW2LvtIJEV1cXCktEMlaX1WVMUYpZQw3xlQIoalbBsrZUfrq6ureq3cSkyJKIVGgVKiqslkuy9WizNI8z3sxwkY8HSN9/PHH2+OtvZ3d2WwmAGIgPucZVSeBSZI0TVPVTRITkIJ91Y3RUsgkzy4uLv7oBz9oy0onqfUBpcp6RW84WMxPP/v8YVPVs+l8sVgBCELY2dlZViUisu+fEEIKGUJAkNSR0wMqqbUOnjaGMEopEKKqKrkW79ZaW1tzf87HqPhJIA5HfaEQpTy7PGsby8KRRdEfjEeTy0lepG3bPjt8bozJsmw4HLHuSq/Xc8Er7xCpP+wTUe1qAsut2SxJfLDBs9ywdM4BSCGEEtKxXkAAWrurbXIheokDyyAaz1IYY7SW87KE2KHMsLb73sS4ROuiKERdV02tpQRjWlvneVFXLRcjQGE4GMwXi2B9lqWrZSsV6iS5PL/+6Y/eq+u6qWtrKUkSJSNElFLGCDE6jrBMD2dtFloL7BK9YKEKISJFJkfzzzBNjNk8GyCYA7FSKgRi86K9vT1r7ZMnTzj+djeEOtMqWrflOHH1MQjqoFhE1OJF+oprX77ufAAIka3zgEm0fN+UUjF2wCi+BGX+KdRj/RReiBB2fwgxRk8kkQARN3q3TKnjv84XoLV2ayUc+ZIen197zq8B5Rcfk0ACeACQyOLd1DgLIQJACBRj8D4CxE2qzLflRS7tQ8SOY/4yjiYlkmC/wW5cDLpKe3OWRkQuMClQIAIhhESJDAoLIaW0nTSH5GOTf4vfjf+f96YQQilB+GI9pyaRuHECfIGkhxC0NtS16sl7z2+14TjjWsOaRaI5F2VIms8xCYiAEClG7wSX8AxOaa21lqr1lXeRBBFR0zTWegiwXC69TyJEY2SSC6XFo0fP7t7bf/PNN5fltD/qL5erJ48+j9Evl8umsXne1yYvaxr2D46eLZazarmyzrk5WNs4Y9RTOL9z544ySdOU3kUisi1VZWWMkpAokUJQELTS+uT4zDmvZEoEzllrfZYVDBdmWYKIi8XCubBYXAPhW2+9RRDPz8+ttXVdO+eyLONUvGlqIeRagDtl2WIeufPeEWCe5Czpy9/vxJqESI3meYu6KdM0ffXVV8/OzopeRkTTxXL9lP6tF1JidNu2q6pi1gvz51pbN21FRIxVXV2fLBYLqbFu5r1+un/w6uV5NZ9PAMRkciWllCgQZS9PA8XEZBLwH/1f/+ujw/PgolJiZ2skqBYofGiHA3X35v0Quv2LAFmWhRDSNPUuWybKWut9473I89z5VkgvgQhClituvVhrlVHOA1ROqpgJ3bYtoiIiNhhfa9x0rIIQAmIXY6Fb9sC4DmtPsTSrRyACpQyT7jd6xPy2kkJgkXoS1voYGynlcGCIohDOKOVcU1eV1gkSeO+bSkXq2khENG/byzMCoaz1WVokScq1g1ASwAuBMTqltTYgZXTOhRjauqmaerMTAw8crw3VIRJRBG2Ojvs3bt186403k+2eVBBsKQYsyo8mSSKAj4EEsuaqX4+qrKljAgGlRABak+s7RaNIv7w/wWUsa/E752KAtm3Z+QCRjUwS/sjOOl5LL5/AG7iAFcAZBuXzgY+Ff/gP/+Hx8eF777337W9/+/j4BAX9yq+8IwSE4NIiZXMaltXmZzSfz/nURUSOWTHGpmnQdPbUzNQhisvlcjqdXl1dXVxc7d7Y/da3vrVaLU7OTlerlZTy5s2btC7ihBCMp3/nO9/5rd/6rZ2dne9///tJkszn8wcPHvzu7/5uCKGqmt3d3ddee73X6/23/80/+uG//nGSJN7Hi/Orfr8/Hm0Ph8Ojo6PZbHHz5s2vfvWrP/zRH/M2F0J0/Xshvva1r/V6Pe/9n3zw3tHR0Z07d/b39xeL2dHRkbXYtg5AXF9f1+XyYHePacJJkrR18+TJk9ViIYDu3r27s73NjsSjtS0VERnZnbHe+9FoxJ05Pi6IiL0BjTFCAid+bMhhfRuJvHVB+5OTk9lshojL+VwphVIjYlVVn332mRCirWopNXNnkyTJ815d13fu3FHGWGsXi0Xb2iRJxuMxP1b+MT6sBoPB5eXlbDbr9Xrvvvtl1oq4vLycTCZVWQohmAHNz+LB668jYowekZqq5kNjPp8fHrdbWzvD4bAoirZtr6+viZ0SheIjQgj4whe+0Ov16rq+urqaTqc9HOgkOdg9GI1G89ncWiv6ot8fDGmoYN2aBuBB29hlYevZ8Lh2ESGium3z1AitOL6tyXFOSgPrup0nKIkohhCiZ3MVvvtd3FWCgWz+tFp3d5N/HQA4GG8cSJfLJSAOR33b+q2tLYhYllVZ1gBQ1y14aNtWG1Ou6qIoInlpOkn17pwN6Mnzsm7bFqVZMw2XhKyoLZwNPIhXFEWSJGdnZwCQJElvUPR6WZIkIcSTw7NnTw9NqqezayJKTCaE/aUnxaL8nwD+3IvcKDw7n/8fZ7MFEDEfWkjckLOCDShEcAGFzFl8XUoeo2iaqrUNReB6z9mACCQQAoUYjEkEYgxRKRUjRJ4glhIFxuilkgKFc846S8QRAbQyQsgYPSoEQVxpG6MR0Ji0KqtVWcU28ogbUIenEhCQ4CmYDYWEXaMBogBjrTOJISCmwPC/SiUhgrV2OByMx1vL5aJt2/F4K1K4nkystXmeCyHnS64eBVFMsqSpKwDQxjRNI4XwwUvRoWmRNXCVRES+JooxrE/YTfYZI+Rp2it6ANBaywt4uVoKFJFi9IFiUEnSNRWJbcG7PAwwSiEjxRgjAWTZF+7d/i9/6SPmKMJfb/J4XtJSaoabiUgIIBJS6hC6opcNdjpZgo5BwLtPcBN43TXq0pYN2IfrA25TmWy+5lx/A0wwlMnRM03T4XDQNM3h4TNj9GR6FS6gKLKil2id7u5ug0Dv/Xw5++K774wHOx999PPVqkzTxBhdNqVSyigTYxQCvX8xhty2TkiBiBKw3xu0bVuWZWaS1XzR+u5uAOD0aglumQ4URKjLcHx4+o1vfGNyPfvggw+stXneGwwGIbb8wY+PT1ar8v3334cIJtFKGS2VMalzLUgYjQe7u9uj0ajopT/5yU8Gg8Fbb731+aefXV9fOxfzJEGQgBFRABASxkgYUYJsWysEzwJKRAxtICJtJBExgaXf7xuTTqeLZ4dHRycnvTQt67roZVJZrqZjoH6/P71eOhuSNa0mSZJY1xIoYAfXEhGL8+D6uGNoUmvNfXV+mgyZbZ6RtVYyGUegEkIiJiaN0YcQjNZABKJbWnmSJknKZEOAKIRiWLsLGBTbtoW2tXXFo7ghOkRUisnR2XhrOJ1OF4sF+94gQn/Yb1uL0NkFEJFSqrZtWZabIVx4adXx19fX15eXlzEAd567oSGUkTx/xDTNeoNRWZaz6QoRs6JL5UNwdV23bUMu1q6qV1UxyA8ODthzOU3HfH+0kYwLW+fXU/BcNkshKh6ACp6Ct1LKQX80GGaTyaRa1kmqtZYheK31YNhbLpdl1fYHxXQyn81mQogkSYMNz58fn19evvvOu3fu3P38888ZIudgkeVJv98PgV16QUpZluWybIACgHLOuablJCn6mGQZeUqKjNGZzk0rOKUSROFdAKCqLBErREkEMQApoVABgFQSIlGkiJCINFpvVBpiu3Nz994rt1BCWZb9YT8xHT3t1VdfvXfv3mKxOHx+1Ov17ty51zTt559/blsO147ZikJKItQq894WWf/48KR1NjHZ1dVVkmRKqbhmLXH/P8aodZKmwblSaRSovI87u+N+vy8B9w/2GL6vqqpt67IpZ8tZVa329g58jKu6qpq6sc5T5cgVRaETw232BSsAKpWlmZRyMVvyXlj3MOLNWzdfefVV731ZltPp9Cc//PHu7u6du7c//eSzPC36w/5ysnTO5b3cWq8Twzu33+9XVeVdhK47TsyNJSLbtKQ1dKV4NzrMh2rHKJGoAHx04/7IJMJFl6eZbKFpGhDgo5vNr6yrxuMRIt67d+/k5EQpdX19/eTxs+FwdPfO/f39vV4xEIgag9bJoD/+7LPHbVt7G5QyxijrGuei97Sezar7/X6/X0yni8Gor1VyfT11jnl5oizratmoLGViSl02n3/6cDjsZ0kqlGYLbOcci28y5LpBfoWUdd25JSOi0sJVBAKi9cWgL4VeLhYxQJYVAqQSiCS8Dd5W3mljTJIr71/M7wciIRTDqWVZLhYLnbCFaehMpQyNt3aEEChosVgkxiCAVp0dGSJKIRBk27bT6RQAylXFvOY8z/v9PgAIobIsixEQJREpoQHANm2Q3phUCBUCLRYrpkERkRKcATullMkLpZQLnoim03lZ1iCcUqYoCmNU09jZbBZjzNNErvXZqBOilYjetk4r7I7rGJ3zXDIZo5NEVfUqTfIkMWU1FxOf9/J+v0/khZT9flFVlQ/eOacMNk3V6/ViJzIQvffBWyLS2guMkagsyx/96Ef7N3cH/VFZzaOLTbRlWQcXjU68jwCi18uttf1+fzVfJEmyt7dnm/bw+Gg8HLFsX1InHXfSaJbqCyF4H20oTZpwWo4SvfPz+VwPxx/9/GdGyDzPfQyff/551TRHJ8eucicnZ/xA814xny9vHNyKMVxdXTGC5pxT0rBpWd02hsdfYlARpZSEtAlVnmK0PssypRTn6gAAQvgYnXV8jLBjgU7UnXv3Ti9O0zxXxgghhJC7u/u85ZeLMs9zpdTF+ZWUMlBAKYhoMpuyt8H23p61TYwxTbWPsL29naZpXdcxRucqImyaGlEg4AZLDTFSBEQWJhYoBIuSddkgSCEQQSLGdYYWd3b3trbHjx49imu9BXhJooHvWNu2i8XCesfbTqMOLmqlONHi9VyVy7qsfGcoJ7b3dgHg5OjcGOOcbxrbyR0A8krTWrdVvVx2ZlmMFzMeobXZHGIEIVLcXA+/GP+SEjmGxhiD8wz313UNwFoonRgFp52c1fChoaQBgcF5ip0ABSfJWkiOpBzTOXvk0oM0is7jqxPRYg2fEEKS6NbaGAJT/7z3RJEZbS9nCLRGafkEZtsiWkt+bdJa8ZKYBnUFByZJp7idKMEfU0spSCAieYoUtdRBENscbSAVIp7EYgHAKKJC0d2TLjGOtDkcAACgG+SPMUbP5rdqk0gLIlbLeQk9f+E9qJTh91mr9whYMzo3npDOOZQSUBBBWFsLSikT1XGrfyGxX0Pb/DXftxA4sZcs2cQEKW7SKKXyNFsbbAhrbQCSUiplGFSltd7I5hPBSyP2UogYAGmjjdmh81xr869IVACR1U9Ed8xjCNQ0DVEwJhGaj8Hw7NmzJ08/X1b2xs3k3Xe+OJ1Onz1+hChns0VR9G/fvHPz5s3lfIYoD5+fnJ58LEW2XNiqbJ2D0XjPe7+7VfANmc9s08z4oShl6rpFRAqEUpyfXd+7d0frdLlcKqW00sxVR9BZVjARDZFHqD3PqyHaJEkPDm5KFVerBUvtufWrS7ylAoDNSuBnFCEKyeuqAx83pToTGI0xYTGzVaW1Ho8HNtS7B1tCaHUtTa4F/HJBxrquJTXlclWWgdEoAEjTFBGqqlJKtW11fb2y1hqT9nr9ulkJST2RowjWVd7Htm4QjNaGAKQwrq1B088++uBnP/lwuHNjf2c3z5Ldvf7ecCfGuFqtcqNefeXOxcUFrR29eFiKJ+g5XDZNkylkro8QQkoh5QYvj3VdokOlVJ53VmOARMSAA89CsZ6S2tS/0ImpRqLA7dVIAVGsaUCEiJok8PjICytUFjYBAIECROSGEBkVvY9IESEqpWN0kWIv4w5cTJLEWjI69d67GBBJCKGkbts2BNtLDaG1bdtUUK0E77sYo0rX2VQE7sosFou2bXmYWAjBskJ8SgAoRGIFxBDrZ08fVuU0z745HPYBKEYfgBCpCzSRYiBBKIQQBICRYB2hBLLHZuxYO0zFRKWU0r98wWBnahpms1lZlnxJXG1xDxVIV2WDghgbXd/DX3jFtbIzB1M2fLu+vv7n//yf/8//8/9UFIVS6ic/+dHl5fXbb7/zj/5v/+3Xvvprb7/9dlEU1trWOlrO8qy3IQLzuuWIBgCAURhB0FFcnfd1XRHR2dlZ0zSvPnjtK1/7qnXNBx98cHx87KO7d++eEGI0GG5Q4DRNHzx4kCTJX/gLf4GFNYqiuH///pf+zFe+/e1vs5m2s6S1tra11mite73ezs7ul7/85avzi29+81v37t0tiuK//m/+4Q9+8Edf/vKXi6I4vzhN09T5tmmrSEEIUdf1z37+IQDMZjNWpej1evv7+ycnR7PZbNAbPn/6jOW/+v1+kiT3X3szTVOt9R//iz+SCofD/uHh4cnJyf3797e3tm7cuMH1vhCCIUpYS6EGIsKYZVmSaGstEYTglFaAkeV/QzcyGFzwIYTFcjmZTBaLBSIqIfhsVybhoz7Pc2ttVuRvvPGWkV2hvdEPfPz06fPnz0ej0d2794bD4cXFBbOvrLVbW1vcHmiaJsuy7e3ttnXsZDuZTCaTK2Zw53meZcV0NkPEt99++6233loul8+fP5/NZqty0YlbYuz1BsaYra0tKeXjx49DCDxLJiWypmKWFdfX07OzM0S8vr7O8xxqKMsy30sPnx/hEripkGVZ2qRq0yhGRCFxs+t4+TrnIoXoIa4ZnTb4VCsuRVhjBcQvCKKF0B1YTEHSmjZwM5/d3oMPTmpN60Y6H+icQ7ABN6zFxRDRWiuknE7mSqleUbSNY6NtABtjjD4qpVjBqizLfr9fpEUAqqqqrZoNBrfJKQMGa633XimJUiRJxn05Zx2vxfF4PJtNd3d3b9y4MZlMhAQUNLm8JhGSVDe1DW1URjdtpdUvh5sRZy//Z6Sqan7UhoVSorGOe3FCoBJSaiFQTKdT2/osy5tG5Hn+4MGD5WoeyblwVS8uERFlTqh9DIhoG4uI3ofWijTJE2NWq4YlSmKMnOlG6DoBTOBHAgARfPcghASpRePaLEuE7CeiKMtytghJkiI0rau5CUYR5frWAa0dk7FTI9p0NckrAFitXIwxz/Plapkm6VtfeGMymSRJcuvGzfEY87wtiq0OEVYyz25eXFxMp1Nl1LNni8ePHy+WlZR4PbHDYd8F76Nq25YIpZS1q3E9fBe7dqjRWlvbbLb6Zr0hYqLTshLOm16vp7SoqqosS2utbRo+FiOAcAIAXNOoJFGoNgFPSMZJwXabIvzS5wvrqUMOCZzIbRJHY9Isy1jQgCtEzlqUUkDAE8pCCO+tECLLMrnuPUghEMD5CCC6/sD6VhMhvaQ1tokr65ye/zNs2sgxRHa/bdv2+ZOnd1+9qw3yYEjT+rquy7K8cXP3/v1Xy3o1uZ7duHHD2nBxdR5CKPqZczwwlXBJwK1RIhtfovMjyLpusiwHwPl8MZ1OOZgF602eA0QikZrMk3WVBwCj9c54f3I5//nPPy4XtdBiNBoNBoPp7JLX2/NnRzE8c200RqemCCHEiM45RMnw6+n52Wwxe/21B+WqnlzP3nrzbWtd28YkUUQYfZBSeR8RhZS8o+PV1TWJrlRDREEAEpTSAABSSClXq1WWZV/4wpv/8l//KyApUDovtMqztN/r933onhFFvHnj9tPHzzz5GGk6nXJRF6PntAl5DDZ0sx2Mw/JD73YTkcBfKMz4emKMCCAAJfeNQ0QCJaRSKpfSWjtrKy0VKVRKJcbkeS5QreaLpnmhes/rRHVif46fb5Lq4XCQZRlg5Ch18+bN5XJ5enouhdzd3e0OcIqCXWVRbCbaQghm7b8Kv0iljzEKVISBiJwLRMDEGUQEBW3b8t221iISAPLM1M2bB97758+ft2XVG/WVEtwvZYp327Z1XbNEg3VWad0fDJbLMlCUKHhKlKNDnudpkns34Rzr1VdfFaqba2GvmKIYVPXKOXd1dYWIaZoWvfzs7MI3ANAAAgBYZz9//LlvvXOe1lMIt2/fHo0HIXjn3NbW1nwxbZpmsXSAoRgWO+OtEMLR82OpZQyU5qn3ARFs3SSJrpal0IKT18wUREQYSBLLOjvnJKMfofNlogBSKggRAV3riLUmIm4NR01tpYEsz8tqZV0LhL1e7/PPP//BD/4Vb+dekQ4Gc2OSQX8UC1guS7v2C87SrKxWHfdNyOlkkaZplhWmo+rL66tpbV2adyQX7u8akxrjjEq0Mvv7+yKNSqnU6DRNr68vZ7PZZHL15luvf/7xp1dXqyQT0/lsUIyTJJFGCy1i653H6XzaunZra8T02yRJmJDIMgJFmnXqLgBKiyRJKMbT0/P333sfAFDA1dVkPl0MBoPxePvenSERfPjeh7PZDFHub20x9pTn+fX19exiopOEGWCcIQhAT52Dh3PuJefY9SBVB5OhUSaSz7JhrrKqXfroUIJrW0RczBq1r8fD7aZpfvyv3zs+vvzVX/0VI9Pz08PVomkql5gMI5yenjf1ot8f7uzsnp+fecePEr33LGRprQOAmzdv7u/vTyaT+/fvz2aLpmmNTpvmk3KxamLk0wNQxk74T8ZIWZb1+8MkSbjXUlU1Z0Lw0kx60euFECLESME5Vy6XwMwYLdI0Hfb69+/fz5LcWvvk8bOL0wsppVSaba8AYlNbJn1sIksgwq7rSojY6/UWqyUnu1prFl4A8InJvPdpku/u7DdNs1yUiNVgMEjTFGI33k5EVVU1TSOEtq11ziXaRB8gom0cJ35rfs1aSh6xbZ3Wmrk563gqOHpyar7RPeD4uJwvVApCOE4JbGObqg4hCMA0ZdsiMRyOY4yrVeUdVwUYY2RSCXMAAWA47Oe97MnTZa9X7B1szxfTXq/IsqRta5DCyJQgIBJKTFJNEXu9XpbkvhOlFbxoKTADNAiFkWJvOCDC84vzNDP8eUeDcXRgrc/zHhFdXlz3+33rG34KRDRbLKWUPO2AKLZ2d9huJVPSOddWtW0arZMYoaktYPQhAEUBmGnD5+GqrNq23d7ens4XZxfnxpg6BqFMCLSzs7W9ve3cswcPHjw9fN40jcBOkLEDoQCIgNvDsHGPIGRaEADUtuUMfzQacbNHStlPh6vVqrUeBWGLSWaAqG7bZ0fPlBK/8e1vrcpyOp2fnZ1PZtcSFcu8CCGytCh6JTe67t+/v729Xdf1v/ijPzq4ua+1JFRlWZKPSarny9l8IWzbhhCWixKJtEqMSRhMZLJwjJEicFmxiVCbdAgB+RgUqEJwnJmcn59zJoPrueY/hbfysmQWuQ1RmSiECAEQsW6q119/Lcuy5XLJOGNwUQgBpMt5NRwOBahqVSeJ1lp764lISeOc8z4y26gsy6auWeZzs6m994A88blW/nkp2sIatO1AQCk5kajrmtYGfdbaLMvY84dhCP6AfM+dc8BwcIwQiSk1UkoQnQ41/wlBMSKF4JDtcDbTexillEzaWpWlUso65hrHDXbsveU5gw3q/VKiLDYfZPO5BArqhIPZ2LM7jrz3QqvVapXn+cHBwXwyXQtbSaJOzqX7o3+6C/4CwtZacyYVY2Qv5e7CXmqiwAbs7qTPugmJF1VGjBhZo7H7+ZeVjrlvuv5+J4jBy6nDs5Tq3seHGCMFklJsFPZccFxLvQw38zt3RGMlZacNFYQQJssAwLmWDy/+cxLFpuJorcUYuFMSAm0WzObaEBEFUCdiwPciMm0TCWL0TD/v9gugECJ2uymEQIBRgIyeYjcmIgSCkVJosbU10lpU7fL1cfHag9tlWX300YfT6zkA3Llz55W7rzRNVa6ak9Orna1diubsdCpFA6QpKqPTctmORqM86zNKbttIURIIjgiiUySIvTR99913tVbOuTydR6K2dVLaxXzlXN3rDXgNlGUlJYYQWNKU7+Hl5blUUFVVCE4JCZtjQQhGZ5ib71gknelKPL2NHVS3aU1xGj+dXgsJdV1pLdO8kIoI7Be+8IUY4ZNP6yiq0P5ysupkOpVmNp/PmzpwUNNGLpdLRiHv3Ll1cHDwve99jxm1ZVkZY66vZtPJ4sGDt7RWP/3pe1qH6NpBfydGqquKkCjQwd7u8Nvf9tbv7ez0etnB/vbB9jjGOJlMmqZ1zo9G4xBC8MRwYWLkcrnk1L11DqUKFtrgtdFamkhE1LB4UVmWiCqE6J0XKBEEkERQSQL8gODFyAK3T4SUa5cvH2PsZIVRdHLz3nV3fr1bCRFijN47zg2UFFIAERKKENjfSCgFRIAQkZyWIslTrTULSxqDw8HAWYxRSYVCiKquRZaKYR4jtK3t1CoitN6F0BARIiB513ZaPQJJa11kJkuU4wmJyPUUOxBEIhJAPvq8yK0LSCQgLBazopdgyiorEiDyWCQKJYE25x1vQLZp5XOju2lCrMdfiSPOL10wxphV5Zn3KrDDyhkN4+6v9975lvkoxZ+ehyYiYkGhKCQP7vMZhUiDwSAEH2Nk3flnz579uT/356bTyWAw+MLbb05n13u7ejDolWW9kWhnStymxiQi1AicqlmvlFqtVlqqqqqEEIPB4ODgwHv/R3/0Rz//+KOHDx/2er3/7D//z+/eufvT937y6cefPHjw4Ctf+UqWFbPZ4v79B1/+8pe5vmua5td+7Wv37n/XGDOfz5eruVKKQAx6fedc01SvvHr3937v97785S/funX7/OR0e3srz/NI/rvf/e729vg/+o++U65Wjf2Lf/AHf1DXdZZl7M4XnGst8VHPUe/o6ChGf3V1xQrUWuvZbHZ+evbuu+++/vrrvV5vNps9e/JUa/07v/0fn52d/ezDj4wxt2/ffeeddz7++UePHj3ibg1HWCLiw0RKtDZeXFzM5/O2bQej41KTHAABAABJREFUYZ7nnFdorcfDkQAKwW2aPa1zdV3v7e1dXV2tqmpvZ6dpmjZEH0N/OOAprtFopLVelaUxJlKkth2PxxcXF2cnJ288eLCzt7dalVdXV2I987S3t8ePQ6zxayHUfH713nvvaa1XqxUiMeNtOBy+9dZbZ2dnWd7r9/tMR9ja2nr65Ekn2C1EjHFTeTFvuq5rpTsC8Wg0YhlodstjyfvovQwIAE3TxBgVyqLorWjBM1tqw8TsOiH0p7V4ACAC8CjrhjTHL6KOSMDgJkN1iN3XAhBQRB9AkH1JnoyI5Drl4qpDrF9SMj3NcJEAPGqBIsRYFEVizHJRtq1tGouIzgXvvYD14MY6S+t0TFwnfcVLSnUMcCFkx36SUhpjBKC3AQC8j97Hy4trKbRAmlxdQ6SmaYqeJqJI/vGjw9RoIUTU3ecm+neJafyCXQARCRlvHOwpJWazaYzRpLrIc2sb5xw5I4Uuy2o+WwKIEOjhw4c7u1vjrVGeG6UEh7qm8Sy6tB5ti9wxCI5HvTqOA49SSSmD903TJGmKUXjvlRJyLSWOqJwNJkms9ctl6X1M03SxmJbzCtaOqAIVrEUeIeKL3GXNLqE1WyE3aZqm3H7Y29v7whe+cOvWraIohv2CdbLG4/GtW7c2Xf3pfM7Nlo8//vjxk2c7W1s7W1vnl2dPnjwBE+/fv396erpcLjfabbBhrCBSxAhExCx4Xi9SqW7SkE9zrprKsmyahrdN9D44p7XmygcRvffWe5UksAapN8lfjDG8kKf45bYP9EJnrXvxAoudSJzliC47UZtuaqaLsgSutSiFs42QMkkSRMlU7o7IJoDT5W7EFdhS26MUFNdlCQCxg5VA9r8iWivBUSBCFEgEeZ6Nx8Or64vlspSKvLdEWKSDpmlss5xMJh999HGa6t3d3cFg3NTW27C1tb2Yl3W9EEJlifLeB0ApEARKpfhqKUTQGKKry2YG8+n1rG1bJbW3IYSodIoRpTRCgvc+NTlAdM5tDbbKRXl9cd1WrVQqBj/o9YfDYVkuz88u+/0+RLStV8oAICv/SiljDIiUZdliuQSMh89Oz08vhRAA8p//8z9AIRJjgIT3BAASBHJ/HIAQiYKzwUOnnqxQUNceAO+9kkZKgYhXV1effiqEUGmae++di1mWtU2om+udnZ00TZ11ezs7r9x97friumlaiSIA2bblJahN56qHsG7JADDxBBE52PCe5S8YYubIL2Q30KqkkqJLVEIIiIQgYowRgUtcIu+cE0IK3fGmpZSxU3BGY4xODP8J53DtQk7OeaVckmrWOlRKJUmSZUnbuOvra9s4oYTQSkpZFEVmEkQMntY9WHq57sU13GxbnyQSUUqp2aqYULA5r19rZdZNCdhBPD665XJ+daVG4+FoPGwSxeXxzs5OjPHq6ur27dtSysPD4/l8aa3Ne8lgMBgMBs6F1WrV2qYo+uIlSyUh5EbG8fr6eu9gmGXZ3t6e1vL09FRrdfPmzcdPHrIZQr83BIBf+ZV3Dp8+Z52s+WpZVU3dlGmSe+8JglSanTtXq1XbNqvViu/kdDIHErfvHNy6eSc4t1wuT8+OyYc8y6uq0SqhGChA20YpkaJPUpVlmYgJTzB48t57EGuxnYjOOUEA0EUgvqtZlhERm+k9OzoCoK/92lcms+nkeso/cHFxxfVYolMhxMzNl8ufKWlYdQHW9BxEHvfGGCOL3rZtCKFFxMSoprb37t2ryqZtWy2VRCFRJNrMmrm1Nk+LrfE2043L6+nOzs5VVZ2dnVWrMgTX2PbTTz6fz1d5LpRJYoyAcblcaC1Ho4EtAyI611rbHB8fN7YdDodZljWNLcuVbbpZB8aaY4z9YnB0eHJ1OTk8PIYAKu1UzwAgBCyXVVNZrRKlVAiOKHBtM5/PiWBDn2EgQ3QDxbwqABGU6g7EdeJChGxvJYSASGF7e/vGjf35agYyKCVms9moN2zbNhvk9aL58L2fLxaL+WyFAj7/+DkikYXlsl6eHvV3suWslgaI4OpivlyudnduHB0eK6k5gmQySZIkSfQbb7xRFEVVVW3bPnz40IV4enwipWobh0oAxLoshVIQXPQEQDpJELBIeiLK6eUsijibzQFYIKJTmI1EAtG6lje+977Xyw8O9kIIWVb0+/07t24DwLPHT1eL8ywrtra2JpcTIsS42cXYOrtYLvsi5fjOxFLe3957doTjv2iM2d7eLorCex+jXS6X3vuiKHhirm1bKXVTtXwmJElWlqWt2w5QFkwfNs7509MznjZI07Sb/wgEkRjU4PPQOq9Vd4QmSRKjt2276YXwtSVJwlinMQYgUIhNVVN44cbOA6rcXOFaOk2ojjXr8EgpEYUxUggRgksyM94ZCIEP3rgvJSqlbt26dffundVqdX51zn2RoigGr42m0/n15WS5XA0Ge0p2UyA+rsmpCCF6RMrTAgTVdX1yckQYs2zXWau1LldV09h+f5gnaVm3iGits03JFWOMHfd+Nl+kScK52eTqOsbYtm10fj0LjwDgrAVEISESOe9v7O79xte/2dT1j37wr4qit7O3P/nsYVU2CNI5jyhDDMPBmIh6xUBrXZZlmqZNbdkGNkmSGIFVOE2WwgaAEyK6wLxXEi/81gFga2urLMuqqnb3DrjT2eF3UjjXko0B3Nbuztn5+dnZWVmWRLhcrg4ODg729r231vpIXhnjnOtlva2tra987avf+973AODGjRtFP1+tVpPp1SuvvDIYDheLRZam49H2fDY7P7tUShmTnpycSKlCG1rfIglGLtcJD/D/YuT2rUTR9em5D+S9dc7tH+yV5VIKFqpBTsakEBGR1T8445LrBy2FSJIkTXKlVK9/pyjSk5OT4aifJKauGwBQ0midhEBlWWstk7xonNVSgeqErb33zLqBEF+GF2OMtOadwXoEg15iD4S18/AGD+WMIoTgQgyROjlyBKEkIVRNbZ3lxXL37l3n3MnJSVlXWmujDL+D1ppCtK5zBzJ5FixrzkSllEDg586Xp5TSRgohGlvPFlO+NufbENloNDB0CV2nigch5SZX3xzRmxQidsORAtZ0USkloACIhB2Yvlyt7t+///bbb7///vuTq6vheIhIVbVSSiF2MAcD7lrI+EIw+oUcKm7wZfIxRomCb5oQL3KzzR3mswU25HKAKF88hY0lFCICiBip08oA6X1kKpsQwnvLaMLtGzdjjKu62iDF3AH1gc2NuvpaKYWR7QVQ0DpZJWJlAimlp18kmoTogm9by8wGpRTEjmnLP5/kGbfBmPKltWFx1Y2eZNvW3gW+b0opCl19wb9OkUCupUVok3+iEEICUqSIxNoAQog0SRAxkAcihVKQCCEWWa+X905PLgi8t9HVOoTw2c+f37v9+nLW/KuPfpIV+d07r3s3E2gE6hBQKV1VVZqmy+WyXNVlWZpEIUKMnlkOeZ5zGsac5YcPH+7sbO/u7ippVqtya3s7TfLZbHF0dLRarYxRy2XDKQS8oOpLZ93Dhw+FpBDYe4lC8DwQwB9z3TkQ1toXhS34zbrtpuNjJAre+7quW1vHGLa2B2+88cAYbYzxNF3VV4jSpG44Mnvb95env6RmVFJmeV4UhZIZvw8R7e3tDgaDR48eHR2dWOv7/SGPG0qpEWSMbblqnz59urOzo40oV22eZE1TaZ0KIWIMiDCfTH/z298hT0CUpUprASh88HnRK3rDVVmPRiODsm3bJMvbxiGi0lnjrGzbsFolGTuOSgTlnQUAJdMYRPBIEdMkJyLbxuACkdRacoOJl3f3udTG0P4X2jk8ASClVJrDbtcg3BwIvCVx7aYgxWYj0OY87/j5IDeyMIk2RGQSpZSyTUtRFnnBlEelVIxy/acxTTSjNIEiJ2P8R110QCRFCIG0VgJBKmqrFkg4G4RQKjEIwntPgaSUAiBLlGdhNIpVvbJtqbRM0xQgukiSZ8ExKhEJiI0lNp8FoYukvOSYWR3Y6R0lrQmX//ZLC9nv9+u65j4x3/C2bbOc4axkM+sAa9/1TYgJa5tcAR3SzSdnJK8UJzJaSnS+RUGj8aAsS6UEUby8vFBKz+YTgWo0GhmTzufLIi+45gIARGi9S3upUurx44dXV1fbOwdpmgrA7e1tJuSykMCjR48++OCDzz//XEj4S3/pL33p3Xf/L//Vf/XDH/7w3it3lNHL5bKu2yzLTk5OyrLUAre3t/f29g5u3fzwww8vLy8B42Aw2Nvbu3HrRiSX5RqI9vZ2bt++KaWum9X29lYkvyoXIbiiSH73d/5jY9TuzlZa/NaHH37ILWFuHnN+aIwZDAa3b98mCtPp9MmT2luXpamShjfj/fv3X3/99ePD5+9dXPDjG41Gf/In733hC+/8zu/8DrubzGazGzdvNm27Wq286zSyuOnLv7JcLhvb5r2iNyiIaLVaIMoYo/e2qlZ8pu0d7O/v74MQhKiMJiIW36vbFgGklAcHB1VVOeeU0YvFwtonSZLs7OwkSVK5RmottUbE4+Nj7/2yLMfjsZRyNpvdvn2HQULGhR8/fsyrkSWqWFWyKDI+2dq2/eEPf7i1tVXX9dMnjzb8ay4xuMoQQkhlGFPmBrYQSivN5OgXcTNGrbXWOssyUF65BABbrHu9HgZehKJpmqT1ipHiXwCX1y8ppU4TRZoDFZ8gfE38GbgH1TQt8zUYXwCA4EiAJNGxZgSP/ISgE0Nr2wfrWr5rfOnrY523H8VIAN2wQ94rYvR7u7vz+fzx48fGJE1jgYT3UQhJPvKFIYAPwTl3fn4e1sago9Foa2trPp/z1cYQhBA5n/tKhc6uIQKAEtqo6L29OLvc3duOMZycnKZp2vpq2B81tU0zGV1ElJ3pzLpT+m+/QviFhhURhRC1luPxWCnpnAvRAUBVNU1TDYu98biPKJraN40Ngc7PLi6vzu/cvXnv3q2bt26sVqvFfCklamX6/UHT1EKIpmnZOpypQwBdjtilFEQxRgYy+JBlHVUGPhjv9iEKIdvWEkFVtjGC95FTNKKNIjACAOGLBAVJoOhIjs4570NPhddffaXf79+9e/fVV++99dZbvOw2RJK4VlLnpzkaDay1Idx45e7tp0+fNtYaY376/ntSwOtvvlEUxfHhYQiBPENykggCAGfXQqBEEQmtZVYpD7jRZlYMAOQ6gYves6UYZ/O7u7vj8fjs7Gy5XEopi7UHTojEcTHGiAjxFwHoX/p8mZ3Bqy526oG0aZsT4XoEUm7oHqpzeu1EciGSkiYE561zZOu6UUqxrAG8BO3By1QXgUzv5k+9ebKIhGslvnWkQQlSahUj1HVrdGqto9YLCWmakpVEIkYlpQCICHoxrz77+JEQQkqNKO7evbu3Z89PLxh3iM6HENq2ZXY8APrAySskJuNtpVUSY4whGmmE5rQPldAgpELw3muRYEQlTFvPvQ/Be5Ml8/nSWj+br2IU15czIYTWSbBuOBzmed51DhUCgHWNSVQIIe8Z20ZjlJLGxwAxjrd3XGulVNHGtml4tBMRpULruKTpSiDu3MQYAShJTFEUJJBlQA4PD7XWUqs0TZEgxuBcEyien5/zOr+6uH7zzTf39vaPnh97R8YkGxk4jmScgQkBgSLPN/lAUkoUhACZzgTiCpHBGj7l1vhLcDEKQIkyhIBSoBQA0VMnGKdTs7293TZuvlwQUdu2vvFCCC4AOLdmY1WU3X/yOKEUumka52wRCqbtM23hzTe+sFgsrq8nRCUjPhwCGNZRieKW+2bxbxYbry4kYRvHe4cIeYqIYyrEaIwOwRPFLEvbtkFPSCrGWNVlmiVZlowG/aZpFsvZ6dmxkma1Wg0Gg35/GEKYT6ZEsCoXUoibB7cGvWG/6B0fH2/+etM0q9UqTfIuzFt3dX5hXcnyIFonRVGcnJy2rfXeSaERJKJg0pwxab8/3N3drdpSKXV9PSHCrfFOVTWPPnsolTg7OyMiAAohPHv2DNY9pBBCa+vFdHZ2doGISZogYp7nwXdXJYXw3iotIJL3nlyXgnvHylFygxr4pbV1I4TiM0ppJUE6Z0msWxQgIsTnz09csCEg521lOZWoEp0SUfTkglcKMCWlxHK5ZLUWLqJ8cCbR1tpyVRFhrxgKIbx3V1ezJEkePnwagvM+zmaLXq/Hkg4AoJRJksR5W66q5XLZ+nI6nfqWskJzStFU7WLeaANRCiWka21ZlkVRSCmj9zIqa21RZKvVygXb7xejwTDGbrYJALTQZVlLKRNtbOsTlfjWHx2dAqA2GUSQUns+zwMtFkvnXLWoENGYVCk1u54Ska3bqb0GEkmWcari1xr3PMaxIX8pAQIwxsgSUIJASpnoJEBAEK71jx49KgbF9tbO8enR3t5BTxZCiEePHl9dzFzjQQoELUHOrpZJkgx7495BThAW08mtGztpmnoka+0X3nrHe390dOQrCxqKfj/LDADcunVLa/3o0aOqqqwPRFTXpdZaKMHerdQGIIgi3nn1XpZlrmlns1lZ1qtVFQItl1XEaHSutXTOCa1QqEhktAYknsev6xIg/sqvvBOBzs/PlVBay599/JFr/aOHDyEAECYmk0oH7yNFHrCIEISAsiytq9M03YCMTL0UQnQU1CxjEFhKtLYh4iMqeB/rup3PlwColJEo5vOlc44HDqILQkgicM5LoZVUMUZrm8ZZKWVdN5wBcuLHSYiMUiiR53nrXVs3daizLFssFhC73J07ZJw6SykHgwHzgKz3QggA4a0DAC2NgBBCaGztWsvpNR9dRnUs+DxPnXPG6DQ1gfz2ztgYHSHkMmGLVwA4OjmdzWZ5ngPE1Wq1M97WKimKAiL2+wPbdkavFBF4BlYJ5gcBoI8OAVxtTZosl/PZbNbvD5SQk8msWlb3bt+bTueHT58Ph8OyLCEGAFHXbZqmbWMZx3fOhUC2aYVQiZYxRq0TThV4nfd6PUB0vvWW6nolhLi+vn7j9ddffe0+BXKOfcnj9fVUCnPr5q0QQpJn0fmbN29eXV1ZawFQSqmMDq4zTTJSJUm+qU611lKpEBreSmyezlusqqqdnZ3t7e22bRerpQudD62QChEbZyVidHG2nBGC0Wmapt7H8XjMeA2PdipltJHGmNa3H/zso7PLi88//1Qnav/G3mAw+OTTnzdtq4wabW/xWKGU8s7du2994QvOhSdPnp1dnGulvYsxRiWk0jp6EkIQvkByvY8hBITIxUgH7K5xW7WWbGayC6scrPHEFxW7WKvEAECWZYlJ9w92k0Q/fvJ5VS/GW31tZAgaUcUIbdtGIICYJD1thEnUat2GAYA87/EiYcHAyJrXa59b/hnxkp3dyyk6rpNaKWWMEIIXgtvJ4eW0cFPrSokhxLZtj4+PuZiCl4QQtdaj0YiILs7OOdBzNi5gbUa3Tpw2WHBeFP1BcXV1dXp6Yq29efMmd0SkFpyNc5hD3Ahhd2BQ6yzfzE3gjviCuYGIgCiEMMYoIbl/w/LxWFd1XV9fX7/xxhvf+vqv/ZN/8k8QSUo9Go0QcbWq/NrLm6hrWa0fX+x6+UIQrs3KmMu7trzDtSXm5sbyv0JnQSmEEATAPCTotPvWR8lLMk0Mykq5Cet6a2vrxo0bEvDi4qJaroqir7Wp69b7Vqz5VR32tNZTXmslMVL/CytBC4kEgQgR+eESkZbKMYk7vuDjSymzjvvsuL7gsV2m8w+HfaZYhRAiArf3rLUaDCGGEJkA470XIOEFdo+8EskHD0BESaq99xSANPIdFkLG4G0bylW9Kmejcf/e7Vv7t/aurs6uLiZkE+9aY/TTJyeIJDAxMv/ow8+cjVpliIoJbak2EKJSunUuzQwiIFJr2xCdEKCUGo2GzrmmaUIIp6cn5+dn4/HYOZckudbJeXlhW6+E7A36VVWFEMpySR3jygIgQNRGJUlibbNO+3l5B65z+YgYjUbe+/lywQ80hEAkuLJjHwXnWt68AICC8jxrbbm/v/PKq3eOjp6vypWn2e1bd2OMd+/t143dGu78Urh5e3u3DQ/LstoaD4SE1w5eZY/f0Wg0Go1ms9nJyelouO1cWC7LclUrpRFNUSR105ydnWxtjXa2jW2iVnnbBK2VECJRulwtenkOkSjEna2BkEgR0jQty7qu6zzvsSZJIBREIIUPIS1y4aUy0kcnhIi+Q1qUUoi0GZWTUnOVJ9e6Q6zfEpnsIrpp9XXh/AvS+Rt0eNPDiEzjoherHdYwqGRJ43U9G4NwznofuIThJ8UAArLSOkYNSfSdfYsQoAXGSAhRq46zhVIwN5oPTIRUCj4MnQ+BjaNj9EIorQWKlMWRtEm1TvjKhepUziGS9S7GiEIqgRT86dlJtVoqAShFjAGBpEKIiARKKuvCyxUT/x9/zM28GoUopJCcJrW/fEReKtnariMCAMHHW7duvfnmm4+fPFwsFm+++eann356fHzMpIQIJDe+TesXI4BlU8cYgWQIIRKlacpHhFJKm07P5P3339/b2zs6OhmPx7/5m7/pnF0uJ6enp0qZO3fuLcqVkeqzzz49Ojp88OYbg8GAKB4ePvvwww9DCJ98+jkQvf7gzaqq7t27xxhgVVVvvPHGxx9/fHl5+b/9q/+bP/Nn/swf/uEf/uCP/3hvf/83fuM33nzzzfFom4g+/OCDR48e3b1711N4fnx0dHryL//lHyPin//t/+Ubb7xR1/XTp0/Katbr9c5OL/b3b/R6/eGocDZkRgshhEgBopAGCZqmNkYrLSjEv/bX/tr+/v6Pf/zjf/yP//Ebb7yxs7PzwQcfINIbb7zR7/fff//9xWzOqjhZlgk0Wut+v/9n/+yfPTs7+cEPfsC8yX6//+N//cPFYuF9/PVf/3WIxMN51rZSyrOzM66mizznZTmdTgnjzs7OvfH48PBZ27Z8tlxNrtu2jT4AZ79atW27LEshxGQ2nc1mxhhCSLLUtZYHo1erVVjLF4cQkiQ7ODhYLpeTyUQIweKTLF7XNM3dV17Z2tpifvFsNnv69CmHuevr66qq0jRnYfqwFgBRKJx1TIgGgNlsBmvGkhDCuZBlGVtHdBtZCADg6oApzDy1s6a9q7ZtCYjhvrZtIfjgwDlvTTO9noxx5K0rixKFSJpGvUzmpwgbFXCQwlOUkb1AurmJGKPzL6ZFOOUxJuUrTtN0Op1Gz7mvV2uryhCiUkapjhaCnbR2EEqxSAq+1HDetOJ5Z5ZlKbUajwbHx8fPnh4Oh8PFYmlbr3WCEYAIEF8MGUnJfH4OGKxywswX732e50rK8U5/OBiz1kGMVNc1kLDWRktaKIJopLGV16kWwhBhDFSVjXM+RkCQKARiBBIEL8ag/tTr5SMVAJRUeZJcnV+Vi3I8Hua9wXQ6ffLs2XJZKwVuJbd2IDGZUiulopRSaR3JlmXJ7z+dTp31Wmf8aOVagCyEMJ1OBTCXvKsNpJQxelrb+/CPVWUTwW90S7oIQWSdl1J6F0NwgoQQggKARCAQKIKL3nvWEMR1diyl9MEG5621Sol3v/jFW9vbb7/99he/+MUbN24cHBy4zr4cETEE1uZH11ZBdNrEfPGeKE3kF995czZfSim3RoMiN0qZ07OzRKtBr1eVjfcxzbTHFNnbxzn2fpJCAAILABF1UhUhBK0lEQFFIYRYf/YNT2Q6nbJH50bfgHNrVp4KQIRAEWA9/LJJ2f/tF65NSODFpLOInRd2F3cRkano61sRWVuAwydvXa0Taz0RCaEAhLUMjoNcv2jdrZFS+tiVGUIgAIbQAdydlEF3YRzPOsk259xi4dlEuPV+MOgHH10bvI1aq2AtSOFtRAplOUuSpCh6r7766mpZ9fICD/am0+lqVWkWdsiLxXzlvWc7WkS5Ts6FVkoL7YKTIKXQiCqGgEKEQIJE8AFBxhjn86UqaxRyNBiX9cpae3h4KIQwOkt0Jkg53/q2s7kriqJpK5OoXi/3FMtSxOg5pQ5R8hrmQymEkGQpRPDBKiOD60yTdZImiVkul7PlIrogtGyazo90I9LUerezs7O1tTWZTNrWaqljIClDlqVEyq7T9yzJnXMf/cmH3sXgiUcQpEwAlFIKRUsUpERrW6mVelkEUAjutSSJEYBC9IiCq2ykyLEkRk9RdgPjRBKxbdskSVAa79skTXnpapU0nZJJyLNs0ayISEpBIDcFlXMuttGkiRKaUzyBqLWJMS7nC0SUa40wpsCMx+PhYDyfz2erWQgBI5XWWWv5MOT0Wq7l2GCN7oUQ1v4epm0aqVSe52lqTKKqum7aytpWSPDeFkW2tTXy3tdt07btYNBzrrWtpzTVRichadu2rmoimE8X88lic2gHileXE9v+bHt7e3d399atW48fPz0/P3fOQlAIsFrMEGSe58aYpmmm0zkisp3XaLTlfVwuy6IotBa93nA6nbdte9lcZya7uLgSQskkLhaWvcsn17NerzfcGoUQMpOwrt9yuYwxOsdEG399NaWI1lpnA4IEQOaeAAUiNueJMUIMwLMNzjqllNAiSTRBCDGCAJMorbUxo+PjU4FAqKQWUiARRWGJKBKpRBljlNEIwtnY1M7ZIBAFSIhguKPjvNGZkMiaAP1+EWOUimJ0iCpNVVnWIfrgAUkEATo1MUajTVPXF2cXSmupeNDHh7DSOpFSGyNDCKztFaJHAoiY5QYCLqZljBGlzBKZ5kleZEKLvb09rfXWcDQajd5///1pvdzaGoUQ0jxZraoiy7XWzoUYiAKEQIhRSh2cr32rta4ri6CijYgySu7tSSEESels0EJGimwcxyONPAeqVcI1c0SBzm/OXiKiSP1+vygKIcTZ2VkIrhslwYhRuNjNGQgBLtjD50eL5fw3f+s3ltPV48+fffVrX0kg/eCDj6qykaBAaSEUy+wkmKVavf32W71egYK0lk1TNU2zrJuLi4uPP/746mqitX7w5mvbO+Pnz5/zsBgKHnUnnaQhtkKIokgARL/fv3nzZrmsLi8vR6NR0zS7u7tKqTzJLi+u33vvT7ROlovamAxUh01kWZEkOsnS5XLetm2ksHb8avM8Pzo6mkwml1dXKKTWWkAHlQkUSmmBGIPnii+QF0pEHwEApHAxhqbxRLu7u9yryPM8TRMOWKfnZ/1+AVCEEJxrnXM87R66sf1CSulaFrWntrUYg2vsJhpuACAiigEUCgoRicqyU5pO0w77Y6pykiRZntfaTKbXfN+8bdfStyAAxsMhb/MQgiCw1sVIhJGCQ51IKYVA3racBTGlNITI/XWttTHauaC1rutKJyrNVN5L27Z2vp1dTldVffPmzeOnz1erFYDY3t5umgpC3BntLpdlU7VlWaZpBuD5GpRSSuokMdpI51xKxjqHAtIiJQrWu16vl6bp7u6uRHV2dhFj/OSTzwRKKWVZljpNtDFA6F0IPuZ5PpstqqopikJrDCEIkEoqkBCcE0KF4GIMaZoWvcJaCxRqV2VZtrOzM5lMqqoigiRJLi8vLy+uIdL2eAvQJGkKRDdv3rw4PWPaS1mWUiofiAUKgg9a6+FwqJQq25I/FyJqpdI0nUwmLGTsnKOIQKKp7dHhyf7+/my6mC1X2kipTZYlvV7BnU4IILSQyqCg3d1drfWnn34+GAxPj0/KctXr9W/evAkgxuOxbf3Z2dlqtTo6es44ztOnT4tednZ2luXpxcVFWTdt27ZVvVyWANAveoiyrmutEyElKzUJEhRil4GvQy3HqRgjReLkEBE5fWW9sqdPn0qJRqXIaZtU3nsWeUdih8mu7pBCgFJZnhCRSfVkchVjMEbleSol9vtFv9+fz1a2jSbNOK2tm1KZXKDI83wymXgXjTH9fj+EwPWhSdP1BDojEEIIQQSIL9is8NIoNCeWcu0zvD7uOiice9X8Y9wwhs65JHIKwfoh+JIWFhuzxxhRACJyAK2qFSewwXeyYAxMNLaWtajqlff+tdde+6t/9a8eHh7+7b/9t3u9PmMpWsssK6y1LGrHCW0UwNRxVqjnz7WBbLEbY1UkZZ6kxpi6LikQE0dQyVu3bt25c+db3/pWr5f/4F98P0Y/HPVtG9dMZMtVyOZGxbXQAS+AdUVARITUZdGbH0aJfBs3HQiO3CwlDy9dIa2nKuXaWI9vUezUHcV68oa0lsZkg8Gg1+s9efJkMZutWTjrtGBt7UhrwxX40+beYgPVbVJ9vhI2vd9wjY1KQnA+et6btPba4p4fr1vOJOOa5R1CWK1WLFWEa/gAXLceuEInZOgtxohKKQjIK0eLTk56wwIOzvsQpZRBCgAQBOWydDaulnVduw9++jMpsVkFCKaf9bKesRX1hnnbxHJ1/corwyzRbXuCQEmSBev42dV1jUoCSAZ2b9y4wS2SXq83HA6Xy2XbWu99lmUueKGkb5t6NpvPlizadufOnSLLbdM61758Y9M0uXv3LhEuFovLy0oKlMpw1yfG2FkIKLWzs0NEeZ4ro/nBNU1DhDGS6fAswWHRGEMQAEgqahbNbD5pmpWQMVg7mU4Gg0FissVqNZ/PTw8/+KVs1fl8cX515L1nrWGtrxeLhXNuPl8454xJiryPPLHtYtvatvW29WmaFj0jpXz33TcAxPRq7iw+fXIcLEmF0+vL3/nt3x0Memcn5/fv3hsN+tbVPsS6rrmLzIvHes9z2Cw/XresTgn9Qea8J4fOOa0lUSSIHNeY647IUxTRe5umrK1HEgTKjqiXJgkR+RCgM0Bi3W2NnawZSimBCAgFSsSOug4gmPuykRUSgBE6K0tPgBh6vZyLDpSK1lU2g0XOt0JJJSQ3DDjcCyGUkknSW2PlKgK1jRNCFIVRSsTovfdJkkLTbZCMyy7rCMVoNJpMZmmSIEjr3QaPijFSiLCeVBZaDQf9q4vzxWKmJSIgILFvgFAdIbQ7PZCFmAIASMAAwfvAc/980gSuDITQazegP/Vq29au/RI4X2JrDWYsPX36NMuyGzduVFXFkBfFbhKOOiNQwRG8bdu13ywwwB1CNytjbeAzbXdv+zd+4zeI6NatW0KI2Wz2/PnhH/7hH775xhe01k1jf/TDnxweHgLAjdu3CEIM8bPPPgshHB8fLhbV9vb2u1/64vb2Nrt3cH29Wq16/fx//3/437377ruTyeTp06eDweDO7dvf+c53vPePHz9eLsr+YHDjxo0QHAOsi8UihHDj5v7u7u5Pf/pv3n///YuLi4Mb469//evHJ89+9ON/7V387ne/+/abb5dlWZbL6XRSFEWIbjGbW9swTmWt7/V6MfoY/X/yn/zOaDRSSu3t7XBf/6OPPvrss8+M1q+++irflpPji+l0GqLjeYvt7e2maRazya2DG3fu3JlMJmVZShRpnnjv27Z9//33f/7znwNAnufz+ZzP3hBC0zTOtwBwcXFRt1XTNIGi1lqs9+GtW7eyLLu+vvYUzi/OQqT5apnnOQpx82B/UPQODw9dazl8cJ4DAFtbW03TPH36dDqdMsBtdMpBKssy5jI/fvz46uqKiC4vr+JawltKmec9sR7u4dNeay3X0BlIsaEz81HPraZNg7bDu9cQ1qaBHWNnO7zx84gxsoE5AARslUsBwKoKCBZ2BQAtNqCwrmu1wUzX8Q8iAglkrYTQOUgIPr9ijNT1STyHRkTWN6Au8qGQWmyo0GFtJ4jrqUABGNeJAqwNOrmF6zvzDZllGSKy9dCqKtu2nkz8dDrt9Xrb29tJkp4enUOISinvIsFmwLYb4oC1zyEirlarDmsuUq6Te/2saRqWXnXOV2XDwGJ30yN6HwAwM1mMUUQRvZWpyvNenlnXWO/ihp72S195Dq/dv/3yd4qiGA/2Pv/sSQhhvDVkrY+mdlqotvLzZl5VNQGTtTsp7SzNnHOXl9dVtbq+miDKXk8KVFLKPM/Oz8+Xy6X3gSJiJzfM2JZHlHmeS4VcHWVZFkNn7ANrrFlIcN4752JHJ08UKgKCyG0ALgghAiXGME/BSNWluRKVTOZ1s7+/+/Vf+7VvfvObr97Ye+211zjhK1dzIQSCZj6FUgooAMUsNWvorR+CY/mICDSbLqrFzAbf7/ff/eI70+n0/Pz0z377208eP5vOF3XVGmMC2NVqVVVVAhADGGMW5WrTk5AoBKCQKvpAAZTSLB/OjUQOAJuHyxumy7kRcT3lBwBAG+D4T0uq/dLXZrPwaxOfnHM8U823V2vtXAuA/Lb8swBicyhs1uomE10z7l/UCV0pFTtm9Pp3X5iVAwDPLgJERsQQUQnNpUVdt0RBaNG21lorvCYCUmhM0raNybJeP9dapmninHv6+AkDENpIbeRgmLcVK6rLLE/szCqlPESiFlEw5iUIAgVElFITdVyOGCNGCpxwAyJC8GSDJ+AQvlEAQKUTALDWC0KtEu9d27bjrSGKJATnvU3TdHBjv2ls0zRN1XoKUuosS13wPEHvvaUQG2sloEmVVOicQ+FlkiRRjuSAn8h0Op1PFkUvvXX7BpAIIext7yyr8uzszPtQFAV3L51v27YejUaiAR+siCLPcyHU5PI6WOCiIARSqsNWQmyZRaK19jGwHIvWmvMElgSx1nrrYoxZlo2KIS/Ipml8sJtlxrheILLeZ4nJTW69E4hK6OlqfnFxQQhZlm9OVO99cC+chfigTk2S5z3nWo43BMHahojjwUIIEYFCCAIV10hZlqHGtm156J6IcO3RCuvhLwDg3cSS0BCps75USkrZ6/XyPJUKpcQ006tyUde1rFZ5kQJCmpnBYOC9b22tlJIyn8/nZVl2RFSlhBBpmmdZHqxbLsrWtiA7mbPJZDKbzXbGO/280Dduzufz6XTKjTQiam0NmEiFWa8HANY650KWFYP+aOqn5apO0zRNcoGqKpsi70up67qeL0s3W0ynU62SnZ0taz1gTBJNpJbL5dbWFltF8dbz3lNEnanT0/MQAvlgTAIoW2sBBJIAlCgUAgoBUmpEH3wgCm3rJMmqWt195c5wNLi4OEMkpSEpejdg7/py4rw1qHyMAAJElELESBTJpMlgMJJSNm1wbgURI4LRiocMWt9qbaKQMcblcrG/v/vKK3evri+sbYuiaFtb17W1NjiPoACgXNWrZaWNZEsFJU30MTHq5sHNpqk5VkoW7FaS09Ysy5TI27ZVysQYyQNFHyJlSfLWG+/sHezO51Pr2qauLtoLJXHQL4KjwaB/cnLCMuha66qqWAhFgFRKQXihcRlCmM0WIQSeswyOtkY7/X7/8urct94YJYTIssxaywEakZRKEGUAio4ttgXw/GDTrslWoLTY3hnPZrNIHkIEFEhrFb3Q8UOZhCi06OW9zz99fHFx5pvg6vjw6NnV2TTNc6USH32nsA7RWpck+uj02Hu7v7vrXHt6eoqIoJLBYKC17PUGDx7cjyGE4O7evf3RRx/NLsvh8Lpc1VXTJoa9zkDpjuPsvR2Pxzdv7VVV1R9kgP7Zs8PnTw5ZOURJQwJiBFhbbFlrpVbDNI3RL5bzuq7T1DRNw6L/F5dnIYTd3a3BcOy9n8/nvbyYIFKI3kdrGwSJiIAAhAFIp4mQgNYCSIZmGHIKIVxdXRVFoZRs2zY4W1Ws05U0DXnvuSbh3aqEDD6WZcX5rhaSInJRJ4RAkEBdi3dDHuTnjmw2vMZTNmhIWZaD4ZDVNpBdOoRI07QoCgGwOSdZ2wcAlFYi6s7lTEStDQBIQAmolHZtrVXiQyQfjJHOhrJexp4g0mVpAzhtEVV+enqcpKpsShAglTg6OpJSxyDIx+vzSSS3s7NTVZZCPD8/F0K6NjAwyp+0bVsUVPRGWqskUS54VFII8BGEgFdeeYVTjp/97ANbWyGUs14pYH6WiyHJ8vl8vlgspNQHBwWTcDdmwkzJ5MjYKYoSOeeasiEKGLGfF0WWY4QYybbuwYMH1ar+V//yx8vlMsuyt956ezqbL5fL4P35+bkLfmcwOD8/9z4opaUU3ntEOegNtra2mEGfRq2FcDECgLW2rju4P1i3QQw5mZ/P51xRQOzILEIIH9hdTVJEFFSu6qmaLpdL27QusUyE4Rx4sVicHB4VReGtDc4xKjreGqZp2isGt2/frup6tVodHh5zUHvt1VezLPvss4dVVY3HY+9iCIGp5RgxRELEuFY8Q8SiKLyP8/mc4IX8NCuhp6lZwyWCInK6Amt7NOec9Y4dhHgyb1VVUsqmrZhAd3h0ZhIZo09T46ITCkejbRT6/OyScS4mQ1trtZZ1G5umWcuGRm6rWGs7Tv5aMJoNJJzzsMYZ4Rex5s2L1lJsvMviWojcr22jEHnurdtfv5AWrr/gdLT7Dss6dYWlJPIMgqy5ioSIuzu719fXSaqFwG/+xq/fuH3r//y3/8skzwbjYVs1QQSK2DQVAPhg0zSNgdZalkGiYMFo1jYhIkDkVA0RvI+9Xi9Y17Y1Io62hmmaX15ezheLpml+//d//+zs7NNPP/3Sl750+87N733vfwCKZ2cnLCne7/c3IshcxTtgPMUIIYiCEEgEFNYmXWtjho66oSSEruTcsKEjbGToiNZZkIvh5btHXfue062uglBKaa2896enpxcXFzwxoKRcH4CglOKLFOuZxU2qxle1/g4LwmwaqB0oD9EDgV+7R/L1cIiENeYe1tPc/NeFYO93w8PU7EHHkFxb1etHbCjGJNGIJkQHQiYpu6sFH2yR9+uq4tiRpylFtK7KsoS7cYgIViilmAtP4KSEcln99Mfvt23N6ydPd3UvxSiWi9VqtUrT3v3793e293760/e8j0qSc25t9tvx0uq6khKLXra9PQaAuq4YRkEUaZr6QHkhmqax1iYmh2DXcV+UZckbvKlrwwBrdCZRgPF6cpkkSd2sHE/3q07tjRF5ZlSUZVnXtTIdMYvbQlqqEIJEBRQhUlEUiOh8iwhEoW7qt99+8+69m6dnx87Z+XxKpJ4+OQ4x9vtDIill+ksLxtlsPpksxuPh2dlFURQIkokd19fXzH2JYWmtL4p+v98vit5qVcUito0TQm6Nd5bLslqVwYOzGMm3bdvMm37Ru3///unxyXi4NR6PjdKJ0h4DR1LnuNp1FLwQXUaEIohIESJBIIoCQRjpg40hSIVSsjJA8CEQ/wwEFKQTxadZkmjvwPt20+KiiBQgQlCdc0xYk4FQCAmAAC+UN2J8QdXa0HGISAnJY0kxUARigaAQQqCo2eNdCqW1Cx4ocLuFa17nbFwHI6Ukg60+BqmVFgJIrGNoSBItZTd2vOFyxhg9RAkIyhhjvIvOtc55ZGYDeSK2AURvnVJqvN33ti2XcyW6NFGhQEGIYt3GCj54RFRSWWtj9EKIxlnmFMf14AgiKyf+KaX7X3h1zDyEzflfVsuT06N+v4cIk8l1lmVta5nPxJTKROlNUODU686dO08Pn3N9yg8lhCAEaq2dcwShLMu33nrr93//99Mk/+lPf3pycrRarT777LPvf//7X/nKn+Eu2qeffvrBBx/1+/3bt28rLfI8/8EP/ujjjz9mCOLb3/71r3/964h4cnLivWfLnO3t7Z2dnW9+85u3bt2aTqff//73f+u3futLX/oSX8Pf//t//8c//vEbb7xx88Zta+3Z6fHp6endu3e/+92//J/+p7/7P3zvn/3Tf/pPieJ8Pt/eHhdZ8uGfvHd9fT2bLbbG29/77/+7f/rf/ZOvfvWrk8nkhz/8IdeqwdmyLAli0zTe0Wg0evuL7xRFMRgMJpPJ9fU1g4rL5fLs7Ozenbt//s//+YcPH3700UcxxoP92+++++7DR58dHx/fOtj/1te/8Qd/8Ae3bt350pe+9I1vfIPZ8T99/72Pf/bJzZs3v/jFLzKfgHH83d3d7e3ty8tLtmOJ5I+Oj6uq2t4Zv/rqq8vl0nvHvE+lFAgxmU9d9AAQKNoQ+v1+7ByD9dV0Upa1WBsAsOp0nudt287n8+hJKcUz39zgjwASkYGm6XS6kWpYt2Y9EUr5wvCAE+w0TRWuzVHXY0CMlXvvR6MR8zM3vViiFyt0nZt01MYYX4APBC/YP8hGRAQg1GbsHgRryaLqPLut7/DldTe6+1RrB8kskxt6bAjBe8HEURQxUGQkhT8Vf0IhBCOe7GWx7it2HBBENMbUdc24JEff7ggAAoH8nlrroigAIsXY7/cp4ny+4PEQvhVKqfhSFN/EbOwI1B47+4jICVZRFNPp9eXlZbmqkySJPvK7SaElqkgRpYwhOBu870K4SnE2Xc3nSyEkkACIWmu2VNbml5iKWgtZ9gshR0p1fHRMASXq2fVqerVUSgHIEIISWgjwPvoQuNfHSQNFRJDHx6dtW7PB63y2hKG4dev2mjAeEBEERSKBgeKLMxQFj32xqzVpkwshAGMIAZCU1igEI/5GIBEKtocOka35+KCXUiIB30BBcOvWrdlsNrm+FELcunnwl//SX3jrrbd2t8Z7e3v9VDVNtQkbSZKH4PtFvslxEVGikgIDQXCWIEyml95FEOhso5Wom/b8dCGEUAK/8bWvPX7ytN4r7969u7d3MJ/PryaXSqlnz55dXFyYJMvzPE3T1Wp1fnXZtq1zLZ+2tHHxRmJLGV7AvKNcCKzwt94ygOvkWxm1/t6L1yZx/3cFAwDBdc4GMublt5mXUUoxLevld17jyJFeOApspth4QxK3YTe/tUGi8zznDueGNAFd/P4FM5YNbs7fravWJOrBgwdS4uNnT733KsoYvYpgbTcDdX19nWXJ9bVbLEopodfrGaPLssyyRAh5OFtKGaTRs9nM2RACGWOYPIZrwUcKEZGdDl+MhcY1vg9CCBJSsblNdDYQRGOM1EIIASQRUYL0IQAEIZFrPG6qN02T53l0ftQfnFetbz2uhQuNkkLJ8XhYFMVsOj07O1NKJkpa22iDvWFR9LKt7X4MkvmqkTwqIKKjoyMgMRwOtdaL6Ww2nUrVuZYLIWztI9rhcHzv3quHh4fHR2dGlXdv3Y0uzCZzaz1yKSKROpBdduwSo6FtGDp5sfKlREQtlTDIXrEyiqIoxuPxcDhsbc0EakTkJ8YoZ4xRaoPBs+xXorUQgse7qqoCEjGycogQqDbFjxDCWpvnXV+d261CCMYytNYhEBLpdV6olBkMRh7sarXyreUjuq7al0dWpZQ8eMsGLOuFF4XoZiyqquJR1iSVSqnd3V0WyoQQG2edc8PBOM/z4ajPrdQQAj8OYwzX5JwcQ4iMvPjQAkFbtRgREU+bU56buX37No8LhRAhACrwXrDx7nK5XC6XHGtGo1GWFdPpdV3XJycnSpmqapwLUlqtzXK5UsbfuHGjqa2UIk3NcjkXQihllqv5qlwQEU8poERbWpUoIQw/l7RX3Lt3T0p1fXG5XJTW+hi81lpr1bbBOSfERgYnxIiAcTqb3H/tXlaYyeTKura25XI1i+jG460QSILQKolSIEgAEUL0IZRl6WxomsbILMsTiEQUwHe6oqlJHMq6Xhhj+v2hlHo4HBLFyWTS7/en06l3rRCCIrA7b4zUNlYqZKE6AB8DWGurqubkI8uyy8vLNE329vbmauq9bxoLAZSWQiU6M+w+NBqO7ty69/zo+SeffFRWS57kONwZDfp9H15gGQiyrpmWKJCE0gZRBnIUu+mYEBxZ2Dx9ALp7997W1ng6nRKENa21y2OYcckqbEKrrp8tkTMN7zHTCaNy4SURLSMlssDQhjJGa82TSOQJEU6eHgmjTJ7+7MNPgsWk15dKWRfYNDhQUMb0iyxGu6qWs9nk8MmRTGE82q7KKstVjDHPh1rLxJj/8X/8nrX25s0baZru3tRFUcwXK+4wEaHWajQeDAaDqqp6vR5jxJPJBAm2t7eFUKggiqikscEqmQgSce1w5b2vqpWUyBuKCUHj8Xh7e8yZKB8vQv2/2PvzoEvT6z4MO+fZ3uWu39r99T49PTM9mOHMAION2EQChMANMiXRrGizVLGLlZQtuipVTiyr7Ngy4ySyFYWqSHapKItRSYrKxdAMCYgkSGAACPsyAGZ69t63b7/7uz3byR/nvbcb5ICSLCr5h+8fqJ7G1/e7977P+zzn/M5v0c411tpFWfBmWJb1dDxZLMp0mdDYybNutxtjmM/nQki2p2AYlx/h+XzOQzKAGHghesuHiFyaMEYfp9MZUzxSbaTQLJ5YKXhgiaZxjyckJDoRS7ZgCEG0Nsq4OiullM5bpRU7R1dF6ZxAxKooqqrivCZE7Ha73W4XAEajkbVNjFFK7YMNUWqtn7j82LVr12azGWdFEATvHeeWaSNDcN4jSpCAEUJdlybBvcMjrh673f5wZ0MLfU/sjcdTRJkmHYji3p17zrngfL8/BACKGAMsC2BLREmSSIllFXSeG2OqptzorZ08eaLf7+/vH4zH4yVlWMbQslOllJVtyvnC+wjQ8k06nR6r4GOMAjAS+hC1lggyhhgDABITf6REY0yn00uNvnnzJkTS0jz+6KVr164dH097vezJJ59K07Tfp8ViQRSPj48TpcWG4DnQcDhcFBWDWVIrIuK52vpwcHh46JqGhfkxtM+yMcYFwpapCszF29zcLKqSz6y6rPI87fV6AUJRzS498ViWJ/P5vNfrlUU9nU7rotJSIcWmrIrZ3Df26OiIo/ZijBRCJ8vOnj0bY5zP55PJzBjTzXuVdc65ROlOp6OU2djY6Pf7tvGc504heh/IE+OrClnjhNykIMqWCAySt44VpFUUThtFlAZggFhK1a5YrRJAORhk7fohStO0bkpG8Uaj0Wg0ggiA8PQzjxFErXUILkmMVOiszfNcSCAISpmqKpqa6x1yzpVl2el0GLEqikIIIaH9pfwgEFH8A8yGFRS+6hVhGaXD6GEr8wph1V7G2DLauJRdDns4HYd9hFvqD9OmnLPsFdDpdJIkq6qCtwJjzNHe8S/87/7jd7/nPf/eX/pLFy6ez7L0hRde+NSnPpWm6RNPPDGbzWKMMlJ0/vDwkCImqV7RiWKMiCSFCiGgFAAhRib5itatgojRT4qR8x7KslwsFtY69mf/m3/zb/75P/+/+qt/9T8sF9PLTz7+6KUL//n/4b98/Mkn/uov/MLf/bv//ZtvvmlMOhwO19bWdnd3iSj4Vr3HYL6Ukt9GXAoTH8a2lFJCtlVNOzDTuirKdnhPLekEl+RxeAjiXxXq3FwwQ9YvTZO5jYVld4yIWremmSQQBEKI8SGDFLH011reMuTuhFtqfin+IBRCgBZep2XaFce+sTZl1erygHbVOPC2zCyKsixd3bQNCCBnDCQZm2g1rBE5Pj4uiqKqC2VUnnb4G8wyE8k2TSMEsHu+1gkJTcRNFpVllaS6rmMIQFEFTwIsTKcAIYDVWoYQbly/PTqeF4tGSZMkWdM0vrFJkgpUIZCQQUpFFGMAIZSUcrFYzOcLIizLMjGZtbZqambsnjlzJjuRHhwcsJqNP5ExpiwlR1olaRsJW1UlAOV5ZlTCy0xzvqEQAJCmKa/kGKNJkxBCmqadTial7Oa90WjUNE0IrmkaIUEpFciH4DkKj6FwKaXW+Wh0BJQ21uZ5D2MSYujm/WrxNu0iomYHs7KsjUm5QVxf297eOnlwcLCYlwCllNyGYJZ2er1ca1OW5cVHLs/mo4P9+wARSE6nhasb3j0ef/zxfrc72h9duviYbXz0IdUGYszTjs9D9DPm//lI3julFAgSBEogEXgUIBGkbGpHFKDNLGcdgBBAfIYigtQyEZz+HTj3j9ctm11gmxOIPgbug37frAsR+bCz1kvZNsjcs6xaJCElDyYZuYnROxeUUkyU1rp1yAghYDtOiyv6YyITKSUKijFGIMAHzXuWZTx3CQFXVK3UZEJAXdeh7W60s+Fgf39eVALNshEjACAIREGhQSTPnWvTONcIQCmQAwCkEIARlqbn8SGPTcaajTHBNlVVsetF+2xGx5uzUorNTP7gJaVSpGzwK5sCRFxbW/vQhz44m80+/elPHx8fp2na6eRKqV6vN5/Pi6Koi5K/LMa7PvnJT965f/cf/aN/tLa2zl2h1goROQgHBa6vrz/55JNnzpz59Kd+65/9s39W17UxKRE98cQTP/qjP3rzxu2rV68Oh+v/6X/6v2fPya2tjfH4+MUXX5xOxx/4wAd+5Ed+ZG1t7bOffeE3f/M3pZTPPvtskiRFUUwmszNnznzsYx8ry/LTn/7017/+9evXr58/f/7ChQu/9Eu/9Nprr3384x9/9tlnP//5z9++eevatWtJkvzQD/1QCOGzv/s7d27e+omf+PGmab7z3W9ba8tyeuXKFUTJB8fB4T7j+BsbG9bW6+tDQGoalEYeHh6aNInBIiKTgt944w3GwbnW9d53u91/55N/6q233vriF7/Y7/cff/zx06fOW1fv7OywnYgQsL29/b73ve/kyZM3btzY29v7yle+5r3f2Tl9dHT04osvDtb6SZamefa+97w3SZLr169vbm4i4mwx39/fr6oCEafT6dXr13u9XqQgtRJCUKS9wz3Gdp1z86Lodns+cgK2vHPnzmg00VprIdkCpd/vDwaDyWRyeHhojLHkV4ItbvOTJNFS1nXtYwSAbrfHLfDy2GoxKGZurQaf3W5XArGPOSJymh8/0VLKCKSMzlTiloHJvHWtHmcuLlg4uJoV8Y8QEQ9NUT4gSuJDjMkIbFmMkkfBESE8AOQeWADzBkFEzrWSLtY9r4a0UqFEUVWVEjJNUyHaOo8HyP1+fzgcctiREIIPWa4FEVEuCyZcjvGJPFGQsk2nTRJNRIkx+/v749E0hFjOGymF0amzEcAbrbFNhyBiePShEiFGnuOR9/7w8PD4+DhEu5iXMcY2P1q1CUuw9E1zgeq6xilaayP5U4MdADGb3O3kHSIUQglAggfo9u+7vIe/9Ff+xoc+0Pt//eN/DAD/8Fd+5T/8hf84hKBkiogkKMaI7DuGFEKwdS2kJIrU+v9GIRRbFHnvhGTYAIl809iyLMuSxY86PmDICqlFhMBuvFVV8U1WWgcKvqqI2hsLHCStFXH6n0AAjKF9HaQoUDhPUojg2gGyb6z1/t7d21VVpSZ56ukn3/HE5WeffurSo48OBn1rLYDz3iXGEJFSksNSI7XGmlJKilTPyrYFFWI6nfJj411USmkp+90OdDtKqebuneOjg82N9eFgsLd/OD4+BIBEm8FgMBwOpZTj8fjOnTuNa86dP3Pu/Jm6rm/cuLFYLBKth/1+qxYUoJQCoBhDCNFai0uG5upx5WdASqmEaByFZYsFAMs8kAdB1T/oIsLVfHK5dCmEUJYlUeh2u71eTykxmTzwZuLfS0QxBsaXcXmtMGhEXI15Vm9gVTHzs7l6WBBpRUFabgwIEAEES6K01gB0fHwsBHhbCwLnqzzPsyxpnBUCt7a2Hrl4frGYTSZjpcWdO3em00V967ox5sSJE4DBJKqu68PDfR6oOdewkG0VyBVjJCBJgV38YvTYfjZ+/xEgEqIUkmchRBSRs9glRCjKYjmdFtZagVCW5fXr16uqkBK73e61a9cg4vPPvyfYGCw7/cFxua+MOXf+DGC8cfPa+nBtfX3YNI0A2thcT/KEhy8AwfsgJc5mizZmgUN+QxyPx7PZrK4biVIsrUullFIY8v74aHr61PlOPoC4t1iURVFub24V87KmUiqJiI0tCNza2prWubU26+SMinrv2NIIAJzzTdMopVKTiKVMMoQwmUwWi4WQ0Ol0WMkhH8g2W/gVEVsfUiDezTAIkEBEYrl6vfcRo0QppaRlvtD+/v4K04kxJqlWy6h0olbDGCPUtR2Px1VVgYpc0jFroN8b1nV9eHhom4ZLNJ6pstmC1hqJGVXEVIiyLKuqcq4REh599JGskxXlPMsyHiYfFUd3bt3ynrLMaK2FFjxzns1mbBbkva+KiTJ6e2Mry7LFvJzNx61N6jK2KEQ3mZbONydObj3+xKW6rnd3dzmQ0wd55/Y97z0KMMZUVS3lnM2g5/N507i6bn0kq6pO0+CcI2xijFubJ7a2tpTRbBJ67949qdF77x2cPbuzu7vviigzJaRazOcQ4fJTT0iFdV0qUoP1vk5VCNQ0djEvK2sFMKbGswcEkMpIANk01a1bNx597CKBPTw8TFMT1geu8YPBMDNdrRNrnQ9F0ziBKka8v7u/mNcsy0iTREvV+KaqSi0kEcUAZdWQUkIoIeCN1998883X8zzNO6kQQmszGo1cHbVOfAiIwSSG82yllFIGjEGgIh8O7h/wVrzARZqmNnhu3vr9wWh0VC1K770UQSkJEYMLLthqUX3nxe/du3/HR5ulHaVFoo0QOJ8V1sViUSHiie0dpVTTOGtjUzV5nscI0bWNOhFRbLXMUkogwb3HrRs37929QzE2TQ2RtJYtAV8IIrQh8POegFJKSYkssyAi5mTZqpaqjVtkxg1yAhPGFV4AAIw4t9RRrZRKlRCucl5EKZN+f9g0TaAoJVpfbZ/YOn/+bNNUPoa6LtNMjY4nSpkIxOETi3lxdHSUJPrmjWsxxsFg0O32hJD9/vDcuXON9fv7h1wCXb58+fyFk1zybmxsPP7EpW9+85sxQvSwd/dYGFgiSh4Ana+VNEa3ihxEQiGYPskjn83NrYsXLyqlptNpvz+8detWlmWBYpZl586d29/fL8syxjgc9ofDPoCIEQ4PD+u6Fojz+UwIsbGxYb2jpf1iURTOOakEeeJUmRCIDRyrqur1elolCNFb54Pn0w0R8ySlVgjlV4cRtzcAICRIhYzb8EbEJ1dkXBBBCK77EIBC8GRbP0cuOXiq2lRVjFEICCGsrw/5ser1u0U5m0xGMYIQzYkTJ5RSW1ubIbhHHjk/Hh+zieeZMyfv398rikJIISXWrs60ASQhcW1jY3NruHe4L4TY3t4ejUZGJ3mSzmZlvz9E1OWiCtbZ6GIgb0OW5cWi4m2Q3zP7oiLibDbb2FhbW18/mh69/93vjTGura3dvnf37t27RVGsr6+vra0VsyJGQAB2UeBzXCujVItc85fDu32MEYUmirQUYyGRECJE7sPJmCSEMJ/OsN9X0kxm4ytXrrz83Zerosxzs76+KQHHR8dRIkOiVVX0t7YYC8vznGLruiCEmM/ni9nc2npzc5O7GuecbxqQMs9z72JtG+faTIzQyvmV93FJvRRE1DTNYlbwf2ppfOO2z5+//MQ7sixrqurVV167ffMWREqTzDk3mUyklIlW0YdEG2utA2dtXS2qoqpGo9FsNmNKbJpnmcmEELv39viA8D5a55RSEmXESAFCCBwvByHGCForJFFV1cqaIEYfveBdrtvteu/rukQQAqWzgRk5ISDHnnMQU12XHEmqjEmSBAVxkwYAJ0+ePD4+WlvvPfPMMzdv3gSAqmqOR3sh+LyTra31QwhltWjXefQKBVGIgcqy5BaDW2XvPUWSsg37batQ8QBTxqWZAz0UG7iCJmkZy8M8nhbNfMiTeoVmet+W9Hx3EJEIeEjP6XmSNP/bpml6vd7a2oZzzrmmLEsQkKbpzZs3QVBRFJWteYvr9/vz+Zx/ddM0TdPkvW6apsPh8Pjg0DmnNQqhEdFbDxy/s+qPAhu3cmxPkiTGQ900jXX19vb2c8++69q1G7fv3f3Jn/zJr371y2lqvv6Nr1556Tvnzp158cVvAcA73/ns//bn/zd37979v/43/xeZZUopFj5vbm7e3b3Pbh4AoJRqmoYN5bj+4XOEa0vnHABFBImoteSiiCdedV2HsiTngCXnRmdptlr5S9SM2DB3eTZRjD4sTc9xyT7myABJ4FzD8Hf7mAuM8UG3KJaa5dWNW3Ulq5da1YMK2uaU0YrFYkFLs0R6MFqIKx53jJG9ItkWo2kaa62niJEVb8TwWYrY7eWeEiFEliUmM7dv355Opz3VG64P6rIaj6cmURsba0Kr+XyWLBbGJGVZI4AQUirsdHpSwdHRARHYxgshhVBVVRCYJFE+tukj80lRV7GuHSd85EnqpQ6efIghELXTCGoad3hwLKXkUyyEMJ8XSVJrbZQ0qUElFXNRlDIxlt7HLBOMxDE7WykrhLCuZjgyBFfXpQCVZR3+lrgkZkCHFwwhNE2jtcyypCxL771rfFEUAMBmw4La7G6plVKy28sXi+LRS49MJkfjybFSZj6NiHo2bQ4PZgBx0Dnqvw0JDZwNadIJIVAUs2lx9a0bWqskSbY218+cyt566y1ECq6py+bUmdPz+dQ5hyC3traOjyb37t5ZFKM0S4DQN4QogYRA9fhjl+dFeebMmX6/X8yKhsiKmhdGnuSUU13XTjgJ6JwLQEhCYJuehxTI8yMpjEn5GGoaxyeR915KBYDOuRgICPl/jU4qVy7Jy609ZrvvEYQ2IfP7Qo+4F+TBDK9p5g3QkpslHjKvF0LE4LSW3vsQnJQmTZMHYg6JjJYyUMuOtAgPdCEAqJQkag/WxCT8oPHey78OUSolmAcWQmAG6GKxAGzH6vy5InkJJKRaau4xTZLgqqaqBJASSgrWlMu4zPZcbhetoIeboLzXJaLDw0M+5R/eTwAoBEfw9nAzfyecicodd9M0L7300mh0eP78+YsXL4zHg4ODo9Wv5ulLbMMeUBoVQpgVc9b384zALIn8RdHEGDUHb8T43/23/7d//s//eb/fT9O8KIp3v/vdTzzxxJUrV7a2tqSU29ubeWKuv/WmrcoQ3Hxenjy5/a53PfeJT3yCiH71V3/1O9/5TqLkM888E2NYHwzv3Lx17dq1w73d2Xh0+vTpQbdzYnPja1/+0pe+9MWNjY0z587+/M///Hvf+15v3f2791767vc2Nzf/1E/99E/++Cem0+na2tq5M2dOndy5cfMahfijf+Ij48nBlZdeERKD86gjAKQmmU7GWZq8813POedu375d13VRFNPplD2Xp9Pppz/96a2tLUTMsmxra+vq1aucrOi9f+GFF27dutXp9MjT/v394+MxD9IuX76MiLaqi6L42te+9s1vfvP69ZvT6fTs2bM/9tGPnTpz+nOf+/xLL73EXrUf/ehHG2c/83ufnc1mJ09uszB6a2ur0zkXY3TR8eJcH6zng+54PB4fHzOIiohs21WWJSG0ROnKdjodAMBITVVnWfbYo5eI6OjgEJeeWmwGDQB1ZbnfoVaR5pxzdb2/KsxibOXIq2lojPHUqVNiaevETOfxbDqZTJg0LaX0MUiEuq69mzvnxAouWxo5rE6r5QLGh5/01bKHNuSAoQtGyYiWpGjFJFAbVtzp9pJL+2N+AhkIp4eE/yEEoiiYnyjA1g1pzdtNWa5QcwUA1lquaHn2JbV4GE1YISOROXoKuawnIufaz7M2HHLxt7W1fvZdZ+vafv1r38rSjvc+xKgeOqpXBRYXE2IZgM4zXkQMwS+H/AQEEpk37rnojBB4jNY0DQv/vY/b25vVzqnRaAQkpBBEUUgh4ft21Yevpmk+/dtf/m//1t965JFH/o//1d/g5kEQhBi11kYb55wgQKVijCbJiAgoas0RlpGTBpumEUII1DGwCV3SNM3t27dpmTO22r4RQSkhpQTCwGlQMfLoO0YRV+tjiY3y8YCEAtAHT4RaKpQqOE4dBGutRBRCuaaJMWZpsr6+/tili08+/sTGxtpT73jHic1NrTV4p6AdSPBWy4uE/8zR6jb4qqq89xy12e128yRPTOKc668Ptda9fodfQSp1/vzZo9HYGKNM/tZbV69fu3nr1i3+h8PhsFwUg37XndyeTqdHB/uPPHrxiScee+c7n3311VdfeeUV70O3253NZkI8ILYbY+p2aJHwkuD1zIerc856TyQ4fG/5RAmiVSH4h/lp/MGLvwcpJQDWdT0ajcLS+pYe8mtj+RxCIJQPAdBtv0GE7LS1etz4Zx5WG9DSPEFK+bDYYTVUACBEEoqHLrGuyzQzxpj5fA4RXGikRwASgrVsVVmWZ8+fn89n7373ifl8fnR0xM/OYrHo97tpapb5FYnKTXSeCFACUuscLYQCIQIFQSChJRwBECKseNzeexQtcqqkAUImRRqlnLPceBFRCLGq6qZppAJj1OhoHCMYY77z4vckCAiklaYYjUyapp5Op4888sjNxY1ivtjY2FjrD7q9Tl3XaZYCxIODg/XNjcGg2zTWOcfRmgLBSIOSQojMypdSIuNQKMgHAC1QLObVq6+8QRAgAkbY3d0tuiUipmnaNJUQIk21UpLIK5UwQFbXda/XS9OsLCvWLq1EN3XZAACA0DqJ0WmtCaGuGyHbQG2+s1oKCkEJIQCD88poioRKuDYDV3MfRbGtt5Y7dpBSCiEtt+bkIwkhhJJGSmkbb5t2NAoggMD7dh9gcwzUpJRa6w+EEGVZsrR/Nbpku3Pmm+PSSTACCBStuY6UrZFIsLdu3UrTpDfoS4WLRam17nb7SmZlWdRV3WIuIW5sbLCiRSllmzkEnvNRCEFpkecdBty5OeRDKwI0ztWuPtU/1V/rb2xvVFX16quvLhYLJTpCQozE/VVZltZaCZgoXTY1P5Va683NTaXUbDbb2DxhrU3T1AVPLiJSCG5tvZflOsboXRys9YQQaZqvr2065+7dv3PmzJnTp3dC8Lfu3L5+/frW1tbG9mAymc6L0vlS64QoRusk6hBiYkzdNNF5aRQQ7O3tnb1wenNzs65L55vhsN9Utmma1GS8/vO8mySBohRCzqblzC8EYgyBZ/jONd57UKCUEqiiD7FVT1MIQaI4OhrRIT3++KXpZB58e/zxcYAxAFBmEutqJSVI7gfYr0kiCgAxmy34dt++fUdrZYwCEkqapnFNZXmUZYwGgNu3b2d5Msj6zjVlUcqOybJ0MR3n3e5wOGQWyXQ86/UGp3dOzeeL46Oxc943flWaAFcuLTuMOPx0Ucx58SeJrqoqRg2iRSpt8ESUJDyqQRSkVMKMmyxLQghNUwNQCPFodDgejznCLTgHq1iFhzz4EBGkCIGsLbXWUinvoxIy62QhOEQySjbOGmOSRO/v7w7XB8G506dPT6fTTrd/9+59IBRSl0UZQkABVVVIFCiEUsa54Fy4fu3m7t4BW/B3e50YqNfr3L17986dO6PdSXcjf/e7393Je3k2F0KYRBWLKsuy+bxwVYVKIUppjNZScMayQCElQWtoxnOpO3fuzOdFv9+/9tZ1/t66/V6SJN1uzkaxhLG2lTGm2+1ET51OprUUQiFBnqenTp0q64rptCFQpBAWno8YJVt3I25IvPdKmTRN+cSZz+cxkgSkSCgFLs8gWNLueEcCjIii2+2GEJiWDkvGn9BSiGUOgfdcCiOiJCElShSsAVdKCYiuaYwxzjW9Xs9774M7dXonz9MYfaTw7/8H//7W5vav/dqvKaX4+Z0Vc5S4c/Ykv40AcTwehxC997ky8/lMG6mkWFsbgBBVVT399NNnz57/zGc+M5lM6sIu5pW3QSkTIwkSGCG6qFBFFykEAilQKKlIMIZFQsamaQ6Pj0JwW6c38k5669atr3zjKwxuFkVx9+49iC2EZL3j2+cpCq0wIoekt4JWQmsttChk2zZzb0wCEUWupLWWK3ljTHC+aVyepAjSOa9Q6MSsDYYbG1uvv/761taWJeca2+v1gsM8zzlrUSuNUjLrICwjUng/b+qS88ciJ9YanWWZj8FatwQCQCmpNTJqjHKV/+HLsiSMKCBJstlscffWnXu37xblQqEKIQx6vaqqKFKeZk3TeOvyPGc05P79PQFYzBeHh4fs6cT2O0mSIAkltBCiri0sTcN55ClQrs5KJaQS4EPLPxVCLBal93Y5yeAqVy77lJbJLiW6phZCIsoQHKdMB+GZOmOtJ8TQNFmeeB+IqGkqFCJLO2fOZHmejcfz+bzY3t6+c2d3Op32uoNTp04551BQX3ebplJKdbtpXVnvSq2VUKppGu+jMYqPYLZuoOXkRkpJESliSxISgplCvA58K0sXRFEgCikQ0dnAQhA+1/jhUmoJa8YYlzjvCpdZfiESlpsJIiYm49k/H0Pe+15/cOGRR/d2d//23/7bJknW19cZp97Y2HDOzRbzuq6D85y7fu7cuX/6T//pr/zKr/z2b/82SJRR8vcsUAFGIBF9APGA+hPb/RibpgGI5DmrqvOxj30sBkjTex/96EdPnjz5xS+6/9Mv/uJ/8PP/66KY/9Iv/W2CePrczosvvviL/83fePHb3/7MZ3/3G9/41n/xX/yXH/rQhz784Q9fuXLlxu1b/DEZn9Ja+8YDCikECQHQnu8hPNimUAhPkZyTCq2LShohQEok4pEYu/AxCyoiCimFUi3W75xjismqlaCWyci9A3GiCSIKDwCglHDxQQ2/nPq3QPLqD6sfWG2YcSlVRlT8F+SDECIAMZ+DwXS2H/XLbOfVvSYidu9ZZRLC0ruZSPgYNEHdlAfHLk3NcDgkjCbVJ3e2+4PuZDw7OjrsdrvPPPP0vXv3UMlLlx7d3Fo/Pj7eO9g/Ohwt61tx6YmLTzzx2Csvv/S9773sbUzzpKldlmUohPXemCRE5x1prRTo9X4n76RFseABQFk0VeWCJ+cr/h6cs3v39jmZVgiR5Hm32wshlEW9+t6stYvFnMWsRCSE4my9urZa67KsiUhIiDHO59PZPCRJEp3gZ1AIQRSJg5piFEJZa3VivPd5nna7XZ4QT6dTWjq2KaUieVZYaq3rukoSffnyO+rKzefV7v1D771rWqkQIgqhqtr3u2/XG6KeFxy9KwPhbFoaLedQjI+nly8/vr21c/fuXW3UxsZGcJECzKaLTqezt7c3OrgTYqM0Nc3MSKNVLoX0Pmht8m53f3//8UcfT5Ik38rns0kxm08XRQghSXSqzTLDXBHZFSqKKCSKAEQxxBilaI0ymIIWQogBvIvt1gQCUbIGg7n+3FbzMgu+hYkAoHGWK3wGaoQQRIH/oVxaCa9a3bgMAORSnx8oCWK55lEplWUZ9zghekBgNjEtbZRd8OhQKUUReIQgJTMbWuECglzJNPUSmOJ71DSV1polPkqppg4heGU0vzWJKJERgRCiF9p0koSItFYUgkT00UmhBLYN96r7bnv5GLgB1lqjkquRfJ51Q3TW2hDjigbuHwpC+/0XS8piWJrFByIaDofGmKtXrzLgiEjeW+easlxorY1JxdKGizHE3/iN3xiNjrjYWMnfGVni+xhj/PznPx8DbG1tGZOyDfRsNq+quqqq73znO6+++mpwzejo4K03r73vfe/TQvb7/Z/92Z9lMP03fuM3vvTFz3e73T/zZ3/m3c+/91Of+tTv/d5n9vf3lTI7OzvPPffc448/vlgszp49+2M/9mOf+tSnfviHf/hHf+xjWuvFbJ7n+aVLlz7wvvd/5CMfuXDhQrGYN3X94Q9+qCoW16699eK3v3369I5C8enf+HS1qNbX19fX1y8/9Y7xeHzjxg1EzPP81o2br7z2Kktap5NZjHExLzbXt7z3KAW3t/N5m2jdVoYh3LlzRwi1WCwUiqqqQIpOp5Pn+Te/+c3d3d2f+7M/u7W19Q/+wT/gKLyn3/HUT/3UT82LxT/5J/9kb2+Pk1fzPL9y5cqdO3fG41m327l7974xZmfnxA//8A9fePSiMWo0Gt27d4fT1N+4/haHVPU6HR60pDlL/731bj6fK6W6nR4RQYgokYulK1euKKWstexRztb5ANA0TVXVvJ4Jsa4qwtZQa7lIUC1FhPywsBqGJxZSSgi0QlzzPGfnCRCI1jrnYmi1p4zm8YpmKQ8sWY9cLhK1JceKc9muf1jScGn1gCBFAEFEpGzLQvYrui5H9yyLlrA6aHnY4okdb1ubAn7rfhk2ssrlW+44VNc1c7NXErBUJjyJXcVZdPKclnznJU3ZM5+cx+lJknQ6HYr46KOPntw6+cILXzDGUIwcWLaC6lZsmtV8qdvLAYAnS85ZAGDaKMMTsFSwy9YMKFIk7pqEhIgSAhztHxipTpw4UZZl9IFHB8sq4e03iqauF8Xir/3n/7locTcQQgDBStDRMmGtM1I1PoTgY4wOmHvbErJ4FBwDECEujR1CCKlJBAop222FN27+A3/qSAFAMKWC6YdtJQrEHGaFQjBtPCIiWuudc2IZ96y16nU6XMBlSSql/OiP/omLFy9urW+cOb2TGbO9vY0Q67JoJaJatNiu1gBwfHzMfx88rWomY0ya5FoFVjNlWba+vt7tdmtrgyelpXPOORsodvNMatU09aMXLnS7na3tjbeu3rx69erVN18HKTY2NtbWBnknTUZ69/7da1fffPbZZ5/5oae63e7Xv/51WzcQiQSsasEkSdI8b3klS9M0Wmp7YZm+sqr54MGY9F/p4tHN6j+dczxawmVS3wpu5osPs7ikKiO0nA++d8v3INr18lBnyLsGKyNW/dVyabUeLAAERMvBUogRIJJzjpyLZM+cfTzLT/GUz3vXWJI6aepqduPW1Tev9dY6VW2PR4dPP/3UYLh+88btXq+XZ7nRaW2b1CV5no/ULAQqilKgouCxpZEoIIYePPdSSgAgRqKwPID5s6PASBBjBJ4PAQQfY4ygrZAopQASzNNBIKNTqRABlFSefLChrAsptUTh6sYYg1ImKp1P5ge7ByFQdH7v3l7vscea2r/6yuvdQffcuXNV1dy6cXvn1JnZbNZUTQiOt4gAlJqEWyPeGQAAsI0bBUKttZTI1D+VmkTp4JkhLjCSlFpKJGj3GecjgnTWlVUZQtjY2GiaZj6fe+973QERNU1DS0oFRWRPjBCc1i2VjzeWVBsS6BobTMJlYlMFAOikPfaejjFWVSWlZIJ2CK1dGvchxigAqK3VWrI5uA9WLmPuw9LqscXdBAoBSgki9OCj86tSu6nboSA/DrplDGGapq3cJNWIiZJmPl2kaVqWnN8dgIRzoWnmQsg0zw4PD/kdJjqTqNMUESFN024vz0yytra2sbEBALPZ7ODgYH/36P6dXRaxZYNOnucksGlsIkwIAQDTNLWuPj4+PjjYE0KcPn06TdMLF87dunVrOqnbcxTAGB2CD9bJREXynLrJU0y2weoN+mmaSKkaZ0MRra2FBKLgvU9TnWVZvz8AgBMnTjSNY5GjEGI8Pnau1ok6d/4Uyvjyy6+b/bvek1J6bWNoTFoVdRkiO0gGF7M0bVztG9sddNc2hseHR/v7DSe8O3KIomnq64fXF9NKar2+PsiyjLUlfCIw0BacbUKrosXliDuiRCLCKIRERIHQ7QxC9AcHoxCCEhoEeh8QEYJ3IQghlEpllDF6pkcBgBKSCBGwsd7oPJJ3zkmQrrYxRkncpXBeCoUQrI21rQAjYmqtWyyKprHWhtl4HjyV9ahpXJIkTdMURTEez7rdbpZ2uPfj3XF5VmJEQFwllkSBggiGwyHHdY7Hx845lO3mFiMYk2iNdV2HSETsOImzRTWbEw9+UGKijBDS1o53SJSa9/MYQgAHAALbdwEhsOCDiOqyMibN8zzvJM65Jvja+8Sooihu3brT73edc7yf371zfzgcGqVZS/7WW9cAiYlxwXktzWy6KIuaQ19ns30QYnNzc2trq67Lvf17RMFamw0TInzllde63W6edxHRuabf76+vr2fZ7Ph4rLXWOtFaQ4RQO+8tRky0pAjGqCzLEGVdN96XdVnPp3PnnJKm2+166xHx+LhJU6O1ZmO+GGNdlwCCleXWllmSeu93d3dlIqMPbJANENPUcNyuiy6E2I7hARDFYlGEENM0YaSGvFdJylD1asAMABBa/EUqDAHquub2hhFnKaVSEpYKOz4lrbU+tiWyt670Kyd3RZ49PSCE0Ov1NjfXb9+59af+1E93u91vfONreZ5eePRCkicm1+vbazHGw8PD+Xweo3/66acvXrxw7do17/07nnr8ypUrVVXl+bA/GNy7d08Z+dRTT+0d7tVlderUqU6nd//errPeSFMUlXeuqhpEiwQSpNYaSAiIrrEClTQSUYQQmsYBAAJSRGtdbat+v3/y5Pa3v/vt27dvp2n6yCOXzpw599KLL00m0yzPMcW6tjFQmqbdbndRlXwU8hNdliVLK5BaFmT0PvoHCkJuWZUWbKlEkYmAsq5rCFEI4UFYHwe9Qb8/nM1maSd3zlWuQIC6KdPEFEWhVcLfJ6cM0dL1SwjQRjMhVBspG9HSo5ZsTa4qhVK8u3JhL6WMwRGxOy4opSQqH1xVNhQ3jg9PNk2dJtuAKAC01KkRPgYkyBO0wmqppZIAkJmdVEGaZ5nOg0OyTaaD6LTJ7DFEiJhIDDEqSSalEKJAAwTgo4AGJRmttZQPudlFLb2UUUrBTUxsRYSKyFvnlBSJ6ccQ0iRKKYQUDC4gYqBoGxtDnWVSaZOmKVEYDjvj0VgIiE6XNoYYFPa/9qXDJDlZztLon9hcfxwABG4N+mmk2DS1EpbIQ5LkSczS2rsAiLGl+QsBTgnmSyIBxADLALq2gFxqUGFJGGCjvDYLkV+EH7QYo5BojMnSzMdQzOcogAiEwBhikA98hKRkR6N20hcpUAiAyCqzELzRGlHGCBRjUyXRnxz0zm1tnsk7ncY2ZVmd3D756KOXrl+/FihG1Xjw73ru9MHBYVmWn/3de9evmnJ+btjvOeebqgYArRJMwTUh8PBzGaUTYcXpk0RRG6G0Igif+Z27dVWl6XBRwDe//taw/75u1zbVhT/97/z8G6/T9et3vcg/+VN/vtc7K8X0ey/W3/5WmWfP/ZV/7/987tz5l773S0ocSIlaG6KImoSQiQSBCEgGkRBCiAAglaQYUQopgZ/lSIRBhBCApNFSqehiECgQBANzAkgim1cYpSQROe+cdYLAUxtNxu60IQZWiIYQlfCrPjSEQCFow5PdtpiXgKRo2Tu0Aa+MTy17BGpXgFguBgpRRCGkFAKkQAFAZK2FqLXsKyVtM5WizlPQ2ggpKEYUQksNAN0ctFbMiYYYjUmUMs45oBgoUFCIWfSdeVUDYreb7OzUr776haPDUd2Ui8Xi1KlT/X7/zWtv7B12T548qZQ4c/bk9Zu3ddodDHpNU9y9dyuiH6z3auuAaDAYFFVJTdRG1nUTODEiiBiBCJmTwYElFAWRbppGKsl9DBHFAFJJVu6SDyAguoiRYvBSSkFQLQquDL0PznnnjpRSMVKW5SH4LO9wKFxVLba2NtbWB0dHByQ1g2gxsjRQcTHc7fYBWmoz4/K9Xk9rXcxLAOh2c6IMEX1ofRq1MYhisahe+t6rk8moqgshQCkpSEYfJEpCQETZupT+/quqGgRdVaXUOkl0ahKmZDrnKF7r9XoxCiA9m1Zc58coFovKWht9R2kjRUQSANI5EmgQRCdPtUqOZsej0ejihUeNUlKi0KKpiqqqqkZ1shwgggRUGFbGjwKFFEIISa2IPtDSU0hray3LmHgkTLi0XgWgZbaW9479lxERsD3LYow+hlW7KgQg0nJni3K5CfCLMPTZYtwP2u029wYAeLiIS5ExRfDeMy+HIjjrpZRCyxBJRFJSAkCSJIBxNYfg/pqdYcUyqQIwoqAYBAB0+70YPWNw3tdJnlWl1TppNbGAQjICFrJOkieptda7JsaYGq2CVgIj+yu1WzTwPA0RIwUltVKKKDjn6rpuaoeIeZY4J0KMLMEHjADEA7+3XTCAGGOQUqrE8IdK0yTPc4lEwY0npW08Ax0rpZS1tXONlNKYlE9tdoyBpWh7Ncfiii54qkLjHf+NYZDE+3D16tX79+8DQIyx0+m89NJL3vszZ87s7d/f2t44efLka6+9Np1ODw8Pf+d3fqcuF1tbW2VZ+mAvP/n4Cy+8YIz5xCc+8dGPfnRr68RisVhbW9va2qqq6md+5mcuX76cJ2Y6nWdZVhdlovSf+TN/BgnGx6O9+3erqqiqimLY399FiInSr758ZX24Tufh0qVL73vf+wDgq1/9Sp6knFJ+9+7dbq9//tyFEydOfOtbL1prb968raV57LHHXPBbW1uLxeJb3/oWg6cMl2mtowl7eweCQEr55JNPvvO977569eqg17969aqUcjqdfu5zn3PO9fv9bt5ZLBb/+B//Yx/D8fExAKytrQkhRqPRvXv3rLWdTk5EnU7n8uXLzz//zk6nMx6Pe71OCOHKlSsR6OjoSGj5zne+84d/+Id379374he/iIgCIBAIIXi5Ion5fA4hPvHEE+vr61//6lfSNGdLeoCW/szcBfaap9i6LfFDcTSZSCm1Uo2zUsq4jLOIRO1xq5QI4f7urpBw8uTJVOqiKDxFhsiYdjlcX+MFQxH39/cXi3YoyE80UVjpxuDBuJQhgt/v3fzwAsblzwMAkCBabr4raAxRCknALGaAGJFFWAAg+BDkYHGQ7JKz3C9w9Wcm9qdpWpZl0zSshYSlngIAvG+TZ4ho0B8wjj4cDtcGg729vayTA4DWmj25tdZ1Xc/nc0b0b9y48e1vfLtpnJSSw9DCQ6lrq/cQY7x48WKn0/HBtqZpUlQVNE1jspShQP5ywzL5l4eiUkkhILDAjogIbWP39/e59PcEAEEI8D4Yozju4w9eYjkPZ3d+AGKGQojMaEBAAiAhAZCkZImW875BufLt4l0yYdiXiBBUmkpEFPCAR4DYFjerT0Ht2Bw8Z5G1slzkpFTC9ptPkiTPOzEATwKaykbvtVRJogGgLAvn3MmTJx999NFP/Mk/ORwOU63OnT1rpBSAo+NDiEEAEIWqqmrvOh22GRHe+73dA6VUXdf8QTqdDlP3W5oDEKE0aZ6leVU2IGGxWJiEvS8isyHIkpSolDx1crvX621sntRav/LKy7du3To+Pjx37uzOzs6pUzsvv/zyrVs3J5Px88+/++mn3hGcf/3117XWfhmpF0JwMUihWVYQHyLvw9LrDRFZeLj69lYPDC1TaP7wa4U4cxsgl8a4LWISglTmoZdFjhx5AG1/f2YgLVOw4YHRM6wgwqZpgnNRytUA+fuPJyQBy5xzEIKQQCmxtr29vr7W7eUx+jNnTkkpJ5PZ8XgspQYAnZgkSbSWh4fHAPDqq6/N53Nr7WQ2O7G1PZ1O09x0u32tdX/QnU7mUgrb1AJw0Ftr33aMPPQDAETBZfTys7TvHzAqqdh/wz1QI0YAoOCNMSDQOXasbm3+nLVKKaColLaVzZKULcAkGgpQ11Xeyzud3LuY6c7Czojg/v29EILW6XyyeL18q9vNi6K6ceOGEIIxOK0NRak4UQHbc5rvlPee53JSxkhWSOyYpJKgxQMPFi20j5zyrLgTmM/LomxC+4lgMppWZdPeVT5FWAWJyrvoXUNERknnHOM4DJDFNvEcow8oIYQAkSSK4B0ACMAsyyDQbD4zaZKmKSoUQkSOfaB2kA4AiJSnqTTIH4d9JFi0EQJx+BtnioJoZ5JSSqlkonQIYT6fSynzXK+snfiD84RGLL0Oh8PB5uaWUupw/whILBZ3GCfKMl3XtRBQVY33UQqTGIWISMJ7D1yHKRUD3Lx5O2Ls9/udTtbvD1rlAcFgsDabzXb3RhQrdvouikJrnSQpOwwi0mCtf3h4OJ1Pe4PeYrFIsqTrFftOJomJMXaznCM++N32ej0hRFVVo9GRCz5JkhiqJEmqojZGI1K3lwshI/hOLx8Me65xTe0qqPb3D4+PxkqZTtabz+dKSRfEq6+9VlaL7iCRUp48eaqX90bH06OD4zTtpDqxja+riqdrG911lAIV7O7uVmVjcsg7ptfr5XkuQPb7fdcEm0YiKGaFIJEkafS8aXjnGuec1tJ5G4C01korROl99NGnRocAvgX7BBEgqKb2McYsSWmle1juuRRJa1nXLsbICbcuApv5pCb10UuhtdYhNEYoAKIoVnugaE3/PWHUSrMtCREYnQKI4GKSJE0oFotisSiEEGmaxRgn49koTohQMrDRapZZdCKEhBh4Gg3B+TRNT5w40e129/bu80REogKAxgc+1EL0SiulZNNUSaqzPPfBCiGiD1KhkkaQUEoLkDEAgEApYoxI7RB6ObtFJOKDAImkUjxT11qniXK26uSpciKE0M3ysqln4/lsNNOJmk3mLvii2O31esfHx3t7ewDgXKNU1lSNEKKurRDCe5skKSLKpdvgYjGbTEZCiDRN0zTVOqmqpq6td/O19SG/E5PqNEu6/d7ps2ecc8fHx2VZGmm0Flqnxphuv8cdmrXW2iZJkizNm6qxjVcqAcCyrDc21tgsqyxLKVEnqtfvFlXF1WqMMUm0rZtxOWYoEwyEEIbDYafTUUpIyam2QgDyL+K6SErpG+trX2dVCMHVDRENBslwOJxMJlVRIqI2OtCDjjG2ZsM0m025GOAGKYQwmk5W3qYxRpQiNdJ7b20tkDDIpYjVVYuCzYiklM658Xh84sQJrfXR0cHW9kZ/0LXef/3rX3XO9Xq9qqr29u5zfFbeSe7cu3PzzvUnLz919vzpG7euTeeTjsytK85e2HHOldU872R+5jY3N2OgF1/8Lh/HWkskjAFs06AQkiREgkjOhxCilME1LgIhSIgQEZyrY1Qoow8uy9x0Ma3r8qmnnpzP57du3bhz506wgYiMMRBgNluwjIPjqbmmr6qqjm2cZnA+y7JOp+etg6XVDC4pimmaSoUsy5NSruqRGMH6oJRKMmOMmc5nAnBjY2M2myiJMcamaRKli6LodpGI2LhMSiljSzTjeVLjrBJybW0NEYOnQFFrE4Vg2xkub9gllsHopmmk4uSiKKClrVEgH4ZnTrwMAND7gZVS56FAk7Onvu//6iU/8F/9//Fa/wOfZWPwdj/nQQAoBZ23E9H//+La/CN7pdCAQjj3/Xfn4DZ0+aNpAAC/gPUc1nP4jf8JAH7mkdUPr/2b/vb+chm89TL831+GFH/tHY8CAHzlX/Bf/8T/+38CgJ96+on/6u//Pf6bX3zy4ve9QprC+jp0OtDvQ4wwm8H+Pizezkv3j/YSAtIUdnag24WlLd//kssY2N2F0Qjq+l/jX/U2AQD6fdjYgPX19oMXBYxGsHTxge23Xbp8eVDcdDRQNbC5/iNJcjXV6dHR0a1btza2tyaTkSc7L2dCCGsdQej3u0kqD44PSzvv9/sXL17o5H3v4D3vfv/3vvfyG2+8wYRTBKl1JlBRENPp9Oi4AgydTlZVTfCgJEUE9Fw8RyQhJGipGSqJAXjfM8Y43zAwVxSFMSYshRfcd7Q7m5RN09R1eN/73nPpsUe2tjbu3rv9m7/5/0HWzkrJqiNu/AGAi8PxdMKWfUyqEEpubm7u7OyMx8d7e3u9Xo+zb7XWnJqTZdnBwaGUQqssy5IYI7Z6bxFjTLI02rfvGbVOEtUDkLGFvEEIHQJIaabTxXS6SNMUSNdVYLxCKRk8CUxQaoCAMQIKIAQSUum6igJNjMAFBkA8OD4ItjGJ0qlufNO4ppoWMcZUGyERZJRCUMSIAAJ8jC4GzsNcdZESUSpEx2AFCSFiyzWMRAGRQEIkdq4Pq1aalnKoFajHsvoWLG65X4JjeFZUaP7Jlq8m2z/z2cdwAePFsHSoyLKM5Va4tM3hlGDrAlAbWtgekcu5DhGtmM4AABgBFQCAFI2T3lsASNO01+sAMPcOjEkktAJlqSQiCQkgRFUVQoLWEohfJyKiBIz4AHSKMfJAJUmSVu3XWGbyAYCUcj6fR1iKwACYYgjQIgB/8KJlV8iHLDvGKKUSnTCfQCYYEbx3Rhj+J0xZhRaL8ABxOOyPx6FpmrquEVtCRq/XC6HNO2EbPWttkmTD4bAsKw4EbpomTdP19TWMVDWVlDLPM6XkCy+8YK29evVqf7iepun73//+XicFgKeffmo6nV64cOHxJy4dHhx//OMfR8SyXNR1qXVy/fr14+PjTqdz69attbXBYDA4PDwsF8Xx8bHW+ujoaDGbICJQUEoKQCXluTNnJ8ejre2N5559d13XO6dOBBcba5Mk3dzcWhTleDQZDtbKuhoO14ui6nb7Sqmnn3luYzB89dUrvUH/1KlTTNTl7yRNU2MMEbFcfmt9w1pbFMW3vvWtN998M8/zfrcHAJ/61Kfu3dvd2Ngwxjjnb9++G4ITQnDr/TM/8zPr6+uf/exnv/GNbzz33HNN446Ojj75yU8qpbIsr52t6/rb3/7mSy+9BAKzLAGAixcvCiFefvnlG9eujUYj3it8pCzLfuITP/7qq69KqZVSb7z62ng8RmYW+KCNPnv27Gg0KooiSRJrPRvcbW9vP3LhUV7Vb731VrlYbGxsIOJisWA2m7UVN+wr2K1dEhKI6PDwUEaQUjIKyvunSVuYcTEv+TdyhiFvlXHpqP7g1fDBBazCxwdquYcR59XPLEfoSzMNamX7cjlZJ++9knKJyhEihsjxFEtsDiiEEAIoJY0xRAGWsoU0TfM85/taVQ3vy1VVsSjbBS8EOueSJPEu8KCei9p3vOMde0f7i8WC4zWaptnY2NjY2Kir6u7du7PZzDeuaRyA0NpIVETk6xoeeF09iHfg5q2x1UPfDHQ6HesJBQmjhBDR+dY0gzyS5NUZIBJFKQ3vOyJRAHD//n0KUUoFAH6Zyhp/0E4BbUXOX2UIUUgBUrBmv/WEEoKJP+QUQUQkHx2jrrH17WWXImkMQ5OBCBg+aOnVQgjZxvqtgH7+TxCCOUS4DIvUkpMeHxBmm6ZhArJ44OQdEfHo6PjkyROf/OQnz5079+jFi6dOnaqLRWKMtc3ReFwsZhS8USoE560rqyLp9ut6vFgs6rouy9IozeJHjmJbNpkQgRiP6PUGTeOqaiwEaK3TNNVGsnW9C1ZKzRM4PsB0XSdJ8u53vytJ9MWLF15++eXDw8O1tbWNzbWdnRPONdev33zjjddPnz7NW7wQ4ng84glqmqZlUzdNs6L1rdjWy9npwwZq3xe49/uQ3N9/fx9Ch2HpSsMUb/5Lxrt5JP5wKuByKSrC8PD74TQrAACMyObCsV0hq0NXsDFsnq92kOXJLVfIOBLQQ1Ez1tXamKWJj9NapqlBpbsUCbGqGqmVbZwUighYX18sCqNTo9OiKK6/dWf71OaS6iizLBkO1sfjKREMBgNBMJ1Oi0XFj4PMpBQ6hOCaRkoZ+WvkqXYMMbQWK0qa1SYV2yBHDMFRJNYt8pkNAEKoGKOSioi63S5EbJpGCR2Ci4BamrqokyShqimKMgaQUi/mJbQhjWkEqGurdQLo+exEpYFURPDeRxsRWxdjFicy0h3Jsy5VSgFA/U6nKAqldOPs0vQZhFBSaJRSCGFt3TQ1tbqnKFn/ohQ/YiEEpQwsqUb8bEaEJM8MGSMVcCKrDyrRUgjvXaqNBCQfeDEzcKATI4QwxnS7XX6ulTLBe4aE2FKf5X4AQirgNDBj0qqqvIsCwD9krBZjZEINL1GTG35AGOwT2M5m1PKRUcvHBxGrqnKus76+FkLMznfu391FRC5ZnOP7mzhnlVJG69DGh2rEQCQAaDKZeu/SzEiJ0+k0xrCxsX7q1KlTp05pIZVS1tYxxrquk1QbY4RAa621Ns0TIQRBQMQTJ7aFEM65oii2t7eHj54YjUZ1XWmt55MpCmISX5ZlSZ6UZUmEa2trk9mUh8lAumlc1kmVUs41s9kkTZMsz5JU13V9586d6CkxWZYlDHsRUZZ1XPBZpxshlE3Z7XWkUEopF0On01Entbc0n8y898Vi0c07nOiVddKbd25sb21tn9x0oa6bcjqdGmOQRPCe47bSNEuUcs6niZQSlaLgPCKiIUbYtZZaG8EJSBQUyhi9MUZSDCHkeZdpqssojMiPqhCC+VJNU2vFdD+I0RNAYjIuP2KgAIFTBKRERBOjj+SXNAcEaq272K+21+uCFNa6LO04F8qyTkziXVBCaam5uAGAqABBNo1zzsVlHJzWGpFCdFz0aKPYLkgp1TTVnTu3WBzB2x22Ui+KMQYbQDVPP/10mpobN6/5EBbFTAh87LHHiqIsy9LoFCM655XWJEBKaKwnICGlICmiao0pEMUyPkVKaZtGsh6NqFzMoncegEL0NpRVDQCpzkyiameFkCk/Hda99cabSZIkiel2c66rkESn07HWWZbpKBmjY8ptjH57ezNJNQ/ri6IiIimUlJIiTMbTwdogz3N2guv1OjHG+WLivFCgsiwzifLeay2TJAEQ4/E4z40QIjXpfLoo5jUoABBS6rooSaAPVieSCFywe3su63TKpoYQy7LWUq28g5VSlpqNzXVe2GwYByAQ5d3bd5TSRKRVUtc1+aCUyfNuE0omEHCw89rael3X5aLgJjy2Ijjy3nnfGjKys6oxpj3CtMost4uKJW4IrYMt3xGlJHv4eB/DMhGkqovhsP8Lv/ALkcLf+3v/j7NnT6MgpeTOzg577bFikTAqo6UUV6+/5Zzz3s/mk5evfE9IMEZ3ux0X66KY7+zsHB4ekpDe+8l4mmU2hNDp9FztiAISKolgDP9q5r8bY9gmtaoqpQwg8ZYOra4lrK0PH3/8sul7IWF3797hwXFRFER4YvPE2tqatwEja/zDYrGoqooE8sfnNts7a4xxxMtjLkCuNL/QyvZBKTUvJ03TZFkmhCBPUkoIWFSVbZqk21tfX2cT/H6vz2LZsmqEEMNhL7jA9kExRoA2Mk5JE8kbY2IUK5J1q0QUxK6XwYc0TamxQohAuPLZ1DppGhej47W0Uly6YJPk9B9SL/3x9cfXv9VLKTh1Cj74QfixH4PLl+Hh4v3wEF57DX77t+G734Xx+N/WG4gR/u7fhcuX/2he7Vd/Ff7W3/pX/eG1NXjuOfjEJ+DZZ2EwgBVbxVq4dg1+93fhy1+G+/fhD1Ht/75rNk+VlhcevfCxj33s5s2bX//mt2ezmfPV+vpar9d79p3Pfu1rX79z77YQaLRcWz/DIeTFtH7kwhOj0Ugp0+/367rm+MqmaSSGOkbvbYh1p58liXbOxRAb7wDUylVAay1Vq/LmcrrtfbxHAimlczYEz0wmAnogVPUkpbSuDjE6byeTyblz54WgF154wTknSHLM7HC4nmXZ3Tv3uUerqkJKaYyq63oymbRNkxQiiul0XBQFERXlnIh6vZ53sdfNxtNJCJSlnRBdkiSDQd8YU5ULVp1LqUPw8QeQVYMn6yyCJHIxhBhCU7ted8D6d+fcdFKkadrpdHpdw3ELElEnxpcChQNE52shJBGGQGysN5nMgMTm5ibzBY1SQFEnKo2JsOgtVFW1qAqpUAjhogMSsJTSNq52PjAuyU2plDLLEmUkl9acgMcnOApAAWSBbcqstWEZ+EQQEJVSCloTS7tSrouHQsNijM41UuZSShLovddLLPhh3EZKGVvxjWBbAG6gAESa5suGUQIIxj+0lGyeWdc1tRnLjEdrAEDxQOehl/VeJMyyzLmm2+0u0bRWMuK9b2wTgsvyRJsURSCi4G2EmOjU2yYxhnwgCkgBpV7SVCUHovJqFBh7vV6a52JR1PXYe58kKU9fGme99609EhEiCCF/kEZeaVU3fIMi+5ES0Xw+r8uZaYOy1OoWhBCMThk0ZPiYnXbYDA1bInlomoYfN2ayr2Rq3Gyy4XuWZWtra/P5nPWss/HEGHPhwoXFYvG5z31OKTUajUMIp86c+9N/+k9fuHDh85/73du3bxtjRqPRSy+9dPr06cPDw9/6rd/a2trq9/vPPPNMURS/8Ru//t3vvpTn+c7OTq/XeeTChW6nPx6POZ3YKJVlmVFaSMiSJESXKI1ISMFaK013OFwfj6ZN0/hgu53++fPn33zzzZebptPpDNc3ut2uUsaY1AUaDAajg302BnjxxReXDybjk9TpdKy1g8Ha+vqmrWrn3K1btwpbGpMeH4/Pnz3jva/KZn19PU1TxnOeeeYZIcSVKy/xFOG1115bW1tjUKuqqve//wOIuLa2dnBwEGPUqb5169bBwdFwOCyqEgDSNL13795isZjP571Oh80eAQClSpJkNBoRK0Jm8zzP33rjzTTN3//ed929c19rvbGxcXR0xLJjRMmzt9lsdv3GVYGKudubm5uf+ImfuHbt2mc+8xnvPYI8derUcDg8Ojq6e/duv99n2oeUkp2BnXMhEKMQvKK4ImWNoJImTdO1tTWlFIu5Hx4OrazwGPCKy2y8GKNQbV4CItrYusesVvIKgCYgJQgotg8kInpWuANopgK10xUVAkVGxSJIKQgIqcW8iSBGstbHGLtdLaWRwlBEJpbOZrX3QmnR7a1FsgSRy2LuPYgoeOLpolD6kUcf1cpMp1OphLONMmSruW/NJW8eHZbdbkICKQpPsWwWUmjOSfXeL1PUA8fuCRWsL7q9DlPqvPdCyBAC2BKItFJSIkkNGKvKr+ZpDONqbQDQmMR7H9ATciKqihERgKJsvJOASfftdwoBSKHFMYlAoIoBEBFQRPBsjhEREUVEgSIarb3nUBQfCaU0AkEAmzcKFh/FGKUy3npElkKAANDSIASx9No3OvVLd3BcySFBhhi1UuhBKZmnaYCIgoSgoi5CIAiMnqq6isV8/qH3ffDf/Xf/7NbWRogW7OLg7tXE6NFBMTo6ZhGNEGJi7e7urjHm/PlzRTk7PhoBwNHRSKKoa7uzc7rbHUqZAIi6tiEE55pOp5N3UiDX2DkAJEmitU4SrZQqisJaaxtfVGVRFM6Fw8NDH8g5d/PmTYzhxM5JlKKuytPnzpjjozevvoXXxNbW1okTp+7cua9lgiS8cxQjxcizjbW1jbKplY9BkpSyk2Wz2QyR5NIByvrAYxlYGjcTE2CFBFjOEsLb3l5+glZnWzvbZEiOr1WQdQgkBCECttmd0VFge0FuAgEAUQhUy3BPIghCoBAMIosQWhZwInWiUx4rgIDlfAhjDAJwKWpoJaL8FpXOrG3u372vMr0TtnqD7mKx6G5kToZonKQoIwCBwihARR+apkmMSYwu6qo/6K4/svaOp5/a3b0zm80ogBBquD7gtF8hxO2bN52vUXoKFiUopTlNIk1yAJAIXFZ67wF8+3UgZbl2DkIgQWCMybIskGSHR4iemP7P8BAKAIHUFisCUCnhfUOopJAEgTxOjidCCJBCS/bmbisY0XrTorcepElU7hs2FlASohAIqXDONbbh/Q0icOKEBBMIhRAIUggRAxidWWsJgCAAgkwQCCNGIw0iKmUgiAAUQkAABGplDUQAkWcnAjhDkVCQgMi8TiF0p9uNzjfWGq1ByyYEbUwVg29q1cmVks4GFCIGL4Lc3Npw910qtUG5WCyMxsHG+sHBwYlTO88++yyLm/qD/mQycUUQIrgQlBbGGKImhICCD4CIggSxuAKRQKMK1s1dobWOAYCEUILDPQSqdrHFCK2fvlcaZ7P51avX1tfXgYTzjdbSuQailwzZx2ikkYACBUUXY7SRbRlAoBRCmSSTKJFQg69tOT4oq/JulmVSiiRJjMkVKu+ciEorg4CBwJY20zrJjMlS7x1AdDbcHt8lCk3V1EVcW1tbXx+UZbkoJoCoM2NdrTK5fXJrsVgcHRxXdTHsDyiw75AEiHHhsCudj0QxTaVRuW9ICFUXUaCK3t/fPUqSzKTaN2F6eEhER8eTtbU1BRmi8L6+e/d2v9s9ffr02np3dDTWaf/2rbsggVArpY5GB9V+Yb1d2+7rLM1ltqG2tNhvinr3/r6RSWykwR40ogpRa1m7GJ1nAoiQUpIkQhI46Pc73aysS2troTHGCF4ikq0bnZjhsAsAIdBg0DNKzmYznmGEQFIrRKkTBTLWZU2AnOLW2MjKXxQgFSASCJ7uQAAEENYyCSVoo7x3MUYPGKynRZXnearSoihCoOisQxcjaBQQESL2B4P79+9zBaNQoFRERAI9RS0hRAKlG+uM0i6QXp7arIKSUiplut2ELSwESiNVxNgb9k6cWjuxuXV3926WZbWtnPNE8caNG4PBoNvvaZUkOi3Lui4qF10EIKyQIAaphCIpyZNWiogkIiFFACCUOgGUztN4MicsEJFoERGEEAG9UiqK6DEO1gbOOYkSSMTgOnlmTJp0o/cxAhmTcmnO1ZW19cHBgfMlT2e2t7fPnjkznxXzUeGc81UEAFDgyY3HY+udC866WmsNso1eyPN8MplEa3cuXJgXi1SrXr8LAg8PD4+PDy9fvkyEZVl3ejljiIJiILDKCCIUyjs2K4p16aqFayebJIqi0jppmibPus659bWNjfWNGMKqtk6MOdg/Igreg5Eaok+UJiIplfceA2rQW9sbs9lssZi7phEAaZo452OMEAkB0jRjpx0XPKBHBEAfCaTQzlcA0O+m7J4vQCkhnG04cShLpSDNOllvQ1M3iKKpPUUxHZc//pOf/PGf/Jnx5PB4OvnKV74UyH7gAz/c7/Y///kvdjqJTtJOd9g4X5b188+/U0pxf/fue9/77tFkfHR00Njm0hPnH3300d/63Od6vd473/fcK6+8sr+/L5W0bl6NZ72Oca6iGKVIKGLwGIMA0jYuJHWUTIkgzbrWWhDRRwsAGEUEgSggIlEo5/Xtm7dPnd9GSNY7J+skypBYaxPMFCrWOaVp6qxXSrXneIA8SS00VdlINGknKaCwttZaBwgUQ13XSGJtba2Yl+QpUWlF+sTmiU6vF0I4OjpqmiY4a6uSQnzvOz+4mM5Ge7t5nldVFQkaSzLQsDswIi1jM1s0KFTeG+zt7bG0ResIIAQGFCAlSimyTl4UhdQKZZRRzcuCCLSREXSMumoaKbFqamMMCNCJQlpiBBFd49kIMuvlP6hU+uPrj69/e9f6Ovy5Pwcf+ABsbkK//zY/sLUFW1vwkY/AZAKvvALf+Ab85m/C0lX+j+ASAoSA//q//iPDmgHgZ38W6hr+wT/4wzjOeQ6f/CS85z3w1FMwHL7NDxgDTz4JTz4Jf+WvwNERfPWr8E//KYxG//LfHqydTvYoWFcVZ8+e/RM/+t43Xn/r/v3dW7d2N9dqV1+ZjxYIYBJz+dLjvX53f39/PimCjzfvXr9170a0aBIpZdY0TWR1PnghOBggD42aHgcIGkKQRFqjVCGEIBWiIACUQgOFGChGQCbNCUChvYvcl4XgnXNAQgghoUXcYnAUghIIUty+eecf/o//z6IqZ7NZknQVGCCllMqzbqfXDXSXachE5KMLq7A7QGMMxTCt2wQtRGkbi4jBN42zw/WBLoRzjRPQ6/WMMbb2RqVKiRCcUkoI3TQNxLeHm11tra+llMCBD6hAieCCVpqIQMSAQhCk2ggtEMn5BoC8azxJQSJ4KTEHwhC8DbOmdoNhmmjVVFHKVlDFii6DkqR2voZAEoTRmgjbenypViyKMrS5ptGoBAAIArO/mSklOT8zBGOMQBQgkNDXtioKICGlROAGFkKMwVbMKuAgHwDOYhHehSzjYAxprUeULP93dZMkiRDKeyvYrf6BmFIiIQQAQKkEREIluKezlrPcNSuwKUalBAB4640x3KszxZg18YDovUcBSknnQEqpNAJKAt/v5Vz/xgAhEKUaHEQXo4guuixPer2us7VCwfaqWoronVRIFEiQ0ApQxSgQRPQ+eC9kDMFFclpL3TeH8/1O7Na1ddDkg9zZiKCcC1oniD6EoAC1hBAcBQL19gtGoEiSlAR6H1Y0/6apilALIbrdPssOY4TgPREEb631WqcAgBIjgPVuXiyMTDKTW9uEECg4S6FuJFGo65rD4TkfMoQwGo0FqhNbG51Oxze2qeo0TZ988h3e+35/UFXV9s6Oc6476GdZdumxR6yrfvf3fvsLv/c5APiV//Efrq0PLly4cOrSI97V3/rmt5QQx8fHH/zwh5999tlBvzMYJE1Tjsf3mrofgz158uQTjz1KIfpgvXV5YpJEKymj8xEAObVFmLu371XiPpNthRA+BOebslpcv3kTEReLxbPPPhtjvPbW61XVJEky7GbT+cx6J2pZVU3TWM5tbhpnjJFSr631nn/++bW1td/8zd8sjw6UUX3Zqet6e3Ptp3/6J7Ms+73f+z3vo7X2gx/44M7OzsZw7fDw+NqN64vFwvt4++Yd1gd3u927d+++8cZr73n/+1x0i2phMlOW5dbW1rlzZ77whS+UZSkCko21a4QQg8EwWEcREJRRWgi1GBffuv9trfXu7b2WU5WmP/zD7/uhH3p2sHbr6Ojo3r3d8dG41+0h4uHh4c7OziOPPHr95s3r164PBkOp9Xve976dnR3v/Ysvvphl2amTOwDwiU/8xObmpiD4tV/7tZdffUUKwaRhFzxPGiQKRPSND+3oyIcQ6rKRUsIyUWA+n9e1ja0lOiw5JQAQpURUKoSAJIwxQqjoW1c97z2ggBCRQAgF0cZInIW2lOUJtaK7rnYKuXSeEkvN+yrXZTl3otgmleHqB3j3WSwWJ0+ejDFMp9O8k5pEzRfVfDElihceORejDMFledrv9yeTSb/fd9YDQIAYIHrvJpOJNHptc30yHaHCoi62Tm71er3XXnsjyzrr68JaZxsPEBGDlDK2n02swD5ECRBQYFO7NDNCCO8iIjaNlVJKoZmcUhSlEGIwGCRJwiwbvcwXDiF4avFCpRRGRRFD5OAWgdDGo3Ez94N2iuXe11qgrsBBJClka52zEj4wVcosiagAUeuk3Zp9syLbMjuyLBc8uQpBhdgGj/AtY8Caf7XWOs9zpVQxL1EQD7KyLLXBaaWdt76degUlZIwEGJJUP/fMe//yX/wL4/HxjZvXpBTrw66UeHt0jIjeBQTodvqz6eLGjRvGmI2NDef83u6+c64s68PDQ4j06KOPpam5f/8uMzERMQR39uzZJEnYkNdam2XZYrGYTqfsJ8hv9dXX3ogxFkVVVZX1zjaeWZNbm+ta6zTPiqo5uHmopdpc32gaiwRKyDOnTr/nPe85ceLEdDq9fPny0dHR4ehQKbVYlDpNQiiYY8Xe+RxRyy6EDJ2HGJBWls0AK+eK5WJ6+/urHoh08KGLHpps09tNuZevHAHaANzV7HepWXgQI7Ma1bbJZs612lV6kGQNSy8IiBy7DA+/gWAdUUyzvDPIY4DZdNHYanxntLWx2el0nHRZkrnGa6GrsildMVgb+mCbpun3+5cef9QYU8wXQDSfLprGaW2mo4WU8ty5C01Z3bt3bzAYtNKnAM75oqgARGJUkiQKEQUNhp0sywLFsiyrquRH4+zZs7SMrPTez6YlQCSKsLSVxGUYxerZCYFC9Es4nmKMBA+e0Pj9dwmFiByCIYWUEpXUWhdF++056wDA2oahPWMMRH6yeLTO7yX4ZarhitsVvEc2GEXlvWdSmFKKBEGMrdhEKQCI0cfYDoF4k5TLZ9xDRIqJXu45QmZZxlzXNE29dbwn8BS6rcBky3EmiPP5nMVBfOtrZ+fz+eOPPz4ej69fu8YzbW+9lJLa8JywkrfEpcF9BCEfyplFROcbIsqyrN/vM+WfveBXK5YiogR2aHDO7e3tjUdTIURVltZ6rTUCsKqR/9VqTklE7DIPbDtDtDpKXPCctlzM5nVdb21tGmM6nUxKjBGtra2teYAPAIvFoqrkiZNmMBiUZVlVEyABQHVtq3JvMpmw38DG5pqQUhvpZg0zPnq9nkR1/fr1w8NDrRJEJNBSIqAsy1JI9piLSZJ478fjsbW2kyeXLl164603nXOz2WQxs8YIKbRr7Hw+NcakRg37m0qJe/fuvfzSKxtrm0Lo+azIkm6pbdNUgP1Ov6e9crGp6/ro4KCqKq1lnmaDwaBYVPeuH2bdjAAitJk/tqqFEGIZfI+IRDH62DTNzqkTKNl7KhBR9C0n1FrL4iweCrBBIWcHlWXJEWHGmABuOBzWlS2KSopWp7/arJRSQkmeUitJAEJIFVu369QvWdg2+KosMZLXuq5r3mdWRQY/l6sAGedcoLg817DX66WpYUGfWFpbMAWGlpmuS95ou/0SETM6T5w4oTV985vfbHyztb1RzEuT6ve9731EdHh42O8PBMjpZM5UhRijd0FKmeiEiEtWdBQAgJ3NCYKPkZ3IeMv33gsFFBEAKUYnfJqmUor19XWdqKIolDDdbreuLQqaTCZayxjx8OBAaYkk6roUgDs7O51etyjmu7u7iEzm1gJ0tzO8f+9gf38fAHwIQgihedKOMcYq1iEE1idNjkdJkjjXHO1PBp3u0Wh6dHS0ublpw1hK+dYbN4QU9+7tFkUlUHayrpS6qSoptNYPBDocegEITBDmxznLMinldDrv9Xqndk7neX5//3ZVVevDdSIa4/j+/fupyVoCLwDvSwhSSs1FRZZldV1PJjPnmhjj3bt3B4OBMaYsK7XMJGElcghBCVmU5XPPPXfixNaLL764trb2+OOPl2X5zW9+k8XI1iqttU71cLg1HA6eeuqpL3zui0dHR8akvOaVkrVvqtppIw8PD1577ZXTZ3Z+7ud+7tTp7V/+5b//5S9/eXNjI0n0bDYxiTl3/kxjq6apsizr93vvee/zd+/ePj4+Pn369M7ODh+ddbk4d+bUSy+9NJ1OY4x5nteVHU1HSZIRNdWiDMFpmbAOlQ/dEEIMNgZcHTEheABgeTgqGcnnSZZ1zGg0OjzeFUKwpPEdT7xDSrm3d6CUKsvyzp17MZDWmhklQijvY1VNhBBJkqRp7r0XolcU0DirtbS2djY++eSjt2/dddYPuoMsSwkGWZZFAM5hZrgZAJ566knvbVmW7NndtFlhQuW5Cz4VwhgzHY0IBDcziCiFABDOt0lBPNphHVjjLCyL/7pulk93m77AK4pXNgXf6mCEwCVJJYQfOJn/4+uPr39LlxDwC78AH/sYqH8FG5PhED74QXj6aej34Zd/+Y/sPcQI/9l/Bj/yI39kL8jXX/yLEAL8D//DD/yBP/fn4Od+7u0R9t939fvQ78P587C5CX/jb/zLvT5iRClMXTV7+weT6WzzxNaFCxfqugmB5vP5dDLv9Xpb2xtSYl3bqjq8fetODIioF/MyRkh1AtTuDEFQ9OHh7gYYlQBACRTJBqu9ZJtDIMGxTaufB65LoO2DAMC7CCAQkIBiBGJbSsAYCUECUJrmzoV793allInJQ4je2bq2xpiqalAKa32aGt7NeAMMIUgU2MbABowAtNKqotYqSZIOdkZH47qyJmFvutAmEHi/udVLkiyE0DRNWdTkF/B2NyWE4H0AZgl7wqW81XsPgETAzYj3XqAwxmxtbWkj79y5I5dxlJxEwj8TPBVFwezI9shGtE0jsJVHc3Un2xihAISsRmqaZjqdcrvBH6QoChQtVdZ5D9gKjFZ+mKu9ne9pU7u4ij4SxL9shQ6tujbv26BprXUIrmka/qW8DJxzMTbA7v8sDJWSua4rpxQ+ZZakac8AFVvNCiHSJFGqBa9CCChbBtsKaSEAKTn2U2oND7XVogVMiCIFpZLhMDt79uz3Xroi9ANHaURa8bt5+a0M1lvyDGJdV0JK5xqDiiBsbm+cPr1TUlksqtlsaq0bDNYEGjNMyqIej6fWhpYfGgMACqFCcOIHmH3zp44IrfGaMTzVcJ64PGanRKY0MdkcW0fQSCEqIxGxLEtwBABtUquUgJE9D7Ms7XQ6iKLf103tFosyxihU5BpDSmmtPXfu3F//63/9d37nd7761a8IIYBo0O0+8cQTeZ7HGL/0hS/euXOntk2n03n5lSsf+fAHT5w48eu//uuLxaIsS9c0McZvfv3rb73xxvPPP//UX/gLs9lssZhNJ8Urr7xy8/r1Ky999+zpM+957/O9Trcsyzt37uR5vrG+zkVyURR7B0fzqsRUEtGJEyeMMVmeJ0ny5luv7+3tee+73W6/33/ppSuj0eTy5cuXL1/OsuzFF7/bNA0SCECIJABt3aRpSiEqIR979NLo6Lguq/c8/+4f+cifGAwGX3zhcwDwwQ9+cG1trbLNhz/8Jw4PD3u9Hitur169+ju/87uj0ejMqdOnTp06ODg4Ojp4/vnn7+3ev3Pnzne+853JfHbp0qWrV68+8ujF0zunOp3OtWtvxRi3t7cnxyMiSrP08PBQKd3LO03jtra2lNCj0YhzTXgTMMY8//zzTz/9dJ6n3W5/c3Pz5Zdf3t3dvXjx4kc/+tEvf/nLaZp+8IMffvbZZ2/dufPCC5/XWgeKk8mENc3PPPPMqVOnjNLf+c53rl69enR0tLW+8YlPfCLvdW/dujWbzfjZZwMJV1pWGLjGctfPW4r33ofQHww+/OEP3759+wtf+MJwuB5CiAieYnReKcXhh3FpLiqECIFs3TD8y5eUMrgQCUETCIwuhhBYux8hKCICKURLt+Qlqx6GOFetabuhiNatL0bPTx1fnDqilKqqsmma4Vqfs+YJwbrqscce63bzPM/rpprNZp1OZzqdJkkiteatLU1TIeF4dNjvDRdFsdxhhdZ6NBr1er2trS3b7NU1x+wSeR+agIhy6SW0OtIiYXCurhtjjEA1L6YxUtM0ve4ABMymC95nQwjBE79tIvIumkQxJpWgRNU65CptbOOdCxiBItLSAtjHSD8AjlxBjauinDc7pRRBoPjA6AQRsVX7EkCE1tFCEFHeSVeaiLpppELGo026Vpal9942zaoZ4HOFe3iGyYiI/3m33zl39uy9e/di9JVttFYuWkLM8kRKeXw0JopCYK/Xee+73/dTP/HT4/HxbDYxiUoSFUKoqnpRlDyQmc5mu3tH1trRZHrp0iUh9Z2794+OJtPpdDwea60fOX9BazmZjJqmWSxm3Ml0u93BYNDtdieTSQhhOp8dHx+7xs7n88Vi0cLlWi1zMGWe55udHtsdZlmGEFGKc+fOPf3MMx+2H/7sC5+7d+/e1saGRElEF89feOKJJ5qmee655773ve+NxuPHHntsd3f/rbeuKZPGGFnVK7X2lnnWzjlHxGRWZty2chsiEkv0GJYanLe9v2LpYrN6LuChjMGHgWbu2R7684Nr9dDSkhzNwha20eAXYR0ELj1xeD2GQDF4eAgzWq06tmTlI5N9mmjpBVkUhQ9WKUEShFCPnHtkfDwej8ej0ViQ0CqRWkkpQ0R2aZyMpoF8XdcHB/vOOWudUYkU2lpfF3WMUUlTVZUQQqvEBaulyvPcOZflqtNJR5NxsGGwfgpknE8mzrksTzc3N5VS1trpZDGfzngMELxYLVoAEKgAwNmgjVzRtIld0IHvCN+g77Mo4Vfw3jfWKs3Jioo3JZYwdzq5tY4rlRCCMQnXLk3TKNHabQMJAPDLjG8e7PPv00oRpzbHqA1jdoGLRSGAtxIhBAYSSvIOzv4GITiOxxRLh2gWBvJNESiSJKlXruIIxhg2R/PeKaWkVAGJj3/vvZKa6xUGwY0xRVH8nb/zd9I0NUlSVRUACBAhBKEFZ2DKh2I6Vhcvc97rgvBqGdwRY5SybQnaEwU4p46C5+VNzluKWFfWaK21NkZw6cNvWymlVPtoxIggFfk2kxORYgTBznzAZSSxaYBvmmCd93Y0qtY3hlVVsfyfYjtL47s2mUwCEAuCtE68t42t0jRxztV1o5QYjUZZlkUI1tqdnZ2qqhazeafT6XQ6i0VJxGShAEg93YkBvHNZngTn93f3Yozdfm976+R4PI4xPv/Od00mk3mxuPHWDetdf9BhAcHa+pBlGVLKjY2tu7fvjUbTtcH6wb0jnWQUMUKo6sXmcN1ErBrc2FgTQhFRWZYQaXNjo9/vHw8mwXog9D6CiplJvF8NkIFXY5qaqqqK2bypnbdeS1U1fjabQGz7IudDVdYAIITijStP0gfrp674BVOTaq2dDatDZ4los2scF94ihAABaBkztcKFGbOW3nnvKZJzjs21lve0na2yfTYPNRExMQmXyFyjxOidczxEOXXq1PHB4bQo0zSVUivBCFftXOAWaLUU67o+PDz0VDZNIySMjidaay2V9+H+/XtlWQ2H9MRjl4F2j/aPhBBN00gGjxGNSRwG7l1DDAIEQPTEPhvc1gYCklIIkbFUJUaXJmkn73R7+c7OycVilqUmz9OyLPcPjquq8nXceXzTdGSep/t7e03tgqXd+f29vftJkgilAYTWCQA0tXf19Pq1W9PjhUBFCAqlEEDIvVPbPQYUtvHee2/D6GgcQ0SAqrQ3rt+WUt61+7xfAQmK4t7t+yi1RFGXzvvIsxMEqdua1VMEpWWe50rJEMLaxrDT6UwmE2Z2AMDNWzd6vd7u/t1+v09E9+7dcy6MjyeIU0Z7JbB8DTmWg7vKEBCBex67vX2iaeput3t8PGJKMptsrPYZANhY35rP5z/2Yx/d3t7+0pe+eHR0sFgsWPBYlU1VVTs72z/+Uz/+xS9+XkpZlHNj1GDQS5Lk6GhkrU3TvNNNQwiLhR0Meh/+yAe//e1v/P3/7r8/e/b0O97x5Auf/+zg3c93u/35YrJ/Z2/7xIlHH71wfHz86msv/+W//Jd7vc5nP/u7rAbrdruHh4d7e3uDwYAFiVLKfmcQY0xTlef26OgYIgr2Kyc2VZRCSImCCL2j1fiZt31emVKiUMqH6L2XIt3e3DoY7Qsh7t3b9d4vFnWSJO1c0zme/CmhJbLbEvAYgG1D+IlI09SkCQiaTKbDjf5Pf/KnPvCBD3z9q1//3c989vEnHucdtSxLa+3B0ZH33igFUW5srgshXn39tW6SDYf92WxRFYUyqZTSRx+dO7FzkooqhLAoFlJqLjWlEeybwbGlddNYa0+cONE0zf7hgfce6GHeBorlzDXQg26Wq5QWel7WSP5fXav/x9cfX38UV57Df/KfwMc/Dj9AjP7212AAf+EvwN4e/PN//m9ksvzw9Yu/CJ3OHzHiPB7DP/pHb/9/CQE/+ZPwF/8iJP86judSwsc/DgDwN/8mlOUf9pMoNAhTV+E4zM+dW5tMpkVRIcrEZKnKAdAYs793CABCHjDQ6WwwJhEkQyRnA0XLbu8xQk01hcD5wES07HCRQTTvvW91OKyZ4OR2jIAIqJVmsDUEt6pdl3xYbJuCZfMFoKQQIqKLgQL6ECk4AEiUItHOswWR1ppthbyPiBQCKdEm1zFfh9tqAOB/5X1UioxpI+5Ze27RK2m8i8ViChDSNO31elXZeB9Sk/6g73WJ0opVaDkik4faRGvnvBBCRokKi6IIs+BdlAJDCJF8CA/4NwAwnU7feOON559/nkOwKUatJQJY51Yb9Qo8hWXE6Crx1XvfNE1kq8cAjM9676VqzQc4r4/fWFy6WGittUqYj+K9B4xKKVgKqfkDLg+FFqWNMVrr2UOACXBc2zOnYUUv4C+EuQuw5OpxTwQtw0/yR+A3I5bnTmqyGL1SOkkStQw2Z6/nuAyrZ8MN/uDWWZCgEAWi1kKgCMEniTGJEgKU0kKicw0CMRDMAn4gQgJAQJRAFCmGEKRSbBFWVItONz1z5pRJ1KLwKCjLkxBCjJ6QytLzV0RLgjnFSA6FZHLkDwSRvPeoJMMgTdOw8Rq2ZCFMTEZE1jpemU1juUHjpR59iBBcYzmzRwopBAihUBBATBLDPMtuN2chdX1UWuvrGrh6REShZZKnr77x2mc+8ztvvvnm5uamc+6RRx5ZW1tDghdffJEzPIQQx8fHvV5PJ+Zzn3/hypUrSqn1tc0PfehDr165cvPmzb29vaqqnnjisX6/H4O/ceOGa5r19WHTNHfv3n3i8mODswPn3L293aIonn/++Z3tEyEEbcyFi49cUo+Rgt3d3bIsr127dnh0xKap73/P+19/681Lly7leZet24jo6Ohob2+v0+nw4IGX4iq/h817L168uFgs3nrrrcuXL3c6nZs3b+7s7Fy8eFEIdXBwpJTq5Z0yXXTSjHwYLaZf+9rXzp07s3Pi5NbW1ubm5v7+fpqmH/rQhyLQ9773vd2D/fl87r3f2NpcW1vrDwevvfba3t7eyZMnH3nkkStXrty8eTPV2fb2CWOMq5udndNpmt65dTdJkiV6IJ544olLly6dOXPGWvvmm1fZUefevXshhHe9612dTueRRx5573vfm6b57du3fQiXLl26cePGbD5LkuTunfuvv/76M8888+qrr77xxhvRh+vXbz799NNFUTRNc/78eQC4evWq1nJeLBj+Mlla1zUSrsDu1Wyv0+n80A/90HQ6ffXVV5MkUUoQBcdPtJLcza1grmVVrHRiCIGW0SNMn/79IBgiUAAARQLxIbBMCMHsS7m0dX/4AWCMnLEDav3RaVVe85Y9mUxQQZpvFcV8Mp1Iozv9dOfMSbb831rb6vQ7zrntkyfruuZfobRIUq2U0FpO55MsT7LOetNU8/n88Pio3+1tbGy8/trV8XgMQWBs0TfuuNg3hx1sUSgmcCFEJeV0svA+UEQAsI0f2Ym1VmsdIyBKIbCuLYBlk+UYAkCapO1uy/ssw9BMe5FSEKJvOxNl7b8kzUEuI1+gVZdAe3ZGx5tU29H5sOrtCQJgjBSdjzq2k0wQZJJ2fM+8GLZXd67ROmH4IC6J0tztsEspTxQBY2OrRPP+EiMGow1I2Nhab519ImIUly89/tQ7Lt+/e7upSiEBhUnTgQ1uPi+cC4tFSYTzyYLdDDt5D0Eu5vXt23cX88o5Wxb1+QtbRDQajaq6qKqq3+9vbW+cPXs2MZlS6ubtO7dv314sFovFbD6f13XNiB4sp6br65t85Gxtn2Ty+61btxaLhTby4sbFTqfT73YR5M/81Cc/85nPvPHGG5vrG+ubm91uL0vToijmoyMQ9Pobr3a6/TNnznzkIx/5F1/+qlKKPdSNMUiBz0iGEMPyBKWlCxUiMjJMy1PqB8HNtHyKVk/N6gH5vmfswV8/4EG3/01BiAcH+cPgtWLApcVP46o4wCVEGIKjEEE+QGlXA+2HgW/f5m5Jay3NAyqRJGmWJ6BIoZpNZrdu3To+HFHEROs0IT6hub8Nng4ODvg31mUthNLSAAkIIEHMZnOtdaJNCMHVXinGT1HrRAgx3EgHg0G3nxVFMSsmLWkRgyd7ODrMsiwz2cHhnrVeSoyRwOuWtR3C931Lka3OiY0gxNLni7FaYvMQCi4GASClFkIorQnb71NK4b23rhZKOdfWJ8YkmWlh2X6/t1gsmqpN9gshsOONVMxuC7S8Nczx5HvpnBMkkiQxqWm5n+BMotLMeO9DjCyuDMEhklIiBBmJ2NCZrcy9t4vFglmHkQARldZiyTkVApe0dZ4fRGEU70jsYeLb+GAPUqyvrzsXOEm12+1ytSdam2YFS7iQiMJSMxg8ARBbKfMPsKEBEVV1QURZlhEF7y0PHaVSiEiBkafI5Y5UghGoNE35/pJSIYRut7uxsTGfTyeTidCKMyFXYxUAQBQAPNzE2M5C2nOuqgvAyBVtXQNzop3zbGePpGOM08m8rixq5FKVd9aqqjgqgLULiFgtSiI62NtnmOns2bMnT24bY46Pj+u61koao2JwMcROJz9xYtt7P5/PnXNFcSCEMMbcvHnz5MmTs9kMEYdr/el06l0jpA4h7O/uIWKn08nzfH19c3/3cDpa+Gac5l2MeOr0mdJOq6q4deemMfqRRy/Uda0UZFkGkbz3r732mhS61+tMxovgPSqpUITAGWuAiDyTlyhcY7l6vnPzViR/6uwZJJgcTtJOxoMApdqsFSEEthOEFp3v9XpCq7qurbXaZPNZURSFFgpReNdOsIiCEIKWHj58HxOT5UnOVnFhGT8rpeQbzd8SLy3uLhCl85zVo4VQWgO0nJ2Vyx4sFgtr67IsiShJkizLVhAeQAzEZusG0a22UCIyRnnvj44OCFzezdM0BYwqUUqpL7zwRY4Q31hbv3LlSlnU/X5/f//AW5d00hgjR+jw9yOU9NZVjePgFyFFa3MfATnFGdgPMUopN9fWA4bBoO+97fU7QsDx8VFRFLNZoTU89dzlzc2N0hbDtUGeZVVVGZWw58z6+vrV69dGo4nWGkGwlODurftJkgSKFFuTfbapQQBEEYN30SOiEgoJjUoJgrWN9R5CjC6Cj4ASSCiZhhCAUAkdAjWNEwRSaK4ollP5RAhIkiTvpFwA7N3nMaElhF6vN5/Py7I8ODiI0dvazSbzg4MDRGmUFsuAaQCBAHz4hBCW9uJpjH64tqaU2NnZ2draeu21V4loPB4PBoO6tkmScWgwAOR53uv1b964HSM89tijv/mpXy+rgiJonShp0lSUZZWl3YvnLk2emXzpS1/YP9gd9oZpljRNIyStbwyyLKMItbOzYjJfjP7n//lXr918c3f3njHy8pOXbtx86zvf/eZwuP7e9753Nptcvfb6qVOnrCuHw/63vvWNopivrQ2cc9evX799+/bdu3e3t0+y13MnyxFkWZbeRwnSmIQCKKmHwx5ELIu6aRo2WwvB87OopEEuC2M7jXbOOodANukkUorjo7FUaL3rdDqb69tN00zH0xUwzS7/FKFpGik194HGmCw3vV5vMplVRR1CsN4liV5b6529cKbX61W2un3vdpqnj1w83+13Dg4OXOUB4OhwVFb1zs6Jj33sY9/7zrfHhwdr68PzZ8/cvXljNluc3Nmqq761Vgi1tzt68smnTp85+5WvfAMAJIpVYx8jEGGSJGmSFmFOMbLQkp0N+bljRliM0fmW7WGt9dZHsQIdtBCxpdK3vUQU8l8H8/vj64+vf+PrscfgT/7Jfz2sma80hb/6V+Fzn/uXoK7/Wtdf+2vwy78MTz31R/aCv/VbP/DtpSn8R/8RpD8I1fzBlxDw8Y/Dr/86fPe7f9iPOeu9D0DCBbh7f5+w5qBR72Nm2nl2URRVVSZJwiyExOQhEIASFAAjT0m11hwQEoGkEIjEGhFgjR35SB4FxQhSCljltCO0sN73uX/ikr8pls0ZMDtkiUSgNrLFOgEVmBgjRQiBVBYTlUgQUqskSURdLxYLnZoQgkDBUcZE4L0P1sUYgESblRcRBHgfqqqOMXJOnZTovS+Koq5rrjZ3d/cGgwGRyLLuuXOZhFPwdqM3KbVARRE8sTpEIgrEB10bIvK0XikVI4zHU2trhqVijIKAgFZtCH8F4/F4fX3d2hoiaaUg+BXzDJf0QzbkJec8ARHxO19NDfm1QgjWuRACQZC+1UkDQFVVbHi4wnnqusY2qU+H2CogaUlQiDG2v46IMXQiEgJZaLh6V6tujqsXpl4iomssj+EBItMChABq1WmG3y1jXrwy+HYH8p1Oh7MNmGUFAKsvKsbIslSgNupcSEqSRAnlnFMgERF8PH1m57U3XnfOdbsdpYT3XizJ9VJKIv6M2IIERD7GEIhNPOq6FjJu72wKg2VTAMReL+v3d86cOXf/3t6LL36nri0Qf2dJVVlEKaSK3iHKGCn8gKmXNnpj68yiKieTsXNBCAiBlBZ5nud5niTJdDJnRSOf10pJa6337OoZvW+5JC5YpRQI8jEi+URrRFHWVYTQ7XYjBCS0tgaM5bQQidy9XXTWez/6oz96/eq1yWTypS99SSk1HA4BoNfpPv2Op8aHR1//+tdv3bolpVxfXw8InmJd11/96lezLNs+eaIqyuFwWJZlWZZZlvEdOT4+vn37dlHMhVCnTp2cTqeI2Onmb775JmPZlx5/7Itf/OIX/sUXn3vuuYODg+BpPp8XRZFmRin1xhtvVFU1XFu7efPmI4888q53vevcuXMB6OrVq4tFGUK4cuXVcr64fPnyxvrWnTt3srSzttZ56623siw7Ojr6kR/5ESPV9vZ2qs3/l70/i7Esy87D4LXHM9w55sh5qsyaq6ur2V09kt2cJBKSSEoUaMGkZAuSaRsQTEsvph8MyIZJwbBlwwYswbIsS4Io0y2SEPWTYjd7KLKrx+qaOquycs7IjIiMuBFx5zPtYe3/YZ17M7NYRbJpWn7pjUaj4uaNG+ees4e1vvWt70uXV4LzX/39r1y7di3LsqeffGp1eQ0ApFY0n8+cOXP79u3hcPjGG2/Yykgucpt95Su/FwLb2Nj40T/7Z6hd+4Mf/ODhcPClL33p5ZdfbrZbcRwfHh5ev36dMZaXxfTNaafTuXjxomP+7Nmz/X6/KKrVpeXd3b1pNlOiLrScPXv22LFjWZZ95StfuXPnTqvVeuKJJ77+9a8fHBw89dRT1trJZHLs2LEoSmjV3N+6+/nPf945d/zkiSRuXL9+Pcunh4eHh4eHUspYJ+12+9SpU+Px+P79+1//+tdbrdbZs2e73fb27s4777yjlJJSpmkaQqCIXQhhbeW9tw6TNNVa7+7uEp5AnDZaqpxzF3CaZ4rXFiNzD8Z6EwbOpFZMcGetlDIAd7wChBA8wTkUKdZS/fAQSZPywMBAckU7AswbYAkfrE3wHvVMqytvLHjv15ZXNjbW9vZwdW1FJ3IwGMyyEctZo9GwtgrBE+/VI3FIREsn9R8NXscKwUdah6BbrRYAbB4/8fblK8PhUEqJAYRUSmkhRJo08zz3aJzzjDFncSF0K6U2xigVSREzGbKsQATOg1KKuGYwT9UAkNdupHN8hzReyVkoQGmoFCkl49Z455yvDVXrO/MHh1RcKiKo1mcJBickD+C5gBAkEpOMMGjp6RgOcw4isefSNI6iKLCaMkZQMl2hlDKKImqQ5A8FXPRP3U4niiLG2GQyOTw8ZEIMjgZJmjQaKWMsL2YePBOgIqm17nRapjC9ZrfdbuX57GAy1UqePHkyilQIYW9v7/72zng8TdO01ewwIVQUIWJlrQ9hMBrlRTWb5ZPJaGlpSXCV53lVFXkxu3Dh/JkzZ1qtlrXu8Gj38PBwMBgNjkaj0Wg0HgAASZLHcUqpDmOsqqpGo9FudY0xV65cIawniuKTp449/vjjRHbmwDhjf+7HfvzTn/r+Gzdu7O/vtxoNW5bo3auvvtpsty49/viNG7du3Ljx5JNPnj17liQLERGDE0IooPkMzjl0iIgssBAe2O4hPjj7FxTjPzjCQ059C+Kqf7Sf9F3g77v+CebiA4u18xAwx6y1XErnHOfk8ldXjL33xpSEAkQiIqTAekcyW6yOvR5IbTDGJFNC8W6v2W63nDfTLBOMg+e3b94ZDkZSaBlJRMyyjOBCziQBDbTXOEQGKiAgQnCuQkOTlgRYiCpFZzxjnGjjlQeVLJ9cOhFCuHHjBgPR6XQAYH+/f3h42O/7paWlwFjSSBhj1npggOg9+khFtIpDCJxLxngIFCgw+APFLQzIWMBaEhsA0DnPRK0ITxVaFxwEEN5zbqsK6XUAqEvfGIIPxPQkhJ3wNcl4CB69N1g7KTMMIZBNMHfekbdqFEVCqCRJpoWx1lI0IR969At+wUJtgGZUFEVkqsk510JSpCWEaDTSGhFGpEdAs0XzmHNOwjKhZnmDUqpylh4ZyXqQNghFQ/CQxssi+ly0PtDFWO8dIlgLAouioKjdeWOtpOsnYbX5NOaMAecMESGgM562x6qq267RknsqhuBdQE/61h4C1kaZVDggYgsxOqhCGahu4JErqZQCQAwGGEpVrwgppTHWewdAghJBoAAEX3khBDhwwVN9u9lMu93u6TMnJ5PJnTu36A5zzvv9fq/X6/V6VVVlWRmwtC5wzo8d2xCCTyfZeDIsigJ9HdQyxqx3dE+SJGk0GoTyowfr7GAwFREc7I+kZMePF7FqZLJ0zmuugfOyzJn0a5vLWTaTWmxsrBnjDg8H49FESTkeT5QQnU5HKc3ZkfVY5IY59N7FcUTkRyFkCMi5Qgzgg2B8NpsJIcosd5WN49ha99ChLAihZpxR0EnkDipsTCYTzrngyvuCBy6V9D547wNjIXghBB0dfl7mUUp1W22y6GSMkUgZzclGo+Hnft9s3ggFAIwFCgnmlrB1qBDmsgx1HVoy2isYYwd7+/SBpOforaMaMJ1odP2LxkcppY706sqq966ypt1ozopZkiRKCSFEv384mUy88ctLq1EUkaAQrbiqtMCZUFJqphRzzulIAgTyd0YMSmghOUcWAirBUTCtJReALiRJJCTr9/e89/fu3fMeGAOt4zRNp5PMhiqOIpQIgWutu90uIh4eHJVlGYIHUFIIwaT3QSfaVG7Bs4BHlZqoQsY5FwR/S+bAscBLRBEJdLXEGSI469M4mRfbgBLFhXszWbxRiIIIRV5576uqmkwnpqoazSZngM479HJOxqFyQrPZds4poUII3gXFRYAHaepiDzHGUKmG1GZ+5Ed+pNVqb2/v/PRP//SXv/x74/H4scceU0rdunWDvtrR4VBKdXR0tLV1UwihlIiiJJuV2SyHIHrd5a079774xS8idydOnDh+YnN7++5oNJIRjxuaS/BgffA6EseOr969d+uf/rN/jOCfePLi0dHBb//2/08pJRU7dmx9NhtzgSur3c3NdQBM03SWjS5evLi1tXVn61a3s9TpdGheNZK01Wha48uylEwWZVZYk8+KqvReuuAtTUspNQ8Qgg9MAg8BGSWzPjgmWC2bFoBzboyxM9tsNhhjRVEY69EXvKMhSCliD77MiziOOYDkkvZVb50zVkpNi3Q0mkwmk2baWl5dOTo6KooibsS9Xo/x0Om1B4PDo+EQOLhglpa790a7BwcHyNB7213qDYaHJ08ej7Q4deZkPhl78Eqxi4+dhcDv3r27tLRSlKPuUqfdaXWWOnlpCqjodONc+oAR52maaq2zfMoYi+M4yzLa5+ltiy6r+jSUkigmi9I4zV7vA7VeIaLkkOjvhmn5vfG98f9spCn81//1e2DNW1vwta/B7/8+VBUwBseOwac//R684xDg538e/of/4U/zkv6T/wRWV/9Y6hbvGnEM/9V/BevrD14Zj+Ff/sv3ff/P//x7v/7lL8MXvwi7uwAAUQSf/CR89KNw+vQj7+Ec/u7fhZ/5mT8Maifmppz3RHLhGWPGOCml0HJtbW0wOCIwkWDTeWVaeRe0ijGUFKsbY+p4ow44Hc5bpRGR8VCragBnjHEAnHeZLOAIYk0tIthH0qhQl43p0xCxLK0QolaWR4DAOJdCMg6IHghztIUFwbWK0QUIzGMI4J1zDMOC5UeiUt57omJjCJSGeO+11gB8kb7RhUim82lZFvtJkigVRSrvvk8lgEh/ARifa5pB4BCC90iBE3qghlEQnHPebLaLouAMF7nDQwwATklBvT9XxjkjoNYC9fNu7xACQb2I6AKQoBmh5H4u2FgZs6AwMw6kvES/S35xSqkFc45zXhYV7fxCMgoFQz21OFHajTHeOQicsC2HnrozKQehE2RhUifmJuQsgHVWSOY9EvzyIA6ZfzI9IKVUpDV9+KKZj+gLOJd1pY9dZMGccwYgydqHCSklzKkPLPDxZBKCSNP46CgDQM6lkqSG6hZowGLeBmQIDCBIKYsqd97IiJ87f3ZltWN9aXzRbDW891tbtyeTEWMCgwXAtKGdBUQTgqebILkAAPn+MkBlWTWaPkkSrVVZlsPhESJSCiaEUDJibCalbDRaVP4h7iZRqumLA0PGmJaayEZJEgkhgCHnrKoKRImIZVkmUUo3/Cd++i/89F/8i/3BkLDga+9cpUDx5MmTe7v3R4Ph8c3N9dXVu3e29u/vSS4YwrNPPn3umScYhsPDw627txuNRhonUsrJeHblrbf29/dJrvaxxx6ztrp161ZVFZ1Oz3s/m82890qJyXS6vr7e7nTeevvtm7dudTqdV15/rdVqdTq9/vBoMBi04tR7z5lspK08L8+ePb25ufmtb31rOs2azeb58+df+ECU53mr1Vpb27h69ar3/olLl86dO5ckyY2rN6aj6dmzZ59+4knO+Re/+EViet25c2cwGADAyZMnP/OZzyxyZ2ed1nrr9p1vfv0bh4eHxGi+fPmyUuozn/nM+tra+vo6MhwMDjmX+4cHV69eLcvy6WefOTw8fP3116lRLIRw4sSJzc3NJIkmk0mj3bp79+5bb721trbWv9/f29uTUspYMBAhYCNt7ezsFEWxsbERRdF0Or1z++4Tjz/13LNaStnpLVvroijhnB8dHb388stvXn6r2WyePn06AL9x40a/309aycHBwflzj33kIx956623qrL82te+dv/+/Xa7fXBwUBRFVRXtdvvjn/zEiRMn7t27V2TlaFTzbkPwiE4omTRSIue98sorvCbLV4u1A3OufQhBRHXPBOX+NHPEXJioqiqmWGAAQA0qc2CZM2Ccs3luyR9qvlgUJIEFU1n6S7QwqHmc2rRhrvhMUTkwsK4i7cgkiTY3N1vtZq/Xy8x4NBkE5vOiYCIkLHXoQnBgedpoOOe8M2maGlMqLVvtZlaWrVbLWutDvRl97nOfOzwYCCEQQ2VNJHmnk3jvizLTkZJKTScZAYXzVI6HAEKoNG2G4MuyIi4tkZ6q0hKr16MVjAOIWhMTPdE/vPKUrhOeqyLNGOMBELGmC9UcRr6o1r77XHmoeEiIlZvrqHJWI3QLYppgTAgJABYtSXFrLaMo8t4XRZE00jRN6eilZ0wSSEtLSwAwm82o35yAGClEnmXj0ajX6506dYraMGezSVxj0xBFkYoijjZOIwAI3puymI6nzPqTx44Lhq1mY3199eTJE+Px+PDw8Kh/xJhYWlpqNtrGWCopm8o0W2mj0ej3+0VRTiYT2rhHwyGi63RaL7744tmzZ4qq7PcPr1+/XlX25s3b49HUex/Hife+1Wod2zwmpbTGM/B1ndP7kpvDo9t5nvd6vc3NY865RqPR6XSyLGs2m1EUZdOZty7P8yovYqXXV1YLUxVZvry8vNTt3Lx9+9iJ46PB+PbWnVu3bm0cO3F4eCiEoF5UpZRkNYY1L5Mw752Y++eGEAKf55Xz8X6HAf0rLZwFUR0eJTjPQZn3E3SuCek47xuaf2z9u66qmAxSSmuMnNdsq8r7ubprPc1CbYkr6n40ZPM5Ru9xxo5HU0bNwgBVVpazYjweMyG45N4H75FLQVpdtMyt8UWxEHCEOE5KW4YQBFfeeT7Xb8E5px4ASJIliuJWuzGeTGZZdu7cOWP9ZDI8efrU/n6fcdnpLo2Hk8l4FscpcWOrqhodDBAhIPLA5/rp9T1hrH4etDrJOQSojyP4wBl9ZVqMwFlVVd570vGsXIUMgSHUoeFci9lbWn0hBFI+IqhdcskBAj6Iw3Cuvc4f0unmnFOmHUJQMmityca3DtEAYK6ASRtxjY/XtHTvvU+SiFY3IlrmwYL3XkdKGUmQXAhB6tr61nsvnUmSJEmSLMuEEI1GoypNlCbl0RFtCFJKP3cHdc5JxoUQigsQfLFLEwZPuNICN6RZyAJHDFzU1S+PlnR7rLW0Jrz3JP3FuWQsGFNnKugf9IGRaMkkm82KXAjBQLi5iLxgJOsBYd6RXZ9e3iVJUlVFHCcAgQWwlTl+/HhgOBqNSCCYghIAJoQwzhH6yblkTCB6Ius5R4geJkkDEV/51qs6khsbx8qyHI+HRVGUZVlVttWCVquVJAl9uNay1+s554yptIqJz4iISgkpZSfS6+vrUaw8IgdBHRLj8QRASJ07GyCAK8LW7W0IwCVDE0LkQwhlmZ99/PjZ82cJZRoOh9Npdu/ejuKRc87Zijca6+vrJ06c3FnZy7Ki11t+8/U3Dw4OQghaK8YCYwKdl5IDaOKhsKCElKPhxDkXR6n0Bhl4V1eFqRWTcx5JtUgtaDcjMxBbVpFUPK5bJeo6qGdaS6FkCJ56d2gujcdjxkQURUkSzWYz4kfTSndz7XL6cJpOjDEIIKVsNps0Ca21QpEYF5u3kkCstJ9rkc95zRwRqWfTW0dCZnTmwryUS29IkrQsyyzLOGcjRKXFcrc3K3LOhRCi2+qORqPZbMaBU98SjcoUXIgoipgUXOuYR3X1IpIEnVdFVZZlCAzRKa4YAAY4OOgLIQ77Ok3jfr9PDSLWoJCQDcpvvfyqTFR7qbm2snrv3r0kScaj0dbWFuUPAaDdblaVlVoKJkzlJJPGlHTb62wZATmjlInuIcOAGKinLSA2m81uGgsher3e4eGABaiqCi1mWUbvX2zsZJvhnJEgHSKRx2Fe/gRA9CCErkV7hZBSGmsAgzEmTZu0wAUT1pBMkyaCPDzk3uGco9RFCDGbTaWU2Wxy7dq1U6dOPffcc5/61A/87u9+saqqra2tJEk++clP7u7uXr16NYCMo/R3P/9FrVin1RZCKKknPquqKiCnSvk3v/3KdDb8y3/5L37yUx/9l//yX2xvT+Ik6vZa9NyLokjTqLfUVlpHiTp2/GQUqfF42Gq1GA+nT59kPNzf22k00sAgL6brGyv9fr/T6aytrd69u8UYq0zR65zZXN8Yj6eTyRgRj46Gve7yxsax8Sg/OjiazXIplWCyKuu+ZsECKSwbYyjBRKzJB1zUPbCIgXOWNBt0NEgpjWWcS8lVNs2llJIrwEDh5ZxzpBE9uTlRVZhrQOclV1EUxTqCeaPAYHjIBDTbjU6nY0zJFeccKmuPBgdcQAjs1JmTAHjl6tu9Tsfa0npT2jKOdRprKXlVVQE8BtPuNL23u/u7nIO1FeMBnSevdir5EcWevpHWejweCyGqqtIqBgCllNYPThMm6zZnKtI75/xD9Xgppbc2BPwTkEy/N743/mRDa/g7fwfSR80pJxP4b/4beO01mM0evHj5Mnzuc9DrwU/+JPz1v/4Anu504Kd+Cn7v9+CVV/7UrsoY2NmBnZ3v+hd/8AcfwZoB4Dd/Ew4O3vvNH/oQ/NRPwUOu5IAI//gfw6/9GgyHj7zz1Vfhf//f4YMfhP/yv3wEBCcRkl/6JZjzGd49Go00TjtZlgXwJ08d5zyMx+Ojo6FSCtFZNEkahYGnfj7SpjeVabdT2dDeBWMNnSNVZedEV+YcMsYYF5zVZg8cOBFOuaj7FBlQPBnmvX1+7sfOASB4DIiMc6jf7wAAAicu0TzVwnmXlxDApJBJkrhgAMC4kiSGOedKKVz4sgNjCIxxwQVQv1cgjBIQHfMsoLe+1lcFMOSIS+2AFPAIrowxMuDMZIjTJBl2j73HXfUOAzLOBYLnjHPOBa99DqGGUDwQ4pxXUaxkpBnjSulaxY60d+e4J+mJZvl0PBl2Op2qKAO6Ki9G4xERZukkJXyZshhmLUHJtI3joq02BHJUolCB+C7kqkJfkALsBfBaH5EMH1Z2FlKSHDYDIGYG5/NKA4OjoyMAaDabIQTC43B+hWStFDwiB2DImAz1GaQDAwo4Kbii/xZCaKXiOCZND2exLKdsrla6SNbCnP7I5wNqr3LuiVNYT9EaU4si1e40jwYH3nuSS5VcGETFBcN5+z56U7kQyPsGSlOEECpXrS0tx6mqbBnA9Fa6w+H4ypV3rIU7W7sry+3V1WUhlBQRA1XMCsSQZ6W1fh5pALwPyCCkuHPvrrVGCEFUU3pM3gVrBo1GhVh70ddlm7oeUxNOMbiAgdac955z6Ha7SSMuy9JZg+iMLUdj02m1S4CqKBj6P/MjP/SRj3xkOJ188+vf+F//13/Y7/c3Vtcuv/GmKasQwtrKyke+78ONJH36yaeSKP7ayy8PBoN2s3lsfePy5ctX3no7y6f7VJD2eHBwVJYlSea22+3ZbHb37p3JZLK01F1bW+v3+8aUFBElSTKdTt9658ru7m6j0ShMtXXv7ubm8bWNzSeffqrf7ytk9+7dK8tyOBzqOBqPp1/+8u855/I8bzabp06dOnv2/Gw2o3xkY2NDcHn8xDGlVFmWL7zwAmPs1KlTV69c+9a3vnH//n3GWKfTkVL2uu2PfOQj3vt+nwQ6YvKeuXz58u///u8juuPHj3/605+mSsmxY8cef/xxY8wsy/Iyo0rMcDKdTCaf/P5Pra+v/9Zv/ZYxpt/vj6fT5V6v2+0qpW7evD2dTkfTUZZlpnL9/UN0rp66IZBZFMlW9JY61tpGozGZTIgNsFgjaZq+8dprly9fnk6nCOz555+/cOHClStX+/3+Rz/60XfeeefqjeuPPfbYuXPnSIpwPJlMxuOLFy+ePHlyY2NjODwinVuK6B5//PGD/cOiKKbTaRxrLjXhmSSGiYhHgwOYe0HX9SFFvad10gcAeVV67xku0o0HpMkoihwYRPQhqEQJxgUqAUxGESVTcrGkaUORUtJeTHUq50wUJYtNJ9Qqw/UgCYsQ0HsPjAmuSI1pOBxubW0JyQ8O9i0r2p1mCNjuNCHwosiFkACcMSRyllASIVTWTGcT5xwIkee5lnI8Hq+srBIJVGudVbm1Fhi44JhkjDHJ2fETGwdHR8YbVzkAxkBIGdEuh4izeeghpV4kY1HMuQAMKBgh7AEREFErXWd0DIJHx6jnhaMxIQTwWG/TwXPBhZQwZ8L+wUG3Xj2UYC/oQvQssdY2RQCQHIjOLOf/NN84wHtPc4UUEqnrhHNOJwFt3ELIRfLjrKW/MpvN7t69S8l87YXFosDq3Wd1bbnbbVdVlU2nzti1lWVbmPNnTp86djKEUBTZva2twWBASFar1VIymk5ns9mMAgUM/uTJk0VRDIeD6XQSaSEFPzzodzqt84+de/rppxkLO7v3r127tr+/TwZHIQQMLIpihLC8urq8vBwAiqKUUlqbUbO2UqqoyhBgeXml0+kopYx3hakIBuWcT0bjyWRyb+vu7du38+nsYx/72NJSd2v7nlDc2+q5556pXLW9fW9paYm65sn4K8/ztbW1WTYpigI5WRsH76g/5oFb2mK/JjYmVRcQ3gdunj93WmYLrt97zgQ2DxQe/QAWx3FZlowJWueEcgIAaTcD552lpTwvQwhcCCEEoiPdmDCXdSYkqLJmHj08Ankv3um9D5XPpjOhJKIPPlRVpWSM6F1lkiQRWiCiTLWHYGvZXEbMLAAQUqMPDAQEwIAAoKOIc7DWKiURMYCXXJDBVLPdHI3GpGGfZcXR0SCfmG98/RXOuVIRY0ypSGttjOVchACci/X1defcdJrZsjImCK6oqXkBwTMWFlWyusiP1nrPxSK05DqOKJkPIThnQXBwoLTgXHnvrbWcCQAUQsRKz2bZeDxupo3NU5uIePPm7dl4AjrmTCJ6LhaQzYNYEBaFAc5I9tt677BwwSUiovlpjLHzTbIoiiiKhGRKixA4Ou+cEUJEkarm2nA034wxwIL3vKhKVgJZlzSbzWazKZQEXh/JvV5vOByG2j4icM6Xl5cpRqTaGElFhxCEFBQeSSGRPRAnmRfAHpGV55z74Oq76kLgQQgUQuhIzuPagIjowqIYKYSSUpKanuIyBG9IYTzAXHXaUZ8jnxskLsD6wBj16kMIdFh0u0ubm+v9/j4JQA8Gg95yt91ud7vdRqO1v78/nWTOOdorFntjmCsaaa1ZGaqqsljt7/c7nXael73eprNIO2eaCgq/XGUUF4yHRqOxsrKSpnGr1Up0FEI4Ojo6PBws1ANyU3rvx+MJm8DS0lK728myPMvKKEpOnji7v7//9ltXmq0GgUQExsmUT8ZZoxknSbKytmJMmWVT66rZNN/fPzCVBcm9DwFFUVTb2zvj6fTmjdvnLjymtH7ssQvGVEVRxlFMLHUkV0WPi1LlXMAuhBDSpGnRe+EXNQalVKKjuhsSA+cszwtEhMBCYM4Rr59VVbFgl3DJHFo0ngsQQjDOpeJU4GSMScmF0M45mlGIaLxjjGkitLAH8lmISLLRYq7qwOaD80Vh3JM9LFULlpaWvK87uQCg0Wg0kvTw8JBKwmLuG0MuNJwzU5QlYmlL+nClxZkz595+++00Ssm1eTgY50WmdRRF0eKPIiKXjLhLnDMuhYokYOA8UkKYytmKOsWYEJJ6fkPtFoe7u7uMhSRJHLilpaU4TqvSZlmRFbmbmSEbD46GrWar11u+detWo5E0WnU9mIvQ6TaKvCoqK7lyaONEloUL4YEcPws1jUtKCYBMcu7A+0AuHCGEVqchhOAiNJuxEpphGAxGZZ5hCIAekfwqJFmaKiW8hxBYqPWgOdQSw7qqLEBwNnABRVGmaVIveKmEEFprUpkk2i9aDPM+kXm4gsaUWZZFUUIPCxGTtHn58uU333zzxRc/ZoybTCatVusnfuInXnrppRs3bjjnjo6OuIhWV5f37+8vr3Tb7bTIiwzz8XjMmIoSjcEJLinBu3rtyle/9nuNZvyDP/QDr7/+uhBiZWXp6Ojo3LlTk9n0+PHjt27d2r1/t9trFsVUSpkXs3a7XRYuy6YhsN5Si3M5GAw2NjYODw9Ho9Hdu3c3NjZms1lZVpPpyLnm4WF/ZW213z/c3t7mQQHybJofHg7iOLGVY+iMMYyJREfOWwo1vfeMcSkk52AtA0DgXEfaex98cN4xF0IARI/IpJQQkHOYNyqhlFKpaFH1oeJKM0mjKMrIatU4IYQQYTgcFkUhudBaNxppo5kg+FOnTty7d+/KlbeKovLGl2UZgRZaxXHU6bVv37m1urq6srbsnXHBZUUWJVFApyK1vLxUFDljTMXSBhMztba2unVnhw5QRAeshvIBMFKaInzOawk/AKDmRcV4VRezAUAILgxQNhsC1mYSgnMhhNZKShkIkrDfswr83vh3NH7sx+ATn4BG48ErVQV/82/C1tZ7v384hH/8j2E2g1/4hQcvCgH/xX8Bf/WvPgJP/7sfaQp//a8/8spkAr/2a+/75l/8xUewZgD4n/4n+NVffe/3z2bwe78HW1vwf/6fD4SeGw34+Mfhx34MfuM33vu3kkRGaUdpkusUAGCtjSJVlnmSqqLMitlUSmg2UyHUZDI7OhwqpRFds9mtKluZOsKkgjFF6AB1fw8wMdd5qwFBJUiFGQIpiQEJMteMFqp80i7KA/BA4mqUcPHAfIAAgIyFONZ5niOAUgoxxHGcJmkIwVUOiBsBTAltvbPWK6VIo4/NfXECESK856IGQ7xnxG/l84S92+1SroroDg4O6LxgyJXSVVVJoQVXgO+DCWCNyHjvHsrxOWIg2gTdFil5CIEzyZGjw1arMxqNMDjBand6VjMCQ5HncRxrITnnSkpTmNFolGVZbYU356DgvCWFxH+pPb+qKj4XYUDwQtbAN0VoRBrIsgxCIN5iNB9lWWJwATyEOsGc51yOc16VJd1PBrXhECVN4/GYz6XVKM9d9HTW6QkPAWoSFRGWqSRAP9JVUZIlSLKjtJb7+pDldcP3IlqWXDQbDbowPqdRAgBjEBhKUbPXtRT0t7S2gqtYR8FjEuskiauilFJ6r0IIQtSwTJ1cM4AQnPchBBuqk6dPrK5179zbimLW7jRKmx8djZ0DIaDZTDaPbayvbYTA3rp8VSntKtQqbnea6Osas7XWs/fmLFpnAQJ5mB8dHZHZteBKck7gDyJyLhf301pLzaMA4NHW1HLnkPqWvB2NRs6nFOtKKaVK81k2nU4jacbjaafZub+z+zu//Vuvvv7Gv/23/7Ysy1YjnYyHx44dGw+Gtioev/jYD37mB+7v7rMQLl64sLaycv3qtUaSfvX3fv/ll1/O81xKTjZsly5d+vE/+2PXr1/f2dmhNOHy5cuUtxFdNcumxpilpSUhxGg0ut/fJw4iIjLBmWfj8fhrX/va+vp6HMcH9/tZlp09e/YTn/jEzv3d6XTa6XSqqnrssUvnzp0TQvT7/SiKqtIgYrfTa7Va6MNgMsxms9MnTzUajWvXrjHGPvWpT125cmV7e/v7v//7n37myds3b+3v7+/t7V15+zpxaC5duvTss88eHR11u91z585duvTYmTNn+v0+yaPTPT86OipNEUXRYDza2dl58smn19bWrl+/fvPmTa11aUyr1crL8vU335xMJog4mUxs5bpLnVarZatKa51npbMFTUslJCVZiDgaThgPH//4xx+7cOnb3/62lHI4HF6+fPnEiRPj8bi7tNRotZ9//vknn3zy29/+9vb29p/9s3/245/4xLPPPvuvfuPXjx8/vr29/fLLLwNAr9frdrtPPfXUCy+88O1vf/vLX/6iMeapp55aWVqeTqevvfbaaDiRikeJNtYyX3NeaSrSRJJS0vyki7T4ILRbQJeMMSr7uYDcGTEfAJAZJwSHAFxxybk0teWJA2A8yG63S/tOWZbWWoLYFltwkiQbGxtHR8PBYEDLnprKF+gZIgZkwBkDhuil4N5jWZq9vb51ZZqm7ZWY7ilJIrz91jtra+tRFGkd53mOwTkXnDOtVqtf5IPhcGlp2Tu3fzSQUhCZHxHzPHfo02bDlBUAbzSTdrvZaDSWl5ePRkfAEBnyUJOwEOueX2esmPu6BgbkixpC8N4CBCmFc5YIX0I+EBJBhKKopJTOeSmZKYr6NGLEKqJ4mwFnKlLvuVMges45sZKJWgtzHVVnkVyVarKh9yHURTbiOi28whGRNA28C7NpTmhRnpU6kmS5FsdxURTTSUYfHupWIEnY5WQyAQClVCOOhFLOOSlVVZXMs7tb23m+tNLrovMrvaXD/f6lCxfPnz7FQeSzrCrKPM+z6STPy42Njcq43Z2tEIAEOoqiOHnyhFJyb+/+QX8vhGCrknP+7LPPvvixj2qtt7e333777Vu3buV5Pp1mszzTKiZbIWttt9vVWpNnoLU2jmNqgrbex3FMxRMhxGQysda2up0kSZIojnWkpdo93CEsZnl5GRH3Dw/yqhyNRvbILa0sdzqtD33gufWV5f3DqRBia2ur1UjOnTt3584d500cx8YYhwh+Xv1DDIFxJkgcij2EIAOAB8C5OuF7DsYenjCID/WZvus9C0GVxefXR4L3VOahA4Oe6eHhIVrHGJNKPfbYpTt3bh0eHEilqMazgEFpblDuV1mDzjEhFrherUMOCzRWCcFCYEWWG2MEnVnAnLNcCs5Fu90qTDUPvCCEWj86hNoUeOGwV5NkwXOpteTWWqWFlGpuE2HvbW9VWCZJUpVuf+92FEWNdsM5B8iMt5zzNG045+I4JsQqTVMeAivZnMVM/WJ1aOUChhBECIQsE1TqIbi6WlM/HSEUncq9Xk9rnWWz2Ww2ODwCBirizWYax7osjbVBCJtGca/Xm81ms9ms3+8jgi0rOrat9wtMk82bymvsnkHgDBhnARdzgnab2dRT8aDdSvOyKMucliFd4QJ9g3mNgTG26ENBRGSgpYR5f1kIwVo7m82EYFprIZgCJaUcj8dU/6usZYyVZUHNbIhYloYuNY5jCvsWgamaz0k6TkIIAR75dowxJRIfsKoqQrKs8Y47AGCcBQ+IzvsQaqY8IHoewFVGCCEko3guYsp4p5RYrAIGAupWGIno6m47Jha3AgA4B5pao9GIc3H+/Hnv/a3bN+7t3Fta6nU6nU6n1+12I51Ya3d2dtNGXORVCMGYkgxFYW5UrZSqqsqUE1OUnU4bPEzH4/FgTC14iU5sZXcm96kkoGI1m8263e7oaERmqmnalFIzCLOqBOBK8ODY3bvbjIWDg8O1tY3hcNjfP0rThLoddaTa7TaFv3mek7N03Ih7vc7x48cPJofXb+2S+1lhKiGE1ix4Fuu4LEv0uL9/cOPmlhDsxo1rw+EwiWKhZAKx985aB5xrLes2w4DOOk7KMM4RR5XCAkJvq6oiNJkxUVU5Os85j3lMMYHSmmBQOl/qnI2DlIIeFtHYAYIxliak954zMZvN6F4RaT0A9f0wZBAAIikXeRplFM65oqixbCLmO2eoSYD2c1rpHq11VZ7nAMg5IAKd72FpGeYyL3S8BvA8AAMWPLrAGAtaaBccY7zT7EY6OXv2LMWyWkRaKsml1poHzjgz3jDGlJIqUpWzzlY6juhMjONYckGFOh9qa3hSnCfzYCUUogfOQvDOuTRKNzc32+2uMUaqqN/vHxwcOe+dc+1OdzweJ0lSliXjIY6j7lIbEZeWltK0qYT89re+bX1gIDhojw7n644x5tE6FzgHIRkGZJJxwW0wZeWTJGHcO29NVaRpOhlNDvb6VWGiKCJrXMqTQ0CqEFhrieu82GF4AEQg8pcQirFa+36RNAaGzmE2nWkdkTJjPp3RHkLREedca0m9q2WVz0kWzZWVpb29PQaQ5/lbb70lpaSq8F/5K3/lYx/72M///N9cWlr6qZ/6qYP+kOrZv/3bv2UMah33+32lFJUbrTWNSHvw7Xbr1q1beT679OT5W3duN1ppCOGtK5fb7fbaxqoeqSSJjh8/fuPGjSyb9vt96u9L03RluXvjxg3n/dHR8PTp0xS+njp16q23vvPyy79/5syZZrO5vLxijLl79+5oNHIOy7IEZNvb20VhTOUkl7ZygquqstY6IYKXNRvAe8+VtNZ5Zznnnnkp2crq0sraknPu/v29Iq+cA2ctWuuci2LVaDYp1/U+CMbLsnTOCMHTtFlVFW31WVlY6xhj1joPzpRWa81BVIUBHjjnTz3xRNpK02bCWDg4OLDWDodT8LC2thQr7RGzLHv9jdePnzr2woef31xfnY4ng35/eXUpWG/KXCfaemOcdc4xAZeeuNhtLb399jXGQxRpzlRRVAAMed3krpVIkpgxBh6dRR+wKi2AnX8RR3WsNG1orSs7nBPHQDAupRRsXlVaWAW+T5/f98b3xp/uOHsWfuZnoNV65MV/9I/eF2tejN/4DfiJn4CzZx+8srEBv/AL8N//93+aIs7f7XjhhUcuCQC+9CW4f/893pmm8Hf+zrt50Ldvvy9qvBhbW/CP/hH8p//pg1daLfj3/j144w24ffs93q+0KopZrGQUKW+rwWiGCGmarm+sttvtELyULG0kg8EgjpLTp4+fP39+735/Op31+3sE2vqaOSsWHZBCCMIxQdQUOYqrpZQCgkePEBggZxwZMAAGTDAOAOi8D46FIBgwJgTnARYmcoEBg1qZDcqy1JFEROdMo9FKGknwvqxKRvqTnDvqxSTlhrnQ5RwQ8OQELh4ySoW6PzVwzgMPrVbrscceQ8SDg/3RaEIVdITgCoeInMk6QovfGxNgDBgPjActYlcbcctF8rjgT4QQAJi1tU5xPp0558ABi2qqDQfGuQAOvNGYTfMQWPBYVdXg6GgyHimlQoCiLKGqiHdMZCay80VEACRHqLIsqaVMRhLnNLUwH9ZaQY5ziKTv0e12W60WkVroCS7SXjGXYCYck3OOvqbNcc6n0xkiLtq5pJSUuhKm7L0l2Q2cs60DBmoVBV4/nRr6yHP6de9JX7uWldCRrHknlNfMn+/i/xc9o4iI3mMIcRxzbqVSUaQp7GmkLa0lIsZx3EiaRVZKKZVSzpgQfD0CAjDOuUNvbAkCNjc20kZUuardSWf5pKhyHyQAtNtJnhenTp1SSg1Hg7XV9bQRb925p7gOgfW6y1EUF2VG4tfv1xeUJPF46kjfj9JG50ydMyJWFXnFc4oxGAsLsURjSyqNNJvNyWRSGeL+qxCCqVxezMqySNM4jpTW2lVmPC2eeuqZZ596Bq27c+MmWO+KKlF6tbv01FNPnTx+Ynt7+9Vvf/vZZ56ZDEfeVsgYOt9pNZ9//nnG2Esvf2V0ONjc3JxMR6dPnLx06dLS0tKFxy6dO3fuC1/4ws2bNylbGQ6PACBJkq2tLWPMqbNnTp48+corr4i5TizNRmMcY2w0GDLGakadI1Eddvz4yclkdn9n79yF8ydPnoyiaGlp6f79+73uUqPRmE6no9FoPB7v3b8/mUzo05aXlxH9aDQ6c+bMzs79tbW19bW1leXl8XBy7969L3/5y0IIJmKPjnO+de/ua2+8rpQ6cerk2sb677/81bffuXL69GnvfWmqPM93dnaSJAEBeVUSJvmd73xnlmdZlq2vr2dFAQCLbuM0TS9cuLC5udnv919//XVvrZJRNsvoCVLjvpYqyzLSZx8OhysrK93O0le+8vLu7u76+vr+/v7BwUGe5+fPX3jmmWcAYDgcvvPOO5zLP/fn/txzzz03Gg7Lsvz4xz9+/fr1LMsuXrxIO+psNrt58+a1a9def/3VZrP54osvPv3007t79xcFgChExph2u00GRcPhEOaQL61rxgl8EJxzD2GeOXKcy9Qs6lhImSGDEOrOWi55FEU+gBcWfW1w6pwjbqdstVpSyqIo8rJwSK1ykKaJc94YAxjKsiRbPO89bVVi7mkIAAwE4+DQK6Ws9d4FpVRZGO/9ubPnoyi6178xm82MMaS6wAQfT8fHWsdVJLWPKMSvqoJIfKS1l2XZcm+pLMvB4VG3213uLR0cHFRVtbKyTDIrveUOwQ33du5l2bS+Cx54rSclAWvOaQiBscBYEJwDemAsgCctEQwOWF0cY3NlIpwLHhljGAjvgg81O4nqQpwzzmvzrjRJ371JAABAQKRcXQhRliWlHK1WK9KJ4HXx0M+1n+gZ0/IIIYAHzmWn08vzHIBb6/Oi8A9ErwBDSTsLIiZJQtb2VVXx2vW+vto41jDHJck/0BmrdWStccbMxhPN2Pry8l/483/+aK8fvO/v7Q8Hg26riwCzyXT//p7UUVmW1njBuHX2YH8fEdfW1jrt5mh4dOvm1Sybeu/Pnzv93HPPnT5zdmdn+513rk0mk52d+7Np7pwrTaVkbK3TOlJK0rQbDsbW2gCe8Gvi1Agv8zwXQpBogDGGSbEax8YYqjpeuXJFyro0srm5ubq+dvfunf39+1LKNE05hHyWrW2sF93szt37pioIZJFSLi0tKaWKojCxQURTGO+9EBIZOIfA6uhnUQulY2xxSr3f88W5jsTiVFs8zYcxNQAgjWPCAWHeJ75ABxCRMUD0jAXy7S0rQ7fl2rVr1lbAmJhrMizIiVJK4rbXjDkhSApqcayGwBbFXsZYFMVcgBCp9z44Bh4C+BCYt6g7GoC12x1EPNzv0+oOyEIA8B4AvJQkIU2QjNKCc05BWBQrzrlxTioODIQQ0+kUGAvIEKDb7kVRFAKb845r44UF658udTgYTKdTIPfOAIwH7y1jgpi5nANjHIJHCIIIs3MXY8KgQwjGGDMc0m0/derUiRPHX3311Vmslpa7xhilyGcvGQ7G/f7+8PBIqVoufG9vjzHB5qCwlAIRMTh42DSJ1Zddg3Gc136SDAJiYECl+bI01ExAq96YkgrjdWTJGEDw3mXZzHtcoNg0McK884s+lsz6EJHwZUQ8Ojoil0tjDJ/rmpXljAB35wwiSf5brTVjQYia48nnQJqrDMV5OGfiUy2BGBZCSCHcg+0oBAK2lBKCqyzLLLrawSN4ADFXVKDzxtFWxrmMY01ly4Xd+CKKJfMxAKC4k9IFpVSRV7PZTGvJGNNaBWRK6SwrsqwYjSboIY7jTqdL305pQQrLiGiqQggBIQih6GoR0RqfZXmW5d67KIoYCGt8QMYYj6M0TdM4jh0Ya22sdNpL79/f39s5Aj5SSmod1RrcoLRWK70VOpWuXb8hpWi2U8bY7a07waNSajqdUsNUs9kcjQdJkpw4ccw5d/PmzZ3DXVdAo5HQnNFaKymdCcGT1TUvyzyOtffeGDebzZyxiI4JYCDAO28tgmCMMZy3q/tQW/sGKEuD6IQQyvq01RRCeW8Yhkk2IbVfRCQxVkQEDB6QCQUByqJggux6PAA6X1J5TwjuAjLJjTFKacYEOhcgAAOlBU3+gHVpJIBnnGVlobiggCOKouCBYHelFBOcQ2AsUBQthHDOEIVESMaDarfbk/GMMTbXqhKIOByP0jihqEtrzXiwFhgGX/veEEBc0AI8efIUA+g0uwfisMyqEirvkTFWzIoQgtZaSo4AWqsojrFwiCKKFGPMe+uclFpQUtfpdACBqrkuuDiOGSAXwLlEIPt4lDJkWdZqteJYCyUAcHm5A0xNpqPJdEQAXKvdaHVarVZjdXVZKZUkife+11u21n71K98SApghsRPuQ+3iwgLjAoRkQgnvPQantBJCBIuT2Xj9+HJZluPpeDabTUZTawyiDyFExN9hzDnnvA3k2CMjZyvnyIyu3v8Zggc/V95wc9HDujiaJFHhq/7gUCndarWqchjmZsUESRtTMpacPn361u0bVCFzznnvay0Izjc2Nqy1V69ezfP8iSee+OpXv/pTP/VTTz/99L179/723/7bl9+68iv/4l+cPHl8fX1jPB7FrZaOE+9tkiguWJ5bkF4LxnlIeETOftevXz127Fin00qS5OKlC2kjvnnzaHt7W0r5+OMX+/3+ZDKRUn7wgx+M4zjPs25veW9vbzKZDocjrdXu7u7K2mqz3TLOVtYgwrPPPru7e/87b74lhMiyIoqiJx5/qqqMlsn93X0qz3Ama7U0Uau+eO+FYIhMKVkUJeMcg2+02lGihWBJ0jg6UlVpEY0QTKk44dDptojzRfpvpnKdpG2N4Uw2Go2yNJPJJM/zqqqcqG8yRYZVVTHGheCuMmfPnzlx/OTBsH/3zu1bd27fvbtV5tXqaudTH/9Ur9dztrLWfufy24PxaHm1a1w1yabvXL2y0uuSWlSz094/2GOBy0je799H4S9ffnN5ad1aF0UKtJQyMsaQ5rtzhpaDEIJh0GlE4AItrqqqqJFTKWWsNaZM01RHkghi1AvIGGOCA4ZFtDOXx/ne+N74f314/27IdTqFz372j/5FY+CXfxn+wT9YtCYC5/D44++rKfHvYEgJf+2vPfJKlsGv/Mp7v9kYuHTpEbnqEOC/++/+WNf/2c/Cz/7sI5Iaa2vwUI7yyMizbDobQGCNpOm99yA551VlGx7iOLa2AgChVKvT2dvd3dzcVEoAwySJvcY8z8u8oJBMa9FIWjqOQmCz2Ywx1mq1lFJVUdKBQjACob1CCMZrwZ8oiiprQ8BIKai7LpIwBzRD8IJzH4CKXp55IYRxlRCCEGQuBYKvvWeCQ1tzIPjc3IjxgMFTDyVZ28G8zo2I6C0T1OpdA+UAEClliuLOnTtJElHLbAgBg6OrZSCqUNVEpffZCUl4kzGGHmskff6NKFpbROzELeCcl6WpqoqaMsO8NYoL7n2dbyZJQtZ5AEBRnxBiluXEosCHBNCklOPZlPRVOQchmHOGqtS0deNc3YKSEe8c9VITW45kDynei+OYRFoprqAUg24s0TuyLJMkQMo5Y2xnZyeKIgKO5jEJcg5p2rJzmJtEuikwYwGcc8bZME/0wpzTvSADaa0XiQCdVou7Rz3ri9/iD+RePf2iR84ChMAQkQsFAMYabS01+hdZWeaV1tr7ABAcAiNvJ8544B7QITpnmGSdXltrlVd5qMzzLzy7vbM1Hh9xAehDNivW1leSJGGMUQCwvNy7e/duFKksKzA4gMA5k1JUVRmJ9xHTEGJlZYWeS57njDGKhAF4CAvrdYboyF0DAKSUOpLnj50lKWeaPDTxhRAkqai19t4pQiQCWGOeeebZT338U51WpyiqtZXVbrt39tRp59yP/9iPt1qt8Xh87tTp9eWVdrNFspNKSIrepZTO2fOnz6wvr3zwgx8MwfuAZ86cGQwGw6OBUuoDzz4HAEQcOnZs46Wv/P69e1vWWePdk08+CQDU4c1rF58AHoLz7U7n9ImTiEid30cHh8Ph8Pbt21evXiWS5Z1bt8u82N7erqqq1e40Gg1yJpxOsxBCQDcYDAgXunfvHu2Ub7/9dn/voLfUIgZDURR3795ZW1uTUo6nJedaShkApZSTyaTf73/ta18riiJJotdff31lZUUIMZvN2u0251BaE+bywlKroijOnj0bx/H169dxjpFGUbS2tvaDP/iDxpi9nT1TGN1sUpRI/0+ZzsWLF711b775pveeWMn/5t/8G6HUU088mef5+vrGmTNn9/b26BY1m00A2N7ezbKs2+2++eabZVkOBoMoju/d2VpbW9vc3HznnXfu3r3LOb8DEEJYW1v7gR/4gWeeeea11177rX/726TUwTnPsoz4l5SMUwTL5z499aY3l/dxWPcoMMY6nQ4iTqfTRRFogbIutkohGRhQSnmwlD5475USUvIkiSUBc0VVlmVBd4H6F8pyFkVxVVWHh4d+rmdqjBFcBWTAau4nnxPlrHNaa+cMok+SOM/Lfv9wY2Pj1MkzZI2VZyWx9sqyvH37VpKkS0tLJPpD2BmV5sqstKXNyoy+iXNOKb3cWwrIkiRqt9uMsSjRlS1JtLHZbGod51lpChMCIHJEtzDU8t6S6fyiphqYh7nLAKXxRFRdHBOMMQgcAgSojZXo96QQUgrOudKC2JTvd7Q472nHp3lJ+2CWZWVhYN5OsnhCwZNilKNcTghRVdX+/n6e51RUQ0RgYs4oR8YCtQ80m804julxdtrtyWRCWzaigzl3MoSgpKw7L5TkwGIdKSElg7Wl1TOnTvWa7TPPH9/Zure3c394dMR9CAz29vaEEN12x1sEgLIsx+OxtbbZSo8dX0N029t3Dg/7vV7vg88/v3F8JYkb37n85hd+94tFUUVRkmel9R4CD8iFUkIrPhezHg6HWsU18T5wCNxZrKraYvXMmTOc89FoxBhrNpuDweDs2bMC2Je//OVWq7VxbHM8nXjvl1dXuGQvvfQlRFzq9tbW1rwzgmtXlcfW137gU8tf+erX3n777bW1tVu3bxeVTdO02+0WeeWcC94rpbTSDD1jBND4xfRgc8e/8JCKwvuNBab8MLj8Lqx5UbLmD9kJ0n/MMbs6dDg8PJxOpwvJGppYtK3X2qBzINvPnQNJCEZw7qlVjNSykNpjAw9AcrRC8KoogPNur+29LyY5MrLTlFLK2TQfjUZra2uudvxggkkXHFpH233lrGSc8kwhGXWsUwUl8KC17vbanPPB6Gh4NBUKuq2uVjHVrhljRVHR10frBEA+nbZaLa21BxiNRo1GQ2vdbDadcdZayTh5sJrKEdk2hBCCF4wxFjjFo3NWAlv4BwLwQOinM8YcO3bs5s2bZZUH51tpw/iKjsbeUid4n2elNU5IETwCcMa8AAKE2dw9lZYZeAgB/WIOUKELGCNRGslkzRcINS10OJ6Q6jpFOYjIQDDmGWNcCBkkIlprF6RsNpeDCAGdc1EUEXFVKMlBAEBRFIioo5gO5qIoJpMJAkRRRBsmgQiyJkf7euYgMqWEEFIKpepSAaGxMMevOaf5CN57Ij0T8kLhIGmAU9SrddCRhBAozYiiCBznDywEAYAj8wwYmZAA6RhwscglSAzGOUcHxbwc8kD6nzNprd/Z2QkBpBRaKykUABR5tdAOajQaC7uqEIJk0nOga6ZZSmen97YqLTDknCdJSqJDpE7DOc+yvCjK0hbtZjO3pdbxUm9lNs2rynAmnUX6fwbImAshaJ0KoYKEsqyKMk/TpNGMArKiKIIPJNbBOfc+JElycDjYvb9tchQNFjW5c9hsKkRgKXOWAbqiKui2x3GXCV4UWWAcgKJH9BaTJNG6lee5KY13wDUPgfm5yCCbt0SQ35211njHORfALCLZqC5u6WIX4owt9Ol87QAeWu2GEFxopbWczWbWVHP6CUqpgHGAOqgij07C+uXcipCUxL33tqy0ishol5HjnHcAATGQqy15AocQgOF0Oj1x4sT6+vo3vv6tsiybzWaSJIPBgBgl5bwNs6oq6jTi827NEEgqSiO60WDcaDQ+8pGP/JN/8k+Kouz1lu7cuZNPZ0opYnlrrRlHxblSajYdS602j63neZ7lOSIUxUgJefbs+dl4RrL+jIGMNFVilKiFFARnwAMXYTKZzIo8z/ONjY39g773/vHHHz88GjofI7oQvJTp5rGNpaVur9cLPFy+fJmCpZXeyvnzj6VNnc9MLPkiKUJ0yCBOtJSCSwGAOlZx3KgPAoFFZXd3d48fP75X7U8GM2AACFEUU3dqQOYCUqmaCXq8Yp5TIbn7hhBcCJRuKSWkjJIksa7y3nvvsiyjFUq7zWQyEcCk0FQ6iiJlLeVafjwZUqrTarXyPC/Lcm9vjyb8ovy2tLTUarWIqfHss8++8o1v//2//z/sHxx885vfvHHrerPZ5FL2Dw9n2fTChTMnTh4fj49293cHw4OVlZUo1sY66007ane7Xe99p9MhqwZEXFlZuXbtWre7dPXq9TiOz527kGVTUznviitXrp4+fXo8moUQ7t3dmeXTKIp+4DOf3tracs51Oj1E3Nvb39w4fvz48W536ehg1N8/WFtb67S6u7t7tNNqHSsZUVSj45hOKJdNvWdC6aKomGCCi+BxdX0lL6Yd1hpPJ0VVOrRcMhZ4u90GwCiK8jwriqLb7ZSl05H03pMlSVVV3jtaPkopISRF87HSznlEZAyDgyhN8jy/fv36G2++evvODgTorkSbx9bPnjlXluWtW7dOnNw8ODo4dmrzxdMvHh0daa3f/M53jvb3VnrtXq+3c/fendu3T58+/exTT+/s7Bhnr92+cnh46H3otlbW1lYP94ckGSQEM86EELy3zolWq+lMSVgzwQp+3vusta4NJEjryeNcRq+2S5JScsFDQHzID/kPiZS+N743/rRGowFFAfFDbmz/8/8MZfnH+t0334Tr1+HixQeveA9ag/v/iJr/3HPw5JOPvPLNb74vTVtreNSMHK5fh9de+2P9obKE/+V/gV/8xQevFMUDeY13jSIvZtOimbbGo0xr7cBJKb3Hfr8/mY60lr1ed2NjI4RQzPIrV656HwRXnfnY273vnKOeXa11s7kcQpCSnzx5ut1uT6fTg4ODqioODw+rohRCBO+YYIGBNYbikGxWEKPCVJQ7142bFIc4h1JyNseOJUjrvJZRUeVRFCmtPFr04GoIuy6xkwx04Cx4zwMXc/lQCnphHu4iIuNgjZGSYkbgnEvFz5w5E0X65p3bjUbS7XYbjUZezEgxrzIVvZWumb0fij9vMURf4zLBB+vrVH0RGC9yB4JiYc5PMpWXClkAziWid85Z4zc2Np555pk4jo8OD6MoYhCoKjzPCAx9CDlwUIhFGLdSKk3ToiiMKXmQC14IAJBaBYXWYa6SQap9xCAWQiw6a9lDDjdhrsSVJAk5xJC9E30Uf0jQI4SgdULxPITg52Vy+ltCCI9e8lpwgx79AqcmNg/JRj9MsqbMGhERGGWyixSjFoCaPx0hlLUWOKPCKl1bVVVKKRaAaBOkzU1JEDoTRVFe5FIp55z1zoPnkns0XDeg9GfPn2k00kYjKQrtvY3jdHV1pdPumsoqLY0x9+7dazRaTz755LUr1xCdUiLLpyEEYKHdaW5uHoP32n+KInNYkjkN5zxJEmMMgKBk1ntP2KWfK6wuLS1FsVpeXiaHcCllUWQhBECGLpDupbV2dXVVCA7BZ1mWTcZJ3Oi22rPJNBLaVJY5ZIF/8sWPpWm63O567xOpq6rqtjskwAIYwkKVOwQhxIee/2A9n8FzziejMQsQa805JwLyE088sXn82LVr7wyHw+l0yhh74YUXlpaWXnrppSzLtNZllgNAlpGMJzx2/sLzzz8PUHsaHx0d/eZv/iZBWI1GQynVaDS2trb6/X6r1T7o98daE/R8/PjJD3/4w5yF8Xj80ksvkW0P51wpmed5kkRVafM8f+GFF3Z3d0na+M6dO+P8NiJa9JyzaZbN8twY4xGTZqKUmhU5Gw2XlpZ0ore2t6jAQ2TT1dXVVqdbFMX9+/e3t7dns9nKykozTUkcvN/v/8qv/MrOzo4pTKPRoNS4qqrjx4+vrq6+/vrrxtjd3ftrK6uNRvODH3z+wx/+8Pb29mc/+9kPv/jixYsXv/WNb66url66dGlra6vT6SwtLb322mtvvPFGv3+olHrnnXcYY9ZawRXwUFVVv9+/ffv2aDQikzPvHNWWXn755c9//vNHR0cq0nQ/acJQHnf16lV6jov1S4NzzmBu2CM47SSE1VATtniXotNc6ZT2OQ8hoPPek/k25yCEqLzz3kuqIy2SUqXU+vr64eFhq9WazWZRFKEjM5ngHAohGFDZSnDuEZF+lFLqoB16xoTkHDEMjkYHBwfXrt144SNPX7x4MTDc27tfFEUcgTFTa11ZlsZUQsgQQqwjWgxaa+cwyzKiQkdptIDV00ZLCGGtsdZOZmMCy5IkMrlvtVpo0RRkqIrBE75Q1ycXOyndWRBzn7dQ/1P9OgDJLEDgRAWiCphQvNFoKqVqWrQAzjnOi5Pvea4oqflCQXJ+AnkXkNk5UvaIzS6BJovDxlo7Ho8XhBHBFWMsMMAHfG3GGCuKIiBbXV3lnAfEVqs1mYystZwrwo9on7W25oOGwEj4XDDIZ7nk4vTxE69+45WV5aXHzp2/de06IwdIxs6cOpWmKXB58+bNmzdvd3s9YNhoJmfOnJKSHxwc7N7feebpp77v+77PWnv57Tfeeecd74KO1Hg8zbKi013WyADAWpo53BprzEwIoZQM4IEx573LjTERF/VdWsQiaZr2ej3vnRYijqNbt+7MxrMkSfb3933AKIqyLHvppZfeeeedbre71OvkxazX7lR5cT/fAQAr1Iljmxsb62WVl2VZFhUdJwTYWUQA8FQGr5kCdSfyHN0Ii4Lt+4UOD2PKi0f5EAD3yFjk53RqLp4+vUi/UnMzraXTkTHGFaGZPoSAzgUh5voMNatazieYI9FnhpwLAAg8cMYl5+jra/PesxDSKIqVdsJYXaMStrIAsLy87LwnyiFFCTwi0QNBlxcr0oknn3qepkmj0aicDcF3u11E9GiNtQDw5NMX0zSpCgsAzrkir4hMJ4AdHBwwVpPIpOLNVloUtjKFdYXgkVJKShX5yPsQ0COIwANJHTEGjHEEzzAAZ5yUnEnEGR5gwXRvi7y6ffv2rVu3ut0OY6wo8jRNW2mrLEvG+HJ32RtvjTelDR5pxQEA45wE0En7wpN495yA8BDMB1JKBkRFZxTxMMbIRjow8NYtqMrUgbUosyMiAiDW8hph7txN4bWU0s956FTqA0CaCSGEdpLQIVdVVQj+aDTE4FrNFgNRFIWUdq6oILy3jDGtNIHJ8//V85kx5irnvSeuQQiBcwgMeFBSyjD21BRDU5uKQ3RgK6W0VEJo5+rKJ0V4LDBGTi3IqGF/UZWsvVBELfzn55ILAHWJZcHXoBQCA2pNGSTOSRm0ELi1jiB18u2le0KbPy0E62CxshBrAgVRd7338/geqAjnnAPpg/cQ+O7OHiIqVcfQ1BAAxPp3gTHkXMRx3FlrhxD6/b6tDKJoNJo6kvmscBZDYIHx7lLXI9y5cxcAmIQnLj4eAEube++TSE3K2kqLnkKz2Wg0Gs6ZOI7zPHfGl1A2m82qqjCESPJ2uw0tZo3Js9J7EvwLjAsyT2eM0fbDOXeVYYx52l4Y8XeQAQYAUqZHRGSc7DQbjYYPOJ2OG81k/dhGCN7YkixfpOIMFCICCMZAp7H3XrOwyAFCbWPItFYrK8vNZouCv0IViMhRBAaLjYsx5sGDAAasKp2OyA0PQwh5nt2+fauscs6584aqKUKI6XQMAKSa4b1nhnHOtZwbXTLlkCJspqT/nd/5/GAwos5K7z1aJ6XmXHDuBONlXrW7jSSNS2MoVMqnMxdQcgUcjsaTENjVq1edc84bYFJooSTrdlsA0N8/jOLIzTuHjHGcaVOZe/f2dnf3vIGzj53e3zuwWHERVlZ7eZ5funQpTVNEN80z58y9e/fK0mqtDo6Gzl5Lk2ZVDhkyKSUTXCkRAgcJzWYD6nwZheJJkgBg4Kzday+vrd69ubW3e2CMAwDBBKNeE85K40hxiKQeg2fOQkAEwYUUVE621jLOWc0RUwvWD3GgaCvb26tbtaWUAjh1PtEyYXMPQ2PL27dv0/oi04hut6uU6Ha793d3KXQuy3J1dbXdbi8tLf2tv/W3Pv/532m0ky984Qs/9KM/uLTU63TaUqqyLLVWy/EyF+zUqWMfeP5Hv/jS725vb3e73dtbd9fX1waDQavVOn78+Gg02NnZoYZrCgZ6veXBYEDT78yZM5PJ5KWXXorjWAi1tXVvOs2cc51e+8Spk7u72zdv3Gp3WlrH1loI7N729v7eQZI0ZrPZaDgtS3P9+s12u+sdMXkVAErFO93WoqtMa+28sdaaqmIsAHBgQUXSOdfpdMjsKIqiOEoGg5GKdAie7JLSZuK9HY0G1EwyHA43NjYSlYxGk2w6M8ZxzhGDEHXxmI4seiJSiqzMtrfHb195hwlIm3xjc/2pp56K4/jG9Zvbd+8uL61ubd0+ODjaOH7s5s2bUsrDw8Ph6Kjdbu/v7x/2+wr4cDR68sknK2uzokDgZ86cuXdvp7JWxyqEkKYxQBCSTSd5nCYAkOc5g7C2tuZt5Yy12kmtiNlQn6SRVkpWVeW8z/OZc44LcLYOkoNzAKCEBEAdRVLKssz/YCScpvDCC4AId+8CcYw4h49+FD79aYgiODgAa6HVgiSB0Qj+9b9+777+72p0u/AjPwLnz0Oawu4uMAabm1AUcOMGfO5zMBr9cT/n5Ek4eRKkhFdeeURm4cwZ+ImfgG4XigImE5ASVldhfx/+zb/5w5Qc1tbgJ38Sjh8Hxh5cFWOwswOf/ez7OsL9ccbSEvy1vwYnToBScOUKAPwJvy8AcA7PPw9CgPfw2muwYNG85yOLYxiP/3Qe2Z9gnD0Lvd6DH0cjeOut7+LXv/SlR+Dmbhdarf9vxDSkhL/xNx55Jcvg//g/3vf9rRZ0u4+88qUvfRd/7o034OgIlpfrH3s9OHu2njbvHlwIHo1HszRtWgMq1Vk2BYZC8LIwQoiyrLa27hpjXACtY2eRMTadzrIsl1ysra0lSXJ0dDQcDmdZluW3CR+8uxPKmyWJArPgQwguuBBEFGnvg7FVM0kptdWqlnEQc3ttIYQPTgqpIlL78YKT3R8lbuB94KAAOACHIAGC0JEQwngEsERVEUIEXpfk2bwtdc58CkRzZjUlqLYyFoJHUdRoJq1WqywLyfgCMovjRArtvFFKc86VUlJoa6017127EFI6JLS37linoEgoucB6Fql9mLNxGWPO1VurdwFCQDSI6OwD8QpjzNHRUT6btVvN0WhEB721lg5uSjTIe4MOU4qWtdZFVdadmrXn8wNbF2LUEsOAQjsiSBHThRDkh1quEeZZsJJSCMFAUFAxmUzY3HFnkWXzhwbOCViccxZASUXK3RS6LPJxorXWndBSqjnNmeaGnItSAgCGB7f34ZRZyoUkt2OMBQwEjxC9MlJxp9MJgUVRpLgAj1yKugeds9Iaay2G4NC64HUcKc2anRTRgvBRpCaTydHRURQliErGTbJAp379JE6px9da3+n1ms2WMa6YTkhSMk1TqcV7ws2cc2ccMZrpKROqkySJc05rXZalUuLcuTPXrl1rNBpCss3NzSRJvvGNb3Q6HWBsNpsBQx4i8tQRwFjgzqIpqyjSvXZHMnjmqWc3V9fWV9dtaRiGgOit6babaZpm06kQQku56MXHORGe14rYgnOu587DxhiplRTCORdJZb07PDx87PyFXq935cqV3/iNXxsMBhefuPjJT36y2+3+5m/+5s2bNxFBC+mca7VaP/qjP3r75q233377/LlzzvjpdFQV5drKSpZliJim6bFjx55//vmrV69euHCh3+9/8YtfpMqKc+7EyZMvvPACY2JzcxO9vX79ehRF3W63LMvDw8Moip577rm9vb27d+8yLtNG47GLFznnnU7njTffDLWiukcMxCInQDmKFZVM0jTlHPKyipJYRdpZRz7bs9lsffMYGfStrq5Op1PK6KMoWup2nXPb29tKCOJ4ra2tEa+Xc/72228TInHz+g1vXa/X2929//LLX93d3S2Kcnt7+86dO1mWXb58+Rvf+MbGxgbRT8nnUKlISknXCQCFrUpTCCGyLKPgeTQckkRtCH40GpEw9PLyclGVxGSFwJM07vV6URRR4x1taESnowKSs7hQ1nGuFmkpimJROiIzOQBYQFh+YSsaiwXISTBqjXVwRERJPFylpHPUSmlGo9Hy8nK73SYFXlqZsJAOIINrTtsCC8FjCM6jVjEx7QN4b72UMlLaWvutb75x+TvvKC24DK1WUypelnmj1QQWDg/7ALzVaiVRHEUJANBpVJYmaTaoizPLMmu91jpJNQDs7fWJCVuGKooixmneGrEAAQAASURBVILWcSQjZ9E57x1ZedVbtrWWC5BKMBaAIecsIEeoKzMBgLL0Gn1mjwD2jIkQ8AFODR4gCMmVUsabYlZQ880fcsAvVBq897T/Uu5HS5eSHO89n18A5xyAI767i4TPe14IT3QYIIA13nsznWTe1b3/7XaT/u6cEh84Z947ckSonA8uSMmpgRpC2Nm6e3TunBbycL8fCTkdjaWUHAICa7ebcZzeubv9+uuvN5rtONHGwObmerOZHh0dBcAXX3xRcvGlL33p2rXrlcuk0FrHkY7b3Q4ECcCk0N77JBF5ntd7fY3oIU1L+soVr5RSNGXH4zHVYBExjqNut7u6uioZf+ONN9JWM5okk9k4hHDh4mPf/OY33778VqwjZ+zezq4WEiurtKQSZRlAqOjk8eOX377irUvTVAhRVTZNmyEwgBxCcI460NgCCF4UD+jO89ot5901nMXkYO9P6gkLY7R5GYPPNTrEIwrLtSkTvULdRlR6QkTahY0pOefsIS/BRRmjvgoQ5A9grXlQ20C0xJTnmnZGj9Zae3R05L2vKkNhVhRFXHHiuxF2o6SkPUNwBYtuLy7iWEspPVpEaDQap8+c5JwXVXV0dHR4eDieTtbWVj760Y+2Wq2qKg/7h8654XDs0Uop89lsPB4H8JwLLkApaYwZjQbGGIL7XUBO3y4wxsCDD4jOWx3JELy1tn4cNLfReyCZ+ECKE2E+pJSrq6uj8cB7P51OpeL1Cgq+maa8bsk3iCiUIOvBWvALHzwRRAw8LKBSnOs4UzmXojc/N3WkZ1GYnNUS+xRUBSk5cboJOkEMGB7U2wWwOTZaC3AnScIYWO+TKHoInmbEEA/zZsMkSbiSURQ1Go1ms+m9b3eaAVkIIcsyIWQURYeHhxKYeGCOQTPVcxZIkZahZyw4Z6hxXkoZJ5qWAgMQQgrJFq2OcwMKmC8HZIwFW3fl03FCjwCQEQllAdMv0GQOGACdc5JzUn+OlDQVabNYrunhCoo+tda1rLAQjLEsy0ajEX0RAmsoOkT0AVFKIaUkjfWqKmi3pHg30rrISiEEIPPo67Og1kkH74JSvNlskismeYuzwNEFLqT3FpEBQJ7nnDcl8OXlpfX1VWfszs5OlmVSqiRJKmYBwFs/Hk2IL2nKcml1eTbL251GQzQ8VuPxmDOZ57kpveTKez8ajfr9frvdPHXqVFkaH7DVib33R0dDDkwIleellFJHUTYrSFZeSskwuLkRMLlRU2lh0bJD1gkMGQAwDCD4Yq8IHhDx+PHj65trX//615eWemWZA0NEJ7VYba202+3bN++gJ5UeEmORcayLoqJ4znpHNGcdR9SLV1UlYdBFURDt3VrPGAPBhRBaaFomOiIhP+e9t9bcvHnTe6919GARMQSoWfCU+Mm5tJ9gijFOHkJKRrSZCNHIq/zLX/hSHEda63yaKxXleSmEEEyGwIqi4DIkSYLOQeBlXsxms83Nzd5ab2f7fhQlZVmWZe6cU5IrJTY31wtTzWZHUmqpQwDHJTOl5XVjKTDkELyI4gDuzp3t5eXl5bXWZDQmrPzUiZOzyXTn/u7+/j4I4JwLLuMo1TrKsqLd7Ump+9uDJEmk5AAgIkFtj5TTRlEkFCfRJy2UZLzRafnNsL29E6mEpcoUJfVCUBGa88CZYMA5YwjBOe89igilVN4HRAeAnAtKLJ1jOpIY3CyrxbgajUav3YnjhIhOYr4/0GkiJKNKe1nYSEQMgLghDCrvvdbaWmpYBhKOWMSyf+/v/b3t7btra2veOyHEtWvvFOX0xs3DNE3p8F1Z6Xk0r772SlZN4kSTJ16r1Wg0E6lWxuNxs9m8cOHC9vb2ZDJpddrf+ta3fvAHf/ixx9LXXnsDsSyKiogOkYqd8Sh5v3/4gQ98ICtmcRyXZS6EmmQzENw5Z41L05RzuXN/L1JxlmXWhEbaUdLMpjlta+12q9FojEZjKaUQjLEQxwmdxYwxzsHausG53W5Np1Op2kejYVVVjbjhHWqtbWWCd0KysiyFIoYXa7WaFL7u3e+fPXuWA/PztmhrLbVfMAwAgawLQgiz2awwRV4WK+vdZjNe3Vhd31hL0xQR19ZXP/Dss/fu7ly7fkXF0e3btzEEyp3OnT3L0E8m01YjCQic853dvYPDQRzHg9Gw3UuOHzsZqTRNm1mWATLOQpqmELhDH4InpLvKCym0jAVZidAMqb1n0ddhZB0Ys1jp3NcGJPCAiEcy31py8Z6R0s//PKytwX/2nwEAnDoF/8F/AB/+MPR67+7i9x4+8xn47Gfh13/9T+jbJiV89KPwH/1HsLkJSfLuzy8K+PN/Hv7hP4Svfe2PxWNNEvi7fxcODh54uDWb8JM/CT/907C09G6jNu/hq199D7i53YYXXoAf+RF48kloNt/jqvIc/syfgbffhs99Dr79bZhM/iTf99QpUAoA4EMf+pN/XwBAhA9/GH76p+FXfxW+/e36xf9XH9mfeFy69MiPkwn0+9/Fr3/nO4/8uLoKJ07A/v6fwoV9t+OJJ+C55x555bXX4Pr1933/iROwuvrIK+/6Ln/4GAwgyx7AzQBw6RL81m+9xzu99yqOGEjGJQORZVOo01iTpBFjgZrG8ry0xksmEQPnjIGwlQXFyrLI82w6nepY145wWhVFMZ4Mmu1Gu9dplCrSOgQ/m80AYKm31mo0drbv53khOA+e7NggSRtZNhVKIGJWTRG8Ztp7r0AzzhA8Yc3eo/copeYcggcLFDIpziVisNaDQ3Kkg4fMxql5n4JYusiHCmY1jikll1IRbHrjxo3xeJSmaSQjj5ZJSTkCdzwQR4dzLgAszCl+f3DUJGsIclHbo9QmzBv+6Edfa9MtVCBqOxbOmJ9nqd57Y8zTTz+9vr4+ODzy3qdpSlxXKSW5cFEIXVVV5Sx9cT/vqfUBuRRKKeccAQiL7t4FdbEoiqIokiSx1k6n00aj4dA12036K6TVUCNNiAu8wjpnnVNCc86n0ym5gFCOD/O8QMpajUHMqXiIyKHu9TTOxnGcJAndFsKaiXGc5XmdN5H2AmXZ3hOeQN9OcrHA7hdACt2KwAADBs/iNGEscPkAp66hLQgMQ2DBOSd4zQSXihlrpVLGVSvrq0Iy601hci6CCxWiu3t3C4OL49j7wLmS825yIWqkGIBb6w4ODpaXl0kRmlQpsixjjNlq5/jSey1D9FrroqjIRLosS1ovBL+GEFZXV8+cOXXp0qXt7e1Ot6W13r1/P4SweewYIS2rq6txHB/2h3Qfqqq03jXbDeesVOzYsVONxvm1peXN9WNlXtGNoolHk0QpAcCdc0kUkRt8eNjyWkggz2oXqH221WqRewSfK7Mt93pa6zzPv/qVl/f39x9//PGf/PN/oTD2d37n82+9dWVzc9OW1XA4jKLoYx/72Ic++MLjFy89/dRTp0+dNWXZ63SIRy+E/At/4Sc2NtYpjjp+/LhzjnQwtra2rHVxHH/4Ix9ZXV0djUaz2aQqywsXLly6dGltbY0Q26effvqHf/iHh8PhK6+8AgDHjp3w3g8Ggzt37iLiyZMn4zg+dmzz7t279+7dS9PUORfAUylCSumDKypP0DMhAGVZaq3H4/H1q9cc+k6n4+YCuVmWUalGzLVMBRMBwmwypal77949evqmNFEUXb9+nQCfyWQax5GU8s0336TiihBiMBoeHBwQwSuO416vd+HCRe/9cDgcDAb19JYpMbSE1s89+2y73b569aq11Ww2i+N4fX2dMbG9sxNCsMZHEX3IBWBIohxvvfUWAc1UxoM5P3KBWS3KNgufJEK3F5jJoua0qADxGjYBTl3jjOBTBoDy8PAwTdNOp01ZymQySZJkZWUly7LNzc0bN26EuU6HlLIoijhKA3hESn3Z3NA1lJgLIRiAc3PBacaEkEJwYtUJGdptFsdxp9O49MTjzrmyNIcHA+8D59zaSgjFOUfgTAraJYj1PRgMZrOZUpEUejqdAjChqLHXWGsTmboYaZb74OjUoBZTJhgjSILuBYgQMNQgXd1GscANFyhSmLOe66JcCILzdrsdRdp548ErUFrrqrR/kFJOQ8ga4A8heBc4FwQb0YPER2R/KZFfoF2OiLe0VdHrCI4FsUC+IgIQnSNBD4ILoygaDodE+qPefHpAzjnS7KsdvADAk/gA5NPZUf/g2Pq6Nebq21doqbTb7bjZGI/Hs1m+t7ebpqnSAhGXVnqNVjMvi+WVJWPM/fv3X/v2a3TeCBmlSRMAEIFzqWTEGGOMa6mdRRcwgPfWggWCOAH8Ai2lu7EAYalgUpbF4eHhysqKtfYb3/jGJJuV1vQPDhAxbcT567kpq1gqy0pXFuMhZJ2ukiL2Me1xSatZFJVgIIimynlwocCC8D4hFKDDh+DgRZ35YQwRa6b5+zZGsYd0MNjcYQkewpoXn08aAmzeJLU4zinoWQQc88sTwYUkSVrdjjFmPJ4TZqUIHhefKcgT0oPzTivpnAMXABACxEkipaRmF/SwmNXG1KqvNLskSS1ISV/HlKZm43KFPoC3i6PFeqSGCB3pLJvdunUry6fNZnM6ye73911hecSOHTvhXfja17526tQp691+f382mWode+9neY6IgisIoKQMGALDw8OBUqpm0QYGgkB3YGFRhgEEFFLoOJVSBk99WMgYq7cwQIBaqMR7750jsXrBJLAgGFdClqW7t7XT6uozZ86dOH7yxo1bJCEHGEJgzWaDNkdXmfmE5ACguGKMkTEXBlo1tC+AswgASvJ6ZwBUSmEAzlmv16qqKs9zjwgOSWXYzyMhxhgEHmqZtqAUWVsEMlijmqHWiktJwZlzxhijmZZSthrNypqDgwPvLdWBlVKz2SxK4kYjrYoSgC0vL1dVVRSFc5Z2UQrRFpRGVZuFSs45A5YVhXOWMXDOlmWhteY8cCkXLsyL0JA+Ch6qcISHqiwBGQJnDDh/wASvA+jgAIFxsKYAYJFWiCg441IxIedbbt21p5QIGLyzKk4k4x4CCf6WZenQLwaf93orpYosL8uyKEodJdYaANBao/eNRqPRaBhjptMpBQeMMes9Y4IxrpTkOoS5xITWUQjBWRRCOONDCAzRB885txadcxA4ahlFxeDw6Pz582tra99++bJusvX1zTRpRlFy8+atRqNBbZWnTp0SQsxmI2/j0WTQbMWnT5/eunMvTiJAw7lwxhvjyYHx6Ogoz8uVlRUpBITQbjUinXhPAu76YP/Ao2WMCwE8QAAgNRuY95CGELy3NVDIeAAvgAU2D7IBBOfUvsFEHT5OJhNgaLxtxw2lhEOXZZlztqpKHStnkQUOEJRS4/GYzlOpRZomC6GVdrtNIVSSRKPRhNScUHhrbQAIHIg1gnMGOkOqIrDgfAghjmOaHnPpN0WCA1rFjDGtdVXUlTDJH+yZgQljrdaR9xYApNAqEZxzY8z58+eXl5dffeU10pYRQqRpSq50Tc7zrD/L8yiKbOlc5fv9vpRSMi6UEJLNZvn3Pfvk6try4eGeEKuTyWx8Y6hUFFDoWM2mOWOsqgz1qJrC6ljThmBKMxyOGGPBw/Vrt+5v7wvNhOJS6IAQx9p7tNa3G8311TXTMcPDaeWqwDVjTCHRQCqE0G63EX3Eo2a7RZ2tg+HQezabFswzxplkEqW21nNeQ9IUukFgobZNhUVCFcexsaUCsQgeACDPc+cceCTrzkk1ySe5Z957H0lFfm+LIxgAanqCioiFkSSNZ555Znd3dzAYVFVlTGnncm8hBOLXvPrqq1EUffCDH2SMAYTBYLC2vlyW+bFjx2az2d7entKi22sBc93lThzrO1u3ELyWam1t5eDgYGVlTWs5mYyee+6Zo6OjrXt3+bbodHrXr92MtJ6MZ2TrWhTFY+cvpnGyv7/vMLTa7d7SUtO2jC23d3dVHM1mM+99UZlWq9Vud2ez3BrvqoJzZW3eaDSyLKe5lyRJu9P03jtf9ZbaGxvrh4eHxljn6lNASRmpuLLOe48enKsOD44EE51mZ3NzU3D95puXg0fGlKmMYJxLLqVGDEdHg6IoBFfW2oP9Q+99kjQACuecFhIxeGOjKBJCUa3COecCpo34+Q892+o0mGQBXNpMGAcpxeOPPx4QhqM3kyTt9/ulMXGaJEmqpZpOZu00bbVaZ0+eCs5fz68BQNpsTCdZUZblYbHcXVZK7e3tNZut8WAaJYrOOOccYwERqV/k+PHj+/f38mLKuaH2YdIkJb5CCEQUA1qO2jkf6oiqjlUxkNWntTZK5CI0SlP4S38Jfu7noNEAAPgH/wAGA1haAvngLY9GywLW1uBv/A34uZ+Df/bP4Ld/G46OHhBs//DRbsMTT8B//p/D8ePvBoIXI0ng/Hn4pV+CnR34H/9HeOut98V2T5+Gn/1Z+NEfBSmh0YB//a/hX/0rcA7+8l8GrUHr9774v//34X/73+D3fq8mcccx/OIvwg//8B9x5WkKaQpra/ADPwAA8PnPw3/73/7RohD0fX/hF+DEiT/W9/37fx/efvsPw7I5h+/7PviP/2M4eRKSBP7qX4WPfxz+1b+CF1+Ej3/8j35kP/uz8M/+Gfxf/9e/IwXkOH433Ly7+8dV0qCxvQ0HB4/gtufPP0DY/12On/u5d7/yT//pH/b+8+cf+fHgALa3v4s/V5awuwunTj145dIliOP3uHsB0PkyajSMsZxBmsSI3lr0iEWRWVt2u91Go2mtRw/BEyNKKim1Ukop52wIIW02iLohleSSt3R67MRmp9u21kaRWl7uzbLJwcHB7va256WXUWs5mVaj6bSSUrfSRrvXyfM8bUVKSRdwKW5XthwMDw1iZSshhBQ6UjFiAMHSOJlncJKFQGwzW1YW6aSjaBOs9cEh5zwwXPBUFmijmCtaOB/mVAkGAEVRAEOSuSuKotFoKBkhA2s98Xwlo/iKI+JcyfA9BnqkQ1lwgDm8sOCchfAIHFFzBTBgQFio0s3VUQMya4tms/mZz/wQ6SAppVxVhhAacTIrS5wTwytnja+pXZSJCCUdehIAJDhvASzMv7Vgc9ZwHMfkXeGcG01GrU7Lz+27yA8pzFuBF2IXiKhUBIwhBCY4l0JztvgnIR5waKqqEpwT5YUxJhgnVqkItUL0AoIPIXjEGVk6MUaJDEFjURQpLRd4/YM5/FBuXvP85sR2oTlnQSqlorrVmJ57URRxFC84Z9mkUEowAR6Bc15ZwxhbW1/hkt3v7zIXJrPh+vpaAO2ck0KaysVxzAKE4NM0jmN99+5dEhy7e/duWZo4SkejMRkXB2SmclQhAP/eW6eUcjzJQ2CTyaTdbqtIL8XLRVFwYKurqwBA5ntf+MIXJtPRD//oD7Varddee42mKCJ2Op1z587t7u6OBm94X0uZG1MeO77x+OOXZtNxp9MKzusk9t4zFjx6BgGghiMIT4yiBBGpwExPTQjhMDjnsA4SgkCIosh7b40L8/t+dHREaH4IYXB4NJlMPvJ9H/7xH/9x4OHKlatvvfmd9ZXVH/r0Z5aWlv75P//nH/3oR59/7gPj8dR7f/LE6aIo0jimxSWEOHbsGCIWWaGUZIzZyhhjgLMPfehDjz32WFlWvV6vMqYoKI3lvW6X7Mqccx/4wAfW19c2NjYogj1//jxj7PDwUCj56uuvkTtfnKaIOJvNptMpANDsUrr2FauqSqh6iyjLMo7jpaUlCnuiKFldXd3f33/78luUlBVFoZTiwLLprFZ9EZIzKaUkNULJhTFmc31DCFGWFVX6KbGSUrrKrK2t6UaytbVF8gZxHFthy7LUUlHsmuf5dDolVrKYi63TMnTOlWVJ3Zbj8ZikM4bDYZYV48mk2+0uLS3REtjb26uqqjJFnueTyYT0eIk6QPsbfT4tq0gqFxDmrkswTxPEvEF5MWjrYDJI4gmRDCLMja8YCCEkle+Gw2Gj0SC80jl37dq1EydO0H4U/AI+Rq21D26+LaL3OMdtWX0mkfxrDaIBY8G7wDhvJsnq5kraUFEiz58/u7zSy/Jca725ub670x8ejbTWADyO0lazF4IfDofGloKBDxhCKMsyz0tTOa0jzmWRF1JKJcCUdloeRdHMew/IAjJElHUFBklH1UMNBXpqBpcRAFBfKgCwAMBwgR7Sth5CAPDEd2YMnHNVVWGwiE5GOo61Ukpwy+G9IlCAdqudZdoa5+yi7+BBareoBtAmP8edAyKCYAKI3ugAkPAvAKDiQP27LtA8M/MQDxHLokgbCW0rUtbzgAtQXEiphJKMsbIsq6JMdNRut3mz8eTFx1588SP3790Dj1LyqioODvoAsLy+1mw2r964XpW21WlLKbkUzWYzBL+2tnY0OPzdz32+Kk2r1WmkLUQAzmrrQvA0YZRSHrwt8yiK0kac57lFn+iI8CMq89I+vwBq+bxxG9G32+1Wq5Ukye7u7t7+rlTKOmet7fV6kZZonMmLZpSkKkJv+/1+f29Pa9VttQtTWWvNdBKAYXCMMcH5bDJNGy3GVVFUZKGGwDmB3cFxADqOYa64sig/vOeTfXCaPSqd8XDdAuep0uKhk2KOmEugks8sIQiLX1+cMc67oigKQ+hqXenhnAPUk0QpxWvqcW2hIIRI05jUSGj3odYbAHAWlRb0yYyJsix9QLBgUYSyTNN0aWmJ8syyKBSxfUMIDwlSo/MIDAEjLVeXV1qtFga3u7M3Go0hgEwUIl575+osn9JjPTo6SpJEx1HwgfrsBCeKLjpXM3wZCAZCK621Nt4LwYVUIQRvScFcqHn0KqUyxkzHE2sr4CKOU2upZ/9B5xehilmW0S1NkthaU1VVFKuVlV6zE/f7fQis3+8DQKwjY2y3u7SysnJwcDAej/n8QzgPSmhgCzO9ULtzslrCgCpFSgpagBRmYWW1ihvNOMsn1pINlI2imAs2/1UIodZAEEIKTs+CMcYXihyLgIlCUuf8ol46Hk91HDnnSAKJIk4VybLMp9Op5HXrQ5o0afXFseLAlJCSC8KGCeBbiFooLWOIrOVUvWfcg3VKa+Agav4vo8NDCj0/zxjngnMwxgRkGGpqCQCQlHYIDIDTHlXvPEHQ1tdqpowxamOPtBRKciadqUxlpZRSKkQHGDhjjPF8llmsOOe6KoRSiL7RSPM8DwEfLix3Oh0x1/TwaKXiUvHgMYpUUWQA+LGPfeyll35/cHikIs05B0Sl62hJao7oOSdTWca5NCYjPI5zcM4CJ9G6oJQoy9KOuJIxenb79p1Wq7V6vEu165MnT964cct7R1e4vrG5srJ0eHgopZ7NZkvd3sp6bzqdOG+qygkpvXNJEieRyjIYjUbD4RA9jAejtKubzWaj0ahKe3h42Gl1jx8/GceRc06rWDJujKGKrBDgvUesJbbLsvaZEUKEh8SOH958YJ7nXL9xtTJmabnbbKZRFC2vLjlnp9PxcDgZDAarq6v9/oGpnPdBSV6WZRTHGxvrITCSims2m3TiUMwhtdKx4hy63bYpbJ7nSbNBs9damxdFFEXWOSVlHEfWWiFVu91eXl4+ODigQ4pzjuijKAKAsjAnT54EgN3t+wRzU7NkTQLiYdHUSUfe3LlUaB0Ph+NFhxciOofWofd9KaVzqLhkCAd7/f39vq2sEjJJkygWk2zSautmK+50Gs3WyShKvviFl1zw3HspFPVs0l9sNpvNTtuhJX/2yprde6NYt5xzXPGD/UEUxyrSSSOWUqpYtVotACyzcm1tLdZ6dXV5f2+wt7fn0EvJPTLGmFKaMejv7YcQ1tfXldCDw+He3t7kaNxaajMvq8qWpQEAKh0BZ1ySI2m9e1JPQ/2sOeeStdoN5yLqXqPpMRgMJpM8YGABBAdK8xCBIVNMBWQIfnFscc6LopAP7ATqyHA2yzudzmg0opOLUlZSACRLdNoout3u8y88v7W1Nc0np06d+A//w7+GiL/+679+8dLZpeXu5cuXr9+80dxLO53W+QtnT50+fXBw8Morr9AsQnTTaf7qq6+SMYMxjgjgs2lO8nONRmP77k6kNMX0EAARv/zlL0+mo5W1NR1J60KjkSRJMpvN9vcP9ncPHrtw6ROf+NRv//a/zWdFqpeGwzEdQIj+3PkznMN4PO71Ot2lTq+7PJmNK2uiJJ5lRVGWSkopGDrPBXfWWm+N8Rh8q9U6f+7CrVt3gkfnUHKUSjvntEhms9mc1COCR2Ds8HBA4bsAhoGFUB8fZVl6cIT8pmm61uutrC07Z0ejUWGyRqtRVPne3u65cxfOnb3w2f/7/55OZp1mJ5tVaatZFcaZ0N3sFbMi5vLMqZOj0ejDL3wIna+qqtlsvnPlWpQmlSmuvH11qbu01FoeDofOoDVja+08fghSCqWU91gV1ZyLIKJIU8yglMLaE5sHEvMJnnOplAJP/T2OMRagbtTDeXv4YhgDn/hEjTUDgJSwtvaHBVM0lAKl4Od/HmYz+LVf+6PfTyNN4Zd/+REl3/cbQsCpU/BLvwT//r//vvCrtfD93/8AY2004Id+qNa++ENGFMGnPgWf+xwAAOfwt/82fPrTf9zrX4wf/mGoKvilX/ojcPbv9vv+8i/Dz/zMHwY3I8LmJly48AC8vnABfvZn/+hvDfNH9jM/A7dvw1e+8kdf0v/zkSTvnkuXL393ysvTKYxGj8DNzzwDv/qrfzqX98cfjz0Gzz//yCtvvPE+0hbz8cwzj/w4GsF0+l38Refg8mV48cUHr6yvQ5K8B9z81DMXl5abt27d2d29n8RxQFRKt1qr7U4TETkHIdT+3gEAJklSzApERG+hZlBWgfn1jdU4jvOyRPDee+MqHanB5GiSH+lINZupOZgKyeIm86IcZiWPUabq3KVTwbHJaJpNMwcVchslUafXVkr2lrtpKx2NBv1+v5oGY8x0PCttwZEroTkHtC6SAiD4EMAHBI8cIYRIqkjUWhCMMSReMyP7nEeE8iijwBAWCsVEcKEtTkeatlBjLCWwLiBF7/T+qqrKEqMoqp3E/+Bg85SKIReCcSIzIXqPSEDzg9ibc84CBEaeXbUoaJ2DeAgheOfiOG0mKV0kFQjLsoykWrDZLJL5iqb8DgAcejJxWNSMF6RmACB0j4jJJRTNZpMcerFulebT6bTT6VB0QX5oCz4HZSWL/5Bz49l2u13bKiICgNaqNvo2JooiCMg5E4JzeODvR8yYPM8pmqVHtiC71Nj0vPN7jh4wAL4AzenNCxMdzjmXgs0tE0ltzrqKCYiiiHOQUjYajSSKxVyy0hhjXSVlwhhDCJUxUaQa7ebh4Ki73O4tdSb3jnhgXMDFi5fu3Lk7mUwkV/QtiOjDOU/TtNFoxHFaFLt5ZpjnMyys8cQGIHcTU7lW471BpCIvkySZ5UVlzfLqSrfbvXbtHWPK4CGEkCSJlHJ7d6eoygDw6quvfv/3f/8nPvGJN998s9/v082ZTqevvvrqZJKRtILUCo3f29vrdNrWVlrLU8dPmKoK84RXKElMLOMdPVmEulua5Di89wjkLV9Td4uiiHVUzqaMMcpPiYMslAQA5xwTwlr7mR/49LPPPX1weBjAL/eWHn/88SeffPLcuXNlWf6lv/SXl3tLZWkWQFAcx1xKNe88QGBFZay14/GICLZRFHHO7969S6SH7e17AdjBwYG1NkkS9I6atBhj5EjBGOv3+5U1Cysgmu0kh50VBXGPQgjtdtt779FaxylbzLKMcyC1sVOnTn3iE5/o7+1/4xvfcA61Drdv355MJkopQrpp0+CcU/9fHb6mMUnQwNyQs91unz59+vDwiGBfKjidP3PW+9DpdI4mg9lsRpdEyZcQoqhKwDCdTre3t6XUBKZTTM4woPchBCXE9evXGQtJktDW5JxLkka3G507f77T6dy9e3c6nQ6Hw4W8O+OBeulo2jPGpKitRwmI8N4LoQgfBWDOe0JTqSNkQdNcAGiccyGZCIKEN8NDQBktT0kbSo1iKBVF0WQ6Wltb63Q69+7d896j81IqXrdz8vr3ONFCF30fdfsh3R2GAT3WKIXUGKwxrpmknV5zMOjfun3j5i30Ae/fv99pL62srDnn0rRB0slZkSulEALx/qqqqqzxPgRkQkiGDAJIJl3lK1sxxpSMTOWsteBBKiWl5HUc7OrKFWdCCAaCSbptc/A3OEQE9It7wTkPyBDcPGmnDnrkFqbTqfOVtVXaSrvdLqkECvbekU6j0aKCBu2h/FFtJgJKFg8DAYirhAxJ4RPReU/bK20EAgC4oBMH6J/exZAVklM2WJYFY0xqFcVKKGWtlVoKIaRUiOiMpZOp12pfOHde1hKrDEBQ3WZWzKp9bBdtKSVGjHuvoihNY+fcxvGNa9euvfnmmwFYr7cspRaMC6HyohScMcHo9Coxn2QT2hScM5xzrVWiNTX5AgBJlCzoinWdU4jgMbAaSSd+4jtX346iKIqSYEwiJXqveDStMoa0MGRRFOj8eDS6dOlSvdqNgYCT2bSZpJLXB5gxRvjAleRcItbmmwE8PASq0lhUihY/vnfo8Ogvhvl4GHR+sPwE63a7JGKF83aDMK8kU0CzyPOttVpp4j09+HBWU0eVVPSZfm7pyzl3vt6SyHGLas5ScmOcUgqgdm+jGgYiPvn0U3mea623t7ez2YzgbGeMkhIQ2aJZZn6dtHN5j0VRkGyxc64qSikFAAsOpZbTaSaEAAH9/UMdSeccA+F9KPOCMQFCmKyi+hM5Jgkh0TOtEq200L6qKpJEwHnPAVcMAm12gjFIGilt2YhuXpyodx4ppVbKac05J0kjkuOsqqqR/P/Z+/Pgy7LrLBBda+3hDHe+vzHzl2NlzbNkybIs2W7ZshtkPMk2Np6AB68b9wPi0W1DE/EA07SBNgGO5340PDCYDsBgyxhja7BkTS4ky1KVVHNlVWVVzvmb73zPtMf3xz735qAsqUotq/sF2hFS5O/UufeeYe+19/7Wt74veu/3vXecH374w7/3zDNniaDT6aIj76HT6SCi1jpQz0I/JCKoIeX6yYeYtuwSRITeO23QeQBw1mnnT58+7pwTAp0zHpzzBpGUqjgXiMEhM3i8EoAHICl5wFNqssNC+IJzhojWOVOWzjkhuIgkemAMsV7eiXmRK6UQfaVVKNtBTyGZobWOZCIWma0bOycsUCnvnHYGsOYOK10iYr/fn81m3tuy0klCYSVqjGUkwnVWVZXN5wAQysQEiQBGgEezkBtyC9q+tdpaix5MDXOzZhLLJGZMcM4RmHM+SZLz56uyKASX3W6XcT6ZTPI8JwbWukaz0Wg0yrJ0AFJKwfhi/qvFZMLqOaDnnHMRiTDuZpOpMcAYG41Gzz//PKLnUvCFZNsyCFtriZBLsbKyorWeTKacc60sMgjhNww3770LWnsFmwyz1bUVIohldOTI1mQ4mgxHRX9tOh6i81mWWasFh/l8GsUsEq2yyvM8v3JpxiVfX18jFPN5ORnOjFEcebgkAEiTpKpUNptXRemMbTRaZVEMt8eTySSOUwAgcEtYnwCJiACJi2X0CAPfWweAbmHfsZzLsJbMAwhasZJ577TWz73w7Jvf/CbGUEgmdF3iwDkv8iqKEudMkqYhP+GcCyubosiKogoWtcaYOI7DgoMUG08mQRkfgjr58toEU0qRwkajkchoPB6PJ8PjJ7bKsrxw4QIRCwl5ISRg7TkeAg7VGwjGGTrnSPAQB8oyD4tFEcfhmi9cuFDmRRhBShnvvWDcIwuyCVxQ2Gt5b7x1SZJobfpJ4kE3Guk8G1e6lLEcjWcXLl4O+x8GXFWKkdROA4AQ4sjRDRLcOOPBlGUpxVqTvck575gnZM0IrTch/2GsjiLRbrT3d3erspyNOqzTOchdGr250xqEWS8UKxCi0lqwQ+dgNIDRASCg4BurqyiFJOTkMwAIVb0ewRhNESEssqGI4L3zdepaxjKOYilajIxzlhF57wjZ0U2extOiKE1VhRrP4DLknAfviBEhMk5I5J0D71lilaqSKEIEISKlNCIe7stGq5EmqyUU4ZdDMV2arPheFqo7vWPnXqHp/CCJV45sfMfFC/75Z/1n/vAzk0nS6bQHhzSbHO80V1dXVyfTyYVXktmEhDi20ksnk8nlC4ygS7h17uxExsdWOg9YazlGpkQC6jRP2srp0k7G44h1PbS832KE09G02+2u9kReVtyzLM+c4mRb3B/PJ1eEiPe2V49uPHriKHvxxZfyuZRSWKfAqVgKyR4E8ILGhSpN1Z+MYnCRqcbGWsIjJ4+tdZrNy1e3BfPOOUImJBBHInDWv3RWzCabjSSVXDhnkijyYIFJTtMo4UYZxhjUrHH01gEASZICnHOEAB6UUgYsExR3k16vGyfRfDrz4LTTjMPwcC4iHsVrF8654f61KruTo9NF0m4cAQciYoJzNedG6ZHGe05/g3Gzl86K2eSU0mo8XPOoI9kt8zHheDzC0QGgf0BG3DlMG6ZUSsQ1eafdajdbnenccHnUkeGcOyAHFbEMGUcEgV4SGh0kfEAIyYX3Doy1ldFEhICMMckYOM9ZIcV1QVxj4KmnbkXHXmdDhJ/9WThyBP7xP/7yJ585A//m37yx748i+Hf/Dv7Vv4Jf+7XbqECMx7C3B83m9SNHj37573z/++Hnf77+90/8BPyJP/HGLmnZ/sSfgMuX4V//69c84Su739/8TfjJn4RXX33Nc156CWazm3SBX89dL1u/D3/rb8Gf+TNw7dobu7avoG1u3gq1fwn1idu2PIdLl+Cuu64fOXkS0vRrLd/8Yz92PR8T2j//518KN09TOHnypiOXLr3ha77lWUURbG7CaHTraXfecwZp9uQzB29+64Oz2eziK5dPHTvd6/W63baMpaqq4WC07SpjNOdEDMD4oswUUpjEK1M2i2acpiLis3lmvY1iAcxrk8skTZq8UNPSuHa7KWO5ttk5d+HqwUSdPnn6ofsfePXli85XXOJ8NktbYnNzTUQ8K/NcTeaDoQW7crTVpFVjzIVXL127ukM8ArJlNY94FGhhzlpE1MHDg7P6YFjO3ezhtERIa8VnwMCcA6htNhBxqUyllSVGYcUipUySNM9zY10g8dUyDhwZCf+aWhq03P6HPddikeloKaDn6mw63SBb7Gyo52PgvdHO1jqQdOzYsfX1daNdlmVFUQhCIURVVlprZeudRbBpCbgVIlZaGWNwoQ3NGBNChNJ+AHDGoicAiKKo0+mVZV6IIkitBnvqZV4/4IBCiFBjhQvkx9cVseC9L4piOBw2Go1w/gJlqp8/55wYhp+z1gLeIF3NmQlG9IulbL3OkXL57ozVABBFMedMKeWZC8lU7z1DCvcVbpyIkF13z0ZEBIeMgXeAHgkWWzzbbDbzPE9kBAAerJTSo9NaExcBRGo0Gg51ls0Z96dPnxpPDquq2N3dbbUa4/EYEJUySSLKqhgMDznn7U6LEb9y5UoUJcePnhwcDqt5FszJ4jg1xniPadpspK3b9hcpIy6jOG2kabq2thbHstfrTadTre3O3i4R1dV+nAdm3tNPP/1t3/Zta2trzzzzzH333YeIjz32WOAQOOdEJMPUv7O7O56O7zxz8swdp0hQPppffPV8u9k6vnWiyiujjJBxAPq4EM57QixVFV6Z8w4tMnYdfbLWFlXJOSdGSGCcZQhpsxE74JxPp1NrzMrKSpIkBwcH3nsi7PV67/7274yiaDQYl2Xpvb948WIQugwpiiLLA+7HGCvzHIgdHh5676uqnM/nRVG1WrW6CDIKu3jiDIEAQCkFvk63MFYr1wFA4LaDR0a83YqrqopkDIwqXSvJpGkafvTY0c1+v885j9LkU5/6VLOZrq2tDQaDzc3Ne++99wtf+MK5l17udHpp2pzP5wGhDu6Fm5ub1tpXX311fX09iqLz58+HYWW1HhdF2K6GXcbLL798/vx5732wjCrLkgHuXN1J05SIClOGfEy4hbDXDhqSS5g4qNxUVaW1poWXlXMukZEFG+RWwvYw2Aw2ms2nn346YFAhMqRpGszMKlUEDQkiKvKqyPdoobTOiOA6/4wAHOdcBAdR7wLeuMwDLVEjpZSwZK333NN1BmfQnXdBhIiCgEhRFIgY5EHDDTebzTIvwnORUjoHjPMFKONFxIPVm1bWOUPEnLNO+wD2hxjkEJzF+Tx/4olnj59eOXlyC8js7x9EUdRsNofDQ61tVagsy6MomU2zoBjnnNG6cs7RonrCO/TGKWU4I3BeV4qIew9BeyiJ0tpN1Vq/CHC11AgXC2AcvPfW2TCbOAfWWW9rETrGGCHztOA4L1D5OJF+oaDEOQ/q45zLoiga8QxuJ7sTOu6y9GPJbvY3U2IBoDauC6gQBgz6uukn1GxZE2ZAAAjk1pDWCG9aCLG6utrrdQBgNptl2Tyk8ipVhAKKgF0iZ0FrP5/NOs3miRMnLl26NB0OwuAM773ZaVOel0YXRWGMraqqKKqNZoMx5hCef/75l19+udVs9no9TsJ7LPLKKGOtJybCUxoOB84bY4zzplKOMSYwck5zHhmjA8fHewg9NbwdRLTWcWLOO+98q9ttNpuz2exwsB/G83SeN5MUkKy14/EUwUkuGIlERo1ISik9g8FggIyQMyEZEMVxrI1fStAGlnoIjkE5GhGD0dyyQIAWUhjuJk2A11g6LN7mcv5bjjpcJMyXS5Zer3f8+PHt7e2a921tqKVdfmr5otlCqR0RJXHtrFIlY0wKYb1L4ySKopCDiaKo0+nkWTkcDolh6GZEFKrdA+q6tbWVZdlkMgkJCQAwxnS73T//5//87//+74d4dPaFl+bzOS4QoqXuUripcHCp9oIOjVKhQDsgO6Gu1iEIIQBcq9mwzjGOWtk8z50D8FhVlTU+4sHHwzsXsAwlpczzcjqdRw2BiCKSplJVVXGGnhxqjOMYoB4FUkYMaTwel1kZJGGWbyqk2uTCCXc6nRIxUynBWFmWn/70p9OuREQhII5ThsSlJGIhxRfWjuh8iDBLRsMSoGQLr5LlMtF7H2Rzw8iqqurue942nU7TNL3jjjt2d/efe+45Y0zgBYOHRexmiGi0q0odyVrLLCQ2vVfhdoI0UKCuL4FRwXgUxchoMpnM51PtQqLCWV9fpJAcAY0xk8kMcZwmjcXKtSZf1xHAmLBGVEYVRZEQNVtp4qMkSforLS6Ys/5gMDRGWbQAJKX0DkLMZ4ypqgohAm8oRwBPIfGDyAA85zyKIuek1hU4o7V2zljLZ7OiQ/S2d7w1y4oLFy55bweDQVFkuKj6t9Y6a1WliCB4s6yurg6HQ21tWZbT6RQorHFdSPbmeR7k+wkCTc9WVVUVZRQFv1krhLhw4QLnPE3jwLxjjDljiTPvvaqqsAlRRRkipBBSRhyBeQtRFFVaKaUYq++0qqz3OQCURd5uN7mgKi8mk3l40cRgNpswjrPZhAneaKTzWVmUs0pn6xt9a/V0qpXS7Va/0UwIGEfa399njIHzVhuGpL2vKj2ZTJIkWVtbu1puj8fjNDWCWOhCiMgY1PiOlEGIPSQMnHPeOm2qWEjPF+Uvy7jknHMOgaIoIgaVLrXW+/v7VW6ff/75hx56gBgjjsH1Iooi14AgZxS+YTweh1X+ZDKZTCYLUozlnJwzoZxrODwEVzMdQpcTkUzSWEi+rOQAgGBaMplMQslUv9+vSq21Lsuy0WhKKafTaciahPGiVe3GGSJb4NFIGStV8oU+TPhawbj3XmvLOXcmyBo6xoQUwlrtLQjBNYQqKx3HcRLLk6fvlIk4HGw/+ugjq2v9aCd65dyFXm9lPJp5g4RYlbUp/MbGBud8NBlHCW80EqL+se6X0ct0E1hNABIAADMDAOin0E9vc+Zm90t/01ehNVe/Ot/Tb97mYNyBlc4NfxtQC/zu994PAP83BjA/BABgAE2CcggRgJvB/oKUt6zUdwBNBKigqsI33XrCehPsDeBgG8FNoAJgABYgAFDZHABghQN40EP43McAAE7frHYKAKPt+h8SYL5XX95qeEEtAABbwNbKrZ+qWwZtDu0veqr918E2vX0roBngCQIA6AQEKtz/GDaT+qzV5KYPxTH0+yA8nDgKzgE52NuDC+eAA2RD4HDze3mN5gBQAL/hIfMU0u5XeiM3ty9RG+bcQo1j0ay9VRfiJ34C+n34+Z//UlTft70NfvEXb//TX5qWyzn8yI+8AQL1jc2YW/UlLl+Gf/kv63+nKfzAD3wlX7tsP/iD8B/+w+1hxK/4fhHhX/9r+O//e/jDP3zNc740pfrLvjLO4e67/8jhZiJ44IGbfAJnM9jefu0PvEZ7/nl497uv/7m6Cs3m1xRuPnkSvuVbbjrywgvw9NNf6iNpCv2bd5pvyCAxtCtXYDy+nlfo9eCBB+Cll259+xcuvHww/vQ0H44nB+PxOElEls3KKsvKVp7nly5dYsi9Axnx2XQWi7TX60mZWW0CzCGSWmwByEdxzAUzXkWRIAGAZjQaOK8BXFFONzfXj584GrebTz/94ng6LHVx6ep5U1nJZJzKbrdbVNnO4bjRSJJmdzIZK1OJUrBGYq3dOLJGRMPDkUCJEk1llLKLMlAImXLmufeeAy5RZqz5ktcVFOEGCt7yT1iYhYTVaavVAu/LslSmCprCiBgK22UUCcFDAr6q1CzLkkjf9uEjIiEHdIF/FtbkcF1U0y9/3TknRBTGtFvY3MVxQoCKLXT/iL7lW74ljuOwkQk/ETZ6nmod6nCPy22OcZYWnjRhOxCWVWHLyepsgQ8GSEKwLLOLzQs450NZoVIKF8ittcZai4w4qyUNwy8mSaOqqrBirKoqEBTCFfob3AiN0YLVxIvwbcYEZOC6kGO44JrCuIS0CAAg8KvCxQvGA9xMRAwp4FcBM12++prNACAAwPsoipCR1prHIopqi5qw2SEibVxVVdyzgGYyyYUQh8NBoxm1+42kIVdWu0i2LPOdnWvHj5/stLpambJU3uPB4XZ4ZZxzZ/18Pr/rrntObJ24emXHWeCMAbhAJOect1qtSEa37TBVVc2KcRynnPOdnWtLj6uwAI6iCFHOZrNAwLLWvvzyyy++9ELYbl+6dMkYs7u712o1GWNAXmsdalDzIosTkef5hz78wbWV1X63i8ZxYtvb2+gwjmMZJQFGIOI1yuxc2HYREQAtd5T1a0KcZVlVVaFvW2vR+ThOA/Kgtc7zvKgqbSpr7WQyIhYJIba3twM/jIiCZsUShwmqoVLKhTh4natIkuShhx7inF+7dm0wGDSbTS5FGInGWc65NU4IIQUPGyXGWODeWWtn2bwqVfADc87Ni3wwGISB0+v1ut3uxYsXASCJolB2Fsfx1atXW63WqVMnOp1OGFBf+MIXrl27dnRzq9lshnTLfD7v9/ubm5uhuyZJcuLECUQ8PDwMBktFUUyGI2fM2tr66urquXPnRqNRu90Oo0wpdf/99zcajWw609peunQJANJWOhqNQspkGZoCuByCUlVpIgroYghjAWtFxMCybbfb6+vr7Xa70+kEK6Cnn3768uXLSdIIUhvLEoGAi+a6fguMiToBFhBi7xlj2iyhretBkgGGp0cLpW+7ANd8TUQOHLs6FllrQ80cN9pxQbWM5gIPzWdFls7n05m3TsrIWsu5lFIqrS1aIkKPznkpuSBGnEpbhCjGiAkhtLOAHgQaMOQaTvtYSEA92s8EDlZWOxG2TGWEEBzKZto6utG9dOnShQvnnfNxKr33UZRY68CyqlCI3FTISKADQeACzd9zbzznnFlnvXOgGaKvsUIHgFY7zoXkESfuwGuntbLKGgLniZBJH4QQF8PbOk0MPFhwimrqKDImOFKgH1vryTNyFCTiwclah+mL2va1K0aVfEkU9Z4RgSdrLfCAQtrlJISL2OoXqTyiWtffew+EALWPnDEGkYxhnEtjFUMBYAHdfD7tdludboOYbndqo3njUs7l/v6+rURVKVUVQrCyUJzz73j3u9768IP5bGaM2t65un1tt6iqRMb9pDM6mGsSRVHOs2mr1Wok6Ww8AmviKiZnH7nvgUajce3atcFo4JwzxhGRjJBLVlX5eDoN2jGJTLTmgvFYxtba0mgLUDkMRDtjinlVMAx27Rycd84ZNN6j9yB57AxY66zyCU/JMuusBU+m9Mqut5q9uOEsWCKQ3DTk8RObZZaPx2M9m7MkkY2GAeBMHBwezopCG+eZ9ITAyGllnQFwDNEDOY8embKMowYE761drDls8K0SBPRa2yYX2LXOXWesL0E9BsgYB3QAzjuf5bNr21eICMl7sFEsAF1VVb7WIQgDOOiyewAkD4yR8c57G8ex88aD9s62W92VlZXB4XBY5keOHTt95p4nHv+8AwZYGQ+28oeHw2ajTSi9qxBRlbrMiyUOHgi2zsFHP/rRs2fPDgaDfm81sP8YE8YYB+gRlTFExDg67wCdBYuWEFHwxDljjVWFRkR0wDlzzgbloyiO0zQNvbdQhVfWlYTIopgROMeNMRXD2CF6b71VgWYHXnASuqy8941GmiSRssp5Y5yOosiTlyLWTsdJPBoMGGNpK7ZO+cozAlxMe977ssq1Vp1WmzEWCSqKwgEmsiFl8tLLl5tN74CcQacpStvGuCLP8zwj74QMql7gwGnvjEWLxIkBgDVexCJJIqUzrbU2VkiZpO0iV1xESN6DKeeKtyGDw+3JtbRoPvrwm4Hh+fPnyyxoBXhAj+A4A2ud954RSsGsc0prCGYXiGH+tra20BTCNOKEGBFxxgQy5jyEbD9yljBeFAUyhp4ajVYURYJH8+lsOsm8g0hIby2LpPdOSiGlCJUQIcebFXlYrDDmj5/YuPe+u/YOdsfjMYpsdTOOomhe7anKkY8Fb1pDSCISkbOG8yAHVIcp6xQCGYuMIgbMWM8YSimiSDhnolg473VpvDOMhDc+jf2pY2tPPf6Zw4ORquDEyTtc5dFhnDDtsiZnb3nTWzqtLvPuIx/+4GBQqMHBgVEV8VmlyslMRFEjkr1Oh0t26eoV8F54JEBG3BFqW3HDrfFkuavCQ0PGkAMCojZmwa1g1lryxjmHFKbGyjkTS66VkhERceeU8z7PKiLuratVzJyXiKDtbDh1zu3NDsNKV7BEVxaAIwBD9JXfuTQISwQgF4wmdq6OrNXaakSYpNna2hoy5hHTdssj06X21nNEy1rgnNF+79pQAEnHJY+4F9raIJrGOLdGATpirpkmeemcc2WhiEGwwI3TiBNpbRAFERrjrHaMk3aV9457UtpJjI2y4Jm3NpEN1Fz4hqvG+VQTgbUV55yYbzRjrSsA1FoBYCNpHu4PqkqDY7GMwwYMgdZX1xljhPzy5cu2cnEcK1NFApyzMWfeWXI2YgSevLHKWms1khexOPvy8whRq5E0G6IqdLvZIOEZl0DCGkYcQYMg6bxFCqaH1hIpb8EbYw0ROe2cBQbSeQML8RnGwNoKkICQW6aN9ogeQMYcGfY7/dlsMs+KiMmDwe6pu4+99ZseOfsy7o4uY6rafXn6zMbO9uFkoojJ4LnswSHirJjuvHj1jjvPcE5ZVqytPAT2NSaEr7evtz/ixjkcPQrveAe8+91w7703IYAHB3D2LPzu78JTT92Grvi1b+nt8isAMJ/D3/t78PjjsPTlSlP44R+GH/uxW2Hc97wHOh34H//H21M+f+iH4H/4H25z/Nln4e/9vZuc3zY34a/9NXj44ZtOa7Xgp38a/u7ffd33AwAAxsCv/iq87303QZNKXb/C7/1e2Ny86SNVBZ/5DHzkI/D00zepFsQxPPIIfNd3wdvfDtENaMPGBnzP98Cv/dqtP/0l7vfv/33Y3b1+5Lb3iwi/+IvwD/8h/MZvvN6bXbbbvrKf/En44R++DnPHMTz4IHziE2/4y99Qcw7+5J+86UijUSeo3lAT4iaMvteDb/92+Pf//qtwha+z/ak/dSu1+V/9qy8jCfKOd9wKN9/yDa+naQ2tm5mUP/zDt+kSeZGtr68f7IxeOXcJPO92JZLJi1xIPzwc5fMiiZtaeWTYX11ZWVlptZplXr788isxRIQchI9SrtxUSOomslKFyrKscG3R5JKct4tCRjabm+HokDP9DQ/fM59lTz/5+TgWEMuqtEkSddc6+/v7STtudhqFytvtptI8z+dFtu8sFrmrtOJRLHjEGKNKMet0YZ3xiNhKksl8YLQl5ksTkwcpJSELeFkqZFYWDMl55xEWohZBJ4QZaxgTABAgsHazkySJc05r7bVXSgX3lAAGISInJlOplLbWMkCnX2OJQOCxRie0ts65WhHLebfQ0EBEREJAqw0RZ4wzJtBVoaywNvdl3KiqkUR3nNhS5Xw+2mfeWO8QuXVYGQPWpVEcwKBATiqqMvBpcCkJ7SwxhkTeWiE4gA/0RhnJWTZJGlGz0ZnnczWqQj0cl8IvZC5EFIkk0laLSAZxBazZckwIBgDWagCndBEnEsBZsKH2PSDq3lnvLKFAX++dicgF1huCA4+eGBHnnHFcQJCICELUpG/GWJIkYVPjnGskiV84bwW7cmttUFEAoJqFjcAYlzwKW/Xa1MQjJymYFCIqshyROW1CFWapFSIDoIDleeMt2rzKKpVZsOvrdzKS7VbfGFdVtiyVUqXW2oMdDQ6r0kkpwUVlboqi5KzRSLt7h6NWrwvTqdYVkmdE3htELgQbDgaNjdv0F2+9qnRVjANE7xaIOSHqSjvjOOdJ1NBaa225lFVljbFSppy58XhKRKura0qpRisN4CZ6sNYmMtKVvXZ1B8nO57PhqHl04+jJfltSjJ6AWD4vhocTZTQRVaXKqxIRtNaDwWCeTb33ERfW+jzPi6wAAG3MbDbTRnHOjXPGmIAlWgtpGgUVvul04rwjAmOAGEouYJFoCciybLU4r6t+wy41VLUSgCNfFNWjjz563333McavXr5irVtd3Wg0m8GdCNDNZjNiLBBkW81Gr9fLsmwym86yuTGGM9FIm60mIcF0NiFA9L4Zx4lgzWZza2OTMVZNJgcHB8aY7pEjs8FoZIw35r4zd0kpi2m+0u4PxyM0cOfJM61ux1pLHmSjSR50XpLF/Z29pRAz59wqm8ap914VSopkdaW9deL44eFhkqRRFDPGGOPeuyQRnLNer9tqNZ977jnH3LFjx4SQvV5PSjk4OAzsn1BNDktKIgPGSWttPTrnCFy/2/fe6+BB5Xir1Tpz6nSaptNsLiXnnHc7nd4jjwRZvP39feu00mUxrMsaAtYseKS1ljIOhdzW1HXtceyDkKALwvSMAm8TF3BlyGYRcbBERAYrRBQRguDokJQAzzhLLGjOGOecq0rVqTbAIP+X5/ne3l4Q0AlYSbA2AUTtdSC1SV6TjxbJLss4DzztQpXee22Nc87oQkphXdVuNWWCWZZpUyRJzCMZRQlils2LJG6sra31ev1+v3/u1ZeqqgIgb32ltbXWe+sdsnBxUBehIPmADFLN1PZLH+0QlbgUgvElddR77xCICBZCFnAj0xsgZDK9twyQcxHG/I03GNSBag3sm5XpX6vhzcQDT3XJc6iTDbEv2CKZIHZyg8tcnbuwji9k+AOp3hjnwS5OA6UUgGOMaW2jKMnzvCwLznlV6TxXRLxQihhlRRHUWpuNhAEeHBxk02kcyzDCp9Np1JdhwFRVFWibjLEyz6zTcRyvrKx47xDp1VdfHY/HMkqEEN1uSyk1nU6DZPCSKWydjqIoElJwbjQpo621nJFHGE1m3pWIqEqVRrExJqRVq6qy3nW7XWQwmgydqTOrQohWkqCzZZ6tr69tbWy6sgx86syodiuNZBQLrnVFgsVpCpzKIncextMpY0xbw0RtfQDOAUJAtz16jwgIQRVh2UNufFnGGCluzxvxbik/zZavmC0MD6FOpNevMgjxhCwQ5zzID9Vl43V2gZbpXOcMIxZStRjc6iwgAWMsjpIiL51zcSy3to5cvXpxOhsxXtfY97p9ABqNRsHUotFojMfjoCcDi7w3Y2w2m33oQx8KyvSTySTAzaGHBylbVjsIB8Y9eG85I+c9eeucY5yUqoL8VlHmIdUvhOh0OiEbWRldVnlV6DhqLCMRoiiKyhkfngj46zwCa73xOiwRms1mmqbOm7oEDGrWZCKTTMSHg31OzDnHKA5pNMZ56GyqUL3VrnNunk0jLozxHj0RvOvbv+3555/f3b6QNBuEcjqdzWimtQ3RU3BBVBcXA4BR2qNmTATpGnSGcx7HMm0IY+J5OSNkzpk4jpQxiDibzzeOrt57392zbD+O48HB4GMf+wQ6LqVkIPO8WOQegwAZ4oKq4MAG2n4Y5q4uxOOc1wrLWutOox26k5SSM6Ez5b1vtVpxLPf390tVhfqXQDdQSkWRZIyWNJWQBg+E06D/jrWKGVoLp0+ffvQbHj374nOT2fjg4ODhR++y1h4eHkopi7xYWekhSFWiUmY4HMaxLIrMWEXEQ2mFUtYYx4KkhifGg0iIM0Z5sKPRNHShOErDGr13tP+Wt7zlc5/73PlXdo9trT/80P1Xr+3u7V9TmU8buLm6euzI+qmjR7PJeKMdvePRu/YOJi+8emmq4Lu//0+IKPnNX3/fsdPH77zzjms723Hjrul0Ph1NwYFzTlurvC0rE0gQymmGjAkJDIWIiyInIiY4I2GMcR6NN8QoChwNhE6nv766WpaBrY/oqN9fGQwGOzt7jUZSFEUoR1iWlSyXR+EfjDFYLpcXGn9aay6ZEJHSZaPdAIiIEBk48MaYNG3OpvNWqyWYPNw7JEbWWk4ExAiRAhEbeRiwDiGSwtUJYB6SUnmllKrJESEHGYxhkXFEBPLe4sKJpRCCaW+ttUqZoqgQkTPJSHh0SqkvfOEL/bV+q9XSuiLOZPByZAwg3dvba7U6UkacRLcT7ezsEMXL+MYYCsER6cKF89574tyjCVkz55zRTkYcgrMEYphNhAzevYDItTLz+dTocqXXihsxMvIo4qSZzStPGCXSasM4yShSugQiyTh4oFp0DzhyAHDW0CKbC3VJEAZRRQLinCtdSsmt1UnS7HbbZZnHaVpVFXF/7ty5Smd7h1eVq4y5XxDzPuhfjTiPikIHxBkA5vO5zs18Pg/dIJvn0c0806+3r7evQev34U/9Kfjmb4bVVWi3b3PC2hqsrcG3fiuMx/D88/C5z8Hv/A4Uxdf8QgEAIE3h9OnbHP+DP4C/83dgPL7pYJ7DP/kn8KEPwf/2v91EXAWAN78Z3v1u+MhHbmVfnj4NP/RDt3659/ALvwC//du3nnz+PPz0T8P3fi/8zM/cRMh9xztgbQ0ODl7vTY1G8N/9d3Dx4muecPIkvP3tNx2xFv76X4fPfOY2J+c5fOIT8IlPwDd9E/yDf3AT1P7Od8If/iFcunT9yFd2v3/1r97EevYefviH4cknb6Oqwfmt5OVle61X9r/+r/Dww3DvvdcPvuMd8Cu/cht9kq9ue+wx+PEfv/7neAyDwRv+kqeeAq1vMn78CpjCX3E7cuRWae8LF768V+HLL0Oe3wQxf+ELb/inh0MYj2HlhtKNxx67zWlFWZAshGRKmThm/X5fSskFjUYj51wUCe/9nXefybKi0+kcOXLkwoVXY5lsbR3Z2z7wDhu9OI4FgGNM5NVsNpuVZRklCWMCAaWMwapGo2E07O0dShG/5Rse2tzcvHL52rPPPsu5iOM0SXyz2TRWTWfjXq+XxA1ioLUuikorzG0lZWqdm81mnEVps+2tkzKOZTIZTqaTrNFsJ0nUX2vP5qOyzPPSWWsBnZSiqjR4mhsVbMyDS0dQCFxsfGrdYed0oHYGDmAtk7pooS4+7Ft1Vck48kvnDLz9WApF2M65+XyOC+B7WUa53EUut5CuhimQCTavNQ9r2vVsNju6ubm+vh6+bT6fM6Jl6j18VVVVRVUGLK+oSudcnudBr4AhCcGXIn7L1az3PtxUgGibzWZZloEfzQRXSg2HQ855P0nsQrctlG6HdaOx3hh7g0QJWGujKHKAfIEMwII2vlxOL08OHDsi0tZKKQOMGKAPolpJI9QvhhpctxA5LMsybLUAINhBUW0EVesJ1DDLQq8yXMayNHa5TUvTNOgph12zlNI4HaBwRF+ZSkrpQA+Hg2vb6daxDWttv7cqeLS/d5hnWRCzbnX6ScMdHg5VZbCWo8Td3V1YYHNhsxnQgyiKAnJy2w7T7fdo3srz3BgLC+VuzjksqkuDgqK1VkrRaDSCLgpjeOrUqe3t7fl86pyTkldV4RzM53PJhZTSeddI03a76bwiwkjyOI4PDw/3rh28eu58WVbFRBvjAhAZxBJZPXE6YywRgAPvQQouOCeiOElCuXYoL5ZSIlIcx/fff/+ZM2eyLHvuuecGg0NEjGLR6XSStMmprmpdSLKAMroWJ1iaQ2ojpUzjGDgGkegnnniiyAprbRzHgYdbVVWe55UqvPeBWhRFkVJqe3t7f38/y7JQbdnr9tM01Vp7cFYHiVFoNBpxHEeR0MYAo/X19fB4Nzc3jTHz+dxCbUVjrI2iqNvtTiaTdrutjWGMWaWdc1mWJVEcnP0450GF4+DgAAgnkwljrNfraeuiNEHETqeztrYWwIfz588D+I2NjSRJtNZXrlyx3r3pTW+KomgwGB4cHHDOsyLP51nYeizIqGit3djYmE6njLG8Khkhg1qeUTAeyl77/f61a9cYY0FnOUgdGmvn83mWZUqpJI0AICiZwEIywVkXxjLn3BhHDEPQW0opBFkCCzaI+gbMInRm7z1jXBDzHmXEmBEeHXEEC5GNvPeakxRJoqK6NLUGgAC8h8DSyvO8KArGONaKEPXIZIjW1yIA1lpXO3chMRaGkPEuiqKiKOI4NsY4gqqaSynyYl4ZCDbXh/PRfQ8+8Mgjj3zhC1946qmnXnjuUn81Pn78+Gw2C85IvU5rMplm2SyWsVJasMgYQ0DW2oWuMQKA8yYIAAFhEF4NryXckfXOaRWeiHEhItWS8t57WPhdBbQrDPIQmCSTi4hPIYg7hKW54DJu3jZMLNtND9Z7QiSkRW1+zSJni5yMMcZfH9gQrplz7hECuFYXsANwTlVVMaRgPhCwvytXrnrvGMeyLEP/sMYzwYlIa++Vj4SwViNAu9nO59l4OFJ5PjwsTp06dXzL9tq9V1559erla+1GWxnjnOt2u0Zpzvl9d9+ztbVlrR2NhkrpOI6PHTtmHVhry7IMheFciqIokkYjTdM8z7kQDCnUyIdoZY2uSuURvNWccaWUMaa50qyr6b3T1gTd8KqqwoCMWcQYM85iXjpbba2vbm2sEjpgyJAqqxnHJJYeXSyiVrNROgvknfdENBwMhRBhTF5XqKgVM2oj4AX0eV0iihYT1cJKwrovWWTovQe4Lr1CyzX74rtDC9EtvD5EDPcejjBitvapqHGr8KPGGOQsfCRN09lsxqW478EHBgf748koivnTzzyRFZUHS8xHUbzUDIlisbT05ZyqynPO2+1mwFhD5HLogpZFEjfa7fbe3h44Z7VmRIyYr+dIIBaEIFDrynvvGPPeWuWttVtbK9/4jd949sUXDgYDKSWSn80nAFBpPZ1OBcM7zpy5cnlb8KiRNpQuJ7MxZzEy9B6cQ/CeiAeNDmO0tkZINhmOnXNRJBEjRPQOo1hWlZ5MZsW8WFtbG4/H3rpIJlobImo2U21NqHw5ffpUkeWNZvLSS5OIi2/8xjddvnZ1PJo+99zTOzu7aZw24kYkXZbls2wKQIxhkqSItbpKeH2hch8AjFUITEQChc/KrNlKeMRXGr1ms1mUmnOZ5yUyVpo5oDtyZMMNsvPnL0qKnbW9dq/AcpLPg+xJDTfjchnkETGEorrXAfgbhQgEBwCtdJZlwQ0vy7LV/mr4NrD1p4LkNBEvikIrqysVrJyroqjVqBdGZ6E0LFS5WWullF47rfWzzz775FPPxSkIwZUywdEiSRqq2gZw4/FYVd4aVKoqyzkXBEFGWQhnQQjvXb10RvACCRhwTpUqvLdCcK11xCU4iKIoEnFZqk988pMnjh1ZX+Pra61iPnzpuafe8vBDV7cvlVVx6ZVzs/3tH33vD3z0/b/9rW964B/+s38yP5j8v/6nv/2+9388geqdb3vHH/zeB9V8TEYxb4+ur21tHvnsZx9njDtw3lrOiSgKvpFCcq3VJJ/0ep0syzjjrVY7y7LaqwSBcWx32oyxRqNhrQlJ0yRpBHvufmclzwtjXDBPWGCvcGM2aLE0JAAE57wHpOtofkhDVqUjoiRubK5terK7uzvzWeac6/YpkopzyZgoyxlyRh6IyBIwQADwCMExnDiz1nrvjLUijsKa1VpntMFKEyAnNNYujdqUrrCW5+aI3jmz7CfAMUyXRBTJpOYCEzmP1rpiXlSmQvLeW48Qx3G3251OR0nSOHr0qNXWOcizuohSSh6w5qqqLl26UE4rnookSQQLE3GofJTeewekqopLieRb7QQA4jhWRgWtMcnRmqrXaZw4sdVf72/v7FnEyXReVpoJAu8tWMGZdhoFxzrp5RG5tSUAxCJGRAMQ8moL4sz1eIvoAbyU3HsruHDOME6AXkacmIvTyHv/8ssvN9pxJORLL53rpK2N9SPZbNBoNGwFQdwm1OJ5gpkzQTEtn2dWj/pbX3rO/3r7evsqNyL4y38ZvuM7buX/3rZ1u/COd8CDD0K7Db/8y3/0F3e7ptRtqJfvex/8o3/0mh+5eBHe8x54//tvwsKSBN70Jvjd37315GYTtm4eht5/KXli5+AjH4Fv/uabFAz6ffiJn7i9PMUXt8ND+J7v+TLnZBkcOXLrVb388pf51BNPwMsvw/33Xz8i5a3CDl/B/f7Wb8Gzz94k9IwIW1u3kltDM+b2VNlf/mX4F//i9j9hDHzkIzfBzUGZ4bOfvf35X61mb2aOfmVEfmNgPr+VLPw1a+99760Zo3/xL16XlEdV3fSa3pBB4rLdAjffdn9TlapQh84ZQNXu9BkTVVWdOHHskZUV59xjv/8HXMTtTnM4HL744rXPf+GzxQRO37O5vrpBArqtTuWKShWMR4BsY2PDOZeXpfdIKFVVJWncafeRs6rUaeLLQnXbR44dvfPs8xedZRawLMs4josic84JwQaDwYkTJ04cP/Xxj388yzJE5kggCSGYiCIi8qCQ+2ajUVU5CiMih2SOHD0xnU4cdnqrK41GYzqdeuOllOPBZD7PtLZaV8YYB56Ih0XyYteG1ga1YvAenbFlWdalq1Z5h4E21Gw2g32u4JF2BQEZbxfL+NvDAkvpZ1hUoBNeN4pf4qf2BgcO5xyA87pWW64qXeOwAO94xztWV1f39/ZqlzMAJAqYWpD0pYVuRsCSlsqixhi/kCwLe4RQIVqjDd4bY8bjcZAC2NvbC+hzWZYBIx6NRmsbG+1m0xnjFyZSYWvJhQjoCzCaTSbhdpIkqSqFUkZCBozeOBuIq85d932BxTIv8GMolAJ7gCXO41zgaQXQKUgSh4u32kRRtCCb11seAIiiKGz/ww8t8WUAAHTLhwwL1ZElbh5+CABkJJVSTAAFArw3zhnidPXq1dl8sra20ul0Go1mWVbWOl0ZKajZajnnDg+HSpfOAiLFMR+NRsGCstPpTKdTWHgqWmsbjYYqby+mEYyaglP78ikxxvzCQ3tBf6m5LFVVFEVx/PjxOJbGKCTfbKRJkpSFmkwmzllEGSQvUoqFEMZarZVWJTp0xlWqAMJ7771X+NaF85fGsykRCREJwYiIc0LESLAoEmF0pGkaSRk4psaYQFVcSs2sbqyfPn16e3v76tWrALC1dYwxIgZRFMVR6r2fz+fLZEagzwegM6hZMsYC+R0AjNOc8zwvAQCcD6YveT6XMjbGlFUeUKPAEZlOp+BdYNEFR8GAvIH3nDFrfZSm4WsDTqKUQk+V1UmjdSwKRQzWWhdgzMlkQkRRHG9vbyuj4zjOsswTOm2Wmn5lWTYajTvvvJOIxuPxtWvXiAgItdbtdts51+t1hRBlWSRJEsex945zvrGxvr9/kGX5ZDItqjKoAly6dDmO46qqptOpWyjlLjc2IURsbW0FWZXJZNKkNMSTnZ2dNE3RQ8g67O3tqaIsy9IhcM5XV1dbLR6c6pqtdGNjw3kzm82C2knIpWmtra2fGOfc+1oRCMkj0FK5dym4KoQwRi3TJ8aY2kHaeGsVt9KjU7wiT6g4AFRVhRaVUnxpOeWdsQBK2UAUjuOYc25MHUYZc4jBIB4YUhiixhhiRFAPWuTMggfnEJm7LoTvG80Af0DAWwGoLM2rL1/otVc67ZX1taPD0WEk4v3dgzvuaJ04dnI0Gh0/fuKOO6LPfPoPJ+Ms4tz7IMsfYocn4rgwRgQHHhfauwHBwVp53ix08cOQDUQ/RgwgEJqXkHGt+yOl5Jy891DLb/PrD3ThzAM3uMDdNkzADbL0N9CvvAG37Do3xll2i6/XQmkIABqNBpIfjkZa22azGcexUsponcQSEcGTMYZzCeiqShujGGOIJHgAHC04Uspwzp3FOp4G468sS7e2IiI1KK5evtLudlZXV40yu7v7k+GE4tg6nc3ma2srq6unev2OUmoymQSgtt1uz+fzSxcuBxkJ731ZlmZmGWNRFIkoaqapUkpw4b03yhpjAHwsJZHxhFEkRsMhY2yl2wOAYJgbnnyUJpXRo+mEAcRx5L3zHsqiTIza3Fg7vr4ecY5GE3jjLOcE6ME5Ig/eRpFQldNOx2lcaC2i+MJzLyzzch4A0XtCREDi4e07AHAeqWYh0yJ4+wV1fUmEv937vZ5sWIJQ/gYNaAS3PAIWQgLDGmut1mWFiMhqG6uw1AhhJdAVwbksywCwqkyv1xOCcUFlmRdFvnXiyMvnnlvpreZVOckmgCBkLboynAw58qVKtSorzjmA8z5kn6xzxlrknDt0YYkQ4HhBolIqXMyyT4YJHxEBYWVzBb0bj8dlqdudZlVVV3e2v7PfO3XHHdP5XCmlXS06rIzRlTl55/G3vvWt89nv5/O82WxOZwYcykSqygYuOSFH9OABgTGGXCYh3jltx/OsUFW/3282mzs7e3fddXeVl9euXSvLSjBhwRpjwwJomSQ4evTI2toagltbWxOCbV+5+t3f/cc/9/knHnvsU9bpEye3ZqN5pU2e58gInUUA7531SpDUztUZda0jwZyzxjvOyXuIYuG9NcYo5Ytyvr6xigw8mLLSpa5UpqKYz/PJZz77aUMVZ/Lhhx4dHIyyablUQwvD3MEN4SIsL80iWC0edaAVEJExkCSJZLzIC611s9nknI9Gw263mySJtbrUJQAsDNBQax1sggNg6ozx3i7T9bjQ+XI12mzm87lHd/bsK47gxInVazuHxprzr17s9TtJktxx+s52q//Csy8fHsw4F4SheK32FQlSUwjMGuRceu/BOiRvrHLOAZqNjdVKFbPZTEqplRJMqKpa6a1ynJ9/9VI5G9x/z8lnnnz1uSdfffDBO37pH/2DX/z//L9//Tc+uLUWH11dG+9u/8j3vwdV5q5eaN5171/7f/70+YuvnH36sxfPnX3k/jubaaPVSgZDd+HcS+N5Bt5pY5GRtXp9bSNNOhbcfD6tdMkk2zi2WRVlS6QrvdWIJVevqjzPGWPEKE1TZEsai1NFeXBwMBlPAWCl35tP8izLptN5ndUT5Jzz4M117aq65oAAwUNYsVprnQv/CUMm0nmYz0rGC2LQ7bbjOOn1evuHB2Vezmc7AAQOq6rqtOpNp6sUECPAMNF4zolIWWW0tWjAAWPcWR8KnbS1YHLOJS3WH957RiKslU1VAnBkQmsdp5G1WiklQmraYRhlQgijPePovB8MBh4scW6dufPOM3feeWeWzby1URShx6Ddf/XqVUai3W6Dcy5UUDoCdGvH+u12GwAIrNZarPecJe9xOp1qrTuddhQLBzZNEym51rqYZQDgvW2msa6MVtnDD99zbeeqsTmKGNEab3qrnU6js7+z54x3ziEwEhwNZFmmUSESQ69NxRgLEtKIGCg/sHCr8B6DdSqiN1ZXygZ5QO20McZ7K6VMZBTH/K57zjx/9plut73S39jZOYijxnRSjcdTzqVSxfr6RpomF69cjuNYV6rAXGsdS/FaM/7X29fbH0VLU/jZn4Xv/M7X5J/etnU68OM/Dru78MEPfhlZ3j+KZgx87nM3YZGHh/BP/+mX/+Cf/JPwgQ/c5AV38iRwfiuy9uCDNyHv3sPP/dyXssIDgDyH/+V/gbe97SZO6x//4/Drv/7lFYfLEn7kR778xR8ewqc/DT/6o9ePcA5/9+/CX/2rMJm85qeMgb/21+Dnfg6+4RsAAP7jf4Rf+IVbz/kK7hcAXn0Vfu7n4G/9rescZ8bgvvvgqaduPfORR27VzoYviTWHdvbsTZrO7Tb89E/D5z//FcKg/4W0tbVb8xZXrtye//5/YpNSHoynRivGAckcHA45p7JU2phLly4Zpxnws2ef3z8cHjmyfvKOrU6nNR5Oru1czot5p9MmtFwQ436ez9Jm0u/3S2WUMnlednrtNI211tk8M8bFUdpI25967POvnrvqPN555r5r25eNLauqCKyFNE2cc5Px7Oz8pWxelaV1zvpYiIh4xLu9dpbNPDN33nX67jvveOyT/1nZuUiEcWo4GWRZcebMmSSJBuO9lZVelmWjw5GyZafbbKStixcvmRqmMH7BYvbOG+OQ+cXunsD5gMiE1QVnDAAChbDVah0eDJmERqOJiKay4AnRE33RWAKAxcZw2bz3ztebRH9ztXRNeAoIhffeu8BDiqIoIGvdbvdd73rX4eHh9vbVUIW82Lf6gD6XZRkYSIF9Er5f1/by4X81y4pzniSp1toYSxSMasx8PjfGJEnSaDQCcRU9uEUB33g4bDQa4aGFzcuC7RQ83jkiTrN5SNgnSeKgpi0vydfLf+CC3RyQ4pq04VApxT3RQqAWwC9h+kBzDlcSeOhi0ZxzRLVoLyJa65a1icvGGHPOhLphuL55r/HHoJqSJEmhgnqAAwBjDBdMGyMTJihWViNhWZajyVgZDQCTySRNm51O4own4vP5mBbq0kQs1J0LKZf7jkAfTBYaIHF0e7h5d3d3Mj8IysVwA9qwpB6G52acddorpby3RCAEq1TBOLaipjEmSWJEzHJqNpuMKGhczGbzVqthnZ/NZrs7o/X19j333Hvy5OmHHnyk2+5dfOVgMsvO3H1XFCWBADubzWLBrdOB8Witds4xotr+TtuyLIOOymw2C/vNyWTy0gtnkbNlSTcRWmvHo2nYvNccygDZIXrvZRwFqeXAYQfvA7jJRJ0wQA/EGRFzzkkpEb2MuIcoICf7+/ulKuM4lkxYbayvRdJpYbiHCKFDhn1Q8M7hnBOr1d7ZQlTdOVcq5b1vpC2PkGXZbJZZ75yD6XQuBIuiKORm2s1W+HcYaLPZLIyIPMuXqaMAYBdFMRgMwpGA3hZFkZfFQlPBh6tKkkRVhnPhnfHeM8lw4f8USMrD4TCKIm1NlmVxHAdrnJBRY8Q2NjZGo9F4POZIxhhg9aBL09QXuXNuOp2OhxNjlAMfCKNLbWXOZRhi1mrOyVorJdNaeV8LPHDOq6qojA77rzCQb8zZBEwACACotqADC+AAyHnjjDdGcQqCl4i2BnDQGKOUjqK41WpPp9MghG+tNUYB+NrWJDB2iWrqu7UykowxpSohxGw2I85CZ11dbYZHrLXO5rn1bjbNtXKj4fyTn/j0/fff22v3s+lcsrjU5Xw+/6//+HeqUn34wx/e3d231qexBI/GOPS4xMIYw7CMRkTiBCF/BbDQboYlc/B6HEcEcB4X6+8Q24MSAaD3PuQAicDa2oVsIZWAAIAL51MAGxjSt40RoS3hyCXYDQDBonBxwnUDXF+X2AMt6rKXsdiD1cokSRJ0bdI0raqKc5JShm22dDKoFHnvAShoThERY0AYNL+5MYaRIEbe20RGBFhkGScScdxrd7b3dofjUSQTyaVzrtVqsGbDGcs5P3p00xizt7fXbjQ7zZb3zht39erV8XjsHIhIzuf5EvXjnIeZaX19XSlV5oVSCgEYQ6u0Ay4ER0RlTb/TDQOgKkoQ0oHHoHzPSGtF3sdJIjipstLKSsZPHdlc31jl3ppKJYIrZ5wzjEkC8FZLLtBZxpE7qtBVtlJGP/3cs3meh28GRGJMW42IoWwKGUdrXZCtQQg2jm5RrlJ3GB8c/G7/lvE6dR3gBijqxnNu/NMv3NsYY5xLIiAiHyx6BTFGSRpVZe1s4MHFcZyXJTGnTdHtrVhI80w/89zjm0dWD4bZO77tG9/5zne89NLLH/3oR3d2hgSecx7CFlGt88QYWquFENbpkHyOoqiqtDJGSBZiqyBmjbUM4lgGXwXnkBChLrNaOikjkShVFaaBTqdDRO973/va7fZ8PrPWIoc0TY1RlSqAoKqqF198AZwPC5cwAxljOBdOmYVdpHMWOMM4TgCcsxYWIwKsK7O8zPLpdHZVXlaVAU9lXhljwlI1rDmIaJ5ncRylaXrt2rVmI3nPe95z1x2nP/WpTz355JNPPfXUD/3Qe++6665/82/+zcFwsLKy4tErVTl0AEbIqKxySsFDnSIOSSbvbTNJlNXW2kYjBoBSZ8dPHTemnExHUSyMN1evbrdanXa3nxdTY9hoPGAxbW4cDYF7NBpXudbWggMA8EGvxbnFyrJObMDN+erQf4gIwGmtYyGllEWZh6dtyRpjRMSllMoqRCRACx4AqqrinAsujTHOmziWnKeS5DL6h3kCAIizYMVmnG42o95a9+1vf9ulKxdfPX8u5I3nIj9x/NTq6tpk8nkZAXhgtKissSrEf/BkTMVYZBdSBlRTxHWr3b7v/rvOnj2b54jOOyLvfbPZmkxHwsxPbq19w6P3vvPtb21G759Ny+/+3vf+q//9X5x78aVv/qaHJ6OD/f39T1y71P1j3znf3y7n2eVP/t7a0a2f+PEf+bX/8FtZXt1/16lYRg898nDnC+nvfeIxLdmkrNqt9ubRI9a7ex+47+BwdP7S+SNb/f3DvapS7/2B737mmWeef+4lY6qyLI8dP3LkyGae51rrJI3G0+l4OGZhGraOiBrNVFd6Op1NJtM4jgOTN0xYgQ9unfPOhZfH8PoKexnb/Q0+MwCAKJAQvJ2M5+PxuNFITp06laaN4Wgym2XT6RwRG41GMHTlnMC6hVSZCAaz1lmPnkdMa82REUPBieKYPBEHErHWxnsMox4ApBCInjGK0tQYp7VhDFVZBT9J7xCBAdYVfGETQsTAQbvZtt4CAKADC4PD0Xw+L4oSkWfZqCzLg4MDox2QjgSLonQwGKCzx49vvfWtbyWiZ555Zn9/P0lJxDFjgpFkFBVFxjn1V3tKl1obY8tW3FE6H02GSZJEUXRsc200PgTPRsM9bfJKzWfj0eaRk52+sJVThTK2Qk+cSyJeGcscIKI3lhjziEFsR5l6hxM4zt4H2T4HECIqKqMajVSZKorEvMi1rn02ptPpaDw8debE3u7Ban9j6/hRQXE2VzvXdkfDaRTFhwfj48ePv/e97/3gBz+oddVut4OlIefyS0/6X29fb1/1dtdd8F3f9caw5tDiGP7SX4KPf/xr6oH2Wm02e123YAx84APwgz94/cjp03D0KFy+fP0I5/Ad33Hrlz/yCJw582W+nHOYTGDtBuvILLuNxrT4oozS+9//eiHUX/1V+K7vuok2+/DD8Bu/Ac8/Dx/4ADzzDMxmt3kdwyH8zM/AT/0UHD8Ov/Irt7nsW7QXrlyB5557XdfzzDNw+TKcPHn9yLveBe973023Q1TLT98IxH/iE7e5kltaUUBVQXKDuNDODkj5Rwg3E936djqdr2RoCHErm/v11A18Vdr3fz90brbx/NVffV0jFPGmFwRw65+vp3F+3ScwNCHgi0k17Va707sjcOiKotjbmfb7/W6/99K5F5979qU8g9X15MEHHt6cTLigra0jSilAM5mO1jZ6vX5jZ38sZFRVhYj47u52r7fSajUAiHPpnNvf379y9VJWQLuddDv9tbV1zvh8XjBG3W630+5dvXaxv9IG8EFnII6Tvb09Ip4kqXPImUzTJqA31np0Doz1KCNK24kyhbFlI40j3jg43BMyHo4H2bWsUnMAUGWltZFMenQksNvvzmZzrWzYEtZpeyQpuUNrdNisCbYQW1iCR2h8nudXr14NPnt5ns+thgAjulsx5Rtb8GYBgCiKiDgRIVzX+QSAwDhBRkDXOW0AyBgPO0e2MNY+vnW81+vtXLuqVG0zHi7GGBVIIYGDEjadwVJosUa9ji0sEGoXKI3h7qqqQiTvIc9zIUS73Z5Op2VZEpFxNsBhAReLhFxdXdWVDkTjsDQKAHSWZcYYkjWl2nvPGKuMXkhUey5FsINbIs6hBTyESw4A4X7D8UAI9d4nSYKIAWIOF9xut3FBSydinPMoimBR4L8ARpbkMOe9XWK1gUMNAEGze1EJagGg3+/P53PvPBExIUutoihCgkYjks7MsiljEgBC6WSaptZq7+NOr31wcKBU2Wq1Gg1oNBpa2bKsiChNk7Dw7nbbg8Eo4OChjFKb23tLBryIiCHWZOzwrgM1zS/UnKFGmcLJYndv+wgdaTYb3vt777370qVLAXRtd5rO+KARp7UejSZIloj1uil4PH/+fCNp5tN8f38/4l3OeVEJLnE+H2dZ1kyaWT5DRALvfMD9sbLWgSciZwOriYxRy94lpYzjmIgcAixwFVy4UwYNFsGY1jpNU2RsPp9nRR66d7PZbDabBBjO1FmVJEkcBea+5RyWmy8HPmxyrbVE2Ot0m+1WNplZa9FDt90JXoJC8ADua62zLJNSNhoNo7Sv2fQYyohxIeURyNphD2ic3dvbI6IoioMWjRBMKRVcytFDWZZFUQRxnizLkiQJ/ScwlMNuMTz2/f39MMzjOOZScCkWxjNB8dx2Oh0AQCZC2asxxhoP3mtdEZGUkXOu2+0eOXJkZ283juOlZmbAABnS3t7efD5vt9umUnEcnzh9qqqqg4ODc+fOWe+CkrvVhjHWaLQEk4asNR4ROWPOG2cMoENEBCYki+M4zx140roWlxdCxI3UGBPedU3c9UEYxwMwFKhM5b2HUDMLQY39egU/ZwtbQ+fAOR1EIUPhQ7BoDGoAQeLAe88AnfeEJBlHzuwijIpIIoJxpK0xzkpg4C0jslZvbW2tra199rOPa62TpIHIItkIA/vVVy4BOgCSIorj+HDv8MUXXlxZWdPakqc0TbN5XlU6yO948gsVBHSuTpEJLsJ84GuMeKGFtKBX35zIAgrB0VMIcMiDJLzj9b3UyUYGAWijypgwi9CinnrZXmtquc1kc7P4hltIF3nvAVnIY4Y/F+oKiLWdKK6urCitR+OBkAzJSy60VkrpAAgG6BAAjPYaglIHLtIASMQIoSoVl8Ia1Vtp33H8eBo1XnjhhVYSr62tHjlyZHd3tyzLUTay1k5H47VG45577vHe7+3tGKWazTRkFKbT6dWrV6fZ3Bgzm2bEmRARAAAhpxr4CHUovV7vzJkz0+k0m82LoijL0ttKsogR80o306ZSyijlvWu1mlRPMmyeTTlh2kydM1WhGGIk2daRza1GyxlNHBnzxhhiwDzTuqJIMALBqaqqsshRSMaYcvbxL3z+2vY2ssh7zwTnXOZlIaRwxi4p7Ywx45z3QLXPgXcLBLDGjxwgAeO3z1QvpkkKdQDL1ALUKLMz3tPyNF+b2sEiKxtgVY5Uebv8lPPGOiIGFohz7Dfag8HhbDrdOrGSeGh1O1IyYOWDj26srbc/8nvvV8psbK7GcbR9Za6U4lyAdYwR51wrRZ6s9dbpolAy4oxJaz0wkIwzQO+tVTW6vcwbLyJCwMHR1bMdHRwcaK0hZLORKaU6nU6WZfP53FpnrW01281mWhRFn/M8z3d29vd3D6RIiWgwGARpF+8hTmJj8lCdgEihhsl7X1VlSD+OhyOgoDumAqw8OBxprZuNRlVVSZJY64xxzhVRJI0xSAgAly5dUkrt75lf+IVf6He6VVU8+eSTDt1HP/qRqiqIo/f+cHhIDNaOrMhYTKfTBx544OiRYx//6O+nKctmuS4rIYS1Grxz1pBAC77UBeekVCkEO37i5CsXTJTKVy+en+fq1B3d1dWVl87NpGAibmhrZ7PscG+kS1fmyhv0DoMGEaeFSvUNC3qqbRtvIsjTYhigs4GwEEcJoC/LkhMry9JaFqcJWAcAURTJOKoqHVynHRpiABbCLI5LRTbyzhtwhGwhj251kiaPPPJQ2k4effTRd3/Xd/yn//SfPvn7H5/Pi3vvPSFl/JnP/KEQrCotZ17pMsD6MgoTjImjNIoS73E+10TgvCFPRMA8dDqdZrN54sQxItjf2W80mt6C1lUURTFGk9H4xPGjP/WX/tuf+nM/+cv/+J9v7+5++MMfOnXnPbN5NhzPy2l+38kjcdL89PMv/Y2/+fcaJ1a+4Zu+6Z577tnZ2VlZWfszP/FjH/zA73zDIw88++xT88kBMnn3XSePbp2sjC5VpfLZdL7HmZ5PB+v9NvLO2ReeLYs8TaKyLI2xd999d5nl09mwKPMk5hsr/eFwrDUIIYjx5cMHAOdAKbNcl5RlyXnI9MrKGOccZ1KI2i9YKWWMA6Bl3rJWb/KeMQBP4F2lVZyIjY0j2bSYzuZSiCSKdRJ8t0HrSkoJxOJGrLWutCLORCSYRGWM1doaA+isUc04AhKlU7osBQnHrJRCgdWVIiaQPAIg2iiKwLkkSYbDcajjAQ9E3Bm77Gahe0gpkyQK1UuTych7DwQXL1w+/+rFfr9/5NiRy5cvj0bjViNlwJJGspyqoihC9GWW7+7ujEajyXSI5JSuhIiUUnk+iKMG40iMI3kAi+S9N8PhoFRVp9sCgCRJJuOBQCci0WnFjbbIq5yG89Fo4FGSp2ySAxjGI6NVlMScS5UVsZDKqxBFiUGn1eS97sHBgRC8LGGR8Vw2Z22ov8tP3XGyt9q7du1a8JG31lrvGo3GbDxL07S/srpzdf/s2ZebjfZ8mlnrWmk3juO1tbVXX3315Zdfjhvx0rlBa43+9huDr7evtz+Klqbwd/7ObQC1S5fgM5+B//yfoaoAEY4ehXe9C/6r/+rW07yHv/AXvpSExdesOfe6SNZKwYc+BN/5ndfVBtpt+K7vukkV5I474MSJmz7VbsN73/uVXFWW3YbafIvcRFXB7/4uKPW6vvDgAB57DL7/+2862GzC294GDz0EWQbjMVy6BM8+C6++ClevwmQCZQnOQVnCP/tnt//OO+64CS8GgE99Cra3X9f17OzApz9908dPnoQzZ+Cll64fcQ7Onr1VXOJ97/vy7+vKFdjbg1Onrh+5fPmPNrfh3K3q2L0edLtvWDD6kUduxWrvvBOefPL/6OV92dbpwPd+701H9vfh4x9/XZ+9885bIfI3venLKz5/8QXcIo/+zd8Mv/RLt55GjABIK1MYNZ1OC1Wtbqy/8srLV69eNg7e+k133XnmrsFgdOzU0Xa7+fgTn+v1ehwpaciV3mqr1bl87fyRI2vD8cCDSxvJdDrOCn369Bkp5cXLF0bjQRTxJKG4EccJZfmY+/ZwOC/LfG//mvdmdXW92YovXHi1LCtrrRDxPffdlefl1Ss77XYzTZvgSekSkZEjFGidns6ngTTKBPfeBdnQJBW7u9tKKQc2iWMgiuPYObDWHhzscS43t454742xeVYW88wYK2WUJFFeKUDnLHivHCyJw06bioiM8RKjsizzbGH96S0AMCaI3QSefnHDGlHlNeIJ1/EE5xzx68KPbuEv5b0JNLvALfDee2uOHTtmjArM37ok7oY1UJ7nAcxRWgUkLggvWGtrkIHAO38jBBGuJxwJ51eVCrKioQVne0TMsiwSMhISAMD5IJdqFzRtzrnSOkg8O+cqrcuytB6stVVVtdKGlDIvMiIizp1ZGlBdp3UvWVlL/rL3HsAvlTGW67EAcTDGjNKBSRC+JrBTASDQYMPdISJjGB4vYwwBgdESzg7fk+e5Q3DGIGdBPERbBQCVsZzLqlLMo0x63GnjtPOuKIo4jhDBWlMoxRilaTSZDMu8bDab3W7fexwNJ0ePbrXb7bNnzwb2NGMsz8tAbQzQWSxvn6KQUlofLxGhpXQ4W7iROec8OAas5uaHp6fdxYsX7733nqD8cOnSJc4l56woijKvwnPzGN6qJAaxTKbT8flXL24dPWpKk6apBc04AC9nWeXQNZoReh1FzFkrhPC+1uY2rt5WWFOLSgedjZqpSfULFYwRkTJLQZgqVFg6YwAgoIuBQFZUtWpfUExmjFljtNaVqjjnCNUyZRLgAiBUZRWSNFVVNZtNIppNprpSy34VIOArV66E32ILYfG62wOGPIr33qhapyVkBQK1zoEPuLkQIvybMQbgrLX9bm+p+7GysiJE5L1fWVkJnbbZboVOuL+/zwDCdjIMbY9gnGWe53nGGAt2TVTL5PI4jq3HoigaokFErVYrSZKd7W2lVDAAa7Va8/k8jRPn3N7eHmPMGm+t7bR7RldBLWA+nwtiW1tbSZK8+OKLwfKUSxHHcajMYEwYY6qqstYGnBhqXrOtqqrdbkkpW+2Gc26eTdBLIQKl2DHGYiFz50J/Czr+SilfU7BrHIwB2hoiC9RbIEKH6MHxZahiCy+gRcSpAjMRFjqJoWo7REdfK8FLay0yYgyVqsKONKgvOW/C8w3prxMnTq2urr/6yvkXXniRMdJV5ZwHAMecc9aDPVSDJImMsR//vU+maRpydEVeChEBEHoiDIXhNYLMGFu6sdXXv7jDWnNzUbxQJycXt5lEEQB4V+dbgtNiuMdlNsx77zyFJZfDG0R/bmCtLnHG2zbvfTBdRES3eJ23BFZaVEMvzueB9xrkApQuEXFzc7PRSHZ2dlRZFUWRpqlWhda60WgY42bTzFqLyLQ2QkgAYAwWFGkKqU1iTkbcAxITeZ5PJpMTm0f2ti/nU+r1unEjbrVaHjLvgXN55syZ7uqatXZ/fzcSIo1lgJym08lwOKyqShATjUan3cuybDrPGo0GUHCZI1P7wuHh/kESxUePHmUIUSTa7Waj0QgDuKoqAB60ZYNJV5CBL/IsYoyIOHmtLVq90ut3O52N1TU/ngB6JoSzFhkS41oVjAlOzKqqsMY5JxiL0vSJF1+8Nji8eGlbWUgEEjDvvcfrBFJ3wwvjRK5mqfsbUX6/0MSwtwjF3dCWX3MjYrgEnWsnWQAEYAHlQY6ASH6pk8UYeqrFmhGxLPOQIJJSOsf29/cfeOD+EyePxIkQMQwGZmW1NcnGUvLTJ85sbq0+8fnPDQfTjfWtNEqSVIdrtt46YwE95yyKImOMtZrI91ZWnXNVNQ61QlWeSSkBWLfb3d3djePI1mnnun8uU6ZEHJGEAB90ZK0Nye08Kwl58FKTknvrsmlemTKO42C2wJBXZWAd+jRNQzxZlo0EU4iQm1WqlBEPszvR0nq1HhcIkMQxAISkPWOs3+mSQOdcWZbNdit0HkTkxLJ5UZalIIacrXRX8nz+zHPPJkmytrkynAyFYA89cp+I+P7+fm+lJWLGBEQyzvPcgo8IAFhnpQfO7o4Oo0jk+TyKBI/ZYDyQKeOcDocHxlWtNipTNtpxnPA8L1utlozTg4NBnudWgZSxQzDahYoQt8h4QT3DQbipcJvLYFK/PmvRecZpGW+llIxqaSRjFBM8LIyKotBaMyE55+CCnoML4s6IXqAI1i519Zb3gdQQxxIIGWPnz5/PVdZspvfed3dZltkcTp5c/9Zv/bbHH//cfD4/evTo9rUDZ0lrE3gNSRJxTpubJziTxrjDw8MwnoJaS1gbj0aj6XQa/n99YzWb5UprBBgMZhtJ4p3+7d/+7aNHu9/3fd9z/8MP/If3/+I4mymjsyJfXV+7ls366xuXru7OS/3M2XPvffubDw5Hv/wrf3N/Zw4WfuVf/vLVSxeTiFmVnzq2mVuoyqxS88rooiyqvXlZjgmVR6uqrBV3X3rhJQeMUEopynL66qvnptOpLitj3LVr16SMwzoPEZ11iGi1q0veyopzLgjTdssTlmW5kMDmiKgqE15EmCKrSt8SDRARkS9GkCEiAqaV29nen89nUSwajYRJ0UglYwwIEZgDr1QZyyiRcVh5ZPnMGCMjlqRNpRRDnI1nK502J3HtytWimIskJfCVqeI4rUpPiM47QGSMFWVGHtbW1ra2ts6dvzCbZrGMtDXLmUsIwRCrqhBCqMK72kXaMsZ0VXHinsF8ns3Gc6d9LCJnQYqYEWs0E0QWHoi1ejwef/QjH0uaMk3TXq9nrKuqqt3qjEajqio2N48WZelBCYnlrGo0GlyQMhoRiqLs9/t3bx3Ji9n+/uUrVy948pUqGPcNGasKdGUiQeCd0yrmiSrLSDY4Y4VS3jkhBCGGvHqr3ZhMR0mcVpV27gaDBCJ03jgvGea5fvObH13dWB+NRtP5jDizznnv87zMsixOm/fcc9/ayubnPvtsNj/gxCWTrVaryCut9ac+9ak4kSGvFjZv3uvoa8aC+3r7L75JCT/zM7fSb6dT+J//Z3jyyZsgtueeg498BHo9+IEfgD/3567D050OvPe98Nhj8MQTX7vL/j/Y9vZuBTrf8x742MfgwgUAgH4ffuZnbi9A/BW0RgO2tuDcuetHjh+/9YEb8wbsBAHgF38RHnnkNk6JaQppCmtrcNdd8O53Xz/+0Y/CL/3Sa/5EmsJP/MRNUr/GwNmzb+B6XngBtL5OCm634cd/HP7+3/8yuPDrZCi/9gL5j6q9733wsz97/c/5/Csh+YYkzbINh/Cxj30Vru3Ltj/2x2B19aYjv/qrMJ2+rs9+6lMwHN4ku/w6P3hjQ4TZ7CZ69a//+m1OO9jbJzGQMj08GI7HYwv4oQ99/PQd6w+/+ZFWmrRarbTVPhwP8mK2sto+ceJokiScy8FgMJoMt7e3W52mA9vptgP3SAjRS9LZbOLBZvlERriysiYEs9YiR/CeGY/AThw/vb6+vrq2EsfyySefRMcbcTtN07W1tc31I5/85CeVMr1ez5oqihPtgSM2mrGQ3SybXblyFRwhiwTXzvk8zxkjY7TzmnEgkEgcnbfO2WCK7qzgaIxqNBrOubIsLBoZcS7R2LLGfC2EXQt5hohIPkjYWau9dWnSDMsnRAxUEiICxIUH4G0ffo0hLJlqYWtgF2LNMqrLpxZ7yWXxHATyH2MiIHd33323X1QuciHCMjXQhhZVqoHU7ACAcy68c84JUcsle++N1UssImDNAcIjoiVaF0DApfQBEAbAa8lvK0pVU7zLokY/CeeTeVVVcRzVmxoA732e52GL12imkYvC9xDUOP7iGhCvE7auIyTh6ogo7AEXzEgXCr6XoHlAP4KmgbWWcx546+EWgvAaLcwJvQ+b75tqzcNNtVqtrCys1VyKgLMzKYxRyIiQ5XkO5Kuq2txau//+++bz6eFg/+Bg7+jWmpTy8qVXlC6dI2PMcDg0xhHxosiDeUxRFEVRGGPCe1xZWUFgSilnvqjEBgBuqJwmxpbUyYBvBglv64ypau42Ii6KF6Vy5aVLlxuNtCiK2SwTQjHG5vPM25rmKKScTmdSijSNvffdbj8URXvCiAsFuXFmXipynJNE5N4C55IRBodJALDeRUQhBULIACDPc8Z4u90uy7KsivCQl8ongfa+lJJY7fdrdWwpA+WWc66nqlRVIMEMh0NrbbfdEUIkaaQqM51Ol70limIRyQAtOueUUnEcjcdjHyQKGENG6Nx4OsnzPMsyWJhM4kJeMoCZRIQL4jxP6+NCCMkFEzwQ/68jdeCDbkZV5PP5PGDQAfDsdrtKXecpM8YOh4PBYBAcPnWATaxx4CutAixQlmWSJGGohiPOOePdaDphJPI8Xz956uTJkwAwGAwC6Bpe8blz5wIavsDQSsHrfytlyrICcIwx4+HixYvzszkuWMlK66C0E5SQg1BwjXoREQPvkTHmnA0bn3a7mec5Y1iVVSQTAGAMvPdaa/IOGLNOL5EiB5ZQIILWlnPOPPMIjKOzweEJvPdcEhHVO+Tw+hcgiA178qClEmJWiMKcczCWiIy1ZVkCI621Rx/CEDDiljvnnDcEGAJTVZmq0s89+3y73d7e3i2KgjETycQ5E551URjvoTSqKArGmCfIsoIRt1orVTQaDcaEc+C8Y4wHBWHnamn5OnQihMwgEAE6JI+1ZSDjxJxzxlkGgKFiIrimunr0OgPWamst43UvrBFqROu91ZpHHJcmcnUMcAjXsePXihQ19LCIaG7pD4a45Ggvzl/OQDXcyRjzyiulWq0WgOOc9/v9qqrmZsY5M8Zwzr23ISETWI3GGMYWWhAAi8oRZIz5BYZYVdXVnd3jR47EUbq1ubqxsTEYj2SUlAcDpTQi45zv7+8KIbrdLkN0zlhrh4eDosyLrFikQzFE/263K4QIAkYBXwvK/d77y5cva11xYmFgpI1YEPPe9zot71hIrYCVs6oAZ9HbRiKcc4RAHtrdlkS2vrrWbTeLLJecIceqUhYtc8zoUlWGuGkJDoCMyDtHyOMo3ds7mGZZ2kpZpcMjJfJKlaGTO+e8Rw9umVSA+rE4ex3xx+XrcM45e3uOR/Begy9aQ4R3i3i9q1jvQ7GPcw49LvPMVWXJ2RDy4liG3NdsNmOMSSlWVvpxwo+fOBqnYvNo76VXXjgcbL/lrQ+dOnUiSRpPP/XcZDrtdvvnzp2Pecx4I4pFnueurt2waSNtt9vOmzCoT566YzgcHg6HiWDG1AzHqqre9a53rays/Nt/+2+zLHPOBZ6mrwU0wrxC1lqjKiJqtFrGuKKowlvmRI4ESCCiyWTabrdikaiylFJCTPk8I6Jut9vtdqtKHR4eWqUmk4n3njEKYdpZi+QR0WkTxIDyeSFjzjnTVUWA/gYR8/qqAJvNZqmLI0eOfMu3fMsffu6zn//854N6ERE1Gk1rjbUWkMbj6T333V1VRV6Va5t92aBKlyfv2AIGGNmD/d2rO1c7/RY6hpyIo7KGwJ84cUwI5q5Qo5EopaazkbOWMUQG4+moKLLeSpcxVqlsPp968jySDsF7jKJkZnPGhLWeEZNSwA2JrsUtoPfOeySsg0DALsP8Z60VxDzUi8hlbRcAMKRIcg8QCWk9cSTnnBARQ/LkCblHzWsHbRP0rUTEGecBhcSFattyPZrnbmV99bOfffyxxx6bTOfNZqSU+dhHPzGbT1qNNuf8TW960/a1/XMvv0osRAAeOufG+pGDgx1jlJTcGIMM0HkAjNN4Pp+/8sorSiki/hf/4l/8Z//0/5tl2drKap7nxe6k2W4zjr/5n377c59/oqgcMtrY2HjxxRdOnz5dFtlsDmWRvf0733Xm+JGrly6+9NLLs1k2GU7e/tYH3/KWtzzz1JODw/3P/eEfnrrzzjN3nDJcHjl56vEnvxDFgkfxwd5uWUyJKBJxXur59kEctaznuzv7jDHnTZ7vOGdXej1GcjbLnIUkiapKM8aUMlJKZ7y1NnRCKXmr1QqOtaPpJGwwhsOxu6FQxnvPmFgKWSwHPqs1l8B6xRiz1jEmHPj5rCQS+bQ6urnR7XeGowMiMt558EQ8jnhRlIxHQoo0FUyEeZ0xpFbaIsA0Sr11Bzu77YY8unriz/7pP/Mr7/u1Z595ibNISmkMhPBSVeWJk8e8sQcHe8ffdKJ3OBwNJ3EcSyYDi8Q5x9Bba7y3J06c7vdXr1y5MhwOldFBmolzEfrs5UvbQjDBY0AXyDF6pPsr3ThOOQ9aR0mpq6JQjLFWqzGd6tJkSlf9lQ4RdXtJy0ptjbVuZbUXEpC7O/tlWbbbnUaSDqeDdjNeWeu3e20gv3HyhPEcMHrq6bMrvb7K1Gw4zuclEw3rYT6dcYbee0JujWecCRFlxXx2dWKtjcCGrZB3iAjGGiGEcxAS54zBcDjeHxweDgeL9W6dSncOXnnpVVPZXq/TbLQI0RiTxI0QSXb3tpM0IkEhU57nOQAxIOu+5vjK19t/qe0974F3vvMmSmNVwX/z38ClS7c/fzSCf/kvYT6Hv/JXrh9kDP76X4c//affMAP0/6w2HkOe31Ty325fJxfnORw9+lX7Lc5vxey++CnNZjAcvoHvVAr+5t+Ev/234Y47Xtf573gHPPoo/Oqvwm/9FhTFbb7tFvtBRDh//g1cz6uv3sqOP3r09ZK1/y/Yzp6F0eg6RbfTgWPH3tgDAYCHHrrpz8EAyvI1Tv3qtXYbfuzHbjpyeHgbG8zXamV5K9z80EO3B4u/RDt16iaseTS6fepCKZVGvNddsYaiKK1cxRg++ujDcSIYw+F4eP7SeSGiSqsnvvC4lNwN3XQ8qyq90lk9dmJrOp1a6xvNxHs/mUw2jhy11tdcJcFPnDzBBRZFFkWxtZ6Iz0dKSHro4fvH4+nOzo4xZnfnQPAUEY8eOZmk8eOPf35//5Bzcs4cOXLEOhUJ1M6Sd0RgrZ2Osv2dp3vtnhSNIishUCugFglETJ0zBOS950w6b0LRuvd2PB2B95xTp9MylXHOBteaoD0KNhTCBh7eAhDFeDqdWgeBVky1fGGoJiSGnL8G3Oxd7f4XdusAsAAgHBEFaTVYgAaIGDSgrbUArtbBMyYAag/ef38+z7wznHNntPMWAK21WmvOCQLDFwHRBzc2CBdem8D7JboasI6QEojjGBGD4RsRzefz2WwuBG82m3UN5UJAOdxCGicVVeHjy6pKRMyyDBlVWkkuwsYnYMRENJvN4jhK4zjsdokxcNeNN3BBR5VceOsgeC15EIwzxoy1SumAGPuajs0QiTEO6LQ2C5VnWOyeREBswqMOQFvgFIeVPDKCG6DtoJsHANrVj4hzXpa5lNKARyIhWNpqKJ1rWwG6JImJ4K67z9xDp8+fPw/o5/P55pE1KeX5l3e01kki2+2m4FGe5+PxJADE4VEIQd77w8ND7zDPcyE2mmu39pbQZQA8IuGi+Dj0wLIqtFHW1bKr4QaVMsEiknPwDuezvMgrxjGOE2tNcAuPZAw+CC57ay0hn8+LNE2EiKIo8sYiOmUNCmucs5pJ5j2Q98gZJwJjXKAVMsGtdg7AI1ZaC+a899ooD26euZDw8N57b5WqF8xOO2VcAHxjKWEh4V27uDs3nY0DnyzwXINgiDEmiiLvcDKZBL/uQIUuqiJwq30Q5QQfdrgAEOyO5vN5cI9M0zRppAGNXTqrr6ysGGPG4zEiKa2IM84Y5xQ6c1nm6+vrQdigLHMhRMCFPcLh4WFZlgxJSjkej/v9PtVi4hRQkTDWmOB5nl+5ciVNU++9AR82WaHOmxaplSiKEDFQxyz4YBJorZ3m80ajkTQb0+n0mWeemc1mSZKA9662kasd7I0xDElyAYha68FgsLG+fvr06dFotL+/65yfTCZMioBoK6WY4GmalmUZgNko4oE7aJ0LNkWI2Go100YMANbqw8N9IuKcnGAeLCCkScM5R4RSJt77snLVYiWxhCwQdaUVWXIUcMjrQzKgrDxc0BLdKMtSytqIsCzLTqcTx/G8Xoh5ITgSC+XezWaz0+9e29muYw1ndUSDmija7/cDL+/ll14lorIsg/thYHJZa73H0AmstWmcRJFQSimrGDHGGCexstIGAKNr7SQilueBElvrxAegipCcM4wxjmCtB18DA+hNME8D7x34UPlcBWF7qKO58W7xCutfCQMbPDjngOqkxxLGDWERyRPepM97S3MI3t0oG3QzAwtp+VvLFxbCHBGFtDAxUEqNRqNOpxVFUbvd3tra2t7ePn/+VSHE4eEhIjPaIbKg7VN7riIGXrl1nvFwqcxZS0J4Y50n7/3Vq9ceuOvOO+68+2CwV6cNrUHOOPLheNTp9frdbpZllSqrqmJIlSpns1kUR865rMiJeCjYsdbNZrOQBjRKq7IKs0voebNZFl6otbbM52E4eesAiHPOAI1V3hhnTCI4gEcPXFAqIs6wIeOEo8myKKiCABJniMyCtQ6M8yYvk6QheQTOMyQu4kbSiKO0OBwiRXHCi0rVxE+PAfMPXVo7j94uvQWqqnJEdmHL65zDm3IAX74EdIk3LRKtsEQM6+jMmFnQRUIgJiJPS2ARA6gRnDGm06lM+IOPPHD58vkLl88B6rd+4yPrR1eMz2Us7rz7rt/8zd/6wuPPKGUGxbgqbamzuIF33HHHlStXDg+H/U7bOeO8cV4ppabT6bFjx9I09r4jI95sNkajUajIyLLi4sWLf+yP/9cf+MAHxuMxAEjJjHFSirxUUZQYYxCDgj7XWgNUDJAxVmZ5vXZxliFjiFHaQKSQfvcOI5mUWBGjsIjp9XplWe4fHgBCyFaYRWUNEQmG1gJY4wjXN1fn87m9QW8rZGVgYa9srZ7Ppw59kPIYjUbegHMuimLvwTkwxoY0vnbq2rVryLHdbnlOd993h3ZV6Wa6UsoVjV68wpumcvNJeeHCBSCUURTLCBisH9ksvGq1moPhgbGF9WaWzarLxdWrg82j7Y2NtaIoKlVOs6lSZUiZZllByLrd7mQ0984xFMsOEJKByBlY58EGFbZlXj3UtrCFIbLT5sYFE+ecFtUhzVYa+mer1RoOh2WpvEchBDpyTnMmiQUljUgQck7xwm4pVA+EDEeYkr33IVnVFM2qKiLJpYiyrJjNLh49shE32eHBsJF2T506NZlM93cOVjdWer3ubDZTSp+/8Ap4ClGFC0Ak58CUlaks5/za1b1Ot7W1tfX444+PRqNv//Z3Oau999/yY28ZjnY++dj73/bNbz9z5syv/dp/ZBTls2kjkl7lUM5+9Pu+6c4Tx7c2ez/5l/7vf/Abv/47H/5we3U1ZuLue+/78z/1U584dfz3f/8T/+3/4y/MiuL5c+dy5w6nUxkxKYkA4qMr3/3HfvQjH//Etd1BJNm13YlxripL76TRRkqmbRVxSiJZlJoJAQwFDxL5gBEkUTwup4IYcTLGhMB78eJFxphHGI/HRVEEksgibqMxJvBR3I3ViP66zDsnIB5yctwag8i9Nfc/cN/aendzvdduy8HgUMaRUto4iKIoTaLJZNLv9fMyjxNGRGWhilKbSqlSH13fOL51bLXTRG/PnLnjoUfufvfo269d2y4rBxigBFZVZV7Mjx079id/8Id+6Zd+6Xc//OE0SZqtVAhmjBGxCNevihwAylJHsTx16sR8Pr127ZoQwjuUIjY2sFqCmUYFQEG6TleKMcrmxanTa0GZbnV11TlHBGG9SCQHg6tpmp46dWIyHUxnB4yxzc3NqlLjyQwRh4Nxo9GI4yRYM1+79tLDj37Xt3/HtxyO9lY3VudlNct0u7++dfzUN73lm//t//6rj//BU2ksiQicDX0YPXDOK6XAAhH2V3oAZjweD0cHWoNgcVAKY4wxBETurCHOGcO9wwNkYK31hNZZZxxn0jskBpFMilxn2W6v0yeiLMvKoiiKQkZ8PB5HUYSMee+VUs5BIoW1juPXrQK/3r4W7fRp+NEfvZXG+8u//JpY87L91m/B93//TezazU34K38F/uE//L+EiPOXbcbA44/D933f9SO7uzAa1f8uS/jgB+Enf/Kr8EO/+7vw8z9/K413NIKrV2+Sgf6DP3jDYsSvvAJ/9s/CD/4g/NiPQaNxk7rxF7ckgSSBv/yX4Xu/F/7G34BXXrnpvxoDTz4JDz54/cj+PuzuvoGL2d+H/f2bMOv/v3bz2929FRq+6y547LE38A1peqs4yaVLX4uh8e3fDuvrNx357d/+Uh6St7Q8h0uX4K67rh85eRLS9I1d+Y0fB4CyvH1fWl1Z2z38fJHrqjJJ3HjTm+4FdKPxUO3nxOqa9J297clkQgSNRmNtffXUqVOdVv/K5e0qr2qWlfVxHK+srOwdHGZZMRwOtbZn7jyRpnFZZd5bAIHos2wmo242L37zN3/DOWikbcZEnucBFOU8nk6y2TRf6a86b1XYh6ZcCMEJp9OZ1rbMSqVMu9HlLAGHUZTWVmAASpWccw/WWktCxCLWuiLPqqoy1iJiwCjX1zcZ0uDgwOl6c4qIznmIQVWGc+6WEgHoAUDGkdG1EK0xxgcPDwDvnHEK4fY56eBIhgsxhACX4YJyG4qDl1gwAFirA/kMMai9ESIUWXbHHadbrda1K5cDitRIYnuDj0hWFgE1CyWPzjltDXlCrJmtS4xyCTgEP7WwZ4llZJQ2xkxGYynlsWNbzWZzOBzCDQrR3vvJaNzcagghJpOJDRoLAFEUZVlWaRWAd48QWJlLjYJAMgsom1/CZ67WsguAbxzHuODqMXbdk80Ziz54ZmHgNS9xNMH4UiSaFgob4RkGjAgApKzRZ1woDbKFsMbypSz5f1EUWasDBVsZzRPGSQjBo5gp663SMuGXLl3a27926tSJVqsxm08B3HA4fPvb33765KmP+E+fPXs2/Fye51Wl3KKOMOy8gl7ffD4viwCR316ibcFusVJGYcuRpqnWWnoZXmJ48rDY5YX74hys9UJI55xWPtB5vfeMBBE5C1EUBZs4IhJcGGMn03mvwwnAOC8YxWnTam00OOvzooglKmvIq9BDIANEzMrCe884N8ZEkhdFwZEviFPeOROyF0qV4VNE3FPNdXVxHKjKYYVvrQ1s0WYrZYxleRn6xvr6Oic2nU4Hg4EQotVqhaxMqDgMAFQcx2XpAiE67KaJKEA+cZoEGeUj8dE8z3d3d4uqMsb0er2t48fBufl8Pp1OA+5njOn3+/2VfrPZnE9nOzs7Ycsc4ItAj0NGocOXedFut9vtdqvV6nQ6V69ePTgYBBX1VqedJIm1djgcEudMCGMMQa0uHcSslVJSyjAKnHPaWWTEEUMOJlSQnzp1Sil14ZVX5/M50c2SO1RLlyzSS9z52ufw9OnTb33rWz/2sY8Z42LB77jjjmMnT1y7dm1nZwcAkkbabreDumksOCFfWV1lvNat3t7ejiIZvIuybOa9dc4VZR5+yxhDxBhHtLVfjvPGGOONJaKgUbvkStddF72x1monfURBG4d55z23NqQjbPgAW0hqRFH00EMP3X333QcHB5/61KeE4AGbV2XhQ4BleOTIkSNbR8+ePRsQekQP4EWo7zCWMZYkyXyWexfMlyTntUxBUWaEHBHQO/LAiay1ZemNMcqaZjMOoXx1dZWRuHTpktY6xM8syzjnQYMpILYcEBGdd+HpA0DI16EH6+xSJAERrffOAgThdWfDeCYPDiHcuHULirenBe7MQ7BYYpHL+YCI/GtMLT6ofNyQ5/Te13o2CweAG8LKdRR7yZn13lsDUsrt7W2lVo1Ro9FobW0tiqIkSRGxqszC0IARkQupWPRBmR0AEH2YyJz3URQVSltnW3FqtZrMZ9rZ4Xg0ncw2jmy89Mo5pdSZM3durB8ZD4ez2Wx/fzcgsKoMIuUyjmPvfUh+Ym0mqeZ5gYjIyFsXwj0sGKmImOd5WVIjiYUQ4/E4MJ29tVrrICcaxxEGEV+t0zSOhURwMjx9b6BCj0iMW2BIAMSM084DMsEEEXKlFENC7xhjacqt9VWljfbALXHBOfforPXeOuv10vgOEQH5EtfjnGunkbwHu3CGrN8XEb2WVSBjRJ6Md8vlgvc+8M0BcBlWAMCDBeA1JE11v7C+1hk3xrRaHQAoy5IxClHMoR6Ph4PBwNhKG/uhjzz+0CMb99535+Fw9I//yT892B+kjc7gYI8DqMpzEB6dtbrX6/T7XV1W+we7WDohSEopJBVFbmxlrDpyZGM2y4wxJFir2zbevvTKy//u3/27siqIKHjBCSGKopAiKorMGhfFcZJEplKCmKkUCiGlDHMb1kl9yLKcsbZAy4k5a41zpariNDG6ms7G1mlCrrVaX1+rVDGbzbxDrVUcpUGnSeuqqqp+v7914vg73/mOJ5544vnnn5dSFkVhraPaxpOWky8J3kyTqqp+/dd/HRnFjWDWrBAYd8CYALClqrigwXhAhFkxO9XdHM/3O73OzsHV8Xj44IMPr61uPP/8i6Pp+NmnzwLzW8e2RoOxR+fADkaHWTYvipxJaLTSweBwOJqnTWh3eb/f3dhcv3LlEnlaW+/v7e/O53NrvRTNRpyypFHmpsrNcmJgjHHOAHxldCRFyDA5S8YqgEBK5cGPRWttVahQW/QoAO8cMCalbMayKIpGo2GMqQqVpk3Jxtba6WQeBmngPoTcb1ho5nke/sSFEpwQggmeJIkxZm1to9vtK1XmSa6USeOGUuXhYNRuddfW1or8pccff3J1ZfXEiZMrKyuNRjqdToUQRKwoqjRN82qaRLEx4D1orYMVtfceEUbDSbPZfPqpZ0+fPjUaD1547lkk/6Pv/s5veecDh4NzO5cvH+zuTYcjo8R6v++0mexd21rvf9vb3hxxBD3be+oPtq+dW2tFs6z45m945E1v/cbf+Y+/cena1aPHtj72iU8+c/b5u+5/4Mx99zlOq/32fDY+3L12z5lTP/ne7737+LF//1sf+OwzLznnillRlT4i6b2x8+yB+04PhvvDvR2KEosCWcQFSSl1VSFPvPWdTsdUKstmnDEpRFHmaZp6QK3Der1m1i/z7X7hZH3j43UAbDHLELfOaO/JewaAnAvORD6bv3S48/QXxm956yPf+a5v/c9/8JhA32w1sjxnxlo1e+fbv2fvYPfpp59u9LoM4dG3fdPZ588++cTT8/Gk3WwcO7q5t3tNufx3PvCbd9z/jRsbG888+0qvGznniTMh2Xpr9Yknnui1O0VRSMmbzSYwClcWjCa0Voyh1tWdd51YWel99GO/l83rxUQo5kRgYc/CkJhMlCqDp2hdH+P9bJrt7+8T0WQySZqJlELp8vDwsCxsr7fS7/dPntqS0bGPfvR3oyhyvszy+Ww6MXq8srLR760MBoODgwOC/x97/x1tWXaVh+JzxZ1OvvnWrbqVOmd1UESgLPQwlkAykgkGCUwY2ASnYWyMzTMgAw/8fvZ4Pz3wMxmhgIQlEEZZaqnVanWruzpVV1V35RvPvSfus8NK8/2xzjkVVJ2kFg+PoflH9z279tlnh7XWXuub3/w+8pa3/4NrDh+6+8tfPvrEI2/9vrceefSxxuxCZp1jmObpVnsLKQyHCt3IGuIcSEqAcc9usM4wzp1TtXqFUNze7lDCkFoClHGCChBRUKktEmBCyN3d3ZV9exozjX5/aIzhUupCCyF9L9PagMPMFQsLC2Ah7aedTme6KvPrDUKIlDIIQp9M/VZ8K/4WwlpYWLhky3AIH/zgs39RKXj3u+E977kgF0ApXHvt/zKEVkov16il9AI/l9IXxtXt7Fn4nd95Tqjr18cKVwre+1745Cfhp38aXv/65/SV/fvhP/5HeOc7LwEQv/Z64/j5meNxfvn9vKI73P8qkeeXo+c33gicPw8AvVq93C7vkUdeqLN72ojjy6nN/T78xV88v4M88sglMiyNBlSrzwNu5vySvAUAbG9fgVAPAFk26vcHjGVJXK03KmEYapOvr5+3VjNO6vV6u93mIrjmmmvml+aDQA4GgyIrzp177NyZ82GQRDLIsuz8+WFrpsmkWFtbIyBq1UaWZbMzc5RyAmWjMZtl2cb6dlEUKuvdcccdSpnt7Z0kriCSstSDfgoAzsKgn7Vas51OZ352Xgixu9sedIf1Vs0LxabpgDIoc6BVHgRRPsrLQleSKMsybU2el5WKYMz7YRaWUGOVp8oJHvjZGiLmeR7KQAQRIHXOaae9XRalDMiY0Smk1KqglIlAikDmWenBU0QSRcHY4dkiAHByZfTQq3dOF/iAUyIaRXTOWOO8pKHza1XnvDWIX8hzD7+Cw5tuuqlSqWRZRglEgfTAuq/Z8roEzrgpvYkxpq25CLS46HwuQiT8KXnapicCTigvYiK0CDCuFydaGwhJmo4AIAxDJOCXG47A1tZWlo3q9bpHAyw6Rqhz6KWc/SwaAJQxgRgXgKIdw9+eRiqlLPPCawmGYeAFNKYwFpmwOjzy46dqUzXnCb+S+IU8HUs2j0mQHrn2gp+MMTLRdiCEAEhPPgMAjztpXTrnEC1h1GEZJdUwlAA2DEWl2ip1bi2pVivD4bAs89Fo1Ot3Z2dn2+3dUEYHDhw4evQYIaQsy92drgfAy7IMguiaa67z/tuEkEBGBMYl6VdsMI1GI80Sf5LT1YcvhvbwC6JF5L5R+QUg5xyRVKt1P33VWvnL8VRfRri1tiy1MtpazRjzqI61ejAYNhp1ROz2B1UqoyiJIk6Qpjrb2dmxevzstNaUQhRF9WY9z3OghEmepykCOgLaIYPxnXfOEYJj1hSlAGAQkCEB6Yne4xl4WRhjKGNhGIowsNbOzETOgdZaMJ5lY9kKXyIpAskYGw6Hfmbun+ZEjLQAAN/MjHVG2yIvgyBQSnV6PaVUVhRBEPi78fDDD2utvcwx5dwr0/pT7Xa7a2trXqPj6sNXra6utttt35CyLFtaWKxXaydOnFhZWVFK5XmeptkjjzzmvZFmZ2f37ds3MzNz7MSJ9c3NZrM5rQbw1+sRIf8o8zz3ncs/a9/2/KPkjJw/f17lhVLK7+zvlQXwrXvMkrxoMPEgQLfb/dznPnf27Nlqtdqq11ZXV3NV9no9j8v7Q3kWNqWUENSmNHbcQVqt5mg0Gqb9UnlJcXVhlKDIOfclDlOOJlwk+IkEnHPoFJ0EIQRx3GYEiMk1IiLyOI69mLQfaDiniAiUcClqjfogHRaqDKJAax0FMs9zhw4RKeedTufMmTMLS4uVSiUdDdRoFCZJtVpVSg37A99PBoOB4DEiWOso8Q5C4LNSUgI4tOMylbHrnbWWEFbkSiurtX7yxEm/M6VUay1lECWxMSaJAm9dCICEgNIFHavsj3FhrTUF4sYSAXT6UJ11QnpV9QuyQV4FHy6S7oVx/YLnIbppkKnmC/EHf9rwjQQutiikV9DfIIT4JOf0p70g9ZRM57FaACiK4sEHjzDGGFBrxnW93nbAOeO/BBO3t/H4C4QQkk/ePf7dUBSFS2IugpMnTy4uzp84+dT58+cbrWaapv3e8SxN4zj0LwCCEIahsTpAwWv10ShLkiRN07IsszQ1zoUy4FI45xy6SX3Q2BnPGhwOh3EcD6wNBA+EMMaAT4A4RwCCICiLIpKCUhrKIBScE2CUCkbBWWIcEkMoc1pZHvg7ZB04hxQYgOWcoyOIKIUAgLLUxBhKGSIBQgkhgQyps2WpnbUECOLkkfhkkSPmoikqHTPD3UXA8TP6QKIXmrrQZiapp/HXfUaXsrEstFeGACBTZRUAYozxTrs+56lUiQSuu+66pb1zw+Hw3PnTXIQBtawoHr5/6+ixrWtvnGOMGkfKfKSNc84EMjKl1Vqvra3t37//9ttv+58f+5i1tjk/Qwh59Wte2e/377777jvvvH1zc/vk6dODQV8GAWdyc3PTZxHu/uIXVVF4BwPnHCF0aWkpTTOTZVwwYxSiBQeTmhEoVe6V2QEIpaC14pxmWVqv1xljgvHRaKScCqMKEOKMRdSVWqXX34kqLS6C9kZHxkRKaZ22bpyOOXjwoEHX7/ceffTRZrPp5Z84516Ny88q/BRBqRLRLS0tnT9/vlarBVG4vr7uVVwYFX6yJUNRrbfSYkAtVdrccev1jQXR6/VyPTRGV+vJ2sa5U2dOPnnsVBxUHbqDB1etdsoUlAbnN9aklMPRgDIAcHEcHb7q4MxcK0mSdnur1+toreNqTAsqpWw0Gp3dbrVaKTLMs7LMVVEU6KjPKPipT1HkZMLO9h3TWEUvrBf96EQopcAYpeBlati4ao/4sdtLOxFCGKW+bC0Mw0GaCcEoZZQyY6zWSkrJQubnnYjocx6+iMynhRERgM7Pzxt0x44dq9frozQLgyjPS2vN/Hxrfn7+5MmTW9ttGbKdzu7yysq3ffsrjx8/NswGoyItCy0ld2iazSYApIMhYzRJ4mq15l+9xhhj9OnTZw+urlx7/XWnTj5ZqcZlWb77P/yLf/UL/+wH3v73H3/8sQ988MMvvu3On/2Zf0Uc/6c/9ZP777hptpmEDAlqAP6BD/7J0sL897z5jWvrWwuLK4df+fITTx0/eeb0dTfdMBxl+1YPnHjqpALY2Nnct7zYXi+xJ286uL9/7vQrX3rHU0+d+uK9X42joN3pCRqBLV2a1iPyQ2/+e/d+5Qv3P3KERgEGFceCUAY+HZ2NitnW7J7FpSeeeAKdY1K0Wq2trY0f+IEfuP/++x957HFrx5kz5xxnU1Td20BzepESHMA418onQ3cgAofMobHWApKtrbZSBSUw12x9+ytecvr08Xvv/fLcwlyR5+319H/77lfNNJLN9dJZxdAlUXTttdc+/ujjZQnzc/GRRx5e3zhXlGlzvnHPPV+4teuF/Ig3CaQUkDAA4Jx/+MMf9mkGay3nzFpDCCA6pTRlkGYFp0CZO3R49fz5s91ud2am5Rxkhbo4zVkUhRDe6hKjKFS60LpEsDu7241GgxDS6XfiOK5WK/VGcuzYMc7jgwcOJ1XOOV1fP3Pg4L4777z9sceObm9vt1rNQT/f3d1NhyOlFILb7ex84EMfXllZHqWDKAm/+tDjd9/7xVd8x6tOnD5tNXXaDUcj4yCQzDqHhAVhaIucOOsTM+DsIB1EFUaoSZLkzrtuOXH8TDbSgnmnGgrEoQPGvJuuyvN87969jZnGvfd92YEFBwYNtVQIKRhHxGGa8kh2Oh3icHl5ebu9OV3DKGOklHFciWTQ7w8IQvm/Cmj3rfhfPJIE8hwmNSoAAP/lvzzXkv+HH4YTJ+Dqqy9ssRak/OZyWufmnp/G8dOFc3D77Zds2bMH4ngM+zoHd911+f7vehecPfv8fkWpvw2Gb7sNv/RL8Gu/NtZ8OHQIbroJVleh0YA4vhwFBoDVVfjZn4Vf/dULW772eqtVmJ19HiB4qwWVyiVb7rzzf1WsGQCKAo4dg1tuubBleRnC8HnckJUVmLu0dP2pp16w03u6eOlLYe/eS7Z89KPPu79cdp5zc7CyAltbz/XrYXi5EM2xY1ceUkZpPj8/BwCrq6tSyna7vb52xlitdU4ZWGuTuFpvNqSUnU5HqdI51+l0+50+49wYpQlljDRbjVyV93/lUURYWmxxLmdn5wWPeru72up+f9TpdCjhlEQrK0tRVB2NdpzFNM20tl6n0Vp77Njx5eXlq6+++rOf/cyJ46euu+66G2940RPHH9zeaO9ZWdJaCcEXF5euu7qucn3u7EaZa6+mBQDW2jCMOBcy5C7X1Vp1NEzzNPOIp3Xa479ShoPBYEhYFISUMs5FVo58SRMnVAhJGXhb7FIrV7rAmiAIKAPU4zJNrekE2URrvV3WlYMAIxNF5unikU7EGCkQypgv05wAAmP9BD8xU0qFcXzw4MEzZ04ZY5I4DIKg1+v5+R4AICWcc6WVcw6J8zMZAADwZlsA02LryVkS7+TlhRo4Z4xNTclUUWZZFgSyUqmkaerxJmOMM65SqfhfnCJQnBBElxVZrVabnZ3d2dmZopyqUB4T5JxZa71Q74WbQsceWh5C9dTm8TOyFrG0E0HLKUTjl0UXU5UBLpBCPBkRL3JjAnCIdEyTugjncRMla0JIEARZluV5HoaxtZYwKpkslQrDYPnwkpRya2urUHmtVqk360LMIqIMuBAiTQe7u90D+w8vLy8fO/rEYw8fNVok1Uqt1shGBaX9VqslZdjpdKrVarPZ7HQ6Y5AUmAyDalAz6qLX/EXhb/j40sAppZXRnHOtyylhfFo57fF6MjH0dhMFxaIowtCbSZI4iRGxKHaMMYzRPM8BwLu9WVtg183Pzmqti1yXRT8JkySqBHHERyNCTK1Ws04LgwAQhKQxE9UxBEYJIZ0tqpQCxzgTjAlCGFg3eUDoQXDnnDHOAjIqCCGcUkQ0RjESRlHEOaeceWIvIUQrW4kT37qazWaSJBsbG8bZuJJYazc3N7XWnpnHpWjNzvT7/a2tLX8TmvUGpTQIAgDoD1PnbFEUFzTHBTdGF+lQl+NG2O12w0gu710ZjUYPPnwE7Fi4Rgix2+0QRnd2drycixCi2Wy2Wq0DBw51Or1er1dq5VfWvp2nabq9s7O9s/PAAw9IKZXRHlNFe6GeGy6Q1nHyBMcJFb8FEU2pdFF6ipi/dX5/Lqh1Die4JQA4QOMsIHLOgyDodDqU0qWlJS/zsLW1NRilZVkmSZIkCZIxFBnIyC9LPeBOCFhrZcCTSuQrVimFIAjyPEdwlUolkJU8z4E4a8bKn/72mqkNKYDj1GNiE1SNgkNEQifoh4UxLMkPHNh/9uzZoij9PaWUOkC0MBgMzp4968UrqtXqNKuAjFlj0Frn3DAbtEyz0awVZVav12u1GiFkNEw9uQ+QUuIr8YnHVdERBDvGv431QPB04JgOvmQsnUH9I6nX69ZaLsVwOHTOhmGACIRRQJBSgrFycv3aWUqpR8wp49R5o1UEAMIoJwIpEnQ48RgcL7Mp81gto2NmNx0bYVHnHEzwxAsDHIKXjhbsabkW5JIE5iXhwcnp39N9pnj0OJthLWMSHSlV4YtHhsOhlJIT7h8zY4xSNsWyCUF0xr+ixlCI881Llkr5V1hRFMZZhzgYDAb9rgWbJHGj1Qxk2O/3d7Z2rr76ain5YDCgQBxzDq0plc9H9fsDnwmhlEZRRDlnTJRa+SSB1ydxZOxZCQCFMlleUoKGCxeYUAZAARwyChSBAVYqFQBIokipAo3VzhDBHKF83FrAOQcI2lpCCIVxtQsllFImGI/jiICb3E4XyGhczeGcc47xMTwExBHCPa534YbjxBBvosfv3z1eldvDzcYYT2P82nATGe7psx43DD5WaEFEygCROueQjkEpmPyXEOLdD4wxg8FAKZUkCZdiMBg8+uijuV698cYb5xYWOt2d+fklHsAo7/VHPca5DAQXodN0NDC9dqpyiGTsnMqKXOtyc3MzjqPDhw/0urthKM+ePe0nKh/56F/kWal0GQTCGGMZBeLSUSpVCAAOCFICAJzLyQiiEcaJX2NtwAMz0R5SZbmyskepIs9zay2hDgCMc8rqeqthjAmcqyRVZ0ogJC0zgeya6686u3Y6y4dlmd/5sht2d3rr69uUcM6FKZUyygKWZbmz097a2qpWq0Eo/IBTFMVU4lwpJQSfmZlZXV1dX9/ww0u/3/cPtFarhWG4vr5unOaOrh7aWxSjG26+ur271ZppbHSetMQISqu1qNSq09khhK3u33vqxJnV/fOL8zMba1uVamitTaqxUiqpREoVhLAgFEh8kpYoVWijzm+cr9XjIBTDYb9WqxR5iY4QB0Wp8rx0BgHRoTeJBI81E4ocwTpNgDEGjFEYVz5QQohV2s+K2ESSjE1UugTjlBC01rvueidlNxZ2F573TSkpy3I6KaHUS/6jn1r5wdx3irwolDJaa6WMDEPPJTFGVSoVzsLSlIAkipKy1ErpZnO23xvmeb67u7tv377+oJtlWRRFgYx8A3HOWXSqUABw8OBBKeX2djvP87Is0jRtt9sPPPDA8tLCyspKpVJ50Sx/7atfXj+8+uI3vmZlcenDf/4/9Sjbe9MtHByx6h1v++FKEnziE39dq9cPXXX41a9+Va+9KQPSbFXB5K985SseeuKJ++6/f2Zh8Tte89o7XvaKT3/+cwJ4p73TqtR+/pf+fWf9vOrvgl5+yW03JyF95KGdqMoiyZm2tdl6KybXri6+8VU/857f//2Hnzy52c8sQr9fWKu1LoG4fr9XjDJAxzmzVo9Gw7LUn/rUJzqd3mAwjOPEaCcDrrUGvHCT/UTqotkqkqnjKCBYKwUnlDoLYzMTAkVWMgIBhy998Z7ezsZ//JX/cN8D9773z/60WW2EUC7MJi9/8W3VJPz85z+/vrbz2te+7hN/84kjRx5pNROlFBDc2mkzTtqdbrXZ/NM/+R9CQJJUKKWUMUTLOPWmM3OLCwxYv99P85EwKooDSsE6UqkmjJH9B/bEcXj86BMAuLJ3+ejRk1mZa+0AwOtL+PKPIOAIFtFpbYUMYxEWBWhrOKc33XRTmg5q/ZpzmguaJMlgUL7i2+5YXV05ffbY+fXzQcj2zu3RpkS0MhDzc7O3337w3NmNBx88IoRYWVl56qmn5pf3iyCGojx5ev3BI8d5BHcp3ev1NtfbiUxarRY6IFL4dVtZlpJSAtThWDQwiqKbbrrx5NknD159sNmYe+jBR40moYx80h4BYVw6QKrVqjHmni/fY5zxpjXKlJVq1VkwSo9GaRxGjHmNL7s0v7C0vLC1vTGd3vn898zMTDYcKaWM0s3a5cTCOIbbbwfn4OxZOHfOv8ThpS+FV70KggDabdAaqlWIIuj14CMfGTuefSPRaMDrXw+HDkEcw/o6EAJLS5Dn8OST8PGPQ6/3XI+zdy/s3Qucw/33X0KR278f3vxmaDQgz2EwAM5hbg62tuAv//KZlBzm5+Etb4E9e4CQC2dFCKytwQc/+A0Bka0W/PAPw8oKCDFWGv36rhcAKIXbbgPGwFp48MELoNsVH1kYQr//wjyyryMOHLggUAsAvR489tjz+PpnPnMJ3Px8iZDPN6SEn/kZ+Lf/9gU4VLN5ORD81a/C9vaFj3/wB/DLv3zhI6WwtARPPPEC/PQ3KYoCigK2tuCBB+D974c4hmoVbr4Z3vQmuPHGy7Hgl7/8cuD+a6/3wAE4ffq5/vqBA5ezof/4j7+uy/g7E8eOXfKxWoX5+ecBN18m3Nxuw/nzL8yJPV3EMbzrXZdsGQzgQx963sc5fx7a7Uuw8ptuggceeK5fb7UuF+e57E5OI0ySuNaSAT997jQAAPK8yIHYarXq8aNms+mAPHXqDIItiqxWq0ZRPDs7u7vTt9YRTgIeCcmlDYUQ62sdY1wUBaq0W1u7w2GfCQrEEQxrtWYlqQVB2N7Z7fcHzrmiKBCxUqk458o8R0fOnz937ty5siytdSdOnGw2Z6uVxsbGVqfTAUQCMD83u7y4ykCcOnmOMco5d85ESVypVaMwsdbudNfjON63bznPss5uJY4reZ4PBkMESsa1/wBj5FRKxkubCWDoiDEOJwKVnj2a57n3yPFJfTMxP/eoEABQSji/suIWoR5SAC/u4ZU2Pe40BRiI96OySAhB67y4ppDCm1oRQpr12t69ez0wFwRjlqtfvVpzMb7sPOCIiISAx9qmq1QAAmS88oXJ3hS8/xXzB/Ro7GAwaLVaUgaenIcEgiBAO/7b1/4FQlLGkMKg35+ZmVlYXkLEYkNRBE95GUM6hHhtRg/seDGIyYp+/HPOWEOMc87TnH2JsMf+pg43UzIvTHge05WOtbYsS2txygic4tEeE9dae8zBGE0nGib+ON7Jy6+blFJcMk+8CCOJaFut2m53mzuK6MqynJ/f44v8trd2tra2VldXozB56sTp9nafc84YEUJkeW6tm59fWF5e0Vr7ZdoDDzywZ8+ePXv2tLd3ldFlWQ4Gg2ryNcayAABQliVMIEKt9ZheSZkYE+xKIQL/t0cq/eOOosg3Ud9mrLVaWwBqTAEOPXfT86n9DSEEkyTJ8lSPfeSImEgDZ3kqRViphoQQSrEWV2XAjS1KU3bTTSa4F4WYnWsWeam1JSAYEQAULPj1kXNeScNLlziOSJgYJ1IAhIgYGRP53YTxiYhCMkaZF7gwxmxubw9Ho3q9boxFxCSpjLKsUGXe3p6dnSWEeA/GMbedUa3M+Dla02o1kyQ5d+6c1loEY1fZKIo8eSUQcjAYyoBxzhuNBmOs3W57i3uPOZw6dapSqXApGKGMsePHj2dZFkRxr9fzGRQP5tbr9a12GxEff/zxrMiDMPCKsr7fIY4bpC+N9U3ON2MhhJ2sNXznlVIGLPDMuTEkzT030fqiB8aY5975A1prOZPe01IKwRjz+hsUwRil3VgySCll0fkeRIAROl7GOmedc0BcktQJQaWUtdr3Pp/wy/NcqQLRJklCCJEi1Nr4k5+uhQF8y3JsTPl1lFLPc0dEYywhhFEOzDHGeVEUlNIwDPwd9F72Pimxu7vrqZeM+aHZlmWpcyMivrKylCRJu932iay5uTlCyKDX73a7fsCihPszsNYK4W3HjDEGvBQRUkRHKQEk6BAIUHYBhQnDkHLuOduevN2caSHYomQzrTnvc2qMriYVSilhlBCSFUUQh1Up+/2BsiaSAaUEx/fU4aQEwxEAYwHA4STNOPUqnaj+E2CTBJrf5xLVZg/V+3cMeRqxhfFQeBFDdjr24WTj9Jj+Gv2jAgDnrP91b1Tlc1DWoLMgeEAJG0vvA3MOEO140PTqoZOfcM4xIP6FShxyxpy2Ki+MMYzyolDt3R1TFnaz3L9//9VXX712fn2n20XELB2VgnodgHQ0pAjOudFo1O/3nRurvoqAG2McQJYVDt2FVCGC1tohThKQXhOcW2u1opI7dEyIgKEOw3Cm2SqyDBEZoUkU+0zGuHIkChnjxiiCIIQQgrqxfx1jhDJglI+rA5zVRpWccxkEPGC+3VpCia9CckgROOcEGCIa46Z8dkcInVh7XQwpk0t1Tp4ufKdyBKa9i3NuccwQVEYzxgLJ/eUwPjUqvNCKfHvziJUMA+OsQOKc29jYWGuvtVqtq6++BuFQWY46/e1bb7uFSrfbbc8tztXrzaeOnlk7u9GYaUTzCbG8n3cRbZqmX7r3nka1cs2116Ldu9vZAYIPHXlod7dY2zg1Px/t27e/KNRgmPb7I+OsCCQAIQi+mRW+IgnAq3FZbZighABjFNFKyRkjZanm52d+7B+/89TZU+9///tZwNBAEARRFNVqDcaYNuUoG1531VVS8nTUJ6516NBVWhdRJJROq7Vkfmk2juPt7Z1AxqrQQghKYWdnh3O+b98+T5z3vqvOuSAI/U2z1hpnLbpBOnzq9JOShVIGw+HAOccFDcOQc6ZUWa1WlFK7/c7Oztbb3v5mERJ+3p05e7qfdaMo6vd3d3ZsXhb7VlalCImDdLZ14MCh3a0OFW5paf7JJ09Wa5EMG/ko293VQByiVqo4e/Y0Tgz9GGCZ5YxRGoROG+KwLIowrBPCrHbgDAPGqPA9xRjDOPHDblGoJIniJHQWEMfuGb4sAK3jnFNCjTFkMlAQhGmCxL+lJGX+VlBgzjlrHYCllPsWzTl1Dsuy5JyHfPwq8i6dWmuLblKeFg4HaQJQqzY6nY61WBRqdqYhJCuK7H/+9d8opRYXl7KscA4ppTs7O48+urG5tZ4kEWMiqUToyPnz5/1zCULhjH3q5AlErFbqhBFtDWWgrNnY2Gw1moy6KExmFpq//pu/+ff+3ptuueWWVqP10pfc9X/9/357dnaeMzI3N1erN0aj9JYXvXjQ37319pcG19wg0sEgz3vDdAaxuXfl+97+ttzYB44c+dK9X1zas3dhbn6Q9ot8GAXxyp49BxYW2+efBKWve/Ht7/pHP/jU+f9yzY03dduDrNOfjcNG4M6cPPaat77xx+g/fPLs1i+9+7f66VCjTNMUHUopiaODYZ8R+qpXffu582fOnDlz8NC+ne025WJhYZEAGw5HhFhCCIIFHGcCJkCz9e7hl40MgNRadFZZhChMoigMA5EyTPu9xkxlplZdO3vu7s9+5gd+8PuSCB988Kv0lgPnzj7xkY9+8E3f9b3XXH315mbv9KlzTz15xtd7AsCePXu2tzep4CeeOiPD4Nbbrj57Zh0JM0bJILLOWesQLEHIskzwgHKOSildLNZb6WiIqPcfOJxl6Ytuv3Vmplmphg89+tWddi+qUOs0pYxzWZYlTsxvKTXoLGXwottvPX36ZF5kSSXsDfp5PhoMOoiYJNHu7kjpLIj49TceBLAIGsBlWXbg4OFOd/vM2bOlVvv27w2DqtbFvtXl0Wh49uz5+fnZIBBhElXjGhpyenQuG8HKbG39/NowHW5vbnUXO+fOnKcUOGHWEcYoYQS1nVRzetdiWpoyy9LNzbW18xt5bpM4tlZzSrUpCcGIJdq76KDSSiNGSSVYWJrd3t4GRxBJPsodam3KLLeIGFVrkvFev7Pd3izLknPqb4MxJgxjP9H3b6IrSvn/xE/A/Dz87M8CAOzbBz/yI3DXXdBswmWJZmvh1a+GD34QPvzhr7NCn3N46Uvhx38clpYgii4/fp7Dd383/N//N3zpS8+JuRlF8Mu/DO32BSikUoG3vAXe9jZotWAifnjh5O+55wpwc60Gt98Or389XH89VCpXOKssgze+ER5/HD7+cXjggcud2Z7j9e7bB0IAANxxx9d/vTDhir7tbfD+91+Aab6pj+zrjmuuueTjYHAJ5PqscZk+wPMlQj7f+Mf/+AVz8Lv11svJpx/72CUfH3wQtrcvkcF9/evhM595rsf30hzOAaXfFIIz5+ODO3dlEnGWQZbBJz4Bn/gE1Ovw678ON9984V9bLfjBH4Tf+q0LW77B671MymN7G+6//7l+9+9mnDp1iVtgswk33PA83AJf9apLPvZ6MBy+kKf3tXH77ZdoqQPAZz4DGxvP+zjDIfR6l/SOV70Kfv/3n+vXb7nlkgxWt/u0iTRnvahm4C3EpagwKuYXFhq16qmzp9rt3TiuvPglL3vsicfOr52dm5sjBKQUUT02xlmDe5b2DNPBcDhUqkDEublGGERRFAGSbq/DOSVItXFJXKdE5LnKc4VovRqpDEUoA+ccgJHSV4j3rbWqNFLKfr97zz1fWJxvLi0tIer+TqfZrM/Pzz918sSwm0dRYLVTqqxUKkLwOI6lDBBAxotBEGhTEkLCSJZlzhiL41hpLUTQ6/XiOA7DcDRMtS5Gw8KCBQBKuJ+FG7TEkSnQM6UWehANEQutJAEGXkPAe5ddISihjDGgJJBhURTej8o5cBc0NADBOuccWoKe9wZwkURvmRdBECwuLpb5yOhSKaWK3K8lOefOqQnkmltrkYCd4LmEPN2SlhJCHVrw2AEhHpn1pnZZlgVR6NH/SqWitVZaG7CUEL9M8/t7pI9SOkiHYRh6VqK1lpDxch4JiEAqpQiiL6L1eL2bQGzOu2748mhENvHM8PTHIAj9tzxO7c97zNFhjDHmjLWXmGCNlUCmqrBTaGW8HmfUOSTj4uSJ/15e+CWe/683/IqiKIqiIJLDUVqWpZSSS5nn+dZWWwiRZdnubvfmm281xm6srZdlWRQlISYMqNFOa4sW9+zZUxSFEELwYGd3O8/zSqUSBrEQQlsvBMGsuXKDEUIQFnjM3esweLQhimKPZng6M53wk/wfQRAgWs5pFAXGmGkT0lobpcc3hJKy1JQCl4wJPhahdW44HFYqlXqcaGV9O3doHHFxHAFxMqZcABjiGKGMU84d6tLqEFgQC6641ugsMkIIZwRRSm6tF9QGX5rr3GS9RAinlFKgE44/8TQRzqY4ppRSStnvdnd3d73n3tramodTCCHOOi6YUur06dNpmvpGyxjrdrsEvI8UI4RczGc3SvtafN/I4zCqVmv1eiPPsz3Le5eXlx999NEzZ85Uq1XGmGQ8CAJPlLbWKl1qrYfDodZa7+zGcUwI8bCvttY4xzkvVIkOfS1yFEWFVsxDiePi5gvhz8HjANZaKvjUmSkIgn6na6wmdFxBP82C0InBoH/ucEFSpshywzkvCm0nhqKcUEQCbJrpIdZjTVJSRn2ZvXOWMYZgjdFal5VKpTQlY6JSrwkhsqxwxMiInD11MoqSMAyFCBhjeZ6XZSmEvHh4oQhuoorj0ICHliYiP5R6V1VOKeXn184KHjDGiqIgjBIc91VK6Wg08s2j2838Q9qzZ08QB2VZZnnuz97Tn3udbhiG7XY7z4swDLwKEo7VchEnoCQAEGDOAqIDO67omOzme46LosQPLl5S3aExzhqrPAkUwVqnrdNRHGhTSil9sQXnvFarOUCSEkEEUoKUoEEkQBj1P6SssdZKShDRI9BjVJSMhUW8Tggbe8LixcvL6QP2b4Fxku3pXi1j+ZILlzY9wvR4F+/vD0kIdc5OfmH6qHzdgfHN1Nrx25Ayqqxh4yAWzTTb4F9jZKpbpJVnlTPOEJEh+HcJZwQd8fad1philOWjYtDtVVtVzlimyizLKMJgMMjzXIix+KxWilKnrTFe0pqMLXrRjVVB0DhHxkJUzjlrS2csjSEMW5HgzrlqEFlr89HIa0M77owxbFyZTowxhdI85oQJAAAuhBDGaeccTJ4RAQR01igAxySllBEGlNJWq6WeOmW58DdBKWWMJoR5XNi/7C82wwWH3h/yokc2rneYzCqeFnomhFB6Adz3MwZrx0axlFKYlNVTCs4hoCMEPEfbOG2tc4iU0lIZxomU0hhLKYnjuLD5vV/+ShTKG2689vobruv0G3OLdZGQvTjf7XdKNWh31vaszA92y70Le1HThx7bttbu7OwgOKwk1tqlhYVef3d2tnXTTTcMh8PdTk8p7dAAOMapc0ZK7hwYY4xFcNYYEwSRn/BZrctCyYDxQFQqFUTs7XYRbaEtE4wF9NGjDzcatWo1mpuf9fa+6XBU6uyq/Vd9+ctfGQzyMOSLS3OnTvdWV1cjyb74yc9Zp/PcLe+tzM41HzlyxCNTVkEoOQBkWdZqteI40VqPRiM/XAZBIGUAAEiAchZAwBg1xnQ6nVrSiOPYl6sQQkqVb23nXsjp2muvnslqvWH7iROPruxf6g+3Cdeh5NbpZrPZ7/f9wK2L4cb65uL8klVlFMskl9Y4ymFze7PValltojhwzjiwAGM7uDiJhkNFKDpng5AHgRz0Mz8VkBysdj71CkA9UMs5N0ZrrRBtFEWLi/OVSs3b2q5vt52zhFCfRbTaFEVRZPlUwoURCoB+NA+lFBP1MUIYJQQJRFG0u9NRYCjVk/kZsdaMc9dRmCSJHwo459oacChlSGnOmRDcdbs939Qp4QRYMcqrjdrCwtxDDz0cBCxNU6MBAM6vb6Z5trGxXqmGlXpNa62tVUoBFdUkMEaXKieE9HopYWNevzalECLPM1WaY8eOE8Annzx5/Ct2cWHm/H//s5XlT881ZvfuWY0qyUc/9tF9+/bd/pK7PvCRj3zh7nve+j3f84XPf06b7Ed/7J3NavTxT35x/961Hz98A200r739duCiMdNaXV21hP/en/zJMM+uPrxfEfYb//m/vvkNb7jpRTeVo9GX/vpvmrMz73jH9x4/tWFLTDvd0qrd0eh8e11321ffdedW7zMHD+y3ID77wGPOWUZpEAhwpFaZ6+52Tp1+6k1v/M5jx47u2796991f1AZ2Ov08G1HKrXMXZJrtZHr0NelDACAUCUVOQm0NUCAES5tTC4RwwTgnsHd53/xs9fixB//mr/7yphtWXTkKuNVCscANR52P/OVHHn3s8bn5/UXuAFktSaQUxqh3vetd733ve++7/6vX3XBjHMeggJAN781inPaLnCAI0TpnIcvyKIqKQt1y63WHrzrgnDly5BEAN8qGu7vtRqO6Z8/y+fNr3V67Wqs4ywQPAEip1HR+WavVbr315p2d7Vd++8utKx468mAYBgsLc73e4P4HHrrhpmuvu+46yrA36BICs7Mz65vnR0V3Zra+29n88lfuazQrqijn5+dbrdkv33v/mdPbV199aLY1v729s3dv7+qrrzr+1MlHv/rlfJSHMmhVCdHkwfu+2u3nSwvNYjjaOr9ODDhCKFJCAZ1j1JsWMqW1n+6EkXzFK16+3d689a47+73siUdPsJBro4NQjA0NnOMElTGW6qXluZV9exaXF/M8P378xPmza87yQW+4b99yEsUnT562ShvpfFrXkzL8dGJhYWFxcfnYseOScUqpLkorLrzu4xje+lb4oR8aF8W/5z3Q6UCr9bTasozB/Dz82I/BD/0Q/NEfwV//NezuPteq9loNrrsOfv7nYc+ey4HgaUQRHDoEv/ZrsLYG//k/w2OPPS22u7oKP/iD8IY3jHVdP/IR+PM/B2PgH/wDkBKkvPLJ//Zvw+/+Lnz+82MSdxjCL/wCvO51z3LmcQxxDPPz8B3fAQDwiU/Ar/7qs4tC+Ov9uZ+DlZXndL2//dvw+OPPhGVTCnfeCT/5k7B3L0QR/KN/BC9/Ofz5n8NLXgIvf/mzP7If/EH4oz+C973vb0kBOQwvh5vX15+rkoaPryVCHjr0PIiQzytuuw2+7/vgxIln2idJnpPicBzDD//wJVu+Fh7d2YHHH78Efn3Ri+DWW+Ghh579+AcOwHXXwXd/Nywuwg//8POjxj/HqFTg938fHnwQfvu3oSiepcH0+/ALvwB/8ReXtMA3vhHe9z5YWxt//Eau97bb4EUvumTL44/D7u5zvJS/o5Fll7sv/pN/Ap/4xHPqILfcAocPX7KFsW9up+b88iY9GsF73/v1HEqpyzvRVVc915YQhvDTP33Jlih62jtWqVbrrdlz585xFho0lPKAM5WrrunNteZuvvnW48dOnD59pl6pn0cqhCiKXGsdhtHS0kK7vdvtdrlgURTUapU8z2da89tbHV/bFG9F/X7XL5ectWgdZaxQY76w1opzziTJB5kx5tDhq6y1g0GPcyYEY4wFYSOKEu3wqgOHSpWmWTdN01qttn///o899smAhZSzZpI0W3VjzG5n1wMcYcSttaootbbOAmOMUtRaO+fKMo+iQErGOM7ONZxznU4HCZCxth1FJEop6xxj1FobBBIAPJsEHSGECCHKPPN0sUgGvvr3ineVEHCA1HPCCAFKiIOLhDRhygKmlJKxjCdljBlrwXNRlVpZWVlaWDhy5MGiKIzSuiz8elNKWWpNJkCw/0VKqbUGJ0X6cOlk9aLqXMBJGal/EGEYKqW8cJ+nrURRNBgM6ESqb3qqUkqldZxEeVkKIbSzOzs7ODEV9HxBKQP/PQAEPYZcPFt8ep5j3WHrjDGUjSEFL+shZeCdz70KMOccKPEsaX/mfunnnJNSShlOp+VTPqn/dQ8OlmXJWDQuLXWWEOd/OneFX3+NOZd6DO9mWVbkoRQxIcw5yLMSEcvCbGxs9vv9SlIjwLc2NoxxcVxJkmqv0y1K7atIAxEMBiljeas52+/386yklOdZmQ6zer1erVa1toh2qnNyWVhr0JW1Ws1NRFynqLqHQT151rc9IYQQDACcM0IwznkQiF6vJwOqFZlAQ1YbjYhApS8d9xCtc0YKkedZEsdCMmeQURqNMwd5rVajnFpnHFgmBHI52umFoSQwtg2zRhNwDihjnAAjjlHKiENn0Vfs+6Uopdzb3HlwliAaoz2NgzEGThPKValEGACAVpoxZpQqiiJJkrIsPWXbISqtPdcQEbNRboxBB0xQApRR7pzL8sy3Yc55kWXDyU3jnDNCg0D6u1GW5XC4LoQoVPHgkYfuufdLRmkpQgKMEo6EZVmhtS4KhYiSCwBgTFiLccCnqLEIAlRqe3ubMOoRYUfAAqLTUnLnnFIFReppmpO00JgIDBOlUK+REUVRpVIpy9LrUHtWk5sqaXiQDXH6xP0O036d5zmdCPUEQUAcAQAPN3sataTU9wLnnDZGWcM5i+OQSWaBZWVW6CJJEkTc3t72paWI6CxUq9VpOxkMe9mo8KeNE0ViT8CdQo5CCDKxo6OU+0EYgDqLzgGXUhICnl4ahCGd0OgcgfmlRSGEN2r0tSTLy8uvfcNrP/ShD41N+bLMd+80TYfDISGEc2aMARwrEgghuCDWGgJkaqxnx9ouYIy3xmJj+pIby9DQyQhirGo0GnEl2d1tS8m11v1+Fobh6upVm5ubu+0d57jSihDCBO8Px7oEcRy32zuCCYPOl2y4CTfKQ8+EEK9eNEENxvAuoRdgx2mWktALmCMi+jQmjHMLVyZIUK+efJFY83Ron/xx8TEdpRcUiKaIp7U49sScVJFwLpxznFH/Rhm/mQgijtN9hPpSfWCUi4nhIefcaiWl5FIQBApglcrz4sD+vUkUIuLmxpZPofikjR/o/U3Istw5FwWhEMI4xxjLh0NCxmxxznlW5L4lOOcE55QwSjQSsOi8nI1zjiAqZZxzlaSmTYlWBUEQCGGUDoIAHHIqgDhtDOe81LlxVkoZBHJyDy0AWKettcQR55AgLQGiKHDOMk6s0wKAMba6uvrxz32JV8aUfj9MU+/4RykhjCK1MO4qCL5yyU3Tg/7m+/9f1DauEH7AmnZm55y2xk+JpjuoCYJDPTV78nJFRApjgqTvxgjWW4sCUGN0GMVpmnV7u7udzcHo+sXlelSd6Q23NRb94U63M1zf2Py+t7ztns89cOz4Y/Wk5dtGUaprrjl06MDeJ588/ulPfe666/YfP/5Eq9WqVpPhKAUgaZoa7YpSOQKITjDhx8cwjsCRNE39OFVfqBejtCjzIi9uuuE6JsWjjzyeZVmchM6Zzc32Q0ce+PGf/Ilbzt8khDh69KiUstmqDYej/qBXbVQHw1yEzIHO8j4XK8eOP5plpZRESDh4aF+9kTRmmoNeaTQCEH97wjAuy3JjY8NPlaIoKopCKW0Ri6JwziVJIoTwmuZSSkTix1xKqaBCay0E894OWZm94ttesrZ55u67P3OXu63eTNLcCsF5EAjJEMn8/OKwNxwMBpTQYb+bDdMkqqTpkBC6Z2Xx3NnNer1KKIB1jBELmI6GUsokSfr9vtfpj5OgVqttb28PBxmAQMStrS2C1DlkVFptvR025yyKorxw1mpr7R133CGl/NIX7ymNQ0QLyAEBUEpJhKSUOm0uzrr5RJeXj/GVYogIiJRwpC6QISIaaynhXsQGADmXfsJhjBmNRn52kiQJHxvLgrW2LJQQwhsmWEumbyzJOQAsLs43m82nTp2WIozjOC+VH/mLovAFYoUxeZ5HUeLASRk4NMaoIIJ9+/Z1Op3RKPc1hpXKvKAkGw3RuizLRiPeN313esPc++h8I5qpNW5/0Ysq9dott9/yx+/906985UgSV/7df/jVlT1LFOxP/Pg/kVKYXD341SfOre2ESUwj2Zpv0UBstHdKB9vddmbM6fYWKDVfqfzpX/7V7adOls7sjvLUwr3332dskA5VL00JhI2IfuXRx/+v//57d9511+//8Xs5C6wCIK7ZbIJFxoRgkhPa2W2fO3O2KLI3vOENX/7KfSdOPMVFUCgLyAGsCEAGASKiMb7a47JhYZzenejlEMIYJYQTi0YZlVrtjCbWBUH0+CPHzoSkUqGve/Vr5mdmPvuZv9RFPzUZCex2d2v7iTPGwdkz60aTMIw5k4xRKaK/+euPb6xvUWTFyDilsnQgRGAmg5uUwlhkjDVnZ3e2dic1JcRae/PNN9bqlaNHjz72+CNLSwtPPfVkUY7SNA1k5PMojDIppAPwgmUOjSoMpW5hYW5948zRJx6JYkEpKFUGIZufb5Xl2tr6uSAUtVpFBBTRMU6iSlCYTEQzK6v7HnvkQcpgZmZmZd/qRz/6UatcsxWfPn0yCIK5xdrjRx+dnZ2da8316z1XodWkcvbc6d5O3wKurrbe8Ibv3Dq3WwxzhiSgkhBirAKKzhFKOHrfG6etM0tLS7fcev0Xv/jF4bDPGPFcFcZ5UeSCUQCQAde2QLSOuNOnT8qYVetJmqZZNpKSj4apcXDXi++Mw6i9sz0YFgFNGGNSckSsVCqj0QgoP3DggLXYarW2NzbBIUWYLuQAQCl4xSsuCLByfgkk9HQhBAgBP/ETkKbPo546juHd775EyffpgjHYtw9+7dfgB37gaeFXreHbv/0CwpUk8NrXjrUvniGCAF75Svj4xwEAKIV/9s8u5wk+l3jd66As4dd+7Vlw9ud7ve9+N7z97c8ENzsHS0tw+PAF8PrwYfjBH3z2q4bJI3v72+HUKfjCF579lL7xiKLL29Kjjz4/Ku7XEiFvugne//4X5vQujnod3v3uy/H6i839fFxWxf90sbBwORr4+OPQ7V6+2yc/Oc5e+KjV4LWvhYcffpZGRSlcdx386389PtsPfxje+lbo918wjjPnUK3Chz4EYQhvfCO88pXw0z8Nx449y1mVJZw9CwcPXrLlMoWNr/t6X/MaqNUu2fipTz3Hq/m7G5TC1hasrl7YUq3CW9/67CIhUsK/+leXtEzn4NixZ5E1v+suuPFGEAL+/M9hZ+d5n+0tt8D111+y5b77nkmV6BlCSjh+/BJ1FELgX/5L+OEffnbE/K1vvbwlPIPAUZ5n2OuNRnmelZVanThXFErpIsvSvXv3MKRJUj127MTS0sK+ffs63W3K2UyzFccxIbSuqu2tToABpeCcSZIECC7vWQSkJ08+2el0OKeLS/PWYFnqMIzyrAgjaYwpy7woc265kNUkiZRSp08/WRRFFMs9e/aGoa/op0VRrK+1N7c2hululmWHrjpYqVbv/8qDaZqSiAZBRBl0u7sWrTZFs9ka5flwUPZ6PUCMwkRKaYzTOiOExJXEi8BqXQ77/TCSkoso5mFU885AujTD4dADEVTKgAeTRSUgoploCntwVikF1oVhGIVXFtNAQr2mcJZlxoxRJMCxF5S1Y/hmTH6a8JkYZUzwsd6xc2EYnjt3bn19vZJEHnzwoDAienZtnud+8evhcICxtt5F1GDiz38q9UkuEgv1SJa3InTOeYtyr4kRBIE2RmvNGfPSEB4qiaKoNGpraysv8iCO+KQqnVJK+FiExC9v/e96nVkvAOhhJQpkrPALlhASh9ICWjMu+NZa+539PgDUe1KNHf8IMUpPeb5Tbqy/JxNQxfqvT261na7Tp9fuuVZ+0UQIQUcIRUJIURTr61vr61ucM21LRIyiYG1tw1obhVVK6ZGHHvJETACQXHjUO8sKY6yUoLW2Bk+fPu0fk5SyWq32+/3mTCsIgo2NLc45fZopCEHUWnkyqbXaI/xCsECGZVkabSlFh9YvD73JvKeUUgYODee8NVMPgqDfK8oyz7IMnUmSpFKJjbNpmgZB0GjUiqIQIinyzBiTFyPKkrg545uBFFpbBZQURUEp9IapdlZKwbgM48RTzo0xwMAY54zjTHDOjQZEREIpOgIU0RkzLeUFACCcZllGECkFcJhlGSICcZQxRFJoZa1lVHgZSc65B2H9zNw6BxO3PQCY8CCJt7j0TUUK4YH4sixLVQCAz5qQCa2YEKKUyrLcW1wGUdjpdMfUQBhjC9MW5YnhVhv/u1JKpQ2l1BhtwZEsAwDjLGoEAAuo00JKTgjnnBtngRJBZaVS9czrslRxHDMGXqnVC7o4Zx0652yaDr0Uhm8Avil6ZXacWOt5bNav4n2ry7KMEFKtVvNRFobh3r17z58/3+9047hCBR/D4kLAVJ+WUcED5oRXMSGAU7PK0Wg0YdMbwQPfKYJQomciIcnzAhGm3QSmCsCIHmiO40qpRqgBATnnSODCnUTjnOOe12ydbTZmgBLECyLQ9Xo9juNutwvWevmbrz54/9zyvAMcjUb+eRtj7KVYiUfZqtWqvx3GFkVhp/DdZFATyBwahLFoi0/BWedclmVhHBNCijIbp57yEefc6zoBwMzMjHcs5Zy3Wg0hgvbuzmg0khJnF+ZXV1edNsNhapQGoEwKAuOO4bOLaK1fabtJqb4jY1669KOe9ZjCBfx3mkMYw5RwIRV55ZGCEuq728Xvm8lxJvnMC2Iafnz0u9GxDyFM3yXTYRQRq9UqJ7TX67mJLoRnNTqw0yrvcSUCk1rbstSlHiWVioyTQpVaa8k5ThCTubm53U7byymEYYjK+R5LJkLgQRCEYWi1EUJ0+31KaaVS0doWqgRCrLXe6RIRjdaUEOo9YRlFS/OsnGAfTGt98uTJtNtvtVoLrYrk3GvT+Psw1gQn6MumGLcOvAIuOgCtNVBirEFE5ig4RECrTUmBMkccNRZjCrnK6826lFBqDQCMXezl6CjlziESAMI8oxnBiyoTxsb3zXdmn1smUzXnKz7fadedgP4O0Kc6YJyH0D5R7B+iHw1hwlj3QPO4TTrHOPGZW+ccY1xrC+Aoo8apY8eObu0Gx88c2Xdgfs/+Jcaddfnyvvr1N133+JETX1k/OUpyB2CMMQacM7Ozs4SgKosoisoyX19fX1hYAIDRKK01Z7qdndtuf1Gh8IEHHhjLsDDmkRo6kV84ePBgng7Pr52bn5/3HhGNRkPpwlpLKWEMlNHOmZtvvvErX/nK6dOb9VYQx5U4jpEQxujhq/c1GrVqLQZw/X730NWHOp1eJakCo4iOELzxxhvXTre1zgMe+x/1Jz8ajcIwDIIAEaWUZalGo5FPWRVFwRir1aqIqE1pFSnLklIihNDGeUIiY8yCPXPm9MFDe6699uoz54/t7u5U6lLrwr9ptroDSjlFMMYUWRHHsTFGmbIsiiAQxrhqrdbv93NVVsKIUgrU6kIHgWCMDYdDxtjKykoY8cePPpLno7LUcZwMBwWnDJzmglOggNyB8/3bS4AJKVZWljc3N8+cOQMA58+fp5QCD5xzxr/ZtJZcSCnDMByNRmRs44uUUjGZG4VhyCmTYZDmGYJ1gGmaKmWBABXjhAejxDcqSimxJMuyMAzDMCzL0o3HK84Y845tcbXmW2Oe594Bstvtjgrpr3FuYfEr9z3ARIiohBAAyAXr9wfVasUYZ61FsNZq5QyClVJaq5eXl2u1WrvdLgpllA7DMAmDvSsrR48+lsSVDGWG3FhVT0IWhjyMNnfahmB3OFBoZRy86I67Tp44aY274cYby2L0+NFjlWYz4GJjvR0lYe6KU2fZgasOrq+tHz97llVqRPBzW9uzjbqoV/tF+akv3ecIhNXayEJvkBGCMoivvfGG/s72/EqjWpcf+fjH3/P779UKGo05LuI9e/YAUrCoteWUOW2WlpaKbPSxj33s0cceOX7iSSm5dcgJBcYBKKKeEiWAApm4rIy5BsR56aCLpuxAKDHGIHF+TpaXWczDKEpqzebh1aXZ2fCeL3wxL7atUYN+d9/t+++68+3/5l//wVVX32HMdmcnD4Kk3x0Aspe/9NtmZht/+id/2u8tNRqH21vAqIjChWYzyIrCGBtJ6dABqDCIkmg2C9tl0WNU1Gtq754XHX9CHHn4np2dxdnWIXQkz/SjD5dhOINIAvEio4HSoCgpARpIP45BFGpn3Sc+sT4cNikJrr/+1bfcfBAR2judslCL89dmZbGxxtnKcq1edWgEYZVoKIVIe44Sd92113JCEeyJo7ZVe1WrPtPr9c+ONjs7zYOrtx99/PhOe3GmPmeVyAY56Oq1h++QEe0Ntg8e3n/meLG77Qje0ahJQM6ZlKgdOEYZIrEIDlGg1ljef18RJyFjt2QjoYo0SWphmHBGEB0lwGxkUDHhahWmQJW6iOStnd3QGB3LmRw6Kt/dtxKX+cGTT65Vk5cEAVijlxdnlSr6/cH1194khHj40ce2NgIAqCYrONvvdboB57X6rdNXgDHw8Y8/LTH2WeO7vgsYgw984Nn3XFmBX/7l560g/Eu/BB/9KHzyk1dQ7O104EtfgpWVSzb2+89ywC98Af77fx///Z3fCYcOPQuh9eni0CF44xsvV0i4OL6+6/2VX4Ff+qVnkmE9cgQeeOBy3PNZr/rieMc74NixF8YQ75ljcfFyqP353uosgzNn4KqrLmxZXYU4fuHlm//9v78cxgIA5+AlL7lkS5LAH/4hfM/3PNOhDhyAP/mTy9H/48evsOexY2DMJV3ve78X+n343d99puO/853wzndeOH4Ywu/+LrzznS8Yx7lSgd/7vQsPLo7h//g/4Hu+51lYt8ZcrkNSqVxOQP66r/eyG27M32mR6+cYp07Bn/0Z/NRPXdKXf/RH4e67nwXGffObLxe12NqC3/zNZ+oUr3oV/ORPwsoKOAe33Qa/9EvPW5HmH/2jSz6ORvB7v/f8jjCNLIPf+i245ZZLGsyBA/DmNz9LJml1FX70Ry/ZMhzCn/7p046x2Sjb2j0HSByyPNMhJwgOAGq1BiI5derM9u4OEsiyTKLY2dm56pqr6rVKWeh+v6eU8ThgGMqyzJ0zvV6PEiZ4lGWpUoUM4jwfcS4R7ebmurVIhQ2CwDrLBUW0WZ7WarWACsZJa6ZRr9cBIE17HtLtdDoUknTUHwx3ZEBuvvnmI0eOPHD/Y416vVZpJEkyGg13OzuEuIMHD1Yb9d6JE0lY27O0sru7m2UZAOWTxU6e52EYMkYqlbo1xebmpuAsjmMhEwBQpTHKOueiKPJLOau0t3kIgjAMQ01tabRHdT39tiiKPM+luHLuAi9401lCqJ8ZEkq9SHFZOk8bAgB2kdk4AeoAgyAoigIoXVlZ8RCb16bweKiUcgqlRVGUGWvQ+SUSAPiLvRhw8NPUqWnhWMd5TPhzQgjPDDXGdLvdRqPht0spIU0RUUiZ5fk8Y5zzoiyllOWoHAwGXIosy6asW621Z+Z57oufGvur9gbm49UKIc66iUAoEZ6mS0ChQUTGWBCEHh8khBjjjBl54mAQCm9ZJsX4D621czBVUQAYC0WONT0QnXN+gTkhllF/qpSo6Xn6706ZgowxL3tiLHp5ijwvGRMe94jjiuRimPazLMtHmb8cIEwIwbkgwPxlJkkyVkSU0ost9Ho9LxppjOH8ygVcnHNlIB0M7KRs3d+90Wg0lbT2WqbOOUSP/5gg9GrOTmtVqVS09rxgwzkPgyhJIsYYGqjX661WKwjDIAh2d3fDILBWZ6PRzMxMmmZxHG9vb2utHaC1tlavGLTOwmiUl1pRytNhAZSM7VLyEQGGmjmbo2XoGCMCEZ02hCDCGJJijFHCAMAU1uNf1mpnPEsSPVKulAEAg44i9e0WAIZ57i/WWqu0ppRmWSalzFVJKaWWWqWnaFJZloJzn1zRxvhf11oTxnxSwe85HA4RoVKp+Mftf2iMxQHhnA8GQwAIuPC3XQQyyzKtDQAwzsuyzMoCALwwOuXMw8FU8FqtFgQiSZIwjrrdrjFmz/yeqbdelmX+3BhjOBFfJYSElGpnh8MhAAjGjbPT9jlNAmmtp3mUMdA/EXUwxiwuLqqi7Pf7vs3HcUVKWRo9xYXdJK0igoBQL/atvGg59ctV9IjiuFrCGjcajcIwVqoQQiilnQOfPXL2gqWWByap4J5a7qsi0ABSRERrnbWWEm4tAgVAypVDFoTVONbGJDKy1mbZCAA4IVvr67Ozs41qNU1TShkVIh+pL993/8033TAaprvtLcEo6kJQYTVBIJRyxoRl1hglpSTUlmWuNHXItdacelAchBDGKESHgJSCQ0vGTD6GDkrt8m7PZ8MIsZ1OhzFi0fn3jTFmZ2en1+vV69UwlBbN3PyMpbrQIxmxm2+5ttvtI9jV/Str5zfSNGWEOTTWIiME0VBKHSUOEJ0GGA+yPjckhOBMeD1eQshUstkP0gBAyTgV6e+100+bEx9L/oMjkxHfOQfowJHxCD/mMBLnHAVgk4wGp9Sngij1aClxDp0z3u3Qg795MWQBscoyQhwq6+y42mIC9DMgaHVptbWWUEsZ8+IVWaEAuNEuipNaa2aYZs65WlIp84I4DKJENiNCCKcszUaj0UhKgYxxBME5asO05ZIiYxo0OEuAVoRAxBw4pySIubUWwHoyeyh5Wei8LKQMkAkFTlns7fTkILtqN1rZu1yv14fDISdURhwNU7oA6wgaGQqf5M1Hmc/tKGYpULSEOSpFhBSBoqVYEM0BdGE48CLNK00wqqw2K+l2GoTcggPGOeEOKCI6IAoVodQSSzkRlKuiFIQTIvyrlwAlFADROpCS1au1fr9v9ZVpA4RaIIYC4FhPw6FznLGyzKcZY89Mn9Y7+CohQn3imjrnQKNzTnCBiNSygAfGGUAAS4FqpEoI0Zptzq+00qKvrIzD+frepVrU3Qp20HHjOCDkSON6cy6JOltrZ548847vedPtt1195JEvDVVYqbfq8fLy0p6RdgbIwUP7NOTzK7WF+fknjt9XrdTPn9u2hjLGgWC9XiVowogTGA6zDZloFhItUohLXrWrreV+vz8Y9JvNyNLyC1/5XGOm8V3f950//vM/+ge//0f33H3P3tWla6+91h0xb/ue711ebb7vfX9arzcXFhZqtdrinvkD+6/67Gfv3lrbtaWQInSogVhHVGEIY94TzFEmLDqKFNH5IVISQZFSQihScOiM5YJaIAVowoiDcZ2BEAEiOmcCLirVZHt75xXf/rLVlUNbOxuDdjEaOMCwSK3WrFqNuzvDfFRKEUYiMsZYh4zzKK4opbQpZmcbRVGM8pIzxglnINAwS6xgfG6h1Zqpnjp7Ks0yoPT1r3l9rzu8794HgpCtLC/Gcdxut8tSodVcAKUENHHaJUktietXHW6ePbPe7XYRuLHILKFACQCRLIhlOhpwwpN6nA4HBJE5IAQYJ4ionSaEaKuiJAxDqbUutNLKJnGcJHFeasaYA6KtBaDOWjS5lJIyC5QAJQ7QTuSAjFGI1jqDQFUxWlxe9vMzrXU/HUopQlTW6oWFOWvJY+Hju7udMAwWF+a63W5W5Ax4kVohRMhi7axDQ9BRBkkccBHMzMRxgNmwbcrCoBr0tkxcbTabjeZcmqY1ISpxaCRdXd3zsm+7a7u9TsDOVMRnjz4ayYjPtrbLdIA27Y/Y6fZ1V1/z6tsSp1XIeZ4NoiiwnGTO8BLnqnNmSVhHgJDd3m7N8rLbb7e3On1VbzQPtPaFUuSZqdV5GJPD1+wRcp+MeKPVcCdb0Nh95KHHhRNNkUiXZ6M8TbNuZ1ipVIMgqFbrjLHt7e3OkUf9rCXgzBEY5yiBl6MiCAJKkQo+teDgwg/s4KWpcFK+5xgSRonjDtA5A0CdVRCoSpPf9eKr9u2bffKpo1fdfN2Q091RvEvn8Mm9f/W+n+bw06ceAwBoJQAAyRwAwCNHAACWF39yefHyIaheuXwLKJhrwVxr/Knbhm4bKhIO732619QzxgIAwFNHx5+aEcDFJcwZDC5apU9fhNn6hY0EoNsHANhbB7CQbsDeJhQ7sLYDCYekBQAw7AJ0AQBOPDT+1nWXygg8Xdz3ufEf9QTq1z3LzoM1mDJf6xzq+wEANs8AA5itX9gt5tCIod8GAFhuXdhem4eVKzGXP/hB+OAHn9PZfiNx/jy8850v5AGLAv7dv7vC9jCEVguSBGo1cA4GA9jaurJm8V/9FfzVX72Qp3RxXHy9tRrMzECrdYG+RyloDXkO7fbz01M+dQp+5mcAADiHeh3m5iAInquYif/dsgTngPNviubvxT90ww2XqKwOh7C+/vRfeJp47DF47WsvfJydhUrlBYab3/Smy2Hli3/9Mp7y0hJ86lPwi78I999/ORlzfh6+7/vgHe+4HGvudK7cv86fh/vvv/ynf+RH4KUvhV/5FTh16pLH6r31/s2/gWuvvfz4f/InL6SeRq8HX/4yfPd3X9jSbMKP/zj84R9egaA93eGHfujy1MJnP3s5i/aFut4HHvim2+L97cTHPga33ALf9m0XikuCAH7nd+BXfgW++tUrDAvNJnzv98KP/MglG62FX/3Vp+0RtRq8+tXwz//5uB6CMbjlFvjDP4Sf+AlYW3uu+hs33QR33nnJlgcf/DqzdD7SFH7t1+A//+dLJIZ+5megUoEPf/gKzaxSgdtug3/7byEILmwcjeALX3imhJ/KHUXBObdGg8OwwgnxwsqhcWCMnWnNFUUx6A3pgM5UF0adAkry5JPH5+ZnGGMWDThkIkZF88Jko1GtWneoavVKpRprZQFlOipr1QYX0ZNPPpnl2dzcTLVaZZJQSrmgnFONNooCALe9vekcZFm2tdnes2fP/tWDx594nDFWiSoExOMPnnr0kScYylrSWtmzT0i+vm6kCFf2LtVq1W5nR3IIIgMA80sNo5ujYTYcZgsLC81mYzjsV2oJggGwBw4dAAql10MuckQUjCMYBEUpA6spBI4aGVBE1mw0rbWKa5KToigsHQtQ5MXIOlcUV25SDK0gBhGBcU8WzrIM0VIKjE1Yesg8wGSsJYwFUgIAOu2cLcs8qcR33n67MSaJKkaXnNPhcIiEhHFsnPfes8aY0oxdAbU2lFKChMLYQtnzEAkhBAiC86W/Dqxxziv4hWGIiEEQ1GqN7e1tRrkHW2u1WpZlQRgqrZVSUsrSGo3OojO6HI5GYRxLKb2THiJKwmAC3SpVegauv0aFOg4jzjlaa63zUMkYfGdMGa1M4CfSnmxkjKaUeTsfB4iIvhZea1WWBQAIJqIo8mRPD8N5IHsKzBHCCGGIhDEBQCknQAh6HzOloyihhHApES1h1IElDJwdg6TGoBmhEFKwgKPUeuQcREkwPz9TqNEw7TvkXDJmKAFGKdfaEs2tI4SgkNIhGqcJIQ4QCZTadHp9wWU5Kp2zgZCMUItXVmQFyrTnt3I+ZcI5B6osEJFRAgQpsLJQiOjAAUAQCocEKDAgRZmlI5VlGWWSC8o5r1WqXp8EcbwwFJyv7bTb7Z3Z2RmjrBQhGlvwtBiO0nIEQFVptHLWUEZJNY7BWFKAQzQO0VEEkSuFOp4wKZEQS4gDKKfaAN7zhlJKKUNjjXGEj0vPvbClg6m4tvMaKV6ggRI+Bls1ImIG+ZieCAAAWZq7ieEZToUKEBBJrixjxKADoOicdVaKAJ0FSp22pRsfJwwDyqlzDogTklJyofocnZOcqVJn5UhKqZUyWqvSUM6MMVIYQBpQWWpFmQCkZaYBwFm3d26Oh5xSopTK8w6huLgwFyZiMOh1Oh3GBJM8zUaSCX97KOVTYQrOuS6VEMJy4++nz0b4DBBjbKJoYcdbOLHWGltSCnEtHmU9pVSuho88foQQAgSs1ZTRIODGKBH4G+XCEBwpPYObUOKc41RSSo1VziFxaMErMiMBKhjTZc45L4xFBM55vR4ZY7KycI4465ASbYyUklEBQMMwMMYZawUNjXPEgWRjDRxKQSM4INz3dk+FmyadvHQGAPhsACKORqkQIklipdTZs2eTSkRhbmd7yyfinEOrLWPEEQcIxuhev1OpxEEQKFNoUwBQ44wQ3Nd6B4H0QwwgOELFRMJCCGGsZowpVQrJjKGI1hijjK5Wq7Ozs91ud3d3d2Vled++fYj4yKMPr53fOHDggNa62+1prbMs291uLy4u12o1rXWZl248UI35xVNxJY8DjumIAH54GtfOjKWEwTnnIekxMXuSang63itMDg3WIbkgljSmwuEFeQ1vNOmH/un52HG/vRA+ecUYqdVqURQZY/yo6s8EJmxoMpGPcM6hGZsNjn+G0qIoHBCgnDHmtM2y7MyZU4dWV5VSoRRFntVqtVqtsbm9HSWVNB1mRZ7nuZQCneMyQGN9L1dKGRibG3gqPiWE87Gn4rjUCJzkVATB7IwoSj0YDIwqGOGSCwlgjD670dvc3V1cXKzXq7VajSBxCNaB1kpKKTh31hZZXpZlJAOjyqQWOQeBlKBdp9dt1hucc0csWoIOPBG7LLQxpl6tCiGChAse5HnOmLRoCYBFKyl32jBGa7XEaK1zHcdxmZUE0Tg7NXhljAVB4IsvYCxOcuXHO3lMZPoI4KIM9pTtePEDonQsouQN3ATzGkDMGONVI3xJO6XUImqtLVhEbDabVYhn5hrnzp3LsqxerTUajePHj2+3N6tzgaBRJQnrtbi36apVMeh3a/WYUZoOh4O0eMc7XtXd6Q37g9e++jW33Hbzxz/18YcefHB5eXl19YDgobN8c7MtpWCEIaKzoJXd2Niqt5rpZra52d7Yau/bt1frstGoLS8vzsy0Tp48eebsqSQOKcDnP/PZd/7Yj77+ta992Ytf5gx+/rOfH42G73vf+2694wZGQ2vg2BOnoihqNubPn9sa9cvdHbO+ds/MTFIWBhGMMpyFujSE+bZKnXHaaX8PKfraAsK5NEZlmRcMsgiWhX78osbYIPAmsDzPNQAyynd3u/d+8b6zZ9c7vd2N9c1Gs0448ZUQSZKY0lilPWs4CALGXBiGxqhxx0crJKeUGqUJIUEo5ubmhsOhc57Fb/O8jONKGCZr5zcHg8xojONaJCp5nqdpqpT20upCiDCMG41GszEzGAx8khOntV0GGWcOrHMuTdPZudlKVOl1ulMCglfOn+Yq0jQNw7AoCt/LhBBA6eLiYqc3MMYYh4wRtA7BOkeKopABYRNXEzfhLNRqtSq60ugsy5Qx/X5/OBwgOgDUWgMgoTZJorIse70eZSAjbtEsLi9kxWiUD4SQAGCMaTabeamtLqmgzpmiyOZqM1tb2616PcuyLMuTpKJKY4xWupibm8nzESGYZZm16sEjX+0Nt6+/4eowEssrS9vb292dbjpIdWnAMSro5vZGvdmoV/jc/IJwVlBkHB3FUAYskDP1xvLs7MbWrjLapn1p9EzQ2nvtDcfPbT95+rQycOrcenenH0VJWWQEaRAECLbd3tHGjcoizXSRrqfVLExYrzfo9XQgoTcaRDZWzhJCwkqURFGapla7MIgJYUYZra2fvmtdMsaKIuOcITrOxzUo1lrffgBASilFCADOWecs5cxaDAVHKlb3rTQbUb8/fOKJDuFQb838xUf+R2tm4Yabbn7kyJW1274V34q/heAclpfh5S+H174Wrr32kmLzdhuOHoX/+T/hoYeeFjL7ZkSzCbfeCm94A9xyC9TrV9C7cA7W1uDuu+HTn4YzZ54f7txowAc/eAn+8tyjLOGtb/16auqfezgH/+AfXLIlSaAsn/dxhADEC7eu2YRXvxr+7M9egDP0sWcP/Mt/+fy+Esfw678On/0sfOhDkOcAAJTC8jK8852wunoF68s//mPAKw2NnMOHPgT1Olx3UZ6JELjuOnjPe+B974N77wU/3eYcXvISeNvbrqDm8cQTsLn5AicP/vqv4TWvuYCBAsDb3w5vfzt89rPwmc/A+vr4rBiD5WV41asukcjwkWXwP/7H5RtfqOv98Ie/6cmSv51QCn7jN+D22y+51bUa/Kf/BGfOwJe+BHffDWUJlMLS0pXvc78PH//4M7kmhiH81E9dLhxfq8HP/Rz803/6XM/zh37o8i1/+IfP9btPF/ffDx/6ELz+9VCfJEophR/7MfixH4PPfhY+/elxasprH73kJZeojvjIMvjN33wmxJxQAhY8w8laWxR2ZmbOr2tqtVqSJFmWxXFlNBpGccAYQXBa62q1LkXIOR9lfQDIs9IaHI1G1tvLC6FUnue50W5mphIlcRJXy7KM47hSjefm5qSUg0EPAIQIjLHOOWWVEKLfHxZF4fHEKIparZa11hhHgIWhfOCBr0ZhXKtV0nRw9IlHlVKtVmPPytJgMMiL4ezs7OHDB8+cObfT7nAuOQsoF5VKUqtVV1dX+4Pd7Z0tY7QHPb77u/++Uuozn/7c5no7juMgCqtcbG5u5nleiWNnvcgvRSS9fsdop5S3QaMWLQcWhsG+ffvKLLcqvuJdtYDaIYADY6SU08Jla61SyqOlfpkwLWXGibyDc84aU5+b73Q629vbrUZTCl4UWZZlhEClUvF6r34Z4p36AMDXwpOJ7O8UWMCLDKWccw6cB7NgosTq9QODIPDF64wxLwExGA49gpwkiacbM8assXme+wuZSlM659A6v5rmUniG6cUnMAZPjcVJiTNMrP/sJCZ6tV5Z1DrnkIyJev44Hoaz2hZF4Wth/S0NgoBzjqg979svxj051FdzTm8yhTErHACCIPDImHOOMUonkJRBY4xBRSilZaGVLazVXNClpXkpZa/fAQApQmNcUShn0SnHpUDE0WhkrVcRIXleet53nudWWsmF5xqGYWjNlUEGOzHu8riEMcaTf/0dc845DWxqh8jZ+GyNCUJeq1YjE/gjUBL53cjECNEjzjs7O0qpXq/PGM3zXDAupdTaUnD+YXHOOAdASEdDcFiMMs6I9ZwlQgCItWgNOnOh0H8Cg/gabphiqQBAnP8IVHAYs+yttRaJR0gutApGKACdNEbveucQHSGMTjyxPArn761HUSilOObSAnh6H6VewtQ3Wu/VaZyx1oZR1Gq1uBRpmlqnvQ6BPyznXAaC+CSMtT6Fg444N2aLlmUZyGjSPklRlmQiUdDv92HggNEwDBgjnAprbafTUUo1GzNRFHU6vcFgQBwAQJbmYJEI5h+KMUoIkZcZs8RDfB56hYmqhj8Ta43v18baKIqq1eqoGBpjsjzzHd/3IN9twzCcmZnRuhxLxKAVQig71hXxpR6AEwtNIEDJZZ0UAPzoNOnXQAijhBs0hBBKWRRxQggljFIvfa4BQGttpxTs0iugjg/LfVvs9XqMMaeNUopQLMqMC2aMbu9s+fGFC2qs0koBh16vF0VBEAdhHPW7AwKGEMoDWapSEKGMPnzNocGgB9Tt2beSjcrjx49bh0EQKVUQwiqVBCaqHz6hQSd6yoxRzpgxhgsahiHntCiKIJJmpL0osy8cyPP81KlTSSWOomh5ZcXj40VR3HvvvZRysFAUpzkb28hyzn3fJtYhItDJWOvb90U9HCdx4dVLCHo5fwCcINTT3cjTWMkRSj07e3oQmPiiTn/Iq4jQ8dGJx5ovPshlZ+KHS2OMZ8JfjGbCBJWedOPxYErG4s6EMQYIDkDrkjhklAwGo2Ha39raWlleaLVaCHD69BkgTKmiyHN0zgN51UoFHDIg2jkpZamV0coics65z8c6wik4h0ppRkFOxKbBmtlm0yGphMFolI/ywuS5N50gQZKW5Ymz50IZVKuVZr06Pz/LuWSEOmMIY4Q4rTU4a40GZHleWmuNMGixKIqT3VP1Zs0QZ8HWkgpDF4loOBzi5vaBW29qVGvntrqSGSm90palDAQnBnStGa+srPT7/TzPnbPgnAw4AKAB783qSy2iKKhU4lGaWqclf7qkAvHmtW6ikDVtUPA1Yil24qLr9XP93Mv3f4LgXTQ551Zrrb0iBVDGVvcd7A62zpzZ7o5273zpi6QMt7Y3z5w5ZbULRUTc42maHTy4v99Nnc1DkXDuXvfaV7/4jtu/dN+9ulRFWtRarU575wtfuOfhI2fmZ2aWl5c3zm+UWdnrDsIwmmnNR1E1y8psmDEqrLYEXZ4bBLu8dwWQEiAIuL6+fsdddwwGg3Nnz3Q7u3meB0I+/vgTt9xy08MPP/qLv/CL11577Vv+/vfMzswvLy7/zv//dx748rEHHzo2v1ip1uLe7o6U8rrrbjh7dm2UmkCCMTDsjbSGQEpE6gcvn72gAD4BM2nU3FqLjjAhDHWEOABKCAYyAGG8FIZjAOA4p7Ozc4PBIE3TolC5Kj/7mXuQOC6g1AZdwaUOwxAIpP00TYe+MAcROedlOXJOCiGcK3u9TpJUOeeEoAyDXqe7tLScJMlwOOScDwZpr9fTylUrjdEov+/LD1IqTYnDQWd+Jup2u1mWOYd+ulOWJQB1zhntRqNRnuf+PeqfO+PcWCUCbux4nnRw9SA4PA/nLnRqwoCizzcURdHr9cIw5Fz62i4vf1SUmX8Fc84tGmMNIFAK2jIRSAc0ikJfgzOdiHjVGm2U0kWtXhkOh2iQEWaMCYA1Go3N9ubm5mZjpoLEdDrdEyeO7T90IC36lJJRmjcbcxYcQRtFodKFv6her6d1mfYHe/asFMUpa20cx85BUqsYbQ2aUZZXazGArTaStc2zcY22Wo0vf+XU2dP9apU0azOqsGWWUcf6+aB47OEDL72dRkE1lkALNGp2tlGoMi3z/tZuXG3MClta21xZ2NhqB8pcvbSPyuqZk2c2zp0dDUfNWhJwkWVlt9uV0Wx30DXout3u5lbbADiEfpbypGEA9x9e7vV6QDmldJClcRzHiSScNGbqSplypLRS1aRGS4XKOecYUG2Nc2MDW0R0DihFL/PnJ8TWIDBHwVFGBQXjVCgEJWjQcc7jON7YOBuEkFTkhz78P4CyPfsOnD23sdOOvl5Jhm/Ft+Lrj1YL3vEOeNnLYHb2CpIIADA3B3Nz8MpXQq8Hjz0G990HH/3oGCj8ZoSU8Ja3wJ13wg03QKPxTHtSCnv3wj/8h/D3/h4UBXzhC/DJT8JXv/osx/fquh/4wNeJNQNAEMAHPvACa/5+bXz+8/D933/hY6/39di7PfQQaH2J8eNjj70A5+ZDSviN33im2/h0KiWMwWteA695zbMcHxF+5EeeVhvBGLj7brj7bnjf+2Dfvkv+qVKBd70L3vWuZzn+2bOXc11fkHjoIXjiCbj99su3f8d3XAHxvGIcPXoF57e/s9f7/2FkGfy7fwf/9b9ejgivrsLqKrz97c9+hPe852n/iXP4/u+/suD4nXfCK17xnDTcb78dbrvtki1HjsDRo0+z9/OJ97wHXv/6K2x/Ls3MOfjFX3yWKgePHVhrpQziOK41uBCBr9+fm1vgnD/yyGN79uzhXKbDwhiV5enS0sLKyr7NzU1rR4ikUq31er1er0cIZYS2223OZaVSCYMYJaZpKsOg0+nkWVmv1ykDP8sFAMaY11XwBFhjTL1eD4KAMyl4YK1dX988ePAwo6LX621ttZMkjuOYUeE9xmXAV/YuDYdDIVgch3EcxnE801qwhp49c945kDKkQLrd7unTJymDTqeTZSPO+Wg0OnHixNLinlqtQZDWarVarZamaX8QhJEMZKS1Ho2yUEjGWKczYkIgBUQwaINQhGHQaNUJ0n6/F0dX1m5mlDMqgFygsk3XhmSshzBe7E938NiIQ6eUAmur1Wq9Xuecc8rOnT1trdZa12rVOI6zLDPGTqf6U5jCJwmmC9LpshQnRoGI6NBRSr0gKsB4pQAAURTlRVEUxWAw8IofUzgFAJw2QRwBQJ5mflnhQS5Kx5im9YaKiJ5OdHGxLyEkiiKjlIebKRC0jnDm1+BofXm3h1A8gnExS++CiKVXsNVUe2zRo89uolEZhtwfZ0qsHmNNnE9viG/nlFKtNEx8mMZcPaReEREkRRx7MCJaSplSanNzU6ly9cC+0WjU7XYRSRQllDjjjAwDAPAkXZjoZ3Lu1TCIc1hkOQZjkYeyLDl7upnEWCjDc1F9+scvMMdJCJwI1BIUQnDp/4lwypwDAgzAMibQjaViGaFJklhrsyIvioJznuW5Q+RcNBqNSpzked7r95MoiON4ZqZqjNlpd1RROOc4Zd1hCg4BCFrPwmTeBY4gg8ulYv2pTt2wKAAQAEIYIcQi8RdC6KT4mxCEcY0+nRixezSAMULG7EYP6QISJEg9gjxNFYxtN8EiWEL4pBPhpDtYMlZMhSAIgiAYm8MBxnFc5kXpxpxaf5eIIJwzIQR6QifxEpdAGQMARsRYCRrRWjXlHUdJWJYlEMcYs4I7R6y1XjVl7969jUbDS/G06o0sy9J0BIA84mEYOguTbA1yzrUpa7WaB6PyPPcHn/4rAIwvnIG1Ns/zUTYyxnj5kTAM47hijPHa3M65osj8GTpnRBgCgBj3UKaUchYQLQWQXCK9YCiKOKaTohtjnIiojCmUggl3FpEAWMa4tdYBMIbGOGNMqXOuAweAFhkFj5uTiKB1iMi11h5NL8uSeUEfGCMyUkpC8PDhg+12ezAoCHHf+Z2vO7+9/dSJJ8OIJ0l9FA5zmTkHPrcQJbExxmhzy4tuueGGa//wj36/MdNQanNuvmWM63X7nDNKmSqNYHyanfDJFn+pnDJlSiHE7GwLCfR6HS650mW9XmeMFEUmBGu1WpRSh7bb7QZB4AEdY0wURaNRJmVAgFlrnS2ccx5c9mk36n0hJ8ojPjxS4E9gKpQ87T/E28heKtOME2axL1H52iCETHWb8aJc4mWgJANCKLG0NdBQAAEAAElEQVRAcFwjcKGqYrrP9CUxHA5Ho5Gn7Pms0ZSFPX2LeASf4oWvU0qd1c7bWBHHGKPMgbOME2OMsapWqwWSb221u91OY2YmDEThAXoCeZ4JITgSDgStA+sIIRawVGpsZQDEF3FQCpwCABBwQFBywRgr0mEQBIszrbJSDoajXo/0egNduBx4EidoXVrmJQ43d3Y22jur+1ZCwUPJtEVnHANkhHmdI6Odta6X9quVSpqN1tfXdwdxrdWUoezZtB7GThCtzWAwqMTJy19818NHz3Aums1mu93mnFkwnNEoDg4ePlBr1Ns768YqSsEYjQgBD4TPf4L1edOiKMZF8c7Rp3EZHj8jQggwwIvxZePfVXgRzblWq00eoiVj+XkzEStHyaW1GtE6AtpZQSEr1OxcU0pxzTVXb3bWOv3tRx95nHPqLEniGmfMllhkJgylsaXSWcjs1sbpSMDLX3rnVVcffvixR6679nrgfKfTO3r0aDWp1Grw+ONHDx48uLO9u7nWyUvdbM4Q4FrjaDQw2g6LrFGthWEsOY/jcO38OgCdnZ3PVV6rVbig3/Zt33bsiSfuu+++PC/2r+7fWm9/uv05rbUpB+fPbPzmf/qtubmFhYWFc+fWZAwEeGc7HfZGYSjzzH3h7gecBUYYJVxQcM5RYgEYGEIJJYRqZwlODTkRABgwSik64tD3TYIOtNaEIIAMI2msss7OzM1wwou8BHDVarUolLUuCpPRKCcEAXjAE10gATTEqbzISIbopJTgsMxVmaswDJ2x+SgzxgjGBeNGGySOc66tyfO83+9ba0tlC1XmqkySBIBXkiboQGvHJEWn0mzU7XYZY1EUIGIoQqVUnpeIqEoz7ZWI6GXXtCl9mZjW2jly6623bq1vnD17Fi6aaPq/OeHOOcmoT8sTwiwgIURIaYxSSkkR+pc7F9Q6Yo2iVICvQjCGECIkA4AwDPM8l5I3GjWfv43jmDHmnMnzHJBrDYXSURKn6aBSCYdpvzCjmYVmtVptNOP5xVav1ztweG+/N+oNdkMWkXFFC0ckcVQZDtJhd3TgwIFXvPyV99xzL5NBnqYnTpxotVpAcFTkUYW94Y2vPr92Uql07/7lJInObZy9+obF22+9Y2tz9+7PfGl+Zk7yYPfUYJDvnhnsXv/iW3fb66ISNMKkUg0Pze7b3d0VQoRBLIKwUq05Kp48c+7jn/vcyePHrrrzpfW3Nj9/z73t3rA7HM00G5U46ne6QSRnFua1VWFc2djq6gzAwdt/+K3r2+c2Nrauu/76Y8eOUc6UUkWRWWsJQSBOhGGUxFt52yt0V5Iqk2hK411TavVmt9vlTFYq1d3dLvGmIhd5JiCis5YgSjlRpnPIKV1bWyNQ9nu9m2+5BrhdXF25/sabzq5vdYebS/uuaZ98hmHmW/GteOGDUvin/xRe85rnJD/daMDLXw433gi1Gvy3//bNOqWXvQy+//svMbh71qhWoVqFt7wFGg2wFo4ceaadKxX4b//tOTkQPkO84Jq/Xxv20uLar49XbgykKbRaz77n1xH/+B9fIoNrzDPV5j/fMAZ+7ueek53aj/wI/MEfXK5C/qzxzNjr19oePvegFD70Ibj2WojjZ7eg/NoYjeDP/xwofVqNl2/G9fq4OC3x3OMbuVffeBw/Dp/8JLz2tZcjzs8aRQH/9b8+k6a2lGMdocrXKFY9+ODYCfNZdXje9KZLyNcA8Lu/+8LkqPz5//N/DlI+v2bmHHz848+u5kEZD0VE+NhxfTjIajWejXLO+UMPHvEmcutrG4wxIGiMCkMpRVwWpsg151QGstvtDQYDgDEhtCw156pRb/WGPSnlYDCkKeVSCMkQLKXCO5f4FRM6cMaORiPP9q3VavNzi+vr60EQXHXVNefPn1e5vfWOW/r9/tbWVp7nW1tbADaMBGPhyspyGEouqpTW2+2tY8eOnT17NgpaWVYgEkqZ96wzRg2GvTgOOaW1Wk1KSQj96499UmtYXJwNAjHKs06nwxjTxlQqldmZmXNn1xijwCgTLKkljLE8K/0CPIwCIfj29qa1uLAwF4dzcCXmeFGWSMBa5ODG9DJrx+t3yqZzSO+Z5Pk3brKuDMMwT7Msy5rN5uzs7BOPH82yzBfYTQF6fyi/bvVA9pQe6y5yISITUyJfa+tBDwDijY28pZBzztNyKaXalEop7yw1pRVLKaWUURRprbe2tgbpsNVqTUkYSim4CLqFCeY4hV+V0Z5DDQ4BwKtIk4nvl5tQs2EMnlBKqdaasDHY4ZzzeI6HYpVSfn3kOZjTdbcHdvyhptunfFgAABwTsSmlzmnnXFEU1qLXj/ZAJaVUO8s5p4Q7ZwCQEQKEa637/YEqNEGOlnIuKHJOnaPEaIvghBBxXA/D0DkzGAw8h90rygrJp8DOlIF7hW5IGUyeiOeS+9UEY9SDtG4i4EsZsdZSA0QQIaRzZuyEJCPBXZ6roii01ppxQpi1tiy0NcgZrVQiKWXpPfWKUjCOiKO0aDZma0lte3t7NOz75z4aZYIKB5QCY4IzQp1Dj5B41NuTVv2Ze2/GCwAaAAOKBMc6AhPMDB1BRzww5RAo5XQMx3kQ2aIjjFG8iEZpjPEM92lMf8g5Bx7B8b/IyFgqFy1Qwimz1kgpZRgEQQDeNUpp30oJAiAwyoCiMSbPC06o0RoRCTBKL0Z4xrxpSqnWCgCEZADIBfUIPuMMEYtR5nuBUooH3P9Te2urs9OllEZR9NKXvvSmm25qNBrve9/7T548aZ2VgUTEPXv27Nmzp9Pp7Ozs4MQVkHPuyaaEgCNAKQUKxrmsKPKypAwZY4IKn8WpVhPnXBRFxqh+vx+GCSJmWWoBudG+I/uuTSl1Fv1VOee89SiOVQq8qAghBBxgPkFonRv3F4/aa20mML32SRH/daXKWqMZzQXFKGNOck4LHPlSNe6ziONMkdYMKKGUEBIEgdZlo9G87bZb5ubm2u32o489EsUhpXD9Ddfmeb6+tl6MMs65Mc53G6UUMAocjp144o67br3x5uu0Vsv7FuozNYrkS/d8RYpAa8sFBSATUQ9KJmkIb9xZ4QnnfGnP4ubmZl5knPNmsxlFEWPMaOuhEwSXhIlX/yjzPAxD51BKWRRKaw1oK3FszSRf5/WY3UR9goFnKhPCL4xxk0Fq2rAmED6SiXXo9J/8PX2GyZW7lAc9GTcJwCU5xq8dYWDyKoIJ9jRNENGLSkIAKSAAAjqCQBBgovvvz238FTLmNVtjrc8bMUaMsuDs7EzrTW96EydOMmaNare3GCcMoN/vSc7TLDNWCyGcNoQLo0pn1CgbAuUUgRBitXbGEkLYmJ8N/rXAGQNwkjFKKVKMuIgFDwgJCGnFybBeH41Ga6keZsM4iIMoZoxIKdOiePz4iYDRxbnZWhI3alVKSTZKg5hEQTjMC8ZkXI0ACAtkY7ZZGj0cpU3ZRAoGsShNmhXpYLi+vn5gdX9SrRSFopQGgbROhzJC6hxRXLhKVVpU1qoojlNVGGeoo+DTYoiMEN8Xijx34+nklSeViN7JEKZtxr+JOXIkl7gO+oRtvV4PQrG9vZ1lmRBjJSbf6bjkzllf2MS50EYLydNRT/ZxdqG2vLy8sro4zPp5poFStEAYs7b0NUZ5MQwCXo9ZICrzs1d94MPv/+zdn9vc3uql6eu+802PPPb4yadOW4uVSuIQnzhxotvtJUmUZQVAt5JUOZdxEpakpJSOsiEAzK6sBKHY2FhDigAgBBumgwfuf/DBrx6pxBWtHBg4d3oNAIQIlDJplnV3RnluKD0x22w0G7OjtCgywrjkjHMiCCUoRTYqRBADUq01RcqYAAcOkRAwxlAO4yZPHCAQbwVprXMAjFpAxggis1ZzTgFQimhnZ2fv3r379u3b3Nzsbbe9ygQQShjTWi8sLOR5nqYDgpAkCRVKa0spETwEcFJ641qllPJa85xLpUylUvNcYG0s57LZaA3T1BokhIxTY0ISQozGaiVWEtPhQJcKHaFUR0m8tLBIKev1elKGdcKHw+GgnyI4xhgj1DoruLDWgkMhpHOuLEpHkDE2zZn5sXgqc8YYJQ4VIiHEexoAAFgnhATAZrPZ7w8pA//y5UIQQrwnsJ+oMcbKskSUcRLiOK9Opja+lFLvvNpsNmv1mdOnT5dl2e8PDx7aW5jRU2eOD1O7sDQ/M9M8cfJYUg2vvu6WVmv+4SNHH3n4SRkFxBvmalWvtaIoGA6yXr/InzjRG4yAskCGBSuNMaVWpVYgYPXQvu968xs//Zm/uerwSqUSrm+sVZ8Mb775RUncuPuLX776xmsqUaVZb91wy42f/OQnj3U23tBMipSdO7sxnwSW1UXKhaDNekVyZq0Cl2WlW9o7/11v/q5jT55eX988t76eJMnSvgOfufsLrWbTWCsCkRfFbntnmI8IE1dffXWrNrPb7gAjSZJEUbCzu51mQ845MFpv1QkFqzQFwiitJ43RMFVK5Wm5tLxoSfbooyeMgduuOfSaV7/2//l/fk+IoNWc3dnpUMIJ9UM1HRcmAkgZMkaU0YQQKbmyijGqdZkXoz379hy86uDhaw4SSa0jN87O3nr7HefPzHziW3Dzt+JvMeIY/sW/gNe97vkhRPU6fP/3w+YmfOxjz0P1+LkEpfAd3wG/8AsQX7kQ+dnjO74DVlbgF3/xmWDKXg/e+U74i7/4RhHn973vm4g1/92P2267hHxtDPzGb8BHPvJMX7lY1uOZI03h3e9+JpWDiyPL4Kd+Cv7P//NyC7hniNOn4Wd/9mnZnXEMCwuXbPlaqvIzhHPw6U+Dc/DzP//8siYA0G7Db/4mfP7zz7TPC369PlZWIIou2bJ/PzzyyLMc+Ru8V994ZBn88i8DwPNDnAcDeP/74S//8lmO/IlPwFvfegW4udOBe+559tGv1YI77rhky+7usyTDnns4B3/5l7C4CG9725WrUq4YxsCnPgX/+//+7CePDobpQEahlKFSijLNeWGMGwx6nj8rhLAWjdHW6jAMFxdXGONPnjg5Gg0XFhYIM91un1LKufD8O8GDKAw8sukpfsaYOI61Nb5g3M9LGRNoncdbrdO+aL29vetcW2vLGHvqqae2t7eZY1/+0pejJF5Z2YOIQrDjx49HUdRsVau1BMAWo8wvwdJ0sL3dQdvmXAohhOBxHNfrdaNKQlFrHcdxfzgAIOjI8vJSZ7dvtHXOIOKIUq9HZ4xxiPVmbWVl3/mz586fX/OAEWXMGOMceGUMREySiAkqA26uBDdbIGlecM45I2VZRlE0Ni20VgbcmfEa36vrTl/LzjnrLCGEB0GSJJTSLMt2d9uMc0rHLvRuIr4BAKVWXjkQJggdXMRlnqCc49F4sgNlhPqFxPRHOeeMEULRP6Axj41SAPAAZZIkoZDdbrfT6cgwSNPULys8E1Nr7b2vHCBFKEuFiD6BQQhVSg0Gg4W5OXCoteaMe8jPg6eMeDmLcbbDWgPA/QP1vGl/kmQiL0CBevHAC4SPsRiunIKSF+Mwk0ZOnLPoAR9giBgEgT/mFAsGABmMK+OR+pU+Q2eBEClDArizs0spRQRrcFCknoBMCbPWAWhjlNZjt3kvbsAoIeDhfgsAknFKqQwuHXwnQekYw6WUCuFrtXHq+ki8WRciZWO1kLIsqdZox9RXIaS/Ff4uOQu5KrXuTvMcAMC5NMYFAXjI3iitteEo1ta2dnZ2GKdJkjhnhBAujru7PQ4CCWhtCBeEMOccAzLm3V3U3i6GrcYb0bcuf+3sMljMoydT/N3/Fx1BOv5XpIRNdpjCzTiB7OBSbiiivVDcz8ALRBBC6vU6+3/Z+89wya7zPBD9Vtyp0qmTU+eEDBCBCQIJyaJIWTIlWhIpywqW7LE09+GM5fF4xr6exzOS70jjZ2zNtccayfa1ZVGymCVSlGiRFEESIAgQBJG70fF0nz6x6lTaVTuteH+sXdWnmw0BIGjP89zL9QM4Z3edXTus9L3f+70vIaZUjwSptVOfCMPQdR4A4NwrikIVorBWKwUWE2zxhCSqLSBwkqcWQRAEWmsvCKanp40x/cGAe9SlzSilhFAhhO8H1ppslF06f2k0ShBC1Vr09re//aGHHqpUKh/+8IcvXbro6LZRFDLGGWNZlg2Hw9FohBACgi1GFiPCWUnFM24QWTfWHLpAACllpJRKqX6/n+c5Y6xSqVSrVSGEsopwlo1GTuGEUpbnwtWOXxtNxjDmaS2VUhNivqN1a2ONcYAkQchNNWAtOHX0UiRHG2QtIxgAUR5ai1yKSClFgHLue8STuXaAGCYEuWpgIQpCiIcdIlMwxjqd9uOPP/5Tf/2vzS/M1erVT3ziE504/oWf//lOp3Pu5bNGKt8PMSiEsNEGM2qtphxvbFz9D7/7748dO2ys8rxQiHxt7aoG43SZlQLP87Q1SignourSeoQQxpjGQms5SoaMUyfv66Zg3/cRBqc4c/TYEULIcDh0MrhZmhupJto9GNGsKAhhVo/v0N28cJI04wkayTJfhwyMtZsnPfXamyhlZMeVAmM1cYuxhZuHa86wEvbxoL/lAwhbKA0F8f5VgTiOszti9gkB45uFhpNhhoBYa0qTQ2SdbMhYscEVAWChyvQFWOvQKI0tENLe293d3fV931hFETZG52nqhX6lUsEYp+kIa6uFBGOlzDQCjIm21miJMcYIE0YRAGaEE8oYQ2CstchYRilFRhc5JQQzAgxXw+msEqK6TtNqt9sVIkecA4Dvh0ZJA7C5u9dCUK2E87Mz1TCKM6EQrU81XYovT5OgEsVpghGilBpMCPWlgnjQ63T7OVJnz54N6tX5+fmrV6/2+30AsMgsLC4UqhgMu53O3igd3XrbyfZu5+KFdVdzoY0h1k3u5Vo1Kcmx1mpzcxV/e316zT1VR1k1gN1+xZ3T1URQhp0lbp7nE1leTACQGY4GUkqfBU6bmFJSqfr1Zj3L425vL2r4s81ZhOxwOCqKHBNKCDtwYF4W5rEvPb24MPeLH/x/PP6VP23v7r7l7ff/3n/4g0GSnjx1S7q2vn51e5Tm7V6fEUYo8Xhw6dJlrZDWxoDmzCuKYmlpaXPzquexbFQkVmsjr25cMcb4obc4P9fq7MwvzOy0trvdvFIhlbCGEBECopDJQiXxSBkIAo4MblRDSinn/nCYSYGsBgN22E9RPXR1cGHIlDRKaQJEmdJUFxMAawjBBo3Fq6xBiIyXB+xHHgAURaGNy9jbMIympqYYB9B2Zmb2ve/9kd///d/vdvtRFHk80Ea7Iez7fsAZskprKfLUI5TisfMJWC1AgSxk4ft+FFWcl6sQklJGEDMKlLIC60ajIaXu9nvT09MYU4wRocQBiwgRZ9oZ99t5XhCCZ2dnCaPJMHFdqBCF2zS722KMI6SstYxxV5cglUIIeR7HGJ566ikCCOy1XJdrZe0HJXjsnQigKeXKKjDE97wwDJU1xhipZCEMQhYBGKuV0r7vTbJN5W7DKFebwxgrigLGlRZRFFWr1eXl5V6v1+/H7XZ75dD8ffe9qdvt9/rx1tZmnHTe/9d+fm5p5utPfqMb7xIP4mHfLXXZSKTp1r333j0a5ZT67Xa33e7Nzc0UhUzzTCqhrVpdXY6LXjzqnD1/5nu/7+1Pf/MJgxsnbz263dp+8htPUhJ6Ff/+N9+3tnbVUrDUhnV/o9v+5J/98Q9930N33HFUxp2ZMJL9uBgOO/3O8twcEHjp5We//vzpTirnDx0Pas0//JM/O3dprzrFNCGE+Z1uNx4NhRBRrVKbrrf22qMkufXW29/x0EOPfO6LX/hPn+UBjqLK6uryFat3dlsWg+d5i3OzmICUqtuNd+SmENpjHFeg3d5WKGlMeXfcccfK8gHuMYyBc5okCcZAkAXAWis7ThIzzl3ZqRdwhGylUhnE/cCnABRjJGXBAza3MPulR78yu7g0HBa9QVz133HTSea77bvtP1M7fhze9a5vh43o+/DBD8IXv/gdNp0zBt73vhvJgK+rIQTHj8Odd74KK3YwgB//cfjoR2/E115729t7Q2Zfr9owBnZ9NXa9/u28KcZufJ6vhcb+qq1eh1//9euO/G//26uAdwCwtwd5Dqt/oWepE0X56Edfn+hHuw1/5+/Aj/0YvPe9rwK9DQbw6U/Dxz8OrdYrfsYlJH7nd0q271NPwf/4P74mKuv+9vjjMD//mjRhJl96+jR8/evwxBOv/uHv7P269sgjwBj8T/9T+es//afw2c++pst+48/qDTZj4F/8C9jbg7e+9RUVgSbNKQI99RT88R+/+pnbbfiZn4F/9a/gxInyiNbwB38Av/3br4mhHMfwcz8Hn/xkmdlKU/iH//A7/GR+//chjuGBB169mw2H0G7D44/DRz7ymq7BGhcEMSkLAGuV7ne6hBAMEIYVByY6npDjyg3jUXN6amXlQFEURVHkeVKv1zHGg/7QY169NoUQqlarAJhz3/OC+fnFPM+zLFNCHj16dHp69oUXnkuSJIqiXEilnCgwlUJiJAEgjkeOTNfp9BjzGLDhMGm321mSDpNhUWRRFHGPMkbyPB2NRtbqMAwrlfDo0aNnz57ttEW1SgDAmcjFcZwkQ7Baa+mK/LK0KAp52213NOr9tbW1MPLcrWVZxtwNDoeNRjPPc22NAUspKWQ+9hYzo3To/PdC7CfpcKp+c3GERqMmlJ8mCUWeUsqkKefc932XKDGgCUYOADHG2HLDDwghiq0xxvO8RqPhvKkcL9Ax9ur1ehiGnU5nNBqleeY4NA5qc95raMw8HZ8Q0L6aXYSQ1cbgfexRV+RNiR8GYRa6dxqGIUIIo1Kn2yEqo9FoOByCE0ZAaOLR585cysspZYx0ER8nnFJqUBmJKHVNidjh42CsQ9CuITAYKaMdlQ30hHpprl38GCcxYw7sGKTWQcCUUiXOO66kF0Ig7DNGAV1DVBy+5Ejivs8pZbBfWMMF7NYaU8pJIwBjAGM0GuZTU1OchUVR5LnAiBBClFZaa0DEcXqMMZRi3/eVlIwxIUSRC8YYp1QbbYyh7OZjUivNOHEkLXDl6aA9HhirJnixMQaPcXmEwBiTpqlLCI1GIwcig8UOLnRkcPdstdYGbLfbdcgbGBsEASHI932VWi1VZhT3SBAwQhmlVEmzvLoU8Cj0Kr1Of3e3hQx47kHZUgxg3yvACBmrNcJ4zDEGhEgJTJfV9xoAALna8GuQ8eSFAoAFh8AYq+wEfwMg1oIdg2PllGX3fwAmP1iDLBgAmHCEhXIP02ZFYYxhjBmpMWHG2P1aNMYYjKirvwYAOz4hoURJxTlnHnck4vmlRd/3d3a2GMUTxFwKzRgjmFmDpDRFMdRaF0UxOzuzunJwZWXl/Pnzn/rUp9bXNiv14OSp4z/wrvccOHDgK1/5ype//GWDkOd5mFGEkLNT1FpNhGU458YopUpNdt/3axV/MBg4MrVDrp3MvSlZtEYUwvM8zjlC0Gw2kyR3VDOnUVOWIGBcSAnXxhZYgzRorQ2QEuYyxjiUGQCklPFghAlYdU1ogVKitdZGhX5VKFHEOQGEhJBSFlFBMaFjmeryfoIgyLIMEfJD7/2h3a3tp59++tixY+fPn/+VX/l/HTly8NChQ57ngTV/+qd/Enh+o1rTWheFNAYYw0oqZRXlrBKElOJWa2dldb7RaJw/d7o5NcMYkRKiBufYA6BuFDnaPOeccSIEUkoN0yFgDchWqwfC0D958ngURc8880ye55zzbrc7GAwIIb1uvzk9NTU1VRRFr9t3aQqDoFaraa3zTLjboR73KCtp/xjDOLk06Y5mrJuBsHWplwnC61jPN6TFJrP2TcHfazPFuJLlhsEw+V6EELZ4TD6/8Z++9essaPesCCEwvqzJySfzLJo4HGJjlbb7ONqT/zLGlDC7e+2Pf/KT99xxOyVI5nmlUgEAj/E0TY22QRA0Z6YJIDDWSOVzzyIsCyGEMGAxBYIBU+6XzqoKIYSBAjLYaAwIIcw9QggBbZQoCGOMEGMURjTy+IJPZeQHyBRS56IYDGJGxmpWlGFCdvf6mTArSwtKKW+UR1Flr7W3u7tbq1WQ1cM8LaSoVuo16huLgPJh1jMY1xvN5557IdNyamq+HwZKFIQTn3tRFHFDmYcRgjQdVaPKcDgsMs0ZdjMCKB1VIqVUmqbuCZcUcm1ublUDgBFBiACYG/qGtaVQ0qRuSErpB7zdbrvTEoLTNEXYEkKQRbVabW5urigyjHG/3+/1BoxRi40FdejIQWVzKeX09PTd99z50ssvtVo7STI6dvjY0aOHT794xljAxE41K8duOXruwtnPfv5z973tLUtLq8+/cOb82uWXL15GLuVLiNEmyTOPehZpRJDPcFEUUolWezvLRxhTLyTGcAetG6O1EVMzdaASEVVvBJ1ulmR6GpkwDG89eevW1Z0rVzbfdM+bZmZmLly6OBwOXS/t92JX+8aov7O7BQjm5masRWmSc06GcWKtlUohDJxTa8vlBCGDjC7TmAg5URmX4zRWAQChLoeCtNZJOiQUVVDUaDTX19Yff/yJ6enZIAgAQBtpwSqtCSGd1q7nc86p50VC5BZbSqmxWkrpnCvyXCppeNVfXFgexkm71fE8L5yuWWsJ5RQTrQ3GFGOKEJmenh0MegClykpRSEqy0KsgZJUSDiI2xuzu7sbxsFapEsKkKoWo3NSKKQ6CwNE6nOiH1ML3PSDAPSoEiCzX0viEuYmbYEzHVhUECOfUJdtczskqTTEW1hZFBoQyxoIgQMjtwzQYo611UkgYY621VAUZW5v6vu/2GRhjC+CHQZpn7QtnjUYIoeFw6PnYi+jtt59aWFre2W4poze34BvPPnmrPIaZ8iNMOEBufZ8ppY6dXD1+9IRSKo5HBw4cSJJnAQAR3JyqzS9Nex4rVDHVbPzl9/78U9944iMf/b35xTpGIi8SzjkCKmVx5Mgtt5y6kxBuEN7b21u/eiXVRUjIS889z+TozXfcsjozvdycDZr0cqtT8blFgDEcOLBy4MSpj/3p57a3t3E3tp53+OTCKJejvAgbNa8SVikVIicEt7Zbg9EgL+T62uWNS1d2N3aQhfZ2Mn97oxb5e+1dwDBVbQzieK+9ywj1OZciJ9gTWZaIrNFodPZap+48uri4eOrULYSQx776pSQdZVmmNaKUEnDBAjFGYYyCIJiZmdnY2FCqmJ+a1lp2e7vWWikpZVCtzoyS7vr6OuX0/IVLG9t7W9t7UaVx563/ZYuQv9v+/7uFIfzqr94EwdzvsoXQK7qZWQu/+Ivwz//5d/KS7r4bTp26yfGJ+dV+lIRzeNOb4M1vhrvuuvHz738/fPnLEMd/0Xft7cGP/AjMzLy6gvMDD8Av/uJ1R5SCv//34ezZV/nDN9KMgbe+9bojU1PQaLw+O0QAuOuuGxUSjh2DZ555o5f3P//P14F6e3uvjjUDQBzDf/PfwF13wS/8Ahw6dCMXNUng6afhN3/zNQlofGtrteA3fxN+//fhAx+AH/gBmJ+/sW/v7sJnPwsf/vArKkpPmlKwtgbvfS/8zu/AM8/A//K/fDvXIwR85CPwkY+UjpfvfjfceitMTd1419+2D+d38H5dc1oonQ786q/Cr/zKaxImhu/Qs3rjrduF//P/hN/6rdLv9Pu+D44fv67n7+3BSy/Bn/3Z637OeQ7/+l/D7Cz8rb8FGxvwqU/BmTOvVQ1DKej14Ed/tHw4/+yfgVLfYbg5y+CjH4WPfvRaNzt1CmZnr5URFAVcvAhf+AJ89auwtfU6dDwQ2Qu9UBrtgEWHP5ZRsxSYEsZKhGt5ebnd3l1fX+/1eouLi7Ozs1mWjVLqQqFqZI2BIIgAwKnfIoTyPPd9v1KpbG5uViqVWq22uLi4vr4ex/FgMMAYM8YAkFImTXNCGCGkVqv5fmiMoVQxxvJh7rbixphBb0A5DUNqNOzutoti3fO8w4cPDgaDJB0xxm6/47btjaRUdua+tbbX62EMyIKxkKY5xhgBUcqcfflcFFXr9alR0kvTlBBilC4wFkIJofb2umEYAiAXKTsKkaMT5UXqWMauMNGhb9/apBSVSsg5Hw36CCEpdaXiOwjMsUCMMQpESS0cu9YzxnJVUEp7vUGr1Yrj2L0O3/cRGMaYQ8attULJ4XColAp9z5FalDITRvB+0tsEkgO4xoqDEr01GBOntux5XhiGDoN2iLAxmiDsxC583x+NRu122wF5Ey0FB2g6fGICoQAA9biLShwoYZTOsiz0A3dt+3FqZbRFYBFIXdK2JtZn++/CXTIhhDiBiKJwwbs7j/uwvt5tz5Ho3V2bsfwIwcwpkPR6PSFEtVplzCmKgFLGWu1q9ynBQqgyF0IRtohSVhRFmqYYU4oNI8Za6yqeCSEIMEJIa8hz4XnMYUqOhDQR9zAaCCFC3pzTprTEGMZyvUZrg4BgjJFliBJXkE0pdQRLABjbEtKyDl5orazFFuNrmJWLo923TxQdAcDjXClVrVbzLLNWgUWYgpSSc4oZtggxn3mexwljHBMGABbAABDHLHRRMCV0H/qvJyAyWDQRabAWIex8/yb1+E4FuJQNcRzeMW5bVj0DYHccj7Uy7Fj5dj9oBiUORgDMNaq7LTFGp9lR6okjRDE2AFbrQpnxeFH7wDfMCEYlxmrH58cYCPO5UspZUzYajSLNtrc33ZXkaWbBYkQxA8eYjuORe32EYIRQpVLt9/ubm5sXLly4enVzfmkmCIIfeM976vX6xz75ifX19Zn5uTTNrLVFUSAELp/nyP4AIGXBOZ+8uKIo/KDksCOEGKOu7wVBYK1GlEojHfqcpikh+OTJU81m84knnsIYM+o5gMJhlZOe4JhujBBrSkEIWT6Wcg4hmCGEwII2GjQihFokAQBjVCarKNFFiUFbY4ihFBNjDKYIIUQBGcowpUQpVYgMkJlfmD1y5EilUgmr4alTp5IkOX364tmzV9bX16vVaiWM9lptSinD1JWHz83MIkxbrZbM5eLSfFQNd3Y2KSsFcLc2d7qd+L77Hrj/vrd97fGnjEFW2WqlnqZpmqajeJgXqTbMTRbGKK1VGAXWKRZlWbVaXV1dXVu70u12rSkzWq1Wq8zagWGMpWlaqVQQLXVLrUFSSqVMFEVRFI1GI5lkMNGYtzAhEtp97OPxD9e6737kF/ahig6Mtq+ARQKAm1b20xXLkyMLtjwIAIAw0sba/SvBded03mLayMkMVV4AgBmznifZGAAAg2B8DJUESTJJBzLnNIgQY0wKoZQZDEceRVO1mvE8KQu3IXBsTc7ZcDhMk2HIPK01RVCtRYwTaXQhtchSIAYzRjFg4zTdAVlMCMHIGqmsAmssISTwudYaLFCCjdYeY5HR4OFoYbY/iAvFqgHvD0dpXmBMmOcpY3gYSmu3Oz1OKaXyc198hDG2MDuT5oWyyosqDGyey83tnfnm3EhlQpu5peXm4gxsb/rVcCBsnqWex5r1aWe25nlBt9sdDPsHDhyo1xt5dsnN48ggay0lCGOIosBanYsCEMIYjDHI/cMrNDcPotJCEmAioI7K9WbSqZxwj+d5lUqEMUqSxGIrtaYMN6YbDz304NbW1qVLF6IocLLuUos0HVVrBwkLn3726TRLrlxZvPPOO6XQlSBcXl7euHpVKfVzP/dXL11a+7PP/cmV9XOI03OX1ztxdhfw7VYXUY4sYoxgQhBAkhVKSu052m+gIM3zLEmGWhfLK/OMsUsXL4e1IB4kRhqEAVGyfnVteXVuaXm20azPLl6QUp958ezM1Gyc9AejXrUaPPSOBymlucxOnz7txK0IJzPzM9VqNYmT5ZUFY9Q7Hn5o/fKVM2fO+16QpYWUEjFsQWstEQaCqVLSGISJRW4RsRO2vtWAjJTGKPckKSUYI2lEIUWdVGZmmr1e7/z5s3EcOwkzNyO75B4y2uYmDP047lNKDdaFSLnvMY86f0fuUQsME7h85ZJLUbrhkiQjpYzUOuBea3ev0+nMzDat1dbqNBXCSKUUZx4LgsFoMBzFlVqkpLSGjEYjjLHv+1JqKYe1aiP0fYxGg8EA4zLz76aFoiic7I/necqWtYRzc3PIQq/VtdZaME5SwyJwJoou6w4lWGw4oVJra41SymhTFIXneVEUEEIQAsZ5IaWUslqtGmOyPHGzTRiGQighBOWsLO1AqCik1lpLRahHMGOMp0n24osvPf/8S7VacMed9xw5cmRmtrKxe6EQqQWRF8Ol5crSrUfXLqwZQ2fnml5I+rvdwbArZWaRGQyTw8e8B7/nrVEt6HRbW1sb5y+cffqbU7OzU/e86Q5CZCHiLMEY0+3dzt13333PPW+LB9lwOHR70iAK5xfn/V5y8uiht9x317Cz/ejzL7SPHDt1+Oihw0d1nlBKtdGzMzOZgR/8/vfUFw4IS3/+H/3q1a3WoWPHfWMIY4U2UinP8xy43+n3OGNayELIhfmZK2tXDqxUf+SvvOfq1pbK4S1vu6tar29ubiKERnG8u92aqlXf//6f/Pzn/vy55y5WKqHv85mZGc75xsbVRmMqy7IoCoIgyjPZ740AIcYYpVZpo7VkPKhUvbvuuyXLEozxzGwTY3z8yNFHH/1yMhpWG+EDb7v7mWeeeuRLX7vvgXt9r37y+MrqyuGXT2+80iTz3fbd9p1tnMPf+3s3albEMfyTfwLPPHMdpvnii/C5z8HUFPzoj8Iv/MI1SKteh/e9D77yldeqePCqjVJ473tvpOJ++MPwu7/7ivDQc8/Bhz4Ey8vw678Ohw5dO370KBw/Ds888yrIThy/CiQNAKur8PM/f+PB3/zN74zZ11/cPvYx+O//+2u/jkbfjrSuyxlMWrcLf/7nb/TCfuIn4C1vue7I3t5r/ds8h0cegSefhPl58DzwPDAGKIU4huEQ9vbeKBg3GMBv/zZ86EPQbMLsbAmuYQy9HnS7rw+sH43gfe+7UaJ3e+eXpTyrlC6kQK6SlxKMsft3jIFgTCgllCBiMMJZnqEd/PRZ9KE/9Or1qFmvz85MaaWT4ZAAGiTJbmsvzWS1GmqwY8IgKglHYLVWGINTTQ3DACGcZWnJzqGcc6/XNv/o10b/+29Wpxq1xflZIWSWZgjQ7lan3e4mQjOMpZKMMouJUsqCwQRTQihjGGNrtNttEUwoIdbaT3xG/+5HMoQsMghjhBkFhI0uyTcEYSVlmqSMMUwwoYwwai1cbcOdb5LGKmPAGA1gCcaUUYTBD31lRLVW4T4XUgSRH4ahNXpzYyfL82olAuuURk2WZRgQo1wI4Wr9CyGstpQxgrG2mhIipUIYuWdstCEEK6WNNkWeAwAm5ErLe+JZ+K3fCStVVgkr0zN1hnmn193Y3N7bGzSbTZ97/X7PgiWYAIBQWimVZznCgDHSGqIo5IwLIQCwoweeWTMEk//9XwJCVms0EbMEADzxgcfYlSW76BUBAoTAWoQRa5G77jeYIAdBUsYADCDk+TxJUqUkxijwfYRxFIbJKClE4XHOLQnCilamVqkXRVFk+ShJABmttLGgtSWcaSMxR8vL8xbMZixe/kz8Ox/PZ2em5udmpxoVrWE4TI3Vo0TFcWysdvAQpaRSqfSHg85eV2kbhUHohx73pTKD/sB5c1HW537Lxb5hGBhjPBZVKpVut6u1VtZMVeqMkTiOMcadTrvb7TrGQ7vdPn/h3MzMDMbO3Awcl5MQgjFNkmyM/WmAkob5Uz/1U0KIT3ziEzMzM5z7g0HPeYBba4MgWFhY6Pf7hBBKufPrJoQYqRBy8nqm1+tRShnjeS6tNVmWWmvr9ZAQ5nkewuD7vFqNshmMGYAxRS4RwpxTAFyrVIUQnU6HECJlQSnt7vX63eHq6qrHaHtv12NeYQrHBuv3B9ZapTSeNEQdDlsywACCIFBKeZ4Xx/FNtZooRVkh5ufnPUo6nc709PSpU6cuXjzv5KSLomC0dPvApU4yppRyznXJcRT9ft85VAkhGGNZOqpUIicKbC04ECoMKlopGNsMOjB6Apm5DjxB+mAfQdjdllJKW4PGGIXD4ByC7L7ICQg4XCJNUyFEFEWjNHFQO6VUg3W6ckopV8g7QaIdajwp+pRC8Ro3xighx8PHGGMIo0492dG/GGPWwqQikxBCKUUWjDHGaowx5niiWF0OyXEA7uJux/QCAMYY7GNAG2MsEI8Th+y7ENI9Rj22cMQYU/dYjAYwjHELDq61VhtkcZEJh9m58mUoUxHMGGO0tQYIxQBYiIJiYkETQrSyQgiPeoRgKSWhr4AjIZTnOQLp8ECHurpXD2PyNULIaGSMw/uowzQRQkVRUIoAsJSaEOMqthmlCKE0TTEhhDBtDUKAcXnNhJB4MCCEUIYdAJtlSRQF09OzhCClpZRFf9Tptjv9jggZCbyKSHNGOB4rZuxjNyOXn9BGWWsxch9wwhfYgJogY5O3Zse8dXR901ojRNDYrc79D8aaG7CPMLr/q5WyWktwvHsgRlvHcxdCKGeJWUJwJRQnhXChnLVWKYMQprgEcPaduRyWkwyKM40fDgeuntWW4iEkFxnnPB1lxjhyNXLCI5TwOI6np5tff/IbnW57cXFea728uvr0008//vjjWtsHHngAAFqtlud5jI39CTF2Y9ABHQghNx4d0CyEGEjhipi1FmEYUo8DAmuQw8od69ld6sbGxqVLl+Lh0GXvrLVRVA29QIjczRUuQ2OMUaW9pJkg3WWzExASeZS4NBugUgve5YRyKSl4AEAI9jyPGW6tJQQprV2Sg05OqpTSWm5tbXz0ox9+97vffeLEiSeeeGK7tTs9V9NSDAb54cMzKwdXnn32WdCglDLKCiE455VqfWdnx+nHE4Rr1SrnuMhEnmYnTpw6ffrlsy+fO3To2NLS8ksvnZG5tAYlSUIICSPf9xuMkSRJ8jxHiGhrKPe6ToKEEwAYDAZZlgkh8qzUPHIiUBjjarXKAuZ5HhDMud/tdofDIaPepIrEJd80uEwXMsYY0CUuUxSUcOd656azcmEgpYiP3SfnP8Ga0VjZ2VqLXtlKzqG6DmlyuPC4eGQ/fm3sWIsGACZKwZMPGGMAGSelD/tAcGPMeMDAZFi6fkkZdouBxZYwRhHm3Hc4l1YGY2q1kUYxxiwgjGhUiRClGBDWWmtNgABBSZIMh9qtKEGFIWyMMoSQMAwpYxbB+ubGznYrXF2ljCtjMUFuLiOArNWIO9UkwBhhazEmGqy1FmFQWvgYEcok0axRkdoMktSjBM/5rc5ekuZaGz8Mfd93M2CephYw4/5er2+MmluYW15eSdNUaxP3hxcurTVq9bvuufvI8WMLB5YesKaQ+c6g73H82ONfVUpU6rXdnVahRJIOpZQb65tWY6uBMeozvyiE89LNssx5Dkzer3u0hLxiAer+Zdu9HTeCEEK2FLgpCytcoM45bzabvu8jiuI4VkpXa1Gn0/7oJz6aZanLWc3Nz6ZpKtJUatjZ2Vo5sNxsNi9e3Li0trGwsNBsNM6d2/nmN58NPJ5mo9Xl5YMHD3z10a/WpiqVqnfoWPXy2uYLZ16+7dY7q1PTTzzxxOzsrO/7WktCCq0UtuAxniRJJgfN2emVlYXDR1ZPnDoRhmG7vffv/j+/k2aKUpASQGV+VLFYHjt5aHqmDozIQmDQtahx4dwaIMED7w8//TGMiLWWB9THHGO8tHSYc37p0iWPevfdd/dua+fxr31VSilUIaR29TCEEG004RSPMx8IAVikleGcS1VuRDAjLoXuQEOMcSELxhgyhFFvlAyrtUpUCTc2riZJYq3h3NdaI2Q554QgI51oCQrDcGur7VVhYbHZ6/V83/cDHlVDSvHGxsYwGRw6dCQeDHd2Wh7z8zx145S4DB9FYeQzRkajmDJigcpCcM7BghBiMOj5Xpim2cGDBwn2Njc38zw3RmMAQkgcx4HnuTw2Y8yosqhtZWWFMba7uyuFsdaGYWhBx3HfWluv1Ue9IR9rzBFCACOtLaVUKREEQb1el1JaqwAQwmVmHlujARVFQQhyGyY17njGGELRhKrvqvCyIufCd73U6YFIkRmjfBJ6fjBK4izLjYVKgyWj/PnnX9zd3V1YbiyvLEqZ7XV2GlPh8tJhnAVA9ShOnnrmOYrgnrvvuPOu2y5fXs8LyTjs7m5euHz2ypWLmBjP40HEvvjFzzXqFUyFVsncbP3w4YOnTt16+qVz8wuLjFI3zP0wqOlqpRZNTTXQxe3bj594z8MPM6s++5lPffPJp/q77Zrv33XbqZnpGpLaWLt2ZWO3l7/l0CkCXBmsEaa+n46GJjdCaauNUoxxMoyHDBMn1hw16r125833v2lhKbrz9lOb2xuVEI4fPUK5p4RIhiNWxzLNm81mpVL5e3/v7/3O7/yHZ55/7sDBw3EcM8YGg8Gjjz7q+0G1FhW5TNMRIEU8hhFSSmZZGoR0OOquX01ve9Px3c7O7OxsnLR+6if/2ubm9sxs/W/8wl9LkmFzqjHVbC6fPce86ImvPSsU6Xa+UKvdvTr9StPMd9t323ey/eAPwoMPXoftFgX8V//VKxJLez34d/8ORiP45V++dpAQ+Af/AH72Z1835famrdGAhx++7kiawm//9l/k5QUASsGVK/Drvw6/9VvXHf/gB+Hnfu6NXlIYwm/8xo0g79e/Dn/wB2/0zK+lnTkDvR5MTZW/1uuwsgKXXqe8+x13XPdrp/Mqz/NVW71+E8e5V2Zc3LylKaytvaHLeNXzpylsvLH8nYOqb4C/8/zMaPQ1acrCNcAICYQxRpQoJZQQzPMqtSonlCJrEDI4T5IkTzLi841NBdoCxpBrQBA1qpxzqaXv80IHYSWSJlEWsMU+D8MwNFZxzqUsXnrpBZXaoM5938cYNxoNrW0mxPTcSq/XS4s9VkylO7C+aff29oy2K8vLjHpHb50Ngujs6TNbW1uMMWEsochaizUGACqpUopS7CLMJEkcZ2gSbTJMNFi39XJhttvHFmlGCLEaW2W55bLQxkCe51ZaTNzut/Q2a1abQhR7/Qxj8KIZiiNhRv12IkTOfI+Aj7npJ5JiQhXFGLPA01qneSGEcsQrTLU0ivuVJEmG8YByhhCamZlBGCuleMiT0UgphSzSIAFACG2xDwB5H3Y7khBiX7acc4KAEKJMvNMyzkbFhdmEEEdanJqJ0nSU57lUWo8IACqKAgEJwxBjLGQuCjUOCsbAXAnG2Qn2qMGO8bWSWGdK9Vh6DdfDVkgZhmG1VkkyZcAEFeYqo8HYYaI3tzbDMEwyRDVtmql6fQqhwPPsoLdrbZFnudZaG8CECYOkzj3M+6OaNkJq4RgJux3U6iKEiNtTlagrQkLkAEAI0pnc7QhECGLgedQCGWU2TkAK5cSRrbW1oKIUYIK4R4uiCKOwVguzLGvONl15vtIFJrzeqA2Hw/ZeyxhDLAZkhSyEEP1+v1YLpdSMMbfzFEIhpEejEQAYY+r1OgA2Rs3NzaVpevnyZccTDIJA65rT/CWERFF1aWlJZAIBivsDrXXUbKZpKqXUUiulhsORlNBoVELqAYDWOopqnLMwiC5fXrdWHjl6eDgcXL58ifv1qMJ9P2xttwb9GGNar9cQwoNBjDFBQCnB1Uq1WoFWa29nZ+f+++9dWFjY3d2tVVEcxwDAGdJaM+oJIaSR3OF9WlNCHEjmHh0GFPcHGLpLU/CtzfO9wUB0261mc+bEiRO+7z/33HO9XmeiHSGlpIQ43JZ73GHQSilpnWs9iqIoDMN+v5umqTbSiR07Qec4juM49n1fSZNlGQA46MMV2rq4ZoKvwT4i3QTWKJE+giceV9ZaF5Y6NM19XGtNCGGcSiW63a61Nssyz/Pc56XRGGMzzsRMKrzdvWRZ5kjTDJNcZw4Ic4GMG5tFUTjKqhs4lFIHfhFCfd+f8JGttQjQ5A/deTjnMOaBOtTYwSBm/IIQQkKIMAxhjK4CAMXUTXruFtwcCGNhVXd5nkcqlTBNU2lBG4nKGnJixzY5Y/TGMkaFEBgjJQUmY6tDwAgwIcwabS3ChAiRAoBG2uE2SsqbLkMYE0DEGqu1U9AGjCghrExyYIaQcjOzsVYbBQDGYFf97h6+uzyno+iiynHUCUUhkQVnCIcxZpwDgDVOthHC0LPWGqOKQo5GaRR57W5LyuLE8aOrq4vnT19ob8eeEYwzDGDhOqf08cXj/bzg8b9gjLEFNOlvE2R/P33T5TMmnZAi5LpWqdkiDSHYArjkq9N2sNaW/oTGGOMmaHfv5clFUeY5MKKw30bCAkYWOYdMZRHBjBEwYzpzaaRZqhhbdA3dJgi7gngYe1EK4UoThDEmSwv3Ma01Jp61mhCqtRzGiZSyKPIwDN2avre3l6bp7Oz80tJSpVJZW1uTWmGJnSCG1jrLsqLIEEKVSt2NDqWF6/PgSq6tgwQhqER4XAHgAGgYM1bdApGmqbWWc9/sk20AjCzChJS4tkMMxstZ2b3dqAfrlNkttoAApNSOo0wZqdfr/X5vgkNqKR2iHwRBgMPhcGiUopxZa6lV2oBVSrjZjXlMKfXii2e9wFtYWPjil75iFWAChw6t3P2mg3Ect3d265XqYDA02gHWpt/vD/pDrTUgUxRFENQWFxcHg97FC5em6rXVg4cOHjiyvb271/6m7wegjZTy0tpFz+MOCKhWo9nZ2TiOe73ecDhkCFxGizHGKOsNhhsbW9ZaZazFSFkI/MDlvrQoMKNmODQI8jz3/dDxc93TcXkba221WnULFaZUKhn5oed5bqbO89wiixAllNpJeQW9Rlndl2ghEwwRABw0rNTNZwrrUtljsZXxpEmstQaMc0Td18xk174fQS6zKOialk15a0D2l4pMJlmEkOczdwsO6UYIGVvmAxBCKs2FENgCpsS5ia5vbgbBsXo1jLMuwZQibIxRqqws0FoThBknGGGrFVjwmc8Dj3lcyvkizaxWCIxPySRbhZGFssAcsLXO0tMgwLCP062EsRoj4lPCKEUWfO4hTCJ/OZei3e1hjBmnYLQs8izLpuu1qXojL1Lf54vLS4BJbxBjTCnhe51Olhb19Y2LV68YjHJd5KJYObw602ysLC2vXbk8Yw2mpNvuWWwJwcM4O59ctMow4mVZprXhzDdWY2tHoxFg5NQGmMeN0kop+wqUmzHWrGHfyj15RzDueK4Zaz3PM0YLIRyifeddt1trEbJKyfPnzwMyUhWMsVq9Qj06E85oI7Ii5Zw2pupTg94gTh999LFbbjnFGBsOYlsJtZSjUfzmN7+1tbu91+lpAGLI7PxCJaq2O3s7OztSQnunPb8wzTmnBKVCIY6G/UGSJDiCEyeO3XnXrWHFVzrPhOI+PnR4eXnF7O60EULcZ7fefiKqh5c3LuzsccRCzODkbUexoU899Y1qvX78+MnlpZULFy6dOXMWY6yNYYw1Zxpra2tpntIKXVu/rLSo1Srdbn9qamp3pyOkxJRY4/boTinebYOQkYoxryjKHapFyEiDcKkf5+TSCKFKaUJommY+mF6vE1QibWQQekoahMBpuFOKKSWIs8ZMPcuGns8e/t63Dood3/ePnTzQ6/X6/X6lyrTWR08eivwwCqtzczNJOursdSu1SFsjhKhPVZxefJIMPE4YRQY0xsb3OcY0zwUAzM7Ozs8sbmxsGmOsccGhyvMcWQMAUuh0NCKYuUGqtMIYA4IwDKrV6u7uLqVEqqLqRa50rtvdE3mhtc516vOG2/poJQl1Bok0CAIEZQ62LFyidGZmJsuyXjw0WmvNtNbWGsDYgvMFNQhRhym7bjnVmIZB37EerAUplbXAuWepUVrIofJ9L8tzSsEaOHXq1t3W3sWLF3tx+JbZO/M8N0bdfvtttdrUxRd2DcjVg4v1amNzc5sHfGl1yfO8nZ0tg8woG33xi1+u1qgyijF06pYTc/NNylAy6jbqs0WRvvzyOaPxXXfe9/yLZ0ex7vXTy2tXrbWUs5XlRSnl8SMHT91yy/b29rFDKw8//PCxQwenoujpJ74uZEEpHaUiDAJE+ZXdK8//7u/NrxxBnB04coRylovC90KEnXkGZtSrVkFqjRm11lKPnrjl6P/zH/zDT37yd/7Nv/vXypj77r+DcWK0SkfJaBA3Go1bTp7a3t7+ypceqTeneORPzU1LUAQoQnhubt5lU7rdjrVISEEpk7KwVFOOH3jbmza3rtSicGFhXvFRpeEpyH74h354Zr722c/98QNvuzeo+F/7+uN33X5Ho9F44P63ffTjnzr/0jZYBECnqq/NReu77bvtjbXDh+EDH4Bq9bqD//bfvrqIwR/9EfzIj1xnULawAL/8y/DP/tl3QMQ5TWFnBw4evHbkS196rdjo+fMQx9fJOzz11Bu9HgD4u38XlpevO9LvXxO3/c/ddnZuvP3jx1/FRO6GFobXPU8AuHLlDb0pSuGXfuk1KRH//3Cb7OjQuDaZEKKttdZSzgEgTUdKcaljQki1VvvBH3zXsy88f+nFNSBQn65FUdVqs7y8CgCc0+3t7U6no5QapcOiKAhhtVoNIbQwPz8YDHq93u7utpZQna5YazGmlUpNa5TnhZRFp9NJ07RarVtrKaEAenp6ulKpEEx9z8uy7OLFi7u7bUKJMQassZZ44/y3KJtxQUG1WiWE5GnmYtES1hlXcAJGYJxRGKrVahjjPM/LokkNaTrElCDMELYiTVngRZWQccIYzUXqqvmVlnmR5kXhiJZaa4xplifGGESxsztLkowxVqSZA1MIIRgjC6bX7xpjPM9TRrssPiCktY6iaDgcEkJ87odh6DbeWZ479VhtyqIxay2lOKSUEOLIDRg7Uo2jNZTkTbe/MibLshxjzJlvjEmSxPd9a9A+HGQcv2gXr5WEJGOMQSXZ0CFiribPAYgIIUzK7D6hvChy2ZGAEaWEUjoshoQQDDZJknq9XhSF1tYaO8rSWq3BPD6Kh5TSLE/Gvc4aY5Q2lFOEULvdjiq+RcaJANRqtVarhbFhzKnWFowxz/OSRFPqeKKMM99VYVtsESNSiiJ3qB8BgHq96nmeVMIY5ftRrVbpdrvtvRFjrFKdNlYTihGyGEO1GklZ+D6v1+vdbrff71JKnViEEMLZIyGECGGOKCYK6ewBi6LI83x5eXlxcf5jH/tYlmWRH3mUVYIQGTvSI6WUzIvW9k46HBlj2u22i6AdgJgkyakTJzudzl133SWlfva5F7rd2PO8er3OObVWF4WihPf6gzOnX0bYLC8ve2HY7/eNpcdOHnn0S19l1B+NmBTKGoSAUcowxlNT03meSll4HhvFST8e7O11Pc8zBijFTrNCa40AyLg/2DEXzVrth4HPA2fwFXg3xwSyZOT73miUpGk4PT19+vTpfr+PEKrVapxzR0dDACWQRBzQ6QkhHDVeCFGphgDGKK21Hsax7/uOAeaou51OhxLOOXcKGNZaraUdm1GNaaQ3urrZsZ8bQAk+wjiYxRj7vj8YDIzRDrZzp/LDQAjhwDKMcRiGFoHTsjBj9HCSrLPWljIItiTTGWPAAsa4KAohJCHEUmrGssIOJS/9x8aIB0KlSkbJ1NYGkWuF445E74iWbrROgM5xnF5O2o6n6NJs42sDh942Gg1HynE9bUxWBa0lx4wQgrBFxtHDsVLKZQUcMAclBVClae5SLI6dXQiJMebcz/NUa62N8jlz/mmUUqGFsoa8svoKJgQpZKyx1mJMHMhulSQ+LTUnzfjWACimFlljDGMeLrU1tMP7rNVSyjzPCcaOrCmkdH0DEcw5d8gpwZgHgVKqEnrz8/ME036/3+12r16+WpuqMA6ex4QqGjX/vjff9Y3Hnxl00sjztLTOynL/KgkA7qkDcn3JzbdjziWZ8CnHGTsL1oxplxgDGABsrSN0loXLtJTPNm4exghh4hDh0o0MjX3UJhRQhBC2xKExE3R7/0VCKWWAnQCstgbZsUoLQmXfLXFZ7R70eGgAQmhsBUeRQVLqMRBtrbmmXeNgQ4KZMSWnO0sLbRSlNM8EY0wZ8P1Qa722tuZ53miUYIz9MPA8b5QkAAbAMsbCMPQ8j3vU2QCWbodSSikZdrQ/3wGMNwx597ObTKIo8n2/vdd35FqMadn/AZFxnx8LMxCKCBhLERZKWYOwschahCwBxDgb53LUBN2mlCohEcbSSESJR1gGajgcikxaML7v50pabShCCBvrLr1SiXKRBYHnB3Rz60q1Frzp3lul0Nbamebs/fffzzl/7Ctf7PU6QuRg0NzcXL0+deHCpSzLKGcYszRNrdV+wrIsAQ2jYXb+/JrLDeZ5sbe7Nxzm9Xr4pjfdFcfx1atXEbJXN9fzPK/X685L0VI8ZiZuzc3NHTt2jHN+/vyF0WgURVX3gNxaboxyZeyTgpGSMgnlxsK5ILofOKdCiDD0kUWTjJ9bmLWW1gLjfLKjdLsRXIrdWIxLAHp/roYQ7ETlv7VRQjFlxhipFcbYGI0QGDNJJ+oJ4rx/Qtw/DMopzCpXiTCpMrD78kKTadTN0QBAKNJauynPZfJds+NSBTwZ5gRpsIVQFy9e1Go1YJQQ8Dxfa2WtcOOzKAojpdYaCCZuWjAmT9JcFGB1JQoIxgw7OSF3weUUj8dG5A5rtsY4KR/35QxAK4uxIZwQhFHgca0twigrAi9s1CKwaDCMqVVZISWS8/Pz1UqoVJUxZg26dOky5xwZ2+10EUC1Fl3dXFfIHjx6BOWq2ZxZXlxkHr/rrjtae+2rl3ejhk8IAwIIISlzhhGi3PN8UShKwejy0XDOpVZOmqDRaMhCFEVBbkwMTF6NRagU3f7WN4hgkpNwv4JSqtvtep4ntJBSNhoNzunFixcIIfMLs3meF0UmpQRQKysLiKD1jSsIoVEyNEZZqzlDaZpevHiRUYywphRXQn9zc/PKlbV777/vS4882u/Fe70YEM3SdhTm1Wo0O11B1h47csQY83L8sgUwumg2m6PhyPP4lfWLJ289nHUH8WgwOzvj+/5P/ORfPXjg8Pr6xlNPPWWtHiR9UhjKIcmHKsmTJFO57u715han+514MOg1m80w9OtTFc8LKKWUcK11v9+nlLqAhHN2z333Xrp4ub2zR0jfWuGY/UY7B8vSOFhJQ7BnDaKES6Ew40IIQrDPfQtaW+V5XpZlboAjIEpqqW0hNZNmujGdJInIhowxWeRSa4QQJny6WbdgCqH7o/aBI2+eWTr2p3/6mebMUeo3gyq97743HT58eDhMXnzxxSyVo1HMGApCvygyaxEiZjDoMY45ZZRAc7rGOe3HA4SpR1iSlFdCGV1fXxdCpqMMAcvHoQ6y2A1PzrlWpYay7/uuzm6UJtu7O04iw7n5EcIZY9UwKrK8EBkGIoTI89wp/YOxpZyO1saUUYRbPIq80EpN1KYmxAEzXvvdfD5JRFlrwWJWptzLichNnpiK+bmF2dnFK1fWxNBOVbxao+a2X2kWI4TOv3x2+eCclLparbbb7e3dHYtwkiTvf/9PfvPpZ7/5jW++/PI5xrwTt5xKksQYBUjPzDS2Wxu+73k8mJ6uj4Y93/dvveU2xvG5s2eeeeb5Ioc77nzg4oWNIAjvvfdera2UxdNPPx1Vgtlp9gef/sMDi9MVau+59eQDd96ZDQb333cPQxCPBoBJpu2Ju+95qTX89Kc+61+4kuc5933nZwIWp2mKABihQgiLUaM5lWVpbaoeRUEQhadffun02dNbO1vvfvcPDkfZpctXd3Z2kzghQO+9+x6MYTQc9Pv9//gffw9zj/meQgYhcubM2SDwHnzw7ffcc8+nPvWpCxc2KxWOEaWUJ0lSrU39+E/86AsvPLuzu9FsNjPLDhxavbx2SRvxwukXDh09cOTYwU9+8g9XV1cNMucvXZydWSoKp5gWFLnm7NVEZL/bvtu+E01rmJ+/7shwCB//+Kv/oRAlj3gSVmAMp07BmGPxRtsNuqL7Ks1evd3ADXq9fNtvbd///fCX//J1R5SCv/t3X11/4zvVsgxaLVhcvHbk9tuB0tehvlqt3ggNv/DCG7okzuHpp+HBB2H6tdVh3KC5sbwM/+Jf3FwuQ0r41Kfg2WdLw7cPfOA6Te2Pfxy+8IXXp7Nx4AD8/b9/HTP9mWfg3//7GxH8VuvvYnwJE+TWVhfSg7UYH5uZ+Y1vPa21Wo/lIzHGTt7UkVoqlQZjTIhcWxOG4W133Fmv1/txXypx8NBKXgwXFxeX5peGw2HcH/oBNsaIIi9kHlXDnZ0dmwOPKA89JXQ7aSGLNjY2Rp0BUAhrldnphX6/L3IJISqESJOMeVQpw7nvYs48zSilQRD1+/1Wq6UTCQCAEaIUIYspp4C11q78HCFUqVTyPM3zHPbxVBhjvu872E5rvbm5WWRZrdFw9IvA893N5knumFxpkbsNCSIYA9Fae1EAYJhHZ2ansyyhnOhMUUbqzXqSJBghowEBscZkeQrWYoR6vd4tt9xy+PDhF154od1uc0KdrIHnMS2V5xGEtLVYCYsQyrIMIeTYzUVRgLVFUWip6vXGhArn4nCEkNEWkGMcG2utg/OccZYDiRyZFwD6/T4h5e1jTJzun3sgjrq0L9Qq0QoC1yQWy0ByP34x5pC6CBSNreUJZoQi51fEKLEWsiwzVikhq9XqLbfc1mw2v/nNbw4HMcV0XM2m0jQdJbEea2sSyhEmCBEhC0sM4YhSahEQosaxqvS80MHrGIO1ularDYfDIAimp6e11v1+19XlOllkBJgQ50MDUhbW2kLk7u6UEr7PrdV5njm4ijGCMZayiKKo1+sA2Gazsby8jDGMRiOEYHZ2rlarXb16VYicc9/R5TDGSrqkjE2SUtstSZLLl9eNAYZJEAQu8FdKDQYDF5XTcZIgCAJCSJqmg8HA87xms3nylhN7e12tdZaK2267LU3z1m5bSU0wZdwzRgihCGG+788vzDSbzVEWLy7O9/vxxUvnb7vtlq2t3UF/EAZVzIjW1sGUOzs7o1Hs+z7j5MyZMw6OsNoQShAqh3xpNVYUzv/NjlMyjBGtZRwXe3tdY9T01M1daBmjBhDnLEmSxx9/fHZ29v7777dWK6WyLKtUKpRSgnEYhkKIra0toyHwvN3dXSmldvt8bfI8d6Z27nVjXLrCbG9ve54nhc7znDNinT7yPqWCMaZcQlHX5rGbAIUAYEvdX2sArLtxhEoylvuhKIpe3AcAznmSpWVFdUn/L+13rDXWWqMtxthYZaAUd3bsSAAohPA4myDLbi7SWjoxXxhXk7vRPakVcGgGnWiPYDzRGkVj10En5+LYfk69Go25tGRMncYYE0TcPBDHsUPM3aCmlBpThlfD0cAZ5xgpC1FwTl3SzqHbjLEx6IYIRYz7WksAUxSZ5wWFkEmSAAAhhFDs6uVd4sTdndSGvYJip9HuZY29vjAGi2HsG7//UTgsHiOsHb1JKWNKgWalVKNR01qPRqM8y8pSe2eRZ0ylUnG4PwBopfI8r0WVqakKQjYeDga9viwUAmyVZZGPsExHo067vbywcv/993/pC49KKSlm2ugJxXA8AZZolUOEjXb9jQJgY4wyBo+liNydW7BjNWcgFmOELViMSxFqNs4suE6rrDG65G7vh8vsOA1srknHODdI66i8k0C4dMy0uOx1yDo+Pt6vPuYubyJXaxySgxDGjqoMAFprI8uMjhbSlHg5AdCTR4EQaGMxAatcxbyTnyZpmgWBTwjRopzblVKUMsaY1DLP8zzPhciDIHBzAuMkz9Mk1ROOf5Ik7vbr9TqipCiKopCcU6cZ4vq8m0KttaANMsh61kgzkVC3GkReuIEgpQIAJQRjLPA8JU2hLcZYSYM0Ihg7Bp4QijHqRH4QQkoJKaUoxGAwKArhHgVmWAttLTJlrsRasEIIbY0xhjrx+5WDK1NTDUzRmZdfEiL3An9nZ3t7dxMhXAmjarV+4MDyS2deBACpiqlmnRAS94eM0wMHVpRSL7xwmjBqrcYWjFRxnmmtAy9gjAFQjEh/0O/1hu9611+Koqherz7wwAMvvvjiI488kue5EGKntb2zs0Mp9zyvPtOo1WoOphFCrK+vuwTpeGwbZwyIMWbMm8ye5XpMSm9EaxHlDADUGJRpNptJkhhj5mfmCSGOmYjxJCVi7X6hd2dvarXWylpirw9isAVrQetrqOINjQVMCuxGvvsMsk7bt+zijrOM7DWd/ht+sNYiXCZ8JoPNTToY4XK6HM+Mvu+7crn9SJMbbMYYbLHjrQMALl0mrbZWFtpym4yG9Xo9XJiXWma9nrsGqXVe5EoIigAACEGceaoorFLCalUYpXQUhMhYYxQlzII1xiCDMHa5/MlgQ2h8DxZZhBDYMkNsEFilCQGKEKVEg7UMj5JEW1Op1OYa9a006fSHR48cqNfCIhO1qKLB7u3tTU9Pnzhx4uknv65F8Y7vebDb7QpkEllIrQghtUo1y7J+vz+IYwCoTfmN5nSa52k2opROTc1bpT0vyLIiTXKMiVKaUayUUqZk1wohHNa2eXXDmpu/3/2z22RmgbH4CViEECJ4/K6xtdY4ya28yC3or3/9657HMMXWagu6Vqtxn4RhWK1WmjPN9Y0rhciyXACS1OOLi4v9fqyUSpOkXq++853vbLd3ZJGNJ1bNKZudnQVCk7SoVGpa2dmpKYY1BkSJHaTD+x+4Z352odNqJ/3R7bedOnPlTBD5jz32ldVDS/VmLRMZ8RBmaGPn6jCL+6NukowOHz3QmKo98/w3iyKjpPriC+eQgUatPlWb8lm4294xFhVFkSQJY15zasb3/V5v0GzOykIoZYLAn52d2bi6tb5+9ezpiwhwFNaLQjLGjVFaS0qINUgrDYDdZkMaiwjV2vq+zzm1yGCMlZKcB1IKIWQQBKJQnHNCbK02lWVZoUWn03HRhdZaKmGMmZ2rz841lC2Cir2yvtEd7hyo3n7y1uN5nifJ6G1vf8vtt9++ubV16fKF7e1Nzv3NzW1ppTEKYQg8P46VKIruXocQVKmGzWZDKRnJwCKI46FSKk1zzoIiHyZxmowyzrnVWAgBgKampgIvTJIkz4QtCyzKJT/P82q1+q53vesLX/jC1sYm9UhRZJENCKFhGPzQD//lU8dP/fN/+s/au3tayyxLMAbGGOXEFWoY7STIPYSQ0poi4sDlQRwbYwgtF2Y3KxIEbpUTWk0yT65/ep4X0NDtWd06gBCSWiRpfLR+pFL1+gMApAnFly9f8gK/Ug2AiCTJ4kEyPTvbanWee/aFzcuq0QiXVw5cWd/IisIPo1G7qzTSyk41pjvd9sx0U0hRqzaFTK9c2RgMdrWWQqZ5OpyZaYZhdPDA0bMvX7p8pbO0eDAI6u3W1V5vkKajy5fXp6enqLHEqroU/V7cfuSRA4sLs5Wq7/sewYBMKlVUqX3003/y+a8/c+DW25aPHDdffyEXhef7zONpmkbY19JYpXMhDAJtDYDFlGhrW3t7v/JPflWp+K577mlOz6Rih1J67PCRXqd7+vkXzrzw7D/+x/+YIXj+9JnOoOf03OM0k0KHYTgaxd/4xjfedO/dx08cLUTWbnUphahSbU7XlBKf+cynpppVQMrz8e5Omqb5kaPHPvqxj588fuKOO+740H/8/bm5uaXVpUtrF48cObZ1tdXptH0fu81cmaX/bvtu+8/cogiyDPx90pL/8l++Vh7x88/D+fNw4sS1I1oD568DA32l1mjAwsJ1Rx58EP75P39NZ15cvCY64do997w+ZPaGtroK/+gf3Xjwv4xk86TlOZw9e50R4tIS+P7rkC5ZWYHZ2euOXLz4hi4pTeHzn4evfhU+/vEbH/hN2w2f8X247babfExr+OAHrxkYdrtw5Ag0m9c+8C//5evWdN7bg4WF68jpzzxzk07u+VcROiOlzPO03BtjbIzhPLvpafWY2+E24Wi84KKxDChjLGQsCAKj4fy5i7ut7XvuvUsV+cLcTKMWxcPOpUtrve7AlaNaizzPw5Q1phsyy30vRIik6ShJskE/1oWYW1lYWFjY2Nho7bQIpdVKbTRMjDHWABiLLDDGjNL9eJBlmVG60Wg4rxbWYJx5vudhRIfDoZRSa4sxzrIsDMMsy4bDoSPHOTSwrCs3pRzcNZiVkHg0BIw456M0Cf2gKIokTfIkVUrxwAcA5nGEkJZWysILuFK6tb09THuLi/Mz89NeRJ2UrQMZKaUICBgkpXCU5CiKhBDr65dHo5gx4mJd3+dKiaLIEULaOP1NTgkr9QoIIYSkSeJiKyUkAHDuaa2NLfVAHPnaIUlWm6IoXKDncGrf951AmQudtDYIIa0tIeDeXZqmDpSBCcpTVpde0x+YRGSTNgnQUKl4awgpAQ5tpDFmlMQIU6217/u+7+ciM8Zwj0dBaIyJ4zhNU6M0pVzkxdTUFKLEFIUxinGOrlW4YqUMEDDGVKuNoEKtNaM888MwE4XoK+pxg0CIolIJnTd1r9dRSnheI89zz/MY8yg1GFOHyrnm8DJXu+0oe9bqYTrs9Xq4dNkCACOEZoxQSqUqRqMRIWRpaWlldUlpMRwGhBCtLEKIceJ5Xp7nnIfOBWd6errZbLZarcFg6MZau7VnlAzD0HJvenp6dna2KIputyuE5JxzzqMoMsZobYIgpJTccsstlNKtra04jh955BHntpIkKWehMVCv13d2djDG9UZtMOhRYmu1xvzCtDFq2E80FUig5eXF6eYMRpxSfj6/lOUpBkwJJ4Q68qkTIZVSUsZqXkXIPAhDpaRDlY1VjvZhkTl24qiWypFgms3mhQvnt7a2KSXT09OHDx8+dvh7Xn72JhMIQkgJySnLcu1eTafTqVajTqeTZZnb3vu+Hzg3b2MAYG9PGmMQgCOaOLRXax2FYY6h2ZyqVqsY41arNRqNPMaNFm4umoAGE8IjlBHrNdWCScfGY7dAu6+Ye9L5XRQjhHDoijEmz3OXuqhUKkmSSl3WDSilnMguJuWZXck+lHRLhFEJAhpjCcJAsJSSUeLGrCvIxhhLLWBcDD0BxF0Y5a6WIFyS566HmN19uWBnIow5uRF3BocRuzeCMTbaTFBs5yTPOR8P//KxaKOTJKnVqtVqRRo5Go1KYB17URgJIYSQnDv3NqGFUrLgzFdKK6X8oFIyYZUw2lowxhptpEeYUz4xxkw0VG9oxhqMKWAwxmitjDHYWAAw+ppWJwICCBlwkO0EfCiFPaUsAMp8myudUVI6XQULYIxxOjZZloHVnuc5KdRerwcwwEDyXGghGeNFJowVnkeDIJifmet3B+3NnuPtYuyULSwCYscKy05j1lhtjJszJ9OjJYQoAyWr2NiyTgRhjDAmoEuJWoQtmHF6wCgFFo1TJiUWxykvxtZ2kyfmOMgEEeTsEd2JgLi8h/vWyecJmuRajFOUx/t8CCe0BYqwBauwGWedMALjyKducEkpHefTaL2fljoZd5g4gqx13pIYA2MeY9RaKApRqDJ1VKlUhBBZljaaUwghrSXnFZcoHecpdRzHbgVxEB9CaHp6+tjJE/1+f319nTHm1s0oimBMQUPGIsDKmCzL3ApirwHx2L0FjI0aP3mfe1EUpUmupXaIKGeMUsoo5YwpbowxWusiT8tRgJxPnkIIUUYQQsqaCQG8VImwyBjjSG6UMS/P09FoVKtVo2r11KkT7U4bwMTDTiGSPM+Hw/6Vq2uPPvrEzEx1ZmbG4yyXBffo9Gwzy5LnX3iOYBpWfDfmR6NYSlmv1z3OlTIAOqpUPM8bDpM3v/ne973vR+bn57/+1JN/8qefyfP0gTffG0XVc+fOfeOpp5UxFsEoybIiHXR7QDBjZDAYnDx5olqtIoTq9bqbzYwxxign9+MenNshCSG0MdbaIAiKomCMzc7PGVUKl2ACfsCzLJuamZ6amjp//ryrVSlLw4wxVmFn/zEBCsd5arTPM5AAGou/TMoEvmWmMCbJM1za7LrpRo01v65pkLv+aI1LtgC21/ooIGNMKRxTjjRjwViCMSA3gC0BMMgAMha0MdgtJISUi/1kRbFKj90VkLaWTKSaAIwxQRhFUSXP87jfJQgoxta5VRqNMTDq1NMVxiWsTxAGDAYbj/pFUdh9k3455GH/snVNlgSMLYs/EKGU4rIywlJHrwDgGCOt8qLwGa5Uamk86NP2VBRVfD9gTAkpC8UpW55f2N3c6rX2Hv6eB08cO/61J59APh8U6blLa3NzCwihPM93Wq0rV69KpYIo9ELvtjtvQ8iePXs2jgeMkCxLRqNUG4UQMlYh5BVFQRh122JjzKVLl6IoUkoxevPEYyl6s0+uyM0vCFuAa2vkeOYyTlc3l7kxRkqptTLA637VWuQHISFICFWrVSnDrfaOMabZbDYaFQUyTUdx3K9UKsNhIoSYn59fXFzkFF2+fMkY0+/3n3vuuU5nUKlVK7VodmnO48HO1ta58y9lSYosFEVx7/33MQ8LnVAfX7x64f577yMMfe/3vkNq8Y2nn0yLZPXgiqf41s7mhQuXtNZewPyw2ZhujpJ+HMeYksMHDzHqP/fN5/M8L7hYWlrRFmbmpmu1xl73sb1OR0nj+6G1sLK0ure31+sOJNPdbu/Cha8XaeF5jBJPSulyRc5gwRjXGxBCyJJyW6GUAABt7fTcDIDd3tlsNGpJMiQURdzHyO11MmlRu9XRWmdJ4nme41wYk2OMAQzCZn5xTqp0u5XecvuBly+82Jyr3XvvvZzzz3/+891eL8vzJ554YjRKmMfXLq1NN+fb7YsICEbEatBSeZ6vlByNiuOzBwnCQOni4uJgGMfxcHe3EwSeFAlY6vueMUZJJwVI3W6mgKI01rCWIGMMuEAUY5zlSTzsAzLMp8aYLMtbrdb8/NzMzMzZs2dBA2PMyU+7NYxxIqWx1jJKXXnXZNIwRjPGZmZmsjw3o2Qi5OTIIFZbhLBTfSeA7Hi/pZQqihFCiPtehYduwiyKIgwJ88mlK+fCalBr0kolXFlZOHfuwiiLKxU/LYrF1eXp6WmMyNrlKydP3P6ed93V3eu0Wq0vPPLFyA+V1gcOrhw+dHRvb+/ixQuYQCHTmZnp+fn5TqdNKPJDMzu7whk5d+7l5MpmFFYOHT22vHKi0x2miRgMWtaiOI6zLLvttjt8n8/MTSElFpYWq9g89cif/8b/+1+9993vPn7w4OrKam8wkPHoS088/ZUnn7YsUJRs9fZqtVrRaY9GQ2V0nuc+95SSoMGNRCm0NnL9ysahg8t333nncDSYnjr44EMPv3zu3DeffvbN9715aXHxycceV7l+4ZvPXblw7kd/+IevXLn88rmzR06duvXY8ZdePhtv9Y8cOdLrdbq99le+8qW3vOUtv/RLf/uLX/zSU19/emamGVYipeRet93p7wQhr9TCK2tXb7nl1NmXL4ZhJSvE0888m4tiaWX58vpaLvOLly+O+lm9Xtu6MqAEFUoH/o10mDCEe+8FY2B9Ha5edVMNvPWt8PDD4HnQboOUUK1CEEC/D5/+9HdADrXRgHe9C44ehTCErS1ACBYXIcvgwgX43Oeg33+t51ldhdVVoBS+8Y3rivcPHYIf+RFoNCDLII6BUpidhd1d+Mxn/iIlh7k5+NEfheVlQOjaVSEEm5vw8Y9Du/3t32+zCT/3c7CyAoyVSOK3d78AgDHccw8QAlpfZ1J301fm+zAYfGde2bfRDh++Dgfs9+Gll17Hnz/yyHVwc6MB1ep3QEzD82B7G44du3Zkagruvvs1WRF+4ANwAzfo3LlvHwT/v1eyeX87e/a6X6tVmJt7HXDzDcLN7fYblTOetN/9XTh5EvIckgS0fsUxePHijXg3ALzwwjVkeTIDdLvfmQvb314L6Z5RmuXSlGqVyP2gtWbsFenxpanHOBYYwxylMQPn1Bkk7La2KMWIQHevV8gcwFarta2tLc/zpmem+r141BdAoN6s1xsNjDFW6PLly1JopQwhhGJan56bmpqKB6NhnCilbrvttjTPBoNhURS1Wq1WqzjKXq83sNbOzMxUKhXHDPV93+EptWo9DEMDurXTRggRwlZXVzzPu3z5skbWITJaa7eBD/zA87yiKPr9vpPUcGxfR0dySFyaZ1oqV+mIEUUISSkBlxt6ygnG4AXe3ffePjUzJVW+t9eamZsejUZX1zZ0AbfddbLI5WiUGKl9xp0MtM94p9XWYKMoWlmcLoriypU1rXUQBNoYrZTjYRFMhSrrtObn56vV6vPPPecePkEu5MEA1hrtKszKAMqO2XBKuQ2SI8y6+IhSXhSF03Nz0YqUqiiEM3J3pKUJzjWB54y5BvRMeoUxxqCyPzh8efxJzDk1xkilrQWtNbLOvJ05sIxSQhB1egVbW1tWG4ypg7q8wN/e3pyqTT344INPfePJ7l5hSrsdapUppGScVatVDTnGhFI6Go0YJ57HtAYpJedUWcUDroV2rCQhhBPpbjQa1WrVEQ601hZKK8ggCDzPwwQpRZRSWoMQSkpdqXiEgsMcrdXGqKIoKtVwdXW102n3+90nnngcAPu+jxBCFCX5yPd9B20bo4bDREqtuF5dXT106MjZs2edcbrv+6HfcCAFIeT8+fOOHOc8zTDGrl7QIYycs62tLXfl1Wp1a2tjb2/P98MwjLqd/uaVzsxCg1CslOp1uoQgjKnn+WkilBZpmrKqMUpbi5rNmTyTGMPRY4dOv3R2NCoY4065jlBECLIWA1hMke97qIAkHTLGtHIF5srFL3meD4fxe97znjjuu/h6dn46TVOEyN1339PpdJ58/OnKzaLGXq9nTEEww5h7HhZCpGmqlJiZmRFCdLvd0WiU53kRBC4idnbiCCFAhlJqpCKEiLzAGFcqYRQFrjtnWeaA7zRNEab7I+7JTDVhRLo2obVN/rU8OCaQjkHh0mLOjAvHzVjZhjEGGC8uLrbbe6M0AYdtIQrYTs4/QTJKXBsAY4aIq7M0gFEpBVCrqvHlODiPAHEQnpPfcTD4tSFprMUWwLH3HOW5rFb3PKcngAAQY57nMQdJlTkSKQGMK2VwERallNGy7sGR6EkpeG2VUtZqd+9gMMIWY1Kv15M80Vo71zFjVBzHLmi1VoeRPzO72O93KQnb7R4lnHGCMKixtoy1FhNwEE2jWa/X68ko8zwP20W42ZpjDVgDmCBKqbUuMeBe2TVi4n44HpUVJIAJsRbcZOj8ohwjXgihpPR9nzGmtJ6ammKMKS2c+WnkBxhjZAEzk6cF971qGA1VTBG2CEAYYdXuZkdOKSnMztVWQH0Agswk92bBWrDYjrVh0UQP1iKAkp3pmOhuFiUUwT5bMmstY46NC4wRTLDWmjECLldRQr0ukwEIAaelIrmZMBpdMbo2CJX05UlPx9d3e2zBgnaoN0FYgyVQGmTCWCdnDGAhhBA1oMG4O0STfQDGxoBVxiKLMab7IGbYhzgTDFobSp0VqOdUrVxZg2uYEWeRyhhbXFxszkx3Op3d3W6lUomiiGBwpqZ5niOEms2G1np2dtrln5rN5nA4XFtbY4y5snLf5/fff3+73X722WcpotY6LJ8aA2CQ1krbshLI9zzEuBLSpRgRQqEfcEJBG05pgXBe5JQwra1VtrfX84KAcVKIwgluOMo/RqhWq4VhqLV2mVqD5A2QqctaWUAYY7qz3WKctM6cfeGF5w8eWXnnO7+H+ajf7x47eaTRaCilRoMRYyyOR5fX1tN8VOQOHaeUkObM1O5uezAYBkGIMV4+sJpl2bA/0Fq3dttOFQsQder1x48fv3r16qOPfeXZZ78pZTE/P5+mo+eff35jYwsAh2GolQ1DBkhrrZExCtkgCNxcNjXVUEq7RI2UMssyiwAwEEyUUIQQPwxc9bqbevI8L3M7oDGBWr2ilBp7FwghhBP0dKz+/aMXE4IxnpSiEEK0gskECuO53FqLCYbrVMevtSIviqIIgmACxSKEECW4zJAjPcn9Xdu7OLI+oHJCwfsTj26ouT2WHReYuK2J1jrLsgkg5babk70RxlgTa6UCAEIQtqCsKUUvMAJEtNaD0ZDVGwghQrDR2okSMMYIUKcLAwAME2BYO7Ezzph7dNZSTDDFSF9Tz8DjrJH7L7Yw1qsotW0MRQwhQAiDG6XYgkYWPMYhMARAFyLR/el6Ax8+vNduI05npmawF9gIdjvdiy+fG41GRw6sHj5woN9pHTl8YFhkV05vVKJgpjmFAYVhlKXF1tZOUIkQwZ1O5/DRQ5yxQqRpNmrWG3EyMkYvLs63drvSKJNqRLBjhrrp29UyVMLoFcjrZQdACCFs7bgS04zdbCeLuh2n1Mr1jBLP8wAZQvxao1arVbSRURT0+700TeNhf3Z21r2y0AuDSjS/MJMkw52dHa3LmriDB1cfffTR4aBbr1enp6fPnTu3t7dHgBdFPrM4zwIfIXT42AGCdXtrB2OSC3Lp6sUgqvT7/UFveOTgwa3OVpYl33zmGz/0V/5yf9S5cvUyZTgTWR7nFtuDBw8ePnw0TUcvvvji2fMvz80vTE9PN+vT042p9bV1ZLElMD09lWXZ+QtnF+aXms0pKdVwMIrjUTWqdjqd1nYrK2SepsNhj3NOKeHcV9IyRqy1BIEXRY4cgTGmhAuhCEHO3iSKoqxILajtnY2VlYXGVBRFfGV1/vz584AsIJMXIwvIWJQX6cLCgrcwl6Ypp2w4HGZScZ+7XFSajZJssLa+vnpg7k333RME0ezs4sWLFzc3t4dJGkW1MKz2enGtUlleWs1zWfFr1iKCaJJknPuUUo+Dx7JkVKyvb6ysLPl+sLm9PRqNVlfnOQ93d1pKGq2l53HPA5GN408LWZalaYqAIISwyzArSQH7AZdSfuYzn3H586IoOOfa6I2NjVqthgGe/PoTTvIPjFVj+TCtNfOoHhOlMcZSSoyQ1KYQinIuhHBDVUqpNaUUGWMcrd4tCdaWUlbW2kaj5oj/ucgQQs6sgDESNV0CL0+LfHaudujQoawoZubr1lrKKUqkEPK+e9+CMDl86NTp0y/PzDaOHjv4p3/6p6NRv1YLFxrTWts0G3g+aUxV9vbavX5vr9O6t3Ln7Nw0Y5R5CsBOz8zdX6+fPXt2GCfPPnvm+PET9drsoUOL9dq0UubMmTMb61fjwdBjM51OL/R4pzc8dOvJ+9720Kc+9tGPf/bPFubmb7vl5MqBQ1998hub7b3FQ8eeePE0FCps1LnykzwRSjLOXfRXqVQCHuS5SNM8FwIRMowHRVoA4KX5JWXl5z/3SLvdToejJ772tVFvMNdo/M2fef9n//jTj/3551tXr37zyScY87J4ZKQ6eujwk5efdHE+IB3H3YtrF8JK8OBDb29OT585czaOB5zTMPKlzNx2dnFx+eLFyxjbWr3SbnVWVpeOHD16dXPdTYBXrlydbS4OhrFB4DFWFEU/7gXNG6eXX/xFmJuDv/N3AAAOHIC/8TfggQdgagpumJG0hu/9Xvj4x+EP//Db9G2jFN76VvjbfxsWFyEIbjx/lsFf+Svw278NX/vaa4LwggB+5Veg3YZf+IXySKUCP/qj8OM/Ds0m7Lc4dhf/+OM3gZtrNbj3XnjXu+DWW6FSuclVpSm8+91w+jR87nPw9NOvT+Vgcr8HDgBjAAD33fft3y8AGAMPPAA//uPw0Y/C00+XB/+zvrJvu508ed2vcQyt1uv48xsEGWZnYWUFdnff6FWtrcGf/An8t//ttSOUwq/9GvyTfwJPPvmK5OtGA37qp+A977nuYLsNH/rQt4+A/98r2by/ra1d5xY4NQW33fY63AJvsF7s92E4/A5cVZrChz/8mj557tyNehoA8Mwz8H/9X6/yhzcMlleoM36VdoM6+U1bmqWj0dDhgxOCm6sEeqU/sdYiNPYgGe/AjVHM98IwRMiORqOiKKq1qFarDob9sy9fYB6dX5i7dHF9bW2Nc16tVn0/LOrywIED3PeiKJiamSYF2djYGLYzQBDUPYJIlmXOHZ1S6kKwjfVNUeRACCGMM69erwFAmqaUsWq1eujQIacbG4ah0aCVYpy6ku2wEphCnzh+YmZ+7sUXX0wHMfa4RmisXwyMcye8aIxRhchGCWbUwS6+H1hrHfCXZRmGa1XtLpJy0DCllHOKCJIqq03VKEPdQSy1GPXj7e0dPYKV43Pf8z3f82d/8jmR5bVaI0kSh/U4omslDEVebGxsKKUIYYSwPBdOI0IrSykVhXDisMaYRlG87W1v293ZcWxWjDClNAzDJEmMkoQgzhmCEqwEaxxihUtlRep5nrW2KEobeSFyY0xUjQLPN8YmSSKFdrExAEzEAay9BqKhkol3LZwet3LLb/bJHjoIgnMOgCilgIgx4KTRCGFWa2PMaDRyfMnQj5ygqlZqNBouLy8fWj3EGKnVanutttZaFIZ5JcIipex0OphaQLrQTn7adzeVFxloCwBaaAJIKup5XpYlztzIVdoppaRUCCHP85BfoidKS0640ykWQmiwlFJjgGMa+AEgy5iTH+k6mENq4YImrXVW5AEOPOYxxgJKIz8QWoHF7m0qqS9eXHPYKMbY9/1aVHMvVGt99eqGY2U5iMdBMK5DOvs4a+1oNErTNAzDpaWl5eXlVquV5yKOY6mKxdUpF7hTiikmcRwXRVljnmWJMUZR2Ww2s6y4evVq4IdSFa3d7tFjh3a321LoLCugpA+XesFFkXPOlpYWEUJJkszMTRtjnLkU5zzLMoTsufOnFxYWlleWr1y5Mjs3HYarZ18+/+ijX4miSp4Flehb5g4AxpnWniwEAuqHHgA4jFhKGYbh3Nycc6fs9/tRGC4vLxdF0e/FlNIg9PI8T4cja63jojpeVDoaNhsNWRT9ft+VL/s+dyzFSbtGFx2z6JzABYwDVYzxRBMSxlx+96u2BllDGAWpYIxCWGs9z5NSvvDSS0KISqUKAEVRUEpdGaGxNzLwJvAcAGCDLWi7b+yUdnZjvygAQAScbc8kiHY/TPRhzVgLwiF0MC5Jdz+XeqoIlTICY7bNBDaZACNu8h8TgaX79sk/FYVyHUOAYZw4gZednR0nPqC1Fkq71I7neWkWh5H35jffv7S8sH7lwle/+rUiV/1eQrX1eJimeRj62igpizAM641qrVZjjOlAV6sVpCvyZjvY8evDCEqIHDuCqHb/CuOXWPp4eZ4HoIQQVloAg5CNoqjeqEplhsNhnudSyjHSZJWUcRyvrC5xXp2qN+I47rb3GCVBEMgi08qGXticmlKFStPU9znjVFttwFy90mKY1StNVSiCiVYWs2t9xlqLrZNWLUnuZdeyyJjyRWjQpSA1uD5ptZbuvQRB4JjrShuHayGEKoFvDGBMrbXGuuKVa76CbkkChMZCsUAwKQEoa9S4t7vhVr5f63A4GGvAImyRRUAQdsj1BPojE71+x5acsKExGadkLABYgywgVN6Lmgw6hC0gUErUalVXO+IWPjdtTkjBWkjJpBDi4MGD1Wq12+vEcb9WqznNljDwjDFZlmEMxmhr7ZEjR/I8t2Ojhe3t3SRJoiga52bg7NmzOzs7TizbUcIptpgighkCYlVBCEEWrDYIY2Q1MhYBGK2ttrnUkgitrXWEVKUBYULIzMwMxng4HFTDSGjl+KxuJ1Ct1Q4cOKSU2traGg6HgEGL0syAjG0/rUGYYkII5dxTSjJMHJ4fjwbGqLAazlZm4riPCTpx6/GNjQ3TF42pCuccWZxlmZYq09L59tZqlSQrIj+ilCwtLQaHDo9Goytrl40B0GbQ6xNChJJ/9Ed/FFXCPE8pxYCMNpIyvLfXEkI4/iNngTWIeRRjWqlUfJ8ra7a2tnBZ0VO6ZuWiUEZjjFyZjxByaXkJALrdLiXULVfVatUV+/ueN0mWuqx+kiTu9YxGI4av0YeNIwQiOtmgjG21yGTiwxYswq5C4ZV85AAAELi5L5cFaONyOIwxpzVuYQI17yPG7ku/oOvbeBRhN+FOJlMA0GDLGh9rHcXbsQAcXO6eG8ZQSGGMxphiTAi4Am5EKTVKay339vbmm9Nzc3NKFFZrqbW1ljJilURg3JcCAMZYa+lzGlVrvUHfyX6XXRwjZxOIEAI8/mE8tWELAAiPr1xaq6xxJf/Iam0sBmSNFSrjjBOM80IoDdaqSlDRQvfaLZOL1ZWDjenp3fbeKB4uLy83orCz25qbaRCPw7A3NVU/Nr9IEQ2DSi9Jtrd30wyQJ7BmBvTFixfa7V1jVRR5cdI3xszNLxw+dEhqazo9UyhtjctkKqmIx6zS9Xrd8zwCN489ELIIW0ATPfhrC+r+rI67X22kS6GjcXVSVA2DIJiZmZlq1re3NxljYeRXq9UoCgaDAeFsEPevbF6iZ+BN99599Njhrc2dfj92dsmdVjvNhlpLNx8x5nmelxbpYNRLO3mtXkEWGtNRrXIgz8XWTgsxNr8yV2lUVw+jkAd5nk8167nIXnjh+bvvuXthaX6YDpVSd99994ULlzY3N+M47na7ly6vLS0tNadnzpw9nXSfS5LE95xNqrx46dzc3EKleowS5vmstbvn+9xw6Pd7u1vbWluPR0aBk2auVCpaWyWN0doaxDmfnpnS2rmVSIQ1xUA5MUYFIRM6Q0Qpbe6467bv+Z63bm5dPXXq5OXLl3d2r0qpsrQgFMIgzGWxuDhnjKrVph544L5Hv/yYGwuyEH7oDYfJxQtr9WZ01113LizN3nrHrflQblzdef6500rCMM7+7D99nlKaJFmjlo9GCVharda7nUE2in0/DPyIIGLBUMyyLO31eq1Wqz5VM8b80A/90NzC0rlzF/7Tf/oc9ygyaGVldXt7uxo2RqNRlmWucJVS6ug/eLwHmmQyDACmVBaFEDnhJApDSukoia9evTo91Ww2m71O3wWZUkqMQ0qxMtoiK6WsVCrO4NRtI5VSiBBrrWM009LEGYQQkR8ghJTVbvtOwaHPIgxnq9WoKLLeIDEW/EBSFiitwrA2Ozu9tDzv+YRzKqXe3tqt11er1WqaJ9rM7+61P/bxP3zf+35sbna5NTv88mNfPHz4MGWW+mavu50VcRonZnl1ZWn5aLhSiHhppUkpuXjp5dm5aWMU4UhrvbfXfec733no8PHtrd1nnnmesiBJs41nntvr9vMkZ4wzQvO82NreCXzSFsUgbHGL/tLDDxnKv/a1rz61dvmJCxcffPAhv9E8snTw4tWrBw8fYVG01WoVqqg1qgZsLkQmMm0VIJskyUxzPgrVxsYGwtijXiWsvvzCS/GgZxmhlB5cORT3e2kcv++v/PDb77//wTffT4riC5//fL/V/tkPfODetz74b373Q5/+5B/OLCwCwOnTp48dO7ywNF+pBXHcX1u7uL29feTIsUaj8cwzzygtwsAPI6aUaDabSpJ0GFOPKaUcnWEwGHiRNzs3Pzc3p+RzjHOlNABIoQGw3YewhCH82I/Bz/wMRBEAwG/9FnS70GzCK2EghMDcHPytvwU/8zPwoQ/BZz8Lnc5rLT+v1eCWW0qI7QYgeNKCAI4ehV/7NdjchP/j/4CXXnpFbPfgQfjpn4Yf+AGgFKIIPv1p+MQnQCn4iZ8Azm9kjE4u/jd+A/7Nv4GvfKUkcfs+/MN/CN///a9y5WEIYQhzc/DOdwIAfP7z8L/+r68uCuHu95d/GVZWXtP9/sZvwOnTfxGWjTHcfz/80i/B6ioEAfzsz8Lb3w6f+AS85S3w9re/+iv76Z+GD30IPvKR75gC8l/cfP9GuHlr67Uqabi2sQHt9nWs1aNHryHsb6R9+tPw/vdfJ6lRqZTv9KtfhU9/Gi5fhn4fOIeZGbjtNvjxH4ejRwHjG9/jF78IOzvf5jX81b96o2QzACAEH/wg/Ot//Yao9N9GS1MIrq95+OAH4fOff03v6667rqOKAwAh/4X62BtsJ05c5/oIAO94Bzz33Os7ydLSdXIcAHDvvTfRV0nTdBJVupAVE+K0Gm562rGhk0GIYIwtKpWCHbU5SRJrtUPQ4sEII6qlHQ4zmtEs20z6I+whf7q61+7VG7WHH/4+TNELLzx39MQRQkiSpA8//M7d3db6la1Op+eQkSAIECJZluW5OHfugkWAKK3VakUu2+12URRpmjqklVLqpBh833fsHCWdjbmq1+tBEJhCB0Fw7szLg8FgYXWl1+sVWUp9331L6AfjMMc6QUahlRBCaoWy9PDhw57nXblyBWNsjSIUSymVNAsLC57nXVlb05wCGEIBIRhlo8e++uWwEhw7dhgIitN4aWlxj3cOHTqklRVCyEL1On3nfixy6azqB4MhLr2tDELYsYS1tu45AyBrdTYOblut1ubmpotHPM8zSgOAMwpzu01CSJELa63RWppScdGVsbqATkpZFJIxB6tyR/HWWlsDTgsCSp8zTAhMkhAudEcIAWBk9IQGZK/jsjl7nrJTObSoWq1aYHmeI0ysRS5YQwj5jMgyaC9DD/cnQghM8Ozs7MLS4p/8pz8hgO67997uXmdzc5MQz1WwBh4XCoSQFd+Ph0NLcLPZrNYiIdK8yKrVyBHo8jy3FglREEqztDDGUIoxhvn5+TRNh8NhURSO4uDI1/tjRoSQxwOnZsk5Qwj5ftAf9ADbsBIJJfe6HQCcZaM0Tev1KedzmOf5ME6QFpxzg7CSZnl52ffDq+sbw2Gita7X60EQUYqT4chx4uJhP0vSCffKGONoEE6X3OmTOojTvegLF855XoAQWV1dLYqi3x8sLCyMhmm73aaUgUG1Wq3f77db3X4vnpqaYowrWcSDESXE8zwEeZ6llEGtHjKyWBQijkfxYLS8vBz60csvvyylrNQiSnGz2ahPNYTIsyzzPK9Wq0RRgBAKQs9ae+7cuc3tjaxIX3zxxdnZmSiqvPDS83E8OnnyFmN9uHnDSinKuZEoTwuLjOvDSqnhcBjH8fTMVK3aCIIgjCIp5fr6erfTX1hYAGSKNCuK4q677qrVahfOn8/zLI5jTkm1Ws2ybG1tDQAca55Raoya4AkuqzThn0HJNMQTEWd7je52DW2w49INB/I6yRp3EiHE9GxzfWMry7IgCNrtNuUsDEME5Lra7HHGxaiyiN4lErXWE0+ssduYGaPexr10ighjzGnTOw1VN5vdoNXrEGetNcbIQcATfNkNKDwuPh4XE1BH7M3yhDPfMceLooiiyBWLOPzEXTzn3OnSYueFOObdO0EezrlQEmN68ODBKAowBmPV3l77mWee2dyaqdfZ29/+5hdfOKsVYjzQGlWrkZSSc26trtai2dmZLMtGo5xSKqXo7GzOVG7WXRCZYHYTcNOO6aL7fi3vUQjhlIoNGOfnSajLH6gsyxz11Q0i98CVLC5fWmOMRVGkpXDa/qPRyFqNDMpJ7hHfZ9wwRYAYhQjxlBAUAoaZVghZYrTTg7X7QY+yIau1udarEB5nMhDBQAjWWitZIIM8z/P8AMCMRiOpcms1xhiQqlWrs7NT1toiydM0JRgY5VIrax3wgghB48oTcCLe1loNltGJgAzer7PvLpIAQtiB0ddS2diZ4kI5qV9Lz5h9v447tvMWdPoDxhin+YwQQhYMcl3RsVHBkXyD0COEKC0QQpRhazUmwLnnGM2EkFJo2/PBqL3WjhkDm/V6HcB0Op2HHnroB37gBzAGzvmjjz7qsixFUahCFEVRcuTHGdBut9/tdn3f99k150wMiOBSLhxbIICssVoWFtOS6AmQZZlGkhGOEZJKeYxjQKNRijAl3JufnTNgnZy0k9aZaBdjjJ0SDkJECGWZRojisambHVdXuImACiG0VhZ0UejV1VVKqZEiDIMg8Pp9Za0djeKrV68QILVaRUopcmGMUUZbA8ZKIEAIqzIqCnXhwoVms4kxCbi3tLSS57nMC+rxLMuCwKtWq1LlWTZUWjFG+/3eYDDgzK9UKqLQTieXEMIYDgLP8zylpDSKEOI8r1w5iIOWGKMw9gPFGKdp6ogJnPGZmZmiKLa3t2u1WrVazbOMEOL7vhMvM8a4ZKBb4JUxDFMAMMa4MnbXhxwsOJms4VrqBk9wYZfNuOnCQgillLj6PAJo4t9l92XLJzP4ZE684SQTENOByIDApePQOHGHENJKuWWjKAoylpw2++q/GGPWauT74/SdoZ7PGDMaMABhWBiVpuna2prP0K2nTlajqN3pCCEAWYSx73m1sOIhZPPCGoUxrtZqlVq1tdcWecEJRQi0LjV0ECCEnKDBeAmz17ZlyAAQ94qx1gphTDGyFpzztQEnI4CAEM65j+lgmGhjm1Mzcd7NsuTxxx6rVaeoHyzOzyNr4zieq9cIwkqJZqP+8EPviNPMGJSOsie+8uTu7m6zGVWm6ojjrEh3WtvWaq1MgfNjx44ncdJoNHf32k7EDQOem5tzSQjAgBCyAG5J1vrmDLfJagr78OVJTmLy1sryHExc4YPLYbjk8OzsrFJqNBo5pZcoira2NkajeHl5WRirdSR1ur7efeyxJx988M1BEDz//IuO+yyEcEalWZZ1Oh3GPIwhrAS9QdciI/vFdKNBPaaMFonIivTE0cMGbFiPjh852t3rbW5sBIE3MzertT5z5syRY4frzfqLL74Yx3G7vdtqtVp77fvufWCqOfPAAw90et0LFy7cdtshY0wyTK9cuUIpO3LkECFkb69rCdnYuNzpDLQ0DHvaGFf443HPgpZSCqEJIUJIqxHGBDDK8mQ4ZGEYRIGvhbTWhmGobOHMLBnHQlhj4PDh1SxPCpVPzdS/+UzroXe8rdcdBEGFYPb0088kImUcMRZubq1v72wRIJRip4gndM4Z1dreec+b7nvgnivrl9bXt86/dLFarbbbe43GdLVezfM8jmOExM7ObuBHDGNRSJFLQpgUJh12KPWbzUarta1UfuLkkXqjAthevHj++eeff6g5MxqNgiAw2nJCh8OB1lKK1GWzrDbWIsYYwcztEpyhhMtSOo2aNE2RtYQQ0MZtpzjn6TAZMY41IIS0lj71Pd+VdGlMy+i3NHmw1m3LOOcW4OjRo63WXnfQH4dJBgC7/dCkl+LSQ0bHcX95eXl+YY57vVwUURTVapUw9JdW5ldXlzHRnOHhcJhlmeeTy5evhJXg3e9+N/P5+fMXvvDnX37ia08tLCz5fri0PDeIO63Ozl133ba6upoM036nW63WA8/3PK/euK/b26MU1xu+1jrLk53WLmOs0+l0Op23vPlt9XrjyNHj09OzflhNk3w4TF588XRrezf0gyiKMMZI5YEfZVn+iU/98cvnz/3kT74/e/KJhDAg7MkzL7/prjclSbawcnCRku29VqfXi/N8emqG+awfDxBC2OIiK5JB2t0bIMBRtTI90zR6yqNMZHJueu5Ka1dkozff92YC9tlvPBX5QeTx088/94t/8xdOHjn46GOP/8LP/Wxj9fBv/Kvf3LlaIGhVoinGWBzHlEFU9ZeWFzc2NlqtlhBiZeUApdRY5wcrjTFPPfWUVviWW26Jh4OrW1eq9ZrnebnIMMZXr17lnD/88Pe1truf/+xXjQLCGYAMKteAJSHgwQdLrBkAKIW5uZvOQNc1xoAx+MVfhNEIPvnJV/+8a2EIv/7r1yn5vlIjBA4cgF/7Nfjrf/0V4Vcp4R3vuIaxRhH8pb9Ual/8Bc3z4KGH4HOfAwDAGP67/+5GYuZrad///VAU8Gu/9io4++u931//dfjAB/4iuNkYWFyEY8eugZ7HjsFP//Sr3zWMX9kHPgBra/DYY69+SW+8BcGNfenFF1+f6MRwCP3+dXDzHXfARz/6Hbi2NIVPfhL+6//6uoMYQxjC939/mX7Y2wOMb0QSbzjJH/3Rt3kBU1PwN//mTY7X6/C93wtveQv8x/8If/RHkN1c1/c73zCG3V04ePDakWoVfuzH4Pd+71X+kHP4H/6H60jBxsDZs68iMPLAA3D77cAYfOITsLf3xi4dIAxhdfV1/xXGMBhAnl+b/QDg4Yfh3/7b10dX/+Effk36KghKPcSJZqiL/ZS+uT4eAnTdHg/AgSMOshwNYuazsvJylGynKSAEYIUQIs0BASWBktBozBw6eihN8ouXz4XVYGFx7iMf+7DqwaFDh6anZ2677bannnpaCWUtJEnmAjmHDhitmOdJoaWUWCiH0bgt5WiYOph1wgk1RhVOuhSwS0hvbm6GYXhqbpZSurCwcHVzI01TB8oIoYyxvs+wBel4jgZ5nieUpJQ6bY2lpYU8zzc3NmReIEpAmqWlpQMHDkw1m5VKZa/T3t7elkXueR5gU6tVeODbNK5UKsxnc3Ozw+Fw/fLlMAz3Wh2MDWNMawugscIWAcaYYKaUAos5L814tNaMUq2dUAY0Go0wDAeDgbH2scceQ+PHjhGSUvb7fbfhcYTHLM2ke2jGuN0yIaVYilMcdh92UBoAGDDGGCX1mJfpqLLUWee5Q5PqTIQAW+0WmmtRG0YATgwNOdesCTm32WyOkp6UEmECgN3JnYiZ5zGly6AdAJzcHMakWq3Mz89funSp3W4vLyxOcDRrrZQSE6a1BsCUlmGpg0bSNLVWRlFUqYRaSxdxLy2trF1YI4RWKhWt7Pz8vLU2STJHFnb7STn2WnVcOUd/NsZw35dSSamGieSce4HPPS9Jh1pLhFCed50KNiFkb28vTdNOpycKqFR4LXTgvhXK1GoNW0qIEEft73a7rVaXYeTS8A5zdA/B9VXGWKVSGQwGE3azC2OdGEJRFMrC/Mys0ycNw2Bzc6PT6RJCAi/EGAshCSGMcUKcE2CBkAIooiDEiBQixxj7Pm+32wRRJU2lEtb/v9T9Z7Sl6VkeCN9PfNPOe598Tp3K1bnUanW3Wq2sVgIJAxJgA3JaYzPwrWENNjYefzMDE8AGewYvRhiMAWFkkEEiKSFaoaXO6tzVXV3pVDo57Lzf+MTvx7PPqaBqtVrArPU9P3qdevvdb3rydV/3dVWrrcYEAExNTQHA1NwEQsiAvnBhyVWx53kGGQepM07K5TLnrN/vxfFIKXnixImZmZl6vc65f+nSJWzKkzdCDwPfF8LJPjCtJUEYEQxwRYtyZ2dndXVsF+RkX6xBKysrFrRVulQqPfDu96yuru7s7AAYpdT05ESr1VpaWmKMaW0IsVlWSCkRGtvHwS730/3tbmSuGKkBQtgBf3CVTDnswXMAjoMZx7EDal3f0WCTJAnD8A1veIMfhjs7O2fPnrV2HC9xcjQO2dDS+aONsQ4LoLXGZIxjWD3WL3L3ck/FOccUGXNFcp0Q4uh67mS3nXGVghDKsoyQMVrtLuVoyK5DuT24a+fukZxs5p5MMGXYvaNLg0C7POgxU4dSpZQy4PqXUtLR2+1YiwM1m80g8NbXV6UqAACQEUKUSlVrkQVTKocY+xjzNHFOSxowGsUxpljKgnOOkN3Y6BpRhRs1GGOMUsbhI7vokwOjDMYOUb1Cd3NbPISoE242RrnXj6IwzTJjFWOsXC6j3eAcY0SpcTSi3++7RPM8zxljlDJrdZZlIpdGKka4lNoqo0zheR6nbgFNECCEkdXmauRqb3IEZN0AO25UFnYRc6OtoJQSZIGgKIrm5+fn5mbK5fKZM2e2tjecxLC15qajR2669RbGSHere+LEia2tHWMVQRgQaAt7kh141y5y3G53lWF2MToH1Bi7m3cybo279mkA4FrsWBjqKgvQvX+OwzC7S3o8tmGzuzjeWCIJIYQo2g1XG0TG+J5UOcZISo3QeI0RhqFrmS6Kxhg1xlA2hgukNRMTE81ms9vtWqNcHd1xx20ORvjiF784MTFhjMmTNJF5kiQYY4Y89zy7+UZYCAXjujZWG0Y9zrExxkiNCbbWIguMUGut0+GllIZB4PucMY8QooUmmCZJYqRRgABgeXnZwad5niNksTUARmsghERR2VqbpvlevGdvxnRfbbd9KmMMBV8kw5hQePPbjk/N1pO0hzCk3cHly30pZZrm/X5crTSEUFrZXBQIKOOEMRvHMUIkLAVFIZNhoqSp1eoAUCkFFiTxxPxM9bnnngHbKldrGOOFffsAgPNau90WucSIYowpL3seCz3o9trWWr/sUWzcuDMaFVJBrgXnnBKcFqnLMGCMcSQ554XIjdTUIpFkURQFlLeaDWOM0KoahWEYlEshAuOWTXE8bLdzQoiSxEjteR7HnhACkFHWaK0tNuVKJIWWUoBCUiqtLLHM9VVjlAVrrHQAjrXIGguvYiUXRAzzIEtS0MhawIAJZshiJxBjTMEZdTkH1lqjr/Ca7VX+gePu6sTRLRjAQrk6HkfIjTFKu8mVOSiTMcZ3jb1d/gXCGCNGqC9GAwDFKLFKaKMBEeRxrSz1fEvp9qBLNHzoQwfBap2OhjK3VoeBjzEmYKVWiBNGPAIgLfQGwyiKPMbdSojuSRjv6mloJy9kLYBGGBlkjFUIECiglIKk2GKHw2qtNRiCEGDrRgwGQC02RjUjnyBMCKl4U3Eco7oplaIDBw5kSby+vMwo4yDyYqQJ0Zb6XnB26WIh1anTZ9e7XVYplxvVIAgQRULkutCEIooJAhYE5Xp9oiiKZHM7zzLOLOYYE804QKpnZib73R5wgpEtslyI5Ib1C2DwrjCQE+e3GmFCjAE3/nKPWOv0sjVClnHCOAJijNGez5QxSdpjHlNJ6pd9CVJrzcAgzyNBUAuZV/JzUUxPw6DXf+KxFyaaNYaRlillmHtoMEjDoISgABQNR9nU/P4oivCglxeJyothp6BNTyhdbdXqk/UwDIWSWZZduPSylKo2EZZKkTXGMNmL8zPnLh49dKS7Pfqr81+57bZbooP+xcsXdjaXj91866Df3VrbKgfV+fl97Xabc392fi5L81GSZkm+tbXTqDSNwaFX5uWg3x0wyrXRjDGfI2sZBmQwYEuwRQYMIMI511YNRsPeoE8p9cuRtRZRYMCdvQGyiFIjRLG8ttyabcTp4A/+6JN33/OmbnunPVj7gbf/4N1vuv+/fIJ++s8+O+qn+xcWR8PcrWURsmEUHjx64OLlpXc98La5fXOlSnTp4upWuyelRIhZi+64/Q1h5Lv16+rK+unTZ7USHEf79x8UhUKw0et0h3FXa1spi24/ybI8COh7H/hgLorz589PtsTGSu8bX300z/NGpc45px7f3NwcJrEYFW6gD8MwDMN4mABIsFhrTQnXygJYF7vyOVVK5UKXSjW3Uk+SkVaiUomCkGCq/AjnqUTU2ddojLHVRmCNtVZKEUCmkBhjpI2xkofBwuK+URqLTs4pYxgppcAgZXXgM8IRIxQQI4RwnwmZhBWiaK+bLb/zA+9stiYef/xxpbOFyYnFW+pJr/flP390Z1mDAiAwPV87dtvhy2sXv/LQ429/+9sJClv1yXPnzr188kXmeZON+g9+5PtvOXqYe7RSKWVZtrm5ncRFnsnVrY04TpVSke8RxpqTDWPq97/tLQihi0vLg97gka89RjA3CFfKtUZrwgLcdc/d//SfvvXyhYtf/qsvb29vh35AtbFE7V9cuPP4bdvb27/3if9qLa6ELebz/QcXbjp+86XVledPvCAV5ixKc9TfblNA2qIwKs9ONb0gfPnlVwylmONmveH5zFKtpF0bdYWUOpGiXQiZPv7oE35AjdWf/MyffOqPPvPBd7zrXffe09nc9pj5xG//2ts/8D3d7c0yBy48XvGsZYPuME9SHvJ/8A8+duLll9I8txa9/MpZbKHsVSIWiHhgpGWp6hQq7SaDbtu3lBRo/eJGtdkSYDzq9fu9zXA9CCpur+h4G1mc7WXNKwUvvHC99Op3WBCCf/EvYGYGfv3XX/vkQ4deG7q6rngefOpT8Hu/B3/0RzdQgej3YWsLSletm2dnX/uan/88/OIvjv/+8R+HD33o9T3SXvnQh2B5GT75yVc94bt73z/9U/jYx76dzdqZMzAaQa125ch38tZ7pdGAn/95+If/ENbWXt+zfRdlevp6qP3cudd3hTSFy5fhyJErRxYXIQz/BuSbAeAP/gAOHoT3v/9VkfpW69v9PEng138dLl36bm5NKfzET1xTiVcXR6X/6Z+GH/sx+OQn4Qtf+H9DAuXiRfhv/w1+6qeu0YX47/47eOSRb6d1DgDf//1w4MA1R7a24N//+29XR+96F/zkT8L8PBgDd94JP//zf12BFCGup2Z/J8UY+PrX4YMfhLe//crB6Wn4Z/8M/s//8zu9yK23wg/8wDVHtrfh93//Bq/PmEcEQQgJUXDOwQBBWCvF6auym40xgAmlBAhYYwglSglCqUHgcY4tVoUyCmOEtLKex7W2FrC1gAjWUhciW2i2MMpOvXKKMT5VPvDgnz7cXxIYk5c752Zm0lqligqc9PMx3RVjZ5gstAAwskikSHgQlMulKIoYY2maDvp9RjnFFGPsMZ9TTxuT6EwIoY10FusIKMY44JElVmoRBMHU1MSlS5fyPKWYSVNYa4UAKWWe534YcFZSWvgcFyrr9jZ0T95y+00ffOf7/vwv/uzymW1rdetApToZdeLt+cXpOE4nJxutVk3IPCuy0Wg06PRWxOVSqVTzauVSdSD7F89eWjp1oRRVHHKkdC6E8HhAqUcpF0oqJQFZyjAg5flMa60yKZREiFhkfMab1YYXBkUqd3Z2LMKc81IpBAClBMLaWC2UtNZ22x2lNGc+o57bEykjs7wYkwQJpYxZY5TSGGNrncAgwYCVUtYYZBBCiFIMgEVeWGvRLjnOpT/u8n7MHo0P0b3M1zHfxliLMVZGY7AAZn19FVOExsnXxhrhcYYRVkYrLY0xGDGMMGEcu4tr0yo1fOT5wPZPzVeicjpICmEsZhJZjAzB0vc9TL1CiVGSIu4jbJIs9gNqrPQRyoU0RmlbSAnD/rbSOWPlcqluLaEk2NnpdLrbWmtCmLYWAGOCZVEopZQwTswtS7MwDPOkMNJSSo200tjtjR7jhICnlSAEUcwoJp4X+jzI87zb6TeqdSn1xMSElklRSK0FGNttb/eggxmlzMbJIC8SzlmzWR10B51OLwgizpBSBGNGCMdYS5UUAkmNwOmQ+MgLfY+y8Z4XTOD7GOM8S1aWB5Vatd4oAxJHbr7LGrS0tMSYd/yuNwx7wzNnznfaXYwYpTRUFat0UKoaoY1BxigAQwjWWlCPEWI5h+5ow/NYazYghKQiFkL4vj/IetbaKIpYFHb6OzudnempKWnUyVOnGs3WbXcc39raWl3fEIXd2e4HQRTHscgLj904rCeNRJQYY4yWiIBUAjSA49IyprVGwA2xiCKj3UFvzGRCbJgN7r/zrlKl+vzzn0vS1BrTqNaajRZGJM8KmQuMcS4KpaQxBhFsrZVaUUoxQhgjR/ByvGZjjAFDCcVoD1xGCCFjrdXjRu4Y99giggkjFAAopc5WjlI6GqZpmlpsVjdW7r777jgeDQdxvd4EAIQMZ9wYbYyxFhmLjKUYKa0VItwBeWABA9FKG6OVVYhgAMCApCwwwRYZTH1EiNVj4M/hqmRPSF1rTMZGlxYBYRQhAOxSEKy11lgrHRUaMMYEELaAEcGAkQFrwDLLjLLcZwhjpYVBElMkZO7sFrU0nHtZkUqpEcGEEAPGWMjj3JgYY+L7UbVauXVm5tSpkydfOoF25aoZI6pWL0X1zfVBp9Pr91OlDOfYqkIqoY0OQq8ZNbVWSZxYazEQJTIhBMfshg0GY2AUW0OcAx5CyIDVRhuECcZaKuf4ZYwihPmMu0AjQcQaZLVmJLCKtndG6XDAMQaKS1HAuD8YDGyeE8rdLIOMZZ7vACXss1KpVKuGyTDp9wdSFIxwrS0DbK32EIDIKIABBKA1QpYgixCAxtjRTMZAlpN+VEpJpRGAy1NxxFALyrdNLSQgGYVmcbE5u8BqjQGQzu1vivwz4cvP73isAch4niZkw8AobOWLN+lu3BOJZ00IloHSTllCW0MIxYg66FyDphQbJaSUBDDn3Cg9Dl4yBsZSShBCYDFG3GiktEWIGNQlhCBAgIAR7Pji4yDQVSmKeJfBqTFGWiMgFqwFbTEgMAQbay3FjDOirdVGO79EIYRGBrSxGGkpHeNba82ZjxEx2hhjpCgciZZzTn3uUbJvfv/S0jmRx9bq0GdfefALTz392L6F/dvb2+12u9/vN5tNztlg2NdGEU6kVIAQQRgZbJVRUiOlKfVAIVCWEBpxzrmvtZYgCQJjDPWYRcQYQzkhgALCCKY+YgHm1lhLiEEglYko0aLwGEPEJoOuISjwqhih0AsJFIWSgHFUKedaemGgwQKAtJY7zWjkEbAECEIGrCUEYQz0He94B0J2a3vjDW84LmQKoNbWV6vV8i233Nbr9drtdprmzUatKGSvO7DW+p6fZVkYBNVqtdvpI4TZbn9ptZqEEGNVGieex++4444kGT3//OVev2OVbre3Z2Zmmq0GAGxv7wghkCaDQQ9j3GzVna+ikUpi7aJb1lpljTXIxaiNMVJqjLFSwsExTjEjTVNMEMIQRVFa5I6gBwBZv8cD32UG5Xne6XQYY4wxhAgQ7NI0WhON0WgESiBkwsgPwzBDWZ7nVlkpFUZUaYUZkVqD0S5Iu5tzRDGi6FUy7yjFSSYAGUQRsRhZZIyWUgJjYMYxQ+57SklKqVvTjKOOV9zAxpCT3SVcm918q73gG0LIpYTtfpxdlvFu3sruaQRjYIxQ5CktlVZIG4SMNFpJEwUeJUgouOOOo4v79p16+SWMcbPZVEoQQNZaYzVYeyWTBSFCCKfM6iuesG6hNV6XX7ENHAvISikJQm79hzFGZBzOtdZiAhiIe2xXI3sKOwAIMLIIRJ5KKScnJ6NymTDWbDatlL1O14VPhVRZIf7gM3/ejhNpQWpTaTUoZ2AxIURqmee5ECagJIqier3e6XRcAH/QHSCEwjDUCoqiqFarMzMzExNTJ154MY7jRqORZ2I0ulESuEu029OEMi4haPzYLn5lreWcE4KccVwQBEopa6zve0EQNCdmkiReXV09duzI3L655557TilVLkdRFCFkPc8DY1zqWb1aS9KRtfbQoUNSyiAsvf/9719f33zm6ecyITDirgryPE2zxOes2ahtbKzu7HTK5UgKPTs3rZQChPOsUKIIo9D3fQBlrR32B83GdL/fPX369MzMDMxOT0xNSlnkohiN4tOnz66vb4LFQRCePHnS87zDhw9naX5udUlKXWQiiiLHRW00Gr4f9buDoihUoay1BMFYho9ijDDzGGEWIaSUYIwKISglGCOlJGMMwEpVRFHJ7QGENiGV586fm5iuD0ZDY0ypVDp25LAx5uuPPNzrJucvXvB9n2C2vb0dRZFTXhuNRhhDURSTk5PlUrVSqQwGvfXN9ZOnT9Xr1V63y/nkpUvLQuSVasnzvCzL8jwdDlOP8AsXlnw/xMQ0W/VjNx0piqLTXvd9f2KiqbX+2te/Ojs76wfU85mQbDgcSiXm5uYIpkEpcgGh3rZKkqTEounpaSHEsD/Q2hLCLJAgYMbpHlKKKaIepx4VOs7ztFKpYIowRQRzrfIkSaYW9zPCLywt71pqummSKKUowlJKhokjMUkpLcFIyosXLyZJ4sK0jhDklmhaa84I59xYhDEVorj77rsOHpnvjXZW1i6//PLLH/2hH77zzjv/4rN/EUWBkrZSqQVeCDCiDBCCTru/f//+O+66bWt77Zmnnp6cnLzllluM1Rtb6/1+t9vtPvzww5yzai2qVqtpmmZpoYVm1J+ZnOqxwfr6+lAUnk+KIh+O+l5QvvdNd+9fPCJyefHCirWgDRw7dvOxm2998qlvfukvH/Qe+sbx227/wR/8gYe/8Y1Tp07Vq9FNR49UqtFNRw+/uXzv88++cPr02Q9+8IMHDx/4/Bc/9+BXvlKtVj3qYWs3VtfiUZ7lYmVtI82zmdl54nmE8UOHDnU6nX6na0F320OXMSpkkRcFxjjwo8CLtna2jRWU4omp6a3V9aVLl+YmJqIo+tGPfYyWw689/hRQ0pwuU+JZa0qlMM2MUkWr0nC0MkRItVpfXl6t1eqLs/M3HTl88vnnXnju2VopOrJvsdmqDoZtrWWRp2mSG4sq9fLkTDNP0q31jcMH6pVKrW03AYBgMjk1DVelul+dkXZdMeZ64p7W1+sJ/PiPQ6MBv/iL347qe++98Ku/eoPjuymPr1oohR/5kddBoL66KHW9vsTyMvzu747/DsPrcaLXWz7yEfiTP7kxrPZdvy9C8MlPwj/7Z/Dkk696zrenVL9mlVEKR4/+rcPNGMOtt17jEzgawfr6677OyZPwwANX/tlqQan0NwM3GwO/+ZvAObz97a+qQ3LDojWkKXzyk/DlL3+Xt+Ycnn0W3vpWaDa/3WnNJvzET8DS0t+Mfshrli9+EY4fh7e97Qrb1/Pgt34LfvEX4bnnbgB51+vwkY/AP/pH1xzUGn7pl161gioVePe74Wd/dtwgCYHjx+H3fx/++/8e1ta+e/0NpeCf/3N4xzvgl37pdf/2v/wXuO8+YFdtwD/4QfB9+MM/hLNnvx1Be3IS3vY2+Omfvua3APDQQzfWV/E8zw9aLu10d5NMwF6h+F1XrB6nomOMERlLcDj7LMY8KaWRBiEkhUaAMbZFnhPKMcEIIYsRIsAYwZiurKwAACV8dXV1eXkLtCWMhGEJITQcDp2fm7ujECKI/CzLrJJAUalWmZmbxRhXyqU9a3QlNVg5Go2MMY1Gw/EBoygql8ujeBDHMaU0S4W1ttvtVioVTpm7i2OVEjxW59vVfvVd2h5oAwBRFGFqlcZObfnQwcNJms1MTS8uHlhf297e3gENhDBOied55UpktNsmoO3t9uTkdKlU2t7eXl1eE0IWhVKyjzHVWhFqoyiihCOEpJTa6D1qdhj6ADAYDNwC0mUZY0La7bbQKokzY4xFMCacGpNlSZZlFnaztu2YFxlFkXsvi8aJnrteYWDNFTVPANjjgWLstmmuTsF5yLvqNsaAhXH431qAKzidHadaUwCQbuUPY86g0FIp5XkesmMutts5KiUJIe4tpJQIsNOsSNLUETO11uvr6+12u9VqaamWlpb6/YF7Qa01cudYZa1ljGFOwshjjCCsCSZxHFOKKSOM+VLKTqdXFAVn4XA47HaHYNEeuVspJbJMIYSdUgEmTnUUY+y+LWNEa+kybK21WiulseeNFXURwkaDyykslUprqxtOOtzzPJEbIVSapnNzC6VSqTcYOXvAosiEIISQaqWW0MSY3FqbFxlGzO2VjMFRFGECcRwrJazVeZ5jgkhUctnJaZxMT09LVayvr0dR5IeB7/vN5kS9Xu91BwBgre0PepVSdXZ2ejAYALYIWwOWUqqtMVopLTmnWhvO/YMHD+a52NraIoREUZSmKSEoTVNhkOd5w+HwwIED3W43z/PNzc08LTDGGKELFy5kaY4xHo1Gvd7g8OGj583FTqcDgNMkk0JSdOMFAQKitSaEIovUblIyQleYuXvUWrgqoxohVEhBGWu1Wt1uN01TrXUUhpVKZXp6ejAYbG1tUUq7g/6unp5RUlyV14idSDdjTF01epqrzANdF0C7svSOCqq1VtpQPv7VHi2aUrrTbhtjENjt7e3Pf/7zlPAw8l2KM8Y4y3Inbr4nxY4AI4KV0lJKRj1CiNkVf6hWq2McYFddnRDm7u7gZrTndrhLMt2DCNz32VPk2PtcDjBxWzPXociuzSBCyPM8LTTGDO2qhYDFlFKP890Nl5dlmQEghBTSWYwSay1QCuA8vbTv+61Wy6kKWNB7gaiV5bXl5WUpMsaIBUzpWDQPAYlKQRiGnHOEPGNMkiROx5xSavWNV/xmV2bb7pLN3Tu7lOvx1wA3dhEjlfuMSimDgHHqqNzxcMQZK5VKaV4Mh8Mwsk5pByHEuae1Rsa6NAJCiO+HYRhaUxgEGGPMCAastbGAHE6DLLIIkEWOg2/HbEvnE3Ylm3ZXLnbc0mDX9gAArAGpc4R1HPfCcmVyuup5OE5HlCGwhFK6/+D+C0ubpSi4fHmF8GTf4kSaFpVybWKiuRJ3fL+kpDEWnEWqh1AmCkAmz0YWGYyB8gBRwikrCplmo3K5iixQyhzxdvwwoJVOszynlDLKSmHJgY0YYzs2mCV7bW+vpe3hcjB2FDTWjFsm7Oq3qFxrrSnnBDNtlXOJs8TJxRCEMEJWSSOKBCBBu2XvKzlldiB045HHszwJfWatLpVCj4ftnZ4otNaaUj4/Pw9gut0uAuxinFEQYoy1kGmRGmV9xnnkF0Xh4EGPMgddukxrMNpaSxgdw80MM0ywsQyhVqMZD4ZOFJT5HgBoIY0xURQF5UpSFEmWKqU4YwcPHhyNRmubGwZBlmUBBDzwxnPuOPqKAYzWRinlHH0xoRhTOjc3Mzk5ub0zPRh0/YBTyimlOzud299w/AMf+MBolKyurF24cGFp6UK5XE7T1OW5IICiKAAZz/MxVvfee/fBg4cfe+yxzs5OGPqFlISQoiiiqIyQKZUCTliWZRcuLHleYC0Ciz2PS6mM0UbD6uqK53mMMUAmCLx+fzheBDAKyGR5nhcoDEOXfh4EnrVWWR2nqbV2YrqplALAQgtrbRh5o7iPCcMUd/vdIAiMsbko/DBwA0SepJ4XGLCIYg3GYsM4mpucV0YiDIiABW0MALYAhvnMNUTnwCmlxJQ4l0oh8wBeba9pjZUYA2NMFUprRRknBgOAewU/DHaXjNLFDN1IoZWyoAHw3txjrsg8awtgwSrlFIswxpjgK6Icbsh2P9G7ZXwaIZwRwjkukDEGLFLWmMIwQpSQvscJggfe+U6slEiGyOgoCtNUuwWNNVpKiXbHDrM7F7qCdzWh9iaGvf7pbr339xVRf4u0Szlzch+EusAXoLE4mkHGSbZrsFLJOI4tQkopTInUClk0MTXtc6+705XK+JVyqVI2xgxiySOOGCsKkWQpxljIvFarIIRqtRJjzA/43ghS5JIxNjk52e304mxUrVYrlcrW1tbGxoYXBPPz8+12G2McRjcyfRj74Y41QNycMZ60PC9JEjPWYAHO+eTkxObOmhC5F3rWGsqw1KLb7fq+d+DA4mDYq6f1UqmU5QkgI2S+vbNZiAxjXIiMkBLzKKQghGg2m1keB0FQFPK222576cRJoXW9USWEiSKLonD/vkWt5dr6Sppms7MzGKNms9lpDwaDHmOsXIkC3weERoPhwr5pRvhS5yJjZGpqauXSiu/7N910k1t4DfrJ6dNnpNTHbr7l0KEjhJAnH3u0VLIe988vXXD8hSgoraysPf/884cPHy2HtYsXl4UQRaExRkopQcEPfCWd9Wper9ddamGe54PBwA98Y4wxGhOQqkAIRZFXr1ctIkLkcSKHHZOm5pnnnp6YnqrXq489+cSxw4e8wH/22ReeePzZyYmZ6enpJEl8Lxz2BghZt7uo1KvWas7Z888/v3T+tLKqXC0XRXH+/MVBpwsAjUZNa8uZTzCdmJjwKNvZ2VlZWUs6MVjUak0SQpJs2Ol0jM6P7j+8b98+zvloNDp06ND6+vrKyqVer+0FYRiGrVar1ZxYWV+TUs7NzdUic+HCBYSQkGmeC0xBa9BaBgEFZDDDrUorjuMsS5ybEIAlRCdZTCVljGXpiHHcmmi2WpNKbIVhYIyxBhkNCO/SZhBSShk2lmUnhBCPK62TJG632+VyeXJycuXSMoCTjLcu2xQhJKS2VgOY2dnZ4agvRHHTTTcNRsO//NIXFxcXa7VquVzeXNu0ikmpGQMP+4UQSpmikDtbW6fPnI7jeG1tjWFSaNFo1B544AGRF48+9jDn7OZjb9va2njxxRcXFhYPHTzS7Qw49ykmShTdbjf0Q2MUtuSJx595+qkXoqg8Nzf33gfe12xOvHLqzO/+wR9Uq9UPfPB7733LfX/+J3/abreXzp3pd3vDXvdDf+e9P/ET//TBv/rC7/zOfz588ODb3/6OSqPyhb/63Pd533fPfff88R//8WAwrEQVjijW1uTCCyOtdaMexXHS7XalVuWoVK2WiyQeDfrVcjlPs367W6vVpqdatVrt9OVLVmtCCcPe3PyMx4NOuzeS+rnTp2sRUwze/I63vPXd7/yN3/9DHgbc961BBpuwHBrL5ufnH3vi8fXNzX6/P4yTf/Cxv//h7/nep5948uSJF+9/+33NRrlcCgfCKpULkadpzBi76413njp9hiCUxqNqrXJw8cC5M2d3NrcYQ2CtMZpRZq9CdsLwxjNKHMO/+Tfw9NOwl+0dhvBDPwQ/+qPXw3Pf8z1QrcK/+lc3Rmc++lH45//8Bsdfegn+zb+5htg4PQ0/93Nwxx3XnFYuw0/+5OsGkpSCP/xD+PSnr0G+hLjyhN/3fddI9wJAUcATT8CDD8KLL14jWev7cPw4vO99cN99sJvJAwAwNQUf/jD80R9df+tv877/9t9eA0Xd8H0Rgl/9Vfi//i/4zGe+05fdKzesso99DH7oh67A3L4Pt90GDz30ui/+uoox8MM/fM2RKIKieN3XYewajL5eh3e/+zu1j3vNsrUF/+E/wMICHD782moke8Va+MY34FOfen3CIFeXNIUvfxkeeww+85lrEPlvLUEAH//4d9kYXm8RAv7dv4O77rpGXKJSgV/+Zbh8GZ54Ah55BIoCMIaZGXjXu8Y65leXwQAefBCeeeZVb+H78FM/dX28qlKBn/kZ+Omf/ms9vDHw7LPXuB1+h+XsWTh3Dm655coRjOE974H3vAdefBGefBKeew52s/8BAAiB2dkbvz58W30VjLHS2tpxQuieVgZCN4abEcFuNyWlNMq4xa1Lhg2CQOZFnKUAQBk1BhOMEeIIIWvBYmCUUE7DIMizotsflkLfGMjzLAgCGlaxdc40kGSplJrsGvdprdMkAYCgWm42m+VqqVQqeYGvpNjZ2dHKOPlp3/ed/KvneZOTk2fPnXGG3k4dLk+ycrVurXX215yyIBgDH0mSWGMQQtVqlVIaxzGmREqpjMYYp3nCLSMMGhP1UqnyxS9+CVM0Ozt79OhNeVrs7OzkeS5zSSlnhHY6PbwJANCaaExOTA2G/dEo2djY2t7cwphorTljQRDUag0hBOOoUqlkadHpdOI45b4XRZEQAgCUMkLkvh/OzMwBgLW22+5laeaAALcNYpxRioUQUhZaa8ap2+pba40yxhhG2Z5pmAM+9oTI4NodirvgnreYO+6Imd9a9uAG59mOEBmniKOxM5VLJzXGuhWa74+zM7VVDlra29Oh3Rx/t3WKkxFGxGENnFBr7ebmZr/f38kLozT3PWstoPE2Sik1HA6lFoTTKIg83/M9ihASoiAeQ8CKXKRprrX2mY8RpcQfDIZKOmVFb9zylXIfnF1liugWmVqDUioMo/Ga0+Wd4jEqihDyg8D3ebVaRghtbq07nWUL2glkO0XEcrl88ODBWq3x9LPPDgaj2dlZB0ZTSrW2gCzCVghBSBYEgdFaGyEzo5TCDGtDEbIuPOC0C0ZmZIwJgqBWq1FM8jynhCtte91Bv9+nnHf7fQdKEGI3NjZ6rFsp12666WhRyF6vJ4QAoGmalsshOBavtltbW+Vy+dixm2dnZ3e2O0sXl+I4llL6AQfEms1mlqRG6cWFfefPnw8qVVtGUsooihDgXre/trZWFPLAgQOEkJmZmXK5fOH8Rc75HbcdJ+gWe6OcWK3NGIZT1rUWrbVSCqxVV6kvGmOsuSLa41LvGWMzMzPr66sGbBAE1Wr1+PHjlUppe3u70+l0u11lDd4V3rFgEUJaa9ffMUZ7GMKYCobG8Jbbno9b5hXwaxcwIuNjnHN3fhAExpg4TqVU5UqIKbHW5nnGuS+FRghpIwGsNspYRAlH2IK1YIFT5hKe90Y2p5riDMcYY0bJvXu5TIU9Z6xxx7TW7qocuI+jlHJgq90t7n8BGqtqVCqVPSwPEzRW8Ni1e3V4N9qVxKzVarfeeuulS5cwpgghzpiUxW7FaYQQQdZaMAhhhOM4vnjxYrlcTpLEKc848JpYK4T1fW5hT4oalUqlcrnsWnKWZQhBURROFXoMsLyKIuvuiDRm7+2BuZhivBvxMsoCgNZSje0cx2IjrkcLYaWUHrMAoK2RUhsbu37teZ5Sxqqx5AJB2CJMKc+yzILAGDyPF7lSUiGLLEChlQdsL9I2lqWgBADbscDxFcsxdw6lFGGM0HjHuvtGBpCiDCamSrPzVcyEBquNwIZYA0WRdXtDPyAW2VEcnzzZabc3aYjnZvcdOXKYs9KFc6sI/KhUk8K4hlSrRJTC4UPTUcnb7ux0Oh2twQnKf/CDH9m/ePDEiZdfeulkt9PDCFmlCpErlYeRd9Ot85OTLcbo+XNbw+HQ0QSldFEfpKSLdpg9LA7tWghqcFR6MNrFbJzYt5/nufOexeN1gnZ+TixgGCNsAWNmDVJGKHVF3ANfZQMghMJYKAvWWs8LikwQioRwsuMh576TzDVjg9mUE6o1MASMEYSQNpZYAOsCoRD6AXUmUoCklMZKRijFRBmtrcHWEkqklHmRUoStVK1aza1w9ubBXeDOK3LJAuWopaVSSQrR6XTc2iMThdYyilp5LvIkJYRgi8FYTCwjxAIihGGwGFEDCADRB7/8pdtvv71arQRB0JpoJMmo0wkGg8FnPvOnzz77fKVcrVQq586dT5M8y7LRKCGACCFSKZcD4gLyaxurpVJpcrLl+zyO49FotN1hTz3zXLe9Xa5ECCGwmCphU1sUWZYJjEnoRQ5ptdZyHiGEnHxJmsYu590YY1PrR+O1ketOWZYVRco59wMOFqIoKlejnZ0drXWpVNLaKC1zkQkxqNWbUTlUyiRZYpGtVKtBEIxGI4woAFhlACljhR9QzsNbbrtpaelsmqY33XQMA/7Kl7+ODEIYLFhABBHsXOOsKgijhFIA8LGHXsVxiDFcLkezs7OvvHzKDwNjiFKGE66VzUXOfS/LMs657/tZWiCkETLIYtiTibHOOmO8SbWgAVlr96SXxh3bWKWF3SM+j8/fHWHN7nittTZWIWAAAJgQxq1FzNqoWm41GhRBZ31tbqo5M9HqbKwFhHqlkosKGmMYJQDEIdeUUgzghmmnGX314OJGInRVaHdXZZsZYzCAy3VBAIAMJkAoAmMxjPkCGGMDoI2hCCiliGAXNNPa+L7fGw0HeTLK0lKp5HHKDGIIYwujUZxZCChLspxxsARpBEWSGGOYx2ysKcXGQBgGlBIpVJEPx2ErYyhh1ozlrdvt7mAwkFJrDZWKrFarQkmKCbtxmst4MrDWaqfybsAYxRjbnY9jjMbZPc60NygFSqk8LzCBUiUoilwbIU3eaDQYJwv75s6cORMGoe/73W47CKattfPz8yuXl3tdsW/ffJ4mp06dCiO/0+kQQlZWVqjHOWJRFFWr9f5gsLG6VqmWyuVyMhxZizqdLoA9v3SRMlwqlZQahGGp3qr3+/1SWN5c36GU5nneaDTW1jaEFklndP48C4IAAGdZoaQNg7LPfC30S6+8tLm5ubi4eOHChX5/ODc3Nz+/r9vuBX546OiRmamZLBZpGvu+D1ZEUUkIYUAhijAQo6U0Ypj0m81mwL1cphZrZQXCCJClhDHGKOFhxITO4zjd2e6+9R33fu+H3ru8dmHp4tLa2srlleVarfrI44/5vj81PVsuFaNhLtJ4cXF/lhZbW9tCiIMHD1arVc/jhUg2NtYbrfoo7mGGO71OnqTJcIQRiaKoVKqUy9UsS7UYDodDhC1l5NDhxSgsl8vl7e329nZ7e3sgpXznO9/COX3hxWc8jxtjLi2fmZqcmZ2b7PbaSksAePLJJxHg1tTkwsLC3Nxcp53cfMvRz3zmM1LljUajrIN+f6iMkZqGpVApzTzqGw+w2d7offj7P9Dr7zzz9HN+wAihSslKrRyFfqVS1mD3HziQDLOdzR3GPCMM96gWknn+XkdzE4DnMcSYxyhl7PjtzULKZDRSWjLCOOcEYcaoMcAYxshoYxgnDz/ydYuLSiMoVaLZ2dmdnc43vvGNUqnk+/52Z2vUTUEjbJFWFllspSlHFR6iRrVhpDqwb5EQcv7CkjOAxWAYJvsX9nXavVOvnMuyotWcBEBnz56dn5vzeOCU3aw2nHk3Hb1l36GbG43GyZMn2+12mhfZ2saLL7905OjRp59+9jd+4zd++KM/dPfdd7/47HMrl5ff9pb7P/J3vu+LD31x+f978dhNh47efCRP443N1aNHbvrGo9948KtfOXrosMwlQmRzfSceZSLTgRcoznzfT/MMaeF4WHmWMkw4Z0WSbKyte5QxQotM4CqZbE2xWunkiRMzE61eZ6vb7TaaE165XJucfOn0SVD5Wn/noae/GdQrCwf3JYkWCpDBYIzn+cbiXBSzs7MbW1vDeCSl/tSnPvXQV75qpVhbvqjy+ODi3OWL5599+czERGvQ26GUNmrNsu9/8H3vC8rB5774F5Hnra2sXF66VC3XRp0ewxYBWltdm91VpA3D63PhXXn8cfg//g/o9685mKbwG78Bf/mX8B//4/WwzhvfCA88AA8+eD339sAB+OhHr7+4tfArvwKf/ez1J1+4AD/5k/B933eF/+jK/ffDxMTrME/r9eCnfurbCR0sLsJ9911zRGv4n/4neOKJG5ycpvDQQ/DQQ/DmN8O/+3fXQO1vfSs8+eQ1agPf3fv+y395DdxpLfzQD8Hzz99AVYPS68nLe+XVquz/+X/gjjvgppuuHLz/fvjEJ/7WJRoefhh+7Meu/LPfh07ndV/khRdAymuMH0+e/Bt4NlfCED7+cdi37/X9ilL40Icgz+FXf/U7Ncl8tfL7vw/HjkGeQ5YBIXDsGBw9egNdiB/+YXj2Wbh48a91r++kpCn8r/8rfPzj1yPCi4uwuAh/9+++9hV+8zdf9X9RCj/2Y9eIdeyVu++Gt771rysprhR0u68bblYKfvmX4bd/+3qSMgAcPw7Hj7++q33966867FBKjMVRFEkpwVgHt1BGPe/GCW2MUM25RWOMwPM83/ddTpXW2iCoVEp71Dznhqe1JIQx32MeR8hiCrVaLaqGpSA8deoMI57VQlqJDNJae57ngGbHfHQIUViK5ufnS9VSURRxOkrTtNVqdTqdNMk4526n6kzwGGNJkmxsbLS3dgDZNE0rlUq1Up+dmR8OR85XME3TLEnL5XKlUul0OiotWDi+KUIoK3K3g8B0nHnmBdxJF/q+f9MtN/f7/SRJXjl5mlOvKARjDBnkeYFRFiFdFDkAtHf6GAPnXq89yPPc9yLGWJZlWutqtV4qlay1w1G30+kUuaSURxHS1ohCOeOcNE2VUnfeeWue50mSyELVajUUodFolEtBxi4+ihBujBJCBKHv9LLzPNfKODKXksbBqWM68xhh1FczRl2dYnxln2UNsmDReIlF9iDmXRYq2ZUMtC5JnxCiwSK4AhY4aVrKMOyqSCPGPEqdRq3bDdVrVSllmqaEUberstbmSers243UzDlYAHL8DE4ZpZRznotCO21xpZRVThiUEBL4kdapMcoFKnw/XFnpSKkqUaQAaS2MBqfjyTknCKy1Ruk8z90Hcc/gvoa11vd9R7M4eeoVmadBEFgECIHW2sKu/5CBOE7zPE+S0XA4pAz7vu9SbDHGWZ4Me32McVCKLi2vrq3teB7K85RzyphHKe33+1pIxmip7DfqTc752tpGlpvd1wnC0NdaG6N833fypkWWWQu1Wt1a2+v1KGX79i22u+2iENbqhcnpPXM8hFCjUU/TVBtZrZaTJAtD3/f9tbWVNE2tVQhbSjFCqDk5sbaxtbq+Wa3WhRDdbi/PUyklQLVej5LRUGu5tLQ0OTlJKZVSO0Ric2NrYWHh4P79T33zBUKgXqmGYbhv3z7f92emZ5vN5mRrqt+ZWXrpBgOIQ5MpwpYhB8A5ohJxPLNdSA4stljDVbRQrRSltFQO1zY30jRt1OoAsNXeiaIAY7yzs9MfDV3dUUqldj4iZi+4YozdI4SNEdvd9GKHoDnNjd0wzNiOyF0hy7K9QcnzPGvtaDRyebfNZgOI7nQ6lFIAyz2XeYkKkUlZMMYsIVojsNbj1IAlhhBCMKIu9kM5AWOlFK5fqHEyAc2ybGzaZuxePAYAEIwVnwkhzhQOdsMkexj0+AsT5s6M43j8hQkhdgzlO5qn+4mQ0qUdpGnqWID9wZAxz8HrDhyXUmoEnudhjKSUYExQCoIgNMZEUXmP2AdonFxOCDGgjQFjgHOvUqk4ryan+GyMDoLAWiulNMZqrYyxHrlxaB3tVtle9xyjuRb2ssON2QXZwcAuRGjBaGV83y+Xy57nxcO2EMIg7Ps+odQZoaVJghBi2CkcECeYL/KiyHKLC8YYECAUIcBgEEWUGraXWw8A2CXgAjjkeY9ZuAf9O8gbdgdbB/I4M1VKdGuidvPti7UG7Q83DBgNCowJ/LA1NYFwuLnRH3SHShVlypqtuUHS7fVGAGAhN0hjmytbAFApJcHW9/Adx4/NL0wibM6e1SLfHqXo1tuO3n//W6cm51544cS5c+eGw6GrqTgZEGrf+Kbb9x+Ym5ltKJ2vrS27zJ6rWNhjWN9eE3UEY5wcxDjaaIwxGqx1FOcxwRkr6gIhSqmsyKXU1iJRKMaY51FKufswCFnXkPdqFsDuRlUAI6K0QgYBUKPtoJdShiv1qlaWs3FoGQA4oc7zVglJkNN3gMDzgSFjDDIWWWNAM8YwAHeUVmQBWbkbZNUW5XmOrPaiEuPcuSC4joaxzYUwSjPG0iJXaeqXIy+KRKGkJ90zKKUsAPFY5AfWWiHyMbEVPCicWYJEFhBCxoJSBhCy1lKl5OnTpyYnW9///d8/HPVPnTo5NTVVq9WefeH5s2fOVavVN7/5Ldag4XA4ntKYD2DCMOSMuZ7jc97v986dP1uOSvfee3epVFpdXf3KV7/swH4EvjNS7PR6c9OzrVbL8wJjYHtjp1qtuh7iwkRu2MWE55nwA97v97W12iLPZ4yxQuZxPFpcXJiemRwMBsNhf3p62lpjUFGpRwghKSVYo6SwSAtVGCsYIxo04cQ1nEKKTOSMUIyQBWSMak02iiIjhHg+qVRLgAzCem1tg3FUpJpzTjEF5MJiGGHbiBrO1oAQQjhL4xvvb4oin5ppvuvd7xjFg7XVDUppqRRobTRogwxjxEcecgnyjJHx6KrdcDle+mhNxrE4a9C46VurjdGU+tZaQMZavLeO2YveO8tlhyeOw25gjbZKCy0kEAwAFhBlY07BKB2lWfy2e96OjU7jkdHS80MAGwZjZ1iCMIZd9NTp6Eu1t3oDAKe54YgSCF9Fc3ZHrEXW6r2ejDG2BhNMCVVWubkHIYQQs1ZprY0BPDbj0ACAMPZLURlDhEAqJYTAxkqlfMo8L4jKlajZ/No3n+iOBATUWECIIKTHrrUKdzq9oBS4aalWqxVFvrm5iRCu1Wqh5+/s7FBKMaNh6BNCKhWeZVmaZpub61FU1lrHoxhuJBkpnI8BxaDBDVWe5wMyg2HPWouwNdakecoU7g+6tYkqIcRag7DFGMIwtNYoLTqdDsZQa9aMUZ7H2ttbWZEHQZAkI0r5nXfeWSmVX3jhhSzLfM8zRkkppLR5Jqy1g8GQEh7HaZ4vcZ9NTEwMBoO1tTWnGzAaJe6PIpelAHzmt7faW+sbnLGbb755kNCLFy8SQs6dO7eysoYxppT3hr0gisJSWQoTRdUwDNNEPPboE6PRaHHxAAB0Oj1KaRynly9fzpK8XC5XKiSO4/ZOP89zwJZ71FpTLpcogzRNGfeUxoR6RS6GwwEm4Hne5FTTdXOM2OHDR1wTLVf8F184GQThA+99x3vf/57Dx/bPLrTufNNxqdVfPvhXW1ubSTpK0ry9cznkFSG1FGJra2MwGEVR6Bwqut3O5FSr3e1sbGwP40FrolYr1Uaj0Wg0EkJYbU+8+FKa2pmZWrVcMkYRgiZajQMH9gehV6lUVtc2knRQrZbn9i3UarV6s/LCC89jBtpkAKAN9Ppbs7Pzb3zTG5595oXBoFep1EbDOIqiN91915kzZ5aWlpIkYT6JouDW246trW5st3uUgQU5HHU9HkiZC5EVIqk2eZaPGIeoxOuNiBCWJMmxY8dkkZ9+5WS/1FucO5BkKaLj7E4hROiNTf/GamW7qXZKKswoIWR6ZirLiuUs01L53LfaeFGAEGAC1lrOqdRKWzU7M1WokbRpp7PT7nR8P4yiaN++fYwxj4XBRLW3fgksAUOsNWCg1+v9fz72Tz704Q/87M/+s1deeWVqagpjfOTIkSNHDl08f87zvHK5sry8kiTp1OTsoUOHXzpxcjgc7nBuDVpfX0cWLywseDxSEkSqMlZooRlmO1vbw0E87PX37au9/a1ve/DBLz/+yGMHFvdrqTQmd9xxRxT6Vhsli9FwMDs5MejhfXOzyaDfqFRfPvHyyRdeKZfLt95yWxqKNL7seYgzv0BQpAVC4DGfEDSKY6NkrVItRZGVymoz6PYJIRPVWppnq+trjflmFLDIo31jBp3O5sZ2szXdjeNSc8IUsSb08E1Hu8N+VCqIb7NUjLppvV71PC/LkyRJnn722YmJibvvffOjjz7a6/XyIsVgDx46sL2z/vKLTxkt/VLj7JmTgLRHyc7GxtmT547efBPlZP/sXL1a6w/i2anZC2e2CAJksQXkB9dYBX5rQsWnPw3/9/99w3kGAODSJfie74HPf/4aKYAggDvvhC996fqTSyWYm7vmiLXfTp7YGHjwQXjLW+Btb7tysNGAH//xG8tTfGtpt+HDH36Nc5IEZmauf6qzZ1/jV888A2fPXkOE5Px63YDv4n3//M/hpZeuEXpGCObmbgzMKXWD+gKA3/5t+J3fufEtlIIHH7wGbq7X4dZb4ZvfvPH5f1PlOgu0Xu+7uYhSEMffzq/vuy6Uwic+8e2wZq0BoVcF9z/6URgO4Xd+57tHnNP0BjTtmRn41/8a7rrrmvDDzAxUq9/lXV5vOXsWvvIVeOCB6xHn1yx5Dh//+DVpAdcVzmFrC+L4Gr11V55/HjAGjP+68P11WRevVnfXle1t+J//Z/ilX3rdr3xd+exn4Xd/91XfQghJ6Dhn1ljDGCOEUs44vzHcjPaWuwQFYVgqlaQs0jT1fT8IguFwMy0ExpQQAgQzRqSR3HdokhEi1dbceust5Upgsd1YW8WIZFkhhJC5Jpg4oypH4DXGeJ4XBAHGeN/+hXa7vbS0VC6XHcvUYb7GmDRNi6KwxhR5DgAuN7QoiqhcllI26nXP9wFgamrKGNvv9x1yJ0HEcZzneb/fJwEPwpAQ1B8O3Ku5dbK1ul6vNVqNtfUV3/e73Z4xJsvzer2eZwJh2+/3KaVpmldLVa01o1wUklKXje5oMcC5z5jn1vaeF7is+SgInUOdx4NKmRLCAAATNhgMsiyjlAYBrtVqUsrRMDFaSylFIT3MXXovxnRv02GtrdYqAOBgZcYYJSCKQgiBEXU2WQ5lJoQQOoaVHVENdnEZBGMAa4w1mzHWZq/K4h/DdmBg1/XIAXAYUydzuHcaodQ5j+V5bozSmgAAQZjyse4KJcRxWoWSxWjIfd+RXRoL80qpLElrtdpks0UtlYWYmJioRCVH7hEi9zzfAEgpjdaAAQPaQ4rD0BdCJElira15tXKpJrKcEh8ByVLBGPP9kBCC7JjQqpQBA1aPUUjqGi3YoiiCwKtWy+VqpVp/80svvZTkmTEGgBljCB0TnIUQWZYpLT2POfWVKIqCIHCAWp7nozTJc7G22ZESnBC6k0J2mYgA4x1TvV7jnkvrBdfgEUIWI2s1xuDahpP1MMY4c60kSYqimJyYZpyEYWSMKQrtsifTNHVp2Q56bjQaWuvNzcHCwkJjolVtVDc2V4XIGSNJOrLW5MMhwcxau7W1NR4EzHiL6mowyzKE7Gg0opS2291eLy6X/TzJe53OvoX9zWa1VqthjIuiGA77cYw9n6+tr545fbpZu2qpdFUhCChCY3umPdjuKpwOI2pBGyPgqgRiY0whRa1Wc03I9/2iKHzPm56exIyeOnVqMBgEkbPwEp6PCWGFyNCeUgQ4qBTnee4iOhYB3iXXu1vgq6zV9m4qpaSUMsb6/f7Vz7PTaWutm816GIZxNjDGmRgZRGm5Wp6YbBqjer1er9cbDTOKtO8HSiltjVLabWEcxKGVdlBUnKb1aplyJgvhUDCn5uwS8M2uddvVnmN72QzjkRk5A0Y8hpL3LNquFRfdg27dEady6QpjLM/ExYsXPe45VH2vUmDsl1i4i2CMrdJJkuw6s0kHvyCEtHZU9KhUDSYmJobD4fb2NsEMASmKzFqLCNqNXSGEsLVKKwvWCn1j1Sq7q7C6B+COhxowRl+tau1hjA1noA3GWFmnk0sc6zYIAqvLjIk4S40xsOumKIoCtAFMjDGcUK01odQqLaU2LDNWcerVWzWK6KgX57mglIIFsBjtPRUC68xVx0qie09tLbIWrB7rFBkAA4Ct1a69I2LCsucHqFLjtck5qbILFy7tdOKpSSq0KUScpB2g4HlsYfFApdzIddEf9DkjtVblrlp9+eJ2PNSYUEysNbI5EUZl6A9W0mw4ijcnJyrfc+8H6vXmTrv7J3/66fZOXwojjS50zjl9x71vCyPmBVCqeRubly5cPNvttuO4flX0Au2N/3v/HafOGDMG6AjdfVVtLXLkdGstwpiM/U6NUkLIcUc22mircysI0VpbpZxAAB4LkljrKKJ79YsBE8q0ssYAIEspJxjJXAAAQlZpQeh4anOIIAXAxgICjinzGGiwrjsAciRRLRVGGAMSeYEQwpR4iCplHN0+8BghBINF2iilkBkr+hqp3ECNMZ6ammJhII3ZG692g4u5xxhCyA0v7vtobS0Ya7TRytFJXbhWGpHmMf3oj3yUUtrtdr/5zDc3NjaqtXJaiPn5herShUuXLlFE40E8Pztbr1a3NneEEFFU7vU6cRxHUTQx1crTLEmyRrN2+223KaUefvRh3/NmZ2er1Wqr1cIYAr9Wr9fjUXrkcH7p0qXhMK7XvTTJtTWjUeyi+kJIpXQYRnmeC6mNRvVa621vfScPvPX11cvLF5dXL2OMyuVo3+Ls7bfftrW9cebMqajiMUaoRyuViqsApUyn0+EB39jYmpyZsshYoYPAq0xVsqx45ZVXHMOfex5WgBDRpvB8orV6+tlvIoTq9XpWpMYKqbUfcU4po56LA2qtKSWVarXX6yGMLQKtVbl8Y7EFbdTGxvrS0pk3v/mekydPnj59tjU12+30CSOE4XiYUMZLQUkpLYTQSu8FiMaNe3d8t9YCGAygxp0WMMaEImOsMbA3qbh355y7uAodWyTvLoMwxmMqrrHGuB5CiB2MhjLLZZ5QYw8fOZRliZYiDP1CKBfzRAiJvHDTA8V4b2DdC/uYb1nII3Djy9j3eW9KoLtdcZc+gK3VjghijHEZWNoAIGKslXviRARTSrXUPAyMMdzzMKbEAqIcYxxUqiyKTpw98/K5C8AAU6qMRWCsRVprbY1bJCGDXP/nPI2iaHJyKo7jer0e8KDXGwBgpcQ73vkuz/Oe+eZTo9GIEJwkyeTktDFG5DfOc8EEB1ForRFCOJ/QOI6lFMZYhMAYjRBSWiDMtFW9XndiYsLzmR80oygQopienmKcGNB5ng+HfSFEGIZKS9Ep8jx7/vkXGo1mOSpVq9V9+/ZtbGx4zcbc3MLq6iVr7dLS+UJqtzJrtzujYVarh5OtiVajmed5muYGgZOb6HbbGOMwiMIoQBaWl5drtdrS6QsaGy0sD0in01lcXFhbW9NattttrWB+frE1OX350hpYMhyspnGyuH8fJtaJp0spESJFURw9elRJffbsUhZneZ7NzEx3u73RKOEe3bc4D1ifP38+FxnzKEKoNdk0xoShH8dxEAR+6GGMB/1RqVJKskRIub85d/9b7xOF+sgPfcSCXF9fHSS9c+fP8sB/z3vec+bMmc9//nOteuP48YOXL6yfX7pEwSqjq/XK9lZ7YrKpdDEY9oTOkmTUbNayIi0KKaWenJzknO+0tzEicRzPzzdnp6anp6c9zsqVgBAYxYP1jWWlVH84MsYuLS85GTiMkR9wKQtCMYCWUo5SdeLkzuTE/L1vvvuF518ejUYTE5OU0r/4i78YDAa1ar0/aJcrAUJ2dWOVevTWOw7LXFar9Var9eKLJwajLkJoambiAx/4wNLS0ssnz5aqAWDDPOJr1utvD4dDwklv0CmXy4SN0xs5ZUgjYwBZC7vTIaIIU4KtAWNElluMXnju+Te+6W6CsFJglMKet7uiAmuNS5xExL7lLfc99ewj2/3e3NxcIVSeiyzL5ubmDh8+eP7S5ZXzGwAYDCoKSRj2A3ru9Lnf+e1PHL35QKVSi6JIKeEUzxcWFg4f3H/qlTP1ej3wo82N7QP7j/R78fr6JkIEEDFglTJzc7Mf/r4fQBZ/+ctfvnRpeXKiOej1z549vb3prIdhEyihvMS80y+d2l7dfOc737W2uvLUU0/1B9329o5IE4agXo7WLlxODt5UCkrdtc3jR29Psrxaa+1s9jFljfpEu9uzmATcs1xnRd6o10rVyvLyJYSBWBh0ewcOHPieD3zwueeeX1paOnDw8OnTp/vxiLb17UcO58PhfKN54J57mjNz33z+xZ12t16rjWT2womXlzdW3vPe9xy95ZZKrZUX8rmnXz535lRUCqaqU4SQIIrm5hYqlcott9ySZVklDEqRh40qRoN9c5PzszNxYZcvnR8MO/1uLwpKlbC8s7Huh97NNx05ePTIyydPH7r9jkceek4rYBFHmTBSwS7grBQ89dQ1WGS7/e0oinvlh38YvvCFa7zgFheB0usVBm677RoMyFr4hV/4dlZ4AJCm8Mu/DPfeew2n9YMfhD/+49dWHM5z+JEfee2Hb7fhsceuYWtSCr/0S/Av/yUMBq/6K6Xg534OfuEX4K67AAD+7M/gV37l+nO+i/cFgPPn4Rd+AX7+56+AjITAzTfDCy9cf+bx4zcAxb4N1uzKqVPXaDpXKvCTPwnPPvvdy0H8/3WhFN77Xvi7f/fGWPPly/DYY/C1r8HWFlgLt98O73//jZUTPvYxmJiAP/kTOHPmb+zZNjbgf/gf4EMfgn/9r680Bkpv3Bj+Nkqawv/+vwPA60Och0P44z+Gz3/+Na785S/DRz96A7i524XHH//rYs1hCFNT1xxx/fQ1S78PDz8M/8v/Aj/zMzAx8d3cOs/hr/4K/v2//3YdyvN8z4+sNQ5RcrKq1lql9A0B5yLP0zzDGHPOrdJKqcFgEEVRs9ksioJSbAzFFqQsPBZVq9W8iOv1mlJCKKmFZZSORqM4i6Uq0tGIcz9LYsYYZ345LDPGhFBJkhiwDs0slUpSytXV9a2tDepR3/f9gIdRlCRJMkoZYxgT4lNHd83zvMglxnh6aspaWxSF0bbICkrpxfMXAaNyuTw1NUUIEXkRx7G1dmZmhjHmsNo8zxEijibsSNn7DyweOnxYyFxrGZGy7/NklClhwjBEFCVJHgQ84NGYfqiQ73kIB3ZXHDMMQs/nSZK4lD7P89xNh/0BAGirLB9jRnkulE4Gg8EYLcIsz0SR97I0NdomSSKE4MjzPI8ik6apUcYllLgqoxR73ljvOM8KpZQ1yOJdlJkQd1nASGvtGMt4DGNpYy3GjhCDAKwxBhAQQADY2isgsrVIj3GnPWVChvGVLP4x49BaCxojIqXUWrpNkxC5tZpquqsAYLa3t62109PT5XI5z/PRaNRsNhuNxnA4VEJShLe3tytBxedeqVSySsdxXBQF5xwQukpPALTVYG1RFO12u1LzwjAMgkgI0d5qW2u1RoPByBqIomh2ZjZNEmuN7/OiKEbxQCuMMUZAwILjflrQUipKqQF78fIlF7rgge+FgdZ6NEwow26nmaY5xkAICvyQMsIYC8PQWm2tDcNwOBxmWTI7O1uv113CMee8KAqXmV4UBaUcdmmqLmWZc16r1WDX5sfz2Zg5aIxzWnJAhiOclkqlIAgwIlrrIAjyPMeMbmxsCZFba6XMtNaj0Wg0SpaXl7GFMIyaWX3nTGcw6GGCgsDzfV/IvN/vK6W0svV6syjiPSxVa6uU6vU7RVEgIJRSa7W1ZHKydfDgwSLNfD+YmJgYDuI3vvGNc3NznU7nwoULq6vL5XI5SbLV1XWrTdY60PBvMIBYa6UqrLUWUQTWWLsrgGsAAAGxuzKYe5gOGrOPsbWaMuY6O/cDwrCLPG3ubN9y+23jVqp1kqZSSojHX8+hFk7C1WU/W2ud/MIeU9Xd0Vq7O7uNbZ+c1q2jbVFKfd+XWg0GgzRNKfGNgW6/Nxh2XJKBxQQrHCdDqbJjx442mw0hBABZWd5YW1tHSgNGhFCEkDbSDRoYY6WkEtJYRXYNsRwUsLf93/sIGGOyy2h2/RrGEhmO2Otkc8Y9UWttNOxB0q6xYYIxIIIwxcRlJAghuOe5C9ZqtWSUdjqdMAxhTAk3Wlv3ZRyB19WFVIVUiFKKGXF6IAgR5yXm4EhjTJ4JRr1SVGmjbhzHvu8DACYkL7I4jl3kDyGMxlnjltw4vnlF9mcPJYcxrImQE7gBsLvMbsYY4qgoCqSti6gppdzoEfoUM0oEkVKCUgihWrU60WoNe31kQeaFMQasJU4tBwwPOAEEyFAGocdFzlyUSBuD7LinIGx3GwsgTKzV2hiEwam7ImuNMdxjGGPkQGpkjbEIGQzIWNRut4OVAvutqEwB60q1Gif5yspK4JfSYoSopoTMTE7Ozc0NRgPGWK3W8AMaBWF3u98fDLRg01MtI4Ms6ybZdm9oK2U/jOj997+5VCpv7diXXnrp8qXVre1ukuSF1J7nVSrh7ML03GLL6Kzd2VJ6tLW9Phol/b5y0UoY5xM4Wq7ea37XFYSQsRrgCrRFELboSu1orR2Gt+vmBYx5WuuikAC78Q8gYLExeu+ae7EQ195c9fmeZ4xRWlqr/YAboyxohOxo1DdSM8aMssynPvXGtE6wFBCiyM1UyAIYi8YC4LA3qGotEULGWGQtpxRZEHmuEfiUBYGXjEacetYYzjmkiRISCKo1Gpbg7qC/+5UgCAIXa3ddLAjD0Wg0GAw8xp38CMNUYWz0mEZtsS5XgsXKPH322WejKJqcnNzZ2cEY93vD0TBp1Fs33XRLuVzd2NhYXV294/Y31Ov1y5cvnzt3jnPPVcb09LQf8M2iAGyVEoCUVAUgAwg98sgjtVptNBoVRUFQOhzEhNByuXznnXe98tIro2FiLSwu7ieEeIw7V4Tt7W2tbRSVS5grJbqdYa87uOWOW44cOfLlrxZZkd5zz12NiapS8qVXXrh8+WK5HDEOeT4KWNnzuRCCUMYYzM5OLy56lGGP83e/+4GTJ08laToxMbm6unr46KHl5WVl1cLMQq+zkySJtpJRPhiNRvFgamoqDH2ECKaIUsDYEo4wMlojxjjGdmZmejAYGCuUHIv1tKbqcKMVLeN0mKQvnzyx/8CB5kSdXSTnzp8LAp8SrrWJyiFB9OZbbs7i7MSJE4Hna+30hlwUyLrhcc9PAMAYcIJf14j4oKt0Mxx6a63WGoo8d8i1g4yx0hoso5RgJMEAIhqssoC0tthSSiOGyuWoN+xhSpS0YCzFBIx1+SzWWmStMsbBzXvjPuwSlvf6zLi3WAToynLtSjrMXvSGjhWfXSTEGGMsSrOsKAThzJ3KGEOUWGuVsdIoA5Z53KWBgLHWoHqjNrlv37MnTzz0zWckARaGhZAe84QQTubMoxwRHIaBU1AVWvT7w3K52mi08lxIqbO461BUhJDWMggqiI5pJlrrLEusRd7V4qBXFco5J+FwOASAqemJoijiOFbWMM6ctnoQehU/VEo5BajRaNRoLgRBoIxcXV9pt3fqzVoY+dVqedQf8YBTSo8eOdZpts+dO1cpVZSQX/va1yZaU4cPH56ZmQmCQItig3jGqFyIWq0eBFGapseOTlWr9U53c319vdlsVqtl3+ejNJmYaL773e989NFH+/1+HMdZlr3prrsOHz6yvry+tLRUadbrtZZU4r577jHILC8vW2uFkFtbm88///zBA0exJUqpp5785sK++eXlZWWK/fv3DwaDPBeTk5NKqUuXLmVp7vvBof0H1tY2ls6e11rVahUA2NhaD0tBVC4Nh8NC5o1G49bbbxkNBjs7O81mo1KpxHEcBCFCaGXlMsa0Wq28+OJLUmgh5IULF+9585tuvu3IxeXziwcXu/3+V778tbe+9a1veMOdzz333Jvuum9zvTvqF7Mz1TvvPL6zs3P58kpYCjDGzKPD4ZBSTAhpNpvco1OtiVzmGxsbU1NTR48eHQ6HUVSWeXHmzDmthJR5VPLKldAR4ScnW9NT88duvi1Nxdz8wjPPPLqzs10p+UIm1mpjFcFs374Dpah8/vz5Wq3m8fAd73hHfzSMkxHGeGtni/tca3348GGwttvpfe+H3v/SSyd73cG+A/OXVi4pK3d2evsOzDUmavNq+qWTimC0/8B8ngtT9ZEFhIM7bj82OzWbp/KhLz8sVFEqlZRUnDK8S8ax1joS1m7oC2trCiVnZmb2zS+cP7cEBtzKBiFCKZaqYMwtaGQpCp959qmd9jYPeS5ya6FUKkVR9Mwzz/T73bBUrVaropBKqXK5PowH97z57vd+6J2/9Yn/+OBXi7e//a0HDhyglJ49e3pucf7y5ZVee+fcuXMHDx4eJnGh7OXVtdNL5weDAWX80NFjc7PzL7740mRzcun85TTO+oO0UqMAIKWsViqRx289dlTkst8frq5sijg1ubz91tve98B7P/F7v4sZfdM992y1N6Ymm1bp82fO6iJ95cUXVi6sXjyzafbZUZx5h8OTz71kCd138IBSanKiNr+4bzgcnjp1anNjo7h0KcsShBCbm+OUr6+uPfzwI1LKRqs5HPUvr17WWkeoJqx52xvvev7pp0oAb7z5posXLy6dPb0wM13ypzBS5XKUJtnT33zq+/7OD1BK5+ZmNjbW3MwaBMHcwmKWFc88/Zy1tlwKh8Ph6krHI4iD+cD73iNFfubp53/07/0IZ6haKq+tbXQ7wzvuOP7gV7/8+Dcfn52b67Z7/e7zShnPY3meG7C1eh30DYcZAIDR6DtiBSoFX/gCfOQjV44cOACzs7C8fNWoReE977n+4sePw6FDr3FxSmEwuAb6SZIbaEx/a/775z//nUKof/iH8L73XUObveMO+Mxn4ORJ+MIX4MQJGI1u4HjW7cLP/iz8/b8PCwvwiU/c4LHf9a5rjqyswMsvf0fPc+IELC/D4uKVI+96F3z609e8DsZj+emr8amHHrrBk1xXsgyK4hqVho0N4PxvEW7G+PraqVa/U7bp1YWx69ncr8vW79XKBz8IR49ec8RaWFqCj38cTp+G4fDK8a9/Hb7+dZiagnvvhZ/5mWviK4zB934vPP44nDv314VKryvPPQerq7CwcOXItzaGv71iDPzar0G7DffdB60WVCrf7uR+H06ehKefhs997rWvvLMDf//vw6//+pWPrzV86lPwn/7T38Cr9fvwj/8x/N7vjXvH00/Dv/pXr4Mx/dBDMBjAAw/A/feD77/GW19901degaeegj/7s9d4BUKRS7RSSnls7BNlwGqV3VA93/N9Bb5b9itrkmRkjClEttPeKooCY8w5JYR5AIz7zONhucEYwpp4iFLCmecHgY8I8f0Gmpjc3m6vLm/43Pd9v9lsWoviOE7TFAAc8244HGZZZsA67M8BNGmaZlnmsuYdL9StB5xGJOfcGlQulcIwbLfbpVKp0WgkSVJIEYZhtVoN/QAAtra20jR1mwgnWxxFkVtUeB6r1+u1elVr/cgjj3g+o5QnWeYsB0ulSlHIIpfdna67FyUkz3Mjd8X9YI8IBmmaCiGUUoRipzFttcLOhg6MUirLCsZM7tbiWnue53meU9vI0pRgOhr2CWFhyEEiQphSBcbYyWK6TTgAGAOUUie3TSn1vbCAwlmOO8hgTMdRxu5aArpy9RZmLzMdAACRPXDHoXhwhWFDnNTAnvqENi6X313HaI2kLFxNaS2NkIBAAhRpCggtLC7Wa9U4jmu1WrVeS9OUMeaHnsiLs2dPe54XeP5OpyOEKHmhNtj3K30tlVKIEhDjOzLGrNZSFhZbj3mMetrqLE6s0hjj0PNzKxBCnPtgkdY6isqcekM10FqNicQWI4s95vuMaMcfl9KRE6VWo+1tzjkPOCEkSZJSqeJ+hRAShVOioBhjSgnnHGMwFitlrDVxHGsjPc+bmpqp1mu+788HC+4dq+VKe6frroYxXl5eTYajKCpJqRwF1fdCs7u7NBpca3Hv2+v1dmXNM04pALjsz3a73Wg0qvV6IfLhcGitdvipEMJZIgEA9bgfhkKIUiWSWmTpKElGcdLHGI+XXhrSNA3DMI5jpVQURdPTk0IITCCKIkJIo96SUo5GSRRFExNT1lpRyKwocikG26PVjfVSqRSWS616A2N84sTLSinOvF6v17g2Veu6lkYI0aDHehqIYoQwoloVDnJ139fu8moRQk4fw5lmZVkGYEo6pJRevHiRc16pVKKoLKW0AFmWIYSEzFdXVx3Q6fmBEEVRFEEQIIKdSvDexnyXv3lFFdPu8rvHlS5EvV4vpNDWCCEuXLiQpmkYeWmaFjIDBITiuel5xlitVq9WK+vr60k6KooiSZJSVLVWU0rAgkXghizHKQaAarXCOacETU1NGalGo5GraCEEIvjqQI6LGGHYJRdbezX8Oh7MCdnDQxBCAMZYSwillAZBAODsuMZEaSehidE4VQJjrLXd2dnpdvtOv4UxJpT0PI8YrJRSoGEX0R6HZ6xVhbB4LJFMCGO7if5JkmVFfu7c+SAIPM9zmC+myIlHR1Fkx4K/2BrkZJPYq0l2XsWxRbvprW7wQbt2dXuoqJsjrLUIj0XYCWEIoaIojMr1ruCDBY0Bay09SqrlkpGmwEQUBRBCMSGMM8amDpYQIt12J09GoA3CljFilSaUIovAYkDGWmTAmeQZBNgYY6y2Y2MvjHdNJ8FoA9qCxpiAsdZiC1AuVZqNSNui3e5iViEU+WFw4OBBY+DMmXPdwSjPYXIirLfqSTISQijItVaXLm1ghLTEWaY97jWa1TvvvD3LdoTqlKskiftKiguXLlISnD7TGQxGSZxj4oWliuj3R8nw/re/Z25+cnP78nDYXVm+5HshxnRnJzMKfO6NRQUIRYjstb2r54W9PwghalcbBGNswCDAe2Lo1lplDTJX2uoeDX/cmBEFAIdo74V88FW+AgghCxpZ4MwRpQWlFFMsRMEpBTBJkiBsjx0+4vPg5MmTRWFrvOamb7CAjCUEWzBWG7CALFhtOCVaW1kIsFYJ6QYfpYxSylpdSKOlrEYRYhbthjMtYKcHbYwByra2tojHFYw1RtzcKoRQWvs8ci1TZDlCKM9zxn1sQBmVqxQjRjgrhWFrsRTV2X1Td9IkSQaDwc7OVrPZpJQKIeI4XlpawgD7Fw+urqw/9ugz3U7/nnvuWVxc5JyfOXNuMBiEYUgoGgwGbhaL0+SZ554uhWVrNeNkZm56OIjb7TalFIxZWVmJotKxYzfPTC+86Z43p2k22Ww5P+Vz584VUhCEZ2dnV1fXW62WH5T7/f7GxsalleX9h/c/8sjD5y+efeC97/JDtrOzk+dJp7NTroSZSC8un69Wq5jRfr8bBFG32y2XyxjjV155OQiC9c319c21uYXpNM0BoFSKEALOidV2cf/CkaMHO9tb2sgkSRrNSq1empqdEYUa9gZSiumZSYxoMkrTLGHMR5hQgg8dXnzyySeNUcboMAxzUeBXUXl3wKiQcqe9FZZKtx2/ZWNjK8sKishWvEMQ9bxgY3OlWqou7p+Lwmq32+22O0JIjC3GxGhQu+JKdmyFrAkhjBEH0e4FXvawZjcSOf/ZMS5MCMHYDU9aa0yYRWA1opxgTIwxCIHP+DBO7r/7nlKpFPd2CEGYIp1J7u2arlJklXbqT67xWbhmrHfZJXv/HC/aLAJ0BWjeO3M8kyGNkZMLoMpYVVgpVZylRgMxtigKoVUQhkEQOCwaIUsIMVIQQtwkXCpXSRB89YnHnj15Kjbgl/xMSoqxlophorDLbZGNarVSq9iOVVpQRAFga2vLTWkic/FwXRQSUfvII49MT89GUTQ3PXPu3Lksy8IwPHDg0NK5G0celZR5MszznHEyGAxGSVKulbXWWZYVVoXlkHHicQ8hG4Z+LgtrbbfbZZwbq2q1GqVke2erIkq+72ut+/1hrQY7Ozuj0WiiNWkMxKMUytjJ8zXqrcGwlycZJUwizCzWCkbDOMuKeq0FFnte0Gi05ufnZuamtzvtNI0PHDqwsrYSREGeZ1mWr69vPq2fvfOOO8+fv5wkxa137Oc+O3v2lZdffmW7s9kfdDnzo3KFIu+FF17odoZvve/+4XB4/1vfsrJyGWM4fPBwlmXdbjcIoqIowjDM87xUjvKsOHv2LAAGbBGBosgRQkUxlDqqVqsYo52dHSnFiRMvEoKUUjVWm5hqNVr1OE4PHFhcXl5Nk4xS2tnqxgMJCNp2wNgLQchq9doTjz55511vPHDg0FNPPTM/t+/c2fNPPfWUkRhRWFzchzHO87xSCRGyURQURcY8GgS+EKJWq5QrUafTWVxcDD2/u9M+T4i1NkkuZ3ECAFOTrWq11GxUpMonplqlUpgVYnVjfX7uwKHDC08++VSnPUBAMeUUqVolYpxYg4wx5XL1wAF+7uxlzvmzzz6/trn2j/7xP/Q875d/5Vec7EyWZffffz9jbHNzU1s1OdXYaW8t7JtZ2Ddz5swpQGqns16pRkePHj59+iwgHSc9t3rmHs7EIJOlXn9YqJwwlCRJtVRFFgCwNQbtxvn5roGytkYbsEo3G43pqYluu8MYjOcwpTElpSDMREYp9jwvDMONjQ3C7cGDB7Ii397eMRojhBqNxuXLK/sP8iyVWZZRzpTW1tpRGj/z3HMY40a1NhwOnRvMMInz8+eV1rpIvTCIs5Qxr1SulMq14288kqbpxuaaMGZze0cqc2l1DVuqtS00bG6uG6PC0K9WFlcuX8qz9Mf+7o9+4hP/JWC4Wanec+cb3/bWt3zxs5/dXF+WKtncWgWkKcUBp1t59oZbb836/ZXzm/unKu98833feOTxh//yybkDrfn9+0+dO2vA6FZDaREnw1E8CIJgcnKy3W4vzi8URXHp0iUAs3zxMqVUSlGtVhtRaae9FW9u3Lm47+6bb6kBLG+s/dmn/uuZy5eRUULEFJP9C/sW9s11+p32Vvu/fvKTjXprZWOHUjoa2Y2NDa3s9PRstVEvsoIQEgTRaNBpNBpIy+72xpNPPvmxH/9RKfUXPvdZj5Gbjh7rdvtpmishm83mO9/xjje84Q2FxL/1n/5gFKeYMqMRAHge098CpO4VJwP3mkUI+Mu/hPe+9wouU6nA+94Hv/3bV845ePB6AmmlAj/4g6998W8tSXIDavN1chNFAV/6EogbZwpeX3Z24OGH4fu//5qDpRLcey/cfjskCfT7cPkyvPQSnD8Pq6swGECegzGQ5/Bbv3Xjax48eA1eDACPPgrr69/R82xswGOPXfPzxUU4dOga5qwxcOrU9eISn/70a9fXygpsbcH+/VeOLC/fAEz/GyzGXK+OXa9Drfa6BaOPH4fruJ+HD8Pzz/+1nu3oUbj77usPfuIT8J//86v+ZGsLPvtZ+Oxn4U/+BGZnrxzHGH7u5+DJJ7+diMR3UdbX4ZFH4Ed/9MqRxUU4ePC19V7+pkq3Cx//OPzmb8LsLNx/P7znPXDkyDUV0W7DyZPwV38FL7zw+mRSXPeZmIB/8k9gdRX+4i/g1Km/GRhdKbh4Ef7O34Hf+z14/nn43/63132F556D556DUgkWF+Hd74a3vhXm528cI9nZgVOn4Etfeh2vnySXtU6LIne7fYejWQDxKgMWwmPgg1JqwChlCEUOUQUAyrCSwBjJ8xxpLGVx8NDBTndLZRZjXK2VuRcgRJwewvzsbJJk09PTYMD3Qjk2VVYA4EgYTpjCLYAZI07BoN9TxirGGGMcANxSP89zz/McqGqMccZoTtys3+87vQVMmZS63x+qUCdJcuHCBWstISjPMhAGCPilqFwuuz1kGIbW2n6/v7mxQQjxfJ9S6vsBoywbFQihTrtjNGhpEOBCCoIp88heUNwLfHdTzn3OfUpxHMeYoKIoMMGOZWkAI0SyLFPKIIRKpbIjMAVBQCkdDYf93kApxbnv7JsoocaMNxNuc85c5qUQe+blSilGOfGoY5A48MV9VfdLtyW+Blnexd12qcfWRfT37uIU8NzOh4x9xrQxRippncjh+GS3A5e6kODSiC0AgYmZ6WarMRqNAj88cuSI7/sb62vNZpNzfuLll8bp/5RShq21g8EgoynBuFarKaWiMHTugkEQdAd9z/MKqdxTjX/IGSHUGgMYlLSduI+JW0t4zkKGYGqtLfJsK0ustb7v76LwFlmcxIXDQdI0M0ZHUYSpJZQGQSS0cGEPZ/0nhGDU01onSeKah0v4k1L7PgcwUihCsdZWa6upZoxtb28qpUqlEqU0y5LhcOhR31p75syZPBeTzYnBIC5F1TCIhsMhQtgY0Hos+0ApLZQEMFrLJEmiKNJaG6uNJdoohFCSp1ooACiKIiiFAQn2qLjWGik1574xuWtOSqlOrweDPkJAGDUGjDa1WkUIIaUWhSKEOES12WzOzc0JkV++fDnLRxh7RVGsb6zOTM8BwKVLl6TURS4cfielTtM0SZJKpRKGYWe7Mz096/uh0e1MZdXoxuih1AYsRggLUWCMEUEIIWOV0QgBAQClFEEIM4aI48iPGfqIcCnl5cuXrTGuYU9OTgZR6BSB19bWSqXK5ORkqVSamJhACG1urE1NTAaeL4QwYAEjsAgw2qNw7oHLsCttgXbFas2u6537wohgbY1T5uz1elrrMAwRwVmRaiM4x/sPHmScbGxsVKtViwymaDDq+9wbDoenX75EOAR+mSKktCLECRaRLMuKIq9WK4yTiWaLEJInKULIGosxcvLTjlW2R6qz1jr7TvdZMHa2eGPZXJdxArtmUZ7nuTMBG22kVAUhhGLmlHOFUIy6kJJNksR1Fqe7yDl3wsqEEGINABQyN8Zoq/dSzwGsQ1QoZQZdg8PYXSY1IuNg2zgi6HFCkLHaBdWsNrtcbEwpdajfDRuMHmM7V5B3dxwDMmDBWu1GMzNGe3aDiGN3AfdshBBjhEXgvD3zPAMAKcUoHkZ+ZJHGyBdZDgBSSk5owD1ZCM/zVCF6vV7oCwJMS6WkxaABxqL2zm9ydyjFABjGIuEGY0wxIYQJmTv4G8A4brvRYC1SCsrlyuxiBchQijzNCowxxjSXolwu33FHw2iytdFRSkhCpJFSFeVy+dChIx7zEHgvqle0wsrko2yHciHEaLubcs6pF0mDLq9uVioT9VprOMq2ttppXkxMNA8cXrAgVtfPZ/lAaXHs5puWzlxeX91EwCkKCSMORkPX0DfH1H6z65jneocxBhNqtLZoD0HGDvxHu3MKOFhsFxs0u8rp1/U+hK54eF79Q6PHtpnOAcJNTYwxJznOPTo90dq3bz5L8lLgC6GUUj7jnHvW2jF/HxOXOeE8DAghxkgpC+cPWciCEGKt1lK4NApkDaeUERrHMafurUFK7eRZtLWdTicolzD3XHzaGOPSlYQQNVZPkoRpw7lfqVTSOBFSRjTwS5HvMYJ5pGoIa0uzxkQde5JOTEwopZz/aRAEUspqtR7HcTIcMcYOHTp06dLK8vJyv9+/9977jhw5cubMGYRQlmVxHDuc3hgzPT3JOV9f33QrMM593/et5xWFKJVK8/PzBw8eMgamp6dnZ+eNMZ1Oh/m8FIS33Xbr5z73udOnT7///e8vVUqUUkqCZrO+eHDh0ccefuSRh6NyODHZTPNsMOoyjnMp5vYtcE67vY4xqtmsMxZ0u92zZ5cuXVo7eHChWq06vaHQ955+6skjR44QzCqVSqtZ7fc6kxNNP4gW9+3zfX7x4jkti/X19cXFhUq9UalUdrY70mghxOGjh5TQBDMl5bPPPF8qBa1WK8tSqfLhKJ2aqgUBt1AInd9wbimXS4WijJPJ6el6vc4YO3LkyGAw2NramZ+fW1tb39rYHgxxksSU0ng77Xa7CLmWQpyxA0bUWIsIcaEqhBEhxAWsAK6IXRijrNUu5uaS41wO2bjhOgV4hBGmhNFcKOY5FXzNCbFGiSJHGg7sW0BWW6UZIYWxsAuXuwWoVApjCjCuaITHU9TeSg5fS3MeL+MMIHCDDNrLTXBZb8YiYzUmmFDqAaZEJ0na3ukasNPT01khG60m83i328aMaq09SkqlkjEGMU48TDDbGQ1PPffs8nYfOPCQK7CIYEI9KxTSBpGxw0Ce5wvVfVLKnZ0dC8YUBjS4ZCWNxtgcpVQaKYTq9Xrz8/ODeOSU47e2tijlSTzV/JZUUwBQSgohABmE6Or6ehB69cZU4EfLy8suDGOtVVYFpUgaRYwCbD3fH41Gw1H/f/wff/pjH/vYb//ub//Gb/wnKTTCNs3zy5fXfJ+69dzkxDQhxPMCKfULL5w4ffos5xzAcM4RRoQwhEgSpwCoyOWgv8U9AIBTp87Mzs98+MPf+0d/9N/yPDVGIWSDKFxeXlFK5bl47sUTO9vtNM2LXFVr9TAsbW+3lTXlUrXT6dTrTYwopbTX6zz55BMY42ajFkXBwYP7Z+fnHnrooXK5vG/fvqIoer3eoDe01iqpkbHHj99Zr1drtcaXvvSlJM59jxPOgGAvDDCjQSmam5sZdHtbW1srq5eHo36RS4zp0aPHZmZnl5YuxOnIGueY7b6qfv65l26+7cjCwuLZMxem52YbjdYLL5yYbLXmZhdffO6lqakGAGxtbQolWpMtqWUhi1KllKapywa11jrb9Pvum11cPPDyyyd6vR4AaG2DINi3b9/05NRw1ItHvbDkd7v97e12nGTd/qhRnykKubjv0PrqyvZOe2t7OwhRGseM4fn5fZTwCxcu3HrzGxiN4lHm+/7K+trXH/oG41QIOTU1dfz4HZcuXfrsZz978OBBzrnncQs2K9JcZGma7D+wOD09iTEMh93pudlnnnlpMOjdfvutAMZoUYgky7L1zdWNtR2LFSaAjM2yrBKUrQFELAD4vo+MddwNjLHMC5dJlQxHDz/8cL/f9zyPYkwQMsYwTrWWnFBlFefcJfG1Wi3G2MWLF3MhBIEszTvtrh94XuB1t4eMMZkooIZzeu7cuVh2J6ZafomnRf7yqVc485MkW1jcZ61ZOnfK5mRyKvT9oDkxdeTYzUEUGkBKoyxXQqaY8a2V5Wq1sX/xoDGwdHaFMrxvfm5mZqpWKT/9zSf/83/+rVMnT9Wrjfc98M5jx45dvHiRE/2m47cmyUgoOVEvqyJud5PpifpHPvS92WBw64FDp06cPrJv7vg/+cdf+dojZy9c/Lmf/smXXn7503/6aTXY3lilaZpGPm826seP3zkYDN5w/I2PPvroSy++fPToYYxsv9N50xvfuLgw9+jDj9Qp/Yc//AMfet/74k7nw+99jwTzS7/2H6ab1bvvu6eQamNjw/dCQlC1Wm01moeOHJ2dnY2/8Vh7a3tnuDPojxqNxvLy8oKFNM8PHjxYqVQuXTi7uDDfbDX67a1mc+Lzn//i+XNn11Yu33nnnY8//nh7q82YVy5VNztbFy5d3O72LAoPHDh08eLTlHnaWiDolVdOH9t/wwXn6ytbW9cDnd/zPfDVr449zRoN+NmfvbEA8XdRogjm5uDcuStHFhau5zsr9TrsBAHgV38Vjh+/gVNiGEIYwsQEHDkCDzxw5fhXvgK/9muveoswhB//8WtIkUrBqVOv43leeQWkvEIKrlTgx34M/u2/fQ1c+DuE6vSr89n/lsqnPw3/4l9c+WccXw8cfyelKK5RMe524atf/Ws9Fcbw9/7e9Qd/53euCZN8m/KRj8Cf/RlMT185UqvBfffBQw/9tZ7qW8upU9c3hh//8Rs0Blr+d6PsRLPZKtJsfWOz3xtqpZqtph8EUsgDBw5s72xfOHeecBb4vpQCITQ1NekHgdW61+9hhGv1xsbGxrA/8oPA0VGlUtoYZMFac+6iffgJ9B9+3Z+eapajku9TY2A0HG5u7MRxPj01IaTwAHzPP3jo4NbW5vr62tzcfLla6bQ7OzvdPM+1tdaAUlpb7XgBF88hxtB/+nUSBJ6RxlhTr9Zbrda5pbMz0zOU0UG/jzCxxsRJUooiwEgIGYZ+lhWEHubRL33r59re+pksf8UYSym+800crCqy3Mji/e965+LMlExGzUa1Ug573bYqctCGAlFSGgtKW2ktRsgCIELzosAY6a557E/R019g2govCqfn5kZx+sLJk54feoHXH8Rbm+1Od2hgdx+sjVIKdrdzxhjfDwFAayWEwtgWxerifloUPM8zZIF5HCGEMYnThLMbGze1Ws1hXMvzHFFCMWitEbZSSsfkMsZakGmalkolzGlYCjY21tJsxBgxRm1ubzbqE6VShXvec888c2FpyWEimOBCZL3hwJHj3IpUKxuLmHOOkBVKWquN1gDGi0Lu0TiOCfZ83y+KkZSSEOToQWEYOkgxyzJjjFYO/sjDMGSc53k+7A/yNDPGTE9PG5e0LouiKBzchjGu1Wppmmqtx0l7U1MOBymXKn4YKKWKooiC0Oe+UYZR7j6TW97vUf/yNAtLke/7Dq4FMFJKbJDneWC01tqxF8OQl0olY2A4HKZZ7uLoCGEwoJUpl8tuN0spJ4RgPZaqdPD0mMRnEGMMIauUQgjAouFwqKUxxvi+78zrrB2vl1y8fDQaOU1nzvke0dJn3KVRjhPbMXFYm1LKMWwQJWasNoCsBYQIIOXwJYSRMabIU1AaCGpMtsrlcrlcVkpRRo4ePUopffbZZ52O8De+8Y0oDCYnJ9c21p2XsjYmTxI/4JVKZTgcpnHCKc2yrBbWAMBpbTPGkjzL8lxbMI5WZq21Y+1djLEUQlpJCFNKONEJJyhBCAFjCaFO0duppnDOOfdkDkWRZVlGrOOvoTTNuE99yrS1nHPOaZ7nQoiFhYV6vXnyxMk8z4UwUeQpIaTWGOMCSyllvV7N81QV0rlBCiGs2cbMOolhrXW1Wl1eXk2GY4E7SlieicAP4jgdS3Zw7uIKZqwjMZZJEUKkaUwI4R5z2JmUTifXBDyQEveG/VEaVyqVWq1WFIXjRLstAMEUIcQoV0plWSaUKJVDjzJCEcLYAZTVarXI5cTElGPMVKvV9fV1RzXNcrDWRlHUafc2NzcxplrblZUVSlhRFIx5rhEGQTAcDouiCL3S5uYmwTSKoqKQTrP1WwvGBFFqwXJKjTHWAsbIWiSkInjMzdLWpRwrt50fC0FgUhTZcDhsNhpAMCW41WoBgMsVcHGX4XAolfJ9fzQapckIAJwWNmAkxBW58z0Gm9tEjMNRu0CBa1QuSKOtUUZz7DmoYTQaxXHs+o4a+w2yWrOSF+nl5S2p1MrqVqnkNZo1z2O9LKnXq4EfAZBup2+koZRaa5xuO4DFjHa6O3RIu91uOQobjQalVBZiD9ZgjFFM9kZvrbVLQCG7eIiDvXZFcrCWKohCR0Jyb6SUotTVSMEY44HnRgPOOSVcSkkoAhhT6Z0QjWtmjnCJEMqyxF2KAHEWUxhjl7c9DlmhK6w7Nwy6MVBbYy1orRHBhBIpped52oAjq2IgAEhJbYzBmLpZ4IYNhmDsOq/dhdp3GdyI7EIcyJkEWuyUPYQQGCPXWfaejVIKYFzwjFKqjSwFgRKysCkYAGNLQegSHdIsTrN4X2OSIj7RnIyHmcgFBWCMY7CUcK0tQlhKwRhHyGqtARtrKOXUWgmIM4Kl1ACAEGbMR8g4uJlSagwYDA5ef+nEyXMXzb5DjcNHFgj1LWhECAO7eOBAUahzp867OctaFASBTfLV5VUEpFZrbG91lFL7Fw9Oz7R2euuNlp+bnFKcCj0atLe3RmdPd4m57Ps+pRwRT6q8VG0cf8MtyytLFoEfVE6ePLV8eY2TCsEhKE8bjDhykvqOgukyWhyktletsKvajzE2FhBCBABRopRSUmFKOKdplo1jgYQZc0UQxnU0h/4jDC5igRHdFbFBTisZjXU29rQ1xj9x/8sYQ4kfhGxubm5qoikLNeoPGGNKaIaJ09EFY4UWDhTXWnNCtbZGqUGWOXkuAFAqA2Mr1bKUcqR0URQE4bAUcU6ttdzzMCBrLecsz2MppdWa+V6lViWeH+fZXmw+CIIkSaRSaZo2pyYpZdLqw4cPG2UtQIlHhKH6QlVr4xUh80jXv8xrNswRdTE0rbXrac4Kr1KplILwK1/5CkKoXq8QwoRQTzzxxOnTpwGcAsj/j7r/jJY0O8/D0HfHL1WuOvmcPp2nZ3ryYAaJiIRACaQIipB0LcuUKJJX6cqyTV1f27KSZcm6yzal5SX7rrtEy5JIiQQlgSAFEIEABHAiBpNnOnefPjnUqVz1xR3vj13n9PSgQWBE+i56/5g19XWdr76ww7uf93mfR49GI6dUVa2Wq9Wq7/uMscFg1Ov18lycOX1uZWUlSdJrV27OzrUuXLhPKS2EeuGF5x5++OHTp08Ohr3hcLiwMvOhj71/MOlMslGjWZmZmdGWVCqVJEmuXK1iahHWzZnm+vpatVq+8OB9wWSUZUm32y+VIlcFhgBRwsCihx68n3F6cHDgnAdqtdrBwcGtW7dcXQNY/N73Plmv1y9fvba9u2W1EkKMh4OFhbkf/dEfTfLs+ee/7Xths1l3nnKe5587c3owGNTWSmHEGUe7e5szM825uSZjzIKhDBEC9xTTaLVmvGgZYZskSbkSXbt5NU3T1dXVRqPm+761WhZFtVrb3d6jlMaTIggDLbTWRluwyBBErbHHtR7H5AU3ibioVCnlBrx7fWEYuk7mLsD5HriVVVnLgkAYQxh1eDRFhFGsCxNP8lbFe+TiRZlMfMpkrqyy7uRuAnL8AEK0g4yNMcIYagw+olsCgEEAznb0nesrRoCPlY8csR+MBeyuDUkpERBjbFrkpVIpydLBaAIY1Rr1oijK1boymhBSDT2plMY4KJUOuoc319YLoeI8JwEBzqW1GqwSwmrgiAA5tlUEKeXhQTvNU2MMxoR79Dg74qYSt7Z5zHPWpb1ez1l4u1B7bW2tWp6950pgLSCEOONCKQepG2PyIs2LVGtd8SoIWSml73vlcjkr0kqlUhRFrVbDBD772X+NMd7Z2fV9rpTJ89QgOH3qpEtI7O3t5blw2X4nKmSMyfM8CAJrEcWcUjoejyeTuFQqtdudWq1Wq9WFyHf39q5du7F0Yqndbt9cuzG/MOtW8Yceeuilb78spH7w4nmG/DzPb1y/9ealt3yfLS61lk8uKZXfvHlzY2MjCqsnT57IMzWeDBuNxmDQwwQC32u325RSzrkLayaTCUIojmPfCxZXljqdtucF1tpWq/Hkk2d2d3fTXDnqzdLSUqlUGo/Ho3jCA59wkqapFJoQtru7W681FxcXB4MBmJHMDefcGj3qj1ZWFpUwazdud/v9+fmF0Atb9dZw2K9Xa/ffd9+N67eklIRRpVRRZEEQCJHneR7HKWMMwAyH/SiKuEe3t7cRQo1GyxLje0Ge5IuLi77vv/DCC3mREgLLK4sI2eF4NDszf+bMYjzJXn7p9W6nLwqzvLRapDHC3QABAABJREFUb5SETIb9Q0a9JM673b2D/WGRwYc/9LGdnT3G2MLCwtra2pkzZx577Il+vz+ZxJ/61I+22wcvvfTSYDBwCRJHzyGEGNC9QVdryTmvVqtzc7XBYFCplBhFJ1YXK9Ww1+t1Dnsf+dBHrl1a+5Vf/nc+Rgx7rhrRGl0ul6dJV4NAG6GV1joMAreJ2t7eptgt8Axj7IptAYzWhhCS5lkQVTgneS52tnYuXLjw0Y994mtf++YzTz976tSpc+fOvXbpDR+XEMUupYQpyWXmRn67Pej1eidWTjpDxfMX7mvOziykk1s3by8sKm2LcTy5duN6uVLZ39+/evXqyvJyuVTt93rj0Zhzb3PjdpqmZ06eqtUqL7/0nVa9xj1GCLu9fuuTP/LD87MLm7fXn//Wb3/qU58qPfVwkSdf+9pXb9zYqLVKiwvzI5Aijlvl4PQD5z/46CM7mzvXLt+0Bbz/iQcXZ6qrrcqZT374sftPIGyfubbZ6w4+9/nf2EuzXqe7tHLiS7tfGg7HrZkZDCT0aAr4fY88+sd+7EevfPtFjeA9Dz/cqlRe+uY3e3uNMw9cmJtt3NzdeOC+015U+sIXvqC0XFu7NRiP/SBSSo2Gk36nm6bp7OxsuVyuVRtxnBpjwjAsl8vD4dDR0E6fPutz9sjFB779/HNFUVRqjY9+9KMe41//+r+nlC+fWMlMMXh9yLhnMZ+dW9AGOMaWWBDmzNmT91xE3m0bDiFNoVa7c6RSuUMuTtO7eKC/x0bpXRIHAPfgyU4m0O+/i3MKAX/rb8F/99/B6dM/0Pc/+EF49FH4lV+B3/gNyLJ7nO0d9oMIwe3b7+J61tbeSaVcXPxBydp/ANvVqzAYQL0+/VitwvLyu3sgAPDQQ3d97PV+rzzi06fvSiEAwOHhu3BNpBR+/dfh537uLuj8z/05eO653+c3devWXTg7ACwt3eMnMN/IJ98ZJZUbV69NOjEOGCEE0RXA3iTt3958s91ux3nig5/mJgj8KIpKtSRL0iRJRpPBAw88uLDg9fo34nRdmyjLcBiGhVQEgZTSSOVQvEKQ8QQTRF1BlVECACqlSMoZo3WapeVoLvRFMrnUarCVJV+Zdh92xsPbxljme4xygo22Js/TvCisRQgMxpjRBjLWaCXyUpE1KdpTYnd58aRV+71ej1KaTrqRP4MRRlaEfnPY36dewe9lX1KIK2n6grWWEJYrSxHGSCeTUT7hpx//oZ31NZ3YRNHFZsVqQyx4mBeZEFKO4iQXhTYWUQIIcWIcvkAxstZubG4ApVSdubWx/eabbwL1qOfrO6SkaSw6VQkQAmHs9o0YR6PRhFIq8gIRbIzS6kSSJFLKKaYvpbUS3maK9Y6WZgnn1GIvy7KiUK5mGWMEGBFKS0GAEXE4RRCFCEG332k1aw9cvDAexTdurfV6vV5vEEWRK69O09RjnFAPAHIp4Ih+K4oC7FR5k7KpbyFC1vM83+cWI0YFpdztVKMoStNUShlFkYv/ASCKIud2hQg+lmOem5uz2qRpqpTyfd+xk7SWvu+vrq6Wy+W1tTVCiGPqtPcPgiDAgEtR2YnzUkoHg1GW5KWwHARRnguRS7fXwBgTioIwwIg6ZGSK0RBCCBJCl0olximl1Nk/hH6QFXmlUqlW60mSSKEQQszjAADGGmOcjgEhzAG+x7gJOir2Nwa0sgYraw1jDGOqlBKF1NoihBjzlFLOzDAMQyegiRAplQLPCwaDQZZlWltKCUKEACKESS211tYijLHFyEHnABihaXeCI+rZlPv5NkqjytOwUnnwwQcbrbqUcmZmxoK5cuVKFEW7u7svfvvbtXp9dmbuxRdfjOMYAdy4cTMXuXOZ0w4eFVpg5Z5zKQwBAElUFIXPvbdLB2ittbVSaoKmHGeVZogThDFCxPdDaz0npKu1tNYahZVS9Xozz3PnmcaZn6UFAGgNRgM2GBPq+M7WAKWcEEo41SCkVpQzx/Rcml8w0ly9ehVjkWeFExdklAotixyMgTAsFUXWXG7G8dhaa632PI7QlNZTFIUsRBxnnsc9jyKNs6xwFetpmrvchhDKKe06mirzGSEOQOFCCEdq5pxTihEiWoPWOk1TFwN3u13nnKmVcQMBLCKEzM3NOew4SRK3yyOEIIyV0O5pGAPlKMrihGF2sLtHEdagHdAJgA8ODubnFq21/f4QIYIxpoQppQCwMWYcT5rNJkJIKIkIBoyZ5/mcr4TL83MLazfvLcAoRFEUqZQSEVDCIARRVKaIUEqN1i7/oZR0kCWld/bv1gBCZGdnp16rufHlIs/DbicIglKphBDJ89wVqUspk3jskEdjjB8GDr5XR65fTtTCDd5jfBkdWaLBEelSKnmMA9Tr9Z2dnX6/zzwPU6qLQmvl+URKmWZjRKAcRidPnUiShDHiKPkAGAHjPOh2+kcax0hKaYw2CIwxSokATLkcuZL6XORSSs7JMQnMqWe4nmDtHWFPOLIp09pJQhNnOWi10dZSSp0A5vEe3wFkDoGYotVauKri4xv3PM9lyNz9YozJlAENGGMw2hHsXIrRcZY1WDhyCkV3vBaRMRYQMEYsAs6573NnzWrBIIS0NsYoRli1WsWYFoV0vfGeTRtzNBdNlVhc37BvE2dAyKlbTFc9t5BN/1xrAOb7PsVGiLzdPpidazWaNQDDMMmSPBknnHJOGaNMK4XAGIMAYHerXYriZmOGYc8C4jxQQhtjLGjQAMh6lFltACEtNGYUrEUWSSk5Zw5FlMI4iyFAxhjJPS/PU7DUWkQpU1oFQZBm/SwW+3s9oTLqY2vN4uK8MTAcjEejhGAfW0jiXKkOWJFl2XAo+8PJmdNnCWFai0F8ePrMEqaSR3PlcnTj+vpwkimDzpxfDGgFIZTnYmVlZWZutt8/fObZb+wf7ChdzM/PgiXpRGSQVsK6VtRobG2GjvjLx/Ot664ueDh+/jCt0QdiidZaKqm1IYR6vs85L1z5iNHaLShoKlJv3iZUYI40NwwohzMjQAjR4yUGjlIXGFOXOTDGGqMx5sggRgNk8MF+ZzjozzZbF87ff/PmzdALrLFaquO6HwCgU5I78TwvNEYeKcKHYUjDMAxDMCZg3BiDwXqMEQTLi4tKqX63xxgTcjpdYGy11jzwg7CUO5KlE9831vM8TIhQkhDmema5VOWM5bqYiVqFzAolZ5szgSozz8R6Ny96uazQPBd5npfL5SgqW2uLQkopkmSyvbG5s7OHEJRK5TD03FOL4xiQkkpSStM0LVUqUmFp9GGvCwDVUrnVamRZlqa5VEWv10MILy8vHhwc/O//xz/9L/6Ln19eOnF7ff35bz9Xb1TDMNje3rx05XU/4BcfvBDH8UG3V6mXldLxfn9rZ/vDH/sApfSZ5542xhCCmrMzeVYgRNJUtJrzGOM8yyaTSRj5S0src3NzlNLd3d3AD50EDwC4ghpjjEvwfu3rX42iKM1klmU+Z87n7YMffP/p06c3d3ZXV1fBYowpY+z119/Msmw0GUkp7r9433A4nMRDQsjcfKtSqeR5fnh4wBgKA99M7jFTFEKEYahBb29v37h5rVytJMlkOCx/7NMfHY/Hu9vbtUZVisIP+WQyoYyFkZehAmmjCsUYM8Y6RNPoKRUfjkj+AOCICa77OmUiN5vbtynFOLlut7RYxoQQCCNwRwgqBX4yHk2G8WKj9N//nb9Z4nyn36WAi0JihFyN3lRZxiCLpurpx3Oum/qP47/p7AYA4Kw2pm0auBvkRPqPv+wSOdZasJgy4rLu5XI5zKJRPCmE3FzfwJR4QVCpVRcWFri1mzvbuRDpeLi+v78/GnOfK0bBIkwJSAXalMvlwPPTSaydMjlCLuLp9XpuqBtjMKLaFnAk6E4IcWuvsSoIApdo8RlHGCOElpdPXLhQOtir3XMlCMIgExpT32fY8zxniAEAhFI/CLyAg7FaT8vfwjBcXV3FGNfrdWPVq6+++k9+8Z8yThqN5tLSUrPZ0FrzgDPGME6UMuPxoFQqcc4B8Hg89jw/jmPfR2FYGgwG7l1QysfjuFKptFqzDz90sVQOP/Kxj377xef+l//lH4ehp4zM0kKVTZrmZ06dKYfV3/7qNy5duvLDH/9DyTj55rNPTyaTzMPaFDOzrULlYVg6c+bcYbuLEFqYm9nb25tMRtVKKU3TLEuJFzzyyCNCqI2NDaVUpVwbDYec81KpVCqVqtXqzubW9vZ2FEVRFCwvL+4ddDHGlPqj0cham+epYxP4vu+SyXGcSq13D/ZnZmbOnD+3cbmDEGEsEEJUyrU4Tta/fWt2bk4I9cJz3z57/gyyYJR+49XXOA8QgJQyQGEY+mkaTyYTDdYYw3xWLpcRQgSQEIIyvL/fDn2vWW8gD+VZoZnudrv7+/te4Hs+u3DhPsrJZDLhXnTixElE6JXLN3y/NNOcofOzw2F/pjWfpMNyGMXJWEpbCqqVknr99cv93iiO06KQK6ur8/OLu7v75UrtvvP3d3uHTz/97MxM8+TJUw88cNHzOMak0aiPRiOl1Oxcq9PpXLty+ZFHHvG84MEHH9zd3Q2DoNGovvDCC2k2/vN/8c+/772NL37htwln9XopGRRaawwoS1LkASFkMpkopSqVSqVScWwdIXMEhFPm3Fbd/Mw5JwRJKREygAwA0lo3m81yw0/ywcWH71s9dVIJXeSiyMxsa65WqS8vL1eD5q2r21KnmE7Nj1dPrtAA92/3pAbGWLVaFUqOJpOZ+ZlWc3ZzYzuXghrI83x7e/vRxx5rt9tpkhhjZlqNXvsgTUYTSsam0+/3Lyyf+OE/8qnZSuVf/9tfv3Dx3E/8xE984Tc/L2URBQyZXOSTf/drv4SMPnli+Ufe/9ST505fvvZGGcHqiRNvvvralz/3uSceeRSMTeP4wrlzv/QvPxtPskaj1d/fLJXCtLu7uDivx3F7/fZstSw1KtcbVpvhcPzBD3/o0qVL/cOOLBJK6cHObh5PfuQjH/3mN77ebNbjOMYY7+63y7PN973vfTvD7ssvf4cG3vz87JPvfeqg0/3yV377xsZGoc38/OLC8oJHWZ6La9cOfS/knPb7Qz8K24d7Bmwh5e7+zhOPPby9vXvtyhUMttGaydMEMK3U6hfuv9gdDFngI4zPXDg/t7x469beiy+/RD2qjEaAAdm52bneD6bw8Ls3peCll+DTn75z5ODgTml5nsOXvgQ/9VO/Dz/0la/A3//776TxDgaws3OXDPTzz7/rqvxbt+DP/Tn4zGfgP/6PIYruUjf+7hYEEATwV/8q/PiPw9/8m3Dr1l3/qhS89ho8+OCdI4eHcHDwLi7m8BAOD+/CrP8v7eZ3cPBOaPjcOXj66XdxhjB8pzjJ5ubvSQOEUvhrf+2dB//pP4W33vpBz6AU/PIvwwc/CI88cufguXPwoz8Kn//8f/iFfXc7PIRu9y4a9csv36Mz7O3tpmIihCoKiYIp1un27dbafr/vUMJms1kulweDfqPRSONsMBjOz88aA1evXk3TdDIe26nnjM2yjBDGPR8hlAnH7wOMEQBoK7VUWmtCuZYFQkgbkFI3q1Xf92/fvu2yYlmRu9211lporTKDQAAAIthBbFoaC4hyKqWsRKU0TY6zm87QbDQaFUVBKfU8bq3x/dBam6bZZDIp03uz9K3zNwcgBHlAj43an3ryCQRQ5GlcpI1GhbEmEGsKPY7TwWAUJ2lW5MiCARtnaaENIQQRqFdrLPCttY1Gg3meRxlFoJQKghCwddZPUwKEtXd0Kq0lyBZ5urS0AgBgtdW4Wq2meZZlRb/fd4ZLDpfBGGurrbWOv/bdrdvvEzaYbkpB51kRRAHlPAx9QgjGNAxDrfXBfhsRVKmWKpXKmTNnJuMEAMAiqaTznoqiyFqtpYIphdYyRqTR2GCnrkAwM2+rUsEYOxBnMpkAQBiGnHOXh06SxG1wXNahUqkEQcA5d67O2tWDF8V4OJqfnfN9fzAY9Pt9c1Q1jPFUvbTX6zk2q7OYjqISxthaWatWGecIIc59a5ETUmOMyWLKSXIADePEGMM9yjgpclkIIUReFNQF3tooqQQhhFJcqVSUUmFYynMhZfew3XEu2SJJkIXQD4qicIXtDjvGQDDGFNFjLMDBx1prI80R4o+ttgjA0SGPe4K1No5TAKCUKqWcNnSr1ZJSJkmS5zkBhBDKskxZt68+MldHYGHKgcUwPZV9m00ZASultBipPHvg4YcfeeSR8WR4a23N0VwuX7lUrVaTJHnrjTcIY87wQykV+H6e5wghzrw0ycIw1FY7VrsjcIR+QDATMq+EFQcXhkGQZZnbIR73hykR1RDKKfcDymme52AxgCWEALJaA4DBBJf8kitWNoYo6RRjibWWUVZgiRBxFD0ATAjyfb9aK+Uyk8YJrBtGuMjyW7duzczMOXUOBNP1Q0pZq1WY5xVFoZQDTbC1iFJizNQTvlIpex7r9XpZlnFOarWayGTncOAYzQ4EdyKQLmHAGAtD31qb57mDraMoIhRba5VSxqgwDB1ML/PCICiKwvO8LMsm41gIYYzlnGVZRgip1Wrz8/MAcO3ataIouM+P2VG+709/y/O63f7+XtfzOGO81+sRQkqlkgGlla1W6lJqAMyYhxEJwxBjmud5ngvueXYcO/aVtZYxhrCOk2GSIs5pf4CrtfshuccEEpa4V6rUalVC6MzMTJYWVy5dFUr6DFtljdYAmPM70q4OJXdwVFEUu7u7jzz8MCGkVikvLCy8+eabnPM4L5zwNKVcGxOGYavVGo/8brfr8m2jydh1DAeqvp3R7FAtYwyyQDB2/DS3xwc8rcSnlNZqtWs3bty4dQtjzBESQhijqUeVldrIUqXMGDEGwjDknre3u+2unHN/0B0PBglnzEED7uc0WIRQFAWNxlKrUSuXy1kyHaQOr9BakyOaHef8ONXk3Dvx23RvCCGAkbXWaB0EgTMzdIlGSqmzWlFKuZSb1tpVPLhH4fiUo/HYlXFLKUulkhAiCAJ8pAuEsdOnMcflDoAMQthiBARThKyduiweTU1TOLtQOfdLrp8fJy+PKyrSNC1UgYAA4DwXWmuf3XvFwQi5/OXxu3B5JgoIrIUjm0SHPLuuyDnPcuNgdIxxuVyZn5kdDA+UEtVy2ff9er1aZAlYnKHUGqUVktpII7TWVkmHSKpMj4s0Hm4roTCmeVp41MMYG6O00YQQhLk1BoBQypI4CSIPY8AYaS0BwFqEMXGLi9YFY561yvOCLC2CoGQ0eD6yIOZrs2EQSmEo97M0KZXC8TgplzHGtFKul6K6x3wA4JTduHkVY/3Rj77HC/ylpaU3L73BMZlbahY6Q8YAsr1hVm8tVOsrWuG5uaWqX5lMJkKI8XjY6W5neTo331o5Md/v9y+/ddUaFAY1I4i1jqI+5QIfo2f2SN/8DiX5bUixezFODBYZa4xBxPUB/fbcA0LoDhJmHH4NYO9kCeAorwMWjFFHMJpTj+EAyim9eB4DAMa8LC2UNFKqEcGjwVAWWTWskgqpVWpIKmsspRSjKU2bYeJ64xF0zrgbP4696tQPAAWeT5AlCCOEtCyGwyEY4+j5UysIi5QxyFrH7jdH6ueT8bhIMyAYExKWIme2jDGlJMvStDCCShpWgjzP9w/bDSKzfDiMBrxsut0uffO1NxBCS0tLeZIxRsMwrFeqoE1Qik6eOVmtVqMo6nR6o9HI9z2MsdWFEEJrXSqVPM9bWl4YDAaU4iiK/MBTuVxcXByNJt1eb2d7DwAVmQDA3d5gc3NTK3vmzJmNzdsbG+v1evX8fWdnZ1vt9kG73cY0KmQqdNaaaQ2Hw5Onlk6fObG9s/Poow8PBoN2tzMc9ofD/srKSuCH8SSbm5srRdWdnYMkSay1tVqNUh7HaZYVURRxzgeDwWg0iaJoumYjaq0d9UcW8/m5mdnZ1nA4pBguX76apvmt9dtS6KWlFd/n43EshKiVS5PJKIqiIGQH7TgXeaPRmJ2fieM4zROhCqkFpvieU4W1pigKDdoPeJJOrFbVahWMffrpby0trSgl0iymlEalYBJPTp9ZjaJoa2snmaSFKii1lFCLsDXIgtLGbTAwPkJsiyLDGDvlE7e+HiVszTHzH2N0VImDhVN01YYAMmB8yoedtsjUUw+d+2v/2X923+nVK2+8IbKMIKuUYphpkxZCUEKUnI4fbcwxnoUxtm/TKjq+5SmqCzD1LHVT4TRDS1xs+vbRaIzBGDkCdeh5iNJKmTLGhFZSKW3B4XTVcmWSJJRSSqA9GcdaRM1KIRW1NM+FFspjHtIqCsJms7krirTIEMLWgjOPnsLKCAmtHNbpxEAccu8K1oRAiwuz1trRaISs1VpPJolSu61WazDEtXv6xnCOKS2KwvMZ55QQpIx0THZHOTHWRGUXtdsgCG7evOng5pOnTrRmZg4PDyfj2Gg4efJknucbGzfX128vriy7iFBrC4B9P+x0OoyxBx54QCn1ysuvlqJyvdZw4WleZAihPEnbe/tb9fKp06vDYb/XHRAgWZZzzotMbK5vdTrd3e3986cvhGEYBMHc3NxvvfzlTqdTKoVKiX5/+PTvPOMHHqX4xIkT87Ozo+FoZ3PHJagncVyrVgeDfrs7YqueUYoQUooqU7vbIArD0DFf+qMhZlQa/crrr7VarSiKnHCV7/thGC4tLV27dmUymYRh6AamtXa/vVer1s+cOVMURZYVlHIpJWhLKbtw4YK6Ivb29mZmZsKwNOgN640KaBiNRiLv9fvDubmWe1lxHNcb1ZXV1TiO19bWp+YYnscwKZfLnLLt7V2tJeUEY5xlxezsbLPZ9Dzvxo0bg+EoCII0KYyxh+2eAay1lVJ2DrtCFs4K1vNpt90bT4atRrPRaBLCZ1pQrdXX1ze1tlmWHRwcTCaT+UX4yEc+8uSTT37npW9vbe2cOrW6vLx86dIlhNCJEydu3Lh548aNMAwwQt3u4WAwKperPuOTSbJ+e/PggF26dEWp/GC/E4W169dv7G516s1m/3AzZMgaG4ahwtLN8q780OXh8zzP89wajRCimMhCcN8jZCq7JoTgHGOMDQCy0Ol0NncnUYWeTE68+ealem1mf/cAAJrNmbW1NewRY0xRCBdeFXlemYnuu+++1y69Mjc3t7i4uLK86lxoAeCw3c2SidB6MplEYfng4GB+fl5JqZUK/WBxZi5gNGQ44iTktt/tmiw38eTR8+cev3j/4d5uWC1124ee5+0f7M41681G+cc++eFRp/trv/RLL9y+9dTF+/6Tn/z0c8+UjYZz5869/4FHfu3Xfq0ZlBaWFl999dX9vfZ73/vkF7/4pb397Jmnv/mRj3zoYH+bYH1idub6pUshwj/+f/uTb1y9+p1XX9eEGGMAmXE8qldKiMArr7+SjQd/5Ic/niXv+z/+xT8/sbjU2Tu4//77aVCymdUIB5EflkudTmd3d/uBRx7xy5XvvPxy4Jcxph7YtZs3OfMuXDg/Pz//6quvC51zQ3f3d5aWFhZX5j764Q+/+PJLr731RuQFjUbt4v0XqtXyt555tshzzw8B0I31tZtbW82Z1tWbtzY2DjFlhBAlDSMUrN3bO7g3H+ZdNozfaeOG8R1+Lsa/P65uW1vwT/7JD4S6vltdYNeEgF/9Vfj61+Gv/BX45Cd/oD85eRL+3t+Dn/mZu6DP777fMHx35niUvvN5MvYuvM7+oLUseyd6/uCDQOm7ANDL5bu48wDvAhe+Z+P8nUq7eX6XQssP0jCGb30LHn74Lvaxtb/Pbwrju2wJ4Xt0hvmFxVvrZndrm1KOMebMd+Cg2/cihKrVahSVEEK1Wm00Gu1sbw/7/dNnzzabM7du3R4Oh+PxOPACQgggw7l/nM5nzMsgcbtKRyaQUgNGlFIXmCljtdYWwO203RKc57mrJnbKrVYpKSUCAwAgwbHDrIZTp05hAhsbG6BNrVbtDfr1aq1UKimlnIyeCzLL1UqWZUJJACiKsQYrxb3JWUfEK2uMkcZQQpS0DMGrL7388fc9VQ6jkchbzabWWuRFv9Pf2tjudHppllfrzbMnVxHBtzc39jtd7nmc86QVLy8uBJ4/GY2zIkeETCYTMAYhopTFzIHvRwKIR5QLxpi1mnNeKoWU8k6nI1WhlNNYkAihRqPeabddTbQDL7Q231WkN22EUAeEGasY5+VqmRDi4CEAUEoMhznGNAh9rZ3/8Gocp1evXhVCBH4JU0YJybPCgrZWE4QppRQzawEsdTXg5m0qw47FRil1+2EpJUIkDP16vc78wK3FLuWfJMlx1RQAJEnikqmETc+jtR0MRpwnTlnCkQcbjUYcx1mWDofDWq3mdGBv3bqVpqk1xqnoHgNSxhjnxpamaafTQQgZpQ8PD51KsgWdpqnjITLGJnGstXblvQ4ABQDHuuDcHwwGrio8CktFUTiF4tnZWfcrSZI4EQbGPAxouu8xdyRcAQAhDIABDEZUKe3oV+BUaDEihClROJ6Nc+JyY8EBbS7yd98/xokcEfLtSJZDIo531/bIHMnBMcgaz/Mmk3Gt2Ww0Gs8//3y3d9hstYqieO655wCAM+/a7SuIUt8LHBrIOWeUOuaTkBIhlCSJRTAeTxBCszOt2dYMxpgAopQiZbVSVk+7ca1Ww4Qwz8+FUkpZpQEZ6lHKCWLUSQDbqbitBeT84RmnzBlOCiGVNFEUAWDPIwBgprASnspMG0uAgkXD4RAzFJT8SqVECGnWG/VKPY7jN964jBB64j2PB0HQbredx4wxRolcaAVgGCO9Xk8b5QDN0XDCOee88H1/aWG5Wq51O/1knAihEQKlVLlcnp+fNcb0+h1KCaUsSRKMEWVYCIGQLZdL5XJ5Z3c7JKEbxW6UWWuNUZ4XzM8EUaU8OzO3tbV16dIllzZDiFDKsywzZrSxsdFqtS7cf9/73//+V1977fb6LYRQEqdR6JdKFU5omub93tDBPk6vHCEkhDTGUM4XF5dHo1GeyVLkRVG51xtEkXfxgUe63e7a2trK0omTp05QStvtdq1WI9QURTYzM6OU6Pf7DHnpveDm9zz5WLlenZ1rvfrSWxij1kzjPU8+/tabV7M4dZrOcJQnI4R4ns8YU0Y7GlMYhkKI7e1tSuny8nIURXAE0borZ4yZonADptFoYIw7nc4R0y53jCgHBL+jPzNC364dfIRgAsY4y7IoinqDgRvprgLeGKORxgC1WpX5mBCH2eHxZAIApXLVGpWmaa/Xy1PpeVQrQzHT2gBY3/cJZ9bqxcXFhx95cDQaDXvdtdtrJ5ZXj1nJ7lcAADBxS5vLbMGxkZq1Smk3lhHCWmvO7tQBOJDhGCh0p3Ios5tXHWrhPrq00OHhISFsPB67klz3MB0tNM0TrQ3CR1XR1liMtJRaa87Z26vJj37aHpeeYwxaIyG0tdr3fbe3chopspBJkmitlTLWIo7vnbJ1AKI50hH2ONdaK60twtZaghAQZM3xG5teA0YUYwMAUso8ScfeuF6vVyqV0XhYpMn+buZUFyiinHNkCLIYYSCAgFCELMbYKgIAYDFnPrYgteO5izxPucdK5ZLRFiGWpjnhvs3QcHRYrZa0Kaw1ACjwy2Cx0y1BCGmtjHWlMCjPc7A0YObE6nJrrqahSIs4zZM0nSqZ9MXQGHx42F0b75TDCkYIIStlcfr0ae571srX3vhOEPLWXNOC0hassUpqZXWWyqeeet/C/PLu7n4xzoRO2922lMVeezuZxKPRqFapB36pFDVEqmRuKPGMUdpAFIRF4XT5jzmUU6GSYxKnS4S4QnNw2BdMPT+JvUN8Psaj3ciCqcqWOeq0agqRIeukNhyF/9gL7ThH7gqV5ubm4ng8Ho8pw1JKSpkxkCbCGJNlwmdevzdM44QAIkY5jEtKYa1FxhLGjtc4AACYooIWIwRES6GsRRYIQoAwxsT5PiohAABj4jI9g8EIjgI5VQhXF2WtExDD5XLZLdZRuZSmaVqILMsCFgCgQqdlVqacCy8XoqATEpTw/ONVzHF7r0fzTADAzRtrfsCNMdVq5fz5857nuYA4iqJqtZrn+bEslNVFtVpdWFiI09QJhzHGkmRirSUUU848rX3fx4hqbcGAlmANqlSq/5//7f/7Uz/1ZxuNxu7egVSaefyxJx49deokxvDZz362UqnNLcx99au/3WrOnjhxolar3bp9s1QqnTq9Onh9gDHs7OzkeT6ZTJaWlm7cuOFcZV01llZ2/fYmIUQbJ0LtDQajfn/oIhhrUMADjHEpqgwGA2ksAAyH43q1qrXe3d0djSYAsL273+kMjDGrq6sYw+7BPmUYE5gk40Lm9WbNDzwpJWMEY2g26/1+fzTq36uUENI8XTk1U6vV5hdme73elSuXEELtdvutt24GwYsObyKEFEVx+uzqhfvP5pnYO9hjHi6h0CirlEHIAsKEYYTYcdma2y1jzFyyy+W+8jx3CXwX/B1NstPISUqJma+1xBaQUUTr7n6XA/yFP/sn//xP/zTH9ta1a2BkOQr2dvquGs6pbzv0jRGKXDEjpW8fFebu8pa3k52d0MR0oB4NP4KwE4Vxn48ICNpoTQlizJNKUUpZOUrS1PO8LM+DRkNrvb29TQ2wKAhbtZPzMznFg8mk6PazrCCIamOCIKBSTiYTz+OUYYStd6Roro+8EwnBYKw0EgD4UbmBMUYpJaXM83x3dxchFARBrVqVUhZFMRqN+v1+uVT/7pcLAFmeB0GgtACAJEkIo07BwClOuMjbvbUoiixIIfMsT+KdcV6kTuDfvakXnn9xf3/fWEUIOdxvB1EkhJAq73RyN5iNMZubm0tLSw5hdDtAn3Of82DW39zclLK4tXbj+o2r1lqlRKPecn4ynHGM8RBPdjcPht1JFIRFUXzuc587ODigHkeUhCzUWlmQeVYoLdvtN+u1MkIoDEsXLlzo9XrW2sFwqLQJguj27Y0TS8uc+ZRSa0FJXZ4tX7jwwGg02tjYynMRhqEre6xWq1laTCaTIAi0lvV63c3LTinP7W2KovB9/8KFC+fPn//KV74yJVMwBhjSNAGAj370o1/68hejqLy0tIQx7O5tWWOWl5Z8L7x147aQeZ5mADA717r40EOrq6ubm5sXL15M0/yNN94YDscaSa2128IJIZRBShmnq6jBDofDPM8LJYUQWlnGWBTFtVqDMTYcDqvlMg8aWZYAwKDT97yghnGpVPG8QBSD06fPVmv1t966LKVuEvbww4/2er1ut/ur/+qzpUq0tLREKR2NJmtr68PheGZm5tat25RyADwZJWHoM+ofHnatspWllfnZ+ddee6NWqzQbs71e9x/9o38cheXD9qBRnQ+DaaLCICOE8MocY+wGoFTTtKcr4HA+9QAwPz/fHw4csuAxTiglBEmltLK+71sNlLLZ2blOp7e2toYJ6/cmi4uLf/kv/j9+4Rf+p63Obn1plnNuVUY8jDAOgiCepABw/vz5brerlbh9+/ZwODx55uTG5u3drd2FpaWZ1lyv37FGHbb3K+UIG+1TovLk8mu3dZGXmC0mnfOrc2B1VHhlDxVavv/JJ87cd/7W5vq16z7C+JvPfGMy6PY7O3/nr//1j3zwqf/65/+f/+4LX1hcXPSZ/9iTT3gLiyuLZz77q5+rt5Y++Uf+6PmLjxiAZnNuq929dev2Xq/7C//r/xon41arRsITW1sbfhCtb6xxRoyVUsqvf+Mrg9EwCHyNdJrH1fLM6QvnRlkikNnZP7j40MM8KA+y4qtPP3NrezM1klrb7nYGg97a5saz3/nOAw8/Uq3Xd3f319c3EULLy8tRWMZgt7Y2MINGs5JkaaVa7fTbKysrcwuzPPJqjcbZ06cX5ubrs40izTTCT33wQzdu3PCCKNMKKF7b3sxS8aEPf2pmZu9/v/QvKAuQsWCN7/v298PZzBh44om7jiwtQRhOYV9j4Kmn3vn9n/1Z2Np6d78ixP8/GL6dDvztvw3/4B9MNR/OnIGHHoLVVajVIAzfiQIDwOoq/Of/OfwPb1OR/e77LZeh1XoXIHijAaW7hfuffPL/qlgzAOQ5XL9+Fwt4cRF8/108kOVlmJm568ja2u/pktIUtrfvOtLrwebmuzuJMfDGGxDHd+mSr639Pr+pVguq1buOPPXUPX5CFEILGQQBQoRgRim1xhRZgTHWoDFCURgqpXa2th1/Kk1TwHg4HH77298WQlSrVUqY0brRaAghyuVICIGAwbGPVlEQQrS2xpggCJzPhO/79fpCnsZxnFJKu90u53R2djZN006vG5ai+fl5x09xHCsEU9DN7YXCShSG4eHhYZqmFGEAcPt8F2FWKhVHDQOMlFKlUinOsqIo3H5Sm++hQY4AY+zUZin1VCE4I0UOaTIhGHuM+4wrpVBuJ5PJxsbG2s3bShkNhPppq9no9QdCCJ9xyvni4mK9VgGAoihCz8cYi0INBgPAOM0zFoR3Qk1zBBYat8syRVFEUcQYQwhcOeZ4MvSDyJnKRqVge3MrikIXCmJKHIXnnjfkBzzOBCYEIYwJ8jwPIbc/1JQyZaxRjuJpjFVB4CGE3nzzLWMMo57nRWmWG6MoJYCQEMpicJF2kqTWOPvBO2EzPhLQcz+NseOhg5M0NKhwIssLCwsHBwfj8bjZrB/xWE2/3x8MBseVvIQQAHzz5k0tBBDk+365XHbai4PBIEkmAPAX/sJfeP3117/61a869ed6reYeZF4UricMBgPH1ej3XeEaNcZwnwmhFpeXZmeaW1tbcRw7NIQxdrwfccGw1hohE+tEFNLpGjPKR6ORntISw1ar1e/3CSFxHIPLE2ijrOXcBwBjlEO1jphhxJlTORAZCGjlIGNkwR4zNx1Q5R6g6+qMMWPAQSoIISkEctVgeKpH6ehgShk4slCzR+589oj2RgjyqF8URbXRqFSqN2/eLIrivvP394c9J//q+3673WnMzLmH7DQPMUKc8/F4nGWZ+y3m8TAMK5WKEAKM1drkee7Ucsp+5KyniqLodDpuP5VkGSFMa62EAGQykWljDDaIYoeWWtAO+SWESSnHeaK1plhqZbXW9XozTVOXwNBmWiSBEDJmqtSRF9nqqeWZxeZBeyfLUoQQI1RLqaUpl8tZliVJwjk/ffq0UmIyGWkts0wQ7kQwwFqLCXY1EAR7GJN+b9g97MzOztbr9fn5+Y1ko1wOZmdnKeGe51nQQqjZ2aYFjREnBDtBSIyxEzBxV5jneZ6nnHPP85TRaZ4RQmSaKqWuXr0WBqVWq9Wqtw7lIaKk0Wi455/nqVJKKnHq1IPr62u9Xu/k6un+oNs97CwtLFbLZSHEzvYBxazQCgNRhQVkGOdaWYwtNThPsskgTsZJivIslkmSYMQODtrD4TBJ0lOnTlcr9YODg9nZ2UqlsrO7Foa+57HtnXVCSKtVTvfvMYGMJ8O42Dlo72ZF7vYjRa4qlVIynlhjMYC14DI0rlpRKHm0E9cYY5EXOzs7D198cGVlpdPpuEIZt830PE9KQQgRQiRx7HmsUqm4akhtjVLS5R0dXubKI6bJLWPdvmw66eEpLubWpiiKlDFXrlxx7EV3foRQVA0QskHkayOttczjeSZcmXUcx3Ozrfe+9/231zZeffk1rS3nHBnsMjpBEGBGhcjjON7c3Nzb23Hm7YwxIxWlNM8FpcweWfC5zJMD+4w1GGN3tQDIdVqCEWOMEmoMuGujnKGjamx3v1prN0DcROQSLW44HyeZjFHdbtcdR3cXc1trtTUWrAbrOPxHuArAkWQHxlhbgzA2YJVxCTBJiOfY90dpKmTeLo4BGmPMOT3+oe9u+Ei7GQCcqpK7R2ONNcjBnPZIhtuA013R1lqCGcJWKZUkSZZlGM0trSwCsmk6RtgOBgMwtlauGWOIQdYCsthYQC73BJpRh6tijImrIbh48b7Vk8sbG7fWN25l2UQIyf0S80m9Vjt79uxouL+9vc45XlxcHI8nw8EkDKqIYa0k9wkgXCiLkDVgPB54POSB6HYP99obBikvZMpojGE/TReXZq21UVReXJxPSkWSZL1OHwBKpVBr3W7v+wGp1kIvYoA0ZbRcLg9GY4qZT/houP+1r32tXKqcP3+eEQLMKisstmfPnubU29k52FrfSUZDazBGHiXEgVCImkIkCE15mUfJxSk6xDk/DpPcv7qhwRgDa82Rc6CbSBGZLovO4REA0BHe5Tj7d3IhVh0XBrmUqlvVjuMxY0y1Wn7yqSfG4+Gzzz6LMS5XK73uAGMOAFoqj3qMkCITIWeUEmwNp1Nk3KPMLV5aKjBTPWhXIXG8LAImCCGKMQZEEcZOJ5ogP/SdbLtDqAghU0ZmEMzMzLAgzKRw56lUKlpIKSVBHCHk+/7+YSeJs5znWhvLpCV2HMfSL0Drko0uPPCExumt62tqDVFCPJfWfeThxwCZyWSSpun+/m5a5JTSzc1NJ4MVBEGeW4zx8vJqo9EIgqg3GGxvb4+Gk3IlwhgfHBx0e50L990flkvD4djlrgFQ4FUQIlmuL1x4sFyq9frD9zzxvo9+7IekEZN48Ftf+fL29vbe3k6j0bp48eITTz55++ZtZ4R69cZ1Smmr1drc3HS2xU49dnZuplwpbW5tOCfDPI/r9Xq9Xl9fX+/1erVaTSsbT1IpNAAwij3PN8Z0eoOs0HmSxlmaJMnJleXDvFBaeJ6npBFCYEz7vYG19uzZszMzM1IWWZa12/vO0tFVO3b7nVKppK0BsJVaudsW0b0oYydWV2bmEEJoOBwOBj0X+iwuLl68eNEYGA6Hk8mkXqnX6/UgCA57B4Nuz/NJngNIFUSRyJWUWqQ5ox7zKJagtUbIUsoIIRYB9z2jpnpP7rG4+ehY7+I410cIAaEpQhjZeDIx0nzw8Qf/0s/+zFNPPJJNRptbm8moXxRFliVpnmRKCCGKQmptMTbWWsDIIcTWAiBslBaFxMRxnK0rmLRHPGZ0JOXspk90ZFeIjtxLrVUA01I1iklRFAjA4562hhJkrEKaeJwhTBCyhVCcEoswYOqVwqTILRjqcV5wl2BAaKohbq2N40QpGYQe59R5ecBdgmuAEMLH9tNHc4RbvRy4L6XEABnnbsx7niel5OzeLsMWAQLkMFYA02y1nIiew6/n5uZKpVKv1x2Px4PBIIyo5zHHaOh0u/Pz806G4jjbXK/X0zRd31hTSgVBILVijCECDz10cTwe37p1e3d3FwGeTCZJkhmjlhYWFhcXn3rqyTSNv/nNb+ZFPBqNnK2iEHmr1fJZGAahEKIUVBYfXNbauohBaUEZNkJlmbLAQWs/4EWRlcJSKQQHv7YaM1rrJEl6vV6nM0AIFpdX6vX6eDwJglBrnWVFUch+f9hut7vdrssSO/IyQijLsskkSdPYpYsvXXqTc7/Vmj1//nxRFDs7O51Ox/fDCxcuLC8vb29vYue6g4y1GAgOI38w6F+98ZYQIs/T9fX1SqXEMElk2uv1CBoRghhiLr2mtNja3jho7+0d7N9/4eKDDz48Pz//W7/15aPSj6nyV1iKXBnjcDIOlHSp/lZz1vOCra2tarV66tQp3/cnw9GFc+c3NjZurt2cnWudOvXg+q2bh5221QZZHPiR1npra+us51+8ePHb3/7OW29dO3Pm3OOPv+fKlUuNRuPw8PClF79DGK1UKoPBwFo7HmeUIs65x7jnseFgTAjxvSiJ05s3byqhq9UaGNCKcB5QxuJJKgqbJqIWlRAQi5ESinMipXQscmMtY4xxrpVysQsB5HPudv6uZselMcBYaRTCiFJiEBhjGzONhYWlJ9/3eCmq3Lp9O/Bkp334N/7G38iyrFyvPv/ci8k4C4JIFYYz3ypI07QSlZJJfOXSW0oZsNggbbXudrv93tBVt2ACYRhwQvMk0UWWjAa9gz2sVb99MNuMHn30wTOnVp56z3vWL28qMdnY3r1y+XVNIRX57a3NT/3oj8wttZ7+5teef+3Vv/a3/us/9Zk/8cd+6k/tbu/lFB9OJsOXX+n3/v3W5sEzr268eOUXf+flN4PIf/+Hfsjvxt986XXGvdXWfOOk/9DSQvtw/43LGwJbhO3a1m3qB2E5PL20XK5Vr12/nmXZOBlLlV+5dTtNP+8Riq2ZbZXb/UGj1nrx298ZpuntvU2DTH2mhpC2FhGCC5G9+sarmHgPPvhQlmW9QZcxYqwYTSZa25nZxiSO++MsKdAHPvABjPG/+tV/OduaWzl9Ms3zYTwxoNfW1hqNxsbe3na7vbG91Wg243zS6/frtdnN7a3NzV3ACFvAyCIwFy5cuPr6PaeZd9fq9XcCwa++CoeHdz7+i38Bf/fv3vmIMSwswLVrvw8//X9Sy3PIc2i34ZVX4F//awhDKJfh4YfhU5+CBx98Jxb8wQ/CzMxdzoHffb+nTsHGxg/666dOvZMN/S//5X/QbfyBadev3/WxXIbZ2XcBN79DuLnTgZ2d358LO25F8R/4h99bAnHa3vte+JN/Ev7Nv7m3CMb3badOvVO7+Zd+6R5fW19fF1JgTCllYJAUQivjXJsmkwnGWArlssiO6OR2v0UuGGOceUabQhVO0Mwx2gghDg7zPOb0E7Isc0sbY9Yxv8rlcrPZHFiIk3Ee54jaH/qhD4Rh+Du/8ztJlj766KODwcAxBpgT7lRTro2Lf7Ise+2116y1zo/aoZYTNQnDcGa2GcdxqRxWa41er8cY8zwPUerkNTDGQfg9xTTgiJ2glJJGU4oQwGg02lzf6OxuLC7Mdg7ahBOttVuCR+M4l5Ixdrh/4EchJ7SysFCp10rlcuBzq1UtKrPZuULJSVZMJglChDAPYfI23qsL9BAAIGPdTzsYK01TB1m6g64qP/Cj2dnZJIndAso8zjlFyL/nHRVC+EHggNQg8CuVEmPMGHVw2O72e7Ozs2HoJ0nmqrn39vaEEEUuy+UyY8FwMALAzOPWQpLEUhaB5wNDWpo4jj0euRJMrbWS0mk3u7fgXhNl2BijtXQKe9TjrrSx2+0e7O9XqlVK6cHBgcsQOMMPF5O7ba21yDEhCCHW6jRNHUPF9/1ms5kkybVr1z7zmc/89m//trG63qgxyp05DULIWK20kkoQRkCDT/wgCGZbswcHB0mSeB4bDvt5mrXbHbeTIkdba0Ix95iLbJ1+rjHGuaDHk8T3dRAEYRiWy1UHYymlBoOBQ2yNMdZMiZZaa0YI3O2mhRByxdoIoSMKDg6CABFqjAGjAUBry7lxqqxaa4enHatt0CNMUyll8R32tJ2qNk+LnR3aBUeFzw4D1dqEYYn5zIH+7uEnWepY4EIoxjxjACHS7fYxoghLjJBzhZmdnT195tzt27crtarWejgcCZEP+wMpBMbYSFWOSqdWT8w0Z3qdbpFmAJBlWT4cWkKnfjxKI2yNMZYAYog5DMJIhBBCruoUWeN43txai4glmBRSOOxBamX0nR0QQneoQoSglZWV7Z3bChQF3O11DgpplLaGIIJ7vc5w2KeUOolerbXnMSCAMQUAp3oxxVAIFbGgBFHCe73e/v5+s9Ysl8uTSVIUhcQyyxPGKKFWG4OQVUYhrAnF2hRZLuSRPkEY+sdIjbbGanDQ26gzcVSSybg7mSTNZtPzAgDwmc8YATDW6kq1XK2WP/vZXymXo5UTZ4pCNBszeZrFcZxMJpNxUmQiz4tms3Xu7H1ra+vD4dBocHIK41E6HMSunsBoGA5GlPJRfzTsjTGGeqW+t723t72TZdmJ1ZVrl6+N014URTdu3AIw8wuzo+HdphZHbXt315LtnZ2dxbnFJ554MorKhweHyST1wiAZpdJoitmx8lIhhZSFw7kQIg7a6veGTgXimLns/juVeAFMjhyJrLXlctlamxW5o0ClaTozM+O4KY6Vwhgzaspjm3YGx3E5GiMWIedp6dYIh9VGURRV/FKllOWTPE8JI4TRfr8fxzFjXpala2vreS4ee+Txi/c/9K1vPX3r2u0gCOEohWmUopRO4tHLL+8yRpCxlNJer9eqNxAiTFutDWFTnPc436a1tkcpn+ODlFLm1CrMdAY4Rordv9KpJeMUQbZHNFW3BGgtKWdRKViiS0KIw8NDKQvfDx1k4RbWqYyGU2ynVJsptusu6XhmAIyOBUMwxtYKY4wxCiHrJhVjjB8EeZ4fF0wQQhA4NRtQ3yMccZftLsPlJs20cOdI8VCDEydx4ifTXKlxCVeEMbbGGmO2trYmkxHhJAjY0tKSz73pTIs8hBCyxFpjtbEALoGKrCEIC6EQBUKwkLmQWa0e/vC5H9rcXLh87cr6+laRx5xFcTJcXV29/4GHTh82AdnTp0+u3dq4fm1zNMwpD7AGbUSex2fOnnz0iccxoo363MFB57VXn8EMFhZPMR8hSiZJPI5HyqooKhuj8iSWqqhUS3OzM61Gvd/tFlrd3rx95uzK8ollCyITWX/Y833/sNvVGnwvtDZx9TF5Lnb3dqSUg8FgPBju7bQ9yluNmZXF1WplZn98AMY62N8FX9PXgfBxoldr7djNxpj8SHvuOA/h1lNzpEZljLFWOz9bAFBaSKP1kQGgPk4toKleMxwpEEyXHwBrkTH6+Cfc/xCCur3DGzeunjq9unJifmdnB2Hj+QwsAcCBFyKjKbGhRzFCShXUgLWWIuyS8VZbjDA6Kn14O941vWbAGABZwADgJMi1BoKkENoYY6yxRgrNA1/1Bs70st/vR1XjcicIoTiOCaA8zzFnUVT2g2CaJMNUqcJa69jJEgot5QMP3j8/t/j6/svxQKLUmzowWquzrKhWy40G831vNBq4BJFLW1lr4zhWyiwtLS0ttpRS4/EwTdOlpaU0TYejPvdZq9UaT0avvf7q3Ox8rVwbDRNXSl9MyMHBYRLnjfpMqzW/tbOrtZkkBeNWCLV2e/3WrVuUkrw48IPw/osP+F6lXq9v72zOzS1cuXKl2+1GUeSy33Pzs+fOnUuSSRQFaRpXqxXOKfNqvUE/DMPZ+bkwDIui2N7edqM6CCKttbP2MtoGftjvDY6IGwpjGI8nRuu8KHw/jMJSCqnW+o3X3/QDr14vZ1kSRZHQTGs9TmJrbZJkV65cwRjPzDSVEkrOwL3g5pmZmXb7lfF4mOd5mqYui14ul6vVKqU8TdPxeDwaTk6fPs08b2Pt5uzs/Ac+9NjO5t7G+paWqN8bjkYTjChybiSMHgUHCGOkrXXBKEKoUqm4lcDhzq57uTFz3M+4ogjMaDyMGPszP/2n/+pf/PORT7bX1+JhLx0PhoPeYbfTGwwyISxGEk1REHtkTngsheGSpdZadCTrYa11Uj0GLLZ3EGf3t/goo3L85emuAIzVoMBlgYyU082PRYAp8xhLcxH5ASECY+oHQWlm9lvPPL22t0fLnkFgEZbSOhSZ+syJrzFGARkAE3hMCcQwUdaZsVqMj+Q7tAaMjgslsDNgtIpShjFmmLmB5MStjDHO9veeKwEhWBQaa9BalsvlWq02mUxcLaEj1LtAVgjR6w3zArdaLYtMqRL5XjgejzHGQoilpaXV1dU0TeM4np2ddZYCnufNLM44UoBTemKMjcdjRjlCyNoCT31OUa/Xq9UqrVYrScm5c+fW1tbefPMaY0gVxgC4LWgpqiEgMzPV0Wh0eHjoeSyKgpNnz/R6vYP2HsMYAJr1VlFklNLAj1yCpN3uVGrVhx56JEmSOM339vazLPco8zzv4ODQlXCmSX792s2lpaVWq3Xz5s00ySnhgEySJKXQzxJmVOZ6pqPJb2/vTiYj90gRsqurq4yxMIhKpRJCllJiQINWCCFMYGlpARGo1xrS6PF4XKtEhJD9vT2CaLVSM8b0ej2LTFQKXJ1vqVS6devW4WFXSvnYY4/V6/VXX/pOu932OPX9ECHi2EyIkjzPue8x6mGMsyIPo7Lvh1tbO61WY3drezQecM5L5XA0GvQ7h3mep0mWJnG5XD44OJRSF8X48uXL589fuO/++y9duvrss88uLi1zRi9eXDh9+rRSqlotP/DgxcFgsL6+WalU4kl65fJlay2lvrV2MOjX63XKcJYVeVokk3RlZUUJMx5l5QrDyKuUPZHr3fGhS2uXvADAEMI458ZaN6cHQZDn+WQ81loH3LNHVZ/NZjMXRZqmoY84p4xjQkiWFnmeG9BeSK5duyZEutfer5Zrs82l3d39druDrfmRP/qjvf3JjVe3Ao8zxvIiyfN8f28PMbW5u57neb3eDIJg72D/1VdfDsulU6fOjEaDNI5PnToBRrYazYXZuS9vbOjCLrZaZ1ZXxr2DxbnGe9/zkBJJ0t/7yA+//1//m1+/urZuqf+Nb31tY283LtIXX3/p4x/90OyJJVkkE6v/4T/9J/VKvdVoPvPWmzcv30AGURJ86AMff9+PfGJzc/PZN6/nRfbMW9cwYVleJPmgeeqsH5ZeuHzj/vvv+8RnHv7GN74BgOdWVyrlamNx5uz5C1rr8xfOHBwcLM4vzM/O/vI/+2fZJCaBJwvxp//Mn9VS//Iv/+rNW+sLKyeicuOw1053Dh584Nxw1D9z+tTJ+85+87nnh+Nxs9n4j/7Un/jCF7/Y6/VOnliVssAYt2brhMGt9dFjTz7y0Y9/5Itf/GKu8uF4UGRiPBqdOnP2vvvO3d7altaMkvTiI4/+oR/7sdfffG0yGe0ePLu4vIQw/sY3voUxoYRwynKAQX9wz0nm3bZHH30n+fRLX7rr42uvweEhzL7N/fSTn4RvfvMHPb+T5jAGMP4/heBM6fTkxtybmpqmkKbwta/B174G1Sr8j/8jPPzwnX9tNOCnfgr+4T+8c+T3eL/vkPI4PISXX/5B//YPZltfv8stsF6HixffhVvgxz5218fhECb3Mq74vbS3M5R/8PbdMjLvaJUK/Lf/LczMwAc+AF/8IvyDf/Cuuc/f3RleeeUeX+OUYhJiTLXWnu8DgDWglBqNRg5KS7OEM89FJkJMPYucdYSDrlz85uRNXe4wSRIHFLqorygKt8M5rkXb2tk+PDwMPT8IAktMtRosLy9fv359NBkDTDGaUqkUT1JMCKUUwXTH7qhzxphKpSKldDCWS5pTTAghW1tbjjKmtAiCYDgcIoTCMGw2m/1+X0r5Tgz+bc0caa8pV+qOUbVc6nd7/X4fjL1w/r7BuDscjULPP3ViddifXLt+U2jNuD/TakSlytLCIjAiLcSTSeA3fe67Cw6CsNB2OBhBGBFCtQHkNm8WI2SxRebYWAlspVKZm5vFGLkCVYxBa5umeRiGaZpXynJubm5zM3M7SWeacgxnvKNRSg2QoijKldLMzEy5HElZHBx2J5ORMWY4HHqeJ4SQUhdFMR4PCcKU8iQpGHWKw9j3/SxL0jTlnHqeRynPtSSYra6uUkr39/cBnMTjHQDIaftqrQCAc995g1uLXNlWURSe71OK+/2+E1Z2yEUYhseBrkszHAvrSXmnupxzXqtVGo3Gv/23//arX/1qXmQIBxhjz+dOinAymSCMPc/DFBGEqcWOUz+/OC+U2DvYw4Cjcglp9Mgjj2RZtr2zmaQpY0wbhSzhnLdard6gr7VGiLi4WgjlCgEbjYYjLx9LmiZJ4mq2iqIglBxLTxoEVmulhFGKMEYJD4MS44RSKoTzwXPiyxgTAgAUoUJJAAiCwDGsnarG8YMtikILacxU4VRrjSix1hZFYQzckWp9GxI03bprDRiwxQCAKLFWu908GAMECGMY02SSYEqNnhqaGZMbk3met7i4eP/99zPqzS3Mj0ajrMg7nc5oNKpUKqVSRRQZAGAflhYWq9VqUeSOjx+GocWEe560U61tbAFhK4TQyGikMSGU4SNfeSSEdI/U2SQKIRxQn2fCWDXlJwFzHEljzdHwNUEQjMfjSTzCjGJtCCZgbFAuIYuMxlrr3qDv0ChH8SEUGWN87vthmOVT+V0nHBSEJS3FaDwEMJVKqVryhBBKGsYIQjA3N2uMGk+GCAHClhDkexFCsVIyz3OtLcbYIOwuzNFxXA2He5t5nmNMESKMUUotY15RSKVMqRS6YhE/4JoSKYvJZFSrVQAZre3Gxka7fbC4sEApNlIhizEmxgDB7PTps63W3LVrV0ejkTFQFAVCJEty3w+stYQyj4VSSmsR9z1ABmMipRwO+5zTne1dSinGfqczajRrCKHDw1HsdSv3mkCkRKNRHISV0Wj02muv+H5oFBCKGGOUYQTMKI0QNsZIreAoV6S1ppSUo2pXHI4GA4zx3NzC3u4uABCCHSvcDZM0TdwONIoCV8Xi+74X+OPxqNvthmGY57nv+w5xdqmUO1k6hI7RKIyx0x3FhOzt7RVFUSqVXPdwNqSjyYj7VAhhkU2SREpljBmNJpRmpVJJQnHp0s2rl28+9uhjUVh2uLYb+3EcW4w8j2ECjmbkCMsIWd/3h8Oxm5oQQRhjciTF7oYhBvS2woUpcOyWS4Sn+CBCyNqpzqeU0tUDTSl3Bk1HdCGAQL1edwBRHMdpktfr9VKp5JBEV8GDCAiRU0qNUUoo9DYoAwDgqIoCY4wIPoYj3dcI46482i3QbrLFiLjsFELIZX2Ndtr9hvJ7i9zFcey0huAIrHTZFzBv014ANwPZY2yRUuoQZ7AIIRMEAcE8jmPP55zjw8NDignDBBOkpUbAMEIYM4yRy9AaY6QsGPM8nzkHLwD15puvdvubTz71qB/RRx+//+Sp5Reef7nTGWNUXL1xCVDl5MlVP/S2d24GESdUcg/SZIIRoxRXa+H5+06fWJ5Lc3mwv/Od77za77UXFmcO2nvDcV8aXUhhLFTq5SDgSTqSRaakydNMh1VAoLVIs2xpaa45U5cqU1YqLazV1iLfDwBwURRa2dFosLS0dPbs7MHB4WA0PHFyBVZWW83Dna29XmccD28HPAh4yVrAFpwxAAFkXa7SHqWoj7SwHXxMj+rgj9++e+auIxnQhBCK3DiF4z9xQ88R3o0xCFlOp9ZKx28WEWyM8X0f2WkG9Aiqwj7zm3PlbreT5ZPxuH/23KlavZwX4uTqabBEKQi8ELRixGbJcDzq+dzDEhw6Z4yZYtwWAQBxl42n2Ws4EqVhjLh+QgBZowgmFGELBmOsjZFSeoGvpEmT1CF2TvcJKJuMx4xzznmSJE4e+ljoxnVRoZXneRIZI4znecwSL4rm5uZ2tnYPep3ecNwqFmmtWm8065VKxanMpNm0oMnNPu5/nPOp1pZS2qj5nhe4KPbChQutVuvffeE3CKNJMonjuNMZUcJCL6xWq7Oz8+Vy+UZ3X0oVReVGo+V74XueeJ/W8pVXXu0P2qVK+J73POVUO5zKGELk8cefiOP41VdfpZTOzc2Nx2MHwxUiFwI6nTZCiHM6Nzfj+eygvVOpNrWWSqlWq7Wzs9PePzga5MzZEPu+L4VaWFjAGFPKj+NgKQslZbfb9YOoKMblctlalOeCEGSsrlajWq1GCMK8oqQGwG4DcN/99/uc93odtwTec6Z45ZWXhLnVaDR839/f33cOGyLLx4OxsmZ/fx8sllLs7e1VKpVTp1ZPnjzdbDUOdg8QQv1+l7Fgfn42jlMCLglmwLgpVRuDhJRun2CZcf8DAJ7naa1dsYa11olkqUICgGdIyL0/9JGP/dk//ac+8kPvG3UO1zZ2JsOOyrNBr5NMRsNhP02z3nDE/EBb42iSMLXFNNaCxdYcidZPp++pz4kBAOryQtY4h1R0LKz+Nj0a91hcoGamroeGEALGGqUcfYNiVojCnSEvMoyItXam1Xr91s2b63uWg8oLacAiQAZRygki1lppXKEcDSPfo0QbiYEqpXSeI4KVUozR4yGNCHZ7qukypgUyiBLqM66xNtMMqnKxuGMrfK+VgDCIomg8lqPJeHIjdnUurtbVbS+dr+iJE0teiDj3IEarq6vWWq1smqYHBwfPPvttJzrhdHgxxsvLy7OzsyRALlZYX19/660rZ06t+r7vnJcZY+95/PEgCAjBcTx+883XX/zOC0899fh9951bW1ubm2sWRWE0aK23N3Zlrh966OJB57DfG0ZRdObMqalpSRCcOr0alYL1W7cQEKfaUatVnD/hcDju9XaDKMzS4okn31upVJ577nljTLVU/tKXvtJqtT7w/h/61r//Juf4zJkzzgoZjnLXQRAMB+OuOAyCoFwuj4YTp4K/t7cnpSQEOUuHj370o85csd/vj8djTI/SsxwnySRNU+Zh3/cPDg7KtSrGuNfrAZilpSUMJE0yF0yXKtEkHlFCKaWYksCPxuPY9/25ubmlpaVvP/dsv99fWV50U229Xm82G5M0cT+6uLBcFLJz2MMYJ0mKwE4mE6NyAGAEW4qDwNvZ2XGVRA9efMAY4+7UWtvtduP41ebM3F/8i3+h2+2//Mqr/Sz+9/9+5PpMt9v9zrdfNIAmk0mlXDtx4oRR5vr166WoHJXCbrdrLapUylqPikxcfOChM2fOvPXWGx6PyuWqlLp90KMsYBhnNAVknA6MCzqdKKcxxoUgLvLI81wpY41xVZlypCilnscowxaZqTm172ur2u12Y7Y6GAzG40mzOTseJb7v9zvdxx9/dGtrR+QFTHVIDUZUSlmtVnM1cfQ6V4vnMT4YDDCjrdp8nqdZljWbzU63rZS4efM6AlOr8p3tzb3bN1fmm3//b/2/Wo3SoLv3ta/+1pe++oW1jetPPPXeidDqxnoGOtnZKrR68fVX9nqHK0tz9cU5w8jrV27NNoeMeSYKGvU5q+mzb74111yQPKCVetLOsYT5ZhMKabPixdeuxPl4NBpsdjof+5GPRzONXqevCdrY3drZ2d092L/vvvsO2u3bt9Yv/On/aDDoEUL++7//93Qu/uEv/II0emZmtlprnDiNk0JZBMsrJxcXW1sbN6OSv7+/v3r+DMK2KLLrN656R/qYucgpI3lRCFEMx8PHn3ziYz/8sS9/5Uvf+p1vfvhDHwFrB/2toihGk8n65raypjccvfe9FzjzLcBgOLxy9dL80uLP/vn/e6u68vUvP3/j9TUIoEgzAt9HTjiKfiDF4TCEn/7pu458Nzza7cKVK3fBr48/Do8+Cq+//v3Pf+oU3H8//PiPw/w8/PRPw3D4/f/k3bZSCf75P4fXXoN/9I8gz0GI3+3LoxH89b8Ov/Ebdwk0/+E/DL/2a7C7O/34e7nfxx6Dxx+/68iVK9Dr/YC38ge0pek73Rf/0/8Uvva1d1oI3rM98gicPXvXEUK+zzv6vo3Sdz7kZhOWl+HGjXd3no99DLy75c/PnbujK/1DPwT/5X95JxPzYz8GW1vwy7/8Ls7/6KPvlKn5Xp2BUmo0xhgXWa6EJoQgwEIIa61jsFLCXJgehmGWZUf1VVMtPyEEwZgQ4spxsiwlhGiFMcaTiVKFcHtaQqbET4wxAsLoFG2TUjpHmH6/PxqNHC4chmGSJG8nfznVQXNE2sIYc86bzeb+/j7xHJfKWGONVQCkKAqplTubtXYymXhal8vldrutlLLfI0Byl0cZo5RqQ5AFhAxjNE1TguxHPv7xeq1ca5b7w561tsjlZDIql8uLKyuUeWUMcZKUypECiDzf8zxszTFDx/f9G6+8Ya0Ng0AhsIigt13DMWhijMrS9OSZ057nJUmi9XQvjTGygOM4rtVqe3t7WkunaHy0sBL8PZQ0a9VqJspJkkRRZK3Nsmy/vedKuCilDkeewg2EIEQJAkpZmuZSGM8LtFKdwx4mhnMeBJ62xgiBEK7Vaq623V2GQy6O0WEX3nuU4ynxUFFMeBQFgTccDl2on6ZpnqbVet31ARfEGu2YItidxD0ZV6Rv7dSFTGvt/FE45/1+v1SOHELq+mecJFIpQtEkzq21Li8ShuFg2DtoR66Sr1qtPvHE4+P+xGk3nzx5cnNry1HF3a57ksRCCEwZBsQ5V8pUqx7nuNFoKKWkVA4zchCzw9Zd0KKURggR4mqENUL0qN8T5/WHM6y0UEo4xqWURRzHBhAAYK0RJW/PJ1HKHbg2VSSTEhlL6fRxMd+DIwVnZ+3pRoR5m8ozHIEOnucZqYwxBjmIwVBKXfh6hx9nsQsdAZw0TeDKAtrt9nAwfu2N1/M8L6TAGDvNHMZY4PlpFtcr1RMnTmxvbszPzrmzhWHY6Q8sAGLcEe6MVH7AlVKFFgqUHwRYglKKMcIYczvNopB5nosis9a6d8o5L4QmhBCCRKoQttZac8TIcdt8KeXu7m6tVtvb3wGCfR6ABkIwo95oPKAEMe45OJJ71OXGjNFpliCEnE23w/iQhVKpEkaBlEVRZAgRhEwY+b4Xel7g+36axlpLrY3nU2tNXmTGagsu3CVRFAmt0iT3POZ4VNZa4soytB6Px0WqCSFSas55FEWOuyOEGo1GQeAlSVIqRYQTznmzVXdK063W7M7W3urqqs/45cuXk0nMuUcIGQ3GT3/r6XK5jDEJgjDLsjxXlCJKmZSSM98YwNgiRBACURQunMaA3K6NUq2UmmQ5wnY8ShGyxqpKOK5U7zGBjMfxOEm4R8HmyU5iLSKIchYg62RznOwvppQSTN0MdrxRzbLMWgsYu8oY5xrqRmVRCAAQQgDAaDQCAN/ntVqNENJsNp2YxuLi4sHBgRBib2/PFYI7erjPPfs2HWdzpAPgdhxO++WY+BkEgat9IYxMJhOlc0xxtVolhGJEnQslIaRUCs+dPTsajIfDoVWoXq9nWY4xBrCUUoMAIRRF4fLy4lTiBpNapeo2GmhKu7Scc4Kww2cdADW9wunlETd9IVfGqrUxhhBkjDFgjy/YdSeEkFHTdJfz7mMes0dMZ/dNh5pJKR1N3vOYRaC15IgLkaMjBV7K6DFnzg0c5nH3WMyR6oLW2liJMGAgDrx2KTSllJP+BwDiVH/NFPH/XgnbWq3WnDmdJImbXV3l9NuhTzcYHZaC34a5O5lTx1z2eACQA/hB4IG1WZIKITih1lpCKDLIGIOcfQEQbYRSCmFrjFJKUMqs1QgDo2R7e7c/3l1cmmu1Gvfff/GhRy5+5cvPiEJUq/VJ3B+OglB5vocPO12EFePIU2w4HJ86tfrJH/m4MfK11165dXuz34u1Bsa8g4MDi9XMfL1cqzLuZUUutPT9QMg0T8e+56+srIZeeWdz2w94VKu8/wPvffDhC5cuv3Z97WoussCPWrOLaZpNJsni4uJ00hBif3dXa10U2a1bt8phtVmbW5gnPegPuiMjsFMlgiMJGin1lFOMp3oA7jESgo9fMRxJBcCxsx+A6yr6SLbbpVIQQvV6HTB2Uxyl1NqptYaWQOlUT8Y51gJGziuVYuKG2xETH3mUGZy1ZhoIae6RNBszjsJSvcgNpUwpMx4PKcKBh/I8rddry4uzIQmzLGu323mea6UopVoZMAYfWW5izk0QwJF+LCIEWSgFISVEFjnDjpotNVgphOd5Sikg2C3iQshyuRyWIiFydwvW2kqlYpWO47hcLmutqbVZlmFE0RFP3Pd9qZQGHZYCkeVpmrZ3O5biVnOJzs5X8jxZu71DKZstZjlnCEEQRFFRCCGE0o6qGXqhs/PifiVOEkS8Xq/9m7/5m+fOncMYV8uVUhhFQcnjYalUmqSJMWZrdyPPc1swwiW3yovU+s6bMzMzYak0E5TXbl/e2BilcXLfufNxHP/mb/7mQxcfPLN8yiKztbHW63Qa9RkwHhjP5yVjRSkKyuWAc4qQJRQ1mrWiKHrdwWQ0dCmpg712p90tClkKwoBHGGNl1bnTJ9Mi397acWFKuRzpglptldKTJE9yOUotCyxlUIi4HIU+49baOE2yPKzVK0LJAJsgpL7vFylyVBQMZDLGSmIPh3CvHZdItQLQBcqNsIb4XokwpjEWVgohgsiv1Sq9Xg+Q2tvfOrH0eOQH3W736q2rRSGCOve9YH/3oFQNKWbIoCzOFEJCWGW0LBTRmhjDKMOAlFIIU8w9DRhhi7TRQqpCULAc6JmZEydXTjQp+Ymf+LFPfPJDvm967bVs0MYqHQ4PxuN8Mil29seTGIoCkGU6F4CMFBYhpIRECMPRVIsQQsZijAmlzsXiDpk6F4wxg9BxPGe0cvayshCEEN/nhCAAq4nVWocaBIAluEBgMeGEA0Jgp6illoJgSihLpfaioC+LV9f3ZRgGQZAWKaFYSMk5N0ZJJaXVCIHn4yiKtNbSWG1BKqmUwtNNGDqeF4wxFGOKGPLAURU44cYYMGISC2stZz5jPJeSc54LgRAwdu+1wCiTi8QPuLO6zrJM5IUf+AghIYQC6bxuo1JUq9WWTs7u7u40GtVqo0QoyvN8YaU1vzzz0kuvvPHG5WazWm3UhciXV5aickgD8MtcCIGYvnDx/NbWhtZ6aWmhd9iLtVqamw99P0vTTqczqtfPnT27ubGxdmPHo29xEt1/fq7T6aZpure3J3KQspidncUcXnzxBS/w/tAf/tjHfuQjv/M7v3Pt0lsnVk7ef+7UTL28tbVDCGnNzhweHgqlpc7H8WR+YWk0Gu3u7tVqzaIoEGSPPvzw008/++ijDz322Huee/r5fn9YKlWyTLbbvTwXVllKaZZlc3NzWZZZjHIpqFUKcsSsMcIYYJwTQnqDfr1Vr9Qjrez65q7MNUKEIWq0wZQCovEk73YGUcUrRJyLUSBx4Ed5qtM0S9Pc4W6IEinUcH/kUVaplqSQIhPWps16nRDy/DNPY0ZrzcZD5crt9XXG2Hyzxhhz3Ocg8MbajEeDSqVSqXhuU+HxQEtpdEQIybKi1+uUSqWoUU+Tjsf9c+ce2tndmkxkrVYZjUYYqW5nXK3MjPrj1eUTBHAmx9u7O9baeq05HA4PDjthGJaiyqVLlzqdjs/9KIq6h4fl6NTHP/KxGzduJCm0GitnTlVnZ+dfeeVqrxf7fjhoa0JIEaNMxiHzPMaFKRCmGmE4Su1kAJVKRQmNkCHYQ2CUUbKQCNmIMc9nhUgAAFltFcKUYUQxk4VMV1aXgvLJ0WTU78VasX4vlrKwVocVWmkEJe4f7OwyjxJMikIaJH2PRpHHQS/auXa7nRU5tgQjShHOBjGuFNlkKKW8efWaVUamane7HbCSFAUmjFG6ub+7cbDTOvGkGNlvv/XqfpevrJy8fnOnPxzXm43r/WtmrCpL6NTinFXJzt7e6qlzK6cvzC7eF3mltbV1YSK/UmM06t/eev6tNxdmFxBApT4bBkE8THd2dhcWFhAwYkJGUDyhL710lTEyiaXSzFi6ubVnLFLXb0hZWGq//PUvZ5PhaNJ7/c1ns8l4cSUs8WI43K62+Kf/xH/yxutvHeztVyL/0z/+qc//23/TGw+rMzPP/PbT/XgyHCfXb23udQZBBMC11mmWZNbaeDL42Mc/tLW3+yu/9itCiKWlBSmKj3/8450H+4PRcDgevXjz1f6oW6/VcJlaVPziv/wXlHNaIe//yPsVE7/xtX/TzbvAQVgAAA1mkPePJ5a3m/u59gPyPefm3okGXrnyTh82APj61+GjH73zsVKBT3wC3nzz+5A9MYb774f/5r+ZYruf/zz88T8Oo9HvG8eZUiiX4dd/HXwf/vAfhg9/GP7KX4Hr17/PVRUFbG3B6dN3HXmHwsZ/8P3+8A9D5W6S0je+8QPezR/chjG027C6eudIuQx//I9/f5EQzuG/+q/u6pnGwPXrwPnv1geeegoefBAYg899Drrde5/2xg148MG7rvBTn3p3cHMYwic+cdeRJIHB4A4THwDeoY74kz8Jn/vcXcaSv0vDGD7xiXcOw69//d5fNsZiIFYbzn1XKeX7vlRCGS2zlBACiBhjEAYhC8ap0pJTppRmjFtrrQapLKYIG6q1xsCMttgBYxYjRpAFqzS1jCMPI5XnObEGIUQxaJUTjybZpFxdKFdrQghOWeQFVupxf5jGCadMGe2sxqwxGEwUcACgxAMAVQiGibOEQsiTUnh+iDH2PVqILB5PxsNRo9GYnZ0djiZCOi8Q+70SYYRSx6QOgsAXqeW01mjGcTzW6uph99Nnzg53t1AR+9oqlYPSy626qja6nX6lXI1OzE/ilBlcxDFCedCsAzGYM6018PDWXu87V9ZobdYQbsEAkrkuW1AEFwCKEoI0yVPANmAYU0TBGAVTr11jmVGIIOqxAKzERBeisNb6fmSMwYAQ6KmP4j26AbZgKCNpGguRV6vVNM4wEII8MMhjTCvjol/OqDlSe/R9cEAe97GUhlJKiMc5X5ib39nZ8Tw+M9OUQlFKfMYnqSCIEkCgtCV4CqIjowwgDIQSbJhWVouChkG1VB6NBtYYaYB5nnNbcVxmra3IcozBDz1jjBOLcLjz23EKOCo555yHYej7vpRSCCGllFJmaRp4PkbYaGOszeICY7w/PASANweXkYXQD8+eOjPsDV5+9eU8K0qlkjuJO7PneYxyLRVntBSFjieYZRlC2uM+wdhinKssz5I8S4yGPC1caaBSylrEGNdaYwvWGEJ8DJgAoQgbLQGIluD2JGFYstYCYEr9KJoSojmn6G0CrAiR41zFEVgz9Tty3kdxnOJpySB2MJZDnJ3Kx9Rj01pjjDO/sviIPwbuMWKrrQODjvZEimCcpakDvAjDRmWD/siRkxxmpK2xGCcyxhjLrEDYUoTj8XhjYx1pMzs7NxyOMONCG1EoxjyTK621k8vIM6HBGgA/KPncZwyBQVbboFRqNGpKKZ+rclTqdrtaSwQKE4qJ8TzmeVxKSZAE7dQ5ubXWIqCEIAsE0cHB0PN9k+ACIU1Fko4opUIZRyVRVlUrJedt46TzgqA6mUy01shAkaUO3VYq49QjxAsb9Xa7HcdxrdYQQhQgwzBM03g4HDIajMYDY3C9Xt/ZblerVS1llspKJcpSUxTSaJLnGmNMsI+NQQIlmRiPx1IqMBhT4JiVwhIGhCwEgWeM8jwmtEAYmO/5PscYorCchjlYladJq1XXQglDilx5XqikCfyIMdbp769trF+4cNoPCGWm3oiM8OM45r7vQCUpJee+g1owkCLLfeZx6ylpGAtUIUITYIvFUCIMQVCGhMK94GaiGNchpIAJBQBQgBAymlprCQ5clwMAsAYMgDGOe2nBSg2FlIRxkya1Wq3baWdZJgsBANoAwlRrLZS0YKLIFzLfb+9rq+fm5iinp0+fGo0aWuulpaX9/f3d3d3jjBTG2IB1IvvE2QACWAsIY2MUYSxOxrnMGGNxpoQyyF0upSHjxhjQTCojEBgjLMKcE5dTKUWBtXb11HI5KrXb7c3NicIojRNrLac8DEPP86TUSlsAbDSMkizL5PzMApquSgDGqlxIazEgC0gJeazCDDCVpAcnC6ANANFGM8a0kVMtY4z9wKcIc0S0VD73AAARIAxjipjPwWKlDMaQpxlBiBLAyGozVeMijGoLBBOLsDESY4qNsNoghLWygNzEDm4+AWOxttooSinjVClFgsCiqRSS5zHCAkoJY1apApDQypTCMqW8yCQYhIFxCpjdm928NLf0x//kx7/4xS9dvnzZWu2KV5I8U8ogsO6u6ZGDlwFLCGGEGmMIpUoLayxj1C95WoIfEgzWIwQj6yOOjRU2BwBCLBBktCKEaauV1IRRbEOEDOVSawvEI8h36SKj8v3dEePR9u5Wb9I+80DZ96tRWGHeuMATbLOg5M2TUr1auXJpEyNSbZ6sNBtvXL1GGaaIclZqlP3xKJY294Ly4vLc7GIzTkcWawJgkqxcaXlB/bC9PTdbL4eEIlmpcF0E3hwhYX597ZLQmqCQYzbXWrTKaCE5Rd3DfW3twsLi9tb+xtZ2pVyr1GonV8+N+vGlN64ZgShwTnyRC4aJ0SYI/SxLMSCrFKLUGgPaJxgbYzCmUmuEjAFrEWjrDMAk5xyDtVaxaYqCYAtWaY2IAayMQYhJoT3PtxhJKfM8BQDOuSoUQshgdUzbmoK5AI4b6ko3MAb3hSiKSqUoziYAUI5KO5s7h4eHjHm1ZqM/GKVFQZlHEC5ExhEu+d7Zk6vaUiHznZ0d58owHo4xIgZZ4gdHpTkozwWy2vM8jgnGFrShlIoiy43BGOdKuNL8Rq3OpQYLIhWUM6WUAWsILMyfsgCDycDIEcFAOdbaAsdEuRgVEYM9zAshecCUBsKZMRhTDIYSHinA3d6YeB5gZLGlThLOLYQ7OzulUjQ3N1culwFMnudhGJZKpb29veFwXCqVHFdRCJFlmRAqTdNLly4hhHq93iOPPOKoBOVyuVwuj8djSjgAqBRrrfvDQZ6nV67sNWdnVlZW8jyvVEtRKShE9vzzz0sp4ziO0+SZ5571fV4UcnV1NYhKxfZuXqQWGIBNs9gP0LA9AWSs1Q899FBRQLkSJelUnyjLCuelJoRoNFqVSqUoijzP+4O+5/P+oOemrVardXh4uLW1ZQAqteqDD54tl0IpizSOrVZRFNXr9cFo6Ech86gyMsuktWJ9ffP06kmM0c2b62CsUpoznzB6T7gZE2yV3draQhTNzs5yj3LfI4Q4m7JWq9Wo1Qkh165dbzTq++2DsBRdvnZ9NBr7frgwv6SlIQtYS6uEVoWyCBAilCNrkLXWIKylRAgbBIEfGQ1pmpbDstI6G48xwLm5lUfuv/ieR5749I/+WKNWJzL1fCJk0jvoKq09FhREUsIAcgcXW6sRthgjpbRUBUYcXEGikwaauhQirbXRxlpLMDou1sMYI2tdpIUIFkIQmOYhj9KV4JZtxwJACCmrARNEEHZCQ2AJRpRzoQpMCWDk+yGm3EeIBMHu3r4xKgg8R2TAGCMAa9Rx6lJrLYWVXLqMpTySaUMIYYyO/UWO9HyNBc3olAqljzwYJ5OYEFzk0vd95nlFUQghMEYE7s37wgQVsTg8PGw0aoyxbrfrcqQIIc8LjDHlsu953ng8bjQaURStrp7c3d25cePGyspKEHpa6yiK3v/+93/7uRfiOJ6kyerqyn333XfYbbtL7XY6nDFnhbG+toUxDoIgiqLFxUXP8x3zd3d3t91ul0qljfWtN954o9VqYYzPnDnz1ltvNRoNIfY7ncE3vvEN5jOX193Z2VlYmGu1WoTS/rCX5hlCKCqHZ8+ef+yxxz7/+c9PJpOiKObn53/u537ui1/40t7efpJMut0+wvmXv/zVUqly330XXnjhhSTJPvOZP3H79u0XXvjO7GyzFJR2+9tSSmm0K7za2xuXyqGUMgiCgAe5UEqZMCyNxuNSqfToQw/3+/00yfd395568v2dTu8l8aaTRMQEHRewKKWccASjrFQq5XmulIrjcRAE5VrVJXLTNKUMu2m62+0WReGcc2bnFz/96U9TSv/23/m7+QSqJZ9yNhgMGGM84EEQOBaAUw/c3Nz0PeFzPh7FrVZrcXHeWj0ajYbDoeMcvfnW60qpSTwyGiilZ86c6XR6Qojd3d3Lly9TSoMSP7lyink8z/N+f+h5HgKCEDp//r4zZ87ubu88+ujje9s76+vrS4sr83OL6+vrywvLnhe8+urr7f12FEV5JijRo9GoEpWQ56ejSZKk1hjCCfe4PZLL4Jy7RKurqHVsArc9S5JkaXlhPB46mgMhxLpCBERkKofDYVCeI4QAwQyYECJJ4jSNV04sPPfcc1cu75d8D2OcZRkhDB+5IvCQOz2m1uxct90riiLX2vPY/v4+Y6w10zw8PByPx+fOnCuVSgTR9Zs3Iz/goScU/OP/7Z/8nWazVil3B+mZ8xe3tnaefeb1P/rpT/6ZP/fTT33g/f/v/+nv37ixX23UlpdONBszh+1OEOSrS6elsIP+GFs+GsTVKouiMIj8QmUffP/7QMm1m7d6nX6lXt092H/8iSdqhTg47M4tzLc7B+32AaMU67dWT5woR6UoKDVr9du3b83Oz5ajQKdxtVLa393rd/YPD9qvv/zSI0+8px4F2WR0YnHeR+b0yROnFuc/9uEP/tZXv/Lepx5vj3ub7T2EQFsljRRDUS1XgrDSrM7cvn37qafed/bC+aeff2F/f79VbxCEjTFra2uvv/kG9b3W7Mxsq3mwtxsEwc1b10OfVioloVVUrg1H/c9+9ldefP41hCxQrKSggAhBk8mIH00sxsD73nfXVBNF8Eu/BD/5k/ech6bt1Cn4V//qnXXt98Tsrl8Hpe5iBH/mMzAawS/+4u92/p/5GfiZn7lzft+HX/xF+Jmf+X3jOJdK8M/+GfhHoqlhCL/wC/CTP/l9WLdKweLiO8/zDs7pf/D9vuOBK/UHWuT6B2zr6/DZz8Jf/st3gac/93PwzDPfx6DvJ34CTp2660i7Df/z//y7IbYf+xj8pb8Ey8tgDDz2GPztvw3t9ju/k6bwy78MH/rQXSIwP/mT8I1v3OEmf9/28z8Pc3N3HXnllTuSKcbAs8/C5cvw4Q/f+cL8PPz8z8Pf+3s/0Pl/9mfhM5+564hS71TBPm7GWIRRngsnR+tAGUopZ55QkhBmrXWUFkcydX9lARFCitzFMDgTBcYYYZQnzrMLMeIZhCjCVhtDUVrkBoG1yGKktSUWjDGUTi0zjDFpPFU5cbuaY/a0mcoJgmMGMKfSBjTPc6fsEYaB7/tO12tlZQVZGI1GQRC4YK9arTYajcN2N4jCmZlWvz+Q4t6a2Q61bDabRVGkaVap1XJRWIz8KLx668ZvfuGLn/jgUxiZdNg12pRKpcFwcu3a1U5n8JEPfYQAcheTpuloMjHItmabSinq8TSLX3/t1cD3FEaFFoQwyqjVTqANMEIYkJCKEKIM+L6fZYWQWaGyubk5wKC1pMTHMJVf1NpIpRyJCU9rpe+Uvr2jSaWchIXv+wghh7IFQeAM3DDGGFmHYEpROGxXGe0ATWcX4WBcx4xut9vGmKIo9vYOKPEcTQGOXL4xxsZOoROEkTFGF2IqGIGoE5sGAK0lIUQbc0TOcoE6ttZqsJwyR11XRTGlnSKktdZaTkkzR3WK5MgUSyllwbhgwyUenI4BYKS1woYwxtI0VUnOo+CRRx9GCDY3NwimQYCtta742vGgXewURRHDTrVZOA4XQogQkqbpYDCI49h1Tko4ISRJkqNy5mmKnXDveIwc78/xkXZqpVLhge+kqB3Q7MB0dx57FPq7x8IYc6G1E99wsVNRFFJKJ3prpz5R1tUiHL0LgCMmo4vwtdbHatHHfDf3K/TITd1dJCEEW6CUGmI5ZY6sao/0BpHRx6PSDz1jFbZAMZ5MJrON1trampSSEZ6maavVEkI53JMw6jvyKViLjNMAcXxwABgMBsPhECHrcG1Xb5dlWZZlTkwzCIK5ubkxGQ76YyktYkxKCchiTPI8pwZleWJHI0KIBT0aTTinSyuL/XFSFJnrxnleTCZjO5VztHNz3JVixHGspeScK6Wk1lLq8Xhsra1Wq1LKyWRkrS2KwvOY61ozMzN5nvd7gyKXUmina+9GjbXO5xIc1u/7oce4lK6STyGEuOfBkZa9UmrKQUEEnDa3gTzPe73OESdxmrUJw3BjawsDEELCICCE9Pv9aq3MOGk0pu/L87yzZ8+C9a5du3ZwcFAqlUrlsFZtWGuHw2Ga5lJJrTW2yDGLkyTxvdAabY7Gi5SSoHtPIKIoKMLWIgsmDEMrrStosBYpJR0/FwDQkQ3S8UTttroyL6JK5fHHH+90Om66ttYqbd2gIIRQysFYTPw4yXq9nnMUD4LAyURord1WdDweCyE8zzsGcJ1OhTEGEay1ccUhIs993z9x4oSUst/vuy+7fai12hhLCKUEIYSGw2GSZWEYzM3NBEHQ6/WKolhbW3vo4gNJkmit6/VapVRKksT3A4SQA47Gk4mUElmc53ngebOtGWOMNVPDVHd3x5tBN5kck0ABkOd5R50QCKXGKvfQ3MzjKkiMMRqmMrKR58FRPRBYDAgBWAfUul4EzqHUWoywtVYb4+aKKIriLNVaT00BkDmeWNyrybKMcOYSeO45AwIE5Ni/1kncpGkqCuXzoFZrWAs+N5NxkueZR5n9HtSH/qD/ta997erVq1mWKaWOJJiotVpr6WYkV7Oi31b9gw1GCDHMtHaIhwrDUGvpFO3dXhJZd7MIA0EIGWQRwhiwYYAxRgYBgjwXnucZwGCx1toPAqUBI91tD7WWZ86eeOyxx6SC69fW0jQNfa8UeUWRSWWpV7JYHXQPf/yPffCp9733lVde6h52ZJFLlfV6fQAK2GDkbW9uXbt+GXvIDzllEFWiNM1PnlgshV6RpeNkjDSZm5tDQIKW12g09nYPtrd3+/0BQihOE1fHYJAlhGRZ1u125+bm/DDK0qLZbFqNpK9ajVq/M9F5QRD3Gddae4HvGABaa8Y9awznXBRgAbhHtTVYg7YGWQtWaqW11p7n+ZwWRRH6wdEwQdyjhSIqL4wBV4IDAPuHbQBQShy/CyEEIcxafdy73CtwSJF7g4Qil9eUUs7MNBljeSakKpSQZFrQDO12m1CutUagpDHIGupzhND+/v5hez8gWOspiOxzXykVx3EQRMpol0RP0zgKAmttFIRaa86o1MpIM83vagUAyE553MfAmgtIMMa7u9tewA0yCNk4nrD/H3N/Gm1ZdlYHot/qdn/6c25/40afEZF9pqRUB6hBDQYJMNhI2MgWYLueh5+HKVzPfnbh9+wauGyqhl1lywzMc9k0xkYIMCBZArVJpppUdpGR0fe3705/dr/a92OdezOVRErI6A2/9SPGjdPss/dea6/1rfnNb06XHqySiHPOGMEEpOSVSqUQHBNsNaZKzpGDSp5bVS6NNGPOcDikeZ5PJhNKqdYmCIIgCADAhgJ5np86dcp13Swr6vVmkqRZlo3HsTEmzwsA02y2hSiNMbyUdhbrdrtpmj726Bt8LzTG9Ho9jRSiEFW84bDvOM76+mpRZPPzi77vnzp16sUXX9zrdT3PO3v2vjgeDwa9N7/5rQ8++PDpM+c+8YlPYAwzMy0hS4RUACGh6vE3PvS1r32l1Wq5niO1whmymWqCsNYySRIrFbS7u729vUkIc13X8b3JZGIvJwxDXam2Op0K50Ip5rKVlRWHkclk1KzXOS/mZmZXjh3d2tra7e6WZZEkseQaALJUrK1uW5UxZKDZbNveuie/gxB86viJJEn6wyEXRZbLqFqp1WqEoEqlMjMzo4QkhLTbrQcffDCMgiRJlpeXeSmGw/H66ppL3XazM+ZJHMdZnBHsuK6PpUEI5XkhEHaCSGuNDFZcKaGZRMn+0IBarrT/yof+8l/44A8ttmY8TB1MJqPxKOtxXmCimIek0HGc5WWJNHIYcxzquk5e5nIaWWGjkcEGY0wYNcZIobQxWCmNXkEztFUNgulyaAMsBUYLAQAEE4QQs557eAod2k9iSgCgVFoppRWAwWDRcyCIgOO5pSyZy6w0iuuHBIxHSZyMpZQIY8aYkNwYpTVYmSql1JTCZLAx0+IjTDFBREt1uDDYxhhrtVqAdFbktiJAa10KQZCxvbm326WUKoAoioQQSRIzx4F7tahS8SudPM/39/cRQra00GrM53lpIw8pU7v+nX/hpahSkarEmK6trS0tLS0sLEippdTLKys3btyKx+WxY8ea7QZhMJlMdvY3t7e36/X6bHvW933HoYPBYLY92253BoOB67q9Xs+aZ9pq2dm5joVc7SyWpunp06dnZ2fzMu/3+4OdHeIQZFB3v/+JT/xOt7vXmWkdO3p8cXGxKAqEiOM4V65cKsv87Nn7NjY26vUa53xzc/PixRtzc3sPP/xwlo8B6MkTpzmXo/74scfekCTJ7Vt33vzEm06dOP6FL3whSbIw9CeDFCHypje9oSiyra2tO3dvteqtMAxHw4Q4LsFUabO4uGCMiSfpk08+6bvR5ubmoDuyNZ5CKaWF3RjAgSc4ABRFMZkkQRDcd999lOIXXnwuz/NGo+G6bHd7u0FqlNJqtYoxOI7XaDRsAHrlypWzZ8++53vftb65wdB0r+JHvj14v98nBNlQ2AaOyJgsy6wVuK01S5LE7p3u3r3bbDaVUr3uwHpuFAVPkkRKNTc3t7m5KfuiKDgA7O334jheXFwsijLLekmSVyoVALy6ut5ut9Hq+lNPfbnVarXb7Y2NraIoevv9SqUKBk8mYxs/hWEI2uSTzMa/dvwwZ2p5YblImFGbWrP3KgiCnZ0dIWiSJBhTrQsgIKXElGJCkEbVarVardZqNYNMWqSNRmM0GmVZVqlU3vOe92RZ+v73kXRc/OLH/gOlvjGgpDTGUcqIrPRc3z4mhJAsK+8/e/rYsZW1tbt5kd1///3dbvf6tRvj8VgKnUyGK0dPtJutYXcXSLC+Nfg3//ZX83S0sTPqHJEXr17BLvzmJz47jCd/7//597/v+z9w8fLLFy9edX36nve9z2HBjet3fv/3/qvrBJNRSomPEGDkCFkKmT3yyJlH3nDua1/+CgtxkzZ5znvDgQC1tLK019s7fd/x5IWJgxyGcKva1FwbaURR7m7vdLvdt7z1zb7rZOOB4cVDD5y7/LJgBh1fWX7ozJkrl65+5cnPvftd71l48L69rS3Ds0cfOusHZH2/R4xeXJhb3d0/fepUo9PmnLdq9f2dnf3+oJTqyMqxK9dudLv9+889qIQY9Ppa6729PcZYlmbxeCK1SOPJoNfb2bhLqKlWK1qr0bBfrUZeEC4tLxTj3T5MGCPEaFka/I3Uy8uXX8tTnp+HL3wBfu7n4PnnXytfMDMDP/Zj8OEPvxZrHgzgt3/7HhPX5iY8//xrEe2PfhTe8hb4+Z+Hu3e/gfZrvfX+4T+EM2dee/zf+I3vpJ7GaARf/zp88IOvvNJowN/4G/Brv3YPgvbhBz7ykVcQatuefPK1LNrv1PW+8MJ33hbvv0v79Kfh4Yfhu77rFbFj14Vf/mX4+Z+HF1+8h21gowE/8iPw0Y9+w4tKwT/9p6+LNVer8K53wd/9u1NOMSHw8MPwa78G/8P/AFtbrx3Au7vwxS/Cj/3YK68wBh/7GPzrfw1PP30PhPqwUQqnTsGP/zi8+93f8Drn8Ku/+toP/+qvwlveAq/2/f2+7wPPg//0n+DGjXsTtKtVOHMG/tbfeu3DCAAvvvi6g0FKkWYja+p1yPQkmBpjMCCXOQCAMHWmdC1RFAXGwBhDiACWymiGqd1Xc14sH10ejUYG6SByEYAWcjyKpZIEUSGEVSwoCqmMAaWJ6zDqOrS0fBzP8xihAGCpiFwqghVPhNYaUeIQh1JKCLYroDXiNqDshgoOZPQoJpxzhI3d8CdJsrOz4ziOlrZ+GQt1bzENC0xY2GsU63GeQZ4RwmabbROGT371q/Gw//7vebtbqcoi0wYNesNBv4+BbG5uStBFlmdZBgCe55WC57x0fQcznI0mvV43zQrsBsShSJsiKwhWlGFkNKVEKzDGEMK00gAmDEOp8pn5Ra11WeaUYqUExtTaBqIpm1UiJC1WaIx5PTFqrZRVWiyKoig0xrhWqxVFoRS3GAoCbHF5xpjUKk8Lu4204Y2tt7UbuSzLut2ulZNWSgk+QQiBmtKqESWAEEFIKQVIW9TpAA0HpRSlTqUSLi0tcc6l5KUUxpgkScbj2EaeWZYZY6jrCK2yJLYGelpry9iwJtVCCIwBIQcAbH2e3Qz7vm+z2hhjRqgNKa3GXFZmlvnbXpyNosh13bt3746HIy7kFKmxfn0HJGIr9qWUAmRs9IIxdhxmQVub0rDSrhiRQ+Db4ubENky01q479Ys7BNNtYJamac5LC7fZPlJKHOJi+BXN06nCiTlQlrD9CQfSK1YJ/RCtttdisWnbX+hVXpRKKUrx4YcP4GNs74w9DfsVOICepRbW5M+ej9JCK5BaHW5htNaEEoZJ4Hm2r8uyVEpRbJRSWoP1WrSbfCFlKYWU3PHcSr3mOHQUT+wvHtI/LYxweNWgkQLDmBtFUbVa1bl2XVeKEqacfWMnHM9j1uej0+kgDN0uMEasNMrMzMze3g7nHBklpWq325ajZlUdLHYppcJYGmNc38+yvCi44xSu6x5oWGullBXuY4ylaY4xlVJzrgghShqhBUJISZPnudbaAhEzM3OTyWQ4GBdFAYAsTnSAQuIkzgBpz/Ok0gA6ywppJCEoTTIupOM4nU5rf3+fMeq6bq4KY4zn+5xPNCiHsSDwtJa1WiVNUyHKKAocx6k16ieOndze3hgOab1eMQYBUu12m3MeBMFkkpQ51whc6kkpCXVKwQlhdprlPAEAXL93vQ8jLOW6LMuw5hJCHOagqZ6veXXe4gAef0UxFhBRSgJCNmM0mUysgGFZllJNhVAQNsiKAjM3qtSMMVmWcc77/b59Eq0sjx1v9km0ewopJWhDKdVgKEYIIW005zxO0yxPpFYHVGJJCA3D0EpEWk9FwmhZlow5dcaow9I0Hw2GCCFCEQDcvHk7TeM8L6o1HIZhEATNZtP3fSFkURTdfi/PyjzLMAErJ+041ChdFoXRU9Waw3SX5U3Lg9QgHDj1IYQwBqWFEkprbfdHcJiPMYa9asm3CIB9V0pJMNhiBUp1HMeTycRqYhBErVxSUU7FkarV6mQysSy2w3SROfCOAwBQWtkJk7G8LABpSikGDAYZiYU2ZVlOJimlztLSkZmZ2bt31rIktzkkCZi8boEYvnXrTrfbtfenKLitRNGaKyXwgaQGIWQqE2H1vgEpLRwnMEYDaCmlYBi0RAbKsgSjCAJtjFGADSitrWapMdoYI6QwxjDsA1IYDOcFpZAVIggCXkpCPV4UlFCGwyKXu1vbmFFGdWdxqd6oDAf7W1ubnud7TjG71Hr8rW8OI+/26pWwym7d2R/1JwQcyhAlDqaI8xJTurCwUKmHmCJMkNQlz4u9va42pZYyCIJhb9gfdmvNyvrO1v5eLwgijHGr0zYG7e3thdUQAPIsc123Wq1S5sZpsrOzI7hKxxPQ0Kp36tXa/laPYeYQknKOCbYPDijNmAvaMMfTxmCqlVJSKkIIZgRJDgCE0jAMO82W67o3btxymZOmKWMuaCjVVH1LSCm0cSk7rIax4ueHjzMAYAzGUK01QkRbnTWMECJCCIwRALiOy3mBgISBh5GztrplsKg3qo888kg8Gj/77LM2xyCn857BCIyELMu8asXzvCD0MOdBEAihQGk7zziOJYwixlhZ5pVKaCv9QRvf97VWHmMA09xMGIaVMAIAozQBpLQhBAFCRiqttZACSMJwFVOcFPHZE2eOHDly/vz5kisb5SotHORiDAgbhI0xMo5jHxnASCpelmZ1dTXPM1QBzssizejN6zcYY9VqNfCDer0+Nze3tbW5tbVlcfrz58+vrKxY/UobmlhfY1lyBabTqSrlGaMQQrs7+0EQNBvt8Xi8tbVlxemLotAa53ler9cLmWOGjx8/urfXvXr1MgCsrt4Zj8etVst13TiOkzxrNpt3Vtdbndlbt26Nx2PHpYSa0WRwZGVhaflkGLorR5frjeD5F17Y2lnP85ISp9Vq9fv9MAwt0uQ4LE1lWuRhGILWhSjcwG82mzZcTpJkH3XPnTvHPCeO47zMhqN+kkwqYXTs2DHfdbWWq6urw8lQKhGnE0xwpz27tbWFgGUpB8CuU3GZU600tZFI+zK/xzxx9OhKraW54nWojsfjOE28wCcELS0dtRJvaVFQSo8fP76/v9/CM1EYra+vh2HFSBOGlSIrt7e3Herlea4MEIKV9abVBgwmmEqpkUaSi6KUIIULZDao/fkf+OBPf+SjZx94GMZxf21jlBXxYEQwLp1SGzVOxlIWxKW5SCf5hAvFOScENZoVN6BpkidJZrkGcRxbq0BjDKHY6APrP0BkyhfQAFMugFDKKMMYs0EWIYQgDADTwQiAzKtEzexSAVqDAQ0YEFYGYwUKGYxynhNGtdZEY4wwz4uAOa1atVqt7O72ag2fEsaz1C6WQRBgjIui0IDZVMEDtFGIYEyAEMy1BjNVobKTMqUUkM6yTBktpdzf30eEWN0uu55Vq9VJmszNzdmvNBp1Ud5bm7vdaS0deZzzYnd3N89z6wCplIrjmJcSk6mfRhj6GOPJOMkLPjvX8sIgy5KbN28XBa9W62XBd3Z2KpWK77uj8fDOnTvNZp0yzBibm5u7c+eOLOXKysqdW3fHg4QAGQ5HjNCrV6+iA40/G7VLKRuNRqvVunDh5Rs3bkZRtdcbdDqdRqMhpQpDPy/S0Why984dRIBz6fs+wjAejxuNhjoQ/r7vvvswxouLi3t7e5/4xCcQNtWqm+f57du3KSVK6StXrvNSVqv1/f3es19/DgDuO3VqY2Mjz4t2u7O4uFCr1fr9/o3rtx2XUETrlbrWsLm5nWel4/hzCwsnj5/Y2dsxoDY2NjAQx3G2N7ZHo4kNlDHGXCjbswpKx3EQAesD0OvtA+BOp1VvVMMw7A+HWZZYgSSMcafT6nb3HceZm5sJAk8p0RuMLl68kKbx/Py81OrOjevKmLwsq6hqSx+Y67h+oMHwcqoVjg98OYIgGA6H+/v7c3NznudxUchUWp5aGJac8/X1jSAItdb1en1mZkYIsba5HkVVx3HG4zgMo9On79va2lpdXS8KbpeZ69evX79+PXA9zuV4HFcqle3ttSxJtTZKgiin7DPXdTf4FgakhcQYEzS1rFEKHRZyUkopcRBC9uBSSjvvMUYmk4njOEq5RhnHYRrAGCWlzMvUYLF0dGFmpj2cDG3Bip3bX3755ccff+x97/2hf/Uv/o3mBjNDiQNgBdBIMklTnqRpFqf7LvWWluabzWYURefuP3vp0qW7d+8uLi5GUdTb79dqjZWVY4uLy/edPPX0U08OxxPq1y7fWB/0dx0n3Nnvfs+73j03t/DJT37yc1945tadv3bqzKknnnjiibc+8bkvfP7OzbvHjp1ChowGE0rkyROnd3f6lOFerweIIyzf8vbHhczG6QA7lCDMszyohfu97mDUN0hduPBiNs6RBNdzHer0ut1qVMOY1mqN2aJ46cWXFudn6tXaQ2fO7m/vf/D7PtCoVXh351N/8Mn+frdZb5w9c/rm9Wtff+bLb33ikXa76bpOs1k/deLkCS+c2dh84xvehin53FNPHl0+fv99D37mv35ayN7167e+/PWvZGkeBcHRo0ef+/qzoefXoop19Oq0OgpKQkiSTo4dWabErG+suZ6nlFxbX+20ZzAmQpaIghFKKUkZwOvQYV7dggB+4RfgySfhd38X8nwaxywswE/+JKysvBYbzXP4j/8R7ml5RSn87u9CrQZnz77yIkJw9iz80i/Bxz8OzzwDdp6mFN78ZvgLf+Eeah7XrsHuLlD6nTQM/Mxn4N3v/gbDtw99CD70IXjySfjSl2B7e3pWhMDCArzznd8gkWFblsHv//5rX/xOXe9/+S/f4ev979U4h//tf4PHH/+GW12twj//57C2Bl/7Gjz9NJQlYAzz8/e+z+MxfPaz38w10fPgb/7N1+pXVKvwMz8Df/tv3+Pzv/M78MEPfoOotOPAz/4s/OzPvrb3D9997DF44gl4+OF7HO3OnXvw+m/cgJs34dy5V16xeinvfjdcuADPPAMvvgh2J4IxuC5813fBW97yDaojh+3aNfjt337dwaCUsW5sdvNpdx1lWVq/AUKYEIIQBgjlRYGw8UNvivAaZYySZe5WWb1aE0IQx3ihs1xfLIpMCNHrDTAg5lOdScaoUqbgpQWhMMYINKUORggAG6URQp7nOY5j/essWcyS78qSM88FxhyMrYApsl4XSgECPXWHxo7jSC6cgPm+X/L8EBrLsgwMNsYoIYuiQOTeSsdaaxsXLS4u7o32EcHKoEpYyYU0QiTj8e9//mkM8kM//EOTvhr1h3t7e0XOlxaWa5Xq1saGUApj4oeBzBJQ0Bv0K7VqhIkxuszHWWocLShEZZoTRqmPJFcAGgNRCiFtGCYCVBAEzWa928s6nU632xVCAEz9bRByHc/d2+tTSgmjBJOiKKLIB3hd70OrNQzaUEoAiFASIUKpc+hdQfCUi5eXUxqmdapACEnJiyKvVCqOE1kpbZuktCRBv+oBgBY6ywqg5pDchzGmhFgQxEbmCCEEpNGsnThxol6vDofDNI2DSpTneRAEJ06csuYcjUZDSp6mKS8zQMgJQkyw1MIymKxqpFLK9137x5Q5S4glwJa8sD2okdWyJAhMEAQRgMV5rXUYWKKWku122wKOhBCL1dp2iJAeBniEYs/zQIMdYJavqrXGyGqJHmK7yHYTqCnVGg5c/ixcHkURADDPJQcu9+aAXhrH8eGhDkQDpv1i960HsK+yoS9CyBhhT8O+ZZnv5MDM016LPlAUNMbYn7OfPGS0KKUwfsUkBh/gCgCACBijCMIIIam4UsoAGDN9QuXUrlMqMzVqszqkAICBjIYTK+NuZwmhJCBECFIKWX3VaeIEIftdS6K3rFLGWBBENki2RxgMRru7+62oYS9KvSIzCMaYPC+1VhpMnuee57mu77osSTIJ6NixY/1+3yGUMlyWpZX0NRohTLTWXErP8xiTRVFijKUqKcV5XpZlt9Vq2gQDocjzHWtVNxyOHcelxI3CmpRWPsUc8EuELaaVUitloihyXb/fHQAgW7hcrzUJojZLp5Qaj+PczSvVKsIYQGONKWUIIUYdoyEMK+02rK2t1Wo1hJEBXYiSUkIIBjBe4E0mcYPRqFrhnGsw1XrtmWee2drYmJltIqwwxt1uf3t76+bNm1FUAYO1BsCoKHLtaCk0F5xnGRgEjNXr1Te/7c1xMh72G/A6zcLoSMsiKcCbQoR2pTjojmkoaAyyKSJjjDDaIUQp9cQTTywtLXX3d+2DnGWZNlPp4TDytdaI0CiKMGFJkljCeFEUVgHZ0lmyLLODxG4bD+FXipmxzxoCo01elnEy1mCKIrNMakKYFXJRShmQxpiiKCa9WGvdbDaDIJgkkyRJPMfKmGCEjZYKYxoEoRDlYJBb+r/jOEHgG2Nc5hSQ+77fbDarYRTHcSUIMcaEUlFO1QYOc5+v7N+nDyzY+cqev1UQsrrMFm04fBwOpeGllORVVluvptIzxuI43t3dtfrOWCmr1ek4DqX4cHpnGBuMhCxhqoErXNe1NEdjjFL6oNLUGKURwxZeFEIZY4qci1L5vp8mxbbY73cHWoMxgA3SWkt57/hfSQkYO46nlAFAAACECsGtbpJNetlftBu2KVedWulhY0m1Sos4zinCrucQAhSoQ5mRSiMFChACShiaIs6GUiq1woYgrKlDirKUKg+jACOMkIsNMoBVqZVkWgIAKFEEPhn2B0WeaVNwzmuNOkJmlA2Oeqjeie6urfmu95G/+uHdzf3/+O9/0/GJS50kTj3PdTwSeL4oRJInXJaYmPZMo8i5EBlCajQelDmvAiR5FoYVrQ0vVV4WaZoz140qNQBd8DzNM6EkdRylUZYVSuhGvQ6F3NnZ7W0NamEdKTjM9Vo83XU8BSgrOGMuKFBKIxAIIUoJlyKJY4zB87yf/qmfrtVqxpiNjS2Kyfb2ri0gUEISrLUGpsF1teYCY4wIKFDGKIMAEYwRMlIiA86UrWitzrSUijFcFLmlF9gTszakhDAAnKZpkiTUBd8JtNZJkthRTQDnRYoonRZISUkJcr0mZlgpValEjDFjuAQJSiOCkTYWDQhD3zo4WN8vo9RhngkwElLaeQ8Dopi4jJZaEkI0goLzoiiyPGOeX6lHlaqfZtmJEyvvec+7syLvD3ueGwBgLY3jejs7O41mLctLpQRjbGFhTqZQlKVbqSqlUA5RJSAVwIw2dI2ePn2ac97pdChlURQJLkCbTqczXQWVunjxcr1en52dbTabW1tbB46fges6nc6slFwIwXkxmUyGw2EQBLOzs6PRaG9vr1arUYeBVI899kgYhhsbG1oDaP2O7377zRu3y7JsNpsb21tSyrIs19fXH3z4occff/yPv/jlj3/844yxMPKRVlkeHz2y8PjjDyGscp5du35RStls1bSGSr0WRRFIlmZxXqRu4Fi1uGq1OhgMrJ7G5uZmrVZZXl65fPmydVZNxvGlS5eiWqVSixyHCpkjbPzIO3LkyNVrly+/fLHWrCEMWZF2Oi2bR6pUKtvbu7Wotrg4H09SXpYbG9uNRi1PB/V7Ce90Ou2rdz4/HA47nc7y8jKmqFarCCEuX768u7vru97S0pJdABhjYVS98NKF9dW1xfl5hIjveseWjwHgSxevFmXpOL4VIDNGZ2nhMEYEYCBKSJFxDPpYZ/mD7/tzf/EHf/ixBx4G5kJ3AFyWg8nW2jrPi8D1Upo2Gg0qIB5nGiPiYSyp4oYAUUh5DsV4Wlhngy4uhZ1SbUGoMcbar2qpAGNy4AeI0AFMQnAhpto0SimEpjX+9MCOhiCCkD6kAygMyAAGRI1BRmOFMDZaakoIsTi3kJQhhUAq4QZBFAX2F4XkduoHAKWM1tpIZYzRygA+8PQ4iKMwAYyxkt9Q+WJt5bQ0CCFlDENoPB6LshRCag0IoNZs2KIqrXUcx95r6HMHzRhl68vsTkBrMKbEiFLisNB1XRcTsGb0+/v7QihMle+FQpYYU8fxJpMkz8uy4AAYIXT06FFjzO7uru+7aZb6fpCm2Wx7ttfrVcOa53mgoNPplCVHBhYWFg6CYz0/Px/HsdZ6MBhIYaVvIgSk3xturG9RShvN2vKRozs7m0WvGI8mnZl2WIsajUa32+2jQbfbVUox5o7HY7uue563vLzs+yEAzM7Mh2GUJMm1aze0grIwnuMzl169cg0hUqlUuvv9XnfwwAMPcM5rtfpknGxv7WmtG81qFEXzc4s3b94cDseEMEpAcbW+vjkc9sGYZBIHQaSFGo9jSxPR2mCEMCHKmoHIVKrc9R1b+nTkyJHNze3Lly/XG1UhpkVVSZIIITzPGQwGALC1tUUIsTufai3qdDrW6QJTcubcOaXU9RtXjTFSK8AoDMN2u40QKgVHCFUqFTOtzNKnTp1K03QwGGRZVpSZHVSDwQAh5Dr+/Py8VcywT8fGxoYyxob4lUql3W5vbG5eu3ZtYWGhWo2MQTMzMzY/HwRBt9utVCqO46zdXc/THGNCMSlzDgBTbTggWZaBNi5lmDh2W6IRKsvpRsLGSZZwZL0W+/2BMTDNtCGqtbbFO5TiUighJaXYBXd7byd/Nl9YmKOUxnFqg7nhsL+/X7ty5crLF65/+g8+hx2EYLpDU0q32+3FI51bazfr9fpjj7/x/AsvXrt27fz5F+L45MLCXDxJKGHPP/fC1mZvfq71rne9y3X9Lz/1lXe/63t/8q//jV/6Nx8TWhqCUoF2h4Pt0fgv/aW/9PUXno/qtfml8uKV7s5+F1P0Pd/zPYvzS3fvrHV3x64bVqOa61QqftgjA991ao3qYLjXaM5tb60+99xzN2/szi/MLC4cAeLOzFd938/ixPM8z2W4ykbD4f7u3vzsXKPeNMZ4nlev148fP76+vjrsjwznEXPf88N/fmlu9lN/8Pu4TE7dd2bp+Dnm+S9evPL8c1/HbvDcSy9vbq2PJsk73/vnfK+GvLDqZZdfvLK7333m4nPrdzcee/Bhx/G+993vx4TNzy27XkAJU0LZUoBGoyGETJJ0YXZuZnHmwouXXMZq1epLLz2vjXJctyx5PWggRIos11obBQDgOk6aFGEUlvErc8t4fO+9CiFTgOybN2Pgox99XW0EKeHpp+Hpp+HjH4cjR77hrSiCn/op+Kmf+hbHX19/Ldf1O9JeegmuXXutIRsAvOMd90A879muXr2HB+D/317vf8eWZfCP/hF87GOvRYRXVmBlBT70oW99hF/6pdd9i1L4S3/p3oLjb3wjvP3t8OUvv/b1jQ34whfgB37gHl/50/e+bULA//q/3gMIlhL++T+Hf/fvvoHgbNvDD98btr5n+5aDIQxCqYMkjn0voIQRhyilpFCEEKUMxiYIAiF1UeZScYow5woh5AduWZaOT1dmji4tLe3t7WDsC1G2Z2oLCwvrqxu3bt2qVHylDGiTZTotU4yo74egbASBMFDHcRxGtJAAYLULrK6dXSsZY1Jo3/cpZUAwAFhMDWPMS4s1awtR2UBOCC6E8Dwvz3O7sfc8ryiKyWRieWR1WhdCCHPvAMmu0cPxKM0zaUyZpRW/UqvVhv3BsDt0ENYIrtxdHWW5AdIfT5QG13U1mLWNNStLpYzpjgYaTFSpFGVWa9SVFm947KFHH3v4c1948vyVa5OkNApGceoErFavIAR5XhLCMCa85AYUc1CSjgFJpWWWp1prYzAYzBjRYMqybHeagqvRaGKMcV2XUqb0wcb+TzRbwea6npRCSlmv1yuVSn84sGxBmwzGCNv/2rw1xnh2djaOxwBupVKxO70oiurVWiWs7O3tWSKnMQYhYrCRUmqlGJsezW49LFZo6QUHTEN969atZrPZajX2ev3Z2Y7neVLqdrvd7Xapw9rtdprGySTWRlJKDSY2WrCquxhQpRIecqttsXm9XreYFyFEKmIT25bNzRijDouiCFv2HyEIobIseVl6nrewsIAAW/MlC53Y+NtemhVJQ8jYun7BZZoMKCG20tSGRlpr13Ud5h0iJkIoG9tHUVSvN41GSZIoeUBwEcKSZKnr2BJ7x6H2OHYDL1/1/B8QotF0I3MQPlnvJpgSlosD2PqVkk0bcR3qVBw2c0CyhqnQgcLYchWolcuwnEtCECHYdhaAsaiBLWmdgoyE2e6wcV1ZlthxEcFa6SAI7JM4GoyLorDHBADqMFkoDcoYA9gYY9IsTrPYAFhMGRN8iIzbXVKtVrOaflJK0LpRqwNANk7tvSKYSCmttnWeFwYpSrHUqtvtz83N2MyT0Uhwsbm26RBarVYXF+eLnCOEZjozvV7Pjt40TYUQmDChUiMNTC18cJEXRVFaSF2bKTp/5sy5mzdv8VJ6XrC31zfGEEKNmd4iraUdilbL7sqVa+12+8iRlfF4LLjCjAohNDJ2fgvDyABMJpOyKFzfBUCEEKSRlJauyK9fu9FqtRh1kjglFNv77DiOFfqoVCqE4PF4ZEnTUkqDkB+G3X6vVqtp0ErphaV5AAiDSqvVWV9f39vrGQ0AKC+zI0eOWsptu9ne2d3VRhEHVWphGC7w0b2mRILC0GfMVaq0RRLGIEqnWnmHDH04oOQf/I0owpxzQPgNjz0GRllG+dQpFLDNGDWaNWSMTUoNe4Nut2vnbUopY8wO4ym1E+DQ1NSCtoc5GGW0VlZfniilvMC3rBSNwKFICl0UGaWUMowQVsow4gBFaZLb2gjf9RmjjLkIGdd1ETb1eh1jPBxNkiQhBITivV7Pnk9ZlrYWhFJalqUSshZVlJCMMVFazVw1zVGRV7TXD/7AhzkepRQi00QUQggQEEwAjFKSUs8+gFaCgxel8Dzr1mOLKqQohRBxHN+6dccY43muEMqWpFis9tAv1HEcypgQIhcaYeN5XhAEAObQpdbi79axKS+4EhpjrDQAIKW00YRRHwEbDCZKDTEQOgWFqZSS0j8RlAAAQJJmQg7tpekDsY5X5SGmJGsLdGBsxWSkMQzAWFDOcSljrpRaaQ2gKXWIASmlFpIgCqAR4INV5WDVBpBSIiMMlJ3ZKiVObxBzXoJCvDQYUdejRVJSWmVEC12GkTPoCebQVrvVaDXKku/1RojAtdtXb66vlqVwXdeAXOgsvPf73v1Hn/z8JO5VwnacTJKMTzJSFJkfelzxoOIRRAMvrMw0XQ/fvn3baNRoNR3H2+8OHOb5zXA8SaQAREjBS4whz/Oy5Ajh0WiEkWMZbPEkWWkfaQTt69duD/uJFgoTAgAuc5TRxpiwGvX7Az+oGoOkRogyLjKjNTaYUHTq1DGt9clTx6OKt7Oztba2tr/fq9UajBHOgXNOiaN1AQBClFIJjDGlmFJaCmGMMQfKVIf9ZaveD8uebNr+0PIR42nixCZNy5K7rlup+5VKZfXuep7GlUolyzJ9YOXa6bTLssyTFIG2FWxaCuowwUWcTgiiHnN4WZQFt6dhKyEwxgiDKqTruqXghBCtFEUUMJ56NpTcYbRRq4/HYzCIOAxhjCjRCBqNxgOPnMMYx2l65tzZ8Xic5pnnBnEcj0YTxtzAD+M4zbJMaUgmk7d/93f/6I/9kEqhPxx89aWv3L59M02Sk8dO5pVEGNV25uj8/LwtzSuK8urVq3b+mp2d8QJ/MBgEQdTrDXq9nhCy0+kQQgI/AgNRFARBUGZ5WuQAul6vLi8vX7x4MUkSqybDXEcZDVIKIQzSp06dMMbcvbt248YNq3p+9er1ubk5AOgNB9vb26dOn37jG564detWmuc2mamNZMSEkVOr+5wX165fvnHzSillu904dvwkdT2CmTEqnqS1WkVKKYTCFaylitygXq8f1Bs6eZ6/9NJLMzMzDz300N27d7/+zLOYkSgKlC4JJZS5nBdbW1t/nD/Z7/burndnyoQx4vq03qjs7e3t9jdHo8l4JCNflYVIkiyNE8bY3l7XpYsQ3WOmuHDp4q3VG6dOHUPIMJceP37cGLO6ulqWZavVIgiPx2OEyHA4pJQOkiSKokcffUSXYjKKq1EFITSZxL1B1/d91w2MRrzgmkufOVoaOc4xpkoXZ+aP/+UPffhHPvCBoyvHIC+By8nGNk/zbDTJ4yQKfeUwnhdYiO27axqABX6WF5NJobDEjBhpjJRgDMXgOUxJw2WWF4XrunYiM8ZIo5HSBjQABoyMMQqBtQFUxgAApdQl1AaOCCGKsNW3chzHHDAFMMX4YPlECBEESmuttNSGGoQIUUJyrphLi1yGfgBKKyW16xRyqrNWrXqMESHAdR27EpdlaYyxdipKKURxGIZKC6EkV4VWKnA9hAgvCxt72Q2VrW2sVCpa64Jz3/fTNB/ybqNR11q3OrNKqSiKwjC0OzFkfLgXSbDX7W7tvDg3N5fnxc7OjpXvQUAAwHXdsiyFLIUQjlOzFUB5Wty6dcfzHOYxMOjypVtBQB955JEwrBBCHIdyUW5tbRVFtnhkmSJqpElEwrATx2mj0QjnQ8Ycxjgvykql4nmulLLX603ikV0OhRBgcKVSkVI7zA3DijGm1+ulSR6Pk3Z7djweh5HvexFC5vKlK5ZlUJbizp07DzzwAOdSSq6UCoJoPI4tvnz8+InRaNTt9puNmXqtabTe3trZG3WDIEKIjQfDmzdvtlotjKjrkEsXr9y+vQUSGp0wjmMDanZ2xiiohNXRaKxVvr/fM8ZQ6uxs7wJgWQqtwHMcUXJCGMZGKGWLp3Z2djTiQhX1RsX3/YJLodXZs2cZI3dXb8dxTJhbrVZtGfzeXpdSfPr06c3NzY2NDQDo9Xq1Wg2QRgjSNF1aWnr88ceLori9eqvgpRf4NrdvLZ5tqVS73ba1VFmWra+vW31GIYSVtpRT+2NI01RK2W63jUH9fv/6zZsIoSiKKlUvjod7e1tJkoxGk53drWarJqXodrucF74fClGure25ru+6LmY4DCOMSZ4Wk3GilCGElFkRBIExBiOqjRJCYVA2bX7IgLD7B0qpFNOkC8Z4b69LKW02G91uV0oJEhA2vu9bUTNLESpEYVe+rd2dkydPzs7O311d3dhaP3vf6STJ+v0BL4EQBMggQBhhIUEpvb62iZmM0zEQPB6P3/jGN25vb2PQ169fvXnzZrVatfL9RQ5vf/vbq9XqxYuXS1Gcv3A+CL1xNjl2bOX93//eK1de/tVf/bhM1B9+7vME4Sfe9KajSfzWt5P/9J/+UEtVlmV3d++73vpdvh9tb+3zTPFC9fb3m/UwjNwjR2aWF6tSFg42keeeODpPnXB7q0epazSVwkRRBRkTRn4/Htfr1Xe96x3PPff17V3p+357vnP58lWlxE/8xE90d7Y//Qe/f+G5q3ycnz5+7Auf//yPf+hHnnnh0m/9zh8sHFmqNRuh73z/n/u+rz391PnzL9QbraXTO+2Z5S88+ZVrt9aWj6wEbrVWqe/t7H89e84oPTc3z4UMw8r6+vo63wh836VOrVYVQm6srklL5+fFTKvzlre85eLLF9bXB0ePzmiNmo2Zhx9+eGNj49SpI5u3xlDGmBFeCtdxZPKOe4ab/w1NSviZn/kWOry2ffSj8Ku/CktL397xvzncRr8x84rvqTP1Og1j+N3fhTNnIAhel2D4TVqawu/8ztQd7p7t/xfXa9vr6C19i/ZnuVd/9nbjBnz+8/C93/taxPlbtqKAj33sm2lqOw7s7UGSvNazEQDOn586Yb6mjzCGf/fvwBj4wAe+vZN5TVMK/sE/gP39e7+7vw//8/8M//SfftuXfNg2N/8UiQeDjDFhEEVRZJmtSZIYY4qCU6watbrjeDfvXldK+b7nB5HWWilRr0dhODscDpvNJmUmzSaEoEceecTzHKXKcTxaXJp3Hb8sy1ars766URRlo97a2tpJixwZY2Mro7QymnNeFIWF4Wq1WhBODa+oQ22CHCEkLainFRVCSpnzkiLLNpCHpGyCcBzHR44csV/JklRLZT3uNrY2AQCQnpltj+LgnrdBa40IppQOBgNsABniuwEvhCgEoY42wquGt9d3/vjrz507usI1KpUWoPcG+47j4BhzyTVGhJB2q6kPdBgIoHQ8Wjl+7P/1c39/EOfcsOu31n/53//a6uadQX+ECQRBgJBGgDXSSpVpNvIjVKkEtVpldVUCYGOIMSC1EkJEUVitBf1+X/WVEqVVPlEa4J4B3xQDsuxv6bpOpVIpikJycVg/hxByXSKlEFzKA23NNI0tA8biI3fu3EnTPApCY8BmiJUWymh0ILuskCWlBggZDeaQ4Wh3p7aXpTIG5Gg0SpJJURRlKQhBWVbcvHkzK/Ka61g6fKUW2eGHMVCKpUSMeQhNMSlLb7TR45QAC2CM4WWJKbYDwJaChWFo0eSiLNGBSoY2EiGUZQnGNIuLQ0ahPSY68EpBBNsAOAgCxtyi4HEcgzZSSi4KW1Nr4SRLcLY4exynnHMjlf08Jc5kMinL0nVdW57IOVdgiJ7WF5cHNWrToY7woSwyQRgMaG0IIKU1GI0NYIQoogYfCgVMdU5eTWG27GaLoX8DVfmANAMH0PMBk1oe9hEccLGnHUcONLIpcojHOc/ynB7wUi3CrpWyFZagjfVQGQ3Gu7u7GFFblGDhBoyBEIaMxNRlDlFgpBRSaW0Uwdgq3hxSWRFCllBitV+DIHBdfzKZ9Ho9zrkxxP60pRcg5Diua8FxzmWa5pyXgAwvckyc7e3tZrOZ5/nFi5cfeuihIAh6vV6/P5xMJp7nEcKs91rgRwghBI7SstPpFEU2iQdC2Do8bowpC1WWL5eF6PdXHceTwoqeg9ZGCsUcpDVwLq1sruv6nmf6/X7ghxiI9W0TQhKH+r6fJIllYVus02Gu0tKyQADA8xykTRInohDMY1PaELLUkLI7mMzP1BuN2nA4VMpYSZYKcwLf11o71Ba/4ygKKXEWFhd9z3OY1243m836OE4sb8kN0OnTR9/85jePhvELL7zQ73fvrt1QWh5ZOPbauWM6JYpqNQIApbBSSinDObelMPZ5mU4yZqpDjTEGwABaKmWEmF2Yc1329NNP93o9yXmWZYQQm6WbIvVSlmVZ7GVcKISQrSqwBGdrfmNBZDukp4PtQFJ2KlFCcFmWVk6IS5EPM9d1q426fRyyLBNcEUKkFABgpxErs1OpVA4IsmA1o9M0XVxcxAhlWeb7fqfT6fV6eZ6TgNoh2m63fd/f2dmxbk9+pUoIUULaB83OSLa24HAHpJSy1c8GDCVEg9FWNocQbYzFHxijVlLaPtf2oT4U3FfC+kZNE3iMub4fXr169fLlyw7zsixDiLi+VxSZxeK1RhYxtPA0ADiOg7A5UO0wNrmrlLJQpu1KBERwZQl2gIkxgDE4jCKEMAGkyUECwDBClFIY3Tv401qnSY4QBmQQQojiwxoUq9twMP9M810IGSGUEEIpqRRQhglBQghCAROstcxyDko72CGAlFZITwfe4aSHkO18WauHK8ePLx3pUMfbWN9J0+Lm9fWyzBHxMKFKi9Dzw4opuRyNB0VReD4zgBGYUqggiPzIVRqtrm+HlahajV586YWd9tZDZx89cd/KlYvXJuloaXnh0Tc8qo24cOFCe6aV8zJNx8bAcDjWxl+IZk+cOj0YDDCinu9TEqyvb8ZpFgRBVK1M7zGGIKw4rk8pRQYDYAxEST1K4q9eea7d7GDjeJRlHFl4pFqvrawsI0peevmCQUqqXCuEEOOl8AKUZeVoNPnIX/nxd73rXS+/dD5JkvXNzc9+9rPjcewQB2MKhhiDKKVCSankQcqEMzewgyG3iyOZLhPmQA9AKcUw7jQbjz322HA4XN/abDab165dwxhLyRlzK5XQGJPnebVWNcbEcWyFOwLPC8PKzs6OVY6dqc8cPX4srFa2N9f39/ddRpfmZudmZ5A22WjEGceApNSgdBgEUWR4KWzwUKlUXM+x0mRBFIHSWkuhDSGEASAA5jrIGEbpOIkxowjjNM8VwjMLs1Xe9INoY2snjuOsyG/cup1mhRDCCiE4zPU878iRo47v5Vslcx0wRmu9ublucnzh4qWrty9nWVb1K0KUk8kkztNyD2iWpltbW0JKYyDLsjzPhRDj8TgMAw2m2WwuLS0JIZIkvXXrltGI1Em/3y9Kx3EcIXheFlLyajVyHGdlZeXmreulLKzMEKFIa1mpVC5cuHDp5ct/+S9/BBuyjjYd4m/2dpJJ+tL2hfsfePDBsw9Vojph1PfDMKx09/sPPHiuWW9cvPQS9llRFDefu7R6t9FoRkEQzdYrZ86ckUoZTKqVeppnqkRaq0olunDhgjEwMzPjY388Hk3Gic1k2oqx3d3dzY2tmZmZarVaijKsBEHoKM1LIbzQL8vR3t7eaDSoN1ma5xFxH73/wbm5GSl55Bul5X2n3TwTm5ubWhqlDCFQrVYdXL3nTCGlrNcjamvHAPI87/f7UsqlpSVKaZ5mNkkVBIHHHBT4DiWe45QKOY6zvrmxsbHFqIsICbxAK1QWApTxiEsM7g96HtCFSufDP/ahn/jwj6+sHAOtIM54nA67vTxNHUw8z2vUKkWWp5O4JzhR1GVOkmZlGSsEBCNRaiPkFDPWmmthRZoopZggh7JSTHnNjuMQmGoTW/9isPOcAbBVnGha6W8v3K5eFujXesoVMcaKCxkCdlLDCAPSWlvJDYQAWy0cxJDDY84Y0xiUNl4U7k6GcRwfZIQImQqdYq2FlNLuHbVRAMzzHSmxzIUxhjHq+J4sJcKGYIYAEUK0davwPVvZmpeWC0M9h2qt5xcXGWOTycQmNm0IGwSBSu/Rv5VKVKUduzFrNBrVapUQphVwzm2eo+R5FEVh6DuO0+13lVKNVl2IcpyMR6PRmTPHH3zwQWNQMp6sHD+2v79/+/bNLC1qNS0KUW01Bv2rURBil5WlCNzAkkQ451EUPfLIw1tbW93enpClo/HRo0fTrNhY2zQG8rzkpexmQ8cZ2Dg4SWIp5fETR13XL3LO4oxzvtvbfeKJxx5++NG1tbXAq+Qp992AIzrKxqPhJAzDdmu22+3evn1XSdPpdJJxMRqM+v2hEMJxvPn5eSNVP4w8z2PMxZjeunVLCLW4OGvXyCgKZmc7w0GPEOq6XqczF0/SUkiMkVICaeQ4DhhMGBVCl4XgnBsbb2GDCWHMpY5bCCSFZhVXGTQexxTtBYFn/V4AcBynFE91Bl3XPXXq1JUrV6xCcVmWGxsbpRRzc3N5kW5tb1RqVcelWZYFQWDjfoSQDSAcx1m9vXblyhUATF0HAPr9vvWOIIRoBSXPAYASx2Bj+UFxHAPBQSVqNpsIcK1WU3KCGZYKq0l54uTK3Nzc0WMnKMUrR5ejsDocDjfS5IEHHmg0GleuXFtfX7//1IMOTUHFo2GCDbjUEUZY9r0NbjCAQxnCCDRoZTRGbuBPOQhmWi9pgzttQAjh+wEATLlsDFu+kkEgeGnAWI5AGIZu4DabTS7F5uam1rpar41GKkmSpcWjh5po9rCu6+7v73OV5HyiwPT7/aWlpSMrSyePHf3s5/4IYS/NsqLo+b73Az/wOMZ4fX316tXLJ0+efP6FZ1ZX7wzHZVyO3/zdb2KB89bvefzKlSsvXthut+Hd7373uXNnkFFaiouXLszNz5w8cQyBpgQcjObazUajbTSSKHVd6rkKtMwnk/0t7mGKfNfz6umwOxyMtB5Ys2DXY8dXjjQatV5v/8Sp4w898uAv/1//n7TIo0qlUq0OBoPLl68+cN99oR9p2b9zc3V3fVdz+PQX/3gwjMHznWqDhtWrt27t/8YnZjqtpZPntnf213YHkzu7q1v7ScEdL+oPBjzNz526jxA2Gg3+8DOfPXf/GT/0yywPXAdPlYJgOBxOxkmSZzev35LyqOMEFPvv+d73Y0zu3r1TrzXCMHz+uZeOHTteCxtlKQABQkwqOHL0/1DxT99zETnokT8t/Jok8M/+2TdTOXh1yzL4m38T/s//87UWcN+kra7C3/k7r6vYGwSvdWz7k1Tlb9K0hi9+EbSG//F//AbjuD9N63bhf//f4amnvtlnvuPXa9vS0jeoQADA0aPf2ubuz3iv/uwty+Cf/BMA+PYQ58kEfuu34FOf+hZH/tzn4Ed/9B5w82AAX/3qPfIBWsPeHvzCL4BS8P73v1aP+0/Zul34l//yHtTpwzYawVNPwc/9HPzMz3zbA0wpuHIFfu7nvsVgAAAuBAAKw0AIYQlo0s7VGmHXTZJsMNjkorDg4tzc3MxMe2dnCyE0Pz+/vrEWJxPf97MsmZ2ddRy6vr5+d/W2kezEiRNKGrswCSVXjh6tVepxnCZJhgCMVIhiAKCU+u6U0hX6wQMPnkMIra9t2o2H7/vK6DwvLMwkpVSEIoQsbRm4tElNQogQ3HVd13UtR9VSaeDA85kRygjNZcEYY869ivsAiqJYWJp/05ve9NRTT7kxrdXqGFNTCgRACYnTVAlONJy/dOWxBx/u73f9amRGw9OnTnhBkA/zOEsAIzfylIY0Tev1OkEIKdPd3dncWH350sVH3vjWo6cfuO/cI+/5vg/sjwa/9Vu/+cUvfX4w6FvRjDAMucqo9ipVjyvOeeF7AcZES4yRo3TJGGm1WleuvlyWpTHIdRxjDOdcKkHvfUFTbl2e51EUtdvtoiiHw9HMTAcRvLu7axduKaXrulGlynk5Ho+NMf3hoN1sWdQjCIIkSYbDMbFSxQa7rkupo43CB8oPxhgpudYOpsTi3lpLC0vZ7StCCBOmjUzTVGvpR+Hq6qoxyvdDg0AIwTnPMh8h69INRZk7rmfVnCuVClhMWUxtCcmBWEeaJNmBFKktMmOUWGTqELLRxmgjhVIOpZY1PxoMyzIlxHk1UGu/4vu+hYooJgghXpRDISwubzcODvOYQzDGtiYdzNS/0f7LMDFsaj+IkbQcTH0gVUEcRhGSUiol4CAZbxFeQkiZ5fZvy380xlhf5UPU3l6RUhpjsOPfnrwNqw5hZbsDOsSXyYGlpO0pC0Mf3kApp8ZKcBBE2WNSSgmbnhgARgCEEHrgTGidJM2UDjxVquRZobWOx4kQglFsg1UzPSiAraBHGvRUPZY4DCFED+SnbS2CJXXGcWwfZBsEWrVlG+AZTaQAY0Apaa8lCCLOC5DIGDMcjhEyjBFrSGOvN8uK3d2d8Xhs1YE8z/P90CIvGFv3URxFAQKHUFyv1zkPEDKTyQQQchzf+kx29/sIWacZdXg/7ZOlNAMA6+PteZ5V73GYCwCilJxLIXJLy3Bdt91uK6UKnluBFyllGAVlWSolLJlGiNiW/RmDFFeEWvUSFsfyvpNHfuiHfuj69eu7u7vHjx/f3+8lWV6WZVna70aDXs/3fTB0MknyPDW1WlEUYSUgFDEPB0FAHWd17e6d9esZHxPsIKaYj1Epq55XiPSeK6pGZjDpU0QYdac1KYgoxQ+pJABgDDJGgZnCVVrDlFyPzOLi/FSyBqH+eDzNTVKnVquFYUgZRraqoEi1BguwpmlqjGGM2eyjLQ44/DkLmtt/jTGWI6wByrIcjUZpmhZFtrCwQF1alqW9w0KkrhsAuOPxmHNhJwENyqoy2pwQIcQufJub261Wg3NOHVYUhTEGY2r5Xgihvb29arWapjlCyPX8shRlWVJGGaFTT6aD1I49banVAacZmQOmPExN0bXjOA49+BaZktvsrbMDzC6OVi6DTq2VJOc8DIL9/X0lDXbxQbaV2IeIc47QFIgHAFvqjRBCaGpGpbVGB9EMASTBAECWZRgTpRTGCGOkuNRaawUGAWhtjGVkGwCthdQMEUKUeh2KhAHLu8/yBAB8x9daay0pdRhjh5Z0Uik6vTFWugf5jouw8TzHGC2ldFzmeR7SJs8yrTWmmGKWp3nkRxS/mjkuLZKLGTQ71bmFhoQ0T4enzs77bnTfmaNautvr3RdeeGE4Gu32vDmngohgjDg+XVxeoBQPJ+Msy0oBGkSc5MwhUeiPJ31KIUlH129dfus73lSphdeubL7vB94XRv7lyxdrjWpZlmvra77vOh5zHK+7P5wksZTccZyZmbnt7b14pBRHSJMs5VneMxjVGlXXd7M8bzRqWmsMhCBKCUOMmBqqH5kd9gfGIIpoFFVXVpaFKCfx0A1xkk0aTW+cpAQDL6WUUiGpCfvhv/jny7yYW1jIeX7h4surq6u1WiMMK8YQBERKZQwyGmmMAJDv+LYCHhDVCFsYWguNEKEYK6MBwBrIa0AYU224AbG7t8k5T7Mxc1CzVR0MBoA0F0WrPc8Y2d7O43jsOI5SIk11v9+vVSqe51nsSwsxPz9fqVSKIrNdX6aTocsIRoyRiDnxeCKEqIShKKWd6hEGjJDSmkse0KDVbtt5IMsyY7QQnAvshYFUSqQpUtqufdoYgwwN/WQc7+1tc6GiKDIECyG4VGXBKaWMuYAZJkwDLrhWBu3u7GswrVbrvnNnMcZf/epX5xtL8/Ozpx/5kSxPNi9uJckEG5ynWZMQmuc5AGCEqtVavV7nnHe73bIsJ5NJq9O2bMEsy44eOSqEGA7HYRj6gTsYDIqi4LykBBHXHY1Go9EoqgRhGBoENjdlKyak1N29XrcbX79y7fFH3/C973zfiWMnv/KVr9668bFHH378Z//u/8PxXMbIhUsX//CP/qhWq73zne8EgI311fEoVtzxXHbq5NnhqKskfusTb8/LvMi5MnpxeSHP82vXrq0sHHM91ut1T993cn+vxxiVWszMzKytrRHMXNe3mtm+F6RpeuPGDepQx6Uzs81Gs7q1uzWcDMHgaqMWeoFSoijTeqN+5szp2dnZsiwWFxc94p04urKxvvvCCxfCqJInvCzzKW9Xj6P2PSaKMAwlRHNzC5wXNhtvg4DxeLy8uMSIMxwOjTH1SlUplWRpqtSo168Eocs8QghznOPHT8Rptr6+TYEx5FKCyklexFndC//GX/joj3/4w/edOQdFCZNYJFkyiXmWEYQ6jSYGlBcp55wwSjyHea6IE2NASp2XQijJPGa0FIJzyYEajJARWihpMDmUjqKYAAXOueJCI2TjIYKmQkWcc3Xg2GB5EHaCVkrZ3PLU8tKaeNgY1BhKp6GYEtKljLiM57wUhVKaOQ6mjDmeSyhoQzCmgYfqYV8VL16/yhjTYIqkIIwZA4wxpafOAMYoabTWimihteSyLMtSGRlFoec5uVSu62JEy7ywtB3OuQaFkKnUalCWtsos8oPecPD8888zxmZnZ9M07Xa7xpharTYajSr3qnThoozH+47jMOp2Om3P8+M4LUvueZ5NyXqeh5DVrQOr4FytVglBheCMsaWlJYzpzubWxsaGlBJR4rpurVYnmGFEb16/hYE5ThBFlXSym8ny6NFZIYSWivMyL9Jz95+5elWdPn38/vvvDyvRH37m861O23f9mzdvl2VJCBVCMOqWReG6nhDq4suXheLHT6woKZU0nudKCft7fa1QnvG11U3LJhCinJ2drVeb16/eHA0ntVptYWEpjbNbt+5oDXNzc7VaY2trK4uzN77xjRjTGzeuKaU6nQ7GdDwe1Ov1mc6sUkoqYRR4XiBEXK3WPTfIM5EkOcK4Uq1UKpU4HmsDfhASrIa9iTEGA6HUkVo4jtNqtRBR8VTHwriubzQeDkd57nJeUOosLi9nWVZmuRTa90LXY1evXjcGua5vh2W73XZ8T0qZpinGeDQedDqdM2fOOI5jXXpc1+10Ov1+fzwej0aj2dnZarWutd7f2bX5fxulMcY4J+PxuNl0Wq2WrUjtDoYY43q9rpTyPTfPc4C8WWne/8BjnPMTJ06Nx+OrV645Lg38aDyOX3rpJSuiNBwOB4PB6dOnjx899sLz50ejkUModRkY7LnMykspIY0BQigAMuaA3aR0q9WixLF52kMrRSml6xAhhHWZT9PU930Aas8TMHVdlysuEiGkSJJEGnnpymVrp9Bs1e/cuTM3NzNJJufPnzegMEYU47KQlGIheKNZGye8EEgrlabppUuXZmba9WoYx7Hj4r299B3veNMD5868+PwLly5dmp2dnZvtnDhxrNcPEdHm7u3V1eHHP/Gf3vyWJx55/NFWZ/7u6u0rL1/9o8999iM/8eG7N28UZXri6FHQ4r6TJ9M0Ay0qkdtsHD129EQcp8+++MU3PPbEeNTr702GRdLf729v9SuVWacWxvv9SrVZrVaTLLU2qlfjW/VGhAj+9V//9fe8/73f8853XL9+lStpMKKUXn754ubt1SzOsIG/+KMfevbLX1Zh7cQD577y9WcfeOSxXn843NwtFdrrj0thPvDB75/b3q202mvdm93J+Njpk/uT/mAyAKl2N7dWVlb29/ZOnDjxwP0PPfX0k2mcAejrV68VRRHHcb1ej2rVnAuM8e5OL5kk3f3erVu3ipyfPnWWMJrneVnKCy9edJ27PJegEQJ89Oi/bne+hZpDrwdFAcvL3+wzRQFf/jL81m/B5cvf/GDf0Lpd+Dt/B370R+EHfxCq906bTtt4DH/wB/Dbv/261FEAGI3gJ38SfuVXpmzf556Dv//3vxnd+J7tq1+F2Vl44xvh/vuhXv/Wnx+N4MoVePZZeOaZb/3h7+z12valLwFj8HM/N/3vL/wCfOYzf6rT/rPfqz9j0xr+1b+CXg/e8hZot7/FDRmN4PJleO45+OQnv/WRu134yEfg3/wbOH16+opS8J//M/zbf/vNxK+lhH/5L2F19dvofQCI4+ng/8IX4IUXvvXnv/QlGI/he78X3vY28LxvcdUAMJlAtwtf+xr85/8Mg8Gf6pSQASGExb8mkwkoRR0HAUkmkyyzcYinlGKEYSBKaFHq0WjQ7w76vdEDDzyQpmkU1niprly5MRwOHRYgwm7fuhsEUZqmLvMAoN/rIYMppVpIShnGiFLqOY7nMAzIGFkUhRJSm6lkwaEPnt1bTo3dDFjaaVrkDqGlLA+JYJRSwhxKaa/XI4SkSep5nsWkiqLAGJdlaXeqtUpN3OsmWJrFxYsXt7e3A9cBqYQQpc6H/X6pNaH4zW9921/+8F/8wHve1QnDX/4//mV/b2955YgfhgZUGIZAEDcCAJQWtVrNaE0QRUZrIRHAzevXNne6raVLx+97aG7x2NLxE//gH/7jv/bX/+b1G5efeeaZT33mU9euXS25CWuQ81wqvre3p7WWXLks5MJYkZCdnR17W3Il7J0pSwVaEXJvdjMApsQhAbF+wsaY+fl5SmlxYGZlmUQLCwuD4QghpPXQ87xmo+26jkVL0zQ1BgWeD4CMtnRawNhgQimhttyKUqqMLgVnwAhBxqgDdrOhmBzg0RJhAwDUdbIkAWzNr7hBMDs7F4a+VdcV1nEeY0v+sEFCnudWrtqaPVoUVWutD1QdpZTGwqbGsQYtWmulJEIoCL0oiqxA3Gg00lrbcQ5qigPZ4N9Sa40xWgNCYDFeYwzSiGKGKRaitEWErusaUEprixlZkte0QB4hC8pQSh3mWYbv9Odgyj5mjAHogzNU+MBZWnBuz+cQLicHUOyru9MeAWNcymlp85SfedAsqGRfh4N8wyEGjb+hIGU6cR9i04c/bR8Wy0nkXMSTif1dLpS9HHt6ZZHZI4/H46oX2gETBIEU2v4oIlOiK8ZACKGOQxxqjCKEWKqaZZYdECclxlgpIaVAyDiOQzHSUmxvbmitEaCiKBAwjBx7ksyh6ICQDgCBH5U811qWpaAEaaMJQUVeSiUoddLU6tIgpXJyILdt+e+UmjwvKTW61JPJBGNwHMf3Q3uZ4/HYaHKwN9SO41CqKaVKamOMVAIADvmbttqAMUYQiSfpaDSySrx5nksi7MRlQBFCHJcCgDYqz3PLfzpgguM0TR3HCdyA8yLPylarpZQ0Bh09enQwGGxvb2uty1Ls7e0RQo1GAJAnaRKXCCEEXHGV56nned1udzwZttttz3Ol5ECUzrXj4FImd9dvYMPa7TYgqTRP8hJM/ipbhFea67FkUFDKlJwOTim1PWHLRD4Yfhq/olcJU3gV4E1veEOz2dzd2drb20uSBCEwxoSRjw8bQJ7nBkyz3mzWG0mW1ut1G53aOymlPExv2PFp/7al/XbfarsgziYA4Pt+IThW3KqkGoMwxlJxK2tjHwFKaV5KIZSVl9caAJTjuDZxMhyOEUKugRLEIY+bc2Fr/JMks7oxZSkG8bBWq9Vc18rVl2X5Cn6KEKbESGkTQq95JIUQ8sAV087DdijmaWY344wxi6cfXrKU0pLhpJR7u91bN+80m81ms7m7u2ufQdd1gyDIijwM/TRN+6PhYerIYCTVFHc2xhipCCFBEBpjsrKwV+d5LgBYiRjBrUmjmWaeCLZX53neockuwfdO+GujpZRScavZIqUMAk9K/Oo9oNZaKK4PZItKXoRhWK1WpeL28Qeky1L6vuu6LqMUhCKIIo1yyDnnQJkQSilhjCmKzBblYKaqLbzbU8xTJc+u3HhpceFIGNSXF09FleWrt14i1HM9gpAZjce+7xtsuoNuGPpFkRW8BEPLsmSUOQQnkz7nRavV6rSbmsuXLj77xrc88e73fuDqtcu/9+knba4xHieEUkIdQqgQhhCnGtZKUVSrdUr8PO2NBynB3uLCDHWdghd7vb00zSlzKXHB0FF/QCnFQFzqSqnTOIE8mNaNSZnkE0TN6VMntvfW0mJoqFw+PrOodXd/OB4li4srUsCRlaONRq154tjv//4nP/OZnBDCS725sU0Q9f1ASm7TAVpPBVtyLo1BWmjXcZI056ikmB08Do4RAsBqX0z1WJBB+/u76+urxhjH9waDXhRFAFqIUkrpunR2dpYQfPPmzTzPPN+xa7F96AghQikhxNbW1jgZYYzvu++Uy+jqRk9rFcdxtRIeac02m81hv5+nGSHMSKVAMYdxzrkQlXqtNdOZn59fW1tLxwPHczQHx3OVMVG1ppTCgEDpYbfneR7xHENwY3amkaXqDs3yEiEUhbXBYEAZcpiWQkutKQkUKDv8DMLnHnjwoYceOHbyxNra2uc+97ntvTsbZHvpyPLbTrzNgDp9+jSAXstXSyG7612a53mWZb4XUEpLwev15tmzZ9fX18MwPHr8aFEU/X7/9u07dtU0xlSqoeu6o9EozzOttdbI8x0bie7txdM5wmF2DuScU0SazTYo9MdPPv3A2Ud7+4Nh/3x/f/gjP/gX3MC/e3utVq9LLQU3Dz/4GOd8MOqu3r07HPZXlo6srt2Nwnar2djZ2Qt8tHp3mzBssGm2G/393rWbN2yKO03jfr/bap05srI0HsXTFRGB7/v1ehMAD4fDPCsIYcYg6tLZhc723s4kGwaB63lsMBi3mp35pYWoVgHNO50WZeTu3btXLl1GCBFDOZdaIYIc0EYbaYXPsiQNvHtvELXUcRyvr6/bWjYv8K3DBqU0y7K9va6UstlshmGIEKE8Gw6Hto6MMFpvNoJqrdFoJWvrxhhKSUDd8c6gTIsnzj3693/2773/ne8HTGA8UXk5GY6KOK1Xq2FYwQSQNkIIirAmgBBymRMEwXjYrVSbWS66/SHGOM9TP3Al5wYpUUriUZEpLgVytVEaY1B6ykrAB5pByFZ0GEMoQVNagTpYEQ/9sikhRJbcYtNKKYMPLFwxJhhrbRBoozXFmGBsFz+MSFHwjCsv8kqD8oIzwpCUSqVJFp9fvTEo0kZ9ZqoHr5QGo4UBAEJJo1bP86woirwQtVplGpBJbqjJ8zwIQgWGEJImGcVTYoLrukHkI4TSLAaYsgak0WEYWtK2TfLYBAzn3KELldo9+vd973/vtRuDCxcuKkdVUHUwGqRpJrhSRiZJEgZBpVIpyzxJYqVUWAmWjyyOhv1avb6ytByG/tNPf+Xo8pEjR46cPHmSc87TVClTjWrjyagoyr2d3TAMtVCj/pCXknO+vr4uhJiMRrVajTHW7e5pLUfjwfmXnk/zbDIpgiCoVmvz8/Ng9ghxKKWMupPJpFqtBqE3Gg1397cAULPZTpLEgNAc7e/09vf3eSZnZppCiMwkRVok4yxP8mF3bDBynGB3d380HPt+2Gq1ZmZmhsNxPIqr1erNmze3tra01tvbu/v7PVv9hxGZm53f39/f3tpECHzfq1TDKIp2d/YHg7ExZmFxEWOcpnFZCorJYDA0EmsNjLpCCOIwqVWWFvEkrdR9z/E1KCl1Hk8sbxdjEoZht9vFmFbD6qCUnMd293v3zhoy4HkeQsQYFARRtV7vdrsYUSm0Ump7e9sYc/bs2YsXLw6Hw1arVavVhsPh7tZes9lsNBpJku1sbvm+z5jLmD7w0vHtH4PBwIa/80uLM8oURTEYDIQQa2trYNADDyw98cQbH3jgoYtXLm9vb66urm9sbAguq9U6Jmx5eTmZJLu7+3GcIoQefPDB4c5kd3dXayCEKqUIxlmWOY4DehpdHW5dEMZKKUyw9fezYoL2qbQ7GRsbTSYTeMU2nTLGiqKghEilhJJhGPa3R8dP1qJadPP2rTguH3rw3HDU39zcWVlZ9oPOsD/qoWlpJ3PcIo1Xjq4cO3bs9mrR7e9qUFEUZZne2+vpc7rdbmJa7w/GaZp29/uD0XA4HGKE2u325UsvV2qV9733PV98Ek9evJokyac+9SnA+Lu/53t/4Ps/KMvimS/cPXXyK4uzM5ub648+/KDj0Js3rszOzrdaHV7mgU97vc3bt29LGUcR5TmWRTzXqkdLzRrbWl46/Vc/+n/7xz//z5594fyZE0fT3NuUopdmjfmmAc6LMqqG/+W//F4UhT/24b84Go32d3aVlGWej/b3F9vtOnPPnjr56JmzX376qXd/4H2zs7PPPP/i05evzM4vtJtNQlC1Ej795a8tHFn+0tNPDdPUCdjq1p2ZuU61HTBZzbJssL836k3oSdxqNh9/9LGnn34qjLw0TdM0PXPu7LFjxwouz569/7E3PH731tqXvvTHe3vdKArSNF9cXCaM9vvDhdmFhx961Hcq//pf/F9gECFznW+FNQPAZAJ/+2/Dww/DT/0UHD36Wi5qmsILL8Av/uKfSkDjT7b9ffjFX4Tf+A340Ifgfe+D2dnXqjrs7cFnPgO/+Zuvqyh92KSEu3fhB38QfuVX4Px5+Mf/+L/lfDiHj38cPv5xaDTgkUfg/e+Hc+eg0XjtVXe7cPUq/OEfwksvwXD4bRz/O3i9tkkJn/409Pvwv/wv8E/+yTdj177mW3/2e/Vnb4MBfOxj8Eu/BAsL8La3wbvfDadOfYM2SK8Hly/DH/3Rt32fiwJ++Zeh04G/9tdgcxN+//fh6tVvbbT4p+x9ANAatrbg6afhi1+EtTVIkm/j3F58EV58EaIIVlbgXe+Ct78dlpZeOwzKEu7cgc99Dr7yFdje/jYsIrXpHmrrNxoN13WHg4HRCBPk+r6UVhmTYQdcFuxs7t28ccvuJMs8b7Rag+5EShlFDSHEoDsxBicpL8u0iDMwA8CAKfU8L4nzfm+MDXYcxyiNMDZKe56DQEteOD61i1fJc0t0sJtzq0/KGONKogMj+yDwMcYjLqZbdykrlQjDFH1zHEdJjhAqisL3fcswJYTYAnYuhNQFuZecBmNsc3OTEOb7oSqy3f6O1NpBzgMPPvB9P/CB73rH9zzy+CO10DN5JpPR0eMndtZXW7WIYECIEsfLZUmN0WA8x50WpXIBWEeNyPEcJwwHaSmEuHXnztb+cHMwmp+fbbdbDz/+prd813f/+Ed+4ktPfuGFF57t9nZ297ZG3TGCcZpwSikgo5UyoG2dk6Ww2ZXXFiMDGFsq/ifb1KrbAEaUl7Jer4/H4zAMgyCQYsq9UEr1er31jU2lVL1eq9VqGKHRaCKEGAxG4/EYGdDaUEqUNlJOybwgAdgUDQEAa40jhOBclVJgjO1PM0Kn8BBoxpiWUnCOKdVlgX1PKVVvNh5++EGM8cbGhuPZQj2LCLOZmRmttTUStAVhr9AGpdRa+57HOZ+mSQixBEOCiRA8TdPO7EySJAiIFBoAAj/inEtZYkwxphjRQztKABBCYEwJwVZ72nKoLeKDKUEIYYXt7TIIKGV2INFXyS4TQgAQIewQI6YHLmHaSIqcqf4GxhgTm5G34ZBlLDKKLYsQXqWkab9iB7BVRj5kIh+GUnanYzvFAlu2nE5PDS2mxnoEEAKEphI2YKQy6JXvIvQKsxIAyrLUMJUrkULYHTFCCBnQRtu/LQhoT0xK2Wq10jgBBxljCEZSSkKYUNKWiEqjmrV6tV7Necl5IZREoMsiQwgFQZBlGYBhzLN30l6mlcQ9TC0opRh1lULGGKO0UNr1PNd1be87zLNdjAkQBEKWrhcopTC2RyssRHgoIMNLYU/bcRylTJIkFoW0kLTW4DieMSaJ8zzjfuChA9Vg68IihJqOFo1sBQbnPAiCerXW7/fH44lSymjUbDaLgtuSU631ZDJB2CRpCgCEIoxRVuSW92eHlhDlysqROI6TJJlpz/R6PdAoS/KiyLI8O3/+wlNPPdVqtSqV2mQycV0vDCpZlnEuLYm70aidPn0fQjDsdxcW5pIkuXzlYqUSYQwGRGemVZYlouD7rpRyOIj90GOMGSwdx0kG914tfD+0mRIu+GH2Dg509u2wkZIzxqzYETJTw0BZ5g88/PCb3vSmSy9fuHrtir3DFoJEByLdjLE8Tff392dm28vLR4wxlmsMAHvd/W63q7VhzEEIWwqjMYAQtoAzITbRog+TBxZ598IgCIKiyGweQiljz9amyowxzWaTMTa6e3evsHI6hlIahRUhhJQTAFSWnFK60Gq5rtvd645GI8+hSZJIqQlhhBCjEcGMEIKpnVswIeywbgBeJWF0SFU208ICu9/RAGAly4UQGCGbsAEARigAlGVhtWWm4uavWuaLoqhUanfuXNje3l5cXMSYuq4vZcw5b7VatpKY88LKXh+mMRQvZaEJnS6pdn6z0wsc2BtKSTzPS9MMAJTSCBHXJZbPbowBMDbjYucWpZTl4d1ryTFKiyn9H2mHOjDdHpqyLPUByI6pe/jTdofo+Y4xRErqB/Usy4TIJeeRF9bqjWF/ZJRWSlUqFYooL4TjOEKYs2fPnjp1otqo7uzsdIfr1abjeLxQYyhEVPOoZ4irN3ZvL8+dePQN92tThhHNyxGiTCPsh94kGUfV0PW9GddnjgeAPc8PwrA76G1tb3Q6NSlK6rBH3/B4wbNRNuhPus3ZpijL0XBSqhIAG2OKnGcZNyCTOKvWa4zKQb/X78WCA4DZ3uiWomCBgxnFiBSZMEjvZ0OjjBISjM4VJxgjoAabTOSe5508eWp7Z+PKrUupHBCqhMwMkjKVjLm1ZvDIow8wGm6sb1JGXnrppcl4PByMu7td3w8DL9AEOJdlKVzHR6CUUhgpKUpCqYNozovDbfjh0GKY2P24EEKIggBCCPG8oExbTMyGWJTS8Xhsl5UwDDDG1hoqqgRpmh5O2qIspaVVI4QQGicjgzWAHo+HtVotrAZhGAahBxglk4nv+y5zJBdScs8LMMZWzLYZBo889uh4PF7f3FjbWiOEWIljSt3+sJ9JWa/XPd9zMB0MBr3RsN5pRfUa9hwKqr0wpwzq9/sYO4AdKZTUYBDGYJRSUiguyma78f73v3/56HK3u3f58sXz589rLecXF+5cWt/YWP/ai0+DgaPt48ePHxcN7rourni02+1SwqwY0GgSDwajOI6bzXpYiXZ39+J4Mj8/v7y8nKfZYDDY29utN2vD4dDzXEsvDYKAi6IoS8pwmnGl1KlTp2ZmZnZ3d4fjkZQy8kMKrKeGb3z8zXMzc2lSikKEQXWmXbl69arR2PNDQsj8zNyRIytXrlyJKp4UYnZ29tx9p6UQSRL/8ctf5rzo7w/Dqg8g3/K2Nz/++Bs+9elP9vZ6CKGXBi/V6/VWqyVEubi43Ol0pNB37tx1HKdaryGCJRczMzM3rt8sy/Khhx5xIpokIwBtjEwzzjmvVMIoihgjrsuGo9Gt24OjR48uzi84xEMIFTHvdru97sjWYmitJ+OB5zrW3eLeMwVAmuSBX9hSJq21Usb3XWTw3l43jmNCyP7Orhba87yd/R2bKDPUWCcWwHR7ayceJysLR0LH37q9WabF3/jQR/7Bz/69mdlFGCa6LPM0G3X7Dibz7RYQCtoAIJ2mHmFe4ORZliRJkeeB61Xr7eFw6Idho9HY3Fr3fTdLUsIIaEINK2MOArDBQgvsYgzIJsq0MZ7jEoQ1GOv3epjTcxljhHAp7c4KKLUWq9iATS1KKYFgJZUmxPd9yQWiyMEEtCHM0ZIXaeH7PhgUBBF2jERIEnJnbT1NUyWl53kZzzcGQxVB1KmnRV4Izjxa8aL+cGzACCEiFiCCMEMuMEJ9P/ROnDgxnox6vXC7uxVVQ1vttbm6DYAoJoRgqVAURcaYwWAgja5ENatvG8exlNI66mqthSx937eqMiS4N9VlPBytrKyce+D+l19++eULlzqdTqNRl9a3UAeIgAZlM5mNRkPoQilVq9UAIAiCWTL74Ln7rb/23NycjfLX1tYKwevVxu7+nihE2AqFEPEkrlQqtVotjmPBCyHE0vLC5csX5+ZmOjOtO6t38jKdag4qdenSpfEoJogeOXJ0fX0jSRJKHKk45zgIgmaz3esObIAoBdy4fseq1xuD4jglhBDsRmHVaFSt1I8dO7a2tmGkivww9IJSCN93d3Z24lEcRUGr1bKWCBjjSqViZbtbrRbBdHt7O0mSer1u10qEUBJnhDD7FCCEhsPhYNALw9Dx3CBgyTg/ZFUIoZCBdqftOF6aZpQizJAQEgxm1K1VGx/44Pd/7WtfHQ6HZVbMz8+vr2/keR5FVUJIrYonE4jHSRzHdoNti2pd1w3D8MqVK/axmp+fd113dnZ2PB6vra0hjT3P29/f39ra8TzPdd25uYVqtToeD0ejkWVYiKlBkDsejxWY/mhs9XAAwHGc06dPN5vNUyfnWq1Ot9v95Cc/ORiMHn300Xqtsb29OxknzWa71aw41KlWmwCYUfcPP/M5mVkug7Y8dK0AI2S3IgAYQNm9DUEYYatiZiyCbJci+9BprSwFQAhxIFImPc9TWnCOXNcVr3J19zyU83KpudwatXZ2JpbylqYwGAxmZtutVmtva2BMchiNCSFm253FIy3C9ObO9mOPPXb16tXJZJIkSaPRaHWOLywsgDGf/qM/NFJ12s12a6bf766t9RwHRqNRvdl8+OFTZ8+evXTl4vnzd//g9z6Vp1m9Xn/H+08M+v1a5LseY4wg0H7gzs/PtprNwHOffvrpwPM8l0x2Bru7m9lkQgk+efz40uxKw61lqdL5+G/99F/5yWe+9sXPPvn4G89FHhtgPBnFy0cWkMF73d12s5nz4r9+6lPUIWmcOBS/+13v0Hk+7vX21rdefOHZD//oj26uLIp4cmRu5vODfuS5RZamjGJKHnnkkfMvn//CF76wcurUfGVmkowHo8Gkv7OwOHfyvlN/7vs/8OLFi7fu/tr6+uqv/Mq/55x7nhsFod9q3rpz23GcwXi0sbHheP54PN7e3r57966UcmVleTwZEUbn5uaee+4513X9wK34lSiK9vAAo9brrR2vaUUBX/oSfP3rMDsLrguuC1oDpTCZQBxDr/dnZcWOx/Bv/y38+q9DswmdzhRcwxiGQxgMvj0sL0ngz//5e0v0flttOIQvfQm+9CWoVqHTgSiaHs1etVUH/m9u38Hrte2FF+C9732tHLNtrPw5Fb9cyBIoDnyvUa20KzUslSpzMeb/0w+DALOIcYFhazyMlZQEE+owygQXtVqVUDrodpnDojCUWvquPxgPQR1ruv/iT/7Ww9/1mbWNz3U6M0EQvHzh5aWl5Uqlur291ag3AEx/MLBl43dv3dFKI4wG/UFUiYjCqy+PtuOjH/+MPnp0ud1syLIYTSaTOJ1Mstt3NkBjrXWj1ZBKxZOEIEQxw4CUVgUvEAaMEUaMAS1TXmQcIZBG3t0Oolr4sf+QYQwO87XU1rBOG4kIIISV1ErIwPURBcYcxliaJFmSY0I29vGV2+Q3fxcajWh5eb7dqgOCRqvpue5oNI7TdBTHe9v71PF7/R4vRbvd1mAsQhSPx4tLi+PJJI4np06f8lzvyrVLZ87c96EPfei/fvq/3rx1HROSJgkNmpe35Vd/cdz8jVqr2awE4dzcbJYWcTwZj/Nev7u5s4+BzM7OF6YoygwIAGDKqO97ruMaMEmSr99dBYQodjDClDradIVYi6JIa6DUWViY6+7v97pdRl1jjBDKIRQbQECkUJNJYhlhCBmEcBBUJqM0S0qpVRRFGMOBzqbSyjTaLVs9VuRc5FwTkFgiRPC0CEYissDFCYwQc5UGrfSZpEBGaQ1JKRLX87QBx8NVLEaTMUagtS6l8vxFbVwNpVB9qQsDChBw2cIYNCAwIJTHRamMIAQb5EpDAGuEkONJY0CYnMsl/08ORADGTjabCGPc7faw0ksr7YceeORtb3vbm970RGu2nRfiypU4T/ZFnlDOdweLNHyiH6e+S7WWcSqyPICpmiQiiGJAWkpAWqUR0x44jEVEkWg4UXXSiVfdO+uTKBSNeh74frvTevwNH33jm/5qHI9u3rj2/PPPvXThwt7uBsaSOQEhJgBwnDmtjcNKJXMpwQD4vo+M1kZievKez3i1cn9e4qIojDYa9GSklFSKVzBUa1HdgDHESM4mpQm9Wd/36/U6aC2Fmox6g54kuOFRRFxiXdS00gDI9/0wjADMaDTKIEOhAADXdaMoUkpIrUmWAIBhCJTGiGqtEMIOMgAQeBa/0LiGEEKu6wZhuLddM2DSyTIi0Gm6ACZJU0aZUcF4NIr8BiBktAYDhBJDjFaKHrhnUjwVA/V8TykNDATnUcBmZmZc3+t37xQZIIys2VHFZ5yUGcopJlKCQxUy4hBjRcgSfRVCyHWwpe9Rh1LCyrJEpMSUWAxIa2VAY0IwQkJzgkoAYC51CMWEKqkAgFImpQz8DGOEMWgE1v0JjFFKYQDmIISw0RqDCX0wyirAEksO1dqAMZhQ5CEAUFIijF3HAYSkVGAMEGxxH4VtsfwUOD7gaNs0ACIEW7a2ZZxjjBCAZYITjKRRB9HW9A4cyDsbSpBDPdCO55QO1XmeEUIRwerg4EawZq16bGV5df0FKbe0VMYg3/cpcWxeRyhNCOFSYowJJYARY6w/6gshMEVaSisACmAch1LqWLKq5drfunULwVSUwG7NkJki+EpoYwxl1BhTFgKI1W2Yppq00QaBtYSBqRc3oowQQprN5mQyEVxaNgaxeCEhjuMAuBjroig4l54XWDxaa8jzEmOapaXjUM93GWMIGSFKW4pHCEHIHJTCmiLLSz8Yjye2TNPy920Oz3EcXpRS8SRJlNYGlAFikAmCwMpDE4Kk5Hb7BgCEkDwvR6MJIagoCqVMFEQIge9OIf4sy62QMcZTh8+tnX0hhOs6N25eK7M0CLz97m69Xms0ajs7O17oUeJs93YppdiwNElt9UCe57yUW5s7ICpR4x4TSJFzRl2twfOcKIrKsszz0q5ZFns6THtYVzettRJaSgmAvu9977l58/pLF15UQtio3hKqPM/zfd/zPOaQ/d1dxliv11tdXV1cXDwESTuttt0QWbavJfy6U53uqZMeAJgpFC7G43EURZ7v5DzXWruuW6/XEUIAGADKLJcHEh9FUdjel1Iiiu0ibpE1zw2ELO3mbnNjy3EcSojvhcYAIaxScZRSBDN738qybDbaURRJrVWWGWMsyGtxN62t4uYrTp5woFczfcUcqDwfiJAc+jPZ3MZhxkhKXpbG9R1b+TqZJC+99FKj0SpLsbq6CgAYw2g0suxjwMhutRh1tZGW2CT0VO4cAPDB6Vj63VQpaPqK0lojIJYv6LquFfXRWgMYez4ctBUXla+TzUbfiI9rLaUEqbhWU2tEjDHgad7LLgEGdK1WaXc6eZZsb29ZMVuHUjA4z3MjFeecAdVSgwGBLNYswjD0fX+vuz8YD6SUmJkw9CVSBIjrBzTLB8NxXshmY3Zzdx2oQgYleYIwwsRxnKhShd3d3f3u0GHEdV1mlOe5ZZESqqshY0cWDCJJOor7ffXSeakhjS9Vq9VTZ44nSaLurLmFPx4llVp1PB4T6vhuJCTPU57FPeYERW6wscrUulHvKKTSMnMcJri2xQ1CqtD3QQFhpMhKrTVhCGNS8Lw36oa10A2wMry7v8ccs7A8p6USQhFiKpVKHpfDfv/FZy85jmuM8d2g3exwLgiQWtSwe3MlBaPUZcwYxREHgCAM/TCYjBOhNSHmVdU8GhkDhISeb6Fna0zKhU3YUGk0ANYaCGEAYJAMomgcx2kcW8EArcDzWDWsnjx5shSi2+1ev349DMPZ+bmizE6fPkkpvX79ahQGlnwmleKc1wJmyzisBCiABkQyXk7SZHZ+bnV9bb+/v7GxQSmNoijnZUScOM+SIqt4TqVZlyXf7e3vDXqe5wmjJ0XWrFeGWVwa5fvh7OL8YHOUZRljLsZYSIkxBTCU0lKUhJC1zbtfe+7p559/PgiC9773Pa7rzi52eo+ONzY2nj7/dJako9HohRdeGLujVqfdChap63gWuYjjtCgKKWUcx0VR4P29NE1d1ynL0vcDu2JJKW/dutVo1GdmZjzP01oaY5hDGGOlENaGazweF0URhmGr3uacZxMOgAPP7/X6CJGl+aUsyzttePbZ54fDcWduvlapOx5jjHmB2240n/rqFy6/fPGRRx4JguC7v+sdf/TZzyzML4dhMDPbfvnShbt394+fGIZuFRTu7U/q9crSkfnZ2VljULvd3t7eHg6HM525NE2r1WgSj5Q0b3/7dwshbty8efTYytzcjGIyrDgICcZwUWatVqvZbGHkhGH4wovP9fv7tUoljmNZ6jITlaju0agazEyInaZ9ybsE2xw+ZlTdc6YAQ04dP8UYk0YihKTiZVGiMLIrilVYQ9rs7Oz4vh/43mAwSNPU90PXdbe3dhEilUq16ldUJof9Xieo/6P/9//00z/+V6hEZhSjNN9eX5clb9UbvuPqPLcJK4s92SSzzTZbPZNavZnmWa+3Pzs/w0W2u7tLKcEcwM5WBjNgGhkuJEYGa4MwRoQoAIynCOyUYoAJQgi0tnQjk+eFUodEAwQIH3idW8qwTXELIQLPY5TKvEQGlBA8KwmjeZorDWHFoY5fCtEdJYOCF9o4nh9nqcbKqTqdowvDLCaEzNZnllaOaK2ffvppylhU9TGCpJhgA4AVYXh7ezuMgvbMTKPVWjl5hBLn+NET58+/vH57i1DLshdUEymly5xKpdLv97Ms8/0QIRSG4XA47O70Ko3IcSmlVMoUACk1pTn/yfbsC8+F1Rv33XffI488tLKycuv27SwrwkpUFEWtVsUYW7gTQDOXNquzg8Gg3+8TSvv9PkJoYWHBqv+sra42Go1avb68vPzMM88oMBST2dl5rQEh0mq0CSFlUTiMOYw89tij8wuzcTzuD/YAqVqt4vvuysrKjWtbV69etRfFPFYU2cLC/Pr6Ohe5Z5gxutvfbzbrUTRTa9auXLmCDFDKkiS1E5AQMstypWQURWmabm9vV6v1ej02xlj0ttqo7Wxtci4wokEQDId9hGwlI6RpqpQKwxAAMJnq7hkEtUp1drbDRRH4Ub8/BECO4yCMMSKdzqzWklJKiYOxQAjbUkSEEACysbIShvOcOsR1Xb/KioIbg65euV4UZRhWKKVhGC4vLzcajSAIpRSVMOKlTNPUDwKjUVqk1XrdcZxms+k4zngyrEaV3d3d/d29ubm5Zr1x/vz51dtrtt+1htOnT/uO2+sN9vb29vb2LN3AdV1CWLPZnplJZmdnlVLjJB6NRqurq3aWa7VaP/zDPxwEwVee/tzlS7/XarXyjLuOV+TCcbwi5zhwhsOx74myFI0GybOy2+1NJpPICer1quM4o/4IYyy4pFO3GQ0AxiA9FdGwAShlDFvZ6DAMbZHyIdEGwNRqVasAM5mMpvffKJtLZ4wppQlCQRRqLY1RWZYZAC7F7NxctRpFUUQIybJyNJnY0FwpA8iMJ8MkmbSr9SiK5hfmLPkaY5wkiVKK8/LIkSNZmnKuCAClTp7njXrrxPFT5+4/c/3GjReff7HVbguuTx47c+3q3ZmZjkPp3PHjZ04fu33j6rUrFwmGJEmsgYlUHBB68fzzk3jQaR2rVCpb3bDX682120SZ7e3t9Zvr+URcvnBtcXbm0cff2K7j2bngZ/7vf/3X//Pvnn/ptpL62PJimZXJJC3LvDPbGQx6QpSMIOkwUWbveef3bN6585V4+PVnv1xmQy3V0nKnwhwHo9B1iO9fvLzuR2CwQQS3Z2azJD0xN3PfseU/fvLz880WxOPc0/Nz7SPD+WNHFr0o4kr2+/16tbKzqY6fOooxWltbPffgg8dPHqvVKsPhcGFx9tjxI5Wo+q53v/NrX//y7/3e7x4/flwIwRiZTCZGkrLIQevDff6fsmUZ3L37bX3j22tZBlkGm5t/poPYyPk7KAoxmcBk8h072qvbd+R6bbNXfc9dwzsfpHdv3t3Y2WaO06q3mlG1yhyDZKGymKdKa2SM6/u5UhqGkqhcqpBVCqH8wFeGbq5v+a6nuElzxRiLU5yVhUNicO/xW73+V3e6fxRUT2jsc3Ntkq0pFHaHa/X2qe3t7bW1tXPnznX3uwoy4pDxeFzIJMQtrmWS769vXqw1a9v7La7bQoivfOVrrVarVmsMk0sMBRjj3R6aX1jAxbDISoIoaDBGp3kC2DDGMBCimMxVmmQIIUM1JI6hlVIUCCFMKnme8zIXChukDdKu6yolldKTBDVn6q327KVLl7DBGGNscF5yQlBRZP0RXTzytu7IlEIIPHPp0qWXX77pBuC67vz8vAMuVzHzGXZayWQCAJ7nITYeJ3cdz2m6Ssjx7l7fr8hxuvcffv2ZnZ2tZqeRZRmwPM6pMaaQ6VYXbe2ZSqW2vt9M4tT3fUq91Z2bS/MLQqje8Eqz2UzzYZYVYRgKA/WwYwy6ffNWmmZccGwAGYoxdRynXmuEYX00mgDAZDKp1Spaa3OgKuZ5Xuj5AJClHEApDsYoRog0UgjBmIsQsny0LEnRtPYWeV6ICK5VqlrrLMuQIhIzhBBoNNUc0Nr1Fu47e/PVI2Gz96r/MJCHywWFqPnKO6mEVAIA+DXwX1XFZQ788jINQAFR0AA5AMiDtzEAAA3hdYSOYXb2X0//OJDJ3u7CJ34PPvF7B+cETYDDU3n0dQ7zJ9q3Q7EHqAAsA7yHoHsrtrsORPese79Xa1fvkeCxrXFPxB2md6m+8K0PHt5Lke+/pUkAgNarLiq0Euoa/CrAt5KOuXcTIAUs/8ncqA//X/b+M9rSLD0Pw94dv3S+k8/Nt3JX6Oo0PQmYAGIGiYRAEKCGNgHCogCaFEwtkaZNESblJS4tQpJtLYn2WibFANGybC2SSCKIxBlgAib0TMeZ7q6q7so333ty+tLO/rFvVc+QNaRIgfCf2T963Tp97rnf+cLe+33eJ7S/9YuHIbTbkCTgg5z/tfuCT9IR/s8ZGEMYwvr6e13Jf7PBORwfw2TyL4tCBQBKodGAXu+07/s//yCFgOEQ5vMnrxTVEtZasFg84xlzjDHnDbEJNbJEj1Fgaz0L2FprwSBHOOeUUg/aetqslMJa/Vhx7x6lGkopKaXIYqMVADh7SheVUvPIMk4QQvq0y2WttRg5azWbh2HInXNCyKIwmCBfwAY8jKIojmNPxlda+sMj9D1TkbKoylIAgOfGYgxKqTiJjFGMkWarY62NtNZae0SsLEtrIcuy2WyulUUIgcNelIwfhchBYEISGGOw00pZxqjUijHvl+LW1taSJJFSevP0sizn00xrLaVGCPn6Lo5jv982xhhigiCihIhSiqqKw2h1rTudTu/ee2c6nQDYd969URRFELCqKkopOiu9LKvu39+rJbXV1VVn2HSSHR+NNjY27t3d7R/mnSdhzQAgpZHSIiCOOuccxhRj9diVwlrrnHn0wymp3zkHxly8eHFzc/P3Pv+5xWJRr9XanWZVVUqpVqvV6/XarS7nPC+WHmadzrLpdFqv14MgyLLM07+67Y6nhHu83v+Jx5RqKSVjHCEglJZSnJycBFEoVSWN9OIP56xziDHCGNNCU4qMc8aY6fQ9lwlKKaEUY1xVMgiYp8U4i5TSQubOZXEYYc/uJLwWR6UV/k87hyqpSVH0h4NOq316Y3+TPY625jEx3z3y0HDflNUJAM5Y+0328VLKPM8hSaIg1Fp5+xoPximllNbNbrMsy9/7vS/NZguEEPUwRRwTgoyz71l2IEAIEUK00FopTAhgRAhBp4IT95iqb601zvrzYK3FXhpu3OPj9JaivtR9BJVb/2rw7TmL/xyd8fT5IuyRFgcsOI9L+6ugjf8WpCgKQtFyOY/jOAlCpRQYK41yxpaytNrGQWyMqVSltdZavvr6K0VRtNrNRiNtrwe7BwvK9YsfeG6ZL4KgcfPmzWZrbTHPraHT6fyZZ69WYjkcHp8MhlFYs8hpTaSorNUrvQ7DoKk+ONjrdFq1eooxfri79/4PfLdQbtAf79x9WOTqgx/8oAY7XcziNH766QsnR4PRcJLneRQHrF7vdHrT6VRURgtopl1G6HA4bDY73ZVOfzQQUoOjRZHVanEYhM6WCBgmoJU1xoVhRMPIWmukOhkPtzbXwzTCxOiZS8Kg21lpNBoU089/7qs33/zVTmMFIRaxQCtNCTfSWGuQttIIq10c1VjEsnzhrLNWYYwpRt4l5tRWRRmH0eNpFgAcRs4ZpU0Q8s3NzXPnzgkhXn311cViYYxBxvi7BROqtaaER2EyX0yFlNZazlitVpvP590W5ZzHtVqz2Yzj+PD4KE3TZ5+73ut1Dg/3w4AjhHq9HgFXFBVCCBGCHwVplmUZpTWhJaU0SqNpNpuXSylls9V6z1EKYUY5sxoRPJpOMCBpTRhHa2trlVYk5P3JaDxfRFEEGCNrpRbaGuqcc4ABMFgAizAQisKET2fjUpTnL54dDAavvv7KYrFotOof/+Ank3ra6XSK2UJamSRJkiRK6rIsabfdXub5w4e7lFIeBlrroigoYwi7lZWVR1OScAikVkopHga+xS2E8Aa1PKB+4anFcetqpyiKw8PD8Wja7XYBYDQcIiBbW2eG/cHf+n/+t+12d7W7srV5xsduFEWhtY5p1O8fv/n2W5/97GdPBjvGmA8HH241mzsPH57ZPme0ZoyFIV/tbty5sW8UKjNJXBDzOI3q9bQNjvZPTspCtNvt46P+Sy+91Gg0EMJClLNZMRicYIy7vfbq+srqRk9YWVXZZHIym80dmPNnztdqdXD4zp07WZZ1u900SWaT2fH+ZDYGcBOngFDY2FjtdnpSVfV6fXt72xgzm82w+zbbVYQxZmUpKMUGuSCItLLT6dTL8/3yHIZxHMdCiDiOf+iHfujBgwdf+cpXl4s8SVLkEAUeWKK0Kefir/2n/+f/9ad+EqYlCKVzcfu114IgWOn2IkzFMtdS+TlxPp8roz23nzD62OFeVqLZaC8Ws/39/Y2tTSGqyWQSUO60dRgxwgxYjLEjrpAldqCcpYQiB8ZZAwgAUUKdcyig7puALkopf5TdgRBCDjzq7ZdzabSUEhGc57ksK4KxFUoJWa/Vfu4v/eVarX7cH96+e++rX3v1cHd3sFjqkCuHglqDMFxoaQER5D74XR8qjdjfPdjd3a03a/1+P4hYrZ4WWa6NjYKQh4GUjgAw4Hfv379z716SJPVW1Gy211bWt7a2wL3KOTdKW69IsTbkQZZlZSmktkVRMcbr9Xqv1yMERVGEsPOBgVUpgyBi3wYSMkafnJzkeX7+4oUzZ85cuHju/r2H1uqtrY00Te/fvz+fTzHGGxsby2wOyE4mEyEEodQzBcqyXFtbA+copWtrK0qp2XTse8iIEiftdDpFXiBj1crKSpIk+/u7t27dOjzaf/bZa3EcSy0BLOd8b2+vrCpCEUJuZaU3mUwX+bTT6q6u9u7fvx/GQUyDRiPN8sXa5hrnvNlqqEoCAOc84JGvhCml9Xqqta7Xa6PRKI7jKAowxkVRcc6igOBWQ2ubJLXxaOopcgC42+1mWVaWeRBEs9lsMpl0u92t7c00TTc31wPGpaowxu97X+ONN94cDof7e3sOrPctMsqCk5TyKIryvDDGYEylMXmeO6IpQwZwnuceb3XOzWazl19+GWGnlJzPlvfvPWy1G+Px+Pbt2wHjfgVnnOR5frovN0Ya8+abb66trfW6q97GXQo9HIwppR43p5SmaSNkPAmjshQ+T8MTov1tfNoz63Scc2ubG/boiHPulwRjzCc/+cmyLG/cuPH619+O49gCDXgSBEEc1ba3twf9yXw+7/VWOQvCMF5ZWVtb3fi93/vi4GB44enzGKGjw5OqqIw5lbD5guHRLvP0v9YCAkcIUcoEAfbOhrVaDQB8s93D7pxzX11IVQEAEEwpdw6kkCRAxqGiKDbPbMznc8LwpUvrvV6vVotn2IeSm+VyiTGl1GitMeaYUgDI87yhknojLVW1tra2WCziOL72zNNxEN57cLK3tzcejVZWelpIY8xkMkuS5P3vf//G+tatd26PR+X+7v5gNPvoRz/6v/tzf/7591/79Kd/++tff6NcTnvdxtraWrvVuHDh3Ls3373/YEdp+PAHE6lUkiSD8Wg8m4Cjy2VZr1WVUqPhYK215mLswBBsO834x3/sh5dlVZXzdit9+vo2wvHu3sM8zy9dOIMZ2T182GimH/6uFzHY48ODO3dvZNN+zNm/80d/KJ8vvvi5z0ZRRD5nPv7JH7hw7vy0lI3uamO1Z8FprUfTkdWaEJIGwfzAXd8694c/+b3NNPqfPvv5v/N3/9s/8iN/7Ln3PffPfvdzGxtb7XabIEAIzWazoigUaMppvZHOZhOtJXL43LkzZSm++vJL8/l8ZaUrtBiMBxfT87Va/M7Nm/P5FAg49wfo1Pud8f+n0cagWmnCN4BTQkiIrMgWzjlEicYgjcM8UAgN5jONURKn1LlWWgOA+XweJkESh8PhMIqCNE2NUbUkTZsNq5vwJMX/zbdvKMj3dg+iKBoOxgf7R0mSFEXht1hlURydOiAdra6u+khbxpjWrlarM8aKLLty5Uqv17t58+boZPG+971vPl9aa3nEMYbJfOaOD6IgzvOc0yAOIyFkGHKHrHNOCglWM8L9ppZRag0IIbSxjFLkEHgEQxlEgDAcRZGAyiihrJlNF1UpOefWQkDZcrl0YIyBqrLNVhJFiUV2d//2y698LS+MsdDptHxntCxLB2AtAQAtVVFUJauCKHQOVVXVaDSyrJjNFu2VxrPPPvv2229zzhmhnNOTk6m35m+1WmUhiqxsNFpK6vl87hyaz4dFURRFVRSF0XY8mhRFgRk5zdCeLihlzkHEIzDgHHLmNKwsCILRaGStq9VqnPPd3V0pBKGUEsYYi+NaxIPJZALIYeTrE4eQI+CMM04rjBEhp+Joaw3GNAzDKA6MxZVUshLL2RxjnESxcwgIwCPNPuXrf4B39HfGd8a3DEpP3Xi+//vh6tVv8aX5N3Y9+tca1sLf+ltw9ervz6f98i/Df/1f/8ve0GzCL/8yBE9q+P0rhxDwqU/BaPRt39BuPCXlux4482J5RJCH3qxzyipMIIoiHoVpmkotvNDwFO8jp9YijDFfaR4dHdVqNU6ZrxD9i6KQolKPITyEkFcqY/wetuX/OkbOObRcLovCe1WfUou8EtobD5JH1itVVXk2ayWk53UaYxBgjHFVVQiROI47ndZkMprNZsaoRiMNgkCIClHMWWCVCWwAgIui0lKDwwDYWieEotRFUQQAxhghhFKi0WiEYejNgswjcoZSoiiK5XLpeaY+kKYsyyioeZ2i/7JaW59lV6/XfTm2XGbeISSOYx/D2GmlCDlGIKmnGOOaqq2srPT7fVvB/s6BkkaVMFpk2Uysr25YRW69fddpOh1lhGBkvk0PziFrECGoLEvv5wuPkFN/wNaexlHCI0KJx1I3t9aX80VRFN12JwwDB8YY8/TTT29ubjbbbYzoYDA4Oj6oKvHIJsXM5/OVlZU4jj1rUmsdh9Hj0/KYB+ZRT4JODWcY52BsUZTGWW2kUEox5dnKWiuttZJGSilEGYZhmMRKEq949oY82FjtnFdheusAf9eBA4JwVUktFcaYJxwhhAHKqvIqBGvtbLnQWqdpyl3ga9LHPhWAvTuN83k2jwHYU+wMI3Sa1+08oOzPoRAiTVPCTk17HALnnBe8CiGardZrr75xdHTk2zNKaP8QWaujKPL3s7UWU+IsUsbnHGJCCPhARWsdUoTgx1cQYxwR9kgn4bx3kBT+VOuqsowxX+g9Pnh49IzYb9Ozct/UeMCPUkkdUHB+ckDOF4pw+plKKUBuOp3m+dJZbays12uUUmwxtt7O1GJMtTtNXsWAgOAkSZwzmKIwCpRSW2fPXLi88nDv3v2Ht773E5+Ik+aD+y9rEzBSA2rKstTGEhrm0xHCAUZBXGtzFkopyypH1mCIKmHH4xNrMEKsKKrpbDEZL2/dvCckYBLU096L77uEkBuNRkLK3Z1dSsNOq9NstEejSZZlADCfz53GVakYiwhm83JaVEJNJ4tsCQSkVISzy09dPXfuXJZlw+Gw1Ww+ePAgCJynV+IgpIxhRCJAQuogCoVUhAaUx6PJ/N137zbTznySW0mmk4qADRlHDiMgsjo1xfYb4zgJCSFZ7hVBztpT75qiqjjniGDnHGPcIZBacM6lkQH3mzcrpdzd3R2Px9ba8WjKGIuSOEbIGFNUpZ8zfUsmDGJwOIy43zRGSYwQOjw5NNqFYegBPSHE3bt33377zel03Ot2rNVaW4SIsqbb7XrN0KnDLaeVlnlVRnGskLPWhpSLQjlwo9GwVW90Oh2VZVKaRZ7ZgMbgtNaVkkVVHff7BkM2PK61Wr5RZw1YZYUsOafWaqcdxgQAEAatlLWSUNRdaUcpN8bwkL395lvG2Fk+H+7/KguDqB08de1qLKN+vw8ADp0ahVFnzLPPPpvn+XA0iSMSBraqqmaz6X3WgyCQUk4mk8PDw5W11V6v5/NtnXNaG0qpFFoKfebMmaqq6kn9+tXrLzz7wvHxsRBiMBgwxlZWVi5euDQeTinla6sbcZy8e/dOr7fKCD537kyzWaec/KN//A/feeedlZXuaq/LOX/u2WeybDmdTl55+av7+/vXr1+/du3aRz/6sU6n8/obr346/F2K+ZVLTystqkK+e+tOlIQbG5sAqNVq+wm91Wo+9dRTeZ4fHe/ledlsNmtpqE319q0bsioBKWvkxz/+8Xaj9ZnP/O5skQVBcP36tTiO9nd311Y3Rse5syKgmKBYyHI5rUSz4gERDsbjYZ7nQogoKNpPojZUWVlvs+5GdzAYcEKs9RKPMFsW3uRBFGWQBgCwXC7DkD98+LBWq1+4cOHGm+80EsIIs5lcFnlo6X/2V/6TT/2RPyaOJlzjKsvffP0NXFRnr22DNsvpHDlXliUhpKgqX+kVRXE6CfnYYopsJpUpVrq9Il/u7+832y2l1Hwyi6IE7KkGjAU8wA4hVKnKOel9owBhTulpYgYAAmvAYgy+90gpBuDeRQgAMJBTDxvfakM0iMLhcDiajANM4yhC2i4m0wvnzrXTztb7X7xg3Ef/WPz9b7z1yhvfeO3NGy/feEsu5wQxrUxab565tLWsZs12ox3StB492L29LCbzbHT1+sUoit555x3GQkZoWRZpWpNSR7WoKAprABGcZdlymRsJnCWEkbIQjNIgCLz/3qVLl9x9YIx1equDwejo6FhKSSlJkqjVbnincm/u5onPT1wJNtbXx8v2/v7+dD5988ZbP/dzP/e+D7z4S7/4y/ce3mm1OpTiF158frFYXLxwYTqd3r592xpIaw2HwLsUjcdjUVW+IR+GvF5P+/0TUYnN7S3G2Hy6yHJSr9c9LM45f/bZ6z/wA993587t115/ZTAY7O49dMh98IPv73bbv/mbv3lwNO71ep1OZ3Nr/WD/aDgcYwqbZ1ZZiG/fvj0YHp09fx4IWizneZHVarWD8b6f2qSqyrJsNptJEpdlTqgLgkDKSpsqz/NWq7O23p1MJoPByerqqlKGMRpGvJbUpdSL2dw50+t1qioZjUb1eu3y5UtnzpzJ8zzPy6qq3n33Vp5l29vboqUuXrxQVlW9Xg9CfmqrrSwCykhYVUJpgRH1vX0AUJXQxlGOozD07op+9o+impAlck5KmWXZMpv7O19KaYwGgLxQQRBUQgQhe+aZZ5Z5fnxyOF9MfcofQmg4HHLOCUK+ICqz0ipdanP79l3OuXc+wZgIIYSQeV6UZZUkxWw2y8vy4PjId9SUUvV6fWVlZTAY3LhxQwiBMWcsMgYRwspS9PvDLCustSsrK9evX19dXR30h2trG7PZwjrFU7x9ZvPk5GQ6nYGFMAgJwcjhb95zIIQ8nGCtBQeP/De539P7O9M5EwRBp9OZz+fNZnN9fX0wGPhKgzFqjGUB11aVZclD6sPfa7Xa2fCsFBohMhgM+oPj9dUVHlCljHPIGsBwWik2m808z2+/8y4wE4ZhmqbtdvfOnTvTyWztyuVOV5wcHUspVSWstUqavMiXy+UXv/jl8Xh8+fLlPM8f7DxkQXD16tU8z9/6xtdv3Xx7Muq/+Ny1s2fPhhwfHx83mu3ts+cf7h7yMDk4GaT19sHBUa/XWVvfKisDiM6X5cHe/mp75Xu+/wfkUo5HizhJP/e5zz3/7DPv3rv3mX/2m2/d3q3V2gdHo8V02O22nrp84eylMwdHZ2/fu/3Rj38Xo/hXfukXOaOGmnfvPwCknzp/7gMf/65B/6Tebfcno8JUz734/NmnrvBabTQafekrX94/2ldCfOwjH532+3fv3v7w88/Youqur6Vpcvett3/pV3/xwf6J1Go4GvW6XZ9i5HeQ3W53MhkdHx8KoYo86/VWarVYGT2ZjPaP9tfW1nwAzsHxwZe+9KX1le0w4kuirH2ySaiCzwN84vE/tdtBzf9co0yIylpXlpUsNQakjaaEesUAwigMwizLjTEI4bIsMSIYE+ssJRRjpI2pp6kxpiwrAGi3W/PFwlkrlTDGdrudXrdz0h8IITBGFiwCRxjWVvGAhBFjAcuXy80zm8bayXi8troexUmRV1UlgiCYDOaHh0fr6yudTufBg4dBGPR6PecQJRQhKAuxvr529+7dPC+TOO50Osd3940zSVIvi0pK5wzSlULWRQENsOs04oBiSnCn3Y6iBCwgAkKKQkptkbK2FLpSxgBYB+jRDl4ptZhPrbFnzpzptDuj8WgwHEiptbUIABOglDljnPO2gDRggdIGY6S1NtYkScwoQxQAwAJkVYYJNmBq9VQ706g9r+c/9y9eqXH5VxB7UK/XRZm7aqMW/M1/8T1UVOvNRqtZK4ySUjplC60MoELLCqB0FlujDZTGWN8iqsTGU0+VZTmdjI6OjoIgEKWt1Ui73Z5MZs1GO6ol/cMn1yfGOqnloN/3ZUwSx0brgPP+yQlGlFI66I9WVlYaaX05X1z94AcBIM9zSqmHnpfLuVV2Z2dnf3//3KUN59zx8TE8MpRUSjoXA9i1tRVnYDQahWFonTTGCllp5TgOtZWIgNPgLCKe3WOtVqaqKq2skgZzrKQMaRCGYVWUeZ5zHlZVlWXZ2tqaMQ6M9apApQVjKOChUOatt7/x8M4xALAabG62ts9tG2PG4/HW1pmiKLWyo9FAVooQBACirGRVYowZoavra+PxcDIcTCaTXq8zGp8sFu5k0LfW1OudIAjCMLYGW40wIqPRcLHIsnkxnS8ppYPBgFEex7FPV6OECq18d5CxAAxUVhLEAYFxBmNcleL4+LjZbBrjvAXWdDou8zxKkjiqYYwJQb64tdYghDAG58A6fVqTg0UOKAYM1iKgDGMCCNuqKgFxpYQSslISlNZSYfx4q4URQkZ/G43dd8Z3xr/N0W7DT/wEfOQj3zZrtNeDXg++53tOs0ZfeQV+/dfh2ygG/02Gd236G3/j9w1rBoBPfQqqCv67/+4JHGdKIU3hl37p3xBrBoAggF/6JfjUp74txxkB8lQkxhg4zDmX+tR8VhuDDHJgrLWj0UgpRehpPLsPK/K7U0/dsI+CPaMo8gFoAMB5WBRLArhery8WhVSKEOI3fR7u9PCWLySllNbZR5RqBwBBEDDGfJmnlbEe9rCWc+7cafccY4wQU0p5hnQQsCAIAMBau7raq6oCE9RopHm+BIAsy4SoyCmr2lrrsiyzFuKotlhklPJHeBxoba0F/ci/Mc/zMAytAR4ECEMYhnEceT9fpdRkMvHCTX9awiCcTqcANo5To51QpVIqz4tlnq2srIDDjPPv+q7veuutt3Z2ds6dvTCZD4kmq6sr4/Fga2srCNjrr7/+zDNPJ0ly986DfJHnuYh4bAgCA+PhHBx2Et38xjtBEAWYl8WTvRGww3EQGmMQocYYrU/dMzw8Sgh6bIcNAM4ZQphBCgA21ta96DzgtNVqBSFLkmR9bZNzrozpnwzffPPN0XiQRDGA89eiKAp/Jzzy1DYA0Gg0qqrK8/wxR9hfF4Sx1QZTQjD2wA7GOGIJpuIx1okQ0spqVYG1nHMAQNZFcSAE5FkJPhINIQSnZE976tztMKbWmjiOq6o6lUcD+NvGA8TOqW63naapMU4I4UsVfx78cRLyuGI7jU/0t6tD3rUHEHrkBf/IXsNT1z07p91uI4S0Vphja3RIIm2UlHJlZUUpRQjDiAJof/KdM+4RnC2lRJq+B6Zj7L+1RadIN0angLh/ZBgNlDVVJYLw1H76lJ2ttXc7RN/kB4IQIoQ755xT3+yY8S3DYXDYObDIXyyMMabAtfYsab/6gzcEPz0kgrXW1mqCAeFTB1TlsJYGMayVwc4QhBmmQghOGcaoqgrCaLUohJaMsb29vcF4b5aNeRD88i/9htJmkReU0hu37m9ubhIcSbF46SsvhxHZPrft+ot7d3c5i5MkkbICZKW0SpVC5tqIWqOhta5KAy7IlmI2L+eLCgAZ7YajPgBoKYwxg8FAlnI+W5Rl7ptYeZ5bhTBilMRFUVhkCaVxVJNWAiCpLdd2PJ4QQufzeZ7nfqoRSmFMjVHLPHPGIoSVUmVVLAsKTgCygMhkMguidGf3QApTS9paoIDXrCo4i51zSZJacLPZLG3WnnrqKSnUyZ1rrCYAAQAASURBVMlJUS29D2pVVc456ywPmTFWKGMRZMslCwNOokIUAEAZ1lovljMpJSf05OTIOUdJyBgrigI/CuNVSlBKDbhKVYQQWRUOom6302g0NjbWRyeHhZCz2Wx9Y6soijzPs3wxmUzTNAyjYDgcXrx4nhBSVTLP8yzLGs0uDSMthZGSUho2UppEDsF0OCSERDThUSiFCIKgEFXbuSiJ56OxMtoh2Dp3tn94NB1PtDWVFDQMtra26u32wUl/eDLsdXhA+elj5U6nd/dIf00IoZzmeY4IKoosCIIPfOiDWuuknm52zi0Wi5ULK9hBTca3b9/+nTc/Q8EZY6gxJuCRMWZlZY3xsNPpHBwdHh8fSimXy+Xa2pqfE/0z85GPfOTatWu/9mu/Np1O0zQlhHQ6ncVidvfu3TzPL1y4sLOzUxRVq9V65pnnyrI8PPwdzqkxpt/vt9vdQX989+7tjY2t3kqnyDMhxMPdB9qqwbA/n0+jiFVVYaxpt9sPHtzLs+xzn/2dqqqazcbDhw/H4/EHPvCBH/3RPzYYDH7z1z537sJaFAWEoOVJdnw8ee65K9tb5x88vPfqq69vbKyFSVJKsSyybq/baDe/8NnPX7x4rt1u3Ljx5ng6c0YbW630Os6Yz33uC0dHJ1ubZxx2nPOrly+3m01b4flADfZuUxoZRQNaW86XnIdnz24ss+nOzkNt1Ec+8pHByRo8SXillF3Ms8FgIKTc2FzL85JSLqWs1+sY44pVg+NBGIZPP/10v9+/e/f2gwcPtrfPlnmllZ6NZ920i5Qtx8v/41/6P/3kj/y7ZiEDx1SR33771mIyP7++NpvNwDpv6FFVRVmWQRQWRRHGweOZ2mpDKTfGWGWss1qpNE2HOwNKaaPV0tpUlaQIG2sIxqABWxcHEbZYY+vXJ4ZPXeyNr+4dYECAEIBzgDAlhDitpdAKWWe15IT6zY0xhgYcALwZRdpsWKkA4OLFiz/0Az/4jVfeWF/dJGkdcnXm8rUzL3z4Uxbfu3HjV37rN//pZ3/73v799mqr1ajHrcAS12inX3npC9N5Rim68vTl4+NDRO3zLz53bvvM3t5eVQgANB3POA+V1ggRjHG3txJFiSzNcrnknFvsAwDBWjOdTofD4bVrV+7cuRcEgbdm96uXMaYsS28fgRCyTmdZ0Wk9ubDvra7+kT/2U3//7/+9eTZPwuTo6GB9ff3M2U1AbjIeUUrDiGMCeZltbm/cv/tAgLIWnHMsCqzVUdTmjBijGCVhwHd3HhRlZoxBzmXZcj6dYHCdVtM5U5b5w4f3X3rpy2fObH/4wx+u1+s3b74TRJwxsrOz1+l0VlfXjaOrq6tb21vzybTVTpNadPXqFYzxfD6t1SIaNI5PDnq93vve/8JwOLx//34cR2EYJEmys7OjlGIMJ0lkrBhNZ93V9tHRHGHgMatUQTU2oBzoKAowVg5UrZYURTYdz6pSTiaTIAg2tjabzebGxsbq6qoQ4s6dO/1+H2PsnDFaAsDxUT8IooODAyGEsdo5I6XkNEBA/GQaME4508pao41RHHFrjVLKc3WDMOacJ0mCwGqEPZ+Cc44JeD5Fr9ebTidFUdQb9aqqgpAppd59992ts1tRFOV5/u6tW41Go16r5ctle3ubc14Uxfra5s7Ojm8zrq9v5nm+WCyyLHfu1Ci5qqrV1dVWq6WtXd/cHI/H2TJnjPV6vbW1tXv37u3s7DjnwjAMg8gaN5vNpJTesCKOwziOP/nJT+zu7o7H/YcPd8+fv1iWJUKm12u9+eY36vVGb6W9XOQUEa0NehQPjRDC7nG72quuwG9ohBBxHHqjKC+jfhSAq0ajgdbaayHDkKtKEMI8myOKolqrZqnxYpTj/ok1cPnyVedMJQq/Ncc4qEpJCAGDnLZOn0acR2l0cLLXHw84CwihGOOTk0EchA93jw8ODrxys6qqdrt9+cqlnZ2dwai/Ouk6ZHnI/uyf/Wlp9Hwx/fJLX6nX6dNXrryWTXf3Hmpd7O4+TJL05Zdff/65F5597n1FUY3G892He5evPffJ7/14nue7e0cOKA+T68+/eOOtG//3v/P3dG4Ge5PZpHrm6pX/8R/9sjKahIlFgZTyuz/yEaOHURR98oe+7/Wvv4IC2+il9/bujIeDo/HxaqcdWiaJff3W2ztHe+fPnbt/914mhYiD4+mQSRmOm24y6vf7H/3Ih773Y9/93/+D/xdB8MlPfuJ/mvSDMHz33u2Tk4N379xOG/Vb77yz35dJnWLKrEONeqOq8ul0apHprXSm0/F0Or544UJVygcPHjzcOWi1Wk8/80x/1M+yrN5oeURPKTU86StpQDvGn1yzRvG3lOPW5pV6dTw/FEIY4xAiRjpKKaFkkWVey8I5N46VsjDGeImfNmCVxZhW0hIMDsAsmC9NAWCeOb/d55wbq8azaDzzQeQlxhiwC0MutAgCnpVFkDQKoTSSOJjLqij1IKxfC6N4OD8qVXn1+Q9MJl+fLO6nrV6XncN8Vxg3XSYnJyfnzp0nCB+eHB4NsHNIKSWWeLIEppFWVggiKo0cdhJkLkICHMedRrTRbNYi0kprjbSUwhrjCDUmtI5waaEycG9v3xIMhC3LipBASuWd/gjWWhTj4b2Qb9ZiMmOHSpbOagfYOaSVAR8x5IAx1mw2H6khkZKVFpQQRBjVWksjtbMOAzDUW3uqFEWlyBMJS87dGQx+typr5XTK3fO1s0+8mmESNqdVLjOtAKSQxgEwWgg1zjNHA+wcIgQFQS6Elcpae+PGjTiOl4tcKVWVstWuP3P9uclkksRpr7c6Go2KZf5EEwCnnSiEj4MDgFzmURQ552pRzRvQK6XKPAeAs2fPCiFFKfKswBjzgGGMnUOvvvpqq9Xy1hCz2czH+YqiVEr8yI/8cKvTvnv7zsc+9vEHt++/++67YRgGIcMUDydDIywyZHA4UFpQFACAb3b7zYOoFDjHGAMCDhFfesVxLGvKOeScWV1d1do6Z7OiUMZQTMIgJhRpB1/72suTyQQYJDV6/vz5ShReHFZvNdfX1/f29rJshoAghL3sxtvYZVlmrDo82g/DkIdcVgULgqLIKMWXLl7Qxqyvr9+5c3cxL4RQBNh8vhwOx0Y7DODjEJwFhFBRVEEQlmVprY7CyMdeaSGFUEZZH5hBELbaaG2eunyZUt5oNB48eLC/v++cYUHAOecBZTR4TDN3DmHsMGYIGQfmsZgaADzQ4yd8Y7TWRGutnfARGlEUKOSpN4DQaVVvESD07TwtvjO+M/5tDYzhL/wF+L7ve7Jn/T83mk346EfhmWegXodf+IXft2OwFv7aX4Pv/d7ftw/046d+CoyBv/N3/vnXazX4hV+AMPxf9OFhCH//78PP/AzMZk/4v4RRaqkvRqpSKqWKSjjnAKGiKJRVgGwlS7SYEYLCOAAAUVVCSoQQ51wIJYTw9FWEkJSyLIVPfaeUFkVVVVVAOaOnKUSUUqUVVoAVGCEdAvbIb8EYg5ELAoYxBbDenVYpxRHDGFtnCKGeMTqbzZRSmJxaGSCEAXAYhh7+dmB5QKxFSlfjySgM+bPPPitE2e/3F8tZnhdYukajZa02YOM4RkApDjCupFCEEAwYOSRK4a0vnHOAT/MtHYIw5IBOPQ1YGDmMwiSWUj4GNBFC9XpNa6mMBoykqLzPbxxHzUZrNj01kTs6Pn7/Bz4gpZwvplYbWQlfrd+6deP8+fNKqTt37mxsbCGE4rjmDKlKi6xDFlmJLQKKQsaZUkpb22rUnnjdnXUYI6vfYy67UzNfAADnDHxTwqQfnulVr9eDgJ0/d8Zas7m1XoviKIoqqd94442iqrIsm0wmnnYTRWGSJEppjLHPo/Mc4SiKyrJECJGEeETPc5wBwBhjtQGANE2NO+V9gwUg4G8DrTRGFgHxru+McISVteCZwoZSTAAB8QR8X5r5m8c9Std0xvpihFKKHmWT+tvJy0kbjQZCaDodaa3Xt9a1wx4TP72NH4HU/uScwvHo1NvTQ8S+oeJPqf92fngVf6PRkFIqJRuNpu+jlFVx7frT9Xq93x9yFoJzShmMDULOITgVE1hA/rZ3xloLzjrPRCan/ifGG687h4A4axFoRE5J2UopzkL3yJfZJzH4n99TLTxif1P6L0QhAwAAwqeGKs4ih5yPefBX1hjleeWAEcB7LiJK6SBgjUYqRelAA0AQMJc7pRQCcNpoY42xQB1YZBD2+D5ljPM6ZmQymSilXIGMgEavt7G1ftIfzmfVPMtbrZaojBBlVpYrKz1jy9vvPpjNFkFYC1nQbXXevXvHOdtp9wjjy6JcWdlsddaFEJjmhycPtrfbG5uddqs3HE2+9MUvtFrNShS1Ws1HMnoSFSAbxXHEgzAMhycT4n1LELLOIUp4FIpcKimllMNheXh8srd30Ol0ACCKoijaLIr8YH/fWs05jdPUare/v3/xwrn1jZ5S1d07bxurvuu7P9Rt9/qHo9/4tc8YowkJtdbOujLLMcY0DJSWi2LpqI1bSWjt3mBPYi2sAMAaWUyI0w4zSgM8H461tqUo0maj1WqdDI6llnImamm8ur4S8uDw8BAIOOdkoefZsizLOA4xJd6qhQb0+eefjZPwwYMHR0clIBOETGkRoWAwGJRSAODZbFZVlUXAefDss08j5AjFi9mUELK1tTUeT5d5dnzSrwVRu92OQ86Ums5nkTY8CoyztVZjOp1mouScYa2jKJrNZsaYKOBJkqCQl0Y/3N3J5ws/1y0Wi6iWIAfL5bLdaA4O+5PBsN3oIIREVQU8wqeBusRagRBSWkdRxAI+nY6B0I2tM71OZzKZzJaz+XxqLZycHIGxPA9arRbnvJjk03xK+ydDoRVCaDZb8CAIgqDdbgtR+gjUe/fu1WqJj2DGGN25c6fRaAgh8jxvtzvGaIRQs9mu15vWwv37D3u9ntb605/+zKuvvvb93//973//B2689da9e/fzPG80Gmk9ybPSOH3cPzbaOueEbHa6zb39+0W5YJxIWTorF/Op0fLChXPdbnt/f19bi7ArivwrX/ny/v4+YyyO8GQ4uXDh3DPPPPPK26/JBbz77r21jc3Dw4N6vf7IUBgpJYoiG4/HV595auPMmpLleNKfzcsoCra3tsCp+/ceNBqtF9+3JqVSVitlPvOZzzDCiA3H4xkmRCvMWSRlEQRR/3hQieWVqxe2tjZG00me52e2zx7cfcJM4Rwsl7m1utluOueoVyYhHkVRq9WazWY++GU2m3lHES8kef659wU02ruzC9rmk/w/+NP/23//T/5voDRUomw2eefNG6P+6MzWNo8jqbUsK2PU6QJM8Xy5wAwXolKV8NQerTXBgjEWEGocGG20kPVaOp1Om81mUqtLOVHGEEAOwBoLBhCBELhgXFjx3qznfLIzQg5868/PAhhjCy4IAkSJ06ZUVVVV9pE9P+HMOZckiZ8ftbEBC7a3txFCxKJ33rr1zEc+agpBSoDMApBL157/uadf+Hd/9Mf++3/8//6l3/zl/Yc7l99/ZTjuf/ornz7e3WcRfPlrL3304x+6dOX80dHR1sb6cNIPQsYY85PtdDqvqorzsCgKIZeXLl2O47gstLVWaxMEgRBlLY6DOPj617/+9a/bKKmlaaPb7cZxMh6PMcZCCFjaoigQckppBIQQMhoNV57E2lBKNRqdy9eu3rz5dqORvvr6K2maXrp0+cKli1/8wpfefPOthw93GUGHh4ff/d3f3e2s5MWe120po8tSiLIyVsVxWFpz//7d7e3tCxfO3Xzn1tHxwXQ6zRY5IeTSUxdfeP65Vrtz9+7d973vfXfv3nnppZcow2tra2EczOfTTqfDWHDt2jUg9OjoqNVqCS0ArJSFc2Y4HH7t5Tfe/6HrF85fevDgwXA8Go0G7XarKFYnbHp4eNiBjnYaUSSN3D3YLau8Vos3Ntdb7fpisbhz505RFL4znCRRJcpakgLQ/b3Deq3ZarXujx92Oh0/V2TZYjIZTSYjpZTncGkttXbGWR8GkpeFRzCNMXEcOucoZ2UmFoultfb82bMY08lsusgyawzn3CBXiso/xX7foISspfEjt0oFKDDGeU/hzc2NKAp3d3eDIKjX60HEF4tFli1u3rzpnGu1WkYaIUS32y3LknPebDYPDw8DHm1vbx8cHJycDIxxeZ5XlfB+9GUhxqNpwCNKaZZlnuTOOR+Px61m+8yZM9PptN/vewHjeDx2FoIg8Mh1lpXXr1/76Me++/XXX18sJ6trna9+9auVyKOYbG9fODraQwipnFy9enV//2A8mA2OB9YqZ78lCsM9GgBAKWWM+FNRFAVjrF6vV1XlVXIY47KsqqqI49grUQghiHOljEVACNFeFIZxlmXLfME5T+LUxyESQrTVSLmAxMYYpYAA55RqjafTqRAiafBarXY86N+9e79RbxntsmXx1ls3tMXnts/M5/ODgyOKSbvT3NraOjzc//jHP7qz+2DvcGd7e3uWTd9+++3pfFaU2ftf+CChqNdpV1U5GAxGowlCJC+rl7722vFxv9XsAoB1hLKoP5yNx0NjrDJuWZR3H9yX1jrKcUAcXgRx6+r1F0eT+e/+3mu1VoE4bvaitbU1zEiS1qTJJsvRNJs1u7XK5IP5wFEzzqYaOcfI2ur2am/l8KTvopC0awtXVcQoUyzy+de//mYtjJpJsL29/d3f9eHZbPb6W28YgsKVRthr37j77mA0OnfpSq3RTIoBYOoQWSxzSvGHPvh+66qvvvbS8fEx5SQIWb1eu3x57ctffiMIglazc+/ePSFUo9ne2NjYfbgnRRm0IiOcMY4EgRTyibtM/q0wNCa41W7PFzPOQwBcZnnhpO9zeE0rAijzilItK+EQYoxhRIUW3gYdIeSsxhh7ZpAXKlXfRNyilF66dGl3d3c+n9frdaWUc9aXrMbYIIiMRg5InslXXn6j1+s2Gh2Cw4PD/tHhYHNzc3/veDqd12qUscA5FIbhpUuXZvO5MZYReu7cOa31wcHRysrKdDodjyftdqvZ7Z0c9UVZMUyrQnDMGHG9Zr3biFo1ttlNu62UE+ocYOM0WOQ0Iwio45hh5ThBy6xwmFttjZMAgBBRSjBCwjgRQhwdH/S6q5zzxSLT2lKKm83m6urqdDRu1FtRGE4mEyl1o9n0GjRfqlFKjXEOAbIEHBJViTjeebDb6jQxEk9EVDijvUaDWhsyfv3SU8f5E94Tt5vr6VqqlO0f2elMYe1AlVrzWr3K81KUtpJOKGURYGy0JYhUlWLMdrurQojFYhFF0d7+0WAwSGvJ3s7+eDyOgrUn3jlVWQkhfLfMr9Hj8ZgQ0kgbzjgttTV2Pp1jjAghd+/eXS6XQRA4AHCoqirGAgCrlAkocwBKmXq93ul0QhZaaze31oWUSS26d+/uyfFRb6XTbrcHo8E8m8dxXOvUxv2JlIIxgiwGcEoph51Dj2g4QIwxxhov5CyKghHabDatBYyBc+7cqSkeAPjEIYzRcpE7MGmaWnCbmxtBEEqpvWL68uXLzXp9NqsHQbi/dwjO+T6iUqq30qEMTyaTVqtx4cKFvcMHk8kEIbe6unrl6uU8Xx6fDAYDnwcVBjyZTWYHB0eiUiEL4jiulKjXG1bpoqh8aPByuazVakopf8NYC2AROIQxAYd9L6LdrmmlyryK47goirI8DRlXSi0WC4yoECKH3DlHSQAAzoG1GAAcWGcRAiK04phiTLzHn3Pg3Ht7LaQcpowTWuS5tRbABEHg2/mIfBt61HfGd8a/nRHH8B//x/ADPwDfjpn3xNFowJ/6U3ByAr/1W79v/v4///OQJL/PiPN0Cv/D//CE12cz+JmfgX/yT/6XIs7/+B8/GWsGgDStB6g5Hk8BwBiDyKnBrjaGEAIEMEWcc0SxtbooCoQQxaxZb1kfO2hPRVcAgBDxnQD2SHfq36+1XswLayEIQiEEIigIAq0lJgidGhecwoXWWa11kkTGKOecB7YAwHMjPH/2MXhKKRFCZFnmXTvCMKzVaj54DcBiDFm2oBTPZpP79+8aYzz1mBJOmM3zpXMkCuNMFEIIxGkcJdNq7tMenUVCCF/RO+ecs2EYEsYBrM8y0UY5jDBgKaVXNnvLSr9DrqTgYfD0peuTyejevXtXrlyJ09qbb775gQ9/6J133tm5/yAI2Ze/8sV799c++MEPfu1rXytLEQSsKEqf+Lq7u0spPTw8XC5zrVyxrIqlJIhzHBnnKGZgLcYOO0oAOCPwbW9sa7REGDvjMwreAxkf7/Y96IwQAc+KVSpK635XFsexEJXTJs/z0Wg0nIzfffeOUAohFIUJICsrgRB6rIAsy7LdbntClfcJcc4JJb1boBfLe+SXOuQtaPuDUZYVfglWSmlnEXLe2sK7GiLkKKG1NPbMCSmlOf2/WArtmTrIngbZBUHwGFMWQoB1liLknL9zfHfEA7KHh4fejdofmN/Zwjc1X/39/OgUnTpjAID/vhhh76bi7w3fY/DmFT7G0CPRGGPOfVQpzvM8zwprbavVWsyzOIqUUs4Z5yym5JEUgHPO86LSUhpjAJ3+AXyaJIqcQQQz/2Z/AGEUEkKWyyXGmMXsMV0dY2yM9lmUj/00Hn8vLx34NuM9l2qtLUKIMCDwKPPTe4kg50tRhJDSp3h0LYmW2Wx7eztN05N7R1YbjHCYRFYbIxUhJGAhIcTfKhubm/V6bbacF0VhrKUuiqPGclEQzBuNphB6NJmcPXuu2WzOZ8tBfzKbzbe3N1ZW6P7Biah0s9mYTMbNZvPo+FgoHdXqm3GU5VMaxmvrG2+++bYXai+ycjZdZFkOBmfzPAx5GjemYlzlRa1WJ4TUG40iz4KAB4z1ep1sKbz2yziHEBKqAgBESZIkeVnEnCVxaixIWe3s7KVpghCk9fpkOmq2amsrq2UpEDZRzNI0Rjgw7vxyPlxd6yZRnMZnNzZ777x5f7W7XZUFAg6UGTCI05WVNkvYcf/4aHBordWg0lZirIvDMMapMdZXCu12l1A+GI1pGCDkyqqK4ziux865RqPebbXr9TpCsFgs6vW6kaCtLcosSZK0XjfGFLJQSmHilstFs5lG0fllNm80UmPUZDKI41g7u719lgUcHM6rcrmct3vdWhRqo1Z73aOjo8lkIrVeX9uIo0Q6k4kyDEMScq6jg/5xu9fGGLMoJDmbTqe9Ttc355ppfblchqSR1GqMgF7MHj58mERxGPBaEImyyrKMRAGHGCO62ukePNwn9c7jNo+z3jD8ESHOgjVOSeMQcdYNh2PsyHA4Ph7ubXXPOwTLwaLTbDnnPBG5ENVZeYkyxmbLRZIkzzzzzGK53N/fT9La+vp6WZadbsvTigEgiqI0Tfv9/q/92q95RhXGuCzVcDiklPp/WmuFEIvFcmVlZbFY/Po//c3Lly9/4AMfSNP05s1bBwcHSZIiRAeDQRQlAJAkSbvdvHfv3le+8hVKKUIwn0963fbly5fTNOGcfuADL+b5crnMjXHtdksre3h4qIWspw1t1PnzF4+P+1LqtMuyTP3Gr39udS29fv1aJYpSllKKu3fvNprp5cuXW62WUuKkfxImYZcljJF2u53EfDaeEUIIocZU1lkfBJymaTYVVSEY4hgxIQSlBCNYLGZlNdOm5JxGUXDz5s00bvWe1MusihKYi+NaviyUUoBs4LjQ4uTkyCvxz5w502w2x+PxycmJ1tIYp9U32s1OQANKyN7O4X/wU//+n/+zPyuyyi6FycTx7sHJ4UkjrXNCKyGN0RaBQbhSpZRSysrvJABZrTXDJE1qGCFtLA6cc9qAU1rV63VlzXSZTWaLRi1NarXZdEowsUo7jBhmSihEvH0rBWukVp4Z7cxpj/FxPxY/Ci/mnGNHsQNGeLHMPOHae9VbcF7CD9alaYqNm81mN2/evNK8eO/O3ctPX+dx6pRBWjoFUA4dpxc3t3/+P/sbH/neD/3TL/zGZDnrl2PC8OXLF4KQG2Pu378H4CaT8dbWptZyOV8SwoyyeVZJKZvNZp6XCOGyzO7fv3/54rXHrrjGGIRIGIbPPPvMu+/eOjoYAS63ts6cOXfBGPvyyy8vlwsAq41EyElpKCUYUf8rT1wEnHP7h4dKqStXrmxsrB2dHA+HwziOnUPDYb/KgAQgpauq2ec///mQpMbYo6NjpVScJJSR3kqv1W7MJuOizJMkyfPlfD6VlSiq8sKFc0VWGmOm02me5+7Bg36/f+7cuT/8h//wcDj8xptvUEpXVlaCgBFMd3Z2vKFks9kcT0ZJkjDG8xwdHu5nWdZs0sFgUKvVZvOJVNXOzs5yuczz/P79+71ez0NOPtUhqUVSRpUoiyI7f/6sd2ReW1sry3IwGGTzBSEoisOT42GtVvOy7rJUxpiiKI6Pj6fTca1W813KLMtYGAaOSVVFEHj93XgyBuTSWj2MAp9oV1WVMZ7DZQaDAed8vsyMc0HICCHaOIJxGAUYYy2V3z4aq5Ik9MCZt9Hw046UcrFYbG6tN5tNreV0PvOu1qUUQcCuXr28nOV3796dz+eXLl1aWVlxziVxKoTwiK3XcPR6vePjE0LIeDze3zv0/uPDwXgymaTNNIoiv21KkmS5XPrNkDdaEUKISvtthNKac37+/PnxeHz37u2j4/0kSfIiQ9jdvv1O/YO1s+c2m82mLqOvfuWl4+OTOEw8lZ4wbPV7CcWnXnSnaVHEs/miKPImoLVazVtLeyDeW210u13rtNbS2uC9DZBzGnSWZXmZr9R7URJGSbxc5Jzzp556KghZt9u+eOGcEcF4lN27sRvEVCvtI6pu3bpl3xXKifOXLmJMH9zfcc41m02Kw2xZNBqNOI7feefBubNr3W53OOxXVeHA/OAf/sEkiT73e5977bVXiqo8OjoCgKLMut02pTRJolKUAIARDeMIQfC+F8/MZotanCyX+de+9sru7q6zepnNzrebZ8+de/n110Qhzq5fLK2O03acNA+PB5evXH/7nTtBmi5KtciKe/furWypSueT5aDS2Wh6kh+Xl+ApoYTFgDlzGMXNelCv0ThsrqzQLLMc3dl/MMnnUWQX2bzVSA5399faTZFnVbG4evXyyehEmK2T2XheTTNTtVqtLMs2t7Z4rTmaLeO4dm5z+8H92/DIsGhlpVuK6vj48LXXXmvVGzt7Q0r4crmcZ8t6M22325yHaaO+XC7ns2UzaT/Svj2Z1DCafKuzo4MoiOI4BsArnZUsyx/eO0iTGmW4yPNer5ckib86SZJY6zAl1kAURV4dyDknmDvnEMaMsTzPr1y50u12v/zlL/t7j1I6m81qtZrvrCAHlRSNRsNa7SwCBMa4IIyTGOqtdhiG0+mcs5EyJknS4XC8s7OHlKnValEUHR8fNxqNs2fO3fv85/wyqrVdLLI0Tc+ePYsQOnv27GAwcIgIqbU1VjkAMFLVwygOw3a9fulcb6PXoKD948YpE0KD0QhT5SzBqEJuZWVlvHigrSaEWYy19nc6AgDGGGacUK/JtVVVSW2Xy2VRVJyHhJA4jo3WURRdv359+8yZL3zhC8PhGB5dDk8LIpQhZIWSSigZqH5/uLXF4EkC2WH/5Orl7ka787EXXji79n3/xZNYe7RRyxbFOFssFllRSSEVIsyBrayV1s6KgrDISKWQc4xZqzkP4jj1K5eSBeOhkHqxHCNEKqH7/YGWyohl60nZYgQTDNhqixEBh6x1jDDPcfMlH6WUEWrB7u8f+Evf667O53PjdC1JpRLWujRN8zwHeyoi6XQ6cRAfHu6/+eabQcSXi1xUCmP89ttvnz17xoKZz6dBECDrZrOZcRYDstYyxrVTSinACGMwxomi0FpbrDEFwnCWZVabkCedTgdTVEkhhfIYK8GsKiXjpCyrIAgAsJAiTdONjc29vb0gjJIkms1mx8fHxTIDgM3NzeFgPJ/NAOYIIcZJGIaTycQYtbW1hbHHIHJrtUF2Z2dnPB46BI16KwgiZxFYJKUuC5GmdVUJrW0QhI1GI+LBZDI7Pj72Gj5fOVBKESJlWSKHkQPrXEBYs90AAELobDabjGcPdh4+kr6CqCpf9IqyYJxXWgaUGYcdGGQQAMKEWIukVhhjSjkhLAgCay1jvk62AOAIsqdpzC4IQ4JxkVdBEMGjrKRvZ/74nfGd8W9pPPUU/OAP/uthzX6EIfxH/xF87nNQFL9vB/NX/yr8wi/A9eu/bx/427/9bQ9vPoc/8SfgF38Rom+XD/mvGqMR3H0SRckPZyFMQmMM55xSBxhhLB+jVI/RXoJoUeRCVVEUJc2ac26xWABG3rlCaw1wmvGOvHetA60N54FSyichWQtaaowxZUxrDQS81bJ95HGMMUYAWuvFYhFFgTczFUJkReZXZ3DIbyE8sOjXXOccozwMIo8kGmOUEp6PSQhijGxtbTUajcPDQz93KaW0LK0BzsMkSRgO5rOiKqSS2jfO/WbJWgB06pNLCPNodRjyOK4RgqaziVc4eUZLURS+6JstF/6V5XKZJFG9Xg/iKK/KRruVpunu7u6FCxem07EzJgiCxWLxta99TQjhVfO8KMM41E57Z5KVlRVrQVSFc25ra2s8nMtCxmEqpXQWrHUOaYyINeDsk5PfEPIWGZiAT717b9J+hDIjhHx3ASOElDIA0Gw26/X6cNgXVcU582W+5892u91SiMViQQjJi6JeS1utJsa4Xm8sl0v/On0kPfDAK6fsscmDh32llFYoALRYLA4ODoqiCJNQa13JCjPqox39lWIsoJQSznzsnjHGZ6EGQRCGoQmdN959nAbkhXdSSi+xophYa304iu8r+/8ihCopjJEIA+MkigMlqsfmFY8UaAih0yB6eFQfAYA/D/42fsQWNx7IZoz5UtE7WYdh6L1EEELOGWPMbDrPsqzZbCMgWut6vZ7nS+eMfQRwO+fMafS6c84hwAhZjLHv4SCE3CNVtDdFecQvVt7WJkkST5ZypyA1RuhUU+gZ0N5NhVLKv02Cq7PfxHZ32IFH0olHsf1JxpR4uNk7nDiwfn5AYBljUkpPhAIAJQRyjiAMALISSkifijSdTktR1Ro1Y7TH8aUw2lZxGrzzzu1mu7W1tZWk6c7OThRFjEZxHA8HfQDXbjeTuDbsH2XT/sraehDwc+fO7R8eXrn61MbW1v0HxSsvv/bx7/noU1evPPts+NWXXkXgDoY7PApb9e5wdLy9uZUk0Ww2mc1mjAXNZrOWJrPppKoqFlNKaRSjxXwZ8SRt1I1Ro9Go2Wy26o2qqpTRShqhpAW3WGSTySSMeLPZYBQXRSFFEUY8CNkym/b7x8ZWq2vteiNGkLz00hefung5m+eL5TROeFllAAQQx5RLWYRR1F5pr22t0JiejPtJLQrTCACPh+MwrjFKKikRpmVZjkaD7sqKApsti5NBv9vtNrvNPM+LIvcz4Un/qF6vz+aTNE17vbUoihaLxXDYZwENw1qbtqbTqZQVIQRh1+21eYBPTo6CkDvnklpk4BRnswjiOJ7Pp9ba8XistHRGW2uHw6G2Lgwi8BRGUQ1GwzCOAcARbCxoo6xzhFLCWZLWlrM5oxQTVFXVcKBRwDTD0ijASClFsSttGQQBBivLqhKShUJWIgrCxWzu80KRRcZaik91M84hIMQ55O9kIUSW5Vq5qijystjf3+dhUOGy3WhShq02ly5dqDWa0UGdbp3fDmphWZa1eqRMldQicKZWS+MoStPaT/zET7zyyiv37t1zDjqdbp7nPvcwSZKszL0oIstyBEQJHcexlno5H7bb7ZVubzweHR3uITBlWXU6HYSdc6bIc0pZY7UnpQw4zrPF2zduzBfTXq9rwbU63bST9sf9o8ERWFRkORioJ3UA4IRrVVVVSRjlLMQa37rzDkIIBOqmK9ROLKiVRtcp7aSkYFnEWo2k3W6cPbslhJhMhgAuTdMW5ZTSqlzGvFmrxVJqqfJK5NbabCa63e5Ka2O7Vx8dif7B/ZAjgijC2Fq7sroFxC2W8yybNlv1K9e2nF7T8yfMFBee2iLhfO/oSCiFHQFti2yupUhqNeLw+bNnHXbrK71bN2+eHO93uk2jTDlf3rx77ApULcVP/shP/Kf/4V8PBNFZhgWMB6ODhztK5u3mulQ5QtSBc9YwSnIlZFVWVYHMoylYKQVGa+nnXCUNpRxjjCgxxiDrWnFtuphao6KQyzisZGUBvGADOwwON0RsEUhQS6gEUsZJi420zoEm4BAC7AAcRgCATtctcI6HjNL6crmUUhOCHze9rbEMk7TeQA6kNv357ExjoYTr7+9uX3keKQvgkHUgMlQYyBwMzQ9/+A995Pqz/5d/8Lf37o2eufZdLHbj4SBXc2rL117+Rr5Uy8HyD//gD9ptfvdg7623byJhaWECRLhxzgGHplio473jNE0BGe/xRAAJpVZWVq5cufjKqy/ffOfWwfHBZDbb3DxzZmv15s2Rn98RowgZa2271+ABdfrJG+rh4PAX/+HvXLp06YXnXyAEWS0H1lVZ3u/3f+yP/mgQBLu7+6+99tr29pm7d++O+nNjDCU8CCJGaRLHV688ZZ0aDQ+iwNUS5JxYzIbPP3v52WeffeONNxYx298/uHL1ufFk8fU33jo6Orl588Grr76xsbV2eHTU7tT/wv/+P/zyV770q7/2q1tbW2EYJkHNUNPptA4ODqpKam3jyJ07exnTcDQ5bneSlbVrDx7cDwK8tdUty3Q+XaRpeuHCheGwf+/evWarzsMgz5elKF/62lezYvn8889fuHT+ueee00Z98YtfnC+myon5fEyZW1aLze2rlBlEQOp5VclSzDgLGa13u11CyMHBgXeUBVevKpnWW1Upiry01iqrqWXLvJRS1aKarFRcSxygYqm0QcYR4yQiUKocwFgDxVImSUIIMlYhrLUFTGvYIQy23e0eHx4sFlma1iazMcKuqoooWm00Vu7ev1OWZafT8fuPw8PDxSJTVrkKLbLs4KTfarSzskopE9q0uh1lDaU0TRMp28boTqe92ukdHB1mRTZdFjTGiDpDjNAlD+h8Mbn/4A6yiADCDk2nUyklwrKWtBCQ8Xi5vr5hJHz2935vOS8vnb80XUzDMByPxxvrm/V6cz7L57Nya20lrkVhGBijHChwCDmOMWaYIOdhCuTAYEyCgGGMtJaUkjDkPm9aCBGELK5F48mw2+36HZW1lmDGOAtoZIxxSDinLDJRGMaNiIR4Y/NMEAW3b9/mnAdxwDknLCAsmC1LWc5HkwHm2GlDMalUGSWN9TNbpcirquo21y6cP1uLai+99NI8DI0DmWUIzjUbjfW1lpTyrbfeAoAzZ86NR1Ojbb/fV5WYzcfd1e76+68bo/JsUhbTwfA4DLY5CSgLP/LR73nf+z74a//0N4bj0XPPvjDo93nILl25XIvioshmiymjYUpbl9tPfePejd5q88HJzvPXrv/kv/encpV//kufvfChK8+/+L53b98tivJH/+gPJNud/+t/+V9oWXz8Yx/BGM+m2ewoV4JBWavVV6IgODreG/TnB9HYSOMMjBaL1dVVyiLGA4fRYD4VFB8Xy2xwPBqPdRw2W3U7C4bZvB20KxwtqQ4ZpdYiDE9fvnhwcBBEkNSDG+++tbLaJSzon0zb7U5AOllW9EtBMYnjZH1ty+weHDw4Hh3NgiBodtrFUnASYEoxxtbIb2fZVkvSb61S0PHJoMoVY6woykF/tLHSMcZMF3Mp5aA/QmhMCJVSWwOUMlGpIAiqSnq2u7XWGe0chEGIoGo2GgigyPNWo/14B4+BWOdqccIp5ZSaQlNKOY+9tCAJakYb4lCd1zDghXC6lIxS4wjnNA2T6XiBEDICV5kpl+PPL74ClmmpMeZvv33z+Lh//fr1JEwacfPM+nY1F/lgxhA2wA1gRhCIZQK4ZhbPnrt48dL2ssqARbUgBqnlMk/SCKEQEVwJtSwroqteLVCbKw8P+to4YwmyoLUizhKEKXEEnEIIOz2bTZ2U1FrioFrOp6MhCbmxVpZVGtaev/48ZvSpa0/3l18zlQbKlLPOOXCOY0wAmmFSVLnNlUO2nBXhk5rKP/T9P/i/+tELb3351dc+/+btiAP8O//ie37387eIua85w/U0Wl0ra8vlYpzli739nVFR4DidFoaSMAo5RQaBIDqrSqeNKcuSMiykFLIKGA9D7qxGADwgBJ4sX494YHQIAFrrUipfaVPKwSJKGY2oUgpTwqFBGRZyGYbMuMJhgS0Jg8AaQxh3VlsjEMFWyYDH4Fgh9GxZDafzp5++JsQsy4arq6tJqzZejGpphJEgAGBpEAILrFYGKANnwyAhFHkvploaKFPxIOj01jExJLD9wQF2qLOWiqrijgC20lZxmFgLi9kCkAUgzkFRZHESAjK91XpZTRtt3m63aMAZG1WVtHYJxnEWefY0OAyAqlIqaeKoZg0wGu083AeNA5LMlrNlluehPjgerayuIqvKssrz3FogiNZqNS2ltzptNxtWaeFgcNJXQv/Yn/pxre3+/r4Q4u69exhZw5zROssyTvnGxkYrbR0P+oXKp5O5qCpMCCYYEV9yc+RAa00oNcZQSgwYZ2YA4BNrkUPgLEWAESRxFMexASeEIBQ5QABEa0UVAD5NXlLWIRa2u6kxpswrhokxxpnveDd/Z/zBjTiGv/E3noA17+7CV78KX/oSCAEIwcYGfOITT+AdOwc/+7Pw3/w3v5+H9Of/PPR6T/aP/pePMIS//tdhdfW9V+Zz+Ef/6F/2K6MR/NiPQbf7r3Zw/tCH4Gd/9lte0Rr+yl+B27e/7a8YrYtcUsKVNIhgT7q0VgspEEKUEWMtAgKOMBYyHgVBAJjM5nNAmGAipfZMZPfI99ZaR1CACcKYaK0JwU5Q5KxzziKNMdVaEcoYDRkjQpTeAdmjadYia7G1ihBiLTgnrLVOE4ypVpIxGoaxRwwxVkEQBEFQFIV2vlNN8rKspMQIMUYwhjDiQoiizHhOMQGAR2QgwsFZrS3GOE3ToqgwDsbDHGFsncKnhaYDQB6ts2DCMPZki9FoZK2WSmitoyiglFJGGWbOOCMNJ9xqS0MeRYkQYjA84QFBWC+Ww6KcItLARKU1vr62OZ8vdx/ugkVJVFtMy1mReTz08uXLg/6JBt1OOlpbW5DOaoSAOTdDHCusSExcKYOACm20kZRSR77NbIwIQsxo/xM99WE4pRw87iUQsA5jYrThlClbtlsNcMpo2el0PKfq5OSEEBKFtTlkRlkERMiy2Wx2Ou00TeM4lNIssuV0PuNhkCQJIRgRpI12yDlwXlf9GMdECCFKKGd5VY7m46geIwR5VXo81TmMEHUaDAGEDKVMSrV/OAWAWq3mye2cc2eRUtKjrhzjShSUhowR58z29qbSp7TrxWzOo9D3NjDDGEwlhQdDKWPWmG63G0XR7GjyONzP72Ct1p6MqPUpm805a5TGgJBxYB1j1BhDCSGMe0FAWm9oo6y1eVlQzowxYB0mGFknwEito1ocRBSQBKQ6nXpVSms1xhhZ/8UR58xa66wmmBECWmtEMGYEAABZY42yisCpEZbvzVNEgQKKDEEOOUMAUYS10Q5hv9n2rQtrT8s8a62UUn4bM3tCAHy0g/PGbxDQgAARqEIEKykxIEZJrZYC2NXV1TxfTqdysZxRBgjHhNCd3aPFsgqUQwhZA0VWgrEBC42yhBCHrXMGA6qKvFaLwVrkwBmQfOwIHI9GxhgeREV1XJbloD8hhHjbE0LYZLx0Cq+trW2s9HYP5GC47HbbSS2g2I4GR84URlRKiFtvvRuGcVlWJ0cDSsIgCHVhHVZBxPOyqGRJSbBYzg8O9rJs4acdrc0yFyELjXXGWoMsqiQ4x4AywhkmcyWlUtpKrVSlHWIgZZkQniRRs5E2m/Vlvrhz966zVmslZGFkXGWCMzIZiN3de3ffGYDDeV4l3ebTT18Pw3CeVTdu3AgbTPHi3tF9rw/gQWQwE04AGF6PaUotspii+XyGglCCnBw+8LY8nZVOrR4opSgzcULTegBgazjI8injsL7Z3tza3N3dPR7sA8B6r7dcLsE4LbON9e00qY3HYzA6RMRZ3IqbWtmJGCdJ1GrXjDGEIWNUo06bDTaUsyDECPF20jHGxHFtsViMx+N2p0MpBYqKovJTaLvdds4ZpSlm7VZLa91ZW5nP5xWouNdChBdFEccRdbqWuDROIx4ZofvHJ7ISCWONpBY30nvTHcUxj0NbVEpXiDsAK61EiDjkPXUBE0ewtSYfj07yrCiyeT1tdla6oQ4ZI0tnNNa5kKoS3ajOIkRTSu/fv+8tQd9+++1ms3n27NkHDx5MJpN6vb6zs3N8fPyxj30sTdOHDx967irnfH19nVLKCTXGjsfjxWIR8Mho7anmUlbT6dQYgxCOomg6nRljJpMJpbwvhsjhZ555ttFIs6yYTCYn/b4D0263h+MRxvjKlSvSFAd7e4zQ6XTujCUYh2GklBJaOOeStBaGIUIuSXplWfo4tTiOLly40GjVhShOTk44p3E9yvOlMS7gMcbEOXj4cK/b7RLCtLJSFtZqq3QYhhhTPwWvra0ZpcfjMXEDUQzSND3tBJ52rmC5XDba9U6nw0PebNU2NzeLZWvwJLjZt3ZrtRpCiNOAAHJWByw5d/6ccVpqHYRsMBiMRqNer1dr1Z2C1tnOG195o9+f/+SP/Ph/9Z//fGRpNp/KZVEslqPRaDIdtdttiwBjbxCEtQOlhHnUOiuK0uuCrbUWjO9JPmJBWp818fjYAsr8pQzDUBnlf/Z7FI6J1AYoEEISGtnKKICIcamlUhowZoSCT1gyxgs3nDHwqNtGKVfqVELizyrGOIqigPEoisA6zvl4OgWDj46ONlfP4bgBuQBMACEnlRPSYKt39hur7Z/7839R/u3/x1ffeqO+kb7z7s2iynlI47iWJm65XH7xy1/+vh/8I+ura2+8/pYThlCCCQclA0wBKDZUKTUajSileVUh55l9xVe+8pUrVy6maYoRmU9mYzkbjaZntzdWVtZGo5ExxirLWZjWk0a9XlS5emKcB4AQirEgTRsY03feuXV0dNRoNXd2du7c3l9b3fipn/r39vcP87yIouhjH/vYZ377C6P+DCc2CIIkrmXZ4qWXvhYEBJDBII1xCLm03hyPpy+//Gqz2TwZHty7d4jwq3/oD33f6srG/fsPW63WrVu3vvGNd8+e7X34wx++ffv2W2+9lcZpr9cLw3Dcnz18+HA4TA8ODuZz87GPvdhut/f39y3Ys2fOWWul1OPxpCpls9FttTrT6fTw8LDVaq2uruZl8fQz1yeTUZYtqqryshefgvr1r3+9liaePIsR1c4+99xzaa157tyFX/mlX15dTRhjTz11BSGklZVaK6U450EQjSd95xyjQRjGSqksyzw/t6qq+Xw+ny8jzgFgZWVFKSMr6U692LSxRmvNHUHotG+8WCwarYYnaSZpzRhDAEW1WlmWVVU1GrV2uy1lhTFeLBYvvfTS2sZ6s9l0zo3H40tXLh0dHe3s7ASEMkSdVnduvYMQ2blzzxqoNxvNZl0762VlSRhFUbS3t3ftytXnn33+8Nf+yYULFzbPbO/t78/nczC2ntSFEEVR1Gp1WVaeYV2v14UQhFrnXJLEcVyr1xsPHz70j//e3p5zRjltjLl48SIA7O3tVZVcTHIAaDTS6XhurWUsAOP8PsfvXXyusd/EUIwcOM55VVW9Xs83saWUUgj/2G5sbBRFYYwRQiDnGo0GcUhqwRgbjyfrjc2f/umf/q3PfPo3fvO3CYN6PT1//vyrr76a53kch3fv3s7zvH80VwVwypHBnkfTbDZrtdpgdDKfz4OAPXjwYGNz7cyZM9pCVuRFKaxDa+vr586ff/21N4KA/fFP/bi1ut8/3tl9+MorX4sTfuGpi8tsenh4uL6+urKyMh6Pq6qinNXiBDD++te/vrq6ubKy8vnPf2Fr80yz2dRab25e2FxbvXHjhpNWLMu33nh9cHy0vbnSPzm6dvXKiy++MJ1Nbtx++8HufRbT4fikt9o+GY7qnUajXd/YXDs83D9//vzT15752kuvv/vO3bt37wsBw9G40awxRhADKasyK+M4fvbZF1944YXf+cxnKaWAXRgHjVZdaXl0cjifz199rbh2/epkOiKEZNmScGatFUIhRLTW6+vrs9ns9u3brVbjypUr+we79+7tbGysNhsdb5YXhBHjuCrlcDh89tlnsyKfzWZVJaeL+cXzZzudjlebgnPfHAT/eMQxrHbb3/xKo966cunqZz/3GYSQzw7yOPV8vlRKYUQRwkqJIIi0ssZZSmlZlt6jKUkijPHJ0bG1VmnhLX3v3r27nBYXL1/Y2tp68803McZo4ay1Xv/ldQOeG7JYFI8DPKWSi8XCRz+Px2Pv2NDpdT2hI47josgIIZPJhHNOOXfOzedzr2k9OTnJF/loMBwNRoSQsixFWVlgAeW2qhgmBLmnLl3a2tzgjLWjFiDEgrBclkEjlEVZyRxZ5giN0nrpcC705uamwcHu0aASylhQSmEMGGMtpEEIKCm1kEVplUTGrK6sYkpyKRazHBGqpSkXg4cPHyJKeEC7ndb+wzkAOGMRQhw86QZTSpMkXRZL51yVF/AkuPn5Z17YeXgLsbDR6d67sw9PUsLwenO99xQKgsrKospng+Hw5EDoqpgvylJEiDMaIAzLsqgnoSPEADhjlFJpmq6u9ay1vuw5OTkpsrzIK8YYI09elbz+oKqqyWQShpHxgbeAvOaMh+yUMeQUBu6cs9bNZ0uECDispKMkNEYtF6U2JiBMa8iK+WS8rKUxZ4Rg3j8+mU9nnPPZZEoxi2LWqCVVnhHCtLbT6dwaBIAopc5Za60WmoVkPl+8+OILs8Vyd2fv4sWLlBmL1fkLW4SwgMdZLsfD4eDkhDHikCWEsIBZbZSSYciSWt05Q5TDGI5PDitZGqvyUkiphRAE05BzcBPv0tjr9fLcxxaFzz77/CuvfO3WrVtSypVOIwwigrMwjIyzGxsb169fv//gIaW0Xm/meU4x08rSMPzgBz7UaDTefPPN8XjgiVRxHH/605/e2jrziU984vOf/+xyMWMB55wPptPNzc2tja3BYJDli5P+kZKGEBKEoWdmRXHsmYZKSJ/HqLQAhKy1gBEhBBxYa4MgqNVqfurwOnfrLGMMY/AbNkqJt9RQ0ngiiXMSO89rBod9mMF3vJu/M/6ABufwl/8yxPG3vLhYwM//PHz965Bl77144wZ85jPQasGP/zj8mT/zHjzdaMAf/+PwxS/Ca6/9vh2VlHB4CIeH/9q/+H3f9y1YMwD8+q/DcPiv+K3FAhaLf8V7trfhZ37mn3/xb/9teOedf9lvzRezaXUUhqGno/pYbA9meQKvJ1F6Q17K2GmIXBB48YoQQinjc4zDMPS7d7/9DsPQ/wAAjws0OKWnaSsgDFOMMYAFeM+sgBACYP0M5lmlnHNMT3eqHkTjnFura7VaHMdRFGVlUZalMTpJkqQWUYSdM845BIQSLqUs8qoqJQAwFlDKg4BqqjGmeV4Wy/FinvtgQHDOWoMfifystcZYAAcO4jgGgKoqlBJaa+tMGIbeSCEIAv8iIcjrEVut1mQyiuN4Np8URXHx4vn19VVvJfHuu+/mZRlF0Wy2qKqqVqtvb28raYQQjFG/kvYHQ+/87JzLM4HxAgHTWiHMrLVKKYqQAUQfkV4JZk+8sggBQsjCewYL/kvCKa8Z2UdeKM66x1dKKVUUxerqqj8JWivv3LpcLu/cuZNlBSDkwJw9e7bZbARBgDHcuPHOdDo9rc2dS5LYr/vOOZ+f5oECj/VzzpfzBQDM5/MsyxDBAA4Q+F61c87fP/6u85YmRZH7a+2Z4B7395tGC85zKpMk8f4Yy+VSaeFDdMIwbDRak8kkjmOCGaNBJaaeBI0QooTkeV5VlWeq+Svu72pCSCUFAOBHyYoerwDrPIjhnHvsJUg5A29Eg5Bn+BpjaES9kpVTWigxnU57nY4vML1ropSZ38cSgn3ACQCc3vPOEedjNE9DrQDAgSGE+IXYcy4RIsY4z0v1V01KpbW2j6w/To/59GZA3/zPJw7vr/1Yo2Cs8fi7VMj/gBDy5x/A1mox59w/9f68hWGotZ5Op5GPLWS43qjFYVLlxWI2JwwThKU2QcQRQvPFjHJOKZVabayvX758+e2bN+7du7e3txdFkcMIIbS6uooxzvPcu+V4KfB8Pl9bWyMESVmVo6zZbNcbcRzXMMaiOjXb4ZwrbRGYqqqcRSzg73//+4+Ojooic85JKTc21jjnYRgqoQFQFCbOkarMMMbGKK2sVAoAqqqaLKdSKz+tMcbiOJ7OJuvrmxSB1rrRaJVlHkS80+lwRm7fvn31ytNnzm71jw6NtUKoixcv5nmeLYsgiJrN5pUrVzrd7tHJaG9vL03TlbV1X60MR6Ner+frHYwxj0Ia8DiOEULKmjRqCiEmo2kcx0bpCxfOZ1lWVZWX8odhGEWRqoSSen29zhi7f/feyclJmRdxLVkuc2utlFUQBFprIQRjZDAaSymDICyKjLEAY8w4raoqSRKpxWKxSNPUm7vmeZ7EaVEUtVpta2trMBh4bKSqJAD2j6SfNxhjRZZjjMtCRHGAzGlybLPZtED8ehFGvNfrdZqdk8OT6WyGKanX65hi3zVcLBZBlPoL5G9Iay3Ae47zGGNPwPeW0L5mLIpie2uzzZuj0ajGY621rarJcLRk45XN1W52Srug165dG4/Ho9EojmNK6WAwALBa66IovvSlL125cqXT6dy9exdjvHV2+8KFC9PReDqdeRvi608/K6rqwYMH/rCk1FovvXsOQnh1fa3MC49CBtxWhZhOJ2EY3r9/H2NcbzYCHkwmY/9QYQxOmm63W4sThMhiNo+iyEijnd/Es4TEHhjN87woimy5NBqUUrVajWA2nc4Gw8mZsxvj0YxS3Ouudztrn/5nnwWAIIiksFJKQtDHv+ejtVrt1ttvvfTSS0mSRlHij1ZW4u2376YRJxCrCkVR5AxgjIuyWF3rbG1tzrJxKdzTT19lnEwmo8NdnT5JEt1oNjRJ4nqaZTkAHOzsMkKjKFwsZ/V2YzA8qaoqDPn2mTOtZnPn6Cgvs1ajubW2/ic++WP/yV/8q82kIUdzrM2437/11tu7uw+7nU6z02ZxSAhKwgQASiiybOHlMEJUfpr2GhBA1vfNCCFBEADILMt6vZ5vfRhjyjL3QADnnFVMIPFoMdNKKQ2GOYYBQsoMM9Zai43SFUHUOiOU9CIOjyYrpRglDjmMfXVE/UTpVwvfxuCch1EQR2FZlgQBUFxVsszz8WDQO1OHIHCVQBhZBNgiamyxyGQl0jNr/+X/4a/+Z//V/+2fvPrbz11/bjwbatDGyMtXLh3s7c8W81defy0Io4SHwkjOQ6md0ZhgwggJQw4AWZZhRzhlhDCjHWPBwf7x8fFxvR4DYOcMUFwu8rvv3uOcV7liEUUIh5xXpZzCNMsWZ7Y+8MSVYHv7wlNXew8ePHj9tW/cvHnjE5/4xNWnr33jG994+GBfa3v79u2jo6M0TefzeVVVV69efXn2qt/V+dMeBmG318yLhXMqjpIoDsOQ/87v/E5RyE984uPnzp0/PDzp94e//du/vbV5VghVr9evXHmqksVP/uSf1EZ+4QtfUFJrrWfjWb1e91vH+XxujEnT0/y92XJxcnLU6Taefe7qRz/23Z1Opyrl0dFg0L9TVPnK2srewW4Q8SBkxhgfByylrKXN5XJ5cnLCGI2iCCPCOa+QDMNwMpm98eZbH//uj33pS18qRXX27NmLFy8+//z7hqPR22/flFItF9nu7q5zqCiLIq+UMmnaOLt9NuDcp1fxgGmt67XYGuf/qJaFUpJQjBHFjAoFfhH1WR+EUGPMeDgCYqIocM7V6/XxaJrgpFargTVFUVhrvfOyc67T6TQaDULQ937v956/dH40Gt27d+/mzZtne2vGmP5R//kPvvDKK69xDpWSCWOcselgUG8119bWeBTeevuWUfob3/jGwcHBbDadLWbTxRwBXi6zen2zUW/2j0/GoxkjREqRJAmAo5RojfN8ubq62ml3F4tsuVz6rTBCKM/LXq+1v7+vnR0Oh1l2Gs03FBOtNUF0ZaWXh8VymQOgqhJRlFilCSEIYyOVs7aqqoAyZ1UURQghH+zg1xKPLwMA4yRByblz56bTqawqxtgiLxhjGhkehpUUN2+9e//+/bNnNylnBwf777zzDqKoVquNx8Msy9J68vTTFx7cPVIZds4BRtjhyWTSnNbb7c7e3qEQO2maDIfDZrOpna0ldVVUBwcHXiYWxeF3ffeHVldXf+u3fsMY1WjWWq3GolgkSfQ9f+gjX/rS7929e3d7fQ0AOA/a7Y7vOoRB/PLLX324cyCl3N17GDC+XC5Go5GU1WQ6SllczhaWkheevfaB59//6te+8fxzL7IgzMvFlacvDvMDxx2EauPMdnOt9f/9pf/PpeuXAJvv/d7vufXObUbCixcuWc2++tW7zSbfPrsVx+FgeFwURbpaC6MgiiKE6Ztv3Tg6Oe50WyykLCRSVzzgFy+f3d3dbbVaQhaTyXh9a5NHod9zNJs151Ce57u7uxjjXnfl6rUraZr85j/79HwGFy8kL7zw4q/8yq9gQpSSUogz22fv3nl49pxtNtvHx5OPfOR5Fgbr66tRwL7x+tvTcYYIe6Jlm5SQJN8CWzJG7t+/65wLg3g+ny8Xi62N7evXrw8n08l4trKyIoQcjSYIoUajkZcFY6zb7e7v7/t9dlmWzWYTYedLFwDwvop5sTw4OPCrnm8KeoM5rTWhxC8r35xrr5Xd3FgNQvbgwQOEiNZ2uczDMEYIqao8Gk8opfV6/amnnnrhhRd+93OfKwtRlRIcXl/bzPP88OAoCkPGgul0mk0zSih22EhBnQ0ounzx4vd87KOdNJAit8Rp5IqsnEzmJ0f98WBMI5amKeMcM+oAa+NA23PnzoW1+htff3uxzNN6HSEExjIaKC1UpYwSqqqkEBdWOz/4yY+HtfSrb3zj1Zs3WVRDGC/y/K2bN85fPJeJHMPpzsnHGFhrlTHWMYeAUoodaOO0fLLL9r27D0K8p8oKaNDd2vrnTFD8MGmsAq612nl4f//enbVO60/+yI82GrX/8Vd+8eW371V2htJG2AhZxAtZOWVDzrVSURRdvHhxZWWlPzheX18Pw6CqKuRACKGlZPzJVYp3zDDggjhKknQ+n1trvd+iUgqkS9O0KPIojimDALi1VmujjanX6qdyJXBaSUAMLE0b9eXRSVFUUYgpRlUhhtnCOWSU0kJhgqwi/eOBUkaVeVkKWSgEHLtT5wdMwBlnrPK+EF6PXFWlLataGhRVYS2sriS1OGHryGo5nc7jOGjWmwGP9nZ3+/1+t9m7evVKGHGhinojwRQNh/3ZbOIc4pxrrbWQi1JWpQTA73vf82naeO2113z7ECE0Hk8nk0mr1Yqj+nJZzmaLRbaspenKanc6mR0dHDabbYRAS6OcJkDq9Xpaq92/d280HiZxDSFUuipNG3me379/11q9u7urtQ6iUElplPrUpz41Gozu379fQAYA5LQkt0lS8xvZsiyNUYyxC5fOW2N2d3eVUkaprTNnfOkicuFrfl/VnO4QrPG26Z4sVlWlv7IIO4ooIc6HMHkprgRprUXfsW7+zviDGj/8w/Cxj0HyTVGlQsCf+3Owu/vk90+n8A/+AWQZ/KW/9N6LhMBf/avwp//0t8DTf/AjjuHP/JlveWWxgF/91d+fT/6bfxM4/5YXX3kF/uE//Ff8Ig+Cfn9OKe12u8PhUAjhA/celVSemeO1rNYDFpxRxliWZR4QRAhRyiglHtZkhHrjNY8++7/inMOnxrinPCELMJ/PtZaEIkzxYzjMI93+AKy1Fhxx1hkAAG8uVBRFni+LohBCnEKTFAM4zjnCTov3thO+OA2CAGNaVTKKkjiuCSEAFMHcGFeJarnMlTJKaEKY51FiQBgRgNNk41qthhh4eopH6xinhAScn+KzQpTWWh/3aq0OQ+7tEPqD4zStpRDt7+/7dnKRF8vlUgjR7/fLsqzVawB2b2/HOF1vpvU0HY+mg/4kCtPSlWUl2Sng7ijFSVpT0mptERCHnbcwZizQWiv15N2C99aGR1Dj45cBI/D5BqceF6Qocz/5A8bNZvPa5Stra2uI+iQ3ee7cuTCMPv3pT4/HY29J2mx32u22t9o7PNz3y59zrigKv6wEgb8RkYeEPLzrsR0hhNUmRDAajUQl4zT2UXweBz/FQ4016NTYwZNg/Mc2m82yLOfzeRzH1lpMIHyEQg4GA6+A11oHPDLaWQPSaa0159waAADCqOfr+K6G1aCVT5whnnCDEY6iyJ+xuJb4AxBKKqUIwowxhBAGFEWxEII/etgoZ4wxB1CJ0u9dvXNXEsWMMSUlxng8HK50u2tra/t7e4QQz5TCGHt7EF+CUUq9bYjfzzBGLGDt9CnWRjxYjDCigK0vx4RWAABW4tMwQIwQIgQb4wDAY6+eVv74cgMAoCe7r/j3PO4P+ccnr0rAjnPOGHHOSSV8YTidTs+dOxeGIcKuLEstlcaEERowzgBJKYMoOH/xYrNeHw9Hi3oNALx7pzEGkAOMgyjknLajFkLq6OgIOfi+T3zy8PhICl1VVRiGSZL4YuHcuXOc8zIrF4vF5uZ2d7U7GAyCgFWiOH/xbJYtnHN5Xp69cJ4TXhTl8VE/juM4TKx14HCn171+/fpisZjPp2madnudVquBMR4Oh5zzIAjB4Xq9nc1yQNbDuFprzGheZkk9XW81r1675pwbTUdZloVRsLKystLpSlmdHB/HcXzx0hVAdjAYSKERITfevlVWObKOsmBldX08HmuD4ijBhN5/sDMcTQajSZLWz1+8CABVVS2WeaPR8l00A64S1Vqr6ZOffMqXlJUxut6IpdBhmpRVPhoPlDRhGBKCOedVXvhsEiX1Ozdu1ZI2RZQAMZUcy5G1ttNptRpNxmie56PRYDKd1JO6MTpTEqE8TmveEGY+nwohjLPOFUIIShmjQZZlpVTz+XIwGCGE1lY3jLNFMVsul1EU+TzwwWDgOdr1WkoIKfKqrHLswOfVC6Ws1VIKQNaHoE4nsyiIKWPWKILQaDIWWtXrdYeYf4L8I28RQgh730I/wyS1eJEtfZAVpsxIiZAZj4cQWCHLTGaM6zpqa6339k4G00F3PqaP5/GDg4PJZOIDqTAGrfWZre0oiR88ePDZz3623W4zxqIooggvprO9vb3ZbI4QisKEUdpYWfEuqF43obXW2hpnAaOTk5N2s7O6ujqfz1kaoA5azJa3b79blmW92Vgs5owxRDBCrtVqSCkZYxQTY0y72SIILxaL5TI3xjSazcecWX+cWqkwDAnG1prBYHB0cqi0CONAK3uw3z97boPz6N69+0rZMAwZ4+PxJEmSssz7J8PtFzcB8JUr1/znh0E8Gc9Gw34UESm1qhbYhQBIa80Q44ROp9P1zdWzZ8+ePb89m4/2DnalFLXGNjxpw5TUorUzVxzgmzdvlmXZbrcQQgjs1plNh11cS6SUm+trnNDdh3uLebba7iHtfvT7f/hP//GfqgG+87VXiEEhYcvJ+OjogHN+/uK5VqcphOBhcnJyYq2NoiAMw/l87luOlDNb+dVQeyWUH0opillW5FLKjY0NzzVO03Q4GSOE0jRNksQ4ewpd+TRbr9VVDoNLWEjA5brEFlmwiBAgzoCzzlKEEcHIOr+GPnbP8B9CmHdvIoSQMAx99yOgjGKCEFFaU0qn43Gr1qHdVYSVA4sxdsYibRssyZdFsXOSbK//9Z/9ixM7ub17v6qqypRxHNVrDc77tXpzuVweHhz1D/txXKvyEiGihMbWJRH3fRjf3XUOGe2McVEQPvviNR6zosiOTo7juFYKrZUFrRBCYajiWqKUDMNQqsqCTZL02tVrxw+fcH2/8uWXf/dzXwVwtVqyvrF6/fpz586duXXrnZWVVefg7/7dvzedTn/6p3/6/8fenwbdll3Vgehcze736c/Xd7e/ebNRdlIipQTqhUEYhAEbY6AonnngqnKVjcMRjnquqIqKsCGqogpH2I5nl21cGJdtZJAxCCSEQFKSSikzlcr+5m2/vjl9s/vVvx/ru1eNb6oB7PeH9SvvznPOt89Za68155hjjvHoo4/+/b//94/2h91ulzHGGONcxnF4/uJFDKC1rlg+T8v5PDVGNert73jiviIvsnJ4/sKl+Ty9fu3m0WEvimpP/+ELlx5ce/jht1y/fn046lsXynarU5UsS0/ShNlQ7y1vecvR0YnvhXlVRlG0vLx80jvY2dlrtVpVyY+PewjowsLSo1Fda91uN8uyHI7H5SuvnDm7ubCwsL+/hzHe2NjivNrb27PnNyu51KbfHzabbVbxl159ZbGzuLS0cnJy8sprr0pl7rvvPq11lmX1Vstg1OsN6rVmq+lorQeDUa/XW1xYXlpYHk9HcVRbWFhgjA0Ho3rcsDVYrTVooA7WRiOEfN93XMxYeaoPoLXnOXkpogi3Gi2DIAxDA5rxyharj46OrENUGPpX7n+wVo+ee+6LtvoqhPAD76/9Nz+37Ddmk+kXP//F+y5fZvP08194NvA9kCqZzeM4zvN8bWPdd71GozHs9bHjHJ8cOtRDGE/GU9/3kcEOcYuszLIi8iNMbI2dGmMmk4mUst6IVlZWWCV6vd5sNvd9v1aLgyAIw7DbXQzDcG9vb39n3yCSJJnWOo7rSZIoqSRIRJFSAhvnvvvuS9N0OBxjc1qZdx1XCEEAUYKMMbZqbQ0iqIM9z7OElzRNW62WxQ2tVycACMWl0a7rKqU+9alPjWfjH/vxvxLVwl/5lV8ZTkaRH6ysrCTJrGLF/fff34y7O7dOqrIM3YYtPQLgoijWt1bOnt3s9XrNZns47Pd6PeJ67Y5DPT/Ji/G165ub6xcuX1rb2Hj5tZcrUbmeI40WRjz66CMLCwtPPfXUcDzsLHTDIF5cIAf7RzZgmk2TwK9xqaz7lpXLn81mR0cHm5vvOLP5nW88/eJocPyRH/5INpu4DrgebO/dmmXZ6tb6fY9ezFUSuh4z+a2D61Wp+rP+ix97iZcVxUQL6B+PxBXkut6lC2slqzAQjPFjjz02GvdcB7su5bwqy3I6nSbpbJbOVteW03Q+mYwuXbrkUhrW3KXVBSHE4mrX8xwAXRRFUVRhyIVQjLFer1ev18fj8erqau+kv7V1FmAvCGrPfPELx72T5eVljPHx0fH3ffgHzp+78uk//IOqqnyfCGWwNNeu3XAwWlhYCmu3ijEj8T1QIinhf/nf/tmP/NB9P/OX/zoA/MdPfuwf/NP/HRO0sryWJIlgEiO6sLBQFkwraLVaWZZrrdvtdlmWXIooiiy7v1arSSlns5nneQarMi+FEEtLS45LAIBVgjHWG5y0Wh1jDKXYGJOXBaWUOI5QwgLQvus5hGLAUnMAsP7FS4srjLG0yB3HmU6n7Xbbdd0gCJaXVznnDz/8cFmWrVar2WwWRTEcDrvdLtKQzguXeo166+S4bzRgZDyKldag1eJi58K5M1VeDMs5RsrxaCnkUX+0s3ecJuXS0nJ9oWOMzvO8KgqEEMLEDTEC7RHsew5JtBbSuqUxKe2WolhlymrJp3/+A+998P6Lfq05mY0///zzClHq+Mhx+8Ph5SuXdDFrNqI9hKRSAKCMVkphY7NZbTzj+yFi5VepLH7NGJyMoyAxCiiYCu6dM5QaZZJvX7s22d//yAc/+L3vf3c9comDr5zd+Jf/7td+8w8/m2WJU4tKxightW4XpFrotuv1upDy8PDw4HDvlVdeIYS0Gk3X9dqNFudcMHHPv6WMVmDz+VOP+DzPLZEBfZVVvQHOmNULJg71lBYIY8klAARhwBiUZQlGFKQM/WhtZV3KLAzDzbXlV157lTMRBJFWSkkzHU8AtM1DHex4XqQ5ZUJoUDZdRMgIwR3HuXHjBpeq3eqURaGBhZEjKlGwqioPGvXWZDpYWOjEcXh0dDIW3HE8QmBhoR2E7mw+oiWp12tZlvihB6AbjQamajKeKqldx0cueuKJt9+8efP4uHf2bLC0tLS/v//kk08eHBzkeb62ttbpdE6OjivO6/W676kyr8BQXvIwtJxiAKVXlpdZyaWQn/vc5wjCVmvSBqJKCWv+86UvfYlS6nkeBqSRCaLoqaeeGg1GCKE8yy2CcKfzbykIQwsin5L9KS0E80M/MP7GxgYhVGudJjlX0i42G7vb3bssCuxQhI3v+57nGQMYI2O0EBwAEewQgggQY4xgDEATiuAbkqT+bPzZ+NMaZ8/Cj/4o1L5G7Qn++T9/U6z57vjN34SPfATOnv3KleVl+Jt/E/6P/+NPU8T52x2PP/41twQAn/kMnJz8KXzyz/88rK19zZXZDP6n/+mbvxEBIIQ6nY4Nqm0oiBCiiGgwCABj5LouEFxWOePcGCOlTwE5d4YlxjLGGEtd13UIRchYpQvGGMYYMCBEbAee0SgMw2arrhEwVmIcYoq0URhj6ypsM816s2Ep1dYM3OLX1urN9j/FcWypRY7jADWYACYgGRdV6cWx3QxthUwIBWAwcgSXyTzXWmvMfN8HBXFcJ9gvS8YroaQ2BhFCkLkr2SzjOO52u1yzLEsYM1pbUu2p0BBCyBhl4Uv769mttchTh2LX97Ms01piJa9evWo/0/O8qqoYY2HoCxFjjNN5YhDkhRoOh0EQ1WoNAGQMJgTneQ7YtNsdAGQ04VRVlRRcKcnr9bptOLRYyptNrjKSIOsBewrm3kUabW1AKUMINNstyUWe56DhrW994rHHHrOkh06zdTLoJUny1FN/9PLLL4dhKIRsNpsPXLmfUlqv12zElSTJXRkKmxjenU24I/8NAI7j2K8vlHRtZoEBTsX8LOH61MOQCangK/xc6y4wGAwmk0m73Y5roZRSKmmkWVxasuCPZUbneR7HseVxt1qtLMlHw4lVEQnDUCgrAA0W1bXvsrQ5+3bH88MwtNIfURRxzg0Cx3NPOdfY+uxpo4z1kjm9eYwQQnlR3O3AFkIox7UViErrilfW5fLM1tbO9rbveYwxxoTvurbua5e31tq2AyKEtFJSCm3FRSwerwGQAYMRRrYOpJTSWhFCzKmyOaaUlpwhY07jrlNWuz2stT20EULyTeoTBk59/6yOh+M4GoFSCoxyXddytx2XGqMAdFmWJycnWgljjOQCu666I/gujXYD33Pc4Xh4dHxIEfEc1+KYlhiOKEYESynTInd8TzN56+j20tKS4KpRq2cknydT3/cnk5Hvh0qp6XRKiFNV1XQ0brVaeZUDAOcVItDrDcLQPToclrwsKsY5d7BjDGo2m8YgZBBnkhDS6/WGwz6ltKyKxaUFALBUnnq9KaXiTFaVjBt1jfBsmjhgAGkh2bvf855zFy+Mp5OtM2cODg6u3byW53ktrgeuZ/XWOZP1Op0mKWPsYPegZPza9dudVrPVXuif9IzRN25tU+r4YaQBG0z6w/HB0clJfxBF0c2bNzvd7uHhcZqmSimNIMuyZJ7a4ofWejKZHBwcNBoNULldty51Op1lSrHvu0LkZZU71Bv0TqqS8YphTEFpQogoJo7jYI0EU1orwGj39m53qau1LstcG4Uxzavc9pW6hCowCCEpuTVzCjzf9b0kSRgTFqaztltS6DRNR8OJbfuWUmZZZl9gsRFjTMWZ5MJy3g0oxQXn3PFiSnFVlULK4+NjrcCG637sF5lURjNWZmVFHZ+JCgBRhIVR9olACNmlLrUkhCDABwcHVVX5YUiU8r1gYWHJOGw6G4dh2KjV0qwYjAZSci8+7ZagURQdHx9bmLher1sq4oULFyylrmSngiB3umZ0r9fb3t5RSvm+v7m5WYvqSZLked6ot4q8sm0+ZVkWZQkAyjfGR2VVWb2FLMvyPLc0T0LIcNgnhLzzne+8/8EHPvOZz0yn0+Gwn6Xz6XQKAC71KKXWLBVhnKYpANTrdUJIFEX9Xr/ZaLmOVxRFlmWYAKZIa01ptLy8Wms2JpNRnpX1erNWa0S12nA49NyAElc7auf27SxJxuOh1npjY0srOD4+Zox5XqCUkgIAsOu6isk7Rx2pBJvP5xtnV4bD/lFvfzweRfVoqd2c3wtuPjo6DholdZ3JdMQ5bzWavuMOhr2sKBCFuNlYWVhwHOfaa1d3t3eUJHkvuf+7vvsvfv9fGB8cv35jH5cqm2XT0RRjwMi0Oq24VsuKVEp50j+e9sZ5nmdZdnbrTBRFQeCVpZZSAkYINNLIGIMAbL1OKQUagTa8Ytvb21tbW9aadjwe232fUuo5rmBcCIkx8TwfaaWV1EoprRwfx04ASis3zEQpbDcnQpQSgzBGABi09UgFMMZQ1wlQaJ+T0/CHUMdxMCCXUM9xCSEyrWyHhe31WAjrQLCRCoxBCCFCQSnPIFaqbPekcWbrf/nrf+d/+Lt/+/b29urZVeLha6++rpGOwijLMpdSByMKuLOy6Pox1ubkqNduBoJLyyw+rU9IRBFCQJQyVVX1er0syxgTgR/btlbP86IIe4Frtd6DIDBGIUqOT47viSIsdBfOnH/v8spilmXD4WA8mnImDw+OwyDe3dm35eVr166dO3euKApWKrqIKY2KovJ93/f9ne09qThoPRr3drZ3w8hbXOx6QW0yy1yPCqGEqJ544onHH3tbvz/45Cc/uXqm8UM/9EPLy0v/+v/5V0IwTFGv1/N9v9VqbWxsKYmyLFtY7Hz4wx/+dx/96OLiouN4t27dwgTsI/y5z30uzTPPjT7ykR9aXlr9+Cc+Phj0zp07Y5Pzg4ODrTMbncUFpXQyz47QibUeLoqq0Wg88cRbXn3lDcdxJqOJEML3wyRJRqNJlmWTyeRLxXMY493d3eF48pa3PFKvN+fzVAvpusTzgsDL+73hdDJvtVpGgZSyLCrOeS2OPc8riwJAU4Th1ORB26goikNKT70yut1uVRVpNotqPuccEwchYsEU2xtoe/ktNLC3txfXwmazedzvxY14Mh1nWTafT5vIvXr1ajKfri2vvOfn/5b63/+3p55+ziDdWl7QFIODdnZ22s0WBmT78YM4KKuqFjakNlXFV1fXwzCejsZVXgW+Sx2P+kQZZaMu66ecJMl8liqlGo1GrVYLAv/oKMUYz+dzKSXncj6fdzoLiosiKyhyEEJCVkopybXjOMvLq+ub66+98poxCoAYSzsx1BhNKQ18R2ttpU5sgxWltN1uTyaTsiztPSwuLjouAdCcV8ShTFSIYK1MGIW9wcnJ3vzlV165//77Xd+3mMh8PtVGLi8vb2ysDY5nWVYCIBuZIa2rqkiSpKpazU7bHgpFUQDkZ86dp66TJJ4lKbuuHwRelmXj8ZgxRh3i+/7S8oWjo6N+/2SWTPM8f+zxR1bXN5577jmESJZabxBScYbumN7EcRQEwcLCgjLy8HA/uHjRdbxOpzMaDUFXDRxFTf/Tf/AHlVRX1AMjfrJ/snOxe27jzMZLr1x75ZUbgV9P04Jz2D84adc6WVb2er3VlQ3qYB+c1dVlpUVRVFFY29ha3t3dnkwmwjhpmlRcNppRt9uezkf3P3j/+sZqkiThzF9ZW5rPk8PDQ6VUu9VdXl68Ndubz+d2v4pr0cLCwuuvv97pLCwtLT3xtnfUa63d3e3heCilcl333e9+90eH//769evnzl5aWFhI03RleW11ddUKULQb9ePDk7Jk1A+FuLckQn8w+D//4W9fOnelzNnf+B//u+7CQrNWn89ThHC9XgeAPCtv3theXV1LkkRrsOYknhsARkEQRFH0zDPPPPjgg+vrq7dv3z46OrLTSh3MeEloWJZlrVazP76UMs9zz3PiODYGJUkipVxY6DLGqooRctowixFt1Gp5nh8fH9tNHbRut9tSSss+OHPmzJkz5/b391944QXf99P5vNZowGlLIw7iiLqkVmsopQCw74eWh0UN8hzcbNYHo9Hk5JCoYmWxu7y6lDPOhXSC2EPBa7f3ixu3jZLz+XR5cckh6MyZzeeff34ynkmE8oJRxzOKI+S5vqekqTRXlRRlZQy8460PP3LlgmMUT8atwK95Tq6kocb1vLwsd3d3o4bnOY5tQ8GEGK2lUZhQaTSWmlIqJXdd37wJlKy4EVQDAKYOIvduoQWNjg72+wd7f/tn/1+PXzwn09l8mkkt6vXGf/fjP/bQlfs+9dyzz1+/xoWkUaQ9125u+/v7O7u7GONaPbIcoiRJEEIedYIgcMi9pD0AojjOSwoAnucVRWWDpfl83mw2Pd8vq9xSkzivPC/wsYewo5SJY4+LChAYpRkzWmuKSZ4Wx4cncS3snRyByt761rfWogBrFXmu0pJSTyqthFRKuR71HQ8BJcapQEsh3QAhZKqqwERTSgxWmEAtiAzo2WySFXMhi4uXzj333PPdznLoBdcGg1F/QClVyigh8zx3HCeuRc1mveKlUDBPJqPJcHGx2+l0PM9l43mWZXFcN1L5fjgYDPr94WwydV2vKAoh5G//9sfH45GF10ejUcm47/sIoUajZdckIWSxs2iMGY/HGxsbyGAGPPD80A9d15Wg0iRDCAVeyDmv1aIwDPM8t2mz9cUSQl27+kaj0TTGuIEHHN3RkvIsVG2VjhAGbdRsPrVvXFxcZJzP+gOlVJrktjAASsdxbBuTbUgGStvyiQ2THAcT4jiOI4RQSoNBBhtKKa+Y1hoZ82b0qD8bfzb+dIdSXy89kabw67/+zd/IOfziL8I/+SdfWaoYw333wZv0jfyXGJTCT/3U11zJ82/OPv5Wxgc/CB/+Whl/KeHnf/6b628AQBgEK6tLCKHJZHLahy4EQsjK7mMAS/8krsM5B3MqoGF5rDSgtVrNGgIrpVy3ZqMs22Gttc7zHAAwuMoIjDACYv3HjDEGtOu6AFoZaXchq+1ACJFaVUlum8QZK+fzNAiCer1uKdUW+aqqyjpKCSEoGMU5KGkpEQBgjNEatNZlyRhjDnUBsGCalTml1A0o0oRzrjwQQhVZKbi8wxZCSopTXq2Rs/lcSAlE1mo113XTdG5Bc4RQGMZaa86VldWyObvl8LoOVgoZZekXCCGEHVdrGQSBFWhuNBqU0iRJFhY6q6vLe/s7GNFarXZyPIzCOmjEKnHu/BkAc3CwRwgqikpJqNfbhIiZSByH2N/Z/l35Jkr6GN/FxG2Ab13jAGnQgABOoWdCSK1WK/NiPp2HtdoTTzyRpmm/3/c8bzQaPfPsF65fv14UJQBoreM4fPDB+9fW1gCjKApv3LgxmUyEEHdrD5YZantqT2/vTrZOCAmDGCPquMSKphJCrCyy/CprSgdTBcpa8J2WKIy2eaXWmvHSsg20ltPpdHvn1uLi4uraMkbUMuHm87njnNY5fNez/f4YY0QwKDjlG92RbSmKwnohWomM0A+s053WWhmNMcaUhGFoaTRaa4KwMaYqqnq9bk9n3/eF5TpKyTkvy9JSPm2lZGFhARnDjHKpk6dZp9OhmHDOMaLaymYqbe44Mbp3FK4tSEIp1mCk0Vqfxu3GoLvoM8ZYGo0RotQ1YBCcmldZ1M8uZov/4jumgsYYW6L2nXupsAFQx1HqFPGnDsYYhBIAoLVkrGQMoji0LYmu64JRZVFYz0k7j1aHpCzLehxVVZXNE89xMWBkjBISIYS0kVJijLFDMcbKKACYw1xDbrQZDsa9Xi8Iw7LKNZiiKABgVlXGoNlsFkW1LMvOnb3Qbrf7g6MsywzSHnHyPD84OBBa1OuxMcjzgiTJQOmyZAiw1poxUVb53u62Bd+JQ3Z2doLAs0TVIPBqtQbS5Oio7zo+ABCKuJSe7z35xBOXL1++tbP9qU//vuf7CwsLQqskSYIgUEpn2UwwZoxJ5tlgnABoJnSnveR5Tlnl81k+m6e1Wu3ChQt5ng8GAwCsdMWojKIaIWQynRvARXlUFEWv14vqtTqrW7Ci2WxyJq6+/sZkOrY1NsdxpOBSyqjdufLAZVZVWsv5fNrrDXzH73QWPM/rHfd9x8WYgjaagdU2UWAwxlILhPHJYR8IAGhj1ObWBqV0OOwHQdDv98NaHMc1rbVSKsuyc+fOeZ5nBSuqqsKYYkQxorauFkWRBUBsBetU+xRj25wKAN1ud3lx6ebNm4yxOI6p49Xrca1WczxnPp9Sx6l3mlVRIYTOnDt7dHjAWJnkpigKTGRZCMf3beZrTu0usTEGU4KlDmthmiVpmsb1ehAEUqrFxcULFy4qmpfD0hhVX63vHxzt7h6KUiBPuD71fIeeO3duNBqNx+MoijzPQwjleW6nv9frdTqder1ukWm7fUt5Wvz0fb8W1Tnn29vbDvU2Nja63a5SqigK1/GLqqyqCgBbCuFsOrXZqT2ibN0mCIJOp/OBD71/Mplcu3ZVCMGkqAW+EAJjWvDC98O4VmOMGSnzsvA8ZzQZGgW+7y8tLRZpMUnTVrfx2ONP9vv93f0dIQxCEEVRXuWz2aw/HGxsrq2urk5nszSbU0q5qBxMs7QYDq/6vi+5yJIyiqKyrLRS58+fRwht39h54juenE/KLz79gusEYBRgAACp+GQ2rXgmlCpYsVJfWVlemu/fY6cYjsf82t758+cbjcbKykoym/dPjmZJkrH88pUr3W53Mpk9+/QzDsL1uCnmkhJ4+8NPfPnzz6kZW693mZaDk56VCDjsn/ihd/3GG0EQ+K4npex2u77vM8Zef/31eiO29FIpZZ6nAIBONVaAEoIwZowxwX3ft7/8zs7OAw88YMVfSn4q/2onIssyXjHf9x1KudbU+qhyTT0auoHBSGhlNBjQiCBtjJYSEWKjDXJHC1+DsXVUu7eesoG0ph41RgnJCHIlk1opK9/BJTOKI+xhQEAIuA4UBWjDmdQYkHTK3aP2hc7/57/5+b/x9/5uJWQY+JyXjFedhUXH9zzsIm5AIyOVEXwwnsb1qNYIlTIIocFgJITWilCEpdKV4CeDk7LKENFKiTAMw1qAEB31RpPZWGvt+57jOEoLkxqMgbiElQebC/eY39WVNYpvb9/enc/njJf/8T/+NkKo1zvmUlEKV65cqdfrw+Hw2Wef/d7v/d5kWj399NMY0dXV1eFwaN2cp9OkrFLO+YXzZxqNqKyKySQBwM1mE1M6Ho2e/eLzjz/+1k6n8/a3v31jY4NS8tnPfjbLsvvvv6/ZbPIr/MaNG/VmAyGCEHr729/u+M5xr3flypWPfexjjUbr7W9/IsuT5780CcPw7PkzOzt7GNFbt27dvLEzT5Ots2c6C92Ntc1nnnlmMplNxrNuq+v74a1b/ZUV7vubtbgVBWGZVxQ7YRg5jnd7upPn+Wg4C33f2lakaV6v15955pk8Lxljr7766urqOiFk2Bu2223fw1XJpdSM5WXJ4jisydpoOkySZGFhIU3yPC0cQrTWyCChlQ1lptNpyQulGQAEQZSlhVRca53nJec8jut257EHfFVVy8vLd6gcwnGq+65ceuON1/v9k7LM/cCbz6evXX19R99A2vTHo098+pPTZP7+D34QB948S3vTsQ3oEVJlWQohLp47D9rs9Q/DMCSEuC7NS+Y7bjqb93o9SpBVjWdMKCWzLPM8b3FluSxzBKQsS0opIfYYAM650YgQZzabhWGYpjlnfYtNY4xX15aPDo5dx2+utAaDYZrOn3v+i6wSWmvA4DjEYKK1tnIirhtZVD1NU8/zgiAIgiZjzIb7WmtK6Ysvvhi4XrfbpZQipIBgIZnWutPptBbbBf/yZDLpj4aPPvroxezi7e0bo9EgCL2VlaWTk5PNtQvNZm1SZHeJIY7jLS0vbG/fHs+mvuPaOLXZbHLOqeu5rh9FtTiOa/XGcNA/OTlRmgVBsLy8fO7cGcch+/v7RSEbtXboRzdv7DSCdhw1R+N5p5N2u10vCI8O+8tL647vzbNsnmVKqTCO1laXm/WG1jqsxwKqk3E/jBw9HyxsLq2cW1MInb1ynkMRtWPskpKX83S2uLywtLhaj5uvvXorz0uHFFmWtVqtJJ0uLzZmaZbn02ar1ev1DNJ+4ADgigs2nCwudQFgY2u9ZBXGqD/qS+BFUXApZ/PJ/t7hLJlb872lpSXf9aIoCoKgKIqqql559WUAWF5e7vUGf/jZpwgh3aXOAw88OJ1OlpeXl1aXzp8/r7WcJdNz587dvn07DMOjo6Msy9Y3VpvNVp4whJAUArv37oHv9/saj3/qv/3x4WCklAFteke9oijazY4No4f9abvdPjo6sdljEARlwaxBilJqMBhQil2X2hJyp9Mpy7LeiJMksUQeALhL+vA8r9FoxHFs+REEO07g2MVvcWQbAgKA7/thGFLszNNEKeM4LijQQsdBfPHi+fPnz5+c9IMgYExYdkBZlsPhEGO8tLRkl+ji4qKWSgghpDFKSyGU1guLi+cunL+0sXG4ff3wVk8pFcS11a2Nk+u3nv3yS/NSTfNKAmAAAjBODhYbvta6KvN6HGZl4dXjnDEXI8AgGPf8UGuNtaokv7K29M4n3hoQcAkyXLaioB4GaVohH7muU1XF/tHhWW/NGN1ut636uc0INRijNSLEpm2EEK3uJZh1h36S5zkJsXqTJNNU7OD61Y988H2Pnj8zObyNZOW6mCDgiTaEvv9tj739Ox77/eef/Ye/8iuj2WxcFn4QT8ZjLhkgTR1q8zHbNKqUYgo4zxc6wT3/VpomUnMLTziOBzaLo7RWr6fZXGttlR+VMghIEIYVE77v+KGXpHOEjCY6yzKtUOCFSqlOq7G03F3otIts2qzVblx9o91sMsZXVtddN8zSHG2sN5vN0Wh0ctwDTTQ4KU8pdaWsEFKn6sNIAQBjjFUCMAHQs/mE8cL16EJ3aWFh8ebNm73exHdwFEX1et1zXKXUbDaLomiWzMMw9DwnSZJWs7O1ed7znevXr4/GKSGkHsVnz569dWv75s3bSqmHHnrLwsLCq6++6nkepeT8+fNbW1u2mIoMqtVq8/lM5RkhZJ4aC+/meb6wsOB53u2b25TSZr0BYJRSJS8ZrxDgvEiVNLaNnRBkjHZdKiVXynie1262hJBIGwCwNChjdFVVs9nMspulEkEQTCYTWx20j2RZlqwUjuNYIMZxHEON1UO0uWgcx0VROJgQQmwZlTEWBDiOY855mmZcMCUN0uZU8xNjQu+9Pv9s/Nn40x1RBGUJ/lfBI//wH0JVfUvvfeUVuHkTLl36yhWlwHXhTexR/rOPhx+G++//mivPPffNadrfdGxswN/9u19/8ZtKNt8dWmvP99M80WC8wGeMSSld10dIW8jYcF6yghBiiLHRGlizNUotyQYAMMZhGPq+WxQF3NHs0lrWapHnBeN+Ys8Uy4PmnGdlYYwyRiktgjBsNBs22izLcnl52fUdGypYgnMURfaNlp1nW9ZsXGGZoUqdAtZWpkBKeUfxEzjnWhmFjJRCS4MxripOXS/PCs6llogxwZkwBnmew5hASNouGStNYIypWEkcuLMnn8o/IoQsiEkIMQaEUK1Wi1I6nU6tPEJZllEUOYQihCxhNq9yx/EszlCJiiUl4yXCxoByfLK5cXZtbevlF145OhwIoayMVa0Wu65rvVJu3twueoXWmFKqhBoMjylxfT8UQt7LkuN0Zo1RQAg6JTVrAIMQQYiA0Tb9sbv9cDgUXIExjUbD8zwhFOf893//94+OjtIsqRhTSmJMms3mlStXzp8/b+O03e2dk5OToiiUAosyWwVwC9qUZXm389im3oIrhLTjOEHg5XleFCyqhwCAKHGB3CXk3tXNBHIa5DRrNY1AKYIxWPZ0t9u2NY+SVfaNK8srhJD5fG6MKarSKG1jTruK4A4k6nmeBmN5yo7jhH5gUS1yZ1iA3v6Atg/boml2dXmeRxCux3WLrtr1MBqPyrLkQoxGoyiKbJAch5EVFG02m0AJ5zzPi267s7y8OhgMmrUmAFhuvkanoskW1AYAoRWxMDFYiZFTCNjeg0ZAgCCKCBiwzGqMtdZcSWxOxc0xRuaOGY+dLPuNCCGO4whx7+65wA9m01JrDRhpITSCRqMBAEk2tb+AElIaA6CjOEDI0VprfSplBgBBELRaLaUUz0uHuqCMUhoQuMRFFLuEYiuy4Xle4ANAURSIIoc4CtxKVM1GzWCTZnOEUCOutTrtJEmEUmEYKnX6TZvNJiGk0WouLi8dHBzEcYSQ4VLNZtNWc+EUAnKVUooAtrH0eDz1fd8+s1LKIsvDOLIka0tSPHfuXC1u7h38Tre+eO7c+Weffb7X6zHO9/b2rt28kRV5t9vd2NwEgON+jxAHaWSVOauiJIS6ridBIYTSNA/jWuB5QqhKFFGt7gWB5wUl4wZhjGgQxrY8Nk8yK0UNAJ7nIUps5Ywx5rhUKsF4hQlyXdcKwSdJEtUjXlZKi+GoLxhvthrxODofbClpwjBuNzuCcVDASk4IUUT6nhNGEeecuI4GQwghDlHGuB7NslmSJEsrixcvX8jyJK+S9Y1V13XLspzNpN1mj46OECJVVSJEPM/zggBOtY8kIQQwopTaGgkACCHLsrKB4ake6XSSFbkF94IgmM/nJyfHjVY9igMpZVUVFecY45393SxJPM/BlCijlWB+4MdRbTpJlVK2ywQhS29AdwmCURQVLK/X6+vrG1HYSJJklB4uBJ0gCGazqYW/JTC77ehK0729vTNnzjSbzeFweHBwYOWuR6PJ9vZuo1HL81wI4RCaZKkVU3dd1+pJnRz1DvYOXdcl2MmzcjqdXrhwwbIO4zh2CtdyvG/cuMUYA23qjdgWEsuydByyurp86dKlja3NXv/4137t14ajvhcE9gk8d+Yspa7r+vMkmUwmWuvV9bXhcDgaDer1OpNMSgkGA8Cjjzz2xJOP2sT+i8+Fr7/+GrIC0Mb0jvOgDrVarSzzZDYBpfw40lprpRHCgR8ZC6wsLRkNZVFtbZ4Jg2hxYUkxff/997/0wlUjgAaUaiq1IAQd93oLqx2pBSJAHMoly/L0njtFFNWqqmq1WvP5XDAOoP0wNMZcunTpwQff0u/3n/mjZ452D7uttihkk4U/9zN/rePXX9y7dmXzQlVW27dvz9NZVXGphdZyniYAQDEJXd8oPZ6PLXDg+U6SJDs7Oxura65LyxLbZhCMkKXTu65rm7Psk28luWu12vr6OmMsGw6EUL5PLF/ybhFDK/CIp5BQQiBjtNCEYA+7rbCRy7LgTIECghHGgIyUkiBsQw0AIAhhSuzqRwgBaIIxKMUYk0KEUYwBFbMkDmKMMdeKScE596gLGIOQAEYTKlRFAk8ygZQWeZnePL54duOv/+TP/OL/9/9MOSMe8l23KnI/Duu12v0PXD7ZPwn8yBDHaI0JSfJMMk5dt9Vpj/pTJY0hBFGLw+u1jVUhqyRPorDmOGg2myKsCcGeTz3P9X0XIV+BshkpMvdujHr11deK6otxHGOKFhYWmov1er126dKl4XhgXbP29vaqqqJk+wd+4Ae6jyx9+ctf3tvb11onSSaEbQ4KzmxdaLebb3n4gSxLvvjsM1Kohx58pD/oDYbDoiiyLP/lX/5lQshP//RPC8E/8YlP3N6+KYRKkpmVQwGAPM0Iwv3x7Ob2zZWVpZWVlV6vZ1P02WyWpLPVtbVWpw0AtVqtUW9j5B4dnUync9f1y5Ldvn1bKRTH9cHJaGt9q1FvPXCfX6tHT779yatXXxsOh8aYo6MTydWwd1KvNSlxa7VaLYpsL1Kr1QjDkBIJgF3Xo65vzTkFl0VehkENACNErPBoVfEkSaTUnIvRaESxA4CMPhXtsnu9Oa1iSEwQAC4Llswz16PGSG2441GtQQotlS+EqNXqSuksyy1bze68N2/eHE0nrW4LYdjb26mqiji0vrrBK+HUg1yLf/H//CvG2Prm5pmLZ+NZ86XXXsdSRlHES04wjuMYA3anAwCstYkiv93qCsFms9nSYldKrqQIw6hWi602WafT0YB83+90OouLi9eu3QAwvu8DQBzXbS+b5wWtVueBB7rHR71eb9BsNo0BznkY+oyJk95RMs+U0rZsgAgy2hBC/NADbYRQVjHPxvEWyGOMOS6x/Q02mpFSgtLGcQGAMYYdqrVGhCjJer1e1Izb7XaSZNevX4+iKI7DyWTGGNdGHhwc2ICMYgLKYBdjjMsqq9c79Xp9MB2kc9ncalZVVZZlURRMSKlNVfJWu7G0tEIpPTw8RMj4vpsXqbWFFIJJAWtrG1VV5VnFKvGHf/C5lZWVtdXNfn86HE0ppVXFjo9Pmp12HMfT6XTY60spuu3OfnJQ5kU1z8OIjo9Gxyd7733vu8+c6Xrt8ODoZLe3t7DaHs2m/jQYzmaHB8daEQzUc9vNRlNJOLtx1gH6/PNfWF7sIGK0Sh3it5pxxeqc82Seb25tDkYT1wkwouPxBDBqNCINxKNuFDb2dg+EUDeu30IIr62tKaHjqLa/v9/tLjz00EMW2Y9q8WAwUMp85jOfKwvWXlh0HHLxwuUPfuj9H/3ov1VKjMfD27evnz17USruOv58PiUEzdJsOpmfObs5Go1sqyOh1Hry3GMgbRfz8vIyQqQW1hgTSZKNRiNqSQ4aCa5m08Ru12AwlyKf541Gw9bDCSF5nh8eHn7Xd31XEAR/9PTnHMfZ3Nwcj0dJkoRhyDm36F5ZlkpVYRhWVWGxLSFEv9/vdruNRsOK/9qWpqpKECKMMZc6ymjbfrS2tvbYY49tb9964YUXtzY2N9Y2Fxd5URS7u7vj6dT3/TiOoygsyyqOw6LIBJOOQ3BAQRunHnkErW9sTdNsr9dPMpZwhSvpN5rI8V546bX9Ue74niKuR6iRAmnpYFNVHAN673e9m3OGKfWD6KXXXh9MZshxs7wq8pRzLvMkRvh97/3O5cUFirXklZGKEmjU46N5jgHu1v+zrKAUOY5voT2wLY62zQYMV9Jmia537wxSgxaCYwBRVZZX8p+O3v7BguN94InvGO7vIJEiw5TGrucjYxxCyvFYUHjH/Zf9n/mr//hXfnVvlHNcgOvpO36hBkAb4xAihIjDGihtBevv+bcYY1IzwEhwzgR3HT/L81ardenSpWvXrx4dHbXbLYwxBl8IyXmKCERxU4iUOkIbiQDWt5a0ILNJ8h1ve/ydT35HXsxXlxYwMr/1W791fHQQRKEUOjh3YWlx6VCfPP744ycnJ9euXZNSgjaCaYyxlJq4FjklGENZlX4U2mit3W1JybXhjFWhH1VMXLt2Yz5LCEZG48CPwRCDsJQiDGNjkBIqTfKcwGyehZG/t3dYlsUsTTrtLi+5Umo+T61cjG0jsLr5GGPOWVmWe3s7x70Tg3Sz2Qaso1qYJEnJ2Pr6qrXe1Vqvra3xijFWUlrr9XqnPcgYMMaUONImRZU0xhCKAMCWipUyUkrJhZTKSGWwPb9OF4mlFlLntCUlz3OtdRAEJyczpYSU0qEeJdRm/nEcG2NG/YHNsS0igAk4jhO4noUbsmxOKbUqlrZZXkmDDUiubI7xn6rAhyE8/jhoDfv7cHAAAIAxvOMd8N73gufBcAhCQK0GQQCzGfzWb8HOvRTDvq3RbMKHPgTnz0MYwvExIAQrK1CWcOsWfOpTMJt9q5+zsQEbG0ApfOlLXyOzcOYMfOQj0GxCWUKSAKWwsAD9Pnz8498IIlxchB/8QVhbA4S+clcIwdER/Pqvf3NHuG8w2m34qZ+C9XVwnFMk8Y/3fQEAY3j0USAElIIXX4S7D/c9p8z3YT7/05myP8Y4exZara/8czaD11//Nt7+mc98DdzcbEKt9v8fMQ1K4Wd+5muu5Dn8y3/5J/3YP7Zk890R1eIqtbWlmU3mOZdWGg4QkoprAKG41pr6FGNsAMIgOHXywKdeahbPugPwuQghizxamidYLXiEpFQAYJXZLM+OcYPJqWqzzeDiOHZ9hzFmjFFKWOOHuyAvpa4Qp0Cz3dCMMQAIAFNqOxENxrgsSym1lForYwzinCODAZDRQInDSm7bnpgRSmpCHKWUlJpiYozRSNtEEiFEKKaUIgxJksCdIh8CjDGqKm6McV1qT3YL01gAi3OBMdHaCMGV0YTwoijyPCPEAdA25smyjFIsJS8K7vt+ks5OvtS/dPHK2trGU089LbjMssxxTn3bgiBoteqeF8zn8/k8ectDj+3t7PZO+o5rEdJ7SxtZup7WEp9WCU/VFeCOVaBNgrTWUtivDFYOIgzDw8PDPM+jKIri8PD4OI7jbnfh7NmzlvkohHjllVeeffaLBoFSBiFsv7g1UrL1AM75aURxh/d9F8m1yryEgFLK8dywFt1tpszzXIs7xEZCyKltIG7EEaV0PBsjjK2YIUKo3W4RQktWnZycFHlVlmWe55xLwIggTAjJsswofVfvghCCKYmCIArCoigch6wsL0kpfOpaZNayEm0sFIdBEIV3sdQ7whQWcyDpPLHaKXmeZ0UuhHCtgrMxlvhZ5gVoc+7cucXlZX6stNZa6iAIut3uqD847UZCFCFkW/pc13Xv6FFEfsAkY4xpMNih1hFRcmFXuzFIIev3SE7bAsAooymcimtxzgnBCGGr5nH32bxLcqdvUi1mjAklHUIRwYxxBWZxcdEL3Nu3irv3qZSw0woASgnLxLI2mLVazUqrY41833cQBW20kJQQz/NBGy2V5/iBFzjEEUqykjcajciNZkXBKz6bzQnB1HWlFrZhgjE2mc1WV1ettLEQ4uobr7Vb3XorsjR2QpCUkhDHGCjLynEc65cYx7FVqrRZQ1mecvOVkt1ud21jvV6Pb9y40e/3wzC+evXqhfOXL1y4EEfN2zvbXIggDIUQUyu6i1Acx7du3ZpOp4gSABAVGw6dKIoE567rci7TgiOEavU6xpRVgjFOqRv4EAbh/sGR1poSK0av/chlZWWB7zzPV1dXe71es9lcX1+3WY/12LA3bLe+8+fP7+5uT6dTl9CyLF9++eX7Ll0mREvJu61uFMXTybyqCmOMVtrznark2ogwDhkrDEZaaaWUF/gL7Q71KCGIOiauR41mpJQUogoCdzQaWEZ/muaEoqIoyrJEhLqum6Zpu90mjjubzQihCGEAlGWZFZ+wFaYwciw7zfN9Y0yeF7PZnFIqqaw441NBKU2zFIjqLizoKldGjiZDQgjnsVaq5DlByHGIVujMmTNGwsnxEGNMMdH6FGhGAEBwxdlkOpWq8kPfbsVVVY1GI0nkZDILgnKu5kLqMAyxQoxm1pfrlAZ14cKFdrttk1WMT40R19c3Z7OZldohhKRpCtoQjCVXRoPFvJQ0Vm3H87y9vT2r8Fiv15ngNny3CDUyEAQeQsh13Waz3u12pZRZkV2/fu3111/v9Xqtbns+ny8trzsat9tdx3E63cX5fD4YjNrdztbWFhAQWmCMV9rt3nFfMBlHtWazefXq1Zs3b3a67YWFrud5/f50b2/v7e98cjIZRXHg++50OnUc6gdOFHjGmPms8P2AlQXG1Bgznczq9Waz2S5L5rrV2tpau9F94YUvjwdJ1Ag543cPhmarSQipNVpOQI9O9oMgWFxeOrxXvMVYtd/bOa0GKK21brUanuf5Xrizs/fGG2/kaYEBO+Akw/mPfuj7H9y8/MoLL9bcGBs0HE2maVLxSoOuOPMC3xLJ4zCiCGcVS5KZlNJzaVVJhNBoNNJari4tW3EuAKCOw9mpnq/r+JWqbBeAtSc+ODhYWFiIosidUKuSZA+7OK5zzouiAKSDOGaVNlgTgoXm2mgExiee7/uR5EmRVkoQjAATqSUBJE9br7QxhgLoO2qXLnUIQhXjruNZFmrg+VXBLl+83/d9UQHnPElmC7U6CAEYKwmaIqUIAEKO0dIQg0iphjf237J+6bFLD/7hs081FhuNuMkYy6qiqiqssRBVo1YPo6jZahyd9IQyiBINYE9ijF0puTGm3qiFNX84GRhg1KV5NROpAkOZYsQzZVUQF2lEoigKQ9vuXb1ZYm+0YRmPYnX27MUr919eX1+/ffvWfD6/dOHieDq5fv36aDSLY3d7e/upp55677s/sL6+tv3Gfu9o4AZuHEetVseW2QFwMs/7gwEY3Op007yIa3VA+MyZs2fPnr169eru7u6zz37RcZx2u834uhWiYUwwNomiaDqd53kpDHS73be97W3T2bjXP15cXLrvvvuyLCuqXEoxGg0YY+PxVIqdxx/7jj//5//87/zeJ69evfrKi69bEkQ9rO9s72EgUiqtcTIvXn/5jZ3dXetmebBzmJeMEKfd7naa5vDwMPTCwI88p5BcLXQWtdb7B0dRFBuNiqIAgzzPcxyPUlqr1Sh1oyC0h5MXuBjDwsJCnmVGo3aziYDs7u5qbZBRnEtlZOi61gvFGC2kJMS2gxmMMeeyLGZKGUR1vV63AaXVS4nj2CLO87ntVChH42G321ZKGaMkgVq3xQ52vXp85bGH+r3htZs3lYOtnpHr+qHvgzQFK/f29ih1arXG7u6eTfXzIp1MJs16PU1n/d5xFAVF4fu+r40MgpAxPhyPPQeDwUVR2ODG3omNJMqClWWZJjkyOArDKAgF434YJEmqpHQcR3CFMbYmHlXFEQZCHWmUkNKhFCHj+a5VN7bWvVahKc3mVmDUtmNjo63FbVmWi4sb1POH4wFgTAhRRo9Go7ws/Ci0POvDw8MzZ874Pr1563oUBZubm7qCsiyBAEKgtcIOwg7VoJaWFlyX1mq1Ki9sGXx1dTUrSozx4sJyrVbrnRwJLv3As/LoFFEKjlRCMV0Lmj4Vb7xxs6pYt9Xa3t5/4IEHLl680uv1RqPBgw88Ugk+Hk1XV9YvXbp06/aN2zdubm2dcV33xS+/MCwOzi1uUdfHaXh1Z5vUY7cRshOZsCxk8e5+EdWKbrfrkAAwAUVm85QiZ2VpPcuKfr/fqkdLy63RsOdQtbzc9Fwo8qSsRBTXKy7X17aKouJctJqdSxcvjyej0Wj2l//yX+r3TygJJuMBKFSvNfO0OLN17u1PPPHaa69df32n3+8XZQZIX754aX19c/v2zpe+9FKr1XrwwQd7vV6W5J/5zGeOjo4u33d+OhrHtVApQQlk+SwInfWN1TjJLE11a2vj+KBniwQI3TvKxIgYgx584KHpdH6we+A2/WazPRlNLAEfALRAgo/gjiwA51woubi4yDm3DXSe59y4cePKlSvNZvPw8HB1dXVhYWF3d1dKubq6ura2tre3FwRhrVabz9L9/f3j42PXdWu1yH5gxZgNFq0Bi33ELBtaa0jTPAzDB+9/aG9vz/MCxoTk6urVq9euXq/Var7vU9exqQKllFC0u7ddlXxpeTGZz4qioA7mlQ59f6nbmg6Hr7z2qmScaACtPYDNxdobN25Pn/9yfziMAsIJjcKISqMlx1r4LgFWbG5sPPTA/TeuvTEcj5QQrVqY56UA5FI6HU+NVgjM+97zne96x5MRNTydcq2TNEXGxFFIjBK8UkpTSrMsy9Jao1V3KA2DQHBue0itmYsRhlIqjQYFGN97ppQSRZE5lCqtzZsUD2azyQfe9ojOi3Q6cohEjtaAItdxiS+UqThLirxCuuO4f/kHPvIrv/nbMyENwZ7nIoJt75G8Q/+zkRgYM5lMmuG9/hhClopUVZU97pVSq6urVqxc61P9n9l85jhekiRnzmxQR1e8bHdrzWb91s2dc+fOntm49Lk//Dxj4oUXXmDlrLi8dfHsRYxMq9V46KGH5mnm++71G2/0B6PJZMQYK8vccT1WScd1sqyyAQ+ilFBwXKw05bxyXZ9SKgSrqsp6quQZ6/V6QkijtYPdBx988JTVJZSSXGvd6XQRgpOTkyAIMKb93rjd6gZRnTg+AWR7qqwf5sLCEgCMxyPX9Riroig6c+aMULzf71+4cG59fb3f7wdBUFa5F1LLpciKolaPlhZXpOSvXX3dZlOWVNFoNApeAYBVewMADZozpjQGANfzuu3uZDJJksQocDB1XRc7FABsR1ccxxYRttqR9qLScmdnx1oPOY6HzenrCSGz2YwxhgGsTKo9QaTidhIXnUVDFMY0z0spdZblZVmGQWw7cdE31ND4uZ+DxUX4G38DAGBzE/7r/xqeeAJara8X3lAK3vc++PVfh//wH/6Yvm2UwjveAT/7s7CyAkHw9Z9flvD93w//9J/CF77wLfFYgwD+1/8VhsOveLjFMfzgD8KP/Ai025bH+TU3/8wz94Cb63V4/HH40Ifg/vshju9xV0UBf+7PwdWr8KlPwQsvfEsqB//p993cBMcBAHjrV/lJf7vfFwC0hieegB/5EfjoR+GFF04v/medsj/2uHz5a/6ZJDAYfBtvf/XVr/nnwgKsr0O//6dwY9/uuHIFHn74a668+CLcvPkn/dg/tmTz3SGFsuZJtknU3BHhdRxHSHlalKJISimk0Fo7ngMA9XotSYwy+jRC0NKCWRagsV3VFlVJkkSIU7BPCg1IU0oxBs6llNweOpbgZQ+L6Wzm+Q7nvCxzC31aWNmiG1YVFCE0nY7hVDRDIwCljONg66mGEAHAQeAFftjr9Yw5FSlSSrkuMcYoqRHCCBEppZIaNPIcV2sglNhdkRAEgBG2KLlRQlk4RksFAJIrhE/BRwnIdQlBdDyc2Jo9Mth1qRTAWXnaI5iUGAMCykvmBp6UrCgKoUUURdjBLlCCMKW4Ytnu3u33v+9Dnud87Dd+dzDqzWZjz/O4qGazmZDl5fvOz+fRyy+PPR8//NiD+suqqniz3vCd+j1n1vVcJijn0toU3f25AMCgrxAGwWBKiRACMJ7NZpTS8Xi8t7dnjZf2D/Zsw/Rjjz3e7XaNMdvb271e74UXXpBSCmV9vU6rBXfbsyzibC/CHWlXMNgYk2WZnVMlgWitlLJ+aIuLi41GQ0pZilNzPKRPl01VVYQQAIOMIdixPet24fm+b1dvkiSUUkIcgK9sgsaYijNKqUcwY8x1KaXYGCUUr9UixliSJM1mE/NT0aparWYBjVqj7vu+BkMplVozxgTnjLHT41Wo+XzOK1aWZVVV9WZDa52mKXGojV0BQAgxnc+Gw+Hq6upCp1sVpcRwl8cjpQzDMMsyDTjyIoQQYGQXOcaY8VIDEELgDsqhjLa4uWXy3SkknH5N+2vfbVey/xchc6cFyk66tkaMd5oT7jGyLKWUKq01l5RSJoXWktIwCIIsSzF27wLWtrNWa3lX9OCuxk5Zlo6iSmjBeej5BGPFhdRAEKaUlnlealkYowzSUjmEFkUxHk8pxVLqWq0GBJVJNR5NHZ+6rlurndJPwzDGGNrt9tbWxjyd9ft913WFUMRxGWMIEaWM6xKMKSEOxnQymWCHWvDd5q3GmKKQDz/88PLqymuvvWYbvCilcVRTSqVpenjQG48n9VqzErweR3EcK6NFnh0d94qiMAaM1NhAKVhZslqtVqvV7GJuNpuu6ybpTHEVRUEURb1ej1KCMVVK2CzGYORH4fLyMiEkT9Jz585lWWYpC5YCbNs+lFLtdns4HDJWtlotY9RkMup0FhAi6Wwax3EURXt7OysrK0qposgWFxcZY3laBKHLCkYxeeCBRyfj3snJyff8uQ9mWTYcjW7f3qk146jhNxqNuB5d8s4BUicnR5iYdid2feORxsHBge8HQjCMyWDY0woqnmBMHcepqiog1LJygyAwCKzcOTrtmDBaCCvSIoQA1yWUcs7H44lVrbRhre+7xpiyyoUQRZUabDzPUUb6gUeINx6OZrNJo9HxXSdjVVVVcWhdIiUA1koro40xBGNKaau9sLK+fHh4mGW311a3ms3mJC+m0+lkKBqbrTQrjCIYY4dQAIyA0DAMKaWz2Yxzfu7cucPD436/32q1oihK05RSqjUGwLavRwjheYF9iiyXZDKeEUIWFxdtemN1G+xU1Wq11c1Nh1ArPzSfpXEtXFxcXFjoJEmSZEle5vP5fHd3t9asNRo133eDwAMBX3zuC/N56rnB0tKKF/gY492DfYRgYaEzGAyKogjDcJSNc51/+tOflqCDAPu+X7IqTbXjAULESHXffff1+sdlXsVxLAQn9BSWakQLs9ms1IXjYK0155Kz0+1mMpkwdmMynFS5FBUyBih1QQOlFFEShuFkMllav88PnCCIjDG7O7v33CkIoVubZ6eTOSFkaXERG02IYwzK89IUXJSyGbf4pCpG2UNX7v/+9373zZdeLyfZ5voGRnSazEtWaWOE1BhRjHHghZ4XIIRsixMCoITkVWXVuwG03dwjP7CxhZTS8zzL5nVdiglobbSRCBsbWFy9evWhhx5qtVong77tcLFprYMJRZgrKYVwPU9IuMsixwgwQqCQ59d815tlKdPcaFAaGQzYIAIYIwTIgDYIgGBCKTVSOZ5LAgJKBq4H2pRFUavVmrW64IoQVynFq8rkOXIcMIa4jqiEIdhgpLVBRgOgkHij0Ylk5fsf/84vPP8FZXTOKiWkG7rT6XjQ6zeC2vbOTa0MDYLu8koraHPGkmmeJgmXApTx/VBKjikqed7vT89caNebNSv0k2UlcUxZMmXADbDQFVeYKlQWbJ7OQCerrXvMrxfQWsff2FiLQv/3fu/3JpMxzw32oNtteYEbx3GSJIzx+++/opS6fv2NRqPxIz/+EaX0s198viyZNYm+evVaWebPP/98XPPX1lYH/aHneWVZ9no9jPH58+c/8IEPXLv2xtNPP724uBjXwhZrdbvd5eXlwWBgqevNZnN3d7ff712+fBEh9MILLwCAkOzk5MTznW63SwjGRE8mk6KoGJJxHD/11FMY6F//b/+Hp5566unPPcWAzieJQ+j+3lE9irM8kVIe7h06jhNHAcVe4IUaKDYgKgaAGRPD/sjznSzLRqP5pUsaAHjFBOOY0jRNZ7MMDBJCzaeJEIogkiW2goU4rxBCBhRCiGBnPJpSSo0yxgqzIIQR1lqXJQ8CVwjJuQgCYgwGANto5vi0qrjt0rJs/VarhTGez+dCCADd7jS54kmSRHE4myVJMvc8b//wUAilMZpVeej5q2fXKyPjRr3X60nGc6EpICl1VVUYkUYQtlrtG7duE0LW1tZu3ryplERYIc0Xl5qNRj1J0s2t9d29gzzPbbhQVZXVCjg56dsAhXM+n8+XlxfjKKrFcZqmRVFMxjMpZRAEVoapzEvf9ztdWyhWnU53+9ZtAAwaPOpXrCwL41IHlHYdfCplQCnnvFmPy7JkRYm0AaUb9ZpNSCyHJY7jsBZTSrlWAEApLYVVMEdx3JjNZs1mY31jzfPIeNhfW1t57OFHjg4GUnFKbZOaQhpFUVhV5Wg0yMuiKDItNICxUku9wZAV0nP8G9evHx4euq7vYCKZwIZypjnTQhhK/ZOTYaPR6DQWM5JFtSZgZz7LJvGcEo8Sj2C3Xg+Pjw+FUBhjo5HR6PqNW1fuu/TgQ2+ZsWkuy8DxvajuxfXrt3Ymk0mt1Vzf2JpnaZYCZ4SY0Ag6Gc8vnLmSU1CVrtfrvGJK8ChuR6EnmpEUeV7M0zRLppPOwurS6mqZsSyrzmxsrq4uf+apz5U5j8K6R8KP/pvfmM/n3W6XgCcFXugsz+fzyXDy8kuvOo5z7vyZD3/4ezDGX/jCF86dOzdPs5s3bhFCms1276RPqVMU1WgyrNfr3e5iWZZbW5u+HyglBsMT1yPj8YBSDyFzeLhPwARBgAFJrd9MfkEKWRTs5OQEY3pwcFQUVbvZNsY41LMijBR7nNvM07H9qsbAmTPnJpPRjRs3fN/PssIYMxwOP/WpT21ubq4sryXpLAgCY5qc8+n0tBev1WppBa7rFkUlpWSMraysVFU1GFa2tc3zfK217weEkCRJ8ryw6W4Yhp1Ox3Xdo6OjT3/q9xcWFp588l3Hx8fz+fzq1Zt+SM+ePev51oimSJJyZXW5Ftak5K7rCMazcfrWRx5O5tOTk4GDke96oA2WErQaTNKb2wdnzmwuLq2cTBPXi43jUWYcEipeeAiYZMOT46O9XYoBKV7m0qFkdWXhZDQdTXOjBGNi0XfPntmazCcn6dTHUKbpdJ4x4gau4zoEO0SDMUZjTLlU1viiVqsppZIkkcYg65iDQCklQRHPf7Oio9JaaSYFq4U1gu8tjSKRWWl3yiwtOaswRwY0BgEuRaCUyfOcsVJqyRHuBtHKwkLWHzAtAQzn0lrsWtJrVZZlwRxKCSHUu7dONMZYG7Cnv9aacxGGoed512+8MZ/PPc/FGM/nU4TQ+973ntlslheJG0DFp56LsyzJsgwh/Ma1m/Mk/zt/++/87u/8h73dUbfdsrbjH/6+7/nA+z/0b3/to7VGCwBu3Lzpec7y8rKUfDKZvfc9H3jm81+qeEmJRwALxmv1eqfb2N6eA0bGGEvODcOQUsxFdXBwaIypqqqcijNXzlJKe71eWZZxHAd+ZO9/PB4LIYkjGBPd7uL585f3DveOjk7ObKxbwNf3Q8dxrD6V1ZkxxszTWX/Yi+Pw/Pmz9UY8HA4NkQVPe4PeY489Np3Od3d3l5aWLly+eHR4vLN7u9NpFUUl5kmRiw9997s8z3v2+edqtVocx2VeWKTGcpKkVq7r1ps1xpgxCBmMNGitpdFlWVqVSRsSA0Cz0ZjOZndVxQghlh2DECLg2NZvWy7VWiOErRilhYesoihCaD6fx3GMKF5fX79581ae55S4WZYR4hBARmmL5ljjezvCEH74h+EnfxKiCADgn/wTmEyg3QZK77lkgBBYXISf+Rn4yZ+EX/1V+MQnYDyGN1nvXz/qdbhy5RRie7OcOQjg/Hn4hV+AoyP4B/8AXn/9TbHdrS34iZ+A7/5uoBSiCH7rt+A3fgOkhL/4F8F1v54xevfmf+mX4J/9M3jqqVMSt+/D//g/wgc/+E3uPAwhDGFxEd7zHgCA3/99+Pt//5uLQtjv+zf/Jqyvf0vf95d+Ca5e/UZYNsbwtrfBX/trsLEBQQD/1X8F73wn/MZvwNvfDu985zefsp/4CfjVX4Vf+7X/QgrIvv/1cPPx8beqpGHH4SEMh7DwVfJ0589/BWH/Lzl+8ie//sq/+ld/0s/8oR/6eslmAEAI/vpfh//r//pWqfRFUViIbTKZcG5ldvGpox3nmEDFOSJAHazAYIqT0XyKJs12y+YOSgl7uNtPU0pVRQkAllkJAFEUyao6ZUMjIJjccWkT1MGIIKUUxuB5nuM42Db9II0QarfbeZ5bUsVduQOjNAYkhQSNWMk9z8NAtNZagMQSISSV8n3foS5G2PZGW1wbY+y6GAAMnCoMMCYoJphSVgm7ZzqOawwxXGGMCMUYY0IsF/i0l9EYZG9Ga620JtSCzpa+TSi1NXJZFRVgZD3r8nwklHAcx/ddjCgoYwwqS6aUGY1GnudEcdg7Omk320qJo+O93/yP//7s5tkLl1ZOTnrztIq1UEqNRoN6vSZVqXTR6YYHhzvLy8urawsApNNeyGZNYPeYWdd1gyAihPOq1HcEi8GKbKBT8WJLQDl9g9ZbW1vNZvPlZz+vtZ5MJoyxKIoWl5cvX768ubk5Hk+uXr36yiuvDIfDqqqs4Ocp/RAhdCp8Ku96jFvqqyXtYowJxlZe2fO8suJR7Ef1muO5zU7LMhtsX44FSYWQ+k4o4vi+1toYjYCA1lLKJBFKCa11kiQGQaPeuvLIlari169ftxi3Bb9c1xWCGaNOF4DvWfq21lrwCiFUVaaq3KbbrNVqnufled5oNBzHcTzX87ySVUmSKGN6vZ6W0lp5ZVnmEAcAeMWsFBWvKmU0nBqHnHrwOoRmWXb16tVms3nx4kVjzHA4AgBL23ccaov6tsCslCKYCiEwBs9znMrJisJ1XWNASCHlqTwuAABgdEptRhgjrbWQ0nWQRZy11vYebGFG39EnuctqtwVml967bEwoxQrbpY4xBEEwHI/ysmDsFEOn1PoEwh3QXNu/aH/zU65rGDoKr66veK47n85m44nnUkyQkpIg5IWeVVaRUvoBBawcgpaXlwHgzLktIVhv2McYdzodwAZRNNzfj6Iorte4FKPJOI7jwagvhLD5gjImIiTPc62AElcKHfjRZDIJgiCKaq5LC98fDoeLiwuWih5F0c7e7tPPfP4rrRJKCa0+89Tn0qQkxHEdT+jTAokxZmvzbBzVh+PR3UZ8yzlDCGFMBVeBH3Xa3SCKPc97+unb7UbTdamthTBW3akKnDaPWqSFMYYMZFk2n88Hg4EFatPZ3Pd9pBXSqlWvndvaRAjduHEjTVMjFdOMEJLn5aOPPHLfffd9/Lf+4+7uLuece97hyWHgBuPpiCB66dIlzwseeuih/UNnlvfPX9pYXlvd39+/uXfdC5FGbDQ9GYxVkiRKs7NnNx559GHOi8GwR6F5dHxguV8bG2uPPPLIeDx97fU3yrK02UqeZ9YoyBo8Whq7LS+d6oMDLorC6vhzzvOiwITYJXHu3Ln5fKoNJw4mBDNpGs06Ibl91mqNuNNpC8GllEvdlcXFLsDEIfS0jnhKk0LI2lxJUavVV1a6s9k0TVPP85MkcV2/qrjvheBIy66oOCeEKEQAwChN3/a2t6VpOp1OtdbGnIq/uK7barX29vbq9bolDJYlm8/ThYUFO821Ws0YMx5NOedra2t3Aeu7/l02dJ6MxnaDK8uyLMvllUUr5VyyU/7UdDpeWVnaOnd2a2uLc97r9dJJ0u12e73UoZpLtrLQXllfk5ILwabzaafbHg3HvuN7gSuYtH4+nOsw8t7znicnk8nNW7ceeOBBQhxCHClAcN6JWqysZpOkKtiZM2fmRTWbzSh1XEKHk2Ec12u12qVLl65evToYDJIkQRoRQrDnyIphjAWXBJDvu/P5PDL+eDBkqvI8bzSaTOTePUuZ58+dL8QgzzLBhIOp1ooiCoDDoBaGYX/vpExzH7sg+Ie+8wPFODu8dRDHcave6J/0prOZRmCl8cui7Ha7tjjAuayqohLcxcSizEoJKe+I4BSF3XfuqGVBs9GoSu57oT17bBOuUkopMRj0BoOl7tJiWuRWo5MAkozrO309QghMCMFOZTjCyKGeUsJ2Q1FjfM9tx82kyjJWYkNAKjBgtALb5EIwAUQxUUxGUeRQgohRQkquiEMmk+nDZx4M45rgHCEECruISMYpAMLYWPNBMLa2iMAARqBN3Y32jw4fvnTx/rOXXzh6w8SuGxGEUBB4cT2q1RvNdqt/Mjg8Otk6f+b+tzz46iuvnxwPS84uX75MkLN9excRKMvigcsXqC8efMtlLljFxdmzW7dubadJeXHxLEJo0BsMBuMw9AlBrkcxAYfeO7FvtZqR7O7v7738pavggOPB9/7ABy2Z+okn3trtdq9ee+Pf/bt/57p+lhW/8zu/o7X+6Z/+q+997/viOP73H/2Nsszr9Xqz2VRKIWTA4DTNtIajw5PJdJTP9KNP3Nfv93/zN39zaWlxaWmpKLPBzZ4VGO33+wBg01Hb8hMEwXPPfXF758bGxkaSJNafdGNzbe9gN46jZqsxmUyqqnr4LY/t7Oxsb++e9CfD4fjPffBD+9uH16/eqjWCMKgho2azREtl4LSwXKvFjksAMAEURmEc13dub58WRQuGDAYNN65dX1hadBynVqvVanXB+NLiIkLedDqfTaYANM8zqx+klLS8S3Mq+iOQRsaA1ArZ3ipAggvHdc6dP2OM3tvbA9BVXoShL7VEGGNMhdSO42ZpYbN6hMBGRVmWAsDS0kJcC6WRw2E/zwrGqyRJ7rvvPs8L9g8OGGNxXBvNpsPJuNluh3G0srh0dn2z1eq8/OJLw+HYDwIAJIxileg0OxcvXE6SpNc7WVhsIWT6/eHjb71/Mpn4AdFaAGjXIY7jONgpq7wsS2OQLTLbB5BikiW5Q+l8Po+i6Ml3vOvFF1985ZVXut3u2tpat9t97bXXEUJKCdejrVbLcZzV9VVe8ZOTYVUxasAhLmMVjeK7diu2VS9JEivcrJTSWlZV1W63jTFlVTRbDeoQq9XOi5xSCqCbzSYb9u5IPztbWxtZlh0dTQFwUVQf+9jH8pRLaYwxlOI8LzXWURwAKMenIfbPbJxN07TKK9f1rctomU339/cPD44FY6JipB7PkwQhVGTFsD9yHKfRaIhKH+71EELYuJNx4jjO8dGgLBnGOMuSrKwoxUHoHx0dHRwcYAxpmr744osH+/sAYLzK81rzeXJweFJWvNNtNdud4XB448at2TRxMYgCG+lFfgua7sl+b2PrQv+kN+r3anHsB15Z5mVZEgRSSo+SQurZfLKwtHrx/IWT/oC4zn333TcajXjJ3/4d77x58+bywjpCaLHDlJaBV+9220rCQmtRSNbr9Wu1uNno7OzsaK3zPB+Px6PJ9Pi4N5uy977nslL6C88+u7a+qoQsi0JrzZgYDod5XpzZOhd4blUV2sj19bPD4XAw6DVrdcYrhBD6qpzwP0lLHJXC4eHhYw8/9thjj+ztHRweHlZVRbCzubGRZdloOLPZ4132E2Ns+9Zt22Bko1jHsbZpgjH2pS99aTqd/uUf+0s3b97c29vd29uTUrbbnZdeeilLC8u8QAgpZY6Pj21tHwCs5p3lWFlpPJvttNsdrfVLL73cbDYfe+zx3/u9T964cTOO43Pnzu/v75dlRV3KOeeKe55DHGqQdhwCBOI47HY69VrzD4dPz5Mp1iZwnUatThBVXDgUq7KihitlHnzwLXkprm2fdJZrhFIHjBQMtFGSgRRGyul4JHhFMDDOwrjmIOKnmWA5AsUlX9vcYFX2yisv90+Oksm4VWt0OguNxSVKXQcTRIzSRlojCqG5MFWRhmHYaDTKsuScA4K7xBaCkbIH272GlNIYhTVCCL0ZQKcRuK6TZvOiLA3hRhjkuGWVsVyUJZNGEqQoJkpD5fCtlbX90ajUEiFk+4K11pRQjLHr+DiiVVkCwJssHNBaF2Vh00shBKHY9/29vT3bFYgxCoKgVtvsdDpZkdy6fb3drodRXFXl8XH+F37oLwXe6x/+nr+wuLB16/qeF9S73eVrb7z41FNPf++f+/Dyytrq6upnn/rc4eHhI4vLSZZ2Oh3q4LzKo0Z45f7Lj7/1kaef/iJITjxPS+24KAy8Vru+kLX3DoYIIal4PW4YY4oio8RVSgnBq1K85W0PZkV+8+ZNu5LtoaaNZEzbPKGaVcvLywsLCzs7O7e2t9c3Vu+UWE7DHqUMxcQKAgK2jt58Mqn8wAWkhsNBa6HWaS/MZpN3vevJj//u7xwdHdTrsdYyLzJMaRzHQgjHc/1IYoxPTk5sjmoNJIuiiKIojmPAyBZdDg4OGrUmpa4SejIch0FM8KnDOyWuVhoBQgiNR1NjDKUugATQ3W73/PnzSqlr165pWdlnyuY/lFLFTy007jAHjd3eZ2mSFrnjOIxxxhglLqXUCqEihBCmCNlc6yv5KufwrnedYs0AQCksLr7J0vyq4TjgOPBzPwdZBh/72Dd/vR1hCL/4i1+j5PtmgxDY3IRf+AX48R9/U/hVCHj3u7+CsUYRfOADp9oX32B4HnzXd8GnPgUAgDH8rb8F733vt3r/d8cHPwiMwS/8wjfB2b/d7/uLvwg/+qPfCG7WGlZW4MKFr4DXFy7AT/zEN//WcGfKfvRHYWcHnn76m9/Sn3wEwdevpdde+/aUl9MUZrOvgZsfegg++tE/ndv71sfFi/Doo19z5eWXv1Vt5TcbrRb81b96j+uNBrzvffD2t8O/+Tfwm78JZflNPqcW11jpeIHv+76UtmvesdiWUgrbtiGXKKSQ0Y7nRlEghMiyRGvLO5YW/XFd11KAEcGSC4t2lWVp+0LuInFaa0SJBREIIQYZa2OmlKKUYgIIkbIsGWNSRgBIKZPMUst0QQZLqasqt1Vw13W1BsaEBdeURIyVxhgATAhSSt1hR5bpPHFdl1LXih5ILozRLrW1c2kzULjT/+EHrgEwoLWWWtO7okOcc1u8TNMUABNCMAJKXDBYSqmkAUDaAEKAEBFCViV3HMf3whBjLpnVn3Wop5QqeAmgl5aWFhYWhsPh1taZ0A8AwPNd13H6g6PL953P87TXy4SUV6++BmC2zqyGkTuZlvWm16x38yxNknR5ab0/OE5n7krjHjNrf3aLvX5N7IdPT3T7s1vsDyMEAN/7vd9bVVVRFGtra77vj2dTx6Fnz57d3Ny8du3aH/3R071eL0kSLgV1KGOVXSeMcdthY89HhFAURbbbzEYUp9xqUJZPqrUuisIqoIZx5LiunXE7CCD7myswACCEQNglFAihWislFZfMgLpLWVVSJkly/fr1smTWqc8i0ZxXWhtKiJASAHzfF4K5rhvHEQBwxlzqGGN6vV64HNpD2aWndGDQZj6f9wb96XRaFIUNTe0PZROuO40+Rikr9n2HKn4Hf7efMx6Pn3/++TiONzc3hZBFUUwmE+I6QirHcWRRuNQopVzfoxRTSk7jKEKcO/Rwe17bQEVrjZCBr/hIawtWIqS/Wszk7l+/eyf2bm1CZ5+aew6M8F2NGgBAyGRZlucpRnDn6ZaWYR3Hof1BwtCXUlpSfK3W0FqD0o5HFlcWz505c3x8/PKXv9xuNIs85YIbpQLfNUYwWRmNKsHSMqGUgoMwxuPxeHlt+VwtfuHFFzQYLmQxz6qKdxeXbB5nlTpmsxnBjuu6yiCfulXFMabGyDTNOa8YY1xUCKFmszka5f1+/6GHHoqD4Pj4WGtNCDk4OEAI1Wo16rqMsel0trOzj4BYEiTBrlKqYoILFcWy3++PJmMAiKIoy7LpdGp3LcbY/v6+73qrq6sAMBoNLMX+1q0bnudFcVCWpQUbbX4khBiPx3leCKWEEGtLS9u3bhsEURRprVutFkKGsbLT6aRpau5Y8Gmto9CPo6A3nGEAKaVWsLe31253rcCpNfQTkajVYiFko9PwPO/Tf/DJ6zsvv/Wtb3312kvDdHT79m1peFZmXPEgiFzPHc/GrksPDg66Cy1M9LVr11hJa/V6rVZrtOoPPfTwz/y/f6Yoyt/9nU8+++yzALjdbm/v7m9ubh4cHO4d7N93331Kyd3dXZv9xXHseK5tT0EIlWVpFyp1iNTq8PgIUxLHISbEdWkQeF7ozWazLE8ppVEcciVGowEgHYS+9RxK09z3Q62l1qd6uUJKbTTCqFarNRqN0WiU5HNCSBRFeZEmSUZDMMYgAM6l73qNpZbkamSYUcbzAtrpdAaDgRCCczkeTy0d3eo2djodW8a09YQ4jh966KHbt2/belpZMPsl0zSt12qUEM9186KwpxrGuKoqKxZpH/5ut2tFn235lNJwNBo1Go0zZ84wKRqN2gc/+MFnnnnmEx//vYpXm2e6GFHHcSaTSVZmzWZ9cXmx0a7laTYYDA6P9jEQLZDWJggDpZTnBc1G993f9d5//sv/4hO/+3sXL15sdppbW2eTZPbKy6/WalGz2dRK3ryxrRWl1CXIzGYJAK6qam97jzGR5yklbuRHvhdePH/5jdduT4eHGCHf9ZhkQknf9+r1+nA4loYLyX3f9133npVMbYwUCgHOssxu5Z7ne2748ouvTKdzR5MAaDaY//D3/MAjFx8YXR/xSnQ3Oy71dnZ20jQlFlwTXCnluW4YhtR1GGN5WRgECBlCkG1MsLAjIUQpdbdzxCIj9XrdtlrHcTwejy1oxe7QbYbDfqvbarebJyd9IYTvuLZCEkWRnM+FEK7nUZ/6yNfGEIyklKCAYqqlBhCu5zb8ukvcUnKjpGXq3ekG0toYJIECMVw71McIqB9wVibZfGVxeXl9HQEhiArGfRpoqWwPKcKYUkoAYYQVMgQQNwppQyhFACgTapK/+21PvjHep75LPAeB2thYl0YDQpubZ2ZZWgm4+sbrZy9fttXR+TQ1SleyklJqUJVQy6tLj33HA9g1n/3sHx4dnSwuLF2+78rJQb/T6TQajcXF7u7uvj1X7OnrkXs3Rnm+E7kNzrla0ISQD3/4wxsbG88999wbb7zxxhtvnDt3rtc7xoCG/QFjbDrNjYF/9I/+Ua1Wq6rKGMNYWZZOt9tGCOVpggCM0g6hjkM217fYUsU5/+xnPzubTUejYRB6Z8+eLYqi0WhEYc3uua7rcl5FURQjZL2YwzBMkuT27dtbW1uXLl3q9Xo3btxqtxuX/YtWrfXcuXOD/oRS+uQTTzYajS89/+VOq4vJLSWNqLgfeKA5Y6xWqwWBp5RqNBqu644nw3mSKKXKvMIYO46LMWnUGrPZjDHwvMB3g4JYEMRcvnx5NpuVlbalXylPi0+UEoQAn3bDIdd1jTFGGqs6r42RUmoAo+Xq2sbG2mpv2NNGInQqvwNIAyAbQyOgyhRGa6mUZnqKp+122/NcKfni4iIgfe3mtSiKqqrI8zyO60VRHe4cAIAbeFcuXd492N/Z2UlnKV5bf9c7nqzyIplnALC6unpweExdVyjDmFheXkYIjcdjayl79sza2kZ3PBxEsR/44Wjcy4vUc2u2uuZ5gdZwx1o3YIwFQUAQLstyOpkXRTEaTp4Lnvuu7/quVrP5h3/4uUaj8fDDD49Go6WlZa31l7/8ZYTN2vrK+vr6Cy+86Hkk9EIl9EKznc4zIYRSxGYOknPbn2UDu7tJghDC9RwbODLGspKfdmoRzBgzimmtHYwvX754eHg4HA2sH6zjOFFUQ8hEQdN1t4v8tCnMcSjGkGbzZrPZ6XQuXbgohb557WZUb1QlW11eSWfFeDhsN5tl6RmjtDZnNs/aHcbGf2maLi+vhSEbDAZKqeZCPQiCqTYY0XqtbiUCfN+fTCYG6UYtthzAer3OmeScn1td8P1gznWz3gn9+DuffG9VFb/7u7+7t30QhnUHo9m4qN3XXl8Gxqp5Mr1940aWzDfWVgRjjJUV1fN5irByqMuYOHfu4nAwu3nrRlSrJ2k+z9LhycC27xwfHL/0wivdbnd1dVVqoBT3jo+zLGFGTKqJMYoQ8s53vtN1/Ndee00I0e8Pr9/Y9r2AEGd1tfPqq68uLi51Wq3paNxoNwDpIq2yPB8Mho16KwiiLMu0VCcnR9PJXEpVr9dH44FkiFIqC03ehCBHqXvu7IZDyMHBASGOQyhjDCO6vLxc5NV8ltoZt2r7trxPCLHV4iAIhGAYECsro1zP865dvS4U73a7/d7wpZdeWltbvf/++994443pdKKUlkJb+3hKHSm5Daa1kuvr61EUXb161c5Lmqa2Tm7/ytLSUpqmN27c0Fo3my0p1fb2DqUOY6zVavmhX5ZlyUvqOtkstTVOKTnCptVunxwfGy33b+80orjbbNfj2CjAIXBWYoQMh2678/a3vi0Oo5deeVVmCcWADSVKOtgIJRZazY31dYKwwgAALsVZltSaneXF7s7uPqsEBXjs4Qcee/gtbuR/7nOf2d7erriOWt2O5wutEEJIG2Q0AaKM5ozZpkilFMUkCALOORdC3bmIMVFKwZtAP0oZl1DARkop1b0ZhogQ6tGsSBkrENVAAQNCyrCSK6URQYgS0EZJUeXZSrPhY2S0QkBd6iBCbNpvOVx3CnW4qu4NWnAhrMPJ3c7WNJvb1iV02lLKNjbOLSy2vvSlLx0c7Q5H7sWL50+OxlxCkQvfa4ynRf/4xnyej4fjj/77j2VZ/77LW7du3x4Oh1mRv/zyy9Tzb9++nSRJs1Xf2NoSkh8cHLQXOmWZC1FiD2sttTaMyZWVpYWFtta8EjxNcqH4ycmJTXGl0I1Gwxjz6KOPnD9//pXXXl5bW7Ek5YVuezQacc5brZYxut1uvff975vNZp/85O/mY7F6cdH3/cPDY7vPlGWJEPF9ai0oldGgdLPZdBxnOhsPBv3V1VVjVBD5Zy9s3tq5eWvn5oe/73tu3bqFCDDBq6p65zvfebB/OJnP2o12p9N56ZWXCSF+GHY6nfF4PJ1OH3vssSDwbKHl+Pi41+tprX3Pm07SZJb6joeg9GPfGIMR5ZzneR7HcVVVaZq6ruu73vLmFiEEEcw5H4/HSqmqZJYiYOeIEIL0aTO4hVoszY24DhLiLlFDCn0KqQM2UjlhDMgAADZAvgqblBJeegkeeujeK/YbD4Tgb/9tWFmBf/yPv/mLz5+Hf/2vv73P9zz4t/8W/u//G37t1+6hAjGbQb8PcfyVK6ur3/wzP/5x+Ht/7/S/f/zH4fu+79u7pbvj+74P9vfhV3/1TV/wx/u+H/sY/MRPwO3bb/qa69chTaHZ/MqVb+Vb3x3tNvzP/zP81E/B0dG3d29/jLG8/PVQ+7erPlEUsLcHFy9+5crWFoThf2n55h/7sa/UY+z4Z//sT+RYSCn87M9+zSR+9bBU+v/+v4e/8lfgV38Vfud3vpEESlmwVqslpbQMTdd1Maa2jdUeSW7gNtsNg8F1XQ1KKQWgfd+906iulBKcC0IQIUgpgRDRYCxqZnlg6I5MsJTSNrQxVlIHaw3EwRg7VpVLg7E7kuMQrR2HUADwHFeA4JzPZjPLbbIgmg1QLVeUktPuK4wpQgi0oZ7n+75Ve/vA+98bhbXnnntuOp1q7dlG+DRNjdEWkLVievaTETrlNSujhDhF0oMguqs+jDG1ZlEAUBQF56cuhZRiC44ghLSGOA7tyei6vuu6MrNOtq7jeIuLi55PTwYnnucoZUajCedycXERAKzd4qg/4rx413c++cbVm4eHR5xLSgAh43lumieeT688cN+tW7dGo9Fw1E/mGTJL95xZz/MhBcYYvVMdRAgZBLY8CQB2fgEpBLrK80tXrrz//e99/fXXgGBpYDSdMMY2Ni6cPXv2j/7ojz796U+Px2OMiVASY1yWpe97lils4fi7JXOL2lt80FI7LREQY0wdbIyDMe71ekwq2+I8OBpWVWWBOaUUAPI8zxgApajjYIxFKTB2AYOUSghuMCIEY4RYJTDGWoMUfCQnSimri+04xBhjlZQpIeZULtwBhCwIrqSUUjqEYox5WVkTkfl8rj2fUlqv12ez2d7B/nQ6zYrc8qvsa5CVKjX6VFZCgjWvIo71vTB3f2dLj2WM7e7uPv300+94xzvW1zcYY+vr65/97GeXlpasNYtSionMkY71w5zP50VV2lypZExq5ft+Jbj9Se9QmM1dKBljQwgyBmyGZR9b+0orpXUXBL8bzgGA696b0wYAWiqCKSIKQBNCEMaEIKNVURT2gbIAty0qIIQQihqNGiGOnWUpJVeKYhhMRxrpMs9aC43VlZV+zxDHpGnKi/K0vIGxAgUO0lhGQcSkmMzHGptOpxPF8Wg48aOQOkFcazUb7clkAqBtST6KIiYU5xyqyv6A9paiKOp0WsfHx37gLi8vp+k8juNmszmdTlu12sbGBiHk5u1b7XqbEPLQww8fHR1Np7M0zeI4zrMSY6qkdgMipbZfLEmSXq8nlI6iSEpdllayQxGCLY2XEGIQDIfDrEgBIAi8uHbqQOg4jlKyLAu7JhuN5iOPPKq1Xl9ff/XVV5GBtbV1DYaxyi4Dx3GEYHmeV1U1mUym02mazBhjFl1VCi0tL89mU7vp+b5PSMcYBRiNp7MgCgXjju8d9w6NgeFkSDwfu14l1Y2bNxuNhh8GxKFlxYU0nucB4Ha7211o1moNzqveycBo/+LFi0EQKKX6/ZPf+71PbG/vGmMMqAfuv//Rtz7+hS88W+SVlCIMw6IosmxeFJldhJYS4TiO6znzZLa4uJimqeNS20Zgp6DVqu3szpRCSikDCgDC0MfE6fX7SguCsKiY5/i7B7s+jZDBloVsjFWPwRhjKZUQEuOgzIt5Ovf8U8V8img2T1la1lCtHodlwaTUqsIHe/t0Sbc6zaIo6NHR0cLCguv6SZJYRDyKIin0fJYGfuS6rlanPT5BEOzv77eaHYd6e3t7WZZZkmajXq/X63bR9/t9Ssjd6rwxZj6f28IaAPR7Qz9wNzc3qZEHBweW89hoNAbjwdNPP00dvL6+/o4n33b92k2tgTF+ctyXUiaj2c7urXqztr6+2mzVO52G4oIxzo2KwxqlztramuM4L7/8ys3bt3w/HAySNP3y2bNnF1cWNzY2bty4NRrN1pY35vNpnpVKmTiOvSioSr60tmLbEBgTUmpKqaJ0dXX1bv3K9ShnHBGEEV1b26AumqUTx/XSNNXKUKPuyXWYz+YSGKWUAHEdvyyKl158jXNuMEISAtfLh7OV5sIHn3wPzmSapsvLy5ubm8NhfzIeU0JqYVRkOZfK932jkeVySsltlkUNAIDdv9AdqwEbPdjGnMDz7d5quWmYwOlJo5RlmnPO51k6m83s88851wRjDMYAxuC6tOSsYoVPQyseZLSm1MGEYoyl4pxLQLYGSD0puGB39SXRHSF8dKfdAytkC9fKSOLQSxeuhGFcpSV1XWkqozXnXGihFbLS7xghDAgDVhgjjZTW2uggCBCXo72jt15+6Mn+7ReOr126eJ/ghUuhVqv1Bv0XXnnp9q2jMIZeL/nkJz+5sbrWbDang+ne3j4o7BBSFFVr0QovTIkHaZ4AwHQ2mc/naTYfDHsY0VqthjF2XU9LNR5Pi7xCoYDgHvM7nUy57tlqUhRFX/rSl373dz+hlFpY6IZheHx8TCn9vu/7/itXrrz44gv/5l/+xtq5xXq9/vGPf9ylDgJ9ctxbXoKqKNvNRuC5/X7fmNzz6MWLF+9/4L4bt65vb29fuHBBazUc9cuyVEqdOXOm0WiMJ7PJbOp53vLyMiFIa62NTMaJ3WWCIAjDUCs4ODg6PDyUTC0uLp07d+5Tn7plz55ms/n0089Nx8Vf/Is/Gsf1Z57+fLPZ0kL6vo8M2IZfrfV8Pvc8Zz6fW88iAJjP56DRXUlW64BUr9EgCPI8T9MUE+J5XhxHg0GfC2i1WpxVeZoXOQuCgPPKnkOuR6VUCBuMqDIGGwAAyQWmRAlhsdrhcNjrHVOKEUae7xpjtKIAIJXCBoMxnu+xShBCGs06gD45OnZ9t1aLknTWaDRExWrLy/V6XBSFQ91+b0ClMhoqqXZv3q4ExwaHQcDL6g9+/9Pbt28XeeU4zvLqmjJ6NBgsLq9Yw+XhcJgkSb1e932/4szzvIqVjWZMHcR55VJKKQZjXJe6Xmyh8Ol0mmVZGPoEY14xAFhZWUnTlHPe7/We/qM/unDh3PJy5+rVW57njcfjNE0JIa1WK67XPN8fjUZB5HvecpmXm+vLq0vLezv7B/v7GIe+7xOELLp9dwosGdMYk+VpgzZshCQlt4pGSZa4rosIKKy5qLJxJiU/POxvKKGUCgLPwSTP87W1tXRWaHUakxFClGH1et2tkaXVruM4h8dHK4urrus6jrPQXfzYx37TwZ6FTur1erNZ5xU7f+6iQ73jk0OLg1+8eHE+n9fr9U6nI4TI8sSactiUgFJqG8/LMtegGrXYcYnjEsdxojDc2d7b367iOCbUP7O2dfb8uWSafexjv761tfXglUeuvn49GbPQi3d3D0ejwZmz64sLy/vVNsJKaY6wQQS3u4vNVnsyHkZhy6H+9vaOF7g//MN/4dbt3V7vGFGnSEoAeOON60dH/Yff8uju7m4yLxzHOTw8zLIEE/ie7/luIVi70+Ccf+GZZxFCS0tLANh1fYwIpS4Gcnbr3Hg8GfT69WYjjiPHIWkq55NUKSEFLC6u9vvDqqqk1L4fTifTVqvt+2GR5dk8ZYw5TnyPbQUAANZX1xTqR2FtMBhcf+P1drv72GOPjYaTleXlWze3GWOUundJ9HfLD3YlSCkpdQHA5qhJklFKMaZBEH3+859XSjHGrVehUqdpiT1TbPhoBcG11sfHxxcuXLCB7NrqRi1uWGvKJElspdkYY20eEUKtVsue8rbiUvFKah1G/mQyKcs8jmPiUCHEaDTK89wo8F13MhottzvY8RyDqqoEY2JKDMii4E889igFIEb/9I//2G9/4pOzNGmvrKRzBkgjYrY2185ubU7HfS655R24lHLOCSIYGYfijZWFpU7n9z75CYlhNBqNZokUplZvplk16A9PM22DKCJKKVaUyXzeakRScoxpFISnOmgUxB0bRpvJ3HOmHNdBGmkFkitM7y2mgQ3OWOpaqT4lEEJaIweQAwawwQ422GjFCQYjeBR4K63G4XGGKDbGIG0wYIKx0Uhj4zl+2I4mk4kb3ptg6VKaFexu3Gnlwm0p2nqjt9vtl156yWDWaXU7nY7kYnd336EeZ+yVF6+trl6IwtY/+uf/IvSCc2c3hUKNZmc8zf7gM5+1j8DiyupsNtvd3/P9oLOw5Hme0rLTaSVJ8uzBs0IIrTQCibEjmEyS2cUrG3v7RRyHjUYDYaq1KYpcKS1dAxi1Wq2tra3JdBTXomazOej3Ou0WgLHUn6LIGWNPPPFEr9d77rkvLiwsPPbYxmg0un37JigIgsBxPCEUpYRiKjFUVYUIajbrm5vrjJeAVBiGQgvquWEY3rx5U2t98+bN27dv280nz8utra1mo/WFwy9yzh95/LG97Z2q4gghIWWSZZPJxHFIs1m3lkdhGDLGCEEbGxuu4w0H01arpbURpWAJ933fdcD2M1pM+W4KapUu5/O5ZZpYFpjtFLaIgJGnjDab9bkepcSxpRGbzxDsYIwdaulvxnEwEDDGvJl+y5uR3wFAa/i6Nyn19boQP/7j0G7D3/t734jq+x3fAb/0S/f+09+Ylksp/KW/9G0QqL96SPn1+hL7+/DLv3z632EIP/iDf5yPvTt+6IfgN37j3tDnH/v7IgS/+qvw8z8PX/zim77mG1Oqv+mUUQqXLv1nh5sxhgce+BqfwDSF4+Nv+3Nefx0+8IGv/LPbhTj+Lwo3b23Bd37n11y5ehVefvlP9JmuCy+8AO96F3Q63+hlnQ787M/CrVvfSD8kjLzxaD4ajaqq8ryg4gyDJHdMRLU5bSHHDkEEWFFKKV2PhpHv+36WaQNeFAc2GLBsWaV4GMZCSS5FFISNRuOoHFmarQ0YECDPc6SUxmguted5lGLH8f5/3P1psGXZfReI/te05zOfc+d7c67KyqqsKpXmkmxLsiwP2Hp+YAsbTBPB6454huDLazfQdLxud3QE0DQNEXQHdNA4cLhBBmQasGwkZEm2hlJNWXPlPNx5OPM5e95rfB/WvVnKUpYtg+joeOtDReWOc/fZ++y11/D7/wabNCWlpJhRn9lkIEsUsOAF59wYRAhmjCIDtsbpMKaUNtowx1Fa2isp+Xw4HPq+77psa2sribN+v2/JUqdOnWrUmv1+31oBCCHv00gtCclB9MQsjtgbKorieOQ0BgAIIUoZa1dtf0NCCACyViRBEFijMJt9Yu9IVJy5TpGXaZoao5aWFwiQMiuFUAgIrySvZFVVmKDd3e0qh8XFxQu9zna4vbjYPXPmTH9wWFRlUeWNZm02mw6HfUopdYgQVZIk9fdY2SVxnOcppRhssitGdrd8bN4FYDcRSsi8LJnn/aW/9Jdu3rx57949JKuiKBgjH/zgBxcWFp5//vkvfvGLo9EoCAIuxTF7kVJ5Yu2t9TGOabsNQsjSfq2n64n5ALZbQk31bDZL09T3/TTPdKq5Eha+twiD4qIsSymVXbcjhDTXnHNdamOMxnblCIQgrS2HFyNkQBuXObYgUZa55RgRjI0xPkJ+6GGMyxMCNQIoiqLMC0ppnqSwCr7v9/t9grC10N3d3Z1MJtYrw/YKABBCwElGroVrkAF74wbgeOVjtN3UaGMAwHVdKeVwPHrjrTfDWm19fb270LEex1oBY4wwijS2HEobCdhoNDqdzmg0KjkHfVytsXVfexnYACEMn8Qwaq1tquJ9hvX9zmy3wABwH3G2d+G7D3dNQshODVppo7R0CHguVUpppSw1EEBTSoMgyPLE7gVsL7LbQ+td47oudpAbupN4Oh4NMOhVtvLkM5fj2fTWzZvtdtMakQ2HQ4YYpZRSpygKTBCmNElncRpLY+qtlh9Eo9Eoy/KjwbjiJWMsTnPAFFNalrwsy/su4UqpVqvVajUsVWU6Gy8uLlKKEUJZlmqtDIKlleWqqhBC81mswLz00stWGewHUZrmyoABYK4npJZSNpttC0tiTF2KqqoqisLzPOs1d5+zr5TKsgwhRBlGCHHOa/WWNRaXUkRRdPr0Gd/3beqm3cK8+cbbg8Ewy5OVlZUoirIsT9Os0WhYf2p7tuNUUsowVhaMbrUXbd+7devW+vp6kiSH/aNWq7WxsdFotIqi4BaX06gqS4UNws69zV0hRBiGxuxNpknTUKORVCpL40538Yd++BN7u1sVh6IUzz77w6fPXpjP5+Px+O7du0gP5vEUY9yot1zXeeTRc8vLiz/90z/1d/7O353Mpu1220IxtVrNon+j0cD1g1qtZoWt9k6t8UgURR/96Ed937+3fWc0mfQ6bdtb2u12nudJmtulqeQVZlQIgQwxxgB6Rx/wgAWQUJ7juq5LCwoAvusKLr3QA0hdx3OQUxRF0IhWV9e9MjzY3ieYOI6TZRm9c+deGIZhGFprOa21FNqCF9PplBCytLTUbDb7/X6elfE8rUqRZRnG+PHHH4/jeDweZ2l6dHREKWaMKSUsJ9F2PkTqjLqz2WwwGNjipy3seL5vHVcpJQcHB9SlXJS/8zu/89GPfnR9ff0SY+PxdDaeUUrffPPNsB798A8/Oxz1+4N9P2DNVn19ff1of4ARq4X1vb1DrXWWpXEaI4JarUa3WwfQjUbj2ttvx7NZPJ07jkMInUzmlg5mjAmCIAzDRqMhhKqqBBFcltYV25vP58m8uF9fxYwKURFCNjY2siLWoLI8poh6zOu0O2LykJGClwXXOcOMUjoZTZVSSkiESC2MaEhkUg5n1Y//6U+f6i6Xs1hr/fjjj2mp3nj99cgP8jxN5jHnHAj2mEMYtU+ac66lYg5h1BFCgLLcRnxc2JOCMceuRYIgaITRsXCGEs55GIbz+dzWnRhjpeBSyvl8XqvVLMJoKYdWl21DOYvq2AsJACohEEK+5wshEDCPOoCNkQaQcYACGIIIRu80QwwhBJFj3NlnHmPs9NJGmqbxOF6IFj3mCCEMAiGlQZCXBXU8FzMFBhkwWhswGGOMwSAAgkACr6osSd3lxmc+/MOvff7qcP8obPqgkRby3JmzGtDR4SCeCTeA0WiUztPFzmKn05uISZZVCCHiUIbJZDIJJVlY6TQaLdcJy7zc3dlHCDHqAsB0Os+yPAgCDGQ2jRlzbXbz97bpLCvFOAwjjDEAKsvS9/1Op9PpdFqt1nQ6lVJgjJMkuXbtBgA41EEG7W7vLC8vf+5zn1tcXPzf//dfGw6t6X5gPa0oxZubm9euv51kcafT8jwPISB0aXd3d3d3N4yiVrt78+ZN63lkdWph5GOgdvu6sLDgOE48TweDUa+3/NRT79vauldV4oXnX+Kcu45/586dwWDyvvddvnNr/4033jh/9lytVkuStBHVwjA0WsUxUBowhyTJ3HWdVqdZq4fD4RATSOK8VmsYZQVTCLAihKVpmWdFWRWWln50dPT222/7vu+HoRRFrRZWRRlGruICGdVo1myChNbH0ROUOAhRpSQhRGuLjxRpSvwALy/2+n09GceNRqPRaIymkyRJiBXfsUBKRamjtUyShDGS55nve0mS1Orh/v4+pZQi7Aa+43hVJR555GJ/c4sLMZ/PX73y2tLKcuh4BFCe55KLTrcbBtXBUf/e3S1ECKWOUbooCkKIXZpgRlutlhTlnTu3yyI9fXrD9/1Wu6nUPMtSQlwE1As8y+63Ad9ZlmGElJYAkOd5kiTNRuODH/jAzZvXv/SlL/m+X6+5d+/caTabURQlSYIxVkpOZ+N6I9rAa8jgvZ1913e4KBeXekeH+zbzk+LjxaL1KQrD0BjDGGGMEYqNMUJUrVbDMhok577vx9OJAEl9hjEOQn86mzAHTp8+Xa/Xy7Ic9Y+ytJhN4zKvMIDruoobQoiQUAn+6OOPhnXvueeey7IinWdKGd+YsuSd7kIeZwDgOE4QBJ1ObzwcjMfjhYUFbeR0Oq3VagiZJJlPp+Onn366LIvrd4b2oUdRJBV3Cev3D1vt5uOPPzaejkbDgVLKY85w1K+dPtfpthqhW5blZDYd9kdlIZrtlhRoMk4wjMpChkFdCjWZTJRSR0dHRZFzGbdaDSlLYxBjRAMajucUO/V6LU3TO7fvnT1/bm1tbWf3AGPsB0Eui83NvbW15f/vf/Pfrq+f+mt/9a836w2EEAa0vLTk+/7h4aHrsp/4yR+v1Wr9ft8YRQjz/VpZiHZ7oX80lEIPhyOr7FNKBUEwKfLBYDCfxouLix4NCfKiwD/YvxGErhbCdb00zXu9xfc9+cyVF1/bvzfV6Djo5nvbcDQ6Gl578vLT7VZrZWWl11u8fPnyt7/53K1bt6pSeJ6HMaWU2l1fnueWSmB9u+yy2wJbVmCEELpw/pGFhe4rr0wJZuPxeD6fE4ItZ5lzzqj73QQlKaU2EnF+9epVK5FJkqTRaNgFnFU7AYCQpfXccJmTFblFnIUQCGMKFFM8nU4dj7XbbSGqWq02n87SvBwNJ1EU1Wr10QDm8/nplbWAOiXGShSeQ8pULG+snDu1+uqVF3d398Nm/c/+/J/8t7/zxXrkrvQ2ZFW1W62lhV6Zp3bTWwleVSVhjtaGS16kmQHCMEJGl3k6mM0n8UwInVd8/dS5rd3dyWxOXQ8TopVRSlGCKHVUVSrlaQDGULvdxhhvZdtKKe8EwTdKw3vYaRhtCGEYjncUD/8MF4fDw5VmU1YcIw4KYQaYMqSER4kmkPFSiQoppCTXZdUKPI95lFKjkTG6qiolDcXMbuZFVTmUGvlwgIoxh5y0SnAAsG7vQRAIwQkht27dMsZ4IaWOo5Rx3XBhYcFG3j/6yBODQby9tdto1N54461ur9Hpdctitr6xPB8fKqUIc48Oj/wwWFho3rxxWyhTlvn+wd7a2ho2MBqNrH0HBgRGM4+MJ4PZbMp5AUg1Gu00KyglQhBldD2MXNd3XZfLap7MsyQ93D+wK8aiKJXShNDxeNJut7e3d27duTUezM997Fyz2XzrrbcQMmHUMMZoZTBgZI7LLWmarq+uLy4u7u3teD71fV8jbYxxHMq5FELYyFbXdRuNRq+3uLu9Qyl97bXXlDI2AoFXld2xS8Wl4mun1mTFLZ05z9NKVqUou4sL9Xo9idMT9pwpy1ITgzH2fZ8Q4gfdJM6smtWqzezL2O12Xdc9Ojqyti12O6qUUlxwxe176nkewscBlUoohGzoLktnKSLH9DeEQCmFtNFaE4LRMa/rAYA5eGiMJECawt/8m/Dyy3DfND4I4Od/Hv7Mn3k3jPtTPwWNBvy1v/ZwyufP/Rz8l//lQ46/9Rb8zb/5QPLb0hL81b8KTz75wMdqNfjlX4a/8TcefpHv1aSEz38evvCFB6BJzt+5ws9+FpaWHviTqoLnn4evfAXeeOMBi2HPg6eegs98Bj76UXDdd44vLsLP/Az8i3/x7q/+Q+73b/0tODp658hD7xch+Ht/D/7n/xl+67e+35u93x76yP7cn4Of//l3YG7PgyeegN///T/2yf9YTWv43OceOBKGUD1M2fmHN8YewOhbLfjUp+Cf//MfwBV+n+0Xf/Hd1OZf//X/KGozAOQ5/N7vwXPPwW/91gOI/Pc234f/9X/9wzqD1uZw0A+CwPO8suRGI8BIKaXtFIOwteB0HQygpZSIQBD41v7O972jQd8qU+0mt1braq3TNAcArbUyOi+r78LFsAIVBMHiYi8v0rxMhdAYA2Ou3cbZCGslpJWum5MUMqWU1kAIQwYQQhRbbpaxLtAYUaUEAoiiaD6fKyVtCdGKnre3dofDoTFGCg0AjXq9UW8kSZLnpa2PWl4qPnGcwIgCADLI930bXGyBcivwslU6a2vw3SPhfejNTs339/JZlglRGWNAm7IsuaiEqGwGrx+4iEvfCTVohEjg16Oa12t1J9NxPE/sSnhxcVEbyXlJCJpOp54bNJuws7NTrzeDIMjTstlsavHwcp82xxVEIO9cHgBYcyT7TyWkMQaUunj58tra2gvPfYciHNRqly9ffuSR84yx3//9r//u7/5uWZZ+GEiltDbfxVw+HiMsh8BaMwnBEQLXdSwcaQlqUkpLH+Gcc86lVlmWRY26haVsV7EfY4xRhDnn9m8JoKKqzP2ot6qUQmOMCcHWBUVruwTFWoOUWsqSECKVxhhssJjtQha2zvNcKsUYcx1Hay25QBohRBBCFoXodDo2G40xtry8XFUVl8I+eqWUQ49p+PcXulapBgCW8W335scGJicUcvu9d+7cWV9f7/V6jLFur1ev16fTKWDUaDQsMSKKorAW5WXGOS/zQkpJEJIIKaUqKRgjtuBBkT2xAdCW+EkIQcjc/7UJIWVZSsWxwQYIhWNfxOMtMKWO4xjzHhVLfewljRCilNbrzVojGI/H1t0NY2xNnLvd7unaxltvvdVsNi3vxGKpWmtrwYex2drawWAqXnTbLS7FldeuZHGyuNA9c+6057gA8Nzz31leXg7DsKqq/YO9qqq0UWUhNcJG41a7awxy/EDP5vN5hpCRQgHgLCvm8znGFAAYs52K2P3pdDqtqkoqXlXV22+/iTHmvCqKotlscs739vbCMDx75lwlxd7e3nw+NwjyohJihhCpSsGY4/u+4IpzaYxpNpue5+VlMZvOwSA7BKGTd15r7TjUGoxQShHGjLHhME+S2O6D7KOv1+vGmI2NjSsvv7qzvQcA1oy+0WikSW40wphmWTYeT1zXcRzHdf2yzO2wwzkXUjbq9V5vod5o3blzx+6V9vf3g9CzUoBOtzuZTJjjzObzRqMhhciLIowioXWaFvV6vdPpaa0roRcWlih14mm8v7/f9RZHo4kf1Aaj8b27N+v1SBgzGY1rtRqA9kJ/bW3Jdf04jiue3bhxbXtv943X37x797bj+kVRYIwxMnGSSinr9frp06drtZrre6+/nhhjZrOZlHJtbS3P842NjbIst7e3h5Oh1mA9lACwQ+ggTaVQvu97voNxfTqeEEo8FolKlTm3t39cyDFG62NLmdls1ivaQRBIVRFCDAWEULNRQwGJUMjL/NJjlx699Pi9V7cdx5nGfaHLqOpRjPF4PL5z587CwsLy8rLr+NPp1O5mbXnwvjbT9/0oivr9vl1eLy8vt1otAypLUmNQWQpbwPE8z/pmTKdTSmm73dVKWWd3S5Y8OhwgAgDQaNa0VuPxOAg9Y8zly5dPnVq/t7V5eNhvNzpCi8l8LGX10z/9cz/0wx+bTIfPv/idw8PDC489evGRS0lcHO4dSmGa7dZLL720t9cHgF4vLsu01a65rouwWVpaWl9fj6JoPktm01gryLMyjHxr3GOMefvtawBQrzcch83nCYB2KM7S4tELj0d+c/PmnnGMENLx3Kqqrlx5hcvS85x2r9npsCAIqko8lGEipSyqIsszdgzges1mezabx7OYAeXT7ML6+jOPPVF3vCwd1Wohxvj6jWvpfOY6jlbKjviEUYmMF3pCSowQLyukJDXU4gKYIEawrSbZt47zyt6XEEJx0ev1lDJKKYyMTbyxpV0AsFSdyWTS6/Xs/8uK27FSSokwOIaVotJSEYQxxYoLIBgIlsIgTJhDwQptlDDGeMRXRh7XQNTxyOs4rhXXAwAo4Fy4C4Hb8KuqEmmFAVWCI21qtYahmEuJqdZgEIBCyBB0rITRyEhjpCIEra2v37l74/DW1vkfeWaBRq+98gYOcBj50/FobW3tmQ988KMffvbwsB/PE17w+TSO4wQEklI6lEmpVSUtsOs4LM/LPM8vnH10Nk3H46mRyvV813UPD4/KgmPDpKwIYZwL/z1kLmHoFxNs1UMO83rdxcPDw8l4dgfdU0pJJSgl169fRwaMMfVOuL29F0U+53xwOGu12k8//fTCwsJ0cqcoCodSRkhVSE3JfDq19v/nz59njL7x5mtWt+L74eLi4mQyabVaNg5ub29naXXpzJkzrXbj7beu3bhxY3V11WiUZdn73vfB9bWN7e3t/f3DPI/rrZAx6jjuZDK7efN2u9V99NEL58+fjWfxaDRK06QehQb0eDpxHHrhkXMGaQBz5+4NhJXW0vcZIeTcuXOU0uk0zrMyCIJedxEM5lIkWco5JwRLKQFpgzRgA6DKsgBAfsAQMFCmKIpLly5Op9PRaESpLYgjznllKt/xy7wihBmEZaGWFhYvP/3ojZtXtVaUgZQ8SZKqKjAGSqmSwDmnRCskARuptBBw8eLFhcWuUPwXf/EXX3nl5a997Wuj0Ygx1ul00iRvt7p1z7tz50521H/22Wcdzz06OprP52tra9byaXFx+Rc/9aNCqJdeetlhXr/fH8+mzHUqXhDGpBJ7B0edbqPT6e3upLN4bicwAP2+Z546d/bR5557fnNr92Mfe7Ysy2vXrtkcCYQxANhw51s37y30evV6/cKFC1rrhYUFo/H29jYgc5yeoWRZln4UVkJ4vuMwLwg9Ifm1a1uB5zPXUaWqqkqf5FCdKBwZ52UUtV3X9QNPKZVlCQA0Gg2UcaVUkqSu784mcySwH/pcySAIggBu375t3cd4UTabzSwrAsc3GpQyjFKMQXM4PDw8++jG1atXt/d2W/VWHMdhWHv7rav1etPKtxqNhvVQ2tvbW1lZmk6n0+n01Ol1Y0xZ5rMZX1jo9YdHN29fX1paOnP2VJqmSgitPWMUISgI/SSZGuicPXem1awNh8N6FI1H0/l86vueMRhT1/eg5NXB0eHC4vInP/Fjm5vbV15+w3GctbU1bVSaxoYoIkCBCv1AaSFkJbjClFSCI42TOJ6MZxUv1jbW+/3+P/2n//TM+Uca7c50Ej95+alnn/34W2+99Ru/8RvT6XQ+TxZ6nTRNeFU8+dQTTz11+e7mncPDwz/45rfm8ezu1vYTT1xM5snmvatS6hvX77muL4QEwFbZwDk/f/785uYmxiQIamUpMPLSedFsNqOwWfHM8xwDSis1ncxnrZlSClGkhcb44WYaWVo4zNvd2bEGzf1+/8UXX9zf30/TLAwiu32ypu02j1trbfMVJpOJ3XBRyqSUQsggCJIkcV13e3u3KArfdz3fsZG/y8srtnRhl03oJESbc+75x8pcAEiT/NTGmTNnznz1q1+1ywDGGMbYcZw0i33Xc6LadD4dj0dBEBJCDIBSilJsjGk1O6urK4eDPsa05IJS59Spxfl8nsUpdXF/OK473vknn8pdIvOYF4lG4oPPXLp+7c2Dg4MsK4pbfGl1ZbHVVEitLHU6rbbkoixLJaXQyihjEGCMKyGiWpQXiRKq5OqpJ9YX2q2PfOjD33rx+SRL6/Uwi8srV64MJzNKHIVpJTVCSIiKAHJdByE9mc3sNiNNU4xx4PlJkoiKU0K01gbp9+QvaqMMF0Jgx30vliMvi1madWt1WVQOwxo0QtKlilKsQRsFNizOSKO01kr51PMc1yBs99F5WhhdMsZsLrydT3334T3Hdd1qXFnFCSGEUGJpaDYaRWttd6QakODKaFKLmjxXeVzxSv0fv/HPpEJvX7tFmf9Lf+5zRZFfv/lqp12/8OjFMu7u7O+98cYbrVZLCEmJ01taHg6HAIAAgzKUMqUMBoKMUspoUXaXm09cvrS+sTwY7pUjniRzRChl1CA9HI6e/egjWsNkMrl586ZUlRJaa82YM5vNtdZgcJZljLppkl+7egOwabSizc3t/f3DY8t+wEJwrrhWwBgWRiGEorB+9sy523duHR4eNho1rqtutx1FEULo6HBQVRUC9vjjl/M8393dPXv6nBL62tXrjDEbbY0NWNYzAHie9+STTwLA9vY2L0qtpUZQq9WKojBGSSPti8Y551y4riuQwAT5vq+ktAS62XyCEHLp8d6eEGwVfp1OBwDsCg1jjA3YB2SNTYUQrsek0Vrr+1pmuyojCEtj2XwGlMaEMILvE/q+G20OAjhz5iF94zvfgf/hf4DZ7IGDeQ7/8B/Cl74E/+AfvBsme+YZ+PSn4StfeTf39swZ+Lmfe/fJjYG//bfht3/73R++dw9++Zfhs5+FX/mVBwi5H/sY9Hrfb3gaAEyn8Bf/ImxtvecHTp2Cj370gSNKwX/9X8Pzzz/kw3kOv//78Pu/Dx/5CPxP/9MDUPvHPw4vvADb2+8c+Q+737/yVx4YD4yBn/95eO21h7hqUPpu8vL99l6P7H/5X+DJJ+HixXcOfuxj8E/+yR9m0fADad/8JvzZP/vOP2czGI//2Cd5/XUQ4oHgx6tXfwDX9n225eV3W3tvbv4gswp/4zfg0UehLKEogBB49FF45BHwv0cf+bnPwSuvwObmQ84wGg2MMZ7nWU8k1/EJIUVRSCkJRUIIP3DDMAACVnqLCfF9V0o5no6klIQgjN1jrNYgbVS73eGcA2BrPfTdo42UEjOslKh4YUOAXJf5vi+lrAQHcdy9tbREZmNxTEtqppg4lAFCQoiqSo2xZhjIGKXNcYQJ5jhN02MPPYIQQmVZGqY7nY4FNKOglsTZZDwbj8dFUUkpregKwTE51xhTVRXnCGHT8BqWVRqGYRAEg8EAADDGnJcIUYBjEMpipnaVIqW0F8AYM0bleSGlAABCkesxLoTVfsVxCgCO42EMVcW9yB0OxwgZJYTjUGsgayl9s9lkMhkVRdHptHq9xcHgaHfnMJ5DLeoDYKOxQ31CHk5WNcYgZKTkhDywqzxmaJ00C+ucPn1aiUobefnJx89srDebzfF4+OUvf+m5555LksQLfOuO4vuepTZrra1wGSGEMTlx21MWarfqHLt3IIQope2v5DhOmqb9ft/OQiANpdRhDudcCGGJaPcfhDVLUVoJpYjDABGLKVOKCcEYOQgZbSz0jxijnucVBSBkAjcAbbQChY5j34q8IoQYjRAijDhgMGjkeYHHHISQZdJYmM/KdhcXF4MonE6nk8kEUwIAk9H4+I4A2SP3ecQYY2oIItgYQykBALvKBQABwhgjlcCUvPXWW+vrG/V6HU6S6NBxZ67CWtTudvhxemE57I9c33Mcx/V9L/DjeJYWuS3qM0yO3zVtNFIIYQBkLSLtJSktrF8BAEgpBbcP6Jg5pLV2HE+/VzgIOvFXAbBrdfvOSint1sA+8el0+uRTT8Rx3O/37wunpJS1qKG1TpJEZrzX60nBXeZVeTU46k9HU4xhPB6/+OLk0sXHhBB5mtXCKKxFANBdrGNEtMb7h4PxaJ4XIs0KP2wYA1qhNCmM0ZRh33cZpdYp12ofGWO1Wsg5z/M0iiJMII5jjOFHfuRHfvzHP/OlL33pq1/9arPZtNagOzs7BuHl5eWlpaWXr7zKOe92u48/ftnzgue+/XyaZq1mp98f+r4fx4lS2r6tlqsbBEEQBFxU7/DQtbQhZL7vLy23bGgqQp7VZDiO43n+dD63i2ogmCuJECGOy7QBQsN6IwzDOJ4FUT1O0wZpKKgwJUGt3mo0a7XQGHPnzp04SYqyPHeWei5Tkne6Lfs0LSnz6OhoMJ5QSuMs50o3ohpgdOrUqfTtG0Hd6/V6H/nIhxFCX/naV6MoOH367N27m3E8m8+nCOMsnd++fXM86Y8mg6zIFxYWhuOR6zr1ei2ohUJIpUS/f3j77l1CWFWJZqMzj1OMqR3oalHQHw4qzubzuVJKTTXGsLGxlqb5fD4HsO6mejQaJMncANRqNQSYcwmgOeej/siPQuY4WussyzjnvhMghLSGqqqUOq7T2AHKskBtf57P546LpOFCCIrpsD9wHI957gc/8sH5dHz77u1SyKPbQ0JRs1aPi2S5FtJms2krAGVZ9o+GQRCkabq0tBRF0Ww2cxzHcrjsGOS6LmG0yHKM8XfztC1Vyvd9W8KaTqdxHOd53m63HYdqLX3PIyfVSACg1DFGGWN6vV6axkKI6Wy6uXn3sccebTYb29tbO/vbvhMoJYBAvREZo27dupHnqRDV21ffnE6nvlNrNFp7BzuT0ajTbTSaIcb42Wc/agtcd+7cOjzsLy0tJUmslMryRFSyyPPQj3hVMYeUZWmV8hhjxhxLaeRcaAWu63e73ds3Nu1QhSkFABtj6Ieu1tLP3Pl8dvbs2bwoH+a1AGma5jzlJSeEUULyNFNGcy4wkLIssmn62Y99uhnWqzjr7+6vPnouS+Oj/T2HMSMlNoYr5XiuAqOMYb6HGa2yFKSggBxAWkmEj7UYFnuy5U2hjn/bPM8VF57nNZttzrkUFcaYMpZlGaXUYGSJdWVZpmnabDZ93+fwTmcCahxwPMfhnFd54ft+6EfCaC4kYY4xSmlDMXEoNoC1rSyDxhqMAWQQQgQj7CAHSeRitxScEEIZS+OsHkagoEoy5rhSK+Z4NPCE0RiM1ApxjgkBzzUIgTaACUiMMQatCHOZxwjCkOU0qS6fuvDG9nWnWU/zEhnc39rfqXc1oVxIiQxjbhAEigsksZbGKIMQooy4zAv9YDw+Wg2Xy4yPRhPBDRiilLQYTeBH2DDX9cuywoCEUK3mw9Vxve7S45c/+corr8wms1qtwZgbhjUpZVEU586e7XQ6Wsutra319bWPfexjRS7fvvrmG2+8UVUVKHjppRcZY6PRCBTMBnNRVZYnGARBq9VyXDacHfX7/YWFXrvdjuO4LEvHdSeTieN4nufV63XMaK3ZSNN0b3/n4BAf7h8sLSzYwmar1anVai+99NJ8npRlfu78uaXlrlB8a2trPB4/8sgjGNE0Kba3t5VSC4vd+Xy+u7vbarUajZrj0E6vHYbBjRvXMIbRdNRCzcl0UgkhtMjjvCyLJM14JeezhDGmpFHUXLx4UUpBGBaKR1GktS6rPPQDjFgaJ41GCApq9QghSNPEcYjjOEVVEYS1BoyowYYQprWWWlCH1GqhkNXy8mKaxkEQCK7zKrdDSp7nWiGlUBjQxcVeURR5mRkj9/f3Z/PJT3/2TzBGlpaW7OxSrzd930+TfGtrK6oFuZS9xYXF5aXl5eV2u/3qq682m00/Ct+6dtX1w3ave+/2vfF43Kg1EQAhxxouhDECPBiM8jxtNYOoVm822kHkD4fjyWTmUNpuN7MssVppm87heU6tVtvd2ZFSPnn5aUqp4yDXdbe27k0mk8cee+zixUfWVs/82q/92sHhvtG6KAov8MPQ11ofHe0pqR3iTCezmh9gRrgUcLLytuenlIZhy64m7Z06LgMAS3PWWgdBQFiw0FsazaZ5ntfr9Wd/5GOvvPYKj+fdbjtNc8tSYYxhA4PBYDQarSysMuaKQmNGhOCgYWlxhVLKmBv4kV102sLhaDRZWlyZjqbWvGw+nxujiiLzfX80GhCGqUMmR5NWq4GZaTRr/f5hGLm9pd5oNMjixBjluu48nq+dWvN8enR0eHi4d/rMxura8u0bNzud3sbqqe3t7bjUfuDO00xp4Ye177z4ktbwwz/0yYWl1StXrgyHw6c/8NRwdNjvHy0vL2KKJkdHCqTrup6HhFZlWYZBDRNaSWV9/cJ6rdtb3tjYWF498+V//9WPfvSjy8vLb7311s2b16OovrK0GEWBMWp5eXF5eTEIgm63yxgLgoBS+tgluri40G6rwK8x5t+6eW9v99B1HEppHMcIGcnFjWvXMaYuC8q8ksT4Xr3IRZocSakAqFbYIRQ5Ukv1+utvzscpBqQ1IvjhAOXy8jJzz5dlWVVVVZYAIDlvtRrtdhsBybLMcbzl5WVbO7RLc2ufAgCUMs/zrIGd1loLGXr+9Ws3CMVhWDNGCa7sVtBCWr7v80qeBENTu4aWUtpCCGNMK+j3+0KIc+fObW9v9/v9lZUVxpgN3+j1etbcnHNeFLlSmlCqlMrjYmFpcXV1lUslhR4NJwhIs9GuNZphWBN1XpY8ztPN/f3PffZnsOjt3rlOmk4WkXg2TNM8TpKF3hLnnJfpylJXYaVkGc/HxiBQWiPAGGswshKI0MBzMcbT6RQ0dBvhj3zs4wzrXqf91OUnT589v7Cw+IV/+a9feOHFWZrXFhaI44qqRIS6rjFCFlmKEEJhZPkyVVVFUb3RaFRVBQBaSGwAITDqPeTuWmokAbRGwNXDmX7KqOk8gxVqNBNSCmQ0KKnzkDigdFUJLpQCozUSBpelsM69ZVlqZQBhh1DMKAJCGCUIa6arqnwPeApGw+Hly5cRQltbW1mWgYRms2mfFKVEKcG5RghpRcfT1HPD+awo0kxpQQg6f/58yaujwR6hrBTxsx/7SP9ocz4br65tINX92h98Q0qZZGmDtGq1xniaCK6CIKryQinFqJsleVUJhFjoBbmZBYF37tzpU+trL774HMaACcIEnT1/5u7du3me9xa6vFJHRweALMmO1OuB1rrIK9/387w0Bklpg3cIwlgpAQa1mu0sT7XWolRaGiGU1lpKXZalMcoW806fPn3u3BnGyNbeJudlmqZ5nuaFIIRgTL/9re/s7+0ZY9J53mg0oigy0iCGAjewS2crvLX5inmeF0VRlqXjUFu2sZEDR0dHdjGMwQ68DBBEUSSVQACz2Ww6nWKMjRLKHG/vAcB33Hq9rsCkaVoUhRAicD2wZByELKsa4eMsJiuYsNV6W+PBGDuA86pUSjnEsUgKAADSCBsD7/RPzt9N3gSAL3wB/u7ffY9OA7C1BT/1U/A7v/OAFYDvw/veB1/+8rs/HEWwuvrAEWP+MHtireErX4Fnn33AwaDdhl/6pYfbU3xvG43gZ37mj/hMlsHy8ruv6tatP+KvrlyBW7fg0qV3jjjOu40d/gPu99/8G3jrrQeMnhGC1VWo1R7yeSkf8rwA4B//Y/i1X3v4V0gJX/nKA3BzqwWPPw4vvvjwz/+gmnoQFZlO/0NOIiWkKbTbP5Ar+mO3P/knof5gGsuv/doPzMojzx9C015ehr/+1+H973+g/LC8DI2HpckBACa41+vNZrOqqgI3MNpYkYTWGmlkQBGGhRDxLJZaeIHrB948mR3TZgFZnNrKwMEgY4yoSYSQLYw1m01jzNjMLcQJoO/nELquy4DaFRqhyAHXAgJCKOZSizWgY395IipeVRUhlDHmuq5WNjXXnBChTviYtVoURZ7n7O/vM/eY2UoxqdVqYVjr9XqgzZUrV6yO3mYMGAMYYzDWAgIDHJtmEEQRQkYZDJgQ5DgUIWP9BPBJucYCc1Zcb7Fd12WEEEwAY6yNZA5ptuqccxthF0VRxbkdPKWUZck9zxPCQFExxrQUBIiSxhqYIKSszCWKIt93kyTZ3trZ2toVAhyGiqIKw2h948zd25u+8/AnSwgCZHHeY5t+OMaaNcAJg6SsMMYA+uIj5wFgeXnZ5pUlSfLii8+//PKV2WzmBb6F1Syj3DoCe55XVSVhlDGmhCKECMGtoYRdKNo5634h05YNarXadDrd3d2nlNjKpQIjquq+DF1r7RBqJ6myrLIsMxi5jj+bxXauvE93s9mPGFMhKsDGQt4Y2ywHrUAJIYyh2kgA0FV1TJZEx/OddfrgXCpl7JRn/9zirUmSCCXr9bq1W+Scq4ZUSiED1lHEou2IHRPGMcYGgTGGOSe+c1ycsOBtiIXY2tl+5dVXP/jBD7Y6zcP9I0IIxkAdRhhVSsTx7FhPJoTlIhBKrWC/0WgQh6Vpig3cN81Ax44lys7LFgQUsvruL0UIaVBaHUcvaq2NQUopwh6+ETgG+I7dQaAsS4OkMQYRXPKq1WoVWe66NM/zb37zm/YpTCaTRqPBGJvPkiQ+sNsfAk4yzwmGMPTKsoQGaTbaVZmncWyMmk6ne3t7w+HwjTfe8H2/3W73491ud6EWNYPA3S0zQnxpIE0zhKnSoDREtYgx6rosCn2lhDaqLMswDB1CsQFsoN1sImQopbhZT5LkmWfeN5lMbt++bXcrRVFIrQ/7/UajyTnXGjY2NhhjH/jAhxhjUupWq8WYF8ex4zhFUdrYZDus2XFGCGFHRWtfFgSBMTjPc865NFrspnY8LMscUeJHIWYUMLZE8slk6HmBhRSsHpQSx3X8er0+GAwajYbv+1VVaK2VVICMAkMcV3FhDOr1Fu8PMlYAraUijFLiFFWZprk1BohqtU67LaV85LGLk8kkTeZRzS+K9Otf/+poPJhMJpPJCGHA2HQX26NB/623X1W6WlzpuIHxPafVXAqCQGs1GAx830+z2AY5ZmXm+a7vhUUhrN1CGPq+H7JOwy4px9OJ1bjv7u8lSWLZwL7v3ieb20EmKUolZVEUDiUYQ5rm1nIkCEMrVgDAi8vLDvIDL7p7Z3t/1re/p61gGWOsaw1Flh9NmvVGt9slhI5HU4zpuScuFEWRJElZlvv7+9NRbIV6jipNZWhZlo7jtNvtLMswIhZKmM1mFtuy9vNWONxqtYbDoUFAKKGY3Llzx/MdKSWcRGlb0x/rG2gf52g0sut4SikmxKK6QRBUgnueyyt56tSpMPRfefXl0+sb+0f7v/7rv95aaK0urV66dHrr3rZNH3Jd99vPfevNN1/fOL168eIjQqhWs7d1b2dzcxsAV1XpOOzs2TNLSwtWWjKeDPf393d2dghBKytrQkhkwFqFOMwrOYmT2erqaqNWK4oiK4qyrMqyDILg8ccfC1yv3e4Ojka7u7uEETuLK2Uwo81Gkzq002koLTgXg8Eg8E49dKTQUm+srXMuDg/76NioHhhjDnWzvDpzZv3SoxcdQpHBLqGEkJ3t7TzPNed28jDGKCWw42JMMSV+GGTzGQBgAGJAnoiJLGvJ7mcMAvtO2pmskuLg4CCK6pRSJbnjOIZzdBJJnGWZHYmso1YURRlCvCjteqISJQFEKZVc8KryfZ8xxqvSGEMo0xorLQAjBAiQdijTBhswxmiMECPEDpJIakSJErJZqxdFwShDGrIsr6oKu3UKqNLaD4OCVwisFQfBGCsEABoAGawIIEwJxRgL0FoSRl3X9WR1dHvzRz/y8a++9cJWPPQjjxFCtB7sH3qtZpZl/dHYpJxS6hGPGjtjMSklI8729vY46bsh5qrUWm9v7fp+TUnI0ziOk/kskVxpDcZUGKyGRWvz8MLjbDY9fS5YWVnjXAqhsqxYXl6tqgoZvb62gQmMx8MgCMbjsa0JlwW/ePFiv39YFEWaJpubm91Wux5Gp06dQQgdHh5ijJUS9tHX63WMUZqmZ86cabebw+Gw1e4SQqbT+XQ6rSpuMGRZMp2OD49Yo9FQXDmOMx6P8zzf29vL0pJSZ2FhIcsSx/F8L+RpNZlMalHr/PnzZ8+c/9rX/uDatWsrKyuf+bEfm81mm3d3MQar+plOpwhBXqTW8lIpRQgqyizLAsZcSmmz2fS8IEvS3d3dCxcufObHPy1E9a3nvtVdWOx2u3fu3OkPDm00RFYkGGMhKmywtdh3HKder/thANOp5HJ5ebnXXbx27RrnCiGEMDJCTadTQyoA1Wg0ypJTqnwcWvRnwYuKnGc5r4WMMYdzDsZEtcjzXELI7/z2F1955WWryYiiiDGW5zkBsn1vm0asHkVSyuFknGXZaDQKw3Aazw/6R41WM82zf/Wv/lUcp/PZzCgAbRBCxpb7pbT+ZUKIJMuFENPp9MyZM6vLa1n69e985ztVxT3Po7RIkqTX6xljkiR5/PHHozC8e/euXYotLCyMRqM8T6uq+uY3/+CVV14+d/aidT+YzWbMcVyX9Xq9rd2dra0tSqlLHUYcCxJ5zK2KkhDi+77nHKMMnucAgNa6Fka1Wo2Q491CEASdTodSahBeXV3d3L2XlfLpp5/GGJVlefr0xtLS0iuvvFKWfHGxF8dxJeVCp1tJMRgMOOeM+ccLIwRhGJYlz8tSKQUGu66/vX2n0+6eP3/+jdffStI0DEOGcavVCgIPY2yX70JWUiHrMx4nM0KQ5YM0OvVaPcqT1MrthRCe5xCCtJZ5kSJkKMWEkIsXHwm8cD6fHxxOllfW6u3Wtetvyyyl1MGIfOG3/s8PfeCDn/3sZ7/87393Pp9GUbi3V42no3a7XVXVLJ57nkcYOzg4WF05ZZUrrVarXo/2dzfjLO32lrO02D8ctZqd3/rX/2cym89mswsXLrRareFgAADNZnMyHb391hv7+7vMdZqd9mg0Ojg6zPN8Z/vem29eDfxIVSbPq06716i3LCm4KvIsy7IsazRajLF4nlLKlhsrGJGDgy1CzPmL51qt2o0bNxzHU8p0u93AqcVjkRVCv4fH6nAwyMrbjUbjmPeqIApqAFBVFaOu43iW2iOEyPPcui1bsqTvB8fzLyDX9aQ4DtkIfKaUIhS7LhOiErKyaWaU0nq9jhG1E7Rd3zuOo42sqioIAt/3tYLxeDwYDH76sz9j68eWZGHZLlyK2WyGyHH4p93S9Hq9JE/r9TrGNJnPqqpCHlJSa60nk2ngetP5jDjM9RAuzWw++Ykf/vhinQ2Pdscj06hHa2trnhtVUp7UM4wmWkoNAGVRGWmAYGMMwog4TEkhpdQGVWWZSfjo5ctCiIyXkUNPnTqlMXnxxZf+xE/+ZLPd+zt/9+9jRMJaTWIshIiiyMEonc201nGe241NVVWEMNd1KaWirOzrgAxo/fAnhSmuipIQhil6L04TZmRze+f9j1wyGOc5F45GgVOWOfIQ0ZBWhQClAFHqIIYll75Xy+IkjjPAQKkjtXEY5oJTrOVxHAJ7L3Ne3/c9z0ynU9/3rbKy1Wnb/llVpTHKLtLSPEcGY0095lLKQMK5c2dOnd949bXXMJFnz5298srzL7z43Hw6ydO0LPNOPeCcnzt34ajf51y6rttqtQ4ODjrtXqfZun375qA/sqpezY0QQknwHNrtdt+++ubh4WFRqU5nseLFZDIJw/DUqVOc89u37xhjXNepqgwZVJUiSRKM6XyeaA3WLsYi0QhhBcp1/dFogjH4vi+RtT6kZZkDSEppnvOsyGezmItCa7m8vIgR6Xa7CKGqKhqN0KpuldLdTs8ahhqDRv1Rs9ucz+dJktkCDEJmY2NjNB3N5/M8z+87EpZlaW1mXNeVUll0WAgJGoCADaEqy5JikiSJXZUhbQCAUWYrN/dTPbWQDqEeO9b/3peFWvailFKbY2NH3/dt1dNCSL7vtwJfSmkhfsdl9jV8Vx+QEl566QEscjSC/+1/e3iH+e72uc/B7/7uA1lwp04Bpe/2GXjiiQfowMbAr/7qHxaFBwB5Dv/j/wgf/vADnNaf/En4l//yj3YcLkv403/6j7740Qieew5+4RfeOUIp/I2/AX/lr8B8/p5/JSX81b8Kv/qr8P73AwD8638Nf/tvv/sz/wH3CwB378Kv/ir8d//dOyAjIfDYY/D66+/+5FNPvds7G/5QrNm269cf8HSu1+GXfxleeeU/1hTi/79br/fuusXu7sP57z/AdngIf/kvw0//NPz1v/5OZ6D04Z0BAJRUFa8sRlYJgQ22rheEEK2lLUGlaQoIAGkDmjHmutT6rVnwBWPs+67vh1VVFXk5HA4pPg5psJVjSpllAlozijD06/U6gCl5kaZxxQtjDCbMjkv1el1yYU9+bC5PHYLwCcANYLB1FkIIOY4HAGWVWogzSZKN06cee+zRLMuSLLZODkqqNE3jON3d3WWEWs+HMAw5l/P53BjAiFos8n68hKVcZOlxVEmWSTue25nabpktYc4OiVYhauFvxhhz8AlKxZNEaa2t/yEAUMa0MgRT4tA0yZTUlBGMQXKulJIyZYxmWWJAYQw2ma0/OEIIUcKklI1GnTFGiVeWPPBrGxsbZc537uXQfciT1UYjhJhjWb3vRhjNcfAGzfMcCLErNAu/1MPg61//+osvvpAksZ3BbfnB3rX95Y0xXuBb6joACMGxtc0sS4SQnUrsl1rail2t1Wo113XzPK/VagqOgVqEIAxD13WP5xel8zyXUiJkTT9QVQmLWxljgVYCgKTUUlYIGa2VS10bJokQovSd0EJKKefa8x1CSJbnVkymHQdj7LkBAMRxbPd64/HYwqZHR0fWYiXPc3KSLYQQarfb4/HYOjNIrawMCAO6X521QZcAYGkTismyLK0WkDCilGKMXb16td1uf+ITn/jN3/wXBkFRlTiNKaVFUVRVZQ0cwjB0qMs5NwiKqtJgCEGgNDaWMm/s5VFKqeucaMiOXcUtO9sizvd56+ZEYn5SvDl5j76n2R8XIaSUZi6zlptSCTsalGVJHYYQEEKSOLNONvf9i6vy+EXgnFPHpRgoc4yEquDjwbAWBpILpVTkB/s7+7zivuMrrjjwZJaUIkWoV6/XDo9GtVrND1uCg9F4Oos5l4SQVrOjjfQ8try6tLu9I4UCAN9xKaVVVdTr9U//2KeuXHmJELKwvDAYDH791389TVPrTjmZTF66ciUIApsGSQjBhFmW/Ve/+tV+v7+0tMIrJYSg1EHIRFEkhCirynZaW2Wxw4JlTdl8Zsyw0EobbYTQRlJKbb2hKDKlVFmWvhdMp9MwrGVZhhCxGg5KHBtTL4Qo8qreaKRpGtVrLg4IQVoqz/MwQWmaAoDWutFoAMDh4T5CyHHo+urafD4PonCIxoDR2toadZ00y1599VVCyCOPPNJqNjnnnueWRVYWSX94JITodDph5N65c8PzAowxEGi1a8sr57TmQqZRLQjDaDjo2z0sF+XR0RHGeDqZl2WBMS3LsiwrXik/jLIsK0u+uNCu1Wq9Xq/ZbgVBoLVGBjDGh4eHnU7H932r9gYAO2xWVcWrgnPMCLavv+M4CJE8y1zP87ygckRZ8u7ykhFgocJjPgRCSpmqPFa62C3GxsbK0nIvTdN+f7CyshKGNc55NksPDw7cyI2iKKH5vCwdCc1mUx9qisBREpQy1neeEAJAhNAYK8YUxphiJ/Ai3w3tCj4rEiHE4uIiIQxAF3kVBD7nZb1eV0ZmWeYHXtvvVFWVpUVRlVILzz92hV5c6rjMQwgd9o8YpVEU7O3sBUHQ7Sy1Wi2C3fF4PNpPRdr3aKvTXvb8vufDPM7398dlCbs7o0ceaTcbEcGYUNjauek4dG3pFEJoMh0kyfzSpSc45/fu7nKuEKKzWRJFiTGmt7CklEKIDAYDUUkCTpGVRVamaYoRVcpQhzFggdNwGJ1Pk3iWzGYzxiho4UAktTQGFBdSir2iAIOkpkUBLgV42DaTIG8eV8aYIpeZkhZLBYlMpWvc++RTH9qg7fPd0/v7+06rrY3c3d0uBXco1RhLwIgdW/Y0GjWHEV4WSikpte97ABiDAYQcTCsDFDBoMPi4FIZdLITACBsw0uiyzIMgAISElLbgppQigBijxuj7w6XtbdT1OOfEcd0SGWMYxtpFVVVlWVF33MjzkzSl0hgDiHoAWGtNmKO11rLAxKBjN0OEMAFjhDRYGcYcJY3r+IwxJTV1aRg4FSOYUY8xyQVjrkMJBWyUFJXxUOBKwNgIpRFChhCuOAHiuC6r17xWMyvS8nB6cW39F5/4kX/w5S9ohx1Vse/7Nc8xSEees7G6gKQ+PBwgDEpKARKUxgSXvMIVOJXLHOfezT7nCGOcVgXGuJwipWQCsTFAHGpMGYah1tKAUnJcf1jOcJEnb75xFxHMHDPuD5N0nGVzi/vs7u8BQJkXWoOo+J3b/9APiN009nq95eXlo32DtDl7/vRg2J+nk16v1+pFe/v7BpQTtbDnQgEI4el8PpnNjDHUjRwvdBxnnuSLyyuMMd/65OOrAAEAAElEQVT37925s9hd6fV6juOMZlPP9XyvFvkNWUCz2Wy1261uZ2dv9+727r2dvbLMJ8PYP9VMp8k+3pmNk+XFleXFFTC4WatffuJRrYTnuaNsniVpMp1jxVzwA1LXUgeE9pphFARaawHa9x3HJRVHfuT8zM/+VJ7nL7780nQ6cxz3iSee6HQW3njjja2tTcVzAGCOw4XCGI1ms6IoVteXETNh5AUhqdcbvfbKZJxIaTBVWgMYjCgrcsXmSmjL7Cwdz1M6n8XTZ555ynFcSh0DmDGS5Qkeq0qmVhoGHHU6vSwV8bysSsNoWJUKgFDMOq1u1KqVZc6hmo6G28nc9/2FhQVK6VJv/dTa+v5enzFXLejxaHr+/Pnbt+9WRen7fpqm1nuOuPhYSQ3sYDcX1fWnn36y1zul1IEfRB//2NmvfOUrVTG/cfWwrBTGzmySfvxjn+SVmk6njouLKn7yySeNMTdu3NBgqqq6c+PGT/6Jn5rNp9N4XnJ+cNCvR20HAqo9oihCLnUchinV4ACCsgLmEYoMNkHgZVnmUEYx4iV3HEdy4bLQIJDC9BYXD/vDqqqqtLz01OVms1lNBRDoDwdZmSnrA8vFxQtnPS8YHg3b7eaP/cSPX7ly5WhnDJgapYw2gCQi0Gq0kcLTYTof51WmVQ+dPXWmPxxubW1xKURVCIq1lJRS33fPnz2XpPN7W3fjeO77rl9jhnInAolRZ605j6dKp8wBQ3l7YWk4HGokfd/f29/xPE8qPp8nHnNc13/zjWud9sLhYX9nb+j6Ua/XC1jDsowBmTvx/itXnnN9DYiXVdaod5r1aD4cq6LKONcIfC+cTCbpXLUeDdrt9mAwKIrMJDotlO+3BIe33nxzZ3vvIx/5SJZXm3du+4F30N/b2r2TxkkQeWdOnWm3m1rDyvLyZDqdDPpZkUlRGl0F0cpP/uTPbt7devutq816yzpf26lwLAQi1C5uKMNRPZzP59PxpNfrNGoRpujU6mkg2HV3qyrzXbaytKDa5NUXrrl++F58WINhYXH5/PlHbly7PpvMHMdZXFyZTm9kec6YIoSUkzxNU7uxzLLMGMOYI4S02jqMcV5yAG53mIQQVJVKKddjWaIRMogAQGHzTCilmBqlOXMcOOEHASBKvCQuHMehDnYcL8uyr37la45Dm82m41IAmM8SoxGvJHMCQFIq4/tBXsxcP1xePeVMR7xScZzE0xhr0wiDnfEOL0rKcJYaLWlYC6DgWZn93pe+9slnPtRtLJqyFBX3wkatt6gNLiezezduiyJ3CS2ELMu8u7wYhCE3Vo2IHDDEGC2VJNQwXxOPAPzosx9cXWg99/WvFUWmtBhPJp3FlV/4ub/w4utXBegimy0v9VQi52ncW12rNZr3SjGPU6orU2RBven7PtYKG7a8sLi3t3fsQWGkZZh8b8OYSKkxwUYjacRDP+M2u3sH1V5ZBFTP06nvME9qyogoC4mIUoANRcaUWYwdh1GUjCazo0xjwC6lUeRTN8sKo43QoJEhBGEl3ffAmz3fm8z2kzShjLY6rTxP9/a2683G0eBAa+15QbvdmYynNUYAII5j4xHMaI2FW3v7blA7tXah28o2Vjfa3fa1a9ey+czzvDfeenN9cbHZXDh1+ny90bp169Zrr72RZDljzubmllISEZcglMzmDDnGIVUuAcD1a99+4aUbd65yDY1u1yBEGMmSxCDIinKezhElREMtaMzHseDCGG4USC0BAGOgzMEYGykBISErjCFN4yD0Pc9BWHs+mc2TouCMUcYcJXXg+Xlc7pR7hFHfd/f4ABMaj/L+4LDdbYVNDxlQQjLiuKHXaLQWFpY2N7cRZdT1mk3mOIFSam9vLwyiLM13d47Onj0bhS1bON/f3fE8b3FxpSyqZJ6CMkXG7TIMYZJXJdVYCLG8vJymKedCaY3um6ETEwThqVOnptPpeDSyxTyNtQbtIKq0dhwHEDKAETbGmFqthjFKkoRio0QJWvMyIeBSQoyWNT+Mos7+/kGSJFpiiok02GiN4b347gAASfKedg3f3aSE3/1d+FN/6p0jZ87Aygrs7LxzhFL40R9998mfegrOnfsjTk4pzOfQ671zJMse4jHNvse77Hd+5/uFUD//efjMZx6gzT75JPzWb8HVq/C7vwtvvglJ8hAe62QCv/Ir8J/9Z7C+Dv/knzzkst/lvbC7C2+//X1dz5tvws4OnPouOsonPwlf+MIDt4Pxsf30dwPxv//7D7mSd7WigKp6wKXh8BAc5z8h3Izxu59Oo/F99at3NcbezeamD6/T/eDbz/7suznFn//8/0Upha++Cnt7sL7+zpHv7Qy2DaeT2WjP9TxKKUIneJNW0kgAAK2RwkEQGGLiWGWV8IihVAqh0nRKCImiiBDCOcdYOw5FyEUGK6URQlVlyrJEBoHQDnWF4lIiRrBSajweRVFAKdJGCoEAQBbc8nAlV1Ul7MLAAp2xSimlvV7P9/2dnR0plLkfVYcoAGBirANnms5rjYCxS+1u4+BoFwAIYUoZLQ1GxG6KKWYImSQeS6lPvIMrC4xijIsiA2MIw5RSiqiRVCllKnXfFt9W8gLPBwMACiOjtOKVQAhJLTzP0waVBfE8H0Az6p05c2Zvb+/gcC+KIgvPWVwCAHzPA2O01Mz1hBagwA18YwwloZTS9TylBKZUV4Zg1O512416UeZSyjyrhCy4oNbR1XUfHuSrJJacEowRM1JKUJpSigEZpQ3SAFiBUWCkEq1Od+P0aSll4DrdVvPa22984xtfn81mYRgGQXhM/mUucx1bJjdKH2NMiCilhJL2tFprgjAAWFdMRqgxxiijQQNF9vY9zxOiMkb5fqg1aA5agx953c7CcDyYzWZWYEcwo0AxwqABCLW4s80ftrxay0O3giQhFMZAAWOMVXUsvqmEAMCeF5ZFmWUxQshBntEGBK6E0MyANo2o6XU9xw3mswnGhEuRpmme59RhQRAURSGkCsOQMqcsil6vN5/ObFae7TlVVVkDNIvzKnMsDFVKuUGAENJwTJ22OKxS6vq1q5/5zGceu3jh5ZdfXllZZRQrLcuyjKKo2+2WJe92WRzHru/5vl8eHjoYMcoqKD3XBQBjFKEIFGACFNvUR6wQGGOUllohclLUuW/zQgjBFBmktUEaJBjw3mN5aV8BrjnGYJSM/HqcV6CNMZpSBtoY0Bpjm2GeZZmSSEoghHIubOEAACuliNJa66oSZS6U0IzSWhj5flgVzKV1oyVDEhFeY2EYhPPZPM9qU4zqDEes2/BNo9kyCMXzdDavajXm+75SmZS81eotLbaNLrbv7RJDNTBtnHqjyRxzd3Nz4+xqu10fj8erawtVJYQQS0sLV65cUUpogU+vn9o9OHzr7RuTWWmrGkVRhKFfq9Wmk7mUSgilFUaYSamtG0+tFt0n3Vshr63fH+v7Dda8jKIaAFCPRFF06dIlI1WapgcHB1U29J1QKVXlottaUEo1ao2DoyMOKkmSyA9AmdFggDEGjQ52+yurS6ISnFcAuN1uZlkGWls9a5ZlgttUM2c8HTUajW63Mxj1HYcC6HQeTyaTdDLbWFoBLt9+7Y3hcJimqdahNqjbPsN5CQiisE1wJkRVlvKHfuhHzpw+u7m5ub15h5FGMitFkbhuY33t/O1bdzfv7ft+2Gn36rVTp091tdbj8cQY4rgIDJZC9ceDe3fuUkqjWtBut6eTueMUnhcURVXkfCDHGOO8FIwxRBgvi3ma+K7vOS4gXXIlVMXcABFPSaM1IHCMQoYbBnQ2mi50lmQl8jL3XY9zQYAy5EgkDAChOPSZ6xDmENd1X3jpeRvW3TYcUUOVs7ywokM+moyVLHq9Fvdz4pJWJ6L1ej1N09lsZm07rH+5FcwCQK1Wc313Z2ebENJqNW09DQBms1mr1crzfD6fI4BWq2GMAaGn06mUEgBTSqMoWllZmUwHFqrXWjPmjuYjjLFDGWPs6aefGQyO+v1+yctmsxkEkdZ6FmeDwWA4HD777LOtRivJkls371S8EEKNdw9ObZxJIauqKs8KShhGtNXqNBqNN994ezTa8/3wAx/44LVr13u9Xr1et0zqOI573UUpBEbUKH0kBtZ4VEophcZYuK5vNNjZ+tSp9bt37sTzFGMqtMBApZSEIa5lmgov9BHBVuJkjG7XH77gEoLvb25hQquyNAoocZQytSBs15rZfPS+p55+7NGLtmTX7XbjbFIUBeccM7BccoSJUsruW6ydiqi4MUZL5QSetXm0X6S1BoQAIQs0oJM83zAMkUGTySSKImvmaGHKOI6NMVobQqyrPbIUOXSSbwsABksAkFqBAGNMKbgvKtf1bRIonCRU2jKdxSzgOPfgePpBQDA+9mi3Naj7JWg7E9iR1BZa4SSawDpN2wiI+3VCW8rjQvhBYAN9CSGHh4dPXLrkfZVxg0In6HW7VVkGnh8EgY9Ru9E8ders9t3d/e0jx3FkdXyeej26dOnieDrMitQYVa/Xq6rK81JogQlmzC2KAmmNMc7z1HVdIQVo/tDn++lPf/rcIx9tdzuj0ehrX/tanudvv3XDRmVSSu2NSKE+8KEPNpvNg8Mta0czHo9Ho5EWUgixtbWVpPHRYBRFASKQJHmnWw/C0BgznU5XVlYsX/X69euNVuvcuXO3bt0qiqLVagVBcOvWLetyYx/ELI6llOfOnHn80uWjg36e50LKG7dvVYIjhKJGfaGzttDprq+u5XleVVWaxZcuXRJC3L13m3NuWW9ra2u2qKuUUlpJpSsuOOd5njtuaNm4k8lECGFMkGXZ6urqvXv3Njc3pZS1Wm0+nz/33HPWjH95eSVPM0JIlhWO4xRF1Wy2XNedTqfdXtNxWFWUGOMkSWzJnQvFmKsBGMGtVstARRBJknmz3a3VaqPxQEo1nU6NgaP+8NKlJzY2LnDeKfKq0eCO42xvb3Muer3eysrq1tZWHMda69lsprWmmCwtLRkE48F4Mh0dHu6/731PPfbYY0WZe64/nyd3726OR1PPC1zXqyo+Go04L22qryU1a60dwqyukBLiOOzg4GB7e7tWCynF/aMjBNBsNlqtdlnynd1DStwoil566aUkyRyHpqnyvOiRRy5OJrO9vaOy4A5jkevneW4A1tc3bE3u6OiIUXdxcZFShjHmnBsurRaBUqqNSZLE+kNZUQLGYIvqtnJrENTrdc55v98fj8dIghsFSZzavUeSJNa3N45nnuc1m00hRK/XCcNwMBgcHR0VhbB7CYcwqQRCUBRFPk+HwzHGtFFrNhqNPE1dxjSgqigtUbcsM2NMlsSi4kvLC5zzJIlb7RpmuN/vLy53V1eXb929HSczSmmn0zs4OLSJmlbsP52NMUZRFGitR5PZcDgEgw8PBkVRGUM3Nze3t7cpglqt5jjOYNhfW6tZe+JGo1Gv15IkcV3flriDICCAjEF5XrZaznQ6LUs+m81Go1Gr1el2u3GcAIBl7F6/fp1QVxuVJMljjz2WpnGWpFtbWxhQlmVKKYANQuHW7XuPPvbIpcuXRqNBUZDTp0+Ph5OLFy9ig7e3tzEQIcTR0REmYIxZXl5+4oknrl+/fuH8o3mef+Mb35KS+4Hruu7LL7+8urHearZnc0MJwogeDQeAQAjhhw83hi/LauNUe3d3dz6fW9rjjRs3siyzXJ48zwPvONT3vnDPBogVRRFFked5giu7zm42m/adBYAs44xRpYTjMam44zBKaVVVS0tLQRCORiPfCy2EXVVVFEVVZXlSPj3GA7TlU3e6rY985CPf+uZzo9HI98M8z7WWBoFNK5VGT2fjLE8AjAFZVYXR8uDgQFbc5vxopVzmGYM0YIxgfzre6++vtZuO49SjGue8v39w/fbtg4OjPCkIQozgkguNNPEcPwgowlpr0MbKMAkhqeAYcQDQAATjRq2+sLR469aNg4ODjdOn/l//xX++ubVz5cor586u7x72+/0+WI/jqmJlqYVUUvZ6XcIopZRbfwZReX5oCUHmmMDz8FmeYGJ/ds/zpHo43IwJEtq8/ubbH3r8vKF0bzA4s3HKQaSqBMZKKlMKrowWotJKzQoex/GP/PCzW3v7tze3iVcFfoRNobVBBAPYFRS5P/u/q82TxIv0+vr6cDhsNBpW72K7SpqmS0sr9lFGYYgQSuapy5xarWEMWlhYSNJYCtVsNfqDo8WlhU9+4odv317e3d195Py56XCwt78rJK/Vwnq9bhBJ84K5zjyJPc/FyARB3fFKjVItFULIcdn+/n7Ycnu9njR6Y2Mjnia2c+7u7xHmJEkSx7EohZbKdV2MlJTSOnHbXYQUwtrfW5vRqioYc1qtlrVTNMYu1fx6vQkASZImcVbNuGXJWbXEzu7udJicv7QW+BEA+L5vnYWsR83u7u7BwYGUMs/zdJ4WRWEXGwih3d3dPM+3trbq9fqnPvWJS5cu8aL8Z5//p81Ga6qnCaRSStd1Z7PYd31ecaWUkKbX61kFDy9LNwjMSSR9rVZbXV21EgprPKpOpGnIRQSObTQocThP7fCOELI6BkpJnudSam2EfTGVUkrp+4S+Y7fU9zANv9+0frfF8EMb5/ClL8GP/dg7bgP1OnzmM/CP//E7nzl7FjY2Hvireh3+5J/8o0/+vS3LHkJtfpfdRFXBl78M/OFLsHe34RC++U342Z994GAUwYc/DJcvQ5bBbAbb2/DWW3D3LuztwXwOZQlaQ1nCP/pHDz/n2bMP4MUA8O1vw8HB93U9h4fw3HMP/PmpU3DuHNy8+c4RreH69XebS3zhC3/089rdhX4fTp9+58jOzn9a5FTrd7tjt1rQbP6xDaOfeuoBbB0Azp+H1177j728P7I1GvDZzz5wZDCAr3/9P/n32nZwAN/6FvyZP/POkVOn4OzZh/i9NBp1ly4BgGWo3DfkvU+QRAQIIQqMLXgLIarq/jLg2BbWbqbsZkRyBaAIZgC42Wwn8yQtKvNOTh0AgN0zMiD2PBYds2J/zrkQEk72aPfRusXFRTtWY0QwIXZzJ4XldSLOeavVynO2s7PzwgsvEIrW1tZms1lZcgDleS5jLgKslJJc2vuyCVRwkvJ3v2IHAAgdW4UeW95jcBwHAOzFOI7DXKfMCyFEq92wkyOhdDjqx3EcBAFGDmPMcaiUcjabWfW25YPbJbT1hbBL0zzPwzBwHK8s4yTJKMUA8OijFxaWl7797W+GUUBpg/PSGDOfzxvN+urq6nyWvv76m8PhEOMJAhaF76F4VhKQJtQRumKMmeNZD1NKEUZKGbADudYrKytBEGTzWbPT3r5397d/+7en02kY2lUftv6fhB07nGitrcmvtVywT8o8OC/Y27SwgJ1qqUZlWVqSOwAURcGYiwgBA1b9fO/ePQ1KSmnnGiW1LXhg/E6wof2p0bFPsboPCyBkAIg+ybGVYB+x0bosy8r2Z8t1pYjYayiK0nVd6+qbJIm157Zabd/3hZLWCSSMapRS3/fDMCzLwiZqFlVpHTbsytCeGQAwPXYq933fOvxKrawTur1sDGg8Ht+6deuZZ565cuWK3Z5keS6EsEo+Sp0kSewZiqKwiIfW2iY0WC9ZQojjONZvxN4vpeS+W7Q5+YkspmEhEcqYMYZziQhWSgnxnjOc/f2LInMcWlXVxz/+Q8bomzdvWkOCosgYo5yX0+kUAOr1uuWk23HAjiFaa/sLO47jB54xRgmZ53kYeBrMcDImyBCE7YbXIKgEL6ry4ODIWoRnZakmU+vf0my2rVONUsoYFcfxrVu3tJZCCydgrWY9jtO19aX9g523r7755//8L3UXW1/84hfjeVqv1zmXk+s3o3qNEHL3xr27d+/O0ywIAtsTkiT1fb9ebxKCJFez2YxgF2OKMJJSK1XZ7a3txveHONsPbVnuPvN9cXHx8acupWk6n8+PzRiMsVAJ59xualqtFgBoKTUcD5g2vUYZgxDyA9euDA8P97vdLkLGdV0FQCmbz2PLxDfGaAV37txzXPeJJ55Q0pRlWZY8DMPxePL45cuPP35p697mzZs3x+MxY6zT6cZxirHGGFzfrdfrQeDNZjMhEoRQUeZ3bt2s16OK62eeeebsmYsWNnnh+Zcdx9nY2GDUHY0mlmTdbreTJMnzTGsNGLU6bcmFEAJAT2ezZrNZq9WyrGCMUXZMP/IdlzjHm80wDF0nSJLYcRzXZbaPGaNcx0EEgiCI51NLtsuhjKcp59yKBhDCWmljFAAYoy0/glI6n8+zLAWAU6dOdbs9i+BVmVhaXKmcjBDUajeQRpmjS1Vyzql1he/1etZQwnXd5eXlPM85r4IgoJTEcSy1Yq7j+h7GmElm3SGLophMZmVZzgGCIKAUcy7LvKjXm3bzubuzDwAWKLHr+42N02dOnR4Oh3GalGW5u7sbBMH6+vpbV98ejyeM0eFwPByOy1KePr2mlMGYKqHiWdwf9ouiAGOa9ZaUcjIe7u0eEexmaZ7FJQFnsbecJcW3vvFclhTj4WQ6nW5sbCiljg764/E4T4soinrdxWazeXQ0QIh4jmMco7UWQlUV93wihdrc3E6S5GBvf39/v0iLwK9VuTTIKKXDKFRGMEa8wI/jlDHa6/WkkvAwJQTCOIpqGGOGmRBCC40BA1eORs98+KPnT5+ZzWbUHEeKbW5u3pdtmpOMe621HwRW0ZzPE845Am1HakZZURTqxN6eUGowSG37gaGUIkSEEIxQzGiapgu9nt3n3H9Lq7zglLfbbXxswK3fEekoIIwCgHMyWwkt7Azt+4Edc5HWGhmEjnVeyNhy07FIxDarIjnmXJ/oRr97MWEFEcjmC0iptSbkeAFhjHGIixACm1CsQQNgjF3fA4KV0MP+4PzZp/8fP/5T/8dX/21tof7U5SeNUgd7e+k4VUYrrihltajheXEyyyhylFLaaMdxTp8+vbSycHC02+/3FxcXPc+7cuUKF4I5pB7W6vVoNpv5vqeOIxfek7xxeHTEvOnRoH/r1q0f//Eff/rpp7/0pS/943/46wDC932EZM7VBz70/o9//NnpdLq3f69er3/iE5+4efPm7/3e10PP0VoXRdFstwHjeiNyPW82mzkuteKpbrczm80MAhsMaD2MTp8+fevWLTt5lGVprVrBYM/zEMqQVv2jYZa8OJ1Ow6Bmq7ilKJdWlp++/CSA3tzcnE6n3XZrOp3mZVbyArRJkvnS6tIj585PJpPt7e04SRBCnudZboExyHokpVkhxLGgyRizv7//o5/+pOd5L7/88qlTpzzPGw6HWmsp9HQytxiQ5wVCCK0g5yVjjtVeuT7TWu/t7UVR0Gg06rXu8GiqtXIcRyltEGLUU0oxj1bW3TIIOp1OksWex/I87y4sePOkqqrhZFyk2Xg8DsOw025bFKzk1XweLy0t53mxvLyyurpWVeXgqJ9lmeN5hDDPjX7mZ/7E2XOnX3rpBQu7I0QEV48/fplzce/evSTO7Fg5Gg+OV1QACKFzzXNW0lWLgiCoLfSWdna3ZrNZr9fb3zskhDxx+WK/P3zszKPXb9x66slHMcavXHmNEBLVAiGqqqr++W/+K88LlhZXjErzvOR5/Jv/4rdW1lZr9dZ8lnDOi6wMggAAyrJoNJp5nvsuIxoC6szHIwBsFUNGKt/3a2HEGLXlQPuKaTB5nid5FsdxvV6Xhdrf38cUe55n39CVtVXXdSXCqxurRV6EYXjhwoWrV69+6UtfbjTq3W53Jzk4YZRQpPnm5lbUDK0nb6fTwRgLIYxGXuB5nlfmOaW01WqlaaqlKIpid3dXCdlsNqPIP+gfpNm82a4BQOj7S72lPC99P+ec+4ELxrcOMwBgq5uMMcfxHC+oBVEURZv3tkcTrpTKE4MxRFGU5zkA+L7farX6w74BRQjpHxxMp/NmKyIIL60sH8zTo6OBEMr3a0KYJBlVVdXtLC0uLh4d9be3Dyh1HOYV1djx3IuPXfhI84Pf+MY3JpPJmTOnRMV933/k0bO3b99eXFycx+PBaOi4OM/TL33pS7PZTEqnHjXyPD996ky31eWcX3v7+mw2c113Os0/9amPf+hDH3rjjTeGw2Gz2fyhH/5EmsVXrlzxC79Wrw+Hw1mSrq4uU+o0alFViRvXb4E1KISHgwqM0n6/by2k4zjGgGezGSFsZXmZOc6NGzfgxKBQCGFd/5RSViFrl1nHGa0cW2WinSZc12WMOk5oeZRg/wtghUonTAHXPhGrVNUajDF5nmOMjbGZ48jOGnAcgM5tt7EbgKqqKlmtri7N45HjMa0Ko7ktYBtQRSEWe0txHE+GMUGIERLU/WpefOO5b//5z/0pylzX9V974TvTODGELC0skiVmjZkc3zlWhhYFAoIxRoAN0tqA9UGURmitAwQEQTKdcSEIYUqpM2fO3L515+vPvzCcpa1OW1M2m8Z29smSWCklZNWsB816DQiuSo5AayE5B9cLPM9L0xQhBBobeDib2Bjtum7FpdbavAdEZAwEUeP1a9cjny63avuDyera6aYfqKoseGkA27HaqjSG/cFHPvpD/80/+vy//e1/+1/8xf/3cDQq4l3P8zDBCBkEgBn7brfK723T6XQ+n9sUHXKCAniOmwA52NtfXFyihLiuSzDb2NiweIHruoyRNOX9fr/eqCFkfvM3/5kQotNpRVHUaDS4koiQ3YNdjPHi4mK73WYpE0JgjHzftapky0AxCKhD8zz33M76+np/fHDQP5jNYo/5vhcqyTkXPK+KQhRFQRHNsoxRSh1HGU2A3J9zq0ooIe7H5TmOE4bhCQCBCGPrG6tBEKRJXpbl2trqbDY/POhXVSGEGA1HYeT7gfuBZ58Mw3AyGWVl5jiO1YFWVZUkyVtvXbVmHWVZ8oLblBuEkJC81Wp5YSSlXFxcvH79ep7nZ05tUEo3t+4VeQnGxHH8xBNPDo6GBweHCCG7kyGYzaaxleNghKjj9Hq9brc7nU6VUvt7ezYom3Nul1KWz2H347ySCCGMKCaQJInv+7Vazc6e9xdLdrFn30RCCEIEThBteBA5+o9p/f67gc6f+in42teOM83abfiVX3m4AfF/QAtDWF2F27ffObK+/m6+s5R/jDhBAPh7fw+eeuohSYlBAEEAvR5cuACf/vQ7x7/6Vfj7f/89vyII4Jd+6QGrXynh+vU/xvVcuwZCvEMKrtfhz/5Z+Ft/64/Ahb9PhrJ6uM3bf8L2hS/Af/VfvfPPNH03cPz9tKp6wMV4MoGvfe0HcG1/ZPuJn4DugxYHn/88xPH/FV9t2/Xr7+4Mv/RLD+kMzHEUt/wc5rquLWfamRcAOOeOxxBCquJSIselWmsltOt61KVKa62QlIJzCQBlyUFbB15j3ZDb7baWOplUdsSwxaoTiowSBbc7srIsjUGe5+V5WVXCGivbwdMuDywFam9vj3POqIMR4pwjhAhmACBLrR09HI4ATFWJt9+4trTWbTSbFicFAGSwMcgYm5UrkGEnMOYDo5mxyagARmvXdTHFlo1br0cW6bOUC9ssOwQjWlSJvVqjbaY3IIS0llrjPM/jOFZKIYwsdHWf2gwAFpVzXdfusKIoAoym07HFp+r1iIuqLPOyzA2oRdYyoAeDQavVarVa7XYzzw+UNJQiAw8vPCstMQYhK40AwMB3McaQQZQyS4AFAytLi+1mvR74rkP39nfjOG41Gsx1EUKEUDstajC2JAD3TX6VOgHuv6sMiRFoo60VlNacc4MQ0tjy8KyfRhRF0+lUKYEALNFWGmm7DbEuLgoQ1eQY6cAKzP36B0KIEIt6o5PaPEIIYXOcv6eUAgoWBICTQD8wuCoFwoaDlkY7gC2Lcf/w8PDw8MLp82ury0qposhtcpg9bVEUhLLj3oix4zisQY0xFvqwCEOZFxZIsXYZ71iCANTrdWW09SDlnHuOCwBFUVy/fv1Tn/rUM8+8/+bNm8beyQlwLKWcTqfW1iPPc0KOQQyD0EmsAqKM2NfHguOMMXWMZhAAEJyrE5NrWyc+NvfQgFBp6efoPYqL+KTizhiznf/u3butVnNldcFuSBE2rsdCEna73fl8bikpCBnO5YlmHWGMASPLKqsqZi0Z52mSJNbIAjsOk1KCQtyoIk1BG88LlNZJlk/TlHPe6XbLSkmj0ySvNeqOQ5TWeVmoTE5mYwxGmopg5gVM6PLNq1fiOH7i8sXbd+/8/jd2xuNxEERVJV3X1VoHQXDhwrkiLuM0K4rCdV0/iKqKW6DLvsLWYgUAMKEIYQDtui5CyBiFkOGc20wdO+AAaKWE7VSWm+V53mQyuXv3rgVJRFnZ55imabvdtomp4/GYcx74YZ7noLR9OygjGCG7X+ace57j+35ZlnGcMlZIKdM4trmIZSUBIMky13WVhuvXb1pOz87OfrfbzbIsDMObN28NhwPqsFqj7lBGCD537nRZlmmuQavpaJjk2Xw+xxh/5StfXlroTiaTwyOMEBqNJjdvbGNMtre3Z/G8FjX2dg8450qZPM87nQ4huCyLPM8ppTap3k4WGgxjxG5bsqzgnLueb7ux67pcyel0qrWWShhdFkXhuDWEkOX4cy40AeoQXlXGmLIq65HLCCvSSmttSeWM+S499h7B2JYhRbfbRVT3+0cE4f39/eFwbIwpZN4grTAM62s1Y0ySpFpoaEkFIo5ndDwe24wvuzNcWVlxHCfPMxvrV5alMabRqPm+n+cpQkjIyg43aZpaBnGZFxjjMKw5juM43tnTZxDBNlp3PB5HNY9S2mg00jTHGD/62MWnn3nfvXv3RqPRcDgcDAZRFPleOJvNMMZCyDKTQeDJSvb7wwsXLkynU88L6lFTS72/v1/kvNPpUDIk4OTJDIC8+eZV3/drUWOht3Lj+s4Lz18hhCglKDlC2Fhk1rJ6W83OdDotyyoIfCGUlLwsOefCaBQnmVJqf39faVkLo3aznc05RpQxgrQRssLYOX3mDFc8CMN2m7999Xr/6KDXOd982JLLaNNtdwhh8/lclCJPCgwmH88Gc/G+n/h/yqKajab1KKrX63EcHxwcYIwppVpIO/3rE6YPRihwPUkLY4yDCSEWR3buj/X3NyT2nTn+KwzYHMfyBq5XlaJRryepjd917hOKbdXO9ifHcVzX1UJK0PS75G0IGV1qyzgOw+OBFWyIwwnny+bs2UsyxqATAN6cZEfYscAOf3CCNd/nRGN0zIm2sJqdQTEl9w16lL0kgheWl+LRqExNVSazw8GHH3vqKy9863AeX3/rWlQP6/V6nueDwaCqKof5xDB7fqUVxhhpJIS4fftmViSNZs3zHS5KrcQTjz++vbVfVZXnOxcvXtzfOxRCFJl1yJH4PYR+u7u7h/2rZVkORsOPfOQjX/jCFz784Q//5f/PL3/xi1/cureHMIR1Ly/Sf/mFfz4YDOxWfGdnBwAch0gpgyDoLHTTNLXTcBiGXJSz+dzCTFmWRVF04cIFG1Owub397//9v//Qhz5EKbVogud5VV5ZcvpoNOJFGUURpc5kPFNKK6W63W5RlelRvry8PJ1Ob968mcbzi488Mp1Op+NJp9Nk7DhriJelRrq7uHDz5s3JZBIEwVqvN51OZ/N5z3FQSQER32erq6uMscPDw+vXrzcajfe///23b9+O43h3dxdjzCvpOE6tVgOAe/fuUez6vg+g87xEBqRUh4eHjsO8wJWq1FqcP3++WW+PhtMbN68ppYzClNLqOPpJlklRVllvqRdG/tvX3ppMp0tLnXqz0Ww29vcO7969u7mzWavV6lGklJrP57Vaw/OCPCuPDm8uryxaSm+tVtvcHCulkyRFOKtFzU6nOxyOb968effuXTvKeR4TQgVBWJYTzrnrunbhRRlzXdeCuRZy5ZwvLvW01sbA0tLi3t7eufNnfuhjH3/99VePjo5On1mu1+vW0xYAJpOJUgpjOp9ljuP4XqPf71cldNuo1VyqRXIy3HMc72D/KIzq1HV2d3drYd3qdOx0GMdxu94IGGuFIfPcJC6DIHApk1JmWaalchxKCLElB611UZV5nsdZaknQgRuVRRk1a0mS3Nsqw2bo+67rMT9wb9+4QzH2PG84HAutVlaWV9fW03FeVhXVjFGwvUJrrTXkWVnkVafTC1xn2O9XlXCDsNPpDISw6/J2s7WzsyWEwIQxxgB0s9mcz8fTJB8cDauqSpL5uXPnojAYDodLS0vtdns0nBBCFhYW0jSdzbL5nHc6RusKY2Iw0giiZiRU6TiOkTNKIQgCKbjv+47DJpNJq9Uaj8ebm5vpvMxzAEiXFnpKGl5JjMTy0ur25hZrOoFfy7OqXm8888z7X3zx5eFw7DDPD4Nmsyml3N/fnc+n0+m02TR37tzBgJ55/9OXLz8uZBnHs95C98z59Reef2l1dXVxZfWtt672jxLf942G27dv50v5qVNnDg/7kotaPXRc2mq1Dg8P53EslRqNxzdvXndd9gu/8Llr165deeUNW8A3BkkhhVDD/lBK7QeBKCTGD7dscxynt7QISs95XK/Xq6JqtVrD4bjf73ue57quUcoohRFyGVPScCUBwPJBhsOhhaHtwCuksCOtnSykVI7jSHEclq21pJQOBsPlZRoEQVmWTuAUBSoLbilOWh9H0UopKcVSSiGr0Wj0B3/wB/NZYleBjuMQ4rfbbWVkVRVxlghZlWU6j8tut42J0UYQRAXAxUcfXVpcef75Fyl1EEKSyyD0q7x47pWXf/ZnfqLRaWfpPPC89fX1U2fOllL2ByNCWJFXikgMiHOuhWKUgEbGKKmNRrjgpSJuVVVKiWbNdQlNppPd3b3pbLa6tsFc/87mvf29w53+SBHXYHbs6GcUYzSKPAXKYR4CbZRWglv9aVFWjpu7rosoIYD+ECjZovlWAoLwwykqQgnm1VjUfO7VN55+7IL2fK7BD+q54Iw6JyGEWmtECNVaP/3003dv3vt3/+4rP/qpH793785LL75YpkUYBVwJYMgn1HE833loPjGAQfNZ0mw2kyS5du26UtJ1faWM9fu2SzVjzGwyX19fj4Uoi0IpxatCVBwAet2m55KrV6/mWdJutwPfT5NkPBpJzTFFda+hjZwns7KqtAapFaVUapWXhRCi4kJqJbW2E7zv+6Ph5ODokCuZpWVh+Hg4Kqu84hxRstBb4dWwSAtkQFJsoPA8T2tTVSVjrp0FLIHI+hVWFacEud6xro6LEgA8cIUsKCOtVkNrHcdxrVabjGeUYtdjnudmWZHneRzPzEl80Pb2ts20WVhYms/ncRy7rmtrcpbPIqU8e3aBj6bNZrPVagyHwy9+8Yu+69i3OEvTeJQvrS9cuHAhS3Ktlef5CCGGXCFEkiS+F9oNicWayypPk2Q6mSRJYr/CKIWO3Uht1grGGBt9vHf1sJvGCcXEd+ujwVAZjTFGcExmt39lZVIA2GO2Knyygf9BtNkM8hyazXeO1OvvkIvzHFZWfiDfAwBA6bvBvu/lySYJTCZ/jHNyDv/tfwv//X8PZ89+X5//2Mfg6afh85+Hf/NvoCgecrZ3xQ8iBPfu/TGu5+7dd9tNrKx8v2Tt/xu269dhOoVW6/ifjQasrf3xfhAAuHz5gX+Ox1CWP5jL+0Navf4AsxgARqOHxGD+J2137sC7dAirqw/pDGmaohPcsCiKPM9tdd+cRJx50vMCXRRFWuQ2XakqK15ldoq3AKtUx1nBCCEAVRbccTwp9d7uPrcpuFpro5VSAMc7MiGkUFxpYTHlhd6S74dSDgmxKXDUalstqKe1Pjg4sDQ1JbWV3AkhXMdjjIHSeVUaY4TgjUYjDH1KqeBcShlGgVYmns+FEAQzi0hi9M4W+ruHMkLQSXqCuf+9ltOnTnylLWphMQpCiN3mux6yUzOjLkKoKDJCkL2vYzKj4tb1VWu9trYWhuF4PE7T1AKRtrznuvIv/Od/4d/9u9+5fv36rVu3ijezIq0effRCt9t+643Xut0uofiVV165cuUKYFKvN0+dPWU0mk+n506dzo4e0gEWF3t7+6D1MU+LWNPeE5IWAQt1SjD6icuXFrq9rc273/7G83dv31laWrKyYGWMEPIYLXWdNE3tHlBrLeWxbuY+ZG/7gzHGgAFjtDZJllaCW73a/YTndrtdq9XSNFVKGaMJZoDteo9ijLWxOAMmhJDjmQiBUcaAMdo+Lq2xBSJsjojW0hijjb7Pg7ZosNIGIcAYE2wzxzQjDAAC3+Gca6MVV/1+31YypFKe69oHQQgRSloc0HLSKaWe6zoOI+xYimeMmUwm9ussSZlSKoVkgf/dncqhDAAWuguTydjC0DalbHd379KlS9evX0/TlBLHd5Etb9sEtul06jiUkONauO/7WVlYJpbjuhSILdtLKR3H8cIgSXNjw9gxtvA/nIgD8jw/Lh7DMfMvDMNTqxfzh8WuWnDAEsOFEGE9rNfrB0eHUuWMMcCGMKy1bHa7i4uLN27cIBS5ji+EYEzUajUrhayqSihe8QrAoZQCxr7vG08pIbXWLnNq9XqRpzNeuWFgSdwimXuMzdMEY0wZwph6QcQ5n+m0LCtjjGXFdrvd1bVFxpjQySuvvFKKmHnk4rlHdnb29g/3V9dXT585T6h7/vwjy4tLFke+eu2tIKh99GMfm05nr7z6OsaO0oAx0QAYE8/zPvnJT1LKvvLl35tNYyGE45AgCBhDnud5njebzQip6vUIANI0tviy7ed2kx7UwsF4uHe0m6bpwsKC67phGE5HYyllo9EghNTrTYsRBUFQ5KXtbHEcX7p0qdvtHvQP8zz3/Mg+oyiK7itFJpOZkSrwsRAySQpKKSGIRH6j1UqSpD+chGHo+37JpUFkOpkPBgMA47puo9GgQH70U5/yAnc47L/66qvMdRYWFh7rdJIkufLKS4SQ2WwSBN7hYX82jTFC4hGslJrPYxvVU1UVlwIZHIahBSXsW2/zPOI4BgBbYimKzOZUU+rMk3g8mdqcFVuXUhQLITrdVjzPiqKQijsONccKEoxAMeRYGCTnIs/L0GdgsO/7C53lXq93eDjsHxzB8ULUKCXKsmw0Gkk+azQah4fpxYsXHcdL0/RwtMcEGY/HR/nhYDxABXapm5VFrRlceOwxuruzb6MCm82mfSW2trYAjOd5WZZ5nqO1skFYhJD+4LDRaFjE2fd9m61p02m11nledrtdC7isrKz4nhfHsdKVJThzztM0vXr1qucGnHPPDbqdhaOjo+FgXKvVuKgwhnaru9Crzp8/77qu4zJsMNJoNJpIyV3XD4Lo9o3b5jzChoZBA8E0iiIjTFVVg6NRVYiNtRX7SAIv8BwfkPYcv6oqSnAyT6teKYVwHKfXWwjDYDabDYcjozHGx1WyjY0112VSCGQwY5OqlKARKI0xVFWJkImiwPVd13UxgaqqlHo4FWEex/P5oeM4lVCgQCklcw6V3lhbafn16WRS9wNCCKHoqH9gJUJ2CLaDqQIjhPA9z9Zpj0UEjN0vRAMAdRjTWohcKoUoNsYIrewIlee5S11CSZZlvNmM47jnde6nOdmpGhCy1QWlVJ7nruv6jlsKbclT5rgpjQAAbGlUKcUofUcyYxRFREtlYWeMMaPHdCShFQJglNpKuKUO3W/3ec3HM8HJ4fsbJ4wxlMj3fVulpIxpIw2CIAqBEeIwJpzZ0fjUBy49efqRg9e+s31nS2LdarU67SYyCCFcr9fL3PL1KKhjOL7RaNRqtZu3r9/bLBcXe/WoliRJWXLAyg89pcRgNBhPhpbligxWWjoPR4SgLIpkfGiMqdVqr7/++mw2293dXV9f/4Vf+IXJZDKZTF5/9bVr1256HlteXi6K7Ny5c/V6/fDwcDgcGqmEVkdHR1rrihde6ZIksbGhFvonhKyur8VxbK30V1dXJ5PJ17/+da11s9lcWlohgG7evJllmbV9cBzP8wIMyLri2MfqgquUeu2VV5XRoJWVIJ07dxYhdO321TSLXdedjGdZlq0n6+PxdDSd1Fvtp555/81r12/cuBFF0WwWJ0mSZbm1kLMqJMdxPvKRjyAgL77wcuBHYVDzPM8mqNoCJkIoDCOruCGEGGUIwlKp0Sh5+pnL7U799On1nZ2d3/u939MKg6aMMSONBmyMxBi3Ou0sn/o1B2McRP4Tly+99PLLQRR86EMfGhxHurWZR6qqkkYbrbM8D4IgCMOjfr+qqk5vkTFW5NVkPMOI1mqNWq2BCQsCjzG2tbW5vb3VarXCMPT90ILRz3/nRcdxKHEwxgeHe8vLy8+8/+n19XXrTXF4ePjmm28+/fTTS0tLZVlefevt4XAYRRElzuuvvxnHKQA+OhpgRO/e3XUc7+joKEurIIgIobaTa6031s9wLieTuF6Hhd5iqxnWBoPBZCSNfuqJp7I4i6KgyHObIkIIaTRWQaq1xeWFZvtgf/8+PGHXc5zzosjq9TqltCxLfCLdsqNHlmVGIurSOI5Z5CwvLw1nI8sI5ryseLG0durwoD+bzZrNZq+7IIRI8wQMGAA7f0vBOZdKqYXuYprmb77xtqiK/x91fxqk2XWeB4LvWe/+7bnWkpVVBRQAYiMIgARJURQlS6SlEBWi3N3yhLstyRPt9sgeh6cdPW6PwxEdlh3R093+MxEdYfeMbXmTbW02rZWiQIniAgIEUAWgFtSamZXLty93P+v8OF8mCKggkTbtUN8fFZm3vrzfXc49532f93mfJ4oCrbWqBaVUS40sWszmgecDQJyEjUY8n8+c1RXnnNJib+8QwMwW86Ojrzz6yCNuEsAYN5rx0YC6d5lQUtV6Mk2t1XVZOQqPlEv234UL24vFQgpRloW2hlLXw2Ubjcbp04/NJ9Nbt24FQYAQrWvBGN86e14KUdeqrhXBvtF4Oklff+3Nw4M+9wLACGO8sbGRpikmMBoPnAALIUTUZZYtrr39FsYGYblIR8Px0SKdRXGQFeLG9bdbzXXO+Z3bdwlhhJCDgwNjzJNPP3V0dIAJWaQp86ir22GMDw8PF/PpykrvkccePewfLeaFNWilt/b1r/7+JEnOnD7NKRdQKQCjHww8GGuPjo6KNMOYeoyfO7d9cH/fzeppmnqep+yS14MxJphRhF0BP0kShJCzf3HpVlVVQghKOCBTVRUhZLGQlFIhKkJIGPmUMiPEeDhCCDneq+d5Gc0opc6ZxxhlLXKhtlunJpOJE9R2PjwAGABXVYUIWGspBgAVRoHSpVQlIIuslrLe3jonhX711dcXswUCHyHEPK606G32BjujV65c/sGPvoAxObVx+syZU5WS0+HIaFXX0hpksa3qGhlNMFVCEMwYY1LV0ihtQBqpLWKEMoopAgrY83iv13vmmWeanfbuwVG726ks3R9PtFLU46CVNYhSTDBQsE6t0GoAqwEBwQBaZfmi21lxJPE/gkpMGTcau7wFEwwP4hsabYAFjd76SFevXH+743uXhOZ+oAofU6WEIJZxAkWaYUCNKP7aV776S1+/dTgcdFe6zzzzbBw3XvraV/I8C5NIIV1JQTml/MEyLADQarUIIVZZjDHGPE0X7vyTJGGM52lmtTHYjEajNE3dGs8YsR5zfkF1XWot4zj8yEeeB4CXX35ZylooEQQeoQg0BgADGjAussIPw0WeaS2dUzTGGJBFgBAQhHBZVhhRjAxCZDqZzWYLSikhjOClTJbWmlEspbQYgbBKKVFL13TCCMWAMKFgLMVMgVJKyVpYZHyfE4Krqlos5hYBocjZja6t9dbXN6V8u38wripRiSpuJIxR5y/igtUwDO/cubOxsfHQQw+9+eabi8VCKUURdcY1dV0rpR577LHxV77e7/eFqGaz2QceefT+/p5zS9ZSJ9vJ+e2Ld27dns+nzWazLEvOPYyIs9AMggBjHMcxpfTatWuj0cjd4WPoh1iEGOWAlnM1pwwsjiNPSjkajY7V2EutdVUtUSEAy5gPS/YWrutaCLXUplQWIYco/TF6Gt/mphS8/DJ89rPv7Dk6gulxJlxV8Ou/Dn/uz30Xvug3fxN+7ufeS+OdTuH+/XfJQH/1q9+xGPGtW/BTPwWf+xz82T8LUfQudeM/vAUBBAH8lb8CP/qj8Lf+Fty69a7/VQpeew0ef/ydPYMBHD0ISHq/bTCAweBdmPX/qd38jo7eCw0/9BD8/u9/B0cIw/eKk+zs/OdQT/7Up2B19V17/t2/+6M8JP9TbIMBjEawvv7OnldeecBg4Jy34pXpdCqEAGOQta7WJaW0x5BrXUtrLcNk2VeOfa21MZpSagxIKbVWlFJKaVUXBDP354Qwh1QSwhzDlBACxMEHS1kGaxBga4yZTqfj8ZRz/sgjjxwdHbhIQMoawEhZB0F0IrbpgGYXnXLmW2uVNEYaiy0hNPDCbrdX12VZ5UrKKOhoreezqWPAWq09nxlxkm++gzUjhBgjWmsXVTpLNGd4NR6Pq6rCgKIoIoQh5DQTJGOsqErf97OsADAu93TX5Vp7XbXVDzhjkUs/XReXg/VP8lOXvCwWi1df+Wa322004rxItVa9XgOMGg/77XZ7Pp/PFzMHmEhtiiIzxg/DcHWjh/CDi3/GOPdC6q6cE6a11lYQ6rjJBgBEUV76wCN/6lPf/8abl1995ZXZZGStdqopGGOhlOeBg9edI9xJagCATsiwCGFr32l8Ofnh5JI594wxeVFEcWysNUa5myON1lpTwijCJ5EPdum9NnKZYjBA77jYneDabrxZa43B8C2oCEIIwB7/l6N0WwA4fnDymAhMtNVKa1mINE1XV1fns5mzAXQ63e4qpBAFAKM0CkMH1kdR5DgErrfPdQM7chscU4MJIU5FxDGKFos0SRqLxcJltVrr0Wi0sbHR6/Vms1kjabkbNRqNqkpUVcU5zbKMUuqU/ay1+XhUFIULY1wo7qj9Fi059UIswWLuea7P2zH2lFJOuQsBwfQdGOSB2zF3ENdSE4LW1tbOX7iQFdlkmroKkHu08/l0Pp+Ox0POfc655zOnCosQYYzleV5LcjKHGGP8MARkyiwPPY8xVmmZlpW0xmCEOcNaIUKJ59G6JoRYrZRByhhtEKNeXcmqqjC2UpWPPvbwhQsX6roEP5wXW2fPnuWcd9o9zCHykiuX37h06VFGoxvXb3s8AoDXL18Zj8df+r2vzMYD5xZW1TVCZHV9fTQaBUGQRNFikdaVFFL3VteSuNHvj/M859/CrnCKZC6dtNa6ooiyBlGshfE8TwhhwRJCptNpo9HgnDsadRiGaZpPJrP5fO66RqwFSqkzhHTQvNYaE3BMcGOM49Fba7Ms87yABaSuZZ6XgFmaV51OizP/8GC4SGeeFzgF7SCIxuOxUDIO4lqUZVmGYdhutrXWL7/0dT/0tKnng+m9e/cefeQDP/IjPyJV3W43Xar7W7/1xWbcWVtbLyujVNlur8znc+ebzTlWSlWi7rTaxpgkSaIocqzEzc1NY8y9e/cc1w0AnHY/ADhMZrFYuAZWykhZlpEfiVo3m03u0SDwpJRCCIAldkcpretyf/8QWYwsif0GQUxQIcTSndUd3w3aNE1v3boVNfyzZ8+cPXv6ySefVMoIIS5ff+3ayzeQhaLMMUZAoKoKFNn19dWO7dBnn33WLTAAgLCt67rT6cDS2dM4l/OizBaLRTqfG2Oqquh2VzDGi3kmhGo2m0rIqqoQtgihXm81TedlWY5GoyiK0jTlnD/xxBNCqL29vX6/ny5ylwZHUdTp9IwBJwaKgSilh8Ox74ej0aTX6zh1Uc8LiiLjjNeqXumsHB72Dw/7rVYniqIkaWZpXma5tdb3QyGU74etVkdK6XksiqL5fCakm62QI4caYzCiUrpylI6iqJG0yrLW2pZ1AQC+54HnpbPCGIvssu9ZWmuVKsvSC70sy4wxrVZDCVn+YVKEmykQKStZFJUBTAjRtSRKWauefuxxrIy1ELbDZrOZp2m/3z8pRDPGHHyvrKnrutfrtRtNq01dVhhOWleItcu107VmKK01LJnFx5JbVgiRJInPfSmlJHKxWARB4OzRHVptpHIvGGNMSiXKKvT85fqBwYIBAta4dMYtKkslWYKx+xaEEKXEWksJt8a6+MAeKzq5M3Q/uM0h3W7ZUEoR5D5gtdEIOfdCV+A1S3mpYzkkhK3VUAtBMeaeV2Wpz3lZi/xw9KPf+wMvvvw1FPkFUYs8K4vCw7RSYnVlnfMl2EcxxRhDZVutVq+3CgZJCcPhuNtdmU7nVhsNNgwZIXxnZ0fWEmPieZ6slRHm/WhDxkIcxysrK2ma/t7v/Z7D0y9fvnzhwoVz5859+tOf9n3/1tWdykqE7OrqeqfT8zy2tra2uro6m836/b4TDXME1bxIhZRudbegfd9/8803AdD6+jpjTFTV2tpaq9W6c+cepbzT6czGk5NHsL6+Tin3GG82my5IWizSRqsphChyYYwKguCRDzySpmlVlbdv3/Z9/+bNm71eryiKMIwBYG9v79SpM3/mz/yZq1evp2k6ns4x5UUlSlEXdSW0ogj6/b6Tde71ehcvXvza1742n89brZbjCFBKrUVKGYQQ574Utq4zCxoDdu+L1OrMmVOPPPLIcHQohDo87HPOZ9PCRczaWhcOFkUxHo9bvYgymC2mSqlWu/3YBx4ZDgevvPINAJwkiZRWKIkQmk7nHmWNRqMsa6dV9Nhjj7VarZ2dHdBmPp9XVVWV5Yc//OG19fXBYHD16tW8SLvdHqVUSnXr1m3O/ChMXCiglFJaJEnyEz/xE0LU165d29raevbZZ69fv/7mm2/O53PXsaK1zrKs2WwOhyOfexYMY954nK6tbezvv60V3L2zFwRxGMSOnOKQUymlELKuZV3XnHkYi9FkYq3Vyt66dasUZYKiJ5988pVXvnF0NAiCoNPd0pWq69pdhYPCXUNWVVXIHmusWyultEq6lQDRZVDFKSeMEGy9gLfb7as330pacZYt6roOAi9MQu5RLww6nU6j1bTW7t87AADPZ0RT1zgDFqeLbDKfyVouFotmEtVVRZmXZVmWFWVZulLQ0dGRCygdfa8ZNwEMpbTdSNIiL4qqzKswDsajqSuixHHsFirXsKKkee7ZS48++qgx5vqNq0kSaS2rqsTWV6I6sddQS1dx6Xnezs5eUcjJZBZ6/ubmaUIIsng8HDpPm8l4UVcaLI2iRhgmizS9e29vMp0ZY0ajyXw+n8/nvV5vJW6FYfjIpcfOnj374osvTiYTKcXu7j1R59Yaa8Hzw93d3X/2T//FufOXMKaD/nA2nbthc/XqdWNMVYkkifI8OTo6Ypw4WQZKqTS6FHUQBG9du+a6ajY2NspaXnvrLYSIUmr//mFZ1lIqlwS+T5yJJpNJo9EQpZhMJo899gE3bTp6UVVVVV57HnfNIkYv8SwtBMbYRVdOJdlF2+6vnDMBOvbCZswjhBDMXHAspcQYjDHsmNpjrXXca2PM2bNnJ5NJnueUUkKZcf5mFgshOOcAqChKKWvAljGytrZWFYWTNQBt2q1WlVdRGFJKh5Op1RZjqoQlHqqVZAQEmEaX/87v//4nPvIC9+PVtXVjDMXgeURpjRnBlBliawSqFsZoAGSMqaQQQiqjLLJSSYMpJuBCc8/zut3uZDr6+ktftYjU2mpMjTGeF1DmVVJUokZglLRlkVurGWUUIWEVJxiMBYuMMSIvTMuc6Gmg97cOd4MTIcSpJ9+nvb0SShvbO3V2eHDvYFoWQmmFMKZW1NpIt6AncSyM7XQ6N2/elOu81+shjBfzfHv7AjL2tSuv5WWmQHuclnVR0BwaD/giSrnnBY5eVJUCrAYDTitGVMISE4YhAFbSOC+Hui4JIQiB1op75Ki/P54MKEOc8zSb3b2zU9eV73tIA6YEEBjQgHBZlsYA932ErRCCMRr6ERjsklVMmJumwjCc58QqhIBYA0EQAliphTFmf3+fEBoEnjUGYVxZUSllpAGMMEIYocDzKOVK6bIsMUadVhtTpLXCGBhjRZm6ZJIxYoydpzMExADkZdZsN7XVly5dcvmho/G12003qqfTKaWUIjweDN3cZa1Fx35HTiZ1NptpLRGy0+l06/SZZ599Vn1VCiGiILJN68otk/G43er6vqPLIWyW3KU8z52aDaXUCcHT4/I8xhgZSzBRtUDMRXFWaMUQcz2kYK2TQM3z3JWQPY+5PmKHm9R1bS1VygAAWKyUcg3ylBBCvjtwM8bvtXHD+B1+LsbfHVe33V34B//g20Jdv1NdYLcJAf/yX8Lv/A787M/CD/7gt/Un587B3/k78NM//S7o8w9fbxh+Z+Z4lL73fjIGGH9bUtp/AreyfC96/vjjQOl3AKAnybu48wDwxhvfrbN73y0M30ttns/hV3/1P/n3vmfDGPx3e8g9cDCEfiCEKMvSKOUWa4yo1toaZKxSWiOEpFbWWowpAOR5Dmjpl2WQNdoKqShlnHtS1h4PqqrSWlO6LJ0yxqrKGGMsOFkDUEoJAbVUlBKtNUaIEu5ytSgIMSCApTOE1tqZuNR16eixRVFUZY4xDXzfRaHWIGwxIaQosyCKtDaDwaCqCiEE9+gJVNRux5zz6XSqlDbHEotwTER1UCYAUEr9gAOAtYZytpwJBfI9bI2xdql9TwjxPM+t/q5n1/f98XgsZe1gqTiOHRmw1WqNxoPJZLK+vu7mfEdvdFiku8DNzc3JZFJV1eXLlzdOrZ89exZhu1jM4zhcX1+/efNGnuezmXH8m42NjYjxPM9dVj5fzDg8uH4yGg8taGuRscZaDQQDGG2VNdZaywgvigKQ/eFPf2bn3p2XX3rJY2xtZTX1g8P+wJFtHXKE8ZJOa45lH1yx4R21CkAWkMOYT+6qu6VLM0aUeZ4XALiUXCmllHDtXEIIYwghDLTU1rpHD9o1KLtQk5pja7t3GGMA6FhQBSFEMD1G+Y07SUywQQCwNJw0x0omLqkBAGOU+1WSdyxJ3ABz0IHVYK3V2rjGu6qqEALPWQpbo5RqtVqe5zlbIJcvuIX1ZCy5krPro3I+KK6lySk1d7vdbrd7dHREcO6Q3ExlJ3mWA/e73S6lNCuLY5Bu2SPuyOCEEKt1WZaAl+oi5rix270aUkoXmVuDKLUUgHm0qqqrV6+de3cbzcnm4hYACOIoiqLXX3+9FpUXeJRTJ1YehqHve3UtPM/LsjRfpJ7nOUz8+Bim1WqVZelyNBuaosqtMRZs3GwEQTCZTLDHmnHPEDJeLKy1ylhigQdhXdfGIgu4rmRR1ZWQnseEkJWoPJ/cuXt3OD565pmnk8S/8NDW+sZqHMcBj476Bx94/APTeXb1rbfjuHnhwoXf//0/mM1mhCDGWJFXvu8LqWezSavdJYQNh0Pf9xnzEJDdnftvvfUWxjTw46oSo9HIaFgsJgi52hJxgLITJKmqShrNKbHKScguCZTKSJcTlWVZVdU8S2OthRC+HzrBHCllnudJ3ACAMAxPnz5dFIVjqTosjlICAI5A0Gg0ptO5ksYQI4UCi7SyGFGEyM7O/SDwNjfODAZ9o2E6mR8e9K213KOTcgIAmMDBwaGq9EsvvbRYTKo6A4wY9URV3759+wtf+IKxCmOYzWaz2aIsaotQs9WJJHKKHwiwAxjdOa+sdB977LHJZDabTB3pZ3V11elTu7koDEOtpTHAPNLpdTEirmkDAHZ3d5NGfPbs2RMkmnvU9XxYaxmjhBDC6KnN9aOjo16vd+7s9u69+7PRAoNazLPd3fse9Rwn4/h9glarFYTeZDLp9w9cmnnq1Bkp5WQyMcZYBMaYStYN3hzNxoFlh/2jaqrpxz/+icPD/ZdeegljLGoJyARBQAhWSkVR7Pu+Be24lsaoMPQxxsPhkFKKgDgJdiEEAijyyq183W633+/fuXOn2+3GcQNTdHQ0cO9/q9Vi1BuPx3Vd+37YarXcrVRKCaHyrFBCR2FS5tXN8a219ZUzZ84kSVJVhWv3CIIAXE+EsUWWN5PGsD9cLBaMec4Jx/fCPM/DMHT9PsY4WXrfCeuMhhOHDPb7fa11t9sFgP39fYQYxrjT6RzcP7w2n547d66ZtAghpax935NVSShjPtrY2KhV3e8flWXl7Fyi6MH0Ca00sgAWG2scMkwBPBr2ml1GaStKgij0ff/t69fn0xniJxMiUUpaa52YhuOH1nWtlEP0rJvaMCMWLW2CPc8jWgsttTRODNSx2AhhUkrMltGxm+kIpa4D2k2jVV7Iqg64h8hSioVSLCVyrdbkWEhaa20MnPQZLTMoaxHGGANjxJ3qSXGYcOYZAgDOpxgdmxAaY5ZaO1JaaykmroCHARljCDEnMYcxBrQWtUJAKKVKLdnffhisbmxm8wUygOu6HC+eeP6JZx994ovXXqW9hEUeBWQqEYaeUmoymrmKopGGc44ono4nBFAcx0LVSpob195uJC2ECMbKGhNHsahkaZHRQAjDHtFav18a53GOaHDv3q61NgxDZ8RcVdX169dv3rx5eHj43HPP/eX/x1/88pe//Porb8WtWVmWeZ4O+tNur0Ep1Vq1Wq0gCMq6qKoKkFFuUQm9Vqdz787tIAi0Nq5A12g0Or3eZDJz2hE3btywSsdxnKYpxvjSpUv7+4f9fv+Fj310Pp1defONtY21lZWVKIosth/84AfrunRB1Y1bN1c6Xd/3PZ899thjg8EgCKLDg/5kMtHaVpVI01RJs729/cILL3zjG9+YTqcOYuaB7yR7Wq3WCy+8cPv27StXroRhuLq6CoB3d3eLolBq5IofQgjQIGWttMCAGKOdTvujH/+Yq20cHh4eHOzv7e1RzK0FSnldK6014Z4xpha1A7OGk6PZbLK+uRGEHiGkFHV2eAAawBIA6idemqZaKhUE7h0BgHPnzhPu7e7e393d7Xa7URTNZjPG2GQyoRTfvXPL4/ThSx9cLBb9fr+qqihMMMaj0SQMQyFqKWVVF48/+WRW5l//yldfe+21j3/840EQ3L59+6mnnur3+zdv3sQYe17QbuOqqjzPVC5sNwYRDNZrJN1BMWk0ErC4rmUcxwA4yxZOQYxSaq22Vh8c7ildAgBidDA88oKzzz///MbayuOPfeDDH372t37rt2/evDkYHDXDxnwu+wd9KbTHCUVLY88oiuIwcECYECIIAmWWL1QUhk5uj2JqrAmCQGrR7/ebzWYl8sF4+NTjTzjea5QkiDCM8WAwyLKsruu46depVNIihDweIISU0koZSnkjSgDA44ExBhHKOY+jBiZOulfVdX10lMVx6HncGFXXOo4bRZHFzcbKysrVq1eNQkKoPC+73fbB/hEizgMnbDbaH/3oVrPZbjTaaTqXwll3lmmeNf243VwbjQZlXlRlTikxxmRF/swzz3RWVsuybDab93d2b9+6d/HixccefeT118ssy+fzbDKZGo327x+dOr09mUww5t1u0/fDvb0d5/yWZRnnXNS51rrbWSGE3L17l3HS6bam03G6cOJr3ng8XV871eluKIMunL8khWk0Gvv7h3Vdgwbn4DccDheLheu3ms1miyxDlGRZtr29nc7mg9Hw6OioqqzdIJRyraWUMs+Kc1tng8Coyqr6HdGh92wEE855WdTIWmPsN77xDWTxCZGEAGk2G/a4FQbAVKW0x8plUkpRVY6zs2wvsHbZI0Kpo08qpY/dBS1ChgDxPA/AqOO6BWC0trY2Ho9FrbTWp06dms+XmuyOEaC1dqJ+GOP5fG4MLkuhtfQCHoS8rmQ2z1ZWVrhHL158uMjqZqN9+/bdfFGFYWSMYZgDAOVEG6UReHG8ezD57Rd/7wc+9tGizEpZej5ptRu9nj+ezAjhi7okgIRW1lpCPaGMFIoQopSWRmtjtNIEkJRiPp8311Y8TrNFurOz88EPPXPh4Ue/8s3LWkuKkRBiKax0nIBhBEYrxChGABQxQ4QW1lqlXHjqp2l6El394c11sDrKFX4fSBoAADAiZFosvGa7mJfzvMKYUkwMY55dykcyAlYo36OdVquIIimVNUha0Hl17vxDnZXVl17+6v3+XhQHyBrPf7BmqtGaUppllVLG41Qb5+LNAVCz2SyKot1uZ1mRZVMhBGMkDIM8z6XSnW5Dynp7+0y323UCl/v7e1k+Y5zESVjP6qqqNjfXq7qYTuaUUiCUEk4Ikap27qN5WlprCWEY41rKJEnOnDlTiFzNps5EpSxq7lFkMaG0rioAZJX2PR4GXkhCSul0OueErnRXjUZ1KZQyVhmfcYvBWltVNaGIc5amOcJWKa2O4RhrLUJGCi1EQCk+d+4cQijLspWVrrVLwpfLPQAgDMOqEpcvXzZKORFAQtjm5ua9e/eUUhsbG2+99ZZVeqXTFUKMx+O9vb2LFy8eHBxki+zevXthGLYabcepAQAHTGNLKAZMqQZiNNR1nee5q+47ZhYyS7MaSinnvsFLzyVX/nGFSbfHvbPHAw5TyjHGvhfKY36EMcZ1iCOEXDKP/4gB+h1uxsCHPvSuPadOQRguYV9j4Pnn3/v5n/kZ2N39zr5FiP8cDN/hEP7234a/9/eWmg8XLsATT8DWFrRaEIbvRYEBYGsL/upfhb/7d9/Z84evN0mg1/sOQPBOB+L4XXuee+7/rFgzAFQV3LgBTz31zp7NTfD97+CGnD4NKyvv2nP79nft9N5ve+EFOHPmXXs+//nvTBP8u7L1etBsvmvP888/YDBIIcajI+uYPYSAxa5e5XpWHGBHEDbIYoyxxVpbQrA1SEgJIDHGhC2VcJUyCGkA8H2fcz/LCqO0lAohhrC1BoBgJ7wLS5JyTQjxuBcGJAxDq0FrfXR0tPQwONYIppTGcRyGsRDCNT0PB6PKed27aoz1rNWBHyGE6roOSYAQAQAlzXA4cojnyspqu90WQvb7fV3bE/qq2xxxVimglHKPcs61Vo4ppbW2zhcRwCGGro+eMXbq1KmqqtJ00u12V1ZWnDiS8yVywU9d1yddpEdHRyfQlQvjHT3QHa3b7U6nkzD0h4OjyWx87twWQtZN7IQwhBClnmvEoZSnWTmdTU+fPl1VRTZLG754YCjAGJOKGGUM0p7nMY8hBZh4DrKMomB1tVcUhe/zO3duR1HECNJaF2XmYOLZbLazt6eUwphwzg28o3NtrXVws7s0hMmSK44sAABamggaYwxYFxm61Nhl5Q7Q1KAp4ZRSbYy7Dw61tGrZD+1gbmstGGMQnDyybwWdrbXIWHVMqXbjFgBLuaTBYYyXyhwAcExKE0JobTihdV2CsScgmlsc67qmx9rlLuY0xuR5rrWijaZSivueAyI55xnCjsabpqlbpimlmBIAcAxfhFAcx1LKKIqMcvSshRJy2V4JxF3skspjLcZLQyxHggYAZZdC2A4bccc0xiBKGMZaayX18m4bZYxRUroxf8I9sscM+qqqVKZC/8GkNhe3nIT6WZFPJhPmsUYzwhgbz1LKKGVVVbvbuLG61m63lVJ7e/tHB/e9MPC90BjDGCEktFa7+F8cK/ikWVYLIaTEhEilXHurlBIhAogYqwmlmJCyFnEcIyROajkB4kIWi8XCgszzfJQfNpvJ1tYpxthwOL5/f3fQn3ZapwAIAhKFCcHcWhBCLRYZxrjbiR3F+0Mf+pA0dufe7sHBUbvNFCZ37+6kad5qdebz+WKxz7lfCcUIc2I+rvU/DGNr7WQ+sRhprZesZIxPyOCc+gorzpaPstvt5ovUEaTcq3T27Nl2q3Pv3j2XBZxMCxjjtd6a42E4aR3XL5Ikyf79wySMlVIADtPDRV7ZYxNCN9ittZx7ABYDIIqVEkYD585tUvoB416wlK9pto4OB67KNZvN7t3bDYO42WxLYRaLwgLPi1JKLaVuBLHS0qF2ZVlmWTYeD4+OBotjJTJXPjnRyI2SRrPZzPM8z3NRS2PM2tqa1joMw7W1Ne4xrXVRVe5lrKraze1KGa0Kzrlc6bbb7UcfvrS9df5q5+3Xv3l5MUsNAa2X1aNj5qjinJ89e2Y+n2+fP3fjxrXJZPIHf/AHQRBxznFgoyhACAFYISuDIwBTlvk0HXdb6/T/93/8f4MgCOMoy1IpZRB6VVVZawghVYWkqlutljEmSSJHUuOca50LIeKo0et1Dg/7eZ4nUewHPE3zxWLRbCZ1XTebzdlsprUlDM/ncwAoiuLU5hlKrGO213U9Ho8JoQDINQ8ihDEmjpkVhuHShEorhGwSh5xzB45Eoa+kopSORoNOp/nopUcQQrPZrNlsBkGwutar63p/f39JpsNgrUUEW2u9IEAIYaG1kcs5wsLKyprnBQ6+wRj3er1Ws6mkRseWfRhTbWSWVTzwz6ydaXfbL774JUppq90g8ODEDwESteK+Z7RW2iZ+MB8uLm1fWuutrK6uRtx3hbu9vT3OeW2EU/NYCh5hZLUmhHiUMYpVJa0xyAJaunAiA9a+u0FmOe9b67gwbtYgDBVVQSmNPN/3E2stAnC1AXnsyOfmQYzB7YyiSCkjjdHHOlAOf3HN9e65OANfR6sBawnG9phgb4wBwAEP0LEGuTs9pQxjCANBQLSyCin6LUaumCy7a08WFcevdPmki7rc6qit8eOIebwqKlA2HcxMWj9z6YnffPlrlYcTn1NCoqSJuL5z544R7vjgGm0o4Xt797/6VYsxQZYEnh8EYZpmFFFDVAFlllbWgpLG8wIAoJQnCUH2weWEIq/yasQ5L+scK1zklbGKc97r9QBgd3f35s2b/5ef/LM/+ZM/+fzzt7/yla/dvn0TANY3uuvr6xijuq6zLCurHBMSxQH3PKdeb60djUZVVZ85c7bX6927d293d3fr7DbDzAmTMcaKNEMIpWm6ubn58MMPY4zrui7L8nd/93fPnTt34cKFD33oQyvrK0KIWtVlmTebzel0KmT94z/+424JD4/8PM1WuqvGQF3W29vbbjahlK6vrU6n07LKz509ff78ede//5WvfHkxEUmbraysaK1v3bpVVRUA3t8/dDnwkh2slBAKA7JmWb4ucp0k8QsvvIAxvnPnjh96YPFg0NfaEEC97qqojFaWc66UBowIpRrs/v5+JVNl1M7enjLmoH9Y1+WlS5darc5kMD116kx7tXPlypVrb129cOECAeT0o13R21rt4Mgyy5VS1pg333zz2Wc/2O12Dg8Pz54+fefOnfv393w/qIgwxpRl7dropKwffezSxYsXv/GNb1y79pZS4s033zx9+vTh4eHm5inXa9Np95TWrky9WGSdVrsoMiEE4+HOvcOqqjnzlYStrTNCqKOjA1fZqus6jPwkTOIk3N/f18pibIWS3W7zhY/+qSgO8nSxu7szODpinGxtnf3oR1+4evXa669eDonnpkSrtXVKasY4bMsd2f1A0dI9gzGGMA2CgCLKfFbpJUE4TsJe0j13bqssy6oqtdRKgu/7dV1PpjOEUK/X2Un3rbWAEbJACBmNJkk7CYJACBGGcZEvHHUREROGIcMewq4LQfo+D0KPc7pYzKtKdHptpwjcabQxIoxy14dOaeUIFoywOI5/+Id/2OPhtWs3FvPs9deu1KI0Rs5mDc5xGIZGLSNgz/M63ZZjqdTSTiaTxx9//GgwXFlZ6TS66eIrR0eDOGyKWpdFfW++K4RSyjgLR1fUrcr4/IVzhBCMQUrpecHm5mZV5nt7ey+++OLt27c3T61nWZrneafTsUaVRb3SW/O8gqDs3PbFWtrd3fvNRrixsQGAy7LGFtbW1qbTqVMAZ5wMBoMoitzTceT3+/cPkqSxvoYHg4HnsboWw+FwbW3lhY88/9GPfM8v/sKv/MHdlzwevh9AabRut7pKiDzPu90u5zxPC4RQkWZSLpsEhRBKKedlUWcqacfdbvfs2bP3Dw/u37+PMXHttFpreyzR6PjRVmlCqVYaEKrUUsDESANgKCVOnTlOmr7vtVqtoijqWl2+fNlJB1JKLWgXcdaVdMVOABCi6vV6R0cHZVkeHBxFUaCkzbKC1ezNy9fKom4k4DF/ofP5PKUIayM59qTWALaQtecnNPD+xa/+ZuD7zz3x2HxyqHWJESmKzGhZF6XQxsVVeVlUVU6oDxjVUkgpDViPcamBRkFZ2ht3bm2sr1ZVcW7rzCe+52NSme7qysVzW0l75bW3buTloqolgGEUA1g3cXncR8YCAEEYKIVawDFVx3PCfxhZ8+B8AANyNjXSaG0ezG123CWpJCBiMUgLWV667lGrnRwKTsKozAtCGDLWGmVURSgTBgwi2qI0q8Ko8YlPfPLlV74yHB3kWUob8weym10wHQSBozYRwqwVZVk6UhgATKfTupYI2WYzSfO02W4krZAQtL6+Zqyaz+dJKzJISR0YYxYZ0VKtr/dKUSulVlZWRqNRSnPPC5zuhFLKWKVqgTGVQhtjCKLGACDUbDZdZ4a1ljHu+z4YiwlQShCBIIq01o04bjcbw8ER5tBI4mYzscpmizxNCwwkz2pZCYxxo93K87Ksi9W1jjFGCGmxxRg8z1NaE2QIIVUphBCdDinLcjLZPXXqVBQFvu/v7+9jDBihsii0UsZajKmjwDh2WKfTce8FALjOxPv379eVcKKNw+Gw0WicOXNm5+7OdDrtdDq+7zeTpivaBUHQ6XTm87lSyuli51UpREkZZix0BR6EELZAKFXKOG2WbjdRIFyDCEMsyzIpZV1VlHCtLAC2xopaMcYsQwgIAuziH4yo0kIrSziy1lLClay01va7hDUDQLv9XiD41VdhMHjn13/yT+B/+p/e+RVj2NiA69e/W9//3d+qCqoK+n345jfhX/9rCENIEnjySfjTfxoef/y9WPDHPgYrK+8CIv/w9W5vw7173+63b2+/lw39z/7Zf9Bl/InZbtx4169JAqur3wHc/B7h5uEQ7t//7pzY+21hCD/zM+/as1jAL//yf8ihPvxh+C/+C/g3/+bBIhh/7La9/V7t5p//+Qd8rCgqLeWJLQdypB4AV4iiiCsllFIOQTPGAMFKGd/3AbCb04gh1oAQS78yxnCj0ThzZmtvb388HAGcAJTGqRC4ZJJSyjl1kmVSSq2UK4cfAxOV0wyFY51QtBToIFtbW3UlsjTFS+9iMHbJMdJKE4WklIQRSrm1VgoXk+rFPAuDGAExGpRSLqM8qcAhhBzM5wIqxpi1Rh0jqpQxQogzYYNjzYG6rg8PDx2X+datO3t7e+5UMcZay8mxBvxgMCjKzDFj4LjxHB3Dfy6Pns2mGGOMQWlRFEUjTmQt0nwhpRyPx+7uWU4YDSixUlhZSSvRzu0912I1n+WdB3WBGG2N0lpboLrRiOI4rsWy/VErm0QRJbwuKz/wityZ+pD7B/tgrFNjKMsSYxwEQVm6af8dI1k4zuVPQLclIADIsZwBI+seutIOInCfJ4QMh8OqLpnvMcac8Q8gQimlNFZKHN9AfWJJjTHVgOgxNuL4Z/hYfnNJOLPgXKbdhXuMSyktBTjWIz4+JhBECJCAew578bxAScc7qcuy9L2lmGwURU6+GaHlFwFAnuce424tbrfbDkt1qOKJRLKTmaKUGmMpZW7YIwuhH7hzRgj1ej1CyMbGqatXryOEliC7tS6zdrGTOz3H9hNaGXPsXwdwMnjcmQkhCKOuRRsAnLvgCXVv+e9xsVkvq0oPbplxNBH34rvkotFqGqMRIhgTzv10vjDGgLGcc2zB9/1z585Za1dWVqSUo+ns4OAgDENGqZSSH4/5E4ZEnudCSZfja62TJFlyezFzQF8tjYsb1dKRHjCl1KNByJEN82KGEMrytCaV1vLKG5cbjcbR4XBlpVtk6ObbtxGQe/d29/b2GSPuuXHu9Xo9gmVVCUL5ZDJb29h84omn+v3haDRJZ/Oje5OgzYy2hkCn04mS5mw2iwLPHiuSWWs12CzPnCsJxlgpcQwlR5wzx0ySUkpCGScrKytCiMlw1On0XEHC9/3t7e07t+8CQBzHk8lkMBh4nkc4WywWrXYjSRLPY5TSyWTinqzHA849oZVzFsGIADKEIgbM0aURQu4lbTab+SJN09TzubXIY1yKulJ1WRdoBnESWgvzReHaLPI8NwaY7ymlwNZVqYqiEsJoQwkhlPvMl0EQaM2jOJzNZgcH96fTqQP93Su8yNKyrjzuO9kZbLQbdY5yev78GUJIs9k8PDx0f5JlWVVVaZpKKaN4hVI8n8+11r7PwySUUt69sxMn4d69nZdf+mY2LyM/Bos5Jwg5CjlzmZGyiljLGOuEnXa7vbW1df/+/SAIjIFOpzOvJnVdh2Fc5qUxJi9zxtiizpSpx+Ohq1WGGGPOmFbq1MbmufPbr7/+WpqmzWbS7jRd7wBjpNlsOkqI53mNRms+S2ezmbW22+0qJY7FZGvPY2EYtlqtu3fvWquTpImATCYTjy8ZH8PhGGMcx/F8vnBLRZ7nve4qo57AqixrQkiv18EE8jxTSjSacRAESglrdbOZFEWGMdaGXHzovJQSLM7zcjqfTmZT18DearVcSYozrpRcLBaMcTeLZVlmNFBGCSF5njNCk7htEe50OlmWVVWxtraeJMl0MhdCIGQJIdYiY0wQBLPxzPe5Usr1tvi+D+rB7YVWA2OsroVG2BitsGGMraysbGxstFotVQvC6LVr16SsGSNa4MAPtNaVFIRSh9JSBN1umxCipRJCMIRd0osQAgsUk0JrY467XQDcpI+OTWnRsb7SYrFY7XSdwav7j0ajsUjnQgjfC04WDGuRs9TEGKxeai05kS+ElpAiALj2DQdznJT1COVKKa2Nq5c6CPtEZnpZBpTKFYKOgycrpfY8ujwCIRi/00KFMQZkrMWu5owpcoGO87Dygyifzq1BnJLdt+9+/EMfufDib7x+sMcDn0aR5WC0LvIcGYbAaX1Qo4Eggwk/OhwQDwmhCGFlWctKW0K8iGlt8jTX2oZBbJQFAMQsZTzg8QOfr7GAEHEoNqWUeVRrHccxZdjdgTRNv/CFL3z4wx+ezWbf+73fc/fu7WImn/ieJyilo9Fwc3Pz3s6ddLJoNBoOI3D86IcuXVosFoHn9fv98XhclqU16MaNG1evXjXG+L4zicKMcSGmDz30ECHk+vXrdV0KIXyfP/PcM1evXs2rfHJjcvHiRcbIlStXPvvZz3LOj/qHrVbr9ddf/+AHPzgYDF588ctra2tSKKWUlDr0wjAMd3d3kbFO2rgZJ48++iileDqd5lU+GAy63S5FeDQajUaTOG44OSTG2P7+vpQ6CELOuVFaKQUI5UUpC9tdjz/zp39oPB7ffOtOv9/3Ai6lLMvKWmIQVJUATQlhupae5xd15bqwe2uNlbg9Gg0nk8l8PqeMlGX12muXL1269PTjH9zfP6yNcH6J1tpWu40xTtN0MhkZBI1GY2trazKZ9A8O67ouC6E1YGJW11YwMQeHuy+/8lIURaurq2tr62++cdXZShBC6rpcWVmRdT2dzLTWnucVRZam6fr6+ng80tq44hnGWDmShbLzRUYwRoiMRmNrEGNMipIQMRiMkiSZTqcIIUqx0mJ9Y8UYPRoNyzLLsvqppx/ZOnfOIKhFOdkbHB0eYAunNtf37/UPDg6azSYlnqOZJGuNxXTuXjpKqRP0cBrZrplRa8087uYia60GpLWOvUhjU1d1uki7tgMIEEKTyWQ8Hg+HwyRKPC/I0nKR5gC211sxtaMKEgoEALRWs9kszRfE40KIo6MjayRjxBjTanUO9g+1NM1WAgBKyTD0j+cKQinNFimmRAg1Gk0QQk5tP8sWs1ne6fQeeujR6XRa1tWr33ydMX5/72htbS1JknpUe56f57nWnGAqhPA8liRJRUonETMcSqqlqGW6yLDFDLPBZNTp9FqNdr8/lLXq9VZPnTpz/fr1dJE/fOlRQuhoNOr3j4yBq29dxwQwhqLIKKVKGd+LV1c25+kMIfTxj3/s2vW30jQtiuKNK9dCP6wrGI7mR4eje/cGYZw4e9vV7mqv3dtZ7MSNhud58/n8/Pnz/X7fD/j9+/ebzaZFKM/zRqPx+uuv5/Oq3WlxThuNhrW21Wpsb2+tra+0W62XX37p9u3biGKEkH0f7QXfDxtJkqbpYp4CB1HVxhgCKAxjp9n3sY+9MBiMBoPB6dOnAeCxxx4bj6af/OQnF4vFb37hty9dujQajRy1x5XrHJvDWiuEJOAc5wuEEChbqUopTChCyCLET8gae3t7Tr5lZWVlMpk41Ntaq7Ry/AhCsdEwHo+XhALOgyCo6xoMZGlpLJ7PCgRmTtONjY1sUWZpwRhHBrk+Xq0lYwQhCtbO5qlRmnPyS//+12tZPXzhdBwmi8m4PzxCmjDMjAan0wVgAIMEZQyupXT2lLU2BBOEiBeRV16//KEPfYhRurm23m21p9PpzWvXD+4fjdLCGs0I5QlXSgEYraTWWtTSBAYII5bWWmprT2QoT4rNBBDCD0b0hFKEEIWMMUapBz9OV2XVBFtEalFFjUQIWZY1NQa08X1PS6mU8ijLq7quhdaacyNBYmAYYQci2Kz0KTx2/qGnfuyHrax/8ZeuPfC7GOOz2cJ1gCEgxi4bjZ2NtbsorWV3pXvp0qXFYhbFAcZw/+C+UPV8MS3Lcjxlvh+2OwmlnDGWpmmn18EsdEsMLDM3QymvqspZBaVVquWe1QhbhIEorTGB8XhcmayUJQA0Gkmn2WGEHvUPqqqknDTb3bquN9bWosDvHx00W812szMej7VRB0eHZa5C3weLEcWYLDO3ZVfcdFRVVaPdDKMkioMsy5QSlDCDxOrqarfbvXfv3tI+q64JIb7Phag21k9VVXVwcOCHgYOAH3744eFwuLOz45Rn3njjDdd7d+fOnaqqnIVgr9eLwrPj0XA0HBJCVldXHWdwY2NjNps5dTLKsDGm2WgGge+6+m7eua2UQshwjyMgHmUudw1DH2NqjJlPZwrLJWEKdF3X8/HUjwKCmXtYlFIlhJYyk9JlMmWeW4RcSd4BPZS+86q61PG7sj399HvJp7/+6+/69bXXYDB4lwzuD/4gvPjit3t8J81hDGD8n4TgTOny4Mcioe/digKKAr7wBfjCF6DZhP/5f4Ynn3znfzsd+HN/Dv63/+2dPf+R1/seKY/BAF555dv92z+Z292773ILbLfhAx/4DtwCv+/73vXrbAZp+t08vT+8fehDsL39rj0vvgiHh9/xcRoN+Jt/E1ZW4KMfhX//7+Hv/b3vmKX+hwfDN7/5gI9Zax2SBa4xVL/DG3XUUXwsS+jQK4KQtkunMkopY9xROzFBlOIzZ85oLetaVlVllEySpKqq2hpQRGtttUaMYIyLouh025xTKWtzrA9gtFLKNBoN3w+DIFJKTSYTa7W1drHIiqKqqmo0Gg2HQ8/zTp06Za29f//+2toax34QBMao8WyKsK2qilGmjLLWAFAAwzmra3n//kFZlg4zgmMA7hglNM7BFWFrjM3znFJCGHV1fSllnmWMMQeQLSNtTJSQshaO1OswBLp0EnOCUdpJ3jPGELYneggOJ3L/5TSmtJYYM6eHzznd3t7e3Nx48cUXhRAoJA5td9m9tZYxP47xZDIXQgBYxphVGB6ICliEMUXIaqbiZkApqqRBhBCGLZjRdAQaTq2fdgTYOIoQtq4nj1iUZRlhzOkJuAY1RJbom0vz8bdIXJ7YIdlvEdNwuOEJD4xRPhgMXONamhfNZlNKWdcSYxx4XtxIMMaLxUJreVwMsO6w1mqEidbyJFVfIlBKOQAXY0wRtd9CfHZc4JM95lj58+TErH0HUeWMDyfjxWLRaDSKPAuCAMwSjuBhiBAWQrhF8JhYagkmDjpnjEVB6GT3hsOR814+uQknIgxArFtqXUzr7OIBYDgcupKwg0Q4ddnQOxRjhJDzsnJgizaGEiKlBMCEYKWM8x8yx1IhsHRcoO5fQkiaplIsJbbcOTj05v02B484BqErh1RVxVhijC6ywhgAaRhjBJAESNO03+8vFotWq/XJT37y+s23HUtXO4kPACkEwtjZzFhrMSUnDHeLUSWF1hosZkQ59MaFXlEUVcex34ULFxhHg+GhEKLdXTm1sSLqutCF12kWeel7wc0btxbzstc5s9JZWczL/f1+4BGLgWBkATjndVlhos+c2To8OhqNRpWQRVHN52m73Q7XQmuR0dbB4u6G+76vtXItzo7nnlelMabdbtd1HYZhkqwbs/R5dqrl+tjRNApja5AUutdbNcZkWeaqLHfu3FksUhfROWH0fr8/Go9cM/f+/j7n1N3w2Wyx5LCuro5GE9/3ESIGqbquW63GxsaGlMJVuTjnRiqfccEYQogSZg1GCBHMeMgxxsZaa6nSAmOKMVW2TNMyiRvra6cwpqJWKtG3bt0KlhqzYIzp9Xqbm+tlWVZFPhqN1tbWguN+7slkxhhz9iHHlieIc+7O1ikLuWLSzs5OmqZuiqOMCCEwZU55hhC0urp6dHQUhqHHAyHEdDqdTEdFWnjMQ4ZWeY2BSakRQpRRpbQbt6pWSSP5wAc+gLlRRjndmyiKhFBZlh0OD0lJlTKlKONWbGvwPPb0U0+XdVbfMNS5YGVZVuRVlqcYU4Kwz/2SlgCQpcVgeJSmqRDV008/febMmdu3b0sp19fXDw8PnUN9kvSsDXf37q2vrzqfwBMLRSHEcDAuisK9M0KIxWKR57nv+46tbK11sFqe561Wy50JQqjTaWGyrLU66ngQeAgBIThJ4kajMR6PjZGrq93bt++VZZkkked5N2/eLsuyLEtKKYA9rmFSzlGapllauDNBtbXWFkXhMY4Q4SwEj1dVVVXV3bt3h4MjLXSSJGvbm4PBCBk8nIzKeSalLMv6tcuvpWnqOOpGiAfym92SoLXW1mBMRVX51H/hwx89ffqsrqQjSx4e7rt13VUq4FiixeXV1lqPc6u0EAJbIAhhsqz9WgwIoRNPW2ststZo7cAFN79rrRlnlFJns+MYvhjjwPcIxQ4IFrJ2TQ0nLS1ZlkVRpJAWlTxZLZYNKRastdiCm/4485dzFsIud4LjZquTcutJIkTQO50OAOAktwQgR0o9MbrRumLMWx4EwIJWCmGMPbasNxJCWBDG7WY6nsqsVEIO9o8uXTjzYz/4I+nv/FvWa1KPirq21p4+fTpf1EVaqVpKoQkhUqnVtdWNU2ulKCeTSVEUHPOo07DWej5ut9uc+1VV9YdjR+UrqlLKmoTvp1aIqqrSSkVx7PR9mEcd71Uj7fbc292ZzWYXLlyI4/jTn/70q6++evnyZSHqRqMxnU7PXzx/bnt7Z2dndXX19Jkzb775Zr/fv/X224PRiFPa6XRWVla0sk6jww28yWQSx7ExxonjXL161VXmuUc//r0fJYR84xtfV0ZvbZ/92te+1lvt+mFwdDDb2dkJguDe3Z1vfvObztJwOpoELOTYS5qNuq63trbLsrx69epgMIvj+PHHHyeE/MEf/AHn1CXt29vbFy9eHI/Hh4f96WgcBMETTzxxcHCws7Nnjz3KgiAgCDvWW1UXStkPPH2xt9K5t3v3pa+/7B56UZUIWUoppVxUYlFnDAcA2NWEAUAUxZNPfu/Z7fWiSo8GA0fi4J63uroCALPZ7Etf+lJRVNNsFoZhM2lcvny522p/6lOfun79+v7+PvO9IAjiOL527drFixfTbH775p2Pfey5M2c3Dg4OCEFVVfg+X984FQTRk08+ub62+cu//Kue5yVJ0ut18qycz+dJFLnQ8+zZs3Uti6IIgnBtbe2JJ574V7/wb/I8JxgjIBasA3y557VbHgA4bSzO+WBwNJmMGGNCVEKABX14eOj7/mBwRAj5xCc/un3u9HQ+q6rKIhNFURzHi+ns7t27GEMUBUqpPCutRgtpfSQp4c5M3M2f7u12t8vFBOrYIFRrDXrJoZOgtNa9Xu+55567vXvr2q3rYRg4lpxSCiExm82U0d3OShAE4/lISk3sUhKH+5xH3ICuRGm1RsiL4sQY6SafRqOxmM8JIb6/dP3WWhOCloUrxmfziTFmc7NXFEU9TwmQbndldXV1dXX1oYcu/dqv/VotBAACwAjIwcFRXddCVFJhz+MHBwcYgy5Rnqeubu+qOFGY/OR/9aPaml/4hV9IkuZkMksXuTXGXwkbSYs0W0qpqhQXLzyc50UYRm4ea7Y7jFOTm9FocGpjTWuZ5el0Ok3CJufe1plzFqnd3T2M6Hg0PTrqZ1kxGxdHh3NjiRRaynwxzzHjDJNvfvOb4/F4a2tbSs2YcWFKURRVXZw5c6bVag36o89+9rOPPfbY1avXP/8rvz6fLcLIk7I+f/78D336T0kp/+D3f3+YJEoYN1tag+B9dOGtNXmeCyGM1sPhMPB8VS9bB1ZWVhzF8jOf+aEbN24+9NBDFy5c+L3f+z1K6S/+4i8iSnZ2dk6SVSfu7BgfTpfW83yfcQCo6zqKIgCo64oH3IIWojLGAEZgkMvThJBBEKyurIZh6BhGhBApqfOMqeuaEu4mecYgyxYnJI7lAmQk94Jut1MWMlukVVUTQkIvFEJgbIGAw86KvMIGYcoxQST0vvSNl9/eufmBh7a3NteDpFUtCqW0sQQDqkVpEFgEiOCyKBjhUtYAgDEVQikL7U7v+k7/+r3dh8+ew8hOJpO7d+/e2z0QFlWlChjVxgprpawRQphQY8EirA2WSmutDWCldS0kAFgEUkovDBBCCN6X3QzGEVicnNSD8TOhJK5zYBZhhBE12tZSC6lAKbBWVLVwIgnSlLWwChDAfDbqrp8Cg8pKEEwophzs7Ojg4YtnPvvJH7jy+je+/4X2N2488NuQ53kY0Dx1ruI4jsMLFy5cv36NEPLkk0/OZrP79+8Tgvb39wxo5uOdnXvT6XhtfWUyGVmrHVGAef7Zs2fbncW1t67v7e2lC8E55R41WoO1UklrEUbE59y4rm/KiqrEGBtlOGGlLBHBSZLIhQBrOOeLaZot0lOnN5SSXsDbve71a29jDGk2z7IFzKERJ57ntVfWZtPFXjpURloNYHG73ea+RxhByE7nM7ceYUy01kqasiydIbjWVlm4/OYbWVZsbW25vtd2u7m6ulrXtZO85Jw//tgHXr9y2Sk+uZjeKYcsFjPP8wDY+fPn2+325//tv0ui+Py57Zs3byZJUhTlysoKpfTevXvNpLW/v39wcKCUWiwyhKDdbiGEptPp6upqFIVVVfq+HwRhnucEVBTFzn7TKYQaZRUgyywA1HmtqdZab5455Ww5XXSEjuEDc9zmvFTdQZiQb8ER0BKBstYi9EcpCkfRt6U4HIbw5//8u/b8YXh0NIKrV98Fvz7zDDz9NLz++h9//O1tePRR+NEfhfV1+PN/HmazP/5PvtMtjuEf/2N47TX4+38fqgrEg61Yl9t8Dv/j/wi/+qvvEmj+9KfhX/0r2N9f/vofc70f/CA888y79ly9CuPxt3kpf0K3oniv++Jf/svwhS+810LwgdtTT8HFi+/aQ8gf84z+IzdK3zuk8xz+5b/8jo/z8Y/DX//r71RifuRHYHcX/uk//Q6O8PTT75Wpeb/B4CJq3/cRQtYgStES/HXwNjlmFB3zWGu1dIjCx5K1GGPPC5NGzDkNw9DJd2qprEVhGM7nc62PpwMLlNIwDLXlGOOyLF2Z31GytNZSqjRNKWcOp+Oc13WttQWQ7iQbjUa/32+1Wpubm8Ph8MyZM8YYq3WazjVYAHB6XBhjjLBLXSlhGGMERAothQFLXK8JOpYhdjhIXdec81azdfbs2X6/3+8fuXiGUhpFkZvVfd/vdrtlUZV5KZHLELGLQFzKqbWVUiLkohTmUEvH29A6ddxSdyfcCbhuLUAGYcu5RynmnA+Hw+l0skQMEdFSS6kwYlrZPC8n3gKBsRqQxYEfKaWKvO768IDNLlWwecSKIkcEAIEBkuZpXdayVtjC5ql1QkgYhohgMDZutOaL6Ww8k1oLIeI4dsFGJWrXr+ZElhxjHX/LLO+QgSW161gW2VHETrIAAHCipu6sHFwTBjEiSxTipMXZ5RfH7dNWSIXQO5jgSR3UrVbGGAGKIrzsnDNGK4kQcvX4E5IvYdR9KcXE9TkDgJZKVtVsNhuPx5RSl+ZgjB1e5NY+55fu8GoHQaCl4KehlHLPY4wxxj3Pd+p5eZ4rpRjGFC/LD37gu3ggDMM4XjKpF4tFUZaubTRJEimlEyxdviDf4iJzgqEDQnZZQkBAMDm+NH0sS+3GobtqrbWzpNNqub6foCv6fRyizHFFSykVNSJjTFkVSqmqqCgjxoDVII1WtZCYSFlTSgdH/SxP+4MjQnEYx2fOnNnb23O6cK4k4Pt+GIZVVR0dHa2srAAAIcT3w1pKjwe+7+d5jgGstVmWYQwGQSlKRj0hRLPZjOJgNps43KbRaORV6ftcVibw4yhsb65vbZ2dvPrylVF/4nM9HaeMUKUUQtZYQMgihIqiiGIfYdxudwnjw+F4NlsopcIgbjdaj1x69NatW8Ph2PO8NE1rORTHTQxKKc/zrEGOWu76FRxkV9d1XZeNRsNpbkRJVJalx3gcx0653iUvjiU5Go3yPG+32xjjyWTSbrc555gtuVyOPusQCfdG5FnpaPKEECAYWUsQeIx2Wk0Mtsgyq7XHaBSEmms3YNrtNiWkqkoXZ/qB73kepbyqBFGsu7KOMQzGo9lsRomXZzVjqCplWZaEsDAMRW1WV1cX6ezWrVsOSUii0A1Ll4v1ej0HAUdRxBibjKdBEFBG3E1zrF9r7WQ8nU6n7l12xZhG0vQDLy+rTqcdJ6GsSsllHDeqUmRp4cQ9LGjP86y2vucZgZRYtsZqdCKoAIwxhHElq4AxKWVRFBaBtTZNUyGEMVYLlSTJSq8zz+d5VvY6Pa2lEKLZ7FKt7Xg8dox6x5JzCO9kNA79IG5EaZpOJhMh9Ntvv93pdNyi5chcWZblRTqZsmazef78OWutMY26rofDoTyWsAnC+NlnnxVCvP3223Vdd7vdKEr29vauXLniMFk3jACg0WgsFouiyBwG5PlMiFrKWkmjlKI0Uko78H5jY8OB2pRSynE2Tn3fx9Rvd1tewT0vsNYmUezeHzduTrotFosFJuDSAGRhMc8Yk0mSuHdcK5WmykhDiX94tF/kQtXaGAMWhoNxu9deW1tjjIHFYLHvP3BhAYQw59zDodYaWSwXJcf8zKlTWiqjVXdt5e1r1533AjrezLGljEvmu622wxarsrTaAF0KHmGMNRiEEMbEamHAomNrBUqpltJ+iy2A450NBoNOp2OMsda4BfWkpCbkUsCeUlxVxsndcu5XpYBjEBljzAkV2mhtjQFRCoKZq0Yuy9HWnJSmnX40AHK+BYQQgvDJNbrJWFjr+/63ro4ntB2ELEInhwIL+sTGfbnsEdLq9OaNcTabg7Ieo4d3d5995Ml/++JvU+pZxvpHR9yzvhcnSYIVU8VcE2StFXWdJMlDDz385S//fpZlQRCd3tgcjcaiknUppmbGvQBjLKuaUpoVOcbQarVWV3rqQQbWzSQhrBcEvruQIPCYx/P80PO8qqqm5RQh1O12wzAsqvKtt976zGc+43nev/k3v6g1rK2tdXptxzjrdFsIY/fzxsZGGMQffPLMcNQfj6aD/mh7e1tKORyO3bc4PXsH6QJAt9t1Vaz7+7vugc4WcyHESy+9lKbpF7/4RSVkpxc69d7NzU0EeOvsuVde/mY6yXzf19IoYpQyDl2K47goiosXL/Z6vclk0u8f7uwklNLBYLB55nS73eXcl1KmRb7WW3GFrG63GwSBUqquaxfKxHE8m80azebzzz/c63XeePOyUqrVblDCs6wo64pzj1JqlEFAOGUYEaUMZ6wWChNMfX8ymezu3xqOjzToj3/ie5544qkg8F755ksXz1/Y3Dz95uU3bly/zQcHeZqlabq9vW2k2t3dnUwmLkw/OjpyC+GpU6f8YLvb7kgpf/VXf3U41I88stpIWk899URR1W+9eeOtt65+8OkPOYm3o6OjixcvEkJ833fNU2EYOh9sQoizbPriF79YFIUTkFJCN5tN955ijMOICyHiJBS1QsgyRpzSXBiGhBAhq7KssizjfnDu3Nnz588PRwej0TiIopix6XRaluVDFy4WZXbj2tVK1M1mO4qibFFMp1Of+O5Fcy+pc5GKAt8es4ldHnLS78YYpoQiDEZKNwLLspzP50VRdLsdh1OPJmOP+VEUNFrtld7a7u7udDp3mjNuk1JSiYEtzRbG4wnqNjEGxwXwfR8tFdlgPB5jDICMs3s+PBy1OjHGgDEeDsaU0jhqXLx4cXWzt7e3d/v2XWutFCpbZBsbpxDBk/EMY+x5TEtRZHm33SKIVmXRa60RQrIss9qMx+PpdEoIGQ7HtRRFIQiuhoMxxrTI8lv1rTwvtJIY4yCMVldX79y7mxeVlPJoOEDIYoyD0E+S5vb2Bc7p7/3ei6KWqc61lovFAhHrnHYacXNt9VSrKcu8Xl877QfxaDS5e283TVPqGUu9/f1DVx6fTCadTgcAlDLnz59/6623nnjiiZXe2mg0opQODgdPfuBxnyatVuOXfvlfLxaTF154wRjz4ou/i8BsnTtztD9yYatHvAcuHAAwn843TrONrfVdtLu3s6dArK6uKmUefvjhM2e2rl+/jihZ3Vj3w/hLX/rSE0899fqVK46Z4sSOHNTu5Js7nc5gMCAEZVlmLXI+y7Kq7VKukSwWNWa42UqqCqfpgjBa1/XGxsbp06evXHljPJqORiNrrdaWEHDDKS9SzvlsNnPx+mKxYJw4jwSEkGs3833MGIvjUAiR53OtjZvBDHLEEJBSakAIIAxjKzTzsSwq6/HeqfWbt29cefP2h5++9NQjjwUNfzacGoS1VphQUBIhJKTEjDquDRgrlZLaIOorTDXA53/7i3/1z/2ZtY2NxWzKuU8pNRYxBiavMcbELLWSCSFSGUyYMtbUUgPSRudVLaUEskT6llgexvj99AoQ0lorLUFjQiw86FMWrDYKDNLGrdtktkini3Q1QIQQK2sjlTbW6KVfrkehf3j/5q1b5x97yotaBANoXc/nH7z0yA9+3wsvfv7zk/7hX/zp//c3/l8P+C4lpDR1ba3neUqpdrttjEIIHCZLKZFSRFEYxoFSajwZaiMQslEjihrR7Xs3oyiqVX373t0qL1577TUEZGVlZTgeFalqNhOp8HA4TJIkInw0mdaV2Nrami9ms8lUaqFqRTHT1hprGGN5nkuZCFHxwD86OirSstfpbq5v3Ll3i1s2HA7TNN3fN4v5NAgio+zOzp5SqpE0n3766TT9itVQFmJ9Y+P06dNpmhqjtFUAEIZhHMe1kgcHh6urK42kRSiK43iphIZob3XV8wJnNNJsJlrrxWLRbnacgt7BwUGe5xsbG0mSONfcjY2N8Xjshm4zaRgld+/dBQCE0NHRURAETz755Ne+9vU3Ll8JgiBN8/l0sbq66s5ka2vLtREUIsMYV3VxNJRbW2cWiywIfCFqWQk/4NYapzpqjcEEYQIEc4TQiTDdysqKVgPHP3J+TGAxQhgjbI9xBGMMAbBLCyZrrXblf5dpw7fkq99q7ue2ZWD7x21ra+9FA69ehen0vR/7nd+BT37ynV8bDfiBH4ArV/4YsifG8Oij8Df+xhLb/ZVfgZ/4CZjPv2scZ0ohSeCXfxl8Hz79afjEJ+BnfxZu3PhjzqquYXcXzp9/1573KGz8B1/v938/NN6tePPFL36bV/Mnd8MY+n3Y2npnT5LAT/zEHy8Swjn8D//Du0amMXDjBnD+R42B55+Hxx8HxuCXfglGo+/4bJ96Ch577F17vvEN2Nn5zg7izvk9wlc//uPwS7/0LmPJP/oIP/AD730Nf+d33ufTFk7a9sFiR0VyzDVHUHA/I7Ls4AYjrbXGKIyXfbEWAV0aNtj79+87XeOqEvP5XGsDAMRyp8/r0DelFGHui5zgkHQIlM89KbUQIity59jGOY/j+LjEhRqNhu/7TgF5MBqAhdXVVaVUlhZZlmnlgGPig+8mOpe2mGMpamNM4IWUUiGWKvxKKSd361o5McYu3m42m0IIbTVCyMl6OJjCQRZaatdtbJYWQUvqN14q+5swCBwYao3BGFtjEECn1Y2C0LHimOe7YrnWuqoqrZdUEgA4+RZCKADR2hJCiMVVJawFzwuk1GAsWAoWqkoAAPAHRwuEEiQd7gMYg7FLLpG1SGstlUQWnz59WmvtNBw8xtM0nU7mlDE/DNGxF18QBIRRJ70IYPFx69UJ8ssoPVGEsNYycJk14jEDACf/5XCxPM+vX79uLUitLALOOOXMUWhdPz7GGEAfQwpgDGitrTUuST+h/VprAZbeSwghjJGj4+BvEcMUouKcM0aNMUJISimnTClhLRjjqgIIY4wZm81maZFHfuBAZOc14k5GyuVQoZRijJbKLFXlCHNVVTFCOecYEwd2B0Hg0FWAJeDj8iYnrOcE4jzPa7Vaw+HwhP+utUYEC/cUPM8ZsLu8+4S2bK1FaImBEEIsRicwtLvbGGOrjTbaUfLc4zMaEELusCfvwvs2xh2DJoBQXdfT6TgIfSEExRQBgAFOKFCspXLaYpRSz+eUtRZZevfuXcIYY0wpaS12nE53Vs4d8TgFoNaiRgO7Ad/uduM4ztPUWuuI7ZhRrTUhSsjq3r3p7t49ANPtdsKI17VMkohRT9WoSOWF7ZX5rDjaHzEStprtuoA4jrWyrVbHGAXIlGVZ12WSJJSQo6OBENILoizLqkpw5kuphsPhaDTBmPq+L6UMgkAaTSiScmmJ6ZoP3CMDi53WjYMd4jh2CDLGWGqphIzDCGCppBo6v3Rrl60JdIlEOzlfjLGyptPplGVprTV22cqvlJrNZhhRp459+vRpSqmRyhillJxOx+OxwRhbq5WyWZ6CRSfZOliLMW42m2maMsZqpSmnmFpG6K2b94wVhKA4SqpK5HlRFnOljBCi2+uGYciYThpRXszrurx/f6GU9DnnnO/u7rpqQb/fL4oiSRIH+6yurh4eHjLK0zStqsrVaYwxlLA4jrXWShkAo7WeTqdN06yraqSkrBPOaTqbp2ka+BHnvNVquXhSS4kBG4kwYbkpkXWNFMdy7QQRQuq6/vznP+9HrNVKpBauAqG1BID5fN7hvSzLUqtKWRoBs9ksq+YPP/LQ+d7D9NaNt91rZq1tNTvdbrcs67qutTZlWVKGAz8iePbooxc8zxsMRoQQxjw3QbjWj/39vTxPu91Ou91GBAVRsMk2pZSz2WKxWEips6zI87yqhDEQRQmltdZ6MklXV9vGWKWUVlZJeXhwANY6fntZlmWVG2MJYU51e3f3flVVnU7H8/w8L8qydHOEMhJjVBT5qVOnwjC8ffsugGGMdnptihljbDQajUYjxhhGtK5r7ntanXR/OKXwZc8IQbTWzjCKlVk5qxYBiwAIRZjFUV3Xt27dandbcdRwCoDvZ/cUBD714rqSjHCi7bAcffwTH79wZkuVohUnRqq7d+9KKUtRB9yzS29ZQygBAFfPcXZnxTx1WDnBmBGKLThaPj4Wq62lMMZYZDHGBAgzpj4mSmulXXWFYVdiAofOM7J0HVzWw5XQ2meMEYLqWiwWi1avSymVQpwg15RyKbW1Sy8F5nkO6HTrGaXUjTPGGMYEvsU3gBEGZNlNw48Ndlyx1MUHLp93O4/R7SXyBcfGrGRpirUsZgZR6CeJF4UyL5WSk/3+9tmN73/2hV/6/d/SAWs2WkBEOk+tBFFapRRYaq2ljEkp67ryfFaNqnSeaiGthTKvPI9WpQCczedzixHJUsJwHIcGdLstHhg7ZGkmde0kzpVShCDAKAx9KSX3KGVBVVVCCCd6Pp1MfuVXfuW55579C3/hpz//+c9nRfrBraeFEFevvamUIpQKIdzqnqZpEASBH/V6xNng3ru3u7a21uv16rqeTCZlWbbb7dOnT0+n083NTc/zhsNhGAZptmi1WkHgSynyqmy320VRDPuDSxcvOVLBxuoGY97+/j5CJIoaQRBUlZhMZlLK+Tw9e/a0Uuqhhx46c+aMEOLGjRvj8XQ2Wzz00EMAOM9LrUcY46HTNcT0/v0DN3lNp1MHYnqMO52vXq938eGHer3OrZs35vPpo48+SimfTbPR6ColVEmtpLbGYESV0ggkAaSU8jxWSYExfu2116QR5x7aPHtu68knnwaAV1555bXXLu/v3X/hhY+tra0Vubjw8IU33njjjVdvPPfMel3LGzduOjSWAJFSu7aRr371q1EcEITTNC1yvb7mN5LWQw89dHBwlGbF008/ffPmrbfeequuZRAEURS5riJRq/37h0VRdTo9ADh16tT169cHg4ExJk1TjAnGuNVqDYfj2WL+waeeDoLgypUrxmilpDFayJJSxjlH2HY6a77vl2UpZsL32fb58xub63t7e9PpNE+zo6OjIIrKWjBCOWGLRdpIYt8PtQWMcZZmSpkoikxtpNFBEJRlKYRyd9j1QwRBYMFwzl346ELtJdFSKs45NlVVFffu3auq6uzZs91uh3NuldnfPwyCoCrFcDjs9/t5VlLEOWMgsMsHKIOkEWFOZos551xryTl30C0imFiktcIYVVVlrUaIFnnlTs8LKADK86LX662urnc6nclkCcJOJ/PxaGoNUspYi4QQvhcyQt0EFSehkNV8njaSpjWQlUXo+RhjqfUTTzzled7u7u5v/uZvI4w589fWNrrd7mwyLbJiNBhtbGy4XOj06dMIoThqhGFoENRKlmVujFksFr1eRynVaMQrK2tlmU8mE6XU6mpvfX0NkN3f32M0opju7uxvbz+0sroxnc6l0I899titW3fuHxws9MJVkqfT6WKxuH//vtZyNBpRihFCr716eTqdjkajZrP99NNPf+ELX3jk0lPdbvvZZ5+9cGHrC1/4ws1bN0LfT5Lk7es3pTDGGOehqt8HsWgkUZJEs+l42B9gsAiDk45x79rp05s/8EM/eOfOHWP1yy+/rJTKsmw4HDabzTiOHf/C9/2qqsLQ55yurvYWiwU+btzTWoMxYRhqreq6ErLyjOdCMcqZCzrDMFxdXVPqNZdoAWC3Bk2n0yRJ1NIWHNWidElLWebG2G63m2elSxHn87kbkEWRISCMwXHjp8KEKlUHQYAZr0pRFEXoh1Zp6nFhbC5l3F0t6/tf/PqN+3vjZx9/ygpoJGFRSqOkNJp63GrhUU9LYzE2YLQwjPu5tLW2nbXV6/uD33jxy//3/9tfwoSvrOeVNJbwo8lM4Xk6GllCAKCWgmgmtEGY5ZXExGqwopZZkWPCCGNKa8KQtRZbQPidjO69+QBedl9hytH7sNWttYAMgmWplXF/nmazNFtvdkxVAYA1xirj0gtrtbUYlLx9637YaH/P913qH42xNc0k+Mz3fs/0cG9w5x4joLL8gefjBz4Itr+/32o1tre3EbaH/YP9w4PV9bU0nfeHR/N0AQCj8cBaW5YFYzgrs1OnTnHOnfALpTRN534YJGGSpYWUcnNzM5tXRVE0m83BYFBV1cZ6d29vv9PtHR0dGasxxoywCgmtNSHMWowRFUIMh0Np6+liHvDIagsAb7zxxmF/f/vC+TCJjTH9/jDwOOdEWs05z7NqMBitr6w2m82jo8GZrTNBEAlV37z9dhiGvV4HITudTbbOnQ2iqNVqOqqdtdaRFZIkWemtLRaLwWDg8sY4blRV4UqhrkAipYzjeDgcjkaj2WxGKR2NRgihwPOFEKPRyGG+57bOUEpDP/jc5z6HELp3516ZF/3+UEvwG34YhtqY7e3t7e3t/f39N954Q0nporW9vb2ts9u9Xu/OnTue5wVB0Ov15vP5/fv3rUGUEHKseeoYdgihsihu3LghhXZKHei4a94BB8e0smVe6kj2y7T8uF3MGmPtOzOJMfCRj7xrVEQR/PzPw4//+AOHzHLb3oZ//s/fqy379tsP+OSNG6DUuxjBn/sczOfwD//hH3X8n/5p+Omffuf4vg//8B/CT//0d43jHMfwj/4RnHA/whD+1/8VfvzH/xjWrVKwufne47yHc/offL3vueFK/YkWuf42t7t34Rd+Af7SX3oXePoX/gJ8+ct/DIz7Yz/2XlGLfh/+l//lj0Jsv+/74L/77+D0aTAGPvhB+Nt/G/r97+xs/5v/5l2/5jn8o3/0nR0BAIyBP/gDeOst+MQn3tm5vg5/7a/B3/k739YRfuZn4HOfe9cepd6rgv3O11kAjIVSdVEDgDoW5AUAP+BFVTksEgPRWhoEDnt1LU1SSqmVkUKICmO8SOcuHgBjjTGce5xzJY37muPETdd17RPPfVee54QgJyBZl5WUuq7rRZq5OUcp5Y4Fx3ymtbU194MQYjwc3bt3D5aWWZwQYvOlFIC1lhCmj2294VjCQi3NuAzGWClhrXXcVe0cyYIgzeavv/66gwXlcR9wXudOMAHASY0tFagd4uagIvgWcmhVVU5b31qLkHWXuYxhammt5ZwiRBAizvAAQLtOX4yx1sbzgmXMA4QQKoXEGDGPa62tVXmeW20c7KiU4tzD6H3UjRAiBPm+j4guy1IoqZQyCChadiQ3wwZjbG9vjyCslEIWOp1Oo9FwBYN2u3379m0hBKZOT4ma47wYALTWWioXyEnj6GgYrEUIEYJPsHiXYodxRJYWXHoymXgBd4kDwUtOnnvWDjs74SMra5RRFllGmRuQ7pHB0jJ36SWDEFJKujECxkipwWqni+IejdYaMNJWIUThWwyo9LLizpS2J8PD6TkQQsqyNHnOPM/1TBNCANCSiON7btF0oDAhxK2Q1to4jh0xyAFwJ1/keYG7FQ6JbjabR0dHlHKMqda2lioIvBM1CadUQClFlNjaiWKTk5XaLcTaWHcP3a1TWjtnDneBGCFKaVnUJ+dwcsLWWsbep4UaIa2lQw99RhvNRlEV3KNgrdbaKmUJYYQASC01IAMYG6mEkksBPa3n87lQyoFgSwhVa2Ot/hZHYjeKPM+TUs4mE/dmBYF37tzZqioGg8F4PFa1cG8TAhInSV0Lh8nGcbyysjaa7FelffWVt472j6pKUMLLXCgJ1mLOeafTcsAuTeijjz22WCzyIs3zvCzqspZCKK0sgJ4MR0VROd+R2WxmEbgaknuvHXnrxHXMWCVk5cKkOI6TJHKTRpqmxmhnQnY80yp2zOt3TWYYY4ewra2tpWm6WCwIp04d3g14j0VaZUrWlPAzp7fyPC+Koq6d3wYAAmvcSDabm+uOK22MYczzvcDpFniexzj3OKuqilKsrMGYzGZzAOx5bGVlZTwZRlGQ57l16voMG1MbY5zFdJbNr18fHx0dlWURhiGAdRGjEMrzULe74mBx9+xarZbvBePxWCnlxPTn87kDClyNwbmVWGvX1lqNRuPEv7rf73NOjTGcUACoa4EQ8jxWVVUjjjFgbFk6LYQQgRdaa60Fi5ABQNYasLIuNaLKEkyBc+rmbQNWCBEEQTNuGmMm44klxpN+YYr2Rnt/f3/ST+n29rZ71Xd2766trLgykasfFkVBCFFSUkI8Hviebw3yI9+Vv7Is63bb1mrfZwCwf7BnQadpGgYxxtiV4Bwe/fWvfx0AnNirq1FgjOPYO3PmzGKxGI8nxEPumI4Sv1xEfbZYLKqqZoz1+0Mnt/TKy6+7/3KrGmPZylrbWuTkfg7So1arUddSCZmnmZtnlVJO0kVZFQSBUBJZ0EZWVQUGEcwAoChKYzQhyFokpUQEcc4BCDIIIWSMpRSvrHZLUZZFLYRwwglJqOFBjYqLNC3riVGWW1rOZz3W/K9+7HMh4YWp2+323s7dbJG64htC1qqlzD/CeFluZSyOY2RsVVVWvVNPc6i0U9U47gnS0lqz1HV+ZyHXWjuzhTzPWRhXVXlcYxQA4PT13SiUUlowy4leqaLIItkIfF8vXQQxAYIYklK6qdxai5xCE6Uu2eacuALaSd0bAMBaBICwtQahY04ORhRj7BwVXB2GEIJhWRRdXh3GhCCEASHiTo8eywhgjDVYoCRI4qCZKCF9i6QqR3f3PvupH/qtL3/pzuFhC68RHzHq1UJorTGmYBCh1FiV50sNYqHFZDgyVnVbPb7KR6NRp9dljDl6lzJaylpqUaXlaDhYCR/wfIUQZV0o604YfN/XSs5mVZyECIeOu+Sqx06fajIZX7ly5TOf+cz3ft8ndnd37969e+fOnbxIV1ZWLECr1VJKjUajVqt1dHR09+5dV7JjzNNa9/v9N998000uSqlPfepTW1tb1669lWWZazJIkmR1dbVWst3pvPXWW6EfeJ4XeL6opBBCSzMeToQQZmdPCBWGMVDMOV+ksyAI4wZxONT29jaldLFYvPnmm9evXz916lQUJePxtKoqzLAQwnW3ceZjjGezWVEUGxsbUsp0kQWBppgghFZXV621i8ViOOwnSXT69GnOOQAmhJw7d64qxSKba60RAKMeGGKEzfMSYzBac0ILWRop/Ab9U3/qh/rDo6999aXJfJYtZkVRDAb6pZe+9ujDj81mk83kLCEsSthkMnMtAm5sO2aiu1GMMWsQZnhjYyNM+MbGRhzHSbN19Nobu7v3m80jp4RsLWq3u81mMwz9W7du7ezsLBaL0A/azVYUhEVR5nnhdM8bjYaolVKq3+9XlRBCXX7jSpIkWZE7qxZXgHGInouuqqoyxnQ6nfMXzrU7HSHroshms5kUMomblRST8Ww0HBopXvjIR7I0Pzg4ihtRFEVFXklZNpsrNCSDekBh6ajr8E332mKClFJJt2GPy0husaSUUoqV0UEQJEly+vRpuad6GytPf/DJPM8P7x+srq7GQXJ7cltry30vigNVgDGGIMQ5U1JSiprN5ryYUYoJQSu9Nc5ZnqduVM9ni6osTp/exBjneeqIe4hgC9BIWkmSiLg6d+5cp9OeTCZ5Xh4e9hGydVH32j1EiBAqjlpSaEoU9yggU9e1VJYTmoRRs9GWlTZIJa0maCOl3NrayrKCENZp9wgh+4eH9+/vX9i+EHjBYDA84Ri6wmddS0eKuXP3jjGm1+tQSgnFBwf3L1++7MwZqqoihLbb7V5v5e7dHdeTNRrOZa0A8NHh4Mb1W2maBkF06vTZS5ceysqszqogCEajEaecEWq1QZgFnh8nYV3XHudRGLK1zeFw+OIXv7SxsbG3c+/m21c//ad/cDwe7+zsPHzxUhyHr7/++ng4poiXZe15nhbWvg/cTBje3bmLMUZW5wud27K7gqzPv//7v297e/t3Xvzd119//dq1a/v7+ysrK9/4xsuUEsZcZHNiUWIAzMbGRpZlSogTN3alFKVLp0GtdRQHYRwjbNM0pRT3er29vb0giEaj0Ze//GW3nmq9JEG4zGQ8Hns+c+RfQohyWnVKnzt3rt3t7u3uW7sMu8syr+vSWmthOTksJ3CtjZaYxWtra/v3D5MkUUKBtVLUjFHPDxdpOVzoS9vbP/Uz/9ePPvv8L/+rX7p/52ozDiQoZg3BJPHjWmmDrAUstcacDabz7ubWKg33D4467d7vvfTmxz95fb3TvrO7D4C1UPKYaWUwBozAYoOw0hqs1UYZoay1UqlKaY9whJxsnAUATJZx/4PzgW/R5nu/D4AFaTQoSwgRteGI1drMy8ogrAERQgghtVDWWq1NpbQCHLAAWwAhsvFouHM38bwXPvLRW1dfH+7vYaumw8k//kf/GODv/+Gv0loXRdFut5944gPGmIOjfSdMPxz28zx3JDilFPOx4z4Tgnzr9/v9+YIz5jHGoigBwHUllTSEMCGUQzEW6WxtfcVa7ea0Rz/wGGNsPB7nee55HsXU93U2L7TGCCGjbavV4iFWhXTOpQbMoN8/6aY0gI0xjPJGo7VYzCjjnPi+LzGmtdKIktNnz66vrx8d9YeTYdSIGo3GxUsPHR7tr51affTRS+Px1IIeDAZHR0fb29t1XRtjkiRhjPf7gyzN4yQCIAcHB2B1HEWuD5cxtra2djTou97S1dVV18NHEHZdlu5aer1enRfj2fT555+3zvmHkDzPtQJQ8Oijj6ZZQUgtpXzllVd2dnaefPLJVjP59Kc/ffny5Vu3blGGJ5Nxp9Npt9t7e/uj0dB1cVpr67KqawmA/SBwL0KR5y6Lc2Q0etwiZgDcImIQWLCwVORc6m864chvHXL03dzLt956L095YwO++EX4W38LXnnlvfIFq6vwX/6X8JM/+d4xPpnAL/7iA4bz/fvwyivvRbR/6qfghRfg534O7t59F+3Xeev9zb8Jjzzy3uP/83/+3dTTmM3gpZfgR3/0nT3tNvy3/y38/M8/gKB98oH/+r+G93QnfulL72XRfreu95vf/E9ui/efZ/v1X4ennoLv+R44zujB8+Af/AP4uZ+DV199gG1guw2f+xz81E+9a6fW8Hf/7vtizY0GfOpT8N//90tOMSHw1FPw8z8Pf/Evwv7+t6u/8cQT8Nxz79rz2mtw8+a39bd/ePsn/wReeAG+VSb9M58B34d/8S/g7bcfTNBuNOCRR+Bnf/a9LyMAvPrq+w6GdqNZ1gkA2MQ67RyHYQlZAQDlXClFGHVkVkSJtTYIvSiKsrxcCkUiJGWttXbUNmutz33GmO+FSZLcunXH1NqRJqWUhLuWPlqWZVUJa61S1vnCVXWthKvbxSfYHxgDxgJbDm43F8Vx7Pt+mRdudUBoaQRn9JJdaC1CaMlOQ8eCAw48QghRik+Ihy4/lVK6tioLGh/byjmzu16vV9Xl4cGB1topFVDKXNro+t8ds+qECwUAxlh3Z2CpgWAcGu6q6Q7Oc62NLuG1SGJGMaLC+QZbJ/pB4yQBAGMKQohR2lgTRVFZlv3DWRAvEcMg8Fud5gOfrJSVF3hxEk4XY4tAK+M8FRFFCDBYvb6+mSTJ8GhIMQk8nwfcgcKz2cxhI0JJay3R4Bi1+KRZwFgwSw8+hBDWWilljXHRhZPacFiz63Ny8L225vbt28bqJEkAEMYYO6dfAABMKTfHsLXWuhQ1SAUIgFItJVoKiGlMked5oRc4LQIpRFmWFvQxuXzpdKk1BGHDBY1OkHAZqSKwYK3SAIAJIGwpw34Qc86rvCiqkhHKGBPH1LdKCM55p9PhnJdlQTFxQIQbnO6HuhbOON0ey1K5+3CC8AZBpI91rh06PJ3ML19509FmHY/QxcxSSsyo6+sFsBhRBMQaa7EljKpjxRKLkSs5OOp0EHgnuiVLwrkGa9BJjubQD3cHtNZhIB84YLB1DlZLGQrf96WWWIOjqxuCCEEMI0uINQohHHgepdQgQArVdS2Ulk7FmDE/CBjn7qLsMdxsrS2yvKhqAHCBosumT5061WwmTtLACYk4BDMIIne7EGAjLHh4PsvSdoGArq+dMcbs3ukrQYIk8ngQBkQp7RB/AHw0GDYajV5v9d693bouCSGeF1RSMMYwslobaxEhpCochw8M6KIofJ8baxjz4qTJGOv3+5iA5zOnPCal7PU63W5XCJHnmRD1iQiMqy5UVeUMSNzId/5YRVForcfjsQv5oigCsoSe3OvmSjtVVa2urj711FPGmN3d3d3dXc65c5sUFRBCGo2GMcYLI8JnHqUYUaGkqkwcx5xzp1jLfVYNyrKs2ZJprpVSQRC0mh1ABiO5d7BXVbIs6ieffJIQNJ2NAeDuvbfb7XYY+d1e+6mnnmKYCKGuXLni+/76+rqDazDGzsNpMDhazMvFYsYYc6CTy9MxxkoWAGCtQgg1m8319XXXwk4IabVaTqnfvVlKKSGcLgK4eBUD5iQQtYXJzFq3IiwF3MDpolBy4cKFqOFVopzNJm4wO9R3rbWOa2q18n1fg/GtDwYJIcq6jHCLMsbCMHRw0mAw8H2/0Yh9P2SMNRrNOI4iE0mh93Z3y7Jc39h4+oNPHh4eunWorksh6meeeaao8lu333bed51uK13kxihMiagkQoxShjFy2L8DoK3VZ86cWVlZMcaEYTTsD7TWjHllWSojLUIHBweO+V/XtWJGCqM1BH6stFDK5uPUGOsFvNtbbzabjUYLY9xut4u8Gg6H4+HEcaycuL4UlVGaUyakkqZSBoG1GFFGXWcNdeoklFLXy2OtJkCsdrVBopRylgWEkHa7XVWFQMvCGtJlo/OAmcJaaxCEYViN0xj8v/6X/sql0+f7+wdrK12P0GyRug8hAlIqYl11xTqE1Frref5SpqCqtNYgtSKWYoIZxRhru2z1XfZxILDaImuNsS71opRa10+ElorMaZq22+1jMWUTBN5kItz8K5awLPZ9Xym1WCyEEGGz6SQOrUFgl9Oo671yEDCR8lj+AhmtybJxydpjWQyXGmmtMVq29sBxoQ9jpLXGsGzGUcfa/CcVG2MMxghjizGyFtVKkuPlDTQmjCat5nQUCTsMMMa1SQ9Hq1unf+STP/C///I/oxbVlTTGYkwxNsZIDEs/5boub7x9zVodhv7m5noQRLJWQlaE4737O5hShNCZrdNnz54djQfT+TTLsjAKHkhaW1lZqeVqKWqMsdMjJhQt0nR9fc0uvT7ATQfWWiVkq9USQvzab/x6oxFfvHjRuQzduHGj0+06FGyxWKysrKytrU2n09OnT6+urjqzpps3b3qet7KytlgsjDFOOf7111/XWrrReO7cub37dwDAIZ5OYa2qqjKvRFkdzLI4iqIwmc0Wvd5KDkVdidBPKKVgcbPZrETVaDR6vY4xJsuyfr8/mUyiKOLcr+va4366yHjIWq3WnTt3lDRbW1uEkGtvvWUNFHnpeGTW2iDykyRBCE2n09Fk3GjEKyvd4eAIY5rETUppu9UtvVJq5WrdFDNKuFXgZn/GsNLGaI098uxzz7VardcvX07TlAd+GIZaC4KhLMtbt25FYaKUajabZ86cmc0WUkqKmTIaAANAWdRKiyAIGlF4LGMX+DLev9/nfHrz7btpmgZBWJZVFDKMSRB4nPMkSa6++Va/f+hKoBXIy5evNBoNz/MM2M3NTSFEWdT7+/tRFC0WC2PU+vqq45CmaRr4MaOcUOpqacZojPHh4SGldHt726n7z+bT6XQ8n08ZI4zSNM2DODp75tzm+qmXvva1N9+4GkdBVdV+6Kml5QvzfT9kwf7ePiPUYdkuEKcexxhrrRzq57oU3Vvv3kewhrJlY6ColZTy5s2bCNtr166N+qOPfexjyGBX3giiOEmSw52xMQYvew6sEFKICiHEOIUcms3GfD5N03RjYyNptsAiURdZljl2SRAEBqzTkNnevhBFwXQ6nYxnRVH0+32tVZZlCNmyLIMgIoQIpcqybDRirTMhK4rAKmWtjaLIec/Wldy6cCoIgt27u6PRaNgfUcrLoo7jxNlSF1n52muXfd9fzObOaXA6nQ9Gw8FoPBwOGefzLGWM7ewcpul8Y3N9c3OTc26UGAwGUtacMupTKeWVK296vh9HHVci1lKVVW5BU0rW1lan09n+/p7nsTgIGbCNjY2qqtM0ddwNAGi1WqtrvcPDQ0LIQw89lGdlXdeEMGPM1WtvPvbYoy9+8XdvvH3tx37sx5577rlf+7VfO3/+YhI1Ln/zijUIAbZWMf5gUgOjLFldHfUHRsvnP/Lo2uqGWzfPnD19Z+fub/7mb8xnJWFIK7u2vra+uT6fzsq88gLuoqssy7IsU5U++72ni6J49dVXoyQ0WjsJe8YI8bnVuhYC48jzPKnqMPTLunIwHEJoMBjWdW00EAKELO1ePc+r6xIAtLKUkUaj4fYncUOKcjKZIITTbO7IEbUoOp3OYrGoq9LzPEKwCz0xpoSQoqqe/8ij83lW19KjTGslypJgGI76GGMA8sM/+uP/z7/+N85tnF1dWR3M9c//f66lpUjCENdKSq2tBotkXStjDNijfr+zefajH//Ea29c2z2cEBanMPoH//if/8Rnf2Q4TwPPHw6HeVVp5llrK1FXVVUrhS2UtQBkDSBllYu/CePaGlDKuqBc1hhjDAi/jzYufpchATxQTMPzPGNoURRMgyMIaCCTLDWYWACCGSUGYym00qCNVRgxBixA8PabN5BWGyurxWja37vZjsN8MdaizsqiPDp64He52LHRaBweHgpVI2wpIb7PMUWzxTQvM+J6nSgRoo6i6MKF7dFodDg4tNaGISWEtFtdRr2KVlGU7OzsIISthbIuuOcBmFOnTm1vbwdBdPvOvcVisba2ppSiGI0G46oqtNYUmGu2TZJkXkwRQhhTSugiW1DMAAzGNAzDp5955jd+4zcBjLXAuc+9sCgKK8H3orqSUujVMxuNVrOsq7PnzgKYuq6lqdrt5mg0eOWVbxynebTTaWXZQggRRv5isXA5s+/7jPK8yLQUxpgw8jHGBwcHlFLCHMOYbG1tzWazsiybSUMIsba2dnR05HoItFJFUXRb7YO9+9PR9Id+6IeiKJrPiiDkjzzyyPPPfeTf/fvPa62rSuzs7Cil/tpf+2tfevF33njjShiG6+urd+/ePnNm62Mf+/+T96fBlqZXeSC63vEb93jmc3KqzMqqrEkqqQZJFAKEMHZD+wpsbNPtvp7AHdH42heIG/d2u43D7Xa7bdp97bYFgd12GDw0FgZhg9sgQEhIoLnmIbOyKscznz3vb37H+2PtfVQSWZJouNE34r4RVZF58px99v6+91vvWs961vM8gyzCKAimk/lgMMDRWOccY6C1rsoSlj5LlFJrXCglclgwhDPGHAHs6xO3GDIjSw1x773zDl+QEELpvWfs3rriGH78x+GTn4SPfhSqCncvbG/DX/gLcP78V2OjVQX/6l+9VaLjy4tz+OhHodOBhx768hcJgYcegp/6KfjIR+BznwOUauMc3vte+BN/4h5qHteuwdERcP4HaRj4K78CH/zglzFQAPj+74fv/3745CfhE5+Ag4PFu2IMtrfhAx/4CokMXGUJ//7ff/UX/6A+7y/+4h/w5/0/aykF/9P/BE888RWXut2Gv/t34c4d+Oxn4dOfhqYBSmFr697XeTaDX/u1r+WaGIbwQz/01foV7Tb8yI/AX/kr3+j7/DN/5qu/8i/+xTf6s797Xb8Ob7zxFdIcqJfywQ/Ciy/C5z4Hzz0HSKulFIIA3v9+eN/7vkJ15HRduwY///NvuxnKqqrqEpHZMAi11jgFb51WxuAjX6vKex+GoaDCOVfVda/fTwlB8xgcPnZuMYTEKAMAwQNKedNoYxw5nX+1hiy8RklT10qpJImwrgyCoCzLyWQipSRUNE0DzolARFGEarZcMHSCsUsjsn63t7GxcXJyYi0SvDwlHMvkU+wS8SDnvrKA9Q5rQHgLm5tz7rxxbmGcRQiRQbBAuwhZXVkNggAHVrB2ds5ZpS3O+QWSvkXnwb9FiXV572gcx6ckQcSnAACdY4OINY0OAs6Yr8sqqwvnXBRFq/1VLsXdu3erqgzDkBIaRdHGxgYAaK3TNEYhPg/3fsiDOOiudJ1zShkpJWeBt8Y54x2lhBJPKaVN2TBC0zjp9XpKqTt37iRJUjV1URQowwoAWF+fsrsAwNvFHAz+Fcl8S+YW45wj7zaKIkzwkCVGCCnzghDCA+mcJ84zxoTgda2qqsSOOyEE/9/r9Xq9HiFkNpsBWbQ/jbVcMP4W47u6qaQUnU6bLonSYRiWWb66urq2tjafzweDQVEUjgAjYK1GVn5ttXWGUCooxaq22+3eGU+MMSj+65aCgSJAw5jKGBMEMoniZYPhy4Q8XPiAIOXTLSUv6BKmWHRzncOrMc/m8/kcWzVcolKoaZpGOxsSgWQOv+TYLSYGlhtJCOEpOb34nPMgkPhLT28Qnt6nf4Yl9R7/zPm96fBI3ajrmkmGBO0wlGVpvDVAiHOGOGs95YxIEWHB6P0Cu7fGLcfiRRhHHgAooZyhHQ5GCawQ61oZY1TdRFFEAATjx8fH8/m0qqqqKlB2I01Ta32atvM8xwxf64ZY2pT6YPfo4PgkjrqSScFSHnlnSdOoXq8rhL97927a6jgHVVlHSXpwdCKCyDmHMW1hAOaMMbZpGtSlwbDQbXVkKOq6boexjOLV1dXj42POOSoZ5vnce8cY4ZxHUeiW9kVxEqJFWV3X0+m03W6bhebMItdC+BF3HQaTKIqCOOz1eqPRaDgc4jZ79NHHVlZWy7Ksqto5q5SK4xhxbQCwkcyrknBhgZw7dw4FezmTSikhZNM0ly5dzLLMGUWIL4rMEYqCzicnJ1qrEUoyaDuZTHrtbhIGa/1eXc5nk3Gv0+GcP/rolTNnzsxmWZqm53bOjMdj5OD3+33c/Ii2z2Yzpeosy1TjARzqVsdxvLa2tre355wTgnrvm0b3+/3V1dX9/X28Slrr8WhCmXduEYGBsiSR3nt0oJlOp4ywNCE4L+KcI4Qh8Oi9d9Y5cFEape0WZVZKibaueT43xjSNHoyPV8N1zrkjzjijtY6C2JiFPzYfDAaoCoS4+N27dzc21uaTKcbx0Wgspajrumk0AXZ8dHT9+sImDmd2oii6s3sbiNve3q6qYjKZJUlCgN29u4uUQzzwCKF1XQ8GA845Ogu1WgnuibW1Nd2osiyzLFPK8IAb4+q65pQBUGs9IeA9o5QZA0JESinBwXpntF9f21pdXQeAq1evAcBjjz32xutv5nnR6XT6/T54j92w4XCIxRh6mVqzsEMlwJxzOJdhjAkCniTJaq/POd+9fYDnn+C0VlUUhoyRosgGgwFlwhhnrWf+3q12GYWOhbbSqqm+5wN/9D/5tg/efvUNwXk7bs+ns6ODw7qsvPeEEi4FUYRzoVSN+QFOyidxfNqGcmbRqMS2ZFOXdqFqZBb1BhB0ZiCEMEI8pSCEc44A4ZwHTOAwLAY9PI1wJgs9vuq6jqIoCmOkSxd5niZJEARGO28tHl2MsUBGCGdrralSKG7FGPPe4mGD4XWRKyxTCkYIxnFnweMXgRFCuWD4yt4vRMQYJ4wuBosEW4hpBEGQ140WNmTMe2KMIxSidhq2krX19Wo05UC9cbdfff17/vB3ffy5z+zOR7IbZVnptfMe9axdXddA7fmLZ8JEHB7uz/L52c5O01SzyTQM47TdHowHK5203encd/F8URQO3Jkz21EUzScdM71X6hDIk+GsbOqNjbUsy5CnfObsdqvVqqqS0i+PLyGUP55OpJRK1YMBr+uaUL+6urqysnL27FkhxGQy6XQ63vvj42PGGOdyPs+NMdhrbbU62HFijF25cuX69euDwSDLZlj8e+93796NkxZjLCuLummiKJY80EQFImxFQRiGWps0Tjutbq+7sr+/L4TY2tq5fPnywdF+YAJs9edVCYx6StJOm3JprQPKcLwIvRPX1zYnk0lZlnmej45nPCAorDYajVqt1vbWplIKWc9MiKOjk06n4zzZ29tbXVFNY6qyMcaMRiMhGQAQD9YQTrg2TShl0yjGJTj/6KOPnTlz7sabtw4ODvpr61IGua7LsoojOZlM6qLhbCrDtN/pD4+He3t3WknqvdfaACGEAmNMKRiPZ7pu1tZWkIzsAWazHJFZzmVTl4wxxoT3pMyLtZXVvbu7SqkoShgjAGCdpZQmSRKG4WQ2PT4+3tjYmE7m83kxnRbf/d3feevWLQDY2Tn72muvUUoJYUqZsqylYAAE5xMZY5ubm+fOnTs4OBgMToD6PJ8bq/YPdk3jq0ZRzk+OR71er93qcC6t9aoBRjimQWEYtjqpAA7EY0u8aZowlAAAlFhrhRRFVc5msyRO8eDEnNgYI6T0DHRtVFXfuXOHCAIAg5PR2upGmZXT8SQKE3yyrNW7u3eoi53xjFO0jkGj8ygJbWnjJArDcDaDurZVVbU63TRNs3mIg0uEUW3N5uY2UjAYY8a48XjKOe33+84djseTVquFfuBFUcRxYpWhHiTjVV0AOCIY4zSb58Y4KcOmNJyKk5MTpdR8MtfaNtas9BNC1Gg0iuN0bWUd7XeVUlpba+3unTsng9HewWG32/6Wb/3WjY2NJ55+qt1OP/nJT04mk1/79Y/t7u53OolgJAxDbx3n0lqdZVm/39/aPqsaU1VVFEUEXMd3Vtf6ZZnv7R2cO78ThHG71cY9f+3aNSllFEWnvth7e3snJydFmVlrO61uFEXbmzvnz5+v6yZJkuHw5MYbe/21qKqqD/+jn/Te/+f/2X927er18D3J7t2ja6/esMq+HSM2m89Gozurq6vve+/T3/3d300Ie/311ynhg8Hx57/wWSHEO991vzFmMBhgElw1NRNIIgHn3MrKinNuPB5jRaGUSuMgSRLVNLNphvrjSMlTSpVN6Zy7dOk+bRcdi+FwyLkIgsBZnDRc6PJXVRUEQauV5HkOS0cjSimy+Icn84ODozCUDnzT1Nbaoph3Oqm1yjmjsAriwlpkl0RNo/I8r+vacwsAXMBkVHVS/swz3/wX/8v/2/rq2eOjseXpS6/eZlHvyfe876VnP+8dSBlyZ4q6ocAopeDcfJ4/+vi73vut3z6vgLAgCBNKQyGCN49HJ6P52QuXvvCZ3yGEaA+T2RAY88YhSG2ssd4ZbxgNPHAPHggDQq1zzi4GJFHgiHggb3OrKCF2eT5SSuy94DnKqIxiZazRTvCAEk6F3Ds6LtWDklCrG1R5oyi5AeC9T2QaUGqtGx8fSqvW261zO6tbKytXm3w8PrEESqPgXhUKcR51mQjx7W5b6brX6xqnOacAEEXR8fHx+vr62Z0z165dOzo6ms+naZrCslVprfWeAFDnoGmaplHO2CqtGWOPveORKIqC4eDVq6+d2Tknpez3ZbvdvnXrxnQ8SdN20m7ls9p7QoEaz7J5ESRBpRQsz8G6rKXkjW6kDJ9++j0f//gns+nMOTeZTJtmmuWzdrt948ats2d3ZBjkec4kE6GIW/HJ4Ig4HwTtWV1QRs5sbuV5eefOHedcmrRQtMoYNzgZbW1tr69v1qIsiowzcWZnezodl2V59+4eDjxu7Wyvrq5ubm5GUXR4eOiMxZbh/v6+1lpwvrqycnJyUlVFu91+/fXX79w5+tKXvtRudd75+KPvf//7tzZ3sOavqmp/f7+qmieeeNfR0dHnPve58Xj8zne+k3P22GOPEUI++9nPEkLare7RwcHu3f00TTnns8kMcJTYLkI6svaEEIIxJKTgBvCAGo+L/QDLqpV68Etdl1PEgRDi/FfMSczu5TYBAIwtALKvvbyHP//n31YbwRj49Kfh05+Gj3wEzp37in9KU/iBH4Af+IGv8/p373411/UPZL3wAly79tWGbADwbd92D8Tznuvq1Xt4AP7/7Of9P3GVJfz1vw4f/vBXI8Lnz8P58/D93//1X+Gnfupt/4lz+NN/+t6C4089Bd/8zfDbv/31X/+JJ+Bd7/qKr7z4Ily9+vV/8O2WMfB3/y7803/6FQRnXO98J7zznd/o63zdzYDAKGBLyTnTKKwXAMAtlQesN5xzYLQoimw2CdNkMBhgTYdkBbb07HXOeU+sVlpl1s5REQKPrQXxE4i11qEkMWMyDIgHFCAyxohABjJolF2CdB5ll8IwLMvSe482a87aTrfbarXQZjDLi/X1dQIMtYlRJBdFCfBdMcaoB+cMABDvgNE4jvEYRYUH51wYSSESPM6QJoUwWVVVURggcopT9kWRM1igq4uYaYyx1hFYXoeFMjWiHJRSZHGe8ltxOBIJp0IIzmVRVHXdBEJyLoQAFJO9e3fPE4e2yQCA7LQ8n7fbbZyCb5rKgxWCwr3oqmEsg0iOBkNBAqO99YYxRhgzRivjVd14A0qpVqvVaXUQqL1w4UJVVSfDAaadWA+65QLEMZcKS8s77q3V+KEQTIjjOJSSUooqHKe6vShXkkRxrdCu2AgicKQJabCMUWstYySKopWVlc3NTSSHSpxvc0YsJMK1UjUsVJ4gSuI4TKy1aNuolPIUgJHxbDIYDGezWdSKhBDOQqvVwmZqVVVoSwOEGGu3d3bSNEWqJhY+CCCEYRjGMRY71lrnLCMU6bc41Ih3E58dvFB0OTCEuDOl1HtCyOL5wt2rGpMVeVEU+EuRtixl6L232mutp9MpTtufzhVZa9EdBxdlDPNhhHHxZMeKDPPDhX/7wqd9gYcsfpbSRjX3DAX443jLer1emqaT2SgMQ2Yt8dZabrVxzgZBEAaBlFJIiZfLOR8nMbeuqmusAvCJRtaIDAPCqLW2rCvnHGPEe4aPZxiGYRg+9s533L59czQacc7waqMmQ1EUjLEoTLTWlHLnoCyq2XQepNFkPC/mFSHIuWJhIObzeRzHxtn9/X0hAkfobJZRetButzmlZVkDkEBKrbW1jgEzYKSU3jrO+cbGRqfTKqo8y7I4iaIkVapmjNR12et1nnzyyYODg/39/aZpvHfIw/NggYAxvq5r7HJxzuu6DoRotVqrq6sIRUZRRAgRXOIW6vR7VHDn3MnJida62+0GQTCfZ1/60pdQYGBnZ+f4+DjLMtwqMuDe+7r2ggfYdZtMJpzzMIgppavra51W++WXX7579263125MU9d1papLFx8C4gjx7SSeTCbGqLrSUZT0+6txHJ6/cK6qqizLPBjOaZqm5y6tt1qtk5OTweD4+tVrTaOxskZRxCAIUMGj2+2ieeBsXNR1bbSOkggA5vM5NiqQlorDAagDiQACBUYAjLK1qhDEI0tvADx6oihiQJMkGZUTAPBkQW5ZoNXWWmeFEFo3uml6vU7TVNPpVGvbbrfTlMMUumm/rmvnCjyVOBWSMeZZWZYcgy9Cfhhodnd3KaWMCfxrnueEEMQyjDFHhydxEmKfM01TrRUhpNPtlmUupVxfX9W6Kav8rV2F02ZjXdfHx8dJEqEPnlI1wm3IbPenvqXYifIUAFCPiFG+1MAGpQwAaGuSJNnY2Or12pPJ5OTk5GO/+uutNK2qqtvt9Pv98+fPb21uTiaTl156iTFGvW+axgNo5xihjElrtW6Mc0Ap6jqRJEmuPPRAHIRojVrXVchj7x02TIQQxpu6rhl33hPBpJT3tgpcBJe66aXd//xP/qkbV19v5sWZ7R3ifFmWg8FAcg6MW2KNcwIW8hfLkE1brVYQBFVeaK0Zof4tTqb6LWaA2PKilDrvkO2CJlHY4QEAoy3x4K3DO+gWuiJeNwsZDUwy6rquqiqJU8YYTh/gPsazDO8dZ9Jyv/BPp0seJQDljCxnvsiSboP3HX+QuEXBKTj7MgbNGH4W51woA8aY88Y5LiXxjrwlVfJI39ZaC8oY4xZ82dRpHKZpGjnYn2ahlMTrSZZnk+k7Hn7k9V//j71+evHixeHReHg4tAbwEc2Kqdb6wubZbq9ljDo+PnYegiCQkgeR/ON//I8naRpGcjQa3dm9Mxgc93q9lZXe+vq7Dqb3uL9lVTnnBCPOuVY7iZNQCBbHMQAgrW+ZCRXW2iAIAh+MRoNut4tmesaqoij6/f7t27cJIWfOnAmCoKqqMAy9J+g4gT1VNM+87777Ll++/Pzzz//O7/zOyckJOkE/+eSTeZ5fvfZqFEXr6+tnz56ttXrxpZfjOJ5N5pPJxBnvAyizAnGE0WhEmXAOOOfj8fhkeFxVRRDKJEkao3GUGB9wPANms6zd7oogMkZl8wJNrjGj3dhexbvc6XTs0tQYf7yqqkuXLpV5tr+/t7LSu3jxYrfTv3t3fzbNMFwwTpRSkgtjnNdECO4ayzmvmyaKY6Rn7h/t4fBLVVUEWLfbbbdipVQ2zZ1VJycnaRwnSdLpdMCBEKLVEnjkK6uTJCHUMyCogJEmyWg8jaIEAIxRGFI5l3VdSxkSQvb29nH4DiXIvfcIN5dlifi4lPLBBx7iTEop8zx/8803rbVPPvnkK6+8dvfmUZAQY5wxtbW6KjwhxIMFgLNnz547d24ymRwfH4WhtN7IgBvLz58/R1yQFfmd3b3xeDocjFpJutLvG12HIcV4CwDo5yCl0Fo75nC8yxiVpqnkoqqqIJTeuqqqBJd2ad1rlvwXbRcN/yzLZCKw1YQp8tHRUSCjyWTSNM2Vhx/SWr/x6q63ICKhSuOdidMIe/gY8VAQKY5Fnuf28FA1WuuaWtpKO0EUKqVwt1dVtbd3sLa2MhqNwlAWRTGeDFEX21qllEqSxHtYtLVlKCQrisxYjedOWZZlvrvS33DOz+dZv9/vtXtlWQsmCTBCqHOkqioMWagFhg1eyXnTNEkSra+vb2xsvPHGG2uba1mW7e/vP/2epy7df/Hnfu7n9vYGW+ttzPacc2EowzAUPNjf369Kba1dX19v6rKui9l8RIgfDI7X19fTVqeqC0LIgw8+iPbu6DrrnG232ysrK0dHRx785Uv3B0FUFMXa2trnPvf5uq5bndbDDz/88CNXPve5z/zKr/zKhfMXd3bO/ouf+Vdamx/9v/8//s3/9gtWqTBMtL53q3IyLa5cOfOjP/wjL7zw4hc/9/nt7e2qqq5fv762vimEkAE/OjrC/Xnp0iWt7bVr16xzSPPBnBgLidFohFpdTdO0Wi1KiIpVlqnJeEoJ3HffuTiO9w4Psiw7Pj4mjAJAXVdaa0qZlNJTohTO+ngM4DgJK6WkDLAYqOt6b28viqKHHnpIa310dJSmaZxGt27dKsuy22v3V7rD4ZACSBmWZRWIsNVqGVXcvHmzyBvCKDBKwIzH1ZXL2//D3/ofv+eP/anDw+nv/M5zqyvblXIvvPZ6r9M9f9+lG9dfY74injhrkzAaTbKiqLKyOHPh/IMPPjjPy3HWFHVtHA2CwADxAFQGf/JP/emTo6MbN25oZ4MgqKzFGZ1GG6WVddQBEOoJZ4xR65y1jpBFnY8HEF36vdy7HkDlKMxwGLf3YjU1TdO4RkpZqgrPd0Lp/uHRYDQ8v9o2TY2h3lNvgBCtrdVp3O+mnWI2GY5K0pT/xff8VxfP7aimYZzUqimaiqch3FOIhZCtrS0p5XQ6NsZkWTadTvqrPcZIv98PgqDWivDFyKTWWnE6Go2EEDs7O9ba8Xg6nU7nkykAJYSu9Pp1rfCh895HUVhVlfdOSDaZzDASKqWUUufOXQA3bZQKhPTeoYtdFMXzYjzLM8mktx7DFB6LH//4x4Mg2J/PGaFN03Ra651Ox1gVxMFkMiGU1HVtxxZj6Z07d1qtJEnCoigoBUJIns/PnNlut7tZlkkR7O7uHx8fAgAOQsb9vtaac4oMiaIorPVCiKSVam2Pjo4Gg8F9992H45BooxqGYZqmaZI459I0jaSwVp+cnHzTNz1FCHn92vVv++B3XLt27VO/9duISiil0jTFXu8/+2f/7GB/Vwhx48aNH/3RH7148dJP/MRP3Lhx49Kly3t7dy+cvTAcDvMsT5Kkv9r3Fs27DTausCtJKe22u1mW4XXGwtUTdtrkwKb16Z50C68t4r0nAAA0jr/rnvvz/8AyBn7kR74hO7U//+fhZ34Gzpz5vb3+14bb+FfOe9B7DxXce1EKH/0oXLkCcfw1xG/edhUF/MIvAKVv6wH4/43Pi0vK39tr4vr9XKvf/7p+HX7jN+A7vuOrEeevu+oaPvzhr6WpLSUcH0Oef7VnIwA8//zCCfNr+zQCwHd911eQrwHgf/1ff7/U8pMT+Gt/Df723/49f+TTtbf39TeDENJYFscxFmhIiyPUN03TaO2cY5xos8hXhWRCsrpp0PQlCIJTtQpKKSEBADRNQykzxlDKOZOEEKo1XonTCt17xxhPeHJapyP8h6+G0Cd+f1U1xoy73S7nfG1tjTE2m81QLr+qqvX19XPnzhVl1el0BsdDrAHxPSA6U9c1cV5w4SixdikQREiv15NSojYg0sIYX8oxLA3oFtil99YsjIIQaszznPOFWgL+OixJqODIpMGqMwgEakhqrVXjmqbBlzWnopGMITiixg0AFEVhJUqTAZ4UdV3bJY3XGEO8KUsnhMjzMo5DQryxKgikDPg94Wa85N1+t5wP0jjylCijtVWEEOO0cxBFUdM0sYwYYwSVtRkD4qIoQs1Z3A906SS5uLz+y7cSAV/vFzaSOMJPgWDahheQMoo1OPZZ8zzPTOOtA2CKKNSwxquN+X+v10s7bWPM/sEupZQL2qjaLsUtARxW8eg9gEiCqhtjDCEM6d4o0ogwfafTQYyCEIJG01pruqjEJQ73dLvdsiyVUmEUECBhGCLq2mq1gihaUBgZU0qN64ZzLgKJmCxekNNpaUyJsb5AyjMh2E13+K+IsQJhrVYL0S3cLQCQZRkPOFa1zrooitI0nc7neEYvZspPFw4xm8WQHHHWaXNq84sDx5h5Ytv7lByNWy4IonvuFbIUVkbMWqmGAhGCBZx6z51zmjQAIDhljDhnmtrUjc7yDCijnBV1o43x3iMgi7cJtz2Oz/rlxPnpw4VvdTKZHB4ezudzKRhQwJldSrmUNgoTjDxaa2t9HIdRlBRqpJSRMqwrXeT5zs5W2gqTVjSdTgE/AuWtlpxMJtjzoM5FUeSc45QGaeqcL7OSEMK59NYhZpLnedWUjaq1UZ5Q7/1gMEjTFHXPUJ0sisJOp1OWpbFqoeWi9cbGhnfEGJMkCSPklJaOHTJrbZIkURhXVXU0ONFanzlzptVqoXrP2traww8/0jRNWZYvvPDC+vo6ujoBQFVVURycOXv/9vb2yy+9qpTqdvqEECnCw+OjbreL3DvjLJfCOIs7fDodf1lq3BrGyfrG6vbWuTyryrKez+drayvT8YRSWOm3iywPpNzZ2nZOfeELX9jf31/trWA1Z61HzBPbTv1+P0mSjY2NssxHoxHu2H6/P55MUJwgTdN+v3/n9t08z9vtLm5jbLPhsHVd1wA+lAGOO7Q6Pef8ZDLRWqGrdsDlUX00Hc+ttZQS54EugVkHThuHDCQLGkuJ1dXVnZ2zSZKMRpOiLjBAee6FECLhcRgrVwVBEMcxJ9RKTr23xDrGGPHOOVfXDSGECmq0YcAJeNUo72kYtGREPNCqrre2tuIkPDo5LiZ5HKdx1DXGZFmezQeqMdZ6ZxdTPKfDC+gGHsaB1to50+62rLXT+chCs3N2SwhBCNvfO0JlD611XSsAB0CN1UC8kLyuSwBHKQSUe6dWVzrO+N/+1GeiIG7qOgrD1bV+0zTOmzCSYRRNbt3aPziKotgQ7RlzxjutAhmouqKUE0eIJcY6xom2uqjnWTGxLnBUW1CMgaPGWOKARGHoPYlkdGZrezKZANAgilT9NrI7xkVezPLpf/ln/lzf0sODk9XV1TDijunB6Ih4KwhYS0AGpaklJ866UjVKayEEZWxjY4txWRTDvKhAW06YNd5ST7ggnAtvOaVGKe8d56xWDTaiwQJQzwiVXBhn8cz23mvnKaWTfLqzuTWbzTwBBBfw1EQOV5Hl7bTd63aLPJ9VRVbMk1YcRDLPMgKEEQbOMgqSUQCwWntGqbRACaXUOcIZx84hQ5lOv6jVKQXCiPfEOUc55UwIIbQ3lC8yCcKo9Q6skUQYDQ1YKSXlDBNKzpn3JGaJUkpz4JJprSRlUOtWGJfWmpDPZ1oC9CDwd2bPnHv8P2Yfq2rX7fSFhcnREVBqNBUylEFnOJr6N28GMYvjeF5WSZKAoFmZuQCyajrNR3VdDodDGfBL959vqvrk+DgU2b3TBu7P3b/jnJ3nsySNH3roobqub956c211gwmIktA422l3jTFKmWo2Y2mrk6RN0zDC4zTENEg3OgpiIcR0Op/Nstls5glZX19P45hzXhTV2loPACaTyerqahiGyMe/fPlSpZpOv0eFJFyIIFnf6G1ubKZprMaqFaYr6Uoz10nU9h5u3bgZhmGr1QqlmI1Hs/kUa/IoimbZdDwebm1v4iCG97aqCpxNJoRxLiej0QH4IAiIADzgkyQxSmHjyzmXZxl4v7mxMZlMDg6PwihYWVlx4GezWTtNVlfX0zgiwF564WUpozAIGOdSSm0ayQVjAjxXpW5qp70XgoHRtS6applNpk1RGaUlYeN5Pp/PCSGSpWAlZ7G11ijlwrCu60uXLimliqJwS29fKURRlq1WizE2nU63t+5rt9t1fROJFVJAFPr5fJ6ECWaNIo4YBc55VVUUOFL8mqaM45hxorQGR9D6r9trhZHo91fm8/ntW3d/+7c/M51Ot3ZWCSHTPPfeh4F0zjEmkiheW1trt9uT8Wz/YNcYy5g0ja9ym2f6ZrFPgWmtvXJba6utVutw/6DOc2NMK+5RIaZTJUQiAz44mTax5kJyDtY2QRAAeIBFBmy05UxghlTXCpXvHAFCQNV6Op8RwUEw46yqtNcKuC/rwjjX6iTOmCAItLbdpEcIfTV7kwBYRz3hnjPlPCEMnAtlaKwFittBhGEYiCCbZSAYl5IJ7pzZ2trgnN934cL169cnk8nx0YFVutTGaEdp4BrW5M567x3TtQeg3nCl9dH+eGVlxetENU1pDPGtgFFgwFlEOPHKMCezWTkZz/r9lTDkTaOdBWs8eJdntYocgFParq714lYvrxvO+cnx8CM/+/NloQ8OTsoyV6r21nzbt33Ln/jjH/rkJ39zb2/PaQeUeAJGU5SnYIzl+TAIAmNyQp11uiw9Z7LXXTOa7N3d66+uaK3b3bYy6vD4MMuKs2d3NjY2jo8Pn3jqyaZpfu1jvxJGyWw2e+ONG1dfex09pmfFfDodp0kkGI960XQ+OTjaHx0Uf/6/+lNX33jp9ddfDgPprGbs3jN0nW76Z3/g+27s3n325Rc3Nzf9eHR0ODwazXYPp7du3ZlOchkwY4yuNedSSiqEaKrGgdNaG6vqpjRWWWtv3H7j8uXLa5srR/sH5XzmvZeMtpO0KcdPPfXu0Wg0Ho+RaT48HuIoFgB04k5dGaUs5zyWgVsUFYBTmXVVU0aodeC9182FnY1WK8l0tXN2Q/AIfWsBQAa8Lkurzc7WuTjo3r51F6yLgvDc+Z2yzN8YzqOgOX/27GB/Hxo9Oiy+5w998B/9/Z86c/b+yYF+7ou781ycve/Mq1fvFJnhpjAHZS9cq4sj5lUQykkxi3qifeG8DzqdlXPpmXfWNd9pte/edDGbNaoUYZTp+qiuTkDa9nnFx95OGShJWKOBQeBtKQh4bwUPtXZZUwGAd8Y7FzARSMm8J8pwLoyxWqlAvB18RTgVnEptjW3UPW2DCWHCNkSESbs9GWfUOhnKotYH2Xxzo6fBcfDWOOqY0TaQqdMqYOqpx6+8h5OjwfHlBy6du+/CwdHg7u3br7z82lwrknRm95TSABBCmEYTB0rZ6TgTIrAWTAN5U0RJFAR+pdsbHB3PxyMhBOdCMGG9i6JEsujO3p2maXhHUCrqslpbWeu2O2h2enB0ePv27VdfuUoJWV/b1MriSKxSKgzjKw88HIq0nB8xTyk4IMRyu31uezodUeDPvPeZN998czKe8kACAHjbTlvb66u77fg4DgiD/sra5ubG0dHRbJ7N52PnnJB8ZWWlGyXGmE6QriTtbJYd2kOtdbvdHh1P51OtGqKaGaXgrOp2u04bKcMkCY8OdrvdbhiJ2WyWFxkhHigRwKqqSpIkn2eMUKvdrRu367pGq3qAqmm0YAYAhoNxnuehlO94xzuuXHn0e7/3e3/5l3/5hRdeePnlFyilg8EgjmNna0qsFCSM+HQ67Xa7O2fPDIejze1t58jP/My//PVf+8TFixfvv/TA3p29dru9s7Pz2muv1XVttYnjhBDSbbWttcqaVis5f/48tuKuvjJFVS6jLAPpAcCDtZZw5ojz1DNKnHPUuShMEJjQ2jrPzp/9h/3+n73nfsDl/TcKv+Y5/J2/87VUDt66yhJ+6Ifgf/lfvtoC7mus27fhh3/4bRV74xg2Nr7iK7+bqvw1lnPwm78JzsGP/iisrf0efhAABgP4e38PPvWpr/U9f+CfF9eZMxB9Jdpw4QK8/PLXeeXf57X6/a+yhL/5NwHg94Y4z+fwcz8H/+E/fJ1X/vVfh+/7vnvAzeMxfOYzXx9r7vfhySe/4iujEbz44jf6Jt9uTafwqU/Bj/0Y/MiP/J43mLXw2mvwYz/2dTYDAJR1BcZWeSGE4JR68IgTGath0a3kQSyKoshHwygKkiQJGdda52XBCOV86STmPfOMLGbGFQCAd4x456ynxHtLOfPGOiKcg7SVVlXFKPeOaq2tY4wyAt47oFK2I76kOyzM+hA5iuOYc+6tl1zWZT0HOp9nUgaHB8ODvWP8pZg2EEKMQUlG6pyrdS1EIGWgtSbeU7ogUSFKYLXmUlrjq7Lx3jsHFjznDJxjhHvwjDFnSVlWQog4ToSQxmhEjZXWQRCkUbJE9IjWGpwGAMHCbqdfluV4PCaEAHDrNBAK4BcqwwyWmrBAPDBGgPooCXudDmPs+LgwxnApvCfGaGUUIonGGMY859QD0m7odDrv3UsmTYbMGCWE6G8mSZLkeWlKw8FToA6IZHx1dTWKIikCwqhq1GA0ms1m1tqqKhgjWi908wyqrHoAQJOJBUvWLWQfCUdxZ8qEEEEgCaOOgmcEHAClxljnXJIkeVGcDIbeex6GjjjnHFDKBc4lKwCIk7DVapV1UZzk2P+QoTDOUABCEaZ3SllkjAGA5KLxtdXGU+q917bRFmegnVJaCOa8CiWvm8xaHUWRDK2eZZ55JmUnTa3xeZ632u3VXvv46DCOQu8944xQBgBxmgKldY20dGut4ZQhl8J67z0QQpxxXoIQggFx2jBKTaOQ0m6t12YhOWKWbV0PwDhHUgUS4PAFtdWUc2O9EAERkhAgTDTaek9QZNIYLYTwAISQsiyNXwiPyFBSTow2lFJvraeoLc7jOHbgjTFJKz2dnDPGEEYZZzi7cI+gAZ5w5pyRUmbzOS+pcUY3jfaOc+4JcM6tg9qSLK8cUEppWVfWk4CLea3KukEWqc1qSimlLIlifJCttVY7QjyhxIN3YD2x3vt5Pimq+Zs330CKnnXOam00jgVz7611lfPEggfutfNlQ5RS1BnHrbFV09TO2SwbOZe00k5dOGKjJO1JIataCRKY2h3cPg5TiU4qynivG6cNCnR4b5VRlBPjdJNVWT4DACHEbDwjhDAgARdbG+vj4fF8PnemSqIWJUoKJ7ms65qBD+MoDMNSuaTVWltbm02mjXbKFGXRxHEchen112+cO3fuvgv3E0LOnz//yiuvCMrObG5FUXQ3ju/cvvvQA1darRZCqJPJ5HOf+9wLL7yA0nP3339/K06O9g+8Nlbr8XCI+rTTyYhRcDYRPEATw0CIbJIHQdBvb1BC0FanaZrDo8nDV668853vKvPi+vXr2XySJvHa6sobb7yRl5Un0Ohm7/AuZtchb3GaUEo5k9Y0ddX0unEcCQC3e3sfAFSt8jyPoujs2bOIlyKmjCoRo8GIErK5sRHHMWNsfX3t8GAvTdrEE+10lufO28uXL3da7dlsRgi7u7+na80YrfJSKeWMlzziICil4Dwh4LRlVOCfOJfdbvfMmTNlMxeSaK8evvwQeHLzzu3xeKx00VAODAgnlDMeRg6IsV4koaeMcy5xqJBSjgILulFcCiTPLjR8QVPmvPdcALa8ut22Umo4OhmPx01Ta63X19dRUMk5FwYx0kAQwTl9xu6///4kSUTA67pmjOJYQRRF1qB7gKFLWaXZbEYp5Rxlf91CpVvVSLNadtXM5z//+aYpjXaMiihMkriFWirra5uttCOESJIE5whQUoox9tBDDxpjbt68rYxqakM489Zaz4SkW1tb7XYbmaGEEE8IeMoIoZx777WydZPjBzTemaLw9t4MNUbp6Hjw7ssPPfOe9x7uHVDBG6NR5STLsqqqOGUApC4rLphpFP6IFIJxHkiJYwXe+6aqA8bJkiHutHF+MSJEGAMA7z22X5C4t4yiC5Y0LIYxCQDMZrPNzU2+9PfDO7KU0nZ5nud5trm52el0Ct0srOFEiJA0F5wi0LxUh/gqCvNywVuHRODLnIvlF7FTDcRbC0ufQLdUUOKcLU5QT/1bNI8YI5QjNXuZcsECImy1WirP1byw1uq62Tm7eX7nzPOTo1defKXK5rAwWIu11uBsq9Xf3tksqmwwOK7rklLqjG205k1TFIUxCucUOt1WGIZnzp195ZVXDg8Pf1fSCwCgdENUjblUEAQHBweMMc7kdDodDEZxHFvr93Z34yiN49g5Nz4ZY8RR83nXdAkhVV1orc+eO0cpnWXz2SxbWVnp9XqT2Wx3dzeO4/F4ime8d/C5z32OUlqWeRzHlMLWmZ2iyO7cubG7u9tqda5dv+4sFEWF7OODo8M0baVpOplMv/lb3v/m9TcYY8Y5GYXb6Tal1BFwYNM0zfN5lmV1Xbbb7fvuv6/T6RhjULP/xvUbzXLooTG1EIIAS+OYpul0MivLErxvt9tpms7n8yiKlFFN0+R5niTJLMuH4yYKRBRF7Xb7wYeuXLv2ejYvqqpqtZN2u1WoIssyzkIhQkoBrAPBhBDO6LNnzypTtVotNdb7u7ueEM55XTfZdIb9dgDYWN/EFut0OsWzfHB8gplfXTeMcxSlAYAbN94IwxCAzmYTbGxyzgnxVVUggn/79m1KCAYceMsohnOOOGKt3djYeOiRKycnx6hnorXK83xjYwMtuc6ePW+1GUwmdVHiqA7n/Py5c2VZFmWW5zn2PJMkQSF/RBYosDzPG6U2NjaeeeaZ5599bnB8hN9gwCPwNxqMemn7NA3COEnf4s+Js4RlWVptyHKwGiN2MZ3P8yxMkyqrwnZqia1rQiURgilL67ruttveQJYVzz333M7OGcQZrbUeFo8wAOAQVhAE/X5/a2sD7R2iINra2prkk9XVVck4Y+zJJ5/c3Nz0zu3t7QVBkGelqrVqjOA+TVs4syIDpo0BoGEYIsnCe49JPwZkSoW1GgAGg4GztlLFZDJBreHRaLQ0QqdRFHlPmkYDQNPoNG1HUTKZTABAirBpGrz+aHxX1/VnPvPZ/f3dbq/9gQ988LnnnvvNX3u2u0o67V4gQpzqwG75aDzA4Nk0TSvt4C0rywrLPK31Jz7x8SAI6lrFcYi0xH6//7GPfWx1ddU698lPflZKwNoJ/ScbrbLMFPmcEL+ebJ45d/ZkMFB27wuf/9LR3kmWZYJEaF17z7PjmWe+aTIZ/dZv/dZoNLp48WLTNErVs9k0jpP19X5Z5gCu3+8qpWazSV0rrXUYBlJK3CcLYSLGnCMnJ0PvPQ+kI+C8L8vy7NnzjzzyiFIKjyEUU0aZJgAoy5IQQolkjBmrjDFcSqwwce9xzrmgnTSp6jKOw16vVxTZZDbqdrvOZsbpsiy5bD/88JXnnnsujINz589U1ZtCsqqu7n/wYULc3b073bjzwAP3A8C+qicD/cEPPPXhn/jJSLYPD0+K0ntPLl1+KC+q0Wh25cqVN6++evvm9V4n9UY45ax3nsl3Pf1M3Nt4/Y27l+97oNPrnzn/wM1be0WTnT23vXvrZhzISQZcSiAsbncdZWnUNqYwlabUoi65cdZ6UpTzdmvloYuX0zj23jtj9vf2pqNxpRupjBKGc04Y12/Pi7PWgjdAwHp3T0yPADHegdYeIIoib6zOS+fJYDj2l++jhFtXE0IoJcRbpRRlnEi63luN4+jKgw9QCi89++JsMr1x62aljaGkKMupnQX3OpaaprGuqutaa33ffRecWzgxINcJU1JCSBTK2WyGX7TOaq3zPMdbf+bMmeHJYGwdIWQ8HodhuLa2trKysr11hhLy6quvVmVjjcdtBkDLorLGU0rzvABGKaXWOinlcDgsy4wLjk62adIyxh0dHVVljpO5SKUJgmBra+vg4KCqqiSJGEuVUo1aTE9nWZbnuZTy7NnzWuvBYDCf50hrWl1dlQGfz+eEKOdcHMdbWzs4f7CyslJV1YULF4IgyLLZ7u4uscQYUxQFZkrYmcvzfH19fUG4IwQBmkX5qvXLL7+8vb39wgsvrK2tPfDAA3sHBzs7O0j8UUpjEBgPJ4AssKZst9uMsb/xN/7GcDjstHsvvfDy/v5+Gse3b9++ePHifD6fTTPJhTGm3W7PJ3NjTJ6XD9934X3ve++tW7c++9nPGaMAqF14+5BGGQBgjFnv7VKfFNMt5xxWRM7VZ8/8g6+NNQPAcAh1DWfPfq3vqWv47d+Gn/s5ePXVr/1iX7EGA/jhH4bv+z740Ieg3f5a3zmbwS/9Evz8z8PJydt+z3QKf+EvwE//9ILt+8Uvwn/9X39DVNa3rs98BjY24Kmn4JFHoNv9+t8/ncJrr8EXvgCf+9zX/+Y/2M+L6xOfACHgx35s8dcf/3H4lV/5ht727/9a/T6Xc/AP/yEMh/C+98Hq6te5INMpvPoqfPGL8Mu//PVfeTCAP/Nn4Cd+Ah54YPEVa+Fnfxb+8T/+hhjK8zn8uT8HH/3owgeyLOGv/tU/sCvziU/AbAbf8R3wzDMQhl/nU+ObGQzgs5+Fn/1ZGI+//utzxoxZuAKcavV6sN77OEmSJInTpCgyxpgy2lrbNFqGAWPEW74gTi6NcKzxqqpQT0NKGYYSOZjEAyFMKeWtxSCMIglVVWGEEUIwzvE9VFVFSIh6BWmaKqXKsgSA6XQ6n88BAJYVaNM0165dY4wZDdZq1PQ4LQZxWJssTX1gOQEMAFIiWdKGYSiEmC8zcKw+8Cw4lR46ZWK65USXEMJ7dzqivba2trq6mmXZ0dFRXdeUMgoWAOpK1UF9Ol8rhLDeJ2HovccPrrXBV45bbaMaTIqcs0i2XV1dlVIWRTHPsyAIpvMZgGOs0+12B4NjY0xZ1VprIbh7m62GHNiyLJ1z0+lUKVMVJWOcM4m1yX333ZckiWCiruu6rhAuGI/H8/n89DrghTqtvuEtlb5ziwkYThi6+BBGKaUyCJATbcwiocW74L1HkRDtHFZPZkkqIjRGvVql0LrNY+lU18oY5e1CpIIxdvHiRQC4e/dup9NBCvYpIb3d7SAUk88zHBtiLLDWSCm73a61ejabJVFMOVONcRbwm4UQs9msqirU0HDO4a/DCqiqaiwfyFuUvuu6RpLmKfUbGDNKzWYzv2S1EcLosvOBI5vOOSFlEARRlOzt7eV53mq10CcQnNXWMsH9QtBGV1XFlv5VKOC70BsBbq11YMlbtKEZ56fCrbg/lVLWO5zIxCKIEIJJFwC00nuDSIs6lCz0ToNIBoEUkiWCGWOqpqbARBha74qq1taKQDLGKGHeESBEMtmYpikbzhY62q1Wq9NpYZGINH+NST7nQRAbY5qmUkqJMEAROUoppQGOlAEAkg8ao1GXkjE6n88YYxz8PJumaYpZkLV2b2+v162m07l1+vBwnwmZxC3cWqihp5RCXQvOeVPXWH+hoo73nhEqowhFii3xhDrMzXCqta7rxmgRBmVTA6PWOuqdtTZNU87leDzVHsqSBYFMEgQSJ1Y1Dz740Pr6+p07d8bj8cnRsSdwcnJSFJVzo+Ojo+l0qo2RUv7Gb/yGdtZ7jwEEb0S73Y7jeDScFDK7c+fOcDhutVorKytZNnvz1k0hxHg8zrLMOWe0w7bZ2srKfJYtnk1jUM4Ck+ovfvGLSOJmjO3t7VFKlVJZkeNFyPMc9QbLspzNZisrK6hQqrWez6dJkiilRCApWcgStlotBz4rcp/7MJSUUuscEOK8X11be/jhh/EynpycbO/sOOcAKKvrNE2tU4zQPM+rqkIr9SRJKIWiKMB7ox045jU4B+CIc2CIN1YZ5ygjTpk8zzudzmrYzYupavTe7n6atqfTaV2pKI4DHwBQGlJllOA84AGNfaNqKSXHuUt8nLz3lAqglgE+veC97/TbZqS1Vu1Oevny5QonJpSpquLkeGi0S5JUKTWZTHu9HmNM8CCKIiECrQ689/1+H9FD3G3OuaSVYiGRJD5NU+KpEKJptBCCMW5MjaBzHMeEMBSCwBlqxhaDCVEUYPlUVypJU87lwcGB1vbkZGitzfP5pYuXO53OcDh+9tnnq9woadI03tzcybKs3e1IKTc2Nvb394+PB+A5E5xSyjmcOXvW6FprLZh0QL1zhnhGiLfO01P1qKZpGgueszAQb3O0aJtQ8X/9Y3+ymeWqrttR4imJ06iu68lkYsFbrTAyUgLOOaM1J5SHoXOu1+6sdftWa2/dSrfntbFGSc4CzgAcgAMgGC5R28g5zwSn3mvd+CUTDfyXlemNtd57ymA4HLaTFIM1njdYN1rrrXeTyWQ6ncRx3Gm1i6IosjxcCTDE4HwK9jBV3WhrMHFhBE6PPe9R8+MrBqAQB1tcFOc99YCebqfy+c6/FbN2zlnvwFrylgWMcs8d8W7hy+Q8oWEYyjDAGFoZD841WZb41Ufvu/TSSwflPLPWOAcyCJraCCGtJsPBMQudtpUM+Mpqz1k4c/HC9vbmF579ktYNAEwmk1Y76Xa78/m81Wp1u93B0TxNftfdBeh2W8NptrLSAxAA4MHOZnlVVZzzNG7NZ/n+/oGzIIQIROjBYqblvdda1XUTx7H3Tmu9u7uPMTdppThzxClVqj5z5szW1pbWdvfuXtPUhJC6qazV1moqYDwZDAaDMBI7Zzbv7u2WZW3B37p7ZzQaZdO5NYQxliStfrcfBIEnMM8zwfja2lq73cqy7Hg4Ho1Ut9sOgoAy8thjj7V73b29vbt37yKIEEXR+fPnH3nkkZdeemk2mwZxAADz+Vw3+M49Vr9JHBtj5vM5F6LX7yK2aK3d3Nwg1Bfz2etvXJNCrK9trq+vFUURRtI4M8umjFCgUKuKc+kZ6n8t7vj169cvXDyLaZkMBOUcAVCczkBZgOl0GqtYKeW8xZ2JwYFSmiQx2inhIBh2/Ky1SRI55zhnTVNHUaC1LspMBrxRlXcEsWY8gIUQ1irvfTfphHFgrT08PJzPZ1tbWyIM3vnudz33xWdfe+21ixcvMiauXbuW52V/rZ+kYZbp8WS0vb2ttTo5OUE1HsTyFhTspd+FB+BCrKysDAfjf/fv/l0UhHEUYRa40u9ffvCBo6MjKeXZs2dPDg750gAQ2zz4rOHnCsPw4OCgrmtPFs+gMWY2m2WTKRO8KvO8roIk7K70SpUHQQjUDydD63SnlXiwnFPdNIPBCf5qwbh2VmntHEUdmLwsgJCV1X5R+DzPGWMU2HyeefBPPP7E+vrq888//2//7S/cf/HS2tra7Vt3jTGUEGs8in075ymljz32WJbN79y5005bIpBlWa2vb3S73SzLsiyjlKFAmHNScDqZTBhjO9tbWmtjbBzHnEtjjHfE+8WIKLaUsywryxJn8VBfuNdbQRQ7juN2OzVG9foda/21q9enk/n3fM/3rK1ufOxjv17XSrCgLPM8z+M46vf7ggdaWQCQIsTntK4bVLH33ud5bq1L0zQI9Ac+8IHDw+Nnn/3io48++sADDzz33Je895ubPVTLCsOwaVTT6LSdrK2tbm2uo0V1kVfHx8dPP/30fefOF7Pql37hPzSZRiGXe54de3t7e4cvBoEAgDt37njv87zc3Fx/882bWZYJSTgPhGRpq5skSavVWltbuXvnThAEqjGttFPXdZ7nlIH3/uTkJAgC1MhzzlnrtdYHx0d37+xRSrG7jOOHxjghGCHMew/UeQBnfRBFcRxr06imcZ5RBowT50ycROsbK7PZ5B2PP/byiy+9cuO1jc21QEbzYprnebufFKoKYzmfzz79O5+az0rKWJJGRycHhPuVzbWNcGU6OJnns8lQf+d3vu9n/tn/Rmp25+5ht7V669Z+WTZrQTyeFfddun+zm0yO7n52ePSOh58+MIPx8IQFMk7aYXv71u3h2Z2Ht1bPeip1UwoJQJq6ygRxgoAE4Ey+eWsvSrurGzvz8W1KmDGVMYZSyPNae3jiqae/6Vu+4x2PP0lDaYwp5hmlcHx0dPXV126+ef3mmzeKIjdaUQYiuPedwgfTOYfd0HuS/LBl7jxzFpI4bKraEEIpvXVnVz31Lsq5rz2l0JQVPuDGe2N1XVf5fCK5SKK4rmvlTO1cw8jxbDqtFY3vuyfczBgz1qNxzeHhoXOOUpChAAJlXshQYPRWyqCeA2PCOTDKzqZZGMQrKyvzaTYYjABgMBgZY8IwPj4eDAaDbru3vb2dxK1WqyVlOBiMACijVHCbZdlqfyMMw6mfWWsZ41rrw8PDdjuRUo7H44sXL85n2dHRiZRSiM5nP/vZL37x84QQGQZBEIxGIyk55wkO0DSqDoJgNpuNx2PGGE5H1rUaj8d1rYTwzjWE0qIomoaXZRkEga4bQkhRFHWt1tbWhsNhWZabm5uEkPF4miTJYw89dv3NN8bjMQqDYg2wtbUVRREA4GTiaDDE+Cyl1E0zmUySJPnBH/zBwWDwyU99qt/vN40ihD755FMnJycvv3x1a2sDs9n3vfe9lJOPfOQjB3uHdV33e6thGL7vfe+7cOHCz/zzf350dHRycuKcIx51Odta6ygK6tqvra1Mp5Nf+qVfms1mrVYrjeL5POdcIBhkF6IZjhDwS5DldLQWSQBCbK2ufj3lYID5HP7KX4F3vhN+4AfgwoWv5qIWBTz7LPzkT35DAhq/e52cwE/+JPzrfw3f//3wh/8wbGx8tarD8TH8yq/Av/k3b6sofbqMgVu34EMfgp/+aXj+efjv/rv/I+9HKfjIR+AjH4FeDx5/HP7IH4GHH4Ze76s/9WAAV6/Cr/4qvPACTCa/h9f/A/y8uIyB//gfYTSC//6/h7/5N78hYWL4A7pWv/81HsOHPww/9VOwvQ3PPAMf/CBcvvwV2iDDIbz6KnzsY7/n61zX8E/+CaytwV/8i7C3B//+38PVq9+oGoYxMJnA937v4uL8z/8zGPMHCcQ/9xw89xykKZw/D9/+7fDN3wxnznz1NmgauHkTfv3X4Xd+Bw4Ofg86HlFU8GShUBcyiaK0iLQ6AEIIdhNXVla0NSgEZK221oIAPIycc3wBlTrvUGfWLJy0q4oQopWilArGQQji/Gw2a5rKOddoha8Qx7FgnFPmgDhji6yknJzOPxVFgSFUa4taDeABvAdPnXXgPTqdkreIYOBAHqLJaGWslMLUzmrNeYqVLNLCMAgjdokAHyyFm/Wy8YYz5saqpR40QVjAWjudTieTCSpzSikpJZJLVE5AfTzELrWz2HfEn1K6RmIH51zVFWOsqouyyhmjL2c5QmNXrlwJguBLzz176dIlSuntu7eiKEJfBOcN3ibORfA24jiYw1trsywTInDOEUK9I7Wu67puJ+377ruPU1rmZVNVWEmd/iBjzPsFpewUZT5FXU+/Df9JMAEL3yOJ09I4ZkwIAfAIo5OlzoBzji31yGUQCCGcN5LJOI6xGfDWis8YY613xgE4Y1SSJACAEPZoNEJME0U8vPfOWIQ1vSdRlGxsbJVl7r1P03Q2n8zn883Nhd+Pcy6QUnAOjhRZibeJSxHIABPyKAyR+Y5VHpbMAID6FWThwbvobWitm6ap8kIp5b6sjUYRLaaUSiGwNpRBEEVRr9e7efNmXdeoByKEEIwCpZ6Ac8ZpR4AuIQ4L4MJQIoMtL4vFjXDEL517vfeULqYKUITNWluWJXLP8VrFcYy9BPxXa+4dm/BjWmu9N5QxY4yUYnV1tcjmnoEnzADx1jTaWu+DKBQiAAC9vCbYQijL0lmLb2w6nSJgEoYUUVFJAkKYEAstGilDQpinBIUpYHGdlyafnLV73el0UlWlc7bVSlGdxmn11FPvXVtbu3r1ap7nTzzxxPHJyc2btx14IWWr3bXWq2ZRpydJUhuCDR7cvRjQ8KGmlCL7gSx1F5d1CkOUUjU6iJLGaGNMkkSEEOT2Hh4ed1dWoyiKW+n+4Z63dm2132q1ZrMZ8c57v7+/v7e3B46oWl+7dp0QhtHGW1pVWVXVAFCWdafTu3Dhwmg6OT4eKKVWV/tkqRoaBEEgZRjGUs7TNA5DWdRVFEXIKrPOxXEcSDkZLxzsoyg62D8EgJX1VRQaun7t2q08H41GrSTF4VoUZLt16xZbOp/leb62toZ9oKqssiwbj0eoS5Pn+Ww2U0oBLES9gyAo69I7wAaAMQqvMMo69/t9zvlkMjk+Pp7P50mSeO/zfM6YGI/HWje6UQsqsKetVgtfwVrb7XSMdkb5fFpMJjNGqPeEC26Vt9ZSRvBW3r17V0a0aaqyLLW2t2/fHY+mYRi5RrmGhGFY2MKB47amAZ1MJto1dC55jnaNUYR9TsTXUW/egqWUnIyPy7Ls97vnzp2xtplMJoPBAJGs8XhKKQRB4B3Js1I1C46tMSZN2+1up2maqkJR5sXsgwNf1pXWej6fj0YjwdC+1gZBDEDm83mel6g+iZwUANdudwghWjdBEJx2RZxz3W630+k0dVmXdbR0JEjTtKp6b7xxw3uyu7sLANtn1wghW1sbFy9e3N3dbXSldd3pdLbPbIdxuLKyyqiYZfPpdHx391aSRKurq3leMSacM5wx5yznnDEyHo6cNwhggYOmaeS956GhLKr/9Ns/+OiF+/dfv9EKU09J2uuIMBgMh7jPGmOI85wRo1VT1qgExACSKFpfXROM5dMJAdduJeU8o55HMsB7LDi33mKTk1KKusaeACGEikVHmjAKxizj7EJ8GTsnDMhClNnbIIi63S4238qyrqpK3JWXL19uJ6mq6qasoOuwnaLrhlJuGcc2IfXUe6sMBGzhSPBWMvLpXymlhGAOtMCa8YDEM4kx5u3i7VFKvXWLyaDlgbpoLVrLGJVSWFi8qPfOg5cy6PV6B3v7URS5snGqUdpUk9k77n/gn3/6Y0QSGUugRFsjZaQbTanv9/vb25uj6fH+/u79Fy+fPXvWWhslMZJPi6KYTqd5MY/j+Ny5c1mWGWM2NjYgv8f9Xd9ca69dYIwdHR3N8hkpiFU2yzIKLJOllAGnzBPCCMd2HI7eSBkgjMW57HRaxpg8z5131trpeJJlWbudXr58uaoyRBvv3t1DmA9zNWtZHIcX7jtPKezu3gpCtrrRmxcjcKta6+l0WhbVPM+TpIWGHuPJ5Pjk5KmnnvLef+ELXzgeHO/u73LOlTbe+8Fg4LztdDphGN65cwcnOBB7KubZ/urut33btz/++OPPPvvs0eBofWU9EKIuy+l0SoAmSYJ0uSAIoiS6e/eu83ZzcxPATafTUlXdTisIRKfbmkwmw/EgTdvf+oFvjaKorsvB4BgAmkYf7h8fH40IYYxwIMQYLaXc29ubzoZcMo/pKeWamThY0FHxZMqyDABQrq7b64DzGIhR/wsoIYRY43CKJAiCyXQoJHUOrNVKV8QQY4zR6vj4qNvteg91iS4H/PQILOtKFPzJp9795o0bs9ms3+9tb2/vHx1++tOfvntnF1uCOzt9VOJuyoJzLiVnzAeByPM5Y9Q5m+d1EASYoJdFjZ1t7yqjdaNUFEVMcKObfJ51W20gfpZl3dUVTMLm0zm6mwohJA2MWcgUOGMJYwg3oMNAkiRhHNGFNwgAQBAILoV2dj6fi0jKRPCAaa3LJtOmiWI5nU5V3WDmqnVDltr63nuyTFujKPLEZwVK8HvnDKV0OB4xwi5dviSlvHbt+t27e02lDg6O9vYOpJRG2fF06r2XMnBL4fXRaEQIYYzHcRKGYZblRVEURYEsDyFE04AxutfppmmKVUGatqbTqdbKe7K6sl5V1a1bd6Io4lw0Tb2+vq6U4lxEUZwkSVEUzhgHqOsHUgY7W9tA/XyOjHUfRcnR0cmnP/07Tz/99Obm1nQ6xZmbbrfbNI1SWsoALX2R4Ixws3NuZWWFS4HC6J1O7+bNmzdu3EjTlBAyGo0ee+yxBx98sK5rb4EQcnw89h5CyXu9zoWL5z/4wW83ujk6OorjeH1j47Ofb40H407accoZY4SQxhgp7z1Dd3R0zIPh+vp6XauXXnppbW3t9u3bUZRsbm5Wdaa1ZkzmeTadTlVPnT9/fj7L251OVZZFmW1ubhZFganzysqKtXbJs3BYHE4mE6NdFC3OSkJIhHWp90j3xpw4CIKiKLZ3NsMwvHnzJpYQzrkwlFlWb585Mzw56vf76+vrly5f2h/dUqoMgkBIGiUR5eTm7RtBIMM44pRPxjN8Ko03xHhP/Gh6CJzt3Zk/+dRD/+Sf/LMkaO8ejIxiXMS1Mt5Bp9sbjotnv/Dsy5//rVsvP6vz23/su79pZS2ZTByRnMn2JDciWLl0/zsjGcgkmM4zcLbXSecnh0rNOfWrK10RRv/x1z5eZYY6lteae/TYMUVRbO2s/9Bf/pEP/pH/i4XgZDw9PD6yBqrGTEdjD3Du/KUrVx6eTCa//O9+8eBwTwihzNtqMWJwJktf8nvVDACEUUKddQDAgIRhqExwPC3uHhw/uLM+zzKrGnx+rTHK+8rU2dwI4NyTRhbTvGiIK7zdG0/GdWUJid/mzWilrbUAnhCSZRmlVEoeJaFZ+CUIlK3Xql488o5QwsGT8XDivU+idH90cHx8nKZpkiRJkhR5hZnGzZs3b964PR6PvSfWOmttHMdlUcdROh5PKdxRjeFMUoIsKrfw87SVMWY4HE4ns36/v7W1NRgc11WpVM0Yi+LYO2+t44Iwzp23jNGNjY319XVEDYbDIZbos+lcNTpNWnjoGO9ms7kQfGVlxXkjKAOAPM/rWqVpGgRBU6vxeDybzQDg7Nmz+4eHjPF2uwNAOBetVgs13xjjRYGeBOOyrBhjdd2UZcU5C6IoK8r/13/zV1955ZWHH3746tWr0+n0ne9812OPPXbt2jVK+Xd/93d//OMff+yxx378x3/8p3/mZ0IZcc6/9Vs+cP/99//ar/3Gu9/95KX7zv/bj3wEeXYAYDWS9SosAoUQMhCHx8eE+g996EPf9Z/8pz/23/63hHjOqaq19wsvI0II55TyAAA45946RjgVtK5ray2l3+hIf13DJz4Bn/88bGxAEEAQgHPAOcznkGUwHP5+wbjZDP7xP4Z/+S+h34e1tQW4RilMJjAeQ36vDOrtVp7DH/tj36hE79uti5d+ntGbLz5//JlPF9YbLuQz3/T0zubGG9dedbqijTGl9co44y5L6tadB7+yvv7bX3r+5Vt34pV3ba1/+He/5sn4/2nddeecUhp23Qt/Df77vx2srvc31nvOAQHiAU5OJsPRpCwUEAAPfjHevvB7BIBTmxOK+Lf3QIh35vbPm5/511oI5iyhjAIh3nnGGYDHfAaWwqwAoBoFAFzwvQF9/D2WcTDaOgvOO+9RvoBRShFhxCMAmXenvEtCCKHEOw/o1bZw/PaYgX/5m72HpR0Lxn+cfrPWgvfLmQ9PCFx9g37yd/j/+x8G6xu9dqvd77eshaKsB4NxNq/qpnHWAYGmrpz3jFAAALL4zy+8zk6vxyKcXr9FBGd//x9Z56214JwFIIQAJQtkV8gFrIYYK37dGEMpIZTSPXjoHZoxyihDUo4HzygFQrQ13nnKGKXkFNRjjJ4CRpwySog2xmhNKOGMI9KHZlwOHGPcWvPFF8nP/Xu7vtJ74PKlKJKUEa21Mno6zYuyOD6aEMrjODa2OZ3gZGxhTAcAqEBolE6SpGlUXTcexkXxRiwDBNcWI+dK4eiJcS4MQ2V00zTbgVRKISIzmYyQzYopHOKeRVlKKY3WOH3ijSWEOecYI44x55wxjnOqlLLW1rqWUiZR7L0vsqwuq1Ci3KWjHjwhqtYnzVBr9GTjhGA5z5xz1jmsx3ES+q3AH4LmsASLMYcnX9YRrhkTcZqiKAf+IEIHOJGDf/ZLhVnclrCsZwEA/JcnazkX1hrcDwCAfXT8RUZpSnBum6E8EZOCAUP+IH4/F2xnZwdNqoE4bUyn0zlzZmc8HtdlheDm7u6eEGI2mx8dHaFSNqVQ1zW29jnnnU4H1UXuKavV1Fo7FOhH+rYPgoAAU8o457e2trz3d+7c4ZShQeLh4SEmcktZZLVQtaaLipty5LMv+NoAgOKWy/k2ihdhUVYTSr4s6k0W7mTeh2GoFnC2Z4yF0WKaDemAaZoiAmitrapKaaW1llwwxgCkMe7q1dfRKcEvJuocqjWikYxzjlPmuF9fX0fxXOd0lmXW+EAu6avGt1rtQEZaWURgAUAuJ7y11kmSCCERRNbaEEYoEO+9pdRbl2VZu9u11p4GKGsNklEI+fKQ9MIE3lokce/s7CRJYiw6nml06EFUHTUuCCHaNMieQ6q+WMiMLJZxFplA7i14BR7ZeDo7slAGXxDqCZzGVeRQ4xtumiZJ7sVoA3B2wej3i7IuMMbs7+/Xul7g5kRa542zQBljwnmPBdTiQQPgjIVBgKxqvKdo0YR5FOcLTXaUZ8E7aI3z/MuCzrBskyDW3+t10zTFuQRCvfduOhsLSs6eO7e2tvalZ59Vprl1+zYAhGEIMJdSJkkiZTgaTuq6RncroRnWWWEYgl14w8jlGCUeQHVZnTIXEUtVqqSUj8djGQVFUTSqEkL0+/3hcIxB8vatuzs7O0qpKJBa2zffvO6NPzw8RO3vwfGJ1poxEYaxc244GOFnb2pV14YQYYwRTA4GIynD/f39oiq63W6StBDUVkqfHB4DgLVuAT3HUQBRp9M5Pj7eOXPmdIIZPzIacUVxWBaVMZZSRilDi0LV6HEzieOYEDoeT5RSVVWnaYIXhFJ6+fLlLMsGg8HFS/fVVYNbBfe/c4YQr5QmhHhweZEFQcCZCILgzJkz6Ic3Ho+Vbs6df3h3d/fu3bvDwQivKlLp67re2lqbTscK6f/eCyEJRRM+PZvNw1AyxjiTYTuZjzPGBAUkeoLjlBjA/R+GoXNuNJqNx0PnIE3b1hDvqLW2dooRUNYEUTCdT03hMp/ptBIxF5TxldVOt9uvqqosCymlp15GMssaVZUAkGW5dbCz03/88cfLurh9905TW0KIUgoo6XQ6AOA9McYlSWKMAaCcM0o5qmEEQXB0cFhVOo4lzlObPMOoh4MSGPKc81FkppM5Fgl5ngMA0gPNcjHG0MMUcSXv/cHBwe7uvlZ1EARu6UM6n+d4yL3w3AtcCinFbDY7e3ZndXV1MpkEQdDoOm2lZZMVRRFE0nrNGPNgGlVyTrmgXDJKSdM0PJBee0Go0846q5QE5qz1lMt2GFZVA29TZG60O9/3h//odO8oJpw4TxgNktB5X5UlAWe9QWczBsRZX1QlouRkoSnBZ7PJrVu3JoNhFITMQxSEjLEkCmUgFuMVABhbzdLF2FpLxZfDK11OuwAAD4RSitJF7OOcx3HovZeSM0bwIamqQmuLWlGM0kBKdAGK4zTgorYlpdw4i+pg3ntUJqHL9dbPflp4n/4LBXDglq0qShgIIYgH4xY6AEZpAKCUn77/RcDF6TBGKaMMiCdAKXEGvPcWvAxjJrhplJQSwKvG1OPZ2d7a2dWNcTF1QFgYNLVpGhUFYZZPO62002k3JhOMj0aDnZ0tY/QLLzyHWzEMwziKppNJNsuP+fGDDz64u7s7HRX3PArSTixcMhyMwyjAcJaupJTy0WA8n49MDSKgSZhgoo9hFMfVrfHGuOFgXOQVoZ4Qsrm53u33RqOhEGJlpTcZjfM8v3nzzfF4HEXJmbM7adKaziZZNiuK6tHHH1lfX727e5MyNxgdc0nTVpRN6729PSGCJ554Ym9vjzFRFFVeltaZxx9/fHVt7fXXX6/qemt7E0++0WiE6EZZltb7L3zpuXYnRWOQbrertY5kMBgMrl599ZFHHut2u0uHNMeW7hPewXA4DKMgaSVJKxkOh2gQJ6Xs9XpRO7722tWiqM5f2H7Xu961s7NjNNy6deuJp5/inCur5vPpxZ0LDz740G/95qcPDo6oZ2A9IURrJSWaSwR102Bfx2l00aTWWqudIbbdbmMChLNXqWKg8QABAABJREFUgrOqqvAUV0Zj2he2w6qqJtPxdDap6xzPs6IotIZ+v9XrdbRSnLeNUUEQpe2W1YZSHgRBWdTK6Lqu4zh84YUXpvNJmqZFUQCjjLHpdDoYnmhliqKYTCbb29vj8dh5o7RxzqWtmHPqjG+aKgiCdrsdRXFZlk2t05SfFjbYKIqiSFuDjX1jTFWXvV4vz/MvfOEL2APvJi2ndJ2XnngAau0CcSbL6SpYWkmEYegcOOc8JVJK0FoE0mvVaqeUwmg02jq3deXRB+/s3R6Ph5xQQsAYA8R78K1Wr5rMKRCtG+8Z5xSIU1Yh+Gicret6dbXf6XT29wcXL1549JHHjk+OfvVXfzXP81bSarc7RVECgDMuDCOAmVuahWIJcevWrfvuuy+KIq11q9WRPDg4OGCcw0IIyAvGjVNFUeR5rk0DAGEeUMqTJJmMZ+PRNI7TsizLssLPW1UV9sZxDtQ5NxgMNzc3m0ZprZumfvXVVwkDKXmchISAtbbdbu/t7Zflb50/d18rHc+mY+ccjgdOp1MhAq3tYDBC9k3TNIQwLJD6qyvdXnttdWNlZaVpKrTCw2x4Mhn1+/3JZEI8bbVaAFTKYDKZJGk6OBm99NLL8+n0zTff7Pf73/Gdf+g973kfOtVQx770mRf2bx9KGTJxb83LKI463XXVmOl0mqZtSjlanxdF1m6n733v0489+sSnPvWp1157TUqRZdnJ4Ljb6UshMH1HLX6Mq3gLqrrG/Z8XRVVVznjcM6jfrbV1esGawWEXFM8N4gAZsnVdS8lbnbQuq5OTk3a7NRoP9o/20zj8+Md/Yz6fhzJot1rD0UBrff7cGS5Fr9NljAkmwMHm5maSJMfHxxSICKQyypkaAL73Q9/54X/0jwMW3705LDLvSfzmrf3xdHb54Uc/+9nPf/QX//fpwe709rVqePvK5VY+OyHMdlZ709p2O2tx2Fvb2HY0onFSa0NoCLbppK0gIFzYyNKitoyJTr8/nR986zPv/61fOyzGOSGsqqpz5879nb//9y9deXT3aJyV+XheNLW3FhgPRZAAgLPEE9Zq977pW7719q0bg+PDeXZPRSWw1jHGFqfd2+njeszdgVHqjKYM4jgWoIu6OBiM7j+74wi14CllhFNnfJZlVhJigVOoG1OWtePMcLF7fDTRGuLYaFs297YyJ5xZ66n3YmF9Dt77oigI9UhWyrJya2ur02rXldLKajUHACwFMYVAlYZ3vOMdAHBwcMAIJ56ylGml8nxGgUVxXKumqXWRV86Btaau1e3bd5xynHNvvNGOcbaysoKJb2+lN51OCaGz2YRSXtd1v983Rh0cHToggktrvfOATzQOtE2n05WVlSRJptOpNS6b59hnN8Y5B2EYT7O51s36+jrxnhOuwERRpLVVyrRarX5vJY4maSsZDAZJkqyvr9dldevWOI4TNAbc3NxM0xRlxLz3w+HQGOOMxWp5Z2fHGD2bzYfD4Uf+zUff/cRjx8eDmzdvr6+vV2Xzr//Vz5Zl+aEPfajdbgPAo48++pf+0l/6pV/6pQcfeAidOQ8OjrIs+/mf/3nTKMbYQw89dOPGjXyeiSiYzWbz+UwIyYAA8cWsjOLgsccee/rpp//Fv/zpyWTS6/Y5l1Yba4FQR7zHbj31FAC8s5RyjP9VWVJC3k78/e1WWcKtW7+nn/i9rbKEsoS9vd/XiyCG+fuEv8NoPwpvUjL37mh3/2gynmWTz64kccLdmY2VPnWMUB5S64AJ7ilhnK9v+Bv9vc+/9BkX3jssN+qqsc/jiJVzxjk3mpijgXzlVXAOTtNgSimqP8FbAAi/9L4GAFjO82EtzRhzDl/T1TVBjBipcIiSMMZwfhkRLqVUUWRpmnoqZ1mJgR2WqnrOO2eJWbhtL8A4BsQTZuxCguCU8yGl9N4ieU8bOK0OhEN81uEbPs3Jl1iAwMMRSxVKqTGKUk4NLUo3GC3mx/GaAABWbZioLHrbKD1PF5domdUsLjteutMphFNK4+kVw4vGOfea2iVxD79orT2131xg0JTic40fDV8H3z8AeEq892gQfforGGMGFg5yhBCn3el9NI4BAJOCAFOmcdpYq/No9fbuDUQqGWPtdnsyn2VZhkqaDlpcULxx2irrCSyaMVRZAAveukZHSpsgFISQonCInRljcOocy/vlpTZlWXrvlTJFUZVFURQFo+CshbeYyFlncECNc46GYwTY5lrPOXdwcCBA2uUeoJSGUSSlJMQDowBgoogBIc47bbz3CP1HUYT1wnQ6lTIUQljrKaUYopzzqO5grddKA1HwFikAQoizFrxfKiNrVVVACFDqva3rkhB/StZrtVpoJbdEJ7+M5bVarTAMUZIOKQuEEO8XhvOUUgCC2CvC36foQZIkCPyJMGh1O1mWITKOIrZa6ygOOp1Oq9WazedAiHW0rivvXZIkulGCce+hLMvTWzydTo+OjpigSRJhOSyEQEKic86AvSfcrJQC5pVSoYyLoiSEBDKKokhyM6Hjixcv3rlz5+jgwGpDPARBsLGxwTk/Pj6umvIUDnbOeQLgPWFfHgg+fUI5YYwy710YhoimYXzA67CEFKnWGok7hBAZhZR4SinVCxgBmb/YlPUeTrkInHPrnV0qo56S2FBPMooi5GxJudi6QRBwzpFdMZvNx+MJMoqMMQDOe5/NF8IgjDFKOfbCTxUnAJAGROI4ppRhfUcWbLOFZS4FgvzobrcbRZG1pqpOPyYzxvq3mEBap50F7713ZoEs21PI2JxKRmBXz3nnvTfeMVTVAPS78pQz611ZVfiyeOUZYwDMe0+BcSqAWUrpIq5qDcgV84sQBEuDytOgzd5G/J5Q4r0HivRc7ykxxqnGhGlirdXWgtHeEWxi1k0TBKH3wBjHmYOmaZpaOespYWQJdmOEJAt1NY3HDSEEKcwYeIGS0wkqzF3xQY7jCFUcu702SnCgkmEQBL/4i7+If43iYDKetVotpYwxRoTYJ9DGKkKI1rrVavGAZ/NCK0tAW60BKOcyCKILFy7O5/PZbBZFUV0uCKlCiCAKi6JoGp0kCaW8qmqtDaOiqfV8luO4QF3XQRDu7e1TSsE1cRwTR6azaRBEuIGllGEYY9UcR8mMz5FmTgiJgijPc8a4NdaY+ubNm8YYAh5jET4y+Ww+nU5RXK4paxmFSxkf7wE456h6cefOHWPcZDxDScasKLz31vq6rmezmTEGiU39Xk9rPRwOq6rCPdA0CghRjSaE3rl9dzwZSSnzPA+C4MrFB/M8v3btGgBMpmMhBKGk1+tiMIyiCNsRYRgaY3r9rtLNaDS6devWwcFBURRhFFhrnV2UKdhDarfT+Xw6nYy994RQQim2AxGB1FpT4hvf4OkjAuYUnEJAAA4AMOKNZ8MgCFRpAKDf7585c/bmzdvjk5NQxpzzrJqFYcisEFTMaZPGcYd1+IWL58qyzMsmL+esYXle4D6z2iSttLfSvXz5cpbN5nk2Go3StN1KGfq0csaDKKyqpmm0c246nWLqg9O7YSiHw+Hm5ubaav/u3bvW+Mls6hvAaQ5nLAWCDWutDSGkqVEtNMJghI8xob5uFKG+020v6I3KLlG8IM9nzjkOJOBBVVVN3VRNg0cjPjyqMbPZrGmU92RnZ8c59+aN61RQA3o8m7STmBDS66fHxyez+Ui7ZmNjp9tqHx0dg2WUQlXXUsbEUik5EBcEAVCwTlNrUfhyfXX9npHifU88HXlaFDVztLb12mq/0+tqa3Ds2hhDmaCeeG1to057ekgX5YJisE7T1GpjnSvrUmtlTGKcW1lZMcbwqjqN9QBgnCXE2+XBg7HyNHtzzhHqUYLDgvfeorwJtsKktEvoyhij5vNpLONASKN0kedJkiw9PTXnlDJKKfPeOke8c1rr03En/xYyNeZtGCMZAU/J6ZshhOD0kV8aszpj7fKDvHXhsQGnRwtdDAQxJrx12pogCrfPnNm9fsNZQ60lzqs8J2CkI489+NAM1I2DXWWNpMJYje0da22e5/1+fzQY/OZvfGJjZ6O/uuIaTzwdDgZZlqnGWOOtdtksH4/HddFL7mUbW5QFlUZINp1WURBduHBB1/rkZFjXjffABMRBWFUFABVCmKbB/ttpokwIwQKj1+90u31OKXaby7IEcGmarq2tJUlrfX396Ojk+vXrVVVo3TDJ5vPpzZvX2514bX01y2f5m/MwlMZgAVAeHR0NBqONjQ1K6cnJIQAcHh6+9NJLx8fHQSivXLly+fLl559/fn9/v9frhWEoggCvhuCBtfNut9vv95uyKrM8jmOcMEIe6I0bN+bzebfb3draklJmWVY3FRA/n883NjY2N9cBoCzL27dvd7vdrXj7iSfe9frrr6+srEgppJR7u3e/8OyXgjja2tqo69JaOxiP2kk7SkJjNLUiCALvvLE+DEPKIJsXURLmeW6ttdYjG55TZgMDANiU895rpcqiwDxPCBFFEWEU6eSIs2AMRcrbzs5OGEnv/Xg8FkKkcTKf51dfe905F0UJLHy3q6IoecDPnNn+wR/8wV/46L8FQoRkh4eHhLOiKN7znve8//3v/9Vf+dju3h2l1Llz54JAZPk0CALGOADM53OUyur1evikV1Vl9ILx4ZxD0WdCCGE0DiR4G4Zhv9uTjFtwDvz6+vpoOB4Mbl88e97UjbXWEgsAzgEmAYghoqQ+kuUJIQAWgHJC4zhmOHMNbmNjo9b1vMqcc1EQEA/O2Xa7TSmdTWZlWbeTdpbPiqwAAM6lMY4QYIw6bRqniqoMovDgYO/W3RtpFL/jHVcef/zdWVa8+PyLZaEYB8FEmrTjMGmapip1XRnOQu8baz0hTCkD4IIgSNN2lhU3b97e3d0/7RRi6qzqBqTnXGBiisNZ1vjpdGaMESIoy0prm6atIAiyLEviFpoCe++bpmlqLXiA6WmSJCfDAQDgL63qAkXvnXPz+dx7uHXrqNeNH3vssbLI5vP58fGxtb5pGiEsljQoeIKXVEqOjRmt9eHR/lJOrnLObGxsaK2Pj49RSQYcuf/++1dWVuq6WV1dNdrVtXrtlauTyYgRODw8+tmf/Tetdptx+sD9l8fD8XA4jJIYLEMyzu9eznoUVrbGx1FqrSGEPf74u8MwPDw8PHPmnPd2a2sD99LJyQljbDg6WemvbW5ueu+wu74keljGmJDM2kVVFkVRVVV8ST/pdHqoeNBUzWmTIC9LfXgIxE2n0ziOw1CWdUUpLeuqrus0TfDgmGXZd/zhP1TMs1//jV++cuWRNOq8+fpvD8XwoYcePv/u88fHx9evvUEIefDylcl4ppRJRLS9sT2eDMtJxaj8sb/+P3a6Z45uD2/fGk0nzTPv/7YvfOGzabe3str/xD/9GV0Xmyu9+pZe6/c6oc2nx4Q1IhQRBPffd3/SP8fTtbDd3xsMJ6Px5fsuUls/cN8Dd26+SrgPOY+jYGN9y/Deu5/8lj/0re97+dnfGh3dlozHaetv/Z2/+/Bj77x2c3c616WBRhmtDCpXOk+dc56IySyTnK5vbK+tbdy+9cZ8vj4v7nGnvENtK+q9p28HNxPigYL3lDJYzBpTJoO43SuNyyqlnANPjNWE0jAMSVF5q2yjlQAgxDPaMDpVTe6cosRbMBbCtxmqsnrRM8DEgBAI48B7rCKtcxZpAZz6KEoWJB1jmkZjWoJFY7vdHeIuDUIeCWut0k0URWnSPjkZcM6ZtqouPQHnXBynjIjclEwQ3SjiCfhFgjccHiP44r131qNe8+3bM2W0UUprHcfpIrwzYIxoreqa3rp1azqdvvvd72aUx1HirM+yBb3AOUByZbfVXl9fv3nzTRkIpOqcnJwY4zjnJycnSBIZDod4zt6+fTOJUpzYwyFQfMzruu71epubm8jxn09neV6ura11u/3Dw71z586tra0RQvr91eeee+6Rhx/b29vb2Nj4y3/5L+/v77/66qs//28/2uv1rl69+uKLL77zHe8aj8fGuF/+5f99bW2t1+sV8wwAut3uaDSaTCacsrQVw6nwaF0jfBUn4d7e3oc//OGqqjq9XlHknAljrBDCGY8PIwJqUsqmsViXnpJVKX2bLff/90vrJpBOa12pSpkmCIW3ZqXXPtvvRty3fEOcZ0AZE8BZbbT1DsBTig/ovRkkTV03ulzmoot5IK014qSnaKxzzi5Lu9MMFt4CPYNbaAuQpdjoWwEjDCpkiaxSypyzxPnTUhAAkiQ5pRwixoqURsQo/ekDbw1+3WpzyhI9Be8I8X4xUbioEfBBgKUiKjb766Wwpl8q753m+QhLMcaMQU2/xTg5AoLoCoDJiV+sxYg38dQ5g0jKKcZhrUIyJv4VwFHKsBLEV7BLMbG3wPQLNBz/4JbWNacYtF+ymk5vEJb3p0iZEEIK4eWi9HBLYV/lrFk+ZafXzVtnneGcg3XOeUGZIlYIMZ1Oj4+PEfDCKUPVNPgpvPej0UgGHMewpBQo+45Ss9gbDrjIMoMIFN5W6jy2Gb7yfhG6GHiXADCZTMqyxFIXnEIyFhJflG5Qrk1IEgaBajR4Tyk9ZUM76zCkRFFEKQg0cYUFNNxJW4ijIR2YMbayvoGXrqoq1FFEds6ivwIEM404jpumAYAkibCxgV8H4k4pt+Bpmqa9Xg/Z0AjGYZbuvT8l8+JHxrr49AnCfcUY41xyjhoa4L3XygFxCNvFcYQ4Mjbd8Xp674FRT0mNoshVhaAPMmy01nEaJWl6eHRkrV3fWC3LAsBvb2+/8cYbnLIwjPI8b5qm319NEmLcqQnTDB8QxgGlPJAJx+Ftu4CI8GL7xBNKCNHaFkXR7/Q31tYP9/fLvIiiCNVsF+DyogQGWBI4lk+TX8Kj9BQwwXW6b71zKMmKlcgpP8wYhU+iCAPOeVWXlNIkSTD9RvFM5A5WVcXYQssFU4swDKMgzLIM2YQI2CGG1TTIxAwIMVHEMIAIwYQgyFjH9gk+gFEUmKU2yGg08X6staYeUOHKGBNFEY1JURSEUIwqlFJCqbWeoICJc1hzaa2app5OJ0kUd7uLKcnhcDifZ18VgYF4SonSVqn6FC8mS80K50xdW4yu3ljGmPHOOYd0cljKLRLiCfGMEQAH4B0Btoxap5iM8Y6etge8Z4L7ZXTF9/PWgIxuNL97YXrGBGeMEc601taaNI0tIQ7AE6Ktt9YIIQhn2BjA8AjO16pB/WsAYII555aSqgv1GLLUsF7C/ZQQim6RiOaftotO26gYH4xVCPtYaxkjaRo756bZnBAiA6kaE8cyz3MU7mNUaW3H46n3vt/voxzf4GRS17W3tqbULKfwi6IYj8f4tEZRFMex1Qafd0ZFVTZAvHPAOQ95yBjDjaE11oyKELq9fQbx9MP9u0rl1lriidGGUaFUQwir65JzyQht6qrX7TRNwznjnHsaBNLjlqhrxTxz3nHOOaGIBeez+XA41lpTyvf3D4OQlmWJyJgQoirL4+NjTD7rWh3s7SPZ4ujo2BgTyeD4+BgWITeM47TX6W5v7dy5c8cupfMX99raKIrW1taw1eSce+fj78DJ+BdffN57G4bhE0+8KwzDW7funD17dn19Pcsyzvnh4SEAEApKqTzPR6NRlmWoMoQ4z+7uLsJrmG/s7e2FodS6QQ/DMJRBGCOZoyzLOF60qSxYDFlSEEopOmriziTEA0DTaCkC51wcxyfHw/k8U0qBBeCk1W4LJoNYFkXOnYxFFHdklMpknvD1rX5dx8bWu3t3ZhPFOHgPjJFut/vII49EUWStPTw8nEwmUsowiBlb6ClzzrOsQKX2tbUN9GjCw4NSwMHe1dVV6/TFS5e01q1Ru2l0WZZVUZ5u4jiOtTacc8SMkohpqzBpmM/n1rkg4EmS4MFAKQ1C6h2J4xjxF+ec4AIfYyGEFKEQotbKe7DGGWPA036/f+7cuel0rlQdBvG0mBwc7oehpCym1DNGgoAr1RhVeaOLImOMNo3RppEyIs47AqZpKANCWBgFxtvA2yCIsJqCe4EG73/yvSq/6hpLKURpJAJpjGPEIX7BGCOUUiCqarS2jlNjFY4MRFGUtjqxFHEY2W0zH01UVYN3WmuldT0ZB1EYBSHmebDkAmAGfEq1JsujBwOEtYYyinEwy7JuK8XJBUxhsyzLshmmyM65LMviXsgIEELQ+LLT7SZJgs0ZQohgqHPNwS3gCTw/Tj87xnFYwsSnnoKEEEYoWbagF11HILD0Z8Ob6K2z9Cu0m723xHFGiSeEeEoooYQ65xiXQZxMiwyqKrS+qWtD3Pr66h//7j/6yS99JunG1lrCKPFEEGYIxWkU58B73+uu1HU9mcycJ4IEddncvn3bGJckEadC1+61V68ZYzY31uBeQENT12Cr0WA4HAzjKBEiWOuvtdvdbrckhBBPnXPdbhfjeNLUUsr5bEG6xyY/XpCyqNG2nnPa7XZ0ozq9rvemKIq9vYM333zTe7+/v0soXL5yCcBNp2MhyXQ28QDYoh+Pp7pCf2R2cHBgrR8OhyhcM5lMXnzlJU4pEE8pLYrizp07o9Ho4YevXL58+ZWrr9Wjhdh6XdftVlcru793KBibzWanTnSj0Wh1df3s2bPOOQTdMNnqdrsAkOe51o33/uGHH0YZo8lk5Cm575n3fed3nn/j9dcPDg4n4/nVq6+Dp6+9eu3111+v63Jzc91an89KrTXAgpYCBNI4abValS7SNC3rAk9ESklVVZILzjljoixLV5kkSYzWAHCKt1JKuUQhcjsajW0DSSfY2tp697vfvbLSyfN8Mpmsr6+nrfhjH/tYWZYPPXhlc3NzNBrlWamUEkJa7YwxSRpZr5umaZrm/vvvHwyHSRolSbK7e5dJUVXVSy+9hAXDfD7f399vtVpc0NFohJlNxeooTLTWJycncRwXRWmtRctNTC9Qgc5ay6U4e/YsXV8/PNhbW1uLZLB7sH/t+utcSAwRx8fHVVkGQcCA+aWylV/SGU6VqRcSVMvGDKW02+3OZrM4TowzhAERJImSF194eTA55lycuod1Op1IRmVRn5JQvPfOWRQ3c8YmSTKajIVgWztbaRSfO3fulVdeefPNm3WtkjSIwoQQMpvM2+02Z6HypTEWgHAmvfNAMSYsZgCNMdgnOyUV4ntA3wytF/WSdRpB3jNnzo3H46IopJRhGGE6IoQ4zXrRSIRSWtd1FCW3b99Nkkhbwzlvt1MmKBDXbrfW1laMMUoZ7/1kMh2NRsiSqKpKCAFAEQ7DRLksy7qukb/c73cfeOCB5154vqqqIAhG44HRDt8Alnmw6GmvOWMPDg4YE0LIIAiODk9Go0koBfHOOOMIQKMn06m1sL+7R2HBbvBvmeH4qhUnrUrBcDhcX1/nnFPGz58/75w7OTk5OR7+xq//Jh76Dz744NraWpblGk16ZWSt9Uuql9HOLUf/DChsWZ8/fyEMw1u3bi1cNYYjIRY+lpxQtxyXccThLet0OmmaUgpREmMpJVbE9vb2bDabTCYbG2t11Tz34guzWTEf58PhOA2ipjAvfOmlM2fOGGOsAkrJ4cGx1tpqU2WlBK4y5Qn7W3/n7/VWzr/8yp4p6Zs3h5fuf2TvZPbG3f2nn37HF770pZOjvVAmJ3duUVulIZxZ6TCnPDPOG0KCrc0dmq4eTBuXukFRbO6c40H7+ed+0zWTuqiDQFRZs7W1VVX1B77rW971+Due/ewXDo6Owjg5Pjz6ob/8ww+/493Xb+zOC102bp5XVVOXs8I5pxSO2rgkbTnwqq7Ak6Pjk9F4urZ25Z5wM2pCKW299+xt7iYhBIA6ZwA8Tn1bT73zjvKsVgo8cFGVBaVQKTWtlWeUWuIJs4SyUFou5kWxNx43jlAReiBSMinCe/4uEfCmXBysWutWK0XoGYACcWnawuFxRmiv18Nvq6oFiwQAut3uzs6OxVY6kLIsJ5OJcw6IG41G3hHnfFnWTdMwKpxzjIlOp6MbrZW1yppF2eYZo+gQ6KkZj8cAMJ3Mqqo6c+ZMv9933sZp0td956BuakIYtdQ5CILokUceqarqlVde2b27571vt9tCBJRWhBDOJXKymqaJ49Xv+Z7v+aVf+ne7e3cfeOCBLJtNpzwIgslkhicXHnadTieOw/F4bJRN0/QUiT4+PhJCYOd8Pp+XZdnv97e3t998880gCO7cudM0VafTbZomipLnnnvu/ksPPP300//gH/zDL37x2Weeef/h4fEv/MIvoIcqNm7zrGi1Og8//OjnP//5P/tn/1xRFL/xsY8dHh7meT4cDhmh73nPe6SU+3uHcRyfnJwcHx4SQtI0xfEmHMfZ2z2AhdI3CYIAqNLaUgrOeSEDvI8EbQy0QY6Yc/cGRp37bYBvPv2rd3fvP/evByfj3b3d1dUVrbQHD97Ps4oxGseRYKKq6lk2a5qGUmaNqVQjZSilZJSOx5MwCvu93rL7a711Dgju/CB8cG3z7//u9zCf/Deqfs0Zb62pva3qCgD+9J/+L5566qmT42PrXF1VZJk0enDOe8ooZxzxVjzmtDGScc4YWpsKKa0x2OvC2r6qNm7e/JO/+7cbpUtSOm+MMXEcQcQiKeazGVv5//D1Z7GWpdl5ILbWP+3xjHeOMSPnqTKZxSpxEklQEikSEiVrfpbb3Q/Sixs2DD8IsB8MP8g2DNiSIKIltdAwpG4ZrYESATZFNdlFVhVZrKrMqszKISIzhnvjxp3OfPb4j35Y+5wIUpE+D4mbN869d5+9/3/9a33rW983SKRk0EqQZBjjADgya52x7bpYMgTJ/yTvofudztGZBQAAPARLLRDcDBFSuhtCeJZ1/izEAIQESYbhj4Gk1GqlU5jwUgh8m/0y1k3E019XSiEyOi57vZ4Qgvi8lGBQvU2JkxAdWU8/A21s0mznPVBt77EDSmCDKQjBqQymAUfYwJ1UHhPI7jZz6JTNUimxFUzw3hvjtik9rUoqR7z3jCiGEGg9b7kpQggmhUC2LWratiU1STp5t9hQ2Ni7sY36GVWC8AzZhW4p3ahtekNv4xuX9S2EvYXwNsgL4kaslvKNEDofdCnlFnJFxLbVAJ5SGqKMgPNcyTSKQwi1biGE2ncrNo6jLWJINPkO4ncEnHWtgjiO6W0dv2Zz8U8Pd2tt+3TImiME6wpTLBaLAJDmaa/XGXMlSTKbTquytsas2kXTNIJJIaO2IGkCwwRi2f0FWsCkQUdAKq1tlcRlWc7nSyJZk4wAcVeNMcF5ysQIjx4MBoeHh6enp1VVMca4QM4VbuTaaHFup3Lpbv8JyidhZFsUbPs20iiIogiARVHinBOi+9kAbgMudy12wjqpxe4R0Ht6A6EwWmtyd98/PNBaV1VBzl3jnSHt0w7HB6iqejze6feHRVEIrqy13pn1eo0IFB5LrZkLjLFOGBqF83XveSOxnIvGBEROfWVrrWltbZvlcv2VN9+iPkSapuADUbho1FhFgnP+7LTH9k5y3qGunTDNJgMh8Q1EVFGU57lSimoEwk8IO5ZK0Y2lG8g3amn0gAgUpoDTtp7WKmMszbMsy/p5j7D1Xq83GAxIlINS66drNQSSHBRCMMaTpCOZUgOAIl6v12uaxjTGOW20ds4Z76Mobo2JSFabcSEEEbHJrC9sYmZHWqOYubkttMzSNCXu0fHxybba8sQKB6BOyWKxkFJGcUpzYLQ9qXh0znkI1lpAlIwDZxiCUlIpUVXemHZLa2WMBYbCue39p5BFTwegizMUD7e12zbi0cVorTE8H24eDEdlIwkA0Vr3B7lQKWKw4JEzb721LZ2GUkohJNGwumXgu+CGG9cf2MzCig0ITrXzsw0toA43+uCRQhOlr7Rs6rrO8zyEbodSf8u22iIXQknJ6XEHhgyE995ZHxQ2Tb3JQsF7f+/ePRJJo5bb9oCo6/qLL76gO0YNIcEVdVFXyyWEEEeJELxptBA+uGBb6xUwJtrWeA/krbdaFk3T2EbT5TnnkiQJIXAeeesYcNPqSCpq2knJq6qqqgZC4r1nTGjdxHHsvAVkIYQoiiIhjTHn5+dVVUkpm6bZ2dkxtmrKyg3MZXk5nU4vLy91a/v5gAFv6yaOY2OsMevVfME5N02beyalBECiAdGPWGsFV5wJzqQPVkoJiOSUtl6vLy8vm6Yhb70kiSaTycsvv/yVr7xlrXfOXV1dGWOWy6UxJviOJ0fdu9VqNZlMGGOkRUwLUghhjaMQGkJgTGltEWE0GjPGer1eEmdl3ZDEZZrGTdMoGXvwRVF4D2SCvsESHQWQjskkZQDvtVdK5Xk2HN4oloVWepgOAdjSt3T45nm+CA0irpcrwUXIe3FRreJUWW+sCULIJMnSJH306BEFrKurSVE0vV6c5/04UXmeU3vQlgVtv041r63pDyQJyTWodbH0G1UmpVSapgzQW4cb4QgAoN3LObfGBN/plI9Go+FwaGyrlKIChqQ2h8MhVTvGOBqTUQDOaESMoggCoxRho1nphFRpkh8fn+zu7h4dHRrjGBMv3nkJvLu8PI+iqO01kVJZljVNxTk3WksuZsWSMcZD8OBDYEIIQL9arVqjRCTpT4Dzq8V8/LxB25SJZl1LIeI4lpuGdnC2rmtjnBSRjJS3bm0s4zxNkygaee9H48HR/kGeZqvFrFitl4tF0JYDSimlVGScenV1Nej1t53bzdjdJhvayDOBB7+JvyxBmk6iKLMqC0EXJiUArFYr733bNmRfUJZlk/S890Lwel2vVqvhaJSmMTn/eu9xk8UKxq1/6mbAaLSqi1AAT1NtZAw55xxF9x0EAODIMIAPfptBwpaqsDGOo1BIxxdnDJDb4BERueDoq7YZ7+2P9vY//+GHrG57WWKdbsr26z/21d/5zu8/fvxYRso6bbyLhULE+XR2cGN32B8tppMkS+/ceeVyNp0s5nWxFEKkUVL7GhyCwydPzlarYnd35Ex4bvHR1M3hzkiwqCnb9ar89EefTvfmh4eHr7zyyscffzwYDNq6yQf5tWvXVqtV0tRa69RHTdVFatoLlOUbTakSOueFEHVZzVaz1bQZ7WfvvffuZ5999s67b37tJ76e5/E3fu93j48fcsGQsbZt29bu7Iw4U8uqVEp5F1wwiDzP87qoe1kyJEPV6bQoCjrgP/744xDCaDQgI7vrN44mV7Mt22KxWHDEtbVxnJI2v9aapnJ2dnY455PJ5Pz8XAiRZVm/348i6Vx0cXFBImg//uM//vLLL7Zt++obb06n07PHp6dPHisZl0XLucwT7pxvWxMgXF5OJIukjNpaSylDEwDAg/VeWGuDx6qqkKNzLoSOEWy4AgAMILkIG8k50YmU8SiKAQL1wJbL8vbt69evXycltdFotF6vq6p+//0fEO/15OTJe199e3d396OPPr527dpbb37l13/9P9R1HUn1C7/wC/fu3fviwb2q8v/gH/yDV199VduWMfa1r33tlVde+eY3v5knWbUuq6KIooihmM/n/X7/8OCadzCfz5M4Yihoesg5R120ziQaOM0QkBKIlDLv94ieHMfxZ599JqWk0e+iKGhsZzwef3z8GAMoxamQox1KWSOd39Qc7rYJBsY4F9wSIym4OE0UQ4ewWq0cmDTJo0hiwJ3RTggYiejyYnLz5s12flIWV1pr4mlaa40xzrvFapnn+RtvvHb9+tHdu3c///zzsmyTOE33M+KSrFelMe7i4iqOkzSKAxOd+ThAcIFzwThIKe/f+9x7nw/6kUp0a5taA/ptguhcJ9lmjGnKKo4iz7jq/GATSnSo0gghCNEg4nI1R0S6pYwx1wHBLIpUnqej8aCo1v1+L47VYNgjRMl7f+fOC1KKXj/1bn8ymYQQlsuGsl46nqqq+upXv8oYe/Lk8WKxuHv3bts26/VqOLz15ptvegfn5+eInETeB4MBIs/T7M6dO/fufTGfz4fDbD7bTNFiZ4ganEOBSsWcYy/PD/YOH907qVYansEg/sRrOrnKhzDaGTMOyAIiWywWs+lCCBFFiTFdk/nJkzPSHLDWpmlKCSINuKRpCgkURaFARFEk4+GmRLF7B7u9Xu/Bgwe3bt0YjUZ1WSklpJR1Uc5ms66eDN4Yc/369SiWi8WCsY5tR+nF/YcPBONJkrWt+Y3f+I2yLA/2b3z6yRdlWWdJv210COHJw3MVS0TmAdI8V0LOJzMMMMwG91b1G2++/uf//K8+ubDTpfv0o7sPHl997eevPzw+ZnHKePTN3/u9QarANvPpySjy167v7vSjiLPaNFo3/eF+vrOzsqpF/71v/dHu7i4wcXZ+HqfJqpnWZd2sDUWnX/qlX/pTP/3O8aPVd779rcVs1qynL738+p/9pb9wejGZLIqyCU3j67pt28Z7q7WmEYoQuNaaM6HixLTNaDQ6OX60WKye+6SkEN5ysAYCsqdN3j/2QmRCCG+ReQfboR8mrOYPH589uXPrIIuCEA6DMa4yrUUhPOeRBCF9kk7Xq0fTyarWXgjvPEMRrLPs+VbmrjMMsSEEpaTWujUNItJsVlEUxmhElHscEdM0Jaq7tZY6iFEUzWazqqrSuJsPI8bTfDFN01RxhcCm06kTwmgbx7EQqipKRMY42OA456Y1iFjXbbDu+u3bj88ekWAcMmCM5Xl+cXme5+nZ2ZncWHE6Z7UxlMx89tlnEHC9KnwWsiy7urrq94ckeqN1M53OrbXXrl0riuJf/It/kabxcDhcr5fU6qPRY8bg+vWbRVGs10vi3SRJYp0pqvXO3phzXq6L/f0DgsaE4ABkf+Sm81kIYbVarNdLD+HTu58ZY3bGe0mSLJfLf/bP/vmTx6c3bt385//8n5+cnEyn05/92Z89Ojr6xr/63TzPy6L963/9r9Oz/v73v//d7363Lso8zw4PD68mFxzZ48ePLy4unHNNreu6VlxyJaIk8cGSUZL3XoqIDovWa+ccBua9odSIM7RWIwZnLSE7stOp/BLJCT/7Y6vClt79UIllP7u6dR1PTk7oLzo75Uzl6eHk8qpt22CMM01rHQCE4HXDTYsAkKRxlmXT2YfUORBCcGRE6W21JUzzP3819cd1+YcCmbOh8g0Vq7PZzV7vYDzml5eXZGHS4ZjgAGBLgHCuQzqccxzQGJN4HyettTZsKJOuk4X9Ugs23bTE0UuzflnUbbEWaeqcQ1QeufZeIhORMlZ7H4RgnKNk6AMY3Tz3F+JTFliXZtNBvAUriU1vrQ0uIGLApz9IXxC0AQDwDPjLOSert201xBhDjoyhEJLyYVJL9947CE2jsyyiDdv16TecD3qsVGRKKYVQW9CQKqwugd/YTm4HCsNGjIIeQSwVABDG5Daz8/QGRHSu41c+y32j66flSrCLEIxwEPI1gs1xb63lyDx0P769D0IIrmQIwQYvkdNH850aBoZADG4OEMgKiHyGtsAxedr7ju+Mz77ExpODokHYMD2fBTS394GCEiLyjQQwvR9JmYhc7xAAYEsM9B51a9I0f+mll+JYEYg/m81OT09ZAM6FZ94YE0UKAAhrCyEIwSjJqapKIOv3s9FoRC12zjldJ4mQSCkDoefWUsW3BY9oEzlrfbC0DKRSg34/TroOfVmWbdNEUcQZYwEQ0bR6C8G3RisuOOckq4KI2tktRkbwBGPs4cOHtLSiKGqaijHRH48RkagnGDrlk+VyqZTIsuTTTz9dzGaAqGJJfN7RaLS3t7darebzualbQCY2Cg/b9cM3w/7WmCRNcSPJTVUqsZXpdpHPSgjBWiZER71H1jG4lVK9Xqc47LspHyTPOloJ9KwZYx7CbDYLwVFnJYBz3mw4SX46ncVxYrVtGt00q6pshBB086VUgF7r1nufpan1OoriKIqKdcUZw+eXjN3p7JwTIq7KerPveAhhMBhorRly2ne0SPI8b9oqhGDtUzaJ3zBYETuIAzbVtxCCaGSUOas4Ij4KRSpjjNVGKRUQoigKgG3bkkwi26ioEd+CngJBdaSPgYjeB2O0VNG8XbR1k6Yp+WYppRaLBW1wum902+mBdvudAzlJMIYUuIxpqfGlhGhDTUuOWO3eOwAYj8fWWqtNkqREshZCwAYTCCFwhpzz4DyBAd3yYHw7OJLnvcFgQB+wa8hJ0e19bxhj1lq1CWJExicEyW+GVzptegTOuHNu23jbJskegHcgcreiYKMCFEJgjHsPRCykZUwR45luAZdcgO+6lf/5SzAOgVlnAgsJ56HDDaRuG/DBe8s3o9LGGKeN985ufALFJjBCAOefCpnSbiLOO5EJttgLblp0MiHZT68iQb8fgNMtIqULCrwCWQjAmEDvKOhxLhlDxoSMJNdOcInIvQfGHA1zE1AQOmmLmG6ItZbAQ6210Q4RV8uCyHn0Wdq6ZRydc4e9w6osaNQSEYMNbdUWRYEeda1P5ifee91awYSUUnDhjF3Uq23wZwwDicthaJqKOhnW2mC8R2AMpJTWmQDBO4ccyMvq5OSEDpGmaXZ3dzmXxjLO5RdfPDg7O4uiCAGrovjh+z+gMjYSiiOr61YItT3FNiGXDYcDDFCW5Xrd3YcQQp7167quivWZuxCCAbDpdA7gv/WtbwHAjRvXVqvVaDR4+PBhURSj0c56vSaurTUuzwPZnFCHWG6EW2/cuEFM56ZuaY/jRqI9UmmcqBCcFKxpGmv8sl0a59u2JTMqZ+3uTjqfz0PANE2co7yCOnaI6IRQ1F90zhVFcXB09O677/7oRz8SyNM09uCrpjWtDnkwzqZcjkaDNFNFs4rjVMznUwC2sztq2/b27Re8A62tMe7JkydxlKRZhoxlvQwYWOdWqxUyty6WF5dng/7IeocISRI5Z5QS3kvnXBwr4iYzDlVVEYOMZhBIS3t/f5+iKgUpgs6NNkbruq7jJCEpCSHEcNRfr9fL5YLeTN9kDK3xWjfeQ6/Xy6S8urqSSnrvtW4YCuoDO+c4F4yJoqhmsyZ4JBbPZDFv64rzkGdJibVpnVIqOAwO93YOrLXlulKylEx6gww4mUtwDFEUxXHUWiOEQB8iqYJ7PmSwulzc7mUcODImorjfH2GA4DGWithkyFhVlr1eDwNESUwsP855Gid1XS+X66Ys2qqOpHLWUQKVJCMhJGN8U0+qJEnKuuqQemsZ4Nb/NIQgWBdxkPONZBIAePJ874+GALCuShKGk1JK2b2fzmz6Ztu2q9Xq6OioruuiqKw2jQ9bCwtiUVFuRA0i2FAs6dAKzqMQW34BbXt4hg39LES+ZYCSFQA9cUQEx1GAt45xxjiDgIgYGHPepUnylR97d3J+tjw7r7QJgi2Xq+mj453R+NHqylgTQuCMex+klMvl6nvfe38w7veyrCyawwPFUTrt69rs7g6SpDedTtu2PT09Y4xJJpezleQXN3ae83yrZfXYnPQGgyztMVRta05Onsym80G/T+NaUkqcs+VyORwOVSziuNc09WI1V0ICAjJGodZ3vNTgHDAmvPcPHz4BBjfu7L/55ptJEr38yovvvPPW+dX5N37vw9Vq8cqrLx8dHd28dfuDDz7Q2q5X5Xq9BhckE957LoSzYTmbx3FKdQLpoA2HQ0r1CFleLBZt2w4Go73xXl21dFQYYxhAnudEbAQAzjGJ4qIovPWC8cnVZDGb015erVZaNzdu3CCRL+o8T6dXBwcHZ2dnjx89vrq6ms+nVhvERmsbRXEIqGstBDPWWx8uLq4iGSFywSTj3DnnvAMQ+/v7jx4/MsbY1mRZVpY1iT9sz84QAvJuzqiu614/I4avc1Yo6b0/ONj56Z/+6TRNz87OSKH73t37VVUNBqOqqlar1Xg8evL47Of+9M8nSfbtb/3h4eHh/v7+D3/48bCfr9drIv/2er00TR88eOCcOzs7Ozg4+PSTuwDw0UcfETzaywfT6ZQo/4Pe8PrRDW9DUVTet4yxvb19YuYKIa6urpxzWZYJycqyjGI5Go1ohZBaP2dAfcVr1669+eab7/7Yj33rW986fvTo6uLSWst8qF3dJcQh9LKUnhfRDYiFQR17YwyAR8+MMVEUuUC0Ke+9X62KJIuM1rPVdDgcTqdzKaLLYsK5jCJyQrCR2pZbLM9zJnFdFq+88sr+/v6nn9598uRxkmTeQ7FeY2AMhRCiabTiggX0xmqwm+rLS8a8R2OMBCkkIhOIwTTGibAJAogsOOe0tkqJqqrTNDnY25syKMsSgZ08Oqb8L8/zShvBmOScNDfats2HWVVVbdtCYAzRIyZJ2utljW6cc1VVxEoV1VobuLi4IM/PPM+rqkAMFxdn/Xx448aN1WqllJpMVummtuGcn5+fHx7uE+lgOp0IJWniPlLJ+++/XxTVq6++Oh6Pry4uz5+cxXE8w2lVVVJGcRyPRqPpZN62rRQpySAKgXneb41xwQ9GfSU5bT0yRNr26v7EiwvMe3GWq/MnZ+v1wjlHWd16vSZhGSohTk5OHj16FKnEe69UYa0VQgjJGGNVU1KuZqwxTt/av3V0dLRarc7PLijEBXDOud3d8aN1QQs1MKQvoihqijUA6/V6VGxorZMoaXy1OSYU50xJ7r2v66rXG0TpsG7mccQwQCQiY1yW97Q1XATSuYtHEZO8F2fnT84VE3/hV/4iY+pyMpfx4OPPj/tZHpSwGF589bX7D4+rdXXr8PDzzz5CuxrtZflYpb3cGoOcV6X+83/lz8n+zvFnUyfHKuoJVB998L4Et7PTu//JuTPe1o6Pxa/+xb/81a9+9fGjaV1Wn3324XI+a6vir/61v5kNxp/fuzdZluvCtk3A4KpyFYJvmkYIyZ4Z0EaGnPOdnb3XX3/9j74zVc+TVOKC0y6TIrJfkgkAgBACGLdNzRggCiGl1hYysMF894cf/qmvvD5O89VqoX1AEQcIRjuZxD5SJ5OrJ7PZumlBRMEHhjwQMg7P124OIRB/gdj3BHilaWpMSzu2bVulRBRF1NNighfFqt/vv/PO2+fn57PZhBhhcu8wSZLj4+PRaHR1dcUxkAlJVRVKqV5vUDZ1WdQAGoAppbyx1lprHGecc+68Z4zRcIxuWi5Fv9+XUn744YfrYnWw91Y/711OrvK8L4QoigrAh2A556vlWmu9t7f3Mz/zM2dnZ/P5Mk3TDz/8kMhK5NnStrWUcrmcG5MulvOrq4sQQtNUdV3u7+9HUQTgd3fHZO9TFCvOkXNR1yUx7pum6Q97kVSPHz+WUt66devy8rJt2+Pj48FgkPd74/H4iwf3qc5ZrVZFUZyenjVNs3/tcLQzTrIUGEopj46OprMrttG8++yzzx49eiSE+M53vjOfz0f9wU/8xE/85E/+5G/9x9/83h99t6oqGnXq5byqKtPoxmjnnPdhtDO+fnTt5ORkPlty3tlbUTnBREdqI9+Lbd2CGKSUs9lMKfbcZYB/XGQjQGjrGhEPDg6oIkLEtm2TKLbeXU0ujNGMdVpPpNGEiM46RFRxUtf1fD4nrKQDNWSstTbGqST2X6Ln4X0QXBljfPBKxYwx7+F/+B/+v599du/v/J2/s7u7f3FxQYoKHgE8k5LTZ6/rGoARcRIACOnbkvI2zNlusEn8Zwps9Iq4BJBKcAS+XK/bttWmMzvCXgpcAAPOVeutdpbmVQH8zu5YAHyZRIkQoqzsFrHyG8JheMbEzDnnXCDyMmOMIfPwFMHc0s0IuOTP2PcRKXg7wISdbV2H+m1hAnox5lkAp40N2nvPAEzTYicWF+hPK66cNoTCcNHpWhCyQHmC20hwZHFMlg9hIwbScUK9J4xggzI71s0+4xa82Bax/hnKML02OLU1xtDAAd9oa3jvGSCVJHRsefQOXLDBORdFCXBG+CAB1pQzwIbMSA+dEBz6py2PdYuME/QWniqrdvRnulRi22xx587ElXOqa5xzttWbcqnD4hERBeuEUBjdTOKLIGOMAfay/Nq1ax999BHlpUdHBwcHBwToNLbJ8+zo6AgASM+BjJeF4KSQ47xPe1mWZV988UUURUwKB0EqacpCCOHd08XmvXeBbnL3CLz3gjEMUkgWZ6mQEuGp0Iq1tt/vO+vbprHW0WMN4AOCdVYpRRoaXEkArpSSRF/gwDkXschDjojBI8k8UmJMhapQUZZlxhjBkFjw164dUtmolEqyjLKR7dagcbQsy4xScZTmeV4UBXmmhRAIJSGsk54CdvKyLX1GIv8S5Odcx7Hw3nd9r7ZljLENavdsp8E5RzxuqlUpZ/beSxkZp40xSgljTJZllJG2batURAgL55xxOZ/Pq7IJAUn7hTEWRTJN4yiK4zhCDKtyTkV9XbXewZc04ACRITIhmDeec15VJPfhOec7O7sAKKWMlFrWTZqmg8HAGJP7fLGctbr7vPSi8t+5jjBLsVFKRZxopRSJPzDGiFK2XC6LoiDJeEQMEIwxUkXaWWMMl0JFMZ3v1MWhQoOU4imNpN2hlPLe13W9mM8I0aZ/ChseIcmYkCYkiaLQDQ8BvHfed7SSui6pdTGbzegxZb2UpkVDCEVRXF1d3b55EwCuLi6Jrk6kCs759tEC0dRowFGT8H0Tq4iiCucihDAcDimTpwXGpaCRCMSnDHFaJMPhkG4sTRV475Eho4aHtQ6RbkUIQSVxCAEYU6wzt+ScO0fiRY6CXtgw50RnIM9Jp54+NWzUihjgRiPl+XDzdDZ7trHXtm0A6YIN3jtrMQQINopSAHDabJt21MinYEjXLBVP0m5AyjuwxmyWcTQajSjMbjtt9H1CgSj00fZJkjhJUmtN0zScSQ58y3JVKlYyZoxp09DflUwywZVErS1d0vbo6YYphSAxCvqjw+HQGi+40lwTK2ujyMS891IIpZRSkgQMOedSAoEGxNyyxjvnwCMGJoVgQQgmJVcYsWWzbEyDiD5Y1un4d6cwMSEAwFodGDoHjEF/2AMMnKNx2nufZclP//RP3rv3BX3SWEUATHJZl3W5LiMZceQBAAKXKtLa0pFHQymCSe/8sD8SSnLO1+u1aXVVlLu7u1przqUxhtowZBdprXVFKYRATse9j+P49gu3qK/w+PFj2iBpmtPgnbXWGDudTsuypGexu7vrnIOACGwxX4YQvAtdYSgEad8vl8skHvhgvcckibTWjx8/BmBCyc0IEZZFXVcnzoTNGcoQUUnpvaeupA+haRptGw8GAKq6eHT8oG5KgcJau6pXAdFqw1UQgvWiHnK2Wq8X61mvZOL73//g9dfeHI92p5NlmqaCq/W6nE4fG2P29vaOrh1ev37deb23t1dVFZE7qqqK49gFS4kHbHWHhaAm3JaoT7NpUkoIbDKZZUl6eHhttVqRV6NzLstyClLa6LpunXOL+Wow7N29e7dp2uGoR+lvmiYHBweLRTcvGUcpHRtJktTrJRNIOSjngujltKP6/T4iLteLEJDGZ6y1jEfGGiV4cNpbC04qFRaLxWpVf+fb74/H4/3dXcmUbR1nEjxatM45LlgSZ0kSB10hA9doRMyS54+1Mu9DQBOcimRV1ztyP1bRvUf3aNSiruvlcqm1FlyB9265DtpeVuV4PDza2wXvg7ORkJCk6EPrDR1VVVFmcYJRbK2hKTZqgWrdaGuIvGy8CxunIO+9c8b7QOJHFH1o8dEtxc3Yi3bWe89VFBiWTc3sdDgeM8aYYKFrxayTJKnK0oILgNRL54LmWLoBHM47Z+TgEbGTMWKbhiRjjPgerGNiPrU93YZUkubpsEXnt6k2AjhjuWeMBQ6doBJdv9a6d/3Gn/vlX/lffvN/enL8iHGJDO5+fi+KohdeeGF692PvvUBlnWfA8qwfDcTV1dV8Mkui1Fl0FuvKgMPVfD0ajYJFXVvOue20/HhdtvA8uNloY1w9nS44kz/+1a8xxj788KPVapXnuXPu/HwSRcx7N1st67YejvI4SrVusiwFALoPiNwYY91TQZzVahXH8f7+joz4ndsvWmsHg/35YvLrv/7rPEKlhIrkz/zMzyRJ8tnde9bAj737tbMnF7/92/+JKsm6rlfLIgSaCqcDWJdlOR6PAYBwz93dXURsGkswgTGmqSql1KDXI9V/OjJpaUku2tbUdevcnGgvyeaVZcn5+fndu3d/6Zd+6Stf+cpyufyZn/kZkv2az5ef3/28LEsq2xDBOV+sKyGUC95acM4wRNOutXCcS+Y5Ue+Naa13g8HgwBycnB5TuiNlZK3N8z4pxLV1wxgTUvZ6g9VqMR6PpZQdjBvFt+/cpkO9aZqTkxOt9YcffjidzterajKZ7O7uJklkWrdzuIuI3/7WH77yyivGuN/+7f9Za50lkbX229/+JucykhEAtq32HhC5EtH3v/t+3VYQWFnUWZbptpibuTHm9u3bi8Xi9PTs8PBoONy5uJj0er2XX36ZmBSHh4cAsF6vyfiUWsqMMTrn6D6v12sEj4hJkszn82984xunT57s7e0t54tmWVnre3Eq8WmxTUwHSg5I0oROLJK9oy8AgDHBJHHHmNb27Xfe9tx9/OnHYJluLWPMNnWe9/f3D44fnc5mM/KyR+Qk69bv93cPdkY74+l0+vv372vdIKJpNbnErGcFY0zJ2FnrALXWCNy7hnIsLkjpyJnaGDCMRYJ1U2bMGLYxtAkOAjhCyUMIy/lcMDYYDJqmsVQUPZXCdHVdk96f914IfufOC22rSdUEEdvWWqfLuuj3e2W19iEe7QzzXiqEaNvaOdPvDwaDwZMnT84vLlQkbt78SpZlv/u7v8s5jyJs27rX61VVyxjMZpO6LilvZgwVBOfcF58/sPZeXbf9vDe9miml8rxf17VSkTHm4uLKe1+W1dHRtVu3bl1dXRntPcKm/+qllE63i8UCfIgkKR567z3D56NFjMF0ehm8rZvljRs3rq6mzgXBuRzkJ8dnURRxJgGgKhspZaEL3EyhGtvq1VaoB3Z3d/M8q+u6btuHDx/OZrMQQn/QOxofNXV9Nbno94ZFuXI2pGk6m82k4gCwWCyIZfajH30iJe8P8iRJLi8vDw4ORqPR/fv3aeB0Pp8BQJLm3oeTs7NISO8sC8xa0+sPtDUuhIDABGucfnJ+mvdShfKjH374y7/4y//V3/4vXeDrefnw8eV8tr557frF2ePzJyfvvP3Ww8+WACIYu5486Ueh18N8JKM8Ldt23VZ/5pf/Vzs3Xv3oZM2y8en5+se/+pMXp/fFIL+5P1zPLhmz+zu78/Oz/nD81a99vSiKxXx5dnp+75OP1sv5n/6Zn/r5X/jFkydXTy5mrcei1LZ2zjZ1uQQOJGoZAqo4otIikp2Fy97e/rXr+WT2nCflfdhSBoSU9nmAM4J3zkVCijjWbd22rfNeO88ReRRPV6sPP/3inTdejvKhL4ssE9KHGqtpVVxdXJ5OrzRjXMTBB8G44kI7LYTgX1bRAhCoRNVdQMjztGkqYwwXWNcdo2oymbS6BoBe2u/3++T2vBWr0VoLyQI4yjH29vaK1YIxVtdt27YH+4cvvPDCJ598RjNtq2UxnU5No2koDRw455DhZDKZ/eG0aYs/+4t/lkv22Wf3mrb2weV5zjnf3RsfP35kjImjrNfLjCGmKkipRqOdfr///vs/uLy8vHbt2oMHXwjB6rrc2RkRR6lpmqYxVeWXq0UUyV6vp3XTtlhV1fHxsZTy8vKcMfbGG2+kabpYzOI4fvPNNx8+fDibTRhjiGE2m10/unZ5efngwYOjo6MoSrTWh4cHSZLkeUZ2Vbu7u02tl8slIg6HQ2utEGwyuTw9PWmaRsXRJ599PJlMBsPhcDhUIvnDP/xDcGG4M/I+vPjii3/jr/7VBw8e/ONf+0eMMSa6WVpiYXsHNMaktb68vPyrf+OvvPfee//tP/nnZVlCnFLV1MEK3nHO0zQ1bQMQlBKNty74vJcTdQPg+R0O+8dF4RHQekeZAOvUh5Jer3d5eckYq8tqOBwqpSZXsw2cjQzReKPiiJJVAFBKIefImAtYthoAeKQAwLnnM6y1NdpqZOg8BO8551mWAcAHH3zw9/7e3/u7f/fvHh0dWWs9huCDEAIgUN2FiPQ7O4gTkeL/Vi/SPyPU+2V3AAIeHh547x4eP1ovV1rbJEnKqlmsisPxME6SRCrmgjEtKYoaY+JitTceSQ7sSyRKKEPdjhg791TwDTYwq3OBsFTYsC5wo/L8LHAQQsDQYYgExHcOgV3lEtAHB9ux605qADbQZwjmmTvANqekj6KnPTHOOWLo9/M4jhH5NuHfkk7og8RxvCWL1LqzkGqa1m/slRCRCKpJkmw9xygbpGqCc+697ZyKQwdpbaMiY0zGUWDoIBDxjSMqLraNE87RY9fk8J3todfaCWQEb/kNc4jAlGcLBwpWzyJx9EGUktu3bXET2IxO+o0pLm6sCKn8IYAjiiLcsEDoFxIAHTZKaFtZD7qJMoqUUv28B8B+/xu/t1ouIASVpsfHjxG7IjRNE0JOSZ4ojmPGusZJ1xtQqq7rk7LSzvbSXtvWRKyr6zpJEilIud5XVcUEDy7keU5KPgAMIDAWpBB1XWu3CgB7e3vXr984PT2t64oxXhYV3UDTtsEj59LY7kNpZ0ejwd7e3unpCQDQ7iNchiAn4jHUbe28dZ5Rz2y1WjVNE6qS4GYDuIWlKPlEROK9WqcJ3KfRbzqb0jSNVEIfkPDHLbuTQoR/RnebEmaqmrf3qm0NYXkbxDAQY8Bam+WJlNJah9gx06Moms8XJJ0URWI4HPZ6OdH2gYWiKDjnhKE4Z+umIUwcANbrteBKKdU02kOwzjnt8jxvmsZaXVWFioT3+d7BXm+YnhyfNk2TxLEUEXs+eAiMsapuOOdOMyrS6Z730nx/f5/GjATneZ4zxkgZWWu9WhYBYdtXoy/I7MptpWCcZ8AYIPjgjFWJTJIkyVLavBSRSGiO1j9NWSmlrO3MYGjxkwslIcuc86IoKDnHjedQqzUApFmOiNZ50EYpCQAUCujWkckKjZ9CN3nA8rxPREgqJejrWCmxsRlsQOOGdqaEkFIeHx9rbTahDDvu81NVIoEI1NjjG1+cpmnW6zVjXAi5Nbdcr9eEfQcEmpt3xhpjjLN8Q7QiyzW6P11MD504BmxanrQsyQCQb3TVqTzZjhmFEIxxQnRYNgU0pZRxlgY0/db60nkLnsLml4lisc0FRFEUp4kxrfNeN0Yw7q3zJDEUnNaarDiVlHXTICLj4LzzwZMSy+7ubjdY40PTNKuVQQQh2MHBHkXdNE2bpqG5CjKgIyQ9jhIuOnymbY2UXfMgEoriJLUcdvb2qUsxmVw1VSVQeBeapgFged4fDJQ1fr1eIyLpUk4mk6ZpqCeBiDTwutna7dbAcxt1B4OBELyqKmcsYJfiInLdGKUUQ9baitY5AkNgjBTwGaNPB5tJFOAkI+UQ6SlQYyAwKehAHO/s3Lh1w1rdNI227cHBAQCUZR1CMK1OkoRajAjcaMNQ9PJ4c44I55z22juv2+7KqW3mvbfaVbrW2gDgarVaLBaUzBCY27Ztnqe0nAids9oIxrV2/V56dXFZVRVyUg0NpI8EwLz3s+l8vV5LGenW9HuDXq+nW3K/i6TsBBjiON708JIoSqRUVdVAUOOdYZYlDMOTJ08QkXOxweW4lJI8HTbeCsxYL1g3euK951LY1sxmMxlxFcs0i7z3k8lEa+3AEFtRB221EQ4AvAE7m81O1yfatrLJxenj5cH+qt8fIQjvIDAksDjLEmt1nqeMwXg8HI0GR9f2JtPzydU6y/PBYEBUZeLAUjLmnCG6KwDs7e7evXs3kjEizqaL6XR6dTGb8Tnnqt/vX11d0e2IooiElsjGAQCEZN77Xq83HA7rpmSMpWnKGKuqmoILbQB6lnVdNk1tjLHW0wM23jjomn7D4RARjbNFsZIycs4hctOGfn+s23o5K+JY2Qbrddk2nnl1dba4Op9djWej/lippC0NYxI4SCn3dseMsflqyQQigzRJltOJ1ct49zmRwhuPiGXbOMGyLBv2+k1VnZ480s6C87bVThvbai+gNVrZUKzXnKOAUS/LjWl7eb5eLEMI3holBAOQQoLzzlolhEwE57yu66qqAkIIDnwIGBhjCtHB1kMghEAC2YKeURRFaRpv9RxCCNbaZzM2+iYwRpkN3bqmreu6TpOElGU4suC8h8A5p5wubAWDuq+fnq/U5+ny7NDprpIT9LNZ4+Z/n/bwKebTCUrAmTEGBSdcLGwsdL33vq7SO7d/+S/9pW/8L7/z8aefRCL6o/c/OF2ei70+BxSMgwMAqNrmxZs3eYJ1XWMApeKzs3Meq+FwBxqqOto4TvMkp1AlhKh1HcnnsdoADvaOZotPWu9ms/mPPvzRa2+8niZ5sa7eeP2tOI4/+MH3i7LUWu/v71OqdPrkZDgYk1jwzmiXMVbXzfHxcQiB+MKkenbt2rUsy07PTh49erS3t6N18+FHP9jf301TxRXXy/b+/ftG248//nS+KA4PbvZ6w9Fwb3J+NpsutvkrIrOamEE+yzLBuNbaWxe8z5IMAC7OL0MIdCQg4nAwgoC0JcXG/3q9XJGEHH1e0ucSqltFlFC+++67b7zxBjXAj4+Pj46OHj58eHBw8LX3fvJf/+t/PV9M0zhhnMUqqavWWs8Y89Yx5EoqzpjgClwgi6dt8bYqC6HkeDxmgqpuQVx709okikk1jI7wXq+X5ynNVAohdnZ2dvd3m6ZZLBZFUXjv+/3+nTt37t+/n8WD0WDcVK1uWs7kbDZ/6aWXsqz/wQcfnp2dt60WjJNiLx0bxpjVYp2maZrGTHDO5XQ6Hw6He3s7zrnlcpmmOec8y3pRFAOs1usihDPGWL83vHPnzu7O/v379xfzleAqThSFry17KIRgnS2Kom6bKIoYA6Mtp4l7D862Dx8eHz886eX9nf5wenahtWZC8o06JJ0cxhil1Gg0IvPZA4DttAHVehQNALEsV+WqeP311/NBfuvWrd/8rd9crRacS2ttng+W85Uz5NjuvPfWOM6lYBIATk4er1bLVbFO80wpcXk+McqOx3GW9tCy6WTRNkUcx9YaZ7xSwmgNiFJK76AoCooDzLOqaqDj8gjOZAhImrfeewh8M2TkdesJ/qADRes2hEBz9BTV+/0+uZFQzv3o0SOAUNe2ru1wMNjZG1d18d577zpvHj9+1DTNcNQfDAaff/45Ik4mk9lsRmMxn312IjDe2dm5efNmv9/33t+7d4/ygxDCaDQioWT6W3XbMMYjGXtbcxRa26qaE4I8Go2jSK1WK+fcel0YY3VrR6PRCy+8cH4+WS9XkjNrrXO1iuM0TdM8Odjbn5xfHc/WnCvaDs+NLUJCf9i7mly0uvHB7O4Ny6L1jkmp9vd3J5NZg00IgSTqiM3aiTWBS5KEHgrt08GgV9eR9b6oqjRNSV3x8PDw4uJCaz0YLOqyieN4Pp9TqRkJjojropSSNGE6cKdtGsH5Cy+88Mknn8xnSy4QAOM44lwY08ZpYrWx3rHgAAE5mNbtHu4Ch48+/ujGjWtcsqauvDVxHP/Nv/k3I5F+8vnp3u7ht7/zbd26F67fvjp5/PCzT772zju3br7w/re+PavXerUcpmIQsyziGrwBvv/CW9de/toPP79y8mj/6AXHl1VdJkq+9c5bKdp7s/O3X39ludh5cP/eq2++7QGrdbEz6P/Pv/mb04uzSImf+/lfMAG/eHRyNV9wlTSNbksdbMXISAB8awxnUjeeQUjT1ForJGvbVrf1zRs3ngs3k34VAHDGv0TXABDQGesZV0IEHxnrjQ/GWgs+OB/F8ePJtPmgPbp20Hq9rhuZxOdnVxezWVAClFJxxFDoRkPwAS1iYAjAnw839/u9ssYQPOccOWMMlFKIsizLAC5N0xCC1m0TnBACGSuKgmSUTk9PucCjawdnTy6cc+Qnwzm/detWlmVP0JumpbplPB5fXV1Zq7M86/UGdV2//fab3vjvfe/7DHhwgXMulZRS1k0RINy//3mWZTRZH0KQnC2WM+/9u++8w4X66KOPEdi2WqPwSOpMbds+ePAFmU7TEUlUzaouIxWnaSqVkJKnaZznKaCvqmo+X4YQ3njjDapYEJEGs7J+7+2336YwMp1Ob9y40cvzw8NDqm041zdu3JjP58vlcrFYLJfL/f2DwWAwHHAqm9M0vXXrxmq1otnJ4bAfRdEXX3zx+uuv//W/8VePj4/zZPDWW29cXFy9//77QuD+/h5w9qu/+qutrv/9v//3vV4mhVgul7TFqFfknJtOV2+89eb3v//9//F//DejQX84HDZl7ZwTTAohGBPgUUqulECMSCOVcy6lHI+HiNx7H+BLoN72T2itBPJgoAknwhT6/T6p++3u7hLcsCEwGgDwrlPz1NpyzpFzAAaAxjjntEcWRREwtNaKL7kGGmsQQiDnYL12PkkS3u8j4tXV1T/9p//0V3/1V99++23OsTHkyQbOOcm53agYQwdV8LCR0PXe4zPWcPDlYLdUMk3TxWLurRNCSe4lF+ic1no8Hsc8oPMenLfBtVYgs9o4Y8eD4bCnVu75Qye4USjertUuR31qi02KOrj53+CcQ48BnwpxbEFnsmujXfYsqAqd6IR15FLV/dQzvxARgDgKjD+VkmD0vGBDuzbGIAaCcYl8RwAxACRJ4tzWWOVpfm603u5BwgEJM5JS9vt9orPQB7HWU8ucUkTCVekOhI28MuecYFz6J4K/6chz2kgZMcZQ8DRN6YLruibnIiEEC4wAKZILD2E7FNWJimyvxD3jH0j3gTAjt9EYYRsFD9NZCj0lu4ROqKSDBhhL2rauigICUE26wZLsttgE8N5bxM7SUChF75lMJpT/9IZDQueL5YIrmWXZaDTSvq3ruizLOI7jOAbwQihr7Xi8i4hnZ2dbXPvmzZtVVQVtt9dP1a5zrjUaGMYyHo93ibLgvQcEzjnjNCIM1niqqU2rZ5PpFitXUiJwCAwg+BBCAAchMFSS93o9cqay1hZFkfXSbU/CWhus1cZQZ3EwGGRZNrmazedzuskk5UGQnxBCqk4bxzugzMQ5BxsfCNgYNQFAs7HCMxurQNpTtPfpa1r8URTRjxA4wJ9xzyNoW0oJ0G0cANBt1zkIIXDOur8b0BsLUjDGFovFarViDJMkqZraOUOSEVVVMQ40d9jUWkoVqSRN0ziOy7Le29tD5Ov1ej6f08AoYyBFpI1pG60iFEJkSU6wndYanqfdDAGDR7/ZsNZaIaS17saNG/1+/8Mf/JAF2N3ZWS2WWje08MjhlpBQ5Ixwzy2IJoSgmWYikCICIkopd3Z2CF3FjXSD34wCkDwLrd6maZhgcRwjY9TPo0hLuSUZDG5rCu89LeyDgwPO+WKx0FqrKOKcB2O8903TlmWVZSlNyG1RGmpa09MndIhCKGUj1vvQNG4jVUHSgu+99x4ptdIH3EZFzru8Z2Ok2umXCYZRFBHIuFqt4zgh1pS1lgZM6X+BIS25EIK2xhrPEkb91/V6TZ+X4iQCGmd98AggpETkiIzCF+lHwDOiGdvQhIicS3CdBBZFBq2133Tu3UZVP4Sw8dnCLaj9Za9tzyCKoiiJlqu57xwCOKFARVGwbo65huCHo+FoNCrLkjpbe3t7NCzOOc/znABNyq+ow0HMUSmjwWBAq6Uq67Zt0zSlaEynDNHR4jgOAUMA7xARrXHO2jzJQwgqUVVUOG3jKKmqZrUqrPVlWUsRUQTI0pQhOmeklEqpJM689yTIQJc3n883opFyO9kgpWyamspbAGCALnhCnKn5R2vMGgcAiME7B8wDgDbBB88FBgDuu4M7iiLEmKbchBCbp+ADuNF4cP36taZp6rpMkoTLbnDn4cOHpyePnQ17+zvD4VhrXRUlRbxIxs457QznHoA5F4yxzgXwGHyw2nkWSl9RpmQ7F19gjJHOJxWzcRxnWa+qmhCQc+lc8B6s1XEcW+OLclWWBRX7sUqEUJxLhrZttHMhjju9ODra6HyJosR771yw1pL3I+fSObdareg2Xl48XK93DvZ3lRJt00kIBI9MdgEzhEDDFsFQs1kZ5zeTyU/XfBRFKpKCSxI3juMYnCc2w/XRdQZhCfNVuVouFrVoxvs7Nlh+KoV3cHE+jaOcPirFgvF4vFqthGBVVUjJ18XyanKRpumtWzcPD649ePAAAEjPYSN6EObzOa3Ruq5v3bh9fn5+cnz6ta99zRozmy2aquUcdRse3H9EopykNrJer8uyDCEMh8MoirwDOi1u3LiRpun5+flkMvEbujSFJMaY8x3Dl3MuaACNZmfABUTGgrWGeDFJkljdbi2hnHNKZLoxxrhIKKf9fLZyxgdkQqg4kt7b1bwwTQAHnEuOvA2O1HLjjaxVFCv0jiZQnh8jGDoIUZpEUTTIewFcWa65kqTDja2XgjknPHptW18ZOlaPjg7yPGUsV5GMIlWviqooYhV568B7wTgl2xiYYIzSR20aJG0aZ7s8D9Ea69FTQ5LiNYVjslbYivrTcqfjJ45TQm8R0UNorI54hNBRG4xuZb8fq8jq7rQAHzz67XkWNl1HRowO4CF4IcSW6EHnrexYD277I9u1i884rsAzfgghBOQsYgKQdb1ZziAgeK+15oFbhmpV4N7Oz/+1v/b2w4f/+J/+2uViUVvr58vAAgsMfQjIGedX00l/nA2Hw+V8sVoWq2Upk5QJDlrTScyYQKlwI/fGAqPhl//8VawrwaN+JhFFXbc//ODDKI6FEJPJJI7jo8Prl1fnVMk75xaLaZrktOaVUmmeCcZ7vR6dfEdHRyHgfD7f29sbDAaTycQY2+v16rqtqurg4DCK1MH+wbKcK5kU6zpNU4YKA7PWI/DBYDS/uiQZNcaYc6FtG0TM04zzzvzBOUfiYhcXF3EcV0XNGGuq1jqtomixWGzbP/1+vyiKttGITGuzXheMMbJlkErRWI1zbn9/98UXX3zttdcWi8V0Op1Opx/98MPRaGSMOTk5Wb9cDwaD9Wphrc2yzOggJVjnpZDWGWu1blsELllgKAXj2uk4jtu2JhKEUNxDWM4XdApSikBSZZTCss1+PwfX7/ejKNJG+xCc9aenp/SvpFqQJMl4PE6jPsXiq6sra23b1I8enhweHp4+PsPAmqozud6OsjIUhwc7AMA40IjW3s5e3Tbn55dpmo5GO0II0om22kmuslQgsCzNjw77SqnT09OmaTo5NsZo/NBaS1GOEpG8lzLOj44OFovFg/v3B70hOIji6CvvvFNV1cOHD7XWbVVzztH5bbLoN/Nu25uQpulyuVwtlsPxiDZmHMe1qxgT2lofgtY2juPHj5/k6/zRyX3BxIsvvhxF8aef3F0vKptgHKe09Yx2UkbG6jRNtbbrxbJqKsZ4EsWMMb8bvPfO+DRJZV8Ne6OqqogcQZt7m1waazmXgF3JJ5kwziPwJM5k3Oktch5307LGt41BFqx1AiEwqG0TWEtBgLSP0jSNoijvpTs7I8qQHj58WFXV3t4ebShjwxtvvnbz5o3z8yfI+P7+PhMohHjy5EnbGLJJiaIoTVgSpbEK5+fni8WCrAsfP35M2fxqtXrttdfee+89yum//vWv/+AHP3j/gx8qpaqKBlGD1iZ4tNYJrrz3i8UyhMC54JwPBv1Hjx7dv3+fxPgQg7XGORfH6dHRUdXU8+kUA+RpJmUEBrU1W2fXP/HiDLnAw8ODxWLmvc/zdDFfhcCNMXGipHxapIUQiF+QZdnOzk7btoxDkiTeu9ls5r231s/ny7ptDg8PsywriuLy8vLhw4dqY6TujA8hIHBK8pqmQY+UyUVRFILL8oTe/Pjx4/V6HSllrU3TPtnN93r5YuGmiwUAKCEAgTE2LxZp1uuPhufnp0IwBB9JWVt3drb4r/7Xf/vP//m/cHWxKko9L8vx3lHam1y/9sIn7z/h2vTj+O50kaT98nJmqnJ33NvpZQLCoq7z3aMXf+xnTlcsym5Z7H1x7yEyXoZWF7P52f3y7LFezyG0i3LBEpakfUA+m80OjwbTy7Pg7Y0bN5DL73z3gxoYMkHpO4BngFygtY4xUFxwJYwxVV1EsYxiZZqWZgia6vmEpeA8AnfORUr4wO3zhGQ5QyWltRo950IopYwPCrHVdYDgmeBxdr5YT8pSRqJ1drAznrd6rUFyr5A7GwLzAEBMTyFE01byS1ZOEic0ggbg41jVdd229WAwIDTWGIMIaZpyjk3TSM4JcCS6cVEU6/V6d29Mjq8QAqA/Pz8PIdBsU1NVnPP+oDef29l82l5ehBBu375zeHgYieju3Xvzy0W/N6yqppeondG4bOTV7OLD7949emF8cHAgGA9cTCZXaRaPRgMicvb7fd0agJZi9WKxqKqKhuR6vYwKRVqW1lpt2ps3b+6wcZbm7777bn/Q+53f+U8nJyd5njdt/corrywX68Vi8VM/9VOXl5cffPABxY2OyMbZcGe8v7M7m80ODw/ff//9wWCQpim1oygXEkJQV1W3VrfWmPrwaP/Bgwer9eL2CzfTLM7yJIo6pmGvn0nF5/P5d77zHQjir/yVv2LM+y+++OJ8PpdS3rlzJ0qj8XgMEKSUAaCp6o6Z0Rgqkw4PD733d+7cSZLk/MmZ0YZxhM2MfAiO2u7GmBAcYwCMJVnPO0dCTB5CeB63N03hpZdvPvudvNffPTh8/PgxoSFUpnJko8FwVayttVEUkYEHhEBDnUFbxpgxrm1bFcfe+6bR9DgAAEU3wB68jbIvJdoHBOQMGINg29bajUSjMeb40aPf/u3fvnnz5sHBgXPOacOVSjZz3N2PP/MF38iAsmd8lmhTPPdPC6WKdUUaIImSutbog26q4eG4lyS6XKEL6D1Y552juyGlBKWiKPoSoRoA57ecDICn3LfQvRA3NEB4hkgbNuEVntHfgD/uE7uFZrb/xBjH4NxGGRnAE+xObyAMDTaQHBXnbGMSiBt1C+/tBml1RPWiWXIqfck3gii3sJGFhQ2pnPIrIjlSlfdshg/gqfiiQ5yElTs8CDnnnMmnM91CCM7RWrfNUaMoUklMkj7GGG2aLq9DQahWUzZ0VVJK0j+lWbeut7dRLKWPQ2mb9556EpxzYxwBZ3R/tnPczyZRAGA3IuAIEKxTiZJJzgJsQb2ny0kIrRtnrZDSGNNVPNZzpRyFFx8AUUaCrnM2mzAp+v0+F+i8mU6njLGDg4M8z/M81VqXZSmEStN0sVhsLgkIL2uaRnZy1iwA+BC874wxaeiQcPk4jvuj4WKxAADtKH1VDH0cx7PJ/OHDY0LHjHHBeWc8IqIPjJFOq2cBgHNqIZTlejAY1HVNjlV8833nnCX2mIjSXo6Ik8mE1O2oseGCV0qBD3SvSDpDCCG4SpKkLMvO3g3cdi31ej2yOSGENzwjokif8SnTiLGu0t84gdPWM8bQFGx4Rs6YGh603lrdCQd77601nPPgGOMIzutWOyCJA0XLQAjRNI33gi6PAO7ggI5F4glGkR2PdxCR7jZhu8ACTbsbYxbLVQhw7ejIWm+tz6L+84OSUEmUWmtlJK21aZrRAqYx06IojvYPSIkxTVMiIud5zgQPzocQiP5FJdjWqIltZJcZYyF4klQmyc0oiRFhOp1OrybUNCUUmHMREAh+2tvbi6KoqBoITHBlTZcqIyLxT+ku0fPlnPtNx8sYMxwOe70esVa31j6r1ZpWKY1NCCGc86TSS/nqVkKHMZYkCU2WyCiK09yFEgBGOztxHN+/f79ttHhGWp32Mt/0lgAAQ+cJEbAjqDHRjU34ja4O3V5rrYeAG0dERFyvSiJXkf4AhQIpI90YCuGIKIAZ77bmhCEgAIbgmQ/IETfGemRi3PFgUHjGtbOMCcY83aiiWvuNJBFtK0LJt4fFl72c90KIui5QsldffXU0GqzL9Xzeb+qyLEtjDOWx1LGjZ5QkSZ5m22YhUaaCY1dXV1dXV/RQnHNCKLpRTaM5l3GcUkSljdPP85pz3OgvcSY5s4Ir70gPNl6tVkVRSS5oh56dXZA44WJRlGWxXpdCKO/BGl+XSwgYQpCqs/z13geAfr9PHYVODcPapmkuLi4Ijn926MF739RN1zlQ5FDNtw1FetZto+kxUWNMcgDGyrLeNiZH4wFnkuJVFEXrdTkcjtfrNaEZgGY0HEZRtFgtZ7OZ93YwGAzHI86lECwEFEJ5r6uqAVhYa+nxGWNCQOccZZhu46Mbnpm2oUzAaMM2+tEU60gdbjQa8c1NJvglbPaXc4HOoCztDYdDrfVgMKzrGjysl+u66TSIGGMALI6UlNK0Vkq5nK/o5hRFRVEOAIy3lam3/PooiqfT6XIxY6zr4jjnfPBt2wJ6pQQT6D0wZDZQY4M551zwgnPr0FgjhBiNRnk/ZyI0TeWcY0x6b+n2gvDWWgZBe805Ht64lkWp6evLyVVdt+KlO7fTNNVaUz8ZAJRSTdMgBmvtxx9/nOd5Wa2JZp9l2e7u/tnZBSJSwCXxbxLDqqqqbc30aoaBPXjwwHt48OBRnucM+M7OvjHe6MJav5oWqJDUMACANFizLDPaGaOpQziZTDjnZVkCQBylAOBdgMCkolZeZ20hpWxr7VvNJONKcgCRiqZpfOUpdSbMi3AZwXgvy1fLtkM5ATEwjsKjQ2AYuHeGIUcOVVUlKmEMgw8M0Zm2KgKNigTeOX0MxgNjnn+0SCmk5GmexXFMstzaWetNo1uA4Jy1rZaCe8GkkYFp603WS2/cuuE5fOsPvvXJjz5UQg56/UGvx1zY393b3dlDRGdMURTeGrtxpi4raDpquSdCBOt07jwJHbEAKEToVJkaCitEa6X5F7lxWaXtTaPxcRzT4U9rcbVaZVnGORPIvPeBddHWe48AHBn4EJxHxkilKJBJoxBdFxIAAELo1CS325JWf9gon9AJ0T0aH1wAoLFThiqiMyB47wMEgUwwxhgz3lPejLoBZDtf/+qf/uIX/j8f/cFRb6i5P5teeee8Ry6YUDKO45s3b2rd6KYt1vOA2KzXwFAiaK3BhzhOq6pSXFAnChG1me6Pn/N8r64mLkyUUkmeORseP37ctu3R9WvL5fpHP/pkuZzzjedykiTAvRKybY21RVFU/X69u7v75PGptWY2my2Xy9Fo5D1cXFxcXl1VVdVUdds2w+EwjlVR6CeTC60NCuY9m06W6ihF5GVR3f/8iyTJjG4Q+Xi8SyFPCEuiSOSZTrlg27acC9pK6/U6TfMoiuJYUZOTISqlGMe9vb3hcNjWbZamNDvpbGCMNW3FhdjZ2bm8utBav/fee9evH33xxRenp6ekwAUAOzs7FxcX1ED77LPPAKDf70MnsacQuQ8gpTRWty0wDIIrFpjV3SFhrWUo4lg653iAOI6bpmJSFHVB+Je3ztvgnCNSA9GuQwhR1KZpyj231p6dnS3mS0pB6EqIHcBCN3Z3cHBwcXGxXOrVojh/ckHIb1Nr/4zauBCCA1+vSxKZsqYqy/r8/DKO4zxP27pVQs2bxenpYzoYBoPBV77yzt27dyfTy3WxRERrPDWHyS3Xebu51Khj31in4mgwHDLG8jx/7bXXOIrVfNEbDo4OD421s9lsPV8wJrzxgiuOYZtzu2eEIKkVtF6vX3zxxSRJSKS4CwXOekAhZRonofXf/ua38lEPWBgMBtePrtd1LYW4uppmWXt4eEinJueR1loqsV6vuQrGNNa6NE0BkGpOjtx7mM1mzGGWZVQgbaxIuquisyPLc2q8U7OUplVIlJA05mioLYQQxxEVv865WIkQQtM0URoxxs7Pz0mxi+gqi8UibGhuSZIQ+5jCS9WU9+7d89598umHWje3Xrj15ktvnpycnJ1dLhalUhirBDw6C8GzF1+8E0Xp1dVVHKdnZ6fUA3jxxRd//Me/2jTtj370o8lkMp1O3377nVdfffWzu/dXq1UkE+e8dxCCZ4xJrgTnVVEDgLW63+9fv359uVhvkmk/Go1euvPCF/fvTc8XSRKklKvLC6Jp93o9Qu2TJAlfwmlYr8qDa1lRrrKsh8iKoqR7W9X1el0F8OQYaa09OjoiQO3mzZt1XV9dXVnXCdXRDVdKTadTD2G1WgkhrHGCS8mltfb69etJnJ0cH2utrSE5y1SpuFiuEKgpYtmGWEr4AnHqie9gnYuiSErFGHPGDofDw8MD8vs2xrZtu1zOlRBvvfb64d7u2enJ7GL9k3/qq//7//r/4CzMV47Hoz/6o48+Pl4uMXs00188uDzcOdof9xiHoq6Wi0UkZJ7GUZRU2ixV8uJLbx3PNE/cSy9d/+bvf0dG0c7BDshkdP3VyJiH3vskLcrp1Wr6lR9/7/H5eVFUjsUff/Tho0ePEMObb721KkofrZKdHedNq23bWMkECqirAroUkHtn6bxbLBYHBwdSSoJsjH++I5kPHTrjnJORfK5vWb/fl3XSti1tXAcYIMSJsk5rA9oHBhgPdwA8iODb6nw6bTyMDkbIuXEWETmiR/DBIZdMcm45fgkvvihWUSKjaFA1tVKqaSrGGOEIcRw7Z40x3jpEoVSc5yn9a9M07aqeTCaDwYAGmPI8L8sSAqOxR87FcDhKkhR9WK/Xx8fHAEDItfd2Np9Uq8Zox6V0LqRpygVSbh1F6s57t158+c7J8WkILkmiOI6ttZeXl3Vd/9Iv/fJrr71x7969umq++OKLOI7LsiyK1d7eHUSkWvfatWuLxYI2qW7Nyy+9sn+w990/+t4PfvADH1zTNKPR6MGDR4zB63/hTQD4jd/4jW9+85sAjHO5u7vf7/fX6zU15pum+c53vrNare7ff3j37ueCcbIx4JxfXFyNx2Pypj47O+v1ekdHRw8ePOAC33zzTWOM9261WkoppBRat1mW3bp10xjzW7/1P+3t7c1nq//mv/k1KeV77/14XR4gorX6008//eKLL8bj0d7e3mw2c8ErzoqisMbv7e0tFgtrbZrFP/uzP/s7v/M7H3/0aZKoNEohoOCcc+4dBGsQMQQnIum9F4zFcdw2WpsW/5jD2R97aQ1plj77HanUfLmgzutqtZJSMkDn3M7OjtaarAWkiJIEpZStMYhYNRo5a5uWACCtLY18eQhKKUD0zjhrGQT2JZ0PCJ5hCCE43QqOQjLvQlVVlJNX3j948OAb3/jGr/zKr8RxLGWXCgK1VTYWIM8ec1ReUhSiHdfVis97OeeoyEdE3bZoLXImGL7+8kvonURggpXrij6U855z4QGNcW1r/v9AAOIZqzHKn3HDwgZA3FCeExV57BDnEIKHpzhy2DBwGeAWj/YevAfvO3MtejPnnJjRYYNib09Y8HxbcksusjQLIRC0t8VitDbGtuRhw7ik28U3atHEL7PWhsBI/G5bJP9xwLqDa7XWRD3L8zyOY1K/oZsfRRFNK3b3iENgwXtrjCfUgBBnDwEYxmnCGOPYac5ygXVTzmazLZAqRYSIpjHU75QyEiLUVcW5JYR9e52wQaCoMkfEEAgC0LjRbt5i6PS/dA+3JQZsGgCE91ELP47Vpn8QvPfEeWyahvMhYfSUWnew0cZciz4p9WOEYDs7O/1BrpSimYZerzcej4fDIbWKnzx5QoYZpEqRJAnBUoRYKaVc60iUNnRT/M5tRGbrutbOHx4eHh0dffjhh9aYXr/PITgIm4ZxtV6vwXtq8wCiEMJaL5CRM8HTPoezbVVfNk2WJdPpVJtmGy56/dx7T3oXVAis5ouqbdq2pbF3quBcAKVaEgi21pLqDiOZNefs1gbQBkBHq6VtjNyYxJJ0LIHs2/7H5lGGDZjS7QUyNyI4TEpJM5FsI15Mi5Ac0alxSBicMTyEgIDU5wgqMMUIm6vrOoqi1jS05onDcXV1led5GmfEUZgvps45MqcPAXf2xqOd4WK+CkDBqpvZT5IsiiIy7xoMBpIl8DwrX7/hdZVlRS1DAKC+I9ULaZoW6zWt0iiKB4OBcbYoiqaqvfde+0Z3RjtbqX3cjCZsmeCEKSulaGrt9PRJTR5RiNY6pSIAcMH7EBBxPB6vy3oL9IcQGArvoCy61F3JGFmg9WmtRdYxrBljBHwTS3Q2my0WC+oTk0ICLeaN42UnmyBlJGXXWqBlQ20wMlWjvrKUqizLJ0+eKKG894JxZDwQ2LuJorSGGSJ5+mHnCIXUrQwILviirJMkabVlXAoZBe+t1T54JWSW9hC4tbY12gUfp0kcp9PpPI4551xy4YLXjQnogTOllDadKkgIgYxSUXRy9tsI4L1ngQXeicUTAkPX5kInqbe9VMIrt6v3y85yTiMUUpLam1IihHB4eLhazlerFWmLKRU757SuoygaDofed+x+2FgvXl5OYpVQuJ5Op845pdTBwQG5ExHKSZ+CjgZqINH22cZJKm2aRjeNRo8IPFZycwaFumhPT55MJpPVahUCoRDKGCO4VDLayvIQx5kx1mpNdutpmtJpSx6VhAdui1zYNGVVHKFhKoqoGKFQQ8cZ7VMK41vEmaMXQrSiNabjgKsoQkTmkdo5jDFtPXJADwyRIbNWl3XREc8BVsX6+s0bu7u7H3744eTyyhhDMgzeOo4M6INbR6pW236n38wN+G1fmaFQEt3GegqAdiJBE1rrfr9Pq2X7WZRSHJlKM62NlNw5p0AFj02tnQ3T6YT4ARo5ckYyaE1VCo5at3VdV1VDJ92z2QVNS2zPaPorUjBjWops1hpA7r0XkkVRJBj3HjBwHSyAgYAkC2ldl3EpJXq9nopUWRdtawSEKIowYAhojAMGTVWGEHjObUBjWqfi2WzWaD2brcVoNNjOZSRZ2ra1Ma2U3DnY29ujQDPoj/r9fpJkCDibzUgTmQJ9r9cjlyH6kFXVNE376NGJUjEAn88XZVllWcZQRCoLrgAI/R06vBtjTBTJOI69g9WyoCi5WCyUUldXV1VV5XnOmNio+kLbtkY7OvA454ggpVA8aRvTti0Cj2JJpz7vccYQ0GvTJGm0Lpatrnd2dqIoAuCLxYI5BwghWEDaOaTwEry3XCAL4JxxPkQyttbTxAqAB8AQwnq9jgSPBU+S+LlFpmfAObZ101RlGAzSNJ7MrpCjEBwBATzt4rZtjW2FZCh4NuwFJf7xP/21jz/+WEoukCEA+sABx4Pxzes33nnr7b2dXaa4LrTWGkLgAjtBCQJiwrY9EhDZFswlGjJxBBhjVVW5jfELpfKU/VBwCR6RM22Nh8AAGWOCsbquL88vXrh1y8aqrhpwHtjT0w43EHMIgQXc/u/2boQOn+ec84CAm1C7fTG2ma8HYAEYQ+cdzX0AAONYYysZVywWGHzwPnjJuHdGCB4EBvTBBwDH6urdr389GfZni+n4YKSkdA4DAmPMGk8t1jxPsyxbqJV1IJm0wXPWMUbjWHkvrLXM0/VYLuRzni6AdaFp2/l8iZMZxdMQYL1cHR0cWm28gWgjAdbWbeABYmTMSAnGmEePHllrs15ODI7JZBHHcUCYLxZ0DHvvnHHT6VRKuVqtVBw9Ob2MYyVjORruto0dj3YW8+VsNknTLkdsmubg4EAIcffuXdpEbduuVis63qhRTOg/Y6wpnYzUcNgviso547y5urqy1lDPgPJjxpjgSgqsqsqHoDgn6cnXXnttNBp8/vnnjx8/Pjg4IPjp+OGjmzdvvvjii48enZydnSVxnqSRtTY455wXgkVRYokcxBExCI5plBrt1rp0znn7dLyrruvWBONs2dTXd8YAMLmYJEnCkQEG500AJ7iixDRN0529cVEUVVW1Wq/Xa0pze70ejU/med7r9Zxxdd3WdY0YwAfBOE9S8h4xxqRpugUu45hr3TjrvXFNWbGQcuCr+ao1pljV77zzzmAwuHfv3pPHp9SxTPKUMX55fr5er4qigM0gLSIyDgE6cJxiI3b2uMy02i4XSyKUAUghJFfL5bK15rvf/e7e/v56XXrfCZhQH70jCjEuNvpiZL+zt7c3mUyKougPBwBAKTsT3NvAGQ6GPe102cLh4eFwPJgtZ/cfPmgavVwuvYMbN24IIdfLYjgcto2tK0dE3Z2dEVeBMT9bLsbjsRKyLMpiVTgX6qKGwKy208kcAkSJ2rZwqb1BienVZEIrjY5SEhKhTil9k34qSaMkOYyieL1et20b7+0oztvWcC7Ju4NO8bquQgjW+MePHzPGsrRHPjNk8eScj6KIMfzhDz9gHPYO9ofD0enpk3t370sRvfLy0XK+6vV6Ozs7q9Xi6urKe9StXS2LNE05l5R1/eIv/mKSxP/m3/zbq6srRPQevvn7f7BelW+//c6PfvQj23qGAoLlyGjGFhF9sIDeuVDXLY0vcc6Xy3XbtlFU7uwMXnrppWr9PnnbJkkyHg+FEGdnZxwQhbDWyuj5uEbb2ocPHx8c7EEQlxczREzTfGe8t4rWzk2klL18TGTV3d1dQgEWi8XZ2RlN1XnvkyTJsoxzYa3L856QcrlYTa6mRByQUuZ5/vprb96/fx8R4yhdNksC+PI8F5Eyda2UCsFJxafTadNUALC3t6eUWq1I6zAYY8qyFEIYY1MRp0KB90KINM+8D/pqFmyIuJqfXWBZP7h3f2/Q+7/9X/4fu6PD87PJH33/Poz3j8vmD04ub9/6ym9899MnHz/8yz/3lfW61rq5nFxcnpy82O8xobxS82b1zp/5c9Hg6PF5NWT48N79q9OTt77y1sHe8GqxvP/wWGgzGu17Jef14ujGrd7e8P69j7757T/62Z//c188OS7XRa/XO7h2vdF2J0uNtcY21pi2NcAi7+qAnqF4Ct/EQilRluXx8cPrh0eI2Got5fNPAaVU0TrvvTEm4PNKTAAXrIqEUsq5ULWNb8lVBo1pPYQs75umbUKQSgH4QjtkKJM4SdMQQmgaY7Qn9JahRedsA+jxSzoVWuvGrGi2jjAgROQCTeMYY2maluvCGGOcVUpNp/MsS2jr3bx5c7UsBFcQWNM0h4eHUZTMZoskipVSxljSkWia5vj4+JVXX07TlEZKF4tlUVSmJmV54p4I07Tz+TztKW2E1nq5XI7HY2qH7B/sIob1urp9+/ZsNrv/4BHnUghhnWna+ujaIbls0wD1rVu3iKyd53lVVYi4XC6FEGdnF3VdckENQvPCC7deeeWV+/fvr9frF1548ebNm8Rbeffdd7///e9rPd/f31dKfeMbv9+27SsvvoSISZK0dTObzfr9IaEeg8Hg+Ph4OBxev3799PF5mqZS8UePHr3++mtRlO3t7SyX87OzUxqJiBLFJWu0T7L0yfnZxdnFz/3cz42GO7/1W7/lXMiS9LPPPvPeR7E8PDwkZoBSomkaD4FG+tI0TdLo1q1b//1//y8YY3/tr/2l3/u9b9ZFqVQMm+lywh5DCNZpa60GoJuwv3dAlZuQz2EWWwv/m//y//ynf7r/T/7JfwcA/+pf/cv/09/7Px7uH4QQaJ530OsbY46Pj6lm62ZUucyy7PDw8Pzy8urqKoTQNk3T6ChJqqryHrgUNJ3tvSeFt1ipYA3/Er9TgaAEDxikipzVAADoEQVRGmkm8oMPPnj11VdfeumlEFy/3yewQCnVmm76jbC2Lt5uqMR0xD+t6J4bQq2RuQgIkiMHiJQwZfWVV168de3I14VXvK4qH6wLlnGuwQNjST784Pvvr+sm2nm+HQtAZ1C8BWe34hWd5vJGYINKu+15x3h3RNLZ3WW8nNPvoVKT0gMhuncSooJIQgUkVeG8B6JBsGdwUrHRsw7hKcGTmpHwNPHeqApsuKLEDQod4QO3Y/jQwf2d4gQtRRK5orC/Wq3W6zV5Wv4J9JZzTrT3LYZCvQFtDdF9+v2+EKwsS6N1FEVltaZTDADoQCcoIVgHwKg3DwCSi4YxWrrs2ZHHDUNl+zG999YYIAK+lBsnoW7sne4wLfgtvYAe65ZqEELgvEvS8jynkefLy0vEwJU01shITRdzFmDzATv/DFIl6vV6Ibi6rhmHuq5Xq6VzbjQa1bqez6fblm3TNHneN8YQ4mmtdc6H4Agx9N7zwOnK6fla29F1tbNt2wIwKeVisYjjeGdnhwi4iDifT+k3x3FK7lKRkNS5oSFgSimdcwQJcd5hTLpuxEahzntvraHVQj9FsRcAiqLQbceX13ULiIDonOIoRMKpXgAAY9va1uSFQI2KbbuIc+79MmykJKj1Tg+U3llV1XZddQ/UWlJUIy3j7ZJznQyuwE5tvPMoI+mJwWBAufdW55MwaM65rrRDxxhzzq9WqyRLSWmXFE63rSbq0VL6qo1Zl6vd3X2lVFFU5IfmnGuaisjswQWrbbkunXNpmlise89zMHUuGOMQPSFl9Kmbprl+/ToN9yyXy2K9VhtD7KvpxDkrpXTGAkDbtkVVbvRVYNs5oPZVFEVxHKdpmkQRSpnmWdu28/kcfMiyXErlnGvbmjqvURLTDVwu1q3tHFmpLRQ6K1HYZum6tQAYPAbrsmE+Go0I9ZtMJmQbQ9uWNEno6WyDD8H6RNwh2bcoSgjGIfY0Y8x7MMZJKRGZUtFoNKqqqm10MkiUUk1Vd42HZ/pD28YYKYb6ziEZmOAUD9vGqF5MsDvN02jnvO/4Ih1aJYW1tm1bYtoiIgMk+p3TrXMuIEgGiCiY5Bw9dAvPmNY55xEQCeB+qiZPdxUF3wSTQLZv4Y8PxFBY995v5Eiff5YxwZumUZEQkTg5OTk9Q85pesOsiwoRtdGMsSSOsywj3aSnLavg6YbP53OnO1EdwSVngjNeVRW9mQ4LekZb0e2sF3vv27ZzCDDGlGVNc1Gm0W3VIGISxdZoxgQGmE7nxDwLHppWc87bthVcIqJSsVJK64Z4n8ZqznkAIEYpofDEDvabsQYqlgEAWTchhIhZL7XW5v3Me79cLoWU1Pwoy9IaE3w3IWSshbblISAaRM5YEEJkWSaURGBVVSGGsiwCdG1UQGds653V1hBqzDlPs54xZjqZV2Xz5PS8bTRjPARsWyO5QITgLT2dTbNEZGmmotgYAxgojFP8tNZKybeMZmpqEnZhrZ/PL6qq6vV6hL52AtMA9IhNq3UTjDFzXDLGiqICgChKhKBeb6u15shu3bo1n07qurbWUwfCOUd6M9Z6xM6yhXPOOYsiobX2AciKQmx4qIg80ImP3loLLGBg1nlyl3W2Jc0ixhiXDFw3PNSsmrqtokga42azOfogpazqMhapBeuci6WotV+3ZZ4NXPC9QZ/txYKwIW0aQH+wv1tW1dbMSkrpXBiPh3Xdes+KoopUzDg6F5IkrnVdTAtEJLWgoiiKojKtBmBU8erGtG0rpGyaZmFWUka3XnjBO4I1PZccAIxpOe8IdEmWkuItBaz9/X3S9RsOh5ShXl6ee+/zPM/zXOvO2yGJh1yq1WJO9BwuMI5jxEBwGyK2bU3p1GAwKIoiTaO8dzC7mszn88Fg2MuHi3lB6p1ScsYlncTB0thIzZBxIdq6McaoOPPM13W1XlepkgBt8jzQoNLNbDazTauUunZ4yCSL03iAI8agKSvBWBRLba1zVinpgkkH2WB3+B9/5z9+dPfjbJBJKTEEwXjQNnhfNOXv/cHvf/Hg/l/+y3950Ou7ZUFshda2HSa74SO4QMlfgGd6LBTa6toMBgMKNLwTKEBjDJENKYKT4Y8N3lkXhcA5B2tBCKE4jc4RZLlpnAQmBWy6rE+jJCIiBsYwAM17bjDlLiLDNjF/5tXlqQGAPRWq69JlDBggcESBTDEKz8F5BjyEIFmnSSej2MyXw4P9oxs3zi4vrPXoEQNwzo13KPhsufj8s7uvv/Fy29bWWiEjY3QIwSK7dv2aZHw+n/vWO+eQIzUnv6zx6J1tjcFOPbyzu62q5nvf/b5UKopjRG4ao5Qi98Y07SeRIqaYc/bq6iqKpJTyzksvnJycWm+LokREwVXbtlKQYlHbtrrX63MhjFHatI2phYgnk5mUPMsyrbWUXAgx3tsdDocH146Wy6WMo7feeNNa//jx493dXSJTSKGMtX5z5iEq3bQXZ5cBPYCvakvRhPOnT9nZoENFKK0Hs1qtoigK4Mk37OzsbL1eE+OA5JKllEdH1w8PDx8+fGiMnc0tYwg+ILI4Tpt2HkUJtUacs0bbpmy8A2cCY8yDB84EiLpuVqvVzdvXbr1we1ksDw8Poyj64fs/fPDgQRonFMGjKGIo2EaKx7kwm83atiU1fVo5WutBf9hRIYQ62hstl6umaaqytNZJKYkfKoQMAeq6oZNGKWmtFUIhA8oIV6s1IngHiUo0Nvc+vZf1erP5xHvY3d1v2/ro8Mh7fzW5yNIYNiWlc877QL8BALwDhkIK1bZtCBBHsRJiMpvmvR41OWfTaXAgGceqjuP41Vdfj+P0ow9+EKvIenDWRZEMGxf1zXHS9a6FEHfu3FmtVrSp6ZsBPDJotZ5Op/P53AZ3cHAQ0J+fn9PUntYagNV1I7nXWqcqQUQhuLNdMpclUdU4pZRS8e7unhCzpmnyJK/ixmgnmCA+y7aIpVknAmq11rajS8Bm75MgWqCy3BgH4Djny8W6WFfGtojotDHGHO7tkzrBcrk0xjnXUDpLYtw3b94+PT29uLigYcw4jvO81zTNxdVFFEVZlhin67p+9OjRalkg8jfffGd/7+Dzu1/cv3+/LBqpuLXh7MkVwd/rVRlFUdtGf+pP/SkA+Jf/8l/O54vxeCyEWq1Wr756HYDRTF+W9LXWzvgkyQgyYIxx3qnakSAaKTMSW2c6nT548ODVV1569dVXoyhhnEsp5/O5tVZXLefcmY6r/tzYAsCnk9UrL79uzeO2dcPhMFJpnveaxpABNAlGt237+PSYguSTJ08AgIrVLMt2d/attcePHtOqkCqOogSRh+A4Cuf9/t7h/fv3f/jDHyoRdWWYtgCWpl7yPHXOAQjO2XI5R8Qsyza1DURR9+ijKFoul8YY5VGCmJxfMcW1NdPpLDgI2keI9aL65P7ltf3Rf/vP/rs3Xn7j7ORivWpqJ9//4LM/fDKVL78Wvfxji7Np2LuJvdEn9z5frBc/93N/+l9//lFZtxgNJk2j9vZvvvUTJ48u0zTJorSYzoaZPNjrKxbGw+FstgSBl+tFNb0SaR6rHjr2Z/7sLz46OXMuPHnypDU6StJev78qbdtqY7WU3DkjebC2daZVkXAWAkNtHduYdcRxPJvN7q7Wb7zxBh12zz8FQsdxM8ZoW4nnCS8xRIacC+U9FFUNgADQNFUIIY7j1mgmJAJ6xCgVWK2QAReqrBoIG0f4OGptyywLiMF7Z6xnz2dbS6Wqxq2LJdtU7E1bcZGFEELw4AMtXeSMSnHGBHmPkFZjnueLxYIQFmt9mqaj0ejx8WNADgFpJH+wN8rz3DjXNM3V1VUI0LbG1C54xhgLDiAwOkewtFLKENwPfvCDV1555eaN20mSTKaXe3s7u7u71tr333+fC0Wmr4eH+wQhxXG8zdfPzs7u3btHMMRbb73V6/Xm8/l6vVZCOqU450LyPB8rJefzeVmW0+n09u07RVFUVZMkSQh4fn5+dXX1m7/5W5PJpNfrUWD5hV/4hSiKvvX737527cbu7i5FmPPzc3rzjRs3kjj+0UcflXVR182DBw8OD/ebpgrgBsPeuz/2lf5gsFismqaJY7VaFcSNePvtt+/evXt2djYcDtfLVVmW73313Zdffvn9736vaRpC6inD5EIsl0up+LostG6iKHr77bdNq8msRikgOEUIKaTkggkhVvU6hMAAmWDgYDgaXF1OpJSAzy9TjTHf/INv/qN/9P+6eev23//7/1cAkFIu5/P0dnb79u3FbH55eSmEePjwIWLI01SpuNWa5lGSJGnbVgi5WC2dC0wIYwxjnQYu3SseII+iQb/PgwfsPX8pIkpk1gXGkStF3Fs6JhIpjbPOuclk8h/+w3/4W3/rb7300h0ahSFjImvd0wxw4zfVpYnd9XSvtn0ergNgvfMhGNMCQBLFVbvmgr/28stoLLO21mXT1EwIJrnRNnCR9Ae1sb//B38EQshIPfd3MsFYiwQih41xHAARkz0GgA2zmEBh4zu+NhMdmkwigfRN6hwTVGTMVrKZE/QQQuj8Ejd/nbYwPYXgOpkIqmO3816UG2zPZS46cJmudst42iLUJOQaNsLKW4TXb2Z+6YPAxoBUbgyI+DMEcOdcIJ6heMq53j4+4zrbBiEY57wsy6IokjhuOksrzr0n4IOWFuPEmSFrMgU+1E3dkU42VoFbbGKLUGzuT+BC4DPzmt2De+YL/ONiLNt7u6XIed+RqKIoGgwGp6envV4vsGCM2d/fp63EAkyn02K1Qs7TNO71eufn56vVAsBnWbYullrrwaCfpmlVF6tyRbjDJm3gvV5vMBg+evQIAMqyDAGstTTnPp/PGWPMP+XKMcb0MzLfBOJfXFys10sppbV6OBwi8slkUpaltZpzzgEBoNfr0dQaAb6MPdUZkFx4b0kij0rd0Wjkg43SpK6rsiycc7QLvPdlWQ6z/nq9DiYQLILIUSJlPsgZImptCeCmjgUtORoo8aQ5G0Vb0J8aNpTErtdrxp5qf7MN0TKEQNQoQoGNMbptVRTBBsQkWNAYo3VnMxtFEedbUNsvV4uqqmglVPMCGIrNtWX9XhTJuq77/f54d+fq6qIsyzSNhRAQQlmWs8k8iqIkjUIIQolBNFiv159++nEcx9b6JEnefPNtzvnjx8dJkpyfn3vrQghScQLO+vmXiL8jGmOapt3f3y+Kom3boijG43G/3z8+Pi6KIk9Sug9EAKcNbjvJ16eC9d53pDcSIqC0n7ZGJGUcx0wpRJzP58QQohsopUQfCCQVQgQArW2rNVeSoIDtNMCWNk6bi3ZZmqac96JEhY3EfBzH1Amo6xoBKBvcequwjRtnFEWMccK7oTNIdxsliU5dIY5j74PevIqiGPT7BGqbtmsO+c08QQfUIvN0HiFY74XoWHf0JwhQJinb7e6DEACE2+hzKtapEnsPpCDsN/w5yUWWZS54a21Z1JxLREWt3xCCtR7ABoab9iF23azQrWGzmfwIAZzx5AsaNs49nHO+0QXdHiXPfXnrOtqHlIwxq3XjLQB4hMAwbHRlAVHIzhwVEYuiouhKUgRJklS22XYT6Y82dSsE6SpEWmvdGoaNbk3TtBCQtq1zAQBcCN2IqhCITMaKMWatN8Y2TcOAE7MhyzIE9L4VvFN2QkQirWuttba0qrlgtBOI0EYrc9s+JN6eEIIcDr33dCWELpZlSVcrpczSHmOMBl6d9+C7DgSdFN4HxjDNOgF1IZUx2jlnrNZaX79xWJZl29aDQf8nf/Ini6K4e/fu5eWlMR0Fk3bWdDpdLJbBewREYIJLviGnCyW3T5PezJlwzqlIUoZDKruMgbUsiiKrTVVVHqh93g0KMMb29w+dc84FAG+tj6KEb5rQxBwiqpZzQQhByJ5zAYC8HFAIVVXNgweP6rqUG50o7z1ZIHbnKXLiY1EyEDaqod47hoEsVbrDRQjvPRcI4BHQaFPXGiwTQolOmMj6YI1pQwhEdhZCSC+dC03btG0bCUntpTo0KlfXrl3DoSva9Y2DGy/cuLN+vF6slteu3SaEW0bR0DnDOdZNWVYFDdjO58sXX3zx5s3bf/Sd7+q2GQ7HOzs7j89OjHPDJPngww+MMXmSvvPO28Ss9B4kFwA4m81Ojk/TJGGMCSmJ+yZllKW5FAyonQiMS04ig9TuWJcFY4wBErACwKqqEkKcnJxsM4zxeEjNnKrq5rAQLujsSawJLUjHmqZZLudSSmKjiI2jMSV8jDlEJhXL8ng06u3uHCgVV6W+urrq9TKpuDGN93K1WAQPgAGRU3j11um6CQq1s7u7O6PxCDAL1XMihbYGYyRBjH4//8PvfvfTB/eWy/n08gqclR5CwICIsRQy8s6s6/XJk9Ozy7Pd/T3tbMCAAT0GCzaOI9uY8d7udDn71h9+68/+mV+kc4jGaii8+g7PZZKJgEAjFXxDaNXOM8aEYN77yYZ4SPukQ5kpFjASJmOBJrCCDzYI1nHZOLLZbJYlKUPwiCwE4z2JSRtrOOd0l7bZKm6cc/lmgo8u1RiTRGqb8G03SQiBMYEkdveMNp/3PgQtOWMy8t5rrQOiJG12CIJF3nsXIIoiZAwRgPO9o2vGf2e9XgOAtVbGyllPVsWr1fL999/nUjpnuOgO6aqt27bdu3FjNpsZZwCCtc7Q/fwS8k7TGrr/26Q/y3qEMFprIyG989p6Mt6BwJRSLnRDYdbaEHxRFKS4SkoCdV0LIUABZ5K+Hg5HKkpWq5XWNk0zIdR8NS/WlVQ8ihKKRMbq6WzirdzbkycnJ2dnZwCQZL3lcrm7u7ttba1XBbEhWCdXQnph2lrtITAUlG3QSAtjPI7jptZ8o1QevM2y7M6dO4vl/NNPP/WecIQuPyBD26pqPvnkkyRJkih2G7kfLjkVFUoh64xiLSLNRXlETpUCoTymrfeu7f3Yj7+3uz+SkZp/Ov/kk09ee+21V15/ZbFYlOuCMUbjNgQ00wI7PT3tlrqScax6vR6hz5SPeu+JNkWUDcaAcYiiCIBxLgiMo4dijCHVROc0OsaQ5iK7/7ZtG0Xx5eUlXl0h51wgHX7Hx4+llHFCZZ6GDQpsbacGLoSw1hG3gq48jmPv9LVr1wbDURRFum0Xi4XV7vz0iTFmvV7/u3/375yx0QY6j5SKIkUrDQC01ox1TizL5RIRaa4qzbNer9eVFrxLFskCTnv70UcfWW+MM70s994rGXsPSRQb49rGFPO11tp7otLY6XS6XAVgIVHRxcXF+fl5r9f5g1vjATr1APRBdJwsAa5jclG1K4RA1sGylGR7hEhK6qZuEyxE9N5KOSYJCKXUYr0a5L3hcNC27WQyeffddw8O9j7++Efj8fj27dvL5fLy8rLf77/++uuPHz8GQPJyWRWrLEtkpNaT1bXrh718cHnxYduazz69++j+yXQ6r+u6bQ2Az/PcmmBMaa0dDPhrr742m0+UUh9++KHWhpQEtF63jWG47PdD0+qmaepSI2JdNt4DDYNTl66ua73RE0/TNO8NXnrppbqux+OxMe2jR4+asnIuyChpjSYSTdjqY3ovvmRqW8nYhejsyZXWtijqOM4uL0/u3fvC6BBFMkkyANjaN9MYb7TxNaIZ5MViQakYHRMkrUBINK35u3fvUvPVGd80DSKnkV5KgL21gnMAT58rSRIhOEDHAJpOp4Sw05FtrR2wzGszyHtNMA4xUklTtabV1Xod2pY7+Eu/8hdfuvXi7/yn33VOCpm60CsdyNHezrtfbWU+jPL5Z/3KIXKWpslPff3rcbP69f/u/30+mw1641/4lV/+5MH5vY8/343H+Y10Nb+6dfOgl0WfP3qog5xcTEJwYMo0TdKIm7oVyO/ceemlV95crtsHDx6cn5/3MzHa3Wvc7OziXKRx3FMAngsMLnAlja+dF9566KYgDX3qW7duffjBDx49enTr1q3Ly+frua7XBRUaWmvGv0SJW0oB0vvQWlvWlfceOQsOer2sbU0AYEJYDy64VEZSRnVT1NpJKQVH9EFESilV6ipKYiEED1BZcnF4zss5KxUPgbmNtt2169eoP9G2TV1WQgiSg1wsFs65xWLh/VOCT9M0xI/gXBrTAEBdN3XbSBEN+v2yLEmdbblen52dEflLqcj7Khi0hgQFuoJKSBGC5WTyPEU6WWgkP89TWr27u7ttY6bT6dHRHrGErl+//uGHH0qZ5nnurI+i6PLyMst6X//6T4zH4+9973tt25IEPwlM/9RP/+Q777z9W7/1WxcXF3fu3CmKarVajUYja+3V1dW//bf/9v79hz/1Uz8RZ/HDhw9feumlvb29Tz760fHx46pqDg4Obt26tVqtqJ4/Pz9PkmR3dw+RpWlcFMVqsXzhhdv7+3sPHnzR6jpJkl6vd3x8nGaZUqptzcXFRV233vu2bv/hP/yH5JtdFIXgPE7UkydPjDE05E7VPuXA1lrBsSyb//p/9799/fXXf+3Xfu0b3/hdjiLLsvVibUxrAxNCcM4CeNqYRbs2xjIm9/f3qbddFIVHkF/Sr7LWMm7/7//Pv1+XFYSQRjHFnDiOJ5PJcr6ggyOJJEXypmlG4zHh9XXbWmtNZ3GuKDMMyOhIpcRsp5cnSbLTH46GfWuvndXPW/aAEkFEkTHGItDqohyAYE06tR89evTrv/7r/8V/8bfp3CT0wUNXjWut0Qf6Pn0ESwb02KEtWwjmT7x8CFVVBYZUI9V1/eL16zujgTW1BO/AqVjWdQsMgSFy0RsOvv2d750tmtHhOMDz7ypuHao2hf0GU3jKMaS8lwMyxhQCJUj0NloGbGMz5Yylal9KaUynO0ewL3QAqKVPvUWaQudPI5FJ+t/tYDtl0Z0529NBQwZdbem3N01sxPQo/uNGTrSu6+AAMFBR/Sf+NLFfCQ4gUjxV5tvnQn+CEjO6MIIsmePU3L24uKAWKYGSdNxs5X3p2PLeG+0wBCk7rJMjY4zprr7oyvttp5axp2RwWlH4jH8gVcjP/ivB688iztunSUkLY8w5EwJqrS8vLy8uLpRSVdtQv/zJkycEjTlvo1ju7t4eDAaz2ez09IRzNMZdXFykadrqmkDeEILeFPNZllE6lCQJAMxms7ChhHvf6WCQ14vgqm1rSjuTJPEIvjXbas534pOld651bsNnZNV6DYiMcgzoJGiouENERK51ba2NVMKQOddKLohMxznP85wxplvbzheN6dyrPASzcXV7sqiIg0LkH6q1aRcHH5x3wIk3Zp5dDASYUr1Dst240Z9hNGpTlpxzxrj3lh4NUSyXy6XWmtiyRE211u7t76dpSsJ9xM3fjFM3dPdoibZtXVXVbDZjjEklqEq6+cJtKeVyuaThmGCdMdDv952z5+fni8WM+ighBGNb7z0iD+C01gGDYh14VBSFUkopNhqN0jSeTqfUkLDWYoCXXnrp5PGj9Xq9s7OznD9fzt4Z65xnjK3XaxryiKLo6OgoSZLt/elm9r2fTCbWd+lcJDtEmDS1jTGMcWr/bF95nvf7faI7tM4VRUF6TSSwi4joQ0CMIkVYtjFmXRRCiGAtIlFY3HZfhM0oDNW2lARSeeKcm06niJgkyc7ODu0yKQSFlC2rHQC2swu+I547+nr7a7cbsK4b3GjFnDx+kjBOotLHx8fEON7G2y1e4f2GscGZ84Ex7r0n6aGm1t7BeDzewiN0uFRlSRCQ9Q6Moca21no2m00mE7aRUpRSdsdQ8JxzxbkLXQAhEW26bLbRQNjiHnQeCSEYZ5u2HAseqF7DjXSvlFJy0YmT4FP1pOeeYgCg2zYf5P8/uv4s1rYsyw7D5mp3e/rb3/fidZGRGZmVlZmVpWJXpEAUTUKWZIGyDAMWYAuEaf9YgA0Btn/8Z8OAAcOAf/0j27IEQYZpwhItEmZXVBXJqmyqsouIjO61tz/tblc7/TH3uS9IvjhIJCIj771nn7PXXmvOMUejlAKIHDgiGj840kittZAxopSCmgvaeZQqx+Py9vZ2EMgKcQ/pwh5xllKOx2PSW3jvq6pKkkRqtbu7ZSufJElZjpVSbdsSWAwA3jsPLEmyrmkBuFIJBnLHLujzapkgHW7OCaFCGMi2MUYhJOcgmOCC+RBor6PdgAZLeM8vZEMjQ4dmlmVJlnnvkbEI4GMUSgktKE6WpAyMcYgIANTmuNYKIQRXnHPnjfdeSS1EYAyn07EQbDabOJ+WZdmbRifiL//lv/xHf/RHV1dXjImqqZn1WusYkU4usn7CQW+BZTnqTEedLC1s51xvunuzFFpRzjmlyPbHk4RaKeXjEGZAV06zIvoBerppSXdNTb7nUsoY9/sqDpIOWn73v0uLEADIkKeu2xiH+8WZiNHSwh6weObpG2aMCwHeO601IkvTjHFOc2tEFFKCYn3vECAGQPSMMaVFjCwEF6N3zm23WyaY0rrrG9LL+EHbzZy1nPPJZHJRv9xsNuJIUJ94cXFRqLn8+KNfc85J27Ja7ppd33W9EKI1xrlAHX7X11LK6axg3I/Lcrtev375MlVpnuR92716cQEAqcwJjAAAJeTx0QHpv0DwNFVCMIzBx1pyKZVEa1wIyDSiCgE5l9EHxtE7b3oqg6PpHedcKA0AnAPnLHjPQd1dryP6qtqu1+sQgAtJe8ebNzVZwABA3/fT6XTkAgPGOU1lsW1rxlgE1rem7vvJdOFBrKq1cWZTLT32t3ctACwWhwx09FTVMQ4MOQaGMksceG9snnKVMkhCnqTNu+DmxXxaiNudq7JZeVOt/94/+LtXl6/yMoeUBY2M877rmAfcRSEU4zyE4GNAhR48KgEAHhExskw06D23mdbewScvPv0L8OensrjZ1CKCCjz6IBmz3kutnI/EkNA6jTHaYKUSiJgnKSJSMOtyvQohlKqMiEIoaieSRCkl0DslEIPxIAgmloIjxrZ3nHPgrLY9eeMjA4goGATnOZecRQYA6BgoiCw4D3FIyAHgABwREId8VaUUY4JzMv2nihkBIgaywvlqpgqPMXDOVBSudxy5RJYwoZTijHsAZIghcuu54JE5Zy0CSMBjrV1d7RCD4lxJQJ8C+uCBsaDS1hhszajIOTCptXFWAV/f3Jm6izFiYIhEgqC57rt7j8fvPbq5++zu7k7rhDGWZikiAkV2MEH8rIh+ON4w1m07KgqhNNUBlHhjutDWNtW51hoidF0nOUf0PCbBoIQUPNa7xrre9kYnMlFSch6scy4wJgC4kql3W8ZC3/fL5ZLYSZ9/+okxZj6fW2s553/pL/3u8+cvf/GLX8xms4BY1zXl/SEL40kpBKMEZ+eNlDzLkqIorPW9aciY30efZ+l7Dx9gDMvbOy4FaQa9j5vNbrhZEfreYIi3u2UIAThKKZVMYwhKa28DAETmOScLfM5AIEPGgLEY0XMmNJcOuAtYTvMuNJvt7YvLz7vO+F/7k8OT6WKiJNuutxh4qnIuVNcRUcj7YDnnDOJsOuace+fee/hQSskYbLfbvm+VZNlostltI0QpJXrnomMgENEHFwPkec5YBAjknwgAURjGmLUx5WnXG845VyoyBlxJJZEBQnTecyFUqvq+9xi11lRscc6NsQDAQHDOYhh6CZqo5XnuvOm9rTa7EPH05KSu2uur2+PjY5XlMca2MxwoBtNve5dIVeZFgMiVlDF2Xdd0rZaK6LTUoqzX677vF4vFvXtj75AxhYCJzkzvyjRnPi4WB30wm92aM1aOi6bpkKEQkKQCzUhwwOiBBQZRqWw0KrbV1mGM6LXWMXAp8q7rYoh5Vm62q2pdAYO0SGmNHcwXbds2TSelHI1Gq+UGAGazWbWtTd+nE01m3IgIwK31HEEIMZ/PL6/vlBJZljlnnDLGmGZXXd9dk7Szrtrbm4+vrm4l56b1u2a329V5nn/++fO63imlsiKvqooJePTkMQGvnGktk8fvPQkhHB4eX15echHni3EMQJNnzmVEK6XqOrNcrjlXu207nx2dn7UXb97MZwfr9Tq6xlu/ul7FGOfTuUqSN2/eCMEWiwXpWOmAl1IDcMTgbNe1Jkv9dr1pmuZudeucixCi5Iuj+dXVjeSqa2zX9bkuvXURIXLv8WtGWW1vjX323rN6XVfLZnOzA4AyHaPCoiiMdxEQgCEC54zC6HnC94ACo7warXPaw7uu04IxxqzteMGm89lqtUpSBRGlEqAUQZccYwxRCR1CiJwbRx0+z9KRFJJzACakRmMtcnazvJNC9J3NsyyReS8bG01YN8VodnR0msIGdcv6anE6//f+7b+2W63+5t/8H9y8+GV7+wIh+85v/NanMuVmNJcjh/jmZffPfvTF/E7J7x8WiutgeAx//l//vf/qb/3nm8D+xt/837jx7PKLXzMsfBdfffHauva0ePzFZndhvUyy48fPbl+/6qrK+RYnyeHJYZqnJkkPR2fLy5erl0tm2vl7p2muAkTN48F42lnLvAhgPDepyGyXCnCM/FVDhACcc9vZosiePn3605/+tCgKxh68805pJUJvvPepTFsb5btU+H1nIprtdtv3PZ2EEEEJ7X1UQgsWBUMlWQgQrdEyMdiPsjRGr5LEe4eIMTiFLJc6yVLTO64TkX4NAVOw3jillFScC9n3nRB8Mpk4ZxmDyhnguKu3dO7vW4iYpsIYx7mq68o5n6Zp1/Uxxq7rvQ9lWULEAclCcXlxm6bpdLbQWsfo+6ZtERjERCedcVLqvrdG9N9+9q1qu0SwgsWD+UiAaduVc1ZLUe86H0Lf921DQyaRZvrq+uLJkyeHR7Ojo4Pb29vV6qbv7XQ6/ea33p9O5yenh//kH//+yxeXs/koz5JHTx5///vfv7q6iAGdJUx29PDhE8bUq1evfvD93/7JT37y5edfSikX04UW6Xw0OZjM3jx/ubm7Dd5eXjxP0/TgcCxkCLGr6p219uhwJqVM06Rt213XGWNmi/mHH364222NcYvFsZRys9mcnjwMzn/yy09JCEx9LA+s3TZ5nv/Wb/8WAPzxH/9xEKzrulevXlE7LRknfMRaKwQwzbMs31S7z754fnFxdXBwUldtvauY0D6CAI4gfOCSSfSiqx2gAgQhE++YFNm2ao13nAOEd5PcR0XJeXJ9c5ckqZaJabsXzy8Wk/HFl6/ram2Mmc4nyXz6+so1Xe+8TV1/u742DnWSMyYCk33fMC6QsYAAXAEwQETrR3mWJ7oo8+lknGUiV8yEdwO+s2l+edUrCSAAm15IVpZl3fXeQ0BkEbWQiBhcmM8OIygus97WDFlwnmTLiAjRO8KnBBB+J6XkHkKIAAgQCZz9V1/SWxmMt6HrfXTAI37z2eNMYzRNCH2Esu13IirhTOYFU+mu6v7xj38aM3BK8ncFMAIAQkAIGCKTgnN+jzIPoAPCPWTpY6elxoAILoILITAmOZeMhcii4oJzhsidtw9P3hNCvH75JoRAZTBNEIj9zfgQrxL2vtVpqo+ODm5u7hhjGJH04GqwoSNOE5kwDOrdEAID7sOAPAKA9568n43p6ORVUtIIxHsfI4GzRPRErSXnnHGk3pga4N1ut1wuGUPGkJiVCEMUUpKqNE27vmcIWZqyIdnMrFaVd45xTsayyLBpa2tccFEp5XvPGHoekyQRwjvnQETwIAQLLgBwiUJwEYOPQ34UJ6tAxhgGzzhyBi540tQishjJFDHGSBmJRkpJyE6MUSnhnNlDlqrrGiEUkeSIhz1wX5RkDH30trPU8gRnR6PRe48ftduKUD/GMUkVg5RBCJGnmdaag9QBPcqYTbMUUxeDaTuEWLfNZDT+jd/4jd//R/+IMcaEQIyEJ2qddl3rnEuTfFyUvS6qqlJKMaZY9JJx410I0RtLQ30BTAkJwEMIfdNHgTyREAcPk4io9yFRdNOFYFpLgBiRxgODb6FKdJrmjIm2bXdNbY3R6WAvVrfN0dGRUurq6oJzPp6UzgaPkXNADHTr98NFqjuYlAoJzHIE9AehRYwRWLznXkipvSdDiUaIt/xQMuZmjB0eHiKiabu+rQ1jWZZJDo5HBJ8XScSRtdY4I6XkAk3TIXglE6UE58w5t91W+8dQBB8RASN79Ow9pdSrV68DC5vNJimSLMuSLLm52VbVFiKkaXpyctb3/W63Q44BY4gMAmvrVmt873wqJ3l08uzs7OXLl3c3a28REdfr5dXFtVJK6fTi6tr0YbdtHz96v1q/+3SezxfH6bObm5u2sVrlXLJUJ7nOGXKNUrDIEYTWPgRgjEkBNmRSC2TIQCjJEZnzwIXkIu4D/Whyg4iSs8PFnEo+FOLVq1dVVdG0hk4f4CAYjzEAZ0rq5WrTV+308IAxETWKIBADrS5ChDnnEUKEwIXsrSG/QQGMIxNCKqW0TKLHvjftruL7l+ICkEe7h8YQYoxWWL6nSyvOgXEMkZMjsJDGGwiBM+GdmeRlqbXkchjckhkORoI1BePBBx8dfcwIGCMCZ4DRWsM558Cdc84bUkfxwdQ7bLdb+dYbWikuQwijotRam673vS+y3BjHpULGrA8+Dh5EYthakYJMpJRgDYEYgjHkDJCLvZ2IEG+tTUnXhYhZkgohBh9nObD7iUxJOHX8F6Xh/9IrREfGERCRMSaZJBin7/tMD2IUMkYQQngfpNIIzFjnHSY6X6/XUkqIoGUSByffCBG5UH3rIHaIGD0LDrTMBJPRogQd+xBc6FzfQU9IKH0PQkLfd643WZYJKcnVHBgmigEo2m+tdcF7JoR3hoEILgqhBJPOOCEl59yawAWYzmmtlUiipxkh995u1ss8TxmowHmIA5myqoIUyDnvqt3KO5XosiicC28uXllrBVeUAGmN28udQ2AeGPZtT5OYLE9Ho5Gx1nnDOW/bulpV43HZtO2f/OxPAeDBo7M+1kenU0RkS9fWnRDcu5DpRMmEbneITgieprrrm/u5chzoOSClJBI0Z4IwN9rZtE4BWDEaD3cqBERMU7LbtvdSJA6szAtaPFrrVA+huDTQpYRD+kUifNxj8eRCAXHInPQ+sELEGHtj7vdnWkiMsRA9AzYajdI8sdZOxrOmrvFtJjADDNZaQOEcRo+cSeQB0UmhYoQQIEbgTCNjIIQ1MUmFt14wKVhM0pKKFq1yUGw0GrVdvdvVwfLoFWepN15r3e46GTDevt7dpZskEV3XpWk6Gc+EZKNyUozKy8vLn//8533fP3z4kAbRXdc9f/6cmGWjorRZTh24YByA0dikrmspNYERXEk685BzSe7Xe1kTWZY456TkyKIPru97QDkaj5wLPlR5nrdtb41JUi2ETrKkbqu63mGMUnLG2HicRxSj0YiUI4yx3WYnlHjvvQcHBwcAEEMgSiDx1+4H8qOizLLM2WDMYEOZZVmidJ7no9FkvdruNSYphhhiZAG6vnfokkwRLb+u2/xd+lkAyLIsdiFLk8ODRRdc13VJlh4cH3gWLPMIIDhH6wfCC4GqKDAyAIiM/OAImEPJBUZvrEEMDsM/++f//F//zl9MpuVms2lDT0xG5AwA0kQhIjAyMWCjvDDG+OhJ7pGopK5riJgoTRNv5JjpNEmG/F9gwDhHxgDuvWK5ECLyt85Ebp+O8pVBWQAgoyIphGAgSDKPb/3paA4JiINSj6aI9+O+GH0Ig/aNAfsK//GtWx8NkeiboXGlUgpD9N5DCCC4wOgxMs5V0I8ePCzSXBZF7U2M3BgjuUCMKlXOdWmakqiDSkZ6qml8zTmnqpROR7rId9/fPB8y3BG01p01ZVna4Luu873Nx4U1NlEqBJdlSd9UV6/epM8eUfDI8cmh5MJ7v9lspOTT6ZTeaDwek90754pzfnN7RTeCpu4+WKGIBjJMX4keUpalc4HM46SU5J5BB+1uVz99+rTvrTHmG9/4xmKxuLu769s2SKm1tNYCY+V4VBR53/dN0wBEqsu9751zLngGHBEfPHgghLi+vq6q6vD4KITQtu39gDqEoKVWSgXwUnJrraBRMHMYgeZG+zMxqiEnJEqpvXPOWaUUiaCyoqjr+vb6Lh3LpttJKYtcr25X0eEoy46OjnabXURMkqQPjkaCAJEExd7b7XZLXANjzLNnz9br1Xa7LYrRbrdr255sqpqmYYxnWda1hiaTgr+dQApB6y2QAwwt+L3ylOQCFHYMSabJVCtgSLME0G23O0BG5xBxw+kGSTkkNBJ5AQCs8dYaAPjiiy+8c86Gtm2/+GLYThGxbztnzNFskekkWOe9z/KEqCh5ntPKtNbdiyvpt6qqmieaDhitZQiBc0DELMuYZMZZpZQD712cL8Zt21dVlSW5lipJkh4G+oxzxG0U1pokVS6EJM0Q0TmXJHw8HqOPWmulD8/Pz8mXg0hDSZaORqPNZsOYmE6njDElkz3cmcicHSyOKO6PdNnW+vF4LKUkq0SqzLbr7cnZSZalz189n0wmz549k1JeX193XaeE6PveeDMajYwxV69vZ4el9/758+ff/OY3J2FEhMcsy6rtbrveeO9PT8+llKvVir4fGqST+woOxzP74osvpJTf+c53rq/fvHjxKjh/2V8yxsfjcYzAIgLwvu+t98QcJzrzV9WgJOGUUvZ9X5YlACyXSwQ8Pz/3MRAfqyiK6LHMR31vtsuKAzWbwrl3u/0qrYXIp9OpUmo6ndL1Ew9uvdtKKV0YYtP3vLkhSCrGOB6XNGsk5yJa5EdHh0CcRw593/d9zwUIxq21jA36XJq6O29CCPkoZxYFV6Rc88EyLkN0trcRMc0SRGQA2agI3vd9J1zgUngMq826aTqF6LYbrJq/8T/7H/+H/4v/qLq8GM0Pf/nLP5iOp1+8uPov/8v/8vn8mzWqN1eXn37+I4CTpDzRrA3BbLY+WJtk8q5ah0T9T/7n/+EPfvg7f/sf/P6L58/fW5y++OTTaZr/8Le/9+GHH/7y5Rdt2ySRI/Mc4rNnT1fXr2KoN+u7p7OnMcZq13z66afr9Tr6MJ1OKT8dpEqyrDWO7VlttCN1XY+DCelwT2mvyPN8Pp8/f/78/PzpO+9UkiR9kL7vjWm4fvdJsVwunb8hjgkT8FVKZvyKmvJ+uyCMhjbSpqmzLGMcQwjWO1d7a+18MRes+JrrSUGm1lrOhFLSe/n555+XZamU4JyPx2PSV3adod7J71OUybNvPB5tNhs6B4lXQo+MtxTXLkzvAAZpBWKo67pIsxCCUqptjNbamJ5zPptMF7PZqEgimhDtbherXYPx1kVkjFVV5byn4zXLEynldrt97733kiTpuk5p8eTJk88+++z6Yj0ej+fz+a9//esf/ehHXdcdHk0/+OCDyWTy6s3rP/3ZT9br9be//W1g4ezsRGvtnHn9+uX19dXF5ZvddrNYzL/97e989tlnP/rxH02nk9PT02fPvvHP/tkfOueOj4/ruj04OHj16s3t7e1kMinLcQxgjFlvNjEC5+Lw8HC9Xv/Df/gP33///dlsVhTFZrM5PT198ODBxx9/HPY2ssYYAAaRTyaz999/+sEHH/zhH/5hmqY2ePr2iG1tjJEgiNjbdR2LWJb5f/qf/ifW+sVicXJyVBWNdb1sBbFmfPDoAoAKTERQMYYYQ993y3gLAFqqJNEAGPy7Se7IQ9M3yCIy9NHZYHOeLg4XwRqVaCb4aDSh3PnoA2C03sYYkyQVUrZtT0Ae49x5z8TgfkteW1qq8bhczKZKcvRus1nFcATvWvhlUWite2u51FmSRsa87SUXHkKMASIqJWgdHh0dHRwcEM2cQ4gxuuAJXKYdzH/FqZnhgALgXhb6zm8gItrgrPFaJdvVZjoevXd+7q1RQtjeG7enX4ZgnJ0eLn72xfPbZRc1NF3PefPOvzmUHEg1AAe4T6gbxN17nqyVSoSAdFhwobRWAJG8LyWXtPK11t7H7Xa7v5DAGCql6MGn3Zgez32N587Pz22wTd/leQrAyThVa82FGOdjukJiiVJ5TGHvcW+PO9xWhjESOCKoFTKc873Umi6SAUt1orVWWiBiBLLV0pvNpixLIQTgAA7SdQKKRKecc86ls8Ea03YdRWI0TRNDAESpdQghhlDkeZKnGGOesbqqqk01n81PT09fvHnRdYYMl40xmmvnnBK6763gHEKkAT4SC4cxjAxZZIN3dsQY2d5ymg3k90BcsyQhfxg+PFw+KDV4O/R9T47zxKAMe7U+Ywx9lEr5excLYOPJtCiK9XK1Wa4mk8l6vY5Ln2XZuCzH00lvBlNyoZQLdj6f99aQfepN1bTG0F66Wq3YYIDufYyj0Wg6nTZNt91uldKJJH6oIiVi0zRtWxORDffy7bgXySFiCBhCcOABIMQh7EtxcU9tpk9EC1h+xTqcXvR/VVVlTMeVHE8mUvH9KH148JMkGaUjBqKKlTX9/TcM+76JnkSMQ56A9971FgBi9B6HlAvO5H4dDtBYCIHqFu99CEikeDukmgulVNu6iE7sHWBIhME5n06nneltb0izyLngAgi16Try+QXEQIY8hDD89Kc/FUJIqYwxZVmSzQIACCEIWx+NRkqpqqq01lmWNV2LiKbrCQS/urqKMc7ncynlgwcPfv7zn5MR+XYrnTNd1zHeLpdLrRTn/Ne//jWGD0fTd2wgk8kYecZA3ONKcZ+fJoSIYfhWyRnj6dOn3rlms6urKrChCwbOyBGL7j49fXmeO+cWiwXfS0bWm816vW7bNk8zIqF774k+5QNZ++mqqtKicM4heuRkYzLsEvcQtkpG1FF6HwnjhhCTJAkwjLK22y21SILseqWkAoYS5mkJGWOQ4eDiso+CBCJRCkFvJ6VkODy2k8ns6dOnL168oFRbxpj3XuzHS/cET8457sEBuQ+JIV0HVcXe+7Zt6YPg3mqfVpePQ8pcURRCCNMNgpv7Y53uArJBqB1DuD+JcKDVDwb9fO/5zvfEcM6Jbc2HnKLBjCLSBZBKgH44BE+aoXtM8F96ccYE47i/+xEH0wNrAz2Ge7gZEAFxsEuir2K325EEk47yr+z/VGQOfuVsnzTw1ReXApETNuJ95JxHFmKMIg4d6H6nHe5yGIyqRYwYGXAlQ4hCCIyM8+HbZgIQgvNOa+18DAGJVQ3AjenNjk4h0XVO6xyAMeDGtEzwGNnLF68JOTHGABfL5foermVKUKCFUipi6PrWGgcYjTE6Tay1aZoeHh72fV9V1ZuLV5xzxLBYzB4+fHh1fUlnMdECssl0NBqdnp5X2/qzzz733ntrNvVKpmmSJHmRxhgHB3kFxhiy/+JM0OZ8Lyjp+z5iODg40FrT6ItICcRFU0qt12uCj+M+9sCHQHZStC3c+3ASjEPf8AA9B+f2zu90oMQYvQ1EpZIStB7pJNntdnS+y70xjpD8HnCjHQZjpF8npaAQSZrmaZpSh+6tb+qub1oKwiSLXNgHM5AIABAE54AIAGmajpUKEWKMvRAxxtVqFSHOZvO2bd+8fl3X9WQ0HuFIaq0PzsdPnjy5vLxUSj179uzs7OzVqxfkfnN0dLTdbsuypHAt2vo/+OCD6+trMmimb7ne1R9++CFtOuPxuKoawpGdcxypeIoAUcpcCmWdF1Ia00spVSJVklhrY3BaK8SolJ7OyiwtjHGbzabr28Xh7NGjR21bG2Pm86mQ52/evAGA3/z+97TWL56/EkIIcbDdbpumOXtwohN5dHxAlOeuaatqmyTJgFH60DuLISKyzXrnnMt05r2XUmVZfjBfxAjr9bppWjoPEJFxhAjAeYwxzVIuQKgcEQ8PDxOh3lmcjkb5WE9ylfzJj3/yx7/86c3y5r1HD2aLeWNb5vsQvJeCC+liMNZHjET1BIYw8NYYABOMeQwRIE1TkTLIU9P1f/LLP+0r/+TJE8mZKLXm0na9VspbF6PnXOZ5bq1lnDtrAUBxBTC46++TSdPoERlIKZngXCom3o406eFBRLY/z6hMCSF0XRcD5llGzhUChjABqmGGHW3onCWAYhgprxsGeHpAqMNXFX98j1wPA+4IOBR8jDHSzdDeh4iSDXLUt/ssA8aYAAkCGSIwxBCPDg4PZgc9xw69DV7pFL1DxETpyXyy3q4BARlzIUjGEJBONeeGfANilIjB1+ndDMTPP//05DR7/PjxT/70T6q2llLudluqi47Pjx49enR3d3d0fEAais++/AwRF/O5MX1RptPpdDqeWGuLIh+Px2GIadbkZZck6Wa5s8bTlxP3hn2ccz4kLDPrHMAg1bzPkEVEjuCNLctxmqZFMbq6utntdgDQti2tislkcnp6+ur5GzrjfbBXV1dCCK0VoU5CiKpqyIKjKMokSWJA8m2o65pSqgmxou8hTVOGNNfjMkmGWOQ0oc2ua3rOuVTgnMNI3y2z1kouiJpBUCYDBsh7Y6bz0XQ8uVlfXt1eMc+VUCwRwcU2dmqsDg4Odut6W21pfMU5KJVQwLsQiZbKWmuNb+obxtjp6SkArNfrLMuSJCP3zDTNYowEPUshMA41BJUXam/u1vc9Y1xKRk2u2IezIyJjWJSFULzr6yTR5bjYbrepHj17+o2+7z/66JOiKBABY0VYHgBDZHSKUPnVdZ1KJCIeHhxwJgFCWRQ6yahXyfO8S9vgXCK1VposKUIIAlgAoMJUaUnJv9ba0WhEO1vV1MhgPp8rpfw+9Z4Ur5HBKE26ruudHY1G1vqmaWKMbdt6qZTSdGAjBqIyWdvHKFy0AUKILs9zIaGu6xAQfQghaq3Pz89JuKe1vrq6evPmDUmBghsM+xiYfd/Cg4/X19f3Y6qiKEYjHmP06BeLhbU953w0Lp4+e3x0dFjX9dnDs+12u16vDw8PT09Pp9NpliSz2ezN1Zu7u7v5fH52dtK27XQ6HU3GDx6cf/Lpx1VV7XY7LdX5+TlJ6b/88ksqJgBY3/fGWDJvdc75YNM0pUzt73znN2KMl5dXfTvUXpxzIZT3nuPbipmWx83NFWNiPB7TpIoIJpE00YkOGG+Xd53pQ3BVValEC8HSND05Obm9vsvz/ODgcFq2r1++8j4AxPg1gW8Y4263++KLLwiLGcbgGLfrlbU2BK/TlGZdcm/20vUNJZ4552IcppiEgyslqmrI56FVkSRJmunoSbDGyV5DJlJKKUAQjYWmI4wrncjYe+DIGGt7OhO5VCLVSZ7nu80WEUWQOs2zVNd919Yb3veq93/+u9/8a3/xL8Guu3p+/ckvnt9drz/94uXtaucC/OTFpo2jTz+6gzaDSc1mK9CxmHzv9fWnoyLPi6TB/t/5H/77v/WXfu/HP/7l0fj4L//uorlbt9e3rz/74r/77/3bhwfTw2p2cHb2+Ys3v//3/8m3nzydL8auTtarDXgEb4rJNFbQtm3fNXmR2t40TXN9e/PND3+TbhwHIZk0Aax3MIQOcT540rn7gwkAjo+PP//884ODd5tpxAhZVnhjPYLW6Ttvp9aacZJncR8HVgI1BoSb3B+FiCgEc85xKayNkQ32U2laWmvJ/qIsy4ODg9ubr8uWYUVa5HlGU3ytpRCMcJZ/UbWnb25uKBbc2j5NNWOi2u7G5ehwcXB1dTWZTUMIy+Uyz/PF4mB5uxz0mBCklEQ1tbbv+86ZfjwuZ7PDLz593nc2SVLT+/liWte73jRlmRLJgnOeZVm72QZPJlhIFOymaQ4PFwDwySef/O7v/u7Nzc3r169/87vfH4/H7z0J77///k9/+tPdbhdjnM1mpOr4+OOPjWufPHkynZYhmOvry+l03HXdj3/8x7e3tyG4v/23/9aDs/PNZvvHf/xHiPCbv/mb1a5Zr3Z5NpIyOTo6nYwXwa8uL64/+ujzolBHhyfexbu7u5OT07Oz2YsXL6TQm/UOAN5///2yLK+vr7/44tXp6UGaptfX1/c2fEmSaq1vb2+LtHj48Hw0Gv2dv/N3Xl28mUwmNL3O8/zs7Ow+szdNUwyolDKhUYl4eHDundtt619//olSykUDwiEHMihsqup4djqdTgHgdmN0noQQpGScc0H0W8EZvptGVy7G3R3jljmwnQkMYjHJdaY3zTbJskJKZCyGkOrMtF5yCNxroaVOudB13VJPjnv7hRB8CFGQdWX0qdapFBg9xND3XcAWsndcg/dec+EhKsHTLLPOr6s28pgoVZal6Vvb9ZyDt+7lq+e3t7dSCy6Y7awPNjiPMfoY7rGJGO/Nmoandeicv85VxgdGKHiMtu+fnj8e5Vm/3nIIACAltxhicL11ssgiFz/9xc9QQOSsrutR+c4/CVKqoUtEtkcZSBjOnLMBgTKROFW0DBFRyaHpiDA4qAKLwAZjMaUSZ3pjDEXrMUa5RpnWujMtY4JChCi83gZfjAvtdJIkjKPgKiszxphk9KdkCIEhjKcj55wxxkeQWmiuyASADvcQgrWOwEpgA8bqvbfOa5ncd5IxACJ2Xdf1wz7TNT0idn2/Xm353rsjRqBqUClBpSOPMQAC8hjB+yiESpKM3oIhMBjsaMuybJumbbosy8pizDl36CaTyW63RYyLxbzvTVN3ECBglFIG6xkDEIPhawgYI8YYtVKMYQguomeMccZCwBCsYBBCFIySBjVDEIxjABc8YwwDMAExAhc8hsC5iBE5F1xwIURvTQiR6mHvLYsYbPDcK6WcN6t1t1ouU5Vxzq3r97mXKYsDA6NqGqk4mRts1xtkQDVzkiSCSSHE6u5usVgg4m638zESKEaBIrPZrEzLpmlWqx0hQQBANQbuvdQoA5y+Q9qCAZj3kKap4/vMNxhqknssDIeIZhWjQ4yDv4YQIQQqhkFwsoYQkg0mgYwH5z0DKbWLIXhPmXJi7wA2QGAx3tu/kBEi5dpxzgF43P8M58O/JMCFsF1jLOEdnAsCCrrOE4LpnRNCqL1/q0x0kqTGGGOMtRYgCiFJg2/I7qzrIDJKMKKitG2rNMsePXrUdV3bNlVVee/n8zkR5qqmqqoqTfXp6SlAbJqGSFF7NszwiYbNJARjzOXl5fe+9z3CKNfr9Wazmc/nAKW1FgESrcmjP03Tvv2aKSDCxZur9XpdFKMsy1ywTVVPP/w29UrqK97oBBdWu123qwXnPFX34DLiEPAVQtif4HYymRSjUZJlIcRqs725uWGMjUYjhuCck5pLKUniwBC5EEWeE2btY6Dhk6SwQQW0xlSaeO9DdGIwDbD0FGshR6ORDb5tW2PMgGU7AAh08fSAw94snu6+TjXNAxAxOh+Cv0dmcTCIByUk4YnT6ZSG/XFvK6+UIrNj3PvPDMxNwPuDgA2e11JpTUMmyhO6//kIQBhZCMFHR11VVVXz+Xwymex3+Pt5TIgRAw64drI3DZdSatTOGXYfYzAUcm/9P6WUnHGAgUpMWAf9T9wbyoch2ybQsOzd5w0AAkZA2AeTIsqvPl/3ZWQIwzP4FhUJsXOGbnEIIfohX5d+i7GvUvrezudwnysLkSEOmy2SPQ8gYyzLMk304b2Bg3MuRo4IPjgWPOdc6wQRES3jHBhDiEoJRNRadl2TpinnUWnRmVYGqbWGiH1v+64XUnKuiqJgIJx1iIigiJSdqCH7IQIChPsvUHBF1B+tFHXB3nsf3KjIj4+PI+BuVxdF8ebNq6ZpkEFRFH3fci6+8Y1vjMbl1TXM51PvvfECALrOZFlBvZ7WejE/fvnydTYunA20jJNEI4bemiJJldReBoxwP29je9N5uqFt0xHm++zZsxDC7e2tMWY2myHi7e0tmdeRFUaWZYxxeqCIVUaTZkKK+773974xwzYS6LmjV9d1DHnbtm3fjcdj6inpmPDet30nOSmQBkKSECJCYCACj33fr5brPMuarhmER/evgMEjhAjAtUwYA8DB6Jlx5Dh4VTmP1lvnnNYUL48hhPQgbZrOOcNnIKUMNliwjLGqrkpjZAjh/fff7/t+PB5/+9vfpsIoSbLdbjcajcgEdrVaEXOQDowsy/I0Wy9XfdtZa+/utkWm7+7upJRap1XVkA/gMC9yAbFP01RqUddtWZbO2aZpnLdJkhQy01oDE+PJZD6f931/cXElFEtylRb6dnn13e9969GjJ4hhu92+ePHCuH4+mhdl+fzLL7/5zW8eHBzUdV1V1cnp0XhSVlX17W9/uF6vnXPGQFPVxhjnPH1Tpu0AoDVWKaVV0ro2uuiYH7KAIlLOzHa75UzqLHW9QQQfAg2mpvOJR++Ms96E6IKzRTabvItgsd5u//kf/D2B7G63+fTV85vt7ZNvPc3Geb2sYwzIBhWew2jBK86R9h0GAMA4E8j2oz/BOUcfAoKQ4vDsaOH8LnY/+/yXRZYrxjKlU50oxhfTRZ6mkqumabgQ3nulEgCaKXnJBYto2k7rlDAUZCDeKgLebtm0/0kp+d67jTHOGLPeawBje74fkcE+QEkIHkLcj3cCORUghhg5QwbirVHa/fkdghNCIIYY3xL+h12bRYxvZ3f36592FjfA0IM2RyAywflgTs+RM0A8Ozoe5+Wb11/yMpNSBuukkmiDc45bkSRJiI4hTPJR07XeeJkozgTnLMa3U9kYYwhOvyv8HQDyPM+L9PXla8pGoEkdl+wHP/z+2dlZ29bI4g9+8ANr+7u7uyePH1Ek0Xa7/sUv1kqJ3rScc2AxoqexpPfBexOs45xLyfveAoCLQO1H23dlWaRpqpQIIZi2ozAE8jL2xmY6ofKLfAD7zlz118HHru3pv6WUt7e38/n86Ohos9pMp1MhBDl7hBCEkOS2TB9cKTWZTMrxCJAtl8vb21sqxWjyRnsiff/OORhMjmLXW6XUaDSKEOlsS1MNwMlkrWnJS4GGZW9/0fuIiFIJ44Ex9vr1xcXl84DBx5DoPAR0veNZ2ratlNo4R9Cb2PtK+xDoeqz1ej+Ce/XyzW5bI4TlckV4ZVVVXdcThyIGmE4mRVHc3a7iPm2GylCIg8grhKBUIiWjfV8pFaP33iutiyILGIoi22zvilI53ykhY4zz+cF0ek0SioODgxcvXhHrn7x9aJ0MdQYE7+PBfAEAidZt3WmpgDM6n5SQmou2qiGJ4EKWqPuZJ1Wc1tosS75a99NTXNc19TmRiyRJADHEmCRJ03fOhdubuyRPVJbulhtkwJjgjCFjRPwk0pPSgp7iPM/QR874+fnp6enpzc3dr3/9a9M7xRWFSldV9fTp06urq/F4/N3vfvfq6ur6+nq73UYXATvgDAIyJRBRCBXQi6+4NvM9GSH0hiea+JuFLnSWXN5c13Wdpvrw8JACHCjctWua0WjU2S5N07IspeTkQ2q9bdvm+Zcvzs7OiDq0Wm36vrfWhRBIvQ7AZrPZ6L3RdlM1TVMURXVXtU1fFMX52cPtpnr16lXf2zwvqbQNIQByJRMlBAGv1ntaBuPxmNJ+AYDYi1yKNM3onKaSYjwed12nlIo+CKGfPHkWnDed3a53wYMUUghFqWtavVsa47yPGMi9izIAkbODgwM5eIhrnaZVVTVNwxijE7ksSyLRO+codEEIwbnc07WGWpNmh5xzKQZE435nJoAyyzKhhdTCORe8z/M8Rh+C41JNJpM4ZAlikihKvAwhlGWe8wIFb33Pgi+VtJX/d37vL/5f/k//x5sXr//5P/qH11fLq+tVNp6lSp6dHl7f3jRVvd35aXa4qTu4fd5vP5v+5ocv33zWX37xOz94v+rro4cns9OjT768qJvQ7jZMF7v16r0HD/7sb/7G+enJl198Pp9P2gAS4PGj866vb68upeSL2WizviuSJMvLohxrrZXgIjLbt2/evJEy00my3myEUEyKrmuctRIUxIGb8JWziZJwdNd1ZVnmeU5Du3ec8uvNuPTHZ+dt2wLPq3eZ2Cotgan7ZkPtQ13eFveDF5vQWislAICSzbuuU0r2fT+dPsqKvK5rInC9evOGwfid1wMYjWk550VRCMGqui/KLE3TpmmETBhHpQWwKCTTiSxHuVLq9mbZtm1RFEmqjO3yYlaOcu9M3/dSsKLIiiLbLlnEyDloLRHZer3MsixJdFFmfd8fnxwdHZ7++qNPgaENVmV6vV6uVjcheiFwMqVc5zLG2OwqnWaIqLXOikxKjijn81nXdevl+ic/+tHJ2Rki/smf/uTRo0fOuZcvn+d5CgCLxaJpGmtt01TeWynYyenR9fX15eXF7d01MY6ztCCbfmPc3d2K5kyr1TJJkrrqLy8vP/3l56NFcXig7u6WaZp++eWXDx+ePnz4cLlcArA0zY6Ojsqy3G63o6JcbzfUoX3yycdd1z19+pBKUxrDkNVmnmdpmm42ax/M7erGBtO7Lk0VQFCKd113cHB+enr60UcfjcdFVVXWdlIqxtnJ8eLwcJrnxXK5DNAfn5x1nTGrRmUc0TOlZpOxzsXjDx4AwM3NDVexLEvqB2KMDGG5XBaTPPp3byDI4/SwBBFs78pRiTYIgXfr61GRF1m+2277vlcqEUxKIfrOCMXHk1nd9LvdDhEZCFqTGKMPHoEDIEaMIUTPIUY0XYyRM3Cm99y98xr6rgvOsBBDh8ClEkoL3rkQOcTgOEIIgUXkwD7//PO7u5uzB+fWuc52GByQN1uIyAfjzmEYw/g9h4j2sXc/BWQjywIiWGOKRH/3gw8EeCUY2uh9oJoBY+wxzPPi0xcvPn95IxLoPYLg8WuUzYhUjUs/UI2itQ4RkyTRKt0jeoJz3tUN55yBkEpSjRSi886Ro0gIQQnZNI3Ocxg6dtjDdtF733Z123UAQGFZRVHcLO84h7reKS2EED56ktx2XRelBAmdawWw6WyMiFXlY+8hxslkwqQQiRA4mCeABLpgeh5NO0QFOueUUmVeED5SVz3jeG/Fi3v5xWQ8btuW7HQZY0JqGoARVEcnCAhOPFD6maQc0aYHAK9fv+6a/nhxXO126/XaWjsdT0ezUd/3VbVLkuT8/LRpmuXyNk3zLE+Cwb63zntG/Ulk3nu9bwr4IDCKIXgugDjX0QfnQmBD9CKNXQnZv8cFhBCUP4840FboWBx2/sgEkxyYtw44p/mf5JxDrDZbRJSce2dubq50omOMBPSvN8vZbMaEMN4gstevL2/v7h4/flwUxfX19W63y7JMsAgxdk3DhxwtqTnvjGnbNkZI0yxVuuu61WrVNIb4LtZaEtwQsEWcViHEeDxOkqSqKmLMccFDCF3TgPcgZFSM9grYd0+kN+UDckRiBZBSu2Bp6E6FRNd1wAYaPmMwQLdSYeTe9/TV3Z+VBLoxxuhN+N59FfaNHuec8YG/TCMiPVDgh5Rva5HWXggWQ0iyzDm8ubkBAI6QZVmWFU1b1V07SxOKMDXGOudjdMS3QMQk0XSdhMsDwMnJiTHm5oYfHh6MJiPgkGWDtcjh4YELvmkawiVCcN77pqmoSicpdp7nwvIYo1IJY55Ajxhj23S/+NkvmrYlzxkf7NvkT2QOvLMekKVJJpl65wZS7eqiKIgSN5lMbGO6rjs/PyeoZDY9pJtbdy0iWmur3a7Z7CbjMQVr01p1wROxJs+LJElDCEmSHh4eZVkeQvTeBwJhOecEF4YYAHn8l/zfJQA0TZNkKcEONLgiZNB7H9sYAH2waAw91zEEzrkWsuu61rzFdgDAxSCRczEYCNDXgpHd79t9ZxECsXZYxD1HbZCtSKmIp5KmqVJJlmXL5TLGSEysAQQI9xKQt7lT5KWPe1vnAVGVgj6dGOwFyLZi2NNpPHaPexA9ru/7tm0lZ/dsDCFY3/cQw6Ce2UdPAYuA4X6RxxgZG/rH++0FgAvNYrwfxtBbD2w8AhnvzRCSJCG209ecOAB7ODjGiIAheEQCOWMcRDZDAU8jTJo1YqBnkO8xkreDoj2kA/cwfRwiUgdPbSFEAMk4AOeRcUQfY+SScSGkUkKIED0yRAYBY8AYvREoEBmymJA8t+/V3qidzs0ICBgn85FzjrEQTBQC0lQhRuMNEygTKRin0ay1NgJa67XWwaOUqu87xgQwgQPsm8RgYwzWmaxICR0+XBxwzu/u7soyn06meVkYY46ODowxWZYZZ8fjcZrquq61lpvt+m55q5Toui5JkrPTB8vba0SkkaEzPkkSa3spOUhOCaVcCC5FV/chBNPbLMto4EdJBvfPFO5TZyl8Umu9Xm121Za818j9n74ZkrkgYqoTvr81bD9cvy9jvPdSK2K+UltH910pQYwxa20IKJUsREHgQJ4VRyfHNLOhik6nwwwmIiohBFdIk86mA0RrbapTa13gMWKw1kYfOeeKUeojCyFwKWgQQxdGD68xnVQc3vI1B+FmojRnHADyNO+cHR43j8Y42xtJNq80YDw6OqLiI4Tw2WefTSaT6XR6fn7+6aefcs6fPHmy3W6VkHfb23s+uZSqyDQbaPns9vZNCIEqDLo+ctFGxKZqEbHvLecQgitH+XhcSsUDokrTxWIxGo2qqil2ayn5fD42xv3Gdz9crVadbY0x22bjg+lNeHPRhhCyPL+5va3qmjM4Pz9br9d931lrLi+HCxBCUzKelJJzMRtPAPjV1VWMEGxoQx9C8D6Q12qi0q4z6/V2OKHRIzIYBuDceMMYq6pKJ7LpW6mZc2693ga3m8zfsVN8fvHyk5dfLsbTdVNdrG9uTON4kHnqVzEKVFwExzrjXAxcC/DIOGdUE+wzSQCAlpTgHASTXEBELoVQkqPQQiql+ra7ubntmpYjZEk+n07n49l8Mk1UOpmN0SMANLuKCcYY63vr/cBoQAaccc65UEooFRkZ6AxkB8643Fd13nuOA0GJbjGdygNhYSg41H5/pPEjAxadN3RGCiYQOHDJWCS7IpLt3D9abD9pR8aQMSA6OcB94XK/IVpLQcQeyZAaIAAQB1UIIRPNueAI7x0/eHh69tHLL2JE5Cwg8ABSasDYN+3i6EAmYrPZZHlOu9JqteIMGYD3nrHAmNiX2hi+xh6xaZqXL1+ut9vJZLJYLPq+v7m7ZYxtNqvr68uLi4vzB6eb3dPPP//8o48+mo7H5Q9/mCTJeDQ6OjzknKfkjg+wq6rJaMq56Lou0xly7DpDhjY4GFuzLMvG4xETHBGrba0S6b2HAHmSguDb7VYKTmhm1xnnXN8Z0/fbZaNSoeXae0/jXMaB+I861Q/ee2B7s9vtJpMJjcKapuGcIgVACCkE4YPReSuYKMuCMdb3HdHJ709BMtWis9aYvm2bLMuoiOn7PrhAYCsxKOlJDCHEEJVSnIEYgig9WcABYjTu7PjMRbtarWNgZVoghjTVknOVJIvFgtS+ZGOklIqYUAs38N+FUEI3vrm6ukqSZDqZ53n+619/2nUd0cDrXQMAnZR08MM+SkJrbfu+7roQglCUT0JBf55z3jSVEEJpYW1vTO+jy/IkiWI6nTRNLYT65JNPq6pNU900LUb6mGQUM4yvvafhZ2CMAR/Q4UQNIU6bzaYoRoisa/rK9gwh4dJxlykphOAI1FGE8FYhCACc8+12S8cSFQqkFozB2eilVBACFeKh76KLy7tVVhZCCcG4CxGEoGqMAmq5AGMMYzifH44n5eV1gxA551dXVy9fvowxjkYjDEFr3bads+7LL7+kT8EYOz09nUwmxpibm5uu63a7HUoknRFjTPK3Kk422H3oo+ODe/XiarXc7baXlxfWGC4E50D5h1ToU3m32awiAyEEZcDOZrO2ba5urmjFHhwcFEWRpunr16/zPKeVVhSllKau66OjI875q5dvAGAymTRNc/Hy6uzsTEr5ySefkswnhOCstcZTJU1AM5DjilL0Qci4hlyzA0ZnXW+Nc0OcsdwbBOV5DsCzLPHev3z50nQ9Y+zg4OD6zc12W0mu7r+Nd+4tWuvJZMIFCyG0pqf7OxqNiqKoqirG0HQd1Un0Xtvt9uzs7OLigh5n55w1pKv1fW/psnFvSUSzZCKzEG+aaCm0SvuBvwzOWcaYjx4RpZbjcXn+8KxqNgCRSAoGWPA2BB+c1bOMMfSdES7K3h5k2X/w1/9dNio/+sVP37y+ns8PD2eT69u7cZ5vTNv3K8YPnz77BocHP/79H3WbJfjl6jVbvX/IGWyaflv3m6Za3m2uXr/hxvdNfXx2mnOxGJW/86/91q5a/f/+7n89PT364s3l4/e/9Z1vfevjn/3s8OTIN6tf/ezTzer2d//CX2BC31zdLW/vBAIwPFjM+r6XZR6B7Zq2yEd9Z4wxAoRSiqHsjKWi7b6po8dWCMEAx6OSKoR/9SW47I1jjM1ms7rl8C64Ofp9cAfnlEzg9wFWCHhfYu5PUhZCiINxNgOAiL6u64BeKZEkKi3SruuK9N1Am/O9SoX3XiouAweIITitS2M4Y4wUxFmW5WUWgjs4mFtrI/o0KybjMgYnJa/rHTnqJInKsuT46KDrmr5vp9Pp8fHxbrfrus57k6RSCJYk2Ww2AQHb3Soy50JItei6anowSdK865qI9vT01NreOVcUhUoT6uepVD06ehBC6E2bptl77z1wziVKpVpb78qyvLm5McaG6Eej4lvf+uDFixd1XS8OD5CBde3r169fvHhBj+rlxfXR0dFoNHIupGnsW9M0LedCcBUDfPrrz6XUnPPJ4ej09LTt6qoOUgqSsZMqQil1cnK83W6aptZah2iVZOv1mmI/nz59HNGHYJI0YTz40D9875SRZFiyR0/es6Zp2+14kp6dHzRt6kOo6/qH3/1u3/eXNy8ePDpGxBcvXpCNo7X2+OwAAKt2neTi6HR+cDytdk2IB3tVo6iq6r3HZ8B9jNG4JsmEUKhTrrWSUnLGbGhHo1Kyqd+8Yxkgd3mqEj0PLmY6jSYEFzeb9fmHp7PR+ObmpsxHiUwum8syK/Ik62xNmBcGIB00QHQhEFNSSAER0TshJTEbJIaI0YfgjPHy3cR/AEiUliQJRcAYBafOxVebrZBMSe6DZQzbtqGjreubGGMMASJBVF5rLRh30cUYJRf3lQYdCuRx9863RmSRyRCsM/ZgOnl4dhL7WmAUQjQ2hIhcsD5Emegmuo9ffCFyQKmht+PJKFHv5oxLKXrjlGJ5kdKd6pdtkiRS8SxJiVOZZVnf98E6AOAxMgGMYfA+hOCcmeSTw8Viu92Stl0IBgBSkakRYwy990R/ph2b9o/OdkKwEF3btjnmSknrTZrqrEirZtc1LU270zTtLJFpmqavY4wHxwshRJqO6rpjkXVdNynGZVkaY4zpEbFqayGEFlJrlaapUKLZNZvNBiKnyDIqy+8pV4RHEB1hPB6TsHW32/kAe+RIqjRR+9w2qsoGfneMzx4/oRq+bnd5ni8WCy2VUlLrEX3Asix0IpNUJTpbLjedrZMkw8gwei64lNyhIaYZ5xpgKKgILxtQ1SGDwAFAIEEJMrZPPvyqbn34cYjUgBhjbN/rNJVycCSjptUFO5vNptNx29VNU0spu67rmk4OEWrZbrdr2/b47JjOjul0aoxZLKa/8d3vhhB+/vOfb2+qydFISWmNt31PXOYsS0ejESImSkUAAK6Fqut6s94ZY4TQ8ivjedJiD70YHyxBaPpIhzjG2HddkRfE3n316hWV39SvMSaIT0pgMUFUzjniPBEIRQVPVVURPQDFmQzoG2MMcEhFIxg07gX7iEFKFfdQJjFYOecxxBgjkyxRCdWlVK9StUk/Q88LEdfW621wzg1xkd45p7gguKR3noGQQsM+HpkxluclwGDmXpal1gktSK319fX19fUVImZF1tvu008/EUIURVGM8izLfBzCKhGxqrZZlgEMEkAAMi/gvTUhINFACTFsmoYz8vdo6YPQMKCuGsI9OZd2H615fb0skunB6F2bEjBido/HU9ynU04mk916o7VOlQaAXVNTMdn3fZqm4wcj23aUR094IiK4EKRUhFTO5/OzszNCcgkZp7A+7z0g5nkuyU2YpCqMyT1c2/e9c71Khr2OI1hr+55wJI+IQiuyk6NfV1KWZSkZ31WbgBS8xO/LJMH48NDtzS7IdAgAhBDkJHufjE1BoNRZK6WHIVCSlmVpjPPeIw7xpATh3cNY9G/uCcWELONbHbbCwd4KBFfEdb0Hl2kARlcopWQgkCMtKu8GTRtA3P/nLfwnhLDBAoVTWXcvraavNO4zPHGguIr7E4peODDlAwBQL/x2q1TqvpX7utc9Rtz3fcDIOUgpyTvDW8+QcSm+gnez6NHboXmJ+1g5tndpw72BA/3r+wnE/iIHlq7aZzMi4ww59eW0MpjgMBABkaY8IYTgyMI40GcRQhA7imxApBICQCfy5OTo2bMnq9XqV598NJ1OKff48s2bo8Pj2Wx2e7ts2/7u7s77yLkA5hlXbdsG56SWFE6udWKtoanM+fl5UWZKKeccuegg4nhMnKHk7u5uPB7TzSqKYjIb393drddNCM57WY6KJFGXl5dJkjCGknMAzhhQnHUI6K2z1iWJCgG1TkMI5Dh67+7i96aytKFRayulpIBf3FseEcQs5NC8x72XBZlAAAD1AERzvm/Q6I+Td5DUQ/xmmqbp2zgER+RlAGCMl2VGJiec86ZtORcUtUIbJgCQ4JhuvR9y4KFt277ti6KIAQRXggcEYMAFl1xGKaWEYaUBJxrssJwA0HvvolNKCsHIJpXeiA6UshiJnne+5ZxHF0Uu+rbvui6RCgAkBcKStdzNzQ1d9/Pnz29vb51zv/M7v0PZndSmziZTrmVVVQAwn88hAtmuaZ22bU9zSzLHRMRRqQGg6eq+t4wJMoLxxj979iSgLcp0Nh/tmmq73SLE3nRd13WdMcaUZ7lUvGls3bUX1xcgIE1TxpBJNj88aKvaWv/48eMQQpJkaSI55xR0O52Od7tdVVWHh4fWGLqe7XbHItbbmjJYMVIsRlRKSym9DbRP0b7G9xIP8isZhkhhWBbW9WmRIYY8zYTgqX5XPBDATz/9VQ/m+s3zy7urDn0EsBxa36PgEhQZ4wYITHDgHHgEBMY4i/vmkyiWMSCiklIoySJyxjyLSshUyui9VKoYp0LP5E7vtluj/Ov19cvbCwVykpXTYvTw5EGZ5aPRKEouhLi7uyMXAnoSlFK4B5EZkwhvVVeKv82NRUQfg+RCKQVxkPfS88DhbVgK31sXwdvOOYYQAShrW3KMXIi9jIvBV4Y5X/kVAJJtAAwWHfHtQkeAGJEDx8CC4z3EJEk4Aka0wQHEjCNjmnG2GI/+23/lr/7Bn/xoax1oKaUkxXQ5yotRrnPNBB9PpwSGcc4PDw8ZY4Ir29t7OI8+18nR43fe3yzPpErPioL2O87506dPaU4+mUx8sKvV6p/+039qrZnNpqvru7/3//275+89JPPfk7PjyWTy6tWruq4ZE84tOXBjXJqUnON2c6dzPj+cU6F2cXHx4sXF+++/BwBEYOw67EzLGOs6AwC2s5UxRGFDZIKJ3W5ntoGlAMDX67UxTgjWNo2Qcjabee/btm2ahqZetICpNiU3QDqZvPd9Z4TkSql6V9OBSnox4AMHMFGUDR2Jzqm1pgeYCRiqn542BBGj52LA7LTWGAAxkkkQ38uLGGOKi4fn52kh/+AP/xutkqTMMYqmbbu+0VoyJrK0IM8VKqPLsiQ6xjA3dm9Zz7PZrG3bosg4iDIvBONpmjImiqyka/YuEsfHWpunKSmqSNIymszSNP3444+JyyalPDiYW9dvt1ugVRfYZFKmaTqYBbFQlmWSpGVZdq3Z7XbOhftT/J50vO8qGbLAgVnro6djkrVt3zTdgGkWxfL2LnKpGBdpMhR/QtAwHACUUs4Z2qbW6zUAJFmq2OALZowBwchDnw7p3nklE6I5264fp9OAUSlNfzmE0BuPexUBACZJMp1Oq2a3a3avXr0iNSht3UKItunvwcoYIzq8uHhTVbvz8/OyLKfTyeHhYWSw2WyqqnLO5XkePK6WS0FoLHqlVIiurqvxeBRCqOuKc17Xta0NT8VoNFJKtG0bQhiPx3Q3uRDGhIiR7shyuby4uNBa7fFBVtfNaDRWSkupkiSlz3J8fBxjvLi4+OUvf9m27cnJiZQSWGzblmsoy/FyuW6aJnqsqmZgDjJGzGgAcC6E4JRSsWlIKETYuvextybu8537vqUd6/j4mJ4sOn0ZGztn3rx5Q+yqs5MHR0dHxjjTWSFECO7rRlmCM2Ty+cuXd+vlaDSiKqfve+dc2zZCiM4Yvh8HAgD19lSLkD+vUSZJEkBOWgTnDUKk4vt+cwNEKrLpKKScEzq1vbdJouq6XixmRDY5Pj4ejYrDw8PetE3bee/LAmNQvWk58jfri2ADt8Dr8N/64Q//9/+r/+V7B9M3f/zj1eouL+SoTNC73fJatynPhGmXhTo5Oj36ox+/7GIHoQO3nQp3PE13OzuazbvOYh9Xry/ziFkqPvzN337w3tkf/uE/rTbXdbNqmvo7v/Hhrz777Pjg8Bc/+3nT/FGuFbo6mnpRFtZ0Uunb26UOstpsBUNnzLe/8c3bzry826y3WwI+2rrmCEmSYATv7f70wXtcmGAvwTnR97r+3YOBH/6ZP/sP/u4fnJycGGetfzfNk2upgqJaEwHvyz7OOf8XBAo0VR1Ov7ataStWXLy5fB2C45wfHx8zKYQAam7/1VeidYRY11vvzcnJCWMzMo3RWpM1/GrliQ9I4YHWGiHg6OhACXlzY7SWxMI4OjoGgNevX6/Xy81mY0zXtjLP0960QvLFwSTPc++tMabv26dP59fXS4CYpCIEF9CePzrLsiRGv91tIosuhnJUjsZjekCSRPfbLiK2Xd33LekKZ/OJEKLt6oj+/WdPhOBKyTRNYoxlOWIcpeI6kcvV9WhcXl1WL56/MsbleUnTI0SWpnmaQr1rYuzbtnU27LY1ANc61Qm31j56/KBpmhBcWZbL1W2SJMY2UosAfZlld6vryWRSZOnl5WXf1EmSnJ0dJGnatu10Vtze3hZFsVgs6rqezcY0o725uen7/uDgIMuOVuu1914pnCR5jHG+KCP2zjd5oRi31pij40lRFINwCoJSKklSAIhRrVY3XdfND0ac83K88N6Pp8V4XFIF8uT9B0wyorE0psshZYxN54UQDL+mUZ2URWtMohUozUJMMt36xrp2MZsUWZmlaZYkZBI2nU4Xi8XzF58u19u8HLe9d65VSplhTxAMWIw+xqAYK4tsNhlzhjF4rbWILEkUCvV17XKa5mTLwDk3IWKILKIU0ocguRBCWO+idQSN0XxrgJIddewD0sGBkTECTVvpx4LzlN33NW/OGBMMRHD2/NG5jM72jWQYY+RSge299y54XZaOYTIqHj57BFmqsrztjGnebYxeFBmXJTIAiFxgOcrS7IQC0DAEIbnSvO0qAMhHGWPM+0BPulIJY4m1SmmutEgz7RzzwZIuXkomJXfOMY5SZVpLHhkAhhAZR4dukuVZrtu25ZylqdZaqwB5obmIaSalAq01H+ADxxgryqQok7quQzSbbaW1dpYCAFFKUnkHGvOUoxQAuq6LJjpvqJDzwQcbvTdCCCnVvrUeDkfCEUajEWPYNJXWertdA2f3VOje99vdmiykuGCJUMb0680yz/PZeMIYu7q6klJSsIRSwtp+t9uVo1xrud2udJqkedLWjZSCySHRnkh640kJokQMIYLWKSKLPsQYY/QIwXvPQGidBox9vQWAyCD4gZeNyKjUpDY+AqJ3IGWIyEGgdzFGlSjaAOk44FI4N0zgGA9UFFnXL286xiHPswjUM3qZSOdcb9reGBqnPX7yhHP+Jz/9qdb6vffPd1VljKl2TfShKPLpdEBJcG/5qpRO1cBzzPMcQJLpsxAihHgvjDOmc9YKKafT8XQ6j9HXdQ0Qo8M8zSaTyQcffPDZZ5/dG24Q/QtgwJLinmtJpY4LPk01cUg31Wb4Ac7yPC/LkpAXxkApVVct1efe+0gKSMai900I9+IDIYRzDkOQWkME770U8v48pSPV70MvyIREKSGlLIpiNJpIKd+8eeOcy7JCKS8AlVI2ePIhUUqZ3nWtcTaQDTTVgcSSQYQYo9aqbZvtdhNjzMuMBciy8vDwcLtdj0YFEatPTk5evHjx/PnzNE2zLEtTXRSFMcZ654J3zlCF7m2gWYsQQilF7o5U7BljNEkk91BdCDTz4kMJEVCIdxvKX11dqeR6PB6nab7dbqlVzPP8arVOk4SWepZleVlIpd5///2+63ab7fpu2QdH3wNBSFVVHR0dIeJsNiO3paIoGGNt23Zd17YteTdRLYeAjDEUHBDYvqM3xtze3jLOvXVMDP0+cQepN48xRgf3zj9pmqZJwjl31sUYnR9yJoTYK6QBAAfOEwztfERBHOfhZnHOYwC2N4cEYDQk83vtIPk4SSnrzZp8Qu5HJnHvri72en8ppdSKLhUGXJjOVowxGmPatqVij9YPp5a270MIUqW4Z4d0XUdE7LZtp+kMvoLNueCdc2maSslt8PdlG+EUtKSt9QSLcc6l1PRtIHtr608PjpS0mt6GyFEP1fe999727x7Z8q8YSXkfcYgp8gDgXQg+xhhTlpJpRfCRIdxDMfStAAwR4mw/ZqC/HELAvVXg27e7V5MzREAGg6d/jDEEF2OkNS72ww/6ILtdtYfWfV3XSZLkZcE5j84Ssg8Ak+mIc3j69PHTZ08ODmdMm6Ojo6ZpMgNCHccYe7s9Op5stxzYBCOMx1MA/urVq8ViCgB5XtDdPz4+qqqKYIoPP/wwL9Llcnlzc0OocZYm43F5e3s7Gk2IQ7Pdbufz+X0cQt+3UsrRuCzLsmmqPM9TnSgp2qajNQN740QuxYfPnpXlaLupXr16w7nebtfWO5q65WlK291AcRu0pGS+OgzV7msV2PsdU9uFeyeB6IMQIsRIqE7cD8699xQCT1NbZAAAVMDTMiOMgp6d6XRK+Tr0Z/ngmNcZ09NjtZ8Q7wMJEL333jkAML1NkoSBIAK74Kq3hnOQQnClEqkAuXdDqtP+oWaMRFgxQoyBA9sDOPSPwHgM2LYtayGEAMgRMUsy11uI0XnnjJfWx6bfAEDTNP/8R39MDr+KC865Meb3f//3u64j48svPvuctjbCUATjNNuUcjDD7jubZdl0OiEsQynVdZ01RgodI0YfhRLO+uvrW51AmkiaZGZZ0jTd5cWVtT4vi8l4Nh5N86xs6u7V8xe7unr8+LHaG9hPR6XteooZYcin4wlVG+v1+ujo6NGjR3W9u7m5Wa9W49H0+Pi4adq2ajm5oHpUgqb0UgkFkdFcgfbKsLeE50wmCaNYA+J6IGIxKoVgSueRoffR+yj2iSX/6usPfvbTxHzJkNfO8JR3HpyA1hkHETF2fW+945wz4C7GgB4RGQKDe3+W4ZwelpEU0QcA5ojViAQ5WSaFzpKRFLpI2rYt50nX9CLybdvsbuvb1bJMikSqw5PT0Wi02W0RERkwwTnnwLnYzydJeXo/uYX49gI457j3XCbK8723MuwxKrZXB4fgEGnoLaWUMZK9HQAAl5yxIXnv/iG8/4z3hzd9/AjAvuKk/nYf3D+rBHcyNkAkDNFbZ3gPABwgAf5v/pW/+v/4W//P/+aXfyKE9NFnSpveMsaSRFvnNpvtZDpNM71ZbjabDZ0cgJwxxoHfv12apnXTJJN33N8izyMoPziv+TzPJ6Nx37cAUBQFYfdFUSglAeD4+Nza3hgXow8Y1FIHjE3XIoM0S7uuk1wWZam1VsXowEcE8+jRI0RsmmY0GjHGyHR4PB5PJhPCjAJGxlhRFLPZ4vb2+uTkxPvYtx3nYj47WK0290ZU3nvvLUJgjN3d3DLBk0QpJZwL1lqt9Xw6T9P0+ur2YHFE2/Rmu+r7XnjPBSNVCLk5368QySXpm6hMQUQOLKKP6IUQeZ53XYcYvI8UL4MkFyB5EQgumHfog0eGe94EY4w9fPjw5uZKaTg/Od7tdpu727rtETECykQCcKXb4AFjkJKHEDbbVdiXvCEEzqT3PsYh7IsxrKpqOp2enB5tt1XTrAk0T5IkTfKIgcZL0XuqtBhjUnKt5b1RNcGOSondbkextpPJxHsXY3QuGLPdbNZaa6U050JKx5mcTFIyMRBC3VNHlVJZlkgpyWqZhOFJknAQQwmrNd2pyWTy5L1HL55/sVuuJ0XJIOZ5NjRdnFPF76179OhhlmXPnz+PMQaMkzTdd7aqrutyMppMxiFErZSU+m69Mcakab6Q4m61rDZVPsrzNCN2wHq9Ngys7wEgTdMQ3Hq9Ho2Ls7Oz+vOWMaRjlfa6MOwVg8m7ENwyG0Ls+/7FixdMCvp6j46OGAOtlTH9brd1NhKy5oMFAOdsDKFrm7qtTk5OilHuvY8QTs9PAEAwOZtNnHMvXrw4ODgYj8er1Wq9XOZ5qVKllJpOx3SOMsYePHjQtu3d7Xq92jZ1RxxtEhAh4s3NzWazoQf58PCQDuDNZkP5MHd3d3Vd295lWeacRwQq90ejMWKktwCI5FFDEcADUMuZ6Y2U5FTlqPmhoE7vvdb6/PTBaFJ+/PHHTUNGJaJpulevXmVqYDfM5/M8z4OfvvPsAMYSnQzZgOsN6ZellFyKNM8Wi4UxdrVaGWOoWJ9Op/vmkNFofTQaZVkWffA+9n2/Wq2Goy0EBiCYdC6Q5lFrTb04MvQxlOMR59wFCu5g5DJWFMW22gBHIdl8Pj8+Pv7iiy9ijN/69rd2682rV292d6sHj8//rd/7t7736Nt//Xd/7/jk5I/+X//Z55//KerYmjp4r6I4OxirMh8dzm9Wb/B28/f+P/9Fr84WZ/PlJoDttduVvF/Xt19+9Mvsg29Oy/FCceb7P/uvfZ9h/Hv/7/9sudr89//9/1FRput6c3hwfLStG+M//MYHH3/yaZ7IVMmqDa2xde+YSkflZPX8Zr26k4w9PD0r86JCdnnxyeHp6tHjZ/WuoSLYBxcx+H0XIeUwZg4heG8xUhxHmiSJ+Zp+4Ae/+VuffvLk6ub2YD75OqJl9JECqEMIuJde0pFHFvacD1J6KbkQajobt9ZwniKiRzcbT0JwIfq2bUXCQ/A+WG/rd77X0fFBa4veNFpLYBEhLA5ml5eX1voQvDG91qosi4h+Np8kqdps3WhcaMXrepekmnFIUj2dToXkzjmphHUmSfWoyAmf0pqnaRopnooFxqOWQmk5n49Bhq4NikOaC+c6IdB5ixi8t4ihrndtWyeJOjh6eHl52Zn27OxkNMoYC8B83zZCsKLIqqrKssSYrunqxWKWpunFxYVSvKo2WZY6ZymDOkR3dn5CjIfRuGjb9oNvPAshxAAMYbfbzOez6+trpbRSajQe1c26HCU+tBH76Wzc951OWF6oJGMx+m99+ExrvVqt8lz70M0XIzbLqW/kMhalAmZPTuej0ajrurbbzBdjY9rtrprOcsYK711vg06E0pyeR/LJTdNMKmat9d4mqUxAjkY5nThaK+qraVCtNFe6kJIHQMYZAErFPBjBhExltNg0LeNMackF8xCCD2WWxujxa/BmzQG0jBFjtEIoJRlAKMtsNh8lPDs5PHTGVX0jBNvtts5ZKeXh4WFkor+4YYwJraLthBBSE1/MQUQheaplniaJFGWmAuC2bqqms6JL3mV2bIxxXRsCAvBESSYVJQtZ73FPoVJKsc4QGCGEFIwbmsrgQIO4b9e/ygJjjAGGiBGJevPul3B7Etl7D88ExERwBtg5F4FrKVvGdJqwRK2rHWiui1TmaWu7s/PDaE+3l+/4i0xELjHGWNd1CGY2mwkh8nzCBbt8cyFVMV8crlYra61OFOdcBgiB+n8mpUxSgRic65JEZJlKEjWwkzgKyXpjJJfz+SQr0+Vy2fe9VIJLkUo5nY76vmcsG01yznlEX/CEMda2jVIyy1LKz6BuWUpJkEqaJlmWWmustUU5BiATYdl1LbAoFQMTKSQcMWCCnHPXm6JIhMipZ44ROOcKFWFDbdvGGBeHcyHEZrPe7Do67A6O54TqCq0I8DLGSCnatiHpOiIqJZ2zt6u7VGkpRSYz6mCbprGuz/J0Mhmt1ysmoLfUG6FgWgihheraLbn5AedCoFBJXTd1vWNMJEnGGArJYuRCMK11QlHwRXJ6ekqPf9M0Nzd3PgTvPRlJSz1kJXVdY4yZTCbnZ8cEWTZtv1wuyaghxlgUGaVnp6k2pi/K7OHJeVFkwYL1zjm3OJh1xFPj2DYdlQeEagEAIn7729/e7Xa3d3ecc601SxjnvG36GFvyzmZCMMbILjiRChF3u51SGQE65PYQvJdKpammk50YdtvtdgiflFLrlJ6Rn/3sZ8Sd11r3Xaf0oLvak4rYgJG5ga6eZUWe5x4jV5y6CXLnpy6Y2MdCiCwt/f5FJHd6DGmTpH+AQEMjxzm31gshVJpwDlTeSym9j5wPeZt7IEZtt9uu646PT8/OzkIIr169appGShkAXE8pajHsI+lohXvvm8Y7R96mxLWXRIEi4EYoGWMsiqIosqZri1FZlmXbtuv1NkmSuq5DCPQs0APYW0NvioiU3yOYpIpXigFrBgCaPQuuTGellBjAegKbNGODxwgHIRQI/m4zDWvtrl7udjvCIrz34/GY4Lx7zhaNnJ33zrm2aYLzZVkWklP9QAzH6XQ6Ho8ZwnQ6pfYwz/PlckmYGtEdBkSQc8EHA2XGmBAcAKRWjPO63uV5zpmUWsUYacELxqXgQP01otYKAQhzp24UQpRSFslgioKIMXoAcM45Y6QaDFUCDEIxLpngiqBJ4ttGNwyHCDterVYwWHcy5wZHYIohwb2HD+ccRZT7wDS/V3bivQdaRMYGOI+JwdSYIAJq6/I8987RMoA9rBFCSLT23u+2Nf0uuSLcXxsPzA8Z8hp9AM7kkDXqyU9JSgnAXQzAOXCOnEUGILh3Ju6Z3fSgaS3vabDUOhHPiaZ0MX7dKTYMXOmagcRB3t5Dk8MEKEYhFGKkLoBziXvceWDUMkZvuufDEp7jlRIAgwP1PSYTY0SMiCxGSx/hflDH98le9EQTPGitYSCKIqNVxDmHiMgGVD3GyBi/vr4+Ojq4vb392c//VClx8mgsdNxc3UKkJLVgABiLCHZxMGIgTk/PlUp2u9V8Pp/PDzCK9XpNHjhAeVEcq3rrg728vLy5uSrL8ujoiCFcXl5eXFysVhval3a73dnZmRBsuV4lSeJcUpblYrGgLz9NU9P1AMlqtarrmrS88/l8t9vN59Mf/PD7v/jFr95cvhaKOefyMnPbYQavtCTbintTFCEEYvSeCr+U1ipdAwDEgMOtZ4wx5qyXQuCeTU5B5QTBMcZjDHEgv0trTQQsy5LiQKirpXtBUipCD8T+tVqtVqsVsafv75H4iqvSPYPdOcf2VFG5N4/VUgklBQchhGLKOeedY1+xWwEWGUcGZBoGQgtKiRr+OADnjDO2Xm/ToPM8C95rmUipfe+9C0hjyLu7uydPntTNjqaOBwcHq9XKOVfsr/vJkyebzUYwTtMzxhhAVEJyzr0PaZrSIyyFpiecPqdzrq7rpmmCdTKRLDIhhHcxS/L1cqUT/ujRe0roosiVUrdXdxdX68Vi+o2n3/J9V23rX/78V0mW1nUbXVzd3p2fn5dZfnN59WKz3W6retfc3dy99/CxEGp5t+66joNc3i7n07mUsq27o8OTxeKgbdvdeieldjZIqYUkH6vgnJNSIw5SnTjY0u+dv3l0juQbFBM5+M3PZhOdSMTo0Uf0MXol3q28S+fj0BSSi2SUuOiKIvBESZ2GGJ13ASMXIngffSCbUwCGNInGwboCvjIVIaQAOYcYuRBSSMKwhv1UcJ3qJEucc2meBhd0qmxrAGRl++evX338+eePHj0ibr+SSiVJ+Eo+EuzNvL666ewnkCCEQMYwRGstKiU5f2unDACUwYoAiAyQc4Y++EBb7T1uG2P8F1BmhAAMIkbOOOMshuCDo6n120f0bZbgsCHiPv3zvnLq2w5SFGnKBQdEZywAMISw3s0fP/if/gd/48f/6/9o17TFeOSckVKiD9baXVetd+uqrieTycF00VT1arPmnJoC6cyg6pJSrterRJ8u3gU3X1/eVu1zRKQo56Guvb7Osmw2m5FpbNM0lE4uYyIkU1xa612wn3z66yRRkUEIIe3aTGeAzHS2rmstE865C+7Fi+ej0fj+Ltze3tI9apr29PQUETabzZ6d56lkGRWlMy54TFP93oOH3vvb2yUXUGR509Wz2ezwaLFaLXe7XVakNCTfbrdpmoYYSY4ghBiNRt57Y7vRaFSUpXXGOTcqRvsh51A7OuecU0Lw0WhEGbh5luxPF8Y4lmUppTyYKyJK3N0t5wcLrXXbtnXVSiHGh9Po4nq5DkOYCQCA4NC0dZqWR4ez05OjTz/9vGmaNMvG4zFwFoB1vZ/PJpJFchCOLNIskXOuVeqcM8YNAsNhhhEZE7vdrq7rk5MTIcTFm6tq13C+GfIf9nVD27ZtWw+dbQRyjCFBaFVhlmU+WKWUECzG4IJvr251IhmTdd3V25uB3IHobKDamq7q/izvW+2cKfNCcsGY2O3qLPFCiGCd1rrMc+MdkRZ/8YtfaM4o3ieRiohLfE/M4Zw3XTOdTpdLupV5WZYka51MJvQNc0UlJjZN43xkEZMkOZ7NXPBpmm63WxYZAGipnAvTyZyb7vb2FgC891KqEOLLF6+ni4kQom1bIRjpMaXWAoQ1LQmalFJKaRoBSinrru3qmowdt9ttcF6nSVEUXdfFEBjn0dp8UmqtvPdHJ4fT6XS32+wxdHj8+PHR0dFHH310cfXy9jahOL7lckmP22QyCSHQMC4EPDg4GI1GMYYH7z385JNP0jR98OBB0zTb7dYYE/wQ3fvm9SXnnAuYzWbf/e53Ly4ufv7znxdF8d7DxxcXF5ReSNJ+8RWeKRmRG2O8t4h47x1ErZdzjmB654xSCoCRfzr5ZDHGHj16xDnfrLZ1XQMwpTRjjCHXWpvekNKN3HK9fzc1T3CxWCwWi8XFxcV22yYJZ4yNJuPJZLJaLTebzfvPvomRbbaruE8Euru7ozqYCPsYYte0u11Nvlh5nm82m4GVwCRFFBI0RvUTIpKAse/7LMvIlhoRZ7NZURSdaa+vr43tELEYjU6Pj4uiWN6usiw7nC9+9auP/81/46/8b/93/4dvPf2BcrD65Oqf/p1/8uqL65SPjk7Hn3358Xa5PFkcLeZTrlXXNk8fPvgA8def/DKGGo8egd8IaN98+qfrL57+xR/81sOzp6NyDt6J41Gh1Mtf/eFPfvqjL7588xf+8u8dHc9eXd+YEE3XMpHEENI0nU+mi1m5GGfgut1u43x0yDKdTscTDqzM0g/ef3B6evrZn/7CR1RJcnh4uLxdee/pWEvTVIqw2+32RLDBw847G/cCVSmlMf077xTj8q//u/+9/+T//h+3xjL2boOL+FZQiffhkPtjjn+l1YR7zsu23z168qht65ubq+lsNJ2O79Z39cs6z9OyzJ1zzp29k9YpBCgl8jx98uTJ1dVVCM7aXmtZVZV13AfOGAvRrdfLEIIQTAiW56n31piO88hYUJy5vrNd670vs/Tk5ISOsDzPB6UheM6RMfAhJqlQSq3XtyHg8cnB5cUdNcAgYpIrGUCnIkYPHJ136BlizwQcHMyLIgHOjOuFZsChabeIuNmSREZ6b4UQXMT15raqt9b1BwcHbdsyznTClWWTcZFnOs8WXdfFYItCrTc3eVZaa7mA+WIEwLjwBE88fO9kV6nj40NjTNbLokgfPzlz3jjvje055yTmmUxzGvAsl8tMJTTGA4BylHnvgrO94XVXC81s6CMLEb3zjHO+OFi0bb3d9iGEqjIUD4CIxnQxBsYwoKdSpmpqrbVOE9t30QfjPClhiWq33a6j96Ck9zaEEILTWgPoqtoa44qiAIg0/KPNDQBCeDeh3rQNTyJD4AJcMJLxYpQnSkXvuY5SMONd29bAIle8d71iYJ0VMplMJnXTuRi0TmmQtkcNUAB6aznDPEts6KqmfnN15XxkmXmngXRv/W5XSaGzIo+AknPgQia8bzpEdMEnPE3TFHfVUIgCY0xoKW30XIp7bSbba1dhDzHcxy4hMV3fuYUK4R0zxhRpUqaJEuhYtL3xEazzAVEphZw5Bi/evL5c32bziYtGJ+BjjbF959/8je9+WLdLgoQIVKVCsW3bw+P5bDrl3OsEkjRxniol1EIhahhMbwOiDODoKCknRV01TdMAD0rx2XzMORcahGB5rpNEKKUCIGNsV62klEozqaX3PliPCISBEgGw71t2n+HGIhcgleIChGTlKEfMOJMhhDxPOOfO2RiZD1YnQioWI6Hh5HwY1Z48mHEthWKMWesZY4gMwSdJMhrn3nvnTQiuKAuKwq671lo7n05PTg/atl0ul0rrvu95xPEkb5qm77uyGHvvN9XGGMMExBi1UkKIPE/zPA/BM46klyzLHAPzDhSDu7uVUipaHyC0Xc0ElpOys221a5Ik3zU7jsDFAMpkme2N2W63UocPps/6vp8dHNytbza7FeccBG92jXNuPB4fnx8eHR199NGvet/pXLWm2mw29F6z6UKl6W5nD2eHaZp2fXN3d1fo/MHJg+12u9yssyJvY5snaYxakEJUshACEc34PpciyzIxn19cXFhrZ7NZCGH/WDtKiJnPD5hkxhjGhFIUFKdGo5EQQoiEij0yDXPOdV2jlCIBE9W36/U6LfLDw0NjzOp2RVAj/b95ntd1zYWgUccAPu4jW+lxI5Cg67q63llny/F4NptsNpsYI8LAyh+NRmSWEsNwLGqtqaIjSh1jDEJMEk3MDLbnQqZpjogy0eRPtg8txP30SABQc80plzhYt12tD2bzRKqrqysAcDHcN5mIZNLNCFUHgBAsRdeQYyfBXqvV2jmrtc7LLE1TrfV9PufNzc3l5aVz7vr6kjGR53mepwQV7ept2zbEtEUc2H+k+u07Q+TWLE37vu87uyefAYnZsyxzLmAA5FEJGX2g/sh/vT0CmbFCACaFt4Y2N601CMkxWmvbpvYxMM6ttZwxhjApR70xBHRSy79YLJIkmc/nWipaeATfa60pEZHulNhP7OjpoDIDADRPiLBFjhxCDVR6KaXkgqKeOOep1g4d/RHnXNz78kkpmdB+78d9j89yJQEBICBngvH79aaUkEKTd4RzzhtrjA3RSSnJOSrLMu+9QQgB6Z7mekJsUzIMiTGK/cfn9ww8zmmGpJQKMRBfZwBQ4hDl6pyjaEeae+VZRjFCcc8wIFUuQfZZlnFg/iu+zLDfVGn0IrQi3g/bs0Q550opwSiNY2BPc86JfSf2zmyccwC8t/K4n9ms12shRJqmRZG/c7XEvcSclj0brJwF8fnoj1trvY9CBNwr8ukDSikFV4gILDIRuRBCyq9Sbum2wt7/5H6+CwCIjPOBHb9/d8FYDM5HKdgewez7niZMi9l4MpnQPFIIYa2FABBZ9Aic973hXFRV8+bNm5cvXxVlNjlSZGI2my1CaGgZkGeFc970rqqa2Wwxm0+VUpvNKgQWQkgz3fXN3fK2bdvxeHx2dnZzc3V5+QYRnXPL5dIYs7y9I844fRtKqV/96ldJlkrJlVK7XU2LKkm1lLpvO9pmk7TY7XZ10z558t73vve9u7s7Y8xms2nbOs0UY6IoJIVY9n1vrXfGxxgjBh8cLWxGzsh7wSutWxycdvj9QqJ0HGutRYqt8mrvOUwoRFmW1GxSDKxzPskSANhut7TYaE+ku19Xzc31LWNscTCnbrGu60Trr84DOOdsTxMUQhAYN0wfkRljEp2Jvakml0IIhuRUFnEYQXF1X2PhXiLDGJNS+OAppFfsIysRQSlFOjbTdu11PZqM6111fX0dpGeCeWNlU1Xn5+ej0bc+/uRXBDllWfaP//E/bppmPplOp1OCwBOlKZKoruvZbJalKWcyTbPb29uqagRXNnTGmBjh6upmPB4T69sYxzC2ba1VHkPMs9J7Py5GwEKe5rPJJKD/6Y9/erfcQYBH549Pj86uLy4vbi6uLpdKC8GVzpKnj78xno7ozL67WwqhsiRTKjk/fZDq5Prq9vLysuu64+NjrdP1et22ZjzmWqdXb27axmLkgoHkyjriMA67MCAHNrBo76eL9zArjbZIuk4/QLR550KM0dhOa0Wg1b/6SvLC8pxzrnmuY/R1FQNQVeGc44mKxomolIamboNAGuRSmjatUTHE3w0Q7b0EAwAsBmQYvdvPVZBxlFpKxV0IiUx0oorxCBya1mjbFiHlUorBtXmIHqa9e9jXYmSIgnGyJKNwP743awbkYj/MvEei77etGGOEoY7BvepfMGCIMQzbIkYMIQgeGcMYgYKw7p80Ngg9AmNDMYT7p0Iy5r+iTbi/JOdcqhN6gAFASimURETsjWA8Smgvr/87f/Xf+L/9F45oF0wAAQAASURBVP/53/nDfxSdF0IE75kU6/VaF8l8Pr9bLpfLpWl6yQUNjYnhrrV+8uQJ7UrL5R1n7z4JtNYF5tQ4xYC7zcZ7n+gMETljRVa2dbe+q7Jcp6kOIdgQxtPpD374/VdvXh4dHwYIu93mk08+cc6u+952UWuepXkAu1xtsyyp26YzfZblbd81TbfbdFyCEHy92XWtybJss9kWZZZl2Xq16m0fPa75pmlaKfS9QzpNj0gRmyRJWT56+fLlcrlUtazr2jnXNJ1WSVO3zniC0qgi8S4CQFVVm82m69uoBxyZGJRZllF2FpXCSZIczBd5kb58+ZI2X6UllZhZmj5+9PTzzz9HjAR4xRhjxPFsNipHbdWygRfPpJRNXT958mS9ufrk45+fnB5+85vffPrXfq/v/Y9/8ieXN9dpnjEQWnNrfe9aAJBanz84ffLkyY9+9CNS8SilpPT3oHkIQ4TrdrcsyzJLixjjwcEB7CMj2N5Znu77bDaRUnZdVzVdnudUwRDXg1OUvBZKKe+tEGQ4KKx3gisOOoQghfbeJ5ohMiE8MWjuqal1XQPA3d3qxYsXSZaT4FFKGR3VbeLi+tI5t16vIUTNWZ5malRynZD2M03T+46CVvuuroSSnPM8zwFgPB5T0S+lDEDTyBBjrKrKGDOdH8QQMMRJOWER17stIpLlXAjBuSFhGUB0Xffs2RNj+surCyaE2iebaZWORqMiLTabDU0caURM3zYIPppOiAdtrSVRKnCWFWk5LpqdkVKmmdZaA2Ca6nI8sranopD4JuPx+PLykp564i3SgX19fc05l5xPp9NiXKxWq6ZphGDW2qqqems459PxbDwalUVhjbHG0C1jAEONLlS1rV+/fNM0TaLSyWhKrcJ2uyUpAyIKMQwGbNc3jMVIie1eSmldr2TC9mEgfO99TLlkSZJkWZYk2Wq1EiIaY7bb6u5m2bat1looTkwN01kAVq2rIKL3DQ2iRuXR1/Ukm82G5GZSQlEUwJkQYrPZ7HYVWWUdHR1NJhOapV9evaFZPWPMW+e973tLUGmMkaDt+Xzeti0gF1JwzsvRiHNOZVld74QQXHC/j1WhPbYsy9lsRmOzw8PD9x492NX19fX1arUiRYiU8qOPPvpzf+7P/cf/5/9rOTv+5NevFGZZEMvazhfnu9vPL7584+o+yRJEbPsOrNu2u9cXryeu/POPF//s4zfJ1v3Ot45Px+/99nee/fb3PvzwG09Mj1fL5y66UdI165frm+eLHMKDw7/4F/7MxdWbbHzy/O71bH54rIqLyz9lTH3jyeNqffv8s0/BWwns9PS0KMfBe8FYcCZPs4ODg8ePn/7Xf/jHzoaiKEIIu2qTSGVMl6QSMchEU8tX1zXn8r6RAADnbJLoNE0jvhuB2m7r3/3dP/P3//7f//L5rw8OviaPHt62LnwvA6K1FJGw/iiljNGHEBBCkiRKCa25VIVUx2dnR5HFzOgPvvkkSVSSapWK6Au/fsd7tU0tU5zNJn3fHhzMr68dYmAMtZYhuK6jEZok2qi1vdZKCjGelOUov7y8zHSy2+2cD1pr1xshRG9axsHYxtiGapI0S50zACwTBWJkjBdF7n08Pf32ycndw4eP6rpmgjwTJWOqNy0wkRcpF8pam6Q6SaTUpfNWCEGMclWMhppHya7rYsQkSYwxZZnn+YOqqoTA2WxCAGOSqDzXSjHGmNaFcy4vxtbazqzpix1N0higKA+I35Sk8XS0SFMtJI7GaYwxzcSj4yfG9WRyiojG9EII57o0lUkipOARGfjBPBcgGtNzyUYjCnoiyQJrOpslaQguBGRMaD1slWRRbIyjiYISureG+o3Bsc27ARyMGDE4sACDVVFwPjqvEk39NjFVSSJDzUOZ5XwvzOQqeaepCpMKGAMFDDiCb0yXMo0Yrq4v5sUs1XLZNRwAIGotgbPQmbaquR5QkgHmAZBcAGNKCdOYyBjnXAuJ3nuIkYv54nC9q5h+dwHMGEiVFKMxcMYZWu+U1lVVBUCpJKUR9p0VXDE28BIEMOTCIYQYafpCEnUqFMmtnjH0Du6rxL0B27/8intjzbzItBISMDImpbRtFxC894H9/+n6s17LsiRNDDNb057OdCf361OMGRGZWTlUZnVVqYdqsJtNsdlEk6KkF4kCSJCAJEAvIiD9lH5r6I0QREIQCBCNFthAtcjq7qyqrso5syoyIjzCxzufcQ9rMtOD7XMiWOVxEnBEXr9+zj57r2XL7LPPvo+VMduuXXeboqlD8qrQiNBut5i2b3xPpaCs7Onp6YMHD1ar1S9/+XMi7Zw7Op4URRG8Xy6XzaS01qJSZVmGkPq+JxpJT0VRy3m32WwAUkqD0jybN0VRXV/d9P1wtFhoAz7sqtoBwBCDRkwpWmdyjohKa8vAhkGKjhhjTAk4CxqS8zjYa8xofyfMDKlRU84+tNZahqiNYsCmmSmlUuLZvAaAruvKyihlcoiEXBRjqxiN6rZtSqmqbFUVfb8losmkNLYRHYZhGIrCIJL3nbY4W0y6YZczlZUry3I+n9WT6vr6uqpt3ydXqJSZQclqd84URRFjcEVVVQVqiDEjaG0s5Xi9vAJQKXptbM55Oj/KkJSGk7Pjh48f3d2tdpsdAJRlwSn3oUejMiZTmm9+6xuTebPc3LXDtg/t2+8/2m5b55wriuvr23fffVdrnC3qo5PZ+x+8k1Jq2+X5o/vvf/he3w/Pn78sVBHScHnzWqjiwzDcf3CWKO/azWazYc6TaibiBn278d5nopzz8fFxURSJxjaJDMuenZ2hUmZURm4b2zTNNIeIiD5FZo4xI46WX2VZlk1tjAEwzrmUgpA21uu1RD/pu2itM/DR6YlgJSmlpqmKQjT9zGKxkGxz7JuK6dN+B0lFQDlba4fg+75XCgDxnXfe6fv2+fPnAOAKY/bmgYjY970fRt0PZpZxsZyzCJQzs/de5DQFvMv5SzI1IUm+pLXdQ3hKvodEPOks3sW75XJZFMXZ2dnJycl6vZ5O5ntfKCNR/VAOI6L3vSTtRVEAHmzJy7qurLVFVTpnJL81Jm+323a3EfwFR5Pn0VQwM0ESLN4ysyjUaWUpZZEjRcQUY5ezSA+NYDSzBHxmrKrqMPl3iDxvDknimZaScU4bnYEh0Ziu51y5QsOo5kyJrXNFUfhhAOLtdsvmS816kaiez+caleC/dV0PQzDGLZfXu13n/QgLOFFtziMPXUDPzFQUxRfPng99LJROcSegvEQMjYoBrJNEHTRrrXUmEjEN7z0S13Xd9lGE+wBASsLx/TOBUWaP1SIisPJDJAui6JVS4pSttZgQAUW+XI2cbgUw8joNgrQTJIJVVcV5hGV2u51gF4ftIKn+SOZlOiRXMp96QCoE7JZ60Htf1zXsp6vbvpXnCACFNfQVRWNGyDlKFyfx+KXi/iwuiiISA7OARdJsAADFHGk80PeHkWCF+ZBjf7V1ob6OqbDHW0I/TOYz5mytDSFYWcnMTCiclZQjERltlSGttDKW9qx8SeblQ7U1yugUxhX7VcSG9h5azCwOWwAwauJnykw5x7J0wKiVSjGmlEQ+uKkagQ7kvs1mMxEZk8eUUipdlXPkDH0b6rIeuj4G/PST59PpvLTNZv16vW6PFsdIiklZ4+7a3XJ5cfH6uizrk5MT3J/x0+kUADab1W7ZIvKvf/1LGbmWUiWlNHS94LzWFhI/lVK9H3In0cPL/jo+Pu77fui9IAYAkImVUvP55PT09Pnz56vVijkvl7d1XR8fH+92O63Nw4cPl8slIiIOVVECKKEfEZFzVrZP2g9UKaVcYVNKKQNxVjgyxAWXmE4m8muij9E0jURRWXFlVQ19Lz7w1n2JuCqlxFZUWhpMoyEWM7fbnfdetqQwkJhZFDMEuIC9bjjn0QiZmcuyVEo5W0g9S0REScx1jdaUSGtNSZ7/OFuQv3RcS8MQTWHkBgKM6LnWJqUUfFJZMaTtsE3E/cVv0uCLkypDzDmb2Wx2c3WFzO2ut06LhvfZ2ZnUmQ8fPmTmTz/9dLFYaK2LoihKC6yaplGgvQ9KqQcPHig02+326uqmqtzR0ZGcPczsnLNIxpgUwfvARIVzxqghDHVRI+FPfvxT31FTNYWrw5Bvr1evn1++eP6qLqeiLXV7d/350+ff+vZHT59+tlyu67Kp6+bubsUpD13Xbbu76+W0nnHi7Wr78ovXwzDEPn/28eef/uXTuq6NsdEPfkhDnwBUURQU4xCD0aMR/KhDIsMyZnROgL20TYwRQDmnU0qbzWa9Wd6/f8/n3vuBmZg29ZtmCTMzKd3HkIlS9LTZ5ZQMaxayAGE7eJOhsoXRmpA57+cp9tv+EChH5BfQ4Ig+J2CNCF/JtZGBc2IEbXC0IwNApYf1YKvSpQK1ImBUqMxIugT1pXWsxr0eEaA2JtHIxtq3tvBwGSPgyxkTAoDIN9Mo4aIOIQwVHKIYESnUSJlS0NoapSLRAbuHvW4vAEgeCntGGDPnfRdO75nX8gs4mmB8aVNLRMroBJBzLnTdLqk+Pf6v/s//lz/+sz/vYgYc+Ynzo2k1K7PG9W5tlL137952vWlUM51O725X3vuH5w9/8IMf/OQnPymK4qOPPlotz74md5Cr1YZ5CL7d9SGE09PT49PTly9eS7/u7N6sKIq+7xmAIsUcYvJ1U7393tuIXBS2qNz9+/c3q/WrV6+ePXsRhvbd9771/R989yc/+dkhtYoxZgbtUI2Ol+ows6aVHfoArOQELcuqKApKB/lRSenQGFM3pXPuZz/7mYgva6u890VRVRUMw5BTknHIEMJ0Or28vIzJw5J4D/n1w0DM1pgDySiEMAx+NpkWtlpvd8H3gCfT6XQIPeNYK4rf4/MXX0iTeeKsPDjrVErps88+yyEDgfRvFBpXFL/+9a8y9Q8enf+H/+jf/9Vf/PqP/+RHzWT+/vvvVpMqM3zy2ReA9u729u23HiilVqvVr3/9a6316enpMAyXl5dN0ywWx977ly9fihOUaA4cHc0B4MWLF8w8m80Q8e7uziglSZUcjYi42+1Et66omr2fjzo0fmKMwafZdJGy9d7nPHoNUwJUCKyELAmghAwo4v2IKJQQMRey1t67dw+1att2Pp0ZY7ptK9nM/fvnt7c388nUOccxQB510rXWCkGgcwCQtEau50BUEWgb9qp8KWWtdQj9MISbm5u6rhVQjDnGyACTpkHE1XbDKZdl2XVd23awb11aU7Rtb4xSaFIeITBrCsS83bbJJ0Ql+hLSjdtut8MwTOaz4+Pjsiy7boc46v/knEVPv5lM5fe32w0AbFu+urk89ANEPu/Vq1dSLTdVXRWltXYsjfZOvjnn6WS+Wq0kwV2vlznn9YvNycnJpCovL67ruu7aAVgxYYhRChW9Vxm7urqSVG+5XNLdnbwh7hkfUj5JfrZZLllhUVhE7cNQVeWe4uoPifXp6enx8XHbtl3XDcMgPGJnrDO227VlWVVVnXMCwhCCOB3v1tthCLBX0VJKKf11hm9pWK1Gr5jZ/Pzhg/V6LZymyWTy4MGD3W53cXFxdHT05MmTrutSJGuKpp7e3Nxw9rKRhQyV9/I11ri6UiIIsNqsrffT6VSm/GazSV3Xr16/kKwxhFCkkUjV7doheAkaf/EXf7Fcr40xy9vbe/fu2dKFEG5vl//0n/4/Jnz043/zy+yaxXzWzOu/9+/9u03YXfzmz3/zl386mxdDCne3q4uLK+ecrcupa44W9e9/9zv/2X/yH52eP/7WB9+YVoXf3KnYXj3/eLXe3a67qCGETdzddOvr3Xr3rd/6m2+//+6fffzy2Ytff/LF5b2zPvqkbWmtXd3e9JvlvCpDHyNiXRV1VSChUHET5dli8eFH357NTok+V2hubm7atr3/9jsvX21KtKBV33VN08jvay1gAVjrckrS/uz7fjab3d694Un1Puza4Tvf/f4vfvHTo6M3HxT5cLLDwbt85GkqkMJD5jDGhve9e/d2tCGVtcajes6agHNdl84ZAIh5YGb1NSoK2mpjFBEVzqSUnNXB9wBQ16X8aa21trAOZes5M07TE+XFdAKgzs7G807gKu97rTUA5Zwnk7nSCEC6LDLFnJM22hiNCEVh2m59dDxt23WMwSgEpJQzA6BSYlOec6yqAoAH3zMzokgrsdY6I8zmkxBC1/dyl7quZebj46PeD8S5KJwCzJmYojW4OJoys7VGa52zadut1sAMKWWtkSgqAwBgnGJWDANRsd1umLPMXlxevd5sV9qq1fpuVMTTEJNn5s02F6Ub2iAUFUktxKVHVoIEtD2GojPTertB1uKyCyOPFXIeGQxjFYcaGZmAGXwIzmCK0RgDe/EWaSUCgCuLskREFFQ0xohGAyhOLAPvORNRUkopwLbv39ji8CkWpdJaDzEkZGAesgfK1tqqKodtr5Ta7bbW2rbbmsJBylrrmEZ41CqdMcuJoFCJZTymUDqDyApxyAwKq0lDyvTpzeN9gMgKfQx1Mw3DjlARgXMOM3vvi8l4b5VS283m5bOXH33wQbfbAihKrBAoU8pJYAJjvhSBTdFL6iiFN3zNGDIiGKud1SeL6axpiIYQBh+zNhYigE5DPxR1efnyOgKxwkhZ+WyMRkRt3BunTj7/4hM0z+/WN59+/psQh5RS5YqUKZPftStr7WIxEfobm1xNrfLQhaiNsaVj5mZS9n1vjJ7MG4kJ2mlmzDkqzUpzXTvnVIhh8MP86AgD7/FiEwLF7Ik1IiOOGsqI2G530n4+dMiQpHuvEWlPfifmbAyKPbvEh7J0OUfJKOfz2XK5VAqKwhKBshq0Vopi7BEZVWZNVVVSBlZwtFikFIrBOOe0xr73iFlZpwgZaRg60dOrKjGZMF23VUrVdcGYXWls0TTTKmdARGRwzllrBt8Zo2IEVxQptQpV4ZxCp5SiyMYYZnClbZra5z5zjDFqg0rBg0cPlFJA2Ye+oQoAcuKyLhL7IbbawXq7rCclIGSOk9lCKf34yXnKw64d1pu7y8vLxdGUOGnNrlDWYWZzcnbkXDGdvxtjvLm5y1k3zZH3/Wp1573vh3D+4PTRvYcvXrxYLne2LIZhmM/nxlphZa1WKxl+kma8CM3FnKqiXCwWhXUACvJoTSY6pOfn503TXF/fzGazR48evXz2/PLyejKZaK3FmhWAZHxttVpNpnWIw/z4yForjN22bSmQUmoymUjWJB1iSXu01t5HWUgy7YGIWlvvPQNLa/Po9MQ517bbB48eiipL3k9Yh36ANB4HcmYJVi5Q1qEzvR/S1yNasf9lJKYxhRPEx0hMG4YBKCljRtAZEgBst1sxxeq6rh16warkBuq9G9sex2SR+NtL8R4GxoGAez+I9RcsQaxW7t27572PIc9ms2EYJJdTSgExKkBWCjADjpmSRYKRpyyYAOWxmJUiNKWk1MhhlAA1ygnuBQe+zmvUWltUldYa8miU9+jRI2ftbrfzqucUQwisMDMN3hMRMFttZs0kUoY93Oacq8oqx2TKSpJnIpBEtO97UXGRkyXnrNBYgxlRFBiIyDhTFMXLly91oYwxmagqKq21tE+YktbaOhdC6IOfFqU8vrIstVLBJ4TRTkkqU0TMmeXhIrEV7jCOJ1cmktO87z3ASJQ5ni/qupb7773f7taSiiCyZK3W2th3+iuiDQenCuHPyubKOaMa2fRWG9jjFUyjxaWoDQjdR6ghCFAUhbSdKOcD0ipT+HJ7Uau8l1Qdho6IRJg+7409YE8HlL5OHLzs5QO2q7WmGDSgFn2Ir1jw5QwxZmtBGEhStRVF4b5mwQgGkFKSEUxjDCBba1OIACNsCHsB8ZxZKRb4jwgAx4ux1qasRMxaujLy6dL5Frx+RF336Yq1Wk4oCQI5Z0hJaeOHYRgGBhpBnlGVBFbLpWzM+XzOY//eM7PIMUlkSDHnnJnRmuri1VIpFXrYLIfNuk8R48DmuA7cf/rJ5zFmAJ0SdN2Q8818dqRNzjkbo46Ojt5++8lNc0MEu93u9PRUZDOdc+v1mhlFvEu+TlnWgvlI6JOy8cGDo6pqAFRZlsu7O0SczWYxpaZpiOizzz4ry7KuSyKqqmK9XiNiStQ09oMPv3FzffurX/0FM1tnEbFpqrIshUa2b9g0oqrMzJLVC35ijRL6mgyvMNFBdUqm4S8uLu7u7rTWMyGJ54x7u1qZmKmqSr6CBOcUsyzdEZ/ph7TdOefKsjhol+NXRDCcsUKVl+ZEGPrZbAYEMkKNikMcmslkGAYRPkUA1KLbOSqPy+b6cj0AaGeJMhI6Zw+seWaR8RFPDXTaDF2fWzZKD22bKE65Mffv318ulzc3Nzc3N4gsDYqu66Sifv78+aNHj6y1MrFb13VVVcvlsizLL148TyFWVU20q6uJtYUM4EgX7jDwYiD3vdfaPH78uO99CEFrTCm+evFaa+w2/bSeZWBnyzDEX//y17Wtvv3Nb3dD33UdZFTo+nb4+C9+g4j3z+7nnBWrk8UJZ7q9ugshzGdHMjvQ9bvtdmetnc8XsnmqsgHmyk201mIyxswKkmwWABDYaOQWMaMatXW89107IKLWSAREoBFkF6HBo9lRWd5Dxe3mzVaBKnPoh5gTGu1MkVWffESZ193bViJSjBGJlZFZCQREJtDKmL1C1vhu+4kKRIWM40kvA4gMiMhImQmUBBnQWjGBYuScm6Ksy1JrJf+cgAFGEZnMJAMaYgjAmUhpY1AmsOAriDPvke3MrAGIKFFERFSjCCYgazYSVaX3wl/R3cPR5jjmLEfIqN1elqUc6kSUCVJOWmtp6sE4fZxg9HVFibCEoBiIKHLmTCnpnK3sBM0GERk0bdPEnSyfv/q7f+vv/G/+0T/+p/+f/7p2UwAgZlu4u9WSDdR1PW1mR0dHpStEiE1r7Yxt2/bnP//5q1evAGCxmDNPJm96wqg07722Rpw9w2636/t+s9nERPPF7O233tWIr169ulneKK2Xq9sYA1Fa3d4UdbHZRqPVYj45v3/65K3HdVM9evRot96WZfHgwQM5eoW0GEIILelqxNmBlYQRkY0OIWROGTGECKzKohBZw1Eqi4ghxxiFty6gldQwAKC1LovCGBMwtG2bE282mxBH2qlIwo8jFohKKRnj2m6302ZSWGetTSk751xhttutLcwhFRBI2plCLFbOzs4Wx0fn5+dHR8e/+tWvri9vYowaNTHlnI0uZP7rxctXiP7Dj35/Mpv+zu/8zk9++vOf/uyTv/F7P/jggw8ur2+Uem60PT0++e3f/u2nT5/2fa8N9n3/wx/+UKJw4QRPsTK04vbSdczcNI14ecvW01qjkB9y1lp3XVfXdVU1w9ArpWZHi+Xqth+6upoI/VaakET06tWr+XxOBH0/yL8KIcbYaa2dK0NI0mmYTqc3NzdFUdZ1tdvtrq6uhKgiZ7xx1nufQkREDUrUdSfz2cnJyWa5Wi6Xs7qaT6aKKaU0qRtXFsK/xr2d43a7PVTdvJ/EAQDQSqPNvt/t2pzz7e2ttfbk5AQAfNdrrTMn59xsOlVKEYJzFWWwNux2XopYpdTLly/L0iVKaPR8PqVRrTKnRP2uG4ahaWoBboS6K8OVsqNp9H2Ku64FhrqpAWC9XglxnpmNUa4spM8vOg9N08SYh2Hb7VpErKrm0aMHUj+HEHa7nXNOI15dXV1eXyOisco5Jz6T23bY7XaVm5RlKU9W0kFZhzGwrYvpZO6cG3wnVF9rbSaSWUW9nx3mFOUGKoXWGp/GKTxjFQAUhRM1DxHdBobHjx8DgBzPIYRnnz/XWltt3n777fV6LWdQ1/lxYiZx00wUq8lk4vsg/idvPDXkVZZlzO7jjz+21r73jfcFK5/P51VVDcOwXq+ZMMZ4d3cnteUhH6Wc+xAkCzl0y5m5LMZSre075mytJkrX15dVVQGmWTXr+jFnyjnlnB0brfXy9k40AUFx13Ux+clsRkTOWmbuuu5Xv/rV7/7u76YQ//SPf3Xy6MHR/fs5ppeff3JEg3Lp/L0H5x/9B0ADxLBerV+/vIiJbFloa45ndb2455r5ru1vbz75+OZGAyrf3128jjkAYtsOOfn11QWyikRnDx5l7di4gYbF2fm/+MP/SQH83b/9tzSqzWpdqVxbDT3vuu077707qQpdVRddt267Xbe79+gt5arf+Rv/i09eLy8vbyeT9vT02PveOaesads2ZxBHlLquD4ErpWS0RhRPVPo6uHk2m7W9/+EPfu9//B//pR8SvOmpKm3yWI+ICcKYmwIrNdoSSM+DRMKlrusHD8+kEW6sHoYOgBgTo8xODtZa8c59w2fhGAfEVqgsS2YuC20nNTMzj1Nv2k4k+ACMlaG4QUhIkcKmLF3f9865s7OzXbu9uroK0WtCIcIbo7TGnPNut2karuva+2G73eRMx8fH3icAyJzlGJKKLsWYhyRlg6jQGGMAqO97DWPenHLmfXbknLu7u5H/G1iqIKu15GYjlWazWTGznJKZIio+Pj7y3nvfExGAHklPieWeAEDKIQ5xvV4XhQWF3nvhyMiH7na72WymRPYqZslhGBUwtK0AHGE+n2utZSIn57zbdUYJwJRzzimpA7fL7FVQpfBIe68YoZiweA6x4gzEZKxKOXMmhRoBy6qSrqRUkjwqHRlkAB5tkYzSb0ZbjYkMnDMorQwq5GnRRPTMeTabXb+6lhrGB4/Wlq4oCpsJdqtN13Uo/r0MJIPYKWuti8JmSog49J3h4vLuqvde6aLrerAPT0/fcAkpxhi9snbT7lTodVGyMjHnzFBUJQAIcA8pI+Cvf/3r/+R//R/vNpscRkRMKWXBKEBKWUTfrDZagXKOiGSYPYf4dWIaxirI0Lfbo8W7Vem46wX+S2AGH2MKDMrW9XK3CTGa0mqA0c2EgfKbbyoB9f3Gp34ymQBwXZc3NzeTyWRS1UqB930Ig9Awh6HPd0ErC5BRYVFaAKjqQuR6i2KRE4cgZtQcQphPG6IstYYllXNWmovSxDSgwkwBNSNBjCHEARFV1MYozgmAUsrSrlZq5I9QzgYVEScaITMl0nYIYnhljCHOqAAVKIXGaqXRWgtEnDMqzEx2lEP0iFDXZVEUcfDiV0eUZZAMFVdYEKfIURs2FnIOIUZUbJ3ea25kpZQco4CAqACUQpdzBmKtlbHKkuXRIlLSM0VEyGi1QQvex8zkoGCF1hgLaJwuywoQC2uYMaWsDGo0RAQqF668u7sRRZqUSHTVck4hDGVZbjZrCUfOuaapNptV3/eFU33fv379klEh6NVq5ZybTmfW6qKY3rt3r67r8/Pzf/7P//mTxw/FhEOCyWK+OJrNHzx+JE33vu9n06kx5m65lG8kpKv5dAYAm83OKD2pqn43iuyJdNWTJ0+89xcXlzHG26vrFy9eKNDr5UqyRKHibrdbRFQaqqqqJg0zbzYbtZ9swxKVUvP5vGkO419jl12SLgFBBBwaYUfjUMNkMpHhy9/85jdEqahKyY0F5pNklZnrohz7PagOKIakWGqvD2uMQySBDmk/fJASAVBWOu1JxLJBiqJgNsKJkTJQIpIYREsWJ74yuOeBHoKqVDHyC0JwLivXtm1KiZkyk1KqrkutpJWLRCCPWyuWzFzgtru7OyEDyaiWUmYYgnMOQQGhUoYyiDOeHKmSUxljhAotoydqr8O75xBoxYD4NVEZtSDUjOyqcjV0orKSY1IGpPuaMiXKxtqmaaqyTCEWRVHoL4c8QCZrRZq6qkTAQb6gaAaKVgAc+LlfuQBZEiHFt99+G43OmeumWa02L1++TCmJHU7K2RWFc44V+tCjUswcQjJKRMbTarXyaWxGAoBSoEEhQxzNTkD4k4J1wl6JIkYvN382m8k1S9mVE2fKMcYcU85RayRKknjkL13vSAgogiallMSyW5A151wYPDMro7XWokoKANIGEMqFMUZYokw0mUzi/gV7iIM4hThorbUyB8NaeazAgEZLI0SetbiXSS2ZUtj3WhBxFE7Evd2U1MKHPBwRhWQqlySUDgDgr2maHjSdq6qKFAEg+kDA8JURc9l9QmCQOwYAKRHsF8yhUysXRkTKqJFpvn8JyqyUsuJ3J5aX/KUOj1IKgEIImcYBaBgFX4EIcE9Ba9vWWgvMMjL+5bAgagagnKwttda+zwA5DIQ4xAClbYLPtzcr7+Nm1bqyMMYg6Nl0Ppa3iKvtVpoHTdPUdb3bde+9956Ewa7rtNbttju0K+RJdV2HSjGhMsh78YoHDx51Xdd1ne9D33nRwuL9KlVJlWVpbbHbbaqqAqCUUtcNQsK7vropy7Lvez0aqqcQBknq5LkfSANfTa0R8fRkLnixHAfiWrndbiV3RcQXL14IViaYLxOllAAxpjD4kSRhrd1utwKuBj9OMklslLJDay0LpqhHtRwiAmIaJaFZmhNEtLe2GjVhUKOzjoFcYa0zRKRQyzWor3gbCigqaINSqDWKUKgQJoyzIps+DIOIjCu9r3QAACCnxMjWWvPNb34zhPD5558LE/BoNpezUwAmYfWWZTk9ORUkOiYPAOv12jlzd7fc7VoAxYTMY9f97uZ2tph7730/GGetRmttDiRmzYcH9ouf/6qsHDMvbzfauNHbMQMC3L9/X5YvIMbkDc6ePHg7U/z8888ltk7rGSK+fPaCiHzKh42x27TCqFdKWVO0227fsbEpJacdEfncV2WTQ2CWoRgeT01OkOGwYpQGhHEUiPcGlFVVPnr0qOs3iKCNni1m/CbbntAPftcnZDDaaKVZFdYZpRVojhRHH2eVKaIWA1LAvYaLUgoYD4erxAgNI7gMAIoBlfjgMuzDW4aMCJmyUVqjSjmTz46wUAqtRhDYF5gzEeBePtzocfAcAAj2c8TjAh7BTSmSea+eASMQzEopAmImmRHOlBDUYacxM3GWdiKNc+hGFDMBgGLyow+b1VqziFZrrbXOkAXeJh6TYzhYEQIr4AyAxEopSllgrHHjUTbGFFoHP+xWS+1DvLr7P/3n//kf/qv/6ZOrL6bHcyK6u7sL7MHivbOzs9P7BvSkaF5dvz49PZ3Ws6urK+/DF198IcKm6/W6cG82iZK8WQitqMdAI/Hu9PRUYke7adu2bXc9Qa6r6smTx9vt9ovnnx8fL8qmlNa9bGCBBQGgqEtiLptydjRrNy0A1E3z1ltv/eqXfzFsw/G9SdM0RrsQQu+7fecQtbKcSSkFKK3X7JxzYIBMWZasMOc8DJ0cOdPpdPAeAa02QBBjFGGTtm0zxeXqVu0VS8SCWViWk8lkt92mlE5PT2OMGscWonOurqvFYpFy2Labruum06m1mpnbts85KtVY45qmuX//vrX2L//yLxHxyZMnv/n4U995ZxwicvxST0pp+2c//sknn32y3W4jQVGZn/3sF5989rSu6wf37l9c3Q1D+NGPfiSwSFmVdV1/+umnFxcXsoWvry+dKxeLRUppuVw6ZyaTUyn7pakuCbFI3PoQRDFjOp8LSI3a9sG3L14WRVEUBbAqikJSFsnV6lp0MGJZ4mQyG4ahLGvBWI35sktUVVVdNznnEEaYte/7qqokUUalJpMJZ2JmDUraBjFGxFGbSdaPVlqkNiRHUWqc36mq6tWrV3mvVEP7FyukkJRSpS1CiN5HAJjNZovFYrPZzKezXbvhlBOHxFSV5d1m62MSiFmOKwG1xZEyJJ+Bjo7mkiRJuzv52Pf9bDa11i6XSwAoy1I7KxfJzDH6zWYj+r8xp+m0CSG028EYZfaGJ3IGO1f2fX95eT0MQSlllNZayySigCzOuZOTk6urq81mQzLZIIgwGhECKorivfc/ePny5evXr8/OziQXFOqBfITsSoGYhU+h0AAra7VzjtJILYTRcyMK97yu6027e/XqxViucHJWtW07m80ePHiwXq93Xfvxxx8LV6iqqtIVi8Wi67qyLLvtrtvuMGMEGX8GuYwYV0fTI7VXHFJ7laQ3vrRSBGYYBmW0mPVJE0tE+kIICJL65/l8LsrpwgEZx7icO2SWEop3ucW+C2EQDRBtMFNsJtV6vdJaG6OrqvJ+kFtkra2KEohns9nNzU1ZuUykNHz73W8SQIi+KeubmxtjbF3XH3744XK51DCdTxcnlf7jP/03RWiLhdt0S66RlC9Ka7SbHx3NT85AGQi+HXap2968+HzbD5lT5/vLq9voGRP4dr0LG6jL2/XGgkE2w0AJqvMn77OtbD1/7/3zf/vjX73zzjvn9+69++67n33ya6Uxer/qe0OJQ1jMZwg0BIoMCZhdsTh/GJQ9O3/7h7/zN19dvLy9ufngg/c3y5UtipRSTlwUZbfbKtRFUdze3sq6CiG0YTDGlK44+K2/4ZSPqW3bh4/O33nvw5/8+bpu3vhb+zYh4NgN3p8h+/kJYR0a65wx2lqjAZVRMfkwdABknQYi6QJWdQEAsX+z6jcAE+WU0nqd+EupgbFoSSmIf4lShplEsDWlrBEBIVMChEGAWmSKZKzWRt3cXm+326qqRAtutAJSKMQl4cf1fe8Kow1qrUPsQ4xFUSCPdZTENGFJf9UVZ08DAeC8XC6ttWVV5a+4Snjv/wrvRvLGEMYur4yKK2WYkTIo0N2uZ8512cSczN42TSqtEXbJoLWYQGqFKsUxq845A6sUyQ+xdE7s6bU1gIpzpszGGFBYlbVCnRMhKCZARqNNzkG4HfIoKY0ko+h9VVWgUGtjren7NsaAiOISMbK795WoMaawVgCdmFPXDdZazpBCVkojYAxRgWj6MzIopbS2b2a5K0XAlAmIrdJMZBjLukHUOeeLq8t+GKS+yojOWmeKxCQkMhz1QJT68kahBqWdyzkOwzApi9lsxuv1atP2g4f05t2xmM+6ltvttqxro1ROKUMqrN3sOl0oNML9obIsMcQvvvjij/7ojz764IPoXOlczKMVrSweZNBKGztCD0IGNzh61b7x0xEwdN2kLJ88OE/BJ++ZkVExYcjUhwjOGFvcf/jg6c3FsZ1DTojImUEZgDer4hhnVFbCIYoxAvBk0lhrQo6Fs0U5FvBEpMH0w1AUQq3QSqH3oe93iDgMnVBbiMCaAhHK0hXzqWTFDFmAGFmNDx7cV8qMihyUN5vNahWPjxfbTY8I2uqidCKHFaIHAMrsjIkxplHGVzQlB2c0AMtwjzW2D/6rQnZSrhtUfT/I0ycmDeiM7nZRa20U5uilevShBxl9SKMEpDHG7IfxpXPjjEZk4eDLXIVwfST1Wq1W1mFK2VqTcwqBAGgYRFkiIoPWOviYA1trC2NCH8SSPOeISMYpyIzISmPMKfqgtMx5slJobaE11qYmotVqNZvNZMhsMCHnvFmvQeB4ra0xk9NT73ujsamqXdc5VxZFMQwBR2BOpxwenT86f3Bvs9p+9umn5/fvf/TRR8+ePbu+vFrM5pI59H3fbzb9dutjeP3q4gc/+IFS6vLycjKZ1FVlXVlV1XJ5e35+vrpbN1U1DMP19bUgnieLo2rSDMPw4sWLEMLq9q7d9WVZIitjzGTWaK0FQX7y5Ek/tJ9//rkgBc+ePQMBoWIsy1KRijHe3NzIozw+XlRVtdnsAEAScqJClKC998JPijFaZdq23fU7oVzYwgggIr8AAJxGOWZrC8GFRxxuT4QSmFiP0x75UKvSnlU3RvJRN4IB0iHzQUQkVgxaiUGIBoC0N2KRskj+lLya9rqoh3NBa13VxWQyQcRhGJhJKRNSlHYmwZ4pxay1cc6h0/LFm6Z5+PBhSqnrupOTE+ec9zGEwIzWuJyz2DAI91M+DgCKopDhsJSC2ICPqHrKorFujIGcfMwa3xwSiUZAUCsdQgCCxXQmeBPFRDkxUaZc1dWTt94qy9IPw83VdUopxVGTRCqXs7MzaSenlER1CgC22+2B6KP34h5Me9VQARy1YmaB5rXWIQZZM4TUbXcHkSh5q0h5NpvVk0oKVUqZiITplfJo+KGU0jCaS8k4lHwcq7HVKodbjEHKFqWUfLoopUhkMHbsJUhWL18K9oKzkgkcug6CigqRPzOllJxzy9u7lFKiHELIiQXJPbC1eC+mIRFGrvbQFJFlPJlMhOCslYK9WwDuLWrb0DKzvBXve/ld1xljlFZu3wEFAKQRjzvslPFrEmWdZdfzYQQckYjatnVmdzZ7w4I5eIZZa3MU8F0jpa/OtcsPDymWLEvpTws6L7tVRP8EIue9cuw+K/syQ1OAKSWfopzOh90nVan+im0gMwOrUbyEWWmQOywNj7opRRQ4hHQYfUAex9VzwsJYxYoyGTSym9bLzWazEVKXRgPMiHj//v3VarVeX+eUlnd3q9VqMplJlS3HYlEUfe+R1enpqRCN5YbtdrtMpABOz46dc1JFLhYLIlqv27bdtm17dHQksCGosRngXMkEQ++ZcRiCMcrawtq8Wm1ubv5svdpsNrvZbEEzltXetuPshRSSKeZD/ymlFENyzk0mk9PTU2lrGWOmk4k8Jul6eu8lmCNiWZbL5dIYY7R2RdG2rTYKESXcHShESilUkIK0GQAAyqI4lHsMEENiAlm6smykYSY9Tq11SME5JzMZ3ntrtdTvReViDkbpqi67Xee919owY+Y9wsCsRg2ZmFJSGkIgpVAZfQiYsnM5YeUKNk47i4P2g1e18iFEH0wKcVI3VhtjTFnWl5eXTVWJavWjR49ijFdXVwAwn8/ffffdqqpevX5WVQ/6vk+xKYrq5upmMpkBK0SNiLe3d+++//5HH3348ccfX19fW2ubsooxbuJmCMNsMjtQskvrmtl0t9shGMn4GaGqykIbp02XOtnwaMsPPvjAuWK3C+2uTykp1tu8Q+JhkBZxo5X2IerSiqJNDDnnUFWj8LHMHEXvpWnGiodhYBK9/FExw1pLnCRqHJAjkdnWYBWC917EW69vLovKet83k6r+GjwSAZy1lGLKeRgG7EavoZwzAyFA9EGjQq1GozY1CuWAVqCUjM8IjAskkvGkUaMxChCQEAhAAzErEPktAGQm2P9cEQ9d79BaUjkGRi1fSg4+ZpUpIyIoRMBMBMwKgJATZc1q/CtEkZNmEZbenx8AALzH5RlAAZFWSikcx4TF3kFrrVADY84556xVRgYwvH8TlAVqrVXafjVM836CXsKB7KXEY0NGjj2tNey1tMZmA4+6S2Ay+9D5uK6uvvP+h3/rb/zeJ//s82EY7j86e/Dk3rbdXC2vU0q77Vaxunp56ZOvivKwexeLhXPOe9+2u8MP/1rqkEMIyqBxFhGEPgAayrou6xoRQ0jt0Msh6tAh4qeffpZzIqKf/ewXp6fH1trV+u6n2/b+/fubzcY495Mf/7Rt248++shaK628dt3GFJRS3/r2R69fXeaUxuzZC5127AATsNrzNOU8iDEmYhbtCIMHO2YJi1qpEALlLPwFyRIknMl7CpFqvlicn5/f3t5KO7coChnuE3GA1eru3r173/ve97quvb29nc6atldCSajrchiG09PTvu1OT0+fPXt2cXFx/vABIj59+nS9bB88uFdVVfJJ8j9xrjPG9v1gK7W73d4sV4OHuraTZtE0zc3NVbvrNuu23fmU8q4dRbLoLi2Xy3F1aQ2smNla3zSV1rjbbZi5aRrR+Nf7ibzVahVjTIms1XZvNiJwRlmWOXHhSuOc914GWOSGSHdU9DdWq9V0OpX4m/ZqXBI66rr2Pux27WKxKMtyu91Ka/2wkHA/fjifzsqybDe7uq5ns1nnh5TS0dERInIMOWdEUPuJRckbZFZOOreSnEkPjBASk0EjsaswdrXdCa/n5ORkt9lqBai4LEuT0jAMfhh06Zw2267tOy+I8wG/FvpA5pQ4pxTkpkmDExFE6FwpJUIc6/VaO4uIFxcXggdVVXV6eiqZZVFaH0JTTYQUoLVebdaSl8hik4vUaJpmWteTvJ/KkXZCXU/u39cAyqCq61oOuaqq6rqOMWaK9+7dY+Z22wl1XTaF6GKnREVRxSisi1DX1aFRH1IEYuNU0zRdN/S79vBXQh5vykrY6Cmltm2HYXj48OGBNxpS1FoLMJ1CPDk5iTE/e/q5TAIVRYFgcojaWWOcRMth8JvNhghSGCfuiejrSA0ppZCCLZzQ3mVudL1eS58VESmD7NPXFy8fPXo0+K7ttkopRG6aSrJMGVlFxMlkElNyzhGVbbfNFOtaSDGtYAHe98PQzWYTredd1yllrNOLxWK5XM7mk91u1zTNrtsul8v7D88fPDw/ms0RUaPJkebz+ePHj7vbk6Iwv/rTP+tePj2e29vnq0nDbe9BzAKSKsA67XofhuTZqLDZrnfdkOLg267dpqSWd10IaRjabdhCqYGNI+1U8fq2/b1/5x+8/Y1v79rUDTGiWS9XZydHp0ezH/3oXzkDj85P807jYNj3c4TTo2OrdNRqsjhys+l3f/ujb3znuxe3G11NUtbMWgTWCUcuknMuxiy5Y13XMpQ6m82MMV3PQgVKMc9mb55hGobex6SV/eCDb/7bP/k3b/wd3kv+IRres5JlVex3FjBzykGDY1Y5Z9Y5xJRzzDmWldNaaa1ijEphzslaq41+I84oB6UsmOl0KuqHKYQgtBciEQaSElcgHErpQL/J41irHLJJKQgh55yPjo6qqur7VlA2obrQnmUmrR0ALaHDe6/HGRfKOaNHOaGMUcxY1zURhcG3bXt3dwegTk5OCme01oB4qJalfpNRWTlTAMDv7bYlX9/tWqknm2aCzFYbZp5Op3KoWVvUde2HaA7Z/17KNuesFQMrhUYrzJEosUKdQpZVvRrWcjM5JRnugb3Zi9pr4UmlKqgHYBQzeqUMEwGy2JcpDSkH+SLWOeHdAABmBYx+CGrkHKm6rCQjkmnHkcMyhP35LsqVDAAa5dKVUkrkqt6wDAD6bVuXlVOGfOw2u6GCxjV3l9dh67dtmwgIsLBFZqKYMo52x7C3wxoPHfnKACGE2hlmBoVlXTw5f3x7u/zNJ59ZaxPaN17DtK4e3b+33g2RuNCAygSCzRCEF59CICJjVTd073/jQ0b8wz/8w2+8917OMUYPIoayP/uUHgtv2EujSmH8VeTrr94BohT7eVOenhyhb7XWqHVONKSUmSKYsmqmR8fwxYgs7xuBwvt4M4StUTXTicQEH7xGdViKQwiiR4egKLPwNxXoxKOFg0BCOcYYQgo+MyulUwp975VSdV1rreu6PBSWw9BbW6Qc5k1zfn5vGIblcv3220/m83mM8Ysvnou6wna7TSH2fd/3vTHjIS6Uz5zoS9U1rQGgKArhYzptZFzSKm21oZis0olGRbucc1kUUnaMx2UIzOyMRQStxm0OAKwUMxuls2KlFOB4cCMiMCADMuSYiqLIKRNF1EauwezVUXi0txo9qAU6AQCKKQUZ/SRxQZTMBJAoZ9G9IQKtFCo2xgpVC0YpGzbaEMHx8emjR48uXr3uugEBdtutYijLsqnrEMLp0XHfdqgLZlZs5/Vis9smnwpjm3qacy6sO5ovHj98pAGfPf1c0KVPfv2XEiTrug79kCk6o7rdrm9b7/3RZHZ9edW2LQAvprPb5Tqnvi4ro/V6tbJae+8/+fhT7/0qrsvKPXz8aGi70A+FsXoyzTnPplOJwONqP0RmioLFKGu2263A0AKoEdGTx49CCOvVFgAIYRgGv41Kj1ZRcrdTMsxMKcsmKsuSkYZhKOqqLC0iKi198ajGuRM4rIecpQ+RDyxI+VPG8+u6RsS7u5VQBGRJ0J53KddgGQFUpJF9qRgAMKYIQNZaEUNArWSUe0QtczbWpj2EcQDpjDGASZGgaQURdV3LTM65uq4zJ7nsXdfKxOpisbh//yznfHlxfVi68hDlv8uyXCyOc+ab61si0tqKCKxAigd0UsTHYLQLQmOMRN+UUiZ2Whs0rJg5HQyB/8rLOquyUUopQIw8Oz1+9OiREEKd0kNPXdeVVcXMr1+/Xq1WCFBYN60bGUaeTqei9TedTg9wldCtbm+vvfc5x7quv4ovC4ghB5Pg/1obmUpfr9dD8H6IGTjG6KqyMFbQz+1yDQpcM+oBShHkjEVEUV5mRcyMxIWxACStWeHljMv1K9RqYTBI4rrb7aSHIYWqpKnC1XXGxhgFDtNKS5Q4oMwSKKQql8Uv3V/5BY3Ke+9jGPogVZjoiR8fHzOz6N0J1yfFKJmzQISH9Sn5/4iby/ArogyPeu8TjvLWMUb1leTEWvHuUnLlee/+xXv1DGYWtgGAYsZhGMTTpWkatR8L8N5r/JpTTI1M7b7vEyfe286LTP/hfETUB8rRSKbeq5uOt1qPdCLa4yq7rhW6uhrZ0CnnjMSMeED5hdvzlRFhw5zFF/GAw4DSiChWOmVZNk2VYpS4lClKSSLI/j7BzEqppqmNMW27SykVzlntOIfe9zK+iYhEqSgqBHj+7Jn3njkrZYGNpGc5R0S923VyE1Z3S2PMycnJ2dmZ9JCI6Pzh/XffffcnP/mJGHGtVquqqoTxNh6CzqX9BK0kGVpbrXXOzJwLV2uFKaWbmysJGqvl2tqCEkcflsv1QWlNbrtIhRzAhMMeNNo6W6xWq7Ztt9tt0zRt2wrpDfYTAPLLY66eRfGsWiwWRekEHxMxQwm2zGytnU6noh+gtU4x+hDs/jFRzjL6THufJ7NvPtm90yYokIntEIa6Luu6PH/44PLyNSI2TTWbzZpqdkVXq5sNaoQv1dVH7EIaVGXplEJmsoVLKTCzMULz0kqpo6PFyelRi5sMWBWTYddew+uycFVVmRcvXmw2m9VqNamb5XJ5e3t9cnIiOuvyV3K5v/jFL372s581TTNd1EqpJ0+ebDdt37+0hbPWMmEI6eTkZLdriejq6lpaRnVdr9cbrfXJvTOKKVN2ziql2rYzxsTBz5pZpIyIzhkhPmvQRHQ0m2fg7Xabcn718sKHpwBQllVhXd/3y+USSXx4J0RJHoNgDVrrNaK1RVUVIq1d1/V82sj6CGFgpZnZmkKmLYqiEF15mSl2YgCdx0yoLEuKrJQetSuYJpPJF8+fLo4mi8X9wjT+TWO2AoFxyqRZKQUaNrstIxijwDMS7zNmZgRkOnCgZP8zj9L4ErNZTmjFyMJoJgAFlEVtGRmASQNlZqMtEgMBEESfCnSIViliJglSEoaIEoDSoHLOrBQxIQNqjVqDUoKDKFQKR1Gkw5cionFcZM+rJqKYM2IyxsEYH4XWp4kohkBjR1eMdjPxOG/DB+utRIriYUGPFynEaiAismo8G+Qy5L/HuY80nhzOOWU0EQ3DUNUq+h5VETftsNr8o3/wv/xv/vl/t+na9W6LV8yKJY1YLze7uzZ6r50Ofnz/lLLsqL7vEUEVbz4JiBi1RPCcmFiNtCOxxyyKgnm0/khMHHDoA6JCMIjp8vX15eur4Hk6K8uyvLy4lSYYJ8wZr67ujNOLxez09NgY8+nHn96t7ubT+cNH569evZI5I2NM3tddDDllLKyTMlshE1HyA468FTw6PZHdAQAiTdDuemNM3/VyoosybNPU77zztlQ+r1+/ns/nqLRI4swXM1k2q9VKaL/b7ZYZt9vtT3/6U5FKePjoPCSfUrq7u1suWbqU6/Xm888/f/HiRUpZoMkYoy3w8vKqLKrSldJ8g0zaOO+9dgZBNZN537dVY5iVKyfT+fHN3Qop9H1flIXNDjRLKhmiqBQxEQg+GHzy3l9fX08mk6IoBt+h4u12K/IacuIqpQBUjF54GAK6CRwv2zYCEIBI70l+IyCOdBoFc1kubwU+SIkOJ/S+H8ii8smjHj/S3mhRNPVQKxkfK8syDp6I+77vfO+9n1R1URQWwVgNwBLf+7Y79A8lPkgSMLYWKIeuSynJs1NKRZ/Ez206nQIQQx56rxgWixmzU0xKqU3X1s20G8LN5SWw1VqQDpVzDoGYc+bsUxyGsfbQWjtXiuxg17VyYQINQ1ayZfI4Vqlubm4kmxQ3SxmUcYWxrpajS/zrjZFSfBf9nZRAThtEFAMZHJkpowmy9z4xWWtFv0KW03qzK4piPm1yzliWJEiEUpPJTD5UKtWUklBCiGi73Q4hlq4cc1bYVK6Qi5Q0VHSizs8fysRlVTWTSd33/W6322639+/fd8455x49eqRRvX79+uLiYrfeiW/GtJkws3VVUSx89nKCICq5BgX/MwnCQ1z9a7EFRuNT5nHnsoohJ0uUfVEUtnA+QFlV1tpnz55JgpJSwn11EaO/vr4uikprvVqtAPHJkyfNpHpn8tbV1WWMvm7Kt995dHV10ff97e1lznB6erLZ9grN+fnJfDFt2/bq6ur999+fTqdNU/l4VJZF0zQvX74M/cDMl1eXKWQAevXqlQoK7y9++Wc/OlMpZKiLtLxaJRMyQlmWmsxq55FVBMrAESh3YRdCH0PXb5fXV0ZXMZl+CL33WZl2FwqLKdGy6+anj7/3g9+7ud29vlsPQ35xdcHRZ4Rf/ex55tQbDM92FeaT0iyX66ub67+LylXlXZ/Rmt//g7/7N3/v+wOrZed9UtP56cXFxdHRSWldcE4WYYypMFUXeiJSGo0d58W0UYcuS9d13/zmw7/8+E2nPJP3/c3d8r13v2HNj9/4NHGPXuHebuEAtUiq6pyx1jLkw8/nR7P1eq0QtbXKiDWlEnKxzPPKHNhff2mtUSlRBSmKQgHIwKTaM1kEWE85O2PyvlgV5pq1ljmX5Tjr0PdJ+jfT6RRRC/mLiHKOcugY7ShTFjf6zDl7QXyaptKqYGYFiZSWwKUAtMIYYwpRcvS6rhXoEIJRxlgr5cgBHZOVr/dzynrvWWq0RsR+CAAcY8g5eT+UZUEpG2M+/PDDV69ejZUqq64bum4AgLJ0glzDqBiT5eCTgQyx2xJvN611jJlRxrdzSmQtaa1TToB8fHQynmIpAIAzIsCSUhxtcyREU4a6ztOmAVR+CAAARo2JEGIm8chKgs4csAxR3sw5R8paa4ly8l0yZ8FTRrISEoKOKeIb1VsA2KdGlyWrsG4hpD/4/u/87g9/91//0Y9+9evfbG2bEvmQQKGPqSrKHClAmM1mhHrT+RCz1lqGyw7s8hBCZaUuSjnnfrs7mk3fffudza7F8t31m67BIDw6P5913RASUFptOmuUMzqEsNtsytIZpYbBQ+ajo6P/9D/9P/z3/+y/f/b886P5DABQsUyIMhMD7DEBdRAIgkx5zJbfvBFijKHr3v3Gt0ujYxsVYEo0hDj4nBMl0MqVzfxoSJlBhRBQsUJjrEnEKb+ZMo4azdhHYa1NztloDYDWuhBCyNkqnSlprY0RHJC1NinllLJBLbrLIpLDMWrUCkEpMEYmBmi3E+ZdnVJarZbT6YyINpvN5eWYnwxDd3t9MwxDzIkoiWpwVVVt2ztjiejo6Gi1Wm02O4GZZPZ2sVhs71byEOfzedd18m7OuWEYttuttWN7UoKPcw5ZISvOULpCUn1rbYzBOcsMVmlOmYicNQCKmQESZwYEo5Tdd3fUAfw1LoROZil8P2hUzKwNijObUpqI9yyHcWuklJjRoIoCb9EYwUSpYF8jIIzT68CZtFVElFMCAIrJ2kIrvV3vAJRVlpkrVylAJh4635RVv+n6vp/NJpvNZmh9jBERtLOZKPodALxarouiCG1/cXHBmaw2/bYNba+1Pjqeb9dLgeB9PyRUikAzGucoxKaslDVD56P3zXS62WyMUpxy27ZD1xtjFMDsbHZ0dIRav379GkY83RZlFUK6vbpGM45mS6ywTqccRIP4drkchkFmf/u+n0wmCs18Pn99dakL7b0funG6fzJxzGgKJ5RzABSMQzCgYRhQQ1VVriydM7uuxSj8PseZJF9FANzrP4QQxBFE+iuSZoh2cNqrTBwSNq00xUgpE4zYsfzDEAKgQkRUiqWSBSai0lXee9wP2Gmt55NGJK0k/TtgfzQaqHZFsdBapSSQFhpjisLmHBNlOSmsNnVdys/7vl8tN0J6Xa/Xm81muVwqpaSWiTFvNruc2Q+BGQGCJpUzG2MEYpZpp/V6fdB+HKdq9owoyAx6PNARUb05KoPWlhlDSBQDAJzePzXGyIwgAAgrxYcQUjDWSrIq6ESk3DTN6enp6empdF5xL3x3fX19dXXlvZdyI+exCgBikP/t8a/MpFAJSH1zcyO0j3vnD8W6RghGikdEydVOcK6qqcezsihzznGISqmUBgAkRHFjG1tuw3BgN6M0pvb6pXKpAo6bEQgdseaUg2L1VUC5ruvQ9YdZPYAvXaC2261oTI/mMTSmTPJcKqz1sZUuglSaYphpjFksFmLSAF/pEzPzer0GgGEYxIpNVs5hRX3JEAINjAzEe6Mp+UQhmSHyIas//BM5p4i+tKESjREZ/JXH13XdMPTw9YWARELBN0DDYXCTOQsIIKw+El1TxLhXkRbrLHlna23KQYzZ9d6vuO/7qij3tOU9EpwjCOCCMjuli6IS7rYA8YlG2B1kFj8rANDKxujFC5QZtTEp58F7YwyDB1CogZlQodVO8szoAxArUEaZnIgszWazyWSyuls2zVTmrZVSQpKTPI2IYsxV1TBDDvnho0dFaZ9++pkU1LIpZMForVEr0dwQytdyudyLwu9CmJyeHv/qVxd3N7eyv2Q8ggGIgJkog8xmWFu0bY+ggo/GmHv3znMks3AHcp58YgxJpJa11kQgNwr39PO+9yHc0eiu5Ihg6AMRAwi/DZTSKUWldPBJa81MOXPXdQ8fPajqUpoTKSWlYD6fMo+ctqIoYkgpJWdtSqmZzLQelTFk2x7aD0LzR0TYixMwYTOv67reblYPH55///vfTRQB4PzB2dOnT48Wc2sLHwcS5isAoCYa47CEfVZojbXWZoqM0HU7ItJaJ8rGmJy8c8W9e/cyha7r5scnUzd1SkfVd0PbUGOMMUJistZudtvZbNK2rTFmNpvFGIV0PZlM2JjLy8uu6+4//BYzv764cKbgURe19X1wrvTen52dPXv2bBiGnNP5+fnTp09TBgRSShmjKVEbujD42WyuGJwrN5sNIprCXV9fKqVC8CeL47Yl7z0aKwMIT58+NcZIbtlUddd103paT+quG8LgASjGOJ0vpHXAzFpZ1LxarYZh0IjltCFKAECUrDMEWhbNoYHGzCEOkoRJA0RkznPOBMmoIhNpVDFGZeCzzz65uV5XjZvMpv32zXCkMgY1KjAKMgBkBXebNWrtygLaLaUsPQcGBqMx5gOphIXuhIAKSZTghTROUq8ycUaF4ndpmDUwMkJmFDFIBs6otOqHgRjRWiZtpHwgYkrMhvZKQ4SYKGsZ6wBGYFDIuK+HM+1pNWP0jJkAxsYZ05dcBnFWPcAosJfUsFr6vUxfEQ5LKVW1JSJKJHlVzll20T4ZkmErUEqJ8H8izjmnPCLCsugJklyk3qs/gxotFqkLBgtjOPe+W21+9we//d1v/9Yf/eJPhT91dXXV+67rQlU4GVtj+NLl1toxoEjQOJwff/X5aphMJtpZRNAAZTlayce9Z6vYcazXa6WUMeN4e0rJsGXFxhioIKUUfI67iDislq1c/LPPXj5+717bd5O6aZrKGGWMiTEAoLW2a3eIjTHKR0o5yOqlrD2MTsGr5a1zri4cM1dVpY0yRueclNESuXLOSpnDMyqK4q233jo/v4+I0v2Tp3B8fBxiWq/XbduG6KuqUjgKn0WfBEh1zr169QoRRKpflJNFFlMWxg9/+MNf//ovV6uuLMzV1dW+d23dxDKhYuUqJyMwKaWiqAgpEyAr4yZD8Ea7q+vV3XITvFdAzNlqdsYmzBJbJ5PJYrFo2621djKZAcDt7S14kDggU1ohhElT5pxlgEspVVVNXaNoIaWU2rYXJ+sDdzgDZGZhjuDeHU6e4OGElnTQGJOzlxwOAA+GUaK/gYht2zpnF4uFCDDJBey6FhGlw1e5QlBs7WzTNGVVKYYcQ4Ro7CjN3LatgIyi9iUJh/AxXVVK9i/0PVkDm81mvV6P6FIYyw85kIzS0+l0bh1eXw8pHy8WSqkvPn8lX02ApDFWAEtqMZbixiByylnwDslcD+3ZQ/kqjTqOcHS2qOt61266rhMOy2azKYqiKGuhOBHByclJjPH2+kb+udyKGGNMURZY3/fb7bZtW07ZGANayYaK0W+3WwDo/WCtTUMfI4mhweL4eLFYbDY7ETcUBTfJhqfT6TvvvPPy5cvVZq0AJQH13kOmrutwT67MOYtTijFGmu16r5ZzfHy8Xq/vVktmvr295Uwppe12W5jCGDNtJgCw3e4mk0nTNOvNss2ZeXTNNs5QYkQdY+YUYRTVfMOLgQVBllRPhOqKogDmENJ6vf2d3/3hzc3N97733evr688/f3p2dtY0NSIOXZ8zrVarnPPJyYkxpuu63/u93+uH4dnzz2fzyXe/+51XrxZ/8qc/+tt/5/fPzs5+/nPMOf/BH/ydum4uLy+dK3/5y1/60G9W9PjxY0rZe3/v3mnXdZ988pvf+q3fOj5eXF9f3r9///Xr10pBCIPwr4/M4i9/8eN2eXE2q9plG2z01INFVri922WfObG1NhBlBaSQuxgAbrdr5uzKabsLPgw+hIwqZTRqwqyG1IWc/tb3vu+H/NmvP764XT2/XZqimRRmdXM5qWtdNb/4i1/7obM5ljnWCI/fevLehx8NPittNl337d/+7cnp0XLotz6Cqat6aotyPp88eHDWfd7LAO+kmsSY816zmIgG3xPnyo3GnpIpbjabNz6pnGLO+ebm5vz8/PTeWdu+8XF+KUJ1OEml+DjwIOTvxxY1c1EU4hhhrWUggkyAkv1ISyztzXP++kuQWd5P/EgDfiRxMGitc0zR9zmONZ5Syuw14ITLI2rLIQTp2HVdZ3RRlM5aqxTEOOqSSXFI3hOqlKLWWrpE1toUScg+cuSN9QynkedCpBALW05OZymlEJJz6pAAHLjDxhipIuyebQTMYoGCCOKTXpazEIL3fd91dV1fXL7q+p2UtVrrkKLIW8k3Yuau62L8sul+aBNaa6VUkO2PepR8RdREKedYFMXJyfEw+JiCNopYnIo55xhjzJEoQwxEREjQdx3FfDw/MsxxCAAQ48itds6VznASFXtzSIr2XUyw1mJCQdYgk2LIIZKWJ4sKmZgQRpiDUnzjGihQV6Zol8u379//D/7df+/v/8Hfm9TTp7/4zbPy5RC57QbQOoZU2jIlctq0bVtUjfDmdrtOjjNmFqaSXKq8c4yx67rKqKHrS2Pre2fZHK+Xb7oISprTrGlKl/q+r4vkMyB5SvHdt9+KMV5cXJRlsd7tXr18OZtN//E//sef/OYvicXfePR8h/85q1HtmbayYZ1zNpg33gHftceL2e/+4Aeh327Wa4heeAA5ayICXaEuiHGxOAYAhpxiNoYVKaJMQG+Myzmz1kraK7ifzt4DOoYoZUCjbVmWnR9k1ReF40REVFWFQm0MaD0OjDNzSqQRgDKBlnQaNdzcXRdFgVoR5a7b5cxOLO5zFn3bEEKCtFgsrLV1XfZ9f3d3N5/P5aQoiqIsR55UM5nUdf3WW2+1yw0RXVxcPH78+G61vL6+ltGHzz77bBh2iCOB0Wg3bgftnFPMST5RMRtUBMqqL+3pEXXOrJGB2VozDANq9dVk3minQKFCyGMSJe0TrTUASWot0CfsRU5HZnQGY4yPIhyZU0qgNDNSSoBsEBXIkCUYpRiZM2WKFkvxSDfGxYFzyGiw3bQpZoNGG93Fbui6pmkMaGT0vV8vV289erxb74qy8uhTStkTAFR1wczFtLy7u3v5/PnNzU2KBMwK8WixUGgKO1reKQLOdHJ2orVG0MMwbNqdtZaYhVB5cnR0u1yuViuNymqjAefTqVJqNpt575dXV4KJLJcrY4xBdbu6hb2sotb60aNHu24rm3Gz2XjvCccjQIyUu3YIIdzcXsnHEVEMWRIbaSYaYzSMdAcFmFWS6Oecy0R1XU8Xc3EykFtdFIWc+8wyYkosgyPaIIMy49iZhMrj42Ot9dXVVYzRuVJZE2PMzJCStfbo6Kgsy5CiOExEUVjaD8hKgieWkilwUVQpjbYWEhLlVKqqSlJu2f6HCXqx3hqGYTptiGrBK7TW5DvpniKy3JCu60TbV4beYox975UCY8x6vSaiEBIi1vUERxMFUIC+65OzzpnD9KfWWiBdib0atFT+clSN7YH8pajxG4KS90PbJcoaIYcgm1pW/rbttBqxqrIoac9MFDji/vH9uq7LorRKW6XboZe5QJnQF4MT2aqCLlkzan3ISyoXIiQiRkgxOmePjo6m06ktSslCBd4loqkBAay32+2o479Hh5kxxk4OaInPezHr0VPxkMBorY01ewhyD0DvX/JDSbnl3/Ke0n7g0ub85REp8SHGeHp6OpvNYG9WJh9njBGiLiojbyhcYyEg930/nU7l8oR/LcrssG88a60lK5AR3sNJZ/emOADQhZ21tqyblMLt7S0zy5CW3atpM+f9f+xBPWZmPKwEAenEqEZQ3T3C+6Vs1F9/8d5U3DmHZhw+2JP9EUAxU9yriQoJRhYVIDLkTNGiNtYOXnYESkEB+2ke4fmO8DoqUvsU1IDWRlujjAaFOVPMIoOjD5CI1jbnGHxSimKM8/lcimhmGoahHzqtdVlUY1MhkawTazVzHoaw243anjmmGEKOmZmleWyUoUSEXLhS4HKllLj2XV1eW2vrun796lUIYbvdKvWlSVjOIzsetXr69FMxp3n9+uXd3Z24/3nvhUcoIwXW2tlsJiWnUgZBA4PWyhhkphBSXU/0Xqa5sG7gkFICRkSgzMxsrbFW8MNRIOireJGshBCCMiORPMaoUUkA3+12TpuBgnRrhBKujSaiqi5JVFacs9Z63xN92W+TzeJ9AAA2RimFSnvv5WEZZy2Pmb9SKvogsIDWOoRUVs3x4siU+pvf/Obt3fVyedtMJ3d3N9qoGP38eF7V9W69vb5ehj4x86j+x6I2mdJeplySDeO00nh8fDyfz2NOr1+/lklEInr27FndFLrR3vvAoWmaQTXr7arrOtNud48fP5YQc3p8wkgHTzBElLFxY0xVlDKssVotAbDd9SmRs0VV1ef3H15dXGttjbFaa4l6ZTn6b+Yh7uXFse/7orTOufl8rpTaLDdE4JytizI0zWazruvaFXYYBuecT1HrGveFkHX6nXfeabc7a4vHDx4OQ1DKvFy+8L5vmqYui9VqJTDEN97/cLvd3t3caK2Pjxda68vLSwaqqmo+nw8hhxD65IWDudlscs4hknRChMFxdCR2vS0iEjEDK6WNMSEN3nemgM12lXNeHC1WL94UKvR4dBVVGaPvI/Rh8DFkImttWZbRh5QTKEwpG8ScvtTFR42HmAUIYiik9suXmQGZQCkmRKMBkaSNyYgqx4ygjLK9HwA1ais8bWPMYYRN2p77Q4iUUUoryHTAi0fLEWANXyroEZFUvHIZEr+IyBitUBLozAhyxhARZwJipQpBRPV+DDbt9YMEh845Z8rMB09VopEcgUopcdo2qGTkJ41ilyO6rbUWrxhm9t7HnKT5CSoj+9BHZavu6vr05L3vfOc7f/SLP0XEx2+99frqdY7JGCAiTlS5EgznRJJISYGa9+M2Xz0mv/pKTKBQKcVMZVki8tg12d/kQ7MREQUHlzxeaC/OGUTMmYduUEanlCEmYzHn7HtPRFdXF68zv/fOuxn46GgOhFJLcKYxhIntg2gjJcaMpLJSqqqqyWRSF46IAFn03YScIrM8xpiqlDK+2G5WDx7c//AbH1xcvH769OmL4xdVVV1dXW2327Ozs2//1ndGXJXz5eVlTvTg/Pz09PTVi9eCvs2aejqdikKItKBFwdYYlIe42+0mk4kxoLW+ubmp63o6ncaQBWsxaHzv5fBjUDlnNNo50w+9Ky2CAVDAPAyhcC7nYEfbilDNakmJHj1+UFUVUbq6uppMpldXVwIZK6VCHDJpuVfLsJSOmtZaqAqyCIUTysy73W6xWNy7d09ouXVZHg5jAWsE5gAkQGIA66xsICmfUkpK6cNzl8ND9ldRFClF0b6XfSEHMBGpvfq+LJu8h7at0qjVOMfwldQn7ZX7jTFt20t2KEM9cpTK3hE3OWMME9Z1LU+KmXOm9XIlINHRvdOTk5PPX7x8eP/8ydtvd20U8WsiMlaJTitqZMXOOVTsvdfKGmP61HvvtcEYI/CowtzMplJM7jNvVk7N53NmVmjqiUspOOcmkxkirtbrpmm+//3vW1tcXl4+efLki6dffPHFF0VRNFUlWW+pSqlaLy8viWgymSCxc27Xd3sCghGTnKIqQwjVdFoUxevXV0phjlE0qgBAKAAy8ia35e7uDgCYABQOg49xKzdc8o8D1JVz5qGXQC0USMGsv/jii3bZqRIZYXW9QgOcQYstVd+3W5Gsqa+urhAxxEFZIw9FMXhWCrTIayAi4JfJ6F95Fa7QzsnCWCwW69W279bT6dQao7U+OTkpCjeZNB9//HHf9ycnJ977yWQiV/jkyRNrnUxvee93u13O8R/+w3/46vWLH//4z8VMZjpt+r7/8Y//3BhzfHxcluXx8dHd3R0i379//+c///l3vv1bdV0fHc0Fy7i6ujo7O/vggw92/Y6IfvrTn/Z9z5n7vn/x4sX3vvPd40nz83/zI44xBozsw9Cxpn43EAARWGU5k/dh07VZa2VNkWCXIiH4kLJP/RAEbKFMOQAWJqTc+z6leHp+9uGHH9prPz3ecfFC6eLFi2fA0Vl89uLzV69ffPvb316Urr28SrvNyb37dTUZEJWFL54/g5Teee/8brX1gWxRMChmFIWcvfRhhgzR79VgjTk7O7u4uGjbVqpcSb6dc+prCEuyKxFjztm58o1w82GylkWsfXzo4xsaY8QkEBUSU85pGAbVylmcAIwsY6kepZSiw+j4X3vlnN0ezBKhjLJ0AvKGIaecAYxSSkbyYV+2ycxsCpGZM1PXdaK9LuhAWZYIBhh37U4cnoX06sYlqmFvUKP3mkJIOgtvGoSOwZKtFm7PMuYR7fWdzzn7fbsdRgrYCOGlRGLfpLWlHPu+F3fWyaxKmZVSDJEhG62qqrBWX11dACgGlnSOmOu6RETilEXxA0lpTcQhDpRBHrF8x0OvLoTgKjRWUQaBP8qylGDbtltmtlYzGwDQBokTICGaoiiYlUzrM+sYo7WyhJCZQSlrk4QCAMWcDtWsAIhyS81ey2gYBvF1LMt6GIYQOmNMSgj7gtz7XilU1ryR7NCtNuC2/6t//x/9gz/4g1IZv95RFzWjU/ZidVWWdQJFOeLeGiQDd13nqmlRFG3bp72ivVEjFlCWpUIGPfZcU4hFWckgyWa7fePWoBS77S4yMBpRWuGUV8u773z3e//hf/SP/8k/+ScxRufco4ePnj37/I//+I//9h/8ncViEXx7SKKktpGy8NCZO3Rz7V6+/42fvtvtvvfb7zhrnz99bdKAlEIIIYQMLiUyhbt3/yEoc3V9XU8aAECElCIiGlugMm+mN4tzstYAOqWktWIG1qrvPX7FF2u12oQcqrIJIQSfnDGI0mWMMQVKUVb/PlEkIswhFEVhjDpQj8uyRK2Ast1Ljsp5J4WYLBhm/uL5M41Ka3txcSF4isDZY6Hrk7CFzubHIYSjo6OLi4uqqt59913xfv/e9753c3MDAC9fvlyvRu3X1WqFCXKIGWC9XiqlAMg5V1XV3d2dcy566SoV290GQE0mk+X6Vpx167pmAkqslNJWy5yyJAl9aPswsue6Ya21NsoKUnCIhN5776PTzhpHFPZATGJmPZIiWSnWWhML19zmTHgQXVHKGGOtQcKUUtf2o4I8MGRoymbWzISRigylK6qiurm+tcqUtpE5zpwzKv6t73zn6vri+vraGZNSaqqaitHjpHTVASQySjdNU5flo0eP7m5uARRW1WazyTEpbSdVoazp+/7q4qKw5ru//dtXVzfb1brvvUZ1c3UdY2ymk+l0enJ0lHzc7XYZQMjFcQwUEHMQop+MY1ZVVdVVjHG0LAZIkXLOKQe5e8YYbVAapRJMqqqaT6bb7Xa32wGMaAgRxxiNSDnvdtbqDz744OnTTw9owhiK1cgkCMRyRvRDKxRLOZLu7u6kwD8+Pt5sdt4PEkg1gSRd1lofw4EJaK2lDDLHQ0R1Xc/n05TS9eVdCEFrNG4M/gcKheAAe/Q8yhgKqhDC4JwRNbwDaItqlK8FuZOjMqmVuvX29hYAdrtOirvxcaPMzegx/cjZuTL5mFLKwUtDUK6E9/pX0+lUa91uWu+9KMs5W8cYd+3oonGALP/Ki5mtKTRCCh3sCSvr9ToPATMp5JxzWVVlXXtJg8tyOpnOJ9OyLGezmeAwOWeD4yT09fW1wGcCesimlloA9jRe3jt9qVHVAeTol+H91Wa3Wq2qpp5PZ5KymtH/dqeUEgNqub0pxLbtQz8c0GFjRsZJ2gtV4Z4arLXWMCpQKaVSCkIvLYoihxETlFCAamT7ibC11GLb1YqI5NiVuca6HKXwBEqWMIhqxE+Z2ThrTTEMw3K5FMlHaTYgoghrzGazsiyFNyBBSepiuQ8HaWOtdSYaOYv7KStrrUxOyzc69BUOf8YYxdtGTmcikv+r9k71clvERUkeinSPjLFECb9GvkmQmHHt7RXVrbUELI8g7zUTDrC+wBe2cLKDvPcy3y9Gf2Npw2ytFTFu3PsNAoKg8CGEIfsDhy/vRyL2wLRgu+OUw6ExMAyDKybGmGEIxFnaIZlSZaqUkkj5M4+ydcyIqDWOWzX4FMNW1BSIk6xbkUNkZiIQwuswDClGpfXNxSVawzkBg60KpeDk5OQA3/thKOqqKIrlcika+kdHR8fHx3tuWdv3fV3XwlMcS3VtiIg4laX4D0VrLTBvNpu23dZ1rVH1vdfaptgbYwCwLO2hC2VtMZbweex3yqqQnGX/w5E8IXN4Wuv5fB4HXxb1Hgmjqqps4aqqUppF6HkymSyXS8GdF4uFDFsfgklRFPKMYk4EXBVFCAMANE1zCKHGjVwNiXLM3PuhXW2LosgU1+v1//A//H/Xm9Xbb7/96vKVMWY6mftuWK12VhVEnDgBk9IjS0bADVQ8m82bpoo5ZEpvv/12zlkMSC8uLpqmyUh6QK3V3WYZlquO/aSs8rGfTqe4QZNS9r0nYO+9UsrHsF4viejy8tJY9fDhQ8UQg580Vc5KKdXueqVQhq3EbXY6qdPJou/74IcQ0DkrD/Lq6toY+/575wAwDMF3/cOHD3e7lgy13VCWZTmfmqZKPnSxf/j40WN4fHNzQwpNWTKzxVIpVABnp8fjF2Y4OTmREZ5IPkNcHE9NeU9rnRWe3DuR/RPZGwv375+NJDKtzs4fiO85aGdtmE6bnNlaq1h9WfYj1U0jKaxWarvdlrZMKREGAECFShlnrNGTyuXtzebZxy8fP/rumxPTnJNGJNYJgJwzBtAAgLNmsIqzDp4RkPpYFJZo1KGXlFeBYgDKo4EhGATGUc3ZAAOX0QEAGk0KexiNu4GUAlRZGzSbm6UlbaxNYThwM/Pemk9EqwEYMCtEShEoa2sQVcwJMmgpB0EBEaC12kjDXb5a2utpKCX6IhhSBlAIgECZAoUkyAggxeQzKUQkZup72Wl99nIeEcVIo9oLwT78ASeKKcRDGEWtJEdExJQz75ul8qeGNOLmrFhxhmyCAshodOzWRcGx2/zN733n//nfWpvVsIuzyZmBgjM5o4ujIsYY0c4n07bdppTKamRUyXFYVo/e+Hzrsty1UTuHSs8mdYyxUyoByOLhkRuLSqnpdBp9z8xlURGRshBjhEwpU2Fds6jlOCldAQC3t7c6Y3ubikJXVXX1YhVbVrm4vb0ViiuC1cpqV6xWqz7L+QGaIYQhW2ZOk8mkrgtjLBEgsR9SCIPWut1sOx+cqXLirtuJywcj7br23/75n3k/AMB2u726uiIiIn758tXd7frx48eUGG1dV+h9n1Jc3t7GobfKcgBOZlaVfb/tY5dDLOqmzd1m287mpylQpvyv//WPmNlZB4CTeiZGMcy5coVSgExEkjwhI2cKGnWKQZBmqzIQM+dCY/SdMiZmNo5taY6O54vF4ury5tXLi6Zp3nrrrdXys7vbjTHGmqoLXUoZ0VBGRAyeAEiG3qw13scQkhx76iBupUzO+d69e9vt9vr6OjfNO++8M51Ov3j+XJKkpmm8jyklBGTm4EmU7OQ4xL2w5rh/laioj8kWkh6GYTt4ANRaZ2NzTIhoC6cBSe+P/BiB4Pbiymqsy2oxn0PMxriisESEex5QSnFPw7fGGE65KIqcOUGCDEj49OnT3a4rymoYBh9CVdfee8qxGwaDJsa42bU+UkbVt8PzL57N5ouTk5O7uzsJgwJYi7peVZXzs6MYow+pqMpmOkGLqlKatQzqusodciljDFGazSZN0zAzKr569TrGqGBmi8Zo+/Dhw77vKcN6dZdSmEwmr1+/vnz9KsaoFKYUr652UjGSCRpViKnve2sLax2n7H1IKYmEjjRUP/jgAwK+uLi4eP383r17PmZrrTJ28L4fvLXOWJdSCt4bY0I/dLvdyy8+zzkW2gFwDMEopY1iEEFApZ0NIRIzyBQ/giuLsq6csXd36xgzgrZ1FWM2xoECBYqQNKDRyhQqUyg0MCdKSETOls45vRe/Q0ajLTIgcqBstfq6LDMl3t62KYW6rtVUM5HWetdu7t+/zy35OHz69OO+7x8/fvy9D77zySefXF1dlaUbQu+zf3H9Sk6Nx48fO2260LZ+98mLX11dXXV5e3H3QpXK53R9e/Pq1auyLNbbzXq7uV3ebdpd37fee7A0Pz7ShV5u1yF4IvLRny/OX758SZTWy2urDeWsVWVdeXm9qqf3yunDl5fX07CNWbfQbYdtYoNQQCSK0VUpQvQUIjEPWGC15U1lLYYeM/U+oDbk0+A5KZcB1zfLPrerMPzH//v/8m/+b//Lf/vHH//m+XrbbhKYpio2KXJZL4f8y794+vjhg3kJizrXp+py6OpGF6VOA00Rhu3yw4++RViBmgNv+u6OcAWmYzNlbUCpoij7fqOUykgphRBSWZZW22k9v7m8Ozk6KV3pvY8UtTL3zx+8+UlxHkLSqsZoH54+Xr6J5ml1HDIAZ2Z2xjKLBA0QMIDKRMoaZwsi4hxA6wSqNo40RfIIoFClFLRIB4aBmUvrvk4eklL23aCUQgBmjDHFkLxLWiEzGjRAZLXS1opYsMwU7yMZI2JhXFPVMqsRBu+0K6xLOE4973ad9LeMQe8jM8YYlFIakTLhyFRCBiAAVzkiMpYX01nO2fuotUZWxHsaiMLAg3Em9nE80BmUUoqhqqo4llKsNaYUAKAoSzGgyJEKWyqlhmEwSihUmRmtLXLOPgRmVlo3VSWloGOjrem6TsY5kZUCrTRwBgXaaCOxfbaY55wDZ62UDBen1DljrXY5ptvrO8bRPQ9YW2NsWXnvE2OhMAY/rcrHjx+fHh3/+Mc/9t77YZeNQczWmslkQpzbto0x+qFVxiqFMk4eY3SFJSIgUog5JeFRAudDWlq7apTRyJD6WLmiwjIx+fzm0atpXfxX/8X/8Tv33vo3/92/ePf8yXvf/NaK2quru54yFqU1buqqu/YamLUzu9QqKoqqAmVi9ImiVpYBMkHT1DGKGUOtKHOmwDrrJkHOPliG9XZzt2tg/oZr6AJkzCkla2kwg6cIaAjAzqZ/+Md/4hZzG4Zu6P/g7/39t9/d/r//X//tk9NzA7qLEBmtHKNMkhkiaASFgCkmBF2VDSJOpnVd19vtvTfegZmy3zm/x7tVUalINqyGgu2297HE25zu3380efD2cnPz2afP63mhHLRDT6xDZFIJ85tHBzTCYZhaa02cJIXRGlKKk0n14YcfvXz58pe//OV0Omm7FTMUqhhics6xwq4LXbdTe6t3rbPWFtEBAlHS2iAqpazWqJRWSqFYMVECAFeomHqlGRVro4t6hojGKHEyB85agVaY05BiT2ICyWO9cLd6eXf9UtCrV68uTs7O3nnnvS9efD6dzu+dnM7ns77tv//d77WbbQpRBmKE6BdCurq6Silt1xsiWK1W2bcc0fcJMXfslVLMeXW3NAYqbVXm2A3W2sLYvu8LYyVqkSTDOKJUiGiCqqdNjBEJNKuYg3Muh0iZnTbBx+AZwRAAGCSVAAm10soRR06YYwAAz6NuZllWg09EhgEUuhQJMVuLSjlmaQ8orZXWWqG2WkNPiAgM98/Ocs6gNWdfGa01dl1IIb349JMYI/f+tJ4wgW1mISdrC+89xZxDUEpNZjVpKk0RKNzdLK9vb5qmcbY8O7/f9/3t7bJrW+/90IeU0uP3ziHy9asLRASiEBgATk5OTk5OXr2+CD6u1+shhul0Wk2q3W5nWTOqqqpePHs+mUwePHoo4AIzD203fmvrKOUQAhAVphDskjghYmFsWUgMV6EPN8MdABABUc5MzIz7cUyjdGndbDZZNFOVMYXcVDpmEv6dAI5t22KmfmgFfROShDDdjFUMuSjKIQ1D6pSGlAdtlEKHxlyv7mhv3WytVcQxemWNALuodOeH/tobY7IidEoZVdblgVfR97EorHOOOPngiSjEuBd3DtZpQELFIQ7b7TZTQg3EIvqRyrLOmRXowpaoFSCHEGxRMnMzRWZGVvIpRGTUqFyRckCgod8qEplapJgIgBUqpbTBnPN01hwtjmez2e3t7dXVlSudMmrbb2OMmUk7a7XR5mvk7Bf15Og453S7gnYVqrrQBkPfUc5GaQQ01s6Pjx48eFBUpVBJEHG725XNZDKfCbhLRFphYezz58+77W6zXF3f3Up7sqpWjx8/jjGKV7T3XuYwiNLow4QIkoWiGXovcnPS6GKkRBGVqGpjXU1ijGHwOWfOlGIchiEOXmsLAEwJAICtmDQcsHg0GgGIKOSkgS1rYkKtOTGSqG5G4ZVLApApys+NMQxY2MLYImXWaI6Oj+V8R1ZNNSkqR0S9HzKTUso4S0TZR+mpZCCOOcYow7jbTTtC3vuFKrRWEa1ar9dR2ipK7drWOjd4T8zaGB/CZm/XlIGdclq7gQidAcSQEzMb4wBUYUuBYsMQi6IAq6wd5XdDCFpbxPFNxo1J4L2Pg3jPFKV1FJOR282K39g0BtiP1Ipdp92FnVUWEZWzzJzTqIGmlEo++BCZ2WkDxNEH6aBE4TUzMWP0ifOQc1agGTizdL4xZyYCrRGNVkpZhRorANBW5ZwpjnbWiKwRUsoKMAZPKSIiQ1RKIWfi0HW76B0iIlkk5bRB0kMXlbKlK0a8OMS6rrMaMfQ9GxiV0n3vi8IqpRXqGGJV1CmHTLndbYKXrokxWqcUUBcKVM5ZOf344ePj46MXL14YgzkTETCo6CkMbQjR+6BxAFiXZSn1Y45Jhj9evnypYNRpPDk5yTkzQt91bdtaq09OTkIIlLJRdrdpi6KilIl6Y+zQ91pZceqjL2n7KkdiZsrc+0EaTlkaFaCYcvRJa5QGgLXWFYY4oWLFIEw11E6k1SAyo6JMSpvV7Sb4ZFVVoPPb2LeePYtwKxgAwjRK0sbCaMVUF+UB+I4xIuics7ZO0J4heiJaDcPxSUM5rler7XZnrT2dP7h5vbZcJ59Xm41WttGTlJIIF1BKnBUDIJMzus++qervfPej+dHk9u769eXrdlhLy4GIH5yfzmdHl7d3OSRCYqVD59ftJtbJNBA5v/vkLbNarQDAFi7nNJnUBHa3293e3saYj46nTdMw4eX2UkY2EFEkDtbr9dHRyf37p1dX193Q397efvHF88IVOY/Gl84VapTi8u+9997R0clP/uzPu65jBu+9QqOU0s4ys2JgyLe3tzmmtm3zng0uSXaOSWAI0RoLIdR1La08weC6UUMHqz2FsO97iqmqKmHFSuPXWItiYkviOmq89zHksW/O7OPoYjEMg9oz4WU9jYPVBuu68iGnmADwl7/89e3Ng0enb4gUg0AMxDlmcd68vb2Vawv7SdiUkhmZCHzoHuBX6LRjE2/kwUkPiqweuygatNYaRnNQ0qhjiIU2h26bRoOoeC+Ah3vq5d5pRh26W4KtCJ41HkoSCcQPcO8ZAl+hVBEw5xz5Sw0NoxSNAZJT+nISRHjNuOdEAwDhKFIpCLje617x3uUzpSQQsyBr5L/kO49NZv2lY4lSY/NNSsEYY2HGBGK33iSD2+Xq0b3z87N7r29uVt0OLBo0gQdQTngiMQVFGREp+CEHay1JyaoU2gxvItBI+i4XLGyC2Wy26zppbvd9b4w5PV3IzCtnIzJhQx+UNZP5rCzLlHLf91ZpoZJprTmTjMMEHDWw+r6fzWbSuVFKyaSzWA3AHm0vyzL0McZQTQuAvNlszu7fQ8a7uxUw7fV8ARHn2mhlV6uNLUb9ytl8Ij03cZ5pWxH0UCI+iIg3NzdEFHdDUdrCmdVqZbWBzNZayWCKothsVsYYRI2o62oCrI+Pj3e7zcXrK2PNMHjnFDAOw7BebVGxyBd6740CIoohGFUgIOpxbErWXkpJCGgAgFoj4mQ21Rpns1lRFLttd3V11batII/GmJubG+ngCRPt8D6QiRDkacrGUUoduGySQ0sH+OnTp9JIHIbh008/PRDVRap/NptVVbVarUQRTF5SQcFXRGBgz3kcw4hS4uaMiCJfOAwDIUkvV4x3Dm1qkaKjvdCzYdztdimVIkLnnBHmAiIK40P+LSIWRTWdTuVDpW+vlDo7O6vqQorPJFz7zM45Znz6xRc+pqKq8nb7/MXLerKQlrJSKuWglPJxAICiKET4ryxL+b4A4JxzyimlZBTRWivyxE1TzedTABBBfOnNtm3bti30fjqdfvzxx0Up2qN4eXn54sWLs7Oz7XZLSSzI0SrtfVRKaTQx5OClxgtII62MKFtbhDDsdvD64vlme/fOu++uVnez2azv/KNHj4hoCFGsVHIi8VCyRt/e3lJMTd2EMCCisWMYKcvSOh1SkrPg6OgIAC8vLxExxxCBU4jVset7v9tujHUp9MaWBlXyoSxqWU6wb2UrpZXinJkQUHFMXmnQyomnMwARJwVGDkel4GsGJyAED0Aph0x2s1kRpRT9OnR934lKAGPKObdte3V9IUv3s88+23WtMebDt946OTn57LNPjFEphidPHjnnttvt559/Pp1Om6a5uLgYuvYXv/h5VVXL5d1sNvvii6dVVR0fH6PRWuvpdPrFs6dEuW3b8/N73vv1etm22xh9plhVVU7BKJVijMnXdXl0NG9X291601hq2yHHFSMFyEw5+WwRfRvAQoZsTMGEQ9/v8kh+7XNmW93d7ppy0qfw4uqqC/n+g3u//zt/5/TtR9/64d/+9PPLjLaoyk272u021zcXinLOvNmtz++dfuP99++un8W1bywWRXX//n0CRqdD5N///d93RdWFsN5uPn/+LER/d3N5fX1dFqaua7jmw8nOzM4572PXdQrU6dlx3/ebzUaSv5RSUZfdm2UyAAFQcYxx13fvvPvuL3/zpt9xhU3OKJ1zppwATAheAh3JR3eexLM0A1A2BQqLQTQrAFhUYpxzcX8q7f1n/uqLch6GQdQnJM2QKOdjAGKlFOWkEcN+agf31nmHvFntR6yE7g2gtBv9+ngvPiby9IdbJ7tATij5c7PriChFtE4jcc7Z2mIYRvtTH4LIphPwfD5PKYWUhfmtUCGi0robBlcYa3Q9WRxGjuS7MHOIQdSKxB5NkgTv/TitQqOwpkI0zskElXwpSskYM6Y/rEwxap1TykDMmXLOi+lst1mLJcZ8Oru9vd1zZ6JGhQwalVwuZKKYNI7ESx/CZrMRkZbz8/MhBu89KgUAAogopUTWoxv8CPATW2dkhGK32TrnxPhE7zUWR0YJgI9Ra+2M8SkCQOUKBBQPjL/++i/+d//Zd7+R/9l//d9cffLF/dnJv/yX//I3l69vbm6cK0O/dJOiruvi4cMQwuXdDSs+mi4y88XV69vbWwIEN3JvM3DMudtsnDMWgVLORJgoYx6GQQystX7zUpxMp34nhYAOnIxxfgiL2fQ73/zWv/rjPzmdLaba/ObTT3/64x//X/9v//cf/as/+Rf/vz/8+3//72Umba0xWgpsIpAEXu3ZzXJeC6lttVptt5M3f/qkWSwWFNvCud3tKg2eEiij226Ynx6d3r+Xmdq+qyYNoGemupp0gwdWMUb7NQaMxroMI1sNAIyyACRbLGe6vb07Ojp69933V6vNxcXLGNNkMhGelOhLhjDIUMWBuak1jT4cGXa7nei0EpHvh5FIsZ80PzCkRsQWUO99j2XcgffUywO7EwCNGWWUIdEwdJvNhhXf3t5ut1utbV3XWlskPjk5+fY3vyWjA7PJdDKZTOezvZ9NYW2xXq+Pjo4o5d2uM8aIe+1yeYuIm93WGBPDIMM0lHNgBlBDN7pka62HoQdWw9BJDCnL0rkSCRG1WAxZ44Yh7MscxZmUAhKRxvUOidECIhNlptwNA6tsrTZK5xQoYRiG6aRGxL73EYLSADkTs6SCctrKRMsQvFEKGSRF7L3X++M7hFBXhUQzmY5SSg0hTKdTRFVaI5Mxk8nEOq33mvKjXi2AzILEkERQQtQzm8mEGA3Z9Xp9eXkpIb2qKmsNEWitnz9/ftDLOhw38/ncKv3ee+8ppT55+lnOOYU4m82ur69DCMfHx7vdbnzuabQms9ZOp9O2bYn3NoAkbPE4DK1zpRBjJZeTQkMSCaHN5hw//vhjY8yHH36oFAjvUuI/IjZNk32QwkTC0Wa7lZA7n8+LothsNhn49PSUmdu2TXsDLnl/SUelAE857Xlyo+mZnCyTSa2U6rpuu91aa5umKctSLpU4adA5Z1cUgNi2rWh+ihSDhAIZ7QJE8eA6zL/LnUk0dlONGUfRlVLOFLgncVMaFQn2oAlRSlqjNF1EwERrjWp0U7+5uZHGIewt6XLmsiyJUlmWVmkJC3/9xUS7fiuXbYry0aNHd3d3Sqm6qnJMs2Yi43Qyh+HKcWzx/tn5pPn/k/dnMbdt2XkYNsZsVrvbvzv9uX1VschStZQoNiIpK6IQSyJlNVZkCbDgxIqdKAniBydA8pQAAozEiAEFCIzYVmRLpjpaNCXKUmSRRcoUqVKRrKpbVbfqdqdv/ma3q53NGHkYa+17KJ4byIKBPGQ/XBzcs8/ea68155hjfOMb31cmiZGfJpjAs2fPHj16JNKmVdsAgPfxyZMniChGxzBiCh99+5jx3r9/H8dpDKWUNlqNzkMyIpmnhfw0OdcEwbfWGhx0VKSmICKIUbaSYLtJngneCgI1AMNQkog1l0hKDtJMIboQQUp4Adb7zhNRnue5ktnfYaIrSYywhnGk4spDNIkVvAgUSmyRaihJTRzmu6KUzBcXF0opoaLLijXGyJ6SAaYhwhuDPKDnekBIQgiBcHB1PkRvOqh6clAabJIoZWFMqA4yGjR+GvNHSIggOQdN5AOm8dtfcg0AIDPKOLKbWSlgVlZ6kwoRRZ7rMAULBCoxH6ElJhcGehht7Q/X773PsqwsS6FPydkxrp8ozqIH7D76ID/nUF8jg1g0S2NJcPOxnzrMRsgqiqNsiFSyVVWJ65LcWHmPlJkibCLDTy/y9OWdWiMiMkelslu3b7z22mveO9mnByvCq6urGKPcnKZp2r6bTqcAEEKQHG8+n7/++utN06wu10mSrLcbAW2oD6ABJ4WskDzPp9NpVVXex9671CaytiW48agSI3E7jtpxAtfIlJ6czsaI1AHJHZbOlvdeMXg3pKbGJAcpoZ6c9ALl/dbaRJvD0/E0zGLO53OT2LquY/RFntd1w6OWi3ymQlOWZRzNA+X/g8IY+fnz56OKKRklixCsVdoM+EmMTOQFcxO5IR5FcSeTSZYlT58+XW2umqZBrbuuS61NbCrfZYxJcuvIzfLZdDIr+ikRuaQBwrIsjWRFWquimBIFRDw6Our7fjabvfbaa8x8dXW12+28c0oprawEoxhZ0Kj9vlqtVuvV1hipN2JZljJxIM9gt9t98MEHp6fXjo+PN5sNEcvQh7W2mEwAoHdtdNz3fd920ic0o26RdCREtkZGPCT83bp1a7lcMvP5+fl+P1aDY8REYtHfICI/njdqNJxhCkmSCeGfovhgeAaZNoWq3gErGBO4MCr6JUlWltNr1069d0+ePxb1W+c+RrtZKSOyWYEgkjFGxFtlPRmFSg0yWjFGHqSTh6GwwzlxAOCAQY9IrqA+aLQZo6QsAgaWfdt3vfdRgYIRn+VRyVFCjBpnXl5ozsBh5xz+P46iLRFGZSJCuX4pooAhMuEYfIHowKQW+Y0kSWHUZYujHJXWGo06bDwAkWaHA9AmEU0N3gI9IoqwOvFHp6Zo1oy1NxzCnyy5zvWpd5lNQJt+1+6u1vP5LE+L+tnj3CijUzLKmhQAIsO+bjhgtdsgojVKKWRm5wIiWKuq3ZPZJ17yfOuq2tcbgIHuZKxCRFDKWiveCzi0l4c37KpKKWEGaCk/AMD7wRs30aZpGq1FIYsdxyzLNpsdAHCkd+v3iyKTyCUfHkeXIcmPFev50XK3X202Vydnx865el/XdVvkk7btnRtEyZeL4773xjTL5ZyImqYRb0yllNYqhFCW5fHxsTH2/v370+lUKBLe++ViohT0rtGoJpOJQd00XVs5Y0xis8lkwki960II5GOappvNKsuy5XIZQrh9627fdLtdpW06n6Xe+0j+aD4LgYKLMUB0Q8+DgQkHfTFyLCGYiFgNp12SJEoBAddVu1qtvPfL5ZKI3n77bUmLm6aTlols2xijeF9YO+Ajsj5lCEVwCpnT0Xrony0WC2Zu67qu624EdyTLDIHk6JKHe8hcZT3gC9jhYRPpwSrHmGEwnxDRJFYhEzEA2zRhJjmG27Z13FtrD7I5RVFcnp93XVcU192h/yFlp8IIzBTROWb0PqpRgzVJEmt9nueiXOa8FwnOLMubfeW9l/n0yNB0rdiXbzabQ9gZcoJoCaL3/vLycjKZVNUuzTMBggO5NE8PoeMwUuScE9x/NpsdHR3tq+10Mb9x48ZisXj7W+9crS7zPFOmLMvy9p2bxpgHDx6UZXl0dOS932+r9XrtXFBGxRjeeOVTon1x/fqNpmkefHjPWis6ZWlmizIXn8ajo8Vmuzq/eFKk081mM9jMWonYRmkVibTCKLZpVswVC40KBnFALY1u473Wuszyi8vLPC/GOfdUMKa6rjdXm8RYipTYJIaYpiliDNHJOxExRh8Co2JFCIBpZol06F0Ivm2b1KYxBqUMURTJa4nD/HFlCcckNTYpY4xNU0tlRRTa1mutP/Wp7/HRffe733344MF2s6mq6ujo6ObNm1Vd7/abPNVlmaapffbkEQ82aP7IHb/y6p1HDx5++OH7fd9fv37Wdd3Z2RkRHR0viEg6NyqoLMvatq53+7t376bZLMvNYjkpJ6m1KSL3fctAFEzb9tPJxJq0nGSL5eS9d5+uri6uXSsDcXAREg4MgJoVoMZIIh2hGcHHEKJHTJu+V8bUga+2zRe/+EOv3Hnzb/3Mz9791Oe/97Of//7f+QPFtEiXi/Nt8/f/239SJiezk8lkkm22YTktNq7bt/WsKK6fnQXXnD97fjpJ54uJRlVOJ9lUdTU8uPdos9vfeuVVx/He4webeoeKVWLrpnn06NHnvu978yRt9pVikEJlyESZE5PM53NrbVVVN27c2Gy3bdO9+cZb7mO0khEh0QYYIgeT5S99z3q3j30TowdiZlbIolGmtQ4k9E9tjFaIITjv+0984hME4HyntfbRJYl1zklCpRD7zrvWaXy5aK+jmCYDUqmUCkzApBFQCxcMjDKHTIBHTV7GwZoyhAAxcM+Hc3mYGx2HQAGg72WcEGTKW4KMhI6RLwYQOTEGAAwqMmZQEvAeQBE5rYxSOkZiHAp4rbU2VilBmqRDN9R1WZ7Lh0smyUNvWxEBMxBF8uGAMoTeJcbk01wp1bYtEmZpkmgTeydGpji4TWiDBhEpRGQ4OTre7LZE1NZNmmfIoBCNGTL1GMLRcum9f7p/niQJKnS9k2GWZpTyBJsAMxE9ffpURsvRaOrJOQc45GCRpLOuF4uFu7zqui7RppxMJtOy67rtelPXtUjVSToqmVLvHACwgtQOg5NFUQBx551SSmwYf/vrkzfv/IO/8X97+9e++n1vfvLa2Y1vf3jvar2dzhZdXcsxYYxRDEme9UCrzTqfFN/57nefX1xERm0NMhOxp6iJ2t7lebperzOjc9SJSfumVSlEAkSFWglF6Le/eu8JEIzZtw3kChEX8xPQTbdv33rltV/55X/8k3/oDz5+8PDh48f3Hzz4yT/6U3/pP/3PdvVOa7R2YCcQKlasAAElxwNjEgA3aGEx7Pf77fblcPPd2zfzzDx/stnXK992BlUkCogdx7PlMiKcX17evH37zbc++etf/5XpLO3aPklLAGCKgxDjb3vFEElR8ITDAJOMKbCksm3bV1Xzr/1rf2xSzv6f/8l/3Pd9kmR938YYiUIIIpcx0Pqqqum6zloloIOQ+oPzwfk4as0J8QJeGIcf2RWKAQ7GEtbaoVUzCsFLThIjCX0+hKAiWGtb19vREjByWG3WQwuKwlfq+sa162mW7qod7/ne4wef+tSn0KiLJxfG2O12u92u79y5c3SydM69tnx1v9+fnB0rBWVZJkni+n46nTZNs9vt+s4j4vn5eYxxu98554yyMcZJlr/11lsffvjhxcWFFPNDSpZYRE5tFkKIFIMPxiShDwqtkiFuQEBCIKOx6xxxMBqyJPHeW2MDkDFKI2itHDLHnlmRCL9qLUm41RxjlInYGAMRO+dkLrMQUI9D7zpUrHFoumuti6Louk4MJJgHhXdhfwvqZ61tu85776MDgLptnXOCrJ2cHKVZ4ZxbLBZd55zrJpPJZDLRWgvPQIhT8vQ14vVrZydnpzHQer0+OTnpu+7evXuIWKSZp+i932930+l0sVjs93upIBJjz87OyrK8d++eNC0ACRgEYfHeHy1PimKy2WxElR7E2Go0hJQjoG3bJ0+eiOZ1kiTVdiNNMhqF3UTdRTMIREBEkSjP87IslYZBS1ThbDKVB5qm6Xa7dX2wVh8dHSGieJs3TdM0jVi2giQ/L6jcTouyruvMJuXxFMcx3KLMpNgRrE7eL7B+CFFyeNGy08Y477XWaZquVqsYo1IhxlhVlUksIpZlLliqgFyL+ZGwx9I0DT4G6g6n2+ElQLzowwq7mSMoNMAQQqiqSsA7M2i1mRCC6I18LIlg5FrFGLMsM0ofHR0B8WQySZNEpPPEok0MY13weZ4vFovprMySPMsS8fAwxrz77rsPHz7c7Xbr3VZAEumOyN2W+6BH7Xsp2CWiSTR4/vz5oSNS13VWFgYVy4kfo3NOKLHStzhoZ1tro45SVRkRUgAoytLadDazeZ43fbfZbLzvD7cFBpulaEaPPkT+yDkZhuuUIEYRDo1gyc9hFKPAUb/4sIwlGFKI8hQik8CUkq4oJVxBkFa6PPqu69q2nc/nRVFIMuCce+WVVy4vL/u+D4OAFcuCiaLRA6CUyrLEEyOi9CSs1UlitFExhCQduIDD0MaorhtjBBAQdoAmAACArbVSaWoUQyYvf6Xx40CkQbxUOu7SXDlwKAHAWi0bGWmI/JLkoNGyQeR5aa0OELO8//DVIjnS9/1sNpFoqbUOQGI3XcfKjzvLauPQHboycp8F10ItaPJHTQK5ZkRcLBYC+ktHYbvddl03ny8PGLTIXsvJ1TRdkhjZdNPpNEnKJOG2bZMkC4MFHwNoRDTGlmV569YtAJAeVed6rQdZ5MVCe+9j9DR6hkk0E01F0ToX5CRyUAYNDcvV6U5kLg63XVrdfd/keQ7ExojQs4z34+FXABykZc0IgjEzKTWo/UgvVf4JIAHoAXUkb7TolUfvB8F61Ki1pkgHqCFwENlUYwzhoB8bYyTHfd8bjbL346BhHY0xFAHGYazDX0lkqyoIITTNGF15fGqgkcRRfJxa1kN/UGvNLDaVfPPOLcGEL67OldUmNUdHx2maXj6/YCKv4ma3L/XEs29U3VZN7hprU69bnZrvfvedAbkTw0pEVka37SC9L/2fQaLUUwju+vVF17ks0zdvHtV1vdlsQwhN3elRx2e5XM7ny4cPHx4Al8ls2nXdw4f3J/nEOaf1gL/IVpQgyKPGtlJKayORKIyqQBI9BSCWBuDbb789ny/v3r1bltOm7XHEe+QylIJ/rlfjvddKSb8dIE1HkR1SRByIo9b65Gje933b1YhkTUJxJBGx8qFPkqTM8qKYEIVJVQHvjTFlMXtppMjSNGKGxEmRZDarq12SZHIeW2vbpj1Az4gD6nBAnImIgFEpRAwxKkBWihGM1lYjhShZxfDOcax2yDgJ+86FECxaZiYFcpINR/uo039AtGHEtpABkJiVvG382+G+SksTEUXjzDPrQx3FJHsrMuN4wuEwOueGZzeoMX5k+cojnZkZYxyUkuSRvXB5w9tEDYcRgIZK2IdgtLbWDrg3M488UwDwFNu2LWxallNmcFWjsiS3iUF9cnLWBudclwqDJjWd62MLR8c3mFnQbaGRVvVeAZbFy+uZo+PjJDuW9TmbzZSGpmmUMYcT9NCYQsT9fi9WtpHJmETegIjY99GH/X5fy6ycGgSa80kxAJ3OSyF9fn6pPzKsY+/9drsDAlAADuani6rdnz++KI8TAPjwww83mzpPsou41iiE1ui9X2123kfvfe+bPM+F1n3r1i2ttfduv98T0X6/L4pSa933/cnx2Wazubq6KsuSKe42W6Wh65tm14ZAWqWXq1XXdWhgs1lZq4OP3se+9310gFxkqTGm3u+Dj03TZYU5PV1sNqur1QVESpLEYKpHDS9tjRivgQKFKgKj1hFYrC2C88WsqKqKEXi3hTCgnEL1lfu521WHckv+jwZkAKUGRgAAHCgkWmvhXITgcFzJcqhvt1tkVmbQ8pN7Lllg07U0Dhwc0ogXgeZDbqRGsjARJdrowUswaK2ttX3wXdcpBqeHPMzaJEZiMdVRKgQymZrNZvvtVka0JJdK0xRAeYrBBcHfW+cB1CFICp96dHTsAwfvnJQ9UjDsdrvtvjJJapKka0KMUdD8w8GWp/nQe4fY971l8+TJE7l+cdtbr9fso1i1SAtaomuM8eLigpmPjo6SJLk4v0LF1lpCOLt2EsmHGCP5SF7u6nw+32w2k8nkdHkssWW/3/d9f3LtbLvdEVGSpJO8uH3j5vryqqoqa42xyvv+9vHNV1+9I9z8y8tLa9WzZ8/qbZMU1lrruh4RQ+jlcUiffD6Z9r1r2zZN077zkXqllIwIHB6oJFibzVZikeBfQLS+uvKOtDbMIu6JSgO7iIjOxSRJQoiIgKgphjTJ2q7uQ/XWW2/dv3+/bzs55jVqY5TWKQBE8jisk5dXJnmRF5PpxcVFVe2FdQKKF4tFCGEymSSpYUfL5TJ4f+PGDaWgbduiSBnjbs/ed/cffLCvNoh0587ttm2/88472+22rRvnOmv1pMj2+/10WiIEit733bVr1y4vz41RZVnu9/tJkU0X88XxLATnqPetA4VaMwA43zNHrXF5NEWwaZo/O3+8rzYGQl1t+SxXSiljAgetdYhRGaU0GpUFpMjUda5teozQsWJQ69Xu8Xr7+3/yT/zIj/yP/pP/+P/1qS/87j/6p/50IN32vmX+7/7x16bH16eLG/ur9mu//AuJVanF3WXDIUzTcl3t33vvuyG4MtEGjWYFBEopH+Hh+dOf//mf/6Ef/bHprNj2vQNyQJkxd1595Z23vzYrc4Oqa1tp/XXeAdKBLOzFb9OqrnNCRczz/OTkZL15OYVTgzLG9J4js7Yvf5p10/tmH0eBYwWsTcLMkdiaFFjJsSwHn1HKdV2SFrxj57rI0bleNO/6rgNW0XtgRPNyRIwHLWnUWqPRGMTwQHz8gtIwyQutDdA4J6QG3fksy0MIRICoAkWbWElXvPdN00znMwBAZETe7RoYe6gDGyBGZgzBxRgnE5XnVvAFrZQCTcQUYt97cR1mAlAQnQ9MiOhjkMYbAGutceyZZWkhAvFS2EtE0lozEQLYJJFjUQOKwEUIIUkSINZoNKoYIhBrVEAIhAi6zMoI3Lat1YlSqqqq/X7PzLPZbLfb1fsKlWbmltrZbDYpZ0OiGPuz47Ou7na7HTL3bTvyu3XX9cL50qiEfK1AJUki+JSUwQygDyM1qJnZObff7jKbcIgA0DQNAwGx1D9a66qqb9++XRTFxcVFVVXWGO+91ubajetE9PTxE49o9aANGv3LRYZ/48u/+qt//xdzbb/4uS8+v7z48OGj9HgZtAKAsiwR9Xa7zfNyPin3fRuZHj15+Pz58yRLA3PXu8VicmCHiYh311Ke51Ob7Z5fzMtJWeY6QozR96EnB+VLrmG736nYaK0JuKv7LFH1frOvuudPz3/yp37q5//uz92/f/+P/JE/8l/9N3/3b/3XP/O7fvgHf/THf0+92zJHhdpTFNloIoqBEcU808YYRZ2wrmsfeskwX3oHrp2cbNcf+K4NXZdp23Zt56gmzpcLUxQuBkCeLhY/9nt//Jf/6X9b99s7t1+pGxdjNBZHqOGff/V9z2ocG0dUSjnfZVmWJDZGrqt2dbWpttWn3vrUn/lTf+av//W/3jRVmuZSTscYbZo474HFfhfTLJvN54nV2+02hCB0Tj/6SR6YpPCCV4qseWOMuHkPyIJkhJJJj74Rh78VnRvQEHhIgWySmET2i5Ffsa22retFPtEaY4yp6npf727fvv304mkI4eT4bHo0z4rs6uoyy7LlZB7IBXJN08Qqtm17vDgqimK/308mk0mpEPHk5GSAy4nEFtV7f3Jy8vqdV/q+//Dho6v16vnz54iqbdu2aoRPoBCBqNrukNVkkkbv+q4xGolJAfuujd5lqc3LFBH70Nk0AeLg/NX2Ms/zLE+IUCvwvTT2CEMEYkI6gJhDmxxBaRVD8BSZWdA4ZiZkaweGuHg2DOOVFInAJJqRlEGbJCpGY4z2HgBa14obHjOnac4ITdcW5TSOY0xpmk4mE+fcbDar9nvvfZokibXGmKurq3y6AIVPHz+Rx7FeXUklnmRp7zoiYsTj4yNm7vuubRuieHp6ktpksZg3TTOZlPPFsu1qgTvlZ5ZlqdB0XTefzxERQIUQmqYRTE3eJoCXhoF4ITn/vq6890VR5HleZnnbtlVVeaK2baez2eGG+NDLSiumEzOq/Ybgi6LIslQg7812JUu3KLOizIwdYruscAAQWV4i6l2bF+lkMpGmSNuG3rVCjgaAMCJcAq0CQJ5PxVdJaS2tFx4JVWOjlATksiEZGDwyxuo9IvZdp8YBQe+C/HYZLBhACQTn3G63kyRfHeLtqAotsxeC2Y3QhBGHEuaPHfgIMTBHa40PkNokUclH10zctq1Y4cneXy6X8/l8Pp9PJhPvozy7y8tLMcx4/Phx0zTyHIXVZEziQ9judiHGk+PjoWs7VtLyQ/I8f/To0cXFBaHa7/fqYBJoM1kVIgXp+oGqKZ0V+YgQQozsKTKC70OSZzGEum6zjIX/K9RsRCRqYozSe5YfrsSpGPEw2CrLIM2sHW2NYxzMmRAREAU+ZmalgHGQ+BPkTv6/FGtyBHMY9L4Pg1AU4dCNkE4AEV1cXCwWi+Vy2XVdXddd1y2Xy+vXr3/ta18TTyOllMzsskLpH1tjyrJsXT8CoyS2AczcMYvMHY9T4zKN1PRdogfGLoBi9aJHy6B7Lj9kjC1EH8Nu9sFLW0tsh6QwEbq9NKQRB1r3oUkp2L2yRmuU535YtyMyNkD5PLKXAEDum1CUnHM6tcYYqUZhJPMRfkQQlA+RXZNlmeWk6xwzHwyH1KAbjsyYZYWwqaTD0batMcnhOSZJIoCGANlNU8UYmUiORbnCut4bYw7sYOYhGxSTUqJIwAIPHh8fa63X6y0AbLdrYdpaa4WmLdix1nq1WjVNY62V8ipNc0QkCgSl914ZHWP0wXvvhQAh8SpQRBb7bqVkAGes98fuqR4XvDlQOsbbNfhkMLPSIC1/MT7N0mI4nvo+y4oYozLIkaIaJOZDIA2YpnrY1AqNGZxdFSlrbZbaA+ZgdMKGAUCe18hVEvemYSzAb521VqFmYAZWqIGVQgZQIbgYg7T2ETUzUiQZJRRkjohWq9Vmt97XO5NaUOxDWCxns+liu9r0vZfuhVbGs+ecZYeWZblTfd818/lrhlk64dh13fHxMi8L5ijSGcK4LooiManYTUwmk65bV1XNPIy2BT8gnlrr+dFyPp/jKEsXR8s1eUPVivbfQCYKHNzWyZ1KRmoeAMQxN5JtAADiFCHN4cMT3e12Dx48GAonZkCULh8zIw4jlkOgF+5SkmRp6kMgGTEbmyrW2qOjoyxLmq7NsuwHfuAH+r5/9ODx6moTiWJgZWFMAbGqqqZpgDB4btuqb9fH05dEirbt9s0eiS3o1qZ1tYv7Pf9WnoK1FsQjafxXQnNmBAT8qFWlFAIyy8QcolZMwMyB4iFeIAMgaNBd17VNEwMbI7AaamHQj4MVWmvm35p7HTBoGqKeHsUHZLj1gP8qo0W9HgDk3zMiRz6cxwSAw98SEYOMiiAIm1seRGBiNTjAxhilATieZ4fh9IEyKbcrHgYBxhleltvBHEI8RLdDNAwGrNZE5LpeAYbeQddba+fzedu2JrEmzRBkziVOJhPOU0fBOZdlafSh6V2SJPPZ4qPG5G8/CZwnGoaLAQBYFUXBiM45wTRFmEJucpKlxaSUM0ZI8RJbsyzz2i+sERkNwQTHPt7QYjkAcxI7hCghGV7btjKwud/vifHVT9w8OlkCgHPB2qStXJal88mUOEiWpq1VyqxWq6ywn/vc59I0XW+ubt68eXl5+cord7/2ta9FH6qqauvaamO1icFppSZlmVvTtH2RJUL+1aC9I+84SdLJdCpwRpYVx8fHT58+/8IXPvOF7//Cr/7qr7zzzrfbtqUQ0qSYzWZ11TZN27Z9V/tN3BiTpCZDUqKbzCFEoKLITWI673zXlGV5dnYmOw41LBaL7Xa73e+ISIESpENiKBF5H/m3UHuiYkRUABxCEDY9DwYXRoBmYSepUZJFEhrZlX3fwzADxYLqolZE0Oz3g96/tF7GfE6eF40zrXIYH/65HNZaa5nmizFCJA0YKcpcpFyGGcwGGY3RqBC1ZEtjdxSJqA9DpiXt4hBosVikWYYtSj4tAVABciSCqAC01rPZTPALImLUeZ53zjOqoiyrtsMXNGokLw9R8uaojfY+WKUZkZn7tmvbNoTguv709FTulRy04w80QiKQDmWWZXXVts0j4oBKLWal5Fibzfrm7Vv1ed37fqpmx8fHXeuSJJnP50I0CL27vLzM83w7mQrgRRTrplVKzY9OAGC32603VyIso5AZ4c4bd9544413vvXtGEfeMWGe567rUpMQcd/3FKGuWkQ5ndg55xyXZXlycuK932634vaOiFmWEcX5fE5EgEQezs/PtVZKD9zAs7PTD97/EBVqnYZAIr9lTHJ8fNz3k12zlVKTFaYmDSEoKwZug14BD2S0lwcXa23b9kRUFKVSiFoR0SuvvILCGguMiLdu3Xr/g3dj9ERgLF5enV+uLrqu0eYuoupdbZVu2p0x5vh4Tkp7709Oj7TWVmHfq8mkyLMk7Puur58+e5RndrmYdX2POIkxzo+WzrchOJkCi5EBo2Q8znttNAAZo+q+bVbden0BnBkDzOxdNMoComMyWilQwEAErescxRAIje19DwgXl5fffPfdH/wD/+qf+bf+3P/uf/9/+rWv/Ob/+Y/+T3Zd+O4HHyRpOZkt2Uy/8Y13Z+XJyeLkffLRxbKcVo1UVtS1+/l8uq+2eZa2bbuJJE1Om8K3vvX21Xp17do1ZWFXbbW1JrEuelCclUWeZ8YYozQQM4VDJSBkB+993TTSz/YhGGPOzs66zmn1cvMfH4LvnULr+24xf7nKf5mWPafSryWiEKLW2vnIKGaVXgEhMnAEYOC42mzOQuKc877XWgcKVpvddpvYjIJXqLXRVicvBRoVgxQkIQQISmuNWvV9Z9gwc/TRp9EYg2OYsnoQ8xG+jxxYwmQH5DLLqyrKU4wUUSmrjVE6S9JB3BOwqls5sPquA0AgyNOcPLjOA4Uyy0MkFyIwW5vIrqyauu99BAaANLUaVR+dIBF9O1idhBCUShC09+7Qvu27znuf57nRCUUXAxNxam2SZFpbyaYk9solKYaubpjZWotGx74fjKcGylsphd7Y3NLaGNCKRzN0BSBkPTkahJ4DAIujo6qqt9vd4eyQUfFiUvqul3Fyay0xC2NDMkzByp3rt1U9Xywnk4lcZ9e0AnzMZrPZbNY0rcR2M3rLAEAAuLi4NMYoJbiczrLMJNZdvRzXePtXv+q29Z/4U//GYrH8xV/7J+ebVbvf3vrkJ1EZ5zyA7lx0PrJWQpasqkYnyqRJs6+01nma7fpKamllTFEU2/Xmsz/4wzniP3jy9/dtkzUypmZdW23b/eRlanJa27bxQxXGZrXe912ovPfM/8of+Ikf/zu//8u/8A/+zX/zz77xxhu/8bWv/ezP/lc/8KXvrzdXiUbqvcmLIS8FDRAQ0ZhE8B1E3XVVCIGBnHP+YwD3xayIoTeaJ3nhnENWESEYPLp5K5svvdIAmhDuvvbqdDp1rvHexxAAQGujwb70Q4kIFRzOfQBQaJiwSAvXuixJ7r1/7+tfe/vu3Ve/9Pnf9fjBs7/393/eGEKNaZoqo8Usi2I0xggugy9M8sl4rOwCGImoPNpVjTO5Q00k1tMwwmpiG0ovjCfK+2mkP+uBZJpGJo0YyQOgTU30IQSX5rnreg/g+342m9X7KhA9PX+6rbZd0xhj9lX18PGD72RZ8D5N05s3b8YYZ7PZw6cP5YLrfX10fOxDYOamaYxJjpdHIjRRZBkqjYiJtVeXl5OyvH7t2rVbt7uui0yI6sGDB0mSiHzQer1OTLrdbr2L9z98YIxNE7OutjphZNptt0Tee9N2tSixxlSgfx36oDJAYiQmGuQUiCAE0Zf3QtQVVS6llEZFxH3npOTUIzoAAKCUjyHy4BvfuV4AiwO4L1dbVRUabYzxvpeERxmdJmmSpFrr7XZ7r/4wz0sbrNb6+tk1yfSyLFuvVmr0whK4wfkuhOD6rixL791uuzbWAjAFrxEAGBl86C8uLi4vNovF7MaNG8K7evDggYTxZ8+fKKUmk4kQeIVi2XVdU3fMbK3YyeDYgVAhDmRMrbUySETT6dT7HgASbZBYA/ZNKyPCkg9PplOhe8vhKcye6WIuUbSuq6apsywTGGgymUwmpaSCzNy2zbgaB3VKkXlpmkGSIslLefrGGGWNpGHyaSH4JEu1UbKS5QIiQdt1qJSQCT6C7YjEx0/0cwdAeXQyFy0FZEAc9o7rvVJKYHopt4UN1uyauq53daW1Bq3CqMtxwOlgFIrx3hOBTdBaO5vNpIJ7+ujlZNXFYvb8Arz33sHx8fFisTh//pSIIlHXtLPZ7OTk5Pbt2zdu3BAy+HQ6FS689533/urq6unTp1dXV1VViRWeGEjKtTGA3AdhgeCoZgBD4TwITgrPse4aa61QRvrgQ3DShzh0I+TfCthyiHiIws/VaFketNTsffD7pk6SZDabKaUABqmWQ3Uc+kBEMvt+qIyUUgqH1o6YmgqlxjlnASORJGCASCHqTCGiuBkP/qoAyMCRdKICgPQShnOWOYZh/F++UWsdyTdttdtvzs7OxDguxnh1dbVcLmVOSzrWA9IBA34NH5EChxsLL6iUyEVKZI4xOudYDVF9xFVYvIJ57B2GEAwqTFKBtoZV9zFMBR47iHVdi3Rn13UC7st6Zo6SbyCihrE3qRUNbocD0ZV5YF4Ox8eoSSXPV2h8gWLbdwCgjAbipqoPQ2MAQCEGBgliB9j6AM74SMxslD5sQ9liALxarcqyTNPUueC9lyQqOi+dyMRag8r7PjpPCIvFYjIpbty4IZHq4cOH5+fncqsPdbdSYEyqlKqb/faDdZ7nxaQQ2pNAgkRkdaKtEpAURpqjUipNrRBqQTEoTLJ0uRTARApelnPZua5pGmu1SHD0beec67q+aZpBxBKt4Fry9HGE9WXBI0rHRJaQ0DT1AfGXroYMRY1ztOoAIIhKijF6dDIT86ehcyMLFQA8xRiHLQYKg/PeRWAltfyh6SgtNHnosqkHcEkL7zORVCExVgidXdeRsVKlHnIJ0IoDH0au08yen58fX1vaLIXomaNSarffI2jp0g+tu57qpiYe9HAUg/c+MvvojFIqL4s33njjK1/5tfV6nSSJTY1o3MxmMyLKsoIjWJsuFker1Wa73V5erq4u12VZzudzp4KE+DwvF4tF13Wr1arpaokqCEA+igiI1iYMPlcJERkc6K4AAOMz40jaGjlFaBRgjTToA8oGEKBdeiaSMYSRhyjvFxPtISGjgTArDagYox4lMtQwVW2SxPR9//Dhg8997nPz+fydd94R7IkJkyQ5GLZeXFxcrdeigRUoIrL5GE9RH0KMMdEmOCLqEVE6hyEEuQMmsZogRE80rLgXo9Ih3IxwFSdGGh0viO8QGqNQqxCIiY3SDNx1vXdRKzMuXybZHGNTCxGZgYAPrU8cDcoHt3tiVsDjoNMBQdNaDg9iRGalgCKgZowASIyIChEQIgBGFlB1gFQkGwBAZIpMjkCrPM8RtXPhEL8kXqdpKqRm9ZGNm4pxUC0QIP7wijw4KQvXK1AUlKd1XulUWdP3PQJY59D7pqqJKNQNBaM1yoxe13uTJK7tN5tNDGE6m1D0MUYFkCTJtCxv3rr+0ufbdl2IQ99GxDHKSU7jmJgEL5FEz7Ls7Po1qS0lQWnbXtImkbA0xjjnfAySZh2elGi9WWvrus7zvG3r5XIe4+Tq6irP82pQ58BPf/rTb3/z60rB2fXTpq2cc0WRpWlmVdu2vWwiAB9CQOfSNM+yLEvNk8eP7969u11vvvvOd5LEPnrwYL/fz+aTa9eubbfb8/NzrY3Y+CZJUu32IXqtdV3vtbZpmsbgEYNM4nRdN53OtcaimCRmpVgvFrNPfOITDx8++N7v+Z4nj58yI7DJMtjtdkqp49OjIsuIqG+G2ZyhN4iQ5llZFhME7/uTk5Nr166FEKqqUWbwN0/zjJl1ZOdc0w02mFpbwRE+aksAwjhhqrXug+v7fjqdCsiYZYkcojK2xoN4a4+IRVGcnJw8fvxYaOby+LIs673rey8UlUGRWakYAoCYIw9gN7/Q7YSxq0wIGlApFUKUbyQiP1o5f5QEqKH96Nq+LHLn3OXlSgFxJDAKEeuuVV7leS7FxgBSGxNCEJWvw0gdMQPQ8fIoUFyv10i82WyYue9827ZN10fmvCyTNA8MddMoUIggDwIAZuVsbA65LMuM0SEEndiua8ygn6UPYPoYz60UPJPJZLfbyeOgkWnigy/yXNYzEeV5cXFxcXl56b3f76qmrl0fnHNt2yrQXddp0MbormvffvsbHODGnbM7d+7cv3//+dNLmSdq23Z1tTk7O7PWhpDkeXr9+hkAnV07qZs9eeLAZ2en1trnzy7SNE3TjBCAlWj9U3BJYieTSZqmvWvrZm90QkS7zd4kRk6E1Ca+90liJ5NZVdWH5l/V709Ojj/1PZ/I8qSu2ufPnwOSyEPlecrM0+m0ctXzi3Nr7enp6cXFxcnJSV3XSZLutzsJjDAQUV8uieC9b/smK3IiUgqzLOu67smTJwJ/931vM+Vcb61JM7Pdrq21aWqvXz/pXbep1lrrJNXzyTTEvuuavMxslotKRowxL3Jjj5ipKBOly9Vqpc0kzzPmSBwBOUmt8y3KhBAH8TGLIShUSoNhzcxKoQ+ttfbZk8df+/qv/8gn/hVW8dn50/mtU6WMj14jGKW9c4HQR2p9aIkYkEJY7bb19ny1Xdki+5N/+k//7N/7e//pf/FXP/+ZL00Wy2dXV7XvwZYqyZVOlTZ9W9egbx0f9e2+228URGautpv1ehVQf/vb3z5bLn7Pl74wT5OH9+9RBI5w/ca1NE0JuOn4/Q8/qNummBZPHz989ixIbSN1hRwuHAbBNaVUDAMlKklTbYxEjJOTs49tOcIwbZOmiqJPspenAvWurvbnymjvvfORKAIotGmapjKIO5mUCKQUAAXv3XQx320rrbVSuVIwy6bb7daAUgBaW6018G8xUXjxZbVOrKUYY4zB+ahjkiQKMMaYGEvjOAgEHvyQpZtlk6Zr+SN2pPa9U0pli6WMQgsrRLAtcRrIskzE5rzfeu8Tba0yABB6t1vvfO8sqqp10QerbQgBNCKiBs0a87RgBA2AyM4FydAi6uB8CBGJ7dRUTZWaRGtjZTSEvNaaQqi2VVd35towpEJEfiwFJa4qYOGlyHisxDRqagHpAKBq6jRkRVGkaeqdE/VMa62xNoSgEDebTZ5nSikpkwKR1rqcTmFsFOlRuVWQ36ZpmMl7p/XMKSQamBZCzTPGqN+iY6iNscAcvA8hTKfT7dYdeGr7/X42mwGA+Hwg4mF8R7qJwXmrdJmnRHG73XJ8Odi6enZ569qt23df+cpv/Objiwud54nRgWLbtnVdex+1sn1Vta5HrbIk3XON2vZ+GPQRRvnhTNys1mfXTr7v+77vV37pywGg6tupT8B7Y4yLEdTLl72AWUIvSCfzFPXpzeMHzy8eXT7ftvX/9N/5c65r/tpf+2uL0+V0OvmVX/ryZz/1qeV8sd2tZW8SkUyDIqJSBgBo9KSSo1OOv6Ojo3v3X/Lt0fc+tMCkkavtro+8c8EsT+cn1yqi1nfz+dymyb6u8jzPcyvFudbadb3RL9/vBJwaE0JI01wp1ewrBWCUurq6SmxW5JP1evvVr/4GgDJsfvzHf++9e/e++c7Xp9OcECiEJE2DF3MTrZRWSsguUSlUanDcghFikMUmwYroo3xYrkTSGACQtoTrPpoOlIzIWptkqbSfJ5NJGIQNQxxVMnVi+r4FUKiEcmi991mZVW1VliX0vfNd2DulFEXa17UxJusSAHAh/do3zv3o/yYHuuJk21RytQbVG2+8sa232/VuMpm0fR9CuHXrluu6AkubJHXTnK+vXB/KspzMpnfu3BHb29QmWuuu60Kg1Ca/8Atf/tY3vsXBa4xMfHpy8ulPf6rtm+1243xHRJv1zlrLDLvdLksy1wXfB0BSSkXyMvhIIYo+gLWWDcn+jT4ERAl9WZod1hKN5FZhp7Z9F0bkWh4HIbCC/b7uOue9n6bTPM+d67Q1pZmIlZ/3vmlbQLx2dtZ1Xdf11tqnT59Kn6yu667vs2Fy12VZVpZLROQQj+YzAKjr+vrpK/umBgBGaJqm2u+TNO0veu/92bWjEMJ6cwWsttvtdDpFxP1+D0pUsNqRosEC04SPZHYhBJ8kmUhyK2WYo0CWk9ksy7Lj4+XDhw+NMdNZKTXUbreraleWZaSBcT8gbmHYKawwTVPn+s1mI3Nvk8mkqqreO/GhnUwm169fr6rKBR9C8H2IvktSGYaT0RCd52mMsW+7NE3TNBlRPzuZTPb7/eXlRZZlPoaTkxMxmn78+LFSStiOaZpKY1WPMsQCdQlqmeelgNH71U7EoKTNjMoIhlvXNYIyWtPIuJK+glIqAtssPcQxWTbGGJGoglGrytrUGBk9dId8+NmzZyG+jIAGIEArAJAPRZol1rrWaQXSajo5OZlMJtvt9uLiIs/zO3funCyPhGQdiR8+fHh1deW932w2l5eXWuu6ruOohyszoLK1u64TIXhB6CSRk7/a7XabzSbLsm1VZ3muR533Is2i80I6Njqx1qJNAEAnViZ1DtABEQusIUxeZvY0CIgLkC1iEfJ1OM74Ro6CNfMod2tHLyIYOX8AIGxTa21oOu89cQBU8u22H4ioOFK1pPaJTAdt7iGyaR1j1GYQfOBBKqc1VuV5vt/vl8vlIEGplGyfruuKolgsFhIoAEDBQLWWAXyZxBrvwNDGk2A1Ptnhf5L8lkhyT2S1qNE68pD5H759yC0/RoBF4UA/l3tlRykkQBTcIMZhJhURUWidWhlQh1IUkY1RMaL3AncqZpBnIQmG3D14wXDoRRhNAohRuueeXvTAIKKBN80hkLBwgDiEIF1SY5TsSsHopJGjlCIKSZJwYLnPh9gr6yHR5tatOzJcHkJYLpeXl5dlWerRqctaPQCGSH2PMcYsz4ui2G63I9yEaZojg++9AhQ9HDlYkSFGzvN8uVxKSaW1LsuyKIqm6cKo6maM6jorkxbMbEyy3++bqp5MZvJDmqZxfTxkgBINgAaOgmzwEEIIpNQgcRtiL8sV1cjdjBBjMFbJDIpkksxiYsQhaK01EfR9w8xIA3HhIO4cQbZMr8eR9xHn+Yi7eVgzcpMljsmaZFSSLYQQgVBkpiWggbKHLUkjf25YjLL1XEwnuYRZH3s0WgErpXrv9vu9Bm2UDZ5yk+VZSYnrGV3vYoy+cIvTZVJl5pXXXpWZeoHDt9ttVgyTpFpb5Ng1LaKeTvP1erPf7/vOW2PVSOKTnlKel8wszbf9dg8eMPvIiEbQB2YXXZxMJtaauusSm8h9dM5F+AhsJRpEgoRALXEEXhA/OvSiBxKZBHGigz6aDObLI0Q1dOdkJyAiEihApY0w0pum6bpGZI+ePHly79693W6fmDTGiDy0yOR5VFXFY2jIsoyAtX4578lIHwMVaJCtGGX4tB1sr5zzQnQC4AiK4SOgGV+Anoc/EyEaRGQaXAG11qiE0QAKmBGZMYTQNz0z2iRFRoaP+A6He8vMAKyGsREFCg+1KyICiLjSQHUMwKJ+e0jI5EEAEgrxGRGJA42KH/L5zGKJq1EjawKIUptZg6gYgQlCoNEt6SMBXACS2UMcbRzGP3/EKBG3a0TUYycJDk6LhzlHVJ5iBCYm5JDk2VW17ftWE2mr9us1U8isTTPbd11N8Wgye+XNV4+OFq/efWU2mSDTbrer97vv+77vm5/+nv/8Z17yfKeTCeNCvH2FboxGx+hF9FzCh4TIoigkth4iQlEUk8lEjk8Zkzk6OmqqeuA7+z5Nc4HVJHAzcwhOAiIAeO+7vkmSpO1q2ND9B/rmzetVtd/u1jduXGuahgguLzaBvHNus9nkSVpO8s45YRacnJytVqvtdnt8vNxsNn3fbTZrhpjn+W6/EXPC27dvX15eikvharV6/vx57/j69TkoFULftR7RotFXmzURWaWIQ9+3l+cX167dePfdd+89eV9rnef5zZs3Y6BvfvM7s+lCrjzLUkkTiYhZ1LXY9cFYFWLYrNbOubMb14oik4nsDz74wLlw/fp1ZbDruv1up63JtXXOua6LLDliFMLyiAkqq0ZeeZJYayXRF+gkz1M5tne7nZQcB/0TeWqr1UoU4gRcBgCT2MgUAiVJMplMpGNUFMV8OnfOrVar6XQiIV5izjD3PZKSlFJ5kiqlvfcHZrosBoVGnGUBkWIEoBhjdN4aE2ME4jLLrUkRydMwNCeEYhzby5vNRms9n88NqqZpVqtV3/fXz64RobV2US6GIabeiX8FaoVaI3PbdRFVlmU+BGRzqLUQkQldcACgNRqlldLGAIW4XB63bZtlSZ6XIYTNZuNcEBOPEEKSGOeCMSZNc62tJL5iMgAoWkaGIiit1us1Ii7nSxjE0TIEN5vN2rp79OhRmqZ5mkozPwR3enp648aNqqrSIp0dl865e/ceAFCSpHfu3E2S5Orqklh98OF7i8VCoWFmYCWo3H5X53kukWpMvidN02R5YqzeVtuwCcIrRMWSO4Yu6FQj6EBx/exZmqYx0m5XIWIxKbVB41Fr/vDDd4+Pj2/fvrnbrzabSiuKxE1LvWuNMWiViKwh4s2b14lA2uZa677v67pmGfr9mFal0pDm1ns/nZaI6L0vp1me513XLY8XWZ72sYsQ7t69TRyKSR58b7MMgGxSEBJiPD09BoDovCw2ZdR+v7WJUYDMMU0tcWiaioiMUc51iIyoAYK1OsuyCJEHwUQgigCYWo2gQ3SImFjtQ290qjWWZf5Lv/SL3//G775x++ThN77x6rUjZdi7mGY2eA8BYoidCz2BA4yonl9eZUlWLqzD8Ik337BluW66o7Pru6Z98PBheXJ8cu3s+fPts29++xd+8cs3bl7/0vd9VvVhbk4fPqohQB2cMaZxjQ/ts6vt3VdfuX12tt7ty6Mlo1qvt13Dd2/c+tEf/XEiWq8uXddTjBxikeVZls3m02q1YoVpnu3rSmKUJJHBxxdbfYK15XnpnMuy4uMAZ2ttnqYwMnpe+h4fwsnpMQPkZTmZzQgQlPnhH/mxt9765Af3Pjw5PstSCwBpapm8tXq1Wv30z/xfZrOpUoohJonZrbd5nifaAIBR1nsPH4MzpjahEIs001q7GEIIIcY8TcUbMFFGakUFmNlkIBbFoJQSujcwADEQH9g6AFBkmRAzgahrmjRNu6ZpqqrIJ4ioGDgQIFudMHNwcV2vOAIzu653LsiEkkJFBHVda2WLovAUY4zGJk3TIaIx1vcBIhdpwZHqfaOVCS42XWuMsdYQxNh7ZjbKqAj7zU7MSBUihdCOnKOiKEIInetTO5A1hrpXadH/DUz7ulFmqF0ljIuhaAoqy/LOO2vTum6k8SbzfPv93nsvzlExxrpuJJeLMYLCpmvn0+lsNnOul4INzeAREmPUSglO0fe9VVq282q1AgBjzHQ6kb8lIsEIYowAH4kACtGbrVaAXddBpOC9QABaqzTNmuply6Ao/+f/zv+CE3zw7IkjVomdTufb7b6qqjzPgwewKs+zEIJWuu/DrJzXVbupKlaaGVvvEFBqG2PMZruaT8tf/PI/eu9b3wYAUNyFGGM0kWIkZZOXLsWqarIkq6qq7fuf+MO/15r0r/zNn9l1zUzx5X5797VX/8Jf+Avb1dX8aP4zP/ez/8H/9T/81jfe/v4vfinLS1ZIjFpC+OjOxKMZRt+0iTHM3DTh+vWzLL/x67/xkm+vd9sid1matrUj4n3rKEmvvfqKKUq/2dvEao1pmn79K7+22+3OTmZGKe+YiCJRhPhy7WYfdKlDCBwiIUk2FWOjla2qajKZVFXzjW98wxhb6PKV1+7+1B/6yfOLZ1fr88mkMGkq2V0IJECG1caD875nJmsTPUrJ6WF+diBS0Gh5osa8VylFjDE44kE254BfyF2Sta2MPrTAmUVSjAFHs27v/aD+aX3oiUkbDCFMpyUza6sYNSIK4p+kBgBcdIgYuqDQaGuVUjjaLB+dLD54eE/uEvnwfHXZt53QJ4s0Y+ZiUl5eXnZdNylKAJgsZrvqmd85H4PWuuv6V199tW87EZe4uri8cePGH/7Df/CHf/cP1HV7dXVFCDdvXs/zvOuaoih673a7HYCqqmq92iLiarWaz+cPHt6bTArRhlagvKOu62UeS0YbXe9iCJJy+D5Ya72PEiUElTMvqEw8fvxEKczzXEqJSJGIxH8YlM7LYraYK6Vsl2gapWm1UkbnxUS4rk+ePJnMJ95HDiRgwb7aKg0+uhgHvBsADCqdDSYQk8lksVi46IjIOdc0ldZotL5+44a1dr1eb6s6hNA0e6UhxihpBgFrrfI8K8vCOSd1pbV2ucy01tPJfL/fX12tiYJSCRGJGaO0CqSAev78eRwcaJSsCvFbxoG0pIV5dnS8WK+D6IZH4GfPniJimqbz+dx7v6v2Mou93zuttU2NcRo1zMtp13WbzcqMkr6eIiDYNDFKmMgaALIsU0q1bZsktizLvu+Pjo4YIU3TPM8fPnwoYx8SigVMqesaAASQkiJ9t9sJsi/xWdigskE0KpPkEpaVUkYPHlSC9goc1vd90zQyro0viLEKEqTHAXkaaPJRSB6oSKCPhw8fWmvK/PWXhkRRbCCxdpxMpMQDjkVRnB6fnJ2dyQj1ZDJ57bXXFotFVzfr9frRw4d9pG9+820x+ZS1euDaxxiV0eKxdIB35bweaHxAiIaJlVLb7fbevXtlWV6/fta7IG/QCsmHvvPOBaUUq2FUERH7pq2bWr5LiiMYdLRYKeNcR8CGFDPLMxJlwgP2GoYEJCIiKIUhHAoiGFVlJetWg5XRQUyDGKLgd6LrktpEADvRwThcj0yNCP9PHt8BPInkQ+SMkkPDQCqyQ0ku88dnZ2fC/dLjC0CmIlgphR8Jkgz4iXwCjPqBciWD7oc1Shi4Bg6ZJBFZhWHUMzl4vuFgKsghBPgYMY04nggHPGH4dWp49CEMpFq5wgCEcUhitR6MUhFRtJt5bJvJjwUARvC9L8u8KApZ3lJRyikjsB4RJWaYYRXSkjD6Dy8B/TUqVjKvlsY4DOAa0SRQSlBUeX8InQY8NDAE3kFE51xd108fPc4nuUCC6/VaAoL8/MlkIo/VjDLxgNj1rbhByhKSKZk8zWS2Jk2HuCrhFBGPTpZShfV9L0HGe8+om7ZKkoSABJeXei1JEhmOSbI0y5LlcrndbpMkaZvusAzkETBzlqTGmKbpYiTpUxhjFA++gnaUmnFxkHNwzgEjMUliMAZbgIGYO2iv4Wg9RaOxpMReqdatpTRNvY/M4H3UGqXHL1C4HPGy0oY+ihqdwwEAQPRSQgh972V1CUsPXmiNyCNu2zZStNZ2FCaTSd93ymprxd8o5pOpVabvfaKx8lUIwbPjGL33yCpGttaU5VQACpNl2fn5+b1796qqOjs7S9PUOde2DUUoClEXgrZtiXi9XltrEXWel13XpWnOjFpbxKFIk5tbTIqjoyNBHJbLZd/3996/N5tPEdFjdIPL+eDkIPvwMKuojI5x4PDGGJkJQBGwqKjI0rE2kZ5PlmVDU260nhCxEsUDOwAAaBT8lVhPRMSYp5m11vk4Bg5vrSWg7XYrP4QCKSWzwMTjnFqSJLLR5CERML482YaxR6QA2TlHMU6P5ofcMdNm0P5LM+8dKxTplBfjDjPToFxsGGVojhKh6wPadCiHRL0FQFEg37uu6xRosUY57HBCEDhb9jmOvrQSpGigNh8WGaH6SBtOoQKgwygWjD+fEcQQMDIZVAQMwETxIBWtEInZGEClIlEMpJmUgMRGiSwAAGhA7z3AILn7Iusc4KAB8gLjG0ELz26U0D1IaB2erwFUDDIZlBUWE/XO2+9cXj0LijWbz7zxxu/7sR99/bVXfHRPnj8FxO999ZVPfvKT+82WI+VZhhSfPX36wbvvrc+f/ea3vwzwx3778+37nrFn5u12Z4xGo4WwcOgjKaUWi4WwKeu6Hnf7cHwCDNSVk6PjGKM11hmDyHmehuC6rhHZChElGO5MHGhQ5SSvKhFoy69du+ac897Nl7Pn54+z3N64+SqwPj7afeedD8p8EiMrBqUh870QPK3Vxk6s1e+++26S2GvXrlX1ruu6N954zVr71a9+1Xt/7do1YwwyIVOZ5eX1W//6n/zjZVn89N/46aZpfGAihXpQ/EyNYfCIs65pEfn2nZse3Ha70ajefvvtspidnZ2dnd642qyfPn0aY0hTi0Ba67btCBhYpYmOHKzSaFC0QWL0ouS73++NSR49erRYzHrvqqoyxnQMIQQEzTCIsg1PRNRmEMVbXk5NrXXgKEmYtXY+n8rkuKxwORfl4K/reuzyWUQUr3Zl9LhZxmEoY9I05Uht2zCDMeb5k2eghyV6wK9lTco4xR6RfORxvNoYkya56x2wl4NHG2OM8S4kSTJdlMH7dr9PbRJCiCaiVsDK6CSEUO0b4gAAokemlEqSZL/fV1WV6KEorXb7cjr58MMPr1+/XmS5BIoQyKZJbLvJZBKZu94nSYJKFcWk2tUSZ6Qwq+uaOGittUbnnAteayUkRyLq6qbJOznXJSra0R9DxoSlsyiPQ/ZgCE62c5rZNE21oqPjRQjh8vKSCZ+158YkRZYLVG2tBYptXdk0OT5eTibFw4f3Z8vFF7/4+YuLi3v3Hoio4qNHj/rep2l6dHSsUz2dTq5du/atb30bEU9PT2flbLPZJEkqu0+O5xB8XhagsxC6rCjyMuu7ruu6zXaVpunyZLk4PtpvdkqpNMmdc/M7y6rerbebNE1R58fHR5NpNptNItBqfbner06uH9959Xb/3vt5nnsfg6e3PvVJADi7fu3Ro0ePHz/UWmdpmiTJ1fqqzMpyUmqtnOujisRhHCf551+371y32d0P7n1oM8zzNEmmskim8xkR2YRcG1FFpUkB9K4vJhlAcL6LMNjp9H2bZdl8PpdROx9cXmRENCsL73sWOVuj2YeyLCQZciGooIgic0RmihGQ9KAujSGEGPx8Pkeg/X5njFWAQt/+yj/7tb9742d/8Ed/8Ocefvjg4tlrN051mrW+h0hEFCKwSbU2ru0eP7/48i//2uuvv/IDn//M9ddf38cQTDI9Oksn8/c+uP+PfvmXP/PFz6NJk3TWe9f07ePH968vJ595480n374QZ4mubyLTZL54/c3XJsv9jRs3o/OrJ8++9f6H8zJ7/PTZbrPVDJ/4xCd679u2823T9a1rm+A6LFIAaLuu7TqlrdLaOcedn0wmfd9W+6GGkbxca9003XQ6B1BMH/OcABRg9C7JNDG3ffPS9/yRP/HHv/dTlQsUmTxDkuYmyz79fZ97770P8vlxNDbarG2bbV8Zq47zIppUa0uk2rYty9x3/vrZDQWkUXGEGKNzAT+mUYEEk6IQTPN4tlht1vv9fjabptqEECJA23aZsUVWtk1TlqXRWgyIgNmqwcOWQijLsqqq9dWVUirP00lRtm2b2oQzUUHlrunburPWYgRFwJEAWSEaa4Gw8935+TkiUohN1Ym1VIDYNy7LlHADm76TMU+ldd/0aZoam0QfFasQwiuv3Hny5NH6YpUWeaqSBNOA2lqVzGxVVa7pfeuKIgPJQIBCCFmWdU0rD0VyTglQIQTiITVFZqt06N16vbbGIGgEPcknDx88Pj7GMi+KNBMwRTJ11/Z6phRjoq1RyvVeFCSFbyJtvCxJAUCGjWR6T9KYvCgFSuYQ5XulLacYYojSg0y04TTzXc/Ms3LivTeoQGsYHUdkNXZtD6KUohQAaMBArKwO/uVT20cnp7e//4u/8eVfeHZ51bheqazrOk9sdVLmRi8KgXDTVGvAZl8lSa7RAigGiMiRY2LT1NosTROt+tqAcx++826ZZKeTqUJ0wTMzBQ6esuTlVoHGaCkUv/DZz53Ojn/hl768WV0EVF/8/i/20X3rO+/cWCyl8fyJT3ziez/1yX/4D//hrVt3Ts7OuuAymww1OYHWFg/6FZFE60kpNZ/PF4vF1VX90m8PrscCfQznl6uq6Rzh8c3bi9Prj9dbZTNrdGqTzWr9G//sq4oBGShEIATiNE05qpc3cwCAKDGmqneuD9Zao1EprRRSVN45Beh7x5Eunl8qpd5889U//K/+wf/iv/zLfddprVHp4D1FQFYK0Xvf1ntj1Mnpcef80NgeM1gciW8De2ZkBQ7wBGprLZGWuhNRa60AVN/3WluljMBwShtr0rpqFbJgeV3XtX2XZdlHw1XMMsglLyD23vvgJRkgJoUGUWulDmQdbVlccICVcy7JsmfnT0ExEZVlyYTeOTa4aysXXJMkQPCPfvkXBBvt+558ODk5UUrt93We57PpIsboXH/jxo3E6q6vt9Uan1NR5svTxXwxAQx12x4fL8Vc5PHjxzdu3UTUic3mN5eTcqGUeuWV17Is++Qnv8cY9ezZM1kwQrXbbDZ1XYsBydXV1Xa71Qbn8/lusxWhyAOpPE3Toii89wDt4f63vQsh5Hkuudz4IFSMUdJF+S4XPDJZZeW2IGLnnUkTpVSSYASPqGKEMGAENsaYFbk83Bh9CCER3QAOSkNeZKIpfO30jIARkWK82u02m83Z2VmMDCcnopuBihmisWY6mRZFcXV1JbWG6IxJpqT0INvaNI1Swj208qXGqKqqDr7vMQ5awAegkAaGY2+tPT07FqBAax2BFQzzcCKaQTAY1VhrrTYyV7der/M8n0wmsiAPUIgMdEpxpBAZIyouihwAQINzbrNZpakNISijQ3DPnj3pey/dRGbe7yuBvaTGb5rm6OgoL4uu65Isncymi9l8vd4K7VopJSw64WNJqu96H0IQ5rvUoYJPSeQ3evAGkFUUxgE+RI3ETAxEzrnofJ7nBpWLTj6hKIqyLPnlURmauq27GhETTIqiCL3zvev7/s7tm8vlUoYv79y5c+PGDSK6Or/YbrdXl5dPnjz5zvsfeN8LzBpe0EQOITCCNHcRBjgSAMYp4YHUrLUWhwNmXi6XMcYky5SOgmft93V0Aywlvb00HaQeYozBezQffbLch0QnIQRllR0FrPM8JxrofTzq8h0IksOflTKopPw5wAvyzkMJLw9UqCFZljVNQ0RZlmlUAhaNAJwdFMCYmqYJzpPY/7wwcCkXcyD4hxBkv19dXd28kYt3kTGmqipZVIf/hhBcDACQJImSceSmlS+VAwhGKn2e536UA5ZabMAoQ1SDDx4L4EMxEAGHSKjU6OnKIxOW7MsTTDnupfKSrxDtms47GJWUeGQlHhiZB/Y3jvIdVlmDylEY6N6kpPHjYzBG5XleFAUARCZEtGlCIQqCn2UZRxqRTSuBK0YGGHifo4qFYhgeqNgLtW0bnY8Q5f4AQOChhxFCsEqH0U9SPkSCrUh7ueistU3TXFxcDH0CiEU5Oz073u12m00z4OnGVPu9D06qTuec975tW2NMWzdKKZFnYRywwRDCYrEostLa1LlOCGpywlZt45w7Pj6WK8FhzXLbts6J16Ju+67rnFinJqmVb2yaRimYTAoAxczISsCfECiEYG2iAQGUuB8LBEQISZIoNczBy32YTCb7fU0ESaIEfT6c/mVZ5kla161zTqko1p1i6KqUMsZqbb3v5EYlSV6WpXOdMUb07vQL2uvSoxGKpJjNjvftBYrn2Bc54G8C/SuljDIhOK0siA6wxQiaKEiZ3wZq25YMAaFG3Xc+cvQYKbDqXWpTJmjqJqka895770knMMsyGWC/urrqWoeI+/1eRr1ipK7rjU5c718UOpGYJZ0QwXSOjo5u3bols0VPnjw5OTmR1Vzt9lmWbbdbJAxMipVzvZxYh62itWIm+aiREM2CFyutQowyXMnM8rcSfOPowyMtGvmvQE4RWARNDntYrlmOVQmGksnFGEFJnw1jjBSZCQcOsP6oNSRPRUKVQnjxk198ySUpRgI2JlFmCL6yafe7vTEGjJEgRWPYRUTmAQ52bhCDDyEAkR4tL5UCYPQ+JonRo7CGUVortarb6ElpEyMZpZVJD4gzDrQIltL5cCTwOD0RmQwOyFqkYLWRLCeOxrKyMV58XoKRxxiD0KgVhhAMKptY771S6GMgYK2HiAlMQCRJGIxa9TFGBtLwke/2P3dLx6x4GAZBFH1oPDBBxvs2/BZmTtAE51kp1EpniUnU17/xG310Z8vjH/hd3/8H/8BP3Dg9tdqE4D5559Zmv1vff/CL3/luva/q3b7abL3kAa4l5j79AqQveb5V2/i4Gx6Qdxasc67v28MIahyntmOMPgbJAPI06/u+LKcSeg7O1/P5/Pz8maRTEn/X6/WwmF0rcUcoUZ/85FuvvfYaM6/X66OjIwDYbDYPH91b6PnZ2enz50/v3ftgOp0jJF3faEiYMbguhHBycnR0euK9f/78ubRgmblp6iQ1xpjJpFiv16+99ton3nhzt9s9+PBemqYto8CFN49vrNfr999/7+rqqigmaao3mwrUkFz66IDCfD5NrXEuNE1FmlC0RBgTm7/++utNLcCx0RoACQG974koBqcwYdHhQsUMCLBbbwIPVjlWaw6x8/7ZswHN8d4Tg/BYQxxa9JJhN82A/yLxoTWltY5x2FPCLEvTtCxL4c/KRhbhIGFJSD5xmLWp20ZrjaiF6nIQ1kSGrusA8Pj4eD6ZNk0TOArwKvm6NFTlacYYFaMcYESklbW2UkM7jXHEHQXbq43O0tRoG2NkpYkICZRSk8mkbVtxuCrL0vUBEVlHcWDAcfI6z3MEEUCPjx8/FvILEURmZbRzbrVZK22ychJJlGMGVSnxyZQ7liUJDgwCTEIIFGHUHknTtKpqRIyRlFJpmgCg1iZGIuKmaRFVmqZ5Xshvr+saIkQffQySFp+dzdqmr6oqTfIsy/K83K432+1ezhHnvEUmiLHaX16e+wB5aT97tHj11VeUUl9/+xvb/UYpNZ1P1ttVViTW2n21vn7t5mIxu7q6PDk6+Z5Pfe9vfvU3t9udFxtPpbhvnet8dOvt5XwxvXX7Zt/3Xdf52JfT3HvvOrfdOa2sTszx8cluvWGIVb1DRFkVXdfWXV3O08vNxX6/DcG9+vprF1fPnl08vHX3GhPud7v5bIkqAEBeGFTB+fb68dmtW7e6tm3bShvwoQnR2YQxkDaGwstJs6h9hObGzaWxOsaoVAAAZXpUxBR61ymtyywLIfiu1ZpRxRCCnJMSAFFx3/f7zZ5ECIvJ+96gitFH8kBcFIUPvTIaEQGYgJVS2qCBJMaYpnkINQA3TZtlmXMeWGk0R4vj1foytalzjpDmk+X26vz1V179lX/6S6vnjz7zu77w9N33GyaECABGUknApJhebfZvf/eDX/nNtxngw2dXu1/8lc9+6fOvf/p7a0ff/u6HaTatvXv+7PLHj0+fXa6Voul0+vkvfHY+zWzo3v7mr8+cJwqzxZRqenL+fNu2qJNEp+dPnwExIIJWXYj/3T/5lc/9wPfffeO1J08emSTzMShiYcYmSpdJprUGhWi07ygrJ95v+76Vbb7f74XtwiONJUmSu3fvdp3r+54+hk0sLKeu60hh514ON7/56Te37Vf3VdV5n5ZFabN5Xm7a7t0HD72Pt+bLfeecj0qrEGHVdJQmBnVbNXVdubabzybOO61A2YR8UAB5lhGZlwqxGMT9elMUBSA0u71FPc0K8NR1jZyqFlVbdxgxz/OmqgEAifu+E1BDIXrnFDLkrFE575LMGqWJ0ChrlC2ywb6pLycxxmq7Pzo52m63WllR0dHKHp0dFUWxmM76vi/SzCp9fHwcmK6uroC5733f+0DROdczhxCOz041kus8yUwV0mw6v3h++fzpJTMUtgwuLpfLvu2urq4UQOyJQnCum6XF7du3d/Xu8vIy0Zqc752XIdNmXyHifDINIUg61zWt1vrazZur1arZNzpVGrTrejGEfPPV14hIESujI0OqEqWU0cp7H3uXGUtEoXXRewhRGxsjZcYmxcD22lU7732a5zBSjYZ+G1F0Po7DbQCQ5oPChtZ6tboyRougoTFGkmoiSmxCJEekt9ZG56WMcdwbVBBJrNgFmH6pU97T8+f/xz//v+pjT0yTvFg3TWaTVBlyfr5csM3W2w2gMkbH3pHzhKl3EVHLMkBERI7emSTZX12dzefXz04TY1Otdpv1frutFVhrIzNrhI/xO1WoNSoA2G22v/xzP//o0eMc4O6bb/25P/tnn16cr6tNV+0heFacpOkf+eN/7K/9lb/63e9+98atO8Q6hD7GOJlMmqrGg3SmNnJcAoBk0dvt1rnly0Mo8H6/c87t9pU2WZFP77z+ZsNgbE7ESJwlCccwKXOjMPogiLNSKvowm0037Us+M7WWKAAorXWeDQQ9gScWiyM52gDggw/ePypPYvRA8bOf+dzz509//u/9HT0xkSgEioGttRQJma21s9mEI3V1N+AjxOSJxrLCGCtKwYhobQIDiOPlmJalK2Unjn4wIYTdbiePsKlrLyOegVlxkidVaJAVEFqTDsAQK60G3ypZpZLnS2GiBl4kyD2Xusk5p5XVykbfC+DxW9JvZBf6xNjJpIgxEkKep73vrbX7em+MiYrX+xWw6rpu3+yrquq67t33vlMUxWw2k/mbptmtt6vZZJokyWq1SvOianez5bSqoHMpImRZcv/+/bfe/OTp6WkIoes64agy461bdxDIjgq2apjCtkqp9XpdluXlxYUgMo8ePUqS5OHDh0lm11crKa92u51zsW0b4Q00TScJoaSCAl0hABHtdjuRmNB2mByXu4egPcVdXYnQpySBh1ZBkqZ936dJEmPENKUw+GWFEKzW8k6DygFleRoDEVGg2DQVE0t7hpkNJ6mxZjqTBvN8PjfGRA52fCFiktg0Tfq+3243XdeLPnwIVNf1wR97uVyaRKdpShzaDsTa3RiNCGmaNE0rN+FAFv7ggw+UUrPZtPNO1G8F38nztCgmkoofyJt6HBmU98gfBJA6kF4RMS+K0PWSikdm6fYJooSjsxkza41EYbPZC0outAYpoMqyjEyHmf3FYtFUrShBi0S+WJMJMaXruhlks5j5noy2qAqjNfUUiYA5xAAAmmzkYMBChBBDmmbWWsVAkb13PgSFipkhgGk1EQdOQwja5BOcLpJ5U6WL+r3fHkBOOzXppz4EzThdYXZF6WWcZ9PrYXYtzPSK8ywv13h18Wi321a7/b1799erq8uLS+V8alUGBY3uREMLio3AzCFGo4w2xhrjQ0yMziPivi2nEwACCEqb9fpiAckNWjjXt/tOBQoxpKgyyhUUKPrOqJXC0IXgI6IV8AABkVCxpsDW2gRTICSIgKBIBfa965RHpURi+yPTLAFwZVQ6+pgVeZqmTBy98z4Qk9FWQFFlNCoFACklyXNnFVLjVIIzbYIPbrtViEphDJQaZQnapuboDTD7WIICssxMkZSygMBgUSEwM4MxCMC4a22ussyEy31fJW2VLdqEdrrve9B+vjcJLTKX+RBiG7VKm76LRHdu3y6nk8ePn8zYUiRwHGOIIVFKpsKR2sicIQIqxcAQEJWCCBwCib6omEY6kMsDhRBBgVadEMgCAjrOrTcvXTDXvJrikQ4KFYodogpKaRu8QkStFWDGZAgBEXexW1MtVAPBVQbbM8HfjdbiY4TMbJjZJJY9ERlhB4PC0AcR4BZ1Jtl6CpGIxDRSThkNqFC5GPQozy3YLo4kYmEE8yhlOcS0MS8SOP5wmggsdsDrV6vLqw2S9zbLEHG5XIYQULHgJAfeHov7bmJ8cIeen/QFAYDjIFY5wIPIfd86527evDmfzx8/fkzAMfLl5WXTNMfHx9qmbdP7mT87O/vwvfe32+2nPvWpx48fr9dbAW2LotBCEVeKYmQAbdAmhuporaS+1WazSW0WYxSTba0sE3pmUIZoGL8WR81D9COiGDlN06pquq4TaWaJ3sLmFpNA54Joyms9k5NWjyZ2ckuF9y2x+saNGyE4eV4wQnwhBObBDU5SUyFJCIIqIJUxlpkZCJFfbJ/IGvioaQRU5GUxza62KwRwLpRlqUE9O7/IbIagGSkENjrRynj0AEGUk+t9FYkVgJG89vT0VDoV6/W6rmvBc72PRJ1SWlCStm0Tk8YoAhqDJrog7tKkAoCLi4vr16/jOCghPaXbt28/fPiwa1rhjWs94DLi3CJWabPTk7aqhV9sRxMqHn3/hicEzETMAQCABw6s3Ppxui0OzGgeTCHUOINwaKYxc9O1Rg0pAqAs9wCAAC+4542w7KFZFCFyHJ1GlagVvzzbRrGsiZSYBEBF72TF9H0tuQ4NjGkgYqWVdAlevMJhDlpY0kodulUcicdJnyFlBFCgOUB0XiljTaK1VihiE6z1R15/zMwIiKCBAIbpvMM1MwIdlDUUMw0sZiLSehDCxrEFigOnApVSkUkdBJSZYBTLPiD7LgQa1ms0MPp1aA0wSGooYxC1HnWZX7wwWe74ArF6eA+i817+isdWqoQ/9DHVRmltyjQrsne+863zZ09+/Itf+sKXPh+8+8Wf+zvzSdnsq9a1vXdpnrldXdc1+YAA7AJHMtKBBOhD91K4WSvFaObzuXMuTQfhyLqumYfJDtkX0vlBgDIvYDQ0qKoqxkg+IOKONwDgu75vW40IRJKkMrPSADhowiDibDa5c+fOF77whcePH5+fP9daI4pARwwh7Pd7YycXFxcx+tVqRVHvd31wdLw4NsaE4ABAOLDe+75vrbXWmrZtGRKtkRmfPnocXLdcHKdpKgXt2HOjDz744N33v5skVllDVLVd3/cRlHhlOEQuMmMTRUQceL93beg1YoxxOpktl8uHDx8+fPB4uphba3b7FQBZa29dv9U34emjZ9YYhYpBLDzQaKOt9qFv25YB+hC0slqsXRVL52GQpUdM9DBcwKN0V9e0vuuBQWk1nU79aJoBAKJxURTFoBgQ4263k0yaRptdWUv7/V4sd2X9Cy3iULdorcWzQhbner26dnKGiM8vz3nk88qWlVGPkYbPZiTpx8AUI4kmjFgbg9h2ByaKkZ1zrE0yGk8nyqIdSF5CTZLCRmst6l1SosjYlXMuIkgAkSTee59keZplPgYXPKCSgrbrOmOSMJqY0WgaboyJ5JnZOadH1jYzy3Eov8VamxobmEQyQpjj0gWt69o5J3dPAAI9WJBZ55wqlUKzvrpYbzfHx8dnZ9fLvHieFvfu3WNm74NiiAqtzepqd+PmyWe/8DtWq9XDxw/UV/E3f/PrVdXfuXP9+Pi471tmfvT4XpIkxuC16yfBdzduXLtx7WZV7/ZNLWaiX/yd348IX/vab6x3TZqqWzevv/XWW6D46dOn5XSx2+0oRmuzGD0SbFarG9dvKcWd7+v9XoKY995mtq/cm59+5Yd/5Hf/w3/0/05z++bdV2ez2b179wDj2bWl60OS4ltvvblarbquu7h8nGbwxpu30zQtSnt6Og+xXS6Xrve+72kYJ+Rqe/rSs8OHdjbTx6dH6/U6SYf+hzbsQyOppDJ5jBRCn6RqPl/GGOq6ZlYGBydDyTVlVYcQtMYYYsDQNIE4WGuq/XZsJ2hmdsETMKLSBoA1hdg1vTYYfWxja20KoIjg8vyqqvdKQeh9CCHOonPOKIsQv/3et7dXF6/euLFHXkxKVHB1eQWAaTn5zXe+9c9+41uburdpOlseXbt24+F73/m5/+YfffLR5Sc+/6PaZP/2/+zf/at/6S9/85vf/qUvf/n2K28g2RCgSDREZzQgO1BKW7Opd43rj09PnAuhp7puiXUERuLJZBbJf/tbb/9nf/k//9/+e/9emqZNUxtj7ly79s673zVaB9ddPj9H4jzP284pa+qmESBA1uft27cfPHjQNI3UscaYECjPy9n06L333i+Kl50BAEAMINM/yoeXk5oe3n8f9cqm+fHJUqcJAS4WR5L8LOeLPE3ItUZBkSVEwWBUWnVNv9vtJpMiS/K+6aN3RuvZWdn5EJ1X8HHkZrA6AZ1aZRFZWRNjNIUyxiRKI+J0OgGAzWYDPpIZuDwAoBGt0oHp9OzMe991XXCRQizzQjFQHwEURGKMTLTfbPM8X0xnRJwnGSKeHB17H/uuM1pTpL7t8jQ7PT7Z7LbMZK0dSEnEAOC6fjKZQIAA2HYdAafGYsTIIca4XW+IeLfZHaQhu6ZblLP9alft9wrxeLGs6zr0TQ/6d/6OL16tL8/vPzk5O9ZaJ3m6Xq8jkasaEJEfo8u0qKoqt3a+LJvOlSY/uvP65eVlmeUXFxe5sUezheypi4sL6n2qTN30yKQ0BBeM1ieLk9TY9eZqv99bY8pigojWYtv3zIMYS55mSqmma2MkoZUJxc+Jdh4DagUA0+k0SZLnzXNpEGZ52jaN1no2m/V9/+TJkyzLJMYKcZIP5CxlEfF4sdyuN2KmdHr3bjEp+3bSrF6yDHoKb3/rm3dfeWWynG6bapLl0+ls23RG6dQmbYh1XS8Xx8BR2APbuiFgZUyZJSEEiIGbNjeJdf1ZMcnQhM0OjOlj2Gw2VmuVWxprxdaF7OWLkRHAOffk8eO3kuPvOb0+vVCvHZ3oqr6+mFWrVdPWqTWAvGv3t+/e+j0//mMPP3hw+fwSlEYTy7IEEFYmMQMRiYSID72c1MaYGMPHZN+gFSilzq8ujbae4frt20lRXu4aY6w1aZLAfrszWAbnKUZkzmxSpMYFQhUH0ejf9lLCdIkAYzNbarwYI3O0NtWa9rv6gw8+uHvyyunp8XvvvZflyR/8H/+h+/cfvvPOt05OTjZNZYwJ3mutow8cqe86hyhUYskWhJkR/dBH996PQ/Eg4doYU9U1AGRZZo3xzjEzEofeWWM4RD+qigvGKibizLjZ7FKbWqXVoNJm+r63xnjvXec5Ag9OWRj9YdJ54H/wgYGobJpmiTEA0I5AKiIq4CSxwfUAkFqjlJYDyKCS5BPREIUYOUkSip6IiAMFqCgSMWiIEPf7jSRyPvrdfvvgYa+11sowwv2HH5yenhqlvY9Pnj5C0ER8cfn0+vWbbdvFGElyPoMm0fWu8d7jqP6nlBLf+2FaX6nlbFaW5a1bt/I8Pz8/D+RF+Nh7X+8r7/2DBw8Wi8WTJ0+UUpvNpu97AqzrNk3T/b6WA0JY4dZaFAdPg0xDwmOMmcxnQktyzhEwjOCL5EiivupcJyWw9AyargOA1Wbj+04nFgBkaptHv5rZdAqIfd8rBZKDaSJM0r5vh4E9UCLTFwddvqHW6HsXAytlmMEo3fuB/lmWJWq4Wl0455jJe58XqdZa5Mi0VlorY2xZll3XVtV+Miml3ahJxxin0+lsNvHeO+eKsgQAmaaKnghY6iCRtphOpyGEs7MzgMFwDAfzrpRCJIC6aaSejaMeseAy3IPQQaSvI3CVwO6CgxdFYYzZ7ncHBvpmta3rWtp4gmoxo7A0iGhC2Z/f/J6POT8/5vXyCQpQRlFNyqiPeAMVwDMAAHj077/sX0wBfnD441cAvvJ8CQlABHiwhgfyvx++8O4jgCPAN+DlWeK/2Ksb/+BuQwoAn4G3/nt/xktbmv8Sr/+vn6OKbHFrjnkxbQuK1Gya6vFVtxKtqBcDsvzZAtj/nl9PAEIIaDbwEAAmABMAAPgJeO3l/+ISVJb83ht37PUJALjNfv9sR93/ULfjt77Wv3XBGGMMhDA35odC87HDNv/c6z+a/+MttPhbD8UD1GiM0SNvEgBk5FQwykDxkHHFF3xEjTHi/CGfE8dJGqV0Mgp0CKdYdisOFlxB8WBceZh2BRmyH75icPBjZgDSL+hBmTTp+14nSZZlA7+q2ppRf/L4+Hi1WvUiT5GYSINPpvyiF8kiB2SMmV3Xd70DgO12v9vtVquVRL+ma33n2rZPsqxpmq5pVhertm2d88+ene/3tUzGCLyZJEmaGIlCRZkxxBi9MUZrobFHERUJIfT9npmZUKB2rTWDlx/IRKjUga8pmaeENfnDAbvXWkuTTMOgvIwD0jVga+LLp5RCZK0tAEjK9OzZM0QW2rLkmcxSpMChdZckSZZl8r0y9jTAcZHY4KFsJwojHIeIyKIHzti2LWrUaFzvDGrFuLraVPvG6MQ7R5GZQcA+GEQaFRHEyADMhIOajCDi3scYebFYxMhN0/R9JcoV1qQcgQJHjIjQ+dYYc3x8nCRJ51rpZohf8Ha7/e53v/vWW28JgbwoCqnolsvlee/KsowxrlYra9PJZCLTEPKbEfEwUyZ/1oMszkfOjwBwwGqVYq3wsLzkmR30SoS9CIdO4Kg3w8zEkZkPWSOiAWBELURyAKAow/NaloXS9rB8iQNFIBp0J+BjBm0RwBgLPIwj9W1DNDfGVN6HEDzF6IM5XLb894WhOaJBHBkRkUFplSRJZjRz5AgCFBxoicigWDVtEwJZbVJrjRoEwhWDQRVgUBGCEcaNwMwkzt/wAtl5vEtMRDL0d7gkoRGrj8ZqmDkyoFKKx+kDRkAmACKECKyNjuLMOkwAYWQiYDWoNX0Elw/FFbAiGNF19dGDQzQvzOm8GE0iEY2gvBrl7aZZESgG4LwsPflvfvvtz33m09dfuXVx8Xz1/IL6rr28aOuGgLMie35+0feh7/voIkdiFxRioo1SoKz0Z17yUlq7xq3Xa621tebg3OJ9f1h1OIp/CUw5xGtCma4dJ+miDKMl6TAfJA5F08U01E7mQZRS166dvvHGG48fP/7yl798cXEuWdezZ8+2u7WMDnSu9aFhjgxxtwunJ8uu8a4jY9QP/dAPfec733748GHftzaTJC0PIWg9yM8nSXJ8PL98fj6dTt94441vf/vbxhiZ7dIyba3UJJ8kifXkjTFpCs61vu8xy5RSqUVJbZumyfO8LCb1pgvBCbx7fv6s69zJtROxZQOc1HVVN67rmp/6qT/60//l36q2FdGwIPAFhanxNPpoa6NiHvkOCtUBSpZBaVEPCOMckAD6r7zyivf+arNaLpdlWT558sQ5Z22ulJK21kEvzDnXtoPljhBamdn7GD0xvrBBQvTEhzkgqWHu378v+JGwbISJfNgpWmtp18UYBwNDHBTBpGsCPHRlrE2YAvkQY7SijMHgY+CeLJEaRVpw1JARqDfNLBG1VR1GwUc9jmMfDjORjtpvVt57axNW6L33ITjnELXYWZXlIoQg9Q8qK1YkUtXgC5YOsiDlsJhPpmmaNr2ofA6OQ4jKexdjGH875kme59lisQghgIa2bcU0crvdNk0zLScxstDJZSslnDj2s+X8B3/kh7/0pS/8zN/+m1mWHZ8sf+cPfPFXf/VXT86WaWKqujVGN+3WBztfzlxfx4Da8KMnD9u6TzNd+Z4Df/Wr//R3/cD3v/7GnYuLy8k0+Z5Pv2mtafuunGQhhCy3fU+3bt1AvvHBB/fm81upzTaby66vutDleTorp8ao1XZdLq1OGFS8cfOEOf6+3/djWZGf/83HN29fm8xyBThf5Jvtc0AqSs3sZvOs6ynPEx/3vfM3bx2laeq93WycQQsASWLKfFldviy2KCD2VRW6rrXWKoXWWjF5lzACGHwIwbnpcqkRAZVw7bXWSMza5ja3GHr0CjAEkgkV4tC1rbW6dU2apkRRZcq7gXgFDKgg+qC1jcQxRh79oAEACJl4v6+iD0oBERhlnz89t8YAY5IiWLz39N5mv1lMZyenR8v57N0nD549e3Z6euPJ88tt7JfXrzedX5xc29adzctcmV//+tt/+2//nT/5p/6txw8u/8Qf+6N9u7//5ME3v/b127denZVTH+okNyZVWaKbbfPk4tn07Dj4NkaalpPaV5yk3sU2+Pl8nqTpfu8XJ6df/fVf/+t/82/84Z/81xNjmXlSlLeunV1eXrZNt99ufQwi5VmW5Ww2C97LgCqw0lpJv7Aoc7nPADGEsFwc37hx496D7UtPAQBGhkjECuPHGD8W3t29e3e5XKZlAQqVsafXzp4+ff7GyfLOrdupsevYR6+MUb3rcptN5rNMp94ks7wsi7Kq96i4SBPfBw3ahw61Zn45L14hzmczY0zvnGLFzCfz2WQ+CyF4733XO+fmxTRED4x98DK8JTkoAjT72hiTJ1nXtVZZDoxKBxeZo0ad2pSI9ts9BbLaCrMs+IELKR1KIorkhfUWoivLkgd31sw5N8mLFlqZv44+JMZOZtPUmujJ2GS1X3V1m6ZpW9VAjIjWGPDx3e98N8uyLElSm3RNZ5WeZtP8+NrVk2d11946vTabT5Mk6Xwf8gIAvPVt37X7ajqZ3bp+dgmKAr/+yusXV5er88vj4+M7Z9evLi5zbaflhHuPMTrf5SoNIWzOVzFGm9joQwwhyVPtYmqzaVL23FqwmRKRynD7tLy8vLTWYuf39ZYBsqKIRByisib0zqSY2SQ4LyNpRZZPy0ndNmdnZxwJzWBvuN/vz05PRWN0vV6HEIhYqJoS6tM0VaABIDHpISlSSiGDTIP+9tedV17xszen06lznQWlberqtqkbBdR13bZplJKmHhZF4dqudrsu+sRqzZwidE23TPI3b9xG79mHtq3r3c4ppYwOXWuyTOssDoP2xB9zDQoVGmOVbts29xEDvVLO3v21X/tL/8F/+L/+P/z7k1dfe/z0SdO12Xyyq/Zaqy989ndMs8l0WoJJ2m4ngU7mdYwxHOKB5WRGodUYMcaXb4TgfK96Y2yICMY4H+uuJ+CzszPX+b7bA7Ex9uz4LMiQEHPXOQAgDNG/jNsMkBhjtGldH2O0SgcfgAiQDKq+79u2tTY1Vk0mk/uP7n/mc9+LiO+8887x8fH/8t/983/xL/7F999/dzaftW1rUGkE0CYoldhUhAgk8TCjn89QUjofgaVNKz9ZskohfHRti6CDpyxJdKLFzCeEQJ6YUMpdM4h6QQhBPsF7Dn1QxgjV9FBEHL56rD4+Ktpx8I9BoxMZ6BDoOQZG1Fpp77rU2sQODsZFmiqjfd+m1gBQiE5rjUqm1yIgIXIIIQoqCTGxmVIqxF6nKTO72HHntbaMFIhAcQx+X3VVvY0xamXzvFBKEcGjJw/ublYAQESLxfITn/iEQJ9Znm+327IsbaJFToGB0sxqg0qpvEiVwrqtEJE7SjK7v9osFos0TZUyx8fHSqkbN24UxeTTn/4+Y0zbtkpB07UPHz4siuL+/fsnJyey90MIl5eXaZaJhGNd1wLvCtFkGBV3TieDSnLr+jxJJRVkGOS29/u99OaN0lrr3W5njNGMAw0ty0IIoJB5UJ6Mw/IY6h0JsMyslDFaoVKycQApxti0lRqEUABZMYFSRmvRD4nPnj3TVhEHRJjNp4IcIWKepxRhoBMBhOAFGoaRLElEy+WyLHMp/PM8d13v48DGMLmNMfo48BiapkvTfLE8TpIkhhDjVk6Krut872SlyTC08GFx5EJqrW2ayDdK2jmdTvM8l0EEAb4FKkmMFRYzR4gqjuoZ3LdOa101tSjmaa0XVLx0d/9LvF77/Z/7yb/yv/mv/43/6L2f/+r/UJ/5/28vlZjlq2dv/KEvffqP/+D1L70x0IEBAKB6tnr0T9771l/9pQdf/mZzsfv/yVV9zx//wWufvWuyFABC6y6+cf+bf/1X3v+5f7a+d07uXxQF/pd4vfkTn/2J//u/Pb119P/49J/fvPvsX/BfTbzdZ/3Ba1dgUCJSyjBjCIM0KwB0rnXOCeyotQ4j/kvDYAHLuLBS6qBhG4dpcvUisU+6pNIMlhENKUIhgmzPFze11poUO+elCYSIROHAXEySxJOnnkA6qdauN1dd205nMz3qUJN0LJl5bKkKLC4H4kGKKsYYmZDhkC8Zpa211W5ft40aXgzESZoAses6BSDsaYk8z58/DyFMJhM5cJumaZomSwsAMMY0TSNQAFFExN6JQHxEBEZQCqzNuq5TGpSyzGytCKMlcnl69DwQz1W5z8aY3W4nn59lhfxGKcBhLOpDCEJLZebAxMzi+iiG2zJ8zMzW6oMg0ohv6AN2CgAhBHk6cjHS0mZmqwaQTdDnA/6mlWYG8kBEgNBUbQhBWx1cVEr3rVtV22bfTCeTGAhZEUWITBBJExICMXGMMYLQ4LQ2zJDnhXNuu90aYwAUIiVJcnR0jIhd0/d9P5vNrbUS4aUXcXx8rLVerYgCE4dpOelcL7XcZrM5Pj5GRO89AR8tltJIEWHTs7Oz1WpVFJNyOjk/P/fe+97t93sYhf8FpCuKou+d3DUAmM/nh/UNI0iqtVagpbEpLU01OskeCPzyCQdEkgHSNAUaTAPkuWqtA/mP0qwIIQQKgSJoYAAgBCXKsEoBUowe4LeoLb/4kivUWks3Loz9Tz8aChGRCL6AQkTU2moFksaNl/2CVjIzR4oI4kmvR5EjAaMlBLi2QwZrE60G11Fx+hCpCmEt09j3ErQWEQlB/TYMVxrdRllQSjRrx54zaj1clJKlSTwGjkFISA+05UEOBnH46iFnlaltrYAHSaBDOisEUmnkH24jjvK7h90yvHnMkg8r4fDgEDFERquPjpfP15fvPn5/Mimqvjl/9Gi7XXdVhTFQjN57H0Pf91Vd110/n88/9ZlP37h2rcwLjYqjPzo6UlY9ru/+9Fde8nyl/S5xp6r2srZlwwMorVlrrRQTgdYDLskxIiHgIICFiF3TElFqE7DAEAn4oAaV6GTvt8E5iDSdTufzeVVV77//vnNOyl3JU4Uu4V08ubaM0bVdW07yL37xrTQtf/0rXx8sm1xXVdV+XxkzoNtZlh0a/qL0t14bRHzt1TeYua7r589XiNra9Pnz59ba5dG861rmWJZlkiQX5ytjFIIGIq2U9w4xlysfAlw/NIqcc5vNpq5bm+aL5azpamvV57/wmfPz8/e+9eTrX//N2WyyvlzbxEYmRmSFMcbYR+IQiDQONTnT0GoSTWEAUAqVSmezmWSuIYTPfOYzTdM8efJ0sVgcHR198MEH5+fn6/X6zp076912u931o6/0oGgxHlcjscjmecKDNxGFIK1LLXmw/H+O5ENgZmkkyj/kEJXSALBYLJq+lccn7z/0dQ+Bm4EBQREflrEeZd55UKMDQpB5hMjEkRFRpKCKokCtD/QZ+UDpHofeHZB6+V3wgi7NkNmPk48+OG2TzrVGi1pRUKCzLJvNZuJq3bTVZDIZeycQQkCtAPjAg3Zu8Oba7/ebzQY0HmpUoeoIGyUd/ZHSJJHJxz70QqpaHM0BYLfbIXLvnXNuMimapnOuR8QIOJ/OJtP8a1/72m9+/dcvLp+enB3fuHX9qO+/891vEfusKE5O5ycnR4C333vvvcvz56/evUMMxuL9+8+m0yKQNym8/tZrSqlHT+750L765snNW9dPThcPHtxDlSyWk7Ism6b5+te/3rvF66++gQjO+c1qm6R45+7158+fp6m9cXacZdkNOikmRYjOWD49XTrf/epXfuXatWvzxSx3rm52qU2YmdgTB6OTvu/bbpdmVukYYxSHgLrZxMjOuzbGk+WRtdg2L5dfiBTrukFEREXEiOA65zqntbbGIiNFskoTwHa95tkMAay1x8v/D3t/Gmxrmp2FgWu90zfu6cx3zLyZlYNqTFWVSqIkrAFNSCY6EFgGgsHGboOMMZhotzA9IJvoiHYYu00H7TA0IjARbQNhu2lFYEYhobGkKtU85Hjzzvfcc84+e/rGd1irf7zf3pmlugWSEN0/rPdHRubJPXz7+95hrWc963n2ojxU3/dFphNjvA0UgpLILAQyBU60CcFNRpPFYpFmCRBKIQRKTyEEDxAL7IEcammkYiUVAHSdVVJKkF3TtW1dFrnW0ihV5CNrnVKGgvXWHVw7dp1bh/bywV14DETUaLhwjdor1TJNp8VBvn9xsVyv6wRlCFyawgh1963b68uq3awnZfHRV14hod587W1dZPv7U0Dr23qcJOeyLaeTxWp5cbmYTCZWeIF4vL+3rqp+3vZNTeSttdevX9fz5PU3b0elyOB6iXy0f1Bm2YPHjzZ1FZiVUmmaeueMSdM0XQGsqw0AxJ7c+/fvJ2sznYo0TbVOELGq6jwvo0zw145ov0lMiBL80yOBN37uF04/czaZTstJmZdFOipe9/zFL36x7/svaROcrTcbAEIR+r5TSggt+q4q08wI6dqWepflyWhU2q5HZim11tr5p/ObbdezH4RH86JQQtZ1W9dtLDutl6vYGGgS1XadtzY6h3jvI/HE9T7Pc2st4tCj55yvqiq6pDoX4t8jnWSnrFVVlTFpURSDhVQIwXOaGRUiSU1uNhtiHwnjs9kMQCBzkWXOuWJUjEejcSm6zr7n1nObzebe3bvLxcp7H63zEHEyGgkhJApvnRNyXBbSc+jDk+WTyWwshDl/dLZ3uKe1fuHWc4eHh/P5/O27dyOnb71YptrUbT1/cqaEAOtvv/r6jRs3gAis76umSDMMvD89XK/XQqsiSVfrNQDYECTIQmXVYjM/vQAOTMQEOslC2ztrIUkPZ3vL5RJ8SFRSt41tO5OlxNxWNQAkxgCCloq8DyEYpbz3aWKYOcmz0WhUVVVAcfXq1SiH+tGPfOSzn/uctda/q24R74MRZjQZ74iu43KUJWlqktPm6cDoyfWrlzxm5FE5DcslKkUMbVcnxWjdNhEIW6/Xx4dHfdN2zi7Xi0SbPDHdeoO9ff/xtVsHR8fleH1xebo49V1nKFh0ST5GNbbexVOAt6qRX2dpcAhBC0xT016uJ6ORYXiumL3187/wY//Oj7znve/VWT472Z9eOTi+cc16hwgffP/Ly863PkSFytjEM/AcrSUeaI/0Lg29eBJ97Viv19OTdDwe142VaQlSXi4WlOaPHj1yvfeumc1ms/Ek9tdXmybLsiwbRc+o8HT8HCDydYjLLI8g4Hq9JqLItfRMZTmOlIJNtfjkp37pfe/9QAjhVz71me/4ju/4M3/6z/y1H//xn/v5n82yxBhjQ5BSpsqQo8xkll1EDGnreYDbRmAUuLvbMRnWWmdJ7r1nQh+c2NLEaGsws0sUY24JAByg712pE+v6iA8CAIAAHAQ344re5SbAIrpgxI8NfmjkQkTe6kUAgBBCR4VxqYDY91YJYZ0VBiRBPBNhi2VzIAGIgLbrpUTmiDKAlEppgYi+Z++t1hpAtn0P0EdxDGeDUlCMC+eCShQRCMlRoFRK9fobXwwDugBffu1LMd7Ym+w3TTOZTKJmWlEUgQIHPj8/jzy11CRlWSaJiVIe1tvOdsro4HoAIAJGaLqaA8R0zBijlHnPexJEPD4+jv6ieZ7Xdb1erw8ODj772c8+88wzd+7ejerJ6/U6IiCxwc71beROee/XIUyn0ywtzs7Oolq0EKpte6UUJrJabaI7aNu2sVtXCCGEIuC4LcTPCSHEuDR6wAwyx0IAIAcKTNba3rZFUaSpEUJRACDwjohgyPuIpBQoWCrMk0JKOZ2NvbfWFoiYJJntemstBZjNZlKruq6btkLE+WWNiFevXqUt8Su2YwNAU9UgUEp55fiqc85u1gPI3rbe+/FkEkKIya731DSNc46Dj5Gn9z7qosaoNdYpo8Bo23eRxxanaEx/siQ1SVLX9Ww2S9N0s9kkiWnrJt6xuG8IGCz+4qnnvQcC8XVbg34dQyjxgX/ru37w//kjAPDDf+/P/S9//K9+/sf/8dfTRvut8dRRnky/6c/86y98/0fKa3vpXvm0F+y9/Ls/9vLv/lhzvn74y2/c+cef+8yP/6Svuq995W/2Vf2u9/zOD4+u7aWzr7oqlZkrH3vhysde+LY/93s2Dy7f/Pu/8sm/9Peqx4vf5CtQ6tnf/vK/8RN/NqqL/Puv/z/+xnf82NkvfcV3vwZ0G1HKQe7MWhuCEyKqrXLMLhFRa+lcb71DxNjzAUBSKyEguqkhyr6tI3pGRDE7Y95RM4VzjryPG+MOP4V3gZjW2lSnZVmuVqtB9nfIsjsAYBignr5vhRAxMfRdB0qoxESsXCnlg2Xmw6Oj559/fr1eV1WljWm7LmqOhRCc9UKIWNjzWzvQeFBSYCZggOADsCciAAyBpFRGGROLf4BKaGW09x4AtdIRqxQgGZg8C5DIQitNREYbiKVcorZts9SIraq7lKy1TlIT74AYmoZhNptEdYfxeAJASZKUZRlCWC6XcWOPeFEE1uPY1QmiGsmOOAvvQu3jc+ZtNz8iCyGCDQDQDpZ4om1tdCUd1KLfRTMl5xGl2BKombltWwgBBjIp71gO8Y0RakDGdzi+UvveW2uFQhcd74hsbzlw31nyTOSkVgD81RMTI+0VAQbLtSh97ZxVSuV5johSqtQk3tP55oIJmdbGpPGVMexj5ug2GLY1hxjNMGOWZU+ePInOKlmRLgEje6hpmtFoFH+V9X0BZVEUXdcBDehJBP63QAkjYnwkYevuBe+S2ojFAS1NRFLi9N2xDnfqz/Hsh21kJqRMkiR437UWAJhRCBICOESElJmZovYPEXMgjMBxGKiCO7kDIb6emEYgCtYxIHvemV3GC4hziz0JRgkgkYxOQwhROQEAkQEBCUGiiAk/UPDeI6OWQqIIgaVEIRQiO+sgABA6F5QyidYyou0oWIhIvt5N2Xf/c4eTBwBmlgPGNQDr5BwaJC8EohQybi47Qu4wh7asc4Z3Ph+2mC8SILEEHLTfIHoci6i/QUSewo5gDlvL1Dgv353DxPgjxtC7ZbDzi4WtrW180GJw1WOpZM/hlz77yR58PisDh2q5jkopVd9u1nX0qYj6Dd/yLR/83u/9vjRNkXh/f79tGvI+L1KldXg7e/rGDkBExpi+77wPRVHE/SIizrF8F73dERFAhMAQhiJVXEGxRL9rAPHB50Uew6Ook0AEfe+klM2mev0rr/e+z7JITHYx51dKFUXRdnW1WV+9cv3qtcOvvPq5rm/KsnzyZD6dTjfrs7quf+qnfqrrOqVkrPQEYNt77300KyMKUaIuy4oQwmw2+/CHP3p6esaM8/kcQUihTJZII3rbppm5du3acrleV7VWWXw0rg9EFJsY5vP5arkuy1JrTRwC+b7v81HuXKiaTZalF/OLq33zvvd9w81r11/9ymvNxqlEASIEICIBQigpBDpiGWdLVOnxYagMIeK7GheixTARxVD14uLi9u23jEneeOONOO0X61XzZjeAxcxKyS1N4506x27Giq14RcwlYuE3/jGEEMH0uIE0TdN1HVIU9uGIAjDzeDzGrYzGrrL67txv9xcA4O2xMSwcKRRgPGsVRm4yIoKEKJAevPdGCLPtcoogstaa3MBfJqKua6y1mGSKKE7C4dwKFGyvlLr1/HO9c31vT8+eNE2TpWm8qpgjxVVmrY3s4zh7PQUOXoitWagcGNbOOQCWUrLjqHMipRqPR9Ym1tokyWLXZFVtssSkaRqYiX2apoEoi+oESNZ1RVFMJiNjTGxfCiFAwPVmuWkWV68d7e1PA3TXr19bbhavvvrqul5PZ+Xe/jN37lwy+KtXTs7OHs9mM0Cq6/rwcL/rugcP5m4DL71y/Tu+41svL+a3335zkkz292cPHt772Z/7KWv7LB+NRqNYstYKELz3ndLUd/3h0bhojFJqNDZKgBBiNitZcAghzad1s0ThQ7DrarVYnCdJopRMTBKnh0mQg0gSySCIOc9TIq+1NFoFT0QIQMaIrrOebabzNE2eGjtrYdKs7PveOisURivXPC2klH3vtEyzwrRtKzOILB6FQkTbB2NjDcD1VmuNQEicJAY4dF1X5HnX90Uxfvbms+S9EKIsS08khIpVK+997bxAjI7J7IN1PkmSVBspTNdZLZUqxpvVIkkMFoUsxfHh0cOHj9NE7O1Ne+cDcmP7ANxsmtne5ODaSfCc52Np0te+/Ja6mkY2MQWqm813fvv3He/vffkLn9ufHmiJm2rZ3OlA6F/6+Z/LE/lDv+cHs1zZoP2mRyPLbPLavbdtCFqqrutc07IPSqnxKAcUve2AQ1FM9Xr50je8bJR68ODe3t4eMzNTkiS3bj6zqjYoxWKxCN4nUY03BJUYv9U1Go/HWZZVVbW3txcLJ1laSKlWq01R7D/1FGBgImJk8fW6+gGKdZUt7y/efG2O4Cg4CsQc5Tv7QFoqJJICQEDCPgRX297cmk7LIs/zy9Wia2sEimVm3FZ2KTwd2m67FlMfo0kiijqhYWsB751LkkQK0XfO9b7vLIAXQkitIuduuVxWqwq3zmxnj8/Ksuz73noyyRAlGmOIoKqaJNFKqatXr96/f7/rOiEgyxLmtKqqvIitDDa29exw0tEocy4Q0f7+bEeuif633jYM0yw1k8koT9LIlFmvN0Q0Go1SkyAwBFJKKSGVGLj8i8Wq65rZ/nQ6HuskqTfVZrX23gNRIrQyAj3VTUWO2Hpd5FqqMi82qzUSIwAGohCyJA/OSxR92wkGydC7oGMpjkgQaxQMqBI1m01imzYAzE/P0jQl6xKhyiQn7zdNU1VVVhbxiE+Ulih8cIgY45zzJ6eo5MnJSVVVVVVFQlDEVdu2/cQnPiGkBIDYIBIRnAg81bZO80wpkeaZ622kQDbVRquDp24gDy7Pmmb17M2bo6J8eP6kyBOTpiVNVTlOAR6fzbXS8ZORebNZlVoVxmhi2buPv/9DezKhddVdPkqRddukTMroioNEoZAr67EAKUQMIqV8OnyDAqMfjhDCS5ZGKEcl8nS8t3h88dqjfxYCQyInx/vPf/Dlb/nO70iNPl0tnZAOBTpnrfWeohSec67vuniXeOvrFcO/qn064F4UBYXge5+nRTKerprmrXsPHlwsfMBnn7119cpJURT/9J/9zC998lPj6R6ha3pL0IdAEtho7Z+GOAdH3nchcAi+qi697T0FrXXENKu2iWvNGAPIt+/cPjo+Pjm52jTdT/7kT333d3/3j/7Hf5ZC+Kmf+if7h3sx6hNCOGIUMlO6b23dtrto0BhjjA4hIAMTJiZTUlebRmRKpUZJiAXduq4lYoT8vPdKKSUNb6lkzOwoil2QlLLdJrexhpEVBYqhhRmi6ziqnaPgLkfdgd0xVpHbCBwAEHbA5dDOLIQA8NPpNK6RSDGOh5T3HokRgYkcAYBQ6h0fWoDoziJCCIyD6xfjQOYJTOi9UjpqoAEIQEKBwVvUYBJNAZxzVb1MkmS1rufzORHdvutizSyWwLWQcdOIEeDBwcHJyUkMiSM0UFUghBgVI+/7iCZwIGt5V94QgBRISxW7CqLj9N7eXtu2r7zySgjhpRdfjBvXnbt3mfn09HQ8HrdtKyT0fV/X9d7e3tnZWZZlwGI2m0UrDqN1jC3ruo4GgGVZFkXhPSmlnQtCiOD9kBwpFcEdeIdeoLSRdV0DIhEDoFFalNGKashE0kQL1KvVBmAQ9EyShMiPx2NGUkrmRRr7EZk5SoX0bRflKYioqVY7gCNJkv39/aIo7t2757duaZvNJmLEcWJ0Xdf3vestAe8YG8vl0hgzHo28t9FoushyYTQA1HVrjEmSLIQgxABjxYAkBqVGaSDWWqtEdU0bAW4OVJZlnGZSyqaqwzvWWBjZYTzETplzjgMLKf45J/WvfXzD7/347/xv/9juP3/gv/33Qu++8Df+6b/8J/+vZQjxO/7iH3nphz+utPoXvjY/HL/wgx+58S0vJdPy5/7Tv/2v7qJG1/Z+6H/6j6989D3i6xxqcaR7ZbpX7r/3+s1vf9//+4f/y/X9p7Uo/kbH5Nrs9/2TP4/v8q/6Iz/15//K+//05Zcf/Avfa7SO8x8ApESt0xh3tW2/BW3Iex/bDqREpSSRF0rG0yRGfXFz2zGaY+IckVDvfXTujbobOyAIgBCFUqosyyzLXNdHtm9sO/aDYHTkWQsJKNXQmqzUIORbzmae/a1btyaTSd/3QsJisTBJEhlhgLipqslkEvdJ2hKEESFN02i/FBPSsD22xLY3mt4lAR+/tG072EKIRmkBgwwsAORbaU2x7TGKrXjWWrGVQo5vjJ8fe3TimSIkpjoRQmS50coQEUozKsskSaztiYJ1LTMEctHrGJDGk7IoCmdDDAb292dt215eXoYwWH8hxbIvbovEtKslI3EEKp1zAgZaupTbVsVtABCr9e9Ibpo0Ygpua88opczKciCo8WArEr8iIlEhBIFyS0LXjBQCEwVrmZGC64QQQCCEAkIkECyC88SKt8IPQw2ACAQAgEKI9q+n8cusdeOx5kCrxdIXRdN0ShrPvmm6zaYuy9JvxeAvLi5i7IJb7H9IdXyoN00kByuF8eyJE10JeXl5GXWvZqO9xWLuPfV9b/vee18TQSBEYa1zzmldR6AzUvbC1jY33pE43ZMkyZJ8uVzuQCUbxdG2+I6KCitCxGnBzAShriUCOBuIBrzSOQfiHe1mDkS4w0EMAAEAAElEQVRE2wZ/9I6YQRvtt+5eA+/y67S1KqEq5ziQkSY+yyRJBrNX7yNxAxkRUWqRpmnXdc575AFbklKqOIURgQIDaIlGaSFAADIOawk5mtIOxQctBxc+wYNWS8SQY6mBmYGYBW7XIYttNxYzgxC4s4uVAzkFmXFr+KC2Htk7LJh3m46QiBi/LIQgeJBGGJb69sUxWRVCvUO72K5zIVAIBRCVtsW7oOTY4jcYmOwuQApB29fEhRRnSETzg5DS6E9+8XOPFhc6M5vzOssSazuQQqaGnHnpwy985Ju+eTaeTCbT5eXi4u4b9WZ9cfbkzdu367oel6UQ4GyjE7OilwD+za99vlmegxwlSbJcLvzWiiQWRXatH3GlReQxTr/YIwzbLoboYxZXvk6m5SgfevQczS8W8QOrqqkrm2YyH5XGpEpFkV/y3kexOe9ISfPoweMrVw8/9KFvfPT43uPHj53jZ5999sHds6ZpAdAomRV5XDjBWkcQuRJKC61lCKHv3Ec//Erb9j/3c7/QdVbrZHG5TJJEJVJrnSS6qtssS05OjiaTESILYIHDKgBMIwLLiMokaJ2jwJYDea31bDbLR+XDhw+1Tp69dd26zd17t4s8UTKZzWbL+QOO2BYAMDvnFEpCAVtSDCJKrRllIGJgKVRkAMVNf7NZ1XWrtW77zn/pi2dnZ2maxlagtm3jlNhtC3FP3xZCB7/TWIGMDPTVaoVbl7A8z2N5bHdu7bbOeG5Fndz4Fbj1IRxnWZIkUWIlRuphqFExb+VTnHPk3zkSost5YJKoSAkIAQEititRChRMDEhSvmMbDQB+0P8FLYfeaqWU9+9IRe8EQCKdkwAthbbvI+l4uVyFEAQybwEs2LmbSgg2xBkbuUKp0UIIRGBmG7xzTiAShcG4VAIA9M71tkcLDEEp9cEPfeD27duXC8sMe/sT59yqWl+9eiUvs/l8HsgpU1hrPfmyLPePZsGTtfbmzetJou/fv6+lzLIsy/VoUjjfmkw3fXUxPwWg0ahQxkTj8sVqOZ+fN20VvKiq6vT09Ojo6Fs+/k3379+/uLg4Opp8/gu/TEQmFXlpUBAzpan+5m/+6Fu37y4Wi4vzxXvf+0KaptPptG7WfVcLSUrDdJaLQftadV2zWp+x4PF4XDdt3VwO04m8884kigIFz0KI8ShfLpcAlKBKdCpRCEApFQA3TZPnuaKhPrrrA4gFyK8dRieJTpu6s53zgyK3FLGNhSHVRqLomhaZkWBnMXz66NH169fzfJSoZGgAUrp1rXe9FjJROlFaCwkAX/riF6OMbHBkrbW2in2maZJwwt77ebVYr5dCQFFmiJNEpxQCECdJVuapUWJ+cX58dCSlPH30uG+bMiuJSBlJHaMQB0fT01NXlGXbtj5459obN082q+rtN99KkwkRPpk/eebqzW/+5m+e7Z8sNm3wmBsttHgyXzZtfeXKlV/+xZ/57GevfuiV9/WbttT5JNFni/l0OmOE1WqdKZOmqSNX1VGQEYAQfNgsLh8/fDQZTUNwZ2dnZ2dn733vN0gpqrYKFPb2put1hQwioAvWe18Uo6Io6rruqrppmiTJr169+trrr/Z9Px5N4vK/cuUqBbFY/fOpJYK/fg57RZs9zz43LAVLQcDLzdoKo6T0DowUzMgCQWBgEbSWo/KtUT4txgFpNirzxFjXbU9JQQH64J238LRv7K1FbgeOiXPddp+UUmoZhVk5Ven5eu6Cl1InSRaPkrZxzjklU5DAHKIkmu2plb0QQghQchDiFKgi5FqW5WhURJ8PAIgKdyAwK9JEp7s4yntnjM6ynIiIQArwNnRNG0JItHG9Dc5fbpaj0ej8/HFwVBSZGU+6rmPWEauqN5WU0jtH5PvW9gCJSHRiiDlP1KE5CBCqpkmYVutlzCiapklUEiO0eN+Oj4+Xy2UkJVhr+6adzWZx614ulxFiQykQcTQaJX7IN5QQAJBlOm62Dx8+jh0t0+l4f/8whKAUEAHb3ig9GY3rtkFioQejHtf2WZJwoDRNkVkI8cyNm5umdl1PRCiQmReLRV4W8QIAIM2yEEKamiihgIiTyURLE0KwvjfGEPBmuQQmCZgkTyfini4uV5dn6XS07KsVtUVxuGibRd9MyryxIbr4TccTa60AKsejEbR93WYMLxxdPSLJ6wUvq0xrQJzmuesrDxDrmtZ5g9IREEAIxIHj0f21A6MDOwMiOqhdsIkQmZS5VgeHR+y5b60LVrW+ffX2p6vmpY985NaLzz+yds3kMcafnZAQQqjW6xhHRS/ZoUHBe0+DUvbXDufs5cUchUZJfds5FH/nb//tlQt5MXrttdcmk6m1fVUvj6+MsywlRq0SrY2UxOy/zg+CwCxQlGVmu77eVELIcZl3tq/ruixLpVTTtBBp3bYngk/88i998P3f+MJ7Xmrr9ld+5TPf+Z3f/qM/+qPM/lc+/clilCdpZq0VUrVNn6QyVhcCUwxicds8O5TDt5WeHaEhYrgxlHc2UCAlNAcO7G0sNRkjpUQAVCJGyXEtxNB0a/NOu2BeSpkkRkkVBRyiugtuR/xdUkqMObbn+OHOueAZkCLhgABACqFNvan63kYGRsza4KtpVgCwVTek7fCBKYZMkZkV7aCZ0Xtad81sNmuaDreS2QDg2RMFIRQgpJmhAMzETKhAC6ESE9/dWksh+ACoECQGDsuqXlaXD5/cH40mQohYbBuVAxs6zjGALIRguz6uRIBBzpGIXG+VUr2zWutIjdrJUFhrq6oq4+coJYTYm81CcEVRxJV+dHQ0Go1s7y8vL7XWi8UiMabrurMnF7EoOCrLKKs6Ho8jS1oIwQiRHxOZFnF3kkrFSzKJ7PseQcaFg4hKKiFElGEVgCZPtErruiULUUW66xpjzHQ6rduKKHRdF62YjFHM3NZNJGQ45wBcnHWIGDXZAODs7GyHFvHW8j1u13HXioo3niIJHZnBBd92TgogotlsJoQgHyLI7skFJqVUZ3vvvcQBPUkSnSRJLF1EZHnHZouMJmttpIEPdmcQQfaBOBILmXmS6iRtmtYYo7WGp3eU/frG5VunruqSyTu6HIvXH/4mfO7/OoYp0+//b/699/6+b8N/Lqr7q0a6X/62//3/Zn33/PN/86d3e8dv7lX9wX/6n85evPprfL1Q4tq3vPgH/smf/+vf9KN2/ZsxqwBUan7v3/1RIb7qtjTzunrwNIuGpw3eKk/GTDCeAm3bRmYxIgolD2YHSoloMxPz3Lhmvfd976y1sGVDR9YmMwsYZCF5S5DaQbpE5H0wxmRZFgEuhbHlIinLHIBibRgGJwbccZAHAQetX3zxxfe89J62bZ88eSKEyPKk67oI71RV9fjx46ho1Pd9ZJdGPI2ItNTxl6ZpCohuvR4qo+EdkAoAmJABgQV4EFKwD1JKjFBMYC2UpUFiQgqFIICImQSiThMAiP244JyQkpnTNJVS74BvAIgGwoistSyKYrVaBbKIqDQyOk+cJGa1Wq3Xy4glIkIIfncK+2Aj+U8qrOp129UC06G4CwPHiwbXNA9bemXkNeO7hYKDJ5Q7nEEMbsNKCOFcCCEoVCii11oQW4GK6XQ6m81ipVxEXtu2xgDbqgOR59izT8SEHABQIJHU2jkntSDvgVkp5dErpRpbESsWLAAYiTkwC2aOaKRyzvWdk0JLOYBZy+UyMjLquu37nilSjDlN06Ioz84eR4rl6ekpbo3daCtTG00kI/bPRIiotSIi33nn+gCDElM8pQAgBFdVVbQOR0QtBjHWHaE1EvQiF0Zt/QN31RXnXNcslFJSqRiyT/J8V8qAd5nL8dY2lyCE6O4JMspaI0pEiZFdKRERo7slb8FlADDGzGYzgrDtStBEpORT2kAAYDQaOSqQYZSPtE7Wy0V0t9Rac7uVRUdppNSJ2t1AGKKxr2JECgC59YCKet3bEi5FeWelVHBWAEopESQTwiDKTiggBIcwALXMTLwjOw9049399EDRzwcBWSARaanifJXb2s6uWLSDegEAGHZFYyRmjHfsHVQaESUgABqTSimdtbA1DASBFEJk2IUtq3/71OSAGPp39rhdAhlDbdzSn4dgAkAIYVNT9e2nv/wFyzbVgIFYsHM2WCIlzHj0e//tP3LruecvzubT0bT64le+9KUv7e8d7B0eeKLlet07KyV615ajvKGn02fSNHVBRRA8TdNdOhSj1VgUQUQkHuVF713btkmSIO1gdJFmWazTGGN0YuI8j48pbkPAwjvSWnoftE4m5cgGX5blZrMSQmot4lrw3ieJnM8vf/7nf3E0Nt7b8Xh8fHx87+17iICIRiUAEBxpkzBDCOxDEMOEEj5Yax0z375z79s+/vH1uvr0pz+tpC6KIpqwM+NyM7fWpmlSVRtrLbGPjy8zWkopSfe96y8XUkprfYRuQUJk2aMSiLC3N5vtT41RN25eu7y8AIF93zPE6QcxZSUAKQQqiQiBGQRa7wRg7AaItzeueyFEZD1orZuuNSaN/xcAXPBAbO07BjuDpu2gVuGjLvn2mBx0G+N7IxwvpUrThJnbtq2qKkaxu8JMXLlGRp9Rct6jMInOIdpDCekAIm1tSAmkzPM8zwuxNQtu27Zv2uDfmQnMDDgUwyLtLoTgAFKjjTbsQ6AgpRRiEJZBRLHVWIR3iWYgYmzPjMVMAhaA8ezpnQ8hZFm22Wys9xeXl0KIg4ODCLj33dBRi4hEIYKP8azquk4zRfg7ybPxeExEguH8/DxJEm2ktZY5SIWzcmKM8t4fHh4miVZKzGajPM+Pjo6iTLbUqm2bsiySLGUOeZ7OZpObN282TfPlL7+aJElWpKNJmS8yDiAklWUWqM/zxANog4H9ZK8UEmazmXNuPB4zkJZitje5f+exlPLw8FBrde/+21mWPPf8jWiVCgDVam1t4303nZVJso+Cb964MSrL9zz/nJSY57lzru+qLI9mjCgBvA9KI4DLcqU0o0IfWqN1YOh7m6QJYEiSwRHUe58YzRwmk1FwfVlkKPLYpyZELIAHZ31ZlvP5IklMlmVpavq+P3v09CCy79tV/SieenHTgEBCKqF0lqRaaYCQaG2Uvnr1OhF97tOfmc8XiDg/v6zTpigKo3VVrck5wcQ+CKOapq3WmxdffLHp+uWde0VaBAhCqUSn1bqen19KKa9evRoDO2Qosrzrm8lobIyWQjGjFhoRozHa/v5+W1fjcqS0PDo6SjVUXYtSAFCamCLPDw8O+q5LjO67VkBo6tXR4ez04QUyL5aLo+Nrv/8P/MEbN25ee/aFqrP37j6oqmpvNvOLFep0//jk+OTKpz/7mSvXTkpTNF2gLKxWq/nZuWdIlB7Ncp2n1ActzepyUS2rK0dXIPDDh4+0VEaqeFy+/fbt3tuPfeyjSZ6EEIxSwYYFsSAWUkkUve8JSedppgev1/39fWa+f//+dDJTCs/Ozmazg6wsyrJ46pMSKKLOTAAmeHoKlHin62VqtHXBZKlIkt510vtcl2xUCOwZgIEYkIAhiIC5MUyh7xtp9HQysj71URw5yQg8MAtWTxWtzbOsyMex2NY3TWSBCaFCoKF8zpDneVI31LaACCz6rq/rGoQAgIgXaK2qqppMZkdHJ1mWrFYrVANRwtouhNDUXSBHzA8fP5hOp1FBfrVZa62zLEvTlDmcnZ1Np1Ot1Xw+L8uyKPKmaYXgtm3ruokIeNd1iZa2axiCVFjmRVU1HJzOssWyjnZVAJQX6WJ+6b1XKKSApmmCAfTWepuHtMDMklVBmOBMmroQ2q6z1iqphZJd11nrtdYBeL5c7EQYWGCkTTRNc+3qjYcPH3oKs8k4+q3nZd62rZQopZzP503TIIckSZ5//vmmaZbLZdRdcc6dnJzkeR4IRlr1zh5fOWn77vT8LNUmdi8RkVaKmY0xx4dHcQVF9G08Hq/riog2q3UxKsuyjBBSXPjr9TqamsxmMwFyXW0cBSOFkgYrFEIqRvHUmgPAvFtxIu9fnkopPdKX7761rJtyNpvliQALgo0xSuhqtRYSyrLcd0pmY+184klXNbZ9JgS5no0ZjfPLyyaQlzIBxEwbrfUZePYBGdTXuwKAQEEg6CQhZ8lZoyXakBmFIVDoy7TIApNH17pxzv7h2ZfWP/Nibw9eflECXkoyxlAIkffqBuccFb18IzUVET1RVV373Oef8u2InOd521gIIIQAT+OiVAAySeu2co4QOcvT/f39QJUPmGVF23SpyXyA1bJS8imf2TZtmnKiUw4wHk+LIlNKheAiWUwIEQ3iu64jJJOlUsgvf+UrR4dXpuPZ2ZPzn/7Jn/7+3/ndf/JP/sn/7C/82J17bydpbgN1VQUAxBBlyqy1EYKJqT5uO64GRoIe7D0GnqlKtBqIw8H7weM3BArBeQ8AMSRWQqo8iaQHH6xzKIQoRqOub5hgF/+LbdtWXdfHx8dyK9sV8wvYgsUEILchR/Dee08B8rJomoZB5HkuZHt+cbFarRJjtNa9D13XeO8Tpd+JWKTeMXV4y0Hr+36cJPl4HD2OgucADqQiChJkkuRZVvZ976yLlgbayIg5AkAIA1fLOZBSBg7ELCWKmJYKFMbs1j4gSC2VUi64+eLcWlvmJXuu67raNK+99trRwXGaZoeHhwACiJMkuX//fuzGCCFMJpO4eCUKIPY2GCM9e2aO6mFJkkQeSURI0zSNpMJIIQyxcGsMAly/dm06mSCis+H46MqVK1ceP3p07dq1vu/X67XW+s6dO6PRqG3bx6enB/tHkSAc2cTGmKZtI3l5hAPuGfMRGd2nJQoBRN6oBEDERjSU4JwdMJrMMLO1/d7+NBovG6OstUQd8s6hB+u6DhsHArMsK8tx0zRVVXnvI/rjQtiyiEQMbnHrJqaUUGKgxcXgU2tNPsit1WdM+bXWUptYxotCmjHOz5JUSoz/nqZp7IPZxvmiqqrVKgghAnuxbckXQkipiahr2hjSZybhd9l3xyaAr7Nj/fqG7+y74ebfGr/2cfSNt973B377rwtrjkPnye/4i3/41f/5E79Z8O5uCCX+7U/9F792rHk39l68+kc/+Z//1ff9qd8UKZWP/ye/+/iVX+1b6NZfx6rya4Z1zgm3LRByJDVui2egtTZpopSazSY7IdDpdKq1dsE752KwNJQVvYfBZpCFEBIFDG6BFELYdbIP0RQzAKzXyyTJos4kM8/n8x3jE7aqwWLbyx4lcfq2TSeTqlp/7nOfY+bLy8uyLI9PDnc+3uv1OjLwYvv4Fv0cZBthS15GREDctfNmRZ4lafxFASUHAoAIgnvvlTTvoGFEOxKq3F1cTACVsl0fmHZY5Y5AxkoNDRzOvas0QIgsZXlwOJ1Op3fv3m3bVhNACH3fW997ckIoZIhexNE+Z71eReS670XU0crz3PYwMOR2UgE4AH27bVlKGeAdCM4Y5T2Ed+mbRWgeBgXaEEKQMPxSv/VVijeWGYnAuRBFUONm3vd9tPGLIBIgAQ+gX9zSBUr2JFiEwIKH50JEyEJrJYMMEABIoozwxG6qqKie4ZwL5OLzA+ItiVhKKT2R9/7w8DjLsrbtiiybLxZaa0SIHsRuqzYd0eqmabz38biNMGic9wCwIwx67x88eBDzW2sjsxi894DEDLHEvW2zYr8Vvd5VV8TWHU4IoVITQyVjzGQyybKsrmtjTHS7ipnkO3MdkQMBBu8ZgaNtohCglAo8fB1sa+4cxSIIECHWSxkBkREx5gxp8nSjUiFkURTkg7U2BHbOVVUVp+yAnku9w1MHXiEgYfTig/iy2KGQaCUABQx+PlJK2gaIQgy8AxHrGCh2KC8RMYfoKyq28hTMTF9FT/4q2Yr4kwFABlRKcaCI9CFxfBZbmJuZmfwg8R4rNsNlMAAORHIOAAAISMRR3VUIkWqjhWy3S3337fHflVIAA0sacTB8llIiDtj0bsru8G4pRNxMh4pC/HVGffIXf2W+WqajFL0zWtR1zUgksGn6UZm//vbbn/jMZ1fLTaqSy4tLifpsfnmxXDV9B0LVbdd2zWw2aqyr7NP3+vV67YL13sVtcehqVypsJV+klH3fF0XxsY997PXXX79//z4iooqPcaADuOBDCMv1Kk3TJEmgGnQVuq6LEsBKKXZMIRRFMR5P7z+6z8xd18SF5n3IsjSmH1LqpmlW642UIKVs2wcPH54ZI50lRHzxxRfv3LkTbbKFEELotm3B0/Vnr832rj58eN9ae//+/f/hf/hbWqskSYCRGZPEMGPXdZfL5fXrh1LivQd3gyMpjdY6CgwBADEhYqBI2w9ZlkmJu7PKORd7KiNbJ/7SrmuMyqKfCREJUMwspBiPx+O9ceDQtjXsnGoYoqZ+fL4mTVzf7Vh7KIXWScysYuolpYzupjukeOcT4pyTcnATjTMqitG/K0qWiOh9sLbu+y4Sc8gFVGK7rkVRFFrIWAjc+fnGbNBk6friYhfgRhQ4z/MsywCg7/uyLPf29qrVuu9cRCSZvRBCyuEwi8kfORe8L5JESgmASGFb19W85TIjYuxUisdGzEjjKgMpYvEWGXaFKyJi7yd7+1XTnJwcL5crRJxMJsG6+w+fiG3zlDZDhWk0GrVtPV9covdaq67rdJoURYGIZZYDEjP3fT+dTvf3Z713WZbs7+8/efLkueeeA4CXXnrp7OwsShl6CrPZTAi0tkcJeZ4652zwZVFUbbNYLg6ODw5mB/cf3FssFkWZCxAh2LTQ+/vTqltT669ev7pcLlerDWx1sdfrNkkNKKmUunbtRtPVWZbVdeW97bqwaVdpmkQdfyE5UPDBl3nhfbhz506ajLIslVIqJfquiU9Qa9m2re06rbUQKFUKQJPpyDn36PQ0SZKuc957nZhIulFKBc993+dZFnnQWuLe4X5VVWWeI8pHjx7AYHsrq6oZjSbGmPV63bbtlStXRqPRJsvd8il7S5poF7i13YvveSlJktPT0816rbJMaaFQCGRPeHRwfHl5ub+/f+/tO3meT/Tk5ZdfPj0/i6JdaZpulotYsk2MKdJyfn4BAG+99XYIocjyJEmMTiPZE3Foposs7HE52pvu53n65luvRxYSM7o2LNebyWSSJSlzSBOTpiZJ9Gx2c1KO3779WnDO6NhXuzx7/GS9Xt+8fgMT/dzNG13XPbj70Ds1HZdvvPZgNDn8D//Un7pxch1IeBeE1Pm4TLKUBOosP5ufh6p97wfef37x4ItfefXW9Vsq6HQqDvf2A3FVNZPJpO/b07MnWuPF/Iy8n00mwVstzZXjk1uTyXO3bj158iTLsrTIf/lTn5zuTT70oQ/Vm+ry8nK1XAohNpvNycmJMcZTqG2jhY6aBlVVXb125dlnn/3sZz+7Wq0OD49jrGKtZX56YikAESUK8kSOwlNfIzkYIN+3RstEY1UvBbnJuMzSXEojpJY66Z2vuha0ZIGds029wa5mRFuts7KY7M86a2MevuUtJk/1M1PGxFUZU3QACIGda+OlJklCzsfYTAihdLLt0AKUQ/NgWZbT6dSYRds2ccPZ3z905KKvRpYVzEFqpZRwzu3NDoSEGBvsSsVN07jeWmvruorzP8ZjfW+7rkvTvLfz+byZTSaub7konHNZlnrv5ou5GOzObARqAdG7frNeShSCKZrPaSGrrnXOOW9RIUkOwRVl5oJPZBL9D0ajkbWD9lGaZ7brX3vttaIolNGMUI5Hbd0EYCFEUZajyfgoeOecSsxyuZRSEjBK4YkYw3g8nkwmXd8gIiHcePaZ0XJyenqaj8q+702WEtH+3p425nR+DsRZlu1NpjF8Cs7briuyPDOJC957X7dNtBDw3i8WC0chnmJ+a0pOITBz2zabzWZHPjIqUUaz4IjyMDMKIYV07unQSVIWqpjW9QZcj4jJKH/5Pc/defAwCAAlmXm5XCohne8vzy6Pj4/f/8wtEXh9dqZ6p53LtQnUNUSBvDSZzhLlPUkpYrQlTZHozlkGYIQgzFOvQSklSGgta0v7RRnBce+9RERUXdeMTU4IGYnNk7O9kyO76b78iV++1vXPfdNHHlWbWKYNIZRluTeZRq+b0WgUD6A4yT1R3TwNGAaQSh0dHdVVd/pkoYtJ37eut2CkUipPEwGZkGBtu1pXSUbjyfiN194cldMQuKnXCFee+pm2d0U+6E7EaGS1WgkhQHDXdUKb0SgfqBU6SXS+Wtb1qvrpn/7p7/kd3xsCLRaLz33ucx/52Cs/9EM/9Bf/q/9iuVyCVMwMQkTHgiHpBQAxoMwxGUZEsf2/zrk0Ta31RPAOOWMrKhhNKeIbt2LQYK2PC8oYE4kCxWjUdnVM2eTWZyn+LiKKBFXmryKI7dKH4ToBmbm3ViAandrgpdEB2AbviFerlRYIiF3fc9sSea01CwQAAbH5EgBQqiT+IhQcM00hxHg8jjM8eI529iFQmmZRGanxnXNBKQ0AfeeiXmCs7jtnQwhGp0SkdLTLcwAQQthsNoh45cqVEAILBgDnnEbp2SulxsXYNQ4FVtVaSNU0zaNHj/q+/8IXgpR6NpnG8zS2bEspz8/Px+NpWY6zrIjiS957a33X9PFGZVkWi/GImOd513UChq6mHcBBBIeHh1rro6Oj9aoqCx21jKfT6fn5+Ww2e/To0fHx8dWrV621R8fHSZqORqPFYjEej6XCt956K03T+Xx+cuWKMeb0ycPpdIogz8/nTdMwtUKCMjKEQN6JXDZNRwGCdVIkiBgddIhIqSivr723fd92nY+ogbe9UobZGZPGmgoQK6Ws7by3WiexEE5EcutVGAHl3VSJpwnwVk7H+8DU930kQMT+vyxJo5gJo9jf35/P55EuppQqiiI4H2t+0bAr7pCTyYSIqqrZsfN0UgJQvJ7BDOldUItSihkYOMpD13VN9PR+iN8a/78ZZpz/7v/+P/parHn+6sPb//Azr//dT9rWCoHTW0cv/dC3vPx7vuVXv5/hO/4vv/8f/ckf/826HqHE8z/40W/7P/6e/ZeegjUPV/UTnwKAF3/XNz33/a/sv3ztV71m78Wrf+QX/vOf/Qt/6/bf/8y/DOh88pHnftuf/aGv/butv56ZwNeMrcIvUaSp+bhqYmqZFfne3p61XexciSyBSA2WwZ+fnzdNo5TxW8N58Q5Rc6DKRjPVuN7bto0LEBEBBrWHuq6ZOTNJhC9iyWeH1PGWRxh5wYeHh1sxnMXF4nI8HjdN07SV0iLZCs/GDCUiPLGeGtP5eGwhYiAfrweiqfL2OqfTadQmQoSoTBKJa13XxYYJJjDGaCOZWQLvhAdwKywcL15quePRRmuHvu+9c5HElmVZnqdlWXpvnXN5ke4fzNq21Vox097eJEmSpmlWVQWD4xoKIYQXQogoBLpabbIsi8i1tf1QMKbhUJZSxUYf7z0AycFsaWfeu6WZIwxSn3rQE9750MbfFVFoKQaJbSIIA7iXMONisRBCBOvslgYagXuxZU+HrToCMyMICsxMSktgFEJ0bYfISqm27bVUIAfMwQfvOQhkFQIgEntgYA6q9V2apq6r27bdm828DUpIQJCoIUYhnokpWqDUda2T5OTkxHtq25ZcUCgFykjVttaCBKUiuNMzs/e260RRFJKUCNLIBAAggK1tlsm+aYHIsCBGCqRARWkIsZVMjZNDCYmIgyQlg0CBIJkYAMkzgQMAgSgQnbVd24YQmrpGRK212BrZxTYi61zwIFBHwEgokBIRiZGBI+0RmTmWRCK6gSIQEYKsm42UMvJuYnsR0NP3gq6pnGubrut7qwCpc+2qaLvae6+lGmU5MUitpVIIzAowAAv0UWoNMFivEDUKTYzOmSSRUoUQEAUDCOEDUVDCeUYQ3JNsOecEQTgeIGOFgIieiAV6oog4h61QLCICCK0HAW7YgsUSJSJKRMUyyXKjdVwnABAhLdyy91EKiTt1VxIIAgUPzn7RTzJ2pBsfpyeRNFpo0XuHLJjIKC0BvfUIoKVQINi/oxDNzAAoECSCZuGl6IEDBNZCOgIa5DKVUkaqyORv+k4XGWn5xoO7X3j91dZZHRJvg+utVNiT27SNRZjevPGJT/1K3bnNauO99zZME9GsV6lAQUEyjIoSMQkhE0JrOXrq812tVnV7nqYp+wCBkUAL5b0HBmBCYgpeALX15t6d28v5pUIBgQAx0OD0ClKAFM51UiGxB9Q7o3kk4XxABVJKIUkqKIoEMbi+cX0TQkA5SIe3bY8opApEnKfToAIztxvjvS+LKXPYm2VXr14tyrx7o2JmQAoEaQbj6WgynqXGuL5DQgggQaGUSmpgzLJEvmPD6FKdFMlenuf16uGmWed5EtgJgQTcOysVAohEGUS2aAVD1zuTKClFb2tiK7WixhE6qQ8AQch0uahTE/dKJgooh/qnQERPru+QiBHzLEvTdD5fRJpeDIsRMctnMUUXQmQmDyGQ0GmaiHe0MoLf+r0yc/Q2UkpFTryRKv46IkrTVEoVxQq1SiKGa4OPh1Y8w4lIC7mtIpqiKCLtl5CstQzB6MINJp/64OAgdpcbY6KRERFZ2yMykbeublo2KPNSCjNaLlfASqHSUiklAMAF2/kuSTIgRikFg5RKClBKISAQo8AQHLNQShkznL5CiNToTsi+75WQWRKPpRACE6Dz0NkQSBBT13Wr9SIr0iQ3F6sFCZ1lRZmnTdMorUGhEJCXWZ7n63qj8+S4OI5ElavXPwhA5+fnXdeJTJSH48vLS63Vs+95Rkq8c/ttnXLVLkGF+erMGIMCnyxP9w73kiTpLiuHzXg0nulRCM6kWIjs/PwcQSDA/l4qhJjNcqFGxQhCCFrLw8Ob1nZ9v5FIiVbryzmHkCoADkitkVTVdZlr4EA2BHBak1JOG0IPWokymwCAQAEMQkglWCmplFRSCMyYPHPb9yF29kRri75t2ZGWxsi0t61XgQVs6nZTV3sHh7PZ7P79+03fzfKR87A3nTx58mSzXk8mk+s3n9lsVm1bt70VjcpG4yKzRSaQJg8fn3YNBIaiGK1Wq6qqqqZOtLl3787BwYGQx0/dW0LvnrlyLVhKhBYWRBtGMhMOdS+89+PZrO6WZ6dPrLVf+OVfds4dz6aEEGz34rPPVFV9uVw8vHvn5jPPrFYbpdT+/n5bbQK561eunp2dCSGSJJHBZWUmUbWdLRI1yiZE0HWdycV4NK5Wax9orPLqbE1EAEIJ2a/WTsjR3h6yCiHYte3I3ls9ODo6Wi39xcWmd+vHp2dEZIw6PDjAJrUbWtl2MT/r66ZpOufVv/uH/61v+9bvAp/0lX/uuWd655fL1dH+yWLTnF2urhw/d/pohaUKQCSze/cf3X/7Nvg+Oz6WQozSUqt0fn65WK7LSbneLNuqunXj2qjIbWs9UkP+d/7AD0yvXL39xqvpKN+bjmdFIR0dlJPV+eLB3UdZUV67eStJkqateueZAwcPCjvnTZaaLK2r5vjoJEvz00dPjg6OifxqdTkajb7eKd9D6BQJwBKNE/qpr8mESHRqmFGb0CFaqUWaqqIP6IL36LrNunMWUNjKCymdcyVik6lNAjUTB05aH+WSpZQEoafOmKdfT23tvF/0fW9bO51Oy7wAIiU1EwJzCAgsF4sNg2Di/dl+kiT3Hz7I88x7L7QmYOfscrnwfvAAWS6XAOBUYGTkwM4mSt+6dWuz2SyXl7GRpW1iVCDrevAqQCNAqqqzmUnKcmRtuPP2vaqq9mezmzcnWVpIoVHKuu3q3hIRttoYo6VEZGvtctUqIWP6ceXouOu6y8tLUxQxx0imkyyEEAICHO7tp2nad01V10jsGhccBwhpWvS9F1IZJUMImRgk+Y4mKQCFEFiTYJGkmhBefeNVgiCEUJ3Kx2UIwfsuKWTbWs8sJSZpmhdj51zTrB8/tsaYJNFpnsTW++VyWXVtv1oaY5RA7/xhPr5cLa31xEwBLtcb5nVRZEoIAPa99QJjeASACoUCFm3f1LUWcjKZ7BXjPqUqzdvgA1Nj+7apx+OxklpL0XVOACYm9d77r+NT/fDi7MY1oZPcS1/55voLx4nE7uH8fA0QVBVqNInIZerou65e/2B59EKWPrz/oO475xwY0zMvqs4DShQZJFfTqdksOxtQsBQkXG+lLiVaKapg0/zpJDWTqFIXIjAadZJkMjADoWAEoNCykE4rMtDVXZYVNK/3S+Goda+9Vjx/TevUCMyklkmK2jBqlAYCXC7qi/PL9eay6WtP4fJiuV7cAPjdT/l6qZhE11mtZZLI+YMzkEHpnEE7r4o8OOeUFo8ePnnllZer9WJvb+/WrVtvvPaG7cPB3l73tOV1/fhqoi8vzy+N0SfHJ5er5aMHD/cPD7z3i9XljRs3pMQQCMBTMItqgcgmc3V7/uobn3/5hQ/eu3/x+Ek1nt74Hd/1Q6+9dv9v/s2/fnA4811Mp41rA0uPiD70WmuVmN7ZEIJSIjqFI5EQQgGS8+AdU+jstsBMgpkb10ipXO9BSPKBKEjUNlgXdim0RyW11kQgRZImRmsJAJYtISgUQojowdA5T0SIgpiQAQIECnLbOk0StdGRcFNOxkQkiEMI7GzvXQjBCBRCaBTBWynAaCOlBAZmjl7lQopAQUAQUkhG6y0AmFS3fTefz2PaGEJQQgKTEFyOtQtVvWmYOUmlBBSo+r5HRABKdeqsQyCtJYrAEMixQCTmCJ2kxgBA3/fMGIEDRLRh5zZpLXXeeyEh16lOVPA1gDcGpCQwFSjlsFe5CKG1IWBCq5o/9dlfllKORqPYMWaMWa1WZTHOskwI8frrb/623/bbomIVM589eVBVVYwM0zSL9II0TauqunpyLT8u6qpNTdb3dlRM9mZYt80HPviNkWnRbCoJ4uTg+PHjx0li1uv1ycnJBz7wAWIuyrLvutl0Wm2WWpve2dneaBJGm83m8PBwvV5vNhsptO+9QtW5HgCYrFbQhxj8Utv2idCusV3bM3OSqMAUIWDbReyjzxJVjqZd1ykJfdcpgYicZUn0jTaIWTFq27brOgARwZHeNVJqKQQHCoACZIwwY/9c9Blm5qapBFBPBCrx3jdVHVEqKeV6uRIMUkojTTRJRoXseVNvhBC2a4gIpWTGuq4jJykSUIiIfJBSFWnOWzW5KKuy2Wy01kVSQvXUHeu3xr/yoVLz/X/53zGjryred5fVT/zRv/zgn32pW77DWX74i6996b//2fxw/NE/8f3f+n/6N3ZaxtnB6MN//Pte/7ufvPOTT+tq+Q2Nj/zI91z56Hve/RdmPvv83Z/60b/56JNvdZfDdLn7T7+Q/oXy6kef/87/6x86/sav4iBf+abn3v+Hv/323//Mb/gazDj/4Z/4T6R5mpL11znlv3YorQQKKaWRijyxZyQkIsfO5Obw+KD3DrRkgCBA56nKkhCC5QCD/5CQKHSS+sDBswcf2wSBQwjBSIWAyGRMSs4KJq2kY8cQDg+PmbltW8EiArJEoJQaFeOqqpCFFBLAMUAUSk1NcnBwcHRyHAucaZof7QtHIXaHLBdromUIrIVUrFGKJE9DCCGw1nJnpBy5j7YfoD8AIBFCCEhQb6q2bkIIIbaYg2TmgCAE6jTpnRNSKK08UfAu4raR7BghR8ToykRCYuyOGiB756I4ptJm/+AwTzOpRAxKy3wEQGmajkdTInLO7R/uPfPMM0T+yZMnPbcI4tq1a5nJNpu6rlsBggKs1xUjgMAkzQCFc6HtHBFJHLRQ4j+1kEQDnyOWnzdNGyiCbVEQE5RSnnsA0DqRUtR1J3Md6woAoJSRUjKgc84F732nlFJIWmBbbTgEFooGvY5Q13WEj+UgaUAKJEvlyKGE2WwS4fgI7ltryzKP6lswdKtzD7oQpTJyFVZsKe0KIUQwbLlPukwVRXG4t0/7B1/64herTZOlaWt7Cdh1dbzXeZF0rT2/nB9KURRF30e9JGetFfEI52hzF9usohB1YDYhuAjErNeVQmHtVuCCByJM9KOKlFxEZI510cGbIsLz7y6ty615145FH6Fk+dXqzLuazI70uqsJaK2VHAqwIYTA9G6e/+57cevrFSd3LJvE1oPEZNEFQkppzNPhyNl0uqlzT3R0dCwZ+k21I//HZiLrfJxM7B37sKsJIwMIoYUUOMwtxHhXh040KSVtWdhiEDr23jkOQikNuK1IRO7DsEtv5V22PypyF7YC5CABcai8gJQiy7K40QhECBRooIe/u6vu3UVsFBJRSCmUkEKo6PoYX9M7G5+XTsxOJwhgoJNLQCGEklLroS/z3XWw7WbLKEXEcIEZBjE7EIiDlWcgJWUIIcvyjnyRFV/84hfPLs7TPCHm1luFsKlaAn7Piy++570vP7ycP7mY99Yvl6ssSdu62yw7yV4GGmWGnT+7nIfASp8DkiozeNoTLsvS6Mmu5TA+qSzLQgjMA6BMpJNUP3jwgAJEkY045WIBKskzKWUILjWD4vbe3t56vWZmZlBKWdelaVoUWZZlTVPH/wUAIVBi5OHh4Wg02mxqa+3Z2VnsNOEtZzxG1cxYFKO+7zebzXQyQwGXl5fW0s2bNz/84Q/fv/fws5/+tLM+BA4hGGOiaTUix6Y8Zo6SwcB4fn6epmnV1HFqaa0pDDNBsBCDKs5QHpzOpl3XEFM0ZIszf7OufQjGmM16qbV2vfcdx2PJu8GE3Xvftm3VVM73fispFZ3r4mJxrieiMp3EvxP7OJWdc3GZDI0eYlB/jiSOqFe+20aMVFJhZOQZncb1LqU0ZnCHt55iKwYASKmM3OqbAyKK5XIVWxAihiOEiARza+3Z2ZNIrNi+Hb33SZImSRL1hWJHcCKU9aHta60SY1LBItEmGppKY1KZknOT0Ris79s+0YaBaKt7Q8REg3j9QIjeEn53/G6lQqxvSylCb+MrAw39IkqJut6YLH/22WfaxnpvmXFw6RGolFoul23bEIL39uTqsUnU2dmTJ2ePTk6OxpOiaTdZZnyARItnnnkmhP7O3btKSIBgbas0bqplBPdv3Lyqte47WxRJksgQeim5bTstcTybzPZG3vsoK1FVlfddmqYHB9P4yJqmUkoVZR7B7u3PKZSUdV0T0Q70R2KWg0GNlloIqZQKzkebGonCKB2hE781e9RaSzX0LmktDw6O6vUmBG9MkqZp8CwkmFR7Dsx8dHQ0rFzPTVXvz/bKvHj8+LRr2rZt9ybTN998c7m8vHnzppDZ5XJZlmXf2yjmmKXF9GTPBVou14vFgoj2prNo+HD37bf7Npk8Lbz03p+dnR3MDvu+X12u4nYRG2t0Ys4uzuerJ3me33j2Gefc0dERAPR9r7Xpun6xWFR1NRnP+taWeZFk6Xw+7+rqQ+//gBBiOp1667Ks8BScdUqa/Vl5ebmUUjoX2tBdObqSpunZ47O6bhaLRWqS2KYqpR6NJsHynbfujcfjJ6fnBwcH84uLvu+NSlbLzfmTiywvv/+7v+dLX/mK7RpyvqnqRJvXv/JqU6+/5Vu+5d79By+/9KE/8SP/wenj+WpNiNw575lms5lMsvPFOlE6zfOjk+O2bkLfhsDXr15r15dG4BPbblbVOV30rW3a/tatW2manl30+/v7SV5cXF4WWd7bfnpweOXKyWKxWCwWQKykOTg4IOAky09OTlBI72nv4ODJkyfOudQkq742Stm2EzAw+kGKLMtu3br15utvzefz4+MrFxcXRVF8PUMbIaQxxm9xn6e/BtEYk+dl6+yqrgFACVlV1WJTbfqWhAwCiBGV9CGwQOdcq/KTm+9hstC369VGEDRdxyDavpNSIqBS6qluZn3XSam9a9frtVJqOp50fZMkmZZqs17HjrEQAgFmWVY1de8sIrZtGxcLIkaP0Hisx44QIqrrOkqMKRSdD1FRZz6fd11NCLFKisRaJyZJBCAaUVUVAIyLMYC4nF+2bTsuS0S8d+9e3/eT2b61lhnZs0nT0Wi0Y5QwM/nQOKe1bqu6Luq+6yiEzvuiKMqyDM7vTcbR7SNSFyk47z1TaLpWSpmPyng9jlzVbsj5D77/G+fz+dnZ6XQ6dc5LrUIIbVun6ayqNkopF5VGtIrdPy743tmhrZIJERlBGd00HQinEzPdm8Uzt5yMCaHreznQI4CcT9PUWrtYrLIsc5601ojcbJok1UIgEG9W68PDw6reQKB1qAzKSZG//Pzz73355aZpLufLvePD1966vW7qR+dP0AdnLfmgdArEe3t7RFBVVZ7nSu1fPHnKNKj7brFZA4Zymicm7Tp7evHYO1pcLK4e31xz/cYbbyDDzbx85gMv74n89le+nKdZWZYUYNlW0QPNETOK2IoXD9Nd/+yYlSNWCMQYvo5seSZkAYKCw54SlJEXI1AQeSbw0Q9cK62TYINDrvsOE6zml5/9xV9evfRSXdfOWe/DsqpZmkBgO9u1jRaoDQbwUQgo0iG/diSJ6ft+s1yRkLGpK9pmBOdMmntvBSrrOmftpz71qStXD24+c20+nz9+/DjPyrZt8WkQOnm/btfMHJu07Lnte1fX9Ww2K0bl4eERkT9bX/R973yXZ4mRItU5svjKl15dXfavvfqmdSHP8/G4+EN/8I98+tOf+tznPx1dSWPUNJA5ANq2RWdj7udcG4MZG6IT4LaljIh5sG0IxIioQNjgowgeb6UDEBHF0H3sfci0VkrtBAr6vo8ywVGj3HsvAJXWUrCzlpkFoEShjYZtWgQAWuuokTyZTBCxI4/8jtpYPF6Z2TkXZz7EpEOgd46Jo2bIjjwFW9qU2F6D94SDHN9gvRPFuMS2F1hIiYDbNMfHS6q7Ok8GbWvnh47y2LYCAATQ9z3iwIXnQZV4+JeIZQXPPTgiiNk+bi1AvPdaJ0MTqlZaawbb9Y33frE8G41GhBDWgZlX1TLinoDu7TuvT6fTyWS6t7cnlMzLwgWfl8XycpFl2Xg8QWTn3OtvvjYqJ6PRqKoaAeicZWadpuPxOAQfnM+yFJnrur5566YQIi+KQZCtq09OTuqqevDgweHh0e3bt+eLS62SaGx1dHSklDo8PJzNZut1dXx8pW26X/iFT6QmY/Yxrs5McrR/8OjRg8g06pxjDm3bJlkqtr7xWZJorVGJru27to/mNFoqQiIaOrIF0LjMmUOkevS9FxIpONsNTKYkkVF13RijlGBmF8J6sySieHykmej7vrO9lgoAhs5OY4wa1GOUUiAHgWxmNkYFIg5heJVSIQTnXFQgZWaldGt77z0SSymhFZECkqaptb9mruhvjd/s8YE//J3v+cGPJpNs9xff2f/uW//c/NWnK1835+uf+bG/017W3/OX/ujuj0LJH/hrP/LXPvQf2fXTN/9f1xg/e/Tsd33wV/3xZ/+z//Hnfuxvfe2Lu8vq9j/63O1/9Ll/7cd++Fv/zz/87pDvxd/1zeX1vfWd36Bt4A/8lT9WXt37jb13N9IkzVWOsX0fIG5ZSimVqEiz3dJUiZnTNNvx22LWvFVTpMGQBwGIQwjAARE9C8nova+qKvKLbfCAvL+/H5kBAGCkiWl1FANAMZiZD1AmE1HIsswYs6mr6nYdU7nRqDBZymGQ2K2qaugOByACrbWv68lkEm1siXDX9BP5xbEXPGbc8eyLou1iCwDyVsI0RnfxJyOiUgOQGKITrBgkpwGgt1YpRTz46MYwIx4laZqiENeuXoGthP1qsazrOssypcTj0xQQAYko7O0dWNsBiKtXrtV1PSknfe+8pyzJKABqeXFx6XrvUTCzsyGWygKTkBx1g+PPDNYhYjRRjFeuteWt0Vq8wtFoNJvN6npjrUXk2LZI7xJ1YOaomkBESqUAAFLED2RmgBCnQXyXEEPz9wCfEnvvQaAE1TZ9fJpbgp1iHvq9lIqGkyh46LoTAkyeFKrs+340Kg6v3lJ3UvXB972fiM5Oz8tirKSMT73tOq31aDRCxKZpol1VVa2VEtvEABSKQMF79oPZpVRKU7T7UzKWjuMNCtbBIIyARARbo9sIp0aca4umMzMSEBHFySqECByUUpFOq5SaTqdSDgq5sIVBo2nAbi4SUZRz2tm4xSmFiFol23os7CDsyBPczcWtexkzBO9CVCiPgFpdtUVRxHVl+6eLabRd33Vd9M8h65TSIQSBKhYEnPdJkhqlmYaSRSTDa621VOyj5M0g6IwD1C52XQneee+JCWPVIuAgsoZCIAwQOaJkDjuYbAfBx8uLJiFSSgm4m5GRDSqlHNootr9lFxfu2ve22D3ERWi0AQBkIYSCd4WP3nspB8GdHd4KALEMooWMS8VordSgsPOugbvhOao3B9zaYQshUIjAZKQGYglIAj1TOZu+/fD+F7705azIQUJPAYUIwJ0Pz73n+e/713/gm7/12/5f/9Pf+fKbb3pAk6VELBPpvBQgkQNkqUwCMvd13fatdZ30i/RpcDN5r5TaaepFvDISLqQUEXrWWl8uLqSUaRJ/+yBbtoPU8zwvisIoEX2rjTF7e3sAECxprRmCtVYnqixLKTFuf8aYwBDLVrEd0nt/fHRlmBjexwOGmZn66GDTdRYR9/b2tNZ5VmRZZjL9uc9+QWud5/netf3lcm2MiUS2GzdurNfr5XKplGIOUZZ6VJQRUU3TtCiKKA3cdw4HX3Ip5AD1xlW2t7d3dPTi7dtvKS3yPBdC+MCykNZvJ7lOlNBGiNWi8t5DwHgDdytRa50ohYiPHz+u6zaeAcycZQUAaaFDCFHrNF6AlIM3Zpx7tJU25q0rptrK51vbdX0jvYwyFDFtiEs7spuFEJ0NWZYlSdLbtl5vtkuGees6OMjwAW2nNEo5lH3izi6EcM5JqZIkqapqs9nEclGSaNv7tfO99UrpvndV1UlADpTnOZFPCy1RMbMPNk+M7R1zlJffrd/hX3dYczQQd30HW4GkzvYxA4x6StviHDtnUbIQkKSG2LfdRqrE2j5C+dZ7gbzZbD7yTR8pyuxicdF1jTZw5eoBCtvZLlC3qS5u3DySErTOjdqPeccLLz7b1k38irptRqORUqptWwEeGcpC5+U0HuRpmiK7JFV5kUgFTdMIyVpxkWuhhJAsBColXE9KCqVl13VaSzW4ICZaqYg7I+udSwwSp5kuy7LtbQhhOplorVebqq0qpdRkMhHAWiohxGazqTcbY0w6SRBlrH4dHR2Ni7LKi8vLBXmOGHE5yjvbZmlWVeuqqshznufPPvPM1atX1+u1Utr1drPZXL96xSj9ZH5Z5PnF+fl0Ot6bTm3XJWV6+vjs4ODo5EppTFqWo8ePnty7d28ymeztT8uy9N49yvPV4kr91OiUyTtK0zT6sB0eHh4cHNy9ez9uNXmeJ+UNRIxFrL29vbquN5sNsLjYXALAdDSrqma1WJdl2dYdAIzzad+FIk84hBCw793QvA/ge4IAq9UqT/PD6X5ftcvzS9/DjavPfuj9H7739j2lVFVVAGK5XJIPq9XmQ+//iMJUCJWYrm38F7/w2ihNX3j2uY98029brze2afeme2WZd00jUdy6/uxqPb97+854PP3A+15JVFJtusqJb/iGl6uq8k2bZXnT90bIXkhEfvbZZ09PH92/fXHz+o1cUZhO2HW2Xu/vHa1XqyzJizRbrDYA8IH3vx+AuqbetI0HNEn6rd/2bUT09u037969W603N27c2FTN5WLFgKPxxGRlXbdPnjzpus4YMxqNhKS6req6EluwtWq6zCRCiMBUVdVzzxUMIWJATx0RETBah7Z34emvkkqPkolzLjinhGQUHgAAiyJLyyIIAJQBWGpFW5Gl0xK6pq9cte7aRMio854XxXrtbe+P94+Bn86kDsQoeDKZlHmeJnnX2aa3RJu4Hr330Y41STMQSC0xAlHo+g4ARqORDb7ru5jAV5sNtFCWpQScjKYhhOCcEKKqqk9+8leEgL53aZ4fzGbn5+dEJLQgIk8gmENrvSMgms8XyCCl3N8/jKXltm3zrIzyStevX7+4uJhOp8aYhw8fxpOLiCQgATabKjHmzttvM3OZF865ar1J0/TKlSubTS1RUIDAYTIaK6VWmzVIsNZ2tkfi+dl5npW279u2973tbLuuVpu6CkzxaC7LPITQ9F3UVFFoAAZj2NFoBFtaAAIiIaHw3vs+eqxjVhbW9o7CW3fefuP2W1IpmW9NI7o+SRKQYjbbz7JicblSAp1zRmmdKCUk+yBBZNrkUutsdDm/APKvfOMHvuc7v+v6tSuuGY711vnZqLz/+HSSZ3fv3Zs3rQgsEXWStG2/WCwODg6uHp9smqd7jebj4mJ52dbVIR1m4xSEbHvrPY2TTAQcFWNJsD+ZytZTZ9988HD+2us3r93ITCK06rso0eQ9MaMYaZ0CbGwrOKqZoUYhrPdCeJSZSmohn0oWpLoLdqEZUwLhEAGEkCCYWcTmxBA4BJdkmRNeGNlwkNZ6purR6eEHP7yXl5Xvl1UFSYKglTJCKiUFh77rmqZvmq5dnM1PH1D+tCQ9OAKkqqoaG8x4EkIgAgWYZJnrepEwCgHEUsoXXvyG97xw4/bbb1xezE+Or1pr9w/2L58mqq9Msqn7tm1v3Lghja6qajKZnJxcyfM8EClpOke28VLo6f50lOd5np8+flxtKq21MUpKcf7w8d/47/76l778+T/5p//4H/+RP/Hn/g9/FoGNNjHZkSxZcpxjRhtC8J6GvB3RRJ9hTyEEFAoRAUEKASwAWUqptNGIsVlnkOAQIsaEQGySLfDqfLBM5ONMi0J5gMK5QQBaSk1dKwCFlEhMRBxNVgJRCHKbCLitkZRSCrXeZXMxlgAAHPQYhdAqrusIIxZF0bb9Lp5BCdRTeJfGKCIKIZnZek8+GIPRcS5LC4zS2MZo1BAJyxCYeTKZgBQRPtglMjGkjMFZBN8BwG9d7iM2usuJdlwN5xxHtCW80/cZ42oWKIcf3gFAkifeM2qfGbNYbKK9EKC3zgoDdx++ef+xjDHzbLRPRGVZXrt27XI5L305mozTPJ0v5l3Xr9fLD37wlbDu295HIH5P72/qFQdKkySKHyZ54msfIfIkSZIszW3hvS3yHBGfPHk8n883mzrQGhFns1nbtk3THB8fF8XIe5pMJgJlNIkJTHmaNk2zv7//8Y9//I3XXz0+PnpyfgoAzOHRk9P4sC4uLqKDInkmbyVikiRt74QQsRcQQAAzcSAZ0jSdjsdEVNebEEhL3fd9lmiA4cVlmVdVReSFSK21bVdHbKGqKuaAyN5bIh+Ad/m79zYm6YiY5FkMfiKMIkScJArEINgaJU2EiHvLQL8AAM/U946IvHNpliEifT0n0N8a/4rH/ntvfPOf+V3p3leZXf3sn/87Xw9r3o3P/NV//I1/7HsO3ntj95fJzYPv+7//b//hf/jj//Iiziev3BJfTSb41F/++0/Fmt89fubH/k55bf+Vf/e7d39xVVscTn9jcPN7/82Pv/f3fdtv4I2/anjvIxbkvU9UBMG8UnEvl13XoZIh+NFo5Jyrqo0QMh4QTV0PRnxRliBKgiABMXOQQgkhgEVsOIjMDEKQEIQQEQWGiPIBW2utHWRXpVZJlkYFMAASLOMmHL2m4+Uxs9ATsVXeiNvyQOMjQiH6pk/yPOJv3vsYnex0nBFRKyW3DgcQ+WTGMLPcngI7ReMdLVUIgQKi3hozC3wHwiYiYtZaW9dHofz466JHa1T0atv24uJCKbWYX65Wq8gwi2K5m83Ge++Dy/Ks77987dq1LMus7/rGnZ/PN6uqbbs8K50LQAgU26EIeLDSigBjlo1oKyptrQ2uF1tdEdr6QAIM3Lh4cq3X6yxLcNB35ogoRvkmIQRilGuTW85yLAlI1w913xB8fAtsz99d/ZiZBWippLW9c118cMaYzboVQpBobdvqNFU4qDMRkRO29T0jdaICkGlbSRT5OCUOIQTVbBoAaOo6S9NY0XXOQZocHx/funXr9u3bZxcXSZIgcwjh/PxcAIQQpNDbirRjhjRNw1a4ligEC15gCCyEUChAAuy85rZudTu+3g6kjwMREYQUQ8wUERMAAKV2alDGRGWIoWEqviZewDZe9nElxKnvvQcW3ntGSI2LJRFEFGpnI+ZoKxAMAIyBiBgYACKLNuKJzGx7f/PmzcePH7dtm2dP1/Y9e3LWtPNrN2+sVqt23bDt88N93hK01aDpiYAolaqanogEopAy/kAlxVBi2hqURaJz/E8lpB9qNlF7mohAInjvCbfWf8QARAiMHJkdW5R4CLGQOGq77mC+uJUopYAiwMUSkBGRAQfd560u+6AZBzGw2xGTY8QZJbGjh7UxabyBaZq6QXgekAZhICmlQBQCkYG/mk7+zoUCWCAGjpcRH5CQUc6R2AfJwMzKGC+5st3//Pd+YlVXewezIACUYAFCyHw6XTftf/V/+0t/cLXZ3zv0FLJiZJ2P9qNSJBi8JOcRs8QcFKN95rj36eLFB097wra3m3oe71vs54pr1XUOGNIysdbu7e1dvXL99u3b3tdRSTOaQMZZ6pwTWkkptZCBHDNvNpu4lY+LSdu2KBgRsySNknx93xMRBZZGE1FVVc6FoUbCYtcGEgZrZhjUiLIsUpVDcKPRKAR2Ltw8fqau66OjIwliuVxOJpPYZS+lXC6XsQzTtm0ILhZglFJ5ni+XyyRJ27YVQvV9b3S6q5tFA4Ed1LtYLCJuHuenc6Hv+yTNkYECAwhjjFGJa0lJw0bsHRyt12sbhsoNEfngtZRa6yRJvKed5n1ELaVAGtp/YLgt206QuF3EPUFKJQfTkm1hw5gohD8dl9EtYdfZcHFxMWxQ7I3UgiHVRgB1dQMA8Xjz3m/NeaxSqkxTG1zMxJgZBUohdxuIQtF1PUtV5vnp6akxRmtlW6u17pqOEYOP0nLoeytRdF2jjYyOg/mo4EBd1yEEpbW1PkLnUsooPr8D5eM9sdY2Ve3c8LC8c3GzIiIXvHW9c14nBgX2tpZGoGDrbCay6zeOFpebh5ePrfdCghCAUmW53juctm6NymWZrupFUZqRSkJwWS5ne0XfWu/bxABiBxCMKQF1PLlzobNchRDKUUY+dF1dFrPaeiEByLmeylFCROv1ZZHnRiOTVVoQkxTYd5UQoiVSMkUEoCARInUxyzIpouoR2o58cGVZCCE2m3B0cNA0DRFfPTnZbDa99d5TmRfB+aqqQl6wELGHO0/T6XgctSmVUkVR1HX14O4959yLL760N53N54vJZFJXbbdoCEK37JfLZTku9kazqqqKohgVo/Mn55d2fri/X+b54f7BZrUcFQWR73v74O4DY5Q0uigyIdQzz9xq6u7Lr76aZ2WWZS+99BIibtbLTQhZkuRp2irx1MPj+OREiWshhNVqUxTFdDrte3dwcCCEUInZbDZK6fV6edk0R0dHr736Rtu2zGhkI4QYj8fOhdOHp4joex9V1eRWASnRmpmPD48TkVjnbr/1tpSyLMdXDq4Asfd0cXoZQmjXPU3g7dfvdl13ebmMpKEsLZqqydLSyEJhdnF+ce3kputIgpHBXpzN/97/5yeatnvxxRc/8P73vf3220/uPeJARssQHErx8MGTUTlFUFla9om5WNXe9s7atu04QGFS64IL4fadt6qqSrMsRTYQvLRSFdJ2s/EMCKfTqe17QHJ9e7h3s65rAfyeF19K09QF+sQnPnH3/oOTq1cnRb65XM7Pzp1zN559tmqbsycXOkkfPnzYNI2UUgnUWved61trlGmaLp7+fd/2TXtwcDCbnV1czs8uzq9cuYLD6fS0gdA0zd5sJrXmryOkm6ap72zV1M6TyVMBYNsAgKMstxQcQ2BCZkEkmCWiQlRCzS8XkKu96b5ru/Pz+eHJ8Wq1qus2z9MQ4OsZtBXFuG1BKVWOyxh/G2M8UbvZWOuIKEJsbd+BiPG3RyWl0UopFricL6WUg+eqc3HPMcZIij2PaURDBok3gLquCbBq2iidmaX5ar3J0lQLkahkuVx2rZ1Np8akuC3eG5MiYmbwpZe+YTabEcHDhw/nZ+fXrl2Lsq0mM0DcYbe/v6+Usp1rmqbrrJHKOrvpNgpVkaUxkvaenYtix60QIgBTgPWq6jsnoEVECDQej+/evRtCiLqf3vu+b4+vXolnHMA7gVOa5s65xWKVj8o0SzhQPN2IOU1TJ6VhVkqt1+veemJcrStmPjg69MTO9UCUJWnf91JqY8x4NEWQV65cISLX91LKerPeVCtU6trhFde1vu1GSfa93/Xtf+j3/74np4+XZxdGSw1YpIlmOHzhxfe/+OLF5fLLr37l9qPTR6ePfddZa+cXCyIqszyE8PDe0xN1R+SYxtPJMzduzFeXp6dnj08vSpl3dbfoLx88elwk6fFk78osKVT6xsNTC+7JYnl8sC+BLTEhWBdYSCm0UdoDSEZi0EJKRIGYBwiM1nECiAGfCjdr53HTGRSpUOxACilBMAOiZAwBUAFYTxrQo7DBysDsOlaQpun5628s2feZebSYexuoZ4GqJ7+uVtVy0TV13VabpkbiIvnoC0+Dm9988811fqf3QSi5qZs33nobhSBgTyHPS+Y+ZgezvcMsy+7cuaOleumll+qqgwCddU+9q8vlgpmSxFRtvVgsr1+/kaZp1/cPHz4UQoRAVVVVVZ1lGQTyzr36la8AASIeTPfreqMNAoTz8/k/+Af/8NXXv/Tv/4k/9v73ffAXfvHnrlw5FhQoNvCyZ2a9lWuMhXAAkIBCqIgRMyNs02YGICbyAQCMGQLmGBsQkTEmtlVFoQzPxIG7vo0pD9gwpAQAUgihtUiSqPmmAJkHvFUgKhQISEJE/WLbdt57FhisDSEIxGbrGxFBAd7mDqgkIcK7UrNYco4SnzF7j/IL8b0xpIk/mYhiHoeIKLdxJlEMM7ygCIVLJTyT5+ib4gDAGCNAG2OiyJjebmgxPiQi710IvKUpSGYmCrG9ZbjOMHgYxpBeay20CsTkB1VApSGE4ENHwIvVhdaamAI7lAoAiIOUMisNEPe9a7t1npfe+8dvP77z4E6e5+eL89v3bo9HU4XCe+9cePP265PJNCuNW3fnZ2cs/K1bt6qqcoFHxdh7HwIrJUyaEXvvQ7w/3pNEMZvuF0X27LPPMfN6s0GU+/v7kesXmwWLosiy7N7d+xFMjyr8SZIE5998/Q3v/eXlpQDJHEyS7U9ne3t7seb3zI1nHz161LYtbHNK79YDkVCqtm1ji7e1Xd+3kWrjvY3hSuwqiwKM3trGe29tlmXW2qZp8iKTSgkpJ7NxuPSImCTJqCiVUovFYqcq3nWdc9F2BUGgEBoRQ9cFjnZE4Ld85x0KE4kpddXE64xzKYRQlGWkumv19Eal3xr/ykeg0Y2v2qz7ZfXJ/+bv/wvf5zv7v/yxv/KHfuYv4JYCh0KcfPR53z2d6vfrGu/9/V+F87aX9av/48//Wt742t/95Df88MeT8SAMku2Prn/rS48/+eav9wImzxz+4I//B+/+C3kS6mn9Nf+ioZRIU4OIsRDoO4uIeZ5DMnT8G6Njuhw33pjdx6YBIhKCvY/VRCIiwIjUDWhs8GEAZARKoxOltJExyLxsL5k5BAbwBByz7LirA0DM4rsuWkxJYwxzAJBpmiKiZ4qnlZTS+d4kytkQYaW41bPWSZL0bbclg1LkQ9DgDeuctREeicHqUBpkxkEHmYCH4yMCXD5YHywS7nJ/4HcaWaSWIYS9vb3xZBSRk9lsFvm1Ea2OFNLgfFs3dV0LIRNlOLAWAxk5UWkAIiLb8v07jyaTSdNv+r4/fzJvmx5ZaL3xnpghSZLgIyQ3WPLGIynuZkmSMHPb1rHSBltMLN4cY4wQPkppw+DiGD0bCWAQBtmCfkwUrLUR6iOiiDsyMyHId3VyReBCDCoREmBbcEXwznsfIibZdx0RefASZHABpHR17ZQyaVp3vZSSgQgCBQ8M+Th99sqtIiveXL+6WMyfn7ysTh8+euGFFxZKsw8OIE4UZo6MSCJiCDESAhYc1TxYvJutzcxKyRB8CH7X1a6FTpLUWktMUsoQCAAEIAPy8JfheW9VGgbLuECktl5YO+oobOFIF3xom7ptKAw3KE61HbIctm65iMgAMUbxnoTgwMTEl5eXsG3U4p3w9vZb3o14whYiZ+bomwcARqebzSYSYbR6pzHk3WM0naTZnvceQMxms2a1jBOoWVGSJInWgVgJqQT2TU1ESkrW2lsXiKQSSioJsXQz2IINSO626YyZGZAJ38VeJGICOZhXEhFzACmElESMWxgat6TmaJqxQ5klCiGERIGDogJG4vPObSzyrAGHGwIAuEWZYStcgNsOOGZ2FEAK673WWmoNAJG1rbYKcQAx540iIe+YbAIAbtdA/K5YttYimlwKEoBSgECtjCDWQoUQuuBEVnz+1S8+PL+YHR24EISSYEwxyrquW1ebt+7fPzk5eXR6drFa9J0D1ekkIWJkJgKttAiAwMDCMxmpIrKZZBk8DRNCBqM0M3Ogbcld9G3/8d/+8cePHz98+MB73zTNBz/4waZpzs7O4wyP4WxsuIt7k7W2Y7f7sQBeax1boZNUN03z7LM327773Oe+UBRJ/BDPkQYuiJqIqzo73D2tNQSg4IVSCtXqckWjwVmV2HedraqKmdMiKYri/v0H6/X64OBosVjEzZQILi8vY8RmjDo8PFwul0R09+5dIYQLpLpe66TvG0S0/ZALAQDgO8x0IuK+++LnPu9DH/0KdJrUVVtQRFeDtdboNApUNE1zeHjy4ntevH379qMnj9q2VUZqrVHs2PFyt9XuxCKEHI6xodkkeOeiBD7FVh3nvN82yABA8IwKEVGpYQkHxtBaJoxHEYKgEKe9iFooO+JM7DyylqKLYCCLICP+rpRCEkopJI4+v5FzzUHG3T9GzH3nECQRWesQYbVcZ2kqtWJiqVSkiscDYzQusixVWoYQtBSbti2TbLegBj6OFFEbZ0djj83CzjkAARDdAiUiBCYf/O4cEkIIzftHJ6BIGXG5Wl45OXru+Wc+X31RJUIxtG07mZYvv/cFqWC5OifuTYInV/Yu5mdEXsmEgceToutrpTQgIkY2vVutL5Ik0VoiijTLhQDvvJA8nY0WC+d8KzEopYQAIicVUh8QRd+3Sm1dUgXGgyPuIpPJKLbcWmuzLGvbGhEFIDBEEf/YKJolSZQy/MpXvqK1Ho/HVVX53saO2ljgqVbr3bY5m06LLCeicTk6uziPhZbT01Nr7fPPv6fp2r7v27ZdLBZFWWZ5giCuXLkiFDZVq7VeXFxuNhtPJBGzJEm0aTbVYrHQUl2/es0Y8+abb759595olCbJVcTw9u27RDwuR5PJ7OLiYr1aSSmX8wsGSrQJwVE4fOrZUaajcnxw//7DcVE+99xzdd2+8car1tpiPBqPx4hIIJRKJ5Msy0Zt3XTdpszy8XjCgU4fnS2Xy9V8MZ3uLc+XXddprd/3vvfVdV1VVbWqELFOm7IsN4uaLHzHd337vXv3Lk4vP/yhV376p3+6a/qiKMrJwfxsefv27VdeeUWw/vznv3j1+OS9L76XGWaz2epyefuNt5ixrTohxPHBiW2X3sHJlQMCqDfVz/zUT3dd17ddlqZN02kt67oajw/e9/5XNrVL0rFmPV9VmdHG5K6u6+WqHE9yk66D2z86aPqWHRipFCIYk2fmUKroixhCaNv2hWefLYqiqyrnbJbmjkLrXNu2Dx8+vHb15HA6qhaX+3vjxWLlPD333HNd75brjcBWSSOFa9u665pRmWdZtlrMycdOc9/3PSIzcJ7nL7zw/Ouvv/no0aPRaNR1Xczwv3ZkeYEoyfkiyeXXEdxwfb9arbTWJCA4L41Kjan7LjgWSkgKQiASyFijBQYEQaC1BgKJatNa58J6VdVtjyhXm7btH4/Ht576bUzknPe9872LEbkxRgSy6KTWZhAg4jTPUQgfXF4WSuvoP+a9n0ynaZpeXFxEiYCyLJ1zXdeRDd572/ujoyNr+ki42zR1YLo4ny/XK6VU2/XAkhm73qXlKISglBaAFHizrpQQEfmSUqZpmiTqzltv36Y3syyblKPLJ+feOit6YBaAQkmj9eV8bozJTAKBsizb29u7uLgAYiFEnpdKKQi0Wi82q/VoNPKBAKjte6WU1kZmajweN1WVprlSRhopWCklIvwRIY/YUT6ajKN3otbaJIlS6vLycr5cTafTPM+VkM75pllHmCwe/JuqAYBNXbngtdaz2awHf3l5KaVynpTUfd+n2pD3mcmazVDRzDPpem87NxtPbhxfff2NV2dF+X3f+93f+13ffvbg4eriHDkYaRBRs06QuuVSZ/nhqPzub/u2ed1+8jOffu2t28vN5uhwvyzHZVHM5/PDg5tPzp4yDaqqyjP9gfe9/1/79m8lgf/gJ/9xWVZjXT54/cFZN2dQx8fHtmp0kVycPmmahkCuvbtajBhCaJu+I5IolDJZ6r23bYfEWkkJIAMrxIQwIIAnZOzE06ssBahCKhNAe/aEWg/eIYTsGWRs6Qu2dVak2tbOaIGBtUBXt0++8vo/+MKvLCX4RIMXaElrDYlGKbztU6VRitls3zZ1IZ6+6FrbV9h1nWWpNYXO9tEqAwA6ZzMjmDlN06OjoydnD5aL02/62IebplVCXMwvzy/uzZ4GYeej3Pv84uJCGl2W5e3bt6M9Qtu2WZbNzy+bpgFGLc3icv5gUzGD722WFbcXb+7vHU5nIxSQaOGJ3nrrwX/5F//rW889M53s9b0DClIJZ63zXioMIfRdR4xGKiIyWsfsEWDQqQgQCTsxJyIQyDzwduVWbDBGhhDTK5SeQqxUC6lRDq1XPpAUEkEKEogoQCBg8MFIxT7EZggh5aC9kGW79rX5fB62UpK+t4SDjMaOMgwAHmNBKyj1TrbvvZ8vLmP2FEFGqdUuf/bee0ewbVsWqIQERGmM3pHXYpSmtIiButAiG2zVkTkkWeqcw22r9Q653jE84lYf63DGKADht/ZQsE39dqycKEXomcC56FZtjAlExOStFcwR1K6qShpNHLdJD4HSNFXKePbKaCOStm9CCHmZhRBcsFFscH75BFHG3G25Wc5mszzP+75/fPbEkT043m/qpgX03q1WK6XU8fGJEIKAqW0RpLV2MhnHqZJm4zRNhVDXhaiqJiKwMV2Nkil13bzwwgtaJ33fr1abelMdHu5/8IMfVFL2fSsEeu8DOUD0acEBgictjVIqMSZLU5MkdV1P92YhhEePHj377LPz+bxpmv392dnZmZSybdvT5lEgklK2dZ2YrG3bTdf33u3kmwBAIgbmNBtqEtbaNDNaa+CQGJOmiVJqvUHrwruBj872ddtkWSYEdF3btk3EXJJEhGjlHTN3xERrBOi6ru/7JEmKorDW+hCi8Nrwgb8FN///aZhx5upe5+9YNf6T/93f9NWvSRDjwc995cln75y8SzGZnFdGWfv00+fXOMor06sfe+Hdf7n7U1+498++8mt57/1/9sXl7SfHr7xzSc985wc++V//vV/XBajU/N6/+6O6+Cr7ytW989lzT7d1+Rd8mtZCCOeckACeSNBoNMpGmWeKfbcxzoGtHZwQwjnvuj42xDBz5L0JqQEJWTAwUWyuG9Qe4q6SJEmWZcQ+EAGicxGm87vHwT1HpYFY9UlTE8+LJEkmk8ns4Nbdu3ettdqY/ekoAg7rtSy5CCG0TeyURaWF0YOmRAhBomAkZozg8hamMN65eJrTdgzZ7rZlHxERpPdeKhQSJAyuVPE88t5LgQB8/fq1w8PD2IG9v78fNUOstcaYLMsi8rBYLNbr9WQ0rroeALIsg8BCiGgTjlvLsb7pkiSxjesQquoUIPx/efvz6FvT7CwM2/udvulMv/nOt6auqq4eNLSkbg1GEjIIMUQ2sDALLSfGBuNloRBjE4dl4xUnXs4yWSYBEyYzKJg4XsEEgg3CkkADQgJJ3Wqpu7qqq6vqztNvPNM3vcPe+WN/59St0i3RLeJ8f/Tqe+r8vvMN77D3s5/9PMJHZFIM0HVBa61Z93WPqK21wJB86ljKJ0OdeEAhmGVXkt1hC28qpaRAKxtr1/EGjB2gQlGG2MKbiAhAAINboN7YU4NSSGyMlodJG9FdGuQBEZEVDrtk6DtljKsyACptbq1drVZKaVOMQwgxemNUjKGs8t1qr/VtsO3LL71S9lXwabo7Ozl7zGM2F2enJ5PxernQCMAgjofe+89//vOw0VKQOxxsqYyDTbk4kRhxUaKg0MiHiKi1SYlS8gAgre5JzB8GkIKISA18VYREROSTyHEYVGpgidMAdEqnlUwYiU6IKKUgiCUxa2O2dXWlNQMQswLAAfjnLdhK0gcEkBIxB4fIGzyCNxIfwFvPTdje+9By3kfEgYiKGwGQX30gaK1t27bWZn3wXde5gwN5030fNCIqjYicKKVkNrZsSikjs4MBhMhsjAioM4vCBmqtfd8xEW6ErmIQcRpG8TRkBoGV0RCIRyLSU+KSGobLlnu0GxLosFLIXGVgZpHYHmKvoU4yjP4tJxoAnDagh0GyDTcZQYGJMU6nU+lKkMdojCEpM6AIhgAQMDC+p34gs+C9qksCVlIe4OHJEDMSuMywj0BMCCYv7p8e//g//sdtSoqINIZEGlJsu0ePHl2sF9/+zd/yHd/xHX/9b/w3ypmdw30G0Fr72KO1miD6oBRSInBg0EQfNKKzGPtnU12U1nVdD1UmwBBT3/TXn7/+Az/wA2+99dYP//APIwIR/dRP/RQAWGuFFyZDFFFVVXVwcHDr1i15C4eHh4vFous6StynUOaF5Axd192+ffu7fuN3Z1k2n5/P53NmhhT7PoTQlWUp0w0SAwADEGxXFkyJrHV93xPK7uLqtidQDPz661/SWitlNGDXeaVMShwjAUBZjrzviCilfFvL0VorY0GlbeVNoRF4dxhRWmuDW7ZI1zVtWxurh/IGoFLKd77cLauqQuRLR0f37z0MISGqi4uLz33uc23bggLJWDYnNIjYtv3QJbctg8XU9KLNt5UiMttxK3QZQpSUTKQMKbEUnup1q7VnSLKBKXFLZxBQWym5O5YCW9sGYaMDAMXEmkVT27mBj9O2jbKm6zrJzQbsO7JSg/S8ZFDWZEWZ9X1flmVKcTQaaVRt37cxUBcAVFFkKUTr3GQyqiYFGlwul74OjGSdtsrK2aRWoYxWmwe13YkBQHjxmz0PmFn0PaTYoJTsIMk6PLh0FLnvQjPbqU5OH2qTLl3eefToUV4WqNNsp1Kal/WSuGOkdb0wBkOIUl2QTkaXuVXXamsYknXaxxhinxfjTStQIR5E0fdlnvV9r6wGAAVojF2v1yGEo4PD+XweIchNGTv0/qQYU0rHjx8dHh6WZRn6rq3Xwq5NG30xYwwQ3b97FwY/Ru+9f/755x8+fNg0zeXLl5VSq9WqKKou687TuVIqRl8WxXg8TikpZVJK0/Hk4eNH77zzzmKx2tvbNcY0TXN6eioFTq31aDSCpgnBF7bMc2zbVlo0JL9aL1fe+/2dXY1qMpns7+2tVqsXX3ihyHPUkOVlXddd01Bi5/JxWZ3EEwG+U0qT8ejTn/70xfnpZ3/h2bHyvXv3ZrtPyiz3qN58863lcnnlypXj42MNmHwsyzICW+OAeHmxVAAa1GqxKrKKQlSsjnYv7Y735vN5Zu2Vw2tXr15lhPWyjR09eXS6N9vJTbk4W52fnC8uFrfevlOWZT1f/6Mf/8nQ9Uy0OL1QqnzhhRecdvWyPtw7/NZv+fRiPqdIH/nIR9br9fHjJ6+9+rFHjx6dnp6ORqPMusLuEMG6abyPRZEx82w2KY4uiVvveDK5//DBKx/7eAQdCUkZDVmi+ny+2h2Vlw8vN1kRY0Tm+49P5ovFarV461d+5du+/utu3rxxfvbk8ZNH2Xgnd9nJydlsOq6cKzJnAbqYRlkBxizmq+WqHo3LF2/eRN+vnjxRwU+LIsV4/9HjEMLN5w5BueVyHUJwRTmLs4v5mcJUVePZbPf8/FypQbJNKej7/vT09ObNm1lW3Llz5/T09Mq1Gx9GidJajatRCH1EK4vJrz66thtrFJtipTERa0SjNEGU2BgQmUkN/YuMiJky9fz0OLX+ybECnRm3Wq3zsrDWXJ5OT87PYuRnws3L+VrsrUNoJYS7fv16NamUsb5ru65jxPFkYpxlJkMGxG43c5FJOzspC+/9dHdnZ3+PmTvvmdkVOYWotR6Px1prl2Wip5kS+RAYIUbKMkvE88VqOpnEGE+enGZZVhUTpVRKQbGyJmvqLsvyg8M9RAwhnJ2dxRi7rrfW7u8fxJgWF4s8zzObxRiBERPELkwmE2czBCiy4vLRZRBKtQisxaSVzapiPJ6u63q1XkzHY2XMer3OskzIdACgUcWB1uCIoCgqZlTKxNg1TTMaT2MgYBUDdX6d57mz+d37t5eL9f7+fuac1ET7PhRFtVgslst50zQETERlWQLAg0ePAhCFWBRZWRTMPC7HSqkUeb1en56eK6XKIivzQiwci8PqaH/v5PH0U9/wyc9806cuTk4e3r1jII1HpWZSqBbnxw8ePVHaGpdFot39gzam569eBYDb9x/4lLquO338KMuyS5cvPRNunmTlbDJrlqv7t+7tXdr/A7//D5ydzv/vf+GHiXhnZy8Qc6JK6ZE2y9PFKnQEUSsMzkSfmpTWsdeZQ9TaKhKDNwWKQTFoZKQUWIl6lIlsw7OJ/yqxSsiJE7HKNFqDDApIK02AwKCs6Zeh9vPp/k5C8MQGWSu1bpvdo0vf/NIrnzt92DiDZArllFIdJ9QQjC2sC8krUMmH3aPZsyemsVlZ1W0wxkRA1iohO60jU+Vc36+NMUTw+NExUTw8vPT22+8cP3qc5yUTGn31meecTme3bi1DCPP5/Itf/AIACtzsvbc2u3TpkhQvHz9+PBlXsys3gOj05BwADg9no2rS9/3e3uTkdOnyLHPq8aMz58rJpKREyMF3McagtEJEICYgqX8DiGuyyrKh05aZrDXSqSAborVOJGsQMbcupRQYXGZAQBlUwXtUgh2QMQYJ100rVRwAUIApCm96Q6mJBJEwsdIKiNuuRdRFVmauYOaqHC0Xa9/XWmuFJqWk3fuIPpmxWmsRRiCiGAHAE5GwS2LzXgrtY1CUJMBD0AhDuEKDMKOR0E5bq4wBHsjLWmsjrGSJyQBijFmeMw+NsCnGgdpsB5xaMsctHpHnuSz4Es8wa0iUmLUR96VBA1QidiHfMYJRNqZU17XSkBICqM4TKCfUAUrQ1B0RKWUytJ2PiiEljExEzRbgkLZlEdRWCNoqxQhE9x/czrJCKVVW2XK9+Ll/+k+YucoLaUB1zh2fPJ7OZnt7B3Jro/HIWOUyszObLBYLZk4pKDaDJbXvUnICwZydnXgfi6Pi05/+ZmZOiTUq51xTr1JKeW6NUpGjFAJ54wz/0Y9+1Gh9dHDJWps4np+fz2Yz8Ty4fPmyAgyTcOPmtcl4nGVZlmWvv/6FT3ziE0+ePDk/P9/d3T85OXny5EleFOfn53Xvi2qklOq6LqWkNdbeF0WBiPLEjNJE1HVdVVXW2r7vlQZgLMtyMpnUbSODoeu6uq5RqzzLJabdkCUHbmDfdRISZ1m2JalUVaWVklqFUir1XwVAqdSLv+1Tr/6rnzaFWz08Ix/z3bErXXO2+qW/8KP/XPGHf+6RH85+w3/yu3eeOzSle/DP3gaA2fOHse6ffPHOF/6bn+5Ol/+C59//6NWv/0PfW+yPw7rrLtbamvHVvdCGN//2z73z9z4HRACw85HLex+5jFbd+Ykv/YtLUnxVV/XatfJgsv1nc7p8+M++8tX/+Zf/1j99Gm4uD6b5zsh/dWj1sw+lnv9NXze5tvf0Z2/+v74qajMA+HX38OfffhpuPvy658v9cXO6+uov4dv++L/69BkAoD1fv/0//MI3/5Hf/tWfZHswUNs3XdvKIllVVVVVABA3WvaL5VIAX2ZeLBai4Bo6L+2eUss3hqSCCYgppRgDbcRvtbIAIKX3xEO/NYia/3BQCAkRWXPyIcsyrdH7LqXACsuyNFYrq5QGhqQNGquUUoDonMuLQug+iQYnHqO1KZVzxvdx4OpKxw2z9HE+efIkhgAAeZ5v8VORNMCnXAEGvhEPK9vAcY7Re2+NznKHDJcvX75586bLM/EJAADxxCKi5XIp0ppmYzMrSHSM0be91poSpJSctZwgxkRExrgQUp7nTdPkee6p6/sIgAoNhaiVUmREwwE2wK5gbikFImpTK/Q15iQwqdTVBERCxK7vBJCU1yoGGzHGLMuMsbAR4xbGm0AlW3iTB31Rkk0WACKTVbghf75Pd1fguERCBdPB00uvvvDKKx9Z18s8zx89erher69cuZLnxenp6fHxse/jzs6OcrhT7kaOx+uHMfoYM5fZqRt3vj4/PzWFtffv3pV6ICKGFFPXKqVclsl1l8VIgoliUjljOIIwYlDxoLyxUdQFAB+UtdaYDcSmrLEKGRRIUILCEkdK25uXPy+01c465xhgU6/mlFKWDcR7UV3cFqvzPNfK9n0vVjNEJHx4QV7UptOf6D1haHkH21YjgZkYB2qAsAWJSGBufj/NuWmaruuk1iMXo7VO8dkrddu2nV/HGLX2HDl04puBA7kyJXFFAICiKOpm3ve9UVopxSmK9VCZ5ag28PdToD9sqr5gDCTu+5BiVKAAUCmVBuR5wB8ZkIiNHpophNcsv6u1Fqqg3hy4pevz0K470M95o4KCQ1+xUsoY56zDDbUZADaQPtOWqoyYZUPfa6CNkyQiD+aHapDp2PwuET3dJ7zFxwX122pFs0IAVMgpRCeywUr3yL/wxS88PH5c7ex6Tr2Py2Ydl7huGwL6xq/7+n/nD//QT/7Df/Tg5OSF524aY/sU++C1VkRJgwVABTrGoAtjjGnqFo1CZ615djlhMhm/8up3tG37i7/w2WpUWms76BHx0aNHP/VTPyWy3SJXvV6vNWrYyKfEGEVoTJ6t4GhlWT5NSLHWzmYzkRU+ODh6/vnnv+VbvuVv/+2/ff/+Q+ns05qIKMsyBN22rXaD66Ng2dvaAAAwg3YWIMmgsNZ5753LrbW+jzGlR4+eyNuXwS/SS2WZp5Tu33/Y960xpu+DcyTT1rmsaRqlh44ECeK11sK1kRUgyzJjVKLonBFpjul47GP66Csfdbn77C/+fOhjCDGEuLOzs143dV2zQrfBdIwxMZFQ4WRoiQg7M0OSvhJm5hiT1DAkc9gQfwA2uuQyxlJKmIhjYIXEkZMsO0MJcVDfNjbPCwDoNwczK4UatbGqKIrMFSmltu92d/dCCOfn5wAcmTAEoqjBWOucs/IABWhWSvW9L4oixuisUJTMzu6+EOuyUT5lTMT1et22LWgqi2K+Oq+DHY+rlAJx1Brni8XBzu52LsgOJCXKbV1HhlD0Abc2m0paDdS25wABlILd/b2qyntfh9SVhW67Vd+HsrJOqbp1L7z0/Nn5iY8L33ttVOlsIvKhUUpZp4fqmrIi4iOvxlodUsxNboxpfR9CsErXdZ1C3NnZkc59RIyUMpe1bZtlWWZziqy13d3dn5+dD4OWwKAus6Lz3vchhXD73XerqpISbp7n4/GYCaUV1LceN+0R3ntZh99+++22bWez2d7eXlmWn/3sZ1ermjfW5DH6ruukWpNlWQg9M0cf5vO5c9Zae3JyYq011nZdl4iOTx7H5POyDCGUiAwwHo/Pz8+LonjhhReqqnr99dcR8dr1q9Ll8OYbb7nMvPLKK0R0cXFxsLd//eqN27dv1037yU++uLd38M47t2aTna5r+rabzXZ8188vlkV+2D2rET3L865uViF1XRd91KirovqGr/sGAFitVsy8WK4ppRij4LlMuF42hVv5rg8hVYW+eeO5rvkKx/TJj31yf3//R//hj5+enrbrulmFb/zEc6vF+smTJ1mWd41/6823xuPxeDS7ce1a0zRffuPNVetj6J88frhcLruue/eddz7xiU9orR88vP/o8cP5fH54cHR0dDCfn1+7dqXrukePHhSlszY7OT3b2dn56Ec/+qU3Xt/f3ZHteDqdKqNJqRdfedXkeUsUQPe1z0yJGZyez3PAa/v7jx48PL04GVfF2nd931tri6Ko20Y540als9ns2nNv33q7cNm1GzfWi4vQNmPnupiMsUiIiFcuXU5N3S0unoS+nEwSqtkoX1TlxcW5zaGqKu+jFAhN7vaP9tt69daX35iMd5zJHp4+lKGi1PCEz8/Px+Px9evXR6OJMabvn81ujp6yLOtj8t5vbXk/cBijMmX6vs9cnlflqu1CImRCBmcNcwAEAhwEqQAVKosqtF5pNplRrCim0WRCzM5l3ofcZunZlwMpMoI22oUQfN9X1ThFlkKmMSYrSktUjsbMSTsbYxANpf39fen3IuCdnZ2jo6P1ev3w4cMQYjHoXSaRtI4xOpctl6u48QQzLrt0KSOi4BMMvltqtWp8H9u2RcRxWRljQhhKYof7R8vlkmKqijLG2Pm+7/vcZXqjeEZEBpU1VgMS0Xq9lqWz6zqRKa/rOssyq8xqtfbe7+6WUph0Nk+RgSkzGSRgRB+jQhNCUPkgcrR1lmPmvu9Pjs/Oz+blqJIds6oqzz63+e5sDxHVJjSSGKyua8GdQ0hN24YQDg4ODg8PHzx4kBRprTM77bvgjFmv11prYIWob968KejVcrFIPhBBVVVF5l579ZWPvfbqxclx7JqysOQJU0KlOaX7d+/evX/fuHw8mYVEXdO40YQ4zcoy02qxWMQY+7a9vLd//kywGeCTL7/8937kf/ye7/7UtUuXZ7u7X/nSl3/0x39yua6VtnXXHl25HJa1X67y0cHFeh0BCAw416YQfGhCzwq1NUSQmIgZtDLGJGAE1qAAORqltQICJIYPWm5sjsFwAEgjZCYiAwGA0gpJMi2t8qpc1GsfI2odvA8petKt77NHT5578ca9rj7ufVImAaNCozVqhay8T8ZkzKnrw9Hh4eKZv44albFZlgCttUVRIs4pJSFISRBe1zVCNp5kudUP7t3y3vetN8bt72fPPOV8PhdDpKqq8rLY39+PMfadf/LkifeddNeul6u2biDweZy/9trHx+Xs4uKCOF5cXGitb9y4MV98uW18VU4zZ1bLzuisGuW5pS54rY3WisS3F7UnL3s4EyvA3OUxRopJKc3EONhxD7wVpZWIJ8YYow8psczcGKOxJi9HCVgMP2RHLvLhEHoXECtABgBiZKCU0lClVlpb50BQdWOttF1LOdZaqwSSoGAly1WDhTszE9NTHWYKULQYUwhBbXg88BSRGYT/8ZTwNIAa8uEYrLWj0Yg2/vC99yz91wIjbtpSfZ9QYd91cjaZuUNSo5TwpWRzQUSBS7TWSJJgIDACK8bhFkSvU5kB0/Teh75PFAAyBEWgfOettZvmTzmHVkr3XUwpOecAKMaICPLn0mAhJnsChROF0Wg0n89Bgc10WVZ5nt+7d9daW+ZlFzqOaTQa9aFZN6vj0yfv3no7z3MELeHrlStXiKhtGq3sZDKJMSmjJ9ORrL1FmQHA1WuXb9+62/f1W195YzabjcfTPqaLec+JQgicgqSTfQwppY3AMeV5PtDqKWR5vr+/L4SJ1157LaVUFMVyA10dHBysVqsXXnhpd7ZntdOorl6/Ia4Sr7zyyuc+97nrN25U1fhLX/rSzReeb5rm9u3boDjGuFwud2bTi4sLAJqMR3XdLi/m68XSGDMdjUNIkUiAJEaQPpuU0qgohJgpESmiFpPAbe+jTAlZuqX+QRs+oOTGz16vNsfey1e+/U/87he+9xuKvTG+v4RMIb3yu771c3/2Rx7+/NeAkz59KGde/L5v+K7/4+/befmKyQwA3PzuT2z/q1/1X/9v/saf/I//n+/8yC/Rr4u3m8/Kb/hD3/upH/y+0eWZen/qysQf+e3f+O6P/dI/+U//+7O3HrpR8f3/7b+3enD+w9/6x3999/K1Hpe+4YWn/9merVb3vwal4/s/++bT/xxf3d156dLy3q/Tmg8AgOgzf+z7n/6AmR9/8c5Xf4I7P/HFb/i3f9P2n9k4233lanP65q/xJ08flz71wrf+737n05+kEP/W7/yTL/yWr//qr+HpAxXkLtNGyaLqMqet3na9yFyQ1gdJmZum0TAAYsaY0A8qas5pQKEuDR3/IjcxnezIl1Er8lGKPcTJFi6EJOtq27bSF85lHiNZq2XaGm3KMpc1v+976RVDxEhRkeo99b5zmdtxMyLq+973udyFzNxBWEkxAMRBNQIQQOhBRLS1bbNK8wY53ObI2/Lhhn2lmMkYXVWVgMIhhDv37i6Xy4uLi+eff340Gp2dnUkBTCmFoIKPzmaUuO+7Is9ijAAosh4ImpkVaEn8QwjO5caYVb3e2dkjohyd9z4lBoAE2lorQg7OuZSGSoAxBjQwIwPGEIhIa1RKITExixb/diOL3itrZHez1hpUk2rUbeyFcSMbtZU0iXFQLGEmAY6lqxg36rWRSYNUi9+T7OD3en1IaUipN06NxnmWmxCNcaAMX7py4HJdjtwLs+eyzKxWtXMuIGutfejKssjzvDJFCKH3LSpeLBbm+RduXlxcrFdNs17ZPDPWXbly5eLiQmnLzH0fUhDVXVPlxcHBgShkI2JZFkTvgTsC+WfWZVmWEo3H4yKv6rpGoM0rx5RiURSZsTH67S3JoZRRSqG2nW+LopD0pm3b/YPdoihEdXFr2dd1HSWQArjWFiBkWVaWpSD9SqmqqvQgLh7lhwTgCyEYZdWGQG2M8jHIDJFYBwCiD71vtwbKEgD1fW/0QOsGAJFXe5qE+4G5L43MwEopBgDxcfY+eO+1clYQZGbvg9YaiCNFoqQ3JmAxxiJ3Q3ymlLSkyTASFrdmSISckgLtnNaoGZTJNCCmGEMIkCQLsrABizMzeI/K+DbqPY6z7KtbjJKZpedLMZB+OjRUqJSIXcgDhK2FoBrGaKTEzCILU5Ylb7JQwcH7vnfGGKW1GrgJ21qKSMNs61Hb61FaKUbFjIyMUjxApw0EZsUErItysVrcenCvA8auZYt13wamPiSVWd93IdJf+q//ymd/8eczbctyJJNN5AhQq+RT7op6vWwXS6RkFQqfgZpE8dm1ytde+egLL65v37v7hS98QR7gbHda5sVbb711//59Y4z3fj6fD/Rwa6w2BMNzkAa34+MTrQcHy/v370slavOQYTabPXpcE/HZ2ZlgAcfHx9ILg4jOOaMdJfC+RUSlldyRhLBSYYMN4zVQkoe/veWqrLTWqV/7lPKsTClpZVJKWqvp7jTL7Wq1Go1GzOnx48dFUb344hXv/ePHj4lAamhd6zcCOLRNMPpeJB1Aa8zzPAZfFvm4GoHCtu1ns3Hbtu+88/ZqWTd157QFMMY4mV+sEAC6rosUnLPaoEiUiKuAQOEaEDYL5fZByfATRgMR+xTlC9vSHwBoMwDWOq+MUSEQIjtntMbFYt33vVJmY1yJYk5CRFbAbsaqHO/u7i6Xy6KqpBNTYJEEQ+2HFAACIQICITATcFRsEpBPoRpVzByjv1id7R7O6q5WimPw1XjUNp4g5rlNIRxd2Z/Pz/voE6emaz7y4kuW8O0336q7VpParjPbxAkH5/ogqnmyWhJRCEGbPC+03LsxRqk+EbnM9F2D68BtaP3q4GAPFYnjgtPqxZev7e2PJzPbtq0rM+YUQrBWJx6EbgBAxIskcdJai4C1yGqvmkFxRmjCs8m0KAqjdIzRak2glFIUeXe22/c9EiefqqoK1Xi9XmdZIZs6UVRoClek6GGg1dtLly6llPI8n81mp6enTV3rLFNPmcEa7frUQcS9g4PxePz45Dil1Pret0M/gYDti+Wi6/uqLE9PT1MKzrnDw8NrN64j4mw2e/DgwWpZW2uvXb9urJrP58L2KvKSEwef9veG/oOdnZ3bt28vFoujg8Omac5OTquqkmVqtVr1fX9+fj4Zz65fvVGv6nHpHz98dPf2PYrJOGdt1nXd2elFs2qJqCheuHjW2mKU7XuiSONq3GObEjerRrTGlstljFFrAeCCAXf18pX79++vl/X1yzfBqOX89PHdxxZdYfNVt/qVz/+KaCOMRiNTjSFQ33S+66ejyTd90zd9afrm4+NjBD0ajQSpnExmRVGt1uv1YjmbzRbnFz/wAz9wdHT01//6X0dE7axSkCiu1sved2VZjmw1mY47346qSVFW169fPzk7yQqXlYVBNZ3uSHeFzbPJ3i5atzir54uwuAijnTEDHB4eVpk7PT19592vdMydxazIrx4djhGODg7XywuT2eneLve6aZrpaJwo1HU9HY3PnjxuYwKl65SUUteuXg1dn5q6KtzJvTuuyi5duw6gx2W2nJ9fnDZNG/KsuHR0mZm1UV3XtH2oRrM6zeeL4/VqJdU+opjnebI2hHBycjIejyez2RbUeNYmDwCQZRmHKDXFZ30FMaYqz7WzCGQUWK0CISst3H6FWqijzAzACKgZLWpngBgykwFA6HpCkBpDCP14+uyc2WjN6KJPiXg8nlqrHzx4INYCo9GoGhVKqYuLC9CAiG3b9n0/Ho9kE5SFvSiKzvfzxdJYl2W5IDLe+67rozSHrVbCkSyKoveRiAg4BeqwU0pVxch7z1XY1o8lNnDOWZt577/whS+IFqcxRqg3AKBgWKy6zsc+khrypel0ul6vfR8VmpPjs6ocj6pJni181/Q4xG9t222kkzQAxpgAhp1u2J6YOcasGAErBP340bEsYm3b5nmOqBXo4IMxBlFLN+jB/r6kJSkQsuIECvVqsU6RxtUoz/O9vb0Y43g8tta+/PLL67YhosJl63rpu77vQwihLMujS1f29/fv3r4rV9L6AClOJrOD/d2DnYlv6mo6dVZDjLrIkYZOwf39fZtlpyfnJ8fHeVE5k1FaojOTPLu8t/fg3p3lYm2NeXj7djm5/sxhcPvNr/RzuHbl6nM3rv/KF1//U3/uzwdW02JqndnZ2XnuuRtf/Cc/v+9ym8iHvldsCBNw52MMPkSy1hICGmTmtqu7GNCgUYoTEaNG7Dnl2giptv6QKgsAaK0tKgWIRsUYkcGgIiBkBsQYo7ZaGT00xqLSWR6A6p7mTx6FKp/Zok5QR0KjSWFIwWKmtQWN1rqzs9NZNf34Jz7xT57V+syMlFCZfLWu902W56UGE7qQFXlXN9OdcV3XMQXnxilx3/f7+/sUE5GiBOZDVHGYQUyWUkoHBwd5nt++fVtrjcDMfHzyWCrfV69dXs8bo/Xx4yeTyXQ0GtXNinyLqCdVtbOzc3K6iJEBVNcm3LHBw864kkS9C71RmlGak7R4GWlnJRCSIT2ENCgyYimFqJQGDWAUxeS7wImYuQc0g19FZq0NTRO63jnHxDGGTJncZV3TDuwyraS6g4OGHmbWAQ5wrdUDy1j2fdFJl5AsEuHGRkmmGm17mTfcGlkEUCkATJEpAcMQoUmAmlJiGggTm54tMaUIQy6gmJlN5vqmFSBVvhZTQsTJdJpSurgY9tLYR2benllvfALlkQrvVbI5CRRDCFbZLfkrpSSNes6JVvng67Ptr9Jaa2VC8LyRgqzrWvCa4d5RS0dgCkEy1hA8AJVlvuUD4sa6kIgWiwutldZZURRHR4fL5TIyTYoiUeJEk9FIa9V1rTxkVuhTH2NarkKM8eGju1pro6wQXFCZLMtGo4m8JgC6fv26MWY8KeeLs67rDw53isL2LWvj2rqZlGXs/VAeQCKKdbOSZvm6Wa0SGNFmgSRiU7JBbF4Z8SqJ4P5oNJqMximlvb29yWQiIh7GmDzPP/nJT3atPz0+2d3d1YCXDg7f/vJb5+fnfeyttaOjS0ZpY1SMFEy8culy27bHx8dWu9EoPz4+Xs7n3nttrfc++iBVSaP00N9MSWtOwXMiV1jIWJgixKAQMmeBqW07eWuIyEwf4noAJnez5w++6z/7fS/9jm+WbrxffSirp9f2fsP//l9LITJ+2JmefeS7o8vf/PL3/pnfP3vxSH1IS7QbZwcfv/m7/tYfm7/z5Ef/N3/t4T97qzt/pjD+r74yNb6884nf/52f+Q++3+SZyZ7hJIwKy4PJx3/fd772e75j9fB8fHlXWZ1Nyx+6/5d+9j//W5/9c//T/6wcZ1O6S596H9w8v3Xsm69BfPni7cerB+fjq+/pHB1+4uadn/jir/uS3Ci/ePvJwcdvbj+hSNq5r/4MZpRRStu3WeyO/+U/9fv/+9/5X6wfPMtq9gO/Pil/z9/949q936XwT/+9uz/1+q8bbk4xYoZSVldKSTua7BrWWgGXlTXiXV8UxbisBJN1LquqitMgYCCmULwROyYikBVVA2orrV1iFu29z3KXUmJOxprMOaWhaRppyh8IRvlA7lQaECHLLQDv7e2GJBaCQ5VRGADW2vF47JxbwcrZDADatlXicWdQa900TQxBKdU2jTRkCBgtuArHxIRCsuQNwzJuenckYhTUVdQXi6KQZzXb3UFEAbXn87kQm4wxbdPleb53eU/0KqU31/c9DX1CDKyk2R4gifCs1rrvW6JBfi2loLXOsqLrPAAoZYQYh6JbbdWmDEYIKPxX57QxSpDMsiyH9fappp8sy0zmZJ/N87zKi67r1GqFyML6oo3zoR4KsWFLQNzSBPWgRJokUAcR6aVhU8PNAQCikoGouki3br3btuvZ7pSW0WW6bpa9bxIFSuBjP9udAnGbAjM3TeOmLgTvg7fWZiqb31+MgjZVkbd1Nr02rUaj+48eJ6aD3b0QwpMnJ3lRtXXDjG3bKoaublerdfReAN/FQgHSNrWQI3jB18l7Pz9fAADzFnEHpVTs/YJomwugAmscM8t/9VGg9GStFVWNREFabGRUSaxj9FBwRsQQWsHRtMataEPTNIK+MQ/EwC1mTzhAmUQEQKgVAMhQk3krGhcMtH3u8v7oKS/BLcr2zJlPzNZkRBEVG61BLINiXK/XABC6fjSeOOd8MwioF0XhfQ+CDBIDgDR2bWGmLbgm/XQDdQTAmsyWxpFKMRIjai1B2LisAMCnKBNM0LSt7AAibucGwOAEOIDFMSoGAGE7DD/NzATIDFlmpWqqtTZ6MJIGYmY2xgoSp4xOkRGpKIrMuhACEAFqJsLNBTz9JLfYmcxhCSkAIG1FapQ2jBwDKKWtEeMQIWJopRJA03d3Hz+0RZllOWuTFPuQwBpElShltvjl179QmizPMnyqWQBBGWN8DEqZnmLj+6Tg0fl5qfXh/k5IMSXKnYNnlZl/7p/+3I/9+M8653Z2dkRAQGot//DHfnxVrxWg1jr0w7RPqdtGwHK/0uYGwFv+qRQYZHGs6/qLX/wiEVVVeXp6+jM/87N5nl9cXDjnlDIKDQOLQ6S1WZZlSEMbY9h4tmitENFao5SmCFLPFOCAmdeLtSQzWhsBMBEVIiul5S7Wq0bKhmJEKSZRgnNtFzKfolUaN/oGiKhU3vtWBlJTryeT0UsvvbRer09PT/u+B8Zbt27V9XoymYQQQue7rnVa2uJUZFJKKw2IuF6vs9yOJhOZj3Jy3mDoQ+PP5th2LUjFUgbPlskiqYJRSWnSGmPqprM956Z1Xc8X5zLGJpOJ936xWGqQtgwTA2tlQYGPkZmPj48Xq5UQOtarxjmnlA4UmLko8qqqFssVpWQBtNEqYVlWTdO4XE9mO+v1OrFvmgaQZruTosqmO+Pl4iQQXbn2wmKxiuydsZl1tlCrR/PDS0c3bt6MMVplV+fLoswJkhD4heK3TefiRidxMplorS/OzqX6ta3JyewWQ1trMpliuzv72dj0YZzlloi8jCINqKBp50SUF4aIfKIsdzFGBYCgqslIioWZK7z3vV8ppRQo732VOSEGxhjzPDeo9vf3NYp/KUXvY4yMmohC19fLVVmOlDK+6ykmBMhdZozxXS9FeO/9dDrNq8x7L6jN8mIpjZwWs4uTRQzgnNGo5/O5977p6rqui0lx+fJlIS+HEB48eHTp0qUsK85PTiWCCSEoZYSfCACzUbVYr959991r129WVfXg/qPlcj2ZTA4PD5u6Vkrt7+q6babjcTUeA8D8bP7w4cOm7vI8v/fg0dnJk52dnZ2dHd+Hl199pW+7vu0AYDFfUYK93QMkrperrm6UMgA6s0qjWa1WRDQdzw4Ojk5PT9u2Df3ZM/eOtmnzzAFC5jIjBsvKLM4WwuM22vg2eY7TyU7ftN2qtWA+8conrLWri+Xlg0sY8OJs/pGPfCT6e195650sy6ajKSL2vj/cPwLC6FPXde++e/szn/nML/3yL5+enr/++hvGmMO9fWPtYrkMsS+K4tr1K13f/PKv/FK9bqWoMN3ZKYpitVrevRuIYtc1zz33XNd1tEwAYDL39ttv7+/vjUajul75rluvGlY6y/Pe+ytXrqBW2jlQcblcBohZYa9fPUx9+4UvfSH5wFY3664wamc8OSiqu7dua8WXrh81oeu74L2fTGZE8daddy/v714+PLxz6/bs4KBbN8aYEELXty56V9lxbqKv16dPuKiqbPTqqy+XZZm4X69agT+6vj09uyjyoixGKURKII11EgwAwMHBARJLyeHs7KwoqpSmz3xTxrnlcl1YkynHH5J+OqML1M5lbFQEBE6UYmYsJIopaUQm3oYZkhtATNNxlSzMo5+Mxsxwdj6/8dzNi4uLNqQ+0IfZEnZ1G1IdY9Ra7e/uRUo7O3s3b96UVXQ+n6/X6/F4PJ4UddfKUimM6aqoEhEiNnUrQEyeZUSUZ+XZ2VlIXm30VSX9EIOBRCDUkiwrxtVIA7Ztb1CJypP0bIbQbwMnBBJTQe87aURTg9TgIHYfY/RKWdZd1125cqWqKvkwpJhSevLkiZR2tLbGuMkkb9tWtHS2u8AGRJakgq11KZFCFFdYMdVkRiIuy1FVVUrpbaFXGAnW2kSkeRAmMlq7ahRCUJlCRDTD/gJAkVK9Xscso8TAKYCnyEoZa0Ep1Xfh4ux8Pl+cnp5abZRSWZYpVTR9ByEoDV3TpDzLLHY+9KHTSolWb1VVKRHtwqrum6ZL6aLI3HRvhzzujauXbtzoum5/d282mUx3/6W/+nefMQymZflbf/PHb9y48fobX/rFz32OIu3u7iKYj776sZdffvnk3l3l+1eeewnOa6cH2jIwQqIUojVCRAVgBqCUSCnVRq+NYSZkVKgUsNaoEELvPwya0UwqxsxlFKJmhYkVQog9KmWMJmKAATwVGSVGakPwQEEjoTo7OclmOxOdhdj3zIDgbM4ShmobEiulv//7f/vu/rPl740rTF6Ms8oUVZYVq2UNBMZqCjG3bqvYEGMsMtf3TZkXzuWFK7S2y1VVPwsGaZtmNBoVRbFery/OzvvgHz161DTt3s7Ozs4OIsaYRPJ7Nu6BcD6f182yKDKlaG9vlpVlTLh/MDs5vdAamBGA22a9u3OZU3Pp0qXz+RnN5wDsUxRBW42pqEbGZX3fExMwWKslM6QY9UBCUhQTsup8jwxMpBHzogghzCZTKaauVgtOdOXS5aZp5osL7/3u3l6ZF5NqdHZ2JoQsRnDOUUrAbJXVmXXOtV1njAGt+uAFTEdEwT3ruvbeZ1kGm5R+258nga4EAPLolFKJBhMRrbWYvojY/TZhlKVAlhfcaG4OJCFNSqnlcunbbov5AkDTNH3f7+zsCEwsP2qMUZvwwxgjteqBtvKUj7T8E4gUDESzrVCmgYHlI8EtIm6VNySaQhjgGE6JQnRaEUuWjikBxZDZrYNOkifjnCMaeBLyK7Jyar0VEsXVanFxccbMOzvTmKIzRjsDBrrQGas8eeccAhAxYHKlzchIVA+sDClGMoat00+OHxDRcrlk5vOL45SS1rYoCq3s2dnxk9PH7Hk2m61Wy0tHR9O96Xw+TynNZpPT09O6bbPMisCkdUopNRmNl83Sh2idJo7CXpQb6fq+a/1qtZJyppZM01pGkjGwWq32dg++cPcLP/ETPyFUu4997GMpxL7tRqPR0dFRbEO7apTB09PTqqoOdveuXr36hS+8/tJLLxHCG2+8ceXytbpt3n33XUSUql6e5xR917byfmNK6+WyKAqOiWPSgNY5ts5am1sXuj631hjT971C1MaW+bPNlmLnf9t//YNXvu1l/OfhyDq3OrfwIYn/hx1unP/u//d/8LRy8YcdSuvdl6/8rr/5x/7iaz/01cLNRC/9tm/8zv/09+GHKHq97/xGT2+8t2xm4+KVf+XT/+xP/Q9f1Q/9eg9X5ZNr+09/8vCffeVrYnB3F+vmZPE03Hzt21/5hT/ztWklP31EHyfX3ifSjxqrWXXyVZ8hLXt8P91w75Ur3eKrQu1/61/8Q6Mr7/v10y/d/6k/8d991T/+jAOV6vtWa51lVsCVEHqiZIyVPEhtTPm895DIZnme58LLRFTCPowxxkjy/cPDA6XU6elp13UgPSWMsgvIQtr7zmU2cVRaAbL3vXO26xQqvnT5sOskzBuy16ENNwaXVyml3OYSAYo60JYZvV6vhcop67/ROkW21sbkJbcFGMJOyX9loXbOQQQmtNYkYKWU9+TDIPEsyekWZRJGgth4KKVsJog5S8eGNML6PgQVJUiu6zrP85OTE6N1DCEGMsZQAmZIHAwq4eFtwUBE9DFsSlwcI8lPMzMa7VOkja4D4hBMysMxVmVZBuyk1OqcSyEKXpRlmVQrlVLOOZ+GrRYA5DkbYwBI+J28EbyV68nzXPZW+bAPvqp2nq5eg1DdtY0xchy8yLf7qRhuWWuccpcvX9aGV+uF8Ibl59brNRE5l4fQM2Oi1HRrY4zWanEx54Te+0V+LgiGuXbt2mc+8xltzenZRWT6/Od/pWv7yISIq8WSiFKSNjpgZjFz2D5W4abKHaqBdzeAQWnoWxduO2utrTUAkHxg3oDoCtLGBYIZI1OiBKgBQFh7WmPfUt92iTddWkTBp4jvIS/MwzBCxBj9FsqUxEmUmnGgYBtm1hTEKG+oxuMHXQFFCk2kapAgbBjvuAGat4Dpr72+ywvrY0SAoiikdkGUaFNx8psfJRrQNCJCBmsHN7lt6AYShInRYiJtLBNzAsSBoWxcgYhJAW4wR/lfYGUVbgO44T7gPSxbvZ9KLBWN7cwhUUkABcDWWm3NNrVjBGHvaqWkWW+oJqVkrcvzfDIaymvSc0cpDS1OT0Wl+N74Ab0RgFMb8R2llLUWlM6MZq14G7+ChkRaKW0sc7x1707dd2hNnyjPMMSQlPguDaPUWZdnOWzqXYhoUEVORKRRKWOIqJiMQu/IZ6lvTxYX4yKv8mp3b//Rs7aPvvNWWu+B9/f3Jel98OCBtiazTtYOecK0Uc2OMYIaQvMQAiJIbC3hL264YFrrvu9Toixz1mSruvmVX3rd5gOM2Pc9e6+11VrHmJzTk8mkW9XIAMTK6u15NqEtFUUuqsQySZumUQxEwxuXVXK7cMcobp/o+yjQQN+H119/vSzLLMuYh8UdNChWhINsk8zfLMv0xrZl/+Agz93h4aH3/uJikeeFLEl5VU4mEzEnVKC11l3nkYd9blKNbGZSin3fp8VC5IRkgojCuISzwrPYFnsERu97L0o7JnPb7QoRrDUpBJFRRsSLiwtEjnGYwkVR7OzsLJfL9bpRSiEqIkbU3ntrtbUuxth0ncvK5WK9WtXCyEvARjttsCyr2Wyn6/1iOS/KnDk5ZwBjNcqOjo6m08np6WkIwWUYQkjUa5MODqchzXNGbWh3b3x2/qQszN7OrPfdweHu4dEOcSCOoFSWa21VbAMkkNZX5tQHL7uOHFIpldKr2rgHoBLV5hgHAzREBEzAHHd2diI32hQ+dkSUOxcJFKWU4mrV5XmOCERRIzIPfHmFWlIkpRCQfOhkpZJ6FRCPJ2MAWCwWioGYOFHg1NZNoqgYEDGGobY8v7io1+sYSPS/1sslRfbBKw0i8dis18v5XGwYQwjBp74+7buub0Kz6spRlRkXfTxZnEm+F/roXC69rsv1ShiaV65cmY7G5+dzKePJXNjf3799+7YMmCWlqhydnJ/1Xdf3AQAWi1XXedyYuUsXVejjmtbT6TT08ezsQhqaJL8tiyrGGHv/5PGxVqrMCymGA8BoNO7b9o3X31gsVs653seqGvd9X40nSqnr126MRqN62fZNKIpRaJ+xtiyXKz1OXdct5ytnsnfe+dKNq9euXr06KkZvvfnluq4n1dQV+fJsvrOzgzlq1BT5ndvvKqWQVZZliPqdd26dnZ1pbYUK3axrZj46OtJaX1xcMPPVq1fPzs5ECbccVSmli+WirlutNRKmyMCqyKu3v/LubG93NB557/u+l3LgZqFI77zzTkqp6eqyHCk0zOz7tq5XuXNa6/F4XBTF/UePKaWzs7NXtGlWC2R15dpVk5mL1el8vbrz5TdQYWTKTFZgPj+5GJfVo/v3Q13v7k2B6M67t2fjg8lseu/xw+vXr0/3922eff6Lr7/w/PMnp6d1iDuXLjEApuAg9vXaaMYYz5/c9678/t/3v/rYay8uG8jz7O6dB97H0agcTydKqdW6qSbT8/N55+mpfkMSXkOVF3t7e/PVum26tm3th2BqosnTNnWEgOpZ/mIATJRbU1ZZ72PbdRrAKuw5EQ24CQEoo1NiwQUAsMic9kAxfuZbPq1Bf/GLr4/Kan93r62b2PnrV6/V7bMJmH3fIySnjTFmtVoz0/7+/vx8zszT2Xg8Gq1Xq65tlR54muNyDEB118ow6Pve2VyW2XWsx+OxcJBRV7JZyDqfUprP5wpN13VLgY+7MKlGEcAZ55RWeSFnAwBpJLfWAlAMNBqNlAJZ/3dnO+Px2CgdQiKinZ0dUb8tisI0jajXSX0UAFCrkGLdNiEGiOn09JQRi6IwG+3OPoTUdMxJJJKGdc9o0Krrehq8VR0REXFVjQRli9GnyEVhBQvLsoyJmYiJ5CQAYK21zpncoJhtxEhGD2QFwhQoz/O+60IfjRo8bZqu67ouMWdZtru7q7VeL1fEjMxt2wMni0YDI6fYUwq+XizzPC9nMwBYzFf37j5Qxo7Ksuvm9apez8+89+VktHd0+NHf9C+3TX9xdrIznT04edbyAfCdv+E7P/rxb/qLf+OvrtrmM9/+HZMvvh58KkYVanXv7u1f/ImffHWyPzX6/pMnTd0ppZgSAXfBM5EGTMxGaWIOvU8MfQhsVUqsUYfQM6BGhr7PirLtWsBnE/8ra2d5wT4qpft1I8wjgyohcUKKsSxGRilPtKjXnY8ppcTskSMqtqwJTEgTay/qWlvXxUgIGjQnLrKybdvxeHzr9t0vf+nHIP9fPmMiEM+b/vj0/Ozi3L/xxqOTUzDKGANo+r4f0kjC4BOXjKy8j0h97GNZjox18Cy4ObNWMYQQRFBiPB4f7O2HWcysU0pZ67ROshEXmcmKbM/ueO/Pz8+t0yqRjhqVnc3G01lZr32el9H3DCGRlxq/1S6FyAjOGE5stNZ5DqyQQaNiYGLiBCEm7oJSSnJmZzLjdN/3RIwAGrEqSkRMECGRNubs+GRdL9frdWbt5UuXRmXZhb6u63q9rqqqyHPvfVWWUuaX0qyGwWiIUmKtgUGjBsTo40YHDzeNdBERqY34lEl42tB+NaJPA4sqxEFMj4gUMmolWzw9ZSoDm9xKPtimY8yJmYEoJdpizYIgjEajrYKiBNLMbKyRfDBtHAK3ofjwBcGypeIBsCFTDxE7sxjhoARXsjII53fQjlOktSLiGFOMqW1bQMrzHBAVo8iGSCKllHLOpDTUtIzRKXpJA9OmJVxk/QVvwI0OKWysSvq+b5rGWu2c876z1iKS1mwMcKKYOiJiQlTAEPN85H0rUnhVdWiMaduWKHVdTRQAQNDnlNgYwwne+sqbo7ICABHSjJRSZEQwzgJAmRfG6MQhy1zbNqenp8JfRlQ+eEQsi1GIXnDkEAKhYeYY+gR+qB/0frVYz6bT7/stv0Wa08ui+Iav/3qJyrZVCr2h+AFA3/oXXnhhPB73fTjcO7x0eHixWBQffe35559/59a7p6en3/iN3/jLn/+c914iOkS8cunyyclJ17USjlJMRMSJ+raToSi06DIvtDWufQbzFwB+6P5fGl/de+Z/evbxtbCbDz5x8w/+yp/6Gk4OYCv3g7f/wl/+un//5Av/fHmH3/gn//XP/LF/5Ws6/9PH7Z/4wq9Pu+OrP6bPHX7AEO/J529/TWfw6+78rYdPKx3vvnzFjfJft3wz+fgT/9H/4/v/2z9a7o3lE6XU4adeuP2TXy1jenRt9wPFiXf+/ue+GvPD1/61b3vt937H05/E1v/N/8V/Hruvge79qw+mlJe5tPgLf0Lm1KY/3gg4UEJeuEyAQuFXMXPfe+RBDDOlNBqNptOxRIkus94P/aaIKOKEcsKinMkaBdLBpg0zW2uM0avVEgDW6xUNLhdknMYEBEn4ASGEuq6dc7Jeee+1lu40EMWPtm7yPE+UQiCGtE1yBRaT9XPDznZ5nkMc7pRi9N6nGJVRW6qv4K1bbh8RS1hYFAUnkojUex9D6toVACil5Dr7vn/06Ikxpq2bGGMMJJD3didKRMCD8SAAGLMVGg1SHFVq+D6rQeRn2GU4EQkCk1JKDAmTCSEYbYk4hL7vewpRth75OVGPDCFEHloM8zz3bSfgm2Bp4qMmTHDZfAWZ0Vq7PEPEzvedH16l0ppiYmZRJEbMmDH2XuTvlFJMKDzVlCIRrFYrY9S6WeWFS4m6ru+6ztk8hJBlQUCkhFBCAWaoB6NFpVTTNGVZXn7xplkul7fv3gkh/MIvfq5tW2vtxcUFIiplQghOO6IAomblihijQMwglFjUiO+5yaUo2G8CEEawIkKAoRChNk2OwyxFBhDMiBXqLclni3sq9Z4FltOOmRNTigwwoGkwsIwHlI2ZU2KitAX4EXGA6qWQAAiIqNIWiIRNtXkLcTIL/jxQoXnLw2VFTNuiihpaip5d5BStQG10ihxTYoBENJ8vJV6p69pczCejsRJxFkpJzgygmBHEAMSmuOHdJGIYWKWIaLQGrT0hUbTKWmMs2sJlXd9HigCEOIg+o0KEgeu6xXaVUqLaPKBGBOLPBwPsi0JslrYEpdTGCHurHf6e/AUjKEBxBRGc0RgDCbVRUkYOIXBKrBRTAmBE4JT0xn+DNkosiMqY994FvGcPDcZsJyeDAkZgIq2V1UZmztL3Z4slF5aAu9g7KNgo1DoyAYJBpZA1GASgmGxusyxLKB1taoPLRwAoqzGUibzva9OvFoGJtbr/6PEz3++161djfPL48eO6bUPwztnVKuZlrqTnlJLcCmxU2+VxkYwnSkRJloCt8JD8f8FxrLVaEzP7GEbVKKWkNACA1NMAOFBIKcWYmqat62ZSlJu6y1DXEeBeVlgM0bPf1BHAWssxMbNWlpnFiCZFVnoggDiXAQyNG7hR2W4HNoFzzvEwdBARZfwPZabBMDo7ONitRuWTRw9/5Ed+RCpgXdszY0rcdd3FxQUQ7e3tdU3o2iCrsNXDHpZl2c7ODnEkAOdyUTrObSbaGrKgz2aDWajA6DFG55xzDhGbphEchwHE6tpaq0A6qqPWuuk6AMicHnB2wqbpUoIsy1NKLiuRmEiJULXW6JyL0QlpTgTs+hi01rOdSdd1xmhrjct0lum9vamx6vj4SUpwdHS0uzdWCvcPZl3XZNnuer26/+Bu7xtr9dGlPaXUcnVeFMV4ko/KoiiNMvrm5DIqtVxfFEXVtKvD/UOM9NabXykBY/QALs9zEZrfrl1t24pUqOw9PDR8EDPGGEPvOZF2VgFSTG1s1ut1XqmuawiImYvCYOSu77TWzri9vb22bZXKhdsuBeEYU4wxkg+ekw+ha8FwnmXMzD2lJFUbQoa2bowxNZFo5nBMwojUikOIzmqVZVprzx3FSDFeu3btnXfeISKM6Jzruk5Q9VE57rqu3C3bpnv06BGTSsAACgjbumv7blRUJrN3795lhhdeeO7gyt50PL1z587Jycl8vjzaz/K8PH78ZWPMznQXAM7Ozi4dHr326ke9948ePUp9t7u7e/ny1cS8WtXGmMzmZycnivill146fPnw/v37d+/evX/nPrAioqqqfAzIqsgKazNrs7IoBL26/e6dT37yk6OyevTwiRSE6vVpZdzyYpm5HEhZrd5+6+3JZNY2/rnnnlucLy4uFm3bG5OvPoQH0S671fn9UVV95MWXv/ylN8bleDbZiT6dn5yu5qumaWbV7qQYL8Nydb68d/te27YH+0dAQIkggdbWe79er/f39/f29ohofnrStu2nPvWp3d1dAc13d3fv3Llz686dPC+zIpe8XWt9+9Zdo3VVTcfj8a279/I8v/nCi33fX1wsxuNxUVQXFxfexxi9jDrRa9MMbd2I09HdW7fX9fLVlz/iTN51/vatW+PJbF03J4+fZMamGDgZNOhy99LRS7fe/QohKKNG08nFcrVo26qqIFGZlU3bQUjz03ns+jCO9x4/fPzkuBiPl+vu7OzMWjuvmycXFy+8/Cpr07Y1pRSjDxCtIk1eQ0ihe+mlF7znuvaM2dWr1ynEddt0XQcKHzx4cOnSpaIotiylDfEBvPdOm6qqCpc1dZdSKopnw7uIWBSFIqYQ1/WziUiZM4W1GhVxRE7WWDAmeM8ct4u2UgaRxQIbAGqE6XTam9TW9fxiuV6u2t5//nO/xMycUpk7/SHduKNqPD/3sJH5Sindv3tXInJOaTweW2U16Iuz87OTU4nR27YFhcIr8d6XJeV5/vj4tMxyClSWZZmVYIfSb9929bquqqqajAXukSKiVTrFaFAxhMloLFVJcRKXgEcW9lWMp6enEltHLwr4kGWZQO3iWPDkyRMBtbvgZaW1WstmtK1GUwguz+WSUKsYQooJGYxzoe/X64Y5SWQPbRuklqA0gBAOePuW+y4457QWN+kEAEK0YRh4kRuQ2jDRarFCjfLN0WiU5zmoTWMNDNpNzhWy3TuXA2I5Gp2cnAywF4IzlpnXdQ2J5quLMncwnVycnQXfWaWRVbNuXZbJdVICp7PC5UmnshgR8Gw82p9Mwnp9cXJilM6N7upnm0q99c5X/vFnf/QXv/TGzsH4H/3UT7qsQKMS0Wc//0t+Pj8y7oX9fecjhgTMCpCMThqb0GuKBCyDh1JSSkUfAZUCHUNkUAYMEzP12mWKuMryD8uPVSIVyRrLiYwtdEKlVU+iPsyZsRADIyJCpOQpAQJoCxQVYpt6i1H1oXRZRty2LWQWGVCj0saHZF3Owb/+pTcZ4s1Xn/Hrv/yVr8yPfyrGFFIkhWZUoHOBEJiMswQkzVJS+Gei6LtlNzfKXuB8PL0Jz4KSmqY9Pb0dY8zKYjweI6rd3b26aVJKiMpoBxxTTACcHIbEVVGIqFo5LomIgO/dvatNeeXKlbt3HnCKo3EJxMePn7zykasXFxeiYAYAZVnWbbNarZQyRJGIKA1GwcYohWhs7pyRueOc04iLlMo850TSf9DVTWZs33Ueseu6GAMydM1gQKQYFWPyEXLem+0IqzfLMsUg+pgyhhMRS4IQk/Q/IqIguCI9KZmaMYY4CpZhtuY3mxRJp41GhxqEmEMIjNKzY2IghcpkZtCu2fCTNqnKZn4hKgDa5B3bcFqWX++96HuEMBjkeB8FGmbm5H2iZDIDSMYY2Mj7yKXiVp9Q4zbTBACFRm0kBIUxI3c3/DQzbcBiIkLFQq/ZGgsBAIKGDZkDWGlUWlxV0Ij71jZg5o3U4fYCuq5jZmlI3YAR0LZtllmbFUTkQweJlFLIHEKvlOl9P53sEMc7d2/t7e3Jaa21DGwstF2fiJUyxME6k6FNKRVl7r1nkMbnsFzOy1EFAM1xLdtBWZZVWVprz+dnzuaIeL6YBwoHB0cENC6qmLxzeTbOkFUIQaOR1kM0RvJBa60QtA4P969duya9ZYjIMTltlFIRlc41WJRAse9CCEHGsFH2xedf0NZIJ+hsMrlx7frubGdUFdevXyWiSweHB7t7AHB4ePj666/Xdb23t3f79u2rV68uFqvHjx+PRqO6rs/Oznb29oRGUDer/Fd5v7tR/ofe+K+eps3KwcQfIJOlGPWHmAb/GscL3/v1/9qP/Me/+nPeCMt+2IGIf/CX/8v/7vv+s3f/p89/6JeU+m1/5d/9un/juz/wcQpJv79GzkQfoOL+/+9Q6uqnX37aJ7A+Xy9uP/laT/Pgn7710d/z7dt/jq7sZtPyX8Qt8NHPv92eLLdwMwC8+js/84v/1d//asB35cxrv+fbPvDh+vEz5fHed0xvHvy2v/KHn/4kduHH/r2/evHO1/xAPnggDO25MTJzSEOEqbWFp2CuLB/EHLbwi/e+7zvSdoAvfayqqixLoSsJtdYat1qtlFJ5nosXiFJqOpus1+sQeiX9XlGUeRIRrlYL0alXShHFkADSILuqcWj+6Ptea2xb3sLcIi1LREbpLrTWWiIOsZdFUiAmCQXln1vouVt3gikJvixMrKLM4sZCYNsDJ3xncTJARO99Sgm7PqakUBuziX8GXFEjQte0sJmwWmsiQAStFbOgjqBgEObFjbCwBIo09K9I2zFq/R5ZExGlWTyEEOPgxCCgjVaDDQCkuHksXu5aGjHlyhMm0cWWnWIgQAAwE+J7sKQWD1jmdbNiJGut952EtSmFrbaG0nlRFpQgpaFAi4iUIA7ypFre8mK+1lblRY6gAW3Xx7PzpdWNMa4oxkRECc+XZ3Vy5aS0E9X3/t7je1pbmkAISWtrvvil1wEAQB0fH2dZYTJndRLrSU6krNJap5BiiFF5AXC3oDAAILznyhVDtyFpmk3h+j0wV1RU5CHKE6eNyCwoDVsMixOiEnrvdpLIn3DiSCltOvoBQCnzgW17G4sMI0ac7pikSK6UyqwJm9xSaAK8abaS+8LBlI4AQO4W+D1tr+03ZWA9e+IjJgocFYLWG5EUMY7ouq5tOoKL/f397dyQQ2uNzMD09KDcXCQINZsZFXBi5sSZzcf5xEWd2n4oZ8VtGBSZUbEW7HwLpiOiRoWD0CS9B+5uFJOZGTQwsJJADyRWVJLabR/7dnATaIXCzNJSBCvyangyREqUoBNtXh/FlGTCbyewkMW3EapSSgjfACB4ohbGLiUJ+IbrVYhKnV3MH16cAoC1GRFFoLpvo+bEFCGiUkqhYeWMdQqbPlpbZpmtfUcoVIsECIzJGKuQjclZm3GRZ5cONLMx6vFJD896w7u7ex/96He+8dabP/MzP3t8fFyWpc3cIGe8oWkzM4CE4EQ0FADIDn21olAh8dm2N0QpZbVhBOcGvpX8140iOQgI2HX9sh7gHuZBsAwU8lN9iBJgDfW3lGSaynvRWiNstP+k/qaBWfpoohQncChjBmQQwEJrHaNPkmBIfZBRw3vrgChpzGaz0Why69Y7ve+MwrbtEUIISRktxMm6bjSC0ZY3yi2E2PettdY51zQNMwHAYr2Qd6qU6qkXpXzZWqQ+kVISygYOytF9SoloI9lJBACJ+zJ3wI6IyqIgSkWh27adTGZVVa2bmiL1fb+3t6eVlUiXN4fW2lgFIPvKMNr3jnZF7Mk503VZ3axQ02ynmkyzLFfjSaX0LgCXlU3UhUii4ocqznZKba4qnYzVwiU5OTvPcnN0tOf7vm7mRVEgch9apdn7pipHIXR5YRlCSk5uXxTxtguXVJiVeHYprTcaWLLHMOsoMzoBATFwZjIiGo9nOkPmuKrXxpjdndly4ay1o1F5dnZGiZTTZVm1bdu2HQCIxqtGJVqlTHG5Xlql0WilVOjDarHctKcwaujrdiDId32TUl44ZwsAgESUfOyhrmvn8q5pn/SPM5vXdZ3nWbNumdOlS5e01gotE0ACipwCAagQ4vnpxcqujbXWGq3t4nw+Ho9jjMhwfnruO3+0f4SEfdfNzxcXZ3PfenBQL1dlWV45upR8Go1GGvTB7oFiSoF68qt1nWUZElw6OLp8eKler959+9a7b72LiByZerbWhL6zEzsZTRarZeEKAMjy4uJkUVa57/rZbDf08cnqzKDrmq7rxEk2tG0IgaeTWbNca9DrxbqoWKPxKcwvLmzmkLAqR8tn4UXTyc7x4/T8R18knzKX37h2I6X0+MEjY8ze3uGLz0/lBvcO9ouiOD+fazRi3LRarWKMfdft7O993dd93S//8i/P53Nxkf74xz/+/PPPv/nmm6PR6MqVKydnpydnpwdHRz6muq4vLi52d3cPDw/rdTudTgcVIGVSSmIFLIsG8+AMTMTWZiklIijL0d70Uu/jnTv3Dg4Ovvm7v/v87OTs7Oz48ROlTO6ynensG7/pmwvnUvQ3r1y7d//0rGsnu+PxpAqxn0xG1LnVfDGaTdEVkdJyvhhV4+T70/Mz5pAbN18uVuuGtTk5XxKBD+w5LR/cn0wmfYqnJydlXuSARZ6rsE4pGg4p+O/4ru+6evVqG0Lr++ijtYVzZrfIbYbTnenbb7+9Wq2KrJBQbJCBUmCttWowh5DX4b3/8MZZpZSSjof56tmqf2WWGWVC3wOx1Wbt+55AqnQIMMiFBa+1NkpLU10f+eHFozPHd06OEXSRFUU1WtW1M8ZqFXrvSv1Mg7bJuFrN1eXLl5m5aZoiy5XG9XrtnOvbLvQ+pVQUBQR2ziWf1v1aON2ZzVWmzMRoY1ar1dH+QYwUY1wu11q3oMFaW1VFnudVUYhWxtnZGSLeuHatqbv1aqWUMtq0dbMznXVdl1J0zm6jOyHF7+zsmEFYA5p1LV0aIYSUWCn1+PHj09NTeL83hhQjiYEVEoIUVEmE8xBDipYHGVmtdQpRWxtjZNDGKGJuNszHLMuMtcF7AEDQ4j0g4/lpaabHjx8T0aXLh2JPOp1Ou67r+x6Vss557/N8YOLIaZU1AikKp2HbY2esLYoiEhFRHwKnVBTFdDrxXd+27ePHj/f29up1++jRE4sQ+5iQOXGvfMlw794DbbM8z9qmv3blakopr0z0wSqzODkrqnx/MjFWOaRxmT9zyL3+la+09Oi7v/e7L1bLN9/88qSaVbqIAZr50kb+lo+9dtWNF2/dNYJ1EHoNHcWOYgaotFGbPkUE7ZG97zVmBEobQ5EMKkbtsqLzwaiMnhkeAaDSaO2qbQFAsTKICllbo4GdNkDc9z1ro40CrUSIRiJ2H70nAkrQt3nuJkU2X85dZskYpsHXBJC004A2d5Nn/vqiD2oyjnWnNABCstonImDF6KxhSLwhdsVIlIJGMFo7myMoSgmehSlp1JnN+37VrluFRqFZ0KrtvawAREHCJ0pJ6Xy1ape67/sekUPq+uCDT12LO7uVs4XVLlDybdIGM5MJmUspJS7Nzrnr16/fvn27bfsQQoikFGRmYOCCUgYVEhLRultba7PcppQ40dDcGlOPaI2R0C7LMqVgMpkYY5bzhUB+4/FYGZ1SWq9rrXXXtU3TSFB6dnaGqGIUNq5BBmBwxmiXNX0HSgGiD30SWQOiNrRmw9vYRmgyc4cOMyJClhUAAKwxPgSttPixy0gTSHdbRdsS8SSZp4EjplgnSkNfqSwRXdumlGIIxhhrDDD7vlda941IJ2EE0Fpv8BFIkVNi5gFOGtJYToh2qzQIg6V8lBqYdEuklFLkFNlah6zkhEbZhDFXpRTmRfdSEka74d/BxghxwN+17ntkSNKqiJvuPXl0UgJhbQAGUy8mUsogQkqp7Tvns5RS770Zgn9g5khUVNW6Xnanp8KT6LrOOdc0a7GqRsVa65SiUiLRmYhDF2g8mgBJtsh1HWMUAT3WBpXWDKnpaq5JKViuzp1zqPhifrZYXsRAly9fNmjW6/X+/sHB3mGiSJwSRSSelBUiGuN81wuuEWPsurlUFOSxyCY7PGo1WMIYY4AHJdYYyRjTXrSj0UgpdX5+arXa351RiJcODgVt2N/fVYgx9K+9+lE582Q0ds5dvXxlNhnv7u52XXd6fra3tyeafkdHR/H2Ep6yl9v9yJXf+w/+4/G1D2LN/aL5+3/wz936h1+gOOy0buS+6Qd/66f/t9//TMRZfQgM/U0/+H2/+c/+gV/9+b2fe+Mf/Nt/aXH3vUuZ3tj/vj//h659x/urZ4i/9x/8iR/9w3/5F/9vP/KMH3Xmd/2tP/aR3/5NH/g8xfTz/+Xf/YU/8z/6jSqQMur57/nk9/3lfyefVL/6PG5SPvPi/392EH3TH/6tT39QzMq+/pphYuPs0xh9dTh95Xd96y/+C+hpdPPm7b/32b1Xr24/ufItLz33Gz/x7j/4pX/u3978ro8dfeMLH/gw/qpixgcOk7vf/Xf+ww8Qve/85Bd/6S/+2Fd91R96aG2sHdYZa60wk4hIqyFb1EbEZlkphYplExl0MpUC3Hg1G9O2bdvWAjZJUTOGKN2i2yS069ssywTX0lq3ddNtPAAlZUgpCQksxigwlKwGWZatVqv5fJ6YxJpb6p1FURnDQFwVpajOMoPEV9udQnaZsHH8kz0i+BQ4CIoiVa4to1Ejxo27mGT3wk0eOhoBEZE2ZgMxMREIOg8A1ipmFl5jSglAMTOi3oDIw+H01rYUt3gLvcekxG2dVAFDiqL1YYyYQwmFVMA3w5CQeOgZIkIeAh4B1vTG71H+P2y1oXCAJWnDZwetENMWYr2Yn8HG/NZ7nyi6zJVluYFqtbFaaUXCT91AVSkl4AH7TUwIOsagIqFWRV6mlIJPRKyV7buQT6siL5fLtcgki4Pr8qxu6yaLpUKMkfq2ebx8bB4/OQGArvPCuOw7H2NkRmSgmFbLuUKjtS6KPKWktRU04T3gT+5QISVmBAQlporbm5fnvoVs5K9QAdHQeIUb/EhaLxWDNcZYUQyI8kxlpAIoY4zgZMSyf79PB4O3yryCuzECbnHb9xQStwMCEQHhaTQWN2LE8gU1UDmHjHOD/A6IXvowk/itqRdqVIpstNbO5/O6rmPcsIA3KgTDQMENAXXTkrZBLZNSCDAQB4hIgU4EWiujnQQczBiDcA4iKtSASTEzKgWM72loPP3WttfJzFshqi34DBs8SwGiKLXbgQ7AG9tAxQoAGJiQCVhphaLdYW3unMahxJLkyyBm0+9BsZtqBAK8R2qgoez/HvE8xsgpCd1bPtGoEFUfgyeuQx8YrLWJmGLKnIvAgZMSYWkQqBSdQ2dtMAaRI6WYklQphlfEUYtoOiSI0RM55RjIuXw222mfBQndu39ntofGmDx3k8mkHFVa68ViMR6PnbFN0whaYVATUeQEG2lIZXRZlqKjtFqttiNKnkkKMXAIKQl7RVYEUUgwxjBDURSiNTwspsoCQOZM5/sQgt7UA1JKIoUhfy7iTTQISaeQonMYZeopJmRjXRqstFm0FLXWgMSBQoyMg/pB3/edj1uxpJSS0SrGqDSMJxUiLpfLpmnu3Fm3bY8IiTlGr1Bbm/mYABRRypxVSvV9iIGttSElrXUIQxEP1CCOURTVsLCCQkRppdk2IQqrTt4fbVRopE+lrhsgqCZ5lmV902dZhmCIaD6fI6LJbF3Xs9ksL4vT87P5fG6tfemlFx88uN+2nage28wyJ5eVXV/HGOt69cILLwgZ2jp2WR5jyHNrc64mdrU+PTjY7fu+9zWDPjzaEZ89H9ZKKaWTNtD73jk7npREsSzLFP26XlIMIfRGaWeVMq7ITaAUiHJjEPVoXMbaO6eqKqfVeyvtdlHVgwvN1kF+eO8xxsSbNXZTClZGo0HUCQjXy5XJwOZFnhchDlmN9z6lous8IsbYI3rR/pMhFENiDV6cwYiMsX3vc8ytNn3fcBwKRb7rQ+ubZq1EXsr3zrkirxRj13UhiYUXR58UpB4DYgSAzOVa67IsLy4u+j4w+3Z97lx+cXHRNJ1YqClUilWRV8vl0mYmy7KXXnopUCyKYj6fn58dnz4+2dnZyUw2KkaG7Wg06mZDhxEHihBMrh/cub95ICoE0hlcOrx8cnKyXq12dnZcZqp8jJHPzs6iT1VV3bzy3OXLVxeLRaS+aZqjvSPnXNO11MciKzhCu+6rooCEGlQKXGSVD8FYgyleOrxECfo+cIIiG812duq6jn2sl3XhivFofH4+Pz85M8/Ci0aj0dFHP943/b179y4dHt2/93A2nj1386VHjx45w0qZlBIoXC6XIYTxaGqczfNysVhYm81mk7feeqvruoPdvdj748XFq6++WuVXANXFfHl+sbh//761dm9v77nnnkuMb771ZYEg7927d+vWrVE5ptFovV4LhVN2KIEL67oWabPxeAwAgtN1Xdd13UoxM1ptJpPJdLrTtfV8PjfG5Hl5cnJy7969Vz72sQcPHqzmizw/4pRu3rwRYv/zP/dzx48evnjzxmgy2ds7uHf/YSS2WXl4VC3Oz6vJdD4/TwwYKCvL/YOj2/cf33vwcDQaHezsp9hhCsqY+XzZNb1FPSqcgsSJxHfBGPPt3/7tWVYs65Rn5TrGvguZtZlRTdO/e/vdEMJ4PKZINnOymxtjIEUJtlJKTdNkWTGdjYuiUB8imSVTL3dWa12Nno39WatV0m279sSkNDMCk/wxIiKD1TqkBADe+65ptNYxtzFGcHo8HjMhJx6Px3me16v10cF+5712k/mz+DdPjo+vXr16eHDw5MmT3Z2d/f39lNJ6vZIyniywy+Uy+jSb7HRdl5gODw+VUo+PnxhtELCtu8loevPmzcePn4iqDBHNL+YphWvXrmUmU6i6pldaF3nVNE29boui8H3vve9ja5Te5AksYwO1yrKsrmvvO9H3FL+N0WgyHmNKQRxBtwatgv4Lqqs2un5bXqTWWlljtRFSdgiBEAThyq3TWk+qsXRqr5tV13WEYI0us3LYQSKJtwwHcS+06/XaOCsCTSkl1IqEzSBthkTGWqW1936xWFhrbZ6plNbrtTPaFTkITSakIacCktoDIkZKzND3PSNORqOyLELv27YFTo9OTl965WXfdmdPnozLgolT8G3bj8fjr7xz69GjJ5PJJCUWioMxNqz6Ms84JkSMTac1lm68ms99+wzsAAA4c5cvPffya6+tu7rpuovTtTVZ7Lu2bqo+HZUjs/b1Yln7DpUBgJ5Tk1LFjEQOALVJIAQOFQHYmg7YuGzV9yrhuKqaPp4+fJwoAnB+8NIzr+HRYjGvT22Ra61Xy8WNo6OJdU29Nsb20WtAm7mQGBGdNokpMomQNCcwxhBw51v0bpTnO1m26HpVaDDvhY6gkbXiD/Hn5Cw7v+iMM1prUOwpkVUIFhP4FBUQIgpBtShKSmwUFVmZAiEqAtc8q5jjtJuOpkVRreuaAiyXjdaaQSWC1bJTymeuQDQpwfGTDpA4xZi89CARMaA2Zuw7rUCVxaxOawCCCJxU0zRFUSiGsigOD/b7vl8vl+26RUSDpouN5J+iueGyrAeo6xoAtNbj0Sh4LyTovu/7ph3oCykZY6zJ+r4vCtHNZGszY2KWZUqZFFII0XPwsZcAAICvXLmyt7fXtl3XdWVZjqsKEX0kRMyzXCm1WK+E9j6ICaBosiMAUEwAoADFVQUABGuQ5ZS2juIbFxOh2vBGPY+IWKGYNkvEKxwLyYElEUgpIWjZjxQiMG8ZFVL+GSIZIqE5C7ggNnqywgyJHstsTRuYQD0NEPBTXYny5BUaQWpk7KWQYkxKaWO00H4FE6GBBaWZue9C3PgTFlW25RUBQJ7nuNFylN4LQCTm3ntJ0JhZa5MSx+iZBh1kUNC1PdGCORljQKm+C8ycWTuejRWak7ZV1hg0bdsWRYGIA4sFUp7nxqgQez2I1CelIKXQtitk2fscAIfoiUhUK60Vm0AFCvvQG6ND8Lm1RNz2bYzx3p1bN27cePz44aNHD3amu0rpzDqhCl69ehUAxuOxJHHT6VQplWWDxYvUFyV9kPSkD533UbRcFJosy5RSeW6IKMssc9q2iisNRVEAc/DeGEMpyUxlSNWo6Fu/v78vD/D555+/fft2lmWzyVSjMkrvznZeeO75Rft4o6ECbpR/+5/43dPnDj8w09/+e5/9u//Gn+1O35f4+WXzk//Rf/vFv/HTP/CT/4fq8INeDte+9eW7P/MG0PsWjr2P3fzUD/3WD3wTGH7k3/1Lv/SXfuwDXz754t2//p1/4uv/4Pd835//Q/gU65mZv+mHfuutn/rS2Rffr6qh1Gu/99tvftfHP3D65mT5N77rT5x+6f4HPn/jb/7srZ/44u/44R/8yG/7IDy9/+o1Nyn/Z7UKfOvv/vxn/tj3b/9ZHy+bJ89uzfk1jjs//Qb5oLP36vqPf/Htf8ELe/BP3wpNv9XUVkb/jr/6g3/+1f/1r/003Cj/HT/8Qx/mW/BrHN/2x//Vp/VAAKA9X/8P//qf/lrP88xDVCjlQEQJbIwxlEDmDrIQmXv5vjEmRgMAaqO/X6/nzGy1632QdUMBphADw3pdI2IM4eT4GBGzLHPOphCBWIHmNLAzJUOXxZA2ckZyMVtBS2kqUkp1Tae1rsbl4eHh+fmcYspdprXOsmw+nzMDEiOydNEJ6CG7GwAIoDzInSlNGyao2JnChhQsZU5pGZeNg4ikVxuJQyRJogMk2WIAQLwQnXPI4tGHzJASAzASi0orihA/EzAJVIYbfQV5ttuVnMQfDjWiGmQYYkxR2C3KoAIASKAG/olhHC4jpYTE1g7A6RZsxC0pExFAAQw7qdp0t+NQqR3Io3meA2ptDCImioJcp5RSkj4SJQBUCAksICBRCiE4bRBNDEMyJWlgaIPWNrPZet1orWMnOzgIC/7RoycSlmRlBj20Td+pztrM2RwAgFFrmxIZIlRK5XnBiHXbOeeIgCiNRqMXXzw6PT3nmCRJIFJN08H7wFlFxARJA0hjPiAgwaa0KxDDQHFPiRFZaaUZGEgGBz+FGT39qihEClFt5JJhsFO0EhMoNBKmKEACFObyFt2W189DeXxoKNgi4GljvwibXi3h7aah7VQGjRoUxAiUGd7c9nXCBs0RJuavPpgHnWJmSpFEtvill54/GxWPHj2cLx6YzEkDUdt38BQgzEjy9JQUfpkAtFKD6PhwAUohAIJKKXVd4wPohEwUUiAmQIUCP7FCrRi1wgEPAgkHnzIeHK5W4F3eiK8RKURSoBFFZAMUKmkQeO/2hx2RiBIlJRUto40yWrrqErHIgCRCAKXVdo3j97PFtug2DzprKKjfey8UGIAQDW8uzhgkpRfLiz5RVVXUt4BqaIJQHFICIBH6MAi5s3mWWau91xKUS9VLftRpk1IAIm2sMYaVil3TNM1kVMYYV039zPcbU/rsZ3+ZmcuyVEaLBI0U9AJvoU+tEWNIRCxVwRgjAW9F6wVEkO1BnqRGZa2txmNrbV3XiMJNwzwvtlh813UxUJFX21mTF87lmawjm4Uvbddla53wC6S2IUgxADRNI1XQyKTUkMxowNFoZJ3u+348njljQwjGaRHIG8+mE8Su9YJGKaUya2VrkXOORqMyL0yeVeul912WZQqwbXsAVZTWGNP7FpGFudZTjJEjDgVJ2RjG0xGRYD1ZH0PXdZC4LMuqqqRlcrOzDsrCgiMIMCrU7Nlslih0XTcajQ4O9owx84v1bDYzFo0xfewBi/Ek6/olqjAau8lkvFge54WaTGcSDU93xleuXPnyl9/ISvzIjRdv3343L1DrPM9zBjo9PZ3OZqg8tfVkNrn5/IuI2HY1wMT73jpKiVBhSoqInNN932W5rSqxRGdmBsYYebYzAYAQgnPGGQXAVeaMxURkrWub1Sivcp1bzWGwmVLb4rNsP+LnIJNFRvXQZBAjcxIB+vF4bIwLKRJFH+n09HRn/zkCv1qtnHOAuuu8NdC2IhFou9YPYoUmS4mBjULSCjim1Xwl44eQjXaZKQFAo8eIAAAKfRMZkgY7rsaIbJWdzWaTyWi9buq6F18EjWiMiyFx7PK8HCZ+RGuyq5eu13WdUprPl0Tzvg++7fK8LMuybXoEqJe1tXa1XOwf7HZd532vlKrrlWTmqYvegMnNdDRNIezOZqvFOs9zIYafPj4ZjUZd1zGrEENMrEGf9xd3bz0QdeZH9x4i8u5sZ2+yn1Iyyhp0hvWkmLxz6yvj8Ti2IXRBaz0qpymFGOPB7gGldPL4PHcut3nXdURYjScQAxMD4KVLB8BqsViklJCV1e7a5Wt3795tsVUM6+Vq9iyI8uL0fA3Hbdtb4+7de6ABF7Q4OTkTGt3Z+bysxmVZdl1XN105qgRMXK/XkQk0mMyJfHzvWwBo21be++tvvtHVzXg8nmXFpaMrZ6cXx2enXdN6751zN65d7/tARBTicrUoy5Jh6FbT2gn8OhqVUtWYTCZ17ay1T548adsaYn/j5vOXLl999Ojx3/k7fyelMJ2MUuKmDR997eP7hwc//dM/ffPFVyXDn0xGbVu/+/Zbb7z++qX9vXq5Gh8ceu+1dcpFneWvvPLKuCre+OXPH5+fTIzSChaxaduWCaejnT7ESMra4mK14hirsjw6OGwWqz7WRqUCwGjNiJPJeLa7F5giICtT5IYt1Kvmzp1HZ8vTkMKVK1dGo9H52dmorJw2hJGYwqYNXDgFKYWqqITZ8cxdQDTynDZABPrZkLRC7LoOWGkNqHRuDMToe6+1ZsAQo1bWak2UOCYFUBWFNejy4sZz15YxnDw+sdo+ePBgf39/PB4fHx/PZrOmbeBZEpSXDw73d/vF+UW7ronozp07BpW1NnSeKHVdZ6092j8YjUYppaqqAqW7d+/u7++XeTFk+4ztunlw935KKTPWVU5i9OVyUWRl7ELd9yGlPM/Hk2p3d7fv+y3yVddNE8jaLCXxA/RKKVSqrmsJW7rOA6e2bRGxXq2lYGaVlspo2rhvC2a04X28x/7bxpx936WUtDVotN6kB6wwhPDk5LjMi6Iq27YNlLQ1SqkEbLTugg8hSMMjAPjYp5S0VSkF5pRSzLLsyvUriKgYbJ4hokgAhhC6rguU1ssGDI7HY1GeYQDvfYgRlWEgAk4pqa0huEIikl1JYhutVJ5Z77kjuvfk5NrRUTWdrhYLheiUObs4vfvwETM/98Lzy+V6cXY2m+6+++67fd/vXz6YjcahbUZZ8eJLz3vf3b51C4CMufHMIefGo2XT/uN/8jNFWeZF5cPCgD85OYl1eOHKpWuTvcXDd5iTcjZ6Tvw+TTlUigESMwF2sW8geVRNIoN0eONau67vn50t6uZbv+XTn/qGb6SU/v5PP7sF+Nt+5x99+4v/n1c/8XFl9I/+6I/8rj/y73/hZ372H//4P9wpx9qolAIAxEikgMbUBc9ag83IRHBBEQZICRltrkGPx7herkGVyuWAOsWgtUpMISWbv/LMXwf1ks1ao5XROkGyRKCAEjhrFGixIgdgbUaoSs09U+o67DqfUtL2snrWsqxAa23HWTGb7jHCYlV776vRRGvLDEQErOq69p4ig9Y69L3WpusbpVSKzEzG8GrZjatqPB7v7c4oxOMnT0II84tuOp2CNsvl8vz8PMttCKFetzHGoqiYGUEBgAbNCvMs67swHc+0Qan5TadTrfWTJ4/Oz88VQ1mWly5dQkRRgjLGpBAvzua7u7suz5KlEGLXNgAggMJoNIrRn88viqLY29tvmub8/EJrPRqNmDClVGaOiELXJ6LkAxGhUSGGpmm0Qe2s0xYRCQb/qKGmq7TLhqAUEZGIFUr4neW5DDmJZMQSIDIhIQAkoBBZKcXAqFghIKMPYaOurvMsEwRBtEE2iRinlLSyRrvDwxkiHh8fZ3kuyIvADQL+Co5srQWwQ0MYUHpKLkNIzWKvBAApsjEoIRYzxxCYlLUWtSJgvSHfbAlVTyWKoFAhDq+JgOPQ/a3kWyjKPk8ZKqqNhDENjaq4BUGMtc7mWplEoJQhQCIg4oTs+0jkxY8EnBrnY0G6jbF93xpjGZKkGFprAE4x5kU+Kqvzs7lWzKRSGtDwiBERtTFEKQY/0Lzc4KQq/COXtAZQSj18eD8vjFGW2CcPwFFr7bL8/oN7o9Ho9OxkuVxKmuOyzFrrvS+KUgCpajyaTCaIOHVT46wQ80lkXlltdP8xbZ0hcbAjkmcl+L68r8w6APBdPwg+AgKAc+4Tn/jEUK3ceNFHCgcH+wDDkkUAz/3GT3xAMeOf/l/+x3/0R//as1cVgNM37v/po3/zjxz/tergfX0VTPwB+BgAimm+88LR+77G/GvJMRN9/i/+2IOffetpoWdEnL5wVO1UH/SVJrrxGz7m3l/kXj+c/5mr/9aHXXx3uvybv/3/9Jv/r//WN/2R94Hg+bT4F1QN/uce9H5aXnu8+PWcJMZu3lRHz24j+/Udj37xneTj0xaO1eWdf+uz/+e/9un/8MN8GvPd0b/5z/6L0eWdr/W3Ln3qhe/4T37P05+kEP/W7/yTzenqaz3VM48QgjSvKKVs5ratukojkYA6wxItjK4heVQWNy0gve9FO96HboNyJkkqu65TSoutDgxEST47OwshLJdLRMzz3NoMQEmrupT6JAiUxgXeyCWlMDjjSVnxo6+8tr+//yu/8isnJycCiXRdRyEhMQB47yPT1q9oGw0K3iIAdOL3CItSnBsaawYNhoF+J9cgKFPq32uD9mnDFwaFiBogJQ+EadMqvW3IQC3UwEHQUqp38kglXpVFGBEBhHnNAGA0ysYAAEoN4hVyF0nrDTpMClAUnLabCAIgasT3XOuk5WjY8kDJI+VNHVcOIkrAAOCciTEmCs45VCqmwAmzLJtMRhKEb52fZJ1XSuUud5lRSp7MhobLzEAxJG2w79uUAkGy1oppxJYXslwu5aU0Te+oSJCGsvPm+Xd9a9atAWVkrxsaGIkLl3Vdd+Xo0vd8z/fUdX379u3Pfe5zx8enZVlqjXGjwYCotDygzbOQrV3o2NKEHkKA9zruyRg7nU4RcTm/AKV292YppeViHWPcyjqgwvSU0xpvBhkASBsUSsF5s8FLoLP9vlDTaairDJjy9n2ACE0oBH6qDXBjcLG5zvf+CuE9nTLeOAQCvEeIfuYhA0Z2fQVKhmwIoSzLGzduWJdJGjOMM6XERE6wKLkYZwxzUtrqjZXzlgYLAJCIARRqABSd1ugDQYKhMRGUUgq0MlJsT7C19hoo97i9wfeegcDrAAqHOgkhmM2klY0fh6clsBmQaOWIE/HgjOG01kAcKYmMifyR/DlsOEqbEs1Tk029j4Utl6QFgR+aJvymsZYCRJ+oDd6nyAhWWVQKmXvvW0ymsCkNrG+txfA9hi4SJastK2AARiBgqw1I324iRpCFNS9KlYIrct+2b7z55evPou/43vvYyKQFhdpg23nn3Gq16vueYpJ7k/dunBOigSyyzUY0cGdnZ7FYPH78WGs9mUxg08Vw+erVxWJxcXEhqIdgcDwYLgEl2MBAg6t1XaMxJsQ+bvxY9KDyE5RSdd3AUMmMLMUu4BCC0NC01j5FWXpu3rw5HVcPHz48Pz+fTqcAcHLyZHd3t6qqPM9XTS3bg7NRWMxFUTSbwprw4ER+x6/Wee5iJKIeGbyPCg1qCCEysw8d0ZoZFRsApdBoTTF6qUnO53OtlTHm/Pzcp6iUssqIRJFcZNu261VTFEWW2bbpAcBlRpRD8jyfjsfn5+dNW1dVNSoLIkKG0diNJxnqvOu6LFc7uzs7++Pz89OjSzNjNBGdn529/OoNedRFUVjner+8fvOwLHOl8NWPPr9h2fRaqcPLU1kM8qLc2a1i7JhVnltACjFoYwBJMZdVbow0f403y1eq68YYY0AhYgoRFFptqrwwGlerpVJ8eLjfB9/U3XhcObTTshpPqpOLXhZS3BTGtl4QAJBlWZZlnKDrOmlLF1NBikmgIgBMIUYKLrenp2ev6hetzear+XK5LouR1jokDyk5Y1CpvHDGGEkYm6ZNKfm2E0QyzzNZPdqu1SVq7TimwpUpxBiJE1RFJV+w2gFAVuSzyY4xpqnnzmTMXK+bEIJzeZkXoghstBNoaTweJ1oDQFVVL7300vHxKYW4XjcxxsODS6cnJ6v1WuQR9/b2QgjUJGY6PT2NMaYQV6vVxcnF4eFhrWpOBKA4DtXD8XhcluXyYmnQCG3fGLVuuscPnzx49Nj3lJnMaVfmlbVag14vV9EH5/LV8vjdt29XVRXJR58ODw997CnB/bsPiiKTd3rj2rXJePbwwQOjXGbU/VvvdnW3v79/49qNJ0+enByfZ1nGDEBQr+pb7747Lqt6uWpW60uXLl0+PHqm1Ve9arr6eDqd5nm5vFi2IYSwqKrqueeeOz4+zrJMGZ2XBSPEOvUxLNYrrfUnvv7rdnd31+tlXddZnj96/KDv+2/91m+9fPny3/uffnQymXCiq1evLs4vvvzlLx8fH0cmye52prOmaUIIB7t7bds6547PjkPoEStj1NHR4Xw+Pzs7KYpib29vOT9fLpYohmx9yymUuctccX4+H004EmlnJ9WkLEvfdpPJ7Hu/77f8/M///NXr14R29JGXXw6vv/MTP/YPnVI6JUOkI12cnbchrn3oYpp389li/pU7t+p6/S99z/ec3L8zG1Vfvv2Vxyfz2XR65foLjx4fM8XV4vTa1Rv1arFerqq8hNarLu5MJzY1sV2ez5ff8LGv27t6pSYyrkgBAsH9u08oiPL7zDgjMyilFIIHGNR7Zf2XcWM2Jr0hBBHt+dVHlmda26ZpEnDXP5vqslqtxjFlWaaz3BMn38fgYySbWSVV+ZQQMfQeFY+rUVlkoWtTSu+++y7lWdv3sV3aLF+v17PJtCzL09NTMFfts4wJlTHz+VwpNZvNpEvR5DkzXzo8unXrVoppMpr0fX/vzr3lcnnt2rUr164uLxZlVuzv7p+fnu/t7u/s7Lz77rvr5QpRW0vaGkR02ozLUd90nKioyrHV3vt63SJ2BAwAVVExc5mVq9Wq6zrmAbupqkq4cmVZihTg2dkZExKz73qxRKdEkMg6nVsXYwTisiiUUuJzkttBDhUREFiMoNPGGSwBZ0XunCvLclRWx48ez+fzi4uL0WgUKGittTXK6Nj5qqqMUQC6jwHx/8vdn0bbll3nYdhc7e5Of27fvK5eFVBVAKoAEABJsBEpMiIpthYtSvQQNSJFpjPiSLZkxbEiZyixLXloxJZHPBxZoYeihlZDxZHYOJYTEQQBNgKBQgGFal//7nu3P/05u1vNnPmxzjn1CniQQIlyZK3xfty73z777rObteb85je/j0VRpKJIM+a9D1x+pVSq1TopClH4bDFfLqboK1N79KPxmAsRRRF/UueNcc6CSAgPzSJMLAGOjY2NLMs4Z/l8URaF1vL6latJKi9GYy5EJLgDbqrS1fVwOCqK4ubNm1xH8/KCCdHd6Pb6ncl4NpnPxuNxItSsmuaTWavXRGd393fmtvmUhwBgc2//81/8+e/93t99/Zlrf+Nv/C0g4RyCh1678bEPvMQrOzq7qJ2lKKqqknEpkBTjYD1jQghF5JmQltByhlqxSHfa7dPxuJ1F46rw3XbS3/y9/8s/8sz167PJ9Ig/vv/aU87hv3/nB0H94DtvAwDA3r/9Z/4eAHw3vPhnv5p0908c9eqHrb3fzscAtjb+L1sb39CeDgEYLO2w06+jDAIAAEgkQDjrgRMXItFJEjcRoCqt9+QcEjLvmRSxd8I5U5o6lJak1IH2ZIxJkthjzYUicJ1eY2vruUcPHlauvLy87He6RNRut7NGUpeVt8jimJBVdQXAmeCBpqCk4skSFU2ShC/lfQkAQtucFpIxhgBBB0YpVSzK6XRelnWzuQhiC97bYNZnaqeU1zre3zssq/z09DTLsn6/Px6PZ5N5o9HQSs3n88ViYayN47iRZsSgsjUCMQGcc/ToyD1ZHGKrnqqqKCtTh7mUMaa4cCv68Lp3c3ltEYGBEALRIVLAiGFFPDL10v5dLBUkvDE+iG+GzobAwOJMcs4FMGv8wcHB/t7ha6+9FnQkACDss07mQ7YIAOHqhdhSrrSnGWNSKO998L8NzbPeuZB9CSWehIattYyRWJmvrCHR0Hfr0VnjU5GGj7CVWvQ6m8Mnapx8ZW5EK5SHiAsR5CJZQG2slQCAHoVQjKFFGoyGkgspVVBAUkmTkAnJWq3WfBpsVCmwTAiZtZbxZSxN6KxnnMBbTsFwkIEQgjNGK1tFRCzzOoADBF4IkaRRURQAQQBEMECttbOWMdJakrdxrAMIkySRtTYw94wxCDSajEJ/yaOzY6VUmmStVktyvuzQd77ZbIfrQMiSJAGGUqoojgMYHqZbzoVzrtVq5HkZGlPCIxTuL5EP3LLgqdVoNFZQAAm2ZOKH0d7rieg9IhiPf/3tfwLWvB4/93v/k5/6tf9E6Hc/++jX3/ra3fa+5X1PEmAJ6ef/0H/xT7X+u/zKw1/8N/7SD/7sv/NuFqzEzsdvHn32zSd341r2n3vPtGiL6r9+/n/7Tz35T/8f//Zzv++bW0/oh9z7/375X7RV4L+0Y/rg4rW/+qmP/8kfenJj9+bOH3/8M3f/4auf+89+fvDGo2pSAEDcSTeeP/jEn/7RZ77vwzL5bUPeupX+/l/4D57cUk/yL/03/+joV9/45/wK69FuthYxhPK2UoqLd4mx6/kqAGuB/RamWb4SuQ1RUKPRiGTi0dql3zKEJUZrHfzYYIXASilCCTAUinq9XlhcguCeC359qx4Rs7AB1lRKNbNWEM8JOzx48ODy8jI4soSPzyczXLZlSyKq8iJkiOFMnHNh8k/TNITooRAYGiaCzFFYOLTQYee11SEihhYKD36NkwRcBZ5ACEMdNCwTy+maAAEDJc47DHhiIF2GBQIdAWcB4+GcMyaWXnEAQiyrhs45vtK4EEIFSJkRAyRAwiD6wFnAPINuw7ociSv+MizFOpYGcYjIVooOazZe0OMN6yMAcCG4YDoKXfXgnGGMgtZ2SIeFUEnSAQBbO2uXSDpjQMicc0Ae0TlfK6UIoKqKrNlwzngK6iKgpCBCLphUgog4V+jQO4sMQkM0IEMELpYEc7nSV6qUUt671fMkHz16NJlM7t+/X1VVq9UIjxeABABE4ktNaxZYzLQCjMOymiRxMFKMongVKFAURaHX5r41ZVk2Gg1jzGg4sdYqpcPRvHdElGVZMIKw1mrGKjTrC7pepCGw7TwiQlDwWD03S1cxuXKBDPUEWDkmMwIPPggUryOAZYhDSzXnECFxwUPtYh2O8NUAAM6ebnQrOA98TymlFjp3HhEfPHhwenS/1+v2+huOsCxLb4xSygUoljEkJMTQPx5iryWq6JZG9uGLW+8Zl1JIQuE9gnEcSWttXc0kA8EZAw4slNY55wHHJHg3tgvPJ7zryBfqAeHqMSkZIgb4WAoZttOKyP0uJMy58GwdYAWjjMALMFVNRIAEwJRaRoRxHKuVixEs+fzLkvX6eiqlxCpV4zxQhXh4FJdBKjAheGX9aDZxBFESO+diFQ3y2bKbT0mHiERKCMBwYREtOvLGmKTViKLImxrRL8Fuj5wjMsaJPCEnHqVJxGJEe+vuXeAHT72/URxLTAFAx5FUoeeCrLUUZjEViOQQ5v04TUPLRijIhykssFMZYyHr5pwTYZiCg39aCDcDFyA87XVdO4trHISWHHwmBPfeW+NDx0B4XNcVGljRBMIPdWXLslhv9N5b9EHR9erVQ1NVo9GIMdZoNIypiqIoioKfiU6nY9EnSSKlDJyX8GLi6tUIM4NzzlR17XE4NIIt54FYJ6U1jIUGAhc8W5wxwHkkIwd1WJOstVAicPLeZVnGVm6cApYrSnihFotFqBwGxDxUaK21xSJnbZgDjMdjjzYAHNbaPM/jTCapjJPOyenjZrstlUCqG80IEa0tGWMbm404ASIGTGgNjhyAk5JxgWW54JynaWzMUm5PR6HOhFGkra2EZOSwKitg1MhSREfopJQMEH3QYCKlVBBsUlICoHdMC2nRKyG998AwihJjVVVVSrDBYOYJ+61+LKJG1tje3Dy/f0RP6NvAUiKG1uhGUHUPi4RSigkgYggMlpYI6L1XkTTGCCnm83nWTMIMwxhDBM6I8ZBmQOl9FMXT6VwIidY56xFB61hKaa0LELYQcjGdkwNjjDNWCq2VChTFJImcc2iRMYaMjUaTyWSi5NIDrdlURBSpuJG1hsPhbLpwzBhjsiwrimo0Gk2n48PDw/fdfIYhWywWvd7GeDyWoU8gTFzey0guFgsVScbAeKOU0jLqdyNrrTe21W60211O8PjoeH93t67ru3fvAkAo5zhja1/FacKI8ryMVKwkTCbT2WQWxXqrv7EoK3QeLda2SqOUk0GLHr2IgwgAL/M5eHz2xrP379+/HF5+6eLLV65caTbai8UCkWxtOfCiKG/fvTsdT6rK7O/vT0bji4uL7e1NcDSfzwFpNB4xgiS7XtZfO7WAqartjW0ppSmr7e3t2Wx2dnb+wz/8I61W62d/9meNsfv7e5ejYVVVURQtFosQMB0dHd27d885E4jwSgmlVFEUt269HTRntdbDy8FwPNrZ2Wm324uyCE5xRVForc+Oz47uH6Vx0mw2kyQJmuN5nl9eXo7Hw2Yzk1KOBhfW2ihS9+7dIaJ+v7+3t+ucm85LR2itRaB2p5umiTVV2mwZY37mZ37mcjT82Mc/8fKHP7y1u/2lL33pl3/lN9AzGatOo0nWlfPcQ5F0OkrB2XASNZvv3L2Xz2c7m53LyWhjdyeTIjlPrl1tLwrM4qzf3XjzrdcHF8e7O1sf/OAHp6NxOVtsdLoRNLfbicuH904eWmufeeYZIFaWdUl8PHfD81mskzRrLPJpboqgTCe5qosytGOv8/wQlcLKYQMRQy39qatA2BmtUXH0ZB775FBSKBaF1cE/sU+Yt4UQgfUA5JXQjUZjKYQquHO1EMne3t58MmNMzOfzYpErwRCRafPUsCNfzMlNu93udDpZLPJGoxGaE0ej0XA4DN7TdVleXFxwzq21+Xwp7pnneaPR2N/bO7+40FoPh+MlE2R1KSRX6LzWuljkcRwnjWQ8nXLOQ1/UPF8oIcn74KDNCN0KEc7LIgRgeZ6HlStIAVKGaZrKpYXLUtQvgEeLxSJJkizLRqNRmPMBlooZgSyz5LCAAMHLugpRa6Azt1qtUPj03hMDZ1Gg8N5NJpMA1qxjyLBmTSYTv1IYZIxZbwGAcW6cNXbZHR+OFlpBEVBFmhgUVck594Se0FsTaoiR1GVZeEKwy3PmnE2n0/l8JhgXnOezqSmr5569mil5MRxpzjRjUggZ6e2dvcHwoqhKmLJuvzebTGeL+bUrV4HzST4P+uw73W4URVVVhUZ1/DqtdWcXF9b6k5OT0/Oz+/fPuq2MzBSNT4g/vv9wq9U3dS2UrJzlkbLGCAYCwdVOCyIuLHrGWGnqeV3F3V5ze/Pe+enIFqP7d/M858Rf+MgnCiX/93/+z3/0ox8txdMZ1v/qDUKM41jHCQg+Gc8ImDW2KGvnUAhlaseEAOLO+MJUBJZz8FiDgLyao+dKRQJYbXIi5r1ghNNJsbO59fwLN+89vDtfTMsoDs9nWDiWmc7yKVqpk3uf5zkTIuSuW1tbOpK0bArkANBoNBIdhVQfcdnlqmV07dq109PTgClEUVTXlksRUh7nHDCMomg2nztv9vf3q9KgoxqXysKz2QwApBBSSsl5WdeAqIQEjxiiCGDrnGid/Xnvl+1oqwg/dKEpLhC4tUurRlixXkLIGuCPr4p2UIhAm1qXgkJXsl9pKwelIM44ITHG8jwXQgyHw/XBpRC0kodmK605IUSYr2glR7a+19576+r1FwkLw3o2CKznJElCp3NwMURE62q38iUKxKHwknIuQh1XShnctAKcscIdljKj4fSiKJrMF4qLKIqUUs7YkDhb7xDBOfR+CaDDkjhDIoi6eM8Y50wGy+UgRWI9emuISEXRGpfXkRaCBeavMY4IEP1S9Z7xsDSsiwSccyF0ePbQ+ZCzhIC83W53Wu3pdG5sLblgnGxdlmUJXAdgaA0Ghacu3NBZvmg2m1pr4IxJRpyW7SPWNpvNi4vB+qloNBrB5oSI8nzebDb7/X44sfDMC8EkFypZWiwG1AkREWutYwAI+ZQMN4QzoiUbPYxnfuSb0o13Scr1NP+1/+jngPOv5Sl/1RBaVtPiqwjOXzW4ls//2Dc/uWV89+z4N279k48cxqPfuDW6fdJ/7l1N4a+1sOte29p88fDJT335//Er3xBqzLmZ5QBPq1f/Cxqcc/megCXbanH52/Yt5FpG7ffITK97pv95zu03/sJ/Z039rf/+72NPPBsy0e/7sU9c/V0veuvL0QIYZe0maJH0Gv+kg0n19Z6fH/grP93Ye881n5+Mf/U//Dv/vOf/VSfAeQhmaGkav+QpruHOEJglSRImQER01q2bCSC8RI4FXKKuq1DFIaJutzubzcPMEDqhGYPgbh24z8FRkK9Iq2GullIzxqrKBAtixliSZGG1Ctiutfby8vLi4iKO4/CmB+5LFEUBxeacd1ttDxT+d22Ut8avxKpff937G4jbYV2z1uZFHqgPQRSCKKBSClYYLgSO7ErJza48nAJWu3TG8mF+VkIoIL8iv1LYTQiBHrx1QEFahEKZM9AHjamk1Et2IK2lBUisnWm5BHCACEQQJE8Dn3Ul6ht68sIHw6KxVgSipYvZe8ivQZdXiKU9SbLipHtvrUWtJVtJmnS73W63a4yJokQpdXExCNeQA7fWMgiVWkvktVQEuLOza62N08haa5xpNBpEVBZFUHBarYZL4AsF2toGDN9aSwwlV9KVVmWKGFS+JoYsCGWyeDGYDpPL44uT+WJq0QNJ9Io859ITIDqLAGmsnLPkKVwgdBiocUopITkggtacQZbEiNhud9rt9ng4ms/n5aIw3p0cn1trORdxnKB1nCMRIWdSKr6yJ+acvPeSSe/JrUznOF8GKNZaxgQHJph03gNwH5R5OUNET8HrjwdLBMYYJzA+xA2BnotSSgzKH+H20rIWJBggGfTAOADDOEniOCZHYZ1eKsjwp88+cZYJl1W2ipPEGoOCCuc//rFvzkuTz8eNRlXXdWVqoXSSZNqbxWJBHmMdAQpnLEOGHoAEEfOeGBeB3x5ouUwnpjINoTiJ2jvnHeMcyQkpGScIahpcMsYAWcCpATjCMgACLkKfgrdOSrnmMjOxKh4gU0ILIVSAQT0iIpOcIcITQsO00lMjxtAiClAqStPUEyEQZwwZMcacC07Qigi8R8Y4EncWQ4dUCBAB0Xu3jm8k52ztvUBMEwPPPGekwBKVWNe2BsBUcAKUsSYlvWW5rYlIIAMOAlEAtOI40REQOvRIMDOmE2kHwEO0R8Gj0vvKx0oJBI+WETrDWhsbd+/enTpq9Daffn+1Mihi0kJw77wUwpMjBwxEeJmDgIwQQmnNBSDzZVUiovG19DLN0qqqFotFqDSGZkwuhCdijEsSlfOSR1oldV1yLhgAMO+MjbROo1hKHXrkvcc0Tdvd1ng4YsRDvVEJzTkn54NFSaiNCS44ByIk8p60AMYZSg3eOSUwkToV4rd+4zcRnRI8TpOkkQwfD1FKIYTx1WA2iaKoNo5zTh6sdYpLxSKSxJUM1R7vDHEGWinvhJKcCWMMY6I0JIQCxohQ60hr3Wg0RqMREalEzquZAk1E5BhwGUWqImMrFkftiKiqKhVHSolOb6M2pfcuaaQBwI1EpLVG7xlgv9/fPdhRkbSuem7vWl0VRMjiamenZWvlfCVVZYzZ2W0zxiwaIGLgkYyKIEkSROeoSJI4zlIiAiYZ01VVOVsy7uNEZ40EcufJpM3IOZfG2Xg8LhZ1r93zlpqpUETee1MZrTXjqKQCAOJQVaVSqihqznmn01FKlGUZWO4CQBDXSiD62hqlYy70+cnQGUQPJXcLXy8KWzAUjHvrtNbovFKKkATjuCLLWGsRnXOGvIuU4sQYVYjgjAUuAAEQvMU40pwJUxOr9bhcIIJONAdn0THMnLW2tI1GQzrI5wubFxYglAoKU0shNtrds7MLYyxp1mh1jDbKC/LMOx8rjRZjUL6w80UNq7bWwL/OsqzRSZqqKYQYj8fGuXajUc7zs4ePnMPa2SRJyHjPMOKqGTcjHp2djura5/NKStdptRFdo5HO51Md8atXD4uiGAwGqWjU1jZVYzKZqEJFUbS1tVXMF524E7N4kS+mp7PNZNMZbyb2YP+KN378eBaSOtTs8PDw2SvP3blzJ43itfkytyyf10mSSKECbrW7u19V1fDyYqO1MRgMyrLkAhQX+cX0fQfPNHly/+6Deli2eMOMizwvD3t7qUoHl8NQBrhx4+b25vbZvccfffHlj370o5/5zGfGo5ExpppXqq9SFY+eBjcD0MZGryzLui7LMm82s+7G+7/0lVfv378PAFmajqajqqq63e5oNEJ0jFFZ5mWZp2lKRGWZb25u3rh5c3d///79++fn58AQyG71NjUnRr7RaPR7m43aGGPa7S4RDS8usywBssbMhYg/9P4Xj4+PT05OlFJ1XpTzopk2BQidJF77uq43N3ZDiNlsdE9Pz1WzsdXbuHx8qi05W+V5qWIxrxcgxcn4nLPo6Hik5MaD+5NPf+YLr3759fbO7vtu3sQ4jbK00ciiKIqy9P7xSXAP03EcyVhiPB1WUMLrjx8T8Cs3rhxca37hS19Os2an29/Z3b0Yjrd3d9qbvU43KSdj6Wmez6rRoi7l9/7Un/r2f/0n792/uJjWjW6cxNlGX5Zl/vjiKETbVV6TQ8ZrgbWEqplmi/m0qHOphUNkSiNXDjlXGtE5Xs2LyVPv02KeNxKnuZAgFTyd8FJzQbaSTHqPHnFWlzlaEWuGXnAS5BiQc04QtLMGEeW2crGKVSc/nW2kWavbffG5582i+syvfZZiWREIKeKvY0zUarQePZzWZd1qtaJuBAB5njebzfv37xNgnERC8iiNr17Zcc5t9Nqmync3+3meT4eX167d2Oz1jo+O0iTRO0pxcXFxwRjTUjlHiFZKWbl6vpgOvWeMxXHsPUkpkyzlnJe+QEQkH0URIwSAtYEBAAdkxpgsSSVIkCC5zLJo3ZAoGMRJVNaVWBoJ8sBGUXEk5dJGPNg8S51674kDSMWWhAA9ngwlFyZJoiiqAVyJQopG0gqATl3X3jHGeFV7EeiJDIUQk/mCwAcdp3mZdzrt2psQ1fCV73SURCFx0rFORBK60wLgW7ulK3ocR7PheD6bpGkaNbXWUajgX15eaq0jmY3HEy0VCEHECeKipFu3Ht+4LptZ0t7s+7rw5JBAac5VPJkXrV5/d2e3yCtbu9dff9Mb2231Sls6LebcEoGdF7EUMXDxdSoco0cPuHOvfOErezsHVzf3ZrPZ5u5mv5PJ88H7tnvw6LLlceK8lFCDLXTtsSlAcy4IsbKGGFJeg/MKGRb12cPjosiZt4y5JohhPUfiQ28fC/zEszfPX/1tOz79z3QIqSxxZ7xxrnTcGFdXjjGBJJ1D78EHn17BwVecMSJALy16wogIrfUWICJBlnIot/tdcLa4nGJU9JO0oXVpSx7FC1uXVRXLqNtoWmuBS4ceGQIAI8+RmwpnzpOCVrttweWTBboggR1zJZjjlbPee84FB2i3u1VV5fl8u7HV6bXLskyzDBGF4t47yZPd3d3xZDibzbx1/U5Xa13mZVnWnAsgMRvnQggtEsZYXZdZJxOaM8ak1o9PjrmSSZISgCBA55EHXpgSQhhnpdS9bromVThvramllBAMPz1xyXlo7g4osCWlFGPvcik4MEDw3gsQki+bWYUWARRYzAuVKCklIYGDkE6HJkIguvvOraIoPGKapoKJYDLp0NqVwnKwk2KchGQKNHsCy17SrokTMqllWZYoxBqR4ZyDd0IIQYhBfFypIMFszdJ0CnFJukLPAIAzywUH8s4uMYJgfiiFCIqNwYIFEXUUZVmWVyVjjDgRWK7I+QqC+RM4ssgQjDOMMb/y/iGGgXWBiFwQSZwUYyKaDaZSyqU/DvpAf5FSKlQ2tzKmRtwpMFBPOCIqrYlYqFKHMqQSSic6rytEl8SJ85aDQO9sbZpZ49qV64yxsqzzPFdCAngPZHxNUHVanYxHQf2fA5cqQXKS6TiGTqcxmoyAvNax9/OiqCQljDEhYLGYEmCzldraSMYlOOZoMS7AOyIazydmOvLeA2OdTkcpxZiohGg0GpxL6z0AE0paRK21jiLrHRFJIThyFjqGhRJyWVTgWr7449/65Au+OJ2cfO72PxVrBgBv3D91t80XDrrP7z+55fYvfH764OKfenAAmDy4uPOLr/T/1Lsf33h+f/OFw/Mv3V9vef7f+I74CeizHC1e/5u/+g1pYiCu/Q//JxqIN3/oo09uSDbbca/x9dQqvt648sn3i+g9sPX2h68fffYpvPLf1rkVg/mv/gd/25f+O/5PP/FV/xl3GwDwtVLd60FPWBcCwLM/+NFP/em/9rW7vfAT3/rCH/i2J7e40vz8T/7nXEutvzqWE/o935EJrpvvkUxxlXl6XYEFki0IIYTgnLhzzjgLADyIcDrHQQBSoANyYFGUeultbd4VmqgrQybUvYIaRlVVW1tbYin7TiGE5pwHAlmA1IJUTqvVGgwGg8FAax24GqF2pbUWwEiREGKrt2G8m83mRVFYg1JEAph1lqNQXM5mM1vXiJ6xZd+Jcy5KE71qzpZSgsdmmgW0lHGOQDqS6AQiBoyDa17ZKrD0QkkynIBkXOqIkDl0xi8FdTnnDIiApOACCPlyEQkTOCdwwJCAieUUXZYl4pIxyTmXIjT6c+DEgHvngJEU6kmgX4sEABBAcEVEoSOQcw6w7GshIsY4MmAELDicAQOPXAhYGeeylQ8hY4xzj4yFylrgIAfhC+8dcSaEYEhMcOcD1IvG1lyEBhqmtVzi3ZzVVb0o8iRL53lRGWuNV0IJqZVitrKcSa1UWZbEuIp0aWolRX+zt72zNRhdjsfDfntbKTUbz6azpZk2Bx7HsUh1eZkDeccNIi/rWiAjtMCBSyE3NjbG0xEKyrK0ro3m0Gw3TF43Go35fNpqNWaLKee8LGoBEoiE5MGWLhBY6rq2dql9kSaZXxm7IS27vYKvl12av/Pz8/OlVgbx8XjcbrcRsSgK8Mg5j+PYWxsnaZIkZVnmeRl4JbRiNIeZcn2/YekdT4ETBE+YC6/fEABQy0Ybkoyjw0CTCUaNZVkGB8Jggbgu1AdUFQDYip4zm83QLvHu8PWz7OmyO6Y2i2JuvKnyggF441555ZVOmhwcHJyf+NBYGs4cgCeRFEJ4JO89C9kOY9ZataL0slV72nK6MUtktqoqUxsBXARagRDAEFaVH3hXuDxkWcsf1vPjurlsNVlBsBWUQvInpS2e4K3DUo1kCTeHwr/iIqjoKiGFEM4Y7z3S8u6sT4BWfWq4UkohWAPc79FnXN/B5WcZeEJCQAbG2XVPBGMMhDToa+eY4J6wpDqRbUcVcHZ4eNhrNRezuTN1WdflSoVZSmlrR0SMs6oqBWNCCmTAGFhjgbM4TY+Pj998+y0pJRNPX78RaD6fr1sIrbVJkji/vFlr4ka4xc5TwiA4lgSA3lrbarVCv3MgIyMuf7DOIpIQQmnpvUUGHj2XIEgk7dhUtQdME70oC8659zYvi42tPnAGnADYOmMXWi3vLFEURVGkjLPG1EjovWWMay2RHGOUpql19a27t5xzP/3TPz0YXPz8L/6CMWZe5JzzOIqptnVdcUaRiuvSaClFcD50JkpiInTOAGecAQExRMaIAwEhZwCAkVJCCCmFcw7ISaHRmziSCFRWCyJE4ZUWRZErwVq9rpsMnSvrRaG1BkFIlZCp0pwLPZ3ljHutRJKodqOJiGmcTOeTdjtLGmlpFpnOer02F2DrynljXMUloUfjDNfSOee8i+PYeie1EhTaMwXnUVnmznmlGGOMyEupOGOxjmSacc5tXcU6cugF541WmzymcYICJWeMyclw0uv1FvWi3WhJKYu68t55QqVUu9EuioWUsqqqi4tBHMdCyIBiVFVJDJjgxpiyrABJSlnX1jsqy9JWVgh5+vhEa41AQsnQlh7uaZIkWBZhUpVSVkVpqjqc+tZGe5aXzWZLqWoynidJhnW9mE6qqkgbSdqMB4OBjmVpC6RIKAg2wVVVMYLZZM45j5VOk4aUspFlk/FMySjPy7t37ydJonXMGLNVHUcRIl6/du3x48d1XQtgjpARi1RcVVWr2XHWCs7ruvbOzSbzqqiBs/F4XFUVeAGcJUk2Ho9jpZvpMmhGKTvb21EUDc4u4jiKpDo/P8+ThDHa3Ny8ef3Gw4cPyaBmKlXJeDhqNpumKNFY76HVak2nU/D4+PHjy8vLNE1brdbbb78dJpOz8xNCJqUMRCHORRzHo8tBM82azWae51VVHezte++ropyOJ61Ou9frnJyclGWZZZne3Q0arNbazc5mv9u+d++e1jqKona7ba195513OOd1XbdaLa11KCMppebzabnIoyg6OTlZLBZBqbOu6/BH8/IUntYNf3C4/847/304spSy1WqdnJ89fvy40+m0Wi1ErKqq0+ns7e3NZrPhcJgkSfD4/dCHPqS1vnPnVqvVevjwYZZlBwcHURRdDs6r0owms16nVxRVmjQcwXg8Pjk+3d3dbbVaIPh8Nt3d2W61GkrKBw8enJ2dDYfDK1eubGxs1HVt6jJOdL/fj+P4wYMHgQE9m82uXr06mUzuPj6yeS65Orh+eHZy+ujxw2a7sbWzc+fe3W/+2Cd/8if/SHdzX6jOK1+81ej10k53c29n78pBuZhe293d3dmezSZlbXrWdvb2Sajtnb1bt24NT08PtrbrIr/36PjjH3l5d3d3XlWHh4dHj473Dva77dbtW28XedXe2Tg7HigQIHij0T15fPYd3/N9P/aHfxJraHQ6Ja9L52Vt87LgnO3uHVhbA/C6VR4/fjwrci4kCMmkStIGcialcOgFE94TB8wnM+uqXq+X6af3MHnnJBdScg5A+HTTYGsscOEQhdTGuKIoSSnFBSxBVb6Yz4UQvW633W5XzrrazKt8VheIeHJywojK4YR52tnZqtAZ7xiS/DrMoGar2ev1tNZB2yFJkm63G0WR8/bo6KgoCmtrKWWaJFrrRT6TQhdF0Wg0kMHl5WVtTBzHk/nsAx/44P7O7qc//WlE5MAsgbW2KBcAEKj0oROTh7QGGCOMdSSlrGxlrSXv0jSFVU+ilBpXLrWBRehMlaMjokajgYhES8JgeFtDkhM6V67dvMYYu337dl3XUZSEKMg5s+7gYYy1W900jcN7F1Kjk5MTY0zQgwo4kV+FHACAK0llU5s4TYio2WwGuCrQfwIFJihHrT0MOedaR1KqqqrjOHHO52XBGEvTNIljU5mVTIEPVPSQmaRp6YyVXOR5HhqVtNbeszt37mz0OlpwjlYwSCJZlrWMdLvdritz585dZ20Sx/Vstr2xKVR8dPdRb6N3/+jRdqfTbTU8Y46LR2dfD7wQcZyWs/yNN955381nX/6mjz08uqtJXts+1JZsZStLFoCYEgxioBmQ9Z4UY5xbXy8r1IyDYnlVWyXaWdpifNmHy5h0uN3q/uk/8e++eev2l1/9DJc//XVO41+pYdzA+ooYtw6qyhAyzpn3iIie0DqLgY2xetICYWrVhQZExJCQQRxHjJOp6367wQF98KwTwBmry8qhT5OEQ3BU84jeOseVtNZqyaWUSSa8wyiKGEFQ6hSSMSTO+c2bNzudzu3bt+uyAgLvPXLPge3s7Mxms8Vi0e12I6Wttc5YLRUALBYLIlqzuhaLxWw2i+JUKVWWhRLLBCHPcym5c25eFDpWWRRtb29XQYbIe7bSZAsxubU2NJUqpUKPQtABE0K12604jpWOT05OqsoIyYQQVV0HSCIs0GtRo3X2srZyYSvJC2e8FKLVDWB6HqANIqqqinMeAg+lVCOKPGI4k6KuQvIfaR1ef+89ByEYJ4Kl2NkTXkxsJf2HK6G/AF5wzkPvHfFlUyyutDtXGdKyzwwAEJZ9qyGDW2c3bN26F1jD5KRSgkkin+dzsVLJQw+IJDgLZDRyHoAHNMGRD/03aZrqWI1Go9ClFKad8FcAydZmSXhEQoAoigBgUS6898GGBxlqHYf4oSyrMINFacQlBwId6aIoyAPnS5HMcH3SNNVaHx09UCpacgnRhi9FbMkD41LEcep9gDmUtRYgdPtBHKXOOSKGSLNiEculRqWSHADKfBHHMSPyaJXkAkhozRgr8nx51ySrTRk0BhuNBufw8OEjIQRw2Ww2oySZeA8AaaOZZZlz4GqXpqmKAmDkAnDw3I9+fPMDV598wQdvPapmvzPFM92Iv/nf/9fSJ+BgZ9zxb73zjR/h+HN3fG3X6GrcbXzz/+5H/od/6/8eLOy67z986ae+4z0fcLQ4+Wp55395xhf+i1/6vr/8b65/rSe5in/behSusk9iu8XZ9M2/+xu/M+cH8Gv/55+b3j//vX/1f8Pl01XRvnag9a4yupmst3z+//pLX7vb4be9/4f+2h//qo0y0X/0S//51+78tWPzxcM//vhnvmrj3/+J/+ytn/va705pmgopi6IIlNvBYFDXNZdi1UItA8FWCFGWda/Xe+GFF6y1D+8/mM/nIfJBROc8Ii7dfQC895PJJMzMYYYPXc7WGrZs/vBh7j05OZlOp7CCbtZWseS81Cq4KFdVFaVJu92yVW2hZsgQKMxLq9NeEtjXUInLMbSmee9D818om4X8d4mPMRnOLaB8jUajLMv5fM5WRixhYQp1RFzpHKw7ZmAl9xqW2jCnWWvRLg36Ap4TWM/rL/jk0wir4p94Qo55tfQDLc3lHGMM+FLxmfMnMK7A+ARGRIyAnvgTa9wsMFyJPACTQq7hMrQYwlQhhCMM2rnGGAD0dQWCSylXyakMMCwxqMoKEcfj8Xg8DsuKFLqRNuraoiNAIKC6xoDTIi4lpzqdDgCUZVnXNrVuVpZ5nnPO0WO/22eMRVE0q/O6rqVgDl1dm4wngnFAAAOcc7l3sOs5GjJCyVarVczzZrNZM9HutriAe0cP67pqt5utjHlLgitkzjkX/FK8t2maMrbUrAgCwEtslFH484yxxWLRbrcDhz8QsKWUjpaZs3Ou2WwW84UxZmtrS0qpte50Ooyxu3fvh8whz3OlonrFww/fOVRRqmrZNQCchSU8PElPkM9ZEK0OT0DM44BfhxvZbDaFCApQ7wp0sCXl9l1prRBVMGLroMoFVsPTRqjbCyGcc5oLrfVwPP3Upz794z/yA91OP/iHSCl9Zdb4IAhBSOGAYimSIMJfD9UkWlvqAWkhEdEYAx65kAyWfEcATuyrS5fLuA0ptL7SyuYvfP1gbbPEl0XwKf7qghsxoCfaBxBhrWjDGAvIS/jhSfx6+aefgLzDa7PsEBTgPaxiFBRcrN+9NdC9/HOMCc4RKPSHAYCSOtQPuFB1sYii2Ff5ZDHnIKxzICCKEgJQUdRss2KxACkWdUmrDgVAEmxpqccY8+Q55xJIahUaFU/OTvM872300ySBp43QILacWYCiJBZCeDIM2cqimjtCR8g5J++rqtre3t7a2jo6OppOp6FWEWbz1ZS0lHPhnDNFzjmP1hFKKb1HIQR4ZIwxCcaYR4+OVBRJoaUWjAkA4Bw45857pQVDAEZIxIUIVyxKdJTEVFFtitoZpeIsjojQGFKxiGIRQSxEtru3Y2zZ6bZr44DNv/Pbv01K+ej45OzslBGlUYQek0ih85wxRMtk5EyQ1SMCCIQeUy1UHDHAJInqeunspFUcR5rF3NhaSHS+DM6BRUGCYeU94yCI3vfB6x/84Adfe+21u3fv9rbawbqHc2bdAokrLXZ3t4ytsizJskxxEcfx4PKyq1LrCuIia6na1dNiEEUqilXCRD4vEcABAQMpRRpHxhhcyjPxkA+WhUvSKI0zubTgM0FBqZM1hRAQ1OvKUmuZyth7r7moaxtLBQwk53VZv/7ld24+e+PatWu7u7sPju670utYkzF5PpeR9t4zhoIEEU0H436/j4IRcALBQHoHZV6Hx8k7aqRpmjSqvEKH6BwjbmuXZA2PqEQ4PeScI/qgyS6E0FItZnPJYaPXBwBAd+Xg8AMf+FBd12+++fb29rbg8itvvN5qtaaL2aPjI8btzv5uQzY4gTfeoucgAJnkS96Qty5tZPP5nIO6dnitKIqjo8cPTh9kB9mL73/hzp074/E0tCB84P0vXJyeTWbDLMu89/t7e9PpdHdn57nnnguCj1/4/CuMsVarhd6maSqZbqbRdDprt9v9bt9UJkmSJE4Crqql4pyPh6Nep3v2+JRzHoEcnp4rpapZ0ev1qPb5eF47a2pDtZ/Vk1A1bDQ7Qoidza133nnn4cPHH/3oyzdu3HjnrVuR0oPBgBjMZgvvIYp4mjQAoCxmry/yVqt15cqVyWgsudjb2R2NRsH+2BjjrRtcXE7HkzIvzpzLsmwymZycDOKYv/+55/b29ogoxGcnJycbGxuhqo+IjUY6GFxoyaMoAuDe2ihVnW5rPJq+9eabvV4vTVOAZc2fy6evHXletDvNsiizLAsZ+0svvRRqbMGcbToaZ3Hy6MHD7/jkt81mszfeeCNAZpdn53meD4YX8+n08vJyY2Pjxo0bdVkeHlzN8/wrX/lKu91NkuRiMBoMRs564KyoSgRSSqXNxnA8CupVu7u7Ozs7eZ5Pp+NWqyHl4Y0bN+bz+ec+/1sHBweHV/aPH5+Gfro333xzNBp928c/5pw7OjqaF9Pz0VmUxS9/5CO3bt25cnD9v/xL/7e0ufHWnce3758NFkXW37jxwRf29vejVqPRTrNOZ1IsFkWZtlrv395xQqm0MZnMKueTdve5D3zw9OGDrN07vHbVGHNyenrtmZuLsrLGWeuVirKkyVC0mt1mkmy0G74sWfbom/8X308OCkegddrSwsF4unBIvjaMmWBP1O33ut0+ofvKa6+CiBqtTlnXWavpTFmWuanqZpwJ4BywmaTVZPTo5OkMmkazEcUWnAX0ij89S5HACJlSceVsbY3WmumIgSCPrjJpIw1hbqIjySTnFMrz56PL9334A5397dtv3pramnligjMtd3a2yfm8iJ766EzHw0gKwbgx9XA4PDw8bDcbd+/eFYxdv3LYbreHw6EQIk2TK1euvPXWW4t8FgTvgvPk4+OjVrPDOb88Ozu6f59z5i3KKNJSRJ3WdCrLssAo2t3d7XQ6j06O3VJah+V5oZQygs1mMym5ErJY5GzZiC3QeeBCcL6EITi4ZSu0qKoqjRNEZ60VnNvaxGkS6DMh/jl+9BARIqWyLMvz3HuIokiwpTRHIOJJKfNFeTo/ZYwFfZhAgwhhVZqm1ngAKMsSkILpcbfbDajWcHgZJj0plbV2Op1mWRaSCkZgqnoxWyBiHMeRiqw15JEYhFWVHGaNhgCO4IUQoQGFMeacCVKkIQRNs9haKyRDch5dbXwSNbIsk0I/ePCgnaVJJNN4QyoI/aT379ydTEY7G5u2trPZPM9zY3E6nQp1bzIexEIRETo/q/2keJqlHcDulasXg3fm83pnuzuYTb7yzltQFS8/9/5rXrXHZc6VF6L25DwDwyVKg7ZEl4lEcLAOiaEQghgBcB1rBuCNZ+BjxrI47rTk4NHxO6++uvnsM/PhcDp8+3d/z8MvfuXqU8/kX5lh6787Hb+FeY5/ugABAABJREFUiFLHCMz7ZetY0P0L4r6MAROEiM4zwYk4I84EMgLwiIESpaVSgkVSKiW0lr6uOSMpRZKlutbjxUxwWSzyWOkoC1mGEVI674l8VRkeR845YHI+nQXqDOc8eNswwqJYeG+dqauqaLVaUsacc8bidrcTLD2FEOuWo1A38mg551EUrTPwTqcjVUREHJbSnEQUpM+NrZxzrrBFVWXNhpQyIMVMKSGEgKVTE2PMGFNMp1pHvV6PEKuyFEoEkKIsy+lsgYiSccZZeNeQqNVqhfmhKArBuVzlPkqptYd5AMrz+SLkZSGdDMiyqWutNWcsjmOtVKvVcivTwtoY51ysdO0sF8tkCpYKmMjYUl+BvZefxFdCEOEBCMWkcEoOAZgPzOuAJgeudIAYYAkoh8/RmpISUp0AQiwJxys+dcAR1qITS6ABKaRdTCgpJXgIDbshU1OMcamllM1GGximcVYVtQOvlCK/7NcWQnjvnHOSSViqhfCyLAG9955MuUQo0JJBIYT1jjEm1FLBj0vuyatIRWqp2SWlML7OsqzZbA7Ho9lslsTZkuooAicdo0QDcGOcMc5ZtNZqpYKSpfdOCFFWlXO+qiomRZqmVVVPZ8N2u62lACAAWOQz5w1aJ6UoOW+32+QdEaVp5L03pmSeZ1kqBURaa8Xv3L0lhOAgJ5PxxeUJF8o5Z7xrtJpJktSVBWBJkrTb7X6/n9bQAADEuJNx/Z4l+/zLD74RavM3Mpxx7Wvv6YvlnA/ePPnGj3D5lQfsvUoR3Rs7a/IyVnXce4+UhynKxfnsn/V8/4WP01fuFpezdCU/kvSb3Zu7l68f/bYOcvDJ9xjDzs9GNv+d7K05feXeL/97f/07/+M/qBtPz/qfHGZRvf1zv/GhP/Ld6y3F5ez0C3e/ajcu+Xf/xZ8S8dP5Cv/M48f+7p+6/49e+yp6OCI988wzRVkeHR3h0nQEAyxT11aEaQSAAyNigcR5fHxMRMCXSEsURY1GoyiKPM8ZAyllURQhW4FVHa7ZbEZRhOjX7ExaadWGOXm9mtR1HVCLKFZKSSGDZgWVC4zjOE2TMMc6i0ovJcuIUEoZRJmD2wEiEpKrTZCzh5VDIDwBxUop2ZL4y4QQxJf0gkajsWRtO/8EuMTXQC2txKzXv4J/tzzs6pXP7RNCFhwYW60gsDIbhJWGcFggCHygra6wbCaEYOsVBzCIy3vvVxAXrY7DAMATrK82ADJGAMQYhJ3D+XDOkS0htUBiEEIguiD97OqSaaWU2L12tdfvFkWR5/O6rhmjgMJzKQLlMSiRBvZwt9NnxOp6aq0VIIQQK+hpaV3b6Hf7/f7Dowfn5+dSyixrVsNhiLFN7YLdd4CwrTFpuxnxyDuSTGLtAAAQZvlM3nv0kDGqnakX0xdeeCE5OLj95jumMOLstN/vLhZzIURZllrEURQDsnmZhwc3z/N+vxt4msHX3pqlIoz3Pop1eBDjON7a2ppOp0IEgWUeuixVHIWdQ85wcHAQx3Fo4Wy322El7nbb83mutc6ybDyerm+tEEIIJaUWQrVacZ7nWmvrXWD0hOQ/pFLhYSK/NGcIWo1BZyS0Uff7fSHUdDo1pmIrXztrrbeWMQr3NWxXXCHgu08e/7rKQeH1C1ArAXhPSqnRIneeru7vnRzdLytnjKnrOs4a66eNAwtK7AH7XT/KgWjjnAsmPFEcu9p664QQgkkOgjMOwIEwnOgK4H3XI3F9YuviCcByP865FALCK8cZ5xw4Y/SuQPZ6AAAuN7L1tlBGE0JESgfdnKW2zjrq4py91/0cg5AlLq35QsPXkxdzfW2JlqbfSMx7b6xFQuCCyWAiCJwAPAolF3U5rwoVx8gFZ+gJj44fV2XebDatrY0xxloCCJMsJ2CCE6EQAhCJMS6lcS5RyhOenJ2OJuNGq+l9EFJ5ymBCAmfGWR1HsNJWpuB/J6Xxzq4cSBA9WYvOR0qXZRl0VJvN5mg0Ctk45zKYugAuJeSMs0opzhlab4znnAOS824xnDUayb/++3/8/v2Hv/KpzzTbEoDJiBtvamdLU0dK1HUdSoVCcmstMJSKMyksOkdOx3GURlLoEBo20hS8Y5I4Z95bofgv/8r/Zzwe93rpjRs3n3nm+jvvvDO4ONWSX3nu5mg0stbXdY3g0XsA7nwlmdSRlpLneY6IkVJxFFvvhBbeW87ROpNmEWceoeSMRzETwjv0KpZac66ivJrEcdTttus67vbSh4/e4dJsbzWTJGYsOT+71IofHFyNoiiItQnRLsp5K9OMsbKcD0dnnHOHNmtrIC4VASAX3HmsvbVYR1HU6jSNMQjeOM8EAwLFFRFTKuLAEJEMMcVsZQXjjbgJiHmeWyarsgSAfr+f6XR0OdJxpLW0jktQzpqqKAXw8/PzRGaLUXWvevDaF99otRoqjh7cPbp2/aoSaTnPtdZCMES01vnK1YvKYBneEXTLcoqSEfNOa57oDBAU01pG1vpW0nTOjZhxzmmtOWewKpspIeuy0FrPpuNER6PhfKPT2dvdBoDtzc3R4GI0nCjOwLuiyJ+5epi1sosLefL4QarjbqP1+ORRo9GI44SQRqNBHMexjr31DMkZ9IbKRX3vnfu31K1AZmxmTcHEw/sPqqIER5PZuK7LN778leFw6JwTCVNCnz46KYpiOpzUi3I4HH7gAx+4un9Q17VUibW2mbaDmdgsX2RJY7FYSK4kV0pIRqCUqnxla5Ml6eD4HACClt92b7PZbE4mk3wyVyDqRTmfzw8ODmRv68GjIy60MWY2nlw9OAxEp263FZQxPvCBD7zzzjuIuLm5Oc8X8/kcAA4ODmaz2WyxGI/Hztjz07M0jtu9nhBid3v77t27gVa5vblpjGk3m8ESs6qqoigYA0A0xjx8+HA6HSdJUhXl/v5unpcHBwe7u7vz+bzf729tbb3x1uvb29uLxWI4HMY6arfbWZIKDkTUbjfzfA4AH3jhxePzzlP9uckjA0jSKMuyNE339vam02kQ0Dw5Oel221EUvf3221rroEjTbreNMRsbG2dnZ/P5/BOf+MTJyYlzrt/vv/rqqzs7O41W2yG9733PF0VhjAPgG5tb29vbRCxN0zyfh7Wy0znwtj45Pp3NFhsbG0mSKLUxGAx2dnaIaDabFYvcVPXp8cl4NAwx3/ueu/lNH/1op53dvXv3rdm0mcadLKmNjYTc3thMG90oSu/eOfKOZ83Oix/sQ5wdPvscQyR0o4vzVMskjqNGKpR8fHoyLWsmo2art7292202Qmy1ubXtPeZVadGfnl8Mx5PZeLK50W9ljXajHWtpRDyazMfjyfBy8MwLH+pevTGrrbHgmTLOMSY7zUZd+8uLs9lkMri47HS69tTFSdRuN5WOKuOlcEKousgFoAbIGsl4cOmMJ+s40Hw6mpQHT5XKSJIkjnPmpTGGfx3f4Kv7B3tsZo1/8PjIeJ9lzSiJGfFykRcey7xQQnTbnSSKnanDay616m30EV2AqUIMygTvdDsMSSpVloV+WkJkXc2JrK2DMtV4PPbehs6bJMmMMb1+J/AZp9Op977VagVWfp1bR6i1Hk+GiOhqs1gssiyLo6isiizLqrLQSva6O0EFr67r3e1NIB5F0Ww2i6R0zhXlIok0Ee3s7IQFLkAtSkXD4TDEbJJDKBEhYpkX46pqtVr9fj+okLdaLe+9cd44W1VVCIWVirrdblVVZYjxAAMqNJvN0jSNVqKu3VbX2pqI6qLc6m+EHKmqqiSOvasA4PLystPp7O3vGGOKRR5CncDsK8vSW6eEVELNJrPgyRbOMxAGA9gU4mlGUJVl2sgC0TKOY0OM8xIRq6JEoCRJjHHGmCiKBONpO9VaF0Uxn8+3t7e99+S8kjyO41g1GNlup4fAsrTFOQyGY+Ow19vIy3o+nZ4eP0bvm63O5vbWfD5HhMmidA7LyqTEIH66kltzo0ti++UPfdgg/d1/8POT+ej3fNMnbmTdKzlyX83Kel6WhRKeMQGCO3LKVs7XqDTnHgiBUciUCJh3jDFNoIjFUmSMLby7srt9cv/+6WT48rd+y2c3u89d/SWlf9/nXtl56sn8KzDK/OcW0z/ngQNwjxwRvSMPlq0sMYCTlBwYIhBjhADMEwaZuJCpkueMMULJAb2VIoqUsHVl6hKd7ff7glin0azKvDB1JHhd18YYEJIANICMdFUVSingjEvhPQQ6DwAAkWDcAc5ms7IsI7WkX21sbHDOT09PGWPWO6XU3s4uY2w8Hi9zGaWcc3GSImKQO+ecx3HcaDSQWJ7nHFiAj0NjtXOmqHPnveTcB4NNICElW7LGROhBtlUNAGid4tLVZjoag+BB0xOQpuNZWeZc6QA9h68ZiBdxFFVVRUSC88Cz01ozz9AjE0Ae0Xu27JjknBMAFEWxzLOIlFKhhoSIzljknksRCATeBW97YkiRVoRULnJEDNJyK0bY0qyPVukSrvzhOeeBvh2KWJzztSgqwrv2RQHfWfdPBCYvAAIg5wJX0qJ+1cQdPrWiODiLHgmJgQfiFMhGTAqBQnDOBTASItwyxpizSACmLowxtqqXvCsZc84FCAS04BknAGim2Rr1WH8d9I4BEKJQKrSe1HUNwKuqCu0m3nu38s6Noig3+Yq7veobVjJwjEiQZx4BGTEkRO+ECFLwSz6WYMwjllUVElgpZVWb0tQh5a/rejqfKUZSMat1lqRRFDEeKyErcot85pxD8JHSjDFHxhhD5Ou8braSuq6ff/557z3CzvHxMZMQJ4KYl5KBZHVu8nxqbck5d0jITO3y0fSiMVYvQQ8Azl+9X43z9An95Qe//Prv1IyBxh19+o2Db35uvWX+eDA7GnzjR5ifjGfHw87VrXdP71e+spZQKEeL6cPLrQ++q5t/93/80r/Mdn/TBxc2r+EJBH775Wu3/sHnvvEj6Ebce6814ujWiVn8TsLNgzcfDd589MZ/+5kP/KHf9b4f+8Thtz//1N0effatd/7+517/m5/+6L/9A09ut3n9tWIpz/7oxzrXt38HT3I9/uTwr//cD//5O7/4ynoLY+zu3bthbgkxUpo2wqoxnU7DHMWZlEoF8kqwZkmTLE1TT6F/S/d6vTiO3/e+943H47Isg/edcz4Uw6SUWqtg/hRSgFarledz7+1qBdGMLU35AJExJlYtMgHLUkoB0mQ8LPLKex9FcaRlSLK01lVVRkmcJAljzHukpYfZ8txW5GsXZs7Q3iGECEFaXdeEjAthvAneM+F/rbWhC2WJMtO7CHI4Jb/ijIZ5D7gITGrEpQtiXddBrQIRGcFadpw90QfDVg0r4b+IfPA8C39oHQkgImPAuV9haEAUxDX98oiMSbFGxtfeeACrJQnWxOeluyAJIaytGSNk0O/12u3m6fkZkc+y7PDKAefcOWOMIqLAdk+ytNlspmmaZVmWZdba8XiapqngqiqqJDGmsgzebcHhK3mouq7v3b07mow6rS6XLCC6GxsbzmKR5/P5PPAwhBAoRFEUtarjOI5dnJsFMAYZpRBL53AwHnAJrVZLSXl2doaICDQcDs/OzooqT7KUkA3ygWAqjTOd6tFoFM4jTeOyLMuyNMYxxiIdL6FkpawzwbJgMplcu3bNWjsYDDiwsqrDPlGauJVxXF3X5SI/ODggotPT0+FwGKC30PQznU6JMym0XY2wTIaAAwDiOA4Y/9RPLy8vxUp3Iqy11i7BWb7sYHpXBiVUeIKrRrCsWeZFUiqlEB0iguBrvJWtNFnCubGvk2RyDlLyQG7lXHpmhNJorQcmdBSl2Wg8XHL6hKRlkxFiABylBCRjTDDCZIxWlR+/fL6RW2t9TYmMOQnm2RpQDggvAwAMhFNgS94pMcbgCdw5QDx8Vb0JYZZkQshlw8X6DaR39WXYCoNevWChR4yA0bJRqyqKJTsAnmg34AwYo5WaBwFa5zny9Q0KF3zN4HaIcvWCEZEHQLNsAeBMeAZExAXnFjiHRtqsOR9Pp5WzBonrSIgAzePFeDgcjxAR0VvrBAMpJVtJeEOoDhFxKZkQ3tqA807ns6DSWFTVPF8032NOsBxSSiWjRjMlolADxJUknLWVrcu1wYuU0hIyxh4/fhzH8dKbkwsOzBnLFHhyDFDLYFRK1lopmRRMSa5kXFUVEErivW7XZtXBwcH+9tY//vXfEAw4I2AcrV3kMy5CiwYBkJRLJ+6kkYaokTFwznABUkkkQrDIvNJKKiASwCnPC2vrk/PHURQRp63tjTTTv/Gbn5lMJuPJJI5UFB2CAFtbFat5MVcy4pxZZ5M4YpxAQNqMw4TQbrcvR8Msy+I4vry8bDayZjNrNLO6LrWWdV0juXbSiON4MS8iJa9cP8yaDSk5Ou+pMFVFttzoNxOdLBaLfDL8lu/5XkQcDAZZliHi6fFxq5VKotl0fnR0NJ/PkywVWhTzRdKImQAEr7KEMQCPUkpAQoac81ajOZvNCBGAa6WSJGlm2dGDoyRJJOflokTn2+12PsmLRd3tdofDoTdWa3105/H+/j4YnudFyTkRxXF8eT6YT6dKRlVVRSorptV8sqjrOp8UXPH5fK7g1Niqv7Gxtb21WMyJkQLNNOdeKC3RllppwUVZlgCslTV7+z1GfD6fk/MUw3Q8ieO0LqvFYmE9OsS6rpMkUUIGP9/pdNpIEyBoppkU/P3PHrZbjXw+S2M9Ho7Ksry4uHj22WePHz84Pz9vtVof+aaP7u9uTaZXW60WGgsepsOZ1Go2myklPbh5MZtMJo1G03u/mORSylinALC9ufPBD37w9u3bx8fHZV4REffUbbRcnE5HU4G80+mGRKW/ufXw4UM09v6du51O5+TR4wDXRkl7MBh8+dXX2+1mv9/fPzj0xl6cXnAOFdJWf6PT6cSxPjo6Go/HxtS723tFUURR9Mwz109PT40x+9v7s9nMe59FmSBBHq7duP7Jb/m2O3fuvPLKK7PFNPQNKKX6/f5gMKjLiogFkwdr7fvf//48z0Oxp9FoaC07rcbl5eVocME3NlqNjBFmSZxEemdru67rO3fuBDHo61evVVXlCW/evPn6668j4s7Ozng89p6qqjo8PGSMlWXZajXPzy8lF7Y2V555pqwWr732mtY6jrQQ7Pbtd27cuBnH8aNHj7Y2Nv/gT/yBZrP5m7/5m84beJoGr9IqVo3d3d2qqi4vL7/46heSJPnQhz4gpQw6VIdX9p97300hxNnZ2e3bt4OMwHB0+dxzzxlbZWnzyuE1Qpam6eHB1YuLi/PBFxhjH/vYx/Li0fHxcaPZzLLGeDwGLi8GA8ZYp9VgDBaLxWw8KYpiNpkOBoN+v9/vd7vd9nB4OZ9Ph8Nhq9UYjQZ5njcaraqqzs4G8/k8y7Ldna3B2VkGwl4M37+3d345fPjW248Ho6yz9eqXv9Lb2L84uWh2txMefemtt08vB1qJZpqRrR/eeuP0+JgR7B9c6Wxtz4p6llfvf/8L3Wb71htv7G1ubPV63ZdfXsyHMtJlWf79X/jFTm+j3Wzm82ir0753+9ZWv396dowMJ5PR9vb2j/2Bn4SYG1cbR0ECz1QuimQzFe0r+3S4TwTTWX52eSG5MGU1GU1d7SbFqK6KcjrBasGoGg/Pz89OtNCtRrsRRbGGViQu6Sl3CoDqum4mcRy3JuOn7gCdRjPy6XBymtcVMkBEyUUs1Ww05IBcsFan0eu0uafCWDSV48x5v7+/f3tw8sbt29euXI+AL6azLGn0ut0HR/evXbl6efl0JnUSxbFsVJXZPDgoimI0GnU7nSzLTk4en52OQhlGKbVYLMbjcXDvDArgo9FIqChEnwFLsq6ez2wh1Pb2dqxkYPF/9+/6jsvLy89//vNZlgURKkLX7bSmUxqPCy1VFKler9fubyzBCKKAcHEOSaSsNaQUW8UMZb5QSjBGVVWUZRlF0WQymU6ngd6y2d8oiqKua1PVdVkxxhppxjkv6wqQ4ihKojhkC1ESI2Kapp1O6/T0NDRZB85Br9cryxKdi+N4e3u71++02+1AdyAiYwwHVhW10iqAQSGfCYwEyQVnnAAZ46HxQnJBHoWSnPMyL5IkKfNiNplKLjqdDoZuM8RYJ1ki0jjhnM9ms/F4HEwaq7x4cPder9fb3NzMF7Pz8/OrB/s7O3tlsdjv99M0fXz8aDpfZM3WfDoRjBnngIvZZK60jiKVZUlZFmkjA+DjfKI3Nr9y6/ZTH4PBdORtdeferclsHies12w8t7XdWdi+4fN5acrCcPRMeEImBZIhhsiZF4BKACjvPQFDBkwK65wgYNYph3EjiwVbmMrm+T/+7Gex25jb6v79e3/lr/yXN2/+j4n43aX/E09/B/7nPIaD/8hUf5sxt1RvhKUCLrqlGzkiBqd0D9z70E4rvffoPQECEXrLCJQSkVLkcXNjI420UuLqlYPtrY3pdDy6GI7H47SZHmzvzsr84vKyyOeWwBMKrvr9frnIQ+Uma7YR/Nmjc845k1IrxRgzZUUew+sc8MRms7m2A0VEXxaIeHh4KKUkBjY4x0aScULEIKUVHJ+ccxcXF5FOQvbbbGYhZzam4pxvbm4Cp8FoZE0NjBgsOzilEM45Y4xkS6QYiJTUsY4QQQoVKw0AHoiI0rQhlCzLksVxEDOM45hrHrQg1naCgqtIRYt64b1XxN0q6Vj2ignBCMgjI8iSlEsRMqMl2VlI55xijAkIwZJSip4g34Qbt8Z8ATl6T4SEjIWUKeRERMuc0bnQDhsQFo/I+NIMkIgRLbkmxlZhguXL9louHDAGTAqGDNwSiQj/FeZG733talr58gEQolMyIiLBuJKKc07OW1cDgKlqIRRbEqNp3fyeJsuOEFipBql1hy7xSCe0UlwNcLxiETIkIkkKLJmqrp1jjO1s72RZdn5+bpwJiZjgwlQm4O0AgOA5B+vNdDqeFwsZydo4yRhnzFrrQ3XUGgFGKQUMiKFFDPqTSqlms+2998YIwZMsCSSqLEuB6qJeMJmptGVcvTTeUVj5st1pG6oBKFZR5WsQAIJHSpeuEFo8PHkQlENEzC0ZkqQSxgRFxONGNziDOcJI6uCtWtc1yJV0JAeh3rOMyq9R0f1nH5zz97YIR834t2WOxyXXjfdknkKJtQ0dl1zq9xwtaje+EZPD/38Nk1ezx4MnGd97n3iWa/mNQ+Rxt5FuvkdD+fGv/zbESb7xUQzmv/WXfvEL/9X/0L229eJPfedLf/i7mgd9AJg/Hn75r336jb/56fGDCzSOa7n3iWef/ODs8cB8Fdua82qYP/j069e+50PZxnvY6P/8442/8+t2UT9502fz2QCLdrsdxbH3BLBsm1jzLOMoFYqF4px36L1rtzpKqfF4rLVuNpuR1ojUarV6vd5kMonjuNvtBh+a2WyG6EPEG9KoYN+60ifkATMNdXprreQ80D3DrOucG4/Hzrler4d1fXb82DloNBpJqxWnKREFuR4iqooyONJzLoKAJF8JT68IfLienKWUQWN6qRHBSWnhrVg2zYQmD2CwcohljDG2nHtXbD8eyoSMsbXmfjhhznlooEFE74lzrkRww3rXpg9WEBasRB0YY+RDcTGo4DIOjIicf7d/nYg9IR+3UtIIJ8e5X5U/iWjN1AxA+VoRNxxKMMaltNZyJaXWzzxz3Xu/KOY7O1uLfN5qtSaT0Xw+Z4IzzqSQQqg0VUkaM8ZCfB7USIJY/+p6Khb6shCF4AA8dKWEXvyqNI2sieRn8zmB73Q6hMyHSqpzVVUVRYWKYhYTIgNBxKxxUspuuydT2b5sy+eff/7Bgwej6cDW5vbbt8kRJ54mDULMGq3YpHmeK6VbrQg8j6IEwTQaDe/9xkav1+s9evTIWhtwCq2ikE4kSUKAnPNut7tYLPb393u93mc+8xlgLCjlBXmUwDIO8hRo3Wg0QsRWqxWCp3AhvKcoTeI4Dk+AlDJJkuBNvL7l4WgAoIUOYVOoSwSVrrqsWLIk5AYIl1aauWGjcxjHMaILT0z4X2/tsrrCgIEg9Evj8iBY4z0AfD1zcERCRCWERU9ESkaAnjE+m81qY4qqRGBATEhhjAkdXkFpC4MTKFD4slwpxtbh0bJ9wBuLiBRazDAoZITKlWBsGZatAOilDMxXnV5AimGFm4cXhlaFFFq5Kq9B9vARfCJiC4htMCUMNB8pJQWFjcBTfoJRHQ6w/p0DC/OIWA3OObFl+Si8S25FYwcAD4CwOjvBpOBCCE5CMkIkIYVD//jsxJCN0iYSQzRCiMBRMKuXnEmB3oc5K7zfQvDaWiHfdXENe4YCmjGGERWLBTzNLLDMC/IYKR0slcO9Iym9dd57yQUg1bYIkW4nayqlyrJMdFQUhc6kZLwuSuccREsxe0A0ZaW1lkCSsUTJ+Xwmpbxx9WqWpM5Uzz//fOjcePNLX+beXtnfqq0DAC5U7SmNIgFQFMXNZ28E4UjvfZhBAKC2tjZB4V7GkSbGy8owzhGg1WlorY/rXKsoSqLnn39+d29nMpkURS4El1JsbbQLY07OT6IosdYeHBz4FfTZ7XaLPOec9/tdIQRDsq5OkkRo0W63tdbdbtN522iknANSVNdlr79BDKqqEkI0O6l3JKWMpfTe13XpqvL61cNm1tjsb9y/c/8Lv/FKI1F333qrLEtr/fPPP7/Z6z+6e39UVAdbB5fzy2pWcMciUN6Qy13WSWQkPXk0yzKJRGWtFdo1Gg1fu+lwgohpnLZ7KTP+zoPb8+ns2Wef3d7YvDwfDOaDmtXFfDEcLSYXs62Nja2DKyePT88enscsAQAdJ2VRLhYL8lNE6jU369pWdT3PCyklAG72tifTkalMv9WXpJB8MS3PH19Mp+O9vb1usxtxNRwOzyazVrOZ9hsMiXlWVZVd2HJWlXlhrc3iDABcZY2vOWO2shu9/uXlJaLz1gnGyaO3LlKSvI9jXVemXOTf/73f3YgjIfjRw4d3Hj6KoijP5w/u3y2K/GB/z5jq6OG9Vqt1uLtjrI91fLiz32q1jh4dy6Z47oVnh8Ph8dGjZpz1Wp2qMuPx1FZWECei8cXo8uTicO/Q1SYg/idHjzhjL7zwYqvVevDgQZIkNq7C/NxuthhjvU53d3f34uLi2pWrX3nj9cH5JQDcvH4dAE7Pzuu6DhUX55wjf+fWbefcwcHBfDFVSvV7PbCs2WwaY2azhdbx6fHZo+Joa2tLa13XdafTOTs7W8zmj48eFUWxtbGZZPEbb7whpTw8PMyy7O7tO5HS3vvZbJGmqRDi5PHx6fnZxz/+cefca6+9VuaLnZ2dq4dXgh7Ub/3WbxHR48eP0zQty5xzvpJQ3FZKAOhFUb7zzjuDwaDb7d69e7csy7quG2lydHQ0m80+9KEP3bt3T3CepmltysvB+eOjh51W8yMf+choNLl379721tbRw/svvvjizWeunxyfvfnmm1euXBlPho3Gtaf2AjIGH/vYx3q93iuvvBICwfl8niTJ4eFhI02n02nQZd7c3CSiF1980Tk3mUzefvvOZDJ57rnninLx9lu3QuI9mUw457auoih68803jTFpmnIugpsCMRHCqSmnjW53OBwaU21sbAD6wWDAOfR6vV6v96Uvfaksy5s3b965cyeO42effTYUgz/60Q//yq/8CmN06+70md2DDlcfefb5q3sHZ+PxrZNHj08vn3vuZqfX/nt/7+eOHp8LmZwPJ0enpzeee59Q8mBv/96td6rFotvpcGCj88ec0cbOfiKEnU+KutxopRrt8OQojWKd6Mls/rnP/9ZkMqqd3ex20JZH9y+rxYzZ0tRFXhRxmvyJf/ff2d6Lp1OorZc6ripLnqQQzqD3pDj31i2KfDAeKSnQeevsowcPjx7eTxriQ+9//tc//albr32JY54krB0JpUREJpUqEkAM4Wka/pLzKIqAM+TMwdMB6cuzi+Hi3un5GYtU1Ei5lDqS3lgGPk2j1ma/2W6B885YyREEOOaFVjrRH/zgBxevvloVCx010jQ9PDycF/PFYvHw4f1m4+P50/5Wq9UmqxhjWss47nhvt7c3hRCnp6zX69HKdDuYdAfoYTKZ9Pv9uq7H02mSJHGahCa76XgynU5dbRbTCfONj37k5SzL3nnr7aJYAPrxeKh1rJRyFkPDYyRVbUpGUglxcXYWRdHl5WUIoOM4DpkxEWmt93f3jo+PtZbPP/98p9Px1t69fz/PcyKaz+ehRNRsNq9cuXJ2djYej4M1X1WVrVZDCBX41PP5PHyFcNiqqmaT6WwyBgBGMBoMq6Isy7KRZpIL7y1j0fZmXyk1G08C7qCUmhd5iKycc1qTEKKZtdbibwE+ttavHUpCKhJFUYDym81mUCdoNBpRFA2HQ2OclHI+nwct1ECxKYpiPB4302xvb6/ZbN65cyvAYfl8utnrO4eNrIUgP//FV+fz+Y0b12xVc6lMbZiQw+Gk0Uh+6Ad+z+HVq5UzX3r1tc2trXa7Yxj7x1/84pQ+8NR61Usf/sDdW2+d3n8YxeLK/taHrj3zbH9Dnz8qLhanj44m8xlo4RgZ74TUToTQj3sCB0icEYJzDjhz6AXj3hltfSdttNJUcp7E+ot33m7t7znET3/2M1VVDS7PyyJ/8YP2xvWL1197TMZhZRbT2bXDa9/1nd/12V/9zOX5I8U5c0Z7zBTrpJlgRM5FUVR7P5gvJqZiOiEAQZwj1ei4EpZ84I4SIQJDLktnreCWMRHHBEwp1UhfiJM/97VXYDT6M1XxFQ6MCBnjFt0iXwDw/vbWtavXXnjfzQ9/+MM7W9tlWf7l/+q/fvvttwC4ENIjEDDGmUeEpdzWwNi7sY6IgQDBOSe3TEcDHWzJwPAEnAdOCBMcYdmtGFrjiIgzHinlrWlmCSBVVZXPyxdfeN8f+sM/JQT7O3/jb33qU58SgnEC5tA71263kQvjLHAZjuAqRxFdDgfe+9lsliYJAwiW6FJKJpbMBnQ+2GwGKDkMqaLAog0yx7rVarUb6HwADgLqR8HCPkm01khOShVcMdekNke2LMs4jVqtVluwwXjkPIbDlsaE9D4E0qauO51OI8mcc8ZhXdUAQAy998QZ58xbp5Rqt9tpmk4mk6qubWGNMQtchBcncNm0UoQIREVRBTrbki3EOBdSSBGU1rXWjIBCD2+Q6CnKpR4OY0EqJyiHEOfWeKl4iFXYClMODD5aEZwZCEJC8tbaoIpjVt3iq2yIrfk36y5MRAz4S4DCAUByQYoTkTUWvwYHDFuccw4xABDLPmwg7p33vvJeShkrHTh3K5KbBwD0od96qY5KCEAMHXrvhRLBKSSkrsaYZrMZIBVjDIFXSknLPXkk9NYHzFoJxYXQQhfzwpQGERkjIQQQEhBwMC44JZIj62tXO4HgHTLiZNECAjEg8ggIHICBI6eUUlIRkQzIuxBRIolEAlopRTzYyDuAphAQuGJpms7nc+fIoOOJ7O32Nzc3/Sprk1wLxq21zpmk1yiK4nI24EyGikUo5apEM8Y8oZQSAbjiMZdKaWTGe88U8GiJ0m48f6je68B24/s+8uBTX3nqIv7bHog3fs9LT26Ius10p/2Nm+OlO52k+x64+fr3vgz4N8LPsqFb19/TTXLtu178lxZrBgBXmLNX7h1+27t84c71LZ3q6huGm7s3d5r7vSe3XHzl4e/kKb53oHHDWyef+bN/+zN/7u8FZN8ZBPfu2epUd65vPfmRs1fuueK9YSLiw195/eGvvP59f/mnP/zT3/v1uIn/DOOLP/OP/uG/+Ze/amOv25P9dl3XdVUhLXtTFotFEEdut9vOYl1VPqxf6MJLBwChu0VHSmlpnDk5eXT//t2iKFqtllJRqGBtbm4unT85X5c2sywxpgpoWCDbhZYFW9egVBSpKFLe+7ospJSRkqYq59PJwc52WfSNMUpGzpl87gF9pFQURUHNj4iiKGo2W+HIxtk1MzqQGmmlB+C9D63h4ddgGmdxzcskwiWMW1VVOMmggrVuN2GMcS6l5AAUVpkw4YS1pizLgMw6h4yxkFd64kS07sZfw8SwEg8AAWtBWkT0tgYADkseNDAGgGv4m3POuWbMrud5oSRfOrC9i8h91dJDa9VfZERk67rRSBljZV1wwbhgWkshGDFSUYiTWZIkQXOfMZrP52FZX4PyzrlWMwKE2WyGiFzxILsvJasqFyAz8MA5V1KcXQzCty4W5Wx2rpQiBCmltV4IQcwT0dqhTWvNtfYpU2lEnGQxLwEpVUltinK2aLXa165cPz+9sMZ7T2UZGm2MFIoRL4pKaQQkQKrLajaZ9no9pdTyLyGFeB0Ra1OFr5Rl2VtvvXXz5s2XXnrp/t17s/lib28viqJFWYSwPnQpcoK6tu12WymhlArtw61WK0kyRziZTGAFd0qpiSjRS/qMRb+O/IKz1ppvHyKS8BoQUXjgwjuwPhpjTIhQo1jKb62rDUTgvWdCCc78ijnPV8blnHP+dcQWANEHB08CAgLBWRBorwwToW4g1t4yBBRAW+c8Oo+egAD4u8/bk88cEfEledwTLYWaGZFgDMK/J9UzkICxIDj4Ve/Gmn0cngkAoBB7OR9OGQDgCSVrRKRVZX4ZeK3+Sqy1Uiqg82yFWUMgVq9euXVfABERAiGCfBfRDrMGj5P1d/RE6ytrEYEIvHeEwKSMlOCCbLgUTGvNhB2MRg4wFaJYFAycirS1Rmih4iiEkraqg9HnKmpET8uXn3O+qj1AXdeC8VhHgL4qciHs02+vNc5WxXzBOXe1UZKnreZ4PEbEbrcbwiavVSi7dZutVrcTUOBIKudMXeQvfeBFzvnJycloNIqVDF1sYQf0VqnomcOr1lpXGyaMcHR89/7m5qZzxtT13saWQ392cQkAxnpjjGAyEry5tfHsMzdu3749m804EKAPDG5vay0415FzTjDo7/RnMxWEzo2pheDtdjMUfi4H50Q0n08jqbSMGmlmlT7odI0xUqtuq73Z6yulLi4uWq1Wp9MJZ5ikkRIyz/PZNG/Gyc5GvyxLBIql1I2sqgqLNZHnHACRcQ5ISE4r7QDTNKWcFrNZXVZVXYyjdOuZ7hc++4+Pjo4+8sL7J5PZ4GxAREmcjs8GmsRef3symT2++6iZNZ49fO74+NgVtr+x4cgtBoXQQmnh0CqlpFTOOXBCc4ELOxwOExEXRf74+MhOy16nPzkfNbNsejb2CzsZjQeDQaw0YyyRmTGmXtgvH32lyqudjf3FOK/rmjiF9CZWOkojQFZUZbe9wYBba4kReFAsksJj7bNWtrezd3F5PhnMWq02Rzm+HCdJUi2MWVS61SODtjbMQ0s3jTFnRyfXrl1LkmQxm9e17TY6Qcj+6t5BbmA2HU3HU1MWO5s7nX53Pp87YwGQ0DeSuAL/4P7d5555xtn66P6945PT8JAX+YIIut32888//+jRo8dHj6Iockh5nmsVKS46jabRUTGdx0J12x3OxWQ4KcsyVXF4Jb1zk/niwd17+we7k8Ewi+K9nZ3R2YVz7itffo2IIqUbjYaQzNS19z5fLBAxSZJXXnnl8PCw1Wod7h+MR4W1dn9/f9WaYjzSzs4OkR+Px7X3pqreeeutfr/f3+tzDtN5Htz2kOjqlStpI0Mg4KLb37h27drJyePL4SBNG8PxJKSsaZwE7jPnvJk1Aj4V5JgGg0tjKiHE9uZmGkdFhaGmyDk/PDwMVSWtdafdDlj29tbW1tbW5cXFxcXF3Tt3qrKMomhrd+/WrVuXl5fGmHy+UErduHHNGBPEN+bz+ZXDw7Ozs9lsFnyZ+932wcFBmeccUDJuynJjow8Au7u7N2/eHI/Hv/brnxmNRpVrdK89ZW4xdf2FL7yOCIPBIHT0p2kaPP3Ozs6Komg2mwHwStP05ORECLGzsxOqsFLKL37xi4ETFyIzRGz1+I3r14uiGA6Hjx49KooCGK/rOkoTKSWSIyePjo6mk9HBwcEnP/nJMl+8/fbbBwcH88XsS19+tSiKzc3N07MTqUSv393c3Kyr6vf//t//0ksvvfzSS7/8y7989/5dJeQLN59PVVLNiouHx6Ph4Ie+/wd+7A//1J37t04vHw0HF85SmrSubLSmx3dvfuCD3VQ+c3UHjWk1mtba8Why9+3Xzo4fCBmdXw6/57u+++r+fjXPG61WpOUrb99+eHzSbCTPv/Bcr9PL0uT86GgxGiVKHh8/VFoa9D/64z9ycNCYzAAYCBUBMKklWOuNVVwBZ9baSMuGSHubncpYRFfX9bd+yye+6eWXtva6N69cc9PpvS99vtNIOauSmBO5VKlYoeQ+5v6pcPPDB1bwHmOUF+Vkkj11pbhVbjT4c2XvapRmVksAqIjXVVFHO1EjnehoXAF4JI+WcCaM5Qwa9bzW+Tm+8MJPMCI0ttfpGOfHs1OCJEk3t3Y+ef9pLnGDy8tEF1EUTafTwEkJdpcBcLl27RoR3bt3h0t15cqVPM9Ho5EzNrSa7W3vjWfTxWLR7/dDXqGFvHbzitaaoQ/v7WIxCy2WaZoW+WJS2zRNpdScc2AILEqSpNlsGoccmORiUeSBmRLYyoPBoMwL7GKSRM6Y6Xh8cXZmrfVEAVx+/vnnp9Pp+fl5XZaPHj7UWve73c3NzbAxiaIQxM8n01a21JEQQiwWC/QmjmMVZFKJDOdnZ2dbW1uDwYBzniVprKP5bC6EUJE+Pz/P8zyKotDjX1VVHMdbuxuBKFflRVEUnU4ndGJWVbVYLCIVudqMxuNms0lCMqTtjU0Z6clkEkVRv9NXXMUqLstpyMesDXGsSpIkVvqdd95RXDjniqJI00ZgcF+/fp2AnZ5fTkaD+XzeaKSbm5vOAnFBwCaz6eXpyeHVKz/8gz/Q0bwqFouqbDTTTr+3u7c/Luvi1Vd7+5uD0VMeg2I2O9zdmV1cCK3coLrz2hutu5cfz7Yi70dVWXCASEdCk0MPDASXJBhiVVUcKdVaCQmIIACMAbDc+W6zubexXVXVcDgc5rOd/Rv/h7/4F8pIni9mv/Hr//jXf/Uz/9Yf/WM//0u/ePrwC//rP/qvvfbKq5u9/l//b/7qM4e9H/09Vz7/qdfd+Re3N7aVt3Yxb2qZUMw4EUOJepHP/TwH71ij6Ym8ZZwxzggtAw41utLbmoiUKpxjUUQoZRQjRc45xiJrefw0VZm8en06/rU8XygmkDwA7u3u/5n/8M9+3w98f7fX00oQkRKyzPPx8P3/6V/4heFwHKUJECPGBZOOvLU1GEDyRIQVcs7X5Ai9cilnS184xhhHJPQEJAiZJx+cTjgBAJNcaCEjpWWSMvRFVb7vuZs//EPf/9GXX0YuIq0/8k3f9NnPftZUFhE8+CiKQGuuVWFsiEursozi2FprnC3rKonjwK1B62zgebFATVGV961OOyjaEYDSOlSV1l5MQjKlk+l0uiRYOB+e86U+xtrmHdF7H3IuAGCCzxfzOElqWxFjjVZDa13NF1VVRVEUaR1EmT0iIUZSxSry3gMyb6wAJrRyzjlynJgQEgCklKYygBTIJvOy9N4HjkLQ+eGMZWkaprJ1Jg8ASilGS8VMvvJjDNTg8E3jOG6kjRDZ1tYE6D9MgGxJZIuEkAwIPYb8T6/avUNL6/pQiDVf3etVT3Gw0lFBInOVJ4IQgjMmhHbOebskyoT+awAgYohBjkMw5nAlrBxYdbEQAWhYq70TW3LlwpnQilWN5BDRr8h9IatdXqtGaowp5yXzLPCluFp2zc/LuZTSoAnHCVZZIYH1hFVdMcaUZN7bx4+PLHqtdXDVk1ISYaQUSPRA8/lUCtnr9ShQ/5SM41iqVUFCq8C5Vkp5dIioZXAIl6EmEZ4otrJdXSLIWiulHPNhS+5KkSoBasmaZ7wmCxxIsaqqGQWIn0TER/mEiCqwnHkWM6tWDu3ChRfSgEFEkJw4eVeGC8s5Dz0KAPD2/+tz3/kf/+STCGbnxnvQw3/O8Zv/6d//kf/23W4PxtnWC1dGbx5/gx/feuGQvVer8zf/4t9f/7w4Gj385a888/0fXm9B59PNVnH5L69889mr9578Ne41mgcb1eQblW8++Nb3P/nr/Hg0vnP2O3Zy/4ThnHsaJJ5tdeLue0K+r/qC7w7O3/kHnyPEtN+cPhriUw/3xLjynS8efMu7KtXFxfT1n/1Vt8Lluze2qnF56x987mvJ7FcODt6ojrz3pnZ5ngslQ/mwrut+t9ftds/Pz+ezWZjiAEBIfnZ+yhjjggXtzeFwOJtMvbdhIRiNRuEISZLduHrt9u3bpfMqVipWxhjnTAiQwgqSpml42QVjY/JCiEajERYma21ZlqEFvNfrRUrv7WzbYGiw5CsIxlijkXLOmRTW+MVi4ZzlXCiljKmTKJJSBfKccy7068MTrSrwBLlYC+mcE4JzufJcRVwX/NbgGOLSoTpYDK43BswwiHiEgzPGvCdAMlVtreUyGOGK9TK0BFU5J3SI7/I4wwKhtQbBY84JlytLsGYjeneeR8SgBSe5CFHuGgpbY5Krx2ntLsiICBkg1lESee/Lutjc2tja2phOp2+//WbaSLa2toIj0XA4DMY/nPPFYrYEElfaD+HSWWOquizyZSuVlIL86k8ThcLD48ePhWRlVSktw8Wp67rZaAWA3hkfRRECcmAqjllKwEQs4rosq6qalbOu2ZU2L21exop3extKiSv7V4DEw+qIkE1m08rUSZIwttQjTuNMa1gsFpPJZDicpKm6ceNGsciNcVrrKHrCI1iw7e3tZrMZUvHnn39+PBy99qUvj0djrfXW1lbonUzTtNlsl+WsXORVVXXbnUajMRwOh8OhMabV6kipx7PpdDqN41gKXZal9wUniDY2gtSmRR9YbMaYUMSI02T93CilJBfj8dgYkyRJkiRFsajrmjEWONplWXpPWZZxDkvRtJUbsmACEdnqeV0/AQHLllJ+1ZLwxEAh3n2eCMl7bz1yJTnnWbM5GQ2lEN57KTkBksegpMEEMGBIxBlfRhsCtNRSSueWEYNQSgrwpiAixjkgeCIZ9MzeO55EitfYOmMsGOXJFdCMKwe/8DMxCEUhAHhXbWMdWXO+9FRc1VgCfBMKQfCE8zLgckbAlW7O8piMr8tBiAhAAMwYI4LN/WqsJaJBcFfVztrQuMcYA+KcQ6SF84QAo/F4MBpKkJyg22wQ+TiLG61mUReTycR6562TSkrG13LeROSs5TJEjUvvUUbggfrd3ma3U9f1bDbz2PuaiwoAkKVp7Js7W9vz+bSRxMEqpJHEehXfXzs8CAiyMWZ6MeHW9rLs8vIyUgo8lWW5cbP53HPPfcH7CICIGkkipbbW7u3tXZ6fnZ2eNgNaVFW1tYS+mkwV4vXr14+Ojrw1BJQIaZ2Poqi3uZWm6Xg87G30q8V8q9eNBM/znDGmlUQg8iKKtBCiqopGmpLHfrdXm8qHSJ0TgyQEr4CExjaSlDzEShd53s4aMZfdbvPifFCZmnkUQuz1N5EBt55b384ajHA6HGutt5qdiIlitri8uHDONZuNLEu89yB8o5F67+t5zoXIotgYVxV5kVc2MX7hh8NhEinN5Z3Xb48fDz780svf/cnvnk/mn/3srw2qi067u7m5ub27X9f1Sy+8fPvtd37rt36r0+lcvfHMM1dvnF9cuMqlWZzEcVHk6MDWNUlfOBeYeipSWIGZmDSVwvKGSF3hjDQH/b26ri8fn0/U6Oz4stGIeld28jxXWm31+nfv3q3LqtfbiLReDKdFUcSx7ne7rVarLMskirwj1mg2Gw3noSxLzpnQqtvpTKdjAFjM5nVZOW+01poprP10OFuIPBbJ1a0kEpqKWjLmaltXJsuyjXafexYz7USkIjkbT5IkSaSez+dnl0PFsJ0lWuv97c2trS1EHI/Hg8GgKvODg704UuVicXry+OTR0fn5uRB8a2tzPp8PBotYw0av1223yfvz8/PpfK6UunnjGSFEu91uddr37z04OrqfZZliotlozEeTWEdJEkdR4r0PVOKyzGeT6f7uzsXZ6cXZaZlXBwcHZ2dnxyfn167tNdK43++fn58XRbG3t9vpdJIkvXv3bpokk/H4xo0br07eMKYGxI1ebzaZOIwZoyhSUibz+dw5df36Tl3XGxsbx8fHk8mk29/c3tudTCYg+HyxMNY67/OimM5mr7zy+cvLyyRJhGBpmvV6nYuLi7qurbVRFDFGd+/ebbfb4/G43+9vbm6ORqPhcNjtdo+Oju7cuRO+EQAE3HY6nYaEOWg9cc7rurp3767W6id/8g/eu3fv7t27i8XceUqiuN/tMcbCmj0ajcIHr1+/fnZ6eq/Ie71emiaMwfb2FqB56623qqriXDLO0MNkOAKPO5tbaZqen58HBHBjo/dUwzfj3NnZWa/XC+IGgdA9Ho9v375dVRVj1Ov1AODy8rIoiqtXr3Y6nbfeeqvT6XDOZ7PZ4eFhv9/vtHuXl5ez2SzA5bPZzFpb5YvZbLa1tRVF0XA06rY7nPOqcovFHABeeOGFb/7Yxx8fH03GgytXD4fD4cXFxfb2dpjAh8Nhs9k0VX12cso5+6Vf+sXxeHz9+vU4jq/s7J0enx63Nz73zv397Z2L0XhSFz/xyW//Wz/7NyGODq/tvnPnLVv5K4c7gknw3Xk+euMrxxdnJ71mu5GlUqhGq9nmqqpnnCWJcr/w83/bGwvWb/S7N65dl90tBkYwf3BlP8syxbidN1NBu9sb165d+8jHPpK22vuHB3kB6BznUnOFDASDNFaoFTmINTDSzgBHPZ5OyqqSigvGr1+5WuaF8cWdd+50W92tjW1XnCeJEuCkkgB1MauzTPDo6byhz3/+mz7/+a+z/q/G/1P+WQCAkOSuE40EIHnvlif7eleU1cVK2/vibLm9sQ05wFOxZgCwzvXayebm5sXFRYiDLy8vOef9fn8+n9++fZtz7hyasnj1i19GxE67bYypJrMkTW9cv8mVHAwGk8mEiExZNZtNAACiuq6Ls0Iq7pxz3hdFEZiPi0XRbreJyBg3GFwAwNXDK4zAOXd+fh5eqMlo3O/3e51uEPdHxMePj2Kti6JgjJVlXpZlp9PrttuDiwvBWFUUkVIhgen1elVVDQaDsiwR8eTkZD6fE1Gr1drb3ynLMs9zpcXu3nav1xuPx7CK03Z3d1977TXJeZgZXv7IR1qt1sXFRdDZEIzv7+7N5/Nm1ggqgQAQmi1u374NAL3eRr+/SURS8khpb12Qzbl1+23GWBzHcRRxIW7cuHH79u3gpYOI3pMWWjIZx3Fd16Y0nWZHClnZamNjI03TfL44Oznd29vrtNq2romY864siiTOrPGbm9tRFA3HkySJGBPTySxflD/6wz+yublZXD5ywIytmOLjxWR8e/EPf/lTUisln25A9ODN28a+5qxPovSZg+vFw7Ph5eTuHBqWPawqn0QiyhSXFrxFVGmsSyDvKqx4RY04TnXEnVMMQCnvfZSJftwIptBSq3ruNnd2a+P+u//3L6h2q91u37xxc7HIHz989IM/+IOz6eLO/Qcf/qaPve+lD+lO++2H947Oz15+4eViNp1fDrc6mxEQQ2tcbdF6qAF4u90u83xhayskchAkOAehJUhRFLYgzNEz4BRr5JxxKaVCTwy4UtrT18a8AAB5UZfW//iP/4Fnn7k5vDw/Pz399/70n/zk7/r2+WSymE0Lwa2pOOdayG/5lk986KUXfvVXP+t9DcA9AoJEBowDkUfyBOSBEQA5b2xA06QADgCAtEpiOToiYADce0RABkCA3hODpe5kFEXj8Vhr+b3f/l1/7I/9r/YPdmeT4awoJ4u82el+5+/+ns/88q8gIgHTKi6cASBjLGMMEQRXkiummQCK47QVp/v7+7PZ7PjoEREtCV9IeZ4HEbPg/OmcC7Q1AAiZURzHxlYnJyds5UOulPKE8/k8yCKHtDNAn4t85gOVm7N6UQNDj3ZeVEopBCzqWnAu4zgcp6oqAYwJKTgXwJ2xABwRBZPdXtd6N5qOYp0gePJIRMa6Ki+4kgFBkFxESpNHZywgtRpNb/3F2YW1lgMPGXvg+gAuicZ85RbFV9rEnDElZJqmksu6rq11wftumbQTgfcA4FcjzBVSSiEkQ08OPVoBjMkVTKBisTJXpJWhHxEBMc64RaLQY8q5kJyCLWFdM6Rlb2VQY2ZMMImEHLhg3BN460AIKaVg5J0HDowJ5j1ax4MjOtrQJC6EsK4m6wnIeccYc94EqrC1TjAV4B4pZVXX4Tw985JLpZR1NYJHwNl8DmyJtoQaWw0IHIQSmksRizRNkyTJywIAgtSY994RKqXSNGWMla6SUhZFmzGI49ihDzOt+P8x959hkmXneSB4/LXhIyN9Znnf3rIbaAAEQBAgKXpBFDkSRYmkRHFmR1ztaHa1S0mz2tE80shrHu7IjaiRSNFIAg1INIBumGbDNNpUV5fJqvSVNry79tj9cSKzqxsFox2Jw/Ojn67IiBs37j33mPd7DSUIYoiBUgoSjPAE6QZCYYC1UUJxhpkS3BbhbK+TSkJjhBQYY4CRVLk82vQBBI5FIcpoASAwwPqqQWp5VwhAmHNhKygEuXaPPM5TCCFjTAFtQSdpNITIXh+KKMBQAZ1LzvgErOGjZP+V1fM/+NTxoDH31Nn/jIjt9ueujXe71ofBtkt/4j0rv/nlb/Pjl37sPff+c7Tb3X4n8/qtf/25e+Hmwnx16X2Xv/3j/+G3zs3de9MCg6nS3FNnv/20wPM//NS9/0zaw6z/7VLFv2VDBGl9hN9+eyTxhfdeDBrle85n1Lm5e/+3ar35/NXN569+myfz/r/14/fCzdHh4It/4zf4KPmWH+x0OooJIYSUCiHkUOa7XpIkGONer2eXgowRrRWlDCFkZQGVSgVoMxqNjJJZmrrlMqE0TSXCwM4FQgiK8ebWeprFOU8pw1Rjh9JcCLutOMZb0zRVSnmeY0yZMZYlaSYlY8xOf5xzoLRLWRSPGXU8h8VxasdVrTVhE2Z0wXUD1xuPx0mSMOYcF/y0VhYdNsa4rgvIJIaNHAX3HdMWjTGWaWrXZhBCO6PZEpfWE6apZX8jhKy79BHma+2w8FFlceJdiTHFCFncz8LNGBOlsmPRm1KKHQHQ9rOWSa21JghYmyYIsD1JraC1hFJKCSHgBD3XNifJTpH6KCIOHzkDQ4itz8bx+WsreDHE913HccJCICXvdrtJEmFKjFFZNnHZBgDYoN00TYXitqhsv9cartpJPE2yLMsoZTzjhBB4ZD9tjOGcU4q1kFkmEQZZmtuZ13P9CZp/5DOhqQEAEEKEzpWeGIO4rptGKRc5GfZaAUEzM1OCZydPLp+/cOkzL3yBQBBUikJxpQTGcG5u0feCOE7Pnj2/sb5iBYNaS9d1rVF3EASlUglClKaplFJw7nluIQhDP7Dz1tra2rWrb1pWf57nrVbL0mrMPabACKFer2cgGI9jAJDr+gAAay5mr7vrulmWOQ7VQlrRkO+HKU9th7Z9xdrKpHmGECoUCtAAK99++yYd9SQ8AXwtlx5QSq2f8nFHlEoBjMCxTfjR4uboAdDfKCDIHAfLQAi0AcqitxpCaCC0FRIhBTQTjvHbmKy1BgNAa51LQZSyqGWapvhoOkcIaaUIITrXEEycaOCR/7I+WoIjCIGZmNFY6d8xUG5T6eyNOy6bmCP4GEKoj0xzwFF3AQhpKS0oDADQWjNMbLSIrbHDo+AUeJQiTTHRR4HX9iPoSGuGMcrzDCFkxW62mi2lJAjfW2jSWjNC7JCHEfIC32BkACaE6IwLbQAmUqvr16+PshFFZGluwaF0nAyZ60w1Gps7m9VSeRRH9Xp9c3OTC07tTwbgyKwDQIyMgggChLESPAxDDEGn04FG+Yx6Qe2+tchiUCC4TJQyGUeUEoQC10WCZnGKEDJKUGOKrru7uxvHMTE0GozSNJ1q1IrFYrvdLoXB5tr6ztZ2nmeCc9f1FBdGqjRN65Vy2fdGvd6o27cVwovnz22ub7RHh5tr662Dfc/zalONwXDYa7XLlUo5DFkhhBAuz88FQfD6668RQhaXl2SpdHBwQCF0HJdoA4AWgjsEGymQgOVS0E1SgjGB2GGOi6nRGiMsco4NLjiBUdpjDuCSR0nei1mjUXJ9neaDwzYhpN6YYoQMB91+t1er1QLPyYZjAdFUrZ7GCRJqyi/meX64e5gFvuPS06dPHraaQuSu6xqkgXYKThi1485BG5gOUQ7neariQjEI3MLC9EKv2VtfWXcc5+nHn65XpznnruPv7+zned7cb1YrpbNnzni+n0ax53mFMOQ8i/rjWrnCAtwf9E4uLm9vb/MsG0bj6fo01Ww8HvvYSwcJ51zmshpUXMygNrPzS8kwKvghaGhKaeD5nuNqDBlDczPT1XI5DMMkikOXamBmZ6er1WoYhi+//DIAujFVtTngUcqN0QBoKYUXhsH0jJSSOZPhJY7HPM0JxL7j2aoMgRBJjTF2HTcfx8PBKBlEWut8HPvLjCcp51xwPt1oJHE86PcfvHRhamrqS3/wJQAARnp7Y9X3Q9/3CTbj4eAAaS2E4ziCZ2fPnn3ooYdWNjfr9XoQBLdv3WLUHQ2jmzdWpqamwqCYxBkjBEMTjQaDQe9ScAkYWQj9paXFMChubm4uLy3ONmY8z2u3u/1+f3qqDmS+eXeUZ0m5FM7NzjSbB4yg73z/c5TSL3zhC8vLS7u7u4VC6HnuzZs365Xq6dOnb6zcKpWKEEIpRSEMTp86kfH89u3bWZY1Gg2jpTZmPB7bEYNSSjBLddputqAB586cTQX3POfwMNnf342npynBjktnZhrtdltr/ejjjx0cHOR5fvbsWa31KBrbAuF4PKzVavX6tOd5Wmsrt7eeqleuXLH784ODg8PDQ8/zMEGEEOZQSunJkye3trba7fbczOzBwUGn01lcXFxaWrpy5corr7wyHA539w6zLAuCIE1Tx6FTUzWt9d27dwEAZ8+evXXzBuf5hz/84SzLtJCdTmd/vzU7PVMul7e3txEiyuhK+SQh5M6dO9mN61EU+b4PAFhaWt68HzmRZ3m1XP7hH/7h559/XikFQLizs40xnpubW1paklIOh+P9/f0LFy5YYKvb7UZRFMdxv98nhFjo/K3rbx4eHkqhIYTdbtdxnHK53Gg0CoWCDcg9eXK51xvs7O5qraenp6uVUrlQXF27DQAolcsWnrBpEsVisVgsbmxsjMfjvb29OI6t5O327dthGEKIpsNysODuD4Z5MWghcLvbqTemfv+zn/0Pn/ztX/h//PfFqapBKpFRu3eoctVv9XLXgVphhLIcjcbdQhB6odMfDJQxFVrzHLC82OBZfri/e9jc3t9f7+e4NlV/7Imner3e7vYagShwnZ/9uT/77LOPQwKkAgaCOAVJwilmWhoIIcSAK0AQABjkHAx7QgkZJ+M4TQbjAWPE8zyVcd/zgNIZVEiZ597/wXHn8Ld+418wQgzQSkiEMCHUY3Qg7sdt/qPXKGMQo/3DgyRJjDEYYAOBHwaVWpU6rNVqKaMxJVgDpdT8/LzR2rqQ8Tx/8MEHX375ZbuUxwCyaZLnuRQCQai19jwvSZL9g72pRsN1Xa11uVxOkuzg4CAIAoyp43hC5JZVHSeZzLngXCnlOE6lUoEQCiE85gCHWoc013UJQUAro3QQBMYYy0vodrtTU1PPPfdcq9UajUbj4QghRBDmWe77vsucJEkwRJILJWQ8jtI4CcMw8PwTS8vGmJe//KXgqI3HY8ZYqVTa29mJSiVCSKlQQAhRjGfm5sIwHAwGWus4jjudTrPZbLVa87NzhBDG3CSKe73esSRra2sLQ1gMQn203MvzPBqPC0FRciW56vfbdklpyURWt1gsFgkh0ABSa0xPTx8c7GmtrYN2BsCdlduEoEq57NbriydOJEnc7bd839VaFkK/UAxPLs3XapXBoOdAKKTsj0evXL26f9DMuJqaXUCE2vjTr2/j7mh6uuxPBZQ6BeaHxfmKxJuvX7+6teG4jh8WkyTREmJMoixHLnOpy3WODeCGj+MoxKQehFgpjCBCNqHcpEmCGAWEGkQzra/fWfnUZ1/4ru/9XgRSxtjhfrPXG3CpX3ntNY3xTqt55TuerBRLv/O5z3bzeH/Qv3DmdK0x1draMlpjLbVWymjf96VWwHfz0TCBJtJKGYgB0trUSyHz3cGox7VGzAWUCW2gwYHrBUGYJSm0IR/f4MGcnZn7t//mdz/6Xc9BALJEJtGY8+zmm9d838UYj7LE9zyEkBa80aj/+I//2PXr1waDAaIMASSkIA6DEGaZxJNAvglfCRxRoib0pHukjZZJMaFfAGC3hRRDkSsMYLFYRNDkef7xj3/8x378T2gt17a2Jc8NUJxz15hHn3xqOBi//AdfNBAQlwohlFQIQqMB53ngeXmeI0IIMlLpeDTeSNZc1y0Wi5ZSY/0lEUKjaJwLblXSEEIv8G00KMSIUsJlDhFyXFcfBdZJKS1NBBMMIcSEEEZ917PdfjgYM9cJw3D/YBcdeVwqpcbjcRgWvDAAAPT6Q0YxQggorYRkhOR5nvB4qtZQSmUpN8ZEozEGWGlFKZNaKKEhgIwxrSXURkrpMVdKqbiURjBMk3F87KfJKJXAIIg91xOc5zLX2lA68cqwRBobKkUIBsCMh2OrYYUIua7ruo4QwgBgd3Z2u2c3+cdbOft+u2yQUhghjTGIYGOMFFoIYUXcdplhjLFX79gelFLqECqlzNOcIaa1BgYBM6kWGAMAVnbhhwF0HIdAnKc5x2JiM6iA1hoeBSoirTWQGihlJDwiQXORMcYABJZFaJPtc5FroYURUkrEEHGJg6kGEw9o7BBKaZIk1MO+X7A7LwsxYKiDIMCI2HtqQ2KppFJKxggiGAFMAZBSjvkAISQVUFC6oSclT3gCoTEIIky0FkplUmqEEDJaS6A1MsZILewllVpqrix/GSOAINBGAQw0BJBhLiWQgFIKIRCCW72vrQMoy24mxBiDCcGEKC0gQhNFLcFGAQkMwAhhLKQwGGljcs211FrrYrEIIEAYZTw3EGiojyEVZd4u0d34lZfuhZuLC7Wn//If+/xf/RUtvwXgyAKXuPfLDr6nRQeDva+uXrgHbj7xgStL77t49wu3vvkHAQBL77+8/P4r976y/9XV6GBw7ytbL7w12u0W7zn+d/yVH9r67JvZ4Fvgkoggp3A/Sch/4ZaPUxo4977ywb/zp2782svy24j7W3z24vRDJ+99BVEq//NFI7Ky/2df+5/vfuHmZ/7bfykTLrNvsd4jofvBv/On7n2FBo5I8v9c5/P/X0vihPikXChaqwQLKINJkBjNMoUxBAAy5iIAAQKMeK7rAgCiKJKSI4RKpVKlUhmO+nYZQyhGCC3ML+Vpenh4CI6ouHad47puxvkE6qHU9/3RaJSnk4p+IQiBqzD24vG4XK96ntdqtXq9HoCaYQK0khb2QYBQR2utleacW/5oEAQOpRhCSnCW5uoIIBaCAwCtQZmdju0K83hqPpar2ujpNE2PobxjFJgSxwLQ+igdFwB0PIFOBuCjiL9juzaEkMOcCcZ1JG1BR/7UCECC3yZKoqP8QG2kNtqgScSrMUIrAADQGlg7WZv+qrW2WLMxJooiaBCaeElPsgH1Ec/apovZb1HAWCyu3ii5rstFDgAYDoeHh/tSq5mZBsZ4NBphjKXUnuf1Ol1wjx2uJeZSSq0zU5akSiU8F4QQo439XcCYYziOMYYxpJRR15FSugQKKS2IihByHEfLI6Y5g4528jyP+MgARKBLEEqSOM/TJElINfRqlZLvsSCoBi7ZuH1jca7e77bbzb04TW0e2sULZxh1d/b2k2Rkp64wDOfmZs6cObO+vj4/Py+EEkKkaWbn9XK5bIze3t62diGdTucrX/lKPI7CMPT9QCoVxzGlNAgCayJujKlUKjbTz8ZoMsZst6aUMs8dDocAANuZKKUaEzn5tRRRhBCilE5NTdkOZ0NgXM+zyyPrJn5sv2W/yNZVbBXCukQYo20ouTyK5bUw6HGF/JjafNwFEf6G9v95kmJGMUJKagQmPOJW6zDNTmpgMEZSGIKJMcY6bdvObSsbaGIQPom/AMR+3BhjgDbCCGh5zRgYqZQB0ABpe9I9zhvATEoT9hGA97CbbZaFFWq9/Wgd/zT9tofGsWHM8RNriTz2UXFdl2ICDbBu6OaIn2+vkjIaHqHP93Z0m2UIjyzSj+F7+zihIytq+3rEudWSMcoIIRJAo7QCEmidS00xzrUaxREEoFoolV2/Vql2h2gYjZs7e/VSJU6T6UYjLBTah03LqAIATB56ZBFwSBCSkgOlMcY8S0eDwXg4aEzVPM9Psgy44OubzrJh3MUECiHyxFQWF2Ybjb29vTxJIABIg/bBQRZFEEIjxHg8LhQKjWrFZy6x3DWti76vlPLCgjWjtCOKS8jrr7xy5cqVD7z//Z1OZ3XlNs/Sg719q1/mnIs8xxjv7+4Q5izMzlDX6/X7KIoQxlzkc3Nzl86djeMYcD7q9aCSRkAFDEMwilJCUKVS6Q+6ru+pOBPjFFOsCWketCDBrusGrkcM0IpjiBBAUuZMI4yYApJqKFIOuC5Sn0sZd0aE0VGv7zIy6vQEcwjC2ojeQbNareZG50KZjFe9sBAU+qPBztpOr9cxxjz2xONxHAMOZZ7Plaengvru7m48yn3q5zrFGk3Xp1dvb1CKlZCMuVnyRpLms7OzrU778PDQGLOwsFAul+fn57Uxt27ditLoSKAgWofNIPRUxpu7+57jQgNFLlQmshyOumOEkEN9ICBmSOYyAQnnnGJ2+uQZY0wYFm08NwAAQ0URmp9tQAMpRhcvnldKjUajvf3d5uFBqVwuFkKlFBf5aDiQUgJIMDK2vHmwv2sdbx3HOTw81FqORqMgCETOHcbiOI7HEQUTNaUX+NiAguvPz88PxiPXdaEBkovA80uFIjTAaOM5bru5J/L4ysVzEMK11Q0lMgTceNyHQFdrZUJwrdHQRi7MzRbDQhzHRol+t52n6Q/90A9VyrVf//Vf39raskgQ5xxA7fv+cNjXWt668SYhBAPTa7e6rXaeplkUQyWlnCgf42h4+dJFKcXu3t3dPFleXj5z6oSS8EtfevnEiROLiwth4I2j4ekzJ+M4dj22vrG6u3c3KBQQQlEU53me5wtSZQjqmema0toCMf1+P01zIUStXrGgfLlYSdPUdf3p6dkoi62W5dKlS912u1yrMcYIwgRhA9Hli5fmZ+du37496PV9312Ym12NxstLp8ZRZN0bEUJBEFjr2KWlJd/3d3d3rZio0WhsbGykWeK6br1eLxQKFy5cOFYhHLaahVLR+v5/8pOflFJOKMPD/tTU1OLiYpIk/cHAht+ePn26UAy3tzajKJqdne33++urtxFCFy9enJ9rMMbiOL506ZIQahK9q3W9XhuNxsaYNE0vXDg/Tu+/PK3Vally62tf+5q1bGaMhWFYqVSSJEnTNAzDbndrNBo1m03rziylnJmZWVpaunv3bpIkSZKsrKzMzs6eO3duf38/jmNglJKcEjQzPQUhHI1Gi8tL3W731q1bszONJEk8l5XCwtb2hpbC8zyppee6URQVCgVjTBiGvu+7rru7u+u73vz8vD2Zw8PDMAyNAS5ltcbsl9+8+vh73tcZDNe+9rXb3e7tnV3fC5//1Kee/cD7CqWi0qA+M50Ps0pYZbXQ8zyRcws3GGMwNoWit7t30Ou1CWHFYiiF0EiVqkHg+Tuvr9y8dfWta68/9PDDBNFisYiws3hiETlgnAIDQCa0koC6jCdGS4MkFNoIJZXRSZaJTBilbSYGQrDgB73hIB6NkQGjzsBIFVOlkryzu3/i5NlaYyGNDxyCEIIIIKA0z8Q3Kir/UWtSyVarZVGeWq0GAfS9MAyKo2GU5YkFYVutlu1U49HIOoC3223f96empqIo6ne6QOkwDNM07XW7h1L6rletVqMoYoxBhLIsq9frw+FQa10qlaxA0vMsPAc2NjZc151qzIxGozzPpZSNanXY6/dUp1qtSiW5yCzTAUOEwMRDeQJ4YQwAKJVKEMKXvvBFGyN2TE6RUjqOMzc3Mx6Px+PYChcsvYVS+sorr3zv936vPaxD2eH+ge96GYAOcxCAQuQ3brwlhKpWq48//nipVBqNRuPhsN1ul8vlwWDAs8wo1ajXK+Xa3t6eDoAQIooiimGe54VCATvOmfNnrYuU67pra2sLCwu1ci0ZJ5cuXMi4TNbXhRSFYsl13QRnCCFGnL2dXcdxisUiQmh3dzeLE63l/u6u5VRKKYOgVCgUtra2rOZRStHrwWLolorh1NTUdzzxKMKAp5zHWXG6jrPk7uFhp6/e99wTlVr9c1982a3ef1fc7wxmG4jHHDp4OB4gp1AolcbFYI+AaugD30u4SJIYmlwZrVMFMJMAWPuyTIpM8DQxFcdxERZCaCkgwOMowp6rCEy0mKmWcqC+67s/UiqVXn7p5SceemQ0HhsIg0LYWRksnTiRKOGXi6M8a0fDS48/Mlzf+uL1q+eWl+cunNt96zqVwieYAQCVDjxPEAIxSgyPtUGUGS4pYwnQgCBWKuRRIgzAGiAFkQFAKs/xJRdAawhBnt//CvyJH/j+B8+dvrOyhjCem58pT1X63d7+4cHWxuYDDzxQnqqMRiMITeC5EJgHH7j0yMMPvPj5L0BoIDAIGplzhIhDHKWOZHkAGm3UZB0LILTEETMR8EEFIdSWkWSMBhoYQ9EkDqgxXbdJ5lONmXGUvPHmW5VqKY7jMPQBMBhjpXKM0Hd/3/e0Ou2XXvrCmfPnvELxxu1b80uLwCBGSKfVhhBiqqSUxCFBoai1tmaDQVBIkuiYrmGMSdPcQIhx7nmeMRxATDBI07RQCAhxbD2Jc24fz4nkGWO734EAS6GVo0vF0nA8ykQ6W56z/sXWw2F2ZibP83a3EwSBw5zeYORQxgjBGBujcpAZrUM/gAFWSg36o0KhYPf8COGAeTbxdZyPHcexSIeU0ncDrWVmMqknjGMAECHMih2VVApIhzHf88ZSAgAsy5gibIwJCsUoTY6s8CamE8dAAIDQ8rvlUaij53lykp4NjTGEUCmVhYyP+g60oVUq54wxbczxECSEgAhRSuHENNMYA7TSUnMLmlt8R0ppyYPWsgIAAJSaRMgwZscrhFCe51GaOI4z2bETy7PRxihpJFBACw250ROPUQnVhJiVDSY55IRhTFDAfMZIEASWlG1p4HISLCRn6JQlAk+Y1xAqpTA1kMI0T6CBhBEtRCw5xpgrro0ihhiguBATw2gDIaQGGK2NBtIQYIARghvDKaVSSaUNhQSAibl2lmUS2MwtrSFQWhkFIcFCyWO9r1aTO0II4VIaCC0lX0oZx7E2mlH3eMtJKZWKW5DFbuExouCIgZimaRAEFoESQjBGLCPK0vEAAJaFpmzGkcW8j9rdl269C7G98qfe9/m/+ivfcp51ij4L37EtvG8M4Mqvf+nCDz99/E+3Gl760WfvvnT7W/BnEbr0o8941fCdh3r5Xe9K2qP9r63ee/LTj5woLH5b9hRu/R0HBwj9IcQMQoTGu53qufm3T6MSPv5z3/2Vv/2Jb/5B4rKP/q8/C++5cVrrw9fWicv4N0acT3zowcVnLiCGX/ul56O9+9E6AAAAIILcSuEvbv0S9Z0H/qv3nf/Bp/7td/7iwWub3/xqPP4XvtutvOMaRnu9b6C0+cNrhBAI5aRAlSWMEK9QyPOcMsg5r5TLSZIYrRnFlFIL/lCGtdYIg2IpXFxctAYapXLZisitmGxpeSFP8nK5vLq6ijFeWlqySRUW6LOQKKU0z/NKqcA5T+MkTdNyubg4fzGO41u3btm5yY66aZIXPUdrnacpQiQIAsf17XRmQ5j39vZ8369UKqVSyXKGsjS3X2TLe5NqIoTQAMKo/S22gmhHSLu+tViqZRPbKuNkJj9S89txmBBig/vuZRPbaegYabUzkTmS8h9xNycqGYIs2Rm/C+YCRyAhODIAkFLaVGEIIdRQqIl5NCHEckknSCMw6Di3TCkhhNYSIGjJ6bYyp6GdB3UQBMVSwRiT8yzLEghNuVrJssRxnKmpKZu2LYSyokPOuSXXjocjNWFcQyV0nucxYVEUUUwhhAQQg4jF/tRRZRqBCfsbGmtRQAg2xwYmGCGDJpc0MzmGmBDPYEWZi8YYAkBdJ8QhGWDy2AMXH3r4cjwa7h/sPPvss3uHh5958Yut5i5x/SsPXJyamup0erduvvXY40/4Hm21m1mW2bXOiRNLOzs7BwcH5XJ5NIrSNJVS2YmBc04INsaMRiMuhVW1AG1arZYQklAKAMilwBhbiytKaZ6knHNoAMQTJNQuAiyKb21HjIaWcg8UGI/H9s4ZBI0xtuJh+41dftlEsuPbb1nxhJA8n4QB2vkMY2z5wUoJu+expaHj/4f6beK9PjLesh2IkPun2U56qpJKA4QIo1ikGYam1WoZY4xRtpPJXEohKLW+0lJKZUVtliiBMYYEK6Uow4QQrSVCCGijtEQAG6AAgABjghDQR/bhEMFjy2RzD8J7lMJsGyYEQ6SlhPdspI+fFtvjoeX/AkCs35jW8iiq0a5BbGmIUQaUBgAAPYnRtCOCLU1DhCB4G262B9dH60KA3qZ1g7cN4I9COY/frzWjE+MehBA4gqchgRrBYRxt79z1AK0VSiiXepwmg9G416vPTnkA5xqIOEkMIBhPxhEIlFQIIWCAMYBCpJU9YQoNMFoVw6AUeuVC0WG0P/bH91O8ayWAljI3SgoE4aDT9ShxCSalImMsiqJ+P0tG41qtpjHtRe2ZxlSpEEouRJpk0dgYMzMz43lemqZpmuZxBCEslkpKqShN3njjtbm5OaUMJFhkebPd8j1H2TR0SHq9XqFU1DzTxuRSAGNqpZLW+vBwsLe91WjUEUJuEEzXqnEct3tdl5K5+TmllO+7CKE0GlNp8sE4xEwbMDc1Kyo1AEAURXu7e0EQYIO8QqEQht1uN4sTjCml9HB/H2NcKhSVUiLnmUj6e33GmEOLFCOjtBASISSNGg9HjFItZB7nBgKe5TqXxVr44HuvFIvFfr/f3m/1+wPH8QphSQjlYgd62BjDCCqVirYcVyiUbPFt72C/XKm1Ou1+vy+NphQ3O81iMdw/OOgO+lJKDSZdyy6pCUQI4WazZWcshtlwME6jnBCCKMIIWzhjNBoN03GhGKR5Vm9Maa0ff/KJlZUVuznZ299SqpPGmcPcUrE4HAystCcoBAAAnueU0uFwaHn6eZ6fu3BeSnl4eDgcDgVPpciV5Inko2G/Uqk88fjjURR5nttoNG7dulUuFZHIq9W6JarMzM8Nh8P19c2Fmdk0ywAAH3jufYSQdqfZbrfH47HkGdTg2sb6U09+R6PRePyxR4QQ+/v7EJELtdr29jZl+NKlS5TSu1ubL774otZ6bnl+cXExy7Jr165ZcGdubq7X6z/66KPT09Mrt28uLs4XCh4X2Xg8zvJ4YW7hkUceeemll/PMYEZbrcMs477jep7XydONjbU4jilBoe9RjBr1qWaz3e20Ou0mAODkyZPPPP1UEATNg32tZaMxFcdxvVpGhKVpWi6X8zw/PNwrFovz8zOHh60kjjzfPX3m1OqdtSDwAj9I0xQaEASe3Utcu3YNEUMIKReLH/zA+373t3/ncH+vUChopQhGaZp95tOfMsbYCmK7NbLyYbucIhivra0dUwuVUgcHB3ZEiqKo1+shhMIwHAz7URR1Oh1rpjQYDJRS/X6fUtpoNOxlP336tH3PcDhcXFxqt9urq6sXLlyoVCqU0ps3b87NziilUs+LoihJolIh6Ha71mFjaWF+Z2fH87xGY2Y0at69e5dQp9Pp+L7/He95Fuzucp5LKb8RVhIEQetw9JnPvDA/P2v35Bax2tnZiePYunnYwqo1wHEcJ03T7e3tmZmZ6enpZrO5sbGR5zkAoFwuO46TxykXWfNwP4nH9klZu5N2el3fZUqJ2dnpQhCcPnPSaNlsHjDGxv3xwvx8sVi0FrR37twpFot7e3uc85nG9EMPPbS3t9ftdoMgiOMkSZITlxbWdnb8am3j8PBzf/BlgShznEiqolfd3Ni5tf4vLz/08OL8chCUZquLLmZ+IxQ555wjBDCAWZYpYGaZOx6P292OUqLVPqSYMEbGyZhSXC15PKtmgn/+85+5dP7Ke9/z8SiKPv3Zz/z0z/yEwSATIFOGYpwLYADMcwUElJJLYEOxESEEEYQQhhBCDDHDbhgYrVXGk2EsOB8O2r1mW41HJRfVpxf2tvvUAUgLqLQxWnHF3P79F/h/xJpDxoi69Xr98KBlLdsGg0EQBAsLC67rWpg1TXKONed8NBh6/shOQ8aYf/gP/sE4ilzXRQg1WwcUk3q9mqdZFEVCSa1NNOhb4EkIMT09bTm8GOPhcBhFEcbQLnAdxykUgyxPCEUAsGazebxML5ZCF7uEkMDzEUI7O9sWnfGB2dvb8RzXoST0PSFUuVzGGB8eHtpsQ6vjS9MYAsDz3BgTx3GtVsMYDwYDW80dj8eHh4eLi4u9Xs8Oenb5UKmUBoOBUdr33V6v88orr8zOzgIAut0uIWR9fX08Hk9NTdlRYjjqc5FRTjXiWRINssx13dFoMDs9s7G2bheW8/PzpVKp2Ww2m20rYEeQ9DvdXAq7AQMAMMbiGPb7fYxxnqQWXHYcxwCitbbPZhAEYRjGUVoslPVkfaXyPPMcrJQ4eXK5UAji4bBYCAaCH3a6B91uoVo7c2Xu9PmzqysbjLEsTsn9aGqFcinlo3KhqDKOIFUQ3T7cvba/nYVupVrkgMQIpHhCJFBKSA2UloHvYkOA1jHPHCULGHMplZFcaYiQoThHZpxzhJ1Hnn4SuPTM+XN3Vle73c7c3NwXv/jF5ZMnqvWaUurMmTNffvUr2KE//IM/+NqXv/Lm66+dW1p44qmHv/jZzz51+Up5abZ5e7UYlKjWSgoXU+K5GkGuNPZdoxFlFELDOXcBKlSqmTBZxqHUWEOMoMz4aNDLhWAOlSLH8P6gwMprX/7JT/71VOtCrfLIU08++57nHnvsiTMXLq6ub/7mv/+PH/jw+8rlolGy3cwoRguLc+9973tffPFFyXOCHZc5nGtjICVOLgUwQKrMLlYn9nEQ6qMQF2DMJOEEGGgMgAYABTSAECCEjTEYAVuci6IkSZK3bt6YP7Hk+p7SAGCilAAAKK3zcUQZm1taTHJ+4tTJZ97znn/1r3+5Wq+laZ4kSaPROPIUFnapXCgUKCbtdlvS3HcdgKCURw7FGNuZNM2zqampUqkkeNZut8dJbIOhXOwWi0UIofWWmVC6jIHGIIS1Mb1ez0qw7X41ikeVatUWqvM0hRiHfpCnmRBKTRyoci0VQohAFBaKYRAMBoNuu0OJUygUhBASQgSRMcZIpYXEAMejOIuzQiEgGDPGkkQCgKAxBGEAACMTj0sLxYZ+yRgz7A2FEAQRySXGOFe5VQQ7goosJ2SyF9Na+74fxzEhhGCcC6m1RhDqo3Q+eKTCnNwgjI3SWiqRc2OMBtYVY+KnCTCixDFAKaXQ0YsEYCVVzrkl3NxLgrO7QkrZhNcihJRSaGUxUAxoynOEoIEGM+IBD2EgJUcYU0wAmAhTucwJIYQ59n5ZRhM6anZILJfL9q8QQpujnud5lmXKSKmNNhoh5LiO3d6meWrBF2BAlmciSwuFAsRQa0AwAhrxNDVQY4yF4hooAIDSEhMbhIuyXCuoldZS5HZfZoBxKOE8gxAbowxEBuI4jeyeXUqDMdHGGIBstiFCSClLRbe/BbsuPUZ/ADCMUIqJlgoByJjjeb4FuwXnEEKjAKKQ53zCeSeYYAyMIRhbxibPc6N1IQw9z+v3+2mcAADshj1PM4gnfcP29uNRImkO3sVIDWeqP7vyj3/pzF/8JpPs1JXFH/nEfwfeWYGeffLs3S++m7a8//q6FhLRtyGCR//iR6NO9Ad//d99k+M/94s/8shf+Mi9rygu919f//p3HryyfuEH34azEUY//ebf+2cP/qX29Z1vcvyffPV/cgrvCCE889FHPv9X/vdv8pH/LK17c+erf+93P/C3fvxeoPa5v/7x1d/+Wnflm1laP/IzH65fXrz3lcHdzvP/9T/lo29Iiz7/I09/4H/8icqZGaDM8geufOJP/P3RTue+72Rl/6de+9vUn9CuWeh+/JP/z39y4mffHfp3T6tdmH/ub3z83leyQfyV//m3uze/2WX/Q2haSSU48wLrQS8lB1oSNHFJIgRBaLIs0ULSYhEoTTAWWY4QClzPGKV4rgU3UuRaSowJotYwNo3idrvtur6t67z9dVpXy2UFlPVf5lnm+y5BGBqQRKPmwUE8HnPOlZBpnEAIkyjOU05Q4mIIADQQMkoZcy0RxNZKrbOErfGHfkEJORZjrbXrukmSKKUYc+w7bSwWI/QIxgUAgGMC5TFMF8cxxtiSTS2ciODEKMOO1QghISaRfeAo2esYLAbAhrq9bcCgtVZGW7Nc+1cIoQFKyiMGKpq44MqjKMLjtwEzGQ/twY/j04xRkyS4I7A746m9a0IJoYQxxkiNMC6VSsRh9rCu63qeV65WDOAYQ0KQMYY6zPU9KQudTstaIeW5SKIYThIRCcY4TRMIYblQEkIkSWaROiEUhghjjPTbzFSE8DHvUxlttDLGUEgNMlpro6GSUt3jRQ4BRghpojnPEELSSKlSnGlo9NgMHJ+USgXi+xgDVS352dipl4Nr1/a/9pXXUgFOLJSfefrxw8NWuy04z1764hcefezx/f394XAYhiHnfGVlxV7iLMsgxAAAm3SfJEm9XisUCs1m004bE+46sGl+VGljgUshBCFsQmDJOcYUAoAhlkaHYeC6rhAi5bktzCKEDIDGGCWEtUEBAAghNAQYY5toablp9sfLo8DAYyavvZ1CSQwncX9ggnJOwvpsjcKudeBRrIG9+hYeOq6y2gfDdd4hDzlugR9yYcnnFAFsFHALOEdGiBwA7bpuZBFVBBAk9wLBAE54vkAqbYyUikBotGX7Qi0VAIBgBAEACiloCIAQIRu/ZstHb8+DBoCj5Qi6h9psjlnM9773qEGMjlF1+6sBhPqoMGJ/uzHQ8zxGGUFYa23t0I4fUWPuPTAAR8zl4xOwvwJjbEvNxwPE5KlGAJhJ7drC1gAhjLEGRimFIQQQAaUNAEIrRvGbN653x91iUJwulykgOJfPPPrY1atXWwdtNjMdEpYrEVDHQURiIoSABNuHB5mja4KA1lpIjiGgEFCKGaYQmH6nreHMO1w1j1qhEE5V5qLhKEmiSqWilIJGAa2gUVBJpFU5DPI8T8ejOIrOnzvz3HPP7e3tvfnmm2Hoh76X53mlVEQIRaOh57DZ2enNzc2ZmYY1NIeUcC7zPHVdRggiEJXLZcGznZ3+iRNL58+fb7e74zjSWrc6vcuXL6ZRPBwOi6Gf53k06NdqNcEzIYTr0IXpWa1156A5M9s4tbS8ubkJlTK5qJbLi4uL6+vrMk7n5+biOHIMit1h+7Bdq9V4lHTGseM4TlAaDoeO4zQaDSGE1BpC4/u+HwaFQmE4HBqlq426lLJ5cFCtVrXWg8GIEHTu3LksXzUGzs7Onzzpnji1DCFcXV3d39+nlPp+aI0F81xwzoWQ5XK5WGwkSaKUMAAMRn0IsOu6Ybk0NTMVRVF30D19+jR1WKt1OBgMwlIxPTh0XBdoTSllDgnDUPJ8OBxzLn0/zLKs2+0vL52E4xHDbhRFlmqUZQmE0A9crRmEkDHWbB70er3t7c0sy8q1aq/Xw8Y4zGUl52DvIEvyOEptocUoAxFqtzoQAUadPOMQgLNnz7Vah9FoTCkNPNdzGKWE87RSrMw2GgAAxXkajzDUkmcuI1kmIYQXL55/8MEHs4x/7Wtfu379+nA4LBbLhNJGo3FndWU0GlnKocVTZqZrjz/++O07t3a2tuv1uuM4vV5nNIqSNCqWQmNMr9exwu2zF85ThJfPnJifn88y/rnPfS5N87nZhfF4XK1WCCGDwcA6ohqtoQEOpfF4bHHVQiFYu33HjoGB654+fQoAsLCw8Pu///sYmAcvXyEUaa2jeJRlydmzp+M4vn379mDQS9OZnZ2dra0tzvnOzo7v+4eHh1JKrqQ2kjF2Ymmh1+spkS/MzWzdvcsIVkK6nmOMGQx6SZIsL59M0xQhOysbwXOeZ3mWfuZTn/I9j1FqU7xkzl3KZM4ZY8iAeDRO0xRqHccxO2pT9Xq1VrOEd1sU9H3fAs2VSmUwGBBCzp8/v7i4eHBwoLVutVppmjabTd/3y+UyIWRhYUEJyTl3XVarVfr9bsH3H/3Qhz7z4gvPP/+pRqMBAKCUbm1tnT59+syZMwcHey5jUkrXdRcXF6XkVnfW6fR6vcHc3NyHP/yR23fuxHE8Go36/b41o9jc3KTBFLif+WoUjavVapIknudZazAb3dZoNC5duHjz5k1KnUIQ9vv9MAxLhSKw1pxJur25lUTxeDxmhEIDxsPR9PR04Pm6JMrlcqvVtDaInufu7O0KLgulYrfbD32/NDe3srJilKxUKlmazk7PIoTsZbl+/XqhUIjjuF6vT09Pa62bzWan0ykUitPT0/1+Xym1cXCoELlw6fKLL38pi1PXL2TjeOnUSYhgd7/9wz/6I2fOn8tSXgzKUGOHuhkfYwAdQofDob1uWZIe7B5wziulap6nKuJKKc4BQigTXIksDNyKU3rggcvnzl1otg6Mhr/5m7/RbLX+6l/7BULtChJoATjXxhiIIaUO0BIR6GIHaDvFAuIARIAAoGqKAAAogczMoDssylmTi/Vbt6JuszG7uHP3jgaaUWJMCrUBADugX8f/saN+8L5z/R+R5uNPMLdpDEvT1HEpRIY5JM3iWr0yvzC7v3e4tbVlmW55npdKBd9zIIRCCOsPXqlUXJdNTTeGw+FUvep5HtDGRu2dWFrmUmxsrE1NTYVh6Lru9PR0kiQ3b95UytiSkoVTXdcdjUbD/sChbHqqYYyJktj6A9p1o+/7QJuxHFtytO/7ln8x7A+E71cqFa31+fNne73e3t6B1tqa4TiOA4CmhDSbzV6vpzQYjUaU0lOnTvm+2+22GSMHB3sQQkrpcNiHEBKCGCN2hI+iiBCyMDdvjOl0OkrwqanpQhCOx+MsSV3mWOPmeBw5jrO8uMSlGA6HjUbj5MmTFCPf92/evGkrSTbad2lpCUMkpQ79gCDc6faMMZViSWsdj8Zaa+sWUi6Xj0k3AIA4GlnTdkxJuVjCGI8Gw+OKV1DwhZQQmizLimFw+dKF5t4OQ2bQj+5s3b1683qGzcOPP5bnfHt7+8Tycprnq3fvD7bOLCx0+yuUMQ9Qx6NCi9feutrPomJYcMOAx2kOtfaJNBpqozQYRCmBcHZqWiYJSLNhNPZcn4NJdDs3SkhAqCO0HGVZsVIuV0ufe/klheHi4rKDkeOQD37wOx3Xu3r16ng4mKqUV6/faPe6j52/kPd7j5w/t7axmqn84kOXr7517XSxVq5UBM89RgkkgeuNITBAQQgRIYYbjBA1BkkNhfI9x6FUpBxrhCDEAPmlEnGpggZjA7US6f2V4yerfhVV7uzevbu6+8KLX/zluX/1k3/mz/35P/9zDzz48Esvvfyrv/pvH3vssaWFeUIQxWTlxs16tXr54sU33rwOKGLUJxBobShABmEhxHGwCoBAm4mKdkJkOUo8MUAbYAxQBhgICTJgIqBkzHoaDAaDURKdvXC+Uqm4rl8s0zSNjTEIQeq4UspcyLBcDsLQ87wL5849cPHSzt5ev93WwExPNZRSw+EQaB0EgTJm2B9IIarlSpqm1GFSSpdRiBHnPBO8FJQ0MNbwMMsyrWW1Xul0OlmW2V16ZJTWejweA4DwxAgEMOZaGprNrZk4TkAlFLeOeVxkaZpa+8Q8z0WSAQAgYcBAKTUGClFqDfqyLAv8gtY6jlOb10QpzbOco4leIQxD65wQx2mWWUYwBgCSSZAgs1UZhzqe5+WaU0pzhPI0Yy71Q09rDYArhBj0hpTScrFiCUlWLaG4KIUFa9pDCEYA5lJQSsmRDJkxJuVkw+I4DiP0mMMFtDZKA3SEI2gDMNQKAGhstLsFO+ym0sIK9rPHjDkIIVdSCgkAIA6jrsOULBRCS9DLeaqFNgBorWv1ih0rHM8LggDACYTRoHU76BFCtFEWFrFfYamLxhgJlBKZ1tpWbSdoCJ6cNgYYQpjLHCGklRZKIISEFlpr4hCoXCUNOApRtMfPMs4CR2stpTZGGWOAMYJLAAAXEmMMkYEYOYxCA5IkibMEGWjRJ6WUEHmSJAAAz/M0RPBI0oogNgYqDQDElDHL+nKYUyqVtNZJGkEIeZLkShmpjDFQGy20gLndhmMIEURayzxJtdZAa8EFZFADkHBuN6ppFAO7zxUSGYAMUNJwzjnkk+0qAVYqbY5Y1cft5b/5m9/zz38Os7cR4crpmb88/Def+JN/f+uFt95lqhDOV5/+S9/z5C98/7uwZgBA843Nrx+FBmuHmy++dfojj9z74nt/8UfOfO8jv/eT/6R1c+8dFFqEGlfmP/bPfn7uiTPgnYff/txbg7Xm1x//jX/66Sf+m4+Fs5W3X4Lwz137+6/83d/56j/8nWj3HZRe4rLlD175wV/5BVZ8d4ly7yt3vv7g/yXaW7/8+cVnL5z9/iedo3MgHvuvXv4ff++n/sndL9z4ehsQf6r42F/8yHv+X+/AdpVUz//ZX/pGWLNbDS/+8FMf+aWfRbZrErjwzIWfeuPv/Jvn/tpg4/DrXTKyTrT5/NWH/tyH7v3S9//NP/mlv/Ufvt7F2y37S++7/D3/8ueJ97aVSj5K137n1bf+9ee/7cvwX6oRgjHGWZYArYphwQ68UkqlBCFEcQGUzuIkNbEQeRAUJm68GtpnzXqLAQAMQcYY12UAuFmWDQaDLMv6/b7r+nYvMBqNbJnNGOVQSqAxSkFo0jhBCGnJrWC01+na4cgqDGq1KUKGnudRStI8R4hkWcbFJKLWGGOXWNPT0zzLu+2OqWpriFEsFu1EdqzFsQV7G1ogcs7FxIzYGC2ljKLIEpwtJms3hpZsaoyxM/gxymeMsZXae/ErAIBFDuFRbKzU1vdZCyEM1AAAe2RogAHK4syW6noM5d0LMNqB/ZhDaTFtCCHFBBFss9AghABoyxU2Rzxue0CMIcYUAJDylFJKCPLDAGNcLBUwhgCiOI6l5ELkGkyYWMPheDC46TInz3OtdRgWC4WCVVlZA1tCSJZxW4aEEGMokXVqBhAhhMDkhI+BUK00QoBSyhiTRk4gEQ0NmCCrCCGIDICTbEYhBNdcSE1SyTBhRTYzMzVdmiM3rr95483XLl84E0fDl7+oFRff87Hnrq6sXr+50zz838+ev9DrdOZn5imlq7fvtJrNLDfH3v/2KhNCMEYWIrTs41KpNDMzc3h4qJQycIL8av0OINLCzfbGAwCQjTjIuQX+pdRJkiklNDDHPHNMoBRaA4ChpoRNJktjLJCt4SQ+2h7/uFfZfyKEpFZSKwCMQW+nTIBjZwxgzD3+EuAoXxIYpLUWShnOpdYQ2ihhoZSi7P6CaK01xQQio6QkFBlgCIaA0iyJms2Daim0xX5CiNETU+Mj5r/WRx7HWmulteN5ttPbqjKEUANAIAQEQmlDgDUCECIIzH01vwhjYGH042fAxuKBe9Bhfc+ZT8o+ttsdIcX2dWCDQQEi8O3kTUtuNUajI19sdJTjYZ9ddGTlPrnOR6sicERqNkdGbJaEjTAyyiaWakoppcworQHQxlAbjag0JsQL/FiJQTRyoHN66UQ1KObj2NH6p3/iT+M//VOfffGFr73+6sr6aqFaniqUr0UJc6jkCgJorOWINhBCJbTUEmNstDIAYOsoLwRDkBKUCnFfuHlhdqYURO12m3MeBl6e51EUcZ5RSgHBc7PTp0+fbrfbd+/eFTyjFL/55hvGmGg07LQPL1w47wcuJnAw6IcF317k06dOOK5TLIZS8sNWG0KIELTjAgDAwgdh6IdhiBAiBEnJjYFh6FerVVAsdDuterVWLhcxxpVqWUrZ7fV6vT7GGCGAjY76w807a/1+f2FmtlGpz8/PD6Ox57oAGAIhUBoYU6/W6tXacDjsdjoIodnZ2alGXSruhp4XeCaGmnMrMigXCzxLz54+ZaOcpqenK7ValqaVSsX3/emp+sLCgoGg3W7HaZILfuPGDYPg3bt3e73eiRMnpmameC591z08aBUKQRynWRYXCn7OY8657/t+GPZ6PYMggWR7e9vyVZMkMrHxXS8Ign5/iDGen59vt9utbqdSKhBCsiQe9vu1Wg1DFMexVkApVSpV4tFQa5dSCpEhxB/0+jxLLTc/jseFQuHhhx/OsrTX63ueJ3OupMAYE0QuXboEFJiamhJCIEKyLEuyWCkVx7GSk1mwUq3nPOr3OssnFhcXF1dXbvd6PYqdnMeNqcre3t4rX31Zaz09PQ2Nxhg2GvULp89Ko2/duT0YDFZW73zsYx9buXP75s2bSutarXZwmHW73Xq9HsexlHJhYa7b7oyGEUJIaEUIMQhaU91ytdzv97Msi6KRNTb1PG8wGLx59erNGzf6/b6S5sGHH4rjdDQeaK0//4UXpZQYw+XFJQNUvV69dOny2tra/Px8Mo62N7bPnz+/v7+vtX78iUdtQXEcDS9dvuD7/qVLl7761a92Oh270fIcemLp/ImlhcFgsLF2RwFTKAaLixdOnTqVJvnd3Z2vfvWr43FcqZSCIMAa7N7deez7H33w4Yd++Zd/udtu74t9xlylFGXkobMPEUJu376dZbxarc7OzpaKweHhoeu6S0tLAIA7d1YZJlaTaw2UWq1WpVJmjEkp7ty5w5gzPz8/oVlp3Wm3uRC1Wm16etrGBtopAGNsnYspJoNevxCEm5ub9lKfOHHCCnIRgBKK3nColLAEyfc888xoGMVxvLyw2Do4tKsQAMCVK1dWVlYgNBcvXvRdl3M+Hg8ZwfE463cH9XodAJDneafTSzM+GAwqlcrc3Nz29rYtnZarleFY3BduzvO8XAwvXLhgl182mc1ulp5++ulCofDGG2/aNGGl1Pnz51dXVxlj1Wp1bW0tiiKbS2aBgziOfd8f9TrFILhw9txXvvolh+LxePj4o49BjAhlu7u76+ubcRxXKiVogFIqS9NKtVqt1NIkq1XrCwsLltRgzawghLu7e4VCwYoJTp8+fe3atdLc3Lnzlw/a7c5hhyFHZ6JQKJ46deb6W29S5j/2yONCCKyI57g8VwfN/TQbWW1dFEVcCinlYDDK89z3fYR0o9YohaXt3W2rkwUAYYgkz06cOOEXi7u7u47jpFHa3Nv7W3/zbyIMf+rP/exUw89SIBkgDoIM5QpgDHxCCAXAAMUBBgBjoAHQCCgBMAVKAYAAcaEhiCqQSV4qlZDMasULrcPNqL8PVQIRgpMMA7JE/qERqCu//77T/f/pLaC/K0f/90E+DsPQJlUUi0XOeRAEZ86c6Xa7zCG9flIoFIIgAAZF47ENnIQQMkayLKHUlZKWi6XTJ0+sra0NBj0lJdBqplG39mUPP/jQ3v7Owf6+47DpxpRWynXdKIoopcvLy+vr661Wq1gsOg61i2q7Nqu77uLiIpdiMBhYqzQEoLVJrderFrbe2Fwfj8eUUMsCXltbazabnhcEQWDXALVK1XGpDfb0PA8TMhqNOFecZ/YEwnBCmBqPxw899NDh4WGz2bSCyl6vV6/XrYi+VCpZKsfa2h0IoVLGMgS73W6pVGo0GrVarVgsZjy3sgCX0U6nY7MKC8VwcXGxWCqMR5HFwrIsq9VqeZ4jaK5cviiUjKLI5pEQPGMjvFyPiZwnSWI50ePxeHd3t1Qq2IHu5vVbNuO0Xq87HgsDfzQaACMcx0mSiCBAKBr2hrfWVzMtg1KJuQ5FeOnM4nS1kSepMNXd+6mEd/cPHBfGceoVKSK4UilLkwOoKqUixTDnuQJKYpBLaRDQRmsXIoOklDoXHmOKedyYYZo6BCstAIISQi65MEYaTQFYu/7WW1/9anVmeqZY6uze/Y+/9iunz56/u3/w6quv1qvVf/sv/vnosCmT0b/6R//IR3i2Wn/47NlE8hOzM/s3biSDfoCJEXkmeaUQ+g7rjPsEIkqwksolDkiVSzAACOS5pYkioyHUCFGtVaEYFivFdq+djPvZcAzk1H0fBx/J+eXpMMDlVoEQdHuz83f/9v9UCgsf/e7v+8Ef/P7f/9RvdbvdmcaUyHWqdZ7nkov52bkb11cYJlBJpDWBhCFIGNYEcm2EEFJJADECwMonzUQ7PYGbITIAaGgMBMBAbLS0/CanWKCOo5QSWkAAi8VipVKJolEBF618xHFot9PMsxwAMDXdWDyxfGJp+dUvf/WTv/WJQql07sL5jMs0TcOCL3mWxomWolQq9bodLgVj7Pz584ftVnPQY45XqVWllMVikVLKOa9USpbpb4Cwl8Xx3CRJDNSYelZGxhhDiNi6ggJG8FxxwSjmQjiOgwmRUlvJlzHGcandrwIAHOJQpI2BAIAsy6A2SZa5rhacj7NsOBhbN08uReAwCF3O8zRNAdTFYhEaBDSEBimRM0KNMQRhitni/IytfGvNgyCwj3O323V8r1ar+dSTbm6dOqWRCCGHUGs9b0FYxYXiAmoDMJBcIIKLQQiAGSex5W1JS53jnDEHISOEsDC6QRrcw4wDAGCIDZxUeS27GCEklZkAu9IAIG3snvVwQBhoraXRDDGMsZB5lucW12aMMZfmea6N8nzPCUucc0xgGIaFQsFxqFDS/oQsz60ZOCQ4SRIIjTRCKgmUpekYu/ixQ6viCiHkOI5DqN1HK6ORMcZoiNCkWqC47/haqNpU1dYOLVSBDAUaYIylkfEollJqCIwxlEqEEIQAAoww0lrzTAAAILG0Oxsvj4/3d4pLpZTFQYwxxWJxEq1EmTwSzuojR1SMEM9zW8mwkJAQgnNuMaM0TbM0t6CwlNoufcGRcQpjzIqW7YbdjrF28lJCQgiLxeJgMOBZbpSmlCIA7R3XWhOEDUJGAQMBQsQalR635pubb/6Lzz70Zz90L+LMit6PfOKv3P4PX3n9//tpbp2FEaqenHr2r328dm7u67FmAMB9TTURQa//0qf9amH2iTPHL0II5x478xMv/X9e+Ue/t/mpq1pKAABm5NRHHn7i5z/mVIJ3HeTgaxuv/9LziKCvd5TWUn/l7/72c3/94/c6e0AIn/yF7zv1vY+8/D/8Rn+jbRFtFrqP/PmPXPihpxC5z272D80pTGb8Uz//z5c/cMW5B/L2q+GPfOK/767sbTz/xp1PfI2nHCFUPjl1/oeevteKxLa0M77x717afPHaN/oK4rP3/+2fRPgdP9OvFT/0D/7Mv/uuv3Hfj1z715+/8KPPOKW3Gd9P/qXve/Ivfd/Kv//Kym9+ebDZMgAwj537gSdOfeSR2oX5d32cj5JP/fw//5Z2z38IDQKopbQlN1sb41xYsiQjFACAALx88VKlUjk4OBgOhxCAbrufZZm1bLaxeL7vp1pQSpnr8Cy3wtBjJM2qXuzXMcYsFAYAStNUS2GMqVeqCGjf9Qgh3W7XAnecc0JYnieU0vF4PFLSThxxnFLGKpWaMWYcj2ydkmJi7TJarRZCxHVdx3UhhLVaLcsyrY0dQ6yNm91HcM6No62hjaUzHjtpWOGaUspKyYUQRk9qhMcCGko9cMR3xBgTMgkns9E4QigtjYHCehIgBDBlx2Og1tpMUsYmsOyxU9O9E8rk/yfsZ6K1tKOTRZwN1FJKC1UihLRWNq8VQlgqFQAAQghAAIQwz3OEgNJSSu44ge+7g9Hw7vaancqFEMx1ZmdnpZSVSqXb7Y6HMQAAEWTtsxhjvuvFaRLHSZZxKy40xmhpJr4o2mgNIQAa2NEbaCGhdRnTBiFsJzSoob1HxpYlj0xI7PicpuMiKlqn2VK5Wq1NlcKCqsXdYYdzTqrVKkMGaI0hEjlfmJt/5Mln3rj+9wgBjzzyiBDqzso+xeyj3/09r73xxurqupDgyFlCUkrr9Xqe50oZY4yUQmtjdYI2v4gQkvEcTDY2zIICECIAwOSnHt1moIA6SpyzbOUJPHqU4WjvnDGGHTm5qKPkhwlqLJX1ZzguOx8VByaEVjCh2WsLkr79oEJIILKaqeP3QwiNAVpr62VsUzXsdGVBbWNMkqT3ffLjOI6isVRCS+D7zEhFAERQG6GVELb/UYoVV0pqgt+mWsOjfD8FALGGyEemRQghaACEBmCjtAIaIoQoYxRgLY1S5ggafrs+c9Qmv/H4x2qtLdwMjw2Hjt+K4LHC7vg5sRffYhwIIcZcq9ew56ykVEqhe6jKx/xoYwyEE0z/WFmAMbbI+XHxZHJKEEmpEILGGJHbPFAMIYTaQILsNyKEtFRWv6gg2GsepjwvFotzjelsFDka8ijavr36wT/2x356cfFDz73vS1/76o3V22/dvhU4bmqUUgoqCCCkBAIIodGaCwkBJQQApJXkUjAMMYI5TyXP4TdQa45GIy26OU8dyvI811rG8dj3/TAI8jzTWmGMxuMRIfjpp5/q9QetVosx9uTTT2xubCil5uZmR6MRAMZx2Gg0qlQqjz/xxN27dy0ahSEg1uwMQnBUZOM8azQafuCtb6y1mm2t9dLSCZSlPEsYIozQJB4TDKamG71eT0pJCQFGp/FE/tbr9aLxmDGaxFFr72AYjdrtdpIkViw/gS/nyydOnLhz585kHGQsCMPFpSXqW9pLi1CECez3+71+xyi1tbFhAb5ysXj29Omtra08z6vV6lSjvrp2pz8YEEKlFLOz057n7e7uVorFaqlECEmjCGPc78cGiBMnT7vMu3nz5s7dLYgBpXR6esr1w06nUygU5ufnt7e319fXMcaH+/vlcjnVem97FxNCCLm7vekFvkNxHMc8S5cXF2ulYrfbffDRR8fj+Nr1t65evVqdqhd9Z3FhrlarbWxsIIRm5xpCiNFoVCwVpqamGo1GnudayUIYGADCMDjY237ve95nDNxa31g6tZymqRCAILC4NH/YbHa67bAQ2DiCOEq+8pUv1ethqVQIPZdAsLg43+l02s3W6TMnl08ser7DHHLhwoWlpQULdxJCtrZ3fu3XfuPMmTMY4zTPvvill7MsCwqlra2t4R+85DjU9X0AQKVSWV5eDIJgc3O7Xq/nefrmG1fHSTw9PZ1lWbff2T/cc13XguZ5nmdJGgQBMgBq0z5s9kfDZ555Znlpodvp375188rly3bpAABwXbfT6UCI4zhFBkmpkzS7fPmyXe5bNwmMscj5m2++OTs7e/ahs1mWJXEGATYaIoKSJFlbW7OuvoSQnZ0dybn1GOG5nJ+de+KJJ27cuGGMubu5ZbgMC+Ebb7xx8+bNPM04F8VCIc3z3d3d8+fPf+S7Pvzyyy9vbGzU63UAdJ7nXLLZ2dkPfOADKysrb7zxhlLyzPlzyTh64403EEJJkly5ciXPs36//9hjj3UH/WtvvHm4t1+fbly+fLnZbN68eRNYlo3WVnRfrVZv3LjR6/UsxLa1tWVdidvttuSiddjMkknYrI1XdhyaZdl4OHz88ccffPDBL3zhC6987StCCMelSZLMzc05jrO5uZllie1IkvMTJ5YeeeSR9dU1+7SORiOtNSEsTVMAYb1e19rs7O/ZkXB2dnYcR5VapX0/ikZ9qm7klg2RkFIWCgUrEd0/OPjkJz956dIli9zV6/UwDDc3N21CoOd5YRgaY1zXRchm1dKNjbVGo/GB9773zp077Xb7mWeeuXPnzsqdO+Px+P3f+UHKmNZzvV6v1epwns1Oz6RpOhwMhJSMsWazaemlszNz+/v7vW7/5MmTQRBsJVu3VlZKxWKxWHzzzTevXLly/vGnv/a1137v9z7FpSaYIgMWZmZ27+40mwflQnFtdSPLsiiKFpeXAADD8RhoNRwOkySReuK5ZCeC4XDoed76+nqpWllaOjEYDm1JuFwu7+ztJllan5kBKF1aWFp568ag056fqn7qP/z7L734uZ/52Z/76Ee/u+ABTUGeAYBBkgIhlMr5oNcf9fo8VVnG4yQDDsIOgwwlWerSoFauMuJhLfMkljxN4rEWUX1qOhu3HOalIgFASWOk1oToWfi3KV45VH/lvjPC/4ktxH8vav5jrbOzZ89ub29HUeS6rue4hSBUSq3evmMnbkZonmYOZZS5GON+v7u0tBTHca/THY5HlGLfdxECh4eHjsuA8RcXF/MktR5BGMNKpTIzM3Pjxg0ATKFQWF1dbbdaSqnRcHj2zClGMUZAKxH4pdF4jBBBCIVhCCHc2NiYnZ2FBgBtMCHdbjdJkjAM19bWMMaNRmN5eblSqayvr6+vbSil6vU6IYQxYjcVhJBer6eN7Ha7c3NzxWKRC1GtVhljvV5Pa21pLHZhiRCq1WpBENjlHzoKQ7PvieOYc14oFOza5qmnHh8MRm+99dalS5esNo4QYruly2i71UQI9Xq9SrVcq1fTOIlG43q1VioUW6226ziMsW63a4ypVsuFQrC/v08QdJkDAFhaWrJOPjb8PQzDIPDyLHEdev7cGS6E1QyFBT+O0kajgRDqDbpG69OnT+9ur1KMJM+VEtIYxqhb8NxKCAjgydijXqNYyIcDKPJTy0v3hZv3d5vTM7kiOo+yO8M7jUbDoWymMTtXm0n6I5HlRtqAc2gQzDmXUhYKFdcAgAiRmhFHpAlniAAEiZNrjhEBwGADfAayJP2tX/7XCoJRzj+5crsI0e6dO839vdyY6XqZAhR124vVCp2qEaWZVE6SJDtZfW4m2dkLhGp4gZ8KJVXgOgXGiFKONgXKfA0NIghAiLGGBkNgtIZKupRhAI2WCgDqsDwdF5em4zGK86zkO9/1we/92up9rkC7fSDjHUqcxVq1Xp16+LL+0qtXf/mf/q+LszPnz12cmpp+5ZVXTi4tuw6LxyMt1e7uruCKEcIoxhgarSnWGHKEjBd4uTJpqpJMaqAgRFpDa+F1tGIHAECgAURogrAZowEkhORZZr2ehNX/AUUIIgRpjQiCFJN6rWL9MSljnuexYvjxj3+8Ua28+OnnGSIPXrrseO7GxjUvDBrTVUKQltwlRckzaBTSqlIuEgwrxVK/35ci73XbjuuKLLfrN4s7aK34kUekepvYoWtTdSudIYhYEDmOU8sakym3+6AwDMPQs364nucZoCy7yHVdrUCSJLZgAw3wHBdo47s+MMhoGASBFbwyRq2hxHg8LBQKSos4jiGk9qsBAK7rKKUw1pTSZrNp5dsW6JRCaWmgQclw7BEGIUQAE0Q554RQY4zWkhICAWCUIgiTOGaUep6XZLHnecoYLZXUSubcwgFKKakVhBABZIxhhEIIAUBxPH4XIUZrzUVu6X6UUoMgxhgRbGlVymh7/FEcKaU0BAYYiBGFUBmplQLIEIdgjB2Xep4LESqUQkvhD8PQehAhBOM0AQRqJQdxbNk8nucRQtI8zUVit2CWSaeNAgZADJWRUsgJG8koqQUhJBfccs0gwcAoAIHQIuc51CaOx0opCI0QIs1iqaiUEiPnWMWrlDLAWDNli1kQgo5xE4vwQotIaiOVFHkOAIDGuNQxhFmwyTZKMcZYQ4CUzpMUYwwwsvUAu1WM49jSZbIsGx3lMymMRZ4bYxCCllAv5UQIb4yxOUzVavUIakEQQkrw0bbRIAwQgq7HWGr55gZAbYBCGBCKtAbAEGW0UkrIHELoi3dwe9vX7n7q5/5ZdDh8lz0CIvjiH3/24h9/9tucgvn98u601Ku/9crqb73ysyv/qHb+HTClWw6e+8Uffe4Xf/SbH7Z3Z/9/e/L/9g2/dJS88nd/e/2Tr/3MzX94L40PIjh1YfEHfuUXvs2TT7r3j5z9L9H4KPnEj/2Dn/j834DvBOhrF+ZrF+af+L9877f4PASf/6u/+o3+iBj5jr/8A17Z//o/nfrwg2e+77G133nt6/+089Ktwzc23pXNCAC48MP3wbvf1YzSn/ixf8BH3yKe8Q+nOUMYChIYDADQsQYAak0tkRFxqJR2pX9mbt7VLjICRgIAUASMoxzGiHEVhh7GDjUs4sB1PcahGcspGiAAkzQpo7IRBiaIOQ4jAcnpcDgkRDFKEQBpSymlAz8IANKGAW0MUJXUJZgorUik03zkQAil8ZGvlUYQCalKxiXamWMzaZ5FgIk8H4Okywd2BSiE8FwXGNQctIuFstWB2Vx0OzjYihQ6srTVUkEACMJK6SxJAQB2BrRbVAsfAwCk0HbitpMCOHLdMUfKFXOkXjrmU04GliPKszwClKWUWlmuLX4bvjuKOkNHaWfWXRoczS/H2PSENay1gRN69QTWhwoAQF2KMTbIYIwd5ggh0jQxxgglKKVZnhJGhlG/023nXCwtThNCfN/PeE4ISZJsamr60oXL6+vrtnRHKfVdL0vSNE5yMWENAgAwREpoy43AANnVjFbAGIkxxgCJt50PFITkXqByYu4PEbjn/O2CXOVK5GlYDZ988sm8LZPxyAvD/daOMopMT0+Xw0DzVEk+MzNTKBY//elP315pPfP+x973vg/86q/+mpGgc9gdD0YLc4tz03v9ceR5XrfbJQRbs78zZ85sbd0djUaMMaV0kiSvv/66JcWkaaqMtvVbq7RCCJkJdm4jGiZOFwgie++VMhAarfTxLbevH/WPCYB67y20/cAWM21XsLwYe1Mn1wiCIwDefnBCv0UIGQONMVxwAIAlvFjpveXhKv02A/rYIAwA4DjOu8pox00qleciCB2KSej5CELfceJRP/SdYjG0JzDpTIwAIzlXR+GYGCJolNba8uoh5wIZQI+yCJRSGCOjNTQII0wQAQbaqEsI4UQGBQAAE+45hEibybrBvowMNMd5fe8q1SJokf3j0s1xAxMHLmWhDUKI67qSC845nHhyQQMnhtHmHu+b4/85Rr7ts201CPfWfyA0SikpNYTQKE0IsbtEigjCGBECbIlCG6UUwlhptdvc2281T54+hSGCUpeDgjCkd9DizdY4jitB4Y9998c++tGP/tpv/8c3/97f5RhgACGAQilAEFAaQgAgIITknCMIAoc5GASu6zKSjkdTs7PUPXHzfr5SWZ4aOUYIcZnbdMd6vR6EfiEIh8PheDze3t7udDp2wTo7N3/lgctWEPDQIw+laWqpgr7vCyWlVuM42tzaoJTOzs3s7u5Wy5XZ2dlxFHc6nVE0xhj6vjs9VR9Ho06r7TjOubNn8pw7jpPGyVtvXisWgsZ0vdPp7O3tBUFgoN7f38+yidaMYlqpVE6dPOl5Hue51SNvb297ga+BMRDYuM7BaMg895O/93tSytnZWYNgHMfb+7ulUmmuMquUGlMax3HouuWFJWtHeOfOndnpRhAElNJ6tZJEY/tIjoeDK1cufepTn/Y878EHHrKa5cWFeQCAlFwptbe3BwxAUCOoC77v+0G5VCAEaa3DYsFxHC2lDVu7e3fXSDPbmAVG9fuoGBYQQnkST03VgjAMCsXF5eV2p7m3t1cKw9Onlge9frlUfOThh3q9nu+7m9tbaZp7voswHI2HCOqF+Tkp5Wg0mp1upGmaxtH66sDObYyxQb8/Go0KBW9peY5AcuvGm9dvvDk3M98fDIbDobqjpJQZz+fmZiyQsXxiodVqAZk3anVjTL/fL4ThB97/XL1ef/PNNzdW18LQf+zhh3zf73Xanuetr97Z39/nCEuodg72z58/3x2OdvZ2GWNS6qnpRuD5UnIpZbFc9l3XGPPyyy+fOHXu6Wfes3r71tWr11zf2z888MMAEdjr9SDBs7Ozg8Gg1+vNzs6cO3shHo2zPLGWrEKIF154wXGc7/zg++v1+quvvhqEHoKkVqs9+uijKzdu7mzuNBozd26v3bx+69y5kz/5kz/51FNPbW1tMcZ27+6srKxUq9X3v//9ruv+2q/9xmg0cly3VquVyoXNzU1rRlyr1aSUvV6vVCpdf/Pa1s6e73kf+tCHnnz8iUKh0O8Pb968ORgMi8ViwQ+azWYmuOv6Wutuu42hOTg4+MIXvnD+/Pmnn3pya2ur1+0EQTAeD7tcfu4Ln282m2meBZ6/u7tbr9dPnjmtlHIc5/S5s5ubG4snls+ePbu6utqaaV66dClN062tLRsqcPbMmSzPe71eGIaMsc3NzcFgkCRJt9utViqh5zNMh9EIY7y8vJxlWZIko9GoXC5b+6ZysTgzM2Ov6ic/+Ulr8GoZlB/8wHuSLLt+/TqE8D3vec/GxsbW1paWcnd3Vwl58eLFYrH45S9/7erVqx/72Mccx3n+05++fPlynnPLOXVdhzHm+t7ewf78kn9fuBkcaZHq9Xqv1zs8PLTlzzNnzmitbfBgs9n0PK/T6RhjGGPGmP39/UKhACHsdFqO41BKu91uux0FQXDx4sXRaPTVV77MRZbn+cWLF7vdbrfbXVxaWllZGQwGluS1t7dny8Npp9NqteI4rVbLN2/evHv3rt0M37lzp9/vWwSt1+/3B6NqtVoolu/uHnb7Q64NxEiIvOAHGIGt1VUHsfe997lTZ07vHe5VpsszM43DwwONco95JVgICr4CJs+FEIJ5bprmWuvRaMSVbHc6g+EQUcJchxEipTYa7u7uPfjoo4+eeuzOyu2tjTUjxflzZxdm5174/Of+zI/90Md/9Cf+zJ/5s8ViyfdCDILRaKB0Fvquo2QFQkBprs2AcyE1dQ1lbKfVur11K01EuVgu1kLf9wOXpp4T80gKEQRBNNgHE6t/k8rMZRggOeP9dpB98cHv+m9dvyAUkgr1xmMlBUYIyOkvvvTA19/Ky8V/WCJ3pNC5Eq3RKAcwM1oIVSqVTp0+k8SRkEIr3do/yPOcOHQQjavl6uzszGGrNTs9u7G2kWa5BloA5VBGIQDGnL9wMUmT4TgGRufRLnMPMBanTp3CGHqe8+CDV9bW1oxRU1O1KIqKxXBrawtjHARBHMeDwaBcrRQKAULAzuA7wx5lrNVq1Wq1ZuvQLtusM5I20g9ciHzHoYVCYWe3d/LkiSAI1tfXlVKUEjuLLSwsLC0tCSFu3769s7OjtQ6CSYp3kiSzs7OWblmr1ZRStpplzWrW19dXVlZm52aKxWIYhlON+lS9EYbh3bt3fd+HEHueV6lUhsPh1atX5+ZmlpaXkyRJs8xyVW7dumWMeeyxxyxrJgiC0Wh07dq1crm8sLBgV8MHBwe21lupVGxJyVp2NJvNwWBw9+7dMPRtSaPVau3v70spAdCFQsFCxgAahFCWpKdPn0YItVqt3d3dIAjtEwG0QRAaoLMsO336tOM4vV7PCh2Gw+H+/r4Q4qGHHioWi7s7O/1+v1arLS4ujlutNE3v3L4dBAGE8OrVq9Va2RhDKRkMe+VyOQz9JIkINAgYwbPaVLkxO+P4Hs/zuNP/8hc+5yB25uzFu+P7Lz49ErR2O8VSWCkVB1G8s3/dIejiqfNTxfJWqy9yaRTAADnEVcAIoyiQISaeARRQZIxBKkdUSm0chzIiUq2AwQAijDyICZSnqK8QSLlgACHHAa5TmZ+DvhOGBZDLguN5CCOjt2/fBklKhErT9PDmbaVFGeICVA6XxWLZ8xzGiOR5xffrungw7DGKc64JQgIbjQwC2hjjErvYBVpLg2ilVKTAZP3h6fn5n/nTf+rO7ftHpwyjEcj7frEcj1PsFk7NLSx838e+/OrrL73w6dAltXqdMff1118/d/aM4iJPM89xPdcNfD/LMoIRowADhZCSUhKIAYMQMIh0JnQuJYAaAnK8yj1iB0KgEQAawqN9itHGmEKpeMz6wQjneS5ybimpSTxO4rEVsUEIESWE4JMnl8fdTrvZmp+dbu3vtXpdCU1QDFZXV6vFkoOxS9lwPFpeWiyVK/Y58j1nqlrJhMx4rqSECHGugqCglcq1NsbYjaulAOd5roDJssy6mXHOMaZ2HIjj1PZqh2CrMxiNRo4j7BbP9/3TZ07u7e2tr68nUUwIS6JUa+05rhcWj/PZsiyzjsZJkkCILPUMAOC67uzsLM/TXq9nNMZsIo7k2cQ2IR4ndvnnur61xbB7DcdxIPQwRHZqllxYmFgqmcZZqVSCyEgujDG+62mttVSMutb6T0uZZRmj1PU8pZTQynr+SDXhoKVx5jgmz3Mr1oFHmfBWGCQnWfRYgYkk1BgjhCCIxXEqRG7R5yzLgtBbWJiL00RriRl1HIc6xO6kIISIHEtXFUJIGZFkieUb5VJJqAzUACmIITe5kFwaDTAy0EgjLSMOAPQ2Z8jYREtgDMglzyUXQhJCMMRITWAUa/aIMUba2CEXY4wRstU7ACUlREolFIcQModZGaWemGUfYc1AGWgm2ZdaU4QRBFboLaRIZYoQghAf+4lngoMk1lorLuxGgFKKIIRaQY2M0YwRACbqfoSA4zBCiFKCT+hKCkIkhDDGbkInNZJciu6g77ouohMDE57zt3lLCEmlOt2uJWbqIxtUPfGKAa7ruk5oY7IMVzOH5a8fLv7gb/6mP1V8/Oc/ev/V2P/h9r89/t/91Gt/p3pu7j/pU707+//yiW9d2+6u7P3qh/76x3//FzG7/3TwR601r25c/9WXLv/Ye+9LCf8mTST5C3/5l++L7NtGGBnvdrNB5JbDd/1p+ws3EMb3T0RE6LX/5VMzj55iBe/deMg3bVrpG7/6UvPa1rf/kW+nvSt2krj3n+O+vj17cPJbv2kTAGBOggYAjf/0U3tXq9/z//9pffsd7eAd/7q23NoMhhJoBKF17AQAAKgts41SKoS05GX7fsdxLDwlpQATmq059oMe9Pp2GLeOi0IIJc1xbqEd3sGRjYF93RxZMKdpat8GEQRgYqtrzMRrASGklLDDJjryd2aYAHyU6wCAJQzZLzIaKvM2ZfYY+MIYA2QrfEdaEIwwxtauJM8za0ZnLbkynlqUlTCaprGQqVKi0ajW6pUoinzfZ4x5XgAhjkbjSqVi8+3H43GeZvYkkyTBdDI3AW0wnYCuhFCojdEQQWCRWAyhMcAYo4GxP9+Oq0II691sJ2hKqYFva4MQQthAzrnDGMDo6tWregBDzyVUU0plJomSejgcijQiwDr9qz946Uu1Gpmdnet0ekaaUyensyx74YXPnbtw6cK5i1evv5UlE2mz3YfbBZPW+pjuDo/8HyA0VnBm0+FtGVbIiTk35xxCzBgDSguptNYAYQgxAPC4JmCXPnbBJKVEkBzDlxZitkSwY9DdGnToe4YVS4U2b3uRTF63ACjG2Bio1eQ49k/24kJktNYYE/vr7ILjuJccE66/vhULhaef+vBDD145ONgXea6E3N3cXl6Y9RySJEkGteM4Iueu6+YZt4X6Y4jWGAOOzFCQ9Y7BGGMHIYghEsIoJSlimGGkIBfScAU1xHAyKmlgI/vuYTcDeExqMFZzcYTamyPEeaI3R9Zcm0EIgX6benx8TaRWGGMruzi2QjfG+mxMCkHgHqAZHUUF2uNYgva9Dxt8R0igREcu2y5z7IBiV2naGIiAzRgkkDBMEMaDOHr9jTesr6jKOEEYQ7S4tBwG/uuvvsYYgxiV67XK9NQf/8Ef/sznP/+ZV16252CU1FoDrSGCDJOxkmByJYzrel7gIy2ktCGe9x/rl5aW2gc3tJZZlnmOCwBYWJzvdru7u7u+73uelySJPfN+v9/qdur1eq1aXV9fv3Tp0smTJ1999VWttVDSilOmp6ejKNrb25uemVFad5oth1BIsFYqiWJrGVifqikpusYgA+amZw4ODsbDkTbywSsPzM3PrK2tDQb9LMtu3rzueR4iOAg8xtxhf2CVMpTSVqsZx3GxWMSUjEYj68QaRdHFS5c45xsbG57nVeq1KIqIw3LB+8NBkiQZz/a3NovFIqUOz3MtVWNxan5+btgbbKF1l9AsinMI32g2LXHMbuY7rXajPjUYDNZW70CIxuNRrVaLohHGGCIjeCYhXF5eRgZ02we8VDtz5nSlUnn19dfyjB+OD9M0LwTFLMsIRDQIotGYMXbl0mXP84xRD12+uLS0pCHoDfrNVqvTbCJjFhfmkmisdE4QeP73Pwkxdjy/VCxIKREwCJjAc9nMDIA6Hg8lz0VOGEGDQb/dbs/NzXleIPIcQ+i7LmLqhRc/jQFaXl5M4wxjwBx04eKZdq87Go1gqrM8KpVK/UHfcXEY+r3W2A5Ea2trJ5aXn3322bW1tdbBoeNQx6G3Vm7aPnPu3Jler1OvV7Xja2MKhdL+/n6cpmfPnX3wygN5Lg4ODu7evVup1LIsGY1GOzs7B3s7Tz/9dKVS/cxnPrO9vV0sFpMkgxBevHjx1q0btvCz3zxcmJ1TSpVKJULR+vr6YXP/woULjJFarTIc9jPBXZcdHOxhjC9cuLCysrK1tbW6uuox7/Tps3bAnJmeosT59V//dUrpo48+yhibnZ2+c+eOlPLatWuLi4tBEIzH47nZ2ZzL4XBYKBQGg4E1TQIAWL3t7OzslStXuNT9fv+FF164fft2qVKdn58/OT9PGSuVSpQ6w2i8tbUVhuGFCxeUUmmavvrqq9euXbMzSK/X832/XK04zEMQMsaGw+HeYN9h7t7+/qOPPOK67q2Vles3bhig451k6+4257xerw8GAztqvf761fn52cXFxd29vbt3787Nzb311ludTqdYLEope92kMTUFIeSch55vjImiaHZ21hrIlkolznm31S4VglarZUVkg8FgpjFt/W2DIEAIWf9xS/BUShWCwBhlmcW+76+vrwMAzp07d3BwkKZpnufXrr1lie2Veq1Wq3HOW63WQw890Ji7tPXSfcYWrUyxWDw8PGSMLSwsUEqzLIvHkZQyDMODg4Pj8qrdzPu+r5Qql8vGGBvimiTJqVOnpJSPPVZbXl5+/vnnDw4O5ufnu90upfSZZ5558803b968+ZWvflUpXa/XjYGlUunShYvXrl0dDAYnTpz4sR/7McsFIISkaWpHb+sVYNNNfd9vt7sXLly4du3a7dureweHSmuAUVgs+J7b77Qr5eJP//RPP/bYY5t3Nx3P9Qve6taqkcIPHaSQT71McAiw6xtb6x0MBmmSl8pl5jiD8WgURxnPldZBEOBUTc3MSGB+93d/12J88WBQdFwgxbkTS2uN6XG/+9nf/52HL106c+58lmUhqhijCyFteLO1cgUGxigDJJIAKgz3u63DXrvM3CcvP9DtDvd3D1ZXrvNc+r5fKReNFvPzsy0QRYNdCA1AxkAghCBSMoc4Po2TTQavP3DhqY27h91RWiiYYrlQLBS6+/F9Z4oq2/PxmxJowBOmh5nS2KFhscDTfGPttXK5nORZc3+fIgwhHA+Ss2fP1Cp4/3AlGrQTb07l+ypLAUaEQpnphYX5PE6au2vMc0PPHfb7FBkIyczMjJUuLi8vh2H4Hd/xHW+99db29napVLp9+7ZSam5uTkpZKhWsH4W1K+WcC5mXSqVCoSCkjJNouD8olUqMkcX5uZ3t7U6n47ruqdNLa2t3VldXS+UCQtAqJKampjzP6/V6GJN+vx9F0e7uLsbIdR1MyHEss10krKys2KyL8+fPCyGazebU1JRSihCEMe73+8PhkBCytLREMN3f37dUZUKY5bMkSTI9Pc0Yu3r1qrU0zfO8VqvNzc2Nx+NKpWIfNEsUsKGg09PTjz76KKE4y1N61OxyxT7XlNL19XXHcaIoyvPU95wkHmcpxxiXKkUI4d7eXpIktXo1jmN7wCAIbNUKY2KV7N1OO03ToOj1+l3XcwrFEABgo1mFEEKIXq8Xx7FWyhhTLpeHw2GeZ1xIK+TXWtssx/Pnz3c6nXa7lUbx/FyDECLylDCglDRGhQU/yeJytZTGIyXzUuA/9fATU7MLdz7bum+Xwwp6JNACZlzkQisJuNQUEsmlzCXUEAOMjJEaCiUQwAxCpJSHCQVCCSW0dqijtZZCU2rCsKCUTJPESI0Q9qjDoJOInGFGw2IGdGpMv9NMtGKuX3L9vcHYgdCBAGS5qwFWylfGxUhDSnMRUjRdrXkOk1rkGTcQMBqWgoAMu1Aba7+oCFBAIaOpksYYbSQmjkHQ8h9G3R5P4tlzp/qHh+t3ovtegYN26zBdr1Wn61MzgsveQXPMuU9xr71/sLMtJZyamrp16xYwxmMs9AMpxMLCQqNWvXv3LgLYZr57rpPnWpscQeo4GBFPx2nKc6XsLszGVqOjhewx09lYGWWWcTsjAAA8z3NddxyNNzY2Xv7SS4899piUHGMs8szzPOJSAIBSSgKjpfjd3/3djbU7czOzeZ4TjC9culBtTN1auZmmCUOYMTY9Pe153lS9ppTknMdxHEURdR2C4DBODQCFQkFKTinOuXRdV2ppN1N2s2ORXIqw5XNoDXq9XhRFLvNshCDUyg4OlFKEiDEmikZxHB8299M0RQAGQcGGttmpP0kypVSlUrLDOITQiq7yXFgVMwCA82w0GHKRIYTSTDDGrKJuMBhYaHiyZlYaHpkcWptIx3GU4HmeCyF83zfGKCEIxnma+q4LtFZSW+sJx/fsri0X/DjaZ25mpjE7nSTJ7t6eRwj0fQihUjrNsiRJ7B7R4ul233E8twZ+SNnEoVVDYC+IvYBu4DPGCAkRQgCYRqMRFHyITMV1uOIQGowxcx2MUZKl1oE6ExNDEjDZdRrGiIGA2/A9Ao2GXAmgBMZYSgUAgBDZqsWkfwFor4BLici5NZTAk1hIYz1GLB/ZYhwWE9HA2HvBOddKWWK1RgBggCAqeIUJX5hSzjlPudD2piMFNMAQAqiUUplWSuQQWpoUQggYAxEyBh4JaoHQE4pSmsZZFHmBL6U0wLUCFwANBgBiRAhWCljjTYSgEBwAgAg2EDiOgzExSaKV5Zwp13G01lyIJE0ppVaBzhijbJL7Z4BWWmGCBZ94i1nsSSqFMHZc1xijtLaTEVTmgRuLy3dr91ty6c/+X/8VC53Lf/K9mN3P4OzrmnlnQFHt4sLul25/ozfzKPu33/nX/uRnfrF2cfEbveddrXNr99995P/9bdJmt168/okf//vf80//gvt1Xhz3be86+T/kxqPsd/70P4EIXvrRZxH9diHytBe9+o8/ee1ffe6bH/nGr7708M99+Ovh5qQ5XPu91++DNQMAtF75zS8bpT7yv/y5cPZ+3eN+TQt18zde/p0//U/uf8z/A23pfe/gWRcW6yRkf0QI1H8I7cHtRnFMX57eUlpbHacdDeI4hpMkPWMlpBY/VPfEhtn/cj5x6LVTjx0PwZFS/7jnH0NP9vUjuufb2o5j2EoKYYyyJUkhhDVctdIQu749BichMhBMypbHX2TLeAgTMCE+v4MjbIwy0giZAwAwxq7HiMMwRrbman9pnueEoFxk1Wq1WCwqJUqVcrvdtigrJcju0ZRSw+FwOI60VM1mM4oSehRXYCvB1l/OMqALQcgYE0JlWea6brVUEUJE4yRLJ4YNWtnEYwTNZGy3NHAFDND6+CcYCLTWtqhs4bKYxyEMx+Mxl9Kk2kFFmXulKU8IEUUROX1qAWjTbh5oKZMs7e7uE8NNrqnOG9XipQcu7R42b1y/Oew2L/sPGqBd3+n2OxBCSogQotftRuPx/Pz8xQvnNta3Dg8PEQBg4vOrMGYIGQggxlgIiRCCiGKMAABaapf6SimHOLkU2FpzOg5ExkLGGCKjNNSQIKIF0MYQzIwxQikMIUQGGIUR5EADgrhSNorXhl1Yyq1SCmqDEDIAIGA9SIAwxsZSMUJsh0MQ5IozzBAhUmu7b9FSQoMwxFIZCAFCFnQ2LnWyLKOMSSnAO4IH3m5lD7koW7vxuojj5558EmgVilEi8/3mXr3iu4QlSeJhijGVROY5QIS6mCqllJAAAICg1lpIzhijlGgIbM1WaUURhgBjDaExCAAhBYQYQqwkgBACCBGAEBsINQAYIAwAMVoeo/82IxEgqMEEBrZ2yRhCpZRRmlAGDTBHhH9wj8RMKUUxoRgbJcLAM1ras5VaQmPBcXB01KMv0gpirIExACCIlNEAYwOVhRiMgQgRDDEAAAIEjAIaQgOhMgQhgoCUglFMtRcJDhgwWroaQ6U0QU658vqX3rgzPlwozc3VZvY2NxmCpUZprLOdrd3DvaYXepSxynh02G2fvXLp5PIyfeVlqJXgChOsgZFGBsxPhDAKAKMJhlhKqpWjOM8zYtTh3t39jvBm7nN/79xZVWm7WCwyTJYWFwEAB3v71p9+FI0ZdYrlUsRz7LmNubnhYNzuDnqDsVYAIrq7cwA0oJjyNEtH8fz8HAJwb2c3Fxl1CKIIY7q5s2OdWwuFguA8Go/2dnYtytNqtQbjUaPRoC7DjMTJyMg6T9O56ZlCuRTHSalcnpqaunV7xRgzuzBfLBYH/f7G1pp1dOp22wxRrEw6iqrVagLig/19a4fU7/cfvHxFStlqHzbX97BSTz78cKPRaLVahJCVlZVyuUwI7fZ7vUE/y7LazJTjukWnPBwOocyjJEIE+aEPsJuNxuVaNRNcATMzPSWBGMZDJaURfG5upoox53xqasoSY9uHd8NTpwiSS4vTQVBQGvT7w9W19Uq1YO0dTpxc6HRacTqq1YsQMoRlZ3AIIUQYVSr+qVNP3XjrejTohkGQjIaHh4d7u4OlEzONmbk0yycMI0o6va4QamFhIcpag8EAIDI3N+cXwrBUjOPYJtgmcYYQKoTFIAiiKPILodCKUCfutCoITs/MlSu1brcfBMH73/edzWbzS1/6Uq/X4/kQUVQul2fmZ7I8f/2NNw7294fjGEawWp954MEzvX5nPB5v7RymqSAOENGoyIKkPwKZQFztbW5H3ZFBiDlOq9kmC+zMufPtTrMxM/Xgww8oLZJsRB1UKgdJkkjJJVevvvLaztb2mdMnscEaoO5Bk2fZ/vb2qcXFy5fOVaYqWuuDVjvO8qWlE1rLna3tPM0oIas3bzb39x3HKZfLU1PTgc9u374NjTh77qQb+Kur64Ph8KDdwpA0m02KcL1WG4/j3bs79Xq9ceXyqVOntra29jrNQqHw7LPPJnE2Gg6jKJprzAkhHrx0aWZmZm3tzgia0/OzBYrzPJ+dncmV3NzcHI96586du3jhzM7mWnNvd3FuNk/Tpdn50PFWNzZHvX6lUvFnZkWWq1ydPnfy7uaWiFNq4IWTZ5MsPX3ubJJn125cHyexgcBhVCTZ7MxMtRRqitfXN37gB37gK1/5Sq1efeLJJ1966aW9vT2tda/bffKJJ1588cUoihyXuQGIsySoFB9+4jEhxB+89JIxajDoZVnGCOFZMj+7wJNU5HJ7/24Ux9PT06dPnXV8r5rnVh2/tXm3Vq5RSMbj8TAfuC4rhgXf90+dOtXudm6u3O71er2Dlud5vsMYRouzM3GW+r7f6rQh0nNz01qTxx99DACwenvtvnNHlqYUJONh1Ov0PS/wPG95eRnMgjdefxMYFgSFcrGyO9p1ELt87tLBwUEYhkHobe/s2JUZIw4jjtZAa1SpTBWL1Y440BhCyhaWTmjJr77+utb6uWe+4+7ubpZlcwvzeZ4fHDS1EfWpWn2q9uM/85Mnl0+JlEND6vUGwhhRQhg2SgMtXewUCqVc6Ks3b86cOPnitdVPv/DbBGGHOornp88uDXvdftI/cWIJU/PGta8+//zzC/NLH/zgB+9GgnMZyyxVwmWORxkQGcY0Fxwzh+dSQ4AoYZIWmOtDkmOWZCmUGkMQukxj4wTl/cO9XOTIlYaK2ky1VCqVPe9cdeaxK1fSlZvnL5wDLo7HozTPK/7MFAtEKvrjMYA4TzPJM0aoD8HJQtgb9MfDg2kXFxf8Qq+0sbHR29psytxjrFT0PepWyjOt/buMUiVzDBXR3DEIpaJE/L27b001yp1uxvyZ0KsV/QLKMpKI+97N/qjTVgMh5WAcCSlzpbPhKCZjaXQueOuwiRDSSkmtsyxTUuo0H9F4MBgZYw6ahwlPpJFQwTRKIYTd/gAAwDl3shyhcZIklFKsIKYkLBYowXdWbzmOc/r06W6vNT8/3+v1kySp1abSVECAGXUKYailzpWwcDCA2PfCcqkKoFaHEkqdjePzDz7oEqqERMogZbqtPahF6LFRr5dl2ZkzZ+bm5nq9nhESSAUMeOH555VS09PT5XI5ynmSjDGirutihAw0efz/Y+9Pg23JsvMwbO0xx5NnuufO77751au5G11d3egG0BibAEyIskGbpEjTAiEpZDskR1gOywqLYSr8gxGWB8ph/REJyzQlQiQIghiajakb6AZ7qq656s3jne+5Z8459+gf+9xb1eQDSMBUOEQ5o6LiVr3z8mbuk7n2Wt/61vdl7SgswE6GJ6IsuklycWuzrqv9/X2OAwpQ11U6mUkpDw8P47h18eLF+Xw+nc6DIFBKWGvzRUoZMQ1wZFFTYxZXZcHWVn7g+1+fz+dVlaez2ebairV2dXBpc3Pz/v37+4cH3/jm19fW1iwyVVmuX74spSyKYtDrE0LCMJRSjsdjY0wSRmVeHCxSWddJHFlr4ygaDoe+73ucD4+Ha2trr7/+ejqbT0fjrfWN0POfu3lda/3gwYMopAQzKcrZbJalU4JfQEYNT05lXcymi6sXL/70F7/4we1bTiMrCALP43t7e5duXOtybzqeRmH4hR/4AqZ048JW8c478uTIGNbkJQdKvVDpOq2ble0LQOHu7TsnR8emauIwvrxz2bTC33vrjUm28sxHTqomLaZA8WiBiAUjYXtzfZCsnB4fSdlYoo0WRgMYDEaDMZx7iRdyrTFIzTWA0VoTQIXI/aBtmgqEMqIxiCKDiQHLqtUkJggjbQhQMFYW2hgMRR0ECIBa62oQ3IiqKkpJDBLaI3i1l6x2AwoGm1pXlbZKIk/oOvHDDhDVyJxJQVGoMcaYGMMpraRE3KuMQcB8S8os93Sw2U5WI2/3wXs3r/3gg3eesQIF79Sy92D39JImN69dm0zGh4eHjYW4E2f54qu/+808z1ut1sHu3rVr17Q23POiMOz3+4+fPKTYN6JmFCMJHrZgFTaIMWYwYQGPKZ3MFo2SxgJCvsUg9ZLupJRyA3MGESkbq1Toe5srK6PhcS/0So4tw2Cbu3dvIWSvXr/mxmWktT0vJoA8RkGJ3/mtL39458PNnS3ueZaii71OxLwntx9ArRliUqiFKnZ2Vhmjssp1XRkpI+Z/+sWXhZDTxRzVEjBRtTRSI7AhIchoRKwsMq01I4xIiRBaHwwIo9P5PIiiqNUaj8cbGxuEIJ97J0dHuVbIQhQFBGHPY1opsLYqS2Ot74dR1AIAjGgScYxxmecaW0751ctX5unC+RM65WXPW0pGNk1DCHF+G0uSlLVpnp1OT517bRRFqpbM87TSqhLY2JB41lpuSTXPBRGc+wbBdL6glFZlTQlptWJCiNYSUxq1k6qqqlr4vm8QkroCAAK0LEtkLRirlGIWI0OqtPY8DyHAClpBvGQcA8MWWwCEUSMqwGCRVUYpazBFSqkgiqjV7bDlXKl5tNRkPqe2GSPLMvc8L2yFVVMLIyxY0FDZxjIrVHVOHmqaxmoIgsCh+px6dV0TigI/rOu6bGqltDGw7PU6JpDUDgEhBmOJEMHIYIqYIxJhQhReGtefc33Qmf0X51xo4wB9zKm1mnCOrXWEIWut1tYYjTFVyiCDCCFGWqEczEGllAgRY5qmqXzfd30+DZYxZqxtRO24e25qGZ05JfZXBoPBIE1Tp5QFAAQTrTUi2BiLMQmC8AzWZ0IIihDFFAwAsgH1FShKOPUoGGspBMwHh8sgZKyy1vpeeI7+WyOiMGZtVlWVEIJiBngJPBHkfMCU1MJa+/IHW8/GmgEAwAj1m//LX9j/xr3P/gf/2j+rz/s90bVsHn7prfG9wx/8j5dSGP/43/0vPvjbfxQMCgDZ4fS//on/42v/3k9+8t/+YtD7p8HQjx/VJHvnb/3Om//5b+X74z/6nB8/7v3D7+THs0//ez91/Wc+zULvj/jk9MExDXiy/S+Kq/63chjz1f/gb+cH06s//X2trZ7f/aMWpBylR2/cf/I777/zC1/55544O5z+v77vf/sXv/rX1j55dfmrpP7O/+3Xf+9//4ug/hCwBgAAHnzp7WTnVy//xCubr98IB8kf8cl6lmcH04e/+fZ3/8aX/qVjzYDx3/3x/8PP/oP/8PJPvAIAqha/8On/qD79p00L/9U+Lk27tdZvXjhW1lpMKPG0AqEbR23knCmll0J8gJVe9vCEdcCdNaLBBHvMs9ZqAKEVpRQziix4nleVjaNBWBe6tTYgHVRFMUIInFaPMcZRIpXWhCCtiRaaIkqAfGTzo8EaBAiDxaABWwyAXRQFA3VdL6nQFIHF2uk4YRcS3SDUUksAYUsZFqKhGBEKytQGMCKWeEiqxmhlGpFVM0yQBr+70hFCKF35AcMYY0CY8KqqlNYG7OHhYZ0KoOAF3nQ6DoKAESqEyPOce9S1ey2CIArDMBRCBFGorTHG1HLp4osJQRYBAMLWGI0JmNqRbgnFjFEmpVTGGGkoplZZjVTTNJQtZeswxgSwVBIxbkEBx0Sg0I/Ho0lep227SX3uUQxVGA6Hw5Pj0ye7uysrq/Pi5O13Pvjw3pNS6FqaMAydedFiNut0OpPJpK5rOOswOLZXGIZRHHS73Vo0oqowxpSSJT/8TOPCWGuUAMCEEACFMQEgaIkdL7m0WgutpVPGwJgCgAVA2GpjkF2SZC0ARlZbxTAlThcCI2MUALhNzu3Q59oXCCEHyGOMDVhrEbZQNQ1ByA06WWuFUu5nN3qDMWZLCjNyrWnGSF0LKYXncWuNVqKun63d3E6S6fRJt51IKe/fv3/xwva1a9f+4NvfWExnVmkL2hhDPU9oBR8xmj/SdnFfvMf5OblYa00JwghrpS1GgAmAJcYYbJDG1hhGmV3qg6Az+WZrjAErEUbngwBnL9JyHeGsKbRMAzF2sLI+k28+Z3Av58Kcd+KZnIg+N3QGN8b08caRPUerAS1bSWcd/iUz30l4n931meY0gMXonGhgAUutDGiQiDICGgAjjaCS4oPbtwAgiVuADOecBR5lbJEW03SxtrZWN01eV7WVxaF4fHo0T9MoiKRWmDKpFLGEYuIkU6y1vufVeZqEbd/303Qhmrrd7lRVFcfxMxnsOzsXjp6+rZTgjA2HQyHE2tqqs3B19Kv9/f3Q9100MUq0W5EToDg83I/DKIyiIs8xxpcvX1ZKPnz40Av8qzeutzutx0+fYo0ds+P555+v6/re3TuLxcKejfj1+/12u+0GBaIoqqrq9PQ0bMVR0qKUEspardZsNnPfXavVGqys7O3uTiaz1dWVqigJIfO0AABCyHw+v379OkLo1p3bh4eHSilnAAXWrq4M6rq+culyHMfdbvfo6IhS6vJgY0zTNGCXKfJ0MnP22T/wAz9grXVENgDwPC8MAinl3u6TXq8XRZGTlzXGYGSbpnGa0f1+v0wXh4eHCKGmrIbDke/7a+ubV69czrPi6dOnFy9efv755/b3w9Hp0Fo7GPStbgghhydDpVRZVd12L4qiJIqN1huraxc2t25cLwyg2WKR5RkgPBqNoihK54uqqvI001oe7B1yyr7/c5852j+Ig3BrfePOnXvHx8fz+fzK5WtREBiloiC48+Gt7e3tT7780sO793afPl1bW5NCc0rKPPvd3/6tjY2NwOPddvLa65+/dvnKhx/eKoqCB75WamtrKwzik5MTR0gpK386m5Vl6UhzPAjbccsPgxe2Nk9OTkaT2e7BrrbQ7nR2Ll0sm+o7b37X81hVZJub6wghgqiztl/p99M0dfPgSZLM51MiEeecMtpvrSRJkuaZF/gIY05pmqZHR0cPy/LC5lYch64xKxuxuro6n8/n8/Ty5avaGj8M2u22xShJktW1tbKqNjY2ZrNZp9NZ6faMMYOV3oWt7el0miTJ3t7eyckJ8WglmunTJ1ubF8Kkdev2bXbtmjHmzoP7u4d7x8fHeZYZY/r9vrX24PgIEzKdTh3/mjHvi1/84unp6cbG1uMnT9z/9zzGeYtSmrTbUsrJZHLv9p3hcFiV5crKShgFyqiiKLjneR4vy2KxmLfC6MbVa/1257133h2n809/+tNNWU4m49l0+q1vfjPP87WVwebm5t1btx/cvffqq6/O0rkyOggCY20+X1hjpqMxI9gBI0qIOAzb7fYHt94vi7rdbluCt3YuZFn25jtvv/rJTyxm806ns7OzI6r68ePHa6urnNPJZBRFa9euXXv48OHdu3ePTo4550qpxihR5jtXL29ub6Rp+vjx480L296Bv7u7+8577wZBwDz64MGD/aPV/rOm34oqr/JRksQnp8N60VjUuXPvtlZ2Op/ESQTY9lZ7RVPce3z/8PTI9/2428KccZ/FSTSdTuu6thbVe83W1lZZ5qenJ51eO82yqq6bpgJjfd8PW2FWZhaZ1fXBy6++cnR0tH948OHtD9JF/sNf+EIcJffu3QuYz2kgpQaEdg/2/dCLwyj0eehHFB37cby+ufFrv/Zrv/LL/9BaYJ4nmsaj3OUD7U7H9/379x88fvr429999996+dWjk5NHj58aAxjjeZ2FzJNVHfqBVVaBrZSQ1hDCpJSqboxUHuOYEswoIYQg3QihtQk6FCvTi5O1/spP/thPiLT4+ld/72j/4N/9uZ//0z/xE9/55jfu33/Qa7cxSzYvXVzfuQhxizRiLQyttePxeJKnRZ4xQgnDlDOo6Gg80WA5pasrK50k2d19MplMxqPjfi+x1lJKlWqw0+ZS0gffDTGMT4eyri7uXJDQRjRO56mtciCdZ2YC1158eW21izHOy7poqqoRjVEI01o0nudJrUVd13UNxlZVRRBWSmVFlXR6a0HgqGFlWRZFUVXFkvRHltsWAAgh4jh2muNSNk+fPpVSeJ74zne+0+v1jIGqqpzFSp6Xw9Op73POvU47zrIF59xx1Yui2D88WFnpJa1WVVU88Bdp+uTp09HpSbvdbpQ8unfPWEsIOT2dbG2ta2PeevvtXq8Xx/Hw9LTJc2MM57ysqrKqtFIY05WVlaKuxtOpEEJZK6WURjdSxBgVdSWNttbG7fbKysrx8TGR7Gh40u/3L1+7luf56XiKEOoPBtPpFGMc+MzJr4eBP5/PsywrypITii2O47iu69PT0zRNHacyDMMiyxBCHuNlVU2nc8cyvnv3bqvVWllZEVod7e9ZpR2/MssyRzRGCCFKiiJHCDkpj6ZpOp0Oxrgsy9FovL+/Z6R65ZVXXn/9dQv66dOnTlf9pZdeitvxd77zHWPMdDJ37Omjw5Moii5cuHD/0cNHjx65EYQkSZIkmUwmVstuZ3D4ZBeEarfidrdjrDk82A08vrW5fmV76/Tk6HR4sDLotLtJEsVe6O9jVs4WrTDaWF3L0yxd5A8fPrS098xHzgI4EVWltTWWUdRrdwgh51SgJc2AENBKKdVmfuKFeF74QCi2ChBghjGWUmqppRBSNcJYSw3GoKwmxsoq9zD1CQkopxgQAEEEIYSIIYw2TSOEqGVVFoUFHWqetNpba6shZSBrWZUIEDGkyIuKaRrHp0UqCVHaICBnFtbLpNdNvQgh/JAaqzzO4zBsVN1qtYp01Ol0n7kCTaPyolBK3b79VFVNr9/d3No5mkyePjkg/D1CyPHx8f7+/sWLF5MkQRZWVvoE4xvP37Sg954+KZuaEqatYYQBMkprAODcd6Bwp9MZz+Z1VREPEcqRNUpppRSyhlL6gz/4Q5YQglGdZ71O2/NI09RSSkrQ6uqqz726LGezWVWUPvcIIUbp6WiKkN1aW/3gg1tvvfVWlmUTTAHZJE7yfHLv/v26rpOkEwSBK1/n83lRFPkitRZtb29rrU9PT1dX19rttpBysLY+mkyOj4/bScsLgzRNi6YghARe4Pt+Ol+4vksQxpz7Dh9MkgSD0VKVZdnpdCKEkySZT6dFludKE4yjKArD0AI4oYOmaQxYtBRXIEhrSumtW7ecwp4bEtV2Of5sjCnrknM/CAIAVDU1IURJVTWlMYYH3FiTpnPOfVnmnaSLMc7mKcaYMSa1RARRQqw22hiEEMUkCkNCSMC9uq611a4kcaauSqmmaRBGAKBB+36g1FKw2mk2uqnqF15+KcuyJ7tPW62WUqqoKtCgrSKEaKvdw4c59oC3223mM0opItDutBBCdV1jb+lqc1YESYSQMyNttVqYksVi4epHV6UjgmTduKlQYwwC7F4uR5EDAMC4ruvzqO7OrLXmZ4Q4NxMMS3lD7fYmV6YxRhBi54xmjDEBhCl1tDhjjJHKTeUyxgCWg+ROP8Rl8m6+zVWIbokcfHw+H4wx9v3Q89jHrmEpJunKAXs21YoxDoIAA/I8r91ua+cGLIS7d6WUsiYMQxcklVIOws7zHCHkON0e9RhjUjZZlnHKCFvehVOedEda1e65PXO1EY6ZyBhTRmP4aFr3fKTdq+jlvWfbip4fqqzf+1u/e+vvfv3qT33y83/tL6w+t4HZ98y2Noty9/c+/L3/6L+a3D0EgMN/cvdf/2/+17/+l//vD379zT/6zO7IDye//7/7r9/4P//ap/9Xf/qlv/SDyYXBP6VfnO6NP/w7X3vjb/x6Of7jiykbc/iNu4ffuNu/ufUjf/0vXfrRl3jyPRLGRprx3YM/+E/+3v437v7ct/76H/v8/7KP/GT+1f/w7/z+X/3F7qXVqz/z2vP/48+tvXKRBvyjDxzPDr99/9bf/YO9r90qR38MvFXk9df+6t9rXej/0F/785MHR+/9zd89fvPRH401A4AR6rv/2Ze++599KRwkO1948YV/44e2X78WrnfOFT9U3Yze37v197/56NffnD09NeKfc8I/4WGMSOtf/OJ/8jP/739/5wsv/MKn/jf1+NkTPP9qHzcXKx8MhrWnlVLWgqOfNk0dBEFRFL7vM0JFIzBhLvhUdYExNlIBWN/3nZhyXdeiERjjRkjOubZWCOF5gVIKI0Q9zzXk3LwLADhHn7IsXfRA1iKE2JK2DIRgCxqQ5ZQ5jPFsuMQwxghCLgqdgVhL3jQ4szS91Otw0cy5DiqlMAbGWNM0tai63Q7nvKrKoikd/iOlbHc77XZba6m1Vlq6vdVpx5VlHXi+53mhH1RFOZ/ODvb2pVQsYu728zx36tUEYcZYFMaEIoSQKSvHFve553neYrEAAwDQlFXTNFopgtlHwKNauuuZM7c8KSXGwDl3XWQ36yxVI6U01iopvcBDCCktiEcIpT72pBSsxUIcQgHUykYCuC3nypUrl67dePPdD4az6vBkWOtTTHhRNc8991yel4vZPkJIA3W1ihDCuf8ZY4qiGE8mi8XCgJZy6Q0IAL7vu71QaoUxxsjpniBpJBBsEGjQjWqkkdYi9zOy0loNYBFhlGBltHai1BisNdaCNhpjbC0yxhhktF1+l+4JwBgrpQy22miEEULIgrVgCSVLfrszC0SAgSCCpNbGGMKY1IphZLQBALefCaUoxtZoxpirWygChKwUpZbK9/1Br/3Mt8Va0wojMLbdbs0WC6tVURSL8fT6xcurvX6V5owx+zH/SiekYpcejxghjNBSrtoiII6B7FjxAAYbS5nVBiy4B8EaizFF1gI4o0jrVCxc7o7P1K4BvgfRXiZDZ3rK55A0fExt2Z4dblLJDaU6KNMNrFlrgYC1FtuPmxMur/WjrIUsMxUAQOBgaYKQk4Zxd24RBgtOVNpKrcHN2VhDsSWIYIqxASOVZizqd/7Jh+/dP33MgCdJMhtPuEfb7VYtmkrLlXZ8ms3TdC61qkRNAm/6bpqLxo9CpZQXeM4UkhBGHbZujTKaMNput2eLWT6fDfq9CxcueJ63e9B9+KwecxRGn/rUJz/88EPKWF1XDmR57rnnlFJPnz4VQly6uONxP0mSp0+fykZcvHjRfcYoDQAu4QvD8NpzN+7du7uysnLx8iU/CJQ1vd7K8OjEWtvtdu/du1cUBcLAMP7sZz/75MkTp4ZxenpSVVUURULUUjaPnj5hjB0PT5xaglLq6d7uwcGB53lpmkohiqKw1iohl+bR1Ov3+xjjg4ODQVG0Wq2d7Qvz6awsy8P9gx/6oR/qdDp7e0/fe++9r/zO7xhjCPMYY7JR03LSbiWb6xv37z9ACGVpOhwOneoxIVgJubGxUWzlj548dinmZDLRWkvZKKV+9Ed/9PRk+NZ331xbW2t3Wqenp5d3Ll6/fv2dd95xeL3LocssraoKAHYuXJoF6XA4FE319ltvNU29trb27rvvai0ZIUEQtLvdCxcuPHr45PDgYG1lgIydTiavvvRylmWEomyWjobDwdpGLZqb1y5nWTHo9haLRVVV/bXNH/uRH7lz59aH770fBAECgyy0W3HoB9euXM3zfHJySgjpdrsXt7Z/7ud//vDwsBWHcZTUWYEQKvI8zTOE0NHBXqvVwsgywI8ePHz04KHjYh8cHDHGtra2Ll68GATBwdFhVRVXb1xHCN26dcvDgDA9Hp/M5/PV1dW11Q3ksTAJpbZx0hpsrO0dHgBDUove6sBSXBalrCXGuD9YwQhHcbyxsUUx0W1dNLXSIpM1SIAyr62eV8W9e3f29+fb2/2Ae0kSd3u9pwf749Go3+9evHgxbLfiOEacn56efv1b3wjDMM/zF19+weml+pF/9cb1fr+flcXmxQ4BVFfVyWREGPV9X4EZzUYaaSFVGIai0PefPKDMa632S6uUaupc8jozDP/Un/nTvU7n0cPHGFCapsroS1cuh2Ho8LLhcHTpyuUgCNQDdXp6un1xBwCkbEaT08lsfOnSpW633YjKWAVgZuOJEwsuihxT7Ooua1Sep9PJiGMURcHD3Udvv/Xde/fvrA7WL25vP3ly0O8nhOBPvPrKp77vk1/+8pdns2m/39/aufDeB++XZUm0/vKv/qrjY66urv7kT/7kPF38zu/8znA4ZJ43aLX2Dg7rpqEez0XtJ3Gapqfj0WgybrVaGOzJ6CTLF5/73Oe47z158iRqhavrg6Ojo7LMO51NSunGznoYhvfu3Rulo6TdXt/ZnC1mvUHv4pWLDx48mEwmB0f7zKM7l7aeqb8QtKI/97N/+Vvf+k6tRZ7n1567tra+/ku/9EuVMqP56aKca7DdbvflF25MR+NLly4d7O/tHe9RSk2eep4XJ3GR51mWKd1YUOPJUGJR6+Z0OJRSyqa6evXqpWuX7t+/PxyP2JDN8jTLsv5goK0VSl27cbUsyzwrcEQwsPl8XtX14eHh2sZqWWRJFEPHam0hy7YuX37j29/K8oKQoKpKn3sXL1+OW+2qWyklojghlLdayfd/7jOdfv9rf/CN8XjqBHkVkhRhrXVW5EopY5EEo62tmjkYSwFRhKUW2GIDFhGwSiCtQIv1TucHfvbPvvGtN/4X/87/HGv0rT/4J6qsX7n5wvb6RrbIL168fP/O3cHq+qtf+AIEAVS1SBeEckJp0wgtZBj4ilGttVSqUcoQgrm3WMzrasEIrqTwONtYXy2LrCpysIIxJozAGFuNHWShrUEEI6XWV3rgh+OFKJvUWhNE/uni2ZKCn//ij2+tnSZJIqQWWnHf0wgrrY0TdLN2NptZa7tJ2xjDKBFCwNm26+ZRzkfVrLVSSiEEocglsufYAWNM1I0QtbFLupkWoq4bR+Mty5oSPs9S3w8ppVpWT548OTg4OFcUlVIyRpCFq9euEYoZoe1et786CD3fD7hQlhBS17UbaS/LstXpEM41QKvTwUVBKf3kJz95enq6u7urjRkM+sTnEaVFWZ2OxtrY1dX1fhgeHBycDEdRFFlrnTlJUZaz2cyBEbt7+0o5o3BWlrUx5vBw6vtw8+b1T3zfa1LKN996YzqdPv/88/0g2N/fT9P07bfeZYxFQTyH2eH+gRMMmc1mnPmba5uzdEEpTeJWVTfD4RAQUloP9/ZOTk663W7YikfTiVMGnGepM3GldJnNSymPj497vd6P/diPff3rX7979+7NmzcXi/k8S4fj0ZMnT/I8jwLvh3/4hxlj77z3Xp6V/X7fmeX6fkg4S7qd6WJ+69btLMsYY74fFEW5urb+2e//3Gw2xEa//ulPpbP5N/7g692VflXXSCtkTTad9l64mc2aMi+a2LdJDMbiSl5e23ycVRHlnTB5PHwiEFpZW9kfP5tQHwZhmmuJLKXEKBmG4ebmppSNlNJ8NCKKEcbu2+8EyUrcVbMqRFZqJDAYbcAia5GRhhBKCGEYKqUsMsYoqaFpjKLEEqptTrTGRvvcC4IAWWQsasp8nqauvdfp9Z/rXjCiCTiztRC5YhobQMqa2uCG+aM8O5J1TYmyGlkcEIrtMjt1LXZrFIDzndaEIIzBecfneVn9IU7d09m8LgpKmTJ6//h0tiguXbkcxd35cPzwwZ4A6/aUTqfjKAKcs8FgcOXKlVYU/ODnP/ftb37jww/f97yWqzIQ0saYssyNRTwIuR8wj8/m2Wg2BwBttLHIaA1Wr68Nrly+qBH0O10C1uf03q0PKCa+x7a3t6WUSlvGPY8yTmi+WIKqnOFevzObzf7xb3wpTfNBb+AxOhqNMCK+57lE9Pj4uCwyhNDW1la/3wZtbly9Np+nRVEgIHVdp0We5/l4PFZKYcqSJLl6/VqSJLdv357OZ4yxdtTudXpYo6PhSc+PEEIB9yjnBGNDSJaVyAKnWEoZtOKA8YLQVhjZM3qKc24Q2pzP1QJAUZV5lrnK2ZUSdVXVdY0pcYqZTuDCYoQQUlZZa4lPtZCe57W767WsXdGRZRlBiHpBXmaUciBIWyNEAQCMsXaUSCmlkRRT0Jagpas7pRQZa4zBYIwxTV0FQcAZcebkWmvfCwEAA3HlPWOsESJKWjs72++8967QolGNEAKoRQh5lAVxREjCGGMexRhjRq2zPQctpSzrEiFksbXWOL8Wd8tVJV1xRAjJ87yoSqctxjlHlDhU1FLt5ESNMchCWZYOUGaMGbBFUUgpqcddsexGnh2Q6lBaV3ARQvKycL8XlnPZoJTKq/K8KFNKIWMRWq6/A5pdUex2EDdX7mR8giDwPN9pHIeeH8WxQ4HPVKeJq4IBjCuuXf9gWT8yas88tc7/HQRBEARFmjnBUHum5ukc/xy0Lap6yZUjpC5KN7PrPhkEYcA9Y6Asy7osDPcDEgKAEPWybkVAKQW9HL113GpHjXLcMufYhJdykUvFS0ywV/2LCuCqUtz75e88+a334p2BF3LiczAGU1xMS7HIssP5OaH16Vfe/792//I/pbT7zz3Kcfa1v/qL3/pPfyVc7SYbHYc2YIqzYVocT0T6hwoT/wsek7uH/+Bn/9Nkq8ParagbGm0AY93IpmjyvZHI6/7Nrdb3Upsv/shLmNP/tvDTP/IwQk3uH03+L7/25n/+m8lGm0Rh1A0BQTUrs8NJPf2TIK1GmYdfegtT/M5/8btLreY/Dge5HKV3/8G37v6Db/m9ON7ohf0ILBSzUhdlerwwtfgTXNIf+8D4S3/l/2EM4D/ew/Wv1IEWKg8Lz/PKNKuqinuMMQbGUIyrohBKWQsOfqSeRzGx1iIEnue7d99psWJMnP07WqrmWo9zBGB93/M8F2Ct0ghZDdJqaYwBo8BoY8Cl35zzsixdOAUXUkC3ksiFwSXcjElZlgAGIcs5c+GIcyrEGYYGCllnb7tMwPSZQZo2kjDcDtpBEJRVLoRod1qDwUAIkS7y9fV1z2PGGAvm8PAQAJwaHqVUykYJaYzxeGiMcWL9QRDUtXC35nme4z662NhqJwihpmk8phFCWmmvFXDKRN00jVCNQEDUGf8SA1gAsMsmIj7z3HaiRsaAUNJdyebauh+F2kgAOBkOGWOAbOTH2irh1R7z19imECLnRktZ1yXVSoRhSDAYY/YODizmeVXF/f7RLAfCMfcCxO4/eBRHETIagdGYuT3MLRxjzA84YVjlSgixlNEkILXwfb+sC8dlxha7WqJqmkZIV00Zo5WSxtAlCRpAGwlnnF9jlMZw1i34SGV4ybHVBgCEarAL+Y4fC0Yp61jDhBJjFcEEYauUIhRRxoQQhHJYGiMwxogQAsACRgQIPgN2hRAMk3OkVWttlOp224HnV2WJLfM4X10d7Fx48ehZcCTF+LmrV548eVIVRcDZbDHf39375Kuv/Ft/5ecXs/kv//IvK6W8wCfIgmgIpspqvZS6PoeGkdQaWeuKMeaI/gAWIyAIsEWAwYIBa60miDgNOWusBUucpAayCOGPKULbs0rjI/TZJUzuBpcQ8dln7Lk4i6M/n2UVrqVsjQWwBgCdgcgGIbI0J/weWSinm4GsxRg5A0NkkTXIgNN9Rmff7RnSjQAQ0tYg7fyXrbASENLCaGs8xpHHxkX6xgfvWiAGwA+47/uBx73Y/72vfKM/WNEnh0qppqnmWbqyOmAYkMem01ElRQsH9kwJXmvDz6a9jDFGawPWD+PFbFqW5e07d9vtNgue3RLfffpktTdst9vG6tmsaLeS8Xi8vr7ebreVUu4V8Lm3mM/qqnz+5k3ueUdHR8ap18/nnufFrZY15s6dO2mWZVk2mk7CMPSjUGudpqkxZjAYbLe2jTH37t/NZfHgwYPT09MLFy50Osl0Or58+TLn/P79++vr641Uu7u7WuvPfvazm1tb/+gf/aqzcQMAZOHhg0fG6quXr7Tb7dFoNBpNer2e0MoqW0vx6NEjR7uuqsoY8zM/8zMIoXfeeWc2nnjUIz6qqirL8xdffHF3d3c+X7z99jsbGxsuIXamUo5iRim9e/feUop6sIoQ0loWRTEajTzPK7L8jW9/Z3t724kYrq0M8kXqDNwmk8nKYHDt2rU0Tff29i5cuGCM2d3dn81m3U5/sNI3xszns6IojDFxHHqeNxvPjo+Gp8PxgwePEEKEoDlNx+Px5sbabDZzNilBELz44vNJp9dI0dRVWeaf/vRnHCKQ5/lweKy1rusyjsOqEgdH+8PT4U/9qZ9mjN2796DK5gghDHhzfWP38ZO9vb2XX3hxNptlyPZXB/v7+71+4vxwOp3OnTt3vv71rwdBsLW1VZaVUmptba2u66qui7KshFxbW+sPesPx6IMPPgCCO52OUHXYSfoba5ubmy+//HKaph/euT06ndSy+fD+bWMMYagRutaNanRWFfk0XVtba5RkjFVSpWWxtrb24TvvrK6uIoQAmSdPnkwmk8cHe71eL+p2v/jqJ530sNdqrW1trGyuG2PiKBqNRo/29+u6DsPQC33ksd7KStS007rcHx7XQgxC/9pLz+3u7rNW6EfxfDJttKya6s7TR+1WAoe7lNIf+uEvPHz88OR0JEBtXt5J0zRe7WRZFnV72XxmCW61W/f3nlxQW1uXLrz55lsP7t13ZpJbW1uf+MQn9vb2hBZ37t+7f/8+IPTFL/7kJz7xiVu3bv3Kr/2qMqYdhs89//w777wTBIGTOF9fXet0kkYKpUS/3/3zf+F/cvv27S9/6TcoIY+ePAStfu6v/Nzf+i//nx98cJsxoo3cubgdRn6SJFVV/eZvf/nTn3r95gvPffOb37yw8yMvvvj8rTsfBoF3ZXtHCLG3t9dut6uq+ua3v0UIyYoiL4uqqbd3di5cvXh0dLJoypX1VYRQWmYaGaVUNS43NjbWNtazLHv/9q2TkyOt1OPdp0/29zjn/bXVxoi41br28s00TVfKdUII9lgDynp40eSGo09+/2uP7j9wfTtlNh7sPyO2MJ/Ni0UhchbSC6s7e8d7o3R87YVr7XY7TVNCSCkaY0wm8v7misRqWsyDlgfGGrCIA/FxiKOk165VI4TodDos5DFuZXXeYbxpmlmV7p0eGo4uXNmp63r/5CBJkqTf3j/cK+sCKHJeHHEcG2X39/dPR6PeoMc5JxiEFqPJmBBmAE/ef//P/tn/EfO8X/213yrL5t/8n/07Vsm3336bUtrpJJsXtoHgwfraDzz33L1794IgWFlZca0phRhoYzFyFk+IYp/yrCzCwFONcDa51logGDCyxlCrjZbZZPrzf/4vvnDzhc2od2V1O53mf+oHfvzzL72ez2fPX7sxn87SRXnpys1XX/8MtFpQNUoqac10NFJKhUFACUaehzEURZOVRVlXBiPu+4GKsa6EENbolV4/z1NGIbViOpkxApRSBNpa7KBhl6VAU3jY+iFvlOXWz4rGyArzZ0+wRoO1jUstrTXROsBEKGW0oQiqphHSAiAaJISgQiprrW4kIcRNAVNKLSGlEA5uWBoqUMrD8FynEi2tgwnnDACWGqaMuX6/Qy5gaZ/CPM9DCGGMjdIYY6WE7/sOQXAc3kZUrmdMCPE97m5Zaw0WAYDzUy3rpUicg0g4545ZvNLrz2Yzp68nwRhjjo+GTthdKTUYDJQyw+EQY+z7/tHRkbt+R8YnBPm+r7VeLLLpdDoeTx0KvL59QQjBuXf73v2iKCwmq2sbs3nqe8yPotPT06Zptre3eRxTytvtblnWnoG6TgEgDMOirtI0xRhbjBFCu/t7u/t7BGEpNSZMGzg4PC6Kwmk6Z3mJ8dIOBABba/0gGk9mv/07X8myhfNpyfPi0aPHw+Hw4sWLnueFYfjeB7eyLKOc3bj5/Hw+T5JOlmVbW1uUsv39/aOjY2PMjRs3tDGLxWJ1ba0sSyklJzRbpCs73dXeZS1VEkeE2Nm0tlpGm6vz+bwVhi+++KKxihE6HJ6CIUSancFmu91+8ujp3vFR3OsUWps/RPeScU45k1I0TYM0dNudwWCwGI2M1taapR4fYONYnBiHLPAJs8zzjOTEcGQltspY7ZJt65C4sKrruq610JowrRQzCCGJwHgM+57fCnzXk8hnBQFYj9pRFHX7vTCIeSnrupFlg6WmGgCxXKvU6KnR1qOm04KmNFlutCaEYVg66mCEKCaOGq+1EXVJfC6lWFnptTbXsiw7OTnZvPRswXQprUWUM1/7ptG6nKaT7NZgdT0IW0pbzyME4dAPnB8sIWQ6n7XHYwuacu4F/ud+8Acmk8l0MqJRhAlgZV25RTHVojGgOnErjmMhxCwvDEDgB1eeu9FJ2tvb28gaI5uqwD6jGnuL+VQ01cpKr65rj/EwjrK8rKtyOpkMBoPFYqG1Xl/t99qdX/2Vf9iUVeD5lFKt7fXr16WUaZqGUfT666/fuX07TRdPnjwZj0eyyZ2K4uc+97lHjx59ePuu6/dHUbS6upplWcv3iLBf+/2vRmGLc66l6nd7Wsjh0TGy0I5bg16fcHZyOpyOxrUUzt/PVRC+52XZcetqGDCaN3UURE3TlHW1NLZBrpDmzm6HMdZqJ0WWa60xJWVdYYybpiFgwzB0symYkFaSKKXKpjZWc89b6fY06DzPneSlG8JbLBbGACHEWl2r2pUgjZIam0gIdMZ7LYpSCKGlooyEccAY01oKoY0xDutsmkYoyRijhDoR7dPxCGPMPFqWNQCAqn/zK78NGEWtiPk0aPl+KyCEEIIIZw7ZNGAMMlLXLg8UWlmrQQMiwDBzjGlXRJyDDgDAGJvMpo7sprV2WLMQoigyxhg7w4i1tvpMRxshJJqGEMIYM2jZUHTogNPHcCX9OUJxnnVL2QBYAOwQk/ORU4QQxkjrpYLzOSJ8VuhZR0Fy9GpKuTE1IaTT6ci6mc1mTkTbQcOUcodiuLlvhJAx2pWBWmtnJ4UJcSiMuzbH0VaNSNO0LMtlN4Vzh4Osra3NZjM4q/fI2ZiOTwN31x5ljsMIAE6PBYMVSjpYGQCM1cYAxdQtuBOwRgg5UW+3E7lGrD0zZvQ8j8K/KNZ8foi8nt5+VnL2scMoc/7vP/b501qkx/OHx//8j/4JDmPS/SnsTyfP+sPBy5esNkA/2jzmj0+pz8X/L+Dm88PUYv5kBADPvOY/yQndt/P/hdZFPc3/ZHj3v4TjjKT3L12r479Dh9VGCYkBEYx8jwdBEEWBlNIiKIqMc9/zPCmUzz2jDQFUitpaQzFxfGEghBHqRZ7neR7jLjS5KUBjLCeUYcL8QGstQSOEnH4RxrjdSpqmsda6SMsY89jSg8Ql25hyjxKttQGEMDKAMAbf58ZQjKkTqajrpTUfANgzsqhW2nXaMAY3zEEZ9TwvaoVRFJZVbiHY3t7e2Fnj3KuqajgcYmSzLPMDL8/zqiqEiJ3Ovud5HvMBgDHGKG7Fsez1jDHOLXA8mnqMd/u9j4sQuGDrGBh1XctGVEUpG2GkQsZWVeVOSDDDAC7kojNE1N1I0zRKKYSWrO0bN26srq40TZOVRdLuKaWSJJnN59qIFmszj1a0KLJyNpsZYwRtMMVaazobT6Z4Wtf1PF00FggPMQuEtpb7jHqEBTzA3f4KQbiXtI6ODhptACBJEte3ZJwwxoqieOXVl5y7FPO46y04NUmneuw2nqKqLEKe5xlj0Rm9130ZjgHuGrCu5gLALq8CACC4aRqn0s1dL1dItz27/cxtzwCglHImtm5RHGTpkiQ3CAbUwxhbYwCMFtL5D7ht1fUlMMZKNkLWqhGe5631e1prsLrX61GMWK+ztbFmtcrzfDEbPfNVIRin80nI2bwsKEbz2Wx7c+N/+uf+wlZvUE0X7Siepotz+PjjEPDHacVaa4IQnO3NVhvloHYAozTFhBCswBBEGKEEgdXIghNjtgCALYDT6MAfKXW4y3O/zq2tXdon4o//3nO4+fzCXFbxvdf5kR+gO7MTET/7U0wQPhdMX4LdDm9e/tKlswrA+X3Dx3+FezMBsDIaDDBGKaHWWkXRd95/99bBQ4S9wA/8IOCBH8Th733jaw8Pdi+9+NzJfDadTinDrVaLxuGlq1euvXDz1778pffu32n1+xqQUcr3fdUIpRSyS3tJxmhVNVWetlptJZuAMITI48dP4XtmkpbH5cuX0+njdrt99dqVR48eGWOCwHM2fUkSr62tpbP5/tNdjHFd1xijp08eTyaT/srAdVmcJX2v1yOEUMZWV1cPjg6Pj08QJU7Jbm1tbWdn5+jg8ObNm+1O8rWvfe3NN9909IEw9G/evGmtvXXrVlEUn/jEJ7r93le+8pWiqN586y3z3e/6vv/CCy8QQmQjAGBtbY0SghD4vv/S8y9Mp9MP7t1ZLBZXr169+cLz7l17urfbNGJra/Pw8HA0Gj19+tRamySJ0no4mvR6/Z2di51Od39//+DgYDKZuLfMRRzf9+/du9dut40xBwcHnU7HWu37PiHcMbhfe+21IAhu374tpXzxxRe11u++/2FdlmHoP378OM/zTieRUvb7/eOTwydPH/3Mz/zM6urqW2+99fB0dOHCxW6/WxTZykrvxo0bxpiHDx8e7h1tXrgwHo+3trYuX7509+7ddrsVeCwM/bAVV1Wl8+zm888rC9/5znd2Ll5+ur9XFEX70f3mllRKnZycjCenjLFr167wwHfeIFlZnEyGT5/uKaU2er2iKLrtRFvzG7/xG1dvXF/f2vzq137/lVde6ve7o8lpGAYOuxlPx0Hk3Xzh5uc+97lut/vehx+8/94Hzz//fFnWT3afno5GQPA4nT89PhRaLfJFK0k0QQZwbVQ3iWfF4sHuow8++KAsS+YHGhsJClNsCSYen+Zpt9Ohgbe5tXXz5s2sLE5PT9OqmO1lk3yxsrXuR9FwOIzjOFntI49hjLvd7urqSpoXDTJhrz3M54e3xqsrg+l0vLq6ur6+HqmmGo9pEklj/FY4rYvRaBS3QyU1JnhcZcN33szzMo5jUecCG8Ow32tTSosyV0ZTo5+OjnPZCKtaK91ZsZDIllURJLEGrRjWSOsyv33/HsX40tYFqy32uWWEhv67tz/82re+Udf1jRs3GGNrF7ba7fYsn//tX/w7r7zyiUtXr4xGo53LlwpVSSuJIY0Wg43VldVBUZbj6dgL/PfvfHDrwZ2rV6/+yBd/9PjgMF0swnYkrPy5n/83f+VXfuVoeJJXeT/sX3/+Rp5lfuTnZfmt73672+0+/+KLK+trv/j3/psgClvt5HQ80tYGrbgUTVEUH96/+0M//IXuoF8cNZwEo/m0t9JnUbDS7zDOp9OpaWoWepHfRhbaqytW6UJWjZX9jbWVft8YwxiZzKY04saYN959+8n82Pd9V8NnRxmldG2wKpHZHx75cbBxafvk6BgAL4pnTwi22vGdB7dm2SxMwjgJMQeDwCeeBt1d6zLGEgtZmi7KeSFyivDK5opWSinV7rddtpQkyXQ6nYzHjFGJxGg+RggFSSiEiNoRIWg4G3meZ3UjrIx7Ha30nQd3sEcQQ5VoRN2EYVxVDQbU6/XiVgsIME5835+MTvf29kQlVtc3Vze20qL8M//6z/zoF37i+Ph4Z2fnH/z9X5rPJjdu3NhYHRBCijJbX1/fXFunCJ8cnw6HQ0qpUkYhK6UUdWOkKurCGCO1AgDVCC0Vw4QyAgDaGKGsUcoHI0VjpfAJXgnjP/0jP9HUenX7EsOsqUvTCAQmjpNFWl65fh06PWgUYIK5F1Aua3l8fJwuFmEYxnFIWEA8notallIqW9QVozwMPClqjxGttWwqQlBVVePxuJNEceRhRAwY1zR1dGCs63e++52bn6CN8mi4gkHWqpL62d47f/DGdyfTZfIahDEA1FJIpaWUQDAhxI0ke5QFQZCmaVHXHl1ON5/LgyKEoKhdtx4h62EitZFl5dhnxtgqLxnBlHFrrbSWsMAYw6nvHMkQxtra3f39OI47nY45GwAUSlsEXuBrrYMojJNWXddlmTdNbRCElBprpdYYUUKIAsSCsB2EDv7uDlaNMRQTBytoreNO1yX6iFNr7aWrpXOpklJKqTHGN1962TU1rz//grUfaW1RDFJoxyVplCqKAmNMKW2FLWOUG5CilEgplZRSSmKVlI2jOzBK5/M5pXQ2m92/f+/KlasuHbfWVlWVZRkgBIxYawlmZVkmcYwxPj09xRi/9PKrLi2hDFdVJZRy6g1WWYRtEreEEE4BiTF2cHCwMlj79OuvDwaDg4MDyjjnfHd3N8uyzc3Nwcrq0eGx+/B4MmeMNUIhRFpJR2nbNGI4HFWNiOOYELI56I5Ox6pRjFAAcB04AJBGr66tI4KzojRKhlFAaFiU5fhgiDHu9nvTefreB3duvvoyb/kPPnwXB9ee+chJrTAhVoExgC0YY8qyrOv6fPwfYwx2OcbneZ6SUlZ1i1HWNIhigQwCo7Uh2CILRqqmES2fr/gh9QOizGReAWGUYQzaoyQOOSOEYqy1bAdRJ0yiIPT9gADRWteTrDSCIMQIZoQhhCqwRZ4NRT2nCHk4WV9pjg5oK2RK6arx/Kiyyg3aS9mwIPwLf/7PfefN7xZ1dXx8vJhPs3yxsrHx9MGjqhaz+bNDKOXU4y2PetaissyZzywm2qKirMMwDkLfZb+MUPd01XX9ZPepNpIRLGW0vrpy6eqVNE3PKjTsprWcUB0joKWgjK+vrSRJc/XGje0LF1566ZUsy4Soy7L0/EA2lTCkSGdgdBz6TVV5nBPGwjAghKSLmVUXtBAMY6t04PHxyel8PFnp9wlBZZYXedbv930/BABCyNMnTzBGFy9e3NnenM1m8/k0iqKyrO89eHB4eOicAxaLxeHxYStOXEpW1tVisVhZWQmCYDBYs9ZOJhOrtJB1p9PJFmlvpd+K4ul0qqXUQjJMgjB0tNwqK+7dutNqtQigxhQ8CPv9/vHwRCnlR7ErvIUQTVkRRBljXhRoqZZ1k9GtdnLp0o4x5uD4SEqFNXbCGq6KEUI0pBJ6eRJXfDVN47g+TSNdCRAEgRd6tWgQskIJjChCVktbNpXW2rnPuwnIWi8bZgpUoxvEEKfMJaiYUMYYQwxhTBkLPewFfhQFZV1hRi0yzmEPGNJaKastGOJhQkglqroRCCFGWaNFWeWUUkqxtUgJRRF1MfkjQQwEymhZK/oxFQt0Nn3ssGOLtIN9wzBwryQhxCmQukaXtcYV+e6Z9DzPOURl2YIxz/M8a63neYwRjJHW2NGlnSypm5FdIr9CO1jELYu11plruWBLCDXGEIL7/YE6M3ufT6YIoSRJ3AiLQ2mNMUoJjBHGy/u1FjkOnTsVxpgTChiLs57oEhAn3FoUhrGDm11ABsBR1Mqywpmou55KluVCiNWNged55xIi7sxuMFdK2YjGWuv7PsagFEKEKKHO4QJH6GaMOSEXV7c6MUxXoSzlNPV/j3G77z22PnONeB/ZIVaz4tv/p1/5748T3f//+O/KwRgNw1ApFUdBEAR10yCE/IBba7vtDmOs0+mdnJz4Hk/zrKorj3NKMSPIKGWU0lJSSoMoklJIKaqq8hmnCCutCFiEESUoiqKyLAleinUgBMYYYxXC1uMcY6y0qJvS9fMwAoywMToMYsIIwlDXEtDSt9CFIwDAGNwMFgDinFJKCfdcmLJWIEQcih0EgTaSMUYIEqLhnPm+3263fN+fTqdOfg3AOuYHBsQYW19fX1lZiYKwruvFYhGGIWOMUsYwAc6wBSVVEsXtdns6mQdBEAXhcvzxjDLrKoh8vsjzvKmlahTFBANy+s7WWgKInIHLYPG5Cq4bxNFaO5VjjHG/37969Wqep04Y2tG9q6oCawkhUjXaKsHFcr4EY4RsVVZEeDSv8m63m+ZSWeMFgUQYGMnryvP9uNObLwqlVBCE89l0Pp0hbNWZ4onbhLSypaop4SfHp+PRFM7wUxf3XRO4aRqjLViktSGEYkycCQz6mL+B2x7OOLgEM4wMshaMAdeoUtIgDMaAVAaDNQYYoYzhphGELP0QAKCRykPEINM0glKqtEUIcc6tRU0jjQGKrBS1tZYirJTijPges0bVtTTGGKMopcjo1X4v8H1Kacy9uiiDICAUKdFQAulsXJZFXeaUrdJnyWkYLe7dut3vd32fS6WAoP/BT/00SP3BW++MRqPI8wuvVkYraxhjRZmfV1/GLusBQoi15nwZNUFgltrTxCJjDEHAACsADAgjC8YiaxAAsoAAEIBGFiEDCFu0/E7cjr5cX7JU07bWuo7Q+f7tLsB8ZJ1pl10d/DGpZWUR0g7ApmeTj9ZadebVjdzo8fLn79HoAMDWGifufI4s27PZNDjDr+2ZXgzGyBhjtTHGaoJOh8cPDg8sYbWWvaBrEGDODsbDBwe73Y11RdDtJw8BYDAYrHRarUEv7Hdu3b87ns+Akaqpk9C3lrg7Iggrq5SSHucMw3w+b8q8l7QIIc8//3wQBNNUzJ+VqOw+fYL0bDafYoIGg0Gep51Op9vtOo1Ixth0pLa2towxs9ksnc0JIevr65SzoqwoZ4TRxWIhtXrlpVeHw1G73d3e3gmCyf7+br/T7fV6lNK333wrDMOqqibjabfdcXN2VVU9fPhwdXX1/v37u7sHW1vr3/zmNwGj1dVVz/OOjo7KppmVZeiHnZX2Qi2apknTtJ0k1tqimGytb7Tb7Q8f3d/Y3uqvDp7u7mKMwVrf97/wQz+8urr6m1/+cpal3PeklJPZtCiKT3/m9QtbF05OTnzfb7VaV65cqeu6LEvueRcuXGi322+88Qb3Ofd5q9VytM08T6VWlNKk0/bDQCgZksgPg8ls2monaZoOR6c3bzwXBEEtFCJMI4sZ98KgP1h7+PC+ReilV19qlNRaX7p05e233k2SRBn9/ocfbG5uttpJ1O4AQjeee+77vu/77j98MFvMCcOIRDKXa5sb/STioffwyePxdAIEKyN7g5Wk2ymbem//oKqqTidBHhNGWUbSOnfpddhJPrx/VynTbrfzuuquDRohHh/uB+3W7fv38rffoqH/rbe+69/64KWXXgRG07qkFE+yWa/X2x8ef3DvzouvvPxob+/ek0fTPEWETuazqmw2tjZPTodFVYVxtLK1xXyvstYgRAjaPTxoRHX/ySMAaLXbvu9P5wvkk6oSDENdVYyTxmqpJGdsNJ8aiwj34l5nNBmfzqeV1QmYRV0ejk9brRYOQ6tlIZtJlj09OsIYhx7FoV+n6e7oBCFUT4anxYIQYgJmQy6FqERZ1/VpsYhWO1E3kFJy3xdaTccjHAdIKmkl41RjpLBWPu31Vgkhw2w+GZ9aa5EWQmnCKPaoIoYxjkNelWWnN7jeTjxCm6pOwrjV7ZyOR6USfhKndXntyqVGykZopVRp1dFsLIR44/236rrm7dBQOBqfRL3O/v7+eD7b3NysrcYBbUBKZT1l83l+9eY1EjLwCRToE5/5vntPH1RV9T/88z/7i7/4i/cfPiYBm5dp0zRR1EoGndgkxhje8t94900L1ud4UedlVTraUVmWmNHu5trxfGLA+J0W9XjV1Gld1lYi7M1mk5PhycbaKvZ9g3EQBMezMQZEW6HneRggFVUURa1+d1KkeydHjZLt9YHCILFuQKZ5bqzptWJFTG0FDdjT4/3tjc3GSiU1kGcDlHlTpMWxQbpSKiYt7BFjDBCECS6aUjfOfkD5oeeAWmoV8xkBopGlFOeyhAYrYhS1CCEcsiSKR8NTQpC0qq6aJEmIxzFnlRBCCt/3CaWNarTW2xd3olZIKW9qWRRFHLacGqZBJivTlZWV/mDl4cOHlWjiOAZrHt67u3lhZ3v9Ynx55/T0FBm9ttJXTT0ej+u6BmR+9Ed/NI7j2WxmYTnxWlVFVjae53FChTZR1KqqwoD1GRe6QQgjY7VRBiwghMAyyoyyUsqrl6+89sorBCGiNTU49iIpdcCiqlFVXQZB8P2f/xwKomo0lgR7jGNMsAWMSStqVXU5nkye7D4O43iwtrJ5YbO90hmPp8Veenh8FCLFA39jbf10PGq322k6T9P0rAPteOhayNrnzKVlK53Wh++8ee/h/oXnPrVx6aayKPT5/A+hmv7SL/+KLr/LfM9trIzxRoimaTjnhHuOJ1iW+XJmyFprLUHghvhcdoQxZoQSQpzqJULoypUrTqqIc+r7vgMTAQBh6zPu9nHf9+Mw8DxPm2UOdnCw54ytoyB0uy1g5HOnlSld6PZ934KWUnqUGWOqqqKUEsKc1idg7MZZ4KwZ7KAHAKCUEoSqRmCMrTAAwP3AIpQVpbWWEqa0kUoz7jVNQxl3dNHzjAIx1WitGskYi+IEYyqEUIAQ4V7ApWw8xqMW9XxmrfUYdniEUkIIcf1mgAkp8nxje+vy5csIEbvU3Vbg9EYQnNEJmVJLf2NH33Mwh3Yapnhp+IEsRsg69VVHOLDWOrg2acdN0wyHQ3fvRVForS1CUsqf/tf+jKiE01S11s5mM2fk6LJwpVQlqk6nE0VRPptaa9PZPJ0vwjjKspR6HGMwSl24uMMpVk0dB0F/pXtyclLkVdTpKaXSSo4mk1KboN0ZZdPe2sYkf3YAieLWPKOEkKAdRIz3+30lZVPXQjTnBAKtrHM64ZSJsjBhnHDGNMHESrClRZzgWdUgRi0BrSUoGUcBVkbrZt33oyjyQ48QgglYbKWUoqp5wLHFjFJR1dk0I4AwQhjjDAuKsZUGIcS4bzw+IeZE12XERvPT7bobrXRn+0cu8S7TBYpCjLBbN8Lon/rxH7twcftb3/n23tN9SvHqyuDx48d37txuJ9Fw+Gy2RxBEFOLA8xopCfcaWWvZdFAfQAc+j4LQPdgXLlyIWvGtWx86O7snRhIE/W6PILu9deHW+x8sFgufe3UtOOdgLKUEjLLWgpGiUUkYfP77P7e6uT6fpUeHe66sEk1dNzlCCHFPS9WIqmkqznlVyV7QayURytB0OhZNZbRs6jIMQ5+S2WRU5NnFixdaYVSV+dHR0YMHD4IgePXVl4uiOD0dtlqtD95758qVS889d308Hh8cHN25cwcwjuM4juPHjx9TSrMsQwjtH+xVZe0kXMbD07Isr1y/URaFrErP8wjCnDKKcTpfrG9udFrJdDHnnFPO8jx3FgWvvfLKaDQqimI+nyuAFiVJkowmYyGlFlIKIc8EhTlFCCFlDQu8pmmM0QCwvr7OGLt3756bsWuUbJqG+yyOY0ePatLSMV1cMexiHRgklWonCWNstpg3Sq711hGyw/FIKeFU+RAimGNkkbUWE9RAE0TtKGiVdUEI8YLAtd+apgEADpB02k1TxTjCdEl9AWyFEFE/0tZILUpZcMKtQZgAWFtLWTelY8NgjK2xWqhKNIQiwomxRitlrZVanpdIjq7hJiQwBq0lgFFKFUXhhQHnHCFQSru6xoldIoQo5XEcO+H4KArqui7qyg2Ge55HCCaEug6llHJ1ddXB04yxuq6VQmeV/3Ic23lSuTqLANL6ezQujDH4TH/jXMTZnrn4xHGshXReHW5gXErpSPdOAtV90u0+bibmvNZzf+SkMFyQVMp4Hqfoo4r+nA3tmn/ugquqcnRmAIiiSAjBKUUG4Ext2RiQQjjKmlsxQogxanmDxhJKwFiPccRRUZWOc0YprevaFfsOfXbfo1KK0Gdvz2/cfFz3FHKOYca66tta7ZyQEMLG2KquGGMYk6aprbWBHyCEjDUAyGiFMLbGcM6V1kZrAKCUNU1TlEUcRZz5xhrHBJdSEuoipjVgiKufwVprKSHWglISLBZSOngdYaSEg0SM0RZhCPzAginyAjAOAp9g4i5YKw0IYYLBWoKJtppgR/LC50mFk6kcrG38pZ995eMr8Hj//i+y3xav1pQx7eAagt1lOQnTZWF+7vNkrdWWegwBUlpjSow11liCEEaorCqwNgwD3w/qulZKtbsdMAYwrqtaK0UIcYw4a6y1dimzrrQbRHDoAMNEaQUfo1UuURFAAGDAYguUUISWGAUm2ONcSOkgs6WLFYC2GgGilDLKHLkVE4wQWq4NgNZLgIUSAu52CEKAECyFF8BYhLHUwmiDCaaYYEqWCw6gjSaYnIMV7jqNse4zbq3curm3wIIBAIKxNkYrc9628Rg4jSuCCVhkrLEWCMbKKIowIRQsaK0YcR0gy4DKunESxkWeF3kVhoEUklLm+X5VVmCg3Wl7jEdhNDwdAkLdbicIwv2D/ZVuH2M8m82VVtz3RNNQyjCGeZoxzra2ttZWV588eWrA1rWYzdK6ahjzAbCQErm7xUhrbayiaAnXcIo8z+ecIoy0VkopY5TRBjBUVS2EqGqzsTEgnE+n06TV8ghXSuEzdYRN1nvlwTNcKNbWVxWZFUVhtC7LMoqCs6SXU4avXb9ydHgCYGaz2crKCgaktWy3kizLaiFdGoYxpo6ryhiKQsaYzz3f9/M8H41GZZEjhBzYSjFxOjxaSuWUG7RekmUBtJTIWmdL4IQ13OtcFeX5LIvWmlDmGl3nGgBOB19KCVoRQHEQLvEuZAlGnARKCQBMKaMME4KcMp4wlZJGay2EaLfbSkkhBKdMgfUYd6dVyhBC8rwwxrTWt8q8qIrShdz5fA5GUcaaqkIIaWPqslr+LSNlI7JF2jQNw8xKVeuGYEowxoyDBWMNQm5EBiNYalLZM00kJyHtOsSe5x0fHRyfnFRV5YaTqqpyu3klS6IhL9LMzDutThAkGKFGpUVR+Sqmg8EgjFvSWEtZdzAYz7Ondx8C2JVBb7ooAZmmaYZlhS1UVRX4fr/fc+V6VeXOFQQAgiA4PT1VShGEXdBP09RtSJwFCKGiLsqyjJKWUur09NS9hOcbzHlXEwC0Qo7eAvuzaloAAQAASURBVACgQWut7FLoypaVg0QpJpxzZxJ4LkcFRLkFqmvhoFUXNTDGjBE3ZU8IoZwwxjzO87qui9JJU7nHglDsc08rpZrmwubm9ubmYrEoTseEE05AySYJfQSwWMzqurx0eUep/rh5xjbGCGWBJ4UwYGvZBFHY7XZPD44e370vpcQeJYQoAh71FouFa604SyIDFp9pIFuLDACyVmutFPIYR5SCsU7PBxmLsKGYALJWG2TVGXUYWSeh4XoTCIO1/xTgiywgC074Gc7EWdwaLtf57MOuLbO8KcbIWe/d6I90Oc6fSDgTPHHPq/mYFsf5Ya21CCxyv/2jC0PW4ebYGIMsIEDaxW6MEDKcMjDGIsTD8N7d9x8d7llOqKWE0v5gZV7mj472IQxWtjcOJqNc1EmSxL1OLuppkaV37/zeH3xtMp8BInlVtrodTIjWihCKCUVaE0KUkmEYbAxWukl88PSJqOp33nnP931rn3/GtwuAMZmOZxijWTLzPG80Gedlsbq6WlTlrTu3pZSb6xtCqySKi6I4OD6SUhJGgzBstzsWI4OAB366yH/jH3/JY3x3dzcIghs3bmipRqej05NhVVWO4Hz79u3RaBT4vvM1AoDjg2MwZmNtzWPM87wiy8az8XQ8ieM4nc+4HwghHj95hDGOoqjI8+HJyXM3bvR63Vu3bv3OV79SlmV/Y/Daa69Nx2OE0M6FCwCwujKQUv7+731VSnHx4sWnT5/GSatpms985jOffv31d995J4iCjY2ND3/7wyzLVldXDZg4ibv97te//nXO+YsvvfTo0SNfKQswPD1t99qW4NFseuXKFYTQw6dPrl+/vrlz4f79+3/wrW+urKzESauSDfFYb3WFMYYpLeqK+Z4fhds7F/7gG/9kZ2dnc2uz3e6+9957i2yedLq7u7vKGDxmSZK0Vzrz+ZyUeanEleeu9Qb9+/fv7h0fbm1tEI/kVTmcTY7HJwgRhNEbb7/FA98ZmW5eveQ0NFrI9PvdSsvJyaFdTs144LNWEBRVczIa95pSaiWldDk3Dj1KbC8OMAbB8GDQz46PDoYnVVUN0wWl9PaXHr57/64x5mQ+iVZXnn/uWv3gkSKLTDVeu1VYJcBQAoRiay3DrGmaRguESRQFzOPGmKPTEz+MsUFh2yOEEM6stdpAUTdGwsmdO8iJ41AirTFaZ+PxaLEIwxA8molKNcL3fUZpVtW8FQFAY63Swksit2vWdZnOp4PBAFM2Tufb29uLxSKdT7cuX4i67bIs06pIh8de4BuKBRhrjUZWG8Upr+uSMZaLuigKQgiywlorSqu1xooFQSCMHh8ecM4YJo1RdVmpRrSiVlqX/V7P102WZaVVqxe3425XCDGZTIjPLEWcBx6OjTG+x6SU8zIPw5DG3sUbl+fz+UIWyNg4ji/evD6fT5nHcUBvP7orhFBC0Nj79d/9TWSh1WrNyizotf12aDnSxnAvsBhJo5VVlNFMloZhRMgkW1RVBZQxxljUIhwbY4QxT44PrbWEUc94lNJGa0uQBEV9DzFaGl0VxcbmWiFEWhfIWEJI1O/IRuzt7W1sbBSm0ZwEvXZMCGNMc2iEAMo6rZgQ0m63F7O5JdgaQyk5Gg211v1uLy2ftXMAAMY8Csiylax45BfzuZFGGg0AtWiYRQ4c1EoprRANLLZlVWdZFobhYDDYHx5ZjOJeYq1V1ooiNdh4ftCNgrqupdYIASbWMBR4EQBIqZJeN0/TJEkQwbN5KupmfXUVE7JI0/fee+/qjaudXhchVNd1nLT6g9V2p5UXVV2VASNW6zu3bk0m0yxfrKysrK+vW2sfPHjwyqsvMcZ+67d+K0mSxTxDCHU6vU6nV9eiKIosy+bzFDNsjKGEYIY8TEVVCyGMVJgSTIgx1hjDCQui6OTo4O//3f/qL/7cv722sjIaLsosb3X6ZZZGUSRktbq+Cr02NFIjXefFNK/quk7iVhhGBGOwiFJqERqOTkbz8cbmmu/7ceRdvbITcrL76NE8zQkhabFommqxmGupMMbWaiEEJRwhRNBSZw1hi4xe7XVGWZHPRnptc+vS1ZVBz8hny8j63Me85bZmt8NijDzOAUAqlS9Ka62TuaSUEoqdeIUjBZzxApCDCdwPy0yJuBExQwjRekkJ1FqDWfatfc4RQkLUbnbPWsv4Ug/E2UW6BGnpXuXsl611bGu3KWOMXZYVhtEiTR06TCl1KqXOFdP9RTfL7HmemzwL4shl4Y6jTSltGukIHe43IrTERM7k8BDGmDFPCHFwcHA6HLfb7SiKOp3OxsZGp9M5x4Jdnun5OAxDThnGuN2KHbWtqaoHT/YUkCAIlgkVxr7vCyEIO7d2YefoCSHcAqrdLVAacu5u0BiDLWCMwwhLKXCM3fpE7Y7jM/Kg1eqsOHKDA1ncjbgviHOO0bJscCugtbYAjoIHyEgpKWaht5QxWeqiYmutxWCUkBgBGHVycuIx+n3fnwghrKoQYKlVVlbCaOSRf/TlXy/zLOwkcPCMR66uax74QSsuq1w2IgpCMFYI4cYBEUIONHB5nMXGiCrmvEd4ixJspEWmwAKYX7RtqURa5IUSIk8biijCINVKEoUtH2NsLEitirIRQlR1Dda6R8Iq11lZOpiJmBdFkRdFBQoDjtu9EmyBtMSUUHYyOm0PBtoagzBF4HthZQzFxBpEMBZC3Lp16/lXXhhNTo8P96osn0zGDx48WGQm8FTS6cCzAGdCGbMEIcQ4KRudV7rfD/2AFmlttRBCKaERQpubm91+7+Bg//DwsJVEZVn6nI0mY0BmfbB684UX33zjOwYsQgQh4qjrGGOwBixuqhoBZsSCUgRDVWQOVlssFowha60oitPh0HGKAaDb7VprH9673+/3+71OU+eLObEGlUYr2d7bfXxytHd8uLvS67/00gvr66uLxQxjfOfOHUJI0oqHw2Ol1HvvvHs6PN6+cDEIguFw1Gq3OOfOISNNU4zp49NRt9tttVpxFGoh41aLE7L35HEcx5PxaZbpbteLo4Cx1nQ0nk1GXhgUZUkpp5S2Wq3rV64y5rUjrx3HaZrdE6Jpmrqu09m0FcV1XTd1yajnaKRSSiW0EhIYStptKUTTNB5l4/Hp6VBfungxDAKt9Xh8Kqz2aUgQBmMDz2/5idMgdrBa4IVlWYpGMsY87juB+LAVWmuzMi/LknKqlCjrSmudJImjJDvv+QYp6mHuhRgDIkiARgixhC5DUwCIYsa51rpsKoIJwmCYXjQz7nmWWA1mXs+1WMYxC8apVRgAQikCB9VpSn0ppbUGYwzIaG0cJRljTAhDCJ39TKqqcgHBYejn3TiMMWiDzhQksiwjhAFA01QIufqUnRdfhJCyLDjnrts4nk0pwi4+O5I4PsOwAKBpGiejrIU0xrgZcxfHHA3NbSXIfDQ16/Bi0IYTapV2YhouQLltyDUUHWTjIjmcVXYA2J4JPzos2/1fY4xSpmkaSilFy63EDZW7uBpFkZQyz3N3QnebjuhnrbMvUtYVhwAEYcS52z7cvbhun7s8Rrm1VsomDEPP8wCgkeJ8YBydWQgSQowBhJDvU/aHaDdnSb3o1O7z6EyuBGOQsnQtWCesZK1SSpnIGGM4X9oqnkOxUsqmmZ8Du4yxilTGN6WnOa8BgOAzur2TmrTL1ZNa1XXt+srWWoLZOb4jA2wtOBNFq02r1TLGFJAZYypWaWOUmhhlHMXn43tQGHhFkWtrljNJSrk1cdHp+3/wT124ePHjK/CPv/Fr6WothCBEuz6N+/B5BlIUhdum3XVKKTFg5nEhRFEUnPruwz5jUkoSY2PMAmpC0sYKy23GZavVWl9fT4fDxaJ0S+1x7sApTIjr2SzxBwQA4FG2hBTIEslFZ7CD21NEVQOgc7GvIAi01hZbTTVCyCnqnL99GEulMtZxArBQloVWilDKzowrXGcFztQGAND50+5SoLqp3H/WTeMyEDjTdD0Hmt3zAA7uIEs4BQAQweeQCLLGdXTw0hJAufxWy9yNcQNg90g7NRunOE8QxpgCYIx0XQsAaPkJQixmq0aqWIfXV9cwxovZQmudZ9l8b9JutSBhD/f3EhY3YcP9CLfEAkTR0YU9pYjmPFdKccIVlw4Kb5La9/15lE/SxcIrWnEynZdH86kg2pgMAWFRUNc1GEMxRdQKISjCnHGtNWjZInHLj5UWFmvikzgOEULj6URxpbXu9Lqv/fAP/vZv//aRHfWofvmFF09OTpqmcqvEmxTgGXAzAljM55gQhKwxWgjx3HPXkySeTCZxHCdxa0/v1XUdRVGnk4ShX9d1nufGKoqRx6hCgMDm6aLVahEEUeA7rrTWkmDotFtKKacKgazljGFgWmtOie/7LvM3Bvm+53mJi8zuicJgLHYWFg1GFmPiOmcIISWFtVYKAYyxM087l7qfv4bu+ccYY0arqsYYlWUjpnVP9q9du1IUhVICEWSMEXUjhFjM5mVZOWqmlLLMKxcx6rpmjAuhlFLj8Xg8HmuthVCT0ZgxJhuBLLZ6qfKkpSSElGWltQaMkDJJ0HJvTdM0AEhKCQZhjIy1yAJGyMIZEeQMwXOprLsFSmlRFMcnh9oYQgj3aDUsLEZn+TzO83yezjSVDW8CsFmez9CCcMQ5p34Y1U2zyIuiKLJq72Q8KYsFZyRpBWlWVFIwijVYpbTneZiQMi/cbkcQDX26NliXqnGFULfbjeP44OjwM5/5zHg8/da3vtXpdLQCtxFqrau8MgicvIbbz9ybSCnBdjn5ohnSS4UNYo0GgolFCCFMiZIGI6pBu+6lrBtrLfM9pZYjTm5DOmfLAgC2QAhBFmEA7madQIecEYxqJVe6bc/zxuMxGPnc9SuDwYAAyvM8T7OWx9PpBLRphVxKVNfVhe3NXq+3u/ekk4T+am/Q62kYjJ8l8VSWecKRR2klGqkkNvbdt99ZD5Lj3X3AKOx1ELIYk0YshefPQ5WLXuccZGPsknRsLXXsqroRShCEpNUYIUQANDbGWoQIpgghRAAho42xFgCBtZacQcnunE4+Ar6XRHxOLXcA/TmC7N4WenagMxjaWIVhKa/hRqFdQQ7gYGHklEnOhTjP4y8AgEXWWHdt5sw8EDAoLSiixpzB3wYRhAkmhILWCgAL0WSjfFpklRKSIYro1s6FeZ4BRqwVdTdW503dNE3c6WrQe8eHOzvbx6OhEKKoq6IsNaCQLTXROGPSKJCAMEFGg4WmqpEFZCxFePfoaGNjYz6fWzyg32OrsDw8xqw1RVFvbGxgiowxk9msFmJldXUymZTjMebUDwPE6Sdff+3KYrZYLB49ftoo2el3d/f2h6enG+vrUmvP84Ig8JReWVlJ01Rru7Kyaoxwxerdu3ebpllbXbXWCiHjOC7L8ubNm5ubm093H1dV1ev12u32+ta6+8pee+2155577vd//+t1XT934/p8PudsnVLy5pvfdVTrnZ0da21ZF9lsni3Sna3NJI7G4+mb33mj3+9jC712h1La7Xa1NVtbW1Kpr3zlK2mRh2F4dDqkvhdh9ODJY8/zTqejJ3tPkiR57bXX2u22g4APDg6G09MKNWtrayRkh+PjJElIyB7sPbpy5drlm9fTqkirot/vI58XSmCCayWVbLIaHQ5P2p2Wn8TFaPxkfy+ryslkdnx83On08rpa3dzQYLXWDWhDEYv8XFS//42vr2+s7uzsXHn+Wtqkk3z27ffeBoAwDEnoEcw8z3tpba1UoiiKQipT5gBQ1TUJvFQKSjF4HljdIGsJaAAADT63IZ9UpUtENGP9XrcoCkojz2OIkuFiMa9rAFNjyLRkjBmKWbv15OTQ87xkbRX7/BtvvUEwC9qx0lpo8JJkOp3WCAKt4zhmlIE2DAGlGDOmwUznM6kU0coLAyl0nCRJHA+HwyzLCGcWsMFIahVFUVFXhFEpRJgkdV2XsgEEDBPMGaKkvzowxhSjE2OMEI3WWijFGFPGYEYDGjVNE0URIShN54zRIPCqqmrO1fEwqqoqSdquSet7Hvc8IQRjrFHSVCWmRChplcQYM4KUsbIszZL6p5rGSAtN00ghfO4pYynGtZZSa8SoJThotywjVSUFGJ/xWZ55SlBKZ4t5u93mHs9EMS3mHvOTJFEYjFHWWmQapowmKAj9JPLTNKUBB4IADCIQRRHG7Gh8WosGOJEUtLaIEYWhLGtMcKvdysrCEqtMkxaptVaCRrrphT3BrJYKMAAmYG2jJEKkrEWr1RJ5Pl8sOOdJp6URIIymWY4xVhiiKFJKlVqXoor7nUI1ZSGapvE81mklADBdjJMksQgqqWwtEGEKkAFkLSillZD9fr+oG8B/CCEWY2V0FAcIoaqpOeHUo0oprI21dpbObKXiON7c3KTWEoYRAcAWM4woQhxXqpYYrDWNVrVo8jz3Cfc8j3q8aRrMiN8Ky7Is60oIceXKldOT07IsiqLwGGcer2U9PpwSQupaBEEwG09arVYcJ5vrG1mRL9JZu93d3t42SlttsNGdOKqrqhXHh4eHjFDGmLMb2tnZ+ZEf/rFbt27VlRDNdDKZha04r2pCSCtK6rJpmob5XlEUlGKljM+41E56CwusjDFaWbAGESyVBCnbSZRns+/+7m98+lOfXxkkp6dZnqdx6IumDAIPiAFTAcfxRjdO64rT09NqeHiglFpd21jp9/RYe3VgEeRV/ujRo9DzNzc3Bp1uN4ziMLp///7jx4+UlWWZl2V+VlpDU9UULGM4CALKkBDC8zhBCBH8wo3rj4/Hb3/3W0rJIh08eVgBvPbPfpkMMcL4svmNEKVYA9KgEULImKjVKpsabNRqtaIoGo1GCCFt0HkZAx/1a40ruuCMWojPzX7xsoxx7hXONcUlV5T71mrOOSZLMwxKqRs/OmNbs3OKnEsSmlqcUeEaY4wxEASFIzUos+QEuPT640kCIcSZJ2uttV2WhWdouAbAWmt8Zl3FOceYumQXY0wIwpi6317XdZpmTkXknPno8hPfpXmUWqQopZSgIAgC7jFOMcaOWeSYhsuyGc4oC8hyzhnl7mYJIRhTMNZNshNCnCO5MyRgjBGEXaa05McRcPKpLud2kv15ntd1HfiR+1tuJd3ZXMvHES1dpnR+KrdoCJgjQERRRAhBxqVYxFqEKQ88r6nqBri2tB/1O2uBxcoYYy3a4oz63sPHjzqDjaTM+oMbjz58RvwQUlJKLUA6X1BjsfMolkprjS3Yc8aAAaU1AgQAcRS0kNfzPNRUyEJkhBfFlrPSKtmT8yw9Oj1BjYrjpLORVDJPm3w8mVSVkNrWjaSUI4QoPzMW48wiszCNJraWdV2acZEqAAUAYKXVWmtOKdEkaMczrfM07/V60hfZaE4QwlZqawgijPOqrssiS+LWT/2pL/7Q57//wd17/+iX/n7ZFArg2nPPffqzn/vg15+xAlrIRtVNVSujPI95Xh2GAUKWID2bjIvTsR8GSqkHDx7ESevll1+u63o6G8dxLLUyxhwcHKSzeSuKk0735OQk8jwBwiIspQaQhBDQllFcl8Vb333z+nM3k06nquozBFZqqSeTSZ7neZaFYYgxGQwGURTdvXvHGIOJjaJoMRv3u4lUamNtPfDIfDrkDOd5vvv0cZbOhBDK6HbS0VrHUaiUGh4f53lOEMzm6WQ6v3Llymc/+/r7778/mUwopZ/97GcPDg6qqgpDf3d32IoCQFaKuq4KKeXzN2/euHHD87x5urh79+5wOFSq6fe6J6ejPEs9P5hnWRwlHuNpmhuT7j6cAIDv+xRhzL2iKNI03dm5tL25NZ/PwzDkzC/LUtWNlg0hxGioq4pzroWslbZGSSmfPHq8sbFRFNnm5ma73ZZaLRZzq1UQBL4X9Acrp6eni8XC8zzCqCOINU1zcHAgjYyThFB6Oh5XTQkYalsrqxoQQMBvB1EUOdhXaIGQxR5VoqmEoJQRQjAiDVEGGUppqjJAoIxAGFlmCllRRIu6EkLobEoo5ZxrowljxhiLAWOKCAGMl8rHShljAaDdbhdFURQ5ABBCqXdGfjxj5DiQ0b3mrr5ot9sOFCCESIyllAQhB9g56MGhBq4DhxDyPM/9RdcDckoaCKFWK9FaT6dThpeug1JKx82HM9ccAohgQj1n4bgcOz7vJ7lLdbMa2AJGSNbNOcfLMazPiczg5lQIcbfvEGF8bkJ4hjgbszQpdffeNFKDjaIoDEPX8gQAN7jzEd6NUJ7ncRwvq05tlJOHJ8gCYoxz7i/RGe3qUx0E3FqrrZu4XaLe1loEDhdeNiBd2/Vc8/oc9nW6t2EYStnU4tmtfff1ucDusGCtLKG2rmvf97vdbprmZilgDb7vu5/dyhDMMCYYURcT3N5hjPF9P0kS1/J0d1Q3pVsHC9pacOujtaacsaUZIxhjtBJu+zCueAdwNG2P8VarVZalsWey1Gfuwa716yRQut3eP/ybv8sZv33//b/xN//63vFTt586ta5+d/Af//t//TOf/Px5buM27tuPlrMdbjbf3eA5rsQ5n8/nrgRwjxyllCDiHmC3Jp7nGaPd/sLOHkv3MLOl50F+fHzMOXd4XxAEQRguFgt+1hdx7RaHymmthdWUUi0NI8Rg5JbUnN0yY4wAXrKVMXYcCHe15zw5hJAQwvc9hJAQ0nU+XHwmhHDG9BlDH86wl3M3Zgccu3cHIaTPtQXO+ivumz3PB85fE0fDxwgZqwGWA98EwBGcAYGxH72MsITzgDEG3MvznDGGEW2ktAiVVY6MS+EkZp4BrbUCi2tRce4tRMYprXUF2kRBXOgSa0hWktX+SuCFWuumala6vel4cnxwfHBwEMZd57HhZIUpwkkUV1UFAH4YBkFAPVqWZRAER4f7WZb1+mtgDBhXsBgLmHMqpRRCOF2pZRNIg2jcPERT1w3nHsZYaUUYKusmjkNnbyClfPXlV7I07XW7gRc2TZNlC87puU4aY89uBeV55nhObm0JQfv7+91ep91JMCJlXZRlCchUdbFYLNpJUlcFZwQBt9RyTgOfE0KyLEta0ZnQrkFgqrKy1rbCIMsyJUpKKUZcNrW1VknpeV67FTdNQzAQQsqyZMuGpSzL3DmgCCE8xjRlCCGMlrLOjRTuhdVaKyUJwZRwhJGLSwQjg7H9GLnWWK2lNIRgAljjbDFXQirRhGE4mU9c4MIWtcIYW3R0dEQIMVan87lFaDBYDYLQKdSlizyfzTjngedFSYQAFWmGAbA1BFyTEQggijAi3IJBCLGILkNZIzAgQigAWONaPvjs+f/o7XCTjsYYPwjcy0I510a6aO9GA5VS1OOuOlBSNY3gnGsfV1XjQVXXNQTuJSB0Mp2Px2Pq8SxNief120kYxgcnJ1W62Bx0zIA+eXpYlHkYtPzIr6rGPXDOUsCh/hjjk+ERZazX6/V6vTRN3377XUJIFEV1XTvnRGttGIZlWWohGSFkyaXHAAAWjDGILJkpSgpAphECYwwaKOcAyBgwWgEySutWFCGErJZOY0VawylTSlFKtFTOIBJhjS0opQBjKyEIgiROHNGPEWOtRWBevH6NEFKU2aB9aWN7CzlfbYQ0w9ajSeTPxpOiKCJOe71eXdPA5wSbdis2NoiiqKqLrHyWUSBAu90OUSiV6na7J+NRr9fL8xzx+NUXXjo8Psq0YgFTVrsI7pItc+ala7U5Q9sRpeS8b1lVlSIUY4wItdYorSnCgBGmiCBKgCFEtNYEEJztKBhjsBgh6/ZLV+0QQnzPdxHWhVR65piHEEIEu2lT92CdbzNu46RnE3AII3RGLSecuLTDBVwDTkPDIEQsRmC+x1VDa20wxk6BGiwBhJAF5zSNsFXaGkPPmFMIUYSQFsIgSLOFJuQwnZ7OpwppxgICaDabeAR/8tOvFaCGb+WzybjOqjAMtYa8KD64c/fCzpZUamt7W1o4HY3OmxBOzttSarWx2hDktnZ8cnKCEHruueu+78/n80XxbGvYdLHY2dlppBienjotmla3MxqN2r1u0mlz31sUeVFVq6vrsywVSkbt5MKVHYSINLpoSkLpbD4fTyfIwvb2tpuVrsvKY9xai7nved58Pne7Y5bnjg4QMo5Q9er3fbLX67393tutVmtlZUVr7fvcMa0uXrxICPM8dnx8+ODBA8/zmMfXNtarqlpk82V5T0mnFW9urF3Y3nxw/9H9u3dns5mb1wvDcDKfKWuef/GFp0+fPt3dfbq7ywO/1UsmJ9Ojo6PPfOYz/X6f3mKuqb61teF53nA4nOSzpmkOh4ej+ZiFvFSiNspP4tFoBJwij4lS3nvywGOchj4niMch9rmsGwW2aiqMaRB4XqulEVaAOmsrvU53f3//ZDKiod9YXWQLQoiyBgC4bPImo5xu7WyVZTkrFvj0SIg66EQAoJQ0xsyKDGOcRMHFy5eFULFWjx8/ratalqaqqjCOrDURZ4CttYgyNp/PF0WpjI7jBAAwp4SQbnt1Z2dnMBjs7u4enJ54YTCd5+4FMWXh8u9CampRQFAYhVLqWZ632+15mTfa1FXWwkAIQxT3211ldJbnddMQSqMgnI0WBBD3qK3Kfr8fxck8Sw2CIq+0NWo8ns9TJWopZd3UAmEv9ALWEkIAJYYgLw4bWSsjfe4FQbyYzY0xtmkeP3nCOddGOh8eSqlUqlHLEW+EkGUAVoO1s+k0DEOPc2OMVpoTaq31uQdnIxKUEFk3DBNOsGgaAogRTCkFoyH0XeJljMEEaSU5o8oYQkiWLxihnPuIYIttXlcGI0Rw0zSn07HB0Ol0Do+PwjAEjITVVstW6CNKsrLocJZXpbVWGZgfL1zXPfKDtCpkKqSUEjTn3Au9oigAGzAWc6oxSFXrRldNDQylZaq1RkAGg4HCNk8Xwuik0xZCzLNFLYTWmrSIEqJoikZLRBCygAjFCGFKayF83x+sD+r9uk4F9bgGaxEwzoRyk0QIUYLB7h3sM8Y8jyFj3ZSoAlsMTxkjVV3GcYtzz3F5JrNZFEWUUIPw6empR1kshTnnBf0zh1LSD1lR1hZ0GIZCKUKIRcCjACGUVGWpspWVlX6/Xzfl6XhcLRaUUkyJHwaU0loKxlgtGifLCxghYYQQlBHjLEiEMACU86woTk5PGaVAsNWmFg3l3CIgjCqlvIBjjBElSbcjpVwssjRfVE1z4cIWAARBcJTtc4z2Hj4sajSZTtPprNftdLttpVRT16996lOiacDajfX1LMvQCpFGN02jtb5/644Qwg8Dwpnv6m2ipdFKWwwIYSpVTQgx1nDONVjQuq7zP/tv/Lkf/5HPPbx9+zd+7e9fv/HKcy+9piWeTydFOsvT2e7uh5UULPTDpH1z50bQ61701yOP7e8d3fng3ajTWd/cXlsZDMdDAANGZYv0rf39IAh6nS4P4+eff15q9eTpQ2stZRgAQBtMkBBN6DPfCygFo0TZFJx0EMJKyI3BoNbkeFbc+fC9o5PD49ME/L/wz36b2P1DCJwTlgnGCItGOVwYW/AoI4ACj3FOy7IkNEBnnr126WnsGMHyvGvreuouZ1DWUI+7tjrG2BpHr8GULnvJjFGEkFKCulm8JeS6LK7crh0E0VkhtDSo4T46F0PzHA/lY9NI+NwI5WOHS1pcAe954Mq2JRUOM3DuDh8beIqiCABZZBFClLC6rj0/iFsdBzG7etItGgAgZD0/IIQYrI0xjNCyElJqXGHQytXGRi1JcAgRi8ClVef181mvnbgLc8WqgaX6nlvMZVjDmJxJe6GlnthStJSQJVfalVLuA+7rwEuJD+WMBN1sL+c8CLzzST6EkJBAKWWMemHg+9wlQxRhh5V3Oh1rlyNuhJA4jGiM4iDGGAdRixCCCLz+mS8gHhwNny1Iqo3Nq7woS61NOwzbcUsVpZSSM1ad2XIARkAw1rQRgnfbuWoWYFXV2KqkmDBMqiwDSmjAA4/7K/04jtO6klKfnE4fL46UUoRyA1QZS7hnLcIYI6UAgPucIGwprpSplUpFXWvZALWMGIxAG0toP0w8gg0jo6xe6yW43Yl6/cODYTZJq0ogb3nvjLGqrn3GjRIHx4f9fv+Vl1/sxj93/fKl995598aNG5lYeeYKeJxWVSOktMhIUL7vmKQ1IKOEKoVRSq2urgNGi8Vic3PjU6998uHDh+PxqZSScM8YczoZ53m+tbXVNM1iNoPGJnGrampOmRCN53nOlzzPcwDQWhdZ2jSNRSCEKPLFfL4IwzCOEmMM5bw3WBkeHVNKpWryPO31Oj/90z/5yU9+Ms/zXm+FmJpg/cUf/2FnpFwW9YMHD95///0sKxBCnU5ne3v7yqUdj9Fut/v8c9cx5YTRKIq++tWvPnjwgBBirNJGhj5fXem9+PxzbsTBGGOkevHFF3/sx38kjuPheDSbzT7/udf39/ctAELkb/7Cf2m01opG3DdKnZ6cPH3j/a2twQvXL6d55qYKTqfTK9evrays1HVtNHBERqOR5sJoiwF12x2McWlklRd+m21vbh0dH8hGtFothGxRZADAGGu1YsIogO2vDuq65p4PAIty7sVe3hRci7IuATDyEAC0/IR6VCFpwPCYx3EokHB4KAJS1zVQq0A0TcM9xnwehiGu/z90/VnMbFmWHoattcczxBz/dP8735yzKmvq7qpulos0KXaTbDVFmaQIm4YBmhZsyA+SDcNPBuwXP9kGDFimAEEQYVJNmZJImqQkWEazWmKTpeoqVld3VeVYmXe+9x9jPvOelh92RGQ2+zKQSNy8+f8R5+zYZ+21vvWt7wNbWeAEnFxwnoyxJhWpYIKIyFMkHVvXAUDbtozziFnHEtV2Xgix2axTrdMsq6oKiby1HDlD4oK3Ve2NFciBiAHspxb2ACj/guhEjIR1Xa9Wqxhytt27EPbCx1HDJ3a/YozqTBdCiCO2UooQQvy/EUstimI8HvOdQ2z8LdxOVTvG2HZ4Yge0wRd8YuPlMcYiPhh5RREgQ8Qsy+J1xoAWIbmwM8WK0yFxhwsh6roe9gfvvPX2s2fPFssZbId1BKLLlI5FCgBkegscx5OLbUW0Gmd8L9syZAFYCG4rmcqZcx0AmLbrui7e6Z4IxRlDgfteHWMYrW6zLHMuhNBmWSaE4DvFJNySlCnumc1mAxCyf4WtKoUQqRURstQqRURju/ieq9VmX5XvC9i4SoKrPdPcB9s0TeRrA0DTNE3TxNWLgEO8nfhnAECG2+8u+N1ZqYUQUuj96RkxlrjyDt319bVUYjAYxCIOQ4gfJ4SICi3Hhzd+6+/+INEpABwdnPzKL/6J5y8fv//RT66Wl8Ph+O0H77x+/508zf/QvRO9uHhWVJt4zJVlGdHtfa83Erfjh+5bEdZaTy4QpWnCGEMEohC7mLFLQXu3CQAiijDR/hV3SFVVbLek+70XD0chhNKCiBA455wDtN5He/MtehCCEGI4HO4/Ijat47hV3L3sC0I3sOslxB3FGIPd7HX8TyKK3358Q74T4Y0Pl99KnZDSOj6M+xaFcy6e8rG5XpZlL8+ZlAG8c4ZzuUdFdng924MtnEsOiMjatg2Iie4xxiKku16vpZQEXlDo93NEtNY7ct6RShUAooDOd4JxKUXj6vq6sMZAwE8+xcloOhqNmrI5PP7Wu1999/5r999///233/iK995a+5Of/OTtt9/mnF+enz958iQq+19fX6/Xa298UzbD3vD0+HSxKS4uLphIODIpZdM6YwyxKEjrw46byCE+a4RKdMYtV6t+v884Zyis7aqqYQw450pIBthU9d3bd549e8YQ26pmjGEgRjAcDFnxaoyFyN+9e7uua8ZEnqfee2PM1dXV0dERMlbX9XDYjwBjmmlgtGUfM0bedm19eHycJIkxbdc1sZnnvWcAiRLee2NbnUgk6b2nEPZhk3EI5JJUIaOmaaJqRAghbnTvTEfeB6jrOoQQpx8sESJOxxPrXSxwImiWpmld10KIiLMliY7W3DEIXF5fnZwchRAODw/X62XTNA8ffpplWdu2aZpIKdMkM828LquqrPM0K4oiPpKCi0QqzmUdahvwYDJBbyJ6MxyM27ZtmkYr5Zzz6ASyEIJknCOj4KWQcRHauo4Hk1KKKPaQHAA4T7GdmWW9/UnhvEdExiGmZLGNFFDGYCiECODjsxZ53wCQprm1nZUdB+7rkCaZSzoPTgghFotlluVN00wnB8fHx03XNp31pnv+8iI0lPZGg1SykBnng/eCY1k1g8Hg3r17jx8/XixnL14+i/HFOXd2dtbr9ZRSZxfnEfNO03x/5sXjdleE2H04iC/OhTGt9966Wskky3QIQQlBRK0x1hnOeQiu188TxZ1zkvOEq6ooSXIlVZolVVVxRcF5JWUKqbXWl12aaMnFrdPTPM+FEBwZBHN9fR2Cs00p0vTdN95ou+bWrdPFYjG/ni0WMyFEVRTPTauFRG/z/oBLOB4fLZdLYCHv59ezy9Vqkaap3wlN/Euv6WRyMrrbtObmvTvZ40ePfv6pXxR3exMy7ezqmo9yr1ClqijLbUMvCnXHEg63TGEe4+12AIdCCDZYAFCJds5xxgIChQAQp6sw+CCEiEpHgnMKSIE4Z8Z1XAoACM4nScJ2JophR5WKX1AIgRAwbHcM7MSS9kWX9/4PWaWy7Z/9zgt4328E2J6a8T1w91n7ivSLZx7A1iE9+jnwnccFMOa9895xQWXVBMmSXq9dX724PCMg01TkwxVjX/nyu6DFP/qH/+hsNnPGtnX13pfec207Wy6klIHo7OxMZ+nNmzevZ7P45O8nGrz3u9nb0MsyJaXXkgS8+fprR0dHT548eXI2nbWv+H6FVoPRUGl9fnXeG/T7k5FzJnBaF6skSXiilORSyk1XLp+uiLy1PlYInTEeSCuh0nRMY/BhU5aS89nVdTzGXn/99Tv3bj169Mh6t16vgWHdNuM0aU3nNi5L09/55//s4GDyxltvfvDBBzrPOOfBd4HCi/MXSZ4554Rk3/nOdw6ODl+8eFFVlfWGCUzzzJEbHY4ZY5qJi8tLADg5PX5x9lwkmjh78vJpv9//yte++vjp09lqPr1xmIx7s9lMKdX5Lh/m/ab/6eNPQcCN2zc2m002yFSWeAzLeh3KYIyRmXr7vXeurq5m603ZNvP1ajwee4Q8zxtrjDGma0IIItXz9Uo1dZZlXPCWfLUpRcGk4pwjBRdCeH5+1nVdfzoeDAZFWRfzJUfZNE1/OOhNRrNqzoO/3sxjQLzeXDvntFZSys1svdlsvvKVrwyHo6uL699//6dda8fTiaewXK+yfm98OI3IC3A2nAxXq9V6s/YBHJLxblOWSikkH2wnsoQE++lHH/zkZz8bjUap0k1RurCV6FFKgZAizRBRZSlTynZFQOictXWrte5rvVgspE6m02nkB1lrx+Ox6bqXL8+7riGinLQQrKqqoq6892VRQ2yHOs8Y6+d5zPwAABgKLYQWZmPbtuFSICKXTGtJ5GMzCKXsTGNd560J3idKWtM1dc0Y4ymLahXeuaas0jRRaeqdI++VlMA5MTTGKC5ijmW6TknJErVeLSTjaZo6ZxnoPM02q7UXPtHZZr3upZmWWgsJAJ4zJeTJ4cHFxcWNmzeWy/Visch7/c6armxHo5HWqq4rzhljGIJPEi1rEaPF0dGhtbZpasaQc6GUUkG0bdu2DefboR4peZKobXLJIXI6vCWlBDA6Pjoqy3K+XCCiIycEv7w6F0IMx8MkSdbr1XbyLtg0z/Jhv6qq5XKeZRkDZp2VUnofgAgwSMU70wxH/SjClSSD2XJFxJMkqSpTla3gPM7SAoTI18jzvGkq721sfQvG40yT1GrfKRRCMMCu69I0XRclEQkwrzw7WmsSzpwN1pp1UaRpOhgNXeuLouCc37x50x96KbnuJUzzrG02m431TjKMCStwFrxDgEhsUUJ6cgwpxhlE5FLGoH1wcFBVlUOe5TmFgC7UbfPoyRMRenfv3j06OIao3cHFcDgEAGNctKbkU4YusOBD237jnXctUz/5g5+uri+UUKEuuJAn0+FHP/3x767XbdsmOgshMCF0khFSYxyR5xyNN9BtSVKMsTzPWtki4mq1IsFAcE5MScU5rzbLr7/z5h//9jc368tezpft5r//3e8+ff7sK1/5xdFwePH8KoSWQ4fUtFXx8Uc/+v5v//9Ob9z6yntfv/3gzYOD0ePHz588ffHTH/+LfDg6Ob0xHg5nyOp1gcCuL69mV9cgdd5Lx+PR4dE3f/7zDx8/+pTAA4TFfJ4qefzafefN/Pp8s1kJwTnng8HQg23q8tbN08CuScqz86dZKit61deJ5EKgXTsZAKLDwjYN9dv56LIsF+sVIiqVADEAsM5GNoQSUmvNOHi/5ZhEFk+SpnmeF0VhPTgXYEfJYchDCFJsqUPWdVGjEJEzxokIiFHAiJfFwx93k0bREZFCtJGg4CH4kCQq9oMBgDEMkT23q+3jHQIAIgPAEAiIxRPWOUeBohpJvLZdV3vLodiKNfJtP5tzzrlE3AqGCKFCCABbDjLs/KmQsURG7J7yNNFak7daa/IhsLDLanZ5JoUvIuMhhL2ipd8ZagFAtG3c8/j2cDNtTTVCBFyi8BhuKR5JvCfGtuIn8a5N0zrn6mYrlBw625rIE98rReqAUVUsUsVdbMnH9eFShBAYIBFJJjnndaiIMNNJHPwKwQ3Gg/4ov7p61eAVwMHBQfNS2rZjCHmaKSlr6zgyTxTnVACRKBhjPEFl7bptr9t6ffFC1I2xjeRSIJNcAAbGgDMUQhiiddNVxnoIPtEkhPUBGDChAIAzlgoFwVFwDgJ6Gwg3TVM3TQeuBQcgvLVcSBkoYeLmaKIBPZAWwiXpvGwqN7t1ctwV1czOjLeJ0tZ1GU+0Ek+ePLlz/87lxXlVrCejcZZlw/H0f/7X/+2s3/vb/+nPXrkCiVIdgxACMHLe6SwNIZjWkA3kIZYhTdteXl4Oh4MYk996663RaHB5ftE0TVRpjMI+o8m4KKq6Llld9/O8bVshmQ/AGG/b6sbNW1//+tc//PDD2Wz29ttvz2azzWrddV2/3/feM8E5Kuf9v/jh79VNmSfJaj37N//Cn/9zf+7P9vv9xXw2nU6lQHTwy9/6pevr6zzPg3VJkvziN772b/2Vv/Ts6Yvr6+vhcPzg3p2mac5ePEfEWzdOF+uVMUZy8Vf/6l8FAOdc0zRlufn+979/8/T0zTffRESB7Pj4OBp+PH70qbGNluxwOkLODw7GWZZrre/fu/O3/5O/8/jx014v3xRlXNvTG7faZjPsD957772Tk5Of/uxn3/jq16JA/A9/+MOmabSUzlohhEgUl8IYY5p63OtnSqJ3WZImSjpnlVKePHK2XC9r2w5GfdS8sW1jGp5KY8zp3VNgGO2se9RfrVbj8XgrvmxbD54JJEaoUaEg9MgZkbdoAwTvLXFqbW0IW1MREZOMgDrX8TgroWRnTQRhIwNRSjnoj9q2FVxFHNY557xv6yLTqTcWw9bZflvvQAT7yDkLAYmIIYZA3vq6Wu/RK75TA4gNpz2gvMeVEDEE4BwjN2vfqYoDE/uKOPLQIr+MaGeE49z5+Xmv14v6VPG3pJRVVUVa9D6mRYAjhO2Mf3ztJ7i3YRMxImsRxY7Ma8ZYr9dbr9cx9EWMezvJihiFTSKsWZZl0zRI8PTp0yRJgBgE9J4AQtTE2KN1dV3vC8zNZoOIjAlnbMzZ4vr4nTFgWZaIfC8SJYToOhtCF52W4zq7XWj1weJWXmArPxIX3wW/4ydhXPA95lhVVZ7niK+Gm61zMTeL+PIWULbkXIgSH/s2ajyDIgQciaiMscgLRkZKqTzPASDKzcVQX9d13AlR+qyua2ttnJ6J98s4i8oMsdKPHZ3dSRc4l4yxqqpAh2ineXV1FZsE23NEiLiG0/H07/w//8uINceXVvr1+2+/fv/tV971NjFB/Dv/8G9+/NmHwTq+U5vd91wZY3VdR/b0lppNtGXF7drFRBSMDdZtWwu7pkv8dbY7T+M7x9bsvk8Tv/rRaBQfRtiJoUdgNK5DpNgTEXFmd7acRIBsmwlsb1br3TSC+/wrgy3svcccvtgOjz/zxdWgzwVq/R6G3v/beR9bI7DrGeOuIbrHTxhi3I2EcbYgPnjbBrYxBkDE9gCEYG0AKWNF462TUmqpM512XSuZlJxzrrji8dGIqAXnMsYKS86TZwDGe47IOZNaRgmFeTmfra8R+X/1W/8VA3z77XdlwntDfXR01DRN58oHD+5yZK+/8SDJk9FoNBkfDHq93/3+D6J6J2Ps7OxssJq/9trrP/6D972DZ8/PpdQAuH8YYMcwQEAiZMwhABfMERjvuI+rERC80iI4Qg4vX57HlVwvluPxOEnVcrlM0sQ5h4zyRL9yf2ZZ1kEbV1tKbW3JOScLjHOl1LNnz9q2Ozk5YWwaufmm7ay1zplhv390dBQfz/FwGDsoDMBtA2ADgaQQIYQ0S0MIrvNt2w77eQybUYCO8+3XEMPzYNCrqsp7atuWoUiUbk3nvQ/Bc4yy8xAnPhOliUgwbtoOCSgQQ0oTdevWLefcYrGIMSdPk1unN40xzptenk8mE+u6zWaDRHHEZrNaXZ1faa2Pjo4WixY83Dg+jiork/64LMvgSHKRJ71U8zhRCgCJ1rdv3ZrP501V285ooQEACQgdArPOJ0lSVBspdZqmnPM0TVfLdWcNIjfGcCEODg4YY/P5EhEBMYbHEIJzPiK6nHMizyL8SBTHLmPDbDsTo4XkgjFgGgTxjFJEdDpx6BKrRV21/d5Q9jUyOphMNmWZp+7xw4eSUZKqPE+++W/869/97d+5Xq6LqpFCp3lyPb9+/8OfpWmKHBiyTKcxEhnbfvzJhweHh0dHB48ePf2zf/bP3L179+/9vX/QmXowGERnFcZYkiTek/MUQWTn3HQ6TtP09u3bAKAyHrfI1fnlkydPLi6WSoHS0nuTaN7vKaIwGQ+EEMV6Ddj1+iPnHCD0B3p+PUvT9PhwNBgMuqbt573VatXP86995as/+9nPbFODlE1ZetMiYjZIxsOeFri4Xv/ge48iofVrX/saA/zZz37mTIvejUajB2/c/+CDDy6uL4fD4dnlWbFeHx4eGmfbZWvCGtJXPCrn5+dgLt99912dJLATsthsima2IgLvveSiMiYe7Z65Lz7JALCdpg2AHhhjAVEwjgjRc6A1RnLOEAKQVNJ3wdsOGWPIIZD3gbyN+UIIBM4FDhQCR3TBo0cpZdhVj1+Mtv9SAI5V5xZxZoQIBD4Etg+429KRwb/0W3s0OUZ7RPT0OSUKEIgCAHpAvhsjwq2iCkdEZKy1rRSaEcUZKHQ+SGhs1xjctOVoMsylqLp2NBgcTQ7+xY9/9P/6h3/PchQ6ccYyENHXqOs6oeRgMLpe/MGxvEE7MbKm6QYDKaUkEs5vjS8YohCiqiqtlVbJoyePZovZ+fl5YRhI+KOvtJc68HfvnD5467UX5y9+9sH7AQg5V0plqs8RrbVZnvf7/YuLq2pTMSHarkbJgPEHbzy4uLhoTXtwdLCYz5+/fIYAdV0fHR09uH9/U677ky/fZQ8ePnxYmWaz2fR6vXzUv7i42Cw3g16/aSqUDDc4W8/f/+QDxpjiLNF6uVzOFvO8N1iXRbh8+cnDTwaDQdbvLZfLwXB4eveGc+56Me+6TmoxKxabzebN/M3v/Gt/8oOPPxqPx6Kf1G2jhtnw+GCxXmUeggQ9zIwxBIw43L5/x3t/MbuMIY+lUlbJfD5vrOGc16Yjorduv9tYs3HWkNe9jGlZlGXrbdlU2xSEMec744xMdWO7ftI/vHEczq8Q0Xvbma6qCyFEnuciy9ZNRUKWdSUyRYRBslv37y6Xc5FIa23ZVjyqf3LGhXRAzrVBoehpEuz45ul8tWzn1pN99vJFzJyGw2Gapk1T1XVdNTUw2rXEUrROShmznEAkpFisV9/7/vc3mw0AMCFni7mQQjJlnQsBAiEAap3GXe2cG45Gh0dHRHR1cZ0kye3bt2Oyu14u0jS9ffO0LMto4LPZlIyxPE+t90miFouFoxBC6Fq7nzMgIs6Rc1SCOyQCMrYVQqSpjpJeUQuvqgop5dHxQRyXjh3Xtq3jt0wYUkyyNE2SZLPZxGn0iL94732wUskQHG1FBXmc8SEIEbgcDPoCcTweMcYCyaLYWNshEufcdM14PHxw90G9KVaLJUeWZjmSHw/7AOFgMu73+0KwQKi1Dj67ffv2dDJZrVYhhGzHdzg9PolQ7LDXPzg4ePLkSSwLI5pGRNfX1xzJe59qNR4P42UXbQ0Ao+m41bKu60AOAjV12R/kSgsCaJrm8vI6tvEZYAhwfh4tTdx4MMgH/bKquxDGeZ6mqXNOC+z3+865rjVJMrTWtlXJpLh567goCq3TNE3LslSC6+HA5RkiBnIH0zFjTAiepTrkqTFZWZZaKcE5Ih0cHBRFEeE2Zy3nvJ8Puq7p9/v7yBn9T/7oS3BRFEW/38+yZLlcRlZRHOCaHE4AoPT1bLmo2iZu/iTPGG1VERCxbduqq4RQRNQYyzlvuo5zniVJzJK1lM65SIqJJNgQQte2HPB6PpvNZjeO7s3/YAYAx4cniquDyeFisUBkSZbcOr2thBSMayUSISTB8WSkdTr91tcf3JhezWaffvZZtV5VRN/61rcGg3c/++yz1WozX65nVwvPWJplHlBJNC54H7wnJjhjgnMODLkUFxcX1vvxeNw1jXfWAi0XRa+r/md/5S+hqepyFWwtuTs8yB4+/MkH7//4V775K9PxyBvrhckwdM5Mh+ra1b//k3/+T377vz45vv0nvvOnv/TuN4b9t+eLzaMnT14+fRIQRuPx7Zt36raKg6IBWV2XF8tznXAKjkHQHAL4yXDw4P7de/fvXJ2ftXXemEYIng/6QihPTCnVmpYL+vCTD64uXvB0Aq9iaRjbcQkEjCJGubNR4lIoxuq6Bs47Y5RSkkV6jkPYnqExYHrvCXyS5E3TxMQuhKCUHI2GUkohOBPD+XzZdZ33gXMe/Y3zrB8B37pmXdcF8pxzAAwhOBYYAXgAH50bdjbFITDGAQgZRFXBmKts/Yy2btUMAaKfDhFBlDdljNHOcQIhhM/LOdyNNkOc3KLP2dBh9xKoYTvXTMa0sbCPhRYRMSYYY4i0oy2jQB5ctCdijJhAARwpjiEAY4AUTSuAM2QI5MBHOicSISBgTGAY54IxZnz8FMZ5BBT4zqCRIWIIHhGBbYmSiEgAccQekDHOkCFjIIRgPATvrbXGe6lUjC1Sin2hHiMnEYHHgBRCAIYs0pgJYvglohifhVDee8E4OZ/Ivvdecm6N00oRBTJ+ebUsVql41RxqnuVpmnIlg7GKC8VFQyQFNxYIPJeiM9YDEUAAuHnjxo2jw6qxV8VGBceVsOStbRPgjCB4A9F3mrEW0AARCN9ZrbUlYAykgGCdCGiNlUBkjbPMe8845wAaZSqS/PBICMGl9LYTIZyOxhlyEYInN9aqaM3N6fC8Kp59/FFrDHLkiN7bPXhRbDaxuAghPHnyhANWVUXA7t+/f355+coQmiiJo0HVXHgXlE44cHIQABhw7z3j8t69O9/+9re//7vf22zW0+n0rbffOJxORoNhouTDzz5bLpcRARRCjUaTJMlevHjRVHXVNIyxzjiD3vsgtR5Npp988snPP/vsT/2pP/XX/tpf+6f/9J/+5m/+ZqDEOZ8mOSFbLBbvvfferVu3njz5LHh3++Yf/9Y3f4FzrMtNXZeS0+V5Z9tiMBjkeb6YXZ2fn69WKyA2Gk0ODw854tPHD1eL2YMHD27dunV2dvbDH/5QJvrg4OD9998HDNHRWghx6+bNv/QX/03vvetM5BkcHk6Ds/08v3Xr5P333xdCHJ0cIwITYjIdNnX35Xfe/uPf+fbDTz+D4HpJoiRP09Fifu1sO5vNiqrs9/tvvfXWBx+8f309m4zGcfZWKxkEt971+30mRdMwqfjdu3eLovAhJFLYgHk/7w8H51eXBK4Jpiq7Frp+v99aI7Qw2Dru0mHetq3OdKRfiXwSQSjnPQrQUnlynXOIRjBgQnHFi6Koqk2k90rFrSMfPBdMSuG27RwgCsFuTfbCjhyQpykQBusZoeCSA2ubZsvMcrRui4hHee+d9VKIWGdxFMg/904H3NZxjGOWpd57a1ykVW77T0JE2hDs4OYIUSmlASDPPzfQI6LdfHeMioSI4Lw3XkpGFKQQUc+Bc7FnyAbmaMdB3r/PnjzEGIsOqxHgS9N0s9mSc91OZD8mVxGni930SJfmnPd6vZivhhAiArhvj5VllNyl6XQanF8sFrEfQ0SaKWAYQui6TobgjSWG5XoTPwIxkg299x3tnAO99/EgY4yFAJzLqqyFEJyJeIV11URsEVLUWjdN3RmTZVnEuI2x3hmxcwJ0zgXw+46C2DnERniXiA4ODty/ghMGAGmSZlkXl5QxFvPS/SLjjpMUMW67A0MRUUqMeyw6jw1H/ciujSCOMSauKhHFq4o/GVH+zmwZjvGz2M7lyBhDAePOybLMWhsC9Xo9hC1fOP6Wcy72oaPiYmRw/4//nd/47f/8R0K8qlh91avp6n/3//S/+P7v/fN4FscGw36f8J0bWCQORzJ+7ItHc4JIePT+c5RfShnZcvFvhBCASERb306lvni/sOscR2n4yACj3XwAQ+mC2aUEPj4alatCCIhs33g2ZqvgyqSMQqz71EJwxrncJxj7lNt7b7xjuyQk3ul+TeJ/xq8edpg7APidfHmcD4jPe9iNMsSHXSklhdgj4B62n8sBkWAvCEZEFDsxHhhj0eSTMw0AzoU01UqRlEoILoToTNNWrXEOALRO9kPwnDGCwACDdyYEyQUiKqGc8R590su893XbMOS//+HvA8Djh49OT0+n0+nJycnTF49u3brTS9XJ6eFgMEp0xoS8//prZVm/+86XrbUHR6cXi7MbJ6efPnw6mR4+e34Zlx2JQiCAmBZ6Rmzr5R395Shqo9kQguyQC2bRVVVItLbWX15epyoKiElr7Z27t6SU19fXRNS2raPslVu0l/dW2HHOAVhRFBHWJKKyLOu6LooiTbPNZtPrDWhnf+Kc2W9jY0wUPCAK3jsphdYKCWZXVwAQVUytteS9lMluVCU4Z/Mk55wfHh6eX11Gazpr7Xq9juJIRIQsGlarvN8risJ7CtauVqs40CClbNtWMHDOQggMINMJEW2WK65kjEvDwSDLksuLsyzL8jwXShbrVQiBrG9as1mtGRNRrT4djPv5oK4qCkFylQ97XdfVVXV5flUUxeHhcWtr8rzruqqqhoMBY2w5XwjGh8NhtSkAgHwQUpoofaMzDjjo9UMIeZpFBfau6/rDARFlWeZDeOedd05PT7/73e+eX1ztJW7iwxL1kQCAyMfukQ82/hk5iwIdANDWrbM+YLChscC5lQBgmHHojDHijbffcc5dX18OBoOqaQBAKJllybE4GI4Obt69y3Wy3sytsVpyF4xUeP/Bra7rev3E+dRaG4IFICFYAEizxNjWeZflsmw2H3/6YddVxnQXF9fHx6Ner9eY7urq+rXXHjhnrq+v67K9c+dG1HkJZIiIcSUVD64mMP1BwsWw3+8fHx+vik1ZlsPh0DmTJ2mWpNNJzvntLriqquIxMBrdypP88PAQAt25855g/IOf/ezenbtNtarLZZokdV2RC5JjmuqDycAY8/OPPzo6ORyP7z19+nQ0GgyHfWft/bu3m6apivLwcMoEZ4K7rg7gjTFV05jz8+DcdDrlkBavelRUogBguV63s3n0+f3lb/3KV++98b3f+u2r2TUDN50OBTBLJKU02MXYHTlIsFPrB4BIRwohEDIEQUgMkBOTXEDw4AMhWWtZ4IRkneUoOGcA0nadC8g5Z0wQoxACRl1sCkRkvfN2azsbQgAMiLEQ2374/kYIPEC09gPOOW79/TgABCDcMi9ZCIG+AEOHXdt/+yYUvgBDYzRwEIwhY0BbkZj4kfF9CIApZq0N4JkUle1m88XTq/MGqA3u6OTQcSQEJSQ5MzkYf3WYf/T08aaqBYiTk5MQwtnZmScYDocoeNf5sBvF4ly2bTscDmP054K54ANCVZXvHb8zzNOPPvzp0cF4U23KdtPYFsWrBz0swvOLF5VrAlBRrEHicDBs2zYgGbJA4MHXtlEhbVzbhPbW0a3ZbNH6btgbAmJ/Mlhcz85nF3VRPnj7AWPs7u07w+Hw4uLiYnX1333vvx0Oh2VX6F6SgpscTrtgsmE+PBhxzqW8ESmxr7/9llTRC6Jrg8nHQ6VUXddJPzVkk37q0AdOw4OR9771Xa/fCwvvyK1shYgb1z08f3GxWa5d7Rt29903P3v48ONnjztrPPhA3BjDFSfGFQhERCkkysaZRKf5qGeCeXHxIsbihGfEUUp1tZitqwKlAMYCw8Vm7ZxzdTUYDGKKiYx1XWe9IwFc8LIppZN5r1c3JQUYjkent2+0xhRF4YgCw/PZhUrS4EOapsN08OLsuQtBaIWCE5E1FhATjs6Hqi6sc1LK/mBwtZh3H/xMcemCl0rZsmzb9u7du1LK6+vLGDoZg9VqJQTbdjC7jiHnHCgE2M5xcSIaDm931mw2Gyk1IiZJIrxv2zYqT0WLiWimYa0VnHPO+4OcyJ+dv0i1REpCCFmijiZjxbBYLk5unHDO4+mItLUs10Ia75TeJkBpmnIgKXnwLkmlC75tW+DAuSCC0bAXZxRiz9x7j+QkB+DCGNO0JZdymI+stRxCkqdEZL1FjoSQZBoCAQdrLQMQghEhIY+Tfet1LUAgYpZrY4z39vT2KQNgjBlvjvvHnPPValW2VZomN44PTdc4Z5JEIUGiBCKfz68ZY8vVPHhIU70uykHSy1R/dnWJiNPxKEIqIQSdJhEEXy3nDEf9Xvbmaw/m83mcQyQEa+3bb712fX1dliVn6J0BzrM0dbbr5708z1eLRQR+vLElEFEQSiopEz2Ugn/9a+89e/b88cNHo9Ho+PBgNBoFoIuLC8YYp4RMK6XUqY4qfCEEopBnejwedV0Xhxyd6abj0Wq1ypNEsqxpmjzP83y8XC6tDVoKrXXTNEygUmLQG0Kwztk7t252Xde2jTPd4fFJ13WR2N51zZ71FmuS5dy/UrQMGXDBGIPIZupsS0R1Xd++fXs8GC6XS0dBJ4kPwbRVonQIzoUQh/3JQ1VVbdtOJklZlu+999Xnz58/mz27cXR8enpydXXVNF0sw4RStFU3ckxKLoSI40fINuW6LEvyUNe1t0GC8DYkSXpweJjlaZKorjocpun1+dl7b78xUHp1+YIFf5SLm9O7R7n87NHDsizfun3Akd34+pfKqnn24uXZ1fV8vV6uNpuqdKCRSEiOAbw1SS61Up3p5ot5a1tjbVh6zQU4O5vN5rPZ//av/MZrN47Onn8myNb1BpC1RTEe6GUoum6JJINviUxTb6qmdm1FaO/cP2UCn798/B/8h/+Pm6f3/vS/9utvv/WlN9+6/+L5xdMXz89fPJ8eHQ7Ho1jUYfDB2eX8crWeXZy/GAyzGyeHh5M3+710PBzWdTkcDtNMH58eR+/yqjRcZwHI2m4yGX/rW780mgzOrkfnq1edFMHS3gknBLvHLBhjjKk0KRc1ICdgEf4gIsF5nuexwAshMA4hhEgZ45wb08GOOBbrQOO62DwQQkHYut8AAMOdNyAAAo9QKUQ+cqy4IJr0ft4vjskl2/utB3Q7vQhiX7CX+ILQR/y/HohC4IARyQ1hz2Le06IZAEbz+X3BSTv/w4ineO9Wq1Wv18vz3DnjtqTp+EHkvQ8IIYAIHBxIwWWSJUojQSCKBGFApChNvcf+EQFYTD2IIQMW0eR4zf4LxhLWWh/lGkMIRHyXkCADBtsue0yEALcfsatL3TbVwYhz7wT7IjHmc2UzEf/IEDkHhxiAEBkEAvKBPI+gPReRhRAxDiKgAIpLhigSwQiQ8STpldVm2BtVrxq9evb82XK1BCIK0d6ZQfBExJGZEIx3ASEAcSl6/aFKkqtNkW7qg+EIm8aCaX0QWjkEBhjIC4Y+BIvIs4x5aBvbUtu2hgAYoOoEA8cAAgBB6INQTB4fH+k0N4GGkylXasNZ2zTNpgQmnTXr69mGvLcmkKu61gkchzt5qqvFPGgtM9GumixJEcB7L6U+Pz9//vTpgzdeq5ry9z75UbnefOlL77Xd9x4+fd4bvlpMAzluNhvvvcryQGSNV0oBcGMtAm9MfffBa6+9+YZ13e/8zj+dL64ffop1eZxnifd+sVhEV8AQQqIz632a5u986Utd05ydnc2uLoUQ48nk8PDwrXfenR4e/uhHP/r1X//13/iN32jb9pvf/Ob17PK3/pv/ZlYvs7QXABmXR8c3/t3/zb/HEWbXFx9/+NOqXBfrtXNmr8BrrS2KYjwcDoeDi4vzrmmbprk4P7+8PJBSMiaGw+FiMWvr5nvf+x45f/e1u0Kyl2fPD8YTct62DUh5sV4BwPRgMhoPHz96+OzpkzxLJ5PJdDrNc314eHh+fh5nxruuk5L3+8Onz55slovf+PU/+9EnnwqhCNjLiwsfQqK1lHK9Xp+dnUV76rapL7pWCHFycmKt/eSTTwLRcpPpNEny7GA89t4t10vvfWuNI0cKsKvKrpBK9Q+GXDJHoSFjwQUA5wwAmMp2XYOCAwD4kKa548AkE8CdI0uGWOASSJDtHFhrXee8SdM0y7JAznvPWSSyeOeCtR4AhBAIwFC4zigpZZJGbiDtRuAZCmNsCB0jUEwxEABuW/YAs65rjMnzPE3Ttm2JY5QXiJsBdvgjl1v+stISge2r8cjNjClcCCGaoUW14hACYyIycdu2jb0o2HGTGWN5ngPs4CfBY0hMdBrq2lgLyLwHzrcEaillWVZJksT+GRPMGNM0TZJkMaLuhzjDTqN2396Lg/9b3HDnQ3t0dMT51vMq7EbLI3dBCJFlotfrRUaIp5DsLGrjlcf3jpaA+PmkbDRes6lO4vBuBJojZFnXrXNu1B9opSJmGgX367qOwNyOrB3zsICEEaCPf4OceQp128QsfX+2RoCJc06EEeWM2FPYTdX80VfUVIzQ6p4MHk9V2lHCOedRIgkRvXOxP7gl/ZFLkzyEjDMJxCIiszuLxX4+xnsfkcp4iOCuSRhZHfGaI3DswUspELa6Cjy6HUI0PEziwxu3YpzKj1WtDdYV4b/+J//wL/zZf+uVt/kvva7nl//JP/iPnp09ybKsLMtoDhwTkvgDe1Q9zitH5ZmYgcSz04ewv8H4i5xzthMNBwApJexkyqVUXWeIKOYDnG/h9a1ahfcR6O+6jogiSTzeZmSFbw9Q65jYenGFsB2njusMEfaNMrWcR0g0Jkt7OHiLq8Qeptspa+1e+7uOj89+HbabZDe1EAE17z1XstfveWMjgB43Cex0qImIEboveF8BZ/FbDsGyOMjFJBFtNutUp4xHCnMDAJHvHAIZY9rGWGuVUkwyimKqznGBCNx7LwBDCBA8cBYCWW+QQ5am1gcHnqVSSu06wxibldcXH54zYAcHB8aYQX905+add9/9ctpL8yyvinZyfDCY0Kapgg1MyIPDw6KqAXld11LKQNvUlG0Xk2iXM27jym6UwXSOwCMXROjRIUAIXaJ0lmWMoOs6zmVd189evBiNRgGgKMskSTr26inP8Wh4VsyRyDgvBMuyHJGAYZTtzvOcCDjnVVUBQPTbSJKkaRoGCIFsZxAxOJ/mWdu2ztgsy4bD4Xe+853f+73fs9YKxpwzSaoR5OHhdDabaZ0VRXF4eDiZjruuc84SRUkWEXlCEX32npRSic4Gg0EMvIyxREV+AJC3Smx3gneGMeZ9HJ+1tuoAYNTv3bp1q67rzWYT+Wf9LK8AGGP9PI/iIfEuhEw263WWppKrIP1yvkDENE2vLi6ttXmWbdbLXj4w4Lq2Pb1x4/bt2+RDU9Wr1er0+OTG0fHF+Xmis7ZtOeLh4aHpXF3XbGvf3YUQrHeAlCepoxACrDeb3/7t3xZCVE3dywdfnMhhbCvmjojOmRhXY6u7qqq4DltOoeQAwBENUeRUbY8h751z4snZiyRJFmV5tVrcuHFDSj6dTgPD1956w3o6PDlcbipr2852o8nBcr05PjyZTqfGmOvra5kgcJRSZVnW7/cvLy/bpj4+vaeU6g3zuinatr3z4Ga8lOFweHR09Pz587YrRpN0Or01PRwsl8u7d+967+uiJDDOu6vruXNOIFNKHR8fRE/npmneeuPexfUVBpIyl1IiAaBVkqUiHw3yz2M3Mu+asqyXi1RxgeCvrs8X17PVcsYmE0To9fOo5zKbXQ2Hw69946uA9OLFC2O7JNWf/Pzj+XxOPmCgNE25YC9ePBOChRCqopRSxjOYa316etraw+JV1tghhBs3by6Xy3VZdV335Xe/5Jxbr9dV05R1PeilQggw2y53DJp+J0sUz6ftVBf7PBoGBE4MEDlnzjkIXnIefOBS6DRjQUodlWgIGQKo4AMCR84IA8ZkiEgJQeSdM1EgbOtS7LcCjrClJ8c44omIfT5PCooLT3GAyyNGYcjP7Yz2v047Mwf8ArMJvqDaAUi4J0zt0gCKVSsFROCJ6oKr2joA2Lb++dNPLlfzDqF2hicqtNC4rmqb09PTrm5u37337htf+ejxZ+Th+OQwkaqoyshvunHrZtu2BHB0dDQejyMLNVIFk0QhIgIHCJF6U1ZVuVlez68Y98NRXhRFfzIA3pstX/H9qp5yqC/mlzpJBuN+kmUhBEO2a5rA4iQRq01dXVY2WJXp2jQoQSfao6+qjWByMB3azkwPR71Bv+s6x8K6KTqyk5OD2eK6NHUyyNI0PcCjmKXlWX84HG6zOsFSkRtjHBmphNLZaDRKkqQoio55DDiZTKqqquvSkWOMLTfL2jV6s5Kpbn1bOVNVFROsZc672gta1AVcvTQidF23KTZJkpjOI2MouCdUyI0xAYhJRgI8AnJM0sQYU7ZNkiTD6WiE02fPnj1+HnV1tkJaMZOIDTHGmNI6JpexvppOp2VZaa2RWNrLe71ss9kwJRPB18UmMGBagjNcyl6aNm1Fjjjnxtk00ylPm6Zp2zYVqSfw3h8cHhZFUTX14uoyS9K6rN547bXBoHdxfs45TxLVNBVjeZKoKEogpIxZLBcsNvCttZFSxziG4IhQSskFSmJxdiYqV1BwnAHjzBgHGEIIQJRoXVWVSNOYIzKCTbHRWgvBEFhdFU+bSggxmY50InUiOyMYD3mWG9NKyUMI/SxNkqRsam9sIoWQPDhLvhOKMcZRqxACedvPM62jUtiGMXZ0cFBV1cXFRaQnMMY4Jy6wM00IgQu0rotwDzFK8kQgc85keXJwOPHeV5sihODIomBgAuc4mYxiqQOQWWOUFozA2m447Culer38va9+6Se//wfeewawXswR4OToWGudKtW2bRRbyAf9Tz/9bDgc3rxxQkTeNsG1w+EwTqMKzhGF913XOmcbJfHTn39YV+tvf/vbnz38mIjGoykAQPB1VYzGAy5QSrHZbDgy8j5LkuGoN5/PA7nI6VGZ5pxDcNZ4JbkQ4vj48PLi7Ozls+C6rq7btlUCe8MhQ/LOgDPH0xHnvKirRHJjOi54kmsuBAQjORnbtU3Xtm1VrowxkOSIqCWDYJXAVAtnGilTpTiRDCGYttmslsfHx865qti44JfLZa/XUwKroun18q7rhODGQFFsBr1eoqSUcu5ebV+jtNZZzzkTwHvakY/ydLmYRTMZhNDrZ845a1mapGmqOaKzoanrotpYaxmHVMvJ6Na9O7dePHsS6WBx8JMj6EQbZ61ph/3DSC3hnHfQBecBIXBYlNcYUOuUBKUqaTY1BFaWxXq9ZoK1bc2CPxz0Twb9X//Od0y5VmB813BTm7ZI0N49Gh+/9/aAUwi27lpfrjIeDgcJCxat6Wm+cNQ2xnprfVBCDtMMAGaXc9vWtm24FEDedEYSSu/uHR7+G7/2p5ZXF+C8sW1bd9F3rm2qL731+niQNe0GAhXFumrqsq46Z5u2auouyZLD0wORVE/OHv3f/8b/7dbNO3/qT/zpN9548+69G21r6qZ79vTRcDTRifr5xx8ho0Sxq/OX01H+S7/09SxVDIKWyti2baperwe813QtY1B3bWtLEHxTV/NN/Sd+9VePTm/+0rd+4cNP+X/0m6/4Nl3XdVTFPwshpFSIGOcBnXM6SQB59PJVOzPr+H1FPEIIgYz2QIb3LmacAGCtjWcZMELkDDhnPMAWot176TDGkCEgBiKIkxP7c5oAEXwUs6LP6TxEZIMPFIAxrqTbHvq0L972d/cv/TkAxLKP8S0tKAABZwAQgAAoNtJj/QdEjCGE4GCfPHjntvRAIkKMEAmFgMAZCs7isHPTxjMllnnee+ddtD3YXwyRD7uZKqG2Ote4NTHeksVi+RoBC0R0wUXq+RcSoW3n/Qu5TQBCxhgR7tsGuFULjQLTW/p5rFqJtl8cETm3pSWqCHkDRBshZMg8BwAE7iFwZGEHxDMCxgVjGEIQyIhIMB7VS9MkT9JXw81t24Yous1hMhpH0hnuUrV4YjHOGQhCdIGWm80JiNFoxBlbr7pc6NOj41Qoa0zX1M6Ytm295Hl/gjJxNlyvzzdVIZiUQqRK51KN01QT9AQ7GAwTIZngxLkNrDRmvZp9up63dW2blgFasAwYQTDgOAAH4IytP3149PprN49Orky7sp1Kk6ZtB3nPex8fk9/6rd/6pWL9P/jOd+7fv//d7373/J/8E0/wv/p3/tc37/7CK0No13WD0bA/PdwUxWq1iphF8JFUgUmWdtYsFovhZPzNb37z5598tNmsvDU6kXVdt1U9Ggw6Z7uuI/DGUGtsa9KDyfjLX/lKqvVwOLx9+3Z/OOy67uHjJ3/hf/QXf+3Xfg2Ryk0xHPX/+l//66NB/g/+/j+8mi2zXn84HD58+PDnn3z21psPqqr6+OOPh3k66GXeOiSAQEIImfdns9lD+3g8HN6/e//G8Q3G2HR62HXdxfnVfLl4/Pjhk0ePHz16dPv27T/27V8O1q2Wq9fu3W/berGYKSH7g54Q4vj4mHO+Xi6k5EqJy8vzolg/efb4tfv3BoPB2dmZlPLwaLper2ezmXOOI4xHw69+5WvvvvvuD/7F711ez05ODtu2bRoDgHmaee+vrq6Oj4+n0ykApDpBgk8++eTW7dtMCqalkHK5XD6/eNF0rfceOagkIcHWTVG4sj8dMsGFFi54dOS9V6mwwXPBAAA5y5IcdgPsjCMyCD5Ya503gCiFJBYFLpi1ljovhBBaEPjPw2kUYUeme2kIwbvAOUdiTeOAY1O1EfsDgBDIWi8EOucwEGz/Mjr9YASUo5tZmqZRxKxr7R5Q24c4RPA71iRjDGirTR/ZXlLKWOpmWdbL8318iCgkEUW77y0YsRMhjD8WtYO89967pml6eT+EEAFoaz3i1g0vxiJrrWDbWf44gRECRDA3Uh+ilFb8SWut1pqiRi1Bmmd700K209BYrVZt2w4GAwDYNz4jyzUAA8YoBO99kiRd08aJZL9TiIokuEgLjWiv91v7ny/erFLKuYCIWshEqmirZYxJk55KEkTuPUWbgT1JOaJ18TiL1xnTIUQE3EJ7kfKyT4ARsW23XusI3HQuyzKtk1cGCmtM3EiwVWyTkUNKu35wDLkRfyei2CcgH6IgRgjh+PiYM/ns2TPY6WITkRAi4st7WZK9zqT3Hgki01MJHinS+z2wAwEY33nnRg7sFxd830WIVl1EWy7///H/+r/7+//f//f/4d/7P988vtXLB3/0Zqu6rJv6b/0X/+F/9o/+dlkXESrCQMQoTsHDjui2a/EGrXVd1/P5PDIkGGNJklAIZmdriV8YBQpf0DXmnO/bM0QUGTlZlu1TCCKSUnnvGeMRcIh0de89hQBEzrmIsFtr2dblAgPGs/hzSAFjYgMQt9zuWra6Fvs/b5MKtr0m2M2R79swtBMnieB73Mz7Ds3nnxV9IzmLIDLfacPu579iCieE4By5ENvEgDMASJKEyHvvmfdAGDc/Iks1Z0iBoNysyecxYQjbNC2+MYbg4lsRgEQOHgIDJGBcMiacMxH7chSc93HotmpKKSVjgJqrRGip1s3GubDYrCpTP3r+WKnkK1/+6qA/7qW9g4MT7wMEFLUsan9xOSMEYEg7FD52PvZwDoGnEAAYABJ58ltT6Eh6iCCS5MLY9uD08PT0Rtu2dVMG605PT4RWy+VSSp2mIUmS5cUa4NYf3a7z+bwNcecbom0Dr24rxDjKybfRI82dsVLJOFIQpxzG43HcY9ZaBkxL5YyNKGKe58fHx1VROOf6/aExRikRGyqMsdV6WdWlkDzGwxgn8zx/8ODBcrl88OBB0zRlWTPGlstlWazjqUHU7bcNEUnJtVKcc2OYtbbrrPuCnOzR8fGdO3eePn2quEjT1Bv74vnzXdENSmjXNL00I6KqapwxFy/P8jTTiUyEVIk8OTkZD4YvXrw4OT4pisIYQySUUtPxpJfldV2Px+NoIHz//v3ZbBYDbz4ep3lu/aZqGyn5YDCIO7+ua+fcfLUEAK3T7S4KXojt6L9SajfGCORDcJ5wy9MPwXGQ+8GIsGefEKPgACGmncG5EIi8AxaISJxfX0m9Vb5/en6eJGrR1F7JlvxsuRxVx88vzpK+Pr530xOoTI4PhkyQMx1T9ODe6865oiiyLEPEyeHY+9DrJ0mSDMZ5FHVaLRZa636/b4xZbdY37xzffXATkYpiNRznk2kfEcCGtK+stQ6MQFA6DpZ2wfk1knNGJXqxmCnOGtMgknctEaU68d56u5WAzLIsS3TbNMvFcjwev3z+dDab9fNenqf379+dXV2HEAaDQarTpqmstcgg72WHRwcffPDB9WIuE62z1Hs/mk5ODo9sZ4qiIIDJYPja3XtPnjy5vr4+OTxJVXp4eDgcDueLa+vsK48xQLy4upzNZjrJbp/exABPnz5dvbhoTTccj27du0uMO+cyncQ2acTgwo76F+M4bmdSGCIij8BzpM+wEEFbzj1C23Uvr56T41Km8dfzRA8HA6alMUEIBIAQzxJGITiH26brvrbcd/l2JeUf0jbaNwD3Z3/calHnERFhR+SJlx3nhcPOiof+cIORiDhi3IvBRXYnQ0RCBMaRQeBYt82mLAJ4R+HFixePLp+CEjLPmZTGdyGEzjbeWy2xBXt+8SIfDyXCqJd+9b2v/O4/+35LJs9zR+H1N9748Y9/zDnevXu3aZpbt+5sNhvTduvlik9HsaRXWiATyNnjZ09Pjyf9YZ9r7sEnPe3BA7564N2BE5kaZkoqgYxt6gIAmISeynS2Y556CwR52rO28+B7w15ZVw7D4cnRarUKzulcp2lGioqiKJ4VWmsmOEma3pi2bWuCFUwJgbVpRSIchevNHACklDKRXdV6HuL8ft7rN+SePXssuQghTEZjkWvbFBbCpiknk8mDt14fDvvLzfr8/KVIJOsg7WVFVVrnBsPhcrMuqoIrbr0z1gTwVVNmWRY6XxZrRKQkd875bkv5ifN31jkPBJzVXVu13Wq1KptaKdXv9xfzVTx44r9jYzwyEbTWpm2VUk3TnJ2dOWMnk0k0Kmzb9mp2OVtccxW9HDGGe0+OMDjvi3LNOe/3e7Zzre+6rmPEtNZZmiUH09dee8247mp2/fz50/Vy0x/k0bqh3+8vV6s7924nSVJVFTBUiUaMkuExyZOBfJJuTwvv/XQ6Xa/XiCAEM6ZlTIzGg7briMjaLoQQxTqdIQgeieIhF4LL89Q51zRN1TSMoKrL2BT1nQsBiYLWeja7LuoKEbIkVVoG8iGQFGI4GiiljO02ddWZWuucsRA41U0huDyYTuPZIDH4rm3qWnJUiq9X88ViYbo2S0cBPEEI5F23TXe899Z2sdLopdnx8dFms2lqh4iZVpxz2zZNXetEaaUYGDHsD0d955y3zhjDgTgQY0CckXdK6E8++uBgcXTj+PD6+ropNmmiAUAlqmvb1XruvZeprE1t1zbLtdZKKb5YLMv1Wmvdde2mKuMeiFQUa22v1+v18rquLi7OP/zwgzzPyrJsqiLPc0DvnHfB9Xrp/fv3Ly4uLs7PN8VKa6kTvtms+v1+FGd3dU3gQvCBoOugbcuV99dXwjknBAtkev1stV6cnb8QXMV01HtnTIfkCEhpvg16gTrbci5TrZBConhd1yrTznZhO6ghve84pyQRDFzblZxz543zViec8aAFty4IDqNxTwhB5BEJgkk1PzqaXlxYb5s815yFYrOYjO+Vr2pVOm9cVUSQEQDartNaZ0l68+ZpVVVlWcQyN6rgtcFLKf22quySRGkttdbTo8PhcPjZ48+I0WQySrS6urqI4jNlURdFkfVyazudSCKybqstG8lCeT8tyxolGd+8dv+BBrlZVlVRW+t0qp3pitVsdnXxjdcf9FNtiwKcNXUF3pH31LW9RA3ThGyHAL5rWPCKEVkrGQ77edl2Y+fq4KvWKWDG2fXVBSCXRAowEUIoFYITiN1mDW3z1/76vz1I9bPryxCcbT2g6rququobxyeT8TAES4Hatm2t63woqq5q6qLuqro2vnDELfPD44kadE/OHv+N//jf/8qX3vsf/vE/+a1v/cpmU8Jn5tmLx/3+cDrqffrpx9a0bzy4/Z1vfyvLdbFZBGebpi42m1jfeiBrPQpcF+W6qXqjyfn11eHNWx7oyZNHUnGpTl55UvzGb/x5Cvfm8/nl5eVivYo+QgFIGgmEzjki75wj2sKUEbCIVbqUEtl2li0GUudsDKSx7q2qSmvtKcT2LQAIIXE3ar2t7nal476m2h/KgFtOEBEFRGLogYhhZCHHh4JxYOyLRGZAhAAUKGyTEdqSF3b1mOdMUYB4dO4/648yhij6zoQADG3YmhFlWSYl/yLPiIg8EHwBCifGgDPOMYTggkdOAgUwpPCFdAIIiSB8jhMx2ra0YQfxOBt/nqK61x4OiC12INoWtuxzB4svAO5fgLYhIEPJRUQiAhEARVmSEPZJFO2SIIStbHZc+ciIhijWTEQILADRVmmbcWRRCAUZI2tdcBw5QyaFLJp/xZB4XFrryMOg32cUpBCWc7DBhcCk8HUDQvZ7A+LcWM8y3dd9ZsON4eh2mkz7w4PBCPx23N4Za4wByQE5ACYqbe8dl1WjkiwASqWVkJzAlBVzTiKQD5uiWdX1sqoul3NCUWkExjHJbQggci5l0zRKcHA218oY03Td5dXKj/IuAJOpCDVI2bTtZDxGRO/DZrP5+3/vHzx7/vzX/9yfOTk5/Rc//BEw/pv/6d/l+ucA3/yjCzAYDd987Zc/ffyEOBtNJ8+ePeNEXEoS0DYmH/S5lMv1CsgfHh4qyc9fvpjNr1xHjCBNE+89B4zCx865zvu6bYj80dHR3fv3rLWrsjCB4hzMxdXlP/ov/3EvSyeTkRTixo2TX/3VX53Plt/73d9db2opVV03Dx8+/IVvfE0pners5s2b3prry1mWJ+vl5unTp4+fPsmzpN/vv/PmG1/+0pduHB0vl8tPPvxgtlxJKaeTw9ViORqNhsPhm2+9fnR01JRVURRFsT45Os7TLE00AkrOivVKSumMnU6nq9UqSZL+cJAkibW+qhrkrKqqG+pmb0DW2rIsXzx7vl4vf/DD3z09Pf1jv/yL/+S//e+uZ4tA7vDw8MmTJ4vFYjQe333tbhQBC85XQhRVKSUfH4zTQc8Ff7WYN6FrsWMZH/dHTHCVaBusA2KCG2MC9855D5RkKgQupZTOheAQERh6b1Fw5y0RNWWDiFII2NmQeueQMSTyIWidbOmujpz3SZLohEUGbgDijAOhsz44Co5isKqqar1eI+J4MmSMAYIARuQZByb5HrkDBoJLKaUxRkoeMS9jLRdCJQBIPngihohcsADx6d5GM+89AosWVXtZNu99XdfOWqYUEOtai+giiJnmyWg0ivK+sQEcSzzvfVmWQqgYf9q2AYDIDBVCcC4jXlyWZcyonXOC8YhEM8aiovGehb0HvvcIWvwgrTUD5JxbH7ynEDyRBwClVDRq4zvV6T0tl3/BaQ2J2tZE+eaoOQBfENzAXXR1Luwbb9Gycs8RjpRnDqi1TpLEex9H2RCxLkpjDDIEYNHue38xjDHrDFBkXuH+FGMM4xrG3DveKQAwJrRUDNBa29R1PPhG9CrJS4Ak0b0edl0XKYo7+P5z5QprLXLksBVL2UOQSZIw7xFRSqlVmmWZlPLly5dltcmyLOa+Efev6zpKYEed4rqubWcivLVvWsSqKhLPIyCQ5yyQM62LotLRkjTCKVGnAnbaDnF5GWMBwh988KP/5f/+f/Ln//Rf/su/8T+9d/vBF+90trj+nR9899//m/+XxWpmjIlK3JF6H4nbtJPU2PU8PO4EWOKnxO4F55wQxQ4coN18kvE+9sv32L3fyXUG5w8m0yiMCQBxqWEnQhh2Kovxg7quc95yzpWUAGCMMcbGRgIRQaAvug3HK/RA+54xbvtPuN948SPiQ2q8896D/0Iu8YdfEaGmnXVhfO27L7FmIYbM+9VqBQACtxAH7oDmruswWjIAkQOINMHPXT3jvBRjxIQQ4/HYe++cMcboRB2Mp3meX1xcGGu1SoyzUkqtE6JQWQ8QlBaccxZknD9DiB0RAGDOhSi/K6Vs25pzqaXa4tNCEFHXtoGcTnSa5h2Y9XojmJj983lTtXk+vH1668033p1MDu7fvXcYxsvFpigKrTXn0nu73/YE21mBHT60HfMKgThnsQ/oHW1b7NwBiCTNs15PCKETqbX+xje+1uv1hBA/+MEP0jR94403Pvun78OzV7TNHz96Wk58kiTkqK7Lsiw5R2s7650QYjKZxChx++atxWIRacIMqJ/nSuirq6v9UJ33vqpqRGaMPTg40FrfvXv3+PDwu9/97mQymc1mTdMsl8vRaLRcLokoEjVUkuyNUp1z8/l8uVx677vOXl1dKKWqqolD81mWCcHi5peSI0Bdl73eSHFhrGjbVnHlnNu0mzRNpVRdW19dntdVkaV6uZxvdXUas40qjGmlTk5Orq6uJN9qsOSpBgBgmOhkdnWd5/nN0xMiylLtvU+UDiGcnZ1FfZKiKCTjVVV99NFHl5eXxpjRaCKUXLxcIqL1xrltG6w1tiiKEELVtEqpoqwh8ut3u5pJ5r2PTAWxN1DxYR/227Y13kWQXUnptweHI2KRZ4IIYGE7cEDe2k54QfPF1WAwQsTAqKqrlekA4NHLl8YYfPrw+cuz1959wwMhE2PnutYDUNZLB6M+cK8k5x1sitVoPO4NcsZY01VlvZFSD4fD9Xq1Wl9lWeaoiQ1erfV4Mqzrup2VgFuhH2NNqhPnfK+vUpkvFgsi4hiLii0LOAYmIQTjwIBLLqbT6dXV1Wo2l1ISw/Fo9MYbb3z00UebYhWci8ThuGMODo6+/OUvx9Gw69mV9bbz5tatW0yKn37w/vPnzw+OptEX0oVwcHg4GI+CdVyK5WadqqNyVb71xtupzqqqYoic8/F4rDNdfPZqsQXkLM2zN6ZvTieHjx49ev7wiSub9+69fnrrJmPs3huv/+zTj5qm0UCDwWA9X33ef9u1VTnfUW+Qhe23BUSAiFxz4ojELCNAtjbN777/QQDgIDiKQF5w0e/nvTwf9EfT0Tjz3lqrhUyShBhyzkXCTdfFD9r3JPeg874Pg194bbOrvdryltb0h25/G4V2jGz6/EzyiCxevIcggCExIopcacYEMAQPddtyxWzrN3VZd3WSpqticzG75KkOkm26MgAEchwwONvPUyEQKZC3i9m17brbd+7fvXXz95VYbDadtQ9ee41z/uzF86987atlXf3Bj38/BMiSVAkJAEomgVwIgSMz6KVWOlUg+JvvvtN1GwBvvRFaMT5aLl71BQvGudRah+AAAANG81yllHOGMcYEz3ppXF4myFrb+i5gyAe5cZ1Q3HrOGG6aMlTBBTccDnWaWGubtlWEJlhE3nrDyBEHS45JAcDLskwxlKsyUp43m83BwUE/16u2tgwCeS6449B5W3W1A8+QXa9m6SAbTIdf/cWv/fznP//s4c+Ls3kcU/LeA5LkW8mtNEmC8/0k45xPJpPLi/OiKIbDod95O+gsGQ6HV1dXxjnjHQBIrZq6e3l2JoRgnDPOAXEyGu0H04QQURNAMGa7rtfreWuHw6HtzPX1deyyNE1zfX1tTKvThDFo23YwGqZJXtZVVVVlXSFnk4NxksqoS+M6b62VnCep6hpjuk5W1Wq1OjiaFuWaIRrbeu+Rgrf+wd27y+lYCGE6G3t3uxiCIUQH8q5t29FoJJWo65rIR3w2fs9xOMt7ywU2Tbt/TBin+E8IoYtVgRTr9do5Z62Jx62UMu2lAlk0imGMcckSoZN+Gqc3iHyqVRxlcM4wBpxjkijBEZG45P3BuKlLwRPOUHABaVRH8lmqQgiSs6oqONLxyaGUsulqzrkxnqGIs4TD4XDRmXF/0O/31+u1YpwTSATb1BdVlaYpI5Ccp0qmiS6skUoGYwa9XnDeSBl04pwDCEAegzdNPezlbVk8n897vZ5M01jbbDarsiybtoq+eYLxrmvyJCVvF7PV86cvHPqDgwNhhfPGOLJ+y4LhkllvQgj9YY9zHkXMvfeYUN01XOBgOIwNgNt3bupENm0lJY+TO6enp/PlIliPiJ7ceDQmolW5aruacQ4Avay32WziEFNZmiRJlBJEHjAwJb23ZVuenJxEM0zrnetcrIJi6pCnSV3Xb7z2oCzLZy+ex/z79Tfuj0ajDz/8UGUyhOCsdR7u3LlzeXlZ1fWmXGVZFsAxqXpZAgBpP9nU67aqe71eWW10Io+zQwjUdU0ixeuvvfnDV8HNnANXorNWSmGMkVJEScrNZgMhCMY8kQDgQgTGnHNuZ0V4eHjw7pe/1Lbthx9+dHbx8tmLp8a5NE1jqzxJEiCaz+eDwWAyvR17QjEd50KoRBZFQSgUlwQ+oHPBLBaL99557/T4Vls/LDckBB/0+ll2uFK8EuyP/fI3OYV1WaAnhsJ0raNgnD88PIwVbDxA6rqt6oYxLlUSOseE6jMAg94ScuE57zoPiFmvpwTPKHFI6/XSGdMVxS+886Vf/to3FtfPGUEA5oEvVjUAKJlNp4cA4L0zxq43ZWvdYlNWtV1tWue8s2gDdOQMBAcQJAyO+qLkP/rpDz/5+Yc/+r0f3L17787te+NB+vTZo8uXZ4eH09e/9u5k3HO+uzy7QuYVF2cvnnnvp4fHRVGcX11WXasSvVyvlp1ZdwZl0j88/OiTD40x0+l0tvCv+C4Bbp3cuHMvjziitXa1Wr08Pz87O1us1tfX14vF4uz85ZbK5H2/3+ecK50KIZBhAPIB2E7Yx3kvlKzrOgB5ClsUAJB7FFKwnctNDFBZlkoprXfx4AZEHg1yhSACDEQ7HjRSBEOBMWbM1o2ac26ti8/aaDSMGQIRRewVdql8PPA5CghbPFoI4cPnU01xfgkZRInPXdoQWTs7ejIExK1HRczaAaI4jAQA4Izv4OkYujmCJ4fEAclRYARScOdtfGPEOJ/FCCCa9uC2nIZ9VrO9eO8JP2c5EcYcOkQRkpjKQFTOCJ5iogIASLuKa/+GEAEXCLTVegbAQIwhEXAkjl/s6HtEBogBgbbaHNsLJwLOpAeKjosUgtACkYEP1hl0oLWM2RcgdM4Ce3XyuScrSI6j0SiuW9jBB40xyFmS5r3hIBC8fPTY8cDyEbe+J0VfpD2g5vKirrv+eCJ7uc6SYZ4JztuqJksj5BXIvuRtgI3xNkBJnSfsuqCEEIyZrl3W5vx62Xhveea8l8CkThpCPRzINHUuJI0RxmoC8q6XSa3YwhnPk6LcdGgVWARCZCEEDBQgpElunPvJT37y9OlTrVSe50zI3/vxHwwPB7fuvWIFdJJeL876o+HR6U2p+Pn5eVs3SgXgghgxwbXW6/VacPRSRs+Yrqk2m02aaGPRWsu5cN4BgLGt9RBCKOsqb+qff/bpdDrNen1PQSjJhLi4uDg/PyfvOEfv7HA4PD2a6kTeuHGjKB8zxhDZj3/84zdef7BZzznnl5eXpmlCcJxJ23Wr1er6em5Hg6999Rvf/OYvm66Zz5cff/zhy5cvy7LuDQf9fv/2nZtdd/DW22/EZAkgTKfjVN8YDoex4+tMS94HRGLQH+Tz+TxNdZLoPE+7risqc3ys79174L1t27YsK8bY1st6vRwO4OzsbHp48Jf/8l/8z/+Lv//w4cOD0bHW+t69e4dHR0JyrfVsNmt9wzkyBkcnxwdHh88vzmrTlV2l84RzIYQICIRYk7HBAmfBWiYxaukIxgECkfcmSCGMQw8UrO2s0VruG0uMMYaiLEtvbKQYI6EnQMalUlrrpum4JC6Fp9BWXRw5DZ5MMNZ67z3nkojErj/U6/W4ZMiYJy+VlCi38kRSIHHcYUCSRcUMcs5FmXsikmJr8xt3lPOWgMdSlAEPzhNCkiQMeaQPR9g0uhPlWZYmeeypx3oqIoPay816vS+vIry4FcH0nshGgDJGYLctYKVSSaRuIKIQCgDatlVCIkLYSgKi9x6IAd8a6EWgLWIog8Eg8ljJhwjQI26vn3MZhYDKslRKDQaDOD0ZEfDYayEiQs7YFk/puk5LFVVZ9kTgmKQBgMxyIreHICHQjloeENF7stbqNIvovN/N4DdNs1qtnHO9Xi+2ImKjCxGlEvGcih6JxhjvnNLaWsvCFvQXQsSBJ855URQMeMRMhRCcs6IoAlHnXzUGAsCF8H43A77TUCbkknPOovIyAAACRmL1ZrOJS7GlXhE8ffzEBwCAXm+rcZf30qZprLUR5Y86n+PxGABWq1WEhwCgruvObrcHY6zX6/mtgCzEDZMkMWUjCCxyJ+MYtFIq0JZtIHYGlYyxNE2tdeti/R//3b/xN/+z/0BKxZE1bdvv9aSU3vqyLcPO53w4HO6PwijnXZalMSbP832/IW7gCDRHbvUe04/dmvi5EcnFHbNYMh51t6IyFTEEH7IsCyG0pos4136Hxyrpi8h7kiTebcXKO2O6znyxicIYk1LsW+bxIOaChxCiyepWtH1nBsh3elZbXQ5rrLXWmdhdpjhftcsK4naKdxqZs/E699I3bDul5PcrINn2/TmLyC9Za7Msid0yZwMABNwqscQkZHs6c4xQWNd1xjdcIOfovbW2Gwx6IUDkWrmtycr2zQGg6zrBFOcC9r5ZFIRQUcE8kQkTgsfldM47h0KQ4MZa66w1HUqRZxI4ykwAsLLaKK0DM588+ujjz37Okb/22ms3j+4sF5v5cmlMVG+rYgwPwRL5OPUOwKI1dFTXIAJyPiASofddDL+kBJBfrVZS8bquQnB37twB5E3TAXT9/rDX62VZ7733vjL7//zwjz6bv/qrv1ZO3GeffQYg8jxfLudJnlxfX5flJqodcs67xpyfn8e1tW3XBiuESFTa7w8vLy8HgwHnvCw3Mc53XXd1dW2tA6CmquIRMxwOXzx/2ev1yrJcLOdR1kYliduZlx4fHwPgfD733ocAN2/eJPJ1Xfd6yARH4IyxONEShZ6yVF9eQnDWI0gpJRdGReFNFfewbbunT5/2ej3O+WQ4AoCyrJVS5AP5kGV54Og6MxmO1uv1jVt32ra+efPmo0ePnDOuM1VZkvNJkrTWEKF3pq3i8eEBYDwec0Au5XKzbpoGOEt7eWtN2dRx0YAzcKFt267rOmviiRnLw+F4VJVNZ00M1AGAMQTgO+rJ53aagjgTnHOMGzv2wIQQkf4eCNBjAM8YY8DjGEo0nWaMCRM8V9IBcSkAWOM9xsYvBM/h7OpCJLIxbZKlTdcSkfGOR7xAkHM2SRKAoFNF4H1wnXFCCCG0MeZqfjUYDCaTEWNsPr+OU6JlY6uzChG4Ys53UsrIHCwbI5VkggkhkiRJkoR8yPM8nmcAINTWDcmaNs3Stm7KspSSR8Z7VVWL69n3L68Wi0Wq0gi4TCYTjswYd319LbXCEq21h0dHg37/s88+a5pmPB53XTc5GCulpgcH1tqzs7PHTx6uVtO7d+4kSdK27eJ6hoiL61nnbNxVgvOPPvoIBSb6K688xpI0TdNUa/3pp5+u1+skSQaD8WQyeedL7wLApq4QUTBORGJHq2GM0R8OfNsEDND74MEDUoySxrumqdNMayaFkGm/ZwA8gARySAGx9M181bDVrKevB3lvagkAFBf9fn86mQx7fS0V31nTxGbmvpZjO83lbeG6C7IAgLtSFj7vLgYihru5sPj3btfTDiFwjvu/B4BtZzKErb781rg5xCjcti05aE1ngtdJApyti1UA6oKxhpiWxnQcmTVdIB+Ct64jCL0sFRwPx2PBeLHZHB0dHdy5fX19+c4773z26GHTNO+9995v/dZvXV3PtNIHk2ld17G/6h1hHILjjAPfbDa3bh4RUZplPphUZUVVLpfzV36/1jkEl6uMc1UUhdRiNDkGIrsbTwOAKCTknNOZ9ODLstZaRyskYhRxWKVVzDCqtgmcfAjAyHp/eHy0KjabciO4IqLBaIiIy+UqBN9VXcwpjTdccQ/+5dVFP8uJgwtkrZkvFmemhUCJVIHIe/vBBx8sFjMp5fnFy9ls1rWdq6qY3hXrjXMuEcI0reKil6TO2UHes22rubh1ckNrXflgrZWJTJK4r9MQgtQq9o0Nd9bazhrOuXEe226Y5pGOEZs9knMGkKZpTLzSND2YTIuiuLy8jMfA+cvnyDkidl2X9bOjydhTsN4454bD4a1bt9q2Zoz1+31ro1O21lHSK1Bjmn6/n+f5ar382U9fZr2Uc97LcteZRbfwxjtrRydHi8XCBjc5nBpju64loqZpsjzxHqw1XPDheCyl9AQAYIyJwyYxJYpJod9qgUXrFSulkJJzjlGCI6YpxCmQX23Wk9G41+ulmd4auFmzma1u3brFObfW5oN+sK5pGiklRKYGirhVkiTJsiR4G4LnHG+cHBFNL86urWnjU8k5B+AhOM6Y80YKxvP0YDyq2iY0W1IGdUEQIuLp4XFbVODdeNAHZ5eLWdu25INSKnhnmoYhMiIKQSs17zqllG0blmfWmVyrJjQARAG0UlLKpm2bsgCAPO8XRbGd/adQVhsXPBfCuE4wHsDj1smk7Zr2q199T6R6uVptNhshZTyc3BaUoSghGuPAeDxeLBZJmgIHgcx5XxQFcuCS/aN//I+BPOc8hNDv50W1+YVf+sbDhw8fPn6UpimRy3vpyc3T999/3zoXjwOpuFQ8eMe56Lp6sSiTJLt79+75+Xnn7MnJSW+Qc86G40FVVa+9dv/hw4dVVfT7uffBGNPr9Qj0ar2IAPTBwUQp1XXNfG6TPGGMWWvTVF/NricH4025Xm2WvX7WmYYLlEp470IITVN574XgIfjFYg4AN45vGGMEw8FgEElMf/QVAjhnCMgGinYWaZoqyduqRsR+P49cj0iZEUwwKTbFSidSSPbo0aOmaWxwjWmlUDpNgKEPVkrJGNZlmyRJP8uFVv1B7rwPBFpruRv1jRlYXTVJojjwsFXS3/KJYq0el/dXvvmt2zdvVbO5YNAZ8AGB83JdJjrtD0cBCBivNmXbda1xzpPz5AKZAC4EqgsJkCAa5wWgTDRyZQOxfr92purq6XDUrNeOsd/4M39GAbXGhBDKql6uCgDOkd25c0trbYwJwbema625Xm7Kqi2rDlB644wJnnPjTOOcC7YxHQcQip3eOilW69/5Z78tvyd/8Re++e6772kBm/VyNMwTLT7+6APG/XJ+yTkDoqqqsrz39OnT2XI136zqtq26BjhLJlPwNk/zh48fq+SCc/706VPgX37lt7mcLZW6YIJvK3CGb77+4L333ovM3Pl8fnU1W8zmz549e/jw4Xy+WCwWdbMlm0dNyZjhxAiDDOJ5YbeGRTKEIFAJIZJU7WllxhgRazDY2tNtgd3tcDcjIqSwh0CjIXAs3pIki2GqLKvY3ovVDgBsCWY7N6G4CQEg9ue6pt3+GbhSikh0XRNrKsYxMvV2RReFEIht4VbOtpOGXdfUdS2E6Pf7YTvo56Oo0f53A5HELZOIC94b9IOzPlilkn07HBARd6YXROgDY4wExTuO38uWuBe8cy5mKc4RRJIg7RIeRIAQ6cdEhEgCORH5QLFS3UZ+azjnXG4VOTGKYDAWQkBGeyFsgG2eAwEY23L3EDkCwtYSA1lEORmEEBhBojMtZFvMOeeI1NkWEZVSRCAEg1dPXoGUilvujJVSDvJeaOpYUcTt4b3XaXp6erosyk8fPmlMR5louhpI+K623l0VBXocjacgsA3OGacYZ0CmrITx66qsWAhcGSWZzoJInl6cb9oWhDSmnc/n04Nx27aQ9V9/+635erMuygG1lXdMig3nHPDOnft9EOXLK78puQaeyk4z5brhnZu6ax8+eaIwtFUtBbZtmyepVNqRm06nKlGLxaKuKuTceu8COf/qHo+S2lNIez0fgqnab3zja48ePeo6K6Usq6a1tunazCdE6LouzxLO2NHR0cX5mVYSttzYjdDqvffeQ8RFUTtvqk0Rk+SyLC8vL8fT6ZYRImUa8zqGgudEdH5+LnUynU5Oq+bici6lePHixd/6W39rNMxvHh/aEJRSTdVdnp8rpVKV9nuDb3/7O1//+tdns8VyPquKtffEmOj3+6lOPvroowjnffOb38zz/OnTp0fTycHBQZ5msFWbCfGMQKT1ev3hJx8zxpCxxWKxWC17vV6qe0VRUVmMx+OLi4sQQp7q2If48IMPsjx56+13fv7Zw9lPf9qZ5np2+cnHzwLCvXt3CKA/6D148CDP88VikefpgTEBaD6fl3VhKSBjQklS3DgDAAHAOZ+macAgudpVpxBTO4Gscy6QI5K2M8SIARrjhIi4D0NiHDBP0nx6NOwPyrKs6iKT6dpUpiy0NV1nI7bVtE08jLIsI+dCiBxPHjG4LngpJXImFEdE6wxjzIVA4JlkggnOudsSAgSXzDUhThwDgA8uZq11U0UV9ZioNF2HiFwgYyzWQYGCdwEF2wsaxKwgFlZlWe4xYoCtj5n3vm1bwXn0ttlnmDEcRWlDRBScE0CcCifC5XIZ00giiqq1kc5mrfWeaa1DsJxzhiIm4bgzuIvE2D1y7YzdA5qIKGRkoXLvbQz+cbB6j6zhjnjUmTjYZ03b9no9CD5Sd2PJFrE5a20IIKVWensM5WkWYev4SBrjhIBer5fI7SA131WaXWsiBkrxzM2yeNgJySPTcF8Rx+o7dgAi0zP+X6W2DUIlJBHGd+OcAzApJQGw1as7c7QrdeOJFkF25JLYXitJEHjvfNzDEWX2Oz3TCEoqnRJRURR5nnOBQohY+5+dnQ2Hw+Fw2DRNHP4m2pqTR9uPoiqjSIXf+TTEgaTt4Frbeu+TJIGA0cgxwrvW2nrHCo8h6Iu9gZgVdF1nTBlbGkywpmvizow/H0FevzP6CyFE5nIEfGNPy1o7mUxwpz3tnNsJBUi/l8uI2JMQ8RHY7oSuY1LEjcc5Z0CMQ1EUbdvGbGTnNra9VNp5keFu5Dpu0T0uFO89DsjGm90dzdvTdnuFwUvvo4YsAuzmFbY+jSEE491e7WSPY8R32uKV1saEKsql7psoezxkX9enaRo/KPYkcDcXniRJr9fruia2kUMIUXYjxgGllN+1/+OiNU0Tg4AxxtqOyG9VkncPe/RZybLMQ/DeAnIist4xoaNTXwjO+6AYQ+BSQgjBtS3nPMSuRiBnrPEIgMQw6eWewrosODLBMQTgArlkQvMEtBDKdu7pi8fPn5wXq2o+nxsTv1Ifux24s/3YrvyO2xxiaRwCMAFAcRkBIPYqjPNXl7OmrW7ePD09PXXO1cZIKfNe7/r6+vz8XFy6u688xJU+OJhonS4WqzfffBORyqb87LPP3njjNedcXdfX19fPnr2IozzVprDWDoa9uNQ3btyI0UwpdXx84/r62lobSTBPnz4djUa9LJtMJmdnZ1rrPM+FEFrr4+Pjsix1muZ5XlXVFhBjrOtMlmV1XZdlGdtC8cEcjIaMsavL2WazGQ6Hg2EvOH96epqmyeOHD40xk9Ew62dF2cRsWWtdVVXXdVprDviNr35tsVg0TTOfLzerNUqMvQ0meAytdV3PZld5nj99/ASCh0CApBN1/8E978LV1VXX2X6/33Y2AinxEZRSeiDhMcacKJkde1TGWh+CRIyA6nA4JEJjzP2bN0ejsXG2rs7atpVSCyEI0TnnnBEQDzKSOzv62GvZPrAEwLYGBshQCBEIwKOxjogIoltvnEIAIi9K64VKKmvRuT3HxFNA5FFY0HsrFA/oAK21xpMhZMjkfF1yLlGGNBNaawBWtzZ4q1INQIGRa1tkidZp3LL2i268ALlOAWg8HjdNUxRrQkhT7b0HtMNRtn22tey6DhgaY+q6ilGsqduooxpP4v5kgIjDg5FSaj6fy0xxzjgopZRQvG1b5Gxh5nVdgwKWMNkTDTS33rllrb2oLgIENVSWnGFdNs4O2KETPhtmJTXLeqn7ugptXdd1XedZL01TJ23jZi1vgw+JenXXtMH2ZTkvr1omOJ9k9bKVKiyYaTgO1ZDWdpofF43d2MppDLidVena9ov1GItzHIwjAueCIyPnAWBVl9fnL2+fHijeYwJkoiFRq9YpPfJAjAXwgpEDIkdwvVz/nLxiUiKTm/XBphglecrlyXjMgaajsVTc1GWAQN5rzQACA4eIjDMIgba11tanOzgfAjHGKGzrOgCwMsQkjHwQEUSCbcXlrANgyBgxtNZ7IMaYZ+St48AZoPc+AFmCLjhjDHc80jY5kyCFY6Jl3PFEIJBzMiAJIiGMdWSwbtA7YAS+LG5O+s+vz7/3u2uV9n71T/6ZJ0+eHB5Of/D931VMCWQYiBEiwWAwKIpqayXBtuUrJ8sEbxtX1kUXqLFlkulc9C0XIF+t+UXBIFklpPdecnF4eJhl2Xw+L4v66OgotsFNZyDQoNcnos6ZQdpvTdfYBgAiVhLPtqKo0jQNNhRtIbg8OTlp6y6Rvb7G4rpARWmSDFWvaapqtpweHaZpUte1J3IBxtMDAGiKcnR04+rqCkIIzlfOGWOyLEPBrbVJkgilrhbLf/7ff2+9XgNAOkiurq4640aH40C+6lqttXP+aj4bDEbWWusqIqpbd+PGYZqm7eLKBY+Cl2W9Wm1iA7BrrZQy6ujled52dV2XSqmutfPWKKW8N1LJVKV1XQcMVVu0bR2C6vf7V/Mza+1wkkd2BnDwtusP+8M8y5K0bspcqqZrO1NMxpngnks0pu2M0TLRMrFkM627TcmJDvu9RIucc8ZFMhgZdCiFQeISbdMKzR2VttCavDdtAJtKqTWrqor7NmWJJxBKIPKuWBnBBToAYC6wiBpw1AK9M3meW491XQuNvV6PAbRt2++Pz8/Px73+3ft3F4vFYjFjCNYGMUl7PaE1IXTBGk8kGZ2cTJRkZVkAQHCCgLgIPrSRZ+298dSExiHiZDLZbCqtlFLq6npurbXOKqVstFvZ8mi48yZmUcfHx0KItm15ACV4NKJhTIYQVuV8cjRsmm6+uMrzvCzXwZtMJ4yBzvKrq6ter8cZJ4aN6cqmlFYQUdvWw15umhIBuODW2s4EZOSdoRDSNM11As4zYFLqyEdYbdZN0zAuOeM+ACC0zpMQLEt7B9OD/miz2HAUQGE8HkeMoG1bHxxj6GyHDBnDuimTVCGC1MI5p6X03nsXNuu1MQaBh+B0IouqrorSGX9ydOPhp4/Ikgm4rlp2vVQ6t64yreece4XeIRHjkpVdp5Qq2vrFxeV6U+R5jsCLTdN13dHR0XK5vnfvQdN0H330UVU1UVJws9kQsBDCYrnWiazqoixCqpMQwDsnk+RgekgIbVU/e/jYGTPo9ZFAS9V1Fo1D7xnDrio1BxSC0ElFXdcBdlzE3L0u1hevji1gtETnPAV0tjNd5505PT3tuo5x3nnHGUiVkN8m5TEfbequ0s1qc2GMuXfv3nQ0fvbsGToUWjNgwfnOtgFCb5BXpua+i9P7gkiwgMGkirFhluc61UnZuoQhM+00lXeOx0W5AsGTXoaImrOcI/UH7731jqtbZi26UJJ14ELwjFwiVcrJe8sYdKYkJgPaznVdZwMxBcG2pjaMEByTgRsExplHajUCdK6PkPLAOFx0qz/23v1370+azRPngjEGg2W+aZrq1q1bh5N+Z433fr7etMYWVb2pytZah7Zs2hago64tW08hauyioTZW9QhyOBwOBqYxP3704fP11cHBEeuRxeqzhx+9fPrk1smxBhlskFnaOPjs4hrT5O2vf+2XHzwom1ZnKSLKrBdreCIiQtsZ7+ni6tWuZRW5znuByDmvGyuEqNA4uxWnGqSDG+/eYDtR5rIsLy4uHj18+vHHHy+Xy/l8vio2l1fXnIHfYYsMQQjcW+gQESCj7eAzg/C5vHJEPGNrh+2YsEQegIUQYlEa4ar4AxHgcM5F2dY95Pr00eOYxRJDIoqM4Fixee9Trbe8J+fj2xIC5xwhtl0Zk2IHxEScmgFDzrkxNhZyCjkKXtd1CN446zB0wRZlxYA3TQMAo+EwzovsXAAVETlnskSVRSUkj/PdSZIE66PZYJqmUWAkBG+c45wrIZXazgU3Xet9iAY+kUknhMDAGDAhhEj4flmccyFAJDxlmSYihgIwADJjDCIIIXSeR/ClbhpE7Ko6SZJ+liGLZlAdU5KC27Ln4pJoxf3OEZoz77fEcGttVP2z1gBC3RQhSRIUxICIQgSpPTEEtJ7/K8DWAB1C0Cin+UgzaSB46jwzBJ4HLkBn6ejo5q1nP/uDWV32RvkAuOlcKURJfLPYnJ7eHty7m9598HDdnpeh63iCOpSl9Yt0FKaj7LPgy7pqnT+5dZMp/QxE0bQvLi/XG3dy992fbTb9ydHJyUn/3p354vry8tI0RefCuibnFXcqqFuHedrxfsbhzs3Th8+e/eD3fs8zff8gP7uqeofv9buLYvO4smWSAhO5JO49y5QWBKG1iZRNa7vOS2Ia1StXwDDqZ7qzrTGGK8mS5MG7X4r15+qTT4NnDDhZRMUYkO0cCXbjxs35fDmbzTrXhRBaa1LBpBRZlqUHx1qql8+ffvrRh21d3b5za7O8Hg5021hjjEqygDZJlHMhEEdEECzNB/eObpjOX5xdtqYb9vOj0eDw6IBRKMrq9u2bxlmuVVlXZ/OLX/vXf+2Xf+WbTx89Xsyvu7Lu2jbLsrfeeitu48V6tVqtzs5e/PjHPzo+Psrz3HsSTD598mQ6nQ57vevLK0bQFo1Os/Pza+NJasal4ileXF+dLRf3Do9jj/DoYDpKB/P53EFoqPVt+PI7X57NZuThzq3bH3z04YN7937xF39hdt69OHsJHIzrAoTz+SVIhJGYu7ITxgZrjIceCwjG2Y55FoiQpJRaCCIRgpPIkIIxJkkST1vZh4AhgLOdpdBFNzbvIVE6FjtAwAUPCMa7O0fTXq+3rjdMyabrGEHU1CYiJ7WU0lkrkAWEcr0BgBCClDzCdmmaCpHS7hVCYMCQED0x5CEEYGCNAwAPvis7tlX884wpAKAAngJDHoXdgw9xYloLFUJgxAQKj4SI4MgYY4yBiJXHCYkQIgkjSRLOmdSiaRpAhpwBEeM8iZ7SuB13+2KY3U+HatnrjAEK3iHn3NmOQkCBAMQYk5w7ZwChN8jjVAoZEWzQfQ0AWumu66QQSqk8z6M4QzytyroSQkitnI1cSwIAa4xSipBFTaoIBEfWQgTsQggMgvOutZ1SijFoOqO1Vol2xsZjJU1zznmESr2xoJPIBY6MwsiayrJeJDYxJcG7uqq01tkwd871R/0kSSaTg6urq+VymaZpXTXGGGtcIB9p11JGrnFunHU7ndOtLRiBMz76GQQmI781orGxzjq/uOrTq6WuFotVo4NSKuqJbTEHyZ1zLoQ4nm+tJyIOKITggwEiFkXBGFOJ3iKS5AGhM4ZgqzU/nU6dc5PJJHZJGWN1XUclkyxJo1hznudKqYjARig5pvGRgExEHFmWp03TBELrnNY6zbIQQtd1UVUjos9ExBCFlKbrIv5OGJJURWiYMxm/o7gU8ZyKzE1khIwASJJEioa42DQtEUWZ6K4z5AMitrZlgmud2OCRaL9TY9chJkJK63htwJlUijHmW4MMc53ETRUhWiSITuxEn7fKIq4Xl4UxRsTTNI2HqVJy22JJtoYWtGMfxuQnSRLwwIFxobwPxlhrHVGIK9a0bQTlo89hhEGF4FETDADY/5+9/3q2LM/OA7G1fmb7Y6/Pmz7LG1S7AhpodDcAggNwFPNASZTEgWImZh74oKBGT/PACXEUwYiJ4B8xD3oQRTGkGVLDIRxBAO0d0NVVXdXl0ufN64/f7uf1sPY5Vd2dTRfiPOFEdFfmzXPP2Xv/3Frf+tb3sa5mT4R98Sn/Q7pI5xzVhZ1ba5oh44CxkI5bzrlRGhCSLHHOMQbOmaY1USQZCh6hDR4RjVGcMwC/gdeNcZKtPz+glDHnPHjmAbVz1irG0XmfpgldpODccwwhCC44Y8FpQAjIAYKQ6MInbqWegipgjbGIzCGLSY01ykglJZAzh2VSSuMcl8GrGhlyDjJHzqVVVYRGnZWrxoKLkUsETlBmCI4xDoDWOUTv0SMieqQudQjBe4sIzhnGhBBCKX1yfFYURfDWWdDanZ9Pdre3t8Zb/ds9pVTTVubBsvwXP/75tamcW1xO6rpkYJ4+fRTHcdu2ZVnPZqudnR1EXtbNlasHL7zwwnw6s9Y+evQoSTJjjFX+crLwAWfThdEu9BGcv7J35fz8HAC2hlvW2ovzqTHGWWi9CeC1Ubfv3JIieu+99wZFHxFH/aFVpq7rWEpvrRBCtxhLNjk7CT4UadY0jTOmGAzGo37bVMaqyeUsS9M0zSeTWZL1YsEBxdHT084JQJk0ToqsF8ssllHM07OnF5PZlApX1LDIAwivZYittUwKmcRnlxfu7DSE0Ov14ijd2tre3hlLKe/fv2+dj7PUWjuQTCmVRpJhwrkEjxGicoajl1GcRb0A3rRGIB8Wg7ZtvfXeu9Fo9MJLL56eHtd13R8MVqvlxWRSVQ0DHhwwxoMPwXjmkUkpI7CuLZt5o3kSxYjMtF0FBQEYBMEQgxcgnfaNN5ER4NFqh4xFQjpEhwyBC+CdRBGd1saYJM84Z87R/PKcI9WpnHdaa1qWdJgJIZbL0rRqw0HmiOQtSxtcp0uitfeeR5KyDuz8BELbdrl9FIk0zygXiiJhlNmYpSrTMsHyNDNTBQBJkuR53uu5tlEBwQUbcdmoOoqSLImBIRM8K3Ja0lwK5ICcrMMZ+QAgonE2SRIppXXmcnJRFAUXDBHPLy/SNB2PxwcHB1prpRrnjLXIJMt7Rd4rVKtJ8QDWef7GcPZnX8gcOOTAGLSqoV3+5PQUfokprUMIw+EwWV4s6xVHJqUkC9FNrXvT1sE5l1yQlyuJVSFiwuN+rydYR4OXUkrJoXUePQDzEBDAAWIABBQyZsFCAAdgnTtZTC4WUwT34CTupdnu1njU6+1ubbPg2rYWLgCAAPTOA6AQkiTopYyZYK1ViMiAG2cxBMkFORD6AN4jAiBHB4gBAcAFh8ai4LT7eIeMsYBonHXWcsac1eAAEY13jdGWRPEBIsm5FGFN7m6aCkTiggPwHhwRlKIo4qwjRfq1WfNoOCYe7mKxqOv6a197dzqdCiGKorh+/frpyTkdKlSW3EzLLEvIFvjiYrKzO94bjFpbKaXqi5ahTOSzq+Js3a1GCXaj2jhN5stF1dTT+SxLUqXUarWq67rf71dVRXJFFIXQqUwhSxzHVdUQdXc+n4cQmqZpmnq+mAJAWqRKqda0j44eAYADIoGOrbWNapWx1vo4jsfj8XK5HI/Hi9msLiuqQbVtuymT0llelvXVq1e11ueX01s37zDGzi7Os6zo5TlyHoJijFmrQwDvrTGGMZhPJxfGMIHOuZSnSrWDwchBOD8/J3I0IvaKom1rycUvvfb6xcX56elpmnJkwXbC3D6RQjU1ACilolhaZ7x1kguZiqapsiIHyVXd7O3s7myNYhn5YJ8+OfLeCyHm83mSZyEg41IIoaomz/MiSdB5HfydGzeeu3X7/sd3d3Z2tDWZYBfzS+d8IqQUQkahLivX+t3x3t7u9tnZadu25XIp4+jw8AqFIN77fr9vjPEB6rpG77IsU40WEWeMtUbFcUwCW0xywEC1TW/s1ta4aZqt0fj27dtVU+V5XhTZYj4PIQwGAxL5om2w87D2nmZLnufkaUDKUFopR7ZOAQJikiQb1aAoihaLBe29Yc3UGw6HTdMo3VCWRUwBAKBEiwK7/f39fr//6NGjtm2LokgjjxjqapUm0XDQk4wvFgvGIM9TznE4HAQp67re3tpSSnFkLEDbtlSyJsENBNzd2p6vloj4W7/1W21V/+AHP0DEYlDQZPbeF0Whnc2yjHM+my/JqiWKxMnJyfnxKQqe5QnVz6xzdEYwxnywURRtzhTKwTpHghCIc0Qe3MFjXddcYK/Xe/PzX3j48GGapvSopeRS8u3tcVWtsizzdl2G7PUuLy+dakmQMYoi502axfP5nHo5GWOL5Yxz/r3vfY/M/YjHAdApGHSUkzhRSjVNK2W8u71TliUitm1rvQsh1HUtk7hIYmqflFKqVtHScx2FigfsiDkbqkUcx+DjZ+4tlEsgorefKLpQhtAqZYxxkaTVHcUpWSFxzrmwBP1PJpOyLAeDAaxJVT54ymEEl9T5S59PEWrbtpzT7fK2bubTGbA0imLVmv39/aIo2mYVx/Gwl7u+GRbp04cPbuzv7e7s2OUCvOekU09cD86Hw7H3Xms7Wy4CsNlsZo2v67ZVWjlwAShDo64rTu3WIThnEUloT8k4MrpJI/kbv/EbiFjXdbAuhK7an+fZ1atXjbPe+7JqtNbL5Wq6XDVNo6yt6rbRSofONNiR1Nw6jeScQ2DOdSSd5XL58d37jx8fvXDzqoyjsq7iLBVR5MAh8qRfHD9++M4HH/yt3/u9g+tXD64dnpxdBITR1k7dtFRfbJrG+45rtrWz9wd//ozRHA2HOzueRnx/r/NucmvwmLJT7zu2y3A43N7e/vznv0Bdb1rryWQynU7Pzs6Ojo4ePXo0mUzOz8/m83ld18YCACCAB4gjTkl4JOKw5jITuYM7Z5xd505mw6rTuhWCW+udC8Y6KboeZPLc23RcMca0aWWSOOcYIKPPweCdC8EzxupWcUCtDPHyyrJywTHkdE6KOAqqY6iFEKhjfR1qeiG4MY4DOIA45oiInF1eTubzRRylZVlqbWMZ1WWj2xYgRJGUUq4taxyxgtcinvrG1atZlj1+/DisPeubponjOHCGAN1yNrYoCq21DZ0tMxeCc84o+3Sec66dTZKkrmsAoPYCun6KcqkrSwjRtpp2FdL8AADydKL9Skp5/fr1OI7bpl3MlkR+JKUm771qSwBYG9YLCpWrqqL5QIl3lmXWGroFsvsTa0ogxxDHMW9ymD9jynUT3gOpG6m1xivnvG41Iu7u71ODF+fgXCjyHLiwIn4yL1958eUXv/D5D06P/6evfQ2398eHd+Lt8fnpZe0qjAOE9sL4tz96lObZcDz+wY/fOT4/Cwy1s2Vdp3me9GQQ2Wg0THrx/Uf3pZTWewc4Xa52D27G2bBV9uTi8vRYJ8wdbI+/8+57x8fHV2694Dh/dHY+mc73otx7Mbx6Z3bxFMCo1kLMYylDcGeXlz5gWdfbu1dujbY+unsPBD7j/gFcgKppA3LvwbZGa2sdOcX7plFZkS4WizxJITDvbZ7G3jgmoi/88hd///f/56ps4jQB5CgiZb2rW9NYMRgwwDhOEXksUou6XNbG2iiJ0yjRWgchBONaa47MB0sTYzwev/zyy3fv3v3Sl76UJTFH8N5q1ZyenRRFEcdyuVy+9NJLRqm3f/iWYNxbNxwOizxPo5jgM875YDBod/eu7O2S5m9/0Hv/3Q9/fDk5ONjjnC/KslLtbDbLsuzmoH/l5vUQgvM2TdMki29du/6jH/3o7t27URS9+eabIYSnx091q87PzyXnTdNcuXJlb2/v9Pw8TfNbN25mRb6zt/f8i79My9c4rYMejAfT5fT/9T/8kz/+V//SodPeKWeZQB5JIRjnnFO3BHYSFlSkIeInnfIUvSDSHo/IOiGLTZPERjyBOGgff/wx7WBVVUkpjdNybUZHkCgtwA1QS58jhEjieDQaKa1JFKLjzK6V5WkVx3HsQyjLkg7iDQWM8D7a8XCtJ9BZcyMidhU+ay2xzza8TtW2NFJaawpsKCprmkZpHcexEPxTR22nuUGbP6w1mr33nEsMgIjLZu4D9no9OtwpR06STsDBGMM5o0DLObMRUliuVs65fr/vvQ8IpAhLT4ke18aoDTrdJA0AhPsvFoskS6mnhEIjiruII0xsvk11k35Ij2U83qaiI91gXddt245GI2MMSZkRyUwpRTJNsJ4iWZbRc07TlEoOy+WS4lshRCQ7bBEZULNLWS6X5apz6guBMFNrLYRAj2IzTLR5AgD1qBEldnPjP/NiyBCDEIJMv3HN+6PsI6zbVTnnWZx47x2E1WpFIDIFFaSITd2c9AlSyslkQlOaklNE7Bc9rbW1Ns9z4gZ2giRCbBqVNrcmpaTEn17adFxC7z3NHCkltQGVZZnnOUX+UkqaflxK+idrbSRDXddrYVlJX03RIEPhwXLO0WKnoBI8TbA4jtM0ZYwhMjoHgzWIGGepMcYbw9ei3psgATc8wjXNme59ja52lYkQgtGdXAwA0Dtp+OiL8jynJ0Bkf7qesO4D+LQQBz2utm05F/1+nzJrIaizEImvHda8PRoLunF65+YWKB7eVEdoYW7CYwBwzhORl36FMIQkSejXCa2mrMGsDSE7iW2AVV1tlkwHx6/lX2gGhhD4Jztk8NY70vhy3c6JnVjFT3loGWMYQwobfLC4drmgbzc/Qz9HRhaLa2pqEABUlaGeRUGxgWs4MkSD3tV1Hcfxpaps2SZpz3uP4H9mHdHlICJjuC5BdMTzzQql3WO5XOZFqrWez+dZlqlBXxltracmADNk5bPW5s2bN9nNDADacoWIUZoxxrb39qkk4EPY37vinDPGjcfbcRwjSmvt7u7ucra8vLxcrVa/9Jk3VNPS7jfa2iJPlMViQauvKArSp3bOBA/vvP1jKeXJycn9Rw+3trZoe7fWDvrD0XA8m0+jKNrb21NKLeZLWuxUw+j1eru7u5fTCZ1677777nw+T6N452Cf8pf5fH716tXRaKQajYiX5xckxEqNDs6ZPM/zPDfePXnyhI5Ugg4orabSVFmWgN5YdX5+TjtJHMckGd9Uy6qqIKAX6L1L03Q+n1sfnHNcis2UoyVDJ6C1ZrVaffzxx9bquq7PLiZCCPspC5bNMUEbnbUWEKSUeZ6DD9a6PM/psDZWOb9pYdGcS9qs6GRnjLHAaPY65xljouhltGzatnWBkeEpBQTgOz4yYyCY9FFXIouiqCiK8XicxXMC7+gUFCKGtm3XAbeMOAAY7SxJpkZCSL4pr2VpSpIdbduWZTkY9JzDpmkkj2pVSymdd5EQNIOH49Hl5SUTaMl/TLA0ShjH4IOUwntblktEpCpo0zRputbxweDABwZRFIcQmraNhWyaum2xaRrSpzBrXx1t1HQ6lVK6YFvVMsGBoVLtcDTq9/vT6RQZ8yYwBCa4c874ZxNMAgQXPKC3wSdplPV7obGpjyyGWrXIOQgUQrAAMRciTarVMmzoSxsH20+9qBRImgNFkvbTq7pdckAMzFgjhAigvPfAgSGi4Iz0GB14Kk8HH0URxsI5HwCDtx5wWk8vTV1MoytNOcoLiTBblaP+IIkjCKCN9YwBZ94FG3ywDhG9MQxQCsEEB3AhOEQIHkMHkXtDiQ0gACiwEUPGmAvggweGIXjrrQ5OAg/eeWsBmPXegvcIgIACKZhrjGZBI4Y8zxe2AQiCB0TUxrgAAMyD11p7G+I4rVV7Pp3VxslieH5+/k//6T81xhjTRaV1Xb/+2hs/fuc951wISJv1YrEo+j2ChIQUjAlng3UhibPJwkWJcN4hotbPLifEcaItCyEwwa13i8Xi4qLTYSWUWUoJDK13l9OJt6478qfTOE0oZuomp/cb3QYq301nEwxAvTykcElrU0rZ7/cRcT6f7x9cqeuahOFCCFmWq6ZVSiVxmu/n0AlLOeeccdabsJxccmTGubOLSRrHTaO8n4cQZrNFHKeMMQbgnI3jWDIODBhDa4Pg6LyJYsE5Q4y01pGUi8Wsbds8Tb2XGHwko92t8ePHZVtXVqv//d/6Wx9//PGf/9nXdFNHscwSqZRCgDxLEbHfy8ivj5FjgreSY57GcZ6pOPLBXl5eQnBXrxzmeV63DfXBJTIqm7Zt2zjJEEPb1lnU48B3BqN+XuRRouvm9PhElXXrVColi+V4ezzsD06fHp83bb8/2tkaTqfTWPI0zjm6wWBweLBL1f77jx7W1SLPe4PBQKl8uYyTJLmczLMsy4vi5PQYIATnAAJ6yJNU1R3Ou1wuOeeDQf/09KRuG0TkvLOMqKqKQny2VqGhiCrLunQljRJca7ola6NtQl3pIKTdklT86aio65qIBnXTeYYQsswYm06nSilBDWgRF4FR4B5CAOer5QoAYvpw68aDofc+jZM0TqgFfjqd5sN+r8isliEvJOPL5bypa8aYZFwyHiJGUfiw1796cEUgW61We3t7i3LV7/cfP36stU6zzHuIQGwaqajSHkVRU1enJye3b9/e3d2dLxaUw7h1/6kPtmsYhE6trKvNAyRRXJYlnbh1XfOIM9bP8uTw8LBpmuVyeXJyQt+1vb1969YtKh40TZWmaX/Yc86VdRWnibWWwnEAODg4OD45oXqM7ax4iv39/ZOTE8rrKC5s112TFKHWVbuzs4MjoO+ljjkRyUePHlGSwNYuJZvUCwXnHAE4Isq4805J01TGEVUojXebO/3ZsyOA916KuDUNVctoNyDIUkrJg6eLR9ZZWVIgbp22VpNmy2KxoCZEa21YM15pM2GMEU8KAJ1zOzvbtKtIKdu6QUTJmBDMSwEMnQvewbA35Cha77MsK9L0xtVD0Nq0inlDVWniee1sjbIsq6pKqcY7aBpVlpUliBnQWtMoTY2inWo/ee8454JngGT444xZXE5v37jx3J3bqmk458bYpmnK1SqE8Nxzz1Fa2zTNZDqv2mZeVmVVt9YqbRut6PR3LhDQbH0XvuPa/40L4W3QRsdpCoGdnZ2/8eJtq3USiSiRQTCt/e7e3tH5xYSUOCPBsuyD+w8uJlNrrfrggzzJR6PRYDB48ODBeDze37/SVHWrnzmYgAIduCiJjHXISYlPoljzdJqqy7u0QkQRLPe8ViqKIrQohNjf379x4wZ29OTgnCvL8uLi4vj4+OnTp48fPz4/Pz05O7+8mDRN45xblUtEiGRCWwop9qRpSpkAYRa0HdHGIqXs9yWFxaptOefkHimE2N7erut6uVwKGXPOkXnGmIMAIcTiEzdga61ARjNQKWWd8xiYYHmeG+MQET1yySmE4Zx74b11KKPWaWvsnes3uRRluey2TRY453/n7/ydP/uzr/3gB3+5PRojYl1WWZICeHCeuRBTazm4tm2sc1JKzllTA4W/tCd4BOCMnJ8deMZY3dTog3VOzRfU4A8AyBi40LYNBcbE17M+TKZLQofLqqHihBDicjJxzlFLB610xljVlFxAl8ca10UUImoa9f57H9B+SOe704ZS0CiTtB055zf0C7p4xhgB+iQDSkFgkmdrO4GQpykAOGOFEGmSPXPKWSKK2JBl2afhWB/QI3iE+Xz+4o2rWhkElsWJlPGyVhPMtnf2h5/9/B98dP9//PM/noJjT0/G53Mm07bRCGBMW9czpWrbOABIj542ulqrc3tg0LSrJ+ePD/aunFye3H90v211OV9BcM+99MrtF17WDlpnFnUVQuj3+wHCn/3ovfLyGJjo1Wb/8Cqmeb4jj+dzZpo8FqPB1Rdv7vcyfvT4nlHlZDarq5WUMsn6e/tXrt68IfPUuBdm1TOeQN4bcj6kdBeBaa2VMgxw0a44CsEgiQQXGKcJoTAMQmBivLWT9/rT+QyAWR9c4IHFjouIBaPa4FwSxWmcVFVTFIVqHQAGx5yBSMQkpxsJaZQajAe3bt360VvvvPPOO5///JvL5fLo6Oj2zRsyjhCYlLxplW4bIdjBwV6v1/sn/+T/rdr6d377r//ym58XyBhjT58cnZ6e3r59e2trq2pq732SZFprpdR0MovjmBDkgHBxcdEb9iESUZE5jrGQpLCUxkmELO0NPvvya1///rfSLGu1eXz0NDg/Xy5IaOXy/Hx7ezuKIsGYMWp3d/vRo0cfffTB48vytdde8yzEaVTWqz/8+h//+L133v3wJ8op5NyjZ7yTd6dYnZ45bewd3mHMpm+dJn+3KoNljFHBZgP6pGla1zWFhRtUCD4F5XyafJMkMa4Nq+nwpTcnScI5b9v2cvKJ/J1fa1NYawnqdc41TSOkLIoiyzKqfVJXB8VmsIbMKDjv4Om1edrm7jbXiWvtXcr86ZKwkzMSoVPJ6MQ66A9U1dvc5gZTA2AEACGwql5FsRBSOG+4wFapUDoRRZEQei2Js+5NsSLwsixb1QIAhUwk2U97GnHI6NnSPQouSYCVMeaCN842qjXOMsaIUE9BThyn6+ffYV70cMjlT2u7geCNMQSD0kDQTk5zYF3XF8Y0Sqk8zxnnQggZJfQGioQZY1pbkilo25aRmzwADRPlWbQlUqy4KZp6+4m0wub/pZRN0+R5Pp/PiesTq2eX9oejUcOmZVnGiaRnRdHp5pSMhDTG1HVN3CCn1GZOhrW6wmgwpBijbVvaT+q63kSD3dUizQRQytAEKMsaGev1epFMAMA6TQANvZ/klQg/5aIrANPDzPOcKjE0c7TWuA4vqR4jg6AHm8SZEIIAjTzPYU0r3CDCtCjSJHHKWWd9CEmSIEIHnRNfARLvfdO2xlgRS2ttcG5TmIE1DPpJSYnUYziPZUxhIQFEdAGfhqJgLSsh1/pgVEyioQmdXBVu3k9Med8ZQn4iJk7pfLxWcaHMmu5xgwWztRgLTePNiibuYJqmSZJsgGkAoO+Sa+tIKmnT8icwmnMegqZJyDn3oSsJUDAcQqeRTc/He0diiXQZBKZXdU2K5BQD0PYSQnDeSyk36tL0IjiCLiZ4QrS7+hNp5W0qypxzMAagK4Zxzr3tdht6nnQjmyxMCAHrQXHGMsaaujbGZHmSJHHZKiGYt9YZBwi4UdLAT0UWjPrdAkDY/Hwze41xIbheP6+q5vJiur0DT54cFUWvbVvkmXOmbdQz1yZjHdk8zzLiIUkRX7t+kzEegl/LQYyo2AkAB/tX27YdDkbj0fbt55776KOP9nZ2er2c6peX5xe/9dv/Ea2Xn/zkJzdv3qS59PHHH1unX3vttfPz88vLSzmb95LEWlvXpbW21+vde/io1+slSYTAzk7POedFUVC1PkBYLJZK6TRNwQet1Hg0okpPkiTk1jsYDKqqGg6Hbd288MJLp6enP/rhW71eT+s2SZJYCg/hYG8/7xUnJyfTPKVlkmVRXdekRR5F0fPPP//kyZPz8/Oqqvr9Pu2B3lsAD+BFFIkoLooCAE5OzpI0rdvGew/QrRH+KetX55wyLZ2nFxdnG30Mzrnt1m9XOgprvWZrXRQLKeP+IAfwWluldGObJEkAvQe/pr0Lo62UAOupQR+LHmlpM+6dcwLAj0aDKIrOLiZOa+9tCJ401p1BKSVpXLRtC+iH/cL6rjWjLEtvLZ2jhEF70ukAr3QTwPV6PUTUpgrU1cy499SfaPv9HgOkYuxsPhGCEdwWxzFHsZ5wTFsbJ9IGK4ToDQa9Xq+u66atvPeIkZCyaRrtur4kAJZlGUMGGh14G5wDH0UCEY1RJD6S56kxzocQR1GMMEBfVVXbtvFKpmkaPG5vb0dJtKpWdVvneRHAyzSpVdtOtPceveeR5ORa27pf5NZivVOmpRWeZBl40F5nMi4GQw1trzc4vzzz3udxaptGiAQRPThqG2GMYYCNsGI38N3/AjJ02iALSZQGR0RIwRARPINuN/XeOW8FjwJiYMAYgxAcecoL2rO4DhBF+aLVq3o1eVANs1Qib6pVEWeH4+HW1lYkZEwkAusiAMk4egjeASJ69MEa56gGizYAAKNoxjvPHBPCAyCCtYamL+NI1nw+OA++0RZ9gBCcM4EaOdaGs1XThBAMWGNc2dRRFAmrAT1iYB2EB6Qi2TRNJiUTEdM2ACv6hUJug29WqzzPjQEPgc4Sa3xRFHQO0RE7Xy7SPCOO1XC0yxjT1kkZlU2TpKlyLWPMe+e1eeb4yjhpbQjeSd4diRRv4VpPk05Nxth8Ph/2B0QcaJpGt4o6A0i2SUrJORrj6ICks0cIFiWyNyi8h+D8cDhs2zYEiOKYXPUGw+GLL76orJnNZqZV/eFwuLd3dPQUfTAhUNuBEGK2mNFZFceplNw5N5/PKymTJKUYcW9nd4Nk6bbN81xIboxqakWhszEmOJ3lfSnlcuFr1S7m8yzLnDVxnCilVNvMphMIPhLy4uz0/PQklWJ3Z9zdDmeNVp6MEONYa211GwlmjbKERWq9XMxS71RdRVHknUvjJIqiwWBwdnFurY2TpG3bui69B865FMwYg8pKIQWXj+4/AGV2trbf//ADFKitidOUc54Ett0bmF6lq1Iivzx9enFxsb29PdjekoKFEIxupWAQHDrLGWPeSPSrepVwnnCeJHHT1IbUqHXLI+m6lCAQs4YejhSsrJYUuFBMQ+k9FU5DCKSp8ulSOSIC+qqqKMNJk4QqE0VRNG1ljOn1ekTKm06nFKIhYl2XjDFgLHhPQvAbEgRFxjGRpdPo7OysKAoh2XI1Zxwi1g1uXZeC8UiKtq0hhCxPkiTKiwIALi7OlvNFcN4Yk0YxS2QSx0kcW6WFEKQxRzi4lHKxWBwdHU0Xc+/9aDRaLpfOOU4VciEWi6UgLfLghIgCQFVVp6en0+nixk0/GA4n0ylVXI2zHkLdVkmSBADyc8+ybGdnpyzL2WRK1iLkPhwlMaWLQorhcMgY+/jeXZL1Z2tT7x/96EekuE0doEKIWnXSXd57Up27cnhIoV6SJF2ZN+miyatXr15cXFCW5dfUGAp0PQIVYqMoImfa8/Pzsiw9hLKqiqIIDI0xFFVTeMQjiRgAuih5k7U654jBIaVUSrXNs7WbpZRRHDvbyTvSrkXBqODcAgTbsUcIYUxTGUXCuUAhshCM1BijSFhrOZfOkBmsBYaMoZT08w5wJJ0ypRRVIIgz1TamLpfb4y0XguSRtZClWVtX1Wox7vcOxmNbriSC8b5tq9Vq6ZyVUkYyKctSGVPVrfVhVdWtMo3SddMaH6wLdV0bF3zXxwLgfVjnAA6D8U4C13XjjPrNX/9KzMVCKRbAO7eYz5umuXPnVp7nbdsSXbrRarEqa6WdD61StdJK2xCCto4+swuzISAwZIygXqN0CGiddS54BCb5sMjzNNaqEUJUTS3TrDL20cnJw+NjBQAyscAvpzNtbBzHj4+Prx8mLvjHjx/TLvfxxx9ub+8+ffr0maMZC7Fm0SKgJ9pskiSU+W8yCpIPpu2l1xu0bcM511qFEJbLThiUaiG9Xm80Gr388osbStFiVc5ms7Ozs4uLiwf3Hjx48IBm6eXlpfdemzbUa90GAACIYumDo+w9iqIsywTjp6emrmophVItYyzi/Oa1a4vFIljrkFtrUXAA4Gv7nWANQwYB8iTdnFyqbXd3tl9/47XpdP7uu+9mac6YqKpKckE8GAyQcBmYMMZwQADWVvWrr74s5LXpdHpycrxcLve2d/aGI71ajvP0peduzaez25//bJHldV3fu3fv4vKcBR8J0R+NnTNxLKfzmbW22E/HW0MpZZalbi1gHScJY6wBa7WWcQQ+AOgoirI07RhYAaMoog2BsIwQQlMbiJi1NssK63SSJCG4T3I58LR7A3S7B0noMuRSUEAfEDE4amiIlFKJjAAYaVtRDSCEQHERoTN1o4VAU9chQJLE3vufQt9WCwLmMIC1liNIKYPzada7cecZUw6BJ0kSxdF4MATv0QdnLU0VLkRVrR79+O3LcnlycZZlBYJcVYajLON8fOXan95/9O0f/MUEpIHIN2p1/y4EATwGxkGI6y+8+OKLz58+fEqzK+uNokgo3aaZdM70BkVZrn7y9lsgY8AIjAeUEOTprMSkd3J2US6WB7eeO7xxWxs3HI+G127PpufTi5PlbHY6mx1ev74/2np6crZYlVevXx9Hoqpni9m5kHGAtqzmVrui6I+3do7Pz2bVSjvN+C7gM57Auz/5iXNvk/QKYyI4OqNhuVwiYnB2tZiHEMbbu8PhME7zulz++CfvXbt29cUXX3z65LHWrbWWCymStNWGg21aXdfl2dnZoNcfDsdJktEASRGHEEjpzlttrT042H/l9dfjOJ5Op9/73vfu3XsQReLpkyd/43f+o9/86leWi6U1Jk+zLEuyNL579+6TJ0+aVflLv/TarRs37374Eed8f3cvhEA8/dl8qbVWuiHgYDDoSS4Gw/Hzr7z04YcfRkdiPp87Z6kB67nnnj/cP1gtloyjGrax5EVRJEn04vMvVVX19OnT8/Pz559/XsaRjCPVtDsH+zJN4jwbQKjbxmLYubKfDfsztfyjb/zJqlo6595+9+279z+OkijOYuSAEtGziEuUyLCTGBZRvIFQoePudVgngTgEjDrnqJkpz3p0nAEACWIqpfr9vhBiuVx+Wr2Udi2CWjjnFPYTUasDIGTXMmvtJxxGsj9C7LrLlbWMsTzPqWWWyvxVVREmSIALW0sV+7WTDd3LBpTZdNx770UcERZIF5Om6TpX69jQfi3/Kjvkq4NH4zi1tusP3rygkyTODw8PiXxnlCW25qbgRBcWnAMhkiTxvhPS5ZxHUcZcIB40hYuImGUZQZMbVinxxIkyX9YrClQCAgGpo9EohEC/QqmBcwHAlWWZZRnxf8Oa2Oi919oKIcAHigApHN6kP1SkpAElGJRKzN77TecWrsVtlVJirW5PT5igHO8sF0wp1TRN07bIwoavyhijT47j2BlLi5o+mQC46XRKc4MmCc2QZ57O1FlIlu9N0+C6v3DjFr6ZYFVV0cwherK11npXFIW1drlcUtzuvV8sFpQJpkm+ru4LCKyuWobIqL3PWiFEmmW4JtFba7WynHNBqTwiABIiyhjJUjIKMukzN7dDHyg4d84tFgvKbb11HhznEgHcmhHsPsVr7prevCeotyvLIUIINKU3Y03zhzFW5HnnLCUl8g6f2XxOWDc3UAATRxH1ktPaGQwGfi0N6r3nglMjI6yhatrcaK+gmzKd7CpnDOjaCEqm8aVLIo45/aSqSsSC/kpBrDGGahWUO2zSNFz3VdCyIqAW1+6Un64DbQpFnAu/tt+EtVMFDQFRwiMhce0B6Jwj62BKMcB74ztHbvo62iXI9aEsS2Kyb8B3WhrU7sYYowIYIoZP2bXRliXW0ivGUum626bo8nDtgRxFkUdnjCGs2HsfAoTgaKScc2mawhrs9hCoa4Ax1rYtYmAMmraORSSEcN4EWAPLNPvCutPsE0Wgn15fzhHivFpWUkoP4eJ8cvP2rcWyrOp6a3s8GAyIKfXzL8EZbeCWKuUuOK+FkLxr9g2IuLe37y11jEEIoW10U1XKN3ma3rx5s6qqsm6HUXLt2o3hcDgcj+j5MMG9h+FwmGXZeHvn9PR4d+/gxs3nAOCDDz4YDodE7X/w4N7JyQnNxtl0NV/Mvfdpmq5WlfEEsDKqqJ1fXjAUEMJsNiOGh3Ouqlar1YpC/e9/93t0gizmcy4QWXDeGIv9fv/i8vL+/bvK6BCCQEZJN1E3tG6Ucs658/PzzfolI6sQAnmTAgCXWVRVJNxvrLVlaa01PnDOPXoRCw6d9J9cC68DgJQcUZCibJpF3gHnnDEXQle0Y4z5EIy1USSNUYiu3z+o65KY9UqpjGWmMzulTIsozEZGPNgASPIqwTlHm30IwBgTHr121huIYiEk2/SVeO9Jv1xKDgD08xACl3G3I/ggpVTKeO97vR7NfiJ/0VleFAUdrpuUO4oiYxJqRtCtsk6naTocDqnm6ZwD9Aw7W5jDw8OTk5OumTqEJI2qekUmDIjcBssYG24NT89PtFZxnNJxq5RK84QIgExgkuSIwRiDDJAD0UiVUtAh0RlFDKvVqqxrznmURsabWtUOQqPbLMu4FPP5vGmawWCQJIkHj5R7WBvg2U06IpJxlijVOOeqehWJ2HjXG437O1sru5hN5mXVHBwcPD3Vteqq64wxqw2AD84DomAcADgy710IKNa1RMYYQxm8lhy10U4bFOJge3u+0to7ZTyTgiFaCpi4QGAQPPlbhACALAQIHgHRITrOmZDGu4nSzDvBRamqyclqu6mLON0ejvbH4zzNRECrWuYDC4FzhhAYMh4hACivoyBC8IDgGULw3oO11nf8+TWAjow23BCCBe+cEyjILNEFoOLwur/V22Ctd7NqtVytAgIK7n2w3obgkDPwgJ2LITAhJ7Ppqm7yXu+NN7/40aPHD5+eprEIzmMABHjplZfjJPuDP/xnwHD/ysHdu/dd8HEcR4KvFss4kVEUIfDgwdmwLOukL2QkBApErJqGBfvM8TXapGlK/UpkEhqlCaFIAVHEEfqua5hzPh5vp2mqVEPzczweewgknUETW0qeJBFZC/Z6vRBMHMcvv/wqte0sFqtM5GVZlmUphNjZ2THGnJyfaW2bRo3H49VqtVgsBr1icjnd3toijUKtFRP8UycBLwYFOcWxAMiZlHI4HBmjy+VKmZYYcEbX3ntkIU64bmrvnDEmS+Ld7S1jFBdYl8umWiVJIhhIjlrrcjm3xkQMbNv88e//iyRJ4jSSPFhjgvXDQU5nXhxHSSwo9DFKV1VVlmUspVLKqHpne+vy8tJqM+j17t27t7e3t7Ozc3R0BAAUl0jJrWoRMZHSa1U3jeTcGn12dnJ4eCglHw6HcZY+evLYOvPu6Wk/Lw6v7B8/fhQkchR7O7tFUSwml03TvPzyyzKKiJB+sLtjjDk5OVtMZ1TS39kaGcRHj6jFwUspy7qUUpL5g7GKcw7IfbBNo5wLnHOSASNYMIqi/f39JElWq0VR5KvVom0VxS5io+O2WhHdQArR5Vp5gYhZlhweHnDOF/PpycnJ4eFhkadt2zpE4tqQoDOV9Lt+ESEQUUQ8gIvjeH9/P8syCjpho7DRtFrrrfEwixPwYTqdKtVEkTi/OF0sFmkvNRaqpjZKG6PatnbOff7zn18uFicnJzv7ew8fPmRS5P3edDoljAYZc9bO5vN+v4+MbVIaEQsKU9I0ZUyQIgeEsLu/7SHce3B/vphLKdul4rzbGQiwK6vKWbu9vU2UjevXry8Wi8lkEsexC556VCkpougwhJD3CmstgwAMA3YgMq77ao0xg8FArZ1GLi4ukiy9nJx7Bzs7O5MwbVUNIHq9nnPu6OiI3JDOz89h/QmIaINnyIQQ2tlqMkFEPRqFEJCzJEtPTk6MtUme0Sk+HI9msxn1JdA52BWTg/XOA3QOb9baAIEjc864XyC9KgSXUoLX5NKOPrRVHWcpJYSIKDAE9FEstNLe+6xXjPMxUdqjKLIuUFoihEiSZLlcSiGc8wiBcWJlGqU0xS6URzHGYhnRwweAYLRxOoAbjUZxnMxN4x03xiRR1FaLvTztx3FkrdGqaepGd2ltURRMkgAfNo2yzitljPONMiEEZbR1wYWglNqYqnnrSAjYAwRnGUOl27Yur+9fubq/t5pNddtY3XJkxqjt7fHe3l5d11xETdtOF3Nt3apqGq1sCI02rTLaGmOcR9Is9iEEDwEAScKZaOAe0AfvAyqtrDFJmvWy3GkDPqR5ulguOfjLcvXw6OnRVD/33JXbd56///hx06rPfOZzH330USIT6t5NspSsqE9PT+fzed0+C/kDiONoa2tEeS8i11qPxgNrPCGb8CnfGGNMXqTOOSkiSq03dBgAb4wG8IioVEc0Y+sXl2J/f39vb09KaZSmcPytt35E7vZ10zx48ODu3bsnJyfn5+eTycQ5W9d6taoZg/F4RAGfcy7LEsk453x3d3fDrpVSQuggnjVA4o0xTdMABMk4aeNYp+eT+Ve+8qt/7+/9vdPT43/4D/9hInhbls65ECAwBgDD/oAKS1rrLC2y1BEhcTk5q6qKccgjHhL+21/9tdMn98+OHuwMR/OLkzROUsFevHVNa73dz6y1iPy73/32F7/w2atXr/zlWz/s9bPZbL6zszMYjk9Pz5GFmMnAUAjuISBiihHISDVttVpBCBC8N0ZwwSRLksR571yI0gTXREUp0tPTU+q94JxbaxkDgqvatgXwGwiD9gobfAgBPeWBUQdkY9jQiNATowp6vV5VVcSUIuqTcz6KohCUWJt6eefyPE/SNIRAYBCTneOWQEbQNgAwwI2S0s+8KKscDAdFURhjvHWEHyFnba209ULK+48esigWki8Wq1b03/jMG8jlg1VljLn62i+t3v+JWi4AGEYp8OTVNz5/ePXmo8dHWVak8e61F4bjw5tv//Ct7e3tSMr5dPLCi88dHT0ytnnxpecfZ9snx8exTK9fvzk5n87ni972Fc+TvStXX3htlOSD2bJqA0yeno5Go91rN/evXgmq0ap1zmndjga5F6K1zsfZ2z/+YDK5d3U3+eqvfzYS4e4HH/XzftO0R+enOlit26LIrt96xhM4Onq6Wn0sGbPWIyIGYIyB8wHws5/57Gjc+9Z3v1M3Jiv6yFmWZbptVL38pVde+upXfu3Jg7sffPyRapqt8eja1SvaOLCrqqqasnrplRcZ8MGg55xBDMiBcUAMSZKMhn0OSPSxR48eNbXa2tq6du3aex/cjzhYR4W99PhpmcRyb2/n9V96dbVajUYDY9SrL738K2/+8gcffHD3ow/G4/H2eCtNUxd8fdmUTS2l3Nk7YByUUokUcRw3xudFceXw8PTk6ZUrVziCUXoymTz8+F41W4zH48lscnZ2liQR51xKnqfF+fn5Bx98kBX53pWDm7du/fCHP2SMXbt54/7J0eQnU+rabI0WkQSAWQiTyWS2nJFfTj4uZBKH4FywAA5YAAGI6IMl5GJjQwIAnwZrwtoEjK1pikq55aJsG00oFfExOxppFJGTElWa6ScUydAGJYTgvOPSEk920x1Mx2ueZ7Rkmkb5tdiF9947QyKzUsrhcOicOzs/r+s6z/PBYLCBsdzPWZBtboGt7csoeVbGWat7Wb4xA0fEi4sLv5bRIGhgtVoJKXu9AWLXBZIkCYCgSjaBWYSTxnFsjNs8Kynlslz5tRfTBgMl0IqgOnrmBLsXcSqTWMQR55yOflIE5pxvvMgI1bK2A1UpRiKYmEaHmq6oFWxnZ492ZtMJjHQSWFLKELBtNV0MQWzOuSRJoogogXVdt86ZNE3pe9u2pSSlLEvC5WnUALve/BCCJwsfb9u26yPZHIjGWrplttYoWJ+kSIJ18ClfegJ6KF/I85zCvyzLlO6K6z//okK+jDjHTyQR6OvoDY1qg/Pkjg5rCc0kSTwEZgzJGFaruixrRETGvAP6EK0WNGnjOKapSBrfRVGE9XPGNU+fMdbr9WhRWGPsWsbBGEeCE1yIrirv3Gq1klL2ej1CPMOmx0gIAnYJtQwhELw7HAz4WqWT5jOscV4SG6FipHOOGms2KKfgnZ8tReAyitq2lcgAwyav35Rn1gcli6T03s/ncwpjdnZ2qP8yhEDEzMVquQGFCDjrwlohiM4Ja9iaFiMpv4f1M6GiEf3EdWp1kqBqkqJq25ZWK32UX7dH0LTfgOD0V9oiaMFuVi69mR6ClDIEa4ymy2NrfgB9bzdk3iEC45xIzf1+SiuUBkVyBgCUnjjnaFvr9XrDXn8ymfg14ZrCLcLKaZHimq1PFFHySeKcA+MbXjZdzwbL7q7Heuc6WQIhhBRi/ai9ppwCO1NT2rc3s4WhsM4aYwSPtW5lxIsiWy1qaxGCWwPuDCCQvXQIHYSNHZvBdysaGRVNeFchQGPMcrmsqoZzfPz4Mef89u2bxph3333XPlw80/YEkUXUPGHtukLAaHLS7XQD55xSJoQAgSVR5IyRQjjvd/f3AUIgV4zRaO/gYEPtv3L1ehzHdV23Sm/t7Oa9vlIKGA8hHF67Pp1Ox9uF1vrGrefy3oBz3i+KEIL39p133nnxxRebugwhHB0daa1fefXVhw8ffvjhh957RL6YrxDRO2h527baWl1VldWOMYGIDx484IylaYoIztmq0m3bKKWV1nmeR3GstW6rlpYb7bFEPnv48CEN1mg0IFCIdsiuqhclyOVysZBSjra3qqryCnpRFMdxknTWo4F14aiUkkc0h521llNVg+ZMNxU/ISfTr9C63tnZYQyUUgTexnGS5YnWDDl6bym+5UwAgGMBEYWUGAfSUEqSZNQbWqvHYtyRf4kSRbhGFEVSCh9YwIgO1F6vNxgMqJSXJIkQQjctY4zkV7S2i8ViY+hJByTnnAOC80lCfeLWe4so+/2CUBIqBcRxnK9FMxljVdUwZnZ2dm7cuEGVUpIpaNcICyCS/PH169fJkLXX61FxjJZNnqcyib33iUlozQcfeCQJGHLgIDAuBRHNjDFZlkVJHCVdPVNbAwBkOqm1ZgKrpuFSJohMCGDMWMuDs9a1qvG/QEzDOBOjj9OoVxRZluVJfnZ0uXOwD1xM61XV1q0ziWMQ0LSKpynRVboQh8y2ABExhLXuZFcTxsAQgSEybTUT0nuPzj937fpi3pxPlyZo1J4LJqLYeXAhAIMu2iauB/FxfGAM0QJ45EnsrfYcvBcgWAiytvq4qUS9uqhWJ7PpTq+/PxgnjPWzHLxjiICBJiciBgDP0DlQzoIDgMAEZ0A1koDk+R68M3azsYIHEXjwPiCTUnrnvbPAWPCgrdFa102zasuybZS3wJCkJxkCYmSDB29I/Y0z4RFaY4WMAhfvffDhxXJF2xPtwsjYV77ylffff//u3bs3b96koneWZUVRAHgGuFgstre3g/dCSs7ZdDrf2u2t6mVWcPQuT+Ng42dSEJumLgbdecOkcKZTG6cYQpDvgQkkyiOQqbrhkaQVTkJ75JC5YXl473u9nNatarYrvfOXP9AQMMu2ALbILAsQGMRRFNVl8/TpgvPbGA6qhcyypKlqryLdbGM45NheTs/jOLImpFkevJepNEaVSxtJGRCMMtwyIcVyzgAgiRzDFhwwjt6FLE3iKALw1eKSc8G5q0p59CQdje801SSNrr70/G1r7enpqZTShSaN8+AqhkxyKmKJcmFlJJM4Hg6HTd2QszOLc4pxicKQZXFRsKqqdTtXlWfDa3lSzdWiXOVKqd3dFw8Pek8ef081QkZRIiwicCm9s954G8RgMGiaejDOkeFHjxalelGYremFEtG+tSaWdj67MZ34Vr8aMB7ne1VVPTmaZelNRD8c/WqvKB7c/45q9svV4OnTp22bCS4oP1/O89PLC2cHjAnnnGosMtSNF3HkrUskQADVmCRJlFIIaJQTUWyNjaQE8MrBbFIAgGoHswnjfE8yY6x1Hrztkoci44hgGo5xnKd3tFJW53GECDifFs650XB/0PNaa60wjePRML28vGyaJvgoo2ZDdHGEznprgvM2hRQgzCai1+vPpk2nqO58CEEKITmTaVAtX81UuVwpnRZ5vpD9WjVKKRmiAGRWoOvaLq3z3n34cU+IUa3Gj45Sbftt29aKcX5TG7WYL4TkwXvk3IWsbVuSHmOca62zLK81Ka85aqWPxMz4UFYjawziDR8AAJxH6oIEIRhjdambtrU6A4D+oL+YurrOnNvRWnAhOGNJkkiO5RI452maCr61WmghhDYGAYxBKcWgPxBSnJ9fcMYQsbIIiIAwnaoQrtarroAPYRDclUiQ5FiE4BhWs0nfh4AwdkbwOLa242tYQ3m1DwAC+eWFcdb2+4Xk41s3xfHxsbccvQ9eONUHt/QBamVd15N7gXjhYd216txmsQMDRPxFpcq2bZVdcmSE4QbvQnAA3lpDITsGRuUigBYAQnCcY79fMCaUUgEt2oAAraqNdkmS2HXDvvOb5v2uIo0YOEeGICNujA+dRF1gXJSlXgfBwVm3mM6saaOgrt65mUru2sZb07ZtrRunTVNWw16fct3lclU32iNo4xB4APTIIpm0qgoheHDoGSJyZD744ENA8BCss+CDt8Zr/etf/BWBWNWN02a1WhF/4eDgQCmFTFRV1WhV1k3d6karRuvG2FYZ47xxwYVgQ5c/UJ2eQmAH6JxTrRFCaOOstQ7AAoy2x+vglRd5//7jJ/cfPyq1TnoDBjBfrM7OzjGw4EBycXZyOhoM+/0+gfvUR0JaadtbW88czUePHl05TD/++OMsy7a2tuM4jmPZNI2MMiFk27Yy4iH4AC5O1io0rju/OEdrDSVm1Ae3OSw2ObbW2reB85p+lwESy+D5558j6RUZR1/56pc3jJWLi4uzs7OnT58+evTowYMHD+7db5qGePH9vKAEjHPug31y9Gi1WNZ1DTKOoyh4iww5MO/9uF/cODwolyuqmlT1yhnzn/8f/7d/9+/+3dls9oNvfTNhePPK/ng8ns0WaZoS13q1nOxs397e3gaAyWRGYh1f+tKX52ePEPHs7Ozhw/uySGJm5xcnMfOZDIju+Ml929bV/LLXy4mM//jRk63xcHp+en76xAX/8ovPv/POO6vFlDEs8piHgGAFyqxXaGuNMdq0RVEc3Lw+vZxUVaO1nk6nURTFSQbOcd75j7dtKzjf291pa3V5EZSuUUMSx4xD0RsksWQMklhSawE9KErAeFjrFRpLZZ4oijgyCnioFwG7kiRDFpmuy6vL92RRTJTSrQEwSSx2d3d5JMnLQfBCCNFWNZdRCMEGzxhHgd57D0HGz4abIQTvYDwYxpGwSltnAMA6p4z3EDwEJoRgKGSitMOAr37ui7defOFyMvNVHdr66MnT1XIx2tq5fvvO0elk7/qta7dfmC2bpD/e3dm/nCyWegaB7V27lSQZCyx38dmkbbVUSp+el2/+ylfJMn68e81Cmgx2g4wObtz6y+9/b1mr518c5f1+IaNV3ayq8ua1/XGxdXH8WNcNGJuJKB8Ofbg4evDRvdnS1AvGJUaxTLNXXnl1mA0ePji6mM1a0yi0URQJ8Wwn5yxOOPSstVFE9h7AALXWcRTtXdk7O3mqlELkq6r0Huq6dkZj8N/4xjd+9c3PjYaDPI77eWGa8nvf+kZvMASwnLEkz/r9vnNOJEIphTJkeZwVMef83r2PEVG17aDoDYdDZVzdNoyx6zdvJVlel9XO1ujzn//8D37wg+GgR7yztqr3d3b3d7av7O3fv//wxz/+sdb6yrWrRZq1Wtngs15xazTe2tpqtCrLEn2QUUQY4vnp42DNrVu3hoNenqRFll9enMdMTKezYJ33Tik1HI+2t8fa2bt3P0IL125cr40KALVW//f/5//jfHLpIYRvoXWu1cp77xDSNHUQuBSld5RMgYRsWCAH442MOFgEyeWabNhx8QD8Wkh3AwCFdY+57fxUA4F0hM8S/dOtG7MIeF2tVvP53DkXJzKKBWOMcRCSOWcZl95bMn3dUJt7vZ5d+9zQStSapI0d4b9UCpJSgo9CCG2jyXy1qioZRePxmMi8xBH5NLhDuytNJLO2LyOdBMKsXaucNk3TkHYBrLnPUWfyaaIoopO6M1RfG3jQVKQPoWdFuhP9/tD7djabdZgghiSJGGN1XcVxShDVcDgkDI4xoI8ilVvvvTKdR2tZ1tbaOJa6NXQwEXbPmCBKbAghSTJrNZHyqLGDxgIACOJnTBACKKXc3t7mnKumnk4m3vssK1zowDu68l4x4IJp48A455x1DhkbFAOaHufn5yEglRiHwyFhuxi6tHENjVlqZqYhoFtr21ZpLaWk5psOWvKGzikClOn5U9UNEZfLJQ0BNY8SGE1fAehJS+rnX1wKa23dlHItsOa9j2TCORCIwVBUqkQMQsiw7nuLY6maxlp/cnxGaoHkpSHWuN4GpiG1hM3qYCQtDWDX+i0bMSV6Ga27Z0KyCWtQldDezWA55zYQrXGOIJc0TaMoKssS1hjrYDCgHHPzOUBfTauDMbEWFFZKOe+zLKMaareW190J9I18jdt2s6WzhvtEnkJKyddzo2ma0TAhqJo6OGkQqVZEs4t+CABCCO/JCoILwUnkDda1H6VqKk0x9lNr06+jWVgLkOIn8sSOMUa1lk/K5GsnQLqdDad7M/ndp9Ry/NrwgzFGK45KWXzdsEirmEbBOReCF0JY5+I49s5vMG7vvQ2ec54kmffemFIpFccpIpZNTVsfoeS47rQgNYZN7YrGbjNjEdH7ANA9ee89At88EBpfQgzD2tpKmU6YHiCgD0xyehpuLcvjnOOIwWMIlnOe9QoBkvOVtQ0QFxxA8Mg558PPEphDCB1WhQEAHXUuBkdCgsY7b6hcJLSyq9Wq3+9/dO8uCj4aDa7fuDYajVgdu2d5UDDkuC4lus6wEdYj0gVXjDERxcYYAE51zqwoPJrNScTovLAmiiImuPPBGJNkmbWWCTEqCgBgXA5HW9TAWvQGe/tXVquVKusoiq7duDGbTFttoig6OLx2djFptd0/OLx69erNWxdvvfVWmqZf+tKXfu3Xfv3hw4dPnjy5ffs5xthqMf/ggw+uXLvKAsxmk7ZWhBTPZrPzszOtFbHuSOcniqIoliS06L13Lsg4qpum6PdWy8oHHAyHrGvN5D5gq5Vzrm4bijECQigrsv1ARLIiiOOYmjC0VgAQAqAPAF092Dlb1yUhtwHBGLOsSili6BYR8x7cWiOLVkSayb29vdOzp8Yo7z2LOQJjnKdZFsArJXlndOS8CxY9MwyZIJoF+kDVkSiS3HFBXckbASZKogy5lyL6tea3915G5BlaMSZI2YdKoDT2vV6PMXZxcUFF6TiOrdUAnuRI1sLYjrpC6PzuCCOIhNbTgaqUms1mBwcHl5eXk8nk8vIyhCClJHksWlRKKdL89t53ffrWMimiOKI6J9twc9bC/+sdHLzrpO6p2DgYDIiL3ev1qmrVtjXn3HQNXLJs6jTJabxpx6EjvGkaH0KUJM+EI4WQcRwHMM4ZpZpyUWZF/7Nvvnk5WTbOBSFZFPOYc84Z61SQQmcuD8Z1mrybnZ2u3AUvkIcQLFoIXgrJkFSpAyh1ZTBMQExWKxN8rVvBeW219YiCOQgMkQXqpgjMAQPGPQsIkgn0wQXkUgSGq7YWkXQevTUMsGrqy3L1dHI5yi9yKfe2tjIZj3pFnmXBgbVWYBAyaoxF0bV7IDIPwAAEF9577NSInIOAvLNvluT06n0I6AER0Xqw1hhnV3VVNWXZNtoahxAEs85o8BxRCMmFQGMYRy4F+OCci+LEGBMYb5T54OFPamOtDxKlNpoz/N2/8buDweDtt9++fv26tfbiYkLy6kIIIZhu1fb2ttY6jSSTkbVeRDLOcpRWSBeLpG01CaI9Y3ylIFYaJZl87WZLm7hV2jtHWAAAkN8FB3SIJKPR6/Wqpt4sOmLiUzfc9FJMj/5o80XTZ349AABYAAZgAZZLAAC7AgA4ugsAwAGsAQAof1qE/xfoi/7US81/6ivo/9sVzM67H97/8Kc+bfks5SUFUAJcnvxbfB8AADy61/1h0QAAvP0Xn1zAz398DTBZ/uwPq/Of+uvb76//VMLJ5Kf+6cn/h/77XwIAHH3y88UzDQt+wcv83J83P3mWmOS/4fXv8s3PeG2+8fTf8uuWcPqvHZr355AkMB5DhDDugy9guYSzs5+dTuXPzc7Vs+YrB1j8W8yEeQkAMD//hW/o92FrC6IUtgqAAgCAMTAGmgYuLuDkwb/5KwBgefGMH/78z6IIxmPIcygKYOynbr+awcmjn33/2bO+a3Ttt4A92aSym65GEmr8dBD56Zf3QSCSJEsWJ/P5nEzMcW3BhOvciYIVvSZ0OGe0brW2EAKV6NIsNkYjAnJ0zgXwUSwgsA2dQSuVZ9mGaBNC2N7eNvViVZY7O1uvvfb6fL4UPNre3bZaP/joJ/1esr+1hc5arejMqlVrVVP0sizLatU656u6DciNdUrb1phlVVsXrA+t1tY7zrkLgQOEtXqSAyCdKO+Nbppenl8/vNKsSm9s8D44r5r2+s0bxPBSjTo5P1tVdd3qsqmVtcp5bZy2ThGzGdEGCvg9AAQAG+igCcEjMGy1sdZyJozS2hgh4+liubWz0yr99vvvn0+mjba90ZbxIY7h5GJ1dnZx+7nnVlX54x//GAMwwPPz8yzLDg4Oymp1fPJ0uVpsbY8b9eyE9snjh3V1pLV+4403ppcXWZapOt3a2qqqalG3pEEBAKPRyFpN4bhHcJ4kPp0PFgEl585ZDMEoBQBSSs64tzowFEJ6cM75JIq11qYDUPS6WN6ZTBK7jXN+cHBw9eqVz3zml4g2eHFxsVgszk9Pz87OTk5Ojo+PHz9+XC6Xm/hqMBhIySDYfpHqVlWrhRCCh2Srl/dimRdZkiSLxezo6CiP5dHD+3/wB//i+9/+zn/5X/wX2zt777//vjEOAI6Pjy8uLj74+KPzk8dXD7ZbrXqFCK7NEu5DUy9nv/u7v7O/v//N73zzz/7sz/70X/1xCOGF52+XZRkC3Lx+TWutVNU0K+99r9c7PTsGgMsJcsn6o/6Tx/ezLJpMqmY1f/nlV8v5/OLyUgCyYMCpRPJ+lJfL5fXXX3/x5o3Tk7PFYjHqZb3B6PT8bL5c9PtDD66pqyTJAGByeQHe3rl9lQjOq9VKsEhysEqRBLxzfm9vb29v7+Tk5OTkJEkSWRTgPAAi58YoKUQUSURAz0IIPoLt7b3VYp7n+WQyiSRsb+3GcTzsDxBxPp9vbW1Np9MPP/zw6vVrN2/etNbeu3cv5tDP4qqqBAtxkdPuYb2rmhoReBwbZ8Mv4Dog4u7O1o3rVxMe+abUrSLqDTIMwHgc5XGklittjfe4t3dwcOXq2++8e3Ry2rStVo1flb2dnc//2peens9KxneL4btPjpQy1w+vLtuy0qWMRVU1cZZtb+01jZotVgLllas3lsvZ1vbgcjrncXJw46YJfHz16mK+apumrGqP7OLBk0XZ/vIXv7hq2na5/Owbr589ffSH3/hzOzmF4ABCNhp/4QtfGEhbJt5LY9Agh0qp+aI0iLdu3Nwd7Xz9u9/WtYnTTKDI4vSZTwCQIXImO6FPQK+t9RDSPNPWfHD3HrKIMya48AEZBgbBaVXWlUxiLoTW+nB3t2qbb33rBy6ABbhz5+qXv/TrKhjOuQO3qldPnx7t7u7ySLRV8//95/8TAx7HsWr0nTt3dva267p1zg0Ggy9/+cvgA+d4OZ0g8sPDw/lscnl52dblSy+9NB6PKRqs6/pwONzf3724uKiqSggx2BpLGTdayyiKs9RqkySJ80ZrnUdJMugLzmMhnz45ssYgQpQm165dfXJ8/PT0mKTqZ7MJYhiNRlGWt8E13t57+EDdtUdPn2aDHjIOnPnA0n5sg2ecp0XugldK9Tj5yzlEgYjOGyEEMiZ4xwck0imsdZDwU45bhIAQhEHoCYEFpIpA7a2EvhHYtIGthWTOG8C1Bdza6opAnKIoJAknas05px55thZaDWs7MoJm6F83x65dZ7JSxAisyPvIO7B7DUyTP1AH42rdIuLmXthaumFDimSMEdsgBNvr9RiiWm/Lft10r7UWPEKEalV6CJv71VoTEwcAiK3FuWzbdiOwRvg7qaPRn6lfjQyKYd01vzmvce0yR95xeZ4jZ3kkyLUPAJwLiHZDekVEGgKiatJ76EqoM4lSTiklQ8EZb+rGaMO5TNOIhsB7lyRJbS1nktD/TTmNjpgsy1arVdM0aZpub+9u6LQU+cgoEkKEAM456gPjnENAzrl3oSRnFwDGGPnTbAjFALharRCRoXAscCaTiDMG9NAIKp3P5zSpSNKXEqveoA+rZ+8T3jopZZJGpIJC0Haa5ITbrlYrvha72NROaCrOF4sQAgFGvaIg0zDvfRLHa5IgbFqUSI8uiqJISqWUNoZcZ4moSMiG975e61/jmvnLOZeswyKo05TgSAAgoJPeT+XP+XzO10IZANDr9Wh7mc1mbds65xhyznkkKfzzmwugEUzSlCYGoduI6Na1og6WtZbo5sRfptw2rBW96Q18TQzv0AznreqgHuoG7sLaLFNKIQIhyELwDi70vmkaIaTWmgQNiJFKrGdck5o3SCv9l3NGAmV08TQnYWOZu5bFoMm/0VfZYNCwrt9v1hRdCQHQSikpI6oREha/QcnptR6OdlMeYOQZyzmNYLDBG9s6xznnXBJbn6ipWZwQCO7X6B7NW9qdAiMFIXCdFDsgIqy1pDcAEWMMga2fTbDGB4YbkLosSwncQyBmZAgBrfUIUtJObmjsgAnJGQkJcAY8iLyXrZZt07QBPCAC8PApNY8NB5YF8AgBgl//K/28uzxtuZSEnuV5qpU9P7uM4qgsy3v37qVZYq2WxjxTkdb7wIF771nE17UEUqMWm5WrtUYE6ogwxnoPjCFnXSMprVxEBEBryZFSdyF3YJzJ4OlEY22rpYy9D1wKhjgYjYt+jyLk7a3dVtU0ST7zuc81TZPG8bKs07z3/Isvz+aTrd093ZqiPxTRRZZllBrIOFFN/eabbzpvqvnyvffe897funUrS9P33nv37OwMwN+4cc17P58vRSRpjVRVY60FwQWPsrR48vhpnue/+Zu/2TTNW2+9tVgsACBLCwC4uDwLIQwGA621R6m07fV6AZy2xjhrnG2aiiouSZIwxrmUVE201gICNQo3TbOqyqIo0iR3zgEiYwiAYa122JWpvInjoj/oWbfdttnl5ZQOCGOMkJzOPqo2aW1D8NZZGaRV2jFDZ2tb1Qtb9fvJar4Qq6pTkInTJHhUWs8XCyEiOlazDKjDWmvtvaCSgjfERK6o7kR1yLIsSUGJeskRgxCZXpuAA4DkHQMc1r0DdP/EYt5svlLKqqru3bvXtu3x8XGSJFQJpAOSGqkGg8FyuSSmKul/FUUhvCdnRa27fSfLEu/Be7NZfowxsk7q9/ur1Yq2RdLzJsoScOaxuzwAUxSZFAlxyKWUy+WS2riI8e5+gSaUENxa7Z0xoJUyZ08v/vb/7j/PB+Pjp/dCFKEHtXRofJzlWK7owoiwRocWbQG0621AzA1a4QSLEmlUyzgIIYLxwrk7Vw4GyfLK1rYO/uj81DIetA/OcBY0D+CsB2DAnXPoA+fCQ4AAnPNGaxFJ7SwGJmTsnWdCAuOI6AJ457Xzi9VMBLw7uYgZy+NomBWDXm/U6ydR7H1TSJkmSRRHGLpSRvDAQTIM3vngPQYukFNhLEBAFgCAS+ECau+0963V8+WqNkppbcB5zj1DC97zYC2rtdG6oaINhbCJFNa0iDiZzo13aa9/OZsPtsaiVR6YDPzGjRt5nt66devb3/72crkcj8eTyWQ83r5z5853vvOdfr+fZQkitm07HA6l4LVqgu8UD7SBYF2UJsvFAn6RnZcPG66ZtZagIy6lc51eqFt3GHHOwYHW2geLnJPfy/n5eUC/3hMDY+C9WyxmdS2r6tlN2X/1+qvX/wIvIeDKFfjSl+C3fxteeumnpOkvLuD99+EP/xB+9COYzf6Xu6TRCD7zGfid34E33oDBAH5OHwy8h6dP4RvfgD/9U3j06Gcx8X+n16dv/84diD9lMPPvcfta7TD5gK3VOehgRsQQ0Hsbfu5G6CUl29oeL2bzNE04ovPmYHfPWiuMoKSarXswoyhyIVDRl87iOI4BvJSCmkmd94wxar81xiRJMhwOy+XKWhvFkeBcCoFr3UPG2HK5VEoxRClllqRpFHsZMGfAsJcXW/3h4VaRCwHGee+rqqpVix699yQTxLlQWtWttj4Y6xplV1VVNyrNi+lkAl31lCHryBdd5sAQsKMuGNV+9rNfHPb68/MzCGS6EvrDAUk2Ow+z5aJuVaNM1TatMaumNdZ7QBfQBTDOAWAn0EHxLgTvwQUXPGpnAJh21oWgrXaMYRTde/wwVNPfuHpw/97xvfv3RZyIKKqNrbQWcbyVyThNAwI136V5EiWy6Be9Xq9p64uLC+fc6elpv9/X6tm1PIZQlsu9vT3EsFyWH3744Xg8vn79+sMHj7z3W1tby+Xy8PCwKLKHDx9qrWezmZTxzs7O5eT84cOHd+7c6vf7AJ48kMVaI5WoeV3kILi1dja9TJIkkgkxrbz3MhYAXggmBPO+kyM3xlirOeccGSKSSc6tGzc6Ip4PT58+PT09LctyuVx+9NFHl5eXxyeP799/OBz2B73+K5//7PN3njt6/Ojx48fBWxZGTtVZFI37va//6b/8zre+lud5KsW3vvn1K1eufP1r3yRlp+3t7Z293Ts3rty9e/fxw49J8RyC2d7e/t63//z0waO8SD7zmc/cuXWjqb6gnQWAv/9//b9985vf/h/+x396fn758OHDXhgqYxExMA7gG9W+ePi8EOL04mw4HArBg3cswHx6PuolzuRZlu0dHLRt26h2nPXefvvtt3/wvd/67b9289r+d4+fPP/C7V/51S/9z7//L/wT0+ulnPNyGZbLhVH6zp07N25enU6nd25eVUpVVRUCIOJqWXlv+nl28+bN8Xj7+Ph4dnmZRFG/KCxCa0lKlUWMSYHM27oum6Yaj0ZZEkc8/MovfzbLsidPnuRFWiT9JEnattVKJZI5Z7NY/K9+96/fvn376fHxD3/4Q7BaYvjtv/G7i8XiJz/5yXy+BABrbb/IrxzsLJbL6XyWxJLxX8Budn48GPaLnlosuPMhBO9AW6Nd4HE07hXzsvQhMMbjONKt+dZ3vnk5m4eqAobA5HNvfKboDS6XLaT96y/t14E33t28dXN+enL37R8Oi8xxbLWBIJaHcymj4Sg/PNj/8Ts/fPyTH6fjvtbt1s7u/tVrUdqfrcpFtbqytX371k0p+L1794KHRw8eOmteuHP7wXs/fvvP/wSCBSnAeibjtqq//qd/Cq7kQnoPXDLgGJA9eXpxOCgmwPa3tn7rq1/58ccffPDwYdbv8fDsHnlAFpBTRu6cYwwDQOAs7RWN0atKRUncNcAF771DFjyACxilxd7htd7oQyZlaJo0Ae/BgHj+zotSxiG4AD7Ns/0rBxeTi3/+L/4APPR6WQhYVo1qXSzjd95+Tyb85s2b/X5/Mp3ftoELNMZML2e3bt6YLxcPHj4s8iw+PFBKvfPOO3Ece4TA8OLijKhDDx4/AoCL+fT6jVt5niOGJM9MZCQXEcrZfO60MRhYDFtbW6ppj0+eHh4epnEym822tsbz+TzNs6pasYZZq8vl6kE5u3fvnnE27RUWw+j6QdU0URJ7hBCs9h6QR0niBYOACJIFAMAQ0DjNGWfIZRQF8EhkF+frplFKxSRDF4AEXig+p5OOYCk6+DYqw865pmlIqYDeT2TVKKZzzVODIDWSd6SqNAUA7gEAhBD9fn8DyxISROxLv+7Kp+SUUDlc66Vy7FQ1CDFMksQFH8cRIo+iiPRqCHkhNQZKNuu6res6hJAkndzwRlCCcxlnGZGcuggfgL7Lr7u8kzij4z6E4IMfjUZE6lwj1yFJIioC0VFOkgubbweA5XJJkhSEGhBYgGsuJ3yCO3PJmVhLSDPGqqY2RnDewY5CdFAvJenOOcSwQYcJwqMbDwFDcEmSaK2Dx0W5oDElEjrx5ug5J0mijev1evAp9zkAiKKYDko6+kLAtm3Jv4QGFzsN7o6JSbfcKcIJUTb15eVlFEXb29QGFJdlOZvNNgJlnHMmOnHhEEK0Nobd3d2/c+dOv99/55133nrrrSSJAIDcMihQyfnwmftEHMdSGhl1yi30oMiwjl4bYJJGdqPNTToJhJzSL8Ja8LRdK5UThW6DnnvvVYfteikjxlgcY5KknDMppVaKSHIbTqtzjgOS0giNlBQCEGlBkasKrlXaNrg/wS9t29Z1/e67724WUQgBEDYLhD4TQkBgci0fTAsnrNnKRBCkHikqFbi1YsNGaIKvVUo2n0yEdABgAQKEPM8/97nPvf/++yTatg763Ma2zm+antfSEBu1nA06TKo7RPjdAGGbxwIQKHzd/BNbu5/R9VAwTI6FxDgkqu+nic9+rUlCE5JqVwTuM8aVaqlVgh5dVyOBjpYupdRaWWu56PpKtdbk6Lgpp0nGgw+ScRYxGug4jqkPLyIZIgTgzHjHEZI8o5lD3jOqs0/kVCRAwe06nhdr+WwEjoDeO+MMY8xBoPsyxpD8l1urS3dKKSKjNzjnhIgAwHrPI9kaHXOGkvf6ebVSTTX13gXmrA0AzENga6AZO04kcQi7Znd6baYQlxIAtHVMcI/s/Pyccz7cLrzRTVs/eHCvKpeDMr75rLV5797djI8RMS1SmgN5nqvWdLBknhhjsjzZ7IRRJIUQTdOGNcGUKiKbiUEaFNb4OEoJ36MBQs7iNKE7oorC+kF5enRCxm3bkpb09va2VpZ5g4j7V66Mt7cQMclk3bZvvPGZxWJhXMmqWnDZAF5OJyEEdF6ISKkmSZIkTb/whS88fPgwTWMqM8s4uXv37ni0Ndrarqrq8ePHtTY7Ozuz2Wx3d7+qqrt37+/v7z///Ivf/e53rfWcQxzL7a3dqqo4k4yx1gZrPZX3EDuBijTNyQlPCGFaqgQjregkisnKK+8VyJnxDgCyLG9aHYL34Cni3Qwlbc6k/hpCEIJxLunphRC07jx4e70eANPKLJsyhdRb3XIfRXEECQAkkknGBY3KbDaL4zhNcipydm25IZBORxQlnPMoEjRgPngeSYGduj8JG5GOkm5VJDmpWZNBhJQSBa/rOooiFDwSnTI9nXZU9GsalSQJIqfWoRAc7blpmh8cHNCmMxgMaDvYKMHTecM5N8Z5D4wJAIY+eAybWMdaS5TtEEKRZogouAAMlJzT2js+Pi7Wah60vAMi50B7+nA4bGpD9DFrLRfYqpqO5ySNDD474mfI2qap63I4HAoUV6/eePml184vJs6DDcEjGkRVlRyQi8iiFWttJipa+nW37GY3p74n6tA03nqQTLIAIXS3lnjrBrGEJGud4dt7k3I13M0dsovp7KSa+oBCCJQMA6JgIJjzARFdcJ6RkBgCdvuvt0GItaYPZx49j2NAZo3W1tXKTJopTi5SHjPENIoP+71+v59GcRbFO1vbHFhwPo5Sa4xxRjDOOe90zhGcc7U32pq6bVwA5Kxs6qpugSFPEhTc27a1RjtPSAFyEYxFEdd1W6umtToRIpZ1liVSSqXVdLEM8+XLr7/+0muvv/Puj49Pz3tJMZvNzs5Obt6+9eDBgy9/+csffPBBVVWvv/7GnTt3vv3tb9d1nSQRCa0qpYIzpK8keCR4pJRKE1gu54mMmMyXz6KvB+fTONFat00bp1H3rIIjZwNjIIRAU50BcoHeeCbWlnEclG7IeIgG3dpPlEYY/oIM6q9ef/X6D/kaj+Fv/234tV+D7W3o95/xhp0d2NmBr3wF5nN47z34/vfhn/9z+AV2d/9/eEUR/M2/CW++Ca++CsPhv+6djMG1a/Cf/qfwn/wn0LbwzW/Cn/wJ/PCH/25ft7n9nR3o9Z7xhp+//X/2z0D/a/sFgvfGOCFwkxmGELwPnDPOedP+AiEmYyn/XK1WWZIQzWdrayuUZXdm0V4RQlYUFJ3TQUzBN8lYkbmA0y6KI+ruBwCtdVPVSZKsVivvfZrGm4CYIjOSDBPMI6KqG6tNWbaqZaDrgkeDNL199WrMparn2hrtbdsqbXQcx71i4HGd1sZRvSwXq7pqauMCl9F8ufTeG+cJC+aI3jlEhsh8cNbagOCcQWeDt8/fue215ow5GyjZKIrCe98qo52tmna+LInXPC8rbZwLoH1QJPToPec8AFiCYrkI3nvw3oF2JgT0wfkAAcF7BAQLIXDxYDKx3/8+ANg01d6LAMxa7ZyIkoNrV5XR0+lUxuJyWu7sbu/v71MuR1Inzjll9O7u7uzjZ08FZXQSs+nlJInii4uLDz/8+DOf+cw3v/6N+Xy+vb2NAcbj8Xw6uzg7r6pqb2+PdL3ffvut4+PjXl6kcSIYdVxKGkRrLQAjFKBRrbUWRdd16Jz7hNkHXJnOQpnMKqSMnHPeOyklAyQla+cCC1Cu6o7OY2y/3yeTaynl7/zO7yDi4yf3j46Ozs7OgvNNtbp+/frrr77yj/7RP5pcnt+7d08IJoRIkqiqqgzBWhsj//An77/9w7d3dnaKLJtMJt7aRPD/+H/zv/6Lv/iLy8vzV1555f0PP3j69KnEsL89vjw++aN/+Sd/9rWvvfLKK1/69V/d29sTPPreD/5iMp0xIRfLkkVprY2xPs/zVaOqpo7TqNFqOb2QkhunrVfa1NuDLadbKXCrV/SGg1dfuA0Mv/3tbwtWvPj87ThLB8OibtqrN69MJmd/8db3BsP8+s0vTi6ms8l0+9qVF59/CX0YDYY7V7Ynk8l8Pl+tVoeHh1lWXFxcfOc73+Ocb423T46f/OSdt5iQkkNR5Fev7q+a+unTVb/opWnatBULsLe3m2YxBrhx49rl5eXF5Vk/kd62EVjUalae1nW9vb29NRoH087n8+1hb9zPv/31P6vr+ktf/MJLL76yt7fXtu18PmfePjp6eu/evePj49Fo9Nd/6/9w+/btk9PTVV3V+rlv/8UzplwWR1uDgbc6T1NtFLE4jXYGwHEex/Hs+CmF2Ua3bW3Go91XXn3xvbfe2bt28yu/8dunZ5fvfvDx1VvP9/pjC9IHuHNteHn04O6f/yvwtSoFG+zEXBpnHt//iRBiOBx89O536+kZBNOcXQDieT11ptw9vHFyfJ6keRFtzS6Oiyx65ZWX6ro9OXr6mddePTl69Pa3vsGTJE3jcrG49cJrn/n85xhjjx8//uid7y7mE0BvTdjb3t/b2dGmPTmf1/NlNZ/vHey++dnPeICHD4+uXes/01sjkrJtA2OMhyAj0aoaAYw2z925U5ZL7y14obWSHDG4OIq8Rw2gjV2sKpkWo+29JJJlWaZRbIxGz9tV1Va1lDKwoFtTHPReeemVb33j26qF7evb+7sHH/zkwziOvXHVasWYXKyWT49Pl8vVZDLJs6TI8i987peyLFvOpt77uq4bpR4+PjKqybLs4uKCMUZ+BkIIgaxqm48//ni5KF9+9ZWdnR1krN/vN2XVts18PufoHfA4jq1WN2/dkIJfXl7OnR+Px4TR7B3sc8nG4/HdB3e//e1vP7Al7yWCMys4F6KFAInUHAC8c0FEUghhvbdKIWchBAjQqprKkLB2APPBESGDKpfeOcEjymwZB+dtHKWwFtYg2NR6p4wmkUCioNIbCG3ZsPOUIt4f33hwybV/l5RytVoFj0F63ao4juuyEkLoT1mZEZbt1132m78SDMc597ZLjDeIEpddtvUpBCqEEMhIY29vTwhB1NooihC51pYxRjnmRj8aOla1Jz2xTWbOGPMOqBhM6TMigg9JFDdNY7VZ4+CEMnXAmRBiPB7XdU15Und2KGWtLctyw+4kHFNKSRk656Jpmto6XOv4RUlctw1RoQmtJqyQkMGqqhCRKpeEQhKMG0URAEME730nleuRcnbvPV+zaij7NsZYF+jsI9BhA9tJSToM2Laa+jVJvoDSW8rKac74YAk/IlEOApdJ+4sAX+LCE+RHsiGbfJ+K7t45s7bOm8/nFxcXpETMGGtbnWVZCI5mgrcu/ALaEBc86Q5HDj7UTR3HsbKqrus4jsl6SnDO1voSnHOC/kfDYZpl3vvJZIIABEoQvjzo95u2pZtdc3IhhECNrU5GfSlJ54FWQZ7nRhnvguCS8U4vlUAVgaxpGq1NlosuVwWgGUvlBwiBoPwN/qtaTfOWxotqzDQVpQwRizdQ4IZxH8WRtdY6t+kqINiB6H2wpgnTPCmKolyt1my8DnOkIXPOUSM7VYaYR2vt6empRyDuOSLi2j3MfUoznaoatKxCCFJGhPlIKanznp5Vp0u+bjigwgxBT0JIYzrvwc2jILSKBmVTOFFKbXRRGGMEUMu1oPOmNkD4Faylk/M831g1UFDqvUf0a+hWjEaj2WzW0bGZ7Pf7m4yeEGGqjTnnMARJP1nvIVX7SYFtAx9/uqmC9gRqnuCcIwrOmTd2A/nBWouGlpK1VvCOEQwAEZPIAAB86OzHhRDBBh0sAHIu7KfUkClkdS4IIXu97PT4Is6E0wE8BOfp1xF4gLCeAGxdaulg6E3xgI4SegkhAUA7LxCsVq1qFosZZz7LsliKZ/Zdn59fxD1ljCHHOWMcFRu89zdu3OgNe8455wytuyhK+v1+1dRRFHFgQnDvPfhAdpM2dFWfKIqI3Y+d5axPkjggEA65bnZhiFjX9adtKpMkQQy0TJAz7zD4IKVMM2Kms8MrOQBsbe/CmvjNGCjVLhYLFty1G9eNMUa1BCTeunM7TdOjo6OybrbS7OaNW3XbkGJSrzf48UcfDMaj8c62c+7p0cnZxWVAvre3d+vO80+fPgXOatUKIRZldTGdCSE4k1VVzSY6y5Pd3d1IyOVyyTkfjUZ1Xa9WK298kiTeuxCC5EJrbS1L8ySO4+VyybgcDjMZx83phZRSaUv1SJp1nHMh5Xw+r+olY1AUWZIkjEUIDAAAA3UV0KyTMuac9/v91MchOIFMiChmWVEUWcY5xzEfC855kffpGKBmH9Kzo0OXtldENIaWpEPBOOeMc12WsBZ8CCG4YBkiANscjWTRMF0svQfOJefCWg/AhIiEEIvFIkkS57wQYjAYUCOM9z5LCqpMDofDGTKllEwj3Xa0fwbcagcBOQrVaAac9lPv/XA4NMatVisAxpnkTHrnOZPBkdGn8N62bVutyjRN67JijCFn1L9AuDltTN5YxxAgVFWltXYWKagSkkU+ovaTPM+llNf3bk0fP+MYa5oauCbTJB385z/3xkcf3TcaTBuA8VWzWOk2aJ3GQiQpetVaj8A8BCkjiwZ8+Jm6X8enFpIxJjkDH6y1PkBAJhC4kBEXEoS1zmkfOz9gEriIknQcZVmdWWtXVdWo1jPuvNOtRc4cBMaYjKTSLeecBwzWCSn9+oDhnDPkgOhdMMECMBFJbUwkRXB+Fbx37qJeLuu5PJMsAAfcHo6KJBv1+uPeII4iAvEVub3FEQCUTVlb3ah2Wdartq7bxngjeZKmad7vaWMaq1unrHMeu5PPBu48AI+stZHMGtMgZ8zY3nA03N6Z1x/V2lZKJ1l67eaNd9//yWV7XuTFr/7qr8zn86tXr968edMYc3Jy9vDhw+VyKYSgnFzyzvsVEZ11jMOiXDWq9YBVVRaJBAz+F2h+bY5YpRshGQBESUeXTpOkMXWSJJzJ7jQVojcYEDkC0DPGAoBSinGgQDCAs85wzstqmUbyPxiC91evv3o9+8UY/Ff/Ffy1vwZC/JvfPBzCl74Er70G/T789//9f6hL+rVfg9/7PdjZ+Xf4lV4Pej34m38ThkNwDt5++9/2F/89bv+FF+D0FL7+9X/dO7U1SSY454jc+0BVUop1NubUz7oY1rat5IIi5t3d3fVZLild3JTfoyhaLpeLxUJKWXR2Fl2dkpINxhhHthGOTKKYfvfKlSvOuclkNhqNKMcejUaEI7RtKwTYVgftz8/PJR8KIVSlrfWjROYiqpcL8K5RrQ0eAHSrt3Z3pZQOoG70YlU5F4BzwpqtD1prpYy2DgACYvCeGPPOhxBIxTZ48Aig2vbG1Wuj4ZD6nFarldJqa2sryVJjfaOVcV5bb7zTztXaaOMaY60PxjnvAzAMFk0g3IF5DME50tDwGBDR+RAQtTUBOWOsaU0URTETIOOz1SrP89H+QdM0ZVlKzhCimAsyzSvL0nrDOAJjxhvqjdVa9/v9e/fuvfDCCyG4y4v5M0eTGrCMMf1+/8mTJ5zj+fl5p6dUVR98+P7t27frul4sFoeHh3fvfXx4eHjr5u1HDx5GQg6G/cVy/vT4qK2b5557vmmauq6jOB6Ntj788MPDw0NjTK83MGCJuUY5SVEUiGisTXwshKBEmzg7HfKCIBhvmob03VgAT/z0AJvqBdVFmOBCiNff+Mybv/JFDFBVlWrqSIiqWv2dXr9p6+9///tnx08RsWqb6XK1WFVJkjRW9/v9X33zi48ePeoXvdvPvXB0dPTqq6+Xi1W5WL7w3HM3rl1zxswuLk3TkpNeGiXDUf/xw4dGqe3dXQC4d+/BxeUEUIaAMk6sg7putYU0TT3DqlF104g4mi9mi3IRrNvf29sajrI0tY168uRJMO2f/PEfHh4ebo2Hl5NzbVwvwj/8kz/iUty4favPR8tmGUdJ3ZTbO8OXX3oBrR/kxSsvvPi1P/vzP/yj/+kf/IN/8M477379gw+DsScnJxcXF+PxOM2KLJHP37l57XDfWvvlL385hPDWW2+98vJz8a++OZlM3vnRD3cGeSyjvZ3hiy++2CsKKUX82itnZ2d/8id/4r2fTi+998b41Wp148aNL/9n/9l0Ov393//9ZHuHB+9Uu701ev72raZa/Mkf/+UHH3745MmTO3fufPk3f7teLXdGw1/+wpvvfO/77/7F919//XUWQrN49pTTtfro3feu/PrW9s7OWbXQWmtrgHPVqBbck/OzxigpYsYYB3l47cb42tVV3Wxfu/ErX/rqqvXny6YYX/E8ffDoFAK7ff2GVObxe++D1witV7Y5DwASMECSGlVfTM/BNIAewUruQwimXdbnxybLfu2NV1pjfvS9b5ST6ej6869/9vNXD/afv3Xzg3d+9PYPvg/Bvfbaay6wy/niC1/+zbToLVer3Zt5nufvv/ejs8cfQzCxjG5dv6lV++ju+8ePj65f2VpW88Pr1164fvNgZ/98Ip8JNwfnJAJCiGNe13UeS920USyLiM2qlYBwMOovlrPg7P7edqNVkfdXTXNxfnZyepak2f6Vq/Vy0TTNcNCfXlxEEStnF/eapTJGGb21s53FyUvPv/R/+T/9n//xP/7Hb7z6+kvPv/Tk3gOlWoHszo1rjy9Oz07OAmCSxI8fP26VfeP1l15745eePHgwm81Wq9XNG9dnswU5Pz8+Oh4WeVoUyMLO9nZZlkkcj4bD4xM4fvoUQlgcHg6HQ4Leymp57epV5gJnzGklWHJ89HR6fuGMWc0Xq+Xy5q1bz73wfNorPn5870c/+PDeg7uGe5FkZEAPnDmG3geHjAt02gfsqGFdomEhhBBxkUaxDZ5gCEJ5xFoLwlpbFIXkUViLmXpjAwTS0/Br3UKqdTHGEBkR9IgGS2+ANSqBiBDQ2YDMLxYLpVQcx9RHv4GeSZyUkFAAoL5j6x1xHuFTjTJaa3pQdOV0SQxQSpmmKbV91HXtgiew1a5dXujcpL2aSrCv9bBlAAEAAElEQVRpmo7HY1wLuRL4RRgQAKxWK7b2CjPGoWBCojFGtYYQT0KpKBEm3IqyVwJHNvgO3SMRFWmX7vQiGNtQR4PzDJAeRafOh5wgO0JgZ6s550j6DMQspkyW8AKiSfq1E1rwSMzcttVETvQevA9JIik48d4LHhF0Tn8N3qdpaq0lJJoxQW3dxMimW1uzffPVamW0pmZlKn/u7u62bUudxFEUcRp9cHKtyUD3S0opJI9Otz+ZTEg/kx4X4YZ0R7rjewKxREMI8/n86OiI0G3iZoUQnDOE0sIvEC6rVmUZtyGE2awiGnuSJGXVkOx1r9cry3LzXYQz0phGUZRnmTGm3+vRDIG1JoNbO/U1TZNlGSILwbO15DQhG0SmJvZ0XVaw5pPZtWUlJc4WUTsbQqDHQiNCYh1aa2pNg64CDfQwwQaHnrByxthqtaIMl2iFHbHJdxIQtF42i4jwTVwz6ImHRr/VEfusLcuSr5VIafbSzW7qPYSkp2m6kWA+PT2lDnhav8g7KvHmQyhYxTXFeEME7CCItUcFYZ1hLfkNa854CGEymZAGrPc+jhNrLWPce4eIVNyiPxAaS1pAVIwBAM5Ft88gEnmZxuLTdOkNpSNAN7iMMecsLV6lVFHkdDGcc8HF5qM2yifwKRmcsFYW5pz+HOg2N2/Y3D7dEXG0Kbqz1oZgaDOnVvINQropLdCKUNbQ9Tdtp52N66+gJ4zO+0+pIW8SB2KreO/jNNra6l2crDDwSEaGTBSBB3QQPgUu4y9oAQ8BgSwEIXhYQ/ORc242m2RJvFgsqtWSu/4B5D//63EiXQi0rYUQhLBUl3XOLZfLNI0dBMIYaVUWvQEAZFnOke3s7NC+RI9CckFYf57nrTKwLjHGMacplySRMSZJYtpjlVJpkdIwBUcnWgDA9eECACwETxUIxA4v9R7iVHAkhSjjvU8ylqYZo2oBR611Va2o0h8AhqPxfLE8v7iMoiRN81VdLVZVv98f9EeqNYNB1iuSLC3atr1y5UpZlq+//jq1p5Ciw2i49dFHH2VpxrnI82KxmCPidDJHFuq6ffDg0Wg0stYKZIyxsqxp/4xk7EEhY8Y4a+uAnCEGRNK5arVhjIWA62ceKdVo0xZFRpIAdV0qpZJExnFHsoQUsiwxxlRV411wznEpwQPnPJVJQAYADDA478G3dSMQeJbFdC56D3QwZ1nhvY/j1FrrfSeMRYO9LocCKb53ItbU6sKYD4Gtm25w3cVDb7DWcsANY5dypMFgYIyh84kq0kqptm2pQRgRp9Npv9+n5bQhICMiVfJJASNLUi5FFCXOUVtQcN5T0OCM8evdNs/z5XJJpz4FHMvlEjnznTuihHV9jAUEzuiurXXatF31OIpCCG3b9vt9KfnJ6fEzV1okhEgzrTVDEfH0YPfwwf3HuztXg0dk2BitnGrq0roo4tK5hjGW5Fm9oj5w9BAgeB88AFC905FFMqCU0mvLGAgmkAVkLDh0JggMaRJZ4zkyDihZU+T9rCjKsix6iTZOO7uqq8li2VjtOFfGeAYOQhzJ2lmG4J1lSCrvnSZJCMGDg/WW4T14xj3zlvPQuZRCsLZhdqUdQ4wYq8qlnV/EpyKPM4YBnAcABwEAZBR1aujML1ar1qgALCAKGVnGVk1lynkAQMaRAzVE087LuQwePTALjCPr9UccnHUmSdO9g/3z+Wx5dMIEPzs7e+sv/9IpuzXa/s3f/GpRFHfv3zPG/NEf/RGZBM7nc5o/dV33+wUFBEmSkJ+q91DXTQDMsgx9wKCTOAYfP7M1n9zYsjzJi5RKx1EUVVWVpWlZlr/1W7+1WCy+//3vCyEYbXnglG6oRlo3TZzIvOhkB2kXVkpFQqZxwp4dF/3V669e/6FeWQb/9X8Nf/2v/5R0xr/xNRjA7/0enJ7C7//+L5Kc+fd8MQa/8Rvw3/w3kGX/np/wG78BV6/C3//78OjnRJZ//vXvd/s7O/Df/rfw3/138LWv/cLbH49Gw60rJLxIlbPgkeySGAr3C1IgAKzrNooiKSIPuqoqYjl5AMKdjSFPAl+WJYkGblLTTa7ifdgQRoizDIFR7+disciygur5jLHhcHhxcXHnzh0hxI9+9CPGmLXaKislZ4zlRbqa6l6eQNnujca5lKZpm7at2ma+WBmlJeOEDszmc+sCclYtV9oF5NKoyjhnXLDehRBgTQH7pA+LpIcghOCZd67Vr736chpFy8tL0gMVQgyGQ+ecssY4P1ssFquy0doE0Ma11nlAD2C9d7azHIQADgIgBB+sdxCYA++99wE9eKUNl3GjWnRcJrGQMSIqtJzxxoYMYO/w6raxTdM4Y6IoGvb7Zyenw1E/jqIsT1Vbf/87HyLy3d3dxWJB/WtXrlyRsbTu2YXJ3Z29cvnhcDi8vLysqirLiul0OhwO9/b2JpPJ+fm59357e/vo6OjRo0eXl5dpml5eXr799tuHh4fVqpxcXE4mkyRJ2rZ5//2flGX11a9+1Xu/Wq1++MMfbm/vci4fPn1EaUmv1yMWYdHrUcpHGUiWZUlnqNLR2Si/8t4b4ybnF8PhkJAjwbj/VJM1Gt+2rQPP2Mo5JxmXUjbG8Dh7/bNfAPCfe/OLMuLW2sVicXl5sVqtLi4uVvPlYrEQQlStu/vRBw+fPFVN+/Vvfvf/x96fxtqaXudh4Hqnb97j2We881BzkawixUGkLJJSW5btxJZky3JHLcluJ47TiJEoCBpIgP4TG7aBRqwgAdxynDYaUXdgGzJssK1YliyJLoolkcUqVpE13qo7nnvPvOdvfKfVP9a3dxXpQw203L/4/Sicu2sP3/cO633fZz3reQLBl/n85Ojk7u17dV1Xi/LqhSuXL19WIuh2u86Z7e1t50wQBG+9c+vyhYtPPfX0yfHZvfuPjHNHB4dpmtamBOev3bhurc163ctXL09m4/fefWdrZ+fJxx53jT49Ok6D6GMf+9hbb70VBWFRLC9dugShCsPw5hOPHx4f3b33oLSahyKGABFVEHS73ddeednWjXD427/+r8dnZ2d5/vf/H/9zXdfz+Xx8euacu3r5ytbO9snJ0Xx29uSTT45Go9/+8pdefPGLn/70p3/sx/7USy+9NJ6flfkylPDhZ57opOnBwcGrL33FOdfvD/v9fpZlo/7g7bffds7dvHnz4qVL8/l8Pp9/5cUXtdYCYDqd3L93VxszHA6+/MILL7/8sjE263UF588+88xyNt/eGpWL5VdeeCFk4tLFvYNb76Vpulycnxzb3Rg+ffNjTz9xc3J4nBdLbRshA4PgwUwmYwNeKcU5CM5IXacq6nfffm/v6mN37h8eTxadwWZvc8C5vHZtmIXxqNs7uHd79uihSrNet6/r4uLWU1KpotEHx0e9re35bHrl5uPC69NH99BqZxoO1hTFnXfemI7PSmOqyRF4Nn1052Rvdzqd7t9/ODs9Ac6Ge5ee/tBHj6fzg+Wt124/CtN0Z2dHM8HT7StPfrTSZnF078G9hwqC55//yEc+9olXfrc+Go9Pjg4fPtgPwui5j3/86tW9N89je2z00gVKa7U3NuPem3qjn+7u7vJqOQj4pz988+bN6yfHh8Ne78knnzydjG+9+97ZTCyrJlL8yuVLb3zj6wcP95+8efOZJ27+xr/+tSrP+xsJF6qs2MmkmJyenBwefPjpZ29cu/6Jj35sazhwuvz0Jz56/8HdP/0nf/Thw4f/8B//s2vXrpLzW5J08zzXdXXv9p26Kq21e3t7ROVpmmp/f380GkUqqPKi1+8o4LZqEhXqsgbrFuNpk5dJGPXSbF5VTdPsbI42egPvjNNmmufoXRJGwe428/hQCGOtk6xm/vU3v/Fbv/NCYbWKVZjEdCRmUhB5GRlTHJVSmtAKBFiR+PjKLQ0ROeOA3jjysBGA6IlXy5hprON+DakowZQQyLGuNBXwJllK8E3LgENcb+YRMUmSdT0NXy0KnAkVhoGKkjQikiCuPmWNXRfLEizrvY+CkMBi9gGfm6Zp6FhnjCE0P45jJSTZBfG1QQ6yNUJH51ZcMWcJeQEAimn0tYRkkcpEVVVrZI2iKwAgAwaCgQiC1kSR6JxmZWtEaxndLf0od96v3IP8imq9rkOiJ7LWMgQVBMRx9t6HYajCgID79Yrf7XarqjLGWd9KO9IjEOhMALT3Xjc2CAIRCMHBe8+BeURSh2Crgtp1JqAsS2pwIUSWpsTiklIqFSZJYj6Ab7Y5S84ZYyQfrJTqdDqtnJdz1lp6NOpN4ooKycjAaU27bhF2Linf0DRNr9drne0BhJRr3HnNJiYAcW2gNxgMiEs0m83WMsdcCpMbAjr/7cuhJzodsdd7vV5RLOm5nHOcMVwhyLgShCG8ezKZkKdUv9+Pg3BR5Gv5Bcqg09jI89w5z1eCv0KIsix7vR4xu40xdVmRFgdhzd57Lhhh5WtxDylVWVTAcE3sozSCXwG+uJJ9YA4saxnoBHCTTR9h3DRflFJMMilaAeIkSS5fuXTv3r3xeNzr99eZJ2MMek+0+jWPuB26Kx+INSltFdAaGgbU4wJbLNgzILCPBDEohy0EXwPcBDevStUNY35NY4cViL/a1rYaLG613aImms8XAEAV8GwlxyyEdM4hAueCc54kKayO2/SY6gMujsRnX38/IZg0xUhmh55OkV0rV6vsF8WBRgju0RKOtL5h2nHRxKeZ5Vci0bASfACAIBC+DQZ8nVmRK0FnAp2IoQIQMdYmyagN6XHouWh80lmDc04WhTTjKD8hVkopAO/XqYhA0W2sK+yFkOjRWWed7va788nSNsg5B4aw8j714AA4kP3c+QeZ98V/26zAKsegtc6yvnWaGxFlyVqd49uuOI10LOqmlEzSbxFa6JyrqirL0qKu1snFutLTyQNkTCnFHd6+9a4QAgRXSm5ubgIwa22v1yNiaxiG3gOJsEdR1GjtvfdBGIZhYzSVh1JTqIQsLlvte2qlWntfloEQUnHbaNaq53ulpPfeohOcI0pEw0AC95xxojFxCWmnh4jOGwDob4w2trbbZQ7ECmKVw61t39YTIGPsM5/p0ZgZDAadTtdaOxgMqItPTk6aptna2qLQ+uKLL16/fo029m+88cbdu3eHg5G1Fp2bTCZN3aqodzqd2XyulNLO9Hq9NM2OTo6rshEqEBac1SSmwVt1nYB5JEUa762UEpGladrUmoYrrXe0gDrrpQzYytKTMaYbrStcmwN576X3frFYUEhCdLwtW8jpTbgqMXh/WZKMvEfLpk4Zq+s6iiIArrWRUlrbluXCyu6TpHzyPDfGyIDMIjQAD0PlvT07OyPtZlK28t5LJaRUYaSUUocHx51OhwIoZdLW+RyamWIlBWWMmc1apyrjnJRysVg453CVGF9negmnDuOIMVbW1SplRHC+pNHDGLNolVLdbldXejLXtF8hlpCUvGmqPBfVYn7uVKHiBcFV09gPP/fseDwXLDCN4VwKIZADMtY460rXiSPBBDIfhnFd12xNFXfYyhuxFbCL6AERUTjkjAkpvffkFUonbeeMEkHWS7M4i2cLwWSmwk5PdayeLxdMhRe6fb21I8LIgD+aTPK6WlZFWdeesaIoDJo4TBhaDsAZIDJnrUEPQJXZEiSzaLmSDpG8jJxzMlAFOOBCANOecY+eC815DTYQvDbNOqraWkPjEcA759CDFExwZ5GDV9yDAE/acOic8VSGITlTXGjnGQjHmAeOHoMw7nWTplrOFotpvoyzjgrGJydnN28+3usN6rL60DMf4pxPp1PG2P7+/sHBQRiGcZzSPPQrvsY6ldo0TZR2ZBDGSZb1+tZAJ+sK15R5sZidLwTLOVNKkbEJY4xzaJqKc7BWX7t2ZWtr64033pArmxSP1hnUWgdhGESKCYjjmLAArTVtvilno5Qy9XeQdP3e9b3r38/12GPwIz/yhwNb6Yoi+Ot/HX7zN6EV6/sjuryHn/gJSM9JeP9BL8bgscfgwx/+A8HN3/Xjpyn85E/Cb/3Wd3yDYKIuGy5kEmdlWeIqI5skSVVVs+V5JpsAdCtN04BCRJCMV2WDiMhZVS2UUg5b4eayrBljw+GQ8GjicVCanaIuIta1juI4S7uMsbIoiGREp1BrbVNWUkrFxYO792hxdM6FYcw7PJQKONO6TuKoHpcdyS9tbUlws3yBrN0MgPObm1txnFRVzZksm2VZlp6xsixq3dTaWO89IOfcev/+rtSjZ94hOPSeyMgerTYc2NZgg8hEZVUhg83NTedcpc2yyBd5PpnNK2O0cXVj8rqxHtsvceDQk+Eg55x2ug49egaAzjvrkDGmteFCGGeRCS5EGCVaa+MsSm7BW22aplkuiyxJe51u0ul770MVSCGSMAriyBgdSNXv9h7sH1DZFgVta+1w2I+T813LDg8Om3riPZRlybnsdmM6CdOGjCg2xEwnz9iDg4P5fM4573d70+mU+jEIgtdee+3k5GQ02nzjzTeNcUmS1LV+6523v/Tl337qmWeIK72/v++JieZct9vd2dm5cuVKURSHh4eBUta2Be/IwBm7Pjx3uikNCVoWCR1yK5jJAbIVdaDd/gFIKSaLpWS80RUVOwdxdvVGn1ZYIkc0VT2fzw8ePjJ1c+/u7Xy+mIxPT8aT46PT+/sPGcL29natXVmb7e3tBw8eLBYzKeVGv/fu2+/ostzeu+A9JlHw8eefe/Wbr+ew2Bj0kiRRYfwDn/1UY8yb77xx9/796WJWahMl6dvvvtcJIjT+5rNPzKczzuVjTzxZNuVsmY91fXN7+7FnnsmGw1xrocKLFy8eHR01TdNJ0gd37lGxJGhbL4utra2ty9cPD0/DMATgly5dvHHjxmw2IYOQ8Xjc6Hpvb286HVtrv/IVfPUbLysuoijaGA2ODh4ePHww6PUXs/l4PF7O5pPO5Id/+Ieff+6jaZh88+vfGA5HEtRisej1ej/4gz/44osvvvLKK4h4+fLlxx9/HAEePXrU6/U/9rHvu/9wX0ppjPniF78IKC/u7aQy/JEf+3OmKh/df6DrBrR3RXPuSe2z3//JS9unx48ezs8mAMA5194B540x1qEIlDY6SBPBJR2zH03OmnkpRFDkdV40p7O7WW/6qY9/Qgl5eH//3ddf2b99G/qd5z750flyLALxqQ//sHNuUZTjyYRJ8bWv/m7tox/6gR969eXffef118IwYbJRHLV34+Nj4ExKZj0DsG9/5csQdYZ7l288+dS923e8CkvPGyZnlZ68d6+3te1FdPXq1c5gKPnFzdHgxd/436fHD27fu3t6evrEk9cv3byZyGv777yll0vm/DdfeWXjyvDcSfd9zz/71muv5HkuWPChZ57Z29k2TW0a7b3tXLnwYP/epWH21JWP9LKOdqazN6qWs6PDg8euXHv65rWirrnVWSx/6Ac/s7u5cf3S7oO7b0dxcv/Rwf6j4yiW9/cPX/zSl8pl7ow9OztbTseDfnbxwq4STV1Ns5T98Oc/d//+fV1XSdYBAIb+c5/7HGPMObOzuyU5Gw76W1tbh4ePQqWGw6Hw3mjtjD14+GixWKRxzBgrF/kg7Vy8fAmMq5eFZyAZFnlutO6EYSDkYjI5OzuzTg82Njzg/uTIMTi+X94/fLR/dmg5JIMOV7xGz51nnKN1zCMyQKs9A8l4HJLfXcsWZIwBZ8ZZ4dA5x4VgjEmQEMCam4neeweMeTob01lJUlkt56QlylaOW7BCk+lthH1IKckLkRArejOhhC25x3hr9ZrYqFf0ScqfEWZHkoPOUtEqxxVbkM6wg8Gg0+mMx+P1uYkIxXxlF8QEX3MP1+XSzjliGbOVjy6hTlEUkXMAVfpSrKDHpLta7957nS4RysbjcYtWKKW1rmvtnIvj9yvl6bhqakuxne5KSgnAvW9WNF7gqzJKwtntSkmS1ndcadQGJIvMOa5okpRiJB4MQQycc6MdIHLGiGzLV5ZuLSDlfBhFiGi1MWitMVmaMnKrU4q4peTWW5Ql9alcCRqs8S+qwU2TBBFJfpdK1CnnTUd1YvUK2XKY6FM0PKg7rPFlWRqtg5WPLvUgqSQTZEl+7/Q3+4DwLgEFNBgQEYFZrYMgoFr+83ZonJLxZMyIiFrbMAwJ5p5MJmtaG7U2qTGsdlmE+jpTN8wj9RoNG2o0QhXSNGkazRgjNJNg36IonHMcWkHwVsMTkQtGiKFfla957zkVqKnWq5CIt+vyNVpzCXYkTZJllRdFQZZXnU6H8OKyLInvTMgv4PsQCkEip6enhE3jyhOPAaytGq21BCpXVYWEPLT8XEHoirWWcH9YKWxIaFFOxoByHnJl4tcyAp0DsDRt/cqkar0D8St0kvIB1LPrMe+cQ2ydzQCg3+8hIlUGBEFAo26N2KwxdJry6zHf7kZbe0D8oPgGdVCSJGsmJU1nIZi1lklBhe9JkkopgWo7bAOcMyEU5xTTCNJdYbiCtuiISOkrzoC+jYY3ADSNNcaQWDZ1AawUh2mv6L1HhBX5z3sAvip2/GD2jhrNOZd2O3EcM+ebpqnqOlhFZho8RONNkgRUWxNJiGrVGI4QBIHLTRTHo+3RycHUGEOYL8FQbdOx1uZ73e8AHoBzBADPuUTAVsdGcnqn1jrth4yJsqg3Lu4EoRLu/Kx5beqmAW9daTEIAsH4dDGVoZRScsVrowmLE0LMZrMirwBYlmXeAxeO8jqIaL2n2UTtI4RI04xkbcIwHAwGYRh2Op0kSWTQlnf0e0PyUYNWXF5YC7T6tBUGgiVJYrXWulZxLFp9kveznhYdVQZQqzJnacR6BCak4Bws5bdsnJAkERpjwjhJ07Qsy2qxQMQ0zYbDIWHrxCgyxm1v7y6XS5qnVJpwenpalnWv17NW93q94XAjTdMoijqd7lNPPb29vU3h8Wtf+9psNsuyrKoqRDafT0lIKi+L6XzmLB6fnqVJBwCsbclTNIm89966QCohRJ4vgkCSUlZZtHkyBE/txjkPooCBKGwpBEckJ1hIVBoEQQVAqu7t7LLWktjzYrFQStV1qbWO45BzGkgUcEFK6QApexyGoQgU6VtRYllK2TS43itQKKciJmwlewzNFFrgCWLu9TqLxcJ7T00QBpIyD0mS0C6frZwNaErQzdA/AQDBAWuNVrMs88yC84xjkkbGNlrrSAWdThoEAUGQHnwUJhRE+v2+W0nOU2jw7em1Lcgaj8fe+DSKHeCK0111u11aIKMoOheP1E2dRGi9e/yxJ71jX37hdz7/x36kqXSWBR6d86aocofeO7TAkjgu61oJEYYxR26thTWnAABXnDW2So9L4MAEB2EQEUFw4dBpoxkPFEejtbc46PQ45+CAMxkELOn0qqqqi4YzkGCzUHU3NrXHRV1O80Vl9Mn0tDZahgEAABPOOYveemeBWe+qxhRNGUaJ955zwRgD9OgBnGOccS6EEgAAzqPzXHCD6MGjkJDE3KPnCACcNDqsFUp4QA9Mo0cJAsA5z1zrs4xCMukBETwida33CICMMyGFYOP5rD/IOv0eAJRVdXR83Bv0x2fTX/+137h549rlS5dms0nTVIyxTq/72c9+9pVXXrl37wGNHGOMXUlWAa52wyCkDGQQbm3v7uxe2N9fhEEYB5G3Bru9YnZO/yIC48gYR0RtG200rWTGmr2LF269987BwcPhcEQ7RSGlVNw4bZ0eZn0a+ZyzJIm9d0rJNE28d2VeZNmgEenk3Oj7vet717+HK0ngb/yNc8DW+/fhd34HvvQlaBpgDPb24POfh8997tvfhgh/7a/B3/27f5S39Nxz8OST57z+xS/Cb/4mHBx8C5s4COCjH4VPfhI+8pFvf/9P/RT8m38Di8Xv9Vu/x+P/7u/CCy/8Po//+OPw3HPw6qvnfznnotPpnJ2dcSHiODbGIUIUJcYYrZdRlOTn3VvTGCk9bS8YY0EgrW2YFJzxqirCKEmiqCgKLoXgApE7hySASOcH0jgLw5Bz6b1PEhGEMSlCGOt73a4QYjKZGGOYR6qMJrYO4Y9SSuY459IjeoaMgS4WgcfL2xc7kZqfjo0xta4557puiMREp6yybqqyabTVWudVqa2ptTbOOoduVecEZKdDpwXGEcARBA/QVHU3CrM0bZrGAzZGqyAKgsgYW1TlbJHnZVE3Wjs/L8q8rBrnrUdtnEO/poFge7BA58E7IGYNHc6ZEI7O0s5tb+/OF7kH5FJw3vJQpJSRCpqmaap6Op5orfud7mw+GQ6Ht2/ffvbZpytd93q9Z556elmUxJujwzBj7O23b+X5+fmKh48OOmlNddnOuccee+zOnTvHx8drFlu/36daq4sXLz58+LCqqrOzs9FoRPXvWuvBYJBlGSk7W+e/+tWvxnHaG/SlbLVTJ5PJ1tbWwcEBmTLNFwtr7WKxuH///uuvv05YSaDUxsbGhQsX8jwPwjBNEkQfxYF3wABo+8RWTimcC9oJrIrNGWNA5z0AUHQ2BuYYE2GEAJWx0Bhe8RZ08I4xJrnoDzYG/Q3O2Kc+9WlrtW6qk6MDXddVVZ2cnBwdHQVKzefzW+++s5zNh8PBF1/4N3EYpWlMJirGOA6srHKlRJbGZycnKgzquh5PTz/1mU8/95GPHp4d3XvxS2na8VzUjXHaobZf+JVfJSjrdLYYbAzKpj6YnS3K6muvfoNw/E995tMHB4dnZ2edJJ2czW5cf0ze4KcHR2998/WtjY3rV68ZkOHBwXvvvbe7u2MdvvraN4tymWVZrY0Kg6Ksvvn664PB4PmPfmQymVy8eDEK1Gw2m0wmZVOf3novDsMkSaQMrt64Kbj8+mvf+LV//Vunp6fTec5UFCTLBvzB0en9/YO6KfOq8saenY3/zJ/5s/1+/+7du2Gcjsfj+/uPTs8mWZY5D/Ozs+ee+dB/8Cd+ZHxwdG//4OHd+1VZMs7nLoTz4NbjRweT/dcIiVNKMMGZhzwvi7zyHpj3YRiS6ZCQYjafBCLrbW6GUp3leTdNMg5bW5v1/OzLL71UHR5ffOKpJ599VqMT2dBqxFAcFnXVmCRJ1EBNJpOdq0+fHh68ef/smU98zvDk1huvjLZ3OPfzxUQkTkop9FKEiUFRzCqRJNdu3Oh0BoX2WttJUTcOrly/hp6lnSyLxMmje2/cfXc0Gjz3ocd/4PM//OJv/evp8dGiyF96+eWLF7efeOxy1B16450xuirn0ylk57TAwYP9UPDO5vDyxUtXLl3UdZVk8ejShW4vS6I4UfDNb34zzZJOp6ONyXrdj3zomRuPPR7E2fTsqKx1vxOVM/7Nr7/8sJNcu3pZSY++MXVhdTna2Kh08/DR8WuvvXrt6tUoUO/eervbiaXwDN0yn8ZxtJhN3rt1+9q1i1eu3fj6179+7fqVp5547PTkWADz1i2qotvJAsm3RqNiuSyKQnjf7XYFh5OjY6vrhkO/O7Bad7PssRs3zybjg0eP9i5cuHbt2sHBwTtvvrU8PpZhsMxzUGxe5heZa9DdHh+dzadOiMroIA2TNGFSiECYupbkZWcsClBBwLhwzgkP3lnJuFsZ/Tn0zgNyBh5UELSsJc6YZ9pYR4IAxgBApGL5ARs0gjAYA6mkUrFzTltD+HWSJHzlUrWmB1EkJJhpjcERGxRX8sck3bAi8am6bim6BOxSxGYrM0DCiImVVpb1YrGg8yORmpkKCMFZBzS/ks0lCInCml/ppRIwQcuiX1kaEo2LfkKp0NoW6ETEJEkIRqmqiqAxAkGIusu5jCKy4WEEvJKyBwBI7+gOia0MAGVZk8YRwbjoPGPAWKs5QIoE1npisRCnzDmHri3JrSsdhHKNmJdlSYyrLMuiMJEioOJ/azVp7BKKASvh1/Uyaq2TUna73ba5vE+SJAxDXMlJZ1lGHURncBLYpRNWURRN3ZpHEdW9BbuNoT4KWuago2Yn+JX4vPSKNZpzSWXEhCjBSjaBUG8lA2e9s610AN0DJSFIs4WGpbEWmCdMPI6jc1dn61zTNJTupeJpSmnQ8CbQnLwraQjRIrgeosaY6XSK1kkpQXDCWwl+ou8JgmA2m3W7HQLFhsMNslIkFW8apZRCcN4ieArahKsSXkyPzBhD9ET+JY0OUkKnjiY9h0BIrwTtJdYcW8IoqQydiE1021JKdFiWJWPs9jvvaWe9Q8a4tcQgZlIqwXhd1876MAylUCTjrlTLI4QVb5d4hGIlqEI/IaW06L0hHQ+xElKQnHMm3ncQJU6uEBLAlWVFqA75f67FNNY5IbGSaJcy4LxN53jvGZOcc7LjohtY3wMFHNKL6/f769lN6A3B05REiaIoDIN10p2vpJOJLCxlC0kZu6L8Z1lZlpT2cBB575lhNNpt0z7sGlPCVrWj1XagEeK8BRAU8dps3we0sAnmWtOc6T5piK5DmXMuEG05wpo97X3LDW+apsqL2WwWB+FaGGBNJ0dE8pGjpnDONWVF85FcWBhHgxZNE0UBgDfeCAiRAQKgP78uk1YBDp6AaWgBaEQCiwAAwJimk42CUDmjq6rhgrF/2/wdAAAeHNzVyNI4kSIyuimX5cZ2H7grqjJJkigkNZgySTJqtH6n2+12F4s8+sBkx1VkGw6HRMVYLpfz+YwIN5PTM+99lCYUxNpQI0Wn0wmDeLS1yRhLkmhtc0qaQkmSeG9ZGiN2KWRRNKiqJgxDZ9pljjQhGEfnGCCoMEIuKL/LhLTOgWMMmPWMCxEIyTl3iDIIuv3edDqtmrrWjRDCOBvHsTVeBUEQBJQUpMpUROwPNh7u71Mdw2i0FcfpbL6046kQIs26RVl778MwvHDx8pUr17a2RsYYxsRXvvKVzc3NCxcvnpycOOeOT8+klPfuPhiPp3EsaJqQ6R1jTKnQGFNXTdM0jCHn8v79+4JLpUJEWzeVMWEQBGVRJVHKOTfMcK/Ae+QopeKWg/NhGngwptGSkmDU1lmWUGSnmdzv9wGgLEtjGu+REdMWkeJLt9uVMuDA6PlXA04w1lKpad5WecHbq9WvgVXOand3l+IU7VuKYrmzs5PEYVUVR0fzpmkllY1tBoPB+GzqAYUUnLx6fbubaXQThjHdc9JJ7GIhZcu9j+OYkgPGmDgOg4CiuUd0lPUKQ9U03jkHgoPgiE5IwZETDk5JEtrTWN8e42kY0UnPNucX6ahANkYnSWfv4qX/7f/1Ty7t3IyCuMybQCrjG++tsU2lK4nCAzAmhFAAnjFmsW06zrn3yNj7HpHrSCSwVb6UUjHGBIJFW1e6rPNO1FUq8A7iUIRhiM45Y5n33SSOpCjL2nrXlE29zBnnIpCbUTja3PaS13t7wFnR1EIIZ21RllVTW48iCrgKyqZeVvXp2Zn1WJQFRRIEHkjFrQNA6lkuBSm1OechUI01nHPJOX4AEWizhVIiekpNomfoPGkHURbSI0Ns4Q7vPWPovWNSAEfg3Bv/6PBwZ2u4tb1ZGV0UldQ+TTtVmT98sP/0k08ORyPv/YMHD45OjgGANgFVXTvnlAgALI0HsvILgoAJAVw2tXnmQ893+xvwSBRV6Y2PkjhJhkfnVWsqxRGRCxFGEd01/UoQBPfu3avrejjaaJpacJVmGRetBTMtFdYarRulpHOt/Jy1tpt1NgbD7e3te3e+g938967vXX/UVxDAf/1ff7tmxWIBf/Nvwte/DvkHMmmvvw6/9mswGMCP/zj8lb/yPj7b68FP/AS88AJ87TzTqu/ikhL+7J/9dmrzP/pH8L/+rzCdnv+R116DX/oluHAB/s7fgatX33/9xg147DH4+te/o9jFd/H4P/dz8FM/9f7raQo/+qPw+utgz9MQNdZOJpPlosiyTASSSGEHBwcrQta5uqNgtHXg4jhtqloIXpa1lIEMAq11HKXeg1KKMMTKVeCRViKCfQEQWupBm10DgOVy2dqsA+NMOuvHZ9NOmnoPZVk7NwWAxSIfjUZxnM7ncwWRUvLg6JH1rtdP5/MqQNzqdZo8t04TN2oxnnhjozD03lZLW9TVydkpuaHO5vOqqYWQCM5a2xj3gZ00IAJH0M6hAM/AAdLyYBr9+LNPb/QH89m0PR11ssYaxlhRNcZZbWyt7bKq87KqGuM5tw4dekT0wBGRNIjX6AatOLhW9lydHpOse+nK5fq9O9pZ4BydAwuRancvclVNnARx3hTzw8XB0VGn07n/rx5kWSYk73a7WadLZxUp5eOPP+6cm8/nSXLp/DGm1M7uXpJm2prDw8M33npzZ2dHW/Pw4JFSamtnW1vz3p3bKgyGo423b71DghhEplNh0O33lFKLxaKqqv5wILjknBdVubm98+jwUEoZxmkURQ8ePJjNZuPx+Pj4eLS1eeHCrjFmMpnQuWI0Gp2enAgh7t+//9RTT6lQllWVL5dUVyi4sNYppbyDbrcLALVpVf+I0GS09s7neU7qZwTic0UeNVyQ1KMUnHN03jnn0QohPPC8KmmjwhCk4gxhtHdBSNY0zeMf+RAxa6y1xwcHRus8Xzx8cO/endu7ezudNCN+hzV+Op/9mZ/4c5Pp/Hd/93cPjo9ms9lgMBRC7uzsjRczAJ4kHeeZsdgb9NIonhyPsyzrDvpXr1+rmubw+GibXRdC3L97r5v1pAyqRT0ej3d3d5VU1un9+w/n09lyPkchl3Xz3oMHQobe+62dbWTsdDwWQgRhXBkbRMn1m48fHDx85uLFTje9++ABALiHh8vFnHb/1x5/qikrKVWWpOPxeLS7+33f94lf//Vfb/BstLcXZBkD0dnY8N7GWQcQGQ8uXb6e57lx/p9/4X8H3nI/l8tlp9vdvXilruvT09Mo0nmef+H/+yvT07N+li61dgyXi9n2tdHkvBBSzufdoAFAC1DWxbIoQAbOoYpCpyunnddGKTCmAlgKFlkMBtsX8mKOxn3yEx9P0/To0cHvfvm36uMTtbF14cJuqX2/v4Gout3dqqlzEAZtUzbeurTbRxDzvDhdLuPp8kOf+QGepfPZmTelns+TOOmkKbed6Xy5d+HyvFM3Dh3ComrSwYZZ5Ett4iDY7ve2t4ZpGL737jtfe+krON6/B7xcfOr7P/3JD338E299/ZXp8YG29uHDR5Px6ZXtURLEV69cOTh8KLg6N7TP5/NemlitD44O79y5U+bLydnp3oWdP/sf/gdCiFqbvG7yunntzbc9MhWF79x7FMapdf7d23eSJBmfnijOrWnOzkrOMJTu9t33lmUdx2mjrbO4ublZ1sY6DwiPP/FUkc9ef+PtH/r8D6adBNHtbG89dvPy1atXnffg7c1r1yfjszxfBJIb0zhndV0SP7fb7S4WC8ZZbXSvkwolEQKKJ3EYUZJpd3snjuPjk8OiXG7ubD/17FO3BZst5hcfvzor83ffOLj72lcXTVV7z2IpAhXxEAAcIPfeah8wIThz6JF5IVqFdwINyTsHqMS79VbySkpja865AzTWWGuREZ/Or/k91umW7kPOaSuBRGOMs9o5RxUtbCUsi6siVILt1uARndIJ32ErT0ICU6KVFcrqgwLAk3gRBXnOuQckuiUhgFVVAVB5b6spQfGcOE+EwrT5MwZE88RV5e4a5iaTOr6SJKa1Y03kpFeo7+izBEW15ZIMyMudNI611kqF9D10loSVIADhicAZrGAp77213jnX6XTWLeOtoxwt5y3Uzhiz1qdpCi1rnDnnaArwtvy/zbnSsRcRNzY24jheLoq6rokLyblkTCAyROZXFVf0CMSMI1YaIhILrdfv066C2hlaFAmI+0mp7hYK5DgY9sCz09NTKSXpgRJMr5SaTCbOORUEUkrrNP30GoBr+cLWcWBCCGv9mkJO/10ul8vlcjgcjkaj+XyutQ6DCMGvq64BYA0Nr5BrD2CV+I6OHJK3cJsxZrFYAACJKlBHEx04z3PaSq21quXK/5BzbuomTVNrra2bNe29aRohZRAExKz0K0eNxWIex7EzVnIhI9F6/zpTlxUiSsYp378u5ib6HXpQSqlA0WCgvQHdG6GKxI8OhHTWee9RALWqX218aQwTb49uhkRQy7KUUjKPVVV5QMF4Y1o0tmkasvrAlQ01aUZLKXVT85UKMPU7MBaEIflTUxM559ADh7Yqn3jNhBpRupr+yXmLtNBYIj5yURTruUbDjB6HcicAraTy+oecM4TikdI30eellMS+JOCMWN55nlMmgL6KYERKa3nvy7ISgn+QGLHmTeKqQoLSRYSYWWs5F9pZACQIi9IDNCDpllYhrk2BtGkkYnbz1puKIWqtkfMoCpxT1PV8pRwdRRFxw4kZTY/M1yTQ1QRZPy81+Pq3+MqBkDZvAECAu1tpBK3JoJT1sdYa8KbRy2UDiNYb6z6gsw/vz0f4AKy8jgkA7yPRfhX2AQCd94wUw3FRlH2eWeMW+bLbS5k4H272YLXzzbKmtCVwiHsbTdWIGD3TRd0MBhv9QefsbNJUy26WDDcGSqlHjx4tlnZnZwfRJZ2MOKZxEhvbJEmyubUhJDs7tVEUeWtJ1IEDlsu8Kas0TYM4slVVVdV0OgXkaZpGSdztZoTUE0yqVNjr9aIoYIwFq6qdUCWBVIyJVWNqAADmtdZlUQMA5xKBA2vl+JVqy1NiIeq69t6GcaS1lkGgwoBqU5xzAIxsdbIsabk0q+lMfT0YDDZHIwoyKggQ2UhrEomlJcA5t1gsNjY2lFJFWSHicjm/dPkq52Ct3dnZoSLRQX/j8ODYWhvHiQyCLOsQ3CyE4Ixvbe10++nm1tB7f/fuXe99HEVCCK09A94qLzmssFIqdNw22qOzuc+DIMJalGWJQSMESillEoc0h0jhaDAYkBOCWCuYKCFlvBYJUoKRSk5Z1t77KEm8sTRqKZaJ1lrQUMpaKeW9VUq4loWMQrJGa4/cOl03bUkIxfeyLNMkIkieMhIPHx32+/2yqoKonT9Zlm1vbzrnzs7OyrLcGA0QURvd6aaIrixzIVScRpxz8NjppCcnJ8Y0/X63jYMcF8UiDGOq8ZFSNrbxujV7pSOQ915KHsdxr9cpS+2cC1qP0bablVLWasbOz/MwAXRg/u0vvXjrnYNPf98Pa22ddpJxi4DWBYHKEY2ztTY24LTAeGi894wJj5qvBLw454IL6gtjjGdcMenRO2N5oBgT6FEyyaTU3iwWi0AGQgaMCRUGkguQAo1GdCTD1DSN5I2owThr6wa8F1KoQHWTWATKxinnHI2tg6TRWmuNXERxDD3pOMD1J2tnTqeTWV5Ml/OiqmrdlLoQIAWTiA6sR85UFHLOPQAl4bXTtDaj995bsgqlwgoGq2oQZAxAALPofVvwhcAolQaIlgsBjCGA9T5KwsVilsaq1+8SdsOYyPNcCbmcLb/+1a+NLuxeu3Ztb29vvlw8fPjw7bffjuPUOkexj+gMZVmqTlcFChHns+Ukbzr9fmNMknami7mL3dIUkRSMnQ9xhXEcxXFd19rUxNEQgRQrNSsaou87PzCGiCoMgzjUzlj0XEm32itTapGSz9Pp1LnOub/4vet71x/59af+FPzAD3wLtts08Ff/6nfUoJhO4R/+Q8hz+Pmff/9FIeC/+W/g537uW/DZ7/rq9+Hzn/+WV8oS/v7fh+8gvtde1sL9+/B3/g784i9+y+t//a/DX/pL3/FT38Xj/+Ivwo/8CAwG77/4qU9BlsFsds77GbCyqNc6dLpprHedTnc8HhdF0c/OtwoUXABwa10YRgQTx3HMPSKCUIoxvlgsKM9qa9/UJWWtZrOZXPnkCKHWNA0lw7rO6dxutZlOpxsbG/1+v1guF4tFv9+ngg/adtOOti5qyw0I/tWvv7T92WEahj0RCO9qXRrTCCHmy4W1NgpVEMi6rqtaT2ZTAF7X9XQ2pxhYN9p5YhgjtiWQnDiV3rfe6I6hB0a1ZOD8008+1S6nggMDQjYXi0VRlVVZz/NlXlbLsrLeIwNtjUeGnDGQjGyRGAPgiIwsmOlk5Twp86M2Js9L691nP/7x/nDw0tde6fT7zvswisCgsQ1yJoUw6Lz3QjDkXMRhEgRlWSaD7k73YlnmWutZnk9nc/YIaPNAUH6apo05P273ev04bs7OzvI8F1xujraklNevXz85Oel0Oh/+8IffeOON09PTwWBw584dKSXV03W73c7Kg8ihB87iNCnL8tHDg5Oz0729i5PZzFr72BNPPnz48Pj4dHt7u9/vz+dzEoVcnySJrtU0zWg0AgDyGLh3797BwcEzTz19enq8WOSL6Wx7e3tnZ4/s1I13UgrGOKwcLxTnQqnGGsagbiqiRJHCljFGsBazCKQijx0hWF3XgnEhFEghOPfGatsSoLwDAGjqGhjTVcU5H+5diqJIMHzquecDJdFZZxrGmDNkq8s55w7g05//nHNusVxGPLDe9EcbT33o2R/4Y3+sNloAq6tqb3sPrBfAGWNBHDnvUfIwDLOkVY6z2lBZMRAKhsg5n8/n1tosSRERnLfWCiZoq81XzyiD9pQopdS6EUJY9LPZJIqi+XyedrLRaBTHcSfNnHOScwBP5XqDwcZTH/kInUCEELqxjTXMIpDemvOwUlE8PDw8OzsjdGOwMSIt9UW+LMtS50WgFEdwTT3sDwIlTk9Pl8s5hB/9H//xOUPu2qWLwp1WTTNfLqbTaRiG7z3Y/9Bzn/iJv/Afvf7W28hdYyvg3DngLDIajJIP9g9efu31p59+7uTR3TfeeCM/PAQVqNHgwpVLPI7vPbi9zePhxnYoeJW7ZV4kcayLCp1N0uTihZ3dnY1lPte6yZvq8WefeflrX+ECGAS6csmw48NedbwQKt7eHhjPhAw0ggHJw7humiTgG714fnjvG7femk1OgyIPoFiCf/PVF4fbw90Lu9Xi5s7m4JuvvuzBa4PTZdkZDQqtwyAu64afp+/vgT86OlNKbW1tzqvZ8dl4tLEBKvrCv/oNYxuOstvtb+1sj0v38PCIN3jv+K2q9oNhfOfBI4bumaee/NBzH3nxhS9Np2Nd1fPJPEoED+KsPxjtXmBCLvNcymCRl71OR6oARB1G7uh0mt9+IAQLo6yTxPPJ9Oj0pNftpEnsnPFWI5Me2cXdPW3qr7/8CiLu7e3t7exGnbguytl0HCVxEva8sYvFojfodzod720QhRvB6Pbd9yrd7FzYuXLlyrwpbn/t4NHD2b39B0td8kBqxbgIVRQCZ5T1AQDFBXqrlELBndYouAMsm5rOSk4bIQQJHDEAyTiRXdB5JoV1jnMuA+XQKymDICCSzTqNx1tVWRnKtuiYDAeFEMgAV5KA5AbEoYV9GWNxEDbWrEl/RHtkq8KUNRbjVyIJ7UFaKcbQGNPpdNaEU230SlzCSymNMca4OI6J+0I40bqslq0KyRljCLimBhM6SbXzdAhNkoStNBsJPaSTP67ot3FMBT3t3ZZlSexIIQS61j9KCEEZX5rgtMgiOliRwQHAGLtGNq21QRDRPTMQzpkoivrdXp7nZ2dnnKswbHOQJJ25BgHjOK7Khpo3CALnjVupTfKVQ2DLCRVi/am1LqW1LXZPKwXxq6qqkjKgL6dGoEMN/dE0DRVAD4dDyohoUycqYYBhGHHOTWPTNCVhkzV+Sn9QNpcak/jC7amW5C6ta+FLADKa4yuzKCK9MsY4E8vl0rwvlMyct7h2lWSMRkILYau1WPZ3OKczpmRweHDEOe90M0LfVgKJnGCQXq9HPlJiZZGntWYeozDMNhJcadEQiYrQRtp9rfWaCZGn03dd1xy4UkoqgeDp/RwhS1MhRFFXtDDBShih0+kILklHW2u9s7PT7XbffffdyWQSBEG32yXMFAAEMO8MY4wL7j9w0aBat886r2OMISSXeUySRDtLo4JgdMkFtX/TNJRpjtNECKFdK8PVCpACSKUE8ZTDkBItNPeFaJF35h2NMZpKwBnRq2laEUZEeCj9HMFHKy6/pbHxAZWSkEB2v5LVbhoTRclqHnnOJWNIFOmmaYIg2NzcXGPZNOOyLFtT7+lOTk9PCY2lVlrnYCgCuJWfKu2xSVPFWuuc184K0aKuNN/DJCYTP+pEKSVFWbIupHZTSlE30Q6qZXADMMahVSRr5VloOhCWAivfQmpPIYRnwNsQDmvCO6xkQ+g4sB5RuOJN07SqqmqdiqP5Rbox8zJHRG8hiUPuxdJqpZQ3yNnaRA4A1jLObS6Q/qYEAzAkGgkixw+UkjCGUsq60mM97XTSTtazzud5AdD7t+emCoUMkHPhmZ0uT/u93hu3vhEFcRJFDDlzbDDs9vqje/fuLBbzZCdBr6ui8c4Cx0o3tdFYFKTES4k6xtj+/v54PL5y5UoYhg/vP8yyLMsywTh4LKrSORepYN40TdNcv3rt0cER55whnB6fzZczSlVyzne2t9cyO/Ti5ubmYDBAz5IkofQeIqpAhGEYRZGQEQ0hpUkaiMY/X4NFpIYUhmHdlABA8tzrSUQJEsYYIF+nWGCl1k0Nq5QiLwCtG611GCXGWqlCLnwogEvBGEuSqK5rY8z29i7pLGmtHfqyLHd3d412s9mi0o1bZWLqutG6oYPeJz7xid29zcZUp6enzrmtzd2TkzNK9DaNEpLXdR0FEXrmPdAyZ62dzoskbIQIrbV6madp6L2XzjnOYDQaSSnH47G1OooiUmc2xlC+tF16OXLOG+fzshj2B7Q+ES+dMUZqKUIIIhdT2FVKCSVJs7hpGo5gnQ5ZSNHn7OwMSCXEaZpgVVVVTWWckYHq9ntnZ2cbo0GRV51OZ73/yPO80+k8++yz8/n8/v372lSIaK3BVaoKOAK0Er3KS86BMcirnHFs6pp8GAG8lHyd7qMmpmdxzknJ5UpljLG2yjiKorouKYS1aavmfP1N76Fuqku93quvvJOmYmNjVBdlqII4jst5MZ2NjTEACMCKotgbZLQAcCaDINDOe++x3bK0WXdEpC0g4+DAIePgveSS2jnkXARBmArBpNZmNl8u8kJb0806YRiiYxqdsJ5zSQUUJENDDPx8OedSMuOAY5qmxrsAeC9K48GoqprZbFYvK2RcKSmjaJBml29ua/ALU9fWnE7HiyIHLfI8ny8XtTWFrm2jvWAiUIaWbSkYMAcIq0UULSIHwTkCIiLzCAAcwWMr2fzBDSgiMOaFkNobxpWQUusmigKPjjrCVoYxJoQkBwnb1I8ePbr/4L4UkglOC4zHFuCw3nN43/dZrvSVytp2O/2jkzMm+OZoe3Lybifizhlji3P7VwpBO6rpzDbGSEQBnvKHxhjrHFstmXmeCx5ab72uyRWEuiwIAspGUpImz/N2kRDng1Dfu753/dFe167BX/yL0PlWlOx/+V9+f73jf/7P4cd+DK5de/+VnR34+Z+H//6//yMQcS5LODqCK1fef+WLX/x9sOb19e67sFhAt/v+Ky+99B3f/N09fl3Dz/88/L2/13Ki6xp+7udgfr6AP0yns2c/fMN7f3JyopRaLJbT+eypp55+/PHHv/SlL3F5/kw31gG6pSniKGqamiS6iF8jAyqj88vlsmVGMHHz5rUnn3zy5ORkPB5PJpOyLJ3DdqMPgjPpnCe4uZNm9LpaWfKS1Q+tCIyx5XJJwoUAEEZR0zS/+qv/8vsf/+il3Zu2qsAb753xuqqquqyy0ajMC4d+sSycQ4++ajRRJ/xKzg8AuADvwHtPe2I6ngEDj+i8Q2IiG4uInTSz1qJtzzyN0d666XQ+no6ruimq0jms67pxYAG8B4fOt7hHqz2FAM4Zon0AgAN0zsNKizMMwz/xQ59Psu5susiyzBhD/gdKSGDKM0CGDpFJ4Tla7wIVNM5XxvJApb2uiiOta865dOi8pSPHo0ePpJQHBwcq7Ijw3AFTT6fTy5cvr8+Hs9nsrbfeIrdhRNzZ2UHEyWSSpunzzz9/9+7d+Xz+xBNPbG1tKaWm0ymsaGVJkjj0w+GwO+gb7bZ3d/I8n8/nHJgxZjgcVlXV7/cvX7y0/+gBItIuDgC63S4gOueOjo6+8IUvREl44cKFyWRSFMWlS5d2d3cjFSDiw4cPERG4zLJsNpvVjb527Vocx8NBzzjbUx3vfVnXxjRFUWxuboZhSOOKWGnee++trst33nunaZonn3zS2TIIAikDxlASLRoQER2gRaek8ojWmJCFZV5wzpTkZVFxhoGUgnEI0Hnw3gsmqDs8s/3NTaU9E7zWTZpmTzzxFAhurQ2EdI0GB96i1tp6Bxy0MYuycrVmjCkpAcCUDa3+URggZ977zoWuX5Ve0e5fAXAhnHO4UgNv4SrgNJ4Jj7hx46ZzziN6wQjHB0DraEhD2usrpbx1TEkmJXECAykUBgoUANA+hM4PgZQbGyPGmFvjQc4DQJJ1GGNNkeu6EZxJKZuykIG41L8upXz5jfOrNvZ2d7/x0q88PDhEwVHwo8nh5ubmz/zMz1y4cuPS1Wva1UEstbXeM/QqijMWisks/8V/8P88ORvfvnNfFzUIFvTSjzz/kf7OpcOzZTLYcEJYAFNorW2EGKmgtxFPz069bpam5Bw42DQLtW2axu3s7MxPT7Oko8siYCp3AI7Xje0PMsekEBJQgFRZkPSH3YjZR/fe3b/1xlYnunBlt5NmvLw/s/yl+we//au/cvOjH4ey3IjjZ55+5vU3X43j9Kd/+v/UCcSbr7x0/85tK7Y2zpMT6Q5H/f61TqcjJHOMZf1BliWSw2KxkEp6I0oH7+0fFpapdBDG0XA7qqoiCpVkTEl+dHRSFsXR8bHWWgohuBifuSgrWZCcvHlrWVXWoVABB+at66aZd05KPn/5m6enp4NBP1BMqTAIw0Dw0fZWmsZ337s9GPacc876olwyxmYzMq+OnDP1mZVCHOw/GG1sPHbj+s729jtvvjWfLxtjiLpY1kV/Y8iFuHv/3jffeP3FW68eHB5yJVWseKS84N1OUlYVInrjHIDiwjnnOCrJJRdaMmfBIRhvda0l44K1VnJNXSOi5MJZq5SSjNd1DUJ6QGM0rDzZHCAyYFIIaE321EptgK0cehx6IYSSCtzKTmrluyUYEGwEAGidDFulDpp0tAknYIWwQr4yHIM2LcS01owhJWPojG2MqZuar7ShVwTkltFMGArhm01V0xmKkCxEtM4CQFmWJFUUhjEAL8ucDh1rgJsmPnnq0gGQDolEcjTGeM9aYmkQ0IrjV4BU0zRSKqK2UF0/PeyaAGutZZrYyi1+h+sqe+e8B1rx1359da2990qFbaW80bSIEzELAIqiKMuSC6CnNisJY/oGxFa2gu5TroSP6TFXiTSdpulqX8HI309KSVUyvV6PIHXKYlJmMc9zxjEQAelpzGYzRHSGMry4FvNdS16YlWfj2viOQis6jyum2gomBc55WZacc0o801iqqoo0o1qoTgjGYX2Kp1+0JOJsLSBH8MbaFQX82y/rLC3E3nslAwRPP0dgMZGLiVo3Go2SJDk4ONBaKy644s65+XzeNA2VBNFN0kgTQhhrCQ8h7JtkxwjuiEk9GYC2EIgogK37gvj+SZL0er3lcum8N7qmUUS7DsKgqRlpxJKwSSgCviopIIYv9RHhSkpRETknBIDQ5yQOENHpFnB0zjln14kWIhpTXyMi1RZESZzPZmQdBgB6BVa2Pbs6thMp0q+q5LEVPhbOubpqGGNUN79YLAjopDnlVlofnU4ny7LFYiGl7Pf7WmtSe1NKSRlYa8uypJFPLF1Ksa9vlWYQY6zb7dLUq+varTSyYQXlEzzlvSfbDMYYmaSticBrkRC2km+lHaN3nhidznnkTEpS6W13C8w759tEMr2yZqqKlQkz55yi0Dp2rRBhYP59zKclCK7yPatMDKxESEhdhPjXfh1GcCVOTckMXGkr02DDlUOjX6nTrHu8KAqlFAMehqGIQobILeecq0CC495x5mCdsfggkRlWMDf7gJvEOpxSa3PfSpQ0jXGSD5WiINwT52DNAODQLYtFHEVeWBXzRT5jknumLXLmma3NnTvvPXywv1gst0ZbO1tb1jrd2A996JmD02N60qIo7ty5c3BwQGz0s7OzJEkIGl4ul1tboziOT05O6sY65yRv1XiSMLp38oCSbWEYPvHEE+Px+I03chEqkgAigz4heNO0s6xpmvt37yGyIAwJdez1enEShmHY7XYYD4lHEqgIEUnqzVoRBEEYBlrXcZwQFClEB8FR4Xtd16S5xBin7rbWAvJ1+jMMwzYIADjvlVKITCmlgojWPhrJy+VyMBhQ5CQZdyUia/VgMCiqVqs9UJExZlGUt955dzZrlUayLJOcBUGwmE9v3bpVVgsVqrLML1683Mm6zz77Yco7vvPOW5evXGqaBh0C8kePDg00vnCCgexzb3zQxJzz7o3tNA0XL9eSB6qu69ly0el0KLNtrWdSmMoZ7egWuRBFWSZJ4hG0Lutan1nX6/W8x3K5bMuXmEdA5y2DgEnBpGBcNM6lEVprl3khpdTGGGOjJMmSZLFYQJsbNJxzj04qJiScHM83NzcZw7v3Hy2XyzRNZRjVtV7L8ZTlwlnb7/WklIFSYaQmkwljfDoeI2NCiKZurNHAWBRFVVNxyYVkFrWKlWSSo2SMGWOQgRQQBIpLVlS5topyelrb1b5HCJkAuul0ulrzWgF7ytkKiJbnThWAANLy1Cwf5lvJViZja62KFA+4cRa9sAbRS84AOGNxLKXCouACAs4aq2MpKeJY75CB9V4IIZhwxnIOdcAUFxLRV6VSCsA13ivFAxkmEHRNHCFbLJbT4+P5fNrb2tplsfceBVehAsUAhXMWkPOQhRGHSDRVbapSCVlVC855FSnnobYOAOJOlq5kqjigbLTyKJ1LAIIgeGKwBwNwgqHziAwFv3fw6I37d8e2Oa2WEAYoBUPhPXKPnEtE4REt1wDAkClicLM2RjEQzDlAlFwggkXv0SHn6IU1TkopOKA3UghEzmTKVQYoOXeATgjgnGvGmcoi3aAMQUjPmPWeSyGE8KZWDHRTSc44CrBGgCgLG4Sylw0+/8Of2z89eOmNr73x5qtWYq04oo0ZKDxfkbM2TQauO+g6cLPZTEhOphyUsa+bqqrLTqfjnRGB9Ogooeqca7TmQjDOizarITkq5Mygny3m3vvw/PLQ713fu/6IL+dge/tbXlku4Zd/+ff/oNYtj3gtusU5PPkkaP1Hc2PfJkzxHTJ651/GfMs/z/dMBoB/h8e/exd+/MfhP//P4aMfhf/4P/6OWDMACJDjkxkyZjQYbbkI46jzxlvvPv3000nWr/Lv0F6cWe+4igywIO2C0rOi3t7qMs9UGBljBHqjDVLBL7AkTE4OTxazeRokp/UJ88w2WggRByFjKLgfJh3ZHVjvyrLsZ90ir6q8DsOk1x2hZ+glFb5479HLIAiMb2zpO0EQOh8WJq3yXgBVMQUmtLPa6LpuENE01ileaTupSmt9VdfWOu3csqqdRcmk8Q6sZ8glYw6otJMD8AacQ0QuAJGhB+fn47Pnnnx8e3M4m56C9FEguVDe8bwoXeMrjcbLSkNRawMSFei6Np726BYQGBeMATqDyAC4YEJbg5w5z2gJ0B4nefXxT37fYHt7Mpkg96RjSAdazRwACC4Y42DRGw+cKSEVSGDAPJqqboqSar9kGFp0YRRL7wGg1+slSVIVZaM3JuelJu8/fHR4+BZRnGifulwuJ5MJImrrHELa6e4JaT0657R1Z5Npt9/jUoynE+8953A2OV0ulzs7O1yGCD5OoseuXzs4OMjzvCzLYZZYYNPpuGmqoiiGo4279+/leb61NaJT6Ghjg/aUk8kkSZKqKjb7o27csY1dLPLJZDYejx977DHrTKWLwWDwyisvo3MbGxtZkh48uNVU9faF7X6/v729++6tO2VZPvXsh6aTeV3rumw6nc7JyQnthpMk2d7ePDs7s47FSTdNenRIpmfnnAeBJJ+iTKnFYnH86NGFCxe2ByNtbVE0SijmIUmoRpWT8BQNSyFaLy86ZPa6qbWaC84ccoO+MYEUuq6FEEIJD04wFQcpvH/gsU3TGOOEEE5AY21p/Zr+z2VAVDvCROqiZsLblcEDZW5gVRm6wpscAIC2tIJ7b4ljpZRytGHx2DjHDdUaI2u0UorwO2NMGLayWlR6zxhz3gohBOOcc+cdOm1Mo5RiiM65aZlTisjXfj6f5/mSzvbz2cVz48er77x39+hsUVuNDqTSKr3y9IfefHD3t7/59aKsCYPgjHGE5XKphLRcxkn25OXL40df1eMTCGMeBxcu7e1cvHQyzp0F7kUv64A3g+1s9+qg3xhv8/07dw8O7hbLs/nZkavmQaSSJDHoL998fOfC5QryKOV1A0ujE16FYXP84J3x6QMepoOtS3FvGDOVRTJsZm+/+ruBXnzmqb3rFzZsNUeT+62964G6fnn0K7/xwv2XX7jx5McfLXycXMZu/hf/8k/93/7G/5Xryf/4f/8bv/lvfuPq9fOUmwH+yl/9P1+6cCZaOicw0SYMgLBRo1dgQUv1Iq3wfLnkKzewNQctCIKy0Ky1I4Pj0xOta+89UdGllNPpnFTym9pY6xhjjOeS8fl0MZ9ML+3uhTzodwedpBtEoUVbAd/aHH34wsWzs9MqLx7euccRJpOJ4mJ2uoxYVC30/TsHdVNmWWKtffXVr83r/PD0xAssTTOZTotEhFsDpZQMlPe+bOqmqjkXAiFQkjFW1zWTwjGPAFVT8oYJzpuqkVLGMiDEcGmXZVMTw85yAECtS865Bcs9CM6latNI6DznXHABTFhrJVeIyEBEZMsGznkmZBgrFUUBZXoIxSC1Uzr2N3XLYaydG3AFDgIREKSFnCFiXWti8BHQw1aSCN5722jOmXN+WSyp8kMpRQknXFWxhGGY53kYSAYWMQBopQit9UIFzjmHoMLIOWecF0Ixxupak6AEdTfnkoBrOmbiiqFiGs2BAfDG6FAqZqHxFSIq1fIlpZQArd4uF9I5Z41lQhpna91wTjAUudBLa633lor6oygKw4g4bpIr8FiUOYBHFABQlX4xW1Ka1hgnhGJMKEUIuGaMcRBrVFEplSYJkUadc854hpwDCC46aef09JR+bqXe4NhKflcIxhHQIvOMg8hnhVIqDBLnnFDS0bkOQEmJ3pdFkaYp2R0oocanY611GneklNPxjGJaWZbWOETM0k4oWse23C6ZFMt8kaStYbsQgdbaNE2SJFK2Uh4rbVlmjAFogzAd+flK0VhILrnkite1rZsmiiKrbcug0kbQEAoDovs55ziT3V6/p7rnBgpjdRiRuIezzlproyhmCAYsAx6FsZDcOWetbhqmdR3HIYA3xkQqcc5VusmLentv13s/mUxo2HDOyffSWSukzLKMQg1RBKy1xlq5SplordG6jY0NSq6AxU6c1UaHQVSVNQNunWMcVKhkoOqyOjk+PTo8jqKo1+3TaoIIDLgUCgSnnG5V102jESFQoXeoZHBh7+J0Ol0sFtoZ75AE0z2g842U0qJ3tqXhc8c4MCUkBcAkSVr+NedN04QqYLZV+2yahjyECQblnEshtNZRFHEmvLHeeast5xx4m2+gBRQ8SiWtNs45DowLIRinrUIryYWec2atIeHysizKsvTe5XmlFFss5t57xiho51JKXQM6S0szOtuiN41WIpBcVUXFGLPek1YnADjja91IqcIwdOA9euAsTdM8XzpnAyWruqax1+n3tNaklrnCWMF7b53lLADBCbpgjHEE5pmSynvvmBNKoHOUseCcA3r0jq+cS4F55ExAq8eS53lZ15QFZ4whMs5WZoArb0ny7kNvhBAIjDMuGOfAyMyTPrXmEcOqsqQdkAKcc87iOum1ilpsnXxiK1EOa61knDHBOFZV5YxXYQgCkDuJ3Dlg3glgyJEBOHQIjAOp2HsP3DMSRQWPnjMG4AUH7wyuAo5zTgIqxsMgWCwWvX665oZ/21XX2nWwdBUzZKzHkiwGACdASgEB5rqQTPvMTf3YL62udFmWE9uTLkiyRNsSvG8qHYfi+rXrRVGVZZ2EybC7cfDg8OGjfev9YDCI47g2yyCKfG2MafJiboyLAnV6dLxzYS9L+2+/9fpyuUxCzhjzFkGEAJDIJAxDDwwzNMb0Oh2qTZ/P54wx79xs3CxnIgjk8SMoqoacCYluqAKRpmmSJJ2sR/Bmr9dDRKUCArgjqTyiUioKQiEEiJa8a6XM8zwMWr9c732SJEIocm6knTZw0jlpc2aMQaeb8pVHrjUeEa03yGBZ5LSO0yGoruvnPvTsJz720V6vVxTFwcGBtTbLsjAM4yg4PD5qBaCQM8aKopjPiiAIQhVtb+6VS80ZWOuEgEE/e+JDnwyMYgyNbL7xjdcv967GafKwuccEBluFpAqI6XR6cnKCiP1Ol3PJPMZBaLwriiLLMqKHcMa01s74NE4QcbksBLCiqIRgSiljvCC+sLVVVVlrm8ZYa7XGKIwFl4BMAPeMWa0FY+C9lJIoyUEQIEJV1Z1OF31ZlrkQQgBjHjn6OIiiKJpOp3Vd4kpG56233vLeB0GQpnFd1/S3c67WtbEGLOzu7lrntKmV5MYYFFKGgiFY3QghgGEYBFzwpqmd80EQKME5Z3VRK6WU4MuystZev3693+++9loDAHmeU1CgVPxotJXP0/PhZosbm/3x2eT4eP65Tz8bhuFiMd7b2JNKUUKPJh4CUAnzsNdfTMZcSgiCNE3LPF8nqegLqcp4TYfhCMBgnTsCydCDksobRM673W6SpEWjF3W5nMyEqLIsU0FYGw0ORaAUF2h8oEIUqgaeqrBpmqoopQwSpRpjS23Yyh6BCQhVkERxy0cAhmReb1Y1GkpIzhmHtNt9PIl9IG4dH7g5mzY1ICA6ziUw9M7DSklz/Vzri1KLYiXYBG0GUnzw3cjW70TvfVWUdEjz6KQQwBh4QAZCSYfo0AFIIQR6dN5SBIzjWHFhrc3L2rNlt9831p+MT77xjVf/+H/4o6VbnhweBCkmKuSI6K3x5+urcoBiuVzMZlo3q8UGOUJTVpUvaKmYG0t0gCAOsiwLgoDml0MPDBnHQErJhXdGSumNrZqKMVbl33MK/N71/48rTaGqIPqAh8r/9D/9QXnE3/gGvPsuPP74+684B0FwvoTxH+rq92Fn51te+YEfgL/7d/9A37y7+y0yFwDw/PMg5fmf/a4fX2vQGv7W3/r938k8Tk5OiGvDpeLW95PMav32a6/pprF1de6nfK2B2TgWWZosl8tmWXrnfNXsjTaVUvP5vMgLqw0ACCGSMNq/d5/KI2K6omg2m3EuJOOj0aiq63pZJWFojBnt7iHn4HE8HnsXX9jdXS6XAFgVeb5wcRwHUljdaG+ZB1Mb4TFh8qmnnnGNWSwWwARXcjwZW6KfdDvjyWwyX1jmyrK2zjXWFmXZaGOst85b6z0gAPMM0CPJXDjnqJ6FWDkcWFEUcRz/8A//cJ7n1lohlFBSa50v69lsNl8uuRTWWG1NY03TaMvQOSdVgNhSOYhn4bEtfiJBZ0d1zVJorZHxbjer65qqYoloQ9AS55xqq93KMRgRGTAqYKJTEB2GjTGz2ezq1ask0BYEAQckulASxbNFdi7cXNfN2fzg+PiYyGi3b9/udru0tu7v79+9e/f5559PkuS999579tlni6J4+PDhYjZ9/fXXx+Px9evXR6NRVVVHR0fb29u3b989Ojra2dlZLpfz+TwIAuPdaGvzbDKbzWYkLjmZTLTWUvL5fF6WJXlwM8aOj4/Lsuz3+7S7Jd408bIvXty7c++uMQY8vvzyy9Pp5Ma1axsbG7puCDza39/f39//4hdfyNLOxz72sTt37nzphS/v7l4Yj8dlWR4cHS4Wi+vXr29ujOiYXVRlWZZFURw8fLRcLre2tvI8z7JsNpukadrpdHZ2djY3Nu7fv1/X9WKxODo5ISZOp9O5cuWKc244HArGjo+PiRWyWMym0+mTTz5JRKGzs0oKFUXRdD4jLiR1zdbWFmPMe7h48eJ4PBaBInTbG93pdLyvSCoNEeM4pTu03jMmSN5xMplkWZYkiQdPyndp2hECqHSPBkaapoeHh2QQRMc5ay1jOBwOizwvioJ6lq30E8kujK3q2b33cRxT5ZxzznpHHGepWsYZEamiKGrv3HsZ8AtZr2WGIu7t7QFjTV1xzt+9E8MXzxlyP/DZH/zp/+PTpTYguAWm4sSAH0+mveGAfggAjNbzyTSKImds5bAqyvv3Hzzav5dksUHuAMrKHJ1MDk7nUdzXpk4DEUfKVrPJ6fK9W28fHR+WsxMAB6CBOcG9rnNdlwDsrZdfPjybbW9fipLuUKSTyZL3BfJQV1Xjin7SnU1Oqkbv7Ozk49nLL73Y6wSf//ynuoFbzqe2WYZSNtZJqwaD4dNPPP7uw/HO7tbhWXE2Pfv0Z77/B3/wB3/zN39T2tkLv/1ir5d89rOf//Lr57SAtQ4R5/M5AMRpJrDtvul0iohhqHq9Xg/el991zvV6Pbe1JVZsWcJQ6EwBKBeLhXE2SSJKQnhvKbAIoZwhboqrqioM4jiOm2baNM3td98t8+rqpcvgEThrmqqxJohCWJE9L1+66pyzWssgappqOh6Pj0+ZEifLhepkPAn3Lu7VrvnKK189OD0qdaO9ZkpGnchKrpQCzqqqKuoKAAhJRGs+uLtmq6rqRhuiRLFWI9i2qBDnVP1ANDelFJd8jTusq9rXB651EQCQTPNaYAHBGEP1eYzhuhaegG8a+UTWIbYsKWbSTyzLAld2qc6t0NIV8RkArLWK7F6EoEdYc/HSNCUaF7Ej67ICH6WZ5CsUjCIDHdnWf9OzOOeSJKFt+Xg8XjOU17xOonNyzknDwVrPGCN8ufGtiIeUcn//0fb2ZqfTo26lvNqasdjKKbDW5o6eqCzL5XIZRVGv16MHhA9ASwQD0T0QaZTqjIlPSl9L7J8kSdbCjwQ9UMSghYbobISkE83t/TIpawOl1hiTMYZEnMkuEQAoN8wYE1IIIYi5XJYlfQkRJ6kuGxHruk6SxK+kpdM0rauGcFXHBamg9no9HhC6LWgQrmRJ4jiOEZ3WmuQd0jTlXFBzEWWVhEqqqirLstfree8ZA+sctS2tCDTSAtGKD5Rlmec5IXHW2mkzDWoEuPBvB4okSQu/qOualKm990JIvq6Ocs6jWy6X3tvT09M4jmmg5nnuPURRtLm5eeFC4FZyHxTwpZStSAVjuOLvUy+vtVOIhSqlzLIsDsJer2etraqKQVtiT8RqejPpeCRJSlTl9Txau+3RT8BKQoFzTsAWPREinpycUCqCLur3uqlbMZNGy5VlBb3SNA0A0ICh7l5LrpPqI406Z8zKBLv1uuQkAu4hlKRp67z3jLN1pTv1FwBUVUWTl8ZzOwUsSinXZEwawDTR+v1+t+sJP1UqIPrnYDBgjFUrKsCKIS7pqVvi/Mr3T6mWmG9tyyYuyxIE0P0QH5ae2lnLV66hzjm28hGlN9DOsKw1WXnReCaGOHWrZ15rLTnnzLSMY+9J3MMRJV+ytbCJ9z5Uyq4UdQBAypagTbl2Kphu1TkYGGO8A5px6/oAvtJYoLJ1t5ISosjQlo9zQezvNdEV2lIVXEe8ddQVQlintdboIJZJmqblYsZQILb3jIDEEURs/2CMtRKpq9XHOUdoJmMthc61zm0sTcOyLLvdlHNujTtnCQcQUhhjuAeOSM1YlSXlAskM0wlunWHIqqaujiq0bVHIdn87jIPEJk2tNzc3hQi7nV40z4OgaJrm4PBRS/5FLKu8P+huDK6QlMpg0MkXSzqPbG6Nmqa5d+8uTRklRFEUWRorpcqipnjlV3FyXeiQZRkJEvb7/W63Szmz5f4jGreNrkhXx3tPQTVQ0VqoPQzb3YUE5hGjKOoPeowxDzAajYbDoQyCs7OzjY0NUpSKwsQ5h+g8wpqZEQQBhVNjGgD0/n0D2DiOMWqVf2heKKW8A8on0dadyggYYzSzKI5Jxbd2trXWumkP0sYYsq7RWt98/LGmqpUSzrn9/f2mrrU1kYikYAabLMuybidNOztih0sYXnOSeWaN5ZyHkrRygLE2iikugqzD+bdo0zAmyDq2rYHtdJbLJXjr0XU6faKN2MY6QGt8VTVK4NZwm3M+nU4RAb0o8ga9iKNOVVUADFByJoVSDIRubByHZVkiijiOs2x3OBzGcdzrd27fvk11PZILkt0xxnhvrbVWG+DgPUf0ZNbZLt6CcWgTOEKIqqqUUgqktRa8L5c5V1JKyRnr97ponTE2icO6rgGd043g/GD/QT7vJmFUVVUoldbaE9BrXV2U3p5Pn6uKKtwNZ6aQEm7evEk7lSAIqqqazWbrfKBgTGu9zIvt0aZSijHwzgVBULVa7G2bM96Cs1JKycW6ioFcPznnnDN0DjgLk0hpcLWWXGRRDMAX+bISzlaFslpKGSoBAJKLiEtAUCJQClgs6romxTfjHaIl0rHV6K1mTIRhGMexIBF9xuSqZse1MmEMgFlj88XSc5aE0TDpGPTzg6V1RgURMu/RC6Voi0k3T4GJMfILbC/emmi1uVbvcV1p4gHZ6iOMMYagdU0pU3AO0AMTUjBgTDeWFkiPzBA1g4G3gN6iRSfQOBQyijudpDO4c/8eK/JHJwedUZZlgW/E3tYGF727t99EZ709n4HonbNae+8ZAiBabaxpmqaJoogzAORVVQNAHEYMARw47TzzaLE2WinVyTpETIizxDYaGCgVVkXtEaX4dqvAJIGPfQy8hwcPYH+fWgm+//vh85+HMITTUzAGOh2IY5jN4AtfgLt3z73lP8TV78OP/AjcuAFJAgcHwBjs7kJVwXvvwa/92vkytedely7BpUsgJXzta98is3D1KvzYj0G/D1UFiwVICZubcHwM/+Jf/F5SBltb8OM/DhcuAGPv3xVj8OgR/PIvw+npd/+8wyH8pb8EFy+CUvDWWwDwXT4vAHAOzz8PNCQ/aFJ3bpdFEcznfzRd9l1c1659Czg7m8Ebb/whPv5bv/UtcHO/D53OH4GYRhjC4SHcvPn+K4MBPPfcH8iK8C/+xfc9DOm6des7guD/jo//B7mYM50k2ryweXJyUpeV4px73BxuTKdTNChAnos3ZzK2LuC1B27tolYOUxWaZWnC0nrk1gZMNbZOkkQKsbGxUdd1r9d79OgRYyxWMWNM9Ud0KHK1zYKEKWOqWmvd63a998NuNxKqaZpiPlNCTKdTWpuSQGVpMpuUpyeTTicFdPU8/8hHvy8QcjI5FSCc93meF0URB+FoNGoaU+mmrCoDlkpfafNAcIzWmtgT2LK70CN4RE/o8MqM29a6Kauf/vN/7vLFS2dHB4CMQrrWdrqYF2XRGD0pq8boujHe+5VgHF//tzWVZQyQO/QevXOolKqrGgDoHDIcDmutSXFisVgURWG8k1LWlbbe0SHKrcqZgyDwgMSxapomkCoKk7aYSYimadK0Na8nlU9ENNZ8J+PH4Wg4Glwl3SSiOBGQsVwui7oqiuL4+Hh3d7eqqlu3bpGxSbnMozC+ePHi1tbWYDC4fft2GMZ379733m9vbyPi/fv3CZE8OnqglKqbMgjlaHO4WCzqugzDME3Tfr/fNM3Jycm77767sbFBWAAdvw8PD0kYerg5UkoZY9++9dbu7u5wODw8PJRSko1HlqSEmExm43ffvT2bzXa2d7/ytZeKojo5ORkMNu7vPyBpYCnlbDa7fPnyYrl85513JpOJMebLX/6y1jqO42eeevrixYtFUZydnb399tve+yzLdnZ2NjY23v7Sl05OTmixJnzh1q1bQoiLFy8eHx+Px2OSUGMcjTEvvfLy5ubmaDQ6OTwYDAYEzk4mk/F4TCfwqzeuX79+/bnnPrp/8Oi1114ry3I0GmmtxyfHWZbFcYt0AwAiE0J0er2yLE9PTy9fvvr666+/8847H/7wh6uqsr4BgKKogiAgpgXBkQcHB2maHh8fE0ZDx9Q0TXvdbHt7+/Dw8Pj4uN/vP/bYY1VVHR8fr+lsg25vY2MjCAIyRu/1Ojdu3HjzzTfp48fHx71O11q7s7MjJAeAb7z+zU6nc+nCRRqTy2VrcCRXWECWZVxI787ffA43N3cuJyoI5mUuVDjPi0LX127e4FLUleacW2MA4Jknn9Jaz6czx8OmaT7y4WefeOLxt95555XX3yk1rxq7f3Aiw24Yp9d6/esXN1/60m+8/dLvAOqNbrLT66jRNuNeN1WxmOumQhaWjdPWQRgnaUd7pqJsY2to/H7hS9UZaj8XihMet7u5GUNz682vcb/8P3z6h2JWN/nS6ypJYvBWoJhMJuP5Yjjs44PDO7ffvnrzw1m3h87+o//t/73REb3YPfHU04/fvK4+4EH/wWuxWJyenmqtgyhujAUAwuCMMXVdVxUjvXUCXgVrHa7o3giyUUpJISi9F4SxRy8lH4/HQkmCclhr32Kdd1Y7wbiU3KNeLCsVSmDyqWc+rDivylJKSYzIWjfGkdeTR8aNRdOA97JE20kH1zZ3L93QHLy3xqPd2Bgenx69/KXfWKKpBNqYIw+Acx0I5qEoCoeec07ZC7FyDcGV/LFYnfwlF563iTRCQte6yYQFE6TVlrpbVDIkkaU2znLOGKPzMLUhrEy6/OpCZN65UAXOuaap0l5Chn70QwDAGZOSC6EQsakbAYz4nha9EMJ7672l3CGRKO1K0FmulJfpNETV9EQqotJ+AlaoW1so2XjUJQBwzrw1SvBut0vZLKJACsGFksYYKcnWyZNnoPd+LeBHpzOSwhCsVVyUUjoGVV0xAWwlgiEEs9bTrxOcDQCEiRD0RjATAcQ0DoMg2NraEitB5/UBh0jK1lqtLS1D9Oyk1FyWJSlLkAAI2Z0ppdajkfC7dQ6VbonaZJ0zIACdr6QnOAfOhWjtvxQAoAcHyBlnjDEOwJgxRgoGAASu0VMQ2si5IG5mUeZlWVKBC5FM2xRgWXnv4yQKQuUZkIzselCtkeuiKJumoak3n8+VCqkXaEWgd5KcFI1VrbXxLggiOkezFWl0DayDg8oZpzUhzqYxtT5P6AqAilq01o3WlK+N49hbXCwWlFogCj8dgUl8kvN2JJPqJj2sEGI4HFLp+ho8pSeltqLJuKKvolmZWtEcIRCqaZokTgFguVx67/v9vnOu1g3njMDoNQ5OuVJE7Ha7tKYQfZLiAC1MQgjj0a+Ej+M4pvFAtGWa+DRJQxVQBKDb/qBLp7WWBjDJivKVheY6/emda6cnIpLEsPUO2owRgOdcrOFmQpwJoiXXoqZpiNO2Bp3ReccdW9n0xXFstGbQalsDQCfrqjCgjRPdNmGvVJXCmODcOucIL3MrFfjGaO9ti7UhF5wDb9kJ1loBDBgLw9C2GuvonGuaBpqGSeF1Q96n7fxVUaBA8IartkpeAGNS+tVhjzGWxrEUAY0WzjmJyxB/MggCIRmsVFBoZnFrnXMG0Tmk0hCKCcaYOI45tsibkNIYkyRxGIatjSS+j3gCACnnUPKM2pwgFu+9EMRoBljRmcnxBLHtyvUCwVbGm0mSWO3QOcrT1wvNQLL3OdrfShlETsBUywChV9j6D0+BFQDirOOcOzg4YGynP8iU/HbEgy6rtXOOrwabc843bh1LgyDodDpFuZRCkTqNds6Ba5pqVkzHizPGxEZ/I+kmp8dnx6dH3U4fufPMGs8RcXNnk2K4tfb4+JgK06ndKCPS7XYXeT6bTR9//PEoDorFsq7LZZ6PNja4AGB+Mp1mWcY4z/OKBlKn09nY2Dg7m0wmk16vV1XVZHKWZVm3l5EtNu1IKVAzxjqdDuc8TTre+/l8XlUlaXcJROPs2fj0wf79JEms96+88kocx1tbW5R5unr1qhAiXJkJDzc20zRd1rVbSf4eHhyMtjYJgOZcUV6c6mAoV9RmYjxLssha2+120XuttfvAWGpLYax1Huu6ZkIIqWicRIFSUWitzTgPhLROK6W8t5QQbcBkkHrv53bChNqQW8aYJEwBnFVNuxo5hxwYQ84QJFeeofdeSXnx4sV7D+67xkopbWOVUlEWlWVZNiVnwmidJIkSASIqoaqiphQTkxKMcdqmUdLo8vR0msYJB6WN9g4BmNW+m8W6ttZa8KzMGyFEmgbGWhUwJSVjDBDDILDG3D8+juPQWhsFoUozGtOk407LAAUmrbXkMsnSPM+tNVVe9Ho9tOjRJ0mia02Z0lBI4Nw5p4SUcpXm1dYYg9YzKXtZpyzLUEgQvCrLfDlPkmQ2nQBwYsfUde0tchDOnC994B0GKkLPRhvDja2tpmlA8CAKiVADAFpbTjAtY0VR0IHfUPB23nqPiIJSRg6AA+etaQ4ict567FH8ol906BtrMpUwxbl1jIEErkSQhfECNZXwOG/QyUAqEJI+jmQRgpCEkdjYoBl4Np8iAKL3zkomFWNa13VdxnFM6jAUDQnzZYxpY4QQgVTWGm1dIuQwThqjL29s3j06MM7LKEYODq33iByZf19a/lvi1eqCbwGjATjzzoNnjPn1gkcmjYKhEozEK2ngofdCSQAw1jImlBAA4K1VUupKI+el0cBEo/XTH37+qWc/9Pd+4Rc4eAD2b37rN37gs592thwkl5Z5maoQFedBtzqPbey05cxKKakCNk1TKYez2Yy6stvthv2+bkwoySXMV0VVFVUcJ0oF1lpT60iFTVk7bQFYXdZZlu3tXWjKanJ2zs/9tb8GW1vwX/6XAACXL8Nf/svwiU/AYPDtAd85+KEfgl/+Zfhn/+y79G2TEr7/++E//U9hdxfi+Nu/v6rgz/wZ+Pt/H37nd/5AbNM4hv/uv4PTU/grf6V9Jcvgx38cfvInYTiEbxOpdg5efPEcuLnbhY99DH7kR+DppyHLzrmrsoQf/VF48034tV+Dl1+GxeK7ed7Ll4EOU9/3fd/98wKA9/CJT8BP/iT8k38CL7/cvvjvtcu+6+uJJ77ln4sFnJz8IT7+zW9+yz83N+HiRTg+/ne9q7t34Vd+Bf6L/+L9V6SEv/234W/+TfjKV74j+7jfh5/+afiTf/JbXjw9hV/6pe+IgP++jy8l0PbM2u+Stc1RcuTVslEsDNMYnUPEiEcbnY1ulDm/dffwvBu7/gTinHhV9WbtjKWg1+l0isWyruubl29eunRpMpkcHR2Bx06vJ4S4duEGbZTZSg4+FmlTNR6YBGW9jYLElCaO452LO71eb//hwTe+8Y2dnR3eFYh49epVq83h4WEn6m5tRMvZ1Dv77I0nL+9ePjuZFPNcADPOzovco93aGCGDyXSal0WlG2QgpCR7Oue8Z+jQewAm2n229c55R3VYRPmx1npAa/347OQ/+smf/NjHPnZ2dKCUElyR0VNZ10VRlLWumqYyjbXWom+cc+iBCRDtJhsZUPkYIkP0VBzNJC/qyiFyKfLFfPfC3ie///u/9srLBwcHZVl2Oh3TaiD4dXaTt04J0EoooF/z6WQUU+bfWruxsUHIxWAwQMQ4SrRp4jjOF8soPP9A2+910XS63S4d2EhSqSXXNLVSqiiKt99+u9vtEkpLeOLNmzdvXL8ZJ9GtW7fu3bt39epV4Hw8Htu6Nsbs7OxmWUZYRqfTmS7mQohut+uc29ndJTiGAOXFYrG9tZUkyXK5JCYjscBms9nVG9d3dnbKsnz1tdea2nS73ZOTk96gz4GFcXL3zr3NrVGv0yWWQBRFe3t7Ta0PDo7quj49PZVBOJ/PnXNbW1uURH/99ddXG9y28PnSpUuMsfF0Qqc1YoSRmPVisUjTdHt7++bNm2Vd0RFCSkmoysODR865LEmDIJjP59vb286bN9988+joaGNjQ0o+nk3Pzs7o+EQYR5Qk4/E4juM0fXc8Hj948MB7Tx5Hy/m8KIokSd56660oirIsq99XS+PXrl3b29NVVRwfHwbBR43hr3/jlhBisVjQx+lISZVtSZLs7e1tbGxwzheLxcHBwxs3bsym49dff50+cvfu3a9//etipYd48eLF+Xz+4MGDXtYZDAY7Ozt3797lnN+5c+/u3bt1XZOp4HA4PDk5uXr16qULF5umefDggXPu4sWLzrmjo6N8udTGcM53dnb6w0Ecx6QKejbeBfjBf3vIfeWVV47OJlzKvKxq3Vhgy6LY3d0TSr733nvoGQOIoujJxx6/897tolyKsO9sA8zOZrN7d2+V+YxHoyTOojBDoXqddKOTvPCvvnD/9a+M0vATzz+/O0plEFhv6qYsimK5TGez2dl0qXVupfSCITKHDADLprly9abxVZHPHrk7zBt09vKF7UTau2++3Ez3P/Xcs5sJB1sIiZXxy+XSA46nC+sdUwFKLQU8vHe7t7EtRFxr9mC62H3+qeGoM0iVs/r+/vnEqHsP7s9md9K0QxwiOrcTpShJkslkMp3OCQtYs7GWy2Ucx4FUADCZTLrd7vXr170vjDHHp+8EQTAYDGiwnZ1NyrLkUkZBIKWMokBKuaxLSgkA4iK33trxdNbNOoCuMrpF91QQSKYUWXtxqx1CLTlfoD5b5KlznSxx6HggqjL/+q03f+crL7757hthHBhwPBDImAhFXlcKhXFaCBFFgWfgV05la6yZMAhLTAshPojTEahHwBnBClmWERHHrgQiKTVFICzxFgkMBQDC/tYbdYLnyrKmNiQGrpStXvCaXreCpxsAIpxq+i0lhVIRocyEtBKgTBgN1TIKBsy2srZi5Tnmvac9/5rbCx7VympsTV4GAOIqHR8fE7i5pgES+kMoXhDF9PhEzV6Tqz6IuJE+MkGuQjDizXAurl25bpxtbZdWtGtY2bwj4nJRSNEyste8zjhOhaCxJ4j6R0GGbiyKEufcZDKhjiAKNuHU5J9GfGdiKa47nT5bFMV8XkgJZFoVhmGn06nren9/n36dr8pzOW+Fdn3L7/GIyIA7QGLfW9dWUDVNRfk5Ot2Qoqj3vtGacP9ev0sYJcU9bRoaD0LyQFA1gLfogyBgnK+zHYTYLhYLKTlBPPP5XGvd6ZCqCVtLzRL1ntB/6kTBVujkCm7z3rc+EKuFW2vtEdM0rVkN5turaelaLpeVrJRSgVLUMt77TqfLGAZBUJal85ZejKKEuIpkyqi1Jmurqqqog2i5Ia43kdvIfxJWWD+1FefcaE03yVZ1ulRfLoVSinRB2XA4pAbhjLUgTtNY6wkUW/N2aZ2luUN/I6JDT8AI3QZNhHWeiYpyAECFAWUm3ErCmPhShFTSwkd4NKxIr/REWZYFKqSYQJoh65mOiEiEAwYCWttGp1GsbCeda8VqKEVNWDNR0PhKpLusS1xJdQvKaawcI4u8XC5yABCq5Xc3TQMeaWrUdU17gHUz0gAOw1AwKMrV14KIokgoiYjeWm1aSWshFHpP4civnBsUMGs9MIbEEWZYFAV1X6Ub6ne/qvNeQbFsTRpbU49XhVBMSgnM25WRIL2NgkMAoK13KycSkg5Lwog2q4hEq2DklQqrHOp6JBCOv2JwWwplzjnvHCI2toGVTymNxpWWdJuqpJtBRGt1ECjnbRAEg96wWur55KzNYnIA4J6qFgEAOIAH5B8EnxERgBF1cI1NIzDyKqN74KtUolIqUtG3yUDTFYRBlmXa1H41xxkwpYRHpFAJAFVdMV+WZRkGgZSSARrrFtWCMc4YKw7z09mZrpxtzCKfb422uYTGlOg8TXAAODo6kIxTaufo6CgOo16vEwRRXddpmhZF8fY7b8ZxnMVRv9+fTqdpGgvByjJXSvT73brWo9EoCII4TheLxWKxmEzOtNb37t0piqKu65s3b3bTzMdJkiRVXhSL5d7eXpZlZ2dnWuvhaMQYm0wWpmm8tZLzSMXdTsKlODo6Wi6XnEMahlwAABwcPqTl+N79O5T95Zx3u13OoyRJ2iID2bpuerRpmnLWqvJGnZBFgbXWWiZlQDkkQF7XdaCU955xHkWRd+ABEd2645RS2mmjtWSM81WaCpAsv4UQxjvGZWOMtXY42vTea25UEwjAVEZ7uxdj210ul/20G4TCeC9Hw+0P5g+9sc56yQRXKkmSsqziMKZgSiIjZVWhZUY7pbizWBb1aLjJGCuKpdZaqMBa65paiiAK4q2dXaub6XSaL6ssy3a2N6WU0+l8Pp8vF5X3HL1w1nEuBVfM81BGgCaNUgCw3juLtdfLRbESyU4oKaQEV1wBQBqlApQUEQDkTS2lDETczQStJeB5qGIq4Tw7Owukb5qm2w299dxDmmWImJel4sJar5TaGG1Op9PZZEmG5g69c253+4L33jcOADY3t6fT6WZ/RDnYxSw+dxkLZXT18vb+u0dXLl9OkmQyntFGap4bIURRthHcOycYr+vaeM9V4IoShLS+olJNzjm5ybTwrkfvvXE2CaN1dOOc00xlglvnCl1nIlCBYhbBs0CIUCoEZa311npv0XnbaMcMCZbTXtDZlgBCN9nxlpYZotmDBM65847VNeG8zrWmz5R3CoTw1oO03llvbcBFKmTsoR8lvSheGO3RCqG0cZ4BMJCMAQiiMwC8H6fWWTXGGGOSIGka3ACc8mlrDNp7LxgLpHLGOtSCcSk4Z2isMRSIPTnycYaA3kspWBhqrZUKa2OAyUdHxz/71/4vW//iX568/SpDcMY2RZEk4cN37/X64SAbMO7H4/O3KUqEgYyFEACeMca8EKAu7V25e/duXWgBYRzHWmhn0GqLDLy3iBgEqFtNQK6rWkBQLhtrrTNGgApEVNfWu/d/MUngz/95+NmfhTQFAPjFX4TJBIZDWCUpv/0SAra24D/5T+BnfxZ+6ZfgX/5LGI/fJ9j+3le3C089Bf/VfwUXLnw7ELy+4hhu3IC//bfh0SP4H/4HeOON74jtXrkCP/Mz8Cf+BEgJaQpf+AL8038K1sJf+AsQBBCcl84UAn7hF+Af/AN44YWWxB1F8N/+t/DH//jvc+dJAkkCW1vwuc8BAPz6r8Pf+lu/vyoCPe/P/zxcvPgHet5f+AV4883fC8vmHD7+cfjP/jO4dAniGH7u5+Azn4F/+k/hU5+Cz3zm9++yn/kZ+KVfgn/8j//IFJB/7yuKvh1vPTj4gypp0PXwIZyewubm+6/cuPE+wv7vcn3hC/BTP/UtkhpZ1vbpl78MX/gC3LsHsxkEAYxG8Mwz8JM/CTduAOff3o+/+ZtwdHT+T/wejy8l7O3Bj/4o/Ok/DVtbAAAnJ/ArvwK/+qtwcPCHw51/6qd+9vLF03yxJE2uQEiqSPXWSSlv383+5//POZ/6oc/96PVrn6CTw7rMzZv3BSUd92v6g1Kqqeo1bQHX9YDOqTCgRQTQ0ImCwru1Ngjj5XL55GMffu6559I0pVPTo/2HBJDNKlsuZlkgL/S7X/2N3zo4OOzIEJE3jbGN5gGPoujRo0cnZ5O8rKwHsn4q6goY40raqiF8wzjvPNIaap1jTDDGPKDgXABo3Sym04999KPPPPX05PSMITLOEV3VmLKuZ4vlsiyruinLGgWzwCygQ4/AkQG50DhchTbk3nsHiMCQAUPGuGDoJpPJ7u7uJz/5SWIezeeL/f39pmlOzs6cc4RArRcyttoBe+8ZbyF7IYSSraksqT1IKcsyd871+/18vlAysNZm3c5ycf4MZwhciFbBYFXQGsdx0zRpt0M0NKpii+OYIB7J+G//9m/THmC5XHr04+mUkqnW2o2N0e7ubl3XnsFoe8szcM5RaXyv18s6HRoAiHh2drZcLp1zZ2dnpFc2mUycc1EWyDC4f//+YDA4G48nk8mFCxfefuuWsU23202imLQpvPf5sgjDsCjLk5MTKWVZN1rbo6Ojw6OTvKwAYHNz0xijrZVBsCyK0Frr/Wg0evzxx4+Ojnq9Xpqm5EnYPn6gmNFEftzY2EDEg4ODJEt3d3fv3bt3dHREJkiMsb29PcbYo8MDzvnRybH3ttfve++Lsux2OsbYKEpodgwGA2orIcS9ew/efOudJ554Ymt7++TkZDKdBkGQBMHx2Wn+YN9au7293RsOsiA6PT0dj8dRFC0Wi7OzM8Ls3n333ccee2xjYyPP88FgEIYhIi4WCwDodruERwyHwzRN5/P5xsag1+uUZVmVOedcCBZFQVU1ZFdFnXJ0dER4hGdAv1iWpQjUnfv3tNaUAxgNhkmSlWV9cHB0fHxaVdWlS5duvfHNr7z01dFodOPGjazTOz09TTvZdL44ORuLQBCtvqzO99hZ6urLL31lPB5fuXZjY3MUxmld1y/89peMMZ1OZzabLWbL5XL58ldfiuNwYzhkyt56583Z5ChJ47PxmLHAWI3ORaHqdAYRxxd+7QuL/beevrL36eee2Ol38mJsdWl1JZwNQGcBim7CAeq6LvMKGh4GPI6V9l5wbHQ+GPVtUw6HQ13MIwUBmLdf+0aTTy9tdJ+8usP0QjLrjDZNcXQ2Nd4JEde6NmWhPYtDsbPZTwJ+d/+eszjev43N/DOfeu7VR3c/9OxTYbp7bgscHR3v339DCLG7uzsej6uqiqLoiSeeODg4EEKQperOzk4cx7PZDACOj4+jKNrY2CA8yFr79q133rtzm/hE77z3DmPs2rUbg8HAWQSApmnu3LkzHA6J+iQZD0PlvF0sFsYYi5JzLrlIokBr/fo3vqmU4lJIKUWgNkfbUZScHp1EUbS7vaeUeuGlL5dlefnKxW4306Za5PN3333rdHIcJqFMglzXcScGAdZhoxsmOFogLMmiL4vSriRuGeIavxBCGONaQeEV45VSJoQNEdCgFG8LBAHoPQSaW2vJlE+uHIfWlfUE5n6Qd0xSsMSUkVKSW9X7XNoPUKEJ5BVCULwiPJGtJD7WWLb1DnwLqNE9EIBFAAEdTOjXyQwcPMqAivcZ5VyDIFgul9vb2wDw3nvv0ULZ6XQIPsaV4KxvTXEgiULC6ehIRWAigVBExA6CyHtPAZzIrVIGWpsg4OAxDiOtNa7KapngtHzHUVpDbXS91hKJoqRpDElDlGU5HA5JzCcMFS3fa6K9c240GhGIhoi9Xo8xFoYh/S8Knqenp+scMwnFBkFw4UJmjFnLKZC2Pq04URQFgRRC+ZVig3MulERa50IIRFfWjTEmTiJatREcQ+Ct2Cu0+4cgAID+oJfned1UnPNOp0OPTNAhGSo652njkSRJKEhmoeWTAkCgFPWXUuH6a0ejEedyPB5zzimlun5AumchhIriWMqqquj/SinJEU5xURQFLes0BfhKBFxV6txAQTslGv+MsbqunfPoYDDoxXFMLRyEiiYFImptaaEhnqDRlrhulP+jaUiTrt/vK6UWiwUiciFIxoT2Y2s6ql/ZG1IGiLQjiqIYbo6iKKJwDQDaaCJdOuPo0QhRauvIrSVwmUoQAIBL4Yxd1q0APVXEU2JGKUX3Se9Xoaya2mpDs4yiCrZWey0uSWxZigy20U1ZVaJSSnmHQggpYL0X1VoDAw+rI7wQYJ33nhSZ6adbPp33600LY2x7ezvLsvF4TCaQ0cpKka+QetqQCC7XqQ7UJohCglk5J7zVxXHKuYSVZkue5/RQiG6t2qGUoiM7Q1h3ATWUrhuagN6jtVYGjBLnLR1BKb4q9WhDrhChVM4541trPhpR4FEIQeUFFGEAkTEW/P+4+9Ngy9KsPAxe6x32dOY75r2ZWZmVXd3VczUNuEEMTTPJzNiAhFG3ZMJ2hEARdtggITs04LAQWJaNw5ZshSyMHVjIqJmCAAlaFqD+oJuhG5quqq7qqqwhxzue+ezpnZZ/rL3PvZl9s6oLUMT3fftHRda+5+yz97vfaT3rWc8Tx9z5Te0cOW4Q55wzhhMDiBhJgUo7Cs65SCqQjXVhMwTIKYzrqrkB7sM8t3CegLe1PJeK1kmSAXtnG0yZnzqKohA4vmhyHtS6pCqlq6pSWhRFsVrkqe52Op35Sd6ALw36D81bRmSsmFpVDQB+3AZ8P3c0cHae551u2usO4jh1LiyKJcAFHgyBmtFBqrmOc44zSiiEVIpnQu89+LLSOkkSBIEAVVk2i1pAsiCUFAgO3LJadNNuFiej4fD46LSoDARI03g0GtnK8rJy5cq+c2E2mznnhmmkNK+nYWdnZ7lcvu2tb5FSzmbT/f09rfXdu/cQ0dl6a3MzhJCm8eHhIbf/arWKoujJJ59MkkRrWRSFMRVASJKoKFbGVEmScBGhMaYoVs41qlBVXUoFTz755OnpMZGv63KxmO3u7iIikb1x47Ekye7du6eFvHPnzmq1jJXMupF3psgdj/GiKJRSLL7c6/WyLOv3+91ud9AfcT/Juj1ONqdxsrW1wwOKY5CotaZcJ4HW80BZlmkHtY75A1JKEg3oLNp+4TiMkpGQUkrUKpFSxXUcgKKBsK7avbajhr0BbxF44K1WqxCCQEVE1oSqLAQqb20kknJZx3Ec6wyClaC998PeRl3Xpm4SdJ1s4L0PpnQ2CKE2NgaRTKNYp7sdHtKJzgSqRFnoCGcdkIhVpOM4SRLmECGip1KrxkeCB2G/Y4b9ISP6iEjknXOgwXtfV0FgnEbCObc53MmyrFHyqqqdjb61dmvYj2Pd6/YikTYSJ22OdDqf5Xk+HOwAUb4qELGbDiOZ5WkeRUlZlnGaxHEMZEDC1cuPZVlXSqlFvLGxwZnGSXz5zkWF8JcvXd4cjaTUb3vrE4hYFEWcJiQaMTIWePLWBSIhhPXNPsxTiKPISskiTdCW5DQbI0DEpg5inXxo/4tKKevdq/dv96PO5a1LWRyH2lsftFK6sjIgCC20DiGwmSwgBiJjrYw0X0eFwIQCTio45+qi5LQ/CYpa/SlE9L4GELz7REQVHBEGACVEJ04dhFpFw06nWsz2t3bc+GhemzjSgEGpyFrbavYLIiannKlq8JaF/5eIZVvI+wDYlCZBKzNira2qQgoQEARBt5slSeKBELEgnM0WAkBrzT4nsdJEBERa69JYqbUjn1eVNT7Nupxz29rYXoxnZJO9rcuJFhLFspin8cVeNJvDnSTb01qnacqDM8uyPM8ffyxa7/5Zg8k5V9U1b8qttQEojmO2RnXO8Y5qtVgyT8R7v+heP7m/3gzBl395gzUDgFIN/vXah9agNfzlvwyrFfz8z7/+5/nIMvixH3tAyvZRh5Tw2GPwoz8KH/zgI+FXa+H97z/DWDsd+NqvbbQvXuOIY/jKr4SPfAQAQAj4gR+AD3zg873/9fF1Xwd1DT/6o6+Ds7/R5/2xH4Pv/u7XgptDgL09eOKJM9DziSfgQx96/aeG9pV993fDK6/Ab/3W69/Sn/xI04f70jPPvDEsdbmE2ewBuPld74J//s//FO6tKODnfx6+//sfOCkEZBl83dc16YfTUxACNjZe6yK/+IuP/OuFj9/rwb/778L73w9PPfXAn3Z24Hu/F773e+HTn4bf/E34yEdgOv28sjhXH3vyzW++AgDOGCllcD6EwLXbeZ4X5mK0CDCxXjVSm84ToVIKdDCmUYLzSM6hlkoIUTuSsse8njWNAsApJYgoiXCd8Q4hOBuCJ6DgjEjjjSff/J7l3LEokBDJk09+AS8rnVGsL+Mw1QcvfHZ2OhdB5quStyNlXWzsbHig0tTLfGUcKB21u1XQWnvrEFFqbWvjQvC8hW1me+JPctC1nM339vaeuPGm2Xgy6jTGbqZ2y1U+Xy2Xq7y23rhgyBeGyrK03gOiFNJ6AkQg0ZYBAhF5oBDABw+AVZWDwOVyubG19YVf/EUhgLV2Pp+/893vfsc73jFfLqfzudbxarXiLDvHS7IFhXkR9I3Hd0Os4+ZlrlCSJDzt7+zsjMfjNMlQgNKPSCgBDIfD8XjMew++VFVVSZKgkiGEjY0Na+10OmX8pdPpnIKsKvP7v//7fEsy0vcODtM05eI7RHF8fHx6etrvD/f39+/cuTOZTPb397Msu3379tPPPHPjxo1LeztpGldVNRwOt7e32cUIEQeDAceozNF+5plnamOyLOMNyXK5HAxwc3trOV/ISAshdnd379+/z8aGkY43t3ecC977g8Pj/f39JEmiJGGWsRCC7df4eXcuXeoPhy+9+CJzFLjumCP2Xk8wKnEyPu31eta71Wr16quvMshrjGFiFyIy+wkRuXJ8d3/v9PTUBj+dzXq93v7ly/wUeZ73+30hpQ9BaZ0Qcdkgc5OFEKfTCe+8R6NRt9tN07Qs6tPTUw4Mjo6O7ty5MxwOQwgvvPDC2972tmvXrn30ox9ttuZZxhpoHMDw5u0zn/lMURT7+5eYVM4Lt3Nub28PEcuy5CiCVQ4Y5GLuP1OQylWj8VdV1fb2dlmWz73w2aIoSCBzS7uD/ubO7nyVH48nRW12NreuXr0qhDg4PvrMZz7jvL969erGxkbavRhDOTo9AbKg5GdfvvneYT8IqeNoOBzOZrPhcChRkA9MrYui6HQ8ni0P67rUSbwqCmOMD8KUy5k8eu8Xva/X633kX/zy4s5nN/rxm6/tdhVV8zFCmUS6qowpckAQwUcCLm2PFqvVeLV0tizmJ5vbG8pCVUxms8XRPep10iyiYdLP56fPfuoZ8HUsfJagK+edjX6xXDrn5vN5aWpjg7G1EODB57VRaWbz/Hc/9psAETgPACcnx6+88qp31e3794vi4jrcxXJ5fHxnsVg898JntdasV/6JT3yCISqusqidZb754eEhCZSRvnX3DgDcvHmz1+ttbGzoIt6Po1DknFM5Ojo6PT21xq8VEm7evPniiy8GchsbG70sdc4laay1XpmQ6Mhae3BwkEQx72eFECBwtVpNJr8tpXzbW98+n88j/ezGxka3o6ra/e7v/ZaUmHXjvMxJ+r0ru6tiuaprwkDkgYTWGh2CFOi9Mcb4RoER2piQS0IbIhgiBuL5LUmj4IHHJn9lOBwS4enpaZIkRVEJIThmBADRliYwssOT9ppJCgBrvJjHgjFGCMXkU+cciyqweAjzghngEEIwR1i2Gq9FSzZk8HeNzgj1ANuOoQ1Hju+hWQFbnChiiVKF2JYAMwrDdc3OuTzPR6MRkxB5Sg+tzC6TB1lwmWcwJSXjQaK17WIWYWltVZk1U37NDwUA/gDf+To+1VIZ44qyTFPQSimZSimNcc41gLX3njmS7LgghCBCIUQUobWWRV0YImSFfa31bDbjiYhVFJi8ORwO+WVxB+h0OkztPD09nc1mzOtkAv7BwcGlS5eUUovFgitrhWjkShhiKIolohyNRoMkZoZ4kiS9RAshTFU755TSrZSEZFizLMuNjY3hcMgtSa2cBS/xHLomOup0OlLKgKCUIgCe0hnk5UdjsVFWkIjjmKjRtVgjkqyItX591tpOp8NyUsZarRQALBYLck3CAwB8CFpr2TKi2Kb1c484jqOogUeD91VZImG+LOq6DqHh2iupy6pg2XeO7Pg2vAuImGVZXqwYf2dcRknNHY8bnzMWpq6lUvw4sNZqaNJCNoQgUBLZEML29naUJsvlElsVdW4urZQSaj1qWAmHSfc8WDjApJYKyt24gYnbsbOmJ29tbb344otZlsU6YskDvtuGLwwAAMbWMkjeDykUzD5OkiQQsThYOKcpxM/OvO+q4aWhCT4gKETedawzT/wITIDgnDrDtU3aWEsmm68rBoho0B9ykml9BWHEarkUSsZxujHa4G0VF2rwe+H/5blIKRW1vAGJiqH5AMRgK6fQIBCXv3MxARDwXUlkGY0IWvlQHsJcjMUXZ0R4PWz5mlwXIlulI9EaDkspoQXxGengIYPQSB6xWCs3F+/W+I1QQMRGlZ6nX25Dfu+qdQLkgY+t4E8gV1WVVvG6V7SZGxbKJ9GKo3J/Y7jcOZvnOXkog7EVg+kWkc0ReR0R8ACjec0cbGDlQCRahmDzSR+CQCmkqV1OuVSQZUls3IVwszHGOxclmnGzluAspYQoipRSS+89qzBrREQbPIAXBBZsxCWPgOgqRClAKEG1y82y6qTd2OqsF8dRSkRJHJd5lYc6SqONzeH+5Usnx+M7d+bee53oONaj0YDFTLRSy9ncOVfZejQa8QTL68itW69wDq8qc6Dw2GNXOFuWpumrr77KqObu7u5gMOAKA+89k6CzrMsrrJSNGhIA1HX+7LOG98zGVj64l1+5CQCdTuf48IBFk/f29r7maz/w9NNPHx4e7mTNSi21WuZ5p5M558h7W9dHq1Wn0zk6OkxTFnom7/2gv8nLxGg0Oj09jeM4BEjTtNvtrlarOI5Fq3nLPS3STa6UiARQt9sFAH4ofpYQglKS1WmEFAGDEEIIrjg5U4sCIbTWajTcTaJ4LTLFudx1RRWvHGyNzZneqjZr+CxubyVN00CeyyuSJJFKW2uTJDPG1GURGlV4tZ74uEt9bpYGADjTyylEKaVQsijy0WjEingAcOnSJa6vQc7Jt/4D7DzAPZXLZuu6ztLUOaekZtC20+l4U1pre4OBtdY4y/estUYC78nVhucRVKopnlKOdwCc3ozj2DtyzqVp597djd/7nQuWsfe//6tvXJt/wRe8t98Z5XmZl0XayZqYn6e2dQ0UBaCwXBW9NBFCEJCOGikl7z0Teps9kFSCWVcAkZR4TqaUKJCQhCCTaGXqz95+Zdjp721dipMYhQh53iQtnUUpet2u876qKqFVCME4284IpLlYgvdtSiW9fifN6rp2tQkhaBWhkojogwPw5AMgAiIhCal8CETgKRhnyYdOlOyONrFYxHPty5wnCyJSKFhRfo0sQ5sla9Wqm78yDL3+K8BZukwACgCJIpIi6naDc3EcgxDoXJZlVy4/9gd/8AdVXnS7SXAegIEY1FFUlqXSuvYevJ/P5/PFdDTs3wJBEE5Oxk++6fpf/NCff/zGlfl87NAZb+7d3/ynNy94v1/1lV9z5cq7ZauwRi3Fo6GNyAbBx7ZaisettTZKYo5d15sJKaUSzZ5DSvnyS9kf/D60owM+9Sl417suuIHXPRDhr/5V2NuDf/gPX//Db3oT/F//1xu7fhzDP/tn8H/8H/AzP3OBCsRsBkdH0D23iOzvv/41f/mX4Ud+pPn3Bz8I3/zNb+yW1sc3fzPcvg0/9VOP/MAf73l//ufhQx+Cl1565Gc++1lYLmE4PDvz+Tz1+tjYgL/9t+E//A/h3r03dm9/jOPSpYeh9hdffGNXKAq4dQve/OazM9euQZb9Kcg3A8A//adw4wb82T/7SKR+a+u1vp7n8A//Ibz66iM/8LmPv7MDP/dzkF5crNIc7343vPvd8J/8J/CP/zH87u++vuJ25XBZ+BCCqWqttRKSlfbRBKm7NlzsyFwbRxBVNQmBiAoBgxfkCWXsAUpjVRQJFCCj2tpYR1VtpJTeAweQxroQgvIiBEIprEXtZVUFRJQyMs4hqmCDlLLT3/bek/c6kkop65oJ2dQmRsoI7989Ksu6r/QynwtA651zLssyVg1arVZR0lVK+VZ207qwLnflJGjjDQiiqahr67PYQe4vfuhDzz/zjJJSSRlHHVsWRVkti3y5yquq8hRM8AGE9bVp9KWQhLe22Ygjom/QbAqAnsX5QkApptNpkmVf8RVfkXU7KPV0PvPef/mXfzmLJu/s7PR6g/v374/HYxZTFm2NOSKqSHP2HgAgIP+7rkwcx1mWjUajJoKt6rirmcpKAbJ1VvDBI46jbrfvPVnbsAaAq0SlTDrZWj2Di5GZg9bv97mJtJaISIghhOVyyZZWL730UqfTUUpFUXJycqK1jiJVlvknP/n71tooVlVdnJycPPHEE86brJMQeXbdQUS22RCoQIvRaGSsJaLlcskkKWvtxmhrtSzu3r3b6XQW+WpZ5FxUGMexiuJ+v2+M6w9GUsrRaJSXJdN1Weru9PTUeielZErv5cuXVRQdHx97om63m0XRxnDItBHnDCMmjB0cHZ04597//ve/+93vefXVV50zvNVk0dKAAFIknazT6fX7w9u3X7VVzdvcoii4G8xmM0YV+SlefPHFbre7sbHR7XaFEFqJ+Xwex+nu7q4xZjqdsngIR7O9Qd85F8fxqsjLuvrZn/+5KIquXbsmpbx9+/ZqVezu7iZJVtclh2qnp6cM9DQEN2sFUpIks9ns1q1bTzzxBLSQita61xtwqoOV3xi8BsS6rjvdrrG2LOsoTtOsC+MxoHzs2tWiKKraRlESxWmSdowxo83tk/H0/uFBFKndS5dOJmMb/MlkHE4vnoA6g34cb1/SV09OTlZ53hOqYW8Zc3Jy8ta3PHn58uV79+5NJpOTkxMiIhHHaVIvi7wslUw8IdgqETbB6t/82r+a3XpRCr/R7Yz6CZCvbS0VlmVdlcZazwYtAIK8SxMdC3Bkjm+/sFxNCVTwGAK4qq462dbmxqTMF/Mp+FoJRCIt0dr6+PjQ1VVtzWJVuECLorQmxHFU1oWKI4VIwUCoRaRknNh8WdVFURSDfjqbL49PLl4pX719y1QzAMiybGtra3t7+7nnnjs9Pe31esPhUMsIERfz1XQyr0pT17UUerUsgAQRXdq7DACHRyf3D46cp+FwmHV6IYTxeGybIkG/KvLpeJLneRuzTBA3Jyen/X631+vpbvf+0eHk5HS5zKWUG6NNR8G50Ot1TqbT6Ww6Go2yQTZenkxnJ4t6Cr7QWmUdDECFmXnh0iwl7YMMWScCZKKoJ+eklFVeRlIFBGgtsHgICGqgWM6/MdDMO1ICL4U2rT0ga3+vVgV/viFOep8kGSdUjCm89yx5zMArg1xr3hPHI4ykIKLWKQPNzIA2xqznOubVMtOWUzJroI2pzXwphqEZAJJ+HQ40KEwaZ5FS/BVoA0PR6iBR62/GIWG/3+dZhdFnXnSYRMWV+5zKIqJ+v08tG/eMhwgQnI+SmLE5ZoR4T8v5gsFHAGBNdsZ0GO8rioKfIoQghCJCnlv4BRWlM6YOISRJssanGA2fz+fOuU6nQ87bqo6iSKGal0vRmJudMVidc+S8o8BvnG+Af6JuD6bnj8djaHH51Wq1t7eLiJcvX+YGieO4LOu6rlkSJIoiHcd8b84FG3yk5BroD87XvkZiuV7Hb7Pf70+nU16nGILkUhgeekmSCCmnkybDx/U6i3zFNf46ipRSTE3j6J6IiqImIpap9N4jSi5/YVF+hkHXAdQa0WvoulGEQkwnk+VyOej2+LaVUuSsMUZ4H0JIokTKRyaDfWvqiC3juN/vA4AxjRciv2juNgzMeRcQGqgFzuGnUkopmiU+ePIueBfKUDIsyA9VFMXaZ5Iv7mojUHLZEw+HfDrllpnNZv1+X8e6LMuSKNIxc5m5odbAN7Smgnx7odVlXt/8+TR/CIHto3jwWmsJIWpcu0JoPS111JhVrJb5crnc2dwCAM4JJWnizimZrLsoA+s89LgRuG15esHWf5VbdZ114Boj7z33lrquvfGuFaVhZZJqVUopdSJXq5XQihGnBjvWSko5mU0FIJMAeGbg7IsxFU87PGOkcRpFkSlN5SueN6RuBr5usFfPReTcx5pNJnP+nHehyWdwtoZnS/4MD0CtNcNoi8WC8+vr7B0j1DzihBDGCCEUXyTRSVVV55tUtAaY635FRM5arVQIIYTmRxme4pHF0Fy32+10OlVVcctz3wgU6rpWMuJ0Ar8Iay0AA4JnmkvNxBvIOkvg+/2+AFksam+CtTYgb+KJzgVlDM00YE4AEnI9657/TAtM4/oPLngArOsaxcWUviiKbCSqso51HFqRE0QMPnBXxLYekTdmUggKwQbvBQUEgRi8L10QgFpoH0JlSiThyE1m4yTJtGQdXbk52NzYGoUQBMjb9+6UZTnaGFRVtZzNt7e393cv3bt7987t26P+AJ0jotpWE++BUKGIoogtT46ODriApq7r46Oj0Wg0GY+NMVEcZ2m8vb2ttUYIJ8eHcZw2gYZSRb7sdQejnd2iKFaLJSnZXH8yieP40t4Ob903NzdPTo673c54PB6Px3EcP/744/lyKRF3t7dZnIqrVBezydbW1pX9S1VVqTiaz+daxWVZXtrZqaqKVe8AQl2XRbF69dWXjTE8367h1q2tLTZETTsZE1wGg56p626nIyMtheZljvskvwjXyp3zZFiRUUoBMcrcdADvfYBQVZX68i/9Kp6emmFm7HrEIqKU2nsPAjkTtUaKrbVJnPGbtq5maR5r61YZSoUQmirXYKXQcI6Y3WyMWjyOU0MhNGVfFDwjyKotQZ3P5+zn7o303j/+2JPcHddZbl6H+N7WfZ3OJc857xppXde1TvohBA+UdDUheO/7Pa14nLimHAy3MITAhkISTT/b8N4TgWoKbxuAu1gOLxwqezv7j13d/JoPdJ79zAsHhyd1XUdpI8DP91NXdawjB1IgOm8mk8nwsatKx3WRKx35opBaG+ckF6H4luPcMCWk0EoCAmOaAD4EAgCFo91tJHFyeHKYz09Xq0Qnj1292u9kzjlnracgPDXLiVLOea0UeQJEG7ypvA/BONtvXGURgRQKGcUQxdS2ZwhBApefND+LhCrCINALsM65QEoJRdKUORJsb25NuWAnioFASBlcsxEkQgD6XEQpNJIajUwISCQgFrYHACkESiGlsNYKkP1+j11KiqLw1gohiqLqJB1BAgCkQikjCCSRnHMy0kBBBnRariaT+fHxIE0BhEDx7d/+7f/ZX/nL/W4SyHaybhAeEIEungqTdDActMavjfmDJ0IhdPAoScOaRkGERBKVc4EC1gVFqktEFAibcUg2BCG0FhICKHwABntw3n6olR42RvP+YT2BD34QNjbgR37ktciY73sf/PiPX3D+c80AHjqUgj//598Agfr84dzD+hK3b8P//r83/84y+Pf+vT/OZdfHd3wH/NzPXQx9/rGfFxF+6qfgv/gv4HcuyjDx8dqk19d9ZUrBW97ybx1uFgLe8Y4HjPKWS7h//9FfeMTx7LPwtV979r9bW9Dt/unAzSHAP/pHEEXwlV/5SB2SCw/voSjgp34K/tW/euRnPvfxqwq+6Zseqany0JGm8Ff+CiwWcOvW63GcSaDQUkCcKiKqnVMonA1KKWcDiIvJiaCUJ9A6YoA2EAkQLljePsZpGgB1FBlrAYUJBErbEEBITySFcN5IKStnpZTeGq21D4KApJCVdSy+jxAAhQ+BQAqtA1FtAzZO0wF1HLzzlo4PT8EJDyR1ZKqS99O9rDNfLVarFSJKrQhBABIKpRQgBRC1dcYaKaWzznvvPAH4NoMIRFTUxWq1euuTT0rE933xvxMBxFLMx5Px6WSxnOV5nldlZVxlXVkb652xDghRieAJSAhBiNJ7L6WAQCGAB2BhuBCCcW65XD751rd+yZ/5UmttbzDKsuzw+Ojxxx/n3Uu/3+dgleuHWBESWmZHAOLqLo4wBVBRFFevXh0MmVmMjFAkSeJsAxOzhmOcXNxNlVScgK+qajjsEhHLO0opPVGn0+E0OfMu0zSdTqdaaP513jbk+ZKLakMIlamlVovlkgJGUXR0fNztdhGYE1Ffv36dABiDfvHFFwHAWjuZTObzudb6ne985x/90R9x6XGn0zHOjieTyWQSRdE73vGOZ59/7vj4+JVXXhkOh4CSCIVQBwcHQggMcO/gcH9/f2/vsvf+U3/0tBBiMpsdHx8fHR0lWbqzs3N8euIpZFnW6/WQoKqqT3ziE0R0/fr1TqcDAN77O/fucTdIksQF0EkstHKmHg6H3W6XQeo4jjc2Nowx/X7My72KI4axFouFc24wGGGPFosFy1aUZelcKIqc4VQA6PV63vtIa61U8D5NEhtFAOLk5IQZc957IbWKtI6bvD7LfczncyHE7u7uycl4OFy++c1vTpLs2WefZaIfAACUHDpyxLiO7UtTAgCTH5955pl+v7+xsVGW5Xw+T9MO4whnm1WQQmKSJFXVbPTX/cpaDyA2NrasrfM839jY4NurrdFx1On3uLt6QOfMYDBwLs7zC7ocgnA2UKiHw2FVVfP50jnX7w8Gg8Hx4dHHP/7x3d1dZhfGWbparYIvqtLUlY10VhgjQSgtwOWvfPaTR68+K4SHYDrp9ubmBtramKqo7MlkPJvPkyTJOqmn2hoTjIuVjiNpnCPly8kBCAkgAYRCYZerg+Wx8UYIEUUieBvF2ji3zIuKXDB1XhaV8aUDqeLK1quq4hy8iEy/m+WF8egoQJIlV/YuXbq0u5iPV0WVpJeri5abLO10si0hxNvf9qSUktMP0NIPL1+5EkJ45ZVXQOCtO7eZE8pa50zVr6qKJQg4ncBb74ODgyRJ9vb2rl+/vlwuDw/u6UgOhj3vCBE3N7bHp9PTyeLweELIUhXCEwHB6XTiPG1uboIUWTcDDVkW/cEznxAyRJEibbzPATUgoRDgvZYodFispi54pRQJRCVDWSkVSZBplHrwaZSugZuGr0NQlmXwnoMdHwIPtBBCoIZ7CACm0Y3VbCiqWkc7/isnpVg4IgRQSgohmSrEYK5r9Z35JE9KrCXKYC40SGjmnFnjcWuWHxExMrsO+vhgus9gNLTWrlnYTMVgthOXmjD+tWa5Uise0hTOJgkPTOb98e82/O5WkXbt90Mtb7Su617WEVoxXZRafl9RFs65KEq0jnu9JIoiU9WmqQQS1Nb4rxXAAUQUJaw64r0fDAYsUi+EMNZqrX2rZsANiCCAkDOL3th1Q8nWDpF/q5HHNbbTygikaRrwzEdxPp+3cXrDWeHJajweI2Kv11ksFtjIRHgurBZCrVYrpQRzdXlWSdM0oFgul0IIBkbzfMngOKN4ZVlKqY0xp6enRDQajUQrh8Kl2cxe7/V6Llj+3SSJhBBlWYLANa17nSPhNYuRNV5J+Zrz+ZJ5qUVRLJflaDRinRBs9QpkK7pdVlW32+XCnf39/Vhp1kvlFqiqip3ZjDE66l+4Ost2Due9Qa/XC54VM8o1AMczqtaKxaCZtbfmcRtjCIhflpJaqUaynCvTVStGsebqAQBX/DBrGxE9AQVfVRVXyRR1tX7SwWAALa9TCJEkybrpmO23Zu/xq+eewI8MbdYztPrLAMBZbd7DMC65xrh5RWNwII5j5y3/Fm9RSKDznvvDUMk1mZcd70OrpcP0QUaTeEClabq5uc35CZ49GK6RbUkZInY6Ha5GMsZ0Oh1j67q1cp3P56luROS5WcgH59k2SW5vbxdF4QJ5750P3NTYSpmH4NbyZbzvYqZwJM+Wb77sGoZKo9h7ny+W1CNEBO8LV2jJ7xHWwT7j6fzgayYcl1IxIs/EfF7xZauhzK9At4LLiKwJIZj3zbhZaOnP6ytz4QgQlUXB5zlryIooDEHw7oJHomo19/gnQggUQqR0eFA4Dlptt3UmBhGByDkX6ThRibEVkQeU3W531E+Fiw6KE2LkgogIqQEnBAM11CjRIxEFBMFMydbcEpvQmk9J51yn29vZ2bHW5PkK4AL2UAjE2VBXGZ7xuCXJUJBhTZbnqZifyzoXRZGUwhjjpZRS2qomQotWSokBBcrKlN77Yll6GzqdjhBKazkYDJI42t7eeenFm3Vp3vSmN43H0+VyORz1p7NxmsZZnCjGZ6TqdjRvAnnLF0WRlLrf7zP3YjjsG2dns8m1a9fqur5169Zs6larFe+4uAc6Z9K0g4jb29tsA8OpXC5n2d3buX79+mAwsK6+e/dumqaXdna2NjYWi4UzdnO0sbm5eXJ8eEwkhSai4Myg359MJltbW7s7W2958sler/fss89mWfLE4zdqZw8ODibTU2Zzb25udvvdsiyDD3GkrKk6WUcpOZ/PL1++fO3atdt37rz8ckOm3tnZOT4+dt7wFl0plSadTqfT6XWzLOMRlGWZ1jqJ405nyJtwr0TsImOqCiNjrCKtiEKWGVsOe32FoK3xRIAg6tKFQN5ZztuHEACM1hoJnQuCFAaFEgBAK+kcIcngSFBkShdCCOSdIQRBaIVQiECECKrVT0AAsLW30GS9CIAIqrbUpQ1KBWN9traMcqZJP3jpnLu8fx0Ri9wCAP8XEQlY2dojnlWDs4sdJ2JY+hoRnLGIkj3uUUnvvPW89YFINXAqVo2wMglJJKxxKMJ6ANfWAwBCM+9U9cV4g7cQXKhqy+s0SJEkCQv4IiKL7whoNI8CwGyxzMs6zlIJZIo8imNez5SQApAtkwFJShmAIimFkt550eYNBCJI6UOovYuSdOf61TwvFpPFsnbPH9zejbppFGutUGlBwXkvPQghsMWOfSCFwgPVdY2yyZVpraXQURRZriNmnEwKXntEaNTEvfdRwNoaJwCU9ARlXdfWmEBVVXnwaZqmcZK7GnxgGoI4V1OzlvjhN89b0jatd9a2PKcgyrV5tBCi2+3sX9qpqmpyegoAaZqmaWaMOX31Fu+GucsREWDwBEIp6X1dOUShpTBVefuVl7aHfQFE5L/ki/+d0ebGYj723kkpKJAPwdWPgHuDtgaF0AjgnRdCIARECD4gInlGkqX14L1XQpQlr2rCe++NRSnXTy0AAETwYDAgog8PQJ5ZdvHvr1bwoz8Kv//70K5ikGXwXd8F3/M9D8Nz3/iNMBjAX//rF0slfOd3wg/8wAXnn34afvRHH3B+u3QJfuiH4N3vfuBjvR583/fB3/27F9/kow7n4Kd/Gj784QegSWPO7vBbv/UB6V4AqGv4+MfhIx+BP/qjBySGkwSeegq+/uvhS78Uzpt17e7Ct3wL/MzPPPzTr/G8P/ZjD0j9Xvi8iPDjPw7//X8PP/uzn+/Dro8LX9mHPgTf9V1nMHeSwDvfCb/xG2/44m/oCAH+3J974EynA20J3Rs4tH4Aox+N4Ku/Gv7v//tP4Q4B4OgI/sf/Ea5ehSeeeH01kvVBBP/m38A/+2evJQzyuY//+WiqnD+Ugr/xN2BvD37iJ17rY3hOfg4RI3nGRgEpHpVIipRmpg+RDyGQJ+/tmnBERCTBeAMCEDFAaPZ+AEjknCeBHigghOCFFB4IBRChowBSSCECAAl0FAgIEAJ5iYiypR8ABpJKyrIsWbG3tlVtjfXOBo+emJ4zGo1klKWdbl6UwUEIVqEAhS4AGetc4E05BeTwjMkRHKCWZfkt3/ItAnE2mew8/iZTFtPFfDqZTOez5XyxKnLjbOV87YMLvqzrQBAQGGsGANbl4NCIw5XgfSAIQKZ2q7K49vj1b/qWby6KYlnk21GUl4Vzrj8cGGO63S4QKaWMqZhzV9YVb9/51fB+gK9vrTVVuVqt7t279+Rb3yzbUmuOyb2xAIErhY0xVX2x8LkP3nu/5rfyFZIkkVJ636iIMpLCMYMQYlWsNjc3GUtCxCTJlBKISAh9MaiqKvgm5GYUm0JT/X337l2WDeVNKlf47l/aI/JbW3uTyeTo6OgLv/AL9/eu3Hz5paIo0rTT77sQQpQm3nsZ6aqqZrNZmqYbm5tFnnOIS+QPnvvMcDh89dVXrXO3b9+eTqdlWQ6Hw7IsGaDnSICxpEhpFrFVSs1mMzZQAoA14sMIQpJsLhYLreJRP2OVj6Ojo62trf39/cPDw6oqGNAZJKkEtMGvq4IWi/k68OM4fDTaLIpiPB4P+n3vXJamvV4PEafT6XK53N7Z6fbM4dHR6XicJIkxToiGOs0horX2/v37DKgx0vHyyy+zLSEDjkVR3L17V2t9+fIeQ0hpmjoXFotFHMdZ2nXBdnpd4+yqyIWSAYiIpFYsCDgYDHZ2dk6Ox/P5XKCKdcKhIKNjIIUUurZe1vVssSgOD9n4KO30GE2Y5yul1HA0Yj6XbqvxlNycXORjfHpy0uuXHIPZ2k1Ox4PBYLVYdLs9Vp2+c+fOtcevj9IkjMeL1bK2dSCPKOMoqasQrI81ZjEInydxqMoiAhgMep1edzYuVsZM5/l4XuR5lVtvQCiJhkggOQpAXkHwZGOtmNKEEERbzJZGiCACEIKo67oykfMeKFS1sR49CZSyroyQmhAIAxBAIO8MoAvO6Vi++c03rl+5bE01GAwWeciy0cFFcPOVq1ecPfLeL1dFt9uVKrr62JXVcskB4e3btxloY3luhgWn02mn0ynqilXOirq6dOnScHOjskYCaq339i5XVWGtXSwWi+UsTeO6tojonE3TtKqMENp7CyCFYMU8AxhAgPMuIPWGHRlJ7WU/y4QIJJVSQOAtFDIFVEQAJtQkAZUofO3AO/DegyChhI6zNNjgXHDOqVgwcCmEYJtN3savqce05h3HMRccnweAlFL3799f795DCKwIwZPSmjXMM1WjBiuElFpK7X1FLVPvDJwFZA9G50xZlqqR+2uyMlLKNXePu71qRT9EK43Kcx0I5KgHEVluWwiRZZm3jeYetUa4jG3JVlqaw/XFYpUkSZ6XQsCa2ccCPgDAj8kXXy6X0PKQjDGrQDwMWTA3hJDnuY4TAMEEYVYIEa1Luda80cTlcsmAqRBic3PTt+K8RJTnOSNQTHKkEGTr1MeADk/1QMIYAz6sVxytdbfbLYqCFbSdc1pIjNVqtWKaG+dHK1PzIzDdkhnoIYRut8tNvb29HUKoqoKptSGEzc3NPM/H43GadngGgzYTMC+LOI4RJcO+rRigYB43ALvgRJ1OL7RaFgyshxA4u8ngF6dF67pWkd7b2+M3PuqNjHGMwjPBk/Hruqq4lfr9LgOj8/kcAFibxXu/sbHBzq7ee2aRM2LLLyLLsjTLvPdVVbFg0ZpX65xjGniSpmma5svcPsIRBRG5uRgQjKIoX61Y89cYk2VZp9NZ60dHUcToKhGx9y9348FwwGtfvir4zqHF17gly6pgKDZNU4bJOFsPhEAYx7Epq/V4ZJBXtCRuAHDBxVHED8g/xEhrvlhyg9TO8bd4UDBSL86pk7OYDMORUok4jnWk6rqWShhbc2/kyoCTkxMhBEHg1iCiND2TZch63eVyuVwuWTp8LRMMrVzyephgK7zOw41vjIiYnc0dhvP0rLvN8yqP0ySNeRXmEbE27BWtLI9SyrlgrSey7BGtlBIK67pm4nav12E8mkH5NUuy2cKRw0CEDR8TFSCB0orvjZuXf51h9DRWDLP4QFIi6/PwrfLNrBXA+YLeBymV90G0FiD8Vx7ORVHw8AEf4iwrisI7p7TmhNma+0+thXVDsReCv46t42gIYbFY8OTDW8E1e923hR2cTUSJUsqyMjwlcmdYD2rv3TqyUO38HwKrPFtAq1Xkna/rUmsNHsn5dtoHAAohIDG/XgNAWCPd63rGtjOwzZUgcM51OqlSyhqfF7lcXFzlCY68C3GiAmKwFqQQra6Oa5VGOH1ivPPeB/BCi4ABAnpHCKAQhVCe4xAQAMETTfOpAqlURILyepmmnePp8WwxUUpN5tP5dJqm2Su3XvbWVZWpBkPn7Onx6Y2r1ybj8aA/QiIhI86Q1WWVJMnR7Dg4X5fVztbm5uZmZeokSXZ3d68/fu3WrVt+fy8ArFb5zs4Ov33e7TvnLl26zPlg7/1keqq0SNPUBzsajYqimEwmSaxjHfGKEEJgq48QwuHhIQDwYhHH8Xve84W8Uh8dHSmlXn7pJe89AQgh2KwFQORVWapyY2OjruvT42MuM9Ja7+7uCME90wwGvV6v0+91ZtMxIubF8t792nu/nM/rsry7FjGXipVqQghSq0uXLvGSkaYpq9X1d7dghYlW0Uhm/X4n64MQeZqADBvjbRUCEgkIFBqkTxChc0ywYr0PREQgiayZ6AMiQkAKgYg93AKLfwkQjbYLCQgIICkEQGAqJ1ADPwMAovCeVcbE2piSKFAQQggEQYHYHK7l4QtE2S4Sze4DCRAQxVpCBqhl+hMxlt3sUdZcWaIgUaFEIKitXa2K1WrB87hWKsuybreb6IQQWstgEbxcXwTOrglKaYCLGXEUyHnijQtI0emkvV6nKIrValkUhRJCJZm3zjaWu7G1dVGVg07mAwgl07Rj6npdKcB7LC0FL1oukNYagTx77yEiogvBAzkIZVXYQIiis7elhPbOrWb51CxlgETpRKhUKRXAVZUAFA4QEZWUKCgQASqUHgIoYQI5U2jPgQ1ynSwySKGlxqZoRXifgJROWwgmeOOM9c54ZwPVdTXJlyWCVkoFRwTeWCLkNuPbbuDgdvXnscfPy7XRUkqiEBqJ+CCEAIFEZJwbboz2rlx+4bnnp/M5Is4Wi06nUxSFFWzFCyhQCImCACQETxQ8OYBgjdEqTuPoEx/7/7z1ybcLCAiYdSLnjA8hAFFgUrKQeLE4IIAgFISMFQMIwV6oEMJaumgtDQIEUjR21QJlCAE8CcmT7BmQRoECBS4V4SPL4PHHL/jtj30M/pv/BmazB04WBfyv/yv8y38J/8v/8gBzEwDe+1742q+Fj3zkYTLm44/Dd37n53Rdgr/39+CXfunhD7/8Mnzf98G3fiv84A8+wAP9si+D7W04ObmokS46plP4/u9/LaGDa9fgS7/0gTPew3/5X8LHP37Bh4sCfuM34Dd+A77kS+C/++8egNq//Mvhd34Hbt06O/PHe96/9tcegDuJ4Lu+C/7wDy9Q1VDqYfLy+njUK/uf/2d497vhrW89O/llXwY/+ZMX6JP86R4f/Sj8hb9w9r+zGYzHb/gin/oUWPuA8eOzz/4p3BsfWQb/4B/AY4+9sW8pBd/8zVBV8OM//lrU44ce/3OP5RKshcUChIBuF5SC/oP8GET4j/4jiGP4p/8UlsuLf0siSQwEXIOCJAiIlEREpADyEV0FBSiBDFaHEDx6Dhv4N0RryABnRthN+oJXRWCQp83VhRD430IIBNkutQRAQiAKAkDRqhs1XyFSSXx6cM+UJhXChRAQjLXGmO1Lu2maVra+tLc3NGEym3e7XVubkAfrg63rQE1ELYUCYUMItTUAQALZiGQ8Hr///V/xbd/2bccHh+h9XVWHd++ZulzNF5PpxFtnnK25SD/42loQ0lrT3D4JFyi0j4ZSWO84bBMC5/MZofzABz7w5DvfOl8tx+OxklFl6iiKoihKO9lwODTGTNtBaIxhIanQih2BQC0aOcs0TcfjkyduvJ3RjVdeeWVjY8PVxhiTdjstV0UwfBPHcW0vfptK6RACMwWkVLdu3ez1egxyAYL3noUgdnZ2VqsVEXa7/WJZMIfFUdBaM+IZQljleafTUTLiMnB+uf1+3zeUIiyKwlPjolFVFce0v/d7v4eIzgX2wj44OOh0+1mWLZfLXq+zWi3yPP/4xz++Wq1Wq1X6+OPeWMbxkzTN81xaO52OkyQhwvFkcu/evRCCB2KgAaWIVbO0yVZ7sVjljIUxMYpF7tbhEyKyPxvz8oQQi9ns9u3bm5ubvBt+/vnnhRCz2azTSRlNYCuLbrebdLLJZLK24WYwyHv/xBNPXL185eDggAVSsiw7OTnZ399nTZI0y/b29lar1Ww2Y91SBr7rul6tVt1uFxF7vd7t27c7nc5suYhkdP369fF4fHJywtTsxWJRFAXTr4bDvmy1EQFAKcF18UVR1JWNo5TlWfb29hhLEkIcHR9/9oWbu7u7WZadjsdCK9b1Cwha60gnx8fHzIDjDZ6Uci1tJ4QYDEZlmbM6HJPTnXMC0ZiLZ5DZbOb9lKncCDKEwADKZDINXL/IRXtScmBTTVe9Xr+UJl8a8hDryPq6LJYvv7IAdABACJevXqlsdXB0OJuMZ7mtqtKEQGVVOS8FKBRxHBMIIbUgCEQSBVGAQFIIEnSumhYkSiWV0GitLY1NOESQghx4H4RQpa11I26gmcUvBZS2vnR5//pjl4O3G8PB1vbG8bGczS/OkU7n82DnDNDkeb63t5fnpVRRnGRlZVgPl4VWuKeVpnbOLU9ypsZzeNzr9a5du6a1Pj06rapqOOwPh4/NZrN79+8woKYiXRtDGIyzh8dHgBgIiQC9j+MYlZTGoBRKxx58TXkqYi9rAocSUAIJCkBCgHH8PbDkXQgQ0FGo60oIqRRA8LW3znjnXCQjKWVVmTiOi6II0MhCsyGKMWZdDcc4RbVscJDzGj6crmNshac+rkxluGSNCzOwyJATcwC5aBUAnbPrOVMppVTC3DpsC1JhLfsYRTwXcYTFgBEHuhzdcD9cLpdVVXV9l31lGWjmJBYRRYrB2UbslX/rPDKOiEKoNFWMi4VAjfPBuVWZK53X6AwPfz5Pgbz33pjJZDIajQBEkmR8cWyzxXVdI8FwOFRKzefLsiy11gy6hVa/kuHXNXuRH62pXm9Zz0VRKKmDt9wgTVM7y9F7g296t57fiCiLE16DGDI7OTlhoDPOUp40+ImYKD2bzZRSXFi9lvQ5n2kgojYlIJ0zaz0ifqHdbpeIWtV7WAuqsFRCHMfOhQYsrmsA4Le5Zi6vViv+adlaMg4GgxBCXZd1XTtPvN4JIba2toAaqVz2B2KszRgjRANTCiGYM8j/YL9ZZpUy6ZtXk6IoTF0LIdIoZiTOe68RhVZKKeucEEKpR8TpRIx+cq4xz3PWXGaMm0FblilfLBZrnRb+Cicn+J65TRg5ZdiUcUMGAU1tUcCadqqUCp6kkJGWAGCtJYGdTq+qKkchGMfjlIn5jMw6axHRujr4htE/nU4j2QDTHEuu4V3GQxFxtVrxFXicWmuVlpPJtNfrctdigR3uJLwm8u/64HjYqtb5kPv5WhGYJ4T6HEWFUX5rLcP0fE0pZVmWs9mikUVt6aicPJCtCDhXLzGdmYiMteyExNMU/+iaEICIQuq1rLNxlpdLEsj/WL9ZRBwMBswP4PHIv7uas7Vv45tdmwoC8ehQSnHmO1YalTbGDPujJg+R58650pvBYLC/v3///n1uFrb9RMQkSZTSiMhj7RzsfqZWwUA2z1qcxvBAgsg7J6QEgLIseb5lmeyqqjY2NljWnFtVCMGwMrTFAcyxbdRl2/QJb8Z4Clot5wAQR1FtDL9Q0fpVcmTB3/LOMenB1FZpKVAgKi0j8lTXtQ3eeyeBp/eAKEIISKiUBHe2922R5XZ8rdd9YJ+VBn/mGzg+PkZBA7y4gjxOEqV8WVRaSH6Q2lpuPaEkkURsBZ0RhRBKRYhorfXGa6EhQFUa9q3hjCwAKIUSIiKqfR0CoQPjTYRaKRVHUe1qLeX943uLySKN0xDCbDYZ9UfXr18riqKsqrK838s6dtWMLAAIzp+ennrvu90shNFTTz1VVdULL70wX8z+zb95lYsA8rIcDoeDQf/k5NQ5NxwOea6z1jz33CuPP/54FEWXLl2aTCYAcOPGjfliMZ1OvXPU62ktOaWktcqy7L3vfW+WZePx+M6dO5yL7XQ6165dnU6nzhlOJE+nY9b9Wwbb7fSTJLl69epLL700nc7rogwh1KaMokgq5Zxdzkut4yzL3vuep46PjyenJzs7O6PRcDabDXo9AHDOxcMBEe1sjLhIpSzry/t7BwcHs9ksjaNqtTo+PIzjOEmS5559tqoq1c260IkjlW0mnU6vE/q93kDthbQTx5iq4EVTWkSEgFIKBC+ECB5YvBxa3jxPOyyAQAQhYBO+kkCBiBKQC1t5WmmR54CBWu4wtltkEhQIhWD0uPkrID3QL5m8vDbEO2d22UTxDb6MiA3p6cHvrv+xnumIyAWuUSal1NbW1mAwYJVuRIyUVlIzdt78OkJwCIDYQooERECIKFAhXLzj9wQAQqloscp5em16Xp7zaOcNCkgREISUxlCe5xv9XgAKhMzN5ks1uzoU6wcJzltrtZKiJfgAAAYKEDyRl9IrQYAenEYhE9Xd2/Leu6o2lbHWl95oIhVhBEIDy9IH4UkIoQDB+TKYKIp0pFFJQWBbq1+eQzk/gAAYCAECYgiESmqUwWOCICKt62pVFirSsYuruurE0XK18kLoKAoBAgFRaLESOsd3bp6Fp1pjTF2X6yYVBJyLABBEwTl39+791WI5nU6llEKrurLGBaljT8wERCEESiDwIQRCsM7x6jscDufTRRRFt2++GKo6iRRh6PU6xtckQ/ABQRKgOIcFP3xwbwdugDOBaUS57n7n++F6sRRru9hzwOT5psBz0KYx8LmKoB/+MPwP/8Mj7+vVV+EbvxF++Zdhc/PsZJrCF3wB/OqvPvzhbhcuX37gDNFryROHAB/5CPyZPwNf8RVnJzc24IMfvFie4nOP01P4lm95nc/kOew9aDhPBC+88Drf+sQn4IUX4O1vPzsTRQ8LO/wxnvcXfxGefvoBoWdEuHwZer0LPu/cBe8LAP7JP3kkDdY5+MhHHoCbRyN4xzvgd3/34s//aR1rhjUf0+kf5yLOwWr1Wn59f+xDKfjJn3wtrNl7QHwkuP+d3wmLBfzETzwScX7o8c8fxsDHPgY//dPwyisN6N/two0b8D3fA1/yJQ8w6BHhQx+COH5k5xfNwG/IWSF4zkUhIkoQ+uIQCFFAq4DGc39r6O0ZEl7PEMhaRu0a1GxtuWKkWXp5qkEiAh8CeUQkgUIIzeF0U/EGIThsk74IqFBMxicQfJLEtautwYABpdCR1FrXzjjnCAUK4WrnWtU/FcWmqlzwcRzPVitnAwhEJZ1zEgUiLpfL0Wj0wQ9+cDqdLqazXprePTw4uHtvMZ/y5juSKoBADMQEURQETKYjIgoUWL6JiJz1nIJ0FJwPRVUON7aeeuqpS/t7zrmqts5TbQoxne7u7vb7/bysABotLADgIIF1wwQgCAxtZppnYOfM1tYW82K2tjcqrtvtCSGEDX5ycgoA29ubReEZfKweUQeTJPGgN6zrmjEXLmdmRDuvSq5O3dnZiaIIQDhXE9HOzo4QYjgc6sW8KArGxabTKe8i1jqnUkpnbVOHJGUURXGclnXR6XR42x1CqOva1qaqqps3bzJ0672fLxYcyThnmHy3LHIGKebz+fbGJmv77uzsDIfDT33qU0CerQhrY/I8397ePjg+YjJOXhZVVTELOITQOBn4YK1dC0ogYhRFi8Wi2+8RkdSKqYs6jlgI++6rt5IkYSvt/f39o6MjhlYRiaVgvffT6bQoin6/X6xWAOL+/UNeLqNICSGefvrpLMs2RxvMZpJCG1PduXOHUcXJZMKvr67teDweDAZKqYODgxDCbLlIlot+v49K6iT2bZp4a2vr6tWry+VyOp3OZjNr7dWrVw8PD09PT3u9jpSSZUagKeTHKFJcx93v9+s6BoC6sqzyrLVmi7DJZMIJANuaI2mtWYqBkZQ4jsuyHAwGLviiKrMsi9PEOXd4fKSUYm7LxsbGYDCQQhDR8fH8wi7X7/fH48nVK9cEhnVXUUplWeqc11qfTsYvv/zyzs7O1tbW1cceSzOVr8pYp70EX81vkQ+dLLHeWG+llCrSu9tbvUH/hRdfnBwdeFeXNZW2ds4576GuBKIWMvUBhAQhfAAPQhASCQoBUARkyyAeXyQlCaEkYQguz5eYxEKg94SIIAADM0MwhBApDawf4r3W8urlXWMqJZHA26oUArNHaO0vFqvZ9DBO9NZooyxL732WZWVZrlYrAECU3lNt/Wyx0roua5ulXe/9YrFYLYtup2+Msca/dPMVJaPLly930vTw8HA+ny6XwzxfVnXFlaSsvgIBjDFVZQRKVGiNVwhpmu5vjYSS09XckyHwtSvy2amOZKebCoG1rXwIAUMgDAFMUYEUQkjnvSPWVYgAoK6trWoA0DKKpIoihYi1I4Y7pZR1XbMdEy8WPA9771mniVrpT05dSCnX9jnUis+si9/X9iEMPOGDh2tMfSIGPRnLwKZyPxDRA3t1IbhiWrWCG+vN8Br7BmgiC1YgZVCpl3Vry4orEU9W7MeDiByy8dXWWRmG2AaDgffE8qmIqFSjY8uzPZ9s0VLHSSN+ZL5aGjUysrWzSZJxI3jv0ziZLeYhhCRKyUNtTFWd8jyZZVlDKpeSf4ixOWZlcqzHQSWPvjVkZoyRQjH8xE0qhFC6UStmCE8nMVsCcnqJG7zX6/H7YnWLRhY2eEZ+GcEPrbAkU1CVUpubm1GUTKdjbgcGxJMka+UpiOs5uLl068+GDZPUrgv2GV0FgBAaVWjGfKMo2t7ens1mDBkzm5K/spY04XYQQqQZpyUGPG0KxG63K6X03rb4C0eawVrLSG6aplyGwnAex8IMxK/DLiIqypKVKNbrO3dRZ/3J6eloMERx8V7LusZvs+EOEwy6PZCcv2lY2Pyw3OUaf0JjGGPisG6VL1kJhJF3hsK5byyXSz4TfNNVpJTOemsbKYA8z9v6+kayiftVA2aFEEKQvrGAplahUQghCLgUKYqiwWDAbG5Or4ZWD50lWV0rsz4cDZbLJSJwV+l2u/1+33u/XKwYh12/KSFwzdEOIUjV5HX45HqeqeuaOza30hqLYAVnPr+W2oC1rDYR5275pfP0zp0wSRKloihRq9WKf1EK5epmQmhBcx8AeLxY73Tr5FwURXA8Qa3FNAL3xn6/b1sZ7jVre93C3nuW/4rjGKXi2y7LOmDjqIGIvI1xzkklO53O3bt3p9Npr9eF1jwQEUNoKhe5wdcw6Dqil61EBqe7GkZ5p1sWhVSKJ2Tvfb/f50wbtMUQ/BbacECElmfa6/VYCYoVfnnyWadqzgP0Uso4TvhX+I1IKZXS1AqDRFHkZZP84FYSqqkaibRaO1IqpR+kXhEQiQchZmwr0Ju9NAGBhwauYzAE2hS4UBJ1dg6qOHfEkZZSC+G4noC3tTy/ofecahUCtdYCwDYoSuDsyzpZyHlNIyrXjnSQHEEgASGBJx+0LF0FgoyrIxVLDZu7I6UiSVJLvXd5b//K7nK+0lpPxxOMpAxE5G/cuL67u/vss8/qWJ0en/Bb+PCHPzwY9rNuZzqd8q2uVoveYCSlPDo6qqqaWqVpnlJGo8F0Or5379673/3uzc0RAMznUyH149evc4EgIrD0U5Z1AJrvMt9iNBp1Oh1r3Ysvvri3tzcYDKy1+/v7AMBCLnme58VyPB4vFouqqqqqnE59FEXGmhBcv9MlR2Vde+/39nafeOIGQLh3714IrpPG86lfLWbD4fAtb33L0eH96XQ6nY2llAKVlvLw/r2qLPd2dzY3N4+Pj11VI1FVFM65Tqcjk0QamM0mx8vK2wBLnaapGZVSwQ36rBKiYe8GCEDQYrOwBsWIcI32sjGPOBN3lpy4YJIyBV4D1kXW4rw473o+WtOZ170TkTlZHBs3oJsQAqUQrSPE2VcIzsd2DDgDcEnxAyjzeSjw3A0gIhISIgolIyl0HEkUzjnyZxsjIUQAhgjbLGI7htvrs2XdhYcQQqGUzL7JsiyO4zxfhRAEgA3BW8ezAIfRUZRUxgYQOomtd642WsdG1mwSKpkCTE3OKrjQqDYrybXU3OZ4hnkKD0AIgGRDqO0q1pFMNMZKEZJ1ZWVUgNoFMEYFiIXSiN45CBRJxdUWVVVJwICIBIFAC+m9E+3uJ4RmddGIdXBSSkKgEBAxTTQJNN4N+4O410nyVQUwXa4q6xDRkUWQiJKo2fWe71rriRLbXui9pzPBjTM97kCwWK1ms1maxrGOCCBKUhcCNVM8v6FAATz59Q41AA663fd/xVf+2q/9WlUUdV3t7mwsFxPvbaebWFd7cs4HIRAJAeQDqvgPHCxw8nBqBKCRQA3Q0JwBOXlAiMCCJNjUxaNrU3PQCIShIMRzzGHn4Pd+7wEs8vQU/tE/esQdnTv+3J+DX/mVByQCrl0DpR5WGHjnOx+gAxPBD//wa1nhAUBRwH/738L73vcAp/UbvgH++T9/fcXhqoI//+df/+ZPT+G3fxu++7vPzigFf/fvwl/7azC/OL4GAHAOfuiH4Id/GL7wCwEAfuEX4O/9vYc/88d4XgB46SX44R+Gv/23z2A+KeFtb4NPferhTz711AX6v6+BNfPx3HMPaDr3+/B93wef/ORryUH8//GhFHzd18F3f/fFWPOtW/Dbvw2//utwdARE8K53wZ/9s/BVX3XBJz/0Idjehp/7OfjsZ9/Ar9+9C3/pLz2cpVit4NOfhk9/GrIM/s//E65ceeCv3/AN8OEPw927F1wttJUw/L+IklfK1xZ8BiEDIAAEIgm8Z5UoSCq+GsnAk35orv7AqtdgzWzogex67TwvCs0mjAQG5IUaoLGXRjrDrLWWFOxyNg2mtuCMqVoqkxVCWGucc7aql6XJi6q2wdcVCPREQgpC4WzwgcqytIECQlVVURIHIhA4nubf8A3vy/Py7q1bJi9tURweHh4cHNSmjOOYgCwELSNAWVclkJBSOu+EUGwu531wLpBACuCBANATBIJVkV+7du2L3/elKMXpZNLt99I0jeN4MpkkScIoIQi5XC47nU4SRUVV1XXNmBHlFOBsAsemptWG4Lz3nTQjIhZb7KZZkiRZlhwfH2std3Z2Ll++fHR0xIoKUXxxHUxV1RJXawpMliV5nne73SiKirpSSm1vb0dRdHJyMp8vma3Aoits08dFatTqJDIPYjabnZ6cWO+ZEIRtOjPLsgCeUQAGVpIkUUJ674+PTxlX0lrfuXOHWsG7xuqQyAONRqN+p7u9vc1b55s3b77nPe8ZDoez6fTg4Ghnd682Ruv4eHzK0opZlsn5zDeadEyZoTiOu1k2Go3+8A//MIQglEQpjLMBKM/zK1eu9Hq9u3fvIuL29na3262qSqtod+dSWRVFURwdHQkh4jTVcezBj2dTrtGO0mQ6X86Xea/XW86nDGSEEACybjdDxJOTk/F4vL29PdwYee8HnY2yLGtj7Gxx5coV71nuuQQA733SydwxOBd63YGUEkEmccYWav1+Hzzcvn0bALiSmqnuVVVtbW190Rd9UV3Xp6fH3CsAwFr78ssvCyG2t7el1FVVc20vo1o6iUtjO53ObpqsVqvFqrDWWldjW4Ac2ryXEIKLAxerJQfki8UiSZLT09MA1O/3B4OBlspab62No2ixWNT1xUpbkYz6nf5iNrt06VLZRv4Mz8Wx3N7d7Q8Hzz///M2bN2/evLm3t2dsbSpb16Wr2DgIrK2Ns0Ihx4yPXb0+nU6Pj499XVXl0om0tpW1lqcUDrddIO+NCxBAoJCAWnChIwoPgRAlegIvmg0eCAIl1DJfKSCtZF0bD5IIvXdCAgXf7jPJGws+jEZDKfF0fNjNOlubg7t372addDAYwJ0LWkAKGUWRs76ozKVLlwbD3nwynU6nTNsMILIsY3Sy3++zAkDjyc5aB1GktebcwHw+N1W1ubk5Hp+cnJwoJYAEx7H94bCuaxAeQ0h0XFZVFiVY1qauMMK8XrnalSY33qAMOpJaoBDBusJ5771n56UACF5Y67TWcSIFRjJ4IYSQwCTWNM6iKGK7FG+d9750xnu/vd213nkbApKUEnyw1vIO0zonpNRJLEitw35rbQgA4NcsVyJi7mTL/FKytbC2bR6LAUTZOo/xZ4QQUjbqn0SEqBFprfrKH65rEzdSHoHBEaYMM2baBnSCsTz+YsOH7fWNs865NdjqDJdON9odDdzWyqFyfbH3dP7mGeEFgDUGykZJPAp6vd66voFBNB6P/f6Q74HXO2Oct40nErZ0b8aUXatCy1dIkiRNU4716jaZJITgeX6xaGwG1xQTrllhzE4IgQKYysov0QQ/6PdZzXYwGLACw3w+X/NyWCiJNZ3XaQB+y0zRjaKITat4mev1BnVdc4G191arKMtSYwybsopWo4BfqG2lro0JrlW7RkRO20jZyBow4M7dhksxWKoYWsCUG5alCZg+zG8t67RLLYGUgmMo5xy7FyilkqTxbeIbY7o0Q2n8ahjAdd4XeR5F0dbWFqddnXWytU9ENvRDHA6HzrrgL95M81Oz4q0ElFp7F9ibl7VlWPBBa82ot2wd+fgkg9ScGpmMp6xPsm7MoigY4rfWCokskNLtdqVQzIXnVYwdF/M8Xy6XTPJljBhbKqt1RkrJLdDJGvuHqq6EEKx2LaUkQkbhoyji+iSGU7mzIaLzNs9z7/3u7m6n0/Hec8qK0+zMjeUOprVWWjLGxy+RQUxotXdccESgpWLZVu7GaykwBn8ZhmZF2jiKA7m14QFRAy5z5+SfFkKw12hZ1qoWzjkg4raaFiVrxWitlYqkBBapsNZiYJw3cG8J4IVo4Dl+QazXrFrxnzUUK6UkZ/nRUCZIgekOCkVZ1kTEhoQAILXy1nHmw1obwBdFsVwuo0iv83ZpmnJ+FFsN6HXvko0CeDMRUVuW0dZkCO+DVJq5rpx4YESSR1C3l63yBQUMIaRNvifw4zBSj4iLxYKZ183a15YjrJNzUgCTUjvdLk/jfJP8K9xEaZpqpbjdEDwgCcAoUkLJfFWAMVmWTf0iiNBwLqkZOz4EAcwQYW5ocwQE1egYnIU7PM3yRErgieRwMNzf24eLPI8DkbV2sVgpBN7c8jamwc3YCwsl9yWlFAoRELWOWZJBSqlQ8tMqGQlU3nvrLTbq2C1UJmVZVHEcm2AjqYoqj6Io1qqyNRKlMjuenxyeHl7a3tnc3ZSJMFXdTbqXLu/VdX14cnTl2tV+tzudTtnXtDvoJknS6XS63e5oNBoOhycnJ4zzHB0dsRECIlZVNRwOORAYj8ej0eju3btKqf39/X6/f3h4zJ5tAME596Y3vckYM5lMptNpCCHPi9VqpZQeDIY8kO/evfMHf/DJS5cuaa2JgrU2SZrsZhLpzc3N4EOSJOxuzZmJOEk5TAghlGV5+9VbJ0fHzjmt9d3bd5RS73z7O/I8f/X2rel0evfWbR6qIZAny4no0WCghDg9PjbGbGwM5/O5tXYwGAwGgwK9WVWdNJYihAiUyKy1aZpIRZPb41YVoV0LUQp5LkFB52wZ+A2t84esbrFGnOEiNigRNalFcus+xwDj+cwPf3cdMzffPaPin0HVSGcA38OHQAhnf1oz7c9jmoL51IgoG0V/0eZ1FQCo5vohBBcajFsoSURMugjnfxoRH8GvI0CptZTKUwABOtZaq+l0yr9trVVSAkBdGymlo6CV5H4QKeWkCNBYytrakPOhRbp50tdKChRCSERsmSOIiLEQhABSkpKBw2VAhSpSkfFBSBBSGO9VolQaBefBhVAZW9vKWGmDCqAAjQ/aaSIiHzyilqilkoDBe4UCCYSnwJXdITC4ISJJRIEIvAvBhxAkQpbGy6oIxjpjQYgs0kVZEkVSq+DOiOrnMhCwTset1bLWnU0gAuIZV5EEYZCoZCxDgFVVK6WkFAFQoKDANECO5FqXRaAkyWxtnHOf/OQnF4tFEkXXrl7763/9r/1X/9Xf0BFubm4qJbwXJFFKxUXsJB4BN59PfsiGsQhtJgMARGgeEANyqY6UMjTDQSA2ZLp1t1wjHedGxAXHcvlIRuf5wzn4lV+B7/iOszOPPw77+3D79tkZpeBrvubhiz/1FLzpTa9zcaVgPoft7bMzeX6BxrT+HCO0X/7lzxdC/emfhq//+gdos+9+N/zsz8Kzz8Kv/Ap8+tOwXF5gSTeZwA/+IPzFvwhXr8JP/uQFt/2BDzxw5s4deOaZz+t+Pv1puH0brl07O/OBD8CHP/zA4wjRyE+fB+J/4zcuuJOHjrKEuobzPK2DA4iif4twsxAPv53B4PPqVw8dWj/M5n5Dtn6POr7hG+Atb3ngDBHcvAn/4B/A88/DYnF2/jd/E37zN2F3F973PvjP//MH8itawzd9E3zsY/Dii69n6Nce4/EFWPP5oyjgL/0l+Jmfga1zzhZaw1vecjHcbK2z1voHq214IodHu4AKlG2CE4jIhyYHjAKZRyB84HkSAgUKIJrHI6K2eIgzvQ3HOQAhCslSVMiUBACGIUBQs8Y2k5gEDN6gUtVqZU2dG1dXeV03Rj3rCt9lkVc2gBTAFGaUiL6oKu+9ozBdzAmElOCcVTquqkrH8Ww2e9s7nvjA13xNCKHIq3q1Orp79+D27dVq1R90QwiEKEkEohBCAPRA7DDYoOskQrCOAnoRgECg995TcMG/+cknb9y4MZ3PKmM2N7fjOF4ul0VRbGxsMAtsZ2fndDIFgPv371dVFSUJnDOwgibxyQ14ltGs6xoCSYXdXjYajQQBL6qDwYAxUCJKkiTLst3d3eXqEjx9wdt87rnP9Ae3tre3VRyFEALCKs+T1VII0UnSy5cvn56ezibTIi+7aUaB0ijWWh4cH52enjrndnZ2AKCu6zRNtzY3kySJtE7iOE1TZl53Oh0KGMcxCgKALO1GsWKzICZERzrSWidJE9d574uy5GiTS1+h9eZdzuan2fFLL73EohbL5ZIZylKpq1evMkx8cnJSVCWXNjPo0NT1B2L2GUPVDHFGUUQIUso8zxkIuHPnzt7eXhRF0+l0MBgwYnvp8n7jGleVyzznQublcslidoz6PXb1egjh1q1bAHDp0qXVasW7x/F4vFoVzOzgKM45d/ny5SeeeOLg4OCPnnl6ejp+/PHHAwIJrJ21wd+6c+90MmO241olQCmVpV1r7fb2trX29u3bq2Vx/fr10WjEHNJyNgsAh8fH7FiYdfsqjtj+2xivlMjLWipEJQ/uH61Wq83NURRFYH1d10VRDAaDOEqVjMqy1L4heOZ5nmWZUmo8Hs8Wi42tLQAIwTNOx6xq50y3P9jd3mH9k8lkcnx4lGaxlDJJriyXF3S5JE2HG1erqur0elGSMG9ruVxKrQBgMhl3u723vvWtzrnnn3/+7t27tq6jKC7LusgrlCi1bhBq4ymEneHGpa3N06PDuiqCMSGA9ZZJAIErHFESQACqamu9C0AohaOgUQmBQECoAAOQUIKtm5mZgkKq0taqrGItvXUEyqPw3qL0AqRSUgKi1GnWecc7NvobI50lcRa7qn7hhRc2hyOt9eHBwYVTqFRie3ub+yHjOMYYHacbSVYURRbHGxsbq9VqMpms9d8Z7pzNZmzjmWVZlmWnp6dSSgLvcodKKsY5AfKydgG2t7dd8FLiZDKpTJ12dRRpD7WINAkzWc0YaFaRlBpR+jRVRVGslqUQQgrtgRCl1BIDqigWWgEheRIggKgubSJjRCTy4IPx3tkaz7ExZrPZcrkcDAaIUuvYk1VKIIGQ0OtFiGicc85JrcBTFCVKRWtYeQ18cD90rfUfw1vYCmtwomXNjhRtZR60tEdjDBFFUcIM5fWkCueM3AFASs0AKAAwA5TnHEag+H+t9VIqKfVqVeT5cjgcyiRhezEW02ADHuZU0jlfL1bDlFIzKFbXVgiR5yVLjgCA947xyizLlNKMcM3nS1YrllIIaqiaOmkK1a1ltRlijIljMU77GWMoQBwlSimCwJXaq9WKdTa4Mbn/CCFYNInVb7gpkiRx1mPLcGyB0aahAkJAUFJ2ut0v/qIv+vVf//XxeBxsgxzxBMtvh3uC1hqV5F9haiQrBmitORPAcz5/lxFA5tvmK4pirVRkW9ukqjIMsDJvtCgKKRs3Qk4kMGzHSCgjrTxNcRp1rXHMoTTfZyfNuIfwtocTA+ub5zyoIJBSMns0TVOtNaK01nLjGGOOjo6iKMqyDFoojQHuk9NT7gZVVVEIxhhWHeFCIq21YinOQJ1OR9iLd7dKSk4vYSAWzeAqMtFqfzOWyk3KBFKmsXNb8Z+Ulr1eD6FxHWSIttvtQysTYa2tasNU8XKVp53uYDBggSae/zmpye3JsDKcU0MGbFQpeM3iFyEI2qyAWYMzoS2f1Si89yRw/TqERG4ZZjQ756q8wDTljsG/y/DlmoTLewx+IgIkIGs468+CVJocsd4IK5DwSOEMFg9/hpsRBHnpveeOpLXkH2VUlOVf+v3+envMb4SzQWx4y7gww5SIiELmee4pnCdlSylFAgyiMWzKDbXmETeDl1BCQxbWWus4UkoJIM5FmcqyRkpZ143gtXO86+YOKQB4THFSmW9Ya+2cJyJuSSUkAw7Q0ulaez1aPyM2WEFrF+k954oQka2qpZRR3EjWcJ/nHhhFEbYo9jphxrP6eZTZt9L23nspoCiK5TKXDMqHwB2MgfIo0pzCca3eESJGcaRjpbV0xhtjQmWFaOZqAbJF8DhfHgCYCE/nAcAWefMPneF/GGN4m9rrDgaDAcAFse74dHpaTfhLIYTlcumooe0zf3+dwONXzIA7ap3FsQ3tHGuta8WXpJRccxMCKNUMcCUESFiD9dZbX3t+EiKsi9myXJGj2Wq6u7lrrQWinVhOjk+9tYPBYLi5Qx42dzaTTuKNZ77/fD6XWgulDo+PhRBbW1tMbeYEKmdW7t+/z9MyY+VExBzk3d2dvb3do6Ojfr8PALwPl1KmUWySVCexMYaJEc65e/fu8RzV6zUMGxaXd84dHx/HcRJhDAC9fscazxPX7u6uVBhFUV1ZTpRSCPP53HnT7fQBYDQarVaro6OjXr+DED71h58c9Qc3btwgotPTU6a/IGJZlkWx4l+32OjYaK2n0ymmSiJqHWFEiEJhuliFfDkBCZejkfKBSVfE75UtOAEACdootLF04wB5PbUBEO81iaHhhqEMa5kLaIccIgJKAAIWzyAAgeDPMEcWnWx65Fr4osEJEFG0ceADHbr5rzgrq8EHif383TWux+XNSOC9p+ARUaBUUvEAaHDb9jZYH4T/sZ4sHsIEH40NIgjkurA1O8BbG0IQgHINCiAC8j4WV/lqMptuDQfrWUlK6YUIPjQDA6WU0hNJQikkCsFeQ0oqrjSzxnhEilGDJoFEQYBQUjGTOkCj4GEbLSEUiEnaVQFsUfnaChS1ccUq73kCAIkYKe0YGA1WEUpAgWgBAUChkEo17SDIOQeBJApEsMEjkBIyjSNPlEVR6V2iIyIy3ggRnb2Y9kVDQ6WX62qU0Dq0rkVIEUBAk/xAAoEyQBCEDEsHQO8dESolADxBI0fKfRYRBYGpLBEsFqsQ4O///b//zDPP/Nq//JUoiXu93qVLO51Oh4uLEQSiIAIhNTyS3dxC4M2sSvg5YPH6ZGjJ6e2GgFN81PpnsjhL07NfGxlrFVxf5zAG/uW/hK/7ujPB2X4fvv7r4Z/8k7PP3LjxMIG034d//99//Yt/7pHnF1CbH5KbqGv41V+FRzh2PHycnMBHPwrf/u0PnOx24X3vg3e9C/IcZjO4dQuefhpeegnu3oX5HKoKQoCqgn/8jy++5o0bD+DFAPBbvwX3739e93NwAL/92w98/do1eNObHmDOhgDPPfewuMSHP/z67+vOHTg6guvXz87cvv1aoOef/AjhYXXs0QiGwzcsGP3UUw9g6wDwxBPwh3/4J7q3t7wFvviLHz75kz8J/9v/9sivHB3BL/0S/NIvwc/9HOzvn50XAn7oh+B3fucBb8lHHc7B3/k7r9/sRQF/5+/A3//7Z8B6ksA73gG//usXfDi44KwHpHXEBQDBEwgCAHIXK3oQBSLfzo0BGjNARECWk4hQApAQEIBYGv78ktcsqef+fw0TUIM1t7MWAAASMQTdfMMBSZRkTZnPwVnnKlMViKi0EKHxeFkWeQhBKGWMTbLYVVAZZ5z1PrjgK1M75zxRbW0gdOSljtku5vu///t7vd7vfvS3lvNFN47u372Xr1YNJ4gIEAKC947jPSEE+WaLDwAueMdlVYBrPUGQwjl77+D+fLkQKsq6ndq6rZ1NIUQAEkp2et1u1vn0p5+pirJz5crh4aEQIm35L+tQjdoKKv43YwFRFOlIJkkyGAyKooikkFJyMMDlzLzR59DodHyxHk2/P8zS8auvvmqM2dzcREQWskzTdNjrP/bYY4g4nU43NjYAgBlek/lqtVoxOsPYKwdyw+GQiCaTCYuA8YfTNNUq5gaZz+edbjfS3V6vMx6P67re2NhAalSwuLSW853cGzmYYV9K1lPm65+cnPDjf+xjH2NUaLVa3bx5c2/v8mKxOJmMEfEzn/nM9evXN7Y2WaGSCA4ODvg+i9VKKTUajYwxOo5sa0PPDXvv3r39/f26rlkr2Vrb7fYQEaXY3t3hmH88HguB/cHI1KVA1e8N79+/z7KGo9FIIjLGtFwui6ra3t6OkkxFCQqqrPHev/TqK8+98Fmmad+5c+e3Pv6xL/zCL6zrej6fRzrhOITBF0aRlFLMHCmLerUsdCSjKNraTphTxu3MvDMhRFmWi8Vid3fX1E4K7XxTCj2ZTPr9fpxovqCU2loP4EII4/EYQbKeZrfbXeYLqVS32yWA5TLv9/v94eDg6OjFF1/c39/b3t5mxOrq1ctKqarq5XnJbbJarZIorqOIEeSqvHi28iEsFoujoyMASLJ0d+/SdDpF2UjWMsFiY2OTfNjd3rl9+7YExTXyOlbG2drXQkiNUgHaunjy8WuZwJl3eZ5riSC1rTygBBTBe0LQWgBibY0lGxBQgpQYAglBAgSFoAQgoBKopJIShRDEGm5SUQiFc56CEpKxHS2FoVorCd6HQBIkAmxubi7r8nQ+HgwGkdanp6cchvX6exe2QJZ2jGlUfY+Pj0ejEdef5nnOQRH7VTI4NZ/P4ziu6/rg4KDX621sbNy7d4+pf+ycZh1bzImTkxNE3N7aRdBlZYTUpq5mpxMAEhEReY8hHei8KEq/xAiHna4lRxhCcKsqpzIIAiGEkpGUElwABt2UDwEoOAwM36NAgVJxCO1cA4hzgBRaAyhWpBkOh7PZrK5rW9VExPIjCIIooJRRpDwFDusAQLUefdTKvDKcJNpq9JYkK5VScZyydMZ53I1nDETk+J0RGc708AUZg0bEKGq8y5iTVNf16ekpJ4S8sZzMC9mZ8iYjwtZaNvQzxkkpY5147613SGvgpgnxyPmgAiJ206zTHzCuxB8wphFnWJfwM/671rhgiz82LEXESEfGmIBiTYUmam5pTUZjAixzKqVQDJHz57WKqmqR5zmjsYzYco/i9YUnEGrEfyJefxkuaSAwCCyvxKhHFEWz2ewzn/nMlStXiqJg0mi/3ycfQgi1NUw8Z8xFhOCVAgDOl6yVGXjC57QiPxQnCOM4LvKSiHSkpJREjYMZN5doHerWAB+nH3g5Xv8ov2vun4zlsQMwI303nnh8tVrduXOnLisA0K1uuFKaL9uwlVFIKbM4QSlZeJrHY1lWvPownMdZN16gGW3M0s5yuSAixqCttcjvoqO4BRBxNNyonc3zXDdmsBdzN3gsWGuDdcxTllIq3aijeN/IRDCav+bhitbAjXHVQGwR2fD9vffW+ig6I/s757rpttJSaz23js14OTeALW2cQRxqxQ0YVmaImXsa3/Dp6el8PtdaJzriPsbjkQ3fkKlsbU/WSVzXdZ7nSRozOTSEwJrIQggubMrzHEFopYq6aijkwNo4NcOXQghApNCAYogoREzUAM3WWN46cp/UQgpq8MQ1IOhdiKLIB8tDQCnBextexPk2REPnhDiOa9uq3CSJNY7vimvIuFIwkkkURcY1XsqdTqeqqhBclmVaNmOT2bsY2DCFjDFCKKUiIhIEjgLD6Gy5KYRACtb6WDXKQq10TJCyYbK38j6WELx33I25i9Z1zSpVDSBOAgCQgJXoEVFKwS+a80BCiDhO1rgBT1zrOgPfitfXpnStvWQcyUDEmW/RgsXr+ZBnkrWSDGJjG9vk/LxN01SpSGnNn0nTlARWq1y3RlnOuXCOAA6t2lJwlKaxiJNibpMkqQsTmuKY4ENgAiqFNWWwLeluh9f6X024gVwOLnhGGo1Gly9fns8XABfUaSGCs8EY080iHvvcLKwItMbiGFV3znKv9t4bbxCRVwPeZXFZWwghVloQeO/BA1AgIocopa6qKtFRVdcIUHnPIkWI6KxPkiTpJIt8URzmSka9TufOvVtEFMfp0elhXuWx0tZ6U9UhQLfTr60tqsoTHB4fs/Qc85GZ2ME3z8OcG7mqKtYJ6fd7nCDh9CSv0dvb2/wVW9VSSjbEZmdj72m5XB4fH29uDi9fvsyruXOO86nr+QQA5vO5VvFaqmU6G4/H426nT0RZmh4eHJRlubN9SQlxeHgYa53G8a1XXjGmUkolOrLBs3perHSWZUyRXiwWPJx1EntTxnG6tbXFo3hSTk+OT2xdQy9kaW83GQwGYlGeLBaz973pyxSKpoOSJG+baQsAAgVkoYzG1YiIAgWUbDXNTHlBCADEI6eF27CJdxlDW4u2wEP4rGiQYoDm68DSlLiOtJkC9qBqM8CZAuZZ2Ax4Fmiv1TBw3SnP4mliqSbdfgiFYAM81FFERAJaGQcK3DPYSgmIUJAQZ0/Bd3jhobQOoZ5Op85Zzk1hSxkAAB4zLOYeQojjRAuZ42q1Wm2PhlJooQnQ8mq95gsIIaTWEkBXnrDhx4JAEkg+IMuiobCe6roGpTpRBgDWeIlCKOmccyEoJQKQ4bsSMgSrhBTdWGQR601Ho640vi7KZV4o7yVihJJCUESdOBHM4A3kkZQEQeyJKACAlduRKAA5762v0AcBoRNHwaKSKBVW3oEETWq9y4RzcLM/J8h1/k8C0LWdARm8CS3DQpDSyntvXVBKEWJtXaQY3vVEhNS+fUIhBRdtvec973nqC957595d1FHSyXZ2Lj3xxBNJlCxMpYUmlAIVSe7Xj3jBKAUqAAAMoi3rowfyHHD+TIM0tdLM1DJEzl+fWn30R3WqN3QcHT0MdH7jN8K//tfwyisAABsb8IM/eLEA8R/j6HTg8mV48cWzM1evPsx3du4N2AkCwI//ODz11AVOiVkGWQbb2/DmN8PXfu3Z+f/n/4H/6X965E9kGXzwgw+4vTkHzz33Bu7nM58Ba89Iwf0+/IW/AD/2Y68DUH6eDOXXkBL+t3R8+MPwV//q2f+uVg8Dx5/PUdcPzOeTCfzrf/0nuish4D/4Dx4++RM/8UCa5DWO7/gO+IVfgEuXzs4Mh/ClXwq/8RsPf/JzH/aFF+ATn/i8fuWTn4TnnoN3vevszJd/+cXujojA0mW8DioheYMYvCMiHx7x1skHZ0GIVoWqXRmpsSVyaj2BECDx4tT+ZJNnCxTYKpWAHIO2QgheWJsgi4m9fJ9tOVEIRNTP9OTugSnybhL7ynqlBRtutM54aZrOilxKGUVYGctwdUAAgWVRW2ulVnlRuuB1nNZVaY3Ly+Krv/qrVaRPxqez2SySijfrjZgDolTSe3LBQzhPAGko2/zoIQQhZWD7XCmjOL589cpqtZrMZ1GapFlXKVVbc+vWLWvtcDh0zuV53s06N2/efPvb375WrlhXH3NApXWjPNhGU4IbqN/v7+/tcghhbb05HIlW5YkXdN/qG1pri/ziXM3e3p5Ss9HGgJcAjouEEN1u1xl7584dLoTc2NiYTCZCiMlkcvOVm4899thoNOIq7CRJvD9bFBi5UEplWTYajeI4vnvnfgMMkeN/LBYLFimO43g5X6yZRByFMgGZP8nom2jVGBFxMBhMJhP290PEoiiKomCa52QyK03NML139PLLL0/ns+l0mmWZEPL4+DiNE0TsdDKGR7nOMet21mSczc1NrfXBwQEDf1xUOBgM2d9vY2PTe7eO6tm9UAjR7fdms9l0Ok2SpNvvaamKquKAf62KwFGcdbWxFgBWqxUBpGm6vbNz7+7dz372s4PBIE06WuvhcMiPwITHNauLhcVv3bp19bHLrJ94fHzMVoGMVbFn4+XLl5lCKISYz+fGmDhOer0Oh6AIstvtMt+Ka8y73a4UuizL2WzmKezv7zMRstfrSalDaOgkeZ5vbm5KFCdHx2ma9vt9RBKIg36/ru18OlssFsvlkmNIFFRVlamLC90lhBAqSgLQ6WTcd/2iKDjy51Ju7tuzyQQA0zQdDAa+Rkdu5ZcOPUYCSYAHcp7qervfv7KxkS+mGkEp5QkXeWE9hDY2kEJoHUGbPIsihcHLCIlQC4TgIbCHMkkBWqAQ6IkICIT0JFFE1tciCCUlYBBICMK5IJFQKpQKhQweqsrMF/PJfDIej9M4Cs6TD3s7u3GcXPD8LakQAObzOetvOuestVy1yl16e3u70+kwxscoWKfT0VqPx+MXXniBAX0AOD09Lau5976qjFIRgSA4HY1G8/nq6Wc/Mxr1bPBCeYlobOVNTYKkZkqNdYBeEMOOnHGJdISBEJkD2FhuRrGoK9uWZiO4wJ5SPLegkoQYiBwEJYSUUgTkUcwZI9bYYe5tmRd1XQ83RiGEsqpUpLXW2NRtnEVDa14twxMtJGeFAKWktY3LSFnWLNHbgrDEDcV5I9mKJDQ0wDZIQURjKueEUsq5YG0jWME42roHCiEEAWHDy0NEZgRz0QZjNwxIoRRSSmzL1blYHkODs/T7fUfEU42UOo7jOO6WZcn4F8N2nGJpYamwtbVFrVsXZwmMMexLz1gzP6PWushLKaUPfl1t2e12j49OTk8Xo1GHNWGllEmcMnrF09F4PObVrdfrMQubXxZj8QDAq15VVUIIggaT4iNN07KqQgi3b99mDDqSirEzAWeqr2vhAr7OelVal9h3Oh1mPq4/wz2QceHBYEBEjDwS+RBCFCmlVFEU6+L0JIlkq/y+BpeJCFFyyxdFwf3Ht4ooSqmyLI+OjjqdTpIkpqrXN+mcIwTGo7m7Fqs8z3MMjXABr01MTmUGHwBIKTc3N7npuJNwx1BSZ1lD1vHed7LsK77iK8pV/vTTTw+HQ1YUKU09GAwAoK7rKFy8uyUgBvddbXjEBU+CJGNYLHbBMCgRDYfDddK0lZFBY4yOlFIqXxV8h1tbW1GUHB8fA4BSnDaH5XIpVZMA4DmHt1I8FqIo4nfEmYksy7rdbrfbXSwWDLS1GB+tqzG891wbFELQWnf6PU5sxHEcK80DnLBJzAshmNvIbsnN0FCaeyMnSJhAjUoKIXi9Y3AfGuDCAjSvD4DWVHodqboynCpgKRgiopqMd2t2ra29EkJIZgE7OmfXxL/FvXSty8Fdi4EtBFEXpW3d7bSOi6Iw3jF67h0hgoxJaymETtPUGcv5FZavtcYopdIknS0XiIFXc1cboSSnuouq5B6exolzzUiM41iERpJlsVru7V4aDoeTycR75lYjAJNkG/UMYwwLBvOGsKUYB0aQeFAKgWuc1FrLvEnXSqaIM41mzx9A0YhycIOgoPF4jIhAJFsoWbTlXDx18PsSLbkktOalQF4plaYd5pXGcayUIoGdTgcDWdu8SmhZ7Tz7VVUlBESqEUUpyxoFSSnpHGITQgiAgpooAgCI1v40DX8U2g/DWoaWSAixt7fX6XQmk8nyuH4KLiipFlK2acIGDuKlfFmUSnEelFqFH5kkiYpVixo55qcKgTzTeu9DqzqrVFOBjqBa+eYQxzEBQGgECusqT5LEE2kdW/DFciKEQJkAmFlhYy+SJIlFFEfa+noyGadp5o13NgDi2669QwgxmUyn81mv10vijJNebDTKWPDp6elwOByNRlzwsbu7m2XpYrHgjQoTSng/kCRxksSdNJ2Mp4zwsnxQWdbGmOFwWNV1CGE+n1dVtb+/zwVzw+HQOGutPT0dc7a13xsyGH3r1q1XX72tlNrfuzKdTFarVZZlWdpdLRYhhMVi8cILL3ARZL/fZ7DbkePVxDnnKKzmM6aYCK0YK7fWKi0mk0leFteuXavrarlcZGnsiabTifHeuuC3qNvtnoyP1XQ65WEvpSTyAs4gvzaD4rGl+qKEQKEFiJsjtMjWGkdjlQUW74ZzgglruVsWgD4PBwO03GXODrEcM7SyHkLg2fUBzsHNIZwRq/Econ1+g0XiXDqIkGUuQnAISMRKNC1X9xxZTCALSLgWTIf1MING/OHCVQw4Qs6LQiipSWutAYO1NesqrMlZPAhCCFJHAMB1SSBQSqmVnE9nRNS2OzKzjIiUQsc4uGxnFu+1UpLAEaEQkVSOwFScl1aA6K0jIAlojBMClFZERAgmeCY7BwpCKC0RIw1KRWkEWWyNMZUBgb4OFHxRLGKptZBsDpOglBqJJPmQprEiNGVlrdVKgkDjnZbCF86HwDXh2NgOSHIPgLDUMsse1ARvVH4afP8ch48xEXbBUkLVlUUpACgvK6kVtyqSBy4nJ4Amic2Zarq8f1Wr+G/+rb9VFquv+qqvipNkZ/vS/v4V7khSagrgHCFbZYpHqQMgtzyCpLVE6zmC87rvEZHzXjbCq2dWgSh41DwQL/JlHvGLb+yYzaAoYDg8O9Pvn5GLi+IBHuif8FDqAYkDgAugt+USJpM3cE1j4G/9Lfiv/2u4cePz+vyXfRm85z3w0z8Nv/iLUJYP/9WYh+0HEeHll9/A/bz00sNyE/v7ny9Z+/8Lj+eeg+kURqPmfwcDuHLljTUIwAOQKwCMx58Xj/g1jhs3HkghAMDx8RtwTVQKfv7n4T/+jx9Ak7/3e+G3f/vhN3XeSJOPj370880NOAe/9msPPPtwCG9/O/ze713wYWxFkYkoOAO8pqAAIhkuXjyIfAiGLVt49VpH8lKiEtKG5kYDEAgIIRCQaC9GAkMIHnyj4AzUUtMYyAWEBsjwrkktNz/E7KkQbCXu3LotCPYv7bqiU5Z55WsiMgKSJGH0KssyQ8I7rwIZY0FgkiST6byuaxDClCXfMMeuABAl8Xve+wWEgFIopRBwPp4AwM72dgBvnCvrqnGXEloIYX1Tfeycqz1xyAQemDdNiJ0sYxxzc3PzyrXHpFJRlGzv7gihDg7uqVaH7ujo6JVVHkKI49hUNUMMUsput3t6esp+SrGI+G5ZuVK1vvOyFWJfA9C8D+OgguWY27JEVPrigJZhR6XF9vY2xw+IVNf10dHRbDx55plnuL6VJRpmsxkRXb58mXela+plksTUcuJYNHO9a7r18isuwP7+vm+ECEEpNZmecryKiLxlBBDrIs1AtGbZYEtIZJBCaz2ZTLrdLiNQOzs74/GYRQmIaDabWWc5DrTGs+GPC34ymWqppJTL5ZKIVqsl73E5Tg4nx2t28+3btznpji3zIkkSIdVyueT4kCDEccxq4wxAICLbcHN73rp1K4lixqSYw0it+w00wwUAAoPaHDvVdc3ePgKbPR5/neNhaDkmDPiqSC+XS0YEZvMJv3FGup999lm2HOQIkOVThRDG2MViIYSQUnClf21K2ap8GmMIBAMKRVGw/i//ujFOa71arT796U8zYWQxm0kpt7a2qqoCDLPZbLFYAIm1DC4AMGaBiFLWyUVWecenJ0qdIuJqtZovF41gwmrJg5cNDJWQUqqyLBUKW4ncFJUrPQRPBM5LAnCA1j9x/XokMDe1rSst5LSoABWRdwRCSgEIgJbLjSFYawAhkMfQyDuS9xJQCYVEEkgghBB8IOYmuRAEkQgQBDkKEoiZZWmsBQgFMgSklnmwv7+PkbDWeOuI3Gq1unfv3pWr77rg+QEODg8G/Sl3VMZ07ty5AwC9Xs+14rz37t1jurpzriiKvb09Ps+ZFTYxK8vy1q1bAWvB3nc2R5SrVX5w/8h6gwKM33/s2t58OXHBiQg0KiEhgCEkH6isi8oaFAqa+B+dC8E6ITy1EoUBwXjD07MAIYQCIYiAyMsowuCCDSAweM9KC0IguUZujoESrk5gzFd0OmvgBpUUSpZliQSsRs3dlfvt2uqNWlstpu5OJpONjR2u02djMZ4YGQLmuZGLuLmpvfdCIPdnhmAY9+Q5k3N71lpOz/C/WSRUt1aHPHGxLICUcjAYcFUBw5dxHHsKRBScPSNtBMJz+TNq8rBeCDUYDOq6XDNXmtyY90zUZR5uu84Sx1NMytNaMv+dgQ4hBIJoYmmlGmna1v9wY6PL7cA5CWaT1XXFd84PzlU7eZ4nOgrOMdag4kRGOvjGqUxKiaLhX/ML5Xmvqqr+7u6NGzdeeeWVfLGUjRttTa2GKZuL8r9rZ5kJOxgM1ngoCwFz91ZKdbtdaJKdgeUCqrrkGwAIrMjsWrc67l3GGBY94ImaW3ItK8GLwvrzoTEfU51OJ1+V3AljHQkhiqLgHyIABnA5DyelHI1GkVR5VfLjJEnCGtPYenwRURzHURTN53NW702ShFvPk+f2ZzGKF198kRnKnU5ntVoFT7yCN5oVbgQXHSzyvrOzU+UF938lhSXH+tfc84MnBvVYbpvTw2vqt241cJnIjIg81XNJUK83YrjZGCNEs6K5QGuV5/MpAUTkxSXPc1Z05bfJg05KyeLL29vbEpBNhqG1ECxXufEuhMBaGc3ii8CS0wSNaigzuPnXyfk0TZmk3FYkRB6Ic8CiLX6yzgGAc406lvfe2DLSyY0bN05OTixjXlUlpaxrw4/AZQogwXsfx7HOYm4xHkdS4hrm5r7Ku7I4jpWK8jwP4BiDNsZUZa2E4E5LhJwRrGxTlAYsRiEaUaCiKNZ0yTVGz4VoVWWMdw3xWSn2BEZERr2cc0jAqtndNDPGhLpCxKIqecSVZXnnzp041p1OhxB4Fm0dTdgfUrRT0JonR9A6oyqlEIFZq0qpuja+ZRhJKfnZuQspJb337DLCvYs7QGNk4lyaJMbaEMIauOdmNMbwNMsbOURkUEVrLVDxvQUiznYYY0AKIhCIvMXiYGO9MQs+CCUQqTK1ECpN48W4NMZIERFxzQq7PqL3gc7hewDAqkefq6x7DlVrOsl4PJYIN5LdC8fmaDisO2icC66JKjlxW9SGsya89+bRlyQJBLDOCCkFBh4CADLPl0ToQ2ByJ+vjaak5yQcARKC0JgpRFA2Hw8N79wl8pJKC3UGAXJBMdPTk86rSWgvQwgCjvXVhhqONTtolAvCAwPs6+/zzz0uhCaWnaZ2vLl26tLGxweM9hHD16tXr16+/8sorLO9+69YtorC1tWWtXa1WDDT3+31OZzrn5tMptlz4brf7lre8ZXNzm81R3vGOd6zyOaeXApCK9KrIT8ancRwPBoPNzc07d+547zl/w4V3169fZ1/rTqdzcHCglBIkPACTEniQaq15dxRCeNObn8jS9Pnnn2d8fDQa8V2tmc4AMD6d5mXx2GOP3bp1a7DTv3Hjxnw28anv92I7JiGpEiaOE1MYJQIiQbksAGAdaDGCJoX0wSPLX7Tex+xH0fSdEHg/SEQIKFl3IhAiUvDUQoosOwAI7DooUCAgElIgQGASFgvcCCECsvYuOwAyzgxrp4h1r2VaFwAIqRtZCaVAnmHBPoRGrqLlXDdilkCeu4ZCCJ5cQ/4KXCUkWnkyIhBcaNaIWBERYmBZD2QoXTwCbybnjKmLYtDplWXZzTrgYbUqAhDrTpInxMYRJRIiTWIdq7p087zYHY1cWdrVSiAGHzyAVMI6W9cijRPwRFp6T4AYgARRIBJIiISACMEHFwA9CBe8khGrnACgUjKQaxSfPSipAEQkRQjBW0+AABTQgcCFRgEIUQIh1oHIB7AOjLPWrYpSQYilBl9pYyOIyAcFNC9qKXVljRQaCUNAK2TtDGgJgTSqUb8/W67AeFGgjYLzNeuTokAkSfz7wM+C69WXyDMTBthaEFn4GIQUTDxuEow+AIZYIHhDRCgVkQBEFywiKhAQAgZEDGQtQtjaHN184fm7t29tZWkWwGLuRW3JuxAckHMu1jEAIQZJF1ufAwArvbRdhfsXSGq7GEpqBDQEikDeNe8BQuCMRjinlt6WCqIPGP50JHudg9//ffi2bzs7c3gI07bgu6rgX/wL+NCH/hR+6Fd/FX7kRx6G6qZTuHv3ARnoj33sDYsR37wJ3/u98B3fAd/zPdDpwCNc6JsjTSFN4T/9T+FbvxX+5t+Emzcf+Ktz8Id/CO9859mZ42M4PHwDN3N8DMfHD2DW/z/t5nd4+DA0/OY3w0c/+gaukGUPi5PcuvUn0gBRCn7gBx4++RM/AU9fJIl74eEc/NRPwZd9GTz11NnJN78Zvumb4Bd+4exMkjysJQIAR0dv4FZffvlhd8e//JfhD/7g4f5A4ANwbraZKKSULjheO/0jxLLJo5QxNabSAABNrpeQAmEA2a5QRBBCgACBYI3LMJlaICJ5phxqD06AF0BCCkDZeFSFwOakBNIHJPABghIyjXuTQ398d9CLVKRRg4/QL0MIzjsptAKlYhXJqFPWRvhKiuAEWlvnxpBUXiobnJWaCJ2pIoXB0eHJ5Fu//Vve+vZ3ThbL8aq6fGn3+c88W1dFlGLUi7z3voSIEu+9EpLICwEUgvMhkLBBB28CoQ0+AAmlKlOTwv7mCBBXVam1VklMIOIYi1UulEyimDWFe73eoNe/ffceynnW7Xim7NV1t9tdrVbWWmby9nodREjjZM3Cc86lcUI+mNrpSK5Wq72dbaWUdcY5J0VTk15V1WAwMsYZswK4OKBNkihJlbV2sWj0gvPFMsuyYrli1AYRF4vFZDJZozmbO5vT6ZSINje3Q2vBxKQnVqEl52uXJ0kSK6k0drKeiqSrbBQrrr8bDYdHR0cts8OGEFAKKCiOo04vWy0rAM/sLZaBY0Rmd3eXS2gXi0WWZVtbW1rrtNvxQByJWWuriotk46qqFotFbf9f6v482LYsqQ+DM9ewhzPf+b1X79XUXdVdPdCTQfTXNAI1kgkJIQVCn7AIS6KxwjYhK5DkCMuyZYWxkWwsG8tCCowcYcAipCYEQrYDLAOicSPGbhq66Zp6qHrznc494x7XWpnfH7n3vufeujWJlsW3/6ioe94+++y911q5Mn/5y186a5sacAFhA5PVWtx9cRfFZxOXUiA2bayEQyGEIsslcMq8E2TQVa4JgBnkE0GoQwgizbGkhUT7Whtom+dAk5yWJjwArZhVVdXGaGaemYX3QS4o7hwAgMJuoRljvvjSlwCga+OstX744EhyMKFVSJxOp6qtMua2frPD1+QBseVqIKIIMnSfnxwdo2LxwbQ+r8q3xpwcHVtrhGArqpdaG+GuiukIIWhr3PExNNXHu2+5Khd79+791fpZaJthSKZfAvsmcSW5CkK5z5pqrW1gVMowM7igEVyVH0zGN6/t5fk6EGdFXpFnpIoqRqMUEHlEZIWO2AcfAjvXiO0JulcrVEoRgqrz0KBR4uV75gqZtFKKKdaaMTHWGq0Vk1LGRDEIZFAHNIRU3H/pdFUWpDQxguTpiYvicHr22zduXfEGlsv14YMvCQirDUqY532t1JExhtgCEKrAxw8RCIAQcXp2ZExUFi7PSwaltQ5cI2JWeiUsARUCOWKug1Oat3cn12/t710bzqojH1VRpBx6rdGRJxdJeiZN09gmQqFlZtSIyP1Rv4FZiQMFqZ+NorSrQmbmRqOTG+YaEyvARMfAUGdVIGQmo7XWFgCkLljkUxkhSmLBKQCgzIs4igSMgFYXVW6GyNd1AzErpcQbL8va2k7Q3Ak3UzrEyvqSr4uZktO01tJqnlpRDkltSt4F0SmlGm6v8xBIKQ1aiRxqUVfaaGhZogIwCQ1feNPyi4JVAUCapgBU1zUjOC8SPaYOHYXQeO9Wq8Ulm2NMtLXVk/kPoAaDkfd1FEUi7jEcDj3oJO177wOBWDYN6GoHxFEUgfc2igjYWBO8W2Xr3qB/69GbWZbNZjNXldba9XIBFIbDYVmWkTbjwbA3HJycnIjtqpw3xiS91IXgnHOrtfN1HIu+AZBrsqoC+SmlRr2+AZxPzz5fOxkdQZ20Nd77vCoBgBUqrR2FKIpc4YwxWmv2ISszRAStiKgoCqV1CCERfp/zURRpAqfZe5/20jiOp9OpAMpEJKGi9z5NemkvAQDv67quS+80ojWx8yWqAFALlqqUgkCh8t65ftIry9KXjohMYuvSobB9uGk3qpQOISCrKIqqojbGWBvHsRWUTTBi70m2EtXmEiQwF5RcLG2e5zaK4jTepLgpxIcPHyqltDVFXXkmG1tJ4JVlCQqT3tVlEEZr9oGZkyQhQKs0AGTLvNmJao+otNZxmlhrCTgvi7KurDb9fl+Yld77SGvm4EMwVvfSXl3UzrkyKyMd1YVnDnlV3rhxrShzgWnYkdOuEzeXzK4sAaVUv99P0/Ts5LSMYmutQeWUEuK/1roqpZtiwgpVK2IuSCK02CUAWGU9BO88emwKOQAgQAABAABJREFUYsTU17XgsDKvDBvPBMCoUBsTvPPB5Xl+eHQkALdqpX6jKPLOgbHkAwVQsVJKjUaj+WwGyGkvIaJ4e1xVVU1OWTPa2ULEqnLKmH6UCO2AiZlCVlaiNpNlmcx5ySrFcVwUFQCkJg6VZyLUcOPgmo6s6O+HEEpXJmmiIy1kAh9qo9koHbUeRemDblXF5f6zsmCl416qvRfAnSPDIbjgmTmOYg6kUfngI22SJEGjy6wm8sYYa/VgMFms5lmWJb1YelEQkfjzvaQnP6pRB+eD9lprYFBKOGfaV1Vv0BcbK8NtTJPUFwOlAIXcKXuEZHfquh6Pt6uqci4otFqb4BkgKA0GFShO4piZrTEymswsKLwUP0FLr8aWp6yNTRKb5bnsC1I0Jok9UEprrVvzblAhYk0NaF7XtVG6l1hXBh9KT4EDKTQAgdkhagpoAL1qsCfFLQFTCjoFwgNsVDWERaq4l/TXy6yqDLGP+qmNrqb0eeeTJFrP1kRNrsJA5CgkGPmqjKMIEUNoQG1JeGitvQtWK2NMtmw05UtXWWuBKXinFZJGpRWiFnINAKBziMg+nB4eATMTpGnSj3uLxQJqIgXWWgYondNRVDkXxwqM4uAOFydxHOfzB2qpxoPxwd61fJW/8KVn1+t8MO5vjbbKsrp79/bu5ObJ8XI4ZADOVgtjFDn/4vPP5fk6jiLnkRm0Sgg4MCmjh/0eIiJDkqSurPJ1UVUVgMrznJsKkurTn/70gwcPhsP+I9cO3v++r5jP5y+88MLhg4ej0cjVtUalUW2NJ3fu3JmfnfX7/SQ2wCGyNk2Tfq93cnKSrddxHN+8efPhw4eOXK/fG22N0jTe29uTHMxisZhOpyGELzz/nMyuIltev359uZwhovc1cs2hp7U+PT11vh4OEmA3Gff7g15Z1s6zqypmHo4mo9FkrmerfDEc9MzOzg5skExlCXVpE76oWdy50eoVXdQ2sxwdtbP7IrRyM5v/Kofg1d05cK6JC5e+1f330jW7C3ZMat5oftgh1PL/LWtJBCLP8evulrrHJAC6yEFjbhfPVeIJm4ckbEMI4/EYEc/OzrpiB4kcmlqVtpHdcDj0tVtl6+3REFtBesUUgjREom4DJuebimk4Z8syMxGDAqUUNXw2ZMVKK9gYqW5Emt26o6hvnOCZTQP4AilUqJVWaAwC2CTWgAhQl1XlQxU8haAUee/BKSKIgJVSgQJp4p51VDkPFbAd9cdhb3V4Ei78GhCRQqXazgwAQMzq4ljzBt+8SzngxfePoDdVu9sXQogoT6hbHtMf/IN/sKqKZ59/HijITr+cz2VLAAAFTauEzZn2ykOGpT3nfD4woqK2eKSdUZsvn7lVoWlzidCi1a/9i2/2UOpyGzelzgEypb48Xd3u3IEf+qE3hLq+WV1gOeoa/tE/gp/7OfgLfwH+0B96Q195/HH4r/9r+OhHL0Cfr3zeXu/NNccz5vL7tBaUeqNt6H6vHUVxGT1/17vAmDcBoA+HF7jzAG8CF77yiKLzdIgcZXlBoeWNHErBxz8OX/EVF1Q+mC+MVK8Hd+/CM8+cn0D05rREquoC3AwAp6eQJJcneceERUQg7gx1e1evNnUu9BXp7Bh0vQRUp/ne/rc1d+fXQIK2eTRqVgiEDAzExCzVbmCUCsxEPqBSAAwUKW2VOj09jSMz7u/l2cozS7n0alV476Mo2tvby/NyscrEvYuiKPJOFSWCDsxa63pdsg/sg1Gqqsq6rkdb/T/wDR9BRKnVNYHjKIkUkne+dtJTRbUdDnztXWhKhgUakR2wdrXStqgra23S7wnqIffWwZpKqaIoqqL03u/t7Ymc7td+7RNV5Y6Pj4W0GFar2WzmfS0Q6qZ8M7eSaoImY8uPCyEcHR1dv369rmtjtZRkEpGwhKRJTngVJe7RaLS9vS1xptSWpmkq9B9pQycka6mFB/DCbxIEU96wUkpYzyGE6XR6dHSUpmk/iUVM8Mb1R9BGMvoSt29tbZ2cnEBbMi88QSba399vwVbpe97EbMKD6EL6Xq+XZdmNGzeSJFmtVr5qmh3JCxKxY6WUgNTKmCiKO5fGU/DeQ1tZDwAS63Jb2inRlFSRC37d8RNBYau6GDWYlQ8dSN0AXsDiscn0MMYgNp5D5wSKMwmS2vFe60JuQ2vNDB1MHEIQBIGa0v5GRCVsdCUSBo2kAeQ+oc1wq7Yyb5Mi3f1/RxftvGi5H/mtyFpjTPCcJElRlEISbGHlZgbaVrZJCkg7X7GLzzvs+JWH876tzCVovZEOswOQzimNkw0tKi3KqgYNG6ryfBhHb3vbU/Kehcko2AoRNU5jY8SYgnjFjV+tlEVEIt/0SmrfsHg7qhX51Qh+Q9SbiMQdt8YE7+Sda2UJgbipHGdQpLS4TxqhBgDKrnwDeZat1gul1DojajvRywKvqkqahDMzIijs4hHPXDAhM2mLCoE8MAjDBr0LIZSeCRgOHhm/491vT/pR7YrarUOoTayIqPahyfeFZhMVrU8AkOwXt/NWqiikok8GV7Ut4AQQEZac0F2hJTC2lHYNCFpb22oTW4XOkVBi4ziWJkJ5nq+LHBGF/ikUpK4Bl6xKaltvCaAp1FRmzvPSew/QVHMLf60rS5WbBwBjVOvENvTPJEmEICy0U2HSiURDXdeJjeSCqs0eyY2J6RMiJLftwbvtT6Zcp4YsyTOt9WQyIaI8LzdjTBlfWXHyYnWrICE3IzZBNo7t7W0ims/nNu2BNiBiskREtMyWm0kpRrDGrtdr2XQEbEXE3d3dbLkioq2tLW43SgmihcUmX5dYXR6wrmtt1DAdZlkmtyehB7YCrP1+36Aaj8chBKmeFvMr1FpWqNoANkmSk5MTGTiRSkBkGUpHQfamum2gCgDIHEJIeyk6H8cxKpDXIj9dFMXZdKa13t3dXSwWeZGlabpeL5sWds4xN830ZBoLj5Jco30kWZM8z4VSLSu6LMvhcNiwRxE7HrpzzvsaAKwdG2PW67VQmNPUygKhDc1oyVuI2oNr1XLlBrogqypLIZzKZhdFUZIkdV3PT9YHBzs2jmh5tams61rq2ZVSylhJWowHQ9EJkS1YgAhpgaBR9ZJUxkKcH2stg+ynoaoqJhikgzzPlZJefxwCHRwcRFEUyM/n8zzPLRrjneRU5NXJpeQRZNULbZCZ1+u1SayojQsxWbjnoRXlEK9MNmWhPzfWXpnK10WZy7oWmRfTRkFCpxWwUvBZbBSHGsFlyfR0WIExJjKRbI6j3sg5N5/PVSvmMBgMmvBZKaWUVkYZ3SlcyUqXVEGAZk/vmhDKDiuTpK5LZqzrVjnX+8o7qivJpQk79ezsTJiV8kVmrlwNCvtpT4ZAaOCS4m0NoAqBtdaid1+HmgJwCGK+JB0rk0p6GjvnEMFai1oJ11hYmNhShmMbdTYKEQeDgUD5IjhgjBkOh3meJ0kivnyH/1JbBCDZIA5krZUEahzHUrKTJMnW1k4URcyNjoq1osmixPz6upTFRe38963mu/ge3W/J14OsC6U6Pd9er+cocKtFo5RiIuecdNgS86gYtLZaoXOuLL33noiRCFBQWqFvY9uzDS4RL5m5ZZEyc/OGlQaJAqQmIEkj55zT7sq1iYjieDhXtXWBKHLt2LazQcRJOpF9xDmHqEMgjSCzURJCyhrxTmV7wlbUSEwfEY1Go7IsV6tVXVUC3Mu0kd1WikMVaDQNbz3LijgmGRDlnHOeA0llfHA0TIf7+7taW/Kc6PixJx9/5qmveO6554piLTvLzmQrz/P5YpYkyWjU29raqb0/OTmRWhBxsAGgzIujoyMNmCQ9mZaTyWS5XvcH6ec///n5fG6MqvLi3r17eZG9+93vfsfb3/4rv/ZrIYR+vy81kXfu3Hn48GGe50899ZT3vq6dtfb4+NhTcFXtvROzP5lMZMk45waDgRR2SCYDACaTSV2X1tonnnhitV76tvnHY489ulplRVEkvd5gMCBaWWvv3r0r3cXzrJQRn0wmKrNnZ2freLUuVnVam27kOn8UNiIu2bBDq9zUxbqd8kUX9J5jvgDQerHd5NsEEC8d4u5Dh8dtqklepYe7CZAiYuDGkyYKwE0k0GF5V/5cu1EBb3yizvGDphZAfKxL1+GNvk+verSggJS+RlFUU5O5lRjSGFOXVYM7By/cJRA3uq4TpVFrVIpQ1aERs2fEsq6Q5dqKmAMHjQgtiqG18UAAjMRKaS2lUg2e3oIS56x0gZub13UuGUzMAL4lCKgmMgEwqBigF0mrF4w1iBsagtMh1CEEBlCeQWvtayYmZi4M50RZVRsFppc4ZEA27cDJbYhPz9wNvoiVAiqGDaXmVxvKbhogAoBm9h2yg9h0ZVRKGW2899euXfvzf/7P/9RP/WS/36/z7Gu/7vcXRXH3zj2rTEfZIGZEttYQEfCrqupK09VWb7mZP4hI7V1pOEeXEFFiYCLiNpsi/4rdLOwu9+U4iOADH7jwySOPQK/XIGJE8FVfdfn87/xOuHPnzf1KXf+/wfA9OYG/8Tfgb/2tRvPhLW+Bd78bHnsMJhPo9S6jwADw2GPw3d8Nf/Nvnn/yyucdDmF3902A4NvbMBhc+OQrv/L/X7FmAChLeOGFCyzgGzeuAExf47h5E/b2LnzyxS/+rm4pz+Hu3QufTKdw+/abuwgR/PZvw3p9QZf8i1+8MFJnZ/A//o/wfd8H43HziVJXCLC89q1eMv/Xr1/x6sKmHj2fq/DL8WrbE4XgfVst2AoBgVBQpOWpc9CmbOVKqlVF6BBqpZTCRkkTFQEzIxOzMDOw1csyiAEtK+bAxigdQnk2c0UWRZHRyhjtXWU05qssW68Hg8HBwcFwOERjSenlcu1D0FpXi5mKrSHwqzyEAERWm+B8WZao1Xxefvuf/f9Otrdmi2WZ5WVRhLNZXVVpFCmjkYGCVwoBO1RDJOGAEIIPngIoDHXQWrNCJByPx6wwhGCs1W1jk8Y1ROhUBdM0Fedegvmmkg5ge3tbVNLKMi+KAoAayei2m1aDenuvtV6v13Fi+/1+nq2lQ7RoPgCAtZYZBWLIsledPcfHp9ostre3xdQfHx9XVYXEQr4+ODiQDk67u7tRFOV5XhRZ5SvxAsVhEPUSJiy4EL+TiKbzmTjEW1tbAVXTGwRAokppIR1FhoiGw+FyuURUgnnNZjMiX9dlVVVSvic4gkT4BwcHcqsiJiDaqVtb23Vdz2Yzo/XW1o6Eo4vFqtfrYVV18ar3vulrvIGximcv7llbVdqIFaq2e2HzFWsELEiSJM+LqqrQNGWhMriIyAjWWrPRLgYAQmiKWAUIs9Z0S8BaK/0VBfL2PiwWixYVFT5B53WcOxJG6XbdcXemEMS4kf8zDfDaQoHUMmUEToXWvxKgRLUl7Q20rSFN06p01trBYCjKBnEcd4iePHJoelc2nYvkQ0+hg8uj6Op6H5n8DWwXqHsb3f3LG+W2MQYqLS+QiJQCYBXFyc0bBztb22W+YgpVXW5EaFouoBCZkYihRWwbHLlpGaebNBKzUhIeslIqihuhXqOQQoi0whBEh9cg6GZetPNEMwQggF6vN3A1oCaFoDQRSXVbZK4mLUZxPNaTEEJTbNlY/wb0d6EEsMhSTWyixoywYP0+1D6w9yGOrY0TAXSYA9X1/u7kXe9+29buMCtXBGubgCtLbYCZy9oxCZsMgm9Ug40xzlUSuQkc3OY2RJj+PGtYlqXMEAFQqK3T7+akvNXGnocGJgCAKIqsOq/z63AiZu6AP2yF+OTiiGjteT+oVmRDmrkZUT7VWkuaL4QAwEo10DYzI2o5WVZNyyA2gnELICgMG8EfG0YncweaC7dO5B06zQSRWZB1JCtXXqAAuFrr5XIp0rTGKFFRr+tGTgQ60ISZGZViRBRNXiIYjUbymGK6iSiEBmH/4Ac/+PLLL3/+C18StBSYBZJLkqQxazbS1sjVRC1htVqJ5ruko6DN6snYhQ3lkPMmAaAE/RTcPEnjDhOU/Ghd1wIIlmV5dnYWanfz5s13vvOd6/X6c5/7XCeDgIi+zWToVrlI7o3b/Fk34rIJCqrIzHEUaa1D7eq6RqVtZOq6FhxNKZXnuWhxCKy/Xq/zIqM2Yg0VAUCaWMlKIoD3fjweV3mRFQW2tNl+v79cLgHAJFaGoxPZkHsu2pNXq0VVhYODneFweHZ2Ji9f7kSMjIy+annxosStW90YHwIiCgzNbbmGABSq1Ytg5n6//+STAwBIeqktro7WEUG20RAC6EavQAFIMqaqK7aR2NLFYtG9YcmYGmOQuKgr0KC13drqOeeYYL6as2ehP+d51R8NHz68PxwOoyiSjoi+dFGSiPKJ7LAyRiL6L9NAI2qtizLXRnV5UO89Bc7zfLMPGBGdnZ3t7e2J6QxtFwrJPY9GIwCYzc9E1LXLjNIGfY2lKRyR2BOlUSA2kbVZrVay2cmKEKe086bkE7XBzmYC1F3u1nmvSVtjjCQS2VUhBFns4hunadq87RaetsY2WdU46ijqOzs7kofrJryIvSiljNHee9EKk526mwayI2dZJjkt0RECA9pgnKRE5H0DSXdAcBzHcWwFvjSRVUpJEs61DQOJKDKNzLTMnG4Kdbt2Z0WVUqFF1bmlyvlWdEiS1UTB2khsoJy2WMxEglxO47ZzozYir0ybl5U3adpuInJX8uvQJrmjOBbrJC5WOuinAAaVpDREEQgAWGEUxVVdi61zvvLeo8Ioinq9XjYnYIWNjigAgBREqHM48FwdVORPgbkT1cBGF5C1kh4wWimVJMm1g+twFewQgp/P58oaWfVdJMXMBs870+q2hYBs0yG4iho58ma/Mzq03T4byL5Nvcv0E+s9HA5DK3Ej3o5kEcqqco0AerPPeiYMXoPWCBi8Cw4ZPbmj06Nhb1jWxc7W7v5o//DwKDL27e942+dfeK5269F4lOf5EPp1qI0xfTtQStWVU6gXi8Xjjz9BRA8e3FdKTacn63WuUY0Gg+FgJGldRByNBk8+9eTx8fHh4QMif/Pmk0bhvXv3vvDFz//mb/7m9vb2eDycn53evHkzicwXXnyRiPr9/o0bNwRrBoAsy9brNWqV53mR5SLcnCQJkY4iMxwOq7wYjbaWy+Vzzz23v78fRREi7+zsiO2Kk+j09FR80cViNRgMTqZT16L2BwcHTzzxxPHxcVYXvV5vOByFpFosFjqPQuBVvXrk0Rvvvvnuc3f53Hy3x6Z7tInw4kWilpwMcI44d65Ph6nhRv837hhb50BhNyOhg0Q376fZEqApIj4/mRm5VTNgoesCtrq9fAGOlIvDhgMKvCExI80isGMcE1HLud68PQDFfC6+duU2ptpMe6/Xm06nzDybzTblfjbfZ+O4qGQwGFBwWVnEaV92PgZQRocQmEE6sUbGaNSSogkUWGgb8q5I2CwcOBAAs3JUByYgaNB8ZGakc+6wYt/WfvJ5JEIttxcRiTkICw8BFWpEJ+J7BlkjEZNG1gYiExwRga9qq3SNwfk6hFAERxrBqJpIWWOtLcpSipEvvbrNF8IbzL7zM1hJY9PunEvflW8rpRAVKFQADKhRST8t8VreffPm7u72Os92dnbWVidxLyvKo6OjLMsAUJjsglB7XyNq/yrji3j58837kf+XOg+RzA4b0Sy3uPPm1GpchzZ587s/trYuA8G/+ZtwfHz+54/8CHzP95z/qRRcvw7PP/9l+fF/LUdZQlnC0RF86lPw4z8OvR4Mh/AVXwF/+A/Du951GQv+0Idgb+9C58BXPu8TT8DLL7/RX3/iicsI4z/8h/9Kj/F75njhhQt/Doewv/8m4OZLws0nJ3Dv3pfnxrqjVVl804e7Ol9+fty+DUVxDjcDwPvfDz/7s2/0+m90MrR7HwAEplCHLkmJiBSuTlaEtsyIiBq1ZWJElNaCROTbHoMdACEC/ZsbtNrsrCCl9wgeuKOOabFEKPoeDpFiY/wqyx4cGVcn1tRVmS1XHRevruv3v//9O7u7s9lMfFbhVlTeL/M8ECzzoqydq0MTKiiV2Oh0MXvHu9/6tV/39YvVqqyrOI4fvXHjcy++VFc+MUZp7Xzl6poARRKOgZhRWqwEDo5CkEoSQEQlqfskSZbZWmk2IbT8u9DvJ4wwm82m02k/7SGiMK3E9ffeC1Sxvb29zvPxeCyEO4klAgtQ0qglSJAQ20i3UowGlTFmtVqJmJo4smVZek8iNzmdTtP+Fd1OAOD+vXvL7EtPPv7EM888c/v27cPDw8FgMBwOJWKsqkpAZwny0zRdrVZFtvbe9/v9JLFCSwwhjEdb1lrRwZxMJojY76fFOjs9PV1keQOpGCOUZKk6l6ijrmuhbwjbRbhO4h32+/3j42PEpgNVnAiOvJCIWpz41rWDXq/X6/Umo1FZ1kL+Go7HpihWq5VzNTNJz4kkicu8cSoEMuiQF3Gp4jjuwJdOUtZ7b6NIXn4r5kbkw2AwlAhZCNHD8YiZ18ulQA8d8CqoU0cLxVaQWsZXcN4QQhQ1KRm5vdo3aRsA7nwepaQWtoNNSXANkcsQgEkYKC0Y1/CaO5S5WXQXm6eFVhWxLMskidM0jaMUAKyNGoocszQb5I0qQ/HKiUjmuTGm9q7LhZhXKVBK4higLZDX5/SCcN6R9kLZn2oISpRGsdCV93a3r+3vZ/kKnKurUkqhm3fLIK28ARU3Isxt1gu1uPlSUabFNEHj/RCRNtj1TDMKI2utwjrPfVVq1QrmcqNwopSKja0h+EC9NN7T21UIHlBbU1UVB9JKKXV1TUraS+raKiWUPSdYVRRFRD6EEPd61sQKtPfMpK21SihbXBtDFkzrHutAXJYeI/P0089EMaS9aDBJi3JWh9yHEhQAgmcKNRAxggHQwKi1NP1rfDluqXzCO5HH1Np2Ay2nCWYh8xxamV1sC6I7gNJ70c3WRmtELMu8DE2CpxNllj/7SSo/HS5WbFhrRV6mWyly2apqqIha2xBCVRWygqIo0hraVSNyqwzg24CBrY3lIrKQVUtuFbg52mjKKviIJJmEUaVaJpOYaJGT7kA9YZ7KSxCDWZalBGfee+amE5Rvm2XFcQygpBcrM29v78qZYmTE5gib2DkXx/7nfu7ntra2Dg4OhHYq8Ec/SYWGrFrKObec7iRJkiQ5Oj0R7EkxyFfESrR7sarruq7r0NJoiBrqd7/fZ2hIo+PxWF4IbuQSZHokNlJKfeYzn5EJI9gZAFS+0dYQQyqYnRA25e1paJRYAcF7T8zWGAFTgHm9XiOxtdbahm4cQogiA0DOueFwOByMnHNnZ2chhF6/p7WOoj4ABGoNo1JpkkhHu63ROIRw//50NIyF3H16eloU5dZWLNif4Fx5nsstSfdUADBGpWmaJOycOzw8FNKukO6NiWT+6La1LGxE69zIoYCxylrrHYlNC94HaMRboigaDoeCPRljEBQRrVarvnoVqas4sdYJYkgI3gWlVFXkSZLcuHGDmR8+OHS1i3tpHMer1apBQogjbSiQB5H44DSNJLqPbGyMiY1l5igyx8fHq9Vivc6998IiTJMeWMqrspswIulLRKKFCgA7OzvBSbORpCgKVKpLgfTSFNuWjDINRJH/3r17iLi9vd3lq8SdEELbZLxVVRUgu42GDe16gQ7lFGpnIO9ayZ3Outd17SonzRKiJJItDxGVtc45IfuLbXG1r6pKBc9NljcUdRUBG2OMUcxGpr3cpMhHyE1KQggCeSYdWeeckJTlRyUP1G3EiCh65YjoKRARGwMA8ggyuEVRSDZL6LQA4rQjKQQAgV8Rg8BEnZ8jNkprXdc1OmxqdNo0s1KqLpvCBUTsXI7O4okwurDvO7ELZXT3zrktdVKtZKjA5QAo6Lk4CfP5XBS0ZZLLuwUAFwptzvGTbk/v8jrdzXQgniTtZIl1foVSqvIOEUWeXlI+Io5MzLIZye2h0eS5KCqlFLBSoJiw0bpt9v1XQGTUQBwAANimV7FZxcQk20FR0Pb2ZDKZAFwBemhtyAO0Wmri4+mmRCyIVZfZK+6QPKNSqqk9lwx6q3wr/HoROLLWolLiaiqlZM9VSmHr4wkrXBKi3JQ8IgQKggei8oF8IKV8BSBGiZj7/f50eWqUPVucTWeniOgdpYdpbxjpqM/kk35cFPl6nb3zmXdEUXL/zt3Varq/v19V7t7tOzdu3Ii0LavCWru9NU7i3mQ0crVQUUWGfp6V2dnZGTPv7e36uqqCC8HtbE3EIz16eHjv3j0AuHXr1lNPvaWqnFBPjh4+3JpsDwaDqqoO9vezurTW7uzslHmxv7+fpulyuazaY7lcPvbYY3t7e7dv3+73+5PJZLFY9Pv95557brlcbm1PiCjLssn2to1jySuvVut+vz9fLg6Pj7yjVb28Pnzk7Oystjki7m1fi6IkxaQ3SGazWVMh2Pm4qm0KL1taaDs5yGrvDBBu0DOxBZdbXjCK9DEAdi7p5rzkNi/X/lQ7NV/zwHOM8hyP3vwcL8prbH73Ehq4eSfdI3S7Gm+KROumKy600DORBNpMxOFVIAOtzXw+BwBJ2ZVlKdGvmPuutgJEbsk7FwI6R+wVBSaqjC3riloclRqlTUD2xhgIQWlNHKBpt8lKGaXQ+aCNMloTKC9dSCGw0SqwMOOgYQu3o0xA54h/Iy2MiLoVoLj0bgNTQCBUAVihQoWgGJk9VVpbRNIBnA9BARqtOULtVaW8DxpVcN7Gdms4qIqyzfVB+2KlRvY8FbE5ZMwMgK98wxv3hu3R+cQKGrFTlKyDborZ+dajj+zu7j7xxBOz2SyJzFNPPTWdTs/O5kdHR4olx8BtSoO1biCVVx7S/vD81bVR5eY8vzgtuft/DSiwcoM90aXnvfIH3/Tx3vdeJp/+9E9f+PPTn4bjY9jfP//kD/0h+IVfeKPXF2kOkRT410FwNqa5ONHVJOI8hzyHn/1Z+NmfhfEYvu/74Cu+4vxft7fh3/134X/4H84/+V0+7yUpj+Nj+OQn3+h3f28eL710oVvg1ha8851volvg13/9hT/nc1itvpy3B3CBofzGj1fKyLzyWCzg85+Ha9fOP3nnO6HXe6Pa0290Mmz0iYaLaU5EpPCqlRPQbVgX901xczuaJLT7ZpMXbe0Pc5OAbZxLJoVKoRI0CBQCITIgYAiBkQJTZBBDcIt55EoGqLKsrmvvquDrYr2azWbvfMc7HnvssdV6zYxKKQjBWjtbLk5Pp7V3tadltg6kau+M0iEE8iEEruvwx/74tyhj7t65PegNNcMXnvsC+9CPk0GvbxBWvpabB+AAzJ4DU+2p9s754Ckwo2ew1jrvlVKD4bAOHhGVRqni7Bx38eYHg0EvSSUCl155nkScMdrd3TEmun337snJCTNLSaxAaYioNQI0VBEi0i1lWIpAh8OhtEAZDAZJkjx48GA4HF+7dm2xWEjlWra+evbHSVLX9XR2lpdFnudSJS3hYmzs8fHxer2u6/rGrZt5VUqB6uOPPy6/8vDhkdZaIGlETJLEu4b6h4jOhdL5fLE8Oj6Wauu93d0sy6ShjQQMSZK8/PLLWuutra3heCTVpoJ3ixoGAESxAaTZfDqZTBgCKh6NRh3I0u/3ibyEhRKTN0GLwVAGa628RiLilk0v8bNSSqJZ4QRJsR628A20yL5vRSEkEy8QqtClTSpibtTr9SQki+MoiiJr0DnHhPLdjj0naYAObhPQSlCe09PToii0NgJ+iSsbQ9LgreIttLQjDhdIElLqK4wqgU66JEe3KnEDFsSGcx3k3kLbOV2Qo8PDQ0QcDodV6aqqEqQ7jmPnamNiY4zS4L33Tta1dHGMO1aX5P4lsuJX8RWMMVg3ALexZvNWAUC6p3TGgRllYiNiZLWvnbFmMhoC+bqsDYB0s/ESvgJCqwR97tsoIXactxYHQGYEQqU1ImhNEmQiGnmTiKibkjnY7OGqUTXpeGKlxXgSkwdljTFgjEHVVO8SAwfzKuzmfn8wGGzJUxNRWeYAILORiAiC1tooC6CZkBm998FRFPWVAh8qAFIGfaitUqPJeP/Ra3t7O2WZr/LFw6MTbSDtR/mqRpGudk5pY21MAZQCUGx0LPFUXdfMQUJZCYAFTwxtqajcYce0whbU062ci8BPHZFWNQx0ZY0RIwBA5Dy0LHvvGz4pkS+KtkJRtUq+G73fO3EPABD9jY5+WxSVzOfhcChROjUtzSGKLJ0LHWBVVVmWjUYjAba45Up31GwhT8mzM3GbniFmFmKdoCEdv1UwtU5sR4J/1RYHdDoe1sbWxrIQum60RBRFifceQCFqKRZhZskIyqYpzFB5RVXlQgi3b9/t9fvWWoUISqVpGmkjrfAEppFncc7NZrMAvLe3t7Ozs1gsoiiyqoHJfAvPde8KAGwcNW+PSVKezEzcJBhEEEBolR1gLfcmYlBFUYgRk2mgtU4HfUlCyNu4fv36ycnJcrkMIaRpOhgMfFULzuVcHUKIk0QAMnmrkg8ArbIsq6pqNBr1+ykAdEkF2bOTJBkOh/1BDwCqqmBmY624Ga6uhXEZQhDh3dEo2t7a7kyl1qooChU18giC9GFLIRRQO0manpDM3L1bmf8CmnR2WGstkwTaqhFE9N6zp7IstbIdkCQDLTnIzYEOnmQDCtnVIYpzXtZIURSgFSK6qhGFmE6nb3vb29I0/dVf/dVRGKdp6qO6S3sAcsdq99zkcXd2dqqqEi0wWUHb29ue6eDgQOSzBDJjH7IsQ8TxeCybrMw0+d0QQq/XKygsFgtxA/qjoSRop6dnHdKKbQpTWg1L02NxA2QzFUsi8hqiBy0rCxi00R26KmdKUVSDAnOQEZe8gjDNEZF8o71TFCW1aukyTKrtJiqXpZakCJI2g6C1QHkKN7jJspl2Dli3b6LRk8lkvV53Oicy6zqHQZI3MmpKKUlPyjIUY1IUhTA35bmkFkG3KhbMHGpXt4uXA+X5Wr6OiGWZm7ZTl/wWAQsmLka408foEj8ygp0BlEFcLBai+MHMqmkozV2lnW7L8gDAmOZfbbvQRJJI0gBKKWOslsnpXPAM4OVzeZNdntu3WucdoC+Qa1VVkpxQbeLft5C6c14gZhkXsXtoDXjV+Dkk5TJdt3FCQOlAplrW3XnQAYBAwAq6T1QDy3QrDhEpECIabcbj0Xq9/vznX3wKnnrl2iTm0WhU1nWer7pJJc9llZZVYFrtMhlc+R9U2nuflYVqS82SJBGLFEIo2jbmdV27uo6iyLZqbwCAGyMow81NR9m2Ra1W0p5d3BUpvWfmwpUxJGwQFAcfThcnMm9ffOmFW3s3ptOZ0dFoMFIx3ty5dTafrVf5oN8HV89ms93d3eVyefv27e3t7TiJApLR+vbLd5fz+Y0bNzSq2lWIWBTF/S984eT0eHt72yguspUC3N/d68KKPM+feOKJG9euu6ru9/vD4fDkZDocDvf29rJ13uv1JBVXVdV6vR6NRogonQlltUoOta7rL37xizLBrl+/Ls7z6enpzs4OIrraB/LXbtwYjUaz2cw597a3vb0/HNy9e3c6nQIrRO5EsZh5OByenp7mean2sKjt6k7W6hO1pI929jQmozNMXUqnmz3dt+AiXtzNP3E91VUayk2egy+DjIh4kX4P3cV1qyUNGzAfb0DDm/ez+WfnXgtkTJuoeut/4QapmduyEWYWyQjhvTaAppyjz7NeV2xj3hG5yWRydnaGLe2W2k3ItErBYgJkE5UQQjMpgLp2zkkXSyljIURUiATgfVAMmohCewPSDlMjgwoKDCrXwrcBkchrpZvBVQgAoVVCZGGCI6Jw3JiaOE2bc5ptWz2BgD5QU0LJIB1gG9c/AJFnRgWoEL33TSlQlhGBRmXjmKHSgKPBcHo6cyRyjQ2fSN5/l+TYsE3d0LTNXlkJsUZU5zcGGRERFCjhtcspAAo0ACmltFK1q6y1zzzzjHhgJrKIilAdHZ8WWX50dELU3IxsbJsT6ZUHQSPBDBdm16ZOy4bYy0buDjewp9ZAX5zt+mpsXY5+/w0pDvd68Of+3IVPXomInZ7Cs89egF/f/35473vht37r9a//xBPwzDPwzd8M167Bn/tzMJ+//lfe7DEYwA//MHz60/D93w9lCXX9WicvFvDX/hr81E9dEGj+xm+Ej30M7t9v/vzdPO/73gfvf/+FT559FqbTN/gov0ePPL/cffE/+o/gZ3/2cgvBK4/3vAfe+tYLn2j9OmP0uocxl1/yzg7cvAkvvvjmrvP1Xw9tcVhzPPXUFbrSn/oUfPjD53/euAHvex/8y3/5+td/45Nhc68EAG2N6Py8dm51czds99am7L25LF+4cnM+M3dtFboCixAAIDBakEp/KRFhQCBG3dVTG6WAi8Wsms8GqM/yHDgEX3tXFesshDDo95955hkpK3MUaheW69V8uc7zoqwqIVsjamkWr5TiQByoqqpHbt248eit6XIuUKDPS0MUadUfDSejvndVliulVGAAAO+DczVzIKJzaTkmYwwxK6OFXODqWpDNjjwCAKDQxtF4PN7d3c1WTfBQFIUUQgKA7Ln37t0rqzzLV2maahMxc5avQrsLY6MPQOKVCioEaxKFyslkUmQ5bPOXvvQlIhoOxw8ePGDmNE29z+pXYdQ/duvR+fq2q0O/30dEofsJinE6O9vb27t97+5kMsnzfD6fi8LG9va2OIW9Xq9xqRG1NUcnx6AQQQsqNJ/PJV4aj8dvfetbl8ulQmbmxWJx+/ZtQRmkOnsymYzH4/Vy1Yg2gELEL37xi8LpXK+rXq83mUxEFzKKouArofJJlJWmab/fz7JCIqs4jnd2ds4W8yzLOvlxRNSm4ehxILXB0BwMBjJFZTaKWLZ4QTKHBY+uvRPwS8C1DncDAJEQkZrKsjVPgZzSGNnUGCOB8XA4lICtE06V2thW108ZY4KwH7RiIqM6f7JxPxrOBDXeoNCUBCwWIFvQ0i7A6zgWwnLqYmNEkJkpGiPyvJ1ugKAtg6GVynGtlTE6jgdEBNjxhRtn2xgTQvNDxphRPJJvhRC8v5rdrJWOjBVJEGjZN61/1UTIsmAblxga3gMRKaDJaJjGUVnmPWPK4EMIhFB7p5RCEvKQWCciQHVOU7hg8VDEKZilqBYRJV0hVDUiUTxjiVi1aFkwI7JBRW2AGkII5GDDuULNvg5xmlij6rKKoqvh5iSJJ5ODLMvyfB1Co38dRUlHSA8hBOYoUmhEpoClShoAjY2cL8sqH04Gtx69PhoNDxcPC4+lL0u3Uka54MpZwWIwGBGMUZaBAElpJKKi8NCyiSX3wy0yIvRb54puEAFAkCCZFRKLaUAd2aBNt2qEtAgNINWoJQBQJypKRNLeyrd9OwM0DMSOSyiTkIik3YicLCG6FKwYY2UCK6WYtazWDkxRCoVlJuta0idiZFRbks/MQk8G2BjERqG1FS2tK9kmBPvoqtRFs1IYOV26SCImuaasZdGxlVBWwqgu+yJzeLVaiYGVSwmYMhwOxSZIH9QOyE6SBJgVYtLvC+JWOt/VlAhEKyuxNxzICfI+IRAByr8ysxDlJI7rEGcUvqSnmzdvKo0i7Sq2QvJPcrLgGkK3XK/XVV6I8gm2mhha66Ku6vVKlo88tUhtDodDsVFaa5Mk0h2BEHq9nlTDhBCk3sVYK6oUolLifd1VbHR3IqCM8/VyuRQKIREZG2ute2nKLcs7NlaocMPhUPYIGR3R2I3ihCP2wYnZ5Fa6IUmSEFxZnlOVBQSUfJvIN3eLQsysjJFkSeWdrNfruq7EznSYkei3PP7443VdP//881tbW4Jia62D8+wBX4WxRBRkwgMAGq2UIkuSRTg7O/vUpz61vb29v79fFEUgH8WWiAC5drXcgKyg5To7PV1cv74rmLLYeUBgDSrSJihh8SOi+AAadOl8lhWCf3VCmohYluVwNJgvZuyDpIhETTXPc4Wt8n4Lg8oK6tLP4vDkeS4blvdeaqHORZzaM2X/koVcVdV4PJYHEbzVBwftyoW24sc5R74hzEpJXF3XddnkpbTWTA4UBt9sLgqQsEkSDHr9BgalkBW5bItREgMA+cbR6u5KKaXb3noCsgs3uctzdImKrkyKsem0CQCeQr/fPzg4ePnll1erleTdO4xIVgpw8ExKoXOU57nVTZtfRLTWAFCXSGiBBZRF19oxC63X3Ynq2FZCnZmtshp0rXwniSYUaXlGapmdqmUuVyUJzGe0RcRGcwawyPLObQiqMaREJO9H/IHmX9tVIxX3wXulFLY0ZyIOQWS4uZGgUU03CFlc8m5FD2c4HK6KvKWQs/R5sVYnSVKuCmCDG9ICAEAAWrbmblGhYNEiAHsuANDhzsZaZbT4SCG4kFxNu4lsPBwOabUKFCFit9NJEkJrlReF9robWdXyOG1kWsesmfyyzclMkJYtUkkjyYku32aMEWMi07urPlGgCJugLNLGUVsthMCAaLQiDiEslktrLcdxFWpjDNX1cr2cTCYvfOl5a+MQmBTdvHZzMtq+f//hYr0YjvpPP/30gwcPzs7O4tg+/vhbZvMz55yyKoQwHo/TOAaA2lW9fpqmadpLlMav/f0fPjx8kKZpv5esVqt79+5pVMHXdV3vbE/Gk20xKWLP+/3+7u4uET3wD2WLmU6n0+V8PB5PJpNBry9SOR0W72snBS7j8fjatWtVVRmrpVfBeDy+fv36fD4nojTtlWX5pS+9tH/tALV69tln5/P51mQnTVRZlgow1vFkokOSZtnq+HgKoLauTcSMGGpV57jl+UNLgpCGkB0ISy1SeT61NjMbFxG6Lqi+CMDJOqXNf21RxS6EbqRhWpmY8xqEKxFA3MCUu+MSCEgUYENwmbvWJXAetG8+y6UrtFA7dGkWJIZXNEs8f/ZAWoHk+VWrp+baiLRJMRGJ1GG3TlBh8EFBkyGUzLC1GlEzh9D2x2Ng4gDIChUQExKIMJBiIBCSLiOhtsSeWcW6URqSmBoaJRPdILdMAFo1AnsgdgqJmDZzBgAAigGJlXQZFqESBmDQaB0FFIRXqRACITrvqtqzAmZgJtCKtRqORzv7Ow8OH25OGGZWGiWG6XBwggZugFbauJs/F4f4EkLdzV4WSCIEUEohg+TzP/jB35eXWRSJQXF1XX/2s59lxunJ6Xq9RjivqXltSKi7ecHlpR6nA5K6p4CWkLJ5z8xNM8zNaXblsdncT443yPc8OLiMBj777OU+bADwcz8HX/d153+ORvAN3wCf+czrSBIrBc88A//pf9pgu//0n8K3fissFl82jrMxMBzCT/4kJAl84zfC134t/IW/AC+88Dp3VVVw5w48+eSFTy4pbPwrP+9HPgKj0YUPf/7n3+DT/N49lIKjI3jssfNPhkP41m99fZGQKIL/5D+5MDOJ4IUXIIpeaw581VfBu94F1sJP/AScnl592RdfhHe968Id/uE//Obg5l4PvuEbLnySZTCbXdHU8Xd+B5bL82Ht9+H3/374lV/5ck4Gvti+T0y3KJ0xM8NrsZvbcwCk+oOB2phJAAVQ5/3KOmevTb017h+3UGwARmaJghuDqhAQFWqjwYCql7NqdqZcxYGDq11Vr1cLX9WIXNf1+9/3vsFwWBSFjqzSmhHK2q9Wq7KqlDWhKPKyCkTASAh1XXEg0YDaO9gfjIZn9xdaa0WhXCywqrbGA61AM9W+VsCx1TVJf3iWgIeAmVApxQQUPGpwzqFWoLB1K4NzLk2bzuACVUiAjYgiSTEYDGSfFfDRWnv37t2yLD3T9va2YLUS4roLTEOMokQwU631aDTSBteLpfQSmZ9NHzx4YOMkTVMiKMvyxo0bvV5vsViNhkN4eMUgVnUld7Je5ctVdnY2f+97v+LRRx/9lV/5lbquDw8Pe73eaDSaTqfGGCFrr1ar+Xy+t7cnAYAPQUAW3eonWBMfHx/PZrNbt27Vdf3000+PJ8O9/Z2tra1eklZVdf/+fSmuEuQlhPCZz3xG0NLr169bG+f5er1eD0ZDQbSLotjd3RUigwS31sRpmgr9ShklkFMb5CjxzgEAsGE5AYBEfdbaYX8getPi2wi1TfiPwqDssF2ZrFEUa63HSSQuPrbFnpJWaZievqrqQgUtheEdSqU0KA0SSIiTIzfWIb/GGBtHURITcQjh9PRUfrclh3IX+3Vyh8H5DssQpEBCXMGOdavwKB8WRVHXrou6BRoDaArPusfv1mYURQxhvV7fuHEjeJ7NZlKB25CjyUkcaCMtUsam7VLovY/jJOml6/W6Ka6vBldMOAAA6ILzzv40mQBuOCWMQr1ApsauIAOzj4yKjAEOTL52gbwjCK0pA0AwqLyUc2GrAt/gy+c/tPmLABDZpt+jc65NtxhjDHAgHwAg0sYqfU44ICZkIVAI3zkQaWOVUTVRkupeP42srayloOGqwxopv62IKIoSRFeWpVLN2GkVee8BSfqEI4I2iAqZTVnmoDHtJ1uD4d7+ZDBMlqtp7maqcsvlWtxm51yvNxB8h5mUMkQUyGmtgT1wkxuQQ3AQ51xZ1lrrsqxhg2UiiMYmMTCEwD4wSvClnXNMpIxWbedAZlbKWCvFB+TKSjohNrztDWqONlop06kT8EbBuPc+y7J+vy+32sqwWgAoigJAee9FU6b9RRVCUy+pUPd7Ax8aUDiKEmlpxcwCEWIrZbN5M0QEilDkg0ZDuaYAwYi4s7OjlBJ5XHkt8rzyolarlZxjjEnT1BgjXftE/qKDnwCU1pVSSkA3yTh2CHue56vVCgBUy/4TuKpLjAlW7r23SgvpWLodyuQX7F5wagBIo1go3svlUujAcr5quYRy5aoo56tlmqaALMXywiUUor1MjCiKzs7OlFLj8VjIpFFktFZpGssUstaARpdVWqsQHCIrBUkSVVVhjBGIaTabVVV1bW9f6kjiXrq1teW8l5vEVtuHWw3rXi+RIZDaf9f2eauqKnhKe4nWuqoKAQgUYmRt92jSPLaDAooy18psGkbfilxR2y7Vt03nBOgRiwdtHyNJM8iAClAimQY5U95SW9DjtNapbYDvyCZRFFEIRDSfz5999tn9/X2ptoGWtxvHMV1g9Vw4RqNRjvOqquJeGkIoy3IwGJDz3vvhcChIvdZaEhvS41fcCWijPGvtYDC4fXtxdHRqLIxGI8kliNyWzM9QBhEaZsYkSQ2qvb095xyRF6a54MJRFNnIcMN108J5X6/XjIpb6qvUP8lCkyyRKMxqrWV/Fxx2a2trNpt1eKIogYgX1BWpy9yWkmtB82WxFGVObdPgsiyl24FSSoEyxmRZNhw37q9qqXKyQwmC1DHTUSulVL/fJ2bvXaSwQfSc896H4OM4FgEubDOUxhirtEg2yx0KX1sUqKUHqWzrrm3ku1gsbBxJxYzoRTz22GNf97W//8knn/z+7//+559//q1vfatIBIguR9gQqmpEtDR0O3sXs+u2Zk4p5YLfZCVTaFje8pbkTHnq5mDq9/tJv3fnzsv9ft97r0xTv3KOTjAScVW5oiiGg1Q8KxVhaLWkBdpu6NVExpg4iQHAORfFccfSFUtb17VClKzb5vRWwm5Mms5vgjUnSRJpW7oq0sZGUYf1K6WU1k6EgEIoma0WzfoEUAErpTSTVDOh8FsCAF4EymATBlQbEAeSqG90mE9V1T7UOztb8SVyUHtUVblcLqu2v7RUMMjJ4q53JPTOe+/2ONmP5BzVdvUQzf3ubmUEjTFVXUspjFIqEsUS5yT5Fzw10mF0ruIQGd39nPdOKQUKFHMgh4FXWVVVVZIkGhUaPFuc9aNeCDzoDRb5vLxdcfhiYtOt3XEd3Dpf2lhXVUAT50UmbhIyzufzUX9wcHDt9LgpxDw8PKzr+t/6qq+8efPGZDRcLGeiv5xEzcsRvv/R8cPRaPSud35FlmWHh4dRkooNka4tcRw/+uij2efrR289PhgMXF0b03hjYoJ6vV4I4fHHH0/T9OTk5OTk5N69Kkl61trT09PJZDIcDo+np88///x4PN7e3amq6rnnnjs5OanrerXMHnnkEUTspb1RPMrzolB+MBg888y+MRFvUwB3/V2PGGix5tBKiYnH2BVSUas+3vnNRJtZi0bpjMjDxuTrlm7LY1Wbs01G+nxhnEfODN05DQbdCFlsQp8Xoe1zAYRNFI9aeVxqqVJ8UVRavtndPwCIjAS1qhrdjclLuLxpEb+G9oGsYTGL0+m0LEvVorHd+5HXTsxisACpzvMEjZ1MxBE5T7CIZlQI3ntjNAGo1pv3TIYZWUk23WptwPtAjEGIz9yml01L2WZGJIKNR0MU1jcoZQIzMQpLWDF2yQatNXkhooEUnAIAEWMjH900smAAz7Qoc0JWyrgQvHeodWAiZBUZIOZA0PaCb2YUBCEmIyIjAV14k6+ByZ4nCZib14RMhEqrLoPCzFVdfe3Xfs2TTz6Z57kg0cy8zrOTsxlzyLKiKso4TaRjMijUqEKgVxvfdpm0kw0Y21zlhVt6xdGEfwzCNEd+hWrRhYQNfPVXX/jHfh9+9EfhW77l1V4GAMATT8CP/Rhc1JK5GrN74QXw/gIj+E/8CVgs4B/8g9e6/kc/Ch/96Pn1kwT+wT+Aj370y8ZxHgzgf/1fIWl5S70e/Pf/PXzLt7wO69Z7uHHj8nUucU7/lZ/30gv3/ve0yPUbPF56Cf7xP4bv+q4LOYx/79+DT3zidRr0/fE/Dk88ceGToyP423/7tZQovv7r4T/8D+HmTSCC970P/sbfgKOjy+fkOfxv/xt8+MMXRGC+5Vvg53/+Cm7yqx1/+S/DwcGFTz71qaslU87OLpO7/+gfhZOTL+tk4EAktb3YWXtQiEz46s1mUbFqsnSM2HxXw7kmWmPSz+FoECyLNuTgN/dBpZRUAAIwyu8rJWVHGtFqxLoopqeQr4eRzk7Pgqvy9RICVVWxXC53d3efePJJIgrAi/mqrr0wmwJxXpXeU3BUV54BS1eJnwCKa+8CQpwmpau1NegcuxqqapKkMYa6roMvrVZb46FjyCpf1b4Ooa5rokAERASoDUKNGAKZKMrLcjAaRGnCCMbbdZ4pq0xkZSvZDHs4UBRFdV0/fPgwTdOtnW1RchiNRnEcL9YrIdSIHybvM1xQy62iKLHWFkVhI93v90f9gcCLu9s7/X7fRNY5t1gs1uv1iy++uLe3t7d3UNav4jTX9bhvt7a2RKdyd3c3Tfuf//znsyzb2to6OjrSWj948EDC7EcffXS9Xr/00kuPPPKIRIBRFM0XCwm3QuC7d+8OBoOjk+PFYvH4Y7eGw+HDhw/zYh2o6Y8UhqOTkxNpPJXn+e7u7u7u7tbW1r179z73uc/1er2iKKbTE3FPkyjmQMPhUDBu0Y4U2EVoEYvF4ujoaDAeKKWE0khEqI3WWnLhWuso0oLsBCJEPRoNgmt4lNhWCwnpz7R9iqCVzhC1WSF+jiZjiR4leYCIQFyWJUMYj8fORVmWSZFvZK14cQ2PDMBYlWLKrYayJO8F0cjzXBmTJIkxKIBdmqZKodZKxl125MhYCVlDCKYNPuUKzCyesGA3ANCyknX3FW75U51giPiNzvmOsSFgTV3Xu3vbcmPWWgE1WNiv+ryPdBRFohYCAJ0ENjMJlNb96JVTTmsVAojr2ABA3ofWm5FKWGlawk0BAUfGUCCLGBsbfF0XaBV6YAB2LtR1rdBQCGg0BRI1RkANwNSUDDaoH2+oh6FGKZskaslrCiVTEAIqQAQM3jvnjBXyLBhUxI1OIigKbV6BFPYHPRXFUFb94cBGkVbKGLNeXo0iWWPLvDAm8p7aim8jWY3gGQHSJNFae3LNmCpm8B4oHce9fjzaGsSJqars/tGZDzVrWizmwo4Xwmw30+o6hOAAyNgmyhVEt3XawXvKskLSGzI9qO3pJ4cgsEKk1VqLum5Hpmvmp/fc6o1KGCwArpzvvRcNjY7FbK0FrUJgoka1r4MhGkzH2hCcKLBLKD4eN6JaSikNejabssLBYGDa3p5S2WK0TRJrjDFkUAESl2Xp2cs9m7bpn6QAO8BIJoaANVmWiamRzJNzTtjf6/VaChdMq7QuUE7H116v10mSiMSESEau12t5hyJVEUWJrG5JsCVJMplMJFEn9gQRT0+XN27s7u7urlZNWwJo0XApDTaokiQZj8eyzAX6LF2dxrFUnBRFIamR09NTufO6rgWFlA60RCR95GQs+kmqrfXeT6dTyR4JXLhYLLIse/TRR6WbIiLmed7v9zuzT636fOnqRCdSIyIQm8wZY0xLZgr9fjoc9pUC5jAaDQJwWeaMkPZi51xRVXVRWmtHk6HVTVDfMM2LQmBcgEaZQYLWZnYhWmurygnsW5ZlqJ3aIH7KnQdfe+8Hg4Hw9EESKhoFPYe2WZExRghbTSGv1tvb2+JLQAM9N6x2ZhZ4VBBb+Tl5WGttYA8dpd2TbEaygo6OjkSiVP6UCZxnBfDVJIKyKjPInHPU9m+vqopcgzw650SAO45jNJoQesOBVNKEEPpJH5VK+j1d+7e8ZUdrrXTTLCHP141kkE7qukYFkY6SJPGeTk5ONKDQz2WfjaJoNptZaxkaOPjg4ODs5LQrpnGh6XjcbTrdnwK8CrV8Pp8XRXHz5k3vaT5fCuwucC0iJkmyWCxkZXVITtMRzjk5QfBc772o98pbbbViwEaN5RF6ab/fl+yobI6yUXYLVuDmBlhAqGvnvYvjOIrsZNL0SBSvFTqBH+YQgq9qqCvZfIV6KRi6zMmudEC11Qnj8Vi0m4XorbW+e/fu3/17P/DhD33Nt3/7t3/sYx+7e/eujKzkqLTWBCTAfRRFo9HIVU7sFbckWbHwYhxk7nUlWRqbf5VrismSsrD1et3k2wARMRDt7u6Ox+OzszMUHiCAJNgksdd5KTIcoTlI5L86crqcKS887SVFUWR53iEbMsTBe/mKDK5cUNAVa61pK2PEpAjorFFpbaTNcucDS/mFNFxgJu+YqHSVR2ezLAsBgBQwUABiiTVk/6VOoatF8JgYsa1fl40HOmopBUay1tpIb29v39q5BZ+/Ym2GELwj733t6jRt9PG6ZEaX8pHdTYx5UzVi4yJvuk1o5dM01QrQSiWEL0NFrfqZWOk4lj7MhIx15UQ2QCvQyigVugSqImpirsCi2s/AgEorrZSqiYmwrnyvnzSFNXFcudoYU3MoypoB4ygqypI8W2U1miovy5u3kigdbfVdHear+Ww229raQkIAuPfwASIO+yOx0uJ7/85nfvv5Zz+XpulsPq2KMk3TJx979Oh0enZ2tl6v035PVZqZz2an1sQmstPpSVnWcRz3ewM0OiuLuw/up2l69+5dIR/1+32xtMy8v7+7tbUlO5HsuZKCQlagbVFkIqkxHA6Z+cknn1yuVw8ePBCR8STuEUJelb1eL47N4eGh1mZWTweDXj+yACpzeVFkdhafoy+bewO3GQNoA2O6KJchBwB0TYmYsShKpaDri92ivdQ5H913u0XbzchuT6J21l7qx3YJTe7WfAtZAsAFVQ3YIFa3hg8F6u7+lRoZB+n4KQ2LvNxnl2PfvIHuT/lRCq8CR2LTsFjcqcVi4b23WouJl+nYUBuqWhaPqypjFLCqXS0pymrd1MJ47+XRjDFCpCUibS20zqVu2c1MYIyOmbKqVkrH1pbBBUJQqA0yofOBELRGT8EQdAYihMAKpWcoGC1SifIIaBR7Ear2xCTsPOqIe1JZqZQMXwAOwC54G0cFhaIqlVLKGN/0jq9MFKmmMtSG4KU7hGS/sSn+aKIofIVOi4yq5KplenSpUaUUoPDrCIC01rDxdWmd+L73vS+EoLQyxnhyeZ6fHE+Pjo4Q8OTwKMuKtN9rphMDIXc2/aoBPm/51X2mN1rSd3Nv88+NYAy4TZfhRryKbcvX7vjc5y7zlK9fh5//efjrfx0++cnL8gX7+/Cn/hT8O//OZaz57Az+yT+54iHu3YNPfvIyov0d3wEf/CB87/fCSy9dYHpKb73/7D+Dt7/98vV/7Me+nHoa8zn82q/BN3/z+SdbW/Dv//vwoz96BUG7O+HP/JlzhFqOj3/8Mov2y/W8n/rUl78t3r+R46d/Gt7zHvjwh8/FjuMYfuiH4Hu/F37zN69oG7i1BX/iT8B3fMeFD0OAv/k3XxVrHo3gD/wB+I//YxCFVa3hPe+BH/1R+A/+A7h///IEPjyEf/Ev4E/9qfNPrIUf+AH4u38XPvGJKxDq7jAGnnoK/vSfho985MLndQ0/8iNXf+XhQ/jFX7xMhf6O74Cv+Rr4e38Pnn8elssLT/HMM/Bd3wVPP335Oq89GWSvk/+nc/YZA0B4dR51l+9EJXpHoBqZqabzuNbaIHY1esxM1OkRbbSHRkREj6AAA1OkFIhKlw+sFShG4J7Ry5NlWKzHWgdXVC6X7akoMnGy3//+9/f7/XWRl2XNALPF/OhkmuVF6XzlfFEUde1DCI3gLQIjBqDAzAqvP/LI3bt3mUOCupyvyuVqHKV1VSrwjNDrp4xqvl5rj6J4cJ77bJ5UKaU9BW7asKSIqnYVQaO8HEXR2el0MBqKty24Q2wjQU61ttZa6R4jIN0mmUjcVmb2znXxUhswQFFmkgpUDMZaAUwnk8n+/n6cJsw8m80++MEPfulLX7pz587nPvfZs/lcX1XZL5zr9Xo9m82kzNN7/+KLL0rj+PF4/PDhQxHECCGcnZ299NJLRPS2t73NGFMU1eHhIQO89a1vFd6xEMGEpxBHqUiX7tn9vb1dSWlHxhZFkaaptHQXSlpZluv1+tatWxJ+379//1Of+tRqtTo7O4vjWLDsuu1DJZCN1C0ul0uBORrvyIfIWoHp14ulYtBRU/GtNsQohHfTuXbi+0mgK/d/dnbmnBP2VrfDeu/LshSQWhxRIE57sYRAjehtq1vabbuCKQTp+QNaYBQ5WbDs1WoVmJfLpdaNeEwcRxJMdpVnzAwWeEOQUZwuZhZQQHL/soOLuyI/rbUW6joAdGB0WZYidil8NGFyydNJvIeIe3t7RBQ8C77fRrnnVXfOuThKu1ryjqPqiSS8t9aGV+H2wmUiVVvJC+hbvgUAcNsbRIMmIqtRMQGRQRVCUABK6aIoitoxoGdihdzCB4iojQreWRsBgAuemRVqajmPRKRajWxtQCRMuC2vBqnUZsaW4QgAVhsJg0Or+9mEDOQBdJM/UFommNE6jiNrDV3loDlXI2ISx1vjyenZGaJSaBQaayLvGmyLmUfDCYzo8PiwqusoUvs7k8G4R+xcKPOaAgVQ6GsGVEwgQTs3NY7E7Ii8UmSVZlaRiYbDIQDkeb7KM2xZ+WKCJBLmVhfStUp6EkZK1mG1Wq3X616cSAalI7XJMvHclBGIeIVYZgBIk8Rau1zOxRNO0/RDH/rQgwcPPv2Z3xaScpIkiFqpRkxDprdoF1RtK94oSjqtD2xVm33b0EkWb6OCEs55ZL7yGiGKIsVNM0xqKbQCdkAb7BCRgICIOB6Pi9rJq+gYasvlElp6U4c9dazbJEkE0JlOp1K97lzX5BOgDQy7ivv9/f3Dw0MpFumWZAhhOByKzLTcapdqWi6XRHTjxg1E9FUtYvoSiq7Xax3ZxWJhjNnb2xOcMbGR935vb68sSwG55HEk0dUBuFEUNSzm4EVJVqA9ZhYT0dSCDIeIOBgMxPpprRUTAFTeodGoVL/Xi6JoOp0CQL/fl6EXbWK9oYOvlNKqybQxsHOucrVY5sVs1gHEocWABMwVw96KRzuRk5bXZUwj6UtUiZyR1roKQfrRNci7tcF5AraRkdEEgECOOGhoIFGBO6Mo6vV6ITiZfqvVSvZQ+UpLd/PC2O2ad9m27Ztk+ETbep2tBXvCVmxE9rs4jnd3d+Xdyk+LeIg1kVJXm0qFWuZ80T5Ov9/3wWtoZUPiWNavvGcpdpEdTWx1WZaRjXd3d2X3rOqy3+/3eomcKftCZAXVDfKqQ+2IqSxzWftRFG1tbQE2Lk1d16enp76uOxTChbooCmHWyz7bNRR95zvfiYgvv/xyWZZyD1prIojjuCybOcxtkY28tG5xyXKTCRxCyPN8Op3KMJnIeO8PD4+iyI5GoyRJnPNdDikvC7lPq03HAm4TbEr2RGZeZStErKpSKhI6EEaMHjPYRiS34QUbYxaLRRrFzE17Tyn6kTwHtpoJnZsBXTNA27UCbhDn3d3dj/8/v/jcC8+/9yve81Vf9VXPPvvsc889J3po3vsoifr9/sOHD+u63tnZIU+dhyO5DflT7IP33lNARGH0y9FlheXBZXp0jf5kaZi46dvc4J7WyMpt0WwWc01EwnFs0icE3ntBxsUKUdvflVv6v2yXuml+S8AcWuWfTZirblve+XVmjJFl2FE8EdF7L1ptxhgJH4yxSuk6iNipgkB1VTjvgLx4xagMkhQe6cCoUAFfaqDV6LV2v3K+1s4r1xmIkyR55Ob18XhYVRXAFbJgRVEu3MImcSDOc5nwgjKdJyjET3Otgg0i1nUtlAVZI+I9dtlQGccuDZZlmVVaKPZAbKLGhsusa6KnlrkfQlCI5IPSyESBgjEGAURpNz5vVKj6vSERBU/idTAgKp3VZQBG4kBeaQDwKuIvvPRiURSPXL/5tqfednp6urO/lySJr2uRiYnjeLw1Kqrcu3pvb0fGVxbX7IzTNB0Phs6FKLFveerJNg8E165dOzs7O5tP9/YOhsNhVbmiqpbLZRwn4tWfnszzPJeiQFlEUnYGAKEOeZ4fHj7Y3d198sknpd3ol77w0mwxH41GTz/91sFgUM7OlFKf/+IXJB82mUwee/SJLMvuHz4MIdy6dWuRnZVlWZZVbcu9vZ1BNDg+nk7LqegQN5STDTSZhVrV/nmZ1dtBvdxQR5vPtdZxHEsCqNvLiUjrc4FmvgAxozENwM3MWkuzi9DKPJz/IFzUuMCW6bx5G9ASqF95crcYWue7KQAEZkLo+je0dA/qQMAu87N5N5teDr0KZFDX9c5W7+zsTPaJhobDTESSvpZNPY5jE1nygYnYsDHGFWUnJUNE5AMbpZQwbYM2FrtFS6SgGZkAjAqttoGdqyoGGKaJ09orHCYDrNFEtq7r2gWllLQt9t4rq7kNP5iYQqNfU1MIzA2xuu2mqhACEQN7bgyxVkYrxQhITM4HJqWUsPYsGAWQr7MkimUuaUDyAZXaHg2PhD2EKkDo9g/eyCW0miFttqDNIgDSpl3b0DDtTmdE0JJk9g2Ga8DMV9NbN29+1e/7txA5L9Zi2U1kT09Ps3URqXixWMxms+3dLcXKk2/UovFV8SAAaLTyETtyvUhgK9Wh5ixzW210EezmTxdYYguXty/htX5Tjl4Pvu/74OMfh5/8SSgKAACl4MYN+OhH4bHHLmOjRQH/8B9ezdI2Bn7yJ2E8hmeeOf8QEZ55Bn7wB+FjH4Nf/VWQlJMx8NVfDX/yT16h5vH883B4CMZ8ORsG/szPwEc+cqHh27d9G3zbt8HHPw6/8Avw4EFzV1rDjRvw9V9/QSJDjjyHf/bPLn/45Xref/pPv8zP+2/qqGv47/47+MAHLrzq0Qj+2/8Wbt+GX/kV+MQnoKpAKbh+/er3vFjA//1/v1bXxCSB7/ouuGhBYTSCv/SX4C/+xSvO/4mfgG/+5gu84yiCv/JX4K/8lcuj3/3r+98Pv+/3wXvec8XVvvSlV9XiMAb++T+HRx65PBmefhr+zt9pHl+knL/ma+Crv/qC6kh3vO5kELu0cX3BetoM2WserJrWAgAADBJqKA0IjbI8blxTqYbCptR5s4TGChFzkzxD8ITCS0MMvrYIq7N5NTsbGR2xX2TrmmomLyrA6/X6Ax/4wFve8pbT2Zn3lBfFbLE8my/Lqi7qarleZeuCgIlIgw6hAhH6QFW5mpl7g/7e3t7ibDro9xkCOjdJU+MZrapq2t7ZUgqOpmfiggfgsqr8Bc6mYmYOxAqJqPYuCJuSURslTn8gn2XZnZdvdxBnHMc1Nx2Nooi2t7cl1yt8ZIlgmXk4HEqVqOBiWinh+tnRCJiF3SPsNvl18fWvXbumlDo6OprNZtKf5+bNm0899dSnP/3p3uD6w6skYhaLhQuLJElmsxkAnBwfX79+fTAYrddL0coQKpzQme/cuSNt+h4+fNjv96vKlWV589atqqrOzs4AYLGYIeJg0BsOh6AaQVhjTFnUwMqa+Gw+CyFMp1OpAhaa3p07dyQs77YeQW329/ff+ta3rlarl156CRHv37+fJMl6vV7MV8vF+sGDBxKl+FCHEKyJJdAV8qDIdCRJUgdvG7HXC100+v1+aLqlNWVzQqsUkEt6OsnNS7/l9XoNwFGbjXbOpXEy6g0EFhHXVsLmstFibgQxOrEUaTciTypYXhRFw+EwtC28RFFNQjIBI6y1aZoCsWBhEk53+Bq26pyiDCD3771P01RcfymvFsXbzQXeQYrG6E6T9+DggJmFQSahfpfnkPsBxBCCABySJEDEEMh7J+Qja21wtSDUxhimqw0IM5iNZvQdNkdEIk+htGJmzz4EGSwmosCAwKhBISMQM9bBO+JADamHRYW5ccdYa20RCJq6Nxl322LHSoEyylqttYbgbRzVlScibU0blTZ6EaGtWWZmH7xGxW2tRqBARIwo86GqKkJI074kjYhCmqbZVWlOZojjSCntfQjOl2Xdcu1xNBmX2XK9XiqlCEIg8uxHo971m3uOy8BFTWVVF2gsM+dFEUWJKJF6TyF44acSewqkAVRD41DMWNeeCJxj1fb6CyEI5rsJHAhXXZiDumXBSzJsOByyDxIey4OIQ+69j3TDfRGwRqIDg6ooisViwdzwnb33n/zkJz1DCEzkzgGvKDKtKKJIxBhjAJTWKoqS4XAoVfMCVx2eHG5vTxITZWVBRFJgG4JXStm2E5dSin3wQMwsbrxgQ40VtVbAUwBIkkQIvJE2wotEY0Ng5yoZFGqZiY3yqbXQ0gCF5S2LRSDR0GoZUxuYMPNgMBB6nZigsqhGw3FZFffu3dtEqQSslxfYXAHOlYsbMmAS78SxAEZRFEVpslwurbWj0YiZpWok1E4Y0IeHh1Kk0s46VkpJ4hMRBbkoy5JbxQDB3aSrm5gm2ZIkRhBENUkS5gZHkw2dmReLhQAfgqKqVs5YAMouSqVOrrSuy7rsbubg4EBeaVEUy/nCGCPqHwJYt4IJzbY4HIyszfI8V0qLvIm1kewd7MPSe2FxdioTmLYLuc1DmFYrQw4Jc5ri9HZ/N8bIDOk4y957YyJJDMuDbG9vy44jAFCXeJPt2Htvten1krr2krgtikK2J2xk02NJPycxO391X5GyrlZ5JpR5ySgkSXJyciJLSbKzwvgWoJaI0l5PYJo8z9frNSpltJVbEg1fZjYmSlPy3gtzMI4SmZwydspajVBVTStIAFAaq6oW6WdEXCwWGhAYy6Ly3kdpItOP2+oZbmsF7ty5E8fx4eHh/v6+eCzz+VypxsbaRtO5lv1LbwhE4Aa0ulqtJJ3QKR2LOdrd3VENezQopaSztEyqLMvIBzQN0U02mm73zLJMacQWDpbaMikUEPGWsqx0q5+rsWkpLDZK/l8GXZCQDbwIoiiqqkqgfHHtZKsVFFU2aOmOuLW1lef5L/3yv3znM+/48Ic//La3ve0Xf/EXARqV5zRNDw4OhFmfFXkSxR2wKJancavKMoTgKTTqMRtFhLKxdu1nOwuAiJ4JsLEwQn/uUmuhbUCXpn2UBg2KA7UywdCMi9h5GWJrrRSCHB8fB/LW2iRNJaEurpRt9/pNBS0xcbLA3SrTcdPnsM3rNAaH28yub1VK5F9DCMNev6YqipI4jVypmC+Rj0S0QGKQ8zHCpjWaRrwQ+1wcRDMYDPYPdhG5qopF5gGu6O0egkeLRBQbyyxaB+daqdgyWaFNtiGxYlDYKGm06d5GCaerCxE7bK1FYoOqLEtX1WXbitm2WvPckg+45ZhyW9LkfC1vuHuTTAAaKbDRhkPXdRCN1ghQe0LFiqH2TisE5MoViDjsDzxhquPp8vTOg4QJ0zrTVgWiKI2uD68dHh0+OHpAzmtt+/3+YDCoa7dcr/Z2t2/duuWc68VJCCFVaYePE7nVaiVV/s8991wI4caNG7LBST5ma2srTYZa6/V6LdlTqaq8du3a4eHh8cPD2Wx2cjLNsuLmzUdHo8nh4eHh4eFitVyv14NBr/JONqOyKsVm9nvD+Xx+//79EMJgMMiWq9KVOzs7R0fHOk3LsmTL4/H47vGdOLaj0ch0vnI7+Vo07xWaLN1p3SeXzjHGaI0dDtutW7VBFGUWXJi7qdMhdK0PQVf+XPf/vHFsoniX/lVdkM09J4JJhXL3RSJiau4ZEbWCjlvRXv8CXtD9DxG9Uguhu2acJhIj2bbJjG8MTSpmQrXFdwaVV0DekTeyN8iDRFFU+JoItJZYrqGNSJfSLqnECIHJoPZMiGiVVrIUGTwxB9/rj2VmWE9EJE1OiAg5dGCo9x5Ri5wZ1FUIQVtLbbWpCP15aujQjMiIhMxAgYJxLMI8BBSImINCDESpjUMIDEzMwQf2bKxVngCgy0YwB62jzSHu3jB0WtWbWGk7NwEUMSE3uZDzbykOQcT+m0axxXJNRH/kj/yRRx999HQ6He1sheC01lv7u//yX/7KfL5AxKKo6qKMjJVFCy1M/GoSHpcgXZlMMrERJX1CMs1kOly49/N5dYF8hBtVJ92xWFx9A1rDRz5ymcv5yoMZvuM7XlUbwXv4xCfgE5+Aj30MHn30wj8NBvCd3wnf+Z2vc/07dy5zXb8sx2/9Fjz/PHzgA5c//7qvuwLxvPJ47rkregD+nn3ef4NHnsN/8V/AD/zAZUT4scfgscfg277t9a/wgz/4qv9kDHz7t18tOP6VXwlf8zXwS790+fO7d+Hnfx6+6Zuu+MobH305nIO/9bdeFQj2Hn7pl+CXfumKyQBv7PFffzJ0ybyNxGQIQQzCq6UqsWuui+f2gRCwVdkX0VUAUBtOHgBIcycR8dz0/0ChkBcUIGND4kAmBvJFkT18EBdVguTKwjk3Wy1jFaFSIi/77ne/ZzpfMONsPp/O5rPFarlar/KsrJ0PjFpB4KpyHtj7QEp2c47jeJmttyYTBVDnxefv3Hny4PrTN266xbqaL2rvJ5PJZDI6Pj7OsoyUWa8LgZDgfLtXANRGp5o5dN5eCAGw4SYD8fUb105PpqvVajQaEdFisXBVPRgMrl27Jo227z24v7OzI6OxWKyUMdvb24KPCKLX9eqZz+e+7fXUdJ7xvtfrlVnexqLRYjVHRHGtBEap6/od73jHyfTg4SeuGM3j4+MbUX18fCxRfWRtlmVi/5fLpTFmd3dXmu/dvXtXAgwhf5Vl+fDh0c7OzsH+/tHxsQQDZVlubW0Jn5fbunVRtZNNvCqd1vZsdpqt1oPBYLVa3bp1q9/vHx0dCa+KW4rlu971rkcffRQAJpPJwcGBVJf3er0vvvSl5WItdy5ttba2x1XpJHpRSl27dq3XG4jrMp/Px+OxhFXi6kRR1Ouprv03Ea1WKxGOGI1GzrmdnR1rrfT7aqltOoSAQVlrZOpKUJ1l2YOH94R87b0fjUZ5UQhSI/GbhGTy/8vlcmtrSzT4JOyntsm7tlbQ5+VyUZZlmqYSJXZcTuIg8XBHwpIq49DKOkuR+GAwEJ1E+VCiFwlKO49RKJayHJVS/f6kLEvRyZVInpnlJonImrhD0Ky1ZdW0BhoMBv1+fz5bOufk5cj1syxDrVo6EuW5N1ewgsDayDmQgTatNIEQncRlhta9aQwRKGTQwKZroA1ADME754Mn8gQkYs8AxMQMJG38mFArwdeJQGstGmsyV1E3Wm2RMUDMEORZmLHXi8k7rbVVWAM45yASpltDHGi864YT0vCwlVJlXVnvrbWOGQDiJLkSbjbGhkBVlQOAiazx5L23cYQalAJtNTjw5NGXNrF7k61e30Q97UtaLRcBQgiOvUOtGNmTq3Lf6ycKRfJbG6MCOdPqI0VRRAGqyi2Xa7G2TVWE6MYSyPKUsRAmO7Wa5jIQwq5l5jiODSoAEIZgN4dDCFVdn4dRgSCQAijKQgiq3vs4btpMLbOcW/kX1RJvsSFjklINibjjmIvaqWrVcuRuV6tVHMfaaNs2ERI0TSuSgM45xyHYyAheKetls/Szi/sEcn3LW96CxKenp0mSLLM8hCCK56rV2ZSMgmoFnbt6cGOMKP90nnOHunar1RgjcLMgbsDovR+Px8Ph8MGDB0VRjMdjASuFQp6mqbx8WUwiDiMGX16dZ0KjS1d36R95XZ3rrpRaLBZiD7vskW51CbBNkCDiYDAo6koATbmCZNqstY8//vhnP/tZ2cik66yYCOmp6Fs15A4fN8YIV0lslxTECFjvvc/zXDGIvkdVVSaOZNwFMxXQ3FqbRLFgE2J7BTWrqmpnZ9QIjyS9PCvKqsyyzPu61+slSU8eyocgdizLMtt27ur0BFpw04fgJakmr04sdlVVSoGQZwXZkW911qkoiskkFcEryQqI5Iio7srWLz5AlNgQggIcjUa7u7unp2fL5VL0KARUEmK7bKNKqXv37g2dvdLXqqqqgGIymcjjAMBsNpO0n42itNez1kqZrI2iDlGdzWbM3Ov1RE+8LmsBbgCgP+hx2zNTqaYZgEzsKOpYAgQAHS/eWG1so6BNRMPhsK5rdiRluEKWF5cDEWVhirtCRNPpVNam6JvLLgzQqDkREXPovi6IpMwrkXXa398X+zCZTGRk5/N5gxVYG9oiAKW0Uiq4Bv/V1qRxIj6SzD2piBIsVUi+ztXMLOqddSPRgA15X2khqMqSSaJ4NBoJCiwQoWzf2FZNiRmkDQkFkanNskzmlbam0x0FAHk0aeZRluWnPv2bzz///M2bN/f29uSc49NjABDl+vU6q+u6l6SyqzJz1yY0ansVhppCCGmcSL2U2CUpQO9snTiNzjnvfb/flB10NqpL0koqLraRNNKFppMqAUDXClIoCLKDSGZosVgMBoOnnn7r5z73OVHTao0e67YHgOSnxbWTN8bMqBS1fstkMlksFs43jU/F9ZX5kOd5VVVpmkrvEMPNe4jjiIm00tPloqoqBNFN3pQSbRpryZ98Eay7cLCCVqxApuLh4eFw2O/1kr6/uiFVkqYIc0FWxI2BEEB3wVSHlwjjkjpdXN3qx8rQqFaxCjeOEAL7MB6PkySpvNNtHw4Zdyllk+Sr3K3sC01qkCmOrERvARBByLUembVGD+fAo0Jd1/UyL0ajUdxP2HvnPXAAKeOotUm0sppcuHd0dzSaLO8skyTpR72nn376+OhkXWWurA4ODg4OrufrLB2knv1kONrZ3c3W69n0TBzviurpdEpE4gAv1wujIyIyRkkHF5lR8tTL5ZJJT6dTWWVb2+P5nJfL5Xg83t7e/uIXvxiA3/7Od1zb25dtIo7jD3/4w3lZrFYLibAEhZdCgbKoJQYRVfTVajUcDnu93vzefDQanVXHoHC1Wi2XWRRFUWycc6abLl2MClehvR1GthnKImIXNVPTqvt8pI3R0MrfMIOUdHXzSQbvEmSslBLhXmbupvIr5yK+Qs/3lUi0bKjUdvnDtopQSAcXnrR1ZbTWWp2rNqtWeHrzVzqgEBEVXk0wQamaCUGw5tVqlSQJAVitxVcTGyHbEjIqDa0vziC5JrkBI4p4TUKSAVTreau2m2rzX6U0skYGYlSsAWQYnGNfEYCK0ySySR08tn2umYPlBvSvvVfKRFGEqHo2Jk2gFbXEIgBgAGmUGVo1xs5RQFZiBXxwnbMY2rbOIMk2zwgQakfOyzvpMBEZInVRuQIvYLLy0VUse9icnC28ghBCMLpx7p1zBwcH3/RN35RlGQMRBe/9U089pTH69G/99iDtK6V87aSlbzcfLsPcr3JwyzHspp98rlpGMyLKdvLKoyvb4a5amfFzv7N35cn/Cof38Jf+0uvo8MrxHd8BP/IjcPPmm7v+a8NtlyLh16NyXj75J38S3v526PUuI/tv5Mgy+ImfuKI7XHf863heOaSB1ps9fjfv6nd/vPgi/NzPwTd8w2XE+XWPsoQf+IHX0tSOIjg6gvX6cs9GAPj0p5tOmJfGSCn4X/4XYIY/+kff3M1cOkKAv/bX4Pj49c/81zcZABHgPOXZmRSxvfQq5oW44SuJXmcXZrPsYwI+IyKiAmQ83wq1loT/ue1qNjiAplUuaETNhMCB0SfGzOczrMqeQuVCVeZ5sS7rypHz3itlPvjBDxECEU3P5sen01VWzBfLZbaunC/KuixrqSDhRsFfMTUkO2VVWeYatyOjl7MsRtwa9H1ZKHJ1VZhYAN/6bDGv67pmN18usiIPEiZR6HhS8kJCCC40+AUAoFaoQOJVgYNv3rxprd3a2RaANVuvVsv12dlZCOHll++YyN65c2cy2e56lEc2qcqVhM2IaE2s0ES2qTXzbc93AJBgDwASkyDy3bt3tdaj0WQ0GonfP5lMmuCtupo/9d73vOft73Snp6fM/Bu/8RvZen18fJwkyf3795999tknn3xSnKVf/dVfHQ6HOzs7q9XKoDo4OBCEWorQ66oKbc2msCPrup7NZq6uEfFgf78/GJycnGRZJoDLoD+KTMwcer3ecDiUV7E9nqxWq7qu54u5935ra8vapk5cwHelVK/Xe+otTzNAnudlWR4eHk6n05PjqThODx8+BIDbt++KXyuspaaoGVgiFu/9wf51RBSkYJN0s1wu4zgW0vR6vRYPAQCiKBalSICm4/y1a9e897dfelkUqKWjo2zlSqm68vL/6/XaRrpDnebzudGNQnQXpS8WC08kmLVwzcbjsWm7jYmvIr2YVKucJj5MCGE0GhljhC1V17WAF9BShIReFEIQL7ell7oQvJSvQUtbFkkBSU4I2lJVVfDsdOi4SFLsLDeZZdn21q7WWvwi4YlLPKyM0JRQYL7kKsHwEEJde6UUom+9XwRoGir6tuMctqBeYEIDmskiGCN7jwrBV7WrvXNBZOIRsKmmQ0RjLCJSoLbDkJVWgaiVamvOkAEQjDHADQZttCXgENpW1Qq1VtZadszMBI0cEIdG201h0w+DVYPsW6b5fG6M6aVpCP5sOr2yB5i1UZZVzrnAZK09PTth5hG58fZWtsiQvY21iaPRuK8sV76suS6XSxeco6AUmCgWSnicaOfq/qCfJFFVVUzSLN1oiAJI20yLoIlca+R1IK+M6hIVzgVBlmUqqrapVMdZU21tviAIVjVsQWp5W+Ilurb9TAgBiIQIDABisuq6Ho1G6/W6Dl7IyLzB+BEER7IjAgt0xkQc9du3b4/HY2vtcrmMoiiN0gYeVWq1Wom8rMhAd/OQiHxoBF46FRFmHgwGsoJELEKwreFw6L1fnM2kqVEdCAAkCIoi06VjuyhdOq2JDuEjjzwiXVXFksg02N3dZebFYmFbJWsAJcat3++HQLI2JcXV9QcT9ErIbuLtU2BrLXHX96nplNMp58hC7uSVZb8wrX6rZAdljXcEWNiQspFASYz2YDCQF2Lanqv37t0bjUaIKI3+dnd35dmTJBJ2p2AE8iyihCABo3xLqOLWWmIkgn5/mNioruuyrI2JtLZV5ZRS3lFRFMycpikHMCYypmFunp6eRlF0cHDw3ve+N4qSX/u1X6vK+uzsrCzLsiqstcJ0lN6kSZIgsaDbXdjSkW1lgqm2e548ssBzMrLOuS4RLqio6HdzyzYTpEwAzclkkiTJfD4XnpYYTBl9bLXgBXMUqt329vZgMJjNZoIwiowAM8fGpml68+bN5PBql3o0Gt3ci8U8LpdLmQO1c4JWiw44AqzXa++9NUZwRtMImmtEdXY249rHcWzimJnLokp7ibyEuq7TpCf0bdmVpANHYJZuiogI2BhnUW1qzDUopZvMnyCJTT2uMZLh2LQbIoyzXq/zPDeNUj8pBYhcVWVHHpfXKLiBQNvzeUF0KA2BJdUqZPA0TV27tNsMpWAm0GyOzsnLkT9lEqq2aacxhoGKspn2ACDJ/qIomMg5Z23UDb20OxMgSLZsmV3C9JfbltySDL34ErJRTqdTqXiQtokd2itTS7jtMpe01vfv30fExx9//PHHH5eKnLKsxJ2QbVHuJ45jeeEd/iBbc7/fB2q2Tuk41/UF7eaD1jo21qBCoxHRtVrbgNxi5ZwkiaihbkLGROfMYrGWwi8Wp8Jam/YSQM7zfG9vL8/zw6MjKYmLrO0UjeVZdFtmFMcxtbLyCjFJEm2UAPFxHGtjAJWoCEgP1cFgMBwOiSAENsYgceUrpbTzvqxrRBykvaxmaLWOsMFuEACZod3t5VAbMTvCOZrX+PNEVLsyNakkwHbG21euzTiKtgfbhFCXa3khuHFdbgvBxfxSOJeKYmCxxrhRG9Ftdh1VGREdNYrPMv9lNGXVc5v8k5GV6SdsgySSpdQiVNwQn5lR3JYAzXYmt2SU8nVNkRHc3Ghb16UCrFwZWRvFCVnDZV35ClgVq7K05W8/+xkAiLTZ2t9RsTk6PUqS5Gw1y1drRijv1oqBKLjCrVarO/dur9frt7/97ZKaBeaayqqqhsPhzs6e9/7s9Lgqa22tWMte3A+u7iWxVNtcv359sVg899xz/X7/qaee+p3f+Z0oikpXl66+d++ec27ZmyW9NIqiwWAwnc/EMgemOEoPDg7m8/kLL7ywv78vQkanp6cf+gP/n+137H7yk586Wjul1GgwiuPEWK0N9LO+2RQ0YHH8NumWACIcjBsANF4FAnVZBWjhNmhKhhtF2kvfkiHpvtLt0OenvSrkh11A3V31FRRY3SKB3bzfRNXbC28A6GI1QDWLKoQgFQFiFC7dATcqPFeDYTJZZdJPp1MRRpH3I4llKTFrihfqSupfApMxhk2o63oQxZ4bcUlHAREFktLGqIZQ0nSRck12TBmj4ihydVCBbGQNeHBea0k4c2ByJjgKEio03icAImttUWtmJKKqrnUg2f6t0WAjIVwQNg6ZqMArqZsGUErVRQWeUIGwngORq6q6LPOiiKytKVRl08jVU7BWD4fDRq5eaR88AwGIZb96Xl16se1OQEopgftlQ2QCAeQ1KgLuiAZZWfyZP/rtjz76aF6s5ZOzszMimkyGadKrK2+1KapyOp0K0EBMgUgc2de4kw4I5435wBsNKi+BPt0n3Z9qo/EmEXkPP/VTT/3qr9145W9tPP4bhV/Xa/hv/pvXUjnYPPIcvuu74O/8ncst4F7jePll+O7vflXF3l7vcse2V1KVX+Mggn/xL4AI/vJfvtA47o0cJyfwt/82/D//z2ud82V/Xjlu3rzcfe7xx1+/zd3v8l397o88h+/5HgB4c4jzcgk//uPwf/6fr3Pln/1Z+NZvvQJuPjuDX/7lK/IBRHB0BN/3fRACfOM3XtbjfoPHyQl8//dfQZ1+tZv8ru+C7/1eeMc73tDjE8Gzz8J//p+/zmQAAK0aIAwABGjojDZcdMo2j27n7fBoRC0kP2YCBQrOOVZwMe3aBbqwkXk1CKg0gEJQSiti0kpHiNXizC0WAwQdfFWu1+v16XSqrPa1X61W73//+/ujYVEUZ7PF2XzmCWaLeelqT1yUdV17ZUykTF4WrHXtnfyi0siM2XrdS5Kv/ZqvWU1n6+nZ+9/1rsmg79cZ1aUyMBpvGx0dHR1VpWNQ66KoPQUGUf5jZKLA0EjaKaUQAQkJmt2TgJEbaqpAOUqp4EkYUteuXUM4yPM8jpLlclnXtQt0enr6O7/zrERrqPVkMhFYFkFbq9MkEm4IsOpoKRIiSpjX76eD8UD41zdu3CCiKDLe1xIMA8DJyYnzVzvNzPDCCy9sb2+HECJrD5588uDgoN/v7+5u379/P1+t79+/ryNrjOn1eo899lgIAQIxswYcj4fz+dlv/MavCZtptphLbClhjDVmOBjMZjPfdpKRWP3k5ETgCQS4du3Gep1/4Qtf2BqNu2hWWMzUiixLnCb0MeF3hBC0Urdu3XrrW58+Ozt78OCekJ5OT0/rus6yYjqdMrOgGI0bo1DEVQHgbDqXrVCuLwiUBMMd+mlbQVtjjDGl9z5Kmi5Ay+VyuVxmWRYZm+f5ek2oGiy76bTBTfl5CCFykffehxoA4jgOnjsEylor9HZBzYhoNjsDAGFFCWNuvV6XeSGrUgBxqf8Vx0xQhvV6LdCA1jpJmj4wocULBE8xrTQq83lQKt3Ambksy36/D22vHuccgu6+KyGQcIsEYBI4TF5UURS9Xio4vvxTmqZ5XuR5vlzqyfiKKed9aMc6dIWlndnBRkfbK6W0QlHp0QgWjQE2wETgIRCxD+wC+8CscBPVRVT9fh8RXSZdXs77oCJi18Ndyxw1BoJXSpXr1WqZmcgCqLIs+2kPAYvKVc4pboQRdNP7OgCAxqZfU6CgtBFo0jEJtpJl2XDQV6+oM5NjPj9zLifgJEmOT4/nixkaHG0Ps3JVVdVkMtjd39YROl/mdeZDxYHWRW6tTdMeM7um46hnCnFkrDFxEmmjiETfQLEC9sSE2bpgzo0xumFdOemwhG2pL3NDYxTMLk37sn43AQUJg+XPTvZBJqTgKUTUZSmIiEOQmnTVNpgyxpSurryTXMX+/n5XHG2t7Yqd26AGAZRpNPrCcDhUSi2XayK2NiYia1SDFVIQYFop5X3NDMY2iHAcx1Y37qvgzqZtLC9ATNggUKdpevv2bVdW0pVU4NoWs2uqlWWKSkwhFgkAiqK4ffv2ZDKROF9vqAGI5LFkgJQyQquUn9PaVFWVF03zLlFwlsQktjRPkaJerzKlVK+f1m3zT8m9hbbxlGD3QigW8mBd12w1IWhjxltbAqArhagUBa9sw3ERe65b1RTRiBAb61vl9yzLuoTW7u6uAIj7+/uz2VRgxNByq7vetnIFubfGkiAqbfv9vsDBHaToa2cjW1VVpLVAsSfHx7du3RKzLBCVEDyFGScRaAfoJ5AmaQwwIPKDwagoivV6LX0UBWo8PT0VPEXuU5Zqm7ZshI+rykRRpBQSeWu1yCkhojFUlmUUkffNJBHk1DknSiOiTxrasg/V8i8EdPbkBCgpimI6nY7HWwL/iYy+kPJEDqIXJ1VVRWkyGr3CAW125yDZxNFopJSqixIBer1+kiTL5XI+m8m07Pf7AvorpawxcZKEQFmWyVyNrIWWKhdC8E70h5ACM5OsQWG/KlZRFJVlDq5pPYcKxERv6i0wc/CS3eE4jvujcQhBqaZYhxtugXa+dt4xkKhdyyYiK7po9aYElFetbkbdtrx7y1veUlXV8fGxODzS3UGQ3CzLPIU0bbSkoKXAR6aRwjBWAzdBq3DRBJjTbVO12jXV27ILTCYTOXk6nTJBHMfcAoUciAEEDZCjKAptDTMzNjRYROz1ekmSSO4ZAEQOqJ+kSilWmhmdC8yNDEUHvAo2LTkMrXWSxscnR3me2yjWWsl0FStU1lWn6dHr9cQcAYDA90VVOuekL6IYUqmB61CjzgvqxYlSitq2Z1prT163LYWJaDwaVWWd57m1uq656wvaqYE758T5kQQPIJdVkSTJdDp98OCBjL4MYhRFHYMbEaXH7LrIO89EZFejKGKiEMLJycnBtf08z7Uy3vvVagUe4jge9gfy6sqy9t4Ph0NrGp2TLMuAWLEaDgbL0ylssgBbuJkR1AZ3E0BRuyMTNdwaDed4CCLGSSQJRTHjg3QIV4kEpGlve9uu8iy4QlJrklvtIJQOqFRKUThXRDCt2lIHQkpGBFo9GXm38omoPLEPiCo2tvJOnEZEPD4+ZmZpOSs5S9ndPNXkPADExlrTeK3GNPSXAOx9k0WT8621WZbVZWUjoxqpMcMAoXbeV86TUgYNevJRFLHDGuo6q7z3ilVe5cPhONKmN+xvb20t4vizn/mMYtjd3iHv93cPUKutra3JZNLr9cQiyerQ2k52d+MkKQoRn/Guqnxd7+/vP/nEU8fHx9JZdGtrK8uyYa9/v7pvjJrP+caNa1FktrbGdV0/88zbiKguSjlfhuyJJ56Yzs7u3LlzNp0/fPjwxo0bN27cmM/nSZLcunUrsvb27bufP/tSXdfPPPNMXmar1Wq9ziZPb2kDYzO6gKVyS796JfC3OcwyQdvPmxM6wLoNejsbck6LVi3rs8MNZXdsz1HMAdW5AgZtNJPBVzRSgw2Yr7um+LrQikbBOUGsSa52KaDueWGj6yBC4/UKIUxvVFHBRcQcEfFV4GatNbMTu5BlmeQAjTGxtVJeJNNX0rxKYVnXeVkgonCrnXOcJHEck8aiqoABkZXSwfvAhHzeGjV4YqbApKUhcpJik3KC1ER5XR0fn0b9sbUWg2KqlbVyS1rr4bAfyDkCVoigAYCAFSoT2RACAUMrnx9Cw8VjZmRQqEAqB8T4KuecC4GMMaDQOV+XVVmWqFQgCgSeQgAGkARhMCaWV90xArRSHEgBIJyrjiK3qsiIDOfI78bM0XieCDmfGd57qTlVSs1msxs3bvzJP/knfahD8EoriSpv376dr6v9/f37d+4rAK112wf2ggzTlYMLbR7vlVOim664wY8W1mH3Z3f9LmcrE/gnfvKtv/7rr4U1A8DpKZQl3Lr1WueUJfzSL8GP/zh87nOvfbELx8kJfPd3w7d+K/yxPwaj0WuduVjA//6/wz/5J69FHZ3P4aMfhR/+4Ybt+xu/AX/1r74W3fjK45d/GQ4O4Cu/Et75TphMXv/8+RyefRZ+/dfhV3/19U/+8j6vHL/wC2At/PW/3vz5fd8HP/Mzb+i2f/fv6nd5EMH/9D/B6Sl88IOwu/s6L2Q+h899Dn7jN+D/+D9e/8onJ/Bn/gz8vb933mQvBPhH/wj+5//5tcSvvYfv/354+eU3MfoAsFo1k//nfx4+9ak39JXuJv/qX4U//adf5/FXKzg5gV/+ZfjYxy53obzyIOj4C43CqWqV91/DvGhsuDDABK09FDPRmAs4b12w2XEUXrE9yf8oZKM0ETAgK03kk8hoV54eHke1N0iK/DpfTWenIQRlVJ7n/dFw//q14HmxXJ/NZ4tVtlyvytqt1/k6K1zwtQ9lWUuLsKAwMAWpzwiEzPOz2fve976v+9CHVsvl8YMHW/3UMNbeIVCU2LQ/KurqZDrLyyoglpULUpNjDAAwKG7NOSKjanSriUiK9Xzw2iilFPnAhtfr9fb2dpo0ZQXOOQS21qKCRx55JE1TF8g595a3POWc+/jHP75cLJh5Op0qpaT9jmzKDeboGbDBmkX5TjoB9Hq9Sut+vy81SW3kj8xBKUiSqF5dzVWP4wi0ffHFF1988cXJeDwYDJ566qkkSW7demQ+Pauq6rOf/exiscircjabfeYzn0mSBAmffPJJZpaC+uPjY0nQRlFkI22sqmqBRLXWqDVqrVfLpfNeQGRhbc/n892dHa314eGhtfFgMCqKSmsbRdHZYi5MOoEzRPpQN6XKdr1eSJMrV/m6XPZ6vaeeekoCuaqq+unAtxKHx6cnzrlFq/e0zNYPHjx49NFHvWsAKdO2gcrz/Pj4WJg1QhwT312ApOPjEwBwoYkSsywbj8f9fv/0+OTs7ExiEq3seLQlQW5dOvEcXKt9HAKh4izLIptItCBsTQHsGFHYQFtbW9QWA47HY2FwAzWEcd0WPouqgFSgy8oVP03gcontoQWMrl27Jo9Ztge0YoLU9nURqHFvb0/QQGOV0YWIogjrOc/ze/fuJWkkbuFyuVwu1v1+v9frM/O9e/d0W0dce6eUqqraOcf09iunXBRFWifCB4rjpp5PHlxrrbCRFGwiMQ7MCpUCIAXILA29OYTgKASCAIxNY2QGAIG0jDEhMIBSaECdZ9SgLQpsqD2A3vvYKERltVmHPFSklAkh+NoF540CA9yLY1bonCOFVjUBYQhBW2MiGxxkeZ5V1Zfu3DZJur2zK8hIkWdxNNu+KstzNl/M5/eUUvvX9ssyDxCqwi3Xs4Nr+9ceudkf2dqV66pwriB2nj0FiiJTe4+u1KhcXRERAKHixEYhVBJJSI6kASO0ChQ8AxFrhaBV8J6AQXOkz+mfiNDp7SZJDzYcS62thFAdamyVTtKU2n6StNF1k5wPwMLF89DYHzFHAnbMV0tEFGUb6U/V6/WUMovFKk16Uocpg9Kk1ppycjOfL4XbtVqtAEAA7iZnYxqoqCxLFzwTGmOMNYhIHFoMxQsAKsqzHRWxS8nIn0mS9JMUALTWVVHKg6im2NQ1n0tKiUiifcG25K6iKBqPx7JCvffHx8eixiPF4EVRCSAomtQUyEbG2KYOelNOWtxyASWZ2UbG1W65bHRmRqNRr9eTRqYCEnFLH5E4ZTKZCMYt73+5XIr1E5hPTo7jWF5aF9tmWbZYrHq9pN/vC4wunWydc6JKIfNKNqCjo6OiyIbDocCgZVlKV0CZJ5IkEzBod3d3vV4DQJwkALBYLMosFx59Uz7b9gCsqyqOImuMENOIGt358Xi8Xq/LslwulyFIvzIrIF2v12Ogpk2l98YYyTAhcUPxbkXtm/a8cRxCaBT2QUnZh6D2siQ7aqFkRhvgKY7lwzbL2yjJSlpFmJui9SHIuKA/AFFVVevlSpZGVRUySWQv61KDtpWvWa1W/epqMY3aOYmFJZ8qoDATl3kZRxFEUdhQm+xwg+B9ZGMcDCThqqHprUqdqLoxAJBlhayy2WyGiKPRSDFUVTEcDllhVVXEIdRhOBw+8sgjzHx8fCxnipUQkXox3ev12hhj7bleaFWXsmqKojC66YR2dHSktZb2D4KxdroKXU5UqgS01qKxkGXZer0WpFhSOLPZzMaRpGq89wBN/bRzTvLZzIqZfGBrrZCym55PdS2K3to0xWEC+d25c0eypLK9RlHk6oZSKhNAMjEycEVRBKbzLIv3ggxqrcWsya9sbW0Ne31pChfato0iuSYGpCgKYey2DYHDOst6aVoUxWK52t3d7dLS4jxHUbJeLuT1Cq6tlPqmb/qmnZ2dj3/845/+9Kd3d3eNMVJRIR6gmJGOXyzzJ4TguVFA8nQuLiRmUNwVmclKKas0Nj36jLgoRJRlmSROyqro0mBKqe3tbUFdxfAarV3b4c2gUlEkK0VGuWo7CsZxLKTy5XI5mUxu3LhR5KVIqwFAXdfWxkkUS/pKBIWs1WIfXFVrrSMblauqqiqte9JPBaCBm9uGWedNOwiZ6RKcqAhZMTAhqmb2RlG0Xi+JfJJEs+IUYOeVa5OYTk9PS1f7umi9Gl23svjOOSGDyp+6jYm01tyaa3nnsha6yAvbhIFkMqIoggDOeTHdaRT7jRYgcn4nPi5OYFk1lXCVdwp1kiTKijsEyhoOjdwKAxVV0ev1FHAS2TiOBLo1cYSoiEhHcQiBUBETMFhrq1Aro7TWVV4CYG+Ylr6qZ8dlWS+z5Yce+fCO3Xnr028d9ofb48lqseynKTPvbE0C040bN7z38/lcNkEhARR5vjXZcVX9cPYgipK3P/22OI7X6+V8fjafzz/wgQ/EcVyW+cnJ0WDQExvyjne8o7PA29vbSqkHd+8558bj8WAwKF0tuoWPPPKIq0Oe51EUPfHEE71eD5irqnrw4F4Jfogj2cIm22PveTo9+/znP0/sPNK5sPImUgZXiUtunMZEXbOjBvyUFBZzqw7ZKq9diq4Rz6HqdkI06jwoLQW4SSJJpUloJSYuxeedd9tCjdieoLoTlFIdsVrYu2qjUh0RRR8TkAA0AGw2o4NWgm3zzWzeA78S/N64t7quxY7Lshdfh+JYnBhJ4cqqMFGkvK/LAoCsMd47akW+siygYg0aUTgmjQCQc05AUkKQKgZPAbxb1k6jaYKKNLbaZNnqeLZKksTGCSiTpj1ZNoNBvyzLKG66YGuFWlthmHlkMIqYAxAjE3CAC2j+uT3wIYRgjQGmUPu6LIl88K6bJ0VZOGJCIGKttTbWOReAxMESpw028JdNy9WNkRRrdH92/9/Bt8ysmsJz8d2by66zjJn/7J/9s3t7e0W5CiEgBCmaCCGcnZ25MvR6vXJRGqVdVW/+Cm2y7F95MDJhCzsjYCPGunl7nd9wxbc3FgU2lVzRr//669fzL5fwF/8ivOc98J3fCY8/fpmMmWXwqU/B3//7b0hA45XH8TH8/b8PP/Zj8G3fBv/2vw0HB5dVHY6O4Gd+Bv7xP35VRenu8B5eegn+2B+DH/5h+PSn4b/8L/9V7qeu4WMfg499DLa24L3vhW/8RnjHO2Br6/JTn5zAc8/B//V/wW/9Fsxmb+L6X8bnlcN7+OmfhukU/qv/Cr7ne94ou/bL8q5+98fZGfzAD8AP/iDcuAEf+hB85CPw1FMXtEFOT+Fzn4N//s/f9HsuS/ihH4K9Pfjzfx7u3YN/9s/guedev9HiGxx9ACCC+/fhE5+A/x97fxq025acBWKZudbawzt+05nvOXeoe2tERUkqDUiFhBhFy2oCYRQGDN1Nm6YJhw1NtBsHYRtohSOa6CEMQRCAwcYQJto0smkIIAAhNULQ0CW1kISmUt1bde+Zv+md9rzWyvSP3Ht/73fuuaUqJHX/QOvHifO9w373XkOuXE8++eT3fz+8+y4Uxcsu9/O1L/H4bQtvvw3f933wT/8pPHnyFZSInGTVGPIUQecSDUKFEBDNB5kXEd15CemKp4yImrMPACPcDNDrO8Oe5sZ4nStbFCMSiYAAhRhVQ61Yb7htp8bYzsfYVU3VBu+ytCjrKPihN97K0sn55cW7D98TxqIoil1ZFFXrOx9D62OMgoZIyHfBGwFrROWS+hMmf82v/CSIQAj379zmpuGu5uCdxdlywQznZ5er9a7puojQtr5pOnWPIiAMW4DWpI0CZB0RdXVtjEMUzQEiIpuY3W6nQsyJSxXgCyFkaYLYk23zPCfrzs/P792733XdfD5/8NprRLRer2Uo3r2N0Q5qjyJS1/VisTg+PlYv8+DgWNPM9dDLHUiIeZ7vdjulYt29e7csy6apXzqaxtpdWU0mk1fu3dP0z0ePHomII6yqarPZHB0dfepTnwKANE0fP3v68OHDp4+e/siP/AgizmaTfDZN0/Ty8lKP9Mv5IkmS02fPj4+PDw4Ozs/PQwiPHj06OjpipYLGeOPGjTt37pRlef+VV37u537u3Xffff3115MkWa/XWuGQhyiy1itWKrTiaEVxqee0sixBSB/54GiZZ1lZFLprJ0ly586d6XR65/Ly8++8ba1dLpeXl5fW2oP5Aq3h2OeE6RF3Mplof7711lvr9frHfuzHbt68qcW4jo+PX3nllbfffpuZA0dFSZQxV9f1xz/6sR//8R9/9OjRq6++qgyg2WK+Wq1Qen4uDudMxUf0bmez2QhD67G/C0Gv2bZNWZYqM0pETdMcHBxkSWoHoVsiOj4+KYrdSIdR7I+ITk5OFBmx1mryu4g8f/5cyR2KHOm37CAByczL5TLP8+fPn+sRcT6fv/nmm6vVioj0VkdoryxLlqCDkmUZR4gxZll+8+bNn/qpn2zbVknfy+Xy4ODAuaSqqnfeeZlyM0CeZ8YsY1+ViNVd7B1sAEDUx49D/QyiIedCRBMHWcCzsGAEYRk4FQMzw9k0RmmD730kROjlCzlJkjRJR1a18g+6rrPWLRaLo+MbQIhomLkuq+V80TXV6uy0axqRLEtT4RhDFDDKLmcRPRbOZrM79+9fbjfzw6PDo+OnT59WVbVczBN7vyhf0gNHR0cHB681XTObze6/dp/Bp1my2q7m8zkAF/6yrusQuih9VqUIt12bpqm1RIBp6iCyMSZJMiJa79aKF8xmMyKIMWi9e8XgADgMxSSNMaplpCEc51wIPNJd1SnVR4PeP2QRUcxR2WoH80XTNEqK32fnnV6c63RC7GspKo6JAydO5WLGaFOMsW09YlDcR+ekpkXqvqAc3vH6iu7p9OvqJk3Trmv0ofRMTmzaxgOAdUZE2tozIBG0bSukpV9Q5/Pl5aWIaLxHIUVQ+ir3JcX2nWSdQgrT6EJQqF1zVsYCntpvCq+MaJoaeQBQrXNFNquqIjQusQqJjhkqOiF12gNAXdeafrperyfT3AxFDpUWqsiR5qEyswK+yHJxepbnOWBfgEePcufn5f37mRlkEkeMTwmnWZbpZjGbzfI8HwmS+kl1BlRsRMX9QwhJ0p9QdNniHlVLf0IRao3eIWKI8fLykhBZeAAEJUkSCbFqezlXhUG32y2yIragln8MBtR1C4L6MTVWWZaPIb2qqubzubW2qxvFKGOMihqPyena1Ygo2MuMjCR9XT6qCTmOiCJ6RJSmTkTatk2STOMH42X1OgqgzGYz5acbY2FI5FLUW5/XDxqViv3FGNvIaZoWdXV5+XJ2QIhxetCXKWvbdjGdqcvRP68z3ntkqYvetgsAGKqrpoilc44QLRkEMWB807bBq1I2MyjvXreDqmpEZJrlQUSFWcCQTtFeDdmY9Xqthlq1LBSXHzMAFBrW+QCKEiY9TVALORAarRCQJImqPZhBdnbgtJGOtU7pL37xi9q9yvTEIStOKfzz+bwodhpDci7RsJZvO11ixhjFRmOMRVGA4Hw+b32nQ+C9n82nIxzUNI0jA9TXJGhtpzH+EIL3iuh5771zfXoEIiaD6BMO4sLn5+cK7Orr6g9rj41xYgUKFMIeE69lECAi6s3IZDKhti/tMExRo3Ed7YO2bS8uLpbLZdu2P/RDP/TJT37yxo0bY79573WDHlmSIzw1Blds6kIIgftsCQDop6hz3nuEfhWn1rl8IiJojdrwEQ/RHILIQdMaiqJYLpc6N5g5y/PgvYZ51G4bQ+oyaXVNzajAIWA5nUwAYLFYXF5e1nVtqNeYHe9Nd5/AvWEESFXEOU3T2HmJrEE13euJiNkA9gz1EZxhhAGMfnlTq68GQaUebt48efDq/cPqZYpgAA/fe7g+qJK8N60KMStXQJuWOJZB5WDcVeNQm1TN7Djt9QowsAHCUETBYD9MWigBRBhEQyDqdoYQVIdEj12LgwUiskjb9Cx+MxQ5U/KHcVakjxl3vrERtBBBD3CTE5E6BHKGo1hDVV2q3hoREUHVNHVbWzJpSGaz2Wa1AcLz9eoffN/fT2x6/5VXPYeiLufLxcXZeQhh6tLZbPbsydPpdGrJWDIPXrl/cbGqm0YnlXPu5OSEmVX7YrNdl1UxnU2MpdX6cjqbpNk9xfGPj0+0YnDXdWRNFI4xPnr0yFp7586dyWRydnlxdna2PDxYLBbK6G+aZnkwn02mb7/99uXl5Wq1OrxzI3UpIpIxDx8+PMDjBw8e/Ojjf7kr1rzkfvINe/8VSXkPcdsTZvngNoKMamiIrhSsRhiR99jK0CdcXJVk6TnwYyk/7C84Lum9iXu1B8cYEEeqtaiW+d7HevLFiO7tv4s0/AmEiAhmfHAcePhoCK4jnlfP+0GLSwQANMXYDNUC1Z5qiQndh5QAr3HIJElEYgwhxt6faKHue8aaGD2wqubZqK48karLI6IgMDMLIwMSpC4BATVPH37zzZ96+6Gasy606/VGRFySHB4s5/PpyY0j9asIhYgiS9d1Qr2uiI5j4AjChkzQ4jB7UvFEECOHOiSpIweN76JwSpYsR+99FxARB2afHhH1hiezaV+uOknUFxn4O9c6dBjlYfDfPwQI2A+NjE6sDnFZFm3X/abf+Bu/67u+S9kcxhjjqOsaDQnq77ahTZJEsQMdd2EBHEMpP8+EH+aJARCBqGYr7imSXwFDL2tjRGe7nfy8P6etaeAHfgD+xb+AW7cgTSFNgRmshe0Wdjs4P/+FsmI3G/jzfx7+6l+FoyO4caMH14hgtYLLy68MyysK+K7verlE71fUViv4gR+AH/gBWCzgxg2Yzfqr6VOrOvC/dvtFfF5tP/Ij8Bt/44tyzD9v+8Xqq19gCwHeew/eew++93vh6AimU1gs4Fd/5guTya6uu7blD78lH/0oxtDjFPt6RaOo0VATAoaUJ1VVgr/134olePUBvvrg6isIvej6uEyGRAahQVDCID15aE6fQpYlWWaYARE0WYwjtx13XYfMv/Zbhyxm/b4MYqDDGhwMBGsNUB7ULV9YpIj44z/mPv9zSn0gH3xdx6Oj+G//28iRz05Pjw4PNb19f2GPoS/VVj5YNIeHvmlErZ+1iToT4y/SByt3aJFU5mu3NLwlowAUIvIQuhpTJcadSwaVKicALMgABgUE0QjS+nJlGQwyAq83q6qqbGKrpi2L4u6dV1555ZXWd2VZCmMXw2q1Vt8lhh7dE93No0SQ1nsaYr2IGDt/4+j4ox/5SFPVXdNaayGGuqxijKlLJtPpahMfP31WFAVZ06gMtA8mSZWaQlq+TIQ5RA4+8MHRMQDUvXKFuhZaKqB3qS8vL+EQF4uFda6qqtXlhaZOT/LpbrcLLHo8OD09nU6neT6t6/Lbvu3b6rrW2oCnz549efKkLMsbN26kea6CFSLSNE2W9QWdx7MfAIQQdk83q/fOQtclYbndnELTulAelJ9/yVA+vlyYJERK4OhkNssuYLV5miRJnriqKNB7lyRt3O6KAkSA8K38/r27xx/K703yyaPHDx89fcJSPf251Ww23YU4m02zQ5zWNkeaWDPbWN5R2srxdHZ4dPjuF9+tqmp557bv6hnZs4uH1ZPV/ewmPmnDupxT0qzQ1uFmtkyzdO5n5cOyWq/TNFscJV0HZ+fb3fPTyXTaPF+TManLiKF9vtk8rc3xkbRty5W4zE7yd97+qcPDwy9+8QvPnj2fTKfe7GKM0LbWEMfOkAERMkECM2EBpTHm9q1b9KwLz4vbcQGP6ttHh5sanv3IF8rPnSFSlmU3Dw7y2eTs7Oz84hysNYjpxHz9va+abx08rt0EF8tpFqC+kMTZ4EHATSe5cwk67HyXcipWpBGpOQXDAlVZkY3OuVmSAwCVMsE0rZgaJMNNXU09EVkAEO6yxFmyAGATk7XTKFFqSVyCCGVVxRiM7wjECGcZxZ2r63ByfHIwS+N7BYcyseQkITLScPDROjOR3HdBiprTeANnKSYxsC29MSaNS4zYnXZm12YuEfGpMQt3EDmIZwrkOhdCBKFw2a7Pnz4wN3EKDTV+1rWdzzE3YMzsRrak7GVTLvjWWhMj+OA0syr2Nfj6xcssHKMPQYQR0LjEEkAMLXlvgxrywZlH1YxXY65V8MY8YiISQY5iTF84kXo9sf4065xjkMRSFKjrOkfjnBOQLMtSl0jk5XIJwZ89e9a2rRHnrCFjYtD030i2F1hIEI+OjhZHxyZNVutNCGGS53meG0zgZXDzyckx4C0fugjRGFwuDsVwG+qmK5lZcBekY8A0zeq2rcoaUYpytwTOctc1DRGlWQJiE5sO5DhWeFE7EFGyLAkhdF1fuMDH0DSNirQoKqoaGsy97E/btgCsWLOiD8wMwHrO1O7yTXvenqsXasm0dUO21yRNrSNnvfenp+sbR8t79+4VxVarqKm90u1MyXEAgGiyLFGMdW9ixFHGlwddnW6oGqfDV9c1+1CWpfctOatwxnQ69TH4bq0PojBWZGEOMUZFBHRKxKG6l5pQGjLZu65LjNVjjsWeLqqdmWVJnueKaIwcYdWf0Wp4SnYedQBGcMcMtUmZ4fHjx4pxp2mqgKliLiIyInoAoOiVSpoy83w+Pz45GjdKpQbr4SvLsmfPnmkX6c3MZrOiKDabzfHNG0rNbpomy7LDw4hDzUNELIri9PR0MpkouKyZrHfv3m3bdhSF19uWoXCOCuhr8HK5XDpnemnpQTdWYfcRgtRH0OFOksQH3u1289ksSZL5dAYAynPS49U4sqvVqi7KBw8eIGJZlpvN5vT09MaNG8qQJbKJS/WJAMB7v96sFG0BAA0klGXpyIyBE8X1FM7QG5tOp6vtJkZvrS3LkohULUThP2NUOdqKiKoS1XWdZRlist1ut9vi6OhIWep5nivur6GmXkMZEQCqqorRZ1mmHaigUpJkMpQU8kM5Afah7cWCVVLmJY0AVVtJWbp6PwogFEWR5SlE1gkPAIqxWmu3Rble1wcHucakE2uIqOt8NslFREUJNE8FBxUXNwhPq2KSSS1FxKGA03vvvacsY0XtQ4jz+RzRqGXodqEHRgi1PIM6Icqp13T4Z0+fhxA++tGPhhDeffddPe8rxKz0bWPMfD5XXJ4HteXtdqtxHRjSuHVwtfitJhyoGbfW5mmfbaBdSkPtqBBiVVUKQWRZNlbjRERjTAihbruDg4PgAwurOo1OG8Re+1iRTcXssixj6MmO3ntn+oiFPovGnIwxm82mLkoAuHHjhi6rNE3TtFc1GaFGPfinaaqgVIjROneQT/I87/pa0BxjNxpPHoooqOl4/Pjxw4cPaajSbK3VfKwRuFRbpOTr2HmNALWtyhegEp9lkBnRICUAEBpjDHIPTLVNYwZRGr1mURRKfldcdSwbq3N7ZNwrErq5XDHzYrE4PDxM8kyTM5Ih22DwY3sZCu89OupZ2CHk+XQkxACLdq8dql+0TZNap+uxWG/HVYOI2EP5iAigqim9t3C13fDeObb/CUEk0BV9dHRweHg4mUyk8D3X83qbTCZVLrPlwhkpy7KqKp02Csqnaep9a/qCGUFJ4uOIjFkU406hJlTjLvoZNSlt2yINMjghxOhFxGXpyDaQQfRZdysNFegdqoVvuhYAUIg5BKYkSVLNVjGQu1SnBACgsCUTQWFuMGCaptMbM2Q7FcGHaJNZURfOueBjURfWWuucMANjWdcNdD/7uZ8+Whwlzk3z6WI6m+YTFFQii5qLGOM777wTY9SElRvHJzEIARKZi7Nza+1yvlDtJt1VUZOiAB4+fKgqeTdu3EgyxcS2SZIcHR0pWLfb7bQci3KoY4xaufRf/at/pTmCIvL6668f3b15/sWLd9999+Nf9+Gjk8P2NGy321deeaWsFktYWhZvFWi3BqAvlSNCvSqDKE/EIPZJeTRAKTwQrACFhRExcgQE6ssr94UUQvAAoI4uAMYYu6E+5hgjkoEVT0QcAvVyFvqVXgB6RIHHs/cwp68O2KAZuAgjYg69W9w7zTxUONVjOwqoLh2iEGEIAiI0iBABACLpsR8R8UruvH/hg5R0BURz1qy10zwvtlsUMQKh82K4ZsmnE92ey7JsfciyLO8fpiuknmRZ3TRlU9vENU3DXgxpsQ6QEA1ilmVkbRCRyABgVMIYbCAAaxsSA9EBZSw5ubfu3weyXrj0vgmRAbquK5rGGHt5umnrWvNMzQLbGAAgNQkJCwt7H6Og9j8Lh3jVLYYQAcTYhNBYZnZJFhuQDsi6UNfWWkNWVZ9IOHbRGINMWZZ1HCeT7ObtWxcXF3Xb5GmmmnHW2hBY+TUCBNgPFkgMwatzY4wVEcWTyAiAICEzE/aBbuUFRh+6pv70V3/1f/yH/qBB8apIKAhiE0h8HSEAWDGWvPfOQitt0ZY0lAAioigM8oGIs3EmGZifOtPIAJEbJ+F+1oxcwW86hXCIxvVRHEQE/MrgyaqCL3zhK/rGV9aqCqoKHj36BV1EodtfRPB0u4Xt9uf/2L9G+0V5Xm361F8+B3b/W/8zAs0vtK6DZ8/6/3/j150d3F4tZv3NMaGIqGLXCOn2oRpFh0f6raan7CkmwR4PV0TMYMxx0IiIMbLZq1vLIxDce7c0CHLBsNY0yxP34ojjjY1/xniljMR60WHTQUSSnmY1AtD7XyQCEZTY7z5vvjYBaEWaqzAqXlU9BYAoxvTKaf11RCT6rgpNj//aNEmSsRT1Cw0BUWvDDoWVAUAgakFzRAiAhggFkMUwWLSqlxFAYi/AwUaMASAAAgRbMotJpx0lxCHltnv8znT9bGYYgux8uKhCkDw0sWvZh/DWhz9ERKenZ6vN+nx1iWSatvUsA9bcb8wh+I49C1uA6H1CtqwrdHbdlN/0Dd8wnaSXj967OV84wxfbTRcbTN386EbTxXfPn6zaahMjMXqGoAHF4I0BJOy87yIzQAAjBlDCwc2TEMLz1cXy8KDcFZY69uCylCHUsQFBQqqqShk9ZVH40CnMcePGDd+Fsq7ati7LXdNUbdty6F65e/fk+Obnv/BOVTVZls2XyzcmEz2panmZGOTx48dd1x0dHYmg1rjTbND1eo1b/6H/1t0BlVzpALoFAMA79+GPvGQ4fwIAIAEYwom9qxoBpgBkiUPR2rUN/eIKAAnALQCAzcdg8TF4qbCLErJWMyAAle99tIVHhwCHAACPdGIlAG+CA4gAEaAFgFfB6A0DFBEuMoDbAACFQOEA7gLchX1tAtVy0W3uchC/rADAAnRwdv3zFuDlLJWhbQA2dwHu9j1R3gELcPOFD8wAXoeD/a+9CS9IRtyElzQHADTJDu4tMZ/MjyYcuQpV8e5Fc/lCwHAsg/4l4rvXBfjh/bqfOQDAzw1vfW7/LRqz6/QQRVmyuLN0yxkAdOvd7tmWm5dXlQQYfYCxKrK+Eob/7zsJ8hZEeN+UI0vMQHRL1+kH/NAHtu+9/T+W2GqaQvAemZ01gaMAiUgQmU6n4kzHUf1pkUg9S5cRSU/XRETWARkgkyWJMEIIXSwcR4tOxHdt8N6jiKPJZJIbEBIwaA1D7AKTMIoYZMLATNZE9uVu3foQQdrGO8DEmLqsmV/uDTw+ey+dPbUJzuY55rDya195dCAmdG3LFSdJHiUapNQkVVcS0a2j21mWpS5tq1XnIwIbE3fNloiSJPPeI5qqavI8J9JNwYTQKOKpR9NJlvOgPKBIEDOLoMpwG0AiEktV1TrniNBaBwDW2uPjG2VZavrjZJLZQWocAJBjlk2sTW7cmDPCarW6d+/W0XJB1KPYyvjzLF3bxb5AvKYIXCmDI/S8Kh6YH8KgCrPW2ulk1u+YIcYQECCCGAS0DgCttd7HsqwJzWK2CNHjUEwVCCRIkqQkQEgi0pQVOXt4eOiHWnxEpNiNFgyPMaZpahKVwNYMfTbG7HalMU6Gcp26WY9KAooXJEninFssFk3TaN7Jbre7ceMGM282O819VmiPCEIIWZZ0XV+7L7SdCFhrHRkm7g+SQHk2MdQV5c5aq/pCSvbsWj+dzA6Wh9vtFqEHm4K108V8frDkKOfn54o86lld8XSFqBRqx0G1QBhiG4L11jphaJpGTy8jIa4oCgXLiChPXF3szutOcd4YOxHsusAMIoxonLMhhDxPlYDGzN5HRDw+OlKgsKqqPhO/aYgoVF2e57HzlKXz+fzsrKi7NgcX2i5z2TSbIiMi3jq5tSl2dVVvt1uVSel8jzMqugcDeNcRHRwcbHaFILk0a32R5JnOdgBghK7rQuicc9Pp1PvYdcFaS9jrWmw3O9V7KatCz7/WWkfOkTtaHiymMy3MaAAlRPbBWttWtTFmOp0qBqco236hNkQMbSOCSZJ0Pui4xBgFwWWpzorl8uX6aC5NEVGJ3glp+VOh3E3NvC53VVWFxhOYxXLmfdfEqirKxM13p9JV7mwTsyAHi1tNtmHmST5JkzxGFvQqv2wtAXLkOJvnCFosEZxzyXRqjFnOF6dPn2R52pV1K+JcMsumIpinuSfvfTAGrCURjOKC11KffUHayGFi80mSd13Xls0kybPE5ctFudsWxdYYM4hvOGOMxmwAQAEpIgIUi8Zae3R8KCLcSZIkMcQIUbFmncaZS8CzFfRVU4cQB2+WWaaTSZ7nZ2dnk3xqZkaVBELolDfKUYKPkXuBY4XyDdmurlmCOmyqkBYGcmhVNUS9f94nnSAltlcCUW0NGCoTLpfLk5OTL3zhCyJCzkLXGmMNwm6zBQARUekVFMiStG1bDhEACElFPDq/Wa9IwyrOJsotYwQwPTdF7YMaLu+9ICRpioaiMFmXgJYJTRSdcKRQpoAxirh5jrPlwgD2/H0wziSajqByHzoEUQKozlUU5e2N3r7CwTGys31SVNO2LJJPJhcXF50PWZJqbgE5ExjLsqyrBoHSNJ1mucbkRAREfAjT2UxxVZcYYIjchcAgCEAxqEoBghGX2pQwhHZbNK2PlkgEnUmih3JbW3IWQJhIi9myJ4hIMVIkTkSEUY8szIOOEF+pJ/f0FANoDAFwCF1VFZNp2rb11L3cbzw+PllxjZHrplZlbWY2zOSshjF0t03TlH3wIeiAqmFnjtYmITAJOjKIiBaTJKnr1oBRQpMhs1lvkiRB4jhQ6ZPEhhBQIHOJ1ncxxjCDtYZZ9UnQt33mlrVGiIdtNxrj2rZtI5e7Issym6QAYAgCkUYLWKIAMwI5Cm0HMQAIECrDOsaIYKPnqZs75zCFyFy2jTEGCAQZMvHcdSHGOvitN8bdvnc3h/zB8Z1GOFK3yPPL07Pcpsa4w8UhgXEunU/mu6Kc5fPWx86zdZYS8jEagN1qxYREdKE124MnYwix6/wrN++EOjw7P53fXtrUpoBF3WimjkpO3b9//+233zZosyxDoouLCyR76/at+XzetuVsNrXW7Ha709NnWLijo+OaK+fc6nSlMpGkBYs14UXD8v3g4VjNrz+fyx5zc5wc4wEeerldvPbKXlOYFvCKdDx+QL2i0UseIWkYJHpf+EX9zwhAjD83fneELZivvaLX3J/cL2AN43UQUYb7Udr1/lfwA0jfSKTOnEQe81n0rV79zfVROw17gmY3EDGAlrYo1Um1pvdLJIzwB2IPxI+dPOYXDL1BKnutvMJpPmGQBCmfz8VYBgwhxM5P8rytKt+2bdv+3DufC8zZJJ/MZ/NsovFMa60xDod8KBkY6CIS5SoSMEaxxt7uY6R1K4Nq/kj4retaDCkNRAn5MUSRPgdKBaA11gSo85Aj97FNItKdw1grIiH0+Wi6B2skViJHCUVRfOwjH/2e7/meN954Y7VajSOrN2acPT4+jlHOzy+ttdG3MOxkRBQ5DpPtRf2W62PMAKCa1wJR61LSkKu4HymRAd4CABBQJv7Iu4SeffBl12j75fbL7X/aRqavNKLrggljjMBXSuX7Fhj21B6QABFhQH61jWAuD2q8/YtEGtlCs1dm88og91/f3wJAIbEXRH6ub0ZqGEdW1AtfH16EF97tnxSBQSSyws3Qm7j+k1fh9EFETHqt9nEt8/4P9RwC5rarvfe+e3kZRCRSNgrv6fkgXtG0RSQCWN16CAVAEIQDGgJhFAGBKB76OCwBI5FtYyCyRGBZnj19dkAURdqmWm9LiBxj3JXFtty8/qHX57Plriyapjk7vWjbtqzqxnchcOt7jcs4PPtoVxFRD+qX283xweGD+/c3lxcAYJ0pdlvldEzSiYhcrlfn5+dlWYpIRGm1iLxOE0YBsDbx3LZNEwV98DRUYNekWjQ07nch9OKS4+YSY5xMJmXVMyubptHURRFZrVZKc5vP52maPn78mJlns9np6an37cnJSQhhu91qtxdFUTelbgd5nq9W1WQy2Ww2IlJVVXiv/BDc+1IL5stur//GT/2W//cf+lu/6099/u9+JVrjv9z2GiX28LWbH/rOT3/8t3/T7U9/iMyVqSmeXT767z//U3/tB9/7xz9Znf3SBCp/vrv62G//plu/8oHNUgAIdXf2E+/+5F//Z2//7R9effGUu68wJvmlf9HSG7/pq+f3jr7lP/0d7/yDf/m3f8+f/te4yCQmpa1G78UYI4gIBgmDsCM7mUzIOcUEZch5h4h6AEO8yiMcXXpg6RkpkVOXWEequgssTdeCjyZxQThKiF5r9EXaY3IgYpZOkiQTDF0ISWaj9CkeZO1eUY+rNptl86MFWgnsm6ao6pIRjMG2ba2lyWRqjNlutyKS59OjoyMAmM/nVVUpxJkkSQhRUc6u67zvibT7FpiIlstl13VjsSwAUEEGRR4HEmKv45llOQ41AEXk7Ozsxo0b0+m0aRTEI9U/dc7WRRkH4UhjTIxe3eM2eBFR1Qj9Uf1MjFGgzyAe2YJqxxQK1xiAsOipOMbY1LW1FglYYuzLdfauPgBguKKJ6b/KLIZBdnN0ccdtVkFAIRkPKcqSi72iCzCzFoxiZmRWPFqR2bZt1ZLXdT2dTm/cONb88bZtFdVVFcjpdKowt0qIpGm6XC5FZLfbKaCmGfcAoAQp5XYpU09lOqKqxCZOs0tlEFUXER4ErxU5DSFeXl7qCOoWoBRgjRzQUN7QWtsDTN6PLFH9v1ICiWi32xGj9/7u7Vu73e7i4iLL+9I1emAZi7llWeacVQ1GEVHqX1VVbdsqV3pkNCsyolLXMvBVjTGTyaTYbEfaqe6G4wjWdX3nzoESM8f5ppCNSrUA4EiiHOnqOpGYOcsypcIpor3vKenZTZVS8jwHSPVgm+dTNRRK//Ler1YbFQ/RhXCotRbLXiCFiIqi0FCxHyq5kbMTkxpjDg8PT09PyZgQvFLydXy9923rkyRR9miSJEp3UFEIvWasXm5pow+Tw0mMcbvdIsFisZjNZuumDG2LiER4dHQ0zWdlpSVGD9rWP328rqqOMGHm8/NLMjhb5Pp0GqteLuZbzekbhqksqtE/mc/nNkljjLvdRvtfmEWkGyRcirpi5jxJ27bWKruND1k+ISJEmc0mInK5utCPKe6m8pg6vZumSbN5kvQ562pp1X3SE3TbtmRwJGzSoNBStRUAzGazxWLx5MmTo6MjzQCQQQ05CKdpTkRank7VQvRdrbAao1EnUNn31vWp7T0nN3AfBhBU8XEVIlfjUxRbPeOLiJYKtGRUS1qrPo5aCqoMoMUD9esJs4apxpxsncC0V49BufCjypY6cpqhmCTJwGq/oidq5+j8b303UmpCiBJZDZdO1CzN1CXXO/TeBwM3j0/UJXbOAfdC9saYgXMJLHG0ToZQ/z+ZTFQiQ3cQFUXRziciZZRPJpPpdKZ1C2OMN27cMIDvvfdeCKHtmsvLoFVDexV1oqZt27bT40/oovctACRJFmIwZJ0zdd0Fz1YsOnIunc/nLo2I6Nt2uTgMjS+2je/YUAr8Iv1ORAQGMQCOcU/lbw9r7g8IY8FAtQC3bt1CgiRJbGuHgPq1Zsjcu3Pv/PxU66xM5zN1+9X4lGXpfaejoIlECkADABir5r1pmtS6JOnLb967d69pOuXnMrPmuHvvE+sIKUpfZFKnQT9PCCHGrgtDGg2PXsHAyhUNrSmvX8VP7CCnpm5DCD7GCCKqoKBdpDGznihtaDxKe+/bpgshuMTaoRi1egJBEzWSRAFuAPriF79ojGlvlrPJNHbx8ePHNw5OAvJ0PknSTII8evJwuymOj4/BmKIs0zypqoIN1HWt8nef+tSnHrz26k/91E+9/fbbMcZ7924tl8vHDx99/vOfT5IELQriZrPZbDbT6bRt68vLy4uLi5s3b3rvnz9/PuplfeYzn9lut1/84heZw/PV01dP3iAirX6nG40x5uLyfM7LXj/e7FF6RQQAB0Rs5KMBgBDRmKoMe6juOEtQlKCF+6+/gPAiouCVSDTt0eD1NK9DggP9GeAaeP3CjFd8e//d4YavfV5BWLnSygD9FuyB4y/c8/5qQdQE7qtbJdISKy9rg0OWJsn56amadSV9j7ekIeh+Ow8xxoiRu66bT3tyjTHDU0MUBhxI1kLQdV3w3lpr6SqLbbSVAKCFcTVOmKW2i4FjEBEQATIEIgaNofl8vlzMmPn88mJXloHjZrMp19uBAC6TyUxDheqF01BtVvMc41Aueewo9XV0GyiLXv5GN0ItswsAIv1nsqRXqa+qSj1O9WvVjyUUpc87Y0fwhaEH2ZHE4JV0lwLNHKL3Pkr41Kc+9Xv/3X9vMpuppRaJzrkYeiGbg4ODk5OTqmreeeeLBwcHzhhnnCbfpWka26Z/lqG010ub9BVaGUBAejO6P4WuDid4xconMDqlcU+UXEQ+CNX+6EdXPWUNAAAcPP745D9n01Z11QKXdfvWRz76ic9869HJjSZyYIhRjLXRM4FyjqJAVM0CGCpwCQgCAhKqGEyfo7B/C3hd1WS/E+I4vfcftp/VQogIEomuBWY4gh4QRQAJxrNkjJEl9iTQYZ2NV2PZ09UZsK0+1icgca+IqKCAEBAicp/ZEAV6yyUcAHvjsz+gHHswFOAKNRMRQHN174N0jPRlK/uxB91AVSsC2JAREZY9Ntn7JbyF+57f796rzsf+966NAg//6bsIAPpjG/SViAREY2kAfQn6GNkYGlMx+ndk70p49ToADEJEcHY6/Rvf+wl4XyMgoj1ZLkLUyfM+tnJvtPvfFZ3xcN1ojx2i3uFe2buB7f+yD8M1GPcKj+41fa4HCPWqYShzr7NxNN06TKNzaXQNDyAmDqZbCEmvxgBAojOHZV+4STeyfkNDRLRX/tb1eYUAIqxeo6i0Ueff39UAYKxRWsqYtIV9fLY/4fd9goCmX5lq53mvyAH1AD4hYGRg0PpffmJo8/RZV5Q0S7uuKdsuhNC1Teh82zZpmn7kIx9R5bKL1eWuKsu6an2IUcq64giB42CHZaj+KgLALEmWdl0X2u6Tv+ITt4+Pd9vtK8dHzAzM0YcsSw8PDzebzZOnz6qqan0IITBw27YRhMhEDWdaw6GX70xc4mNfle7tt98uikIPuqqMAdArPhFR0zQ3btxQdxwNzWimJ5P1en14cKSIhnpsH/7wh4+Ojp49e7bZbpIsE5G2bQ8PlzpbNDlOnblbt2/oUVlpegCgEA8AQPxFyEEgS1/17/7a7/i//wEA+O6/80f/7n/4F378L/1DDr8IV/43p81uH3zdH/5fvPXtXzu7d5QdvZ+DDLPbRx/9rV//0d/69dXZ9vH/8HNf/Ic/9qN/6R+Fovmlv6vvfPM3f8383lF2eO2ubJ7c+fq37nz9W5/5o79t9+jy83/vRz77p/5O8XT1i/XTn/5D3/nGr/sqQPiq3/2tszuH3/vb/mRXdF8px3k0xlGj7xpsY2GRJLFammk0yzioauDe2SHGq3MmABgQ54xwIBRCkcgxRmC5efNmW9Xbzbr1XTbNGBiMMAYDAZjAUIwRRUJgaxNmKKqGQVyaibqyiHVZvVS0ymSmardWDGBs25Y5MIdq1wAApJamcxEZBXPU69PVrVuAWgPmMKpMAICya1klBZxTrWTvLwGAmcf0cx6yJxWwEOmrloGhJE2ZebFYaBaqVicTESKjaB0RtG0EgOl0qs6hgshEdrvdkrM3b94EgNA2unsCgNZ3QttT/1RA/OjoaDKZjEAqD+pDMOyGekt63NU8WSJKXH9oH+HLkWg8ctb0XYX2EFGvkGe54jupSRX0UanZkYmiRwYV0wCAsqqIaBQAgaHUXpIkyswdS4cpcVgHSJGys7MzNf5pmp6cnFxeXppB2OHo6Gi8Q1UU0U5g5kmaiYhqaMyWC8UOYow+dEhowIxdreObuFREzs/PNaigSZCjmqcM0VaVY1ItV/1pVVDV0RllUqLvJVOUW6rBAGVWxRgVlcYezGIi++DBAyJab1b6XHomskPlUmutsnGLojg4OFBAWV2FzWZDAn29xCEY0B+dejjb6XLw3qdkEEzg2PmuLXbL5XI+nzvnWHoN/dFVHvFrnUJVVU0ns8Vi8fjx47Ztk9Q9f/4cEfM8H9cLInrvQ2ARiYGZW72Z5XKu0D8SKigDAGAoghDh5WYdQrBIXdfpLh+EEyKFejfb7eHRESLWVTHCPUmSGeO6uhu3eBFZb9YhhAcPHsxms7Ozs7Ztm/blyaOxX6ZxOp1O00mMcb1eiyVE5CA61RX7s9YeHx9PJnODT1fn7wgwCTDD5cUKZktLuN1tu665cfNECzAGDtY6hZwWiwUiTiaT6DtmrrrAzMW2cM5RFOXCd63XLlLEtvFNlqb6SpJYZg6xl9xBRGtt4kxkdkQa2tGoEqJC/x0RKDFTozjr9VonpMKXYWCPAYD3fpJYANYnVeBMr2aGQ+sIOovELJsoDqAhAV3Cq9WFMWY+n2sYQKsEC7BesKv70rs69ER90d26axGx13Ru66Zpjo6O2raNwiLCIaqQtE4//S21Y2dnZ5vNpm3be/fuqe1SIHtUXBk/rOZI43M6BCGE2XyqsSUiiqFXSG+a5u7du2O935HqEWM8ODhI07QoCl3gQj21VkScc0Vdse/0BgZSDjx69GgEQ1TVWGFKY7TsRLTWsrBmtCwXB6NA8Bi50VnHfbGxfkcmooODA0t9Tz569OjJkyc3jo8m0zwMiufb7VbVjdQCp0kSvETvY4xi0LnUGMyyrCxrYyhJTddhCMF76QIAkLVumlvvYz5dWky2ZXX+bJXaWWJT3+lyZQDpz81AIgxjYbbIDFdMlPHkDiB6JCQDmtOgTnuWp2VZTvzkOsLQN2ttUawUFNawpfbAqD2loj2sFSkAeKi34VlGSAqI2uC99xZpvV5rGr3aXhzqCvTTG8CYHmvGQQeGEYjsqIiio1CWvavgvZ9MJhoHff78uW7cYahPUDe1hpdE2FqLg9JUPyuIiPvyDJ7jCG44ZzUTomkaO6Ts9HydPA8h5JMpk4QQwFjdJU8vz4IEEkqs21TbN26+vlttN+fPfNs1vnt+/rzsqrfeeiuwe37+/PDw0II1iG+++WbTNF/4whc2m03dNiHEO3fuqGxUmme+i2++9dZ6ve66LsSOORwdHWic4PXXX3/48OHDhw+Pj491812tL84vZpv17uzsDBHTuXvy5Im1djGdWmvn6byua5xjmqbUkgWhEEZ9KxydEhHWaMwYJoJBO/KFs/3YaJC80D11mHn9m7IXMBcRzz1FYjzk92imtQO94toX933ccSqL6FQZ0w9HaFsd38h7Ehyj0Rzu7conHrFaGsQ9xres6feqUaES9lztlzYcghIAoOWDeSiiODp/Y32MXgCLnCGAwXfRyac5aCKCLHEPTU6SxKrwSGQcSLtKGZMBCh/6ECD4hMgkSScS9OggACwQWVA8szHm+Ph4eXgYUGKM4KMqSgNACKzBJdWOGD0Yl2pZataVr0+k445DVFxl7ABAw/hEPcSTpImOd4Q+xOecC6Euiq2GTwHiGK1Kkkz9JnXOjDECMYSQmERH1lrr205BCmY+Pj7+zLf8ql/7a3/9JMsfP348n07VdRZC10vqmNdff/2HfuiHLi4utPSEQnyXl+u6rg/yQ6IuxigRFb54+QALjxvAeDxD7Eum6HCMvn6vBaBzG8dN/NqVX4yiDG0+vYZJEdS8+yEITSrBAaXIzeMvVM+KT3/y2818eVk0go6E2AeDgiheWJWwCFAg9rrbOLCw5UpuCfcW9QdJxAzvXquIePX4A5LOUats7/G1ZRDMIdkDLvs+1E7bR6hHE7EfIB0ntmh5NO7hQr0jGIzFCDcDKDCKzBH7aNn4fAgAhJZ6GxL3nwXJjneCw+tqqYYWVX8LB9ErXW77NgERlYk5XpkHLQhl6I8PNR7JXtrZ2rNqWuHKIF6BuVFkDMUD9abMGENwRQoWEYhX0WZGRcnHRJa+G80HxFYYmPcwixAiIpm9SIA+BQ3iFeOT6Pu4P0muByARkfZEkwBAsBe+QDB717+m6r5/NRlO0bCXDWMGia7x9f3PD0GW3lTK3hDDCJ0gjF5Uv7Ppx0hgmGxRlYauN8Q+l2FUae77XwBpbwSJelT+/SPOMprQ8c57JkHfbwDQF+nQwAeJCILECPr4OgjcI+EUbRcFHFoDodievfvuYZKKcBuDECpB7+LiIsb45ptvHh0dXazW6+3m9PySrAksTdeGwMqh9t4LGjTkm4aZyZjQdZFRRZPrun5w//5v+y2/9fL0eWxKjNx0ndZMm0xmbduWTXN6cX52uW29RzSBQxdDjDLmF4cYe83BAOq0nRzfZGb1NZ88eTKfzyeTSeqSEIK1vV+7XC5Vps3HYNHqh4PvaQgWnB5IlBahRfMUH/G+vXnzxDqqq7brulEOMst7SMX0FQVAyzF771er1cHh4UsH7itqH/tfftNv/nO/f/zz3/pz/0Fs/U/85e//hV/535RG9Ov+i3/nI9/9Tdb9/DpUkxuLt77ja+9/40fSg9kP/Yn/zy/dTc3vHX3X9/4f7nz6TfogYwoAANnRLDuaHX/8lQff+on/33f/l9uHL69k9RW13/czf/r4Q3fGP1//9Z/8nd/3J/7y179M4OWDm1obFmH1bQjV5ImAMSZNU8BeBEDbvk8OVy56FIERqEwRSRz7kLleMjJLU/3PYrHYbTdJlja+S5MpsgiKM+R9lKCFq0nP3mfnl6vdLptOTubz0HIXOgQERy/1nFhawC5EzUb31iEzOTaKiDVNo/xT771uR+qgKhCgzLtxW9EzkWI6Xde5oRSk6l2IIJH1Po4JFkmSALDKpFZVVVXNwEUCVX9WmObmzZtakyfLMmVPG4N6akAWBXR0W9/tdvP5PEnSNvgYY9u2dgjVA4AxxtrED2U2tfy4YqNjmqAGOKXH0FnxoJHlqpqhoyuiELkMqrijczKeWfTsre/q+XnULG58r/zLzMrG1Y+NO6+C40G0vJVpmqYoiiRJkqSX4n369GmMPs/zw8PDoij06+OxgpkPDg7cUGvxnXfeAYD5fM7M+rwjpdoYowqqCs+NmYvz+TzNMgWbFObDAfPVRBklnUQTdBroDRRFUdd127YKT2hat98rQqXTRqleOj10p1BIlEW6rjs9PTXGnNw4VnhLAWgF01X6QMWasiwLLCp8rLNOe2m32+n00JqoVVW1bRdCODw83AuQsLp5egBR4EPnzHQx1w5PksR7nkwmzqUaI5nP51qFr2t913UC7P2YLd73nlJ3jTFVVaVpqnLS6/Umy1IFNLMsUypuURQAbK0V6UmdCKSeoeKYOhaIOJ1OR/FxrTLHQ8XXumu7GCaTiUVEROfcdrfbbrd6CA3eD0ER0GHSr+s5IkmSg4MDLcajiivzyZTw5dZYq8rbPlk2qC9RhxC6FlOAINvttmm6GP1iOX/6/BTlrCyiteA7lojsYVOW0fIrr75y6+b84vKpNc77tm3rUbF9Op1bmzRNtdmuHZmua8AmeZ4RiDGma2rFkhQdBkNVVQBwnue6MJmZwSsuSUR17XUmqwgyADhnmTlyjCDOmmma1m0Yky0U/1osFqp+qw+rJBY1Mt77tq2ZWQ/IXdcVVanAdNu2Dt0oZEzBxxiZQ11Ha+1Y0GK73a5WuzTtI20i0ratD305vhACWmPRpmlaVw0ACPtsOtGKpjoTNGaj8ZjZbFa3jUT2AlVV6ZzRiXp8fMzMu91OWXrK/Y9D2aeeUj3cmEqCjIZUzTsAOOfGGpUAECT2KfUA2j+6ynQ4zFBiMQwV6nhIxeZB1bcsSwA2Ijo/nXMSgn5Xra6zzgwSJcb0+QTM7EOnN695HmN1UH2cg4MDndIiYkxP8gPEGGMMofNtnueL5VxJGDRQ1Jl5LOCpcyZJEoA+5BljJMIQlK5rYozet4CiZzkfWQ0mIccA09RGwd26Tdzc0oQjoDBAlJ5TpfEnIqERD0REus6y0k/2WwCJSk+pvUrTVE33dDZTibYX2ma72qZrVa9i5tb3EmSjVMBIJ7fYY2Ja+1pHZ4TydNCttacX54jGOccIXdc654xWCOzCeOpUY2ItiUjTNIA9OVd3Lu5T/K/IUl3XaQFG1WjWr6tSdo6gSLGqEdBQR5EGFr+yznHgEundeu8hCBEBq5KBSnwkROQ1uaRtHFowvXCZ935bl5vdepJNF/M5e75YnXOQO7fu5rP87oP79199xXt/fHQyq6dVVb322mvPn188ffr01q1b8/m8rpvPfvazT58+ffPNN4los9loCHMn5bbcfvHhF1er1UfffOvNN998+vSpunx5nqu2/nq91jgxIj58+PDdd9/Ved5ddHM6eO2117z3IrHuaucSzRsrisLiByAddoB9aUhGVgaYj1fU9xE10IptYgbIeE+TGwdgAgdGpL4+KNT0h3wY4A9g6RlaezDT/k3ug1MiY0mlqwP5iDvsozxwxZK7Arb2J+V42RGngIHl2p/5r+C4L4nHAejIGWO04gEAcIi6SHrnoOu9QzUEl+cXZEziTOrsJMvUCzHCii2hFxnKSjDrQcBa41jC6Cmq4xgGydixtwHAxMgCECMAAhEipM5liUUEZ1wIgSEa56wYQwgA0gXdgBFRU9LUBI/rIQ4pcjrQHCIRwQCR944z4nQ26VqvZm4ymUSQum4FMHg/XlOngUuMMbPJZAIARVG0bTOMF4TQWZeKAtNEIuw7r9skAfq204k6m80ODg7eeOONr/mar1kcTLfbddM0i9k8iiTOND6CxvlFiqL42q/92s9//vN/5S//VeccaoAOQL0TxUkRwfSx/Q9kr+/PRv3PPm64P4V6Fqd+bFCJHeeJ/sfQB51Or6PSzF1bC7c2tdL5xWTWVtV7P/uvHr/x+uuf/JrE2SCGGI3BGINQD0qREAgQgPI4r89nfGEy9wjZCwD09Q+8/0/Zw1X1yfa/i8iIIDwIc/fYX//z43Fo7MAXViIPBNV+Oev6vZ4eoUacmSNchaOkD3DSwK3ew+wA0yQBAObAfAW5aiePhFm9ln6HJSg1GFXCgKW/hz1e/7XBum64aODYkr0G8SPi3jQbeQRXFinKFWbaP9iQlwTcM9T7/sGrk//wlQGFJ4xKPkeE6595/xC/0EYrqn8aYxERhkJ2Y2/vYbt7V76qLfpiHoy6VhpSGI2wiEbl+k1Drrex04YPRyBkvlaE1gwCO3iVHAND3FE3sf6G7XAIGSeSDCgDy1Vsbxy+cUroK9a49w10HxqTHm6GEW7Wn9XzvN6Y+4Bqkk3bqkc11vkRUXLhoDStsb3+tlAAcAiL2XHmiwj088aa1JgIhnIrz588yqKfTfLO11XT7jbbqiw3l6sQwmw2+9jHPrbblbuyPl9vfAzbstASWEi6HZCi8By5i0HDn4J9TjcSdd7/mm/5loRwmecmd75ro+9EZJJlqUvOV6vTs7MmxLpt0dgQQ+uD9pEeVBjEe4/WELOK3An3wUidKq+88oqIrNfrxtq2bY+ODhSSVgxaEFJr27ad5NMsyzQyf35+nk8nBwcHMfaFv5umWixm3kflkihSYKxxiSEDs/lkDKzikKvrhrRQZr558+YySwB+oQzZy7ef+aJJl1cKwqvPPf4FXvPfnJbMsm//s//Bx/9Xn8Evieq+0LLj2a/6T37L9t2zH/8r/90vhUx+Msv+19//Jw4/fPfL/DxZuveNH/6d3/fH/h9f90e67UtOXF9++/3XsWZtZz/x7ld6HRaJgDywNEYzwwhZkrgkizGOiUjjuYAGPgq+z+tGRAFpg+/64FYbY3TOinBR7CSGxWLWNcu62LVtO0kT33XEQgLGuU4ktgGEDg6Pb967e+S7XVU2ofPobYpojeXUv0wihSyKlcjcdY1KDMNQCC50Hm0vfas5nQBK7/LqrnddqydMAKsH3ZFSMJw2SZlo6UA/BADFOHp6gUTlphnjDg76Mnpa704de/31yWRCRFVVEVlNZFRYBFEU2WRmPSfr9T1HhV0QiTlKn1001IN1To+CvcbuAOqpr57nudJgmVmhTE0lBADthNE5UWesqirftDJk7On1iYz3PoonIjLAzI7MCNA450zSowCKHSvoOe7LPGQojxoOIxlWibpa10tz23ULs0NdpjiEIRFxzPHXh91sNsb00sC63RtjDg8Pmfn58+fb7XY6nU5nc+UdW2vj4PWO6CQzK/KrFwSAqqqCj1rhTYGbONT301tS2Hc2m2lxGp1dep7VE5DOwzRN1+t1Qq5pmlSpANI/CBHlea4Y05h8TQJHR0dt8Ntdqz+nHajhAWU6j2jjYrHQNCA9N4lI27aCfQ9bazWzO0mS+XxeNrWI6FlMoXljnM4c7e2maZRga50hAQCMnfc4oHIDnTPP83v37nWtL8sySXqpFgWa9R6U2K5jkWVZ8P3pXpeGdiMoK7/12+12tVodn5w0bXt5eXnzxg2N8mrtPgU6dX7WdT2fz9frdVVVkzxXIrzO7RCCUC/oXNd1XdfZdKI0T9VgAQD2L88ka9u267xCt4hDIKHtiNChBQcqbpCmibW2bdvV5RZiMlvMV6c7ANd1ITVpufXnTy8//is+bEDOVk+ROMuSECKgyacTjXzEGLfrVZYl1pK1Sb+gDKJcjSk5q9CwQpPr3RY4GmMiRBngrREwGddFLwoMbK1lhg5Y39UzctM0s9ns+PjYe68CYjo9XGLNkD+n6NjlZq1Qr97bUFqtd8s993XnLter+XQ2GDrR0bl//46S+sdRXm+2agcQr1w4XRFN04wFS7fbrfe+aSqdFdpRIqJxI03y0xvWiIKG7nhQQuAhkVot2Gq1attgLS6XSxz0N9Rij04dM1d1tVwuLy8vCftqnLoGLy8vtSSmmgK9vrXWGdtUtYgYohCCLpzLy8vJZKKzrm3rLgaVhEqsyY1TDseotDN26VgXMYSggRYAqKvm+fPnWnokxlgX5eHhYeJ6UyMio/KGiDRtmzinwj7W2vl8rsl2ajb71AGE9XrdNM39+/e7rkuSPm5UlqU1Lvi42+2SJMmypOs6AHHOGOMoclU1Xddx11iTN7FDNhRTIidMHAIIijAgAzCBKKKgChvDMRwJKMg13hUAkCr0miusQLfIEEKMftNs7sBLKnnWddNCX1+3rCseSpISkho358zooiOLTuMkSRh7PFeXlXOJXGm6eqVXL5dLDaGlaYpouuDHdBzlx4gIGBohSgX0tZ/LslSd8ZHIrJNZdwccWJiJczrQotW7sAfHxqBvkmdd1/FQ+FF30hgjwBDNlTh6VtKjfrbrOs9BUXvnnI/BTVJHhkXKpnQm2Xmf2vTZ+ROD1mWOiHzwq2IlIkWz++F/+dmuwePj411ZXr77bp5Nbt269frrr9++fbdt2xgEhBYHy5/86Z9+9913791/ZbPbvvfee2+99dbHPvaxH/zBHyyK4vDwUBNn27aZTHJrjbUuz/PoQ1GVy+WSDc/p4PLyEtp4cLAAgMPDw4B+vVktFgur+xD22f0wRpLjUOx+3+0YG476CZqrj1f8+T6GBhB65aZxkl1BBoioavGwR1gGgBiDFqGiPbbjCGeM97CPXIzjASD7b+3DDTggO8YYa3vm6bWnIKKBZD26R1dH9z00DYf8wZduYP0tETatt9a2daP2y0sXQjc+SF2H7XY9m82sJfWDYajHaowjohiCMcShL+gxduCInoS+spYAiNbEGOer957sVT9w9NF7NiZJUuesFwgxABofAmVoLbEeIACRyHufOi3loTPh6mih9k4tGtCV/Ej0PcbdVyzE3r2w1vIgoCaEVqTrOsVi/IA4a1EIALBEs8UiSRK8daNs6s16p761iLg0Uw9Gt5z5dHbr1i31ldVpu3v37p07t5bL5Ww2Q5RHjx7du3fP+9bYhUtMHBIDWUSdhtdee+07v/M7/5v/5ntXF+vpZEZE1iY9PxSABFhPTR88vtZYHRQaaN36+oglXXU+M9CAjjHCHhjaszj7JfNB0+naXRARS+xiF4IQUuSwmEyr89Mf/+F/fnLvlfzkdhcJEJGSGLHlThAJSBm/+mij1KGiORqlHFfoOPlhD4DDF26FlU4p47JFREMORAaskcZL7XcODVk2++t9DImPq+yF1QdDNQkYEB81dmOgSETGIr8i/U30ijKDmYYBk2VmlD5NQQUQiOzoPA3/uSqq29srEsXJR6M0Yqhjv41Px0NeDIeodQD2jRXA/qYrvf7FVcaiHsD6ou19P5Bay6vOCYOhgz1zivtwM4uKaokIUQ+8jgwsIhS5MsijKfugIJogyhAzBIDQT2bet5DXn+66kBECXLfY/Twavh734PZx+fQfuL5ljL+mqaK8x3wfLz6MHY/ra3yxx6Cht2pCV7uJ/qs9FodAg/YMybVw6bggRrM8whAie9lYe+F9EUEE5gBjiG6Ikb6/xeD7Oj8hXDnTkLD0WzD2/wgjIMJop9T86qQHBME+vACRCDFNsFuvw259azlH34bOrza7rqm990JSVcXXfsOnjTFVU5+en202Gx95vdkyM6Bh5iCgPlbn4xjjjAJENgYJwuvd9o033uia6kf+xT//yOuvT/KsDm3XdYE5sbZt291u997jJ1XboUtEpPWh9R2hBQJmAAEVOzJgmtajNehBJMwW88uyLMvy9u3bJycndV3DQC0PHL33FxcXZE1RlTdv3tRJfrg8GNXZkiRREEEkahbh+fm5Bh4A2Fhs+swbUk/RDFKV4wpNkmQ6zWOMmls9n8+N+cXR2Q9Ntw83/3L78tvNr379E7/zV39FWLM2N0l/3X/xe37m//vPf4Hw7vsbWfr3fvg///Kx5rEdffju7/3sn/wLn/iD/3pSKsks+/d/9L88fPP2+9+SD7QxX6rp9GcGIWBWTw+MNWk26SnADMwSo8QoxiBz5HC1lew7Br39BKOkAU2+QcbNZoOIt2/f1oiwM/ZiVx3OZ9Fznk5iVQUWYS2rhCZxgtBGX3VlAB+iNwmhASQP/HJJVkH2MTAzCBty1hAOUe26rSyGrvOI6Mj4zouIcYna8Pl83jRGT5j6CMxsrRpwgQEQAQDn3G63U7FmGKz6ZDKx1koQ77268TToJCjxTXmOiiRut9uu6/Ik9b71vrdpXddB7Hlzav8PDg5ijFVVABlUieQQFasVEYUUXZYqdiASESVJel5zjMEYpyQyhepOTk4UrwkhKAbEg/JpiJ0qbCiF2e+RQlQGFxHPz8/13kaSkArm9k9qcQTF9N1R9BkR9bmcc0F6zEulh40xq9Vqvb7Usxoz97XFjFG0EdEgEqJoHTkekhr137qutatHQUgljqguhxKZlVclIiGEIJym6Ww2U7hBwSB9Ir24Js43davZooAypm/KEBLYT+0XESV8KfirjywiqrncNI1JCTUdzKCKYOiHda/RiyjmSwIXFxcmcYqlAvSghqafM7MmjCqMpRgcESn+rjzQyWxeFIXKhsQY9TG1M/V59QzVtm2SZLoitGIBABiyAMA+pHm+XC41ptI0TQRRvFvpn5vNpq6aPM9v377tvTeWVBZSqfqKee2RSalpGgUHB34l6eIqiiJxaRVKRVcPDw+zPFeSoAwnxL7UPJHi2io8spwvETH4GEJAoBgYCbLphIgYYb1e76py3NBjjF5g4eYvsxNgDCn00TYd+2CM2W631iYhhKapjo+PDw8Pp9Muy7ImtLFtlstlmizOn2+3VEFEYgNkJXS7dfPuFx4by8vZIbNXDjiSTCZ5jBwjp2maTSeTNCEidJY5dqGLTQAAAzTJc7RGRMqyVF6/RqSassqyLEldlmaaiKZq7MwcuQ8AYITO9wC9oreEZtSNRcQQwunpqR6TdehV0FmRR2cNCeSzKTnLzE3XIiIQBt/FGEHQkZnNZjr9JrOpLkkdJv338PBwPp9fXFyoGnJVVT50iKg5ZyOCXJYlCOpn0tSJxLqu8zz3vtWwimJzY0KDGkll1o9CRjAoF+krZVmqegMRpWl6cHBQlqVKXqhzrlzXvp6q9zHGsizbrplOp1rVQ1cQDSkaXReY+yiUUlM1OUAGth8ixuhDYO2QEIJzRuMiCncycwheL6sGxwxlVwCAGZj9CFjp8p/NZlVVhRAyl7APipWr/okxRhA4CmDP1x5txXjowOEgfHBw0ONphDdv3tTQSwhBkuiSiTEuTVNjnG7caZqqFqxzCsQj9YKlJs1nIUBdxLauEdKybBOTGJPEoByLXktAT6+aF8pXmfeCLCAivQJj/7p1VyqFmgCkI2st1WU11Lu+1rxvY+JDQIZe6agPehFqNEK1m5VRS9IXRbPWalqsDFHwGEUVq9XcqeHVgKieEfIkJ+rDbxon7m07s042DdoBgObBDPUGVEmmB+iSJDk+Ptb9SL+ip1dgcQMGPf47suPn87n3XqWfcIiwGmOQhbHHPRSJZWZrjIgkLtUnZebWB2utmzgfozEmz5NiVy6mM7Kmblsj/l/+9I+zD4vZ/PDw8GC5TKZOLC/m88Vi3nVdNpkQ4iTNurr52Z/6aTA0n81OT08nRXHz5u2qKSeTycc+9rGuqEYTfe/evdls9vjxI2Y+OTlReSgRfvr0aZqmb77xIWMMO3n8uWfr9TpB8+DBK65JHz9+XE4LNQsWBkbYSMUbj+7jFIE9lAT2zufjJ/fxhf3/7GM0+6iE/qmoPg9UCBFhfomXvI84DDfWvz7eiIjAUB1pvL19NPCFex5AlissbOiEK2hDXw8ccf+39y/yAUk6uhrHc2mM3hgcGG/9jVVFqcGx0DVZlrVVzcwyYqPMNk2arpYQKbWI6H0LIoYoDmUPjTEco5pR55xKuKpL5IkcGQEwRMjSRR9iQARCZBQAAsNJYmP0DOScI5PUbYMIzjnfdBrc6zqV3+iHTzFofS6V8+8BrMG3MEO15atZoeql1iTQp6WUZYksLOysGxMYjXF5no+6UYu40I1Kvbc0m63X67Ozs7ZuQggPXrl/+/ZtNR9p6lQ6DYZqGHVdk8Xtdqs+ogaUNMvGhwCarRbCbldyBP0MonCfTHFN/QCvCxDvNzXy46QaoUYYsvJxT1cE3oeIjfNnPJvxB5Ct8Dq0wcJJnp89P80gD110U9eJJ/IP3/65z/3kj73+K2y+ODE2jTEKWey8Vl/rgSkB3R4QDCIIyIiD6/28/w5VO/tq2veKtC8qyQwX7PsN9gzIVWfuLckBZ+w/PMKCY/CJ94Tn9hcv7GGCgHuIM18dcXGPjavAIA8F2fdXsQwhdDMk08lVcL5fRiI9KouMY3iz/6HrwzRav/F42Y8sgyhZXKgnGoNR/etB+rm/c9mD4LVoz3iRwX7Kvo0dJxUADFIPVz0/Up5FBEA0PjAQfvuxfr81foFK/8JM5P2ZMF7oGtd4L/tjr4f25hiNg4uIRAaRBoQXYACdr6jlA7I7rjJE1FQmHOLAAACg6KGMBHYRifHFaIcOtH5xtPAvdAIMEQu4ZuSvMcHHCTmu9/E/++OI11cBIoofJpbmmX8ArxyhH3o9xusBwxgzim/ICIXrJojQpxZdV2URQkAEQyEigRgfLp4+zjAmiGVT10WZGLup2qooVhcXr73x+quvvrrZbC5Xl+eXq82uKOuKiCIDQGyD16iMMDJz7LudeiTdJNHXs8X8G77x67vtbpG43NmmrkLo9FadS3dFeXp+6VnKttmVlY47C7JEEWQAg8hAUTA0npmRcbvb3bp160MfevML/+yfGmOWy6ViK8pFyrJMJB4cHS4PD/Tg8eTJE+2c89OzxWJxeHg4nU4RkUMEC3qYKcsdUd9FWZbFslREQJ1gXf46T5SnBgBKDCzLUhUkkyTxXf1Bi+SX2/8ELVlMfutf+4/ejzVf/Mzjd/7+j37ub362qzsiPHj95ke+6xs/+tu+8cXvC/ya/+vv+Af/u7/0i3U/ZOlD3/Hpz/yfftvxR16CNfd39bd+GAA+/J1f98a3f+r4oy/WmTz68N1/55/9yX/yPf/1O3/vR7980DlZZL/q//hdX/8Hv9NNkpd+oDr/16yOyAhCqCcuQGIUTREFQ0iYoFE4coikGpbe64t74nWj+Y1IZFKybF2KwJFC07XAodxtnLHTPAdGZxICYwRiy2RTK8II3nsfA1jopG182YY6koANkcQaTPOEPXQvu//tbsemTNPUkmWGaJAYvI9pmuaTxa7aGOOUg6TcVeZdnk+n0+nB0VHTZColp9beWgvQgwtd1yBeMWmUn6WVrPSoqXuBIUsAuMfaUTMOQKvVSiTOZrPpdLrb7RwZ55x0EkIgY6x1iGhnfQK4EHqOElFHpGvbPrcaMAxlQkY6lWKdui+MZO0sy6y1Co7ou4oJjkcM3VwQ0Tet5nSjHjSAx+1ydJNijCcnJyKifMyu65jDCJ0kSWISE/f0JUZQG3vU3ioVRkXXcI+qqTnpaZq6ofSQmnqlGTIrKSFp21pdPjvI/qpkwVjWXvfNpm671tdVM51N3nrrLUQstzslVAIAuf67zpm2haqqk6SXC1DMSxFnZ/tR0EOyAp16w7pZaGxgqGZWVFWh+7UZSt5dXl5mWTadTheLeQihahsdI2VVq1iB8k8VnAIAZ61zDog0qqr/5nmuPakoiWL0CkeOE0xE2rbVo02WZcp8HFG2uq7RGuf6GolZljBzmuaKjGgCeIzRGpemqTM0zigAMMbkeWat3e12CgWuVqvpZLbdbtW9zPIpEWnVNU0tVwgSBMeoeQhBZXO196bTqVbmdM5NJpNtsVWKdPA+DsoGAKAcTJ2lXdftdjuFdRRu0yiIIt3RR8KWiFStW5ekfqssy5vHJ/PFy+FmQhKJIQQSaLouy7LJZBI9RwEluqpcQ+2bXlrE2sQ5ACFC3wZjHQcxzoWGnz2+mExNkhyhNXXVVVXz4LX7aZJ771FAiyimLkEUSlJmVgla3wVjTDrJdUnOZjMNxVlrU+sSY4loOl0SUYweCB25LnbBxxC9WgANJzjn5rMFAileJoM2iBoKrWCkZRhhKP+ogaIYY2LsxcWFmmubOGY2hvRorNOsqCsRmU6nxycneZ5fnl9o6hgPTSMWuiqNJbUSOIReNI2jbduu9ev1GghV4gMRve+1yzXbQ9HhMBT9C3vFkKy1k8lEuQIwSgk5i4iKhWnvHR0dKR6i5OLZbBajMEPXeQUBiUyaZAik9UVFRMM/xpi29cyNnpPDIFs/hv3UXg0gVZemzhhq2zoEc3BwwEPWCCKmeTqZTM/Pz7uuy5J0NKG6fOq61CUAKGoVlZkuIeqd6GIc615qtq6KqquFUdhEhaG890KgZlMNwqbYZVl2fHy8WCxUeATJV1XBDIv5YZrmhJaICCHGqHBtFI5RSGg2mwHQBKeXF5vdakeQd01MrfM+oDBzGOlqIlHESF9da0jBZEWie7UDkh4IQroKPxuD1tosS+aLGTMT2clk+tK1uVjMV6Zs25aiUTswyOL3UL5OErWQmUsQsQ8fsnCvgtWnZeifqi0O0DCzTvgsy1ar1W69Ozg4UGvpnFMlDRUWV5uvRqyqqrrudEfTAIn3nsjOZplGcOu6VomtxWIx5sS0rV8sZjqL9G6dc1mWaXxOL4V9lCKMRHgAUM7T/hapZnE0p13XNbvtYrFo21pEcppUbQMEdejqrk2ta9swyXNMbSfeQyiaIsb4kbc+LK15/PjpbDY7OFxs1juWWJYlka12xSCk3uZJeu/evbqu29YT4quvvtp13e3btz/3uc8VRcEsd+7cvXv37qNHj9q23Wy2OgrPnz/Psuz47gkiPnjwYNWdHx8fxzU+ffrsrDg9uXEsIranTO3RY3mP3bMPefTIwgBJy8AS3z+Hj1/RSYOGAEij0y9gE2YQ3FCKwuikGmv2LzjCLnAFAVxDCeIVmta3fURABhhI0QwZtGIV74ArNtw+fIMvIAV99F6u4KGhvXSl9DriGp0zBouiVrszWjENU0cfTJZb6w4ODs6a1vvWICSJ9UM9WRpSmWgoSaVLNIQALArO8uA3J0lCZBHFDOGd/ukUzUcCARFGQBaOMRDZJEuJKAR2RiwZAAN8FQXSOeR91CDG/hiNbHciEoGROAkAKKBQlLoFSeLGxL0hsynAAB71O2uaTCaZc4YI2rZu2zb2TA2iXhooapkFY8yNG8fMIXUudQZFDKLEKETAXJdlYE5snw+oVVDUg8TBEQRCBnn8+HFd12SstRYHco6a8iRJkCMAcLyaGy+0GHl85HFK8KD5oF51CMEa9Vk7RAQhgL4M4jip5ApafcmvTCYwXVxLM8nyyY1798/Wpx1gFNiUhZkls8Rtm/pzP/5j2WT+6kdTN3cN+8jAoqXCBUgXDCGiBTOigSL9/SivRDk616b9sPquJjaA5oXoGQwAhLFX0hkuu8/aHr+7b0aGzQkBEIAU2B03pP2egYEvPCZJ6Mf0NRxkssGSiX15t3GRMrNufLAHFBKg6hLAIOagbVxraMiAEpyVunI1Xnao5szML8i4x0GD3loLMBbJJQAE1kp0V7R3gD5pYDQ+PNSdkL2sizH6pdrNSNeM59j2bgMA0RiKPsg+i3YvIwSuD+jw3f7fl8/CoQ3Zu6Ac6nHmjJfi63DndeN4RXkeFw72+TRXqLqylWkopYiIisrrB7zvg3b9oqPe5u9vEDCQpscbgyEaNPzcFSg8Dt/4MR1lVaagvVWxv6mZgZDOewR8HMJLIiIhXsU0eri/9zPGvfVLhLJwyFJXx0JnqbXWJX0Vb9B5TdTvvEJa81jGnYtUPzpEFBR2xmYGw3YTtpsFQl1sqqoqiuJisyqLoqzKJvhPfPITTdOUZVnX7ZhdS2StpS4GTf4QEdXRQkTWAQRFn7lpmq//+k9/6lOfOnv0nusCd13iqG25auqTk5MofHZx+ez8omq7Xd0YY30I3nsR5AHMH4EqBjHGtD4i4isPHug+6IbC0COTrixLRDk4OLh58yYiKm1HE+XqslJG1ehxnhwdvvfee865w8NDY8xu91xEiqIaJ4AyYvTKurXtHdVK71ulmKl88yRJAF6enPvL7Ze62Sz59j/z7yfza6zw5rL4W7/3zzz6xz/ZrK84y4//+5/9yb/2TyY3Fp/+3377N/+ff/tY1Tk/mX/Nf/ibPvc3P/vFf/Tjv1h39bV/4Dfc+fSb+6+IyOmPv/sDf+SvPPns281loS+++/0/kX3P7O6nP/Rt/9nvvvXVr+9//s7XvfErfs+3vvP3fvTL+Tk7yb7qd/3qr//D3/l+5PoX3saNODILAohEjsY4Roje74dmrzxhMER9dZ1909qfI8g565TZEL0XjsaY0HFZ1ol1E5cvpovz8DR6TpI0+q4zIIiefQM+GrGZYxtaKZOZqdsaKHj2xiRioC6Kl/ePdYc372hKnMU+JdmitE2pBOS6rkh6SKVnC0bfdd3mcsXISvsd1R7GfTZJEgAa2U+qVztqHyvQU9d15pI0TUHApT1k6ZwLgbfbLSLGCFrqLTE2Qn/aUmxLIQbPccw91y1DmwTJkxRZBGEUg9bhaNtmzNlXnHEEebuuYx/QmuVyvljMmqbpusZaa0wfdmWN+6Go+911jesL1TZ6ptBTveYdK8lURPI8Xyxm3nslduR5jtYoSK3blt6PYmp66pnP56bXUTXjXiwDu3Y+nyuDbD6fq2qzEgyNMSKsvxsCx9gq4KgERu0959KRcWmtPTo6AtBq6nGz3gpwnqTHx8ebzaaqKmcIUbbbtaIzi8Uixt4vDYMUoeIFbdPphq4wtOo8KGFQO7lt29PTU+eMJsUrpuacQ0wmk8nx8bHyrLuuy7LMJO7p06dZli2XSxFRuEHPKQoeJUniyNBQ20odQgWkFHJFRNVpVRha78oM1Sm1bGPAvnaE+qJ61CVntfKe5mKrQ8IDaW6xWKirGQNrLFkZrAAwygeLiBL3dC9WOREcQPNR3nSz2aRpash2rVeBaV0XTdN1XacK0SKixFgYHLM8zSeHE2ZmkbbpJpOJgNR1HXxECNY4BDo8OEqTTNnZOqtVJkK7RUSKokDEJDkeAzAjQaStm6p+uaFIkoQotm0LLGMPoxAZ8F3XNA0SkLMSpCx3SZqjsAU/n08vzAp6ogvEDqyjruq6rkFDr7x66+Tw5vnqtCxqnnAIAQBZYp7lEsRYF0LYbrfb7fZwALkUFgcUJBLmGBgAZvlssTjwbdfV0DQFIrrUcaTYRUcmSV2S2K6v19frZoigoRSgTZJEz9qr1aosS51yOnk0wqR6Ozor6q6f1dP5LDTNdDpRp7aXGsiwbTqdYBqHG/MS9MCiZkTjWN1AI9WjNwDotMnzHInSPLs3f6UoCjVoOGQnpGmqiQs68WIU770mOmiU6/LycrlclmWpuLn6wyrmm+c5AWqMYTjJ0shRVXwCAFQ61pGByNkkU+ukjp+u0DTNR/E65qA/PdLDlZQ9GnPlLvDAsRsLD/Z4aLRq3PI007WTJKlS/suy1BiMevJkeh0nEgBBlfW4vLwco3TT6RQM6WTW85Meh3GvzF0IofGd6hqVTW2Mqev6yZMnr7322q1btzabTeO3VVlHgfl8HgW6XUnWIIpByfK06xqtFqMMxq4Nm6J6/vgcoovCzOCsEZEQOs0IHLSY9bhHIqJKfuPRdUSfmHuITw/xmhyZZVlVFa+88uEsT5fL+Xw+nW8JYPf+tVlVdZu0LMGZRHt7Pp8DQBDWnowxxEG8qA0eYn/uaweNVhm4zAy4LXaCMJtMdS/Wfcp7P51OadLnlwyB2BiYB1mSnueu8obTaeacg8gkYIxJpjphRG2dztUYo05F7/vyhupLdEMlg4Ebyoj4+PFj55wmr2h4SQ0jM/sYRAQNjSQ83dQIjf6QMUbXOLBYY8qy1K5ofJcnmSWXLyYcoiAL85Ozp13dgEg2zY7nt01mhNg4yGfJxVkxP1hM0ryuZ9ZaA0g2fX76tG3bpmnOV5d56gLHyWRyeXkpIkmWpnlWluWjR49ERDNaTk5O7t2798477zx79mxxY/ngwYPLy8uYLZ49e9acha7rbr96+8bNk6PkpK8XPD7VCBLtI4wjlEBEMjCLx3dHz1L/HI95geN4aB9YYnH/4j3QoHgH90WxmKFnAu5lYeMem2w8wO/7x4AAKpp5nX02AOUIQ9rF+IzjB8bV8sLj988rA7Y+3Mv7sZ4XGg8kqaIoeFDDwCEUafoqJbjdbheLhTHUtk2WZYXvU4d0lTJz55se6R5yw40xsT+WY9u2yVBkea+fe5U0Y2w/LgiGTFQ/Nc28MCEJUuA4jqP3UQQkBiCUGIYHVyIeG4MjhXwfZNEeYOnzyuMgJSHYU6GNMSF4A32agIhMp1OInKbp5eXldDpVS6pR5SH6V+tyBQBw1jnnjM2SVPtNyz1lKskvMmIEai/yPHeDUt5sNqvr+uLi4oYqgmnUF4FBnHNPnjwpimI2m+s4GmPquh0TuFRFSxg/KB1VU+H3Z9H459VnIjCqs2i01i7tKfqrE4k9m9XIy5C+rgNH19jNLknWFyshE4XRuS5Q0bTpPMmcbTfrd3/6Jw+WR1meI5rAHtGAMBERko9eBBEMM6O5NnURUSQOira9lPC4q6lpG4d7vE/hPggjJLi3iGAv2DPe9vj6tStc8XmvSffu/8vXqVK6LqIi3AQgoKFsY5zrwb4+TxOA44BjjvezjyLpZfUgNK44ssaQQeo3eL1Z7QoA0MImvVMivYXR0TQ9lQmYQfsQ9/XiRRCAhjjNqNNNA/t+3/gMzB2Dg3sBhDFGjr2xGq2TXI92aChF1+moejaM3RXvDK7b3n2L98HtWvBPIzeANLh0VwhFj2VfJ5WP2hvjNKCBZKHn6NGe6/2MbkpflWIPJfeeYxwqYFxV3oP9fjCD7soLe5PsBU1H1FKGjDY7qNUDgAEUGmMDsD/z1dyphgmLmL240X6UZaBd642NAjL9SpHrS+mFpsuKhxKsI9wQgrE2GttZkzjniNCgBdNLlgMiGiJA7RYyGl6NDGIQoWt3z57OCMm3F7uVMAbfNruyKsrVevXRj370xs2bp8/Ozi9XeiZvmg7RCMBwsDQAEEOvWxr72pGCiBGkapskyw4PD588eVScX7x5906o6tDFtm2zSe4FTk9Pf+4L75RN2yH4yFoNnrX4JavcEFoyAND6DhE9R0AMHO/fv78tCrXJiibow6qzOLIOdS4dHx/naWaMWczmRVFsNpuzs7PFYlEUxaMnj588efKN3/iNiKhvKTSQZRNmTq2LnY+dd86xD5ZIRLq2M0Sh7ULbKIoxSbO2qg8PDxP3JZIAfrn90rav+j3f9uZ3fDpd5uMroen+X9/8Ry9+5uXK19XZ9gf/+F+vL8vf8Kd+7/giWfNv/cU/8Bd/5X/UbX+hGtwAsHjt5mu/9pMvvPhP/tO/8UN//L9+/4eby+Kdf/Bj7/yDH/uWP/7d3/x/+e79XfLD3/kNs1eOtl/8+csG2sz+mv/sd+VHL6fs/QIbDxq7AIBIbfDWufl8rqTUruuQbNM0eiTWD5PtE43VpLu9mmlEZFzSti1zKLbbw8PD0LVt47MsT60T5i54Zw1aw8iMDCQeOYLY3E2sOzg5RAM2TyIF4yB35IUSTLxvN5sCuXtpduFsNq/rGsGELooBGNRsm7otm9oldjKZhRAMoMIoiNg0TdvWTVO5LNWjpv6bJEkIrDCHc+lsNlO45MobiREAlCWqFvtweQAAKt+pErREVqRTX4WIiqIBgMwlY3LViL2q78p7csxDMBWNGQq2Cwr03KCiKNQHRkQ9LY8ZPDykyDgyiemrJyn3Qs2mOh6ImOc5sqh2hB004kaOiG6RSp3Z7XZKtt3tNgqRp2lKZIkIiZSVou6HogM3btwAgEePHm022yzLJrO5cgLU71JPTKFb/bkHDx5Ya1W2SJ2Eoig0sUbrhk0ms6apdGrpM8YYi6LqVVDrmohUklVTXkQkn2QKECuibdOk63rlB30lBF6v17odK+KjIEWWpwCgSgKKZ41cubZtV6tVkiTOGREpimI+n0+nU/1imjpm0OJ+yjiu61oIj46OrLWKTSipTUSUkKti0CigEQtN2dwX12Zm5e6pYuwIQLdtjWh0X9bBCt4rCqkSFiKiM1PXZtd1WspSZ9yoCi0iHXgi8m2jTrJiGSGEqizu3LmT5/lut1OJEsUfsRctzQBAQQcAUJBO8b6iKGezqbVWgyYAMJ1OjTGnp6d6zj06OtJZqstNERPF3zOXZC7x3ktkH9rgEvbBkWmruothXJ6r1SrP8/l8rr9eVVWIQSVEDg4OAGC73SZkyb9c/0p9+CzNxUQVb3XOzWczZVKTMVVdArAIuzRp29a3Pllmk+kkmyZtWSEhAjpDEtkYyyzbVVUd+XsP7maTya5YERhnoA2tTstIUlVN2ZXL5XK73SL0sS4RyfL08ePHiPjG6x/y3p8+PSWxzmSbTbk+X6/XO7IwnSZHx4vD4yVSRJTIQYFjRM7S6Xq9FUZrk87Xm81ms9mo0VONb+0xY8xkMuGh0KW1dixZaYxpmiYbCkfx0LIsU5UVY0xdldvtNk8zXbPqRG23W+3qqi7n87kC6KrZMrrcZVkCYlGUBwcHWrdwnCS6loui0Gxma60IangJ0TiXEvXqE8oR1mNa3TaIuFgsACD6QAONqW1bHdkQQlX1npteVhE9REzSnj6sfH9m3u3KyaQHway1dd3tP4IMqKVeWfkfIqKUQRw4sGqxfQwg0tR1lubOOQ0xKvWQmVXSRxGbEEKSOnVlDaCzfXZdz6ACSNN0s9lUbbNYLNxQYc+HzlqrAUsaBBJFJFJUskVVVfP5PIRwenram+IoiCbPk11ZhMCA7H3rnHWOqqoQEWMciDGYcCDf+M2zLcQEgCxaocjSGYscGZDhSkPyGiAge4jZeNzuj1cSrNEn4vl8fnBwcHx8OJ1Oj0+OiPqj+kvXZl1XkHKe5Ug9wKo/oZBIkiQAPeikexlYo4VSxQcdO2PMcrkMHKsqLhYLa62PQcMMzGyM7W+YUeehTpum67z3eZ4DiiYwhRCU/64+j4ReBwaZg6gevdEloAz3tm0BejGfruuYIU0TIhtCpx6UkqCJSGfFbrebZrm6AXbQ2VAHg0EQKcaeX4/QKxHFobAhAGQuBQBHgZm1hGDVNjHGxjTTfBKF8yxFAAYhwJ/46Z/K7RePlgfL5eHRyfHm7HRXbo8PT8BgnqddF2KMs9n01smtZ6enzrlFPk8yt90Ui/nBbluuVqujo6ObN2+fn5/HsqaeGuW222K7/dnlcvnGG2+u12vb1kVRrP26aarVezsis0khcjgwR3Y86u8DZ+Ooj8fsIfsbYMBTXjgz4/VmjFEZX0IaIZuhruW1i8OYbs8CIpobLiJ9tZK9o/77v6g/rMw7neJIBNwDCuOjjctjf6953wxXJZprd6hoxguf27vsy1vULAkRNeI0pNhfQTaIOvM2m41Ls7quu7Y1xnDQCgAhTdOurnTNICJHVqcHAMg4ABAEZg4x0kDFBwDrnNkTfKGhgp/+KKj3DwYJyTrDfb4wR1DgQIH1uNcD+8AZcxzT/HlgZcYYgQHx6pSCiJF7ZFyXK5k+6a9vJER0eHi4XC5VDCRN08Q5H32MMURvNNsD0ThnjDk+uqHqNsw8nU5vnpxst1vtw1EoTdkB+qIwz7O59sN6vVayA1wBjrDb7R49ftzbfQFVDi6KYrVa3bt/FwB0F/kSkJBaXYBrT417jHL9qu5qxu2XtexRsDAIs44vvv9XQoD/7ofe+5qvcR9+400A+Of/6B/+P7/nj/muSFzatjULoGArcrndzfLJAeL29Nnjtz83Pz60y2MBJjSEhDHqJNaJbYwDYIGBYUoEyBqrfOkjM/NYN1G/MopmjG2c0mPMCQaO83iZYRu64lmPn9T1PuKt42CN4ZOxb3sQ3PRxIC3MBnsCJvg+fHDcqEbjNiK24w3oZYnIEZo9bQ0RQe4ZQLJHzR5/egSLASBGGXk945XHhd//4nUpEtkT0Bix2r3+H7pXABFpuOz+o+0PgUhPFKa9h2XmwSiO8YCrSqrDSF1h6x/UXnhPRAhxn/y1P0zj/VzNmbE/99pICUe8Gm4RiXG/5KDIlWZ339RdVviDVC/s+mzhq8Ak7N/J/rwa151245gx10+JvRk1ztV+HPdluxHtno/1JSzG/m3I3p8v+dgwdkpN6rM4x5AJQ2Sta2FRcx5V7Uv3F2sQMTCHEAJ7MOScsyLb8zOoGhu5Knetby8vNhyk2O226/VkOvvU13x1UZVReLPZPHn8tBX2MYQQfF96wWDP3ZOmbZjBx0jWBB88x+1296GPfPzmzZPFYnFxdn6Yp8LRGizLipkJTVFW211ps7xYb7dNE5QVjySqDkv99urjoFduKITQ+Xjr1u079+49fvy4rtvxkD/OW+dcjF5rAc1ms+gDARpjNtt11/rZbHZycvLKK68AQNs1T548yfI0SR0RXV5eKslCOQsiPa1PbZQuBI1r6lHh4OBQP0lEt27dEpG6bl6e/vfL7Ze4HX/8/jf84e/Mjmb7L/6TP/bXPwhrHtuP/oV/+NW//zecfPz++Mrywclv+tO/7+//7//SL1zE+fanXid3reznD/+Zv/dSrHm//eAf/+uze8ef+t/8+vEVX9TTGwc/D9xM9Oq3fvxTv+832PRFAQ0OXDxdLe4ff2V3f72JCA9BPkJsvc/y7MbNm0k+GfP3aSj8NUJmSlySvcjuuDOKiDNS+Xq73RJHS0YrwqUuMy6PvvXKnZwkTVs3VXl8fHywnAIJWUsOkszVofFYLZaLsi42xdoYA4S+axAM+PhSuLkuK0y8MYwo3reqltA0DSLWdR2jPzw8VJKsgauEWQAIIUiHMUYF4EIIPgYEci4FAO/9brdTYhEO/NAxRwoHyQjlVYUQSEhE2tbH2Ch/EIYNqGka9kGhTABqW58kVhXkNO6vuLDsFWvhQVGBCGNkgDjWvyKk+Xwuw5mf+4he1AOtns8VYBqHTy+lY9S2LQ3hc/WoF4uFiDjnlsvDEMLl5aVeTTHQzWZjLS0WC2XUxiieIwUlbdQiovoMAOCcq+v68PBwMplsNpumaRbTWYxCZKuq6bpmNpspU1s7J8aoP6Hi19baNM1OT09HbEhE0jRPU6fbgYhkWWZtst1uByUQb0gUstenCNEzcoxRQS4cjkvGGNW7sDYZTxPq+esg6kTVD4/QmIKzNMhSJ0l/ytvtdpoig4hN0zRNp3zG6XRa7QpEJGe7rjs/Px/HSBULDw4ONpuNMtPLssI+lzOqWIEqe+KgkXJ4eKic5SSxIrzZbFQvRYdbBzQZuDgiogM3P1jqNVVeIIQuz3NlWCpjFBGzLAPwRVHMFzP2oa5rpS2HoW23WyUUyyDUMIY3qqo6Ozszg3Y5DAnj+gHYk9BVUu35+eV8Pp1MJvotEjh79vz4+BhZmqbWaXB8cKjf0pl/cXGhY5TnedV2ziUHB8vJZLJer7fbrU4b9fOVfqujQALIggaVq/H+Fpnrup7nfc0xLd54cXExn8+Pj4+3u11Vl3oPZA1HYBa0yOyJEBBEorAlYiICImDoqvbJw1MimsydobSqKkQ5Pz9PkqwqayJryCmZ9/DwEAEVf8yybD4/cM5tt/78/Pz2jdvT6dySq4v29OlltSYQ4BZ2ddc1F8a4o+P5entR1bt8lmt3bTabGCXP5ogRETWLa71ej/WQR0bFer3WqaIWBgAMIDrnvbdkptOpMX1JOu1wh5Zyq3LSWs6uLqtRgGW1WimxGqAXDNE8MwBQyfgRh42BY84KuSr8qo5cmqbOXInbzmYz59Kqqtq2HXJHeisXY7SJEwClTqt+iwYkYoxKfd3tep5sjIIYVWDTWtuH7gDSNNlH22OMSZJNpz2IrA/Ig9SJbnAx9oofqoCk03JEhNW0MrNx1iYOI3EMi8WibVuNHwCAYg56NY359WkH2Mu1zWazYrMNXdSoHg5nK90piEjXnTaNrEyn0/EA1Q4FSNRO+kF2X8ltdeutSWKQXbcDgDRNXEIAQYSMMc4keT5va66r0DTh9PnGthlES0QMPNabEfAcWVUPlbupANpICdVu3z+AExEgq7OdZUmapicnJ3meMnOI/vLyXBne9LQ5hpc41IeHB91M2q4jRO1hPR0olHxxceF9e+vWLY1baMd65hiDG+rrqkmv2ybGoHEFHfrhABiZgYjaplU1DEXwNWNDbb6IRPY08M+SJDGAYch/giH/Q9eXhgMRUWWg1UgOnKqo25xG48IgdNNvKNYp6CwDgTLG2AWfpqnmZxtju65LXa8zzoOAkjHGJo4VgFK0AVCAuEdKeMeFjoVzzjiDiGliog9n69PT1dmm2HzyE588OjosNqV1VPu2rssYpaoqAPqVX/VVZVmenJycry/Oz8+1c5xzd+/e1T3Lez+ZTtXrK8tSI3y6ih8+fJhl2eJo8fTp49cevHlwcPhPfvYHO9+a1l2xLPfnygtjr2dO2YOWcA8g2wdN3g86jA8PcE3z4v0XeeGtF1CM/ZscQWFEjNcx6x6huc427dnJ/cf2n0tfJMTxqUc06kXysohcv0nzMswaAPpaZLq5GuOMweBDj62I+IGnDAB1Xc8WyyzLyt0G5YpRnud5W5XWWgkxxkiD0lmSJHGgXrJGCBAV1kREMkZErOl5bsYYXVVoHYlXGMILMKHOzi6EGKMIJsYSaZWkKHhFeByHYPgzDlbm6sGHNdCN00NpC/qnrihhICJG1YPmLE2dtQp/Z1mapmmMAVjiQDUdwpjWGBPZr9YXSMLMWZ6E0DlnvNfcBGVe93lhAJCmqXNmuVhoF61WK82S6PFQJVkzXl6ure2LEmjpkuHgRACALJ7DC6N/rQ3M2QEiVA4pvX8+M3Psri41EoF1y1+v17pzj3l8L7QYQ1G1z549Ldebv/Zn/1zbdoaMI2eoDV51zqVqu/lkjhIzwmcP37n1xoNl4oydIA55A+rgAivnUiMxWmJMHwIABMRcySlEZUxcAXaMgFfpC/rsNHBFeZiQ+mG1sHuL5RodXkQQeeyr8QZeuLgMdYf2O7OfVCNqOWTxAEAQJtyno74g5jDA2XI1LvvmTp9CixJoybV+Bg4ZeTpeo6HHQVli3+KNAXDZQzbHHUL2zJRcB15fnFxXgOSVzgNdD5iN6+vFztm3e4QAJAAMooVxpY8pXtFvx0eQXgf/5W34IoiIsyaEAHwNXNgfO+Rr+SsAV3+Ol9q/+aELRxL6FUEex4wSHXAiYxBgKII3AN/7fah7jexh+uNv8VCY+/3PPnrGV0/aF+Ggcar3N0yCcq1A6Avb5f5Wdf1jwMPchr2QwEsb7lUcfeGHpD+c9wHIJEkwSWSPZN2GFhENEQpiYN+UodjODbW7uizLzW63q3bFqqyLsq6qX/Utn7l5+/bDhw8fPXpYlmUUbttWq/C16sa5fuvvgk+SpKxbsiZEdll6/vzZvVfuffM3f7P3rUVu22o5PxGRtmurphZDIlLU1dlqvSurpvMs4LswSPL08XbcS+w1xtRda5ytdsWnP/zhw+OjXVl0XYdotBDKdrsVERVlVipNWZa+7VQ7dbNdt23LUc7Pz5cHi2pVpmn6xhtvvPbaa1VTX1xcPH7ySMk1IYTJZKbJ0W07smOEuZd01+PQcjnnITlJ96amafIvWSX4l9svYYs8v3+0/0K7Lj77Z//ez/u90HR/9/f/+d/9g9+zt4rp9qc/FJqXav9+Ze3jv+Mz+3/Wl+XP/I1/+uV88Wf/5mc/9t3flC56YZD8eP7KN3/k6Wc//6W+w+xm+f3PfMxN0xfe+R//wt9/49f/yq/gvl/WNJqmZrcLfkSL2uCNcYojxC4oFoZ90Zug+yYNxZHGjVtPd7v1qqoqa5P16mK73iRJIgjexy748/NTl9AkdxG9m9ksSWc3JsnhLMYYJAhyGYoInjm2gaqu8KGtap8kyXQyZ2YfPrBopyKn6kwmiW26NrAnoi60HOLl5aVSxmQgySrRj4jIWaWFVk3tvU+EaQjQylDBTIbIt4JoI9lWO+Hs7EyNdhv8ZrMbC9Mxs6bNilhrbey82j1njDMWgBBN13WalRWHhEVEjFGYObXODmLKSZKo9Kc+Kw46p2OEUo/cPWmxrBDRIklf/egqTarPOo99JcORsqrkO+/95eW5Mf3rerDvum6xmE0mEwDY7XZd1yVJpuEWfRwVTFitVioirLnnNFR7HoU1l8tlCFOltsUYq6qaTCbvvfeeoqKTyUyddlUAuHv3rnL6+hNQlBD8CKyoPsBI+92st0pLhD0KlLpnz58/t2lyeLjkoVVVlaYiIiMmBQAhhN1up4AXDCliKlGimdEqVqA1svTPoihGOqQGIbLsSGFo9kGRVkWFYMinVnBTKfD6uoIXqrU9At/qthljjo6OlKesm6BOv67rJpN+diGianTkSZ/0efPmTc1/0liLXi1JNHTUgyMKkZdl2bVe4TObJsujw9X5BTOfnJz4oXbR4eGhQiFjLEGxb3WJFfBtmsZQIiJJYlVUQUHDtmtcMivK3fnZxfHx4eHhoT6F994iaf+MVNPpNNe4RV3Xt2/fTtP0vffeAwBCnOT5bLnYbrer1UrzDEZkR4FvPYwAQFvVvQnqws304APMneCQyql9uNvt2qbebDbb7XZ5cJAkyWqzSlN3cnirdT5JUt+GxNmbt47WZyUAowFDwBK50+zppNq2Tx6eLo+m84O02JVgZTqdt21rjbEmQcSua6qqci7xbaezpaoqWuGDBw+Ukbrb7VKXtZU/fXparQDBIiLHFi22hbz3hadZlrz+6pvvPvx8CD6bZsa4qqy9j/1ZzJB27DhDRGQ+n+swwZB7rcEbJeZXbaPU8jGNTOePs0kIwQKISNM0+XSyWCyyJFVwTTEmHTVFURWDa5oGgdIkCzGuLtdaXY2ZE+tooNgrAGf3imQYYw4PD7Ms22x2+lbTNBcXF/fu3ZtOp0+fP7GuF4dRBXP9ITMIISqrerVaqWqzMVZ/VNea0sDruu667uBgYYYS3MxgDGh1UNW21rKfZsj45yGNQENHsseh4YE1qPEYh71Lr9PeWvvaa6/tdru6rpXrqm8hygjBj/J6IQQtDaczeb9a5vHx8fhbSkXXM6luN3qTmmgiIhcXF4vFQi3nGK+q2zCdpsZaBxhjCLEDYOdM29RJkhJZC65o6ovTTQwEwXk/VgLseWnCkYUFNG+Vek3W8cAOHhAQrnnFQiiEzrjJZLJYzKbTaZqmh4dLRERLxtoIsW3KLEvm10P1Y2vbtqQKsN+MVM5IqFdWJYI0zZX+iGisTdI0JWovLy91Kx/JjjAgEmOEQBnEIYQQvARI02xMW6nblrwPQ5UvZo7cqxLVdZ0nKSNqoE4kakStPDsty4qGbGNr7T7zVgcuhKBRQxEJoRslqrqu2263ibHT6VS9EQ3qj0e/GCIzZ1mmiS+IaAAhssSoot7AciVOSwYBjbliuakRCCFkSWqdUbw4dYn33rf++dmz9x4fTNLJbDkPXZjMU7UM7GNdt9vt+u7dV37mZ36m414WeDqdqtG4vLzMskmaikReLg8QUfisiIWqbRzdOfz4x4+fPXs2mac3bnzyzVsfXa3Wx8fHArw731neI469f9Tff6jeP8nvM3/V6NBQNi2EMIhjyICwXDuYD2nj++wzgsFz7Wfy3g3sExgVIOr/3HMprp7FXNUDfeFBxl8cXrn2yT0cxACgiKruXl0G9vCdl64TADDWASTqzezfs72uOaCbd1EUk8lkYy2HmGaZLgmSvhoJCSRJ0tYNoKi8fee79w9WCEEz81kCIomAxnzUU0mMMcZEFu+7iChg2bfWJr63WYSIyUAqH8W4Za/BVSFmJjJAPYXQGBO6frqbodSyxvH8oPTHzGTQkHFEmkHJQyqftTbGQANfRgbGqDEGBg819ql8gQg09Uwtsjo91CsSoLWkDlCa9flBEHmSZrvdTg2HiCRZ6py7uLh48uQJWaNy3oNPHzVqGgZp7w8aXLieCjCIGQmzV9ecmYe5iQAgA7gpIjIgs13XPX/+vCiKw8PDGzdu0AdAGEYgNO3q8uL0C++mWeoFhGOIwYAxzgibwAyMZdPmRXFwcLAtt48+/zlx7vDuq8YlJOS9/iKMQrfaqwIYYwDYS1a4BkLqEkAD6FVRRBCQ91bfVa1euQ6xjR8YVuWL02lcrUO/XdNlfv/K2luSPVLcxxth7OSrb+EQ99Ij4f6lmHmAm2mEAfe/FWOMMahMuh3qAtuhbAXtKUorJD1+SzM/hgUi40zehxTHR0aUfY3s/afbu9u+6imMNeWGCUl7dKf3TxjRoG1/wUFNWLF7AJB92LfvH61QxB9AsdcrjXeIg0ilkklHxwv2yNrU32+fBkGD/tI4ynydLa7Trn92ZICRDy6IyEMlxGFuIECv5DJOJ7g+Z0aY+AWrrv/q0euFh5W9aMGIQUcffIxCfS5e/3REqCUg92byi9Psijz+YoXF/VXw0r6+mmPXoxfjf3wPpnOMkT1EH8ZzIwBba1PrYvQQg7XWEjbbtQneEbYs5+fnVeh2RVU3dVmWr7zyyic+8Yn1er1arZ6fXcCQQ9OF3gyqro6IsCARlXVrnI0sQcLF+dmde/d/83d8x3q9rsvdYjJZTKaxazvE1nvjHBrbNO1qsy2adlNWTQimT/RWufcrRRedzMpYN8ZUdX10dHT//v3dbvfOF9/jfr9wmrmsJJosywDEWsuhLy0wmeadb40xiLzdVbJmREyS5OnTpwCQTycikiRJsSu32+10OteNwznnfTu6IsxB7XnXdVVVKG1nFH3WwxVuflm4+X+elixyX7ZucoW0ft9//FdC8WUJYjz6oZ9+/i+/eHtPMZl9sIntupcHer/MNrtzcPfr39p/5d0f+In3/vFPfznfffiP/9X6nee3PnV1S69+21d99v/2d770tz7/tz/7F//pT/++H/uv5q8cA0C7rX/ub/0P3/+f/NWubB985uNf+RNcayKiRQL67cAQIO52uwiSpmlklUcLMfq2bdu27g2duZKfgoFgOPLXDhbTG8dHIhJFkiSNwsFzmmd1V4mVyeHk+GiZZjjJHFJE4c50XexC9ILchcY4ApEnz59qgr9zThgVkkuS7KUhuzxNonUikQitNU1TNV2reY/z+dSSQ0Q9jjKz5rEqnY2cNaGPx89mM4XPxojj+DEFa/Q8omnOI7Q9om9EFLtYlIUKRCqyMASeOXMJuD6lWiLEGCHi4eEhIj49fa5mvAvekhthfXVImqYhND506gNnWYYoEeSFEyYNZG3d5wZaNI2ANQy211qbZm5MjcchIX0EiEV6alocfhYAAQAASURBVKR+N8sSGaSHtRvrrjVRq3sJDepGY0xXRPxQvEs7NgRummY6nSZJ0nWNnu2Zua5rdZmm02lZ9lXsAECl9mQQn9V64GmaLhYzBc9Fop4L9LdG6JyZjSWLVrjHblQLNc+nIqL4Wi/wbZMRTVaISvOm1cPRmTyCznpYaJqKh0ikiGgCu97qer1WpH4ymem473Y7MDRix6A0lxCSJDk7O0vTdDKZVFWVuWQ2m+UQAaAoqiRJ5vO5Yk/T6XS9XitHMkls23Y3btzw3q9WK8X0x3M3D/IU3vvZbNaFMMqkKP7ifZskCWJPPlBnKYRwfn5+fHwM2D8vOQuG2uC1sNtIaB37oY9VoADAcrlUfDDPc2FCxKoqyrLU/lEFAB3oJHVplsggrth1HQNOJxNAVBnTEEJV1WPwQ6vD6YmyKIry9PTg+EgRJd3fRzGZpmmsM/kk06SlxPTyaAwS48uP6kahOt9jfHmeHx8fbzfroiiLskyzTDXE83xijHEOvPfPnz+bT+Z5OgeCEENqssCtIYcIgGjR+Si7bcPMItFlWfT18uigrmtjXODIEUhMVdWpS5Ik0fp4CvI2TbNYLIzQZlUkZnJxutpcegAgocQlXij4lpyJXbg43T548OD48GbdFmmWFHWVZdl06uqqF1hQkq9Cunqans1mVVWNTHl1XFUKY5rlJKAH6rIsmfn48CjPJoa6PEm7rquqikGIyLddjNGQVYOQ5/nIsXXOSSe+CzEwABrbS4qrxDkMBdAIMMlzXel6Kvfe73alJbNYHITAX/jCu4mxx8fHWoEqhKDQLZEdmb/6RMoVmEwmlozSXVW5SESMcSKipljtnnay4oPqzIuIVroal+3FxYXmsVlLI7lY/WERUXVpnflqOXUv0IhjLzo3YIjK+J7PFhprYWaiXipBLScz37hxQ4nSdVOtVisiQqC2bcdkFEYAgDTphc51OSRZii0CAAI5awDAOZXvb7uuOz4+VkkfNfiKZszzZZq4EAJLFIjGoAh0bWvIGXG7VXVabMsilEWQYLyPmUxEYpQAINAHH/sdra/mLr2Q9L4OhmgNtYGmY4gQxbgEjRm2AK9lurvoJ1M16ey9B3h5zLisa04ZCUQ4yTNjbd31E0mjld5HGFggarTTNF0ul/rUYShMKgiqLq0Dbanfo9M0zZwaNNaat4jYea+1wbWOqzHG2RRJYoyh7eqo1bmMc067RWn4Oqxqo/TEpDtgHOSeYAgxxhjbto/8DV0KukA0XKpbtprlkf8UOq8GE+IVsTIxlqxF7GVYEFHHAAYEbx8v9TFEDgCgSyZ2fr6Y+9b/9Od/hoRuHN989d6rJ7du+HjmyO02RRvahw/fLYri2bMnk+X08PBQBUB2u93Tp09fffXVO3fuXl5eWjJnZ2cxxqOjo+l0OlbLVPmRotgCTJqmefr0qXMOCe7du2cHlYwrbU1tI+wLg1gtDFw2uH6872EFAbBXaIgMKdIhXKXV7+NN2h0DEKBHca2p2o0b8z4YNJ72h+v098l70p/jzb9wh3qbI7y496RXz7L/W+MrIgLjr1+/3AfhBQAgzDHGrvPGGEySGPtEtqsvisrhkwgWRXF0dJBPp02xU+uWWKP6Ysw9ZxMRAXrw6GrDGAiQo5NnLFpMnLGq862/NZtOiSghIyFGZmMtJYmPQeRaVmAQIDKIiGQ1aWLs0vG2ecz338MQceAF6zwTBLsnLDvOIl08WZoTovq1zNEY07b92gAAzQXrn3cf3yEyBo0xd+7cCT7keY4Dp1L3LXWOsyyLIKH9/7P351G3bdddGDjnXGvt5nRff5vXS0+9ZMnCwhI2ZRuCbdzhtgwYksIQQyrGJEVwGBmBjEpXGakqCEVIIA4FjAoFVRAntDbNANMay7iRkZBsSU+vu/fdd+/XnmZ3q5mz/ph773O+++6VntyQjJHaQ+Ppu+fss5vVzLXmb/7mb8bT5f08z+fzubU2tN0Iiomgtfbs7Oz09LTfbGGfDVdV1dXVlb5pSsnmyjh+XKnAUap1qxWgwP0weLZxBTLb8jLjiDTG3Lx5U0OXMcbHBS4QKQVu6u7o5Pi9H/zgi5/7eTTG2kzWTUjsbK63Wq5WhTFXVxfs3Ouvvrh34/jk5i00TsAmAQCjytFO48NgRCTyqKKOu128HcMiBlBATD/L+gkj1x5v6CCdIywIkOLDaNrovu5MtGvgIOxQjMfLjvMXt0At6twZjn5D0NuBazVFZTBc2wsOv0XFMQ1Agu0YBlJYEw06pY72K+rgSOvepa8kG9NIFiCiPvS2c7vxxbcptGgV4sW+POo2wIADRA7XrVD/5IwgnIgRERBIA2kIPIyarbFKLCKJkwaccEfiGYZIEm553/rYadQdelzMA3bJtobYe8Q+yjc+wBD8U6C379YxjKTla1K/IvSOq+YE6G/7dYH6KswiwrxTQPJhsREZFSfGH+8OyN0lYHdUyEDuGBHhN3bZQ4NWJ/XY17vfiohzDk227TgWZk7Cb1wiZdhb7AzRR7c29eU1tllEuz8UkSSRjAUWADAGRTh0LRHpnokIhEFiKjJnEdvVOi2X0NZny6vUNSGEy6vL1ndN1+WT8tf+2l/rjK3W67OLSyCsqnZdV13wIQQWlWYGrfTEDFEYDQGAT7H1XTGZfe3Xf93xjZPVaiWJ6/Xq4PBImLsYQwjMYEl8Fy/Or6qmbmMw1sbIJJRUyQdAY5bMwCq+lDkRaX23qaq3v/s9n/3cC4nAey+Jp+Uk+pCCVy9XeSiTSdF1HQEuFgtEVOu9t7enUV5lVWg4M4QwW8yZeTabVZt6f39fpN/eeB+ds2NcBFF1n0QDlsy8v78/rqT7+/vGmM3rF4+bJju9SM9/05e969s/bMts/do5+1gczrNJVp+vf/ZP/Z0vKP7wBY/ixv5X/UffdfDcDTvJ7n70swCw/5Ybseruf+Llj/8P/6g9W/0Sr3/87ie/9Pd8fXk8D5u2vdwYZ+dPHoUm/Pz//M9e+Js/A8wAcPD220dvv42OXv6xT/7SJSne1FO956nJyWL8Z322eu2jn3nzP/+FH/6JXbh5crJXHMz8m0OrH30QveVrP7B46pp+xc//pTdFbQYAv2lf+8nP7sLNNz7wlsnxvD57ROWc3aO92PzNf/O/+cgf+LZQ+5/4v//VV//xJwEgW0w+/6/e3LFNBEFCMuaJJ55YLBY+xbquVWbNmkyVYRVARESyJoRwdHQEAAoKAPQVp51ze/Miz/OiyIiIQUB125BtnuV5Rk5i7IR90667rk2hw9wxsJhkrbV5qe5r1TZ5bkVAuMdeRZDl0duzcbFWq940TRLWTaO11rlcRHzbl+OuuxZZrLVgemLy3t5eEpahWhoKKDA9mUwmkwkNCYhKiRo3HmlQ5IA+ZzafTt1kPluv14r+qBNrrXUuI+mlmauqGmGL2Jf7JiKb5TkihhCi9yqYK7FfLq2zgKKN0LatSEK7rQmsL4W9ZAQzp/mk1EfVJ1TcRzN5FbPr6kazsNVLR2t80gQ4FAABEQBOUTVzEWUkfOiNLPZIt4YflB2pL+ucG8uMaxCCiMoyN4PGtJ6gL65gPTOfnp7meam5yXt7e85mbdMJsNYq7J3tLEPU0oNJPSmlOk4mk+CjZjSKiBWTUipcpsiytTZwWq1WRKCsc4X5dIlPQ5KouhUjaX10NPQttLPCUJAqxqjyC4pEK9apye/GuCzLxNgYIzmrkLeCgLpIpZSUMlYURVmWyYe2bau2Ojw8nM0mRBa0GNpQw1zhNg2B6APo047CCEVR5HluAPXidV13MSh0DkNeo8IoWeZ0hg5xZbh16xZqremUtOX1D8XCeBBsVO1mXTG991nulDCoL87MID3blIiyLIspKPGobVtmVlxeq0E2TeOcy40lIh+C4kHHx8dd1z3zzDNE9Oqrr242m5OTk5SSZoIqDjjq1eiA1wFmrQWUs7Oztu0ODw/MIKNnDG2Wj7aoxtqUmrqqtF/6UoSSJtPpfLEvkrLM3bx5M4SwWm5iTPWmyvN8Nptkttjbz67OfOCYWaPFbyQyuSx3RZLom7C8rJ58+mYCu7rcLA4Wq81a9UkUYzWolJcUYywnhYq3+KY1lO3vH/qG16sWESCBIbJk0EJso0ETWe7fufyp9HO3njxqvUc0FkyQFEJHBgTCYENI9zA6LKuqUlKwDHkYakycc2peXJEXReHWayDcJcpoNpiCZWo2Q6iVH9o0NQCklGazmSrbjIrMSpXTEIUBtMbi6EOJnUwmZVkeHx9XVXNwcPDgwYOuaa219+/fz/N8bzZHxIvTM7Q9Ss7Mxhod8GYoDBaG6tD5dKbC33pHPWEgL/Pog1hrZ9OFcy6mtuu6tvXaMqqZpnknitJqcIIGIn9KYgxqe47emQy653rllNJkMtnb27u6WrEEJXovl0vtbmtt1wUY5Ke9x/l8rpB00zTlpEfAdbo1sdFqeKMl13F+cHAw31u8+uqrbd1om+szEJrLq0tmnkymTd02dZvlzg5Srs65yXSqEWIAASBnHCK2vrWUNZu0vGqWF7XvBJMVEQID0KOc6tPJli4zYM0PsdJ2Dh74p+rBhRASh7rZzMqJMagBY1uYsizLMt/bmwuwCY/OMMszpzOaAfuWaRoNHmBfnciN5H0RUcHVLMt0PUK7LYrAkHS9896P+IXEBH3KTgNDpQQwaZQvHzPO1WJPi1JxfOwTSTGloElFk8kUBortWHg2pQSJLVovvaqGTg1jrMqhpJTm8/lsNoPEMfai0qNVt31ZVzDG+MQaYuFBOUAnuAEkAdzBDXo/GhBIKxuDXjClFDnpmrtcrYo872KwllzhMucu1ufLn786O39gyWU2q+u2nJRnD87L2fT5dzy/2qybtpovpufn51mW3bp1CwDqetN1HeWF5q/UdX12dvbUU0+JyEsvvSQbsta+7QNvaZrq4x//+NNPP+O5m0zL25snepWT67oQMv4Xd0AiREQwAn03yADFigiyWOfGRoHrChtyPRKCQ1GR4TrX0OFdqGXHOd/Ky453789EIwBKvRx3Wr33OL5PfxFW0BZ73PYRWPNDGMFDj/TwrR9z6HDRgEAIQcNluisanxCZGSil5H2rpSoUoM+yzBI2mz4XBhLXdW2QRGSzrnVp71nDMaWUYFCfAOxTyNOQrAG9tjoRouZGkIAAEKjaFDIKIqEiOIRjgz8E0MB1xDClqORxfRHX19kE0f8NMM0Y/NfNh5oMQAHoN3MhBCXY9v1ljcHtUqc3Vivctm1K8sQTN6fT6bjtxp04rYi0bSuEzGwA9fU1x4QZhFFhHN14XSyvetLKznsZgyJb9QkYBGQf2b+yBUa3I4GIFHNGxDHBn5lVkbwfRUQAQEKGnLE45vt8vsBFTG1qXVlks8nh7ZvN8nRzdUUGHVBMHhENGiAJwBerdTnJs0lRX5y3q4t8jySbASGgMaQCFylG7zt2zhlnEbWpR3yzL4apna810Hd1lkVIoI874RCCI6LRCPQzg9DQVgZXZAvwPTS/hvtuP8chR2H8drhIf+Ab0LfdKak36vtlZ4iOLgRgHwkggTHcIoOShl5Kz09JELcsZN1gjSxXg70U2vAA2+p/uIPbygB3Etpx0HIvvSLjr3AHt9VHGLKZelPJjMoi4Z1M2DcOFr2OcxkAKKF4bMnxVxop2rGxg2blEPJ59CDUXwES9zIj47I9GN0+4iUiYzrLQ29HMgoajR/w2ET6/kPLPMLAjn4+AESJI2Q8cO71qy0MvQu1XxtFhBJ7U4nbobutKKitMTY+EYFsv921jQZwGyni/iJCPW8oQaL+ta41CDzesABATHEMUexOmbGh0BkCSMKI4IhEKGm9RY6RY50ChIAA2XQqQN1qTdXab1bLq8vNehmTBJ8uLy/X6+obv+43Pvvcc/fv379/78Hl5aVP8eLysuu6NKatCAv3kk2BJaZEZFigaupyOv+O7/rO5976lhdefDkmbxBO9g4PF3MJflVV3neTySyxCuIvN23rQzTGMbccExCALkSiwBDr6qNeUFVVmj754PRstrfwMXRdt1gslNkHwJrHrYMh+v7bmMJyuTw6ONybL3zs5vPpM888o4qTOk4uLs7qup3P50R0cXHhXM7MiGY6nV5enorIGHnVpnbOXV5eKgNFmQvqybdtK/xokGs8jt7xxFf+4e9669d/sDyaI10bxhzSO7/z1/zMn/jR137yi8BJdw/K7PPf8MGv+U+/5+AdT9jcAsCzv+5Lxm/9uvvS3/nr/8Ef+osv/OjP8i+Kt1vsTz74e77+y77/G2a397UE3HgIy9u/+Vd97u/+7D/9j//H80+/ls3Kb/0L/6f13Ys/92v+g1/cu3yxx60PvnX3n835en3nCxfWG487P/7zu/+cP3l48LZbq1e/iCs8fDB/5Ae/dfcDEXn9Ey+/+Qu8/GOf+ODv/trxn/k8P3znk/XZz3+en+jxub/9c5/72z/35m/0Jg/hQQkOERAXi/l0Oo1yLWInvarv3nbBJRwBTe4TEZwigHXdhlh774kAiWezycHJgSB30Vs2mM+5i13XJI5NUwELkgBDSml0I3tIrpj2LpYxm01d16s8z3PCR65YDBAjq7cPAClxlmUEJjF3XWibaIwhROf63SkDt8GntlFibEppuV4pDjjupRGxZ0ATKRM2DeX49KnUXRx2CENhgYF0rGBu27bOuRhR80h6wBpIUZL79+8rm9IY1VN11loakiAlJWezspjEFEBgyPCtENGIM8YokKcqwKNPToMsAzN3vqdm4065ly3M0TSIWJZlgm2MXH0WIkpJz+zFIpRiplCsiGjR77atFeAYv2JmRUtFZLFYpJQuLy9j5BEedc7oa46CcrtEWl18eRALRgKFzxTESSkpdcANlQnVgW+bLqWEBMGHuqlijNnhkYgoc7OcqZ6JeB83mw321fx6kbTxpsoNVP6pBleUSAsAIQSR1NMOmFUWQ/PcRUTLFY7FD2OMBnA2m1Vt07atYrgqN6xDYkQ3nHMGUInbphdarDYbmc/nihICwN7enoggFhoBVTVqY5yib/3WKEYS6Ol7RTHN5gAwEh4RMc/7oase4pjQqRhu4qidOPqP2m7aLDqctFKojhyX2Z1hjylppCaW5RAvSUHVQpbLZdM0e3t7eZ6ryAAq31wAELUamxIPwdBysyYicpac3TS1fui9n81msfP6/NqPCuE551xmdbYeHR1Op1PftLp/61oP8LD0kB55njMv9eeKkK5Wq/liZo1Tfyf4GLoIANHHkNjaLM81FzDa3KIJID2I75xhhhSjICIhmazatOeny5ObB2hzwqzrOu9bMJLbwtoMBZbLpYhkmT043C+KAlJsNgk5odDrd18LNYCAQUOYfNcYm80m05CieA8IZ6errMgTNzHG2bywzirJXZ2nNIhSjlt6HXU6DSeTiQooa8CprtuiyGZ5nyusvWaMqdebzXKl1R3n83kXw3q9Vm4x9A6Xmc0majQ0M5iIdITrLEDEpmkyY733JpnJfDaS3KuqKopJSumVV17R5WaUQdBfTadTxl4CsQuekhrJPoOEiEY1XqUtE5EKsFhrQ0jKeY9DWfjZbEZoFXPwoWuarq5rbTGdF5vNBgA0bSWEnquXepGfGSKuVitF63R6jquh7gmZWQn+rOwJTERkja3rWvqqg8kMur0qM62EawWININBo0o6kdUA6kzRp2q6Fta9rDzuMPl0bs7nc2OMatbHQJnLY4q6TtX1pm0bZi7yHACECRg5uhDNg3uXTR2Js4lzYCnpkss9N45ZXTlgtEioRQlJrtVYGg91ljVnQtftwSbohsFokZXDw8PZ/nRvbz6bzYoiW29W7OSRrL75YnZhKiaxQBrK0j6FLfER1eT28NdQ2FxBpCSiAcssy1xu1Xz5tuNBHUXdDV1QBiDY5M7G5L3vMasecRatxy4iMpvNtCtFRHUd665VffDRo0yDEJbGC3Wxi6nXlMeBAa1jezKZWKSLi4vLy0tVdVdRppRS4zutbaCRldj1Ihtmp+K97GTl8m4OsQDrihZilmVI0IWkrpDLspjS5dVVWRQgWNd1nmUuc3fu313M9m4c3rj1xE0CA4ZC19XtRoRjDOt1fOWVV6bTqcLN9+/fZ+ary/OTG0d11SYOJzeOlqtLnQv7ewdVVd29ezdGf3rv8plnnj05Obn3+mtPZ8+ONdzsTl0+GYfULmqAO4TBfns6sg6JrLVmqPrFzDDgHYi0kxGO43XGP64j3TAmKO2cAHAdboDrODgAgCAM5FEZkwHlGtCAiETArD8kxGvl0d4A+jyMPo/fvnGyPXwgee813mKtVdY27QqAKkKzs7MBFmOMQEJDMQRdG1RMQ0RiDGqtmFnM9o2SBlOI0KgUQEopcbwGN6cYATBwSgLW2cTMMZnMAhnmBMBAaJB0EopnFmGGUWpg92W3uMlOy8ee59tDPDwIp+oMlx11PP3nUDoyGUMp9aMlz/OQ4niyDF3vnLOZ0/z82WxWlmVoOx7ECnS3MW53NFdoPplOJpPFbD4tJyH0+xKl2JMxCOall15ZrzfO5sY4TmwHRJL78FRvxJFQHh/HG8bVNrIyvPvDQwVxp6rbSHm+3lBvHGZ6xNjDH17SU88/d/zU7c8u77sykxCYvXMGAJiFjPGJMXRSp8l8en7v7mR/76l3zbJyHpJhBksOOMQuxNSFQMYYi9jzK3Gs44cI48QcYzUDZvdGSK8n7eIWbu4xSSRySOO02oYEYKs4sTuLr4WmeEArR1h5NBr9BWkc/zsU1yGBdBiWW4h/jEkYY1R1VxQ4ZyEkVYNCRAQevcd+AGgxB+lZALqZULeEdoQR9NGILA5A84hi64NpkhGNlFXaBUC3k0s3/Y+0eyKCaFjiQwvM7rBBRMAtQpqEd+J5W31tZqbr9latSgjBPybOvItcD7EZY3AXUk/MfbsBIAwg8thxQ6eLCKad2AP0bT7sYAbjMvZa3+ODtRlZxkpAsNYQGWOv6VoM4DXzNbb7tr8sEhPRjkL0cM1EcE2FaXx+VoL2EJAbu4+H2koAYAaSFw91awUS8tbsK4d36Fl6HOAssrW6WyB++62C2gIMCJAEUDPeRNBY71sScESQeHNx4YAconRtvVptms3Z1eVqfZViXC6X73rP+778Ix9uNtXF+fnZg1MA2FR1lH5BZOnnSWIBgAS94UqSluvNfDF35eT+6YPZ/sFkNr3/cj1x2WI2823XVZuUEqKx1rZVfX5+Wde1IEVh7zuJiVQrf6eApLaoDJ8g4vd+7/cuDo9++K/8lVdefVWjPvri0+k0hE5EknDbttOysFkftlwul7qErVYrQdbopohkWaYJyK3vdGVpmmaz2Rwc5CI4mZQ8JHErODKOBIU/Pv3pTz///PNd1y2Xy3e+853n5+enp6fPz54EaN7YcbbI9t9y8jX/2fe87Vt+NblHZwiSM3tPHX3V//k3pxA/n1b6o47icHb7V7/j6//49+4/f5PMo6+fzfOT9z37nT/8g1cv3P87/+6ffe2jn24vNm/q6kTz2wdf8r1f/ZE/8K22yG3u3ngKEk5OFu/7nq9+z3f/2vVrF/Pbh+RMvjf5gTs/9OP/lx/+6f/2b/+KcpztJLv1Zdfg5qsXH/j6ixBfvvzs6+u7F/Mnt+rPN77k2Zd/7BO/6EfKZsXlZ++fvO/Z8ROObLKHi/h9nsPOck5p7M3ycP4b/uj3/o/f8V9u7r4JBv2vwCGDcQYATVlNHNfryhhrjGGt55k8ANBQ1UBEZBDrTym1rR+NrV6nCWn/4LBuVkVp9k8WnmuAkJWGbKq6C/WsmBlRGEESeO7Ub+QozFwUBQBNi0JE1uu1tdaAQIokLs/dIwdc14WInOel7qzyvFTgNdes220JPtJMSgCtKSLKiVOReiLSzRkmUBnkEAJRvw6qI6q/IiI9XxsBuY9adV1Xd61auVFzM4TQdVEZWLqUE251n2KMZtCyVADOjnrB5JJNiJjnufINla5IRD4pQfVafuqYxSXDLkjZwSOn9fXX7z/xxG3nHA+yQvp5F/viSPp22nRFkTGzMcW4i9OnretaKyNZa7U0n+6iRyVKANAiSGVZKv1Q9+SD5nUvo7RcLq21iksuFouLiyuF3VNK1jj1/H3o6rpWhq/aakVI7VBKFwC0EqyxW0VHjRloF+i6MN69bVtNNdZSkDC4rgq38UAlSyltNhtmns1mBwcHIkmz4PUxxgxuANhsNovFYjabXVxc5Hm+WCzW67VmA2jBAE035qEW2dHRkf6tD6Oc98xlXdepMLExTmEpHEI7iKj1u8aSYsww1LzdUr+n0ykMm43REdO/Q+icc1lW4A5Dn4aCmfqHaoyMYQPaqU+1Wq1SZJU3mUwmZFAGZKeHsEXTs3r6Am8Lr9mUMh0kADBGVjhEDehqgwdOyac05AqEEC4ulvv784ODg+VyGTgZIhZRDE5jWjEFX3cjwVbLPDgy2ow2y8vZozM/Vst1O21z6xCxKApF88+XF11MIbTWEgBv2spaG0PKssLmtm3rWrjMoCiKLItdnayjlBJI7AVUyQSOoZO8KC8vNi7LDk8WV1crACim5d7eHJLRFEP11gH46uqKg6/ren//8PjgxtVFdX7WGAPINs+mFoOWFgPKmAWMI4uc2s2qPrl5kKB78ODs1q3jvMgUXMtcrmGnEb5XNbAsyx48eBBjHCp89rkOSh+2uR2HkA42hTV7nM77i6tLZigKM+7DRwla3ZuNgS6VudBQn7U2c9l6vQ4hmKwPbyjPSdPwNdZVZLmOKB0zKoApACoIM53Prq6u8jzPMsvMOokU3l2v16px4ZxTdBUAmFsF08doX0oppKTZG23XOecWi4XC06rU7L0fFXi05pbGkHT8pxQ1o07Zfurf7e3tLZdLjUrqfNR6oZLCxLlVtXHOIfSS1ta6wY/Duq5Vt12jdInjCGiUZanA5Vj0T2dxVVUawYRB9Hm9XiOiZrHrH+o/mqFykv7cGAPiCZOxxhhDaDJTVE3XbFK1rkNNVkoQTJ4BEgKkFEFIEBCUgYqCdoCCWASipFEssV+2hm2sbH29JNI7SpplkpWFKkoBynxvYZzxMaQqJGGXOYDujXNzvdqEvWSIjDGTyUTpxnpHDSQgGuUd41C6AEDDbAUz40A/BwCDZLM+l0LJi5B4sVhwX+ABssxqvqNiFQKJ0KksUl8Z0vaGVBvW9BLkQUSKotD6k8P+wfXZXWQ0acYSJUQW0oBr0zQKymu8pG3bwmV5nu/v72vcS3sNESkGlbLRMQwCxpjMORoI+wwMABGAVBkpbXOtEHsGPQAAisbjdGBEgBSjxOT9uihyYW7r7sbNm3VVnV2dbur1wd7hU7eeqppV7oqqrZIXa+2zzz6LCKvVOqVkbR9tvX3r1mq1Ojt/8I53vEOFoWKMOeaS5NatWxfdqU6Qi4sLz50G1O0OeHFtv5IG6RAYM38H9mcPFmxFmRFGvYLYg+4IiKrwK+mNPv8uk06uD1+i7cqKb3DJdt3vYbj3p3ECwN6l79dXRBiYazLw3YaQl9nFfwEAwYiAcoTHpRp31ANwB30e3ONHrmKgYmE6LkOMbeud6cEY7XIeWAZ6vrW2qWqUFILvus4CMEivv9N2PX40xMMFiHGQ1GTWLHoQXK1WeinfdgCQ20HPKyZE9CEwmcLaxOy9d5ZYGHookJMwpUBk1XyMDT9C/DLwphHRGIKBjIaInJJaednhv9gdMftREw2us2IHLozRTiHTzyIYdkiIOJlM6rZlZkS4fftmXdeQWJeBcVpqgptzjsguFovcOq06mFIC7DXXcDCFPsXz83Nt9pSStRZiL9I/Eiu27MLHlILEgYW9G0QZ/Ksen9Izx/Aj9FAjbRVdErtsW2rjkTciAmttSLHtumxSvvcD77/7ymc2zarIDIINkck59CwirQ8AJnOmWq2Ns+f379149nmaxMZHTDwtDBEhGZMXuSuGfXXUaAcipqRYJwOoIIKxvRfU95fCQj21eZgCRITXYk4WEePAENS91IgCjw0FO5gaDnkV4+DZHXWjHRigTICe14kAgFtu+y7ffHw6GXfb+rclo4Y+pR4HhGE+EpElA9Yy62Z+uIRellm9zdGMjFGFIVRAu2YNdw4FNscHU4b10AgCcC3cJSIqgLjbYn36zIA/pkGYZXzC8eL65mo31C6M10lREiSt96jpBeOgVWcmz3NrHoExAUAPL+8grcaYsVgiDiC79hEiqdbV2HHjY7AiwAgPGd6dFgMAUJaEIoD6jjj8vPeIrHVDWCLGyIM13m0THKSZdoZZ30pE2DuoidP1egCqhsHwcCHHHojEh64vaVCkGY05MydtGWRmJoFxezqGVZQz/8al7aFjd4ncfYUkSZitloONAupzgqQYcusEGJLk1lgy3PrOt/Hq6ury/PXz067rmrq7d+/ezZu3v/u7v7tum9dff11ri9eb+vLyst+qKphiNDgBCRTBRwY5PT179i1v/fbv/q7Ts4uP/dzHX3jx5dlifmM2PTk5AU4co2hdUCIRubpaqSxm7TsA6qtaxyQGaAC1YbCQmnl3dnb+jd/8jfP5/MGDBx/4wAfarrt//7Su23v37r300ktPPPGE+huWTDntBZR0LeDEs/lUQZP7p68zc1mWBwcHKaW+NqAPxpiqqpqmUSaIGg/Nb1VWo15QnyeE8Pzzz08mk3e9610vv/zyZrO5e/fuxcVFjDEr5Xko3thfsfXf9N9//xNf8Y4v2LOmcKZw8HiG+yOPbF581//0B3aVix93kDGH73jiO//yD/537/mBNws3M7/tm37VV//H3/MQHfvR17dm75mT8Z/5vHznt334o3/0r7+pG/1ij2xaLJ463v3ktY9+5oticLeXm/p0uQs3P/WV7/znf/wLaCV/niP6uHjqWulCNDjdn56+6SukVYfXJYyO3vlEu/xXoUzyuGM011onTd0tIjLGRq2yIOPivl3UsE/NzpVgJSLGmBs3bhRFUcV2sTdlOfBhHTiQY2PBp8q3PqWUolib5XmRm6KuWy1JZIzJsgIFui4cHx/7pt1sakScTGYxekR7cHAAyEke3fvG2rzok6M1tZ+Z1dwYsmZQ/Ovalhm0dpNCt71io9VCdhGNybLM192438vz3Pt23JnIIEHbNI3iOOoBKVqXUjKZ08ew21JRCGAcGTU4TdOwZ83tyMu+ZhFo6hPRCIIYspmxSq0Q4JF6QkSTyYSCZ+bNZjPuLZk5hKQ4eN22ygvLjNXTdEk6OTnWB9Y9jIIvyhRLKakQalVVStTVllGIsyx7dQ5FlIxx+pVq6+uOQseGYoi6iVJYRHtWx0yMsarWiDibzRR5GXFVTSWuqmqxWIzJJQJ9LRxjjDITi6JYLpeqkiEiJycndV1fXV2VZalo5mKxOD4+fnDvdWY+PDwkIqWAXV1dWWsVxW57/8LoT2DgAqvkhfbsiE00TaNZcToeFKjSX+lpWZY1TTObzZqmWa1WzrnYRR1dh4eH+vwKK+guQhFwfQVO6erqSkgUemjbVjXKeageJqJ+Zb8vGiCwsndkAHo/yPUFmWzev04axBPGHayqiGhgABG1vFuMcTqbjHxPrSOnkiNqBFarVV3XN2/cKsvy6uqKSNkmvTqiNovv0uXlZUphMpkYY2IKOrqsJWNQYXQY4lXee4s0qkxEYQX4+h0a4XxvoYM8hHB4eMjMbVX3OYDMiSNgDz+paq2OXvUTr66umHmRFyE82lA0TW337Gw26/fMzN77PCu8j2Ss99GYPifdOWtNRkjz+Rw4xeitJd3q8FBKMSWVyOtLobett7lZrTauMCZXqS7OcospW15e6UtlWdZ1TQrelGWe54h0cXHx4N4VBDAZWVsYIlbXjFMMIbPOgvUpQKK28d7HvcN5067X67Ursxi9QgEKxWrQToNMk8mEmWez2Waz0VxqZQSnlAz0fGGfeqkWTSAb62TqdijLitlsppImahPqut5s6sVihoghKPcZEXGz2aiUMAA88cRTHCKRLcsSElRVw8w2cxoEUoY7Io4s4BhjW9WDskEfmHnuybfoOSmlUSBe8fSyLCvmyCk2UR8jpaSs0pHsDErhD32KCUtS6FNdfiURa3hGlOFHVJblfD53zmmcSZuubdtRQENtiBoHNY9aUyTLMt/2/kvbtov5nk5bM5Q0tNbG2M/Hpmm6riODymmNMWYut9aqAYkx6vVTSkl4mk2bpkkpZdaNeTaqBG2tVbjZWquW53Ofe/nmzePJZOK9F0gCyVlXlnnq+OL86uJsxdEBW8I8RTZgEDkmjyAGIQEz95wzRCQ0Ikk1kAUeziYSEaUJaY0aIkEEot7jVlhfd+P5pNS8881mNZvNuq7p15HuEVgzAORFQbTpug4yxKHeABFpFxtj1OMUzWsX0aE7YvTMrMX0tL908AAZNb+jFgIN2T/GGACTBodaEJbrFfYVccD71gBqRASxF0VR0+2EnXPet6P7ucOzjDAgDOMaQdQHuUd7nnwYlQ/G5VhdG41TFkWxu8vqU0AUqTEYUgIDKTIPlDIZCkfpHzEFtTZVVbVtC9ZaazeqfVQnXVlq35Ax1rlNXacoKUqzqfbme2U5ZU5NExDx6aefPj09vbpaGmOefOKJzWZzeXHRNM2HP/zhp59++md+5mcmk4lz7t7FazHFp59+mq6kqtbP3HgmxlTXddPWcEl9hHl8n5QSQM/YhsHTRtQ3SSyCCpH0stkD0xABrYF+zFFIUZhJeWpoBsGRLTIyjBgAgKGImgyevBlbbWdMDzll10UwiUiEcZgdysoaSc2jxPAWuRhUuvs778LNCpczKGIyng/DHXcBlMH5f+RMAQQARgjJollV9UhuZQCXZRKCaBpaCtY5o2CaxeCZ0DRVfThbQCeWicja0oYQhIQAOCWLBGRSiESURhxTUKKw4GpdZVkmiY0xKXnnHHQhQ5eAJaYys3NgmwLkeWDpkNA4Qir0JROH5CNEST3gyH3mvh3DKc7lAEHpe4Tg8iylFCVq+xgEFkZBIsORjQCzgKHog4CICFkLADEEAQgxiQgQppgYBAjHcud7e3vDRtYQ0WI2D53f25stFguRFDlmYlUOG8BqdT7NaMuyDFm0kvJkNkXE9fry1s2jFDoRTiJFNu26pqrWiGAsGGJIvtMOY6bIFglRMCMWAUnXlYp3jWxiSIIChIAoCAKinpIAa3BQxxgLAprErEmRINQD0gJkTPAJAA253dpx144ovm3BAFnLQr6Tg/JGVqawWkFktNjGYI2LKZG1HrHpEvvq+PCofvAgLs8XN27ZwnZROLZZlvnEkCBJzz/SYZmiIAKh1ZRZRFRsyHPUKQAJmNEYA4S0w2ndySwYPtHansboh2ZgP7FEQegpxzqoDFEP3jGAiuEADUix6nuo4SGyStsZYwBmBFcVAE0gKLvG2hiMnLquA5AsywxapJ77I6LSSyAoCCQiRkhEkoLVrJfuCcuIyClETkSkZU90+hPgLkZgAIXGJlF4nQWRjOEERAQEKaXBvImxlnvhBeGBl8RDcqvaNBXJ7e0bioCwCBGpC8TMPdorYKiPZBAiGEwpsXAMCQDUsCgUrhFpTr2tTtBbYxFRHjsRZdmjawQToCUjQ9cbMNpQSKjXA+mTlXqgGYCRGJkIo7CBnsalQSkYgHX9LQ/Cl8w8WB41xZJSQAQF98foIyMLh2vRSiIBQcAR/EVEHczOOQtbnp2IGCQyTkRAGIiIdAj3XC0gA4CWemyUiELohkrEPafDDau+rndjhIxBEMU4QgaRlGLS9Wl8VCJiFoBkDKjpeXRrIyAJgKCBndibHU2RJZNE84gRDVggBGROgq7hYB0WlqRtse3mge987oX7F+dV03ZNW7fV6w/uzfbK/8Nv/60Yu9O7d09Pz14/u79p2qZptOYeGooqPQQmAjOyR/SEJFQt/dNPvfV7f8f3rbtudkBf9hVf8eDe66++8kqOeJxlbV0BpBS8pDSZTpu2vXf64KqtOkmRk8SUOMXEOuwEgYwJXUdEMXkgYkhdaD/4oV/1nvd/yedeffn0/FwQptNpVtJTz9zeO5h571vfnJ9v1C+dTqfz+ZNd183nRVFkVVW1vrNNbZxdL1d7e3u5yzabje4yRSSEZJ1ZryvvY5blAGAy04bW5vbk5Ob5+XnTbA4ODlQPzjl3dXWh6MPp6enR0dHt27eNMavVynu//MwlPApu/oE7PzR/8uiNnz/2+GLYzSdf8uz3/Ys/+kVcHMBNs+9/6U/96Q/8e6cf/8LyDr/+//qvf+QHv+2Luv7u8dKPffwXp93x5o+952646TWo/f7HXvqiruA37cWnX9vVSj58xxPZrPhFyzezjz/2H/6/v/Uv/P7J0Vw/IaIbX/bWl/7Bm2VMz546fCg48cKP/MybLH74K3GwRXA2cCAH5cEkUdQiLAAEiQvjAgMzxORjjGxUCFh81yGKIPvkp4elkGQFzvdmiDXnUfzZkgEAxPSFoAMDJ8cRU4zWWgS0pkgAaA0wF67ctdjn56fMrAXrTGbQGgQDiJmx1WOKduqmrKrWyn415IQjGXKOUkq+i2VZqrCYwm3W2sgppDhfzAHg6upK8S9h7Oouy23XdV3VWGvbtveVOERrbZnlKSVEEkBjHSS2zvnUcQxtDAr6+MQqZBwHkVwimwAgJIDkfQRgYMjKSReDUU03EaNhWkkIxlhCxJiCgACCob6AhBB6316tV1YrQTEjSmYdM3ddIKLcusxYMNT4Tt3+tm2bTaWo6KycGMDO9ylTWr7PGJtSOto/Oj4+vnv3buEKR46ErM2YIUauqvV0Os3zfLlcKuZrLSnEoGi4wuhd10yn0xBSSkmhk67rgDByUnynbesYY0qS59l8vicidV2v11VRFE2zBZ2bpnFkQsdexFo7LcqUUvRhkhfWWt+0hcv0bwUiLdFsNrPWIhAAZC5PkY3LICUyRoBx8PmZozE4mcwQ9xRUUhBBcSIdFfo60Ctgcp475fgCIDOkJArnAZAxbjLR8ExnDNpB3FlEUkyHh4cicnpxPp9PrbWTSaEASlVtnHNFkXcdZlkWTXTCiGKM0ToBTdNkmS3LqUo9pF6iRAtP5c8889ydO3cULtHGp6Fgu4anLy8vRy6eIl9t2zoy1UpLyYm11gAmZhCsm3o+n2MCCwYBLFJopTON8k5sTr5rLdJisSgnRQhed8Uxhel0ioMmdV3XLJKXWddJ27bz+ZzYkCGF1xXu7LpuMpngoE6TINk8M85perVy+RVAN0hIOJtPFVlbrZfT6RQBurrJyqIoCpEx4oUpBWt7XZrCZQHC0eGx957A+PbRSTB783l0m7qudW4qPm4N+bYRg5QTC6NIURTBcwgdGiqKomlaTCKU8lxS07DMgePgugThhEAEFsWaYLg26wfdyRP7hc3Pz++/dnWv3J9uNvX+3rH3WNeNseJD2J/MrLWvvXI/tHh22gBh4sJaK2gDODKkNLgEnbVUWmwaSpWsT5vD+f7B/ChBzcGjsQJkkZpNpZonxphnnnmmLKcf/ehHi6LIy8LYQsB2vkspzGazTVXXzUazq4siA3VnYrLGAErofEysI2pWFtMi7zIXd0jQWZaJ4NXVarPZTCaTmzdvLq/WZTHP3CSyAEDTRuY6iG/XzWKx6H2dGFyeGQQ7ndR1DUzWFmhI1TgZIQqTgAXKrUspvfLSyzFGskrpwBg1HBVzR5NiGtu63qyszcqyTJEh8d5i6lPsOsWO++o7JgOGhBZyWzRd672fz+eIuFluIEHyWjYsFkVhwGRZxgKrZR1C8mkDAFnmjk6OhFllDkMIKqgugm3rFQNNklzm0EybEHyIs/nCx2CtNc4KsgA0Te2cYxAfg2bjMXMXonTx4PBEWdUxerJmXW2UjUvWEFHh8gHvsoB5iE1MWGZF13XT+ULDli4vUFgjgtNpsb5axs6LSEYTY6YZTNMyuzpfXZ3XHG2eT5IH7wOiZQBmBFP4PnfWITJyEokALNxpAW1EFGABFLKAxIKChDZj7gDBKPN6ULA8Ojry3hdFkVu3tz/LJ7m1dHi4nzhW6w1z3NtftF2VldlsbwpQPWIrIkBki9yqj2Z29MRTSgCkHrqGVJVZP5suqqpqwWu4NCPSwKeIhBANIFpk5iLL3KRHpZ1z3kcAFFEfCjS2l1ISjiIynU1DCEi5mixdOwwaDcNH4Z6emMCQ4QFuRsTIzNporOWItsVyiWyMKkILABSF13XjnJuaXJIYi6r1l5nMgCmKAgVijMp97Mm/lhL0IgOExndhAOt0pWZE9D5632ZZZo3TAhLWWmutAAhzoZFvkeC9tfbevXt9poKFlKcLf25K1xR+5auwrIui+NSL/+Jtb33eFpJnArE9nJcn+4sMIEa2aP/lJ37h6rIiY1ar1WpzKUZUXWd/scetr9abCzy93Fw+ffPpUbt5y5WT66W99HjoKzMALryTND2GsnHIhmZmFk3DSZqNTDvypgMCsxWvUHRp/Of4DCOOMD7P+O0bH3L3nN0P8WExkGvXZIm9Ui3yqO8x3l0PvSlsudiPXMUAALQGiIqCI6LWatN4msgWHRMRBold1/Ul83r9u6LIU9eRRos0VhOU3AdGIA7lKXEQkocBLg8hoPQJ+N57SMwkqQ3OYDDmarm0RbG+uipv3ABCssaQNQwctTAXGbShizut2ifgj41G1qAIpz5wtBtyIcVYB/Co/8nAkh7HBg1J/THGEPukHr2OhiKn0+nY1M65yOK9Pzg40CAPDJJJek3n3HQ6d315MW7btpxNJ3kRY6xCrKs2BjbGdF0ANRY2W61WIQTVdxcEQkpRGDiE0IsVDdkjj0MExmG5G3EZBwYNdN2+EXS006BjJKLFWHf5QfiYGwkIAItg4mAQj4+Py9n06m4AQwhGgX5OY1F4ZGYwZr3e2BS7psmsa5Xib6DrhbOv1dUc4yhpSKEdvx3ntYAkEOaEck3i4KGDRoMgADvGZHey787H8TqDdMpWXmOc1wPse62GHqdI0CN9YxfsXpNZFDNKKWoOjjFml0OGiIhb1q2MmRm9dMP2BYnIiOAwYgFAEgtdk5qy1qL0IbRxVqLpA2YjFE1DakVittZaR8rBl+vxs35UGBqbDncSZPTMkVkM1w0jx8QpGWf7ZIK+FSOR1YDzGPdKKQyqIbTVT39M5aWxedUZ48DbtUB4aJaE3FsqHelb49Dblm2f9m0+yJiM9nDseuecMb0OD+4Q3gFAJKUdkg4M80jfZfciAIAsIxdeMXrY0SHRM4lIM780L1X9di1jiAJj1g7uxClxJ/nU7GSqDjbBjM+223rDy/ZCPY8rFehypwlocdAG7ZtOawMidjE6Mn2kBrFLvZMviUmAkoTYusQxdPdef3B1dXFxca5MsYvLs9l0+tt/2/csFotXXrlzsbw6PT9bbqrA3HnPqsEauA1xUpahbo2zHbOKdSyXq7e85a3veff7/tlP/WSxWKCzIYT5bPbck08fUWKOgKzxQmNt5HTnzp3Gd95HH2NiVvlXQAYQIquJKdbaEDuy1nt/ubx669ue/5Zv+ZZ7D+7PFnNjzOn5mfLayrI8OTnpuu7s7IKgL4rw4MGDtm1TSqvV6oknbrVte3h0gENysTLOqqY+PT3Nsuzw8Lht/at37hjTC/p7760hHavT6VRpUJp7qxQ57fEY4/3795944gnNXgSAo6Oj/W4O//Ryt8uyWfF7PvVf79Jm+zHG8hBZOMWoQbgv6njr13/pb/7RP/TGz8fZ9LgDEb/v5/7I/+cb/rPP/e2PPfYkom/6f/7bH/gdv+6hj1NI5rokiPTZOf9LHERPfvgdu3UCq4vN8qX7X+xl7v7Ep9/93V85/nP2xGG+N/mlVAu895OfbU5XI9wMAO/6jo/81H/9I28GfKfMvue7v+KhDzevXz7y5H9FB3OMERHyvCyzUgg1N5FZQvLGGJsXzJGRCUFDoSkFY0xe5mBlr5jvHe4JsvcdQ2pDZ7izuR2TXZTICYNAtIrSikivs5zYWgtEyqWFwblwzhmTAUBd1+oyrdfrzFgj/MjhKCBXV1fOuePjY4056U5MXXFEU1WVMajZrIriESIjNE1TlqXSOTebDYIhIh9agCEHc0yHAlCGmq47caes0GQymc1mIUVdbTVVFgaxLADol5LYF+nVtMWRvRVDynKnzaIo6ug4ZCZTxlNd103T2DzLc6dX0IOIIiAA9FIVMankqOIa2gtjkrhavBh7DpT6813TdsEDwNXV1Waz6eUOmKu2AYA8zyeTgogUoRtFM1JKSpVVEqXqMHjv798/dc6dnJyo+uRisSBr1HnOsmwymVVVpQ/z+uuvA4AKxQ4FFZ2C1Aw9bVzbLc9zlaoAgP39/XH1r6qqrmuFwvs0UIYYo9Jp9RPst+E4n88BejL1oEdIyknXplPOrz7PxcXFer2ez+eTSRFCqOu1Arij46OsLs2mDyEsFgcKWBtjjo+PN8uN8kx15JhBnWB0WJQ4rLTKg4ODtq2Xy2We5wcHB3t7e9rXCr/qT7Rm4Gaz0coEPbaSZfriKSXtOB1RdV0rFxVQYogxRhzoQd57fTAhtMaNsmAhBBYtrgUqUDAkBKNzLgp774PvyR/z+Vwnl/Z4WZaJZTabIWJbN9BjPaHrOhWB0VmvKfAwpMqpkK5WR9DGHIVHyrIMwdy5c0dEiqJomiYjN5lMTOa890ptJqKUeq9Q4wTWZSGE4KNzbrmpjCsfae1iSsvl0tlMH0btAwjnee5jIsIQgnBsW59nRYwp+rRpNnmeTVzBFmezSWxiVUVDkFKyDhBtUia1JM3QS8yrVQU23bi1d3x0o+02m02dZ6W1tqm7ELvOx5ha2Jsh47Sc3Tu/lACE1pEhohA7lmhpq3wC0Ndq6toQQuoaTyWRcSGBMca6LEQPQ47jbDZLKd2/fw+AN5sVGsjzMiafOAhI29UsUUGD3GUat7AuUyWHpmky59STV5OrwzLLXNNUapecMyKpbWvv26Ojo9PTUwAoyzLWMXeWmUPXhtghUlNXhqz29XQ6z3PVMSBjnE7AvOzZ1qPd0ypNvm50PM/yuc5lRQmiD6urpTHGGSjLKQI5m81nk7ZtfWINj+GgXx9jdKbnkx4dHV1eXupon0wmoe0QoesaY0xKsa7jbDZDlJS8y1AAbF6KSFFmmTObTRNCyPPSOhuV85dYRKwzZFA4xsAA5KzZW8wn02nTNIPoTdY0DYB43xGRIWROIHJ0fFht6hBCtV6hoTx30k89q7RTay3RNlPcGBO4AwBrrZaK22w2Iimzbn9/T0TquvXeT/KZypVbazOcppQuzldN7TmitZkhCj6BispiAgABrdTEAMIcRVIvxDT4wQovWLSMvbtEynNKyQ563AZUN7Svqprn+WIxWywWQmytRZTNZpMXmc16xZKUwrpeN2dyDNM3zs0kCQDqejOKouy6+QBcVe2IAun6RQbKshToH2mX0jqfz9uq1oZVTIAGrflxRAmhDIqROuaZebPZ7O3t6ZjRmMpIlzaDApWeLCKqyJkGESHtL2EMISTui7GpBI0ml4zPr6pKIGiM8aEVKyr2qBk8KfSFBGMXdMtkLGmMWQPPaahnO/rFzNw0jTK3ZFAm0DmbF4WaVkSEQYdAQ1PGGGczTZrJskK18svpBABW1eqTP/+pk6NjHzpjzIsvfw6AAChFThdn55dLQZkvZtaZfJb8VfqRH/mR2c1yb75wJiuKYr/cnx/OXbTX4GbYQb5GwGj3GIEh/ZYHKc9RTmE3jbrvuRh2IWkZjt3rDFc2O0McxkcaTxuvsHup3ZMfeoXdz2lgTO+AX7Dr8zOzyrVp9jbuoHK7933UsvXwocNUbzeMg2tg/W4jDxgQcooQkzEmDEVXUwrBhySsEDwOAsG6GYoxIoA1RkaUR8mBLOOZMUbKiEESok8hSiLmJkUXo1tM2DgQTMBgkNAiGTKCYnUJH2eO3rrfZ1uTklIYR2hJgwpJ+BpdfLevSYVNh93MuNXAIcFE6ckwsOl126SuRVPVzHx8fKxGJLcOhrrnROScMwY1eccOdNrJZNK2bei8vkK/NQQAAN2NxRBCCM70hqznfioOaC1LkgF+feSx24/jOHFD9RjV0MEhjyNJYmFgZjADpJpEQEAQDDxmoo2tSEQJgYUBZL632NvfvyxLBsGYQooCKS9K3ha4iwHh4uoy89PV1dKgGJUTIYocnLUpcc/ufNRL7UBjPM5ixu3sg+vzYvuUIwb9SJGEYZA8ZAHgjYISO7/SMT/KlQwnaxigvz4jkCHc0cRAFGbgKETjjXrUDq5dfPsMAKBiatJThre1CoeoSX8JEU0FGfSLtY7cEE0ZPRARQSaOaYDCt20iIjF5lgjidk3KQ3YGhofnIezXv0bi0XyN+DXsCEPDMCu3UsLMIkHzmJiZOeqEHIfxCNI+ZgRC4qi6w96ziNgBqScig4hm12AyohCB7kWMMSpZofTbcRV31iFSUuIcogqJ7w6J8Vnc0MLQ2w0BIDssqGNz7RrVsSmI+kyCbUwosYio/cFB0oSZdf+kMfMhD2Y7K0cr98jFaKeRZdDovxZDuv5eAyIfQR4D7g9DrvfEhp8LaBoPACIGTiRAYBjAqEqmWksGbhsTo7OmqjZnZw/Ors439bpr2qpeI+J3fMd3PPnkky+88OLZ+fnd1++vm7b2vmq7LvjYVwWELLccPBlAYCPQdH5V1299/m3vf/+XNl24XK2fPjpabtbNprq/rt72zDNHi1JleQDA5RkAhMiN93XbtD6EpBmLWx1tAFCGMktEY1JKTdcWRfGbftNvcoWzmdOttqbxapC8d0ezfO/ppxU8UpACEUMI9+/fv7q6euXVlxHxLW95Swih62xRFE3Xala1bhZTSprHnQYpTxHx3jebSnX0mqYpiqIsSyKoqjSdTrVgi27d9L5t2x7KYre/Dt/+xG/5W39o/tTDWHO3rH/k+/7bF//exzn2HZ3Nsg99/zd++N//1kcizvQYGPpD3/8NX/cn/s03fv7qP/vU3/rdP7R8ZVvpbu+Z42/4k7/nqV/7rmvnIf6Wv/WH/87v/dM/9d/86CNumtnv/OEffPs3f+ihz1NMP/lH/to//+N/w1d+eDx6y7/2/m/40/9WsXiEb5AtHi2O+ct2MH/o937j7gfl/qSrvmiY2GZud+Wa3th753f+mp/6JehptFf1Z//mTx+968nxkye+/G3P/fov+dzf+tkv+Ntnv+a9N3/VWx/6MHaPZuz+qzksmdJmkVMKjGJIKHIKfXoyxcgxtkkic4opgkhu8+lkkk1cVjgABisJuhSDTy0YyEvjnE3CRCYEZk6q/ZZlGcG2Vo+igSISOfnaC+GYyaTLXFmWk0mhYhFqiq21kZkeU1oDAVW/tes6nbZq1RXys1arMDkVXKYhW7HIMu999CGkXvA0z0oiiskTUfRBdrSkcus0h3e7zR4uJbrnN9RnlBursKlCPymlfnuPpAm5ur7VnQ8hdK3X/fAOT6Vf6I1xgwZu5r3vuq6YTsqybJpGmDUxeUTAESmEwCEaY4pJAX2BO9nb2+PQS4WmlLIssxa1Lpamk1e+YmZNt59MJsfHx3mev/76603biAiieN9j05qpraAzIrqhmqI2ZowJUfb399Wi8sAM8G2nDrO+FA20GLNTfQuG2sUqKMGEQuhD1BqG+/v7WpevLMueVDg40pojr95EAyAMIqJYLQA45xJHxT2ttSF0RHR6ekpkJ5PJWKNJ5TWaplFOel3X2hFKeA8hlGWpt9amVuRX0b1Rb1rbR8vMqmtcliU5ay2N2tN6vkIGRFYZ1lmWaR3C1Wr14MGD6XRKRKp8pvLfIqIIddM0q1X99NO3Ry1vAPDeHx8fHx8fv/baa72Sb5apq1hVle+CMUaY9UVGBDwvyiIvx/EpwCoFeXi4Pyrw6oGIddfGkBBxOp0qyBJT2DpZIuqm6TtWVSUizrnpdLper9V1VdqQTgTc0UIcd90K5ahex2KxuHHjxunpqYgcHBwoFGLzjIjatrXOaOg6z0vv/dXVarFYOOc21caQ7Uv7ijyu1EGMHh0eHR/WVdPFkECaujYieVnIUDeSgUVkPpkmwNPzM6C+VvZkMiEfruAKIBI5Zk0467eLev22bRnFZmaz3HS+uv3E8Y2bT8bzu+t1FSPP5/PpbBFi5ztkhqpufSdtExGR0BpjCABFLBlQ2Tbo1U1FEMHkOfmmbZrGSozYmgxni70kcH52pluX2WxGRK/fv1fX9XwxOz8/JwRCTik5i9ZkMUYCFZ/Np+WkLMurq4vYeZ3aqhFshkKdY4zEcMJekUASx5QSGTw5OXHOVJVXWQkNawGAdcZg0bbt8cFx0zSB02Qy897XVYuICZIxJnMFMyfPPoUUWMWUkw8AoGwDMAQATVerc2EtWWumi7m15JvWWTefzUXQWjuZLcrpfLlc+i5YZxVKE0EAyl0WOQmjkvHPz8/btt1sNs6Z3DhrlXbDAtJG1XTOEdFYiNynitZ1raZSa8RxDIAmgQCK66XqO2PMWBWQEIs8t0Ni/Ww6Tb1+iKhiI4cIKRaly3KzWq2cy/M8n07Ky8vLpvNaE9UYU1UVM+j0VI5qlmWEFH2XO1vkVk2KKtcVrkidoDV7e/tFVqaULs+qZt3VdTDgrDEcOCUxZGJiVbIUEUTWQvCKl7IwCQwalSCCAFYEkEYqnWgCKKCkRIgmy5zCuFleGGPW63VZlm3bosU8zybTwvu2aapJKtFQt+k2Fdnc1vXGvh7fDW971Oxk5jhaKl12d31hdSLGlJreDSThtIX4eKhxCgDFdNK2LRoUAQ5JGTC6aqsdloHRpVsUDd9qEFEBWdip2aApGuOkmMxmXdfZHXBDr2aMIbR1s1FDpBC2hovUwqgx2dvb0+ts1vVyuZzNZpO8AACNu/fsZkTAvhBCnueWExHpghVj0ois995a0IgyD0WMRCTPCo0ghhBkVJEFgCH8qRskXUnVkvMQnt+fzru2rau2qe6tVisUePbp5yZGZrNpta5PL85S4tW6unXrFqIcHOw9f+vJ9jzZojzd3LeZe8szby2Kyacu/+XsYObu5laDS6NuQO8ks8ggCLAFI4QQoLelvN0cwABHjms/7MAZo/O8637LDno17P63HLHdncfuMT7P7mm7V75+wWuI5xv/qfsnzaS+9u47d5frjOaHrvC4Q81KFLbWBt+NswcIgQbxu+GNeDhSStgLoglwjLGHRQxhjOKsBRHVM+ork4jIjpJsSslQHzxgZhmgW5+iqjgwCA2SathLmoQkgAmMgCFiArXaDzWp/qFTRb8ig0QUfBQRgb5mNMchBAd9QyEOigfawQAJ+rK5eh3ditlB3lT3l2ZQ7tf4Z123eZ7fuHFDx1iZ5SPQozNfo/QApDtmzXBcr9cooPZ6d5SquD5YoxFdEZGB8KtTGnVafyFxVRokrnEAudRUAUvcGYe69R/iaazWB7al7XgYRo/GnsAgOQsiSYQ5gaHJbDrbWzQcheIEsfZNClEzbmLXCcm8mFhnAKCtm7ZuyM2MRSAjKQIACQByP5sZ0w4zdDBP2um75Nnt+N+dSuMJ/a/GZ2ZEkm3TyFBxDADM1izs2IGHEx2MQcXZd4cfD5LQSp5GHBJ4hlGqk6iXYoicUkSzNaPXFgDqycjji6jcLKIwCsr27frlB0FTLBGRhmVvhCBD8LavItjrLjGzGeB1ItKYJ7NYtBYJbE8I2rVU41Z77IJt3E7VtBF5EAsehyv0uDMOYdVIRMJi0ABuIXhSHaTh0IE5tqr3Q4X6+BjMaJCL6lH1UZhChW6hb0x9HWY2hvSVtPHH2apdoM75CKMDQF/sdGe66Tk4PPzQIGG8lCMjto+KwZARgogqqwQABhC4p6X3g7zvZEnM42KnZhgRlUGgZomZuZf6IWMMmZ5VNNjMnmXw0DI0RgTfaDd2346ImCGlyI/RE9TdlTFG3pDNA9Sj4DFGi4QGEwOLmlPwbVsQWJHj+WL14P6Lv/ALq6vzy4szpYTUdf1bv/s3v/2tz7/y4it37ty5vFqtNnWXUgDoYkgMSFanQOvrrHcjex/yKz78kb2jo7v37ofItsy9pOPjY5jPP3v+qYnNJkVW1z6E0HlvjWm77mK53LRd24U2psSSAFn3rtivTSw9nBRCqJo6z/Pf8j2/1WbZ+fl5lmVkrXNuNpmO3d3WTfShLKc4iLiFENRNOjo6ete73nF+fn569iCEcHp6mkKs6/rnfu7jWeEU7HjllVc0207xEfVm0SqUnzjw/v7+ZDKJMWqWtw6n9Xp948aNo6OjMbdXO2K5XI54czYrvvIPf9feczce6sTP/s2f/mu/40+0Z6vdD/2q/gf/4V/4xJ//R7/tH/wn0xt7D/3kqV/zjlf+yaeAry0ER+999st+4BsfOhMEfvTf/qGf/aG/+9DJp5945f/11X/4S7/vX/uGP/l7dkeOiHzoB77xxX/4yfNPvHztOkTv+S1f+ezXvO+hy9enqz//NX/47JN3Hvr8U3/5x1/8sU98y5/7/rd/08Pw9PG7nsoWk1/RUoGf/ms/+ZEf/Nbxn9WDVX1/9XnOf+Tx8j/6FPtg8m01v9d/6rO/xAe7+xOfDnU3amqTNd/yZ77/T77r933+1shmxbf8uR94XEnJ/6UOi2TQJGFMJIwgwAzMYAyiAXVt0Iib5KUtrKWszJwzCVLg1maGiAXZ5khFprE3HzYh9lpYygwQERTQQh1pKAgGAJpK3DSNKmn2Ca0iWZYxxwcPHigO23UBETX/I9TyyObzvkNoU0qqNGqMGXm4CgfAKOg07H9k4CgplprN5tZa3TX40EriUQAXlLIUkz786PKMxsp7r9TmfkkSUfBaHU4FU5qm0UVBpXhj7Ikd+gB6r6IoNIUZeqmrbNX2qcFan0qvqQXJI6eiKGBIFFNf0ZHZ29tb15W668vl5dH+gcoHHx4eKhSYUk8z1MVdQdthK7UjG8iCphe1t4PuZByKUylfVZEm/cnIoVbDq7We9Leh7ay1yQfvG2YObddi7ayNMWoZcJWaVf9/Vk66GFSbQkQ2bSOEztqmaZQ5qNBz13UanlTgVVQ9DEEEeaibwpJ0XxFCmM1mOoSKotib7WmidAihw17cWUMCKhasJC/pdV17hsrYRziUtNHmKoqCOaqCalEUbdtatCr5KqFtmm6MUsxmM20WIkopjOX+VJ1WCe9tq5KgNNZIPDk5aZrGWjubzU5OIMuyELrJpFitNgpDqxT1ZrNBRJ1HOrmYmchkWSYJNpsNkdW4RVYWR0dHIQRhuLy8RMRJked5XhSF7maXyyXsZEMqR1U7V5FiXZGtM9rFvm40RFTkuabZKVhTlqWKn8pA69YZrTNIR7g+/3q9Nsao1sH5+bm19vbt2zomFUYZAaCDgwPrjA5C1bENIXjvm87HbgPqbLqMHuPKzRaLaRm7GCL0Ea/JZBJ9N5vNSoFNXWWZQyiRBdG0dVsWUzHJGGOd8V1IHG7duvXi585ZPCAwb5lwgJhS1HT70HVoGYzdrMN0EjM3LYu+6EvnG+DknAtNbKv04N4lezSQGdDiKNEQC/a+QA9cJgaUzDkfUvCprtsve997X773mdtP3rp/dnp2cWkBNOah9fp09onI8fGxcq2IIM9zwCQQXUahib7tMuvyPHfkmPoAUpZl6iHoTM+yoixNCIFAECB3NqXkgycARyYFn6xRqzLE3voMgCwvs0yj+FajMoZ68R8eCF4jg7UoCpeZq6urrm7UxDFzbGIXOzW8RVF470Pns739o/2Djd0wUmARhta3l8u1Bh5i9ABQlNloyrqu810UkTt37mizRA4pxSyzYMjp1p+g7tpus8rzHLFQp8yAY2Yt957nZVvV9aqRXoKvl3EHxBRDClw6l+X5+fm5Gpn5fC6h36T5rp/7OiURsUvdxdmVy12eFRnlEiVKqFdVTCnP87puU0oanAMQRLGWRqVsACaD88VE8ejkU1c3HXR5Nj06OOFEzhQW87ratGsJnTU4ITAxxOSTQl6Dp6ns5sSs2YfqYXAU0XTVXrUPUQRSYkQkJEZdsJiIVJMnhMQcnTMaxFosZowCBpqmUXc7z/O8zDrfJvbFpLCWvG+vVlf78dGllVNISFAWxX62rxrWsOOzY1/TCGAASQfowKgiCg4FtNQJ1VgdoighEAYasnOOcNCDzhz3NcCIiFRPXEfgarWSIQdozBvQWaYbmDHiqL81W6Fg1M+1TqAM5Y4HNjQq0qWqR23bVptmb29vBNZ15cqsK8uyqiofEiJoDJKs0eq7akjTNk+aNVadUlosFlmWq4i5Mqm99zJseETEWWuG+oejJ9tLqLd1npdd1z3wXmJq2/Zgf18cIcAvvPAL7333+zZdXW/qp97yjPfxWZMlkIvzy+UmdTh75vhtX/u1X/cvPvOzr9+723Tt0dFJ0Uzu3r07P90fhYyvHSLbEnzbT3qqIWi143GjprsKxVwGIKn/Ce+wRGULZr0Ry6M3njM+2C4oMwI9vJNgjjuY5i5UNF79kX+P0IAWEBtvOo7dcciOcAn29LQto/CRB7OE0HVdhyJJGAURcaxAJUOoHxCZOUb2sedLcoyJo0XjnKs3a01lYpCmaQiQEIURB6Lx2OAI0Fs9AAIkQyklfUnnnE/eGAcgBBTabn6y4M6TKPxtjDFI6ECldHsVDLme/I5DzmDXdQqQ9mn1fRHbvgs8M0dGxAiCOgromrIEIhKA7hhGW7DLEgUALQqhTOE8z8uy7LoHk8lsPp/r7kRPHvTXNCkjWWun03I2m2hIdrlchs5rOQKV4OzqCskyc9f5rgvOOd0ChpBgqIE37ldSn7zeCw2/8cABhZQdZmUIQSmlu0wNESFDKtIyjFW93RZJxYHJ+8aDSMuyiTALAbK11qIh46wjCyBGiMDFGG1mwBhDqLJQgHz+4PTuy68cPv1W4/LUA4CcmcxL7DsXGFBArmX9D6+zG9TZIoY7eOVWIoOvz1ZhHmU3hiv0CB0BCEAaFBj6mQUIyNi3CCraOxrEh+Y1DtkP48hkjiPpKUY/BM9UKRtQgHfsmy6lBAYRRXOHdjjdOn0EtjfdvXue54io1eRgp5ql991g97hX4xkuO0KTAACJEwbs8/15nBRwHY7s7SduhxnHbW3AsY+GLYj+8zp6LsCyTUoAZTbFLbYuIhy291WNMF1vHjkIma+FxIR2rqPlCIbYch+0SKPB7+kYA+StDcvMfaLTaGrGdVoIQ0hDEVVtVRwvgrvRviQgoHTucTDYYeSw6eH4fjLytpeNodGNV2b9CHyM41x/RUTWUYg9XWUMR8H1YYN9BKLHLIyxu42vg6pH6neSBh7Z1NuBOvzRO2N638RJJAB3XcchKs1KBFJKhTWFLdvLi5PF3F8tP/0vPvbgtdc29bJtayDZrFbf+q3f8p73vOvll1994YUXlutq07RtjJerdeMDk0nMCEAIIYS8L0grF1erLvF73//Br/51v/6FF19qOnnt/uuFJd2QXS2XNw4PjhdzAA8ibduoxYYY15tN52OXOEmvFrU7tAwBoQ0hyDCjv+lbvvno5GS5XDJInllNE14sFgAgOfu2r+Y39kIIQR3yqqpCCLdv33TOvf/97wcAXaHatr13797qbB1CmM/nTz/9dIosIlVVlWWpnZjn+Wq1EkmQtCpXWxRZjL6ue+qW7mr29vYUzlDSXFVVGCNA38UM8Nyv/5KHFDN+4r/6G3//9//Zx/Xs2afu/D9u/s5/58GfnZ5cY0kLC7xhuSn3ioO33rx2msjnk2Nm/th/93fv/vind4WeEXHvrTenB9PzN5z8zFe9N5td06HevHb1x5/8XY97+PZs9Ze/+b/4uj/2uz7071wDwYu9Mj5GH/OX6+AduXYAaB4sfzEXibG9qqc3H+3h/OKOez/1QvJxt4Tj9PbB7/rp/9uf/fAffFydxuJw9js/+l/Obh/8Mj7GL8uRZe/MMzaOs7wwdAQoxgWLPolwZDQwnWTlLCdCa40MPCGGQAaNcYDCSYSFNaMLgENgBkK0IhiJkDJEYpNCQkQr0lVemDvviVBCoBQKOxNPCZw1VkRiy5GjETZkrZAxGFNiD8yC8jA3XA/rHA+GmseKsswiMp1OJxPjvddgpfIAYLDhugSoDELXdU3TWWt1AzHG440xjoyuBeo0anQQhpirQdJtJAAAUJSo7pwClDJQQxL0CVIpJV3zsywr8jLG2HaNUtt0BQQtdRV7dEb/qastGRqLXLV1Y4ZCfwBkrUXpiaKDTgIBkIIdKSWtj1pVjRo3Jf0ZY8IgOoyIVVVdXl4S0Xw+J2dFktKopQdGUbnG5+fn5+fnuqmmQfrDYr9er1YrfVPlvY6JsNqAI4tF23Zvb4+Hyk7aqtPpVG0+IipCSi7T51SqrGLcSlvWN1W6tO6InM0MYEyhXreoIpDW1HXdtpRldrFYcOSqqrRzNR4ZfFTieez8YjqrbascZ4VEEXs+eL/nN0Yp1XVd6+OF0PX1aWNk5lk5aZrYBl/XdZ7nyjlV0H/cniFiWebQb5lQFzjVqVD50aIotIMODg5GIg4AXFxcFEWmyUCKtCoHUx2f9Xq9Wq208hszMwgAFJnzPjJ7rYfmU9Qi81mWlZOCiAqXKR6nOAUMmxBEdLZPCMCh5LuI9JlGgJNJ3rbtopxUVdXWDUpPi26aRllEI6UaCRBRB7kOmLbpFEnUTCMt6quD+eLiwjm32Wy0W41xIqJlHkVGYmm4ffu2AvRN3epOTEeIcTZ2j3avuq4LNvQbUZQYkvZvXTVCupOElCL71EpgIGYmiwoMTcvprYPb9++ez+bFarWmoYaKM5mIoEg/tSEBgDWZRL54sASxz73ryYM9Xq8vY+qUuAyM1uS+XTXLhGABDBml2iSBJCwExlpnnB1pH5mbgLRkJt77V1555ejWSVEUVVOHEPI8L/LSh+7BgwfFdFIUxWQyUZkXLQ/IHHtFIyJEzF1WZLkmARhA76MIlmWuQFuIbG2mZEIimi7mkOJ6vTZkmXm92vRdXDcxpMWC9mZzRKzr2vuILF3dbMLq8PAQgPf25imly9UyyzLDW+XVmLx1ZKyBBMZiXbVjPEOHjRq0rmvImr6kpA8XFxcj86xpGmNMWUx1a5oSAlhjUXeJagcUcDREOrCNMdHTYrFfVZUIWqQ8L4hos25YMHPletXPUENTay2xdi6Ky4jIkipIkJpB4URiHbHFiTBkZpFbdOQk5smDbh3b0Caf8jx3lKtvOMmnkhgRY8eL6YnClJ/+7GfyPM/KCTonnGIXSQCRuqbuYuecg4gppbzIEKmtahnyMousnE73ymLmaHJxvj49X2aU1XVrIDcAVhnZQdTdTyGklEA7AZKIpIECwpIEBIBwyKcEAAAcHX1EREZkESIAMkZBD8yyIsusy0ye57PZpCiKsiyYOcstkGS5Ozo66nwbxQNASJ4sTGel7R4dCqqaCgBi7HnE8/lcA1Gyo09gba8gob652hZdhninGBKzupw9dqzmGkYJytCrKjnn1CwT0RjLHGGu3WcbASsdWrr6DJyznpUFA8ttFyrRAQkAqtqkUyCEcOvWLUWlEfuChEqiGhdHANjb21tXG4X4jTHMUG1qXXA1WqMrpnNOBHWd9d5rNnMcKuJaZ0TAWptSREQW4RBGt1qrxeqiY601Btu2tZmzhbXoIiZHXFV1XhY/9fGfCl08mB+8533vCT5OJrPQ+apa5vl009U//+lP7e8fni/PX79//2Z28/X796/WV3fu3HmnW/SRJV3qRi9aYaAt7ALCaeCCAe96j6OLPgYZ9MH1/5lZpYT15HHTNvrqI6KEW/x6e+URR9jt7PGOcA0yflhSFndg5d3PYwy7CBoiKsd5FwLY+e1uzrXscsD1/R45VaSXqxYYUJKUeCz/xSBDFS8Y+e3GGAZGzZ6G5L3fIWwrCtCrtJAdBsdOPhpzFFQIm0MMbdvmLjPGhRiBxBIigMQkzLHpsjzjECkyZgYBEZAlYQQkIUQYigQiIoBKjuCIxYxYvB66HcYRoDdEgMycQACBU+oxqRiBelY1o4zz0JjeXo8jQVcF1bXRmaa7NCKr201OW30MnRuaq6WZdIo1i0ieZUoQwIFnCgAMoFte2YnnoFJCoC/qxcxREl8XVXhUF2vu+TYjAwUYtxxVGYIT+qjWGoDtQAIALf6AhIAPa1C8cRwSkQDk5dTmWUwCRJnJurYzRCiQUrBM1lpEiAwhRURz/+5rD+7ePXrqWeboGdAi9mpN28frxzzDLs8IdnDJ8XV230uGHFJ51KOO+p5D623bRD9h2eKDiDiyVmlHmHi0JOOVxwlOfcm1XdOhtGJAdDuv1j+PIpmDgUo05LvpDETEJNv3AoCU4rCkDRYJ+sApERmkMaimFk8XCRxYzwCgtx5HGgBYJBnwcx2+o/UbG4poOwtkO05kZEwPjcCqSQ0DLR2GAO+4gdOvdKWMMQFAZqxuMftn0Gk/mj8RNUSPHISxryAxikON8uu9pFSpElEpipDmiWEP+5qUkuYQcEwKtir9PKXkfd/gxriRODbebhyf41BUl3XXVuxOz6Elhj0Es7VWNRxoh+OMWsKReRwDMhCujTEpBREE7u184oAdAm5Vscaotb0ufaCrkF4WoO+afm1iQepfJPkkzGgNkSXjHtna+jwsoqW39ZqZc9ZaYy0iGkt7s7meyiJGxBqbk42rzY35LK02n/ipn7z74osmo+DbLvpqvf51X/3rPvjBD7706p27d+40XWh9uH92Fona4FlA08pYJMQkKWGKAHR6eX7rqaff96UffOnOay+8+urNJ57xYu4+eOBclllXr5YS/NO3bjqLKYa6rnzTOucYcbVen69Wq6oLSZTa/JB9SMIpJmvtpq6rpv4NX/e1b3n++funD7z38/29LoblcqnbLJ1BGu2v6z4xeTKZdF1QXpUWCamqajqd3rv7msYgj46OjbHvfve787J49dVXReTVV1+9vLiq67ppOgBQbVaFDIgIhFW5b4wE6Eg6OjrSNPBxXdCZsl6tAXqgcO+JQ5NfGwl3/unPfx6seTz+0jf95//GP/nPzU5xzlf/6afeeNoTv+aduwRYYfmr//of+4Kl/04//vJf/23/1Tf/+X93bHPjzK0vf9sr//iTu6dRZo/e8cTuJ6Fu/9S7f+ALPvw/+I/+4ju+8yOLHf2Qz/3dn/uVLhX4v9pj+dKDf/Fn/v6X//5v2f3w4G23ft+d//6Fv/WzH/0jf/XsX77aXtUAUOxPjt/91Id/8Nue/40ftOUvJ+T9y3WUx390b/5O/Vu70xA8ZKhiBQDwUGyBh/PfeOAQPONHBdV1cOs0KPUvJYVX2wuOE0ADDnT9wzcemcvAFVrITv0u3a5MJpPFYuF91MVL3dExjqWkHl1JFRr2vl8UzJBwOuzlrDJUiHrmh9kpZASEJD1hisgmEN2vqi6BAoXOOV3isyyLEZxDMGSt7dPVjVEVaebej42RQ+icMYRGgJXthYgmU2m7NLrcitGIYG5dHEjlJEBEt2/cFBFrLQAr8KeIsx1qIPd7pCTWmZFdiwOq7sgwojFGX0T3DJvN5uLqcrNaa6VuGQlGietQI6JzzmV5HALWNDCm1a4qVqU8WW3k1WqlMr7KaCaii4sLAFB1FIUjE8j4DNpTMGREaT9qDrISx8Z9i+LdAICI66pGxKI4qKp1va61WXQkOJtpOrbKXDRNk2fZ/HCqdWIZo+5DiqLQWygLWMtAMXOeuzzPlVxcluVqtbp/dqo4teKt3vvpdKpSG+MeZuyCca+lRNRxXGnnFkWxXq9VgVRVYm7fvn15ed62rTFOT5tOp8rLY+blcql9qk7Wer1eLBbaqjHGpmnQGv1DA7o9C3sntU5/q83rve9abzIHQ57odDrVUaQ0oFu3biHivfuvGyQAUDEZbYfpbNJ1XVVvjDEsHLuY57n2l3aNscqA6pkcGmwGAIWqlRmNvUQkFEWxWCx0e9C1XoB1CFlrY+j35OVseuAyRPQirn1MnQyXGWNU8yTLMgHpgneITdMElvneIgRfZHlMHtGQzUKKV5sL31Y3jk9uH93264goR0cHVVUxJyIHQiLCCYyBGL26mV2Mvg1kDad4ebqq/eb4+DCx96G2FovcuayARFeXFQgYm2Mia22KgawIp96xANJi55oFrux7obg3WTDCnTuvZJc5It64caPbbEIIaCxZF3zcrM+XVyudtk3dEtF8Me+6brlcai3H6WQxsuw1kKYZGPWmYRAtg9HrrhAWCBJT1wWRJs/z2WyhW3Frs6qqm6Y7Pj4uikJVdtRmNk2joZcorLn/w7ZfnWJNcwnet8xcFAUzBp/KvNSIQm8wM5dSYhAAyrJMA2nIAgBoTZZZImKJgBAjI8l8Og0h1PVmRAaZY55PEbGpO+VxR0q5KbEwbduer9ZE1XQ6LfI9Y8xisliv110Izrmc9ibFBIE1tmTApygpJQuIiEaMsICIQ0QnkAyntJje0NAXJ85tobNvMV0spjem06lmY+v2ngTqrg1tu/JhOi3ZmcX0BBE4mNxlKQVOQcRkmTGWUkrJBxCnmrm6mihfzZrsxu0njvZPXrt7dvfeq20TLi8qSDSbLZxLTdMRUW6dzmIcspERjEgQQUBh1cZAEMaBBmZogAoABEDG7E8AMGZQg7Qmz3NrCVGKMptOS+csIsbUtR3vHx4URabIYeCIxlgyxhgKIJjme7OyfTTJ6fjkeDmvY4yr1eby8pJoqdZ7dMR2BExwMinU5hNRZmzsPGPPdNblW4eZhu40/KZWlJlj6FORFHQeN/yLxUJVZcJOFdYQAiROmEaPWMf5fD4f16ARtSAiSAw7UqLjdTSeN65H1lq1lqYvD5tlO6S0yIk7btvWOjvAlX3HaHiJBxXNNKSJGNPXlmxb33VNlmVaES2EAD2sSv1ykzjPcxBAQOeMBqettVmRR05JuGsb7oXa3aarssJ1vrOFy4rCc/c//fX/GQAKW3zwgx98y9ueffHFFx+c3be+DJze+s63TIrs/ssPXnvttUt3sbe3x5u41c2U6zDQNbiH9UsdpzzCASPOoj2xCyVvD96eqcdDkOUoowE7eNb4DOPn8AYUbPznw0+7w48ecatdbEJPAdjF+HgsiwfKsQSFHK8dMAgvwA7a9cZDFRustRx7oq6W9x6ftp+oGiH3kQwqyKDyAJmxgwAokyHrcuzzmBwDM6eRiBFjtLZHZHDQQaYhEcAYFDHCHH3IrUsxSuLNan1w82ZCQ2QiEAMiCAIqusYCYM0YtNlp0p5/DQAI21iNvlIIAQeWosKFIwujx1wAkEi3MiF2AEAGEZHQgKB2BAIqrUBE8qxAQASKIWmBAm1G5C33XAb5OWX5IeJqtYoxMtPh/oFC2zTo2xpjoigGh4iYolaYNtuOgJ5eYYyBmAR4N9zy0NG3jAiwZhvp418bhOPfibeK9dvhDQYACbUu5ec7tl0gZK2ZzuauyEO9MogGyRjDyNOyTIPSgpvkghBC8G0X2i435EGEozU5CkhImIPs6EXAQKkY5xRi7yEO42qrszH2pjw2TQHsVhwDeAfTHE8YcyPGO45viogM14D+7R11EgMQkpLFx6uNE0rXdXXAdq6vE0SIkIahq3aZeuVujLKVKd99r37N0KoTiCjAstWCGB/voXEiIsxJpA9gIGtOwkAet8R8LbCnv9KSif01NXuqN59pjK+MyGkaSiCqQyUiknptJuN69BYR1T0DwDLLt2YQexukn6g7kVKqqkcDoJ3vVMxRg8OWtlFDlWkb1QZ02VYrJCIK6knqHSqXGSLCUdN/gMUHS9KvAm6oa7S1uiwi4tvOOYeGxnYYhuWWqc07gs4a0Q0h9DUxRgjY2Bh97DWvYQi19j8BRqK+Qg6LRpJ7fS7dhY9yhGPfDTO9X2jGgdSvm9eXCf0wAT/E1hwPg8ZaS8aoA6zjWbnfGhhLSABAKCklDN5ZkxGmppoQNxdXL37yU+f3X+cUuUsisry8/Lrf8LVf/uVf/vKrr9x77f7VplrXzdVm04QYUqQsJ4OpbXn3ySNerK8Y3Xu/7Fefb9Y//rM/95Mf/9S3/6Zvq9b1rVtPWEvNepMbzMtyNp0QyGp5ub5aykA4Oru86nwEwqi6+UOof3fuO+e6EC6uLj/wwS/9wAc/6GNQ17dpmtlspu66iLRtm+fl/r65c+dO0/TkNV1lJpPJZFJoISzv/Xw2GzQc3Wazqaoqz7OQ4mw2m06nzz333Esvvlw19euvP7h796760oGTJj5b50aoRRscNbG66w4PDxUUUI/r8vKSmQ/39sfXef5bPzQ53pKUu2X1T/7TvwRqMT7vYTLbLuuHCM4PHZTZd3/7R3Y/uXzh9bs//unPf2U9Xv3xT1985rWjd2w1hd9Ywu7guRsn731691c/92d/7E2hxkR+VQE8LFf9K3gQkb1mnaY3FmS/6LqFlNl875pkEJlfcvFDoh//L344+O4r/uB37i5ztsze+e0ffvZr3ptCai42gDLdm0NmysPZ57uYdW9m/Pz/j89zhBhSanWZUF9RSUAicnZ2puxI5dYoiVWXrXHFSSmpFwdA6gGOud4i6JsutL2gR4zCLGNyFSKqvvAYGc2yYhDtESVG6IrZr3o7GYRZlglDSqEsyxD9ZrMBAGZWrwrROOdm5YTQhJgODg50sfOpz+CxQ1FBY0yelyklGrJtVIA4pXTjxlbzJ8bEzFVVGeOOj4/VqVa452D/cLPZhOjHZ9b05BgjQK/SMIKkKSUWPDg8NgRhqO4oIpO8UKaw9oKzFgDqriVLUXqCsxmK5o0ov4KbfZ1DEf1WsVd9PO2XLMsUaQoh1HVNRCNrWERUqERXT6UbK9taRJ544onDw8MRJ00pOZfv72e6P2/bFqEXgNamKMuyaXvodn9/3zl3dXWVmFWIQ595tVo1TXN1VT/55Ik68Lr9KMvSWqt7BoWWFMFXEH+ElVVwY1QOVahUVxzF4o1xdV1XVWUH3U/VntYcaj1T+9e5nJm1imPvdYpoc+163Pri0+nUp9h1nb6m7of1MZg5ADgySoS/uroioqIoQFApC13XrVYrLbqr7HI986WXXlosFtH3dDkNDxdFIcDaC0SkxSR7yYXBL6qqSgdDOSnatj09PT06OlKZFK2N+eDBg/39/cVisV6vp9NZ1zXKfdZJx4w+BpNZENxsNtbaw8NDAKhb37Ytg8zi0SMNRdd1ZmayLLu8vGya5saNGzEkTtEVOXehbVuOaTGbGzBt61MbfPISkzgkorrZPHjtIqYkYolIBEEIQFiUBypElDhojXcGQrGEJnaQVt295tRlWJTGCCZEn3i9quqVJ3KGrBY6AhpBKyOMiSMMtbWZOcSOrPGhA8KbN08eXPo2NmRMMS0mRanD7PDw2BizqaumaYCo6bw6Dl2IucusyYOv2yZMJ6AZDJA4JNZmjzHmLkNCJURr2KntuqZp8qwsJjPnHBnoozLOFdMJOWuMAbIhiXF5EowppcQnt24CwHq9VlhfK6l2XccMRDJOPZ0jADAp97sudCEB9PIyghiTn85nagSMcWLBGGeMCyHE2BhjIGCKjXOOyIpI29aasgAAZZZbawtXqGea29yAaTZd1/hV2Jyc3JyVmJkNADiXTcqZ9z62ZpqfZBRs5lJLzYpV6p05xL7yueHARKhAKg1HkFQUk7Zum1WjD++ci1FjKuicaxLXte+pJIYQ0Zr5pJi2bd3WGEJb5nsiApKSTwBIZK1lEpQYHeVoCkSHiE3TiKQUIMvKk6Pjp59+NkV44dMv373zIHiWaDNT2DyTKK2vkUUkNNH3JBvoOw4IgQkRZEhx7jXvAPowce++9P4rIvQFyhW8QQQQJTLH6LPcHhwslEW3dzDXuOZsVggwkJtMC+sIACgr2rZtupolFkUG9tEkp/lshvvZZz/72RDSfD7XsBALq/K7shLH6K/KcIuIFrgDAGvJ5pk6ZaOdVLh5BGd76SfB2WwWQtg0tdpY7TidCDIU5ZIxCxbRkWHsZQ9pSHnRncboaRpjkEWMkLNq/TTsDQOhSpcD9V+895eXl/3tbC4cAgT9VlsjpaR0Vd1abDYbtHh4eFjXNQpEYS2zrEsnERHZ9Xqtt3Mun0xKdWGyLAPqmcHQ50z3IXNFEvr8AGFtZEQMMWjFhS72PZVlWlcWijJ3hXR113Lz0z/3zz/2iY9ZJCzsu55+ZjqdkSNX2JD88cnJu9/3rvsXr6fPgA0Dm0wgadKxmv4RO4YdhFcP3OGd7SJr4+YJdzBlIgQQ5gQgAH130qCHsAtFDQhCf8JDn+/gMryLOAx4gTz0kDwwEB968vF1RNIwZ7Z32b34cIxE7DR+PqBPj4Ob601dGWOi78Y3lR2AHgSY2WjWNlHiqMuVSGqaZrHI5vO5b1oi0rJCTdMYtPOpLctyU/fxbWVexNgPFEHQuMR0Om2qWjdqk3wiAbquA+sAoNrUs3LWrptpOeUkiAwMgEiAKMBBogQ02cgEHJt0F/4jAc2P1kkFKkw8dPo4dtUWKALIzEq+VuBm2LtfExMYN+VjgEVH/2azuXnzZlEUdV1D6reqOJTj1KC3ltrs72j6/CzYyV9IwWtH6y5NT7bOMQ9BBZCdtEoSFq1i/cj+1SvsTgTdE8uAucOQgCYipme19xArIiJslX0ATOLwONUONZeACEDG9HXPJ7Pp1et30XKe54YB0IYQ6s2mmBRROKTEAgfTiTC3m3VX1ynP0VjmBCzOWO61mwf0U/SNYJzsOMDN0HN7SQZmyggX4qBY90YTsStegawqesOLD+ePetkygJijAdmdVNiTDfVMAABJzADWunHW4zAVx58YY3ZYwgADvQgR3WDZRvqGGlwLhNjXuTemFzHUczTAzop40LXyr/0roNqI7TTR6+viYRC9Up5Hkuwg8iua5Auwq2UxTrRxamjeU9oRMh5bZgzYwo6ycDeknSpdJcuytm196PrGNAiAaayfiOgyM5lM8qyM8dHgFyGN/iEzO9PPdF3eZGBjqY+n7a/ufde0vu3Iud4TJqcJbgAQUxq9IETUIrH6gnGouoODjDIQIGJZltopWrtjHFHjFB17WVdcGcjIwqpa30vqo6HecMEoVSaafWzJ6FvoJjvEDhFBcD6dIWKSXtpyhNfHQQsAiKOi0dbUy7Cg4OCia6/FEFJ8NNzsfee9Nxp1y/N+94BIAgkSsFoDZo4kbIi4rX2KEzR+vfrkx37m/N69tlqJpMuLi8vN1W/8+m/4yIe//MUXXzo7P2emVd289uDBuq6CJnDXlclyEAmhAwCtZ3p+fnXrmad++/f9LsjzH/17f69YLNo2/JW/8aPz6ez5tzz73ne/q7A2tBuf6iKjlLq2bkC0ABd7ls26TklCSMwcBWQI946TVEQi89nZ2Tvf+c4PfehDH/3oR4tJebG8+pIv+RI0tK42glCWZdd1k8lsvV6vN5VzeQhpFLK8uLjY399n5sVice/evRACgAyp3HB5uSKiy8uruq3Lsjw7O7t9+7Yui88++6xOmeVyWbXNZrMiojLL9/f3FcjQ8Izu83QzJyL7+/vee41oKvMOoAMAyux7v+srdvtuc+/qtY9+5s1ghcnHL3jayXueOnj3k7uffOav/fPlSw++4MUB4OqlB5/96z999O9tf3787idP3vP0/Y+9OH7y7t/2VcUO9NlcbD7xP/zDN6WJwTzWP/xXdDC/7Vu+bPeD8mSvOJw9Tq3iccczX/kuk1+DrW9+8C2v/ONH8Mq/qGerz9b/8D/4i6lJX/Uf/+aHviwOZgDwRqnu8ZCdiCMAvP2bv+zv/+Cf+yU9z//mjxQTm204Ewbfsm1bxRntUCwEEWOMqi+sq1sIIfmQUipcVrgst043azFGETSAHXOPvg2eiLXWGBujTyk1vjMw5GkNeTa6H/DeTyYT3RgruieEddc6Ml3Xpa7P5QeAzWaTZVnXNYio3CUtypsiV20NKLrO7mxgoM/p7tGoCInHOHQMKfhIFFVbQJvFORcjtq3PMtjb21PLphvCy8tLlrTZbLTY14i2W2u7rrFIXQxqLfXxBMgYgwApaY0HjTdniCalWlOX2tbrq6WUrO1jAM5lvMNxVoclG7ISu67TXYcmHWuas7649z63TlkmisM65/b399UL0FVYsa3NZrNa1YvFRC38+fl5Xde3b9+ezWZ3794VEZtnnKK+zmQySbGPnWsGzCuvvKL6EiEEFVH13pvMpZRU0Vil/yaTycHBwWKxYOYx5WukmGiNgbSTCadxzdFZGOMTIYRR1Ftzn2/ffnI2m52enupwUqrp+fm5bgxms9nV1RURTCaTzWYTQhcja765NqM+uTKavfd7e3t1XefWzefz6XRad+14L9sXVeu3ytodCkyPGA0niTFO8r5Clw65pmnW6/Xx8TEzP3jwQHuNh5KAmh7U+b7KliYQKMguACqxWleVNpQMdUFH6RttJTtohbdt61yuNEB1hXCQKdeiglq8S1tys6nDUJSeH7PXyrLMGG+tPTk5IaJbN2+3bXt+2svER066s41d7LrQtQEtzufzLDdnZ2e1q0OEswdnbWWDj4BIRgusABBFTpKSsQMVFDExIxAL2EAhhHrtKwezWXlyMuck5w+uDDpBpWtASMkQJInKNmXmJGAHewIANjPex6wojMHEcTIppIvobNs2ho21tulaQcAUD/aPDvZhs9ms1+tyOu27mCEvJplrppP5KH0DO5gJAXrvsyIf9DeYnJUNElGKYoYUByIq8omOSRCaTuZj2pkO9c1ms7xa53meouRZ6WzunAs+hcjGGCMYI4cQvI9FMVHK/yBoAEkEAOq2BeTZbEbWMLOK+6s7kFsXQqg6DyxlWQAQJwkhAFBdtxJlf29fnydGTZVj59xiMgeA4/2piPgucstEZpbtI1LwqVkmIet9LMtMkl0ua0fWOUuSoWBoW2tzIpIkCRKKUWyH0HBgIAAw9dqnJErSgiQkqpiqVasahUSAbZaVIpoiLcK4mBzGGHMDTVshEgDGyGANkUWRKAmNRcxD6IosK4uyq5Mx5mh/vljsg1C75rt3771+7yJ2YDBDMjHIptpYa1m8c06YdY0zow4BXvOSVfMOgAZVQBFg5AQAZACJQElUrG6a6Sswku1C24V6OivL6TRKIORyUib288mkaapNuyYi58xy3V5cJSIQFGMwxriu1yF25YUAPPHGuXl2fn7JG7WxOgLVrzTGKCtxTG0XkaqqEFGFmBIEdS3TUN9StYw1zsHMau60EqwGMABA4VQFvtRMjXoaMiTaqnFzZJT1MmJ6ai1HBpuaMokpag1bHSECyYcokue5I5NA1IQqAKIV0ftUTnIpJRiCx6PYdByK0+q67328vFxOJpPoGyISBkjMEjdtKyLz+Z7ybwb30yj7ylor3POpuVe/TGNCgyrquDxTCE7HdmazYlFwX7bBVG0TTEgpoUCeuxBDPi04JQ5xtVx67w9vHi03F5t6/a5n3g4mRe4W+/NX7r7Sxvrtt9/Zy7eLCBIq12PXN4brTGFjjMJzI1yiewUeUpl66HCQayQi2SmC0QuT7qBUiAZ2sJXBdccR69zdi49uPOxolWoHjF79eDIOYgs4HMNpW4hc1TB2v+WBwa4fjqA2M6uIroxKAjJSlh8+fIi+7XiQXWPuhYZ7wE7DSUTKWUs+oQACkjHWmBijEHofEzMmmu3NLi4uQgiXyyvdu4QUM3Rd103Kcty7pJ2cPt0AnZ+fz2aLruuMJOecEHY+hMRRuAseNvV0MoGe2Wpg5ISaLW15BIPGzhq30TKIkPbL9lCMuI+NEAEhoSmGomoxRh5Qv90O0m300Be93O24LdO62w8ePHjuuee0JcvM4cCmH+/OA6KhsR1go0A8M+sVrvENARTyHhMZEFGRYGOQqE/DJzDAYh6T8K7PMA7acZqogdB/0sDxpFG1FpHQisjAdh1QWiGdBY+606BLLkCGQMjlZZ6VQ1+HkQisAJ8uwEQYQsoMnt1/cHn6+vzpp5MIkhhrox809ZGQSJBGY8r8sGhGP0NJyECWZykl53qvQETMkO3InHgoLc3MzDIaYmNIpaFwJ52Eh1KiMJgatWt9bybWbaL6SyH0Wvh6/RijRO1BUIavQr3azqkvyUgKGWsva+kbXXJy53Tnrd6FCvwXRTEpp0SEIow9Aq4dpFQUZThOJlMf++JFyubQgeqjt9aqyAYMBlB3w5nSf3qJcx5bYFzkiSgOzwlb6BNgCGMq3KzjTRD1BfmhIM0w94loEP/ZyhDrfcOghKi/wmvqHH22hLOPtmYHe3snR7sg+MPZLYiohIUdQJyAoSgmRTGRvpbdNSWZotdM2qrwm0GTXes+q4yPJQOZGa3ugHdbsr08OjOD9Mu8iMSdOBkPdUg0cRqkZzyhocFdj6Nxs9QnXI9WQjsFETkNdYEBVBPJDpWLdtdHGhIp7KBvKCI4xFN3z9TFXn3pRx56HQC4vLxUxcayKESEyBKgQdt1LSGBpAyk67ocIVWbX/jYz9575cXYddbR6w8u1pvlt3/nt7///e//5Cc/6b03WX7v7r3L9XrdtmAsx05Hb/IdiHAKiaEN/uzi/N3v/uD/8ff9XpxOXru4+A3f+M0f+rVfXa3re6+89qlP/Mt/9E9+/Bc+9ckPfeBL9orsfW9/W5nZ8/vn1XoTQrh5+zCxfPbTn1lXdWCJLMZmyJ0yxPtOARGRBLhcXh2dHP+O3/m9aMxsf2+5Wa/r6pU7rwLA+dmltfapJ57UHVJVVRcXVyKChkhMCIHItr4DQt0/aW0oABjyrztjzGw2c841XaPz6M6dOyA4W8w3m1WM8ejoaDqdtsHX9ebFF180gBcXFyJy48YNJfqpqVHK1dHRUdM0ihP1IcymD9C949u+/OR9z+523NmnXm1X7eO69Ys6slnxkT/4HZMdODj6ePcnf+HNX+HuRz+bujCiq8XB7CP//rf+6L/1Q1rC7uBdT3/g3/iqaz+IsnntYXnn//UcP/XH/sZv/JO/e/xnd1W54ovWo4ht2N0i1q8vP/n//fFfnucD+Cf/yV9avnj/m/7M95N9swUAOaTY+mxejp/88z/+N365nud/u4c5B4C+nGAIyikevUElMavG1Lgoxxg1kZx3qlcpthViGBZo4hCVdjpadRXzOT4+LstyVW3KstQqgsaYum6ZwRW5QjNjTXkR6T1/Y3Srs1gsVtVGORYpJc2tyTK7Xq8BIISQZUREIQZjjMv6XaXylULoyPW5RLrx6OpOv4Le7YIbN260bRtTgJ1yO6O/oCbUDNK66oFPJhNderTplOjkfVsUxTzLYoxoTb8HVhh0u/1jSKwKGCofTERjYsrYRcyQBqEGfdRxV69r6whpKWF8DGwrgpCG7ZYK/m42G31s1fTQeMDl5WVKaTLJcKhJrjv/e/fuqRbzmIKppJaDg4Nqs1REo67r5XLJg6CEticRzWYzV+Ray06f01q7t7fnnKuqSh29UfFTm+709FShYd3GKKEYEdu21T8GRxgH3xOVY0hkm6aqqjUi5rnqiUMIXV1vlsvL27dvA3CW9UiHPh5An9Y9Zuqo6ITueBXMdWRckYMhbboYowZWtV90l3V1ddV7cwInJyda3upqs0wpPf3csyNvThWBmVk5xXojAMiHIoFa0TFx1PJW+oIxRmOtDAPPWTvkxQfdjCmVvhpgaNV7CSGU5bRt25T6cJEmCgy8BFCa+cnJiTEG0cxmtFqt9MqFvVafYDxQgENkAQsmJtZKxfP5vAux68JsNpPEbbXpuiAJrHVtaLuOrDVFUZBQlllh7LpAxqiMBsA2CCSQBscfYgxkXFYURIqjpoPFweHhYr1e1+sYQpBoDGUM4Jy1SDF6BgE0LEmEBdA55TkmmxlmgZTy3LWxRpS267LSiStDkiRgxLZdpzkNi8UiJl9VFYKZzWbW2qZpsqzY29urqmo6X9gsT7El6XNw9QSDpFEuHVrr9bosy4mbKd+z8c18MXWZadsWyXY+nF+cZllWTnKWqP2oMRvV5m6ariyt5pTs7+8n0XkhiBCTGGMQTAyMEA0FZ/ONr8q8sNZqqaJM7OXl5Ww2SYlF0v7+IsaYQozRW4Q8d0GKGHl//5DQXFxcZcbEGC1aygtL+XRvAQDCqBQlETEhIyKKNkYWnzgZBoqBAYQos0jCaC1gNJJSbiaGmIASp8jBGiPMiTkzzqIVEZcZUK0/MgBKEGfNFNdlInqvPqC1NrMWEbMhEKhqqFGCNRhDGNxbHDyjHJOKJ3IU1LYVsbFuUgeFnR8eHu7vH6aUVsvNZ195db3cGMgNGYmSmGMKhkA4ksEYe+ItpwAwaP/1RoYU0HPk0hZ+3lZQVxGskTvoY2SAmLy1GYBYh2SSc9Y6TNxZtMYaAc/outigljZIEhIACDPXdV2HJssy5wxLrOs6S4+em8urZVumk5ObMfq2bZm3isk6vxT1GnM41P0fgQJmZhAzJIlqH/kYLBnVp0JEJWP5xjdNE6Uniml2i3KlnXOaO6KhMg18jsAjDhpHaoj0Xjr+U0oK7/GOvuVo5BHRIFrrYIAuLy4ulDoZQrCFSs7iCGqNtf6UB61oHgnFGOu6zh1Z4zROGWNsqkqzcGBQDR3R8JSC934ymyqGk+c5AaLtk5t7x7woxtzxAVLAIavAkKAhGulW51eX0+k0JC/MWZkdTY7a1kf2L7z86abuXq9esUiz2R5DYAhPPfsU3AWbUlKxcGecsZZjGlHX63AzAwii7aUPrhMbRUQhJFEKfupZkwig/FwiYpa0I1o6dEbavQgN2s2yg3GPDTdCDCNqg9fBaNnBy0a0dPctYIC2B89/y6u9FpoYADJmzrJi3CHJoKfeoySPYTeDiKZxNVXsug7VgA0PBrAV1hARi6SyA1mWoTCk1HUBiNBYIKzapm69zYrcOWY+uzj3sWuxPTo4bNp2uVyWZanbNaAeA9XRAEDIQkYTdqDqunKxoCyvq3Z5dn5cFmG5tPOZyTPpywYiAjEzDtmlO20rY3fou1s0SUBT3NDY3VbAHflL3dfqzp7QEFGirZg6D5Tn8bK6JVXroJTPT37ykzHy/v6+MaYsSwP9DBxRKn0wa60KbgAAsEmDjPioQFfOZz4mvcWwM4MxW4F2dN8RMaaUhJ2xj9PmVi7wFkcG0Mce947DaVsGLjMjGOhRe4sDfI8oaZD7ecSNkDJDqgDIIikF5xw5a7MihCrPjG8TM+Z5Hjh2XZdR4ZyDxJ33rjCr5eWLn/n005m79da3tYGESQgQhVnCsAINz2/GwTls+4diDiBEpBWivff3799/6qmn8jyvqmpSlCqBWhRF48MAYAW15tosjFvJfP2vcy53uWA/E8f0UhwQKd6Si3t0NQ5l34hIya26Rm5H5/Ar5xxz0k3/OLRGgUJELIdP0qCdRESEPRRrEbUUnuwgg5pHacxQmRORhpL0iJgVGUFf5p4GxZiUkhnUnEfbNb6X7LDgRSsMPlQHb5hKiGiGccXDy47xjH66DcAlDTIX+q/xUsYYGrKE9BPaSeAA0Kp6lNKjB6G+Jg/KUADUm3kVHe9pEaJiXiPSynEslWsQ+7zhcVRsW1jzJUjDNtZacm47f0fS+mjPx7ceL2XQSa/qCYQog9nB8dDMpkE5RxOFUkqIfawIARAhDdUUx81Bry4F28qfzEzQM6DHkTASpcchCgOQoa+AA9Q+nNz//cjWBgAB0JImeZ5fXl5OJjMUKrJsUhRd152fnt28eUM4sufQrOd54a8uX/jkx1994bMppRC7q3WDBv733/3d73nPez7z6c/Um6oop1dXy7Or5dVmlRC6zgMgiFhj2hA67wHBJ3//7PQrv+p/99u+9/vRubPVVUJj0O0tjmbTg0k5P7lx8+lnnvzYT/7Exz72sfe99bnjX/1lENpmvby6ulL7fP/s7OziChFFuOu6KMDMCpGICAHGlJxzy82mnM6++7f8ZiJqu+7mzZuHJ8c3bt3c29v73Oc+J4xVVb32+v1JUWq9vv3DA2a+urpiZhFUWX9E9DEQkfLg/n/s/Xf0bdtxFohW1Qwr7PBLJ98oWeEqWZZtScZyBIMRJhkMxsbYNPDaDbi7H/mNQT839OPRPaBp8nA/4NGEBtNEgTFtGwfZsmVLVrAkS7q6OZx74i/usNKcs+r9UWutvX/nnitf08KDN7rXH/ees8/ea689Q82qr776Spdc13Xeu709jeH7PkVZljVNs1ysyulEPTaV4JhOpwBw6dKlnelMRFar1cnJyWKxWCwWzPzGN75RAYWbN2/qsinLUgGRmCIAAHO+OyF/Dli8/YnnvlAyCLGLO49e3H6FiA4/c+PV3+Hup57D80oRe6+9MpKXuWnz/XPVDF1Vr24v/kOf9z/6dfOjT1d3F+UgP1IczPZed/XuL77wy7rJg+954/Zfl7eOw/oLkx7Q6+ZHn/mxP/73v/bPfZufFr/km7tV8/g//eAX/75fPb5S3V3c/MjTX8Dn+T/hxdn/xvDsCBSqS6yVMcw8Un5Ukk5fISISOJeORWzbNoQ0nuB13ZZZrnRa9Vh4YAIqsjObzbTJT1Y6RZaLomAETYmp5puqXSlgrThv0zRnbTebzYx3eZ6zpBSic246nZ6dneBAphFJAGQsERpnHWB/wOV5nlJIXfDeh8Qauekza4NTEFQx35QSoGiZvJ56KuOQBlUuItrZ2dEwdWw/2EMMAw6uNlBDX1C3gVCYU4xsjNrbEEJb1QqvaEifhj4TGqfE2NNuFIsci9v066qqUhIZDqSiLsU0dPxWwVYti1bbzptcNYhIlrm6btbrtcr7Kk6qUXqWZeq1jtCAzXxd18ys5+wIf9fDRQZlwUqFw0FhqT0Ku7u7AKCAuFLhFKksyx6P0NJpjVO0UZs+iTqo44HFIVbLFQBYa5tUKddBR1tX72pVIYoxZjKZLBYL/ZTWV4nI0dGRumRKqhhQLa+MaWbe2dnR4jaddO0oqF9nrVWFBM1/0FBvrjtiPp/rXKjzeenSpcVi0TRpNsvN1kTr9B0cHCiQpKNRVdXJycko6Oycw9TLKopICGE2m3WDoshsNhNmM9SDhl5XXel7naYZdLjOzs6UBtg01f7+vgIomlpg5jzvwaDVarWzs8cDl1OrkcjcP/9HSN5lequqqu7cvHXlyhXnnHV2Op0CYYypbVtJYIxru85nHgAWi4Uw75a7bd3oXhMGZiACQmssJg4pRiDWfh5E5LKsyGdZlhPawrsrVy8777Pc3blz58Xr18/OltbmDAAQAWJgidIZ0SpzlwL00ZCIdT25J89L6/3y+GS1WtFhKGfWlbYLyWV5bLs89yHkq9WqbevViuq6DiFMZrMBEhFEUQ4+M6cujJMOAIo1K4bQhm4ymVhrz1ZLl2cAEEIgkiQxCTVdneqkY37lyhVm6epaV37TVACQo2eJajQU4F6v13lZhBAmk8nZ2Zn33nvSFah2sizLLHdVtRKRosgAfEppNpuEEIwzzlkAISLjva721WrVdck5tz5rrPEQbbVeGzTTYr8syyzLMpeLSAwcYwxdDCG4JCBsTEI0xC6GCAK5L2NMwqI2VJlvAGAAUASYgROyGGME+hJ8Ra0IDIBqakYR4ZSs7XvtbMcgfZHiFo1vRLGitFrcqW8z1HP5QwgIiExA1oJl4SgMkBCwWqcQmtPjOsYXU4iTySzLCmcnhAa5bWLDnAgQDKQUFWAjJAFFrNM2+qQkMxHRiEDgXFidBohM/6P9t6y1WvBsjJlMioi1c85540vjvGGOTew8pS4QEq1WK+uoUBHk2BpnZvkspVTXVZY7hmS9fdm+BAC4cOHC0WRVVVVIXUop84WCuSlGHdgxO6WPNComedNzvDTQ62NtZ0MIMQSmvnpeNcGZeX9n33t/eHKsyFLfHkBD+4Gkrz6AmjjtAhpCmMxnunFkqGXhgTo2xL9Jg0s9PXGgi+nJ65yTlMCQHriKcetxmQaxCxnkGURkf3//zp07+nPSQKI1xrRN20gvLaIlSkQUeZMh0G2r1l7Ba30SjqkoCjf00tRfISKcziGuzlgwUrVV7MJ2PjjGkGW5UlStsyySOLrchWaFxmelff6l5xyZ18xfe3h2OH/dnDHeOTm0We7UdeixYO5zAnEU2diCGlXDdwNb6BYiBAFVVIXzvGMN/EZ8Ydx+PJShqYb3+Lqcx91GLwS2yszHa/u220gxbKURaEv0o/dHWXADiW5YliMG1OcfhiOQB1ayvnF8JNwCFu+5mraJMTKn/j4q/TqIX49yAQLACWjggDMzgQhCG6PJc18WiNiFkAgms2nus9CE1XL5yOsefs3Dj3jvj+4eHh0dtW2ri0b7Dg8gWt/YxBgDxqyqVZv44de/MffZrVt3bt68tW47v2/IGrImxpgEjTFICIKb8UHk1BMAR9M5pCI22Yh0XrB7HMzR8eUkAIB2M8VpkMkDhHFXaEjP3JcBav6qbVsFDowxs3ICoBh30F8Xt5q9xBhDSABAgKrpH2NUQTfd/7rZdGPHpIp4YMl0HMbFBgDO2i5EvI/C+OYatXztUFDPfWECj6toNEDDh/reekrrkC01Bk6hC/enOi4Wi+PjExF0eRZCKDPfdfHg4OLp7u7xrSVINEjkXFJJCkK1oZMs92gQcb1enR0d1p/+RZuXfrJ3dLwy5CfziQ5dGvTytPsODhktzT2OYGiIoSgKtYPqNxRFgQJlXrhB9rTP1upGc96Oov50TvRGR0OPhyQ8slr60RgGW1eOUkq1anU06CGEkHoRHiIyaMZhjDGMoO1gWzb6ShrghRDM8LSjB6BLkYiEgZnJbG6iK1yd5jEqG02fPq21vaGAjZQHaMnSttkZ/7x9c91LuAVxIqIZzaAIiJixK922APFWvs0OKw1RxtWunsRoA2XYuf36PP9U20juy6+xVGX4vRsi9vgko/M0Hl3jaEROggBIAiKQQDUVEAg3sCwAMQtDICI97PswcmipClt9fplZOAw/GRmtiKhkmG4xGaB/fQY6r+avs68LTa3c+Fu2DxEigv67zuXPAEBF9DQrBluHjr5NZ3IcATj/vaOv+fLjbLybZt2GHDu2dSOJUwh3b9/58Ic/fPvG3d/+Lb/tYHeHQO7cuuVC6E5Pnnvm2fV6HUI4PDu6dOXye7/pmy5duPC5z31uvVoh2aOT07vHJ0mkTdzE1MZgADNjtV4sxBiAbx8df8u3fdu3ftu3nQR7fHaKLs+ddCFZsgalnE7m8/mVqxff8cVveeYTn7w8LYnTjevXD+/cjTFeunSlbcOtW7fquiXnQ+wAjSFoQueM1XwVIRljVqsVGfMdv+f3XLh86ebt223oEDGBXH3gWlEUjz766Bte/9gTTzzxoQ/9/NnZGQo2TXPp6jUNv7UFjTYOUpAicKtZpaqp93Z2z85OQkDncmNMnmca7euy2d/fd87dvn0XETWWbkJXVdX+/v60KGOM8/lc65fzPD86OlL+Wl3XeZ7nea6R0qVLl5iZTc/+uP3xZ5uTdbmlv/zcj/3ifef0P+DiLr7w/k8/+BVvGF9ZXj9cvHD46u+wvHGyeOlo95GNYOtzP/GpUZq5Pl6dPX/30tseHv/16R/+hf+U2/2dPXcnrFvYQuAvf8mjT7zvQ6/+Dn6a759vjXj8xI1u9YWEmw8/8+LhZ1789D/6qbf+nq974ze/+6GvftN93/biBz77uX/1oV/8h+//su/5Dduvh3X7KsVS/q/rvlfy/zRmf9oaYwyenh57nyNiXdd7e3vqZ6rcpzFGi7hHh0EGleeu6/b29hSWvX37Zp7nvvC589h3KAQz6CHofay1s9mMiNbrNSMbY2KrLXnRe9eEbiAWJfVFeauWSw8Fm+cpJYt+LFIkoratH3roobt37ypexsxazsVazpL3whQw+JOIqCARc38MKSK8XKw2J9fgYKmT4Jzb2dk5OTmJMWpO7vT0tCwmifvUvvZPg0GjWXkt46ApgLgzndddANj4w8gSh86KiktqY0N9jCzLQmittUS9P4ZD+SMiKmQwmUy0nkxZXfP5fLI7QcT1ep26oG/Tx5Ce5d332VMAdLWqtK3ffD5X/FTbc3nvV6vVdDpVeTSbeQCYTCZUTvoqY5GUUp2qruuy3F++cqlpmpOTE+WCzedz1TjGplb+moK5GqR47/PcqyTrCF8eHx/nef7oo4/qyaKjpJ2gJnnfhFYdS0TUm8cYs3ICg+hW27ZN02rTORzaUo1N1HUSdTQ0aFJyz4h66L/q/I4QtrO+bbpgQhj6tqn+9ZYjHcfp67qOHABAURQXLs4N2bOzM40xVWDk4OCg67qzszMzNO/Slal/BQDvvQcf4kajqRsc8jzPy7JcLVZa363cHhqqA7VESYsRdQHfuXNHe8IrMZyHS0QuXryoKzBGns1mmjMeKSbKibmPuYhpvV6vVquRj9K27bqpU0pobErJkpnP55cvXmGGF164Xocmn5RlObt7+24ICcF0XeLUt96CIdxDQuc9c8wLr7R0a33miywrrbUHs50k8sJzL8QYq6au65bAx5iyzJM1xSwzBruu7brQtiEFMVpxLKgSurrVzNAlBRHbJnRxPeGSfIaChjCGblIW8/kMAFerFRE4ZwiAJbLExXKlC3s2m2WZs1aJJqZpKmd61B4AyrLElvqEQddq7DOdThO0LGGxXFvjFVo1hjR5UOYFAOk9EZE5tm0d++ZkSftRhba5cGG/6zrnjDPEMbCh6XQ6m0wG5qakEJljW9W63/M8Z2IJPJvO1+u1VptZJOccR2mrjgqDWdZ1krvp/NIFjryzs9N1MaXUdhxCCF3qW+NwBuIQsa1DCK2IpCghBMRqBPhG8BcAADFFTf+A/oY+jjBMZESEcYs8J6IJBhxkf/p1xqKai6ifTUkAlDUVYyRH2uveAIpA4hRD1PMFhmpplVMmAQCTIomgIxdC6uoIQE2durbKsswAMTnnEgAAMZKEwJx6ECxyJCARVD2VIUjcpPoAAIFUC7Dv1SYColqrQCTW2mKSF2WWZb6YFs6bk5MT6XC+W1pHdb3uouSFd86RlXW9mM1mVx+8lFI6OztDkpRCCK3PpykFROyi8tLuH3WGENWQ1m3lvUcS5dgSEZpNlzURUSM2JNusiCgnj8aaVOHUdeMJNTvoW4Vjn0iuXZ7t7e2dnJyojNU2LBCHvgVmaPAQ246IiqLQ7KwxmGU5DvlpACFCFSYeENueLafWXpFVPay991H6wHlMClrj1fyCMaoMrojwrVu31Mgzc57l6nKcnp5mQ5mRNjBQa2kAlT+bhpazvT5kCMYRClhjAWC5XIuIylJ1XdOjIiJAPaOOmetVPUKgoe1ggHRS4hC6tm2yLJ9PZ2gNpxSFJ/Mp1RaMRZSmql+689JzL76QnWRB4rv2v8Iul8uxPQIzwyCgTAPReNw24x/GgPzlsJoMF27gXf2nHkMxW23TtL+zEpwRcZS22F52+k80EBXHV8Z/HZHQez41vn886e95crXdI9CwDZSMqxm2gBV9YKIel7HWvpKYhvZ26JoaAAwS4wBcsgj0Sgo9RVA4tJ1xFklPW7HGNV1nAX05iTEKS1ZOCNAag9j4riO0gdPxrVtd100mk8Wyp6kaa9S3KPOCjdE1qtIcbeJiZwfLIhBdePDawbUH0JqGmQmjMBhCFEFmAhRDatV0SycBHUbCFPsCQOaoRMgBZ+nN2TaAMlqxcb5kaKfbt2QdvIoRysGh7bU+9nw+N8YcHh6KgHOuKIpquVIvU+/DzDzQLQfGSs8ZLLJcE1Na1dV1XUIAMicnJ7rBFOVSAQRElEHhI6UUYwghACEByn1aqQMAhNhp6wPN5ao7PlIwcCubotsKEQcB/l7hTob8ZwpRILXt/eFm6k2GAEBRFASYF5PEAkQ7Ozur1TGCgKHQNYA4Dh149Jnv2nZ/fzfFdnV010nanZbOl0nsmCoYgLze0VSbOMyXiIhWVcyMUZddJyiFTTvpMKgBjt6/wnC41eB1eweNm5GZhZkAYeh1S4CaN97e40OyZ0PF1Xf2FFbR/MxGgVdPBcVD49D22vsMAAYNCSEiO0h7D/jgkO4y52SjR8AdBnX/QUV6g6XKViYGht4+Rrt5DLJQ40bYtorQK6Bu3iC9qgNtPwNsmVY+DzeP35tUXV59A+n77UqvwzXIRw5lkv2dh1sprK++0Yif3nM53+cP1KRobICAIozDqMqQURjHXxKPxnb7bjIg14GTjJVH0KcrjDFJtjAv3Ogp6X3IACAI9BNHRMovMMYAsnJAxokevwuACPq5I9t7k4O6Qz/yKfYfHGIG0TQMCI3WrIcncHNAjK7J6HHqTsfxO1DG7xnhfh2I+462rrEQQghJI6uiKIpi8uJzz/+7f/uDP/MzP5NbN59OMk/XLl24/eKL9cnRpZ15lk992Z3dvf3mt3zx1/yar3POPffCCzdv3irzbL2u7xwfna6qLrGzGXMDQM75mEJKCRBbjkdni9/4zd/8O7/9d6+77rQO4LzzSIFR66+NMxOPJC2kCw8+eG06SSfHXVW/9OL1O7duPPDQI7Od+d1nn6uaVhBWdVW1LRmn9RNACCwxxoQYA58tVl/33l/3wMMPvfjii6eLM2PQ5dnOzg4KvPDCCzdeurW/v79crsuy3NvdB4Cjo6MXX3xx3G5ZVqg2zhYu04rIiOns7u5WVeO9ExGVytnZ2ZlOp3lWXL/x0vHx8cWLF69cufLCCy8cn56o5VmtVuqrlWWppQyPPvqo1mIr5Xk6nT788MPaH+ns7Gwn9b3mkMC4c7SpV2Jq/IdcRGTP3S2b5b+s5nhkyU/PtcUzzoxt6MiS9efulu1M/1NuUtetm8X1w23G97V3v568ffUQeb43LS+e01C+/jO/DHGSV39Vh8sP/+Uf+Mjf/N/3Hr30lu/82rd/19fPHjwAgOX1o0/8vfd/+h++/+S5O9xF8vbau1+//cHF9cPuC8q2/j/VJZM/X6X/GbrO2hx7MS7UsDqlVNe15l/d0PkHhhNQTUcTgjcWEQ8PD0fEVkSUJkKEVVX1/omgCto66/WU74E2BGYOXcjzUotbQatTARS/1vT8GE30x7E2+ZmUMAhuKPQXY1ytFuv1ene378lpjBEG5xwIAop6+wDA3OsAaL8G9Q2stSmyQr07Ozs+c9sOuZJbr169muf57du367o2ZNuu60yH1Ddp0ALNUUdCyQFFMRmsLqqZ5UE8N6WUZZnyxEcfTKsJR46YiKA1CURAXJ4JoepfMUIbojHm4NLFs7OzJnQiMplMTk9PVedBvU2N/M/OzhSvXK/X8/nU+Lyu6/lk6vLs8PCQnL187erOdKbAqOYjmXmxWKip11qcumsBIIQwLUoRuXTpkqozjX5dCOHChQvz+VyZGSkl/Tq0U/UzQwjr9Xo+nyu6GgcRcB3/HlaeTLQuRx1CZdm7oWOkDFTlpmk0WokxhsECqz+fZZlIWq/XOzs7Oq0Kjtd1re0EtHfxfD6ngTupQ61O3Uh87hd500xKVBULpN5L0VnmgZqgf1bqcdd1EpPqSuV5rtq4RKQQxnQ6TYOMtfc9pqxupA6j5ht08agcCjOvqvXYFEd59/oYowel337t2rULFy68+OKL+mO10ly2fGAYFM/0ebz3eV4WRabfrnttPp8fHh6OUiH3XCGEznSqEaH03slkcnhyfOdORRYuXpw7Z5qmOT45NOTKsuS1xBgRC+99jGzRk/WGEjNLzyhLahayzHtvtTcaDJSaEDoAOTk56QERxNglRFMWZUidMTCd5Rcv7lmHy+VysVilLgEyCISQtLwypYAoiL3bUxRF17Wes8zlnBCCLJoq1Kvlsp7Py/l8nmXZbDLFOTVNo2SsHq6ROJtPiiIjlGYQWkHE/b3druu6Nqro9mw2UzPli1yD3Mlk0iXURJSIgPSNQLs2OGMRsa7r9bpW4Y71ug4hzMrJdFI0TZNC16VYFMXJ8aFqG1LmnPOOSFJCIgIMbUfeZTYjKoJpQwghROYGEVerlX+oSBEhkQGXQgoCzhX7O/PJZGqMYwvee+ey1MVqEeqqZdZGeMSsepWUYuyahoiUxDrYf9YcGACQakwiDP3xUMgqBWgQ3QQAEIQuBo4J+5Y8PeWWiDS+2ER8A4bGg6aimneFTYmoR7cZGUFEuwqllKIIkwALiAoY9kGDQCJCMmQEaFb6LCtijHVdr1tVrldOLoXQcs8no5SSHmNEZK1hJuZ2CBmTgGidKgAAMAqgkOpQA0BfAmowSURDYKGNDbpYGGOzLMF6upOTE4ZIFgAlpSAS2gBEtFyLy6y1to2tSKraioi4qRBRiFMMRASvUEHOMbVNV5S5cdMed+r5RgSQYoyqlUGIMKgmqCmTmHzRC45rNKamTydFz0gYOEnMHEK7XJ5NJpPptKzrtcrxaXrVGKyqVVEUiALAee6rqnJOC1h5dXaqQpTNsKJwoNuS9BTJlFJKvV21gz+/XC61dt9aC8J6gEIvJW80u0lEKBsvJQz6on1/Au/C0Ji36/oqbU0Uee/39vaqqlmsVyOWwr3ysiUijikOGsg6bmHQuA8hDrgojMB9YXMlTaPFGCOwCIoi45qwdM7XbQO1EJGC2r7I66YTJ3mZFVTGAM8dPeMyd5Nv2ZOTEwAYa0WFGAVEeoleABn76W3DByPgrVSvAcjvg+oxlh52HQBs+F9DhG9SSkqXHseFtiii5+/QO2fjTu4X5fmq5PFW+v7xzSN4xMyIdgSJRrh5tAXjV2/RFe2IJiCiJu7G675bBc/zPfVQjEPzuv53AYCQwvpE1AWWthURyTAw59bpeZlZmwEIsAPiorDeLVbL7tlOIDkyCnEC4TgLiMgMPQcBMMZospyMc0W5bBo0lLk8Vz6FN20aQDccZFWR7VY1h4qdjSMpIiI9MXbzCm70dMbJUugoiUjaUCDHwmcaZFh1QduNCnBfV6Ub46VbN2/eua3khaqqVEMHAJxzzBGFnGrltB07OyqmAYB2hVa1HUEQ0gkNiQEArCVC8tYREceoDGsAKHymD+acQ0Mo4OwrAnDqmqijiYgc4lgAKNSvOn0YA0hIYvoafELLw15QHAqQAe7frX5nZ37hgkE0SVSpJlUL24ZuOp2e1ktOWvAfWSRyIiHnnDcuxth0beg6AD6+c5uy0iWeOCdkI5mxbwaRpS0658hNEABAxq1+u1qa560jwNEb1lSBDCK5un00ltN1qLjzsOCVwLI5GDZfJ8KwkcDXm1skn+Xqd4oIGauPqVjqPZtdrzHlMMLclsgSqSIVRyDq1S1Au0dupTrG3W2M4fOyPHptp0+2rYSIqP44gGI1jCxR+vhk+yERkQEUwlTjELcEgvSVbdKxiPQI6fBX2AIx4bzPDVvKLZJY1fUBzqHb279ItsZwfPGVrNk2xZiZ9WhARCFEdZtEBNEBm0FKQkSGKjTe1iXXNhTjfMHA4lG4WU2NcTkNpDPgjcaRBhtkgJlhy8DGbphH7HMQ279oOz7R8EprrEhpzVuCS+Q2PHdmTtzXaoGMFOxh9LAfChjsnq6g/qcZCwBGNouThxbPv+RQjyOjiVit3jo5Ofvwhz/yxGcf/5Ef+ZHXPPKa1zz8wNNPPf7U55545OEH3/G2tyyq+vHPfvaLHn70YH8P3PI9X/urY0h379w8OrwLAKtqfXR6poav67oEfQ/GyGyI0Pn1enV8tn7g0S/6ju/6fcumXdet2IwEk6rBeIcMjBBjAMTJZJIxL6oGu1iv1ouTU0R8y9u+eLlYXb9xq27bLqSY2DnXxpRAjEFV+laC8HK5/vIv//L9Cwef/dzjTdN85jOfede7vlyJV4eHhzqSx8fHp6eLK1eulMWEmWeznQuXLmsnjaOjkzuHh+oIlmXpjDHGVE2t6+3FF1/Mc692TBUzFovTsix3dmZtG05PTxVeAQClPimVxhhjkdTJq6pKbYgqNV+7do2INK14cnKi3duttRNymoe48KaH3Oyc8Nxrf/2XPvfjn/o8M/vLuJhf+41v334h25uVV3ZefXO88spusXcObn7Nr/0S4H+gf7ZTP3/Nle1/ffTr3/KfLNYMALHqbn30mYe+asMX3n3NJV/65lXDzXuvuzJ7YH/7lTufev4L+YjnL+7i0RM3fuq/+f6f+jP/TJH92DHEzdP60u++5tL2R2599JlYvYpWjf/RLpr/Wd5JTddySru7u4CQOd/UdRtCbh0a46zHXvaR0ZCwNE3dhc47G2ISjqTk39jxoBqH6PIs88q9FQmhQ0BEcM5raEdkuq41RIvlMi+K2XS+WC71wBERMpR00BCF1XXq5fyYtfgXDJm9C6mLT6bKeL/TdY0xZjabxRitRYVOnHNEVrObMUbnzAgz6fExmUy0XFp3elEUDzzwQFmWN25cjzFaS6NWbAy9WhciVnWrOKO11hceALzvBQcQ0VBfJ+qGjtkaJdJQnuWcgQQiouLIan+UZxRCS0RlWSJKjAnRJGaFm0WEqM/o61msnrP3XqSHto0xCFQUhQAj9UeYYp3qszVN8+STT3rvuzZY49TuIWIX6qZJGkQcHByMrp1+SnFG9Vvqum3bkE/KLMuqqiIBAwgI3vsUOYSg32vGzvOEwAn6VskymUyyLFsulz2VT3A6ne7s7Gi3DO/97u5unudd3fT9kIfASsGssiwTSN210AEALBYLxXOZQVlj0+lU0czVaqHQOSKq8gkjaA8xEdESfgCo61q/SEFtRagBQFm61lJdKy06T4MOm1YgAcDOzk7b1nq2jjG8jqeeUBx7RbIsK9qqTX3HHV4u195bRSsUx0+Ao5erC2A6LZfLpfLsYBCbHhOlutj0SUIIzmUKQ8dBiFzhYxhEkA1ZreZGROuMduJKWlQ6gCaK8FZVlWVZ07TqhzNznufav0Thghjj9evXJ5PJ5cuXm7YWYGNMin2nOD1kNZWrmRvlcetq8d43jbLCe2nE0a/OsqwoiqZprl+/rse0PvxkMqnrmqzx1lVVtVwudYWcnp4ul8u9vT09xO/evWuMUej/woULMnTCePllnW4ZqevaeJdPyih8+fLl6bSumnp3d3d3PjOApycnp6enzmX7+/voqapXMXJO1lpPZMsySylx6tUsRypVlJRC73wysIHOWjbGuKJMHKXmdbUKqdOCrclk4r3NMuczx9zpjw0dV1WTogAwogCKcN95PoSWyM7z6aJqCl8cXNhrQ9N0kRgm+ezksJaIJLatwnq9RmMmkwkkznKXZZkl0zRNlnmOKQIKMEvaP9i3ZK9evXrnzp2Xzl7Ks9I5xyJKzC+mk67rQmirZu0sSmJAm2Jy1qaYsqwsC9O2bYoynex2XWfESYDcltPcGgJJkLlcBK9cubZarRYnC+dckU+cdWVROmvPzs7W60oSM3NBWQzIMe7u7isorHjFaah2pxdnV2fHhycAYMkY45jZ5dMYU1u1KUq7ZuA+rUhEzFr8EQDQGERAjgIA4zZPQy8cYwwiMEhkjhwGhArJgKf5QHsC55x2LGQW51zCvv+TREBBJAHEFEcyFIsI9ZX0vXQn9owWSJJ00St/iwa8V0MD55TZypA49neLIiIIjnOiPhSkgVhdFEXTVCmlLsQQkTkxRwBIWjkq2ikwEVFKyMxdSkQg0JOS7tkXSGLBMAJiX6eCBkqf2ZyIhLFDmxbrY6HJhcu7IBRCSBycN2N8pyT85XJ5eHK8szNbLpfWmfl8LiKhFaUq57nvuvaVXBHrXeSUUsoKP5ZB0yDJC0OVLSKKxt2EwBJiR9iruvdv8z0so0ZAQwOdmhijxMSIVVUdHh5Op9Mxw9c0jdasqCVX4Fhn0GdWl83Z2Vk+KfVMV3uuZrltW2FRq5VScs6rOcrz/OzsbD6fT6dTbSbZV8OETkMkNeyhSyEEJMmsM4OWl4jos6l5BAC1q8YYdVrW6/VisULEnZ0dzXbn+aZYquti23baklYHrW3buq7zvNRnVrw7pdQ0WJa5Ioc6EVlZgNHjqRflDyFYMoC9GgGAaAYUhWO1Xtb1zAiLiAeXeYlkCC9ML4KH28/dtpcuXXJDX2PNrphB0Zj7TOmwCs+jt71TZfoa+RFuZ+6Fm8eEz6inMcLNWkulOEIcWkwqsDUCFjhQ83BLiGOzJbb4y+P7R0hIXiatO35QK3R0LRpjtyGb8YyHLTRh/ODwdZuOUind/xjrmrYv+ALUSqht6rT+QanNAADILBEAjLMppTYE0FaqceBQk4igNWSJbOalSUk49zlKst4554ztacI6L9qL0/cNtbBpmvnO7s7+fiQgMlUXBCmzedd1AgwInDgMFAMBSNxPwQjbDU6tCn6cE9IVkRDS2JlM13faGkxBMFuF8IiYZT4OWuO01SgypRSFuxQRMTO0rNaf+9yTMcJk4tbrtTebnpYhBCJjB2a9jpJxFoC0Zkc1hsYex7PZDBCBcDLb6bq4t7enexhYVBMKABBQvaI85QYzIJTE7hXaeTnXO0kKhiKiyXL1pRAxQc98VNAcuc9npB5ajcKora4IkIyK175Cio+HlSIAhJkrLl++8jmbnS1WupsMuQ5JoggCg6AAIQlL1wXvTdu2SJLaUJ+dzcvJycnClnPgvi0kURyFEdQx7TcvEW0lGLquM0gIqBt8WPlJBmlsdU8VeR93tGyprouIGgy9JQ+ZqjFeoqFoqN9ZvKkcNKPwqwiz9CmxLfBuBILt0HJk3Gj6kDzYAcMbe+KH0sJxkffjsCUFs206eICGxzN+hESHOQIAsEhgQKII96UAW5hj/xXUK1AzDjZKH4mGNwBo+RWw4sXnE2+99UDVo+j/iQYhCGYGYYMEQzoHtkjcm1e2srtam8nMqtn08mscInXLZMy3iSiijYjWkTKIZWj5YoyhngY9POSQMBcRAK0ptqN3ztwTosfv0sv0ihej8RfZgstFZOikzIg4QvOjv3julxCSMZJAnTykDd2YmRGMnD9Q9J4pbtISOhrc0wR6jTARtXmSQBDR60SI0NbpMyICm3n8vIiz5pa99y+8cP19//JfSUzPPPPs2dmibdu9vdnrv+hLXnrx+bquyWbzC5d+6oMfyqZ7tpxmO/sf+NkPf/mXvv30dBEjL9aLpmkECK0BMt7nElLu8q6NXRuz3EXgDiAZ893/5feAz1dnKwYSjv2ZzcmAQYPqDMUYjHBY19RFK/jZJ564fXj3K77y3Yh48/atkKK1PqVVSiloBlySNr9OKXSR1nX75re99Vd91Vc/f/dW3bZI9Ku/4RtEpGmrO3fuGGMm5WzgYQmhYRAgc+vWDR3qoigms52dvT1t64eIddt6S8aYqqrmO7MQwmRSLBaLyWTmnDs9PW7bdj6fawY+xlgURdd1ygVTc6cgUV70UqojPUHRbUTUDmD7+/vr9booitu3b4vI2WIBsAsAj//LD33tn/v2bQRz97WXXmlC/wOun/0f/tVv+Uf/9fhXJLz05oePP/PSq/z4pTc/hOcLC372L/yr8c+rF46f/7FPfdF73zG+wjGVF+fV3f905ZtvffyZ7b/m+9PZgxea01cr3/zgVz62/dflS8cnT936gj3c57ni/eGOyaXdfG+y/co9P/BX/kr0afTVwW5ZTCZdd/P4+LjuxHtfZuq4Q57nCbCqqnW1VvJmbJfL+sx31jm3buq2bb3vG2lo0SSRjTHWbQsAxhpOLTMjYIwokCJj7nNOrXHOFhU6t2opYQs0eIZoxAkpuxZF6wl7g8xsjYuR67aFswwGnS6lbSizIca+2FldHWU2IKJGTTgwS/I8L4pitVqRyN7ennq5SopUkEtPtDzPhaHq6slkovEqocmyXj+hxzgImtAxwrJaYy8B1POV1P6rd2QGuWFOEYAEeh5P1zVD7GrKshwaxBsiTInJ0ABbbKQLNcjUI6Oq6hHdRsCDg4OmrXmotdLHGB2truuWy6U1TklJiFjXddOuFSJn5tu3b+7s7DjXt0Vh5uVyqV8nInVdW2ub0CEiCdCgVuysr0LFzM44GLjSdddqiOecTUlUNHlw5sk5R2iapnn2meect5PJxHt/fHysmP6gE8LKOFFZkhBC3dVEpHqUKklZlmVRTDS8t6jCYqksS00YIHqlEjehU4zPkBUO2hgqpaS4sypdyqC/B4aSRASsu7aNYW/Pji6oktQUnogx6FyoTrRSXsY1tru7u16vUxKAMIpTqwvRtkF1BnpuNfVBjRnk44oi895rR0rtiKt3UP9ZwXeFkplZwWsFTVRdRKEEDbG992FosmKMsc4wswzyFzwQR4wxRVGo5DRJT9/RACemQGhUe0pp5lnum7YWERUtSdBrpLRt23Wd9kgEAFUQzorcWqszqCS7GDbBgv4Qdf5v377NzHt7e9rs3VpbVZUygZqu1VfKslRISCWGNT2g4Iuuk67rymIabtX3NXddTIGT9362u8MMKsRBBGVZAmFK6datW5Ji7IK3eV3Xq2p96coVa22elbkpwhpAzJDmERYxxjiXpZSUO2+MxjUAAFEYU4qxOzo5stauquXp4sRaS4Rt18XoqBNJjmMKsROOuc8sVRyTSK/8K6DlsxYBMod13TZNY9EW2VQiSjQWjHU+dasrFy+p5xO6hOCadSMRvbf1su2qyJJIKHd527YGDBuDiPW6UnGAJ598UnNvLLFp2xhjFMYGiaicTqqqSlGszazxmS9j4LPliTUlMRrJjIE8L5ZpGULUFZjnJUS2ZGOM1y5fds6FBndnooX/ddVyQBYLyWfWGYsxcmYnFlOAztHEF9OdaV8YcbD/gAHXVZS7OQhxjF0bmjqQrFNK1mpOBUOXuqbx3ncp4EB9RUQ2TiTEGAVZYb4sywQhpDiiciJjxNrLzVOiyJX2NkMDJnQasqUhdusDW0kigowAELoR9UIiUhdYgbQxHgwpaHgrIpEH/s25SHHTnxwAknLA0ID0sOlQbkuB+roZY9E6F6PCKUTkmVkkCCTAnrXEnERQhi5fPf1poMFoCxxCq3Cd9jEyBq1HY1BMzPLcZUaQstwmCB03qcOeeu/6BjaGjJ6MMUWbeZc7lc2ZTEufZadnxyjOoOa20DmH5v5xEAsbQ03bksUYI6EdMtBDx52hnp6HYNB6Z71LIerhYq3lAffHrWJlPSkQUWISkSg8KhFp9iulpAUfGjXIVh/7MfbXjxhrNXMWhxZT2EOjaK1FAmPJ2dwMOoqjP6CooOaGk2zkpNXH6EJDRJnv1dJl6DCsWXBmRoCx+64Oo1ai6EM+/fTTy+VyMp9o49yqqvRkAQAtltX1E2OMkZ1z3li0vWOgkgmIErvgMs/MXQxkcZKVwL3gOxGR6QUhqFcCqf1sFkM8Wy6sE8wKl3kOSUS6ho1xKZMU03xaWD1iY4xqOxFR6WwjgjkATxs9inEvwRaSaAeFXGstygYOxvNcPAAAIGN69FYBX0USR3YqvIy6CFtE5vF1HGoTtt88Ag20oVHjCCExc9s23POU3T1fMf5A2QLLCD2ANhEdFSRGAev7AzR1XffNQAett23oSkSoZzcLAZIxkZM61owgKTljBTGyoAouJSEQMZaBjbWQZ44MIBLZEstqtY4xjYLfiMhp1MI2iJDasLe35yeTVQgJyWWeAaumZmZV+RhrDciaBAJpI3ii7lpKqRd/g77YCrZQuYG50M9RSj2feQT0BVEG8Y2u67rQ8ziIyFjbxtD7bd4PHzEppbKcquSW0tk0RT96UaPOr5KRiWzkNPSIc1pBpjl8QWjbdjafhxTVXkwmE83MO2Odc5qTl96gIxGBJHlZeuOea+R3M7NFGsVuemzO9NYwpWSH5A2giAxrVcCQYYkxMgAnzu77Lcb1CT1jrB6NeZ696a1vufXCU0fX7xRF0dRLciSERqH/rmMgSwaJABGQUxfbJjz/9FOvf/uXZVlWp2iGVp8wYK+6PTVeYhECQNpsBBRInEZgWncrIqpfOObf9IeHprWZgwGtG3fioKWD4xYW2WwoGFBjADBaP3beYoiIgb65cJR7NZFlAJdHCNgOKSve6gsqAqpIBQCK9qpBUDyLiJII90UP59o8jithG47cOupwfPK+8GjUrEBEgh6M3GL1ypZ68istMxw40fqx7TsIgvQ+ymDcNpAupRARDQoPTS1E9Jdvm9atcYuDRv/4hpc/ymhjEVGpssOQ9iURut/lvBS+fjf14RPDRnqIh9mJSuPl3h2jlFKMrLVLA4K8WUibMdFmjKrCPIwMIibuHccxN4CIG60REU0WxhhBNvUZwzLaiKLIFkxs7XZtR78yNVAcv0iGmh7ZyC7hOUYzYgxxPDR19O872FqWqUZVnYxbt27t7+xdu3L1YG//+PDoFz/9qcXpCQo89NBDQObnf+GTfjaXovj4409+7Vd+hfP2qaeeW58dnpweRm539+ZV0/OqmLnIsuZsGdrWe5/lRdesFlX9RW967HWPveXwZJHQdDERCUbVKUJCSJFZ2HorSXJjl4vlbjF94oknnn/2ufnuzt7lizdv3X7p5u3T08W67QKnBBK6JFa3AqaU0JrFYrG/v//Od79Laf/W2kuXLu7v7z/33HPL1dlDDz2EiKFLlszx8WnXdVleYBIR1tTpbDZb1RWCUes9JqJSaAHg9PTUOmOQTk/Ze9+24ZFHHsrzh2Y787Is1S7pZCkwoVNQxGK5XCpTABE1jNfFE2NcLpcKUqzX667r8jzf3d0lomvXrk0XXj70IgB0i+rGh5984ze/e5y7a+9+/RcQsX3+Jz65vH6kOgx6vfl3fdXj//xnX+XH3/xtX7X918X1o+fPM68/9Q9+Yhtunj2w//DXvuXV3/9X/jr8zPXtboGTizvX3v36V98t8I2//d3bf63unjUnr5Yq/kteZEm7RTHDqySJP/jVb5pc2t16nsXhZ65/oZ7nP+wq8ixNjSCEtg1dlzlHRLl3IiIpCEC1XoIzk2lujNZNL0PTxraL0EdKCr4o3JwVBTMPfOJef2A89JMSrEQUUVWnous6ALLWpK0u8yjAMaEADTnp0anWP8/n85SCRolqXjTatNZ2Xd9WHocO8mQMp9Q0LQDM53NVNhj9mQSS2k75rWMJFA8ci6IotLZFpQwUP2VJiJhPSiIYKbRN01RVpXDY6EvoNQaliH0O2FqKQw5MSUxlmZdlqVEiIipfNYBWH/fuFm/6JUiWadvDTXcgEVkuFycnJz5zelCarW40ennvrXHaQA8G9utusSsDl2oILzWiidPpdOzSpjYzhIAMRKhBLCIqg2TM/TMbMojWTJylvqCYNUIeSWqKhKbISmpWqpRKIRljSp9Z73T8R8xR4c55Ph+YE6SF/wCgRjvP8za2StUZibGLxUmP4KdYlmXbdHmel0WhwUhVNeMBPZvN8kk5mUzatu26XjpAkWUYGh3RoKkIAGdnZ8bgdDrVhx8XjIgYaxRwOT09VSxCdSH0l+qOmE7LLMvqulagIg5K1iml5XLZti6lVNf1jRs3VFeQBskLBSkU7JhOp+rCxcijQ26GtoEwuKzajm9UTtPDVHnTTdPQVlygG2p3Nh+ZelVVkTXeO2WCI+K1B67GGE9PTzWq6rquyEsAGImBehMd2KIo0JAS/WRgqwgz9tI3Rv+7XC6Pjo6I6MqVK/rMmnVQd8t6a60hQJV5WSwW+q91Xau4x+jHahqpacN0PoWb9zF31Je9SlGUiHh6elq3jTMUIxtnjTFNXaNwkeVlXlqX1nV18+bNw5OVN/DoA6/tuhBCotQ3TUGUxEE6idJvLh56k1prvTcAUHdtV3dZ5kLqInfAYo031rRt03aVz2AnTgEAWELoYggEmAa0S0C8I2sIAH2ei5gQWpt5Z71EtJQ5axOjMZMyswTUBi6L+WQyOT07ruuawGpHbkueTeQE1nhn3d7+lAAXi8X169c1zeCH7pfG2vl87gi1s5kDmEwmHLBrGmYoJnmWm+xiGWPs2pRlmbU+xZTZaZn1JEqDBlFiZGfzxUmXUp0S534nBl4tUuyEWRBD6oxzjoxxKG3FzmWZz5tVtNaKxaZpjLHGu3WqDAURhMQxMgHGiJmFwk9ijCSGmTmwNV4Jf3ZoY2OtlRRF0JIJwuN6FhEgSrFPCPf+PKCAQeop5QYSIJIBEQmhSwM6m1JSLZEeDTNDm6IoAIC0QcmwrweFEDpmZlDFCel73AXNRXNPNFIIRQPzHsPR//ZcLu9JmbYhdURkrTGGRKL0wjIwymMCIJGJUam+gCorAaJkJkQUIeV00xBNSg9RECKhRe9Mlru8zHxm2lhbDwKhCw06t7M7C6ENKSD2osx6qGleUxNURBaA67p23rLI4dGdEELhbUoBAKpQWUfCG77XuQtB5ex7QhKYgYduB+BYK6Q3ks0wxL/qinjvm67voTfGZeMst23ryCAiCyuRWQ2g8lc0vlCDrFlVdQkAIHde059q/M3QI40laTrceYssLAmSboH+9NfTPKWkLYhTSpqa0oePgzw0ml5DY1QoTSlZSyHElII+fpFlOEjSI1K/PZ3TcGmslIpDbzN1QkIIq9VqtJCOTEocUssmqi8kADFGTb4iinEWANbN2pHpRVNTdJl3tqeyaT5e51qziQf7e8UkXx22Yd343Bprs6IQpKptXEYhRbtNKBYRFGDpmxjgANrGGJk3Kpzj6yGEkPo0i2wBTAY3zGLeogzrCTq2JmvbWtsF6KOPufcx2r/nG8fnhAFLYmYNILfqFDYUuS3EoVc6Y+a6rpQtRWTOI2Kgdd+qJd0TBBCh1+Lsx8cYQ2Sp1726v5ZiF4LON8ce/tiGckYkQtGXEAKDaCUOgokSrfcpRGcRABJI4uQIuxSJ2VjjXQE9yzhYpCzLQmzHoTbkjMGiKCT2+/DixYt5VtRtS9YG5gTJWScKpjASgbGWiRgADSECUg8pioi1NKBFYK3V6v6R04d9x9WhackAfsHAVx1ZzGiNAdSqZAHe3983ziURg727qW8eaxl0rjVZvbe3d/ny5Wq5cs6NxGplYo6LigjQUJ7nWZYVRTadTjmm4+NjJMnLrGmayXQ65K/MQOdMxmeSkuCm+1l/eDBDnwu5//wiDkqyRNZaA72QrkY4zKwCDj36mSKCnhk9hCrAIpK27KzA/bEnEYnCwBBj6/Msxlh3gYgefPDB5d0bRgIR1W1rjBEEZWQondAgAlDbdalt27p97plnTo+O82sPn64qGzeY2hbRZtNXDYe04QB79cSHEXQzQ7cc3uL8akNYMqaLYSykha2tOuyyvoxlTCmPJrXfI1vaLOOu4UGQLoRgbH846nOiyAa5Y+4d68FQEJGMrfmgb4Opaxi3klIxRjynKY+jMdm2QjLgiffMUf+K9L+UBl3y7beNUHg3rOHx/NM32y0gXnUheuBy+3W1HoOMVxI2g+SJDFM2GDFR9FufmVMaQbqN/UEkIj1it4nYL1vusP2j0iabtdHx0IuZkdM4WkRIZELUSRyVUngcJRHp9exFrLXW+nFR6TuJSI+SMUQHZFJdiAFGxCGFw8xd6NTouaG1IwCooeWePgMcQ0qJDNxDk5fhkfqVaYYxH2CCzWoZQv1x0Y1HBg1dj3ALbt7+rJJtETFwcd/Bjj3bQu9hnnrqKSKq6/r3fud3zefzv/qX/9pzT//ipz/5qa/5qq+ez+f//kd/1PjszV/8jsM7d1+6fef9P/nTX/+V7+auWy/XuviX1dqYkkXm8/nx0WlTdwqCCOLRyfH1Wzfvnh7fOVs8++L1y1ceOLl9x1pvJAJKkoRiAgciKvKi6trCZ6vDo9h2p8vV45/6rIh88dvfzgi3D++enZ0t1+s2JV2AxtkoURBC1zHzuqmJzOvf+IbHH3/88qWrPs8Mmfl8/tRTT2kB5u7u7mq1OlqcaMlz27YCerLYrCycc2gNN4133hizWCyWy+XBwQEiLuv1pUuX3vOe9yxXizt37qhYp7pKV69e1c5+2gBd/Znd3d1bt24pEcAYc+HCBTPIjKr+mnoRCu6oS6pv0Lr7PM+n0+nq5slISf30P/7ANtw8f/DgK/74b37/n/7HHH8JwNFPcpvfX6lpvFY3T1/60JOPbcHNj379Wx/+2je98JOf/fwfBICHv+4tj3zdW7dfufGhJ1c3T7dfee7HPrW4fjTfuv+v+lO/7bkf/URzen+ly/EiS9ns/qv3P+rVLms3OZeX/TV/8Ts//b/9THwV7f4ees+bLr/9NduvkHPxC9ca0e+Wv/+j/+MLP/mZf/9//7ux6mLzS2hi2Gn+a/7id26/4iZZqF6xtvRX5nJETdNUdatQr6JCACApAEjm/Dosq3UMoYsxBiWcrisAmM1mdd1evHjZGNOELoSQGGLguq5VQbJpeqUaRX67rrPW6n8VF9AdqnBzCEEjuuVyqQ82xpN6FuizQW9aoeu6LHMKHLdtO8g19IJLADDwAMgY04WgyKnyg3Tj62f1S7PSKSGoaTrVbSQi54ySXq1xNEjGTyYTGLKSIQTmqBiTnoba1oyHurE4NLjTzBYiphRijKYvCeqYQf9Jzy9tYqbO8OgghRCEIcZI5lzLBH2AlFjZTyr1i0Cnp6eqe6CVHLPZDAC03ZbG4XlWOOe0UVJVVbPZjnN9qKV4ukpzAAARKZMLAE5OTrz3s9lMEXzlq+ogawtoPelA4c7EYPocvLW2aSpFCvRtGmuMDT/KskwcVSZbg+SUkrQChPpF+/v7ZugjHYe6WB3h9XpdVZVzmbV2vV475wIn7zeIwGw2ASCduCzLOhdc5h2Bc+7k5CSEnik8mUyEcEzVp5RUcEOh9vF36ZrU71UhtTzPdcRUSaOu68lkokn009NTFfpAxMx5RUN0BDQnod67iHRaBzB0RpnP58b0Q6TaIIrmHB0dIaJy8XS01efRhL0xRtENHUNdJMrstsZpTujs7CymYK11vi/3btuWEHd3d3WXlWVZlmXu/LjpmDmJMHPbrg3ZnZ2doshFRM9HlatOHL3LdJQ0/4SIenrO5/Oz5UJEFB9RzQ0UGBMhoyFSpuHJyUkIQanuMlD8VCo69/32304FTadTa73i8jomdV0LkHf3P2rbtouOjQEVPDHO5s7FrvXea4ZjMpkAJ28dQC9W04bgHUiCumqbpiMib3pVdOXoJA6AfQsiQqNkBQAQQeZY13Vsu8Rt01QAIJJi6hCJk5CB5XJZnPqycNbaFLkPUgCwVzzoPWEAdIY5pizLkBIyIhpRIFOAxEiEVqJzubfOkne2SE4mkwIAVJOBrGuaBlDqqgKAspyKiJYmeN83onTO+SwryxJMH4CsVquyLHM7m+3vLJfLopjmee5sFiOnlGKXAHC9XhdTF7rUti2ApJikA2ZupWMcuIkgxpjAUYRCCBYJ0aeOAjMRJUJMCiDaGLBtOu/zGGLXtmAsRO0XZySxtZ7YpSSLxUKF+4TRGAODop4aSFQh4BAU+g/UVxlyYJA+qWN6Zb++5pWB+25LfX+/REIAIv3/RERcZjWCZ2EUkCTMKCJkHA5oDCKkFEUVnLWZ+ahNCinENqaOQZOOkYaokAxo3yQBQiQQQqEkmEAAeo1S760F03VtiC2JAVTOXC/qmAC1U6KIWAPcs6wYLRL3BwehUSrPNvaAuImncZB7ynKb5zYjMo5Cah2LzWxI3enirChyQbDOGhAd+cXyjJNo5y0NSUUkMae2HQxmFMGmrcmYddXm9f0xFq2Unc1mManJlW30j4iUu6bVG5qBU8Rzf3evKIo8zxmkOw16no7RIoyiHCHaSSYiiH0IMMLQavp0VWi2TBNaGianmEa3pO5aY3Wm+lXRR9yD+hARpU5c5vXcV5cmywo9y9TnCZxU2j71WttDllegLMssy5hjjFGtn/KltMZI401FQ5bLpbVWGwkozZmR9bcoJm6MUV9Cf53EtFqtEHviF/U6TiIiKjYym03qdYWGGCGbZgkkhkBExgzaqt7v7u6qypN+72q1evTRRwFxeef5mBI3jXMmI4whWmuBJMtzm1JUUEVEmNO4zgTV0ClWu2EU0qCkqT9Gf7Zo2XviGKNzdljS0rbtel1p+U+e5zs7c/UOiWi1Wssg1eScS0mYVX9gAyhDD9MoGyIiWmMsbOE+OPBkcSC+jU6AZtd1KDUXPZ1OAYB5Z1heZqgaAze0dAOAsZxhoPT1Ct/qEiFi33yL8J5mPuMlzGpRkCUzVqNWAADqgY8kYq01YEIIXYpEBAKxbhUrktBlffFaxCgOCQUTAxiHxtQpAQgZtnmGIFnubXD1emWGuo6mbqy15J21NnSp3d2tszyEIJEzb5ATMAoJM4MBGTJoJIKAhkzDQd2UEYgxg0yqwogMovqnfdI1RGOQmSElAkQyIgIsCKRPJCy6excpeeeyPM+zInOFHVThMu+ICC2yJG1WW5TTF597vllXBsA5E0IbJcYUkRCAAdh6k2VZStKGznvvHDnnNIQggtOTo6buLNL+/r5hS0KIJjCTQ1tk+5cvxhjE58Ds0YF0XewQwE2KiBJiyr1b9+74/VFgRBQEZgbWAw1VrGjApXoaeA9miYFevgk4pjjI7SGinv2ImML9415JTNKrLOt6b1lS5mEy9Tu79dEdAOulBaEuiXNOrIS2IwAxaLwLIRIVRO7WzcPbt289evWSMU0F3gAWZAxIqBo3EHtBLDJaVNwwRgxMEjl6TRFvYeIy4Gh2aOcNAGINOhOYOcIoZyygUr/inEkpMUciImtSSqpbQdYIDyC32j6lCUOPOTKzEJKxPa5tVHFXVbHM0Dmu10OQYdPKSNwmQomGRHUpdOMPGaneYtBgOgwgIkbZTNDmyZh7L0dERAwMtTyCjILatx5BLWg/p6rrDQQgJAwCahWhJ2uLsUaRXGEhwRiSSK8WEkm71SlCzaheACAORGZEBBAa/IPRdrGIMusHuBMQwGw1RNIfbo0l1/PZnTPDWXt/uJkQgShJH7SrLdUDWBnMKSYwYIwFiYBkDGmpMhE5RyrYDdA7gbb/UdrDV5VShIwBlti1ANCFrve6NIrm2HNtOEVOqu+GiJacsEiCEDu13iJCYJila4IkMMaENqqLmWVZ7IIC62SNtZYThNjrxY9MJeR+riWxBBlOgQ1TXo8bBIgqJD1kzp1zgMhtIovCCRB5qA8YMzcAwCE4Ml0M3vtXSDABCAFjG9pLl678+I//+Ic+9CFByKeTH/3Jn7h169bnnv7czJSXLx0kdGKzd37VV/7YT7z/tZPsP/svfv/7f/wn/u37/vXy/c17vvzL5tNpuwyUjHQh+ZhlWRe4s+728dE6wtnJyd27RyF1b3zTG9cdX795+Asf/vBv/i2/bUY+JeoccGSwpm3CBOweZh/+oZ+8e/vOe3/zb1wcnbZt/TMf/Knj07tf+1Vfcfnypc8+89kXbx2dtV1ArGLy3ktMhTFNk4KwsdmiXp616Q/+4e9+8NoDzzz5VLVenx0d5nmukPFTTz3TdV2Rz5548tlbN29fu3atyEskg2jyvCBVIrLGOdd7eAG60DRtlRdXU0oci4ODvd3d3elscvXylcVi0XVdVa0mk8nNmzfXdXNwcCAiVdUUeVmW5Xq5sJZSCm1bZ9a44ThGREawzjJAlnnvfZdilmWAGOpGSShnZ2cHBwfr9frGrZdeDz3Y+sIHPnsPYvvW7/za9//pf/wKU7u5snnpp+d0n+/bBvDxf/rBx377V4x/zfenb/4d73nhA5/7JfizRG/+HV9Z7J/rB/D4P/2Ze95V3V3c+Pkntx/+8jsenT30quQp8gvnmw0Q/Qq0GUSi5fXD/Tc8sHmMvemX/6Ff/3N/4X2f/4M29+/9/3w3btk3Zr710adt7rtXRpwf/YYvfugrHyNvPvp9P7x66fiV3kaW8r3ZH37u+1yZve33fO0bv/nd/+hXf+/Njz77+Ufjy//gr8/3zo3h6qXjVyh4+JW7FlWdXci893VdE0rsQu8HkhdJR2fLtm1jG1fQ2L4NMkSByWx6+drV1AUACaG1iGKp67rVumVmFe/S+iHaYqUws3M9sQARibDrGNExR+27EWOlPg8RxdgnEbMs6+ompYSM2qwiilKHuuFsReXvOudiDIr7KDETEXd2dpyFFGNdB2Mwda1Fcta1VT20ayua2Img97lq7+jZrlFraDs2yVmD4L3PQtcdXLjgvb9x44a1AGTX61oB2el0qmis3jbPcwN9s0FvLCGkFEnAm76bNAk4a5BTSExEq1UVQjDGWeu1zJ+Z0ZAIJ0nGErB45zkmREkiqU3CYJCWZ6enp4uv/7qv+cp3f0XTNB//6MeeeOF5FTdg5sVi0dZNUZTz6ZyZWaRtW5Zkrc1y7zPHEroOFApU7i0zG+PUczPGcJIiL2EHj4+PY0je+8z5NnSqeDDSQdCabLLR5AUA731mXdM0zBBCR0M5XVEUhiwimswojqzlj8ojzvMcojRNkziOoKTGzyqW0nVds24Gn8cY44y1PssUMmljh4hl6ZW54n2PjRKRsCixKgBxTGBsaLsoLJw4oN4ZqY0xNk2nfLH5fF7XNWIPdtutljOz2WyxWDz11NP7+3u7u7vqFSj6HEIbu5GSxTGKNnpZLpeakEBr1k3dU+S4B0R0wKfTncVioVKz+o1VVbVtq427j4/PHnpoMp9MtWk5skhMwDzJs9VqBarcHdULRWAhRk5ABBxiy7UOIwC0TaPwwcH+/pgsUVQCADhElYaQFJ1zmVOBcg8ASHB4+05RFMaY1IXMOWedEHZdS0TWGecch0hI5LPQdm1VA4skBkRXmBg6nbMu9Cy8GONytVC4an9///bt28hiAC0SILRtCyJGIIa0bpYPPvig9/7GjVv68N745emSnO26ZjIpVNnZWLp95+403d+z7bUpUECEBLwxKQQGcQQoPM0yVKlPkQiCVgT8penuFbCL4/X+/EJc3U4mCduxY3ZKUQSNMTSI5wxIBbVtrcuGwMSWITmLpGWHAIKWY0rEtqlDWU6KfIpQGwNRWmN8Sq1xYIxjkSIvMl/EGMlFFpjkeydH0RjJ8xxYvPeJdgTYUpQY1lW7PAyCJslc/MQ5gyaGdi0xFcanJGVmj5c3lsszpSiqwKZzLsS4f3BR7Sqi7M7mVVU1IRkGb3fm5e7e7EGOIhFCCwacN35Rna2W69WKgWtnMyRFx6Bq19olSERSQhAyxmjpNyJ4kyMgJ1UmhiiJmDuJAaOm/43xKQKCJRGMfUMXkYCIIq0AxCTK9k0pIdIA5gpZwyLce+AJCNCZkBIk6NvLa2slRNPnMgUhCQuBIAgIaG+6RDyw6zYImDU2tnEMUWEI1kAgQq85SdIHbDIUeiKIAKSeuQURgoggWWOMJc/MoWPYRNkMkIRQ850w8B3b5IiIgLR9ArIVAQQLYjjRGI9nzrKhEEJqE4IxgAKYYhxanEOCQAbIcEopCRq0qlMF3CXkclLOdnPjqZy5lFrx3Xw2qZv1fJKlhG3oYhsltE0KzmWAaJwHhpTYkBeOh4fHKiikBzGKKEZE1qKhruvyrDDGTIqJvEKBWdt2IlBVNYIAYIhdjLEoSwCMMSYQY6lt6tEWSWKDZLNcw72+gQH2LeLJWAAgwBACE4hIVhZqk33mR5UM610Xw3x3p4/1rBWEnb1db51apzzPtfmwVmwwR934zvqmrXXtIRA5C9STi1tOiALOcBQERMbArQFjrdOD4/DwkIQggUWLiGwlVOsyL4wxXYrSiLWuaRpj3Ei6IqLMF3pGx9jXjkwmk9lsFrsgZd8pcUXr1Wq1Olv4Itfzyzm3XC2apsmyzHjnciKyohLtqGKTRtFtBS1TGwHRDmRfY3ootchzEQDkyXRW1zUITsqpIXt2ujhaHZJlj9y03VlMddN6S1J288m+JW8HCFWX+KZ4XOHF0Vegob0bDCKeY8fbwS6YQWFkI7OQZdlkMtUPEpG1RlMW+l8V4VVc2A6NdPuOWwN4hz27UEzff2MjkaF/0ENxvMbX06bXnxlPawAIoRte6RVjVR0pbrRyxqpz7WS10dyBHjhgAGDYVCTdc4098ZJIZFbWhnMuDRCYEikDpyi8nbTBQdScezqnqLDJcJglZjZILCIgjoxFQAAiw8YbBGNMXTXKEMkMpCiD79J3ihhQP+bzurSqyqwhAW6Vk8OQ+tCjCAaS5vg8KaW+391mcEahg17qRH9R0zTqYMVBxnq8iEhT/f3XoUkp3bx5c7Va9YIERDQ0Ctemn8PMknNO2QEKqB0eHq5WizzLJpPJ7nRX+0orlcMAqujqJC+gb0FLzL0ggCGTT0odHP2lW9vi3iuloZhRxh87aFWfHwoAMKMK4aBIOxB7AYbe6PSKNOoeaRQRTgEGJmxRFPP5fH331rDOMQLHlAiNc54GzkVmHQgAcNM0Tz/1xGvf/lYPIGRRQBIzJ++9tT5yEhEkxZSZQRjS+AB8PmwesWYamvv1qRQBHqSvcLQpiCrlrZuRtuR3xoXE4zYfh1sAtcmsbvO+5G1g0G8JHcgW7bdHDLcot6LqigaICORc+QUiqrnnofYCB50vsjTg0TAg2DT+3p5tvNU+rjcmOi68SZVt75R+3HQ9DC0NN0JII7A+CtbDJt+WUhxSF/10DOitmMG70huOaw82u15j9T7a2ew7SFtThNq1VVtXv/xqO5Uy7H+ybjR9+N5vE9EXcRjbsQBC631gmKaQkh1+rxJGAJTuPDwXQDvAzeMkjgPYm6bE4w3Vao012tvjM0rxmEHwvafPEOpRitjLkesfRlbyuHP71oJb9mrEl0d8f1wbw2QlpD5BOwLN216p0nZ0Zu472pn3zrlLly7dunP3+eefL4ri9OTs7t27H/voR7uue/Dqtd28vPrANSGxRXbt2jWX+XVdPf/C9aefeW46m63q6t//xE+87c1vfN1rHl6dHjtjTtfV6vadw+OjdVMfni7qJlqX78z3orDLSuMzJPipD/zMN/2Wb/aFDyF1TBo/Zbmf2fLO8y/9s3/6L9/82Jtm893H9ncP79786S6+5W1f8ua3vO2lo1svvHjz5OS0bduQ4kjiSxzQOozStu3Zavm7v+v3ftmXfdnR0dFb3/o2g/TUs08wQNd173znOz/xiU8ZY5555pnDw0MtHp/NZu1xREStPk4pkbNaeV1Vlc61Dmbu/OF6raKWdVMtzxbaQrAoskuXLt2+ffuFF65rB8Ku63bmuzs7O08//bT2A8mybGdn59lnn9WjB60BAMUUiqJYLBaasVc0oa5rrb4kosViMSkno4dQ3T69h5E6vbL/3Y//9e973R++7+TqdfGtD33L+/4knD9drr7r9S/81L205Rsfe5pDJLfJan/pH37v6nD103/mn3ye+3/N937LO/7gN26/krp442NPv/ydNz/89GPfvIGzydD/7RP/09/+4j9y9xdf/Dz3/70f+R+y2Tmn63Xvfcf7/9Q//Dwf+YJcR5958UP/07/9+v/+d28DtV/zZ771yX/z80ePfz5J63f857/2wlse2n7l9IXDH/4v/1a3eEVa9Bu/5Su+/s9/x97rrkCSR77+re/7XX958eLhfd/pd8vf99G/4Mqedu2n+bf+4H/zNx797s/T9O/gsQe+5s9+6/Yrzen65/7Hf3P0mc837L8CV1kUjd8wGXW7DWpLSc96dNg1tfJwjTG7u7uTyaSqKuTeAAJAlD5qQESOmgxW3mXfl0lDALUY+hUAkJIe0ImIlJNLRNqBAwBGUdfRIOsp08YEg9Sesp5TMmNHvtGrVwKR+vNlWS4Wi/V67chp2KLR49HRkbV+Mpmox9t/Y0hFUYxNBZW/rJd2uhORoijyIjtdLvQkUmqtgqeK2CqZV++wXq+dM5PJRFFgBWpHiquhng2K2CtOWNu3ubNILBCSgEFrjXMOjI0xhrbtug4IyRrrM2a4dPnyM88/98Kzz6HAarVSFrbGOJBlY2TUtS0zh8Bq4rz32mBNmbkKjq/X6ywrVP+BiERAS2hVSQMAJrOp6zotQB4HrZxN1XJqPbIWsC6rNYe4rNYq36EIvi4DHV4AODs7Q4L5fK5Pe3Z2FpugRlu58Dr+ergriVgIVctY57dpW2bWlhp7e3uOTF3XWtEYen5Wn1+HABoayEDm1S9tmw4RrTMgqHVU0+nUGKMK/mOtulLjFbxmTlmWzWbCzMfHx8YYrQRv21Y7jOmC0ZhFYlJxEo2qyFmFKUby3Zj/VnBZu37pXtAOBE3TzOdz1RVVVrLmBhBxOp3qhi2KXNfezs5Or5vs+06DuneMdypBvlqzIrYAcHJyYow5ODiYzWZ1XQNAVbeGiJldlrEkHfmqqi5cuKBLhQb2tJLxXZ6ZQcEj8zkQaTylHSBnuzsHBwfL5ZKTIKL3PnQxxoSIVairqhIR5Zj3TQLJ6B7RESvyfDqdtk1XVZUWKllrlZhflmUTOpWF8d5eunSJiBLH3d3dnTi/r7nTMnMeG7HElFLqYieGjTEGetnAoijOVktBMuTquvY2v3zp0rzYuf7sdUQjsIkFBgSjL6kcI52xlbQxJg5l2cwMhL1kwqDYs1wu5ztTrWQd3WAzlJ8yc1VVqg6sVpEH1Y62bQ0SM7ccEaKxYDDpYyECCC7OVkgJJSTuvDVZlgEQByyLHfVROTGRQ6AUURvPW2uXixNrCSGI2IsXHjg4OHC4v1pVoY1VVa+WVZmVIrg4W62Xa60gd8Z438KIw1qIsQ8TRASBxmEZQ8UxcmHmwjlmVjFSIhqLNTdxJY5Bk4hI5G2cZxOuqs0cvfQxHBs4NwBbhfIKAuCWmOr42dHV55cp9Y1hzhZs0lOJRURbEBFs+/nCW9GrNlqP6ZxI7LiQpF8n2vNm6xXsk7VbwHTP8R9L/McfaIwBY1LqxReHFcUiCUFiFwHIGDewqpCZy3nhnN3Zn+/sz4xDwFg1K5ZYNbVWOwn21agXr1w9PT1NMSk8qFkxzU9rAmy5XGpFYErBmB7oYy00mUyPj4+997s757o3j5exVis2CDeQwiDLY7oQRGQ2m4205a5pteu4HmEppcuXL1+/fl03mhq3NOgf9rFw4jFg1CymqjCpeoZOxyAJ1S+q5XIJQFvyFOeMia6HkXc4rvAYVQejn0fvvTdWU8jL5VJJyl3XtxkzuY0xagXM4eEhUk/sUzdJraLNfNvVut1CW2dZlue5HoscU9NWaoW0UqcoisBJq0/0t3MS7QAxHjd6iqkdWK/bEIKWeIqINWa97rtQyIDHDj0JUGs+1DgDwK1bt9glE9GSMcawgoQoGr75urbO+XGhS68hYEZCKwyx9IDM9jgyDCiDGYrQx+Ll0fhCj+PQqJUzzncaxAdUj6KP+nqTwXge8Rwty3ncZtTWtNuw0bhv7SDFqO8fn3NUydCvNsYAkC6C4bObLmGIoHDz+HG1imrmnLs/u7lpm7ZtvXXMTAikNd3Yl9vL8OQACkmMVfBbyp6jVrW593UENIgEZJAMSAwsUQwgsKQQVstlioIZhiQAcb67A4N4nLVW1SEYQAaqfz8dImOnMjN0F4XRyhsAJBWR1WZ0gKJWlZnTUHSmYNw4NaPPNN5tvV4rZYyIssyJ9O2zxiiCDGrrbWWTiaB2UMmyTO82egD6XdZaZ6wkXi9XIUV1KI2FyXQ6nUxwQJGqatV1DTiDTKhtVbK+/g6FVezcGLO3twd99V/QdXvfyb3n2joY7oVldU51H47HqkhSLV9dVzrRWj3w8mu4LYkA9spNXnO5WZ5b79brlbU+EpD0/QAsGQM9PB1CgATOekz85Gc/89WLX10WRbsOzntDpm2DEDAEBiBrYwgiyJqRhaTJZxz2AQyM2nuu8VQe/6orymwpp49roLczMTFslASJ7D0jhgBK6e0z1UP6SqSXNhjvyVtGYTwvVcKbRkULAURSHvGWy4Jj0NU734BIZIzRhYS9rDyPM0tkAaj3BwRgQIS1N4KKmGyvhPGwkQE0H8Vz+uGKPZ1ZH3t4eEZrxt8iIjFqJh8QUUtKx5Um2CPjKW2282g6uE8qge79Hq/XAUoJB10RcoaIgLmut03c5lIZShiUl8dIXkTUA4NRT2OYRxnSgdsYrg5OEPH9vthq0zdIVowWaTQpsJXI6b0lQ8wsIFpkeM9q3D56YMvRVHCEiAQ3HuS4MXErK7l96XKF8yfL+FfZwrjHNayLEnDzkXH7EJHExNzzI+6/5VNKST7xiU995GMfPTo6eun6DTVizLy/d+FL3/Hloavb0HVdYMIHHnn4dY+98Rd+4ZMf+4VPckgGDTOExL/w+OfaFGNoFyfHp3UNJPsHe6cntSmyC/sXyGarZdc28eOf+oy1BGQ+8elPHx4dXbhw4ejkNKeCiCRy4nhx/9IHfvDHXrh+441veovJinWzmu1d+Kqv/7WLGzeOzqqTs7ppMXLShinc15q4lHi1royzR6cn73rXu37n7/rW5XqFR7RYrySm177uDavVar1e/+iP/vizzz7rnDs8PpqU00ceuYCIh4eHSUDhicPDw6IobOY1ftZzYdThiTGuVqtr164tFovT01PhpL2JDg72lMn41re+Nc/zpmuvX79+eHj40ksvpZTW63US1sZNi8ViMplM5jNFWxBxsVgosqBF00SkuS5NfQHA2dlZyXbcCwDwM3/un3/T3/lDxm9mc++Lrvzxs//1fd/+l5/7sU/dI6owfWD/K/7IN73rj/6We7BmALj98WdfvhhOn7r17I9/6ou+8R3bL371937L637jO/7d7/0bdz7z0jkKLdGltz7wG/7291x75+vg/O2f/4lPnT51++X3//jf+pF3/le/YXp1b/MS4h/45F/+8F/6gQ/91R9YXT9H6bW5f+TXvPWb//Ef9fN7lTRe+rknXn7z/xjXp/7++x96z2Ov/y3vyoZnsIX/PT/z5//d7/sbL/zkp18uA1JenH/ZH/7Gr/p/nsN2U0w//Pu/75Ww5nx/+qbf/u5v/L7vVrcNLD74lY/9vo//xf/1a/7b02duvVwlozlcPfvDv/D2P/AN21/6dX/u2z/43//Ll6t457vlw1/7lm/6u99jiw1ToV3UT/3ARz71D97/qofhP9aVYjw7WylYFmO8ffs2ETnnTk9PrbX7+7uIyMhtDHVd7+7uWmt3dnaqqmKObaVZGWLmKJvjzKAyFZiHbpy6i2krXS0DdszMiKAwmYK2uvUeeOCBuq5PT0+7rpuVExW6VYEIa/t+zmppQwhtW2sx5chLIKKdnR2FI6fT6cnJiba/IwGlQSkVq65b7Ret4Ol4CvQnJqEZyhmLogDAl27cQETF3eqmQmtms5mC6Thodul/u66TmIZTmIkcACh/YhRnSClFYQSUQVqXhkJSESl8Jtqdz2eElFJU+QXqmydiSNEbmkwmBxfTv/gX/2I6mUzyous6p33MBvfAWtt1oWmatm2zPBeR2XwqIsvlUnHhGDvFGfWpptO5fkrhcu+ypmnS0E9F8XQ7tKrb3d2tqgqtSSmp28DMKlGSUnJkrPcT5qIoNPsb2w4RvcvUdOu5P5/NtcmbgmgkfedajWxhSNmSVlKnmNm+Lx8ArFardVXJoLCRUpqVE0XPz87OmqbRJocKdocY9J7aP1af03ufearqtSL+CqcCAHNUDOXg4CIN6isjmzvGpMlO5c1oZkXRAZFUFBPNHIgIALUhVlU1nU5RhbYNhdDL18AgprxcLkVwOi2JQCMdfWydi5HmFmMMiRVqHw8pHfMxg65or7VW6caqyIGIFimlFFMYta111/DQRlKZOgig3KkcKSESigqA6li1Va1DB9Cr+bk8GwN8773LC81P9KgCYhh6dWrFfdcGIlI+nepX6Bgq8O2oJzcsl+sscz7LrLXrWO3s7LRte/v27Swrxo/ouS8iRVEoXJ4SWjJnp2f3N3cc9Tl19zWhQ8LcF2WZ94EDAXNqYosEklIIYgwiYdeEzzzzOADFGFV8dox9ekbzEOOMRm8AtdLw/8QgwKKZBjUt1logMOTU+mnPHkACwpRUWDWmlBrolYiyrIiDQrF+i0FiSSIptBEkpJQAjTGOAZOwdWgtgGCXGFIwZK01LNZay0nLTQprrEByBE3TJJKd6UWd2bIsX/Pw62OM9YqXZ0uVy+i6GJpUrZvVapVCPw48SC/qwHryA/UYBWGsoeSxr8xW+AYAXQwauWi8M/IL1Y6jylCkCGlkjG3gGo0PR2d+vPkYR4yhBGyc+Q3+C1vx7dbb+jnVygMaKFPnFlJKPXWdSCstxgjofE3wNrKE1J9NvUyTbGHZPCQnnPdEpJ3l+qyD9CEobfGZ9CNpUAXBLZITEAL3pCKERITAEoFjTM5lAASCBjGEhgzszMudiztlmYOByF3sIhAjSUqJEp+d1caSqtvp/ff39xXeZel7LRgT67ruuuCcjDYKhm5MzjmtjFfpKmNMBvdvW6U/uSzLGDre6sLXCygZ4607ODg4OztTGkq5WxRFsVwtxkPz8PBQQUVNVjGz9v3WKEBdBhiAQT3INEksvVyy5UFf0ZDRUw8RAUblT05b/XtUdFcrdXjgdwJA3TYyNAqCAfEPIXRdZ0zPQ0VEa4mZmHm9WIxqVFoUpeegat1oGMvc2/zVajXutf4sph6njTEqZLS7u9vGcHZ2pqnfLPehiylt+r3po47r59KlS2r59RxJKdlhiEbylq5P1aUwSDxsw/E3eufZQkyK80jbtnXocJH16ejtbdkfDIlt1j/6CM3YodkuDySyEeCQcymjHtpPKVnrtqBei1uBlrVWmb66GcZ1di4+34IStq3SeJ9xp43IMmyBgDCkp0b0eSii78vh1QcboSgRGblL0iMp9h7chFlSCmg2X3fPVVdD70sRAEzCxvVrN/U9UnoQBAb+HW5jykRmWJ0K0BgmnZTBRzcGBABjF7umhRgksTOmixESFEXhsiKkKECT6Xw9/JAYY+JezXYbC8ZRO0Unmuj8VAIPvIBxPY3jryZAR4+IFEEex4EGXrbyJtRdziYlI4AhBKII4wIjIkLS3F1VNcvlUhkNs9msKIqmabquU3F3ESGyKSVJXMdq3NhAOJvNAJPPnIjU7VqhamBR/Sb0hCyz2US3bhuCt1YRRJdnFy5cSINTQCrB/Kqrg2XMzQgAQNpKiqitUV0a5g3nUf9Vl27YTpNtXcO2Ei3CiZyyzE1mc5v5wGxcluWlcBAUBgPCeq5b66zBIKlrO+5F2OX4zu0Xnnjy9W95Uy6ekhhjOkRBSCIMEoNimsyIBi0IIyEhabp4DLrGDo1jlDie3zh245Xtw36D642/WoOHzQ7FHhvllKBPJ/IYfOqigmGbM8jYZE/Ds/G24/kqY3p5K128NZijS7HJAUDiMCTP1Ds3xmr7hcGGgDEy2nEAcGREIMZUd0u9jx1yxKNHwkPq2xijIjO6lfpnRsBBB2M0XwmEUn8m6bMN1BgRBC0RNeR6KBN4+F2AQzuJkJIqXTBzCDGOLQi28vy9mpCAiKhaxeep4x6Q5H6/qyXcdps2f9jy0rbNy3grTboaIhzSMOPC2FhX2FSubE/uSPGALeMjIjElGqB/4UFuGw2MPh9CEu7lbrC/1bbBP+c03JPYFLG0QeF5uGBI/IyvIyJZAwBR0wm06SKi9wkhFL6IwsypbVt8BemSH/+J91frn719+/Zytdaoo21bALp08cqXfumXCmKdIlnLksr5Tpu4arpVVXOIxjhLIAyMZp3gies33v62tz5/5+iJF26/973fOJmVt5a1Meb26TLFdejAkdvbuxhj44vpjVt3n3nu2QcefoAWksR97vEnm6Z54NKVH/3MT332yWfEZW/+0i/z892LFw+OTw6vPvo6k/Ajv/CJx5/+bLLSRUZjAVA4WGuTSORkvTs6Pbn24AN/+Hv+q6qq2qY7uHihWtXVal1VlZKYsix773vfq+SOn/u5n/vsZz/rfW69E5HJZLJcLpfLpbW+qk7T0MR4NKrL5TK2XVlOsVdN5QsHB3t7e8fHx23bOpcpS1G/pXj96x9++OHpdLpeVYvF4tatW0888YQ6nYprZFnWNI1Oq4JcZVmqXudsNrty8ZKG4nfv3l0ul6YtATY6GLc/8ewn/r8/+vbf/w3biLOfF9/yvj/1uX/5cx/7n3+kU2Vhov3XXHzPf/utB2+49nKsGQDuW+BClj72fT9S7s+uvvN125vl2pe97js+8P/+8F/7d8/+0C+wQh7evvYbv+Sd3/Mbsr3JPTe5+fPPfOz7fpgsvVxRmiP/3F/6N1/zZ751W9kDEd/1R3/Ta3/jO37mv/tnJ8/cVUTbT/N3/Bff+Nhve7cu8nuuV6gC+sJfsel+6Hv+ziNf/9ZsC/Iu96ff8r7/x9HjLz3zwx9/4n0/39UdEe2+5uIbf9tXbEuR6FUfLj/9Tz7w7I9/8pW+wpb+6/7C76Vz9AIoD+bf8Ff+s3/y6/7sfT/yyX/w/sd+x1dmOxvG97v+yG961x/5TY//i597/J//7OmzdwTAF/4Nv/Wdr/3Gdxw89sA9H+8W1Q99z9/5JeWef2Uu7qtSurOzE90CSlBi5rbtlRCvXr06ljLcunVLPXYNigDAWm8AuxiJGQ2FqOTlTWQBA9VRjwPYUv9HxJTCdDo9OzsTEcW5mFnzUoqDq1UEAJVoC0MYMkRcrYgoshwHVWgAUDBxtVrp+b6zswOJZaDqqC6qFsPpOKxXlVob5TfleS6wiSGJKCVWPuz4E2So3CrLUoNwO3QRSCmZIX1ujBukqEQfTH1OGGTrmNkMbRWVTlX47KQ6uXLlCgC0ofPWMQtLQhCbZZaQQdyQed3b20PEzPmU2GY+CtR1rbfKsqzMi52dedO0q9UqpmStHbFChcby3CtsZ/smfr32MTODYCcdIo6yzgoFGmOqqlJBifV6bbwqAfYdgEYKszNWRfM1ItBh8cYCp8y69WLp8mx/f99Y0roWRMyybJpP8jwPsdOVqYlAdQaMd/qoiqKORC07tkZMfHZ2ZoxReq+e+5pRQETjnc5+nucj+UvRXl1miqqHEE5PT50zqp68WCx0SYxpYAAYtUeUla9OwpBOgBF9ttZnmVXZcdUa7rquCZ32v1GGtZaaOZft7u5OJsVisVgsFoqzjJPFgxwNEWW2Z+hrTkiXt3NZ163Ve1Q+sv4hzwqfuRAghFA3lYNMdTn0gFPXtCiK1WqlPEHVelWAWx+giWG1Wu3s7Ozu7qrcZza0ppzNZqMGowI9VVU5MvoYOguLxcp7rzkq5cSNvq6y/DQRouwfZtaERN96NMuyLAuhs67v33X16tWUemb6uqm1ZuLq1ctN02jRgLrrRbF7X1uH0Ecx46XkM5EeefBZ3nXNer0EoNxmDLQzne9ML15//uaNGzczOzVgAOJoBNQkqkuJiDy0W9Si+55EKYaZlXzWPwYiAHiXW0cppcViUVXV2dmZZk0EKLJoLoGZRYXlmGPksjRaN6wEZxEBMokZSUzPUCIRSIk5AVoDCckaMg4lpSiBI3AKVpzTHt2dtVE3kU4ZkjTSGWOIsr35lfUitm176+bher1WMqZD16Z6tVrTlgugi99a45z13iu+lEYuTkqJWeddtmIl2MAF3E+OrnMMwps6aVYKes+PxhESGT/OPf8mjdjFNhC2dcZt2Dmy1Udu2/kf8ZntIHfc+CMjcwwzNdYbGjX11boioK35eEhLjP+NKQmAAl9juBeHFqMiEoUZtVB1E2h4g9sPjFto2DgO27gZi6AhQySBJUXmCMgWAYUMmNCxCJAjIvIeitLPdsssd8v1InSttSSQiMB5IqIYWxFo677L2mq93tnZUZEDEVGA0hhTFBkAhBQP9vbLMtdEJgDUdY0ELP2Rp89/fHwE8OjL92boIjMvl0traEwqjNwsABDh9Xq1XC5ExDlrLBVlLsAnx6f687WoRTeIOjBj4k0TgYhYZrkWzehBgIbUsAxHYT4q5veDyRxSsJwQ0SCM622Ixzcp6nHBKGTKzNZaHBRRIictuDHGA8CQtqSqrZLoO1E1qVkSoljbU5f0PG1CF2NU8ccYWXMV1lqdAu/MuBf0XAPTK0cjYrWuYWhySESINAJQNGgo6YnQAxcY1BNDRDeke0Wkqqr1ep1nmbVWq0yUzN5ha7h/AO/dzM1R0llzjEh2NJR6jX8eIYPtbMkIpsS+j5wd3znyCGCQSDdb/OghLbC928VumvuJiBAx4uYjsIVlpKGz5PhPY2Jne79tvwHOwU+bYofxFWPOsS9hi/48fnb7Me4xWIgGBFO6PxypLksP62BvAhTJNeef3xhk3vyK8Sui9LAaM4jEhGhhOA7JaDl/EkYQJCskEoOI+DyfW2e9J+czQiRjJ6UlO36dQAIiQ3RPjqEfK/1p5zJ7Gwbu9pBuY8qju8C8eZsMMJkuISJar9dFkRORdV5iSl1wziVDanWsdzrIZGxWFjdu3Dpbrr3PE6Au/RgjJI4sRJrwiAYpDbou6o4ouNxJF0JIITkyLDFGo560dU7jgdls5pyLISn8FlMMnC7uHOzu7mqdmhBYJADg9Aqk4wScgBkIN0KEL8fXxk00rqIRfsIhlaLPn2f3T/EBQAIhEW3UqZarKIqLFy8t795u56exabuqZRQ0RnkxrIgbIJE1XkwySWII0YB8/MM/Oyvy3YfeHpkZwfksCguC7XMYMEglytCelhANmzTsUxbebKURwdTtOZ4EI8NdD/VxKEbTPP4uvRL3bF+EXkMDgKGvAwMeBLNgPNG9G307db76G25cFlJUV58w2+pwMixU5dXSuJJVZkt68Y1+PaehbR2i0UKEzTiIKFabUgLqf0mCjcEZ7dvmyaMMlqcXt0FEMD19vKd4i8B5TYzedcCkHQFERLjHMZmZ0GplmUZ0KIyIWqm6Wq12d3fzvNBjY/xGonMnIgAYsQo300ATu+eyzhhjVFcEBjs5PCQibkJ9Go6Me6zlxhQP3pvtVxEpP1qGUQIAMhZxc9Zsm9/x1N96OhphaNmaYiK65wHGqR/t1eiW4eD13mPZ9BppC+NBs72jBUEABEAr43Tex8UwDLQRkMySxgxlWTrnPvLRzwG86+Wj/dGf/0iInyQyuhR3dnYuXLj0ute97nWv/aIbN24899xzyUCUxAA/8IM/uPr+f3J0dHTlypXZbKderY1xuc9i26SU9g92X/OGtzz9wk2mk88+eavuVmdnKzDUtVHE7EznRT4pJrOmNSKQEty6devGrVsf//jHTXbxb/71v/H2t77tq9/zNR/86Z/e25n/wT/2R7/+1//6natXjleLRvCs7Yrd/Te89UuevXXjc08/VUwNMEVOTdsppahumroLIcU//if+xKVLl55/6SUgJLJ5nnufc2qKoqjrZm9vn4wRkb29vaIofuiHfuSHfuQnHnro6mw2u3PnzoULlyaTmU5HbLsUxTlrDGlgTwO/rCyn6mNNJtO27ZzzYzWJgl9d1x0fH+/s7Rpj8iKbza898sgjQPjSSy8ZY1arlRDu7u7qO7Ws3hij1Ej1OJvQqW+qrXImZgqwyZTc/eQLP/SH/vbq1tk98ghkzZt+53ve9Dvfc9899fKru1+/O4785L/+8JP/+sPf/fhfO3jjOZgy3518zff+jq/53t/x+W97/MSN/+Vdf+IVv3RRffgv/Zunf/Cj//ln/uq274SEFx976Lf+4z/6Kh++Olq+ynf+H7+6RfW+b/sr3/H+P4vnAfqDxx44eOyBd/7Xv/GX+DzC+//097/SP5K3v+qP/9Zit3z5P732137x637Tlz31Ax99+T+9+IHP3vr4M/f0ZgSAx377ffDuey5J/L5v+yvd4pdoz/grcxVnPqtQmEWqmWQH/kFowASydm4MYUSIgAJhlYxBZhJxVdV6sACQuwIQOA3SSJQRYWQm0Oq00HadNVZEQuim6AAm3CgXhhDJWqMtH5gTLcm5vXVbLRYLa01ZTrIskyhd1QGAAVTqq888AsaYtFeGiACLUJ5lWeay9bqKMYiAlvTJQmJMmexYQwcHByJ8fHykzQN4OJ7yPDdE2FFM83W9Wi5X08nEZzk03DRtludFnpvOLKg6w1W1rnd3d/M8Pzk5AYDpbFJ3rdoQ7VmnlFsR0VpXi1TXtbZ9U+izbVvvfVEUVVU1oRu0/oJmwvI8r6oqhFBmZVVVZ2dLbXBXh9DFgALWusSxbhsaWykQRuFqvcrzPLSdtTaF2KUgIpPJROm0wL2zurOz07Stc+7o6EiPwtVqRUTWlpPJ5PDw0LnMGNN1jWbjuq6zpu9wY61VdrOqKocQ3vCGN+zs7Hz2s5/tum5vPgPoaeMaCiFitVzVKalkR8/uHLhjMcaiKBRezJ1nSSRgjPXe53murRGZWTkiSoImZ+uu1Yhd9S42rgKz2nAAaJpW42TF/b33y+VSo9G2bYvpZAzs1fqVZamzE2Ocz+djO0ot086yvi5WWcYw0H4Vmx5HRiN5RFS6jAxqhN57RENEmJmdLFMFjAHMIu97wuBkMlHqn9Ku9Qyyg87yiPKLSNd1KpNS1/VyuWyaRjMNmjsZ5UcUoB997+0/tFWtOIiOkiZjjDFXLlyOTZDAxvsi9ycnJ865ixcv3r59++zkZDqd7u3t6aIiouVySSCz2ayPs7aw16ZpAvQUVGNME7oRyxARlTUffOx+jpRErxOkPp8xxlprrSeiqmqcJ10/CgZprdh6vQZD165du3z58nK5VD0TDQyzLCvg/o1tiYzSouMgxp1Szzjy3oYUq9O1NViWZZmVoYvOlJcuXLp1/ejpJ55xpiCyuAUbp6GDNA5QYIwxsJJOeAQxlPqAMKIWG8gldAmQF6u1JCXqEQgIwljRJYzG9I1YtKJf4ezx7A4pGmNFtIJURMCQJTJMqBmttolkEIA1AEuJybuYRAQ5mhiRCfoKlSY457zPVov1ZDK58fwhIk4mE2KbmYKhrtumjWuN+EJM+kNEIouE0MWI2vZZMxBbCUUYw0YASKMG3fAT3IDMjIgkwhZjFzdlrzpTvKUuSGSG4O4cVXmMGhB1vvpXtpHoMTCHLZodI4xioSM8Pdynj3ztoEGqGSOJA8kdB9CJN4jKONeiNc6StrRBNv+kqzFwir14VC88SEPdwD03HD/IQxXLGOOkpCEbCqdemBoECSz5GNiS6tWkPMtnOzYvjFBXt01ItS/8bD6pmlUIwTrjvSdNeokAQAgxy3JjLBG0bY8Heu8FUBC0P9PO3lyb5YYQWJLzNssyFdVqu3YymZRlyXfr++5N6ywixBi8K0aMRUWT1DBOJhNNzPRbOAStpzk9OTs4OFBLrrfa29tzzp2dnfHAm1Tx1RACI4SeaScA0NYNgyiUpLOcZRnHNJJR6rouJlMtvuy6Rpnm4/LQzajjMK5qDVVEhAA1B6k6VNba5elZllkAiLFvS+69D6kXycky1zQVUd8MUOU4dDbVl9C5nu5M69Vaz0fNSsbAMTXee+ucYtBCOPQcRo1xlFCvh4XSzPX4q+v68PBQf4vC7moVy7KcTCbqtKiSSVkUy+VSlQQV0N/d3SWiVtq0CKGNTWiM9eixLMqdbKdNXEp5rqS3T1IJAJ+rhh53ox4bZhAVwq2kimwhwhsswxiAvmsWQN8k8J6NvbVtGBHG6onxhmZIVt9jHcZNvr3fxj+Pu26EFUZASraaa42f2vrvOcQhDb3dth9JtzIIwv0uMhRCQAFy1gAiSdd1XYyo688aBgmh0wZxaGikO40DqGeD6f/ayw6ISEjRZQWR6VIQQW+tnxgIPtgm85lzbkKGCWPiiIKG6pQE+77Mxpg0FALogNDAy0hbuKoiXyL92TkiMlv2etQq7cd/MPEbSub2wGp+oqrW6qGyACJGYdgUp/TZy67rvPd5Xp6dLrlHKomZT09PY9spCd17JCJvnbrs2pNU7bsewyGFKJK5zGW5PkzXdSodELsALHs7u1mWLetl7nMRRICuay5duVxMyp5kSjhmL+87v7CRdOgbuSIaIgOJAQERLXDC/j1mSM3hoB6+PT7biZD7fM0wX5EBES26EAJJBMRyOtk7uLA4O0vrU5W9UCzYEKLAaFWttbHtrKNJWb7wuSc/4fOvvvaY966KHVsXUhQAZ61BSl3QipjYI26IaEhSon53xxjVLIxroAfpoh72wMgpJe5JvpvMxJgAHH/yMIKq09Fzb01fstGllAygtTaqFvJmFkT9tnGn0JbgSQ+59hZp86ne2pxHFUVkLPAxG88PETFwGo9qRDSmT4TYvqFEX3iiPoS1dtT6YAADqMr1AKAugj5P7P99k4Hf2kT9NeZ1tl9ExDhIhiEia/JhdMX6uRDoqcqYOFlj2rZdrVZ5Xjjne4DV0DjeOpWy5QJq2mwElO+zCgdqOQDgAM0P87tRxB6FybZN9GhpAWBsBoAbUgkiAhJpGMzMJDqDcRTK4KHmZrT/w65R03TvoMFgtDew/rhpz+t3jwtv+2QZF0P/G2GzGMbF3ytymP7V7bPPOZWY38DNhL29UH/CWnv37t07d+7cd7CttW2dTG4feeSR137RF732ta9NSbz3h4eHd+/ezfN81TXeuTu3ni/zIoV4eHj8zb/5mx977LEf/dEfX5yeAQA5v26WLzx/41/c+oH1ermzc/Xu3ZXPTF4ciIhB5gRXLj/EzCBcLVd1XV+4sDeZzE4OTyf59F/+8L/f2T9465d+6XM3rr/lHW+Pdfvom954FtoXPvaRq488+GMf/EA6W+6J4br+Db/5m6994hMf+NkfPzk+me3MnStOl6uu64DM0fHdP/Yn/8SXfNmXPv7U00mYAzAHEbRkmqZGxKIsq6qqV6sQ0q1bdyaT2Td8wzccnRy/9NLNspy2bXjiiSc0yFcLj4g9DQFt10ZmDl2nb2iqGgCOT06KPBcRAxjbTgnRq9VK5S+XZwutDtZBvnbt2pve9KZPfvKTd+/eRUStFR2LAJSsp3w9AFgu1826apoG0QCTfbIGuDcx89N/7p+XF+df/j3vvf8O+j98/S9f/id/30f/4v4brv2yPnX8xI2/+84/9Uu+7ejxl77/G/7Mt/7v32v8/eV0/lO7bv/CM7/4/R94y7d99Sv1PHilK1Ttj/3xv39fZF8v6+3y+lFzusp3p/f80/M/+Wky5v4dEYk++jd/6MqXvtbPis9zmr/84sSf/v4P3P7kc6/+I5/nsvl5Z/5+zSc///W2j199G1z9gjzM/z9cD/8Hf/KnH/zskxdvjZFq27YxhZSSyzP18YqiUHKrXiEEIDQGRUwaNKz18I3CYEi63p3QUFB5WHmeT4tSDxRr7fXr169du6bRPgoY5wpT5EXWdd1isbCZ58AhhB6EjWEymbQAFiWEsFqtlALpjG3b1vtMRMqyJIOqScJDeSxoc2PqxR9HKLAoCpDe1VHCV6+vbXr08OjoCAAUgleUZDz61Z0eRQ9wKHnU32WMWS5WfZgGrIT69XrdCyyEtFqtQuyysofv8yKfTqenp6caoitcOJ1Om6Y5OTkhooODA4XCNS2hAbbCUjFG7Tpb1/XNO0ezWaEQ7f7+PgBodD2fz7uuOzw8VDjVez+bzdbr9XK5RETmoDPrvb9w4cLp6WlVVZpJ1RixqqqBYuyUEbxxlaUvDjNZNtvdWS6XiVOMcb1eTyaFtbaqqnpVa/y/WCzatsaBu522+m0qcBBCqusWCiBrhNNsdwetM8amlMgYQpjkWUopgYChwImI2hhIerGaUQ5FIWZr3MH+BZXEGUOVy5cvHx8dhRCuXr26s7Nz8+bN2Wy2s78XY6yrhnNW+L4syy7FVV1Zaws30cMOYKJEAAEAAElEQVSaB343h6jIjtYOWuvbtsmyjBmYE3M7OoJlWc7nc23z07ZBwWID2LZdCL3AqAJMqkOttV+IZjKfnZ6e3rlzR3W6EEWXhA7p8fHRfXex4qHj7Ki7rv3hdSUo0F8UZVu1FvzVy1dO7pw++ZknkMEYwyExWYObEk/YhDwDbMI86AKbAZjW+GVoXYMAPS4pJGCNU3/bGCMCXdf1TekBxq/Q2S+KYnxRcRXdCwlaInKExhgcNYWZAQgRQuhSpy3yyBhnyBhyotJ0QrFLRBrsAyKlIB1HZ7LF6Uohs2rVuEzrWpLSwCUBIfJAy+gLMGGQzgvtCPjEviVVP9pay69x0ehay4DSjBKOoEWJiMxJQIRlDMz1IyOOPwSaor8OFdje0poYjPGmyBXOwxTD1/Uhm4CAQIh9vEmAWrYA51tYjWDo9gIQERkY31oTPNIZ+4cADRns8OQ8RhDjnMoQAY0m1BhjwIygwXY0NNKAZEDt+hyVISHERETijOU+LRtBwBgjTAwMyCYz873ppSt7x9Vx5I48gEldbLrURY4GDDOXk1wY67pumsZ7Z7Osbtv1qlED4rOi7ToFMZ1zWiQRQiCDmMCAsUOXHfXktTgpz+7f/0xhZWttGEy37lN141NKq9VKzxQtWsJe1ChOZ5Ms90SU5SUiamPVrusSR+dc2zV63vnMt12zrtoiL3mQD7pw4UJIUTWgmLlXE0LU/nAiMplM0FjFixULVlHE7fBznDJdlqOGuJL6x72spSFoTVvVaI3xLqQErGWOPR+uP2EFNAk3riIiymxPGFWvY1ZOVE1oXJlVVRlr/SClqxAIEY29ksbH0OdU/TRrbdNUOGgLW2u70GpySwczxugHFY75fK5bY71e13U9mUyQxc0znb7SlIAmKVhv2DlnDFka2lzBWF6+BSmOUNG4vjVfPcZmNPSCw5exjJmTtXY0HMwsg0YnbsHEWjcxhoIjIjN+Lw7dGOF8HkwJkduhvmyBWYqz6H+3UQ88XwkussG+h3/FbRGAYZJgfMNoaF4ptHDGmE13RIuItbQ9SkVDMwGRRIgCSaVmzYZIPi5ZRXDHlaGjF1IUFdVFUTuDhEQ5W6v9RACJLTELGhNQaOuZCTdSR9vTNw7a1s80RAN/8zxpd/jtY8oRNrffooGnQSuWiFLqzR8M/EeLBKkvFdFFNWJzbdu+9NJLCMYYhxBSFyySGKcf1/G0ZMqyVJ9g9CO7rutiMJ4y67WKh9ASUVc36/V6J/P6zslklmXFSTwVhwnYIjLIa17zGm3uYbyTrczq57mwP103GQjYAE9WYKjrp816g407sklXqiW671fEkGKMBgwBAaKCyIQWyIQkq6aJAv1qSQwozlgEwCQGMKaERMYBWpM7l2cuNO2N55576cVnXvP6NwDELqTISGSbujMCCCwibJiIGFBEDEgSEbslXIvnkDhQlHP41+FFZn45trtxlbbvgIgCaIwxg1My7jUhJNl4AIPzgDxqYRPKVku97fQAbtFR7VAgaYlga51b2+cwaUhR9rPIifqqDtpOzGzD3ACQJGkrOSEcbQuNCW2AGEUEiISICDffe899xiUxfOm5vTa+cxiWDU5KRNjfUykAqqdhu67b29ubz+cyZB2AUNSvI6IhV79tZ/pKFHpFeAIRyRqF7CXxCJTLRmwkGtO/YXsK5HxCBUeNkUF5AxEBEICAWB0pNcjqHI9ftG1Yht1mFEtWMzU8Kd2zBoY/bH7pOHo0JNLu+3vH/4LpFTlY8XjUpEdPyRmd6fGD/Wocbztou4xl3QDwsz/7syL3h3Xe+c53ovhiOt3Z2ZnP53XTHB4epiTHh0dlWWZZtlyvjo5PkDF1qa3qvfns8M7dp8h8/KMfaat2Op0CQJYVlkzsUpGVk3w3QTKWRAQNLRYLcmZxepZlblUvqmqBIo888sjirFqvuhdfuPXOX/UV3tjZdHp6erp/6eInPvox98yTH/vMp67fufVFb3y999nzN5+cXXlwZ757crz4db/u13/xO7/k+7//+z/9+KfLsrTWgFgGMT67dfvuBz/4c74suxCAjLW2qprYBe/Va4zGmBhZXZmjk9PJZPId3/GdL730knPugQce+OAHP6h8hLOzMwUIdvb2dnd3lbQVA+fl9Oju7aeffnpvZ3d3d7dpOtRSdxGlPrksWywWeZ5fuHBhuVwqzqLEqKzI1+v13bt31YsNIWj/QF3PGiqLiPd503TG9LVmBs2FD/PF6/l9po35R//Y3/PT7C3f/tVaS/5LXvesvYM3PXj9g597pTd3q+Yf/er/9tv//fcevOmhV3rPPdfhZ6//k2/8f71K2uxzP/6L7/vdf/mb/tYfzF+mxXHf6/M4P78CV7dqfuC7/gYSvvl3vIfcq4XI6+PVR/76D37y7/3E57/zp7//A1/yh37ty+Hm6vbZU//uY/fBmgGA+fF//rOS0jf+zT8wvXrwKp+HQ/rMP/uZH/iuv3H/e/4yLzv1s4cubL/y8Nfey7b+v64v1PVV19/0YLz4kTc+s1qvsyybTqchdnVde98DgmZTIxVOT48BYG++o76rYnzMrKGghs1mozfoRETZyjFG7VWs4vKz2SzGmPssxqgkqcXJ6enpqXV9Y7ouxrIsIbF1NssyLXdLg360kpen+wfGmJRYu3Z3oVXd3pOTE4WJl8ulSuhqJbJ+tizLspgMipNGEVJ9GxkznU6feOKJGOOVK1cOLl28e/euHrWqgx9CQJaDg4PpdLpcLm/duqVw6ohlxxhPT0/rut3dnZPp3RuFRFNKddsBoct77D7Pc+ecoueHh4fKREspqRaE9145VovFQpnjd+/eBYCLFy9WVaWcZSUgN6F78cUbo3J3XdeDipqKjfZiWTLk5kc1CUTST+kTavWYaiWLgKItOrMpJefcqMiMiN7nOiAKhet0a5BojFmvl8ysTq8xRghHFUHYAhp2d/dDCHfv3h3FRsuyLMvSGKe4P2xRNbkXtLRpUDOIMSn/TgnUI+KcuqDQw9AFWqy1Z2dnXRtnk3nous985jPL5fKBBx7IbK8Ps1wu9RlUGGc6naooh2qtdF0nAiklFcOrV6ssy7ouIhrFazRGHsUKtkhsJsuK6XTek9ZZdFJUNUIXgGY+dONEgSzL9vb2VEMjxkjUM/WY+fj49DXZ/X0tlTXTpa7qEESUukCORIRBvM+YOQbx/z/2/jzqti27C8PmnGut3Z3ma2//7ntV9apKpUc1KkklDBICBIIYECSD2ILgEHAsmzgozojHCM6ISSDOGLbBMc0IIgYUmzi0oTEWMgIJJCEJddWoVI1evWreu++9237taXez1pozf8y919nfvfcVkkySEYb2H3d893znO2fv1cw152/+5m/a8njv2uJ887mf/zxBVhWVVx3IAXDEK9jCrhsTIkqQAD3bJsaIA8eWkeRKcTaBSAgsEkMI+rYY+7btiIjQh+Qh9JiGOjMyXP1gapcaAozBos2dsQQGyVpCohi9sIAhRkNAHXPW+RSTikiQPrzSf4Oq59m+FCMMErplXhnsDFIHnVI1rbUJyUJIfb+MREYiAQmsRDeTXHGdheQ86z2og61caRyRiNObeYf59jRnGkqoEUkjHYWJ+iAF+z9M8dc48krRaAKghHC4eVLOUNpTqjxpAHHUZhxGBb5E5AfhCxlxnmjUw1AQkqCzWr/E4JRBhqUPfAZCjHNOlYK992R3VbnJDRsvvzRcw8/IUQh6bh+hjSp4p+CJiMtsVVVgu43frJvM5OgbKaui69rlZklExiJL2DZhtVqVxSQFVl3XEqFxDg2FEDrfOJtrzYG2LyUiRMjyQtFSvR992Ol0qtjoQbn33L1pTQ9Pq7pxQp/Xg84+QB/e9kg9gIioWdO9r4lbPRlDCLdv39aqo7qulQhMQz5Va1BEpAemY4yDGHez7SWMNXeoIJ6SnZU8lFk3Xgx6+qfdpBZeuacqCbXdbgU4z3NNrFprtyBGJMts20bvvaFe5iJ0vlfuctYwa5rWWlKCl8LBIQSGXkNZ7bZzTiQKUzWZJGEWAFIBfSJiDnpjiiBryNx1nUY9h4eH2hJQnzTPc6SeWZiqQEREZdZSowIiMoASogDUdZ0Fl2WuKqYMIiuJkclp6RratIcT1pO20G5j20E3kxC537FmaPY1pvfzyHVmgCiCsjO11lqinqY0fOnTUEIiliY7TgOLeZhCvUkGUA7/FQGQZOhH1r//bfocGcBoRNT7TejD8P7d+aG1+eO9naiFz90nes1ms7ZuNLfMMRrjYoxAIgO02ltA7vuAq+pLgqLGt30VZEHPkZgQAEE6Fg/eAJI1AQRESDBEtpkTAjImsJD0SG7XdUICoxoQEVGfKX2piKQW5EQGIOqSHQ+OiPQ6Bzo6fak+JQOnliXLcn3FmB5u7qF/Sxy5R3wEIDJQ36thNpvleclDc2cFx7IsOzw8Xi6XyVSh9E65rj1OKgcg6sWCocjcBc6t6F6KPogICkmMJJAZG0KIzM5kHDtr7YsvvphX5XJ5meBO770mup93DUjZMCb6LGFUyAPMStCW8NTwigzplnTSvNMqSh+OaLoQlJ5qrLl99wUK/vTR4yjEHDxHJkPWICEGRsLcFV0MkdlHQTIMUtf1QTXlzn/iZ3/8hbs38mISfAhCxhgIYAxF3wEgAg4yomQAgbHjAEhkgADBPF3QEAdkbXgso0Jg4zWj6yQpzNCILy8ikWOS9wLodYvG1Bi1BCI96q1TDwDJdKRbSnuWiIzpO+RIZD3hEQgHAFS5A8yMLDxYGE6QrGgrzTBOWceR3HnvuIAyig0ziCAgRxQakuiQJPYSUD5K0qY9PnC6d3Sn3YMrEtuX0kSOfWvdMSqNiCKUCjIQ0blMRIyxaZn1oLPuXAQzfELvX/YEHGvfiSqIgKav6EFEMlZnMy3O5PuaQVgDRq5P+moaVJv7RJTSqEbK+4hoCJkTIJ7kWSQtuf6TcViIANpVUg/OK2mDwY8cJrd3CAIDkWUAZiAy0AfkfTo3TXd6ekZWuDotLRlFFAPOv/sTUVd1PH7DqWGMUSLt+973vh/8oQfPHewQvEG+OD196623uq7zIWjYb4g638QYV+dr79vCudZ7DnLr5s3P/8Jnf+qn/1lm3N333mnqum28s0ZEiGPouPWPnHMdijEGkIg7a7OqyPIMcpdbO5vPi2uH15vaB0+H+3fuXZ48ePv+7Zs3Hz9+9OILd/ePDo2zX/jMF08uzq7fvrW/Nz88OH58evZosz0/efL5X/jCrffc/dd/7//0/v37//if/OAXv/hF79u6q30MP/UzP/Opz332d//r/9psPlfgOASt243GmLquA0djDDNk1s3nc1WoVFzg8vLywx/+sPd+tVr9wi/8glb7apGsiJydne3v7+sxJCKBY9u2isVkYADicrnqum5GewcHB/q3yeZoOV70YdksWVtREXnv67pWmltycI1x6lA6505Xa+fczU/R0dvvCCVzF37gf/m9b/3EF/6Vf/93PqvPO778tv3S93/i9Av3f91/2Eth/Hd/6C985i9/NRgUAFb3z//Kt/9H3/jd/4OPftdvKQ+fBkPHV322+tRf+sGP/7l/uH7r9Kt/5vj6wt/56fXDi49997/6vu/4mKveUdwJAM6/+NCW2fyFXyyu+v+Ri/mf/Pt/ef32+cu/7etndw6Lg682INuT5YOfee31H/z5T33vP/7nfvDq/vl/9fX/29/3T/7YjY++3H+Vjz/9p77vh//3fw1GcvPPXl/8/k/OX/x77/72D9/+pvdX1+Zf5Z3NxXr19vmXfuCTP/unv/9fCNYMAM2T5fd+wx/5tz75J2yRAcDrP/SZv/27/5Pnc7F/5foXcb3r0TE6+rG7ny/L0mW2kLwsS5HomdXVcc5NJmUIznt/9+5dElgulwo1quPXNI06M0n+OAFq6gUxc24dAE4mE+dc6Lwlo9rBKuCgesHqPonIfDJVnmOWZdPpdLlcJkdL+2ArSAoAavGyPAcE51xd1+t1LSJK7OWB6azYqMKdWjKlvoQiIIi4Wq1cZp1zSnQKwm+//bZCqBpZ8MDau7y8XC6XIYS9vb08z1erlbbLU1Dg4HD/QLBtW4UDAAD7TvIDi3NoWp1iFtVeGNw2JqLZbKag82q1stZaJGPMnTt3AICIqqrSEdbBdEX+7ne/SESKnOq4aTit/ypgqu6TkrtD6EWKNUXKzJvNJsY4mUxSbxtjnLWk6JuisepfMXOM4n1U/0efK+40na0mO40xsfM6Bag6d0RaxaxixE+ePHn8+ER9qtlspve8XC5DYH2Esix1aYUQzs/PE7stuUN51cdlXdcpdw8Rt5teVYNGTDLvfdu2Bu1ms7m8vGx9Zy01TaM49Wq16ny7t7eXVrLqfih5kIh8F9I86jMCgDF4enp+fHxojCnLcrlc1uuN5hKUmJ/nJSLqaOg2KctyMplsNpvNZoOIhXVd123WWwCoqgqtAZDLy0tddYiosJSI6IyXZblf7D93C2e7LpqWqOceZs50Xec5bpva++hs7qpi//haaOG1z385NkikXMG+CM9SH6RAHxpEXTwyIJjWWhDWztia6ekFJYQHKGOEt3gFByjEqBAaEgojR0bq+XMisc/ijJqSJU9eaxBZQCKzdBAkIHKIRVEU00lVFLXvPEfvfSSxSCpmyMICgIQ84DlEFMMQrUgUxnZbV1UFwNa6siwvL7u63gyBf1+C2Q8F7vAWxTeyLHPgRETrGhUiUJwBRk22REQMqbozjJo/Jd5Pv5K1nxswc8yMTRGEc5kZxVa6VfsB2XUU3AFEchVmYVb1DP1VX+RqTMbDpe8MIOx395NmUK7CX0OAMrCwU5WnXPnelHQZ35WIROjbxgz3JsxgrUkPkj5Zf04wSBp5XRKRxfSajQICIIRKozcS2IOBqrLlnhMCmws6AoCm2U7nE2MIPRrb24HMZIgY2Tub6/bsui6AZJYyaxJ6C0KaqAshaP/ShMzqM6qEThLB6Lrnt63S7VkUxWJQdVitVm3bCsDe3p5OdxxEh80oxmzb9o033lDguKoqVcBTTYkQQtryIjKuwlFzqsWO1lowUBRF9DsRJxnK07HvQIAqtZTSZjw0BVUYN0EKKDApKwAQYGOMGm3NjMYYVusmnQJ6e1F6MajpdKoaRzHGZrM1xij6HGNnjNOvc84phWtdb9VUxhhVlzztx7Qm1UQToULnCjUUReZ9bNv28nKNCEWRDaLSZhAX2mlexV4zvdfzgaHmGFlwkARgFp3u4DhwFAQZmkM2dW0TdvwUTJC2aDrR+y3E/c5UezcscdzhaQqKGaOrBAacaACS2BiLSABi7W47JUwBRxBSArK992kjIzJeAe922dFUFCYi6eckg52eTr/Ue5/M/VM3QEQivcVJW3eENSgr8woqMb6ISIiUna6HcYzRR1Uxo9Qvjqj/OcsySz0RW65iNBGArloui0PjL0FGtkhAFAFEorWZIAJJ4GiMG1jfuwm9+uy7B8dRQYeieEMWQRIyRSOWIo2qPAAA+yoTHj0XDxsV8jxfLpe6AJhZIljjTF+4FGOMFnvWc13Xh4fHn/nMZ7bbbVFUiuaU5UTl7ZJBJ+h1OdNzWWuBMMuyPHdtiMY45aQzswhG6NrWcwRmbupOnzEGJrKslHHE97z3vept6JPuVvs7XDIQ9fW/MaoI1ZWagNQygN8h5NMcnYwyvU9dOLqIqAveGBuYAWTv8PBrPvAKh3jv4i0RqYrMR+nazpGJzD0wb20nkSMLkDUuxljY7O0vvfqzP/Ejv/G3/g40GW864Oics0RqiIMEzaMggBEUQgOE0KvrpCWUdgQisgjyLiMCu52+U4FIj5AWdtqJVqG5Xgt+53YktFpEcFDl1zUKA5hPbleLRCPm8s4vQaRhj4YQYkiiwDEZChyy0Ko6LcP9wtUN/tQkqiG2g0AzEQEQc7DGKhdjMPc8hj9loBKnrEayujACsmEQAuZRm9MA/cpMaH46TnouAIu6NTSkbQdQGBPZqv8K7l09GaUYiZ6/CAV2dAO9v/H964uZsUL9CSLQF5fpShin64P3ssN/+54eQ3Yqs9YyIAOr+NdghHvRj5RwJpvR6DgnazmCpJThkAsUAGMM6SMDoHHMHIQVxYbBeiAiat40rZmRLwgjzZOE8sPAgUqZgxRUIyIrNSnGOPSAVSuXPICu61555RWiD/75v/Cc0X711S8sL3/SOWcyl2VZFzwilkVljWma5vLykhsRiFmWRebCZR13GqdVeZEXrmtr320huMy5IivFyM0bVVFmuvfQGmMcAtVtYwwBFpeXYox5/wc+8C2//ttChz/64584WZ996Gtf+dJrX3jv+993cHD41ltv+8hHR0dfvvf6Jz/5yRdfuIt1d3nv/kFZ+hCPprNP/vznfvZTP/+e97zrN3/7b//oN5w8efL4U5/+5Ov33rh241YT/D/+oR/+4Ic/pB6MYC/cRETapyFGIaLVasURQFRXWoRxtVrxINv10ksvNU3ThXB6enp2dua9v3379tnZmR4B0+l8Op3X2433fj6fC4IPoW4bV+Rpe3Zdl2V9a1llnHVdp50YFUlRLuFisQCA4+NjJQsAQNcFESlUD3oVjl4/eO4GSVfYNp/+Sz/0ub/6T1/+Vz/6zX/s917/mlvkrugbtIvtvR/+7A//7/6fZ6/eB4D7P/7q//Cv/2++7/f/2S9+38e/+ifrtb5/9iP/wV/5mf/sv/3Yv/c7Pvhv/Lr53WtP6Rcv3zz97H/9oz/zp79ve/pLF1Nmvv8Tr97/iVePPnDnN/7H/8a7vu2D2fyKhDF7Pn317R/743/jrZ949Q/+5H/8S/78f9HX+tHlP/kj//WP/NG/dvCu6y9/xzd+7b/2a298+CVb7moz1w8v7v/Ua5/7qz/25o9+bnuy/MV/crdufvSP/o3Z3aNv/WO/5+yLDz79F3/o4ce//NWxZgDgLvzsn/n+n/0z319dm7/463/VK/+Tb33hm95b3dxPih+haU9+/s3P/c1/9uXv+/jFG0+4++d84C/p4sDnv/DWn737Xf/zT/xnb/7o57/v9//Zf4Ef/ivXc6+X3jr8hZf2OaOmrQGACKy1McQBLO5TyHt7e8rwNYOioEawiuTazCk5V6FSrTHX38bOx87HKK+88opGXtbayMLM21VfSqyKzCKsMbxB2m7rrmkJMPrgvZ9MJ0r1Qm3Py6L0paZpAgcYFA5v3bquEDkzK9CsXe8TDtK0tTZfKsuyqqok/qg+Se+ixKhNGpX/a4xRNNkiaTZXkUpFBk9OTkII+/v7WmVSlqV1BrEHnRWxzbKsC1FEfOgZvjQUFTGzlmNHbQ84FA/pGM5mMxW4VFAjKThPp1OVxbB51kde1iYdtqqqkk+V4HJ9UU9zRX4V+0hunv7AzG7Qyry8XE4m5ThQ18Nu4EfvtCaSq6m+Tdu2EmLCbrrQxRi1HaK6c03TKWd8Op2qv1d3Xdf1tcVmaDW5Xm0QMc8KIppMK2ZOetPKRI7DpSIkiKjsYEScz+fMvN1uDdpE6FNVCh87hSqCaJeqoFOp99YzND0365qI9qYzRFxte/npsiw18Dw4mLVtW1XVdDr13rPvsiyLIFomv1gslH6oq1Fvddt2WZbpqvOhERGTubZtwZCKw9Z1rVkKBbXVedhum7puu657sjoFeM+z+9f7ABl47/Xo19tjRyEEm+XT6RyEJuW8dJUE+5lPf65dd8GjIwSjDiTTwHqBEaAPV0sYkzOMuIsEU4xDO6ZLD7aMkUdAI6o5uWuhRIgYhFHYSB/a6+DrLDACIBLitJzkxlXG1eu1K+xicfnk8f29a8duMtHuYQYlsieMQzjGXRcH7AUHhb0YguInhog22xU1uLEm3+Z5Vszn88tL7cy2C9A0u5A7p7WYZCwixTh0+tFG686l+JHGwscDh0wYkl+dwkAdOkwNBjnEGD3vWMZN06R4K4Xho/5tiIhKfUtzkd6MiGDIjAiFOEBPfbygxEQ0SGAAE6LCI44LQF+AqpLPMIrpnor4xnH0+KF2D0s7zmzCwbouFK73cFJ4mFZUWtg4Ai54V8Uu/S/JWTBAHLlxBeYTzCayd3QoAJF9aEKMcn5+fnh4YIwBAWdzLbnIsoxAd70JEsmARDbG6WxqSxUQ0tybbmG1loaIiLRnqaZCi6JQo7ReP99TDQMKrBkslVfK8/zmzZub7VarW1Jpe+/GZ4Wqb2ZZpjZEoW01rSlHmGDiND7z+VxnObHBJIpzGWa5Qro6pNqgmEEODg7W67WeCDy0ilW8WI2wZigBxRpjyGqTYWW7p0hcN0ue51Vluq6rt42K/yzXKyJypq9H0ZwlEV3ry5Kins5KtdE1p0cMklHIzrksMWy0/CXG6MgN395zbfXxu64TwclkohUncVApSfVVKGzzLISgZygMp7Dev25bR4aItK1uXTfcxRACB2i6dg57mky1IPk2t88u9DQcw/93cumIKEMzkNHOQd1kIqzY1Pi6svNH2yy9If02XWZnW3vWJJFRUaGn9ioiqkzS2NanLTo25bo4dDEl457uJI4KEGCAw4aa75gQ5/S2dE48d6tIX30f4iAhSkSUcCwcMGsBRHTGWjJPHUtja0ijRxNR2QRE0nkhJtD0nTGW+7HpRZT131TgLyLAvTEe45tjO4iIxtjRIO8yaekHfW+aWUQz1Iv3GJYZyk+0Dxgzn52dbbdbdVXTGKpnoDtfpeuKSSUijx8/DjEwg0hv0DebjXpCYdAkgqFnnTEGDemmQhTvPSBBZDFGBFmNbAhd8Jm1IYSqLAeRBMPMwLLdLu/evfve9743LSHdpTG+Y73w1aHol5Ab0hsJc0+rEkd958bzm5bQO8HN1pK1GQEqYlg6K8gxdCCybTsx5vqt29snt05PTzmCAbRIMUYlbAqDyzNLxMgi4mPY1MKGJyV+5qd/clKU7/vwNxwf37xY1izYRiQiQXC5611nMixigWJ/zzRidEJ6wH5NoiAqeZK0GkuGJFh6j1rtlJNIi9AHFhEQ0SqPNIYjQFP6YjIAGFxJYwyDJK8u5ZbGszMcwP3fxpHyRroNuOJwEACI2aWU0j2k5Z02frIDCCZRfVkAqOe26DpnvKIRn5wYGCVLSPUulMiQniEyqIkA6H8eAGIZEE8c8kB6hIUQILKzLgx6fP1TiCT73I8SC8Au1TQYyec3xhxIxP33AvdmMIkCwVDqMdx7XyyWtsBTllNHIIlD6Q/Jtg9zkWZcD3tdTk5GkzJMrTGmPwJ11amDNfbgYUgPGGNU7jt91+iLxmsGAKBXF7mqJZWs3Phv8Yp32xfjySA8hYM8tN6GIguRn49d/upv+qaHD86fPHmy3KyXy6U6nYvFIoQQOm+MkYYVizfWCiGgNqOJq23YtvXhbO/a9ePcuoO9g8JllhzYuiiyIMGHVoCFgu8ikfchLharF1586aPf8LFv/pbfaGz5//rbfwdM9vUf+uh6tfq1v/pb3v+17//hH/2RT3ziUy+99NJqtSqL2a2bd99+8PDtL73+4sFRmRfrul7de2O2f9B13c9+4ucmk/Lu3bu3bt998/79RV1n1cxJfOutt26/cEd5Z1mh2bUrdAzCvmOwGcoJRcSaLKLXBZOXZVYUWlOsRXDaQCmEcHp6en55SUSTyYQAz84uAOBwf09pC9ttvd1u1VYQmRhj1zXXrl0LIShYQESbzabZbA8PD7uuW65XSoVLYqBFQez9kyePssweyVfjz46vsO2+8Ld/+vV/+Onpi9fyKjNFBsxkaXO+7Rar1f3LRDh94x///H9+8Pt/qRq729PVj/7Rv/aTf/LvVtcP5rf2OWr9Ga0eLzcPz7rlOwoT/yKvs1fv/63f/Sfnd/bd3mxyUHFkIIqtbzft+s2Tbt0cfeDO7Cq1+aXf+EHK7L9Y/PQXeXEXzl57cPZ/+W8//ud+YH5rz0yqyUEFCPXFdnX/rDlf/3I+M/CXvv8TZOlTf+GHen7wL4UjvD1Zvvq3fvLVv/WTxeF0euuwOpqAwOZiGzfb5cMFN90v45Z+kVd3uf1z7/53ieBXeM3/37n4vFua1hgTQsfMBwcHRsD7VguBLy8vlVC83W5z6+bzOREpa0mTXszcbrcA4Jzr2/2JaNQnItrvaDarTk9PLy8vrx0dt23rrLlcrvUTVF6pb3PCUuaF4qTaNV4FN5Qrrck59Zw1PVmWZdO1iiDPZrN0tI31jpWDpgG/9l9qmsaHbr2JxhgBLqtC4WNmbnxnGHGEHOnhXhSFSnjpoazOvIIRl5eX2uNODbtyvsZDsd1uo4CyuXGk0ypDtS8MLBbF0621Vd5D+W3XahG3Irx9vyaig4ODdb1NrZnUozNDqW5C7nSm9vb2mqY5Pz9XGc0Y43K5xKGZhx5GO2YfQFVVi8XCe+99FkLY25spbE1k9/YqJZKr3rEi7PqZShxzZAqXtdymoxAARER5eYiY5/lLL73Uf6CAD8EaZ22mEGS6PWHQcp8Yo7U2KW7HGGezWZnlyTNZr9dN0zRNY8imBQm9cnHm205xdgXZiYgs6l8Vk2oymVhrFULSGC3R+jSnrlLXCZjebDbOuf39fd0RMcaLi4sQwq1bt/I8v1z1zRV0DVxeXobAIjCZFJqAcWSOjo4QhRFclgGZuq6fPHmi5/tkMiGyy+WSiKqqUtWs5MDr4n/upbuDuRfzdM4B+IFISCC2WbdtDI/un6wuthkVjjCECBzJEo7qkIefdvFycj4Hz/AK1xWHAH8c8gDs4oTkcD4Vg4pIBDFKNkQk6aFtGAU+GiYYwQ++72s+8rWvvPLyy4d787rZ/Onv+b/+7Oc+U3T7xrqu6VxBmbXArLsVUeOJiIhCqPEvUernxVHvs+nU087zHFBu3Lx+enq6Wq5UmMWS1aUYmAkgBG+pRwNkqH00xgBIjAEHhWUA0OwCAIToETH4OH6iFHNpKNGPlWo6xx2CD9DzSXcupenRnnHcoTtFHzlljBiB4zjCJRFkVolqQNhBZMDAiMACqcp5NDuSyMsomIKmUSv78WSJiFZOpgXQB5KYhEl2SJdeavlpUHdUszOWBJAehqb+EgLmQSoaRAiBEENkLoosn1FWwsG1aRu2q02d5aWz9vr16+fnp/fvP6iqcv9gHmO0eR5jRAEWCKETMQBgrLGWNOek5pSZN5tV5gpFe3RvZs6FEFSAoqoq7cWiwjtFUXTx+R5a7tzj9YUZNJeI6ObNm13XzWazo6Oj1157Tbvp5lkGzrnZTBhUPMdlDgDUZKnik9aFKIQKAJoB1cE0xujhqWdEih91SPV7E4gXY1wsFuWkUkvFzIm/ojOrslS6AZu21lOs7ZrxIkl2ScMfJeJMp9P5fN7Urfd+UlYyKBrpARGin0wmxH2bXBhShn3Kbbf2oiUC6JMTYVQfkN5DRIijHdSjHCjCRZHleU+aBoC2bXU8C5cZssZYa1jtAAyZMx6Ssmid2oSyLG/cuFOG7NVXX21bH4UP945AIhG5zO3v7/eiFv3KHCnjpH0y/llGHbdG18DoBELY8Zz7aLxXD35658AIYhhvPxh1/Rpsbv/DGOgZ/TmNP0qGnOFYW0d/O0afmWHgwEHCv556UhggoXRsjJ8ZYWfon7r028DsisHJGpI0qijC0Q/dZkdjle6Bh8S4iPAoDUhEsVN+JyoZURg1fScAAoQCBEJElow1lgCDPP1oabmPbxieAV/SDcBVYdz0iPrTOFUwHjq9WxX2StBP0zTGWWYWhrTqEk5EAhcXZ5eXlzDSRjDGKDtDRXAAIMsKm/X9DOUKTsGIaFyugP7Yvusu0hgAWAiwyHMCbH0XYviWb/mWa9eP1FKQpoiZtWXiO8zv7rbhmYTKGJxi5nHnSRwpUYyfceiL+Ow3WUQUFhEG7BHJLM8hRgbqAp9eLsvZLFut27Y1hDLk9kOMepYTQhRBgCjgOZDADJy17qf+yT85P734ul/zrXvHN+vIEUwTPFnT+M45V1AWOi/MEa+cpk8t8qefC0EVq596m64NuqpEwcxRGAC8j5pFgdE6NENBnwzU5qe+q981g8xW2kEyIt4OzgGy1hIlkfqr+SpERJakf8A07NnhA/XNqVhPXzGDCEYiueOgjZ7EK8a3MX5wGJYlDQpF42eHoWXr+BVmRuidNRyJMwyYcj/CgkgCfpS46gdNer2OfjsPfRA1MNDnfsq+XZ3EXW2O0g9kCLeSMzc2hs+a954aPNoXPQKLmA3JRb7aLuPqRcwso8zo2P6MDxER0ZVvrTJ94vge1I6NvyX9bMyuTi3dv6QahWEWaCTZvJuv0dpOLOmxjU2rjgA5xLOL01/47H2AX/e8saZv+qZvEpHL1fL111+3mavr+uHDh957AmyaxrAxxnTeZ2UhCNaSyRwi5IUzgEWWY+ToAxnqYmjbtukWzBGtkOubeW62bVMHl5Xvec/7v+N3/Y/2D45fv/fWT/7UJ46v3XrxXS+/8aXXvukbP3b3zp0Hjx5Fhsne/sNHp2VZvvLBD3/oIx++vDz/+ycXHrEx0OXuYnH5eLU6PjiY7h80m+1nPvt5m9uLxcXX/qoPk7ExAhAuFqsbN27wQOfZCRSRFYAIIr1o4JByR7DWIvcNT/Qor6rKObdarRRGmUxmxpjj4+ubzerx48d37twpy1IdUAAoi8nl5eXp6ene3t7x8ZGIdF2nVcCTyURLrYsCVdxTAYKqqvZnc+WL7e3tLRaLZrNVhEJEptOpNDJkXn5RV7duzj//1ld/DwdO//5Sr27ZdMuHl196+Mv423/+xbx86xzeen6LpWsfepdEBrtLkV5+5Yktsu7/F3BzurjpLl8/AYDnt4X6ZXygzs5/D8y2OV//8vDuX/b13/+ef+X6JV37RwdrdwqIVVYRUQgdAGpCcTKZKEw5nVZ7ezMDuFwu87zUbJmSrYgsqpgV9NXWWuujVFCVg7i8vGRma20XepmFaTUp84JBlCXdNI3txfG3SgbK81wBTZdndV0vFosY49HRERHVm74JqopRaCWHfqn+oPKXODS2Ve+6J5Z6r+Gl6vPqCHjvwxDa6P2rJ9Br7GrsEKI+ddd1e3t7k8lERBTFVnkN9UPGzpXeUsoiq5dCIzEuGfSUEdE5NylKZg4hNL7vVYWIyhfT3lZ6FqtkExhSNASGWsxEztWfAWA2m3Vdc35+qrXGiqWenZ1p1rMoChWDXq/XioZrcLHZbNIX5XmuraG0HUXSLZxMJgCgA0JD86u96UxrzwF6zTQAsM5qlyodRlXiatv2yZMne9OZMHj2rsystakRblVO9MRUeU0l98Whc53Ol4jUdV1VVS8DYt2kKM1QvKW5bWMcsCjwqhOnkLqu7awssixTjQsB1rZgOpjEvXS1fhEjJF7CarXShQ1aaxhbi7TZbESk3dbFpJpOpxcXCxwUVI6Pj2/evPno0aMnT560wXvfMnNe5l3XIfYabgoxKx1+b+9AZay1MYOupfe9733FI4B7z9m8xpBzjsgy+50/D5DnudI2fRsLN1ks14vzVWZKiYRCzlohiRKjbwWZMKOBWKMedHL2rnr+z+HhwRAOpGAHngmsxu6wyI4mMn7POL4wSBIFBTaXayc4JVeB3N6b33nlAzf+6B/9n/0v/p37F+dUTvJqIjHaLKtD9NzH0UIoYgQABIx5FqhCXZPMPJ9UL710V/uLHB8fP3588oM/+IOP7t8HgMlsTzNALKJWywwKy3qH3nchqNssQ8HkbkCoF6UZpAiv6mKPXfSeODIS+usHmUe0YtlNB2goPsQvMEJajDEiV2Cr4euGQR4R7Pprd2Pj2YFx+mHM1KQk3n2V0SyizSSv4EtyFZhOvyIiHoWu46fYDctQh8qJ14z6GKxInTAwoBCWk7Kc42w/b/x6uVlvti1uNwfVrKzMfL4vq8uqqtrGE5EhA8w+BIgMDEop0/ZPRJaZlTjcdR1HaLlV/l+6T+XG6uNrHwJtFdA0zfHh82k3gKgqgjFwWVRIPQvktddee+mll1588cU333wTANThj0MvuxACYi/wq8eows0AoDmGZJcSuoWD8nKapnEkm/7LzGVZdl2nAHEIQc9cnSbvvQEUgMJlXdt571WWpG1bBELqMQ0cMqbpZpQlnQ4jlihR8jxXM7t/sHfj5vXVaqW6WC7LNA0chAHRGNzbmxljVIGq6yIYm8C0ODQe6ENRYWYYMj07MeQ0RzzICydzvRsuwtRuQQ+yrutcZmUoStYC8dVqlWWZZLTtjILvXfBnZ2dFZiGPFqTruh5uTuTf9N27NY27vQRXwdnhdQEA3TqIKBBl12AUYkhHXfoT5qHQ9dnQ3QwVZyJirUU0yb24siF3RipJzvcviKAIGpNkFnvESgRVZnu0M59PPBxfA+As6Vb7nQwQ4zvGV13XGez9pBgjwm4F6Bj2dNddEuuKzR1jl2YEcjHzoFMDyAQoAkCChAgMCkoqNZKJgQXoig0FQMK+o91TZ1vqKBhHcNj44meCmGTs0kelm0zzKyIKECSpNX2drAHpi2XIoHoP1tqTR4/btiU1kkgIveehvo6IAPQ1VgAQY6/ljwPJ3VprhjUMmsYzvWonA0TvJ5MJGWCOAEwGYoyTavLt3/7t1CsPJGLyV29AtHvMfiFxP3/prBq9VYFFHBY5J0OcBlb4+Uif4toqEc2AxhqG6H0wBNdv3pqU5WZTn6weUVZC633nu+DBoDEmCIemFREwvd6xReQQPDB0IUpd2fzVn/vk/bcffvNv+i0vv/LBVqDjoEdqCJ2AIQFjDAHGIZZIiLAahK7ziKjAqC4xnX3lfcJVIjMMPvTOpcDhsE8NfK/uvmGvPZ0KSvkDkb7CKyGVT22i/k+IhiaWV5JDY8sDBlPxQRyS8DhiKChSmQ4q6LcDi8QYdA0DEiGQiHiORstLCeF5E6sfa4b2pyISdwLEKrHV57fwiiupw9XnqftsSm+rd2BxjGwADRnupcWHLBcLChDuKOcAgD2G/dX4lSoDBwCkpJ/MjA+ndGlsmS4B5mGfpLOWr2T1e6nlwGwH8P1ZCzw+GjSFlZYHjIyS7KoKetcWdgkzHj3vFVn88RelZCRcNcI4EmkZu4DptE6f0/92yFXQqBWhZrkQMQJYa4+Ojl5+7/THfuo5o/3GG1/54hc+vr+/X04nBwcHWZHHGK9fv77ZbDhEESFBItrUrSAsl0vPsW1rBl6frpt2G9ou+rBdr7vaF3meGccRAKMtACnYzNjMZa6aTfe/7Tf/tm/+ll8HYF997Us/8VM//faDh7/1Xe/OS/ehj360btsf+fEfO7+8mB3sv/+VX/Xq5z6/bZosyy8uLpjl27/92588fIAxXHPmJnebk8V2s4k+7h8f5U0RQnjPjWvG2ZPzk3qzauru9a/c+8hHPpLneRSu6zq3SmY3YzuJ2lpAJDmCoQuqCz5xTl3Jpmkms2nTNKvVRkSWy+WdO3eWyyWiCZ4/8flPAMBsNrt+/frbD+5XVXV4eKiNE+/fv39wsJe8PQDouo6jKGiy3Tbe+6Kossxut9v5fG7JVHmhnjENLTImWwPwi2qj9y/9dedXv9fku81eX2x+6k/83V9kT8JfuX7l+pfpstZWVdU027jrPEF7e3tK7C3Lcr1e9gQolps3bxZFdXJyMlBeGIAUlvXe44BI6hnUdd26bubzuXNuOp2qEK0gqKRGURRReqnAGGNmXdM02/XGaIM+Z7uu85pubLYKy2rZOwESUV3Xxphy0sssKD6o3DGFTVX2QemxZpCPkIEMpO5QEFZ2Aoa+lE3fqX+ecFuLFJm7rttsNnUd9vZm8/mBcpw1/1cUhVpaRFQpTE3t9zlpQGNMp1Bjnuvnaw89iBy1sCyyKVBEEqysbDt9hL29PdUa7kN6hOh9YsKGEPoYPgTlVhtjYvRNs4WhlD4JjyqRNsaoqtnGGMVPEVHRZ5UN1ND12rVr1trT01MR0TvXlaC0O/WXNLZX2F0VIRSF0XBJRLSEOcsyfXG5XHZdV5ZlvW1ms1ld14prTyaTEELbdC5zOuxlWc5mMyUvW2eShknXdruaccIynxQMxpjV5eLs7EyP4CzL6vpyUlaHh4c6UMYYhth1ncJGOzSZWcmD6vxst1vxrFT0XpAqBiTlxsaizHuBTQAJsZzOnHNPTh4rXBJBEoN+f39fMayHDx8qbg7AaE1oQ7teK8ZUFIVWTYUQNhtP5A8Pj1W0WvVYNGsyNGt83uY1Nsug64KqQhtj2rZ1BoyJoQub9XJvdgiRL88XECGCSGQiICSJUVCIIHCMI0IDqEea/PXnVcEyj/3PqKpi4/cM/03h9g6dVBcaxvSaQWsYBmc4xmDJShAOfDCZfd0rr/jLs82jxwuCm/PZ7aPD8+WqCTH6QNYul0uh/pYQAVHjCYan4n1BlTBFRCCx1m7b5smTJwcHB8aYl1566dd886/9dd/6rffv3/9//OW//Prrr8+mc0RUWmvK4vCOYrzjbgdhEUFIeL2QcmFsD3iNOXnjwRQRGXQztG7VJJyXQETImhAjcN+CUuus9U+VkKtJGv3YNni8ioqM4xT9K5ArgWoEbXH+NEMxUfH6D6Q+CcEIyn7fAVX6oT1db/fJeoUdbrbDjtUgB2FmIEMwItUlGhPR03E0C4tERBK9BxAAapuu6/Dm/EZR8cnlibVUVUUIXDebtqvzPD8+Po4xqAFxSgDlvmBFC6aV7ReYtZiAmTn2YbUKqogIxxi8jzHqnoWB3qsJUSKy9vmbs95uuWJrbQwsIqGLSL1dffz4cap3EVVIF2xCo4KrTVsnUFsLiYjo7t27AHBxcaGKH5qmVeX6CNwr9my3+mY94NLIpzh3SEsICuSul/LoISwBH7wSzxX7ChL17OjajoiM3ekJy4Al6nGpY6VlRtZajsLMLrMCrKm4pmmWy+VkMgEUFYZS622M0Z43oBkyEZIeWhyH0v2qZokciYBZEkSu51HSs07gTLpJtTBqYxVw1/y0msoY2VjS0TPD7nz48KHrzNHRUWM68d1msyEou+W22putVqvUsk/SXfZfM1RAJOvWb5IE5+2gRkLlCffPR8KqZJBKJwZD0O80DeAxfeoYU8AhwzywwXeV9U/R3/Tb8So4Pn79qhW4AiuPP4euMubG7xle3JmD/g8HTdrnbhXnXAxaa9NXXcWr9FUCNMZokYAfyWSngVLzQSMUuL8xRhwsi4iA6pgMlyXS/0aOAICKGJLdPZTe82gcRAQTzfvqhYgAO02VlP2WIcU6HJ9XJJDGw0tDJQIRafpL/Vp1BAEwhBBltzdcZheLRb3eqJRwjCIgrsjT7rI240GPm3vB7h0fVggZgQZN91SFEUIXJFhHgOycqzdbEEEBYOl8/R3f8Ts+9KEPaX4shG7YBbs+AO90XTkCB6s0fj0BWCk/pgUaur3TjiCCd1hHfWJGSxEFJEYPpMIRofVh7+Do67/hY5+HTRfhxHNXb4kjECnInue5M1ZE5YwECI2zlkwbOwPkkGcur8+f/NQP/6Pl5dkHv/Fj8yK7XG3RZUQ2hgDGKAguZAYTEXv/JvFtB+8HAIRR+jW8WwnjxTA+zhlGXUmfOWj1bcOqeBof3KWjEZJLl0wkjPYL96zbpKt75YvGCRURiSApyfDsvtZTTa3/UALpQZk7RiV3+kRiv3lF4q7/8JXP1MRmiirTr9Lg4ECRGI+z3j+nnsuDh+FjZAk0GnPViNR3+2daHeKAfmpMCAB7s5n0vIznL3gabLjuJouU5m58XqT8IvdHBlM/1wQj65KGSIYuGfrKrpoJDVy1Rqx/NdpftMvAgU0ZNdBukP396MYBQECj6WUdiji6kzQ444X31EHwLGsbru79OPwJDZeI2JHKJCIqUuyGJvUiEuLhc0d7s94+efz266+/romiKL0St7V2bzb33ocQNW60Lu+6zmROBDOXZTO3tz/L83x/Nt/f3y/zyhg7LSuM5eHRXjm1AiErbVmWZTE7Pr6RF9OP/+wn86r8Nd/8ax88fpKXlbFYVu7Rw5Miy6vp5LWvfFky++DRw+vXr79054Xl+WVls8PD/Z/8Zz/+4O03r107vji7YOLrR9ev3b5+eXp2cXZOiGDN1vtJ4Vab7cnjk9mkfPPNNx8/fvyRj3zk/PJsujf3XWQed25BPQm1cYg+rPded2daFYo4m+APDo5u3YLlcnl8fAzaBznLqqoKni8uLpq6+8xnPpNlWVFkd+/eDTF2Xatxe1mW5+fnIujybDada6SxWm2Oj68fHR1JT6lrV6uV8tfUSq9WKyI62Ns39fNTy7/w7kebqa+b25j9p8/+9sbRn71zc3ntxvXtZrN3sH9wcHBxdrlYLLS/ucsz9TUBYDKZFGWBgJP5ARnKjHvttdfu3bvnnCPCru2uXb9W5EXk6Iy9WJyXeblcLZumrZt2s90QYrPdGGPu3LkzmUzapn3w+LEh+vCHPrLebF577bXJpLx950693pycn107PJrNZ+v1Js+Ly4vz1Xp594W7eZa9ff/twJLn2a2bNx8+eizCxzeuLxerGON8Nvch3L9//9bdu+/+PR8bP+Obb9/7b/inL++el1VRVRP1Br3vlK5YlpUxJNLTDqx1wce62VbVxFqzXm/zzNVNXZaTsiyaponsnXPbzdY6u93WXde+66WX6qHiG4FspnzAiIj7+3tVNUGUut52nW99R0QGKXDMrK0mU0QQwNCF9WbTtu18b7q/t4+IgNDUzcXlxdnZWV03yhswRnPYAZDJuhi8c7n3rYjWm6Dm8gEoclSbQkhAyHq+I/fMIwAWsYY675GIozfWGkNHR/vG2IPDCRlqu/ZicUlIe/t7PngWNkQuy5AlhkDGkLXL5SLP8zJXnUpm1ppbiACkCXsgAOAQ2raJwgTEwA4zk9kQYtd1veymFv4CaMEHiOR5Xk4qZ7LIDMCRudX+dUSBgwzMU9966wwScYx6NoqIJWOIQHsUEDVt632rrUfUDFrjyJgQgw9BQBAMIgJK6HyWZ8qW6LwHgLworDEhRg4BiTKX+xiabZ3wobppZPDwiQgRrHUSgnWOI3ddFzkCc1Hks/nch6BBkXXWx8h63hHF1rOINT3ORc4CAkThGAVYo1lCI8wuc/P5DADbtuvaNnAoioJZrHUHbfnBn7v97AbvvA+hQ8Q86xmmYRCOqOuaCPI8J6Kmacos99475xXibJomz5US28YYu66bz+eIWBA1vtOTMQiHEBRxViC167qM+nYIPoau68hZa23dNsCyv7+vlmRTbxHxzp07TdMQwfHxVFutFkVRZLlihYgYmbU34Ha7VXfi/Pz82rVrQzAZE7m1rmvF0GOMdddmeS4ijlzqd6dSzs451VhYr9dd16kJXdaNRqo3b97Msuzs7ESLVBaLxXQ63d/fV21ifbMeoOoVqOwyw47VqIEDIiKL6k7QQCxV0FOx4xQfaW/Ag4ODoiiOj4+3bROGphoqHpqAJ8V867pWWrqiBmntOed0R8AAl+hcW2vn8/l6vVbVJl2lGrru7+/r/cxmMy13izGq+qcKOGhAFIZucl3T6txlWa+8mWVZG9qkmKku1mazqev6YL5Hg5aIln7y1cY/t27dCiFUVdVHRsCpSBetQYSyLLM8r+t6tVxnWXZ0dKTZiOvXr5dleXFxgYjTyXS5XG62KyVG+BAUoNcDOjmxy+Uya7Lj4+PZbHZ6eko5qJOjUKN1JomZqM5yXwCeWYUtDg4OlsultVZZ1fv7h0pIVzm4hw8fVlVFBJqcKIqi7Rrd5opYabZGQerVahECz2YzHcnpdOqcq7dtxtmzO1ev7Xar+eY8z5EFImRF7ruQ2XySY7epsyJzCAQIEp3LBXXviHMEQBghDrwZHNTqYHBseORYppDiKW8fkiBDZIS+8cn4Dp8ORkYFgv3CuOq1GmNCjIXLu7C59/ob86LYu/NCszqvCD/z6ucvTp60sRPIoec5YRi0jGNI1A39nh3OAyPfWBC8943vVcU/+OEP3XvrzTfffuv8/Pz6tZvf8z3f84f/8B/+8he+mFeVDE3eYARe6yjhAMXqK9a43cgwIBAaAa1HTeXTfaDYE+oAAIFAdiPJgxwiD4V0MI4l0wAOLKV0P4y9QmOKa8Zx6whsuTIPPSQlfV9EvTfob/oKcxFH4fAocumDC9MvAEn1tWllpPHfxYYjWc6kTomIFslkLsYYGXDU/0xERFj6QFkQAUkIgBGMs23j87z03dqSNcbE2FZlNnOTy9UyhG618LO9mR4BrB1TjVE/vG1bZjYGjbOxZWPIWe1i1+tOjFk7eufOOfaha9rJfKZmUImxzTsI3SyWi0tbHx8fg0HvvXa+JdOXraRsoi6DyHFIg1ky5uDgQBNj+mJVVUVRLJdLPWIUdNaWfSKiib1U36MBiIYAeuxiAvEUyxq16mFmZCHqg9/9/X0tT6mqarVeCqExRsUH0ozr02nnqNh1qu+hx5DW30uIHHyWZaYstXqGVC2QSE8ZQjPgWuH09FRvRh+nq5vOt4BChMig/DpMIpyE+qSatFDyuGbmcEgAjDd7OtF0HlPj3LIsnXOqcaRHm7XWkVGH/3ByGBexa0ONNRm6efNm9K3HWj+kH0QcQF59kvFuGQ/TzhrtfoX6EuKVbTb+IY11ysCkqe0NAOwUTsOgt/3Uzh9/7NgI0ogVnyBRGBU+p1fGmNRThgOv6rbgiJsmI/2Q/k6EjDUqRfTcraJ/EkMcdLv6RD2OzhyDCLoORoKwaaxoBIIzM4IBwJ5HC6LMUEJEIQHGQfWJR+X5gsAgCOJUI6VHLHeM5nQ34zTsVTsliEZHF0aAuAhqXuupiR6/ojVcahG0U6IxRj1vHvU6A+2+Sn1SRakWm21dFiVEbtvOoNHzAEd9AwYYUTPq/es2d6jFFCRJI0WlvjSDmmW26zokqevNdrvufNs1zd2bd/7AH/gDWZat1ouedt039/DOOXpHjvOVs6RfFM+AVjzwOhPunCZURmlJIkrCXk9dzJrd1XUuIQoCCSEKCkrb+Yv1ajI7nO4dtut6xeK9D+yZhWMoTGatLbIMiET1eqLvYhcEyPtMwHR152Nrzaf+2Y+sVxff9Ot+w35ZtIGZGYhCDNCPOQ3nR7/dERFAW94NBz8iEoFWS2FfBJVWAgx0jzQ42gpPn7FrWh3BsQcAvYMiaWtfGf0eOQZ42sjo7pYBA+yX62jWnrYDabL6CSLSFhkyAAcwYLUw6C0oj6l30WLsC5SGr0u2lJmTWUsfmAyRWoMwiD6bQXgL1csaPVdunYjwLkm0Uy3vl1MEBtEMCuIu/RRjRJGUL3yqoi35K2pbn68KBAB920JKkxKHVJs+41NZFr1V3RGYmOwivRs9vDMdbDoRUcQN5i6IgED682SOhh3Bo+/qXxlZHtitsRGLXIda7zYMJSbJ3o6/Zbwe+ike9Jd3XwmAiP6qZF46mNJXpwF0xro8T5+pVRrGPP/s+M7f83teuvtbN5t13bXee7WNfflSn6Aka22eF1leGmNmsz1jsCxL5wwSMMCggxlEkJlLM2ua2ofax445AJD3cbvlt9++t902H/vYr7527dr+3uyjH/2ozfK9vYP7bz/89M9/nn24cfPG8c3rb7/95isf+ch+Xj3+8us//KlPMsjNG8fb8/MvPHzz5gs3T8/PlsvLd734UkC/f7h3eXnZdG3uqsVqtaq32aRsfQzMr3/l3sd+9Tfl5cQ64rJPX8UYgSVFNer2WWvU23POPHWgkzXYkXLKDg4ONGWijUesteW3/ca96azruovLs/v37z95cnp2dlaW+a2bN0Pwy6WdTMr9/f3ttllt1pNqqgKaTdOUZan0OmNM2/Ll5WVZljw0g2rbdj6bTqZVvHg+e/fW173LvXvy+r3p6/e/5tnfFnPz8vum5bXZ+qw9eM/1ajqBTXH+Ro0sYAwbI9YacNZaV5Y2z4siy6cz1aQ7qBYn1eL09JR92Lu5d46r7faxurPGGkfrruxuvvvmflbmeQ4cX3vttdMnjz+3+NKLey+e1Cd+wh/60IfaOVw+qd17Jmxtew3i3J03mzvve89iW3c5b2VzWi/yvfxxdumcM++Znj5+/OEPv49BVk2bV2X18sFXPnu/aZqmgMePH9Ohed+3fvj6nVvjZ/zvfuj7P7f6yuxgkl/b3xjZrFYhBLTIOYuItb17utlsQwhFURR5FWMBs8oWRdkWJycni7gkXs/NfHZztrd/8ODBg9Z2WQbnvFq0i7svfE3YcrPuVqsFEU2nlff+1q1bzrnFYrHki6Iq7VG+WjSr1Xa9XhdFlpcFMzuznU6nq+XGo/e5r7k+jetpt9ZMw3q9fvLkiXNOJljXG9281lrpa1EjOCDaRBO1HjwMrQKH1rL9ug0MYNQzicwMpBYvWmuxQpZQToqXXroDwB7AY3xE53met8HjccYGTuNSoZO27seHuW93HvM4qbIW2zHfIgir3z+YHYOIMkVjjHPEDMtui4jr9Tqa3v/Msl42QUR1AMo6xnVcImLTdCF0jGymJssy5l5j0TnHGfvCJ5pSWZbWZgDgiEUE+pCnrwYtsz7ajFE0csPcDNWXaK1drRZmaooiKgqJiHVdV1VQLufAh4UoMRRBmVBN02xxa10PS2k5f1mWJKBikRp4T6sy2nDRPTJF7791caNT471vmk6gp5SKSGbd1rfWWosUBsMeY3TGap7pAA+cc+Kkde16uzneP+Yo129cm8Ex/Nxztv/i8qIrgnOu8Z1BZAkx7poke9+qzAIMKd66rlerTVVVx8fHbeurqlouu5T6FU1aszDz8fHx5eWlNVaRu6S/wT7azDEIM6M1iCgIzjlLJsuy0HkdqMPjoxs3bjw6eXJ5ea5osuoMcOibJK/X66Iqaai51PC1bdvLy0uFVpnZDr2YtEwkxiiEWWaJYLutp9PpfD49OzuL0Su0GkJHpAK4nOduPp8559aL5Wq1IgJrKc9dlmWPH59obn4Qx8s0a6ikM0XDdZMiIiE9efIECfb390Wk6zoSyPJMF6qiITIEBeMCSg1AsixbLpdt25rMJR0M/Vs9iIOPXdc3ntK/zXOnwYXC6CLSdY0aXg22YSjd0x5WiSmZyNFJpBgAQtsxs3KfZShzJiLFiJPktH6a9/7GjRtKVdtsNioMQkR9MbVzAFgUxXq10YSBnvWTyeTs7KwqJ8q8ns1mmjlQHnSWZSqmkaJRHWrfhbPTc4XXdUCCcJZl169fv7y8rKoqLzM/qIWu1usYo6K6AIDWKNNNqce6YRVbz+2u9SUzG2eTS/zgwQMcRLRz67b1Rul1Oim43gCAtWRM1XeYtPb27dvGmOXyUuEYzUBoUkFVs51zupZ0fA4P9zRtUFWVjiFITaviuWd34BBCiJ3XhJ4Qab08AXaxlcCFq77lm3/Nl77wxg/8gx8zJIAGQPNlsN1uRaJzRhuuDJho3GHNA+gGoMSTFJOO7kBEdr3Z+x59u99q35cx9EIaaCKMq0WpZ/30LmhmsfNBwnyy9/jxo+/9i//F7/0dv/36fCK++cprX3i8WFRklyI+Rh9ilmXEPZdz5JPvSgbHUZJ+RQhi8wyZAShGaRv/yU9+8s0333z99ddjF7/8e37P93zP9/zBP/gHH7z1FpWTpIHT/0sEIgIMKq8cB1xYdpHCENztHPjkdcPzCOM44j/R6Ldq3tXs+7jrvwW9QjeEEI2xonjJIL5Kow7tOAJDxt+YfugHh69M2s7/x6dv9dn7v/qr/r8Kf/NALRo96S4gghH9GQdshJlBMIpoCXs/kcgCYvoq5ChCjJwe+e17j/aPC2uyGHxhjc2sj94YDDFY6zabjcKsGgQRGo7CEtrWE4GgAWDnMhFR2FEHPOWiCNEODf2MEAsasqvVarVanZ+fHx8fxxgLnj87IABQVRPey5xz264mIvXGIwcFTLWYQwdTs1/MbIxj5ul0OplObdMouKzD8uUvf5mZVdBZzz4dPWNMWVSKvSYzlbyF1B5A15JOhyJaKq+UGVuWJTNsNis9a/pCJcSyLD1HAMhzq8gqc9TTRANh5xwMSh36fjWbftQu2CIJ7boQ6WUcaYGzJiy14ElEIoeOPQx9OKuqYmYF/mCoodcjiQfBz7RB0hkKSfndmAGbFmuzxJTSc1l302w264loSG3wIFr30FqwzFxMCh8DB0bE6XRat+0ekYa+RkeTR/ThtKx3tgYUfbsi4j5YB0xbIm1sNQSqZzreNlfMSv+iSfza5Dck8YT0uhIlerM+gFkDYNfXc8FgpNR7gGeK+s1IUn1sPhJuwjs6oRoUBcJo9OZkOJ6PEgqLtTbwTlY4odVw1eJIZD2ucKg3lxgDs4zwC8IdTiciYklg4CkjihDJjsPYfxeRIAaQyBEH0iUgwlDGkizpldu+yvVjZqKni9b1jQNIBeP3p0NXv06DTO/9+fl5SjCoxzD+w36FQN8X5fz8nIboLnpf5IW6Mox6HO7gQv0cIjDGoO2XAQAYIBaJ0YcAjDYDXVpayGaMMQ8evs0cIPJkMvl3/tB3aSOsyH3CaVhXFt7hbIABBYZhtFFT088MpgxIYiL46z2Px7kftHcQ06ARhR4ROcYsc4wQfBdZrDNVVV2SLcrZbL7fbLe8WQaWCDF3mUTxbUssxhlGEGQ0RAYD2BgCoUCMOQl127x0X/rsp40x7/6ar53uHQt7sHluXEDxMdodMAeImJa8Pl/aWekX/f0aSu0c08rt/3v1bLb2aY3sp23LaC+g5mmGbx9UMvT9qfcuiBBiajZ4JXmGiGj6IBNlZ+WGmb1iAGHU6wMRVXMwhIAoiUsCIzB3bOgSJD22oogoIQIAOktDNU2/BVAksoBcuYHBmYDdwaGzgKlODVPDa0QyCNwPSO85SQ+U64t63uj26ZeuBnXvpB4+rHYa5JxgaP0RR6L2OgLDNOsRMAz4QGtINuypudbh9QBKDomSUjg7wzJeDGqLhQEBjLHaWmQY6Ct7kBOxYuT9CwKLEOz+SJ8iHfxPbeSnJhERBZGHNOf4KbT0T18Jw3QTkTNWs8G6BawlAMFneurq9fL73vu172tUXLJpGv16zd6BCBG1vkYhAAQhEVRsQjtSksUQgufYeu+yIoTw+ptvLR6defaqmLlYLC4v1xK4bbw1aMnkufvyF7/wNe97b1HO3nzzrZNHJw8fvXXy+P52vfntv+O3vvaVL2+XF9B1X3z1S4uHD8y2sQTh4uK9N2984UsXT9544/DG0al0b759j32YltMoAQ0t1osmdDZzxC5go/7Zwf5R3bZAGMIOOxMRGnqwDHYg2Yp+3vUsQENZXy7TZ93Vvbt27dpytgyd155Olcjt27dDCDdv3rx2dPjGG195cnKyXi2J6PBw3zm3WKyart3fO9jb2yuKSkScsWVeaM2gCGoJXiLr7c1nk8nk9PS06ixA/ux8WWNms9l73/ve1+8/ZzYvLi9Ipk9OHjd1e35+Xk6qLnZau50Mi+kbPYcYiagIsQuRcrBlmRdFFkJX5vl73vOu+/fvL5ed6ldev36967qLizNrae/g+rVr1zj4j370oxLD/fv3u6578uTJdL6nhRSr9VLZ8Y8ePbJknHNvvvmmVvcT0Xa7VUQMEWfz+f/h//ynEM0bX37tr/31/4qQLy8vb968WRTFg/uPrl2/8d3/qz/yygc/PH7AEMIbb3xlf3+/KDJr7bapU8BmjFF6ndbfqXOMiNZkGpBoIxfV/TTGbDYbMuAyc3R0dP/+feV9IOLl5eX169en0+nx8fG9e/di9DdvXp9MyscnT958883tdqvcNONsURTr7erkrNZG4YpltD42TaPmTmOMZAqKomhDKyIuz3prZsgaF4RjiETkY3SZJZEYg6Dm87RJO1qbIeIg00+ArG2LmTlGj4h37t4uq5yI8tySga5rAJiIXFYofs0QvffGIBF0XdN09Xa9AZjP5/Mss4jo8ix4JsmYAzOE0EWthR1y86o1BwAhcFO32mqmrmsRQYI8z/WpFUHb29tTSEspP4NRlVRZ3zR9/zRFcBS5S364cw5AEE2e5+v1Wstm1egZY9rWG2Ni3B0iI4NJfRA46dEHxYyKotB8j+4FY4xKqSrSpLekxdpJw0oHXPEsHDXOVaubbrUNPpmOLAPGYAeNRRniAhp6u8Hg+R8eHsZB7lC1HW7evGmMAcGzszN/sXkJXnl2g08nk85tmUOMsawK76Vwud5q1zVKqurDKxYRybJsf39/0K9ciMh8Pld0VW9P+/O0oSdBO+diFzTYOz8/Pzg4KLKcmVvfoTUGST3qiSr8sqAhbXPCzPfefuvhw4cSPGKrePF2u9VWgdPptCxL69xyuVTZARVnFJGmaVSAWAUc1H1V/LTxjfdehNISikO7Kr1DDSE1WQIACmIqPrherxUfVLOg3ov2TlQ0XI2VPj6YvhdZVeSEJs9z60zTNOv1unCZ2gR9TM1D6IJRtFo1MdbrNQ4ylAqFgyHVMlbcX2PM7XYrDMb2LmJRFNPptCiy1WrVtq0C9ADw+PHJcrk8ODjQUVKmrWp06OPboWFXHEQpU+E2sqDtVS/TLRFRat6o6zYzVjHoxcWlyzNmruvas1czqNhrURR13TrnDmb7i8ViPp8DgOvq6XS6Wq0AQJsK6kRrsXlvcq1VYejNZrO/d3ByctI23eHhoY65SoUi4rvf/e4bx9d0cObzuRabHxwcROa26w4PD1944YXT09OT87NrB/sa33Vdt7+/j4jL5fLy8nIymUSX0VDMqhCebnDF0BNPvBja/6ZjInN5BIkxhgGh0NMh6Zkoo3wymWji4bXXXpvP9nTLJEBTU1kK3CS0vevegU0hYACVj69WlJmtzSwZYAno3/vyyy/cvPX6a284AwzMEsiQ8omzPLcGAbgJIgOvUwZuS29gRWRkCYcQ4NnbEIKBo6GxOagvqvHLKAi6WpCXrOKAwQgiRgkdx8raTb3+lq/76Ctf+zXtdsOTrG2a2zdvfcvXfeQf/tynI7nIEnyMSNVgBpOFlKHbE4+KI2GAbhBxu6nLsmzqVgB+7ud+7smTJ9x1AODK8m/+1b967fj4e7/3e7/zO79zeXFZVVVg4SHONUptpCscNWYW8Yn12EdtuOMRpm8fhw+Y4r4hnhARHsXRybffTYdGakQJ7DLG9E2kzBX9vWFUkZkNYBxBvuPBH8cyOEKlh189zXEeZyBG4Uci0AyzPEzH+GGfuuBqE6CETSPsyJfpB1T2YfoOERExSID27bcfZvmd2X4mEi0hxC6KQ4LMZCHGzjdEVOS9BHwgZs9Kki2KgiyKSAxS1/X9+4+rKlMtJsV/nXPQcyUJB9tIRBbcdDIDABB0NkN8fousPCsWoX3y+ETxH9PXtTgiTLocoH3/oPdVttu+S/ZmsyHEo6MjLbLRuExdIy0r0XS1iEwmk729PRji4oTX4aA3TSOmoE6f2gqLBJEb3yinZ7ttssyenp5q5UrdbJnZs3YRlDA0ztXVjsNh55xrm0bPykQTzqduvEhUg1FDBj3EiUi4b8XEzFEiIYa6lzayOIAbqSZMqH80awBA2wKvVqvFYqGHrEamaevRSL1al9BgycnajDnAoDG1WCyUkT2dThGRrFmv11j0zUIjRudyCEBErfchBq0H2imV6KlPIzlUGK942IGtsIvMd1oAMhRD9eQL5LTHaFRZnAKtp/aS/jc5kcN2wrQCaNAY1Zui4ZIBXklA9ticwQhKHluE8YCqI5he4ZEUbNrPaT56lO0d8AIA8MET9okCAKjrmqxJRhMVUiLC4Sl2nw+9SDwOehrPWihVuCREa4iU2wtXYPQoQiIMEkJkZrKoU0yUDrUdqg4jMin2bESTMrGJm5juQUYJAL0pbcY1nsQ00USkfps6gloLAIMQ85juTdCT+ReLRdKaMGSISFMoIgIIaaGqr6kIMrmePNLjd5HjqHVJP7wgPgaO0fv28ePH9WZTFNkf+kN/6Hf9rt+1XF0wc59JhjT175iK3I3D6CyEkRZtWoE4JCHVWGsJAwx56XSaMrN/ZxHwdKkjy8xdDNZZihJBJtP59dt3zh4/abrALEVRGTF1VyvXSRrfNI3xFAmMoyyziMTWWWMk+PlkiiEwBycRjP3KFz7/xhtvvu8DH8rKaT6ZXX/hhQA4nU67ri/e6Rcw6cjoKyN4TnaP00P/gygCjiLD8TbUv6URgTG9ro9sTD+kA3AMRASjvTkeau+fZptiH1X2EL9uDqBdy1BAGPECdsUEGhLoIZHWQIIjjUEATOeTaovBAAEktwmeaVucbpuZo/dpAfSrmq9ka9KDxM73ILjVEgcIIfAwzsws0H9jjCFGcNBvMV0tIezg5jRo/QQBxKjdbJ8Ds46W+jDy+l+WtLPGVjQB2YnzroPpKKX9JAzRqebMx9PNzCoctNNeH/E6xjtRP5ajpHWVhispfSPiGCJPCDYzawUfgwCIGfVdSenudD86HXbUMRURe4LGqJH0eL5kKEGKQzdFGbVcQERrLYCl56lUp2XWti25oef7kFpXmy8ighEYQ4hGjObzLZkQg0hEh5E5CNu8eHJ2urhcvfTudz028Pjx41e/8NnFYsWRinxy6/qta9duOENk5PLizCBwCOdnZwbtw0dPfvNv+rYXf//v/4/+2B//3Gc+87Uf/uBP/tiP/eN/+A8+8p6v2cuKThah7S7uXxalmzm32NTcNNW1fekYGet6I4LbpovCbdfGGI111loQImsVPPIxaMdz9WD6+k0R1uYb1ipJjgiMydKwa/gNAGVZKn1SFzAzr9frLMsy6/I8Pz8/b9t2s9ncvvVCUWaTsjg42Mvz/MH9t7fb7Wq1uHfvXhciIp6ent6+fbsoCiU1hBDautE+B8YYDdqJKC8yZ+ywlp5fkNu27ePHjzf19Lm/PTg4/OxnP7lp6qIoyJq7L72oG1M9PEuGRqZM1xsP6tJ5ni8Wi9PT049++CN6fG+3W+3/HmO8e/dunuevvvrqwaYLIRzszQFgNqmqqprP56+88srFYqlNd733+/v7y+Vys1pPp9P1ev3o0aOjo6NmW9+5c2c+nw8LDP/D/9OfyrIcAA6+8V/54Ee+/uTk8b03vuJ9O53O9/cPb91+oSyrq5ZBHj58e7NZXb9+vWm2i8ViMpmAJUWv9MBSrEHxZe3ZkmelitwVRaEDrg0b1+v1YrFomkZddhnEZ1K539nZ2XK5vFh0X/jia1mWHR8fbzYbxVmarpWh4BFAPAfdmF3jEXrqSjpH9MNFYtc1aMjYnaRPCCEOZAJmJmt8DMk1EgRAicxmaDUhIiFqfw4/mZbz+SzP86xwVVWgalxuN3lBIlJMirZrfAgktqkbETHOMHNgEIiZofl8Op1WhshYzMhtt1vDBMhtPViGAEwAACEwUd8kp21916lsRkTEKJyqPnWbHB0d5XmusHIyawkJUoOj7B7tMi+Dw6yMIQ3P0judM9777XarMScN5YDRe7VXCnDLkI8EAGPIe++cSUHXdrtViE3tZOIZlOUEhqNEdQwVmBaRoihU9kFTFMysaFcIwfRQC6oAq7V2Mpksl0tF6IjsZDZjZl0nzliwFDuPtu+MpxxMFFC2pgpHAEBRFCg9zGeMseb5hW5lVQFsFZrU59WBNcZMp9Pz8/Pkh8Tg3SDXm2XZ22+/jWjG56AOi45qG/xbb72lcB5EUItxfHxsjLG2r5WMIl3XZXleFMXj05Pcuvl0ZoxRgHKxWESQLM/b4PPcafKyrmulP7/00kvb7Xa1WccYVcSjp04zJ7RaebsxxuVyuVgs6rqezCfJzZ5MJnVdb7dbXYca1etC0uAfAJbL5WazMYDT6VSnUmPDrutu376t0cFAwO/RScWaFf1UZYmu9c65osxjjAZQofm6rg8ODtI5omUBZvAklXqmNw8ACkBnRSEiT548gYH2oQlL3wUYvHQdt7q2qs8gQ2uv/f19/RN9TO1bq+gnDmXIemooI0GHEXp3kWRIucEQEiYgVYd9Mplsliv1oOq6FuxjhNLmgqilCSmnEkK4vLycz+fGmOVyiY4ePXqUZVmeFQphqDA0D4qUzjkB1oVhrb24uGDm+/cfX1xcKOaug79YLI6OjsqyfPLkSYxRgVrdjM16vb+/f+fOHWtt27a6I0Tk7OxMy4MUWNfFHzsvIlqpDQBuILSFEI6OjnTHGUCtKNJMwHa7jTGSdUNuSQWXnapqtG2tx58C1szSNI2I7O/vO5slb00bTqrMqC6DGOPl5eXR4bV36k3SbOut2TqXD5W4GSIKIrAYxMiyWlyuVouH9x/ECKoiJ8Leh+Pjo6//+q+bVMUXv/iFz/zCl3CkL4e7ji87l5Wkl5iDARJVs6AHfzpM+3fjFV3N5Cji8xQvr4ZUAgAdMzkbmRHBGPPN3/xr4vnJer3MS/uBD7z/t//O7/hHP/dpAAohQJ4xQyrySNDNGP0Y3SojggDHgMY4PdahxaapnXNtCGhMlmUvv/zyo0ePLi4ubt++vVmuYoxIO5EKXTbMfRSQbp6ZJYWNOmKm5zvrf3lUwggjBJ+ZCXfcFtai7QGF6E3rqOGWIBjp27Hqx/ZN9KIMge3TgYbS9JSUs6OYDtf4fp66t6deGT9Cev/4Q+Rq3MpX49yn3vDsN/Y/SN8oL4FjkYNBkyJgREYywBhCYBDxcnGxODq+SxLadg0YxJBzLoSODBjuc89mWCExRg4xcojMg1YDichkkqf0rRI1ijxXrq6qSaissDHG9SxSUJLyO1V5Mkc9Beq6LYpMRPQEARAtyND5zbNi8A8N9VxdQCRDJgZeXC5BoWrjOAqhgIB6Sta4LMumk1myk2o6iCjLsvl8rkUSugiTA9l1nW9aHAjyPCTznHPMUWOHoihYYhu8ngLWOPUirLU6OTjC94y1MOp5e3h4KCFq5ZbOFxERIQ+VRr26tHG6Buq6DhwmVYUDuKx1A3Q1aNXPMYB61GrSV8dT28DqK+OFmnxIRJOWbtpZ+l9lNuhQaB59ZRYrv+lxqq5jQG5j9C1mrLbdEvWIobV9dXxIfFgARAMMIAKSenqNScSgEb4ZOgjrviHdmYygJhKRVVtz6ETXwwmDuYkximiBuSbwdvIoKVwHAJYw3nXS4w5gjDEWkw+dbn6XsgAzYOUSIeps9zoRIWrDMz1yeBBA0F8REcug5Y+oKqKCAKCM1HeEI9W0RWEG0UorGJQoWQTIoOm9bWLQmzRghIXQGosxRgQiJDKQvDQyAIAWUEBQWGIQIkQQQEATBb3vnHM00tAxxnQSfWAjxnKPyJtBpYhHZExB7YwpthdyBUAEUS47o8Kpse/QOlguNIaQgAcUDIe6MECKLIDUdr6sJs65yGIMiYgPESACkg/RaoVjluV57ow7eXJe1y0RCQmzoBVyQMY0ql9mKDAbRNHUHAuwENnYRWOQAay1zFKoSJ8BQjEgTbMl2zeJmkwnWV6+/pV7rfff+T/+zn/z3/wDqX+ICBodX2BBwF5N4h1JxzYlRfQYA/HBD1sGEEHVopiZhq2bjpB+8LGvCfA+wOjwuHohAPSNv0EMgISYkYGoyC9tu3ZycPSBj37M5ZPP/uzH/ao1EUoWxMAUfdZpVi6jrKIiDzZ3RUaBrO1iaJAm8/3Y1E3ncyeHVQ68Wnz5kx6hjvDFyfT9v+rD7uat6cF7oqVt6JooCMYhZRGk9SZSBOHctRyQCAGckIQorowxOuMMU4jBGuNDiCBgiEkCe0PGGEBhAiTNIRgDQNttY43hIAYQgYkIfCBDxprAITCTNQLAiMBCAIbEAEfvhVFUqYOMJtIJmAhRQAtYcKS3QzKwXYbkoU7pjoSNLIAhhsgRBtfQGKdhUm/+jAHVsgQr4GEw02qpHBkN6RFR+Glldj3SgCFClLRIRjUET50TkChjIQJAHGyOIYyx0w3NzCBiyQCAMuz0o9BSbnL9wLQIlRIOACRAiCoHD6Ped8+sdmOMg16SzKCVqN3Wh1QB8VDeJcwi447WRBRBQHROyWklRxSRSACsf4i6g4B1awNzZBjYZzzk8Hu4v68G0KoI5BgDaxmNmv0hZxCjSCQQa60wt97rgRpDQOnrE0UgaBfBHktCQFTlmsEkogAE2PmIiTwAKZE5ajjZPwULCSKprBgigiB0waMAEYXQMUT14Z472vfeRgE9JmjQ/nPQJ3ZImA2oIHtCP3XWLDORIY5MZIqq+gff/+OAcHRY33/rjdsv3Om6dxN2XWiomLvihZPzFgAY6AuvnzZ13XSdNpuaz1+YFh/73GcfbJv3/Ng/PWUffu/v/KM/+WM//qlP/UJpj4D2jm7stW1zdn4iFqb7sF17kYO7L7y4vVwuVxeBfey27MDHmqx4EUJ/7caL2+3el16P0/mNxWoZYyEgwuy7bjikLAA0dS0IZV6s16sQ2ZneeWXxg3saEAEQOx8MEAuHLmi/LEtGBLJiP0b2vmn9tunixSULCxEU5Z0I26yEYrI5OTlZXF6+/SD7yr1N07yYF0fb5uW6o027P5vNOEYG3GwjgGR5hlRs267xlBVZfX4BcPrsfF1cHoVi7uON587mN//aX82B7t279/rrr2+3GyKSGA1qNcug0DXsFIPUNa3L86brTOGqatrVoV42BjOizEcMAlVRlmVZ1/WTJ6fMcHx47XJxOSkL4Li/P++Cf/3eG4p9ZFk2m03atr15/ZoIrhZLEak32+2mzrO+aP309FSZYidnF3/yz/wFxZr1ci67ffvu7dt3n/tcaUd83/f9vZOTx8agtbZum8VqWRWlqmmfnJycnZ0RkaIz6kOXZbmt103TzOfzELuyLM/PLlUTfzKZAACirDcbIsryvPVNVrjl+uLBo7cWi8uyLLdNDc4E4Lre2G0RCIKjtAE7EbA9uUN53MkL995HjtZabaZChiKD0j0YxWRORLz3qsynhs4AsmcOLIRkUAkpwXtjjGDc1AsNM1wW8gkdXrt1dHTAokllQhO89x6ZyijOhBiDNwLAIo1fM7KAABMRGkTnysy6nZdoMuWHSuTtZsN+aAKhNCFAYwyDdCF2XccharQgECCKxCjoLFHT1nme37x23RW5960xRimrXdcVLgMR32jDGTuZlN77zWZVuAxZMueiD0VRROwdRQITQenqLkbx3Nk80yL0MNIEU5pkCMHmFgGt7SMCA2CdNcZIiGQIBnbzcrlWUIzIarp2tVodHx/fvX3rE5/4xNbZ4+Pjtq1FhAiZQ9MEIpqWhU4EgETfIUBQO2xNabJ79+5NJrNrLs9MhowIfb224oDb7bYLPjS9qpK2rc9cT6Jvu26xWqo7Wpbl/uFBBOG2ZdZD9h1cfYnOGeYcEeu2K4rCGQghWEsQ2SIV1QQAVK0SET1LEG/z7PDacZ7nRLbZrDXTptWvmoNRUq2yg5Fwu13n1YSc9SFIpGpSYQgikhmrvemXF+dNs9UKgxCDc7kBM6sqa21db9q2FYm6E3GCMcaLxWVVVURUDFs+hNDF1lqb2aztOm25BgBozfxg3zm33fYKxYiaa6eiqEIIghBiJGs0Qx/ajn1QBrFChjRwgFTOgoAU42FmlWJQzd+iKNRDns6m8/n8/Px8tVrN5/NHj+8rTXVWzbT1U1mWd27diTE2qvhhnPceiLoQY4wsrFCpkuy8943vNk293KwVENcsoyb8Qgi2dG3XVFUVQuecC0GMQb15ZkDmLMvKzPYSMdyTLjXNqRHoYrHQZ48xNs22LEsJXLi+xWIbPALqFIuI9y0ReR8U5/VNe3l27pu2rmsCnM/32rYjJBbmKCAkQVyeERIarrd1nucc/Xq7QWsmRdk0DUXLUbxvDg8PFZWYxgkCee+zrKjrumm2jozvYlc3zjmX2dmkyp3dbDZF5pzNYucdmTLLt6v1G2+8oVbo5OTEOVdMqs63xhIjvP3wQdM0xtm9g8PlepNlmSBlWRGjTMupiITOP378GI29ceNG02wvLxd5nk/QKIe08T4GEBHfhcV223S+KIoosNpunHPWOMtcFJVCNgAsErOs2G7XQ06LJpOpiLD4y8tL/cy6ri2Sio9v3fr69eshtK3vYKBDFkWx2G5vHrzw3L0bQoxR6nqZ546I9uYmz+xyeWnQmqzMimqx6n7gB3/8k5/5srVgAA14QkT2X//Ki7/mI+994/Wv1Gf3HSFzFBGknhLknIkxMgCidldSQE27bRuIggiEKjEnShYhIklcE8gEBFVoF6nDqH7kgHX2J68w9yUhKk4BoG2YjERkdmSrzDnpLk8eT4Qz5zovZ2cL78mCQ+acADsPHGNmAI0hI8AhCsiAVcFQEY4JrmFmAdRMv5ChPHOWFGKrDg8PtbDsR3/kn/7dv/PfAEBRVjJSgDU9sjjAOywkoEOgdGoNWzS1hoAcFd4gBLBa3gdAg4evxhcRgSFwFBFL1CPGkdW7MohaJwEgEUQhbH0qhZmkB/F7+f7BpCMO0oUIxJoUANDiJI7MyrViEe7ZaaQVtKKIyo50rMOIg0DQEBfx8Pka4u3g6cGTER2KRKpIwaOIKId9uHqGU6LdIPbqdADCEjlGJJXBJkQmAe1ZJSLa9KosJ6tl/ejx2Y0XjoVZwDsXYvRAJnaSZ9MYRJhDjM6ZyKHIrMmK1Wrluw7JMEORY+bcdDLRidMkLgziUVVV5Xle1zUDROQY2nk+vX771o0bN+7du/fg8aNZeIc+nkBKpkEU53IievLkNM+dcw7B1ttORNrGOyeRgwh63yAii88lI7II8vjBQ0PU+yo6RPrkIRKSsaberFGYrJOhFiphyprhU5dMQXNdD2U5WS+WSqC01lbV1BjT1Js8s4jOEFGW9SVimAkJM2usp+4lACCQ9EGmpDIyV2TbekNE6/UaIxCRYuLOOY4soZestGiLeXl2doY5pVQ9Us90FhEQ3NR1ysxZsgh9e0kRCb51zmm6UR82CqOhzOTR77StnHMQOcsyEMiti4BaQTXwsay1GZHtum4229O8KQOcnJ2uNussy2yWO2MNAZq4WG4pWGvKiA3H0HXN0ChWRNMUKbw3xoggP6/ZVwJrdD9IyhRdbdnX76Kn/jtcQ2Kpf10GzxURE6O5X3ejVonjP+lvG668mHbp+Dau/BVe+QQcGG1xKMF76j7Tg6f7ZNhVkT9/oxBxhF3FX0x1/T0MjUPdmYjg8HRB2Ay5qwTf68rQrDJzMGbEkt4JW/fwsTHuqaFmZv0rADC4A5rhqZwYQBrG3Zm2G4I0X0//bT/aAFF2PSFFRIZaPOUd9E+EICLGupQ/oSHZwMzCqJ2RnXOEViiqmYgx4oCMO0vp8ftCraY1jkIATdEzcxQqyzJA4D6pzsCSueLw4DiE8MM//MM///M//63f+q1/+Lv/3e12m6z8bnX1qVJ+J/RNn/DK2OAuEztOoqSBSgs7TZwW9+l7tCTwnb4pbbEU16VekfpfQtw7PPiaD3ygsObR66+/8ZXXmi03bUeIhMZYiCwSYoAOEQAasQBgVa9NJM6ns9A1PGz5EP1qvY2Ay+X6J5+cHV27ceflk6Ob1+fHx9MsDyyEYDLT+SAIiNZ3nSGy1oTQeWZrjI+xKgrfdgJMBhhiRI9EgpxZk4FjibH1hqB0WYwxdHUXJTBM57Nt0xrrQgwAgBLRYIxBQk8Ejq0nIi1XI0EB0K7QTOh9S9ahIGHfoY+Ze0mj2NI4GaaJsKEoRvGIxIoVEZZeW1y9wbH1M6PCCxwSWgp0ykiSGwcvJEafFhiMLGS/d7BfLWnTpY9NS0hGytP9xpSkm7njSqcNOzzOwJccHgRH6vOQcG3We7P97bxTQL1LjKvNebrDIQxbkoYGmyK7P+nvBCAZNxgsTIxRAKzbzQ6OtlKq6AHYZex7eFe5DzBUCe3IxX1LKyIQGajNwygN3tvwnLwbXBmYyGPrh5pPHElpiwiPTg0ZShzGA+JwRyRH7Ik1KP0wMot4EREN6p69vvf//tUAvl/K9W/vfvy5X8Kf/YN/CAAvA/wfAeDvfb++9gEAgAAA8PpjAAAgAAbQA6GG8y+O/p4AIuRmSMUaiACna/jzf+mX+Rj/4i8LIQIQ2ArmFZyt+5fri6tvW1353/7mSx+AP/Lshz06//cu/HNUm/W698a9r//otbZtr127dvPmzcQYDZ5TRKHrPMssGhIRpY9VedW2rVZtaxV5s90WRTGdTCaTSZ5lEHmzWs9mM43bj4+PN5vVw4cPy7L83Oc+V1XVyy+/bIypqurs5Hy73T569Gg2m0FVaYtFa23ovN6PiCwvL/+D//W//b1/5e89K230TlfbNP/Jf/rHP/7xn1EKp0KHSvpbLpdPnpxWVTWdTpUDKCIqnLe/v6/vPD8/1wrHyN6H1rppYJ8VDhEvFwvlcWjJ/Hq76ndx21pr2xDLsudHm8yt6y0OpQyJBtFTEWNQ8TsU0YIVZlaU38dodur54IeqC0QEFmt7mXtmxoHURkTO2S4AIh4c7ilf7/j4WNDP9veMMV3XRBaVUO+8d5lp26AfEkIACMJafNpLuKYbNkg0FNcbY9brtS6MXp7Y99AJh0i5ZeblcpmXhfIELZmqqrz3s2pS1/VsNhMmRLx+41qWZY3vtotFCF0fqxMRURu8RVJOsfexbfsycOXg6Jhst9vZbKZeFlpnyWi0LAP3mYgkRJ1xXbTq5umkhNDpusrzXELPOm/bVrWGEydUv+7i4sJae3BwoPmP3LqDgyNyO95lT0BGDCHk1iXfz5IpyzIKa0DlnLt79672b9DpVkWF87ML60xf5VrX+tU6v/v7+4QmhKCELEBxzh0dHS2Xy7quVZRjb1pWVVV2z98XZ+fnTdarN1xeXk6n0729PURs21YBfTX1MUZlgJbTYmhqRF3XeV9L8BrL6WkVBiHacXyhlO3tdtu2LRUmifBOp1XafTRcejApa6ksS+agOyLLCgDQr9AyAiI6uzifT2c6+13XAbD3PJlMiqKIHJjZAAgRAOgy4+FSdfIsy4D6wj5nbIwxtF0IwXuf+MVKUus3qbNK1n7zzTeVj6yjkc73YlLpz8oW32630+k0z/MsKxwZHNSKm3qQBjZGybZ11/qg6skFEWlyxQ79QjQeVBBfeQObzcZ7P5vNppM+Ytdfae2IEqjn832OYb1e6wIePpB4oFQfHBzo4tewxTmn6ucGtIwJ1ut13bX7+/vKwjHGMEOMrE3zZCQlN5lMCDCVQhZFoXkAnU3lyinhdz6fax/CpmnyqtQyEZUUm06nem/C0HXd2dmFtbYosiLLY4yb7TrLsrIsJkWp5c8hhPVqoxkOlVRKqbukiKJ+afCxiyHLMrU8vfPD0jTNYrGYVZPDw0PraDafvH1/UZaXioYo5Y2IVqvVDhMZeOXGmKIofOhStK4Rnw7IYrHgoYDPOYdozs/PnXOTaeGc811YLBYAMJ9ME4e9R/DXuong6OigKIrFpmkvn+9rVdWEaDuZTIzBGGPbqYI8Z4UNIaDg49OTh2+dqQsvhCIYhV1url27cXp6/vb9BwA7ZIBZaMQagRQmS/qZEDFiQEQWFhEDvRsZoxAZ5h4IGyIF1Wd/Dv1z7GYP5L1dpR0ROecc03tffjl3mV9cIvL+/uHJ+fk//IEfiBAt5YE5CufZ04hB+heBUt9CERng2d2aVJs8n8+n06nS6h88eKBlJXoWjD9WA5MYo1Ibx8+SuOcpWMbUYXvU7igFWTCKj2BABowxtgdMUnXp1YdKDQZH/jwAAF5BkAAASRHn/sXIO44jjFAvImJMmt07h3/8vTAElXEkHp1+pT/QiHrfhyqyixPTm8fvwSt4FGv3oKd+NbqZ9JWCfUADACgCxhpBQaHzs0VRuf3jvW2zIhKOKHEYcAlIGLqIKC6zi8UCrcnzXDtMIOJqVVdVpXjCcrlU+9x7Doiah9MtrF7cZrMpy3K5XCrvyvvn0250EPI8n5aVc25dbyeTiTYJ6LpW1ZOnkzkzC0Q9AhT9Wdfrtm1Vvz7Pcz+oFevIxxjLLCeDKkzhvWffu0b6CfqiupdaYmhVzW+I+FQEjIiGHjmtD0GBgjj8uYgMtDSTDnSdnd51sVb9EEXJuq7LXA4obduWTj/Wd12nRA0R0RNBCPVgWq1Wk8mkryBB0d0nIjH05GWtm5EsI+lFL40xhiwicuybFrS+S3mgsix927N/iAizXpeMiFRWTkZ0tCTfrKTs5XKpMxZ9aCPnrprNZs5SmU0iX4aWsyw7ry/a0OVxmrwoTBuGiBC1cPsKg/rZBZ1+0AeG0dE+LHORZ9Hb4ScYwabJoOhHpQ+BoS7GkAMBpF37vvSxzCyhxxTi0LhzjIODQMLsmBQhRVBoJkYRUXX28TberftxT1WIiDvx/mdtgV6EFAcTIyKCoJnwZGsSzIEDsqxflExPwoaSddOFYkYCFE9NDfaV2jvEygxl3f0IUx8njDGv8fXs46QB0YWIz5hRZhaORASaxBbRBWCsQ8Tlcrler8uy1PMPhI0xgaMZ8HE3tCDXHaUNkQF2gglExDGKHiQ+sCagYogAeiYwBwe5j0FEILIlChBW9cqQK6oSgJwt5/P5/v7hl7/8+t//+3//b/71v3F8fPzd3/3dBwcHdb1h6QB3ELwgDywWhK/CXUdKrpiIqgv0qSoZZTvUaUgPkkBtfcUIICIru9e+Y0/C8RHVDz6zMMfBdfPMRmC6f/Die16eTyf7B/N7b3zp5Mn9zXbhu2AiqjpKF4MQMghvunIyYTQCsQsMJPODvejbLgboGhHMBATRAJ6fnr19cvaVL35lfnD4gQ996Mbdl971vq85W6xb0IozzJ21QsgQ61oQ0GBERjBt2yrzqHC2821Z5k3TNPVmE2PTbuflxJF5cP/hxdlZWzcGfBRkpG/85l87n+/VHImg9QEAWBWxmbmNzlqLJnSBLaEMMyWgtB1nrAiwSp6lxdxDwCDMsuOf9tB/7wFIbzRGrZ9CMi/YjzcD7JykhBMBQIx9LocHuBkAQgzDNuGxCwUD27fv+8fJT73SmIJGhTAiggN3eLcSJB1evUM23qcJ82VmVd2AAWjQFTU2RHoaAQCiRHknhTu+mi8Zvnu4ZxiaKA4md7dvjDGagdfvQ9kZEK19Sk8yRuQRMQ53iMPE9SthBJezRJ2JsUkk2t0b94SRnQiPMWbce0DzbPqeOAjaIPZVi9rgRaOIVNqTbPJ4KEdnGsKgfLeDq9Ov0pkYIfwi9HN+5fr//0vq7TbP8+l0eu3atUlZaeDtnNNcrHNu7CAxSOjlgGF5cZlZt7e3F0J48Pb9GH2Z5e97z8sPHz48PzlVyeksy9b59vHDB/fferOqKpdnJycnk8lE5VmfPHny8OFjlbZcrleqq1BNpicnJ8y83W7f//73W2sfPnxYFAWA/Mg//ke/+bf+tl/MU52ePvmL/8X3/MRP/NhqtVLEXOUs6rpWpXIR0XYuKd5QDqC1dv/goGnboizV1b52/fqt27cvLy83m01RFKenp03TAGG76gCNdS6GSGSzwgZmHxkAgjA52/hOpUWGUmirIs6JWSkiARi5L0qLHEXYGGOMza1VwjUaMsNhHWNgkMyaoC4NGLKkMmhE9vjaoUKEs9nk4OiQeRB/pBhC2GxWkX1Z5mQoxuiyXZihIgkiEnznnDO2735uySg21Ia+AFzz3xotAICysyeTSgHrGGO37fRLQwhd1/m2ozxXbjhYN5vN9vb2EGyIPVSEiFmWOWfqul4ul3meKxCgR4+iM41vFOATa2fVRP1DxeNms1lZTtrgV6uVtXZ/f1/L3nu6CfcVMxo76W2reUxualmWEKGu66ZpGMGk0hxjnDOLxUJvSR9B1aUfP35o80yfXQMqpSYpNKnkVsWXZ3vzrmk3243+VxFVDa50c61XG23sRmiaumWJqhKrlBwtArCm5zEhgTS8t7c3m81Wq9Xl5WVWZkTU90Zrnq+lAwAislqttttt0uBK46NPoc6/KsaU5eTRdlvXtXrFeZ6L6T1hRS2TaIOuYTM0p3FkdLVrv1jVTEyKz845FdvVFM7FxakCvgCgDUt0hmEUeCfqVlcUqgFtjGHGqiqsc2RQu0OJSATRxLnapTA00NOVkJeFcw5Y0GKWZZpUJqKqmgJwr1+MGEJofFcQ5jZPkYL0UtpSlnmMoeti3dUKjldVlWWqw1DofTIZBaDVzoCg8pQjByIqypxHCpvKJgaAuq61+Hpvb093ga5wBcUA4OLiYjqbIKL3bdM0dR1FJEbpdc8HgREYohUc2mZ0Xdc0DSLqLB8cHKxWK2b03iOgpkmcc2jdarWZzWZE1vuQgly9BwN4586d1WolIoIKPmFRFG3XFUWRVmnvFMWoR4aiCTgoQU+mlVoPpf3mea7lX1VV5Hmpfd31dX0o7QCmGFBVVUrf0zaDRVHo+JdlKSLL1cq3DQhOp9Np5kIIvvNRenUXg1RVlRqW7XYNPUkQtNBBl6UmTXUlN03jXN+BStekMSYy0Ygcpjtos9nUdZ00WNq2Vf88hPDg/kNEVBluXeH6Nt0yScgbEVX2B11h3oFJURTF0fE1Y8x6sSQK2+2Wmed7Exax1m3q9vz83HdABC7Lomeb5wTsffvoyenJycnbDx6eXS5EelIkMJJV/qwgpbrJK2G1iACy9PLFFFnrqdAYKwBZ6ZjZx2gMGmuYA2JfUPeUwYHBw48xEl3BBNQABvB7+4cH07n4ACFaaylKkeWf//RnEISZwRpCiruYUqVTd85qCoKGSAQ04hYRregHgM1mY41zzikEFge9lyE4imRQxWp0b8YYUXoQYxfDmF0DHhxhQeOHShFH+nk8IOlXiBrtAgEyx9QmXUYjqNzkPniBHbYzZrdATwfehV1XPPyEh4wkT8fRyu7pqKexpzDt2ft/ankwcxROwVQamacXwPCD9ADbCKUZgUIwkP8Y9Uu1jhMEgJmNGBZANF0XHz86FxGbKx6ozbF6wHEymXDwWuptptPGd6qurpsu8fz0e1QMTS2zYqMp9dhvTMY3Xr/3hVdfK4rC5lnXPj8VxLGnYijaC5HLLEcsjDGbpu66rsgr1bASxrZtDw8PvW8vLy/3ZjNNdCkIfnZ5oalHGdq0eu8duPVq47tQFEUbPCIqyUOT1jqnarU0FZ3nuer4hRBsnh0MjUA2mw0AJ9Wm8RroRW1JCzL72jgiShpK2uxUHSotbNIaLIPUNI2+WZdBURR64mj+u6qqxWKxy0xDn25h5i56Gboo9dQBjkDICCKcHD8iEgSHPVorIkM1DyuOT0QGdsteBfF5ICInnr6eFEM6IdM9td1uHy6769eO1s2WmSeTSdc0YkXPGku0Y2MNWwX15p63svtrnH1K353O+/Em6Tf21T1z1ZDtpIFhkEBNuAMiqhRGL/HBmJpPDe9HBT3HW52fok4PKagYI/ba+v3TRRCWvlfbU9iNIKAIw1B3D714NKnA0ztfmGSDhs9MK1Jfx5EgtaW+yRgzMwFd5duOsScgK4hWyys0p6cZMxYAUQFyFu75trrER9xGHBTEk6t35WEHmzXOCABAGm0iArlyGIwN8Xid6CvqkClTQNerngSpZkFG54SeWNGHpDzIIsxAZJmDMZkB0Q48qhgwHlsAyKwTkRh9jFBVlbW2LCfW2tbHEMLnP//qT/zET3/+859//fUvF0XxXd/1Xa/8qg9sV+sYvbUUhu4NPJx/abU/a+jTmkpe+zBgmAxuAvSHIwfHB7CMvoWI8Jmz88rFO6YtDWU1Oo/MDAPcbJEws66aBKJsPjd5MZ3txegdkTVoDIag8gcUUCiKb9vQdZqmOz0/Oz46dMautxuDgCyZzdfrdWSpCJbLtSm7y7cvv1Cvv/jpT4dv+7b3f903nNV1JxQDtL7JgAygI9uIDyJRmAJaa7Iiq1er9fqibbYr9q9/+Uudb0Sk2Wxnk+m0mCxOLxcXl23dgF92LOumXVw8/tbf9FuOX7izalsPPgjkeYmIsQtghMBwiMY4QSbdX4iZdcwhhgCAggyqDoFKM0fu11c/LyIi0Ddh37k1klYRA5i0rhDRIA28flDP76l1rj/owRAH9TEAiCAEQNQTh3VnxxgjSNqDMFr8X+WSEXd459zsenJCWhtpvfEgXB77ZCER9apbgzj8aH0hQMI94/NXO6I2405J+J3dhoF/jX2tN6YtMF7Co59Zj8N0IqpNVkmVtOVEhBQVHg01DaLJ+qJCwIhIo7IMAKDe+2JjDCEJ7KB8EIFnWl2np9Z8PmotGu2MAIok0Hh8sjhj5OokDh/bm9NBskNr8/oBGA3hOyazfuX6l+a6feOm918Q5gcPHlhrZ7O54keGrPptiiUZ2ytEK5KY53nb1QCwvz+/detWs63Pzk7uP3xw+/btttluNytDUG+2F2fnSkxA6fVJDZnTJydd8MaYs7OzrgvL5VKd5r29PZflbee39SkA3LhxI7Puxo0bSiLL87xpuu/5M3/ykz/7U7/vD/xbh4dHZTV59nHatmnb9p/+yD/6U3/qTzx5fLp/dKgEahFRHVgcoEZjTIweALWfVdu22pdsvdlom82yyperSyKK7LN8du3GcXgYHzx8qAq8vvHkrLHGIhkFthiszUIIaIU5ElFdb2MMAOJyB9q9xKCPniwxx65rjTExBk0jSmBFaoxFAEYiNEAWLVPXdWTN3v6e3mdZWQ0AsiynoT/HZDKZz+dN0xCpCMBSSIwxESh67703FkMbLxcXamyyIkeU7XaTZZkxBBwRSBvp8I6+oPJxRgFKESmKqus6IprNKhkUYBWKUuBeO4Iq70aGWHR/f1+lLZxzxjhVYGBm7bslIlrrrbTNuq7n8zkzrxZLxWtY+i64+tsYY1mWKpRMZNEaI6xxYzLaGhqpypMM2BkAKMCnkVtRlMxhvV4r98pkjr3XZnH9glmt1+v12dn5nTu3q6pSbeWjo6MYvWJMyvpJaUj9oma7rarq2rVrTdNo2KMAetd1zKD8Xx3ntumqqlJIUcHHECDPChwquhWZioGZ2WVWAbLT09PT01NjMMts4laHEKgun7vBq7Jq7CaEoESk6XTaNE1fqdr1mKxic4jYNE0InGSUVJLCGSMiCkBrN8WLiwvd10k8N4RwdnZmrVUxBwV8jTHeBwUQ9dPGSOvx8bFamIStM/d0EyVAqequhrLMXE0nzFzXddt1dVtrQ6E+jo1d6gDRVyTEqGTeXSAA0k9W1OjXabjuXE/gattWGZ3Oqbo0K2IOQ9SKqjaOoBOh46aIYYyxKCpdY1okoUIoNFC527bV9puK4Cv0ry3pqqo6PDxMEZbm+fb39yeTyfn5eV3XHAVgog5SURQhdEVRqDptGFQl9YdeYLrrnHN6A7qQlFuny76uvTHGYt/JM+XbdFWk9a8DW9f12/fPHj9+fOPGDejFAFl3kPe+KPPNds3MaA2wbOttnudk+tJ9LRLVKVZpexHZbDbT6VREvA+6u0MIRICE1tosn4UQurpRlFx3Okdp21ZraHSJ4sBJnE6np195Yojme3taFH++uGzbNssK1q4J1qmGfpm5rus267Vz7saNA50XLSbQzJkumyyzIYSjo6PpdKqLXHWrt9utgNDQQUuzhgCwWq369Jho4p+rqjo9PVMqv6aF9g6P1MrpzHrvbdZnBXQGfeevY/W8vQtd6PrtWeRVvod4Wdc1OWtt1m39/v5+vQrr1aUzFoCMs0Q2hI5c9vlfeBUJlpcXbTt0ae7pRDvubXKPe34IYe85k/SUWkRLmcbUIoJotJUFGQMkLBIJjCGKz8MooTdizCx4hZlHRMQSQpjP59ZR9CGj3ixfOzp6z3ve8+BLnxOIDMgAAmIFsdejQ4CBoJ0gGojJU0Uk5SD2TFJmAFgul2pzdAq0aEZRQjI9+qm/RURAMUOoMnymevBXatllxD58CmpIUAaMAhC5CkoMA/T8eC1BWzDia8MIn02fOdzPc2K0/vGTfMWob9M4wBx/8ui7rkRhCSDWNwxR25V6+vGiSkEf7AAQGX/XlbHtJ5FFCZc75K0HqRiQjCWy23XzdvPkxs1jkzdgiJnzHEKfU58asoOe/ixu1npkxK7DEUKl2VA13d57bYebVI9Xq1XTNHt7e9aYyWTinLN5hojvxLRLxvDRo0eKwzKzVlyxD+xDUVQts2LZRZYZY7pODg4OqrzQ2dHiMDUycegjkuc5+9AnSvN8tVqRs3peP1UKM5lMqqpSBwwAuq7TfshE1HSdiEyKMs9z79vkuo9TgJ4jI6P0agrK/k5NBWjo8xSHmnXdRF3XNT7IiCqqaULv/XKzBgD1CvTe1DewQ+tjPQrrbaN1P/rUfVwwqASLCBBqgJDWXr8kellT0387grK5RDArMxEJwsxsyEQBO6T/WQKLkiF6Mvuq25bRtc22y8L+wTW9saqqGt96723CdgHAGDd273TvSgq8dTM/RVUeEdPS1kofmKzDeBs8tTGSjUj2godcBCIK9+JBozJPAgBMYmoCgJw4Zenf9OHjb0w0tRhjEK1tlsT5TfeXbpURxlzmMZI+hlSeutKfJ1ZgDyYPGD0ORTQwIh72FgQBEczwur6/DR4MOaOU5923DJZoNB3w9ONnmdNnROx5/mnxPWVh+3+fMrtwxWiO/0pGxMZUAqP3bAZvL1ne7XbrrLHWaqQ9fNRucILXnjx9ozPmAXNnIUmjzcyYBj+tFqV1942MDDU+nF7cPzu9uHfvrQcPHl2cXwJAURQxyu/7fb/vN/yG37DZbKIEH32WZRAUHrqygP+5VwqxcHjsccSVloq1VrhPN+krPEKQh89i8c8nlgYffNOqQbwyR6MpJmMi87ppJ2UxOToM7PeuXYvRbzcrh6ByVQE6ABWCixXa6Nla2zZeRMjA4nJZFAUIV0XW+Za5rdtGGIqiKss8iI9NvXh4f7ltlosFA77nwx85bzpAERTrcmk9kcGAiGBNVpEVjmFT83rxxmuvbs5Pm+0KOVpHIJJH5q5byyWJHFX5hiO4zLhsUdtHr7/+Q3//7737az7w4W/82GFZvvHmW7WhSTUjsiJorQNC7xt0mSoTxAidMBlCsiysjHhAQGIAYEARbeuKoCRVgLEwwnDu9ntwsFGooDMKAOoy22WnkxmEUaojuTtjXFgQhCAMaS4gFECJnLDmnQ2h3qKiNjG/uit37lP6akMpX0REmuNIn6k+EFw1qtAT4kWZv0+tMTPUEL0T/jmU1I0ztzv/pjeJgwh1jGHseMUYFe4h0MosQd7ZxkQ6FoYhWcMIEEeT8pQZH/tesCMR6+uY/kREWGKaqcHARmZRMbhn6zuSQeY+2dAP31Dv0LMDkIG5B1meGuQ0Zc++ggLOOZH+OEBDx0e/Ajf/y3+RPFEswFqrCAUzZ65nK6Rz01qLhhiEEPLCATOwOOdWq9V2vfnar/3a1WrhjL1z++Zbb731xhtv3Ll1+/DW0cc//vEsy5SzHE5O2rZ997vffX5+fu/ePXVJERstRe9aj4jamFuXt2+7oigePHhweXmph1eWZXt7JXD7vf+3//yDH/6Gb/n13379xs3xs6zXq09/6hP/5X/55+fzmZ65TaOapwEAlPqqqIpm4LIsK4qqbdu+jZhzCmLWzaaqquVqpbjSw4cPX/viF4+OjmKMi/XCGBM5usKhFpqwOOesIRFBQ5acEIsIgxgyQJgV+Xw+X6+XXac8SojR52Wm3JOyLI3VI9oSFVVVFUXfdlKBSLJGJ8Jam+e5jxEppP8iosYAiLDaLkLsep+E0FoS8Z2PGksLIBIYowZBttu1UtotmQGby8uy7Lq+gFHT8DzUQimCrKp/ijLHGFerlXMOGRUmIyK0mKoXq6qSLN/f36+qKsuyi4uL3Oar1QoRG98BADMrIKt3pR3htF9cjNFzRGtijMb1zgkzIyEzRBDvo5DZtk3cRkRUGFT7wg3jjEikJKYQQoqjAMBz5KGnjQhaa3TZq0nsBsV2EZlMJkryRURVnt1sNtNp33NvNpsRkS4q3SaFy5Tao0R4JWkqib5pOuf6FuqbzSZzudIzEwKrA7jZbKpJqd5UVVVd67uua7uGmVerldK1qqoyhqbTqXb3YhVwewe3UKQnJisWeXZ2VlXTLHPM7LlVwDHFfipaOqsmjD2LE1FiZH1MfaUoCqVlKaPWGKOE3Lb1RFSWpWC/Hrz3Zab894muCk3fKjXVGFfXddd1zpnewqAxQwdIBeb0vCuKQmmhq9Xq4ODAOffkyRMZdB60fjmV1pZlqYCmHsEhhE29FhGD1JcJI4mIc3lVVVo0vd1q2gDzLNcSxrZt9/b29POzLOtZwIh5ngthwtOHcmybRAI1wNbJmk6nZmi7h4gqDKsPlTIiGngrUKJc/qIoptPpwcGBMUbXj7OZGZRhjTHaElZzDHlOIURg1pvUET68duy9Vw0T7Ve5Xq91AWi4TkQCyAxtu/XeE9mD+V7TNGJkNptpEmWz2Shj7u67boa2U1PPgxxnjHFvb28+ny+XyyAcu05EptNpCEGrSXQi7JCkzPOciLxvjUHQ5p/OcBQR0XY+jBxjRDLr9VpnWcdnu90asoqqaLZg8Co5bbqDg4Oqqs7Pz7ViZm9vb71en59fHh0dqTC0HgGImOV5DGE6nROR1kMkwN37VjXiFeJRvrbKgCCBNmw8PT1F7FuTlWU+nU51ARdFMZlMNpu+LdVsNjXGHB9fPz8/32yaWdXozMqOhIGqvqrn3f58z5/6527ezrcPHz6eTqeTyUQLLLIs29Rrwmx9sX7phYPj69dPH19qOG5NRsaGrnXGnJxfAHAIYAzI0GhE7zzGqBGtDibIIM2QugVCr2bOnlmihsMCQKrMQCBRuOvQWpvbsS/9tN0ZdoSyW5KrzMwEaC0ZY1yeC6FHyVzWMCMR5e7/zd6fNdmWLOlhmLtHxJr2kDszz1TjnYfuRjf7YqARQ4MA2WYwQTQA1tQDZJDpSXiTnvRX9AcoyPgimAmUkTTJjCQAYu5u9FR96/a9Xbfq1nimnPa0pohw14PHir3ynFOtZ5hhP1Tlydx77bVi8HD//PPPCcg6J9aAxgtTPCQnQDMVWfOEJ8gM7FYbksuJGCUDXrrjEghAoBR7V1gBjXkFUr1o9skRAIUBiCfwVyP6CJIkmI0x1lhCjDHdqqLriKhDohJV8/HRQCOrZ2gAAQITl1mx1lfRm4xiw5xtNqN7wyz64ChEpHkEnEl/zFFv9QTyjeVgIV9EXwbN/Dc8xVnzAFNvWURIQCbga/oUwpxScz8AQUTl0SGiSGQiAEIBBiRbxBgNInOUIAQ2jOG482cPSwVJnSslDIgwjoMfRzVQy8UKEQmNAChFXxhEgNA469ROxtCLAEfpw1DX5GyS/XW2AEFj3TAc0JJix27/NSQnQPXQbrY7AFD8WouWNE+pTsJxvz97++3VarXfb/3gnXPbfpvXg4gwpmbIMClmVK7IWkbjOGpnLMXKNUGlxwoRXV9fq5lSWkBRYEbqQghjTPlOnPh/CeFBIEMma2xGQUR1g/U8UseSmY0x6pXp+KgoTR4BNZ7X19d3d3eIuD3sAeDi4kIPuJQkbprLBxe3t7fa1VAtaoxRK6X0QAnhVF4AMKnGT7ZCHzAVoxSFPrsOr57CcYw4I1Oqq8DMq9VK06LWWmMdcwCAMPqiKPgoh8OBG3j27Nkyrp88enQItzqMKliJM/Ja2hvztfvKnuFZ7UAO73P53nzzE92rBBG5h6fMLwITwJp9U2MMCEWIGX3OV0ZEiICIgMraPNV95Dec0EMh3ct6fa8M01l5e4Iy53DqDC3IV37l0WKMwm/eKhFOmJT6H8EHM4lmRG3sSZxXFU6coNPNa685Q0hEQhCSWlaMUftr3YP4tdHg/buFnDNIN8Xq7BKRfuOr23tKH74yX3KPDhl1wGT2Und53mC0KIqirA6Hw+FwyJkcPw4IJQDwlMfWaiwA8D6lRkVEPRIEg6gKjCcSvY6A+qBaCahVG2op9sfD1dXN9fXLn3/62eHQXl1djb0HoLKolACyu7v70Y9+/R/8/f89AYRUsgrDMBhT8Gxas516fYhOr1m+QTJzdsIc57PDzGbqoyhzOuf9+p34NfImaQpCBKQgrFZpPtEAAIKRwTkXQOrVuu/79eWD7ni45Lfau5ux2xPZwnAXxhhHAWAuAEkY/eiNs0VRhCDHY+eMHcejfmPrRwAYevDeE4fRD8H3BPaLn//p//O/+W9+8+/9vb/wG3/9MPo+hCABiIMXBnRUMMv+5dPPPv759uUV9217+7I2WHCwCDiKxqjOYAwyxhgjGI5FXbbDuFkuFlXdde3Pfu/37758+sNf/ZWXz1589ey5da6oG1eU3/rud957/5tQmiGCjwEMiXWCKUHCIqT+hUQUIwhRQETbs00jlsDntDERUQWi4J4dY5qacjCrcP3JgZi2G8BJqOHNKXQA1oKjV4zbaSNJIjLMt9sbX/PKU32MudWVlDKLeTVmrjFM1jtOsoOvLOlkJQhZj8avEY8JPmYaJoCZeUoCk06IiCDC7JY4j7NWzyj3mQgZmGcKP3nw9QxDRC1FmTtnIqKe6fSGCf0nkchkk3OAeIKbkV9NBxIBQDrs9IL61Xnj6TfOG1tPr9NZlh/qdAzN5OzzG2bjPDEZ5f6RSljX8Dd+48U/+xeP/uzZ/4+v/3Bf33z7X97efADOhBDqpskkC/V9FQJTYFHm6uosoDJ00RtjCus++uij3f7uwcMLrb9j5i+++rKua20hRUQPHj18/NaToiiePn3a933V1Ov1umkaAGqaph9HVDlIET8OPPhHjx6VZXl3d7fbR++9AnPH4/Hy8vLp06cxxv/P//jf/et/+U8BwPvoHJ2drXf7w+6wi0EePXr87Nmzrh2Wy+V+v9+FsFisELEocFEvQcgIM3Ku67++vnXOLVerm5sbALCFefLkyfX19aeffqqNv7aHbdM0L29eMrMgo3EiLAgsjBYNmRADIiLhGEfjLAD74AE0vejqRTOGYXfY1k3tvRdhtOwKbBbNYlkuFouyLicNPlLOIzOHOObI8MGDB23fv3jxIsIIALZEVznvByNgjQUMrkBtKWyt1Q+GEOLUBMZZa631flA9B++HsixdWUjkJ48eI2LbtjqSKsqssboCOhrbZCdZ/aLD4TC0XV3XlStijICm73sRUWEKRSTV51H1QGZ+8eKFtcXt7a33PkKC2zTKstaKRA0SlDOoAJDGNgzAIWiwAQBVVWkubYwhmz9dqFVVKfrDrNAtaG93dVzd1A+HiJR3czgclLyjRGytby2KImFAm00YgvKGnHOPHj1SILIsS5GoIaUSl9Rr0krPoijKslTgDycRj+3tTn1CZywYqMtqGMah7zWOAgAEWC4WAND3fd/3dVMRUd8lselmUZ9t1nr6qHvWNNVisRCR7WGvHVOqqsqyb6+8EEHJoQpfTnzkxGKRSUV6ch4o10IhospJt/uDiLz77rsvXrwYhkFFde/u7kpXCKZaPSLSBvFE1A69JnVyLbP3XrljzrnNZnN2dta27d3driiKR48edd1RV51IyAerKoQQkfLW9QEvLy/VXdeHJSKlLKmvrs6nRqHZXinzunRkrEtiytZ570Pgoiju7u6urq60rtlzVLoZSSKpKTirZHxlwvZ+zIreOhfW2qZZKjvYFcU4jofDQSfu5cuXqvedxt/aEEaRqPr2imkqDns8Hne73fn5ueZ7NE+m+D4qpdqgLv7dbqeIrc5UqkmNSQtegV0147pl2rbVH/RBROT8/DyEAEiahlku1xwlxohAFkxTNlVZZxbO4XB48OBBrOP25lbNgvLQAUA53b0f46T6qlCIOk7H41HXgBq0EMI49iGEx48fxxj7fkzOzEQWtkghhLYLZVnqcaOzjIjOulxGrVBIanXlXNu25+fnagFiCH3fr1YrtRubDSMKYoraurYlotVqdTgcdrtdNgvWWmOQmReLjbYEVHQ+hLBarbSEvD0erXEicjiMzqGy15lhv9/rYtD0hiLIx+Px4uJiGIbr6+vVanV56a0tmMVa27atJlmFULFynablckk3b4abOQpYvr29DSGsmkXKOjga+9GWxfX1taPFYrEQT4SFQQsAhNb7oAizsczMZJJgjpIQdXeojY0xAt7DDRARxbBPhZggwCEAijFGQnDWRgki4goXRUI30NT9TqYWeadAID8FsySiF8TIKIJkEfFmt/1Xv/M7v1ifxcPuwcX5W++/++kf/f4HP/uTgNBHz8JFqV1SCWYFgjjDc0hEgF6pJte6ex1ea61wUlJNjFeF9lDyMsuQnIbDUcBM0SsiRhGUqGAOvhbb5h8yPMJ8T9lPRDCFVoSzSPyV0CxHygCQJfDyd+kPeaPlcQZQhPoerqXfCJC0DnIscDoRCHSu5l8kr4aKpGEFIqKcYgqRe3jLdNsCAFlTcT5T+edZPDK7k1dZ1fqzMKROXYkZAEaYQchSMRxDPC+rumiasloW/XDsx24Yu77tyrI0pEwCSyTGmLIuh2FAwQxr6sEtk3SPZrCISI2V8ot3u4MKblxd3YjIo3H92r5MN18XpQr16BkXY1Tvt2maJ0/ePhwOd7e74Pn2ZntzcyMiRWE1I6iWTTNzRVGYwrVtj4ir1WLsenFOR0wPjjAOMUbtj6Ltc0VELU/OVbdt61zqLouTNjoRhTCq2VFupUalCPjKdKipV5/89vYWJl2mOXitm0g/UhRF5oXo43iObesfPtxsNpvj8ZhT0caY/X6vW3JaRac2ZlPCeNYQYoLpNKLXbZtl+jUVjZIQg4TI9V7ztZmVq9skt2SgxNVL6JZnXi4WCPU2bgEghPDVV18dyttqUb+z/qYtikomFgCckkVAZFJJAr4qjjEHkec76pX/4pvQjfzSb6T7QqU8Y90GzzH6PKzzLQQnkJoYghZAv2JB0jvlxHfTtWLIEBGSElGSHEmICa+Z57j0fzL7+eu28SuvGMIYAk/KCaLZH2Oy3xlj5BmDDwgNGcOnHoxzg6hEG2ZWYsjEs5sgdSHNMk0W3ABOIOak/6KJsThBI9lEyuR9cnouASCZoKL56zS89+Um9E/WWpSU4dFrWkNffvmllmvpOWRTP3Goy5SIJkAmVXoyUwbpJPdBRCL3xkEEmQUNERGDbDYb4+w4jrcvXzx79uzjjz++urra7Q/oSmutNaZuliBSuDLGuN9um6b5h//wHy6Xy35oxzDq9mBmec1ey9RK7vVx0JeWLWZsi2Pk1OEwQVM41dfEGGVGheZJ/iYfnMactEFef9G0sBMVhVlM2i+Z76x0UUTsh5GMWZytJb4VQ7iWGMah746ix7OwJQJDECmE4GPUJFvbDgbRGHP0+xjjer1mgcELIxgJEaQy5KrF6Fs9AG6efvn/+kf/yCD+6C//1XppbvetJtcdOQogY3jx0U8/+8mH4v3S0saS4VAYiMETQL1o0FA39AxQEDHhsmm60Nd1KYLG2dK6yBC22w/+xb/qht7HGIvyzo8j892LL26++vy9b7xfrS/qqmHAbhzQlGSckBi0MYzCHoBOexUNwql4ipXaOqskwNle4/s9KKZik5M0xCvHdvZ+Tqf+yfrllqdp+ua+l0LkJDRfJ3oFxiSdkTemgalj1cmm3dv+2VqmjcwchBESSA4ThJHB7rzx85qPUyeBN67A+YPoo71i8BFRRPXVKd+P5DrcqcKDiFKbSyJBMXLK0+gdWqRo0Fp7T0NZz7MZGTyb0Fz4M512rzmXp2wf5PsREWPc/D3ZsoVJAfZk/7XNrYHXx+21A+40m3n2IVEPICsH5mlFxCj89//+5wz4v/6Lh1838v/x9R/u6+H5P/32u/9te+wP2w4AqrrWqF6d8rxo09bDxDJQp8gZqxyiyP76bjt0/cuXL7//wx8sVk3ft2TRmuJwPG4uzo7H7tnVs4jxwYMHf/THf7jb7bbbLTO8//77y+Vy3x4H73O/wezhAMAw9oBycX6hiNXDhw9vb2+/+uqrs7MzAFDm3W63e/bs2XvvvfPBBx8URbFanTWr5uHDh5988gkhKqn2+m5rjFHmHSKerddE0HWdojnW2sdvPXK2LEo7hmG32w0efvGLX9xs74TwZnvjnLOFY5AYvOKJprBgRJNHPobBD2qBnTNooO+PSGKMMdaGEIyjxbLs+75ZVO+88zYRtm2rsp7W2sePH3rvd+1d3/eF9jELwzCm7oiAAkTe+xc3PsbIMABhiFHYWXLO2RB8CFM3ecOA0Hadcw5AyGJhyxijsWgMlqUjghgT/1SVARaLRdclRp5yW5TY6GY9Tuq6VoxD9Um10tMiUZ2kG+q6VvCIma2lCOKce/jwoQaK+hqGYRzDdruHyNZaH7yGK9mgiaRDJOuobjYbBcjUPKrcgYKSzMkzV+RUYxKZxA0U4AIAZlbFAO1wqBn9cQzjOAYJCpIys5Ju7NQqsCzL9XpdliVEFkkAtPf+y88+D8ITSu612PZ4PGYAt21b9mH91hIRi6LQVQoA+gjqZ07KzklAIzUWWyyYWcmkGs6pV9wP3fF4XCwbEqd+tXPu4uKCOdzd3U26k8eMQX+dK6i7WOM0BSUBUGM51X4pikQDdM6dlDSYxcgwDF3XIUuWyj07O0st/sqq9a0xZi87SbWJpus63WXqMJydnfXHgw6CRoyIqG3feKJQKSNMubo6s3Vdq4aGbivlo6nCdV3Xx77b3t5Oqi9TQ3gGTRLQTJlah4WZJXKkaAw757QMEdGIiJZNIKJ2LLy4uFBm/bJuEuYe4zgG5xTzQgDSpnyqbqlf4b1P6WEi5TvrsCsjW/FWHZC2PQCANlDSC/Z9v9/vHzx4sNlsVAhYLUPWi5iEa1YhhNEPxmBVVYtF3ff9MHhVAYpRoohupbIsiUB1ui8vLwFAu9Xp7jg/P59uWFQ2RGdTv0g7UyV2XgyLxeLly5c6qt77uihV+MUYo9CJojaeIyLWdb3f71VrRSsMHj16hIjaSXVZN33fi3Pr9fry8nK73Y5jqKpKmftxEjhSJEjhYwWpb25uNJOkQ61It2ZutFJBF/Y4DLrHq7L03h93+zBJV1dVRURlWYZhLMtSddj3+732AdtsNmdnq/1+f3t7uzsezs/P9fS5vLw8Pz+/uLj46U9/mhS0BUXkyZMLxXR0oolA6ed50tW9fP78ed8P1hrn3Hq9vnl5VVUVonNTT61hMtr61Dc3Nw9g9cbNyxyrqmoaKsuSnPX94Jxzy8osnKVif932be+cM7YQNsDY90MUZgYyjiUYYycNOWQ+9biTiTuVw+FkdiSx36yxNoUmY126B5fnl5cXlgA1QVWU1rinL54/ffZCRA7HARENCOOMuoeYCc7MzMjGaDSDzhSIKEDb7vi//Lt/dVaU5MfNah0JfvbFZ0eAYGxR18MYYoyECCyglLwZCgxzDEfpenCix+VFFWMkNLqXFYATkRB9Jn/kgDfPoGg8pjH+jPpzCqMmZmG+jawYwBPF8l4AAgnOBgB8hSqXA4F7NDK493Rw+mf+Dd5Hk+ZuPxG9Uj8KMLn4KIACgBk7vr/Y3lAZj4hzIZHTrb9pueao8/X3zn/5+kNNLxV7EQDlSkcil0O/6BEsRQ93N4fFqnbOSTu0/VEkDr4HgPPz87P15sWLq67rEG0II3esGmLqJLRtq8k85QI65+wkSKCngOaeEY3mShNe+TUiAUPf393ttdoji5HmshXFWHP6OXLqsCqT1igA5GhOT6WiKEhIBLtuuLm5Ozs7M8aFkKJ+mtoh6DGn+XWldyiErcJE+lx6GG23WxVutpPuR17zObDVXypGrMtYy3pUVUmPKu+9Zui15kNJBmpDku9hTQHmyZNL9Z2KotAGMLoClQSQdhwa3Qu6Bqy1xrjBj4jpZvSv6gcaY9RT0iGdCrAkMnOIIqJJdLX26iHoQ+WjX8cKkiwYI2JZlkBSUcXRV66KTCWU0XsROR6PwYQEouvHOEL+eRZXn5BlHcicrcp7QG1Q3sNz50zu52HyftZ7TRDMDGjWcSQirajAOWftVd4ZigiCuQchIYKoctY9yYhs952ziMghzu/wdNuEeCovIQAgM1mu+1saEd8o6wMAMfI4ehJAPIGD+Z5tbpJOqcuETiEz4zSG81ua+3mICHwyZHoXOOGzoDIUMqcWkiAYkyTScOqSMbmw2Vye6Hh5kAEAkHGi780HIc8XESEKM8cQeEozZvKOzqy1FkG0GPPhw4c4AXAz0VXmWY9pIiIk7cKpSRBEo98CAFVVOVd67798+uzZs2cfffSRhhmaVl0tV+AqHV5jbPRh9EMcvY/j/+X/9H/+G3/jr9/eXcME+E4VzSL31y3PcqRvnF8FsDLiTESgautTg1SNA3UoYKoJmg8azJJO9DUGF6a2BvlOENEgsTBrWY0AIzJz4dww9NZagWhcefnkUeGM77tlsyiK4vbqWXscRJAE2I89ElrjyDClXWCNYQBDRYijDxxBTFFKjALIAGxcjN4tFkM3FEQXdXNs2//3//3/0d7d/ef/m7+9ql07BhKkGL745OPnXzyTZ3+yISkWhUUpCC0QSISSBKK14MoiIiMLGQeArjA8lCLCDIfDwZItyQmIH4caoTRC4AuLEcjfvPzxi2ef/PEfrN9++z/7y3/tweN3mHuPgog+BGOMkBGIwGJAW3UgAOpa0iWnnKNscIAFJwmIPOAGUBIpwyCazD2E+wnqtPIBQoxy38WBWfeJuduRP0tTmUJeYzyTYck02GlznTBcRIxJ2SI5ZDAhsK9sZ5xRgGE6Y/6Mhf1163xa7ffY+vn3002BcoVP3liCsEESIH5KhvkwikakxkAUnHJvepwbY9CaGMP8RHDqDMVU0ZOPN/UMAEB7HOWP6PbE1BlZjEHN1cl9SH3+xPrzxEITEdY2L0iESDJpTzMnGWrB0xk0PytTNcj9UZWJr5Dt6vQ1UBTyf/w/fPaN9/b/6L/99p8x/v/x9R/c6+H5/+3J4396d4jIUjVl4Solcyn1YOiT2qbnGEHKwgliCEERIkPGGMMciKjtuqIsnzx54mrnSvvBj//4OPQPHz/+8ulXtiyodL477q+v7va7n370p0oHC8KAsG/3T188F5FHjx989ukXyixGpLqul2dLMHC322omWCQ6Z4rCPn78sCydwl5XV1djP4TRW2tVnHGxWDHzernsuq4oim984xuH41FJoIyo+1Ft0Tj22+12GAYGocP+/Pz87u7ubrv13g/BG2NCGI0xgmALF5nBIKMYa7QquB+OZMw4DkRkLDbLsq7rm5ubfbt/+PBhsyoVbQkhdF0LAE3TLNbLB3gJCposa+AQQiDD290tM99ur5h5mBxUzQirSCtGdM5436Ghs/NlqiPBdIc+DMYYa+x2u+2ObaacFKlRzGgJqShQiJnruhwGAAAljJRlqWEAIrZtv91unXMWqS5KFVKwUyG80nYAgH3YHtvFIklmK/O973siu16vq6oqSxch8UKUj6MCx4ioAtCFSe2/DofDYrFYLBbqGjlnMkCpIZ/eYVmWu91OJGrYY62NMcHKGn0hooYligEhYlHY1A8dQBXhFK5STuUkKeAAqG37EIL23tCL5+BEQty3neY59vtBYx49Ag6HQwi+bVvFDZWEW1VVXZSKw8qEPKpzVZZl9KxxESIuFku9bRGp65qZ33777UePHv3u7/6uTCLIUSIzn5+fK5ils6AZgqurK/XFVL45T433fhXKN+70XiEq5/zUPS/GxAIm6xDRGMccEdH7FENq4IqIXd/FSZzx5uZGwXcdByWQiMjNzc1isaAqydrqWanZgrZtSXF/a5um0YBW+8Xp2XQ8dm3bikStltVOEkrs0NWl5+l6vS6K4vnVy6vbG63tBYDr65daO5gVtB2lZkdKLlYip8JM4ziK4Hq9tkhd1zmXsEtd9pktJFPqRfmzOuYy5ZsX61WzWqpEJiIOg7dWqqq+ubk5Ho9N05TWLRaL5XKp3QLX67UKSii/eIyjzq+G4ofDARH1NojovffeM8ZcXV0po0L1jhUzjYH1ScexV16YiGSCGCLqV+sRH6N/+tVXx2OiieBEUXfOLZdLlapwzjlXaIZpt9sBw4OHD7MW+Xa7q6ry/PxclWQQSLXUq0IFMfx6vdYg4m6/K53VoTZTjbOKz/R9r+h513Xb7bYoikVVC8sXX3yhQzoMg8KgqsEdhlEptLvdThWQdL/QRDzMuqubzUYm4CPEtP7tJKWiQLD+c1Lw8G3bLqr6cDgo1xsA/upf/asffPDBp59+pUNUFIXnGGPUm/He//SnP33//fd15bNElSZYLpPKv1rF5bJRjYtJ1rwCgOPxGDwbsmfrjSp0TzBTIvSEEA5dq4nbzWazWq2ubm67tn3j5q0XTb2YurtLSvfGMXbDcL68PDvbHKWnaPuDN8bttgecKMZEhOJEorU2eJHUm9RaS3M3WH/Onj+k5vZsCACoqd27b7/z7W+8vVrW3g+EUlVVUZUgFAXeenT+9NH5V18++3n3Uu/2JNwLAADCDKcrM2ICZIGRJXqCNnpmf32zLQE/3t8JABr0AGwwBo9IcQxoTFSHXHDqlX7CW3H2dYqxigDZU3U7AEROTBo1JnFqtA6z0vbsLcMMOjC52ntWLJhHDCdcNU7Kk/N4an6T86jETZS+V8KcV8IbntF3aJLyBwAVTsTXIN35bxCIzAmPMsYo1swzqs08zfD61aY45fQs+VaFTkWmpw8i4teU0QNQvk6+1VfegaxSh6cHTN0sAJhDoo1HLp2z1no/Bk/tfjTmiDT24bBYVohYN6WI7Pf7cRwNuXEcxrFHgmZZW1sws3NlVSUFHj0g1CdU/0SjaSKu68XQeyIitM4xIkr35sJu5iSvnEXGtOOrYrXakgQgrTrnmtH3IolZlesIVaZJRAygnl85edz3fUoPGwphVJkjPcRVyUrTfojonCvLWgWj66IcY9DRruvaOSNTanA+C/NAm4i00kuPKiJSmwYASe3NGGOMc6Xmg4Gj1i0Nw1BVFSPo6m6a5TiGL7/8Us2+ot63t7dkUJ0rXYGanKPUocGlMgrEEEZV2FhNrRTnqGkuQVNnZoysFEktiSvLslktj8dj33WK1M2F4IgICEUgjQxR3/fCQQoBbRwKUJVV74cXL14kIFJXqkoi6DDNoDECOmlX47RnzFTlncP4nJXCiUrGE6Mb4B6MkuH/nLVIOUxEXR/CSCS6cGFGwcsTSZl2kbei0DThnP0YnIng6B3GqSKemYEFSWRaH2QNMgZmiQnaIyLErFkBeYgnC/tmK2Cd3Ww2wzCMXa/SLQgkcmK5TtxJ1tLIE03dJmzFTOwnBZrVIdNSxGJaWDIhnjRlEdPWoiTkn3g0s5RaHnA8SR5rpc7pHOV4ssWKdmVuJiIKsKJLefYRQESstVEwxyoAUJWFuqSLpla0KOu15XnRvaq5Ck2hiIJNLCSoGbN26J+88/bx0OkO2e/3f/jB711d3bx48WK725ZFWdd1UZk8qoOXojBEKCJkEAC37e5v/ud/8+/83b/twwAARBATDGQ5Is60kPJSmYO8bzKFkLdJGlLmLLAwDd1UHE1WJMm8ThHvPXomM3+djgHNEtr56JrMNwKcmhZbY0IIyvyKIaI11dnZi/1dF6NYp/1nUSIGCC4668CQ9wFBgKEbhmXTMGJtaxHgEBnAaMqaKEQGY2LkclHbCIQjsWuPh3/+P/yPh/3uN//Of/V4s/Z9+OjHP/30wz8Z9/1FbK0jQ6YuCjIQowBQEI6CZFEwuqqEGJgjghH2i7IUEe8j1pXmGtkHInEWmQ0zO0IRGaJAGIfr48+vn1UE/9lv/M3V6nI3MgsbY0zhJKAxaAhEJIyJHYOIIHGyV04kEpKzjpmFUo+j7AmRABIGSU3AX758ISKXl5c4ZfLzvODEnrCWJrkanvyeVNiWOYx5XWVTlm0gJLlA0sSsMQYlbUN9pxIisqOmDVXyysx7GWagOU4lAnYmIz7/rkw3nhuQ+dO9ttqTTjFMNpxOJSCSRdDm9twYg1mXWU4jbK2TDMISQky1xiKinXYKKMic2m4Ac5j2C0xMB904zEF7HzlDCCIxAEAxcZPVn0pp2BCNMUio4bqWR8Br0hx6GzFGnHy8NHSTBjQAWEeIqAcNg8gs55S9w/zmk+c3m6975xECovyX/8XNr/3qcbt1ckrrpvQfAiEgzjSsRQRJhJlMaiwTIttUISV8IowAkQkxIkLwEljGcby7vnv67Pmz58+uXl5dX738/MvP2uNBdIMCyJRzLASMg9XKAUI/eABAgKIEYw0I1dVyUa8fPnxytnl4trlYLpZFBVVRNbY2gAZsVVVoikgcQVzlhtDHyJEDGPid3/0dsnT34vpb3/rm8Xg8HA51XRvnVsvFdrf98sunIYxvv/XOOI5/8tOfGOM2m7Pr66vNerVcrX7x2aeFLZHocNjr2I7eTys8WmsZQNsxoLExRoOk4E9RlJB8+oBIhkibSqn+ewgsBjlyWRRRIrNYQuNc8F5z8mSMNQYRCy9aVvnK63D8v+4IYogAQIaEY4wvfH9VV9989+13QgjLVfON97/14MGDoii6Ycg10SJibOp5ZS3ZqlJkRGLkEExReParzVlVFRE4ilxvbz/++OMxhmfXL3yIzrnr/bZt28LQ1ctrtR6t7xDxfH3uY/jy6RdFUaBQUdrC2+Oh++53vysidanYEzhnb29vz87OHj15XLpCsarFYvH48eO73fZ2e6P8xG9+81fOzy/VQ12tVgx4OByOXWvIhRAW65Ue4mOIdV0L8Ha/2x32XdchYmR+eXWFiBESzssAaIiRlXDkCsdxDOx9HBHRENaLyjkXJRARET58+LCqqvOHa3VXjDGFsURojC2KVe/H3rfqFjrnfOiGUdsWRUS0bTIsig4TkdZIph6jmAqq6kVTpjPIM/P+cIgKu8aoBDoC1Ny5hjGImJl92XSUZQ2TjGxZliGc0u2qKwKRPZAxxpZWr6CE4iy6BxPIpX/tuk7bcyGaiczLCKKglVJWz87O3nrrradPnxOhgrMGEISUirLb7UREJCKWytBR4ZTFYkFTJUpZltvtbQhBYazsvet5JCL6e8XHY/R2EmPdbDZD2x0OrVJ+iKgsK2UMrM83X331Vdd1l5eX4zgCWJ7kqvXgy2BxCCHG4D3WdRVjtJbqugQodWQ00qvr2gAiosJ5IhgCO1cq7gkA7eGoitXL5bIoyq7rDoeD3vx6vT4cDi9evNDIU5dQ4DDRukmzPprpjDEagwmSjr4oFqvVShvKaez3xsORDGraAwDquta5Vu8OpnbZRKRJVj3X9Ok0fmFmMKSbSyOg9Xrddd3dze3jx4/X6/VqtWrbNoTgXDq7dRh12RQmHcQ6KZpY1X/GGMc4kiOLFgAUkR+GQVUXlOsdQri8vNztdiobokJ2zpnjcc8TdymmtpmplR+LHNp2vV4vqvrYdwBAVChcycxD8LqkQwhnZ2cqmqFh/PPnz/UBS1PoxKm0a9t2RVEUJRjjMqlZRLRN3GKx0CuISCjLjMjrgOucEtEQfFHY5XJ5PB6fP3+pN79arZTzfnd3JyIKp+aIVUN0naxhGMhgjEmqIoTRGDdtbUtEjOCHsSzd3d2+LMvz82axWGizO+WPE9F2u9VZ0O8KITx//twYs1qsbm9ukEgTNmdna10DKonT9z1CYqvIhD0R0WK9OnStghFEpLyH7Xar8b9z7u7uLsHr4/6tt94SSUXfIQQNC1bLtYiotAWyKO6fc0hN05ydne33ez+GMAn9KSCiqETksFqtAMCg0W6lMcb33nuPiD799FNbFgmcVW1QQ/rtytNn5r/1t/7WP/kn/8Rae+jaZrVUNET1kRWHur6+1sHX3JVKgsCUPlFDkaF8LZBVWECp94jIIl3XacMuDflVa0XlOFRpOsa4qJabdfXGzXu+2dyZrj0ewUI7jEVROFMMMYaRJUJhC5AhjtEg6T1PYuI0Ef9NYMihQYwxhDGbuIx1pDAZFfJjJCJLzKMPwTnZ7m6IltZA4SyBhyARpK4Xi6ax9nJ/+1JTPikEmKKVGOMMa06dGBOMAGCosJbQWkQggW7sRUAIhYwgImm9Hlhj1NdNTiwkHhhOLxGB+8qQ2ePNWwkmdr+G2zjp2GaCnW7qDAuISbhHjDFLx+RAmO6Tq2DGDJOJUoP36cYcTwFyvF+feorHIT2miKgC6hTCsOrnxVkjFp7zL+/zqee/zPfGEvO5OX9PHrT5MpATpKDAiShen9fk/AFPEQRINg65eHeG2p3kBGEW1yS4B1HFmjXrqeEPogDjFMSARg3RB4MUPA8ci24EMzbrZVEQAGvpSfARwYmknrTCXFgXA+52Oy1h0QIv/er5kOqoJHhKRclCYAbrcPaM91513VTV6L23tiACDRYuLi7UsTTGImIIUU1ECMG6hDUPQ6c1E/O5y4VNAKBnmfrhVVUF4RB4t9tpmQszZ50lZq6qCiIftrvFYqEosC2cZsr1JBrHsapSHq6YevAyc1mWmrqLMSoXW6HzHJWrIAZNfTvqmp1zu92utMZ7zwgiMsY0xRoaKFv5eOyMQeUNdF23WDaLxeJwODhb6LAnnBYNkWVhvcnMJFBPJuuqwSQSrU6I3nDV1H3bqefsFkoHTFj2crnU9OTxeNQMokLV+TgwxhChAMUYh9HH9qawdsSxrEo75pKoJDRxwg701NefUU0nIk62lSZOdXZMYVpWJ0Mw64qWTVjeFTihZoqU61ZjZsqw3bRfeJZMy7uRJ5buqWfgTPEi3znMqirS3RokOIkewGstsJhTgYz+huNkMmbZubmBeP1VuMKYkoiGtgshqPiUMUaYYxy9T9JazMzeM7PWHmbgiZmBoCjKrNOfPXXnHMepwBOA0GZbr2dh+r050R75fuYwWTEhmUwhTlX56YtyR1fUmrATGju9+d7YKgMXAAQTVi5T1+/5cZLpDGlSQdOx+Xzy1tpvfuv9L7/8UvdkCCwIIY7bu/2iWfkxPn369Cc/+elnX3wOU5n8ZnOpy0O7m3IqDyxjjIQQJAQ/ej/8p3/pL/7Wf/132vYwDEs1ncJaIoQASMhxNjLzlfBnTLEaXJpoStnIzpefrhMDBoDy/sjK/XmyGOfs8vvfIicMcf77+T8RBTggCwIDA6OAoaJZfPt737u42Dz74mL/8sUXn8Dt86e1c5aoCz4Io4nWWiTFNOnYt4asMaZQXdFxDGNgCUVRSlGUZUlLDMMY2r4wtqiMMxSi/9f/0//3q88++Vv/279dlvWnP/59OLaXi8ViQK3ZQTJBZAgjIwiCczYaRIMEUBgLLDFGYC8ekIyzAOAgeGZGQnSmKAoSOBwOg7a4RQSkuijJ+KeffPTPju0Pf/0vfeuHv3Zz7Mtq4UNEREAbOQCDdSUAaBEx3KuQOFV1ZZciDylCIuMbY7bb7Xa71apeANCg8bWJYBHgif063yk8azf8yrqavzP/PPcV8mf16xhBbdS8aefrV5gvDJpeJwM+S1GkhXjygxMZGeHNizBD3q9/0fxuzdSuOl32hEqf0HCU0yAoRKjy2Xm/hBA0CtXDPAPlMCWTskp1nKTWjDvlriAnDifBuGzS82jcm/H785L+fY/4fG+cNZ4kEkRDomVpM0uY/L9XfMcMu588yPQ9CVPmhw+Hy8tu/tdkI7P+/pRnstaq2pVS1STEqXDbRvZ66g/e65ciUowxSvRj6Pu+fdy/8665uV7c3fm+r7eHMwDY7e5u765j9H3fISIZcAwxxtVqsVgsFusFEZ2fb87OzpqmOT+/uLy8BKD1auNcOQzDcrl6dvulM7bdHSVIaWm7f0bOfvDjP27Wi2fPbx6/9eh8tfzJT34SQf7wj//7wfdjewT3a8+ePXv27NlyuRRC51xCJ2P86qqAqZ/Y/jkCwO0XnbV2CKkiR+NSIhLHPKU8gQySkAUi8lGqJtUCh2FkSdpkpIuBSJiZjNcQEWMI0RhzGDnRr1iO3WCMCRBGP8oopXNEVI01wJ9/fXf4+OEYDmMcnXPCQgJIsuvkw5/9dHc8/OC733t5ddX1/Y8Wf+HJ22/5KSxUrxRBrLWldc6YrBijYZgtihjj/ri7uhmevng+jkPbd33f2sJ1vkPjDr5XwM6zCcIxRuSIiATYjt2xP+52u64dDGJRFDFIlLA/bPu+f/DgARhYrBebzebt997uum7f7ltjSuuO3WETz569ePrgwYX3fru9feedtxAlhNH7KIjrzebnP//5V8+ehhCW67UWyF/dXA/DoNUaiNj2R/Vo0RhBERIWtoUL0SMiWgIRQEZmYY6icYJbLBaLlXLuoK7rxaJGxH27H8dxjH1RkqpSFaVDlqK04zh2Q0uGLNAw9Mxh9FOkJzFOlUPOucVyqXROZ61IkhK21jmX6KIaKih2IyLBpzApyfON3lr7+PFjAFCQKMaoiE+CLxXaG0cAQjRt26vVysX+RVFpCwqLNAzD8XiESbpHaTv67XWRZFUVZVO3sK5rABrHcRxTD8ZD14aQANOHDx8+evTk+vr26urKGNM0zXq9Ph6PKqsNKcg32tAs2xCZeL4iEqM/OztDRHU7mUXRE0UPc0DFScjP6N5MmVQWRNTRU4zp6uoKAF5cX3nvN5uNTkc/Dlqbqd+7Xq8tkY6MTH0sRKRtW3/YK+6gBkE9xnEcJeSmsqRysdn5zw3TFH8XSXCVWuPdbvf8+fPr6+7ttzePHz/W9IlEUZRQ+54phXl6eZ13peTiNDU8I6y8/uq67sGDBwCghFnnkkKOgqQxxr7vLy4ulNfMzNfX1wDQNI1uE2vodrd1zhXO6ZKIMdaLZhgGBcqdcz4GNX3GGBVYiDE6Z9gnppXOrwa6xpgI4jmqIrO2bFGwT4NeIur7VtemIumDHx8+fKggaXfYq2Fpmma5XGbZYoUJlG+uDOV01FapvFdCfOedd4xxz58/t9ZqszjFSZ1zYEg3ix/82dmZamXqEw3DAIbEhzwNVVURmvbYGbLOuR/84AfOuZubGx0xNaEhBF14EwBN+/2x71tl32tIpYskB+E6L5qt0dXVti0l8E7VsXUXRN2wRVGIQNd1qopTOVsUxfmDh6r0oqIfWl6t+SfVoMighmrTq+8RQlBhboUkhrYjdy987oeggwwoh8NhCD4rluLU5dUYo6iHQuRt23aHrigsEQ2D9z4sqvrYJzRBbaA+OEkS2MUJ/uu6Tt0nvWEdTDuJ3mj7voQAcIq2nHN936smhrILVaYJEbfbbb1cMAL7MAzDv//3//7Ro0ff/M63P/zwQxHRvZZVdxSt0MWgdEi1HkVhdrvd7e2tkvetJS0QCSGocLnexmKxSO2wxu76+rouypzVS6IfVerW8/z587u77aJZr/CtN+7cw/EYFqMx5nA4HLfDZr3cbBwEBI83V7ePL2s/hHEcDbgQokAEAIOEBgEmHJMFaO5J3oMR5t+VfVEw0PsexbPAzz/+uKmL99998s1vvBuEw9BSD/Vy0baHxWJxcbl69Pj8oy/2OuM5mZGj9fn18+8RDSMIGbQGkJkgoBVV7BVEIq3mIwYURCHBSXH2/uAkt/Z+STrcD40RlR4DABA5qGa0viHDRDluwiSvJ/kK7eEARGQwznSTc5AiM9QoXwFm1NEUg6PJFwzM5tUonhnvxeM5fJg3ZYH7Mqrp24EItd71FF/Mnz3/kM/WV9Cq+aC9Mrbzx9QfeDYB+ZFF65jndavaX1GLJvE0LDCLYvJBLyK5wl5DQCISnIYClIBByBJj5KhdgHBZNVVZFvVic16bEg6HXd/3Ikhku7YHAOsShHM4HNaryydPntze3k5i60YVlgFAu54Og9cbnFyOpAtsrQVgeK1no77KMum/l2WtdkBEcoPWrhuEE3lLzYKSLEMYPcfKFfncyTOSnNJZgMzM2lFA02yqRHRzc6O3rU5ACKFyVV0bRY3VMdP/ap0fEYmQMc4YRwSauc/CFGrAU4AWY9aJury8NFOV8zR3PI7ROXfsjlVVqQ6+qkupiTapfmuhdIqcO9xsNjEwCGpBz1QrlqQ/iqKwhdMVqrlbDhFEIkcfQ172Su5W9FkmhHOKvimEoHxqJUDoeVqW5XK98t5bcEQ0jj0zCwiHULvGj9Fa2w+DqIyGHV1VlGVpNbrV0ozZNiBEA1ObPmAESn/KueW53aGZhrTcB1Dmr2x9YMLs83VijDgDl2WizcIEbSv3ZL69OYlNM2ISGILXAIJX9nzafvNegJK08BVnEJEM16g5kgmsIcSJqJesHuEb6E76Un8aNhucKI15s2XsOP0XiFKHqpPMgmaDBVHiKeOtrxDuldLLBEbzTESfUgoL5RVkU0VGJX2cIxgLyhtMb2BWNoQaapleMIEgAAAyh55ZBWNERGWVdRmoTDsiGGdTye1UQTPBRidmJaRsz/DOO+/88Ic//ODHf3w8HtfrNQM1dfPhhx/udoeXL1/e3NwYZ40xwlhWyY7oGhi9KldYAJDIKECGdrvtatn8xm/85b/+1/6Kc+bu7ubsbKWOKQAQ2Wn9IEpa/1mZRCR83czmFZXxu1cP4FfkrfG0FIkIgJR7paegqBTv18DNJ12X1w6n/F35lxYJACKwIWdqA8APymJ32L98/nzz4HHfdhVJHLz1A4oMfc/a0DlGIWSBcRwQjHeuMNZYFAbu4xCOy9pBHIhMYchWBdgYxmgs9X2/tvb49Isf/+t/0TRV6cOyoMqOVrDvB2EANNY4QQtkgTDGaMk541CAORChMwYR+24kIrTGFhZHCNOqM8aUrihLt91u/RDq5WK5XB6PnSt8RLx6+vnvdn1VL9799vdvj70xNoboigLIMjMlPax7LiAAiGiJwomEriApABlAAWFm5NQc6b333tMiWc2C6jkxc2Xu6d7MN1paQgjqi8l9ByhZFbzniKRlM70/e0WJrfpa/kyP2JP5FVBUHQEYk9+TbekrbtzcSt9btF+j6fKKE0YnMi9nIzzfjK84hdpxBBGB710q7T46VYqpSx1hMhRlqTGJnHjTrNtUraialDD6zHqY33D2bDImPs3FaTxf8QXThmW59xRwqtiAE/7LCEa3fZ6U6YfTOJDyCESEMZ+P91YRAoifpuVeGaBCUfOZUg8mBqVPxjj6aeS11wQXpY0x5ro+78eiKBCkKKq6KR48vCSiwEkJlKMi+CQiZV3x1L8ReT81FEINa29u7pqmWq/Xd3c3ZeWapiaCL7787A/+4PeMMf/q3/y7sqxfvnypt3f58MHVzcvPPvsMUdq2Xa/X1tpnL18QWVcUzGwq/MMPf5+IbE1d6BaLRVFZKhfL5VLFKK21Td3k42xRLLz36+XScwwhgANEYhEyZAtDRCzCzCFEEXFEhXPOWZFonTO28B4jsCYBEAmJIAqjpNolS+CnxcwxBk9EZLR9jiyWTXLEmelrxM3RUr1uXCiGYRAQMcRRRPi43/a/GIHk6WdfrFarv/JX/pqCDiAEEDVWlxDJWDOVNCmdUC2StfZ2e/dvf+e3kaioClsWWNCiWuumImdhDIBUVaURsUXq023JeO8P7WH8ahTm4OM4jka7QoH54tmX2+32xe1z59z5+flmu9lsNk+/+PL6+lqxjMPhsOv23/ve9ypXffXV07MHG7H0i88/e/fdd0Vkfzi8uHp+t9sKgauKuqnudndXV1e7wx5mqj4RGNxUm4WEjCGMYtLijzL64K21q/WqaaqqqtCQtUllTyv+9ofbQ7cDVPcABNh7NpaKohAICMiMY+zHsXepuQobmxwn55xFE8K4XDbW2q7ryrJK9oqBjC0K0uza7e1W7RJDyo4roMYRrE3ZGmfMfFKGtiuMzaifolpag7Xdbmlq9AdAy+XSuTLGCIBFkXwVA6goj2LNyg/AqZ7PFK6AFHgvl0tlqg7DQGT7vh+GlI/RNtQhhMVisd1ut9t9jFFVMlQPsWmq43HPHLwfEPHJkyf6dfop3aScsq1gjFnWzePHjz/55JND1xJZVS2UKXieW361qNrg63g8OnLqAZZlGaMcj0lPcIyhqqrj8ajceXUMnzx8BBPhWhFtmhQ/VWatLMtlVWaKjVo/Zh7HUUVC1HEiIiUR66e6rrNkFGH03ocQlWalZF5VTK7rru/73W43DH1d16rJqzEFAKg4gyovNU2j2HpRpLo6BSW1wvSN219Ezs/PHz9+rJK1AFBVjVr4OHq1ZpvNJgNGIqKkyxBCooIiKJ903x4LYx8/fuycu7q6evbiuYbBKox+OFxvNpsY4+jHiZkbyqJQlFD9aplVAsGkXcsM1logsmWhN6YwonMOQL744rOuGx6//dZqtbq5uWFmIYyQEnuaR4mJ8xv0XN5sNioNocoYBeLjx48Xi8XNy6vjsatrWK1WU1dJ1hFwzrlcgR5hTi7WwFXXgwbnShNTqkpZltalUN97f7ZclWW53x00/a+YsrV2jEHJVl3XW2uXy6Wbupmp0neMMZcRKClsuVzq5PIYeWI2cQLDiCjlMOp6oWu+645gqKgrEdFLaVGz+gYqZqLz6Ka2mQpGGDSbzeZwOCCRtqJKp3zk6+21tdZirrpQEUgbQri+vjZTMfhyuVRJIl2KKtNRWleuz1bNAhF3u53Waz9+/Pjxct370Vqrfb1EpO97Etju7lQ/mmZyKMJJxEbx9HT/RVI267ru9vaWgFQjNcZ4fX398uVLXcNqH3QzqqFYr9eqc3Lo2j/84w82m804jvrIqtOqxQqqv3F2dpa6lTKnFeIcMx+PsFwGTTjlrJK1U86DnG5qERnHUbVfhqGLU616VVXHvlOBNWY2hrbb3bF4czuytj0e+VBVjUVqGrdYLACIvSltfbY8v35xO7SegLqu06IKFp44qXJyGiODJB6Lxhdyn6iL02vy7BEEQCwg3B3Gvh+9/+Jw6A3x5eU5EZ5HMBbbvgMAY5GIrDFBoxWBAGmB3oMgZVaCbKzktnNADKS2HIS1qXr2XNL9Y2bdvYFfJa/0uJ6xXmDu+gKDJAqITNjuxOox+bOkMpTTEQApTjlJ6r0SmMh9+EIfKgc16YSa3q5fpuEPAOT2gzmIzlBDdtTzp0TE+whwKmQUntremBnUPpU1Q46+UQhPtZJEU7XgPGafGswDvmGET482iwtO18+z9XrR5CnEePVPKpWhqHSacP1+NIhJkKt0BTPHGGJM/Z8AwRiKAbpu2JyvLs/XPnbH7d4HHxkIkIW14qEoLQAf24N6CznCqutaJGpCXXkhPHUrUdvV9721qcOwRtZfVza0Oxy3/bau63Hcq6yEahOpy1eWdYzRYGqJrAie9usjW0RBELS2YE5gtAbvMkkyTEsldcxjZvUl9GhQ30C/NAxjFySEsFqttFvy+nxDRNp2WJEBnLQcyrK0NiZ4Z+q1No5BBJ0r67qxlrS5iGZ29cb0frqu22w23//+93/605+qKNl6valrr46NzrIm5xI4OZUvb+92Mqn1Tm0JrHN42lCRm6ps20hIDKJXI6KSCkHQM1f9hzDpQXvvnUniPHoGBY5aOd72HSKqe6YzqwWaepGu6yJCQcZZU1WVD9DQUmI8VsISEMWqPm/C2pmFBRGRFIW5BzRM1tImKCFB4EKEhCQskQWnfAtHAEBDjsyELNw303mN5j1GiIQY58RDSZlVnR65L2MPM4z4jXAdvoa3iohWT0x9uU60QSLi1IaLDCZ5G2a2NnFyUUDwZHYRkcybEZoQo1XyFIj4oGmQGGNM3HWnlo5Sg0sFstMNaxoZT2URJ1UNfRwO43xS4JX2htPD5jNv/hsAhddntkkUmruXSHzj6zSSU71/OlCnJq06JfrL3W6nVPz1eq1/VVHCdBFRUuO9Y8N7v9ttf/DD763O1h9++OF+f+zHrqqqYfA/+9nPELGqKrImeEZ70hiJUWtsbQheHRFAHrouhPGdd9/+rd/6e7/y537w0w9/XNepeNBaK4TAorRXZpaJQUxTK1lmZla8783zq3FaXmC6kulN9Mn5DzJJ7kYhxLR94P758eqY08lNoRlZVe4zqQkQBNJqVFCPrPfemKJcrP7cn/9L2+dPS+v219d3w8valN57iQIYB98KAlkrCGRdCMoRg8oVRIAcfRj6474sS1c1YxyEpaxLY2J3bB8+PH/86NGyrkQiHQ+r9eJw2I18ZBJXF8ZYzS3UdWoK78oaEYVjjBEFhJJTgiRj7A0VxtrSGYcGJBWNjuNQVfXFxcV+f0TjnCsdgOUI1hlTPn/5/Kcf/P43v/nNs7rYd50xzsdBuZ9RxLnSWsMh0gTLTrOQMhxTXjHNcjZNPOmcKN8rx115tLOzkndfnpf5XkvcgPtbMq+ZrNGsBPaTDXzNe5i7HTTL1dEkJj9zqKb1QMkpfmVH5xuGGRqrsjNftwLzp3RniDADksC9jZNNQc7wTycHIgJLyqvcvx89bolICMxUTcLMY0gyUjJzXhHR2pNXp6bDTtIZ8hqknu+ZZ6yEaePc04DLZ0QeE2C5nxXTfAUgTsMqwCKA4+kK05fm3Zq/lGZ0D4z3CObpS0HhclYMJH8cZ20MpgsyM8dIh8NBy/+JyFr1pdA6CiEgCqXOFaJLW6IYg6bQarJQlLauy6ii8IyLxeLQdtu7ayIqiqpZLIYQvnz5lBn+7b/9t3/yk5+1bfvyxYuqruum3O+3Z2frR48fAIbPP//0xz/+49VyObbUdV3bd2QMWGieLUIcdZ1Wa9vFoyNXL+rAUlSVLVyM+8ZUWvEqAMaY3W7XLJbdcBAMaDjKGMNprZJzziER2Qi2MCGEok7sRTQAKAaRwGg6XCmEItL3HjVTi4wGorqVAACGIWomiEGiNogQqMoyN7O1Vuv9oSkLkVS3/nV9GoxFU1ghIA5EDgAk+KIpLy43InK9vev9uClcUVdCuN3vV5uz29tbWxamdVp7a60ViInaBkJErizH4G+2d2CICcAZcEjgROI4jGdnZ4MPZHEYvaD4qPbKhRC60HMIQQIHDp4LY8kSEjGKiB/HwZSm90Pvh2Pf/unHHy2aRr3PrKP6p7/4ee8HRGzb9oc//KVqUS0WCx/Htu/J0t3+bt/v6kUBAC9vn2+32zFw1VQAEFib4jJDJAOIoIaFY0QihljVRfKzOSiGgogiSkOWvm9H3wORdURAWrBZVU1Vl8aYLNO52+0sUj9gNw4xxlkdKyGi9wOAKYqyqgptq3I4HHzQMzqMXltB8DiOPmjX5VSTEcYogmQtggGI1tqplG0SJkLSBl8aimghpIi0bVsXZWGsN0nov6qaXJOoLMi7uztF1hIrcxh1ro/HoyLXGW1RHLC0LsnRjuM4jt4frbXq02sAU1UVnZFGX95Hxaqy6xJH0X4yapazo6LkF7VsKXkHICFut1sF4wwgEun3uqTk6OMk/0WT7HLXdYvFwnvfj33mKu73x6IolPl47Dt9rqZpENGSLYri6fNnElmB4KHrFSCWyUfV+1ePUX9T17XilRdnG5UOiDEdN23bHo9Hha76vh95dM5FYUEgY1xRGGvLqlIgrO/7xXI5jiMQrDdnOgK73c57/95778UYr66uxnG0lvSetUq061T34EwDvziVrr/+qory6PdffPpZ5jqFoPHtCAAKNLdtq1Rfdeydc8oJVYSxHXqdJhE5tu1XX32lha6bzQanjnbKA1WVXiLQbrS6hPSGRWSaVhpjakOv0b5zSdi6qqpQhzgmanDuIqiTom+uqsoY1KaOOQcDABoV6/JTAc3FYlUUBVELAF988cU4jk3Z9H1/dXW1XC51CckkYbHdbrUCw1p7vtpodK2Qk4ignbjrRJOgvACA5nL6IVX1Kgf25vqWc0EVWQTyY2iHNkwqW7ogddtqmkEhkjBJiNDUPFlhkRSim9Tm1zlHlFq2TpBlUmYwUxsJVWxQiwQAuV4huxBx9IhYuNIaF0PQuOPBgwfb7VbVbHTHVa7QbEd2BtQOIFB77LCgRbO01sbAfTdwlH13UH/DkVHe96Kxu92uPXZaofGLX3zODI8fXzAkQc+kT4K0Wq186mbhshOiws2r1UpXqXrd1hldPKqCUhXVw4cP27YFRB+CtZYlGqsn80ILz3Upeu8vLi6Y2Tn38uXL29vbTJBXfRudF2X964kDk+BMCEEEReT99y91DQCAMayCPGq3rq9u1QrtdjuWoOvBWsqYtW633o8Z7h+GYfNkfcZvhpsXi+V64du2LYvqm++9e3ezDWN8uHkMQC+evuiPox9C8KJUweygRtbuOSeB5pnP+YZq1OwK6n9ZkIAYJDAaW4ChfRvbz54Dxy+eXi2b+q23xocPL6uqOhx3u90uTgqcmEDh2UuS7Nrc51RvMYQRgCGyhJjORxYEQM7uKkDCmgFAAO5hysmPpemP957oHptk9r2J+gYpxGAteCI69UzL71SDE2MMw8BCRMQxeiX2vU6zTjEO6nfrg4DeHWKAqf0d3KN2vT4Fr/yM94buFGUTkXB6bJw4kdM7X53c+//U2We90/kXpRBDTjMoE/EFtSXPfHxn0WL+0je88PQSEcTTBfPfAEDFIRWWY2alcZI2p+YAIIinUlfWFIXn589feG5dJbZEERVU9MY4HwZN+RBBVdajH549e6bCYtr2Q/ORSkbWmkV7X0DVEUiMvffMTAZzFPnKaxwHdtAOPcmJyUSTTI32ewcEFTIio6VFeHZ21o9BjV41pTP1UIBZRSwAoDVuUjfV3OTz5y+JIB8WbupZ6n3UpKkeB8+/eqoel6KrkhK3IJNyUQghRr+sGzDsvfcsmqHXTgZ+6rehOyhOLb70N/pLnzQPlpvNRsuAJuYBZYBbTffElgNNzRrjaOoD56b+igqmJzj4cIwxKgMaAAySqSpE1AfJbh6wmCIptNR1WRTFdruNPhhn9bLqRykSrUVdWoh2cXEB1vTXxxDC0A96taapofbH4XA4HDQ05aRHOWVv1EK9tp1ARJTAn8/aDBraqT9jDtRTKIWJN60N1FB1zRIxlihRfsRMY6f7hKbWhdmNzjYr3wxLMGS+RvY2vTJAM9+hal1OV5t25rR5k4KqXvmE84rM2/SZr6E76TDpDbdtO3Z9NgpwgmYSlUwHSpFTwFONv3o5cSoBw4mu6JyTWOTfZ+MuMwXtfC7qyguz2nyAe4dHHtv8QSKCCfiG+/Oe0wNqmmEyiOZUpJ/CmxDC8XjMoY5Mgut6VyBojLH2pD2EM7xbhN9//91Hjx599dVXf/qnP7+6udFOpqrCxj4ts5hE3yFnday1KHjcHwHl4uLiL/yFH/3oRz+K0d/d3Z1dXN7tdxcPH9iyQGvk/gtg1ppgQsYQU9XK18/waQRwkk+C2WF2goNZkm4loh6MnOp70lOL3OtC+cqLMS1wAZkvZTnlkEmZ/XKC8zBGVg7gt7/zg26/299t67PLp89fDGhdRBCDmJrb+DgK4ups40MAoAgy+ggwFpbKZVNKGcbO98PRJ/LdMHR1XX/jG9/bnJ2J93HowziIxG7vS2UoO8fMDMQ+dp0naRERhajKfdUiI6CgIIhAgOhjiMJWShFBNESCEgkAicauH4JnBI6h9Z6FCzQgUCA+WK/G3c2Pf/ff/fDXfr0xFJBJQAx5lsiMAgQIpMpTM22ZtNpJNzRimoK80QwiJPH2E9LHEZSEOK2amDeRIxOm3En2vUSE4z3y/nxtzGcwKQVDbtSB+U6m99D0VXHmW6DEezh1vjfAGQMXUWup8gfzCKjgiaDEOKX3/ozlDoAIeiKwSBDO9pMSqgEgr9rDdIiGODVEftURnN85EbFElpgFTDP7j1Kx2z3kPf/JlUV+cEhMDWZhRMMiQEiZtj1ttNP3EgIi3ucsgElX1v/ODTXct5wnj/D+tOY/8VQzNE3BPQqJutGEp/xHKrGYwrDp2VV9LEm+ugK1tZirLAGI+GZRDEMnImBAAIhC3ZRFUarX5cqLu7sbCcIcjKUg/dMXn/Z9bwtzfn7+e3/06T//l//iiy++UuTiV3/1Vz/58qd3d3f7u63Wx6GA8gEZIiJ+/IWPfxQFmJmbpvnlX/+1p58+/+ijj84erKMEcjZKsIUhSl7msqyG3jdVjWhEoCobjWaVBsURjLNj8MfrF/p+nKT9dAQYBIGAoKjc8TgaY0pXiAgAmtTXBZyz+VBARIEICNYRGcXrwRiMURgiRyYCa0kQQogAgiRGvxcRgK01ujT0WBmCDyEwsHGG+q/ZGIaGoWXmsi704AZnRIQJDZm265br1XK9EgCt+FHClwI3SWPBWtHghAVYgKgbenCmGwcqXQSmwnVjbx0RIBoKHPu+DVG8j977OGHWMUaJbIwBQz4E62yQaEqDiP0wIKJ1tkjty4yImMoiotb+B9ChEw/h86efA0BVNn/wwR8uFov1cn17e9v3/Wq1+k9+9Ou7w7YbWs9x9KOtnXg/yuCcK1QyGyxQ6myMiD6GqizOz8/VKygKa631YQAixpCmjIQBxLCbGn7GGAGlWdTWJunbYRiUdRJjZAFrLQnYstQdISLD0KnwEU8qFnd3d5q5J7LdMZXDT7s1OVc4dWlWdJWm7uT6NjupTwKAsokBQKmF4zgKIQB479kHAKhcYZG60evKPxwOijLbqdPGarXouk7vTaEWFWZdLBZZSni5XOo9bA97772jNCCKbquJyFWipXWKD4qIXrbv+xi4XC8cJYBMRf3UvVSsc0rRsUoksYG6ro/HozYuGwbfjVmvwMkk1FYYW1oDYNgHH/x+v0c0IkEFf4/HLpO1q6qqlwvlAQ3DEEJolqkZztX1jXYvLFJzOdHr26mFIBhiZq3JLctSUaeu0353IiLKeNVWeG7SvFCGlEIYypvRad1ut6om0SzqGCvUlmXeW0ur1eLu7m63u4sxxuidM1q7Ok5dZ9V3Xa7Xej9EVJXFG3d/VgLVEHQcx6pp+r43xklIXRmVNazzq3K96/Va1SFijKZwNDVv0F5qGo6qBIq6+nVdxygacwYJIqLU2tI5pWafn5/rye45AsBUqgzee+tc3/fHw6GqiqqqCMB7r6tCJjnUtm0VYgYART81ltYwJG8BvZ+2bRXC1jyc7kEDqdG3MmSVv5ZrmcEQjqPyTxVpHYZBpXgEeLffGmOWy6Wx5Apb1akrYwjhq6cvdHmo/9+HGAM3TaM3v91ulfotApuzc2ZeLpAMeu+VfqXjoIxg3Yyaj1TyrGq/6MRVVdn70fvUbyPjlUWRiMA6LMwco+g61zO96zqN3jOeIgzGJa8vhFBOQ4FEGZ4gopubG5WC0d2RSWdaAf3w4UMwpLofagEUzYkxGkB2qDoeROS0tySRcPvgySURtcfu0LW6g3RN1ssFGcUU4jB4XZZN06xWKzXCOa9gbNqDqkJe1/XDBw/JmMQlMgggx66zwSPidrslNLklqWansoKH0gN1eGEKSFUrxjnX9+M4jiGwc0YLtBWe9t7v93stSD8e90+fPn38+LG1xfX1ddYf77qOJWiDx6Yq1SQaY1jidruVqcNHSA2lCYc3Q1p917XYiudqddZ1wzD4t996h0Lz4sUL30sMIExlqe6oYR5ijAwxY44i2pcEELUJziko0FeOIKZ/MyFyFDCYihCR+t6XzrIBQyTgDl34+SdfHLvx4cMHiNSPLBM+oNExzAguAMkrxVk8KDEigWacgQUBCEhLeBEEkQUS21bQYOYCzwQGUUtvJ8qI1rbnb8sVmHPcAGaOMSKKRmDqBscgdiYuPA1PWZY+tVf1ImIUPorM94kj+XvzveGslQvAFLK/RuvJQ/TKP2lqUTAhwpQBjRxTyKyd4Ny7xzfd2/R6pe3T6SOvBPfyWgySiY+vP3V+9le+LN/qK3+a//OVD86+ghC1dhAVawYgUXEz5hiYLI1DOB66SmzjShETo5coqnYw8ggAdV3GGJ8+e+5s6hUM6Ywo1bDrualeVs4tlWWp1cMAYB1Za6vyzT14yZBCt25yWRGTPG9m+HKUoq5i9GTM+eVlZD8EPzEPfBuCUpROxm06y4xJzdE015W7ggGA5qj0LPbej90YgtfzQk+TxWKhuvmbzQYiq9SSep4auRhAtbp6jjfLjTow+vGqqo7HfQ6cw6SerAbwt3/7tzXDDQDD4LX9LzP7MRKRsUaPbGOMco8gNWxLndiMSSnhjAUzc1FYZlGR67IsteBMU6Q6LGSTLkeGp3VdqW+mh5eeuQCgxOLSFcMwlK5AxGPXr1ar5WrtysIYA9bsehiHLtpYuToO0vc9LbGqqvZpm+lUUSuKMEnhqE6aRui6TCGH33B/42WUOcfVMNuuMIk563xkW0mz+ms1YsogmjPFkESm1QkTKpG+AhlmZmIOOt83fPeMDmQ4gAFRJiBDi9GzVZKkWcyCaGKU6UORZjnAGCPHNx9jzNI0S4UJtJgoB8PTsQEZYlAoUkQQMHCgWSZQzWcGrZjZAM3L+rRD0emhpvGZG7s4yb58za0y46nS/JW/vnJ2Tm/A+cCqiwYA+h8tubq5udEyao0EkiNeVdZahbeMUXJbivNFRMGREEI/jIj43e9+95vf/OanX3z+4R/9ye3tLQm4qswSYynyZFE1OmNMezgCwLe+9a3/5Nd++ODBgydPnsQYOYwQ1UJJUVR1vUhYBjKzqgHwPCGhD2UpdQ9444gBnDYF3Mf75hfJ/2U5KTefQMkZr/+NIz+fVn1bjFEQAZNWGMz0owFIMEoEwAiIIMJB1zH0EF25+N4v/apB0/vws598OIzjGHtjCjIuRh9DjCEOvQdDykcbQuj7nlBKZwjQGozehzE4Ms2ivlQh10XddQdhJolAUhW1sSgIXdcjU2qOpCIPjIhYl6UMvRrcKMiRBSUIs4ixaRBiCDEmKwQiiFgUdTt23eEYAZHsGAMzxDgUddV1HZLttnc/+YPfPexv3//OD1YXD411QSIHAVKFvhERtXssy0n4jGZ8ZB1nkuRFqkvnnBOWbHY4N9WEk/jPfAcBp7YLcN8wvnLYv3GW8/rJwLTca9M6N1wqmx4BAKe8V/44ZxovQXbIjDH5FpIJi6oBIog4QbGvkqDfdIeztoT6IJPpRkSBOCn8pAGJs+GlmZ4dnHKZmKdDDaOD5FjD9Oya49XDFVEKWxNOiPKkHZTCjNnNGGMmYDoFBpPJTRETIwMCIAIkOX51jLUhVQI95ZQJf92ly+fXaRXNu0G+6c3zEZ7/oAZglrlMTr4+SAgjACn+Ph0fKOBdQQisiR9j4HZ3tVjUdVUpV7Ssiz/9058d++6wby8uLkKAf/Nv/tWnn3567A6Xl+fWmZ999NNx7NEaAH5x9Xwcx8ViYQo3juOHH/0eWuOc4xgK59YXC0cmhOCqchgCWVOWNRExS9cOY4SPP/3q9uYFLkwgdq70YTDGLJZLIgKUMYZuHLGwJNg0Tbs/dP2hBhrHceh9jDFwlFZAFboMJVCgcCKiZXp93yOq6Ft0ToMWYD7lhjWehATWh9kIp0HORzxM7Dlr7eC1CYl1zkXP4zj6cYwxliZxmJHQ6jlLKRcVvyatbQtrCxPjKaFlCosoHBkQjKPj7TFxK5gDxylVfFpXIqLrTKGuvu+rpg4xPnv5IoqApdZ3xiAQGYOCdHd3o1QPa6jr+3yCjOPYdceiKKqqMpWVJLESy7paL88yl1B/OB6OxhiNlLX7QoyBmdEAFUYYPQQfwu5q/+WXX9Z1HUHCgf+Xf/5PGSRGXxQFG16vVkB4OBxCjGTRUlGW5RhDdu51/y6XTYzRe2QJXiIYMEYAA5KUzghwjFEz+SyRmQWEMLVxU95E3/ccU5OZGEfm4L3HqAiXtoxODrEa7Tgp+onIOLaKe+YDF4S1uhMRraVsD9X+hBiXy2VVlkQ0DF2MTEQRQQUfqkWz2+0EYRwGdVoKk8TlrLWFkX171MrxXGsPwMPQESWXWGtlMvdEEWdJlQrWe388HjUYkLI0kOSSFcxVNEdN/WKxiDHp0iafHAiAjcqCI5ZIqjDw+PHjfE19sQ9+qqAkoqZpUgbCmNI6MDSOJ5db6WYKeTOzFraXpeWiVKPkfRLoUDpk2dTqoyrkpwWwi8Vi890z9d/UemeVpEzGAUMKcerXKT6eIWBdt8MwrFarBw8ePH/+/Pnz56vVas5pMIYIaZzapjOzD+N+H5SFrQeKnj8KtGl2IRt5Le91ziHSMAz91RUmAd+vZQP4kNR1FbPT/avza6tKf16v1/pQlgyHCJz6PYp22AYZht4ZmwXBDWhxd6Ih671N1Olg0OQ+q4VLwiOqk/DixYsgnJgZqZFJodvHh0AjiIhKMHnvV6vV5eXl8XjUodYl1Pe996OZOhw6MrrsNQBWAvg4BvWIdLrHNqzX681q/eLFixij4r/RJ7VHvbfNxfnNzY3OeDe0gPD4ySPvfbOoQwglJm1xPel0oeZTUjMloOVQovWgJCLKvw5Tf7m2bXVfhOjz2b1er733WYZC9xEA6GAmyDiCtdaQNSZmcrRGLsysosll6fq+nfBrRMQMm2aCs6oqg+AYR5lkqJlZ4eTRey2j1hWid2KtVfrqfr8fx/Gdd95RE5QVw5USro+sqtkkEGJif+uOiJ5LV1kbtL/C06dPmXlZN4euVdlTRLy7u1uuFn3fl6XThu37/Z5PMgLeWWuMCTFaZ7TZpuaf9Nj69NNPu64726yVnaciGMltoNSIclokCUDRo1wHUFFmDdOWy3VRVJrewKSPD3oPyhnSfaFjFYIHgM8//1wNnbNlXdd1Uy5Xja6KorAQGQAihxD87e0tIjKgiNze3naddw6rwmh74ddfQz/SwpRNg0Ik9p2337+7vrv+6nmM0doCRVTfXwSHoR+9D3HqMpVotATCgqyUjpMHqDZ21oRcAwflsBogA+hZDIk11pA7Wy+LwgKIxKiycNvdYX9oLy8v+/6EqyIiQPou1X7M5jw/kYZRzpBQhJjYKogYWZk1s7AFAUAQUMu2RCQRX0FEuYf3ABM+RRmTGmF2g09uzOQCaT+bfNzKRIyz1gpIzkasVquHDx9e31wddztxilp6bWY3n6Z8/XnQfQooXnPM8LWYOgdT84GaB9f3Lj5Vu6YJvVfW9oYo6ZXTYQr9eA7CnN6J80+d4OBXQsX8XxJ4JaB4Y4ApEvO95eHSf06lrulP01/JGI0ZgZPUHCgqYw2NYbRgRHAcA+9DUZq6XgCyH0atEdc9HkKA2TOqsK/3gwofKWzaNA2RzQZtHEdktJYQkX3wIiJvzuOCVlnZUiaB+xh90zSLxWJ3PJBm6Rzc3d1pzdkwdroCYwiIWJRWQsyRu5ojN7WzsxPx2TlH1gx+rIpSi06GoddzWfOIZ2dn6iRoplBNrmaF9YCoizrGOI4hxugMhuCr5dIYba8aN5uNdSltv1gsxnHU002tXI5MM6Vp8hjTMjgej13XVWWTYFKPyuPWNJ5PTTid2tLkRE2WRxFk770KPauN1cSeuoghtetgO3UL1M8SoObpearv0YNepr5WmQykY6jVUSJCgN2x7TkYgLIs2fDoh9ItCIQq07imr+Ik1CuC95ZjoveKpJQa3t9XeYzMVKwH99NuNBFVeCrHy3sbJu8wpj6GhIg81YzAq5Y6OYh5EzKzCjjAzLLgbKO+vutm9lqNnx4MebtKflu6AouIEBgA0UCFT/ggqWxr9vJff4UQtVokhFBWDu/D9HqR/LMWCcr9F8A9vCMVSwYWSuoz+kXW3uNC5kGDKXGhEebcqs5H6TR6c/reayb1FdM2v1Sea/29sTbGuN1udbnT1MNBl+lkOE7DjojGnNxK5lAUFTOP3h+P+7Ks33///XeevPP82cvf/u3fbveHatHIpPKmm40I+74zRL/0yz/81re+9f3vf39Zmd1ud/3yRVlX6jA5W/bdOPReGCe4DSJ7ncyve0x47SB547DAm9KP9/+Us6kpMUNEMsP4NMD+M77olWsyAmJq4EZEkq6DYFD3AQkRkoiQIWERAmb/7R/+8tvvf+Pt99//8A9//xcf/7zr26Zwg/cCxjq337dVVQGkCJCDZ4lxJGYWZoPQH9u333r8a7/2a6vF8vnzp7e3LwGgcK4oCjKFqetxGLquc7bsDr1zhUEZho6IXOliCLuhW9hF8CMGD4acc2QMxhCGQQJoSiqqWA4kLD6O/tAPQdgaQpbAoSAEY3rvuQvMDDyKHwpnPvvoZyGE9eXj1cPHq4tHTd34IK0fY5RcTigiYlJNQPaQXp9BRBTRwwBhKjIKnhmDMSYn0ufLI3IiHdP9DQJzgzPbYrlYTFU4cybp5D/NNiwAMJ8+O2HKiZuWb2ayGipGdqoviTEics4P6UudeCJSvyoLRn9d8mz+sDLFOWAIQ5yea7oxIQCIaqGnh3KQZO3S19CJOAyvWWwiCtnSzh9NOGsZE5p5Bg4mcHZ6c5TkLYsSkWanEp2GavKPT49GCJOwXWTWM4KIgFIi+jSbAIJA9w3FK9b1FYPwxvGcLxJEzM6Qgqjj2CsMpFSdskyFqJ989rP1+uwXv/jF7/727zjn3nv/3U8++WS1Wnz7299cLBbGUdd1/91//z8o+8lYW9e10uuMMe1w1w/t1c1NVVX9oXPOkTOb1Tkgs3CzKrz3aGsJkajwwVsyY+CiLIZhQKJxDGiIR0Fr6vUSEbftrj5f8ZEsWYi8rjdlUYzjWJZVYO+HQSyFcXCm2G+vIfLZ8uw49Nvt3jknSEXhVKNWMwNlQSJCaMtaGQ2urk0EL6N49rYsSFRtDSd3AgA4BA4hcEhVaWSTGyQCxqDBJBSrZ9AkS51ofd77GAQQy6oKIaDGJMghhjD4oihsYZkZIxVfw8JQYVcA0KpebR9KZGxZqGCOXeLDx4/Pz8+3260xJhD7wXufXF4R4RiNMxn7M2SA7LMXzz/74vPBj4vFagwDxwhG/MAWKcaoRXPGOGYmkykPqJpRRATAzrl+VJrG8uzsrBuH4/HIMQ7jaIwxzsboDZmqqTUMqMoSEUVS86i+7RCxbErbmBCjIzP6wRjj44iEkbgonBdv0VZNGUXUMY3oy7KAdMZFMmAtjr5XVqmoxSAAtIDC7FHYpxbHat40rJUxtWZNm5rQ2IJijN5HAlZUq6oqMKpCgCJirQuBEU0IYRyVzyJdd9D+b8aQKsNnRNUoU0rYs4Ylis0tdvtOwTUAyDrC49jHGFe4KpFvb68BwBhX13XTNIftTh2ScRytLRRbUcOyWq0Qpe+ZiPq+1WLDi4sHigHlrmtN06gt2m63SmbEibXtnIPIqp2qYhpK0swYKPuQmy+t12ul+qqvRUTsw9nZ2YMHD66urnKxSHa5c7QjJ+keY63dt8eyrBFRz+WpBjFRFz2LbqLjbg8Ajx49Wq+r29vboihUYeBuv3v69OnFxcV6ve66rjCV994bH/1J5EEFJXTQ9J9E5GO8uLggov1+3/e9YoJ20qBgBpXHffDggVIm9X4UVJ3q8cWaU/WuiChDCiY5CJWPTFGWtTrRbur8ZqcegyHwer0GQyoCICJfp6tmJko+pVEKPgxVVbVtW1pXTA3cY4ylK0yRkl5jPwiC4nFlWSnlFiVh+p7j0HbKQVYcOYRgbaHhYtmUNzc3SrlQErFq7zLzYr1CxO12u9/vnzx5os+uHM/ValU4IyKDSGGsXlajynEc/dQeUwd20tvUZtGFnkEist/vZepSqw+u5+/z58+7w7Hve9U3GMdRIqsZ2W4Px+PRFCd+cRz9t7/97dVq9cEHH6giZ1FXZel0O6ghVb99HMfValFVjS6AxWIReo+IeX8pQOCck4Bz0FzTinpc7na7q6v9u+8+NFPzRiXDKjosIsyi2HHEpNOlxme1WoUQnj9/jmgAWPssEdE4pk4ex+NRB0EvqOVBWtkgISoiwMw+eoxYluWCGmYe+lGXmW4WBazbtr2746a5DSFo0YMu2qaqyFkll7VtO7SdB6/wSqb06im2WDUi8tVXXw3DoBrf6/U6O56qo6rKql3XXVxcNE1zPLS6a6y1q/V6t9sN46jSQ48ePfrWt77V9/0nn3yi+s6usLphyVmtEqiq6lvf+tbTr57pdIhI1w0xeh1M1e/WlIAxZrlcMsMweGsl1yVoxqKqCtW+1wzQD3/4w91u9/HHH+/3exUtRMTVammt3W0P2+02cqPJg7IsX7x4ocLuKu7hvdc51ZReVbFzpTOhKOwbN29ZFACDc+XF2UOD7ur5zc31rTNndWm7rnO2DiHEEA6HQ5TAzCxpm2jJmvptGf3X2nCNYAAArBE9wJBxptNYWSccLXLTVItFvV6vlquGCIzBuiyvrq62d3sdn7u7Xdu2AKnQPib9epFXwlKVR5h1EWRmAwAoiMACDMIgE2o5EVaSSTsFp/NoJeNfkOgUs7/OXOi5l/uKxyu5JlsgTglgEREGTfsh4tnZ2aNHj4rSfRFjSiuKRpycQYZ8bxnoyK/8vK+MST7m5r+f4ogZYXH6/RxCmd95+i+9gSokr4WB+ZZm95B+EJ5dIbUku0cqf+MAQgqIXuuyc4qN7iE58KZXHiJ1ozSXqbFqFvFOdw4kkzS1NWYcO78b3n73Ybmw/XD03rMEg6RuhjIbSJUWXGofh1O+VivA9JGNMSKgaVdrbQxikLN0iUWL9GaRAOcKjiBGyJjlcjl4T44YYQh+vV5XZbPf7xFR9Zrfeuutd95968MPPxSJZJI3WDWLkxP1GnUvcALxBj8SkaWTB65vTvU0xx4R1bdJQS4Lg/R933VdUVTOCRFZImeMVi4+ePBA816LxXocBgZrrb2+vt7tdstVY611zmhBW5wplemK1YTuhOeS5sL1KSCpB5CKB8RY6PHhfSrEUW9K3+mcOz8/DyE4QhGJow8CZVmCwNB2RV2pIwQAihTHMaRRwuTMZDfJgCnL0pFh5rHrtarvxE4oy3Ec27a9vDxPhXeFa2wJ4o/tcRzHdXVeWjeYw3a3NbGyU6x3b+krPXteXy2MKsjNUyclnvUGnO/YubGIMWqNSY7YKdccSaKr6PvVfwqzNtB5ixpy+jaeZEpStvAe9e//T44rm0ucvUF/qYbQGJNUe0UyI29ugkUkyRGyzDOKr79o6o2AUysVHSKeAPoYI3OcPMU+j7wW7E81JtFSKkJJIxzYWusKyoizdlXmmUazuoA4Adz3SD33h2tuH/MeO5ktfLWvLk6USSQ+xYFEisaoo4wm0RBUsllE1BIpzUoT3UQpFprOSK1Qi1NQkVAeXbuMwIM8evzgl3/5l58+fXrsO91sAKnHxfn5+aOHD588efL9738fIjPz7d21MQaQZ1WWrm1bLZaMMSKl2DipLM3Mbs6R3BuKN8zvCSybL5J8NM5HO8/IfHmIoGj98msn2evDPr/4aaNRUhgPDKJNmWYH8ITIKBQYXVUVhaua+q133v7RX/wLv/c7v/Mv/9k/vbl6Zot69Dx2vTHGD0H5GIVzIlGiF0PMPMYgIX77G+//5b/0F5dN+fzZ064/EuIYhrJyo/fOuc6Hth3H3hNELJ0xYgyRdVEkRg8Ii/USERhABEAYODpjiSxZwRjSimRUlDxyAADJdXkIlpw1FGIMfiTrJDIJiURrMPSdrev+sA2AL25ui/Xz88u3VueXTbMEoW4cdA0QEZHNoGueCNA6oBm8q24rkRVJddlqfEQkNwKezztJyvBHyL1cTxefAOI0m/dWC0uWR5Ep/5/XSd62efFkxBMgEaDywhBRrNkAgArE4wxfnl0M5/cvk63T247xze0xZfZiZpnqgNCA2nBIqh3IEaZLJVYyABCfbG96LmvMpJOLCf5AYwyKMLObHsrMnGDmkNc2yomvCpNmYo5+NReYBwdg7pNBHsY8UziDXea2FE6eqLr4Mc8LpdZhAWcPla8cX6nCexMjI18820OZYd9EUFVFjP758+cvXrw4Ho9d1x4OByK6vLz8+ac/fvTo0T/+x/+473sU+O3fYWMMS/jn/2usmrqqyiDcdV0/jDHGsiyPHTRNQ2SMK9pjfzzuFsuaReq6tmWBg2FgBHKOGEQLfo0xjoy1TkQMmaEP1hZoyFg0heuHzlpLJERonfUQ6vWSIpRk2TMyFqbwQ/ASmmrRDW1R13c3t8uiQmYYe0WIjDFVWUzVXoVPdFQnU6qVmTkCkRWMExDvEVOb5gwMqZdiyYhLJURAON+DhCAiypsTEVUsRUPa4eTm5ma53mzOzpxz2scsKxvKBCGhCFmx/s0sjImwmTZIWVeIKDGxKtCQCfTuu+9qlmUcR+3rqBV/eaXRJDzFzGisPl3VNPawCzGCSadSd2xL66y1IXgRS2DqshpjICIyAGgKKoqiQJPEQGzhmLkd+sOzVv/pY0CC3veuco1rJgOBpnB13ei3GENt26IhZo7CzjgOgzCCgSChqioGcc6gIREOEoDAIDLEIMGQiRCMMbYw4xgRkawZhg4QgAxZCiF4H6KkNinMQU8xYwxzVEjUGKcHNBF2XafN0J0rAWi9XpcOttvtw4cPy7K82+9ijCGkwoiMOeJU/UAC5FILlLJyIhYn5230noicc6UzpqjKsnS2BAABqziIs6kqS5tuG2OUI6y18957Y/Cdd976uO22222eRMZUjM/MzpmpeN9sNqlDnVKPJ/RHmFmVDXAq4dfZz7U1dgoA1LnXBaN/7bphtVplF0tEmqZpD14vpaLMx+Pxiy++qKpKoVURYR+spQlY5BiCD6FtW2uLYWirqlpUtZDRHj7swwCqIG+9913XgbHq4OUWMfv9XqlqiEn2N8PBVVWMwVe2MMaE0d/e3qq+s8ouZ69PLZVw6smBiMrJVURVn73rkozyzc3N9fX1YrF466238tGpk66M4GoidVZ1GYJBxOVyqTrFPHn4ymzVRag8JsVVVZtCt2o3Dtlif93hSJh4JKIW1Vrw3HVdCIEEisIuFoumaTabzSc//1gnl5mrqgJC5f+qrAEAHHZ7BaaHYSCB3KlPwXTvk15z27aKJ+ZlFqcSH1ek/nhEpB9n5jiFoLrwrLXWWL3b/X6vXnFRVOcPLhUw1YNxvV4XRXHc7RVa1YWqBcLOldP6N03ToDXd4Xg4HJqmWa/XCisbZ47dsSiKzWa13e6zx46IxqD3w5df3jGHYeiCRMtJbVMhY8Xauq67u7vTMVZvwXt/9eylcsQQUVm6kCpElSdL1lpXVBp3bLfbcRxVt4SZ9/u9osxlWWqfQwXHmeRw2A3DYCunFQ+6SLRzlKrxGINZuYWI1uv1brfT5IfimxrJ3tzcdG3vvb842zRNo/HX2A/KsNYMGRIo1qA5G02rNE1zPG5VkRwAcijEzHbqlAORKVF6i+wuWmtjiDHG29vt2dnq8vLy5uZGHz9C2g6r1aIwtuvbpmm8H+7udl999ZVqLi8Xq+zgdV0HiEVZ6o199NFHwzAoPdxYWhWrcRzJqT0cNZPx7NkzmMrPh8HrCtHNpdi0OXUoFTWq2+1WGzymdLgxiuwDgAiqsI+2GO26riisZkSWy3Xf9303VlUV4qhSjUTQNI3vh2HsLacepzzpsCk8xAzGRPM1fRdYeBiGb733HT/E/X53d7stiioe5Nh3MfI4HhAxxuCcI8EYY+amskju4r1arRKpcEZXBAA9tUlONZG6H8/qhbW02azffuctIqgb13Wt90OMUSQ2TV2WhQj4Md7c3BGRep4xxqDkNkxt7bNjCRIBJ5cVIoqB1FIL1KMIjEAEck8dUhBQ+4rLq1CpSFQo+pVgZIo17jFd8vrJ8O7Jz88O/CQ2yOpSMCPi5eWlNldYLpePHj367LPPmINR/vfkHicbO2tApZ81Uw9tEcFZJC6zsP0Vpl3+PZ+IgydRDp477TN+CSKKnJhAeL9SE2exef6KWbgx/WbGUhI5CUzj9APcjw3zNQG0DvMeig2vfdH8NX9SfYWQsuAiAJEDTyphnGHwKfNABIASmYjKshy5j1EQjSErwsIoJETg/aDgFQCcnZ1rxYNuc++HrCwcQtD9GKfqnxgjGSxsoToPehR+XU+Uoih4YESsFwst5TEW9RxRKEmjALXtu93uVza/9L3vfecXv/iFsn37vq+Lsq5r7d+rCyZO9Sh93wOCikfxwN573QX6LACg6T1lqOjX6cnonBNgApi0+11Ww4iTxMfhcNjtdgphC8HheGTm1WoVp959w+Bp0r/V5JxegafciRrPw+GgR4P2o9KzfhhSzdN+nzQ3+l5bhlQyyTQBgH62tA6LQtsz5JUPAC+ePhNSUD4doACQVfj1HnSovfcGjNp8vVX1Z7QxezuOdV1fXl7+7Ocf3d3dnJ+fM3N/DB7rsqAY49tvv72G8zCMAxzquj57+MCCmNmETxKeCKlqQyTvf2Hl/vi8u0RQBIkskdWimBCCChQIRJao0CSi9pdDROEYWYQoKTVHAQQSIRbxY8TJt0Y4lUgLc4zeWmJOXBgkzD6WABjj4KRJKgBaQWIAkQE1LYMASl6TEBVy5ijh1LYTQ4ikjD8RASYiVapCRgAwSNmEwSw+fONLkNUInq0vAcA6GtoO9JQChqg9E6hpFjHGrh8ic2nM1DADPIQYAwiyJPArDKNzDlj6oRu40DXBhKy6tIaILE0ZSEsGBdkLAQGAKQgBktaqSJCAiKoC49kTEUWKY8wpILTknIsxTG504qTMjxOZ+psBAAj5MUqAoigNI7PUtozCdVVrJiRKJGuICFCYlSouiJC63/ig9JYQIUaOfZv0E0UU7xORw/H28eOzR4/WbderAGJVVU+ePNES7MvLyxjjs+e/0Hw+okGySW5ApPepaUnTNNo9BghZBNBYpy5RmJ5FLS8i6QKRr+ski2BUbV93PotYY2Sq35QZDV+prDRrpAbIAlHZzXo4GET6mhSfpCbZCVmLMSIo2mcBkgSXNaw+AEEiwiOiORUKpCoaH6IIdPuuKsu/+Bv/5Ts/+HP/8//8P/3pTz5sw7WwqzHGsY9hQJSjRkFjLEyxvd1dLPA3f/M3f/hLP7i+vn721dMYPUeI7BHIkjPODL3fb6+Z2dqij8GMgdmnTFIIRDbNC6DuBTV8MfQiUhgag2RjmsctHeGEjDbGCCggCYwgAjLoPXCEQjsGdL0cdtAPRVmuYGzvng22WJxtLh8+uGyWu0UzDB0aB6ZCMSAYmThEg2IMkACSAAFSwoshEKIJwjAFSFqLIIIcSaUPBD1zEGEywBFlylkD5Ck9qTeocE/q+QmsjqAQCmAGSXGGPckstYCo0hBpTHQxaHJY3xOnsnHlKagFixwQ0ZmTYlqMEQSFhRCpKJk518cZxBijxjFvXu00WQ/NnahvwpLTh8YUkSIzK38qn5qgPOh4L3ODiEEmmewTJVm0lotI7CRkoWnqaRkTGhNVRiGKCCtKJQwqfiypkZEhsvqhGCOnjh/awZYRdaC0zG1SggMDAjEyiii5LympIVsFpgGYI8DUNRsRgMiSMsKICICtxWEYDBFZtH6BStIAZbtENXraJRPNpF6ipy6KK0hEPvvss8H3fd//+E9+fLbZNIt6GMcPfvLBn/zsJ13XBQmKAp+drwXlwYMHh6IfYWQ+FduGwPtwpLYjoiieLaPDSN6AObQHa610x2EYbGP9pDcakdERkUnSYyGYom7Ew4Sqqz/qXEqkA4A1rikrDaSDD2SMI1tY1/XH22GPiE1d13U9tO3Q9zjgarncHw4GsPdjEN4dhtKWzbIGAOWhI8IwHHXG++G4XC5FhMNYWBNii4yMp1bDEaORtMYU0tWp996rp8jMHMQaNwY/jsEWBRW2XJgYI03pK+OsnfSaHzx4UC8WInI47LRy1loHyGEYBaR2BTMEiUgU5c14kybPPMeqKZu6ZmSLGInGsQeRtm2/9/ibv/LDXymMjTGhon2v1F1Aa6w1gswgQCAS6WXA2wABAABJREFUBclAgWj2++PhuGf2JRLHEMIoiKoQdWiPRVHqHkQUV5jMNQAAFnHkmMH7cRgGZ6z4oGq5hKYm1w29IyMhdkNQD7goCmHpuoGIggQeB68IoyN05Mmrvop2pYsxutyAjkUkqheOSCMHQgkktrSBAzkigXHsrDUKI+oEpQOUUSJYUwb2hmgMMcZIqFmouFgsNFy5uNgoz0IPcYGx91A29YvrKw0b1ENQnAgRjSERmFJZECFatAm5G4IxFhMHZ0SUxaK6OL9UnBoC9UPPzEgY/EAouYWXAVMWpd6D3gZac3Nzc3u79f7jw/EQQYxxgjhGViUfDU7GMRRFVdcKz7HGLetFo1GEOqk3NzdKTYBTVVy01i4Wi/P1meoSHA4HT0lOQQSHYQBD1lptkq6euHMGifvhqHzVWSbDblab3CY+Ru85jpHHNtWcdYe9gnFj5LOzsyF4beM5DF3ibwqo+CAiFkWlp8xxtz9brdlx9KFwLhbOIIxh1HCOmcexV7xJIgPiMHoiujjbcIgR4MWLZ87aEGPTNCJsjBnHHgyNY89MZVnrajHGxcht29Z1rZ6wVn2GEEDQj0EzdiF6XQDOuUVdDUOPEK1Tlu6oMibqbTICsIjmpWavcRyH4PXUIGtQkooCGRpjyKWmbzgcAVHIx2BtAWCbZtEA7Ha7EUdr7Wp1pltmt9utztbMPAyDIAx+VOAyhACBBu5jjH5I8j5N2cCsWNUYs1iUADAMnUhUGUdl73qOhbF1XbdtG0KwwRLAZrWW5Vl/7IkIGAbfKlZblnVRFOzD7njou+E73/lOiH4cw+HQEvVXVy+ePHniWeXV4vGYdEXUZur9KGDa9+PZ2VkY/eFwkMhFWZ2tN4CiBdQiUhWlgs7qyT958qgoCjA0Dt6PgRk+/fRzAGiaJoIUImVZx+hzTKud5ZDFIinWfPXyGgBCCGiNNqK8vHw4DMOxH4ahUzUbneKmbtqx02NRI3yFNfWUPDs7c84hS2kdIkqIwfsYPRJXZVkUhXp93vumabpuGMdgjFNt4sOhVUbYe++9I8G3+4MBrJpFjNEHX5WNMSb0vjDFxdmFyk1osYUmTmKMdze3l5cPNuvN1DevbrtDUVV9369Xq/OLjaYfxiGhtKoJM47BMuzjPkYex2Ct1dZV2vhojEwIPgYAUAl1Y9T4R0QsrXPOWKS2bSOn5pDGGBU56dveoCnLMoq8ePEihFBWlbOFjoCCy0PwAGhcAQAhDDgGCGKILBgf/JeffpH49XWlKhB1XZKpNGWicN6UPBtj9MxxHPuLi40x5tgOIQYkVzdnhbE3Vy+ZuSlsZZv/9M//uiB88fmXzMwIh8Ph7vrKufLy/IyZBxZB1tQOMw/Bby4u+2N72B/feeed3fGw3+2aptEbiDFCQHmtrYi+iIs/990f7a+Pn3z0uYGyqS+G7dCPHUuwlkSOxhgk1cEwAMXo4zgGQ04Mj7GvStc0zWpVP3r0CACK0iHKqAl1k0hjXdfVZUpl6WIwFXofi6KoGyIBZl84Y8jFEfq+P1s01ha7w7Fvt0Q0+MgciGTqXZ8L8AAQQTkQRCBT4aw44+ZsCa2OF5AoojW0COCmnDojMNgU+CvvFQCQkYhAgAS15h1AhUuZJQIwTCoQydvXvjNAk4YGpeiNiIhE8yF+BFJdGSqKol4sy7oJHOPIrnSAWNbF2A9RBCEaVbMMiY+iPjfmHjOnNu+AiNrgy0yoLsJJWJUQmdLtQ5I6nJy2U5x+KltJF+cgQKxOOhiLJspESqPpInJi/4hIasokeOJ+z1BfJDBICTtCJcArUQkRkEHxtFRZe3ou/W9iN2vEJzMVT5i+WumxRkREy6SnnuqQWJ42/4zWiMQggSS1hNGnAmAE4qSJxRYtiCEurr64Hbv67KLmGF1p1S4NfWRmg+gsqfur4hhTsGxC8IvFqm3bGKXrBg1PtDzLGLPerA+Hw/F4dFgS0TgMb9ybIfi6KZlDP7Sj7/uhXa1WRBSDYGGYOUwyU1oV8Qd/8Aff+973jHFhCIUpsMDd7lCWJZENQR8fi6KalEBovVg2TXN3d+eoKAwCshKEwxDqum7K5nA4tF1bVdVqc9Z1Xdv3zjkOXreJ5oxVqsJa9e2jSNy3x+1hT0RI2Ec/IdSxKK2I0ToqhYl5Ul42xpydnSmNEhGbZmmMGYY7BesBwFiMkY3V9WQ0CQpgtJ0DCSASRA5TmbUxhqwZg8Zxwgie49iljsSeYzv0msbTmE6rplRqX8EErZDTds2+H7wfxnGoqnIcQyZxqvaRNimpnHXO9cf25uZmJO5puVwuvYsxyvXdNQn7RagXy9Xyws5Qkrzq01LO6z7/wMz3UmQnhp2Mo5+SexBjZC2SJzRkQgjAYgwCoMLNiOg9iwhZ7csXAVJP6umyEzw3fVEIYX4/NJEHkazMOMvZdMQYIWXAEKbjBhE1R5Vx0zeu9dNmnjHsXvmBmb/uwzKdDXq0A/LBe9WEJaOVukH3pzpkehplSFc/pdSGED0h2tIZpMhBEIL3ibM82R5NgRozoUWTPjDOyM6n1ywpR0SIRmcqw0MyscbyAsghvZkaaGLuA8YcQZAQCBkYDVVFgYYwShCGCDQVG6Y5ZVYsUj0SnXEWyA4KEflxHIcBQHKSX1kAiFhVlQrhaUSn96DligoGEZHyTfDEImdCmzdzURRj8Do7IYwAqW5ottJO8/h19OYJOEadRD6BYpxdc72msPCUopjNwMQWv8++fP3Fohc8gftT9gli5qdPIs48yWtMcebU5o5jnkRG6Pt+GMfNZvNbv/VbH/3JL/37f/NvPvyD3+vbQcZQl2VkX1jjva/r5uWz56vl8h/8g//dd77znc+/+Gy32wGw9gPZH/babjWEsNulHjtRk/omabIjorVFjj91RSkTjZkFJiYpGOVE5LWX92ZGY/NqJCLBBHZoMKYpyq7rohMZejLm7Px8iPzs6ZdX1y8ePXwSz84fPXlMphiZPYuzZhyHoqgMYvRBUIBRVOeMdGqEESl5J6LSV+p2GQOIhCh5aYhIZqfCiXKbEN58n7plSNVmRi+SVNRy+gruKwjBSV4javkUT+UgjEz3HQ6Z1dDlFOsrbwAA3V/GGK1c0aQgIvqp6fbXCbpkY5I2xSy1rgsgZ6p4VteSbykD0zl9yJiuo4w8mYi9OqE2VeBxjKczKAf8+RhCvHcnrzwsTuUy86nJx5P+bvretAdF86KIgIDMqRYRMYZgjBGJRIbIKGpDYHI9e4wyjoHIquuLhn0Imm4ZfR9CKIpUPKuLmawBVaI0xhTud3/7X3766ad/9Ed/JITX11fHrk3UUZIYYwijkDgyzi0Dx+PxIAgZtlMPT1EYM5UKiYhiK1onG6e6SOWbq/OqmBQAjDHEMdKkjxlj1GJePTbzAOp1xnEceIT7x7HXjljDqFN/OB6zaphz7sXLlzCV+zSrpTGGhPJlY/RqMJW2qeiGrtL8jBEkixuYKUPjvTeY1L3t1BQrJNmrEMIYOAIAC0VGIrKOphwNzeuoEFFZnDo1IY6RPTND5CyHRdYQudc1pvTlrCvraumM6jILCTmroaYwr1ebv/t3/+53vvOd4/HIzADkh1F3hzk1JTtpGjAzQQSA58+fK8YXY6yqUqUeNHSv67owpXY0BRaw6XSe0sOi6IYOsI+si01/LyIqNgIAiKlFSdqVzEMYiGixWGiVOjMXRcEc9IfNphkGH0JQHLau6wgRJ/ld55x1xhjTjmMYRv2IMRSCjONYluVqtdrtdtMcsSCSMTwJR+iko6Sua3pq+KmxnpYuZgOij6kcmcVioUxD9Y+ZWfuraKc1AOi6riiST6Wrpa5L7Zr15MkTA6gdz7K/FCEV1/PUJw1ndSpKnPGc5Fa1F3mugAlThzHt1a57HGaFKeq06F3FKLkiXncTJc4LWpt0dfTVLBe6g5xzXTfUdV02ia5Ck2SE7h2da5pEe3XAdDPylLNJQeMwHA4HY8yiqvSfqlTDzNfX12rZ6rpGRA1UdIIUPFUU7263LaxTWo3iO9qlNgk1nqTqINfYqdLOfr93xj569Oh4PPppPXjvwVBVVSqnpl/hvZcQ8+DoPejaEIa+78uyRAIDZvI30sGXrYSIKN/KWts0zfawxxiVqH52drZYLJSJjNbIpOpYVRVzgJiUECUY5kRA/rrzsW3bomARUbIwTspIys/13gOwQpCT5xmyyVosVlnPMYTw+PFjxW01v5gd77IsRfB47FxVKuaIU5djpVNtNhutLI4xGuPUZ9axQkRVvRwGf+yHuq5Xq9WxPeiYWGtj9MxlnESHEHG/36ssJvugjrfeRl3XzpXMrBxAZV6LCKAMw3A8Huuy0tvox0EHUEdDO3Po8CreOo6jKZwx5nA4hJCkMLQS1DkXR79arep6wQi6EpqiUSs3jmPbHgCgLN1y2bT7QwhBrcQ4jgGingi3t7e6hrVnjBq6rusUa9bxv7m52WzW3/3udz///PPdbhcnYVnnys1mAwBqTIpp3ZZleXV107athLhcLg+HQ4zx8vJSGKYPOm0epbULAADIqssxTl0uQwiG3H6/Xy6XPgxFUYzej8fjcrXQg1XVOSVRzFK3qydPniiwcjwevfdj0p7DukhlCm3bqsSEeuOHw8Fa++jRg1xRrmRSVeZZLBZN1ShdPfuNTuNQYF0hmmjZ3u32+/2DBw+Yeex6hST6vtfmsfqwJcfLy8v9YYeIMfI4jqrprAC6Mhn1MFWFfSXcqdkZhuHl7fO2bR8+fFgUxdnZWdu2x65tu2NZN17luQ3pplgul0i0Wq20gc2zZ8+227aua22yejwe2Yf1eo2It7e3FxcXiBiHoWnqN+7cb37jWz+/evrxn34GwQSB4HfOuMjeWgKJdV05k0C0sl4wS3scd7tDCIGcqYpGW5ySwX5QMpnX9ozGmGZR6RFwdnb27NkzjmCt3e/3Z2dnx+FgDIcQbm+3KjxtCIwxpTUK9Ox2h2PX61GlpUuTn6zWJkWPbwwbszjk5Pe+2WmR+9CKbtL8VsGEbzDIqWp2uoPpHDl9VqZyonn8ksOQcRxT3wvmEAICTRU/Tr2e4/FYV9U7b7395ZdfDn2PM/6NpO5c91RYTw+bXilCzAdcDjciCMK9ilKYVXJPl2GN13KkMP8ra1nlFLPPv51nhGiSU4k/TySX+WjPr4yYoydAPCkIyAQrz79LZhhUjsBev5nXJzR/7/3fTwons5Lr6f33p5LuTWLTNEPsFGlxtnSF4cDjGJyzmiDc7e4QjVo/RDw7O9MZUY9Cq50QsSzLqip2u516QcMwhPhmkTqYIIsQgla0TPLBSVgsgwwqCsESnj59+o1vfOPDDz7M4Yw6SNnFUq8gxtSO/vr6WiSqbyAiwlgURWEsEWWqwTAMQpjfE2N0RammXiui9HkTya9wTdPo6ZmrWwBkvTpTS6unc46FQ8BssdU26tFWFMXl5aUmX9VsYqr/Y0RUW5dVnm1pk59piCZVNzRkrQXrtJRHDYhaYz+h0mqTr66uYoyPHj3SfyoPWmPJxOx0hT5sXddNs+y6TvsNaIWKgnhVtQaAtm2N+f8x9me9tixJeiBm5kNErHEPZ7pD5s3MqixmdanJVpVEEA0IEAgJ/SCgHwQIGiABepCgPyZBj1JLgiSQEFvNhsBmsUh2jayqrFuZeecz7HFNMbi7mR4+d1+xzz23yJWJi33Wjh2Dh7u52WeffWafP7s2J9rtdqENxt3qI0mY0mVYxpBucqPqJ2uDil2r2AHlOF9mCRjgCymEJ5muOmXn68Fam2RCOyn43SklMDTL1OK5xUPkVX+l+fNEkaBe4j2D+uSGz2CxikgtGyFVebpW6UmtOtUskqqi1xnNcJbvG773PtDEUBFwLobCDYkxGmXAwTEm5zL1HWkHLox6VWXL42HIWlG2gDWk1jX4UedgtwgR9SF32MDZkElk5trBbDaSCsfIGJNR/rJ5FDt4RkhnydS8o1hr0UsAXzpvmK0Yw8awM32YjkNvrZ36noiapnHeloNJVQ0lEk2azUQuWBAVaFUbYwzXBYZniUXFXItBx+LB7k7MziEUZ6Lcb+e9SRJKF5fs7RUhaSJSOeuNwD7P3/UH32+BAkXKBpzf2rxDJoydPlFdYWYuojQEiVhoLIq8fw3MQ0k5Ms8c5ZLdLbI3DLq0qqomIkdc7wc+d30WERHOsFqKMap4a373d3/vo+fPHOkf/9EfikS1XlWUabVqvv3yq+1683/43//vPnmx+fVvfrXb7aZhRPRNRFdXV9bavu/HIeA9YrJ570HvijEmFeB3uB9o7RtjcvdAZpDHo+TAHi+aS56AmWtJFzNLyuAUyLn4Nqq0RMyMikXfdPvdQwghqbaLBSd+uH0zPTxMu4cfffaTdrFsGz+muFy2wzCQ7ciw840miULMqpLYGDnLyBQgUqMSixDqPEQSsHIi1USuiB/XCYfWc3XwzbyRdF5HiZkNUSjPXkbm+0pebG2t6srHUJl177lHqjrG0HWdqe1ZZ44O9ksigrsfwoTvu6bxpf3OBychzWyjzLTSnszzp0kObG/5cWbiS9mPJNZcnpL9nqLSwdYaZ62IjOOkpcG9Fio0F0K0iCQVWxbRzD4/WbYFX1YpjngJ+BX+s4gYPkPSUdWiVXeG35UksmUymmKUpNbmUjsiGoZhvV7nhc8eOSFVHcJxu92KRiLZLFfTNKUUmqb987/8E1XtlsuHh4d3794JKeCGP/2zf/Ptt9/247BaLUII7KwxmkROh8NyuexWbSNes4yVpJSSMXGczgistYjosOTh4oDMOE2TMK0Xi5ovLCvUmawHIt77RGqtRS38brdbtFl0EgVr8GAg5TFNE81pG+UTY0ykjclwNqrgMfKr1QrD4toml3SFCIIHEcpc8qcCMXVnAVbSLLppmuDVBUl9P2IOQA6xerRA/aZpguYaM7PLBXRaSiVs+VSHWw3HmFVHRDIYZK31vsEM4Ew7nVL6cORmvTPGYJMNElh55AAyXX86LbaLn3z2M2utiLZt61wPP7nCQKhSzEPkGiJBi/aH/U5Vu65brYEmuBBCGEa8LGOMisBn6ocBExt4UMkoCDOJ5GRqislam/PcyVxcXBQ1PcZTA4XXKaec8RGJbeuHIZkiljUME6QbqGR0wPXAXAIRkpUMG2Yah75OjxiCzQJWOccGmwPZIu8s6q+R6EY7BwQYgMgryFjzENZa5Du7rnv27NnXX39dzV0JZbmuiKZxzBa9qkTEOdQMKniUIHdo0WQQznWOcN5UdZoGEAMRQoD3Z4wBooR4wHsI4xgQCNCErToGFWVer9dGpe/7+93jYrHCiCHkgBWNMaJnY0ppOJ4qqRbiBiml9Xr56tXHwzDc3N9R2V8WixaDCTtfh52ISsSetwDsoTV2QmAmQi9evDLevXv3DpXyUrB1eMup6BXAg2JmhEbISFlrT6eT9Y5LtG+thQNfiaUgwkw8AP5brVaffvLj12/f7HYPkK4+Ho9A0Mr2lBsMJMotDatxy56boplqVMpVDtWGcMl3YsQwqoiLsnehUoO3zKIwmZ8FMN0bM6YAQ0pE1noZP+yhLdcr54/IHHRdB10RzDQwhjCXLi6ux7HHGGIKaZGn8H5yzoHB3bYtRCTgXAEox8w5nU5930OwAqNqcrtsgbYAzephVVPbeufMMAzsLKZfCMlaCyGO0+l0Op2urq7Q38kYYy0fDgcRESUgZeM4blfr+/t7rFaswdPptFisEGf6NpcUwJiM49R2zeXlJe7cOUelUBr7mm9cDKn1rus6SFUYzbgSdqirqyvMhHEcHZu+H71vvfeNdapqrSF2nzz/5HQ6vX37Fs6/MUhRNCFOoqlpmtYa8L+whbVtC6gdYHTnm2IhiZk3mw0aJBhjVqtNP43GJBRD7Pf7GjJcXFxcXV29ffsWihxIZVligKfLxappmsfHx9Vq9c03r/uemoa67nBxcaGqbedgPC8uLtarjYgkkSmMUdLhtMc0wORsWq8lVQxqc1n+RlV3ux1caIjVnMYBa+Rys8WKttYOw3B5eQnEFsYNubSUko7IXkeUgSPUAk9tuVw2TZOKmvmpPx6Px7ZtyRpAJKp6Op02m83V9gKIv6o659br9Wq1wvHO29VqdTwe8T0pA2HJC8r76qvgVtuuqSnS1XaDn51zX3755d3d3WK1XC6Xu90OFv50Oo1Dj33ctLbv+7EfoOeTsyOnoze2JlwxMuv1+v7+vmubcPhwacJhd/ryu68pkfee1RFRSOFiu7y6uhr7Q4yTarq+vhYRIpMiqUIxIDiDXSx1bbtaNiqT83657NbrNV6fc06FrfP73XEaYz8FgD7v7u6dM9jajDFNgxSt8S4dd+M0DXAPUlIy3LbeGIpxKk4RHO9zGo/ozNelWXioZygm/+r7vr3OcAzNZZFPjpyHwJI1MLIXiiYo5/MUSLc60sYY3zguhBI2rMaRont3ijHGaWy3m+oPEFHTdFdXV865w+GEhIq1tnJK4Kh//w2qZk+envbunkc+/LSryvy/VKLL9553HliJKNUmB6LET/CffHIlzd3TZa6zWi7N9SpPv6f5MNZ/1iPnQRbPy69nN/x3UOLKGeqjMZHWxif1NuoEeHJvSiTKjmOMYXKLle/7/t27+8vLdddx0zSn8bBedchtI4uG3RZY8H6/n8drXDQiNpvNNA0FfbZt26559cH7l5QJGdX9w3lSVKg2V+EjFLt77968eeO9v7q6urm5ISL8iSnEamyC2DFjjMNwGobhxYsXC9eIyP39/eFwWLTter32nlOhz2fNqM2amREQ9YcjjFgq0vla8DTLhFKYzWaTGSdFsKu+youLi6rvkVLuv1dPgmYGx+MxxlxfBSaHFmU/bG1N00D1q23bZdvVNrlSiJi+bSDTNE3T4XB4+fLls8uru7s7770w7XY76GvHmXBZdVNTStgTj8fjZrOREEVkv98b4xYLha4IbPhutwNWbozruiZ7aJXT0PD9/f0yrjrvpjTc3d0NN+r4aZ6kLldmZnZl4kouBn+KC89WQpUYjkQENU/KuG0yxlCBkGzR6ERRs4iYfMI8XgXSev+u3luxWtgo83s+H8bMYCHmNXnm6tanm6+u2eI8k0/zMczzf1a/ViQa/vBix7fwhIZhQPEsHt+QGSawaQg5cDakJGzIGYs43NrsR0pRF2XvrTMSSJO0ja/MrAo5wQWvUUFesZSjRy14TQ5H54UwGCjOY5hSAluzvtBqWytchbcjpUCDnGVRtgS38fb25tgfs19FatR6dsYYVjJMbHO7Lss5CVn4mEyEJmZPOvyWBBHybLYGCXCYjDHQeTTGJFLYPvigcJ2RLu7a5WefffbZZ59h3CDuiQdPKVF5KIz3PKuB4qDvf1Q1aSwcsWwpMpRWmuGUmcAfqgYoFK1zf+EPI31snnRFAwu3TFxRYRGp4DVz7kkhha1Qpi0QasWT9tMILmGM0RBfPXv+P/wf/Y9Pp9Ov/uavJIb+dFw09rtvXndd+7/8X/zPrq63X3315TRNhth7i1AqScgNvlJCWEVE3XJBZKZpMgaNqhe1WGOKQUTQtwo3lEljxEw2psi549N7PSKsFCSSiM79FoRSCghAJaUJooqGrTFMsn+43z88rrabrnWU0jQOfiG3Xz6Oj3evPvvMr9ZusSYSb41QSqJpiimlxhljNMXIErWIspWXlYhYJLGxJieqVFQgH0RElvIyrIvFKBwyNkpMZNjUfpjYRInwX9KgwudOm/OsQ16VwjqbQWfnQOdWmtE9ErIDMUaG/kDxDos3mZczCImAe4wxUuZq+oHZntnZlT09Yw2bmRA/XPyKXJ9djewlCRvkX/OfWGelDLKtubFiVTCpjDEoU0uq9kzZxt6hiZg1t2osFz27WXWDYGZLlAq+bClXuKSMKSdiAtdbRIIUU0mqqojBJCPaomqcs8bkfDJiwvV6fTqdmE0Gray5399+8803h8Oubdv9/vHLr77Y7/d/9Vd/td8/LpfLKQZEg7hP25mH40Pb+l0/dV03SWBurbPry5USKYttSJVDCEradj6S7bquCuzA2UJQRzl7l6F5KC0COKtTFObRGFedoahnABRiiEhTw0+qqT74TLb8IQZ8HEfMurJmc84c4973PfJSMUZNEZ6KnW3ZFWiIhWIPUcgwa2uGZ8zwU2bJMDMHiZYNNlZlipKstZfXV9MwkmHL1hWMb+5SZ7gQ3XcNVzQKW0NNdGEdGWJVlYQGqh9mSMFExCCudSAYWGuNN87YoZ/Wny6fP38eI3xckZiAiZMaUlD41do85eBWWmvHadjvH733zaJZLFoRiXFi5pRCIiaVmJKmZIhJtA+jMbnCSZVEdJqyOEPdSW1pQoJJEmO8uroCZRiZiZRS7eGpqvCDU0rAGrC6AVVALHgce2Moa0CJxhiTxOqjA4+IMaLPFU57j/5mBeuH0QPVrkLPAB1KqJzfV7Wr+HnOVQkh7Pf7q6ur7XaLIAT+jyvS3vDBjDEpZRY2OCPGmBjD27dvseVP04SaD+dcTBHbcggTsOn6+EBy4bIj9qhELWvZmJyzYWZAZjXIaRo3DMN+v3fOXaw3mpV/2LkGEw+lAKZkO3CVpHlTAHCJA4Zh+OKLL/Aqp2naHQ9t61+9euWcg/0JIUDZHyCXlrY8i5J26g9HshldbZpmvz9i+ZsxW13o0uD8zjmjubE7FE6yH2Yt3kI/DtabpFHCOdohayjiJeZdI9sQSXjjwJWGaRShaYoislyuTZhOp5NqLpuA9W4W6Pw+gcCuRYfdGofWiFMYq4kWkWN/kphUdeEdLEkIAUXlarhtW43BkIU9xATo+961DQB0W3qvYXLW7e/+/uGDa/9wOMRNXK/XCBovLi5M6TtSd8PCIVWRCPkXDPhqtQLW75wD1fp0OgGwjjFeX19jxXnvb29v8TYPh8P+dAR13VqrMZG1bbuIcXp8fKxZE0CKp9NpjGGz6DBiw3BSZeSHcAYs0r7vmbW2eyJSILPYOKCEZgrtI0YBpRe1tBcXF8y82WymadpsNl3bIvaK6Aa56E6nU7YhIahqkKQp5tySKsQruq5LKWAh3N3dGWOuthfMFtLSqsla7421xhLRFEZiffHy+el0un+4A7hpLHv2mJ9jEYDGggV0tdlsVFVCjEr7/V5Kgvzq6iqEcHNzB0FqM44P+z0QWGwK2H3evn2LObZcLmEKjDFTStYY59zd3R0EtTebzXJ53zRRlU+n2HWjqjatvbi4uLi4CCFIEixkn7WJ/Hq93u/3j4+PWJvOOSVZrhZo44xgHgyYvu/7PjiXKYfeewhPWTbNoqncPVW9v78XkdVq9emnn/Z9v98/AjSfwog/ydUkxnaLhYrAdEwhcJE3TSnd3Nws1qvFYrFYLPCWW+cxW5bLJbHeP5zu7m8xb51zh8ddhSNjSNVi1IQTM+M2oEy6e9z7xqnqNIa2baGIOEzjOI4vXr3EJsWG+mMP/jX2gmE4hUGqhYdAYoxxt9uFJNgRpqFnZuQCT6fTYReu/IdLEx5vHy35zdX6tB9CjESGyVqWZecvVs+s4+Nxr5pSDMx2GCOltFr4nuI4jsvVYrteOW+spaurq81m45y31oYUY5pgHt/d3R8Oh6Gffv3rX49h8r7Z7/eGgPoZ7/1qvbi+vlx2TX8MrEk1EalzTk2KCT6zllxa7jdYfaeKJRecIsPN5+JQ1XmDU36Cur4vE4yTVLdZmUwRz4QBD5Lq3qQz/ISIlIQ0JzthNFB0Agq8sYaJgGarkIqgUAAzBG8Q6bftdtu2LZRt5+fnwrAr8eyclYjHJAS5NXBTVSmjMoNk34eS+XsADhf8pwZlXMQ5yrXOxOd6tllFbiFiP+VwEmX1bCAr+Z6/B2q9dxvz+8TFITz15LCnyNX3n0tyhxhTZ0q5zzq25Xg+IyGshsikFMdBm84cj5qiPn9+CW8Nuuo4c0PcOm+MsYa7bgVPDI2pqx1Gth5ujLUMx7JpuqZp0v6HmHZEakg1xlyVW9PnVfOdCwdLNIagcI2utlfOOWxPMDXwcxDfxRitZeeMiIFFck1+CwB24SumojeNLJFwRqKqC41nh0OCrT+qMDF6JiMc0xlGDAcMSab1eo07P51SlbPgkptB8IWEMREIGQaxCc4MTwBWWgv5sr64ChtaNofDDgm529vbl8+eP3/+/LvvvpuSpKTOoU0udd0SNKCUkiqNI/o0jNfX1+v1Fp0AcLlpmh4eHmB1oa0ProYtYgyAv41Xr56ZRzMuFosudMPx8DD1bOm666C3kvEdZs5CpBngA1qR5pMYEZromRNaXzwX9YYKG3Ep9idEwuDwl8xDUgFh0BlcGtlOw7O+Z3Uo0aavGgII8HOhMNelXr8UkVleiY0xELeFkgsrsc0xD/4WPkRdxvW5RBMRzuRmK/lM6Pv+J4kYZuccaa5tL2uerDHen4P/aZpc40p5YLbs6HZlLaP+vmIxHJm9QwktF93/OiDY0WkGPWc4rPRfAkPEGKPljRNR0zhrGwAEDYFEkL2WYtJywWZ9yzFG1fPl8Dh4QNdYVGj6xoUQWCn3+wL1U5iFwdQzs+ZIOscpCjvbFP4dHFNrM77MBczy3jvXUG0OHiOo0TSD2FQV/S5+93d/F6YnxmicrfuuiDhb8yhUTXA9yQffrzzZA7JNCVlZ+EyWZGZlJjVzNQxmZsrS0rZobtAPXMgU4YhyNqLZPqckxDmdUD9imKxxzDm9YQgaEfWuFqulJqEkRNz3vTj/o5/+9D/7n/zn/+7Pf/yv/+W/nKYpTP1isfhf/c//p7/zWz97/eZbQ2qZEmcP6Xg8LleL8xxjx9YUc+Fg8qz1XEjlMcYYEiJ5oYwXpMQQ/WyapuuWQBUlZrRCRLQ08FWUN6ac/3DOTawS8ni60kEU9uTdu3fe+81mYySN+323WIRpskor7+S4+/qv/sItl69+8rOL5x8Z00wkZIit9c6SCjP5LAJYmjJDkQsFHYaVpECTNa1FRGcKJM0y3vWf8ylU/vlU3IZp/rf1z5MKAl3PXigr5NQpB/kvhRvHJQc4c5IwpFwa7hljii4qqWpDTlxuwkumYv0/ADdLKju9ppRIMpuspltqmIHtHKBMtSFm5tHWZ8yZYcqLEI9NXGR6s2oKVzw6xpiYlZLj815DxfXDpVWVC/XAlFRWDSyT5o61xQWHnp/I7K2VexZAmsRsjJNEUtprmCLCw8xdB5VDubu72WxWqhTC6L1/ON7/n/7P/8c/+7M/WywWxtLDw0PfHxeLBZH4xh/GvbXWL12IE+hs7x7e+aVHKYcYMo6DBmONtQ764KJsjPGtU1VjmBN779EWlUqrOgSxUl4N9rJM1qOMZgJwxMpF1TlgCDRH2+3QBp2WbRbwqgOCU1HOWpsYzvNBFdxccs4lVisC9wv8L8T/MUbbeB8ZWwYyJbNXlgEpmHouUC/myTRNNLIKoay7CMLwdnv56aef/upXvwohtI3HVDTGWMuQMHPO8TlgqH7YOS+oqljLPKtTq05tiMFai0S4cZaZO+4+uDqIlK0xuad3Zshq1JCmGONPfvKTpml3u11KykrGOOecs3D1xFia7Xc5kPPe3+7ubm5unPfOmyFM3mQPO6UURMkwiRo1bKyKOGfg6lVHE2vQzCoKKxfee1shg81mA/okaA5qoLQD9+PcUVNVu67bbDZNKYMAsQLET1VFVlvK3lSXuXOu8Y33fmSWUk3lnGvallGlqAo6J/x4KdxVLcTPEELbeih7VD3iOttj6ZP27bffxiL978oHbiqio+PxaC2LCPRJoKVuDFX9LiUFzyzGeDjs64QXkWkSjSmEDOHhVq01gDkMKrvzWGXrjWgKmIj3NoQwTYLbTimdjDXGNE1zPB67Tr33aClRzFp2C2Ec4FqkIsKQfW+Racqc349ePAfiA4IkgCRspgB64GAz8263axpXUwL1/aaUIObQtm27XJjS2DkLTCdBzxzgO5irePUYChjDtm1BnsW7g/4v+rYzK2zU9fV16zyMTAhhKKxn3ADWoPUulV5SxhhKMkmsE9sUlr0xJsRJpAPVtH6Ju0JsiSir+oGbzUUiPZ1OLHnohmEAmWi1WkELG4NgrQ1FaWocR83tNz4s/9r3g7tycETBZ8f7QqRqCgUeHbGIXEqhaTr0ocEZmPlwOMA7repASOfDYyci7/3l5aX3/nA4HPoTjCq4pSiyYeabmxsU9sEEjeN46E8zj71ALSXN8Pj4CEWRtm1FIsLyvu/3p75tW+QsMTHqDBzHgMPwUN57cMzBQqgeSDU7WG4QYMk+QKJRxpRSVjixBiQ1a7Mv1/e9Me7Tj9ZEhDNjv3bOhZAqVRY3xswocUCZMDYRuBYIg9frcp5TrzFB4Rq3hB8QP4P2Bdbw9fU15id2K4wkJDVALSci8M6stWmMiLEvLi6Wy+WbN29E5KOPPoLCjxpeLBbeGhE5Ho/r1cYaggLP9fX1xcXF8XjEFF0ul0pSd7EQgrVk2EImIoSQkj579uz58+e//vWvv/nm5vnz523b3j7chxBOSV3jsdixmt68uVsuPQaEi+ogpkoMiThCBwMuzfF4TOMYC1HpdDo5b1++fJnzr6X5JBuewrhcLp23WK3YEaBtaEsTRWfMsR+OhxMzX11d4Qa22+1qtfrqq6/atkVq/HQ6TdPUxKY6EtvVWjSN40iGwcvzXRv7frHsLi4upjH0fS8hxhhVU+M8KspFBEg9CHrjGJbL5bP1+vHxUVV3u91+fwgjjZfTBxfvf/qP/gfrh1/91V/+smm6cdyfTqflctkf+7vbN9cX267ZbFbL4/EoxGMIrGqdiWNQEt+YtjHdwl1cXKyXfrHeFB8jIdvtvb973PWn8d3b2zfv3iHR2J8mthZiwUlk6vthGMdxvNys28a1nfPWA3E2xjgGWKxswvyejeatllTB5aCnDDmdYZ8/gE+8/ymHn/8pcoY1q+dEqJmaUZvPH1aqghIkShJDCiFoSpKjEGbAMsySEoTaYa9EBAXQEuLb7173U8DipVkbcC6g7zmynoVL+vQBcvijP4BjPo3I8iA/JSzz9wZOCwOP+NwQXmufIdFZEPE+V7oGLOXSQMKzLPb8yPnV5894HuanYdT8Qu8d/N4jaAHK9TyM51uah7Ssas6OHEuMzi7jFJwxYxgrp/j+cbfo2q7rmra7vLyEQVZNh8PhdDoNw0Aio4z1/LC3IYTFokWyE25S92R2nz+5jKDEHVIJT5KFCutLLx5Rrsp69+4djB5MdIwRKc+maepMQX0VvMqkjMTYZrUyRYyCiBaLzvvMvo/jpCbzGJZtV0vu5nMPrim2xViUozCBkWarkSwmz2azef78OW4vlYIzeC/Q6ACuVTnaKPLA7gbHFb86Ho+4qHO2EjIkd2jMNSjDMHzzzTfjOJ5OJ7K5FAxuGxGBfgEqhqp6Y4/HU5rCxcVFGEZmZbar1YaI4AqmlKCngQExuUJOnGuY1TbcUGMsHY/HkIRGtcZcXy+Vjb4r7GZYBGCyNAMI5lO5xmbMjC7SVEgonEvgAwIV4vPCEEmWTYVnKiBSAj8lMgoQgc/k//eWXNVL5cJ4KoHJOVNXDe73l2X9Ye7knQ10mbUVUa15sPkZQNwu2EoG1j+4VFwR8qOZFg/+lkuQDzt7PB7XZuNXjTGM5tcQC/Lem5CpLsY1ZEyYphBT27YaU0EQiYXYkc0lomdxkiCBiY311lqNZ5GTGmyc9QJUmfP0xYwHb05qibrJ/StrYlNESM0ZxxlOTCSJjDGa5HQ6sVKcApeqc01nsQ5STUZNDs/PBLd6/vdG9TzfNOO/rnwjJcKnAl5b65kqXdqISFRp7QJkigpwaBLlMyRdUxWUZfzPE5VnGrjzjxbhV5nRWt8Dmut8syYb8LllV0r1PlU1xg8jfaKpIi+paLDKLAfzwY+qCsMp0STCM70ZZp5CMMyOOcUoomTtsZ9+9Fu/9aOffvYf/8f/4I//8F/86b/6b37vdz77+W/97PbuLVMokcaIO7m82qLWdZwmURbNDC9kHevI59VdVB3yslJmroEuGUOIXZE5ZGscu2ooKUPqGNvsysQYhTgfD1CpVGP1fa8x9eMkYXr16pWEKTIt2jaFIU7KzhKRtfz215+P/fD808+6hTuqKgU1TqYYk3gmjZFqNqIkjik/BRFkIIziuVIiliLD/H7aXCqzoL6vMjixzhNTrGFdbvmp52UVZJnRMi3RbOutmZVih1mVwVqtDmd1jKyId+f5qapMSoX8mLeo9OGch5aSfPwttkYqtK96D5VRiFdTpyseoinwTVl0Ga3AMZUxlBHDGIMQHrzaZDaqovJUUqmeLWUKts7/pA6UlpYazKwyf03nx0xFw13VpKREClRCEnyOTJ1mFjXcNP4v/vIvfu/3fjdR+Gf//J8Owymk+OWXXzaNe/3wzZs3b5h5Sn1KwXu/XLciEcpIYkRZrbXO2qghDoG87RYLyaUYPYQIYLPhY4skT2SMZSa0KMkPK2qthQYitDUrJg4LwCUNk8mYU8CAxBhF9k3Twa+CgCae3Vp7HHrnXFSZxoElG38uleZzWgG+DwW+ERF2trUOmxEi9pRSP42eFLXP8ETzGzSsShFIhDXE1C4XwzAMYWJrSlZbcQ+rRTeZMJvSst/v4ZwR5XIHY6jve5HovWNnU0oxJjJZHo+ZRSKRgmILzRxrGd/EmBF2PItx1DQNpIQhdiyHD+/1xrCIlMyuVVWjRGwSyXq5/OlnP0GZASiWKaVxCGWeY78TYwyVfjXMzI7fvHnzsHvkhkOQqHGUlFLq+94Yo8YatkzErNbCmJrKpMDNF+mG7CsbY7quiTHGmFsUXl5uQxibxjlnDocDkYkqEMkFLREnYZPTVLb0WtjtdhcXF9hPUcGXZmLxwhRVOOXiRzMT2CGiqnWO6jBggtZa0I2JyJpz0wXMN0C0thBOEWbAe4a1wfPC/kPtFMdUpy6WOjDAVVhlkGKKpTUcnjfENIQJYqkiUltdpZQoiXPOWj9NEWQTYw0qfyvBxFrrvWHOvTfatq3jv9vtOCsGEJEgcwDE1hjjvV2tFpi6KASs7mjjMukb+CAET40xl5eX6/X69evX4zheXV0x8/F4PBwOuFxmqRuudGkRiTGo6jBE3JtzDkUJgJWz4+fcMAwQ7qxIt6TMw63GFrYaXeOIJCWLSLLahCFMIXf5SyEE5wzSTk3TOGPrkXAqiOjZs2evXr16fHx8+/Ytxdit1hWdjAW4RzxjjMHNI6GyWi9R7I9fhRAQXxlrQwi7u33bti9evBjH8e3btyGM7HzTNGnKXeyAVDrnjHeIV7F+05R1PPBcScR7j/f1/U/Xdb320D+ZK4f4Ij4Oc1fF0DETUtLTKWuLqeputwOHFMqPgFMzhXZCy8ENEN7r6+v910ekKLBgKydju93GOLVoeRejMAEKNDMNcVVtu5aIQIAFk+N4PGLfvLi4ePbs2d/+5gsE6kZNEm2aJoTQ9z1RT0Qw43gdgPymMRHRNE3O2hgCSokBMd/e3wGKTUUxBorniFGRvlKD/KKgVdHz5y/trKqm73siwT5CRJvlKsSIfndd163X62ma7u7u8qpU1NXlNgAhhN1upzGtVqv9OFprnz17BmoeTt513e3tLf7W53a7cb1e933/7t27Fy9eiEgMybuGWh5pDFO8u71vmqbxrXeNc+4UT7GPm83m+vp6GAa8QUherLYbmIWhP8EioaRJVVHoACVlkP7wgnI6tiTyxzi2Tedyg58mxgipimfP1ogfO9801jljo6QYYxXk+fTTl8A7YDxjnKBS0vf9s2fPDsf98XBaLlakodLumqbZ7XZ4KeM4pNLCYbFaVTK4cw5KLHjAq6srLIH9fl/Nu/eejEWaYZqm0+lU9WEg+ZJ1YJQa68IwolLEe399ff35558PY7/dbo0xrm2QrckkJENt17TrFTOTsXg6LTrXmJBonglbgS6Rj4+PXdeKjsP4YUzr26+++/bhjSaKEsdxtN6wpWXnOu+apjmeDpokBbRnDJEkTmkYTsaYxjfMulh0z58/a7wIqXM+Rhn6ablcWtfc3t5/9c137969u398lETONVMImXFvoMtPzE6Z9rsjEb16cUVqEimrGu+s0DQMkOgBPK2KutYZNDljKT2JHcqnPuY88Jwfr7PaZREpuMu5WPPsk8ziWX6KY9aP87lDD7LX+NnkupMKyBARcXEMYsge6eV2Y5gPx8N+f0yFS0xElNBC+SmEUjmFs8d573kTzaLOp+Pw/dufh+01lq/PSwleYCGlcQZSaogBV3w2qjT7r9L3xn9+S+996lDz01LX997Ce9/rDKzjIn86d9E1h5TgOdmCmH1gktTRYILuNTHZRbciOx36R0iEIWvetu394/6aWYmR40TKhzlg/qxWqxCClsFcr9c219kT0qtwn8IP9OBFV2ci2m63SEhXR2XRLTWTZlxKKUmwNmOy1lrv2uPxuEBLp3FUVeOcZwkxa9wREztrnVPDXdfFINm3NCYVCvOyW4iIb1tsfyEEuFXDMKAzrS39qKjMN/wTCezqxWkh6xhjUNwJtwfT+Pnza3gd4H3X9w47TEQpRRR5o8WCFtro3ImqlygQR949QT/HoxljHh4e8PgFN83cVrjQIDDBo2DvkQy4v7+31hrv+v5krb28vDRhCimlaUz9CbFnrUa13nVd9/j4eLjfrWhRCC4iIm3THsMpKbUxOsy/OjWZnixmLtyf+qV3LRV4kTLWQNAHOJ+kONdp1odNVWn2szHGFR0ZHGOMIWtVn6zPcnx21J5gbWTQjLN+U8xEKRs/P4ip3j9o5N+f3y431uQzLqlgJJ1JUvNFTh/I8eVP6zOPzFqrRakwD4UxIrka6PbuLkZpJani+fCAXoqasKpOUTwn55xxHtldzww+qYgokzPeWScmVvOkzIYdmzMKX21lNZGGKBYmFJHM4STiM0SIf+FdzMXvADczRC2SQIbbGBPG0RI7No6NEFnjLFujWUEFNliImfMiERHX+Dof8FxaoVfDzjqSUtJS5olzmU5SZ2BKudUkMyN7xGzX6+2rT1796Ec/urq6GsbSZd4xxhqNK40xKWLcnmiF15P/0OfJZlNt/dMzFEP/ZJpohTLLmn//iKdHz1Hm+QlN2QJrwF8Pw2mdcyKxMFzPt2QNM1GaIkICYquG9v3omH7689/56Prq1dXm1bbbP96nOJDElASpS++9sUTMTbvY7Y+VulVo3Q7TqVsuGa1yUxJUGGhObxpjDBvruGbOUetxHtXS7bA+hVFStmq0QtjqjGatiAx2ACZhZmE6Ho99b5goJzBjNM40zveHY9ct3BRikrsvvyCRV7/9O4umOU5jDJNla9lYtrHMfFWVpyIWeYRZjZ47S4C8XhYONvM6fxiGyBSeb50nZpaoI/v+NKti69gn6jvNy2c25eqWxsVHZGOYszWeuyxRhAsokP92VhTG33Nu3pux80lujBVBX6Vzv776jHNA2RSSIBUHpzqLcpaBA2fWAhOUmBKRsaZxjrPwbiKCQHxZZfq+xza3//Ptpo7S+dAkxOe0GcJsJkI2KzOsVankX4mIyTGJpGitCSk1rWsb97i//xf/8v/37Zsvr59f/b/+6f/9dDoO4wmgDC9Mt+pg85tuE0IYx8GQcaaZpqHqvTJzEum6bm3XXICtpsldrSD0aTPF2AlzkupeyNkmhEwsoiKMqJqY/RAmUxwyPGwIYQqTYwMchIhSCkAwjc/IXeVHU0kGGJ9bI3bOA3zJiDZbLXu3r+tFxDlnvecQ4XIdj0fXNtj7QGiCP1dL2+ZuE94dEE/4Z9lKSGqsizGO04DMVt/3+/0eXdqwIBAG70/HlJJjY63NNNHcApwNPXEzEqmkc1UNERkjSLs4Zyq3l1RjmjRRCMFPH8abSq92I5rYsCHLokSckiy7BcQu+9MYxphScrZp2xZd5q01qgqCszCRMWRsgyqN27d9f6LIJlpjKY4DtFCttew8W5NClJhSStD59ta1jWtmqsohBFVOKeUWYTFwtFa8FiYOmIzY0yGtkArBres657OyBzMzZfa0lmwTWCGYsZlYajOr0VprNKteAMXrh8GU0m8iypqthQEqIkocY2Il9tlkYcqBRDlNaLbZ4H4w1XHzcJRxk0DYXTEaSImJCMRDgUSnFIg4pSClEBIDhWLtacKZG4ApFdLKM8YYEWmaZrG4ZuYxjjktYUzFeXEhNKqC+IMrDTbBFYUTtb5cq2rrXW78HQJYsb7I46oqaIAYSbImTKFpmk8++eTVq1foeGyMefHixePjIy4khfwrIlxWFnL8ttRgwlCkUgqqqtAXOh6Pl5eXuA1FyWdpJqMxIfJxziHIBPH2eDwOw7BcdkAWUlZ4zy/d5EaFXX1fcHeHYTiF/Ga1YPSn0+ndu3doaIPMWT+OmVoeMkUIx4NXtVqtRATqhwir0BINSWtkzfAuDocD9CgQCavq0B+dc67If2MehhAWjU9FCtlaS0mmqdyDCOKRpvEfXP593+/sDowkZoYhwvnxjJhIFc5DwgBTWko6cLlcogsTJhKofzB0xhgohoP/3rbtp59+ent7KyG3hfTeQ/uCma31VBqFs8n0ESxVXO50OlliiB3XddT3/WazQj6DmRvrwjg1yyXmAB4H7LAYI9oAGmO22y3uOUVq23a77cZxPOz3CKc3m7X3HiW3Dw8PAOtBLgZjF1o01topZDEZEYIu/2q16g9HbJHe+6ZBvjPLd3qixBlIBe/Yl/DYe49UATOPp36apmXbic/y7qjqQPLGOQeQFMkq5GxSoYbBPH791TenE11ceHScQ9Jls9kAcAEYOo6ja5uU0ps3bypEKyL9NFKfTTE6pFnjjscjUnTe+yFM371949hAqwS9AY1lNETlogXRnwboqHjfrlYrdJ786KOP+r4H/nJ5edk17TRNu9ILEesL2LSqVg0lWLMY42a9BW8aauD4K6ASqFlBQ0JsxFOKuSEn8zAMX375JWYXdBKQSDgej1B/3u12h8NBKCe6kEeEHggefNl2jfO7U386nT7++OO2be/v7xPp/f39bre7v7n/6OMXUHkaY0gpPe526/VaVCUlMBCZeX88wVHBeGKSI6ljrb29vX379u2LFy/wIrbbbdsNy/BhIax/86//+It467vWOWOtDwkM8TbG2A+nFHKPH7DLORduWrz3rttcX18bm3u2t20rMnrvXdO8fXPzb/7Nf/u4PzIbCLkZY1arlTFuv9+HKTnUeWtkZtdYUtOfRm2TdUxErUHzkjElnVI01DlvQjAxolVQiUpqcWX+F1PpBlSD9w9+4PDiZ1WlIoaGEvDs1cgZE8A2XR1jrX/49JwwoRj2lJKA2TaLTPGpl0gpkYgaIzGCUno4HJi5sbbCL9mfVyZSMZl+RHkUSjggZ6CDKtYs2bF83///3qf+lmfBdf1DVSWZ/cx6HpDv8RGpxFxcgPX3Bmp+flzz+8e8d+R86JgZFfbzy9U7/+BDzZ+rjg/lAPOMv0PziohImUrwmCQhRFNV7xx0orquESFrLaXYLdrVYplSooJjFNqKg2hP0zRTijAmeO/OOS0V/9iau/bD2s1Nm72Ow3EHX46I4AeOU386Dln9yagzDgszy7kYD3uVUnIe8p7moxcfIbdHRaqxRqlIAtkSgmFM0HFnirWleSIiNTyOo2k7bGdwZYmIXW7SDlsHrw/5TtwkdLoQI2O7UdXD4fD27dsQwscffwwjgy2YSnliBXzAU0kpQZsIPhUUMABh15mAURrHcRhOl5eXz58/B8wtIo6zkCDiIyQaa0yXpoC0KxJ1uHNbFNseHx+vrq4qMh5CgNgUEgwhBOiEoOpltVpdt5eQymm6ViMRS0pJ2YiIe/KSRcFumE93M9PK4MIOk+qSlqk21fbiBvXyqc4wibmaHg+gqgaBNDMXoKTiyPTUBBAye+f1dkZG6hDjVLPjz4B1XZDGWNZzL295msF7svrrMlaqtfPzG5gf80OfpmnaZjGVLtXOudXKIsGbVFfrdQhhvz8+f/7c+zbXqVAh1bKPMU1TZGZjcbc5MDbEWBCIUYUJZYAiZggDJqIpjVNUOMTkZvX19c5VtXEO1WnM+dVgYG3RbsZeq5TqfMBhOImjrD3qbZ7urW92pwNJ4VAnZceahW4NEycRViLPyhRTss6SnPvC1VemqoYtM1vjvPNo0K6lXUnt8YjwwOWHtQV0ptVq9Vu/9VuvXr3aXFxAs2I2MUrxS8m3xhjN08Kc+gZVz/JY730q91Zm9EmaKYTgRWA51JoeLh9VJeZarCci3n24VLOeMJ+qCBmX0FphjMyMb1jeL4QOQKBzdZURUSLtnG98G6fUeB9SNK5ZNE2KU5T0/OWL3/vd/+irz/+C44nSkNLE7EWjiIiqVS8iNzc3sJvGOyJyTZdUQWb01opk0qgUoms2Cxlkse+N2NnkpRRTdMbWGiuTqe55g2fmpmmguCosU+lZn1ISIUOckgoTidzePVxuLxBgi6GLzebi4nIaxsPjbrnarLeLd199KUQf//Zvr9vmNAmpkRQDMVtnTN2DkXc9uywiiYg5E2yfqMZX85hIlZDRUZGgytB/oHMdjdTkp7WWS7a8bNWMbzK2rrVxq7IhyAHxU0SesnNAquqNiZJQUFJNH7beqGIrYfp9LjYzM5sPGzTjbL03VRXiyi4pPEq21mFHmHtUWuiHMUZsbynkaBCzBd4DqtOoqAoEkjorbNHbqT4rF05HnUUVCkealmauGJdSYgKal1U1Cmqv0Z5l6+ZumXUZbSRNmU/tvW8W3TD0vnXO2y+//vLzL//m333+Z8q6Hx/H2C83XeDJGBNHbVTZqGM7DAMK0FJKQqlddMqURKx32PKHaTSuNcaIJpnJgcUIJMIgMweVdlVVCP2XCTmOE+qhMIVinOB4IYyMRWAazoFzzihotlWkWDEtKzwHQKFiUlRktdGhDmMVJCVK3nrSjFGGItutqij4KutFUin7irPWArgEpgRcT8gtDWNPrMQaUzDGSEzMvOoWQIucc6hyWK1WAGhQZoHoHfXUeEbnXCKcuWTaRFNK7hz55MeBMEV9TGyyuS1hGMG3VehCFD2K9z4iaphjCotmgVJfUg5TCGN8/vLZTz/7GasRjNIEGDS7oSklY8h7TyzGkHONc6ZpGnW5fXYidUaRIQDMl1IKRVQnkloRJlJKxjKwz1TywXWvef78+eWz688//xxtxGKM6LtVpZ+EyRX/O4O2PnsCgPOwKJq2UdW26Y7HY31xxMoGqcQsYGKMSSrCNIyDSxGCDEAHuBD34FhDOdpa6yzIxWGaJqh5whhCw87NOqV47+Ft1wL2isFl/LT4A5hsQFgAbOHq4xhUs14emmhZa1EayWyHYWjbPO3hW+PmNWZadEb8mTnZaYq73QH7bNd1y+WSiHC3yKkAMpimKYTR2g7ouTFGozrnhjDBKla55Lop4NVUEyoivmuTSAjh9evXiHAgSZFSQtcXxBXFCOQEsD17HBk0rPnLvL8AUZqm169f47mwMH3jmZmSmNy1tUiOqHZd13Xd1dXV4XA4HE59f0QiJMY4jmMiXXmHf2L/woPc399jJEEXgk1G0MLMwzDc3NycTqeXL18OwzCEGGN0bMCjR8IA9J+xH2odHhGhwT3okLgN1VTxZYicoNuYmSXjAaZjDq/Xa9v4mpZDGBniiJeCtjyW/64muqfT0V1mY47QzrAlZee8sblYFdYD6xcTO8a42Wyw6UhSmOjtdnt3d4eQGAEqHFS0XTJFYt5a2zrPzBcXF9Ar3263kBRYLBYplfR/Tm/0zOeXboqCSrbkIXjvnz17llIYhuHQnzayISIAiLgijtlut8AikTLES9zv96fTqWtXIhIj2jbSpz/6UQjh5vZdnXi73anr+uVyGcNZyGW/3z88PG4268V6hWVb7+d0OgGrqv0b8PYxoxaLRVTBEstabTFWfKFZdCwKNfnD4QAYFDEw8CycJK9r1cvLy/v7e1hX/Pbx8dF7v1quF93ycDiAqR2L5kMoDgxsCLjeYRhhYcDa61ZL8MHRxJKiPj4+MjMi9sV6hfU7jqNbrXbHA4uKSN/3TevX6/XDw0MoEp/DMKCj4ziO7969w1RHcO2L3v3j/cPd3Z31DuOw2WwgRgFCfd/3bQvdns4Yc3d3h3Z2RIQ0G3hzdQc8nU4xhZrj6fuenQ0hPD4+akxA3rVUQkzD+OzZM3QmPJ1O+Y0Xa1mdtDQFFu18A8Jj0zTQKM+xmGHn3M3N3eV2bdieTqd+GjGA8IV2u91quRSR+/v7GONpHIqz50BqPhwOsXSYePny5XK5HIZhOJ6WbZdS2m63i9MP9F0Q8r6xxOMYjIP7l9AmkUtvmymGEBKRGUNwjR+GwXu/XC5928QYVbjpfKUmTDH88m9+9bd/++u+HxdNp4aJzOXVFZApZ7hr/BRYSNkwqxFJqGQcYzCWFrZVSmDfxyjOOUesbBrnJjfFCB+VaBbP1m7qNItEfshY/dAn+710pmtUv1pK9pfMmYqR/+x7SIiZ1/sWxkm9BBGxYYiSI+kSiFg1hAmZj8pXzeHIDKgxT4mG89tGNXZ9cJC0a4D57/ucb4+f4jk1pqv/FBEpurLzoeb3QIMnYNK5vVdpCoXT4kjQ1aXcwPu62POr0yyi+f5jnIOjp49QH46KfNbsbE8evD6vKfwPmqIwhRBPp9Om6diQSIZBpykaIu8aLpLH4T5LDA/D0HXLM/osqc4lbH/VdhlDdZ58/xOmSdrMaASyqaW5cYzx8mo7jbHv+yQBRTxwModhSCY554bxBIcWDwUJZjiKKImwpdc0RCa1VMJ5b0l0mgYRmY5TUkHGDqOMQEYLdtF1HfobV+Z1RX7QWRr+FVLOcBKq/Xz27AoIOFJxYDlgxcFXJyJ0UW6arI4IGASEayT1Y4y52oPUMaO2wxjy3jIzksSErKpNFm055KwijdIZCdEWpTstQrW4FoL31WrVdR1oDU1pya6qSLtCFg+j4b233dqNBpuvkGpD2/UyUQxJLi8vs2Au9vuSGj/brOqg6NO0jy/6XHVtcwGmiXLeAMsjxgTWBpU3Wh1roYxgTtMkMY81q6l/TgUp1hK+cmFb4+OcM4XHzgUTr4vHlB7ExphpChIDVguoOq7xcCBU1VYzl58a6/SM0s6HRQs14++waOM47ndHpG3HvjfGgAoaYy5f6rrls2fPsvh3iutmycykiYgrIsDM1nvnfErJKLUut3DJRpyNc5aZEylbEySpYAQSxCBzarHceR0ZLnCVQ7XyjG+ulaRWcox4nPqw1XZYy0zWGCOk3jprrTUebsdyvTLGCCscU1EVJsMsSa2zRZk6S2ekmQJs9lEoa2uo4SAJSlEehLjS0R6TARSAlNLFxRXSKZ988sknP/7kxz/+MdzHmpSuZvrJ/qdqSv96WMNYxKNL8PZhyicOpgJRYZ5LSlqEHeb7BBfwtw4mM9NshzbGGOs+cBki7zOng2aS/+UOM8bUNP57qRqpSqBEhOVjyvbvrU8xChtj1Dk3iTprhZKI+Kb98jdffPGrz9PpJOPBu5TiGMNkjGFjWAhclX4avfdpGrm3i8VivergnGHOwBznx7L50sxMliXl5teqmWX3+PjY+NY37gxK2ow1w8JKkZ2phoiYjck2QeIIjQRT2j8uutU0Td7aKHrYn1arlXi6vX8Yh7hZrojodDi2KqvN8vDu2zcULz/6ZLncDJISNUlVla3mNIZKIiIlcc6mFOsrzQigRma2xoXcHJWISQiS1GcgWFWn8tKZmSxpPC/GqMLxnKzGX6WnomPV9JGK6BlCqGZQVdkaZ4pVVCEiobOgWL0civXm16pzmIiqysR7H3M27JRSUiFD1PdD27be2HEYRYQkOefYGFtIkVjLKjKl1JSOt77ownuf0T2SxKXaKIcrkluDyqzYh9SoVMRT66LLS+8sJz1j+f2Axhl67DGpN15ENEk9QwoZh1Wjxth8HogWWTeMR3b0y8//+vPP/1qtvr15PYShadxyu7KTEZIGYNmoY5i6rjsU4UvEqM45VQoBeX4TozBbVUlhilWNR1IAo9A65z3cjq5dQHMY3ox1s/YvLtfQiMQYg2rq+z7ImdrJzLW8F/l/x6brumpMlsvllDLnMVsVFmVpfA7gy/nP5U14L1Urow5viFN2ZA0xsYg0rc97pTNJqEKcw9inlNiQiqbiwuJCcFliEVqJMYLcB5/GWiuSpn7Crp39V9Kx76vdZtEhTPVW4SHFGIwxTFzL1vKySkKSxaaBaACG6A+5H1eMMabUNI2xH84IEqkx7G1BVIkP+8OL6xe76fFHn3xqKPdHYoK4R6zMTcOoNGFR9b5xzqFVBpO4tplS3G63fmGZte77IkKk3rfkqes6TyalhOYK8IkfHh8xaHWoD8Px8M3x1B+NNSFM0zTZtpumybUNMxOZ7XqV87giSsJMAPjgM7jSFxQQRkwhxCnEiZnZuGmcnHMADSsQQ0ads4vVFhv6er0GCXeaBmNMCGMIIaUwTWMY+sjMy4y7GctZ3QUos7HChE592EcqURTuMpgd1QKYUktRqTTVecNEBTWjclKkFFhAd5iIFosVTgJ8SkSACY6nHjMQq3i/3+9PR+Q8RIRIKquRme/v76fSKQ5ng8ozBnMcRy51bMCG6s2bgpKD6jsMA/KUOLmqPh726BIOzH29XtdIAFK8GLraS8AY470HPluXvymS7jChFfYt+Q8DeKhpGiodR+C9A4pNKYEzsV6vcSd1MF3bNMUxE5GUBtQRaqnkssREVAnRoOUy82q1ev78+X6/hyTu1WKFlRKzTHbOvjhj/Xo9L4bDkOJylbiEFy0igNsQZCIe2263Xdcdd49N06zXy+PxGDUum6W1LZj+EPhGuJ1SMsapkrGmnv/7n+vr51/GNzU6SCktusY5p5RLYhFMgiKK2AwwH77Bs0zTFCLB4Czarm7umCQiAu3X5WZ9d3d3+PYA8jvgUaxQKPO+e/dusWixGMdjsNamFECM5ZznW7bOf/vtt+AucaF0OefIGijvA6kvWc8MsyKOxeREqmMcR4C2y8Wm74+HwwHJ42+++WaxWFTV/s1mc3l5SUSNb5HTeri/u7m5iTH+g3/w96+vr9/e3tzd3VVBCbw+dKiDQUbGqJKRQYGEfC2Y/ta4FCU/CFnR7G9AagNr4e3bt3d3d6CVpZSwsf7Df/gPX79+DVxgHMf9ft80Teu8knGO0b8ORTmY+e/e3TbWvfjoBUr6iAixt9icW8r+agzEaqxZLjeqOp1G9HtkZtt4rDUsXmYehuFwOCwXC/wT25yU5Nbl5SU0u4/H4zRF3CcI3ev1+ubm5uHhoWtaIMjtojsej0i7YiF4b1era1CnYZG22y3ZLGSEGYu8Amw+Ee33+5TSer1GFKaSNY7GcaSU089cxHZYabVaVYNARCEEMwYRYWLn3Opyoaqp4PKQUklJl8v1OAbngnONGq15YkidnMbc5qvtOqyOGONisYBkwcIsVLXve/L04uVzZ70x5v7+HoOA0vupz+iSc06F4Il9YOcWhaaWqoYQXeOMMexMEH183GPDBfEzKStTP2ZKYNM4FT4Nw2q1FnUxxJvbR1X98z//i6+/uvGet9utYTuOo2vbq8vLy4uLb779FrC4sQtC/w+jbevbxlmPPQeSmB4bMVGKMRGzaMT+TjqNIbLSuWdgqfwW/QBXD/+qP539fFWis/8s3yvGxafGL0+GjJlKFWANcut2U0bsHHRUtKceLJqYTHXRSQXrkUsSkWcAzvzGqPRUnz3F+aGE82jw95Di91/6E53YMx5CM15LLL1PdBazsyFKuTBISyPivLWVPyeizBGheoknAygFPTfGaBIiqtX5NIv1tCAk80iHZhtfHZx6wPxW6/f1QFNKH4wxzmWYbnaHXE+CT4zRex+Vokz7/WGxdtN4Mp5QITFN2TkhVsvZZao1Q6oMzwTOVY6tStsJ1NmklIiAHH7wLVFMKaW0WCyWq6taS5eKGD0zJwkPj/fWGmxDMPWwbDgSLg3MWu0/geeCVckjyalpXZoCymgq8YvQDs2a6h5PKRpjUL48xuAbb4yx4mtyes6OQt02JhJ2Nzw7NoJpGiB7hV61uGhOb5eqO2PMw8MDenh0HZgWCioeFW1rVU1xEhFio8oiaZpmPk+B0Ws0pAVNvr6+fnh4gFcP+KtGRrYwAvFaN03u/bbdbh8eHrC/YNpg/0WciBRd3/dxmLrUtG3L3grpwi4Nyabd7A4HzD2rqiSKrlx17aWZ+GaNNmsIOjdGMiuRzlbAnCmBzBaV75JCxUdwrqTnrlOa8oWc8fNVB8UZQjOigrhXV2maJrZGRLg42cysyqIZrn3PNvEst382Z7MESzmeMCb8vc/c0Hx4oRBtthdv37598/odkgCSy7gyL4OZf/Wr36zXa3B/rp+/ZOaxz5o4rMSGlZg0608YpaZpmfl4OEhKajiRkqolTiIyZX6NtTZRUFUmZ9gRqc2C2meuGczc2cUkcsyaxw2q2WTJmlm2AC1fqWgr16VojEGkzdaqNcb6zcX23Z/+CULoIAnscMXwMqs1pNY4x/Fch1KnDa6ERcIsgMW8sarqGx9KHyRgN8aYrsvZjtVqdX19/ZOf/ATNNxaLlXAuEZWSnoWNrlmp+urn7xTPWPFcysHq30Vgf3Kqp3Z/PjeYleg8D1WV+Oy30d9Jo4avU2cdPckKFBQSXcNmeBAkAur6nSPjOc5EsTzzFDMOnmLsGv/4cPPLv/4LGk5G4xQGUophEnHW+lyzmaLxzgsZNtA4ht8JY4rCZGtdnTxUNGrw7shCqDrWN26NSynJIClKTEFEYuYUZ5xumibshjVtSAX/gkc+DBMbU+NnMta5hpiHKaaoTUtKQkSH06DKXbNgTtQPwtKtV/vXX4+n/csf/za5ZWIxfinWc1kvrCYX42tt2FiMiZbxlGDsEx9ImdgaUxISxJk+OZ8zRAQSdEV4pRSv5Xc9K3ZjKkUGQloulEpvgXxwDpKrfSuz8QMzSjENUu6X9QFk9oemOszXOEzOOWh3IgoFwxHB5Nx0M8Lmws1nZptXRyLqsnsay4urbIWiv8E1fagl+6iMRilYp3U5zB9tfrd1IZdlmOeVFMFrEXG5gMCEkBp3VpNIKYLxM42Hdtn+0R/9i19+/sum87/5+jffvv5md9yHMK63K7Y0jr1YstaTZecdkyIcBZXfWvvw8EDWrFYrtBkxpGSNkoqKqDhlUlIRopyNDykS0dRHS0zMqWgrEZH1LoZJZ8ndRBrHHrquCsnmsscBKjocDqYI4jvnhAnSt1i2wzBEzbgbcCV0Uh2m3nJuqwjz29jMMwWUWacfZSS9ssjP0v9AELCKsWvL00omnjW3rCaOSlUH/jsMp5RyyqpIN2SNGmstEpnI4atqkmiU2FCMaEHjmUlSRBWkdX6cBiVFKaZ1dtm20zjCK8VeCWgeSnOSkrXWN83hcPDjh/cC2LcYQiD13qvo7/zO71yuLr6jb3/nt//eom3jFGsiM2/HMWV9BjyF8USQLXZN02jjTqdj1zXWsfd+mobd8bDqFjCb6FgyDINv2sY3cQr9cITmgxbhNlXtui6mEEJAa2lVBWoJWYnOO+/9uZ8BSUw5hVAjLmMMs8Y4iRC2TtSPY3ZhooLrqqrwU3Ngae1ytRIRLoTcfFrKxs0Y49i4btH5xhjTT6EfTl3XNb6BWWuaZuoHa61zNqVzY24EDDimhjeAlhBv4NmlKEvgcpgbIYRhmEBsAcEZSRrKji64eOaTTz4B8giXOqU0DEMq6aLaoAx2b7lcQnMZ3F54JvDiTJUWMaZtsyws+MV4kMbl1Gzd1vF0thR7dV23Xiz7vgeBE2egskAwSovF4t27dyYn8HxJ9LrlsnPODMcTckK2CGQj0sNkKICUx/c1wYANvWZ3XGnXXin5aBRZpdWIbIzSNI2Z9cPASvfeLhYtCuodZ3oa7jwUUWNYkt3ukJLEKBBgtUXH1hURD00CWV4RgQYIDBFwQ4CtIQTgxVRSDpgbzOy91VQkGp2DGamziMD6KQoYpMp8js8lIM/3A901RI0xUDZofLtYL0RTCJnQ9PDwYEuDbmwKyGTc3NwAkMVGdnV9CVF7TSJZ6SiNw4AWI+v1+urqSpgMJCx2+7rorLXQVVgul0h+pJTGcaDSOXyaBtUJig3MHOMUxwnDUlwaspbZWY6KGWXUIJ0jpZ7seDzudrvLy0sumsiYopvNZpqmMAXwdrFqhmHY7R/RRw7c0s1mc3d3d393D6tyfXXZLRfTNG23WxwPqzsf1eM49X1Pyt775ESSOpvXY4qiqturSxE5nU5wg40xGpMBL3u1iDFeXl4aY968eUOleyTuXAuf5vLy8i//8i8B+vd9f3d3d3l5CdS4H3sEz6jUkUyhYPAo37x555wjEqxoETFKqEFGuHdxuR3ClIpouyOLjC8zG2u+++475xxI06hLAD96vV4/PN4DNFkul9ba/X6/e9y3bfvq1avSEfEIjRpjzDCc2ta/ePFsu75Av8HqAuFIIvJ++/bt24uLixcvXnzxxRcicnl5OcbAzt4/PIQQ0DCwllEfDgc0RMU6xeNg2Jumubi4mMfUpPzw8KDoqUMEiX809WVm6JakIr+Dge26jtlO06kqjDvnjqfjMAyb5Wq52UzTJElXq5W1NhTb6L33zo3jOPVD27bL9QqJFjgY4zCJyHa7vbi4IKKbm5v+cIRgCwCX/tAv4vaDi3eSpEb7cTSWrTcisWkWgEKIjJAqwwVTQypJo0TAbWTdp5/+2HvbtAvv3e3t6z/+4z9+++aRmTabxWq1IWX0B37+fAvrZFjHYUKumYgMiFWZI9msVwtvOaWoRVOV2ZBxpOo9IwxUSiRqjGXlIJFm3v2/13ufH8PMNJNx0FmsUV1xmkc0AC7riSotVs/iqERnHPa9KxolVVI+fwNJ4Kb1KSUJ5x4wPDvb07v98DPieKH3r/h3f7DXIyR/7/hzPF6eiIisYTI5inx6FTwvE5F+D9avJ9aZ5GaFX/ClJTbGxHR27+stzXGJ6s9Ul+aDz2We0iJr7AP9jXMwVY6x9r1T5W5DMCHMJookUeMMTETS5H3eOr33rfPOub7vY5istcQGW9t6vT4ee6zNlBIneAK5xfQ4jut17k+gysYYe/oBzVJVNpokHI/JFm4iRiOEsN/vQwjL5aKGGGnWJY8KWuicQ11LKgX0nMGrTMvbbNbjGE6nk4Ssno8Eds6FW7NcLPD4McYkCct/mKbKeoSdrDwSWyTdEFs9Pj7CxhIRkoVcmBnH4xHezn6//9GPfiQiu90O9R+A6Wv+LwtTNA3CFAwPXoRqbnuDYaHSNw4OCRLbrlabMbm2aa2Hh4YT1jgO+DvcBkQrMcbHx0fXZjwaV0TUD2cbjHLklVFQm1ISG1vrx3EUQ2zNOI7ecrRxs9msdJVVURR9qCipEqmBGVIlEmeMgcKGkEpKKHGdmwOdAW15XZHJmTeipDnlBdgtTxosADmXQnORF67F4wWbPqPedc6lhCIUNsahBRPNYOV5riafqqzBspaYmVPBROqRs5/PZ4vxjH/Nl2uFcb//+Uf/6B+uV89OxwEcnNPpdNjtUESPjRDB3mazca65vL5W1Tdv3nzz1Vdff/3lzc1NCGEcg6om0s5YIkoxiIjN41ksFzNzbu04DAO/R05Ug/+jwQAL3uGTgou5CZPy+LYU3xFBuDnbZTOrjqkwgbVWrUuqpvW744FK7dsQJpGkTEpe2YjERCIqKYojJqIkEAIxREDHiInCOBG+ZBLRKYzGGApU3wVYNqvV6sWLV5988slyuXz58iWAe9w8ir/gJ1V83BQ4stixJ3sDP8381FecR/fDlrDsyqo5UTg7+XmHxm4xyzwzM4aUyi6SB/8HuuiiS3vNZ5YAD3+VQeRqYcujnY8vX56Fd1NKWDaqKpwjW0mhMdyQ/OpXf3t4vFs7iRMaJSUmY61n5tPpdBqHMKWYlK1hYzSmrlssVitlDuGs0KRMzjnLGYOWoneGoMsV2e46+NZaFB0by5lWH3NOEv8FbRa7l4hQGStnORoDEr+WONMYVquQ9w2SgogjMsZF0eM4CTsmpaFvJ7NqvXd2/+bt53ePL3/29z757d+9OU7EXGERRX2Z80TCZJWSMVb1jJQRURTVGcGz/lABvrwQNXtczMw2q6HXP8GNpyTWlqbPpfUE55xNgoEssxRaTkhaYp4aVSUWVeTkq4ALVT/RWpdSCinByzHWV3Qg3/kP0AFKuJUDDwjd4E2pqnUGgdyZ3lgIbjU/H6uApjE6gySo9OKYLx9OQmRkZqm0ECWIyDJoN+flU3MtwpSiEpEFBlqMW7FmJT862ym895IohIT5iVQBGyowjXnz5rXp4j/9r/7FP/kn/+8oSVjbRTOlGGVcbTrX2ClNYwxk2FirZCTlTABuKSXtp2GMYd2tAUIZtioaIJSk1LqGNTqHDKv4xqpqGkJKiZiNMSEl1YRU+TRNCEgy8ph7RBhMdZuy7sGclFHRwwrip5SwtQNQCyGg11/dcDnWgmvSQiz1JoMg1lpvLLpSzGmkNNsfU9HiqOTE+qZMKWcxhYOAP6mgzHtvdpomOABGjVVbZ5SSbDYX0zSdxkFEjM25tLywbO6VTERMVC2PlDQDO2utPRyPi8Xi8vLy8fExxMm7Zr1ewzmzxMMw9KeTcy5mHOHDYhqqAow+pZBSJOE0hV9+88ur9eXv/yf/CSsBiBzGk4haaxNasUMwmohmWypb03Tt7f7xN19+0XRtUt0fDzZv24oa4Xa5IFbE6rt+YBJjzDRNoGDnESMBn+449PCh4RHCZ5XSPawiKZUDgmUO8vswnJh5GAZL1nvftrlsEFmlVMjCtb7eF01wtXQ4HCA+m0JAIuR0OtHM3YcfXNywM9KaPftxwkxuGzcMucYFvBVmbppmmiYgXI+Pj+Du4emA8SHvUpVAQMEYx1GEABOLWOZzk1VjXNu2zjWAzMBfRmBARNM0Vc8KN9y2bbtcrNeZFUiFmQGYwBeVavjuIQSRaEqXBeecd15E0qwkE+NZ8eKu616+fLndbi3xzc3N7cM9Xh8shhYVY2Rxrq6u2rb9zW9+g6lLRElAYGlDE1Dmr0VdtBJeuCi8GWM2m4txHMdx7LplyfHwe6kjjNU0TbuHR7ChaeY94tX001iHCKOBmc/M87I8QK7pzIMzUANDvIT5iXALUY2IeOsW68UwDFDPWK5XIK5CYQAuhPcegY+1Fi9Fc6ZBhuGkqpRJyqfNcpV3TJML2urNAHezpTQnT+yuXS6Xq+nD9WfGMPA1a+1quRaR/W6HR6h64mgNZ4zJaaGSosMZMFEtJPhVkQsEHI+CfVCQasYdyLIxBnmRmozx3mNpEBFZU0PHxWJR38U4jq3zm80F3oKIWMvNosOv8IrXi3UqHZNijNfX1yJye3sHuQ/cw9XVFerfQwiLbgmK7uFwePXRy48+fnV/f19j5hjjw8PD7nF/c/PgPX/yySdY+KBKvXv3rjKkdNbncwgnFfLeYZITEbIOlYkPJSXv/WazeXx8bKzziyxdiFVWuWaq+vDwgJir73s8DjMjQp6mab1eM/PLly9fvXr11VdfPT4+rjZb2CgwqY0xItQ0zbNnz4ZhQGs7ZiaSaZp29w/wFq6vr29vb4GuWmvf3d3i++1mA+a+qnarJVDmlNLd3R0yIpvN5m9/+TchhNVqtd/vLy8vK92saUboTlxdXS2Xy9PptNs9rNfrccxSYzHGL7/8crfbtW1Lhpm1bT2SSYvFAmTnzz77jAq68e233xrvlsvlfr8HQxwNDJfL5RTGKYxogQgUfrPZhBAmCTA41rgY0nLZGs74zjhNorrebGAwod354sUL2ENo00MopiabbekNXg0mcsloRd627eXlpRi9vb2dQsA8b9vWWXs4HMI0oUSg1qRDTGbRLXkmO9N1HZQ6lsv1fn8vLNZ9WHhdKU4pWGfZkjHGeqeqgl62liy7AkGIiibSpmmtzZTz5XrrLS+X61/+8pdffPHF7c2jMXR9eb1er42xj4+PYZpEmYi84cex7/vee/beTzleQyeAdrVctK2HAQlhypECG2uNcUDkTYzCRjNWWRCOuRE6O7f/YZ+5a31mQD/1/2v88sHfkirNYJnz8eX7D4z2U9Azs6Cc9U/D8/fusP41zePup9EW/Qc8+zwGp6fclPd+RUSZSpT5eT49AZfOzBWc4707McaKCJMxOdRlwwoSFSZ8HaLssp5vXXN4wmdvdv6msEmB83G+XCl4/eCDzD8VwDEG3nWcH8ZFpyVRYmuBlaWUvLPONSmldtESZaH21WpDSSw6drSNcy6GLHlvrUW/emz3sXSxlsJrxsa02+1U2Vp7we2HXxgLdjRs36l0KdfCDV+v19ARRvUYsuDGmOVyCa9Dz+ByDgNjLHq/BYVYr9fMPfL5lKQSgVGUhjrjnHpvfJoyGlOTtVKqi7CbY3sC4gcPbbPZqCpSquM4imS7DedZRFarFdLGyE0iB4/aNXhWkHqrRBBrCcNLhQAqEjPdO6WKLyPBDMc+xlh3Q+QL0cq1pgE0Ca4C7amUzuLaBYC1KZ1pClqk7XCSzWaDCqRpGqy1Y0ghpRDHSOLbxiXSJBNPaRy708ElCUSkZOZviEu5BOAxnXXeRLEA0fusNDPD5iouRkQ0m/lMFtRLAveNbFkqBukjY4whSzNzUM+Tzj3QUbWRlelzXyxTlyUTZf17rTAibqn+NmPQT2vJMzio+SGJ9anwEG6AmZmhuMo/ZOKsda8++sjbppoGXMhQ5gsESTFGw1lFESHKz3/+8zCO725v37x5893rb25ubh4e7uI4DWO/Xq7C2BOrJZU4ee9ReUtKZBzqGmKBVusyUNUx5oWH0ECSAqUyJota1EG25V3NAwaadeWqP1SzhTU8MTW+gUc7xoBI2BublNRkPUfVxExCpCqGOKXEIOgRWzbClCQ1vnHOsc01ktb4+/v7lx9/3K3Xq9Vqu91eX19//PHHl5eX1tq2XUBYHaECViMWvCmd1lKxdHUE3sOU60PN96on3/zAC2YiUySY6xKYW/zsQBOpqi1EeFVF38W6Rs4X/YFGbUnyO2KyTEwKyjhm9Zmk/3S/yXifKdnO+fMyWctKSsZaUTLOkqjRtGqbb37z+bdf/KrlpGHSFIwxJIrec4l0dzgxc1J5fNx5733XNm3TrZYi2VQB4TXGKpkYZJLIRE3jwJZKRXw5pmxw6+tAUIftPUvvaxZviWcJSKNnU8CaxDgrIo7NYrEQIaToSI2QSsRWl+uvfZCmW5L3kWjSZJgcMxG9/fa7y8ttmMIx0Wu164vrZrlOxESMkoKnQyrZpKioqsnKyMYY0dpqo+TbpNC45tv5ea2V/E01fQC3zTmbleoaJGAZisQM3maeXSlX/ZwbPYsIUWJhqr6U4VpbXW8sMflcEqTF40/GmB+ahEjW4cgYo7O562mIOR1qZ1qxVMAXV3v9FaQ4D05GG8+5BDFCclb2gBtmyBLahMi5qyGfhW6qL2hy4tpk/bzq1EYRO+tBl89Q5Pvz9BMmypm2mJLzWWijXXq0vvm3f/pHkY9//Gf/9hj2zjnr3XHchxivri+SyBjHYRjGMBWHQ0KIacpFwcYY410Yxu12e6ail4Ll1mV5rMaxcyAaj1MMGE5jbJTknDMiUSWlwIyN/yxUUlyQ3JtLah9XIkD/9LRcAwn/EAI7C+kVrDJTaoZSSsfjcbFaAuvx3h/3BwzXcrFEgT/KaKRs8RXVJSKgTpX7BqdKC649LyvDzeAbLkomVCIQU6jNMitnUVUxYoyzlFuBTWGMKSpJThCV1erYsLMFej7PnFhEw6ZpokSwPA8PD69evgRbkMkgnTmO42l/gFnTwtom/nDqcZrCMAxCGuPknBuH8fPPP9cgf++nP7+4uGClSqwQEYsJbMXYHJlQweVdg3Vkv3v7GgXp7M0Yh6Zx1rCEaJ1Zr9cP+93F1SVzOg39cDp557S8ZdBsm9YTWYBHcL6BXuHtANDEZk2F4IkjM1BVut5VOrZjh7fTWBdVjKGuWwzDgD6otYYRfziOozIIB3Q6HPK8CrFxuXU4aNHH4zFI8ibrBdsii7xcLg+POzABY5w05oyIFlkP4OPWWnSrg7MB4AmrCShqKp3foNlnUIRlCQggggsA01KpRtZ672/e3e72j8wMeiNOa5RAyL24uFiv16ppjAEhBGb7brdD+X9dCMyM0mlrLRq4IXbC/RPRlPIqICJrueuWw9Bj5p9Oh5TSu3fvMlhsslE1xqCBKZGUVkwGch8AdMo5M6ulxkI6E0WBKAGW4TAMAKlxq3g1ANzBeo4xQkMDsC8rVSWT12/fPHv2DItFVQ+HQyrKeJg2nc8af+D+SFE7wXUpd2nLgPtms6kKxRhDVKeN47jsluQJbw3WBsHS4XB4/vz68nI7jqHyelJKXdfhRdQ0NnaiWsuGIc0YQIxu3o/EOeechFj5CpvN5tCfpmly4w+ymyEmMA7TNN6LCGcRu4wCn06n1Wp1dXX1+vVrKuSjZ8+eodYYa5aZF4tFnMI0TRWMu76+7pYLmOUpxbEftfQvwQEppdopqIiB2JRS1y1d62qSABg9ENL1em2JY5ysNSkFZk6UW7rhLb97d//q+bOrqyu8KYTxxphXr17ClkJt/JNPPvmbv/mbu8eHzz77jJK8fv1aRC6vLojo/v7+8bA3mgcBBOHlYvWLX/w2FhoSUdM07ff7GONx6CGAUD32xWKxXKxAn3fOQeoa4zlNU7doTWOH467v+7XZsCg0yjF5uq4bpwGFCKBrgUgLO4OyayIax/Hx8fEXv/jF/f19xYi/+eabaZpevnzZrZYpys3Njc8ao8Zav14snz17BmwX8bz3No6TMQYEOqQNcOmu6149f9EuF9773d0jGGGY2yjHxOyC1srNzU1ews48f/587IeuaUUVNhwCoF9//TVMx4sXL6ocUM0JXVxctJ3fHw6oLKxKSm3b/vjHPw4hvHv3DnZSRJzNYnHVVA7DAH0k3CcTz5cb6OQpSZ96TFqkT7que/78+Waz+cUvfrHbHb755ptnz1588cUXNzc3z58/3263yHCAV55yn6t4d3eHFVqSzXa1ajQGvGLYk4f9bn/YsTEAknAby7bbPH8hInePD64I+qsqih4w+DDa6FXY931Kijz9aviwdjNbahofYzRsjSFNIjEFiIEhyMrCd6qGG9vAmaqXDkH+8A//6PNf/s00BbTk7brO+wa7Z9d1Xbs8Ho9/8zd/uz/tIfo8jpOxzltjfeNcbi1hHROhiCLHBVjmylZVjSWKYgw1jVfhYQoimTsyfxb9ITDiQ5+5X1T/DFJ7NKNMnY+fo5eZHfYEa1ZVIsnxsprvI84sqqYiLYnZpATanCPLvpaSzIEjosqbUcDiTym68yP531egyTOch8+crSf03iKTqCA/1uMrUoTdSfXMI0bx9zzErperZ8BiFE06y1vnx4MotoLuJygEzydPCWWh7535Pc+WZnDzLAg74xhpRoeCQ/7eODFz4ZbOmaO14jBnr8fx0HXO5MyQsOhqteq65Tj2QCngcaEQJF/XmjjmGoU0r8cV6bplSmm9Xg9ffVilqmkaoqn4qzHT4guzypXqTGa+ubkByIB9H48HG1jz9yBN4YkQUOC3d3d3qgwehsZU02AhRWstp8paSOwshpMoqxFirsIBhm2HqwPDa61FpYgItAolhIBdFZfYbDYXFxdAqEHWJspaJdVW41YxIPDxYv5kwAHpKCrkBhwgpeehmXUxwc9UQGpkAWH8nXdNCdKhdwRdL+fc9fX1lOALMeYRvHH8t1JPxnFMKeDMzjmJYtjFeGJrOreI06Ca0EIsl7rXSVwD1IKuZnYbnEXnXEjY+2ELPsBxzmu3ghdmbpKIhJWFZssDc1pnDT10pivKRQmeCmJS1fERCioLEfHTJZTp2MVu1vWqc9V5c45R62+LEVFTYPKn1s3wrAfXD6mdQnouhORDqGGziKAXLR3LnbDz3icJUxjwT+fcRx999Mknn/w+/T4bTSl8983X/8X/5f869sfGmEiTsbpquxCChqlpGu9bVZWYRNSwGlaBJoZRNcoG8OZ5Y0jlEU3BQOcgRbVQ86eeGaCzsa5vGSbYt65tGk1R4tRttoZyjxQy3DQNW5MS4A+rqo4MbEHOtzCr6jjKqm2YuR9HZh6GCY2P/7f/m//16sWLeunGOmbu+z6lcDqVhkUklY7Rtp6sq1QaU9Sozaxk+zzxhFVUaU4ZnvOQP5yknU/4936oo2eMYRRsfIhSfZ6lwNyVDP3gtZiZ1JyrdfSJchM93eqYNVfEMBnOBNsKuENT3bFGFRxq2SjFTbdIp93n/+7PKfS+MSTRWhNDsMSkjqwLwyAiTdealKKKxBBPtF5tG9+FEGIQyIPMnQ9m9s61bQP/HruUxrOipSsq6lyi+lhUjyHvE4s4kTGGKIF2rFX1m2HauEPvghSnKTpvDbvk0jRF70lEh2GIwzBM0Tib2LC1i7bdLDpnGsf88LBja1er9e2b7/70j/6b608+/a1f/F5y7RSTiDbOBVGJiQxDOQYtE+sGwEUsQmf6XxiEOFNueeo/5UqL778785TayTMhrdk0UyKuZp2L8sZ8nVIpLzXGUPHwWCnGmp9De+dMMU5FxMP9QL9KKrBIzbdRMdG2sGKrmkEBc6k6H9aBCnTO/BljsPdQSTEqygUz360MjigRpaJAbSjrsokI3CMgIEnAAjDGGC4OU7ZyTwffEJNhMiwihh2TjSlXrozjaByHFNvW/6t//a9SCkHDn/zJf/vdd9+FeOjHYbHqhCXGKUqwzvRjz8zGeQBexhgSHsdJVb3hGCc17Lxj1rZtV6sVtMOstdDT8N5556yYGOMUByFl5kyuEQH/3XuvmpnIiJwB8FUwN5X6d7gRMLmYeMzsSus/yCYej0cwKOtGj9iMiLz3pzG3meUCtMFnmoYxxuj43K4NST6eiXUA5pOS9q++DoAqIkLQSAVixqls6cvHRbW/ODHJGBKJYCI4Z1Ud7tZaO02RnV00TW7CJpkUUzcUgwaDkqVsfGnHGmOM47RarXAVChRVnj97FlO6ubkBYfB07O/v7xG+Ih0OQOfy6mqapu4H2M3GGjLMSsa7/tQbsuxsCgIW3ulwrOYuxkHVVHgXA6LMNOt1kVK6v7+3aDLmeLlZpBTCNAI7k6TIgqSUJCbc5zjl/pCYXZUJ++LFC7C8VRVoaRUhrWsEMwEqGdUKVWQwpdS2bec7ySrqbA2Xny0zp5SbruBUYEaEoW+Xi8Z5Eh3HUZP041TTIZhC6O4CPxUXijGGME7TEAbQirVpGjW8Xq+BhVGpHwQqDUJuNaoF2LUiAqlozCtAgaqKtVP1N5bLJZgmcOinKTpHKpmfUqImxcSgJMB00PdlmqZ+GqvjVIcO+BG4JJDhq1kfyaQeY4wRzb1DgFCnFIDL1BW02+2GYbLWpilYa13bMrOTXNvurFElAIiqend3l1KyjSdjvD1r5lhrVZOURj22qM+tVqvFYgHiMKZc7QBTB7MMWoL4KZ60Jk5Op8E5d7m9ev78+TRNu90OVzQs1hprjSUiykIWIIlLaY9RXTIUq4KnAxgR1qnyFmG7lt3SZO17/uijjyBEMEzjbrfruuZwOIzjyGxBaCIiUG6vrq44134KYrBxHFW56zroP4CmUPk+FY0FBKZluKi4beM4LlP3weWfQjAdsxKKD7AKEHYiGCOiZ8+effzxx4fDIRS9+2mabm9va3tJEDNb36B0bxxHSAH0fS+U2xDVrDCrxDjBAOIFpZRWyzUkrapECYYau0/f90AtY4xailO992MMgjLhlJxzmO1hyBMSVhcJGxj/x8fH1Wo1pfibr74kS8+eXd3f3zp24A7vT8eb+7uu67bbbeVZA+pdLnLSq1qnMUwwHXWh3d/f1yWzXW4wSljRsB7Pnl//43/8j+/u7v6///U/b9v2xYsXUN3ZXmxSzAnL+/t77LCYz8CCt9vtNE2QW5mmCRCkMea7777D3gQyb92SDodD23QXFxdcVFxDSI+PjxCpR95OJDrXPn/+HEmROouwG4IW/d1336WU2mbZdd1isdrtHowx64st6MN4cbe3t1M/fPTRRymlx8eHruvMYqGq0zgmyUYVmyyyLEC6MfPbrokxSsqSoNBwxzxBBLRYLDabze3trYhcXV29eXNzdbU1PuftoN9iidlQ13WYS8aYGBKY1ODoJRXIs8KOnUKYhsFaz2xV9YsvvvqLv/j1z3/+o2fPnpXy6hhCOB6P+/0ewqNgwXddp8qbzQZrP4SELGPrvTqPCDHv1DGGKW0vl7AJbdP0p6Gxzln/7vbtMA2oZ0X4kFIapwGwJDITi6bdbDbWZi2jcRz3+90HF28IMdjBN60hay20+yKH0tKcSkGiYZcNgrZt1zRN13Xfff3tt99++/r161WzvHp2jWdZdavFYnF/f2/VLlarP/iDP5hi+OM//uNxDM63MSVjnar6xrZtY6z1TebCSwwxJVb4M2xMHm1mNpqsM402SjEl4cBw+T/4RNjDZz+fGSTzHZ/I1NDD1JCfKHEp/iN9QhPUM/VKuZRgzmnCmmYQsyBMmeMGlKMk/MxU2kFBz0rgmz/tE1b/Kv+Xn3zDT2CZ9z//IV++98/3wmo6R2dShpHnT1Ru4MzP43mRH+hBJPkAQxrPTJF5KCS5eOqMqCg4zk+lM6pVr4h8+dWT6JL5yXnqXdWnqzhpUXD+AKGQOVN8jLWqQUSWy2X/8Hg4DIip+n6EhGfTNKoJFWxIRFlrY5Rm0RnOchY1ToGDNI49ZqC1dr1eL599mMbRto33tgKPzBzjmdxtSuqaCpGl+Dw5EG7bFgJEDw9349hXKq73HoIV+/0eKUBAt9h3DCvc877vY2RAt4vFgl0LsBgaILa0wTCFwBFjxO5Q0V7KCfWEBFVNm1VBs91uN03T8XiEq4CNEmOIEfOlh83cfSpVgJn+NQzDctkZY5BWxwgj92lm9ErQC7BN9P0AY64ztTRumhACG8Mqje2WbUeUm7g0i6ZwEeI49tZ67DK4PQDNXLrseO9BEcSGmFJKJUbDxHPzxUYlH6JEMbdNkzrRVXmaIhWKlohUYWWa1e3S3EaQkZqFq/RYzty68jWXrp1Plv17pqSCCMwfsCbftztPFmq+7pO1x8Tzu62usIown/X45SnpT8vja0G+vv9BfVCMUicZDk7xLPRuTdbBNLai/ERESQXAEKsuF4uf//zn19eX/+5Pv2gMq6TLzTql1KJ/i7OcBRaIjRHhlLKqrBBpqcWAu1AfpNo7Y9yZgD5XHGZgkar0hP5MT9GxuZGKIay7xZevXx8f99P+5Cw7NnCm2VlmJZOxCWYeUgYZsbpsKZq+e/vGWjtk7kMUkZ/9+EfX200wEEfP0WkdeVVKSURFSInJNmhwHynDT8wzUOZ9ww0GPUndxs7PNeN3g332/U+d3pbYMIsq5XhW6XvAcapawEZrhwYiQiKToXPyA9C2YcNk6wx8b+fgUp8+O2CmjfA91jZYgKTJEkcRNhbCF23jfvXLrw837y5XrjNkmubxdJimyRrfWA/fkQyfTv3tw30M4pyxjscw2b4XkUQqU1JKrW/gesDP8+DXFxodRgdOec7el/2PiGKMoqUXomZPC/dfebKwIDDEUjQ6iMh5O00TpciGiUliSCGgj6WqxDhqDMo2kIQobdueFm3Ddt21vrHb7Xbh3GZJh4fbbw+PLzbLi5/+rvP+1I9KWIVQekVeu8wN4pz0ImtZlcSwKYG2JeejjTHG86DPHS8GOP8kP1EPYOZqsSqKV9+hKZ8yIMSosGaqWSVjTVGCMUSUSCpptF4xQZWCqL4a5nP7yvcnsKT0VPrKzmRqsHhrtlkETd5cSQ1SLBT1ehtN0dUq5uX8jJgRRFTJ+2aWScRJyoOoJhFKRbtNjTFY11QYsjxf8uUsRonUSIq4fwBDm4utUPrNF59/8fWX/9V//c9ubt+yw6vVECfXNiGMbM2yW112zW63yzDKMHjvu8arkCFYOWssS9TG+67rhmG4uNw657Df1c7IqjpNk7XsnLF2kVJSJeualIKoGmFjLBOPMRMD4aYigYVuxcUplzmCjAfMUVzbwszSTIAeHp61FsRJeD/r9ZqsQfC/Wq3YGOACGO2maSxl2AiCmNjUyOZiK5AiqxcLcATsHgdxtxjxPdZ+JRfwOc8tYJs61yKGjEV61ZSirZJiMUSE3oYVtK2XxoMLx0R5qKGdulwuAbKAnQ2/8DQO6/WajTkdj7vd7vHxETSufFdTSimlGEBKDSEMw/jB1TGO02kcnDPWWt+1GtUYljH5puFcFBkylC+aJBiTGaCZ8gkhNee0FEf/1S//WphCmkIIjfqUEqlAg6ht29uH+265cM4pG0rinHPew2cTTZ3vgJYC4N4dD1woLX3f26LXBnANmAW8RimFda7owNDMHyWirIprjTEGCFQp5M8LEz5MTKlrfZrGKUbv2svVhpmjJHQSE6Y524IMW+9EIta9iEz94L0Hj4OIouYiLSld6bquq6kFwEY1twEFDylUGlPa9KmC45ZnKQZ/mqYQxoqj4SnGYQohNK231nZdZ0qzIJMrnUewFzNOVzagzWbVtj6EtN/vUY1o0Nnpe6nHcRRmBqd7uVgiQoulGxtYw1wqBrquE+uYeYyxaZok6eLigkge7+61KKsOwxCjLJfLFHOtrveeOUfydU/JzmdKmMkgzoC87FwDpIkLvQVDaq1tmmXTuOPxCIJq17QOrQ7ZElHTNI/3D1MMmEvMbJklSUqi2cXN0hlSEqhAMKsnqcponbfdbtGgzJQKnhjj5eWlJN2s16fT6XA4vH37lpk++uij+/t7kIZCGKEKDS5VjJO17cXFBcYTiFvXNVpTEU1mygML5ixWkGO8+hamabKUc3WwTsvlMk0h8ye+vzmmHEDGEAxzKmW/zrmLiws4P99+++2vfvUrIgIJC//FIsJ8TkVmBEDtdrvt+z4vE6YQQhizBq6qjsPonCPKDC9MQmQBifPwhpAgLZoK5T9jzaqQ8l+v1yXoyB+8C8xJ8M5EzjSOkLtoqO/aaZqG4WStRRHMOAbnnKac8kQSBY82TRM1ZtUtDFvkOxeLhbPm7du3rvGXl5fL5XJ/OnZdd3Fxgdk1DEMcwolOuKvdbrdcLaqDcXt7+7DfrddroOeUcgtHZt5s10taMjO8+sVigXIcTAC82cVi8fj4eDgcEJljboNOjgwE1IG2V5dfffk1oGoiGobh4WH3eDcCuV6sF9BymfqBnMtqnsNgjEEW7fWb70II19fXXdcdj8d3b+43F4vnz5+fToNIDJIwsGhlqapIgu52u9Vy7Z1LNh6PJ1UCXALjvF6v8UYOh0PXdb5xIU4gnlvOKvCulNMZy0Y4hIlH0sLFcc6t14umafppROE5DMLF9sLYjLYg+RdDwnTa7/fb7bbbrFarFXz7m5u7GNNisXr58iVW5fEYVyuL8ohhGEAVfHh4qMvwcDiklDDP+37EU4/juNlcwD24vX23Xq+Zsxb5YrGAFYVH6pwfh+l0OvWip9OJivOP1YeJ4b1PEbpbWtc7s8V0Msas3OUHF+/Vq+3r3U41wZnJy0Si09w3ggpIqirOeWZuO386nV6/fr1/2BHRZr3uuNuuttZaa9ka+/jwcHtzE2J0zt3e3u6Ph93xQMxEUBhl1qzgbwy7XIJ5msbBWnZc84WixqpkKoZzaAYDUgsZYyRJDTSNPgn0/o4PPwV/yw4lcPxnZYQZRj1DzIbPWp25oc35JCSRVNk5RMX1WvM4lDNue6aD8KxdhzHEbBHFaHofdihx04fhHZqhE/Pv9Sn2Ov/Dp9sQjv9Aa3HEUEAv9Cm+NH+KeiqQo1OKxuRi/XrOM7h0vgQ6pig76KGX0F7kfPnvPbKUOtrzUz8V05hfgAv8/fR1vz+Gs79hIhJKRKxsmNkbnyT39V2vtkM8XVxs2ra9v3/sD0dc7WG/W61WUGSapkmNdW0WzXh4eCAiILxENI69iBmGabXySIQ/Pj5+fPFT+tBnGMbBDfCysF8jQYXfIriAVd9ut3wW1MqmNYRwf3/rvb+4uABs+urVK4QqIYTT6XRxcQHLbwxWnPHes2ThRypEY3jIzaIr9xBijCEAlKAYp+r69v2Rma01wzBgW3Euu9O4NzgDUrg1Dw8PiG4QqjRNg1ipasHZWdGwK/rLxaWE/+lXq9XxuIfDDEwAh9naYLl4MsxcnpeY1XsbwmiMaVvEj5n7BWEfAFWudTLlnlIzv51UFWl7LQkkKW3ShmEgl0kY3vuQ4jiOjTPVx3Z1mtYpmFKKRRDWZM0gxHVpmiZDuU6WCE1K85Wqw1pmv8HctsarJk1CM+ujQiJKBjT+RERcuGlUqIJzozNb0mcEMK8xLP6zjTCU82vnY6hIN9DMDL239s4XJWJWwBM6EwlhPtc1zCOx73+AUhVYxFhLqVSn8lMgiZlVA16hqCqJhlxWRiQpTtv16vpyO/THZrUyKrvH+1PIlEDnPHy7pgT/1loWMc4IGUUPMVXVTNWG7Uvgyn7I+sy/OU8JNUQssyIXfvrxzrbOW6XH+zsjqXFOpqikJxR8qYgIsUp5rU3TAp2oF8KKXS6XIcbWuVW3GGg49qdPP35FEuGX1xdElHsLVEeZyqNJqbS11jJrSjEVbdB6FeaCNdcRKA+iZYutVviDL5eIlJRFWVTozBNnyRkMmm8bhbyZtdHPC60QrnPm4sOlmnxOscwR5PM3dcMuuxrNDnsCT1eNJ5Q1GWPEGBWxzh12+6+/+FvPYjSSaIjDOPbTKMwpNTRMp6TSNO3tw5u3b26IaLFadstVSro/nkiSqrIo0BRm3l5cFdNhnMvlzwg1tdxSdQ1rGax1xmheGngl86eGX26tNUQxkUi2PCIiKRpjpnGw1qqkfjhNY4ySkISkTKlj1zYd85Qg3xGHcNofD4u2u33cvZzCxfXV9WZ1OB7/5T/7J//Rf9b+9Ce/1bU2RLFsybJS9jbqZMuCP3LO0uNW00xvq+LpNN/Mlciwmvx2wVXHn8zSWkbkPFu4KHlpEW1XSknSOI3WWoYeUWlXiAtC4RcTL5W1xmyoMoWNQWlbKhrZxphx/HDJIXhGVCwndh07U/s1RVcnpVD9ISk5OeMaLTJSeViK2kY+oMTMiJCr2cxDbc47VMFYyRhj2QlHEckyI4aNMRl3xzYAK1wXQnZZOUXx3geKpGyUnPNszeP+oe+Pt/f3f/rnf/L29q3xJBxDDImltYskyTbtOI5sUkMEKEo17XY7Iml9FyUmSYbYG7N9fgmAhkisZSIZxx4FSjHmFlLGmCFMjTgiUmMLHs7CJsSQppya5pLxQtcc5zK7oY4GWhHiuRBSzhFYVL5HSTpr5IigFP5ZuYTxxlY7Vs8WQsi0Js7qHGDimCJVJkXJpLz9zL8DAiWFJCsiuDpkInEJyRnrGEsbtFi6bdSq5NqCw5S6OWstNiPjHVnTFM4mdoRsJYg1JvUsIn3f5wJh64gI7SyyzzoOX3/99ThNTYFroclGROMYNKau6xKbpnW5cdwPJGNqteMwjd46EWE1TdP85Cc/AbabWYpFMZk5VW6RiLhMfXZKqW3b+/v7t2/fLpdL1zmKjC3Mlc39r//6r13bXDvbdZ1zXmMi1bbras2ydee6tCCpAnx4Eb70hYPfSYUVXlfrHMEHNt11nUTxPo9z4xyVulf47t4b1XxFxQwZh/7Y393dN4v293//v3d9fU3M33zzza9+8+vLy8tm0aWUphhCJbxPOf2wXq95eUYTVDXFhO58dS7BF7+/v+ci4oxBBjyHCQyinxaOv7XWWl9nCL4MIRyPPZIczFYkjMM0TZMyIbiCB6+5r7cWylGuM8CkstbWInpVwghTodtoSV1UXgxncRITQkBoQUTVXx/HEdBqTa8K6gYMhRCGU8/MiA2k6NhgMRrvTPEEuuXCGY/ze2+BWAF0q2EbMyOY6bpOhBAF1d2txirDMIxjxoD0iV48o/YzxrjaLJumAT/65cvnUnjKXFqrQ/ItMxZDAKaT9da8r7ykatVXi+XhdIThIiGwfb33u93uF7/4hXMWSQUAWJjA3rfTNOAk0AeApWrbtkpopJSmFKdpso7xfqmIxpiSXYNQwGl/8N6v11lCOsY4jkE1raYPy786l1Vo+n4Aldi4zKvo+/5wOIDL+fBwePHiyloLUhVuDxAnYuO2bQ0x1BVAsK1xxzRNUSV3fh+GCNjX+6Y5d+2DqsY4DRhGCJsgREQ+spqIxXrFouM4LtYrdAXHm0JDs77vofeGV4mNHgYcws1RxXsvct6J2hYLVpbLjnnhnBOJ0zQ41+BFMDOklpl5v9/HMG23W+Ns1tNQaZoGGtwoLlktl1ScfCkUGQAW/+U//y+ttZeXl31/VNU4Dt5bazNxZxgGUnU+q8BfXV2pKvocYjCRckuzwkdmRhXwu3fviAidQo13bdc4640xy+Xy2bNnl5fXX/OX2IwO+0Pf951viOjdu3colQA+e3t72zQNk9lut6gh6Lpu6t+Q6MPDw2Kx8N4+7HfYEwFJtG07jdPd3Z1zzjCD74bVHYvKCswOJDv6vgfQ3DTN3//7f/8v//IvW98ytOlVYwqqiswuXvfpdApxiiGLKQ/D4BrvnHv16lVN/cZpRKtGAO7WuIrvE1HXdafTaRcPi7bD1IVoPl5N09Bnn/1UVSGO37bt6bTDfrpYLIAyxxhPp9Pl5SVyfqfTCaU/uDq43iIRxQdYlehbaIsymLV2mobj4bDdbpeLxaE/Ic2AYVFVdOWiUmHz+LiHnSEiZ7yU9kvvfX72858d78zb1zcSBS2pnLGqEiWlIbdLgQ0xhmOaiOju/qZtW0vWedu4ZrlcrnhlyTbWNU0jLKwE9e37h4c/+ZM/GaaRnbXWTzEIGWbaLBfYXFKK0zSEqMxqDSKzCKAn+/EMVq9w5uclIvBCkqqyObfoqPLNf/dndvwcnNX61Qf/5gPfKz+hUD/Fecs3QvSkZtoyaDY5jojlpfDT89vSUFrfC8A/eCffA1L/jh/e+6v5H9bRmA0LzZCfJ8SgavrOv9Unp62ogplVVzuXheZU1RhidixnpYv3BnN+uXnsrwXgnn1Z/y5HzfNnxN43/56ZVaVavzIO79M6uULVLutuee/J5czcarVatpDrnZbLJbK8MNeg71ChGUGwa7vdMuvjowDMSSkBBVbVt+/eET37/gs6d3IqkwHlF1rUZjIfuYhWwaQXN3uapjGVhiLIByPLTsU9q4A1bhtbRozRBktE6LKAWQo8wpbCTS6doq21eccsZZ0Y7cvLy4uLC2yap9OpbmH4LyTg4MBgPwJNAQJo3ntkgquCHJ69mspav5JSAqsVrItKD8IIVFoGZ9HqzJLGmFMR9apb4bmIrWTfa2AO2ij+0BgzjmPfP2w2F8vlMqXQtrnnLWLepmmSyd25R83tpq011toJzdtNUVbVGaSSX7kx+C1IDTUY817eOxIYRF0hBT4oKKqekzx16RpjUNdMZzJaqR+ZxcxEZ5eRiFTPiLbm9aeqWtGEulres60wCvMVO88CafnMZzy+mbHwnjCmjTFTmL6/TohIRGOMULpAsEFFTxlZHWstaWn8ZZDASawKhMQ1PqVkcj+l8Pz5c+8daTKWSEhLXB3MdDoe0GmnaZpm0RFnDUTvnbMNGaih5TnHSjHGqXTlTinZQgasD1gDzvNQIK1ZpHzqYOJVWmsNG1Zi1jiMlKR1Hlx/x1j/CT21kQAwxkTNCSusLlUFIxKBH6BD72zj/NXFZde0+5QJmCEEdFvCPaRZu4mKzviCHVDeJLK4EhVJ2fp052eZPe970+D9Da9OGFUtmcZyjKgSG1N+WXYdnJPOm0rZJwqCjzn5A6osLDX9Oyuiya+gvrj3MwFadPpNRufxpOelxwi5lYTZG/vu3ZuHu/vWW096Ou7HsW/bdhp7LcLiy+UKJwR6lZKO43hxcaGqmmSahmyhJCIqMEVIBEYxF2a6wsIrTVTBpwORoWaDp2mKIXevwgs1RZweFpMop/7y5i2pmq+U0vF4VCXvWlFhpdY3prPMbKwTNj4lJaPGptQOw7Dr+xin28fd5Wb9k5/+uG3bVtO//aN/9dFHH203l4fjAF4aMyWkN2wR0lFmsmpUhDROlMRYS6V9qCmNEfKeMJtO860dVkvL+62HIc6tblCNezVHeiIaK2uMcqrDnIkDSWIM50QLZ2PV970tHUZVVYS4ALhYLzF82Cmfzy7kaeuvcA9yJjjnXVlKNoiIpih1OeDqSZXKQM3uB9MY8mWMYoFaGKiqlesxN8LMbCHIgEyPmopVYYlqFQ4qf4Xdl1TZMhFtN9vXb1//3/4f/8UXX3+xvVp/8fWv2fIUT0GCa02MMU7qnEvjtN2uj8PRJ5lSbpG3Xq8NsYh0bQZYN8uFFB1kjAnckZCiDPn7xWJhDIUwqlGjFFJmKI/jANcfgzpNEyJ2JCwNW4oaJQzj6J2DuwNSrZQWInCP4DnBwkODDA4W3jIAMmCFWETH4xEx//xd49Wg4aexBrhVKirPBHloQPxJUiloiEWkFUsAkbMpFWfDMBglsgTsqUCBVksNBEqMgXLSLGeuRbR0miZVmeGAZ/KmKUX6YRittTEl7/2nn36KHSGOE1L9/fGEHCHO/PDw8Oz6OsNPMTN8mcn5BtsTUWZLOfthvMlYZmYh7bouhWit1aQpRlAU8YCZF+DzOFTLlooqBZWi/vvHx8Nhp4b7vo+cilagOufGfnj16pVw7pq1Wa2HvvfOtUTMXDWRgTUw8zgOc+NZdeVQVK4FldAMXeX5wMxl8GOZWiklQprENn48nTCS1lrM7RwPEAE1w139we//dzfb7bNnz77+7rUx5nQ6+SI7WzHHlBJb2zUtJtXFxUV/OKZSRG+t7XwzpVjZH4VPwXgc2EBVBVSEmYNHqNfC8cB2gWv0fV9Hvu+HaZo2mwtVlaS+bZzqctEBHa4TbApT1cLONrBrTUmBqJ7LOau4AdjcRBkwNaUKRFWnEAG4p5S8zy03YxG9iTECjQ0hsKi1VjnPwJubm4uLzdXV1d3dHTOHENCkjqyDX9cuuv1+rwm6h9S27bJbjOOIYvY6E+alRdg1YAekfDA+KaUYJ4ynqoJE7733PjdjmKZpe7GhWQRedAakYp2A9cB7qnFBIdumTz75hIjevHljrV0sFoYY/HTgrd568DeHYfjZz34mIv/u3/01xOWJCEhu27YQ/aiPYNCqehgwh/Fe4HMW6L+BJQH7FdUYGHnnnG28KwK4knX2O++X1P9A/ZlxRDQM42azAYIGXLVt24eHB2aGQgVUF2qpBxIe2L8qoN8VUjBie5zKerdYLBIhKo6+sZ1bw5JDqSCbXLYhBEkKynY/jYij8dIB/FGpWO26dr1ePx72fd+vVitw3o0xoI0bpfv7++qcc+mqt1gsrp4/E5Fx7JG2QJAJ7XWYdyxboLTI94/j2I9HUoZAx3q9RhmNkA7DUFvgMpDoGIFmViOw3W6NZRB7mfXy8hLjw8xGaZxGYwzRFEJqmsYQ73Y7Mtm0brdbcNJxV6Bvo68RcFvMz7bN1TMppa+++mqaJtv4Tz/9VIVE5P7+/ng8brdbzNWHh4eo0SipU7SZlVIToKqwLR9//PHj7uHx8VFV27Z9/vw5ERln1+u1MfT63Ttrw2effQbiLYZ3GAbUKMA9QHqSjcFCBnJhygfZnT/4gz/48Y9//M033+wf9yDiGWO6blEX7DRNyF1tNpsUxRiDHAZmHWwRVkQYB8woXA6GfbPZABU9HE5IgD08PKA2KMYIap619qc//RmGjog2m40xZhyP6KnonLu8vLy7u9vtdvBgu26JSehcc3NzgyWwWmXVe6gQoepijMFaCxY2iS6Xy/V6jXLJYRi8sYK6zLYFyg8dJFeKxEUic9M0Tdu2/XG4f9h/cPHudo8f/+jj1WL1+pvXKcgwDEmJPYtICpGZna09U5SNrlarly9fLpfLt9+9BabTdR0PxEqrxdI1HsTGV69e/eRnP/2Xf/iH97vHtmsn0TFMzjYiabPZrBpu2tYYQ+Sdg96leGdjnDRrThIRKTOaVHEmLYrOIAgDTmb5YBv6uz9zt5l+WLyxnhF/872vWXMZ5eyczFx97O8RjcuVZK7yAegcefc8vhq5NCGXAnFUb19/AGum79EHdXbP/KE/4TPGmj/GGKIzZDT/4b0L0Qz9kBm3kkt8zcyLxdJ7n0iLjxdqlrdClpllZY33fgiTiGSiTImG9AkWfGb4vfezztDn2c9EdIYyeMbdnD+RPn2551nBrHoGHJxzksLpdFqsvKjc3NwR0fPnLx0bY9zFxcp3tpZKLBaL47E/HA6LxeLFixevXr168+bNNE37/SP6iDIz8kP39/dEtFgsqiTa+69VKKYA7xqFL3CecdvwLsZxRMEl0rTYs0Ti8XgMIcAcYbNIKe33++fPn19eXvZ9//DwABGwxWKBl1LVNri0EIBFNQZ9mnIUAw8H4oRUKGVIcsN2LRYL7KcxRjwyHB6MzzwQw24L+gLsP5zw29vbSm3GH1ZftA5OVVjCb7HN1YC6GNsOuwCcDS1pjw7i8qW8GLdXhi6XedkiEm2tpSRE5I1Fqn7VLYySxhDHwbExxMPxJCLQ30gxiQPtUfb7PRle+XVKmXBtrXUhxjqjFQXKM1YvVLoRg+Fle5952jFOZBgdzJQpqdStLkoypIasqhLntjiqiq7ZJneBYlU1xPifJtyDNUZUkwrWD0FdWgv0wJlAKhV3JiVSSioqysLGqLWW6Sxzgw+k+ohIpHTiIjZcqXPQNFBVlUxMy4+pykhlsSXw7zLIkhLxhwXdDFlDntVYY5QTuKuI0kmNUhLVTOZUYtuSSmM52wNLpKGxxhifxBi7vL58dr1s5LizbLxv286lxCGEqFGVkiadJo6DldiPw0RkOIfxKH01vlksFq5plclqroplI97ZpmmwBpKKKoeUrPd20v3Ya+OIqGMHHmkfJ+O4tYaiGGdc45RJYKlT2q7Wnm0ah84YEyZrrWdiToZVjarRPJ7OxhjX1KgmsqzGCEWyhlEFJuJYvbVkaVIZrP74t3979J5SFBF0rSMiUSa2OtO6NcapJoupQUzMohKh5mVYNDGzoaxVxKLCkZklJcxYFVYiNAkgzvxmIrLsZsVFTz6g2FtrVVNKQU1J8BZEmJkrjFip9nXjhGXH7iwkzPxhbjORUHQG54zGYJM2IKrn/DJaVhIjK5BAaKekpDbbTUYrFbJGVGIQxxpjsMZE4s5ZmYavP//buNstWw1xGsdjZI0pDWm0Yq8vNtb2p6l/PI7er1dbfrjfWcOLttOElu5ExiZmYWqcZ/Ih5KrYEEZ4+app0bSV0AT0BKGdqqqIElm2CDNEZJrghq6tNVmw0rkQRtXknJN4tNZ6txyGNIw9W6dkpqRpmuDjWseBpOmcMUY0GdsBfrOlJpQNt845bkaOfZJxHO6mU98/Xl9cLpdL/upv/+L/8//87/z3/1N/+fwkHMlZ4Thx55xGYm+SikgkI5pEhDhFa1mz+6eiIUW1ZGWaYJFSTKZpQ4rKnJRsKmraEh0nY3maTilqimpt49xKopAY03iRSTSSTEkhNO/GEPp+aK3zbDwZYRVDSYhUG2M4UQpxcsk31icLJ0ZVhciyXSw6bKUSE3RcSMiTjSYiJYP2ZR+e72TQkM0Ykwq6R4WjSkRRRENAJQ6XAg5C8yUjImpMboyGTcQ4eHgKdL06TCLS0UKNjSp9CMY3liiF2HjLmnhSa4mZo1Iwqs4LKUkw7FRYE5gaLEzOmZASMxlLkhWiLTOzsgo5a8koeeuX/t/+8R/91ed/+ad/+28e9jfugdaXm4WxYac2WWs8WW9XmlIyVsc0GMv7w845h6Jpb5yqsjVjcSh3w3DVdjEGbzwb1qQpqYg0ro0pJSHnGhE6nQZrm65bxhj7+3cTxlOxT4mkZE2LHGJKIaVIRGqSc86ysXgQSwvfwoWtSGJ1gkVkmLIbZ0u+Le/3tWEgszfeeDeEvMTq9m3ZeJ970cQYxUnUyIb7qfe+7ZomIztknHHJxcbgtFqnxHu41TRNzOqcSZQ0snPOe6Oq1nrvWxFZLteAmeawFOZP3x+JCKfC7lhDZREBElEzf8YY452q2kK5zf69JCVVUrY8DOP/n7E/a5YtS84DMXdfa+0phnPinHPvuTczK7MGVKEKIAlwAkSJzaGblDXVMpmpTe8yPcr0C/QjZP2qJ5nJJDPKWjKJrW42aU0DCTZICoBAEMRYlVmJqhzvcKaY9rQGdz34XvvEzbzJVjxU3YwTsWPvNfhy//zzz5WCYYzZnJ+rubbWiszsS+ecOx6PSZIjR2RCCil9A70RsbKlEKaYHDmRCAxn52tLDsFycsSMUAz9WNd1UcswDKUl5khgLGFpnRACMlgXrNy32y60y1XTt52ImKKIIZiypMIWVPMwIINlrm2BLERUNw0YAqFuHJQlQSwijMYiEIikyCEEJJj5C+PgjTFFUejpph6zjpU606Add4lCSM65UQIzCGHgxH2vuQpd7eofW4szfdiP/V//4S/9x3/v7z29fvKP/9v/9uH+LraHL16+WCzX6+Wq73tEk0CcoHNutVohYklWuZlD20kWnGGE1fmZyZST169fp5TmFlW6VnUSY+SyrBVdgom6YogsIoXg7+/vkWW9XhOR7wdIDCGlJN77qqk/eO8DLc9fLBa2RCRGgDEMZOuQPAIYY70P5GhZN5o68t4TAQmHYfTeE1nGWcectNRd8ayZ0azrn5m1NiZwEtL26Kh3YowBIGYoCjdL+yGzivNWdRNjDBDOz8+dM4HTYr0ahkELsRFRYkBmCR4RVmVJRanX7LpjGHrnXNNUc4I2hKDgjvc+pXA8HokKhe9lYl2h4j7WWlVf1W04Bu+cCzEs6iUBmso014sQxkN7VNyzG7vAyThrEIlsRASiyGxIEFHltp0rAaDvx7lk4QSA9kVRNMu6wsVut+uOB2PMcrl0pbtcLaw1H3304Xa7dc5JikPf14smShSS+SJEMAtG13W5WCzatiVS4Ds2TeN91P7paI2IqPebg4spuXV2dpb8JNqmUdy7z99BxLsvXrx1+xMRGnKlE5Q+jiGGw3an7Kf1eq11METaYCfVddk0FcAbkjVqfACAIZGhtj/q2kbEsi6Mccxskbz3wuCc9RzI2BTiOI5h9GobNRYjg0Q0jmMYR0QxRHVZMQMkYIDtdotEy+UypDSEaIwjCnGMxqAlartO8VlkTElC6BXE1DBeQXwSOOwPaiR7P242m+997/vdYf/q1SsQKa1zqgkuNLSDZv406WiMicKr87NxHOv10lYlACwL570XThYppbhqFk1Z6fYfR9ZUymq18mP36sWXFxcXrqoq43gMTms3EXSzKKBwebkJIYTki6JiZlXx5qwHovc8ZWEjIxChYRAE4ggGqbBFH3pnnCkNi/SHLqX08PAQApelvbu7GwZfVdX9/b3mFcjZduhTShw0P6R6ie7u7uH58+dNvej6dkJAbEVElgwjH7v24vKcmWMajQUAiDG4etL52e0OMcbnz+uYRCSen5/PXA3NPzVN07ats8Vms+na/nd++3f9GBLz/rh/5513uq7zw6glhgCAAstmAUjOudvuvmmaxXrVNMuu6/q+VYukxePGmOunz3a7g1ZnMzPZqh0GVXepjBmH4XBoQwiVceNxEGYCE30kouP+sFw2QAjAivKs1+uyrJXsdnNzo5ak68Zh8CnJxcUFAGy39+OYnMP1+nzsh+P+cP382Wp19vBwp6NaISwWC0tmjMM4+qqqrp5eG2Pu7+8731vnmrI0ZCMnEO3lk86WK3WfFqvl8Xg0henGDgAW6wVt304LA+p6vqclX3yA1tbHY0I0ztchpZCiaypNHS3qBhL7YVxUi7peSRJOuHCrdbkiL6WzRVGUhhDSzesvbl6/NA7vjg83h21A5ASIZMilGFeLujaG1mJdWDXVu995/vT505effPHyZ19UVdl68MEYosaVXRgTs4zJBAHrQvAsEFiAkGNiL9YWVihySir9SYBCCIwCU456UmGmyX8XBG1/gijCACygfBSee23ixICZ9P+YGdEqIEKEnEmRpNzBCWdWMB6FlTKVkZXprwAAU7EqWgY+tbQz/wmm0JgmalZBxhqJEiNrfCuRp7rdDG6LCExKmDhfkE4U+d7EWCd6QQZgEyKc6GRS/t8MGTEYMpCAJVprgWqUxKwSXiiSclkSlWU9sT6dQ+CqqoxFMNw0k/BRCGEYBCk7tImYo4gBKBDRpxBCIFOM45gUhBNOuUBTUh5iotM21ciCqMLOCG+yKvWLpAhVbl3DJ5xO/TqhQUEDVlgAWB6Ra9ZLAhgUAiHmZDBWCzeMIxsuS1c3a5AQ0whgisJyDO2+a5qGyYz90KyWzmmGhquqCCEsl804GqXuat1MAjytA/umNAkixJCsEYkQZez9OGdMi8IyS1m6qio0hNztHjRHa22hAoMwkTWTHsFd12leSjv3Kk9CcWGNfZR/EEIojLXWakpvuVqgyvdbyyyusEiAMHU01fxW8kGsK8rKFHi+WscYdad477XvyClwb3O/6xzOTKrKKSWtHwKAn//8U2a2toiRieTy8snNzSvdKcoqmNWfcBLKQ632riqtgxn0WbRMChFDCMolnwBlSUkmPJqZHTkOrEh6ggQIPk1qY8YYQG03YxhjHMeiqhFxVU7CKcaYxCJIgVOUVJYls5DFMAZr6fz8vB89ASEaFEKUlJLluaHoCR8TT7Il9NjrL0d0p7sXvppcmt5mUUGKCWWDJCBzmz3ILQ7nL84vMQJCs3YnZ/ibH9UnZE5GpfRV3uico5j3YcYyWJtozR+b7dR8hTlhpaQPjWNjbr40SSS8IeX8DXuFlMeneMpjSmr+4+lTM7MOMBEJkSCLMAunFMpqCQBlWa5Wq873Wgs/b1RMgoKS6UV934uIiiH6fgrIRSQKi5pUIkEUQVdOrXKUEAQAQBYItefmuO/Pnlz+j/723/ziiy8+++nPUghEtKxKssaSMaxNMAuyRomThS2Z+cXLV2H06mdDigrfngJJGtBaMihaIY6gnRGmEwqzZqsIoR/9+++/f/X0afCTcZd8zMxwhs0052mtssyLZJ76x9UIebUknoO9SZIJkBAl92uCzE9+JJB+7TWrfgNgOmnbO2+E0xvgE6bnyf08ZibhsYDm7S/9yjyYj7cxj1seBABgiacfsDlJrp0KADnGCFpQz0CAKcTjfqdYdu9HRMPsd7sDgtucrTNEG7fbbTfw8dBvt9vnz56u12uR5L0fQ0REFZgWIgWM1KrqS/nNjozWpygnYqLdodoBr/GArhBjjJYq6yOkrBzkfSyKou/HECHEFGKHiITGD6NP0RgnnAyBNWqyyLlSc3Qs0bqCOXotJEExmg5t26KoIJdccOK7h10/hvXZxYd/9EeffvHib/z9f/Dsg+8dupQkOEs+Ddbavh+MMUAonlVzjJEBCGKaRU4QEQVDisAgQEAIyJYMg6AwIIskBBRJkdmAFM4URUFkb17f9X1fVytA8UMPwMZS8JGMMdbGXBgRYhxiFGFTFmSNqhZFiQaBMXJIyIJTp46TFF0StEREQBPFmoiQiCSrYZw6NW++jH2j5IVzKczpGpZH1byT1ZjxaPW3UPFuZs4KVqcbQU+4gSMit0MPxtYWUgwMPDVwRnWOkCc2PLNwkgQAjpxCbCKYQBDFIgqCZBsDMNXJEGlLwHKxWvzO7//uP/yH/3DXPxDJarUax/ZwOOgJbSaNXUBI+iAz322mAvl+SCmdn5+bXFYPWVCl73t9Iq1glVzmCYi5n0ZUFoCm7suyJJqaQihZb7vdm/zSUdKxNc4iouo26KVm+FjrZ/U+EVEQjFafIOqu1BlsmkaLZ/P5TqeGTudOre6c85//N6U0gE8pacehGFlP6hACAKnzpM5lWZYztT+EoMIFzjnEXJdw0mRSf3RGmdWZm/8TctuK3GFycp0VyHNTx4+pmo+zDppeU72u+WH1rtRVUq83J5WlqirCiX4CudGH3nziN8gFp68QYgihbOpxHMmaqqqO28P1e9fPnj2bU2tFUcQ4lf5RVp5hZsUlXVUa5+LUh60bhqGqCz3F+r5nhGEYBCZXZNEsV6uV9mnRdTJ673NXLpPpwzErrrIkACCcqBBqXUWEJRE+enHz/qVcfxazhh3kInTI2DRMCFc0mUGsz6gaDu9+8P4Y/D/5Z//sd//tvy2qMiHUiwYMoWBRFIimqCtmts5pfjEAIaKyV3RfWGvRGhVrFpFhGPb7vR4Kfd8repXNC1hrnzx5olkHJUjOog1EVFUVhwgASpRT8THv/Wq1EoRhGNbrdbVoYvTKT8dMY1ElmcViAcC+HxDxeDzOezBljTxEMVNy32izdR3Dy8tLJdTofpzp0iF4YyaOnhalrlartm2Xy6XCuyJSVQURIaAegiqzrppIIkYRUuUYFm7ipcYYrXPf/e53z87OXtzcvnjxAgC0nGiOHBDx7OxMx1yyKohzTifZOTeOfUqgP6qLZw4LdSne3d1VVbUoF4iIhtq2HcdeENQQscA4dnrsWgscEyEyS4ynVR12t9vplRfNUhmgSi/S8QwhkCtWq5Vuz3Ec4+jt2Vnf9z/4wQ9+9vGfx+TrpjHGjME3TSWIMUVmjtErsajve6XNEtFqtfI+DsMgoJH/GEKwKMfDQeFgXSqZSVQqHl0Yq3ZYh/rLly9SSmt6u3YzM5euQESlO8UYtYnx4XAwuQ1vWZbWTkRFEYwxqLjtZrMxuX+ArjSFuRFR/SgRAaAsS0Kgmgk0LcLb21sUuLy81JZu3dCXZalMUiJKKZydnR0OB2utEtL1pcZQCfJPLi67rttut+v1UnfW1dVV5SoloKnNnKlbIqJKJsohMG7qcHjz8qXSYBUiv7x88vDw8PLlyxgTEX77299W/62sShFpmoYlEdHNzU1d1yokoqRgXZBauoGIekLd3Nyk6J2byOA64GjIGEP5vOi6btZXub6+DiExs15ZsievTFs9o3WT6mQ555TYruuBYcqSeu+F3Wq1OhwOl5eXrir3++PZ2ZkxZrfbjeOIuFJenhIp9OQ0xiwWi/v7eyJ4ev3k+fPn+/1+HKaTtG1bJLi8vGTmh4cH1TVSGeinT5+O43h+fuGcu729LYrieNwXub+rQvbbbfv06UYZ4ofD4csvv0TEb3/72+M4IkHf913XRT/pAutwLZdLAby5ubl92G82cbGYttUsMZ980NWlFLkYJ+w+pHRzc9O2Yq2tnFILfdMsDoeD976uF+qoq4AJc8TMC4lxIuvp4OvFV6uVCtOPYwghXF1drVar7XarlHkoCyUFE9Fmsymbum1bDSR1Oy8WDSLe39+fn5/jySvGOAavSaO2baui1EqOzWbzwQcf3G0fUkoMUpZlvf4mmbgQQkA0ZV1xlKZpAMg4WhaNWEKicay892erpQEsqWjbbr1Y/PTDjwlluagl+KZZVEXpnEsSialeNFVdf/7lCzRWjF0u1/0wxBito6osl8vGFcbWuFk1Q3dAxP1+/+r21SgJOI4QTOm++60Pnl5cfvr5559+8SUTJmAKUxNFyCVlDJE5RhZrLCGxJBCVktN6yQQn8g5TJSyCTMWQs+6DdkUhJFK8YepNB8CJlacszGRMrgEm3TIml3mdeg6zuTh1k+QEUNI35juaP3A6Hfp59eicc6pBqk71qWaEnPz71Hedb+brE/21P31VixlOwpA5np8K5zmKJB3DNBVlTigeUSoK65xzZIrSqgwCWoU7MU6KBDObQcSAUTFYQ4hgxBZFISWVZdm2rfc+iXbQIQBAMxEus8TsDF59TbrkBPX6+rOfjs/p9uE3W6+dTpMwgyQBQpCiKBQ+DiE0TbWsloSJJaUxpjQSGGbWWoeUUhy9tl1NKX3yySdKC1A3sikrEWnbdr25uLy8bNtW1XK+CfpQkaJxHJtyyczaekHDRnXyteBDfV3IXcGZueuOzrmmaeaaeHXYmqY5HA7H43G322lvW4Up1M14eHhQ2aJ2GLXgKYTQtX2hUlFmihEQcdEsUtaTBJiUc3gqhQRrbYJH5WWTO6WpNTPGaG/A8/NzFf/RS+l31SfUNgbaWFgLYpxzqqqv/9DNOBdzIKa5zuNw2M0kG3VE9RhVpH4iPRjU4dLPIKHNHQjU+Y/y2HoxZZJuJqCEIvfgnVPmmoo+Ho+Hw+H8/LwoSxhTCAkLNMYknywBEaXgSWvBdAciPtZryKOG5qOEDTPMnuvj6j9Ba0VO/mOWAoGv1mhn+CzO+2cOe0TEx6laREkfcgIfzy9NWMGJRZu3zekn53cQUZTF+iYaeIoXY67bxROEHd+EVOAkRD8dma+8iEA5padfwaxwrTb98bLy+BmYElb6V/Lel842TUNEibkwVv80L9AUmViEBREZmcgQILMQirEmRgmeLWBKMQmgNSjog49Dn/peN6qIsGL3aHQzex//F7/yn/+v/vP/Zd/3/+//x//zX/zT/27fHhlSNwzOGMOAiLYs0JDXOj4AZm53W0xSaCMpmqQ89fEtUMKToRP1nAlQJox5rotHFEkAmFL60Y9+tNlsdsceNA8pwm8qmZwaXJGph/C8GHCa3a9W1hCR5MmlE4WK+VycgRVjrDHfoM2NgIicSfsKhudrmtOfmxfb6Wo0WXJUcxLyzT0n6aT+KD8Tn8qXTx8TYMXiZFoMamENaKMwxYlyBthQYtbyQwTY39893L9eGRn6NqaerAlRfJCmMmVZQmI/xe+xbftjP8wwEDM3TUNeZSgDoQCZGCMaSlnKM5fTPpJeFRFzk3rAOKFOk3A5mBzfkjF934vGsfmlzgeZgplH7xGROYZJBhoIwICQMKlIcUzMwjHa0g5Dp1beOWfMVKYqufyzrhd93wsb61wMOHaHZVXdvX71e//in/9Hf7+4ePbO3XYHZKwrXEm9H52rRDDFaMmRoEw1Iek0xx6FRYAMKRt9KqdiIUlD8lVVO2OGwTtLV0/O67KMyb9+dUsQASjEzhhTlUYgxTgURR3ymWrJGGOSyvBzSsJ+9GVVgIGYgjAwBCIrooT7ydQYAJXrIm2ASqK1IwkeFS10hb11Ec69NEWR1ry17YlyPTMDc0oTZcxm+SCN2yUXAELevPNJPH99PlCSlaIwVpSQLiCpKAxHToyMoocSAgoAMluZFO6m5eEjALiqVBkEkASzTwwCICyCZJuq2nWHj3724f/5//J/en3/anXWkEUk8R71XCciganvOZ10pp3PRL35uq6PxyPkw+4Xf/EX33vvvZtXr3/84U9UWEAIpxy4xHGiMeJiUYcQtPFF37dzKTeiUYOszkFVFc65qTNMVg1DRAJMMfnEep/6vrZumH0gzKxnyAeNMvXmoN2cCDebExluybkBEVHgT2/mcXZyv1YFdIIEY0j3LKLRoPHp06dqMhQFyEtlQtJTSt4nTUghSozTTfKJ/szcVePhwasiKgDE3M5LV6xC4cfjUcEFVBpCdn20RH329vSpNcOvsJT6ZzlgngbTZA1rydmUSffWEsvbU486brpsmJMqxJ2fn5+fn8eekw8TPcBYyIVHqKJPia21Wf1fManiy5cvRt8PQwEZ87Vlofi4cg+d1eZm0+0dj0ef4lxPx8w+jACQmJEAULTMS+kb+VwzKqZmMq8ZM085nmihIKIxqKq4i8Wiqqrb21vIYqwpi6ellGbKhjGmLMvf/Ff/evyNf94P7dn5eUIIKQoaQbDGFrYmZ621XdfFENQDVF1avbKIqFINifR9//DwoCtKIXL9zJz+L8uyLKd+6EqmizEqb0UJIHpLWuWnkJkCcylEEUnCXdctl021aIioKoqiKjW4ZWZnbIxxHHtrbTJGo0GNcGaehDEGUWZoW3eTHmp6xCibWKbOxlJV1f19JxIWi8XFxYU+iOJiumF1HLSmQQmt3nuVPnj16lXwYbGoZ4+iKIoUk2qM6Gi8vrl5+fKlZ8XXiGjihqeUNLgSkb4fvffaBDUbcJ7RVX2oWbREtWUVDz07O1MpA2Ds+z7yVLRnnWvbdrvdnp+fqxV6eXNzvloXRSEAkqE9deaVhE5EwqCzFmN8+vQpIjo3iepKYoboyBx2e0RcXVzcvHp9qKqri0s1gH3XxZQIUEQqV9ZFTTRJl6pmS1EUt7e3WqyKaIZh2LfHsiyXy3XTNJD8Yr2KMepWRcRxDOMYlAYVQrA4pUXv7u6IKAovqhq/ofSHJe33+7Isow+2cFVVlUXFzKOfmtQZY5Tlul6v1SipEZubSQ7DoOt8sainBEPWulH7pB6Xc64qayLiqb8MXF1dSZrYMKvVqmrqw+Ggke3V1ZX3k1aDiMQYYpT54oSoaKNKjmhD+avNRRQ+HA5bv724uNCKmZmnb4xRYWKVzkBEU7iu69q2HYdhGIazszMAiJG1xuLZs2fK9FcvUQNRInr9+rUqioxj1Fo0XZwiomGO3lLf90+fPq3K+ubmhiXUdZ1SGvwYs5yxWmk9JhRCVf5aSsmYKbCfOiuOo/6K5h1DCH4MelfOueVyuVytNKHVDd2cPxOR0Y9FUfzCL/zCGIN2UBzHviiKd955R2ssQghhGNlOGVntDH91dbXf70MYZ/RBCogxLpdL3u/H5FVLRC3D5eUkWtqNA4k2TJPNZtP3/dnZ2evXr40xq9UqhMAIpoBD19ZF2bbtarW6vr5WW912x6qqFASvirKua+29qZbz7v5hGIb1WuWww+eff66IcFmWyMKSmnqhS1H1srpuuL+/XywW3//+98dx1L4FduoWa0xt1IWuqkpFP5xz9aJCxLZt+350znQTTb5WPpMuGAUmxjHoJhWR9XqtajZ1WaxWKx/Ddrs1BslNaR6dvrmRaQpR8wrL5VJPqJGn5EFT1ZvNhgSISFP4TdPcPtx3XdcsF93QV7h46+btumFcjIhY14uEyZUFM4+xG0JX2kUYQ0qSQnz55cPudveXfukv/Nqv/uU/+sM/HY6HzXJjQaqyKsguFzVZczgebVmcbS5++uknrqySAOAkNoWOrKWyscuLpq7L0bQRuR3aTz7/JCGHMRSV44Le+853ri+uLqoFt8PV+dlnX3xeVMXB92M3INAYPBkXwhgik8XIEQ3G5MEQ2QlokwQoCEYhyyy1pyxnNPiGHgUhsqIfU2RKjxErWGORgvfWuRll41kiCVROY/oyAGhjKH1H3jSTStLDt0UW8iZgOkMxIrOk7HQigLYpPomgRSuGT/y0N38U3/w3Trzp/OynN4D4hsrH9F0i1RBlBqFJowlyWzENPB0ZBC6r8uLiXBPVmiwHI2r5Y5wKExFRWS8iIghEOHGTlYXj0FoCYEb2YwRAABZ+Q+Tz5B8sYOAEWHgckzf/cwY0vjLsjGAy2EUEQkhfUe0gYkEAJIPMGljJel2XTTWO/eCjs4AEhjCMcfdwbwuj4KmyAfqhP5xkc/UsIyJnnfq9RVUpt2Bm+H59bQCAD1MGMfggkoRQKcBE1PetmtDThC7n9h4AvNvtNL8VT5rEMrPaUj36NZmn+G9KaRa+C1nn01r78PBgrTWWbCzattXM2TiOKsShosbkbAwRcaqxUGUBvSV1y/W8U6hXDyZ9QD0cNbmCiCEEbV1bGAtF4QgX61VduKHtNGZ5eHhQzQ0VfZ7LzsqyNlMfjqjusc67ms1Z2SPGqDfPuU+YPr52fVN2jjEG7UQrma2BeqFaSKRB1uvXrzebjb5zSjfRp66bZji24ziGIQiSMYZT8N4nTsz8Fb35r3YFhRNglLKIiYZYSprDqSFTEsGZkoz42HItA3Gc357C2jmom2CR6SKijbS+snngpPVWjh4fmbOnS/Zx25ygvdP/njzX1/fhvGlFhPmRxK3GSOSx2d0Mt30z3KzYzmOOcb4yqMqoav3O4KPwTHxV6ixlMSZ9UzMbfhiLohIWQrRkGFPO0mVZEkkioHQe7Q+OJJSEECwRAgiRK0pmhsQoYLR7IiEAMGBk9qNHwe9++ztj31sCCb477CWEQ3s89kdnDDGICBoShJCSHkKlcynEZVlziph5YXPcDgDqwVtU9UCFnBBQgBkn0iEW1hqUlIgRirr6he//IpHlE6wHMmiFORR/Y8Bl+uSUnFCq6YxxwxQhWyRNVQFMHZtSYNAMYu4amMlTp0fUG68kwKoBkzMl/Cbf83T7zOtWTu7/5H8lpUTfrKWFJymf0y2jf53ODGEDqPtBH98ipZT4EexmFkbU8lsQIE4pjL6ui09/9pHv9rEUjiMZGofQh1C40hjb951BOR67QzsWRcHcHg4Hi2St3e+PrP01BGKMKYpTQrNR4h2LJGbGKfc1dfVRYEJtlna+TimRM0SEBo21ZDBxVBJK8FG9SZ8ze13XG2MInGgLJYIwhphCWZb0KNHLhlRbdkREERzbQcdNw2bmARFj5KZpUpSkvciwAGJtyBZ9Ksvy3YvNiy8+/ff/6jdXF0+OIbA1F0+v/+Kv/kqqcH/YlmVdl4sYk6BozcQM7xoiVmFugyyijWiAxFkb/eiHAYwIByZRcv84Dl273+0evI9IxlhDiESQODAHQWZOZFCNbWT2fgRAIQJCSw6yuDMKuMKSI/GQUlIzIsJEBkAiizUmyiSKnTcUxRhRJnl37U/41pcCeaA9G3NDzry0RN83iMwTnwWzfGrIkqCSScGzfdZPmsx6nt8X4HHsmqq0CMKBILGPzrkkwEgJVdUDrRotYaYJ9gohqZijYwtgEwc4SXGxMIgggICMg9/uH/6r/+b/9fkXn5w/OYtpRABj0BSuwsplEWQ1wADIuZWEDkXIbZe6YVCgU7tCffzxx8aYs7NVVVWLRT2Oo3YxYp5qgNQEPX/+XItMZSp9QHUOQpjE5TVKUX9ihoAlizhpfK44KT0Kmk9Y8GnifbbA81xApmnrCSVvosyQe3La3CZoZrBqUViMkcja3NBP4WwAVAlU/YA2ytjv913XzeunLMsY/fwgenvqr8w0KOUoKTowW8i5oZDOY8w9Y2fetM7LpOZJtNvtVB5KLyKZjqq/BQD6IDO3Wj1Um3uSxBSUCKy9mPTKRemMMekb2g01i8YvaIwhhCApBk5lUfytv/W3NpvNETrfex8nwH1uIGyNNcYImBjZlUWMEUCqZXV3d/fxxx9rNg6n0SZU+ddFPQsF9N0gIhapqqqiKG63d0XpBFhnXzJdlLJm3LxyKFOB9J057admVh/HORfCSGQXi1odbp2apmnmXlV6VxNLOiv2qvNaliWxVIWFwo6JU0q2cDHGdb1GROUrKI0x5s6QzJMYuiMzjl4dX71tjS4w5/A0XaHz2/e993G/36srr6VdWuc+5yZ1276+u10ul4Wx8ypSwb6+b7VuzBQTz3rsh5BiYd2yWaj2rgoEk+QmWo+Sx9OLEbStxTiObdubrCGuuHa2S0ExO0WT9ZFn+nlKabFYKC9v5uNoXkoBLM0B6FwXpogSJ1zee10D2+12HMf1eh1CijEKYVVVJMA8WXutDXIuiohyP1PWTkHEcZzOR306vSV9EF1vJhOUlHfTHftxHI3BuS5hvV5rwYSCUBq/dV3nTGGttSQhhMTIcVSSEQPH3GVeg7SmacYxxRiLouA4/UO1F89Wa4O0vX+4v7//9V//9c8++dkXL1+sVivr3OhVOlwf0OssKCbic8MizXKt1+uUEnMksgq26jMul2sAeHh40Gma7UCG5ntmfvr8mbXWfUMf3ejjYt2EEC4uLlSy9mG704vPLFo1v23bqkk/Pz/fbDYzx1wTtMpKvrzcqJXLK8TNCz6llDgSGSAJw1jXdekKfdLlctk0TeTEzLOM47RWE1trgwRdGMY4TgmINPyWxBoV69HQLBoiOmwP+uA+93NWuFZt/sXFRUrpcDiUhnQfnS1X9/f3ISS1o7qwl8ulLm+tS9B8lSYD1Ao9e7ZQ8Lcsy6HtFIRVVpcS4ZfL5fF4bBZ1CKTu4lxq07atgtqISGTX6/O2bQ+Htq5rRNzvH2a7MRt5zu0lZjMlIjHG3W43MZ1TICGV95m0fYZBu8NpnC8it7e3ZVluNpd6bNV17WhqkzCOY9cdm6Z59eqVWsvPPvtsvz+8++47wjCO483NTdu2i8UiYNAihrOzs81mc3NzIwy3t7fKkUwpacVGXZeHw2FykJzVLgjf+973VqvVn3/0U8XZNbuzXq+dc4vFYrvd6oG43+914+8Oe11jy7rS1LgxTv+RUqpcYSwBTo6ZslbNRBg/Lv1Sx20WV93vt+v1uWIWRKRSznVd6nydn58DbCX3a1Efe4oCctRcVc1+v1ewXiWtVf67rmsffN/3RWEtgoLUmkHU9cnMZO1ut/Peg81ZPeaqqjF3dUo+lGV5fn6+3+9f390ej8cx+Ga50JDnrS9BEEJAFMLAIaRERJF8Eo5DLIpyPLbd9nhWrf7Tv/N3v/+dX6iL5W99+eq8bDaLZfKxNG5R12Vl+8F/8unP749HV5dMjoWIbIrRGMcSyUC9rOplcf3ek9H3u8MQ285U1I99gHhxdpEid+PwxYtPSwMrkZUtHoZ+XZceKSH03aAnNQuawtTOIpjIyfsAosgvp5g0CAZAwfTVqmsWgAj42NI8P78qVPBMiFPsA0QiMBLFEAAACWMIlDui89fhY/0uT9eBt6E38yx8/U/5zUfgOGcoJ14wo4QQJnR7ihNg/mK+969y+06vn7/wVTJv/pjkVjEnLDECAGBAkATaYUf0sggswIBWnj+/3mzOyKAmZhS7gFxelqa+WSAikyDe9OyaMJybbDu0UDZllBhj5JiQrMzgg4jkAZ5ujOX05ufL0psMvPl9BejgBD2QCSQRjaXenEYFEAyzQGJAbYAsm80mAacUCNA6AGEO0Tn3/PlzNKB2VaMAjYy0EEGT7inLFpupy+vo+4EAjLHJGPsNTDtrijC1NzDGWLWBmkyao5uZhQMZQNdz5Pr6ei5w1AoSJfmKiOaitGOhWjYFmjE3UShzXbWeTc65MQZOkiIzStf2u+2ecv8J0NCGJ/aDtdanqHQck6tONRJR0DZm4a9jezDG8ElFvobMZ2dnkFgtKgAcj0f1V1OIBlCyzrK6NHr6D0O33d5r0DczjvVbWo1UVdXxeFwsFtrTQsX09NjS/K6BianDzCis9cky9aK3kTmEMOcGROT8/Fyj4JmyrZQdVeL2uxDbUT0o66wD1/shQDCFQ0Q706Z0JyDyV9bxiZkQZZ5+HYbLwKtM1P+8vxEnVdO5RAFnVR2OyjjT7FhGHZFgWkxfMSIzzJ3zA1MbqHSipzGbrZNbOtlNNGtAq/yNciIe00eUOwgBkLatm/8kopDBGzTYt+6T+YbhdIcrIgkJMipK8/9OmbQ3c1MKZRIBEGWR5RRjiHGxWL1BHDNGmGNKAkDGEMGklhoTJDaAxoAIsIAyibXZboyREAtrtFtjimIMGmOTD9Vi8cu//CPmGMa4f9gWhCxcF86ZJSTmmJAlETCCAozMYsmQgeDH0jqA2QQ8EuTVZswwNAJrMhRRELQDmxKNBQBi4Kqqnj592o8DnEiRnJ4HcILb6jySTNDMNGvzgYSgYC4zKySNp537MlFRJNGU2Hw8Mukb/BSaxFIQsuhKPjns6aLVyyrkdLpa1NPNt8oaEb71hyTrM7zxpqTcnEnXJ84PrsMEIBH4NDYmIpMbHIaUnC0JyQL2+8Pnn/zMYhr6FlNw6AInAHKu9ON4192XBhBxfX42BEjpLqWEFrWXHwiHEBgU5JKmLouiSKpBBeA9p5SqspzRHGttYSbNzTG/AEBx6rnupus6PwwpJT+GEAJqBVluxiIzpQUF0YICZGmqtdEkDwEm4RSjmhwfH1ucI09dg+M43B3b5dm6LGqt22IQPwZr7RiOVUqbRf2M+fDq1c8//NADDByb9dl4ePjge79wubm0rmLElCDGYJARDRntmavkWwKUpLCoCSLAMRFQ4dCINYXxPhLjoqli9Nv7B4HkisoVgGiTGE5ayc5A4FzBiZ2xqrdEAMZaIhpDMNaIiCGcYYLRMwDYKZmXtNZEieMZeQiB07yPEBHBWOPUN/oG5ZjZ/E3JNs4qwHSSfjfGKM/T+zjXqOrReIpmzgtydhMps2shG3lDwCmRHyClH//pnxZF8df++q9vj72q/SQABkJgEiBkgxAFRMBYqzRYNRQ+BMCJp0lq/VgNIAnxFy++KBuXINmSyAgDiySfwFrrbKE2Xl0Qay3nbr/zsTKHsnVdI4sm8zVZvVwuIXt+ZVOruRvH0ZWFHvYhhNv7u1yQi2dnZ8bgMAzjGGYTN7e6yke+OfWh5/hWx3l6Xu8hl8DLxK2ICris1+uiKO7v72OMjx2xckmaPBZzTL8yY9Yak2e4yuuNAUxwIWWKeghjmioVJhbMl19+Oftw2X+dEoTKESAiJTZS7rem4bRyn1NKmi2XTJ7N65OZp/GfsQN1euCkmkqpYYqafQXgm/n4koEe0fruXDmRUiI06okqdF6WJRI455rm7dX0KSbvPYNYawUhBb66uvrggw/0hsuyJGTt9IUI0+CTLvhHQoo+wueff/5wv5uspXPKEOnGYaaxi4guIUQMYRyGQVedPo5MzOXJfVeYfn58yB6Rwuj4ZqtnnkjNyrDDlNKsWWGtVfgJABRr0Ivrs1Dm16t9HseRpwZH5EqDIkVR1E0TWPv6gkmQUjKABtCRQcSAWjAOWj+oJoKZtZSVmVerlUhSyeaU0m63AyDvvQ6Fuv469VNYzuxzGwCNdl6/fl1VlQFsmqauy+vr6/1+f3m50fhkGAYwU9YBsl+x3++1KjPGaABnBopOFtopkaZysDw1kBh1WWLOOiulWmmAiiafnZ3pwOqljDEPDw+zMZk3clEUShooikpEXr16NW//spwKKr33o4he1tqi6waFNdEaAyggLrd6I6K+H/u2m+DLqXASACBG1t+dIc45l0ZZeEFB5NvbW03qgEhdl64sZkrp2dnZcrksiqJvu6qqls1iHAMgVEWZUnKu1BZh+mghBADUxoPPnj1TDtTxeESUvFsZRcI4FEVROHs4HPRbzaIauuMwDMkHaGDRNCxTVK/WY7FYzK0gtVqWGbR4wrppZjXpxccOAIgm9RK1PMaYWUlDBKuqvry0zMyCMck3dTQ6Ho9yadfr9be//W1m/slPfmKzRE+IXrdGXddzubG1drvdzhxeNbPGGOVi6+AXuSumyVUmaktjjOPYBk6OjHOusG65XGqF1v39/eFwOL/YqNy2iOz32xSiApEsTEQ+RaJJ9KbrOlWf0/h82jW9RzLKuzfGKNzZNI2uVYVileYvIhZJYfrz1VrZ0HouqFiN7jv9sFKVD4dD27aZntZrJk8PAkvUNE1KSa+sJv3Fixd932upsopNqUS4iKQ0+bq6aCHrCGlFsHNOedOzrbu9vW1bX1VGUW8iIjREtFqt7u7uXt+8Wi6Xq9VKB2EcR43S6+Xi6dNnRDRTxrTfo6qm9H2/qGqXmxNYazebjYrDXF5eKui6Wi1jbgOoGi/r9XpZLznJJJ6zP3ISRRa2u4dR3QZTeT+kFJ48eZJS6sahwurdd99Fgn7o9ofd9rBfLpdnVZVSOh6PVV2KyP39vT7vvMuIiMg2Z4u5wAIRN5uz+Wi2bsqg6zQ5V+bSkGK32/3Zn/1cBDYb986za73D+/t7VZ8wxhBB1x37vi2Kol40+nNPnjzRw1qjm6IolEmtealxHLfbWz3iFa9XEF8PNeOsUkTVzisZUE8Z/UfyYbdrQ4AIU34OEBeLJSK2h2PXddoE8smTJ9vt1hhzdXXlYxiGQdftWzfve9967/Vyt91u82EHXddJoS0i2HedZfjg+p3/3f/mfxsP44d/+tOf/vzPqA/vXF4LItYVAZ5fXK3Oio9++tMxBLImCQoaEQwxAWAIwTpYny3Wm8Y2dt/f2dIulmVVOD/0+3a/XK8unz5hn37+808Px123PktFdb+76R4e1q4YjbHXT7ZfPhhjPnjnXVu4hLDd79qhb5plCGG3bfcPO/YjoAFQIJi0CB0ACKfKP5yapmimeVbyzNKRBoVZYhTM9GeNwwEAcbPZGINa2BRDsM5xhnxB3oAs5E245uvwyGkUACeB/Nc/JlPRlZn8TJgyIiklUJpz7pb0Zqz9xmXnE/PkTpSzqQHII0ypb4qwRpTT1yEPFAqAMAsCimAK3lq7Xi2ury8Xy6oorEACIQCXUuIkMfqYhchoqq4Tjo/UbCTRYsspFCIxhALgnK3rsu9HTonIcu4fCADKVZ/daY0vTh/w6yjByWC+fcxPB4dPGgk4WyK6IBxjBOKyLFwhwzBECQwSYwSEpq66GCvrfvjDH22395999lnTNLq1G9con7coisVioVqCzBxGrxXGGjlaW4iIMl7fugzSRJxFQlmt1glE4WMAILI6yOpiUe6BPDvJM1Nnxgz1T/qft7e3GlWp8NHMS9BhVD9Wowk1HTI+Lmy19poDnkF2iclkFTjtmh4f+yST937SJ9AIPHr1GGdYY/bDNUd+sdns93tr7WKx0IhJrzbhxUG7gJASLHQEFPBVz0H9YbXDCnbr0+mJHHMpHmQ9jWEYFlW9WCymCCsznOYVpZWUnF8AoI+jacIiN7M1xiinpwt9U9eLxWJ0o4/Jtx4AFotFQnDO2aynMdFeEKfCtByi2HmVK8Kl1fqUdQAUJZyhhwyEgUFSgVwgzdTIrGUxaSnIV9tlTqkfeBRxP90kehszfySlpPc5wYWPmPhXcWp50yye/ukRHD956U9j5iM//jrADDfPOYS3bpX5pYrVACgC2hHxKzeAmi2cn1G1m1lYxBiXmEOKi8UCDU0uVD4tKPPaUkpKSxQRTklNiIoRJ9EYT0vg0ZDTaVZes3OTCiGwALIBE1Lo2vZ73/3OkydP+r6XkLrDngQgxoLIgkspJGAgNIgRhZmRhcjEYbBkLJIxJsXEzNZRZLbGImlrARFFb4lUzlpENHdINPX+1HQAEfk4XlxcXVxcCpF1Lp7QlufJksdSUF0o84QCTJBQzlIiSGKFFZR5KyIGpz8xM04y06DFoZCm5YKIpzrIpy+tMdFHOAXU9Mw9WW9KeX5DTFkyozADWIws3wz1wZwNmv8xI0T5P2dKfqbbK+E0xpzGRBVazdkal1JyFq/Oz/7db//B2O0WBmMIyCkEIDKFLWKMDOKsJeQE2DTN9tV9NwzGOGudIWetHQdvnC2M8yEYM5ngoQ8xTcYXEeumIURmVidSALz3x+NRTyCNc2xdAGirTxj6XvkmpXvE6Ivcz6cqmxBC4lFxonHsVbdxDJ6I5tKwkCJzjDFqKqUflN8XLRIzK3SiidYnFxswlpk5ger8GmOa9ZUf/e3t7Xqx9n3b77YhMTr7sNv//v7w+Y8//M4PfvSDX/6VxcWlJxBDRgBAEKeuoJwgouoBGeEIzNZgvaiM8N3r+5uXr4LvAOji4urJ06fr1TIWxeD7BBIiGwJtWZqAyJZgsPO9SBBkEsVYyRBYZ+vKRs2ic0reI7gCLQMlZu2JOo8es6QUU0q2cIjoyEStL5mAFcjG/BuNGWXhAv13ilGPA0U9Tu0mEakxm9sXIBprrZJcvm5p54WdcqU/EZ1VBgX39zfbu7v+fvtytxMff+lX/lrKEvR6mgSJdmrfrWbQz1YREQ0KIhESTtTzx/0Vgc8uzv7Nb/9WOxxW5wvjYLvbrVarFAIyqDWQBDAZh+me59ub08JzrVZRVxJTVVU/+MEPRKRtD3MwPGGyk8xxLAqrcZq1xGyKogDgoqg3m83h0CqaFmNcLpevX78+PfUkdxBGRM1XX15eImLf97NqhEbpp+4jIoYsVam3rc0rQkgiwAwpyVcYH/qY6t/MRD8Nqqc+nMZ4jzi3t8rD0vd9Wdbqcc585NkiZf7UhLIpGKRfVJfF5D7LiKh61pKRdw1H01QuwzMuph6YPenyEWNUOEMtzLwefG4/aOei4MyPmGkOaq9EJEkiotV6KSIxBQGJIcUYK//2SqYQY+CUc5aimH7btmk9SYjGQqJMxzQRERQInJLQo6+pGU7Tdp1z7snFEySa0EznKHiBCQTBOeEBE/y03W6X56v5cXTc9Fl0PNXl5dzsC6YOrkg0dZiUDFI7ZwBMnCSJ8bRbmtblIaIOl0I2GaGmeTr0DAoCReFM4YioMFMyzLAyLids2o8eUYYhWGvbodWL634xU3njVKDnnLu4uFBf+XBoVbFNMiw7TyjmfEbK/S31paBSWZYhjGhovV6KiDJqdYWIiHNO9bVEEnNk5r5vtVdMWZaKietlEZERojCliXhFRMPg5yFSAAVyMSYAHA6H9Xqtqo5KKdXPKDSs6VUiOjs7S5kVRUS+H2bkfUYbQ9aAYuQ5TxMZzpYr/SEdRicmDwWqnqcfR2DtBWpFJPpgrbWFiVnnWpcNIqpagjLEVXuEsjyIzKUJ1liaEjy6AACgPRz7vg8hjL231l5uLlJKfhgKa8XQ7e3t/IAhxHEclZ58PAYduqqqQhj1Rw2RjtLr168vLi7KsjREZ+erqqo++eQTfSdpsUgUIuIQRCbdbU1zqgRE13Ux5ig6GsmEI02e6Uqboy9VIpIoVNm8BnqdsiGGEMJS3q6rdrY+21G/Xq+Px+Pt7a2IKDZaFMXZ+VoBwaurq8VicXd317at6nTrCCuFU0fy8vJSi5GNcYgGgJQgr2gd56rbuq4XRDHGFy9e1GX1q7/6q9///vebpvnwww9/+7d/5zvf++7hcFBr6Zxzxs4hsS0cAPRx6hEHAKV1enbo9XUqh2G4PxyUNqsrXIWJlGy+2+36vr+4uNDIvymrwKltW/Wp1HTrElXDorxpzee13RtZFi0fURdi5n+plT47O1NTpgXRWh9W5BaazKDXVFBY42R9KZCqribi1JNTCJvVcrHWVE2pOYn22BlA1eh45513zs7OXr16tTsenjx5AoYYoWxq1Xo+HA4Tx23weoe60sLQK/AqIiGE1WqlPszFxQUzM6fNZqOSyppRWCwW5+fnMaQQAvLUySalpLmBonTX19dqmipbOudWq1WMMXCybQsAT55erVarjz/++Hg8usIqV11tlHrIZVmqPZ+DC+NsWVTe+8vLywSi0vMqv16WpVZsqAlFAoXFrS10cYrI2Rmawkw6G4u67/vlcnl2dnY8HlOYJJ6LomAQVYLe7/fz1CsWk+drqrPR7OBms9EC87u7O9U3r8vKOKvphJSSeulaVqK4xmaz2e/3D7d3m83KWluvGl1pZAyz7Pd79Tc0sWGMsWXB3qMhh24cBxEO4e1x3PF4fNW/VoN8cXFFRCHF3g+Vo6Zq0IA18IN3f+GjP/izj//oI0x0++q2ouL5k6fHYWgWq6Iorq+f/+xnf/aTj346pkRFGZCiBt3AqplQL9yv/tW/FGV4df9iiMdls1i4sqoqUyA79N5/+Gc/LsjV1l1ePXm2OR/2h/3LG2Z55/m7P/jVv/Jf/qP/KkYpRT799NOnz57+nb//dx922z/+yZ9YVxZFsbkcP/tE7l5sQRKikcRiJp1KANA+4QD4Zsd7NYmPlFKZKn0JFImdStJxuVqVZfk3fu3X/+bf/Jv/xX/xf3j16hVO/NkJapn+N1esz/4qvMm9PXm94YefvrTudg5p9bvzoYM4FeIovQDUO9fzaPr6W9BtfAPnecsvzhju/LFHmvMjOdIIKMdWEIFTApD1qvngg3c/eP/du/tX3g+usMmgQEiqXQKqiSwiKJIm6Uvk+YdnhCr79kH7h5eVK4oS4NDujqwAVCZlnz6cKFkPATAzQfX9E7U3nOpEM1d0/q4WASMCqhDBI5doHgoC8MMoaK21jJouwmHoffJAAsiYCHIVxccff0w0MWDUZOnRrPtxJo4wsyMzZ0+JaOKdOJu4eOuSGIah2BRVVWk70yjcNI1kgDWlyZ6UZampytlLkSySyZmpczweZzBal1Df99pzZcZh1LBziJp/VfuMiGBIZZfmMKRtW+V5qEuT+csGicYYKCu/zTcDuQWOiJBBStPyztgdxzhM2usA6v263BlluVwiot4SZkByfgoFweYRUCdBvXHNji+XS709TZcqs0EnWodL/x2FQ0hERNZo9Dvv4vm8jtHPXuj9/e3FxcViUaeUHh7ulHBwfr7WJDoJ1YtGFwCQMcag2JEHReVsxvUf9WXyxnuj2GFekWQeUWDUTmUwfwuJJKVHCGO2L4g4S+3Am1bp0Rzof8JEf1YILv/KY0HofIWsUCqICDRLNk/bOKXHUcv7dP7iW2wTnYg/zF88vUNChNxcVb5ZbxcA1OLI/MP55+abn5/r9K+nQy0swmzcxD0viiIKc0jLxVpFeG2uu8wBP5qJlyHzvU1BfmEkgACgThwzWTRo/TChRWQtgRE0GDHE+Cu/8ivr87P98TD4vus6Z03pin4cEJlQyBBoEbsIgKQYnSMgo3ycGEZ13xNHmFAPttbiyWAyRxAQmbIUCJN2EmVYJ8Z4+eTKONeFNJ50d5wShm80mZ1eBk4XpBax6lkyZWamwFtA4w2epAZEEAxTmkpXHqVgRMR770f31tkNwWf64SPT3xgDMMPQes88r6h5ovGE0Ski9B/M9HJWnvnK4sTMTUNE5WCbDLhPBxQzZ76zHgBzngbQBT8Y4ePu7ucf/7giNsJApiyKwIJAetTVdb2qS+LUDm3XDn0/IqIPYa6LTBwkJOdEGeZt24ahR4CUa1EnMCXD6+qMjuPIWe6zLMuyLLugCqo9AEQfUkpz+wCTa6hlcluTcCQQAkmchnEKcnz0c9djyLq06oOKyN3dwVqLJAYwhMAc67peLBvrzHK14CS9HxE5pFgU9r333r16fi2JX3z+xf3dduz7oetu7u42m40gDen+wfPxZrt/ff/dv/AXr97/Vl2V3Zg4AXMAIBGISaZezJELYwBg3O8e+nZ7e/P5Jz9/8dlnEgZELMrF+cXltz54//l775ZNTdYVrmAxYxJhAcYkYABBTNlQGgIhldZVtoox3rx40Q1tsyjPzs4uV8uuG4YxGlMFQRYCZARi5iSRiISn/GRRFJqNKkQCJwBQdSQjWY/4G6SB9GnmDMfMtJoz1YCMSMKsNQyU2whoMC+apMyI83w0zMZwflMX8Nj3++2u3W0lhMK5y83lslm1xyOUFYMRxASsOmosLJO+25QiFkIGQGbM2tBZPwMBJAowx0jx9//g3/7mv/oXQLGsbcJ4drby3hMhM7sMdAKK94MxRiXkUlYCkQxbYAbIvB80xNJunIiyO+42m43FSTFgvV62bQuAMU50XVuYlJJSUzWYVw6p7vSphP9RtArnkQcALUxr21ZvRvFWpVzpqafjPw+v4lC6KXa7nchkDyEnpefUNaiel053Bp1n07FcLjMMnTVAiVSpW8GF9frsFHWd/adsUwtNp09BZl3PibqYtS/0WZS4qpdSXR1FuouiAJjKWRTdmzd7SmkOSNQWKYZlc82EfstkYZA50jZvMuvnAVQRD8xa1XVd19Xbq+n12fixwIW0D5h+tw8jTU07p7sVEe05/miTcSJNbLdbxokRM+ulqNoanihTA0BKsSqKqi41OTGz/CgzUnWZzUGgSLLWLpeNiByPSSY8iInAWqd2Un13vVUFfWa8QFeg8iKHYTilMSrWD/l0ruvaGGeMsZZCCJFTEg4hLJfrFFT1YjTGGBAibULreTqsRNXMdW3oRTSteDwe9dnzASi68Fzur6IbYSbdK4SqN7ZarWL0i0Vdluf6dHGcShrVEV8sFtrGLeVsZX9siejyfBPj1GVZAxVyVgFK9ek1xJIsJaSLgXKeScsMReSd62cKDVdVBYkJQCXadYcqhhhCUHrdtIpYFNbXNM/sLWi4RURlWe/3e2aoqtI5F4Udmevra0RUjRHmQQdhsajLsoyBF4uFelmc5WsAIPKkLKwE2/kR5mBGl7HC3Gqj9PE1yNEzBQCGru+6LiVxxuqSWC0WSNSntDnbUGG//PyLsRiKqjTGDMOofFWyJCx5SIc5G5RCrKpquVwuFgt9k4hSjGdnZ74fbm5u9u2xqqq6aRC1RpGmJj9tu1wuU0r7/T4lsdaVpVVzvbm6PBwOymVWBtCMZeQU16K0DheoJfyQPfy6rsdjPOz37y+evnX7Xz97uvU/V2EBEQkpphipqvw4dm1rrWmaBgX8MEriMPrCOknMMRljqrpcLZZj8Iq66h6cKzY2m43mA3QBWGuVQaaCIe++++5xf/jxj3/84x//GBHX6/X19dM5SRljXC0a1QyZDDIna63ItDhXzaIsy67rUoiWTBKe/eR26HWvKeg8jmOVibSagFFx/FevXl1eXl6sViml3W6nq1eh5+vra+19572/uLhYrVb39/dm6jWK4zjVF6fMWGQybdu+88476/VaO0nq+g+cUJhD0ItnEGFmBSIYsmVBRAYBEqE2OgA0hZvrHnR5qDbOnFbUeH572Btj9u2x92M/DrosrbVXV1d6DGmUrtNxdr7ebrdGyKguk5v6cJJBEIgxdl2nHH+1mX3fu8J2XYcCDw8PuqRVNnoY/OHQnl1sRMT7YbFYsEzn19XV1bJaaBZ5HMeirvRXvvzyy8vLy1k4W+EwtKYpyxiDy21XmZlBbOE4ibCoxCcRRZmIWUS0Xq/VBobo58hotVrp7td5Wa1W19dPmPn24V57V/gw0mPLDUJEh0XX9x988MEHH3zws5/9bK560TlVaMZai2hV41tEzs/PRWS9XutQf+tb34oxrpcrQVB2NiJut3ty5Jw7HA6qMMPMHKIxZrFYLJfr43BQnH2xXKbERHR5ebmom9vb20PXtkO/Wq1EJMZJPT+GIN+QKxrG3ttRO0DqeQTIta1TTN2hK9FtlhfLZv35z74gNst6AZeyjMERWmvWm2Vk+de/+29uXr64fv7O/fF46IdxDERE1gWOiWNZmcvrC6F07A7kknDqxnbYHTZXl7YqV2fr4/4QjoMFXFb1d9//drfdpe2+qQtOKIn/+A//6PbV7dX5UgjRIEjY7e+qZfX02dWXr14OsV0vzp4/f+r74bAdABgMAojJHb9npALeEmAyADECiGD22YAZAGxRTeI8MaaU/tk//40/+KM/rKrm3XffPRwO+90OrHvkNWOGPP//fZFG2fO9IeJMK4QJD8Vsi6ZD39DUeX6yGxyZWWY1ZxWFmC7+BsZy+prfPMFb3oC/5/dPPonKy0FEAGGO1tnV+frbH7zzC9/7gAgsyRDHgT0LGkORY0qPFBxQCQ5IWoMtJ2Xu+jgz1KA8J2sLYRyGobUIKYJxMGEjBMDz/eFJ3PTWIcYTiElOcH95BN/eQCTga2xLRNRCeUYbwmgjMsSQRiA8O1+lFLSg0zl3f3+rqKj3frfbLRaLfXvU45izHNPkXYicMmHbtrXWLura9m+H0Rb1YmxwHMfSupubG3J2vV6r67VarZwrAahtD4qAqd84Y8QppcPhcH19XVXV3d3dXPQ2jqPmydSw80yD00kRCCfMp24caJzwB/VFVWEphyyPlZqnjBYRUS6deqdlWS7rZhxHlQKfQ+PHpKDybHJefBxHU5TqdlOWmtTUrBp5zDRKdfv1oJzED7K2rcLN6qERUd/36jqqcdb7nOdi5jXP+JLJWsEpS/Mhogoo6RM557bbreY4EdF7ryEPZALN1dXV5uz8Zzc/60dfQekHXi6X/TjSSavAryw+OH1/3iSIYo1LKTFHAK2nxpRmcXfFEZBgCt40opwX9Gn08hW92hPjKPO/5aRj4fzF06F5vG15zNOchujzJ+cnOtnk8iZQTuFRt+4tO5aZRdKbZuLtGx7etAVfsfjzf0pOJJ48Ra5/0dyCT83CaSizWCziMI7jWBTVvF4lUw4pSz0ao/qM+j6iQOTEImBISERQxaGBhewcBuMYgiCjoaZpfvBLv9yP3qfYHnvvvTM2ADLHJGyQjIpviGjfTZ1iYwyHKJB0OWl/IURMzAxixGh3QMnMOxEBlS4iRYKSsDYvIi1M3mw2ANAOvQajxjwKm2hcfboGEJGzgoqIaKY0nLRuk4x4FsaKSEpB8qZFHS4REFG2/TwvRITfBMA99iqcVs5pADPfVb6lR4h8RiUm4yjz595+ZkuaWjmJiLrInPVGZ5wlapEIaqfPSfqcAZkBrRElBMYTxquIM6Yp7B//u9/pdndLAzB4o58nK8ws0RWmsC4l7vrhYb+LDIfjcb8/DsMgAMe+M5IAGYCHYQBEZy0BjjEgABmTMqCcUnLWauGM3nxKyThrjIE01QQ93O98GLQetrBOix+Cj5C3/wSasPRjT0QI2LU9GQQlToIk5pSUqJWY2ZAL3rfHHgAsWjDgvSeA5bL59re//cEH3yqrQsXyRNIw9mRNTJOa/sP29na3K10FiWPk7f54t9szyO6wX9SN93HfB7x7oBhfv3zxi3/5V371r/31DpglMgOg0W6XFtEaAg7cHe5fv/zkpz853t/5rjXCKwkSWiGTfP/i9Zef/9kf1avl9bvvXH/rW+uLy9X5lXGNocKUJSMkYcMoDNa4xpT3L1//9IsXn3/++b//w9+/ub9ZnS2/8+33/8av/fr3vvf95dmiD8m3vXNFjAAIiTmxGAADpFuLmVMSTV1mW0TMgvIogPXWV+KpPbQu7CRCRBpMWmuNnRiXFmmS65k0sqd6JTtV7lvENNtSyay9+bLzBo+A64vNYrUs0BAKM9iqDiIhRSBCsiRToQwIIaIWxooII1ht1Ilkc3qGmbUsjhGYOcT4xx/90W/8979xaLdgoilBC/GtJQAKIc1JaW3gay0ROcndWSW3VgNgItxszmZWrG55a23XHS8WzazwYIxR3UnK7dS0pa66C0QUQrq5uZvJwnjCaNMBmZEgyYKtQVhdEI1RIbdQm8+vee4cGU0tcO7VI7lLD+QEOwAogyyHspOGUFHMKitc17XKX8zJabVpwzA4ZxSN0ohXA3vNt2NOHzrnNMxQs6DpevO4LJOdmixPqgXKlNQPzGplekqfDtQUYOcTwRijHZy0LZU5KUXX28g+DM6YmjZq0xlPuUpughQzJWrVLEzhxsPbq+lTjDO2q11z7+7uPv74Z5fLJxzJ9wMCqYKNZKEnFrHWGtRcv0FCKk3g9MUXL7z3ftvPFxQRMRN23DSNuu/6CIGnFIiaMr2Z8NjHNWq7qqJQIfKpSFn5qpJJIjMenXJJygSx5co7zlrPIqJToH4tZjU6ADjlpxdFoTYwhDCnb0MIdzevrZ0kAmKEZd0ws7UUI/uQvPfWTs6rMaauF4q0ah/OmEuzZ4xYsniILoZ5p6sWgT6RivlAdq/nKXZVKTFlvQhwzmqdu7U2ZflIlTFR+owurRlrjifq4ca4oqhS6vU+jTHaPaZtW4XmkWUW+tCx6vs+sDjn+n5khhCS8geTD7YkiSn7bbkHg7U6oZp3QcTj8ZhAVMpZ9zsRRYwk2jNDmPn+fmut1lQWdb047I5qZ2ZjlWk1Ptcrk7Ij1arrwGowNiPjlOUFFX2efWwASIHVvdVxHvv+9vb22dNnVVHd3NyY0l1cXIjI0PVj8Ij4wx/+cL/fDX7EjI3OuF4IYVE3OsKajVPwsSzLu7u7eUZijNrGypWFA8e5GLaqqhBSjGyM6Jgz8xxZTWMVo2JwU9oALQhITH2Iuvd1EhHRj2H7sLOVq6rqm7prHI7tiH532G82G6V5hhBvb29zUOdSSg8PDxrgPX36VDK5Xh95HMdmuVAdxpSSkkA1JNYUFOY6El32yjVW5rKyg40xE6pozUydLgoriZU6rSzR/fEwjqMtJ21Nzix7fQoC1LVhjFmv18YY5ZRpbYGGtbN51KPn6dOnP/zhDz/++OPg49XlE2Ye/aC0L81h6AWJ6P7+vm0P6nKHgPN6VntS13UYRhHZ7XYqp6PjEIXX6zUA3N+8VtJc4OSqEgVxVnt3buhVNTUp9bvtuqqe5P51OSnyqyJXzjmFcdfr9apedV1XLxfaW1W70c4VSwAwDMPTp0+JSJ99v98bmHCtEEYUMcYMY19QURSl916DCMUgvB8AAFooq4JArC18DA8PD0pAHIZhGKIx+/PLixBGIrJakmVMSuH169d6G9Wi6fu+LMuyKkTk4eFhHMdnz56llJqmITRd14UQjrsHBXps1qwLPjZN8/LlS2bebDYPDw8+RURUkjUJqMxo6qLudGMMghL87SzSeH9/rzy+uqmUaU5o1BMAgBCSLuO+7z/66KNPP/30nXfekZxm5ly5mLJE1f39frGorY2nrDoVfok8yfTXdX1zc9N13ZNnT/q+3+0iEZydFd77dn+IMfb9WBTVXMWlp/nFxcVms0HRxsIPmvOo6hKR6roum7opymV4e6rYGmuNiT5QgZG9dg5wYJuqBoB1syCVsmxqjChIVLhFXR7HVgze7+5/8Is/6obu0y9fnJfNAuzrh09dVTNI70dBNhZWFyux/Kcf/QmaVC7MYl33fbteLJd1cxg6SKY/9s64s+XGCLz88kUBgMKeU+mqz774/I9/+ikb49ja0r7/rffZpC++/NRW7sXrL42znKDtttaZb73/zm15/3B/DCECGkmzu6jDPDGf9KAEZK2Q5pnjp7lSnOIpkTQMnTIYOEYg+vyTT8i51WrlE4M9IWAhngS534iEwJsASG50P3/+q+Q/zmIRMCEiUz+YOdtB5rEgEibEe45oHmPt+adP/wqgtMNvvFvFe/J3k4iqGyNzEghFaZ8937z/wfWTp+ftfleURL2WtoL3zDFYZzik+WEzVvTYgFrkkZE23R6pg1cYY8chEFFTVsPggUWUcI6obdXmBzwd1ZPfegOsmMecHoUHNKDQcvqv0LofX96P1lQAnJIUtSEDiCicyrL0MRARM+oeLEonIirQp+fvbrdLIJo9Vfus2x8SnxayaELLOWeQjH073EyWYowpSuc7Y4wPYRzHi4uLEELXdZoBraompaD1DQAwZ81nBFmtjTqW6gAoVU4Pss1mMwyDI8PM2jGPiFTCIgozgh5hMfJud9BKC2OsSiSpCbJZOQ0ATsEZymIX77333qpZ/PSnP40xFs7EGEPGcNU7nfxSTHNqn3I24ovPPwsxaTnOjBTrsZhSurm5Ucc7+6LTqYoZTJ9BZD3rF4vFjMXrk+rN61+VPBFj1P6uJrfMnVmt6h+aXEeoQ6rwPQDMk7Lf79lh27aXmwt1WSsox3FsihqNKXxhDVLiREgASLPaNLIi9CokSkhF4ealSURzSsqSsXZ6DF0oxlCmdZ5Q9InoRPdZEjOiItHWKlGctduZsG6MTN7MEN6M6GkUOu9bq5iaBsGI+GZyDx8Bx8gTrvFGJg2yIMschuGbyMscqABNl6LMO4vxG5trTY9/AgfzG7zXxxciisoKGwKilGmqeu8pJS1i+vxjb4mEJxKEeqJkjQGRGBNzEiZ67Ls1RZKo6TCah8fkPnjz4vMxEpEripevb66urr7/iz/YH48MMnjtcZ/vWQBU61oxIwQQsURJEFmQBIFijFG1aUCE2VqyxqIhQ0aZxTIxGREFiYCMYQGJyTlLpN1xkYiePXtG1iF6QCytAQBhEXqcmq/YSklxjpxVWmTOJk3GS6cgaZLfJZCUgt7J3BZSOcFK9NBvfZOMvYDCagDw2H5hkls6MXY6yJylUee7BQAO0RDhVMMrfFII85XXnN44dbPkpMcXGkoJEISIDCBLJuATqhfuQzA4NXuxSIZMZfDmxWdffvJRXQiPnUMSsnnJIUjq+34QsIDt4ejTyGCGwffjIILex2EYlk0VQ9AtSVOzMiSRGKMjKZ1rmso5R0ZHSYG8SZzHGEtExpkQwssXL/vBx+iFJ6tiEXQMQWQYBhF2zhlDbdsBAHDiBCklIAFDZO3D9sFY24+DVs5Gnww5YDCm4iiBBWKr7VyfPXv6F/7CLz15enV/f392tpprSLtxEBGWGOL4+ualpCqMHhGXy+UYvClcIi6b5snV00VZQeS6qBMijscPf+93oDu++1f+ytn5xeCDj4lFnLWFteD93YsvX33ys5vPP/HtfuksWSmtRbDe9CkKmqIzOMQYxsP9Jx99+bOfUFGeXT75zvd+9Pzd9xcXT8iafhgaR20vi6r6t//m//N7v/07fhj7vt23h/vXrz7+6M//8Pf/8N/8y9/6q3/1r/7tv/23f+GHP1otaPSDR0gpABIChhSFrHNuDAF8yilAQcTIzByBkGUys/8BazZnd0QEcjihNfUCEyzlihJAiOxcgKORnp6szmmN8FRDQJnLPDtDj5urqsmYkiwBkoAIppRET6jJuiNHKUxhnQHQsjAyhnyMKYq1VvnYKSVhEAEkSCDWWlu4cbv9d//+326398YZpnQ87pplrVRgPwYRrItyGIbATJN4cVIUQ72llFJdlzFGxEkSa96k+jEA0LIjhcZ0sztjQ5pIVQazLFI2X1q7GrKSV8pVUbrrbRaLUJzCOceJJaWzszP9uorDqnSX7nc9rYwxBtAHbwrHzPorTVMoC0kLnNWPMbllmdZeKTfBGOz9qJlzRTRijHoCKsXMOafhrtKXAUAkWmu1T9H87FrT0Pe9lrno+y6LelNW/tXzdxbr1Pf1u4qFyQSzPpKROXPYJWcxY9Z5OAXcJ4SXJ/reTEpVaElvQ+HyGUGri1LZ4nM0nlLquvbt9tmYOaPgnOPojNDUtQlQEidhzeyqR6hm3BhDgGjIOFc4i862h4cvX70MKcbUAYCxJMBkSGhaIRqTp6w0x8whVwsCgLacdc55PxRFATDVl6iwgCJuOpsAoEDb7FAqwptSUkU8dSsBIGVqrf5byWI6udpxRa+gZAp1Z733IXg9SUMYq6oafR+9NrccOR/KvR8tTpMogkS2qirdPtrqQGE1XS1W+yR7P0ONepa1bds0jS4A9Z71zouiOB6PylkTEZGCco9E5aFkHz0cj53NyuCYE+eS02kKqioMHUav8K5+N8boXAkAep8m5911NPRutVuvrjTd5m3bD4PXvJcjwyFqWX1hCjBWt/zs5epcz4rVusaaprHWEgJlTo0mmVarlbXlHJas12sAXq1Wuse1lXmO87FpFinFcRyJ7LE9KBE7ZKXvybEk0nBI+cLqOmpztoeHO40Ruq5TCVGOU2p/6PrlcrnZbD54/9sIcH9/fzwe45F11qy1aOhb33qvqsrtfopkdJCNQc36KBDmnPMxpMRkCBjrRUOAmlmy1lrn9vv9drstqtK3QSQ551ars6IoJtrjYqFYmLX2cDisVqvjbj+jtzpuyjEwYHSCRGROp6WUQHDGpm0yq2ZxvD28dfv7GKqzerleee9f397UdV2WBXPSLgLqts0hjJqaOZGgbCkVRzK546tO393d3YsXL2aJBuUWacGBGs/e99ZaVctVqUcgvLq6QkTnTN9PDSt0S8YYC+tEW+AKMHNkAQCOj7pnc6RaNXWMcXm2WjWLh4cHXWAIZI1h5sPhoGbk+fPnX3755fF4RCAVQFMCry4hRRLTSSlJDtamhpm6X9RmVq7QA1RPMbRGxeW0T2ldl8v1WoF4BUpSSl3XiYgwEE3edYyxHzrvfWGNxuGqyxljXK1WRe4EoHkaPSyKojCAtml026qZ1WfRlXZ/fz8L4KzX6+SD916itO1x1SzU5rRtG4rAuWBlDrL0XG6axhKOY7i+vr65uSE0xpiiqHRXrhfL1WoRY2SZirJTiiq0ErPMUUqJJemy0Z5XaoWG4Vi4UkR0m+uejTEaskVRaLJNlzTkVs+Kv0cWFSHR53327JmIfPLzT5fLpZ5meogw8/n5+f39vYjs93trnKtceFT48Yj4zjvvDMPw2WeviwJmYRYFrNUdUutaFMWTJ5dzVmBOGWoJ0X6/n590sVg45yxSU1bvvotK51d+YllOOi0qTLTdbodxLIoSEW9uboqsDKOzoKiNc04A+r5dpbf3XTgej2mVEEPsYlmWzlgoq5JsStGHoa6Kpiw731dludpUaYir0iRIoY/7w/7J2eL5e9dfvPxiSPDFq1s05KoaEP3YxzBQZc+fnP/ij74rGF7cBJbBFRY4IaIB0x37fXsUwnEYHVgmgwJdN5xdXKAYGcPt/U3XxSfnm72PDdG73/pWuXTHMOx2D8fXh313MIVbLdcApiwWfhhW54uU0t3tATiqALEI6OArtGKMZc6KIsgiBMgABIiAdKqMoat96HtjLanIknOIqMUN08e+4SWPIMxjdTi8iXi8FQM5fWFm+KHJnhtMxzcRSRZQzRDHIzoEU04xGDOleOUE1f0KtpPv8A2YKJ+ADMDWOLUqhBaQgWS1Wrz3raeR22N/76pn1mNVFSnEoiqHfhRIxmACREQluzCAolgzvKubkU4IlMYY7ZobY0xJDNKqWRgwfX+LAATaFxCQSMB8/f7fOgXwJqUyP7ioshbkvOkMZM1Dp76Hmd5Uv5rroixKKghCSgvnUtapTynF0WvyCSfeiZsS/NbM/vaUFaCJWRJC0DNiTmut5O17c+y9VFgURQpTAw89X4wxX3zxRciqxN7L7MpqFlkvvlgsbm5u1IzratEs3YzGqOu4XC6TD2o51Xscx1GTc8ysVbPqX2ncpBQflUrr+/5wOGgGDnPtqV5Kf6Xv+9/93d+9vnqizfqsM1rihgBRokZDM87bNLXWC7a7nco9C4IPIw2T36XzRc6qQ6gn2py11ftUto3e5EyMgHwiq4OtW8k517atlmTpPYuIc04b8DRNoycO5zJxLXKa8/e6VGKM19fXdV1/9tlnet4ZY6qmatv2xz/+8YN/IGtsMimlh4c7IFuPZ1MPjcxtwtlvNlOjGEdZZlvjzDx5mYplFGh6rPdXqdx5eyMoXDgx1RFRmzfNG0MvDgDCmBNaokmYeYPNw61rkTNLVOakzWOOC+fPzDuTiEjxC6JZ0C0bQzj9iXzBNyo+dIg4SyWcQCRvt7wx+9+z2eUsW64/kRFwFhEwYFEtKaSUIicQRiSchIFR3RqBxAwgFjS3YEhJ+zhBRVPn0yQMuXXpNMIMCJBmtviUMgMUIMTAbBCRbIwxDOP3vve9881l58emqWLkkJiIhuCNMSqggW/oCAFPxSagpHKNHJSbPc3ViYmUx+lQv0xnW3sCgDOTcoiICE+LsChKTJxSYGZJIo89+h7n6425hImB8Pir+Uclo2k8leGQfs2QyauFRYTgRAc8fVO5CohISlGyDgARzePCWThVRAk1jxTOCY9Ggqkj5WNhy1tfuvQkI8jKkKIslzl5aTxdfeqDSVaPOkckyD4LzGmbRGtMCQRh+PxnH46H+2WJSZKANPVijMnHMI6jjx4RC1dSQmuLJGn7sO+6zpCDcgKF+743JHP8Zq2NfhQWa6mwjgAL68qinI0dnIAXMTe6HMex67qYBBGdKYwxiMIsmoonxKlANQTdN1O+LoEApAhJEpUuiXnYtom563pm4JjWi/WyWTljI3iOUjXx137tr242G2uprOzd3Y0W92lwrpCobqWh640xzhQpjNbaqrC//KMf+hgipqIols1CYpIQSUBEjm3LGO6/+PP75H/wiz+6fucdwARk+vYAID//8MOf/Ps/KGKoIK1RSmZr0EokgqqpUpL2OCwL2+0f1qsllYYB2mEYb7/4dOy3X3wCmrAREYKmvuYUut32SWPv+t2r+xf7w7FwZrUoi6I67Lr//jf/9UcffvgP/rN/8Df/zn+0XhRpIMHS+ygAyASAPgYQwSySpBryligIgMAkKUtvNCl+21KcTDqfCDsgauBsRYTTlKehTCBVZEqxPD3MMKc05k+eJg6nkMliBArMkECVYhANWsvRgzY6AdDWa0ykD8XM8mYaPyV2ZISm06GqKgYOKd7tHj7/8pN6WaTkI+DZ2RlQSikhUVVVaSIXUmWJEdRj5NzUHhGJptLaGR5V0G2GNlJKRDBnmzXaV+wmhdisVjbrRcyQWVnWOjjeP5b5K7imcCFnAWXNIRfGakm1PppyEtVr0XFWVBoRh64/OzuLwjNjUQdZQUP9vIpOjGM/h4uFVTE1dsKIOHGUUlTvP3JKg6bipwUAueeVAnDqkcySC5mVjFqsqqIBOlMhmyb1AfSe1SaoOzUXiJ26JXJSbKSDOdsWEVFcRl3bU0fKnCjA6BUU82XmxJrQmnRdAQBZtEGWQn77/V6lPN++L3BCpTlreji0i7ohoqRkakAgKstS86CAbACtLQgQaGpwoQ+u5qhe1CHrsinLb0bKOLOzFbxTn7KqCv2ilsXpqlNMCgDG3BlcWaJm6l3DiuTqCGh/jhgj83SIn8Zv6ljrTc6qJi53oaRcfaJ/HccxN3lJRMTRP9zerc7PcqZBtP6JmT0wEQmIUufU0be2QGStJRcRZ4u2baHEvhv6vhfgy8vLoR9FpFnUujx0m+hCUiRLRDQ8QMSLi4skMfqgGJPa+RijMejyuT9zIJTZrS67tjLXogSRKVWg60dPwJB1zBQe0r5nimUzs0ViZO352XWdCB6PHSKWZRk4SUxARreAsmAWi4VzZQijeu2QFcZjjH3fF7l7wTAM5OyyaXTtKZ1nGFR3OM2OJRE5V+q/d7udM3a5XCNi3w+6kJ4+vX7x4ksg/NblB8zxcDjo72LmL4eQQkjOubbt1SIRkT5jCMEY1zQ1wMS6UG3ExWIhyF3XLer6448/HoYhhlAUhR+6J0+eAICPQYOc3W6nPCmcvCAuilrPeu+9D4NAMtYWRb3f740x6nV6703uq6N+soyjTzF5pU9utT/n2A8A4Mope7Ren1dV472PkYuiwtxy3FpCliEMMRddzYbRGLNoloqrAkB7OK7X66Zu3rr9h75Py+SqkgOYwgVOBvHy8lKNiZpZbUc5G7qmaVS7oKqqpmnuHu5VU0UtsM7C5eWl5HpkJVxvt9uUkoZB4zg2Va1RqKoQxBgZhFkJ2hMoALnqRaHketEww9BNFngcx6oo1SyklJKwcr6YWZf0hE4qYsVgjLHOfve73z0cDg8PDx999NEwDPv9viwqZX7tdruqqsqqUNVpyX1NF4vFen3ejcNut/PeE07pz2bZ6GGhRQD6mNq3cxIRYi7Lcr1e6+MfDgfNRekeN2TRoNo9V1jvvW63oevvtg8pJbVOKrLZtq0mHuaQ4fz8/Pr6+sM/+7ESN8q6IqLD4XA8HkOIi0VTFFYE+r6ft6ROhyAzczcOm7J855139vv9MAzCEw0zxqkwRV/tsRNg771WjsaQiGizWTFz13UvX75crRZD8OuzlR791jr2Sc/9lFLVNG3bCstms2Hmm5sbfXblT7x+/bo0BRmca6WFAQ1q7lPR5JcvX6aUyE1nPQD4cVCHwVhKKW23Wx2TGKM69iGExaK+vLzsus5YQqA5ATw7P8fj0RinfkXTmNmRqOv65cuXxpj7+/vtdnt1daVWWoVx1D+ZIwK1bLo453RmVVXMgIhXmwtmRoHN+szaIqWkjo1P4ziOKbIrCkRs2/bhYfv06orm6jGAdFK1Uxoj6e3azVVdleVARIUrnXPeRyJKfowcGRiRxzgmjquzy7j1Po11U/VeuylWf/iHf/inP/7pz37+6Qh1QyRBYkpdfxRkdHJxubp6etb6Q1HZq6ebYTwiiHPGe7/b7lcX52n0ZN2qasBYLB0m5MHjyND67zx9Lqvr3/rX/99f+Yu/+rOXLxKGodtHLAf24JgsLRY1I1gSg9D2+24cke355bqsi8PueLiL1jlmDt7TlHfHGEKm4U1OCzzCFzkCPeUpT9BKUlrhjGPMfQin65wE4HMp8KmTNgfpeHJxPCkZPwnb58vqO18tLJ6dn9k/IQJODDM8/Rh9TNHwfHE5BS2+IeLGEwYDACSOqqirmIa1sDyvNk+WZbEU9CG2ZJiMFIVVS6XHE6eoQK2IoAhPCl1TNSenDFLR5F+RQCb8sgE0zllD3kdjjGIgCCSZ4TcBON+gFvK1YYSMj8Vv+vxsS+fJIiIEttaFEAXYOpc4jiObAlyhVculSJqrvpSkgllsQV8JZLVaaQmjiAxtBzk8IaK5ZbrayYlG9rUXGUNK+GMDWtwf45/8yZ9Ya9frNSLOgRVRqdOUe5OElLXy1HApCVfdY/U21a9TiByyzrLSFIwxnPFMIlBVijnaJSLvB/WslsulChX2fa8XDyHooawBkR5AYfR6+i+a5ebifLvdhhASJzXCmmElNM457aBbLxpdTvoIysV+5/m7bdumlFTkUJOmmgHik+JOdW5nVorNXb51KLRqCjLoquGSc+7sbHXqrkhGsSUngAEg5o4XNPXpmWgB6lEr+el4PNZ1nRC89yhQ13VIERJsNptbeRVi7Pt+igZ1i07rElkyZPkV2FQmjuqj8JnGSykXyCAiGhF+lOOZ0QXJGSoiQlTz8Qj16ocVOz8BIGhGsfFEXXE2JTiJR8NXjOD8u1/ZgZDRkHx9gRN8hDLBmd7k3E33g497GE46171tzxMAoSDgo+bDDDHPN6aLg2MCaxCIQSIgqxY8grMkjCnE6FBEDODMlnW5ueSpSZ2vObdknOyv/hUwq+ArNxmBpO97Y21Z1W03RBEi+uUf/rIQMUAS7MdB3cGqqtr+KIjCUUAACWjKKupPJ7WtzCIJQJOrSZm/pOxyFhGgXPdCU95AFXcF8dHWO2NNlkVHosDJsABQ7nyb/y/DtTA1rzSIj1PzlZVwOu+YlUpRtfgBZhkWmAWgJ2kNkG9IJ+gvz8mPDAE8aoXnDTXlReYJQkQDj/f/lYX6toX0+CCSIYCUy4j035AVCZgZ0FqcGOiRk7XTemaOzjoEKK1dCH348U9fff7psnHgOzJQFZUP0Qce/RhCYOGycsZSCgnQAIBx1rgihB3DhO8URRHDALnSX10BQihLp9ZcCSZqgmMuyk65ZHu/388hbmJyBlUTPKUESZkaAEQT2VMzmCIxJWYmRGFMicXY/WHoB/aeUsKuRxJgpvthb8k152cE9t1vv/OjX3ry7rvvKiMGgGP0WmZ+PB63h31Kaei9gs7WWhC62NTPry+fXF1ZMk+fPt0dD1F4SKHve3TgQxiHAUXIUV0WTy7O7o7H3/qn/+Sd9z+43e66fhiGIQ5D7LqLplotqoUrChRLWDoTJTLzEOxnX36hhL6PPv7z73//e+9ePmdJZQE+8nC4vdnfsqCqwaQUzhfv1HW12ay/9YvvJXrvdv+dL24efvrJl3/0px/1x3G5vkCB42H4R//oH6U0/k//wX9S2FU3DABIZIkgskASNEQGjDbqVCMGKJiYtaUJoQqA/Adf6opJXnuc+Uqq5k+oEIxXINLkxgKKnWFmzBE5zK1l8eR16jICEAgmYQCyQIgEKEQWUWxebwbM1H1W0Bgyiq8RlmWJgiEEiQkzvhNSIIuM8Td/6zfuH27W6yVTTCGZQgsRgkFLRMjiw8gshJiYETXnqjudASZa7kzXmqv1mbnvW3UR9E2N0jFzjjRfDZmbybnaVJmhiHh9fR1CePXqlTHoXKW4AwDot2YVBXWeACDwpNGseyRyqopaS0q1uk2z3PPI6217H0/fUb+kLMsnTy6Px6MK2iBi27ZCWJZO/QnvvZa86b9Xi6Vi69KO5TIAAQAASURBVMvluiiKcewpcwr0PpUNrZfSVkvGmJRCXdfr9XqGifWWZuL2nItSJFRXl0KlswHRVCLnIpLZqihKUlWVImJ6sOoi1EFW7xayiosOe3ZF0EzpdqNwqpY/acQ+juNms5mbMn39VTin/DJmNggEGPpBpwYMF4VJLELonI0xxuQNGAMTzqu/C4RgqO27OKmwPebUmZmFY9YbnR0PyLC+MYZD9P3gqlK5G7MzpkuFswbcib8IZTlxUhQ7UEhdR8MYJ+Jnj2U+mPQiyombd/fstWvOQzd7bQsC9DGCtSGEzWZjjAljXxgrhArUql9rrUMU5SKlJDFyjFNpnqHJquhr4v4bNw5TDgMEQ/C6QnTSRUTPHXXHFXlv2xZRFOzWMffeLxa1iPgUwZAhE3OLQs0DKXaTcudDAGCZeieGqbfMYzNx55zI1L1T37m8vGzbVvUBNNpp28k7V0iFESSmlMn7kFMC6/XaGOdcWdfVjPTp8tZ0iEpbxBjnZoPMjGi895jZG5xJ3MaY29v7rjsej+H59aau5XA4bDYX+iAPDw/G2RDC8XgEmAR/FMw6P79AnPjInEmg8w5ar9cogIgpRBWxKuyUqkmJ67pBhNv7exEhAGNNWZfNeqnrZ1EWANB1XUhTM7G8zuPsCIUQgh+0/cP5+Xk3DsxcF6Vz5XK9SiFqgICGiOwYA6bEOZ1/e3s7DIMls16v+9GHMLUW2G63wzCgNZpDirmtpcqPFLkH3eyfEJGxlHgi0deuXNTNN0lMIuKha7txQERFipElckqcXFl47xOzcVZFS5iZvXRDn4Q56yDPAarmKiRr2U+7qa5zQBQRQRu3qMqEZjK2222M0iyLzWajaKyufAQsimqxWBaF7bqOmcdxBCCN+XVaEVHBgv1+74pJLd2WRdu2+/0+rlYTbT+JJm79yKvVSlPI2nW2KAqtR9HsYNd1sQ063bvdTldjjHEcpy0/rygAOOyPKSVAKXJLw81mUy8XDw8Pys/VpJHmdHX0Hh7uU4InT86LouCcGy5KNysg9X0/9j2KnJ+f67nDzD//+c81HaLHpcL6AvzqyxfGmK4fjDFhGBlBQQSaRNVLY0zXdd77y8vLw+EQR79cLsmWy2UTYySD9/f3enwrPJQeK3VAsfuU0jCMzPzll19eX187W4hICKPKiPd9u99v67pGgsvLy+Px2Pd9U9QKrSJiKYIEBoxKWqv0k6YQiKgpq+PxqIw/JWUHPynL73a7x6IQToUhvZ8QAsCEMo/jyCLr9VJJxEVRaINKPWj2+/1+vweU5WKlAIRafjW2SsTWm1yv186ZGP1u1z883MUI1tJqtXr58v6LL149f/4kJ3imjlXMrH0LZ6yk67qLiwuFhMap5VeavYjz8/MYWRWK2rb1ySvBxSAtlktjzH67m4EzRb37vu+GjplN4UREq1q//mqqumm8DmZKaRg6EVysGhiH2lb1opIuLuuKxzC2nRM0EWsqb9vbclEFLx998rPCOilMO3aI6P3AkJpl9eTZ5dnV6tjtXn/2RVHS+WaJCMvF4vrqSbp48jl/aWxxeXGFAMMwuLo2rghD14i9pObX/spfXqE7cwt60f/KX/r1//LT//pn4d5EZ2TsxFNNq816dbYcx7E9HFNiY3G5XpTFQhJ+97vfRoF/+9s/ubu5BzSkKdLAZJCsY05v79THk0P4FcQmzZTnGZD+Dypm/A++TuGUr4TqpzHy13/kET8B7W2hFUhAVMxJ31OAaK68n4+Vr/9Q/vVH+eaTi0xIlzHknAsxugKfvvO8aNiWkMQ/PNy/vKmvr54DTMXQzrkxeGY2FikSmOn6RpARZsGQx0hHKebMERgtAkyVRzFGa1xR2OWyOR47SWIMMINwAuPwbfKzX4Gq8ATyyuP8xmDiCdQ2uzGnXxTW4khS1YGqqhYb1/Z7tSdAuN/v/TisF0trnFpdxTFNLjSMMaqenrpMWqMTshQYZokwzaSyvD2PS5lLqoindqlVA9L3vfY7nSMFANATRB2kWWZKfdoZUdR39IvK7T0/P795eaMuQVmWiMYYZ7O+h4hon8CUklKPq6oqS5Wnm9Tks09Ic9yh1kltZlEU6rZpGm+322kjdON9lCl89t4TGhWSKsvSZOKsIuM6nrv9FgTJWUhJ9Zohe4aSleX0WNfwUHN4eozOq07dmznIUu/9cDgAwNxpeU4GaNg+z6k+oKYwNeACAI0v1DJnkaVgXFEUBbD0vk8yhSpUknAyxljdXZzxZVW0oEyzTxwQzOypK5QQwmhzkSkz2lwSq+uVcpitcxaUvJxTTyIiiSV7xpT1sHVE+KTnWwYfFD1jY4rHLfE1m3Tyzht/mjferPms4U1Gfh+t0qlF4PwCgPyYDITGTM91ihp//SWJJ4UcQQA0ipJHfhQ6OPlfvVhkZhAxFglBuwZLAHRWJUTJGGNSDAzJWJNSAn4EHyWnvKb7OaGBA8DcmIgFEVGylohBgrrWe7DWCrO19t1339VhS1kWs+s6BImckCghEAARCOLp2aMGlIhQwCARTHpRoph+5rLjSfiKiGqFERGBJTHT1GjeWkvO+ryj7ESjsxPpVTWDJ03JBAACb1Am04kQ7el5M4+5TKtBc3pMQvP9zN96c4K++srQ9vTJ7GWeHniPP52yhIi11uIjAdNM5ZNv7eH7lRdpBDgvzuldmnsjADOLYhOZ5C6iCqsEkgjQAgCLRervb/avvzQ8EsbRdw4oSgxRtTgjGVK8n2MaY2BmtFZFRrtuGAMs6jqEUBVkyCGJ4o8MYBCdQa2JVraaPuYUtWZqcz8MDw8Px+ORc29uMsQ5m4ckiFiQ0Xa3zDzG4BOLSEwcWchY5lCUZRzTvu2GUVgojuRDYk+HrosMBcCTJ+E733vvux+8/4Pvfy+F+/1+78eQUhjjGCMf++7+fjsMAyfY7XYpJWcMIX7/e997/vw5Wtysz1KIEuLu7gYIx6FHRIcyxCAk5bJp27YqyEv44z/74/YIN/cPf/h7vz/E1I2+67plUz+/2lRXF7f9fo9SOiuQ9vutbpKffnr7xRevFnW1qOphjHufzO3D2aoy1vjj3o++LGrrXEqQAKytsX/gRC0/xLEsF83771z/8i//8G+M8N/843/xb37nDw7bqUHNcXf/T/7xP10uFv/jv/efSUo+xoSp7Ye6WkSe9mLKqsdEhDSRTEs3wXDfxG6WkwwcAjEnRECctcDmLPp0fDKDegZa+q1hrSImZio4eoOJjLn9oO6mko2gAcRkWNWZERFJHBWIOOk0EQqqjACSABkkosiJY3KuIEIRSYAGsPejtQYNdOPxX/6rf/mnP/mTsjIxDYAMOAn7WnLGuJQSqZ+KwiwxRX1Ga21ZOgW8NB+uXD9EVLqxMY+poxhjjJNaKCLUdaFQzjiOmmXRijObC/8vLy+Vy6MfW60WunE2m00IIcY3EG3FoEvrfJpYlrqntNfcBKjljaacJp2gOe0/D7X6HHpwDMMwDB3ljlu+93p+M7MCUpEndhJkpSA3dUJLMXrluqaUtLux3r+G6Ir3qWMXwoiI6mxxbu6hGLEm6ucjTM2CYj2zu2OnDnjTqlMqtA6j5vBXq5XiC6qDMU8QZSb13F1Qp2kuZIMsll1V1e3tbfKBFgoTKC9V1KUbx+GbrLNk4WBVDz8pmRRjCAmiTNZe4nyg8Dx9iQBRDofDMI7GWoVcH3dHLiaYAdCYxR90FjhEY+KiqiGxddPYzpia+pTqE2cWcLKWjKkUndHcPWdKozFG8zrz4aKOu15N+8TqyhnHcb/f662mXKCGOW2swIH6kEVRxMAxRRG0ZbFcLkUwhFGPBucIACbpDGXSoTkcDrqJ9Fn0zudiQBHpuq4fOu1bomtGF8Oc8lGrOI6j5oE4KxjMKLw600VTlKYGrVeNMYSw2x2MwZkqQs5KVnLTVqinVstaqyxgHUZEub+/P1uuJKbdboeIxrgYD2oYVRm5GwdIrNDecrm01qoihwYnxphxDGVZnp1tDoddjNH7iDjtWUYwKSnzuu/7tu0BoKoq9SuccwiUQBzRcrkchsH7YbEQQbq9vwOeoCKNyax97CxdFEVZ1n0/6n+qSrjWVaixWiwWih4eDgdtRZUSW2uJDLOsVusiK3oPQ8/M3/ve97SECIlCCOv12sdJZvpsc67rpOuOk/uHE4lbo7i6rllEMfGnz66bpmnb1vd+t9sRkSUz+BHRiES0hojQGD1cYoyWDDN4HyWxzr4u7KIoVFNSVbb1BpqyUgBaRC4uLlRhWaFGRa5VBxmT9H0/3O4Bvvv1vW+LKd7TfZFS0rZmmvpS2zU3jtenmzNhADAMnWpNEZHizlreoRomunP3+31VFZpBWa1WKcnd3d1isVg0zfF4PD8/d85MjVisAYCqKGOMXddFn168eFEU9smTJwxyPHaMjxR4ABAEVb3YbDZAqNWykHlhwzAUxhKRNUa1IHa73U9/+lMNUBXQfPfdd61xSj2u69pYAoC5yaEue8UZjXXLZTEMQwzp9vZ2HP3V1WWM0RkyRam4xs3NTeCk3HDdZTc3Nyo3kVJ69uzZxUU8Ho+6GmNIRek0yp21py4uLkIzXl1dxRgf9js9VZVRrn3qVGvSe3/Y7pRr3NSLlJIA10Wh0Mn5+fnZ2Zke0BoEqbF1ZIqiOHZD1x1TStXz6+PxqFB+0zSb8wtrbVnWilDPXgERqbh2WVRqHnUAEfG9996bpSdmB8N3j6oUNy9fFU2py0ktqvKI27btDkciUkC567rD4RBCWDRLnVzliatVAUOI2Lat/oTmWfXUFmBjzNCPRHQ8HquqUdyh71s9H10xNSLWQEYzi8ysWQqlszAn76fim67rRMxqtQKQxcKZXC8yNxioqkrhCc6SgHNnF5VjUv9KK6V0oj/77Au9iIj0fV8UU3kNIg5d3zTN97//fRXPGbu+zRGZjnxVVf5w6P3b+y6Mg491ZObAc/8GHmJCYw7H9u7l7bvnT25f3X5w/q3GVBKTjAkttPv23//e73UMRVnGhGNsJ8/W8pPLiyfPLppV3Y2HaulKRu/7w4G1aGz7sAshsLVjDHXhlnXTVHVA7PuWer9O5d//5V/7frOJd3vcpf/1/+Q/ra4uVn/3f/6//6//j6vzhWmaYUwjh4rTw8PDF5993tT1+mxDxhjjhqFFoa63VVE9e3Y1jv04hhRTSmIspRgJ3xSfnxwhPMUKTuNWACCBrAY6fxVnRjR8hcmHbyCqswNzOtp48pmvTIR8jez89ZeuQMxa9nNniJlCkWVU38B2Tp4MMpr0lZdGIo89KnTlGKPl5XG5Kpp1/ezdKx8Og29j6oVS5/vdYVcv6/V6dTz2XTs4YwOnwtiU0AABGQYBIQOgTp8xRkgLXBgZwEwPLowyKZ6HEIayLBf14vrpVd9+GiEhWmMgJZpDAG0c/U2j9PUBN4AIyPjG+/PDnl5KBUiRKMVgilKxpNX56vyi4vuxHXpjHBAaJJV6b+rFcrG4ub3d7dqnTy8ge+kG8Nh13nsFmqfcWNNo9rTvOperXY0xNr29jSenpIfRJOBQV5rp1N4Gs3umZ5YSKdRdn2y1czOXAhHPzs60u52ercpifu+9916/fq01Fnr0T92Y3ZSoUwxaL2KzROr11VXf93fbhxijc07PfcqlFTMbT0SQxQBqoaoSd/q+R9otFouiKFLwUw4vN8LRQCPFoIFSylJUGr61Y9eYJqZIBq0zKaWidIgojEqVM8YorWEGJ/W2NUTizC7iEAtrZ7B7lpaa43d1+WKMHKL2/lEcX7N9+tR80gUHAD755NXz5xsNLYkIEozjaCrjbMEtR+Y2tmIsGpqwBo3ikAQE5nudlmbWSWBWJiXPQcWM6NOpOoQIgtFQ6tT6mMyDFhEiMOZRXCYlDSQnPBFOUjcZoSAtpp+XY7ZcZjZQ2VTJfP+YXzJta9VAyNodIqfbNmXROn1SzpII8AZSmW3E/1Ci7/SLuhAlJRYAlHn0pge0xgCiMGrMg8AJhZOzlFiYJfqpeEH3M+UO5paM5zdAH70mZo1plFnxA0W0V4e2fRVFz+uiHGNg1T4Tefr06fX1tSaI6roK48SfUrhNFPE0REgMoixdPsGdEfWXiU5UiVFAhHHKI5ABnHiwmOvi8/lljBFICCrhMtkgZ0ulRs+AjkxzCUp01gvISddXABIBREJIp0cg5X5BObfBGvNDmufrq0nIb57c6SvyNS68ASQ81UA0xjwSOU2u8cFHdvNjkv+tLzlJ26ZcJMInypt6m4TIiCQsknvdOptScpYMWkwpRV/botvv/vwPfudwuF8664e2QFMURYyQQBgBCK0tAFMIEWWqIUBC731RVHVdt30vWTydRVTlg6ZygSRIhbFV4eqy6IYRssoeGTevkL7vlcShAYZWe0UOoj49OWstEDGAQrfDOHofU0pgCICsRYPcHo6BZRxjSnh3fz/08fr6+vJsXVbGWfzLv/pLf/mv/IXn11fOQtcdxyMBQD90IaYYeXdoX7++PRwOaqaPx7Ysi2+///4HH3xwvj4ryzJi6Pq9H0aHZCxxCCZ6L2l1dl6kIhK9ev06ijwcu/12d3NzJz21fSfGpsTd4VhVFQIMg395cyPRh76L0QOIcfbq+nq7e/i9D1/FALgdCIb3rhefvLz/5IvPf+G739qcNQ8Pu8I6cIkTVqWz1gJwGodh6AHcGIR35njcN+f3m8tv/c/+/t/dnF38d7/xrw77LdKqadaH7eH/9n/9v0eq/vZ//HcftqMgOUMsM6HV6J6c5oLA0nQy6QqUb1iEk1VUWCpb6YlgYkxVVcZiSkn7cGrgpJ6Ews2nQI+aX8iCMG9d7QU6EEggkIQlEhEYskJkdIPD1HvWTDdGACEENSbM3HadtrpDoZACIo6hv9/d/PFP/vQ3f+uf935f1Ir7MTNLQBQCMCkJh6noTF0ZBeZijBITJE4gGigq08pP6rdhzvSWZUlTm4jpSYmIyMaoratcjEl7ox2PnSO01vp+GJiFjAZ7zOycUQj7cDgsl8sYeVZM0tGGXNJrsjY0gygwpH8qqhJ4qrcKIQxhEML1el0Uxc3NTYxT+f/sTuHUcC/OBLHSlgkEs70t66pCnMGUpmlUqrVpGompLqsTnvVknxeLxWaz0SF6+vRpjHGz2ZSl2263zOxcyZlYMY4jMyCasqxTSsyix7eev+r3aHNLHVJjJhBZS8YUrdYp0My8NrzW25gzf5h1k3V9WmuVM65r0itfLItKa1Y2pWAMzr0QyrKsv6GaXkTattVR5RhUfqnv++AnObnRB04BAJAmfrqym1XRT0QAHhF2QzS5elkmS91WcpNW2nzcVFW1XDYAQK6YhUdSSMyTOABnerjO8kkhs3RdZ22BE2BqNMjX68+R2+zkGGO0raWOs17Q55cuS8xaZ2VZqh5xiMwiHPjy6uzq8umHH36oDQB19rtxCCExS0o8tDvnnCoYAkxKJiIyE66LophliBU016Wl/1B3fLFYNE0TwhgjZxQ46Ofnws8cRpqiqIxBDU4gCzrrpYiIRNswACJqtivbT6sOQz58MUYW8TNVn4hiDMfjMfkQsuBdWdKMcUcfls2CnCWBmV1SFIU6XVqACQD675SS98oCLvq+D2zUYba5wZoIAmxDCKtmYa0NPoqILS0jKCcUEVers1l89mJzqaINmH0JpfnoGY2Ii8VC+aTqAeojGLJ9N1hrrXG2tMzs+6EoCiHQigS1PAoCjuNoDIUU60Vz/fzZhx9+eHd3U9c1kIxjDwAMsj5fIeJ2u50LGmY2kCS2ZGLgEMK733q3KAqfoqJpcZwSbMZR34+qS1s2tTHGIm632+VyeX5+MXSjtUaTK5GTyaI6KSXMXC2aGDNhdqJ0fHQzhtwUV2PCoijubm6ttRdm+dbtb41RQlDbtmqplvVyJjep4qTPsuNzdIeIyt9ERJXtts5qb9IQwuvX923bXl9f6+dVi6Nvu/V6bZASJBFRwRltcMeQmFkIV9UCAJCodi5GRvEXFxfD0G2327JuELEonB5eMDPC0IcQtHuzDsLY99bazWYzjmN3OJZluVytNHqvqur999/v+/7nP/+58su894fh2Pf9er3+wQ9+YCx9+OGHL1++PD8/b5pGyb8anfbtlFA8P9sURaEYYtd1kLGYlNL2sNeyXN2Sr1+/VjD99vZWt/ByuX7y5MmLFy8QsawK3XqzTrdzpiiszubxeAwpnp2dIUpdvxtC8FkbXT1YrWVOKRXO+ZQQ8Xg8Kn9Zf103kap5TEeDkdvb28EnpbmM43h2sdHEsDHGGm2T7tOkZMK6wOqqEYa5QwMZvLjcqGDx/cMdET25emqtvb29jcLWuElyYbcbx5EMusJKDuwnnCVM0tJ2Ui+dbOB6vUag/X5/eXkZc4PcBFIYo+BFXdcKIiO6orDz6QAGmqY5HA4vXrxar5fWWmsfmxUfdsfISavjNd0+jv7szGlyd3b5RGS1Wp2fnXX9VEg0uyuqXGezaBIiam9M1YdxrlwsVnq39/f32n1hGAbEummqzeby1atXogB68NWiQU7t/tCslpobGIahLOuUgjLsiqLQdjHL5QpANHAw5u3wHAMTGmO1bw0454xxVDa7/Z21jqrKx3A4HuVM3P+PsT9rsi1L0sMwd1/Dns4Uw50y82ZVdXVVd1dPgAkNwgg0QdIo0iTSRDOJkqgHmczwpP8iM73qXUaIogk0SKJIinoArQhSDUhtDWLorp6qsrIy7xRxYzjDntbgrgffe0fcrJukzkNmRNxz9tl7Db7cP//8c2sNOgB4f3z/5atfHBMEAORkXFnVVBSFMbjbPW9WhStc4nG1qYvSjOEoHFdNU/jyeDye9qe6rsV6RBiGIfU9ENm6wixuzL/x5NPfqJ6ar2/WfaqtF+F+vPvbv/qbP/rNX//i1VdUEhu0rji2XRyHsQeJ/arZbM+39+2RjYynFjiP1jWrzdn56vrqlgjHPjpXG1QrrUG4UVhRiYOzPN4DoPHgdXxbvbj+rG9+PJhKZ5svKkq3ExH8gLwMH2Ij3/gK/RE/BqdOgf9DsDxhavSo59byIBpZf+Mp9GVA30P8wb8QEanvpBfX6Jchb0vXrOypvS0bGyUYTwL2dn9vqdg1u6oujscTIIMwaGvBxeEUYUERIZ7r8R/uTcdBEEFYZKkcFckxnDIbY8rKhxAVElHIhH9p0D46St945JkH8AG7fJkFeCT+iTANZgYhEQBpVg2i6D4FAPX3nCustQQyDEMYR+XP6pGndlXdcgBQYnIag+5NdS85Z50bjUFo/HjZEOdsptqjFELwqog4Bw6aOEfEhTqgR3nOWXUtFoBFPZm6rpWJrNQWjY9++tOf3tzcbKo1zDyJ9Xqt5SBqr9RNWgrjtKzkdDr96Ec/+sN/8kcaf+mY6F3ZuXPgFLIZUsd7YQrnnGOIh3S0zriyAMG+G/Q62gUxhOBmyfUxxaqu+r4XQrV+CyJs5uY0zFzVZUwhhFEpNTq5elgvBbUios4+kRWMRAR5gpiXsiT1//VYVF9LYW7dcWrtlUatCUh1kAAgxnh+Xs8hs4zjWJCz1o55jDlVYqyzm3ojxhaHwmoOgZnJTEmQZd/muc291v0Zo4KAbGYmvHMup5hz9vOdyYw409IFaJZjV74PTxK6DyQREQF6QLfzo2bo9MDfxCUc0iBEhxtxeshZJeebVkYWJH3mqC88bjWey8MutoB5wuwWBpZ+MMtURv1RK/aNHb6Y1Jyz0qGnLT2zdJc9Pxk/RFTx4Om59HmzqwrmmFJC0Vo/kcyqTqTPZcnwZEABtexcGeLyMIYyGTTU1oiMYhBFOHJERO/8se/2x/1f++v/0rNPXnQxIgspYCrgC5fiQAIZQOMvIsUmBZW3POPwKAAEZuqzrF+NBIIiwgKzjoS1lhAQhQABlp6QIpCJwRYEPWgO/xgG+KAs3SwLAyXjLEk8H47LSTaz7MEyTJ/9cCU8xPkiQjPjWOZ+fcv00WO9q49N8bLtEY2Bh0L1ZS3p/BpjSCCnHOd7XVh78P/HEaKvBZ7jWehWTSRPIwkGEBAIhQlANNEEoMIEwA6NQ/jq1depv5fQISVOARFyFrKOhz7LJP8NApIFicjIKImEnHMZoK5rs+9FJIY82pFT8oWdgQYw+CAqCgCSE5BR19/YCS/r+17ZxAsep7aYDDACESpwEeMYosr+xpBTypwyF0qCEOmHfDqdmCWEdHvbrRr/P/q3/pUf/OAHq3X9Wz/6NYDEEhFSiIe264dh6O5Oh/v96dT2YzDk2rZ//ebdOI4Kqex227/9+7/vnKnLCkTC2I5jP4zdOI5NU1ukpq5Xu6aumttDyym9e3v1i1+8uj90OXHOGVhS4kS2H2ICqOq15lqOQzx0bQqDQXDepswF+LtefvLF2/sE3pIz3ltz30u+Pe0ac3/q+6GFnMuizlmMwbqoc44hZDaCFvs4SBZBGGPc3x3urm5ffPb9f/1v/dXLi93f/0//s3dXN7vdzmC5vxv+3n/4d5+c7b7/a7/ehVhaO6RIaKx1zAysZQmSEgNnIEIkTktf129fh6J+pvDcqkhXvSIFzhtERJ6IPES0XtcwS8TqR3SdaJHOo12Dj91EmZJzop4xc2QQYSSwCREVCxIAQWMJEQVZQPMU05afu4sIiOSYYhy7rv3y65/9+P/949fXr2IeGVI/dEVRDWPPzN4VIUdERAIS3VlTHhuMzVlylllCf0KIcG7LsNlsFEI1j3SBjZki3jxrCuuhbpGMseMwRt3IRRHjlPaPHJb7j3FqjqethBbX2szaYdb6nKOCp/lReTLMxXEhBIWD9fBKIsqTSimJ4NOnTxVj6roOABZqGIBTbL2qKiLLQY0SE5HS92CutzJI4iXnjCxF09R1vT8d9WGd83pxPaZ1ijXEHYZBb9t7n7MszEplvvMjFeZlGSwg5hJgIGJRlIo0afmeHq+bzUb9OaVIP5YrVRRVXdvT6WTnrhoKsCKiunpnZ2d3t7fTx71Ts4mI3ltjJmkUJWf98guJ9M4Ph4NBKH0BIu/evQshNL5BlZ6SCS/QNIxyBpW9zsxCpAi4pm1k7gOsZIfFd1IvU23mzLHNAEA4cdzUt0ZrUkrae00ff9mAM5TGOWfnpkNQSwHm9EleckJKcF7I9crWVOIeT4X5E16vSLSu86IovPHMOaWk3WK9K9u2ffLkSYw5ZzkeTm3bKhtlJg8KeaNBb9/3Xdet19uiKApbaCk0Imi3qOWJcs7WmXW1YuYZV20Ww2KtUSLJzHkU5dRrcIKIl5eX3tvT6aTPq8WJj2sOFnsFmYlsSiGlKbTQ0UiJQwhpDACwOdvpxcOkZFpr+b8OkdpDa+3YDwunvi5K3baqYLNarSTz1KggJz0T9VZFJOTECHVRqCFShFdb/+12O82HxRhDiKoEYgvPzLf7+9APZVkqw2i32y1HcJ4bbiOCc+7u7m69Xit/cLPZaIMdjVUMWUTUedetrVd49+49IqxW9dnFudq97XZrnTs7P8+cbm9vb+5u37x7zcLr7eZ0OOop4L0fY3j79i0zgyFGsM4a/KCIWwOYly9fAvLt3d3bt2+VbmOMI6Kh66MJyv4WEQ45YUZvjDHOTe09t9vtOI7X1+8F4OzsLCO3p24YhnJVTcLcIekeBIChH1OOmkQpnE8pjTFo0QDNfd7JmpiTsR8nYeWUbUkGUEDqZqVMakRUiZV3797ppbbbrUJ1U0qvcIsLFNMk+qHkF+/906fnVVXpR0IIu92u606RAzO/efOGrNOvQESgqR1TSmmIQXslff31197Y7fZMtyeicc6p8mNtVrqExhhz32sM6ZxjEA3gT6dDyKxWVAFlZj4cDm/fvtVh+frrrzXDpxefjIZBQPnyFz9XtcrD4eC9r+v62bNnuikQcRIODuHu7q6u6+9//3tt2xZFUVh3ao+Ky3/22Wd9379+/RoA6rpW8u/YtaXzYGihxGqdit65KoSWZen9FPMr+u+9x4gKR9Ks9WStLYri7du3Z5utxvZVWccY29MJEdebTdM0kfNyrCgVVw1OjBFZnj592o9JhenHMBhjQs6FnbqbhhDattf0WEpJCCNnCGGz2Ww2m/fv3x+Oe30KTrntOxXWJKIYUlVVtS+dc8fjUTep974ofYyxLMtT2+op743Vrk2I2HXd3d29MfTy5UvdyKtVoyXbirmMKYpI3w+6wWmuWFqW9yODluq6dq4oy/L+/j4lMCaLyH5/5CSb3VazuTiXdBCRMU4dNwW+1WTFEM7On2r49vbt67u7u67riEh7i2nRm65e3ddN09T1Sjtu6SnWtn1dlypjpQ6VZh/HcTTOMrPa7Xq9GoYhJd7vj84dP//888K6aMcY46k9AUDV1CKSgTFnoo+f3QQPipRz7ZfDBMOxrxv/6Xc+v393EzB9cfW1CWZbrAD5dryLRT57XgQ05OvzJ8+JRgBgELIYOeQcnLchD8f3x7os1k0NAJy5sEViGGPu++OqKi+2m7ubq+Px2MRtOoZPc/Wv/fpf/TQXkgrKQIkBMIWxGMbvfv7yD//ZP19XxIWJkoVlvdp5mUSZb+7vgmQkKlYemZtVYbk8O//Bv+CfHI+9CIpkESDSuHiCBCacePbqZQ5LJ2f/g1+/AQ1/QGrmX+K6LZEvPLj3H/pL31Kh/ugUgMfCzTjLQcgMB81J9+mPZu7/AXOp9/wID2EyPhLrUxQCQBAfWGKzo6WinZJFUgpFUWw266JK1me02A69UBbJ7fHkyayKtRWbmFOKzpnQT9XYBEuvcgFkYdU4Tgv+oMriCvYgosikOsjMlkxmznksitVms04pDX3IwAgTOwEewRePB3x5xmUwvznuH7503HgmqYCi0oiImKdAg1RM73A4dONts6mcczkH/ZayLAvrDvt9TlJUXner7lMA8N6vqlLPPsjsnFuv1z//+c+ttefn58p7GEOIMeY8qSP+8ksraLVr1+XlZTcOKvalBlNzV0Sk5kUBSbVCMqsww1wcqRnfx0l0hZ6XMgsUKOtKjXzf98Y79b3xkcwDzLyrw+Fwc3Oz3W5vbm7UQIWlY8cc10yBhkymVT06nunYzCwsp2OrJJ7D4aBN2idMP2VEIusQBw3iYozH49HNHYM0xaiW/HHe1DlX+MlJ06BJxydNPQOn+yStwc1pgTeVu7NwtPNcjp+m+GRaqJqNXtBzzXbrIa7HjZYkpiR97r11jIyGvPc5TRWHIQSrrr9AxrmLyzdsAc+0Gg0JNAqVGSzOnFJK8AH0NhFFpz08M0RExKDB2Tos+yFLgvxguQzax1vlMcr2+Ada9DcUnp77+C07bXnDvP0edtryTpGHJqfwSI5Z5g5UyxXmHx66Bf6yxXx0zyqprz3QHqwhPozPww8pZ0RCYRXwYRXVmBBPsUhd152ORxGxRBYpy6RFmGPS459jJEAQwCltBigoAIrPwkMZDQIiwQMeSkRjSFkSg4Ch3/7d36macoySEFNKTVV7b9sxTEGOJCJS0J6QBUkyc46RJ1weBQyBtdbRxI1TXRXJSlydCe/GIAiisnAfJJUhMxrDzE1Vn52d0dInPWU0HzDldQr4A/ETgIcz79G8yNTKVkQW0WScOYyaIIX8AV398aGbvx2AkzmxMa1G4SXVv8DB6rYK0nKqz987XYGIYFYU+fjXPKhzPPRSW3jNahFUJNyAnp4PM5s5Eeo3Z0fojbm/vbl+9xaHYx5bAUGgsvBZWFmFMScQyVmcscbwZJ3TOA6x67r748DM2iothOCs4ZSqusBJ3AOdc94ZnTJtf2QElrJrmFmZ6mGr5sZ0/8iGjM4vg6QYQghhTO3Q5yyZIWdOnFloiMkYE8Z0PA1jNyLAbmv/3X/33/53/sf/Zgw9cga5U4na/X6vNdTGmOt39/f399YXXTt03X0WJDI5szG4Xq//9r/yr3hLIQw33an0LsbIQx9SQkdjDNunl1VVEZjD6cgM7aH9//zjPzy0Y8wibEpXWuv2HJhBjAcyOWcUXBWrcTilJL5cESEjjnFsmoshUzcQlXUWiCEaMmXpqrperY0wjcPYVE6vUDrUqEObHZMpckay1B9POXVnmzN0/f76K0P5t3/z5dnlv/cf/J///pdfvr28eFoVq+Pd+//rf/wf/2/+zt/ZPXvWh+itYUAAtpYgT8YgpKha9Jpdn9bwtydXlo1DRMarcsJ0fA7DkNlYa3OIEyJpDAArkdbM+ln68QXvM2ZKRi4+02J7gwgRIokYEcmAmgMlBAScdHoMIWAWYWBhQWOMkKSUAEmJfoq6AsDlk/N3t6/+5E/+hWuMr+0QuqoA5rSki4isSIbMzlt9qOlAmUnEE0GbWfUWYO5x92u/9gPF3R7lw+hxBlhhOAOILEnSjMlOes36NmauVo0e9uqvLJZB2Y6IE7I8Oz00jgPOMltVU+sUaFC62Wxub2/7GP3cQlppTXqHdV0qUtm2rfIZle1orQ1h0MkKITAHxYVjjImjM0Rzw726ruM4BaiFdavVSodo5g5PU7wcpvqkSw5c0+baeE2nW3E9fiSoAg+ZYJwTvTbPwjsytWNKAKAOpbX26uoKZp2T3W43sTLNxGHU59IUgjKn9Cs0SEbEMQRELMtSIXhrLaIoV10fRF298C0FuTwv47IsCcSQGYfx5z//+TiOT3dPxi4tnv283qazzDmnAldRJvUJY0zX96WdbtjMLdpyzqEffFUqZKOcx2HodIUkSep06uljCXVGAKbsiDrZCproFeq6ttbrslE5Vx2rhdGQpx6waK1VfdgFqdT7n1Iyk3pMWlYaEdnCH4/jZrNm5iEG6VpjTOgDAO33+3EI3pdFUfFcwYc4keyYGYCs9VpCqExzBiFyRFEhDH2Q1WrlvNXZ1EaXOv6qyKG3pBsk56xhlArF6MJWcZuckw7Ow9chAoAeXo8pDmGWydYR1lEqrAvWmblxQl3X2qHbe7tbb5S9u16vi6LSbynLUueUDapnv1QYaNry7u5ut9spliczS0CDn81mk3O+vd0r65CIxjGKBGaWlJm58GXT+BDC6XQqpbbWOm9L59VRVHatIZtzfv36ddM0yi5s2/b84uyTTz7RUVXdG7VR7alb7AbPZe+qw16VtcpfVFVDYEA4J4F5AZPRrkGQhFnYend5eQkAZVmSNUMYmbmoJ6KTiKScFqKJnk2rprm6urq+vt6db7VIQm1gWZalL5hB5GSQ1quNhkBXV1fKMI0xvnjxomma6+v3q9VqfzjoijXG7Ha7haiuKJsjc3Z2pqvaOYcCAqJt5YyzKU3tE4mAmV+8eLG5rz5+MhIZY9ZN7f1Oo75hnJQGF+6tbv/nz58vZkojc6VngnlIhJTOA4ByzF+9euW9V00PZ2y9rZh5s9ncH466BzVGTSkwY13XGMzV1dX5+flms4nDqHGEss5TSrvdLuc8xAfpBmTRsFkQclL5+6R3ZYw5HI7O2YvdmQ7aZrOpqqpt2/fv3/OspaBVHc2qVk2Ju7s7BZq3263WyqghUq/g1HcTF0EexOWdc2EM5+fnar6staoO/+7du6ZpVqvV27dvdfsQk5CJKdrCI6Iewc65mVs39/lgJjMVggCAtaTdAkIIIbTGFGoZlNJljDkejxlI7UbdNEXpx3FMwppiUaEntXJlWZbOa1Bdln6z2fRDp02irPft4ajJsIuL2lpb1JVmjuu6NmCMMVdXV8fjsawmzD2GYJBWdUPWKD5SliUAhTAVaCuSvrTbMoDOF9ba29vb3W632WwUtd/v91036WOqKauqSm2d9357fqYV6Lp5dTHMLpk1Jusx1/f93d0dkVUmgZ6MOU+aMIWrN7vtOPa73U4HSu1qSsla6vteq9GttafT6e42vr/Zv3z5Utf8er1WSRlFo9TrUFK8ojAKvtR1PY6qbZrX66ljp4how0y1sdpPIqXkrV2tNhbtZrNr2zbnY9P49+/fr+tmGLphGMYUy7IUhBACI2zXNXxLeBU5jzGYubrFOYfGukBNUY5huDvdJwd/efXlCm9XbtMU+/Wm2svxu7/7K6Nk9NW+HVNMm8q9v70bwiiG6lUNYBKPh/2dRfCuIYbT6TTG6IvKuALI0DgxMFarFXPKMWCM37v87qflyu+Hki1IZoOZcO2r2PdffPFFUZAt/ABpjHm7Wl9cXIai6U7HDAAkzLDbbjjG8f74i69/8Wz38jd/83fu7u7+8i++bBormYY+abJ26TkPM69IIWj4MOxdfvilsPS/h2P3EfOIyJKUTfcIivnIdeY/8i/95Zs/KAYlMjnwZq6dzbP+5/S9/BC8fxtQo++Uyd+fKs4RkQw5V603zcXFuV8fY+44YeBcrSoyjhms4M3dLYkpbWkdhTELZGOsNo6mWchD8oTWkQArMUuAZwpF5oiICMUcBkHmqBImKQfnbF1XzDyGpDGaQQJEwAcPGX6pO9RjKGN5dkTt8P6QFYBHrDX91U4iuGjILPMT4yg86CNM53VKxphhGEbuAUCtrsxg4FJBknNWOBgANGe5oJ+lr+q6LrcNEbVtCx/vFAir9bpvRGk3ZVlqFnAJEtWMqIesV5ZZt0CVixY6DgCo5QkhHA6HhbShtWVEVBerNHcX0OOeY1yCER1SdVdyzs6Zsix/8pOfrFYrPVj1aFA2tMxZK0SUNBV9LjpjOeftdstzPwNGMMas12t1/tXXghmWHYYBgcI4xTILF2dB22UmdAPAnOGWx1glIvZ9r80My7JENGpXibAoCpMM4zR9cZYcXDZpVVXeWNVPI2dpbqO18EvUe1eqh8I7muK11oKROMQcU3letn23b/cXZ9vjeH+zP6xuoxXIj3ltC1JGs/oh54f2etMmmjWnAWBiWjEvEQg8gicAQPCb24BnHs3cSQ/gkbXKKT/GFuVR/TU+Egld7nYSmqDFhD2skse7a1HmMWYiycvMb11wwMVaaXfRZTPz3DFGQxf9yIcX/+A1T9sUNT/czC8VMuj3LpJIiDh3rgPhrDXKpxCmFD1RSsla7+aaBYMU85SxkQ9lmJZX4vTB8yuCSROIgAbGlEIIL168+Jf/1t8cYxhHFkJLxlqr+RlLxEAkD/XviIiCGSDnHJO2/bGSmQi8sUQPlGRgAZqAGGOMs3ZWHprPHha0hIhu7h2/PX+62+2mzL+xZIwa8fxBwwfhlBGRJyntb3KW9Qtk0hLRo+ih4gYAZJL7SBbtPDCPFmHOKaWU43/H/GrGEhEtEs6V2rqEcCGSMxtjVL1E5jqIJZB7PC8f/SKYedCKy88L+IEZbYzJIIhIuOwOYVHxWxRhAmuQvLMQ46uvvh7ajtpjCsEVFpi7riuqEg2RQSLIAsxgvAOA03AaR9Wkp5wEAM7OLq7e3+33h4uzHYibAOJZ10UteOG8BrfW2sipH3rdkClnDa2XFOgyCALJzkoLSQc9xiSSEifOYUxjjDFkoaHruqKshW1K9OnLlz/8wee/8cNf+Wv/g99u22uDDBJjnAo1xuHYnk6ntk2JT/s4DGHYtzGnth/3+0MIYb3a/saPfu273/2uM+b+9v393Q3nUURyCJfV5uzy3K+qSLmL45Dj2PXdcQCwf/RH/yKE5F3Z9Z21JkYeu+FYJGcLIdSWJIawHUdrC+8LYzCEoShK4y2Z6urdzRiEvUWRxDkLPH/2ycW25HC3Px13tRaHcgoDzk42AAUBSCpBIMd2lDhg4jgO3el+f7z7FNN3vvP9/+n/7N/5u3/371+/u9tuLgzDn//pn/yn/4//5H/9d/7Ok4vLm+NRkFJKHFlE0BjCR2oP1ixAHn7MX/zATE2VKFPZlC7pYRiGkZ1zpfMzQ8TooajUyMeZOT3gF88AHtlDXUs552QdIRABgWiSmwgJnbYd1b4ZDEgoiEAggsTMLMDMZB/wSvV4vvzFL3784x9bb5z3RFDWhUL5ZVmTLQBIg58QuxQnpZoJpBNQyg9yjjEa75Q3tyC/f/zHf6w4lDaRsNYql8r7crG96lTy3K5NjcOCNk5c4JwVk7XWxjjquGmE7JxTZGfZ9W3bGoOKYlhrs0xkc0RUXGy1WjnnOOWFc6r+hFo4jd7jLJILcx9nREJkfRuR1ZR1XZeFKxa3hrTEVaZGZEVRqF4kmEm2jHkiySIuiOeDRVXT55w7HtvFmZsBZVyCBF0PdhZK894jytKpb0G+rLXjOOqMKAq2Xq9lLphQ906tpepsDMOglbwLsrlMivf+7du3wpMIgyGjlApQXCBmOzd5++i+0CWtLnUcBwYkov1+n2I0xsTYszBZ+9hft7OtJqU0MiNi2dRFUZzaVhew4i9EpLzUIYaFF6bUXcWCFWJQybaJgi1A1mgZeEqsKVWZ4XXvvZb8K+tB+1ioNXbWIy2ll4iIKQUFyw6HgyLaS/+rZefaSQ9aNH52zgnQerMZ+lYzMcMwDEOw1koSQ7aqmsVPVdeROR0OB01C0NzJQ3VsEVE4W2uLYqMfUUNUVZWKiipfA4AXEgfP88jM6j4hTjWei0XS2VQBGWXYadCCiHVdt6lVceRq1dCj9i8064rGmK2dlqi1thuHNCtlN00T46j+mBJkFN1u23azWk/Rl51QZhEpy/Ls7KxwXuVcmdmwEE0YmRKNV4UXkcPhMI5jXZ/1fVsU1WazmWrbSSsGHhQSVfaHEI13BkkfXOaC94uLJ865nBMArNfr/X6/YEC6g5aFdHt7KyIqIrzdbnXvOOck5O1q3Y2DHuW6Ak+nSUlcgI137dAr4ynnrHXJzjkVAVdcWGc/zg1ddQmpk9CeTta5uimPh0OzWlVVpWpaCkanxHaSEymnU4nY+3Icx9JPjEhVZlyv15rby3O7UWum86gsyzQGxfLUKIVhFBE1uaoUMwwdcxpH8VXVDn0ZP07CIkIUUJxUCfWLa2etffnypc6LmriZe2VDCDrjRMQph1kmGAqeU3dTV3BEvLm5Kb27uLjQ1oKuKO/v7xfqtBKlxxSdc+fn54oJjuVIMrUF1izaGEPOWdWuNWNBMkmcqz0Zhk5x8Hq9wbkEGDJb4/RMvLu7CyGURXV2vlvEgruue/bsmepOrFarqqrURLx7905Xo2LN+uDK37fGabZVEVVvrObz+r5Ha3QlXF5eKjxalmVhrTLRRATRxFPbDb12cNLjIIQQwlS/QkSlKxcqhjKwNHpX70J5+nqyKGx6uD/oZJ1OJ5ZclqVF0OBoOb80MNG1qtFNjFH1JWQSFParZq2XPR41mysqeZwSb5qVrkYk0APIOVMUtfflGMMwDNa40+nUtn3Oua7Ly8tLZVUrlmFm/fqcs25SZtbewk3TVNUUWaxWq6EfNXWtp5XiIDCTGb33m82m8pVSGYhA58tMMuJBaW6LRxFCKMsShY7Ho4LLGmvrKe+cSykuQjE6XE+elGQKxSlUYkLRkzdv3m+3dVEUVVWpDoz2JOy6TvvWamuPZ8+a9Xq9ZKwVqpa5V8Sp70RkTNna5JyLKYYQimIybtfX11oTkEGMMYlzjLGau2h89NW2p9a2mmlWIx9j9FR464hkTOPx1J7CEAjq3e6Uhzev31ZrV0EFjg7tdY6G0cQEdVN0oUVjyRMZut/fDUNvRXIIknM/BuecsSVDZkhNWWXOt3c31kzYxbOzs9wO3fVd3bwEiWAMWQJjVpvmv/knf/SXf/bnLz57cUC2znmhu8O+3R/WRSWZbeWMsd5SN/YQkoAYg11/ur293u02Fxdnt+8PjFiULkWtAZzjX0EARX0ejvslDsWZ1AkfIhWPPbTl18fvmalRAI8QXgT8Bk79y9Huo2/5GIcPBUTbYE9eE9EceFrrfaHvinNT+scYyy+jNPghNDT7ZYD0AOfVdVnXdVl5IhIIZelCiheXZ0MIwrJarTBB7kLf96Y06/V6n48YUGExfqQKMt0JCQmlnB4CfWRW8QAkIAkhWEsAwDlqGiznnJjVIBuKY0wpikhGEXLmG0MkH9If5WOAPs7Tv4Rd6ZFUwONRyjlrJ5uYeG1Xvm66MbZtW1WVc36qjRAkR01d397cGyLNlWr7Uy2mjEOeihiQRKTrOrWWygkQEW5lKirij0edalt0S97d3VWr5unTp5qBI6Jnz54BgB644zh6b9WYK3VayTfqr5pZdRARVWBQH0G17He7HWmdRxc1u2at7cOoltxau6jzMWvLMFRwo+u6AioN01QwSveyZigPh8PQdqq7eDwe1aY9ro8siqJs6q7r9BzRu1oq8GZejnRd54upFbOfGnuMC9Dk5xaIi5+ZZ41pjSA0A6qVRm3bLxHZnKKYmhLrWYmIWoqn7nFdlBNcQxNvUkszNaxWZ0Ztpsz6mRpnjSmtXC2Zu65Dwu12i4j7+z1YV1WVdb7UACxlsXYSYaGZ/IVTDaYs9FxE5JwzP3DTENFZS4iZGcEwiOoHZ408acL9mCGrzDkS4HRFvQ4RMYs2VkYKqtywyEpMEdFS7I8KVeIE0RpiZpz5EfpSOEOyVvUqy3PSlBARkUw00bGX8HhZlKDaDsIioGU4sygBiQiwWFKVYf54p9f5tvXigggwbymFRecATw26YQBD2SIAk2QLJFRkBiYxGEsKb/7sT7ALjotkfcyJLXShF2RjUdudaXsijbJgRvN1q6eYrKSMIMYqrm0SYGI2gF6AmBALMPsx/N5f/esX5y/u2jajFZQxZ1MV2ZuIOY1DWbqQQAAzIAERIgsIUgRUFCql4Iw1xgihMWQVcgJ0ZBCxcN55k0UyMkBCAQMCQoilACIYi4KQCTMiirNgXEyAiHrzizEVkQfFJUMsSh3GzBEBDRkByVMJLaEIASIYFgARnHRsH6jxAIxIKSYzq4rnPO150Pbu8HFTiCzIGTITGqtPPQtxIgpRns8DmZ1VbRVIzEnXzFImvpz0H19GwjlHLRxkZgCZ6VT5wSEwQmAQDIhlAsaEkCySEWA2FjxyzuN484u/HF7/eXXa38XWOhuBBcWaYggsKRqAkkxIgQicYU3Ahsgi2DFIVQFSFIieeGS2dkhSGLLGp9gDMDC4wueQyZkhRTKmTXEcIgCgczmlmGLgAMyVL1JkJTkyEpE1bIDsmIMYGjiFmHKMOUBk6APue+kTJHaYIYxFOoyfnZ1+76/+6N/4H/7rz56cGQOU26E/RhANqwAQ0LSn0Hd56GUY4qnvmCGxjAMf7lpAv1tvnjy5+JWX3yucjXEEycYgCAFAAGjral3VgqYQTEOfQiQWg/bqcPznP/tZsdmJQVg1Y5ZxiIggUMaYCVCEOQVryUFl0Trrcs5lsYosTPYw9K9urwcU4hzG/mLbfO+zZ08vyuF4ZzFut2fWmVEEkcGyQCbOkhMkRhZmsOUa0dW4CeJCx2nsV1sUbN9/+VNK6QcvXv57/5N/4+/+h3+/H66r9UrG8Q/+qz/40Q9+/a//zb8RDodsvVCVxCLaLOJMBkyIQGANOjAMShWgj0fUBsk6o8qhYCjniMTa3lVEyBrnKmttYhbBsiglZ0G0zuqaTpJAgIDsLIaFiDS7ZQuaaXHye9TAIuPsCxFozkgYMVpN70/1KjaLgBdEpEQFWWJj0NR14Sr75auf/R//3n/wJ3/5L8bYrZ+XmRMzV7YwxoAZGckQIAoSI7EprCKYxjq0ygTJTVPFGBwZjco45RgVJKr1iLW2JCIRJrKID22FFoDYOUfecYwqu+YKr5FhztkW3lrrq1IedRYmUiavEBnnihCStQ8JV7UbMU79MRQuUZ9Mz9D2eFInTwELOzdr1mhZ6Us5Z8KpHhYRQxx1XmKc0DpHUhceQLrjyVelcy6FCADasVPm7nPv725FpCgKQqMBm7W0wLg5x/mYk0fubzLGIJmgJpem2o1luJa6ML3/CYNALIpK6QMK0GtVr8JGyjJQOlgY4+XlZRja+/t7MRRCIF+oI6hmc0HDaVaOJm3oRxD1RpNkwzxrHxtjiqIioiEGOn1LSxMBQQl5cMZWVYEZQ8gp8v5wQKLIA5NByEm7ghClHJK2HuBs9URGcoKrolmtzr++vitRtDUcKAKLpmxqHIYw9GkcdCUYAEcWje0i5xyHIRdFYQwhatsDacqCmaeKOeeWDtfLUKeUiOyk/ZrFFV59EgBQsDXGmHMEAIu2sMpH4/W6RDSaRlGXyVp7fn4Oc7Fe34/qjwLQMASLxqG1ZTEOAwLmyM4ZyeyMzVmA0Tsfo0VhASGyVVVouNKHPqWUOdV1jeT6YTTWKNCsXoCuB2ttZibjtJrv5ubGeW1bT7okUkqAWQQ0nOv7FhGrqiICZkqJEdkYmnO6spDxT33Xtq0KXOYsMQaAsFqtiKwRGU59SqlrW2PM9nKrSVlrjbVFWfoYY1E3ymtW9EfxKf1ZJNd1qV/Xtu319bUri6qqmt2m6zpJ4Jwbhs5au9ttcs4inMah8s5i48iYahVjLJ0vt14FXjXakZydNVVZJCxSCoS57U7IGSSjADOURe2dlxSdsUFyyvHf+rf/zfV6/Y/+q//66upK608NuW5omWXow7rZbbfbcYzGmJcvPz0ejwbt/f29cTRKNI5C6K2jpxcr82STUhIe+sNpGIZms2akHLK1vqrrcTwMbZeDkiX9MAxp1G2o/Q+dAk/qDxnvEAQIw5iHMQoM4zilpbVeNecMCIlz7DpFco1xKq3T9t0Yg0ZQBg0SCLCxxJKHsffeA+cYoyVs21axvxBHABBga23W0MvQ8XBQs9M06xhjTjxK6PuPZ5tyTM6Sc+7+/U1RFA7p2AfJsNlUMcY4TuiztTaFWBRFwqyhmiurZaGqKfbGLk3ni6JAASIaaazLquu606mrV83+eNJFpWlOtfDGkDdmyngNcVWv4hCVRo2GhpQAoGkab9CR6fueY1rVtSLj79+/V2iV0ApTVVWAsuydGON+v2/74cmTJ/V6VYn0fX/YH8MsbcwMIvnFi2evX789HA5a4pAT58TGW85ivOvDOCc1xTlHkEtvmsqjNdvdipkPh0M3dszswa9Wu67rUgre277vjanI2co0tvBt21ZV44tye36mYKhqQWjUrSdMURTGOmNtGnshUe6tIvga9wJw1w2FdYrDElFV1+qojGE4HCIz73a70k19Ji1SzpljcsYoyeuzT16EELQOAFn6UzuO48XFBaDEFDKnzGEcgh4uKaUMcpen2iPIXJW2aZrr91cxc+w7rTR/9fVr7/1qVccYxxRvbm5U7XS73RpLqumhRD+tRtLBv7+/B0OrptHh1dEYhoEZVvU65/z21duqKlarFYjsNuuiKPq+H8ch56jbRP/rnKurqtT8UEzgNJOnHCZsu+P9/cF7C4aspbqufeVZsrW2ID+ksTRkjOmOp81mc3FxcXt7LyKqnnE4HHLORVF88kmtvHgiipwZMlp0pev7vj/2RVGIlDlnbS+srpT33vuSme/u7rKks7Ozze78zZs3t4f7duifPn2qmc6mXmuPkL7vAfni6bP9fg8ADrH0VQihcM7Zj3u2TbPauxEA6rI6Ho8EyCme+Fa9BWddacrirCDr3g/vmTkRgymJyWTDKXtPOfTv236z2dQbDwAcWs5cADSbHSLe3d0Z4zLk3easKIowJgOIYfBEx+OpDYN1zhvbjsPbLn49tn/teU13IwwAnOis/CLe/id/9g/7722CGeumsSGswJXWFEXRn9pDd2iwcdlxnhqRZeQnL57/5u/+zv793mT59NMnJdk3r9+PMaMrQ2IRQ2QkJYiJ0MzICcOs30xEDCDCoIIbIiBZROsgcQJqMmp/ryyMiELIIt57EAQA570lJTQwAIdh1FgVhBgWEAbIEHOeyykZ8iOeorGPYdMp8J+RlikiADQAjpxyxWBKCHXIXDhMaZLu1Y/IpFKtxcEYJTjrU2JnHWaKKQOzNcickkRfwHpnmy2VTXr+fHd9cxU51+XKURnnTpuuroUQvQkco0Tri3LdHNuBACVr4xiwxgADA+fInNkYQxk5gRZMZwWTjO1jNHFExJSYABFdDJIwImJRqmiSkCVpGSDFxGgMZnFoZVZeRSJGiMJGZgqOCIKWoasQc0IAESQwREZYAEDVCHMcUTIiohgBRAEBdLZAEEYGkpCTYWeo5kShZ2tDVRTruhKRYRy7vveVLaMpHUbOGQENDeM4juN2e6aDv9+f6rr0Vembqs2BvbE5MA59O9y8H6x1DTz/6N68vd+feEAAsQwAOAyahldyT9d1S1Lq/Px8u91qissYE+NojFGp9NAPxpjC+6IogIzxRTKWyK5Wq8j5eDzGmJOLVVNadjlnIUGiwleKNLWn3hinzHdjzDhGRJOYy7LKOYsgkWUOzAKQEUVZmxOFOTMRKSCubFHvvWqIicjV1TtV2AcAlZfIc18uRKMB0yQoFLMweFfklIuiGCUgUIpZkeWcGVCUMWDnjhFzn4BcVVMX99vb24UDEWIyZKuq0lKnPFdn5ix1vSrL0jmjVpecjZwlT5lvSTkwa0mrJTJOy+xGb6xzzpWF1uWcYm9HEyUKAggOw9DG8ezsQgyZa2NhTmdpjLeQchcIjB60aDOigUfqPMsbcCmJJaMw8GKeZIKJQSSrJjI8AHMPoDYzi2RmmINQZGZ5RIhbzAdP7eDkG/cJs7ALPMrCIeJj+SGclSIBJslLM1fdLgAxPUiFmPlOHtQMYEpaTSmGj24VeTRE2lYCZgRzarj16OaJHkokmFlYAIh5QmHb9vjq1auiKI45C6FO8NwDUOs+BGQSMVjgS72api+zyIJuooABPRdARAhQiIBZRLbb7UR8FgCEvu93u9355cX+zRtbV0PfkjHW2ClXwHOXCZjIbt4aY4xZ4NVH9FszqX2hzHcIqFgzEpLMeQW9Jd0tZH2OOcapdE4zBMuBpP9fPqKv+XvxUc4AdZ6MNqZE1D6E8MC4BF0MOCc8H5jRihZ9i2CfPMhiLIzvBZh+UB5fYOtlNOabV2mnqUQAHwnRfOOlvRf1rsxcUvHwr4iIGHMGZFWLQlHwf6lFwDQOVenHU/f+6t3t7a30J3DADMagmRXNGJFj1FtVzb776+vD4WCsN8Yc7u8BjbFOWfLOTWyCTb16hIKhQhgpJVe5lFIOUcdWWMIw9v0oOcJEatbyDeucEyKDmGIQFBQJY4oxpsQxccicAFXppC68M1bqHLrhu59f/q3f/5efPr0kFOZ0PLYCUTKfTqfj8eR9iWTfvbseQwwhDX0YhiCCMaQQEiLmFH74qz96+vRyGLpTO45DF8IQYwSGqqpWzcbWNRk4tQcM0Vky1lDiwlrCniwNw9BsV8M4aG9TreRCLZ4SICJCu0yN9S6GLIDe++PpFEJgBqHw5GL7nU+frUt/PO4LgqZurLeq05NzBsmiahIqO2sNACYWErGFBSwkJ+cxhBAl7dvuNObvmvrXf/CDf/Vv/83/53/xX4YQyJhxGP6j/+j/sr04//z734tggoAlIjTWGIIoYskCAKYUFkEDpbz98ssYS0RERjvj6d6hucFgUuKPyMLJtVPjuEkXAml65/JZvaxmlZdoHAFnkrVddtDj7bbYXv3sIv0hIMDamWQq4wppfHV1+4//8B/9t//0j1ztdrvdEAedETXvq9WK5todzeiqeazrOkyaYnHBbdWtUR6TwAMnl2YmplbtEZEW9qo9UKiUmVWCU4WDaS5Emth8KSnRDB71TtTUseIdylHVtLayLO2smLlkSTUJvxQAwSOxe/2Ln3vEqbwJEeVZ5+RwOCBN8CIRKHiBPLsshIu4pI6PptZ1Frz3iCbGZO10kGnQy3PjDpjknh9qhkAFNJ3XexZhROSceVY90/+qMdR5UWUDbXmxyCMoKr0MoDayOx1bEbm/v3dGT3mw1o9zmzgzt39cnBm1wOM4FsXEeZS56kKxLcWm9TaSMID/6O4AUI1j1ZIyzrrYjz/8wQ+fPn3a9SciGkKw1mpbJnz0RctGAADlqS1egdKEC18q+hBjHMa+7drCTmlRzS6XZalLDhH9zPZVN1QPNUQ03tEsxrK4B/pZ3Ua6eMIYlR2vbaFDCIt7pv9dr9dC+ObNm6oq9IxY9njOGYDK0uac27bVKm+Fq3juBcJT0ZgdhkHtgKKHKncQs0raJWsb5xwRrHfrtjupi0xEC5lRt4AuNoXtBECFX/UBQ8ib1XrRQrHWxphTmqoFFxbwdnum9Bb1YlKaPG89sJjZG5tBQohN0yi1EwCUQlI3Vd8NROSdA4DS+SCQH7RBUAXKQYSZFcl9evlEJ9o5o+Itee5vOQwhnVrl7FS+UIDveNxfXFycnZ0dj8fD/T7nfHZxvtvtYszqqd7c3GjqhZk1/WPc1DshIQpkRRtJDAKPfXDWx5hEgMxEnBmG4cc//vFv/dZvvX33fhyjdWWIOcYBcbLexuAwdDln56rjcT+MXUxDsyqPx5OtKkAYYwhJyqoqPGXB02kgomq7zSIIlAXev71ar9dFSYQWEJSD3DTN/f2hbVsi0rhIqce6oo7Ho/aGUU2G29v7/X5f13Wau5EbYzS4Ep6yI4CiNCJdwIs/v5xKZm4/oxZbbRoulBQRNbZKfV2tVkrw1Nnx3seQcs7+W1zBcRyHPqSU3r27vrw8V73jGOPNzU1d19r/5/Xr1ypxAIv0ZOHV19VswWq10qWlnF89+5QRttlsTqeTZkEuLi5+8YtfmLlKpixLNY+aa7m/v9f9stSCKKVXabzeeyRQleHD4cAz1VqPwnEcCQ0iKp1K4XsA0LIJvZSZS0P6ELbrVbOqu66r65o5nZ+f1/Xqyy+/1FKhYRjqulZjq0xz3WgphaZp6qIEgGPXprn8VsEC3aGn00k3+zAMn3zyyZJxXK1W6/VaZDqRlVitOKzeobV0dnYGACEkNRpa3qstqpTpdjweiejzzz+HzGqIjDGqN312dnY8HQ6Hg5t18GVmycmsPa1fqtkRY4wSw1NKquXStq3y91erlbPT/BIR4NQnsOu6pqyU0juOo65PANhut7qAJ0VynOIgABjDEE5BL6sSmUpbVuN2fnahRDz1oziLpsp0WWpT7vW6QcTT6YQEzHw6nQxZzeyqzUHEsiyztap3QWjR0KNSHgoheW+rqiqbWv3ccRzXm1WMMYRwfn5uyPZ9T6IaTVNbVJ2Xpml47hygOZ6UUhb2fpKB1iqW9XrdHbvr6zulc4b5oTQsHcfx/nDIOR+Px3EcV6tS17PqzFRl03WdOm/G4n6/v7q60saJakY0qv7o5kWEsiyBpZ57jTjnVJFfL15PWRnuh5bQlmWpDLau67z3T84vvvrqS10qeuB2XRf6YbPZ6Ub47LPP6np1f3+vNHPnTVZMiwCLYrOqEmceIyO37fDnf/5nh4vv75yBIsJ29QpP/4f//O/9jLrVaq3ODxF1Ywhj8N7vdjtde4jofZFSYITCl5zlT/7kT2yiZ7tn66eb++t75y2lHOLoJspqRACrTR2m8E2W0mpEVKQGELRgF6eg5qGbl526fwMJIAIRZgAiEAFvrDWEKIW3iAKSrcEknLPEkIkZDKE8ULhmR+jDuPjDBkuLU7RgO2r2VXyfmQs7tUerfJFzZklz+P/Q6gkmfVQCIEtO08MiktJIhpw3KSXhtN01T1+cb3d1H45F7VQZvyj97e1tBgGaGp6HEFLIlfV9GEtfkZ3KU7puQNTudrMwrDEiqDsFyYoICwMAgyg2Md0q0KJqSEQKEJXolV5dABKa47FlyAAgLAwJwMwl8UCAIiA4wWskoK719O/zeCs9fBr2LMpd0zmd6M0C1jp9g3FIhCEE68F5K2ARRTtkvH//Xquvbm9vi6KIVS3CQxhd4avS5ziCoRijZHbWImeLxENAkk/OLkMIg5A1FiiWVb3bnfu7j/vVxtjM0Vsnc6GJWt3lQAmzfvFjuEl3hK5S76ee29YYNcVEVDq32Wzats+c1+t1URRpHJQFSnOBNQAYmkrQANkZp0fMNEgs6ml347DZbJ4+fToMw36/Z07GmC+++EKtlmpPqawHEelpC+ahmEArYnFuBaR3HmNENDlnlS19HInAzEmnuSteHMaqqvo44MSVzN4VGqbhRKogHSiNPuLcW37MYfouO0Gv2gtE05m3t+/Pzs7UkxnH8fb2VhPbAMjMWumiTVlFROWn9YsmBq1yc4mKouj7MYRQl8X9eDfmVPF20l5BROaEAPwIPOIHjePJZquQ5vLHx2ZiKiKzBLOAho6RtoXV+jBFigEAUYEmZE4iWYREhAAVq8aJ+LwoKT9gzYudegxGLNH1YsI+/Ptj6Hm6W5GHdy4XnFNnk6VQ/kVejDKAIiMAEFOGDyPGX36piVbXlhHNxGudYm+cNW6me2YAVHtgEJGMeG8LA9dfvdrv98hSFEXi3IVRUWN9zdDDBLaq/4STaMdk2hARFiQ9S0JU/SCyxhjDDCLgrWuaBpDFIIdsrCGipi4vLy9/jpiZiQitsYSYsw6dYk8GUdWYZwBXILMYnIdxAmIAZ60lADSGgEmQiBiIZzEjJDHGCMDZ2YUxhjIYwzlnA0Ykf2OWvzFxivziJGExqQ0+XhKoGVoA/Q9PSzqLiJlJnUuiAmZQ4NsVn2B+D+apuN7OdzjpaTz+ddli8Eu5nP/ul8wqHPioFxlOvOwJIl9UO0SEITEIAAMRZAaWdVVKHL/6+U+v3rxGAmOtWBxjYEHvDRhDACHE0/E0F2W7YRgPh0OKXFZTh5mUkwFMCQAgZ04pbVarVdMIxzElX1hyVhAy5H4cnPEa+IXEauMm7eYM1hEKwNSEU6msGQ0aQgA4tafD4UBkBcyYYYxyf2qN8865z1++uNhu8zhcXpz9zg9fvHz5KXNiTgDinEtJ7o53KYOx/u276xgzC3Xt0HVDyImDIKK2ChDJZ2fb7bYBzGPoxqHrulOKo4h4V+owxr7bh7H2zhSeU3TGSY7Htss5r9fbq7sj9WNRNfv9MQPS1OMUARlFjHFEyLD0N5vyDQByOp1iTIhQFfD82W618iQJGcrSO6eVByalkBhJbCLEDCLGErFEEYkCnEKMuSoLQ0UKnbUFogDg6W7/1Rc/e57kb/2N3/vii5/+0z//Rek9gnn19dU//PF//b/97d+x6/r93SmyAVQlYV0yIMIoE7cUvl3grO3b4/GolEBBiDEKf7PyThY9sphkhreUiaNGQP91MbBp7kuwfDwvivyPMEH40O9UtaDJqJpJ6zOEYMlZ45Eh5kBEIcWvvv7y2B0vnl4OoQ1hEJzAbj2M9XSTuXROI9gFgC7LEtEu/8qzgAOR9W4iaPPcDJB5qnFZ3gZAWljEzMrDlanKfio+MrO+M8ygpz6Zek4KQGhsv+B9PCsdL7VHikFraKePoy7I0hYD5v5yOUSeUt9zIzhODp0x5tQeae6IZQwqTTiNYb4lk+beGvqAdmrbNSXJEJHIpsRdd9KvVhu13Ll62zQrKSOiKpbojsg520cwugpqj2NPRN6XIqKs5KUMTb0uvf6CTStxoO97EHTOvX///sWzp+M4CbqFEFTKDWZ/QK+go6owhIotmEeNZxcwVEErIiJniT5+1uOiyIwkeSIU/97v/d4Pf/jD26v3eZZXIyLmRMDk7By4sTBbMkok2m63n3zyyfX97XrVp5SZOeTEeXJtBbgoCuZkZvkymHxr02wapYvqjnOzBnG1arQ103xMTFsPDVnvyrLMWZZS6GEcENFYGoagMT+iqNuqNjznXDZ1VRUq7qG4PwDESTtvSsmcTqe+GzhLURTIEpmnppRlWZYlZ9A1rEgHEZWl74a+9qViN8ZgSiFylgjK+lTPm0iPPEGccgxpVtNDopTS1dUVIJeVV6h0AYbKsixLT7MQ86y9nhUz0ohiqWTUoSaZdPFW2433U/WlonsKCHpjtenvbrMTkZAGHY2csy3sMAwcEwIJQFEUdV3f3t52p+P5+bkWSSTOx+NRqYUpsWKFOndLIXzTrCepAe9VNyOFqIlYhcl0O6hNUMZ3jJFjatvWVVVZlmTQkfG+KIpiLMI4hhBCVa+cc0AyDEM7du/evbu9vY0BmPl+vy/L0vkCEc92u3EcD4eDpAwAIQ7vrk7OmWHsiqJ4/vRZjNF6V9dVN/QhB2Gz3u0CgDFmGAYQymnIidd105/azM4Adl2H2GqiQjUWrHEicjwerXGcpeu6zWZzfn6ueS+VSVHsdaKx56z1Irqpn1w+VcVDlgcuW5jV9jWNtzRsXORiYQZuVquVymSrlVD6j1pda60O6el00uNgbmr9kVdV1Xvoiej3/9XfzyH+5Cc/QecXjPIHP/iB+j+6ijQsSimFPMmzaJpEjwbIU0JIRNT+aHSnGL0q5Cy8Y22qqZIXOGf71HBpHKvpUu/9GJNWn0hMQ9vpwCKi0pT0s8+fP18163fv3ikWn3PWohDdMkrX0ub1VVU1q1oNsoIOzHB1dUVETdMgonPOrCaa9mq1ysg6/gCzgqIhTXDqcakJJz28dJbVYuhWvbu70y9VoQxrbd+Pqoq+2+30wHr79rW11tpKr6PSPYhGE0VqLpj57u4upVTXq6+++uq7Lz9XMRNVRddRXa1WatD2+71C9p988oneDyLq4xORwrVqaSeaPOLxeNRkm550Z7tztc+Hw+H+vl2vs9aRKATsC/f8+XNEfP369fF4VKEnzpO9bcpJ7V2NjJ7+ituqrXbO5cRd2xdFQQK3d3fWWn0EnBLk5vrdVUhZBO7vDwr7pphTzOM4rhpvra3ruigKNZKXl5e6WUBoHMecomYX9BTebrdasZFzFgQVLemHDgC894Smj0Mag24rBSPi3NhDsf6l4+UUF4yhKAr9VReq995ar6fVOI7K4bi6ujqdYlW9RcSnz5/nnPf7vbWWDDDzfr/XU+D6+lrTrt57rfddrVY8C6T2fZ85FN3Hz25nPEE3xnB9fa2LZBxHTckoXdp47WzRnW13ArSqGz3QBXLb9mPXGmPONmtdvTp9iogp3K/Y3Pn5ZVEUh8NhcWmEEZwxlUfmslldSAmnm7f792NFsFqBPf/Tr/7sf/9/+7tvd9A/3QBIURQCoImcxSVWr2Y+8cWV0xl0eH/AJLUtz6rzZ88uU+QhXOcxxZiMcdoUikTT6goOfKDDoD6NcsAMIJnJN4YPmjaLMWSREAUIjAACO+/K0mvHeOeMIUopMHPImjkYUwT+mHSkiDAiyfSzfKi/t3hZ6jAsiMriVhmDMaYQBj2tOAOhFcggJCIIQKLVZIRTPR2kpDeSGbO3BjChS6t1ud5VdeOMx9KWdeP7vl1vVhrCk7OJszAK5HEcLbkxhqao277D2mw2GxQFEF0Io/IUAQUneMQsfiDKjDUDCCIKcRY0Mkl/ToMjjx1d51yzqmOMACHGDDOe842XRkPatBaAAQyAVvNnnNuhLSiKiBgAmhURF6iEiASFyPjCusIE7rquq8CRQWuNmxs1L0xNIhog102NyDd396sUK1/UZTV2ozOWmb2xjszpdBqGzj9/FoaBSi8MF0+eE1qDaI8fZ9o5QwBMFm1VlIgoU1Oo5YjHmW0DABo06fLQlJj3Hup6xu4mGBoAcErOBQZJKeQctZBFT+RlXekH1+u18wYAVPpZTzdJWXWfZNI2NMMwhDAsUOGU1TNGawI086qNZAGAnHVz8wYRCSFUVaXGU4nbKiuXUkKclYoXJsSEnExiBgOHXV15KNQspJRyegioraVxjN77zWY1uR8iRVGkMOYUlcrp5l67OpuqkbXf3+33ezXRTdOs12tVhfqt3/jRF1988Ytf/EJvmGd5WHU8hjj1A2QQRJtCDBSLosQAKSVy5MhNbpwCWItNwUe5rMcYH87WAT7UxNG/LHcwWS5S80QqiA5CmntBZCIiMDlnoFmDQJKIJJn4C4IIODGKl2su0ACieZwQm9M3goj4KCaUB4iZ8VH/6xnknVhUMjNV9dRfBkTBRJ6V+xCnQNTMrQW/jZEKAACsComzARGYcfzJrM4v1GzJpIrwQd5v7Iei8e/evUlxDH2bc1T1nwVrXgyHzEHyjO/rjU08dSIDhAjELPojCSAKChgizAyA1lq0JgonyTAxvCjn/PTpUyAjaAQmgZ8kwjxxu1F4Ig0/GnDmNFlbEEnawo8XbWUdfwKgaboIBAQEQYgIiay1T58/EwRGcM4NMSDJh1xm/YEX+EAPnYcZn6EfIkIEXXXz+plo75IVEc6IGLMKm8pjGHdaJ/wBm/jx7MzTujAumVm0OeSy0vTkmAsJcbaGuGAxADCHzR8nls5w8y+LTz3gdwKIqN0yETU7Pb/NOPSOXn399d27N2N7Gu5vC8QUozAWhWFEvUpOoqOdcx6GgZwltMbZGPM4xpRzFgBhMNZ73w/DOI6kkUbOMca6Kc1cWM2Ju1NrvXO2AIkhp74fx3H0RlPlE7vTe4/TcsWcQ0q5G/rbw3GMyTrTx9COiYUCI4YQurawn714sirM6oc/+JVnFxvmlHJwRIg4hGF/d09Ep1N3PLaZ8Xjq726PZH1KOYTAmRAx5TAMQ2Hdd77zsqwKkBjGdhxa4YnAIkk4skVLVogzojPGZOBuHK7v7to+3pz63e78/b6PMZLjql4d21NkZkEggpyBhRwyImcQkpyzMAjrToKUkmRYr4tPP/9kt6mH/tAUfrUuPSFMcvkYE6QECMAxxxgNoPd+VVkWuN23McbVaiXOjWHU0ifN2WTGvu1O+ztXFH/j9/7Kz6/v+jY0q5Vw+0/+8J/++Mc//ht/+/cFEhlKOUlGQyCAWi5gDAkDGCvCxnycwOX9RGaMcYycC18JSp61gGgGv6YtBhr6TsXjVVUJ5GXLKGSw/Lrgp8yMj6Tf5MN+m4sJxZlVPe0OBAEobMnMKKKGBi29evP1H/zj/+budLvbbQ6n/OrN+7qpLFHf9d77mNMCVqo914hdPUKFcVPKj3exnvfMCeKEnPKjns6KpYsIIjFHPRqUd5ZS2u/3c7LdL5241BQou02bsz1GaRcwVIcdZjaxAl7Ioq6VQirqjyrTLc1ybIvF0zHMIYCIRTKAgfVZ+HA4KHltnr6sbLi6KBfnXvlW6lUoiqEPor6LRvIKxGi4K7PG9DJlC8LOzAikBNO+71JKPMN/zJxSUEqU0ri67qSywstQLNZpwRMXjHgcx3EImo1PKb1582aiaSPOLcLzMl+KMJpZpg0RVal5QvZxwiU1zabYurU+Ccvp48kY46wxhjlba0KMY9eHNsw4KXnvE4zWWqQpJWC8PhcZMsJM1sSUgI2IPH/x7J//6Z/0IerWCH3PWZxzWuwPqkwCoCOgoTvRxPV25ChndU/Vr93v9wsdXl88UySGYTBIAJNoe16E9YtSwaaicPM5KwBMBFVVrOpqu13rdCjZX2EFY1yMY3c8xRglzeqiUVt1TatFI66+7+tqhYYoGAbJOQlCXZeKwzpnAEAMrH2VUso5Wrs03ZlY58iCxig3UOl+zjk0un2kLMswjIf+AHNV3LJB9DGLoqiqRiXzFPJevNwY4zgGAPAze1Q3ctd1bdvqQj0ej8aY29tbXXua23ZYpJSOx1ZEnjx5IqK9U6ZQsyz9qq4UiZjWcN+vm9X+eAgh6WUVdlSMyTm32+10r8VxACQi0s5+h/t9YkFEpcpqp0ecRdvV4MQU05CtQ+9dd+y6ToqiWK82KfPh5g7JbrfbrOcIcDd2OWdTupQSeF8XXkRovo11s1GzICLMU5NJ68j7EtFkSV0/jDkimTHG9uqKiGLfA4C3ViQ7b9ZNDZiHmDKRc0UMKcV8DCfn3Hq10rW3225TSk1d933ft30wYbNpOGUUkAxNVTsz7eWmqjVR9+zJUyJilqt3787Ozpy1i0lvmmaOEVBLInRtLxsBAC4uLhZiEc/6mLpZzs7Onjx5ostDrauCUKQFiB971XVVFOWLZ89fvnz5+vXrkNO6WdHMwvuLv/gLBcL0mMvCakhTSkrAt9Yua0NS1p2i8Nx6uzHGoKGiKg+Hg8Kd6/VaDyMiurq6Us6vFqNooYPyKNVyKlodUg4hFNZFEURUceeqqjSXpkmLy8vLJ0+enE6noihimtKNagqscWSN3rCIoDaL7qcOTkuBjiq6KLifE6sRKJtagLVBkypptG2r6hYyd6eYwFZmtWl6Nc3f3N7eqp+saMLSoU7m7OzPfvazJ08uVCOi67rtdrvdbo1xSpFWIzwMgxblqEJ0Vcnxfn/b3A7DcDgclIn81Vdf3d7ePn32RKdjvV7Xdf3u3TuVAtf7tNY2m/UwDHlMWtzw6aefKqSoiGdKabvd6ko7nU6uLArvypyeOLterzUnGsNUNXV/f6+GdClvCnFUkSuWjID3+zvv/Xq9njCdYdBc19CP2upTli7l2nsWKE0NgVdFUYwxjyOs1+ZXfuVX1uv1mzev9GwlNCJYFNVqZeq6fvXqlY6Ds1ZEnC36vhcEzYHpId51XVUVMrd9NtZsNpvr62siSrHv2r50k9pszlmp5bphlVin0PxSt1QUxZiilm0Z47Se73Q6Weu352dD2wGA9vu9v79HjIcDr7dGkyiapgpxyrdtt9vT6bTf79XdSimp/oBuWzW2zjkrVMvH+3wS4c3NnXNmvV7rSK5WK8kppRQj1HXtykIRHOcKPTettTGNIuINaR4IZ6bd9LwwNeYqiuJ0OuWcz88n5P3LL7+01q52Z8ZgH/rT0JZlGVOfwuGzi+11N/zDN3/2L/3wt/7gH/2D//sf/IO7M3O3smPFyOS816WojlZKaWi7oqiqqri9vVX3Eo3R5I1zvqr8/njcNVt0slpXF8O6bcduTFm0xA2SiCAbpJwT0gOZT5ciTE54JnILtAczgxuANQM407QWHhUVnpR4VpYFEYUoOefUjUSTmJUwZnqAtj/G+UM0D6TA5YdHWMdECly4wGroxnGEPFUNImJOisrqr0AiSm3WbUJk1Wt1zoBNIrxufL0uq8pmGBmBJZy6EVF84UIOzWa7aNzz3FVFRAJHCyZLijmQpaouIMOkiPiwxqaOEWOYYnwU0N57CGAAMqlwLAIhyQNIopGy0Sq1eZCsJRQ7o2wTgVlmQvqH2JIyO5fQSUQQUBR0AUDJCWCuqxYEQFEqhpnbKmC2pTUOASQzn623zFmTfyGEU9sq2tsNQ+iGqqp2q7W3Lg0hibg5vGLCUxjAEycac1ifbQ+nfnd2Vhb16XBgMBv/8b1prVbsRUgGEb33BHh7e6s7TuZqbzvXpmsUr01N1FKpxwKKNQN0XZdybppGK2lEJV8QhzzkPPXfU7oMESFKUXqB3HWjWmw9obz33Xg6nU7b87OLi4uu6w6HQ0rJmAnbsZMyYUREreN5DHwhomp2V1WlUtfL82pjBgMIxpZleTgcEFEk6+GlH0FEBdxlzv0cDofNdr18L8J0cOunmqbWz2rwqH5dn1OzckM/tkP/4sULjRydc8YokwnOz8/3+/12u1WvUktYmPnt9dX9/X1RFKvVqm1bPRknioazej86hofDsKobccsuFu89p5hjssxpAb8WNwVm1HLZ5zg1t3y0nGeW7vKGxSIAAAkSIBDQA9TLCAp1AJIqhT5cb5oVmXV2gKwxZB5orboOFKt8PIsLjAwwNbuSyW49FD4jsprEBcLAuS9cnvtiz0YTF9QD5voaEZlyUTLhLPIo1/fLL+1b9Xg0RASQRUAFa+EBqphV+7VpngrOMXOOzhvJ8erdW+bkvQUuJMCY+iVolAfu+cSxyrMcsGpYa50vAKI1FoxOilEgWDm+KpNKhhnqVcMgSSVsBUWEQT757POyqU3O/dQ9CSccI89K84YkM7CgRUPTEcLMxhpUhfzZ+1/mxUxw0uS+aCswgwYhpZzB2LOLi6QbRmWR+YOlpamCZahFZio3z+ooMOm6wAz4AjxkBOWDF8rca2tZMPIIrsVviTF+ef3DXE8kM1QNU6gG8GHou6yxx0vosd356AvnDmy6K5dFiAv3HHESZRESRmEwzhhgTsPd1WvuWkijcBJrOIO1BhXmyxBCHMdRGI31KQwpJRQsiiKxDMNgnRMZRLSvrXL0QLJoiIuQ1ZXUX72xyhsHwpxkHMcx5RgjZBYyek7DLHSDAMaYyDmH1A39mBIAIdh2TG3gwNj1435/WlV215QW0ro2v/a9l5fn6wwS4pBSpLJMw3h/f39zc9P3vTEWyR0Pp5u7Y9+HnMeyqqyrRo4pZ06yXq8/e/H84nKXYt+2+xRHRPaWDGJMOWdGj9Z6izmmkGKMIZzadohxfzgFxvv9UakTd8fOlZwzEJmYc0rgHCAjEpAxiMScQ2JPSEjMbNEOQx+GwRi4vLy8PN8cD/s09CuPKYH3Hq0BNImj8lFzkpBySsKGgKEbue/7kJP1bhTIQ59DsCAVmtI6Y4zkHNr+7uY65LRZ19/91e//5J/96TgEa30M6R//wT/6rb/y29snT/Z91KUHgAyMQJodwUmvTVTW/JdfhDRx6sk68yAFIJramGtQnHMEOJtTUvqq5l1nSj7CnHXTa3AGmXaECsKj7ivAhwKFeeNPojR5UuJ/aHkxFVAjOG+T5FN3/OM//Wd/9pd/Vu9KD+bm7r3zViNhDVcO7Wk5j9UjybMo0H6/V2tfFE6lG4uiUJ1HEc0CTKH+fKwstS9sjNFmdGqIZE78ah8h5TlqxLJQVHDGRBazoF6F1ghrTTcAaPYYETVW98aqqlKeiZmIqIjzolSwdDp2zgFN+s6qcVJiqfEhuSalJqWk0d049iKy3W4tTrVdGWbRLpGFr61zrU2cFDdRXpjG2ACg1oAnxSrSTrkT4CvMzNYp9Lw0n8wxjsPQxRjrutbCeRVz0Kod/ZaFAqC3pFFQmFuuaZL47u4uxriqJ7JnVVXOTUUnC6yvD7JEKQAak0z0OmOmHllLzh9nHapvs9DCrFpG49iDgLUWC0TEMI7LMjAGiTClJQU+ETaRBWZePzPXZTV0vZhWISTtjrUyq7quFd83xhTW0aymYoyp6zrkoEtLIXL1/xYsHufMAc4dI2Ke+tqhgDGT1AYA9KeWBKqiQBQSYJbVaqVJL3WF9ea1beBMYxdrraTcd10IwRpHaKzxIpIhj+OYc3SuMMYIQIgRELMkzFiWXkS0HE8ro1myLV0IwRql4euONHFWeco5S8rjOPqqFOGy9HVdKaGvHweetSwMkW4EY8x6vfbeW0u6VMYxnk5d30+9VvQ9CnycnZ0pcmSMqYoqhLBer7UH5sXFxXa7bZpGJQiISJvAWGuHMKaUtGx8IcfpYCqdU2u6S1/oMlbc7ezs7HQ6OWOLpuyGXkRWzVpZgcYYAfbej/2gWQRtBKf7zhjHHNWPWRB8mZvFbzYbmNqad8YYEPDecxYGjCyMdPH0iTdW+YUhhH7ojDGSmQUqXxhjCBBEtCCDQyommXtg5hKUPIEi0g2tapZZg4hoCAiJLHnvkwWj+L51kLnrD0VpuyHmlFarVVmAEkXHYQjjuOgkMHPTNLrvxnHc71nNmlKh9QeFchTWVLoQoiDCfn+/2WzIGo2mzKxiH0JQPqx6HWo9DoeD6oyrfVD87ubmJqW0sI2WuC6lpJRSPQi+zTEbx3HzZHNzd/uf/2f/xTiOVVXz3DoFEd+/f6+3sT3baUcgZk4zVUJ7Jelz2blbMs9FFU+ePFGzpvCxPrUiHZvN5ng81nX9/v3Uk01thRJLzdxxR22CITukuHn6tKLy/fv3C9tX71PVll+/fq2HCwiW1RSl664ZhsGVxeXlZUrp5vZ9Uzbn5+fH+73evKKoalp5lk243l/7wpVl2Q+doi2IqLXGehAobLfdbq21h8NBGb7ee4USQghpDCkli3R2djbEoCiPzoVazrZt+75VCjbNfciJ6HQ6bbdn+vja7z3nvNvtcs59P9Z1AwCff/45M69Wq1l8I6zXa1XA1DSkQsbf+c53JmSccBxHzsB9PwyDRI4xrtfrMMbNevvq9df67YpvrlYrFYRr73vt7qjIkRo6dH4MQ99HHdjtdpvnGpGc8+Zso7Ogb1YxBz3XdD3sdrvXr94AwHa7bZq1eiyLdkee2y/nnJumfPJkUpi5vr5+9+4aAKqqOJ1OiMZau9+P1h7GMVrrc85V4VNK9/f3wzBYrwe61+u/fbu/udn/8IffVbPvyMTMn3zySQhhaFVsxykr2Vqrfo1yxvVBNJ2g1eXjOJKzLzYv3r9/f3V1dX5+vtlsYhytnZSyjXc5Ju1fut1uLy4urt6/Vxa2rg1dsarc2ve9YuhqluMsr6Q6kItzUrrKpm8TRQT1zS4vn15fv7NIaQyck1YhdF2HfV+tGu99SpHIsiQytnQlIsahd87FFPKg1ZNBUyzH+70yx50rEFH7Iu73+6qqALiuyyTsyG2bVd+3cRi8L6pdk6x/ldr/3f/r/7T5B8U4jrQtQmNybUcOGAjaNqXkXEHOA0DbtsKIGOq67vvR+zyOIyOs12uReDwem4snnBNa/I3f+OEXf/4F5uSsLYbU9iHnHLNkzmSMd2auWH2o1cZHRD3ryJiJygUsReEnw0ti9CfIytBCRGSxFrVo1WA2BOQpJR6tyTkZAjHIMNWPLcDI8mLV7H9EMcH5BY8gnSVOh/k+1VuwloAUTFGCiBhDiPCYaKgsLYuUUvKVL0oDkKuVR2KRuDmv+r4lcMMQj+2BDF5eXsYYQ0qHw1T7m+YiQt1rb67ebZtN2/a1q7b1pvI+DGEW02Blo+HEr3uI+mGmPMrEdLQPoMFEL2NjjCUzoU8sxmBVFip+kjJCRmZGmBANnR7ID7DINIZzhfkymDoKAIgsApCTGLvU+mdBTJzOdztf2CRJKBqLSEIkgnJ7f7dZNVPOLwfVasg5h/2JU67ROgTJUQsdEBGtGWLIJDn2ZVkWq0oIhziYGDzI+br+xc9+GjPH0wbg5S/vTe+LZrvSnqvOWZEcchbJ3qu68VQyq61HlU2saXjFoB2ZBNrGA5ZRijGp17cAMtbawroQUshpCTmX/GLO6sROxBGY++6auTpWn3TiSYjoEQBzlKFFRWqX9Fb1zAUBY4xqAKrxl5TB+1Eo58yYRETBaOVH1nWtefRhGLRir2karc/LOatfyszjENQv1dBPo1E1y7pip1rPwis1UA9WPbystUVRdV2nh+Z6vdaM49XVFQnc39x67//y9s9dWZCzQwy+KsfjkQhjjOQsshTWIaKuyXEcq6JMITKkCsrJLdEBX1w0O8dXuoeNUdhOsQOFgEFELDkREZirA+bXtKYJOE9inYhoyfAj1V3EqTqYDCCbJYMKM7pNaLOwACAhIaEgQwIAQnRWe099s84aH6OEv2Sb4JH1VKYGgBYCP+aoTmtFZm0U/YEZlrCWOSvDaIl/PnqATXaQ8wOKrSknfKDNLrZytgJERIxKgzfCqJGkN3Tc37aH/bqp705HlrQ4xMslpusAIyjrngFAMouy5LQ4glD/1UyIu/4nW2vjmJwxkaNz7tmzZ2NOUTImIWtIqO/HJ8+evvz8Oz/5p/8tOZtjhKmlGCUZ1eySgHFEBh5zkJGmhvVg2NiHE2KaaERhEAQGMcBETggJISva5pwryn4MIUbJvAiPLldAlgcxEYBH/GIdZkko5pEg+AIMLd78Ytz1Hx9f/xs/LPqw33jhnMmAByhtNvHzxWcjPpULPM5hPF4JNDGdP+4PzTsL4OFwfQCpJz8bnMzY9VQxNH2XGJR2f7e/fnv77uvhsDcWhxjIkhAxc4q8YHY01dQbNA4AVLVqGKO11nrXt73BgIojZGBm0gRsDKoZqqyTsZtqJCvOIBRCiJlTSjKRuw0Aa7QwyadYk1Lqxj7EKEAhw+2hP4bMxgeG/bGrS/dbP/q1X335/PlZ9cnl5vKsXtVm3yUibNv26uqqLkpmCSHe3u5jyN0YOEMYs3VFWfmkaXwGABhj+OGv/eonz5/kGPaHm747omRrSduTGmOcK7QJuDFQVVtfFm+u3v3lz3+eWLLgmKFtR84CLN7Ytm1Xm+1p7AUhM1shQbCzfcsgkkCciIi1tiiK169fd108O1ud73Zde9rf3deljyFjlsp5Zo4ch2HQdM4QU4iBiIx1CfBwGmPmollFTj999cYSnO/O1kVhEuaUDGZEGfNwikPZD7f7+zFV692ZBEl9jKH72V9+8errr5989gKGYIxBsCICk4YMS2ZA4m/6fh+8CIlwqroiNAr3EqE3JDKnUrSEYbaKRMScCSDHSLP+w3LBZcelWfNh2puIbrkCPKgqKXjNzEqzn4LzmXfsyAlL4mS9J4tXN2++ev21KynG8f3trStNVVU5R418Sj/xdOLcCHgSWATQ6IiZb29vd7uNnSViSWgcIwBYaxmnyFAjUngkMaG3qqXK6tPgo/ZWGgkDTBIBqgtBM7lyMU3694VTrEoOIQSt+1bSlqRsZwVnzVorI1up03oDTdMofJZzVi1Ca60K/iglgZkdmaou2qHXg8/79WSmYNLHRJhs13LYaVCtHg8RKaFAbZGyb3a7nbX2eDwqpqBopkJFCA+QSp6rPRSmVz+eZlKbiNR1zcxErJVlehuKpPAsY6Lal3ZSEkRhYObtdtsejn/lr/yV0+n0kz/9k/Mnl0piVf8sP7TjeNAwISKt3o1x4rLRrFWibgAiC+G3iWmMw6jrSq0iAOj4M3Pf98CTejJknrskZD37mFkzo0QkiKWzTdNo4pKziIhWGc9d/qZEnVLEl12DOOGDi3aExs/qdGrcq2RkjeeJKOaprjBFznnCfB1NeI2qVagPWjpfeXc8TgXj6jV2Xae1SiGEHKJzThhCiCLgSoeIfT8oBpRnjWkAUpjMGKO40mq16sNYrRpSDXbEnASn3t+pbSf9E0170EwyBZGqqiJnmqkoiuWJCE7STKIZbiWkiMg4jiGItX5J6yoqHWNkBiJUEv3xeIyTis5EUtOWd2aqakRdbJrgUVhBRBRKUFp9ngVeVF91KnB2rirKvu0AIOfcdV09xwBaOafle+3pFMZRPfBxTFHCMr/OFcxpqmQX1NMECHVgdV7UgKh9EJG6sWS8CrmGlBGNBhVlWa7ripnv7+6GYfDk+m6sqsphpQq8KcYQQ557lAPAarspTBnyIACRg3MOCExpmZlTRiOVMUoIHceoOGaOuakqRLzb3+uOQ6rVfKWUdf9WZXN/f39/dwAAlrTb7dRwLSki3Vka2slc1ygzsK6YNQCs12tmbtsWaKqBeKweu/DyNGmn/Fwtobi9vf3+97/fNI1KYKvtUsGNn/70p865zz77zDmnJfY0N7D96Pb33kdMfd+7wgNhvWpUUkZTm0VVxjx9rx40unImlV7miZVZFCLSDsPh7l7nvSgKVYEEgO12+/TpUx0NzfkhorVW5Vk01XE8HtuhTyn55BcWsF7HWvvs2TNduk3T3N3d6WasqkqlpfVqWoWjUrl5LscxZBn6lNLhcEg5qoF9+fLlX/7Zn59OJ2tVNqrWubMWlTStylGRp0pwrcaNMajNnxRpvNfh1bKYTbO6vr5uM2u9wtLtgOd+BjpuOqfDcFKC9uXlZc5ZG8aKyPX1tTEG0cS5nay1VmQ9DIGIlIxWVZWBSS4v5xzGeDwdlAqta0Op6Ckl491yEOuZPuX/inrVNET05vXrN2/frtfrnDjFTGbSjhOkruuWQ015ampemqpcYpDHmelFN0aBeCJSQrTOY1VVZ2dnzjnvihcvXoQQtGRQEZ8wRs6yWq0Q8e5u37a90p81BLu6utIFNkffRidL5nybWraBJndltVpl4a4bcs6bzcZ7TwTGgNoQDX7X68YAls7X56U+YIzROccMztmco2pH6CD3PYt0q9Xq2LV936tM+fe//31EbNtW02x1bWdFLxNjjDm7ovBFUdd1vVopSqLgMgDENO1WmDo9Fprwruv6dDoBsu730+mkZ407O0/h48WjMQZXOWZ+/+4qjAER9/tjVXprTdXU+/3+cDiexUzO5ixEcb/fa+7q+ZOnOnen9jjGpMhOURRqZkXkdDo1jRBZFdbY7XZEpCUp/bFrCUtvN+tm5YuQ4nHs77uTscTn5nrsz55uEVEsOkMUgAEUtAIzeX0p8sXFheTc9/3Z2ZlOgQiM45iFc+SfffkLzNkbu23q737vZR5De+zQG84uM/AYrHfb7ZoAj/u7ENJiZkEEiIy1+jil97r+dZXqCegL0oS9s0TkOAURRgHjLBEpzZM5MmmrDFMk9V40Ns7ImGcP8BtRByIKPaI9z5wSfclcDzE7pbTE+JNhjDyjLuq7yaNo/iF8BpD1uhGTAbKvTFFaMKmq10VFQiZxEHLNqlY7ycwhBvV2kIVjMkSMAIgxJUAMHDEFEmh8Xdc152xSRhQDyJBzFgRhVghLi8pVTpIEIHNekAScaQF62FmD1lpOWXlaxnrNvIYQRYRZkkx9qvTpSAiAH7PBGfXbjDYeAyAAVq/DALKItSbnjGAQgVHxhAl5PL+8JMP7010fWl+Q97Yfo/NGtYMAIOXEs+bSs2cvxnEkEBBRN7VqakC0RRn2qW9bi1STLb2vvUMB2thdU8R2v7+9Y4KtFB/dm4zgvC9FcuamadQ+vHjxQp03BQ45JgbkmOIw5m8IDxZTb3BrbUocwkDG7HZbJQeoV5CEU1KZ0DSMg6a3dQTUZzazaJLMChuadWg2a3W3NISBR8W7PHdNUF7w6XSySJo71H2qXj1HdsaNYTTGdG2nB5ZzgZnvjwdVtLcKvjiTc1ZDrYfd2dmZ0on0llSnm1DbCE2VpnqILOD4mzdv+n6s61IT1URkjVO/aykbinFUl1W9lK7rCuuenF+o9+u91wr4ZUtqM1j9OcTojdWsoW/86kktmQFgs9kUoz8d7pl5s9nUY20L7+EB2FIJgqk3+ryaHxQAFuBAhAgFaflVLBIjEFHGDBmUfJsyzw3rNR0xsTJFRIFIfbbJm4wMkMlO1dk8vRQ4zkSEs6AzPoKViSb3lJnzDMw9mJnZ1iymbf5XYk4LFgkz/pgnaRHQBb1QSB5fEBER7aJJ/5EXKZdZDeYjnYf5u+RRumkac5WHkElaw1gsvPvy3Zu+O52XXqVORLKmSqYbfjQpSAxABAiIyo8mIlCMlQQE5xzP9C0AjAIWiYCGYfj0008vLi+7YRxSKNjEMUkUTvHp+dmPfue3/+InPxmGsSiKGMc8P4ixM4o9KzVPz0hT/Qii5ilmYF2AYH7qJROAgCDIoJ1nGamsy6IsY06IRgByzg+iTjM17NGwT31g9S+ODAOrAv/D96rxfcRPmT7OQoAqIL4M42O6PTNPPRR+6YXza+HLf/Pij972jeW3HDATTPffR6P+5bt6jAEREaIRkpxVW0EsIKIFskN3MJTevPpyON5iGgwkZMogSJNMLTOHFIdhyDGpezEtfsI08KltFYriDMwsDATZ2YKo16J7nnVmhlElU1AIEbEwFgBCTkNMIQRmMMYa47TIBYliStoAkKMMw8AgIXM/xrvjcBxSlyEzHruOEz97+dlnn3z66bOLH3z+5PKsjONhn1uwW62LHIbxzZu3hDZnGQKfjj2zABrrKiFMDM65oR/BkCGqsW6a5nQ6de0+p6EsS5Ss4mLWIACkqTid6vV6COPrX3z99updFPBVfbw/3dzeAToG0/f9erW7PR3v7u6MMVpXpsYkJiEIzhoiJERhZGBXoEaz65W7uDwjA90pWjQGbYyZEPt+dFMDgUmkiTkRgXFkHImI8YXzmy6OX75+9/629x6GjJ9cXkakikA4iUg7Ds1uc7i56fr+phudL7y39/2diPR9ezqdOIkByogsGRGmdMTk1E3ceeu+JedhkIjSI9dw3k2Ic4NT3Qgzj4kR0ZEVWDRtHvKCj1b1wx6RWZ4oi9hHfsPj25gOA+HHXqaIcEoa1oY4XL1/9//9oz/8xddf2MKF1FdNyZJjHBWfGvvh3bt34MxqtWqaZimeWhBGfZsKBOkOdc6N/bicWYzwmDSKs86mtTalSQdTRGZ4JTVNo2QcDe30QdRjM49a1MpMTNO/jOOo11w2+xTHilhrU2aOE5los9lo2BamfnSy8FuVvi0iKDLjvFN6Vy+oceY4jlwUYxyWU9jRBO+inSS9aCbAasm2CnmrK6PTp7169GdlFTGzcwXP1RjWWvWHvPdaIZNSinEMAdWDUVdP2Y4L+G5nYSuFRNXBWtaP5vZlzhA755Cs6uUpMO2sJzSchQhyzgs5ReaB0DyBgi/z1pPHk4s4FcYm4ceRzwe7AzGFmI3qgNkccl3XF+fnk20hB8A5M+S56hlRQJg5pEzAwmitzRxTSi+ePV83zd3pRmlZOLXQCDyXWC37yDm3SKkos1iXsT6RfpH65fpa6u9yzgpW6uGlsDIiAvDFxQXR5BQtgHtZ+nHMCmGI4P39QUc7M3vjAslS54RCObKIEJgUOp21oimU1GaM0V6IRFStmrqpXJzun6aWPllzV9ZaJbnrAqZHGiCgew1BETEzt32rqsoRIaB1Uz7jsbhzjBEx6LbVbdW2vYreaDonJY4xN03TNFXXdapW2batylQppqzrh+dOgAvZvCx90zR1Xd/f38uUnMD7+3sAfvLkSXdqj/uD4rAhhKosY4xfffVqObvX63XbTtINyuvXSWTOirDv9/umLldNkxnu7u5EpGkarTHUUgwFlXRxapSCpMKpHDIj2KJQOHgchi703TgMnHJ7aOuyeXr5zIIdWu7uemAZhs4gJsnKNh1iPrvonjy7dKUrihJMaa1hkGM+ADMDG/QiMoyBUy6KAgXimHIWkMjMFitCFswhRpVwDSGoWktRuu1unW7C+fm5Wksi0vyfc+50OiKi4ms5ZwWk1LiJyPPnz8dxVGBxs9kod7Lrun4c7CxYrNkOBfjy1FqDFo/LWvu7v/u73/3ud6+urq6vr3PO2tPvcDgolqR6wc+ePfvn//xPttvVullZ7x4r3X14Ksn19Xtt4UBEdV2HFM8vL8Zx7Ia+KIqnT5/q6lXt4DHFnPMEyMZIc6GMqiXUda3JDCU4I6K1dhiGt2/fEtF2uyWicQh9d7/ZbN6+ffvkyZOqLg+HQ7Vqms1ak4i61J1zx+NRD5f7+3tmVgxU3TxjjH6R7vTJYDqnv2pk2/d9GCNaUxQFSxaRs7Ozw+HwxRdfHLuWc7S20KWlarkaK6mori38OHcg0INmYTXp7lYLrJ7k5eVlXTeaOdBhVJA6pdT3vYrdazpBV8J2u51dX1RNZL1/jeS9sSTQn1prrZRTRYueI2kM+9u7uq699zFMdQn6ryGE1Wq1Wq1ub28Ph8PF0yd6z49LkSZxajALprBqmhcvXtzf3/d9j2gJjfOuHXo9sPT4vr/vN5tiSWUBgI6/pquVSq/WXiP/ui71VNIFG0LQeR+G4dWrV7vdjsh+/fXP+j6cn2+rqnHW5pwJTAzx+t3ReyDAoio1v8gzJ0Y5yIpKK+dDl99EfxNIKelNGrLaB1s7Z37/e58aZ8exv729dc5pJnsSX6prJbl771PinHPhPFrb9xPkfX9/EBHj3bFraVZ5Yp4E6xXR0MWggLi+QZNqfd///Oc/Pz8/R0Tl7+tEl1UJAOoMKHkcEa+urhSPExFA0E6kc03Dqcq7j25eIpNDBID7U6veYFmWZ2e7vu9jSOdnFyA4jmNtjC6/nEQY20P3Krxqmspay1mWD+rx+vz5cwD46quv1JEjsjQnR9VcZ0kEXDhNMDAQjjG8vzlePtudf/YMBeIwno7H3XobBcYxqkZiUVQZxBgT5v6iKHI4HJS578uyLMvT6SSI281ZP7SS4tdvvv78kxefXD795NNn+7vD8TgOga0lm23V1NvtNo6hb22KYAhFhCVxzjD7vWVZ+kcFZAyTj+p8AwDMCcAWzmVynCMAIDMwCzAjsLCkDIJAqPoaRIQQAQCJkOcKV1QkdMGdH2lRfqzUeAGLLD6IzhFITEmSqMutTbJml3W57EPZOhlOeSgKv9mu0UrZWFdWKQ19aIvSyZgvnl5474c4VKtmGAYjfL47N4Bt21qSqqkiZxZJwp9953NJWUIe2mGMw+X5hTU4jLfMLJCRRVLMqKSchx7R8AhAIKL8QL4GnLoRgrMEAM6ZonAhpJxCiskazIhBptp67YUIAKS4ukLc+iN8+C8PhEtGJpg6YSwMA1yOobIsraMx9AC5KJwtViH3Wbgsy5hGnoQmEIS8n9gYIwQwKDkJs3GuXjfkXd/3QwxNU3nCdVH91vd/sC3LEszTJ08Gvu9C/I3f/d1VU/7hv/jjsv14q8AQx3EMAJhS2u/3evrnnCWzWi3vyyX5ioinU8fMZVl24+C9l5R1uWoGVJN2T548UQl1NbkzCpHUKKk6GQDMtDOjGLeaSo3i8REEmqcWPhFmcoAGETBX4yntIA7x4mKjNW2nU1fXgGi0bfswDErQgRkS1OGdWAUAAJCzDEOn2LeKzmmB7EOMLGSM8ZVXb0dmDo2mANWRUNEtTZdeXl5WVfX26npmRTyIzSp1YArkWfQEZ5nqvVbFSp00mcF3Pb5FhMguhq4PoSRvrQM3TaVav+nU40cd+XROFyBMZo5wzlMRs3pCy25BMMLAkiRlxSO0xA7m7DEzj+PcLQct0URWAgBraQkgp1B+Gt8JMpf8CFlmFBQQQhF4FOo/2kgT6rEUd8iHqDQ8QBvfFAzS8CzPXfseY9Ayt+AgcjCjJ7o6Ab9VA0FDa73gEjzjowJwmVEYEVGFexGRzBEn9k0pvo3h6vVrzOl0CtbR3e1eT9M89wPEOSGmVoM5A4BBYmFmJgAtJECywNqWFQUgg7YImPq2S5auG37ne99zdXnbdmNOFrwyyJ1zbd9/9vl3nn/22dc/+2npXc6Rx6RckinRwciSmdnSJKhNiChaGB7tjDSZSaFfAIAzCAPgtKJ0EgDAOdfFsSiLZrMlayXnBZ3iB0qyNh6c14x88Iap6h6BmfOcI1lgHXWIjTHqWsmMpPAMgs/r/4ER/w3A69EEq1wGLW9+OCY/qPF5YDQvV6aZ4fL4Sx8Y6x974ZyuxQeRgWmhisJzhhmyQM5ZOAtzEkYEvrl+e/3mlYHMYRCOxpWqoa32V2sFAIBBhLPEiIhjDDHGrh/BUNM0bdeNKVlfAJmuH4wxRUEhhMSQ09LZVnFA8d579d1TGscYY8rCmrhiBCIkZ7txbNujK7yIxJxykl7C0KdTGw5DHsW1IQWIfciVoTB0Y9caObt9f2OhXq39MI5vv/7ydDqtmk0YU3sab27eOltkYQYw1pdlPaaoegwxpSycUhDJL54+iXFU7psrauvQIoVoTsduf389jsG44vnz574qb+/2v3j19dX764xE3gEjIwKZoQ8xc+WL/9W//7/4o3/6z/7Lf/gPxXlE4IwIE9lclzIzJI7OORCKMd7f3zdNtd2eWWvjGDiyMS4GxgycZOyHJxdnkpP3fhj7lBLNanfGGyJydtV23furm+v7vs8gDG/v+sPp9edPLiuLhcEc08gSD514//6+7WIV+/DZs09fvvz0z/70jzfb9cXFhSFHFEPMObMxhAQiwAy6dLS04lu0NIATp5S0pAARlw6uxkzylzmmJDgvhpxzdmTQGKLJqC4xz2PLrPtxQfFwLvanR3tEJiD7QYJGM0yLabXWYpYhDLawZDFxfH97PabROyIrHl03RoKp+S8RXVxc3B73yt3TWzKz7KCGiBrwLBDk3d1dXdSK/MYYhXBR8tJv1609jmMIg3bBUmFl3fvKN1yCTxVfVrFOfT49iUVkIUgucIDMuPDyLdon3cz97ph5HMcY4xI260OllCZZCUUBAPU9iOhcoaGmQnX6g1bI6giHmfqac2Z+KM7Ve+a5O4TidBNDnCXnbAtvZsVqrWhjBnWS5uOJ85gyIDrS4keiB3EMHd5f//Vfb5rmj//4j5fCeQXdFi4nz1TxZaXp3aa53aVO3KtXr7TWTOULcsr6sDDbfHWUH3N2hmEIIVVV4a3Lc1+OySUg+aX89cOrKCeUg5kd0nE82rXdbFYpJWcss3BmEQFmZwsiQmOUNg7AISU3t/aNIXzvOy/Pd2evr/9ivd6KMIjCE6xc7+UU4AwhBABWUNW6id+tvqMyc3U9T+H3TOhWFQWyhpkLXxlHOuyIWMx+pxIxluxFCElrFRfUVdnViklpvfA4RmAgg8shuNnsJqEeM82v7hq0ZrdqAOV0OnnvF0DEe68cDXW3FGuIMSpZVav1m7KKMRORNgXRZaB++W6304Wn/vGyC3RAFIaAuT2p0plVmW7xyjSPApkduTBG6+z5+fnxeIxDr8igLuOzszMdMWMwhNh1J2PM6dha44wxut105BHleDyqkL0yWK0xRVkWRdEPU3vGtm2fPn223W5vbm50bQ/DcHt7+/Lly81mczjseS4oyUm891p6z5PAIimHRUR0CytjtCxLxJxSWjVVN8ScJ0awpDiO4TSOOWaI8mR32VQbGfHm/t6w267WRe3M+sIQjmP/4vxFTOPt3d2pP51uDs2mweTRQp+DCEOjllnIABKlyP0QANJucxZi33ZtPLQp8W63K/yqLMvAvSr9MfPxdFg167fv3nnnnjx5ohO01LcWvlKauc749773vdvb26urK2utbmfF05fq1Ovraw2EvPeCk/iDboTz8/P7+3utcJ8zSXw4HJSH+Pbt21evXik8rROk7dcVUHv27JnyLovCqqJRiom/hSA5DCNuKOdsjAWQ6+trIFSSo7KwNSRTU0POnq1XWv3atu3xeLq4OJdZFLUoCjtrx69WK9UQ0B1xOBzW67UyRlOcFJzfvLntuu7JkyfDMIw5aCplCJ0y7jW7oygeAKgN0cTVxcUF4tQieAFBNH2lskhaKqEh+tTgh9N01ud8PB61TE1/bdtWaxEm80IEhnRP6QmVUjo7O9N+KXpvGgmrmSWi/X5/4HucyMiiuTENMXLOSnrQog2YE7RN09zf3x+PR9UdojlNZa2NQ1R7rUk4VcLR543DqFcYh7AYbeWeL+Ug5+fnP//5z9vDcXO206jekM05c5Yxhe12SxkRMcRB0Qc9ajWYIiK0pqZakY6+74no008vlbJ9OBw4RaUkK/a6BInqF2kxCnNSXKBtj2VZ6xLabDbHw0kN0WqlpGOqqgYRu3YQkaEYAGCzcQp3qs6PwtY6FDln/dX7sqqa0+mgc6F7auyHYRiur+/K0j7/5NOcgy4YlQUvy3Loet1Wug6Ncfv93ZJH9740KDp9bd9pE0s1TedPLtXnsdZa49+8eV9VbV2t3r5+zZyeP39uYKJO6xlRlqUwqqK00gNFZLVa5ZwBeXe2sUh936NzuraJSBjv7vYA+xcvnjnnBLKeXznE0A/M0J5OH928BLAI5uScN5vNxcXF+6vrw+FQN6WuOmu9CKKII7dZrXQTjePIrLrwUQiUJ6jU7K+++mpBllNKMSbnnApMa+FLzVjXddWUjMzAGMGC/OBXP6/KWp00Rhozf/32bbNeMTPlKT3AOTnnchJNw4Rh0M0YYzTOpZSGYfBlAQCrZjN0B1+Ww9C/efe6dGXpbPDsBy4LYnI559vbe8mpadZVOUWsMcZDe4phslen08lbuxRzW2vNrJOWUkopcDaWgFDJJZjkUfNtO/PPsnjrk7c5q35xZgYDyDi1snrAmpV6JkICPLfmWkLmJXDgWToyzxVyhiinQfEsAFDHcI4pCAABpzak2hTMWDy7PLOWfGXBMENar5vvfO/X3t/f/PznP1tvVyL5dDo9efLEOXM6pc1m23WdI1MURQCIY4w5lqvmk+fPLi7Ovv769e3VtS8dErbdsfCucFZlavX4NigMkKd4n0WFKREEVUp6Bs4fXmJmCFhNijGqPJedqxH7IY4AQgKTOiHMKrEiwgCo/ZxAtEXio6I8RLRIAoIoGprRI7rbAsoRwXa7HsJw6O6NE+cMA6cUx3E0BlXn1zknMsmTMohkzjmDqhuXRYyRQUJMzmUU2L+//YX87LOLy/NmLVXTj7fG+/b+5t//X/7PT2E8/PnH9yYCjSmCED8imI7jWPpCD44QBotTS2HtOwpzhw+1rmoE9NQoiqJpKkRcrVZLO1zj3RJZGO80gGrbVv1SPZQRUf9SluWi8K6NZOfVOIsyM+e5G02eVapijOW6VEE2ANDkqF5tHEe1k6p9h3PpjxYeaVgap0bcpAlRmeuiNJW+ZO/0JvVw1x2qwYKZ82TqD7x580aP1JubG5iE14IWNslcYaMnBQks1Adr7P3+zjnny0qdec2UwwN5PNX1Koc4aaWWGIaRrWXDwzBaMNZaQ+Z4PD6hT22eGeAzDPpQcrhwCkQk56RfZo2nWSlpir2F7RxSMrPME6BDpgvFmoWuBap1QkToUKZ28CgiFi0RZZpuRicbZqAhc5xo15NQBCzeEi5iBZxVlhg/JLQuF9Sf50UJyypRd0TDb3gklftgA2a552VAvg2dWUYSFw17AJjZeXnSiJyS27qYZNZwYQaZno679ni4u/fOepLTPghkY4yEBzYcK9ryCFhXUQtLlplx6aTHCBND/EFWwpIhIWYeY/J1dXF52Q0BAKx3hjHEZAufmQWp3mw/++533n79tUj23gOoHDulBMYYYyktGtQ4AfHWW1Vqc9bqYEpOWko5bVFEAWBJJGaR89d5efny5XqzOfFkAR1N1aw4gx0Aszo+KGQ2kVZIIAsTEQsTkZl1MBZkallLOCODy+KRuSR8WXIyM5U+Or80ZVmnNb9MgcxsLGNQ16EiR0vKS2aOnpu7SC8JsY++lptPs8YLTLDdjP3ljJJTHE1pcs4oYoGstX3bOSMgqfbmkEOKPXOOMULhAUCEyTiantTGGHOOc8bMnroWhKy1MU1mK8XknHGuCEPOSdBZtTVV7QTSGIaco8YDKXE/DH0/IiIaM7U+mJSzKYQwhFGQ+iGogmHi3LF0kfdjSuAOQ+wSFE1tYq5rH4bxcHdnzecphNdvTtu+LuoC0Jza/vr9fUrcdR0LHts2JymKgg2FnJhBAIy1Wu2S81iW5e5s45xFyVVVGYOWjEE5HI43N7ft0Btyv/HdXzm7OH/37t2XP3/z/+Prv59ty5L0MCwzl9nmuGufK9dV091jGoNxPQOCIECACIKgGAKCYigk/m38WVIoGIhgCPKOEAOARoQAiJhpDAfTtuwz1x2zzXKZ+iH33vdWd9Wc6Oh49d695+yz91q5Mr/88vuO3elwOp1dXyHZfhh93VY+hvEEzP+T/+w/udhtn11dfvjB+/fHA5K5fQilQO28QFmekZ2svYoAWGub1Uqk5Dzh8iC6A4gFiMzh1Nfehu5USrHWaHJ5dnnhvc9cYrQPb28e+jEK+VXbh3Do4lnruh1b64e+070XusB9KlCdTn13PH306v2qrd7/8L1/+D/7h7/5Gz/o+7FkBADnLADnHA0YY5wwLZwC+bbmGSER8ex9qjCxzH04SwaN0UHvBQFUqM6S0YNwtVo9pSSjoZyzjttoP3ZhWZrZaA7nzn8pj20bmVqDtOBNRATMu93OePPzT3/2L//Nv/zii88Ys3E1Co1phCcNv7ZdXV1dRSmn00lr4P1+r5qY2oAxxlSVQ/SHw+F0Oumo8vQpOq+HoBgrf91m0FqbEh6PR5UZ1XNkyXt0RFdHKfHJcIPeXhUFW+IYz0NqCrQpRDLVhCEowkhE3tgCst/vly+okJNMdHtYEhRvrELAItL3o2Yz9/f3+/3+4uJCq+4QhuPxOE+OGxEOucz1ar9aNSKiLM77+3vFzRUWFBGdTdbqdGEUliJGfYFCWPIYYwlQlAa+kOnyrDEtszSw3kA7aVjN0z8z8q4Ax6JS8jRi6wJj5P1+v0RXYwzSBKY8DfiKB202G0Qcx9FNbtGF0wSs8Gx8Qcaq7t83vry1E++VpUCpqurZ5ZW1PgRlqdcAj7G6qqrExTgLAJkV/VRFfooxttvNX/uD3/+zn/xrBCMAzFmAV6tG75UukhBSSkmy6hVaLSEYIQOLiOIUS4c1paQKKjEG731dtwBknZsezSwQYXHqjqSUAFwpAgAKJSDiOERCQ2i8qzJmY0xKhRmGITBDXddtvRrHUQSSGpwaRBQiSiW3vgWA1ap57733jn3X970AhzGgIiDM3ns3e9MxT/Q6jRIppdPphIje1zHmerUm4oXHrcRDRWnNLISn6g2acxvj+n5ERG1y6QLr+xGANK3VTSrzXOtw6hQ6EZEUczGTBLY3VtE0pYogYgqDhoWLi4u+79V9qPJ1LpOEiHNuHHtEdMaamdYtzF3XWTPJemg5dDwej8fjMvxY1/Vut9MHoWm59z5HFTDh3fnZ4m8OIqt2LcBLbqD3LaU0jn0phZmOp8772gASQeV9W1Vj35Ot1rtN7VfjKeVYXly+2tR1jJFLkVIkw9XZuSL4RHC3f8g5AkHMYXexu3u4ff36NVibcwaQu9sH671xtq7Xx66/Px6996by6HyFeDqddPldPj/TbavM05Ti82fX2id7eHjQ7x5C8K5OZSRr1tVaRR7evHmjjRPl5miI0yWxXq+VuqvM/WfPnqX9VALBTD7QUKmbLoSgdfL9/b3GVe/9drtdmn8q3XB397BaNVVV3d7edl2nJaKyiuzwzezmYRzojEQkl6L1YUzh4uIihKD8XA3LOWfjnX5TBRzV851mAooxJoTgqmn9cxFCY43T2LVer7txGFMMIRBP7cbnz880+rWbdTo8qA5D13WnfTw7m6SuF9qvHnl63Mg89rscbSKimOYy/6Fx8vLygpwdx7Hrkt63GbbO1hhdny/ff0/7ncYaq1SPOd1d3t8Y8/Cw10NW27Ha04LZ+PRw/wAAesOXx6dXuGBPzKzTQiEEhew1qKr4hh5Jp9NJ6xqFmO/v729vb9Vy8PmzFy9fvLq9vf3888/Pzs6aplELUD2AdBPpdn718r2vvvpq1a43zdp4pytE6een02lTr29ubhSzePnypSG6PRy0SteoZSsPT6blPvroI/3zdrtNYdQlodBA13Xr9VoP64uLCxVuTikcDodSijp1q1qCkqzv70+llJy142VUwlgBU20SaPoxDANZs16vT6eTLsKU0tT6o7Jareq6/vLLLzUwLh0sEakqg4iq/qGq0EQELF3XpZSs9Yg4DMN+v6+qqqoaxVuthZQ6b53uFIYpYev7nhH649HMQhOn0F9d7RQ7Vuw1hKQdbmOMIibMXLIMw7DZbFT/ZL/fW2vXm7bvgYgMGUQ8O9tZa5W2b41/8eKZdih1RXlXq6Ffznkc47XZfvPmHQK3wAybzUZJ+vomzjlA8/BwUIM4EYU1HdgpQ1P1FebctqvEpWlW+rzadn18OJZSNpudcy6EBFCUGumcOz8/FxGHrq69EN4fD9ZaIjRE47EfHk7e14U55UxoAXkcshB6efS11otRRnNVVbvdLoZ8OBxEcBzjnB47Y3C7Pau8vT/sr7bn5Mg1Pj/0AgWRYoxq8lQ5b61NXBb8pMoVcy45lxgBMcyq6Lr7Ugoa6EREu2vjOBIAkmQBVSacEBIW1Wdg5jS7ZyNmtQpQvVDNTCY1UJg0hTV+k8wyxCIy4dGo059EBMAp6UCbyjPWRJZ5xHmszTqKOZdSvLMxBedc4WINgsXtbmedWFdWm6Zp3f3h4fb+ZoiHzcVau02aNmj/4/b2vpRSN5MGegyhbdvPP/+8SPF9d/twz1AqV/fHU2ur9WYV0ggATVvnnEsZAZgmSiI6Q2NRkxVT+BEVhYVGM/twWWusMYhSSjKm1YhdUiLxIQQSrut6lEhEOTOzEE0mgApTARBOitFz6S2zA2RhmFVGAUDdQYUZ5iTcWPSVrVe198547OOBJYOIr+yp6wGgqqr+1OWs1KiJ02ATIyKQtxYB4HB7j9YIgvW+G0bM2Rj84u7d6XQopyEO/e7c/k//83/obPWP/tE/+uyLL679s2/cmwJoyOlH8KyXUkpJMwJmjOHMmqsoaKvM3InZgGCtVfeOMhM006QFN7vQE1prOWXvPQlr+8p7u9/v8wx9aN6oLBaNroop64A1AKzXreYk+kx1p5dStEFura189fDw8Pnnn2sTWg8sfVp6+mjSu1QrG7cau34qh4lAgKwvZdhutzrIhYhLGah3Js8iYykl9fCYEfmpEbtkODlnKRmtMQg4T43oHdODYMpXc9FQnFICFKWGCGHlaz0Nw2xWrzL9zEwyFVnZMhVwzh26QxHGaisABEjO3b69tcvSnxN9Xh4nPgFtH1E5M5V2C0YgWbIUqz9o6Gti89YimLnGQwBSi1J1OVJYUEAAhNDCzNmccYQnihMwewaSgCDLU0b2o3Iufp1G+rQQXfIqbezkyXhwSmV0v5VZN+Ppey7fRVVa8Alflb9F0E2/3fTDinI+QcD1HbR0UTzCIqFAyWo8rq7NPgx9dzpIHK0lBT2itlz0iSjizWyRYJ5hX9iCkgWKbhgsk4ZGsWSISFUOCUmypJT7caza1e/+0R+BsSUnAko5K5ZkrY05+7r65Lvf+9N//a/z8WCRxJhkLYNoOONZVm95UjgzxEWEJ1R3Wj9TRBTRoQ91XzIWUQxwYS7GmLPzCyEsqSCRzGr6T4AwWqp3YyaomudRd91aZu6RwiMq/TX2MRASGqVgi0gRxkdY+ZHmT0+4yb8cCgVFUJVhHr/44og1I8v6l2nWP9GXhpWFuPdLTZFffeHjeMGEzektxZm7nWKyfhnwN8xQwmgRkDOPY394OOzvQhgACMl5tNo3MpZymipqIuj7aWaQCIwxmcE4m6Fk4RgzIER10wOpmhoRM5fMFAIb+9gZ6oaRcxmGEGM0zjpr0Uyek8ycVXatFCRKuYwh6qzCccy5oNjm4WE4hlSvzj748KOhP5o0xPt3t7e3X3z+5ccfPgew3Vi6NA6nkJKMYwxjmpQ6HClrU0RCCIAGkFNWhSuMY+8tjeOwWa2AJZe0Xu9yTF989dU4BjRV07rnz59vz3aH09E4G4q8ubk/u7xAU2WAIpJjBkPrdXt9/fz59eXtzeucBk/y3vNnZE2Md33fA7I1FhGJ0FmLKCGnyjpl+aUQrPePKxnVHpotQwKQkJi5aSoSLCCV903bOt9049B13RCxS6mAWW2vjkMgt3YUovAghsdQa9KGiFWTQo5C1nLjmy+//NJb/O53P/nDv/ZHrqofHg4FJkTPGkQgZBAGPc7VuuPbVjsgMk5zaQyTMgMAEIlmODh3FpfFXEAsPCqn6xZYIDPSMQhnVdlHC86nH7iAuaoLtCCJOHXalim5CYsspYQ+/PTnP/l//Lf/d8ZsvCBKmAagopDKC7girGjpbrcTkUles6oA4PXr1wqe6ldTcpmCkgYmIjAz6+zO0kgfhmFBvZ1z2lnUbIPnXuxSez/tRS9njRaKPNuc6jeyC5laRD0iNMnQj568ABCFebnneo4sTO0F72ZmdRPWO2zthCrqO+tXUJPAuq7ruhbC/tiLiNaHAHB2drbZbO7vb7XlfnZ2FkLQ+WiNkJILER0f9llY8fdJIW4maGu5SwJ6GX3ol56EzJ0GvQ8/+tGPmFmppjlnVfJf0LQlDOpOn0/wacjaOadff+j7pmn0vnEYFZJb7q3eHGbWzjzNDuC6CFOSLAwAkjIACKEel8zl2zaHYqbMOQ6jIaqd//jjj6uqCqeYUnLGm8owMwF4W/E8hjYlXao4jFKYc8mcmt/9q79z9f98NgzDet0iSlV7aymlAOB4al2T954ciBRdMwpUKVlD33xpP5QipSSezR7VhTKmZIyhJ8Y1uoV5luxIKan69jzsLyKi1aymRvMWoL4fjXHr9doYo5Jwu92u70/r9VpwkhG3lkoph+4UYwScJAWaprETvi/mkavO1oq1OEcDAqBSeBHulFwQKJSxruvtdqvea/v9XqVy9eYAwH5/dM7VtdUiQcE+RNxuzy4vN4i4zOx7Y7W812Rs6XUxc2Gx1ios5b2PZRJQXtVVtV4rlK9M8BRZ80ltcOeclQ8oIlJYM34iQjDMZUyjwj7b7fb58+fMcnt7W0pBtRkAEZH9fq+onK5nxfUOh8MQxk8++QQRP/vssxQzF/GVmxOhR7YXWudsdfewhwKb1qFA1x/Pd2fn293J7EuEtt6UAJZwvV5DgfuHO5Eihdu6ZoA4Dijw7svX3ntn7Xa1a9frlIOr3Maunm2vxxju7u/f3d2WfXoY9u1uZZwtxEPurLXkje5EdJBTslL2+722G0lgHEfO5XQ6pTR9QY0kIjKMcbfbKedDA6kKjmsbe2mkldl+dkaCRKvBuq4ZREROp9NutxvHUeOhaqdqTCYipUFpYQKToj0pdgMAr169AIBFa1WXpdaxW3/9jds/pfTwcFDQHAAuLi6ct7rGFlQRJ9k5WhppesCpTywRPDw8lCJt2/7iF79AxIvzyxQnDC7nTAbJWR1taZrG4dcowIXz2PXautPZ4e1qXde18rX1aNC7oXIEqpUcZr973ctaVyv4rtFYmcLdOFAkveZlFkFju3EudX2M8dn5GU8u0MpHgQVTDiFcXFzknG9u3uqVaIEtIre3t4pO6tbzTR36QSOViorYeQJXvzgianumlKJCK3pw6Imgkxxa9kMBLeD1+aaYj6fjMOTu1CvEqdjiHHMKGcw5I1DJU/PGWqsbbRzH29tb3ZLTMEEuiHhxcfH69Wv9IoBms9kp7rndbmOMIU/cCwUmFODQfCbDZBvonBuGQdUeELFpGtUFLimTNbvdeQghxqhtZgW/rLWrlR+GQYvTlFJKpa7r2ldEcDr1urC15UYgXdcpO17HOHa7c8U7jsejqm+1bavtOl2Wq9Xq+vr6/v6erAGgUsrDw0NKqa2bi4sLY8wQxsPhlHP87LPDZgO/8Rvff/fu3TAM+q2lsK6lkMa6rvXJAogGeSW5K8lOpYcQcbfbMXOOsW3bcc6OjscjyNT+1E7J5eUlkmgKJPP8Gafcz5Ttyle6m+7v72meZ22r9pQOKSVDDuWbe0X6icaYUsBaf3t7LyIo2I/hcrW21oqgMa6UUvlGbziAit2RikRfX19rwqBnjS4DtXrWxxpC2O12z58///TTT7UfwBKJyDt/eXZ+f39fCiOLRQKglBKSRWNjHIhx1bQhhKqaXNYZAcFo6ts0TRiGd+/e1VW72+2Ox+OY0mq1QjTKB69qEwOWMT7bXe6enwFiSPFwOvWR+5iAJi75YX+a6tJ5Kl3UAfzrKRPzY41cimiRSARcSpaMopLLBoAQDQAWyCAoIoV1tJFLzpMuBxIAOudmGONrag8A8DUBy7m4lpnmoj9M82C3Sn5ZaxFNztE6SiWXIYIBMlC4XFxugKaWswCfX23GsBdIYzjaep1KJIsppf/uv/tnZ2eb9z54z1cVookxE1EIh7ZttbnCuSCLgnH9MOhV9adhwLGyzlfVmEZGZ0wSAedtTFiKIAKCMIAIWsIiAEAMhYQEeZqbE1aAWOWV9b4BTAYzKFxVFTknEnnMVVUVUOpuVojrV5e0IlZ6Y0EEQDsCAMg486ZxVvPLOYvGc4uI6L2/vLwgA4fDXoQFi3AJIXvvV6tG0UxlV6SSleZcQtmsVsx8PO5LKa7ySDSWRCRiCK2TIt0wAJR6W7ttk8v43/wf/29i/ec376hpoPtmCUcAyDGStcrr1AplHEewoo067+tx7LWUU70IZl6v12OKaQzLEKqIqEdfjKmUZGdXZ00JCvPDw0PTNL6ZpXgmk8AQY3DOOWeIjJ5r2jfSu6SfKyLWmoV8Q0Qq4/Pq1avT6aThV9PXOBvwKEhlrdV+uZ0tgvQ4oyfMIVWsNsbUzmHdWmt1Uopms3SY7btKKdq61va8ljNTtdX3eijoNhGRmAJmiTGu2rWmx0pF0lmcUsrY9TyTuzUd1mVfQPT9cRbZ16PZe384HCyq4IENYdjYyb+kdtaCHYYea4wxboyxv0QfQ3wE6Ra8gMgqoVJEgAQQLBHCFKGMMcxYoAAAPgrxzH0bmUBGfsKhLk8UIeYUXzmek2me/hXMu6LwpDgBAEjCWTebCiaa+U0KyPShSym1BDKcicxTr3IauuRf+oH5DzLH1rK0g74eAxU7/uYaVDlZiPg0XArANA0+U6Rhhk0tGSlsjAEGY21MiRD2h/sUxsaYGEMBIWuxFJnhXU2MSimOjAVScckJpldyJU5/owcAMCAiGUCNaVxE0HsfT8Nf/cEPnr/3/pf3d2QMFNRFzwhkTc45FX714QeXV1df7PcVkbW2bnxexlUEgUBEtGSFCViX5Slrvfo1b78nohMiBREJQQSRgYw7OzuzzkOKyEhEmsTI1/sHBpgnMSYAMDCvj3k5MRReFJFUpx+ftBBwJq8tyxseuwhfA3/Lt/COOZdlZgFnDR0t/nFypJygZJnJhkv1vuwFnscxAOAvo8rPazjPvmrW2uUOM7MjS8akEp8IdIu3dP/Vu+Ptu27/EONovQOgrGY79vGrIaKCRwsAxIAqopkZci4soDlQ5JEBFXErOaeY7XbDMqIAAyBZQRNCAJakzs5Tk4kUwlA0IWVGa8kYiTmLAFPMKQsehzBE6UMg33znk4/ruh6O+7ev3/iSVptNvVoXtMfTETtAQ4fb+2EYxxRzzgiTXKk+iCLMIMJTI0dxk8vd6nu/9mvb3TqlaJHquj0eul/84hfGmFKkgFlvNr5q7g7HGOObN28+f/0ug0mMYCwwx1SOhwMA5xB/6zd/PYb+7u6hPx2uLs7v9ofGr9ablow6cIL3zntPiCEMxphYskzeDuyMESkiBQ0wi4CUaawKEG1isRnIWOcci9kfwync9/24PxyGVFgMuhpFBAQMiSBg7mNmU6pNq5JWACaLxJTaehVO/TAM98Pwmz/4vq2rU98zEqFBIEJmTlIKgCFEeWKG+W2dD2ddVVXMRWVnFviPSIAf/S4WUG+KxghFhOdREphre8Xvpk1niQC1CbxUv2bu2RLRMiW2hHr5utgRMxOaEMKnX34GAM+eXd0d71xN3dh3/WmikM9NPgWJYsl935+fn1trt9ut5hCbzUbffL2eZFjbtlXQra5qHQUtpUxeZrM/9QKqKtys+0jmBvsy9qvXvEwQ46zFrBjB0i3DecBZdaWX0sXMPsjTB9GkwxjGREQK9unbajGv8IHMCmVtVWtaoxeTcxbhtq3X67UiaBrwszAzG5UfLZPpln5Z59zLl+9pNrnwT5eDWwG1nLM6N6jzjFJBnx763kxGuxYpzfr7y+SKXr/mr7ptva8RUceltYRW9sFyK+w86elmIQiNyU1bO2eRQICdt/AEi5dZOEvfBxGVpKYLQ0Euo0ruICKCs+UdM+O32MYaa3PulLJtreVSnHObzaaiVJEbutEIGWMsWu/98XRiZjZ64giLxJy9dcBCAHHov/PBh7/3e3/wz/7ZPyulWOdpmrnGGEcR1YfFnLNSVjWGayXvnLt/eFAsRqtTY5yd7TFUZoEESmFhjrNQeNu2ja8UrYb5EFQipG7zrutyUk32aVGVUpTEpIySruv2+33tq6ZplA1Xt9NYYtvWU6/ImtPpVHhqD1xcXEy9GRHvnH7HBV1VJAhmObxl8wqDIds0TQsVzeM1+k/H43EYHucf9XdVR8UAMpFm0hcX0ySfc67EhICq1qdxSf9QSgEEJXToztIGlbXWO1dgijk8TyeUUgCmNrO6Vlhrm6ZhdqWUOAblFZYizFO/P5Ws45mn06kUlsJ5Jux47yvnq6Zer9dv3vQAsF6vgSexhSIsU8flkfGgjFFm1rpi3a4AkIUdubqtm6ouOW/qdl2tJPGmPTt7cdlWq8N9j8V1x+GwP40lMPNmtUZF25EOhwOnXKtQ++Gwao6+skVKjLGu/cVqc/58/b33PjTONdtWkO+O95+9/uLYd1+9/SpOSkFcO+t2O+fc8f4wcO+932y3YQjOeQJEi23dvPfee29v3inJtPDURrq7u1OoTqOuLuY8z0rzPFuqS9R7r1VZXdcpTrKDGpSUYaQ1qqri5llyx3uvWJtWTUrnVA6mlrK6O1TOQtG6fuy+cfvnnFJKGvDtpJw+RX69GOccGMKZwsnMb9++xVl0mIhESoyxqhpjDBgiwN1u9+bNG2OMBmEwEwaqLxIIIQDKOA6IuHEbrS1LKUqVdc7lEF+8eKFkLq1yn3rWa0tP+fWKRAOAlpTaZdSNcDweFSXXDFb/dQbQRW+R936/3y/6UcPQGeOUaaWnakpJZx30qWkODLPNY5zFMYmomV00NWiojr9SqpfRXWV1LafbBCy2LQB0XZdSadvWV7au63fv3jGzNU5EttvtxYXlyb1WofKJaa7owyEcxrHTK7TWXlxc6PI7HA56tTHKZuO0gNfes8pohhBSyaq3o8ILfT82vqpX7TiOyq1rfDUd7iEeuhPBdL7TPA385ZdfPnv2LOcMLLvdrm4bIlIxYlUnF5Gmaaxxq9Xq3bt3iGZB7a21RLbveyLQr7Na7VarJqSokPfhcMg5r1YrAL6/n9TJeWYmEZFK/RhHC7+4O/Y64BJjDAHWLS2HiGpxVNVBzx1ErKrq/PwcAI77gzqJhTQqOgOGcBpgm/DKhV04jmMYBiV3K/KuFFRde5Vv9P0nFTLJkqcTYRzHHKK2qcYUp7KFpzGXRVmFpnG06uzMl8R0+uazW9f26XQqpWy3W2YuKe8PpxRLdxqatiqlOFs5W/V9n9JUIqWUmTMi+jPPDNbZ/X6vqVQIQbWt7+6Gtp1MSnWSg2Yt6TGX4/HYKpsyAwh662MIzvtYOIxDSDGF+Or65bpu9unBVaYb+tOpN8aQtc45zcF01ANgaq7osH9K6RiPBql0Cbyrnfvqzduxi6GUsYR+7EICQ66wxDFJAWRxtSs5Q55m8pxzUQRxytz4Cd1QX+M45my5FO+dNWjQAjEIDCFnRltm83BCQXWlYmu9teCcQ7BFICdGsmrfLYKqxwAAAgVgAlBVUmM55mBuDAAAsmjlr6jcbnO22+3+x//x34Y4IMr2fHt5+WqzXbXrqh+6zWaVUiggADwMQ7vxkaGUcnN/Vyiu162vDSL6phYpKaRVsxrSoCiz7j4WABZjjCMzjKOvKutcKLGpG+1yWSQymHMhpLvD/rzeNas65pBLIa0+mFPMasXDwAQoxMgqEvhUzRkIlRNZEMlaC8yI+lAmOCvlIOJrXwHLGNJiMTjPr8MiMooMQo9PDRZ8hoQe5fIm1DWlVNWttRTjuN7URNSNFqNwyWgk5+icyVlijJbMNAGD03QdWZOEYxzGFInIGyMI3rqk6YpAAY4gxojxpk+pZtedxtO4r9frzID4zXCzM1ZPrkVuZRgGzpOVS86sDZ6bm5uqqpRc4psaDG3citYbY4yCvLr19KyPcYIHNR/u+z72/VSpWbNgffrDdlaL0jbqUt6aeawnpaSLSlMFOxuh63yJc2612sQYjUdNKpYOsTrvLZREfqIWqFWMGuQg4qtXr+7u7kopMHcNYSaUEE2GtPo+x+NxvZ7azMrTf/bsWQhB5x2XQlVzEmZerVZcJvWPidtujJ6kY9frTdOK21f16XQyZLPwctn69XWgUI9y4xXnSSEEiaVyztSGczn0h9oa9YS31lqLhHNVj4hERm8sM8NEvnmkeS5/IJ06zAHBTIAvkxLaHpe4krlggeQWX6lHaW1BVIXfNBecCtLKU2c/kuVsfgJqyALcKcbHzAvouTxIecJsXf7SzfaLpTxe7fKLul9xRiGXbyQzpZoee0TfIraARGhV41ivTf9e87YFRn96YfpojTXoLEOx1o5dn8LQtr5IFpGQYogFiPQy9KRU0js8YRkv95bMY7B+Kt9DiEKixqUhFSHzV37/97uU6qZlJGHMsRcRMKRq3EOKF+v1x9/73uc//nHhIiCIyCCCgAIkAAp/g94i1QKZrZaMmb38mCYdCxVUKiKTmyJzRrT6PggCZsJfci6VsTpx/3jxTwzE5px+0mPR5TETsvS5f42qPD1XoKcPGma+4dO1/Uv/+asvmbsaMMtu6Pt4b4koxkfK4dMyXiPR8kWW32LmUr4Z6WPQgfGpMfX0kpYV64xj4ZwzeZrIpwwmc0ljGjsuCRGNo8wkBTML6JwEiLNe8zYNdqnknFgkFkEkHNPY9QMDamaTShGwLMgMIBhyMs7GsLhOCSJa4xkZMcwektruxgVQA0OIWFgYyNi6MIcUQ6auD10oaM2HH76/2bY/+Ysf39++c1KE4cu3707pu1U/Wls/3N+WkoZunAVqiAWKgDFYmEueJuv140pJIuXq6uJ733n/8urcOTd2JxEZhq7rhu3ZubW2G8bcddY3fcz7dw+I+OnnX3RjXK/XIWVlf4/9mFJCLhfn59fXl2/f3nzxxWdoXVv7N2+GYyltvYZ54bVNk3NOOWvleTgclEuIIjqJxsyTqychADJzjrkvIwhXVXWxO+vjGEPKLN0Q9oeTc+4UBiS33l1145hZCATIoLWnMWDr2DhDLg6RC1vvIebheLTG9F13dr7+B//wPz+/vPj87U0uVCRZ61XTunBx1qIlg7B0Gr51tdOyo6elO4VxFn2wT8vIX9pc8mRKIOeMs500zsozUrjve5qn9ogIlsA7HxzLuz1d+cxl3kGlH8frZ5eneKhXbX54nYeCFqvKaeGtbDjNBqqqiseDVllaHixm9Mx8PO6HodNiaZmQ0hpMi0wd/FxOfT28c44ARmTKaeaY/zUxKHjCE6EnIkhLm2o5p7Jq8HmvN0ShhIkiB9A0jYFpgth4Z2ZJCpplefSflB2siOF6vV5q+KfCHVpnEpEQlpg02xCR0Admfsp003o1hEHlxtJsWqiZX+MrZbaS0UHOqTG2MKeWrxbCoCwAfiIbqpxoM/OyNTUUQS2z67qurBtYJBdbk4ggi50zp1XdVJUrpXRpQkwMGD0f9FYr80irPs0mF2jezCOiy4T4rKmNcx6Cy6nKzL/UifzaYQBAZBEKgmFODw8P+/2einGuYo+n2BkkMaKLgHnqjBJByQWYgRUEtyUl5PJ7v/37/+9/+s/jEC35cYwipapUtFqIJv2HlDPmCX1TME4fhGaEiss4Vy0UDwCQXILk5UgCAO+9BUNohCGGpFWE6gwAYF01RGTIHh6OS8tQv6nMcN7l5WVVVTc3bxGxbev1uh3HMS4iegTOucQ5p0xETdUsd14ftLZnFD5oqzqxWv085qJaLTjn2ra1xim9iIU5ZZWXtdYqMoJY9MeOx+PZ2ZkqAyALMwuJUlGU1ZLG4JxblBbKrMeycFF1zStYqUtCuzt6006nadraex9ySik1rp0O9JI0JhyPew13PBuFi0jXdUVARNTpHqeGB+m4ACKqYrU+F61nVIVm6HpmRkOSys9+9jPmqYGt4n0CSlOQkmZAUxAA2l0rhVOMBvDi7JJD2R+PL5+9Cl0+3NyMQ3bkral/+3d+t9k5YPnZz37y85/+9HTYxzCQwHrVemMrb1HYV7ay1liMcTQG33/x8uL66urq8vvf/65xxla+avyh797e337+1et/+af/5t/95CdRwFRejHF1W3u5u7trGnl5vcsrOR6PIcbVqrm8uEQ0YYgolGJZr9fd0Cs1T2+vRr++77uuU6kBAFiaW0othFl+p5RCdrLIu729VRhLMy4N77r3AUB/uMymOmU2I40xKu4sszZi3/cKelZVlb+FEPCd73xct/f7/V6NHEMIdVPh7C+kb1VmuSpdSLvdTsU9Li4u+uPp4figlyoiFxcXtfOTY5sxxpgszDkXzkoLQMSL3RkibrdbY8zpdGJm66w2zBBRaf6VdcrhNcao+aduqAW91frZe68Q4fn5+Xq9Pjs7Y843N3cKQzMzEupJsd1uZTZ1VEUXImAEZB67cSl6jTExjqUU54xzrfd2HHtdxnqTlfStQiJd1ykJVO+wnn0iYitv/GQDK4RxiDOOP2Hf8vXRwxhVAAS197BuWq2xEUhBdtXKLDNRWkFnxdkZQYJo90tFq0II+/3xcDjpXfK+JqJXr6pSinNVKaXrDoR2ocIZEG1LK2t4vz+0bbMTLCUhYhxGKKxueHp0AoDNaW7Itfq5wzA446x1zHJ4mKKHNqq1F0ho+jI0TXN5eWmttdYzcwpxv98PXe/sJN9vrX337p1zL2QW2mqa5r333lutVre3t133erVqN5tN0zQ3Nzc6H6Biowr0a+fy2HWIsNvtPvzwwy+//LLv+91ul3nyM6iq6rvf/XCZKdHZ7dPp9ObdTQpwebk6OzvTd4slKyqkW6zrurZZa3QlAHVE1Dimu169gne7HeHUZOr73ldWM400hhSiNQad0wa86vWnlIRxtVopvH57e7tardbrdUlpmX+y5pshLZ5VRJaJCs5FtW5Op5NurrOzM2UN5xy0g9I0TYxRpKjQB8+kMRBer7a7zabrOu/7w+FwOJx2u50x5v5+X4qMYxzHaGCyoDwcDjr6i0LCOI4xg2QuaM35+qJq6tv7+9D1HKfeQFVV++Mx5/zy5UuZu9oAMIbeWDTO6U3T4waFvfd10wxDKg97KYjOCmHmLCyEXoTH2DvnUz8JN2m8zTlLzgJA5peLgjmNZ+aoDT/nrDVopi4ssnDK2ZhJbJrMAsWgda6uIRGnwlwSPylmHz9EBGBqpk4QzJNR8oX2hzOhUI8DRHzx/Lrwr33++aeXl+cffvKB94QWEcvdXlIOtkaOydfO+FowFYiJ07OXl9vt9t3NzcPDIQunVF6+fM4MX3zxhUYz7yoBXq/XwxicsQu8ICKM0NQtMzsyrjJEBAwshSrnnc2lfPjBh81q9dVXXyFjjCmlAVEMgYgSmBkRCVmmr8MAgmDME76OMcYSaUtI1+duVwHA3d2dcHbOlWLU+mgayMZHQytEBAXdBFRlgyYKOSMisAiVCSVCS2iFxHmTUnCuffHiGXOum2a32wyxS4MQkYGJ5eOcyzFp7xOmxkMmXzHnUJKrK+ccEjlrV9vNEEYRGbTXsiJfVUDUD8NpEGO8W9WCxCKIs6Pc118oQIDliVf53d2dGmzGOMmpMbOrKyA69p1On5RSkCfzGGWoEFHXdafTScc3ddRS/1UB00l9AiaKsRZ9xhgdTeBJ2xCZp+6U5nX66zot6sho/hBLrNumqiqV8VTcJqVk0CmupYmxnnpK/eGZkqi9KD2yEVFNFJQnQUQxxpSKUic1/dPceL1e69ZQpPh0Ohlj9HD/9NNP9evnudrS7DrEqYuv9Nen2W8pxRu7dCK1D10yC8PD4aFZr0Tk1atX2sK01uqIjOL+MMOtq9XKEAJzStEYoxPeq9UqFAaAaTIaePLqExFmBOAiTEKgsgRzAbAU/0ttjE+HH4QQZxvxRcL4a6uIFHud4GPJICBiSykpFzUd8quKJ0BsmjzFJ6Z/M7g8/Q0ziyQzE8sJHn/MzJ6ES2EPQMY8tiCYWadC8IlmyJyGTjLhqvwyAwdfUzh9mvH88lbRn3/8VwJ4ZGfL1/nUovU/izGUYUF/yjj0ehzqXFXOmVklkxgAjAoplEd8f7kn+p8k8PRqERGQJylMlU8qeOq7lx9++MF3PzmEwdiKhLAUXTpgqAAiWU6RrPn41z75F22bTwcygPMHgkx9iunbTrInQKpHBY94vZ4k/KhPmoFERbiY2WgXlJBT1Pp/jIULVsYawIKPcg0y84ILTDr3zGo5ONHVZdbWAPhlPtpcRj7aNtKjgMzjo5sW8kSl/BYUePYugxkvNmYe2JnLcj0zlk0+w6+PtGJcBMf/Umj7yU2bYPFSinrvThfPSUhUMn16Z0LhWAFTShYEUTKqHS0tq47ElkndFV1VqyhYCEHQGGdDisMYxphSEWNcysEYF1MBgFyKJ+z6MQuTNTFG6ygXxpgdmRhjyaJ3T0PzQp0zxiBSyjkxMyCgiYVDzKcujmNZtc2zl682Z9u/+LM/7boOuAjIeruq1ruv7u77sWsttZVTX1oiy8ygylgzzyXO1itKrulPx6urq9/+7d9eOcw5Q2EA6PserVnvtk29ur2/P556AOxCljENIaeSE5vV7kwAXFWnVLyvu64L/eCd+b3f+x21SSEiAVCANYXYlYMxpq6ciJowgHOTbZpWgDBrIyqWASJgQBgS55RyThNbFtB+/vptzAxAp2EYYxYg59DVtYD1VVNn7MORGZwnEQkxGyxxvWpqj8ZyLNZTW9XjOIaxLwV+5/d+//f+8I/uDvfW+xizOvhYBOcbFjenOUxIBpAJjflmDghzKSUDgBKT54iGQiryY8o8cbxUg0tnDuZhjok9SqhVgZs9hXmWr9F9hDgNZQii/Ipq8xzGpx2qr1Ry01aMU4dJRMwk4G5Vd0IXDAAkLmUMy05Uh189CFarlZquqKCnHuSabSx1sj4+1c/iyZIYiaZTVoFUMzs8yBNxWERU8GK5G6jOyKXoxSyh286yy1o5665fVrVmQiFExWQtTltYj4yJmzmbLOuiYuaH4wnn6SdNX+ZnJOQszWrIZ2dnKpV4+/ZWCJdAqqSn4/G4yDLoZy213Ga9yTmPY9SM7WlwWyKeSOGSVeBb5mN9oTYDME6mKIaZUyrKClQ6gBKT9fU4Ql4SgMxDUI9iSojonMVF14imDuUcpY3mcEt2pR+0gC8AwJwX+gDNVGhjDIZv3h05F2ttick4J0WIrDL+MJMVW9maiHLiHPoBoPINM4QwppLruraEhKi8WmAgZ0tKZ2cX69X2YX/brmojJMCTNKoxiKbMNoZDGCvriKD2lVQVEZ2fn5dSYslKClMnW10bjkySorUZGauUeQA47Q/H41E7E/rsmEE1KxFFRQnGPgAL0uNpRUSrVWOtVTmaun7fGAPAhXORXNW+lOIrl4VDnrjD2kFR2OX29jbG+OLFC0Ts+x55Ij9SKcwZnS1Fe1eojZOptkRBR4iQQ04pAeF6vV3CLAAoVquYhS7+xtVKbyQiyQUKp6B044kj75/YfqrpHM+j5bpalAWjhOuZJlO1bSuEKaUwhlKKkagPBWdttHGcan4AyJmVdeicM8bmnB0IzNw9VdJULHu9XiurRTlr1ppxHI/HY+0rVaPSx1pVE7Utp+TdZCLqm0af/jAM1ljJJcboyKBAd+jG/Uhgnl+92N/1P//5Z9bURObZ9au/+x//e//J3/tPP/jOx2N3+ulPf/ov/vs//uM//ud//mc/Ojw8HLt7Z3DdNrU3+SEI5FVTO2/atn5393YM3VdffHrc3zy/fnZ9fb07P6vJfuf6vfeffXi2ubo+e//Lm3dvHg7HfjgdJJ+ykyoc04///CcigromhT7+aJdKrp1PpqhIgrF4frbdbNbK0NF4u9ls3rx5o3QhnjmSS0OLiFQdYhiG2k0xxBijYyuXl5eKDen7PykEHkkGxhhV0jAzoUmRL42Kqgmec1617bcdjjpVqviXxn894LQgjDEWEL3IMo+SKJskDmPTNMZPkVmlYMSXGJLuFAVbY4zn5+eFs+64OIx6QvHiwImIs+Oi/uLd4aiJijGmlKmTpEVNmQU0ttvtbrfTQeDLy8vtdi2Ex+OgE8eqkqwdoNvbW52h/uyzz5QVnlLSOLldrdfVmmcZ5TnNQ1Wj0rpaMx89xVTqMaX01VdfLWef3joAULMErWOnWShE/Ub8xERXSdYz2liG4QERr66uECin8u70zjm3256pWlSK0Vk79P3hcGCRMnPAq6oqIM+ePTOARKRdDWZer7fGDG3bvnz58mc/+xki6ny0ztZoi0uPjDEGdexcDjJErCqvjYTr6+ubm5v7+3vzZNLoanV1d3d32B+tcYZIAc31anNxcfHVl1+q0ovmJCIQxphT0akOfXPl4SJi265XqxWwmqbCOJ6YebPbNk2lukPWu7u7u7ZtV6vVl19+aa09Pz+/vLzQGKVOv33fG4OT5BE9cutc5du2Vd9CRIljYtV6YqbZv1c9D5illHJzc5Nz3u023k5+p9baLEoMnOsyhKZpqtpZa7v+WGI6Pz9XVPr29lZvqYjsdru7uzua5y9Pp9OFP3P0KJmiFxZjPJ1OfZiSHIRpCy9E++PxaOZpAy6QOX7z5i1FRHQM/3TsjTFtu1ItF93RamBwOp222zOdk0DEWHLiYgye+m4cs/eTRI8u7Nvb2/Pz88vLy6+++urt23feT4FL5wnqunaGjscjGiqCnIohWreNc5VWPSVzu1ptt9u+78c0bq92OoGduVRV1aY0xgjM2lCBWQgLALrjUcPm2fVlZZxByimfjn2JJRoWgcTFVKYWTIlBhKwvRT3Ap6Ak83yYurVIYQBU3cunKTciApCK1etCskQzRCVEghkpF2OyMUrJ4lKEZaLXcAF1B1mgJGaGZYL5W0kvU+as11GeiqqVeHd38+vf++5v/MZ3Yxr6cOrG483t65/+4ue/+ZvfFeSHw8k6imyn5sFm1XXd2cVZyXx7e+u9P9uc3e0fiABxsvXW4cKmaVytlNmpXVFKQYCSUikl5Qll60MgNMaYLo5937fo3c1bTrlqaimcc9bFOfXFhUCdA40hEhZBnozBZijgazwVPek08l9dXZ5Ox8KQc2LJlhCMzt4BEbGwgBAJIhCiTOqHjGAVpVGtWpjgFP2V6RysfIUo3tuqqnJJIaH2YpCkcDIGiYwioZoUWWtDyimVcYwOKaXU9d1mtXZ1JbmEEMp9AQAgW1IqKQliTCkTsUGpfWRuXJNzrr3Nx2/em0SoAv2b3VYEjHGX51d69Og5i4gK0cZZtVlPQMBJ0UInV5R3rOQhnLRMcRwjkfaZJnKGLkWVsNDSYIk5Wg7kzDAb7ei/5pxDSMaYIZfFXyfnvF6v9bNCmFTLlTpTtQ3O+sBLg2fK37w38wyrkv80A/n000/Pz881FyrMfT+oI72+lNxNZK+urvR0WOZ0NcvVYMjMi2/h8tHWWmvcUhyJTD3XyGOZtcVgRp+UP564iMhPf/pT3Yy6+KuqGsexqir9ajlnEKzrJo4jMMdSvvf+9/YPd3elV8UIK1/jfj7qw7KIMRNvUT9bn5Y8CT0001d5pnM+xeAmiFCfThZ6lLAAgcIsM7gORM5aqwXS8v0ndQPJUACe0IGXS51rSLdAEstGffrn+Q+TGtRjjFu+0RxGFz68whPyxIQQJzWGR9T4L38hPgpIICKi1fmUCR2bG1k0+3AZ/bZSmNlXXhdH7SvgGGMMMSJZ45AzIz7G/aVYIjNNPNFMudVrnMYpiID1nmuqLcDIBUMqf/Pv/J3t1dV9P4QUW1tbsGyFAUsRQUm55JzGmFer1W63uz0dnHMoRpWeSmIsk+yItteWpSIiyxGCiDINcExrGGbRGaBFLxhTmRa9avBZ60opJALg9LGXWb+4lJIlL91OEe2ITmDrvPBmb9wnyxURVVlfdMwLBGex6fnaHrnwX4ehv/aakfzH5oFGN/0VBS9ktmxaNhTOYxrLdZpZa3vZF7/0MmiMMSKT8ZfOAOrfAIAWQlaKrTwilsxgELk4YODcHw9jd+KcM5fERcACEArpIFieOGhTq0C/LxcwnkCo77vEkhmGYSDyuoQTl8IiCMy8Px7CmLabSk1jShlijEJm7AMgqyTuDGc/dp4EpBTt+lAf46nrhyGmUby1Z9t1DN3PfvL24e6oK8XV/uLZc79dnzJ8cPksHu+7rsMSgaxxkkNQoRVtxmhKt2zqoes1ec05FzAgol3ZXKKzlSAfuv3N/d2hO6Gx3I0AULdNLgXQAVlk0f742PXd8Tj24yc/+PVXr14NQ3d7+w5J+mEYQ+yOx24IQ3Hqfh5L1rRSaUfqrO2cYWZBtDNeYwyJYBKOMcVUAAiNddZ1IRLakEsqZUxSyBlboXOr9Tplfnd3z2IQ0VpjAFKKtcVxjGOapC2QREqpvHl2dc45lpi8r0POmSWjVE0tbEoSEfS+JpKYQ2FGIwQ0tca+peUhjy8GAAQWfmQgiqRxHNWefqnkFZ5etpXuXMGlUzXdiomVBpPUA85SVjAPqmtAmGPyZBUy7/ppxKRt21RigfjTn//k9vYWiUQKElbWxxgBSNX3wJAhk2ZTVt2kihNNSbO1iNPIEhEtkLE3XkEEYwwzWDv5oBK55ZppNuzShjDNBOcZwmMVz8qz4SdNHN7Z4pWI5n4SPtHo0PzDzLrYWodzzvq7ysdZrA4VqtYBQ+2WwxOSlGaKy1wnAAwx7JqaZhfEYRi+/PLL/X4fU1bipC7m5SineYBR5matcg8lC6JZgphSyXxVDcNgjQEAa0kEC09IdClFxcK0EbWkXzB1HUBkIhrrRyu4P98uHfOcZIvSzGBSsqpeG3NUuIeIEhdEo98FZ5VSM/PrtTm/EF1nrF/PetHlp88d/tJDf86gmAvP34Ilc9/1JB22VoX/OIvZOUBANIhlHMfaO4PIKVsyRaK1tqT8wXsf/uAHP/jH//v/RiCdn29KKVC4YAEQ1UHWZ1FVVdu2ULJBa4xhmLjzy8ZRcoE+tZRDni0ZrTIRUtbRZu3SAYBzFTNbi7vdruu6N2/ePDwc2hllM0iCE2ii2aeed8PQIaKaVeSSjDHdONon2jjq0bCIq8rciby/e9C9UHsDwMvwRxlDZjV0NX62n1UIxnvPxjBDKSKZbTvZP+qTVXZejLFtVtvt1uJEJ2lMNY6jECmqpWtpAci0iFKQa6YaUF3X/ESao8w9+Lk/RN04pNmSYdIisLRQs2H2/mLm/f6ooJtzXnOS5Vfquq6qmmDSkj4cDrvdLqXUq0jCZo2IVVUVZoU/UkqnU7cs42EYRCYAMcaoPNyUUgaAwmEcL88vuGAYxqGLu9XFaT++eX17e3M4v/Dvv//+H/37f/33/uAPbOOGU9c07Q9/+MMf/vCH/4v/8n/5//pv/8k//+f/dOz6v/jxn//iZz9/fbMXKd7S+ZlbQQ3WDWN3+zCcX+ze3p42u6uH0xjKvmnXNbt61fzB7/71v/kf/mfgqyHlPqbjqfvi5z++ubn59NOff/7pp/f3d+PYpxxyjF999sbWVgpUzvnLy5xz1fhSyu3tncy2KPpNdVpTI5tGb+X/Lu6mGnj7vl+tVtvttq5rZRvd398vMcfNKvDLttWq0s56Hfpj+oZLrF7keo770zfu/Z/97OcPF8P19bWGke35WRh6mmcIlF40xCnQNU3z7t27/f707PJ87glNVcb5+TmRDSFk5hyCMSZxObw7KcK1Wq3IICIOwzCcOi2MEfHi4gKteo2aq6urpam2BLS+7xVEMMaEkIjo6uqqbVv1wlUXX9VefDg+TDV24d1u55x78+ZdyErKoXEc9/u9dkwViWvb9vx8F4fx7e2NhnTdgCpBczgc9AjTwRFlNw/DoGoDusV0xy0dAvUy0u2s+1T/SUFDrZyXnqsKYhJZ1SR58+bWWa+iFvpYcyr39/eGSPWauUDbrEOKZ2crY1A7QHqFOrcUxtE7R8Yp51p99pyrbm9v1SNdu55VVamGqU5HaYRRCpsiDs+fP9dpLY11+pSPxw6AN5tN7VpNjDUf4JSNMWqdt9lstM8E80Cqvr/+P8+q1jgZ/4RxAG0qW1uHEMYxbjaCiO+//37OMZW8Xq+ryoUw5JzGcVRZFZVU1idyOp2IQBWQcG6VzdhK7rruyy+/rOvaWj+MowbYqqpUIeR4PA7DoHm+vtv19XVd1/v9/uHhDgDIWWv9xB32zlrrdz7HdDzuY4yVdWqlpcI1CrIrFb1t2/v7vXGuqipA3rSrpU3uvVdIRQOvcntTSiWLuk8vSl+73Y4AtPoonPlbzm5Vbq3rmtAqwVlDrqYx1lrl4J9OOaVbDSynoc85E0GMvFRzyovU42zoezvLjocRRhfrqiUUYSxZnK28Q2Y+nDprfRFu61XXj3VVbdpNlpzzA8eQY2DO7aY1lR1PXV3XliattqaqlJiPiOt21TRNSFNHCo05HA5EUNf10PVvvnxjiaqqsSat19tCAETGAYCJQwEURBQ0IHnO5GVJcpRyCAAwy16L4pfIT0psmbJVBMyiubqzViMrIlpH1tq69qUwoObtJDJ5liyfiGhEyi8BzYqfLBmy7vo5AkxbQ9/h3bs3220b4kAW3rz9IpaAlutVtTur65Vj4Dc3+121E8hJ8nE4kHJvYxCRF++/XDet9/784iylVDjXdb1erxfLZWttVC8imrLrum6bxuacx65XvdpsjDCMMYhEATkOp/7z3oDZrNa1qUh1MBgkFwDE2eiqiLCKTlqcsa5HGiJKYQbmyURNn0vbtrvNFmToS3JKptQ0BhgJJRcAkJnkSIj8OL2tYNEk+bhUGZMgLeizs865w3Ffb3alpBAHTecYVDJ7GhbX8zGEpNI34zgqAOqAvLE5xL7vlWPbtuupukFDFnNmsFz52jTVOI6phLZtnbFt+82TB8aY4/2eiOq2McYMXa/aVkoL0HnKqqp0skTj85RAwoQ7a3/3aYGgsl12VuFTGHdi9BMub6IRSe88PY6iThvC0ITSAoCIubi4OO0Ph8NBq0X1OIkxWus1zywl6d1D1EbAVEnpVekVavdU0w9d1dqEU/KyFnqJp+lMZW7pGKL+sDHmcNgzsyo4ayMW5xfMPkM6NqcH33q9LnmqN/VsXd4KZpBNv7sWjCGEbhx0OdV1XYTHGIBFu492djXI+bHwzzkzwM3Nzd3tu7gZTFU756yyMI0xhrlMIsOgsJyZCcKaFk3ZzBNbpwnpmNWZAUB4aojh119EDDI9OZY8BxEBEGZ9GEavU2a/JpwA00fK6oKl4hMEHJ8A3ICyIHdlHhqdq2UDT3DwueaUBS6cG3T6EY8T0/bJ99VosbztN+4TmK4alvuOiwb//Fr+/knMJQCwxgJI27b9w70KtKU4iYiHmBAtEsEsnQ6LOvbXB0zmK8Snn6W3Vj/RIALiqe+unl3/+g9+a9+fhlwa1+ZQvDGpFEFimTSYrXeZy3p7dnl5effl50TEKS5j9QT4BHt9JECVUow3hESqHzkNzk9oC07MX8V8ZyVWZpitwxwTCEHm+c2R+ZdtA5+uB1HtZwAAFeic8NxHwAtE4yMY+KW5FU4ZHvsluMRimex3v+FlcKLuwtRindyZdLXYWayZ5kEYnl96gE1wzzAsIAvAN+dDNPFTJnITPRLqpyPfOUcFEbGyLqGoYrUxJoYQ+z7HUFIKIaWpfBNHBJCIKJeiAbGUklImtDmpdx+OMQ5jRLLMUASkFIDJ7U0EiCilzLncPdxvtq/AECNoUxGFqqpCkqZpvHPdjEkBgMZ3mS8vZRiH0HXDsUtjgg/ff9Vu2u9+/9diST//+S9+/ovPDsd4/eL5b/3u733vux+/9/yi9A/7Lz99+4sfQ4xUOzNPJJRSxhD0VqvTrjFGU9j1ej0M4ac//flH11fX11djHCYdAMTQ9ad+PPW9r6vjaYwxOVs5DyVDZhQUBtHSoj+eUEAYDIIheHh46MehH8fTabh/2BtyTWO7Y8+SWTIJlJj2p66AaGGG88yBiNA8kI4ARIYIrfGFc5kkhkTAoHOrumUyeOqTIBobUilMdV33IeecCaSkKATekUghY3Iqo8TKWyJyhph5t11ba9+625/89Od/+qM/++Q3vzv0J5Eo2XIGEFOksFM1nGKISEjj4l+iHy7q91hYRIfCRPVS9F+dc6u6Wa/WanJdSnbOLjzWZZZHcFEen6QM9MT11i3TxEtyqcSZZRfMIfSxxwZAiBOS+7Nf/DRBvL+/jzlpqaYV8sLAnd5KDfqY7TzpjCoH0TR6auYcFyA156zyr41vFg2KnPPxuH8aiHgeo1kQar1mPdSfYrWqBLfopCtsB5MIj6dZi1+jiuY9y/UrLq/v3Fa1osYFpgN6Iawpiq3FG8/2d1Vda4WmNX8pZbXdGGPgcGDmMBtAaQ2s16NFqZY0y8vaiSiqV7KQobrU6QZ3plKUkJ54WUxpLiJMzOWkKPaiz0AzrcZWPueMCFqiLy16nk46Uf0vvfNLhY+Iafaj1y+SZjVe51xjzW63u7m56bputzsvs4WjAgE6EYZzw18B61KKMZPgw5I/KZr8jVvDGptzxklgV3Znu5cvXxpjmKSqqhxKjJHUqgVgHEdXeb2NaVLdFWCJMQJhKUXGwN599MF3NquNfjslXxhjGGG5b8zsnEHEIUWPEkIga/QRK8akgM4EiJRpXk+/DhdZnvuS9gBMjove+77vS5FSRLm9wE4xo34ciGi32xHR4XDYbBRxJkAppVhnCquopcQ4tu26ruv7+/tSyma3JZqo91P27ypmNoAxpS4MZxfnMM/iWWvXzpGzS3sjpaSDTApCrepGKRWKzsicpmoPI6ciIk3TjF0vSnix02CT/jrMI4f6iMdxVLVr5S0qm1UBtQVE2G63msHrOs9iShFjHKJhzt5WRITzlINzrmnWMUalR820dFz6TN43u90OJnUX0lzCe69o3cRgjUEX51zDjFrDxJiWFkLbtgBTz8ZOgtHMzN7Z6TTMpe9GAmPRdcdh2L8tGX7tk9/87ve+9xs/+K3vfv97YOkwHB1yyr7rzWaz8d5+55OPPvjow932/Kc//fkf//H/5+3rNzc3N3/6P/ybL97cr1YRMe1WsF6v/8Zv/wd/9+/+ncvzs/W6tY58XaOhul2T90IOrQNyYCwgwr//N1NKYxhu37399LOff/HFZ//u3/35n/7o//dwuA9dCClBYIYihG1bhzhq1dR1XQjROSsysezL7PyuwUcXqu4OhVPTrHQUQnj37t0HH3ywWq0+++wzEdH+wdLDo1mPWGY5I4U7tSpTZjoRKdEJf3kA7muv66vrI36x3++bpqmb6nTY174q86CuPixvrII3umKRIYTw8uVLvVRlTjjncuapIPRmv99reXl9fa1dxsLZOScAOmar1MucM+GkE0VzO1bJX8fj8fz8vKoq50wI4fz8/OXL91RuWNvz3vvb29u6rtu2DTnlvAyOlDdv3lhr7+7uyPm6rs/Pz1+/fq0CNYro4dTkyIfDKcZYVdXSTNLeLc7McaU2q2KVKqI+PDwsJnUKJWskXxSfEFH9qJk5pNh13WazUZ2cZQ967y8uLvp+MoQkBEWIUkpN5Xe7Xd8NdVUxc9d1XEAZ3Ofn54Kg9FtjTNU2n3/+uaRJ+uzy4jrnbMk4Y7/64nU39CKy3W7Pzi51BGQY9s45IlDKvOZ1+/1ewWIFXhXp0O2vBDTd2imlcRzJWeecUu+rqjqNQUOESiuUUuq6HodojHHeCEwskyWLVo65gsIPDw+THJbA1dXV/f19CMFVjwXL5eW5rsOrq6umaW5u7hZs1Ht/fn5+ODxoWK6qKgwTHp1zFgQ9CHQjLND/1dVVmUbIreZLOg++Xm9Vf1yX1iS4zKxMC2YmY1QsRb+pmWfLXr16xcwESESb3fb29labKzmXtm2tc2ZW/dbYvpAS9LgnnIQxuUwyssf9YYmlq6Y5Ozvb7/fOOV++eWC/qqqmamTWRVW7RVUj1R/QfGy1MsY4PWL6w76u691OFTMmPTHl5musaJqm78YUS4y5qnC9XmvrYr/fM3PbtsBQilTOhZRzkc2zrSV73D8QYC4x5zjGQeXOrbVh6PJssvdw2BPR2dmZfkcRiWMwxhjNor13VbXZbEaJeQwA4L2TAk3bxphOfbfebpnh4e1DSVK4cEZEIwBkzAwfT7m3IEJhpK+BGDBDCGSnGRGiiUOWucxCqdNwduGEIiYZ5/Mky2qA+Wn2DiUzzJQ85K+NfT99Rr+K9qg/Hs/NQkPwsL/rh6OrqB+Ou8sVEJydb6v2O6fTfrVpX77/Utdh45qUkiHLzKdjp14L3TiM4+i91TmPFMbB0sPDw+l0GoZhtVoBTtbBE+uTTOVs27aaVnWnvus6W3njPFkLhLnwZrPlXGJKjowxJpZoBFiyoo3OUFZUDRmZyehJ9MiMNIALUmWtNWaaodTjIMTXMY5gSBALR2NIMsOkLCACRWl1IrO8BpCiaPAElNP76b0nA8wAKCEMq3Vd13WIg6s2IlLXHg2MUVIKc/8VjDE55pyLcVazzdP+wZKxZA6Hw+nUaQL/7NmzOCY9aIwxhjBy4gJEEEtPKNZRDF0xZkvbb9ybqslWVQ2w3N3fioieMtp50tpBY6xmBTg3iiQnRClFSdl+HMfEpZSilOfzufaE2Q1L5fjUckCjzYRSMi8/AwBqAiQiYUxkQGHrtq1/43vff3h4+LM/+zMtWAzgMtOsAUTj6pQBogAzEVg7iSA/hXT1eymqPgxDVVXavNQwq49PXdCVKRJCcM6JwLt37xARYJI9BICmacggl2mq2Dn34Ycfnp+f7/f7dzdvrbXH4zGMUVPTpW/n1PQGQKs/51zJ2TqnmYweVXoKK9avpiN6anCasPshpSK2qiqX3Bjj7e1t5X2fj6YCRLS/usm1CHm0g1vi0CLH/ESgExEXRfIJdkR+gotN3JAZX0AAkDJhzVM7HQDRIMyGEotywowLs8oCPWnLPD11YHLgAwAgpOUyllJWRIxxxkx+bgviucB8yybk2dco5+mjYYZL5pj76ND6dN/+6ksEWcrTn2TmyYYoZ3qiHYlKaNdoSxNjV8XgSik4CdEqp8mUXGi2FsXZX1sfw/KGMNPlAEAdCFGAkZ8C0FyYiP7+3//7u935V0MPAKmUxljOOXAiMmScdhe9rWKMl5vNsxfPP/13lUHQXpCWec5SSVNbaXkQ/DiuODcQtFcxSZdaIj0zdLWAXqc+kb4bQaXExlyhQVB21IQ440I2Z8kyU8UBkRbDyaQw+LJWiUhoWhM44ciPGtwznluWOwNPJL+/7eHCk9EeImKep5B0icwA0BIWcYbgtRyFJ1pUMs2Af4t18gTrI6Ka+U6NnOUKjTHO2izsq4pQAmdEtEj7vh+GjnPR20LWlIKcCkkxBpjZzPUJMwujQrFkKKY0qPwFQ0rZ2UqYBTCHiQSHFmPKxqB6E6GSrcCQQShcVZXzEwTmnQOR8sREESZSNg9DGIYhhBQTXKy3u832D/7odz/8+KOYw2/9xvf/9N/++RjK7/zBH37w8Sf/+l//y3/0j/7r9y/XH11t5HTauMWgCRQ013hdStGUp5RyPB4JkZlfv379wav3VqsVIsYYhdk5F2K8ub0JuRhb74/HkrFu2xhzFrBVba3//PVX19fX5+fn4+norHXGOkcvX76squrhs8/2+/0wDMM4liLb7fZuf5B5FibGYRzi6XQqMKHq2sLT4tAYA7oZmYF0dBdYjEVgmJYBAAwh2tpuz86Ow3jqo3G2D7EbQ845xqAHKgKXmIrks92mlBJKdpYMQtNUfd+Xkq4uLkum++PpcOqmKE0kwN7XDjxykZwYGQhYsiOvlNIlrfzlNahGc2beVlJKKTKzH6y1tatI/b6yNhXYGKNHrOC0tREx5oSziIQmU1P9MCuhL7uPpo96PEEWhHeBDBBRabBffvnl23dvP3v9qTKszy93++4egDk/yrhr84CMBUDCSa1CUbllkErHoLS40vTlxYsX1tp3r9/RPKxABHr889zK0sJM6V16YPPXpfkXaEOVOpTzqB0Rmbsvuom0ltMcesGdlYDJM2fNOacwunPOzFFFiyWZSdMa1hS9Wq1WOcQlXOi3WNQJu65b0OFlIkHnZPXCFnJfSsnaiTKsbE2ZPeI37WbRH9AvlXMmHT2ZjvIpV9YbFUJa6DnL5s05wyz9rFu7bVuFFA1IVfmFg7wkI/otFq7W8m44qwOXUkrOT6m4+k0VvtE3Wbyey8xsJSL1gdCKWvMqYwwevjlEFy5VValWz6nv33/5/h/90R9hMf0wLJYYolk/mVJKRYSMIOC9l5KZGVg0JQXRbogo/mJwwtoUduzDuDTtSilqv7rslzCMgqD54nKv9NkB8cLm6E/dGKKdtT51UD3nyRJjzpdQC4btduu9j+Ogot5t2xbhOSmK42iapmEphpTbjpPM18RKdgpVdENft03T2HGc6MA5ZzDagbObzaY77S0Z9bZawKxuHBYqeilFEZypBxOmgUeah/E1r1uv12e783geh2E4Ho+Nr2KMTdOEOBlth5Byzrps8jwiYK29urpKKWkazTOLUET0gGPmi4sLbeEAgI4OgJmScsWtCuc0Jj1lEKVpqpSSotUqIGOM0da1916ELy4u9vv94XAAgK7r4xgUy7i8vMxc7u/v1dcu56xIq+I4AEBklAaowJYO+OvTnDReiXa7XQqxtr7EDFlSEbE4DFmQ/+AP/tp/8T//L//KX/3tyGWMQ5acSuz7u3Ek4+z+cFPE+MavV2er9dkPNue//4f/wbrdhjH9xV/85Md//u80YFYu7Dbr3/2937m+Pq9qx5yQCnN2le/GgXQCbRTEXJgRFTKC2rWffPK9999/P4bh7uH29Zsv/uIv/vzNu69+9G//5Ob+5tQfj3339u1bZhaEKXDljEhaWZUnB70WVNqt3263qrhyd3e3alsNj342SdOYoE9cIRt9xEsY0ZXDzOfn55988kkI4U/+5E/UgYeIHh4edDVWVbVbX3/j9n/Y33euOz8/15/UGE52SuNVn0FEwNBms1Fw8NmzC42iS0tytrZXTVgRg+1mrctbH/HCwUciLJPcvIoAGOdU62mpcpXHdHV1pb/rnGmaRqFnDXRaSV5dXek7HI/HxMXaSWRJl/HhcDg7O8syzeS9ePHi/v6e5tezZ88Q8e7uDg0p/K1dGV2WMpOkVHhKe5Aa5BWTlZmZoXxna+3t7e3pdFqv11VT65fVzWKM8dbd39+fn5/f39/rs9D6uRRp2/b29lYYqsqHEEspTbMahuHu9l6fu+7Z9WpVZn2kIYzOObUoV1KCwylJWNR4cs7rde29f/v29nA46PGhx/TpdLi9Defn56vVSj+r7/v7+6Hrhuvr65RS1x1zLtvtRk8izQe0cRjCAGbiyyskqnv57du3zrlnz54pa7g7Dc45YcycFH1QNFwfn24HmHGQUjjG8Xg87nY7kdI0q5yjMaZZtdo/WDpb63WbM/d9D0Da9r6+vtbYUtf19fX1n/3ZnzHzarU69Z2ZCZX6QSGEy8tLPVZSSp999pmOEYjI/f39drvNuSjsrvFNRbERJ25gSHEYhqZpCFDFytardUrpzZs3uisvLi5Wm/XxeDwej8YYAFKURI2ndLXrWXx5eakWyjDXWVVVWWOK8DAMb98enj3bqmGgHhm6BTB9S3kFaHXQHgwR1bWn2WBcFyoibrdbIqqqRjWU9Anudrurq4v7+/sx9Kq+rW0wRCQwMU7y6HqAqoi2nlnjOJ5iH0NuN9tUhsrSMKjE7Rhj7Pt4ddFWxhtj9vcP4yC7XeWrRls4Z2dnSiRcullhHFlV/usqxnhzd4eIUMHx/vD84tlv/dZvSYExxLc37yrfkDXPnj2DxP1hJMmpoBBNNauIaF1ZypSpLGPoX0d7AaCUDIiAWERKFphhBWMMg6TCqKUEchEupeQcEQ1SEiYAUuUzIlMkLRX201r7a6W3yKOVyzyQZJ4CPkSIcnd3ezzuq9a+996LcRw2Z22M48PDXSoxlWjraUqpHzMAWEc5p1IKCmjLpETVJhoQEVFCP6QcV6uVtuJO3VE7oBrEhiGkENMYAMAQtU2z3W6z8OubW7Lm/PycWI59VzvvnOvDaMXUdZ3HoGWORcMggkaYzTzHudwBRHRKi5QJQ9NcJcYI0GubYbNuNXPw3iFRLBzzKEIAoGRImcnj082cxmoFSRbJU33FGKvaEVGR7L3XXvvx5o4sxhjquhbkY3fY7/dt2w7DYIwTEWBxrtKMaLvdnp2dpZz15Lq4Pn/+/GXXdRYpYZbCxgLkIkxWAK1BEPKg8ELkCIwszTfuzFLKbrdDNLe3t/t9urqaFPmX+kgLySVTwoW4Ocs9G2NKSYknlEYB4iEGElANPS1Cta9fN9Mum3Ct2X5c88wYozGTOgII9cNJZ3SOx+OXX35JRMqI32w2FxcXX755rZihDg762d5W+1IkcHZ2pv0/rVibplGpxqUZ7L1//vx513WzbOOU/GjWqntBc/JxHOu61dtS15WWYHpKDmPfnXrtd+qe0rC/kLir2le+5ll6cYKqWLT4Wq1WxpjjYWrglVLWq1bPaHXHJaIRoPYzOG6dPhHByczp5YcvXVW9/vPXpaRm3RSRcRwtYw45K/iGiCAEAiWLAKpeiTGge16QyWLJj02qaU2DYoVYFOsUWk53EUEDDCXHpJn3/CtgyAkg4KSxgsA5ZxJhBgIEAeucKnsaa0MJKYV6JjcR4iTDAZByZgZjjHNGRz5o4rqTCIqACCzpOKJS33RPZpZMBKoPgIgl6wCFZ2HJXMpjUMuzPhdLxolCSwsi/8svQjQARZ0SWaOzIZInHG0WUS0HW3IBFENE1iBQHlclPnz2ExgeShxyiTHkmAQBuARLpcxoDM9WSIiIM7VB749F1cHMggxkEARLIS6OjDAw+buh271473f+1t85lsTMrfMlM5AUb0g8SFH1zo01kjIzhCzbF6/MxTkPJxstSgHCAhJwalkDAFnDIJJnqm8/1rXncTZBlqIMLKFoXY1sAMggx5ILx8ZXQCil7G8eLHhLwg4LZwAUYQQwBo1xTw4kR/OxlJVNr99d2ShIRCSALCCABMRc9ORCRpxFu4xziMJSjEFFwGimIC3I1zc+3smajwiAs2Q0BACk/QzRx+MRMQsgEhiNd2iW9oBONZnpYTEzf4uQQWaYwqWhWLLOEej0iypWE9meI7DhEUXQoa1qRB5O/ZsiJ18BlObYtWNOKEwkBYaURCdzrdHRBArDWADF2G4cc5FUOAOWnBjAGEjoQghkHAqOKZRSrPORuUv5NMSzzVkYupxGKBlJUgqb1TMykngAyTmNWaRudqFPORXATMh96IYYhjAmNhHKX/srL//W3/obm9ZJ/jKMp8MQ/8F/9EN79sE//Zd/8n/+r/6r08Ndd3/7Vez+o7/5N372Z/9DxFxiiDGPQ0ipVFVlnI0xWue5SGGJw4hSG4PbZvPqxdX19SUb6sYRyQH4HPP9/XHsjfFtGHJ3zO1mO4zZN3VBKJK/fPuVgfT+q+tcxrvu+PBwODzcXV2cn1897/rx888+iyHFIQ7DKLbqgTrG3W7XNM3pdHo4HJihgCyQ38wnTVVVsSAam6Q4QCyCSJ6Mb5CIimBKCQgBUcBaAuMQinFsYlDjSc7ClXeEYozxxkZiToxSAIz3PhcBa0PK1letqU0pr6533srp9VcX7t9jzFmEvSGDmSMDiBAUq0s5SCIizsz8zdGMrBEEEiBAYW3FEcB0EgPAmMLc5UKcx44WkilDITKIoCq4OCsaMTMiiXAuhYQMzvozJEW020dzowpKKarDm1P01omIAXTW37296Y9dXVVtXR+Pe1ebUDqykGI03jVNk2MWkZgSAhlC7x2qbmMpu/Um5wyFuRSL5K2DwiUmQqzrhohyiBZp3TbMjITe29bWbVU754aobOgM83wZp9xWtbW2T4OeJpwnuUwlWuacSYhqCjkoosEgIQRnrNoQm5mzrwmQQgOKhmjc0PI1h6jZ0hSLUkYWZCFEFMghWmu9sQUQALrD0XingCyA5JJJ6Pb2dkaQrRJF9dM17cg5O2cAWGdERCYVZhUxOB47EhaAGJMaEvah17ytpOL9JApMc3qgqWFbedWo1UxOsWZjrLI29AuWmIyfYG4QVKvl+/t7qirjKzAGAUUgl+KNBaCqmtRClrbZRFVOHEeFZYsx5u7NO2YmEYM6umjC0ItgoqRZEc/086XvqHRsxQhkFjUD+Da9IyThIqXkDIg/+clPfvzjH//1P/wbX/VfjuNQOAMbBglcVisPRMehX61WkLCU4nyLancDJhYwgZumqmz1wcv31Z+5bVfoIKbUdd04jrvVVrNGQAEDDIWsKdmQdSiCJYtI35+sI5QI2t2xLSMImMNDz0w5OTIggsY4ROn7iTQ6juNut/G+6fpTVfvr6yvm3Pd94eysCWOv3R1mzgAi0ngPnDgTMvd9F2NU7rmIiNQrX93eP1hrr55dnuWN9zamjow4AiLf92PKab3eIJqQpd1tbFMFzokLOT+Mo/e+FEE0x2PHnCecjgBRYgwZxFXF11WZjCUNANXO+9lyyhhjLDEKOhrDACLLrMBM0iFrLRdp6raumu7Ui4ghy1JKKUQwjv0wDDlzGEYROTwcNpsNAQ3jSGaCd0tJjhCFY8nW2njq15uV9z6FOPbBoTPWQAZDiN4rYJRzzjnlXPb7Q0q5bVtgaapaTfAAoKq8LUU19BHJWqPnvO6atm5KSojYD8MQRgYBAkawCMM45Ji8c7Xzx/uTSG5XfnvRuKuz26/2AzZxiHe3py5ktsnUscWCMISuH+8Pb7Fst9vz5lwIN01TV41zLuZht/LWC5lhtbW//95v/vDv/lXRtmjoc87DMAxSxsIA7MgVABmztRWTSCkAiVlA25zsCgMj5jQiojf+5dWrl1evfv3jH9zd3fzOr//hT3/607v7m77v7+/v7+5uP/3i5w+H+5L58up8LEMRAGDATOSbpt1sNnGMiIgZV3Vrigslg8Ttdue1uECuvIvOq5KpNe50vNGAX1d+tVrRxihX2s3OPAR48/bd0PXr9Xqz2ozjaNAYNKtmNY6jTv0M4/DNhyOZ58+f13V9OO71uE8pOYCqrpa5hK7r4hgGpKZpTDORibquK6BTGoV5XK1WSyN2aQoqSXl/eCCi6+trJeBnTrHEcAgiWNd1fxyFdZjGKsTm0DauJqLD/vDJJ598/L3vvHr+AhG/+uqr+/v95eXl/f296gKHMU6tSmYAMwxjVVVcxNtKHAAjCscYjjmdnZ09e3bVdZ21ZK2JcSSi9Xoy4ls004hImwE8D4soV4tmGkpVVQKEACmlcYxEJLnENHrvL3Zn3vtxHFOM1XrLzClkMkbDeF23zy6fKUbvyJVYIEfXto2rx3Fsq/p8u6vr9ng87k9digdEvElpvV6/evVqGAaG0g2ndt3s9/eLjhYi1nULwMIcYsymqCBJ5kKcvLcff/x+CCHH4KxNKRqEZ1fX3XCa/VQBDNSr+hwKAIEBb31VXegkhEFCAWFGQ+fn53d3d3d3d8+fv0TEh4c7i3RzczMMDHCnCGwuZVPXh+NxtVk7p5B6oyf1xcXq7u4GhJumWq/X1hCRWTVrZ/wXX3x1HDpEGWNnjNEb730dw3A8nRQ46LphGIIUds619UoMlVJmGN3XdcvMx65fbbYppcxSVaqKRqVkRKx9pf8b+1BV1Zubt3GUy8s6hEGkOIfD0FnrS8b1+iLnHOWE1lTWanugqVfGGCjoyDMzF3DOZWGRcjodAMBVq7vDMRQWNMa49XqtnUXv/fE4es+llLubW+fc5eWlFA457ff72vlpsRU2lnLMm6b9je+vYoz96dQ0zThEZl6v10Pfo3wz3Jxi2jzfjUO8vz/udislrTOCfvr5+XlOKYQBgFliP0Tf1Ku1K4XGcBgDFA6lJGQMnEuRnLMhJyS73fnV1ZU6aoYQSslKI9XHmrPvw7g9t+umttYbwDEEi8RIjTcgdre9CCEUtiElNBUZdzz1zrmL9ZaZj4cul6hNCyKy3qWSTbGqLHQ8Hse71DT1dnMmyBni29vP15t1Xdvj4cTG1Rde6hxvRxdMGoQKMQuhQRApTKg0Emac1CnpVypTP9lHF+udiMDcjz8eDghgrc2pGOOQjQAVlpK1iAAkJb2xWGbOYFlzKnVKRAESQsQyD8eTimQKgGoNC5AW1AB5mvCGISZv1wLUthvrhBDTGIaObeOcq7oYbV0xU+V9jNEKhBDAizN2u93GGAlNDElNeoi0DRP0UNhs1kQ0DIOlxtbVqllriyiOqZTUjdE558iVnI2wc1UFJInDwzGjTAQRCGEYW984493KiQFhgFKYAZGceornXMCLlEklgIUxz/BOMYa0haPuJ2EYm7P6bOffvkuGyflm6KHE1PoqxiyoLSLRSToBwJkcycyIYgjJGjJGGDlrko4lClomU1arBnAAYnL5/uGtr2tOPISx70dra+Oa1aaKMRbBuqpyzgRYUi4hmaYiMg7JIxJRf+zHYdTZmuuXz7uuA+AMEkI2LFVVSQicmchacIzwbRBaDDkib7drP8bK71MsOWTvfe3qkoo1BIXbqs4hJi6K/YQQnXNoiIUBQbFER5Nfn6+tc67v+1wyc85CVVuFEBBNYe66KaTrLJ0ewdoNRRWzIuj7bhzHs9XufL3tD6d2VbdVrd6kQwzai9IzvZTiSNVORAc7VM5IRBggpZRyHEMnUkIY6tqvtqthGBj54vricDikVJq6aXDyAwQAR9aQEcIQkgiKYNuqCJLR5mvtPAlxYS5c1/VwGvoQiCwzaOZ5e/+gWXTtq5xKXTXzl6WFtmKt3a7Wxhhtnml5BQQKuDtvgQsacmgIgUve1G0IQXJxZHTsxnufuKSUNu2KrHWuevXq/aE/yUW+3T8AwMT6eWyGzERLA8g4qWhoPcbCSjuXGQbgWX+WJ9YqEanAgmKzKCIxBwJkZmv9/JOEAMu0oPbbDRILc2GexwomYtBMc9PUbWFpLfyy5WK0s+FsRZMAdkb8mlKzvpizSgiVUgBZP0LmTh3PZExhVojZziYwAkUd9xAF5VFV4xuOsZRmYXVEWGaKZWKKPypQM6qm+zTPC5nLypkY49u3bzXxUsFlWV5FlMmrf2UARTO5WTqTHzm20xQwi8QUK2OMoRwikB3HEFL6G3/rPywgqTARpZyBUVCKsHW2ZGZmlGn8Rd9W+3vjPFyAiMKSS7byNQ0NfNJeE5GUk/ZkYL6e2llEVP3jyUEVSUS4MCIOwyAlGZqFTQXAEM43QD96ee5PO3X4RHN5uVs8M9pkvl04d0GU6pJzxkcK2tfsH+XbNS4YIPHs1zdT2Mz0vJc7JvMgBi8CGvxIn8/L9TN/q5DB5OLJarsBaoS6FCQaDox1pTAAOGcBOKaeh4NKc0qMQxhjDIyKhivl3+hxqOU3IioSxPNdnaFDWqRjiCimpELPC/LVdV1OparbHMectIdTlPUQ0zAcTzEnETRkFRwZhmAtpZJTKjlzziUEuNrtfv3Xv3dxeR77o37TFy9evLu//6//1//43SnmzG+++IJD+fjD97773e+Nh9uHd1/1p4euG2JIOuAGAIKQclbbpVi4du7q8ryt3Wno8UYurq8yc4wRDFnjUX2iyNzd3THD4Xhs21aH9b766nVK6cX1hXP+eOxev36dM/cjCMLZ5cXufPvhRx//4he/wGF0dQXF5JiA+dT3WiVWzilwbGYxUEQEYCInIjkmQLbWsjBnsVaMMQzgnGudG6OJOeXMBiTlyCBEaC1Z27TGdKcBQgAU50xVVSRQcjTO0WwXOYViAj0jyRpvvFru9n1vDY5DAOuICFhUWJnLrG4vj7IVf8mrTKMJ0zJGxEWjHADMbEy/bECY58FYpl/UhlB64iYnX9Mamjc1maeBfflJnidRFIHNwvuHh9evX/d9H8rEqLq9e2dqyJxLjqWIbZS8mVPOBSREKcyGSLWJM5HFCdLVw0gbA/qJmqPoEaDN5BCUYx71s/QPiKiNzJQSCRhjAk/eX8BirdeldTgcvK9DCMfjsUABAG19K4PYzKrHS/RQai0zK9kqPLFh1P/XYSvNA2Sm5SpIqhQhnYdaxlcXPsiCXzPz8XhUWdjl1FMZAf0VfaZllslTGlTj3XKdaqqTUgpSFNBhnqA9VY5Oswc0iVXekHb7lzdPKejFLOKYumS89znF/X6/3W5jHNXtSldF4ysi0nuugVT5DroUx3F0xs/f1+jf5JytnybC9Cdj4TxbmC4TQnNHeYr5yq88Ho8PDw8LuP8NLxHlqeniPB6O/6f/6//lkw8/Wa/Xw6EvpWQRZh5T1HHyXIoOmE8TMBpRZ1VfZsacv/PhR7/xve//2x//KRrOkEREewNaUhpjAAUtMucQo7dNTEEfq0mJGbhQ5dtSSgwhhi7nXAqgMYjsDBJN7sdVVccYo0QiOt+dkYG2beuqOvUnpfBrO6EYTCmBgDGmgEy9UQPW+vtTr/cAXaU/HGMkhv39PoRgbIK2JePHMRNZ5kJETdNWri5FNAkGyd5Xxhj16hy7EwDkMCe4zlnbpKS9BJdz2Gx2hJMk35J5MrMlGscRgXTiMucEAOM4IoraspdZ50q3ttJJdIulyTWa9B5WlRokuFKiqzwBEhmFNuqm4ZlU7lxrLYlIN8SqqrbbbYijiNi5vAnjGGNcbda6tpdNNI5hGIbr6+uuOx33h81mc3l5qXzqu7u7qqrW63VKqW2NMfb29lZQpHAIwSA553POzIJIICWE4JvaGOtcNkgxhMuz85iZmYcxEhF6h2hISlXburH/4r//48Px5gd/9bcur3ZGGAp3x9Pzly8uLy/X6/XZ2dnzF89wx+K9c94iG0jIzAWFhyh60AgWPWuwFDZkREC4EGDRJn4WYSYCIgKQlIoanS0pFsrkm11V1cuXL1++fPnDH/7weNrf3t5+9tlnn3/++U9+/t5PfvIXX77+4rDvwbKe7M1qk1LKmdu2NsaUVKrzKo1BhA2YXCIRZS4oYB0pmqxTGiWzSj8jojVkrR2CKt5aRaN0FXXH07t371TrWVVoELGuawBIJakSwjfu/tWqTWZ8d/NWzWDX6zXjNFWgIi3K0tIStO/7s7Oz+/t7ZQm5utJYpxejH1FKITv15HLOd3d3SLDb7RBRcmEBNKhmRNbqsEggNMqmv7i48N5bnMSXQgivXr36nd/5nZ/9+CeHw+Hh4cEYpx8H1TRnuZw+WlQPwwDCymY6HA7GWWttzjwMA+NjIqoRXulaitCUUtq21W2rcczN9oCn00lP1c1ms9/vAc16tdpsNjGOItLHk3ZTdNlba1trnDN9n2KMddMw8+XlpX6K3oeJyj2r6+jsrP69c05pX+t1q1nu4XBQ3NM59/btWwWV7CwbfXv7xWazUu7eixcvNBo4525ubjabzUcfffT5558/PDxoX1YlhjabzTiOiikzgtKc1+v1mzdvRGTTrna73fF4zDFpXgRkjseOiJ4/f67yXKVISsN6vbZ2XNQ2+r4fx7jf75Xea62dxN9E7u7uUkrCRaHYJQfrQ69FPjNXTm0YWE/eh/1e3bHu7u6rqnbOpRCvr68BSAx5awdNiefUTpl96sKn80B63HvvwzBqVtl1w+vXr733vsZxHK0lY9A5J4LGmPV6raJDw/09WqNaTEMf2E9ctOOxKyV5762t+v60aVeIWFXV4TRqmqFbRnnBdrIOVmuiFgVSSofDwXtPzlzsznR36Jfd7/cqmaoTWmdnZ8aYob/Xuwoim+y/cfOmlNWq4eJiq02RzWbjc0pjIKK+77mUvu9UPyrGmLjz3usq7bpOpKxWqzQmvTl1XXenw9nZ2eXluY66A4AxGEIGgJhGADg/P698o3M8zHw87muvzPdARIpM9X3PnOvaG4PW2s1mIyIKXh8OB19ZjUvjOD579iyEoNL/y5ey1lhr7+/vC6e69qvVKsZ4f78n9KvVRo9LIigAAsUYNzmUTogCA0zKZfB1167pz8g6MG2tzVysde2mdc6dnZ21q/pweBiG0TmbYrDGlhKJLGoyXxgE5xluVF1vYBFBFtbcVFAWcPspuoKzwYn+vRAS0nzZ0ve9ryxL9pXTH66qql41Mcecc9/377///sPDg3dO1Y0///zz8/Pzi4uLUsr9/b2K6S2F/5JPakQtMWWmi8uzvu8fHh50upSI9BHoZhSRses1isYY2YgxmHO2zjvnXFURT3gIEhBaZmBmKWAIjPNDFhEQKYiEJErNUWOzpQLSxDjGGMexqurz8/PjcSBj2taRrW7vDgCgDEZ4CowQ0qRTwiq/qeuE0BLpKL/Rz16euf6ughGv374RkWbVKk6qwHeOkzHyqmlVHjA9GTzSharjaGr31fd91/WxZBHRqELCao3GT8R7f/VlndWE3Bi/tDzUAAEAAElEQVS01qSUgFlLHgBQHRutKYQwxlJK0rpMFY1jjKUkpfsslBScNQCsnSawnXNao6TZele5iJoh6ISoknsWtz09NJGkaVsAePv27fF4NN5pmvfmzRsVuB9OnTEupQRlEo1cUlbli1RV5azXC7aV1xWlcxLH401KoWlWu91OA53Geet832eNP3qF+isiklPW9FW/r94cZSrorTYIppoMSLQvDtocyllEFiWocRw1fh6Px8Ph0DaNmRS64+FwQGskFWaOIY3jeLE706i14LpVVeXCZUzjON58+gBAF+YCgcdDp8XsJIf0dZRt2uQGSeYkg5knrzl5NEVZoGpmFkkiAmwEH+WbZUKlRcHoBQcEmcQQp5/JBQ2gYGFgmdC0CbaQCYwwZpn9fzTkgYXWqq4+aA1NQCc+EceQJ6Z/MOEghSWDTjMICCOA7nAsszsQz1YwAo+yGNNhL6VwEf4WC4IyWRgRPoYMEWEuiAafAIhEFlUpkqebT0TH4/7wsA8hoIixppDotyZAYwwvUsxPYrEqlfAsM4I4kYJxNp5C5FwyWiNghth9+J2P//Cv/VFIky5YLkxkWOkrs2IDyBQRDKCIeO+dc0FHlVMupSAZYwgyPxW7WcAjgWmG15JhZvw6OiwizKJGiYQTkGStPe73IQRcOYGCCzpPAOURFF7eYUGjlr98uozlyScufy6/opuhqDHMdgRPvwJ/C7t5DlvTmyvWo3n2k5+aHr0jtEhTYaxeUo9iHVqAyV9iyCsz4KsDgIiI0+Dz1KoppTjnRSBxqT1hwePQ9d1RSmIuyxYAEW2azL9S6WWXLOM4plQWPw0ElbYmBokxFlZdCL16AQCDaKwdh/jF668uL3br9Rokc4qitbrDMZWUSkwJyBLZlHPMgSymkjNjTHA8DFLg/Kz6vd/9K7/569/nFGMcczi1TTMMw7/4//7oxz/9ySnROOTzbfsP/ou//9F7L/53//j/4MoIabh7uA9jIjKtr1LJOWQVLSqlENkQYuRxs12F2Bso63XLIN3QV85vt9vXr18/7Pe2qlggc4mZrSOlM8jk6AJX5xcGyVp7dnZRShnjm/X27Pziwtf+/Q8/eDjs748q/Vkd+lHPHgCoqsp7L4h17ZWNyzzR6IiIJecSNaNjzoBknXHOCWsLQZDEWWJm6yjHLMIGCVGMIRb0zhhbG2OcrayjlJIxRIhVVVXeWZrCHaApDKMkimGIqTB/9tlnf/pv/s2rDz9o19suDGNMCdhYS2Rh6tCJYtDypNH4S688a5TPIYuebpCl+PnajiMUBPX89LPaLJdC9EhtNsYserjLxmZmotkSlh/BaGY2S/5BRllRxtrnz593Q3dzf/P27rWm3aEPLEWkMMMhHVAmWDwOY4ZCxjBNo5rb7dZUTsKEqBpjiOZheQAd1FLuW8455rTIX4ScLEyCDPK08UlEC86eJ8udOIww1eeV5h+GTJk1ECVnPSmWZpVuT57NkTXq6oSUZhK18wsIrrmCJg16ec656+vrt2/fat0oIh4IEaEw4yPKvyDsWjlomb18HTPPPiuIAABpDCDSHw868yUiCr7nWURIwWKZVZXn0AqllK7rsjWaxKSUEM28bJjml17Y8jVTCs55mN1Q53HsaRBeP3RZjYoFLD9chImIYTaTQSjCeRwnbnVdLTdB7/kS+fUhlllZW+/ParUqpTRNU6f6G3dHyllh1rquEalZrX70ox/9k3/yT/7jv/33vPclFUQLAInLOI5awPMsO7gkKmZWpWRmTun9l6/+9t/+2z/++V/kzN67yGm1WrVV/fDwoJlryjPrwViRhEje25yZnLdomJkLpFhOXSAi7Uy0rfeuOh6PKYGujZy5bdfWqkma1HUTQzbGblYbYwwwSEEUE3Kv6woJuBSWKWcLMVrvhCbt7CHl0+m03W4d86puDozM7GzNzCUWISTypghlVXyMUCJy8QYMYBqVDYS5ZNCx3BhzGKt2GmMnNIgoLThXGYOq8GuM8V593gYWcs7llE8ppZTIoC5R5wzi4uI7JavGmJkxTSLiKxdCyCXxNIooMcZhCG3bXl9fl8wiEmO8u7/fbDaVr4exV2gGgI/Ho1Yg3lhdiqumnSBskLpttNux2+1CCN3Qb7dbEYgxqozvZrclQJ221sHekGLf9+r/WUper9fd0Fnvm6pxxirQZq1tVi0SkcFuHJi5bdeWzNCfqrb53d/4wedffrHf7w1STtqIKoXDunWZ8cc//vEXX3z2wYfvV85Whnab7dsv32il1DTVdrt58eLF2fm2btsPPnxvu92eXZw3beucI2uM5n5UMQMiJGCeRH4izd4JIiJTEUuGyNDXpJAQMTMTPGb+xmDTNFVVPXv27Pvf/37f95998dWf/um/+ZMf/cnPfv6Tn/3ix2MslXdplH4M7Qrfvbu5uDiv27rvTwmS8w4LqVIWgDjnhnEchgHRuMojos6EjuM4hsHZquu6IqzRUptqk8l75V+9/57qQiLQw8ND6ro4KyouQ5m/+nLO391/oRhl0zTDMGi6a8ZRO3Cn00nhM0Rcr9eKbqgr2pjiUj0paKhtraVQMsacn59Xtdf0UudUUORwOFRVc3Gxnoph69+9e6e4tnPOW6eV89XV1Xe+852c87/6V//q9vZ2s9nUdaux7ng8NnXbNE1d13d3d6UUMlg4O29Lykq3r5pahYbruu5Dr7PMWuHXdW2Mub+/17Cvm3SapRXRb7e09/RI1Rte1/UYw8PDnS4JvSGKt97c3Oh3X2034zi+fft6t9tZRzkJMz883EGZOgGKFz89fXLOKZUQwvPnzz/++GPFgtdrVoFj1QwZx/F4PK5Wq8vLy+fPn9/d3amap4q0eu/fvHmjibEeAcfj8ReffZpSylwq17brjbpgSZcUAZymLQvEMH5+e6eJUHVeIRrv69OpP536pmmaVatcIiIbY1SJHo0Jm83ueDwOQ1BMv+vu9Y4tAsfn5+ciEsKAAL6qRKQUYE7O+XEYQGi1WlVVJVLqtqmqqpR0c3MTQuiG6D1sNptF0SKSOZ1OxjhfVzSLKVlr9/v900ymrmtFkVTk5O3bt8+uLhGx7/tSGBF3u90QeppM28QYoyJFhqpx1LnqcH5+HnJytmouVs65EFIIwziOMebf/u3f/Ht/7+/9b/83/ytm3m7PUgqFkzYSOEc2OAwdMyv51M6yVzodwsxt2xYCyZMsoUbmcRxFMIRwdzd88MGVnsUvX758/fp1jLGpa3/65m4xEX36xRc8Wx0i4tnZ2ZiiATydTsfjcRyGqlLMKHddZ5w7Ho9XV1faJCilpFT0Ol++fHlzcxPTBB28efMVAGgvH2dvWEWjPvrwY80wLy8vdROFEJnh+vqCJzmyYoxRK2AFufRSlSt9PA1XV9MQmI6mLQI1itQ7xIuLixxyYRiGoW3rvu+tdc+fvTTGVN6nkH/xk08PaWzaduy+xiDhJ0FukmVQsUoFT0gQLRLWda3C4kCyXrfr9QoIV9uqai812J4Ox5zYoy2FWbIwZlblYoNAIFQSExrQyV6dOyYEUHBHjcv5V4tihSMIvqb1QYZKSUhaKbMuaTaT+H6I8f7+IaVUci4xrVarw6lTm8oym3Noe1Ib+WqniXN/upRiCPf7veqwKwSpkqr6sDTuucrpU16tVpHKcOpKSZvN5uzs7PiwR0ZLBg2gEAJahpyhlAwggGCNKQAiaFCMUV6awESD4FJSSmhNbawBzsfjvl35q/OrUm6708BCxti2qToZVYpARAAWYIHAgJIklfLMnPXPNM2n5kLGiCCCIBROnPMxTQeW7j4RaZqGS1FuijNGF7NB0tNKIdTCrMI4ykFZrVZ9fwph6PuTHgpaU1hroUAphRHIWeBvQdB0eFZYl3RVVUPXw6ym2LatznlryKqcj5S1WCslaR+xrmtkUVx7Yb3ILGEKIEvphIh1XWtni3miwGqzoW1bbXCqntL5+fmHH354+/rmeNqLTE4M2vEqczmtOAAAkLOFi3PO1U4l+8yimhiT89YYU+Z5u1iyVk/7/V4P7jKLKKpSszb/tICaofChFMucEV1VVb5djeOo+SEzT+bAWYU1XM6gZ6LC7gpty0z2UjxdRF6/ft0be3t7a2aHXqPpN5Ehm1ksgzFWWfPn5+djCJV1OAP6eo5Xq4pr48hE5GEIp+FkDQYziqGPPvpocl0U4cf20YzVGmMICRALc5nE8nDBWJdCUb8GTaBzEQEUhQwAAAmQZ8kYLaRBSKQA4UIQIyRNpJYLeEy5gDJPcWGp7fEp3jojIMYYg4/0uqfdIZlN7UUYgAAegVFEAlDPTqVzPuImxhhF2GejqWnkdoH5WNK3bBZARJTp+2pW/fQBy6McMzMDIOt3QpEQxi8/+3wMvfc+h7GkrEU4GQPTpU1XsiCJ+p9l/gMRKZNaZmUmdbTnuZkjQL/7wx9uzi/eHQ5gDCBaSwSmJCYDgqj4IrIBAAIFQ9FVVdu20fsCpY8jADhjERHny9K0RofimVk1vDSIl1IIeCGvFWYU0r4aIip2RsYUgIeHu9Nhv23XnAvMeD0zC0wa0F8LSfqfkyS+PAW8ZEZpl8dBAhq/9M4vK0RNCOWbjCjVXvLbnq8ILJw7mgXBAUDlbybRCxCNnAoxLBcJMxtd5imBb465Mm00Mw2zl1KKVrZLQZJzQkQgyimVgrWhXriMsa2bmHPXdayxNQMammM0wEw+DWPS/ooUxidS5rPm9qKTO+3NUqQgCrO17s27m6/evP3o/ZdN3UYQLmCNCamfRr3QM0BhyDnFkgGIgcaQuFBOkDN88smLX//uBw/374zBt+/ejKf7/z9hf9ZrWZacCWJmtoY9neGO7h4eHhEZmUwyJw7FLDKLU7JIVrNYXd1dKDQarZIEtfQg6VdIepIAPegHqPUgQICgQrPUAtXdKKGhkqrZnKcqFoecIzMmH+9wxj2swUwPtve+NzI9oANkwNP93nP22XstW2afffZ91uG+T3/5l395u4HF2cmv/8bXf/PXf+173/jG//1f/E7uD597cmF46EMSBGs9WZ9zDikBcsqJiEJKxlrOeX84OEuXF6dZ+Pmrl8qdud1uYk4n52e3t1ski8YQYB9DBU1I8erqynr3YPmwqmpjXAhba23KYqxZrJYh5xKBvDPOhTSq7+cQOd2tJQ24OqLb93n6v+r0CuB8jFFScoXT7aWpknDOmQ2gIFqDIuQMqggQkojkFMMs76ADsyhiqkITbg3U49YzJuccMsMQcs4G6bvf/d5HT59+5cs/9fO/9AurkxNBopxiTD0P1loyJoQoeYqZnyKmoWmJuLHb5yc/XN1HM3inmeN9MBomIE9/Bu4tfoBZ8gjGEAITJPHJyUdEGvcOjgMuoR+6rtOJB+ccdPDw4cP3P35P+8augJQTACOaEII1jifJ/sKNozyaFuScb25u9M8ny6UahsB0rqlhvYhYMs1yoVbyKSUdF5rpivMhqAd5zJkMlWWZo9rQGRUXUoadMaz6gMe+Q0StWPS/eA/B1w8qxvIyz6FJP0J51lrkIGLf94pA5ZyVkKvpiFLPFouFqpvRpDhBxmQQzYw1odTqfcav53NWQ1nsh7Is0Y8Yd5xMC/UrK+FIaHTbc67Qf9KefM55tVpVVbW9uVZKL04q1cyMkxEQp5w4oqGmaa6vr3POy+XSGzsTsUVEpVorXwkiT75wiFgUVVl6LdGTcBLOSR2cEQBySpDHOspX5T2Q2pLKUyIqrj89d2Aev5qu6hmq+LSDIKdkrV+tbIyx8EXpqx7Ni1cvNetVM5y6rsuybIc+hOCL4n7ihJPIOwnknGNONkPfD2++8cQi9WEoy4oycEyHeFitVpzybreNOdV1jVYJfaYoiqKomAEEU+K27bX3UNbLYejKojLGgKDCQ8hlWS6MMavlOqVUVoUiONtd75xj7gGgrl1KPAyaBAMAppBzDnNV1ve9nvrWkSXIORMCYeTcLVZn+/2+aaoQQuyH5XLZlJXOk82sf8kQQmRJxpjjXqVIQ8xjzZBS6rpOGxvak+u6LsaMxvZhUKMeTbvTZI+JjCklY00e4rwrvbc5Zx30Ua6lZvzKO7vP4lfevR6INzc3JydnWljudrswRGOMbn/9r44zKWwERj9dutClHGOMnFTAVNbrtUJsdV1fXFzsDvtDe9Tvpco24+w2MyB66wThdrvRrwMAmvWJsOprW2vbruvD4L0fQuiGHomEsCiKxaLSXblanhhyH3z0/mazYUby1TDEoY9D6Axys2qsKY9933bDs6fPTxaL9WrRt69qX2hI2W22zz5++vH7H5yerp03f/Cvh7Kp1ut101TNcnF6enp6erper4vVA1V+cM5lkbquIWcQisp1AEPj9BjnzO5HRlUIQC2hcTT7RS0djRhj3HK5/OmvPPr853/i13/9N//6r//tv/r//qvvff+7XTxe314Xpixsvd3sr/jaejocdra0jWk4GA1ZZLRXJ84VzjlBUCSx8CUZPBwOnem0rNLpFsXUHj9+rBXaTPYUYFW8VYnMsioAYBRP+JGX8+6dN9/5+OOPY4xK+NXxPnWH67punDCNUQuKw+Fwfn6uKNL2sFchIx2F1GBeFAVLHrpBsY+6rmMK2klV+dcYBxVrVvRWN8LZ2Zl+RM65DREAAOX07OTYHoqjf/jw4dybVHWLV69eWWtHit/mRivbhw8fnpycvHrxcojBWrtqVsaYYRgySN8PKSVtwumnXF9f82Ryq1Cgwg26+He73eFwKMtSZyJ1fe52u6qqDrtROUopzzKRbHQ7I2KRKt2Y6/VaXey0Z1M6v9/v9SMWi8V2s9Of996L4GIxHpdPnz6FqfXonNFmrT50O5koPH36VPm8RKQaxGrboKrB86iK/rxzhT44DSzeN4iGOetEgiYh3vu+D865V6+ul8ulmozdhtuQokspxqhmiQDgfXlycnI8Hm9vb7TzulwuU+LtdrvbhaKA09NVXdfel9vtVi+7qcpju1dtMb3V3bFV3lLf98agJjNt27btQelpy7XodO/ciHWFv351NQz85O3Hys7WYKstlnEUIGc9SXV15ZyPxwQXY+u9qux6va7qmiymFOZNrY1nkW4YhhizckUhQ0jB+7LrBqWca1jb749//qd/SmRfvHiugaJpGm3+1XWlNn1qgTi3YXRnNVWtDEF1MgQAY8zxeEwpeV9qOGqacbgqxviqux7BsvL1fWIAAGSW1A/gPPvCxhhvN9dZsPKFglw5pdPT05yz1lBRMyi0fRdAiMYGuVkul8vlcr/fV1VlLH740fsxDaoMk1IqK+8L6/yCiLbbrZoE9H0/+x+aaRpSv/Wo8GNgCKHrj009DmeEEMhA6kYzZ73PZhr519mCnLOOcjpfGGOGcMyjkWydcsjZlEWxXi/Pzk+2N89iGnxRDffGDQlB7iZRFBLBeQJZf0bVCZgTGWO9XZ8smmW9PWzLxgF5a4m34aRYee91fKrt9oZc3w/HXdcfgyQxVFi0wqCojNbvjCyiCnCj3eU97Htk2N17cjSnoM4SoBpHQc7ZeIohiggLWGudL8bjPjIKAsA777zz8uXLq6srRYrnMlwz7Zk6iogau4Yh6tgHIu73e2a2drRjVRmcYYiFHauGuq5TODrn9vt2tRg6AUBkZAYig8SKPIkxSKBgCFgAAhSBkW9iCCZwgGhUZcw56+hkznlzu2ua5RtvvPGD73/AADfXG1dU3tuUekJkmG2q9KYRACOqqaO220VAkYiR5YOISvEZSSeEMaftfmetNW5U89/tdimEHkCKQrOpkGI39CiQQESHO4k0ZhIBczocgsarsixDTt6VIgKCGbLy2TTgKJ30ta/lqiFgYC69r8vy5OSk67rj8VjXNXOa9w4RubKYpk6dDs1Ya/24q6zmqzD5uhtjYhxw0sUGgK7rFYSdeAmj9ajmhHquacx88803fWGLVI6TEwoEkZ5BI6Su7gV6DQCgU3o0WcErNLzb7ThHa61OORyOh7mjliaLGu89orTtQQ8mHDUerCbQesQsl0vlYqeUJOeqqhaLha5kRPSGUO6m9/QO6FkPk2mQ3hOtdpum4Zg069ZpLUQMQ0QgclaJMiowbSZ/0QyCedSB0B7hfr93wbRDiJVYazGitbbNOeX0gx/8wMLEX9O9lyWrgeaIguFomofjo8KUeFZm1BWTYrTWzjIFIqMk+YTEWU0omZljEkHwkHNGxpiTrkhSgp4IAFiixONL75HOWChX7oewDCLiCSs0xqDQjNwZFS8WVQa4Y8nN07IzqqiXLJNDoAIclgwZiHE0JZiBQpwlyT/dSo6QnLGAfA+zGwEFM02AWjOLbEBmNtZzylqfvnz1ojscjQiIpMQ5JdbaVQRZgMb4iBM9dvwK97Ce+Qvqj6WUCMFYm7KExL5u3v7s57KCQ3b0hFS4h4iERodZi4TWODQc05DiYrFaLU92L56zRnlnyJicsjE40fsMEQGLriUkC3mcdBOF+RXh5bHMFmRmdGIQEckYMlZw27a7zeb0jccGkEVYVANwdCS4/8juzqJ7IhsznCT3iM9jbTOxbObXtMbuJoZmWGfuWHzaI9aPuN97wKkPDGYEo/VNvL9z4zSjuuUnUDkRsfb17XeF4wEg5wgAmjejFZpMHqy1BkzXddY7IhxCS5JS23EYQnds2+Ox3YuIMSSAuoNUE2PsZmfowjAr6qY4A47EnJkBwViLGrDQGiMgKAQYmYlAmF9d35ws65NFZa01Dp2zKceUgnUFILf9wJAyCBoUlq6LSEU/BABT2FxYWdamKt2xaxWMOLbd5eO3/lf/m//1v/zdv/zMF3/m5cub/9N//n/+5t/+OwT4yR97y7uq3R0UdUXAlBKDgM7zAmUGQRKyliwY60tXL5p26FLO7zx4MKS4Ox6KokrQM0hZeGa4ubm5fPjG+vRku93qs04pLRYLzry53XUhhpyMccZ6RuhD2O/32/0uhlwWdYg555yGkAnMtAhH5GgctmLnRqKuMVQW3hodOcEfWlciQoiKi+UcmVkQAbGwLoMUrsw5o6EpBRRDelaI5BQzWBp99pS0ZYoiIw4xFc6FFG8+2rx8cfXNb37zCz/55S995StvvPnYOm9HHmg2BIYsEeUYP5nP3b2c9ffbG3CPAXq36awBxvt9vvlI84XXanOG2H508+I9eY15s8w/g1Ofb4R0YwwhGMCqLhHk8vLyevNKa56yLEPq7KgmzykEKkkmeWV0o3TG3DXUrF3by+RsyGl+NMysqhRj4ZGzZmOTbNy4i+neyI7mJapoyY6JrJ6g+sVVg0LuIcjzILMuG4UDlOunA7x65CvGrW+ifhSaFuOkK6ICAkp0att2t9speeri4kKdLfU6YWpley0syQCLWoCSv1Mcqnyh3Xgt89q27ftesbOZzqA1vCIpumtUvlxlu+fca7Z1Ul0XhcitNZNG0NRpG+cr7cnJiX6u9z7naBHqxXJIAyJKypIzlUDk9J3n7l3fB8Ze+Qgi4lwRQg9gFa/XWT9npvG9EXOHObczRDxRD5xTV7dRE8k5p7UcAGhy+aOvmFKMsSjcer0GxhiCiHzwwQfff/+989UZEgGD8gEba3LO2liFqYkoMrdRx0VujU0hrhfLy8sHP/jw+6GPrnQi2VprENq+J6LKV/oOy+UyxqEoqpxz2/ZDH4jG8lUpPI8fP9ntdlevbm63R28tZ0u2AFtG5qvNQSv2xWIRExLabhh0Bb66PmgTIsboreitUOg5Zk4oOfEwdFVVoSUiQAICWTZ10zTOGZFsrPXoUkrGgrqs6OwsSzY4ymTnhJxFJcXOzy9vb2/3+4MaIjFDs1rqGkspZc6usACYEqMZBcG1o6DrLXRBJ1sRqPQuhHCMnfYhlITiq7IoyxASCAghIlrjb25udFkCwBtvvAGGhPCsvNCkdG5C6M5VdgkiCrCu0pxzBoldiGYAAAE2xgQJJycn828p+eXly5dt3yFiURTOuJRSCKOzn3KpmNXFa2wp6RSnFmLLk/UwDJzFqA1gjG3bllWlFCEA6ENcNYsUg+JEuNdsFsOQrLhhCPvdsfRVURQMmFhVsPF2t93vNlVR0uXDhqwvIEaqq1WMw7OXr3a7nUUYQqcNXetosVg0TVPX9fLiweXl5cnJycnJycOHb7zx5puXlw9sUYGwIcecc8zaPkkpRWLAPAdMgTs4495xwBoMYwjGmDh0zrvLs8vf/I3f+pVf+dW//du//r0/+L2//tu/+vjp+6+urw36ru0LcOuzc6SsWaezRV2UmVPXdUBozdhMUj6a906Vaufjxk6eeDiJs8NYL/DxeOy6rqkXeqvVT7Wu63rRvHb7t+2BqHjnnXc0UIuITsMQ0ayGtF6vt9utpliqkqFUo5CTur1rlRtC0M+aL2ZujzVNIxNqT2S77qj7NKWk29wYU5S+7Y6qtaUwcQjhj//4j9/9sXerqrq8vNxsdgDQdZ0O/CLiZrNpmuby8nK73Sq4GUIo60pRJj1qI2ccetbnmrMeNHr3ZuYmT7M4iqCpFYH2JGA62ZWwv9lsVPFDi3BjDBjWA06DrVI1VWhFTxm91NPT02XdDEPU3brb7Zj5yZMnMkqBjafwzc2NQtUaRjabTdseda2qw62yVlV2Y7FY6DXo8muaBtGM5B4iRTCHIep21ue7Xq+LupAkiPj8+XNNhDgJEXnrcso55y2zOim9+eab2+126KP3frc7et+vVqvJdEvlJkYDya4d+i4sGl9VVUrx5uYmJdYuQumdMUbv3uGw/+IXv/jk8ZPf/u3f3u+H5aLR0twYUzW1Zlx1XRdFcX17Q0TrdTMmLSkZY5pmWdcCwABc16Vzjjkhymq10iEenqjiGpEOh6AiUlVVkTVd15VlM4Ruu91aS957tfBVIYuUWETK0jtvALCqKufc0MftdquwXVEUjkwawje/+c1hGNbrlS5pb6yqFlwfjsoNzDnv9/uyLOdOhjEmcQaEbuiVdTjVaOh9qbli0zSHw0GnCW9vb29vEwKcnhbd0B5ef3RDVdeXy4dD1xVFoa6eROSKSomcTdOsVyvNIlgEhG53t2VZauNBsy8UrcW4bdvz8/Obm5uZECoiVTW2tYqiKHylfAzt02jiVxSF0mY1YVZJDSSxjnCatZ3BaCLywa5WY7ZvjNntdtod0dxJp6z6/f758+dvPX6rruuiNMfjXmcCNptNXS2uQz90fbsfrCVmSkOcMlgtk39obFpVmwBQWXoAwM55A0jWJk5FYcrSxtQ6DwwJDQ4xFrXRg6/rOjYx2/Dw4YVB9+r5zctn1+EQCDHnTEAIpEbhjCKSAAGA4VOEJXF6zbUzjSQbtK4I8ViVhUZIXxabzSaD6CibavjouKGzfrlcqtSJpt8axGbZBCXT8D376Hfeeeczn/nMX/zFX2iInpXfF4tFVVU5j2Kwumv06VtrF4sqpKjeQs7Y9nhc1kvDkCPnmCADGUQiSMzCRIIyjfgJoKEZJlI3S2sMCRNKjIGMyzkv6+bBw4vbm22zKLoh5hQmUiXAiLxNTLu74eY7EAxYCEdujeopMmcAEkK9fjTjFAtPpsQAo8OempdqTXE8HhNDGgKSqOSRHhMwIbbKfTGk9ieQc67qQiYjDWu8+TRKH7OqQi0WS90XFxcXL1++vL6+Vg57Smmz2Wgfy2TUxi0AiIyNVUnStv1ct2o2q0ewtR5krPW02MHJ/Fxjjj56Pdp0qehRvlwuH15cfvDBB/qsX716lYR16+V7+BJNY83aJNbSSQUxtEk5hzXtemqQ0UUe4gAAwuPDspNTX4xDjMNEVhiLrBjjMIzKvY7MPHuaUtBjkZkVhcNJfkAJNHpLzTQloP/UNE1TVnoHtIOVUhLCzHcGy3PNi5PbEDnTd21h3cXFxWaz2W0OEvLQdeCstaRRblEvjkPf7TuLaGYEds5pcNKL4ZGqidPljlWrTNBeniaR86TqhfeIWqD0ZsUOsjI5AD/5KQQj1jzDowZRJ2atvdP60B4WzKOvehljAw4RAIUYJPMYo+VH0BNN4OY23Yxu8MiWvmMp/uji1/Uhk+ru+Of8KZK7o1VdvncbR/DF3JlmTqoOBMBgySSSwtiCOA2h73sjEWTCaBgzC6EYIpjAUEQ0U8uCmdHQBPQkgbuInFlAhIVJRASMdc3J2er0rE9JgIRHXh4L6wiqvpA541gdqNRQba3Kok3NE7q/ZqbmiWTIiGDVz8IhIgqLdcQMwDoApVdrtK15d7wZa0Eops3Nzbsg1pmYWVB9bgURhfBH52tEMgHwJFqifzP9eUasxADq1yHS3gOoLjXcQ5kBQI8NO6l5qsrtj75SCjp1e/8O4D34mMap+lFqVn9MH/28L+7Hphny/pGX/mSeQ4+IZBBQz3dEEdSMJws7i6XxvDtsX73Kw9D3fcohcUYab4lSRCeXTTRTve6ci9N8OpG1KDnllDiEQUQyqKilGt8ic0ZyxnpI0Rjqhr4fYqo9iJRV6Y3dh2MWttaLsEjIzBmYQQILWnd9vU+RhbEs7Ze++PmzdR2HQwqDdwZWSzjC53/iiz/1M1/96Jb/j/+Xf/7tb70HIJUtl5UXNoeuT4kFs7EOyaYsoPgrAlkTYyx8JRk0ysSct7tdTuHs7KRpmvfffx+J2r774IMPnC/7GBJnINJxRS2QDofDu+++U/jq6YvnMUYyJnR95NwO/fHYXbX7FIbjsUspkcOuC6TO48BlXZdFMT8yVa4kMJw5y6QYheicIXIhRWaw1hhjMI9ZVM4ZWAgJGFFIu2tIKDFlYEQkYEAQSDnllAIwi8GYGFCsL3TpRs7MjAxlWaKxbR9IQAD6Pnzve9//xre/89d/9be/9g9+7Wf/7lfrpuzC2KJU69Egowf0j74UGZmD3rxZRARmHRzE+RDCTyq+qcjMWOEDIxhVgRwbljJizXednonmDNO70T3Gn5KbiqIwCMaYFnGzudFalxAl82q1GnI/Ng+M1YNggjNGu1eFqzQCa8WOiEVRjFNyCKELKsRJRMf9QYufqqouLi52x4OCBfN3nE9imYSVQwgqLD60nYLgc7Yx3sDMPIHFehxoyQETCjkfhfpuiKi6hET04sWLBw8e7Ha7vu9VR1KJw4q3MnNVVbe3t2+++ebJyYnKL+jXV7R36uTyfIJ77yXloe00LvEIvDodqkXE6+vr09NTN7kLAsCcrK/XaxF5/vy5lHJ5+XC32ynmfnp6qqxqRQdyyIiifJ95kTAzAYLOzgiklNQCm5kPhwOPltA9AhChNu2ZGTEDjJxuXSchJ01ARyjZqkN6omzmAz2lu0fPzMaOw7AKNxdFYS2lSdFVkzBlFF5dXeWcz8/PQ3z9JJOz1jlBxK7rvC9TSojQNM3Dhw/DcciJjS1CSADBe0/WKu9S754xjogkj88DCZ21KcSiqB88ePTuO5/59ve+5QqCyMbgMAw5ppSCMcZZxyDGqBNpbttes9gYY0qdc4X3HlnafXsjGwCCbM5WD+t68c477/yj/+CfPn369C/+4i+0n9H3vXOFTrUXRXF2dqbysre3t8fj8Xvf+15ou/1+PwyDkIRhuN3sQhjIgDFExkpgY7Asq7Zt27a9ftVWhStLT8i+cGVTZ8kh9MxsrY0c9IghAUFAQyDIOVZVtTpZ+6J0NzeIaMhaX+y2e5pmwnSqz3tfV1bAZmbdsLrmtZBQ6qV1pDuowgKYIfP5+TkiTuPhXnsMurqULqqQ9O3t7Xq9bpom9qM5+G63G/pwfn6udI95jLGuFixZkYWirkw52guv1svtdhtD/Kmf+qm//uu/3u12Cv2ISJYx/ZuLn6Zp1Jdcd9OcQihG6ZxbrJZ6JPV9D4bIoPMOCWOXyqqq61q1cTSOtW0bQiDEIUbIashZpKguswzGOucTwzB0RWFOL9Zd191e7UMSY8yzly8+fPahMaapamPMqxcvU0rGIIooZUkv7PZ2MLTz3i/OrpfLj9br9enp6U/+dLbGNWU9DIP3ZV0bZymGzEnHm1hYGO4EyuDeOFcIwRnLzAJ34nXGGAQOA1hL0SIR/dzf+dmvfOEL3/v+d//s3/zF7/xX/+UHzz7KjKWrS1d0oRMcFXtCTjmM/bBhGJbLpbV2s9loq2xmzWs9eTgczDQ3rWANESkOqGhCktyGDq1hhNJ7Zu7j6+cbcpbdZvPVr371eDz+zd/8jbVWMltrF8uldj01dGvkn6E0pZN3YRCRqT5MIqKYft/3auMcY+z6VougeSxPo+4MmCpcord3LI/7scOnK+3DDz/uj+3t7a3WnPpPCsXqmyjVWhmLu90m57Hl2fd9O/Qz0uqca5pqsVjMRZkCNCI4DKHrOu+tkqyNMZeXlzApLAHAxcWF/pZWsHN773g8LqpaIZ65+t23R/2/Kl6s0bsoCj0UAMbHd3Z2pmS347Hb7fZE+LnPfU4PWQVPdRahqpqyrLuu2+12SmFT5dZXr17d3Nwoqih3ZgyojFRFUbfbvYgcj8e5cNvv9wzQHg6ajTdVPeu3avdIh4pabBFxiFFEVs0qxmgt9n2uqtj3veqrqERy4asXmxcxxsVicXp6iohX188BRl9lkXw4HFJKdVOmlKx1Vy+v2kOrIiKqGuGcl4lJt1qtNCbokkPE/X6vN0Tz/LOzs83udhgGzSWmTIYPh50xLuesiYquN/3Kbd8lFpVS0eDZ931ROMVfxkkCEYCsuigpB92S1viUUlNWBtAASsrH2C8WC+fNpFcQ7/JARG2zzfmY9h4UgNanoytktzuUZV2WRZ4crhQ90QuTaSDJezg7a07WZyH2K1jBR6/ZvMZaEQGibhiWTaPZYNd11tkxhhiz2+2GYaibxlq7WKxSSn0fiqKw1rT73e3tUNfw4CEpaKV9Jpwg0ZmwH4aUYisiyoeVaTARJqrfcrnUO+y9RxKexM3m4QDraOJvqulF3O/3AKA6YwCgJIO6rheLRVFUSZgntQdd2EQ0hC4OYeh6b8qqLvvMYsjQSLPVUKyj33hXC6iNvSKYDDBqZ5HDonBkYEgdOWBIIXeENkHIwE21ZJMiDAnT+qxONKDI5aMzb9yHP3g+HHpLnhnwTqyZAQFGdvPrX3j3MgAAmRGQBCwBcm6aqixLwFgUZYRwfXXNCGdlEfpB+RnXr66GYejq+vjxsxij92XO3eHQEmkWFHLOKbFOohRFsViscs7LZdk0zccff3wfGdDOjQgeDm27P+j6V8iv6zpwqLC1RiEC2B8PKcSyjAAWDZCYLAlE7WiYkO7dBBQh7RdqJsCcCNF7XxfeED1//hwzxpiH4YPFYgHIRFh6Aih43yUAFgQBmJiIY50i6k94x3JjZiCdWobMDAlSMsyGiKxxo41YzhM1fpQXz5O2nlYc1trVyckwxEPK1topRU8hhLoqjLEyWae4oso5b7fbGMF5uLw8L8tSXc3yp8zUZh5rh9VqdTwed7vNzc3V8bhnHp1saBKP1bTfIpFTNvFYi6kqr27Mk5MTHdfAiTcw67atVis94BRY126Wdj31gNM/63H2gx/84ObVlfZKq6parFfKZijLUpNMRFSFfS2FVK5K80Pd+GVZpiGUZblYLJTKY4yxKgBApPTnlFKv2EvOejjaSeBxLnO0h9S2LTNUVdU0DQm0bXs47Gh6aWy01jpjQwghjQx0vaT7aaeeXGdnZ8MwDG232+3MxIlRmqYucp0vmbvjejHaPUVrPn7+jGNaLpdZYl2UQ5GHIeq30AO073sLE4wld55RI/CKkx35vEbzpGs8o5mKw94vjwHgh+AzUXVaNDMVTH/SIJExaiR4F94mMM5MH0pEgAwyatLIPdUIEaWqzFvoDuyIE1Yo0+DeiANCxnsIo/D0VdCI6GiHIBoQvo8+6y3Sb8qT7pX5NJQQ5b7csxmdi1jLS/17mu5FzgKTg5MpTN/2XXsA4ZwSAIswy/hleWQ+vgYN1/swAxbqXwfaepXkyIRhIAHrS0N2fXJaLVddTFlQBZRRaKScCYvAjH9mERG2NDqlFkWBI/3LxCwj55ozfhKowmkMQQFlZvZkiChxuveIpxH7e1/BGOOcvb56yWEgMBYpA4qMbQwAyKDohD5TkbuOAo/AI9I8tY9TUwRZmOauxNgsmVfRhE0DTCN4MKPn+fV8T2OctTrUMFaPoGgy3AlYK6prrY1xmKG0+Rrkk70Q+nSmvGLNusM16Ewr2ZKQiJCxzpvAwRoojWyH4+72FXJGjcUifQgxZmudtZ7sKIkuIkMf9Q/OOWOdpjuGSBhEkuJcIsJkjTFIyEhoBLMRQgOUOAlg1w19GAAavUhd9swMyLpzCaiPgQWKssk5AtAwdMbAF7/w459/953a0/EQhmFAMCGEqmr+P//6v/s//Of/13/7nas2Q1Wv6qJEzpxTHwNL6X0Z0lEhes7AIERWBMUKMhz7zpEzSPv2aCHHoTUWnzx5rBBYjDElVjH7oW1jjGdnZ4vVEmCcun38+PFnP/tZGhIA2ML3QxyGAZCY4cWLFw8vL6DwOpvDItZRFo5xoKJQraucs0hGtJZMSokcCQAyWgQCyZw1vBSuTClxFs4Jea6yyIDJIs4Y3fIGMcWUQoxDXxSFHSsK4pw0I+SkEUZCTpGzjIpFNMSUuDNIFs2Q4jANjYYY//Kv/+r9jz78xre+/Qu/8LXLhw8U5QTBmKN8Opc/Z1X9HiUsR2gVIXMGHnfKDOfNR8DcOL26ujo5OZkGgeM4micAAmacpeD5o3HavTA2i+7sBI0xgqCptjEkRMrkVe0fYNlut2LzYRd86bTcqqqKJ5Kym4xq522urXtVaVC2bNNUeZL+WC6XX/jCF+q6fu8739VMBQyhHQXI5sClUMX8rVW+KqVkbbI4Zhhaq89RRXuNhowvbDv0ZpL00jdp23ZObu7HqzC/upFr4CfPPc0/tPhUjEMHo7773e/KxNNMk48ETnNLc9Kmu0N/0jnX9+Hm5uqdd9758pe//Ad/8Afe+5lENp+bs5bI7e22qorVamULr3iN0vf2+73eWI1adVFqtHTOKc1kjpnOuSyjIrMGnDx5WShlQD9Om/lzjzYlVlTOe29ZI+QIqTPzPBqcAZwxdpIdx6n7S0TWOjbGO8ecdNhN06nj8agoSd/32+1WL6bv+wpeT2/0ha9rJUqHEIKxtmrM7fbm5ubm8vzB7nYjIaqHe0oJp2azvaeeSXbsWORRjMUAQFPVn//8T/zr3//dsqyO3Q6JvffG4mJZa34eYz7etBnEFyPovN8dhrarqmaIXX/sc+S+7znSZz/zuf/oH/3HX//6r15ePgxDevyZt51zYxVdL6YZ/FGfZFZ7SLP06sBXV1c3N1fKynzx8tnV1VXfd8+ePTt2h+12e3NzFWM0xj958o5zLrS77XbbtYGx894WpQEUV1jJKWYtv5NS8nRutHDeFfbly+dEdrFe7Xa73fHQNMvD4VCaksw47secQuCYBoCCmYU5xmH2Ciusy3lsSikZZ7FYxDhst1vjnbLsQwh6cMgk0q2bRaF2/YE5Pij+yFm0zlSiq3Ih+75XgrNzzhurXjqKjywWCxT4m7/5m+fPn6OOP2s7B8d8L4RAfhL0n3hDus2Xy6bv+5RCjDlx5nZc3kN7LIoCDOkGPz07QWtUpK/wZdu2q9Wq8oVe59nZWR8Oh67NsQ9dKG1jvCurakiQu5aRV8vF4rRAn7Ks2t3hOPQxt7oGrjZbhUpLV0RlOKLxRYmIwkjWWefKul41ZYzp6tXt0Kez04+9KxQzLYpitVopd1Wtj60l5pwnJT1NxpQLNiLhxXgfJGWNSxkimIAsh9AXztdNdQi99/ZnvvSVn/jcZ3/mp77ye3/4e7/7+//99z5477hvi8obR6pHCZk16A3DsN8durZHgrqstPBTMhQRFUXx8uVLbRwqvKWrWh9fErbWNsvFfr/fbrdFUSyWjYERCHvt9reGFL9+991333///b7v9YmoBAoA6NStYqaqh6s4grYcYow6yKKF1Wq1GmN1HmFoXUJd12lRp52VN998U13d9Fd02zKziiYHY7Vp2HV91x2rxVImZo/W0m+++eaLFy8Oh8PJyQkAtO2BOXlvU0qHw0HtbUMIaSqNFKHW99d2lzFmv99P08GVm4wN5/pcrRGGYTgcDldXV7qzYoynp6d6+OqpFGOUUnLO6p2IE6ki56xkZK3Gx2ZVP3RdF8Ko0YSIt7e3r17disDjxw/1bmv/TNXPNbpqSD8ej+oupfmbLlf9s0ztzxhHi7CyLHUEULVKtM90fd1fXtZqvCYjZYRzxtVqIcyHwwGEq7Ksm2YYOvUKSymtVitjEcnWdR3CUVMOxZJSSvv93qzd5eXl3NfZbDa6MMZsgUWf+3K5bJrmuD88e/ZM4eO23dBkNZyFj8ejFhqa86jvYs5ZH3EISVuGRORLP4pQi1hrV6uVxrSu66z12ki21lZlo1Dvsd23bas0PYXsV6tVzhGnRrumQ8ZwVRVEhGm0iNSwUJalAlWKpwzDAKhCwyPkPaMY+q3VvU1PHzMSe32MUQlpOcsIW1irDaTD4aA5jL6DXmpVVc6lpmmaRdVAdWJff3anGKUQ5Q5rq34YhvPLS+fc048+yhy9LUIIm80mxLhYLOqi3KVDVVXOFQawLGuiAQC2m70xZhiGohwH/vQYVWCLM+jGB6AYB2tJaVvz4aUbR5XEJzhpHI8QEZYkkAHMZrPRDEoV0mZvXl3Ammu1bbs+PXWu0AgWYt80BTOT895459yR824bbGGN8SwZLRoqRIQZM0dmYE4GgBF0ChnmAWrgmWGmHFpjEUBYgrN+v9szZIIYc+r7vq5LQCEDHFPIWXruuVuUq/X5IqWL7dXhuBuUPKBT1QICQErEBRineuFHrJhGAEeyAXOP6MdIuFotnCchIUeGzdnFed00ISdmaNt+UmCFq6srRKOzFDNFoyzLZd0oT/yw3bVDP28KY8zxePz4448fPnyoyaoqvYhIXZTMohtQ8T60ZhgG5uSMxbLqjq0+dEQs62oIIUgyiA6IrJHMAmyIclBcWL+QmdNUmQYEcwqQ2Tu3Xq8lp6dPbzJkAO+9ffvtJ9/+9rcByBsoyyIGGCDlNDLt5jJKBGV6fIgGQFROgHXWH8UYotmDzSKroRSRdvjW6zUKl6XXgS6NFYvVyhGtlsucDzOkUFUVoqQQh2EoEGeSDeVcVVXb9m075Awx5L47qHLOZf3Ga/fmZGdjuu5IBLplNF7NPaqLiws9IgHGGrBsamsphMAMkrKmBCEE1dPXbaXFRWEr5QtqGaWEd71gDVNmmnFU6A+moV4NCMa71WqlJ6OKaGn86bpO+zGLxUJP/9vbW+1fakzTsZvx7JuazV3f82hUCJzBkC0KyJN9jj4XDVP6WDVvVCeYGFUjNxqQonA5j4jWlDarHLwQUVNWeirN+O+8uTSSbzab++4y2uI9dK1uFl0hijLrlWuJitPkrhbaRUZrLbIMQztbgu+2W1N40oFfM80pjwiRmZQOSBBI7kHgzMwZ7jsB6kXoeTkdw6DzigAw8oZFRMiYEZhgbbUo5JdRJoruvEP0SdM9Ji/cI0QrXjFfMyESKkuCZ2AOZpz6XrTSd5ZJnVN/hgWQDCKCkC6pGUUV4PlE12cmY3cxI46o32u3yvzSH7BISARgCIkBJnbwHfqJYFJKBtEAXt9eb7dba23XHbTFDSokkrMwIIyQ9/jVJqEJulOQEDPZW+lNIwHhJCmjoiRofFOBocQChMxZMiMAWavOrSJCMmpr6J2RUavXKk2PsgdOElKIWbVW7iO2xphRnQRxZE5OYKsxJuTkDTEzIxOSUQQWRo8sYw2hbG+vu/YotsxACXB+9NM9vTv8fgi6xU+qi4yUzDiSKXTBzIjY/QNMkyHND3CSYUVEY18/6CGT6D59wnySaQzoiulk1SSRey6FMnU+eLRKG29U/hTF/Pnh3i2V8c1BJha3IYwxkhVC3m82V8+fdvtd42ggQmPU6nNeIVqi6N+oMkDOk2Gj9RQzEQ0hxJhTzillImJOStXUL0hEKeckgoLOmv0+brf7tx5dFgUBCLCgcYhBwxoRGDQQUIjatj92KQl3XXj78fnf+7m/e3ayOh5uEZEADv2QMu4Puxiy975pvIUSyRMRIRnCmDilVJceKOacRSJnADLWUhKRpDeQiAgEcs4IGcC98847y+XycDjo/tU5fUzcHduyLJ+8/XZdVh8/e6rh68mTJ3Vdb7urmNPhcGiHZMjmnCTJfntwhKVzha9Wq9X1ZqP4kS38oD1G70fQKrMAA4oeAG4aq9GCU88BQpNyEkE3PpREREQ2xkhomXsBMkDAGUW8t84Z4RyjAEDibIwR4RTHUdxx8Tsisjnn1MWUc+hbIjJIKQmRsATni5Ko68Pv/u7vfvOb3/y5n/u5X/7FXzp94/QQQhoSIdpPWe3Omnn56REIU6MRaPRYo2m+bwZe5zU/EzRgPERA+IcGaO4ZBk6veXfP50KMUZ120VsU6Lru9vo6pWQtNYtG92yKwVbGGJNCjP0QATSzREQkcGgzZJhmOMpJ1G+GBmY0VlvHH330kXryrtfrcDyGtlVNQ52u1Vw/36nzG60QdI0REcc0y4HpIa099vmsRERvrIjYex3cvu9jP0BmEAhdj2rOQqOOYVkUvvGqtDUMw36/V+7GPIU9YqNTAjRHQi28cWoSz4c+q6DEaKAxToFdXDzouu6DDz5QLptzTif99dupAknbtjlL27YphaqqJGWF225ubrTWVeO4oiiOuz0z63nlvc84WhTmnIGQJ5MNRdPMxK1W4lVVVSH02ozWTaTPTt9hxG2Tht+RHJplLOE4ZZp8Ee8fUjnf9Ufve4kAgMYKncnVm7ZYLMZBOfjUsx4RXVlQtsgimRPH58+f/zf/r//mf/if/DMiCkM0brRPLEbGCls/ksg0JljShjSICCArbv7uu++u12vB5L3K9UNmJsQQElknDMMwuLJCzl03IFDlq9Tl7hhA6OLs4u/96i++8+Sdy8uHP/OTP/Puu59zrgghgND+9kYTzco4Sqm2FoAyZO4H53zjipxzir2IZExJeiJ6eLa+PF3hRLKQSWsVAEIIz549a9t2u90u16v1eg2S/uqv/uqP/uQPj8f9ENrvf/D97e7GOCLDjIwI3nuyxlirE/Acw+44OOeIcuq4H7qhD9779XptjFmv19c3V13XAXDXdcbgclUhYhZR7Mx7P7SdtVaFStVFXdtIzpmqqlLOyvzSwcOTkxNrrcIBupBU109hGvXzNGsTut6QVbqcrnZ1a2maZowSMnZo+m7QfeS8izGiwLNnz/TN58wHCOfJA+W/931UGkvbtmVZPnx4qfzrmJOgFIXTKKiXRETGkBi0he2GIRxGyG8IPRksSh0tKl6+fGmcGa03LLZtQiMoQBatdYhYFgYL3nWbLHl10ZA1u82hhLLQ6JqFieu6tuQqY6qqUnM2nCa0RMR5n5lywhBiVfHz51dFVV9f365WC2NMUfpHjx5dXFxYMkXh1KavLGqctmHIHPuha1tFvoAL3WiD5uosKaXEMXMK/cAp9u3hcDjUVXFxefnWW2999ctf+eLnf+w3/v6v/evf/90//KM/+u7732s3rWuIiMIwDCHd3m71g168eLFcLlfLhTrdffDRh8pIyiCLxUJRZn3uJycnu92u67qirpTnq1tSE8K6rh2Z6+vrT9v7x7bDC3r//fe7rtO/0bh6e3urc7Le+67tZbTZSDDN05ydnZGzc3DW8B5CuLm5oUk5qizLzfZWA5cCTEqK32w26iSm1C2582zX/B+JnH47Een7HvIIB9R1fXNzo8LKiKhDA/t9S0Q6Cl1V1XK5Djldv3xxdnammaeej3ESIi8Kr/3XEIKGRxFZLpeqNamEyhjjzc2NhjjlUmnI1Wpc85bNZgMAQuiMOz093Ww2KaXlyVqPNi131fxQP0uJnMdjd35+3nXde++91zTNet1Y67/85S9/9NFH77333jAka/Hs7GzGkZWxfn5+HmNsmur6+nqz2Tx8+NBPbgSqMR1CiHHMz1NK3pdhlH6yumDmGhA5pRQU/L3dH9ar1fZwsNYul83p6fntZrNcLg/t0RhTlG5MRQGUdoqTRe1ms4kxMotOS+ijn5Ho1Wp1c3OTUip98eTJk/XJ8nA4DF0vIwUEy7IovH3w4MFyudztNzGN8z0xRm1ECYL3peYhyiNZLpd1XQtC27Z28haeicO6wJpmiYjPnj2LIVdlo0fhxeXZ6empMsrruj4ej2dnJ2VZvnr1as5/VPNaw6A+u9VqBTKShQFAVwIzH9t9Hr28vMIuANT3oW378/Pztm2rSkVvdPYLchaAdH19TWgXi4V3FhrgSctormWISNHq9XqtdEX9RgpG193riRTWubquVRBcAGYJbIX5Ukp9O0q0nazXZMyrV6+GlFPi5dKlmMqyvLxct21bFFXft8OQAcAXd+WeMSaGbIxBVE5A7PtBcm7bHiaUY7FYbbfb589fFkWhzFDnXGnrEHvt1lxeXl5cXOg3DSHoRcbJVFmBHqU1rFYra+1+v49xU1XVoml8sre3r4qiqMZkIzTLxRC6cBwgi/cuBpDMSEJEgKrSicwsWYX4aSrseVTdB2SGDGIgd11oTpqTkzVjKkufJZE3qU3eu5RSVVVlyVVVHIfd4bALXcITLGw95J4KPH2wvnpxLQCcAUQ1PFGEYBQM/ATiLPcG36fiQqMcGIOFd66wlshasmUdYn8MrS9d27YhJ2v9cX/QlF6kYE46oK+Rs2ka733sBz3cFWjzyR6Po52gtXa32+FkhhZjbNu2KIqL0zN9Cvo4vPfVoiGivu+7Q4c1xhiHEFPisiyFcL1ed10X+hhSAmsNwajPYshYEQbdCIgIo/geWesUSLXkULKILBaLwvkXL7bAcjgcAPiNxw8///nPffDB0z13pbcAkrMwZmEWBJUpGyEPzZ7JksqZ0thWzzlbp4KBJSFBjoovKWLtvU8pdN1x6PqyLB88ejhaVkwIyX6/l8TKgOaJaUcGrLWcM3o/dlWzpJTOz8/L8phz1IpM72eg108NKmMyxvjy5UttgGkHUX07tMWlEihV1WjtICL73fFw3DjnqqqJHBXn9b6czkenfh4hBFcW2lHQKTSNvSrgkyZVwzh5DGrC7L3XsaRq0QDAKGHhnKohi4gGSY1vWjQpM1rPDg13bdsW1mn/WJdcmjzbx7mBe3CZfvp9+CiE5JwzxhnjiGzO0VpLBG3bkoDeojRN780sIpw4sgDQlFXb94ioqex89ByPHeLYJyusc5OQIE6Nam0q6zZUxFkTaT2Xh2EwxsWYYRg8NZyT994YZ3oDko2xfT+c1A9GhZEZFpxyFwAl5d8VZtN4SFSJDJnhAGRRpd05OowcMUOICEw6Dyv3WG9I94E5ZmaFZDhlmH4SACxRJhFh1VOekcHM7L3XXnEMmeguxM9vqz8IAAanrwZZqc1z5TlhHQgAbuQnCt4T8xXJKclMbRYRZZuKCKLQpB74mt3ySdgFfoTQeh8qTUlHa7Hvu5ur6749pqEPIThnZo9BQjLWpqEHvHtS9x8QIIpkdbfTxMiMNSHmiZNPRH1On/vc563zHBKiKZzKR2YSEKKUEiEKiDGj7EtGEBGHo+Khfm5KCTiRQZa77zLDRjQ9XDEkfI9lPMtNENrJ2piZhRmtBwCRXFjX7/e3L6/eePezkoFZOImKaIw5K6FRSHxCiue3ncEIIiqdDyFoYJpTz/m/c/pLU3edJ6UUANC8bUZnXv8iVHBZY5Nun5iz+gROyLKZMTW4B5f86Br4NNUOrWk1pdMBlmnEBhAxpywixhIZDsPgS7p++XR3c91UlYROUz1mRkNe5bM5k3EpjVOZYCiksfEVUz4cDtaPdAMNixObNRFRYcwQUsxMhohHDeKQUrMsj33Xh7A+XRbE7bEHaxHReQMAkjmFZK1NQ1asdWiPSeAnvvBjjx6et4ddHELb9mFIZVFlZgqpjzvvyqoo4zC1vglTgj4GMCQA1npmsMaLxcQ5pZiYRdSswIaQSl8URTEcd1pEEdHhcBDm/X7fD4M6jzPz2dlJ6f3Nzc1+v9/t+svLNQrst7sXV6+uNreJMwAwAqIRhhT5eBjMAsuyrOtmd+j2x53xVjohohSCqSpdWTlnMjQMAwkz0XyAzYstpGSNodE6AKYFIL4qnTck2GCVQQTIWstlIZxYhBmSMGeZW7uj9Lq1zCxI1toskgU5q5I7dX0YATiAjOb09OThw4cpJWQ2SD947/3aVb/yK7+yujgrrOvCgJ8yySYiHBN6O2PKPA0xkZC6/CkOdX9zzX/W4JknXqr+LhIYsjNQO/+WBmYiY8nA1JtUCEDh5qLwABD6AREvLi5ijC9ePPvg4w/6fqh8se/DyWptHIU4mIlDOveZON9RFzXVULoiIlpLmrvM8U2XjT44paeBSo9VlSJH928FTtMzmjogImR2RaFKoAo6hxD0/YlIixmcROL0F1erleav8xwrIuoxrz92fn4+DIPqQmpaoOmCYk9aOuoTB4D3339/RiL0zusjmNisWX9F8YgZDdEiX5/ebrdTnlrOWefLtDTVJMkYE0JaLBYh9COMPlkza5J3cnKi885KbJ/7c64sR0wHQcdBNCTqj8nU8NeEj4hSoqKgt9/+zPF4fPXqVZ5I1jwpSsXRuNnrIiShoRuf7Ijsp1F6CxEJgVmKwqv4e8ghw5iu2EnR1UzMay3X9aHQ8fUla4xpv+9s4Zk5h2jJcBplVQXh5Pxkfzta1Wl9ogTGkKI2QsYTBMHgZB5oCAliGh49enR2ev7t733z8uEZGMixjzHc3t464xerdd/3xhQkxJyHbtjc7ppmfXn2RlUtf/6rP//rv/YbP/2TP7NqFogYhoFDHPqRHJ8l5vG4NGZ0y3Gk1WSIAEDqHD2Zlhgr2jQGxIQGVXuayIggGm/NF9/9zLw7cs5i7Dtvfebf+43fjDF2Q/vsxfPvfOdb3/rut97/8P222+3b/eGw324OrrBFURhDdVkjhbZt1+tTIirroqpr5VMM3YCIZVGFEApbLqqFtTYjxBiLunbOzAyRoig06ujKTONgtUNEa0YBGSICIDVYU/VYM46djWexGZnUoMtGiwQdzdY5dI1mRNS2rZpA9n1fV40+X6Ug6OLXXVxVlZJbh2FInBVvUoqY7jvNYIehe/biuUzd0OVyqbCR9lOMHceuZ3/zlIKIcZPQZNd1HJMyGUMInMXXlffU+5A41lW1WKxzgGEYjAe3sP3QC0KETIW7fONRJWXbth9//LGIrFYnKHdhXCQaWyyXC91lIQwpxZDAOvf4weXjx4+fvPUYAELoX758SYB1Ux33h9vrq7qsnHMnJyfOOSBjyGqwUvQHDRFBCIFTnjpPUXdcjKHrW+bUHdvb6xff/c63N9c3nKP3/o03H3/hJ770zo999t03nzz5j//TX/+Vv/+7v/97f/wnf/Lvvv3nm+1tvVxttltjnL75en1a16Ux5uXLlyGEovJqNMTCjx49ur6+1vipiXFd1xlEtYaJaBgGvbGq/HBs9zqO+trtf3Kyfv/4/Pr65oMPPjg7O1NQOMaYeJyKVfBUq+6UUsoREZUYNaQoIhYpDSGFgIi3V9d1VakoFqBkHp3K5uJT6V3KHdZHr8oMRCSSY8wxRkdjcahcLeMLpVzoYcTMCqAsl82s96L5nr7/4XB4eX2lrQKaRohCCErjQkRmiDFb6yfHTtY2IYy6N6M1n8ZnnSbW2Nt1AwBoL1CBM01rDZimaZbLtQKjOsuicv86KgQARVF4Y5tmeXaGassmPA/ZyN/+7d/udrvjMSHCyclCBZGVbKVn5dTRTCoScnt7Ox+IurOqqlouR0J02/Z6NKvusOLOCjpbaxFluVyWhfPOPLQXIfTH4/5sfVJVVdcdV8sGT5b793Y5M4N0XTxbn+Wcvbf7/b7v+/PzcwBsmurqKiwWlYhstjeI6GyhzYBmcabqRtfX17vd7o3HD/V8vL29HYbYtv3JyclyuXzx/NXp6SkAFGU57HZz2/v6+hYNFUXhnLRtu9/vY4wnJyd58sLq+1bbxmpYosGNiJhBgdeqqqzx6sLXdf2c6qh6w/n5+Wp1st1uh0H3rBRFoZaYxWRunHPe7XaanaZJXyLGSAbUjqKqqrouNTx23XB1dY0ISuSPMepOQcSyLFPkw37fd0GtOodh2O8PzKzrtusOCgefnp7qUtFdrOie9nVyjr5/vejlfr+nc39xcaFXG0Pw3g8h6DuklF69uAohDkNEvPZFIYK3t31dD4uqfvnypbbwHz58qF32tn15POacc92oLjYPfbTWDkOsqso5//z5ixDAIAyxJYLT07XKNL3xxhuaMFxfX/f98Oabj5U0oEiLCv0pw0Cp4iKiS3FsoeWsAzqa8OiBWNf1fre3jqqq2h72ZbOYGNxpsVjkgjG6q5dHrVLVIggFVLxxfnAiOjQMOGIOzMxoHQCwSFn6qi6IYH/cN4sqcYqcm7pGoJyzdkeGkIwxi7rJhQxpYOaytqen6zBIhtTuu64LHFkESXTszGSOgKhYs6jk5TSFPGIImXkSaDXGNE3lC0sGrHeZB0HY7/ePlg+fv3ghZBaLkWWlZb61XgE+PW3feeedwrpvfOMbGvaLojg/Pw8hqITxfr/33mviqujzmC1M3bvdbqeqTSGE/cvjOIACJg4JAC1SU9VGJ9uEbeH7PvRhCCk6Y0vvrS9CCKAbxJBBq9rxKWExUTlTiLY0xhgQur29PVmt33333W98828L5w+Hw9On+e233/7KF7/wb/7yb7p2b9CQ4Tzc0VlgBvSEyFhjDCnnRq1QyRiD6mZvkJxz+8N2Hw66lkrv9eTStMc4q23O1WqlRLeu69q+c+B1taiUREqJ0GqH/vb2tmmWMw6Wc37w4EGzrL/3ne82TfPWW28NwxCvwmv3Jkw4Us6563oi1BRiriX1EfR9EBkdMvRoc94AUNu2BtBaG0LSfE9E9IwzBvWCASwRVVUTQtRxDZ35UFEgTeF0kCJPsxqz1NIEBo40I8WaZGJG6rzC3D7UwUEz0aW1twEA83zDxEJQsAhiTNZaEfC+HIahKLwWYgDgvRkV3hE1voUQVJxEUlZ1LA3Icw01M2VzznfXP6m0e++dK7T9rJr7mnwCgJKrzh9caqDGaVxPi0StXOw4du9T4rHdkmKGaJGGIiMmGSSGHgtBxBCSlXuSEfBJGc00GX/PVasGHUSUSWvCGEMIIuKNERrnawDQGAOT7riIwOSMrJ+V71m6wYTE4eRTOl0PMyfhUWhD79coOIKoDXYi4izz1mK4ezd9c4XmrLUKWeq3yJMJDCLOLhN3kBBkUfMuxLG1d/fdx4g8ApGfwm6ev9cdwDqpa/HsVqRfGQwiohVjjORU19Vmc8OKzOUkllJKLGiME5GcEzmb8tizEpE8Sl8CT/dtzPO0khcxRFn9DwEL5xMAEZ1fXKC6lhkQQcmZQFiyjnxOjSDUtx0RUmERVYQedV5EJCc2SIJZ+O5IkE/CqbNqt7mTkhhr25HAKGNANNaCIQt0HIbD/rb0/tj1zAKAnAHwLnpmfo0Qx4ytWCQinJMkTXRg4vTNj3J+N923ZpKqgYkXr8vnUyJhRoHJBlLmzaytl/kOII7KyzS97t8ZmRoeIsJT4vtDL4fWIuma0x0+swlwAvH7viWLCLHddf1u2+5uKQbiyMwhZRGx1gNLjCkm5pB0NGFunRnjRDmVMQoST6phRVGIgOL1IpJzEBEyxIJ6lHnnOKMBUCgQEVUOOI7aSRkM5DB0fevLpu3i0A/toe3a9Mt/74u/+vW/17f7oT9KGoRxSGm72SbmtjvE0a5TBHgWJ5WcE+QYY7lctl3ImYWjUryBCHKMeZxGHCk2/aCHhLdmc3uz3237fsg5l0VBxsWYvbEGab/f7w/tRx98WJfmZLWOcbi9TUMIxlkBMN51x57E9H14/vzV+dm6dN77Cu0hC6M1fQhgyJKJw5BSUgoDEBp0JKyJe77nTWeMOR6PYDBlFUrTnTGuh77vjSNrLRpHOTMIgBGRYVCcDg2gAAPr2cfe+yGmLLqYJWbJOacsAJRSHIbIiNZYJY6RdX3KCfCNx0+WzcISvPj42Z/+6Z/1/fD13/j62595J21STK/veRCRsSQ5x8m6xEwOmWOsEOA0MoPkntnID+1NnKYB8qixwCoLgKOd8SSAaC0zxzxJKgEaPxJhEJHs6OMKAIfD4ebqJSI2TfPgwYP9cbs53Bz7Yzh0eifboU8pWBztcBHIOWdHW7ycUiCCnD/RytbSfb5yzdEVm+DJS0CrUwWF7T1VhBijqjwXRZE5alrgJh8qLdgOh8N6vVb1FcU19M6os4quE8WUjTGHw0ELklnTUD8XALTM0BTEKBURAAA0ldFW0yyjMdWTY4R0k8ejFtJuckXTUvC4b9frtS2sXol+zbmJnab5TZ1QU/7F4XBghiGN4raazDHzixcviKgpKwAQMaPcBJK11pcF3ZNUTvf8GzUuaXKp9y0lfvHihaZKMOplp5zFTh7iOj+gX2SMGNoMiAlYzDSrTpPsiX7ceHPKQv8yxqicRC0j9Qc0TpZl+eDBg9fuDmHuY0hdaybLqXWz3rV9N/QpBe9PimK0q0ZEINJsj+xo3mAnYRYFdEUkpKhq5nW1eOutd/72298MA7fh4AwUhTdorfWH3eHlixvriqKokCOiffvNH/vFX/zlX/nFX/2xd3/89PR81aziEEKfhZOkCMiSOfVd6PschyTqYeubeumdJ2HOc7N2ROXRWHAWAGIO887VZQOcgTPnzMJJJNzb5swMrrDWWkTn3bK+fOPi0d/5yZ+NKe0O+2HohzR8973v/Ff/9e985zvfvr26jpzrOp+dnTkLCDbFRGgBue0OLjmD9Oz5R8xQWJdiRuQwxGrVIOh4Mim9ggRSYjt5s+jTt9O0ddf1VVUBkJlGC0d+g7Vzg0HxF11Lur8gs3V25VeqCUNEWhJsNhslBOmijTEikLX26urKOmOtLYoCBA6HgzIBNUSolO2zZ8+aphEcq19dot57XzrN43U96FXpcnLOiWQEUEmK/X6vgwuaTqQUOMYQ06tXr3xVamFjM8UQAexitY5DQCtFY1LI1/sbh9bwgrw77o+Q+N//zf/wl//er773l9/58z/7N6GPz58/745t6a1BB4jH/aau6/1h0w/7k5MT50xMcbEsCMu6rh8/fnxxcVEUhfd2GGx3BA1HKPC07ZzBuq5vr6+rqnJFpVGOrBn6oFHu9PTUWhsngTsE0EAUQ+j73ls3dMcXz5/vt7dhOKY4DEfZXr/8wfe+W5T15z7/Y5dvPH7jyZt//2u/+NNf+NK/+sPHf/Jnf/7+hx+fr88YyDhLFq21V1c3ZeEQoeuOehzEGCPnzRAUNlVMNsYohFNnK81aEIrdbLfb/tg+efKk6ovXb3+Rhw8fvvHGGxqiRSSlPAxDWVd93z98+HC5WKmghwauw/5YlGPwH1K8vb11ZBRa1TWmKesxdipkryCvTq1qvFIqmcoaAIDqOJel1+Wdp2EjZm7b1nt/7AcDSETFZK+qS0vT+OPx+OjRo+12+/HHH5+dnZVlSQSFdY7uPIFvbm7mNXk8HrVPJiL6hrrCRVT2Yez3KPKiRbiikMa4afgA5nJdu0Rd10nXag18PHZdd9Qb0k6KZ2rjJil33eCcU52NpmmstTc3N0pRXK1WFxcXylPLOXddp/Z6en7psdh1HXMaZ5aZ1c5OD02cSNzafCUi5WvrZ6mqkjZ6rZEQwmZzLJxfNg0RrpeLovT7/S7GeHp6+vCNR6enpzHGZrVMKXFkhR6aplqtFlp1N02jGH1d130fPvzww9WD1cXFxWq96Pv+6urKWjo/P+eU9/v91dVVjLFwJUDUWe/b29snbz3e7jd6wXpPYlRTEHvshtVqNaPkurCvrq6GQdbrylrSTtXJyYmygKemvmw2++WyfvTwsb5tVTWnp+dte7i92S6W9RtvvHF9fW2tffny5eFwUHVjNWKZEwyaJNcAoO/7pmmWqwbBrNfrp0+fxpSKophN7fRYub3ZgqAIHA/dYrEgZ7t2yEmaZqljLtbaoqiMMbvd4Xg8dp2UJeiVi4ghVxa1d6V3ZTu9NKnQvCiJk9cL4cDQ9y8+evngwQMi6if9VuOcHgeT8HqhkY2MAeDCwslypRyCMNpd2s1mm1JaLhsRUVVrTdWKoui6YUojExFO6C2UpV+v1zpN1fe9LXw79CFL5a3eOu2GnqzPUg76cPVM0dG6EIJ2Meu61vHBnHOY5K2VFn171S1XeHZ5oiMIxpghRRjSarmoino45smoVZNzUfwRpprUTiqxejNViECPJ8WdjTFl6Y/H49XVVVH5oiydc5wlxgAAJKQZddH4kENZloZsUVR1Ue93nXGZ7Gp50nz4/WccxTriKAZNSoyEIONYvEbYyfsOrLWOzExQAGSQXBWubErBLMgxxAhBRF69ekVkhbBtW2u8bnZm1ojUNI2WZsfj8ZCyaubgJA6jZgkqi7/b7by36/VSVTLKcuGNVZqnGgMo0J9zPnStEjUKcCEE42xpqpR4v98A0WIhxpiiqjRzZpAhpyyI1hS1CSGJCCGnnFXNum/bsqwAwPuCmdE45xxn6LpufbJaLpf7/dZZK5lvb2/rx4u/89M/+Ud/8ucpY9f2haeY2BobU5qhPD1WhFFIrDFobY5JCIbQFeXCe384HMiumnq5Pe6HYXjrzTerqrq+fgX3eCoa0jMM2jK01mZhnAKIQNZboSpku+2xaioNtk4wpCQi2+32cNgpfN/3vfd+CfVr9yZLntZYWRTd2dnZDAfr+aXjO4rb6mYRxOVyGeKoHmlAgwBqRNputzqNoTLfu/0OJwdsM+kZ6sqKMSOOI01mcpWYz1/9r54F85DByPqa6C/eexXT0JrFTMzloiiOx+PudqNDV9qv1ZJnJirxJE2cJ1c8zWO1HaInr44/avMgpXa/PwKAxXFgQu8MTap9MFGscHJuyDnv22MeLanjycmJXomeFCklNOTINE2jktDKU5nQ8JH1q9EPJtVHa+lwaJkZDRa+MIDJhJTYOVeX1Q5uRqr+zP+SCbSd8wz+Eb4qEYUhGWOInOq0EpEkxa1G8B7vobQ558TRWksTtKf3VJjnUvN+6gYwWr3N/4SINAFzNAmvEFGa6ooY1BrFadqa7417j5etEqrTdPb8A1qQIKL+ROZoyBERC4/4rRoQyp1aNCKKkBKc56/5mhwUWO41l5IIKHpC09JUBqJq5ExwTGnN0LeH3TbGQf1zBCEmzkDCmWOSnNw0zcqTEZ424hTgw8kxzxgDmefuvTACjaodvixWpydDilkYmEFvr3YPcKx+5R4nbsRtEYDGqhitzXHsB+SckUSZPiB3ckvzY9ULk7tCFhFRABgkC5OMHOHxnY3JOac4XL94KTkRIFnioGoqaNykdgJi74kTseKO8wtG8FcmTavZnAGmzsH0+MbooO2aGYwY2xj//8RS5reaS3FEBOX53xPBECIGYBkFCsdifpbBIgQRUgfoH11Is3sYIhiaqwVEQ6RdHgHmFLvaQx4GDAFBEOXQHuPY+CER5qxtYqNS5Zo3JJ7GonPe7XYxJjRWYJyvT5PEqhCyIDMbMt76kDITOzBEJIxNtZTU7na7fHECAM45k0ISQcQQW+dNmctj16UYcxhS6P/xb/3C13/lF/p2H0PXDx0KtMdjSgxkQ+hiYucKYwYiQg46l8A5I2JM6dAe08k0mZt11C6rrAgZja3eopWcvPechzcfP14sFi+fPt1vtsMweF94X1hfeF+uBLf7Q3c83t5uYoSydM6Zy8tLItq2mwwSMsc0AFlh3By61epkf+hAbkJsd/tuCImIVIyZsjZRQ85YFSVzPh6PFlG76DMEphVmBsksIpkZRpF0oxI3CMiMkEBEUpaMqKRDXU2YQTCLQGIGkcQTl5aZBU1KiYwry7Ipi+2uFcIhRUREQ5nREDokAbKuaPuA2O1vNt/99ne2m5tvfuPb3/zeN//JP/knFw8uOb+ewJVj1rlg45wW7bra9XyaGZowHRMiIpBhklyXKZLL1NKbdx8ZVH/k+9Fed5+ddDkMIABEHo0UUNB7H3jous4X9jOf+2x/bI13J2dr48zv//F/78ixzTH1oRtcWYiYIQyOnIYOZ61SOfTgnEMEIq7Xa1VRgCm90N2hrV0t3jQslGVZ+aKwjogYx+8Ok4d4URTIo3LWYrEwxsyuEQqpzLdL2WQ6taSnFU5SHgqkuqny0V2vdwYRValwpjcCwDyLgPcIngCwWq02m41+nVkx0EzzFnoUKualX7AoijgcnXPm3gR9nLzgZxRGgRUFGJ0zx2NX17VF4okXo2ncCK1Ov6jqaca4pmmIQMu5uarJ00slTXPOIpgS6+SpLjbFKXAybUdEdeacm2fThYmIVL6Y96BCNornzm0SDXSU7Xy+60GgOYZmwzL1iZ1/fYhGGoVBmHm5XKYhxBids4fDbrPfnZ6eApDWe0pFzDmr+1xIMUw+5jirY2UuS4/WEFrj7fn5ZXvsrT2UTeEdDX0PahsHBGJfvTguFvHR+cOf+7mv/U//s//Zu+98tqqayleHw6E7tpKZgJkT55hzRjXhELHWOkR9HN57gwgMyMJZH7d6m+O8IJ0dmSM564GIY2lqvMBIqcsiAgKESMihzYmEDAWTyGQGsh6RzpoTXoAvi5/47Be/9rO/9PHHH37rW9/6l//yX/6bv/mT69SfnJ4c933dFAxJJJVlGeNgrStLPwxDzrGqG++K6+vrHPMwDDrXby0VVjfUGA9jSClH3ba6HoYhdt2gZY8W5Bq19KkpB1m3SYya60tdlBparTc0kPeecw7DQESF90QYUlRW3XK5zIl1LLHrW21KAQszv3z5Uk1jUkrr9VolaKbj+46FoBtB02/99cPhYMlYMiKSY3KF16U4wXZmDgWh6wGgacrFYoF2LJkquyqKqo89AhVV2bdd3Lyoy+ri4YpBAqf2OFTV8j/9p//sV37hV189f/nW4zcf/+NHP/nlL/7O7/zO+++/j8WSiFTccn/YDkNX1zWinJ2frk8WdV07u4gxsiSWEOPQNAWwzd6HEEapN5a2z91hcO5grV1fnLrJpK7r+hBjWZaqpzw+i8kSQB+rtbbdH4/7tjscU4gIUBdlToEZ+3a3ub568fypL6onb7/1+MmThw/f+LVf+tUvff6L/93v/8E3vvXt6+0uhJy6sFwvELHrurfeelIULsaopqntYZ+GsF6vNfqN09Peq5LJNIcxBgcd76iLMoTQda9nHiCCVpLasNdvulwus3DXdU+fPn3riQ0hqDCrPsQ8ypvWuh76Y2uMUUq7rtiUkkWql/WcResqSikdDof759FyuWRmY0aqR9M0m81Gh9FjjEords7tN1sAUDkFfUMiatuDakYpie/09LQsy+12632pMTB0PTlbFMXZ2ZlzTkt9IlIEVl0BtW2jII4+TT0dVDFTy1c93YrCaEWtg2gwEvyDoueKwijaXhRFSuHm5mZc5CGsVqvr69ssY0WpZ6Kz3jn36NEjRbGLwhmjyYnAnSX4yIjSKl0FdnSXmemlRNHj8aiaZlrWqRPvermyZJh5tVgul82Y3kAKYUCRd955++HDh69evTIoKSVAjIk/+OjDkOJi2ejxVNf10HaK8M6ZxnKppg7W+1Lzw6ap9vu9wvdp9EGtjsd9VRW6IBV2cc69evUqhgwEmdlNmpPa2LZ2PMTXa1cW9X6/N4SK4Tb1EsFst9u+C4tl3bY9AD14cFZVjS5yFfdwjrwrtXFijNP2lfd2u9029XJGOUVksVg8uHzEzLe3t0SUMxlEEDYTIqmAFBEtFou+C7pmFs1CV7i6ij179kIHrq3VBsbYGtfV7r1/8eJVUbiiqJTvvN/vc5ayhLoudduacWqT9/u9Jh4pj5PpuiOIiIRm2bQfep2enm5o0EtCxKZehhDaodVnt1qt6rLa75UCjF3f55xPT5vFomYeNXMMUozh5ua6LEsN8tba43Gvyh7DECcG4qhbUpa5LstmOUYnRLy6ugo5PXz4sCzLhw8vcs5t21s7djdl0nyb6QUi8uabb7Zt++LFC02rNJ/UMYK2bVMIOeflcrmsm5iGYYgqcaPcBV3h1lKbQ0rJOg/RAKjrlQAQCTCjAPBUHtLIwUpzLCpr77yxo++xGp/ovxJkCF3vXNGslyI5xxRz4JBNQRcXFzc3Ny/2WyKbM5I1EnK5sDmmGCOydcZZxJF7yyq2DDBrEKMqWGW1lvV2fDGnlKKvTEJRWMV5nyUhAgmExEN/1IzaGKNxfrvdaqocQjCAOrenCNpIUEtJO7snJycKj84UV5qUY9UlW0OcMUYVfgCAEmrODwDnlxcppc1uJyLr9TrGyAAMUDW1RtSmrL235FPoI2cmR8jIOUMGnSoGGOfMjl27qBsWNAa/9KUvfOvb39jv930f4qur89OLk9PzJ4/feP/Dj5aruhtSOrQ5R5zK5znZGHEYJYmCABjriDkbIutLg1RW1cP6UuP/ZrMJIWgDTysmvUV9DFXZiIj3npiRURu0Yx4LRo+q1WpJdsRqD4cWjZmUJVgbe/dy+Ne+yBgnJJL5s5/9rHNunidQ0FYrndXqRDUfXFFoF9YXi7GdzwJAABJj1PnUeTQ856zH6M3NbVkWWt3QvVlkZjbGpZREQIXIJpIf6PSb7kRdRRro5o6srhNteilvJk88Lf0xBeV1QWpsV/hYb4X3pT6vWVFK30cDwm63c87V1WIYBp1uXy6XWn1UdVMURdcd5wnUGSIAAO89GKqXCwO42+0sERrjnFNl/DGNzxknCL7rjpBHF5zNZqPe1HqXRMaJFr1Cmkb2mdPp6enybJl3sTscdc1YtN55RCyKwiU3Qq4zvHh/e88F9gwH5JyNs0gkAJx5/qeR5CVjjJgiFOecJTMRwT1lZ0SMqodCKACSOecspMwOSgIMIMJmwicBQKbPoul91P9VJlmoGa2YIY+ZwAJ36PC03+75ILMkRGsMZtWkRkDAe/RT+KHboq8R4+dPYb9Ocx9zXcHCcYj3bylPJOLxzwDG2t31rm+7GAZmTiEkzsaW1tmcs1hjVIfXfIIkO790TQuOqjc0f2W0zkJVKEVdqqqy3s0EexYBZoN6kZIFJaeUklKHUDBknaidlLKJ0No25zyCgP3cZgAUhNdMHE//ivcji4y3iAABwQCaGKMzAMCVd4ftpj0csvEZUACyMAro7p7f84di6Pz0Z59X+iSbGADmHtT8T3SPyXj/fV7/WOd3uwd209Q5nB/3CNDf6ZyMC5KmF0xbY160n/aJxjlrvbpswbQF7l8wEAJC42sT2/7YGo4W5NC2STimhEAgGIYYY0Q0SMo7EA1DiafwkZLGbk3656Wr1yyEkPV5RWOMQTAIaBBJlOkvIn2I1lpgzilMd3X03YoxcUy7zW3X5Z/9O1/+h7/x929uX/XdnkSstZvNhnMWNP0Q2z4g2Sx8cnJSvdhcbVqyqiRl0FmIqhl9p/Or4yxICICZs7WWBNruYJHqwpeufOONh3rSTDzT0RaVrOuHeHt7GzMfDruioJhT1dTW2vfff3+73TKj9Y4Rhy4NQwj5QPbmbLUANMZS14djPyTOGuyIKCeNKjbnzGOoAgDQU4ScDTkxgi+8iUEP/6zMOGO9J0Ji1vZeNpyJiAVAcg7MzIKOhTlLYolZZxAsEfRBb7UgAgtYZ4BoCEkIFdOMicmIEABAynm3P/7Jn/55XVXAErveIvVtkMx/8kd/XNf1//x/+b9ousVrF6HyGmhSK55hTUREEjJ3wxwwjnzcHV2ffJ9xzRtjvLHAgpYAWXiko457Z2p3KXKhHu35nrmBDrmnHByNUhghhEW9PFmtLy4uXl49J8A4JCAFAlStKDnnSq9jgKOFgpIdcDLi0/HJuU1FREpX1+FZrfBzziTAnF/tXmltbK0FkQwy47Z9H0Sk8kVVFUozGRv+kz3U3GouJnd4vbd6WinTSiZTBE3jFBcgIoVjVEFMJsaHQmmbzWa5XOo91FukQLbxjmMcUsydFNZp/qF78z6ITJN5g45pD1GtusfBscvLcwB4/vw4776UUoz6vUT52n3fOyw0edJFUhQFCfA0U4aI6gCkkETft1pNIWIYTeRwv9+3Q2+RYsxaBsyxTvFrfbfxsJMMgJmZ+a63qhFVUqaSlstl13U6Q6fTnTjJHc6on2oazJPdME2QaCmrV9X3/avDyy/A+rUbhOjO/M0Yk2JUTWrtAagVoaJL2/1eJvWSsq50RWktJLM7hUDsB2P9crn8wk98+ezksu2PZYlhYGGyWGxvDjHKm2+89dM/+eDvfvVrP/b2F7761a9enp1777u2a7dHACAU5CwGCCHmlEIwxljjCE3Z1NNWIlaHAQBBUpcImkeIEBgQZPbLRQFSAWthAQCOGceh17uzGMAsShfU4cSwATIGBRIIxJ7J+m7oGGBdNqvP/sTXfuZrv/5Lv/77f/aHf/EXf/bRx+9/9NEP9puWZUipPztfOeNzHjdFDhGArcOq9vPcYtd1jkb6gqbIfTcAgDUOSfW4iQiURaiVpPdeKZMKauAkLKuSCypGkUMMONLEYoxksPAuJey6LoTBWkvkDJJx3iClEAVQRC4uLn7w/vettZ/5zGeuX11tt9uyLB89elSW5Ytnz188e940jUHq+x4N6Ucro6QsfTf0quCsnBdOWdlt43ePSbWD+hjmJFwz/tD1WvWdnp7ujgfFo4e+L8py0azaYb+93YDExbJuh33OmcH2Aztb/dP/6D/5pV/4+u3VjUF68+3HZVk/fuvNfXv47d/+bRYw3oHabJR1Fmn70Mfgq7KoausrlFxVDji2hz3nUHiDiIbQO9t1XQ7JGAMsOUvOYi0fP/yoqCtmNsY652jqI5Zl7ZxDFBTy3hONUgz7zX67ve3aIwAVRQWSDcKo50LkrUtZwMh+c/vNze2H339v9fDi8ZM3f/nnf3G1OP2rb33zBx992A7JkFutTnLqX7x4YS31fd8NoWmat99++7jbK1ELEQ+HgyuLB+dnALDdbuM9BxozGcoV1hlj3Pb1zIMU4yzaUDivG9l7n4XPzs76vn/58iVOyn6IWFUVEugazjEUReHNCFiY6aTTPqIrC40Jyh9U0Qw/2QyenZ3N4ybKTVNAExFB1eRKFay06melhcZM7RcRkaxz+imltu1PT0+Px+Pt7Xa1Ej2kYoyxbS8ePtCtrYDadrudgW9dpQDw6NGj6axnBXO1QaKTATgq1PcjQmesvoMyIZS5rBM5eueXyyVRKSIqG3J7u1VVumESv9Ii/Hho9UzZbrcq2aSYPk1jlHFS5AcA5wodhy3LsbrWy9NoYK0NISGOItpqsjoMbOm4Xq+Lolgs6pSSXurQHy2Z0/PTt956q27K5y+eHrpW8T5jzMnJahiGly9fWu/qurbGKRFKxTr1Li2XS0WWAfj6+lqBrZTS4bBjhqJqispfX18TQYzDyXqtQOqxbauyXC1PQorOWm1vsCTOc/+em6YREUCjCHsI4XBocdKeUokGYHl4+SCE8Jd/+c2msU3TqOAGEa1Xp03THA6H47ETkdvb22HgBw9OtT1zc73RlKlpmsuLh03T3N5uU+KUWMZZ0rvyXG0bmDmGrIZj3nvvSmPM8Xhsjz0gp8Qx9oUv67p2zinErx+xXC77vs8ZDofofalbSR+Z92OapHttfty6FHVcWM9xRQDQfmo1d3J6uobueDx6441zczNyu91Kzufn5957a8eh+MysihY6sR5C751FklevXiGi4jK73U4xTY3w+pPGmBgDIiwWi7Ozs6R7X7ht2xcvXnUBvIfNZqPSQ8fjMcVUFJVMqu6aTitc4L3fbrc/+MEPlJj/8OFDniZx9/u9TDoA1npltbftIabBWkqJlY1ozR1xEAlExDtjjCcDAJAl5Yxzvy1lldQQFNCBiLH+QwREVZq2ni4uLpBIE11rfdMQIhqkrNOLQApp3d7exhSct9a4ZDj1GSmv16vQpSEkMsCcssgs6YfKcZ7qcWMMSta7ATyK1HtvM6eYYOFPUkwiWQiNMYSoo7HeT14soDNPFMK4VJjZG1vVlQJ/Cp/NobgdesXTi6p0ZmQkWGsl5TC5panaksY3411Kqe/7Er0rRimGsiwXiwVZq+YWmiSXZemKQq8q5pRTQMSEGUSsjn0TGkKWZKmc7r8cj3GxWIiIIJ+en7z55pvf+ta3FDz9+OOPrfGPHj24urnZ7facBiLJiY2ZB8pBZARQxilzYTKGUyidZYkpBWs9ETnnUhsXdTN0vUIBKmWuR/aQIuBICZqxAmeM8zbEUQvRGHN1daWHxRCDjp3pA9XJGG156oVZok+TcDTOJeb20MY0RM7LulFwU0RmNYmc883NFQC5olBXgBijxDszIa0j8zTuplyWkY1r7DAMOruQpylGTQwUANG4PQ+96bfIOTOPDS09FkNIeoI0ZZWQtUmjGxkA1E9PJo0HLbVWq9XMktYvO/dfjTF9F5wffYC06NPr15Uw57GaQqSUiEcfRW2piqD35fyLaZLOYITt7W3OGXlSc87ZuWImM+koXp5oyyJivWOE4253PB7nWiznPCt1KJal9exyudQT5+nTpwusgSHGLAJUTD3Rrj0cDtYoBgcjSAqTX7wGWZi49GZilROZEZUjshPr2Zg7yEBDkl6Nc84Wd3T0MXYQ2QnNJSIGIMg8q8yYyTpcBNJdZ8YQcUxCd7+IiDL9/IR3/LCkw7zNxvdJGdAQIpHO5LKuSQAwhkT0Ou9UDpR+TPewciL9sczM8mlw8z2sGsEIMwipMgNOVzgHAk1xLJEj0x2O+8NWf9E5BxkBMakzgOpf893uHKvAe+LaqiUy2jMSOVJmpdFvBAAi+fT8bLFYHJlppJnf8Q2zMOdE4/7MzCxkZpRfi3AlMososf0TUCkiAorwJxBhBjGj+P2UkE5wPhEZMobGGefxVgN4Zw773fF4gMWJ4Hjcgtx5P97/xHnbKwVeCAlGcEofop738w9rq3DuSShrAD7pVKmLX0RmDvIPvWaIWabJDpwGou9WnbIsRBT9n998vvL5t+DTAW4cFxKKsLU2ySd6Qqo8g0TdcdddPe9unu2urw0CksTEgkTWIQ7TF9eRBQMwUr+ziLVeMURyliPLBIvjVKIYY/oYkNA7A0LGEo0uhcwpe+8zx5wSADCSJcpAImH+OhpVc86PHly8/eStf+83/4G3kvojx4jGjKVLCG1kMIaMzZyGoT/shpyzc9YZDImNtSLASUSQtQ2PKMI5Z7LGOdfHPvShKArlwBa+ICOXFxc556cff9Qd2xRiWZZVUQLREDoJQ4hSFEW/P6xWq8RZmU27w77tu8KXtS/AVE+fX398vT8/Wf/Yl748dN2Lzc2uO56s6t2hDXqkWWPJEJA1XveCTC9SmQUEbcJpJCyrJiYWliHGKKlPwjENCQAg5KTHoUHR5QosigcVXrJwzjojgIKg3HYiRkQyRkQgc8qS+hBCMM4jIhoCVjEptf7IWnjEYW+IkCVwKnwZQgjh4K1ZLpfPXr12DUJZlLPWhDEGSZgzAgqwCE3A3502+v2ING86njrkBpBw1IAGFgBhGTUTxjhv7XyYIYzIryOXUjKGdIkWVVmUY3oHQG17WCzqt99+53Z78+r6JWcgIusdWNRmryM3lyVl4cfihExOOYFo/1n9xFJKWtwCkFENbrIpJZWy0Vs9CyjPHF5nTIyRp4MphNCFwZUug4ChwlVziiZTEjQHqDQp+aTJNwym8d75pqXJ/EErGf0trS2Vka1+xyEEndvVX2zbVvNgvfi2bZvLy4V3h+1OnyYiKpANU9dWRCy5buibpgmhVwk2tdxR6Q/VL2OEerlS7jDHtFwuR+8jhN1u5ydJaO89ZNZU/ubmZj6FFSJUGL2PYf6yehRuNrv1eg1mHM7VgXeeRH40ucdJ/sI5B5nN5GapqYtzDll0Fl4pk2VZklUJbCigmOIqICLa0SFkvrA5AWVmpVo75+Dw+hBdFEVVZVZvlsx93xskter9xjf+5itf/NJyuXz+/LmILNdrTTQ1y3TGsh0ryTnFQqKU+rJqcs59H37pl37laz//i//P//p3mqbJwrvdzhA5KpDkH//Wf/g//h/9Z2dnFzYVig0ddkdjUTL7wuYcBXLOY41krSuKSucxxZKIhJxzTiCkq310Bp5e4/kynjQ9yJiSKRitDkIGASeQWlRaSt8ExBsjDpUzBSAZhJljGCj1ACBAAydEc9UdlpX/zV//rd/6B7+1329/8OF777337T//t3/63e9+8/0P3quXpbGy32+cc01ZqBANMwtaBFKtOu0Gee/KslSxUZqUvlKOCrc5Qs5cWDdCWq40xnDICEBmdONEEWThmJBFaWjaATocDlVR6qPRiGRH1b8xSSCirh9ijM+ePdN1bsms1+tXr16tVqvlctkejjpZGUJQOr8asuulalAqfSEiFxcXAJBTSDmRgWZREVF77IHRWnvcH4YYwJDm/c45Tav6PnTdoMA0IvLoxDAcb/dD7H1hjXFNveSYQuDr291bT979Z/+D/8nP/ezX+u1x3SwMUmEsAl9cnnztaz/3x3/8x9/61re0IFwsliklAOy6lplTpL5LIMd17dMwHHe7s7MTwvX1q5eKzCLjfrMVAYOkpMXj8ejI2EXRtp33nki6vve+bBqX87jemDnmZMFBRk0w4xAksw7nGWMMuZgDAOWcjaqNexNjjH1XluVwPDz7QfuNf/e3QeRqu709HCzasqw4CWM+7NshjBFVb9rzj5+uTk/qsui6DkCKugKAZ8+e6aPpum65XGqRqVhP3/fgGAxV6fWpIBIVhRu9lFNWYlGMURCapqnrOifOk7UXAIQQnLcaxCLnGGNd+PV6rc4BzrmzszPv/YsXL46bbiYoXFxcKKQ7Kr0A6MSuUk2tNWoYq5ftyIhIjFkhOesLZ73anusNN8bUdd11Xd/3ReGVC6lbXtOkmf2Xc/7+d7/nq/L09FQ/jpn1oNQtECa3wDyOwyaFJ4ZhWK/Xekoul8vjsbu5uVH65+Gwmxa/nSHmnBiBMkdVIdDxF61srfV6PdqPUUioqioE0kpeRTNUZHmz2ZDB/WFvrbXGiYhGgxiHYeiWy7VzY4THexNaKSXtB6sajDGmqqqzs0qHk7rueH3dlWVZlK5vuxTCyclJdzz+8R/+/mKxMN4ZYxRnbBYLEem6QfsU3o05QwhBY5eOQdA0ytC2bVn6orjQ2HJzc6NHaoyxXixS6A+HXVI1Esac+xDSarUqoOz71jl3bPfGGGu8UomrqrHW7naHw2Evgta6vg+r1coYczi0RKASJc4Vxri+P1iC0Ke6Fj2I62oxYluo5oEwl9SImDMryLJer63xT58+PRxaY0xKOaW0WizJjAmMK3xd13Vdd+3QtQd9NNbaoe+7rlOnVl23Td3I5HDjvV8ul7P9iQbzk5NGQ672ZVUDR3dBSpxSCzBCLbq/VAmHJWllYScHM4UXf/R1e3Nz8K0kRos0aYdqhpNTur29VW67cw5gVIvWNr/uvsL7oijs6KnVIWIIKefc933bJkRomlEmWG+I934Y+hRVBXUIoU8JmoZyZm1F6Nevmkr7E3oMDWHQO6/6qkoMn6nKmlUq3dJM8u7MoGrUVVUojDuvPaU9xhhjHFJKznotZo1FADbiwpTMK2irmQwQE01zzzmQcc4WavbIkJg5hjAMA1lTlm50im73OSbnjTHe2oyTyICIAEpKIXMuy9qgEAEQCAAZsowJ7ngDBDjy5hAhs2hxxFk9nwxRVXoRnZIfSw9mFsiqA1mWJfOoQqn+NMzjfLCGnbqu1RBlHl4cqxUcJeZ3ux2QnK5PJkoBJBEAUBMCEVFYOeec+07lETDBq1evqqZ+8OihiHRdV9WFmuDWTVnVxfHQffTRR0S0Xq+JiCFLAmsJiDgmY6wny4lTys45AeGUeBqLHGKgICH6s7Ozx2882e/3L1++fPH8VUrpK1/5yk//5Jf/9C/+vBv60ngYUorMOVqj0AQQAaGqpgiREcjGYMpRJEuOgK7wFlgUWz8cDiGEejHWfXpDCjY5Z+89CM1ojEq/+snyzjs/DFKWYzKp0PD5+fnN9mYIXbOo1D6NJqk6+hSD+pySljlFUex2u/1+v1qtlnUdY9RBEOUQIKIQShQzaTod204fpfDIPdVqSHFVPT6sraIq+xmjdAQ7jfXfRw7npTL/XwCwk02RMU6HaVbNQlHa0cosQ0qsO1FzibkxPNfI2ijVkqcoitSPTKycs5mAab3slJLew6IoZuA+5WAsaj9vwuJI+yUabQBoGKJOJETOqoWotZ5F0jNabd7spA85wg4TDGsM5Zy32+3melsUVss6W4yURBidNsb55pzzq1evVFm+WlQ22a7vTGEQ6fr6GpjhIo2dsBliBgC+R0CWO3M8wYn+jIiMwFnLYLKTXljg7I3NOU8oKMBkvSqZ75VYhpSPN3I0Rnh3giNRplNOPzFxRh7BYl0xWh/ONyXnDHJPjQHvux0qQppgmofNOQMn4xwzKw9Xt4SA5ByJ1Ld0Ggn/pN4o3CN966chgvIlX/fSAGm0daOfQuMYi53RT0RkEESj9FXn3PMXT9W5MsRuCBEIVdKbyCCIcCYigXvCRveuSs3NdIkDizFGmWXkLIKWmRT7Yb1e+8pvDwMaIzCKrQKAIEjGJMkDWDPmmszZmHH6O/IE0CdVL5GYx2Tufo0KdIc4w2RleAet6qZFRJ26ImPJqJ4GWiU4kyRo4zH0Q31iE1q4O360mYEARj2mYKoDeZIlVaSP77GA5wAhE31ybhvMm3+elMGpATC2yj+NdGxo5qPNPzO/8xye4J7gBkxOSoqs0TSA8GkfMX7hSTxr/nUZOzqI0zuQEU751bOn/fUzz9F5DDFmYWGMIasslDFGUCQy0TgrrSsYEWMc1FUjJUZjASAJ55xhgto1Jo7yi2iYhEUkZkZ0ziFHMIaZ+75fVTaJWKMNC4X1jeTY1OUv/PzXvvzlLxuC3fYmp4Fz3O82m+2emWMfwJXHrheEY9cOw4C2rEsveZuSEzEomDMTGgC0xjkHmtUBITN3Ycg5aTQ3xi0WC4tkMKu031iATSYPRBhiCjEIUJaMFq3z4XhcrJau8ABwerruhn6za4/H9tnL3ec//7n/7f/uf39+8eDq1Yv/4p//337/d//VBx8PZ+sFEEFmZO2JibWWJXHKOWdAYWYwTotJXWnOl8Z6dQboghwOfdt2MUsWYB4Y5gWcCNAYY8n4aW6oD5GZE+sG0Ic+jmtkZhZg5piYY9KtOnCrasXWWmORs+SYAMCSUc7C4Xi0qvNgXU6htv7rX/96UbiJjPDDryx56PrEWadvUg6KjvE0n4ETfQY+Geu0VJaJ1687FMcj5W7xs+CML8OEwFpSPqzMpaxuAUXaVcZnvACDZVErlpsSD11gw03TDLE3k6bExcVZWdbtoZVJPUNXtYjkGNGI4Oi+Mq95Lf5196m7vfd+aLuc83q91upUzzVNBTQwIgLjKGrZ90Fk3O85ZyFEpDwETWSVatT3/bvvvmuM+eijj7S1LiIzp9hMUlzzHV4sFsoAEpHj8aj8C+Xl6Q7Vs3+5XKp3/Gq12h5GNp+iAESUhNMw1kU46SMr1Oucc65Y0mqz2Whtf3Jy0vetssAUsgk54SToAQAksNlsdNQ6cp7dEQ+HQ1mWFklJSfOstP6iJuL7/R4MjZM0iF3XFUVljKp1ETMPKVqczspp6kIZwcpW058sylInCUTy8bjXefDQjePt3nv1YGHmsvQzuKzvpuM7ShaYex66VrUw2+/3zrkGXn/W91272+1ExJeFtRYMAcN6vY5t/933vnezvXnnwcOmaW6326dPn1ZVdXZ2pg8CEX1Z6FMTEWD9nxBR27a+bDhy7Rf/4B/81n/73/6/r19uBRJIenhx+Uu/+Itf+uJP/eRXfma9OAvdKILZ9z0RxCFrFlgUDtFmTghkjDFgRDAzAQILMktm0MSK1M/5bk+CgOBIWwYA9qg+yWMeaLStjHo3pvYqI8AoqRWBkZCMpltMZEASEXnnRCQz5xQQ7totFCFyPlstH/ydr37tZ//uP/qH//717dV/+f/4F//Fv/jnXdeSx7qmYFHQGmur0ndtb4yxhGDG8J5zHobBu8JZr+ECAPTZKQykfJDD4WDN6LWrU8/W2hcvnx+PR+Wd6ULd7Xaams9BSdkcy+Vyu93KpMqlSYL+vZm8JZ1zz549u7q6cs4Nw/Dtb37rcDgsFovlcmkQ18ulBkn96K7rzs7OYhxyzhcXF4vF4vr61fFwIKJHjx79/M///OPHjz/++OPY883Nze/9we8b44QQ0ez3xxhjd+iKomiqmozpui5nDkNXVCWBiHDmsFzVJyer47FLCXKg/TacLh79w9/4D375F76eh7iqGw4JUg4xOOeGyHXjv/ilz7/33neHoS+KtTHGIo024MxXL15ur24eP36MAeu6zjG2h4MzJvS93uGbm5u2bUGo8N67gsaxSON6f3H+oCxqIKycM8YwSFU1WSCxxJikD103IIoefPvDZrPZdIf9brfrjgckMEhoCpFBDzuSO+TUeUNsu+3xG9/77qvdLiCuL89t4ZglMXvvAXNd1wD85Ozidrv5+KOXvhrZlLpsNMbqvIhz7rjbt22rSDEC5syH4XB2eRFT/9rt76y11qaUQwicMgCMAgggulrqquHJ7VbGZkAgoqqqJAwiWTuaxhjFg8b2P5HyTLVXYYxRNqsegiqprxoUKhAxty4AgBm0WJ1HLpxzSKB9O5Xcvby8/Oijj/R8VKBtsVhsNpuU0mazQcS2bU/Pz3R/LapaM08N6Z/5zGeur69VHMY5d319rWVnCMF7a4w5Ozu7vr5W7WmdKTbGace6bVsAVmpzSkfVxB/6oBC25ml6GQDQ962dpDZyzuvlSkRevny5Wq3ato0h4TSeMiMFy+Uyc5rEaqkwRVEU0ww1O2dyzufn58x8e3vrvdd7ojPjCgecrNZNs1Qu8zAM+/2WczbG1FXBiR8/fryvqs1uS0TG4PF4dLlAxKqqdNBW5UHquo4xcc5d18WpsUTT+Evf92qKKCLn55dm3L+5aZqiKBLrxhFOYRgyInLXlUVdliWi0S+rB59+NQR1hlS/x75tWyKrcKSmNEroc869/fZnPvzw/RfPn19fX5+dnT158lhEYko55y9/6Ss3NzcvXry4udk4505OTqx1h8Mh58PNZnM8Huu68t46W6SUQFLOknPe75MxoPK1bdvGNACIK6o+pO3mOY5Dz5BSTIlzlq4bAHYhBOe8xu2UclHYUb/YWmPQObder/u+94U1ZBXO22xuAKAoqjjp1eiqsNYWhdOOMjOXZVmWZcohhJASOIeWTFJ3+de/qD+2ADCZFna614jIleNIu36cwuhVVWWe3X0gxkEk748Ha+1uv4mBm2aElcsyKE4Uo6xW9YMHF4ioPfu6KlLK1toHDx7EGC8fPTwcDi9evFAVWQXFUkoCOTOHtleGrDIZZ2KEplLPnz/XBpWCgCpclkVU0K8sy/V62XajfrqmuwiScy58UVVgzN4YYzKijJQhza3nSp0MevJEpLqpug0L733hp8QeBaTr+xCjcVbz3q7rNItnYDSWMxNZMJBzojw6Z9xeX6coOd6cnzysqiJ0GRlSSgbNDCCNVaoAqcMTZBBAROscEVmD01CxAPAwDOgADfXHQVCIbFkW2pYIo5k2Rs5EoK1f3RraUQYAnQ7ROGatBRYVlPDeP3/57GiPWhr0fa8jlapsc319PesvHdqjEh36ENDZxLzZ7QSybsAZ1Guaxjryha2qiiWBkKAgSQYhJCRBEMXEmTl0rfdeix0i2u/3TdOImL7vnfFPnjy5vr497lsA7trhvffee+fdtx8/fjSE0PYZFOXAT5ilz8gYklhAWxTMKYQeERW+W60WfahePHuuLag4BOOs8U4ReZi8YaqyGuGInFMKALBarXa7HTMPQ0SEGHPfB+9tjHGz2ZydnRCR2t4qHFFVlYo+G3p9H3fqdaEKT42lDYi1drVa6SoqigIMzQTz7XC7Xq/NMHJ3JI2pGkzeOcyslYiIGG9U4B4Awjgo/AmgDyZbdSUVyZ3Iqp6YbC0r230KCKP3BowNm7HuI7I8zRXp/qXJjRmmSTVNIKuqSol19lFEJkGM0cU3xgFxbG/c3NzEGOu69oVlpq7r6qLUOlSmiUwRySCaiF5fb87PQb3oLdJYrMXo3Finn52d7XfHlEdec0qJeQRCnbuTnstt56sSEdWjyE6DzlqNijr6eDxpVrGPXY7WjnhsTgmscc7ZPFm930GrU2l3//HzbOthDRCqkkaMEaY6JQNmmPsAIzoCAGTAwugeYNVhWWu5stDagDnjhJNq+TdjFkREk1vdyKHA8VN0Bcydlhnjw5HOM6K6OUeZ+LmIQsZnIcQ7QHAEcEVyjrMD2/14B0KzFvOMqxKR997a1/uHTHDzJ27gOKg1qbMBgDZ2Yo4pBW/tbrd7+vSpQUrTBSsOlRmSiAGwxhJM9qz6fScFZ56Q8fE5GkKcLPwMeWMdkEBOwkqwQtTwPdrdMQsSkjXMOYfovHHOZUXlyWpC5ovRYIonaywGVvr5D33z+xiq3q/57gGizPgpZAtmvqV6Zyw560w3pLZtV9YiI83grOhCHcVVRHSM9c4AkKfBovkN9W90++VJZWZ+xPfhrft/OV/tvBJ+6KW37Uf+UuZ1OC8emURd5nBPsyXap8TZH7qbMG0ovPcizXb1TlNmTgWRoEnpmDKLSB9CztIej73KwlqlQWuRNk0VMOecY048DY+ElLuuy4AiaO3IBHeTsZiIJA6E1hojMhnFAvlJJ0jjBhEYohCCtW6xsN6VP/7jP/75H/8cpz7FmEI/HA+MsNls2hAR0Ts35AyT+mFRFG0SY1CXtZvbCSD7YzfE5ApgTgyCSDnnIUUiqJrKWlu40hnbHVtH3Pe9+t2LyGKxQMQYo0VwzsXEh8OxLMshJZH/H19/FmzZmpyHYZn5D2vaw5nqVNWtO3TfnoDbaAAEwJkAyQbEQaIJUkbQMoOUXmTLlCzbDwrL4Qi++NXhsCMUsh1hv/jFDzIoUpRoORg0B5MUBg7G0CBBsqfb99Zwqs45e1zTP2T6IdfadZq47f1w49yqU3uvvdb/55/55ZffJ2cX50+fPq3rOoQBCCVzjPHly5uyoK//7M/9rb/7917d3D15cn3++HFzdvnJt7+9Wq08EcMEisUgMUbryJAJIRSlL4opsonIMAzWO1CDaWuGYbzbxcOhHUMgMoAmnbw9yRBSBpAMnGHoR2NSU0mGMEkUoQGAPMdbSyaEwCCGnDGGBUMahBEsR4xCYsAAACAjT4sGEYuqAsAYY2YJzCHlp4/Wl5eXKUT5AdrNOk1vrQUDmaNF0lYEI/ADpv/vWLnTvo6zquOEaD3QvdF/SIKnjWOtRTXtnFuPpzWvIhg4zbJMvUztqC+cG0NflvWHH374q//0lzfHDVlfFEVGvry8tNZC5uPxKFmcc0rWk1lEVc9I5xxZg5O1gFG4WU/Gh4LF3eGokf/Vq1daoMLcj4HZXJdnU9MYow5epbn/r4cXESoyBQCKzOrglXLBZJ7R02bJiR0DAF3X1XWtU8OavmjKhbMik94QzTlub2+NMR988MHt5l6pLm42FFosFuv1uj+2uoD9bNV9PB67rvvyl3/IGHM4HNr2oGWMJpTK9WuH8fb2drFYNI3ap7Ajo9FDn++sU9xqq0BgspY9OztTOd0YozKyc87bw7529XK5Hsc+55wSI05EiVN9noS1jtI0yBiDaDQb1hyUiKqiPDIbMwk76N3IMI37LRYLa52ev95bVELEfBBo+0yRF/0I55yCiZqeaqr6gyK0sdZaLzilm1VVQZzoBvv9/hvf+MY7f/jLviwv5sb8yfBwOm4A9cyGmYVRujIgG+MAqOv63/WjP/nRD3/t7/zdv+WdaSr/9T/ys3/pf/yXri4f7/ddHBIzOAgxxKrwSRizsdYWZTWOIwBNKJQ1IJRTAhBrLWa2ZJyx/IAZIHNLXrkSb48/ZMP+4XY+3V6DpL8A8H2JjmRgYUICQ4pOQ57AICQxwq5wpEbwpWeOLMkS9cce0Aka5/377374v/iP/5c/84f+jf/qv/6vfvlX/sGrNy/bY1iu6qpsLNkcDgBAzql7sCrJ6EEGACcxKAGLiGiNditAsCwm0VvV/tN57aqstYVDb/UH6KQGU5eVfnfv/QcffPDJJ58orqEbU7uwMWUdNtTZZAV6AMA5J2S++MUvxhiP+73+VV3Xi8XieDyuz88USnPOMDOwbDd3TtUwRe7u7n7xF39xsVh8+OGHlv2YorWucAYM6WPS7a8i0RIhJ86cQ4ow4so3x+7Y1K5ZlbvdJgTu9nzcjh+8/8W/+Bf/va9//Y/EoYeUSSB2g2SI0oURy6K+vn70Ez/x4//kV//Ry5c3qSjbmEHJgyZ14xj6IQB/818d6oIWi8Xl5fl6uVrUTQhhe3+32+26rrPWG2OcXXV9OhwOAJBSWqwvQGh9flbXtQgySEqsTnfaLTPGSBKDZC30aQQOQ7fv+jalcOxawln0kIwQMeQYY+GMyKxY6qt3nzwdYkwff/rp7c3Nzc3y4mxBVdUUQx+aZuGcbZrKOdc0zbNnj3EeMkWVttDCBOnZk6d3d3ev7u6V3n6agS3qarfbPSpWn7n9BeaRUCRBzjnf3t7mLFUzGUX23aDsTi3JjDFk5lITZL1eckwxZm3CqSiEtpm3h30IwXuv8rgaA/VgSinpWlUgVdGW2Z2siiEqs09j/hiTLXzKUZeudrO+853vdF3Xtu2zZ89ijC9evHjz5o01joi0Pb9ardbLlYpBr9fr7XY7cH727NnXvva17373uyeuFhERGpZJiVLhQj0OtCgdhmG/3+csV1dXKjhABER0PHbjOF5fX5+tz1/1rxBRi2EQHMNojFmv184Z/UYKBSowpI2BruvKotJdpnqsJ1vOlMeiqPRMRJrq+dVq9fLly8PhwMxN03Rd99BjUP9cV8WrV69yfqmRvCy9IWqPnTHQ93VRFF/84hfHtv31X//1cRy9L4ehUzDLea+Ppm075VFpKutskbIQma470mwFqbcl51zX9Xa7VQ0QBXlFRA/03W4zpljX3hjjndNHo+LUu93Oe9ssKjImSzYwoSQ3NzcieHFxUdVTT3q/P/T9oNLbetOMcY+vnx4OB2cnbqwhqqrq5ubm9evXPPvYq2URES2XiyEEsna/3xeFe/r06W632+121vrVar1e49CH9nDsjm1ZFmQgxjTc3SmAbsBo3w51SnIYh2GMUUstAICU8jCMGni7rmNOq9XKWksGnDdTQtJHQmumeeuUUtBlr0y9lNJ2u7eWFPtg5hDCMHbWWuewruuyLBOIHT87szXGlGaSL9dDres6L945d75eI6JKCtjZz0OxSE0JYoyc8jiOfT9eXFR1XYcQcpLj8YhotHOgPB4FjMgAS1qumhQiogCCQEaSceyLwr3//vuKucc4ArCq2ms7RPNArd2GYSiKQn1ND4eDMp1PPAlNWRn0eHS6kKy1iJWIeFcaixyDcNae1pwGo2bnqs3KjAQTlAAASkHhmdpVFEVVlIhgzDRFFOLUp3eFL8ty3x7nhB8y8r7drxaPLJGxeDjsxnFElq7rLi4uzleX3/vu87L0RemRWhYWloRCCA9L61PWod/RGDRknDfOWM23TWG8Om9LUDDRFZMqblnWiPjy5cuiKC4vzxtj2mFq8yg0nMYwDMNyuVRjN+0QnCoODbNXV1e6x6dI0qz05FL1LZnJNBoziSgmvri6DGOfc9IcVfkfh+3OkMkhVr7QDq6G9DZ01hhgRBDnHAkgAxkrKTNnBayHGOKYI2e0ZrUudrvt5fmjq6srY1wc493dLfTt7e1ra+nibL07X+fbXfQep4FgxpnUjChEYAwag46ssVR4z+xjjjGOcozvPXtaWPfqxYvAbIQBOAsn4bqus/AwDK7wfd8jGOec6v9qqa5rI+ecQm6aybVYV6b6DKs4CfN02OkOGoYhyfIz92ZKUesy3aHNomZmhZ71CANDzlndZfv9XgPCdrvVk9EYE1PUs5KIvCuZmWXycQGAxElJQjmJNcYaL6LasiAgevFadCjzdxL9C0F59DxPyatU+jxDEzW9RET12g0h1PUipaDHpdYFjsw8R4LMfDgchCY6kbx95Zxj14XTdL5MShqTEdRpoMHNhvBaY5p5mNh7PybVzoKqKouiSJy7oW9mwwBEZMNEdHV1VRZ1GF/UttQm5TAMiNMQvA6HNU2jH1dU1emY4FndoSiKy8tLncvZ7/dFcsKCiBcXF+dX57evX9/Cq8yQc7Z6T08A/6mMzyk9gOrfSkBoEoYGUgo55xN8oJPsM8oGiCgsSbJ3xrppSEFt46ab/vY+ZmXOT4i2eYsYGmNUAzfnrIPGSlrRx3Mq206f+7CCOlGfMnNKiqmJNzZz1j6ezCzXEwJoZmRTZqqdnPzW8S2l4gQp/iA4EkBAaFYyldPCkgecPnk7RUsEYK395HvfUYbFoW8diUBOidFZ710OQWZzp7klMMXiKRwja9vttA0MTs0WRgwxMyRCaZrm2XvvIZFxGJgntqQIixhjDVGCt8ohIqKnjrXWEZ4koydF6Dki00xgfHtCkKCcHuLshzivIp4bA8ycJTPa6RnPExbWOklxv9u8o81TmeDpE8FKRFJOBlDbgDmxPACRebb54pl9mWfLET1jaJYjP+FNeR5kkBkONpOT2GeLpWgge4v8PtDg5gf+gfrLp/vJ/BYyfniRzBzCZ3snj2GiuuDEmZ1Y1fKgATUOXVRp/BQt0hADEAJhHAIzG+OMQWUygyFmQNIpBPWfYTRkjGFEEJKYmBloQni1zA558tVUU+AMkrKoQ19RFISOOGqsV4ol55EoA8A4jl/8wpefPn36wXvvAefddnPYbV6/epk4ZxDrXWVszAmyJGZBiJwnAqYrnLEEkjmSKaI6biMNQ59SanlMnCeNCMKyLLV7lHPOFPsQWRIzVFWlyI51NIYeZEITdPmhNSHGuq6tK1RMcxzHEMa2bd+8fp0yFr5YLi/+y7/2Vz9+dUvkqqr6iR/76tNnz25evej7HkqPyjRnESBjJkUsa82JEmvmYZPDvj3sWyEkMl3XhdxkFkSL5Mh5SyQikTMzG1LxVkaBLDmNEdEhJQAANMYgPBBgiTkBoerZMILwNFWQ9dOJQBgYCVB0Z7EIgWRRlGRa/Ajn5+fMfHd3l/P5Zy5CJETEzCwgzjmUt5MBJIIsQpM6xMP4xvN0iJkbBkRUWHda9jAb0s7iFXPDhhFh0mgmmbCGnLOA5JxBdIAg0wMhGgHIOT969Kgbjk3TbNuttdZ5ipIUHEshaPkUZythfU89uTWIhRi1tPBe5fam1IE561mTQ1SMeLvdatBQ+oMuHq0Nuq6LLApXwdy7xnl4CmCa7Esx6eC2Meb58+fKGoNZt6rrOuUC6xbTOlZraRV61llU5UlpWWJmOWMd5T4cDnVdW2vv7u6Mm2a3lQy12+2UfsUxvXnzBgCePn16PB4V7Hj9+g0AaQtdqdld100mdjkbY2LOun541r4AltOFxRjB0HK5jFHl1QgFFLgBgJOGY0ppGAblMSFijLGuF7e3t0qRwBm81vQgjfGETJ1i+An/5VkQ/HiceKzKfQCg5XJZVVUag8Z2P9sMRs6SBR8gvLpP+UHbwMxi05qZhRCIms/cHfaBujQRtcfWo7lt7wtjb1+//u3f/u2f+2kGZVuInGrIPIvf5ZyLotBcFmbea1EVYlxkCGNar8///J//C58+/0Q4/PjXfuQnf/J3M0vXtjlyiiCCxo1kBDAVxjGBIMWQDTkRMZq/MQAhWSciQDjTl8Q8yB+YGdTwT12DiAAEQJgT0Eq/HegwlMA0X2WMSAYwCKdTkkXEFZQSK3DN00QUIlhEJiSmbC0NQ6f+QkQE3IOQsz7EYGwZx5ATkvO/68d/74/9+E99/L3v/Oo/+aV/+N/9vX/yT3/15vVdXVcWEQCqqur6lpnVBNJayyT6g2bGu/22bOpHjx4NbScMWv+f9GSNMepWF2Nc+GaxWCjpSdU5NYk/SdTp0tWNo3FDC36tl1hgGnQdR11FuiurqiKjPMc4dJ3e5P1+H1JSqVZrbdse9IdxHJHkRETQ+uHu7m6/38uI6/V62Sy6cTA04dE5ZwQtbyKooFbfl3VFROPYW0uZQ9tyTCknE8b8R//IH/sf/fv/4Y/+yI/d3b8ecsfD2HcDjBkzZIzGmDB0pffPnjz9kY++ut8ehr6VDFdXV+umuRs6i1B7B8AxRkmZYyKhdn+4QzLenfZR37caOmCyJ0jW2n4Md5vtsyGcnV0AoTaVRUTQhHawLqgYgm5qZb9aSymF6fi2NsdU+iKm7BzlzM4VQMApTAoqwE1VvfvOe6/ud4uhf/5mN+RbwbNmWXnvAVWgX0JIQLharQJHPQW0LDwej8aYbhhTSk3TqNy23mFdADGETz65aerPRqzCGMZxnMQ0mI0xzpmmWWbhqqp2u5017pT1ab+tbioN6UJ4OBwqX8Q4dt2g0/qr1aqua2XbTSqT80zu1Bad7Xn1iBSR/X6nJTQRHY9HA6hF8pQCsWTrYKbInMQHzs7OmPn+/l4nyr33wmCM4Zystc+ePbPW7g57PVmaptnsdzHGb3zjGzpIruXubrdbr85UKt05lxIXhQshrFYrneWaTo2Y8zyol1LUA7Gu62EYFAW+urrSXzg/P7duOtcU07m722g2ftjulMupw9T6CyqUVJblZrPRoxyJ9/utIk1t245DEJGrqyvd11pO39zcMEtRFHpKLhYrfXxEtN/3hwM0DRhjFk0lIinBclnpPf/ud7+7rCqah+5PZZ1G2s1mp3+iRD9h7Louca7ruixrZm7bVhHnqqr6vtfMZ7VaKWKu00hA5fG4H4YOUJqm+drXvvbNf/Wv9rsjIiJGRXA02a7qOuUYQlAcmYj6PpdVpZlJSjmEFCPs93slzn/zm980xjRVLSKbzaYoCjKwXC4Ph8Nms1HCZlU1iNh1PTMrJRa7YblsNlsufPH69WuNTsdjX5bje+9+UPhxv9/nFHSvVVXVBeUaQ1k4BWjGcXTOayDt+1gUU2IsInVdV1Vprd3tdkRO44B1tNlsTu4UZCfRtvzAnkGhjXEcX7/enp1NqvcnMXEVm0aBYRjAGvwBzJ6Uoi2nekohy6qq+tDjLAKgH3qaEsiT9+yov6z6eStXA3BVVUVRdO2ge3y32y2Xy7OzMwVJmPnu/o2mZ1rKkZ20YhXM2u12xpgQxsVi4Zw77HY8cyG1xd51nSYkRPT+++/rd/feP3/+XHtUMUbdcdb7U7dpu91mjsoAGIZht99ATmfn65BD349EMI5jXah4MQrhfOjzaSxbEcXM8YS2xxirqmya2ljpuk5oymTQUDcO2q1HFAF2xgAkxXO77phSQmHFdoeud9aenZ1Z1EIbOGVT+JxF563lgUAfACAJ8zT3STMooZaQknNZlotFs797udlsykXlvWdETRGdc48ePdK11HVHsialaeoUAHJK+mTDA9DwBCOojpyAlL7QPLw/tlqPa06rOYM+lNX5ma5JYxFRXOEra+uy0nyjbQ/Kwg4hqs+kFvIKTWRhQyhC/dBTRk9GMtSFWsWitdZwVmBnv987k5hBmLwrDdmLi4txHIahI6JXr14OYSiKwnu3NEXXpRgzzHP8enBYa521RFBVpfeWcywKZ6Mhi0gyDEP1qDo/P0djuq7rhhYNoTVN03RDLyJPnjx58elzPRmBWan3Xdfd3r621utdXSwWJ68aYHTOte2BiLruaK1lFp0dISHvfe7SZ+5NPaBhhrz6bhQR60zXdc45RsgxniKqBmdN2vUpaL/zRITS1QvyFg5SRBERmd+KN2hFM44xjOkhVqO7XhdGjHEYgraEFTvWKKHFgopi4ez9owa5em2nAALGnkjN1tq2bY13InJ/f5+zIIoWOzlPPAaFFPJbF4SJZBNnCwqahYD0hmirqRunsTPt55E1WldSFp3h2B0PesI+f/688BURtcde+5TMrENIWuvpZ7Vte35+PrRdnu3czezBe2oDIGJlqthFb7zOza+rddu2ucxicBgGq4lhnnQ5SYFGeMt2meRLTt/NoBUWQnLGSw5AbHHSYQEAVqCB0VqLhiQTZzmRnlkkpzQ9mKF7iM0pLszCZgL7dDqawdqUUozZGBdCCiEBkfpTTdk5Tqw0rScJUG8iEamMhy4vQw4AsqjDpo4aTAIF+jhTjAhgjc+cOWeBkyaDAE6IZ5rwkbe9iM/cKid3OHwA0+es9TOhIQMaaEAEMlqSXJq8ffkxDjsZ27KsD4cDQ6Fcd07RC2cUFkFjQSZM0xgjCGn2NbKWUkoo4Ix9iIRSDgBSWpcy2Wp1df2BSAU5OHURQ2SABJITI8USGcklyGNmY4wDx5HViIwIco6UhRmBbEycEjjwBiWDgKgm9ltGMInySYmsERFGQMIMggBE1ig3VlhIxHJmRjBEnkBnASQNbYMwDqHleGonEBEAiiQAGGIwxijbU79ompaxM0YlYkgERQDRIJIxTgRTUhoaqTSQtVY4TjPmKQGhephq0pB/wPMNYRyGviwrIlJGHhExA7PKkiuaPLtvAU8jAzO0TWRFELIuDwvAP0hRoyicchUBQAEWgYnfneeIYMZ4HDqzqo9bZwX6OIYhc888snOl8YIolgAFckwpqp+GbbshM3Ujx5R8qSWijCG4yXDGRBbrnDGmMo4BWBI5CzGhoPcEcbDeZU62sN7X2Zh2iMu6ieOQEgEgwfDh+1fvvdMsGqTc39y8ef36Vd/3Q0hkfNsFtCURxn4fMnIGS7TwZdt1OYG11ltYrxZvdn1OGY0hZMqpLEtGnwTHEFASYYbMYBw6L2yRaGgDcnSUL68vLi7qIfRDGjJDFyILdMy+rME6NJ6dhNgV1giypFwVa+Q8tN3Y9eSXx/3e+GJ/PG674eL8DIw/Ho+f3tx+9Ye+8uFXvvrNf/5bWagpnFHB95yFxJIhi4GTEZc5S2IAcLbkjCBgre3HUQBcWe3ugwCVjc85+kKYY1GU3i3iEGPUTIgSB+frlMKYYsJJVKHyVcgTxseckJAIADkyk0wBjcgScmIg4xMLAkBORliIyJkkZhQRImcIMFuIud99/is/8+Tddze73Twg/6+/FFRGEBTgmMSaJIyASZiIQmKHxlonLDpOj3hqLwmRmZoQzAATy1qP3rfvL4Az1zjGCHaiOVuyOWchBEMkYqbYolMdRlgE0FrLEhAdgmn3Y+wAs7VCCDyGYeQQYwahxlcEnIfgnbN1fXd3p8FTr7au65TYgEHCMARJopO/GuSbskkpxRTV8yTnXJZOQ01ZOmaw1ucsXTcADABgvDFAKQbnnEeTU/bel84z8xCDZhKoXnbK2BXwVW29TznnzAZwHGPOHKNmRWKMHcc4DKHw5aHrxtAtFgueJxJ49nU5JVgp8dXVtRIwd7tD5GiMicM4tJ1mEonCq+cv+nZyYH/14uUQRhGx1jZNbSAP/cF7j1SICDmrMCUiEpl4PBpAZDHIKSVvTEJUrpZmJ5zlsD86W+q1aZ4EKceQjDHeFUTinGnbQ4zjmT/zzhljLML5aum99+dnIScdrfDepYSFrYjIWi8iZVMb45SdmlmU6RbGkWOoquZUJ+ixRsKls+iL7tg6Z4AzMPdh0iMa08QJImtOZGoR8caSAMdkiKyxoR+qsgw5mfDZu+PY94PriIhTTiFWvsg5AwlbMKvqW68//fY3f+Pd9z4IKJHhfrN3zjWLqigsGTJonfPeV8xsLdkCrUViR2Q4p8r6EFvp8I/9oT/wqPnfMODn3v9A/c3HLhGAgUiGhApSZT60yjRBfPtf/YEAcLZOEePmfScpZwB5qzsPAIKSRAWXDBIKoYwws54BAICn2eScQGVwYHLCACAAlmQKIkRMOLeBtXcLgCg0TYI7SYBiOUlJC2aWIA5BODg0zIljOwwIZN9/9vSjH/r3fv5P/fwv/eqv/p2/83d+7dd//ZNPv+ELZxyTqYT7+/t75lCWpfPGOhM5H4fWF+Xi7AKNGyI4tCGHsev7rkPEwvuYUgjBV6W1NkEeUyyK4s3m3jkXJPqy+tKHX/jt3/5tZpSM4xDCOBJRdxz6vt9utvWivri4ePz0+td+7deIyJbc92PoclMuDVkxuFyUnOOqbnKOb1592raHSTmaeVUX2JzHGF1hYxi06hAENNSNAQBMUaeUOIaz88ucwnK5JIv7/f7Q98wsYHM02qoZYxLNiwz1Q1+UfrVYjjG4Ii6a8xD41c1m6NnZ6ut/5E/+p//J/+qdJ8/uXr0et8fUjmkciBNJFswEjsAUvjBIgLJYNa6wXdchUrNYlIsF3927oq6qRpvB7XDY9eP+Ox9XVXF9fe2cXS2XRB6RAVjY3t5tc1YL0CqEHIdj13W/+Zu/2TTN4yfvZMHEEENIHAABGPoxIgY9JtDQENJ2f9wd2hAzGpdSFpFj6g0SM5PBKdG1JgkbZzN0EZnzcL0+7w5ja7o0soveiAcHTMkaH+OYQguSC+cREDnmnBNIBkHOxlhX15xy33bOuM3dRue1Q8qIaCy9++51M362j25iGELmOMYYV8slEQISCxCazXYjDGQRRBQXzpwULdFiKgmHkCQGRKwq98EH7202m/v7+9evX7//3gdFVXMWBApjKKtiHEdVhvnC5z4wxrx8+fL1650xLuecMyOay4vrYRgIuVHtiwwcxRjLsW+5nZg9HphZhZLQU1XWKSVD9vrRpbX20LUpJS+2XjSH9qhiR5O3VVkURXE4HBZVbZGcdWkMBrAuyhRG55zzhmMSkSHlruuur68duaZsLNoYo1mYlNJxt2dm4Klz6ciM7dB1nQiGPnTdcL/drtfr69XZann+5s3NiNL3/TiERVU3dX2EQwyJxBpwpauZWTI01cKXxTj2U3vS0Lo+j2nUm1w4X5fVdrs97PfNYhFjzll0gudw2Cn0kMZxGAbjLOe4Wi4MwXI5OOeePXvW932zWBRFcXZ2ZtT6FSkZYmc32w0z13PfiIWXy1UIG0WrDsdjWZZZUrOsd7u278emacrS9m233+2Wy6UQZecIJ6VUg1ZyQrRhyNvdbd8eHl9f5hh2r+/+k//wP/5Hv/Krf/kv/2/PzgtXVg6sIFaLVb2ovLd937Zh9GWFiBXU3qehbzVFNMZUpQHJw9BVVWEM9X0nAkpUNM7ebXaLRbU+c4vFCgByzsMwOGfGMeSs/ZgypSQ5tIesZL2UGJGePXs/pfTmzZv9YbtYLN599tQY8/r1a2t81w4saMBaFGud98Xt7a1k9msHIpxYMVolPyp0Upa+aZqcY9+POUuMuRsDkLfeAICqYG82d6UrtQVorIxj33VZuf9VZbpuqOvFMAQF8hCLFBlwKpMrZ4u5PfOvvZxxAIAkpfdEdHV1kVLCLRpjtptp/MIQte1WuwIpZOBpTE3bxnVd7zb7nHN76LScPFsvBUFL8O3uNc9S6Wq2nHN2RWm9eO/3+72OyXvvu+ORiNar88pX1lqumZlTTOMQGVlB3mXTaOb86tWroiiW6/XhcEjM3vihD9aYdbMuiup+f+stDN120Vx2x6P3ZQx5GGLbbodhrEsXRlkvz7rj1riYU8qCaA2ROIcsmZNkFCBUu4hh6BwKooFsnPWWHNPBOAKhmJicadsBHI4xZIICCgDY7XalKxUarv1FSOPdmzdV2Yxt9t4fjsmYbIzftl1EyZKEJAsAgxWXU0IrAACScfI/QkILYARNEnJUZMmUhG2svAEYfVUYg0LAGc7WF8uLs8RxCCELVLNfn3Pu9s39brc7OzsrGjdl4JrcEoac0JrjbldV1Wq1UjWh5XK5rJuu63IWQwZZkKUsaxUNqKrqyZMnL168Un0MIitJDvtDVVUqyIeoetTsvSXyx2OXAccQiUinNxQHJKLalkVVJuHj8ZgdhjSUYhEhJzk/PweAYRiMMzgKJOE07IHOL9bCabd7c36+vi5rwrM4HoboxiEetiMZu1qs2r4ziOOYQqZhCIXzZWEBxBsoC4soACnG7AvrrHUGYhg8ubA/kMlf/uCLL+9vrHc1rNq2RZHYhYWrxtzdv7y9WF/4smz7Lsa479qdiEGbfZUFCYxAJsaQIabUNFVKoR3aY3/kmLz3lrDwDdaYUrJKWmo/m9JXOFc4t1gsNvtNSjLNeo7JGBO6xCzOFcCQUho5WlcCsDHEGTgDghmHeHl5qdBf13X90NZFyXmaRtU8cPrZUQhhd7dp6qXOlYYQ8mze0DQNEgIB54SGUkre2AzZIkiKeRK3nCZcRUTbPDnnbhwKAzkLMzjnrHUWaRxHyKDmSznnvh2KqnSuMGSYWYdydCYbWYjIIpFAGtWiYGGt1TZhHDIyEloEYxiI7KE/KuvIGIwcHbph6GKcuEF1Xfdd3x1bay0Y2w5jVVVNs1Tk+mRtSkQpTpIA4xgBcLVchdgZY0IIl9ePxnE8tJ211lo4O7tQBaRxHGPMbdsTkfdlwlA1Tc6Cefj2dz+5ya8XVWOsN57qurQnVpq23E8linbXtQOpsHqK7JwjSUQks+GYgl+KvWq/iedhQx18Bv4+5QotQcdxVMgYH7xEZhrN5MOIIsKBU5p0PPTacs4xpRPaa4waFk40Zx0w1AvWLQ0PPHCIyFqHiHNZCnoZp3I9zwoM1kwUJAAgM5G++YGe9QxGf8ZL5t6FmQUKAcBac6KlyEwDtNZadKUrcup2u839/f2i9DproEJFD4tG/emE557u3qlUJprc+06/oL/jvBOWIYSL8+o06Q8AAKxQrPKwTx9ERDBLYpwudXKnU4FzogQThRMgPfy404fOPoITxqpEJwAwJ3XsBxRyIsMs3ntJEUC0MXt7exuxEIsncEpEYJ6F1EdAD9S6ZeYm6+Y5Vd04e/rp2tM/MbNM6mG/res655w4S5b9/pBnZbQQ6s98vt67uq6NmQCIE9g93xA4fS4RqaY2PRCtPz3B6S7N6+T//0u/msx7jU9+DpOe17HtO+6PbpaUNcYkzsumERIClsxBQO8MMCTO4xgUCOJBEDGEwSjmjkYkGj+1FkXYl6Xzhd690joiW5XNse+cs77yBqcgMI5j4SyM4xCHJ0+evP/BM+WS6MBg36vr2tAdurYLOrMFqC6aorp+mdk51/V9yqK0GuumzYbaHQbxzlnvYh9YEgAgvRVaqpyTxCmOdV0XZbnZ3YvImCIigkjbtsdhdEVV1Y3mi3OckcnEqR26dujjpNVjZdqhSaAsyxcvXnz+/fe++MUvvvzk4/awLcwSEZnYCOScGaRyhRKmEDGmpOuNiBDJOQdEZM0YQ4y9biLnCkAEHfnP0HWDI6dTPGlM5+drY1b7/ZYAxzHGOGoPL6acYRqMYp5voDoI6vJDk4VjTsIIIqVzMQwCYsHocsucQ07kaH/cV95+9atfreu6G4Yf1Dw7bS79OYbxRLAyxjhbAMAUspBxnhI4RSa9yaBa0sao6p880LLQWXyNGr4sT2ohD69HHgwr8Ow1DEREKEJ6zL98+eo73/lOCpGIqrLZ90HBHKOkZgAlGoR+r0MkxlkdmQ8hhJC0irCz6bCZrTKVgaKKWsvl8uLiIqV02O23x0kBQ69T+SPe+8pXNOuqa7NdL7gsy8hZR57Pzs5CP2gbPOdorRXJHAMCCCLApJauHBYlLDvnYgqASgiquq6bgADnNF5VVdW2rTa39/v9OLtsCwkAtPsDAOjwuA5uOzOJzzKIzJanq9XKOuPQn0KutmPJGiIKw4iIys/SkBVCcIUHmAwxhmFIws44tfI4TXi5UlXMqCxLYycvJiVc6yPQT4+cfVU6ESUUTOtknlBBRIsmToNKqJ18AFBFTk349Jya+AvakoO3J7vIZDAdQkA0OUvbHgBAh1IBwAAeuk7XtnNO0xgAaNve735ASxAnyywVU1OSZt8Oxrj1en08Hn/jN3/z/Q8+zwhKR1Ixu+vrRyJChpQgn3OcOT2QhDlGpbApj4aM+T2/5/fBPOyposssolToyWkBkcA83DWnjvh8As72BnMdDtOxzjoYN2VKADAfMfnhOfXAFvjBxpy66cwZQLkjQjPlPOrjs6jpouaW8tYPg/QTIydBmQSjAVShR0RIkHPsdrE/trbwP/uH//DP/IE/8PzTF//3X/y//f1/8Pe+9a1/RQTrs0VZ1oWrM6csk8ObktIm2mNRiScBCpKV2kNgMGcddZeUITKCOEdhSDnwwtdgcX/YEQISDMNojUkEkvL9m9fkrC6V169u7u/vLTlmBnFh7LwvrbUIVDVlSgmEuhAMIpiiaLDruv4wXFxcVFUVRMqy1kkIa11K4XDYfeUrP/zJJ5+0Q18UFbKkxMAY+nzk3lXueBjGcfTWtYduHGNVVc54733X9saYguzZ+lyZnuM4cuGM5bbtd/c7wuLnf+FP/Af//l+6vry8u3m1u7sf+o5DL5wAcoZEiNZMG3AYhu12ayytVgtjzLJZffTRR7vd7vGTawDgmAA4hGK87Zk5hUEnCVarpQ7e6Vhr1/Ya94wxIOS9xxxTSvf3969v31w/eVzXZd/3p/5WzlEH5Ms53N3fvT4cDqoWMgV5LU+U8iI0RjRIRVEQgTEGBYTRGPO5D94j59HRx6+eq7tGSmNKwRHlHOMwCjNWllFtfLwQSmZyk1kWCjjn+n4IITCwMSbEUUmLq9VquSk/c/dbM2l6noqXw2GvjGlFIgDgcDh475U2mGflZQAom5qZLeTFYtHUS/VT3Wx23vuXL18658YwavzRIfGmaRSi0thrrVdir76tuqvpYRFjrKpm7AdmPjs7U7FgjeRmtkVSyPvRo0fKsry9vVU/KCDcbrf6jU4ptIbH5XJ53O2HYVitVvpXOkmQJs/eaX5I16EWoqeUW7MsADCTuagURdH1fc5Z5TLGsd9uwzi+STmUZZlzGkb1T0Md1nny5IlaCJzoY3oBbdflHFXQOUV2YM/OV8pxa9t2tVp97nOf2+72WpYquVLvGBFZa9E7D28P66ZpirJm5v1+XxTF48ePx2GIMe67Y+iH169fD5yUkXoqQxQxNPNcc1VVIUYiUlA1RmHmsvTDMFxeXgpktV1Sbv5ue6iqqizrup4KhPv7u7PVci6o8dd//de//nM/+7/73/8fxmF0ZcXMZVVfXl627WHTHnSyW+/5arFcXTwahqHve+dc348AUBSo0rHGmGfP3kkp9f3AzIvFgoh2u/3Lly9Vqkuzl5MNFBGpOIMutqIo9K/KslAG6zvvvKOCDMbZHCfRsJxzzBPBSyvNEHi9rHSsZByhKKAsi9VqVVXV4XBIs227LmN1uyJnm6Y5JWAieb1epzHoL8eQT/kVAJyfn2vkUXUU5wxOXMVpOkpEuq797KMbERHLoiYD+/3+k0/6GONysdadfJoqMMacnZ055/q+ZcbTSJZuZGaZQQOIMX77u99BxEePHnVd1/dDWfrFYqHjXwpgAcDpcFcjh9evX+vZ1PXHYewU4SIEEjDWaj4cQuiJtNl8e3v76NGj+/v7w+Fwqnl1e04LuHBte7DGnZ+f7/dHSEmX6Icffq5t28K5cRgnxTCMMY3InlS/A21ZAZFNDMyMAIX3zAkRs/abkYuiMEhaQDFOwJH3XngaEC/LkiPnnMkXx+NxjMM4joWv1MyzbdvD4fDBB++llIrCSULvvbUITGMYvasyD/AW7hAAYhB8oEJpiVUslJljDMxOg61zrjHNMAz7406TnhQGxEkEo+u6EOBwOKwv39FQoCOD2rRARJ01FJHFYqGiW/odc8ZTRdD3o4Zc7b05525ubjRF11hnjBnaTl1Sj8ejNvaur6/fe6/69re/rR4wGhIBQD8akFNKRV0hYt/3OcSQ0uXq7Ljf06RwmyVx5mjQ5CSH4846Wq+X4zje3W0uz9bvvPOutf5ffvM7XTukzDkGX1Z1WW1DAMCcc+GtMSiQS+eNQQD2vmBOzptxHLyry7IUTtrHNUirxfI7n36PSbJkay2KhBDCMD569GjuVG2stRZwUVab3S2TbcqGmTlHZjDWvn710hiT0iQ94VxhfZVz5oyZg/bD+nE0xjxurj5zb97ebl719++++27TNEq5vbi4IKHNZhPGEQDW6/Vut9O56nEcEUWZtlorqS2qiBwOByISnnyAH5CaZ+chIkRcrVZKSNWFVDgXQtDJDD1S9dDMEmVOvKuq2m73b6fNZvDwRGRmds75SfdsVoPRkidFDc6Uc1aNqb7vyRjnnPcNAGhr8/Hjx3pYzHjdW6BViY0hBIfT6tXr1E683rETHqum8TpBq51vzUBObQ946xBocB4GjTHe3NxYB13XV1Wph7jqZugOIqK+7zXf0INvGAax2eZIZKuqyndHnd0cLbNkEbH8fUQzOdUnelknmIyZEQXm3SvAIlqiTCWNJkYgk3IFEYnOUuEEMWtWZ2ePtZTfYoKn6H+CFUREeXAkkPOk+T1tPwBlW+n/qkif9gQMkpDILK/xEO09nS5v19mk1/FW9+D0awqBTQUYydvff6j8+4NN3nT96b8VPvnRGX0qBkBmGiARCYAz+PL5zXa79U552cDMdoZjpo8TkJOE//xQtAZUuBMRLE3f9+E/lOmaOed8fnnRNM0u5Hl+E5R2Sw8w0Kxo+Hx/5pAHhCfcGebtJA8OhrdCw9NCevBMT++DiKqtLhOKfVI0RiLMOdOU68AwDAxijGHz9tpOu0IPNpq1qx/W2CLTkP4D5FeY82RLJlrCaCIykcRfvb5RrxLv/XKxevz4sTFm3x6d85/5fK1x1lr1pTSTRPhEez8l6DLBpJNOv8ybC4CMujPB1K4wgEifTZ3TY888WAn8fd9UpmS3qLSrFlJCSTlnQkFjCagoCrSY45gxhxRFkAH6cejGISZBss65lAVYvHOKT+UkdbPow+isS4mLqmyaRslxRVFwTAB4aNuyrsiYqq6cwTT2ajkZY/bertaPPnjvcVkVMUZh2h724ziu1+tj16XEiFjXdR9iTKkoXU4ypigi1rk4DsIMwKUviyLPNxMEEcgm4f2xs8sKVbpHwNi3cqIi0ofRQn58fX12dtb3fU4SYzTWpcwiDGRBSGd5gIzq9+h93R9bYOmHPuZkjOdxBEDvPUmLiFpSKoT3+c9/4R//8i8dNvdAOIRQOg8gxhrjrJmVhafW1Gl0wxhjjCsKV3jsWmuP2g/Qg4c8dce+PR6Y2S0K4w1FKAq3WNSqOHb5+OKTTz69v9seDm0IbIwhRGFhOvXqYMaGCFJS2Z8sgCQIJnJGssM4LlxFRMxikAghhXg89l/+/AcfffQjm92u67oQPrui5gc+nPp5Gsn122mXBREF8qn3IyKqJ8+zQIHu2TRFAnoYcpXCEHMGdRGYuc+nCH9a8Di3FadIjpyzoEGD5tC2ReHH0G82G1t5az2hMWjBAAJ2Y28YunFw3mrLWnDSP9Vc0xg3WYEDxklC12eQGCMg6eTUMCPyGtvruq6aGmZczzmnUFRiRsCiqIqiyDFZSzpXfjgchhi0ed513dj1mm56Y4d+oHk+N8+aTkTgnOm6bhg4g6AwIKA1ZeFVr1ZmqQ0d5dHiJ85+d+ob2XVdjKMCxDL34TQDUGMrQQAB1RkALYRSmB46sPclITCzZB0D5MVi4Y09OYfoYaQpuHPOWiLnrbV6uwyQAFlrKz+NaJRlmXPUaSwRmUbAENphEi7w3uub+9nHCTnP552ICAkjT76487lP8zphEdBnIVOTg5kZBXLO3pfMOSee158wc1U14zjmrA0naWatXppnZYjocGj7Y7vmz94dBmkeasmIpusGIlqv11q6M/N3v/vdvu+d88YkybJarZyf0CI722Gr7TkIj2O0aAAgpCiMxjstYlU+5dTR1IyzKpwxJuitAFCu8byn/vWz+NSkQSAE4PmIlklDYyovZVKnYRUmwxlpmkcTEFFoPq00eRBE0UWSRCSTTBSSpAD3Ayfn05koIhoAmBNaM80sgICecCIiqAKSKIJAueP7Q1uW5Rff/+B//Z/+5Y//nX/3b/yN//qv/LW/8vzF9+ICz89XiAlQUo458aLydV0XBoDFY+4z+9IVRdEejodDW1UNCJdVQYiQ2SBRRkmShxRyNg1lF44HqKtiu91WVYkikq0YEJHKFzo5d7/bhhAmTd5IpW2WzRJQQghiCABzkjCGwldAJVL56OmTnHPbdX0bZdLhCZxgGDrnjHPuxYtPAdgAhn44X5/1dkghla6SLGMfOUHhqqIorC3qelJRr+raWgtA3pfAMAwBxHKOn35yL3J3tjr7g3/g67/wZ37hj//cH6tsubnb7F6/TuOAOROKGAEAICMoKAgAm939brc7HvfX19fXjx+9eP7yyZPr1XpBKGXhkGUMfUrp9vbWW8pRTFEsl4u6rlbLZd/3iBJjTilZb8cxMKchyNOnT733/RhEJAuLyO5wyDkfj/uUovbETxms4oPH47Hv+yGo5ulUjGhszDlKniw6VLQq55hS8mRYeLWoXbUAh+3Ybds9SL6/fb26XDhbhDyQgPclJwExZVUOw8AIKOJckVLS+VxnrLrDNU2tOv7krI6Ifvrpp2O7Anjvd27/EGNySX0mOacQgmZi6nevkdkYk3Oy3iGjQnuaHmgpWxfFmzdvPumfkzVVVS2XS+/9er1+/umL9cX5MAwxheVyqbFRtUpSSjmLgcmb/lQ6dl23WCxIoO/7GEeWFENcm6WxRAbJ2KLwWnNqfZdz2u42CvPlnH1VksE4Tua3ioycnZ2llISwqiqLtFgsRETvmB4rCpu2bbvZHIrCqBqAqjMptVBPKOdcWZaHw4GRr6+vxxCsc37uTN/e3tZ1fXlV3N+P3/ve7itfKeq6zpwAwJAF6/ROlmUpzKd3JiKFsFW6dxzHsqxLW26326nSBmn7ThA4y2mMVUT0iJmUst2EKhZlpRjx8dillJgIIo63t3pI6f3Z7Hd9GPWAk0lMcxoo1visR8a777672+0AYLPZiEwD3RrGh7FT9L+ua0J7eblcrVZv3twVRVGWtbW2HaKzJufsrA1RfumXfukP/sE/+NM//dP/r//2bx+PRxaJnM8u1n3fAgmzhIEtOZQggt77nKTjYRwiAJ6fXXZdl1Qhj9Baf3+/zVltWrEoyuvrgpm3260+cSXZkHrVTjkGqoWddnb1UHPOAdiu61VWJYSw3W7rslI1mJjT8XjUdG+5XCBCjsk5p9YUAHB+eWGMGYbeOeucZc4qsKPo/DAMfRiNwZw5hDGlQERqrmUeaEXqBL1zzvtS2+eKUOfZVloxcf0WP+gVQhArzBxCGmfXUPV/s7NYQ1WWNItIKDqjH9d13XK5dM4xiiqA6SiqJjbH41EvuCxrnUvQ8/fy8lINok6NCmbWc0RxiYcZr2YyMMMv2my21qpUSJxd0MvK19UipzSEcej6oq4AsCxrLTHW6zUDOTfdFl/YoeskTyYXxqBHKkpvrRLvJgKZ5GwKCwAGTAhZf5MInXNFMdETCTALW2sTZl84bTsxs0Wi0hORJZNSr5mhLipNbq2dhMv6vh+72HU9s0jOZbEYxxHN1POW2SNasxeYsDAF+8hNcqzqZuaYY1EUcUxRvTSZiSiEVBSTPQmhbZpRRJDFImWB0vkJJgIcxpGcNdbqAKLxTgh7lbjMSSay2kRiVQEHRHTOPX78mGd2o4YybelpXHKuYIb9/nh//704+8YrWo2I2+02xthzBhwiR+N8WZaFdYftTjtGQqxtd0Yka3PIKYxUuOPxKJLP12cicrfdEdnr6+uc+Dfafza2YRxCjHG5PlNAVjBPFQphWfoJSTMsIMxZ9/vFxVnr7cuXz59cP85Dckg/+sNf/Zt/72+ViwZI6rIy3jJDzEkQbl68KL1rj4e68HVVna8XAhhzHnMaYspITVnh2erYtsfd3lq7Wq0MmXEchyEVRWELHMexaRo25tNPXy3sZwvdIEFZln3fF1iIyGazyUkuzs6MMU3TqEy29sBCCCFNTA5mPhzaonAncUJd9nVd63FvDGugVtC5aRoW0Q1ujVcRJ5hTZTWUns/KiSUTwqCV13K5FMHtdqsXrApdus31BFeYWBeGdgT7Y6v71xjLORpnDYCIaDs5dGm5XGpWHEIwvqiq6tRgTinoaTsn7XBi2ODcfdHTLYagm0IEJ6HqWTlar1xhdJgZYKczmojG0BMRIAhA3ZRF6Xa7TYwAMGgSoh30lJIuUU2ZHj9+fH5+3vd93/cJgyQJISRK19eLJi8kSwjBeAIA+zCxs7MyrN6gk2yHzMxl/SRmRplwtMxRid8nDHRGEpEV9acJINB/Cw98omjWAJWHMj16/2gGKME4hw/7maTznyc67axrgyh5nlDQ7wLzOCc8KMBEkrVWXRdEXfJmKU94QOY9/QAzYK312ek8OJ0Kv/NlrTMnGWhgdfrScdQTznL67jknU9m7N685x6qqtm/eOGMDTbLUzKz0cH3JzPYCADihvYiIaIm0a3rK0WWC3Q2qR5+IMuzGcYw4cZwIVHACAABZGCcgn1H1HIFn7Ac4pRgRsSzLYxs0hCGhyLSl9SMeFroPQTcFxU8PGh9gsgoQk5k6CsaQtagJShQfOZ7aL6c7r30LyPzwWeCs980P2NB6eTLT9+DB5+p9W52tt/udsu10Mk4bv2u7HobPtoJ8uCpwtiWkh2tykk/JOeeH4p7zN4DTE5lWdf7siRJDE9B8iiYZJlIzzpLQgbksy1BVGuZkTChsrTXWG2dzjoimH0fJeQzJWvP6fnM4HnNmIEsWjTGEnDmrsxwza0fOu6IfgnPuS1/60jAMzbImos1mc3d7e3F+sVyL9c46VzYlGei2O8uJAXKMpcW6KYlIhyv7vj8eB2vK/f64222GEIuy4QwYJ15DEgbAmCJZAyONKSAaY621BkFCGKyrWDjmnEJ4fvOa4NJZADRAYK3JAghq7IuEKDkVRSGI2+2u7/uQUuJsnA8cMydjqKmXrvD9OEGH6huroRbQGOuVLRtCJG9x8qQuWdCSMcaoLhURCWNRVjHEwqA1vqyKJIkedFaYmWU+D2b/0hPln4hEEIAQHJmUeTDG7fdbay+qRRU345vbm/Pz889//vOLunz/2bNHF5ff+Ge/3ba99VaRfVU4EJGsiQ4YNeUiQjIGgQd1ErA2sdiiHEIEMgrmlIU97g+FsX/uz/0PHj16dL/d5pyVov6DXjwr3Vszqc7NO4hPrSn9asys4vgAcJIpMPMMzUkI+BSm0BoEsETamQNhRJiZlrOH7dRzwgcABDJCzpnnqm+5XH700UfdcPiNb/zacXdMWbabTb1qqsqNwAxYNZUrCkG21oYUdR8pyV0Fi3OcmMgnzNdaizz1D7RYDSEYpFMObf3EgdU8IISQhY2x+stapBmnJrERrVGVnv1+f9ry6sxgrV0ul4oa66cwc71c1MtFVVXe+/v7+1M203WdriuFmBX55Vk+W1l1zmlnOyF6/SI8Ty/xLASGZoIArbVzHiPWlsxcN00IQQSdMZqC641SYVAiAmcR0RW+LD0ze28BcL1eZ5A821UrPoKI1jkDmHMOIWTIiDimqDc550lqTf9Wv/7p/LXW5jDNG6lDtxYgkiIBODKq6lgURVE4xUGYWa2HYswAWeGYHBnRlHVFOU8Sh8WkhKj594l1Mh0fLMfj0XpX1wvlwlP47H0RU1ICwpMnT7yxbdvq+2y325w5DGHf7pPwsinHIfrSzAeZdm/fmkMIEpFY6zKzMHhTGm/AKOmIOGVlE1hnaTKMdkKg2IeeIiIJ5G3ufiJEiEjmNHeIGWXu4ggwTI4fiGhnM5xpL0+Osvb7O0MTeVy3Ns9df2OnGaacI8ncVwbRP1RE27yd4BER4HnoLaQokxcqAMDptohg1k6CCEB2iBLGzesbUzfvXT/7n/5P/mc//9/7t//KX/3F/+Kv/BcvX9wVtV8sa5QqZ+6GXBTSVAtEKawzOY/juDvcG2MsUnfY12XlrUeEyMk5a4wFA67wlLNxVmB89eL5er1eLpvD4WDRFoVTaVQRzpy894u6Gg2hcFkWIWNVqd5OiBxLUxe+PMTOmHpIuFysvS8F0HlyULZtG9qhqqqhHzMjJzGEgHaz2ekWu7+9A5bL88uIY98OZ2dnYww9DmVROucIoqLwZ+t6jMH7crU6Sykd9q0xJsbQHYbLi2df//rX//Sf/Ld+14/+2PniLA1jt9vaFGDsPYIYzIQZLEMOKbFklKSCgwrALZfNF77wBRGp63IYjsv14vJqff/mtm78p59+0nUH710Io/fee59yEMlVVWg1lTi+eX2XUrp49OhzH7x/tr4AgLWb1lWzaqaDA98uewJUDdmUQowxhEFhFEA2pDySSfOXiHDyjSZXeOe9ZRtjzDEbR0XhWMa6dGer+sn11avNXY7JGcuUISZARrDGGGNLAMmAksUYmg41ZwGAYQILyrJ0hSeiyDmEgch676n/7PkzIlwul5B5HEdDWFVVmrYUK9RVN1VZlnd3d8rcFJHlcvnuu+/2YXzx4kXXdaGVFFkRzJRYMbKzs7PjoU1j8IVbLCd2qmLuKFQUBaI5Ho+KfOl+dM6pQnEOE8grANa5m5sbreO0sXqiBms818xHZQHQmhgjMFRN9e67737yyScTwCfszaQHtVqt7u/vdbUoFc64UzsZ9EwMIUx1OwAAnJ+fp5R2u52qUjjrjbVOZLvdapL/ySfPNSI9e/LUmNd6BOgB55zzxtq5dZpSAhHrSMtm/UPj7DAMTVMRkQHMwmQMIFZ1nSX3fZ9i1s6lngUiMrshYYyx61stoQFA9UMii/fe4GQOZL2ry6rrjyKCGRWg4dmfQx+comk4S4GXVWWtVZK+kqWaplqv133f993onG/bVrgPIXz5y1/Wi1HocLu9r5uqKBxxLgu3XDaP33n6n//n/ydmbpoisnCewCMiSjkwcIz50aNHRVF0Xff65lbdgC+urtTDIDGjAAoedntjDKfsi0LvhrXWWjeOo6Yr3hfeFynFruumyByCitrf3Nxst/sQ4MmTs4uLCwVPx3FIKVpr9/vdbhPNFZl46peTCB8Oh/V6eXV1cXt7O4beF3Z9thSRlMJmoyIttYjUjQecHreu5BOtWCEkY4wmSzGNzrsYCQBijKvVihk++eQTZri6ulAEcBg6EVEQVtsAx0Onpia/89X3IzbGWpNSWi7W2uo+HraaD+jJ66wNIdzc3KQUlNTPoLJjzemcJYKcE7OpmtrnrENjiqmVZamSX9vtNsZeaQ13d3ePHz9W9r0GBF3/px06b/aMiGRtWZaLuhSRw+Eg4svS933vfKmEXEAkAznB3d3dMAx1WBqDzhsiYB69L2PMmhluNpuz89V+HC25oijWZ8s3w73z1ntr3ayEhZQLZWtNLlzMiTk544wh5yxhPM3jMnNRFMDBGBfCAa1hZhZomlJEQkhFUdSLipkJ7eFw6LpufXH+0UcfGWNuXr9khrquu/3ovUkJYhqNsQxJM4MTwKL1kvZlicg5NEYdR9E6S9Ye2uOuO/QxiAUAuLi4yCK7zSblrOun67quHTTaKBOZiJbLpSpnqvKscp5gplCckm1JOYR0KmE07mlAVlX04/EoMwy3WCzAgEKgmtNq40GX08yCJ83llJ7CYTDWtW1bNVL6oqwKi+uh7awxw9AZ48gaAjDGJgkoLrGoq4F2BLu2f5PfXF5ePnn62BjzL775rd/6Z/9isVr1fU9k62phfYoxkkBROuvIWULELJkInVNDzn08W1d1nXO+29yvQ+O9f/cL73/581/Ydft26BXuHMex7Y21tjsesrerum6c/Znf+3t/9xceDzENIf/dX/qV73z6wjXLPuaz1bIoihBjCIkZRGS7PRwPcbHOV+WyqiqDaL2/vFzT4bMP1iePH3f4IqWU2kRE2qZ99epVSmm1PFNfTRFp29YXk9mG/sOy1HZs1rJICy5FJ+eeZc3MiCaEkLMwTgB0GJMaHui0oMZ2rcUQURMPXRuKVldVVdf1fr/XUTl+4D/PzFkNKkRYVSg1/ca3mFgWlgyI2LatliRCc4mU8+HQjj7qRyu8uV6fK6INAH0Yb242AHB+vmiq5TiObdtqUFoul2qE3vf9/f0eAPTWKeL8+PFjpeRruXdanGq0Cw9QTb34oijOz8/PzyfBCWbe77fDULrZTd3Mg6qHw+FUFxhx3nsxGUiQ0fkpKwghTL5hD9DYiX6ihSI88A/U8yDlpCxReKsYoJKRSZQVCwYxw0z8BJYTZ1vzMHhA+nuAOU7yFMZO3hoimochEGUR85AHLciznjLNZRLzw4laCHHAGQchIoDJsUqDuBZCLAllust6eTFGQ+5UGSnfFk4T5Q/gZkLM+bNlzvUTyQAiQWYg4pl0rJ+iDnn6tt5aBOjbQ44JwqCTQad6e0IkRWAGg3CGmWDGrXAmOJ+iszFGzU9JAJTQjSZmZoCu64aYowAiMkCWiISMIJJRMqhiAegg/rwYEHMG5GlSoPDV/rDV+l8hUC0w5QEs/nbhnnBWnvjvhbEqdkxEMHGZIOcEWeqqYsnjOGYmIGTmwCk/sKBUGBtn+xTOPD/ct7C7/q1iXsqVOsWO0yLPs0yK/vN33nlHe5I5Z5DJg46A+Pu/0enFzAAIMBHoTsv7tClOvQScFwkRoYLHMzyNLPKgpfGZL2vfQuT6JjLfUBCZNqavhhyU2uhBxcvQGHKWAGUIMY7DMHTDEJAlo9kejzFGVSc8bbqiKDhlFCh8hcbGzIIkaP7Un/4z77z79Fd+5VeevffukyfXwzB8+5vfyTmnxClLs1qeX55xiuN6nfu+320Q0VkuyxIRrKPxOO73+zACEQ/DEFIGwWEYYkatJVJMMSZAHMeRR9QrGcbIkgtn6rrc9xOOn5gtmmM/HtpuvazRWgMkiMITRKK9EUe03++9w7LyQkhkQ4oAoHAOI4QUs0BKTGhZWBgZKOfsYY4JAHVRDmObc1wul9tjp9kSAGi7kpnROkYaxuidAZQsjIicGQDNbNqWcwbWcJGYEckbg84Z4SicDVYxRmHMORpj6noxDB0QDqFPeciYieHu7o6Zf+xHv+oLezymHEdviAgQNWQJEKaUYuScs3dWT1zhlENshzZKttYOA+bIAFC4ShByzkXhhGmxrH//T/2en/qp37Pd7/M8MvmZr9Mi0f/VX1aey4w4zxDktPGFaIrtp8NFczWcMKY83SgQtNOvGWPI0RRj4e0OUuKjhs3Te05kbg2nWcg4TznGeHV19W/87B9rls0/+OX/jyXnXKF5f1E4EkIhIASBYRhCiooI92EkgQlTgCmw9OMQQpDESKgiSJreaaZoHow1nKp9HV8CAOdd6QtmVs4OIsY8yTrRPAkBAIWbBKBRYFE3McaxH6qmds4ph0U9uPT+jzHsj7s5Z0XNd/WY0CCgkxkydztAZS6cU44wz8Nck54AkYIOCpprEq+vYRjGsS/Lcr1e6+QjAC2dO00LptnmQRUqYB6lxKm7FoUmXP50KinUTs55Y0PgcUwKf5vZBFKBAN37GqWZ3/aJteac031Ms5iGggUgYpE4JiYUke5wBEPDEPpjfwrvRNYWGGNMx+lJKbkMzFTj6a/lEIWMc0WMYz8MOUtJTiuTxWKB3WdH6UVdP754XFh3dX7x8ccfp5QIcBxDmn2M27bd77fnF5eusDmDzmAWheeUQ4jW+qYhAUgciZCIDJWnPMGgMHIIofCV0qZw9j/RA5fQnvIEeNCRPe1Z/YHmSZqcs7OziBBMiZAwC0CalYWMMY4MTPudEc33n5gMQIwgIKqioBUmzNmAIQQQZlH8DhHnWaIpF59+nseilI7AzHA6DVkAwJFJiQGApqkuQBGDFLu27TtXlO9dP/2P/oP/6Gf/6M/9v//23/7rf+Ovf/zJd1Meq6q4frQGLLthSCnUFZa+GlPwtgQAa8HbIqVApBS5AhHv7+9FpCxr40yQYGhSCTgcWgWM3n33/cmHakyIGGOHJOdX57rs03E0BmNkYwwjjEMQcQSld82j8+sf/dpP/NBHH8WQ1QzwbnNPEURyGLvd/u7Vi48//t63X918+vj6oij8ZrMxxginT7/3naIoSl90/Q6pqHxhyaQUAAQQY4qC08IGoRjk/n7bHbuPPvqRf+fP/YWf/7P/7hc+9zlhHg+H/f0GUpQY716/Dn075RIWyDph7XdD3/c6coGIRBDjuFw2n/vc+wQGUKrah2Es6nLs26ouLi7PRGS1XkxcSOeZ00T5Qej7fn22XJ9ffulLXyJjda4/B1qtVhcXF9fX19a5GK2e20QTc0UgMxPMMaooiuVioYMa4xjnGJgRSYeHmNVKkZ0zkNIQRozSDy0DDCFyTlVRSpKxjdu7rbgoFIjIWWNciWK68aiAlMIQ2p1KKTkidV1PKcWua4e2ruu6rscxnshBv/PFLMzMKQmwNntiyjnnlKNzzhdeg62ufC381PynHXpdVJDz1dXV9fW19/6T5y8U0Xj+/Ll1JnM67vZjimdnZ0VRhDAouVJrS0TMITKIMj1FJCdu21ZDcd/3+kHGKr06azROs9eQ1kF6DcaYGKNhtkRiQPFEZr65uXFl0TTN7n7zJgRr7WQqqDKGOL0hIuqcsnLZ6rrebreHw8FaqwTYi4uL29vb169363V5cX6pRnBd315dXS0Wi/V62TSN9+XxeHz25CkYYk4sWZnUkBkJhEFPnBSj9l+995PI1QjW2rbt+36MMRcFK1KmTdz1en3YHzXqrlZn/MBx50SI0/1OaPbtcRgGY5xetnNuvVj2fX8/dPhgrEqjel3Xy8Wibdv9fq/eoXW1AKG2bXe7g7UW0VxcrHkyhAcFBTSLUCJwURQ3Nzd3dxt929vb25yzLcV7u1gt++OhLMv/7h/+8ne/+90PP/jQ+GJU9fmiOBwO6tuJCEXhVNAzpbTZ71zhjbPqMqqLra4rZRBr80BnI968aa2FxWISEFNsV1FvEbDWppSZZbfba5p3eXn+5s1Gj37dNSfqHzM3S9AvWBQFABtjjUFmVgjeOWeIlCJtjOmHQY2F1VnUPBwCiNO459j1aKdFW9d1HHtdz2dnZ0N/c3+/f/TofLlcvnr12hhzcbHWlYbTTHb23ts8Meestf22/8zN2/d9SjoiBno/U0qrVa27iSf70155uynJcrns+z6MAxEVRbHZbAAAWBTElFk1TrEnRDw7O1P5F5iL1ru7u5xEZrMv7froFLxSYu0DK3jNsmxhibCpal2r2tjQsGlnP+r7+/sTHbssy9Vqtd3d3t7eE9H5+TnZKYPSro+aMLlqUfn69c0tESCKQSIDJJRRfLbGGGEUEgCDBM6Qc8bgVPJ7a40xSJBjZpCcM6oTMguAZBHN6/phWDSNygO2x56IVqtVYSc7te12e746F5H1etnuhpSSM5azMthEEATEAAEhkfq3KMqQ1YoIEZjZEhljhqHfbDZ3u+3yYuUKb4MZQhAR7bppA7uZla+vr68B4Bvf+Ib+r4pu9X2P1ugC5nlexHtvrX327nu73U69HHWtqsmq0ue1g6hqnMw8jmPIIaWkCgkhBE3UT9myiMQ4xhgvLy/LslSn1phT17cMwimLL6qydGRiCDFnMLRomtTHPCayVNlyGJNGsO12H4bYNFVh3f39/fX19aPrK+vM69evuj6GfqgWS2F0zqBkRLREnFICcN5YUqJS0PXWtu16va7rxeFwcILe7YdD+2M/8rVPX32aIAvhdrv9l//qWyHlsvSr1aqw6DJ/7ctf/vDZU9cfN/f3frH6E1//6f/27/z9Q0ybF29cRdYSmVJkHIax73sE8+zZORilQvH2cMg5r9frYvxsXXXv3cI1fd93XetcoWf0oW2ttWOKh8NBg4bVQScAyVkz+aooRgBnTJ49mQvnuq47dp0eKHke9yiqChFzjMYY9fksyxJFaNKqsuqIqDwAa8k5dzgclDyx2Wy0j2hnYRzv/ZyuYM7BgNEpnMTZOVdY55wrigJZaRkzrJGmyY+u64q60jTbe79cLlUeChHPm6UGlrIs+zCWZZmEhw6aFZSVPx6PMM/3aPRW48GyLOu6d7O7j9ZWi8Viu91qYpBmF708i0FpFamF3klhqShcVVXMrKyaoihizNqJ1PvALAqX68QPFYDZjGPkOmThq8Vji2aAVgJbO7sKnCqTEwSmO0r3kpyEt2ZDXqSpJiSDNAP2WnjgJAliFCFlecuygRkW1D/gWdcCHoj6AUBmTjlLnsjwiotFZjPXtyKiBDoiIken8kzkpKNEAplmDrWICCS9GOZJuIRZ9WPffvpDOBJmZROVEZhY8fMoOADIAwGKf+1lJsSaOeulZkIDInJSKRUhmP554Uy73x92+7FvLTAga0tcHfb0DVHJsIpxipxgBX0hojVGoVW9bDuLVIgIAZAhAMoiRVUjWe+d5KQxCBEFsjI6EVTGgxGB5xtijBFEY8DgVNCmlEMIMlnKCgCprATATGSeitjpIuXEZJln8JmZJhWOqRwVyQosEdEYuR3GC/19NFoqTw9xpi0TEfL3Lafpg/DtQuIHv6xo1+nWAcB0ySCqWTaNuqAREEbgySD+s9sJp6YFIp6AbuVNwAPge0pZaH7oPP326ZnizAmlBwyy73tNbyiTnTERGfewODfGUFmk4Kumvrq63t58qipX3li0TjG1OGZB6sehKurd8RByAjJZIOdk0Oq7qeJNVS9SSjHnmLM19is//ENf/uGPjsf95z7/hfOr87Kui6q5fHTY747DEJ6+99g698GHnwdOoTvEtnv1yXd3t/eYD4vFoihcTmEYBhH03qUkxjpACmkYo1jrjXXMupCw7zq19iBnDRFwQGHgXBXuOKScYxKQxMZZFg4pJwFnnPD48BEzc2YGSRk8TKioBRitL/pxjJxtUeQkXTcwd8baE44vM86SMkcWkYmelHNypXeWBGToW87x8aPL/X673++7ri8MAbD3S+aQc06zYxtA1mySmRklceYURYSc9d6XRXG+bna7Q0wjZ5LCxJicc0CE1hRIIYQ+BQBBlpRyXdf/4l/882EICObp0yeIdPvmXvMu452u6tHFEIIx0/+mXnIO7z17+uFXvrDZ7i8vH3lTFUVZlvWyWYxjf3v3xjn8oS9/+ff/1E8B4jgOmvt+dixTrfzZ6peZFVvHyZUuaUZ16k2eOpEP98Jp0Ez3LCMY406inMrPVVqZzNMbNM8KwDxWMoHpD5Trc+acs3WF9z6GgZlDGIqiePb02aJctXFfl42vqFoU3vvN7R2zxJyApzNFT31PZFyhXWWDk/zrOI5kjTJetdwSkdNckjIw9cTthl5TecVr9PDW2WQFU8ws8lgURRxHbYmncRKSUtFDXTCau0yhjFCTcgBIHLUOme5/nHTftHRUOON4PKrMqMaE4/FYlpPYlpmnfWke8dYzXS9Yt79mGFVVgaEhBjDEmw0AqHpjUVS73Y4nQ1o7N/NACJmT5PjBO+/d3993bbLWZpC+bxeLlX79eStN/SUwpEqdMovpaw7U971e+anQolmF39EkizSOU8n0ME+CaZSSD4c25xhjNFjs9/vQD9rAZ57w93Ecx+OodHs92ZW1HUJIY1Ds/vz83BiDUiTKOU/i14mTiDT02Tr+IqKjvvf392psVRaF1pB930vm/fHwX/61v/rn/4d/8eL8erc7nK/PxnGUzDGL9yQiMSUd5RPIISTrc13XZK0kERELuGpWE2BkDMz7QhNQsgbnI09ElJOsZC6eJP4TMzuakP2UUkjtSYPoxGgwxuii1fdBejhtps8wzVuPGacpJcKpZ6BjZAqA4hxHlORM3ydcNlM/cubMgAwAgFYm0I5P1GYSGGHih0qe1LcnYiYEROKBt31nrP/al3/4az/01T/+c3/sr/+N/+b/+xu/9sknH+csNzfHrjsg4mIJzipDROq6BOBh7Kw1HBMznxVeAJQPqMd3ivHs/HJ9dr0/jF0XFusLHSFMAu0wElHfd5YQBQWg63vNeLt+KHzpvbcJxLt3n33wwz/0tcuLJ+fnV8/eee/p0/fKqspZFM6QLESYQpfyMA6HX/6Vf/hX/9r/4+7utTVkTWGti+OYUlouG8CUmVNM3ns0WJkyC7dtm4UtOERTFOV+v9/c7R4/evon/8K/+Qv//T/3la/8UAx0vN+lEAjYIsRx3N/fjWNflA6mTNKMMbTdkEUYIPW9MeZwOIxjr/VzjKP3/rDbp5S67rhsFkhSFO7ycl2WNgTe77eS2SDUdalLyJdFFn733XeKqvHev3p9471ngbqunaHHjx+dXZy7wubExpjVarVer/f7vdJgQcSYKQnMOYZx1HxbWT/GGG+syFQmPMgkB6JaBHWWwhc2i4QQ2rbjJAQWEICJwBpHysJWF3f1s5o6K9ZyjM65s7OzHOLxeJzrQJ7cCADu77er1aqSz9bSqerygAFQrLGSOaU0hnGG7aSqqqZpVGFDJ0g0Ufz000/HFDV2VVUlIsfjEYBSiHq86rGr/4TClF0j4jAMoZ+EhnRz+apERJ1j1cisLCeFYi8vL2MKiqqoiqWWjqcmn16Yfpf9fr9cLtFYcvbjTz8Zw5hBDPOrV68g8zvvvBNjvL+/V+eARd3Udb3b7bIwETVN8+TJk+12ezweF4uFYjoK8ioLe71eq/OVco2tM8vVAgAOx/319bXiOOM43t3dPXp0yZlBGDLnFOZAgr5wZVH1XafI6YuXn6pafFFNBNInT56caMsa560zp+pDq/2TUlMIg6IVpSuKooghdeNxxtPLrut2u533Slmgvg9lWTZ1nVO6u99670VQBA255WI97WvAGGPTNDlnhkknqu/7DKIz1Nqy7brOkimKquuGsizv77fDMIxjev/9p8tls9/vyduqKqqq4BhCP3z88ccicuhaRHz27rtVVW0PeyIQSs43KaWuHdVvHIDrReW9DyGpbslyuWyamohsQVfuYhiGlEPXDsz85PFZ27YI5vzsnIgOx50y+7R8PsGmKnGr+cbZ2cIY8+LFi3EMRLjZHIwBa01d1+v1WgOItRXz7AnBPI6jsdNgn3MmxrEbkrW2WVTMzBl0NZ5QCFcUp7THiRn6oWkaAyjG53xExN1uF2OsKlcURd+PCs20bXt2dlbX9VzXIzP3fX84JCSpymWMn7l3oaqqkQbdHW3bA0BRmNVqpcCNHlicc1VVZ2eTm2JZliFNqs1N0zjnUKDrumPXniBFN+uqKVR9ypa1xzAOsb1pv/e9752dnV1dXWmGqWtS96NzbhgmC8GicMY7mpuCJxU1vRhGjiE3TeOMsdbWdV33ZWY6HA4IRnGbtm19OWE4ADalWFgLhKpElHMmQEJBEiJktauWjEJkCZFyTo4wKVsCCREt6vknOasCcmDIQKgquogI8JZ3NYzj8+fPq6pKibWnFUI43ByMxdVqlVKqi0oMGIPOKfYAOmSJYACZQcwEdCBKJiBjkAwAMhJmjkRVSCHkVFXV48qZwnfjEEKIMR4Oh7Ozs7IsDVIIoawajZ/f/OY333nnHcXytGulsTrNNY5Os+kZZIx5fXdLRM1qiYg555DTEEPc76bunTAYAAMAQOpVlkF1ftq21UFDxa+1fun7vuuOGnWVoaJvq0suxmgAOWcUsEhkDIsYZyFDCpmQNYvQnKrvxnGIIlIXpfN2t7lfr9eXl+cffO795y9uQgBmJrSEgM4yM0sypP46pDy2EESZK+SstbZZLLquS2NKKX36vedf+uiLr1+8+Jff/tbnv/jhO++/9977n/uNb/zmzc2N8ZCClJbaw3b35ubFd34LjH30wQevX748dof9mIJEgmyMlcjWUlkWzNla9+j6UhDvbl+oGolWLuEH7M03r9/clffL5bKqGq2stdJ0rjhtE2UMtG1bFYWmAScELISga77ve9V30uW32+10e2rASSkZZwlQ6ykt/hUCPqXQc60x+bjoXEjTNGl26yGinIU5nXq6xjhFqw/Htl5WoLNTLACQQTi+lbagWVYBZ30tHT2p61oZ3CeUL6W0rKsCAQDqun73g6WmE+3+oHdDo3QGcZy1JbxarZQsol+fmW9ubjTz0XOwaRr1XYcJ+DYpRecMolUDoXGMKaFWl9fX15qSafuk6zqVNNHWrMwGeMXC8R7U6L6uG++sJODM9lQ6voUIH9AttRo/lQd6xp/QYfPW5A0Nkm6YlJLwZBLHzCqiXzjPs71ePplEkcQwsT4fcNYEAFAEgJQ/SpNABxCZGAMTGHz7Oj0GmaQS3hqyWUcnSeqHoLA8ED4WyCDTsN7pzwntfPEnKHyCKfkBu1n/BH8A5WHs+2EYNDfWnGYWJ0xCFt5CjSIiKY6b+9ux74iIJLdtJ5yUEISz8oL+1wDyzPE93QGY5IsBTp6ESKefYQbNU2Lj7PnVJTkLY0ZEQqL5n77Fr1FlCoRlvn0sjJKzIGe9V93QIaJK3mQSmElM/MBsEAAEZmgJSWiSvTbGcEw0Ny1o/jrGGJzvjHNO+gAAWcR5E8KMYgPwhM9Oz0Xv7QS/Apxujnw/6fLhoBYAAAoSEppTbJqunznEiHaiKvMPtoIEOJXiE3VLT6ZTEDndB0SlomrkgtOfP3xqAKBWS5/xIrB2ckjQ6zETRmpODR5A48ri6vI6HjebV5/knH1hHTowNqQohECYc0YwYwjHtvO+hEmQSoyyp1kAoKyrFJkBh5SW6/M/8W/9qSfP3jVFkY/49L33raPV2dnhcEiA1WL57vtX9aIJiS+vHgFKf6h50dVV9TF9M2/Fey/Cfd/3/ZhSTpFZoOu6tm0ZyFprnc8553zykAmu8EB2bupkYHYG68KXLo5ZJlEFYy3ZIaQxROstMAKhCmGrjrwvy9AdjLGLxarv25hGlb+x1ofQxxhZUBmvp6dAOoQwYysKXaWcS+8CUBZeVJUiuz/x4z/65S9+4e//3b93c3OzWi2JUFjGFB1kMBRjNBZjjEST3ZxzTlEUBci6rhNh59z1owtEORz6mDOnTEQpcoaIhEmyIQBrc4quLG3Ku91uv7s3xrz37gfvvPPOZrf79NNPEcxqtbJknHXee6l4GIYYNGBnIwBkfuHP/PzP/Owf8WU5hADiEaxBC8C+cPf3rwtnysKFMY39YMsJ4+MHcfLh61Sw6T5CQPUH0MAi32c7gA9BgSlGCWiiYIzRMQgQAIg5T6DV6VDXxwzIqpAA3x+6E6JMu2AedhMdaLUpxbqu9/vtsm66cfjmv/xWCHG1OG+HjlOsfHU47Db73Xp9Likp0QZ4wtC12O66ripKV5b6sHLOrvCn1FOXpUKi1lqWt31NhUr1+nWqzoPvVffAWhRARMlzjxC1FFl1h2MIwRlvvFmtFvf390RE1pwMmlTLSKPW2KqfUiGZlTKvqYObHfB0/IrnsSH9QbMxDad4clYA0C946sbp49OCuRuH05F6PB4dGU3HvXV9TM7Y0zGhwdYQIBokePHiRUrJGh9j1C6Iyn3IAzau5lI5Z0Qzdw7QGKdcD4Vm9vu9fkRRFCQwXZVkDVk6pzxHcioKISKFQWkaVISqajJIHEatIYuiCmHURBMRlUaUc26a5uzs7P7+PuRkAHWWvOs6RWRQphaIwigoMAwDSPOZuyPFtN/vjTHC8M7TZ2/evIkhKJujKEoQin38R//0Hz2+fvqn//SfBeBh6NfrtTICiqKw1uv9tNZaW1pHrqhyzmpK48iYybQ2TA0YJTBoT2IyHZZT5iYzY+C0ePQpx8w8M9MzSGlKM1s66+Kxs6MGCeTMGeLpPZ0rcJ5gAwDmlPJkfanKW8ycOc7LT7yZ5YMQTzNSp0gyPb78tilFOYE2xeFtejkfi+ycQ+WPIFnvEIUEAXCMkQQsuP3tfVnXX/3CD330P//qm+3969ubjz/53q9949e//Z1vPX/1PIQAlMcw9If9/s3eWFlUFaBBFM6xPYbC+dXyUvWISIAc5Vy0rQAQ2mVVNwJm3+5SGjabXV3XVVm+/8EHIQwc0+3dGwCo6xIRc5btZvjCh1/+2a//ia986aOzs4tFs0Qh54qcM/ah9j4CgnXZmRiDscV60RSPHz999OTR5aP/y//1//zy5fOitOvz1Wi6p0+fvvfs8Xe++y3tCdnCDsNw6PqiLOtFlYRFMITwwTtf+P2/7wvvPfvg9/2e3/+VL3+UQ75/s8UgMUaQbAwmjtvN3dAetVVmiBBMzBzbIY2ZEXKSmCXkkZzlAKomREQhDP3YbTcbY0y/WK5WKxL23htLnvF8fYaIMY2ZYxoCGnjy5DEAjSmGEADN5aMrV5QAsFgsmOj8/FxDkKpk5ZxZeLlqUipsS1F7bzzhU8fjUSOSVoAnosDUWzJzQ04wJc5Zjv0xxthgFUI6HIfN/aEdJIxS2GrRnGUzRj6GsevSsFjQ1eWju91xSpuJ6rru+177DQCQU3LOGYN9HxRxOBwO2sP7QYNu4zAGH8a+896XvgAA9YlSCuput9NIq1jMfr/Xlqpzk48oTJkh3t9vpyp3rno0J6nrerlcphTGfog8UZ/0YDpxcRjBWnt1daWAhVaP67MVIoY4aktytVopvo+TxVY0s4mQluWa9Cq5hJPsdrthGNTljJklZUR88uTJ3d0dzDLEiumQNcvlcrfbyeyOPrE+ARaLRVVVymXW/GG1Wlnj9vu9dUb7kTHGvu+FARGbphrH8fXr14vFou2O1Yls/mBaWUT0HuacvTeLZmWcTSmdn59/9atf3W633/zmN/u+VQTfF04P6KIoFovFZrPJOetecLP2dNe3hCbkcOqp55z1RACAvu+1njrZHrz33ntv3rxxzi2XS2HR1kJd12YW8VssFomzPvHdbteP3cXFGQDp4V6W5aJebjYb5boOgzSNffp08ssqy/Lxu++sVqvvfee7cQwhpyHE1WLJDOcXFx9++OGha28393XjYxQgKIoijDmEgChlXelpu1qt1hfnurq6w7Fth6IojMUYx6oqdrtxHMN7772nmIv6PjHzbrcDocJXzNwP7fn5uXPu9vZ2v9+vVquT14Iqz8YYm8ZYSyEEpcfWdVkUTtErlWne7/fOm7quh2E4Ho96tkIG7XkoufsEwykX23t/mgrSI09HxFTnWouk1Wo1jmPXDWVZP378+P7+/vnzV4fDzXJZmHmmXtu9usC6rkP87LMbAE6ATlU5nol3ehtzzjzxFq1+nXEcq6q6PL+4fvL45cuXmq6wyO5wAADn7H6frq5q7/1mszkeOl1FfTfqG4KAfgXlHBSF0xDXdd1EDCQiAkSws5JMzvl4f1QOODNrqFTO5nK5jJyjy0QkiH3f61J89s4Hm82GJalxMQDsDu1+f+z7tq7Luim3282yWZlCdVRMyoGZiawlycY4ZshGZbKysA5favwlb50zzojoIW7RORdCNDSZhSAikc05H49H9YmNMQ5jz8yLZiUi9/f3FxcXpzaGAXNs9xxpsVi0+40F45wLEpFQx7L1GWmUs9ZaQueMJTKQlQZoLZ1fnd/cvmmHvlxWh67dHfbnF+v1em2JxnH01hlHzNy2rcLQZGC73evMikL8GlSTcFVVSjtQYZaTrp2uEP1BccAwGwzqgzscDnqpSsiIMSoGd2JmaACZYp2IiLx48WK3a+vam7O19/6d1TNlriThNMSHkgDHviuNW60Xh/s9p3hipukJtd3sOYZH11cX58th7JDk0cXl65u7bDkxp5wssnMmZ+HMROAICRhFe5mLTz75RATX6zURnZ2dvXr1OgHs98fAMYXwkz/+kx9//PHNpy+eP39+dvXovc99/smTJzevXmxuXiXGH/7ylz764S/99X/896+ePP2nv/Fbv/at72FdmrpB6xhBmK0jQPLOXZyvD8dj2+7Lpl4sFjNX15dlaY4/SLuZdCHVi0a/rLXWjKMxbha+m1gpc3U5tRj19qoikJ7sNOtl689Eb/mp1toMCQhzSHVTCqNB1FAPAIXz4zgCy1zEJxERQlv4q/Orrus0allrmd/yLGGmg5RleX19ve8PExMR0ZKx1rK1JG+tvPVvy7IEQ8YYnaVQkZYnT54sFovD4aA91HnMIjVN8+677+act9tt30c9Iq21aI0lc9K7m49dPx3imuGjDWmYIsNuR0TK3T5Rl7T/rd1K733KEQT1LNAMoaqKrhustYfDQRvqzNw0jd6BIXfG0WKx6E2bc3yzfePItdgK8TAMb68DZiz1X6td9avqK8aIZHPOQJOySYoCpBI/WQSQpgeZc9Y5CJVQ0RRK7wLNKqH6KWae49bL8K6YWwSGAJlBcyNNMgAmYqxKBcYYdTBfndP1o1NKZKwxJqaUY8QH3lbMDAJIAigIb8HBU5XOGR7ihjlnlun8IyKcwXF5IDb9O19kbVE4mF0gRUQkaSBGIB02R1Q1BbGIYeiHoXPW5NnklAjhrekciQgojRi/jx6rd42ng8owJwMI+LYtg4jMwJyHcUQyy9VaAPtxACIyKJBZMLMw6LwaIAHnLMyzYSAop1qBMxGx1kaRqqr6MabEOWcy07MTwdN8LsyEU2ZGUHeiiatuZ6pyztkYypmZmayRGIkop6RwUgjh9va2OrtkRd7nr6yb2iLFPLHtTg2DE4J7yhtg7mdoRY1qgvTgoZ+eMiIygBASokYKXbef/XzngyTnrNrQPFsCwgNTJmW9odWWgEFkmkPStA7nn3P6ATTqxKc7OS3REGGCnKfbjoD6XDR3QebKew6cYkwpbY+HxPlusyGyXdcPIbG1yEKEOLtNOucYBITQ0LE7fOErP/Rn/+1f+PDLXyHn7jc7Y0wGYZHFan1ou4vrx864q8trskaQqmYVwpDBZDCP33kvxLThNmZJkna7w263Kyq1iEUgM8ZszHSQpNliLieuqooFY47WuhxHi5RjILAWkRBiHJE8IMXEBNjH0I+xMOgAibCwLnLmnI2d6oRxHPfHQ1OVRMS5jzkwCBIhEPB80xC9czG9bUieIDlkcdYWBWHmLrB33lh7eXV+cb78f/43f/2f/9Zvfe6D9yGn/WGbc+66bl17ROz73nkTY/TeAYB2Pq11U55kLees3eyiKs7Pligk3Ic4eFcBiSdrPAFYTsPpehiNJTuMByR77LqPP/kEAOqy6rrBGpNTskjGI1kHJgsk4QzCzhpG+ce/8ks/+RNfW773TLI5dl1OWFUNM4/h6C0g8aE9WLJiJIRI1uScT6MDv2O1GzMZZQCRJUmnpU6zkoOSOFReDU9zFdO5bnjmz5KzSrDFeSwAALRIMDPHSqPl1ALEtxaa+p5IchI9V0WzEIK1Rhc/IeWQq6qRRK9fvq6X1e12u93eZUnqj7cPR9EJbgQi0u6Czi5xmjTotW+a49QNVaRS/zCltFgsGERAGKQbehwnLpWqLpyi3OkOaCqwXC7HcbTODkMwpj/9ZtM0IcXEmUA4aiAyQxzTPOYWY4wxN03T9637fpVhzZ9EZLFYXFxc4ORokRWkUABlvV6f8iR9UqeId+qnTq0yOw3JFoWz1lZV5cgoaV3ylEbr507vAFmEnHOhT117XCwWKvFWFMXIoBnPDA3Pc0KIzrm27U/g5vF4VKy2rkuV5iyKYuz6dgynRngIaRwPChnrYU9ERKIDuQAgEvRWe2/TrNqWcx6GcHnp9Ytr/Ncnrup7E3ATkbMsl8t3nj39+OOPnz9/vmwWmsc/evRoGIbdbrder8uisvmz3VyPx+OAgzYvP/3007IonHN9NxbFNDuMIDGlzX4zjn1OGZD6vlcxmWEIgFFrbw1KVdmMmZlBszeDpAENBchNYo4qspxFheDeNhLmTOPtwz2ldiHEcXZOJ2d1uabZrUhEmJNFLXbN6XDUE1P37+lTEMUAobXjOHKeMg0yJ6kWIjBzzq3OvFmv6i0pXkXrT9o7MnW9Ne6dRMNUgS6L5JSMtRkgpuScY0FjbGEdZ0RBTwQx79t744rzenH54dlHX/rhn/2jXx/C+Ob+Tco55bjZ3L18+fLm5uU//+3f+s3f/I39ZuucI3LDcUDMfT8Q4NnZxdn5GQDcvN50XccARenubu9Wq1XKSK5cn71jrT1bLe7vu+3mvqqqurmMw3h+dtG2fVWuLs+e/OjXfvLHf+R3P3vng6asUogEnFJAAyIhd71CpSxihdEI5tRuu7opv/7Tf7Q/9v/Z//E/69q2HzZVVbD0Kd8MI1pbo4xjCEk4M2cQAok51dWiLBpFcH7kR37k2ZNn7fbIDKEbTQrCiYhSzDEHY62tiiDZOSdoU5IYUs5iyaWU2kMnLs3Zi80mn3ivGjB1545jb6093N8yMwgqVDSOBgBmNJYz5LIsrXeFr4YwqoMCAzhnYwxJSbvy1lOEiIxK2bDEGGJOSFBWhRJnuq5TjmQOEQw4Ny3msiwlszDEkNQTaQxpGMbNdt+2/ZvbnUC5O45oi5Tk6ZP3R2k/ffltBG8tMTIZiXGESdCQY0rLVRNjPO4P+k01wvX9KITGuPX6vOuObdt2ww9yjbYpRzPrAinXUmOOjm+r6pSeCLqhvPeMoCxO773y/jQ0oSE9F9OcmVhrx7EXkaqq3OSyMxnwar2nOzrnrBzPqqrUuE9HdEUk5HQ4HJZ1oyO0OnUxRRJrYSZ6D8OwWq1Wq9Wh7cqyZJlkT1erlZk1po7H42azqet6sVgMXT8ZDFpzKhiVxbxarVRHRY8evavKFh+GIYZUVoX3XrXCdEAqhsTM19fXqg2teLT3PmcsS6u47fHYn5+vvPcGTVVVV1dXiDiGMHZTt/Vv/s2/udv13sNy2YiIpiK73Q4RFePQGOUmBVijrNKhH1PM1tq6KCXlY78PmRUSJYGyrPq+1af58uXLuq7Pzy+1FEXEMYVhGHa7fdP0uqTrum77TrFOHSFaLBZnZ2eHQzsMg/oBKlB1OPSXl+vr67Ku6/V6udlsdrud+i72x3YYhqHrQcRaa71LOVfWPn/18vXr18tl03XHk1SgsWSyEQSQzKwaZfnu7k1RVDHGkJOxOIaeEglCVVdFsd7v94fDQWGLm5ubPA+Dl2W52+2Ox+Ny1VxfX7948ULVSrwfVKxD2XzWWiLQmQBtbxwOh/Pz89VqdXNzoyxymZkE4xDLona2OB52Wmgo7K5YqsIL4zgeD50xZugnjuHxeFSCniJ62lzRTAwR1ZX0xYsX5+fnV1dXeg0nkVZdUbo9lVB8hiW8/MztC0RABN7b9Xqpbd2H/fi+74lAxB0OBw2SCuu8efOGZ3YkIjpnFaOMcZ9Sev36dRhzUfjVaqWpr/7m2dmZ9/54PKpyzjB2ujUuLi50V+qmFhFV1NSvgygqLpxjygDOuRgCEKr+Q7Oobl69OR6POeYQwDnIOS+Xze1d65xJKagNclFUirillLbbVLhUXVbIVJZlf+hjjFW2MptsITIA5wxZ+NTwSzN0Y40RgExsvTe1p9FEifOjMSEEpUj7oloul8fj8XDc6ZciovPzc2tt5kmdv+/6HLnyy3GMRJjG5JzRuhjobZKv2YhBEMicBCyZgorSiWRf2MV6lQk239x1XTfGoHtTpxP6Pi6bheZCvqiqqhpikDy59VrrQ1ArbxERHUNR+1CZOa3DMBBaQxaQNZisVitdmSdMSWYL7onhAcZ7UoLt6U10sbnpVeoq1Q7H8dA2TVPWk5FmSskAIuEYg0dfete2ra0X52dnm9f3BFDXdYw5xhhTZGbJPI6m67r1qmZObXswBvu+BVMaY9uuJ4lru9QB0JwzGySx2okZp/KNx3HMgM4Vy+XycLs7Dv3TxfVue1gsy5/40R/79vc+dlW1b9vvfOvbT589+fznP//08mLc3f/MH/5DC++L1cWv/8tv7cbgmnozDDEyeb9qFiA09oOKgA1DIsNJ0v2uhZiNQeYMYLXe+cyNiQCq8KBHlQK7VbOcPQCj8nZTSk+ePDnut0qntdYCZO14qcKDxitNVLTtqpVa0zTaQDJ+0mlkZmcLTkmPbGDRdavnrEZIIvLG13WtQ0Vd1zVNoxJ/p54oz+xVRCzLMsiEQIpIHIO+j44pIMtut5tkK+IUspwtDDntH3/uc58bhuHNmzcppaJwIQw6x6wAtAa3p08facXHzPe7bUqprqcFRpOEUaeKMZp+DEMPAERZ/3nbtiLZWu+914vRpktRFFoalM5reqA4sBZQi8XCzPq0+inOuRzGu7s7auh6+Y6yp11hm8ViaAdf+CH2AGCdLU5lJKtZPcFpI53aBVMxoAQWb4WZJYmSnGaKMcxIn77bSaMApg6AqnCIQCZybrYJ5pmJc6oM00NbapgyOZyN9RDRTFRXBAASMAbyA8WGonTMHFNCRHVw1IvXDwKcjrqHF6xHI2dAfNummLolMMEQJ5R5qnKZ8w+gPJwu2M2exYgoAsYYQTl9rkKFRNT3fYoxxkgAKYWmabp+PInl41vOLBswOJeRPBGE39LHEBFh+mEuxSeJ58hy9fj66vpRzMlaywDMmVBEWAABKDEDi/GT78eJOYWAOWcDgjhxePktc0qvcLoSfKDSKA94cKcyGNEAkJrJTsFaZj3rDDknIrIGjXHqwqpa+IHloYSIiCjSqktlnrDQB6pooq5ePmWcp1KZmY0lfMB0ngpy5fqJ6C+fIOy3FO/vf52u5FTP6z/R/CCHOPHF9P3jW9mN0+emlByZ07bCHyCmgXZyBXmwZkRvhlL8ABEYvTHHvlssFmjIik2RWXgcY6eTDzE5VxyObQyZJkM2EJ6Sb2BhEGv8YRgyy8/+8T/xb/7pn1+eX+z2Bx5DQhHjq8L5skjArqrOLx4tFotls2q7oWxqJiPGlnWzvLrCnItmVVZLlsQxJxZfVpwBAFNKbdtqC8oRoTUGTdcfJeUYUhYWIGNcSjFHFmBAIzGWhaucHcaUQZ0VIXKGFFNiFZMozFsuJzMjirC0bXt/Z/3jR0QGgFJKnMVaG2OGB3T+lP5/7P13rHb7dR6IrbV+ZZe3nfK123hJXpKXXRSpQlHVlq1GSpYtyZZ7ICeWHY89BUgyM0AwIwTJ/JEJEGc8hssomAkwTmLHHku2FWts2ZZEU6JEiRJFilXUvbzla6e8dZdfWSt/rL33OZf8rpolIIC1QRDnnu+8726/staznvU8CQFkZKan0cVU55szyGAsSU5x37bt4bB+eJZS+rJ3vv31T792t9/8/Id/TlNE9e4jJCW3OmdVnml6icYY5oyIBlBSBo6LyltyALTddjH3CAadJSEyhEXV921RVGVPc6oRqJeCIuEDTnywzt4yR7OT+tbNWy9+4YXc8iJTXdVMZcduHw4IYNGLpO4zD1/80Cfrt0hkyUCcYJ3OsghBIhzEb5T7HXMEEWdt3D5aLiC8tOv2a60zpZitMzmlbAwZzKiwqUal1IXeFUXhPRIiYFQX+HH0ikhEyHZvjB28wSaGo/YTiCCCXInkDH8yLMmAgIxEWk8TESQyZJoQQYRz2O93BFjXs7cfvXH+rP3Qhz94fv/BY/MT45Ehpya7e2hircT+puvm9cw6y1nIkDChODRUgen7vsJZURa54Rzd9UUs5gQHcVYh1rGKwAABAABJREFU9QIGTI2ZcS4OCA0ZECREBiZ1OnK+x+Ba6vseAlnr8joBQAElIubLICjHOCNCAAoxEtLSVillAFWvK1erVerivim0X8SSNYZExEOROHHKZE2BZQoREclQn0Ju02q1YuFwEbLk4ZES5jgInLFwiqkoCutt23ZlWRprdnFHZDCCdIPToxmePKVsrLGcmZzp2hYMIRYAbL2rAwHU1NMSy5zFtd71mIUJkQUIKUtGNN6bEOL9/uGWOu0hnWryKaW27SFz2x567zUNnpIug1ZAmEVtdnQfV24ajZ1GGtwoZKaQSoyZ6KC7/Ha7VXE9HM0h9/v9iy++qPSu2WxujPn0pz7jvD05OZHMs9msrmvv/XK5DCEAYFVVxavAzQqBGbJN03Rd56xFRPWsVwmUqjJkze6wPTt7eLQ8QjTt4UBofFV7b+1IQieyxrgQ0lCS0XIOYM6iHPkck/YPITMgEqAAD2YZulngF7dq6XYWY8TRD1l/M0D/ZETEDVv2IDdPJESDyYE+MTUa4qtaFCPCKPVrEVGIZLRkbJre0dC3OJ/Py6rsug6v5rrmkGCANJCz1mrLg+BIbR7h5pgzIgkKGRJhNGS9YxEyRUYERgFxxkLmFCMhYE7xcGAEQUYiZ81TN25rmCGvecZ/pReC3W73689//oMf/OBP/9sPfv7XnnOmnK9Wb3rTnde//vXvete7b968fXFxsT2/fP6FL5ydnTnnIseyLJ9+3WuWyzlLRsSm2W83l5/97Kc/9+nPhCx1fZKCq331LX/o29/71d9QurryM0zAfbYoIGxJICcEBguQO2b2ljJkBAQGgJw6sc594Dvev16v/+7//YcRC0Ife7673cbUI0q9IGaezWbRQkqQORKZlLIlanbNR37uI4vqqML6eHlMYGLMNQZhFmuA0BqMKSdma30WzJI5c8gJALquafZDkwpM3U7GqXqAKv1xziklV/jC2ZQSI/QpOrTa86FZnArNn68v67pWBkAfds65LnaovYjCue+uB05XKQoZ7x0iFIUPIaxD2Gw2ijWr3g6CSQIp9br8Hh0dIZo29H2/77rOICHiptk2TXPY7nfbNiQhQ8ywXl9WeV7a6jVPPtXH7vPPfaasvDc2hDCvaoVrc8455f1+PxXeCu80k1+dHDdNo3xk58xyOff8aLiZHBFR4QtmNjRQ2y4utk8+6RV3U+GLGOOw8DK7slBDUUXztY+UiGJOOCppTLlGjLHrmhjjycnJaO6XdAVzzp2cnOifHbq267r1eq2E4vl8vtls1uu1ii3mnNvQz6taq6d6AID3/vbt28ONECHi+fk5GluW5ayeT554IqJYmNoixRiVrn7rzu3Yh5gTM69WK01EZeT66YoRY1ytVnoNw2TkodB7enqqH1F3ey1FENHR0dF2t1E5gr7vi2LgizhHu93u9PS0KLxG6XVdx8vLptkD0MgRo6qqEI21qPD6br9d3Tjy3nddQGTN6WazmffWObfdbvXauq5TKAgRkbM1VlJ2ZZlz1GTeEL326afX6/UXvvAFRWZzzm3brlark5OTy8tL7Wi21h7aRpHlu3fvahfzSy+91Pcx5zyfz0MIkvn09PT4mFerFTMfDoe+bxWbUFJ8uz+g2oshGnI6DJIw5LxYLNQtRlttnTNdzDGneTV/+PBcT6fiuRcXF1r/ALQcMgIimMO+PT6ezaVumubiYkvnZ/r2raU7d+74wqYcmi2TOegcPBz45KRcrVYK6c7n85xjCB2MQlvKEFfkhSXF1GvHuu68Wu1Wxer5YqX40Xa73e/3u+1hNgMFVbVKsd/vN5vN0dFRSlxVs7Is5/O5vpcYI6IhUkTCeg8AsNnsYnyg+btWZ4mo71tjjFLaFT2squrEPjqyNWYovTvnNptNUTrnXEoK4qNANoa0ABBjfPzxx8/OzkRkvV6fXZzfunXLjRplanSRc66qsm077918XurEV2xL1z1lLOpz22w2LGmxWCgleWo70LmjyImmjXVdI2Lb9pKH/sKyLPsYuq7rU9zvGu2lcM6tLy7W6/Zzn/vs6Y0j7+34Xna6CumYv3fvZecgpfTw4bkwOVccwrZpmuPVHJEHwYfUq9gdMJBzOWdrjCksAGgPymDYas2+3YNFDgMBK+csmcWRc0VZVVrSUGV55VFqI8VqtfJt2/ft4sYi9ikHbCWMd53QEOdsrBVBER5XQkESYPGenDOld0SEkuu63u53bduCBWXKu8IyQNu2IcQnnrg9n88vLi7m8znLIINAlqbigSZ9WgbrU1T2sUJpqi2jU2/4JbmqqlS7WRN8bcFBRMXxj4+P9/v9w4cPV6uV80N2f52GoitPzlHfaVEUXdcZwBijUnmY+7qek0COqes6XxTGWs6p6foY43K5bHd7yTyQstWWE6lpmuOjhb6dQ9eK0NHR0a8991I1W1pryrpGi0hC1nCKUy2Zxx4X9YdOKZFAWdY7eyDB9Xr7K7/yiTc9+/qnHn9qv2/unT2synrfdx/5yC+Upfvqd7/r2de/iwkzwnu+7ht/6r/5u8VRib5w5ASEwV6stwYwth2BVFXVhxYQXV2ShUMXzNikiIiExSPnJuIAEIcUNWRNKTXNfrfbKBtGd4dbt26VZdm3LqV08+bNnHPfxxCCBjAa9uvOJSMcp+dVglRd121oAEAVGjj3RiWqrGNmXcfKulJsR8uEImitDyG88NKLJKCqGsxXgm80arcqUoye1ut1znm5XBoi3YJVlFn59RqPOed0NFpruq7brHdHx8uPfexjqscym82Mwf1+r7oWdT2f2jLUYYKIMoiGFiKDNagug/M5qiXmnTt3rLV3X76vaZTGAFVVaAqmyzKgWGeMJWsHYSUlMmo6pmPGWju59aisUFEUXddYpBijY3c47FJicRJjzKLwKWsBZiAEwah+O5Q6CzshXDASkIdqm8JeI+JpaGBo6hgKaWhu1Twn50yAupIKZNWvwGvCHTCSDTWlkZFuMyJ0AIRmNKvx3huDSsRjFlXPYGJjrAHIk+YAD8nSAMADyDXtaRoZ0HrSCU1g5kkPGa6xb0AM4qSNeCW+LCJjZvTFh97adIoRGjZTHDkhwsYakNy3B+XxxNG5YqBe61eNpwMFZ8Z8kkZVxOkLERHkCp7W3+SclYGyOj4RYw9tz+RyzpaAmTOzkDHWWGshxZQSwpVFlX4vDIlrxJEK1wdt3RcRhNF0PuUMckUrVh+/KXpGvOZ6N152EgYByZIZlAYKkqcXN0AeI6ZwVTgS4Gtkdp022rcLAPrkpvEzZeN6uZnTNKqHUgqqTIg6PosuQzq1cnpVuFnL4DpmppBF1LeKmUd7EADgPGh9GLTTqafbecVI+5KjbTtdVjQz1xvM49QTyYgGwejY1jalpj0YAW8LhpASs2BKKXHWEkLKgiCECOQkZ7QAhkBofTiwwJ/403/ma77+G0xRrXcH8l6yIOJyVVtrhSRxLquZddWsql1ReUHrPJCxvrLWWkOpaUxRijGAKBDQWGOkj7k5xJCyJpDWWjA6AXkkYwIzsAhz0iWBmRHQENbW1WVx6GObGJGMsTFGINv1MWc2pWNOAOCNTSJt25IBTIlz7Loe0MSY+j6yABpSJr6KkHAGJGHmiSerkKGOFmNt6Dsi6wBQGFiMcN/tZyc3Hrtz4/R4FVM/q+qbN09ffPHF+bxWNY8cB8Piwg7pASJmEBn/Z2SQJzIZUo5VMT89WRq0bRdDzAwpZdYecyJTs/+B7XsfMSC0AroFuAvvgZPh51cbPH/7+V+G58kSJ9b/f9U/BQCA9ewN8I7v/dLfv/w3fq7dffo3/uz/Hx5fCTcAbvzufifV5dETK6zqxUnNmZt1s3/pvLvY/+6e5Xd2lCfz+s5xMStMVeTc9S+G5t7l7+21WWstpATWQupe1TX3lccb/snX/lLX90NsQEMPF7Ig0Xy+PBwORINvhDY2GrSaSPRtd/P0xvHxyRe+8AXnnDAIABLGEDmLNUPzu3Pm9PRmzocpW1DcR1sgq6oqy1JbiHR31g67oii069M7BzCo78lYJw4h2P7RekcDJyVHJTFpsRwARKrBqkt4sVi8fPfFX/30r/6hb/rm1GUmcnZA67Rta9oCjHHG2Wln1+6uLCw6eUmryENXuWrMX/ewmi6JJqXmEADAji1ZxpgUA+TRJ+6qmA1jUGGn8EyPvo9lWeY8COaE0OUs+taMGXalruv7GI0xiLLpuqHvLaUy1oqAaMA6BVciUhTVQB6hK012GYIeZATvLYDwoNw+Bk6QDToAYGRgYQAyZA0RYEoJAYmFQSBnSEkV0iMgEEZqWcQQvfWZtzz7+me/97v++It374nIYnl0enrTF6X3pXNOBJCTSjoIquhPcs5oATulhCSF87vd5h/+w3/4oz/6owXNV7P5W978tne89d2P37xTFjUhSsop9QyMkJEzAgOIQRGTkYQ5F9aoUAwRSeIMuXKzP/zNf+gXf/GXfvGXPvbYnae/5n3vq+v6xZe+8MlPfvLle5/drNe7QxbJRDRb1IjsyIaUUPjo1ulrnnhyMZs1h0Ozb2ezmbPafWKYc0g5JxFRVTHLg3ZB0x3apmsSRyAJIRtjck4IJuXeucK5IILM/axe9H0PwGjsvCyVd9w3raoo6NAy3lVVxQHatjXOl1VlrU/Ci8L7osjMoWngWhgG18wtrLXzqgalbuQsIjHn/a6JIRtymkRozNd0HZF94aW7zrlmtwfV0Ferj8yXl7u27Raz5eniOIR4sd3VADGHj33sY9/ztu/5qve8T0Q++elfCSHkyGjAGBPa7tC1MirMKvcnwMDXbrrBzyCmJJwuLy8XXD1y+oc+9NyrLCPQoI//1FOzuq6VCAwjAbyLgYhSTm40HtS7I4GQ4tSqMiGz2q9dFK5tD03TrVYDFbQsaxHRTEFzVGvtfD5XRYuHDx8qWVLvS/Gp+XyuCK9ONPWvV+FsPddut9PeFCLK0uecV6vVodkfDgdl2+m5aGzVUiwSEWezWWyTnm7qc5om7IQ4i4heqh5KnVYYUYPnoigKXyr2qmGSQiHVKHqu6LOaBGq2LAy7/b4sy8ViUVXV5z73+aqqlsulDLza1LateuhpVqxLXNu22kbjnEHExWKBAM65y8vLyR5Q2dkAoN6Mq+Vyv99nAIUCRYY29glUzTkvFgtrrSqB9DFMzenOuf1+XxSVCOrt7PfNbDa7ceOGqmmLSIy9PtKbN2/O5/P9yy8gYl1WZVkC47pfA5Gm92RN6uLZ2RkAH61Wfd/cv38o63o2W1hT9J2EEKzpF4tF13Y6TZDFe1/Xc0XK+r7f73cK8t66ddy23X7fWosAoELD3vvjW+K9166jGzdmN2+eyKCuPrfW9n1mZnWDVLJzyoGIAPHy8pKIQt8fHR0dHx8/99xzivW88MIF4uFtb3udypHdunVrtVq9/PLLzKyDUCvHANrTYxCT9mhba1VOXfmG+33rnCsK1FHknNEdn4hGUKY6Pl7tdruJWe+93+7Wp+bRcPNsXlvcIAmAkAEtpegcVDUwJTYCwPHxcdM0yqxUlt/hcJjNZjqMdUwiouqbt22rFr4xxvPzcyK6detW3/f37t3bbrc6jHPORemUxK3KEkSk9SRt7JhWgIm4ohnlfr+fzWb1fHZxsbbGa3qoBPCiKE5ONP1MRVHlHJlhsVhkwZSURa4yPnNg7Pue0AGQDuYpkjGonbtSFj6LAHKMfc4ijMhj+ztHP5sdmsPZ+dnsaJ6ZkySdC85YtV5U4ZqyLFXNvO8PynnX7L6u65dfvvuud32ZJXd2f70+2zFLyNG7InCGcekgsgxgES0ZyVx6VxTOO2MsGhDrvTHUpdR0h+Pj48vddnAnBnDOnZ6ezOdzAAghnJ+fZwYRKeqK4KpVS3UD5vP5drtOwvoqdZoYY3QUdW1ARFVyM+RSDtoFCKO4uS7j+u60oNI0TSkeRjMSRej0DTKzCISQjEFly3LknPN6vc7CObDBsKhnxpjDg25zaG7ehBziqlp476XIoWkByBrCopSCNptN7INB2W63i1lV377JkZPw6enpi3cfdKE1rljWlUFCQAscEnQhFCpMYYyKZRtjLi4uZmU1my2qqiJrUkwhZjRwebEDoTu3n7y43F1cbg+pK8tqPi8/+/lfe/MbXveLH/uVOzdObz/9+je9880f+dinFqdFYo4ZrBUAODRNf9iXpffep5zRmtIYfci6m+jDwVfxqK+qcrHAvu8FBzyqLEvr/dTooHv3Cy+8YK2dVQUAbLdbay0AXZ+/KgK83++t90p5VqTVWh2oAwwqwPP5XNLgKKMqlxoVMOjqR9p8KYJN01xcXMQY66IMIYSQtDqoZwQYhBCPj4+3223bdodDW3qXY4rMGgzA2PEZR/9P5cFYa7s26Datxd1JlV59pMuyPDk50Yeg+3tIOfJAFsHBUSn3fa+xBwDoMNNdPsY4m81UHB8G26RO5yMRFaXX5gBlQ+u2HkNPRAVRFpgu1RiMMU/TmQg4pial+Xy+j/ttu3WuaFNbz6sYozWKD9nVajVIoeHI9x5Cw8GeEaZHM7V3TeiwniznDM6pulDOWcY0Ug9jMMVIxpABHH3JpsrGlNjgSL3h0U5dz8vMakCnqRWOwqA4sHcZR23KnPPAnyGRa88FAERFb40RRs5izCDpq+/7CsREi6Pmw/Qc9IPjY9AvHlAbRHw1QbcBSmRGFHVyl4lwdC3yFhEQE1OvgQszq9i5oBjjGIEZ8Fq6pRfE4+MaEOdr4TsijT0oV/mndQ4Q+xDq+ZwButDb0sI1IBsQyaolIk8Y8cDy1CiayBjkNGiGWmv7MNIPURmiIyX8eup7jXUl1+jAWQTJGYDMDEMDPzKDc8ZaC4IKH2vDZso55Cv6+fhqZAAur+oEQ++thu80ItTwyjxnhO2Zr1OGR/kLAOCRl0qDk9ijMZQ+9NqpYa117toMkivfvyu0AhkRgYUlEQ3XjKPQh145vAriPHCxORljBBgJEWggOdqBgwZiEyTONuzDZr01DMv5jMienV9u94eQYtv1KSUAQjQimQhBxDknYlJiY21IKWX+7u/9vg989/es9/s+5WqxbENPSAWhS0DOJk7M4qu6QCxsYdCU1UzbQhNHEdOFGGNy5ez45FbTbjkkZ4vQRbULF0BNObz31vucWTgbcorMIxIhAVJKSUUdEFmQOEeUnENgJutsjEEHftd1h9YdzQpjDAoIQuj7lBIxWYOOXOSs/eMxXddqJyJKWUTEgMnXlpoMV6UvESCySIas8TGRQBY2STh1KXS7zdogKP+x6yTn7OoCAHKO1tpZOdi15ZxDTmNVQFRoCAAyRxCqqlloDvN6OXtsdrk59CHuDvvEAoBajqvCo+16fwfH677lXX/kf/yPfvRP//XP/dgv/G59579vB3l7/Npbz3znV7z1+9535yueIXM1W/f3Ll78mc/96t/7qS/85Ceah6+O/f+eHeVRffLsE2/5vve94Tu/4uSZx9AMyx0zX3z2/q/905//5D/40MWnX+rWze/6qd/wrV/2rf/tX1w8cfK33vpX15+991v81CJWu3ihDi05Z0nZGzuhkIqM6D8pOzhy0iC+qqrT0xvK3ZugKGdtipEQy6Jw3ufEmZOqWGjeqAGWYi7axgsAmsqKyHK5zGnYDnLOs9msqirtE5/P55o6WutEpO9fBU9HHJCRutRoQYPOGCNLiomJbIbchZ4MeG8deqKcE1sk631ROusIjfOFr4qBogUiSdu5YBBa1fgBBTX5nDSRRcTAsA+rRJlC0TnlnLPkrBIZQsjCIUaJARF7yTAGVAoci0DOSRElva0Mg2tKMdiwJBwZl6oXlHMOYdANUOhbRJiTOjURUQgphK0rirqurXXWWoEsIpNws26RicdQEHF0ZQAzANADiRsAEBCJRIjEAACSBWJmFlAmPjvVjL6qzqu/c05kOTIRGWdTjKHvyZh5Wb3z2WeJrDDGmFPbh6ZPpM+KvffLumRmsoqgtcBsrTVorLEEdPvkzg/82b/wzmff+ZM/+ZNPv/7Jd73rXU8+/rhBFOll0KXSVjMCAsgokBOAqDIZM3NCzsiZc2IEEtd3dOPk6Ls+8P63vfUdz7zpTV/11V99fHyqkNav/frHv/CFL/zCR3/hc5/73P37d/uujanH1FZFWfhqNV8sq1l7OMQ+QmZJUSyySNd1bYg5ZyRb2EKhvRxj27aHZtd2bU4RiI0x3tWauoyo3BCqFUWRrU0pdV0kTEQEZHxZ5Jwhpcx86AZ7Ou89Axpjbt++ba0t6qqqKvXnMMYoNxngldavoyMox8H/KnE2Fo1FNOQKH2NMnGNOg9aEMSnn+w/O1H/JGlMWlU6WQ8woxhULW84EqY8RgBfLignX6/WLL9z9k3/m+7/u677u7/0//4cP/tt/fdFsfUXeeyCsigqt6fte9Q0m2q9yx/TL66ra7TZFUbj06AhNbdLV6lbLWvPlwoxi8cx88+bN9XodOU/cCJ1K+jMRcUzamaEEzxCCKi+llHKO6guvzRwKS8WYi6JQpQ6dOCklbric1aenp/v9Xme0UmU1M5rKA4t6Vpal6g+IiErGKXasEFgzmjZrv+B8Pvfen91/oMmdUsZUYFdlr5kHYRNAUXkQHIkRWuFTm4eU0mOPPXY4HPb7fV3NvPch9pvNRrueFUpWzE4pabYbOCvaGWaMORwOu91B+W5VVakJodosqxDBk08+vtsdLi8vj1dHwlIWxfGdO7PZ7MGDB2dnZzEl78uiKG7cuKGiECkNavjLxcIYc3R0pNesxb+2aXTT0ZU8xrjf74+Pj0Uk5UHrT99a23eFG/RSYoyL1bJKSYF4XTn1+Z+enup7L71rmubevXv6oHR0Kcy9WCyU9aY4SN/3nAQA6rqezRb75rA5e4CIqgOTcyayq9XM+rlzrm37nOEPfP3XPPPMM//8n/9zYS68V4ItGWetFYEYkytKZ2ixWOgZ9/v9fN4pBtq2TV3Xb3zjG15++eWc8263nc/n1l7hZUpN1a6doiieeOKJ2bzabDYYB9eTGzduiEjbDFDd6empjvMnnji6uFir9kWM8eLiYhqii8VivV6LiHKxb926FcIgwKrPfL1eT1je8Grag4gsFrOiOLm4WIfQzefzlEgxW20qPxwOZVmqGZ3NFuXRvLCiKE7mJ977e/fuMXNZllpm0P6q9tBEiFVVqeWm9/7+/fu6EZ8Ux7vDfrvdKqKtM1GNszSKIKKuDU3TDFqRRCqzAwAK4qi5ro43vMYPI7J1PWdO+lWaC+u+rJDFYrFwruj7WFVV03UK6aqgsCVarVZlWW42lwqbxNgjGiBLg7lFMsb4orDGG3QpyCEe9Bucc9aBiISuVw6mqHLdQHtjApShp1ys85rwhpywbX1VklAWsYO9c9Loy3vvXJFSNMacnp6q1q1zbn25BeT5fPa5z32udLPj1SkAiIA1JqVEiIwozIpxGJSBfIZclt47YxA4hmigKGchhLPD5b1791anJ4gYg/oWUuk9ANx7+a4uL4fDQWGTtm2BE49ec4iohYq6nh+6g66xE6Sg96hjDwCYuShdOAzqsvq+lNXuvZ/sr31htfVByQ3D+syMo38pDbRO0JtxBNoepET1tum3l9vVanFyctL0nYyuuTnnx27djodWItR13cWkvRTbzSUJK7aYUmKG/WGfBVYnq7P1rpqVvvKx65nFGHKFn+IuHZYkmZzjyOv1erk8qqqqnNVpn1lk34Tnfv2Fy8t1NZsVvqrKXJXLBEkkHprD/+sf/H9e+/hj3/2B999+cv7Ms2/90C98arvZ2bKSzILWAGDmuq4tGRGx1oec1ts9WVMVBSO0bVs6i0oPeNShbqsaVU4hqBGZLNCVwmyMAeQJ1u/7PoRUVZUyHpQU2LatQtUTJqPbvZYWFMNVwlnbHIqi0uC29EVVVcbZlAKRN96FEACxtH6z2ex2+7qu2tDHGJ0raGwbUjC967rbt2++9rWv/fjHPx4yLWb1ycmJcvx1JCja7r3XiiOOBDUFQI6OjrquE8jX+StTcM7Ms9lCNbX0jPo246hMPYFjuptMaOd6fUFEKQ59/zqqu67LmVV6a76YaXEIEQ1ZjdM0h8o5G/sKRQotTnnvmdNmszGA2laysAsii2hsRYvV/PL5bYKUXc7qFkgT53TkxeilY5YrpurIcSYiNGrQNXwqp0Ffqeu6NFKbaZDgyIpDTqegayq0+Epa7gSPGhqkXkewJiKalJMOXBk1oUBFRQms9QoXIoq1AwibcwbEKXG1xrvR8YkzKFkcAEAQhmbtKw0NRYrpmqP6tAABoa7jxhiQV7TMv+KQnEe7SREByIgGUbIgjYnWcC6QEIKaeOQYc0ooEFJE8mjskGiNl4GIPFrbTa9merADzvul85aZRdDQyY1TV3jMUUc2cCZkMphUWA2JeOipFWQhZGYSBADhYfG/9uQJCA1QFoHxbRpj4JUuiwO6Oz2VYdUWIlF+Fk4wugAj5CzW6FIyeG0dur6LSfebKbvOQ5njSuQEQHNYYWaLV837Mkps6yVNvxQRIiHSBBCM0bsHXYmuz4VHv99rlHzljICaLMEgVHr91aCAtmaklESyIs4AkIQ1H0gpCcgjzwKA1hkVsBruRYFTuJK7EWbn7GJx4+7+TPd4Abp/7+G+aQ6HQwSOMWYBYwAErPF+6E1DEUGiLNyl+L5v+Mbv/f4/2cbISOjMdt8URcEoKSUSRwCCRNY44w2SAQIASJwYBAGEjEFANIhVVe3bbXO3Dwdpu9S0PQA659o+WGtxJMKzCIMwDF0RDMiTyowhSwO/b9PFqizqqgiHHkkgAxGqJCgzA5GzlGPKPOjwGGMyx9D1RCRoimrRdJcZkZkTg3GWBfvUISIYAhmqWCKCaERUTwrQeucoptyHHhExs3AunOeUESSm0IcOUOaL2WpVdl0Hy5lwAhZNOHXiO+fU2GfCPTKo1zKnNnBgBmyablavKofAAnXZ9bGPkYFDyOlVZJR/WwdZesf/4g++/+/+ZQD44//sP/+xv/R3PvbD/+I35Tj//nH9mN85+sr/5ANv/Lb3zJ84KU/mj/qDkzf/0a968x/9qubh9qWf++xz/+KXP/rDP5H23e/1hdnSP/HeN77lT7zvjR/4SlsX1ZdcGxHdePaxG89+15f9wB+MTf/Zf/KRT/z9D73wrz/+u3R6+9qvf/P3/eh/qipA/+vP/Lf//Tf9lw8+/MnfCsd5t9tFF733jsysrCaqiGIcoNsZ4PHNo+Vy+dxzz4mI5m8ppd1ue//+PUTSRFplUrVhnJk55/lsFlLQsr/GoBo/aViiHjtqrKypRYzRkAWAsiyRBlKzcbbv+7OL87ZtC+fbtgshPM6vwpQX0dRdUSr9ofBl2zS6ttjCI6K14eLi7Ozs7Hh5QgDODxCDMUYQnaWiKMhaGqT4ZQw5Bv0lO6qsDoVSurKdkKuaFmuCGmPU6heRHUDXsUlfRukn46zHYVvRuMhamxLH2IgMstB6f/owtYoWQkAcvAT0syMjLI8xrig6fz2oU4KJshAA2SIpZqEcIuOKaR9HvNoHpwsgAVDAQAOGxIDDQxBgRGQcnBsQmZQBLoCIbJzNanY0uCwiAAFwjCHG1Lckg08pTRaFRBFyDuScI0TK5ECEBAA49d7a2HdgTB9679w3fcPXvfPtb40xnpwcscQYe+CYOBljkJBZEI0wChgtyyNZkCwsnHJmYRYgIUCQzDFkpPe996ve+973VvXSORfbJgvO69lXvPOr3/WOr/zO7/juBw/vfeITv/LzP/9zP/vhDzVNU5rCIZWmOHv40JF57VOvnVU1IvVhHxPHmFJkIuOMRSROzIljH0KnzpyZHCiTnZmbptnv9yKcOU+RuWIfvqxylpRS24i2BKGx3jrnHJBJLCGEbn8IIbz+9a9/8qmnvC/b0FtrjfVKMDSAeVA/GpL2oc4kknPeMlex0ECorKrjk5Ojah5jvHv37mazKeu5ZmJ9H0FwvlpGZjDmsG9Dboe3RlVRFIS4PzS77T5xImuKoojCh33/3Od/fb/Zv/Vtb/orf+mvnqyO/s2//onz3f3Q5xs3bjCLBDFkFfckARlbPquq0gp0znlgCW0fjVhZ7xbVQtIQSGiYqiRfbaQ4Pz9v+sH8ZghRRsUb5wwAIJvlcqm/VC0FpTquVqsQOmZWKx79oU8xtIMkqE5AzQBzzs1uf3R05Mi0+8OsrEJMQ2NHVWqt7uHDh6r5MK23WocriuL4+Liua2WHCVLf97vdzjpjrT1aLCGzOlxpIU3vReWJY4yHtpvP54T0/Av3T28slOerEft8tby4uBARTOb+2cOTk5MZYe4TAMQYy7L03itPdkJ5UKlIQEptadtWRTlns5lqUmt0rZC3mtIrjLVYLI6PVymFEEJd10Xh3/a2tylSf3l5KSLAoiXMlJJzLmdYr9fb7faw34cQ9FEoEp1Hmw0YeSfMfOPGDU3RQ5xen1P8XZ+JMebmzZvWO+W+nZ2daVe+/vHFxYUiXM4550AN9AB4sVicnp7udrs+hpfv3dWxt5wvzs7OACjFKCJd6M8uzjebvfdmebTyzjnn+q7R7AONF5G2bVfL4uu/9n2bzSbHUFqqyzkiandwCnHfbHa7XV3N65lbrVZd115envd9f3R09MQTj927dy+EkLM7Olq+8MLzyoNrW9TrnGZujHGxnFV1YQyenB5pk7juemregIgh52677bru6OiIRldA3QWUKaxlDOXge+/JADP3XWyahnM2BN4Zzqz93VrYQMTLy/2E/td1PZvNnHPzeYjREVHTBOdQWwqUCz9tT9773Dw6T9/tdpfxUjFBfYlqr6egs3KuFfTQUsqDB2cnJ0c63XQjnlS/Li8v9e6UsKylu9OTm6vVSiU4EHG/36Ma/eXgrNehdTgcpsxUkd+bN2+qHDYR55yNN4ZM3/dFVRokRHM4HICGdvC6rvu+PxwOegvMfHZ2FkJXlmVdlylx0zTGFd5rtxbGGHLOi9oTYYxdSkGrfUI4yVsBUMoCABaJkREH4z4tBosI6ZqcYlXX4DBxxhE0nBCxqiytK3xV5tiGEAxRXdfb7V4fRT+ah3dNd57ORcQYTCE541nEAKYJPEFwzhCKt9ZZIhBEQIKi8CrRvt1uq/lMtZ5UGrHvOhz1lLXZX+NAZo6cd5tLRb1SSqp9v9vtELEPvQaTU7UjpVSWJdvrPlhDTUKXAo2aFO7/whe+oJGSstBopJzrINntdtvtFhFVdAgRtc6ngMbR0ZEhd+fOHedceziU3nddd3rrZpFqXfFyjH3fV7cK773zrixL5jYzl4WzJyfIuSpLQ67rQh9z2/ZtjJebdT2fP/bE7UPcsYHMmRDJGSs2xywheO+dLaCgnLMgHg6HptmvVisYWXcp5Z7ZVzmkgyssAIaQovRCAmQCy+eff+kXfukTp7eeeuaNb1ouCyZqus66QmIi68rSGyTt1Ys5GHLWWwAIMVhr1a91wga/9MiZm057FAY02V1TRp1WXRpFIUYMEK21up5PfT9N0zjnQoxKSb5561RfUNu21lHTtUVRIIISjZU7YoyJOeWcDef5vO5i2Gw2yoDUC66q8saNG9vtNoeBWazlWCWYLhazEMKLL754dHQkhKoPNqpO55yEKBtjQEheGSrLWMMA5MIX+oim4FmLrJeXm8VC+RxBw3KFg3Wzi1FDJKPJhd77tOEawJhlQuestVqTSyn1oauqar/fx5DUU13tHGLfxVHYR/OLAV8FICLvXc5ojMkhKr4PBk5PTxHNOl08ePCgdgvI0Pd9n2LLrf2i933t3gGG8rKWUgfhP8lsLac49GbCAJBn/XnKu0QEDUzosG7eU+5kRomJ68jgFAaJCGAGHliiiGCMMQOt3ejWpUszkOEUYRC/JZmAwpGOPYGSE0VIRm6p/mbA0Ed69XV4lJkFMsKA6yEiIQEYRG1KjY+cJwAAhoSQBBSyFhEAFEJV+cCJSK5u7wY184RobFEwc0hZBQeGb6MBDJdrnOtXvKRrmWdGxe2unAwVVbTWzxcrQcoMAlI4RyyGiAkh55CSQTSCVo3pQBSsN2AQkUE0ycSxB1BfpTUekafOFxhVlWG0A5rgNlXbHp/w1d5PNEg5gwzRjLDwaEykswgHze4MACSAhhApDwZHV0VIxRyn9WsacvqzsrSmf4KrbBZZhrGNWRCR3CC05JxTKeovPayxzqmVsFVil35VzknkCpQfMje6Isgr9qgrzDWMIAo/Oh7arNfPyXNPPvmkikMNSX5ihRv0S7zzkKNKjAkCC6bEh7YNiRMLCyAaQwBCImytm0pHgGi92zXtE695zR/5nu9tQoosgZEBrXUhpcJ5IIAMwkiGhikiwJl1N82aruuQNkY4AyOjQ/J9zLumCX10xgmYHBtLxljQ5hQYdeHJOBQQlsScGUWAjLMGHSEA+MhlPYtAm+ZuCJ0vqpSyCBprrXfOOUMcQgeAxlECA0QAJISAZrM/LOerzJCYx5qWiTlmBmOoD8l5A4BZgFlQ0jgeiUWITJ+6tg95GF+kYbduchrBzGaz05s3NpuNYh/WWkAyhqbtsKoq5mE1ySkiosVB5DTnDGRDiPvdpXWFCDiDfjHr+ojerTc7E38X2M1v+d73ffvf+sHpP7/jb/3F3Mdf+e//1b/7N//7chB983/955/94++z7tG6vdeP+ubyje9/z1PvfbY4mn/wh/7fv9eX9vQ3v+MbfuhPPPaeZ37TvyyP5+Xx/N1/6VtnN1eQ+IWf/tV/97Ovnjj+/n/5X1xXnP/z//q/+Ntv/48ufvXF3/Sz1rvZbNY3rYioKKTm9lrn0+VF27uUUTWbzVRHFUajBQBIKTJzzsl7p91Ek2iDIj7XUQlN8zQFVfxIJ+np6WmMfU6QR3u09XqdUprP59qFx8xo6MbRzcPhIA8fXRHUi4RxtYexK5mZnfXe+77vUMR799nPfvoNTz/zzrd9+WJ21Hdp2p6MHYxnY4ylK5gVGMkiwogCYsZQ72rnYlFaDY0s7+lf1bQAB5ZAYua+j0F9EaxFRGs8iJbh41QYpoGXFDRtm9AxIvLoCFDVsUW0W6s3xvR9r3jlxCGY0ma4Fn8DgPbuMbOxSERo3VVrDgBL0khvuLUxwNEXrSAgCMAo6U7IOec02IwwGDJgEugtYxLVWEZLCAhgTAHXGlxEWFJWIjVKyr1uQ0AyNI0ZWxiTUhDOLJIEjTGWwBjHDDH2jiyhxJz6Lgink+OViKQUcwrWIBImEeGkpkowWg6ICnOIABgGNNb1bcjMlS+IiJHLshQAtA5UQCX0lghySqHpEyABEd05uvnEN3zz17z7K77729//y7/80eefe+7Xf/3XLx6e/dt/81PvePvbn7zzmHjXtH2UQbIAVRQ7MaDknEPXxdBzCtPAU4mtvuk3m02MgYisG0xHNLSw1s9mMwDY7/dAaJ3nlFPOafT/rOtaZcrJuKeeesoYpzTePiRKw1RlZgQgQRGYyhhjWIg55y4GlZ0pCjebzTBz13WmcMeHA5FV0znJ3LV9PZsX5Wy9XvtipoOfM9TLGxYBUC3nuhgHu8sYMwrNylnf9tvzzZ0bt/7qX/pr7/uK9/7zn/rxf/kv/+ULz9+7deemOsctZ8ucMxEomhBiH0JgBEXKQuj6vk/x0RKTIQS7sGVV61DOOYOgAppHR0dt2/Ypako8AcRNs1dSpLU2tJ21XvNbGinJXdflHBERrTl0rRLPEQeHxuQGhQr9e2VST7mlzhEFMhRHO3t4roluWVSz2cwAnp2dFUUhAIbsfLY4HA677f7+vQcKlIAZukJzzn3TvrQ/qMGXCkfqNNdF1Xvvq7KeLxRzUd2D0T1J9LK1sHd8fPypT31qt9tNZkoar1ZVtdlsAAZ5CjPayRJRHzpErKrZYmEV1lS2rI4cY4xKXhBh23TGGA3PZrNZ6hMhtofmIx/5iLaN3rx58/Ly0tlCRNCQMaYoipTMcrmczWZ1Odvu1rvdToEkZZk459q23W5bRFgsquVqJQB9CAoxt22rC6C+0P12V5bl6enpw4cPd4f9lFEqnZnI7vfbvu9RqC6r9W598+bNaS+r67rp2pBiVVUq3//w/r39dnd8fKrPEw09fPgw5wwEQHhxcbFYLJ44ehxY1ut10zRo3XKxQEjzunrqicd+9kM/dXZ/W1VgLRRFUZQ1iksxSc7z+YyIUg4sKXNkSc6b+w/uHh8fP/OG1z148MBa+7Ff+SVmto6sK1arBTMXzuuCkDinHBRBQ8Tz8/O2bVXbwRgTUmKArm3btrdIakKl8Md+v1deec5Z4+ecc+Z4uNgpogcA9az0hc0xiWDO+ejoqGmawlvnjIo4A3DOSTvlEVHldxWEMsbcuHGkF3l+fkGEx8fHikgg4mKxOHKrR07etm2iGeaR7o+KaCu4/NjtO23bvvzyy8aY/X4fY0SEUT89aHyiKva6+fKocr7f75Wwv95crFarxWKhe7Q+KJakTVQKdOpn42hioSiS1mI13WDhQ9fOymqxWB12+65rmZmAYs6OHFm72WwuL/vXvObGfLbMHJfz1X6Pse+3SXUjJXZd14WyLAWHwKDrm31/aPYdM9gM2jsf+wNzLooi506EB0a1QCaIJNqHjCBk1QoY9VN+Vmx2W0BQPSuGnBIDwNHREaCRURm58Kh9+s75oihYUt/31nhjRJVDcGzN1jllkBRYIGuVaKiNU2CsITDGVVW1WCy22y0Y8s6FGFW2VRAQcdRhI62KPXiwPr1hTk5OuhhS6K6wLBlIQroiKfqvDRxutN3S0Ojo6Ojs7GyiFOScj4+Ph71JREXwrbVnZ2eIqBjxcrnUhgAcGzX6PjRNo+UQ55wyLWZlpU9SvQp1w12vQ9d1QOicUeXq7WYTbvbLWT3zi33bALAByCjWEmRQdJjQeQ8vvPQyOmOcmy3qs/VZkw+F8yiSMnrnjDEog1qdd+XJyUnTNCqDc/fuS0Xhjpers/sP2tD3ITFzZlwsZ9J39fEcISJLG9qqqg0ShPShD3/kfL17/3d95+NPPfXg4Xk1X2x3B0RhTlVVaSzahZaZrS/V08jZoR18kDR5BENyCgXBez+bFUpbnsKGMB5uVAXRRUNXVN28FIPWeLUsPTMbb1JKt+/c1Njm7t27AKA+rikl3buLokhpCGW1hyPnfOhaNaJHQ03XeutUu18HDPsBHV0ulxcXZ33f6sqgO6ZzjgSQ5bDdWaTKF32KhnBqmtENUTu99LEgYN81aI1Wf8uy3O12Uyv/vXvbo6NSFYQqXxjAyHkayQDQdZ2KDGsxWDuQqqrS7iVJuXSF/lIXzPl8rhLPfej0ROpDgyOHOMegNS2WvFgs1WhBQeo8+u3dvn272e016uja7sHuwY0bt1IOq9UKtgYNrharfXswrbGCVwDcBOEZZ5XGq/a3LEKIuuNaR8YYJAghiYi1Lseo544x0ihSIyLKgpyIMDqMJtbwdMNTJnB9ZoqIAFu0OP69YvyCQmNiM0VFOPZvGkAe64QaohER8BUmm6/pgej/T7RZGUu4aoE4fQRAYTaesjLlZ/xG7FckIso5AhhPRkQiC4kQmWncJM6c2VqbY1SBPREhnXtoEDEP1GYggWmmAQrzsAJOZ5ORF6Cg/fT3MCpmgAg5W87qAXojG2OsHAlOOeoww1EFhiCrAAgrewgkZ7E0kHlzP0Clw0sZhSlyzjQmi8yMRAp9v+JiAPAaM+uLIH4RyXnwhC2djzE66w2ZNBpRqv7H9ULIlJdmuKIwX3t3r5QueeUxDHV7VU4AAI5J/3rIFB915Hxd9VJE+U/0iBOJiILjMDLURMQAGENpoN5HRMRXUQH/3K999snHzl7zmteoTuIwX1CuFx1i6olzDlE9uHPOHbMuYYJGgAUIAVNOnAQda0IvAN77bXuwzn/b+z9w+87jm7YLLDEDGQdoOOaEiZmtWGYGM+rMZEZW4SECTsyQOGVggwApWTLFfG6Kok8cE/uiJKYuBCJiUJUfUjG+rut1ERdOgM4Yl5FZWISNkAIHs9nsEBMKeGf7JoqXnCNZEuEQQozRegQAZbeRNSEE5gTGBskXm+1seXx0cnrv/C6QQYDMELOgNUAUQ5CE1hJZS8zCqDMFEfucJaXMIEDMjBa1XQ4ALi8vF4uFtvOwiHZxAoD33lkSEX9NgSiPgkSI6KxBRItkLKIQEcWUYowh5z4EAyDoANJsXjlfhZjt4VVp9b/14+LX7sV9V6yudOsuP/PSv/vX/nty+Hn5bX/zL771+78OzW/jXZSn86/53/6R7fMPP/b/+Dfwu0FRf+Rx8x1Pf8tf/4Gj19/+bX3q2T/21cdvuPM//cn/6/knX/h3Obst/ff+4//dF+19zflh/+LFb+XjdVEEkn60ttNuaN1QUoiatuWct9vtpz71qZOTk6sym4huBJqVacnHGKN+qIpYAWj1dgg8lPgzxXOK6j722GNt296797ICTId9p3KiWtJXIVcNYBQwurg8L4tqkkL7osN5l1Kbs9ptDyoESo1JKaXsmv3BGYuZZ2U1X9SzWd21HYjJnEndrq2hoS0eRUQ452uaTgAQOWtMmXNWYxk1QWJma2mSKZCh2jrsDddEVAfrEo3vOQ/9NyxpcP65xq7KINbYKcBARM2pUgp6PUhDbRQRGQIMInRDSJZzTGnUs06pbVtdnNUFG0b3Qo3snXMhBBiNhoxxk0QXAIQQDKCaNOijJhAADCIMPHhUCCBjBgGBQeIGaSAjD8+ES0IGFhECySCayhpnNcMHAwDAkgkJURJHCWP5WQQJEDhFhswAYEDIoggX3uKACyREjU+03iAAToS1S1Q3a7VGnt5v10PCTM7i0AdIzjhjTAxZJImAtVbdIEtrI3NGCX2wpet2e+Wmvfbxx9/0utfcv3//p/7NT374wx9eX57fffGlj//yxx67facsS1uXw2AAiDFGHqyKQuxzzgBkACMPbKCUUggy1XKYh/hHZ4rij1Pu7VxBBfiyUO1XY9H5bIzR7AsAuq7jIW4M06aJSrFEEO3SQgA7uF/oa1Xah2ZWVVVQRkFzcuPW8ii1bWubZnl0rGqM9+49SGAeXFwWs7kWvEWAMzlnqmIWU7tdx8Qxhtw1sc8wX85f+5rX5T5s1xvkPJ/X3/i+b3z7u9/19V/zTT/yT3/k05/9zGG/I0uzWeWctZacc4jSh26/3/uq7Pu2LAdLnFddDMl47zmr9EEuisIVfqCdIu73e3LWGKPwU0rBWrJ2kNtSTQxG6mJQsUWVtixn5eGQVZhYRk7xarVSDEUNTpVA3e9jYZ255kBDREdHR8pY3G63apj2+c8/JIKv+7ovjzFuLi51UqeUFPDVYaAM6JSS8YPIsgCTdcz88OFDa+3R0dE42Q0A9CkiUYxxMV+mlM7Pz1UZQOCK+4mIukqrv1aM8cGDB6UtFouFauCoQLBef0ophqSQeoxR3Y1SSirfTgZOTk66rtMUXcFEpSHrVZ2enmrGl0N++PBhWfpnnnnmsNsfDgdtZxGWGKNHrwo5uq3s9/sc2dliMSck0TZ5QDw5PX3w4MGdx2a6HWjuLWMhTUnZyo+DUdfu7t27SkEdJOOsPRwO2+22rpbL+eIixMvLdV2XzBxip/9fu3q73+GgaGSZebVa9W2j/QQGaXF01Pbd8fFx27YxB2NMUbijoyUz7w77pukOB6lmgTlYI29649PC/Ze/8y2Ym8985jOXl9HPJPX7y00UALRw89Yt58vMPXNaLGZ1XVpr5/PaWmsMvulNb9jtdi+99FJRuLouq6pSwV/danPODJJz1pLD0dGRKgsPDO6xyKr7oCFUUB4A1KxPqw7aw77drbUqrIv84bBbrVbMCYBQABHK0ufR10EAlGR369YttZtTWNZa27atDuDZbKayMCGE+XzwzdM5qDFASI9mhh0dHctxqTTYruvUN1J3SY3tU0onJydaEa+qyvt8fn5+69atxWKRhb33XdepOvPp6am2KeuE1RxW9bj0+40xy9WcmYkG04IYoz5GreNOyOZ6vYZRF5hZtanY2kGynIiKour73nkHAFpI9h7UNCgniSHEmI1xQAJAzrrIgyItIFhryQBkMBbruuy60PetcUc46HMiJ0YcFEeZE+DYYE0ErInj0GDLIMI5dYOqpDUU+z5lSSGqeEnTNPu2OVrWOk4UIFL+rCGX0sE78N5HEaKMGAFEGMmAln6nHFcvwBIZQAKNkACAiagPLTOHGIWw7zvjiBm894W6s1qnL+LoqA4hPHjwoKgrnbk4msVtt1uNP10xMPRl7PfSMoOO1aIoNpvNfD7XHgVdfpUki4hnZ2e6Hy0WC6WrT5zLPIrCqe+0lqkUj1b/RsicUhIIL774IjOfHB1tt+uByZsjIsYUJOS2PaxWi3BoJbEjU5VlypmQ+77PKYExItI0XRYhshebdbVaJEmJE1kkiznmjFmEgBANSlZYLyncqbISTbu//+DuzaPHjldHu7t3mQHIH9rYpa0rqZdcHVXGFR6BmXOCwpXG0y9/4hNNTuV8kR+eAQ/+fllSzMFaSjmlFLwvC2dSSiDMfMXMYGZ5lSyJELVtMcZBJyDnLDHq5NL9RdcBHORKwFpv7cD/0xqGitLoPbahRxxM8zTk0KKp9S50vS7vhsha0qk31Rs0ULR+6LzUz+rI2e/3hLZwzhgE4NPTUx4csxvv9cJk5MHElFJVVcY4Hhm3fd+DWFVGMsYMxJEQiYjSYD6nrJe6rgFosVjNZgsdkCSw2+3m83mfBu1Z/cKcM5FR/FNEdPlSaL7rullZkbV1XbNoKZQ0ltNnXlUVyMB61hvPOVtCBWoW9UJ1n/u+jzllzn3X6SNSgo42jIYYMJi7d18qb/rdbue6koSCH8Wm9fHBK13sRERZqPhKYQFrrZYsDA2ee4RyhTbqinUFy7KMLFczKgxMcDPR4Dg8gd166JsYCBrXxJo1WM05A5LuVUO+aq2IqKczEQHCRPYZAL6Rka7kHQ3FaCT76JfkUa9ZRATydMuIyFlvZ5DRkBGRd9cYOl9yjFzjnOOwXBIzD92II11XA3rdVAa4UwhAvPdCJvMAG8OXQKX6jnXKTWn/dDGMoM2k+inv/aEPZV3pcERDxjkjzJwyRwYQokEzcUiZDCGBNszK8M3GkCFwRg2CBgVnUdY247QnydhTM13MdBlXJQ1LevVEBFfQ8zjMUIciLxYLYwwYg2R0PkyDk8YU9CpFvzaAUx7Ev6YMHEep8elK6JVukEN8jEP1Yvoz/s0AIxmMG8deo6kn9xoYDZPHJqJR4RbSm4Xp+wkfDWk9+6Znn3jihoyK7NMXyuioycwkVJZGQ1v9p76Ph7bv+sisAK6Mj45ExHufdYKAWGvf/VVf9Z6v/MrL7abNzOgALagMECJkVc0AZjZMDJIlEyASIICofAkwiOikA2aybrk6uX//pRQ5Cy6qSmLum56IisKjJwGIWXLOIcWYk4jkEIwlGUQ2UFgSZlXyNBa5Z4Fc13WX9ilrkMosstnvLjeuOF0RUUwxMaOxZMxYIEPjbMo5dMG5IoSQGHJOAIhEmVkAQ4oMVt3tzaTHopRwZgUIMoiOGzVRuSpIimjb43q3DSGUvnDeQ2bEoRVh2AhpqFg6bwmQBKwjy56RXUqNHMqylMV8tz8Y5/sobQi7fSOMIfS/8cD7LR6pC9fh5t8/fuvHrS9/3dv+1Nf/trBmPVxdfPN//ec+9Y9+Nmx/9+WS9fiq//D9q6dvvvru8yoH4q0ve+0TX/vGf0e4+X3/2R+9/a7XfdEv4/bwW/y4LrOapuaxFTelVDhfON80jW7QSpw0xoTQMadxB0RjiEij/8Ccnnzy8de+9jUf/ehHLy/Pj45ONExnzpvN/uTkRMMsZSRpzqCpHXPKOW82GxERJjIoeeBHaOapIWkIQdOkxXw5x0fPI0IkgqIolRDR921VFTkPTbjGmLIsU4gpxvPz80996lNveebtzpX7XTtbLJ1zzll1HbDWGnIpJJahj0cLqDAW4xWl7XOEzLoQAQCiJcLrYYAKusI1dB6RSK5iBv0zRCQkQpg20DxKjkxnJKJ8rTNUU3dAJrSgoWCWGGPsQ4y9iJRlaSwqt3TcDV/RTDbiYlftSsxsDQI4ySyQECyP18k8iDqPu+oQP0TMiAYFkMkS5ZTVnCNwGL4fkYyGEQwgQUZeQkqMxvlCcwZXVDlnlkQCBrTpCg1asEM7bWawOIL3g/AI63DVFhVXeOU6FG7gbI7psbAkQNacXRWrhSVlyTkniilEIvLGMgCRNcZyUBESBAQUsaKtzeJBwEJhaLO5iDGySNPu9xtg5qIovuUP/cEve/s7fvUTn/jkJz/5qx//RArxiSeeOFnOYQgvc0whhmxGavxQAVFYm5GZUoQQggjnnAEZktF71+QkpUEYSq01Ne+q5jPjXYwxdr2imYg4m80AqAtpePV2yHzqxZxD1rE5vUriK3KZGd1T8mh9QwLee18WTdMwQDWb6WjJDPVslhlu3LrdNE0MKbM457yzZESgFwiuNDOa9QQpxxjjcnbEDJLZWeIULh823f6QC/sH/8Affte73v0zH/7wL/7SL7z08vP3H95fry8AuSx9VRXaHG0Lu16vLy4uFFuspHzk9C+KIlV2c3F5cXEBLEdHR8r+u7y8VMWAy+1GZWTv3Xt5u932fb9YLLTVF3Hw2WZmZbopD0vTaaUU6dRLKVnrn3jiRtM06/UFAFjrNFdUsEDfr/d+vV4r4fTy8rLruqeeeuqpp187n7+sLoIwik0TkXaXi0hd19pCrjn2vm0Oh0NRFIWzh8NBG0RGcF9CCIfDwQwN3dz3/csvv2ytVfTcGEPGatmPiJQw23XdvXv3FIa4ffs2MepSo0oUOqF0sVUkUeV6leN8OBwIFdAHRYJg9GDXlnalKh/2TdM0x8fHiDgrZ0VRiOSXX345pTSvZ5pkhT7pFzKI9z7GXvG7oqgObZNSUrLCbDbjlLquOzk52e/32n+jaKYiUCFoy0hfVZUOXQK8vLx0zj3xxBNd6PWRTijVcrFQY0YR0eegtGX9A2Nt36vrOCi0rbxmGlX79Tm4wiOKYljMvF6vq2pWl7Pz80vG1pC8+6vevZrVP/szP/ldH3j/n/sz37fdbpumOTu72O4O1vn1vv3n//O/XG+3htyLL79A5Pf7rffeWlKgZL/farvMYrGQsaFb62cKoRpjsvBsNvPea7ORc07HJzNDztpwrLstAWiZqm3bqi6rqmqa5nJ9vtlstKoxn88R0VoKwcXolaHvrTPWtK2WeyMRiGTrHRnXh1ZEADlzLm2pi1LXdTHmukZjzOFwSDlMetkiwsIsqaqL3faw3e5eNRohKopCXblyzufnlzdunEyYgFrJKYW5rms18dNBqKAhESmMOMEduhfL2PmtBEyt7ugUm8/nakXbtu2tW7c0MzWjly8zt21b17U2OjBzyIHQbjab7Xb7+te+Lsas+uwT1ua9X60IAFTX3hkfQ84G6rq03gljikl55VlS5ihABrAoCj+rDvvGNcY5K5IZwBIxsbWWJU+eTNYaImQWYLTGAmVjDFt0ziWCtu+0f9d7R0JVWVoyMafQp91uF3JStZOLiwtdFvb7vYoIWWt32601fjE7PmAHcJXUK+hBAs46Isw5F74oCmeMWGuQMiI4a60j7SMpynLXHEIIN49vuIGSOXRuaTnq+PiYBXXeMYvWPxIz5ewQ1YCu2e37pi3LMuVkiMqq3mw2oesYQWecSrXcvn1bUWOtpmsznMZjavih80JbJTabjSrGqKmmLuxT08/QjafcRBDnTQyAOIB3ReH6fXc4HCQky3B6enrjxo3zu/f7vp8vF9xIt++E0DnnyKSQBE0I4fxyo7gFEZV1STkhgmrIWktZGBm9tcADktB2hz70ArntDlVR7jbbG/NbTz7xxP2HZ23XkhXjTB/TIYSl4YILyeKcMwQzX0tM64sNeP/LH/9VEfDeAzTOucViZkyZc0yQfV2YwkrSKpTtuk6AEHE+nyuL/4ugrelwbtC/VT54URTee9WSnRYfnS8pJZXqHgmmoAtvHr0odG8SQp0sbdt67yel9aZp1B5TmcgAQ6+hzjJflpljzMkbLyJoDMKAqIQQ+i4y91y4GG3OWRV+cs4APNlaaB19NqtzzrvdzhjnvUfnFouFRkQpXwX5POrUA8BqtVLITncfvWwdRcvlkmPCkbrBoy6WMWa1Wolklb8gIl2idZUe6B0JjDGZM6qwTwoqKVPXtRnaCCbrwjLnnELbNM1EgtbdUEn9OGjvQAjBG6uBikg2KjFfm7brAOD09PRMIqO4yehMn+AEAccY1Y97goAnuDnELsYIRqbVQV1BdDVJE0iHIwGWSKfWFeA4EmP1eAVzE4BoGFLjlxCPTj7GGADiEcIe8kNrENGA9timJDzdzjj+hn/Sy7iepes7HjM3lQriSbliuAaxw54KDMqCvMbafuQh40PQLycia4drGM5lBvNA51x7DelOOeeUyLg8gaECyAITNxwQSDE1mfBTGiF8ABhw2xGH1egkpXTr5GS+XDBh6cosZAetYqNKJSQGmHGQxBDAq+wUEeGaH6HkQRRl4OPkgUOkI0eEEkccqcdwhQJf7SUiwiCgGkyIPMoWD7u1IS0tqopWHxJYnG5zkjjGV4hRZAAAMzyGfE01+/qoHri043S6XmzQb7teTR3e46tYTOA1aUtEVU25Ut+XV7KqYwwiQEq9R9SSewhBx+0rbuFLjpOT0+Uywlikmc6oAp9DigtIRJv15eFw0Jmh8yKEkFlYrlje3nkAyGNpMYTwxre++f0f+AAANG0nxqOjECOiyZnrqkghgmREyCCCJoMIirWOAIQlxsAgGUShZE4xhD7nHNqWyBZ1hRembVsjOI4NySll5j5Olo/DIw8xhj5lRGOcdc6SCGdEbNvW+7IGu+uytbaLiazNwo6o6/hwOMjJUt+dcy6yMDODkKGYMwillATBGBOzOrkLEglzH4MxJmdhDakFvPcWR0da50SQJY2qPGZCYWhssTHWbrc7X5Xz+Tzs10TknAVibVPQm3LOkRn6+suqQAHIbIzhHizZEDtE5BxzYkO4vrgMjPXi6NnXPvPOd73n7i99AX7iVRlVv3/8Xh9+Wf/Rv/cffynWfP6plz7/4x/9zD/++dAGIjx63a1n/9h73/w97/3izwt80//xT/7Pf/WHfy+u7Yn3vuntf/YbyX6xzs8LP/3Jz//4R7/wk7+a+mgL+9Q3vu2Zb/3yp77+LV/0Z1/9177zM//o57qL/e/s7Hfe8/qv+U//2Jf+Phx+qwUS562WKnUR1pVKMidMKSXNGDXGunHjhmYIWYWzADR40hBfOcif+cxnTk5OTk9Pj46O9F+VlaB0vNVqpeRcRNSyvCIOh8N+glEyiCYPSm3Ts2utXpkpSuuLIxnzi46+H6IXFdDQpD2lIMJENsaIhsqyXBwfXTw4v7i4uLy8vHH62OnpqS8rHNaWIf0AyTHGzImIADjxVWAwbkwsIiCiwTEAIADLFbjMPHAWAOCa4FrIMChj8DXZDYFsACeugIIpSrLT/2RmFjEZEbEo3FBpltS1QeESXSGttcxJ200ADZlhK9RQxxZeywlTlmWRtJdQ0wZHBoA5CackGABIwxe9KR79CViGpTU6ssjACBxTImRBIUfGosGMwjkDQwQ0gBYRsafBLJqsJYDIjACCmFJ2ZARIhHUuCSdE7ABTZkQ06BgEWQCIGYxBW/icc9t1xhggzBrLCeUsOQGRFSFAtMScMpIwZoQknDQGizHGmLMD5swxJ+ProkZEBrTGcmYQMMbE0DtDlgwkNhZDbFNKOfUgnGN0RF3fd13X7PdVVR+tFhOBRXshrcFeU/0QhuTWuSyy2+9zjKGPym/QyCf2oW0bfVnGIgCUzoaQ8iiXAQA6TXTO5pxjyIWvZvUiVKFtVTbUFEUVY5SRHWLQWmtz5ubQeiIZra3NaMJheGDuTEV0fT7MfLI6BkA0tqxnvqy6rjscDsY4cvbo9EY5mx+d3Hj55btN0yAaay3HEPqGJZXWF4VL0RxMEuDMDYB1xhpjcoj7rhWRvmlhMUssi8Xi/e//wLd9x7c37fbB2f3nn3/uZ372pz/ykZ/b7bZVXap2lq4G427uHzn927a9uNg7Mk8//bRkVs0ZRYKU4Jlzvri4ePDgnpLpNDBWSqO11pFhFuU9EQ0abnG01lCBS4Xwnn/++ccff3wqaRBBVc2qqjocDppATb1WRBRC2O0OVVW0bfvSSy8BwGq1UnQMWRQ4Xq1WKiyr+XyMUZmbebIEdEV1o1LRSc3SdQ0JIRiQ5XKpo0t4YGboiv3gwYPLy8vVaqX6v5qCKk1bQUwLRlGGo+OV1iq08EBodLlWJqkugycnJwiUc757964vXFEUDx48cKNzmqqdxBh3+23bdPfv36+qyoNt+s7aIV11zm02m+XR6jVPvVZBWB6t3OfzQZhxItor+rBaraaocr/fi8h+vy/Lsk8xxog8BLQTKUqzlaqqsqjYdNztdupWd3x83Pf9er1W4Y6jo+XhcHjw8JwIqsoDgPd+vd42TXM4yBvf+BRZn3NnkJQs3Pf9rTu3mVmQEYmcTW2nD60oitDFsiyF8tve/uzTTz32sx/6kEEprJhv+5bZbHbzxo07d27Nl6sHD8//6Y/9+K9+/GO+rKtZPbCOEBX0VG+Dvu8fPnzYdWGxmM1msxhz3/fb7X65nOc4Qf/N8fHx7du3Ly8v9SMw0v26EPq+1wFvHS1XJ4fdTv3TdH9RrRUZ9XOUT62i4YfDbrfbzWazvu0Q0Xur2YEqDKi5mXYdKZQTRyRRVcKVS4gk3nhdQ7RarN0V+/0+peyLR0/epjk8yBeTk7AwnhwPAooadSiwngdV1kHZWVmN8+VCrf9o1OLQHdlaq3R+DR50ZVOcSItDeneKqLz44v0nnril06rrOgSTsxCZnCT0bVVVOQmiAYAQQoyg5fNhyqjkY1loiqHAEwCEEBWlASDvSjVISCnFlJCEEMvSS8opJUvJF45qaprm5OSk65rdZu2cSyFNqOikgYnCeWTRCYi1ru97Kn1RFLvmAJklJ0kizMBinO26YIyxOPC3xmYsy8wXF5vlcmmMJUrO+bquz+QS1S8erUAegAwcesFzzt5Y5w1Bto4MEpiB7qaC4CFGtObWrVspR8q5KIp28KIYrEREZD5flGV5ud3kHFXloBhMjO1UJ9A/1hGra/hsNrOF77pOTVN16db1041GI4NmApFWI/RnHag6VZfLpS59OArm6vKCYA77piqcMcZ4573P4aBLk4zdP0Tkq8pkuXPnlvYTHN1ahhBi1yMiEohgPZv11ANAWdR1Hc8+dQnFQMJ1hWW2fYgAA5FCMrt6OdVCeLDzTUTEnK01zeGQMt+583h4+W7TRUtWUiJj0biQ4uXFhStsVZSV8/vLnWQoFrNqthjj3mScCzkJM4A454DUGjrH0AOLtzYAWjvINVRVZdOj5yaMzD9l1ALA4XBo+365XOq/KniqHTl92ypgKiKIwswaWujEHIYfgr4yreho+qALBfBQUkIcOqcV1d3tdnPE+aLuQt91HY2dXgpNcIbVatX3PQFrVUkVflJKs1k1TUnmMI38lBKRbZpms9vpYJjP52RQxpZNYwwIaPmWY9JlRy9b63yaGWmLkgLTlZvpjplS0s1ahM1oKqZrwhTOIaIaX01qHlMXmk6BgdE8NeIbE0VUtWa92y7mSxy5dEVRqCeZlr1TiGm07qvL2nv//Bd+vayqZVXFGF3lIier675et37LgBqP8gXDIxjJniJCYIyagAORoQnb1ZRoYlIgDZxBuWbu13dRJNR1bY1HxL7rAYDQqoPeABRmjLEdsibEnKIxRvMoVvctZhnQWEGSTCAiam2XZYzGADQiAAD9HQwaHUhkYswxJ2stAuacFVYQkdHlfKTiDqseAgBZBJjopUxk4bqvzSsPFDEGrfU6CRFNzhnBiChrUvn+7LyxBjlHkGwgGgORIRnLZIXZEHIMklnIoAqACKPWHJVThUOPIgIQAY4A91TNEBEim3NMwn4xp7IUEMo9iQGgjMjoARgzOMmIRgyyGVpmDAAYRouChgA4ZU6JjGN9kkgpBkLMBAhAaAGZJQGAG+eVJZNFZYKdDp7h2ULhySIw5Sy9MBEYIkuQc+beY2ldwX2OQtZajDl07VgxZkEx5hVs7qmYLCLAAiAZJMag40cARNgMauACKMaQARqu0FprrSQRFs6iRu04sj8UXX/k+7WEJDzR8BlBvf6EkBFYBk9dXeI9eQ1ZJmR5KNARIYKkDAA5PtpiK4RehIQISWQ0Q3TOQYYs4kyRJRvKBvL27AF17ZG3sWt3h13oDmix61vyjhk8GWmTBbGAiAmdv9x3t59+7bd+9/ct7jx5eejYz3IWE9kCIrMzABzJCDMbBDQEzqAIZkYRQoqS2IBxljJLYArCYsHNgzPebSK3MfWIUlReYmq7ICI5YdsmMubQdBoyghCiQUMEGTkbZpSAYhJA2x4SZ+s9h9j3TBxrYyBDSpJd1eTkPW172DZysqhN1xEnDr0VAEOZISP2wtuuTSmVTuWq0RhKWQcCiaBzRY4hp4SIIcSIiYhU3dKgJSBH6KiInFnLCyTeWI5pt96cnJzmDM0hODc3K8pkeiZkcbaCFHMfCcFlNIZcYY21DNCHPucoIl6kD8AEqU/OF6ELIvYNz7z5y97znne+68uffes7y+XiUz/5iY/+xN97tW3494/f08OW/tv+xl/wi1ewWbuL/Y/+wN948Sc/0a2vOMsv/cynP/H3frq+ufyKv/JtX/u//75Jy7i6sXj3X/rWz/zjn3/uJz72u3tt5a2jP/6j/5nxr9CSfu5f/cqP/+W/c/ncAw5Xy8gLH/zUz/6ff+T49bf/2D/439x8+1PT72++4zU33vrkix/6zO9A68Mv6y89+3C8CknhSw9FRY0xKBz7TpjrqjocDswJUULouq5pmoYIitLt9jFn0YZZjeYVuGyapmm609PTGOPzz79QOK/hZgrJe1jM5rOqNggEcn5+DqORiFoPKVdF81Vl0h0dHekOpRnIbDbTlk+lIDFzSKGUV+sSkL6PxricBYDqctbsW0Syxsc+FkURup6K6hDYLWb3t/cf7u7evH3Lz0pAk0CcSGULZGwOMeYDGIA8mScbHB+tMMcQEJGEEidNaRSxyiFozh9CUKK0AiiIZgoGHBnlWUBmMhjH0FAIr9doJUWKpG25xhhC6kN/6HsiavthtzVIygTUHc04jSFNNas16ggh6TyIHEUkdSml4JwbaB2MkWPpwTkjAow5Gnedi8CcJIl+p27xSRKMBVdm9n02ZjRIBLDOIUqWOOiR8cAGQEYr1hjyMgUMQ/il/wFWsiRAEBycehUttZC0B4k5TpQCMpAZMSIiFhaBI+Sp0ygYY4wFGDJVZmZrMeecYjLGpAxdF0IImjWZ6BGNEZMjRw62MiiSDQsiGUqcwCj+jcwoQoA2cy7KWc6Zpcldb4gK7zkGDt0XXnrpEx/9qEkS9s1zn/n86fykKm1K6XB5ETPnnI+OT0Pb7dtG20ubcBi6QTkTUYjtELkhN01fVVUHkDkzCCOwGhsyCwg5SikJCJLUs7Ioinv3dr7yXQgM0HSdvjIAMM4qBme8yymY0gowGUfWmtEnfea9I1M6LyJ2sexTnMhKGZhZDDhtiLZEpSvVgcR4V1qTc17NXzexCp7//PMNSQy+TzFnFqLsDj3u56eFqwCt6SKfr9u6KpwhEXD7YMSFsDcd1/W8drdf87qnvuZNX/NHvvY7f+7nfuZf/+S/+uCHf/rXP/3c7GSxPF1kEGQWQe1w/9LDkngDzmk12vRd8tXQeTlZ21lrrfXz+ZLQiEjf933Xe18eDof5fI7IzhkAWxSDZZmBbiiGIYlI6hNa0/fd/ft3VZRGYYKm2bdtG9owiZmAoDAUZVmU/uadmyGEdmyT0skRQ+CYjoojBLx77+X15YXOqT5FRJzVNec8m9e6VDb73c2bN6fcUFdIY0w5q9u23W63s/m8quu+D5QHeg2gVHW53lzq25zP54vFAgAIzcXFRU5MRNkwOjp7eG7swMyYzWbO2EPYt80hcfaFQwJOrALKKjNy+84tLWhN1GlrrSI4KoMLKM5b60wf4vawOz090WTWWj8HPDu/6ENCRBTy3hdVkYqgDMQ2dZFjURQ3b95sdns9xci190RWS54p5OVyOfN14qylCE3aU4iWjErE7re7CVotimK2WKFxwME42Dc7X7qTG6er4yOyZr1eH5/ccM5xwtPjG83+hZuns83ltm8DqD6eITerFrNZ4igiXdOKiOsGfaScUx+bjkOk/uu++uuNxX/0P/2YpO7ZN772859/7od+6IfUyep1r3v9Cy/d/YVf+pX7D1M5RzGuv9yRdQAWRVJKs7oW5r7r+i52fWAG5yprS8Tcx2wLGznX87lWMrRX+vLy0hnbHrrDvvHeKgk35/zw/HxI8TLgSNVSBZXHH3/cWvupT31Kaw+6VR0dHVnrLy7WDy8viCgxEZGwIGJKTARI1tezonB930tKE6QrmdsUjWDhnIk4SN6NXJwQQtP0RAOUJplxTOS/9Mh5kBHQzYUsptQTVTnntu21ohCjZm/der2dzWZ936rArrZ6iEhiiCH7WVnUFUuSzN57yZxCHKxbWAZSndBivsgx6QpcFEVITUipMM4Z03c7Y9gQWWMUCVKhDC3LCZqyLnZtR0TkncEBHnWWDJoQQtd3zjlA9oWfz+fn5+eXl5eZebVapd1OvXBCiJF5Xrk2phhDFu77Xvr4xJ3H6tJL6NgVKSUE8Y50eKNQEmRmNAZNThwLa9HZ7X6fJFECYnryxm1D1Pf9+fl50zRFURSEfQzeOgPY9vH27dvPvuXx5379+bOzs1nlAWi/3y/m9byulrMFcgRJKcTCVjFGYyRxKooCDTKCJSAQorQsK4PEOQCycb6alWfrTZOyqYrzzWa5XBwuGuakXnzeupgTM1vvYowPz88u1pfOFiEEW/iiqADAGw+Wz8/PlXFvrVd+QwgHGcWdmJk81vVRCIHZrlYrzuCckyR92xPZ0tl8pUVQiAhnEBFvjCN3ub1MfSrIi8hg0oug0eyhbbUOkXPoum4uM0sWGPsuV1W12W2qWb1aHh3Pj5xIt93fPr3RtYe2bzxWfewPXdt2va9KSbkgZ5GQc4rt+cO7aMBXrj6eRcwZyTGAdREQvBWCRTXbb3e1q0yWnIO32uFgOVu25aHLTTg7Ojoq59VyOe/CZQoZoQAEhDIHeOrxJy53D4uKUo7LO0cILkNAxH27yzkfHx3pUEcws7KKsTfZpJisr1SpJoNYIQ7JGYOAHJJ9lSwkpNRnttYaZ0m0/J8fOz3SnUibxnxhWRIBW0vOeU0N9A/QGgZwzmoTDONA3zw7O3vw4GAt3Lljb56cGmMeXpwbb5qmUdBW4UojZnG08JXX0NRbZ5BijCG1qvZd1/V+vwfk1dGCmfu+3zUHay2DoDUhMwCDoZCTgQyj862oQA1gCgEAnHOXl5fe+3pWas2SmUmYyKpCYJ+iSjnJSJpUWgxwSin1fWuMMcHVdW2RXrx3TzWL2jZ477fbLY/dS1M3FSJyZH0sAjJWlfJEOnGFxxT7OAjFpJyLoqjmMyFs29aXvmkaa4wzLscUExNRF7sYQuTsnDs5OrphbrjkduuNdolhggcPX9y61hYw706sItk8gpXXyaFwTVX5ipB4zX4UAHTN5dEXUq5paEx/w8xqW7G+3GrZQbu3prPINfVerTNoSAEj+RRHrWdDxNeaPRWPVyxfRAYYa8S4Bxx8hJvHfODqXDx6FU7HdLMAYAZBNHbOoRlOiohERjM0ebUcW4RjmqgcWkUZLywjUlEUMfW69U5p1Xgxo6QJPPrLcaIJg7AITRrEqhubr25KyRTAUhT0xBNPIeJmvSnrlSMSYSBCQlV2IG09FUFC6xwoi1tAVFYDAGCw4NFEwlqbOHMWYwZvmelap1PLlWHRGIxekwExNMhPTPUWHCUvck52tC611vYhXo8nePSc1HE7PbeR9EFozaQPA0MNAwFlehdjpWSwPeRRk2QqqEzPk1/FwU8G4HfscQbRvx9rM3n6V60Z6jEl9jxy6nU0ThWdLz1U/Wm4HhgA9JRSZiayiMNt933/4MEDIkI0KWkLnu/64L1nEVXqcM7llIuqyoL7Q+vK4k/9qT/1mmeeWe93mQmNsdYws4HREBDFGIOmgJCRtGMbMgtowy+isyp/6dmkJGyctSyZMwoAy8N7949XM8e56XpmFgFBIyJdjCklpbQTqUZzAiLEgQKVRxkcTpJSEiRr/WpZIIX+co+EXUoOIaW068O+aU5WM+uKptkTWYSsmuGAOAAimbkscs458yCJnnPMCTJoi5OITOXolJJ3LrAugJIza4FUczZmtta1fe9ccXl56ao6C7pCjEDXdcK8rCtrLVnqRaylkFPYtbNZLSLn60tr7WKxiDEyp6KorDVkUhv6m7dvf8VXfvVXfc37bt95jIGart31nbO/uTfd7x+/R8c7/twfeMP7v6JYVdNvUhf+h6/9z88/9Wjl6+bh9qf+y7/fXhz+8F//gemXZM13/Hd/+b/7sv84bLvfxWv7zr/9g2BekT3d++iv//33/59S9wjuLYd0/qmXfuwv/M0//+H/6vrv3/OD3/riBz/1Ozj7d/ztH5w/fvI7+OD1I+eEAilEANBuaIU+m6bRNT+Nyownp0chhIvztXZYi4gmh9revt83+pfL5VIXWOvdYrUUyUpAaJrm/v37WYamBCJS74sxYJXLy0scLenVMETV4owxcRQPVbRl2su+9Kjq2WpFyrNQCWndRqqq0lBHt5Wu6wpvYozr9Voz5xCT8U5Lj8hjmwtnb+y4byYAmnZPJRSnlBAHFWbdU3Th0oiFEWKM+q8hdCI48FIhT723OHYKR87TRqkoie5QMfO0K+HY2SYj/1Qr5TI2qOm+OcWyIsIMqk8vNHyJiLRtK9J57wtbaOyXx1ZHhp3qIY5fMGzlSvfQHiCYuAjja5hON4WdU+CBOCDOeXQyuQo1RdJgCQhXnYNyVbqenoY+In3yZAD4ao9mZrzWwDQFDDQ62ut7gbHIEVM/HTln53NZls4MLPIx4ofrw+x6EBVH05t0TcRc70s5OG3bPnjwYDZbHB8XL774IpVDsTyxAMDl5WUIgUcDpTz2cuXEIpFoEFqBSR5xbFDla94q1+NJfafOOWWw6sU3TaNt+CIiKWlApfN6t2uNMUVRFYWIsURDujGNKyLyhLoUyKQAAyTWomrmMsYQVMxKxi716bHfvHlzt9uFPp1dXoTQGot6bac3bmloZ/AaYyblbt/st7uyrpbxKPbBWtsYgyJd1zzzute9/pkf+IPf8k0/+s/+yUc/8Ysv37s3Wy5ImJlrnj9y+jvnre1jzNvtRVlUfQxtOCheqXCnuvQoMTZyzIn1n+bz+UCVAHHOzWazrgvTkFNmuq6QABC7fjarvffHx8eaGGsXuTEuhD0zq6CzDsKLy/Ou65bHR8opprG7dOjGnduJHwqEs3omIvv9wVg7cx4RFSq9devWxcMzNfejsYyq9NW6KOfzubr8Masd6cDeevjwISIqyyznXFWVfkPoo94sIvrCOeeWyzkz13WtyNpyvlgsFk3T+LLQwEzph7pqXVxcHB8f6xtX/Pro6EhFmfu+11Ocnp4654QhhnRyclxVFRFtNpu6ntd1/fDhw3v3zlarWUoJWFT0f7vdIiIb0TVfm2AUPNVVtOsCAKxWKwUudWTOFnNdwZxzm8t1CEF9k2DsIFTKZIwRmNu27duDbgq6p/R9f3x8fOfOnYuLC2bOka21r3vd64johRde6rqORWbzSosKfd/3fcvMzljvvYJ6fQjKpHvsscfe+OZnX37+7sc//jHOuS7NF56/Syj7XZjPm499/Iz/1ae6HooSlscFWWdN6ZzLwiJiDKIZZC3rui4rXAx50KCuuVwuj46XzBxD7vueAIqq0jqEty6N+iqahRljVouFapJySpvNRl+iPs/nn3/ejCaQ8/lc9Q1UPeZ603fhXEgJBaqqAjTMvLm4LOpikuIdnCoBWViZxfrMFZGZUml9NaowUxSFMc5sH51e1VUVF0ZZ/zlHJX2DWBGZwgxdbefz+dnZgwcPHtZ1cePGjZjTRGidzxeLekZED8/uI2JVlMrpVjJTjPHOnTu3H7vz/PPPb7fb+aJOITZdq6vl6vj48vKSmfchwwiLExEpIcnYclarTyaOiZ6IFIWrZ/OJXY5j74jeb13OnHN37tx54YUX1IpQ34JuN0SkHEyF4733LfdPPvmktUaf5GZzaQxyEucsIqGAReglj7YKkHNGQpXZUR9UYwwh6kLXtC0YMt75mLUHWz0V9vs9ERXOKawWQ5dSIsAYI4FwFueMFuEAki4mxjABAosrrCOtnSMQdX1359bNsixfuv+grus+DQ0K63V/+/acmVXsQiMr7TnTRxdDLsvSjoaQKaWubwBAV2Nmvnv3LhEpS0xXG0boDu1sNnpRNP2AZTHqD6ujhbX23sN7KhKyXC4P+37CfI6Pj1NKuqLqW/BloWWznLNaSlpXeI9aWSzLEpD6FDXQ3e/3HIMHWhTVzZPTZrd3xirpvuu6w6HpYnBkOOfKF8YYg7DZ76raPfn6p7Hyl92hbQ85Zec9EOacvfeqwO5ql3kgYqeURQRRDAIjqgrEbDbT6DczJc6K59V1WddVgoUvnLO+bXtDFmSIPzldoRzIouF6HlVAZ7OZTgcyRjJY7zQsf5UG8iFCmAizLEnPMuULujUwswaufd87V8h4+DGp1yBcl9OmaVJKx8de56b2T2gX49HRkRnLPMw81YmvgEdjFGzU3VA7ILVT5DpDVyHvtm2NwRs3bqSU9pttUVQqyqcDY79v9Lwx5+KaiHHTNHVd5xBT4qqqfFWen593XXd8fGxULyglDciZrqiW+vGLiwuNN3T3efjwofceUaYQfcogvPF936eUirrSNUFznClgG9saRqzPeX3IIqIr8BRUaEip0luLxUJ/2cUODo2x5mh+lJmJablc9twdnZ6sdis7US9pNHiRUbReX7zIKxBMGEVSVLNhesF5FNiVgc48QHL6ViaJt+VyqdCz4kEadOYxjJ5iXN3PnHM0UW/UrvCas9x0TNcwBVLTExERhCsnDYAxhUAz3de1u7iCNad0KydMKYgKNgypy1Wu9ei5Mlr/OCI2rPZ3dI2yboxhUYNXSClxTBOsT2qGOAoYISJMOsXj/43bDACAwCtgaWV5myvxCjHGSMxFVTGz0KDNJwI4qi0z84BxAxijisyD1iOzoG6CzGRIJ/y0w3ljun4wYbielgz/KdNoYb6mMjG+r1cUnachl1JKgPP5Yr5YxBhFXuHlKKPK1TTcrw85nX4hppxFFXx02ULWDFaV6QEHqeqrHFVGIv/wCsbj0S/32nibRguOo3RMbBKjHWdTnkaLZuwai8C40PwGJ3rFuQgNGSAQFgBgZEYA5JxjVVgiMs6GrmGQPsV+cO9kVxYppb7r51VtPLJgnyBk/uPf831vfvs7tl0QQVdU1nvJQ6ezMUYkpxwTM+ZsDcGg9YlCBAKipUIW5wrO4OtZ7AMYcgZslqP57LBZW0KL1HUHRW0EKIWEZHIMaYA50Bo/9XrEGFVJAxA5xjRUBUAAUHLpK7MsQojbTeNcCSkCkHGu7eNm31lEtAVLJn2nQIaQU04hIhoyAQk5CQijoSwMQiwp9iFnsZYQQEM3Ry5nSTmVheEsAJCZt+uNKTwYJDJ9SGhdjDHG1HQBrHPRnyxrZu5CF5NbLpf77QatCZLavo0xbg87jS1W80W7P+z3++NFXRTgnLOFvP0tb/uGb/wDr3vjm7oYH15eGFe6oiJjX63O8fvH7/Vx+tanvvo/+c7y5BXgwk//F3//1bDm6fjo3/kXX/6Df/jGW694xKvX3PjW/9v/6sf/2g//7og4E73l+7766T/8Tj+7UhHNffqRP/PXH4k1T8dLP/eZj/w3P/aev/LtKhn/6X/0sz/yZ//67+D8b/0T73vr93/d7+CDX3R46wF6DeM0EPe+JLIiQdcBDQ03m8352SVI1lBSmWha/gGApmnUxUsxFMUaNJlXxYkQwmazUT0y771mpwrraOGHx0J4Hnp7ja7S6kZlxrZxRCwKJ4Jd9+iXuFmvD2VSKbrlcqkEN83uFEI1xqQc5ou6a5qu64jQWgvMOee6mHtvc8yxiylCggRmAJHHvSmrbdQQnTBruVoDwSno0mDJe2+vwaaTmAYzZxHLQ1A0qU8qtVlGUSY1tBERpVdPm+D1GE9EgBDVBxyEhEgGPxwai6YpsQZIjADACiMyMwB1XceGFbuZLA3VDOpwOBCBkjdx1KQDALRD0K9PWxHJKUrEMQzCMSwcfyNyTWPkeniARICcs0zxwxSGKHCvngpxUL7IxhhfWN3faZC0Erlm1zw9opxzzqoAy9Pg0TRJRR71GpQW54y11hbeTz2PWpCnwXExT+GQupDnnPu+5ZSvRgLnvo8TZLNaHceQPvnJTz7c3P/Kr/xKRGIO1nj9VwDRy6CRxsI5K2Sp946jzgOMaPv0eKc0iUd+CSKqhJ9zrihYUT/FT6+XIhAxAX9RtM5jRV9z3ekZWmtVtL3v+67t+77PMU6MaRjzTz01jVLCOeeTk5PZYrHdbkNOxpiYsi3Kp49vHNrm9PT0zu2bReFo0F7jHENsO0SMsVdFwuVyGfuwvjhv23Y2r8rSvebWE//hX/4Pnn/5hQ9++N9+8EM//fxLX8g5z7vikdM/cz4cDjmLMS6ltFotkGDi4SrCqH5TzjnSVgCkrut2qmaEJucBnlOEynuvXp3n5+dTYz4YUkWLabwN6QlnLTlM6rFlVZDB4+NjVRUAANUcQETnnIFhGOurt9Z2oY8hsYgb+RbMrMJEiKiLrfb2KqMTBrEUVWv1fd8j0JC+FkVOSRc9ETlZHTHz+fk5IoKgUrcUQdA3OOEFOef1duOMret6tpgfDof9fn90dDSpfGilQRnfahx3fn6utT1NKq21hoax4bxVrLk5tCml3W7jnHnqqaemoiYzkzWzeqbdIevDRsdY3/fe2IHO5r0x7vLyUr9cRGxhnHPr9VrZ1krWA8Lp+Q+1xn5AKr33u91uv9+rT5qie4r0KQMUEQ+Hg2RQYXRVlri8vOwOTdeG+by7ffu2rgA3Tk7X67Uw+7Lc7XbO2qIs79y585a3vfXFF1/88M999PR4RQYqZ701m8tzY4xIefOm6fueBbJg4WcJMEVo2sYXxMwqjgSI41qXBzqwZMVZYPTaDX1S4VTVWp0GyenpKQA07UGXO+V7dV1XOKckQX13qunMzArxqx5FjFHJd1VVzWfVxcX6aLGs65oA9QUVhdvuDkTkkhFjdLm31sY+oDH6DfoiVIJch7oKR+gr03V4tVg6545p9sjJ67wnSsZoFgxTi0BKabValWUZU18Ubrmcj3o1g4smC2u3St/39XzJzGfnD1QSpJNOlz59aAq7P/fccwrKbDabuqxUN5aZZ4uFyu+ISF3XhkjrfNY5HcNENJvNttutzta+74vCzaqqaRoY9QS0PDAtDjpmZrPZfD5vu05p6YqvGWPKyutybUY3o+Vy2XWtiBBBzNF7n3r2DjODcDbGWe1vEGYEg+DKAp3NOXehm6+WKaWmaWR04KiqqqirUXTexxCEJPXhwDvgXFWVZrRV6WPsdWdxvgCV5bGAYGLqjHFoqNC9ifO8rpfLuYFkDBlrMjsYddX6GHTNnM1mJydwfHw8abZY70Tk8vKSiB577DEtL4GQ7js4SjiqwakC0+v1erFYWDts6Do1Qk4575m58NUA99uCiC4vL/u+V8u11KcQgojb7Q4glHOGsQyjpSmDpLGT4oauKBaLheq81aUHAFuWznoIyMxAwICi1rKI7aF5x5ueXcxnD19+2SCSHeMx4Nj1CTH0vT2y1Xx2dnZ2vt0vbyzIms1hnyQqwigAxllrXUpJMtfzmSpOwABzDdqkOWdFoSaRK+ccZsyRmZO11Pf9iy+eFzOTOWXHRCbGKMQiUlWVKiAPYB1dsQMns9whjs0yxUswdZt9yaGmkNZakCzMCDCvZ7pGaZqgW4kCvsaYejEnAf09WjObzbROo30nGncx840bN3Rinp2dXWzWZePnq6UudAq8qnaHBvMK62tfoK4/OmJ1N58iMd3I1Gl8DMZW43KqOv5JWyg0AldB/BjjyY0bxpjtbg0MR0dHCo5DTkVRiQgg6EY8bShTbS8lUFbK4XCoa69PQFcMDZ51S/LeAsBms4kxzmYzNcm0o9oyjI7Q8Eo+ATPnHJVlW9d1aAYPWBFRDUPJA27ZHRrvvRJr4iicpYxVa23GzCDGGDefHZtj3Wvsdch1gpX1IcIrAcQh2hbRBY7QagirfzNFrnpM+YkSfzQU0BA/jr6Q/Epmh+K43rkJvJuuR+N+3eemi9ELBqGcBCRrZA+v1O2dEpLpqiaMUr9tunHvPfPwQTOKVgNAUTgl9ajgstKLdPl+5DyB0X9Ar9wbm2g4dR5pzm3bArJzznvb932MEQVobAQAEtLGIlWQmGYgIiAyCCIKAiCMFGFCAwyivmd62SyCCEkYhKwvFouVcb4s1WfDWONhAEmZc1ZLHwYN/7XQymPiBswsOWcYCMKsSu0xTM0LSILwiud8/YHDK7PBARMcGlj1VSKA2vUII4iAr8qyLEPKMHba8itbv/FaXj29aB5EkFEDJueUK52FBFmERUnNeA0Znyo/U9L4ChLTq7RhyWjiNIxAuiLpX0tuBxQV4Ar4nhbZ66sVjlIzX3rgZHKYk5YENG3IVkdvEpS6rjcXD8/Pz00GQGxjaPpgvfNE0kfIjJmrssw5o/Vt1+5CfP93fee3f+A79yELYFHWYFXCyU0hCCIa5xVKYBZkkSRkSAeeIBIiZzGAgpAZTOFy7guDy/n88jNfOHv55UVVx7Zt9k3sI6A5NIfEmAnarmNhMASCaA3klDizMBpiESUhEpEk0feEDMycYijL2fFyedjsOEVnyAD2fXh4ufXe3zhakqPYN0QGiHMWFlaLVeacEljngVAEOA9yOyCDw3jOMeeMYFJKSXpmJoshRksOAHQNBWtCTiLsiDIAswAIA2TO1rsUo3C6ffv2jeOT8/Pzi+069uHpp5+azefb7fbuvZdTSpbMer0uvFeduEPXuqp+xzvf+e6v+uo3f9k7EgugzKvjzJAFM+cYfyMA8feP38Mj8+KpVxB4+/X+5//m//c3/Vzqwo/94N/+sz/1f5iWQSS68xXP/MZY8G/jYD599qnrWDMAfPx//OnzX/3Nff8+9F/9o5/9v/zIn/mJH3r+33zin/0v/+bv4OSrp2++/4f/g1dcTmKyv20fRVB/hZR0h+0Ga+NhTdZUs65rAJjV9W67BYC+62KM9RhLwbiJe++VyKzIhWq6HQ6Hrmu0vG2M6UIPY7PtlInlnJV1kkZR2glYVHzBOdd1DRF1XWuMKUsPADk+ugK0Ojri6iAyUBQPh4NGvTHGxWJxODTeO/XdXS6X8bD/7Gc/+41f0xty3hel84jS933oAmcSC2pdANfImzHGENK4LF+ZMehNpZSsI+eNISciivtkkBHcRIAhlAJDEzQ5xUXTzxM6AABqRUAjbfmLfh7ayPIAdk/7L4wVeucKRHLOkrMiAwytJxQRgybn3OTW4GCjJAiIBMA5iwbldM2uULXUNFXWN2iusPjJbWEIBvSNjCHr8Cd6jQBgjLGWCIhxeLxERAIMoCWKNHabTRBSzrmqCz2vnog0JKPr1otDRTyEATjQr9KcLeWgX5vzQLpXATctcuAkXEskY/gxhaY559B1zAzAKcWUEqecOcUYJWXnjOrOGHKI5td+7dce3H9YlnWb2jc886bbt293fQw5uMJ3XZdheL921DozI5ScsyAYwKsOPBi9N6aHPE3bKUdQOFVJYeMsHqxj8ujkAQBOMKG73sA3/cDMRVHA0K8mV2NecKCXIlprrfEpJR5zPBpVpGmkQqOQR5zNZo89ZtbrbR/i8fFxNV80h+6Nz77piSee8N4ag5YQAC0VqOViXYUQJHPoWk6pMNYx7C63++325ObJEye3/vQf/f5vfO/Xf/CjH/6pn/qpza88eOT077pAc+89GeMIjbU2c7q4uDDGrFYrXZqUAKUNrTElfewTK8oYo9TdGHPXdXVdc0zK2O267qWXXnr66adtTiJF27ZKJ9e8br9vCute//rXi4ja4i0WC1VYVkHGbt1p2WOz2Qwgy0C8QB0GbdPpjNZilSKhAPD5z39e8VB9rYfDQfE7Hd7e+8vzCwX4iIizKJFQZKAJ79Yba+0+szGmLkq0pvClTm1jTAj94XCwSOqINSmfqiPK2dmZPljFmhXFPjk50azbjbmhjq4Y43y2AICu7b2XpmmMMSxZNayPj49v3br1uc99jpmJWCSnxCrNT0Tz5Yy5CiG44IZtJWWZZPRh6AiMoxawcuRxLHCq9qgxBlhyznVdL5fLhw8f9jGoSu9yuVSzR71NxaNDCMfHxzDWTpxz/z/2/jRYtzQ7DwLXWu+wh2848828NzMrq7IqswZZpiSVpCrJUllSW7YGLEtyC7cBN2DcalooDDRu2jQiGjM17gDaQBubNpgAt3HgFk14wGBhS6ItuTRYQ6kG1ZzTzbx57pm+aQ/vsFb/WHvv892sm1JVySaiI3r/yMg8ec737f3ud1jrWc96nqIudTdAxL7tLJnKmflyqbsTcD5YLBUzurpcWwsf+MDXaa3UOvd3f+ZnY4zPPvsMAFRFQYhXDy/K2dGsrtu2zQAhZ0A0xoQELKy6HG3b68ZvrVVVzJRS34dJ2FR3HkHMHAc1cAMEoMm18sMUubi5uWm7br6otd2BVJ677xXLEJHZbAYA6/WaRukn9XvUYoZWHYw3z9y7a4xptjsRda9KbduiCtnHaEZL4Xk946IMKcJIlpRRFHjShtYZosUJEWn7br1eH7oKHndtt5vXmtfv3bvnnJuIwNZCab1zrusbdYA8XB4oVV+Fwruui3nw6TLGvP76a8DgvVEspmvapmlURUSr6cycZSi76g9d4WOMdV2rWbFzzlcWwcAe9U0Pnb7v5/NaZGikrgqnqJMOSN/35+c33g80OA2cdGe7urpS9FzPLOXsZ467XeTRjsySCSEQmePjY+eMtTZbCoEdYWRAyJmFjDjvWHLsO2BQjA8RmDiHXNd1Eg5tl0cgSGMMZkYQZvZFIcghhKbpeOyBiKGzlgyS0HC+MHOOYm0VQwIgEfHGeutEMpCU3i3mM08iqU0pF4Xz3l/e3Lzx8GE1m2eQ+by21pRludlsdAdbLpcTgMijVq+SbfVcHtD3oZ06bzYbRFSG5tR/ozxiNA5EcmbOLTPPZgvnnArsdF338DzWszLnvFwcxhj7LiJi3/dVVUnOqrui90CIXdfpti8iLOno+GDC7Fj9nBAZIOdkHRlbeMR2uzUip0fHlswTx6f3d13bdYycUuCUY8rWWgRomgaJmtCjhSb0D2+u2IKrygJdCrEsyywDShtZ6uWBMMznNQfuQ+tsUVWVGnJ0fQ9gZOjIlhhjZoLRoA9iFlQ3yxBDYgbvyiTRkiFAVaJrmqZt23FBReOdzQNdQNtHDBhFjTTajG9hW2WtRWBrC5DhbxVF1G1ZTwHV0cY98NoYg4ycYbfbOed0A9cIf1pTxhhlDfd9n/qw3m2Vuqvhjaoz3717V33Fp/0nj5YGU5TIY/VdZ8tyuVR3QbPX88fMdVF6X+pshJEaUlWV9d45t2s2kzIejKXcGGMIIQnrI+Sctbp5eHiot+S955hSSupJqyevUkRfe+01Pc0RUfeNCWIGgLIsOTIRNU3Tp3h6euq9b9udPssAXpkhyAeAlLIxBsyg42GM2W53low2DZRucNW21nYx5NFbVTeowFEQYowITDNKIDnnW/rAFDLqtU8kMcZMuDBNBGcYfm0KT6fQX0RgAgQBhhVuPNNAhuWRW6QhBTPTYNdya4yo70AhadrLMaabNIAggjQ6oYM1NCgIT78DcuuxphdZw8zAojUTo3oOgM7YBMzM053DiAMO0TMNpBvNa/JbrJNpJPV3hJAQchbmmPO4vYpmcbqozO2wq4Zg5sHsDzADiGSNfgQGUHVkhYiMRF0QBGQgBPVj37uNlHNRzZaHB4iIZMkQsqU9Ru2UiiuRSjHrwY2QEEffQADQiEHY9V3DKVvnQ8x4y1q+RfN1HoyVjNvsca+6AMozkpEJToBkwBjTtR2SsdbnPUvAKTeGPRb8+L8M0fQI2dnhA5lFWaLGGGWNWcAplZ2mq06wCdSeCkQpJXkLPRNDNMHTsO+ouwevTx8+8ZWmg3/CTWCvIeKxX4SExpCIAFpEycBEJCQGjGLcFskSxK7bbrclxtC2rvC+KJq+d67IWVRazhrLCALUhvihb/22/9Uf+sMx55ADkxm8JYkyR4O6K3EGICRjLIPQSK9jZiQjyIIAAgjADGRdlyKieAMHs/L1l7/wkZ/4ieuL88IRSOKcAbFt+5CZBXZtaLq2mlelL5gBhCYVFs3dMwiBEBGrWPpQoTGQU+7b0tJyVu5aLpwnlCgZADZtMGY3q7yQVa1JAEBl1hMxQ0wJUIFyyillEOU6cdLg0oeuZ07GOBEGAEExzrdN37Xhw9/2bQdHRwnwF3/p711fX5JzBRlTUV2Wr772mi8ryanv83PPPXdwcPDqyy9ut1tmPj49evKZpw4ODi7PH1pvQaRr2tB2ztrCuiTy3Dve/vx73/fU295x723PXm82YgwaF1IedzW0XxGQ9/+/fuuXX1Zx17v6lsv2P/6L/0XafkmCGK/+nU++8SsvPvk175h+wjFZb0N4vDL7l3shPbJLxC785L/8F76UP9y+fg0Af/pdP/KVfa8t/e//b/8lN3uE37d6+eHRc098RZ8niqRoACeCu91OdWZyznVdFt5fX18PZJyyVB8bzUIFQIlgmrmNNV0Jobu5udputymFiWGRczbOAsjk2gTKtiBS75eu61IKKs5IRLtdc3V1wZyOj4+Nd5PNCIBaXT9+i/bOEYFITiltt1tjTB6N4Luus9akEJ01VVU3u83q5mqA1KuiqOaI2HWtBprGGCalhQ4ixROynFKYTquJmwwjdwZQ44HcNJ3uP+Qs3ipThZwzkWXkKdwa4pnRr1ipGapUqBHDxJnq+17N1vSABh6oBlPhXHFtPR0mVDHnnBIQwmBSwcwMym4zY08YgWjCjIY0xNdPUzyCRzacQVQWtqbr1loVf1Am8lTcRUSldw0z7JE+Kh4hbJmwXSJCERDOMmhbTZ+pjFQRIQNuTEc1UxURHF2UJ1GRsqxSSjmnAesfP0Sx5jjKlejg5JytK3AkFXJKOiZFUcgeRUNEADmE0LVN6Hf6h5xuGRhEdHV1UxRFVVRKgLXGvfDCe0IIDx48+Nt/+6e+/X/xHScnJ4pwEZFBVDxF9vgW2jjPQ3qADICAzHkKznnUGdOwTRHznOP0OIvFQoH1GIaOWrunrTe8jBHczyEKkQoFIg7qGcaYxAJKbWEQBn3XiChjMWPIEq3VWWf3xK+IiBkSZwap67osawYpi4oZnnzyybPTYwROMapVDLMAYlmWk88qMzfbDYrUZeUtbdeb0LTGmDf6B8Vluet2u7Z57pnnnv9Dz3/6b30U/szFY/YyBGYOAH2zXiwWnGG7XumEsdYqPjVJDG+3W0nZeb+czZXsnFIyBpkh58FPr9s1Kvr89NNPM7NKRpCzOQuR3e02i8XCGIdoclhdrtYKMylWqCIbilnPZjOV9+lT1MWFLClnlQiwxk3ItaaIOpjz+XzbNh12JycniBi7HgAUF9CUe7FY6F7x8OHDnHMSNmT1YUMIZLAuSp0tOhOUcsVZ1uv1YrEwxoQ+OusPF0tVzwBBEOQsMQbFtQ8PDw1ZY4yzvixLAV6tVmrBN5/P67rebnYpJe8L3f91rSmmqUeGDoLKMZ+fn09LpiiMMSbGnjk9ePBA0xkistYo1JKz9H3UtmV1/9Ol9/rrDxeLahg67/LYzMHa/omojzlfLuqBtzSIAhdFofuY5j4hhPPzc03yZ7PZydHx1dWNiDjnQtfH2Nd19Y5nno4xusJv221ZFDJCLUSUUyKitm1feeUVQrteb51zIp2kfHx8sF3vyLuyrm82m8I6ACjnCyJKOe+azeHREQB0MVgqrLXGaPIy7P91bRWR1E1yaIkwsFgsdNNQ/f2BjR5Tzll5o3Vdc4b1bjtfMI0wqB7uBwcHWv/Qo3w+n282G7Xenc1mCmQr46osy3bXWGuPj4+PDo4/9alPKRfYqDiy3o/cks8QUQGU3W6nm5KCibojMbMapeqK8NZdXlwCPP/Fi7dp2lxlInr++ec/8pGPaMeGviZdSmVZKq7NzMfHxxcXF3Vd60aneVwIgRMYMzCfiqI4OTrW+aM7vArLNE2j1abr62sUKOtBNKzpOgBQXmTX7rQ5QF/EkIoS7TabrmmUhNu2rUJaU6IqAl0HxuTl3HnrQghiQI+wEMJsPo8xHh4ephw08AAAS8YZ2/c9gx6sRlVTDAwNQUVR9Lstoorto+RbLpS1BNZtmt1ut2tT/MIXvjA/WBbWEQ4cLxk1rGgUN9d/F04ohAKE4r1nTsYioXOuCCEYcswdSNbabR6Es8QQGrQoMccAfkjMD8+OTu+cXe82xlkyxtohbND3rrvo+fl54nx6eqqH44Qm9X2fBbVbrpzNnXMaPlVV1TSNtsHJ2JQvgt6XDKSnDMBAaNMq7wAiE/VdFMjMbJybGAyICIj6pVM0qL9fFK7tdm0HWh7wduryUZ4XQU4xZuBczWcHi0Vt7bve/iwwHx8e3ZxfZMx57AzwOaeUmTkzb5rd5156MQEcHi2YMOYouXfOlfO59U5i3G6bvu8tmabrJKY7h8cGCTMQorcGSWIXLEHMknMOXexDlJRVS1U4kYHj4+OQt4Gbqp4Lw27X9m0LBjbNGkbyHyIWRTFK5YTaWa0qaVnIGIPWiEIHoxvHY+Pqptl1pnM5TzNfEwQZO9V0pegeouVbTQo2611K6ejoSJee95jHRi7dTFQumUeBiKnapyU0XbYqBKSFRhgtZ3UP1yNDJ5UbfKFgtVrpLMqjWJnWfSdoaMKddHyqihgBSYjo9PTUOffw4cNRzEd0T1BlPB4ZsQCgi1pEEJ0Zmcja9JNS0jiZR26NtTbGIT7X42O73fZ9X9iiLEtXFlplsZb0sLsNp0WjZVDtvsIYRljMl4Smadvdbjer6pSS7rf6vMaYggqtpbWpdcE45+yRI+ukFxk6ICWlZKf4e0LxZKwV7KNyMMF8E0Cp5hCIOCrS0mCwNpxkMGFwigySwGiYPmHc6Vb1bxDS5bFpTr9R3y6M8C6NFAxk0ZN+6tYbXipbBLTGTlBhHqVChsnNyMwEt+2iw5NK2n9eHJGwyVEasshAfJaU0lt1AQBAjimENDQsmOErENF5QjCAbHCgCIUUaY+Vg4jWGgYFxEddaRZBgZFUK4PQRVa6q4xYMI1gxC36OyQwKEhoXEyMiFU5SyGLqAXg/q/JOKb63hW1R31MQkyjTlM3vjJlGagqyHQbty992EcI9qBYHKRwAJHAkOCwxw6vDw0am1Nb13U1n6WW25gRDYAA8PTh0xzTQVKlSJwUrEAmqJcZiIZ9UCNyEti/Hx6rOvqKNTeYpvFbsZuBcHqniKj6knHUWNR7U+VE2UOfp/87LTG8Bawf/z0WjNX5icI6ECIpJcBBksVaWxhom23u+2JRtiCGiJyFkLquSyFaJGGWJOTs9Xb73Asv/MAf+MeMrx5enJP1kbOxLoRJRToTEQKKjHKcBq2xkJmncSPV2hJCtMb2ORtjkHJl6cVPfeKX/+7Pri4vPAByDlHb6KBp24wm6OSyhsgSWWNQogQRQuGxfbjwpa5W3cedxaGZASSGDsHMa1/lnFOIzIiGkc6vV9td84633Z2X89DvcuxoaPhWbjjxWPXBocqFw3FVDGENWeNMKSLtrq3rulwU6/W26frv/M7f/Z73vGfbtNuuPTk7jTl5axzSO9/x3Etf+Hzh7DPP3Lt7754hvrq6+vmPfDyl5Jw5PT09OD56440HL7/8UmHd4eFhoWwgMnp4fNX73/+Bb/j6sztPnD31NluWgTmycMrGGAFKOaE8Ri/ocZOQ3vk9X/ee7/9GW/nNa5ccUnm88LVvLje//Gf+5m8q/vClX9/5H/7h2esfBYDDd9xJu/6Nj730a//l/9RdrH+LH3v63qfe/8O/uzpdxG3XXW+Ns4unTmIbf/3//Xc/99d/SY3sjp6/e/L8XXT00k9+4u+PJMVvelfve7o+W07/2VysX/u5z3zpf/6pH//IPtxcnx2UR/PwpaHVv/FF3t77xkdSpoe/+lLY/M8xJt/0x7//ife/Y/8n7dX2s3/1F77+j37vV/aBPDav1fVcz1wROT4+zjGlHHa7nW6nODJMYa/EqC38Gmxo1hdCUDqhYlhKl4sxtn335JNPIqJzQ0udiGhPt0Jv1g6foESJnPM73/nO7Xa7bRu1nzLeqbgQMxM9fo/u+1ar6Tnnvm+NcVYNlIlCCPP5vGm2IcQYI+HQjKZNan1MXWjbtsldRDSEAAykpUHmPCoy51HWQJFiPZ409g2xQ8SuaZlZ2SuDbJeA4MByGhlbsou9pLFu/ahCsdLWJpBIA26tjBZF0bdd2hNYSzHzyFGdSNYw4vgTQJ9SEjV2lkxE1vqUEmeQ1GmYPln+6rlpRjGTKRBVZb3pftKoW2eRFPiYHmH6xtuD+zYKBdojxU9AqogQAY+dYzJizczc9Y3ScNSMXpF3Da9TirBHo9ZP7vu+61odMRyZCs65rusEbrOjCWNVC2sNn2hPV3qIY3HsL8yDoAcRpZRSiCKi1OYYI7Iw83q9RqCyLENIhS/Lsry+Xr36yutdn/ouxJBijFm4LP16vR5ho+ScAxl6S2OMxo0C4mNMlXLCvdL+FLTo5ZxjTkSDLKNqLKxWq5h66LjwFSLmYXAGQar9N5JzmuC/IWEDfNMXaQLZtG2KXFWVznZ1KuO9TgURCSGEzFN0ZwykPjZNc+fOnePj43FWQErobTncubeFG7Q7+74vSm+QUtdeX66a7a70xdHhoQDcrFeh60MXPvWZz8QYn5k90cNj4GaDJiXOOe52u6Ojo7Is33j9taOjI2ZWuVJdU2bs+VUEU2+eY5Icd11WqVld2rN6dnBwoCqTinjudju0pm3bg4ODoqhEsGkai7RcLhXDurm5McYoeqt55vX19WKx0A+0SIfHJ03T5JxTzNZYawbAtGma1Wo1m82Oj48VEk3Ci8VisVio7MO8rhBxMBoSKJzXdnJjTF3XbdtCSlMZgJlTF6USVWRWMlRZlg/PL9q2PTk5qaoqg3jvl8tljPH8/FwHRBFJTZvtnsMKAPR976wBlnk9EwEWSXFIA/u+X61WJycnRVGs1+uBG8gMOLDsX3311U996lPz2eLo6Ej1zZ1zi8VC1S2V4FaWZV3P9atjzACw2+0UJtbdW4EM72+9nnSW6uagEbjqV8acJoVcZY+qFqd+ph4o+o50+Z+fn6PcioGqFdXR0dGTd077GFUV6vLmerVet237wgsvENHq5ubjH//4dtPoupvXs81mc7G5Xi799c3Dvo/1vL64eCgixlFVVSGEmEKW1HTNPFdojUDf9uDUph6JeQBHRFA3PWv9hPcRgo5DaDsmcg6Y0VrLKe92OwCy1lrn9H2dv3HhvT88OS7LUhuaabRM0Omt/RAqwFKWvqqKsix3u91utxHJIhBCePqppxRC0k1PJZKn7VcVvRW806xcF776YomIipwqrqfVRwVorH288Prp6XGqKed8//59rbZOp6E+xdDDMZv3fa+CSMrh1UPcD3VxmM3qvu93u91sNivLUiS/8cYbuvomnOvi4iKEhAgoMBvLrqPTA+ecq7oI3Uh1GoWbIud5XR4cHKh1mD7darXSMgYzn5zMnfF6vjCzMQ4HKSp+4okTJCor33ZanvGxDxNhXx/w4cPrZw5PADin1HWdtVTX5Wq9dWS6mApLpD21At5QpgFvSRyLsqzLZZ8HF1/lLSp0EzkjoiGj8ZviuZMUT10vADjnmFPKSYqiaGKnQKTWGgGYiAwBSEYAR4AgkiNHEoiMvFwuYw5djsenJ11IzB0AqLfzzc2NLiJjjDZgAYBW4/LoFWHtoECiW9xisWjaLTPvU2Wbplkul977siwTU9/3g8+BFhiQiMh545zb7XbCGEKo67rZbdAaRK7r0lrb56w1D91exmljGMHwUJfVnSrmRERkDRB6ix5s1zW+LC0ZSOFrfttvv/fk3Vc+/TlHzltHSTLHWVURUQw5YEzCrizOry7WDZzem1WLeZu6qqyMszlHQVDwVES0yoWAnCDlPHNFiH2SVFXVrKrbtk1ZUAyqyYeAMQ6BEke1a7KOMhhgEgYRWdSzEFLkeHZ2poXtgdYaghKKtcNDOaM55+VyiYht2w/xpFFy++NzBIW59MRXrFknv7VWdTlgr2lewV8eGeLaW6AlARGxzk5An7LLB96kSF3XXdepWI3atyjrWfuH3Li5eX8rIMbMMd4KrmoQBQCr1Uo7LHX3UDqL3hIR6fmuMQARqXXhFN3lnPUQIaLKO6f+k4b0VhEHdawY42w2yzlvt+vlbK7HtLVDfyc5y9pDOUoYTTQOJaZo+EeO2tAaQ4i03a616q/FPz1zc0xBBtkJ5xzHHDnr6cDMs9mMU7bWnp6e9k2rzQTMrOIHzjmJ4qYmIWYCo/tY38fE2e7XDGXsleORqzJF6hMCMgXQmW/Ddy1WqEztGFmOVQtt3UpD/XxoJeDBeEE/0BjDeeByqyr8lMDogTfdpN4n7dFpU77ljtEouGxGtWgYcwkYyy8D7WIsOMjeNY34EFgM5PahxDp9hYi6sTl4a1RI48m9EZsSIRh8bCRBHgoIIoJoODMzW18wmL7vZd+RZtDHYGTBgQ78ZlKtMMlg8HerKSwiLFTW86IoWyTt/EqcnbG33G0BliGIB1CeOLB+AiIZQERi9OhTSuqwN6WIIaQpet4fPQCQPW1l2INc94eIeVAuJgGFuVGEQebLQ1+U0jV6gAEAgM4KAZCpapTSLYlmilCtEqhH9UAZZQeHrgfNxvX18PBCdapMmxdMEttvoZcio/Lj/kNN4zBljzR6A04zjfco3hPPy1rrvHvsF6mA0e2MUrVmQTUr1LPKxP71l17iHNsmoWS8lecWIkIZFuAuxHo2/87v/q6zJ596cHWTwPRt58uCx/5KDSw4pjiKZhpjEFDSMMIMms0DA6hhqNZnnPWlN9evvfRT//3fyM36oHSr9S5H3nU7Yy0hGF/0feq6QN6pk7WI4CDQIjlng7b0jqwTHJok7Gg7rvwgETaIDKmufN2H9baxxpF1AIRc9jler5u6Lq0rQLJaFSVhlmFDiDFKQsGhRzKlJIxJ0lixdIB4s9nOF8tv+OAHA+af+7mfe+e73/aO51944/Lq8vqmC/3F1U1RVwXZFPtPffrXry8eHhwsTo8Od9ubm9XV+vqmqoqyPCjLUoS3q5XuXU2IXdtaBZpFCM373vPe7/m9v/fsibtMhryPIn3MxhcimJhJBIEQIae38Osdr5MX7n3zj/3+537311QnizeRXjnmd//gh37pP/obr/38l4GT/gbXk1/7zq/+6ndO/xk2/fv/qW//qX/lv/rc3/hl/op4u+Vh/TU//Lu/7ke+a373cCKa6SUsz3/v137+J375Z/61/9flp1/z8+r7/uI/v7l/9Z9/6I//Vh/jS7ue/Jrn9v+zvdxsXn0MyvBW16s/+4gF3+Kp46N3Pbl+5cv4hLe6fO0P33Fn/yf3P/Lp1Dyi1GFLS9os3/x9E2N58uue+9D/8Qf2f5Jj+vEf+JPP/Z73f2Uf2HX9dtswgzEORquf2IfQ9erBst1uFRFARE3UFSsZStSIqrQuSsPp+6ZprHcA0Lat9W42m81ms5DiIcCkejYdE7onz+fz9fqGiI6PjzUUKYpiPp+fnp6GEMLYKqu1N01Zazx67OOc3bnTWr68vDw4OFCMwHoXuiE50b5CEem6AAR1VVVVMQY/GGNUyiqwCIkhY4xRmHjKQmXvNNdBGArwyCnJhCmLiHG2KksNcHNIbej1Q/QzOSYRsdaqLbsevnonebwGvDhljYMHRywzAL7DKU+3oPAETMCeq4cxQ0dzkjSFKENonrkbEzBriVT2yg8s1/GuBiVQPZUUSZc97TVkUaMVfZV6kzCq0e0fxzAGq/ukGBzbrphvm7GmcdC/rapqqoiQtcLcr9dFUSjcrOihjArXSnfS0cDb+vEtBA9jRKTPpY610/3AyIdAY3BPOy2N3aZEKMIwxBTDldOkrwLW+qqqrq/W5+dXTdOU9axt+0984tff+15cLud93+52Gx23aYSBB+IMZ7H+toFsGro0yt3IiNHD2Ik14m7KAwA3SrWqQrGCxZgx07DWUkoGEAwPz8DDaGiGY62lkd6V9uStY4w5DeUQbSnVd60THgAUqk4pFc7vdrt6Pp9XNRGpJth8tkA7zKgQYowBkGdlBQAZiYWZhawrDBXWGQTJkQHKsix9Ya3dbDa//vFPAOJut/v8ay9fX6925fU74DGGY4RYWMdk7JyeOD0zxryEqDemI+mMtWU1Fr9NzjnGwUtqwHz7AADKJi6dVzqeImsiEkKwhdeZ0Pe9gsipD22MUz6pK0Xl6dVDT3VImbksy6qsu7YnNAxiDCj1TKEHRY31eVXvMrb91NWr25fObWNMjmm5XDprQwgKtyl0ZdxoPWSdpsc6ZzQzp5F8rdjcxD2EzOrwprxUhddVN1MXVOj7s7MzABCB2WyO6mFFpFWWqqqOjo6cc+fn5woeaYS/WCy6dhBTOjk9Ozw4GrffTp80jx3NyuxWgync07FRTuvh4aGKLxtjlsul4n36vMqWQDQKZwx/66xxVn9HnwsA9CTSGmFVVcvlUsVnVJbEGT81UijDUZXrlZkbc+6CCuAWp6enMUYFOg+PTrwrRURhgsPDw2hCTul6ff3k2Z27d5/q+7bvY9s3XWirqjIOcmBjoE996YqqLi1VeqJFxNi1Og2McW3bzudzkVvbJABuNlutymgZY2jPNVRVFZElYxTIc84NWB4SS1KYfmp0UJnagVBSFDEOB5O+hZzzdrs9WC6R/Gc++9m+64rKo1nGnHLOCusrfbXvegBAGvKsafCna71eqwy6gvsiogzHwpZfvHIBICcmsiGkV199bcjBWRSKHdJSoq7rtuuNIkda+sojFuO9Pzw8dG7nnDs9PdWHvbq6ePjwIYwt/2YPWR60g1JGgbIsDw4Orm5uuq4jAFSRX0BmuO12YubRG1MRN4WuFBJRMLRwZdyzL1Mw4YknnihLn4XVzFNXnyWjgjDqlFD6wiAVjgBZMpdlSUtZ3VwR0XKxeHhxYYByzkhaHjUMBhEAseeIiMvl0tWlKfxms2m3uxgjWwsAKec29HVdZxAOkXNWdr8fXeOcMzGm2WzWNk3Wti0Yi53DucllWXhvDQIKW2tnVWkNZI4594vFoqirTd82bXuxWpFxbLL62im+qbCd9e7siTuvv/66bgtKHZ3P54cHx8Y7FXW5Xl8jYlVVoU8x9TqGy+WSeTCipMGKQCusrIXzWVmRARtJV4Tmp7Wtdbe3SLbw1noaOc7K61c2Q0qJOZGzEyAwm83a9dZa2/eRY1vOCmZClKODQ8kpNU2B5hu/4RtC0/Zdx5A2q9Xldti9u64TlrquwdD1bvPg/GJ+RMW8Xrc7Qa7Axtjrkb0/Ybz3XdN677fNrlhYY9AgemvK0ldV1fV9s4tlWZdlyQx9aFMOiDifz8rS39zcGCcK1FS+SImdcykMNgATKDQ5iAI8EsHudrvVajWbLSZARpf/Y9fmcrnc1QOzYb1eT9U+hVaFEQCyDPbX+nQicnB0eDA/1Pq38qljjCmH5XKpoKrGjSpgqwo8WiUCABVI0WMipXRwcJBS2m7XXdf2/YB369PpP3Uz1P3cjWJZeuqllLSu3HWd0l41hRlaIvJAjNBnefHFFxXGPTg4UImqIcKxRmcRjSyKKUhWYR/dURXCTik5a3SaaUlPDz7nCpV1VXllO8pPm9FLjIiKopLBL3oALa0xhkzirHCi/lVKyThrjIl9MMbc3Nykfigr3tzcuLJQveyDw4Oa66bd3sSVpOyDA5YOO+fLoiisMW5KbCZq9H4isQcmGiICySNwNsTWxhjvXc5ZKagjBneLQqbEAGCQdBx1E4eRJ8KjHDMIOUcAYJFEpM9JB2W6E/1NA0PaoDdsTDGGqrcqhNMXDQsbMhnQ4NmQ4/G6TUJIJvj79pFHMJH3KRUwnJo5532k+5EY1JC1NqUghGbgwuhhNhC3w+gXp7Ca3mrWJg5ElUsGEZzkiQfFCgQRtUtU/JoAR8cdZGYEgj39B32KmPHw8Ng6RyzOqTCjIBqBAdcjEsksCATAA+abx6EYXyKzLfzEytEb1pwYBxDg9jaGiSQKKEyTZ0j/DJEIswiDgDBwIiIk0thUEBjBehdyYpaiqELops+XPWe/6V9uwVwERUiZGbKgIbOn+zwlMzq8U7Ypo1R3GB0biEjpb499uQCACNMWAAqBj2uSR6kTnaVmVEOGPXwZR5ENHPWm3+q7pr8VwZyZOZO1xlhm5pSzZKqoXV8/vP/K0WLe71YaZ8cYc47GGIMmxei9b2MUwt/xbR/+bV/7tQ8uLhSNLYoSxppnzlmYLVKWIQosjGVtRiMDABkQQUDxWgAACCkKszGuIOxX1x/7+Z83fVcQnp+fxxSMGdS5u5AEkEGsc1mEyFRVxTFt15vdrpXMZelBiC0Q2cwg1sJo+hFCLEsvYmOMxqIBKgr/hJl1zTZJFpGYIhnHAG9cXTpLB/PCoBHKaI0ViikTAWeVsskIxnjDo9Zk4T2RBcSiKFbbnS3LZ97xdrb2pdde9/Plnafe9vrDh9vtNvTpZrO9Xt2cHB33OeQQduubo8PlbFY9eP0VAc4I8/kM1PQgZ0OQc3bGwOCXgBqqIqD19oWveu/y7CwjCREAhgTO1zHlDOzIZM40bEePr/na0h++4+x3/ht/8F3/8NeTe7zdNjlz8PTJt/6f/5Eck7x1B8ZXfPlFcfbbnv3BH/9jN59742/+c3/+tZ/7dHe1/ZL+kmhx9+ir/8kPf/Bf/D5bFrZ4TIkFCeuz5W/7gx9+3w/9js1rV4u7x+RMcVD/6Kv/yc/+Wz/+9/70//APlONsa//k1z0CN9984Tx8OdDt9WcfbO5fLZ66VX++89XPvvSTH/ut39vszmF58IjjzYNf/rz+S3lYH7/7qa//0e9+5/d8bXk4B4D7H/n0L/ypv/bi3/q15uFviYTul/UP/ZU/bvwjVbdf/FN//eWf/vhXDDdbcoXzVFDOqmTAdV23qc05b7Yr771yTHDkumoSPpDC1MxaRDdtza/avlMSmXLl5vUspOgKr1ZC2iCZ0q0FsbVWJC+XS93wtQtbd+/1em0L76nU3H7CIHB0+v3iq+/7JjSz2WzyuOv7nnMmcrqvpywHy6O6zjfXl13Xm9H3WePUvu+RwaAlYGSUlCDf2mZMVXYFQzV11GjHuiEEosl41hACamY+1NoNERGyKNF4gkf1D5XKEfKAi+nJnvqBTq4RKjNXRan5gzYzqseyHqbTTZpRrq7rOgUnRSRDLorCOa8H3NCgnQe1O8WVnHOes7501bCbYkLF2obQy1m9Q9LempwnsHICHSbodspw9A260VNERJjTBDpPESAAZI4TiKkoyfRRPCKbm81aQzW9T07DWc8siKBvf/8on/5TRscFGDtrhi8W6fte57P33pXOwJBO6LdPsOwwDmMV3FqbADiEGCNImi8XdV2//to5oqnK2eFitt1uf/Inf3o2m733q96DKhgVOmbWEznGqDaOIGjtwEOZyjkaCz3CZ99jWtDo8KZoY9cN4oYnJydKC9JRRcScklIWVGt7AjH1fsyozgEABoca8JRPanagUwIAdJ3a0TJ6erPW2rquM5ICgt45ZM2vSDmwISfNCa01eg/GIAMR2SQJWRxhUlKIIV84dLZt2ua13eX5w2azRcS+6TBg2PWvX7zxDrj32B1AGFLM3hcvvvhizvHw8FCJkIofEd06bIuI4NBOG0eDL7ROSXnzqtaVq7CyjmTbtvViPuHsA0ux6xXEVMkIzfanQZ7IdBOrWrE//VLlSOq/KwM0hNDFoLl0Smm326lqhIiEttNqfd/3Cm03TYNmiNW7tvfes8jQim7dbDZru2aKqK21r7zySrMLZ2fHmpSpndrR8mC9XusrXq1WKlygk1yLdjGExWKBY81vJN4ONGpFRcuyns/niObFF1/se/YeleWaYiSiqqpgtGzd7dqyrBeLAyK6vr4eSSo6nUmRUN3nYSSmKUM8hKCKECEE7bKfcBNVT8o573Y7BSKVfT8lOwo3TIrAqufbtm3OotBDu2tUbCGlpNajigop07aPse27aj67c+dONatzzuvtptm2ZVkWVal6rLrx3rv7lLX26urqer1x5VU5q9H2q9UKAclRjDEJHxwf6P1470PPMUbrqKqqXRo6MhV8QcSu63V+EhHzcOhokYCZYwyIpizLYlYURdG1A6OrqqrFYqGrsusbfWv6t3n09er7XlPXCeZQFuGgE5JzURSb9Ub3kLOzs13bOecSM6RkibTTBfb6YHS7mEo7w7bMPG0a+pucoe/iY1duZta9JaWk1MvtdoujUS2PGseDQVxR5JxPT48TZ9X66Pt2ShgR0VpKSQySEgx50INy+i+KqhdFYQoCALWRpMnNXpEpFjMIZA1l2lnh9Zb0ufQM1bNmuVw64xU71tN5hLah65qm2wGAmkkgoqVBXV2LGVVR6mG9XC6X8yUAdF1HyMYYyAzGzGYzZmh3TZbsjVVoQsMJjpFBcs4SI3C21jZ9VzqvD1JWVReDNnbMygpE9O1fXV3F2M8W8+tVx5yMMWSMTn4i45wDFs5srSHjZ3UtkgmyIarKYjErEDIhkCuMoxDjdrcDQmNtn3Phh+RdSQM6l7R5QoG/m5sbLYXmJGVZxs3AHJ8cAnPOhtwUdWitRbPgrusST8CxVSQG8ZY0eXx8vFgsXn/99a4NdV3XdW28Uw9JPZ5049L5oPFANa90Z04prddrj05AjDFwO9McoEBOKcRv+5YPHs2X9x++ZMnENuhgOudyyIXzVFgkA9bszh8IwtHRUTmvtt22jxFawKHPw3PPXdepbgkzl3WVQw8CIQTLoBXWRT2LOckaujYzc+x71e11hBmyLQxzdqXJEo01MQZJQkTel06c0nLNKO+rKIT2FSkbQM8jXfVaRcuciamqqrei9IXQSyXOuRyilsRyzovFwnt/fbXSd1SWVcrBGIOGiqrUAs/19bVOP23vCHFoLdVDZLfbaZqg7H4RUf0cjV6UyKJy2znnEDrlldKo7qs2mzR0EhhrvR7iY0Anm81GAeI0+hMOvDoAxa/Xu+1g49m2Nzc3MLIx9Iyu6zqH3rkico6j3rT+36yujyNb8WazTn0oy9IYq+IwbeinMOPo6GhaFFOw5BzF2FtrJ63q+XxeFJUGDDyKTRMRogGgHPuU0ryqVaYjjQ6E2tCzWq3mVa0ltKIojHNaRt2+0SxwJpCzEzRCZI2BWy4/sFgyqrnj9lQs4BE+CCi9Vv8HABBaMPtwmOok3FoOIiKS7qQGBk8JznsCAtNfTVVQa62zjlPQo0Kj/EGOcA+nEx4CKT11hMUQAVLISVseJugTHkUkeQygp28HACQVkRhoNROWSkTaJmYIlQjMwsxs0EzR+VuJLZAWbbRBdvRsBRDdpGKMAxJpjBoTpcQekWFIM0hJ6RlzHI7z8dnFGiMIBokzCwCNLaUwWnzuj78BzMwAUNW1c4VNjEA5i7UeBWT4ZTAGrfc5SUgqy8jOoJ7rajo0HNvMeuJaa63Bvu+z+rMDT8mbGRnxhtzke/Am1HWIGGh4KNWb5tE0MudsXXF4fJSTGO+6PmmTC40q7yoqTQO7igCsktGQjEJ1KUSdUWlsQyayRMMrIyLIjGiIbtU5JkwBRli8ruvfCG4exdSHLH2E+PVF66qxOORmuu+obwPveWPCyFbLOXN+PJuVZaARJeacWcchxliVpZhMRA7x137pl7yht9174nOfvQl9PzggEAmTtSQiXcrbtvnaD33Td//e7+tSBlMIIjKmLI4skuSodGABBGOM7r8AAJm9sSYLGwSBLGnXBIvAkp2xSAaBnYXd9eXP/M3/rr1646gu33jl9RBD1zW2sEXlY+bEeds21lVISJCLwucQm+0m9tFbh4QMWQDUXysLE1rGYRprkDpuGkiEiVOKaT4r100HwGRNSslaI5EeXl0Dz46XcySTUnbeW8Au9JxUEctNS0NDVTO6zay2u4OTkztHhxFg03ZtkjaJOHe13vRth4ZCivVi/o53Pre5vnr91ZdPj44NsTUEjoxxTQqckyUDzNYayezJCAsixpxxaAKIdV1/y7d8y/PveTcbn42NORnySKZtO2O9JQMMzniVc7JvgW2lLnzP/+NH7n3TC/ib4cimdKb8jdovfosXGXP8wr0f/Mt/7M++70e/VLiZ+V3f87Uf/tf+4FuB6Y98vjUHbzub/rNYVO/+fd/4c//eX/2Kb/hLufysXD59uv+T137uM18Wg7u73jYPV/tw89Pf/O5f+A/++m/93k7e98zsycPpP5uH66vPPjh6/u7X/jO/513f9TUn73lq/5ef+uALT33wXwCAT/03H/mlP/sTr/ydT3xlfOfv/rM/PL/3iHHixSde/ekf+0tfyQOM1wTD5UEKNq/W14ioQAONFtIa4m82GxiJkGVV5ZQ0tosxFkXRtq0rfFENiehyuXTOtX233W4Xi8Wkrgjjrq7ZWtM03lulrWnylkflir7veYQONbLXY+v4+Lhe1Y99nNXNTZiFEIYUS+NgIMxjS3XmqJ2/zrm4Z6OkNBxghixCUJeVFv8kZ2etHhx9102xpga+up+ISNc0GkoqNodour7X/tApttsPhPSYSylNnACFjy0OVjDDabXHzNUAdJd2PPo3yp6fnh5qZvI3Ho8/zasFUSB3XacMl7KsFdsyYFJKWg2dcGcYkUfFnfUB9f/S2JGmA6hxmQw8AyOju6yin/oI+lywZ0pB9IhJ3QSXiwjLrfozjy13Y9hAKlyo6GEKfRokNRIzawQjIqBO3N4xSOKs4fEAno5NV4Yo5axRn9IYtK0nx8G4aTqbYFC+TgrApT50beOcCyGKCMIgHtL3/Xq7uTq/RDRFUZ2enX32cy9ut9vl8rCq6vV6c3lx/eKLL7/t7c96bwVH+yZERuAMklMMY/WdOeVsECVnAsCRpSUshGDIGIshBGTJIfrZXL3ax/RDytKnFLQapAm8Rrw4knmnBF5nVM6ZWV/ZUGAonGUYbJTMILRiFJidJv8EEJiR/q+v2FrriqIqyqqqBksGTtrrmgXGnNAOZtTGiGQwyCAgBCjMYA2KcNu2MaV2s726uIxt1+6aWVXPZjNepvN1gwneyvHVO68zhJkJoaoKILNcLq+vrwFAkUqNN1JKdV0jivqMVVWl69QWzhjjzQBJvPbaa0qtJaLdbnd1te5TvHfvHoxa7SEEVe1YrVbX19dKpNJwVPdMHWfFoIuiCP0geSmjzPFUV9DFojseM6ujoIo+6957c31tLCnha7lcAmHTtdbaqqpSzLpYXFmEEDgmdF43vc1m0/f9crnUqYJAOBLQbm5uiOjk5ISINpvNerdtmma9bp955snlbP7aa6/pRNJ9gEdxA0UABzK1tfP5Uulpr776KiLO5/PlklIKVVVt1uuMeHBwcHx8vFpv16+/YUaNoH7ce5WF55xzrlgsDhRrULBecQSFQYno8nKn4I7G8DKSwhDdZtNVVXVycrLZbPQtKHJ6c3PDKVdVtbq+0W2k7QbjLOcGPtpmsxERg4Ohk/d+fbPKOZ+dna1WK49I1npDl+ubBLJtm+7V7ujoJISUOBtjLi4uFHS+Xt0QkSu8c+76YrXdMoh6w9izszOtOIY+EdnClsjGGNNu+z7GpmmK0s2rerFY7HY7pWzrICCiTmatN6jUifKFx1Zuads2j06nu92uaRrnnLZ755xjCtq8D2PlYz6fz+dza0lLHTQ2fZpR/0r388ysnkazxTwLo8UUWdX0EnPM2Q8iWiDCiMKcjKGcY9t2RLfUoglGjKMvrnZ8f/GlWtjbTVNVlSEXYxRG44bql25izHxydlr6ouuazWZzs17pRjpxJ50rdKojSs758vLSGXt4eKi732ZzAwCzxVyxpL7vBamqqm2z67quqio0ZjGbqaq1M1ZnERrV/GURBoOqCZtHNSREXCwWlsxut7u5uVEutiLL3vvEsdms9bSdQOrQ9VoP0AVe+uLq6korHCrL0++a64dXlfUZctf1OGAmZEadJe/LNrQMEnMKIYgdSKa6pVhjNJSqZ7Oiri4uLnS3qatKjzJfupjDdrtVrLlpmqIoYoiHi/kutALZWmeIOLGzVFVF6d1ue8OpP1iekMGcknEGgGfLRds3V6ubpu9M6WdkEZIeiLp9zZcLNBQnI1PmGON8Pkcw2glXzuqhzlcUejDpVGRmayyC0Zo0ImrumbJ2vzkR4piiFg0R63qowajRyMFhYa0ltKo8oDvMFEmqdsfZ2RkPzUNhArXGvcihMZFD02xLX6S2D81uWdXf+qFvbjfb3XqTs4QUD46O2/Wm2TQhhOX84Pj4uA/htfPzLHx8diSWsvDJ2VlMfd/3Ijl2feCgwiC9HgQaZGp/siOKsNttDJIv3KE5JOOqYr7dNSEErdSKCENmTgJknCdgGimhzrm2bUQkhoCIp6en9WKukeput9tut13XA8BTTz05FT7ruu5CPxUjN5vNkv1j16azPoTrlJI31hubQdFtf3Nzc3l5Vdf1008/rWFASPHw8FBEtCLorStKN3B7vVmYRYxR1N0MQANO5S8rLmxGjQ7VPtJ1fXBwoMt8Pp9PubbyM2APt8lZdNvUaFNpMYNRpNbeus6RKYri9Ik7OeeLiwsaO9qZWc9E1Z7Ssi6MZTNvB2bnVJZOo+LrhKSpn42W/EXEeKdzXtOfMDoTaFilj+x96ZxmATCVZ7SHSfMgN1qt6vKnQdpu9ErhrIFcWZbHx8fNZqt7DoyEGB2H3W7HksqzmSu8EVt5F30nQO1le6sUQaPK8D6IvLc1i6rqICmDlafXIII8SFajrlUYAWsiIjPgs8CPYB84Ytl60OBITKbBNoyTDJxrGLMR/bmkPJ1VRGSNY2YksQJp7MSfSBYAg3fe1IgIICoqh/TIDWiuuH97+nZhBDd5ZPHo/9KSy+OPMc4ZhEbayJTvaTqtyQYwxRivrq5yFkZIKafERGStDSrROI6DyKBSrUNkyDzydJohjPes5ngkwDkzYlmW200+PDwyzubYIRnnbI7MOTOwMUhISn0yFo2YNGhJ61cnQRoKO8JTnja9DsgsIvuQuwyygwCgssyPvHEZbJcMIoLJaIDIKAHEkkGF6cmQA+MKBsyJDblp8HUABlr3KHwTOepPdP3r8p4m8JRsA0wdMWKNsXYYQxEZJLb3CNpTbcO+lZjG6B2vH65w85QY02itg4PQIWu4DKPKlTximSjjO3z8V2mCDUTGWGOciHhfOjKJk0O4ePD6zfkbb7/7RLvZxL4NIVhweoiGniNnMHRzc/PsO9/1+37o94uxXYjoCBFJ89ucIQ/VAhzaFWQK8fUOKIO1ruecEZxzFiEnTClbRyKpNtVrr770xhe+cFzZ3W4nKe+61hgia1xRxq5LDNYVKWci642VlDfNLvZBMlgdbDACElLMafDunMaNRsIaM6MBEeaUDZjCk+th1zXgSrQ2pWysS5K2XV945w0ZMjEnZrbWI2LijIgwEvO15bPrOgEAQ7/jW77lvV/91b/40Y9+9OOfmB0e9QJiXBTJzBnRCjLAU0899cQTZ6vLc4vkC2tAgKPkCJgNCnkrmUFyjsEbizo7BJ21KYu17qmnT7/u67/h27/925l5BwBIDFayMMcUGSQxIiHyUIrjGB8Pcf7oq//J4qmTt5gqj7u+HHbz4bvufhmfDAAAbuZ/5MU/8+f+of/9w1976Tf95W//k//4B//Y7/tyv2K6XvzJX/vKtDu+9Ovg7XfeZIj3xq+8+GV9Qth2V59+bV/p+PiFe35e/tblm594/9v3/1NYvuGPfu97/5cf+o3/6t0/8MF3/8AHrz/74O/+X/6bX//xv9vdfBnc8Pf9I9/0vj/wO/Z/ktrwl3/vv/VWyMuXeKUcp6ozGSgrn7MZ5MaYJSUt9XV9H2OsZzNjrSKtmtbq0a8h2mKx4FEyTGGOGGNKQc90DQT3SGdDnKenv8IZSvQbWMaIGYQz61GiLXLGmOv1WkRc8/jKzQSParBYVRWMOsh63JPBxFnzc23d0EigbdvQJ4RMgs54RBzEu4hkZCHlPQuNCQbV7KVptiOGqABujqPFEw+sW57wUzN2PYtI3BNf1oxIEagpWNT/ZYwhQFUUVdLNFByGyQt7MmTe08FQdnNKSUCD16HAoLdhBlQ3KzLlvR2ddweytqLPGl9NrIKBzpqykMBY/FbwCMZTVRVgaZRInl4QohDdWsPxnnyz8gz02yeQ9/b/jsGh/lA18qZsgYgkMxHNFgs7CEwH3Kto6sjw2Dho7RRpT0E863shopxjDnn/DqchHU7nARyHmFIe29uPTk92u13btKposd00XdesXtlpDvDqa/dffvnl559/Z9O0zDDNpSmN1LNeAKcYm8cyzxSoTGHnFIFbM6jr6hPFQebbLZfz3a7VyQlj+ISIKWQCM8UbKSUe9Rb1MY0xGsIpxrr/jTg6Cur8IMQUo6KZzrmyqpxz1hc6t8laRwYItMrOKWkDuzK4vVWSmnG2NlY52iSZc+w555SiMHdNm1NAlKODBSIaNA/XV2+8/vrF6+dV+Xhqc87ibeGMD31PhJvNqo98cLBQcFN72DWzhTHBg5y22+18PlcgzFo/tSxoyqr0q/V6zcxHRwtflYpZK97XtX2foolGXfu00RhGjqTONMUxh7oI2dls1jSNfuAYSKPWM1D1VVVIpCy1D7frus1m07btydFRiP0EZmlFra7r3baZ8qOuCzH2qiTbtm3mBAAKwCm21XdBEVvn3OnpnZTCgwcPAMB4p3e4XFbe+/Vuq8vWe394cKAqEymldtf4slB5BCIK/aCfqxjBzc2NtXY2m5XlUQydzOe+qETk6nql4395ebla5bKEk5Oj3W7nnHNuUPlUFp4eKMqq0RnYdV3Xdaenp4pErNdrtYybRB31BaWUrq6upsKVDu9iNi+KoigqAM3zaVbVMWZvCwIsyipxBoDdZve2tz3TdZ0ywsqy1CaeF154Ybe6uby+mhqfUwwi0o+gg2Jqfd9fXl7qJp8TEVJdLRFaZKzLcr3dAvicJHIkgG7XbVdb78uhGoTp7Oys9DaEEEJHw2Wn0wTHSqQmzcy83W43m41zbrlcGuNULDvn7F05YSJ6HDAzC2tFREsjOlBTw43uKipZoAd0G3o9hkTEF4Wd+RjjxcVF5OxsYZzVv9I17r3vukanUwhBlWFTCnfv3hWRzWbXdd3l5aWeHTgG/KvVW7CbszS7TpPu1WqlGCgZUGVkXZ4jRBAB4Ojo6Ormuu97xdZ1rpZl1TRNjL3yog4PD7frzW63U+Zg03Rm7JghorKoU+x1ESkeNFsscGCO82I2sA4xD4V255xB37bttCEfHBzoibzZbIhosVzO53NVXpZBPhF1JmtMRaNx0fn5ec75+PjYOaeEaF3siVLOWc/6EEJKbJHAlYpSIYtxVpW3rLUMEkJghN1ut9puXF3Oqlr9LQAgxnh5eUluoE8awHo2s9aWlde103WdNnk3Xds0zayay9CmFirv+r5XE1QAybkvSw8Jco6IznvPHIyzRyfHl6v1ersha6yxtvAc4OLiYjabVbNaVdrbttWpLqOgZYrsnKnrWnsmAKANvR7rMUZy1qkkV9ZqqCCYFBkR62rexbCn2GDetHnmnAEG4mdZlsxh1/Yi4sjkGNN47uec1eaUmbsQCK2wsIAIoEXtkKjncwauyyp2vaQ0c/73ftf3zOvFg4tXJcN6tXHGbLaNMN57+um6qEMITdOQs68+uH+zXT/1jmexMGwHAStrLWRgY7qY+qadz5cp5KZvrOrwOKtN3sqL26xWZD2rILXxhmzTxbBtY4wZsvGmLH2WFAIwJgskIpmz0oFv2WkAumtpVNw0zeHhQiM63Qq0/OlT0XXdwcEBCikD/bFrc73ZFHcLhemNMRfX6+PjpeoBqIjNsCiE9ZM1+LTWGiQtl+oxUdc1EKpbOBFxylNsPCFaGqTpTqX3/+DBA+fMFB5rECgi6uo5EWR1DqhMs1YslsulGgkURaEqUm3bnj5xZ71eaxVzPp+rKo7yXTTvUKloDSxj3yWJ+r3KRFZcXmegnrN9H/RxiDnGTsdQVYA0mFfVBF3geTBC32n4gSgTR6QsS2OcPpp2O9FoNqgxoZZIk/Bw5HFmZjWngTGH0q8mZzUva2JnSwIAQYgxYqIAggVeXl695+DpAZm11mrHWR5bYPbidQ3+brXqWHGhUdwNRtpLSkkkT2RyLR7i8BeMe4LL+ldKptCgVoMJlkRIzCyExMNvTkMAquFALPlWB0Ol4vXMNHutdnALdz6SFHlviQjGL+WRBj9RaGV01h6KBiM5F/YadhCRhN4EoE/X+L2kr5ZGy04Np4TRWBQRYbTO+bKYzhJVZFd8HPa8PmF8dv1GfTu3kOXemwIgyAnHGzbGOEfHpyf6OYzAMXISb10WQBxljIfBHFhOJJBSEBGBYTwzs6qs5pwZYaJLTA+Lt7WHN6t54L4ctojkLAOCqsg75JyJhdAyQd915ItqVhtnIQCRr7Cavku/RF+Qc46czV2HaKYBcc6ZETfWFpXxnQ7WpTgqVk9ZDe0R3vezep0Ij32/OGqG6AyEkY3Lo+gKEWmBwFprLBljEAYtMM3HpgxhfNGPhwXVSREAEElvhpktEodogDmGT/zKrzjkwtvPf+FV5V6tt5tmsxUhRMwMbd/duffU9/7A99+599TlekfWwtisIAMBXIgI+dZLM48Ef0QEESIrhCiiaRuxgDE6uZETpvaVT3/yZF4elnT18Lpt2z6ExXI2my+NN6lpNSwDAJFsTJFyiH0QZgDtHzHTuyAiY40gCINF6jjpvslsmVlZ8CJSenJuDmhCWkWJBkwCBiAWbNqIsp3XRVk4EsqZEcWDRwAEFIAkWQQ4pxCCIdpsd7/vB3/w/R/4us+/9NLnX3qxqKtt18csi8MjFix8AdxyTidHR6enx945FS1CROEszMxJxDEzsOh+6MnmlKy1KbIg1PVsu14/c/fu7/qu737uXc/bsmr7KGBZMDMAj0r3ACBikBCQJScZup73Lz8vf/iT/+E+bXYYVZY3kYVzSm/VoPQbXM/97vf/9n/vj/7VP/zl/h0g4h/51X/3L33Xv/H5/+FX3vKXiL7nP/3f/UP/xLe96cc5ZvOoJIgw417N73/Wi+ipb3xh3ydwd7VdvfjGl/sx9z/y6ff+0DdP/zm/d1wc1L9FuNmW9pkPv++Rn3j73t//wS/xz4/e9eR3/F//1y/+7V/70uHmg2fPvuc//Wf3f5K6+BP//H92/bkve0DedJ2dnnVOiAhJNNg6OjoiY9544w0ZpdnM0KExZGV5dJ+H0blXi/DK9tI8WbXJmBmAjUFNyeq6VsqDMYYIiqLU+PhNUIvGxNZalWPSPDOP+g8hBJrNu75/7OP0fV8elEdHR9Nnauim+VVd174oNCHhPSByH/dU9p+IRM45513TKtVCET29Dd1Fw2i6MlTLRDFcpwc075XDYe/AnSI6UWs4cll4Qnhpr0tOn0jPTh6IqGwd6TcOexWNYVhKWme1eOvFJyLel1bDf0lEIKPM6PBOAeWWeS2IKEQhJ+RMRN4MjOapD2xituoT6RsZ4qgxKtBkYCIZyIgg6/ExkZ3hUbg55zxZ+U350hTfAkxex6DEAuccAaSU+r6bvkWlDDR8JzLK3Z+OsymSnN5FSkndnPb3d+bEDDnJfggxwXlsvYiM3OuUM7OI815ECKUsSxC7PDq898y99XbbdUHALQ6WL7zn3W3bfPaznz86OlJLTESj/E0iDCFYM+otIk0x8xTLTYFxHp0neOwHgjxQsCfChxZsxhTADqHB+LKUAccy0BT2X0HfD/4ziAQAhXO4J+UxlZEAIKfUtq1ShyYZylldO+dMWRbqCISEKERW29vVNlMUP0OxZIxFAKhcYYzJNooIYM5YgFhzcGiWMCv87mZ2+fAi9yGH6AuyIJJZy8KPXf4akc7nc19Ya83l1RsL8kR0dnZ2dXXVtu3h8kCHQpezwv0nJ2dN08SYnXNFUerGNXG+QgjX19fqWWeMmc/nUwPvG2+8cXx0EkJYp2273SGi9mtPSKi+ytOTs5ubm8gJRvKNkisBoG3bUSph0BP33itf9ejoSEnZyvCqqurkzhmnqA3IxhjFqgBA4eaJVFEUxW63W9Szvu9jCoioKsyaqE+Pv1wul8vl66/fp6HngBDx5OREa29T9q7Ybtu2Bunu008eHx+/8sorm91WzRKPj+a7tlmv11p91IqUakmn2J+cnACa9XqdRtdB54o7d0jp0lP5ipl189RvHEsmRR6lZhU71q3m9PTUWvviiy/qZ965c+fy8hIAlK+n8Md2uzXGVNXsYLEMIdzc3DjnFBlUZWoAUFlhhTyMUVmPwZXOew8C2+227/u+3fV93/RdZi6qsrLWuEJy9vN513XL+UIR1ePj49lshoh9jwL56aefEeHLy4dd16UQmu1a94+cszG2qmYioh0Sy4O6cE6Ep43OOVcUFY/t4dMRoyLLuotOG6lzhR7QABBiVxRFUbqUEkvSqSVjK7dORYX/EEXBDoVgVDEDUdp2JzBYCBBRUQx2oGCocDak2GzaVKWcwsHBQQ5RN04dKGYuikJP8+12KyIxhrL0OcftNuh7UWbJ4bKAzWMWr1KJtUo9DpfUzunzatgw4LY5p9BPVEqtvigSlLOK2JD24McYq1mNQzvm4GrLzDkJCCHCxOlWT05EVLb7s88+bZAUI4uj2GYeNU41jFGqMsAgSBVCKEqna221Xm93OySq6kLBPjuKORBRNauZeb1e60S1ZJR4q2sHmLu+yTkbQOcMAElO0A+AAyIioLAKPjAaIiBETCKkHcMOAFQBjLz3XQw3N6vlcnF6dKw8+vOHD7Ty5JxTWScCzJB3u92TJ3cx4byuYh+rwhpjEUVyL0gGmSUD57JwxmDTRDC0WC63fWi6NgC6smKE2HdDX5GI7kWDn4e1RtvHbXF9fa2zmoi0EqYzXGtgyvu21oIFEeF+lPAiUhRSK2055yfOTnRFqHyQvhEc4d0QQowRGQ0MPhYxRkVFRUR5stq1RGP5wRhTFfVqs9bKFhkgwth1uQ9f87Vf+00f+IaHrz/IITdNy4BNiAcnp+979p0aEu92O7i8/NVP/NrlzXV1uDSFLxdV4LBtGkU5HaFu7xcXFzmynqcs0vUNEVHikqzOpV2zk8RMZApnjZkvZmTDru1zjpnAkiGDIYW4a4XEWEwpqX2aPpqu+j7F7XWTc9YOlcPDw7outZ2FRzZnURRFVWr46q07Pj70q+IxKxNgPp/N75S73e61pun77h3veEYXnb5Qnbc6mRFREW0zar3qaTjVnKpRHxVHUzc3Oo7qBAAApfdqO44uwKoagOYp3VAmhBKNQwjL5SEi6j34wQG11E4gbeOoqury8lKnyuXlpdaiVMGmqqqLi3PmVFWFSntP8q1t2/YpK5ijKQ+M0kDWWt12pt56pcuICnrEoTsnj2z91WqlhUBmVi0RRGS+VTDOWXa7ddd1o8pCmvb2UdDMlc6jDCd4zAMmo0RvR2a6eW+Npk7OudqU1toNbrvQQ8C+TU3e6AsahOo0ptQPxUcNT/Z/AcaOVGvsFE/rxqqXEm0UcSa01toQowgjDpgac+YMIuLV/hKFCCyRMcQIwJRFGERV7dNouGEmCUXNPejWOVC/DkbLQRg9yvdwT+E9qQSNnGSMehHRABpjkYXzkEENecv4+WNkOUCKzAwZhITeAhnJefg1BXDHgAastSDEnDEP0sm6C1trg4ixNu1ZbwNnGsU99KsN2iS3BXYzOubJni8fgN6aGDPV8MujoyNlrvJAbYAYe7Im5wySDYwKwswCg5Pe+MhirUNEECZrrHcZBEcmBQwKzreVCRGBcVRkr2y1D85q7gRIjGARCREYmZkMOOfaHI+Pjw+PTwmtJuB2zHwmbW4dkMj585/8TAjhve99r/bK6X6q1nYiAjhlpDzNYSJiYGRGtOPyS9O+CWPxQ98757coJ/Ati9kYk0FGRIOmlTIh+TAKPefEU/6pSwZxmN5vNZFgYlLDsFEaQDBiCQtvXv78S2+8+uLzB+XD8zeapsnAVVWq10cImcFmEFOU3/P93/fVH/jAatuGyOQsYdJqjV6ODLKM3RO3gqEiYogQsY19Tj24gZgGYACIADil47r6mZ/8m/df/PSTizr03Wa3Xa3X4AskS84m5i6ELBxCIuMQkSVxipqLpzhiyCIyiOogI2Z1zBTkmHT4tXlCYRAAkJysMYfzuo/pYr3lHHUTI+t3zTaEoMuaCDNHay1w1FkaeZgYIYacc7NrF8v5wcHBxcVlG+ITT94jXzRdW9VzzKnv+9rZyhcnx0/WdUkGXn/1fozRWcspW6NVBdv3PRhL1iAAh9RLFpHM4LxLAm2M7/+ar/vab/jG5154vqxnCYkcGCBEg8iIZMhZEkRUHyetTiHjtJb1On7+3h/47/+VxdNvxpr7VfPf/ZE//YW/9Ws8Wgv6uf/Aj3z3N/4fvu+xiDO9BQz9gR/5ru/8j/7pT37y8TPwL/6uP3HSDq6DB287/a7/+Ief/h3veeQ3EP/Af/9jf/Of/XO/+H//G4/5Um9/8Mf/2PPf+4E3/Tyn/PP/7l/5hf/gr4XdyFK09I7v+O3f9ef+t+Vy9kUfA375eDWDv28X8wf+2e/e/0F1WPe7Lxsmtt5NewgAzO4cvPsHP/SLvzU9jfLO8plHx7w4eswQ/QZXcTT7Zz73p/+T9/3Ry1+//5v+si397/9v/6U3Eb1f+qmP/fKf/Ykv60sfe52cnr50/WCzXal9Rx9C23UqpqYH94Tl5ZyVT3f37l0A4JEPJSJ93xdVqeQdGCm3ep6qPFnfRy1Jnp2dXV5eTm3+NOot6D9laLix1lq15KLRBE9G0eSzszMRqavqsY+DI5NaT4Q8+OEM/l36CUpgTH3nXHF2duacUxN2RAQka6xxlpljihmiwnbTP2Wv3UQTmDx4zmhHBHR9r18no8HylKPenkciebQE1PjNGCNEHacQOtwvFcsjFwDYSGDIaCsSGhlrq0lYT77ArPwmjXlilqqqVBRIj2y9Pf2KSXhKJKcEiCg0wF5FUdDoIU7G0F7HzxR6TRD8PjY6hak6YjyyM/Rg9ZWHzLQHoMt44gjkaVYYY9AYslYfJI+R3hAuiux2OzOyqhGxKGxZlFPL/3STRIPdCI3d98Y4kUEOW49+Vi0O5NCrxCERkS38hADCiKHjOMFYhIwrXSGsFGwhotVq1fYds1hLd+/effmlV6+vr8lV8+WxiFxcXFxdXzz11N179+6llGMKmr1oRiGjtIKWsXG8pnGDR8M2HL2Xiajd7tbr9Ww2q+taZ7sCRqp4qPrd0wcCYsoh5f1WMxYRZxwzD+gDkTHWe2+JGEDlXCXnvovb7TaGoLUQfe9lWS4Wi6oqjEGRjJkhJzOYygBLjKEz1htjtJEupZRjBoySjTPUx11KyTkDAATAnGLo67rmmOqyMktIXX8Tr/uUsrWF8966nLO3jzdzzpl3beOtpmrxzp071eKwb9q+7w8PD0MITdcCyxSd6iipPIuagCGQgvX6ohFRs3FNlZumqbpBShIAnPUi4rxtmiZyziEiolqxMfPdu3d3u12za71r1a1LB02BFUWuFbXXng/tGvHFYMWmm9iDByvn4O7dMxVWBpRmu1W+p/6JotXW2sVi0fd9n4Ix6L2/Xq9mZXV8fBxjVEaw7NVyjDFN02y3TQj9crlMKTHCfD7XnFzVP+vFvLCOme/fv09E9568+453vENhhfv37ytkplOxbdvDw0NNvHUNvvTSFxbzOSJutk1KSZWIm6abz+d37twRkZubG+2JmXIxGSlEOLLpw2gvP2nmKIr08ssvX1+3XQdPP+2m7WXabwHg4OBA/bW2262+i6lkcnV1dXW1ms3Kvu+1saAs/WKxUMwCxp5oPTi22611lEHUEdeXhXNF13VqS1g4ryfd0dGRrpG2ba+ut33f9X13cLAwFi8uzp1zReEAoK7niFgUlbPFdtso4hBjbJpGX5kxBkRiCLtNc3h46JyLecjsuq5Laej1nph3WihU3Mdaq7Q+hfJ1zPVU/eqv/urXXnvt9ddf1wpHjNFa8t6rpRsA7Hab3W6nT7Fpdl3XJWs5ps1mV1XV008/3Z/Htm3LuvKeCZAzlmXJxjZNo6LV6sqgG5TWYxSAVohfb6NptohYFvPj4yN4XNRzeHQQZkNFROEh55wyk25ubrQ4d+fOHf3Atg/z+XxRHHZdc//+fRwV2ImsQrcAoBrB8/lcpQ+kA18WOef1zUbB8ZSSMdh1XUhRkSktig9tW3aAUObz+fLwQPHim5sbpdt77xXOnrZW/eWr6wsiKkp34o+0WKJi6No/odM1hHB2dkajtpjgIPcUY0QUYwZCNAkMDutC0/E9poQZ0KhscchpvlxQ6du+CyGgZM6YY6rns5SFYyrLAgCapgGRq6sNACgopqc8InrrYp8k58Vi0a4f3H3yzvXFtUGjpcr5rOIUu3ZXO4fCu93uiSfOmNPh2UkI4dXXXyvrelaUgVMfM49uisraVjqnbqRd18WQq6pSMBEARFBb2Sa0VM+vEMLDhw+ttVVVkQx9yfpzDh0RFIVrt1mFsPVFwNi+Ni1e3T+Hw5SsNRaE+r7PSay1oU8gPTODkCMXUtAy28rckDHee1cUwIlQInO/67/+t79fYuq33fpmJYI5ydHJnefe9a6HF6vPfOazm83mHe941lUlI8wPD8rF7GZ9vXSMhjabzcHhwnvfbnfOOeTBa01rt9uuTZwtACrCngAACue7lJkZYgIzKE+i9ieRMHIInfGEhhjZGCOMzmBVVVpLY2ahwVJbO4p01e92WUH/wrr1eu2qimNqU9B9TOuRLI/XLC2L8mK7zTnP5/X5+cW9e/e6rnvw4IExJkXWijIRVfP66OhILTFTSjnHvg0KNA/BubBqzuSctRRRl5Vu7Lqs6ro+ODjQt6nLZ7W6Pjo6nBjHCq3qkSeDA4RR1HWUeA5a7rLWbrdbbXDsum61WqUUlDuiC5x5uJnT02MejUN0HLSqYQySs6UdalR936txutZKmfny8pKZvbcDXsxZp6IuMSLSLhwaVaEUldI8SHeb9fpGJ3AIYbfbaaHXDv15cWrWISLnTM55F3bGD419aIZBUKmi0vmcs45tNZ8pDA0A2nJkjqz3HjrUPKau67ALw1th5tSniTyiP5lSCERUyTweGTTWDL0qKSWFcHEQH+ApyJARqjZja+EA8iIjgvcqjDjkXSICLCgieGv+JiJFUei5MqWaNFrdjatoYIDzHmt1qp8TEcvQvgd7jBj99yH9GJMKZhYYfyii1ADagziHfEAojeaSj10qiiACgO7jOMgHU+jTbeGUnB4Dvix8UbS60Y6jpIkfIIqixwMfJIlI4kxm6F7hiS0lQmO0aowZwDkykbMWXdu2zcwZwaIlgpxFMisSSoATxxzhVlkCALSMICNWO3Q77rGNGAaijrJH5RbiBx7/U0QQBqloIAEZ+fIpizEFWQOoKLVmkvPlgplX242wm6iOt6nKeKWUPvnJTxpjnn/++ZS467rDw0MYLX0BYOLN6k1NGp3OOWOGLhhjjBrOwiizCGPiiqicm8e+X1LHz2FiA8CeE+BwxusgCcBY6kw5WXB6vNlBZU/zcJ66fd90iVYCRABQRWxAmERM4VLff+bXP5rbTVfApz//GSpMuaj6nHZtG2My5BFp13Xf+jt/59d88Bu3IbQxZiCObCVN6K2WYXVRtKEXUhgCJY0twMagswhijRFmlb8QRrTkhT72y3/vE7/0985qt11f31xdXm/X2Rg0hhGatk+SAIjQiERlrcY+pBRZvUYB0BgyBlE3KRRkzkmrPBqcDXiHiJAVyar2wwkQxRIdLmddSKtdawskskDky7nkuG17NLScz9BgzBmFgTmkQfmOCI1x5AABCu8rX2i1813vetdnX3yp6XvvZ7FNV1dXR/PZfFbXpXcGX3zxxTdef60qS1uW7WYdY0h9j5SZQSCDMSnEqqpQICXu+z4B3nvmmeeef+GbvvXDx6d3MkBUlMF4O8yqcZvKAMBm8NsVQXgTW9nPy2/+sd9/8PY7b5obn/3rf++v/BP/UXfxiBdcWDc/9X/6ix/7C//TP/pTf2J25+BNf/L0h154+e98Eh5tXzr5qme/7ke/G976Sk0XNgMr9uHHXv4vPvxj7/8j3/Fd//EP7y9IEfnAj373F376E5cfe1RVg+h9f+Cbn/2dv+1Nn9k8XP+F3/ljF5949U0//+Rf/tkv/OTH/uH//Eee/543w9On73naL+t/oFaBn/4rP//BP/Z903/uztfNG1+21d5L/9MnOURT3EqSPfjFz/4WbyzcdDefOz959+MbuvXqrrdh27GG+4ezfZq2Xoj4v/n4n/rPvv5fWr34xm8st/1Nf/z79/VAAKC92v7Vf/xPfcX3v3+9/PKLPE8AcLNaKbFLIdSqLkJvlA6mfbKKxGnHMYwVQe2q3rWNtveqTKTuw6vVChEXi5kxpqpIvZ6VWTZZ/8moB6W4FQCoUsSEzypeppmnBqMDdPhFDQd6FYVfrx/M50siKooq5xhGy1k9cfq+zSCIyCBIeHh47L3fbmKKzMw0Zi+6KDWIapoGx5KniKTIwiigjUC3pn8wVtan34RRQ206oAEARqAW1I8hZxy7c2C0NxgCDxEZYdYp5kmZjTHRkPe+8AMa28Wg3zX8CdKEKRugHKOeqso6kJRTzojB+1KrsxkyM2cQMOSt0dTO+4G1MeDpAhPUG2MUQQA0xuU8WZrcNnhpIj1l18YYIiBCY0bvYh0Nvi08j2c0AkAW4ZxRi/FjVDoNsqav1loajdc1OXfGMnPKg2jdFB5b64y5dfhwzuU8MDMAQK2PvXNKUEqjhqB7lHKus4uZc5YQkrZwem8RnWCbc9LYOMbU5E4QjDMnZ8fr7Wa1bh88eHB+fh5jiKn/hV/4e1/1Vc3JyREA5MTee0BhZmscqZUNAYzNTLRHejUjNXWM/8kYJALtbw05abY5pnk5PyLGgmr3jQCZEwx8dhAagthhug14h5nmnohkZn3jXdOoF5k1Zsx/nDe2LL0BySGSgHMOgUPTam6hcAYAFwB9NwwsAEDmEAPnDCAQhxmiLczGUgihdD6ltN2suI9GK8nWKoBV1gXiIB//xZcvXFVVKXFRFDGGi4uLWWTdVQxgjHG5XJa+OD8/Vwqw915zNm2tXa/XwuCsN8YgwdSoq6tpsVgQURdDjLEsKu+Kpmk227W+rMViEWNU3ERx5Pv373tXpJTeuHiYc757924IATLryGgyqRwuRZ91aajqBTNfXV1574sCJgrq9fU1EjjnPGGfYsoJEa1AEpYYFeNTsb2J89U0A6FHJ3/f95pkMDMYiimKyOXlpTGGnLXW3r9/X1uGtUsgdr1SAi2Z9Xr9S7/0SxcXD4nM6enpGw/PRcS7Unf1Ys+cU9UnrTFt2/qiUjCibVsATmngGmuon1IQYWsHAZZp/1d4Wv9zkgnS40AxjsPDMud8eHi42+1yzsvlsizLZhTQDyEYE3e73fmDa2thNqv8aMMILKfHh4KgNLqcs9JaV6uVAhaKy4cQ1tsNEc19XVbV2Z07bzwcvM7W63UKMccElRCgt265XGoXedu2ANkY7PrtnMuDg4VzCACqAhFj75xLKYhkY8U6AEEWTCkRGGcs4MB5AiElX8eYeVRxVORIAX1dCzqqE51rKq8Ska6mEPJ8Xr344ovWWrVG0LE6OjpgZl1ENKTGQ7MsIpZl6Y3dxkZn9fHxccjp5ubm8PBQpV2stQbQeh+6HhG1/KweqnZPXFvZ06vVStn6RFTXtbOe+PGJ3Gq1WvNmkpnS/S3l3Pe95olE1Pe9Yut42wuFMSrncejSiDGOPMRkrWceqqcq8jCbzQo3dDAwMyJYaxlE36xSpO/ff+3o6JDdaKgLwMxaAVJ1bD10ePSXyjk755Qwe3l5Wdf1bDbT2asB1WKxUKs0RFQe/fn5+XI+6D6JSEix2e5ubsK9xQERWEtF4YxAjDmoeYajlIyQJEkiDIZEsiC0bfv6g9fdrJofHtR1zSlzYmusJRO6ngGZuet6SbkuShFR7W8AUI7w2dnJwWKZQu53Xd+Grtl65xLFo8WcyOaYgBBScohFXVtD1tGirkpvEecKoKtPoxhDwACDML2CzjrI8/lcdx7OoNCbtbYs667r2rad+u9DHoxAlPtMRANgah3vVaZDG1QDATK0TW+MCX1KkQEghowQlG9eFINGmU4GGjyZTVVVPJoE7veo6ZHXdV0McHQ8jyETRdUxbVa73/U7P/x17/+ah688KJxHwd1u13R9EeJ/81f+2s3lOoSwPDws5g+PT4/Ie1N6Kgxk2Ww2Maeub07s0bPPPvupT3xSJ9Lx8XHlKhQw1szrmgkzR+kG28mw2hKRNyggZIw2IsSY9MAFyIIpSbJCBweLMMqGWGv90DWF55cXo9Fop56o+tSqa6drTcbinGT23ivUW1WVeQumXcpRoVutP11cXOhedPHw6vj4eLvd6qpcr9dnT97a7RhjtCFS8whE1G5ILUhst2sARpSqKvq+n82qqiqYuesataA4Ozs5ODj43OdG/63RnFank5p2IqL3JZFV8xX9NS0L6WNut1vv/WxWDShzEsBMRFVVqQhYCJ32x+igqSrOfD5XAZ+c1XAN9FhUYFf3oqIolPvCnHRNOecggx4TfR+MMaoar2R8P5qC6F3lnHWj4JHazDzsn4QWBCdwMqWkpSYAMNbKyIlMKaeUckyD5HTXaw+WipKrghCiwUJijN1uFxPPZbZYLEwBALBdb+y0u6lyAg18bPXcG4xTadTzFRHrVUxt6HA3zhrj3CiqaMkpCKnRrYY1NKGWo9SAHa05ec/CZQxVBzt4/YlCnBoTTFSUIUDWvk8ZIO8JGN2nQhtjUATGDGpMXQaKLgAgD62dw8ZkjNCYWGoeCzCAj0oxBqRRooHfWkxjOBiEU8wESGSng1bGlrecMzGVRXF4eHRzfl9PGnIWJaEhkKk5bvrYUawZEQiz/gIPQwqIecTN0ygrrjMMEWNKxjnJEFO0NCg5EhECp5gmwB1AJN0qEQsOLoo4ejkaYyThLcNo+k25pR7Do7D+7cslgT00dvjNUR8jpWRSIrJ3794t6yq1nIGEp89hfY0AQAYzSM7pO77jO1T7LOesS9c5B3u2e4wAcKtVB3tukyKDhLcdhXh0GKcSix1tM7/4ckbFpNLwmdbQSMrDoVE6C44lFhlUWZiZcZjtOtlGzlqM4fGtmjxSmxkEciqcb9a7claGZvvpj//qi5/5ZF0Wm82maZqD+ZEQXl/f9DExECfete2zL7zrO37370lkm65vQ7RYODIsSW33DALgCEkYcjTgBdZadI6m0S5L5EQAwAkAQ4zW+EW9WL1+/+d+6qdP5+XRzJ9vL3ehaUIv5Cwa67yyV6Z4VEQBEYaxjdg4InSCQIYkg74zBgFgRCMiwknjNg1MIwMwikDpfAaJWaqyOFzOm7aLIRZlEVP21gvZvt1gF7z3xiACZMEYewbROePBGKI0KpACwKysNk0bJdV1fbVZGwLy/oknzhZVtVldX7/xeh9aZg59f7Q8yH3fdV3su9i3VVUa72LskKWuawAq66ppmoP56Td86EPvfu9Xnd29tzg6Wm93mQGtAyFI0VuLxlgyIgKsUvIIhN64GHthxkflJBjg7d/+1W/CoD/y7/+1v/0v/PnHzhkAuPjkq3/qiX/qj57/+dmjmKOwvAlrBoDqoDx67om3+qjHTUr+lT/7E/d/9tN/5KP/3vQzRDx47onZ0ezyi375bd/6VX5e7v9s+9rNf/DUW8p2dBfrv/y9//Z3/t/+8Af+6CMgeHlQ/RZVg3/Tix91B23PV1/Jh6TU3TSzJx7vgPEVX7l//BYhIs35+qP/xU9+9M/9resXz1Xeuj5bPvd7vuaDf+z3nn3Vs/szBwn/0E//ib/4u/61+x/59Ft90ZNf99zv+Fd/6JGvjunHf+BPNheP60f9Ch6EMxI574dmlLG5zyZy3jhvCK0W8/UIE+T1dqVRhDEu5jThNTI28ehZr+5GMIrmh5Bef/31g4ODCQtT/FcvzSfTnqS+5kUK5ajXh2YIWmc1+PiKYNN2AZL2U4+9eEOb9nigGxEIOYU+UR4CiQnSFZpE/1mbG9qmWa/Xw1ErEsPAZdYr5WEa6OcQkbE2jQLNE45sRus/HpOxgW2HRHvaCPsQ8wQ6T4+GrBVk0QHTE99JOT3CpNIrJBJG22dkiBGQMUoIMkHG+qVo1eYbR6Q4K1KAiDnvum60GjYm51zYwYcAEZUUzMyarfHgGSUTjIsjSktEAKxdPiklDntlb0QDA3cDR/ZDFqGRh87MarkBNBh58WgHAgAGUSctjFzmlJJqdk2h7Ig9DSGBxrowACsa/mUAiCNaB2NndNyzptRB07AtZkHjLKFFAqCcdcaaalZ3oVddlLqut9vm6aefvr6+vrzaeO9TirPZ7OTkbX1oP/rRj9Z1fXp6fHJyog519axKECUJWcsjVXzC7nVsaRT00EBxH482xhR2iDNj7AEgpTiFf0PAL6SLC/a6JFPf55zBDM6BAAxAEXtENKOOCjBrMgk6RWFYj845Ephq/Pq+Ukr91bWIFEUBKEQUem+crarOFWXb7iRlRASWGPrQdqHvlWiplCXEwa9yrT0BKUtmI9x1LcfIKQvng8PF6Z2z+PDx22/kHDkj4HbXggR18NO0bT6fbzabe/fubVZrZtbuVN2FdGdYrVa+Kj0Nu1DmpKxM/bXlcjmfz1NK0JOIbDdbEfHek8E8NnRaa4uiaHcNM2tX+Ga9JWftwN4K3vvAXeSsGIrqYNKoVK7/rOuarEr3ApF929veNqRIiCcnJ5mT+g7pfmtHUQVGbPquLEvdYK6vrxHROKvKhZrzE5HmgACgjQsHBweS4vX1dc4ZmNfrdYxRpTYBoG3byhfee2ft5cOL+/fv9704B3fvPnF4eKg8td1u13St/rIibjc3NwrxuKFsVWqlUFGA8/Pz8/ObqjLKrlW+bR58JgnRoHgAyDFtdlstJunhgoMydadCSWZsMe771pjBylX5XIh4cHCQEtd1Xdcb3XgBoK7nzniR/Pa3v13Zsl3o9bZ3u7Ysy4ODAz0mptwhhNA04ArfdCpBW6eUqqLkkWVfVCUiatPPw8uLGLmo3MHhrCxL54wS9HJKoe+npEbN2URy02zrupbEVVGqe6qKOnZdxxlUjcq5wvkhN1RTqevrayWHzmYLHgV2FPqZ2J3OOVWlmM3Ksiy1rKLAtPe+KJxzbrvdtm07n8+32/XNzaYo7FTGm5UzAPA+nZ6eIuJnPvOZnPPi8KAoCgWOK19st1tnrMIu6/X66upK5UpSSr0a/NaVI9M0zWazSSlpe3hRFKHnze7xoUuM/SS66l2p77ftdiKyXC5V0WVqgfLe60Sd9DGcc1rM1mGZBNNlLH/qidk2fR41YUf0XzQBV36rngPr9VrhYB26pmuVO4lgrPGcAQHKstAKgb4FZfIOcUjTpL1e8JSSsg6VBq4vgkFi12mdpm3bLLw8dMvFrCzLdruTnIEMEaSUdrttXc/14FZIkUhi5piTiNSzGTijHWazRdk12O6awvkYY9O1XQ+2wOF7Y1zOF8y8XW8Q0ZLZbZrV9dqSIYDSFaHrkbkwJMSxb8qyjCE752LfCmSLBvKwDK33ZVn6ql6v16+dX/u5r5dz7RpRXEgt+2D0YSa0WmTS4EH1zUIIIll55QrYmdGiTUMO3eVmZZVGS2T9/JQ4xtj3MpsZIuo6pbi6nIdzMwZ1MxKl1mrEZUdeYN4TiNf4QSvW1lrVclFeLXDumu7pe/d+6Ad+MDZhdX1zcnB0dHTy+oOLNx6+9osf/djnX3r12aeeNcacFH55fHK9WaOzCUT6ngoTcwqhU8mF+6++3nQBAIrSzYsqRwYAS8YYu2mbi8vzuStTUVcHVVhtmdk5zzkzGhENabAsy5hyFzrjqCx9n9r5ctn1Qw04pRS60Pd9n2JZllVVrVYrPSA0dNdJ3vc9ZG5j0vpu0zS28BreKJEUHl/GhZwYS+y6brmce+93u3a9Xuv5pa7CTROcQ5VCVhg35zifz4EHtoExKAgebc7ZWsWOqxjjbDHvmqHPQ4a+aqvdACmli4uLg4MDpcnDKJkwIrA4m81U7NiOLnz6L4omq8yXxnghRGXMtE2MMaYcdGTKslR5PC2V6Z/rBqK+rDAowpfTOZLGpk8aL+8H71BERBik7bsYdLvWHVIRf/2KGOPl5dVuB6en/fHxodqcaI4z1bdEBmkCnZk5RwWsLVISngA9rRpqNVHB/aqqDg8P17utdg6xAf1wnkvbBdMM6UaOHNfrW0wNRxG3CZndRwz1mlKUiWXjnFM1Ok0dRfZZHsPin55n+gRrLe/pL0+hKhHlkfw/HgmDMuMYod4mDzxGw8xsjC57xNFyZwJABfLEbtZJxsxmtIMz4yucnvr2N1NKKTlLzANf2xijrRa6N72V5O6ULejZQETOOBFx49yavq4oCm9tvZgDYgaxYy5ERILIOU8dpYjI2uiEMJ1wRMQgWdgYA2MjbJZbhrhGBt578kUrAiDWWhSIMZIBERQZglznnEMEwjH3eKQqpYmQzt3Q7SX5SJNUxf4lI1lsSminHNWOqibWWa1a44gq6rpaHh4LA2uNIAsNTqrDV5A22oosl0vlpY6J0FB/NoAT0SbDIMGhaarmWpoZmtHAAcbCw1QIgRFDfyvS8bAhjs13Bm81KOyoVzC9IERMKWpJRkSZ68J8SysDeEvqHOzB99ZaAPHe5tS/+JlP/vzP/UzqNm9/6gx6Mc4mkJzitutDiiKSYkZjPvxt33F0cvbG9kbIknEoVgSVKS85izFEFkiygCEDhCDEAkTGWUJEjomZI4EVRE6ODANlI1rT/tiv/GqJWBCsry8yRHC06ds+dyeHflqhGnIhEiLlHFXmmggEDQNmlsQJc2LmLKwCpCLCHIFRiLQ4pWOEiIwgIjlFQAIBZFOXxayuVls9GKDtIgKTLTPny6uVs3hwsPDOQFZegIgII+Ao8qUiib6unXMx56OjY0HsMszKIm63H/vor+6ur89Ojubzed+2JLBZrTerm3bXWINkPVoLgKXTPKcQkfV2e+/pZ77lWz/8nt/2VcdPPNEHbmMUY8k6ESBDKTKnbImEJSRtJbEAoiiSDI/PqnSp18G9Y1M8IoLx6s/8+m+ANU/Xf/09/+Yf+jv/pvG3f/vKzzxGL+Peh95N7jea54+9Hv7aS3/1H/33v/cv/HPT8WGcefIb3vXy/+cT+79G3p688AgnNzbdn3nvj/6mn/9T/+p/9cIPfnC5px/y+Z/41X/QVoH/v3h95E/+tz/9r/6lN41M83D9sf/ypz/2X/703Q+885/8+X9n3zHSzctv+3f+sb/4u/7EYwfTL+sf+it/fP8n/c3uV/7c//jyT3/879cNz+fzuBi4UTFG5818UcvY7qfZb1XONAxSk89nnnkmhHB5eWkMaiOLEq/0T/SMG2NBs92u09CnTIi42+0AQNEHjZ+GTMBaFfhzrlAZh/V6rdZJmp5Nhdv1eg0A693jdfyNMWfHZyJS17UmulVVTGgsEXFmIquY3nw+V2Gr6W+dN2hNSikkFmQWnmhQIpIiK61suoSHqu0UtISQmIcARyRNYYzCSRPcjIjIwsKRB6kNTZtllD82e+61IkICuBeY6ZVSYuntIIM2nOND0DhWxw3ZnLO3BCTaH2X2LqFB7RcRRTIiaiI3SLRZry2fynAPISjRW1+TGZvkYCBxxzeFjjhqQXhvJy0/MkNZd4oe8yhaiiQ55zgS9KbPAQAG0ABGo7Xhrqyd0LoYo9baEUjfyNSeHEcXqX0/bb1k6pMb/bH1o5xzxpopitBwJaWUQkDjlK2JJDHG0IaRtTAUtl1h+y5abxbL+Z07dy4utw8fnpvRTlNt3y4vL1977bUnn7zz9re//YknnqBRHbuPkcYbk71gQ8N43JP2VnKHMUbF39rQb7fb3W5jjNG+/kHvbbIdJsQRpp8easyRbnOEnDmGQGStdY/McxFrjHIILJnZbIGc4yDOPrATNO20qnfcdxppkh1s3GzbDr/P0u6artlyypDZFlaXhvfeGNf3fUgx5zyfLcuicNbstl3XdrEPVl2svUGLbxGfgeaNIOQMGksxDkmmtXa13ZTe/8Iv/MLR0ZHKCHRdB0ib9dYYY8gK0m7bXO4a1XxE0iJZSCnpTqJZj69KhaoVUiGDCt6p5CgzkzVvvPbGrKycc8Y7jpGIQkiKntzcXJdlCYaMAACoyZhCdcqBffbZZ9e7puvCYlETUez6PsWqKlQpJcTejrKkNzdrY/Ds9I6SxWSUHz0/f6CFuqqqbm5ugPPR0ZGuBbVOipwNmPv371fVbFFXy+XSe9+G/tVXXz04OJimWUrJ1jMdPS0TLpeYUgSA55577uD68OMf/3gIQRCurq4ODw8Rcb1e73a7qiq0RtM0DfV9znmz2db17OjoyFp7eFhrk4qqlPR9a61V4WNm9rZgZu/9Ehdt31VVpc6KqvawXC5jjIeHh02zVaTYuflms2maQX1OoQFFqWKMR0dHdV3fv38/JZ7XM+/9anV9cXGhqPp6u1mtttZ61TNZLmG1Wk3AU13Xl5cP0ZQi0vf9wcGB9+XN1fV8Pi990fe9t3aqmzJzUTjn+PiJM8isxExd1LEP1vgYY+GLlBgA5vOhfLtpNuvL8Mwzd2azar1e75puaGXOcHh4GGO01mdhAKjrGoCVk+G9326b2WyxXC61IYP21LcVEzk6OtI3oirDKjswJWhXV1cacuv937v3hDFGoWRk2OWdfiCnnDher26YIYQUjyIAlM5ba2MfsiQNCbTiqPut9rwzqmiVVVbjPonP+bcMbu0ASLoYY+aold2ZQuZlqexpJXIq510ng+4qKkqjugH6C1OhSJGKnLM26a9Wq9VN++STR/prxmBKSRNtnfwPHjzwHvY7vcqy1Jo6IrZNrwUG59xyuQSAbOK0ByLi4eGhIoxa4ppouUSkdbvDw0Nm1l3az2pViD48PCSizWZjDCEBc845AbO1tqqLLiojHlPKxiIwZubEcdNs1cbcGGO8Z+arq6vQdcv5ggCdcwtn6xkMh0vfe+dyJh0T1VoRkRSiYCqcny9ms6rehW3OqXC+dkXO2Xgvkp0lScyc6mp+cnzY9p1impum8d4fHJSBpWta611Z1HqOK/dcER4QQrqtDWuMhCPZUfdtGeWkAKAb9dx0zCetoZRSNa+IKEbt1srGmPl8ocLNReEVjsg5x9inCIBskLQMoxLDepTn8bj33pdlrXW+EGLOslgsNI5t2936+vqgnn3/9/2+J87ufOajH1fbsIs3zvs+ZuFN0xpv1utNTMmWnkqfid+4uuhC62wJISGKtowAwMOHD1VBrrBORFIO3vjdbueqQmMDK6SMeAACTkRkEeMAA5JzRH1myYhYlN5aS0VJBsgaIOTMKaUcIxHpYkHExWIxaYullNq21d6yq6tVWfoJhVdixwAPZrZvwW4eoBVjpq41jckRjDHm5OSkqhpdYgbJknHGsrHGmMxpcoeWUWhhoEo4pyLLPJItYM+IW9+abmiHh4ca+WuRqe/7xWLhnGvbwedT17LuYFpZmRgGzKzNZ6oSnmLTNE1Vl1ru1XPHGDOfz6cOG4VutQXTe69UCZ3JWv5UaHi73WrDxNnZyTQ/C1totbWqqokfY0eDSo3znXNPP/2UwtOXlxdj0B71fyEM0W/OqH3/+lp1QFSNQF8Hg9R1jQLacurNQBpWg9Bhn/dmgQtrdTzNwcGB5NTIpgv9olzYKcScfNiIyLliYv8N6CcPnZ4xDx0lEzCaRr1mRTt1xEEVXsc/3w+4daM0Yzv5m9BeM9JL9V/SKKE1AdM0GughIhhUyskIOg88SpzsX5BBBjRzylUAYGI3EwykGH33OecsrLUvk1JKyRhU9Q49mjimnAfg1b6FoJsZlS7I3GosMHPmqDFuGtX3UkqVN2PJwucQQwiiVqfMOSUyAEIDksxsDDKCgLCwMpVkLGJPRGN1aCRrmLntu7OzM+99E0IQAbRECMp+MiAiSMYUBY18KyRjxn7bIfkBQAA0A9dMQzQdSmMMkdFqLUz6G5NK49ioOwz4lLii+g0yeXU4VWTRGmMyQFlVuv+OAYF1bnD2yIObovCeUKOOIRHBaLgkexWO6drfWWCsB+xPyGlaTvJt8kUY+nSxDPD0wIAeDZd5JIBrA7Pm8LqAjRk6s1S1U3fDaTwRHl+3gIEvRiSsz//Ek2ef/OVf/MjP/d3ry4fPPHl6crR4cP8KrRGRhxcPV6uVM4W1fnV1/c0f/vD73ve+1WYdUmZCYHKGchDS5ZV1ojpdC4jYh0A4NJ/GBCCZBIwx2xQKAYjJGhLA0tXGuC985tdfeenF0prdzaVw40ubIDWxJypjjE3TeW/7FLquA3hzvp2F1T80sxBZBAOEHDnvCdSYoVKFkDmyMDMaNEgZQZids9a6PrMRU9f1tk0pJQTrHCEi5wgsjKANa66eZZHc9yxgDOmLt6YU5qZpPvbRXzt98smDgwPs4rIqn3rm6Z/5hV84f/21zcNz6DrLfHVxuV7diAgCpZRC1xGASnM558gYTKEqyix8c3Pz1DPP/tN/5I+8fP/+Jz716Q8cHveZgayxBshwFkRjHNucUSBxSn0gZ6y3OefQa+asSoIm70GB7/y+D9SntyTlfrX7O//6fw1EX8xTftNlvO1WzeyLRBX2L/L2vd//pTrOvel65Wc/ffWZ105eeGr6yXt+4IO/+B/+d/s45tHb75x91TP7f/Wrf/4nvyTUmCisdwBvlqv+B3gR0aP7+ezOkuyX7VtI3hYHj8hMk/kHZX74K3/ub/3kv/wXf4OZ8Povfu7/+bv+9T/4N39sn+N8/M678yeW61euvvj3v/vP/vD83iNjvnnt+qd/7C/9fbznOKqDKb5QlE5TAk0ANOTquq7pWg3Tvbea/+ecFSjxvlT4WNNLHLff6+tr5TXAsNWDpruT3KF+yyRGqQlqzrLdbstZPfbkQlmWm80mhLBcLg8ODmaz2Xa7JSof/zhxsNKqqkqb0MuyVGxi8MLW01lERE5OTu7duyciwpBzJkPee+dcDqr5nrvcq7cMIqY4iKmZkR08RDU4BPQiEkJII79GW4Bx7AHPOcMYcTKzlskBwCIluLXklpG+MXCxtdMZUFXFYOTe8oi9sgQA0MrfFLkhoqFb1+WUEiBZvFXD0BTaOac+B2lQ4dC2VnMbw4woubILJeXpJhEHgREFtoYH1F6cvZI2jPzcIZQT8VXJe17beYxM9BszDG2zNJJ5Y4w0SqhNcYiMQHAcvdeZOeYMLICGmSfEWe8q57xer40hRVsmgDvnLJIV4nHOIct6vR5yXUOaKmiuruG3M4as0/hW8iDrAQZpZHd674uiLDwvFgevvfbg7Ik7zzZps1lrUrdarZBEO7G6rnvppVeurq6eeeaZdz3/znv37pG1YZSH3q8riAizjMM+DJT+L6XTqpThtNYmAqBSMmBoiByQ/entTLV84UHQxlpLyibIzCnpI8ecFSYgANXriH1o253FodlZU9l214AGciJFUThviqIAIujVhLCnUXPZkskhhq7nmFgSB9YbFkbvvSvKruu2TbPa7CRla4ykXDqf+lCQdc698cYbbdsW9PhulcxsnIWMiGKttaUH47WSnXNuU7tcLouiMKgzwWy2W7WPDyGs1uvVat038MILy7IsV+sb5XwphqVMpaqqSs593xdFuV6vjTFkBpVMFXZg5rOzM81sVeFkuVy++uqrMebFYmFG3eSccxdjt2v0DSouME5vstZql+7NzU1oOyLK3iq1UzH02Xi99NLr5+fnd+7cmcBE70uAQR7h8vIypVR69+DBA5V71t2MU+z73lp/c7NqtxsiOj09ldHJKuesJFMAUK9CYS6c11ZF752IfOELX1iv10VRIBg0pKiBTs7ZbCaSVQFjNps1oRfBvgeiJqWZtmMT0cOHD1NSJII019OzgEdFEZ1sxtrVaqX4vmpQlmW5Wl2rS5XWyfQFAZC2VytFUQklwJJSKssaAFarFQBYS8ozjTF665wj1WgSkaurq4cPd0UBd+6cKBnt6OiIrOn7Xom06nmoCIjk3KWka6qqqj7Gg+WSjIlj9h1j7Pu42eyqotS+5sXiYNvsmmarQzc/mJ+fnzt3i1SWZTlokqSBIJJz3jY7Ja/F2OuaVWqzjuFqtWKWs7NTRfdU32CC8hXJ6rru+no7mw0b9W630wqQ7gyLxWI2mykXsiiKnEU3K2cGLGJez4qqFpHQdsaYsiwNUrQ2hiAiQjibzZbL5Wq1Ut3YlJI2TExws9lT6ogxz8zjfRc08Z4gCyQ8OFzopqelrKm1Wgl95+fnWnpRHGo6+1QZAEdasQ6aHo6G3PHx8W57XyMW78qv/u3vffXVV5VKr+f7bDY7PT0tnFeAW5eDyivnnFXWQIXgdePNOac8JL8ykup0Sl9eXmoGqvRztUo2xrztbW9T+nPOWYAVkVcq5YC4G5ONARZrLQOMhkaDihEiCmQF2bdtH4ULbyUlwaFNqnDDu7bWIFktm02np8q+6xYBLCJinXPk6rrWXiJOGYlSZksGyeQogpgleXIaldmhEw7Pz8+NMUeHJ7vQdSlq+29VVF3uVDNXREKfNNEbG0qG3Wmo2qJoLUHLe7rThjDwi3HU59HJOZ311trj4+OcZbPZ6pvVHibvvUIIOhmKosgpQBYABDMIreiwK4SXc95utxpF6BzTbqfr6+vZvPrQB7/pW7/pQ9/5rd/6xkuvxBjrojx/8MZnP/t5LIosUBTFyekd6eDi8mrVbD790ueefvvTtnC+KgElplTXZTmrU0oxZFXyNcZYa5yxZVEUtji/uMg5G2fLsjxeHDx57+76/kVKCQUB0HuHoOsG+j6qFHVZlmVZMCdf+dVqFXMSRuCBOaoRHQDoFIWx6D6iQ5BS8t465+7cuZNz7tq2z4mIVEm/mM05Pz55YWEt9ojIbrebzRYqo7fdNNqhUtf12KoSrbVt29Z1WRXlNm719VlrJwNJDZjn87l+uL5BVWVR4Fu33AnD0YNV8fHdbqddUMygE1tfYhok3QbeKtwy5Vnn1c3NzfHx8fHRnbIsX37lRRXcWK/XReGeeOIJ7VDRziFdyLpFiEjOk6/G0DnnnLu5udGuEY0GJ0SU06CURc7qDJxyIv00BaZ1G9fZuFgsqmqmmUWMsWl2InJ0dNR2OwcD4ydGFJGyLHOIMC7zIQJcLnVb7nbNZrPREhcYAvUhQDYwGBWmLGyzJXRHznI+OjqykiMiEqJkEWYVNwUAaz2MnJEQgjWDZS2hsCjZgZg16xgZyplzYkTUinHOmciIZBldQRU1LF3J2idPKiwQaeictQiQZVBN0prPBEnHGFX2lGBoNyccBU9hEDwd9vqBrKfpkMNHCbZkTAiBEHWDFgAeOb0AZK2BlAwYA0ZAvHdRkpv8stPgADOKITy+w06puCICMDS3IgGioBGWBMKImFIeNkLGuq4FiRmsQYvMIil2mYGMEUQkscooJ5MBDNnMiYGNQQDOKSI4ciQAAkIcDWcvYBnE+JSRFscJy5xi4YoMklNEY5GQsxCgQRRAo5g6IYhETNYSATg0DJJAIvAmNLnwfrlw5WJ7uTIAqQ/eYUi9KoroO0LEUWND+4bSVB4gov8vc38ebF2W3QVia6299xnv9KbvfTlVVmZlqQaVVKrSUEVJiEGSBU0zCIQEyCYcQAu7sXEwBES4w+62A9MERIPbdljdYHe7uzFhoN0I02FaCgkJJIFKoLHmyjm//Ob37rvjmfbea/mPdc5598v8spRSCcz5I/N799137zn77LP3Wr/1W78fIYlIBZC7xFmwOkUxiQYBJEpgwNPz83Sy2ATFYgW5jlFrLyTCxjhBVG+brvP6tdYmcqAqDixC2GtKC0TuZRgns2kIQZ2OfAyMYK2VyBGk6frSNA0yL7piap3/7YdmozCqo0RGEULM0gwAJEQCZEEQ5CgIZE1qyMbA1rg2tABgDIbQZ2IxxsjxsV/k0IAYAgPMCYCT8ObnP/Mvf/xHV7de+5oXnnv26Wce3L+sRdJi2lWVv2rTYJhlWe2S06NP/I9+R3Z2c7faGkoMABgR9OI4CiNhmqqrcgQGAoDI3HqgaJPMGWIAFhQiMPY0Vg0Dp5OdSWKME+e4vnz1l3/yGK/29f3gu3Iyrxiu1vcjZ0kxbWNHXW3yGUIiZGP0KijSTwMgi5kwWkAC8CECqWXqoKepqS8CsGi4Y0QIiQMjcmpMtD7LTQghghTOhizxZbprgqD40BlnGTjNC99BILnadV1YlmUJ1hoUZo4gxrrGdwbQZumrr7+S/fQ/++ZPfvM8S1956cUvfOmL9+9cpmkycYmxwJ2Xjm0wJnHWGHY2Uh4h+tBmeWaQnUEDEpp9GznNy+/7w3/4ufd/qDi6udntO29EdacFIntCBPESQ2dSQ8CCLktExLediEAEZARjGKwhIwNASYn92u/91OGU2N1d3fn0i78q1gwAsQu/6tvOPvz00Yee+srveadj9dqDl/7Rz5/8ues/P/3QU2cffub+L706vvKhH/j27Hgy/lgvd5/9b/7pu9LEYB79D/8NHcwv/O5vPHwhP5tnx5OvLHP89uM93/pBkz4CW59/7Lk3fuodfBjf9UFvYwFU99c/+mf+i1/1Fr/+47/8+b/7U1/7h799fMXkyeTJk7fDzR/+/k99+A992+Eroe7+4R/565TYJLFvebNJHrlGNJRMHwFkQ9M9tq7QcaxDJyISfKIm9SGOCgkiAmhs2hsZRRBfNffvPlgsFtNytt3vmK+tIBSw1pHpui760DWtS3tRsyQxErneV4iYJImqq1dNHQKPDb8REBMExMurC4NUlmUIQYl1EmKzr1Qf1gA6erzNZlPXNBEUvrq8iDE++eSToWudsdE6DpEhUmLzPN9drWMbnjp/7+nZs00Lm30FAFmaWjLed03bMACIjQ2MOc/YGqUIJlnTCwUHNVMNIgIkDiGEVgRjCCBq7QuIxDF2vmXmvhCLIEIAECGwqEgfKu3dh6BQKw0E4QiiRUgRCdKfxrg4Rx+MMV41i41xzgThVqsIQTKNpdBhkhD17lIhxP2+ttZrHq4tWETE0kuIGDIiEtqexcnXnYMjk5rxUftoIguAISiD+FobhJm7ruc6GWNC4CxL7MBwISJKjPe+7XqEi4fkhIgADBJIjEoxGBNmDc33TWWMUShbW8V1rzLO9tVrIkIkJVIBMjMHZmAAICTWkFBEe6t1bIPKYlJPEvTexyBpmjqbdl3no6DUna8N9HFUap0wd10nEQnspJgRkaXYdd3Z6cJZWO+bZ194/s0336x2e5ckeZIGz8CgI7xeNVXzetPx8ckTZeIALYIffbxHuJ/IioASI2IUgCACZZkTUd3VaLG0eey1zkUEmXuaSGIsJ+lut2PmJEmYIyC7hGLkrmvVJFxEMDJLiBSJSJhZ2iBshC2n3lD0AQ0dzxfRh25fd13n2y7Lsmq7W62umqbxTQsASWqDAAttt7skNYvFjJGLoug8C6Sh7YKPxjhnbNNUIXJTN/cf3A2hOz9/QsM3ixAlIpvQhhCarMzEQBBpMYgDQIhGOLHJLE0E4eIxj7+NUBAFiESG0LaNr7orZbymaaqrR9u2AVEQfAjaayiEt157tesgy+jrvu65xWJx+86b2+1WRPI8T9M0cWmeFU3TWeOIEYJ0XKfOZlmmGG5d1ySgpF1mnk3niUsTl6rEpPf+aHaUGHvnzp0inyVU1G1twdgERCQrJsaY/X4vYJ1zn/5XvxBaOD+fnZycHM8X+3Sv8HTbNVo/Q0QlchZF8czTN2/fvhdCODk5Wa+3VVW1bU9hjqpo7JLOt+MiVu3XeZ5Pi7Jt2zyBJ89v1vVe1/nQ+kle5EnaNE292+d5jiJIpHVEZcCAUTFuuPvgPvZtDY1hM7rSDZBQn0sXRZEXRdu2sfMKH2RZFoTLLCdnyyJPkmQymezWK8V8jTExCiCCYBfaoiiWy0t1DuizAAAEFpHpZGKMAUawYsiqH6a1tgu8r33rZXN5CRGsxfl8PplOrUElkkNAa20+LUUkBrn5xFMicnJ8fHl5iVguFscvfunW+moTPSRJYk0eQ93VDYdYSzWbLSyZuq69j/cfrE5OpmmahhBj210tl8fHx5lLpKvbus3zPIQefzfOkjVkzWa3jb34Etf1noimZUET52NHAZMsFUJE6rrO+8ihx6w5RB/hzu17RGTTxAgSGEAAFt92ztiq9eurFSIyiDGmLMsY42q1VCkPZ6xBmk/zKH1ZdDQMVPYokV0uV4oLExkQj4BsCQm0R9ABOGdHRv9yuWTmyWSSFnld1+RsPilDCIuTYxHxTdt1nUGMnY8uGQsYWo1AREF8pwhJ/RNiFJembesBMTAQYeu9kth01xsRf2AhQN92WsTSStJ2vxv3AsUTuzaUxXS/32dZ1vkmsncpTucTZk5T99rrt7bbbYh9373WOXa7Xa3ZK2EMDGhiCFVbFUWRJoCIWZYYiyEEBAPIAKCWidK7owYRSGx6ND9+9dVXF4tFkhWBIyVu5hZpms7LaWx917R1W2mmfHV12VWhKJwRIIau7iQKCtV1h4gQoW73ZVk6h94HmyV15SNSPllcyUVXtaWlSVlUVZVmOZHd143yskHJxQCLxUKBAE6tzVKD5NuWyLBFypIOgAyvt5tFWszQoABE6Fg8sWNPDiNDMpl539U+hBAmZWEBHMB+v79cblxZmixLjG27erddZ6nLs2S1Wk0ms6ZrY4xajlI9hMgeEX2AJMuCdDHIfllry4JWdkMISdIrSfaBpbBNXIxRCDECEQXvwRhmzvNkt1sjonPUdTWzynYLI5jEkbNaTWybJgGdIHEAAQAASURBVA7OFs65IOBFILAl9HWFPnZNUyRuQvSe977w3HPPPfveZz7ykY988P0vsA8Pbt+99/otZGHCN+/dv/3woU2LNojLp4QUjD++eb6rd7PjedU2Bmw5nYTQpZQQEfsQug4H+M4Y0/qIaKKENnhIgTFgjKVNXYQckmCyCkhEdP9PDVkGTBLpwsZyxIbIpUUu1hmSxBoJvvOenCUEkyWImEQF6H3btlmW+cGJWvsIT09nOgKpdavVyjrXcQSA+XxOREKI70Do4SgxSF21gNo93/tszRelQqiA0rQ7rR22PlytV0BHLs3QkI+BhIBQEeEkSUS06M7WWoNEiR31nRUCJLIioiB529YwSPL2HYrcOTfRBi8fpQtt4hxz0DS165oYZTACNZvNXnf/EMJyuZpOY9vVaZrudjv2XWKIfditNyqdwSZYpCRNb9++rYAkohG5jma1LBFjdM4dHx8jYtvWfe0qSbTdhHtXQEzTcrRP1yYMjaFVdUetYmeLIxWat4mzxjJzXqSx8021IwESAEBrrCZWm6vNyBXQ29pUNYxG1takRS6E1lpggQgEZJwhMBzD6emNBw8fcoht9KtmfXzjOHTddRI1JhUmoiaTNHTSqdACovHek2EldIiItVpI7HM/Aq1pKPKo0Lxp2j6TVDWltqpHpByH5kc4aLgzjg6d/WAoHVhrM6fCKD3zAnrLl0G0Aa8FoOWAmTIuInr0Vf1BlU/6DtCeoz2+bSyQZmlKg9gZsuR5nmXJdW78+EO08oMkiIhyTfRQmBLV9LMnE8lisUjTtG73aZJJ5GrfOyr0eDz07j1qbaNPmoIPiGhNAkC6sgtEOSCkexFydpQKiiKA/T9iiM5YGEaJ0JIR1gEkVIM7EVFmKhEZNAJQlqVLk7wspG0QTQhdjFGzWRiyRJVk4XcAQYhIoMf21aMdSeVrqfGtRTeZTBgkxojUG9kdUpP6ogCAqoLohcIow93nzIg8XBeRufbeYbW8UKVzAGjb1pEBhNH0ZvgKGUoR76DNzXJ490c8fVxqcdQNH0lVsW8FjYPu3jjZiMi8g2qH50hEgcUQZS7bXT380f/hR9587bWTWX5ycnLn/r3gYxfZe79cLns+G7P3/tknn3z66af7y+kfJVYCDlLPK9TfYl+FQcXZVdBShgJSjBG8z8ppy9J2HQBYoKvlxcX9ezl3zjlryKbJ1Z37GvpDT8Fz0XPdqum8jdFrgm36TmTpfAwhDlZNjiNzjABoyaFR7fioJw0AYAhMr+ssBo1JACAqO08kdWYxnRjTXKy2AuTbmCSJDy0zo2DoOuJehVznikjEnKyxVhCdY3KvvPLaG7fvEEHru7ZtJ+UcBCAyGp02SMpYN+LIpUWa53mS2rquom+975q6TrOCAb/zu77z6z76se2+RkSbZE3TAeFQAiEBJjJJQtybPiNQLw4rIqwsQkFNxHpReKKv+X3fcvaRZw+nxMUXbjWb5rGz5dd6JJPsk3/x9xcHcPCv9bj96Zdi60d0NTuafPIv/N5//D/7m2rod/TBZz76R7/9kT8IsrvzVnnnf3uOf/V//O9/xw/94Phju9q77NcswRyaXgxLj+re+vN/959/9edG2Vs7af75X/uHYfeuZsJP/0d//33f/fER98+PJx/6g5+68+kXD9/zzLd98Hf/P/70W/7Q5skf/6W/Du/iOPvaZ/70m3/rLS/+g+//T77w99567aHzPZctxji00JqhtW06n203e91KFLVZdkHDo9lifnRyfOvWLeXGwhCf9E2srM5pXmNKZQdoD3sc9A2VbBIHGTVmrpvWJiaxLnWJRqUxxgcPHmQuefLJJ7/whS9st1tlbVT14z0q86LYcO9brZy1GKOSnUWkqqqurlPrLi8v3/v0s9/2bd9mjFnvtjCwdHUHMMYE7zkGGZz6Qght2wbP4yvAqCitXojymwBAYU2tXMtghAjDvklEzCM3AXVTG48xxYIDw4nx0ng4aBCakAM/4TgIuh1szXLI9dDR7pONNNWYOMaoagwjJRaGjroxtx+75dRabzzVkbZ2GAEPwd61q4fGTYfnFqMQqXRD7LrOh1Y33ziIbtHQJQYCNAYSOIRZ0BNmUdWiode97cf/OuJFVB66jhiZcaL24SKCMUY5ejiwqGBQnQqDfgv0DoE9x0ppZRZHDes4joamQzy0TmsGogZxD+8/kJwBcFdXCSU9ucyiSZz3/s6de1/+8pff+/yzeZ5LiIedYOO9w0EQRkRi5DGCDfGRxuTxAgEgTVMJY5fhqGE9KJUzxhgUldCcQksFROSMDSEowERFqf3sOlt82zkyxpjVavXmrVv7/d4izeezPM+rqnKJiwAWCUC6LgAwZwCeg2+JrDPO+y76Lk0SI7Jumu16QxY3m1WZT5jBN60xFhEJqCjKxfGRJi2OzNVyyT52nT85O6XURqrguop6fdRt3XRew0UW2Tc1oFRVpfk2yTXbK8aYF9l2u61rjiDHx8cAMJlMbty48eDBAxFR2rj21BuyKuq6WCzatlZtSpdYZt7tdsfHx6qV2fhORKxxozmViIwWYSEEVb8VEcBe4xt73lnfb1sUxc2bZ+vl1W63K4pCBaOttev12hrHzJeXl3qjd7udMQaBFospIm63WxgsJdU0zzkznU7Xy6skdScnJz2315ntdqs2dCpKO5lMVOdXfZYuLi7i0PALADqHdfJEVl5O6LpuOp2qdufQ5GuVLqd5mbLFdb5pN6H2O+s1JmmiBLGeRg2oBOFeh4GjqhC0bR1CyLJst9sp4ZSIrpZLXahFZDZdPHjwoEhyXVjatkuSpKkqQZMkSb0D52AyyZIk2e/3ZZEpINj6/sTKshSL+misVivt6c7z/Ln3PbG8uNzvt5tNLIpiNi+m0ymLFEWx2ex08qw3GyLouk7ZxLPZ7Oz0dHSRcs5pf7oyykMIVVXt99XZ2enHPvbR27dvX1w8QMS2bU+OT+u6VSouM++3e+gr2WSIhv0xivBsPr+6ukoQIPimaVQ+RTc47y8B4OjkeLfb6VDoE93vgCyIWJalysprYYBZXWpi13X6VzpLnXOogqG97gFpGxMRqVy7ygGJiPq/EZHSdXUyjyCvuiaMHT+9yWeWFUXhouDm8dnocrmPRczzsgtBFTBExLkEEbuuS6zVuTcyCguljsYwmUyyLAMWBTSVGKtId5Zlar1QliVLQMEY43w+19PjQZi+aevj4yPv/fHxcVVV9+49uHHjVMmGItI2HhEVsdV/N03j0kSJivpFysrcbDaL2TzGOJlMnn322aKYPPvMex5cPHx4tQQASybGuN/udqsNMydZb3JbluVus8W4I0A1DiWixnuDlkFUkXbf7KF3M+vlvbz3VVXpKgEAqnMlgm3bGmOqqlLHWDtobTnnttutnaRt2za7PUa21orpV56u61povfc8OBIrFYwjex9QJSlA5pPpZDIh7Jca3e/2+21hpzw4oO52OzViZQbrnHI5eVBaQzTMoSxLOdDd0tsxzoTJZDJCOrpgDrWoaJGUmqAxgH4yDWxIXdZ05+rBmcj6rMEgAeGSRGVkurZDa1dX+1li/tD3f/+nvukbnzi/CYQ3b96M0SNiU9Wvv/bKvVu3Q9emJqmr5uJiCQDb7XbXBQAkQAA4Ojr6wEc+CAT3L+82odV13hhsfS99A71JFXjvuxDMoIWll+ycA4JRVo6IRFPkoX8uK7LaxzxPXeOCsEtTcuB9raF1lhWeo0q9ExHFPtYCBG1ZULBVMei6rnW4diwK76pijA5727Y+pI99NtMsY14jorUqlt2EEPI8R4yjN8a4/neh9+568OBB0/SbLyLudrujoyOdDzR4a8OBr1sIQbkrI/hjjMmyoml6TXZtVNILbJqGmcn2bGhdc3TxTBKDLNvttpxNZ7OZais55y4vL+/fvz+dTouiCKHTlSqEMFr5qSqF61p9xtM0ZY4hBF1zAED3LD+YE+g6v91ukyS5uLi4efOmxtI6Ldu2VoartVYzCB3MMddo2zYrctUAcca2gzWuitfpSj5CYQCg265ePjMLCECvUaPgNSLWdV1medd1Kp2njAIcGo94zb7rMIM0TafT6bVIAjxq+1aWZTPoyissYsilacoSnHNB4dcewO3lffVh0BSAuW/0MINxHwwePswcY999AGotMtjd0GCmB/0n9/Go/tsOtonjSVprgUz/rIjoEix0nUgchtEjNDnmV3o7WVnNxvQFOgCRfiPRMGtMb6wxMYo2ZGGvXPyYQwZAHCM4ZwaGfCSyYz42Hl3Xajw3kuettRQ5xEFFmq9RbSKKfeOnxBgNoCFLZIWIFVJjRuhHzHc+SZKz83MRiUHYMAysySRJog9muDt97tTLqSD3XZ8ATIwQgRkxhIDOWZMIY9t6MORbDsIDa3ykkF8Pu75+ODLjK7pAjWucTgw07vT01DlnEQVIVVB05o/TQPqu8D7PGefVmPbgwAPqZ911Rm00ETJIY7UDWbBPWvv5r0uwLsrvhAL3+f/BfRzvjmaM47ePqaDOVblmUV2TeYnIvEOJDxEjqAImJEly6/XX3njttTJLnn/vc6vV6uLi4uzsTELc7XZdDMIcgwCBtfZTn/q2yWSyqhoYrHuYI6IkSWKIAvXeUyBkVBKkr1AM2TX2Su4AQLafIRYwSxIr8aXPfZZQCMU5R5QG5gcPHnjvrXUgrDbr4zAys/cRAAOLj73omDBGpZUBUGAgJCARCcwYdbYTI/RdAjq6BgFACMok60IUwTzLQhTLYCeZ7i6bXdWFGHybpqmgAeA0Lzk0SVYw83K5TK1DEg7ijJ2WuQNbFkXTNL72xhgiezyfAhABK6JjjUGLREDWpHlORD4GH7tQtd63TbUzxkzmixD4ueee/Y7v/K6m81ebVZLliGic4SjCwOoGNshjqjY9AJhhhPvJAEgCgkiExvSKANmipEe15+7/8mvvhtr8bo7Qhfl7z76aT3j4mdfwUaWIo+dvjuRlbtrs+BEpj66qd/c3X803/ms97v78y9XDTTHIj+Qn06MXnnj42Td+TR/y9Ld+4PDH7b2l3/8GlAeyR6sCoele/kf/8l3+7dVrDx5+7tYzv/lD4ysv/Lvf9FP/+7+vVQEAIEu//a/+UfM2RPurPL7n7/65V3/sV95CDzfOEpFF6pjbrlPpp9lsFkIIHDVwb7p2s9loaq1txQyy2+2UT6SBvhKiZRDgi76HddIsjzECHBjGDka4gpBlvW81AChQUtd7Dj0GGntXHAKA7XZ7dnb21FNPrddrNcJ67DXqIq/hteq76YmNW0xCydXlcrfdfc0L7//wBz+02+3rujbkRrSOh44/PaVuSOB74XvojUoY4rh1xkFMAxF9iMyshX8cVEr4oMsPB7MH1EIvXKPDh5uXHLhW4EF9dyys4nW2hhr86GkAMFozfoIOSBz85eJg4aCBjQaTzhlVmouD2JzujONubozRkG6M/WRA0mPsv2UEeXXAxm+31jpnxr2467oYfQgWsfcLEojj4CgtwAxuMCxR/bHHTxvHR1NNEQVUeYzIcXArQUQerBVDCCi99gUO/iJoemzODwcMTWCKD2qOobun/i0zh9gBAAx9zaOGsoJ0MDjmwWBlvpgjP/0kh/ilL714eXmJSE1oyFkAEAB19tvv97/0S7/Utu2HvvbDeWKGOc/j/I8xylAWpd5tbBhwHuM3jbj66RpjdGQO58lAcQ06IZWXMHzgMHqIzNwOxMwQwoKMJ4ptC4SbzWYymQYIzb765z/105urVZqmHKIgzOfzYjo5PTsjREicReIIABQaZtaeR1EAziKFtgWRzCVHs6Nts9lutwQmtY6Mc85VVbWrKkFomiaflEREAqFja50jQ+AZoksfvzbmedG6iohc4shZz9ElNgw2pDogiomoaKOIbLYrl6U3zs+KolA1xlEGR9PCEEIbuvV6zawK4OJcnSQJmV6/4s6dO4iYpmkC6X6/38WdTnVNU2OMzqXr9VpBLsSIJKr7p2CuduWrNISxOJ2Vp6en9W6vcymf5CNEXu3rtumKMk/TNM/zpm4BQIU7qqpyLlUFg/v372dZYoy5f/++b5ssZLvdTs+cmVlinhdlWeozHkK4uLjQZNgYo9TXUexV0/gxFh1xTH1ID6oyzByOj0/2+/3V1VXXddvtVt/pfas4rz5TXdf6/U5hWRWjtEh6XoMGglEhjqKYqJq8KrdeXl6maVqUpXIVLy+ulperpmkur/jJJ588Pb2x2WwePrxMksSQ67ruiSemzKxaSZF9tdtfXl4yczEpZ7MZD+YxwQfFQ9um2e3aySTVsdUdRxci59zZjRtFUbz44ssKOnTBF4zKDq7r+s6dO4Sodn+B43Q6tb2IXz/ZvAdVlby4uMiyDIDSNFGcIkbRaTZiZIg4nc6iD9vt9vj42ForgvuqMsa0bUscFZvT+VlVVZYVN27ciBIUf9GBzbKCmRGNAGs1Dgjpult01NghFTANvU266l6SMU4rpvp+Y4xNk3pfaZO7xgDr9dp7P5lNlXTfdd16vTaA48YdB80i3Uq0XpVkxXE+fezDywz7/X42mwni5eUlMxwdHWmZRz8NBo8fO5i46vToM/rBZUof9slkogWALMuuVpeLxaJIJyJSVZU+JtBbTfqiKM5vnul81sU8TV0cNG11DozAnG6U+/0+CidJsl6vJ5MJDQJN0+kUEYuieOGFF6qqun//7tnJjYvlZWJskLDf175tsyTN00wvqsyLwJGZX3jf+/IkvXfnrp4GD6QuZ60k0nZdkWUG0RJ1iFpCCCF0wVPed67r45wkmfd+s9kURaEb49nZmV6LDnJd19IF3zTE0oVgE2ecTbKUWKwfEB5rLAKgMCEyG2MCCyKCSNM0zlgkMBYn0/Lo6CjP80Cw3+9tYoBIVWhWq5XOZGbWZFBHTzfNMitV1zQkyXazPzo6mk6nq9VKBakMYPRhLI0E6qy1Fsm3nTGGTK+9oyU9ol7yGA8Qsy72imdjsCQi6YDnMrNlCSFYorZuUgt/8S/8hd/93d/9+ssv3b195/T0tGvatm1Xq+V6tXr1pZfXV8tpXpw9c3r79t2HFxccYVvVEdAkWRQkAiGsqmq1WTWxRotN16VpKgKWjPde4SKtbVtruxCYAwA510t3MnOUOC2mOo2ZOTAbAGcwwrUOhq7Daep2u105y1WdVYZu7Mlk0oU2hBC7oLA7Obvb7YZ5XuGgyN8T7CIrwqYivyp+XRSFeQftZudMYhMiQuqNrwdwhuFRfiEM9MpxjdKqmAbhk8lkv69FhFmIUCRy6Av5Ok9EYtNoF2Bvdabov1r5aQjhvVcjcQCQyHmeJ9bJ4M5NRKHtdMUIbTdCarrbqlyeDJp1JycnMUaVV9J0Zr1eb6v9dDrVp2Y6nRPRZrPRGnMIYTqd6sO72+0AwFo3XvVms6FB01VjQoWnETFNs5OTE52fl5eXulzoDNdxu7q6kkG7GJJ0lDSMgy6xjrDGq8wMhqwxRIOk20D3IaIuKqAEeZ67BG1j2rZbXqyn02k5neKk2LnNbrdbdJ11Lh0KBR4AFF8OIVzcf1C1zRNPPKGbDREp12bcD4h65e9RHEdvJAAPOYAAgLG9npGOpkWy1npfI/ajpsu6TrIQgjP2LUDhGHnIo3wcGNjNiCggY4FiIDLC8OM1e1pj7j6OHvIigGiGWH/8EN2rBLFpK/20PM+NcfFA6e+d2K+Exg0lPmMMIokEY0abVBkXd2ZwqcnyPC/LUG+jb4ztcWcYc56DT9a/tc6pnoNBQkFmjoF1mIjIAIIhAQiBJ5Pp6elp07UhBDIOeglpQYEQAlkStAgog2z39beIkBhGiCAxChggY5mhnE7vRw6R0yxvu+4Q+cKeEt7LpeMAEI+fOXw+D2Cx/ooJrABYl4ql6XyhhKHIIMOaMn44I9DwgSM/Vx7VWNS+C32diEYKlu49SZJYZzTFNcaF0PnQZ3r64Jlej0mFWR4PN+NwHP5bQQc7mNLiAA2YofUbB+kMHhQzx/fAO2g3G+tijNYkiODb9pWXXsqM+cgHvgbRP7x3P4LkRXH3wS21aY7CZE2IkqT5+RM3w1Cqiv26LwAQQ/DMo8wZMIM++8HrcgMAjMrFbkALoYZCDAqBSld9/kufe/Hzn3n6ZIpdLb4jovXVqulaRKqbxjkXELqmRWOjZx9iCKGLwTmnU4VZVZqFGdCQIdfTu/slKDALGgRDBKD9ChwDmj5TBcLAgGiIRI0tyYAR7qSbZjZxk+2u3tZN1wmisdZ1wRMSmWS+mG63u7pt8yRtm9BhYAa1rbdkyrI0xnZdJ84QRiRIkgSAgYPaarfBt10tABcXF0SUZ2mZpwapzIsQcXZ8+vu+53tv3Hz6/uUyCuyqJitKg0a0D0jrOCqqwcwyrI2DfreIxMgAEcxA2BvqWPd/8dXmal8c6C+/9uOffexU+XUc3IU3fvJzT3/ya37dn7C9c7W5fbl49sb4yms/8ZlRQqFe7tavP7zxde8Zf/vyj/zSv812f+vXHvh9CwcI/Pk3vPfLP/zpd/8JySQ7ftQacfnlO9274yB/hePsI8/kR+XhK2TN9uLdAvfchcsX7xzCzScfePJrf+DbfvGHflR/fP/v++bFc+df5Uk+9vizl//V3/s9f/mlf/Tz1y9FNqCtTw6AI4D3XqGHGOPV1VVeTKy1ajyijE5dny8uLvb7/Qixee+1yE9ElowQK9qiAdN8PieC3W7X1LU2WYsICoXAKtm2WCyEUJNDVTQTkcRYBmzrpgpB1VGzLFsulyLiksfjTdba6XQOAGU5LcvpZrNRDhozr9crY0wIXb1vJnn53meetSbx3KKADz4xGuyyVwEFAea+7qs7iEZ1vYiwBD6IZA73u3FbgQOQdGRGAIAWgGOMAoKIwoeOcKKL7/g5j+LUOFZG4SCC0veQoRFO1bvEw3GI1crAwIUBiGyapmmcEi1H6gAchGoayIyMATMQfpnZe38Qvo1BJh+eZNd1IcD4nhjF9H0q/fiQwfEq9DMRUQVtxzy5z6iHQRhjRRQNjmQcsRFshaHEwSHoZ4ZOY/fYv9+QMablfgHUez3OvTD4j+utVxCZmVmCBhXKYcmyBBFpoF8oWKAfgohlWW723WIx6548Xy6Xy+VSOTi+8zqYhLbtamvN5eXVZz7zmclk8vSTN7IsM6kRIZFwMBO8tbkxRpM7zZoOo50xmGEG/UfNMvB9esY6ABCON+v6xRhj27bO9TNTNUP7+kTbonOe43KzRUQUvHXr1i/9/C9cPbwyiFmSAlCI8fJqm+bZSy+/juDn88XxfHF0dJJlWV13IuKccc7W3d7OpyZJJAIROedOjo7jld/v95urFRFNiqmZmuC5q7sI0nUhCjZNs9/vJUZDDgDeWL8RhedVBvCYFdIYQkQG8aENdQWEqrOnkzZxyX6/18KA6sxqSAaIVVW1bbvf77mL2+227Xye92qwVVXFwCJycnJWVVUymNFxy0nqhIGjOGc5CvugrCClUKVput/XVVVNi1IGs25nkGzP66euS46PVZEjSftIVct1KvN6584dcqRlMwV/8zxPXGrIGmOm0wSHasSg/gwxepFembQoc9+09+/fXywWZVkqjK6od9f6q6sra60Sn5VCpaNhrd3tdoqAKzKr/q661OtzqnCS5uqIuN/vt9ttXddXV+uiKBaLhXaTpGkao1citnNuvV43TbereTp1zDxofcYksSPeqt3KZmhmTVN3fHysxMzNZpPneZJkaZrZxFVVZZy11l5cLAHoxo0bCmSkSRZCuHnzJiJut9s0cwBA1lhLSZJVAy8PAPb7fdd1zqYhBGPt6Wl248YNJbg1TbNYLHpCpbVpmtZ1qwxfAMjLoto3qs6RJIlGkmVRGmO2+83Dh5fz+VQrpkrsPT8/1mF5/fVbk0mhH9LL4A7UTiVF6nN3enxycXFhrdUdlhl8CGr9h/BIdwuRLYq0KIoQY1lMszxRsFuZekmSdE2ri1UxKfWLNLeq61q1XzS51mvU2a7lBH1w0jQNwoqksA/GmLIstfFc768hFzzH0F0uH0Lk6fGxAr66PMrg1j4KLs9mC79+fMw5ndo6SYwxzWZnjJnPZ4g4OEYkqN0tI6QyiFOLiBr3mUF0UYZ2WBUR0rumxQyFoRFRtxVrrSSofQwPHz58z3veowupNsXrpHXOWZMgoj6AHL3uTUmWaruDdpFeXV3pQ7Sr6tlsdvv27ddeey3P81deenmz205mUzvAnbvOE6C1VpnaRFYir1arlY+7zeZmUarOL2Jv8OGcy7OMoTc8HLfgNniypq7rzWabJE5Nj7WQY60NMU4mk6ZptNSkJ6kRRYTovU9dYq11aZIVBRBaQEQGQ1qWUFpOFGaIIiAhGqIsy3VncQh5WqrYMXPwUZIkAZKszDySwvSI2HmvQqz6uMEgr9pXnanfsNbrtTLfdbvXek8IQWG7yWSiLrta2dKOAX0udBrIUDbTqCMIIxoi6713Lum6fpK0XWeNmc1miLjdVdV+b8men934U3/i3/uO3/rbvvDZz73+yqtP3zyfFmW92b366qvL5fKVV17Z7XZnp8fPv+/966vN5XI1nx95We/v3Z8ujoKI9x1a04X27v3dZr8tpxkhMfNmsymKzBhTVZWGu2g0qIsK1xpjiJAEWu9jFwN0eZ6HNlRV1QXvjC3LnKzZVRWTKGytcmRZlk2mJRgJ0QcJ1touhhjj8fEx7Dn6oLFuBOEQiChJLCI2TdTdR2+BPiO5cXLgEaJbD78Dd8r7Lp04Y4w+R3aw6FCwVenDWgDwvct0j0aqP6e+OJ3O1WhNH94syxSLG2e1AkG6ZupX7Ha79XrNzFlWNE1jjEPEJDExRmZQcoL6oCa9iYhkLtl3Xs17+6fMWAHwg0I39L7T0HS9OYfOT3U40GqWFpK1icQMfm+6rCkkJYNR2VusFxBRu4V0AmtJMoQQgg+hAwDvexFnFapmECJKrGvrZtwTR3BZvxoRGcF7H6p9nqQiogbjPbkEERHHZn1dhdA66Hxd120TXGuJSP0qLFqJgohRt5sxZ1AtPN1XvPef+9znjo+Pz8/P9cFj5sgRwTD3XXIGDbPmMIxohvwE1Hgdr2HiXkNEA6AAkA60YsX1vPfUd21g0zQijyCY+o8RVRwLHXAIQFNfsNZrsdboiPPgdiIDgZdUZ5poTCGGr+o1BGlkXhCtt9vbt28/9/yz8/lcGGOMPNwY6WnIj09BCWmse4z5zIi9Co+dnsjMTePTNHcu7QLnJjHOQOudc9KFEYPsxyFyYCYa4UtgZokMQEAmxkiWiMggIBpmCByPT0+m81lVNUmOQOiFicgZQAHraKA7gTFGiIzS2DlYRCIDgAYxsCAosI5RJC+nDOSynHqJAkOEYz0EB5WVxw5LPytERxvHhBCGLLEoFjbJ6q4N6ARImCMBcN/7MMLVeGBrcz3mA9HJIMiQixIRDlm3Pr3DmnUNCmt11Bx404/JJNHjUWCi65LA+NU4UMV5oM8DwLgI6oQ5fKTHdJeZ+R20m4FQAAQZ0YCErq6ffurJSZm/9OXXuq45Pb9prd1VNaKJMQaORNYzP/mep5546hnvPRoDSPIIk6jvWw8hdG2AXhLnms8lIgo3aw7MIICGgGP0uU3Wl/d/5ef+hYOQEHjkKLzeVm/evdf6ANYBiyW14g1oNJOJcRgu731kz8zCCDq3EAHZpJmIRBE2aKhXtOQQjDEgIFF9GQEJyRgLxKpGobx4EhCKKLmj1JomsHOOEZo2BhYf2JokxOZiuXryyaff88zzL774JRAiQ8xcNT4qtw5x33oDiABtE46PiyRJQRgAsqKI7B9cPqyqqulaDT6OZvP5ZMrR2zRv27o8ufn9f+QHPvbN33Lv4pKFsmLiI4Ng7Vs7qL+NBSoiQiBE5NBbFQ+PwCOyQuN8QALjHql52Lep6P76DyKyX9WnkaVk8ogtnnFmtDEkSzZ5pHadzifvxuTw/19Ht282b14cMr6f/MT7KbHvHiLPjibF2fzwlTd/5ktf/Yml87K92h8SnLuqzWZF9y51pYkuv/DmOMH6Q6C/F0TN5f61n/zse7/z68sDU8rfkONz/6+f8bv2LTddkzrNUTXBZhFnTJKmLsnG11USUXO57XarO4uiw0o9e/LJJ5nh4cOHQ8SPaZqr4H6MkRmdS2lCdV0LAhkbQrhx48ZsNrtz505VVVlZxMAE4sjEzoPh4ECzkRs3bszn891u99prr2mHdQqPb/ori4ksEm231JhvMpl476+urnohDoaubj/8oQ998lt+k29D23prrVEaF2AYUjJmUcVhBYa0OIqIumYyMxwqVAz83DGmF4nq3nw4yP16AsKiDhd9w83hNBiXoCEmeWT/OvwtjDujbsXxQMBKgAc82oNX+MDaBAf+2rg7D7krKeKg+yMOqLRGFMPlyGFyoofGGEOoqQEVM6MMdhrYQ6XXsCazijP3chPGGGFgGAAFERmMszQAGJtMvfeBWa9FIwdmjv1DpGPSK07oqA9BA4gw9OwH0dZI0B6dwCEEzfwBNOOGrt2paG9ZliDEEQJ0MUYWRhJC4ADMLNzzZfQkebhNNGjdavRvjEmsqfe7aZE/9/yz2+321q3bMUabOI2BO98hkUtSEWma7ktf+lL07Xvf+94kSWIMAATQMwRFhDkw9wD0eBdUfesAfiIAtkhdDOplqNmREv2stVrkGO+Fzqsxy9DoyCCN6LkzGLpuvd2CsLHJl7/wxc9/9nN13c5mM4t2s9koiYYZdlvVIfXb7e71124lJsvz/Gh+dOPG2fnNM992SPDw3n0yMJvN0iQHiVmWnZ+d1eVsv9vVVVtVtfchRNGeuPnRUZpnTLDcrNQWzBnrSmsQXHy8qpJNHIMQEsfoY3DU+43vdjuIbCb9BNPUXQEORPRtF5JEwanYhizL8iI7PT3VxtXTk7Pbt+/tdvDUU1nTNOqeR9ojxaBORNSTuYy1CUCXJFnXhbb1iKhOp5pPabVDuzdOTo5u3bq122+Kotjuav0QnT8xxv1+u1wu27ZNMHMuFYmK1mlHv4bQVVWtVqtRoUhBzPl8vlgsttvtdrtNrEmS5PT0VPFxlcvQ69IHWVGMPkFFVC62vq5OULo+aLio9H8c6liapSsTWXeEuq6zLCmKrKp2qgEiIkdHR3qeeoaIWJa2nE2lt5wqJ3mh+tGLxcJaa4zb7/eKCyj6kOd5VdVEdjLJptPpyy+/rPDKbDaLMT5xfvPBgweXDy/UP2q72VuTtG17//59hf7rZm+MEYmqC6cPS6/q23XOuSxLfGiTJDk/P7dkiMD7FlG60Pra52kGQi+99IqygFVEwjjrQxtil6Quy5IsT0IITVUnSTKdTpUqGAeT0vFRUiGU9Xqt2KjWLXwbNqs1EKpsCw6wS98uI6C89SRJzs7Odrtd8K0iNTHG9Xo9nx8R0Xa7ZZHZbOac01hV8dM8zydFqcuUMUZz8OPj45OTk5//+QdEdHR0FAdmXFEU6rk3svMYoQ1eqxRKmeyRu7YX5M3znGxSVVVb17t1XRR9AUxnhc4TY8xut1uttknuytm0rvfUPP7h1f7u/X6/2WzOn3hiMpkp734ErxWmNMYIYlXXzByY3ZC+Kb7jbGodKb+emdVgUBdAZQ0rb3G/3xdFkaZpU3fKYHPOrVarxWKhrn3a/aCBzfHRqeZoTdOkSWKME8EYBMGA0M2bN2/fvo2I+l3GmPV6fXFxAQBd13HngYVDZAqJtTYvQuf7LI/Qx8CeE2v2+327q9q6zp7LUESARcSHQNQToSw6hqA4XuTgY2zalqwzZIoiHzbcXiDROccqHTYsdDpERVFwqNu2Ozu/wSHu93sHcHl5ySBGoDSZzyYkrNzIoJwta2MUrc95LwYzRFRj9qurK10T0iK3mfUx6m1SMZO2bX0MWZrxoHqh9RWFLLUeYMip+5wW//TBVL/QkcAOg+uydmDo8pgMzpC6DKZpqjqlIfTRhZYTiqLIy6xrWo/eAHZtqwTq6INv4UMfeeGv/KX/w3uefPKLv/LZ4P3HP/oNRvjWq69tq/1qtXr5ldf2+/0zzzzzyW/5xMP797/80suIyILWJTeffKJqI4mUZeljuHfrbtM15CxXkqaumBR1Xe33dZqm2kfEDMCBQRDRZWnbtm2rDF+21hqi1CSJddWm0uoIymBDBbEsp8bgZDJR4u08OTo+PVlvr5rA446vda8YtSeYvPdC2s+EKiQ1jpVSRgBAlxdlqapVo8oGvJNtFQz93zQ4u4be8QKj0tcAVLY4TVNre/6c0lZUfke3tu12exjXMbMlKxK9b3XZ0fBeu2q0NqCb0X7fayvhQDVQtrj3XQihV5VT8CfNtGdobG5QrYnWe+2n6bpOi+lZmmp1DQc13dVqFULIyqKvT/dhGMznc/WJzbJMlyAeGMfL5fL4+Fj3r9VqRQIaivtBrFlPWLF4zaGG2hh0XZemqe88CmgZTI/EWH2CnHNCKMy+bceNeNRW1ZxAn5Fx3dZiT4zRJA5ZRESVrMauO+fcpJzM0ySvcqsPcFEUWoqMkdU0/mMf+5jqE6nJAPffxSIYYxRGZW2SABKJcOh69Ylxz1NuqIjoZhAGuYyhLqSF8b6HjgfyIw7oypg7jQim70WErkFnIgKCEVa21lqbIBiOAkIgABDhUUIQgLrgXCdUMGjz6d2KkQUxda5pmpdeeunmzZvTCag/8oib62o74phvf05AiIeUSQYPWRFRrPn6TBCjcJYmeVkws1gDg7/5GNAP8KmeqSTGgpKVJJIAMFprjLWaeSIIoqYK0Uc+Pr1hjItcERFD3+tBRMbavol3oFMxjjMVAPuUpp9kAso2YiSXJoJgra3rHSNZc817EvXBGZRx4pC0jFc6XoWubn0OgwgCIhJYTm7cKCezOkrAaK0BRBElaquGBh5iFiN6C49guMEiBWGRCKCyJ31Z7BraGApZAEDYn5hGw7qKxaEzK76DayrQWzuO9abHgfmuD5uuUObRLht4VOaSDqRF337EGI2zIJA40613BuT05PjOG69vNyvrnEuSi6vlZrNpfV+HZMEQw3S2KMtp5SMLRAAWvV7lC1sAiUFAKE9THDpYQXoxI11rNF5U4IaRYggYfJ4lX3rtZb9dnh9N62pX7bc+hIeXy7sPL7wADT164/UGz8xsE0dEygALgSN751ziMo3FmSGSjiH0VH4BCEPgCL2/FTEYAAIhRCYhAUB0llRAHAExtZ3nBC1YMyv5az7w7Gc+94WmVQ9Ss6uqwHB6dv7yyy+DsWgMCMfoKU1TSJGl84zMeZI2Ia5Wl8acuMR0Tb3ZLrfbjfcymSRnJ8dHR0dHRycGsG2aatusq+3J0fHv/p7v/dg3fXJTNWQSkBhYogADK5qLODLkiPU5I0C01wtCX7DtHxydHqNKz+mHnnGPOrA9/zs+/to/+cw7TZhf28H8/Hd/9Kv5gOLmIj96BG5+7ru+Afi/1n/bSTJ77ubhb9/7277231qsGQBC1d37+Vee+bZrFvDiuRtJkTTvGm4+euHm9Knjw1cefOb1r/7EXvnHv/AL/9mPfOp//QfGV7ptze07GdW+7WDOjqaIjxTPkIbllPn1n/js6z/x2d/xQ3/yY3/yu97ytq/m+IW/9WP/ww/+0FtetNYojRQAesNgJUEIk0vMYK6rwZaiqyqyOfbPEpFzadv609O8rusiyzW60ICpC16jTG3C9Z6sTZS7p5X/LMtOTk66rmt29cmNs91qudqs5/O5rudpmh4fHyv3VpNwZSKk/PiUtW7q/b5RXknXdzWKUhrLskySZHu5ms9mzz/7/NH8mDsBFhTJ8iJJxoo4AKAIq2LStqnGwHHcOBA1kOvpOYDX1NrOe91oYJAy63nBRMpWkshDZaunCvYTYLS4eFRVY9yq9NbIQZXiegsHgEEtQUS6LjD2iiVq4KFvs70fwHW0qhsEM4fgFZg7wIiV4NxzETTZiAf90aoJOAIrxvTfA4NCGg4UB4DeI0V/OxImeCivuuRaA1oerTHL0MA3Xikza3WEB0OI4VcoAkggg7uG0GAhojXm2J8/IsJwv4iu3Q5HSEVhuJ5aQtfdWhrYhBCQBXsPFdQSKVyz13u0pa5r7z2BLGbTuu20hROAbt+523VBr+s973nPjRs3mMN+t7t7986Xv/ySc+7k7DwtchFwzkWIIXiNkEdRBb0XOj6pcyjCA/veOWeJICUVz1XS4kjP8d6rsdU4k8e43fvI3Msu+eA1T0vTtIuhXm/1/V/8lc9fXiyd4GR+lBeT9XpNLimybDqZhRAUMjCOhFE4NJ33HVf79vLy6rXXXrt54/g9zz4lwgJSVdV+v0+TXG9bmiSclYnLEKn1HYonwrprX3795SDsY/AcohO0ES123NVda9rHbwGqat22bQTJ80xEmrpnWbZNo9mvmtYoPITYw3whRqVoHc+PktQp80YxQULzwgvPLZcrDQ570mjX9WUPMDEELx4AYvQhhLqu8zwfCV8WSTHKqqqm06l6Eaue7OnpqRDu93uVQdB1UgSeeOLmANhBYmxiLFFi5sZ73+wrvV/7ptFy2v37qyzDJ598Uh8EXZ97Em6W7vd7Geiro2SkTvjeOmUwL0HEsbQznU4Xi8Xl6uriatnj4G5ocj2Y+So6qSCpLu8jyvDgwYPJZPId3/EdL774on7gyPYqisndu3eV9GeRttstougJN01jba/oqAw4DX31wddOX71fypWezWYxSl23WZavlldV1aRZpkWCzWazWm0+9OH3A0BV7VQ6QyFIHVtEVOadEipDCEqja9tWIuvmpatB0zSt73TZEZGqqlrfKRSu017z+aZpttstkEynU01tVIhT9SoVgzbGbLedltNUnjt1iYiA9AImXdcxw/Liyntf5kWWZT6G55577tVXX3/xxRen06k1ON5B72OPITLv9ntm1pIJ9raQgdAXGTvn9HM0R95ut2maLhbHq9VyuVxq4jaZTHRPr9om+I6Zk0EiWeUjAID9NWNMf+uc6zrf1nXTNM4RAK1WK4XG6rpWNeH5fD6bzUzSq69A5BvF4rEPr+q2M3NZlqHr1ut1jBFFCEBirNu2LMtJUWgar+TxvmCpMkchJEmialddW0UOY06npFoV/dAYRpuurq6uDDlA0C07hF5ZZQiHOEaJoW9v0ik0m04VLQ0x6gP+6iuvN01jndH52daNPjK619RtOyJrxhhtwdSzan0XOE4mEw7R+7YoCkuUpY6ZJ3nhq/bqcklCLkvzPAdCov5zYt/FwpEjGizLMoS+Q1cnHiAqRq9NBmNgYK116Lj1i8WirZvVaqUi6wCwr73Juelap+kv9UBDCEERSeec+E4gonBVtcV0Upbl5epSEIJvi1lBzE0bEdAY42MIA5VKFQO0Q0KGIsSYmKtUztgPpHN7ZI/xIAKpS0eMUSWPFCXz3pvEgaGqbQpTENkYa13hVaq+rmto0GmHeoiAmGUZCG23+0npfvBP/ImTk5M33njj7OwstlNfNa+9cevy4f17Dx/sttWDhw8+/vFv+vCHP7xcrV+/fWffdqurtXOuDRHQ5HlyeXUlXXdyfsa33vAcM5O0bSsAxtm27RAxeBZAa5PrrdYYCT6E3idDq2u+8wnYMp9crassyyDEtm6MMaCZNYeyLFe7erfbWEtR+Pbt22LFWDTOtXWjBsKbq1VRZEQUJDD2Qm2HaIY+y37Qp1XcFhF11XLOKRce3oGbaK1jrnVJ1NBL+QQKYiaJVUPv9XptjMnTRIMrnX76fkVX8cCio3cQqRul5KdpFkKIsXbOpQMQPLYpZFmhlJdxFulek+fFbLao61r35cRYrVcpZq3bh/43JXJkuhiIKM9TAKh3e93LFGI6OjrSPVHfMwa6uuEmSaIVXxyIGnp1iKJFX2NMnufVdvfgwQNy9lCeQXc3FZVS7Bt6VDa2LahTOg+VMBGp2kZVtnVnMeQILQjWVYskilbr7VO2sff+7OxMCw+IyNx7VJRlyYyTfBJCwIiIaMh17X4d1jZL+cEdmyb5SJaRnjRBbvCXG0koI67XqXvrgcsfsODYYtmrTEQcmKE01M/HB15EcBAD0m/pfcN1zYrdmBGZA2cYY4wfZE8P1xFdBYZA1oYQRPXRB7GCGKKIIA15wgHPYsy+gr8OrCMICHQdOueeeOIJZt5ut8o5FxGlIxl1vH2HR4UQrbZ2vkWkgq/lF0ZvH2MzQimLKVkDAIacc67xPanEACICAQqCJiMcmUDvPRlQazxUfXpQWhCQgEQhRHN0cuqH3CZwdNb6A79URfRExHsfWX050YpiuMISQEgAUZTeLICwmB+neeH3W+lliPtHesh+e8YTEY1Dc4ijMbMxTjG4MapDREFCg+c3n84nE996FjTGsAACGKsZ7zXH8y3Z7zjNcLS9A9ScVkRgyCFh0N+AwW8U1Rcv8giSjkD/UJzpHnt/DzVUDiekH5yRdIT5miXEIw1tPLExyz1Ikt/+PUREBilJkl1bQ/DCUu13RZbnk7Jt24v1labfwtiZaNPMJMmN8yeatvUCES1gXyQEliiMiARGvQ7Hp1ix5h7g6AuYSKQ+4cREEEOZpbvV5Stf+lxKEtuKgeu63lb1eteIMUpq1jQjz9MQmKH/OuzJKUMOT4lzjtAyc0QkEsZAaBFHh0C01joy3nuDfdRCAihIQoZRgF2SqISQBA8IiOg7HwVdkt9+814b5evOzgC/nCTUdh0RApD3fnbj3BgHSjQjIOPQECOggLFCLADQBZ9JWK0vjo6O0syF2N64cXp+dpbnqXNpjLFpKmCs67pr/fn5E9/3fd/3wU/+puVmw4BNFxiEbGIMIKJ1hhCZ+5YrQNYmbEIc2f3jJKGh/XaIEnrS8Rf/u0//lr/0Rw4RzMXzN94+T37dx7/4K//g9/4//1e/7j+/8eFn8NGp+y/+6j8Y/717Y/n6j3/mfb/zY+MrHGJxNqse/tsr33zvF185/DE7nkyfPm1W71a++elPffDwx+3t5dVL935DTuy1f/KZQ7jZJu70w0/v7l69yz8/+cAjEh+7u1ef/ds/9cg7iL70w58W5uJkur51yeFXQdjf81u+9unfdK1SXT1Yf/Zv/9Mw4PJHz99oruov//Cn305mJ0DgvtUjxojWeN+GECaTmSZLRNQ0jTYyK/6ioYwSTpumUdPtGOMXv/hF7/17nn5G6QxHR0fb7VZrbwreaXzmva+qqqoqDY+07J0kCQgWaWbm8/V6Hf3wnLJMJpP1ej3saKJRZhceD+5X++pSrhQCULrBer0uy4myEjab7TQv2tYfz08kSOgiRHA2sYMLRRx2BxkkcTvvQ4xxxIUVf4Ue0YwxamkuxjDsIwd2gqNSv+4vbxMfg0FtEAbyiDDHgSWAwzFuT4d/Pu7XAsocd4J9uTTGSM4miTXGmB5uNmPOA4PetB08ggAAkZh7BuXwFcPnH+yeMMDimrqMgVNvlxgfUdUYQrhet1T3VgXpeHRfDGEIgkNk9cW6xkA1aBwHc0TbaTBagEGjYERU8YDcHSKLiIS+Nwj4Wke7d6pAVM6RMUYijzZN8Ii1Y39DxxMDAEYwA7e9bVvXO2v16bEM3dwhhMm00BrJ1Xrz9NNPJy7rgn/j9Vvkki4Gl6XL5XK32908P7PWJUlycbF8/fVbMcaT06M07a+IMTIyxN752Q7eEjFGY/vboYnfOGhEpNK6I2NdI3zrCFQ0B/p+zHF4x8ywbnrlrrZtt3sPLKmx64uVtL5AO5kUQIgCzDCfz2fzOSK1dRNCiN4zonFU2CwGYAb2Yb3ZXF62V6vLuqtn82mepwCbKDyfz0UkM7nCE9qrBI78PrZds6139y4eusyZ1KAzLrfMMVL0oW19xfz4Rsau6TgXEWm7FomyLJvP5yEECT1q1nWdUjh1+p2enuptNVEWi4U6xBwfH19dXV1eXvZhuTAinp2dee+1LR0Ri2KSZQkRhU7W622UUJalBpyRo75tt9vRwOTSpWC/33P01lprKUbvXNL4fmFUrNAYc3p6qhpEs9ns6MiMS5Pm5xrdK7Xl/PRs39Taeh9COD4+btt2uVwqXqPZRJbmPnRhaJT23j98cKFjNcIBzJzn+YhNxBizLPMctY1dB60bHDUdGZ0wWgLkgRY9BtJ80FP8xhtvPHz4cL/fHx8fq/ZojPH27Vtt24qgfiYzq+pxjHG1WjGDAsr6pQqPamGSmeu6Pj8/j1G6rptO5xcXl7dev3dyMt/v94hG8W5CZGtVP+Fzn3vxmWfOp9NSOaeIslgstJikhrciUhSF3vGLiwslZYMFDfK99xK56fpZoSzC/X7feo8Iqlqg8IGIzI8WEnlf72zfoyaK/eng9BxMopOTk/1+zxyIaL/fz86nJycnukuqOoFGtm3bTorSe7/b7W7dulUURVXXIhJC1ORXxSQ1RWqHu9M0zXJZlaV56qmndN/U7aBtW0FQiLZpmtu3b1trm6YjItVyiTFquYiZVaRiXIFjjIrCKMo/ssIBoKqq/b4eZTcQ0Xtf17W+QSEYZm58r7sqIoDs8PGlYt08JpNJlvFms3EWHBmb57p2KddP3b10C05szwFUMrJy8+2gzN60Vdd1eskq3hVCSNOUOYx9PIpXj2U8HRyFm1VPo8iLsXGeBlEI3eMVdN5ut03T5HlubL/kAvV2muNXuDQZ8Q2JjC7RN5A1zrko0nZtV1dJOU2sU3rvdrnab3coEkLYr2oAUIViXay99wxinI0ExiYjX1JRXR8UUOvHTc9cBj5pkWaZcZeXl5YMEammStM0ZZ7oIgCR0RAyY2SEHs/x3k/LiUkS/au2DVdXV8+8/4UPf/jDu1/+zOVu8/Dhw/nRkXOu2lYxxul0qk/0er1WmF43faWZy2DgrATVMGhd6tZZVVWe5/rI9yXzPtQhBVmIaLfbRRBrrbv2M+jF3/Xb9fKHpB6YQ5Flx8fH1pi6avf7/cnJiS5N08msq6oH9x5W+23V1K/ffvPll1/tYvjtv/07v+FjH/vc5z7/xhtvaHNG0Fp+DBGEOW7227bpXJmned6y9zGGEAXUhsSpBjEAqLeetU4kMrNa5w0TkjlEYDxZHKVpylrUhxiFk8QCgDIeCCWEUJYlCosIGdpX2yQ3CSqaGTPXI9oxRhEe+KOkT6XudKOyqM7DsbKo015XCWstvIP/mfedjq0+42OEppFe14Wm6YqiqKpK4xBjevEi5Xw0Tad/O94UfXK1NnDIRM6yRJMFDQ+4N3pxur5p2VLrDZvNRuf8dDrVk2nb1gDudrsQwmw2Oz4+1hmumJheiG7TygFt23YymWjZSb0oNQTqYoCh+UkD+9VqdXR0JCKqztzr1QwFEjUwzPP8hRdeWD68WK1Wje8QcfiEno2hkbYGaYhYlqUa/GpkMirFj2GbBnLe+wB9BTHGyCForVf3dBWr0KVYROq61V1GxZTqugaHm80mxkgZZVkGHQTPVay63S4LE/0Oiwgj+3hE0GLvD866wOnzzEB2kAg4BPviKEprr1MUvXKVLzkM0IX6WHN45iMREBl4NLgfA3EYsqMR7OcDPjIMNYF4LQIAOgXHc3DOGYMAEDxH9mNmpduYB4kaM2HP2fGhXSwW3/qt3wqDCIsM+no4+Fqad2hFl74kS8iCKEIU1fMHDv1nrjFTIiRng4+SaOpliKwxQD1qq5iY6Fo+ND4o+dgYJABFCSN7BmFjrQpuGGdn8yPPEa3pgt9sN3me24HAC0piV9iLkECrK2StNUgiXYjCzIQYkREJBJh5cXJcTMr7V5fWGhPRt23kOGBnfXspDKjZiKjCAXvI2ke4VADaJoxobDaZMhKQNWOiS4dK1tdrBwylgoMlPmqSiShA1ysacJ+v6gKBCjEz9xMMEQnHhemRNMlaeCei35A6wgHcrHEYDNY9OHgDElkiEWnHJ2VM5sfTYH485dNaEsLEJc7Z6NuuaSElR4aEY4z73fZyebXf1YQ2Em+ruiQLaF74wAcZ0XdBDNrEBo4hBOr1Ug3wNdY55uRjtAcoKhwcQmAQay2pu7eDl196cXv5cJE7CxIBQpT7l8tt1foAntUVBxEwxuj79Y7Q9j3I1pJ2RRgAi2QtBSYIIXI0AqAlnhhV5cegJWsS5wiNZu/j5CFjHASIAYQskicUQLJJQpY7fni5ulptXF6uNruiKO7eu1fkhWrtpNadnZ6ScLNvXObEQhDmAAySOjcpCgsEIaZg53mS5WmZZ2nqbpweWUsoEH3wbRejhBBC4M6Hj3z0o9/7vd/37LPP3m9aa23XeuMsAjGITg+B0HcJcGT1AQQY0yQWGFa/OE6Mgzy8nw/dprrzcy9+4Hs+MU6JJz/x/t9AxPb1n/iV7ZuX06dPfn1//uE//G2HP27evHz9Ueb1Z/7rnziEm6dPHb/nt3ztF//bf/Hr+7p/A8fF5988dAssz+ZPfuL9794t8AN/4BOHP1YP183Vu9O7eBcntrl1OXumv1PF2eyZ3/zh1378XfHci7PZU594/+Erb/7si6NPYH8wv/ojv/Tqj/zSuzyf3/of/8Ah3Ly7t/pn/7u//9bPfNxhrYuxGqt6mufHKMvlUuMHzbqVESYiniMiuiy1SKoapFJ6mssVWa7iFTDECTDU9ruuU95fT8ABUHAH+wZRaZp6uVymiVssjlerlYYQVbU+OTstionGuN57Y1yM0r0DvZGMyfNcRXIRset8mmaa2CuVZppMJoV8zfvfj2DUZ0JznqZpgraPMPguioiGayMV93DflEHQWUQUTtXtRjfSt0RKGpuNDU8aJQxLfe/tpiePg0PGcKVjonWNfo4iFeO3aA4vEAkJqedikLPWOhEhQmsT3V/GvG4M6njgFysi1nXNeIFEFgZuNfZsBsUxcQwYDhMbhSH4USGsJEmSxI5jNUbneqgSi9IYdawie90WtUgcBinbkciGo2qz9j+Ow2uMRiYyFI+ZWdSVwPf5Dw8hcYwxcB+F6gcaYwRBK7I6P+maNN3DyuO36PWGzjdNowV+nRbjhY83CxFTZ71viXCxmOG2Or959tGPfrRq2ocPHxLZi4uLSV5oap0kibVus9l++csvhhDKSe6c8V3EwdQeER0hgBCZMeSGrtesG29czx4i0ebl0SRKP2G8m3qM0dHYlSkD/pjneYzCZCQG30VLFjxnNgWB4CGgJ+hNyxXsyJKkCsGSC5FhKBCAoSTJjDG7ffXiS6/NF9PT85PJpAAjm/t3Q+wKmmSqkgyQZg4N7Zr9rq4a9vksiQRiBGxsYufSxGWmXvNsMS3okR6j8UiSZLu9l2WZs0lTNUmSOmOds01sENHZhKNsNpst79ZrMQaydD+bzbqu61rfbfdCiA6Wy6Vyi4ZaQqKJHABYm8xmi+12rQF213XRQ9u2ux237SrLsslkQkMXCCI2TZMnadM0RVEogLXZb7MsK8pSRLQ8QQTeR2XyTqfT8/Pztm2vLi4Pr6tpmsvLy6OjI82WAUxZZoiSJ6lNkizLdrudwoUAtF3tYoT5vFdPbprG+zC2aPhuN5/PNfUty5KZu65TbQF9lLz3Dy4vEHGxWIwGX9rq23WdI7Pf78dcT6uGR0dHq9VK4Uh9YLMsOz09vXfv3ssvvzGdZnprFFYAAFWS1TXSWjLG6WpQVY0CK+o0qHilpuJFMQHA3W6nIMV0OlXlit3m8sGD9enpfETclAUZQmhJYtQpsW2apuuaxWLBTLPZTMECVV5WBNMYo6/rXrDZbAZgOhjjrq72Jyc0mUzu3bsnIrPZVMUZ8jxXVLeqqhs3bpTTCRrY7XbqZzWiLfqE6pak2SsAxchEvTqzJePSRBfJG6c3lEl3+9abeiF3795dLI7Vkq5tKoUXt9vtZrPr1y6RUalgOnWnp6fT6VRN9nSR39dVkiT6CdZa7VXP8xyx32t0pU2SJIIws2p2az6u0t5E5IOPg7SU0l1H6LkoCp1R+mJfsfBemfsuS1V+15qEDO+vHh8ta8K42WzU0wuBRMSSBQACnByVQKhKR0rG9N7rnfW9948BgAisd1AvXOfPgC4IAFtru67RET46OtJa4H6/H6mLddUmLrMmmc8STRB0X1OotKlrROShoqNgfV93d31K69tORzVJktQlQKhNpTFGJIOGLFiyRhDQmDBYC+y32+26TT5mE2tC53WCgZCIjAIsRGTRxoaVGWCt4QFR0aAry3PjvbZ2KSimQJUuQczMHVgkgSgis9kscPQxzqdT8XGal1mWCfoQe8cCIdRqO6Jp2zZ1xphEI5Dl6srevfv0e575+S98MbBkRdp1XdvVdggbdCfVN+us0D4bRKyq5vRU2/tos9nt91t97vSdWtjQFVgLSE3TWzgy827XJmkyPz5SrBAA3nzzzaIoynKqbO6rqyvluYcQSIAREBFiL6MaQ7DW3rx5c1KWP/ZjP7a8uLRI7D1GzpwN3j+4utw2FaCJBn/yp3/64cPLpmlCiFVVbTYbZk7SnIzZbHdt2wLRK6+9mqYpqreiUXk00HXUWkso3gdrLSH4EMgYIjuwK5EABUBitOTUYcKlCRizXq93u51LjDUGmOu6DqELIQghc2jrXheobb21DngUHOuyLGOktvVd1yiIqaCHPho6+NbazWajQKfOUmXdDuvS4ymbdd1KLmPpmgcrvzhw/BUjhsFmVmejDCSJMEjGX1xcaA8Z9j5qGAZHQehZKT16Oxb+u64j6ntoRuivbduuiyqWoI2SiLhebxfTiV6O1huqqtrtdtrPpMGqTmzvQ9u2KuSi+6CWarQoogvIsCGKFgt1imrEmOe5ZgcamppBQf7WrVvIMp/Pk7reVnu9Oq32jSxh3axVoLxtWwmyulzmeW4mEx5i13EkdZMNvqdgHh0dPby4P7wtmkEmJQq3PiTWLRaLONjGTKfTrutkgOZijLvdrms8xLCruOrg3Hk7Ak9wgAnqi2boi1fwTm+koesXR7Avxqh3HekR37NDcA0OMOgxth4xbkTtJyUJvSyGDDE0DRwTnSLK5FVuwpicQJ9GXjMEReUMD5kpw3RMXDZ2LI7p3x72NLhbjhjc+NsRaNZtQOelewe4eQyviYhZYrwWXB73pDFJCFGcMefnN/M8t6bPGPUNPdzMilADM0Rmi0bzRjrsigWFhoGIDFJk9hLTvCyns7qu1SpkqIH3uV/wHgZapc426AsMTjiYJNms19PppJxMuxiargUWa8wsy87Pz+/fesN7T8AsYTRmlAMEFt9GEeJBekaY0SILWWNUNCDGyEw2S61LWh+ttZrQ8NClBUOLzTiwY7aj14WImskr3KyJq947xSp1PMfpSgcMryg9v2k88zGRM+9gFWis4aHxQQanoLdPM+lrqloOSULoeKAsaSZJvQX8o5qqjx4xxk46ShPvfWSfJtPptNxu103X1SFoaI6GAKwB3DXte59733Pvf8GzMIAof5AQWCJH0ll4IOMAACqX3LeBuN5TVfsyqqYmIgRwKMDw4pc+H7taEqQkfXjx8N7lald3dQhok4RIIrD31pima9M0RQ0CEJgFUay1sfNIkCQpEQmjRYyIRJaiGDDeexE0SDFKlifaxyDIAtLGTsMsY4wPwTBHjFoSdEnRxegZdnW82u5ff/O+SdN93SrMZI2JMXS+IcBn3vPUdnXlLDmbGGcwsYwcQSaTosjzLEkTMrHpQufPj5I8Tdu2dgYNAkURkdh5a20Q7nxkxO/5g9/3rd/27U88/dRyuQJDbWSbOCFEIAMwarDEGA0hgGEJQ6VNNFvmyBqz6jsP6w3yqHXk5/7OTx3CzbOnTz7553/PT/4Hf4fDr6JKkZSZzR5P6xiP3d3V7U+/+MFfF9z8nt/6tc/+1o8cvnLn0y/u7q4OX3ntxz+zefNydvD5v+kv/v7XfuyXm9WvgkuSpXSa/zrO6qs82m3tykdUer/jr/3Rz/3dnwnvwu7vmW/90PlHnzt8hZwLv0HWiNXl9uqluyPcDAAf+r5v/fn/6z+uHvwqhQey9Mk/93vfUlH4/N/5Z78hZ/XrOJRE1natxgxdDBoDjAXCEEJRFF3dABCiGcQ8HYsgsgaRGvdXVXV0vHjqqacePHjAQ7fdpCg1M1ytVhqTjatrjLEoivV6fXR0pMHOer0+PlokSaLE5Pl8fn5+7mPQ3UpJCprZjiDaWw7dqs7OzoqiYJY8L0bQTfkOy9fvPfvsczfPbhKQhKhuQMoR0A0rMotINxxjWAIHEgRjVMB8LbRleg+9SKQRC9HQkWe0tM4CpNyoAIBjPb7HpoeITk/DDMZHYyvbCNpq8XWs9+s7+/ItASINohZsrVMxjRFcjr2XoBsTAN0rtaM8STJ1qNbA8xA2VaxYv24UxxhzDzpoDRkvOcbYtnXbXotriYgyiMdIXeeJ9oCDtpdaHFtr9dyU11aWpYhwCDJEgHwggjHGEjpVlAfkOYYQYud16ID7GEP7yllpd0ijICAiFpNSQSudnwp7jfuFDCJyRGR66B+cc5EZQjCDOioPjYPee5ZIw/bhDEmWHB8v3vP0U3Vdq49lcElZlg/uX9y/f5+ZDbn9fn/v3r2yzD/04Q8QUYhhDLeYtbwhGup475H6ZGEc8zHDFBGOjzRsxRjJmK7t+X06zWLPKO/DTkQ0zip30jkCkIere6Fqdg+Xy8vVNC/m0xkDVl0rviO04oPNsjRJ7q9Xm806zSfW2jTNfAwiYoCa6MFQMZm1bb1c7TqO50+epUW6rzdCaFK32+zAQNd1LnUmcT6GGKNxFg3Grqur1scODRRUlLN8s90mSXJM17r5h0dZ5jeys6qu9bEKnS8nRV3XzqWr1YqZ0zRN05yZ5/N2v49EFoBEcDKZ6Xyu6/3lxRJQrLWHqoOIpm39ZNLnGmpvxRwMJu973/u2222SpeoyZ4xp6s4lRlO+0PbTez6fW2tPT0+LokjSdHwQsiwrikx1kNu2vXPnTh/uGqMosNoYqn2Wal8CgP6hCO8329XlklyvF4eMWZZ2XWeMQzQPHlw0TWMMGmM0Ayeydd2qZn3XBe3W0GSEmTebzdHRUdhtAUAhCQBQ+yn9925XWeuKwmlrApHVYp6WiMYVDxFVZHk+L0Zt6DFz1KxNEQTdZXa73Xa7VQowADx8+FAlp5umaVvfNA0A6TDq4ty27Ww2K4piMtnpUuacU74bIk4mE+Wwn54qSZCyLEtTx8xd17/59ddf15btUczaGKOFVSWIqUSyc4qMEzPE2AFA08WTs0Lt8qy1qiiil6ZMOr19N2/eFMEHDx6Mm8iAdHiF0buum0wm2v7snNvtdl3XleVUudJnZ2e7zVbR6qqpmcNsNmuapgVgZtVaBaDJZBJi1EoAIqZpenp6CgCXl5e6L8zmEwVcVFTaGFPXtcJMOtTKK9S/TZLEYaqsc8WjdZoRkYRonVOkO0YB6KmLeheMMbvdToFskZ5eev/+fRiKzdvNXtnHbdfM38F3AREUC3OO8zwPno0xBFK3jWYcwtI1raZsoy4KhwgsBCjqXmDtcrksyxIFUpcIwoBL9E0wdd0q0V6rQbq3LpdLYTw/P48xZllUjrb3fjKZTCYT3do2mw0iZmkaYtRHRgsJ48YXBnc7RfYV7hcEowRqABDBwUtNEARQOLKwMQhgIAZmABZkMcYYS9Za3/VAW9u2ZVkqQy7G2PjOJo4JQxestfqxMcaiLNWkVM9WuwpGOEgLEhFi4pwxGEIwCHmeRx8iRBGp91XuEmOMRNbdWQZ3B2ZmRjVPW61WlCW7qrL7Rnc6a5KqqQQYDIwQPwgpvqZCDQM6ZFQQY6Qket/HmWdnZzCgbCGE3W6vd0e5sXmel2XpvbTs0RpdAwFACbz64d57VXXYXK0mk6kPQYTTNEVjtDh0cXFxND9m5tV6vby8+vKXv/zkzSfmZZmnWZElelaYuqrp/tZ/+V+mWfH8888vFseBebnboTHWJZ7jvq5efuXVoihAOE3T9W6LisQZg0htq9q+En1HBpIkaRofQkzTNPiAJGRt1wXnXF23lsxzz773Yx/5hvXlclKUvmmjhOl8wsxZVvreaxGY2SUGbRKYbWLzWe5DzUO/uFbgelTQqPwdhsBElhmsTYKW3KtKl0pr7XK5VK18DcB099lsNtV+/9hnM01TxLqu6/l8rjYqKpWjhR+9fc6509MbxuB6uxmV6HVptdaqy+7x8bHqF/sulmXpfeDoFf3QNoIRnIQesRHvI/VS1FqrqBSoTRLebuN02je1VFV148bp6dGxPqr6vSrZpM0EWu88np8+/fTTr7zySl3XNklpeHAO9zi9ruVyqXmNiJyfn+vCrpVUVerAnjfZg+/KpKnr/YMHD+bzuc5tLZyMFS/dCkdjPBjsxPTFNvQ0nRFY1zEB8L7rgdA0dVmWVFUFAHleCg4d2MrjDt6SGTYszvM8YDRsekxMtWqJyimVREWY2RCCQBwHd4wj9Qzi0Dk4piLe9w1Q40ZuB7URwN4YIR60KIa2M0RCPcN0/JYQIzHo0z4GH4hYaIfFgBrj4IINQ/Dt0iFp8WE8kyHGRcReBqT/q0EBME1T69SMWPoSHPbTLgwtgaOEiH5pZM9sgZmGUpgOzphKsTwe8RnPBwAEkd7G10ZEBhAEAfG+y5O8nEyKyTTUW+Y+fRIGBgZROz8B6gnRIkIMYPoWm17/GYEEjDUojIjOpnXdFmk+mcw89Yz90tnDcbZZNk53GXhAivITWYnhC1/4vPpFuDTJirIoCu+DmydPPPXkv/pZb5gTa32H3MPrOBizH27n/dH/SEIGEHVIEIQAAVgIqPF+Wkxmi+OqaWu/S7NMdQ9CCBzHpA7xgCwz5jkj1Ku3xhrLg17KGHH2yL6Sjg84QcxMlsLQ8XpYD9By2WMP33n9rfbp6NzQVzQcJCLtazicD4cHAAwrOx0O0VuOGIWk//PQdWqYoPNZAJqm7boAAE3TuCzfN83R6dl3/65/N0mzfRuMSxiQQQahaYTIXWTrRqtJRERCUvqAsdR1PRtOKSGJdTF0BIgG33jtFV9VqTUhdqtVfblc7fZ11bRgUyALAtZSZBEQNORjsAiChpCsRWaQEK2jGIWZY5AkMWCsQyKyuU3btmVGi1jVNSI2dUvOIpL3XgCscy4xzCzILrXcNG0bIgiS9W17sdzsmq724WpbpWUZGNDwcrk8Oz1++OBetd8B8Dd948dPj49++id/4vRkYS0BMJCQNTZ1RIQSKXTRewx8PJkkEKZ5UiQGwXCv7wGIpvFBgD70kY986jd/+8e/5RMB8N7VSoyBKGlqG9+JynF03VjhBxZVriHtqwhaM9eGxLH4cc38UvhgnDZ6vPFTX3gLYvuRP/pbfvI/+DvvNDnHI50VyeQRThYNPdGHxxf/3j//4B/45K/6aW89iD78Bz+VHz+ShH/x7/3MW95VPdzc+ZcvHp78+cfeO33mXclTZKePZvhE/wZsBpFo++bF8dc8dX0aR5Nv+vd/x8/+1R/+yn9os+R3/ud/Eg/MRZn53s+/bLOke2fE+b3f+fXPfOqDlJif/6Ef2d1efoXP5y688dNffPa3XeP7x1/zxOyZk18VbgaAj/zR33r44/bNyzd+6gu/6l/9azratvVFGFEVM7AbdBdWwh0iQgToeaw4vpmG1FdENOcEwtdff52ZNQJWkpcadMxmM8XpVOG0qhrdMpRqp+GmkumIKM/zmzdvbjabpmt1N9nv95pLKGxd5MVjLydyT78yxhAZRQTKsnziiSdCCJeXl23TpNYZct5HZsgyN2wWDIBN01R1TQMXWIVu8aCqqgfAoMF8ALCOuyH0W0wYXZphKCor8qhNKwBDixAiqrPBQZPNuF3GvjdFmQGeyPKgPmnMI+V8IsKDwi0agygIfYQzxlG6vWrMppwpBUGkB82vTYNHDHf8FiIaIP04opPM15rIGlgPjepRNSX1z0cWnlJXtLtTLyQOdlUiwhGNJT0HhcX1e+Ng8yADTVuG64IDMTdtQA4xMLNu1nrJRITSl5x7+0oQiNEYVB7ZGHQ1Tet98L6r61rPgZmTtOewaBFFaZ5FUQCw0vrAmKqq4uCxzoMjsY5b0zXqLklEi8Xs677ua40xv/Irv+Kb+vbq6vbtWxKhKArCfgzv338Qo8/y5MaNU+d6Wrcm5YgI4LXjO01TQlA2kD5lPKirK5s1xKA5/zgDVVJrfF6CcBBGllGgQ+9UjFHR8E1T77cVBq6qpmpqYM6y4nhxBAAJULtvvGBwZt91V1eXleeysEWaMUKZZ4Fj13WL4yM9mazI27bebOtw90ExL/IyefrJJ6t6v7x/0YWWkTNIHCR6j7JkQtaQUGxDCF1iUxLYb7ZHx4uu6/zu8dFg07SQ9Y2hjkxXN1e+Z1wWxQQHCeDZbPbgwYPJJGRZpusJDZ3ymnfM5/N9tWvbdj5bVFXlfSTqybzMnKZ9b7gIcoDdbrc4PtK5sVgsokiInXIbvffBe53Gm81mOp2miQ0hPHjwQJdHpZEyc1HkujFZazOXtG2rLL/pdHr37l0NY4h6hQcAGHo46ul0IiJNVSmg7Mit12uNZxRjUhoXgJydnY+GgUoVWq1WZZmPHH/NR/b7/WI6W++2Ckzo86uYKQ50H2utRtRqyqojTEQiUQnOYfAEs9YeHx/HGBUPVVRCWdVKrAOAGCXLsuVyqZNcG/yVCxmjKNKkbRCK6ClwqbjDbDaTwQlmdERUVu/XvPB+Brlz506SWBVu9r5NknS9Xj98+FC94Eapvd1uBwD7fZUk7vj4+OjoqNrt9/t9npcKx+gTdHp6GjiqFcFisVAsTxFJRRCYoypyVFWFaBS2hoFIpM+sTh79TB1DsiZJEu9jCGHX7OLl5cOHDzlEhYCn81kIYbNdgZDS7vRZTtPcOtdnBwPpSoECBYO0pVrLDKrGsNvtdDYqiKxwhtJB0jTdbrdt8CEEpQzrkCZJEtqQloX3Ps9TtSwbtYMMuSwtfGh1GU+SJIROH2FVcL68vEzzUrVluq7LEuuSr8S60GFU9jQAoDCwONMXv3XeogCHaK0NnVc0WXF5fXzWa8ViUj1/NNS2LRE4l1ZVo6v6mIoS0d27d+u6feLmE8qNBQBt8Nfpulwu9ebqV6RZZoYyZ1+hHzj7IP30NtYorbssy8Axxth0nc6BIssIsWmaKFxOp13wRFROp6HtkgwTqhbTWVVVIKIPCBgrIoFj6awgEJLS+4ioqattXRXlVK3eiGisZ+g+q7UrfWZ1zmi6rffXGOOcscb20ywvuO70k7UdFgVkEAWNkb33eeoCRzDUxQANbx/cf+PiYlft8zw31rpgEK0qRAavTTlRXQoV1pee5WYV2VSpEw0DQujMgawlIqrcRNM0iKaqGhHQKeF9G2NEBL0ERfZDYF0c8jzvuk7l8uu6QqSuaVKXEGAEUje8zW7rnPNtZ61DYza7bdPUWZYlxjb13iauKIqry+1yt0m9t3furveVtTYi7Hbb6XTa1vWDBw+64F0MaZp2IIioyqsxRhBS9XAUBFWVDG2SWi/R+woArJPCpUjUNT7GmBp7fno+m0yWd+/3q0SWIUr0wVrrjCWLA5g2UE57xkfBErz30Qdyxhmrgdl+twMAxVh7Z7zgR7wrsS4EFmHVCx7K2EZdl5Ik0UXp7YeGhapms9/vq6pSPFSxfq1jDXlz1K1B1+rJZKIdMACgzBX9VVN3ve4rmHKSaXtBmqYGcN/WNBBetfsEBh9CLbrEGBeLxcXFxdGMFifHqt1nrVUYl4h079DkRcPFtm2vrq6yLLu8vNQpPZ3OIfYOqCo3oQ9IkiSMoOvVbleNNdQ46JXFGMclHQ4o3vrnV1dXbRudq9Ii1weNiOZHiyRJVIF6Op3udjsd/LquHRljjCJXnqO1NkmsqmmrF672iChQo5EJDITlum2897PZTDdoHf0ueJSeeSkine9yN9PKnI8BEImoLMo0z7NNZgGZh4cce9Y6i5gxH9CwewxAdcVMrMXr+y2ICMjjENCgQDeWYQ2QSxK0/Z/oDuS9h3itTzdGn3zAWX77IYPcYRSFCIW5N/E7zBOUMGJHU2wJAAkiEvVdmSF6Myj2Qq+2YTSUwQHjttZABAQIMWrKMcLl73R64x6G2EOx8GhmCABASEPeZ1wRRTRQ4Agucc67LmqQjoiCijJrdgRCrD2w1zIOB0MTR/SKGRaLozQrgmAIkZnBQBgc2DXjHZ6xazKynlLsvC6yt27d0tBkcXzygQ98gH2oqzbJiiTPbEBkH2NE68ZLhgNXxnEyjDmkfrUBlKFdlBKLAEmS1C2fnJ1OZvPVvk7TNFEc1roYo0BERMPXpn/jeI5MmWGLiogYJAjhkI6qNvW1lR8imoHeyxyQJbQ8FirHHLWvLL2TrlDo36lZjQbNIgeCpIgakejNHh8TOPAV5AOJxvgOTFXFGyAGH3r77Bh9jDECAqA1iaAJ3AIQkokMH/+mb/noxz/ehhiFUQQN0QFLTuOGGGGcACJiTd/NEQ844FoBs46InTXOiv/S5z67urrMUbwPXddFpKptWx/LNBFCCX1vRAQGTdEZPXvNH5TKbh1Za9vGm8S0IbZNDYDFNKk7EEiKadm2dQp2vd0AgFN5HGOd024aCCHkedp1nU1SZ8FY13RhvdvdeXBRexbj0OZeiIWJ6M0333QGP/Ut37hYLM5unDRN/a9+9p9vN1dH0wlzSKyJMbD3eWKAgwFMrBUweZEfHS1SFzkCGet9bJtGgPb7vWeZzmbf+d3f/Zt+87eX88W6rtkmHrCt64wsI3RdB4gq+dQ/RwKkKAB7Y3RJsTg45+AgS80gIkIDZKBElfYAVK3ur3zVHs6Kyc3jP/nF//MPvfCnvsL6c/aRZ773h//CW9RgnviW97/xz96KM975hZfZB3KPb9R4p+Pb/7ff+7H/+XcfvhK7cOcXXn77O+/+3Msf/J5rOJsM/Xu//Nf/1tf/mYefvfUVPv9/+q/+Sjp9BOB74Xd+7Cf/4n/zazrJX8dx+flbn/7r//1v+49/IDu6Bru//T/6/hf/P//y8ou3v8IffuwHv+v0a585fGX1xsWP/C//Zrd5R1r0B773k7/tL/+Pj164CVGe/W0f+eE/9Dc2ty6+wlfs715xZDJD1dPQH/uXf+0//8ifufz8VxrJH/zS/2nyxOLwFb9vq/urr/An/1oPNP2GqPlnkF5dQeMkzaYQ8ej0pNlXTdOoS41uHMZaTcNooK3Vdb1er8uyJGtCjLGpLZnNZtO27fHxcVFkZVmuNuu6rpPExti7P+ve5xJrLAFLjFEpV8bZum2SJFH2nOKk6/VaREo5f/zlYK/Osd1umWU+n9+4cWO73V5eXipkAz4Q0aCvZcZSuhAaRDJGFw0RARGDFKGvNo2gqogAMg+kZjjoGYShs1V/o6uKHvojXOt3XePCdGByO/5jDH9tj70+sm2N+KxGwBpbj9gxqFQaUhBmCd73HWww4LMj13iMzfrNOnRaY7DWAsSR4IyIum/GGDWr0SvSPVcG/FeXUIXDtBqtjBtNyPFAY4QHQrSewAglaEyrPn7qGKPhHwwOgcwMGsEOqiMjR7sfwBhjjF3wijn6GHzX+3pZ6hd5QLDWgvT5eTdgAYgoAsMVacRyTVZg24flOuxoriMfZkaAMEh2KjtyuNGGSEdYyDhESJw5Opp//dd/eLtdv/76LaXQ0rWFjhEJzPHy8uqVl18zxiwWszRNmNkQYYIkqg/WKaaWpP3X+aE9Dg6UzQBApepA+vOJQ+e1Bkt9wKa2SwfxRgisMrVgkzxJTUqhaSGxy/02ilhLWZI+c35eVdWm2u0vLsWZJ548L6dTCtl6cxU7jygusWk6YRYiIrRENJ8drXfLylfVvnapjQLbdl8eTTModvVaDHToyVA+LXzbEtu2bafl5OjpZ3wM+/3Wt8GlljC+E7NkdbW53yyn06lLk91u13WhqjaKXWo6+vDhwyzL9vtaBNM0Xy5XaZpaa3Rh0SdDCcXCYMjqsCjZomn6mkQIwfuWiKwlBrm6urp9927bwmyWPPHEE4KsT2VZlqMboU7jqqouL/dt23ZdSFN3cnIihJeXl6qm0jRdCCEx1mRG/0QRh8VsfnV1VZTlqH+qi2FV1c5Z5YvFaq8NZwh4fn4+JsbK1dUserVajbiD6v8WRSGiD364vLxUBZW2bVerlYJ3WqfhoQGUiBbzhT4RprcYDWMDsn4noklTm2Wi1F0/iGxaa/M814ROmcgKUCLifD6/uLiQgfZx48aN8/Pz3W6nsKMSKhXABQDVmx4JqpHZECmoqhDVSGpbrVZJlrZtG0I3LN04ZkMy9FCOPF8AmEzKtm3v379fZLkisCNMzMx5nhZF0XSt8qzHOhYMJLU8z43Boihms8Ubb7yxXi+1qV+bQo6OjmDABXQx1EptWU7RUFmWN25kq9VquVwVWdq2bZakRMQgDx8+FBHjbNd1q9Xu6mp3fDzNskJzdk3eNUtSIrw98HZq9z09WSEMGBIi9ZCcz+eKMQ1rfl9W1FvTE9gFkiTT2TXa6NV1rR+YZ6W2ZQDyqOl8eXmpaicxxtVqj6ZTVrVm9PgOFjw+eH1IVetjPjuy1u7Wq6qq9DwVdtErVS6hujsCQGKdmio0TaOr7wgOdE1LhsabpR30xhgQVRFpp9PpyfGZErQRUR9bdR7TDU5LUNPpdBSF0P1UYSwtaavwsS7CUYLOfO89WSMiCoR5H5u6K/I8z8sutF3wI1BjkSDyM0898eQT5/fvPwyhy1xi5w6AtvudoYP6JQIRrTebXVvZPNVP1i1MR6ZHcobIZGRhH87kIdUlCbzdbs9OTj/84Q/dfu2NZrMLwTjnTEka+FGPQfXeaESUuNQ4u2vq5VVVgxhynhkZsrQIvg3QtwvTIAg2hkDDvPKqvqKrirIB9AnVNUGzVGOMqpRo/5lejtqKGmN826mggUYRWZaplzUR7Xa7+WR6dHSkV6qcVo2OmMNY8jk6OW6allJsuq5u20jASbr37ZtvvPHUU09iYp945um6bq92m5aDerg9XC23+10IoY0+n5QM4DmCMWSNGfrjaWDOEaq8CQKA7yKanmaROBQm52wIIfjgxUQfri6XeZY1XKOVardvuzZPUmUiHx8fV41XOzcENDZZbpcPlw9Ob5xkeeKcQ76e2/p86bOs9PwueF0QdDchY1AgBDDGhcBKHNblSEM75x5fCtKplySJagRrwKayRdpwoxvHcrlkDsenJyMOM1Aqg5YMtetCI1Ut9UUOy8vVZFpoqYCQHJk2eB4cBdq2BcI0z5zpuYOLxeLy8vJoNv/mb/7mL7304hgAM/Nmv0utU5A6Draok8mEHCnIyyzL5VK3IUHyvptMJu973/v2+/3FxUWP0hIimvn8SEvRerH7/R4RZ7NZGMw5cABg9dC4cbFYiNrJ9uX/vlNQm42arpWNFlF6VIdhQPwQiqKwttenooGXY61TJaKaax9axxkAZFlWt40BAwBVdY2J+8EdNPjeqj1I2NU7rQrYxIUmAEhZlsYlbdv2/r/joXIrWijWzU+3qx4Haf2YPyBiYFZVCuYIfI3N6dbYs55Fpe56+7gx3A+DASgiaiSqHxuHihNdw4LXbloioiI7Y1CeGOXj0JgvxdjTqDVdtMbwIDZtrQ3CfMCOGUjNLBK7Lmqv1rhWioh1Ng4UEhx4tUDIwpEfrzsjJEIigqPtJh84wguC9F9NRCRgDYXpdDopZ/V6NcZt0JOYVOZapO8UQVJKESIiGzDKXRVU08BoQWTggh2dHHuObeixewuAop4rMLL9zSCorVMchJxzQTwAfd3Xff1uty2Kwjg7Pzr2PgIxg2RFfnx8vHpwR/Wkgii1+RGNZnibPZEy3/u3sYzUqr7YYGg2m1uXuQxSY1gCM1syhsjHAACAECVAvAZPcSgJIKJIHFJTEMCxqiHCciCvrLdPF0rvWxFJTK+/HgcnIhzIUxavXVbfen+5j97MoKuoq4AZnDq0AA5D5X8cEz1PfgvPXTlBj11zJUYfBCV0/uHF/RC6KDkjeO+bKPu6retWYmQkfVq/6Zs/wSKbXRUFSPpGdB0xkl67brw74yUwqmnGtXYP9qwxsNYmwtvl8sH9uzF0bKFr233d1E0XxTiXIqpSB0dg1jgGTPCMtocb2AcRSTNXVVVTdzZN1rt924Wv//g3ffSjH3t4cRE8amildePdfvOjP/qjn//sZ5WY0/o2scRdTJKUgxRZ2QYkg7u6ufPgYdMGdFmamF3tDRmDFsBHHxJnbr/5WpHQ2dH8zhuvvPTlF/fbdeZMvd/MJ6WzmOY5IswXU4NEAs7YNLEWyXvvG2+T5Gq5igxJls/mixc++OFiMvv6b/joe194fzaZNt57NCJQdR6d6+o2tA1oszrZnh83tDMbRObe64CZCRG0tdMlRORjYEXTnEOyEofA/VGY+Gf+0n/7u/5v/75JrhHho/fd/PPrv/3Df+RvvPbjnwnNI9H05KnjT/6Z3/Utf/b3vl15/P4vvvr2ObZ66d6r/+Qz7/vuj739V485iG585Kl/52/9L5785hfg0Y9//Sc+s3rp/tv/4hf/5o9+85/+dyZPHF2/hPgnfuVv/Nx/8o8+/Z/+o92bj1B6bZY8+x0f+Z6/82eT2VuL3rd/9svv6gy/6uMz/9VPPvOtH3z/7/2WdDgHmyf/k5/5y//fP/Z/eeOffu7tMiDF2ewb/9R3f9v/5vsPX4wh/sgf/6F3wpqz48mH/sAnvvuH/iSpipHFpz/1wT/2i3/tb3/7f7h65d5bbuh4fP7v/vQn//zvWTx/gHsi/uBn/8av/M0f/4X/4sfu/9KrfECjnj1z/Px3f+y7/tM/7opHOkljF376L/39dzcS/1qOrg2KiShvKLSdiFCSpNYRUWqdRjzWWkboYq+zkec5sijgpemWVgR1p1PiCQAwc1aUImIMzmaTEMJut2uqOktTRdmMcd77Mi9031egJ8ZojHnzzu0e60kcGmIRmyYRRNvc9lw+9nKCjyGExWKh8UyaZiMvT9FzTPj555+fzWYiOJvNnE12+60QSGRlF2qUxszG4BhMjp+v+aH+Wx6t4MqBQ6AuP4e/Gj5gXO0B4NpcSwMwPmBJU2/6541J4G1l0XG30i1MlTacc2bo+ho3dyIzBMzX5sB2EF7rukaDPe3ZHMH3IeC5Jm5bq6LefsRKzIFGswxyIohIBCF0TRMULx535PHMx8gtDNLPoxpGD2cg64saA2hyMsLifRPucAt0yl2fA6L3vvWdjqfnqGIaIsLOJdYJDnYdAnDgaz1cOI/Bg16dbhYhBO9Fffb6Gxp5s9k4189zHm60xjN9LGdMFzoGrXyLAFsiJoyhNQQf/MD7E+u+9KUXQwgRwJoEALrgE2vJ2M1mfevWrSxPlsvyxo3ToijSNEEwzJ5GY67QkrnmeWnDsh0cgcaYOcaoHrkM5MjAADdH6IN2sk5L1BruAkDo4lDjN9ZaIEyKPJtPG99t6v29B/efODnLkvR0Os/TdL3fsKXp8VE5ne6v/N31liyKBRGjcl5FXqqh6GQymS+mm9163+2rbfPGq7elYBFJMpNmGVgEYBHZN7UFQwgahyidKs9zl7o21oiYZ4/XbgYEBumCdy615LwEY3pLOiVJaYB3dXWljL+x6xwxAWDvY5LkzvW0XEVAQghZViBiHBrMm6ZhDmVZqn6icXaWlF3XJYnbVltmVp9SlVaw1u52uyRJTk5OFAZVjQJE9Bx9609OTph5s9nUddt13Xwy1XiVQ9ys1g9id3p6WpRZkafbzX67352cnOR5vtvtbtw40yerbdvUOhF5+PAhRFApIe+9prVZlqE1iNj4DiLrs6Y3t+u6pqlgUDzQHHiEFNVj01pLzmV53omqbeycMzw0tfgDDQpFOngQgB5WR6P9BpeXlzdu3FDGq04/Tcun0+lyubx7dzmbpaoQXdf1fr+HkZYBANALIusZKlCrfOSHD1bTaeG9X15dlWVZFoUC003TNE1VTEoR6bo4drmNfbHjo0FEWmlQHd711Wq5XHVdd3x8PALixpiyzKuq2m63UVhhR4UUAUC53g8fPgSA4+PjzWb34MGF3mtjzHQ6VWkFXRw0Xz5YAznLMrLm1q1bOkVns0mim2+acohN0yjHKDdkjCmKRMsSzokAKGFT5apGHKSnpUM0xmx3nbYQhUG4X2fFuDcxc4xyefnQOYPWjKtxjNEANk1zsWzOzvru0rquVfBkOp0eHR3p3qrjGWJveh+j1HWrF1iW5dkZ7utaYwwe3Mke++wyc103inVMJglL6Dr23pdl2fquvrgY5f5t0hsV6j1VKlK/oZA5Pz8XOWiXYTaIKm2hI8wRlNuuWZf+T5uiAEBnr4qrjlUWIlKRd/1Yhc61VDmWVPG6P0msTVR+B4N3zrkkCYENsBBpJWm5arfbbVEUxmLjGydYX62ef/rp1CWJdXmSdmXZ+hAFjtLjuq4jc9u2bdfZNBEE59wknYHtufM6LLrp6I91XZ+cnBDR5eWlVmpVqBoid75HkASILGhDwJe//OV2VxU2IaK6rlTQg5mbru1HmAwzt43vgs/y8tb9+zvf1QzR2qycAMBmta6bvXVOF4FBULiHAnUY0zTVmEoFdjebjT7mVbUbnSoVDtZPyPN8LBG1bScSnaOR36AMbudSXYVijLvdLrRdyHo4hUNkslW1BwCJwVoVzjLKRhcBRlTYtO263X7PzEeni7ppVODIJmlVVZ33ddPsdrvO+7brrDFCiAYtWudcG8N43621RBB7i0UE3S8AmIVIAAjIIJqu8TEKogBQmZapS7q68W1nkTBNtZSVpul0OsmStOtaIAw9M6+vB2dZocCrQgTM7GNE6awlMpaZ+8IMgnBvyYaIGhFlWWYBzNC5O/7DORdCHL2L3nKkaTLGYDxIIWnAgH19OgxhSaLI7GQyMQNjPcuyEEIIqNG1VgcVSuYY267Gfb9Bd76XHtLryvOcrNGl3ntviELovG+JYH40v3fvzqjyrOGiLulFmpVluVwu9/v9U089RY7UDMY5p+JIehqJscy2aTpr9zrrmqbLskyol7A7Pj5WfRXdvplZacg8tFmLCBGO1UoAGNT5BK1hBmOMeofu93ttuzFI+oFJksxms65udF8DQ0VRqFOifrsSsVWtaL/fa8ak3S1lWe6qvQiOgCEN1BP9sa0bY4yyvLllRHRp0rRtTkXn23rbtDE+jc9bNEYpkKyNnITKZsGBmKC3kJkVVdRDM5PRWE9f1NUfBxwdenC5V2ruuiaCaN3eDz4SCqHCUJSIMRKiCMigxA+DxyANmh5haC0RAAGou9YYk1rVeVQySJ8wXDdk2R5PHGuqRBRir3afpg6xD+LhACfVRE01IiwRDFzgKAx9evCVCM4CcaR4XCcYeK2t0I+YQQtUluVisVjev63Ff2sto8QYCQRRUMdem0mlV9fQTkkiQgFmHvtwNatBa46PTsk4HG6iNUOnauQQO72UEPoziTFyBEsQAhNacpQk8/PzG11QKUtI07RjEaLJbFGU03udt8JpmoY2jMntmAPjkOCOWSsN4Y4IoKoeExpjUED31MXxKREhWe87lkCAra+NcSNMz8wg1zjpOG00B1b8AhHZB7jmdsF4YjBIDTKzSNTAjhIYMQv9ZH0D9RpPj++gRINjfe8Qbj7MzDWfN8ZoAWM4h54CgIgskYDGR/fxXyQAABaJmbfbrSA0Xber9rtqX3dx30RrE8DQhrhv6qeeee7pp5+OAkBIaHCof8KoMcLMzEgARMoJt84ZayVoMk9xsAbVS0MgRJGmfekLn6u369Q65jYKRMGmiwCUqJ0XM6GoRjNiL/1vkQwZgr7Rodo3XRe21R7ItD5+3x/+gd//vd+XF9M3794RchpsGSRmPpov3vs1H/qH/+D//XM/++n1rsqyLElzAL+v/aTItrt2H2Cz21ZV0wUG46JIiGiMAyG103QGY2jmRVltVz/3L/5pU1dEUGa5NTCdT2ZlOZtO22o/KXMAQGFjDAdf7ao0TZ1NhdI79+75wB//pk98/ce/8b3Pv+/45KyLYTafL7frXV2jS4QlBE6StL/FQho3cwQQcaZnbeAAdgRmYUQwzCAcYoyR4hh8M3MMwugJDT+useP+L7/6y//3H/voH//OQ8Q5meXf+8N/8Uv/3c/+wn/2o50qCxMdP3f2rf/h9598zZP/P+7+PNq2NLkLAyPiG/Zwpju+93J4WVVZlcoqUSqpkAqkQkIgBDIgaCGQAJtlwAsbhBm8ADdNu+kG415ey900NIZFN2ZsDIJujAExSM0giZKM0IiKKilrzqqXb77TmfbwDRH9R+y9782ql6IA09POtXK9d9895+yz97fji/jFL36/Z7pcTsTYN/3Q0o//6f9nfbSA+bueuQhP3vu2WykDgPH25W/6ig/8jl9WHH4+9PbwRz7943/6e8jSFypKc+If+qN/5+f/oV97U9kDEX/O7/kVL3/z+3/wv/x/XH76qUpk+Hn5/t/2Te/+1p+rk2Kf/yw88+T+HRypC9/9O/7s237he4sbkHd9NP81f+t/df7a/U9/z098/G/9SGgDER284/TVb/3qL5Qiac+2H/1rH/rMP/nwW32Erf0v+G9+E5k3fc36ePmNf/w3/7Vf8off6lWc+Ef+27//9X/k13/elfzy3/qNX/5bv/Heh376U9/zE/d/8GPz5w+feVYAkEP8yT/3vU8+/Nl/5UX4d3dkYLQOURhhEA005gYcOfCVPve5zwGAjINQqQ84SgwDgOqyKQFKzamU78CccgrzWbVarQRAbZ3V5Tj2wTlnEDJgNauZOca43W61Mr+4utTtI+TEMeqfNbD7qjw4OLBb98yvY51R7ULFLuuaYgzMuSh8XVdXV1e1FqdAdV0jmL7v09jSiznFOLTXleMbb7irwdimVfsBuDYZfpOy84jATpIawzE1GqdTxbH7eHOfuvkLekw/wTdLUSEK85Dray2RUnDZGOuneGWRbiLCWleIiFKEcGQoX/fyrRXI6kIMA55+jWvnHBW50002pYQ4RFQ7SkgPhh8iSiLLozui1uQ80iSnr6ZXRvGRqWKRkVGuZeGIhl+76d7cpicgG8bceKJQxBhDTpCH75JzToBohvdRogNKBrgGkacXDrszYkqDpr9BlISRB+mPKNA0TVE4LZPgRlOfR+MdRAQga01VUQih63uA7Ax5S5zo9u1TRffu33/Y98FYTJGLosg5dm0QgbbtP/2p1wXy3bt33/3ud2tN5XyZc0wpAAAgSOZ239R17ZxT7WAeJUemdTsg9ZpT0UCESSklmbJ3A+PvK+eoa/qB5EGQcwRBW7mjW0fG2d3F1a5t923rgMraHC8Ws6rcx77dtY+vNrmn0OzZwNIZMDZBLJxzZCSzMxYTl9ZVx7e71F2sLyVnidKG1pH1swooN6FFFOd8aDtByCQpJWUazmaztm0tOV8Veffsqvjw6DAv3Xa73+y2KquORIASQtCaTYFCbW5dXl6enJzM5/Ptdp1zVC7ncjmfz5e6utbrNRGVZZ1z1tQ3jH5oKUmMEVGI8PT0WMFQ51zTd0Sk5XEIQXUer/qgMxlE5Jwpy3IgQBjy3muPzTlX13NJmZnX6/XVxcZ7472fzWcqURpCAOSD1UIrKX3Vdrvte1LWTt91iMgy6A4pIrZarXxVTtXW1L9hTswZgJumBQDvB9BEgRsdcr8ZOhBxaFFkXK1W3pfr9XaKM5MuhAY05Y5pGq/gWt+3+31SJGW9XgMok2tQx7bWvvvd73DOPXj8yNEgSjNSuUvdTRTRSyktl0tFVxVSefmdd0MI2+22aaKOeGslr6tXUXVEFCHnhgnrifStfZrdOH4uIvvtrqqql16a21EY0FqnTF5racDTYejG6WJgZiWDG2Oaprm6utLroCRZvbMqHTDhPorUaOgry7LpWuV9w6j/O5ElGUQ7E6p6sVqtVoulXkbdpxVJ1J1IiTUigiS6FzdNc7A6UiBGlcE55dIXKaV8w4RWg54gWiBjwXvvyOjpVVXFfK5b9mBeB+BdSWjrWbmH/QTIxjTgEkSkAV7voC6k7X4AdIClD2+aDry5Ieq3Xi6X1npE3G53RVmICIdAREBonAXCzWZzddU6B88/fyeFwSKPAJ8+fbo6PFK2rDYkFNYMo7+uUrhoEHsk54rMPSJO2jW65rWhnsfBF02K6rpWqwll9Hdd1/f9YrE4Ojo6Ozu7uLjQnyuOhmMLRwBiyH1sAKB0Pqe03W5TSn3srDHMHPZ92HeUoRR41zteJgDJceoJWV8YY2zhOSYyxntvCn+0nHUADy7PAqemaeq6Xq1WCujncehKd9JpiWprJKXkyAy0U+dijMSgTZEnT57UrmgzO3JEJDxIBwwjQUjW2CyShbf7XRf7KLzebtxilbL0fdCz5SSZhHlIEpRZPOVFE5NMzwoRN5utSmrknEOIq9VSB6EUaNbGDOJwwqrLkfMwq5RDdGWl0KcyHjR8qbrOxcVF4bxzzlpKKYmwDq7ZwhLZLuq4g2pTQNt3zLkoCgKTUhKQxPnp+VnhSu0S+dKhAUHu+m5W1wopGrQhhJwzwDDdRUQpZWAwxiALFYWI5BjBkAiIwKyeO0EhIIuATJydc0cHB5YBMltUR2vKzmnk9NalHHOXlssl+OqTbzwIPS9Xq577EDpOOcPwyKSUBDK50k5T48YQDoYiU19fe9I5Dlo6y+VyuVzqc01E2+2275/NrVF1sikNTikRWkTkPET7GKNC/NZSSFHptCqwrruDc+7o6EhpvxpYur4x5LrQThL2xhhWAMqQ9mVDCLv9Tp9B732z2zIb7UwoqD1bzGNOKQyzWQMmGwNvNyGnejGPnJvLta6llFLTdCKiEzMwYlDb7V5EQogaZoui1A4xjmrL2oJVGsrdu3c3m83Z2dnISBhSx4GmAEOsiJybppnP59Y7XUVVVTnnDJKmWHpNSKgsfReDttn6voVR0Ut3mZxzCK1z9vDwtojsdpsYY8xJp3mUUbfdbhUH101E41iz2yNiz2FllnpuuiPPZrN723PjDBBaJNEJvilwjNuezSnzDbr+2FThlAZtaSIC86b5zQm7nN7K3gA+9CpNI580DuLdhFcU8BqC9TU3Z6h8RMR578akHwDAEjNnEOKkPJoB4weY+l2SslqlOeeEB2dw9YHT4kSjlaZH00XPzON9YhGMIUy11ogTvQW7efyxQEYYqizV71Omy3Q1mFkAuxCMQ40RMBiyM4BihUIEov8xC4ABYhEWIKJMQlPdkjMaZBEUQkJDtpzVmuoNxcy1fR8bRBiuJ48/BKN4PWLOHDkTDK1CZk4p9100xvQh1M4UVemc4z5l/nys+eZfp/8jDWXkWBgTETHq8oB9F+aLwzt37jSdBlN1pKRpLQ34LLMw2tHzVJeyGZx2+6mMdM4l0QpQqWHX+hs38wwaladgTOam/ANAvXSvv8vnHWYckrWDkdHw2oE+n4ZAmYeeTTTXAizXVwYJtUoEAHoL1Q5jnLPWGYoxrjcbY8zl5WUIwVgf9ztElCwpRgHsuu7u3bvz1WrbtMYYMRYAyRjtbihMb4whxIwylUCaBhHhqFkxpINE5K0FAOdM3mw/9+lPxbYxRrpmH3PukoTMYKzTcoIzqjG80RWF3hcAgGiKwscYNZsXkZxFAH7jf/Rbfvn/4lvWu3YbNq5eZAInZQgh5CiCbzx58tyLd3/Ld/yOD3z1137Pd3/3j//Ij15te2cp9eERr5um6c2wMMAYw4jGGSKyEmLmHIFT13fPHR++dPe50O3Fo+NYVr4uytmsntUlsoRmawhC1xbaqk0JiMCaNoZ9322a3lfzb/xFv+gbvvHfWx2f9Cltm9YX5ePNRnVoUszGFRyTCDuwRIMHJgO17S7GOJ/PDSLnnNQeU1R1HRlEWBRu7rlnZhljptYqWYRQFNe5uQyefvhz3/3b/7vdo/XP/8NvotCSNe/59p/3nm//ec9cPF94hGf53XHiT/ztH/7E3/7hX/j3/y8Ap1/4C7/s//pbv+zLfqa3vfj4g7/wc/7zt/zQTfPDf/TvfOrv/dh/8lP/5zc9g4Sn7777LX/193yRJ9+cb7/I3/y3P8Km+Vu//o//hu/7w/hmgP743S8cv/uFD/zub/5XvB7h+/6L73yrfyRvv+b3fUt18Awt4Jd/8fve9Su+8pPf9WNvdVY/8sf/7qe/+yc+70rqcffr3nP3697zM5/XD/7v/+YP/Jf/93/Fyf87PoqidC6FEBDZG4uI6jVhjRURsTpGl0aFBFNXs75p26ZTAXRVhNTYNcKXWNclAHhvuy5pea8IiKKH02QfDsNJUW3/tPJ/48F9NZYpy3J1dKiZ5VRO8Ghs8lbT9PP5osErZYRNXCQ1zo4x7na7ys9v3749Xy4MmpwgyWDywyDWWmFtmgInNYAaEGEcm/0wqmpMygxyw72AmZ2hYYKHgfFNk2pwMxURAbi2aJ721ptoKREgDmzBa8aZ0QE4wXHcR0Yj5SFw2UzobmZ00ydOsOyEKyknUcnPcbAmB4GsFnMwipNM3w7G9E/TMCKTx8G4afoeRq0PHofeYCROyg1XJbiR7OlvXp8PD86NmujfxAtudrunHRPGFAIRM2tehgColQC+OQ0mHuDmDKJ3RXNtvqH/JggKQOiXmkzA+77XmSHNVbyx6rRmjOE8NCy1gEkpxdHO2kwKJ0MjPDlnEIu+j8cHq/d9+XuZ4bOf/dxut6vKWUoppbhcLp977hXhvN/vd7vNg/uPNpvNe97znhdffF712YwxgBxCzkh6YUPfa/WrN3dactf/Vz3QMf+RUXYAAIhsYR1fT6eJQvzWWkuGQZCMQzDOOufmsyrvWg65T33eBNVzrIwjxNr6FtLRcr5tu9D1nKWooZxXCOANOUMWxKCx1s2relEt9m3Tc78qDxjTfr9LHDJk4yjlUPgyZ2nb/cCqSf1mt9ZycbVamfBs1+h92zwJFwSAYGLMiBhTr19qt9uZ0Q5a+Z7b7fbBgzecc4qu7vf7i4uLhw8fKlZLNDiuO1eEEKz1iuZ777236qhprQ1hIHXudjtflZpwqgaR4jshhMXBqizL3W5DRMxus9msVqtqPlM4bLfbTdUgx8FFczYriWg2m1k3OA6JiAIufUg558vLy3GEH2KMlsjN54eHhxZp9CCa5Zxj7C2JtdbaQhVs277tukbh0dlspoz46VlTUqeIKHV0sm+aZghw9BAKIcznc2NKESmKQa95SlmVY6tPk8Lub3vbHRFRz0P9BRzFdqpq0HGazWaYkzDashKRXbNXeGK5XKrMAoxETi3pvfdZpAthyp99YQtfWGtLor5vn5xdFIXVCWgtu3TGWT9Xga3Dw8OLiwsAWK1WOaYY4+Xl5cHBkZbrrfQar548eTKIgRS+6zqFEpbLwWFS6fD6zjrHrbS4oiiePt2EAHfvHijgq3WKjvLolhdCUN1qVRq9uroCgHk9U3ioqqqmaRJnEdm3rQXs+74saxrlKdQ7l0fb2MxRskw0fARjjNnt2oFVjaRn1ffqyIIarGazmfW+73tHBJlDGszlrLVHR0dEVlUjEPHw4JiIrq6utJ6FPDSbp+tgjBEZypa+75mBiCxRFEmJa+/wLcsrKyLz+TylZK3f7XYpJc3A+xiIyAH0fZ9FXFHUdVB8IKbojJ3MKrWfkXPcbrdtmw4Ph96kRaNsZUIbQmiabgB0ME+Ed00bVFG9GX3VNHo3TbPZbLSrd3FxMUncbjYb3YCmZTnsMoh6+0CVmkMsisJZyzmnEHPOdVllhJhTSqkqnXRxWdZve+mldr9Dgcl0NDPv+85aS87GlJCw7/sY9CJLSkkbJ4pn4eDmpeGL9Jx1T580JUTEOtf1fQIJISzn9SuvvHK4Orh48nRzfpm63pWOifZhZwSuwQoQFAAg55wvy2JePcf50dWaeVSMQrJki8qCH3Z5Y4a9b0oYlNqfUiqKQbylLAsFtQ8ODiZVEG0tT9rZAKpNlEcdXgagGLMxZj6fhxCm8XpjTF2Ug+hK0qQme1+UZdn3naJPGrr0nefzRRwVO5lzSsl4pxc2xrTf7oKLTdOUZdk2TRyVWACRQWJOOuoXY6+4EPOA9Rsk5xRmQ81SM0ge054UGBFd6cgIIcU+VkWNOaW277ou5EDOUoxJuO+inzvtvjRR2vMra23bt13XCQ4CoQrHK9ijgq77XZtzLsvBqresBsx02gR3u918PtdEy3vf7DttemmOPZ8/e2owhIAz1C6Lc26/axEHyzslcV5eXnZdun37eEqJlVlydXWl1GbdqnRVT+L71trtbjeHSuOViBg0KXEKyYzaCdvtVgM4jkYaOefVapX6kHOOTW+MWZ2ubp/euri4UC6/fl99SLUtBCOQ4myh7d622+sTYUbdhRhjWZZVVT05P7u42FoLVVUCwOnpqbX26dOnE5lGV+9NfEZENPuqi1pbO10M+sM+him7NqPi8YRil67s+8jAGkxyjro7xBQyJyKaz+eXl5cppabZOecEAQk1Unnvj48H0Zjz88u6HgS49Hvdfu7OZrN59HBTzD0irnebqq5TStnSfF43XffG/TcGpQi4gcfJSCdh5dLJoMhDZKfsUKFbGIfFpneY2sKi3RLvHQ3AtDFG0pDWa5AaCTg8QYfamp6qGsisKK2mC4rv3qgbM+LAxoaBT8rb7fby8jKEpLvp4eFhVVXWkkrKK2Sp4YkMacsFcXgrzQkQhWjQ9CCalPKRwQwwJQ/Djz+jevNwIKnLHww+tm8+mFmMIbRV5VerVVVVbbMfarmxvL3u+RPxCB1OwKVoGwvAWWsMGmFOoqmAc8W+bcFX050dAzGAcmYR1B+cmUFIv08Gm1MkRF+WsWsBgJE4p/OLi9PjE1OUxtqDo2OyLjY74WTA8FuQpL6g9BVdZNrpzTlmNN4Rx3R0dLRcHpztm2yMc4ZzBmaLlG+QHcbvKjeX61SX6mGMAcDEWY156YaFoIwNFZwCgXOIEGKcTlXPnJmFxBhjn8WynG6KHnDju8sofyxjv5qIQkj22qFxJDIPqOLI6oJn49rOkjGm8C51DQAI4b7Zd30fY445ARYxRhABxKIo3vXql9R1fdU0xhWCyGrlBJBSEpYsg1gk81Bp6CMZx6+vP9FHz44z1Ij4+sc+dvH4cY6hDSGGkJjbbphwFwYSyJkBEyEysgg7q65NUhQFAK7Xa50pa0OfRb7jt33HL/jGb3pyfmWKOqVsnCfMgmALKxFjyNWsPl+vl8uDn/8N3+iqxQ/+sx/NOXMbm91eVMCocjlJzhkZIwtmVVR31iAZu13vvuTlt/3sL3+vJeHQv3H/cwsUZj4+XHnvATjkXoQR0FiTc8wgZAwQ7LuuD6Goq6/9Bd/wNR/84J0X37Ztu0/ev1+UNVnf90mEWJJFQSHgACwoBJKSRLac86ADGGOMfZ+0LwWkCINDyiDCQkSZwRiTE6eUyNoba1tSSt4ZA3jxg69/4WL4gf/qb9Sny6/6Hb/0rdbkv+Xxd3/jn4B3/pF/3VddfPzBn//A7/9X/tr5a/e/8xv/0K/9B/9b49/ymfr/quPxv/j0R77zQz/r13/dMynhP8MRm/4f/76/9ExkXw/r7faN8+5qVx7MP++fPvv9HyVjfmZHxH/jK/mjf/If/MB/9Tf+tV7yMxyfZztpyy9W+9sX3liLMVprnXUpJSW36shtXdchdMx8cHCgkHHpvJsbBSn60E2znDxwKgdPBY1XSZjbVlO07XbLQxQajBn0tbdu3bq8vLy8XC8WCx5JtYeHh4+ePrGXdrVaAWLKeb3ZVFVVFoXCZMLPvtrMg/C0qrUSUdu2m81GydfMPJ/PVYQRxbRN2/e9967rmxDi1ILVj+j7HhF02HaM1cwyKjjjwJa6yQAAAJEMoMg72nFQFwC0mzuVXuM+KMwy8XNlmq4YtcUmKHbKT4hYIU65AXMP8X98uTFMdG3hICP/5SZiPm2LPA6oafrrvO6Yk2Nhmt5kKiT0PaYGg7YTZNQrmEA9GbMFHnUneZwinz5UiWPTV9DXkkEFMRUEVKgoj3LVein0l8eUVaarl2PKOWsZn3MmNEiq2iEjiE+kY3wC0+npmcBIOXfO9dhpxaufklJizZQMTBiNAcwZNbnnG9C5vq0ZbhCycBjk6RAAc2YE8M4AQFVV1vqf/bO/wnv/+uufbbuBPHt0dFTXddPuF4sFEd2/f69t26L4NHN66cUXqqrsukbZgmqZNXAMAcEYLZzMOGWJYysCbkyAThdN/8mMrPBpeeQbYt9aOOsFtoU7Ko/9MXWXm7Dd7zd7a4y6ZgrCcrksV4V3ZtGHq/V23/dElotUOs8px5wsiHXeJCwLf3hwtCu6/X4PJOj5bAdnTetK75y9uDxTP7GiqBQoadt9F1qwaE253e7n5uCZj/92u93Qpq7r44MVzVcppSS9YsQKhPHoO51zzDkqx1bR25deeqnv+7OzTYwPZ7OZiKhSytXVlSKDioOYyfYcuGl6EVTI/vbt223otQgUkRj7idAKUCHKarVSGGuz2Vysr24V/smTpyJwdHTAzMa4EIIBrOt6VtUwCpvknBBRBSgUqDXWqpL7drv13s9mlbJuI2cR6bq2rCrFifb7fc5ZYhxBwIGlFGMwlhbLeYzx1q1bMs5e6LN2MwaaN4u9OueIFLWJeO0IKogGIMpopKmE1psxrW1bvXpDh0NEIX6V0ez76L0nZ09OTkKz77ouRY4x1mWlFDnVAla11vPzcxFRfMpai6Nly0FZ6ocq9Nm1wbrC+0E5VwGF/X6vWHDf93rrj46OXn311U984hPr9brdN/v9XgR3u4YmpSMQ7/3JydH0WCkKn1K6deuWMpeXy+XwiAkZq4MmSZ9chUi22+3du3dVtWAKtgoRqq6uhvG+7ycIm2Bw/NOFnTlP9Gc9Bxn1QABAiXhnZ2eZ09HRocpc6PJIkfVNOMPh0aEls16vxybT0HpRZBmNmc/nkvtpupQnu9o4qN9a44uiODs7yzlL23Zdd7BYqqVV3/eZh8WzWs3KslQfRUSjyiRVVe3bXmIn7bPLK2uNiLzxxhsAsFistCS03ijiRkQ6h+SIQgjz5bIsy9j3ROQKr1O5ZE3Oues6FX1aLEqVZwEAVbAl1F3y2j9AdyIVMuq6ru/DfD6ncXpGCzG9UzwmgTK2GxV1UhR+UvpW9BNGI8EJ7Ms5bzYbGgNqzkIWZ1Ut3jlCMf3P+pJXF7PZ/c99rizLJ0/OBrw+RIU4NJlBxLOz849+4vXqsDbzSkTKsmIebrE2HpTjX1WV9rr0i8/n82GPG7nGXQjM3Pb9w8ePtuuNEfj06/eXM//y29+xz3trrUXq226IYDRor4OhW7funNw6ps986qc/+7pY64tqvdl557z3krOMBFjniqbZydh/nWIIkYoGlLpDKayvQwl937tRiwNHo0vmoZueB78uAAAFOpfLpRo5KninzZ5hyy5I1YSIzHK5tN6GEDKIGe8gjWxrVeSw1hJh13Xe2Jxz6cuDg4MYYwjacsshdkPtz4CDRjYDgIypCw4K2mKsAU4pD9mO9z4JQ07M3HVhZsrEuesCkRCku7dvF0VByWzzVQid9lrUqHO9XtdVxcxoaLlcnm321lobjYgAQlmWasWseQwRZc5N15Jc0yBEJCdBBO+dgHjvG2r08m6327Ist9tt1wYVZ9CWlbHPLhzqqt7aOMmYTO4UGotiVG4yiMhisby4utQWFCKo07hGg91uV1Uzxax1S+r73nszPWjee0IqyxKN2e/36/ValYi0RxhjP6vq6d4ZY0IICYz3ZUrpM599PYWojeTdbrfdbpXCrC4LMDaECu8BQHvPzg1AczFqmOScz87OYoqIsFjMT09PN5vN5eWlCoPo1rZer7XPB6MLix3nC3GYMkwpJV+Vuu/EnHQqQtenAqfqZxNjPDo8yTkbOzRxdSqIgcuyVJfFzXatOLhOf5I1GlV0i3/y5Ile6hdeeE57nLpxLxaL5XK5Xq+JhnROrMQYHeeLi4vZS2XMua7rgZ5JY/I6oc8TficIwKDiL8YYawdp4wnj007vVAtZa1WoSM9DJ6NxHBE1ozKGbjmSsoaDKTXR95QRwpvYoxNuONUzI7w4HDlntRU2xpSl1XKoaRqliqAdtL05X9ubjF9zYL5M55BSzEOeFB3SWDPolMcQO7RGeuaBOBBZmRlBJQlkCmo4xkf9QxKctnBzrVsi434jA0t3DFuIhISAE3YsNEqIiLqAIyQRfaRjjEJWdaZiZJ1FRRyNHEH0bugipuHdjLMFAscYinoW2gaNBaG6rhkEDBljVocHzGydM4B994wxw7FSJXwzJI+IwiI34F19YKpKXZsLQAyhU90Pzixkpil6EVFNghvXX26WlLol58x5MFak8YpdW7drdyENcocOmB0OjU3Nrrqu45jADirGz7y/ynSb1uq0JjWd0loxpaR33DmnS10bpzDSjQXZkNWE/q1WUs6iekxiUGuA2WzW77dN0xVFsWuz3rem7XxZvvDCC/umKYu6z9yF4ItCHwpO+mtDoS4g6q/lnFNHAs3a9esYY0rvJ+vV9Xr9+qc/SQil9/2+NcZEgaZtwVaImGICZuEEwMY7XYUABEBV5a21T5482e/38/mcmXe75lu//df+4m/6Jdu2t94l4QQoAiarXJ1xziJiTLw4OAwhX2z284PD93/1B3/4n/1Q23eL41s627jd7QvvjR00pCyanCWE/aysZvP5V375e+++8ALklhBcYV547g7vdldXV8KJmWLqC+f73Fpb6I0rnO9i2Gx2pvBf/oGv/ODX/fwve89XNF3YNG0itGUlzmXlUjtDERCREHNIBskYYuGIJo0KEvO6homPD0QEMqpN9SnHlCY1QJAhzOqyURcpIpKcP/EnPvTo7/7Us5Yd/6Pf+xf9vPhZ//7XGf/s0f7PO26ANQAAx+958Y3/6WNv9cuxeQtHlbc+zn76jb/2TX8kbD5fzviZx+v/5CN/6z/4Y7/8z3xH+QVaHM88Pu/k/998hF33Xb/xTyLhl37bzyP3xQK77cXuR//bv/fhv/i9P/M7f/Q7P/QVv/0XfyHc3Dxef/Lv//jPgDXroVfyl/yx/2jx4tEXc1Zx33/kr3z/P/q9f/Ff+c5f/PHS17/35l8Xd0/s3H8xK6Hre1qppJ2ICMqApmmIVsREKSc6C6YwtDL4tMOdRhanbls4bq8hJ2OMHTWUtMY4PDpSxOGll176zGc+0/f9yy+//ODBg7OzC01A1We5qKu3v/3t9+7d2+12R8fHyhZUYEj/jPbzb5Ye+/1uQ9vFYqE1zCRomHPebrdt29Z1fevWLWvtdt2EEHPOKWHbdSLCjH2fU+LP2wKmnV3ebJssY28VR3ry9PtEBIKTLS2ijufAJFZ2452v04lpg1N2z03UTxM5nHD8Gz7J0/4LU8P7Bsr85uzlTblWGoW2VR9T/5x5oCOBXKuCTF9QrvvN18JcCghOM91TrT6ByDQOMmvpTqOnDTMr8URTUP1rSslYFBG1ojKj329+88zT1F2GN+OnOaUQgloFAgBZS9fVF0/njCNSb/FNt5h56B9M48wAUFUVc0YR51zmARvKOSdAPQURQe8NXg9I2fHRcK7QMgNEch46EzH2KbE1vut7ETk4OHj11Ve3293DR0/0CoQQLi8vmdk7G0KYzRb7/fbRwyfb7XZ7tX7Hyy/N57XCpsCiJE3F0ZquVXLJMFZ/41rpuQkOi6cNPY+yGzDqkGiN0LZ923d1WSFizlEQABDQGGNSjjEHyejKghI7IIlJkXcQaTe7VJA1pvJFW4Smi30beh8MkkEignbfWHJUUNf0zlal8eRM0+0zhFV15Kuik6bLDYJ59Gj90kuni8XCGDw4PuhDd7VeO29MLLuug2fLqoEvi6P5kSJcksEYE1Oc/ELPzs4Qsa5LhWL1skzL8smTJ8xc11YrPe2HKXsxpSTSadCbz+cAw0LVS1rXZUqBOelwKQAbY72vAUDvwn6/b7a727dvKxS1OjrUbsrduy+qfd9sthARjqmu68Vi0e4bJS8zs3BSgn/Ogy4BiJydn6WUcua+jznH27dvV1X19OIcAELbkjG6PvWGWiJjzMXFBTP7whGRdQYRlcgJANqfUwRZ16fiVlP12/d96HstJHnkJ02INo5ETn1kFJcfaYzFALikIZqFEFKMh4eHoe8VQyeilLjv+5DT2dmZJ8w55yREdHBwoJPXIUQ9DT2H8/NzJdlpfFPbw5gz9z0iFkURY9R7fbA6Yub9riUDJycnm83mwYPLqgLVzVTA+sd+7MeG6X6BGDMzq9zEfD7XLprGGYV00dB6vS6K4ujoSKmjFxcXXdfXdbVaHjrnBHIerYZugmtPnjzRp1I3JsVfdEb74OBguVw+fvy4HcU3jDGc8nq99t4rmO4KT0SWyDsXQmraVoE5vWvL5bJtWzIASCml3W63Xq+ttV/xFV/xqU9+5t69e3ryXdcRDLBAVVVIpEDwarW6urp6/PRpVVUwqMMbXaveqqlXQUir1SonKctS1cMvN2sAUL72VGfp8lB1b0SttnE2my2XyxQ59QEkw1tMJjnrRuCJB+65K/W+G+d0uF7BOMVAdY0drlbMDCJaJYkEIlIZbn3tJOlg0OrLi6JCxN1uV9ezqnZN0zg7zOyqU6i+ZGqZ5Jxns5m1VteD7mjKw9MbPYGhiqLGGGNKyvfXO46IdVX1fS+ZDSAbIwjGmJRDDjHGOHPFV3/1V89ms7Is1dZYRJLksix3fTsF5zfeeKPtO+eGfdxa+/jxY2ZRGmZd15rkKManj4ZOISh0FWMU9ROr637XoyGb6cGDh4eLJaSsWpV9DPoIh7abEjxDVFXVfD7f7i73+33RlOrn+Zk3HnIfQ0jOWkhijdl2gzT5YrHY7YAIJ1RKRAErq+nNNN8AAF3XzedzpZ9PLfxxukLbHsOQxHa70TXvvX/48OGUAGg40vkMAnXPQv2IruustzFGtGY0cOMUkwg4YwmvMxyFmCSzOLFkIgdvjRnfipmByI/q9ta6/X7vrdEbofcIEZ21seu7LuikCyIWVY2JQp+MycJIRJFjzsmgfOmXfunx8XHY7XZVFUKnT5Amccr/NV6apiFbLRaLW7du0dXlLjbqP6nypGnweRbjrUVMfdZvYZwd+ZoD9tU0jbOFd5xzDCzW2r7vrR2umy7vq+bq2TsrgLLmy7K0xgsPhh96Apzh6OiImcuyfPXVVz/1mU9fXV0557bbDQCenJwo9D8SzKMCMiLivddgy8wvvvhi3/ehDaenp0VVvfHGG/unbR+DYaPU4DCOBWgTZV7VMcY+RyKCBOvNuvSFc067mHrfNe2cXEmstTmJNgu998ADyQ8RVfxNl+jp4cHLLy9ijFeXG90IwmiYt9vtlJQdYxwrIJn6hYio9NNpNyzL0onOWwwiDcycY9IelTaBNBaVZblarURy3/eCUhRFilEfk8Ojg9DHKSLVda0rsOs65wY5+ylT1dOIMSodez53EqWua1u6lHPcRefcfr8HxMPDQ+sIIw/ziQBAAjT8AQENyuDcDQaSJERs+2wsCgzmdTB2WjgDCBljrHFkdLyRi8LlEMFQBlGQTh9+nsYknQWAJMmYUV1YsjEoAsY4ocFFkIzR9sJUtNAoWy5sQSQnIefJQYXVarXSEKzxwhZD9Nerj0SCjDfgb2RRc0YNPZqvgACDpBjBeHUdySmp6ba1FoFFRPjZSWhMA4vWEIFIjqkYBoVcSqlvOwAQHJtjEJGoScCubsUYYxha4pxCRMSYMhF4ZzjrR4IwExoyIJgzMQCykBGwYlSf1xRuvWtuHR09d+eF9b7tGUHVuZXmI5JzRLSomh2Z1T5VJIfMiCgoZMigJfGShGzNkGdzvzpYtG3bdp0xuLh1Wi6WQIh9G6mXnA1RVvUPIUDFEIaiixAJSFhAxBACWuctUzAEzpouQIZitjxNgD0H4x0JWCRh9t6JSFTFEhaDZJAlJ0KTgyoVEiAYwCTqOesBAB1Zoq4bknXvDDOwCqulBMYAkbWemZmRyDkQcgQABoyIOHLiLTMUhc9fIESrBychsgAyVcWaxY4QgEKukLMwixgxCCySISOiI9K9EBFBo5Kx8hbTXmJSNpJAms22v7xaoFBmg9bW823b9TYnzj5STnywOjg4ORVrhZPkXJDNbQ8AMFbjkZPW9Ix9TnByeIqmSJzJMEgkTg4hMZMrM1E0VkK6vTw8f/3+5snrlc0xY8vS9TELJDAWQDhlThaJ0TpnWIRAPBFQcraoquLs7OLy/GI5X5V29uDx2XMvvvLLf9Wva011lSPZEliKyNAFsdaARSIWEmSh3PQNEUnmO8+f/sE/+Ad+6Id++B/94+/9yZ/8cMepnh3wJvdN60pvIRlgzLFyZnU0r0pztKpuz3Lz+BMhhLKutEKzSXQ+tNutGSHkUPmii8EZH0Pa7EKf+dbzd7/xl33zV3zVB7LwG9uckhhTEpFDtohq5OjB9wAMkEUiMKBYNIwMAkhGuWySs3PG2iLnHGOwxukz3oeOUyydM5iAHCEVlRMR3egBwFj0RQkAn/w/fu+zsWZdeCF993/65+794Me++vf+yuN3v/BWvwYAsek/+fd+7Oxj97/uf/Nt+pO//9v+zL/8Sz8TDPqvdbTn25/4s//wR//U9+zunX3xr/rY3/znu4eXH/idv/SVX/GBz7Ow+7zj4hMPbeWXLx7/W5/pv8XB/E9+71/avXHxzl/2sxcvHJWHzwYc9Wiebh788Mc/8w8//BN/7h//K994e//iL/7s/+V/8E/+0O33v3P4qJj/+R/7ru/9L74Txo34Zz4+9jf+WXO+/Vnf9sFXfuVXubp8KwR/Oqsf+9Pfc9NI8N/2IPqr3/i/+9V/4/e/4xe/DwBSF/7cB/5A92TzxbzUAKbRLa3wPkqs6zKuU0jRew+ECGIMhrZLnJ1zWUVfQTInBBIG7wocLViNsVrtA/Ctg5Oc83q9zSzWkrU+5azCnU3TPHjwIOe8Xq//+T//52TNfDlTfp9OZ67Xa+U+58ShC9Zab71q6ztDi3o2u/p870o9ZtXsQrbNbh9jFIPkbNMHZPHG5hjyTm4fv2M5O+GEnIe2f4wREyJg27Wa3igty1qbEiMaBWsRQJglg4qNyDSdM7arjbPMTEAiwlnUhdQY7Zrr8GM2aBBICNVLmRlYBImMtaJWGSPJAAAQDTKCqAQQQGZjLUoCzpwCAFnwOAzlqHsSA7FkJsCYeucc58QyKlqgkBlm4ybqq258RKQCqZqnTQ0DEMo5KZdESHUqmIhUDdkYhJyILCKS82RMBswpDqmgsBCKQMgJGRFRCMlZFE45e+OZQTLU5WwY12VgjiEnIoIemJmApxa1GfXElWA49YynNgcRiWTmHHMCAs1VUkqcko5kqRGKgGQBvUQa6pMAGSuZU0qSB/9qg1gUvii8gpJd15qxMFYxDb1uQiiCKbExqEDVBMbl0WUycrRkiYhFkKw1BlMKMQNGhuy9zdDnkA6P6vd+2Su+kNfvPd7tdhcXZ0dHR9b67abZbpucs7N1SvHyYru++unXPvHJo5PD27dvHx4ezEosuEBDKSUQIsDCeUTIqU8iZiiDgYGIfE4pm5QlSxq4Zn0fvbGQOQvoXXZlsWubPod+H+q6ns/niIZT9t7blKwvY4yxD03XUAlUldLH1MYkYMVEljoTCxnho8W8aXdXuw1LIDyqi5qZLNrdrjn0pXEUpAdCXxN5FzMSVUtadLnfwX5+clS7R4TmjYcPBLOxGPtw+/bt2pcx0WI2p+YtdNUySWRfuBSZiKx3jOb+/XtnZ0/u3r17586tRw8ehq4nIk5ZoYfZYq4lnCKYKhValvW9e/eMMc8//+Ll5WWMESAS4cHBsu/bnLO1lLPRKcCu6xANorGIJ4cnup5jjN54b3wIHQCsjg6F0Do3rw7aR49S4v2+zTkbMJBhoNQtl7vd7uzsrCgK650xJku6ONudnJyowMV2uyVHqpTqnDk4WBKRokgh67Qyld5tt9vQx/l87r1nBCK72+32mzibOU+FdiZSiLGPF08fl3W1XC7X6633fj6faydFxkaaDvUjorZPMrM1A4Hr9u0TIsucrLVnZ2codblYpZSqujZoFe9WXqe1tigqIlAsQNEoZrZDTg7almu2DaFtgaqqMNbEGPdtF/q4mC2llr7vyZtZNQeAqqhdoXomTIaenj0molk5myuvbbNXg8e6rnPOSBJiR5kuLi6YkyEQNjnh2dMryVzPSq383/nOd6hU6Ha7BZKmaaqqzBhDF0UygAWA5XLZtvt5XXnvt9vtZrd1rtBGnbXWFzYExmz8fAEAKEAwsHyISMEahZ8mMqZejZxzWZYvvPDC5cX67Gx9eLiczap9ty3K+Xq9zRmsBZZYFlJVpg+BrIY8MYZYsGva9ZU8OTufzVTNk4wxRVHs2/bTr7+OJKuDRVVV5+fnGjzLujo8PFQfS+X1bzf7+Xz+/O3nm6bp+mjMMMLvjL93715d1xrMlH704MED7fiW3rNLbdtOXD/OUFWzEEJOwAyq469MRm0tMDOCOYBnZ0csMJ8vc5aho4xYz8q+i4acRcsMTdNZa5mh7yMJ5JirskqRHz58eHx0VBRV13XG0IhKh9Vqsd1uw+hnmFISQQSIQQFrbtsGoOAM5Gnwh0C8PL8a1NWFm27HIgOPfvBaoJQSczJGLBlgNETe2Bhj7HpvbOF9Tmm7b6qqLMtSwPRtS4TJJR3WEWNsUaaYhQkzQZskwEsvP/cV7/mydrudIZ2FZKwNfSjrOkc+qVYA0KV81m7u73eXXWuXM7bOs/HoZhVvt9scZblcri+3u2afM8zn1w3m+XwpIpeXa0Xfjg4OzdwI8iovmr5xzr1w98WUUug6u8A255B45n3qgye0RDGzWtc6Y3Ps66JsdpvDw1U9rw9mK4NPmy4Ya61zpsJ2v58A5a7rFrP5brfTZnbhqK7rxHm73e52O+1jJWGACEIAOnGSRdA5rwRlHvS1qSjqEIIx4PwwrBNCQCQHjplJkGNuu6AdZedczAkAgBANIULfdzlbZ1yKCbPEFAFABBMwgtSzou27nDMRamJjvYs5ZjJMYApnChf7xEmc8xIRSArytjAxRgMS+uAcWYM4AJcGkExRzn253W4JIOZsUrJkImZvnTBwSjNr10+71dJ96dtfWfj6AjpTVMe3qxDCZr2ui7rZbCOH2PUhpqp2iL01aeb5LDezwmWBLoXdfueKYr6Y9X0bQjAZyRhvMY66Rn1MygVxZgC+Nc+3xmtTipk9GWssR04hkRDKs6GP/X7X5Ea3g9UKiQhBYupVjZ0MSmZfeBH5qZ96LaU0r2cislqs9vt2u96JiPOFCMQYjcHZrBIppxjY7PZFUaxWi3v3rnb77tadOwBwfHJY1cW+bS4vr0Tg6Khu29w0nbVeKba7vm3b1rmiD6hItyVjjHlw/9HZ2bnuhtoQPT4+NsYiCjOzxK4Pfegy93U9F2FjbcipCR0503Nq24acrXxRFW4LyRjURrLqGhljVP9Kk9IU2TlXV/Orq6vCz/q+t84l7uvZTJumMYSyLGflvGkab71C/IWvnC0AoKqqFAIR1UXtCnd8fPz48UMAOFwdEtE+5rKoQHC33TtydVFvNhtrod/vybqqKGPMhoywVOVsIhlADpzaIH3XtAcHBycnx7iXqqpgThdXl7Z0sWu7JqDDXbOzbdvqVNSQR7NaXnoceRlK0oA8ioYwSrqueXDkeBpyZtS2U4BGadUAgCxghhx9YtbgeACASGZmEsijVkbOOaU+w2AmrrnexKGepm9oZLmjonc4WK7r1MnEJpg+SA8RSaMCoNoUzGazpmk0X5+o432K0xfUnN7ApF8zFB3PfFQmu5uB2pOvzXn0hxMDCAe1IJg6qH3fu0Eky9IwVyvCgwUbEckAUaFeWMGB/svMSUHunBFotVqpx2saReV5HLqUkcSt5IWUByxepoEmAYXPGEFZRTxqkKVxAuv28889+PhaWHsDukjGEVH1nBjv8kTtGT5X/RUzay+OM85mi+eee24ARllQgAzBQP1mvMGXUY1FgEGy2UzWkeZ6ijOlqH2IOOoJEhGR1dI6xqgEEL2PROSNpRtDqeM0IsQYyTw7TYk5qSyd9pn96M+rrJCJwjw8T+OcOBEawCn/y6PoIQAhPhvL4MSI6Mhcnl8oOp+63lrrAH3MXUgymCPjycnJ6vAgjyqcIIMGqADwDYYoIjpXFM5Akq7ZCRpfOmOsBeIUZovlvg8ZAFmcM1cXFz/1kQ/vdrvEjIastSalGHTvzIjWOZdDnB4xQRCAWTX3Vfn07Ozh48cGjS/Lpu1F5Fu/9VuXy+XV1VVmYYYcU+WK2HciJCqNkglo0OxOMRJlwzYLf/3Xf/0Hf97XPXz48C//lb/yAz/wA8/dPp3Xs+3VpXAklMNFLTkcH6xKb2MMm81G04hds1e/lAKML5ViQ8xc2DpHJjJ938fE89XRN3zt137V13zwzotv63PUHo8Z569RJOEwrxdjlGEQYVjSY+dJ2wyi5DdrCYCY2drh+XXOOW9HSqb0MROR6kMSDU2vYQz/yfbh3/7oM1fCdKSm+8k/+48++lf/6Tt/6ft/3h/69bdefY7cm8aR+nXz2e/9yPf+gf/+/LX7AHD/B177lr/2e77rP/wTn/iuH/2Z3/mLPDafO/vIX/7+H/7j39Wc/euLKTPf/8HX7v/ga8fvfuEX/te/4e3f8F6/fJOEMUc+e+2ND/3hv37vB1/7zf/sv/6f5YT/bY7do6t/8vv/8vf9we88fPutd/6Kr3rPt33w9vveZit//QsPL+//0Mc/+lc/9Lnv/2jz9IvCW/UIu+77/+BfX9w9/vl/6Nedf+LBT/53/+jhj37qi8Sa9bj3vR+5970f+b7/9X9/9OoL7/m2D77zmz9w9Mpt3XH+jc/qiz2Yw6b7zl/yh3/F/+13vfT1X/rnvvL3dWe7L/KleOxQBsk8DZjKMlYKgLZ7c87GELLEGAvrrtNW5yYqSlEUMQ0UAGNMSnm73SrpQyN/27Yp6H4BzrnXX39dcYe2bYtqmKw0xvR9zDkrvKL9fJ1P14ndzXYtzltrszzbK6ztmvK4VBpdUZQZpOu6wrpyVpbWWaT3ve99JycnMWYtgHNmSVlEVKtXMxke2c04iiDBCH3mMVGZ0pgb6DAaYyRdj0wBXFOA0+iojIhyI90y42AQACAAj9IT45aNxlxv1gBgrHKB7TTPC2M8HO6LszlnFT2b3nlcJiw8nM90btOZsEokD6ZxovBlGq2uiWg0Br6W+GBmoptT3jhhK7py7Og4PV0iIur7fi+tgcG61hhjvdOdWjNMETGAZNXROtzMG2lkZ+vGraoCMjAVUNfhRJzBG2onIG8CKKfLMnyRmHLOkq91mQEACMmarOzd0dQR7TWTXU8MRq1qRc30nEUmzVD9h+GzYPQKm7K+siydFWa+c+e2tTaDv3fvXte3jx8/FkEiUtBKH6sQ+q4LVTLPPf+8GpF1+/74+DhFSSktFgsWFfcwkCFxpJSstYjqT+PqWdl0e4PENN4UHVkDiDFmEGcopbDdb7SSzBw3+01Z1o4MGvC2NIhF5Q0u2m3R7Pahaa0xtjSpD5yFCLuUfWHBmtC0fYoMknLuQk9o52UFwJAlp5B7ZE5FUSDY2nlwRRv6lPKqXpyeHGeb7z7/wmcfffbp/cero0VRlOvu8urxOs6SRAw53eqf3WtUnoEyfcpy0fd92zV1XccYFSYzI8tb72nbttY7RKzrWtd214UY4/379/u+j1FSujefz8cMNux2u77vlTq6XM6bpjk7u9ASiUZvLu2TaQTouoaICuvIWmPM1dVV1wUA0DbGRHTY7Xb61JhRIlwkG1MWRfHCCy/o2lO9YNUbPDg4yHlIjSYi1a4dFJk36z0AHBxYfVYVXy7L3cnJyURnPn96dnXV1rVBRGXU6iPWdc18PtdhO42iNDL9RaSqqjxylpum2e2a9773vbr4OYlO+yoht+uCikhoXFJcVTlZyiUvy7Is68VikbPoEH0MWaUP2pG62/etMJelRzRd16mosbV23zSzeQUAxmDfd3rvDg8OldXbNn3XycFBdXBw0HXdcrmoqurRo0fOubKsq9JpcOi6braYqePTiy++qJIdGu660OpTnEdJaOW3Xl1d6TRDzrmsq5Ci96Ux5uDgIOes+1SWzCGplNOTJ0/q+Uz3VqVqKvtV9xq9pGVZ9n1/cXFxfHw8m82ePl2fnW2I6Pj4uGmavm+rqtIST2VYeXRbnYK2Fi8HB0v9XnVdX1xcKGnaGJOZl8vl6empvo/iMmVZTrIeE2lMg6pOn+jub9CmNBi7nZ9vy9IeHB4Skcq/Kt1VecQ6+6+c/eVyuW+2UzGoUxeIOJvNdLhbH5AvPPa7XVcn1d2az+ez2cwYIxK0c4CAMpbnBjCm6EebTUOk4gCTzol+nZyzjsnr84s4qPkXRRFTstaroB/eEHciImPdrVu3rq6u9vu9igjpL+j9BRikR1NK6IfnfT6rtAkac9qtrxDx+PiImdu2NeQQQXdVZQoON05yzpL6HiE7gq//BV9nDV1enPUheO8xhLIsm6Y5XB1VRU0C2ydPHz99knOezeeZAI3JOQcUa+3h4aFIvrq6EuGi8ACQszTNRkSILDPEkU+QUlbZDfXLnbZX7/18tuTAnkwIYeFLA2iLgtPQ/55wA7XXm81mfU6T6oi1tiiK3X6z3W6BUMdnU4jlfK56Ajon0bYtGlKB1hvjUMNcvhZ0WuvVdZ1SUmOkF154oW0bPQFh1E5J3/fMWcTCDQhlyADbVledPssxJxn0V82UKkw5QNc3LGkkpw8uxLpsQohaNrZNj7qzoC3LQom6U8BXq1Ui6vq+bVtdVEdHR7EPSvzXNiEiItmiKBiYEbquiwzf+E2/5O7du48ePciSi8K7wmPT3JmVEE/+xY/+CImScE3f991+d3BycrHZPn36dHV6is4RUVnXRemJSOcOm2aXcy50NmJEtGgUJUfEJGytrcuKZUhpiqLwVMQY88TUfIvBbiQy5MqCUg76bnof9X4ZwMhZUy+ViZjPa5VaUlArhJBj0q2WOeueNUVCVVN48uQJAHjv79+/XxRFWfnlcllUpcbSqqq22+2YdIGI6CYCMAwCTna1SFLXNZJojJ3NZrqlAgxj93YU7i+KrLObiQeUkpmPj483m81F5sJba22M0zjjkNVreaJvzpx18+LRYEbnKTXmq/GMbn8aAzUVUT1ra+3l5eWsqvIw5Y9XV1eaOV9cXOgg6U3DXp2JMRZyGvJGnWIKIVgj3ntnLCKmEL33bdvqnhu6sLCDv04IobSVn82gyl1KzDz00KamqKThCZlAKkUSUYQV8UQ7uti9Kf2l0aVERHh83hCRkY0xYK7VYDUP0NughrD6/PPAYRk06ZXWqrEyjwECxsTd3DA6H+oQA4VxaOyYiw8ukCkPX23cAAYZvalI09NeLBY6ra8FgysLiZJzdraYogahBdLNRbPqZ896W0vGGB6kfxCEcCwe9NyMRRgNZIbKDWA2m61Wq7i9II76y2j08g61liCqKdAEMV8/nDfEkTUc337uDjPv2zaSnU5VRFQAR0SapjHGII1VLrMGOwEEFlBkDUWHLEDydaLAufTFanX4qabzopLEYoyFlAInwQyAbzorAJ1PGYs0xfIywfAps8WsmtUhDN86hIC6Eqwlo8/toM84FpzDqoOxnuSprhaVk+s0tOWcVemsLMvLy0u1TNGUa5j0EcHB1w6ntx0W46gF+YVHijrDZZSVpvnxhIA7Z0TsSKFi1dA0xjALgyoxvmkeWSH1Z34QqAMRyHZ94Swu5rN1aJw3lfNtFtM2hkHVXd7//vdXVdWFEHQ6r6j4ehb4WuzbIEYJ1tlBoMpqJGUwaK3NquyGiBBq6z77sZ8+e/wgxkBuMKQeerzexJAByBiTRM3BlccvZVmCofv3719ttso3Z5G27w6Pj7/6a76miyGm5Iqy6XrInClb78QM5OsUAxGRc4QogJI5Y+77pm3b1erwxbvP/+7f+Tu/9Vt/1cnM/cU//xc+8pF/ebA6LowiBjlz7Psswn3ft90+RUZEYfSuBEhJuCSLQqUvYhttVcWYQ5/vvvzyf/wd33Hy3IvrfXO13aLzGcmY69UFzCIDwsLMliwPjQQ3Pk1mNIplHCxQVUwbvfcINAJJw03X6WbEQQxHRBCtBtIYYzjbv9Uy+PwV2ISP/Q///DPf85Pzl06L2pvSAzNZ2l80Yb3d3r+aZBNe/8cf/j8d/oefp7T7r3V8z2//Mz/BrwMAWdo+3uwfnofNWwoTf5HH+Wv3/8av/j8sXzhwq8XssObMQJT72O/73eeehl13/O4XFm+mNr/tF76XvP2fk6L7RR8c0vnHH5z/0b/zo3/qu5fPrcysnh3WgNBeNtv7593FF4u03jx+4pXPff/Tj9Ol+bO/7i9Y6y8vL2gm6f3MnIvCCUtKySI459Qjti6KruuNod2+WywXi8WCER49esKcV/7gr/6VvzP/uwend07regk5PX784OLiDAH4bULvsAASQuz7bj6fqc2LMYRI1g6c06PDw6bpASCG0PXtfD4XhqurNYM899ydN+6/gYDL5dJ6t9/tUfFKToD4z/787y3+guEvg3a/Ux+AFCOov1NK89ls3zQpRuc9IhCZvoyxNHMzN8akPiRJALDf751zOn6+3W418CrEoIiDhlljDBkUGaoFJNBMS/nCKl1aVZUaBXddd3h4eHVxqTmZCnc+ffrUWmu90+3P+1LTEmOMJtBVVSEiAumc7Gw2AxSOiZkNPltQhfOQ0rR916WwPDyYz+fzqvbGXqyfvvTCi6+88goA6FfIOefMMUXIWu0MXU8YaxhEBEEiSInTSPrTbYL5TbAyDNko8g2pjennU5GDiKoa/6YNTv0eblgO8KhjJgC6fYsI8MBKnVKsgcUDAEgoQ7t6HLJzkeOEieMNNQz9CtquNtdCtNOpXm9/fKMNLyIGQaFJAFaqSM7ZWkRE5ZvkUV5Ztycz6gJP+3getYNTSoAgRHrZgdA5Q0Qsw14PSIMwHtH0DvLmS5RHMcexDKCUgghOn6K/rl/farqitwyvB1n0C4acOCYRUWxXe8YDdA4C48fRm1kCMUbIwyVSXSbddvOoYiciQigidpQFz6Mrib5c3Xr1/MuyPD09ec+XmhDC08ePdbcCIEtDJpOZc+bT0+Nv//Zfs1jN/+7f+zuf/OQn56Wv6wdVNVsulzmjtQRogEiVQ/QjjGFrgcA4MlVR6p0yxhR28GVJKUTOiJiSJM7OmQw+5ZRjDl18cvb46Ojo0Bw5xzEzRLFI9WpWln53RbGNgOIADBrILJmaGNs+bttOgNCYJBxTSj7GbISMJQJOuRfHFgiMJUixKIqimm2bfbNuUtvbyh0dHd36kpMvfft7Lrfrq82lT8UbD99IzV4oGudYnuHsCgDL1YqOMzM/efIk57zb7TIn5xyRLYoKADhzzqmu67LEEMJqVcYcFArR6q6u58pdtdbWtV8sFmqjpJymq6uNMcYYR2QQDRE5N6S4XdepbyoOIKDNmb0vlGOr0iWIeHb25M6dO3Vdeu93611d15oYn5+fI+KtW7eqqtjtdmU5r6rq7OysKuqrqyt9jiZ2sHOmrkv1fK7rmpm1Wrm8vASBW7dO9LFSCqFOMb/wwguKG1pr27Yt6+rtBwdlWSbOl5eXyrftui7GnHNu21bJzlP7TQlDoHwg5wDg0ePHbdt/+MMffuWVV4wxeVRz1idFp3q7rk8pxdgr07koCubQ921KrBONDx8+tNbXda0erdvtVqnc6/U6pj7nnELc7Xaa2zNz0zRt28bE+2b79re/XZnm2tZSjf4YI7OcnCwU0loulyF0dV0/99xz1tqmaRCcMrKPju5o3bFe7xDl6upKWcaawCugICLOO2utss5D6LKw5tW6Q+mTrldpcKID2e877y0zbLcdkBweHiuUoGCEwhN6a2azWUohxrjdNkRU+OrWrYNmv2/22/msKkt/dPQOvSz1rKyqarPZTGFQgQkims3qnHMfAwCklLbbrW6XABBCSCEAwMc//vFJqUBx881mIzft3CNr/3UQ1RRRxtXL73r58cNHxpjZzC0WC+dNuAqKmyiKpEaO3vvNZqMFaVG6lItx92cFoVRGXL/1M59cXVpdt2NmhZ8uLy8BoCpnq9VKU4vCOEQMgCEERZEUZjo6OlKEnYgmFRciurxcK8c/Z/G+hHGYXURCSN772Wym2YoqhxTeW2sJh5F559zB4TKEkJmn37HW6308XB14758+fVoUhfNlURRptx4FPQZ9SOf94eHhfrdLKYlkEfTeo3V6WTaXV5V3HNKXvPLyV3/Vz24251dnj/SbAkAfg/VedwfjLFkcYLW62HV9iH3tSs4cQhxcCAhPjk81lPV9n7OklBGz2hvGGImMMbDf731ZlE6fU1UgQWOcSCyKwpNZLpf77b4qCg4QUlYMLqaEiFVVOYfq27berj/3uc9VVUVlpddnaOsSxhhXi6XSF0RElc0GhUxj+hQ1wUtJWWLonANQV8nMLCllAOz7PqU8m82VehhCTwTWWhFUBXbn3H6/s9ZWVa0XrSzLlKI2pfRDp/wn66Q3AhpyjkCGNAnwehppgs5zzpMfrzO2S72uT02u2lanW2wMwRizWs01n7SumM/nTdMpngYsN/MW5qGNXVZ+t20hwle+/12/+lf/qsunT/q+Q8Sjo6Oi8jmvnj55st5s56vlsprNZlXKvQgomlHX9e3bt3chhNCjMVnnt5hVflafbu0fGGMQIIlorNZMwFoLLIys42FEVNd1twtIop7W3vsanr2xCqOG2ZmrNIhNEgUA0Meo0VUv2nxe6zUREecGDxXtNeqF1NutbcWiKBgkj82ehw8ftS2cnJTzRd33/cHBwZ07dzabTdu2x8fHzrnNZtN1DYxqt+okLCIGB2MAZhbI3hWaNU0pbkqxaZpJP3O/3+uODwAqvK6ReTafMzMJzBdzENlfBH2JKu9rjB28hXfthMOYUcpZoQNt4WjXJMRut98o+0HD4K1bt9QhVt+5KApflr6wm81mIlUoVK1bjAgaI8jivffe9tBrfNZBEKKBFLJru67r6lmpz4LeGmstZEgpPX7w1Bde+iGfV4tRi4hGQBBFVPloYJF4OzToiEgBFAEhtDlnLQHkzfbBNPqM4TWVVdmmiYhoVOmaSpcp+cbhowEFAUC7YSEnEZy6GXG0A+LREhQmgxEwMDrAaFpuRy/BNy3fG+d5XRnotxB2IxsUEfVeOij0yZnyuUFrbGobjhq+X3ioVgyMxSRn4JSKoshjbTnVY3mUoJosj7z3Yd8RUR+SJUNEwMOYpOhtMKO5vH4Yq5IzMLM1CIiMEFKs65nxzoaUZBJqHIAwLTa0OcMjLDXg4MZkne9AEiOMqA4nMNCLKWttRv75F174+GoZNmvgN3GaptPUv+nH8UjuttYiCRIQkjATWhBcrFbG2i70YgwgOhra+32KkkFulKBqGav9Yd37R5y3N8YQmRgTj9y3vu+18bVYLC4vz/t+wH91F0+jGKUGKU2DbuYHeh+feX/VQjCEoIwPfcamZ4GZRxosEBGMYt/MCTLDWPhNDxcyDGX+FxwsIpn7/e78yePSanWVkCj2vaRIgDkFEkNEL919uwwKmxZE+r63I7sZhsXGKJIBskgCRgHvLTkrklPOBilnAYkM5MvCEq3Pnzz43Ov9flt6HznvdrsQegBQTwxjUTinNAmQ4Vjz+PPNZrPbM5C31vkiCWyb/Qe+9muPTo7fOHuq44g5Z2cti1gyUlgUyIEVIZCcCckCJBbmUPkCDG23a9vaup5/8Gt+7v/wF/7Max/9F4U1odmCNX3XxL4rKx+7vii8iPT94OGuT3RMuXA2xmiKwiBZW2w2u66PP+eDH/wNv+k3375799HZRSJCWzAYMmRocFO01krOKSWlMut8n04ZTCEuxl4LpxuSo/qsUUrJWT8FIhwZDTRa4iq+MEzMj8ZWz1wGb3WEXXfxU/d+5t/hxNP//82Oxz/5eti+peLzv/nBvLl3Afcuzp/1j6df9nbJDDe8Oq8+/cSWPvx/Am6eDu7C1WeeAsAzz/lf6+iO09W8ITCR18zcFo1qlxMRYquZpTEGuck5xz4s6yVWIiI7116ZJu3u+7Iuni9izJf9A7MyW9/fe3IfVT+OJB8NOFrOoqYor7766qNHjy7aSymzVrADCQURD4vn3vNC3/ePHz9er9st9dba1vVoaPHlJ48vP1KWZVtwSDEUQTNvnWk9rFdDBF4MBB9NPZWo1ZaZDqjvU849j1L41HkiUpdnLS30JVdXV1VVzWaztm1zFkRUlEqTpKljGkJo29YXjszQJtQqQo0lFC9rmmY+r4+OjrbrjQ7e3rp16+zs7PT0FAC2+93AhBL2ZDV/2u12g/9VjMvFgkbH46IoMird5tn30Tp7tTmvivL09HS93fR9b43z3kvKkPl973vf888/r/UYGchd1twgh3hzx5z+oLEUANPoVpdzxmES4ppXiyPrdkyfrtv/01+HHAmB82h6/OaDxlkr/atuSTlnVBvbPOYqLNot1kwscUZES0ZXmjEGR8eCLJqoDJFwzDREUVqtyQFA2wM4jnRMXwoAkAT5TS/XXG2aJmNmyCn1nYibMGX9LqqpooPqGvyHJAEG3rEBBCAQSCklziGA2oXp1FrmGAJP4Ow0GzcFcDPaZDlnJ7qf+rbd2PeH2zTwDAAMkSDKaC4IN+yLYfB3h5vLYPo6MDYYeKSN6/bRiWiCNPIt8PNy3YFnZ4xFolHPWi+FtTZJUmExiwNR6+Tk5Cvf/+WvvfbxT3/606GPRVEwkOIFIfbW2m/5lm85PT39H//23/zYa58oiiLs2/XVriiK++bJGw8e3rp1a7GYO4/OoALxxowouQBzrosyhNBnRkB0ThVjIkcAMM4iSupTkmycIasAfecXBZX08OmD+Xw+r+cgAmS37a60zlWlcy73ud91yCgAXeDz9boJfZdjnxMQpZR2bVOWZdO3lfPWF323N0hUVWBI0KlSFiLMq9p7zyIp8ubROkJarOZLWh7cPjxd3nrpuXcIwife+JdN11F+dr92s9l86ur+8fHJbD4XyavVYrtjBdRoNEZj5t1up7fg+Ph43zYA4By1bd91wZjWWntwsIwxI6KCmABwebEuisIav1wutdhu9oGIDg6XSiba7TYphQl6U3qdHR1i9FlDxOPjYw1lIQQiWK2WI8CXY4x93yrVRictEHGCQVWGNcQu5azSf6pZrLFduc8TSqiRU4FmgyanHEU0K1bcQWlWglCWpdJ6FL9bLBYxpvl8CTDSL0YXa7WTUrhwsoo6ODi4vLzc71tLpqoqRWljjPNqMZIEQ9sanWxXErcSY3e73Xq9DSEhmmbfxRjPzjqJkFI6PT0VyACgFFcUiDFeXFwRDfrL293OOlK4U2X6yrLUJ8gY88ILt5XvvF6vLy8vnXMAjZ5YCCGnXrU4z8/PFQT3Hh8+fKi3FRGZk/YAlKu72zX1bBZz6rrOl8XZ2S5nIBqQAudI1RW0wMk5O0N6r9u2JQvrdX96qsFBco5Es77vh/tiDLAw83xe6+h3SsFZu1gsuq578uTJ7du3RWSz2SiKqldbV6PePgBQDt16vc7CCuHpatEgP/D3rdV1qELYypVWuFl5eU3TWDKEKMxoBpRAC6gQgiu8sfb49AQRm6bJHA8PjrVH0vf9kyeX+/3+9PTUWluWpfqyTqM8dlSX1jPREt6YZ9uRIZHKpotI27ZVVSmMOJ/Pz8/Pz8/PeaRmK7Km9HlEzCnduXPn8PDwwYMHKt3QdZ2Cklr9VVU5NQudc9YV1Mc8mgpq6tU0TYrx4OCg8MXFxQUAaPcohKATTovFommaGHNRFIvZXOfizWCVFmOMnIHQHh4s+76PA4bQqqqVEsAvzq+YYXGw8q6Ife+M3VxsjubuW3/lN1eOPvn6p9rdFZLNiUNOu91ueXC4OFj1u04A9l273W8iZ+g6RHDOFVUR2g5IeMD45hNr2HuvgJd20YiIaFDWNtaMmM/g2ExEHDmljJltWRwsl+dNp7PZvixCSERkgNfryzt3bh0dzK/WF6ujg6OjI+99WG+v9o16kx4eHj5/5869e/dU4X2S59JIdXV1pblizGm5XGpAHvWvtQQD7d0ohKewXVmWFxeXznkF14jsZrPWxpsy2a21zFmE1W1IZBieU4apzovgMBB/vS0LZIFsLBK5MXkYhuCVsdT3PQE6Y2Vs2k0dYg3mxpickjW+rGyM0VidsCTvWdHYHJMdrY/n8zmR2ey2u22z2ezIwKtf8tJ/9p/9rpTC2dnTpt2tViulpWvit9ttbt26VViTYkSGoixIYN80WdgVnlKSnFIMjNBtWnUyBIC6LgEAbjhX62nr/qLp65SO6vIgoiRJgWPvPRC9VV1qyOgV8GXhCj/ywQfdgsl9SrtQ1tL01CufRt/EkgFCHqb3xBiXs3Rd8N67orRkNpuNcTiz0oU+rgMBXl5eGmM0jKvWGQDoUELM3DWtcd4YgwITESSPctU6lKOX1FoL4DUu6V+t9XEQALxOnlNKT58+rYqy094SmdVq5ZxTKeoQgvoGp5QMOSX1Mw/SzLosBbKEPJtVSBJTb4wxrGIz7smTJ5eX+cUXl4vlTDc4IgptSCmF/aZIhYbQwUhgzBlgrDUIMee87yYXaNKHNPRpvb6YzWpl55ydXdy6dfLyyy/fe/2zfd9LgVrv7GVfcIaI86pkZrK2KApdHCh5EEQma5VAwSMdlYi048UjiWPy5xn/qnDMNU7HgzPMUPZM5ZAm4mkUX57gY+3bKyODmVVqUFEeGknTU1dZRm6O/gPI4KtgreUUpouln0vO+hv8HRhhoYEJMp5tEIEQRKSqqn3XKk1Sq5Tpd4aHRzcqxZveAh7SHqwZyznh4VGUEepVIFpGiqu11hqXmt1U8gEA0TgtCwOneZowAUOTcPAI7A7WKymFhLac1cuDg8zCSIW3qiANNylUk1ULyDSap3dHbewAQbk/cmPYX19urR8eNDJonAXuui6lbnLnQ2EVAJ9unzZMdDPILBaocE5yRBBmOT49KeeLFoBFUowSA+gsoXDk7Mhc3ztWKlmOcbjyzElhaD23NCrfawg2xuio10/91E8tFittW83ncx13UqhCxkWbrlXzJyvCtwiGiDpYai3pON7NSrLvezWsGDYeBO0Sw4g5TgtPhklwMuatyKdEROvLi/X5k0VVMHfWGocYtoGZ66JscRdFqmomIjGkpmnIVZYMM7dNjyRIhNZMLUci0o4Rqv9kTlmYiMAQgxBag8gpeyMPnj5+8NlP57APHEJOXdelnIx1wBkyw4DAZkM6kE0ZpKzKNvSbXSOqCg5gC9/sW1OU3/CLfnGXElmXUwAZhCYISEh7TGCMMUVBgDTw5dF4Z5zNicnZqqok5dPj1T/70Pf9/e/6m8u67Loux5DE5Ri8JWRle0GK1wI41lrnvHUEAJX3BJgi7Pc76/03/fJ/71u+/dvr1cHZesvWMiChScwEYFC9NFNKSUFlZsw5XV9AEUlZBrB42HVuLhUciYQy9qXM6GhqjOHx7oNcN3v0nB19sZZ0/39/vPBz32WKazvE9nL/Q//N//hFehL+/8TBLH0btOcnImVVEcIEmWlBOzCeeinrSkSU7uq9T4mtLwFgvd0UReEKT0CKF2g5R0RkBwKjCLZte+fOHa1XmdlafdoKpRULwEc/+tGnT596V67Xa5ZEo31TH+IP//APqw/M2dmZcVapQwCAiIvFQifLpipCU0wluBljdrtmPp8vFqsY426302nBmXF912qo7LrOGDw8PNRSYbfbTcWq1i11XRtjdBJcN3QRqepS4bApHTcGjRnMmicU9ezJ05sVcozx5OTEe9/H0DTNyckJWvf48WN955SS3ovtdqva0Fp8wtjX/EK4Vg9jTc55Pp8LwnK5fHpxXlfaXDeLxeLOrdvL5Xy/b5um6bqu64KG/yQ6S6tOcQO3ZUilRvP6lFIeNr4B7pygQz2GPH48kxHeBSEUQLTm89pXU1I35V3TqzReGcDIHGMWERi2KTFkAPLNzAERQVCxJDLorE9JUooMUpalNs/4hlGwfh0z2iBP6d8ApgPrXsnDR8LN7zhcZAVVQRhBQPq+h74fyCZmGDczNzylJ0EMM1ok0SAALUiGxJg8OuzhNbabc0YBwMEdZBpqkQFldhPIO+3g010Yd/Y3kTBonAsWYRCR0d55SgZEJPI1RQMmoHmQl2ObEpjrcxjuHQwADQDkTMZcz+qKiPYqcs5o3XT9p4Ux5caEQ/+m65vnn7/jvc85vv7655gZMXexzymJyPve974+hu/863/ttdc+OZ+rqgz1McUcRHrOIPL08vLy+PioqgvnEAAMQs65KEoiMpYUxNQ6P6XEDEJo0JA1xhhb2CZ223brnDPe9H3PJoNIhHCxO39wdv9gefj87TsMhUHyxokFYSRni3mNibuub3PfchJLKAaZ3Yhu7Np96b33Xi8gkXAKfcvCVFVV6R2DeG8WdpazxJhTSjHn9qIDA9l0y8XsAz/n/WdnT+wi/cRP/mQfn23T0ve9n7n9fguNSSndvXsXAJqmiaEriqIsy5ySisAuFouqqmLM3pX37t1T7GM+nyNpS5v2+6spbxRGEXnyZH10NFutVkqd1ncuKzIGi8LV9S1lPzGz8jphnMxzzhGi/iGmQUkWWFxRKM41PR0Krhljzs/PNfYeHh6yJET0hQ2p79qeRoc3ZlZd6eVyGUJQd0GN3hMKpimrUoNxbLF773WB7Xabo6MTBfgUMNU1f+fOnYuLi4GmA4ho1uu192VVzfa7jdJgj49PT04QEb33TdM1u71imgOYfhEV9NGaWQtPZZsa41Qq2nt/cHBgyL3xxhvrNVsLRQ3Om/XmUi0TVfyBUxaRF154btoHjSNr7W63waHlGVfLw0KhK7TW2rOzs4lPrduf7uCLxaLvol6NzFFEOONisVBgSHmgxhEzt2273++Z+fT0NgAUhZvPa4UDJrGpsiy32y2iqPD30dEREW2uLhWeYOa7d5/Txkbf97rZFUVxdYXb7ZYIZlUNAEADAzH2qSpKrWKJBgHizXrNkFsddYpxyhMmirQG4vl8vm+b7Xantbgx5vbt2+945zs/8YlP7DYba+1qtVI3SBE5Ozu7c+fOc889p2B9jskYoxT+lMLVenN4eDCva+Wne2/m8/nZ2ZkKWzPz8fHx6enper1mZiQpS4OIxuJBvey6LoQYQthsBjafch5hFEXUnxQj8+7zDr0LXddpPahiIM2+0ykorR8nzFpE1ut10zRVWeKYFSCiOgrqbnJwcOC916dyqIURDTmdCYDBuWrIXjjDbDl7+eWXCS0AbDab7XZ7eRWUIz8/OFgsFufn56GL3jpVgJyKXK3HdQtmZrLGwCDPxRLquna2YB4chmIXSDCF2O+b1MPXfuPXfNVXfPnTN+5B6guLke2uXQtCvZi/52d9aemre/fuW+eaEPdtOHj+tOPEwtZSjD2/mcyn0SDnvFgs9DooGxSRFDPV8lYzPRFBa4wxJMAp77bbq6f9c6edc85ZiymBd7FrjSEGAmZrbYidxqq+7w8Wi/l8/uAnX4sIxlptWvRte3h4OElpTZDZdruVURbVZAOj5IW11lqX8+AYjIggVJWVXtVmCwhN0zTHx8dEhpmNsVVVVNVMqdNKI9UX5pz0gZ1EewFA+0B5dClUHFkXEqhybkrabidCbUamEPWHo676QCBl5hgiEWkfUXN7YNAelTEDYj4g0SOwq73AoijKshoTFTg9Xf6n3/Fby8q3682+2XrrCudLX+z3e1/47XpzdX5x65VXvKGckoXZptkfHBw8ef31zz16sNvvWUAZwSEn5Y8XRZFDTCEgorvB0oMMOQviEPm7rlNuCjMjkiGX00B01UQoxhjjsydldchYyd1FUVSzOqUU+wFIsaOk24R0A4AGq5SS1gsDx7ntGURXxWKx0L1pgivR0HI112ZhjLHdN9ttg3iu76zmydbaqqq894imqmbMzJm7sfGjK+eaVjviXQDgva/rkxh7vb/eWNRZQ5GuackazSqrqmr3DQtTSsWsYObtdqtcbCI6Pj7Wu8+51b6XbkkwSsaRgYODA13zT55cHB4upnKsLMv5fF+W5YMHDwBgPp/rJrXf78+vdsxwejqfAktVVbqfppRUl0LF7Mhon3WwKdaLvFotY4whhNm8KitvAB/df8CcRDKRLwq32+3QYQjBJod1FWM02n03Zhhwk3Hs0QCKCA9Te0M5MqWz0/NGNzR5Ra6RZcnZonaZQDOeEELOQ+P9Jq9zqn/0vTNnZs7AyEPloMHUe2/V6mFUVMjXQgED7MWSJONIdEcecUkYV+30y7ospt7RWA/IsP04B10LAFqxICIOrbCRqJsFcOJoP5uUCgCcM480dRE09lr0B0lAgBD5BljvXHF4eKg0NA03AgHI4A2AGxGJrCAT4iCqIQAI+n/Fx4tq1my2t5978eDouMtsnFU25XRi10WpCJIQDjZEGhRSSta5ccgVRIRBplIfETUvN1TMV8vZYvH06kqbBohIZBjH0kjNepCmRZKYBUhtcojAIAqSCJHF+eogg+ybFqwDEUukQlOBU+ZBhWrYvwktDmCiLv1pwoJzmhYDkborsBscGu3b3vY2zVM1KmnQNGrpm5MxBgkjZxwHe2OKRPRWlDYtJHQLEcKUs0XIIIDAzJiVpDYMvum8tj4oBnA6N7gmyXJKzxYGRTAksD4/I06Ze+REBjgmYwgk912n7CZjrVUjaVfwkEU5KARJMjMYstbknFnF+1WRW0U8UbSxk7LoDGxZlJiT9OHxG5+9eHS/NNT1LY/tpek5YhF13CQkMJSZCaksy8ePH68327IskQwLxpBD4ne98uorr35J03fk7KwoGAHRSGYOuSyKiMNYt7W2IDtx30CfSoMppdJRNau63fbv/e2/lfrGGEOSAEFi5wwOQ3MhIoExxo14DQAQoQElobjdbte1/bve9SXf9uv//S//wAd6kG0f2sRMBgBDDASGIWdMutlrB86OYqATejKkC2istYSYxzUjo5SNXiJnve4HGvrzFENuKJmOkvTknEWBLT97GXzJf/4Ns5ePFYrRNhshpBRFGI1iIjAGzDw4vbIAMAFqJ0MEs+7KiMZaHkfpRcSQMAuKPLw4/dA/fManv/y7P/i2515FQBYmpJaDIWPAIhCIAUBGyqBxLQMKCUuOJosRYc7sPQFaa2lk8GXOnJkGkXQZkRQQARIorSlms/f+yl9w8xy60Dz/277qJLwXAKyxgIYQReVoEGPKjnC1nJ+/cf9jH/7Js0cPC18sVvNbd24f3zq9det2RhJHm7aLORmqDZqcWJgNWYOGDOQcE2SADLrUGUCAM+TMQBhjb4isV9rCYIiKMhAPQx8EMnNery8/9alP//RHftyXvih9F7omdkcy//KPPv+FV7VpWllBzrnrO0SsZ5UZVaTKsmT2XR+H6kKYGDTdJONizkDAzMZZIkppgPaqojQmWmu1uNWJeGutZNlsNqenp/fu3VNJh5TS0dGB7vUTQv3o0aPl4oCZyaCIaE8uZWma5vDwUKeDRQRIFUK7/X6vWY6m2trAHzPICEBq3XNxcbFYLKZ+vhK+tHgeGf0imUPXt/vGGOOtQ2P14dUTAwClHiv3B8bUVnv7+rn6m1OKP5/Pu67db3fOueeff15Dbl3X5+fnxllErKqqDX232WptoLwVTRZ1VFxGgqqIOGvbtlXJvC88CEmrTVf42WyGiCnm3W6Xu7CqZjpRHmPc77dN0xFaIoqq2zs2qKb0Y9q/4mBiI4hoHAFf45t0g78MN3r/ww8RiHCaJJNruoAWSHl6n5sHju1nMIoFs+RrAYcsYnQHH5U3iSimwJKtMx7clIwpXHzdxx2a6tfQ9s1uLg0PL8OEL4t+zWs09plw+cQeGrKOIXSIUlo0tYMR4845qyKZXjIAIAJjUPXEdC0ZGFIsg2Sssd5p3NZtGm+IkGhRl0azkKEMSDmOAjI8jqrcbDeqysRwowHYULoxFAhj11l3MR7NJPVCxRgJBhVpc2NUdmJR5ZyZjbXX/I8JxycZ2pz6KWr/MfVsEgdmQERf2JTSwcHy1VdfZYYHDx7sd8OM6ktve5ux9kMf+tDV1dXb3/5iXdebzaZv42xmU0qbzWa93TGgSG777s6d27NZRShBMpFxTu8OJmY9c0QUwQwJ1HHEGHIkKAJAzmbInHNReUWLNvtcL2flrNxebR49hbqeezQiK4cWkK013npOIimAM8ZZUFo6ErMYpAw69I1Xu03X27ool9Vs33fQyiwiivShm8/nq9WqrmtHFjLOylmMsaqqp1dn9x5+jpvm/NOfPbl9orTHFSye+fjP6nqx4C70XdeFPr/++uu3b99WWq6yfWMIp6enSjFer9d939ezmWb4uoRCbJj54OBgtVrlLKvV6uTk5GOvfWK325Ul5pwfPXo0THyGICIXFxe73Q4AtIOormgaWrVi1L6O+jIx89HBSjcFrWjarum7MFVeilQCgBKQU45k0ZmSmVPO+i1ms5lGWhinSPWdT2+dKGFzKrARUTVzlOs34SCgVtkAInK13SiwqBU1ACyXS2bWERYRUZ3xs7MzpYvi4MiSuvVan5HT09N3vOMdP/6jP7bd7p0bHmTjrP5BXdeUqLhYLDTC61Cz6lAvFosXX3xxNrvUmC+QtdFYVQUA7/dbZ7z3Xn3nLi8vEbGsCxFBhLIsM4ghhyK73S6lVBa16msrT1YR+aur8GXve0dZKpi7iaknA2Sc4k2SebTAWqABVfsFAL0s2+1aRYT1nIuimM/n2ktWKHm73Sq09853vnM2m/3gD3yfccV8uZhuwXa7VaxBachFUdR1fXVxCSyK5JZlOa9nOV/DNACsOJiGYt3RlGiv11OxFd15nbEKKB8eUoxxKmeOj48fP34MzIrhGmMODw812uuzsN/vRaT0wx3RKsxa45yLnMuynDsPAA8fPmzbTlEeZd6FENQsS0SK0qlcMgBcXFww83K5BAB9CpRNjzfzcOfsW4wmpBhDCG3TIxgQOnt6oaRg1WzVToxOcen61Iuz3W6Pj49DCA8ePDDGOFtcnF+VZXnn9vPWjB4tYIgwxti1IeYGEfUkjTGIst/vC+9v3z5Rden1eo2IVV3ojVMif9916gU3nxd0Y15erY8Vb9JxgbbviqIkMm3bMYNlA2J3uwYYLNnEvF/vW2otQWzy7cPyW37ZN3e7/e7qkpgW9exh1+2bbrdvn7t797kX7z64/2ixPGiaxhXel76qqhS60HchBKudsQy6FTrnmK+x0dD1fdsBgNVGIhkUMEiaheacY0wmGe+9IMaYUh9JYF7PDFJKAROXhYsA3nvBYb4ZEeu6DpEAYLPbppTq2rE1GhD60O63W+e8pmpKYe77Bke3rcViISoCcGNmSKkMzFzXNWfQsKlb6mKVF4vFzYacpsfWEsAgpXVTNED1OhTg0l6dMv01XJtBo9yIyMQb1UZLjIFZiMiSCSlOWVOMkXkAzRAxYowx29HMDNEwszr1pKD6LUZPqe97BBDIenoxxqZrY4wpZ0nw/i97r7fm7PETSnnmy8J5w8B9nFf1Zz/72R/8px86PT5BxP2+XczmnCMAOVfEGM/OLoIAlM6IsUXR71Nd1957EsgQY8jOmxR5TMwcemNwGKgisnVtp3xJn+IpQxv65fiWNA5NhJxzbWiaplFM33rHaeA4Hx8f60MhIoii/ey2bZUdPyGnXdcxiD6/yjXUrIxGoqeOB+luuFqtNLaMLHgdZxkEfGazWUrXMObNfHjqwYwp31BYaRxm5tjFDKOSAQ3DgjC29BarpSWzW2/atkVrrLUHBwcXFxcxxlu3bm03+67r0Mp2u2VmvcUa4vq+d95st1uNfqvVTC+aPpInJyer1Wq32+lnKX5tyM2Xy8XBQn0Ouq5zztR1bUcZ+rbtiUTroJQzJHDO8DApm4nI2GHwyBcWMgOgrv+qKqy1pvAzX+ec13mbOM+KWUrJllaHIIdxJxzprsysDlc4msMgIsJ1OguqaDriziKi9ppkwWpPZpw81U1Id1YAyE5V24YmwFRLDECqjOIYzsqbGdPaVtUFkW8o6g7sGERE5Jh64Gn71I1H82ocKTnTH6Zrp/FiYEyPk7lT8abPxjUbkVA1k2XETd4KbC6KYUJnKIpY9CNIcgYRHjSvcWzC6/KdF4VGJTLGWhtiTiwCrNoRAOq4CDAizaJJOwxXD43Ty9uG/vD4qKzr1EuMrAR4uEFtRkSB7JwlGign0z8N9QmJMKSUkzASDvLNI/oPJH0fchbrC/Iu79sbNd74EW+e6sUbLpEKXnOK3vjIsliuZstFG3tGmAKPTgpZb53zMjIgJsRT1970UPFA61D5wmHONI/Cl3pbb9++rQ+ntV47PFM1a8j5kQN7c02mcR72Cw9C0sG3NvQ5xykVG84QGDPD+MjIDUURuLG0tMUHAG9WSv+8mAvCvLu6Kgvnc4QcjXOp7bRxl0J2ZHQ1VdWsLEvwZR/zIJlC+kFvqtj1UbPGEojRIXFJQiJZiIxznlM+Ws0ffOrx5z79ycqTB+mMDYPeiE05x5RFxBKBACNqOwcRjfPbfbPdN4KUBVCgqkpB6mO4+7aXZqtVnzn1LRrDKZFBY12I1+0aEZGsW60GF2TOxug1zDnFeXX4p//kn/rYv/xITQkJCmcGhycAS0Y4O2/HlcBEpCk7IkrK1trddt8n/uqv+7rf9Fv+49Pnnn98cRFEmEwfky9NCtFbh4zAEmVYYDKemK6iqZDTCKMhUYEMIpLJ40PvKWKfIgBkEERgBEGUUbP7OhseIBjOkIwxKlfyhYe/uyy/5EjHuGKMakioV4mIQI06AYSRmSMkREQWHDMeycCjAJGuC9X30VH7mgbz1d29Z3NAyltQ3hn61daSK2vvSxILYgwVQE6QmIwAhBzIGgTOoUcQC5hC76rBu5yZLRERdHGYXMMRFNOenGIcZcTj5+7MDpc3z+GyuZr/rNM07vHOFt57NIZFQuaua45Xq/uf+sRf/gd/6dEnP7mqS5RsC2tes8d3br3w4kvv/zlfdef5l54/upURLjfZWqtett54ZflljkQso25RFkEwQAaECEWlu8hoFALNFA3aFIfl2ofWWut3B58Mj15avLvv+5DD+snuarM2ny+zPwURAOSYA6DEFLsOdbNXMqZekz4kEXHGgq42Y3naUwzFmHRW5+Liwns/u11rFNL0ru/Ter1OKS1my8VsrjTe3W6n4vX7fauJLwDknIuyPDo8bJqm8E7XuXKvirKM8UC34N1uZ60NbQ+EytZxg1jeEGMnKrFzhZIsePQCmiLkBDxp/rdYLICz0jE0RweA2AftLNKoaDEB1t57FS1drVYTfUlG7dqiKKqq2u9bHsfJmXk2m11cXKj2WdO1Sn8IISCRViP6uRMnRX8hR26aBgkcGV9bRHyrZzPlbCubUgLCXbM3xmw2G2dtSfb4+Pj48FDx96GRb1XtbpAWnTbHaZ+CsZs1REXQLheIiIJNN5OTIf6MyhNCSDdkKPi6xLrhDThmOzTKLMg46ggwgEnaqtcTYGYrdIN3oBEPOHM/iWPEaJwjIkBOsVdmhBmHH1NSb4KhDTzdMmYGZEPDfPcNZHnQOrtJKaAbzAbN46drpYuzsA5ZIme99bqAh6xJKckCYI3GdJnUrgmtMdZaFh3tzSIyTV/qhq5phhYncRidGUC36bZOl5eZ0yAwPQzawwiyTwsV5ca01nih9M+MgNZocqIul4mZsuCNiyYiSURiVg7LGD+9QsrGDDICiJKG9uK01wx52QQCkhFE45wzhhHM8fHhyy+/vWmay8vL5WJ1eHh4cHCw3W73uybn/K53fclqtfqpn/rIbv2U0FrjF8uD3W5zdblOkvddG2O8det0Pq8Lb70rnS0yx77vB5NJZlV9JCIkQiay5Lzdt/tNsxFkRkaQo4MjqM1mswEWY5DILQ4WZTXLOZmqaGPPhr3zmSWGnhCKRbVEjyhN0wE0zpqcM5JhhJRSSGm93RJA6f3BfGkAhbmidrao500VH4TdbgMA86ouyJeuvHV0qyiKonAvP3/L1e5ie/7av/iRNy7e6Pte3pxHTYd1xjnnCq9qA1Pa2TSNEiT7Luiwo+5us9kMiVTVR5+Ogor5fF7Xdd/3IphS2m63B4fL1Wp1fn6ugK9WrQqFZG41WGnE011jt9/OFzOlYV6tL2OMYMg5h0Q6iqs9SC3oNCEd1DYAurYFRMVGC19qqNE7pdw0Dd1XV1c4skdFhCXTnhCxLKpiNN9WBHOCioq6stYC8G63yyK28Nbavo/gnAG4Ud+2l5eXqtDKzN6XIrxYrIjser0FiTpEHPetPpXn55cAVFVV226Xy6rvo3POWJtzbvYdjIWhxlgNO88//7wqEXddd3l1Xlfz27dva73Nkg4ODna7zYQxiWQFRonsiy++2LRtygEAVPBwuTi4iBfr9fr27dshhKdPzpsmHR8v5vP5fr9XJMs5uPe5+3eeu6WE65SSrgdm9t43zS6kPsY0X87cDf1WnU1umkajpeo2KPg4hTUchoqAOYXQ7ff7g8NDLZDVUhIAYozDLpaz/hUFVquV8pS9994651zO3aNHZ/s9HBzY1WplDKaUzQ0bJ+/906ftYt6qyEbbNiphzDo+Yo2qcOgiOTs7+6Ef+qH9fu+M0fIEALT3oKy6rutUbblr2vPztq7h5ORkPp+fzG+3bds0jXKK51W9Wq32+/3h4Wq5PHj69KkOzlt7LYhBI0VR47OKlip9VfMWGtwv1a0uvFWlruy2SRFit2tCCIcHB7dv3Xr85Ik2IfRTVFKDtBuds36c2lTuts1kRrfZbBaLhbNDLrHb7d75znf2MXz0ox8HgJOTk77v1+tLZ60+bl3X9X2vSLpetPl8rqxwlfWo6xoZtXei2il6VkTU9l3f98qfvbaEAWEwCFY455wJABPENkKEJsHBHH7Xf/Idb3/xxQef/uT6Yk0Cha9D3NuivHzwcHHS/ciP/ri1/ujguAnrmFjQnF9cyNjREcAUR0NhRBhEBsCYCWQcL+w46a+/LZOak/HWeGHu+w4FSg/L2bxv2llV77dr5+porS18zlkFAbRldevw1ma/5U6stUdHR7vQG2uttX0nAKCNDRy113RBqkTAft80TeOchYlKCEOaU9f1fD5Xjx/dRjXI6Jat+bzeIMSBtUYEx8fHVVWp8onmAHCjiT507IQzCBnKIM65ylh1tgAATWVXq1WMYb/fWzKTuoL3pXammYdhF/2IFOPUR9SNwFrqQj8Y1ql/RxoUiogJSRAMMyfORGY2K5t1Vxdl6HuIOfZ9Xc8xMQl54+eL5U/82N8OXfy5P/drDleLJ/EJMwgQkp3N52U162PuJV+c706fWzkEbT1aY7tmryMRKBRi0KuqOwUi5hQ1V1ccv2l2uiMoo9w5p9advhjkLp95KIcAANCYPNZ9RIRm9JEW0X5h27YhdDplHmP0xqJFIYwxKndYENLoKBBCGIYP0OpzvTpY6AOoMVO3ocnj9PO4C1MWPWmnyJis6sunxFtzyKZptHuqhQ8PkgaDV+qUIupUgi38breDAIeHhxpp27a9OL+yo/+5SjjoLqkjp9oqngDPxWKhDQ/V4gCAqqquTfxCyDnnJCkHDZsAoDWg/isAhJAmLF5P0o5H3/dFUZRFPYytQCaxt+7c2W63Z2dn3lsNvzFGJp7NZsa6p+dns9mMY5jNZn3O3nurk0ree+8djGANogEzbNsiQmCmQhEVwxIV9RO5sRHKqJVBpAIC2tcS5oyj4sH0a+aGiLMK2ej78DiNSCMPdPryMEY63Q4tUsbB6ifnDDA0xvNos05EMWeBQQtMRg0+Hn23p3fT5aUVoHY2rvOVOFx9ZgYYlKw1nQJ5K8AZbi5NAFHMl4jMiJAiIg3nMCht6eKYz+ex3fV9LzS8PyIaHbHMrERmFgEYqM0w/A+89ymFLOKLqp4vN7t9zxSyARmCl34ja63AEJe1sNET1hTTWssihoiEQgyCSKicuwBAKTIZysJZeLZYHh2fbi8vutDqjhI55zwQl3C8YlPROPwcMXGsjJcoRMQxz1cHi9WBkEUaGFXKEc45Y0akDCPXSddDHsnpeZxYGconYeUwKSCjmYEdhfM0gp+cnDRNo+mpiGi3B0TZRgbwuoGj7Y0bNfCbjrZt+r433oUQ1J6+bdsQgsYFjbl2XKR96lNKANZa62gQKRtFoDjGSGRv5lI3D0SsfME5ltbMyuryaqvbqj6ziAhAzLyYzTT4Xl6uGcg576yLfRiu50SLG6pwSwQp9Kr3LyKI5L3LLCFGbwwJP7r/2fPHD1betG2jfTxEyin0fVR6YOj1+R3KZrKOiO7df9i2rXEFZ5jVNZHZbvZI9qW3vwOtkZR1mWnxnzkXpc858+CQYHD0WQJDxllSC8EYy9LdOjz+nr/79/6nf/r9s8JasDqZRUTCQ0UhDHox7ajxOoEyBLRZ72fLxa//Nd/2S7/5VwSEJ+tNhwBks0BRlcAwr2ex660hEVZpaYsk1qccpyWh24PuOpoa5jTsK0McA8aReQcAObPuDfv93hjjvZtaoNcRgOhmdUdvIaYxuluIptcAkHImMtZYEWEEJDJCTGLJQUZEAwAkIILCCDT4fhIK5sAcLSZPApI4BRujEXGZfXz2Iixia/eXIkIaZDoG52LCxFCWM+drct4XBRhbWBJMITEaMsYiGCFnDE4dNTamrIuv+vKfh4jb7fpz9z6zb/fMLAApRxEp6/JdX/qlB4dHN09ARM4vz5XiqtuqkmQBkEEI0Btz8eTx9/3jf/TJj712OquJszUCOSDx43ufffLG5z7z8Z9+5T1f+o5XX3n7u15ZHJ4CYS9ZZ79YhsxDBEGAAEUgCTMwCDEko3SO4a4qMs6qY5V5UPAfoU/zlV/5lT/9Lz78yc986upqvbncXq23R/WzaXFFUZR1MsYUPFSGusDKsoz9INysgUXGIK+JNQAaY1W4IMYoAIeHh/qkeO8mJMsYpxmJM5400/de84YsHGNkEB1rzTnP53NA1Ja1PqFEdHJ6CgBvvPEGAGkJp6kVjq4mWkzqHl2MftA4MlM0/HVdp8qVWugKwySXkXOOfacuPUplUnrXkydnSlgma+w4TYwjb9o5p433iSsBwDmDviciap9fhMkOuLbmQMrL1sHGxWKx2e+sRQWA9IvIqDen1UiMkSWTQIyxruuDk7ewNFEtBWO6riNrdEIcWaj2d27d1rSnb9rY9ZI4SWhHjdSbKc2NVGHg4EygPBGxjjG92QxQp3wUOoJRgkyvOdwo8BBxUuqAG8LBU+qlsejN6crwcmYW5r7PU+JERDmmKXzF0a5HJeRYBnFtXb0TOgxC0wZ3E3tFEkQEfhOHQLF1PYk8bv3TZbkZP/X3NT4r7kYqhzVkqTK9UESEhxEKHqnW1lodbMw5Z07TG7ZNb63FUXdigp6nR1JGzS6FljjlMeDn6dqmMdel8X1uXvmblwKmsULCnFLOmZz1N7SzU1LtKctyfZIyWvHwKH2OiIwGkWjoaDrV45huqD4diMB8fT1DDkQYQqxrX9e1Ur8Xi8Vzz9/xrjg/P9d6pqqqT3/608aYR48eeVMSUR+DtXaxWCVJXdd2Xffk7Mr6EpFQ6iQAAJwhxswcR+gfdZgaEZMk6x2Q7Nrm7Pw85FDWRdvt921zdHLkyBhru7ZFMLP53BBlxO1+ByyzsqrLWUGePCEigSnFFXWx32zxTECEMyBiyHkvbQyJrDfGbLuui1cgwjkB8GI/u+NuV7NiZ/u+bzf7DQeGKJ99/Jmj1dFyNd/TrZgjUN6FdVEUIYfUPHvwKMXovWVAa+3Jycm+bXMYyOlKhlI2wfn5ubX29PT06uoqxMETWxFA593Z2dlqtUIcVINUWQgADo9WIYSqqnTaN+eMKM6dxBj3+33TNJvNhgwqJ0vBEeVrxxh9VSpiqHSfNHqbn57cUuxYlZSqqpovFqHvYwjOuRiC816B5mnF6kfv93uNwERU1aXOi+ScY0gadQFAVd0mBE1dskVy27a6ApUlrZDQ6dHxfr+/uLhQ7th2u23bPsbY91Ft07TH2ez3JycHh0dHs/nyyZMnusucnZ0555wbJgPKsszMSmq+vLxsWy4KQMS6rruuEVEL8awha7/fX11dFUUxqxcawT772c8ot3qIAG0bY1Y3p6ZpYkpkUF+r2ddsNlvO56oTrToPytl67rnnnjx50rZtXbtbt24t5qvHTx6OuqKCKMyJGVRzIKV0cHCw3+8//vGP60cr0mGMmUjfGn/U1F2nV4lIaXpt27722mtVVeUc9fJqAVtVVdv2U8caEUPX691UnGVez0Tk/0XXnzXZliXpYZi7r2FPZ4qIGzfvvZnZmTV1VVd1dXU3qruBbjZbMhCCAJAGgSAByagWQBgoEBIHiWYy02QafoEkM5nxTU/UYBAmsgkQoAAIAoixh+q55pxv3iHGM+1hDe568L13RFbdPA9lWXEjztln77V8uX/++fft9/uyLN9++y1FRRVAYebtdts0jSUTIaaUzs8ra7xqgxhjVBficByngi4vL6e640bz2LZti4nTp9GJmYdhuLi4gGmaO4Tw+PF6Jj5fXV1pe5Uz+KpcbtY5xIcPHzLzdnvT921dNyIyTx21bTszgVRnQPMi51zXdScnJ6vVSvsKOhEVQu/Qv3Lz5iSKfGk5771l5r7vN5vNZr1WOt48ma4Ec2vMarV6/vy5MUZFXbzzRLTf75U/NJeB40PcrIdhOD/f6MphZgTQLGu1Wmn2pZAQMytpfbaGc84R4rFtD4dD0zRFWSouf3JyMsSgC8M57703SMKybFbDMJRV0zRLYDlud7cXNymCRDACP/21N//Mn/pTf/gXf353c9Md2zjEVb1IYXh5dQ1It7e7Z//8V11Rvv7kzReLq8Viceh767wYw4QcAwDsjruiKNw9jSZtpeTIfRxERqazwsSHQ6upF5LK2vrC2xjjcd/mlJBzDpwTnD948GNf+tI3fv3X9Dgr6kpTbV8WXdcdDodj3/nCVlVVLBeIeHl52axP5qRFz3GVA9IwpQtPufOajRTFOoTALIiQUuJpmFthgRTH99EjPsaIJIrBTejTqF7iJk/LGTe01urbKtSoieJ2v9eVOT5E7/oejl3njPHer9dr711RFMf9IYTQdX1Z1nO7TnsbzJxC9N4DizWovoizPPrx2FlXxBQBAI01xpA1wzAwJzNOjGVjTEhRrae8g/Pz87Kou7DLicuqBCMEJALPnj2/vr756ld/4rXXHrVtu1xsYgwxpnqxioz1cmWdD3GoKuQMXTcgmpyFiI2xAMkgIaCyrfOUTOr/ITeqnSwWi9Vq0/e9SCycmbUN5iKdPoXd7AvvvY8xAgFZq89L7znBmMCkSVVG31C3JEcehgHynZTZomkYRLuJKXLhKz2w9MTsh1FnX5upo14Qoj799XoNk0RVf2xhos9qcwImxsBYzsQ4z+jMufH19XUOcb1ea3WDM8MA0RijhFdVXFnUDU1cyZyzNd7ZAkaWpNXKQskWOvahRzDLCBA3TTOn1kVRXF1dAYBzbrVaxRhPT08Ph8N+v/fe6rVp41D7lMxore26QaWidQur1+usxh5jLHyl5H1mRhH9tePxuFqtYhz0i1Srytsi9EPO+cGDB/22d4TH45GsK5y3aneWJ7k9RZiNGd2BZ7hQNyqSGDDT8x0ZoBPiPmrezeCp/kR9IRGBJ64r3ZtM1E8BIM4MAN77DPLixYvvfe97X/7yl09OTmiSwpBJtEjLZmQZkhAhwCiboHzSOY8f2UMwfu64QHMui2KODrr05wiiy8jdcwjs+56Mm+sWFFAFLtUN9J+OEqoiHwAIZIN3L5lFqXGmJREqFZVBkW5E1GtGMgiAMBZLxpgsGWFEnwHBAGo4Z5UgsERkyMnjx4+Ns8MhJhFJI+yoC52Z1bgmTSYPUyKLisAiirVeHXuMMYCCiIQkSVT4EhCs8Vnicr2ZiNqk9q+q00REIUbdOTCVuDh5aBoPIYTC2Jwzgzx89Br5og2RiRBIi8wMYowBojgEAzK/w1wS8zSMML+s0pWICuv14UJmQJacC+sICQH7Y8spGRBJkZlD1yMiGmetVYUTPYf0LjnnFJB95UuzK2OMGtznSS1+fMr3ivl5nSNizIyIymLgya4Qpk7XD78IMfZ9HnpESSkiGrKwPxxSEk1TBhn6HA7TrKUxJoZElJlGhkKOSY8rAHBmFE4ZhmAJETDnjIScAUG0lbpYNjeXl7/9jd+oC18VZthvmdlYl3MWRhGMYZSVyDkDaWcYvStfXl22bVdVVRaj4S8MCRE36/VP/OTXUkp9GHLOFg0SKfcWAJCAAAtXWE8xhBjjEIIrC7A28+gAtlyevnj29L/+238rD61B08aWmfWEcNMG1GJAYz1PfSNN/lIvj19/8y/9B//B2z/6+ZuujQBRmJEAEEByTCjQx5hSGliMMcY6A2PWOD/rcVWHoOC7RgwCAgCZlfUN2onCppFTjy5NvtWZIU0D2jMcM8Ei6Jwv/KvTYiLKOeVJvB7mc5oIRDiyoBgDhlwW5SJGMsr9V14HiSRCscAGs+TecF968CCZuwLEF14Et9WrebiNzafliIlL6NbkIQ5JJAlz2EVjwTokI8a7qja+WZRNROpjRkI0NkvkLDHGd999t26af/tP/w905xZFeXp63vftbr/v+5bQrFbrxWL5w62Xtm1jDPepBNMhgjFGI1RXReB0c3mlJ7HlwDkWpQeApqlRIB/bb/76r33/d3/v7NHDn/kj/9qP/+RP+dIeh8hoU05Eph8ygVgyBoFRkCULAyYkKyICGWQ0CNXHl3MiUKubO/yoaZqmaT73hR9brDbPXnyM36WYczi+WvRTkCPHyNGA0XUyg/JkDU90lXkeUInPMSdLVhC881VVZea2bZeLxZwx49TN9dYsl0vv/WF3TCmtFs12u1VbJ1+OJA7jrPce2BNBztka470/ti2KcM4vX77UAeQQkg52KQQQc4JpMgsAmEfMeq5viWi5XOqC2Ww2dlJI3O8OiFg3lQbJvu+rwo/60SL6k5T49PRUZfKstcN0Iquc2YgqTs3jlBLzKAaivzYMQ9M0x+PRe2uMYeSrm2sA2Cwa3b8PHjzouu7i4iKnFHG88/N4GqqBsnUA4MydMjszO//qs56ndpTi+DNbITovIiigCRkRGYPaJuSJU4CTKMT83wCgsyk5Z6XU6SukCJMdxZxTzvdBRIRGVHF+CniHaONdAoNIApG1uvbzuaM33zuHiMMwqiiPccaQniySedIoGyNYHHSGruKUwIy8FUISQAGMQ8gxWTI6ozN+zNwIlCwZYg54j7ysD5Qmas+sSZx0kN9aTZC01TovNs3c5tIlZ9W1gpEgr7mHttWnrUpESRgElHQjOWpyllISwZwSAOtKY2ZSXjCgQVLORNRJu+nu5XtabSJiyajCEjNb6+4j43fLRif57lkR5jzmSCP4PoHmxo5LHQAIrcC40QBAsRINhuQs5TsqBiLKZFB4l3yO/333E2OM6obFGK2j8/Pzk5Pn7dCTtc8vXtze3jqyJycnJycnZPD999/XN+yGfrxsQ5DA+0Ive7vd65CiZpXDMEiKzrkxnYORiW8Lj0Jt311vr7f7bbNaSrsfhsFYS0SH3eFwOIBQXde+cMdj13WdNaiwQp9ju71qymZZNTEBEZFxQ9dHCetN0x17SRISO238+zLHkBiKugE1wwTseQCblp7NArGscAAG9mQxAaG7HPZtSt/7vQ/Q8htvvXHb3962e7g39/aDYVypJ4aGISrYZxsCgKJ0xpiUq8KtvfcxLq21IfTe26opY4wvXmxfe+S9d13XpcQxZkRWWzYiWi6bzWYjInVdhhD6/pBGkSVOCauqUswrc7Jg77ucpZTW6/V2u439UC2avu8lZSJ68OBBjDGGFGNUIKZpmr4PiGYY+hDjLH2ruIbmMHNBZIxRiFZETk5O1EutrApjzPXVTQhB1YRTCtZ6fVJ51OIYnHM6jKJsYiI7DMPFxfbly5c6ajM1QlAJwgpG6zCNMcZ7UvRK1SpCCFpdFkXx6NGjZ8+er9eb8/PzlLPeh7bbLRY4ft846BGmvOOc87yvRcR5U2N5fv563/fX19dzWnt2/uC4bxUC6IcBEcvKH49HkXFqgVO6urkREe0ENE3Ttu1uu10uFqvlUp8CIm6328uL60ePHzx8+FARSb35jx8//sxnPvPy5cv3339f4YPb2/iFLzypqkrVYJWSokeD7nT9Q8UX9MBKKX388bW1sF5XavNwe3ursid9PzKHjHqRlahjnd6X2p3VtzLGnJ6eAoBerRIkFXEbtRQ0AGY1EzuUZfnw4cOu6xAHbd8qvKhRSEEAvbGK7NR1rRQBnR9SeV8NQQ8ePLi5udE0W2HiEc42ZqaBx8n7S48qBdznTsyMyyhNj4i0ja0TTre3tw8ePDg5OXn58qW1VFfVKzdv0rCPY/tcQRwRub29HdHqxSJP8ytKeD89PdXMZzaxOD15oKurmIxwFe5kZjT0L//lvwwhbjbrEdvqe+sc3SPEzLG9qiqlQ2k0VgJcytmiYjr9a4/Ox+wiBu0fqD9EVZR937dt771DxKKodrfb28ub2AFH+Pybiz/6r/3hr33ly1//ya+tV83l82cUh/31rTN2c3r27OlHdbM4tn1m2O+PPsFvfOO3l5v12dnZ9nhEY5OAsHRtH2Nc1DXACOrpEopDsNayKpbM3uwxpjQK7IYQhtg3TU1kWFKOLCKQeThGyLBuzM99/Q+89eYbv/mrv1rX9Waz+f73v980y8zMIcQYD/vtarXYb28ev/FkcXqihbOI8CQnRYiL5fLk5EQ3l3ZxDodDVVVqtKjQ22RAna3FkCJNcouISAZYkjEGRqVBVDksXUtlWQKMZZdKwupa1ZTVGOu9sdaquLkuYEcm5HEAS1lo2u633ndd9+1vf/v8/IEu2sPhYO2dqNfc3q4KjfMjI1MmGSVtH0YSaywRTVo4d9Nacy+fLNpsjZHtrj1f1T/2pa+0/fDg/GHqhu9+65vnp2dnZ+d93z9/cfX0+eX5ozfe/eDjmIa33nqLQiilScLL1RqQiqK6bVtXlPv93hZlXZd934cOiMgXlgDTnaAEHA4HZa5UVZVE3flYg8OYlIIpC5cha9uyKAr1r3vlK4YweU6SkiPHciODiFhHM/HLGLNabXKO2+22qqq6qPXoIWP1IOv73jhrrU2RcZLv0MJKO3A6pqCRcL/f63LSm5+niUxmLpsaMoectJxp21af2mazwUlFKk1CHEpIPxwOMUbrrGZrGtM4jOObGuSVA668nKIoDvtWGAjtnNPyqKdMynBX/PNwOCjiLJCVNKMFjq5MBU53u53GTD2MtC87j8tovNLWuJ7sOWdtIcs0ycfM+91Rm3kAsFlP1H5E54sY48cff6w1l3PjWB5NfJeUE6cbCSmOAAEAAElEQVTopei6fsc9mn6Vd1aj9hzfc84qqZBzJkAN5YlzjAMQKocGcWzv5EnLwhiT810qb4wap2QRCSGVZWlH1+kRfNSForvLWmvRipUYYwiBEZ4/fz6fiMoDT5/U4c45Qx5BupzHdJl5HIlV8iMzp1GqQrKWxMxEpKWsAlLaF9UjbSTv5Dxjo3reF9brqaCk4rlyUFfrV26VPKnvaTgDGSVaiAjM3Si9vq3eeWtQLA0hoDWpzzFGwEnglRmBEUYu9lTskbnHWprqSbvtjr5ebE7OuiGmxDKVZPc/lJMIjEKB8zjA/M6Iyluf82lJOQCLRStKywIZhsGX/vy1h81idWhvkrARRjRz02LGgvEVr3Guv4/JV8vFanN5fYXVAm2BwiAZcOKECxF8Qj8ZEdMk3CmTrq7Cf4V1jHrUpZkUPxfGMLUrNEJP9SqIMEtigWmA7E5P/NMKjPlbqdj/MLCaOiKiBg7tmzka+f5ZxlaHN9bYO8u4uWhEBPOpqh0S+kMc2sLZFODBw4ff/t739WF57zmaojJdutPZjDESmZzzwIMzdsRGCe8/B84j4ylxFmYiIyIpRsx5tVrmFD7+4P1uv5UcUxLyhANCzlmQVdJdNFUiRHbei6CKXV5cXPqiQvIco2RQr5thGH7p6z/z5MmTY9t3YUAiQwiZWfBuhTAMbYdlOdbKzjIIpxRyQmOawluEv/5X/9r7737/pFnEttdDd86PAUBhJo3CeuDlnL06nITw8//qH/43//SfXp2efvDsGXovhsg4siYOwSCpoHBOUeE8IIds+JMEwGlzjZxNhQU5S5YRbnCjFOMY/fQPNQNTjW9jTM6s/HKexjU0rFvrFJLIOd8LMJ94Sc4o4q2NOWtJAERZBNIo8mPGHSckjIgCgJKRhUQs6jxEsiKGk5VIGCzFImeD0RohAsKBhY28GhgtKJcmOw+IRkQgCjMHyVk4gXASzsCCAHY4WkbvFxuq1kSerc8CgkLWZOG3PvP2H/zZf+V+l4iI6npR14tP3WgAAPDBR+8d9wcUMjQiXwjjuV5Yh4ks2N0xpAhEth9i5S1aECTdXyBS+8IAtu3w7Hvv/crVf/bR97/70z/38w/eeKsXSUGCRIZsjE85uaIATgYMgUmcvbdogCIokX9eDAAjgqbdMSJSrfYQwubB+eb05PM/+oX1ZoW/hs2twLuv+FI55ZSCL4s8ZJpM9uwk08ZJEykbY2JmY2xRlHNk00T56uqKjEHE2fhUABBR9QebumGQlMYj7+Li4uHDh4h47Fod7tN6qes6bx0zOmeZWZhHYi8zImrtZww6V2gRpSiYAisAMAzDanWqKpzKL1aF0LkInFkJOg06zjCmtNvtmqbCyVoNAJh5tVqpN4BGKoXnNL8vikJr1MPh8ODBAxFJKXhvNcdNk7CDMQYRtNk+H+4zNqezqzPXr7AuDMH4Eeu3SKqtTxNvQsPL2B08vvo4MIVTWlNKqWpqRFwul4V1XvD1119fr9epG1X/tG6lewIycM8wY5rIlJRyTEPKYULzxxcBzr0WAAg52ekc/ESsmE7zLAz8CSLtGJfoExtwTiGsterzqL83v1voemMMCggDEoLqMyFEjnVdc8pK4ypLH1XPMY8i0XnSddGhDb73nj9wwXdl0kRh5ntf7e52SU6RM8OUqOgpPMZSTbXn90REyMyZE7BBwnE4b8yUNM3RP4wxptAjojOWiJhF28w8UYNh8rKIMQDcHQc0qyRPT2r8XAIc5bbHomtamff8D/hOzBomYeX7T3B+xWEEYhQ8QjBIjMbkEOe7OqRoYVRss0g8kojNzBzSXTan0Hq9IkBEBkmMEWERKCv/8PHDDNK2rVZiaOlwOKgUQxiitVaQo7YfJBt0Ol3UNI1ztuu6y5vbuq5vd7shBmupLIoMSv+nnENdLQShG9oPPnp/dzzEHF3pXGGLwtWLqix9yGl/td2sTogoJ+nbQR9xyqkoy2PbeueGOKAhIiiKKsdgUPzCgcnDoa+WZR6S9CkzNE2Tji2xYYI+KkZvwJumodXJajDpxeEq0SCQyIBBayxiGgDlpj0aZ6yj7774CCZdtfApVoGaBEpKu912t7sFgKZZbjYbBYzGgm2/11zIObfZbG532+VyqVL4FxcXOWd1Udvv9+fn54tFrULAKekgNZPBwhdk8NjuiMia4v333/fev/nmm0iQc769vd3tdjQ1mdQX3lqrpWYO0Tl3c32rNYhS8Kz1IlKW3Pf9fr/XsXdEtGTbtm2aRhElXdjKk1Igb71e55yfPn2ac/7444+1/2eM0Yk9noaOrbUKjB7741wUqEZz34e6rlO62O3S+blPQ2DmruuaZhknRXJmfv3115fL5X6/321HFpWaxRFRVTWIWBWlihjsdrvb2+uyrozFnOMbb7xRVdV2u+26TuUI9Cucn59XVVWW5WazUd2GlEJKWbU+AeDm5ubx48d6kupoNjPoPTy2tN/3Jye1bvyqqq6urrQf0HWdXrB3TpUfHr722mq1UnUIY8xisbDW3tzcDMOgXLnD4fCNb3wjxqiH5ttvv73b7TabjT61ORlQ+EyfY5okiXUhxRirqvriF8+stV13VH1hzUIBSBW9CXCxWNze3qbE1nrrnYpEpxQQYLVaHQ7tzc13VKFFfRG89w8fPiyKInHWyWudTSmK4vT0VIefiOitt97q+zYLiwrjTkhZ3/dFUTRVdTgclH0fJx2YxWIxC6Qy8+3t7YcffoiIJycnxri6rhUZNMakyMNwVAU83fvb7U3Oook0TlxCxVY05uvKn62uPvroo7Isf+zHfgwAXr58Kfd0mX7gVVcNwF4LSYVs2rYl7bz6kVyJEzGImc/OzlarlQq/zAe386aBZnYU1NbyKCYGOn2bj8fjw4cP0yT8WjeNQQpx1LdR+ZTNZtM0jcp/7/d7BJOF66KK/eCcWyxGR7imaciYlNKjR4/KsmwPbc7ZuaJwrNLJV7tnBvBHnpx/7u23v/7Vr/7JP/bHNsuqQBj6Nh5vHeaPnz91FpfLs91h34bgfBn2rTFuc3J2OPbVYtksNkOGECUk7nMERG98UzZK5zdIOabQDynGiDSf2rpJJ7b4OHNgjOlDnzM7S8MQOUmOGTNUpdtexa/9wR//ia/8+P/vH/z9/WH70z/5Uzc3N1k45ZwSq4w4GXN9ff3w4YMUc9u2y+VyuVyCtddX15vNylrrXSGCISTlE+qeCiHMcUl3nF7emH0hwCSFoZFKV5oGMZx6G/p/27ZV47v1ei2Cw9DrEwwhINKovzyZY81ycAZQUo4yQmqIaIzVnlzOWeNznrwBmeV4PKpKu6hyfR6nzaqqysKGRJJocGDmoiyIKCcCzjTyvaTvW5VO0jMg5VzXJZEla6qq+c677375S1+0ZbXf748x+q5bE/nF4qOXL9uUfu+7373c7YZheHpx8eTJk9vLF8Z6fvf9dz/84DB0YGxZ1Mb6kFMIOuIAOecwJGtMUVQpDTHGIQatX7XRYrybUw4lDjvnQmZEPHSHs7MzLd4REfHVNI7MPAXwxhIJIxjQRqlOsQjjTHNh5uPxGEJvre2l14cCkxZfjNF6t1gsEFgZlvpktcEzhE5BYQ0gwzDorIYSW7XhmlLS4cu+77urKzMpPWhCpa04Le31D7W9sZ947soWUsF37ad679GMcg4zL6dpGkWxy7LUIk4RbTdZeuhliMhut9MabbFYrNYLXXuzMrBixFXZVFV1cXGh7V5ddRpe9BvNlqp2EuXXBXk4HG5vb/Wg0c6xZvjOuevra90aMQ7Ojd6nWtkxjzZ7x+MxDL1k7qg3zlamFqKmsMch7fd7OwOjcE8mT88emKR4RTIRoTVpkk5XaSTte9/HUGacboYdq6rRkyaEXmCc6JwfmBKmII9FSEoppbher8/Ozpqm0WxeUV39RBmVbg1NPHYAniu3cbdPzaghRv1bJEBEpdy+/9573vsnT56UZTkTWOZSf14x81LWvooxhgBZRv0BjulwOITwarh5dnUf7yffjUwyf0KREBCtLZmHLBQ4bDab95n10SYBlnsjt8ig4saCzGyRQPl1+u9kBVnHf843m2a1bEMISchgZcdDGmfDH0Qin1Kay1DtEyIgGZNBCEcpVRGRqQxCRAD0xifhGFTGa6njwzlLzneANd8rp+++6VShkRXvPYcYYiyW9vzR4+TLNmNixTIFFOtXWWBEVR/meawPBDMYQ3omKRUApnKOmSPdjQbPC1smatgPrBNm1pNnfl4ymUQBfBr6NypgqmwxMxONS1qmmykihsYVnlX0M3OSOyqZIhpmmgCST/kkC8Khl5xUl2aIabfbMXPTLK4ud9YVxGTMMeSspDARIUNxJLVHViaUs6MesuILYJg5C+cYAKCwRiXXESCFWEj6jX/5L/Y31ydNJRyPbZ/IpTwVyWRpYkslQcziHFprX1xck3HOFSwoGXTvHPb7oix/6Zd+qair43Y3LiEWRDSECJhiijnpeh79zazPIBKzIGeQuiwWTfP3/97f+7V//s8k5749oogtC2NM7AdNCxBARDRQ1nWdcg7qBdu2r7322l/8t/6tL//kzxpXXN1cU1Gg80k5ZSyYE5EhIkOYnSNrhMQ5h9kAahphWPIcW2SaKLfWCo+0x/vpL0tO0ypNKVmrDfBxWeacRe78rKcVOHqU5ZzTEIZPsx6l0eUyaVfEmpxZeJzUNmMPKas/p7qqorBHNgaMSI5dDJ2RbCEbyRYjSTaSCDKgJJnw009pNQsKQyY7ZjZNsRhSNDEMOSDnyCw5Q86WnHDOEtM2p8OWfV2tNvVi2Yllzt4aNO4bv/3rv/Bzv4if0lz54Vfm/Ju/+Wv77dYhkUFCkyEys6HRFDjmVPnVwIzOh8xDyH65kRwQbWYwxoAYa9CTBYBFXTNA1+9/47/5Rx+9/94f+ZP/5ue/+pMJ+naIYA2jEDogK6L+mSIixBnHsYAxfir2l5ljTkSEZlLPNUBgjLV10+y3twz041/52vF4vPjGe6/8amXh+z74cuww4+Qrba2tirLjDpG0ujsejzlnlfschr5whbKEdMKu67o8soo453H5aZ6q0Lwmsseu1SU0a3dotqElELKkNGvuG+dIo+5M7UGUoiqLqizLUidVtdRXdNVMo6PWeoA0I8VaOSvbS0QeP36siHnOuSictVZ1e7VdVBTF+fn5xcXV5eVlXdfaOdbdgZOErtzBtXke+PrsZz/77NkznfoPIWh86vtW/0p3n5om1XV9eXk5AS42xlHep2maekLzNavT1E0XvN4oaV+NN3FmhrG5OAORi8XCMRTOGWPaEPSddfsTEczyO6rkMMb/yZkAsq4xuGc4AQCCYGhsOU+F052r3vy/AMAwqv2CQQBAuWMBz/jmJzb4dGz1fZ9jBLjDf0VEMiOZFBIi0r12b9/3wGOmpFCaOorMonszCIs4pgfzWTwTbOfGHt576fXMVIYJZEftpKpai9wbPoVJXILmPjcyjCJmLIAqekOTw0TOWanNMHEjxJiUUppkx3Qu7ZPvrzMNIx9ZM4Q88aztpJKEE8kIAJiz9ud4Gq0b84GcLFKaPEX0r2Z17PE5IloyYpRD/YMrAcAgChhS05TImSPMsDsAa0RS7GlORu8/8fmuakOIMvVhSCkj4oMHD3LO3/3u91MOaoWdgZFTGO5IYW7S89WaREGfum50DvrYD2AADC6LpovBWmLmkJIvi2N3GGK4uLi43W9d4U8enCBKSLEbepMMc9q3x27XbW/3T548efBgc3Nz0/f96eYkavcFmZl96UIOV7uubwdrbV2tTtcbvygMRwcFuWSKHBIXQOJM3N32bZ9BkmSLtq7rB482q5PV7fFmSF21Ko0vtftVutIQigWylgG6GLWUktDNC/WHXyGErutUWFnDaQj99fVlCEGrtbqsiKgoXNd1+/12GDrj7DB0zGm9XheFa9vcNM2DBw/eeed73o9KkTc3V9rlqupStSm990VRIApn0NKXiLq+VRB2uVwqqUqpNkVROOdCTsvF6vLFS2Ewxux2hxAAEYuiUmcKa+08aXdychLj8N57752dnS2XS43Y97k7SptSGYfLy0szSf9rmarVrL6PTulqezLGrFMKOpNrrS3LGgBOTk6Kog0hFHW1NEtmXi7XiDgMw263e/Zsu16vLy8vxywLxrkfM9kLiYhfF9ba09NTY8zt7S1Zo5qt1pKSAWcFibZtV6vVLFOghKyqqrREffnypaLwKlIhItvtlhmqogSgmNIQAgstl6WiRWECWBFRv3hKabNeHo9HETAGX7548eDhGREJ5GOb+76/ubnZ7Xanp6cKrCuafHZ2hohvvfUWMw/D8OzZM91cs2KGog8TabcyRi1Yue87RTfknuwkERVFlRLv97eWTOgHYGnbPqXkywInWEqZmGdnZyjgfd5sNs65y8tLdUR0zulCutneMrOyfRGMdpcV3o0xLpoG0VRlobw5pZQ65xyMmf98Vdba4zFYO3bvNJ/RdFehnGEYmtqborZoWdL4T8ZniBobu65r2+Hs7FSln8/Pz3Wdy6h4O3rwzL0WDZKHw+Fb3/rWYrHYbDY3N1c322uAz/7w5i3L0oPXh66vpmlARP2NnXNd30+bOth7CuYsEiaqddd1dV0vV4115H2jwA0zM0hKKQRGhJOTxdyVUTD6eDyWvqgby8xqM6M5TFVVbdsKoy1s0tZ4jKvV6vz8nEW2260K0XZdd35+XpblxYuLsiz7tjNgjvvD8Qj/zp/9Y//un//zlbMWZFPX4bA/3Fx0whaFhLdXL4XTerMkY19+/NFHTz/qoV40q5/7uT/08cuX1zd7INuH8OLiYnvcJ8lR2Dhblr4oKksmSmIe+cs8+bGbSWxEM1giq6iOQmmFcynEiCHHTGBSCFbw0OaHD+y/8Sf+dUmx8PaXfvFfFZGPPn6qi19HV2Wk/YpzDg0Zcjc329vb7dlrT6qqCiEJJ8mZh2HGy6y1VdWYeUyQSMkTadIxV0RB6758j7g2t8RkIhFrYjaSMESOx27eBUVROudUXAgmURHvi2Ho86jK4hERElskMKMSrOYJGm9zzqrL6pwLkTFnvYEAUJY+iyhTM3Gcs1CATNbghFblJFlYVRMRhaxhZjIgiMZayOCcc4XXGYXf/dY3H73+6Pe++fvf/f1vPTg7E+eGD9578eLit779rbPHj0QEvLu4fPn+r39c/e7vtdtrBkkMxjtTek2ZvPdOXEoJBZRBqcmP0VlbQw7cLDaSEjNG/XZ6x0YmK6Kmi8pi0Rw7f8pgt6ERXUnDuGW0llHtMiWCWGvRjP5n1tq+hxizxUw03nZ9lDzNiJABY+12u40xLhYLUG09O+rp6XYeZ1MAtDEwx5Znz56VZXlycqKI6unp6Xq91rNDRYT0uasmO0wUND1lcJLgt9Yul0sXAwC0fWetffz4cdu2z58/3+/3KfJmtdZAsd1uF4vFarW6urrKOdd1rSwZxe510+lvwgSAKIKfk8zWel03FL6ylvRY0WaMc05PFi3iYCI92Mlu5Pz8XMFrAMhJ6nWtOh4KcCvSomWR6k3hZNujSTg6nI8kREQY0b+6LhZ5YTV11rtjRpE1FqE518+ThU5RFJFzDFk9H7Svq9A7Eal2+FQqqMCF8d5r0ynfE+XQ01T3cxoNv4ybhMZ9Vf7ET/wETFazOef9fq8BhaYXCNGkozrHCCLUFaw8R92yY1YNECa5cW0z6hk/sW8IETMzGWOshSnvH9FA1WMXSBxGwrV14E2MMYRXl6BojBvV5ckZRDtCCVq88cSC1JeIFEUlOVWl32w2xhgahYMFgYBIJjENfTkyLDml5CzhCMgCAiJRSFGA1icbVcR1tjC2MBTn0gI+qepIZJXIM1c++r8CMjrK5yzISOLJcMqIwJCR0BjXDW1jqKqqXhBnu0Wdc3tVeQNTm8F5CiFYtOR8tVr4umZy0CVDBJgJiXSIlpmZDSDau/NARFQK3GQz1VeSEis4oofcXErNRbudjVAnAGUGL4wxedTjlrnoBYCpSHt1jUFIIpJi5NHraawwD4eDBlmc3IpijCR3BK4fXCf3Xq/8oMIhcO8dAlMM6YMPP2SWuqrIWD1cu34s+TQWjEKUOr2cRCFCHG9UCgBVUTg0mYA5sxgDaK0XBgJEEAty/fJlf9h5QuB8bNs+ZfIusbpWko4cAUCGTETMCdH3XRiGYblc9kMUGb84IQ7D8DM/+7M/9VM/dTge26F1vsw5J/VfMibmPsYMhMAjaR0R0SrgAm1/rKuShN/5zrf/zq/8ys31VVNaA4jMQ4xaeIy9qEkTzToXU+pC2B8OZ2fnf/zf+CO/+Eu/dHZ2tu3zcX/rm6oLEVXYJGdHpvQFTWM+RETK02UwMPJYp17M3dAGTMgs4Bid4R7Wg5OklHPOWgeTuAFNlD0lsN1DGWhGZCTdjUj/8MvSiFlrsBLAnLOh0T2VUKUJmYABIGW2IA6FcuTQ5qFDHgrIJELAlhBRUDIQMUhIibW5aCzIqz8dkIAMgBEgAemYh5yHlEMWBswZJRMyA4vwgECAkUFiu4O4l66CxRNjyLuqT72gef782ePHT179QZ98DUP/zjvf2V5dQWRLxlrKIRVFFXNOPIb9siyP/WCttWX12pMn3/md3xmGUBGKsJClcWyWs2BZeSQKOa2Tz4gXH334d/+Lv96H8MaPfomEwRbCEjL2Q1s4761DydYaTpzhEwKy8+OzaMdVATPYJMaUKcXN6cl+u7u63v3Im2+1370EeEVGxQmWy2VBvoNhOkA552xJR7fEGNCz9ezs7NmzZ9fXI8WMM3NKxtm6rlIMwrksixCCt27mfG63W1eMucjNzc1ms1ksFqpnlyeadghBKTwpJZ2E0P9mvpNtca4AYDSkJngieDgctBDFaXzsxYsX85mbJ+s2zQg1F1HSkwpThhAA2HvrvSWitm29dSKiHhc3NzdavJVlKQhq2ja3flNKk0ifqPKAFroqpKgWLqenp96XMcYfaAFqnqTEar1FIQRjnLU2p7jf79MQnHOz8IWWPQCgRQuYsRj44ZceM/t275xTyVEt6c9Xm9deey2HmGKaW026fmQCtWWCmwGAxmkYJBp7VGl2R5ll6I1RwjJOIzspsTdq7DyJaeA4HZQnfSft8N0/ZeY1rI0TPZk0S80gNLneAYAqeMQYOeaiKJClP7aaBbVDr9/XGGMRlR6i5Kb5grXwyzkry/5efJsne1AXJBIKQOasUYjugQiaUSLa8ZjWdOyH2smImDkCMgBwvnfUyigsaJHAT12Be1rYzjm9LGUVmckPNk/6MCKfgDP0peVWnmQ05ksNKeZJ8dOYO2R8xitndvn9aJ/zD8p5z3WmhQn3v+c5zGnkRDOC8F12pM9fT9PpQEH9fDu5GozxZ2LKCySFDodh6LpetZuV+HNzvVUeBhA5b2OMKWbNbFlyWRUM0Pe9Vh3ahQph6C+7mBe+9IIsIG3oFTu7vLy83W9TSoK8Plldb6/TTSjrKoReb1QIIYeIIihye33NKd1styGEkOJy2TBIVZb7/f54OBhj1suNJv/HdIzbsCgbQgzxmFIiNGKRs5Qrv4AanSFrAEmjkMAt8GCRl3UFAgbMct0YxL4LQmiN9b4cumDJ1NXicDiE2BdFoSTZH35ZOwIranTNzMdj672b1ZYPh0MIXJZ2uVwqf22IYWZd1XXtvQ+h3+1uVefn6dOnKSWVaFssm+VyeTzu1UJwsaitte0xqg/55eWl9sWdsYrEV1V1eXm52x1PT9ebzQZhZIB2XTo7W73xxhMFWVJSiYwi50wEzpmUJOeoJhNKSt3v96enp1rBNk1jJ4ciZm7b1hb+8ePHRLTdbolICNGawlSScs4ZUVJKyhFDxLbtN5vNa6+9dnt7qzWzxjed/2VmpXU7Z0JIp6enx+Nxs/Ew+ag361NjzLFrc86LxeL09FQEb29vY4zH/UFtcvUoORwOp6enwzA28BQvUEbY2dmZDtkAwG63U8aZ7gjnfEqpLOsYBz2zHj9+fHV1c7vtysJWVeW8sda++eabbXvY7/cKtylNbKYaKKr17NnN228/0m3Ytm2Mabk0t7e3PM26tW072mR5rwNGeqnX19e6rZbLpWSOMabMQ9fnnH1ZEY0noLLwRKSuFwp95pz1yNPK93g8vnh2XdcWEQ+HViEJFX9AxBjG6mC32yGiM1Y59cr4U57y4dAOIRCRkr1AKKaoxb6bDG++/e3vOUcPHp7petaAiSpNnRJP0J52RIxplTY4h0pdQoqP5JxnjaycTWb1wbaq+KGV2vn5cr1ea+eJU6ai0MDLk4KWPmhr7QyFpJSOx6NyFQHAfcoUsogYa+Y/RERlNyuwpbFYeyfa1AEA5Rvqzq2bRg/N/X4/bwfF11R2UkSMgcePH2m+ofwAvTDnHIMor1zFr1NKOn0VYxxCgiOMs24ptW374Ycf6oBFUZU6WPbbv/37lqCqqpur68I5QDju4es/88X/+H/y7xHi9YuLpvA3x/2isBwGkHw8HvaHbdu2OWS7WCDRy8vLxHAMHYJZn5yenJxtTs4/fv7ynQ8+uNnu0Fk0xgARYN+Hvg+61O+0GV0hIjFmZiASvdVaAOIkETkJThYIhjkjSlWU1y/at99c/e/+1/+rz739I88+/OALX/gCIv7Wb/3WxcVF0zTe1QCQAb2xTVM9efxaVRVkUZuCiLjb7VhgGNpFU/mi7MMQJhdlRZaJTFHWKQcG6YZ+zKMAx5R1EqdSJErTG90+zLxYLFSddlZy0AmJWcxNoWqFsBTU5jtXVas5pO7WsRWNRiXsYRLh1QBYrVZKgXfOpGlkHxEV4vTWDTEcj8dZQ986R4QAkjPnnBWVSmngyYcspyDi9BSw1gpP+oeI77z37v/r/31x3B+ctS+uL3/n298EoL7vU1TnSXznow+S8ABiDFTrtdIOEkrOyRdFzCmHPHPA9f1D6Lfb7X6/94Uxk8ajZk2MYIyLcdCVgIiIRkQ9m11Z0m63KwolYxj+FIwFxqnlqLinjipWRYn4CTTTGtd2o9GfEqtzzmgnm+jJERcINUSoFWfbDcIlAoVhkAAqwqm0nsVi4ZyLMQKCJaNcipTS1VXnvfoTVCrEocanmt2dnm7atk0pDoMgjvGQJhkQa2079Lcf3Ho/Qny73Q4Ita2ix4EwPn7t0Wazefr0qUab3W5XVdVms1EqnkySvwpqK4AZY4zRzs1CZvau1JN6t9vpQxER7RkruBxCUJxKvX+ICDLfXt0slwtjjIrirlarnCTnfDwedRHOvj4ppaJ0Bhttt+hhV9RV13UpZWMgcGywQkBrbeIcUySAEFK1LBaLhVXSk7V2zGknwDFPQ4IKvSnEY5yNMB7nXRicc+U0OQJAWhkqCHivpJktKe8EFmbQcwZcYMraZfLz0dkNPVR0zc39NARj7+ZAZ2wR7j9mXa8aR/Q76fmHmVW7UAd+cWIZa8war5/ZmjGseGMQkRB1nM7RqGPC91iKP/CaTMBHr1iaSDdj23OKPvqaZ9ywcpq7R8gh9qNmMjAzsCAzAzKopIb+tdxxuhEhMwiK8e711980xhgwKJhSchZBKCdhjnPtPV88Th0FnI2JxivEsUIiIb1FJiNQEgEBRBSGoi5Ozh68eOdbmRkm+W+4Vyndr2/1RaO6olSLYt+F1eaUnG13HYPx3osYkajKkYRo0Xjr+jzclVLTixFYWO2SAMAYV1W15kMxDkTjUlSRIP1bzXjwHqNKU1LjixnrwVFhA7TdYsyrATjC8ef6KQw5p0xExo15v2KOCgTnT8o66x/OWdq8ET5lIcWLZ0+7w7YwsD+0XdcpTePZi4u69EAoiN57xwkRFQNNDM45yGxIjOYroNZLd3QtYUmcc86C1sSsEEXlC5Twrd/7rf3N9bJZhP7Yx2TLigWYOY4i7JCnTa0ZsyAcj3vvfdsNKTEDWrobGf7xn/iqcbbb98bZJGwABVgS9DEmZjRU+IKTpDSK4qUURNBaKp0/PznNMfznf/WvP33//VVTAwfIuawKzgkASCDGoLkmAJRVZYzZHY9t1/3UH/j6n/63/+yPf/VrlzfXV/tjsoUYy0jaEUHE0vkcExKNO4EZjWGQlJOIkC3wHuWcR00ea40ZoY9051Gp0UlGaSrIE99ZiXhwz+EKURVx9ZvqHMBoQoV3QySvZjcnDaFq/JKiklhzCobIqA5LTiTZWHDGFt733TF3R8id4YCpN3nwBlAN4ojQWBbtDLssrGTKgSSmTzn4mUisahQzSyJIRNlaJAs5IzACG3IokHjIORGCQyCK0A05uzigK0oM1Wq9GVL6/nd+99mzD370i18pfDkPv3/iy6bEnD/88PsfPn0/DAkzQGZnxpvmJgWhmYDgm6brjo1zX/7yl7/xT/5ZfzyuVkvODJHZJSBnnfXe+aJAb4hznY0gSnd49u47/+Tv/Z0/XPknn/n8fohdnw/HfhjyZrW2jQHOiALC5BBkPmuQyCCSMRbNHV10an3lnMQ5k1JolrXA6cnJyfD2NsG3fvhrdvveLAh4bHqBepUgae0091aZOcbwpS998fLyUj0fdrdbZs4hEJGOZY3VUWbtol1fX6/X68RZsz3Nt0I/+LJomkY3vgZ5a+zckFPD0pQSA1LOIYTSK3o4HQrMy+XS2nHS8ObmJufcNE1RN8fjUUUYdKXrpiAilbjRGn5RN9fX15LZuDHdN8Y0TZNjUrKDttA1K7LWZmEdI2DJuk4UsN7vt8aMjojKntBZNqWeAUDkDIYKVzFzDqMqiPJKtABQkHregCLSHY5HHq1+5vbzPAgJarixLF+5OU5OT81p9dEHH3rvgVCv/7Dd6UidHiuEKKihYCQaa5XCUy9fUyElw/5wSoFTN1d/XzUf5vAyAp334WZN8Cfig0wn75ySEdzx9OczKE5LDjIDITLmnEEEWXhqhimvakberbXb7U5Ezl97GPohlMEYo+lBuGfbrb+ZJ5kygLvruosxs42eRkIAFjHj/R8HCTVC5omrAvfyRiQR4ZTG7zJnOESUeEw4lZ0whmJCmGwG5x4t3qP9IuKkPjHevfGsn1BjZtaMcc7pVTVrRn5hGmiDif81/2T+4ncJgIDQHYY+v8M0YiaIKCgGfzBPwIlPPX0XvYVCqKiNfnfMwgSqqjVmp/OfOzvCN957Y6z13lp/crZR1LpvB41IVVEo2zek7LxrmgaY9/t96f2iWSZhVb/thq6sbBYu6yLmkFLKwIfb4/X2Zoh94gSGkShjXK0Xx7bNOaYcFsvlMAyInrl99Pqj3fbAzIvVigFyzn3ohmFYn6xyzinHY9eerDdVVTjnOKZtdxxiCCF4ckbMctFY6ziyd2USAI8NN6Cto5xujhe+GCpXtf2xoGLRNIfjcegDGnLOi2BZVf1x6GLYbDbWF9i1BRXMbD4lQ1utVm2ZtSCsmlp1fkTk8ePHMcanT58K0WpVImLbtmdnZ3VdX9/eKMVVIQx1FOy6TovwsiyVDqwSSbnJVdUwp67riGzTLId+KyIq8tsP3WazAYDj8Wi9m2IF5pyHPkTOOee6Kldrl2Ke60/FZ/u+TSn1fatPX5UlT09P9VL7XmKMJyejK9eMNQ8pZhAAUODMOVeUvj12Y1hjPh6Pygw9OzsDgLqu+xjUElAt71Ia0UaN2MqJVhejEJIeWCmlq6uroiiWy2VVlbO0S9d12+02xszMNzc3x/1hu+03m6quS0Ioy/L29lqZJcysWsMvX75URWwNCIr4AIAKa6gMlF5AVRU6stM0y7btj8dxgrismhhj1x11snC3OzRNo7Wk7nelOvZ9//nPv2Gt3e12WZiIlsuFcw6FV5u1stsUhNIDSyPk8+fPFQ5WxQlnrJoNNk1zOBxylrOzcyK6vb0lIhTYrNaL1bIsy75vvfcvX748Ho8nJycppdAPcQjeQ10vmDnn1nt/eX0oC7PZbA77VtvDzaLScBFCKKVEgJwFgB48eHg8HjOzDiHd3NzondTaHyYVke12e35+Wpblzfa66zr1h9CnY7UiyLksS0WxFbYGAB1/kanJraAJorRt8L50zrftQcVDjMOUUkq8WCz0AA0h3d7eppTW6/VmsxEcbe3nQ23uLuhaspMUeBz5QE7Cq+v04/F4tCP4m1JS8AURN5uNGmOMA5SI3nut5phZsw79ZVcUOaWmaTabzXvvvffxxx9vNpuYosg4B/naa6/FGLUmVSRaOzoKGfdDzxMYNMqW5uy8zzxiIFN1f3d+9WFQruJqVRPg0PeI2PcxDhEy/Hf/yH8nHva729tF3XDoU0ztTQ8cu8N+d3OdUloul2cPz+vF8qOnz6uqGWLyYMi4EEJZllfXt89evDgcWgFtWpvCGHLU9/1ud0SEpildScxsjNGbNlf9KkasVeGECEFRFLosQ0gIRgRjCH/wD33lf/mf/Celpb//X/9dSPGNN588ffpU40YfUl1ZEawq0CcSY2yaisj8+q9/4/nz58vl+tAPWSBnSZGBxxpwLrGJCKd8FaY+tK46mRrYM8t+/gXt/ei6UqJr23ZejzkAAFgul13XK8tB33w2ANPehgLTwzBIFgJCQef8iE4AZPVnYta8oizL9Xqtug1660QEQsg5qi2TZs5TeqMd9olzMCIYoxTDnKPO+ub6t4fjjoyLMTYrQIPb7VYkxzQcu4M1PoTgfZkkx+444h6GNqebnHNM0ddV5ZZJOKaEhnjisMOkIo04mnv3fc8sANp4G0XeFAyx1ovg8djFmO8nbCEMegNjhJwlfgplM8aIlUFMuu9QAGU0jNH+rp6zpGZljJqJEVHICRJp1ZPu6fJpWrXdbg2SqmMrlK+eUiIyS0jpO5+cnCDizc0NWZNjeO3xapQZjEkTeNUkJKK6LrVhr8tehCedkBHj1lunIqvH47Gua7Ven8+CxWJRV+Cc2+/3AvnkdK0E5P1+zzEhiUC2jgCprhcxxn5oRSSmWNUrXXsjxWdIIEHjnrVWke4wRB0L6/t+tVrp8afrf7TMLauTk421ViMwZxj6qMiVMqB1hEtHptruEJMprFuv1yklxtEQZY5RYnXukOaVaY2xOH7Z8V5owXwnHAcyI/dEpBCSbsuuHdQctm3buq4zSOQcYqiLGu8xTfQk7vu+KKr5rRLfdThnyEZXg46s6sd574e2E8KpGMN5IFdfhsaOCk5CHzlnkbEqy5OvK0+ORkiSJg0UyXrUjfL2zIz3aFA4zXLOd1DrEC0yjDEImO4cEV99jAnfq6xwfCu8BzXOHwGIMUiEzDm3bet9UVXVcNx572N3tw9Fsg54IoHkUQqQiAiEteQgdMYOHHLIZV33wzBkw4AMo+AsIqaYEdE6yzNqP13V/erITIHbGIMAaLSI1hcjUAZhHh02lfigmVOejGLhnnnOiN3OZTGAZHCFR8QsvNycJAEhRLApJQJEg1lEgHOWFCJTSO5O4BKA5lTJOdenAHk8+eZjYCaFzRD/HJhmbTi9q/cPqrmzot5fMtqRfcKNcH5l5pSSDgAwc+Ik07whpxxj1K17v77F6cCY4QzNU6ev9modg3Z3e/Px+7fXL0m4H2JZ1k3TeGdzVFU+ZPRIQETH/VYVgpKAIcdpZGkxQs6ZQXSC+9C2kDFDVq0USzlBAiBjzOG4T+3u6uKlN+QtXWx3AzA5H0Mfc0g5gVgF4fW79H3r/co6Q9ZyijriHGMKfajLqo9xsVx+5StfOR6PKSV2hpnJWkNWGYHOGDTECIJgnCnLMidGayRlADhdrTfV4q/8F//37/7e7y3KwmBGIHIU04A4LmARKYsi52yMAcSr25t+CL/85/78H/0T/3rM8tHLF0KGXMEsvih2221Zlga0bzTOBQPQ1MEgA1CoRdXUqBgjACKkZIydN0sGEGY98/KkQY+ILPdi7jRRjmiYk4xqqpmZge/Qh5SSgte6cVJ+NeCLQIgo4z6dVxNZBINIwICMyBaAeOhuXkqKkAeQiBIl9gKZhXT9CwIZFoGYxRXIgKTT5SHGIbzy00cFJEAUQgHmAMCWQBAJMDKzZBGIcTRHzpIwMybOIDCQOEzW5X3heaBy4Y3LA/76v/jHr7/5uSevv/kDrLEQhsubFx9df1DW9fLxWd/GcBxwVIUBIRJAXxYlkWqcDcNwCG1dFQbk9deffOatH3n6nW+nlAxAURbGoC9dXRXOGiAxVgpfrLERhHq1ZH76/jd/7zdPNieLVb06AYu0XMDKEllBsN6RsCHMxCIiTDCOBY3DcUBjx2gmOBBRhmwsGmtjyKvVitC+/dnPf+9VcDOBDcfjolgOpjNmbNOquAQRqfPSKNdrCAAePHhwOByur685Ze89Cig7DCf5WmOtFjPr9doYA9Pp6ZzbbDbq8DAMQ8wJEclZRy7lzCmNTJycAGC1WqGxilnrOxvjQuhVdlMz7JxHmE/j5/HYhZCYOQE70hsyKNej73POcblsUgofffQBETVNdX17o6mqIs6KYSmzoCgqa0c58hyyzu/LJOuhzfw0+RopGphS0nzucDhoUA0hElFROCIiZzklTncAn6aAynrLkc/OzrTSU7ZLWZar1QoRtfjR+ryqqgyS0qtDtDVGSROr1Spx7rpus9mUziut7K4K0q10D0mkaZwTpi2tB1bfhxTi3Oy/Q0inbut8nCGiGmboSaTvw5O4MN5rX/3A58759+wkOK7JMREasVpUy+KYtPsa+mEYBk7ZkhERoNEjOoQoDCmlOISiKmm6yDw5PIuopfMcEqe0aoqo96/tfhEIiIIjmUBTeUQkM0516K0zFu+TiFF1ru7h12SciEDmxPfuDKHeBKXzp5RQxBhjycypEQCIjA1+/SBEyRyZGcFMVH0gawSBZbT+00/XykcTknluL4PkySqWiHJMKUYebfTg/iNDHLkYkrPK8Y/Xw3ePHsGSHe+bYs3jyGpmZtYJMb0MfQT6vazVmbjJgYBZ77ojZ4zphgAATdO89dZbOb0HAH3XHfbtdruFe3ZGSrACZh2b2G3311dXuphzzgLWWtPFjrIcu0NRV0Manj9/XhSuWVRVWQ2xzwEAxDpkiXa0XTIxxi984QvH/cF5A2Bubq+cc64oqqYcYp9SElAZzVVVVUMM15c31lrjnbGkkp2WCCJKDyJSyBBC3B321trFauW9B0YrsO8P0bBflFVdhyhE3no/DAMatNYQ0ZD6PnTHowmh95W34EIIRl5NkOy6dhu3Wshom1AzTK0tm6bBSbNFV8s8gqpgzdOnT9v2UFXVo0ePrLVXV1cPHz5QKFmxg+3trm6q4zEVRcUM19e3zKh0+67rYkjt4bharZxzMSflW52fn1trd9v98Xh89PoTU5bd0LMEYw0SGLI55z4GbRohgXOGDBZFYe0y5+xdoUMkdjpQiOjZs2dN0xjveHK0v7y81KfWdV1MwRgjLMaYZEhE9vu9GvcZY5q63u12+31b1zWiGOOWy6VCbHo8DWbo+14/68WLFycnJwBwdXUsy2NZllft8XA4dEOvN5aIjOGiqAAgDv3JSblaLVer1cvLC03Jum6w1qt7nnPeuUIEt9u9djQfP35dRK6urhBN34e+HzQb3O/7uq7NKITae+/ffvtHOENKaRg6Y4xm19fXe0Q4OTnRv9IjSQVtj8fu4UOjaIXWsGdnZ5eXl33fN3kBAGrWtF6v27Z99uyZkgSV4JxS0uGYoeuHYdAH2nXd8di+fPny4cOHGiIUpMgxbbvbGONqtfDWvXx5bYzxdhypPD9/TX//t37rt3IWENBboaf/8djlnHXaQFOXEAIhHg6H1Wr1+MmTtm3X67WmHy9fviQalaB58j1ar9cnm835+Xl1Vb7//vvWWo14zjnnvYgUzgMAihI1stbax+Px6upK14MW5owsIq4shq6/ubre7w9AsFjUq/VoMqkCMn3f5ywKAgLA6eZEl40e+jj1NfUEn8OgMC6XS2EBIUBRRvkPvw6HPZ4gIu73eyWr0mQME0YC7+hMq+8MAKqocDgc5o8Dycbgu+9+/8WLC/W7U/7ybr8HsCH0zjmAcZarbVsiO1820YgS0mSTrkD8DLUzs44TWeeKovBlMTeqjTEGSbwnhzdXLQn8pf/xn/2FP/TzNSW7WDx7+vH19TVkFmZJMadwc3VFBj7z+S+cnD743d///Y+fv/RFtWiw3R2Zk7X+8uWL3/vWd9/54KkvK+ecEOoZ57OVlEXAGHDOz7N6dyfRBHfq1IUiksyp7/NisUhEbRsIiTmmAb7wmTf+j//7/0PuDn/zb/w1DsPXvvKl3e1WQbft7qDb4dgPOnhXOH/Yt6vVYujCN7/5zRfXh2LZeFdaAEsm56jyYiouNAyDuvXg1Co2FrUxoIQGEanLqg+Dyh+pBLBCbIpOKkJnjFGlhbbtnAuLxSLGUT9KaaSnp6fee1Xkp4mawMyI0Pe9M07XZ11WMadRi5WIJ+kb5XfqWzFz1w26LzS4NU0jIjc3N103OGc0zpCBcSjEGhqVvhKiG2Eu5pyjIaqqSj3Scs79MJQlEkEadAUKTXodgLGsKy0GY4o6ZICEQwwh9JaoqAoBgCTWO02w9e4JJwTOKbRdpy6pNIqT0AwoawhVionuET0m8iQyIykbQANIgHEIwK+28dQbTkQ5R4M6Io4AyAx9H7z3KQXNSfTWDX0UER2znlPNOZHL0zCEwZE3oIOM8y/o6awHny77p0+favdR14OzhXPOUHQImqscUsJRSM2qKd9qtTKTiZ1Mklb9EEGorPzm7NRrEklYF/XxeMwyaiu99vDx5eXlB+998ODB2WJZv/nmm8+fP1drBDO5fClWqctA7yQiamKmARYArBmVQ+avrx0yJNHr0aayNlFmSpM+rKIo2rY3E5I24+kjBq0CcZL0/jRlNaQ4V3Az8p5S8lUhBxaQlJIWIzlnX/ioWpHCWUCl/e7VM5ARbYxRBV7zxHgPoQ+B1UtuapL3ursYQDcVM0/GSqMAihm9HUccUCaHQJgGppS+NMO4xhglr4EZie4yqgKN2TyhNcbIuIZG3Efp1fcrGZ46+dYpZiAxRqeeA/YOSeRpKoon4oyWOlreeOcmCEllo0dSNjPTp2uQ4j1weYYkZlrZ/E8wI+xlQcRPnjx599tFSgkBjEEeJ1xHfpJMtGYCpLF9QESCYJBIEHKW5XqlQ3CGiyQeyUNu9Wp1W1rjwPJMfZrvgMbN+9XveIkiLAwChAiAxli1O7beuMKvVqvFYqH6fTh122as2Uw26zg1oplZBWeHkMqmPnlw1oeUGZgTCFmDxuiALeSU+n2LMVcPVjDVn8bYxWKhbzWbVOieTJM94Fylp3uazvP/2klz8H4ZPz13noZxRg/Q/CkWE9ZatGZk1E9Bdoyt02xLyElyHvuWMDpkKlYydUfuOjrzavmB1+XFi/6wLZxFgH6IRVGgQOgHZyznxMDkSJswqnM38rNSEoGRkuBsSilxttYgQAghh2S8c4VDREuGYPRv9dZ9/OLFxcuXp+vl9uKi6zosyiHmMIzdP8HRr5JoRFG1p9f2oRuC974PPQCUpbfWXm23b7311htvvCEE5CwQJo4KF6jquCAKQIxRC90YY8xcAIhIVZYO8B/9g7//9/7Wf1V7z3mIw2AdIiqrmXMMZVkiQAi9HpZXV7dlU//H/7P/+df/4C/suz6JiPFCeByiMZhi9N43ZTVDVAAglkZxUwAEsjCKXaRJunTE8ozKY90pcOmjHFK0OccYAdSwDZk53+nIj7PYKbFIRkQgzDkBAPAd5dkYMxLzlOb2KcHEIFlfMHMWNtNaKgsPmSElkeSIjeTQtcPQmduXAIAg1hI5FKKQYp+S9z6RyQwSMwBQGlejt6rvmT9NuxkRRBVPSJgzxAFFDBAiWgRDzFYAwJBJSVgyx5wzExEKGLA2HCAadsX10wPVS6qWy7NzQvP843dfvPxYlV90XlsEwPA/e+/Xrm+3rz9588033143q+0+UMqbou77wVhTNjUQ7Ha7y5cXKHmzWp9vNjFGieGrX/6xD3/uZ/7m978HwFVTC2bjTVl5711psShdkpxyGMBYS4uqPm0W/fF49eF73//d3/rJn/vFjLZsSnDVkHJKiYSQFOdHBCOkFNRxsyCiMBg7hvp5jztHloCZjUUEOrYtfkrLipNAosPNnlajGJRzTr2evfeWbI4phFBV5dD177/7Hk3GCWTHvtrcSNOUentzqwex9t62u22McbVa0QRe6RwoGvLex8lAWQ+CYRiGrtW3aspK30d742YaDGya5ng8Hg4HotEGCkfUEhFRJ84K66wdg7NCbJrgVlWVwhhaF4uFVrk66/qZz3ymO7b7/R51lJXIeqexd+72aVUw4iM4Dgnqz8ebyazEhJyzL0qtV2faqRDOxtaaOjvnLJmeQ9d11WrBkyayJrgwNU1ViC3nHDnPsOMPvLbb7SXvckpKG9eBWcijupxeAIJBZCI7soFEZpRwjjPzL2tGyCmTnejJsx+A6nXmTBN/fFwD96zz5rfSfEZE0JhZ3kruAdDzuZwnovREUYesvOYJC9b6bei6lBKOKiuOmcka7zwiHg8H530MyblM6pYxMbLnJAc/CX/Po6w/cEna3JJZgEKYQWgy5bPWKnw8/i4yM93/1nAP1L7ba8ycWY91HKHwsYeRJcGY1wFMZQncM1Ec/wWZ+Y5JBDgOMM0pBExZ09wBMpP5BwBkEM4Z7oPggFkvDManMKZ2IxA8OiQLgIX7afldyqFn0/07rNk/TKIo+vSdcwKgs8xjgWEJRM8gZk7WeJxG0/RKyJrFYtEsKtTZKee895KzjlImlhCCMbRsGqUxvrx4wVkIYIjDarU4PV8v1s0wdAwpc7zdhfPzs7frt168eMaQXWF9uei6I5GJMaq/dNu2hfc5pS9/6cdeXjz/jd+4ICJOgERDCEXlFUgtFxUAaB2rUasuSqQx9bLOGuuv9zdacyo90FZUVUWxsDkPZGD1oJY2GqAceb8/glDhPTF6cilHFI4SFkVRqayfI0QWNmRNOLy6F6sFAkzzfLpgdAurqL3Bsf7XGW1mXp9slGcAAA8fPiQj7bHTsK8KBmpHdpeXCu53h7IsCw8gqCw8pVg+fvx46DsNs8bZ+xsn56yLvCzLY9c2TdM0jboCJuG6rn0xChUycWEdMx8Ou5xzUy0Xi4UiqgoB13WtRwwYUtUFrde0cBviYKzGfaNbLOfcdcfVapNzVlqutVa1p7uue/DgRJeZNpC0vdcdjhpyYxz6vn38+PGcmWup+ObDN5X8pQdB05jj8YiI6rL48uXLmJPiOKenD7bbbdu23vvb21vn3BtvvPGd73zn0aNHIlLXtdLwFe8DgMJXWmNO3DSJMSsH7fTkQYzx6vqCmTeblfe+KFRwkURE22HG4H6/L31xerrRVYqI5WToVJZl6Yubm23XDVqbqCDGvIsVadrv90oVNHVdVdXJyclut2uapXPFzc3N9fW1zjLrRSoAhIghpPV67cuCAImoKKqcRcG1s7Ozz3/+R9955x2REdAsy/LQ9bYYVTF1CVlrr65uVqvFw9de2x8O+8Mh56wUXSKLaBaLJXPa7/fKwVf1jN1udzgcBHm2RldhUAZomubls+fqCVzXtSWTc1bokJmV3l7WdUwDTpxTQ3YYBkRwziiNTveR98XV1RUzqE6X1gj7/V5wxJjGbt9U8ekb5iTG2JCDrp8YI0s6s80rN6/3PoSdKpVrcqVva61NOccY1R5TY6P6GSp1NOdcVZWOk1szGoCv10tdOTHG4/FYVpWOq6sIwyw9qmRPBUC9H0NZ23W6QfShWOuZ+Xg8ikhdNYCiZUi9aGKMOWsq5fbbHefsjTMGfvmX/8xf/kt/uW+7ePn+frcbjq2EUZCEAH7/9799sl79/M///MnJa7//zW9+6zvvNIsFAJF1RLDbHojC5eUlABAhg5BIzmMPNUZEhMobIRyGwXnAkX0CwqLDMnqrFc9KKXlvRcan2R4HRDDGpIGdgb/wF/7C/nb7jV/758u6+eof+CkEfvbsmbW2DymEUNSVMQ5g4CyqapKzinVQ27ZKBXPOkbVEddu2zlJm7rswnqoT29eMVlVjO9ZPHl3d0KfICAbBcAYQEuCZ1T5CCmhjyN6V1NiU0m6303R3wmGQmVU5SpsTM9CmWITkmRsHbd+pGJGexZrH6trbb3d6sOpxpqmDpXGCqmnq6+uDMZnZ6GCcSE7CVoiMniojAjQfOjnnlIKOBuoG1FzCWSuS264ty7LwNqVEiCkOxricw3RjOcbRirAqSnXPPnat8c6VhUXQjFrrAmttTElTOOMd8OhCkVIGEOtGfRtN/5TqLiIhBN07pfPMEGOua8f3JtV+4JXy6MLqvS9L27ZtzmmGUwygrxeK2Ci6mHM25BBRT6gZjzLGqPSic27oer1jiiOPB5nw/A66r7W+0M6HdgGbeklEypxTT2YiKqzje6xefYgppZxFn6kGzKpepBDVbCbFpDdEt0k39IpqTkayK0Tsuu5b3/qWCkDNZZQSfAFAo5PSZbQzof+qCYYhO8OMy+VSr+329pZozMYVK1POtS4Pb0bryxCStfa434eUNFvQo39mUSAJkl0sFsfjcd8elfWsO1T7eYKQOJe2Ast6JCGCQWMNlWXJIXjvLSKOOr0gANkoGQRHvF+XzjCocI+aGll1tlbLXa2974oBIjEG1RDMKEyep82PNFGs3SRtPGdI98sqXRApJYejgJEeBjPWM5YoRFb34cSZ1/8wxsjESNYrzDnDbHeeOedcFJ4n/QRN0+XegPxYijCP9OepzEAWJWgrr+fT2IgaEvQi7YR+molXyzjWBimllLP3dVmWLKl04DA5551zKWTnXOJ7Y5WoAy5gkJQfqnfYGItgBCEzDyGcPnqoEi3OOWCLZK0rZ3BTyxJjJ+exqbzEScucmfu+N8aNLZSUWJj0sWUGkSQpE2i+NQxjY1CzkHnXzSjG/ToQJxp1SrmqKs4AArqsD8POGGONB8kiaciRCIuicEtjGQJqQc0xxpxlbrWNjYrpVvMd+MvzKrKTuovoRMYnwOXx6BpSzjnrOTUnB1NcezUAGKdlNoZ7ljl5NUhu8rLAqRSkiWqtmPiMhqi/lnZ6XvlBV5cXVQreUt92mjq0LQvnoA65gJoihxCurq60ws+ZY4p2qsmnkyB57wrnY4ylK8hZIAgphpSsCDMYhCHED997r7C2646K/ggCg6QcRQStITB64OopvlqtVutFyhJCWCwWF5c3E3mcUw7W2kePHnnvk46xTDKdJGCndYjeemcxMyJmkaoq0xARYFHVzz766L/8lV+pypKQh9R771hS5CwgzArjJu+c4kHb7fbRo0f/0//oP/rKT3zt4uY2MWYiIWTBullwDiBSWJdz5pSzJGVVMzMQAgsKIgKLQQYSyDDiAjipRM2HutzDhnLOkWNKqbCFQsYppSRZI0bObO7EUkazC+ZMREgjHXVqlngAiFF36KuP3jyJb0pOI1aeOQ3BWeucSTEMXZtDl2LHMSxzN04YhNxHBEIRYLRdEudqyDmFngREcsrBAKYAxiISCr46mmXJIQ1EREIxZo+ZhUEEyQICUk6omtHJOjSmMMaEIaIQMxg0hjsgSBIEfRp6tu7m6rJen6A1IjHmnIQTZqVoEuA//+Zvfu+dd6tyebo+9eA+/M4HP/Plr/3lP/cX4r6PoX/67ON//I//0W//9m8f9wdP+CNvvPGL/+3/1pe//GUjPHTHX/iFP3Tx/vu/9k/+STe0i3WDRoxzvrDOgCUCydaZyi/qqqi8C0O/u70pyZg4vP/db732uS/GOAxDsmVtrY1DIGMTs3XEo5PtpD+QgYwgUU6i5rFj944RgIfQIRgiA4iIBvDVMGUKOYVUF2WfWmNcCEEyrzab0beaRssRzWIV3XOFJWsks5nsKc7Pz3POu91utVopOT2lpMThk5MTHXaWzIfDQe3my7JkEO+9hEFXuPfueDxWVbVeLowx6sESUzg9Pb25uVHYVyWP1WdZs7QQrEpP5MliZST7h8icFDQZhkHNeBWbkAnCJms079TD4vr6+vLyMo3DBKbve+67eXQgpRSTkmVYKVratJ7ZBBr0dFZX/yODxvkxSujU9u3Vtfawlb2CAta5plk65xgkyYgDzgeiCkHotHVKiZz9tLR4ZKES7XY7ratfvHgxtF1t3IsXLz7zxo9MqQrNkYTvmQTCvYJZfz6jHvdbv/PxmifUUvECIsspyifEuwCmQaUxTQLBe/gy/IBcw4QpG2M6xRyVmMyjRIyelCkErX71rNeD1Xmvj2m3252enakBFyLocTY3ubUYS2k+43i+PE0+9Q6Mh7ikuagjItVipsm/ASY1bWPROzt/nfuv+YvrfQvDQHL3NcdbhCP5Luess6qkNXNKszq2ujrzSOsYb6+fnF0FJjVDN6oWjhTme3Se+ZJm1MwYw3GsTGSSt75bS+PsLQoiTH84f0eYOpT6blpWK/d//ghEVMmnfC+1M6NqM84XAywwWRTMqfXofYqYcwSAx48f31xvb29vEaAqm6HrdHG+uLjMOff9QABXV1c6y2nIGmOaonn48OFiXbXDsahN6JPx1nJ++fJlWSrfv12tliqOUVVV1dQpJQiAyOrk+Y1vfGN32HZ939R13ZREVJBLOT98+LANXd/3hXWIGFOMQ9Ap1H17zCnpiLErrIlk0LKRzXrRti2QgJNDtzu2B6vMHeShj33b98fEASzCcrl89OiRLaohd9aSWDMMgzMGBba3txGscTbGV8PNKcZyU+apZOj7nsgCEDM4V6SUZnt3DZIaZK6urhTDNcZkDlVd9kOnYISKJiu/KYQkgm3bV1WlbGjVJmJm59xqtSqKIgy9jtNpUTaPsQNAVZXH45FAYJLY1vyTcZSgzTPxwllrqetG8VCV+NDwq251OmicQebcXmOpfinnHKsYfZaiKApfKMVMGwlz4aNnmXI8Hz9+fH19ba1VIYLjbg8ACtUhYln6t95683Bo27ZdLpfM/NqjR8fjcb/fM44OtACgR5JWLierk5ubq5QS80Vd113XqbJ8URQffvjhft/m/PTs7OzDDz/s+76ua6WDKavROYdUKWmmrmvNtL0rFd1WkFcp55vN6vT0gfY1dbMYY85OTrWkBSA9c4euL6py5J30w9gOsXYYhouLC0Rcr9da4erRrBc8DENT1THGd999l5lVG9cYo4wudZ3Sraqn8LNnz1arVVWNGrIiqM8ihHB7e+t9sVwuF0uYjNfQWluW5el6tJ/S50sEzHx7e6tfX0mLl5fXFxeHk5Py9ddf/+CD9zTvVQXbGKMwd11nvTk7O9Ocf55Purm5CSEcDmxtWK/Xq9Xq6ub6cDjorVb2nPd+f9hqalFVFWRQWXPnTdf3zJxyWK/XqiutIGBd103TFEXhjFUVb54YIVpb6c25ud6KiKqEz6V93ZSpf7UdWVEUnFgHxtfr9X6/DyGURQGIZnIB1aaLIlNVVSkKo7f0cDg0TcM5amfr7OzscGhVItwoKjfNvanyNRE9efLk5mY7y6HmHNXiWHf3DFaoibFMrd+iKAQn+gvRYrFWE86iKNrjkQh/9HNv/fK/8z+0ZL773e9e/fa/AELnimGIx64/Ho+73e4Ln/3CH/j6T69Wi29/93u/+7u/74qKGUKI+/2RiB49evT977/7/e9/f98OowEQMxWF2pMw81jCIA4pShDnnDFOVw6wZBkhEd28i8WCCHTBxxhjnzNAijH38Cf+1B/93Oc+95u/+quH3f5nf/onby6ef++73/beZRE9EVxRQYa6rnmiiHrnYoxF5b33ZuhjjKnrqqZRlzylhBtjALymJTouqWHNkJUJbtbb27YtCOlMttI2AaDrOpBY17V3pdgRU1acYRiGEHtF9wBAcef5acokozcV9aKUEbUhzjnHIajjgiYt+qE3N9uy9JriosI6E8HWWZKJWLleVwopKv3COdcNUaYpJe+9MS7nHHKCzM6ZEKNaTa7Xa2aelXlTGABAqdaawOScAYhzNEgsvGzqvu9VwMAWLmXuum6xXjGCpCCSGbAoChVj1e1WlC6EcL09lmW5Wixw8gAc0qhyM/f1dUmb+9ztlHV0Qxe2S68QVASAMHTJjDti5OJMSXLpvIjEfrCFV6BGJsDdWnc/eR7PaL5D+fQdVPNA81IV59HOgdIN9W5rkcXMy8Vaf654UbffqQqHgls557ZVLwR3enq63++1bWMmKdch3Hrvq9IXRbFrO93paeJ9axmlUcKQKYpibsXph/JogFlpV0CvSi9Ye2B6wXVdL5qVRuMQQoy5bXsiMJNX/MgCY1bocgTo1ZeFuSxLEWzb9vZ2v1g1t7e3Cs3piJJe4dXV5Xq9lskIR++GiGhPt6wr7/12u+26rsZydMFSg187Dotbay1YD6pJA2AAUSClHJGNMcAiRNba88WDCX9BwUmHm0SrMovELCAch/EpklqPiWrejU+ayHJKROSNBwbOzMjIaI0FTymlEAMiEkjlnU47GgBkIUKLRIZEhFE3J/dDWxRFzBnBEJGxNqUkkBFwHAHTmUFEFgExCMgpW2tVuYL70Z9E74IIGrRDPxBpWhCZ2TmfInd91zRNykJgjDOh6wDAoRHJ4VNcNXV2VguDISZLo34IGOIMhOS8sY5zlmEYGAfjSwNWgLL1rjkT+4xDgtQXBllSBAT0iGiRIGVBHYMlADRoRERyb4zJQmjKH3n7K4vTN49DEoGyMv2wDxmttc46XaM5Zx0FJSIGCDECGjI0xDwyi0FyDh4sABTOALgQQiZiFCQmAgiRs6Ax4nx9cp7RAFpLrm3bzFEIyRoQQACOCQgBMXI25IwjyexttBL3IdWrB4z+0HZI7K2UlvPACQxEpLKwzgCASYIGRNSNjBGEhNMQcs4W7wp4yUwoxhIzR2FjHBJCBnLWWKsFnua7MLUKiAitSZMpp4gQGW88WPDGSxJjjORXo8ApDjlEnAelBSWjA5tzNtaolSoRxZSstSH0uj+VQzFBkCgiOqxdFMWnaPaCCbGx1khsw/HyxQfoqwePniQwNy9v+xidg4IgRXGCCMY4e3M4FmXtECUmYwWtSRIGiL70Bh0OWEkFZc6ZcwQQZBE2IBDqwoau2988R8pt6ndpQG/Lyrc325A8oYBkkOQsJckK4zrrvKtjt8eQDBWx5xDZ+rKE3jh3RP7yj3+lWa5eXt848iXZjALI6ltIniiys05EIoqQGGeExNZUGUPp+P/9lb8m+yuKQ0qxrsp2SISOA4AQ2N6RWBIShmwur7Zv/shn/9J/+B++/fnPX+z6QI5RkVxwRKHbAxoRsd4DQBYmMMDISdtjoxNUhoxWyFFiBrnT0LwHGSOAIAIRatCb0QdAA0TCDJzNpM3hDIGAMXpYGkvIIt4ZZkZGRyal5MggQdsdEbEsy5z5U8VbBIgFumAtDUkSYOWqhsDnHoatj7v+cHvc39SIztie3BAzjpS3qBhuzj0iRjl6S157LcC6K4Ke+s59mnZzHGIKo/wIIkbr0RAwMgiDpnksnIhz5Eylt5ULHUEGJ2AzxeIhpFhyXuZkIA+7Q/ZFDjflepOMq2wR0ACVnbXULJ7f3tw+31fN449u22++uMZD3v3OO/3H/Md//uMfeevh3/i7f+e/+rt/+9GDR1//mZ9987XXz04e9H3/rQ+/I0Xxk1/92uX+UC1Ofu6P/8mD2N/59d/AI5wtl9ghS8LGhtwVtbMOHz62q3pps2u8j9u+64Z8s7tuv10VfP7WZ1fVqkvHkFyJJURDaI9w5Y0VEcyIKZBAZX0WAaEhDYyqCwqGEA3mlI00IgLChLhZN2a5e/Vd7fA2JAipdeHktDYOjOGbm5tuaKuijDkjmTRwzrnwVQiDc4asWroXOWcGIMAvfuGLH374wc3V9XF/WK/X6hTf9p0xpvDFarUahkEQD22Ls2WlQByCEUjMCqDWdcnMfRiIyDibMiuzRq+TAIcuOOcIRBCsxaJARujj6DdNAkRAAAhivE0paZ0vIn0fvHWb1WK73Y5tbIAYMwANQ9SA/Pz5y7IsCYyItG2r8O3QB01YtdLuh+7k5OT1119/+fLlMHDO+XjsYozLJTbNIqUwjaYSIipvSBOv5bKRlGM/AMDh0FbV2MYOKWPmerGMKWl81hQ5SR6GwVqfhEEYrTHi0Ni+7+FTZg+IcVHWyeeYQ8hJEAywMRRjyDEJc8qozDutTBDREokxM2YxtUuFLKbEc2qOMM4JwSQ+BpNtg9zRbzMbpfiSMUSoczOMiDqzoMi7wmGiDnlyN6hhiIRRUPHkQIg5ZRZxZDgniJk4A0lK3McBDEoGHHXGJeecpR91yUo6brfr9Tp2HRXj5N2oXXY3SCQiTGJA0IAqoRlhMQTCow+eQZo8D5kIBTKKARFWo1prWAAxAwKzVhd2hvBwlqvOk5w6I2fOnMEYIoycCUapZc0EDAOBvbNiFpAMKWWimQau/u/ICYy13nsW4axGysC6JnIeORB5tnIFmnnX1gAAsiCQMACCEBrvcs5kjQWnUEVKydKofphRYBqcFEMznG4AhSDnLCDqrIiGDFmkLEACCQDIuJwjCyOMjLORYlNVKbF2yGTsAVhRyw1k5oCI5IhAXOF4ZDkUvFkai4ag73skPwzDqlk4LxdXNwCUmdsUBhI0uSzR1GRsTvWxxQFKCJJ8U4gI5gxZtBL2rgxDJnF5GC63N2cPHoQQz87OmuXi2bNnOec+DIbIGqNlmPZUYggG7cIvPBUAcDwejbGAcn5+EkK42d045xSbY+aqakoREUmJjXFt2/Ou05vsXGGNJZAOO+OpdqJ68cMwBOmObez7Xm0SlGHadd0+xKqyw9DFVLxy++/b7uXVrRrWp350NV+v1865Fy+eLZdL4ywZ4wo/DAMQXlxcKHQ1CkEy98ORiJSO3fUtS0aQGAZDWFZutVow8/EIOtbKkhX9VH2D3W6XcxZgg0CI2hrUL4VACpdsb7YhxhCCMNDk9DVIf3Jy0sXubH06yv4AnZ0+JCIQvry8PLQHRCyLKnI+9h0YOj1/oBWEcy6HmFP2xqYhREk6mV5VVR6Ss26/PyqMpTTbEILxTkkYzDy0XV2UH3/40fX1dVVVy7q5blvlFSLier3sYzh0ByJCK2XjOaYQ0scfPWXmqqgFIRs/DB0zf+4Ln0fESdEiWVum1LftQYVoEeX0dNMd291+RwBqqKhDNqenp1VV3N7eakEeQmBJymWzlpidc65uRnnl1157TeumonCKelxdXSndrKqqpqpPT09jjPp1jMGqKo7HY3c8NE3DKSJK4SynCIVjhsViNZoT5HhxcWGMef3113OOu91tjPF43Htfjn04TofDYblcOleggIpoARnl2bVt23fc1AhgAXi3HzVYi7pqygbJv7y4Ojl9EEO/PxxSSmVTe29zzimHzckKhLRnuVptjsdj1w1FUQAQAClIUhTw8OGDvh+7BSMgYowxpuuP9aJKKW2325zzarXSJR1CLzkb6+smnD14WJRVzEmFvFWt2zmzXq+9pdcenM+QSpCBHBgPaMBYNIClqfu+BYCzsxO9SGNotVrEGNu+k5wsISKqKzkAjJz9lIxFa13X731tU0rD0DMl4GzNp+TVHE5Ol4fDwbri7HSVU+jaQ/bGkBlCl3JAxCFEa+35w7PxDli0lg77Psb4+pMnIYRDmxQnurq+PT8/JyJdftb40Me+HRQxTDmsN5ury8uYWNkAigoVRdX3fY5cepvj5EptVbIJELiobFEYEWEQpEyGI2dGMN40y3pzui6L4rOf+ez3Pn73+a/+k3feeeccJAvXhlztP766eOfdd37qx3/yi1//+m9989ux7Rd1uaxPYg7DsRVETl2ixdMPn7377OXN0LdJ2ELmyAyVFR1W09PHWmu85V4YB+sRKHdDVAaAonIxRu+9CuYomqZhrVmsrq5u2l1anpo/9Atfv725OBxvv/DFH73ZH9579mJgY7EEwHZ3IxmNwYFGYmno2pypXC+Xq9MM0ixObg7PQMBJyv2hT4mRnXNAAiRd3xdFkWLMOZdFISIgUpUlAmYRheQQsa5rNGbouiFEZraOhEfuozBXZSki/TAwjxP8SDJPpTRNo8mGIpvaIpJZCDEl1bsGS5KzEiCW69UwDMJIaEWyxkDvrZ74zposbJzru24CNI0doqpGiJBzZVU1Nzc3LLJcLgsLMUY2UDUlIoYwsLAzhJZEWJCtdyx4c7vTfUqTq4e1NgsbsoQ258yCzONUYubceFeS6AxB13VD3yNwt98tyqLrumO7LYoCSVhYZa9SzotmNdghDIkjx5CNMSn1ZVmWzrdtmzmpUlCMse/aMETvvbOWfFlYb0s91hfGGED+FBYHANA8QwMAigX3x3az2WhW6b2PISaRxbKeRyIAIAzJGCecNNM77FtELIqCWXTGQliGSSTKOYdCKaWcEzKVzoIA5MRZzGiVIYYAndF2oHPOFVViMSTkrLdWl4G2Lff7Y0pcFJWIcIYYsm4NFKjLKoTQrJbav8w5e+/jMfrC66yJNYgoXX+0aEUEDOSQvfNE0FT1fr/fLFeHw0GJL4r2aqixSOvFEq0RyAoNZ+EsnHNU3VHnHIqUzidMKECaSEx668Mw4DQbt1w2jFyWpUA2Frv+CAjKiUTEqmyMMXPvUNP7ruvOz8/1RNvv9966Y+yyiCVrrTgyi2IBmUNMYmlUpeDJI04BbxqFTT+hMar/ZJB4qppQxyhSFnPndXafi6E/zMCYmSddJJjkCOf6UHFPY8w86DpfwLjuiGga+YyTsR4AdF3HGfQWxxgFRrlDnNjQ85sIZM7jNIRO3yubXSOIQv6Adx+U71G2YSSaqOvyOHKoDXDgVwM0MyNbRJwxOl8cQvDOoRtdofR7WWuNGxk0MWdvrMoGMTPcY9fOAOV8k5VUhSqOPEFjlOHBgwfWWoqM2hUHsXacWdBkUSOd3sM7wFT1AYah7/uqLhR0xpFxzhq7ZxqO995a4qlVontYw2XKEQwRkWS2xpiRZCoydUyNZpEAYUiPTs6cc+0wGGtSSn3KmJGNsZMnj0FEBGPGxUCowqCZcXzQdpJHRERjrCbc1hU8WTBpa1pSxkk3WftFo31WHrsFM1XBTvO/U2/802Ts0zyPMD+RPIkT6afbaZRb19uM1t3fU25SdfxUuNna09OzZx+9r/ply6p69OjRy8tbEUE0nMQ5lzCwiK/KkJJBSkOAzIUhSzZwNogWBAWIQFIWxBgTOY8kxGiJCAWArDHf+d53LWEWfv7xs5SjNe6w26cw5GyLquAoIQUiYmEku16vlZ6gWoQx8xA6FIso+tWstZ/5zGeaprG7vSu8IBDILH8qIsbiSNRVEQkWMrIo6trav/FX/so//af/FHNq6hIIQ04swjmOKAmjcx6FYpbnly9++us/++/9pX//waPH2+MhCSRhAVJ6kWQmtImz7kQNLwSjid/MoOTJ7i/nbL0zDCyiVDDF9eZHNq8rDRTTCSciAqh0MxjfKkadLYWp055FjEUiAsZ5oiqGKBPrEyYQ5Idfunm9sRozIUVCAwJXl8/bmxeG28JrNzUL54HHN5/I9RlF6W8RETMLIuoEzTD05Kwxk+bAq9cgDH2vZf8Y9iUZIAQiFdgRzIAgxthChoECkjNLVwKJZEYjCTMZMYaAjBAJsiBwCsebm6pZk4OyqELKy9Vyj+l3vvU7j15/BEXZbPunH12G3L7xlR91x+P/5n/7v/jv//Kf+fxXPv/nP/sXf+qrP3FWbt75/W9ffPj88WuP1hd0UrsCM5Ymde3bP/L4z/27v/yfL8r/5h/8g6Z20ENM0vZ8dr4qXXl6tilLBwBFVcaBM6ab25cXl4vXP/cjz5++l4ycPX47m+ZwiE1zVhTNYb+XQgXQBVIyaESQOaMhztE5M8QQhuS9B7LMYsiDszFGyZAh2/yp9/Wttz/z3vcunn7wAtd9aNuHj87RiXFUOO+9d664vr4GQO+ddZAZiNAYJBojWF3XIYTf+I1fV3sWnZDSZxT7Ud5LhR36fsijXxnpVKPmOpBV6ThYOw7+hxCur6+LotJ2tyKzOaaZTCQiq81aRG52W9HRkGHImYui8H5UiQ2Tjr9zru9DjulwOMziicxjGFFv5bnN3g99jslO8uVm8um11rLkpV/OxtMTwWdhrT07O9vvt+r1tNlsNEtRST7NRxFxyKM9un4jPQh0DE3nt1JKyogJIfRDfzgcrPXr9Vq5WtpSaprGDPbVIdpQ13Wu8EQU+wiEZB1OehHWWuZRRQRgTC1gSoGUMZQnt0BOeeiHnNM8BIp4j5F6j+k8J07aLdNQpscuTBzY+Qr1rwBAG/YqBTznOeqyor9jjBnUOlKJ6jkDYM6SJvlgY2jOixDR4Ng9jdFoxRVjJFUbVNLBZI88JxtzJjPnHvLJpHH+J5ikvOCeBgVOkyUwiV/P+0tv1JhTjUFYKQ3CnPJktCATQ4cnkbvx3n5CheMTNx/vzfUjorKW9f/qtbnJ8nT+IU6GEDgdEzShNjKJY8wPSN8tpDx/TR0Yn0tZ5tHQFSbOON+b0KJ7emI5Z/4kZV4mpy9teOA9a26YSNyacekStc7pXtfogYilL3R2Sgme3ntf1sMQWeTBw/MkDCRkJEOuKmc8xjjIREXv+16JaSmM2ESMkaaEUwPL9fX1/njQVPx4PBZF8eTJk3mbXFxcNE3Tcbfb7YYYdrvOe/zsZz/LzH3fX15eMvNisdhsThV7LctK2UOqramSrDg5tRRFwSmu12ucuFd6kSPt1IxCW8vlUmnC5+fn6iZHP2TSqK/VatHWabPZiIiSFnEyu9PRKx1qVun8ruv6vt9sNmdnZ2qOl3N+483H6/X6ww8/RETVx6jr+oP33mcQLWV15jrnfDgcUszWKr8+Krd3nplVAFSBhqqqhj6MvEhm531ZlkZlcyd+k8rTq/bC/rA7PT01lrq23d1um6YpqlLnkTebja6fly9fKtt0s9mYaXmXZRnavTrdI9AwDG3b1vVCV++s0az9lTH7Fdjv90pZBQB9asaY9Xp9dXX19Omzx49fU/bufr9fLBZd16luZs4ZDTlrJ3FY1qCtfNIQgoaxulqkHEIIq9XCTr4ap6cra/3hcMg5P3jwoGmatj1MxXYGADI454G73W1Z1rqGm8UodkFEi0WtxOHD4XA8xpSgrlErKY0AeqCIyGc/+9nf/d3fhXuiTC9eXALhYrHSdasVgaoq931/PHaIQkRN0xwO49y0ohtFUThXzIZDF1fXyjh78OBBWbSHw8F5o9q119fXu11cr4M7NVdXw9XV1fGws9ZudzsA0JFNY0wIw8nJSVnUChwA0Onp6eXlpWpVrVYr5nRycnJ6ijHG/WE7TH6/CrExMxlQhUytpIhIXS6Xy3VKaZv2m80GEdu2ffrxUxF4/Phh0zQpBUWuR6rTNDScJ2UM1QlZrRZzVa6/o+2T29tbY0zOwpN6KRrSQl67L6p6kXO+vb3N88B7UeR71qw/dHZbzSX6vn95eXF6eoaIF1eX1trVaqU7zlq72WxWq9XV1ZVuWGbW83C728UYq7rQh9X13e2tK4pi2O916YKQ7q+Tk5PalbraAY1qEKkIiXNOyZInJycicjjuYowhZMWkrLW73W65XG42m5iTJmG73a0Kh5ZFoTH8o48++k//0/8UWb761a++vLk6du0QYuR8evrg5OGD73343r/8P//aqm6++qUvd6nfrFfP3v1e2/chhWEYDnL43jvv3O62xtl1U/iy2B+7YQgyYTgiwpIzJ0l6ot051ux2O42i+ljHBIBAzyMdFFY++NbffvbNt0II77777he+9MX9zc1v/cY3HpydNKslInb79uaw297uELE+Wb3x5Mmbr79+2O/btgVj+xTJ2iFGX9YxpyFFi5BBnLWu8K6sdFZDd01WgSAerRT8JO2lEaMsyyyi5HRNShUB02ZeVoOQlKqqgqnZr0eeZlza2Zqz6+kAZWOMzq/kccCFtNmmlHzOYK2dVfV0yengCwEeDgdmrnwxA1ZzbqaLRwORagdZa5HuCgr9J4XOqqrqui6GPGcUck+0Vu4N5k6n89g96vu+bQ9Kg10ul4SoRgjGGGOtTkvo34YcDDnFkYlIua7aavKFPRwOiKPYPQDom2v+DADH4zFnTik1TUnTxL9AZnk1hmbsWKdroTEjpDlL33cAoELhANC2rT6F+5RzvZma6Y1VM4CeaJoJ6JNVbzkiattBZY712RljEIxzo71KnlwrAECPrZgGPW2V6KBfRw8mBXy2t/uu69TeXGEoXUUa+jTz15CeJ9LJuJziqIqmcIWSFPV/16cnGoeVoaILkoWdcxkkxjj0kZkFwXvPKc+SyiHGEDjGWPrCWJrjsNKiHY0gsvf+0aNHupXMJCt0fXWbMzdNbYwJQ3Le8iT6r/dWJZV0GYOOCsUx0w7DcLo4DalvmqZLIaVkZxyTiJTloVdjaRz/hwk4ng4A0uVMgDTlznRPM15EmEfRAAAoqlpxJj3tNCrJpJg+/eH4r+ae46SSH+cUnCZrHTO9QEZweSw8YNyHmk4px0pPHcRxUFzXpQJPc7WgeBdOQnUpsaq+jKCzjMQZtQIrioIMSMoxZkVqXnWMGS2nxysHzpNRISGNp36KiKaqqizBGKf1GDMXVeW9Z+fUlGaK+MrtRRpZlgg4Q/x3rj5EpCe91hU5ZzJ3pQVMuOp8l/SVJxXjOTYpbJEh55hiFkQkADJExnDOSZgYBACtUfPWwvusgBRkMGSMyZJSSmQsCgqO6rYiYqZp0JjT2fmDqqnbY2eMZckEyAIxxiSMhkRYJPXdEDtWCVUth5hZbeVBKGbJnIgIRNKQLJIxGPt+jrY4SaDM4U+XpXYLIue5XQnqhcojJK3R7dNCIUwVryZbMLXgeFJfmcEORMw56hOXSQFcf3/+Bf6UpgUAIOGh7WKMQwzWl9770hel82VRAONyud7tdlQUKfYnZ6eIWPkihpCHZL2L8WisaVYLbykxeOcEswWTEDOPsmuGiEO/2qyvXzzd316vK//sapAYl3WdQQ6Ho7W+tG7+RgDQt+Gzn3/r9PT06dOnatXdNM3Lq+vC+WWzZDIu6xTyYC0NobdudKhLwmrXqYGMiKw1OWdkQM5EtCoXqev+b/+P/+c//vv/oPJU1nXMMXHGNEqpGDTWWoOFIXO73Yec/+C/8ot/8d//y0VZX9zcCBm0BpgERJ9C5jwDH3qrrbWS4X4iwpNquYgwCE3sZiKcmxPzecOTEaVufBzdKfPQ9wBjUhJCYFXongbARbQfRzohzQA5Z4uEBHM0G3tp+dUTu2HomXmQSMYRYlMWltPlxfOwvbJ5MCQ55pDC0HZElqw3ozJ7nkpkppHLCAAgLNkIGkJrYfSdGCv/Vy/CKbDrf5Ajh8ahBZYsnAAhA7MwoxVrMlgEIisOMmWG7CQjgiUjpAL6gIgWIceQD7uMztWpfnB2u9/+9nvfPexvHq6aNuW3Ns2bVZ0edD/7uR9rEP8v/9f/09/+u3/zv/fLf+ZzX/zRb7/zTTfIBv3/52/9tY/ee/9rP/mlt8+WH38/nZyc1vUKcagb9z/6C7/86LXT//Jv/NW249N101i3qDa1K+MRBhPbHK6Ha2A8f3L64uaj3/ydX4Myf+aLX7h89t7F5eXZo7eqzaOcj22XyDsyHoUABMgwGiCIknLIxpADJznHYTBIlgwIAtoxwiEiibVkPoWx/nM//XOrzz/6h//wH7777J3Q7GvvqDC+NOvTDVmThV3hUUBHOMlSGDoOXJYls3jvmHNReCQaeT3GqO+wnp6np6cAcHNzw5MlL0wOckp5Q0OqFKF4mv5cz/0894lzHoZBtQU0Y9NDres6SdmVhR67CdKUxpEI6xna970Ieu8Ph8Pl9VXhtCWZNPuZp9XmgJxSMjpsmHucBEBBJaHQtm378uVLY4wqQso0b7jb7W5vbxSm0fk4a20Ygvf+5ORECYCIWJT1+K1VYD1n/cQYY1EUtvC3+91Y9cWR9aD5xna7VabSarWq86vxpv1+t4fDeX0ehkFEnHXeewQBQaU2KHKHaBDzeKSgyGRvMAOXxqiywWiIpz/Wj7gPev7AZkREVSXWXSzjqfcDO3fS2SAEgCSf6GkhCbImDCrMoCkZAACDAIsQ5piHYRj6sV2tgRQIRXBGFZlz5PzAu2JKyWiWlp58lcc0Zex+sX4hcp+wUJ6vfPpJ0jTv7ncmfQn+BHV6ojbf/4lFQJSIKSVJgnZU6Ls7Ee59ItyTqhi/PjPA2E7UPs39NHjOMcbVAphh/l6j7QcRIcuo/z49a8BpBOYTCTNLvuedKDI/dGSZnszdFaZJjmO+1XptMUYEIyLCyBkA/v/s/VmzbduRHoZl5hhjNmuuZvenvfeiK6BQaKo3RcoMklKpZNkmZcoMBW3LFk3KfFDIP8gRth/8oDBDbBysULFkUmQ1bEtkFYoooNAVcHFPu/vVzW40mX7IOedeFziXD7YjzAhjBQJx7jl7rzXXnGOMzPzyy+8DebATGEWiD0RUjDFhbMdqCcQp6RGNiMag2kVoeayIqjG4WCyWS8zy0maOHCWJd/e3ra+RWI2DNpvN/f39+fm5fqIlo+IMWhVvNxtmVkc4VXi4uro6Pj5Wxp+X9Pjx49vb27u7u/Pz83m1FJHlcrnb7cpqpuhnCOH8/PzFixfHx8fWUghJy3IRUUj3/PxcM2pFQ5RiWRTF/f19Zs1EWNGjQA8HIjo7P9fCaXz6Q3pgrbXwSXDzkk8yrTUUMFIaVIxxEqwjIjWnWi6Xjx49ms9nRVGIpKLIEPHk5ESvZz6fz+dzRFQmOFmjgLX3fr+rdaA7xhijMl6NVhlZlu32W2vtfD5XbVltQGotrVtPoZAQwtHRUUqpbdt9vRMRY6n36eh45UMfY/wzf+bPhBD+h3/xuyJyf39PRG6RbbfDdI5WvCqFkduhYk8pqfRtCCH4OMwd2kyfrI7InJ6ezudzRtjtdjHGpmm7rtNLUvhSszUNCnpEd3XTtm1XN7H3mXPWUYwxpAgxaaG7XM4VM1KBxxDCyckJMzRNwwCFG0Sc9vv9bF5VVbXd7hHROefybDabvX37tm3btq3LsowhhhCKMsvzfLfbpAMNHL2Tivgzx6bZi4i1tFzOz86yLMsuLh7v9/urt5chhEkCeL/f39zcPHnyRBWZReTm5sY5atv21avd48dz7buklFar465rtFDX6AYgzjnV+57NZvP5vGk6Y8y2rrVo0mhCB9rTyq2z1s5ms6LgqcqezYoYQlmW2oHSQ6DrOoNyeXkpInpQGGNWq+PFYvHixas811xicGJYLBaaFWgklXFawjmX50O6u91uFYsXEZ0hODo6AoAPP3xRFG61WrRtu16vj46OYvT6DlqSV1U1n8/v7++1J7Hb7ZQi13V+uSSV2NZDiYh0gR0dnTiHfas+DYPruxtfChq2bVvXNVrULc/MFjHV76ZxaFtRL6lt2xe7F4gojM7mqkyqtKTtdusfdL1DjLEsqqEZP3pTKcykrPMQgg9BCd2PHp/HGF1miOj+/j6lVM0r7Q1M9UUK8dGjR21X44GJ/fn5+WazUQEr9R4ka1TvSESMoSzLZCxXAaDIciH4rd/6rbMqDykZ44Dwvm2KfPbyoxfdvv7pz/3Uy/trjHx0dLRP8c39bVFk22Z3eVu3sU8IWZWXs3lRzWfLxdu3V5LY5s4Nw0wppGQs5jbfN50isNaSiEFEbWWFEFSPRTW49eY0TUPGGWNOTk664P/+P/gHJ8vVkyePfvf3fm+3Xq9328988D4A1aF/eXWp0ud8d31zd7fvurOT49eXb6++frVYHb29unz59ub80eksy/dNHTglYUeZMW51dKTPZSr54+gBNoy5G8MJdAjee0/WGiJEzPNcHyInFhHtTGhMVGLQFGF1F0/BfYoXOPpUuVHoVUS07dH3fdclY7qyLAktInISpEE8oaoqPbUUOtRsQVWD06hWpIm9cixoLJkBABmtlREPGXipGuyMMW6WT/nJlAGGNEg3pMnYzBpEJEMGMMagb6IHnRs1wWJKi8LN3ExjKw197kGSNMsyFfTXr7Pe3OnqLcvy2bMnm81GdYdFxKn2RQjM0jTNclkNVxXCfl8vwrvHhvSthpRmxPSLoiiKTPOjMNqG85gVT1iW9nr1ENNejv56PBAxmxLUyVIORmVkzUn08ElRvG+YWQ1+x4bKoK+oixwR9/v9JJY9ZMgmmyKabnzvfYzksge3kqkiG7qVUXUtsizL6roGEGtzGRk8XdehNQo9KzKuh3Oz25dliYastQnEez+4T4/D2d77qiyNwaurq77tsliqAokmtAo3KzDddd350WriXxPRKB6dtGm03a19GMjmukqttUoRmDCWwMF774zt+97YoYPStq1YIqKh/QsAjow4mnJobePIgfM1jqwEGFxuHmoeHMdtxjzVAQyNArI2sWi2l0ZuII/UEv1FJJxETGBUEpSPK7BMq3xIUBI4Z6dHnlJKPOiDwEEzZ3oT7WIRkY8D9WkAVZNopCyyHAfHD5y+KRERubFaM0qgtkgRI4zKXz/+0klT/TMziwxdGgNE43i+GcV8EaULHRGJgAisVivn8mAMG9LhGmstM6SUWESRWYSBRqovGkXEZrkbTBs4To/Jj65QAwY3/kHvv+6faftlWabdM33uKl1ijEnCMSVS4WNERiBAmZibujy0JfBx7zsRUfhgKD5RkkBI0bm8mi0U6ej7flaU7IO6KOEoPkgSAQAFiRAQAQYCchKMIVlL1trUJw0qItL4Tne4bnui6WTR+pxCSIhG5+xSShBVTBn0i8dRKMeM4HjxCc+3KHJFXqYYwwdmTdOP6c3xvlc17SkATCedHmpEpCvkx1+7ut68/mheWgYKIa2WR5aoa1tHZn5y8uzpex9++NEPbq7JZeePHhlEH72Jsrm9vd7vcuvyqkAEU2Y2c9Us55QkSh/AGPLeg6Q+houj5fXrl//yn/029E2zX799+ZJQQgiBOUQmUi0K0Cei5/Wf+BN/4vrq9g++9vVqNlvO5+OgQBmFLRlkDLFT9k3f90TY1bUtcxYgoqbvNDmOMaahs8UW6Wi5+tYffeO/+a//71///d9/dHGWWep8531PRCl5A6pypYcD7Hf7Tb3/j/7nf/5/85//FZMX13f3aB1yMvGBNDGdVNPBOpwtUdLIPZ/ONBERBASMMQpD4mhHyzWDGJm1UT89xKkBKCLCQgQAxJwQjTMmjUkAjbaESIAicRAUy4wxPE4MyGjlbD5h4g8AnBk62gkkQ1wU2fWrt+32hsIeMQmHxJGZmUzkhMFbsQAg6teHYhDRkMBgphqjT1GyzOWZEuLiv6HhAQBkrPIXdFsFTtYQIxuDOnkkKUlkSJLnpc7aEwoRCnIUzDhKAmDSBqFQiswpRYgxxpS5cnd/K6Fbg/S318eGMhLJbd32SIIZ49UPo7G/9MXP/nB9+U9+8x9s1tdOsGiTZNXPffa9P/0zn3/63snccHPz+mZ/10UxNhPBi4uLX/kP/2xZ0H/7d/7O/XrNZfn9P/6ob2vgxFlf5kVRzOazYrVYZkVWv9398Xe+/fz506fPnrURus1dWSzyo1kXA5IxQn3Xi4AgJE7OOZc5joJIAikvXGatqkYJYwjJOEFDzhGql8cnwM3vP3/6+OzpT//Up2623/viF7+4OF7+zj//p3/v7/89i2bfNJ3vnXPqvbDb7QYX5hi7zofIR0dHQ8MVwOWZeK8ZYQhBK1IVlFBGsHOWma11IYTb29ujoyNVT9Z8lwYHV/1/cc6CsBBqwaCpXmadJijee7XdUMw3MptB7tmHGEPzEFidyzVdVrU73e/WOkRkYE0Ep12piZ2SJvTCAICI4shY0Q2ix6amJUpIZI7K8/Lev337djabHR8fg9G2dHTOdJ2fzWah62UUwdTApzmDXmqS1Pf9drtVZP/i4iIlmZh92oaZ+Gs//irL2XzO0xbWm48RcsZdvfchAKB2iwEAgQZxr8kqEJIhBwDMSdcLjATblKLWC4cfNwWRqf6BA/FiHIjhDzzi8deHM1HGtr12qWnoPSdVU9ODkQA5Bf3dmKIAN03Ttm3wytGGopgxyOiQzlE4hGC8KWI4Pj5OPpCbpEdERsZxHMyWdRxr4jKzyAjHHnCchz/ofBcepBOMktioZbkw8wPUjuNwUhzV9/SfNM1jZktGM/KHbFYARth6qi3HzHM4FdHoE5m8KDSTf6A867I0+FCdwoEzsDHGGkdECBD1Xz/OtJu+2pQYTKmjvr8uPDrgcxxGt+nXaTRCJBjo5+OiACEURgWgkZDITCESAHKVKRtIG5JSUmUR/Rlll1dVpdhlCAFREA0QWkdqlcYMfWzX67vFUdW37f39vUgKYTB16DrvjFWXJz3HhDFzRYxBxmJyNpt1Xbfdboko+vTyxWvvve9j13rFl1UBeVZVagT0+vXr9Xqt3TUd/NKTZ7fb3d2t+55PT0+zLLu/2+R5LhZTSvv9XgN60wzoEg0cKPA+MnNeFvqVtXbSlFWH2J4/f569efeQys3NzY3f6zI4OjrSNLJpmqIo9BMVN3zy5Ml+v2WOzFERW90XMUYV81XzIs0YlcylmKzvQ/CxqioiUvu7qloQgX4F/eE8K25vb5fLpWrHhxD6zsPoW6PSwDFGBY6NMUhQzqu+7zf7nRIsnj17ttvtvve978UYv/rVr+Z5fr9Zd133x9/7vl6M7srj4+OLiwtrbfKhrms9JA3JfD6PIXVd55n1W1xcXHBMIyxl7+/vY4w+Re998iGOsl1Zlm232zAKm6aUVquVMS6EXn32Bpo5c9d7RMxzS5SH0PMgte9VMjjL8rZtiSwROeu6vtFkvm31X7PtfrdarcrZzHuvYKtzTv33smy2228Wy6qqSu+7+XxeluXbt28vLy81JKnHoIJoIknVmY+Pj/M8B+Cm2d+t79t6IJEoRqkVuHq273Y7RWYfPXmc0kfr9X5Sn0DELCv0GcHQtOPlcrmcL66vr9WbDoCUCatL0Rj36NGjlNL9/b0hN5vNel9vNpvT09PVaqXRU/9fb35KKc+cGdq3EkIvRHpzEFhJwdoL+cxnPpVSurp6C+NEhXVU17UhyvN8vV6/fftW6fB3d3cnJyc8Rn9dHvq5KSVCW5blfF7meX5+cZpGjrA+talW0pmhtm2bpkujY6QCcG/fvtXTe+LxTciyiBBZ5/KUxI8Io07u67cY6zKx1ipkLD6KvHvzmlG6VMMTCulZlGXZftc0TWMdGWO0K68ng9qXIYmIrFarsiwvr94AwHw+Z+bgGwDQEYdyNiuKIs8yPnCW0+4dsOhwfd/3aCCE0LT7qfWuwUvpt6R6FFW1b2ojrJ1LHWjo+5BbBwDq29bWjfd+t9txKouimJVFWS364C+v3nhIq0cXb7eb291eUnjvvffqut7U+7iJTduGxB7YzDI0NmJq+6bvgnOGCYxFZ5UICYyK8fU0chH01FLKmjFGj839fk/kNDXV+69xP3jfUUsCTV3/zb/9t0Lvm7ZGgT7Fqqpubm7WbV2uFkR2v9+/ub652+5ubjdZBqvV8nsvXoYIxgHmOVgTQRKzALVdl5iRSFegPiOdDTTGKO4PiLqWsiwDgXrfusJpI1CvfKrR9A/GETIr4jZREg8D9BQ6h1HCEKaS8zCgO+eWSwIAXZZKh48+KoK03+/1Ur33WZFPGaZzDsdhVkVXlbqb5bnGX5144OQmxzI9o7z3GtFAkt756e9Vig0RCW2IQ7toKh90Hk4PCu3U0myWFwWLTE1TxdxgVLQQSDhCKxO6qhoDbdvokMRqtZoo0npbZrMZIrVtq9aLeg5UVeWad+fVwYcJqoox6pSSj0m1HWD0GxMRMrCr67IcUFTF+s1oGKDEPh7nkmGUapiept4c/QFtnMQYJ6YIjwZvs3K+mK+mSU09BDTtL8tSiXd6dIQQfB+V1x9CkJRmI+Tddp1IDshqbKNfIc9zhgGUMMaIjwryhhB2u50OThGREOrhoOizdmp1pU3WMin1eizrw3LOaQe6Kktt7+33+xQlkaqO9EfHS0R8/fq1DnPEGL/zne88e/YMRhub2Wz2/NmZijTGGJ3NySiBvdcdpN9X95cmrgnSrJhzTJqSNU3DISabOt8tQhhGNnRYb8qhDT6MgWuNN2W3WZEbY2D0yJ5KhWkrqpmDtYPL6rQ+piRY1+hYfqBzjpWuKqIxcvgZmMZFH9oI1jk9HXhkGmo6nue5gJ06ruosTAfzhtNbDcfKsAqHQ0RvmRxY6MhoRic43BkykJLSWgfVEdXa+/FXUg0HhbxJSIbyQ9+Ek6SU0NB4x8D7mOdFjNGQPT8/z4tiv1HtYLZoIw/At8pSkIKvqIorQEM9ZhPHPJ8bY0LwKUkSNhZTQoWTDmpLmJp4aaznzSj0Q0QskcdRESIyZIwxkKJI0hO8KIqUkJkz74synxQh9OwD4ZQSCigDQkSY9KNZaT2EliUdnZ6U1aztu5Q4JoXkyPsOjYVxEaYYSpupcXziYbwUESMPkwt5WQCCOuGkGAXAOqepm27dGGPsPYzNjMmaL6WkXi4OIHB62LdqRBMCDPSWdw9hWTNIiEz7BUd1fL2rKT2MtOgRpuHwkCFFo/ALHVg8/ciLwWSzuXEGsAGki4uL+ayyCKvlAkkHTCISFZVLKc1ms9ur23/yW7+9fns9M9YaEyGZmTt+dP7k/eePHj+dzxYxRswXSALCxMk5unnz4vf+xT9p1/fOpM3tbVfvTZZ7H0ISMo4ZUlTauCGApvPHp2df/NJX8vIHAFgUxWc+85mPPvro+u7WOgtMIUUeFSHu7m9iHHy0RSSmQNbmuQNgFs5yiwIpxcJl81n1/e98+//2f/o/v3718tHpSehbApeAGSHEXkRsTpnNEAAEfZd2dfMX/5P/9C/9r/8yW7vru2iMNWRshgLGWAJEIUAwBpOI9r1wGlofdXum8HOYjDIzjJQ9fIB+YApLE9AgD91jJjIiQiDAjCMBsO97h4Nga0rToHTCTJuZMn3KtFoMvXtawhrrijyERJyqKr95/eL+8gWGvZUQIKCK2jMAmi4GR5BGnqMxxiAlgkzPa2IGYRZgARiY1BMsNZ0PP/Ka/lVXrzUOyAhBD4mBAcEKkWBCocywsYmDJEEYhkZmzlFmDJUi1PbBMKJJKJK5bLfb75tdACt923D8oJiv2326r/sYshTa/S5s6x2jMe6Do2pePX32hZ/6k7/0iwWYV9/8zt2HHz2dl+fHRxkk6ncuxLu7yzamdV3fr3f1vv2ZL37xZ7/8lbe/9LPf+9Yf9XV7eXkJMWRZtpotyqK6eHR2cnJ0crT8/E//lDV0crRaHq1Ozk4j2UCZN7MWDFhCi9AGJ1GMjYAsDAbEEoGzhiQkSwQOYkgSRZBEJIk3ZAQJwSRm+QQX0GdPjj/1pz5LBPMKt/X+69/65sXJcVXOurYFgNAHhWtXq5USprIsn1XLtm0dat8nalKli9l777JMdWaVZaM8I2a+urqqqkoPKAbpfK9ZmpZ2Mk6U80hfMpmb4r4mxMoRiIMixJBi9n2ffBDCaWIrhADjUp9ACo0OItJ3XhdSTOHHF96U2atTkzK1JzC6qgZn+RCCTqgZg8zx4uJCk/7dbrdcLrOyiMJ5nutwt8ZozRMmX0H9vvpdhtQweUVkNMtXEAfRaLK1rOZaLvInCN2os3mMUZC1Q9D1HoIYIe/9bDZr60HKX8W6YMx3RzavCKQJGT6sW6a79CN/mG4djKSM6fGhgAo7Tzv3Y9c6SiQTkRBZq+85HFD688656ENKSUeIiKhpuqZuOckE5vbBSwtaHTHKNCoYY+q6LgEo8nV4ekxXCCKHqPpUJcII0X7S+TP88IGdKYHiAw/zoWbUYNENojeHPn6MZ2SiQIyRENUwUK9hAu71vxlEDX8Ma7MQQh8RwNmcYJj8AxYBlsQpRPkxNTm94JQSRUqIqm8OiNrCnxb/wXcfHHWYGR7IRMwHpljTOw/4yME76LPTpFHG18OTHznXgmAPRMCMMUJDp1NEUorGGIg85TDq/KlHTUqpqirmiIiCAIRE2Ptu3+wAlLWtGQ5U1fL42Cma472XLNP6XHN4Z2wIwYdERGVZAACQUWxFwUHVwTg9PWXmpmlghAYAYLfbXV5e6lyCwp1a84wltHPOxdjf3d1p9r5arQBAN/UwaMxRS/fFYqGIXt/3VbVo++bq6oqZFUXSQ0PzTO/903T2js0PkGWZyhZrFbrb7RR2mfQ0rLUiabVaEIFKFmjBotRLTVaZWfV/FWJQIjMC+T7EGFXCQp+vegZOfIjtdquUNCWPp2EwYhDi1MJbZ1wWi4VChDHGPg6uQYiI1iiNVET+4A/+oKqqP/rGN/M8f/be8xhSVVVCGEYDIv1GzW4/tSqJqCxmbdOllJIPeZ6XZbVer5t9rXV46AexCw1MXd0sl8uzs7NshOFEREtuxa8VVT8/P53c2PQkUc5gjHE+nwOwyhzFOGhJa+neNA2i8X2rHhha/9/f34uIKuR2XWfIbTa7PHd5nnvfbbfN2VmhUAURXVxcKHfsyZMnMcYf/vDF8fExInrfhQDz+Ux7q8rYnVL92WyWQl0UxWw2KFQQ0f39vUZJIERD56cXi8Xi2bNn6/ValUZ1tTvnnBukJ0ZxJwag+XxZ13VKYi1qJELVYxzFAdRuvSgKY6Vt2/1+2/uhlNtut7tdBIBf/IUv6jp3WaaAZl3v9k1bloVzzpDTKjil4D2UZen9UOqqMpU+4tvbO52GNKNsiA4tzefzEJrpnJlIJOoNMJ/PEw9SAHqmPX782Dl3e3urvYe3b9/e3NzpanfOqQRWGmdGFVHVMwEHPY0wMIurmbU2A+l3g1yM9nj0QJiMLuflzCD1UYVlP0n0coAadE8RGACISdQ4UR+oNju1+VFVlW5AAGjbWpN8dSnUoDN2sFjTCWZu2jaEYKydLxa6iXznu67THap+bgKp67qqqhQS0X2tfYvNdjsvi/fee8/H0DSNchhdng9QTtuqLJ5OVu222xBikNISJWM2bV3XdRdi0/fkulledL4ri+I7Lz4KIez2+6wsdAXGkIAwz60xNsbAkMqZ4pvJj11LVQRNwvPlcJ0pJeaHMGetLcqyDx0QZkWuR5ZxFkCStjecC5wo0YevXpR5IcLW2k1bX97frrfbbF5GoDx3NpZgHRKU84yIAku+qHI0jLBtagCKLMZZZG5bb4zTNaZHou5HMzTFC2bu+l7vJBFNbQPnnIyepWrZ6r2P0WuXQtsAMUZd88w8Sv87GHiWMqGZMOJaNKLeGpeV/hlC2O/3MUZrMgUQQ0jO0QRTKpoxL2eKJIqIG3lOegFVVcURrrGjigUzp5B86M0kQIw4sIBTyrJsNpuZUSgSGZVqOeVvOp4+3BZDjmjaZXoZmuFnWSbKJDBGkQ1N+fQehtiruPmoBz20pVNK19e3ee50XxhjlCupgMzx8bGa7qYU9G9KLt+5N+fz+V26TmmgiWhoK0fGqn5ZvYGIuKhAEIcuGiKOdo6642SEHGHMohVj1BuuuI0mOWlwT6XpU+wox9SNZm8aWJnZkiUk43C5XOqnKOkYEUMYRieNMaQI5zjHjIjGZJ10hyCbgoEppe12+/j0XPHuqRSSkaagAQURddHqMZIZ672vw/B9tW6KI8dUUyOVG1KdXsFBYSLP87bpfR/zvBRBazMd1Hj9+rUbDVGIqK5rPWCRpJqXuo90neibaOqiByYzZ4ZCG0Lv7cLGGHMctG2VymBTSpmxafDXIhxlNNyB9vEEwk6UjWlfDceKMcYYzf7tWEPCKGwn1kIa9PtopOJOObHCzfo8siwjtMyMJMrOs6PB67h2mYj6Lui610011KvjFR4wOwZmDSLqUHNKSSHEcWENECERtXUDA6g/kEeGwR+LKSVDIB93lseR+vGOF+FERzcWVfVZTwQhJLREREgswpxi9FmWDSTr4MnC8fHx9euPLFprBZLEEJjZkREUSWyIVMFk+jS9qphSTmStVimChgDQWiu5NmGA09AR0jRdyeBI+tAk8fB0QAaAXr8pAo5BdABticj7PqVEGairxsQoR0JkYI7AmGfWkhEcKNIIos83gvc+ns0XaOx+1/QgArReb5vdXkRWq2MARAFrjMjQSEgM+KB8ImSHfSuo+nGZ7k/NSnlw/BjkDqYW1nTomHE+SHsbMQxzYTHGEOIE/ppPZpvyuK50F9CoiK3nvr54EEIZfmUCmifoUwMAjmjjO18+wnJ2xLFvfBKkLMuaZk8GUgqh6+bzWV64oiiarl0tKvb+d//FP//tf/gPZzZ779EjQmn7Zt3sAjATVlX1/Mmzo6OjL/zszz959LgqS+DkBP/lv/rdm1cfnayWfdPcXd+IYIosaBJIAoooRhIiMkvb9oj45/7sv//lL3+FTHZydlHkw7zPYlZ5ln3XWUJ0zli73dU3NzdZlu27FtUoL8s679VOt8isiOgs2GJW/c5v/tbf/Zt/a31zW6JNvU8cPUrgaBwBGD33Te4Acbffb9b1f/ZX/vf/y7/8n97v923foMvIGjLOZRkwGkRgCSkKi0ZRgKE2AwACJEMybp+BZJ0SGhIeDkBDw3PRRyAidCCWcljD64MLXU9ExpIMjTGvTK7Dkh4AUB0+BZk5BK/YlnaP9VgzPw4PHZ4oRECxyPLd7fWLP/6WS41FTyQpxYjYdyFIyooZOktCzJymXgiKQQuDK4Ioj56sCSkN7Vyl5prMfII8JQvDOBDOzClZxuQxRQxAkpEpEI2lPLMtSh1qEbGCLqFxtjCOogcybfRNF/d9r8WyQATmXVfv68Zlc+JUX99Za6Xt4/U2Sd+lblnlT58/mhczRBeNhfnicz/7pVkxu3rxovnoo/rNa8mzm273waceo8DMIlYFW1sVriAIy6rZ3n3rG3/wU5/74Be+8kWD5JvakanKmcmQCGxutXqUFAiwmpWx9ykGQ6lauZTlXMx7MXufonCSrE/cpmDzHJ0VrS5CEuaU2KIFoMhMBM4ZT55ABCwgItAnSWK7LM7mqd6t//DrL7/xR9/8u7/+69f3a9+3ne/FUGJRhlrX9sxclPMUeLdtRdDmZDOHApotKf1B5yd0mFRPM+UR5Hmel4UgMIjLs8ViIaN6g4IFGpgmBsHDYnNW271mnEFTWKftO6V3DUGQQVXDFHbRJY1JNCPRYXClXcQ4DDZZZzQTmvKNg6WVFIZQcgGNPXP9fx60NVOW2ZSyR0+fKF4MItVyAQCH9erp6embN28UvNAxMb1sOVAS0KghhLNZZUZBG80727YtXJZ8z85aa50z3bZ753MUECU9MSQQ1nEZA9B6f317e7u+N+ZI48KEMCqcOTRZQaJEEclNqWm/5i04MlgnLjCNQxjDVwBUrBqmUaRBkGHAZ6cIOFwmICiZhcAgknN69Knykf6k8hZjjImVADAo0cMhrj2Smpk5pEQGps+KKe32dTVGTwQhACFkHjXZBABR1aMnnII/Tg76kRcKIID6B46XMcVWIsQkPN2uNA7P2VHSauiCAMBBoSgjtZwOlCUQUSCBCI/YxHRJ08fFwCBhiibTM5oy4Wk9T5ekwYtBEVdiZjI0JZB4wFYGergSc0BAjmOfQ6PStHPlwLTjMM+J/ODJgZOEtMoLCnN8WF0AAIYObuzQgWBiYDFIMcbMOk21UgqIYi21bWKQPM+zIutCt6/Xm926jz7PXd/31tJyuTTGZFmh76yJ2RRwdQ9OdZQWM0dHR8H0ygbYNhsttFTP4eTkREZ7AyJKnMqybNtOeQ8xxtvbWwBQbMg5p0ChyigHn7quy/O8LAo7VhzTekspPDhwECr1hJl1gF1vrIosN01Dn7Q+EWczFceQly9fEtGzZ8/Uo3WoNgm02BMRRZSYWYCRwPe9sdT1UVF1RbpDCPf39xfnj/q+16+mK1DhPBHRs9F7f3x8fH5+vl6vtexkZk6SUkREMMNqn81mKSUddlFojxGMHbqGurSEUCIbY54+fUpEBNj5/ub6NoQwn8+1lahj8sysPHd9UtoFbJrm5uYGEZOP8/kihLTf71GGEyPLsqqcCQ6mO6r1p+92dHTUNM319frx41PFFLRJqUyxssxVyEgPcIV+vPd6o/I8L4qsKIrNRl0EDDMoiTsGDiEsV8fM3PcKZZYyTo8JY1mUMfmqqo6PV9beauRq29p7Y63d77fO5V/4whcuLy+fPXsSI/d9q+T6ruuur6+991VV1XW93++Pjo6ccwB8cnbknFPxkCkG1XWb53nd7jXYXV5epiSKwmg4q+taQSUFkdU1oWvaNQzRUKmR0zSqritmVLjfWlvXdZGPvpqhy1yh0T/LoCjc7e2thmbEgX2MIlnmZrPZIAmalQqHKWPOe6+3Wrn5umyyLHNZNqHP03mi8VRBh6GACqwMa62pXVY6566urgBgsVi8fv1aN8tqtdpsNt5HoiH91lU6m82stbvdrihmWVa0bT0WTcNynXpmil4pMqjAhxK6EbGqKr2Z3kfvGwBWBb53bt4YAhY4cunozZu3ZVm4rGDmoiiUsLzb7ViitVY51HoBmnr1vu06n+W2qqrJQoPHuWEF72KMCiUrng4AE3lZu/7L1TzrrKLkQ66lWZe1p+cnIXmLRuWz+77vfK9XLiIp+b7vmaJzrpzNMueaphGEPqbKuNv7DRpSeYqymoGh1veZc030IhyRysWSQYhMF3pyNnBKICH0KXLm7HCkxEG41hgka4jIwMiRsoZBuq5OEp3NASBysNYeHR0pXDtFJc0ws8KBcN023hAa4zkZS15Ss9sws8mzwGys3fuOBbI8AwBblEQghgwQixBCjAyEOg0GOEDeAANbwoyKtGmUsDfWHo2IpCZ1IYQcsxC9RaORaMJYo4qpjk42U8zV+AUj31NXl3601v5Tw0M3SBrRYV2QzrkY2BqYRgmttYRmvVnrbAGhVYlkjYl6bivXZJLsUMRGwVxtViGiNRkgT/gDDyzdYVZPDrib05oZQGdCRFQ3V+ccWeuIyECW2+mbDsc7sjqj6F/G0QNp6nemlMiAc25ftzFG5sxaq3aR2jsUQQ1J3vum6xeLBQ46SxxjtDabJHB/PLRmWYGIeobrGcj4oL88nUJ93x+fHfPB5MSECE+EVAWCZaTRqHfLxGrX958gVBgly0d5n8FXSce4dcFMWY0wNnXHaYiqXTuyakaTsNwpnj/MS/kYjTF5VqrFBTP7GDChPvHdbsd9+PSnPz19lgbBBMOSCKMYkV4VMwfvGUEbDBqjpwuw1mpoCH3ftr1RTU87DJKmyfhknLNfLo/qrp4W/GBfvG+NQc2U0Bo97TXHW6/XKuelZ76mT4Hj3FUXZ+c72e3rRqu2zGX7bQsA1sCQkuoLAGgc4ZwwMo2j+tbaYZPRxkRDi7W273ulI0+dH92QGooE0/Qg9Vkqgq4bDMxI/iVKMelaSaHXpcOjbyGMraQYB9Xd6bc0QdS9t1gsdOpn2vzMnOLgHsCjtKsITv0NGbnMzINwM4w0LoGYUhQeIHVH6iU2ZK7v3ihjoj+WVKAZ248gmL7r901d5C7LihiTMSQpMsvR6clsNoPYd32Eh5nI4Z0BRCCpnDECqPuLiCCjrmwZ9Z2n+2ZH6QA5EBZQxFOrrzSKA+BIAp06CiCAiM4aba0PTzY+PN8JyWVjogzABMrwESM0rGxTY4wJAQHN8flFXs46oMJmLJJi3O12VVWRtaRm7gDWDpNUh+46IqL0eWYW5hhCJ8kYMyvLlEKMXhUDtE4zgDbP9f5pSJiSlQHjM2aezzVA8mBO+FBOp/Tu5yujs9pUN/LIjdIVNV7qwFea4u50SPEB35yZY3x3i2+9rXd3lyTx5s0Nx96zRN8hyn6/RWPBYOtb9uHs+OTi5PT/+Ru//mt/52+TwHyZ7fdbhBSSh9ijsCEJO38Z/P6qRPHw2c8dHx+fn5599OLl2x/+cZWZo3n1h9//3t3dHRoLQGAyJmEhMsZIn2ICkLZtj8/O3//0p+ume/r0+XsffOry1UdN74mIOXLiPHM2z0Pvm6bJMvvmzRvvu1lRrPe1LYrIaeru5FnZd81sNquK8h/9/X/w//ibfyv2fpa50HtOkSX6xAyJkgV1y0ZCxPv79b5t/uO/9Jf/0l/+yz3HzvdgrI8hz8phrTLKGAWHbUgEaJhZdS8BtF2UJvgGAAQBDzAFMohkp5Cjf29HbA40oRzkRweozmXDcgLQSZbkfcrzXBeKfmWBh8I+xqii8p0aMhhDRIk5fUL7ijThAAnt/off+5a0e+EmYYyibCYMISERgyBAAo4cAcERDcKjhoyzuctSSomBIkydXkS0ZlS3/4S4r61aAIfIKSVOiChAAgbQGCILgMggIj70XWgMomGLQMKSBO72XR36fQzsTFYWZ0fLqswsS/CdVlBX13fNuplbYxgq66A66rlz8+NPfe7909Mj3/qQQCg/fvLYMN59+MMPv/6H2zevVmWBJCenS07JEdnM5a6oe3++nB1X5er4pCgKPadzl0lK2aMj771FQg6CLJg6v2u6DSZEgOs3nlCcM2SxDTsqq/L4Ii/nQlwclT7FXRd4H3xKKfU+gaEM0RBYMsYYi4jEgZmJkBBUnldAQIQ/4ba+uXz1vd/4Fkr43rd/+LV//a8RzXy+rEPabRs3y8r5fFaVOtmqE99ZkXOU66vbamU0x9UcGsZM6OTkJM9zTVMAQIkVq9Xq+fPnL1++1KxRtckUpdX4OHmL64maZVkfw5Tjar5ijAEWY4zS7sw4gqoxQkN/HH0ziIicSSB4gBrHGK1x2t3R7FyNrTSIi4j23mVUD9BMA0aJAGstETCjyawxORJlZTEN+GtepfkTIqoKpFL2AEQxdCUg6HeZju7JHMlau91uEdHaLIQUYzxerqbIqEl/Zt899Nd1vRYA1byquzbG6FxuCX0Xttvt9fXtk7NjPRweThgiY4wPWjoyAIBITJ6omKIDjGxfESbt2oKuqI/RnKcgIqME2ASLHaL58I5WlupayHgNw6RaGoWPk+ripUG2PsbofURDRKM8sQgwE1ljDA7RFrz31eTahyN8jpgQLFJCGUHSpCDChJn+SCo1xdDhZ5JOg6IgIKli/iiaBKhE8TQOP02tQQYwAMp1kvGq0jhKoisWAAAnRY6DT8SPXcy02tNIIMWDgY/De3sY1vUKRUTNWuWg1TH95PQ0p8tGRKSPwcRyMFJzmOg+FAwAh0vL+KDtk+lD9VfQjBY9I0gthMYM6003mowKIboBp02dRj5sXhbMCQhC6Hf7zb7ZibD3zdnFKRHpQK7SuESkLEtjEID3+9qYgbS1WCxm86rzOvipI+q1VrMKYNV1rbrPd3d3Sl7ThK1pGrKmLMsnT4aDru/7zabLcxCR3a621h4fHyvxJ6hbL+Ld7a2qH6jbko7/AwBippIyCoYqPUf1oxWkIyJt5s1ms1S/OzSHEG9v70XkU5/6FDPf3d29fv366dOnWZapeGAIUaV+stHAgyXp+ea9v7+/r5aLshzcrl6/fh1DQkRnx0x76gqP6LDCryKiWJuefnAgKT4V0nCgwq8pbkqJnC3KYViEx/nU2XLR1Q0OzOi8abtJoOD6+vrx48d6Mux2O+RBVaDrOmXyzhbzPM9jZJtbzbFns1mR5SKy2+2cc/P5PIw62jpncyi0TQQnJyfOuadPn6oV2wcffKB/vry8VJRZicnWZtOTVY5t27baQA0h6JSGMeboaCB6678ul8uuG0jQwSfFiOtm94MffPTpTz8/Pz+v61a5aXmeK+cuz91HH32kdOOTkxMlyoXQe99NoE8cjb6Xy2VZlrtdrQIas9ns9vZWr9ZavLm5ARJjzGazYeaimE1nrH7iarWq6/rq6moaZspdpo9MFXtViHy9Xm8226qaOeecy40x6hWseheq8jybzZquLWf5YvkMwXRd5/tW9cGbprHOMvNisdDTYL/fhxBWy2MYgSQ9ARQuVAdOhZ/Ozs6YebPd5nmuGu5xsMDlpmnqulZtqNlsFkY11RgjGcAog/Is0Xq97rpGSejW2rKsnBu42NolonEkRURub2+15TANLk8xkZnX6zUAnJycTJ0PGi3aVI1XDTaVyprnOQqbcdTmR15d35nKnJyc3N7eeh+NM4iIQtVspjo/WZadnJzEGAWG9oB2CwDAOGeszRE5RjeofJDLjCFXFIUyBLX0ViWcie3IcRgsY+YQ+/lipkcNM89ms7v7ewBYHS30V9577739entzd6vE0pDidLDXdZ3SwFZJKYlzys3vuq7tOknJez8InYU+Bf/e0/cAYLNeI9kYOmNsUAZAbkSwJOVsRWaO3hskRDGOMIogkjExxs73mj2KiCO9IkdELGosFnSD67PQrw8AzCmEOOiVh9hGVmGE6OOQLlrTNK3NiqapnXOZzVm7Xs6yiLAACSAkEDRGVbyQJKccZiwyaPXSOHiX53k/5sA+BD2HNZVV3zaTU4wRCaYMc7fb6eZVlEBjn4yEIRzZqVNWZoyZVGu0vTERn621Ix1RFPvK87xNfd91euumWauUONRc5DNyNMl/DzM6RHCAdMsA8RsRNMaltMcDQU6W4TZq7NbLm8gcU5Izpcc4yrCq/D0zh9DDgf1ymWVTHFEnBq0UNO2fUiy97Skla0AT6WllTkkOjfJcItLH4PvQti3BILg3NN7CuwNr4iQifd/rNejBksaBxSFHHQSRI6IZEumRmWHGuUYdI9A7rBrcOs8EB2knEamm02QhrrpMqv5XFLO+75lhv29SSsfHx9Nkj94BlcpRtYqUpQHSBNCjFcfHqg28kNLJyUlZli46Hzo99PI8158py9IAvXz5Uuc1z87OrLWBkyGj2YsG0Ak+2mw2joyMRlMiQgYFEuIw3DkgIcYQYkoxz/M+DED8RLY7OTpS/X2d/rGW1SpDy8NeWiJarVb6A5u6AwC9Wk1j9GI0yotI4lTMcmtts2mccxAxxpAozas8b0ur9ZhuVADw3o/GVsrGH9R7tUs29XYOM3sZHTC1wpiSbP17rdbs6F6qCbrufw1aXfCGhyKw7/vJOV0ElYWtZbD+OhpSOqqueD/iNQLJ0cAAx5HN+oCEMieOANYYAyNbRwdmh9pv8C6z3nvmQKR5vyDK0OAbOyeGzJSR0yeMn8uBGDmiwMjmTimRDPWSXueimquSS5YVRMSS0GAIKQoXeQZ9My1c3RjO0CEdiUhvueKegxo6OSHSlgGG0DODG7WbdXmZkbBGHx9f1aWPiCGEwmVElBkLQEmER3xfuytZliniZkaLzCzLJKW+60OMaAAkGXTMjEI06JeSiMTQ98GDMecXj/NqJglNlseUnLVPLh7tdru2D5LYWhtTZITECR6ucATmUgo+IKJBtMYaQuFkEYqiBADGYWyTmc0BK4oPxhlkFOVRvrnuEyJa369vb281C9Qk/p0v3/uBIT6aiqaUphoABr3IB42OOL50menPT5WqiHwSrv3i5dv7y285w8j9B88uQuKm923wglCUZd02ddc2m/2v/uqvvn7x0X/33/46SiqL0lipliVwQsoQK0RcLOeny6Miz8ssJwf7yxe7tx+9Mu7+/v5oVuR5/uH3//jt20sfU2YzQGp7D9YKgU7HG2uYEa372Z/7hS99+av7uq2qxac/87mrt2+UClQUhRXY1A2noc45PT39zne+841vfOPnf/GXqGlj7wNwSMOCqbmuZkXhst/49b/3X/9f/y/VbHY8X/Z1o0qMSVgiG4MxxoyMRUNkd7tdH8Of/wt/4X/3f/hr63ofQirLqvF9lc0CpwGMIEnCwKweIMyiQ78Pj15gdAYApSEjorHDOUBjq0xGBui0nXFsV5qJpY4qiWvzbNAGJRhcuqy1zuVTyacbnyUZY5QCE0LQcRg9eeLo8Sqf0L5KIvM875rdyx/8cWx3JnSIkSGwiHFZCMwCZZYjYuIQo0QfjDHoEBITUSYJMQspckwCnIRTEq1amNm4TL9yjO9m2acUfQgswuKY2UiyBgmQ0TFjZAhd4L5Hlh69JA9IIrGN1Kd207ZX7LKqOH7/8bNPPysKS5zCZst1WxSzbl/v7zfXr152bUA2V6+vSpc/PnpqC/rs+586Oj5OklyRQ5RsNo8hdG377T/817dv3zgjKXaLkyMx4L1HImli4BRCIGOPjo/mBoC93vmm2xHRPgQNN3OLYEBQpJeQYgpJolJoxAcGEscN1+u227nqiEzW4cxm7rjMHbld2/csGWVgLUCWEgKaxMiikV4EGcEBc5IkIMwcP8H+MSaDWFo7+/JXfunxs8+dPnrU9P4f/c4//rXf+PUQZbE8XhTzpqrQgDXGFS5Ethl+6rPv3d9fBx8l8TRLocmTll7a1FSaksbczWajWEbXdeqboXnV/f1913VKJNS0TEk0ZuRlpDgYjOjxyDGVZUlEMoq4aSIeEpfFTLEPpfAMg2yZCyH0XTefz4uiiGGof2JIq6MlDF7Vw7GpbET99SmsKEbQha7pG2st0FCoaxZxd3cXR08Y/UYKP2kVpIWuMYMEJFl7mIVno01oUQxTdcaY+XyuySsAjdrQg77HbDbDT2jGpJi0kmzbNrO2ODrKsqLZ7LTVmhfFBAhOOaKeAyFadU8aamkfogAcCDTBgJkKERDQhJPKQwKDOLiVsh5N2hWbMh8cebgAMBFeAYFT0l9RQi0IIAuiIKc0eBrHlFJuXev9ft+EkGLktu90eXjvecw4jUUfhuvR1FObH0RUuZmihwDgjAkpTtevlcyQ5o0Y9OFhO/15+oN+XwKEsdnMYzddZJhVmlIy/YAJep/uBnw8MxRIAKB08OnMHxDeCQoH1Ggy1WNTzjPdXjxoUfOh96w+FGuttSgf+zrwcZkRRLTGygPsPuTPU8V7mHPKiHpP76Yv/SxmhmygnI+p6yBZ6Ew29jBERBKIxKjt+Wmba4CbaEGaEAKhy7P1dpPnuUXj8nK9vtvUm7atfehNhi4zKaWub3a7nQzsy4ErZO1Q9G63a0UJt9v1xcXFcjlfrVbMvNvtNpuNcXa321lrZ2VljKnrNoSQZUovaqabr1+HmVWxPYRQVQq2AgAownt7e7vZbPI8n88Wfd/3fa/Q4X6/F4GqmqkepbWWyCYZCBNlWYbQax2UUtJx+PV6raTL/vbdww3zeZXZOqV0dXU1n8+fP3+uLkkwEO6wrvs06r8TEdLQxg4hnJycLBYLlT5X0Y/Lt1djZbtXALHve3UVU67l7e1t3/fz+bzv+5ubGxl1M2jUDtJBkCnBUD0KFYZWpBWtQYSmaXQlK2vpUJcp+jjp0YnIYrG4vb09Pj7u6gZZVIdXRSp1bXgfy6yMFBeLhZ6ubnRQV0hUi47RLXZQ+FX/wLu7uywbVKH0tusKjDHu93vvvfe56nr3fe99nM/n2q3k0YhecR8ici7XP/SxZ2aBlFIKoS/LZd8PUy/qHZ3nubGY5/nr169PT0+dy/M8J3pgz2w2G2Ocwk+LxeLo6Ohb3/pW37eKjTZNU1XV8fGxGefriUhjh6XBgnJiVpVlGTkovoaIinpkWRZ675yrqspaK4wIRhmynKRLHY/z+ycnJ9vtVpVDssyJyGazqaqFHikAoNw3a+3d3R3o1FoIyuJcLBYKpelB7Yi0slNwSoEVEFAQQTeOFonaVNa4XFUVEdR1TWOHW4+jCYFS/rtuqO12O2Be5oH+eXp6CgDb7frx40+lkRcsMgzCK0V6qo5hJHloltL3vffh8eNHNM4ChhC6rmtbEJHT09OyLIXRkPMpGnKcYLfbHR8f69zDcHwJ9927N2/TtOWz8gtf+MK3v/3tzWY3n89TiMKGiJquvrvbHR1Vn/nMZ1JK683dzc1N08jpaTg+PTXMqmdalmXo+81mM5HQpwiiEwDHx8fKqy1nOZJYNwiUHR0vb29vVWw6y7KbmxvdjIhoLGpH5+bmxjmXWdc0jZqIHh0dDfmMMboRssxZtMotKMuSRQxaAyZJXFZzIvKZCyEYxMSBoxhjOKllDubO7ZsGhKuq6tsuhECCIJC5B5p2wqSZTEiDPoBGKE2Z9CtPeaOO7Wt7DB/4dpJSVHk3S4ZGaVZjKMbo8sz7YJxTRAjJ+t6HELRNgoaYY0ochQUgywwKWTPgJ8JxCu66E5WYv91svPdhVJjVklwX8NHR0bbZyCipSmQGBYAs0wxZewz8QBEdOIu6NUII6v8J4zRYdmA4D+MYyuRqpndgVpYqZDwW+4mInLNdF6dWrm4c/QOOFH7VpYk8uM7qWa1LV38AEYkMmYdutB7jaZz4n+QaphRIc2YFKBFRhWEn7Ng510uvSNFuv5noJlmWpRSds2POIymx3qsY46wqpEv94MUdp9yGyAIMqkGz2WyxMPW+IZCpZWWtDZ9AscpchgOqPtAgNJksXDatwIlnrepb+p8AAEApRUQqy0pturIsU0bOIdVmopDrjVVKCqJZLo/afd00TRe8Mebp06f6fHUiIYSgxYVejyZ7k/oEj8MNU9IlY3Nxu91qiSQimiGAEKG1ZCYoabVaxbbXu6oqXuSGLsLl5WVVVWokoJmPxheJScUhxvWgyVti5t2+RTA6yGKMAbaz2cxFvr+/1cM8jb7ZzrnFYqHuDtbapmm0K69TnnEc3C/n1REIAGy3W/1LnS6a2gDW2oKoruuu68RJ27YZ5qvVKmF/dbu+vrqyqoqlt0aXV/RJZGDI6qtazKfnqqg2jFwYMxprOufAPJA15GO+KxxjtDg0BKYtp2ko4/DD+s1VYU0RTM3/3IFZik9x3CcAANZmI7I6oMZwIJ8HANNxMHXbcGwsT0eVBgmlL2mUlVGDUnHmqbSLMapgzUjm/0S4WblUiUPyqczyaX2HEAgEZMgOQwiWhpHYGGMMPkdTlKW1br2+yYzVz1TtXGaO6tPFgz4yWmRhHoquNIlCCNng/RjIH9RFppJb738aJ6nhwFGHBGyWT60qIlTrPWCOKRVFQYhEkHyIIcyKsswGZI1HzXVDaMmATO0+YRanLlTMzFAtlyfnZ2gsMmsjNKW0b5sEMq1GElC8RgxO+xlFEIUIZrMCADLndN9m+dCNJKIuPvQY1AtIvyyPPDt5mEJ1iNyFbuqOaiNar9keKCq88zVk59ris/ahUpUE8MBUms4gmsx8xmrZPozHvvuDPnr9JjZN8PVPf/b9f/fP/Huz0i1PThPS66v7rKxcWXUhzufzT3/wqa/9q99r631mjTWwOprP50UMPQju97uj5fxoNqPkTSIMgJJApN41UYQT2Plic79+9eq1y0vT9YIGgKylCGIQEkTEoT9kbPaFn/kZFuxjtCk9e/+9/rdikdk8z6uqvLy5LnOXBH3g3BVACOz/9de+9vM//4vO2H3bJkBSZgdLSExl8Y2v/+Hf/lt/8/TkxJLZ7zax9yGGBAlJJS9SbqwSdDvftW335//j/8X/6n/7n9UhtDHmRY5EpWScuHRKFLrNsqycV+Ss9nXSgKoMua9zTmWC9AQwxgAkNGYq/zQS8AHxfKq6NVcwo4gVAAgPIpi6SrW5SoCEpAPvzMqiFmb23qtkrbX21atXZ2dnyjvQpajgYGZt+wkrjaNYQoewv7+ybW3Fc+yAJAJ5n0JIBMYmIR8YkgiSNTCwU2kxr2azGQGKiOcOR/qkLr/Yx74fZiT9OKn3o6fZCE/oIRagQ7GUIAZOxiRG3/UWEKL3oUGUJoRGbABbg71qevr0555+7vnRqoimv93fYdtR0/Ouk7Z//fLlm5evmqYRgau3t3fXG+/TR9UVc/zWy+989nMfzOezJ48eP332QZ6VPoYXP/z+1dtXmEKZu9lsRgCJI+U6UxZAZD4riqKYFZkFRkBAEENGIKXgMiKLxmQmxpACcxRCA2Css0Vm0cboE/s8N2gxgvTbXb2prS18YDIGjC3mi7KsjpbHiYq7Xe8TW1vFpK5oJiZPLIDMopBWAhEiTJ8ANxNWjx9/2lpbN7un8wsfE0v7uc9+5S/+hcU3/ugPL6/frBbLL//0V1+9/sG+rb2wtTak4AMv5vO6romMCOR5wcwnJzM11VQKM48zpxqsI6eJt6h5njFmuVw+fvz4o48+0lla3SA6Eu5sFkJQFhsiaoes7/spPqZRnVlEfB8Ca/bsAAcFA8UjREe553PN8LTSaNvWldl6vdZiO47TefP5vGka9V/SUWuVT1XFwMMSdFq6NI6njduc9Q1hpJlMx75aMM3yIo5msMoaMwaNMT5G/e7TrStcFqPXbaJ1eL3bV7h653N0zhaz0pJpW9/FWGULHQNyWbbb7QKnLLN1PYwlDSLvRAJTsHiQHVR8yoyWQZp1mJFpLiJq8gZjg58O9IInmDWOAnb6tnaUldCqDwA5pOmHAYVwcFBUuTNjMPh+apUprzAJs/BUxqSU2PtylrMoe0OmZ2FGCowPvfND9q+5vozmhGlg2SjiTAkGGH3KNg8PYTwAguVA1mOEZUdS54/JXuuvASKMbyIihgiJErNAwoM30Usaza/10Bv9e8ffnYbEeWTEyDgiM1V3062WEWvGUSXGWsLRmVAXJ6ehWTLNFjzUkPZjHg/px7wEZNSy0/83ow+HTGohhI4GQCqmoZ3JHFU6Qu8ZJEgJRKzW20Q43ZAsd8EP08H6dWKMqrNsM0cEPnTedwzcdrvYRkBkSHme73a7WTk/PT1FNDoTqbN3InJxcSEiZVnWda3sRZXOvLq6Kooiz2x2eqz8wTR6+VprFd+0NtOTJ/Y90NBwUrCmqhaqGjRB88fHx6vVqmva7Xavy0NPHmNM26b7++b0lMiYru+rqmq7FkfjMsTBZJWIFDtT9C3P89PF8Tu3PwCozuz19bWIrFYrY4wyf5n54uJMp1w3mw3AMG+rvMvHjx9rubhvm7u7u7ZtibEsy6Ojo5ubmzzP5/Nl3/fHx6fHx6dv377WjuB8Pp8Oc/2+mj/rmamiBESkJop6FBRFoVrqeouaXgtdBICiKC4vLwHg05/+NIdB0jr0YblcTgtPD2cAWC6XykpWOPLJkydd57330Qeb54ryD6LtPEhGWGs3m422APUQ2G9395v9YlGqwv5isSiK4v7+flwqRET39/cvfviRQjnRh7tusF8zxo2u1NVUU2hni0ZrHGttitg0DRlQYdzNZoOI3ketFLrWW0fn5+fe+83mvuu6kRkwGN/FYV4TEVFzQt2V+nC1kZlSGomBIaXkXK6nnO9659xyuXTOpTScirnJ1JNQEbeUUgoDOxhY9tu6aVsAaNtW2wMxRERUQfBJ2Wk+n3/hC1/4zne+Y63VRk5ddyJgLbjFfDoNfAyTP41zbr/dqeJw3/cqNq09XQ12VVVZk11eXup900tSUpsuYxFp6i5Yz8zB9wLJsYuBdY8sFospxPR9r9+u73tjUUb769PT0/V6TSPSLSJ1XTOztZluYf3Fs7MzPfdUdlYftwIumtIo0KxHwWc/+9mXL18WRdE2/Ww2Pzk+06+mCWrXSp3Vmpzc3Nwsl8s8d869mzn0GE5sX6TvN2f7ebiuAcC6MjMlIIeYLTDDDWZvOMRwCvMCAGaYc1bsZyHGEKzzGRHG3viYOWtExOUVJ+534fOzTwHA9dVNyWaVrZJUvOe0SSlyFRHb/L3Fo596/F7btd3L7uLJmelDDBEQACH5SIGwN7NoQusl8dwclVjazFpxPnhmyfO89zkRcccgYkwRQ7A+M2Qg4BIXMVWFKTgFlsIHz4nby82sLBbl3PsgnAdOwlylBWOynRWxwECIIOAgSz71fW/IMOcMYtiYzNGc+r43CADQ9T0nLsuVHmixjrPZzHqDB/M6iMgpkbMsMcVk2BAOR3QMEQC6vivyPCuKELwwIFsim7pQN3Xuc2soSnJuprp/hAYDWTKAyCEYg11rQ4xLc4SIYeddlnGbnIW5OWpDp/fTRIM1MEtZFqFjWfsTKoezAo0AQBtXkAPkRBgkYCLqSG1sqUdmts7FEEQAPaTELIwBBYSQjCFTW8RBwCymkvsEupuMCZpEsVjjeu7JEjK1bZO5rMQKFhd7rMEDBug6a3uTZa6u2yIW1pkUEhGGkAAAiBxaQkopkjF9R8ZYHXzq+t4YO5uVTVs7nd1n4DTMrIgIQKmRVEBSTADAIplzfeetJQxIZmDrD3oITI5MSmKdAVpIEmgAEF1yIXqEgfBhrEHEFGfdvucIy5hf5MuWW997GimnZMgGCwCJEwAYsGQo4iJ6X87KXV3zmler1Srm79yb6mqo52qMcbFYaDOm7lrto/BIXkbEOGpMpwMan+Iz6/XaWmstWWvfvn078QgHSs0oXWJHMycSST4oQqi4kxr3pZRWq5X3frvd6092nQ+h16NSP2u/32vh40aF66HNOboO4CjiN/GjEdGQQyZh9HGgKuZ5fnpxvt/vW99L36kC1fPnzycIWxewQsDsBikMGoXj7WhOo5E3JjQWrc1TSpFZaytdHkSknUINZNZaGcnvNHLvVLQ6CgsLIlZVpRnOlHnSgYpdSklQlPGz63Zd74+qYxERkNVqcUqP1TLeTndfgwHHAUFW+29rHHOcipBJQERvnH6kMUanGvWpT82HKYXVm6vw3NT+nZKM6WfUG0FEAHFwmxpNaTWDdzYfgWyMsTfGIAnzQNqHMaHn8TUVLQIJwRyehjBigs45wqFykNGMZfgUGAZ1iYgEEh4avr/7ldLkOz/ASdOyZmZfNyGJLmjWpANN53eIiBA3vmNml2V5XjoayglgvRNMRAOIJSxIIlpXPeD+wyMHmnBzGSkzU9EF4+SmHf30JqgUQIlOONVR8PFh0hhjYCZhItI0VPsBcUz7nHO9bxlT4YrxPRmAJDGjIFJieP78veXyaNvHNAqbTE9Et65B9CgAnAxGfujdCQ/fxZAO81iJNqUkMYkIWjTmgdJuALu+06NE0319f/2+WVaIDNjEJEt3dHS0XC6n/tUnsU1d5pT8Egf5ywGn0MVmRyI/Ih4ufv0nvfMjjW741p+0nC4eP0n90w/ef/5zX/lpNvTizdvPfOqD+dFZ3X3zNKtaD2hnKfjvfO+7L168+OxnPnN7ewMcz1Yra1AS1Nv6aF699+SxJG7qHcUYiDIrb9++3ezr07NHs3J+e32zazqyWbvdG5cnYUmJrIEYtZFjrO36vutDtVxU86VPcd915IpyVs0Xi7beLqsqpUACxjpA03dRE/0iy//FP/vnX/rSl774la86Y51zMSURRIPLWdm37d/6G38jI4PCXdO2TSMiLBENKasaRWKMOVlA2u+2/+M/9+f+4n/yl4zL+hCDcGwaI6CNQTJkicq80MNqqJCJHKn6/IBSpZRoENigBywDB+6zHc2XJvhg2jg6nwFj8a9LKIQ4bCsYxsN1dfkY9OEao/0tFJG8yArM9Vl/9rOfpdH+dAoSugCs+QRCPaIF+f6H3wvNPocAEmPve2SxORjqfODgUwqzwqGTEAcKtrNWqU96MvBIiKMDMF1LFP3W4RPGmpDMhHMhYqLUx5CBDZGjD32Stm0L6wwoXBI65hblHigu52df+tl+9bib2Teba9vdLiHkgaH1m9v12xevrq/ephTz3BpyX/25r3zt9795dXnLuc2L/Hq7vfv9r5U2Ozs9ffT4h1/4whezori5ulyUBSTKnc2dCSkZYZ88I6NInudF5pwhQxx8Y61NzMaYWeZsXk3DGZGNIWccAUqMEYGETAzMCGQdIyCjJXJk2yZsrq7u691sNmu6mpwVsk8++Myj9z9bOQMs+2aTwCWGlARRhD0iGlsQEgJE9sCAn0CLZcxdfpJSiuhNbkF8lPTs+WdOL54ImKIobm8v2/0+go8xNH1rHLk8I4KUUAlfU/wKIdDQR6EvfOGn1+u1EuJE2v1+T9YoOqxB+fj4WKtKZlY/Yv0nvTl93xuyxpIf2SsTQs0gffBT4NBDzBgbZdS+T0OUNMboxLf+sOI1fd8LisktAOzbZklzDX8KaKr9elVVRVHsdjsd09ZER4eBdBnrQQ0AIqLuPVPZr5+iLBXNOpxzISSFtJTIYGDY3dqWVgwuJDbGqB/XgJmSSUkQUWks0Yeu656Up+/eHdYiDuToXb1fr9fzcgZojTGCcHd38/7551QJBAAEVNVnSPXMgYPFFDigf8jENPQPeqwAAIKjhzNPjF0WBPUIFEYABDUeUbbskD+MsOwUbhCRAJIIy4Mth/69iAAQCPV9SEnImugfssm+74GonOVKR5pa+NNVoQx259NZOt0rARb5mEgRkRhBPoh+U4oCB1Ib8GMCf4fJjIggDAIUB7/ykHBOX3nYeaNyyOHHxXFdIQ8M6AGUZ2Uiw4S6TtkRkvKjH2Zipt9KB5LoNKoq6+0K8LEhkimtp7EjPpwPB7nHmBPh9BAnRiqNHfTprhqDIwNDENFlxnBORGaUXJjWgHyMSP6j7oU+9Na4ED0zpxRFWIHgrHDX19dN39X1vm73QpI4ZcXQPSKik5OTpmlUptYYAxh1qTg7OJQCgFaJd3d38/n87PyEmY+Pj7fbrX7EUNMaoyePcjsU5HIuL6tZVVXX19f7faN3RksgHmWXta9srTUGq2oxgbBEVNd1Yh5cpLput99oI/n4+DjP3f39va7w/X4fI+S5efbsPUS5v7/f1807t7+MbFy16FFjQx2nXS7n+imqQrDZbE6XJ7PZTGe39bOMMSZzRVHU+0Enl4jOzi6cc1dXV+v1+tGjRzodklJS5DTGeH9/r3MqMUbtW1dVpfxlEdFJcIUdj46OTk5O9vu9/pN+ohAqqJciLxcrMris5qoB3fd95vIw2kMpkK0SFsw8NRG9j/t9o/2/o6MjhbynkfNpvsQYo3rKXdcB4b6p9009m2Wz2ez73//+j8DZU96+Wq1818dRscGMTm4i2HXdbrfLskyp6Pv9XsFTRFQwWqudWVXoNWscyfOcyIYQui7ECCkldZI8Pj4GFl2cOmc9ZEoMi8Vc//Pb3/6umuucnJwQQQihLMtRlAlHY8CRXe6sxlB9CgMRGwZu+36/ZwZJDIXobdntds7lSr1XTi4iKvng+fPn2o+pFvPj05OqnF1eXqaUjo+P1+ttNlpd2XHiXrdAVuRN07x9e7tYFJvNJrNO+eDW2j741WqVUtrv93pnVstjlc5QyrCuHxyh5xijTim1bT/kD4rv5FliF0LY7taLxQIQ7+5vFKEOIRg7ICxqzllV1c3N7XYDz54PQ1Ta/5jN5m3bTq2diaw3FYMTkVYXVUppPp/rHu+67jOf/py2KLbbrU5I6Kk1cMsSdKlT1e+UUozGuncLYf37b74Cb/SPpwCfe+fPjD/w/+7r6hP+/ubgz98BgCf/n33M/x+/7v5/fQE/eV3/f/8tY0ievBI09bibio4+hqooFR+31qr6n3LCpnCs5Z428gFABIlsnpM/cIUBgHx09B2PIFvkRRjU1UOM7H272ddlWR4fr7RUma6k6zprnfdDd7Cud6qnoVaoilAXRYEyhBjNr/KyTGMlLiMTl4gKa4my3W632d4vFouLiwstbYqimMSjtQLSLy4i2mqdsrg4jl9PsyY6cqE4eL1vVYs5paQRgYh0IjaMdzKlRCOuO+VgjJjleRrnUPW41tCmoSdFmVdL7QXOq+W6XYcQ1uu1VHJyckKB+r6HYhgvsEqnn+iZzikGKtaaOGpZMDMRTHxPOdALn9ILay2nQaP9EOTVfBoAGAFFebhDXNcEXZlZ+jNEZE2h/Asz/PqDxoqIkNFqMKnlODN7n3r/oIqrd00vVUZejKab+gOEpHiiMcYYMiYb4ELCCXXV6yGjUtzhgTQt8HF2dnjnVrGWXJ61ddP7lkjddIbUbUAH7MC5FhEkJGMEhUUQbW7txZPHH3632N5GbSIRUUpaXrKIaLGkpuokhGTHgQira6gqqwgUWAHoqV3xsfJvegoT1k/jwIU5FHwcqzwaye+6//umtsbMZjNIQzrYjhwr51zXNwICkgxaAFVeGiUICZl5eXwEiJHZmEyXr0WKo4MQja8BvDi0dhQgIgQxhFW1skih6zebzd3ttVL5EDFfHV1cXBBZGVyJ48RLgtFJMqWEOAzXT3mtwjG64HVoAj9BLCXTttLYqJg6PIioWs3MrMfZdCaagwlcGIH+6T/NJ+CM/9M//x997492i/nsflt/tL598+qH3/vBR+v1+vZ2O1vtBajzeHZxsambumuLIj85WjpDXVvH0LP3ZZmfnx6nELfbrXAMXR99kOQ3u9oY6/vY9pu66TzDdlfXXWtsZm0WkueQLLIFBIFINgHsmubZBx+sTk8aH3ofN3U9my8//8Wf+ebXfo9chiiLxUoIQ2TnvOaaALC+u//XX/uDL3/154o8iyImy3wfiaAqZ7/z3//3m/XaEba72nvPwsYgswAICiAiMIJAZL69u/3lf+dP/pf/1f/RCzSd95yyIqckRsAg+a6PPgDh0XLeBS9m3L+AIkKAZnpYg4DmgXoM6xgR6/zUNCAmBx0phduKg6F4HUhUJpzuSgVzRIRBDpoKA00+jSLpwMIccdTHPDhy3QhGvLvrkDlT77brq7fEgaXvQ98HHwSYrZjQ+8ApugghADGTGyam0WJZli7Pmblt2+iDAhDGmGz0akNETuKcJUKGd8PNIUWfouXhoEgi7GOffIrRh8SCBpFD7NsGifcSmjzfFGU8fTZ/7wv9yUV9tY23m3Mjx5QvIqem3W/2N28ur65uACilVCyqz3/+8+9/8FNPnn/mb/7tX9t3+/nRaVZkhsGSabv4zW98+wc/+OF8PvvMpz94+uRx6eyTR+d93w9bvrAhhOEgsibPnbVGR1KyPNddZgDFMwBYMOQyGo0uyFiloouVvJzH5BEBBUhwtThZPFr4Pv3g8sPLyzfz3Frn6q69efXHmaX56RPIK2bolMScGQQbfGLmwlrtTRAKImT5u7v3xpggnDhhlkcGW5QVIzMDmc999vOLxfxrf/Avv/lHf4CGKUOyAuBms8x3oShKIpqqKeXlqRSjdq3NqIah0mM+ekWWde5Y0Zntdnt9ff3o0aPDMI2IXdch8LyYh7DRrokGdxwdcjQUKu6w39XGGBU37OqGDJJ54NiqOscE/mo9OenoiYiW5VrnA0DXddO8oR6Mo6utZMa6PKfR+1u/4zQfoJe32+1USm/69BCCCEwGPogYvGq2YgjBWqqquTEmyiAaoKKQjozerjzP9/ttSsmSKYqC+k8w0kzJey+JmaMxJlNTo8h5kWn2mecuy2zfa6qAZNTibwhzOLYkpxgx5U4w6rxrEikAwsKQACaIcHiZYRg5KgFhOMQAWITjx1KyKTc9gF8/9ucJ7hSRrm3btuUEwsPkmQxOZcH4gQGg6ewBSAoppd53gMKz2ZSGTQEdUHBUbZ4uhgQUcT48eEfg+Ec1ndM4nDj95QCRDrIXA3w8fSMeWMZyMPMGBomHNuHwIhx4BIKYOCnTARFhnL3DA3YCIrJEZBQRezAzd3ipE3Qy5V2aIB2qQuMorgIH2rvTljz8FnTA0YaPUzQ0tJFFjkl9raf1g6OLIxHhyA4Z0m8QmDJAAWQBYYbxiRBpA8kYo8xZMyqGAYBnD8BAcr++y2fZ2cXpJF+DYJqmaZpuu92enp4yc14YLX4AQLVi5/O5riX94rqR9/v9+fl5VVU//PCVpspTRaAeSnqezOfzD957v24bbSFnWbbZbHSZuQN7pdB7rbvy3OmxUxTF7e3tbDarm6ZpmuVyeXx83LT7xWIRY6zrnXNHq9WqaZr1en10dJTnZYxxv98fHS3zPHfh3YjVYrG4j1c6fKo9AAA4OjqK0auEhY5ROufOz8+tcRP5VMXri6LYrzd6ec65GGLfP7C0DoVQQwiqOHR2dtY0jZagZpxnVyxYWd5TmapDqDruCgAK1CpODTAoJMzn89j7q8tr771z2dHqOM/z+/t7hRoVAVdbPF3Sy+USEYlsGo15YCSgadtS33a32+nMshKB9dHIII068IGyLNvtdsrq1coijUpHMcZVVS2Xy7u7u8vL6+VyLiLz+dJ7v1wuAaDv+75vZVRgz7LM+6iLkMiW1YyI9vutkkKysijLcrFa9X0/K4rLy8urq7sPPnhSVcsUIgN672PklMI0cLbf74lI85OyrAB4uVw6Z968eYNorM3u7zcad+7u7lQRQnvA+kwtEiJpT2W33ekbWmtns3lmXdu2q9Xqww8/ZObT01NDVFXVycnJ/f29rvn7+23bfvfJkyfq9jabzfb7/e3trfc+XF2FEB49+txqtdJbWu/2zrn5shIcEIfZzGnfQsFrAFB6YOaKt7dvdWdVs4VKh09LSMERDc13d3d9n4rCMvNiPuv7/vz8fLPbKt1Yp86bprm/v7fWqhyEG2149VA9Ojpar9fX19dFkS8W5vz8XDfsarWazeaKxetPTiLLmldrnGqaRhUkFA/SK3z+/Lkx5tXLN313rZnD1dWm6zrl1Gvao1ey3/fKhdQFb+K7Y/dPXj95/eT1b+eLOSEKcyQaHEHNyKckoi54MIRERVGkup64Fyp2fH9/r8cIj+OJIz5DUwdLzyt92zHnsYXLqqra7dSk1Op5bom8997HENRtYmDQqlI/jGoteV6uVscArNTG8/Nz7Qhm1mr4c87RyKGexITT6L7QNI2yZ7LcppSur681eGnkVcCdR49Zrb/quvbeazYFMAxbm3HOY/riKml1f7ep67ptw2pVTU3cpmlCCMDsnCvLsixLRlbhF03PpiSfRgqzzqUpU7uaLTQ/0TpUUWYqBgSMkLz3cZ/KPAshJMCu62zgRGNLPIRgzOABqNXpRMrQ5HZKmmW06NF6T7+wIwPqQTPmx/oOmvcwM8kBuYaIiBiBg59qIWbm5K21RAOcD8Aak/TjsjwTBn38Q9XqmwlCxQM9YhnHVMNonisiScK+2anuqt4m5/L5fF6WZfRhSvETB0BODJq/plHCkgR06grxQZ/lx18xsl6wfiOEYYY0jB4XxuUTegsxABkg6PreWCqrcmZKFUsyStx52IEsItZo0fJgHQNjqbbb7W5ubuanBmwW0tBggQNC01QsTQUJH9gwDrWusw8/ME1GWMu9n1oLWBSZc865MFqp0siGZkjGGIPEzOSADMBAWicUtEhKZ0ggRBS1xIopIqtIjW5vJqM2X6SSvESK4lkkZo7Bxxjfvn2LLMxclNnq+IhB1M8qU1OCFFBEhCZYbYBI9nv9CjGODQwiTVb0JofBRkZx5HenKTEm3ZB4MNmquybLHgQTpxr7wc9hfE0LVf8zjZLHP/J6/vz5qxfVP/zNf4gCKXiOHkDyLOMkX//mH5+en2X5/Od++d8pi+w3f/u3njy6WM3L2PvInpiT7+cnx7nLrq6uVBoshYiIoeuNMbPFLILpQ3h1eR2TZGVRzubMjIYkCiBbMhyDMabrw75uBegXf/l/NF+u2q5PBD7GIrNf+epX37z40Ne7zGbOuV3T9n3vuy4N6oFFSvzihx/Vu81scRy6jtA4gycnJ/e3N//8n/3T3FDT1l3XDJWnIUmIAMhiCNEYR+bt1fXjZ8/+yl//6+Viubm5QSIYDyJDwygfIjJI3/dAyIGjRGW2hhAy69hHFUzEQV5jOMFCCLq89R0QEYhg3KcwAkC6/vu2G+Y5RjNMAEiRxwaVMUbd8gYBH0QUGUjEIQSDZJDAMDOE3htnp/04HVO6L98delP86I+/G/umAA4hJN/HxGxcjKyT74aQQWKMGBlhIGlqCMnsEDX18CEyRBbJEpAAAbBzg5VE8O9ehCklnUS21mJESrLb773vnCXvPSQuyxI4ZdZES8G40y9/8VNf+oV1dtK70/U23PzO7x9nUF7MlxZx3zV326s3b+9ubkUk9P3F6cmzJ49Pjo7ruj5+dP7ss+//wb/6l/f3tFgswGQA5MiUcxujb+vuzavXu/ubs9MTY8xyOX/y7Jn33qfGICPaFCKNLh/WWoFJSUC1fZgTGKI+RdWLRWBjkEUFFkgg2sw2TcMxFSa7v78PXTg7OZsX5ca69fouLzJrcVZkN29+2PZ9sTqbz88oAAYBMjGlLMsASAMWHmBn776rEPq0t0aPchSRvMwAoKIZAH/44YfBQwq2r+ussHnlPv3Zz2/3m8R9s6+Xy2XuMixhvd2ojicA6MTud7/73QkgHg5e44Ska/sY48nJaQih3jcKB9zf3x8dHaWUOCa01hkLWR4TT7Avj2LlWhNO2ZWmNcYYZUkrLYuZefJ6JgOJM2PBWDCkk7ZmpCvmea7mb1OCAWN0S6MuQRx9w1IKANDc3U/Yd4RhlylLsW37GLkoZlmWabicuKWIRutPZedFTo6MQtXz+YyZ37x5szo5nZKq0PWND2VZ6jdtmi70npmLIts39Tufo80Gl5jZrEwpRZP6vgdGC9j3fUiD+hZz1IENRGMHI/KWDjzlYAAcQckOmhPrR0wLiZkliTGGUDMR0TV/eD1TSBpR0Ye5pSllnFKXwXB4RIR/BOLsuq5pmq7rEdGM5nWuGJTN9JDUlTal7ADctm2WO2utcgtgtHSnScEDgNPQq0ujfY02tmX8FABgThOpefpSP7Knpgt+wGdH1WNAFJremn+cvYvK6x7DMSIaIkHUWTFOkROSGdIvVm3rCYo1EKNM8P3AVxiPdBiz38P/h1H9WeyQ+sLobqS/rowS+LhFra6EKdOgkZWj3zr0PjGjDOSDsRY6kJM+eKAaFKb0GHh0VgSEA2VwIlLFfxjl8nQsKY7eMtv9ZrtdX19fdb4t54W2SJm5977rvMszrdbUOialZOyAsfZd8P210jA1tj5+/DjGWBaz9Xq9Xm/7vp/0f8Og+zzQ5xXHXCwW9/f33/zmN8tqprrGIlLXu6dPn4qISoVYW87ncyn5+vpaV9d2u9fS6+7uznspSqu6vSenR6oa4Zx58eLVbrd7/vz5crmcgCpEfPHi9Xp99/7772fduwkBiNi27d3dnfaWYozOGedsUcyncpeINF1UbVDrBuKwTl0YlynNs2kaDgOFXMWR1fSsbduUggqkLpfL07MTvn6QM1ISk4hsNpuLiwsFebUa1OeuML2+rQL3VVV1TSsxtb5tAXQi5Ph4cI3T4jmMzmbGGEWQrbVaxHadj3HgamRZ1rZtXddKMtVCdLvdKrHm6OhId+XEdFaBRJHknGFmvWA9e3WRTAeFdj6Wy+Wu3gKANgBevnzz+PH5fD6/vb0VSdoqUEdBtRoCgNPjo7KaTTwPAFA+cp5Rnue+6wDAWri+vla15bb32lhVYtNisVB7wO12qPMBIIQ02cRtNlut4YmoqqonT57EGLfbraonD4hnnhtjknDbtHXbE4BzuXPu2bMnoY/e+xcvXuguuLu706AGB0LMeW5DCNe3NwrC6ky0fqguaW3NbjYbY8zRcoWIm80ODbRtu97uHj9+5JyzRBqgFemGJLvttSa3OvSG46y3thAU71Awej6fM28VBXbOTb1tfVL7/V535aNHj2QUhN1sNtrk1pEgADg9PXXOGYOaeSoXW1fR9KxFxPuuLMvVaqW0a70J+qH6KSp/3DTNZrPR8llHkbquE4EQhu6y93693mTZwLLf77vlqtD+egjvzmx/8vrJ6yevfztf1bxK4eb+fjebZbq7NaIpM8wYozI7mmNMBgY6V610t8ViYUdf9Cmn0oYWj9L/PM5SiGAIoaub/b7RDFz9V1X8Rwi7rgPgaVhwynAUO9YceLPZTM1+MwzKcK/ON8yiaDfzCLQOVb/WI9p+RkRnc059Uw/8If0IrZvkwAqSCLLMqsGVObABm0a0cVSgVX2k09PTuq77Pmh3f+phV1Wl9Ki7u7s8d2AGRB7GWDbVF3rD9W7HGIt8NpRvRAbROtfW9eXl7uhxfpqfLJfLznbMTGCstcdHR9f367qulZlCTd85MpoS6dvp95zIngkG3o2MyNqU5evzU+dEvYmabWi/2qehY6lgh75nSmkA+PNs0pXXAoZFfRKQY9QAr1FHKQ9tH6YkXi9SswrNjSZoWD8R1dk0Jokpio+9jzFSbpAkhaSPXInl+jVlMIcZbGd0BU/Mx+QD0UMhQUT/Bjwhxpjl1jJ574u8UJMlHbUjoqLII+d638q8jJx6H1JKeWZjjI33AFQUhQNQ6c/DOnD6szCnKASJjBZLRp8UEdVt61OEcVhAv4hG92lpTuXlVPTqGk0gKkpNYzmEiDDqmcCBUqT3HhWoCmEoYxJHiUrknEDVQVqbiFg7GdlqeZxlGXdpsJGcGFUAnBIBCJIxBkjIWVRdxZQUqmZmEFEJf5tZiQkAjo+PLy4ujDFN0+z6ICK5HbRERq9Xmg6CEWEMulxzOyipa6o9UTb+zWgRHky26kYYuyPDHdOi5fCmmQMdc722CWhInN75KT72X/nKl37v9/7l5Zs3IQRnbJ4XbFw5Lzf32+99/6O/9tf+2p/4d//kd779rfMnTzn6EAL3/XyWWYCEkFLq+9A03W7f2EHvzwqaBKYk2/b9ZldHTuSyrg/MvXEWGYmsOmSmyMywb2Ji+DN/7s/+9Je/gsbZ0kqEEJKgOX/8+Nl7z1/94Pu5oRDCbrczZMuy3O12Rebms6qaz15+9OGH3//Bz//yeesx+D4rytVi/t/92t/d3t0SJwvDoEMfg/5ZcRRnLQCs19tiUf31/+q/vHj2/KPXr7O8FDQGhKOkyAyC0ktiImKQlJLLS7LGJDFKoiMisgJIgMwpxBhjFBnm/XVRantzOp1TSp0analETIzMvKjmIjK42SYWQjsylImIJYkk55wbtGWj95xSqqrFQxdNhkOs6zoim5NhZkmKFOAUgbTSe8dhEtpdc+OQDUEkFGNVPIYZmKMAp8RdF9DZPHPMIILz2Xy5XBrjurb3wcOInmv8mIq6GCUk0ZUf0rsXYYgcw8C4TCn1d23iBIB93xsQm1kR6YG7lDjPHn3p8+lTT18Z/3p9++oHH/7eP/3Dn3376vO/+KUzgTzEu7v19eXl27dvYxRgefbkyZPTk5PjlUHqQtdI+PyXvnD95u2rV69cXiUniAzAOVkiF4H3rQ+RN7tXV3d3JyfHRHB2fgLcZ9bpBiyybAg01qSQmr6LkQ0g52CQLBILmkzlhoQAkjAACIH2F9u2i4EN2r2vY+dvr9/88KPvZrOqKIrVarXZriWIMa5cLLrNbQjh2NrCzqJQZDaUAxoAQhRCpTQaEVYu54+/BALZgMY4LJiZExAZRko+nJ6f/Yk/+acuLh5nrvijb33j8vL1Ma+uXt93XbM8WSbipukWi4Ux7nh1JGnoeNNobh5Hdcv9fr/ZbBbLwZePiFQ0uSyKqqwksYhYMklA/bKmlGWz2WS5mzIbXZn6zmmU4/fen5ycPH78WO3pjaXJDmHKVzR2W2PZOptnGjI02iYfNPJOv6K4mwJDMOKYRBTC4IvCoxiuBTRgUFAPqzwfCKTOuaqq7u5uaHTT9j7s9/vj42MNvmVZHi2WInJ3d7de32lw3O/3ik1AYmaeTO2ZebvdzopSATJn3k1v5MRqjSXawBaOMRZZGUPc7/cffvjhz3zqy9aRgLouG8QhX5oy4APyBaoMF4yY49RH59FCEMb4KwdUMhFRiS0YM4RpouIBXT2AoYezC0gV53nsj+KDhLSJECbnHP0snzwza0dsStk1Z9MIa/SSEEFQsS0AQDPE3MOvDGN2ISKMMElJGX0D0Lc58Dl82DUAB/zrKf7CgZ0gTDkSg4AAfSxrmn4XAAgQDu6kvlsSREQwJImZZcDBRQBkIjRoHqjfmkEEgUVgdCPUq9eiZcJt9ZVSglFndmLvHl7z8EBHabipGwpjW2JiBhCRHPRseHLOMBaA9J7p+wAyAEAISrYd4PgYxkE9IfqY4eFU1Qxkz7EoYua62d1vbrfbbbWY19dbJDw5OTFOFZYz5wTRFLN8c7+21p6enhJB33VVmddNYwbJEWzbPoR9VVVlWYbgASBzxaOLUiA1TROC6PbncSRCM3+NzsfHx3r4tG2r2JxO8asEQdM03seqqlbL5eXlpSZ1KYWbm30IXO/h6JjyPO+6zmWqiBW874qiODs7ubu7u7q6Oj8/V3Vpff9Hj866rgkh7Jt3DzLe3Nzk57lOvCr51xjsuk7Rt6OjIzOKpw3mbACI6INn5tnMOeearici7+Pd3X42y86qaoDpR6953UpZlp2dnYnI9fU1M8+qUniAkkMIjx490p0IB5J0IlLXdTWbIUCIcbVaaeU5VTd60FXVwhgjgnd3d2/f3n36009Ug1trNBHR4kVrsSzLUhJlRSm8jgJ3Nx2wVIu5iKgoxMuXH3360x8QWb3yqqq0Y42I5EoVRGbmPB/mYvU/AUBZ28pPur2/ybNstpiLSDmvduudCKhDLBF1XXd8fKxnFABoXxDR3NzcyO1wIgFAH4Pr+zdv3qSU5tVyvV5LSs6Zto3zeera2phZNVu0nfrWkiKn2oAhIpWBIqLdbrder5um0R5NXbdt2y4WfVEUJycnsxkTWefc3d2dMTbPXUppu11PpG+dPr68vAz9YFymXznGlFIKISkvz3u/Wi50/CimpJJZGiW1t/rs2bN6t+973/f9bteWpdO6o23baj7P87xtd03TnJyc4BhH7jebajafz+dnZ2dt256cnDjnbm5uFIbWtoo+Gu+99pKdc6vVSh2fMjd4QKnmxsnJiTLaFJfX40u715paM/PNzR0znJ0dAYC1NJ/PtRrSn2Qehmu1lWWtbZq90qUnaWlCa8illGblXPl0yu6PMQqjMu67rr+4WIqI3pkpedYhp6Mjq51m5lTbd1sF/uT1k9dPXv92vujELdvlNAep7b2rq7vFAjU6qBDQBCfSgJmurbUi6P0w58SjnYwWFCGE/b7WjGKCDWOMODbsVVCoaXiAYq211s4W86ZptMyfGBIpJXVo0LJIlfd1DkyLLx5I0OV8Pnv16lXTNKpArcF0AosmJiIA6FU555bLZYwRhJhZMwc7+M0YaymlgGhp4Hyo6SVNnI8JydSRMmNMURTCWJblxcWFXoN6/YXY+9BFAX3zrkO0Rlt6EyKfUlKTQ5VhTClpxNG0JHduGjlVXezqdO7vRjkBpKqqrDUmI/1eqlhqjDFojEX0vtMhZb1r+rw775WmyswGHkh5mhjpNU0V0Ri3Yp5LlmWISW+Tgjhx9GrT34L4YLupT2JWKqeJJOlY2dBIHz5OcITeB9iIJU1QKQkQoppa8sidmUjv+jdehokbRWbzPEc0cXQIZXmwkktJ7+PA0EnRT158cWhZlJ+wWR5g3ANseoiLABBCYCAaxp26PkRGstYCoSA65+bz+R05AiFS7T/VxCARAXWwYRmqSgKl0YYQbIze++xAndl7TwJIgiicEoiQInoiIAxjfSgiKUYQUfowIjIBIwihILIIpIREk2kYIsaUiDnPs6nbM1S2ovTwZJBExADyQ7krKSVnizzP1dgUAAygQTLGREyEhAamMgzAAUJmshgjB/bAzEzD/TTGkIioZkifeN/t1V2aGcuyzIzVrSsiIXTWlnq71LFkqKhjcG5wW9b8O/nByHUqZT/h6cpEmoaxhgcA5uj9sLbNqMt5eJogIjOkNCwtGKdWP4nWCgxf+cpX/upf/at/42/8N1//+td99EwmIfWbXUjxyz/71Z//hV+YrVaB2UemmHZ1u8ydbgYh0/oA6+2+blMSNCQiSUQEDeDddqcXYMj5EJAsWcNIMUZrnPq6Mmb3my3li3/vP/iVX/3VXyVrdvWe8jKwkLUhRQv4+NHTNz/84a5p1uutb/pybkVkVuQiwjE0TeOc/YOv/d6Xv/oVErDWVmXxT/7xP/6d3/5t37UZYfQ9jYRia21mLMeEQoZxt993KfwX/8Vf++mv/ux9vWekuveOHCOLDMQ1HxgRQRIIsSCpxRBS0r8H6oMHQUJUDRURUamYCXYJg3UvkrUGMaWkSoKq5aSVfAdY17W1Vp0khxGbqd/GzDzIdo/hTU/8pH/QPgFzFJGu64xxdnB1GNoVIiII/4b11u63BhOCiKTAKQKIsSmiViqMDMjAKLnL8oKckcQ6VDupTSEYQASgEaRW/hrGyNEHHvb1u6U8RDhysslqmZFaDznYzO33LQCHEO+bZnZ8dLW9++gHVyvZX/3g2x/2fH/Hu+/WbkP/+Z/60k9dHNvU1s328vrq8vqqbhpBm2XZ0XIBhtAAANR1fVe3zua/9Au//PLF27vbTVnNbZZZogARhQ1g04bj42NjqN/2Xu5D3+y75tHJvFjliJhZK4xd3bjFAsjEGDkRAORFZbOsyLI8K4P3fbcVlLwoDVLf94As0e/2O41lMXJKqcyLLM/a2NX1rkxxcNfBoxcvXtyvd7NqcXxxFgO3RXF0/gxyu/cdGBuFdNIkPcz74yc1raYowymklESdAzj5FLt904f0U5//6fff/9TXvva13/+93/2jP/rDq9fXx8crvw+PPnV2dXV1f3NbLRfao0Y0RZ71XTDkcJyfVTpbXdeqKGKtJcT9bici5+fniDibVURDY3hqeDCzc1nm3KKae+8jD1byGvXcKKSoXd4iL5lZwYgsdyEErRjdINUSYoyI4n3MsowTI2JunQ4fuKpAlroe1MemkXDlQU+c2TSycQcmoHEKYqZRXZ2IDGBunZ6uatM34e9mnBTO83yxWDRNc3V1NRbY1jm3WCz6Pmz3taazSiJTFEYzBIVUACB8wgCKxEGaM0U0xhSuiINqv0GG73//+zc/e7darWyWhZAQUQBZEhggslFY/2dZqa8EABMXW784jRMSY6TQXq+IMJGZQtUhnMoHmmBEpAIT8ABoDisTRsSWY5oIyOMY3YPaiec4rucHbNdaS4QDNDp+uv6rsTZx7LpO+QdlNaRe0+8iIpLolAozEww5w8e2xkglnmLrIRr7zgfBH9OePngrgQRC8PBPMjIkJiT+8C+ToK5AIE0gJ2PAj6Hk03dhftBrhlHWXDREmQddsqmXkyYyxIOB+wMWry8e76qI1F2b57kODn7shiRWXojuRxm9NG3mJgibgSWKMATkEAcSgwLHCYZAMJEW9WKGqJSG9hUi+r5n5lk1aAje3t7u97vT85PFYoEWGaTebouiiEmWyyMAMMa0daPjTdZaENnv93mWWZvVda3CGjc3XVHs5/NiuVwyD4wKYxwRxdDLaPWsxB9N1DVFjzF6H2NKIcS22RCRsaInnowSf03T3N3cKllVcbH5fKlZZQjBh8DMeTGcGNpRPjs7W61Wbdve398758qyUi6PVqRd183M7N3nOMB+v1cTP0Ss67qqyvl8rmevjFbACtXF0VJbx2C1bEPrimJ2f3+PCM657Xarrg99H6acIQQ/CPuGnojUWM8ap8L0zNw0jXN527ZZ5pRErFIJ9/f3hijP881mE8c62TwMyWZVVWlK/OrVKxHJc1yvt0WRAcDwKdYqiTjGOJvNdKVNC4+Z27a9uKiapon367ws3rx5UxTZ6elp13Vd55WR7Yo8cOq6ThjJDGqV8/ncx+jIpNHVVtvhZnBvTojWOndcze7v70NIRTU7Pz9Wzd88z8/PH93d3T19+nQ+n798+bootO5FYwyDEEGeFzFGiAERsyy7v98YaquqAua+b50D59y8KpsmKYxujKmqSieCFWXIs7KaLbpxXC9GH0JYrY43m01dtwqb7vf7+/t7vUVabIrIbleH0KeUVqtV3fZ5nqvL4n6/dcYS0XI5996LoMhesY8XL14oHW/i8QHAYrEoy/L29lZ1VNbrnfLgUCjLsrOzo77vVSzFOKub5fy81W3btG292yHicrHqum69Xqv5lX6d6bzVeK0BfUpB67peLo8eP16FEKyRCdFW30sexQbX67XI4HxzfLxi5pubGyJ7fLxarzdd1y0WlR0VC7ViCiEYMzSSNZ0YCXSDh4o6EHat997rQHqK0vWt8t8RMc9K5T7r9F7f9wA0m82KopjNOkRUgrY1xvf9xfn5Zre+4+13Hl9+/u2jT9rCP3n95PWT1789r2+cvvr6q285587Pz72P1tZKDUEcAFmVIeaRIjMOX84BWEuAGGMIyVoUiZrJaMfajqpNTdOVZW6MIbLGOER2zi1mC+23FUXbtp0SUu/u1pv9bj6fF0WmMMVUJhARM1irEzBB4WzVP0jjmGZRFIhmuTxar++stWVZXl9v9Er0qozqgHkPI4Yw5T9937ddu1qtAIapx6LIjDF1XadRZ0LRSy0QzOg6rsWaHbU72rYFoazIBWFfbwecE9JQKyWezWZVVXVdFzhprFeJpBACGsqKXBv82jTVa7PW8jgLpY1DIloul9d3N1jD0dGRB69wCsdwefUysGRZplOrRjsGQFAUIGNDWzvSPsa6rvPCKfNIEMlQFBZOMUVHD5xwHFXqUpKJ3DHpOfLBwOAUUCc2zYTm5FkxTJLyYPiDo9GKcy632WgiD/oMHDjNj41DTUxxYHmYiRw0dTlg1EPEkScSYwSIIpi7jJljmOzCO80Iq2oBAE2z5xC1loARXbWjAsOPvdA5p26YZVkii2bqmpzpRWbFUIZl8FBN9X3vKDMzN7VcxiXFMDqSESIIqQkhPnjooeJoXdflIXgfGEH5CGr99zFsS+RHarbpX7X6kZEhJSLaYGEQYwbKUuactcYImHGYVMctJxRvesRD2W8HrRUAABxEjR9qs9GZEETZx2SIog8iBKSF10jyQgJGRtZ3DjHmRaazzFGXpXVoxALqtj/c8DphqseHAivjrUuA2Pf9QHBjntpN0xJ9x9OFoYWgcHYcFcdgtIWcGkTx48aYxhjtGSAaRJ4+4pOMJ4P3m83ml37pl87PH/36b/y9y8tLlSK5uLg4OTr+1PvP56vq9m796OmzX/qlX/7uH30jtju0RlACsMszMqb1vSDl5ZyZGdhZ1/mYIhORQUkp2dwacZETC/YhRWYB9hFSit57MsWv/Ie/+iu/8iuRAwCxpBRCBAMQKHcMcv74ETm7v96PwJPNLCVrLGHb1pYpz9yHH/7gzZs350+e5jZ79fLFr//arzW7rSVIwUff9wBkyFqbW0eABIPSRdM0/5O/8D/7c//Br+za1jMLGhBkBAsYYmSEhBBRnLN9H5ljbl0cXKHMWJMjyANX7nCpD8+LcBSoza02gZhtUUywxVSBK8psRzOfGGNCNGRjjDq9PRX8+lmqSMs8HHrODF6xZVnGOMiFyyj2P7Q6UmJ5N+Jc15vsGJFNEgTryGSSpPM1MKfoBRkMGDKGnEpv0yhkFHuvm90Qwdj8lAMsQ1dmGlXL370IQwwhAEvXwXa7tQFiipQsWuqivNls/Kw6+sLnv/j47A9//e/8xj/+zXWVZ8fnfE/FD/2f/Mwvf/D8lKRrmt397eXLt2/q7U4Is8zmufMST49P2dLl+rbtgmXDPpydnD9/+vzli7c9xhQxWesscYgIsA2h9lzNyyK3re8tBGctpVYSrFYrRybFKEl850tjnzx5htYk5jwvtVUZQ2x8iwY4Udv50Ke2bQEYhLsuhaT9cNu23R7bi0en+bwI4FlSAjbWZVB+8KnP3d7eX91c9n1YHB8ZY/I8p3wB0YQEyeTWVSCOJSkD9d27ejhDMo5uDJHGOCsITde7LCPjqmqR56VFs1wcfeGnPvePfvPv/+4//yf1brei5Z/+03/6N37jNz788EPv/cn5GQDEGDVS53le13WK0oSOE2SueO/5B6oW4r33KWmWpmcdM1vr9vt9jPHo6GjSzsqyXElGWuBNKNgUa7RQTCnpvxJR4gjDQhOFShFF4QljzGaz0RzO2syM9oMAMMuLcUkOw/XGGC31FaxREpwmNyKYkuiZqajo1LB56HQm7n0rNKxqRMzz8ujoaCJll2UZe4+Is9ksyywANE2Do+qrZhr6r2YUgtS5s9lsppZxP/5KzG3bosCsrIy1U3idz+e+69fr9de//ge/+Iu/nBdZSq33gRk0JE1sLEQEQ6qlqxczeUUc3nw4UI04BJcBAMZkAA8Y0DKO7NFIrp1gaFQ1c80F0oCiTsi+GbW2Q0rMHOJ0k4fzU2/2iGl+DNtN2u9F5Gxo9lsykZOMAtPT90oyJAmq2vzjidT0NQ//HxEHBwt8kCeeGg/0cabwkBkpcoqDB/JhTJeJjj0+CCLS2/Bw8x8GmIZrjDGSgQmNPZTSnt5fRokkweGfD/51JGXDw8MyxoB9YJczPGDrrH8zDqXhCF4rzD0lIRwjAvA48Dfd7Wmb6N5EREWdaNKMToPmGx3MY+q8i5YAAuAy3YOiun5t371584Yc5YWbzZdlWRqbFUXhfcxcUdf1o0ePdAkxsyE3r5aIaDNnre37QGTLEs7Pz9yDkTogYt93iJjSwL3Vr6AaQUpezrJCDzpjrRKKnXMCQWu/EMLZ2ZkGvjIv+r5fr7dPnz599erV+++/v1weKWG57ZuXL1/qw63rnX5H7/3jx4+zLLu6ukopFcVMiz0thYwxpn33cEOeF3o/zWAgHG5vm9VqpQIFu91OKzQR+cEPLhcLo0g0jnJeXdcdnZ4pb4hol+e5AeOcW6/X9/fN0VGuGtMphRBCiF4VhBBRQUYtKRGx7/uuG5jIIqI8UABwzqkzobU2zzKN+uO56pxDPQMBwBgzm81mRXl7f9d13jkziOpmWT9aFY3NicEgp+u6oihU/0TbdWQNAGufHgB0KPbq9kYTs1k5DyEIDCxsLe6899v7NeIwTIaDGsNQ34UQ1E6867r5fH56eqqeDVVV5XlelvnNzc2w2lkAYLFYMHPkFKPXUTYAVtz89PS4qqrV8jh6v17f9X2vdkRF4W5vb4monA0CQVrlnZ+fz8q5iDibAzIzp4TeAwqsFss8z6uqUhb8crkUEZWtGFpWKc1mhff+5uYmK2aLxQJFrq6uT05W0QeNLHrDtckBAEA4jOqawfbq5Oy0KIo3b96oVon3XgSUlVbmhW7kGGOWu31TGzU/SHG1WmmI10DcdZ01mYYVtZrUbZVl2enpqYqAqynfuCOa+Xyhvouq8mGIVZb9vffe0wT48vJyt9s9ffrUOXN7e7vb7fTvtelibVaW5Xw+V4kYfdanp6cTiA9AygFU5nhda0AxKtwBANvt9vXry8Wi0oNosVicnB6t12s97va7OoSgsL42cuq6PT8/L8uZRoH5fM4pbbfb3a6+vr72sTfG/ONH30XBn7q8eOcu/snrJ6+fvP4teX334vqfPvk+tQQAm82mLCsembbWDrlWGE22aPQXDSH1fW8AXZEroURzfu0Rav6gv7tcHtX1LoQQB7NWr/TTCcyx1i6XqywbhAHKMvcpiiRtGaoVASKGkKwFgEH7Th3UjDFEbjYrEFF/HQDW67WIlGWlDuqnp4sp2fZdpy1tjXFZlqVR107j8qycT1zeaQxogpWttcdH5yH2bTs4GeCIvyn+qzeq73tjM6285lWpqd0ESSOLEqqMMYzQ94Pw/fgzw9muPz+Nfjb1xnddjPH8/FzBaBVD2+7rSvKmaVKZBPDt27ccA55C9f9i7896bcuy9DBsjDHnXN1uT3PPbeJGk5GZlW1lVJXYiKJZJEWIhMiSRIAGzDfDgP1gS7AB+0kw/EMsgA8GaD9IomHKMEoUBVmmWGKRVawsklVZzD6ju/eefjernc0YfhhrrXMiMsKvfuF+CNx745y991przjHH+MY3vm+xWODCppRS6nXMdr3a6kQYTZqzaAxNmO/sNaTi05pSV1WlKgezBZAIGjMJkxnTDq3eTWttEpnv2gjcyIOrrB6EnGR0GWJumma7XQPAjNwJpq7r1Bciz3MRbLvR31ZfPPG950aBMnceCi1j9Cq0wx9GS1xHRAJJH1iWZaomyONoIRARTrB1CMEao2fhF24YY5SZFUeSf2Ke5ovTJOmAj0xwiKitGwEwFoNFEbtYrZgZHrFjZoSIjIGxSkIislOxZIzRzDJvOyHj3DiVTI9Unh9XrfBZms9jNq6IpFnzgZBB8amRhhNTEknIUkwzcdZaP/PjjMQYdbx9untERGrWg7MhobXOOR9FOR1IIkHMyNcaC7lRNjFKCsyc0ExK0xZjStZaa1zi6BXMtQYIU0woD6O1MiHLun4UMbSTh8/MnkOcLI9EFV2YOQLoGO4XvKwZV1qcZDHMOLY5lqYznXkOKzh1YrRaBhhxk/E5fgnenBcForm5udtsNr/1W781DANZW5ZlVWQocHd/czjsgtBqufm3/9yfe/+dlx//4se+Pb769OM49AEDFCUkYcCUkppIDX1A65CEYxIcH3+MkawbPZSM64YQkwyDX61Wf/Nv/s3f/Ct/aX84MEMXWnQuxuAyB4Rt24IxqpokIkVeWmujAHOsqopj0DqkLMuubv7xP/5Hv/U3/9b9zd3f/bt/982nr4wkZjZEztpucgLRRe6MMUjt4fDkyZO//td/KwJ6Tt3giTIOjILQdYxgcseECQEMDTEYpCgMIcVhlPoRopiSMSZzyvai6bmMfRFBsMa4SSNVRLRdqXEMJ86+WjtNQ39jdm4emTvFFBBR/zYtA9HuXQgxxhgGbwm1uVqUo1UOfFbfEwCyLGvDFwO+HKKRJJC892gwMTddF2OyI/6SJEIkiZwiQ9O0JycneV7EmGJMIuB9ULszAOCk2qmi0SnGCDIKYMGX0AZTiiKShDmmvu9TGFyVS4zG2toPHbnzr371/LvflVXx4jd+4/qH3//Kr3ztr/77v/WD/+4P/9X3/7tT39uCd83d0Bw+evXRrjnmzkISa+2Tpxer7brneLfbHXbH3OaFKTABFevvfOu7V6/v62Ob5XkgwkWBiP0wiGBohroPz56eWAPRx6s3lxwWbdu/iFFCbOrWGZsV+cnZ+dPnby1Wy0PbHOpj0zQ3Nzf6fBMkZ0sSw4kITEqBJRqC6CEF7GO4v9+TQZuZcmHzMo99Eki9H5wtQdLFk6cn29O73Z0w17v7Zhg2Fy/y9UXERCCJB4OOjHOWmE2Mnr8EpsyyxSLfGmOQAiN0Q2+szbIsMcTIwiZFRoIsy548efrr3/vgydn29/7Z77x8+8Xz58/v7u7u7noASNfXo0sPgNaEAKDtfT3FNEXQZCvPczWA0gHk1Wqlq46Zz8/Pd7ud+g3gpIW1XC6MMc5mOHXvzDQDq3ijnmUuszllqu2ouynGCJPt5Dx4VZalAhYCotmFIkopJWvHOKz4lP6iNniMMTHqYJNXRyYts4lo5kHPvf2x8Y5cVdXsej8X0mM+g5h86Pt+GB7cEZl5sVjMW76ua8W5siy7vb45Pz93X2JtDwAxeGZelNWsiaa5ByIeDgdiubq6CmGwdjGBmKgpBD46uOfDd44JNHXNtX+JEwd27goTkU7gEJkZbp6/lR7xE4tN/zbKPemf6RELmIgsWnjgUJu6bpVkp9FsyhwYAMjAmMtNBHN55OSsJ7sAz19+GAbjrGrqzRxqzQFGuDYxIn7urJ2Th89dF0z46eN/0bdyZAwZAEic1M9CREBExWxE9OAdZSLmXHG+pfNNo2k800w8gPmIn7EkeITnwjQ2B9PRDxN8D1PCSTL6Q86cDGaeZab1WVsa5bzmTG/8A+G8ACw8CKDNm1HXuZ9yuWHwRKO5CIAuD0wyCiLPX0kmbZCYHgRV5qxGcRy9BGFOCbqu++STT169emVyc3Z21rY1Iw/DcDgcvPdltXTOeR/3uyMRcdIJQpPnOcq42du2jZEVoFwsjtqSB4C+b+3omcMpBWuzuaTZ7XaaYdZ1nee50rFFxFq72+9VPIdldEJLk/hAlmUCXFUVkS3L8vnz513X6eiA74eESXWfN5uNKghrCFXMUaG3eXrXORfCICK5+2J28zAMm2ebm5ubEEJZlqvVSuXLtdTUDaWjFSNDxVqtkGeP+7xaaHxerVacwA+DVlVavGnE6/vQNI11RsPsxcXF6elpU49wnvbwdrvDxACVmWlb17WGZb3b/TAsl0tm9n407sNJhujk5CQMse/9FI6SKi8T4vF49CGoSUBKKc9L9WVVkyJnxjDOzGhIe9bjIkcAAVVXu725Pz09LcsyRNZzQR+B9x6tiUM8HI7Pnj0FAOZRs1vRUhLu+x6AhmGAxNpBHIbh9vb24uJcRyiyrFhWi7bt0yRBrudaXTdDDNbaslwoImxNZlAWi4Vz7vb22pfldvtU6b1d1+33e31ezrkYuJW2bVvvfUzeOXd29iTG19ZmT58+Px6P1pKSsrV61zkYni3HQeou5DlRjMfjEZjzPHvvvfeuL6/u7u50119fX6ckL1++PDk5YZDdbhcDM8swDGqTezwetWZ555139vv9ej0SpQnQGHM4HBaLxbJabE9PAIBF9vVRxCjQ4JxblKU12f39vepcKTVP40ZRFCpLqh+kp+QwDNaOnDgzGTMIjwfBYrHwPGL35+fnCgerxstut7u8vDw/P8+yrK5rHWKgyYIeABRS0QcawhghVa6UCHR7xhi1TRJjzDKrbxVCKIricOwBQAt2ZtZWtNYd2jXR1CWl4JwTZm3kZJm9vLzbnJTOufvD/T/Y/uHP/cVfvf+1LzvK/83r37z+zev/v6/fefmTf/3kGg2WoIQtVtqKZiabzUaHMzRKmM8q9+ppqNGYJpE0noy4AUAjzOnpqXYrtXXXdZ3ajS6Xaw4xpXQ4HLVhpjN8p6enWVlYa6+u3tDkZNu2rTFOz1ZFJpVRmY0W5eIm42Lvo+rR53nO7KwlTYw1DdCyqG1bhXT13CyK4tNPP41RyjLjScgopbRYLERGwE2zlCzLur7Rw0vzZC1VtCZKk7OiyJgHO+e097xarRQtTCmVWT5jVtY5zV1n3uRs5DNP3oQQQGiz2Vz3fUojtVlrt67rFovCdHQ4HAzaLM9DCJJif2yxH2Cf22W+IiJKmOd5mefMjCjD0BNRWebO5d651WKBiByTej6IwLJcMscYIyTOqiIKk3BISanHJDT0weV5Zq2QupmP8DyH0WtLr/Bxj0JvokAQkBC7pm0WZTnLtBHROFDmfQo9AScCSVE7q2VZ6pOYkSAA0kduDEVm61xd1yyxqipnxoqLjEGAxCySIktRlnqyKif/8vKyKIqTkzNEXK8NM0scrZMvLy+994lPv3DPiEhKwWjpKCCPasXVaoWjtcLo6tuhBcR1lQfWoU+XqMqXp5QVdb2DGAiIiIANc3BinGCQJITgTALxiLmxKCYjB8CGI0lQnpSASVEoE2Ot9x4IAUwSdDbT2oMMISSYRNNZBJApeFFOk9qUYyROwglNJoI2y1VtcRiOhmPb7FOoywK7NpkM89wNw1AYZ8g4a4kILYIkTMBoWFgExESX29B1wICICXHftJmlzBnp+4gmCXd9Z/MsE8qybJAgCAwYQ0yCRGASmSxnSZ2fNbmQwEAyyScyo9AKGFJcPsYUBi8iBoljMkiZdUA4wb7O5jaEYMAiYZYZ7z0AWWuN/WKUAQ0aMyqdaXljrU1JQogzxiGi4ieooh8JBAwBIqek9k3WGgZIPjCz4tS//OLEKQXm2LbRWLRGhH3ysu/rMQoQOWeOTQ0AT7/y1Wfvvs8xHPa7f/2DP7p5femHrunrPgCaQgt7ynLLPTAk4ZiSejOlhG3X+xjQ2CQQkgDhi5cv/sbf+Bvvf/1rN8cDC8TEHAWCF6S6vhMEa21jKTdm8+zFj3/yE5Pbypmha4BYYur7sNxsM6K+bxdF/uM/+L1/VhY//NHPdh9+snD5EBLHhMhg2bHjIRSAJqQstz5FT+Zo+d/7rb+xevrsWA9+iBAxW7gWhhB95sb5cfUn5MSAFgAgMgsySAjBolR5JShd18Ywtr6YvYjkealHlEEbfQJBZzJCgpgK60IIA3fDABqjMuvAKA+U+r53ziBijH6GLUDYZIbDSBDTAUlrDSKmEA0CWWMWBTNnRW6MYUHmVBQFojRdG5IHcs46hpSRc/aLpyViHAYfOQFQJilBjMAJDHtmzk3oCVgMSJZlbVsrdwYRQz/EGFNQGX6v4SjGwDCOXWvXLUvcDl0Q/jJutWTWVzQcj3kby647QoQ6VcXyk0P98344nG79k6fDohoy17z3jf/5/+b/9M0Xz9dOavsvPlkcn34lllTWfnfz5nJ/v3NkUwQSk5tykRWVMT5G34TYCzvmTLz33L8qVmb7bHH4eDdQErDAdrFYWZMRQBi8Izzct7ha5sXWGdujazu+/snd4FUdErbb9VXY+T/+KRpi5qZr9cQlmwNDVay8iCp/EwG5PCXThdCnOETxveesCil99Lomspmx75yt2VKEoeaajMmrMq/y59XT+rDvui4N7WCkNGldbYmWfoBjMRBlgDmiLVzR4Rc/U2uZ8iAwRLEgYk2WYkIGh5hZCyIAAhAyS0T229/+9vZkY23mva9/9Pp/8df/p//tf/cPX1+9XuVlsVxc3d+KMRllfRsYxJg8qsJDHBBxaFlA8rx46+0XH3/80TAMy6o6Ho8EEH0s87LMy8PhiEhkrEVCkaooBGG/3w/DYDOnh+9Y/E/pCxnKXMbMktgYS4DGOmYmUkmy0SkeURQxiVNXSQSC9xMELMwgIm3b0uRGVde1CkciYlVVV1dXqhep9WeMUTmMMs3O6+TX3FZElMWijIM3SCQQQxylQgOH4Jk5c7kmgnnudA5JJhIlTaN5AEBA2/X2uD/e3t4h4sWw/cLnuKiWV7xHY5p2qOu6qipnzDAM17e7Xd3eHepN9aPb+++9XLyXJAGRJEA0LKKQgV4yMxswIoIMjGM2OeOVAAiAMSYiUgwUAWXqY4j62SKyCMoI9MQYLRkUkMQ4QQyaGqE2+AlBxuTYiGXVXxOQxJ33KalpYh8lItoJpDYAAIkFhUlYkAidG11wR/ozoTGG0BCOSmshRZdbkaSCYIiIAsJo0ZJhZhCLej4q2ju2YxkQkUUei0yN+CkDMuDIGpaJXSwCHKdjVCb9EFCB5skTEB917iOPamzm0cAHIkIMNLGeERFnC2tma8e5mcwVIsIpIYKgArh25g/QxLaWkWQNQggIAsSCEIGQjDFICgsSoqQ0bgUgJGs4QoxBJqeN0HtwYq1N5kH1Qg0QXZ4xM0cxeSYxphhJZPZJMzhOFurqsmQ5chi8ZA4RrTFC2OOoZJW6YVlWKXFK3HV9igGAEXkIzdAO+2b/ydXP9t1h6dbGmGpdxBhjJARTlUtOHNhbYwiTQCpLJfy6/f6oMNbLly/Bj9sTIKo6nTHCzJeXbzab9TvvvHN/f393d+djl+UFGTRinj17RkSH3TF3RZmXwYema5fLZZZl1aI4HA6D71TFIiVRsQ5tJc9zjU1XCwpDaPu97nRhrKpiu10Pw6BuZsfjMca42+1ijIrrWSv39/cw9Q/6vl/77Au3PwDc3t4yc1XmiBLDoCaqWtS8+847zBwDe+/LvELEum3yPM/zUsnuzNzVx9EvR03zcssYTYY2pyyzRHB3d0tE3sehG6qiEolh8AooxxgRTd/7xaJ89923RaRp65EtKxRCUHO51Xrd932IUVvOwxBU6VjXRlEUne9VGyHLstOzNTNbU4mIdbbv+5dvv2uMubq66rp+GIaUJLMusy7F1BzroloADMvlUuWqq6oSUd+5rCDKnEMWSJxCOO7vF2Vu0YYQ4hDR4f5uT0TLcnmMxzzPdJP2vd9sSh0763tP3ltjvI8cYlEU3vcqk1JVVQhJ07nFomROLidrM/10nEylsG3nqnNRlGbC4ruuM2jbpo/hGkSWi3K32w1DBABJvDxfEIofuvu7m74f8jzLXYYCZyfnddt8/OlH+/1eGDebzfNnT0IIKqJCaEMIwrioirIsz7ZnGgEUHFmv169fX27Xm2EYqXmr1Ub5Ytp7CIO3ZPohEhHLoEopCkPc3l5XVcUcAVilTohouV7EGC/vb2OMzy+eJg6WIIahb8N2u92sVk3TtL5GYJCEiITCKYjgMAxFAScnZ1XRe++zbCTNLRcLXOLgPVJqu0Z3EAsLi3X2UB+dU4FNAxCvrt4gIjNoXyTG2DV91/RJ/MXFhfceYOyvWGsvLy9VW8aYUZNdzxRtxelg8WZ1VlTlm9dXYGixXjFQ5wMAMIJxOTMDGT8MWVYQkQgCMBFt1uUwDHVds8jp2ZaI7u/2xhhArBaLxcZkmUXE5QYP94fvr37+s+rylNagXMTExo2yWkl4sVhWRXk4HgDAWMspNW0rKVrrACTPs/V6c3t7a5wti/JYH2OKAGDBbjcndXvU3XR6egoCt3e3c4tXhxusMevNpm3bpquRSAInlixzhsiHYIzp2lY5WCEEM04DC4sAKD8vOpcbQ23bhTBURVUtqtubm6pakDUxRhUzMcbe3uxG+rylGFLiKAxIkGd5XuQI2DRt07RZpnplFpFEOKXoXMYszAkgiYCwxMTWmkW1jCkMw4BkBh/MNDueZbmSAK01RJg45lmhtJ5hGEKIWZbFGJgFERaLRQgxpgCAQz8olVIE5soXEQ1RTIkIYgzGjLz4YRgMmSzPQQBQrDUxcuIIgAIqTMoppUVVZVkOAHWtxvU2hICAKcWmaYqycHmORMYYhQKsMTElMxl0dX3PKVk35urGUIjRkLGWNJd2zoYQ9c8ymWbHkDQ9iKMkI5Exute055SXRWZHGn5KSQSIwBhNgxkQY0zGoNIrN5vNMHgRFkEenTwiINI0iGYMGWN9jGRMnufJh4m3a6011lhEaPteRIgMwyiJRlMuAwD9MIhEHccRzYUSIwIZo7ZqzCnGlDnHwsI8zq8DGmP9MOCY3VECnslJgsjMzmYCMvjeEOmDGNMyFgAwlghN4hhDVMhPG/7WOmOIhQ1ZADja7mA7EcGEWTbaj7dtrYJa2hvTflscjYu564Ysy7uuU8fRlBJyavs+r0pjTEqjrYWK/yCimu8xGxFYVauU0hBT3/caFUMINs+W1gDAEL1zLjEHTk3fFUVRVWNDUfHlw+ForVksFsagSBIZ5YBSSl03qGpljIEkoTUi2HV9SqMedJaR6rgW1dJ7bwAF0tiNRru/28dBhgGsFeeobSKAABAnqus2pcQcy7Ls2oDgbq53RVE4m/NId/MzHQQAYvRAmBX5brcjA4nDsioBqO/75XpF1tze3oqxQ+JdvUfElbFhCM7mKszorIu+TiEhmpA8shjjMpOBkAGzXKzLIsXA5Mg4l4lUVSWZFHkOLD+7emPdcJ6dIGCx2Rzq5vbq1qog1+npaZKR6NF1nW5CmLrQCtXNk7BFUWRFrkaNoJZx1szhVX8rpRSGwU56CzTJKegxE0LQnDimsUehjIDFYhEn88f1el1m+WNltJnN5Ca3bn40A6jIvcpHaro/VUGIs3Ju4plfHCZvDZiEnjUuGGOsNW/evPm93/u9r3/968vlGkBdIA1OXOntdsvM1zdfTEpljiEEHhkoI0Fmrh5psuDTj2MS4OTMA/naGKPGEdEYkPGLPZ6v1J+U6a/MnBiIrIgcDofT5y8XRRmJhhCdzRFHGqNzjpDmOlZ/kQxqNa60LGPGtyUi1vWQ2FjKsgyNjUmY2ZADEBBJKS3L6taa+/t7TTtmW0hjDBlT5Llm/z4GTHHseJM5Ho/FyoUACQ3gqG7hLPkUOcXZ20czTmszY2DazGitJQOq7Kb67vMNQVQ1A9Y2hmL9POmMw8QnVZACjdYFGCOYSVhcJdi1paPR8Aufr649JdmFyXiUiDTezR80y8ZraYePCGUaGeDFrwABAABJREFUs/RDRUQejSQ/fs39GPPILUo36Swyo1xFjimGITNW1ZA/+N6vm1+DqzevfvaTn/7LP/wXQ9ctl9WgVY3o9zdkXRIehgBkFptFljgvyyHEs/OL73znu2+9/fZ773+l64ZhCOOODlEQrM102wIAkQVD3/jGt77/T383hsYHSIK990hZVlZn50+7rtvtDxLT6cnmj/7oj7ren5+fXt/dK1aeUuq6FmyBAlmep+gTMwC8efPmO7/+a3/tr/21w/4YEjNDO3gwFFK01lqQeVpTHyWEoA0tjeCKtqh8TZZlHLnv+xgfRoxlovA/nk6YBmRGTYwZmJjvuRmH+h+ACRnlMqNMXgQaDEVEEs+fhYKqzKLLTFMakdGzHiZjHEn8ZRLeTV3DApylmWtHRMqYVkk8FHBKCBJNHUhpUCmlphu5MP0waOXvJyNdQWCJKXLvo4+h67/YUMUZ65uhqdsUxCJ1AfZ9Az1/2nS3ZGmxjDZ/fbXfpXSyuri5PP72//sfry2eFyf/zp//K++8+7W+801da0kPMUkESLBarRaLBRB1xyaEaLKcE+h3boeQZcWzZ89evb4k54wttLlty9IZK2Ucuh6Aez/kZZHlZe87DV91fXDOpRQYhKz78U9/ZjNjrXU2t3kmIstltlgsUgpIlghEABJr0yjGMPS99yGmUWeJGZqmuffe+Ha5WfrYG0ebzWoYBkhQlosRHk3Qt217rAvMnFBVrbmsdK6ZlXqafTFOEULwQwTkmCLh6Jg3x4fpXCGRpDOnq9Xq/fff/8lPfvJPf+8PvvOr3/lf/8f/uydPz499/V/8vf/8zc1Nluc+BhHZrNdFVV5fXxvjvO8fDxJdXl4Og599Npil62q92BRiSLEoS+996HtjjLFWuQDG27mjRkTzSGxKiTEpbWqejdWbOe+CPM9j9Gg0DzcaV7U5n1I6Ho8AaIxRkqNyisuyPDs7U3LlxcXFcrl88+aNfuLMyJ4TR71pM4vKe2VAG/1oY4wyC5StmSKrHtkDIdR7nNxclV9QFMX9/b0SFZV0oEh03/fxS9ztrTXb1bZtO2auqkqP4JTSer3dbrc3Nze/+OijH/7kx2+//W6WZX0fUmIA0ekfwodRGz0BmBntA2V4atKbSXAZGIEEAB9OjFExY8qCZO6E8UjueDzdBQBpEr4nxMeCTjL5FuZ5fjwcbm9vlV2uZOvHlzymEESafOs5qHBzEiYaC0U1DAwhpOTogZr9YJ2nb8v4oPuMkzYFTlpGj0cuJjxaRhgXHvYLfF7T+fOKGVPgfGSqIVMKNIlUfBbih8+9g7V29pORSTdJ7+f8/jDxsud34JGqbIwxgkn18ecb/vgPOAlcPDAzpiRhfkbzqQSTOcf8odoHmm+RPhpL40AejtpxGpRwPsVk8vlAMIiSQESkaRrvByJCa+Lg67o+Nsfb/S2gmZ3TfOjNZDyLiErzzLJstVrpnPskp1jVdU1Er1690h9QRFgVKpRoU5aFkhMVpbKZ08tcLZZ9729vb7XiUIpu3TbDMHz729++vr26urovS1SJP61ZjDGae6uisbVWa8g8/4zYorKBjDGvXr3SH9ORptkMp+u6s7MnCmMVRWatPdzWX7j99ZZqgDKT3bTek7Zt+65TeqYwXl1dGWNUM4GIlK/tnNOJk1kYVwg1MdCml3Pu9PS0KIr9fg+j+0sAIB/C0HvnXIxDSqmqCmXXDr4/Pz+vqqrvBu+92qzN06gaIWNkIrLGFEXRtm1d1yEopOIWi4UwWpPFGMmavu+Px+Nv/uZvvnz58u/8nb+z3W41qSAiSayh9Xjcz0zt9Xq93W4/+uijpmnz3CnbWrmr5+enM9VGMbiZcgQAz58/V7bvrLCvCZVzTsnO1lqAkVkGALMZjypr73YHa0lEsiwbedDTZtGOmqrwA4De9hCCc67I8mEY+j4ioggS2dNTxQIynVDRAeEYIQRfVUn1JfI8f/PmJgTIMsiy7Hg86qmnKaKOSysm8s1v/Qoz//CHPxSR09PTpmmapqFRsHDUwFEQloju7+8Xi4XNjQ7xVIsiyzK15+26rixzPTGVVK4qT0Q2y7JuCF3XXV5esozD0cx8PB5lGtdTkXd4pLDpnKvruu/7ssh8GFis1oCqzuEyMwxRZUnSZDl7OByYozHqihS7buBJDlXFMRaLBRaAaIBksznRhTcMg3LbdbtZm+lppf0tTRvCOLFeMrPuYp+imYwuNZ5p0qKPI7djeHHOrdfLtmn07PYhxMDOGdUi1/VTLhdd15yenvZ9P3Rd8KmxvpHrzWZDRCH4JJznuciwPx6fLPniotjf+jipIzZ0LIqirm8Ph37p7Msl1NDHGF3RSSl937dtS8lchkO+dGpXzuusbdt21WojQZfi4dgTwYvlhWQy0MDMd4faGMiNrfIqYrTWZqsshF6ZIorIL5eVVmoi2no5WGuxQGYebFe7eO8bos7lGQBchQMiAjNuXAgBoCEiUxktUXU9L8oFIjbSNNItl0tjjPf12IRGzHMZhiFGL5MOUkAmoqVtwUI0cblcGZfd73Ya8USalCLk+rtORAB6ZeMNw9B1vTFGMmFOVVU1dvRqatuui90iXzjnUkox8FSIcZEVRBRjNIXR9bBYLEKwV/f31mTWjf7PJjcKcSaO1loEW9d1lo1Sh1BB39zFGDX5z/O8W3BnPdqpjnYxTXYFZnLITEVCxMQBJ2fONjWZy1TMfRwDilGnr0MIXQYxRoTx13ma7XbOafd/JFuYwdkcETvq9CjXm+CKUZRgsa2AxJiht/0ttFSqO9d4DxU1YmYdhx8P0MErOyGvnE4Ucep0U1tra9cMw0BoYZrAtkgj/SgEXCCS7NJR85a5vJ3SmzFhM5MlsiZblgwidtJNcXi0WNe/Rk2J+Git7W3X9/3CjQ+XHrxGRqU1tp8RdLWTDrIdTbZGdFhjr0yT8RrH4JFbskKFbdvXdf3BBx9sNps//uM/TikNw3B3fbNarfvgy7IQEWOciHTdMPnTSoysjtyZsdYaV5iyLLVXulgs6rouy3K9Xg/DoG1LTcM0lGnVYIxRNbwQIk/25sysZ42WKurXulgs7q7vOj9MJ5H4yYt1ztWJiGMyxtIj43Q9X07Wm5TS0HZEAIYOh4PWUDc3h2fPzLNnz/q+r+u2rmudNanrGpBXq9V2u9ViTcTWbVMU1Txd2hNWVaX5iYgsl0trnAYrbcbM41BaOMx1BAAUrtCFzSl1XVeWpa6r3fGQZWNVmEIyiQhwuTTG2pxyTBxhKMuS1qUlawpnFfwlIkXH9QM0VrIyTYBnqM4Yo1RiTR2ICMw0yvqIqkwyAr4zfJP8uJ+1zANDxPZx7aEsJyJSO3gS0ApTJtNCjRRTYtf3/UAEU2Qf4XJNO7wPaWJbh5RmBn5d17rEZR7nBEhaaGXZ3d1dnjulvv/Fv/gXtZyO0asNHUxCh3owE32ZdjNZa9XUThUD54ril6sFZgZmk2WWOSRumiYNLYR+/HqPyhg0BkQSJ9FJ0cRASICzeToz901blmUiShycyzKX6fQuTboNcwmUZZkPfYyfofwQmVnM0eo8ZorGqI2hiSkSESB7H8qyXJWur4913YbEYfAaSYUQVFPbuUx3eEoikacp4MS8392X6zMVcDbWuDyzMBbJwgyIrsittRIDETFHEUwpMCdAiomR9YdJZPaoJMRkbZ7loJOJMg19a7UGADBNtRMREE6rlAAS4jiQ6D3PZdtDN+KXXzwGaHhUNNLEaUqTjLWef2PtN/3ADF/KCHpC4shfIpvLLDoWoZsrBh78SF2BSQxkng/gEAMLAiCSzTNH5tmLly9evvPeV7768Ue/2O12n3zySRi8jPgXpZQAzdN33/rGN7719ttvXzx9fqibGKPN8s3JyTCENzf3ABCEyzw3xjGDMCtOQaIQkvMpuSw/e/L0k5/9LHcuN46tzfKKbPHq8vbm5ib4PvbN+++/3zZHRBRg3U3WOp9i7gq2ziCRNdYWItINfnOy/a3/4D/yMdRtkxKKSFkt0RAlEBGWEcnVstBMjqaztqZzTp+v/tVa8/gxaSdM8+N5TYrINGUuNGG+KSVJPNPV50cMU5GfHg25f66Ah8+ihzCdlDFGgzalNAydurvMSyKEAF/SdfAh5JhZa4WZCVKAlBJZE2Vi5IlYM640IsryXFtMaMZc8/z83BgzDMMQfIijk+ysmhqFWZRJ8QWvoRva2KQgLQuwdOwO4u+Ox0NeLd//ldNv/8q/+PHPXv+rH5ZPnn/y4cfN3eWC0obsX/jWd3/lW3/KkjkeDjeXV7u7+xSjM8YVGQdwzrm8PBzvj03tvY9MICSCQ1DnWD452ZyenvqUQlTVSNhul2VepJSaug3R+xiLarlYOZB0ONzv93sBxhCZGXZHn+D8ySkFIqLlyrD3zrlqAYMPhpBZ044YJ2n1GKOwACKgYREEQDLWZYDU+uH4pt2erpllXzfn5+dKWBDBEEISDp3nu51tA7nDk6ep52y12vQ93Nzd5nkFX7K1Y5KUEorEBIgP0grjUpkS1r5vq6pSdP7k7Nxae73Mf/bzDy9v9tuz1f/4T//Jj37249Pzk8zaoipDCMtVFWNcLZZZloXBExjnxmhWZYsnT54Mw3DcH0RE+QKaUij0Y4xBAgWOyRpjTFVVRVUCgLozTaAVxBirotS5Nk0yzs7OlM2qgJSSlFerldYhquQ4Zws42QAiGi0hFAvQKlF7RVp8MrNmfprwIWJZlnVd63jaer3WbRgn7azNZuN9r7duGEbrQmutH8ZEVmGXsiyV++a9jylkWdZ1nebHmrHEkFJKCwBl7RVFcXb6xZNMQBQ56Xy3bueiKjkmzf4Xi0We5X/yJ3/8q7/6wWZxom0hBKOCJyJCaK3lFEUQCBEENefW40lb7yIS47iKRERTltH179EXkUf2tppqaDjiyUPvc6hl/GyA0stXrETr5DFN4hEDZbWJRk6JETHLsjCVbTB2yknPhTljiTFSCMxAIwMbZ97wBIPyDLkCwOxGqFetKct8RY/fQWDsv8+XMH/o557PY1QXpnsy3ooJcZ5/4JffZP4XEVbQX89c+Kw54fRY5u/DACSfRbpFJEkgtIgIyNPXgJQePmVqUn7+rJlOk4fUf37P+Wd0C8zLwBgDpCcjIILO3Ohoy/SdRUSKvBpd7ERijCmGrmu1E98Nw+vLN01X3+7ujvWeRcoq1xVGBpxzLKIrWcUiNJze3d1Za1erlVZ6Kl6sdmeakKtVzOXlpWahJycnxphPP/00xnhx8UyQtS7a7/eI5uTkpK5b3w9d16ndsYjU9aEsy3fffWEmyQXFE7uuSWlsQmu9oJCuiKgUzOFwuLh4VlXV6Mw+jfgQkRaQh8NhuVy+ePHi8vKyKCoRWa/XdV0b88WjP4RGoXBOoeu6EMLJ6SkAHI+a7YCOTaSUdERD4WbFdlXXSD9CZfd9iiDivS/LUp1+T09PrbW73U7nf4e+R2RjXF4WMeystU1z3O/7PHd933vvn1ycKyBCRE3TqCKQ6iwpGJpGW+YssAeAoihijG1bP3v29OXLl8fj8erqjXNuvV7f3t9pvf3P/tk/+yf/5J9o4a1hzVobBo+IeZ7vDnsdLlmtVjoSCgDPnj3RowEArLWbzQkAaIzVvGuqIkUmMwCZeoTjyIUxxhhtD+uPGeM0egPADPFo4PLedx0zx77vi2KpU2gzA0CPA++9HmEq/6LZXVUt50r7rbfeUhy2ruth6NbrdZZlL1680EL9+voaEYuiePHkhfLHdamfnp4qOKg4eFmWuh4G3/3gBz8QEb3qJ0+eqMSzQnV3d3dK2fPeN027Xq/Oz8/X67WKfev9Pzk5SSlpfxcRlVby7rvvppTevHmTUoqRN5tNmeUt1D70+jXGSiFGIlqv1977RVmdnJy0basN2q73fd8yp7pu+97mKsYlkmVZltnlehR9MpO15vXtLQMsVqtf+fpX+77/5JNPQhgQ8eTk5HA4GGOMcQroG2My69q++/nPf35xcaEL5v7+Xp9jjNEYp4LXzrntdts0zTAMKunXdUOSBxHnEEII3hiccR83uQdPWKd474/HZnd/CwDL5VI7ECKiulgyWacaY1QobASgyxIRV4tlCMHHkVp0PB69D5dXr8kAgtFsxzm32WxSSiqSU1VV03QqGX9/f7/ZbLR1bXjsM7V9x8x3d3ePT1t9n5RS04T9fl9VVfDJWrvZlHP7fD6SFouF/lmfuDFGF7wmAxox9G19P2gfK8/zyElFq6qqAjDCIzwCk36r/pWZd7udbvksGwGfNI3bK5Sm+Zs1Zr/fg1Cej1gbAIQQ9bZoP0M7ZBo227btuk4TKt1r8kioR7vb87mJiOrrmCbto6IokESRRgBQBmtKSRv/GvdwMvrSL5w5F5klCAiyxDx3RAjAIQzGmMTBWIrBA3CeOwAefGdETwFLBI6c5q6a+uq3elSSi25ARcD8aBuQOec0ATCTdlDfaT9+XGxZbp2zklhEFFVDRE6Aj6Ri4bOKWzGlzNo5OI8r36fFYgFTvSkiZK0hUDhVJ7LSpNLpnFN+U4xxLHuFBCRN1Y0BUxRRn++UIQzGGN80s0zwXFADAFmjrER9ciKShCGNWHBKaTZAHt/fuYf80BiaWAjOOf3HOTPBybFA9+98gdrW1UkOM2n4zDtIq2olzWibTU8WEdQS5qOPPnrvvfe+973vee/v7+83y9V6ve78cHd3p6tXgWCYzUUmzCS5zBgzNEHhV5m4pER0OBz0O2vVrAtSBfpwIqXp1kZE1ZiCiYeh+x2n8Rq98JRClo2acjIRcFXg0RiTW6ecKo3bKqVljKmqYhhCCCHLrHZfNqcnbdvW9eH16/sYo940BSf1OYYY9bRSMRBmTiEaY959992f/vSn3vsw9G3ba2skLwtrLQKqpRywpEfKGDFGZzQaT7pwNLI2nR3zDYVZFmUeUlL6DuSQY5aYT09PWQQaMMYc2pYBL1YXVsOWhk5toWikU/hWr8G5DAXs5IST1JlNF74xItL50fZxXmrWWonCzORoSsFHhzV98EMMucl152hEQ6IQQjk6AbJ+sRjj4XDQGDRXU/oDKSXmOLNpdNQXAJqmybIipVF2MISgWxNJtMYbM8VHabfeTc1INBZfXFzoWgkhGDPiQcgPaf2MoX9BDqoe96PV78O+miGwNGEQ49pN0aByiaUfgudQmFHiEFmrwiQCnBKnYACFUECYgYjAkq4DXcTDMDhDSQBZXO7IGo7Do+ouGjPCZ3VdJw5zFKDRDHqEnhOz9sesc4CSUpIYAUat2zyzVZEVznxy83PdGEc/6NPXJgFNRjQAIACWXJI43meW/d39xVuJALIsy/Iyxsgp9MOg+TszA1JKiQBYkvfBWksEzEIGrR2FF5WQkufFfFeJaKK5OxGxSPMjBgBypLg8T5VaCGFSt36InnN1p0vsC58vM4igyEPBqStz5iJp615zTT3FwZDyFJSqo+cKJI4ppJTil2BSirNoHBy3iYyijXGSjXbGKINSRR6sMSGEQ330/VAUReGy5++8fPmVd5umub+9Y+YIaK1dLpfG2JRSVVV5ng992HeDzatsaf0Qb3dHdSIaYsjzLDIMfe+9d5kx5BglRvY+tm17stk6l5+eXfzhP//D8sXzPHMmc7f39fXt6/vdYej7EPgv/7lfX69OXn/6arletG0NKKACMWjQgCCQ0ck4E1L0IX3v3/qN73zvV6/v9oyUhK3N8jwPKRqDfehBPudKmnBqaIXJN7b3gyZtzEwTJqPrRE8aGD1CFVlgZvFe5ubtXM9HScBoCQUBp3Yx8AgxMDNMq0uj8xxPZrYLTYyzOWEiY5xzIQwa8UVEFYqMMZ+Fjx5ezho9w1KKKriBaLyPfogiopGDiFKSIfiszA5NXWY5i3RtO8SQUmqH3jnX9p2PQZ0ueTodBwREFKIvg5vrfW2qQRA4QUpy3cXrpv24b97+U98+/9XvdAb+8F/+i9tXt9tvfFA3XVllT14+Oy83HtaX18fzk+Xhfnd9edW2bVnYGCMZd3J2ttqe7Pf73XHf9oMIcgJBYE7DMGCIrsht5r7yta++fnO529VoyLncWhuTeB/BWOA0JN43rS3K5aaErAhYG2MH7xHw8nb38eurXwF8+fLlMAzYhXJRUJbXfXAJMhLloMU41qv6KAkFjCGlX2kxCihITUjGYDMEf/TGYl4ss5PKkAU0dTPc398nAFuUebUAsjdXV93yzVfe/7orNtZaQPTxi7e2MURkJCZjPqPJq1+GU/ocIKsF7cWz5y+fPf0zf+4vvLl+83/+z/6zP/j+H5kMlqstGoY4GEeQYlcfrc3KPB9sHkMkRw9hLYH2tEWk7z0yJp88ROdMjLHrWs0/hmEQD8aYzWaDhhTN0R20WCy0vH9cFCmFTaaxAL0KnUkSkd3uTt32lK+hKeMUrhEnp1YiUl7kbrczxpRl2XWdAiUhhOVyeXJyMp+5OBExlAfNzMpX0sRORJhHFeanT59eXFz8/Ge/0LJB87lhGJRZKSIsI+9GMw3tYLV9BwDWGK1jrbWp+WK8SQ+TfhiOx2PXtufn54pbdUMbA5dlKZyub29+93f/x7/8m38lzzPfRZFkJvl4NIRiEdUqADmNfBYNCPPCmCMSPMJP9e7ZqVSQB2B0FNOACdid449MM2Ey2/pNF0FEgiNJR7v++tBBxnKaQyQDyGYOm5mxj7rmSZEoAZrVoud0H2B0zWaGlJIAfw4q/+VOG07Z1UP2qP+AgvR5nXl51M4HefDuAxg/Z16WMuHLeowys4Boj3z8GRB5hFBPd/Vh8kyXvTz6BjNKPj0pFgFENQRG+GyqSQZwrCJlToZhqoWMMVmWa2qhaaTuLOYZnk7zQ5w/lCaCvyax+pWYgQGYx85rEjZk5mYqESUQJBoGj0gGTUhe9xQA+OSbfvj4009ubq589IvNYrlaBQ6I6CY0M0yDpSGE7XarSsGgBnEpHQ4HnYvSTa3M2X40xsl0R6s28XwOvn59eXNzY7PRpA5Ylst1lmV57nKXHQ6HoirV3+zTTz99/taLYRhOT0/7viUC7/u6Ht0pNQ3TmInT+AIiLhars7MnXdeptqyyIBUjVhliJauenZ3pyq/rQ5YVx+Mxy7LTkwo+/ILdTwY1Xq1XC/2suq5PTk7mHoxeo3bOZPREcUWRx+hVtFoki5GfPNkemnaKYKlpGh2SuLq6mhMb7dgtF4WupbIsT09PjTHLpX/x4sXhcPBhUAw0pbRcrBRh1Ppcb4V+w6IoEM3Q9QCgDYAXL0prs5ubm6Zp9OGKiMYxZX4psVdBAU1v2rrJsuzi4sJmowWOCg3neb5er4lAQSjN1fu+L8tSC4QQwnq91kx45oIob+v8/Pz6+lrBr0l7Zxy50DeJMS6Xy/m40ZUmE0eMKFMxDYDRDGVuIi6XS70P3nu1YIoxWnJ5nhdFNUO6b968MSP3NhPBYQjn56eaxWlJWxSF8qMRsSiK46FR1Eyh9l/7tV9rmubjjz8e/KikaaYJgKurq/GAS1wUxcXFhV7RPDakJUNZltuTM2ttiENd14pZAIx8/JTSfr8/OTmpqmq/3ysObox5+fYLpfPrvtNerA4Q3N3dCYKyrJRE7MOoN6pY6uFQF1XOHC+vby8unigHgpkPh0NVFXO0ZIk393cGUG+FAqOKw5blQjfR4XAQkWPbtG0XOCmhuyiK4/GocO3x2Kg6s4jc3NyMB0ccoWpDpu97sllmjT7TZ8+ebbfbV69e6eotiux0u76+uh+1R0Ko6xpAVstFjLFuGlVcTaNFWCRn67qete+qolDy2fF4HLq+qqo3l29CkPfee5nnuembEISI2qZTQDyFoIQhnZbW+H9zc5fn+dPzp5G567oirywYY1B568a5MOrJiK5VzSWfPXum92G/3wviYrHYvHhx9UbVSFj7+npnZkBWZASR9diRyfNAMWvFNHXx+F4LZIqjmi1573UnPj4XAEYAR+9/nmdVtVThWsXcQxgAJMbYd52IZNOMheL7mo5qZFYaorU2y0Yiv/eRiBQa0QPIuWw640yM0Vrbdd0w+OVyqSGIJkeNuXTSPXg8Ho/HI0x0Lm3tzLWerkYYzdnGKTrNIYuimHE6IkJ5yDBhan6HEJwx1lpAZn6YZzLGIAnymHRNKc14wmq6mGWZc5kuA43JcWLBI6LLjLVFjNE4G0JQJF1bWcpW1mCr302jroIAYxU/GaXqX/WO4TTkREQMKQkj4NiuVrR6+hUQ7LrOxABCumgTiMJ/QzvoPdTmFgC4zIwon2IfRCNsGqNzDqyxZJTwoWd3jFEQlBGivGaacDwcLcetHk/G0mq1Ut6J7tnPpkkyM050nc+Lqmm647E5OzvZbrduslPCB/eRsd2ufamuG2cm9Epvb28//fRTxTCttZmx9/f3p0/OtdCQRxNsM24wZ1zeex+DMUb7KHrOxonLrIF0hl9hZPiNbsyaQujKXK1W89E5I+z39/d931d5obtwfgdtLfR93zSdc0YfsWLZutPzPN9sNlqlphRTCuqlHEL48MMPtdgpinFywhhjbaawUlmWdTMaCM+7pqoqjunu5na5XOpJp5HZew8sklgtwVOI2t3Rjem9X1ZVCCHLipQ67VQ9PX86DMPd3d1ysdZm2Hq9HnxnrU0iOosz8BAlWjIicjgcTGNLl+ESF9UiHrwFgGEYJm0GNMaQsyQjy0nDXJY5IrLkRllDIrLjHh6XTvAzNq2lY0rJkcNp1mBceZPrNDlrUtRKUm9ZiBGmsV+d0tJ1NrRd37ciqW1razPNI+f1p4WQ9tb0Fs/9unmFzT9Pk0vMDDlNMKtACCBindO3dc7d3d3p0cXTHL2B0dCGJqcj/BJdTmNwBpmmymtky87l3wydl2WOwsBRRJy11uUO2UogghAGTDElUUM7rSEEjfowMTIAcEqMFlCYExlz3B+GrstXp569BlSZuqM8cpw5MTNz29Vzr2a+VyIy6j4LRzUOsobMmDkZcup+VhZZHHwb5LDfAYC2qYFFh6Eyo/FnVATTzU1gUoiWjDC3TcPMiGPlllJKMdqxMECfot4xA5g4WmdU1s17RGNUv1tbEcYYHc4VGWsw52yej1MDWZnh1HrSDyLty312vngqg0fMbu5kIOKXSSrDAzAEejaNde50TmjHJUx+UEQEk1pumrh4kFjZqcaYL7EkBJpYuhr4zETB5Un/3tIoGBSj1//V9gNzdMYWZQUAdd+THxuY58/f8t5HojGFStC2bRtSGzpVieHUC6FOiOhOGfqwWJZE5LtOmzEdDYETAPgYnHMGbZm7rKjudntr3Z/5U3/qH/3eP/3k09eciBklEQIDuR/88EdlkYtI0zeCMtcznJJwIAJrbIyREcjZb3z7W03bDyEKkHEWBHRWN3KgiVM2/1f7q/NUL8BDq0NvV/SjZL6dBnastTpeCgBKQ8Op4awNyQfwgpPGKJl62npe4jSvoDHncUSaT0d+NFKtbecxuWHUwiP1Hc+UZ2MefviXF9t49I4nbgghTHsEAAQMEeRlYZyzIdM3bJiZoWu6EBkA225IdRsn8RBENJkbn7UIiCQf+/GGfP7lY0yBu34IwEF4F6jLi3e/8413/vS/VV08e/PTHxxefQptKOqjzdzpxebkfIuhLJZP12Z7dfNp+fpN1/TOWgIIMSVIOqcZxjENSiyJpWubMcVZVjmRD1EJBcvlkkxOaJAsMwtSXi263bA/HO/2hy7xKW+LYlGsYlMfIhgAFJchw7HtTVaQSARgMMYVgMiA94fdbDmlUwLAzDwKNKmOugAJSBAeQsyNi8y+8cfjESShyZPQ2fbE5ZVxxd2hFRHbJb4/AqFxrnxO9v2v546YHFDuv+SpKn6lbmQ0sRjGTEgEJ1kqBT50/FxXWugHInrx4r3/5H/7f/hH/+j/8z/8zj+6unxDFk5Ol640vh/QAAApFDtnz8aY+7u7QTUusozIOOfAqE5u0qQEEQhQeXl5WWi54uPowqfVr3a/q6KcoYeUkh6UWjSq7oeIKC1Fs8lVNlpezMkfAKjVhk4uz0WXlje6WWZ0eE4Qlfim5a5mh3pYa8pBo7ugI7Lq9VqWpYj03aBFCDxq9CpxbzYEm2HTqqrKorpLd977umlijFrVxy8ZdkGi05Oz/X6/Xq9TSiwS+n6MCRizoqAILPz7f/DPv/PNX333xbsBvDV5IpYH7QRONOkLwzi6gY+88vTS0mdbknO40FAz18P45URdmGBZmZQ65n+cwylNsxpjRGUxWUZEBiXi+Lt2VFobZTTmQKdfgCfwB1HzGq0T9TyZUoLpEhARUX65zaaljHxWImO+ovnmzFc3B8P5kucrRRatOuGRx+D8VkQkMgoRapiNj35ARGTk3NH88/NBA8gCMJGwcS6uZGKvzOJI+Ajynifi5BGM/hDMRQDGk0UXh+gNUsFaREZQhW6eWt2P30q3Kk/ScA+1tKEUHjRAjDFgSIe0yryIMSYYk4rOD2BgaLu73X3b1j56RtgfDtVqiWGsFa21IXE/gYkxRh17VzDCTko1urN0LFoxvpcvXzLzbncnE0dVETTn3MuX71ib3d3dZVl2dnbWdd1xf9BfjDH2ve/6rhv65XJZFBki7vf73W5XFEVVFernplVDlmUadmbse95QWgMrWKncH6U16VfV+/n222/PfoMjOShB/BJLcAAwxuYuj9HHGPM8r6qq633TdKvVZhgG5wyLDNqL6joBUIrifr/XDdh13Xq93df7fJ9bSzGycqnU+UcL/izLrq+vj8ejZoBa5t3t7p3NtChVarnCRmoq45w7pAMiqvyC9/6DDz6w1v7+7/9+VVXK7758/UbvthI2j8ejMc6MhOJU1/VitVT+NTPP5McY46Sxgwo86c9fXV2llN59911dY21bazI8kblUxx+JSKeMFTzV+MyTu7tGYwXaNJFumkZHWFSsb7PZXFxc/PSnPz0cDtoVmFF4XdjL5TIlUSBb6UdVVb1+/VrfR7O1k5MTALq9vdXnZW12fn5e17VKV5dlqQIXCqHOiV+WFd77jz/+FEhkMg7VAnu73fZ9P1O87+5vmGGzWemi0hmXGZCdqfdXV1fOuRcvnmVZNvkYw3Z7Oni+vb3NC6c3eQJNkno8ajNYV6/3US+/aRrlSmdZpmPUTXPUBbbdbmOMNzc3V1f3iHBysnrnvXe1YcMStyeb1XqhfdyTs9O6rq+u3miwrqrq2Dbb7fYr77/7i1/8Qlhev369Xa2fPn2iN0cXvIjc398qXc5MbNzlcsHM+q10N+HUlubJXUk9u9555503r153Q5+Em7rp+7DeKq9CxyCctjo2mw3K2Db45OM3w+CJUHVUiiLTEFTXsWmOuor0Dhtj1ut1XR/Gqv9Bc8+5LIucsixbrfKrqzfr9Xq1Wm02G2ZGkqrICDilgCjb7VY3r+41jSdaMpd5brOMWI7HowZezfN1gywWi5BS7721VhDbvleOdrlY6FLhyQZNT9u6rg+Hg85saYNqGJq+7y+evGBmZa8z8/E4ENFmte77/u7ubr1el4tK976mMTFGy7QwC02WtGoz0yTB3GZjZufMYnF6f3+vfJeiKBWgtM7BoxlcIjLGAowlkubJRBRCaNvRCnVygJzESxFFOCWez0qeWrw8jQLo0aDtHyJSANp7n2XanJN5/kyPSDtNt4cQZJpd8N5bxXCc04PjeDz2xsQYhcZ6DRHzPM+KQpNqLeGstVlmAaBrB2stS9Rsec5k9EQ1E113bucrdKBAp3Nu6AMZICId6aOprzznJ733zOBTzK1TdHKuLnUpCoy81KqqtD+X53buamv2G2MUgfH5Mig1e1UtAGCElYiKcgEA8/fURpfuvKFtdO5B/29Z5QCguOoMcc64mc0yFfxhZh+jncBHJfOaR9SHNPX5cOJ+IT2IcozZzlQa6wLI81xPsbn/qme0ngt932vLSi9Zr1f7cMzg/ZhKzpxRntTGuq47Ho/r9ZqIfPJ1Xd/u7jebjVrC6qrWL0ATm5uIDI76S3ou6EUpKK/sLt2kukO1tNFFSKMN0jgYqqtifhNm1rbWzDVEM/YbdARhtVppVNR1lVLK7UMBklJSfS39eZqM+xS4IKKnL54vFoth6NRtAiY9Pf1iSh/USkpToGm6C8q8sKdn2h81E5JWFAUIzXLYqukUY+ya5ubq7uRkxcjKfUaWu7u7YRhCSD70FK21tloUAsk5VzJ3w6BnpXhxznWh1zJQQrB2rMhsXuUqr6ZZmi6dY9tOmfrY1w0hoAAAj74WcQR2dYvqjMwo6+a9MSYOPqgDuLPjauOxrvbeG3A0wcpZluG0aplZpzwUVvbeG4MnJyfqEaSPU3fIvMo1bIUQmEdNxrlwUnaJQu8sUUch5lU+f38FoaYSC/T56TjDXImJiJl2jpmkfL4sBw0hakNJEYU5vqRHwr44IVYhhNxZFkkpIEKWW4vkm0b/F3FKI6YJqs7Bk+u6ACJjZKbk0Vgiq03s+nB8dvrEBiMEAKMawLyaw2Q4vt1u8bN6hSHEEMIqK0zmstwoL1JvIAEOwavVj7XWAMYYY2j3+70aHIcQdLwuhFBmOmyuQs+j5fyE4iZE6rou+YGyRUyJJQiydY5QwJAwSBxrbGctMc4gRVFkYAhJOGmBSkQWhMiAiIlRVfZB3canM0PmR6xBZD539SOsJR2SZR4bld4PGpTzvPyy56vIwIwCPCo1SZfuxx9/rG2iuZIUGOcUiqIwgHHwSIA88cq/tJgZ94UenLrygVlSAkRgHkIgEN8nRHR55r3XQiUZ0cqki1E/l0S6GEWk8akoEtW9QCIiiUmJHs65GH0cYtM0xoxzH4Aw9CHLMrQ2g3ENs7ASJUTEx2CtPX/64vTi+S8+/Gi5/smu8WALAYmccpdTwt//g+//2d/47nK5fPPm1eC7LC+tdV3Ts5D3UVwyMM52RU55WVw8fX57vxNjquXawCgnBADRB20dazzRheFjtAAAZIxoXB4PAB5VqAyS5v3aeNCcYFrzMh//MilRyCTDQhNrnh8paczPWl+PY6A8mmImM7aXxrQDHmUhJH3fa08Gp5Y+ALR9x+mLQ4qOExljSGyIvhv6GCNOK5mZUcaJ0bbvl9mirJbHw8F7PwQ/ju0TqtweTiRr8GMnNglLSBz9lym6CIAmhV2I983x54Hf+tbXPvjzfz5uzj69efM//De/zbevceB/+6vPypfP3vS3QzzEgS/b2yzIqg67T19bSkVlUhoXcFbkicFHbto+hEDW+RCHEBmQrIsxtl2n0wOnp6cxQoigYghEFpF77/fHpvWBmY91K84UQ4gxBsG8WgxD50wek+SLpU8cEpNA0/VknXM2DUPo/QgGgdFdqUsAWP8AgoBEhMYIWsEuDtZkANQOx+DD8Ucf/uKjVx9873tPn1wUy5O2T/tDnWU9GlguF+uyPFxf9ofdYrVFTkLwZQ2rEKNupTQJ1CDi48DCUz+VJrw1hEHFN4uiAKCXb3/lf/m/+s6v/fqf+b/+3/4vP/35j1O02DNTQhTjJCVBEjIgSMYYgVSWZV4UM+MshODITNvZ5FneDR0iPn/+vOs6lSro+z5y0tP/cDgoYXmCN0dIVDW8FFLRFFwHivu+13/U8VVgCTFkRS6JceoJKX9HMwoR2e12WjPzo2E6fXPVSZznZOeGsRalMjFuzKPZRmY+OTk5Hur7u50CKMysoIOyrZl5t9u5zKpTwohthbRebeZRSlUY8N53fffFezOxzhSrK1cIwY9qrbxYLLbb7eHuJgY+Wa5ev/70vbfeNcYIJ0kiBhERyKARKyKJUQRY5gufMxy9rjnL/9wX0DxkjkIwY81TB1QeLSp4RNshIhFgeHhbfYe2aRQiQdbeAAIIzrNKIurRJILWWnVHcG6kOTMzGdVbc3NcTSF6gCzLjJmgVUPCgAxE5OgBWH98gY+v9PGf54IQpiP+l35GHv/ADNMbQELi6bZMawwQH/oZj8P747ea/30E9yEREYhOYsHj/ysyDR4aI/IAQIuMjPX5WMHZF3ECss2ojhVh4nbpISKPWpsiwiCsjWrBeTvAI6qRrgr9oiKiM5Dy6EXOmkmsIyUhslpNNXWz290Jcts3VzeXu919wsQiaM0wDC63ddtYaxd55sgpXxWnVn2atF+1qqyqSpteIuKcOzk5CSFoubJYqFZEeTgc7u/vmRmAXr16pZbgClR571MSoqRQsnMuz93x2BHVzm36vm/77uLiIqW02+2Ox2PfxywjfVut4hSJC5NWrNZXGks1ImkPe27k73a7w+Gw2Wy00pvHxt+8ebNarfyXZ/tVVQ3DmMg1TSNAyo4chuHmZg8Ai6pi5qIs7+/vu657+vTpYyghcFK2r+ZUAJBSOj09VXazyl+s12vt3mVZFvxgDGy3267tFd+/vb1V8tH5kzNr7c3NDSIqX1uR9NVqdXNzk2WZqnaEEG5vb49NbSbdfG2iK6bAbABAq/Rs0krW3a2qKTo+b11mrT0ej2E3csmfPHny1ltvffjhhyJydnamagmffPIJM2sFy8yqSXp/f6+1egiDBlFECcHf3FxlWdb3UdufWuczM6JR9TNFZJTEWtftMISyLImsc6NGed973TX6cSKjQP9yuVRRTmZOSfq+efHsuT4vYzxNc7oxxvv7+5TS8dgvlwpG22EYuq7TRbher8tFcXd3d3Jyolfdd16fZtu2P/7JDxeLxWKxUAhYRHlCoNpN3vu6jkSxrV+VpUVE75PqPIhIURQKd15dXelD0Sjd931d19bSdrsVkb7vFdrO8zzPS+X5zidplmVqJFjXtSYJKqVyOB6Mg9y5w+H4gx/84O233764uJiPrb5vT09PmaP3fV23XQenp3m5XCiRq+97VbAtiqJw9s2bN+v1WqNrmAxUdNPprt/XR2V/6/nlUuq67vT0/Hg8Th19vri4+PDDD8u8iD6oZZTm3mdPzs/OznTTGWP2+33XdaMkAhtljgNAWRbOuTzPnTOjOEaWsdyqJXjbtm3banCIMSKJdUREkkh3nG5tRNxut84ZbW8sVssRfGDR2qdpmidPnvR9O0t5WGuVhq9/XS6XQ9cNXa9QV1mWqgfS9/1+v/cxmuml8IUyyjebTQhhv9+niV0HADqI8JiWaC0Zk6WUlAauW3WxWD19ioplK/hlrVXJFG1Tafg1xqBFpFHyUbfGrF8xKnqLqF7tXMjMGVSMUftDcSoeFRTT2laRr5RSjEEvYeY+z8mbHuh6yTq9Z60ty8oYPw5DH4+qVm8fmYQRUVmWMY7TFQDjcaaMorKqkogMg7rzpRAMojOmaZrpuAEd8NeL0klnLYedyWTyWxoA9G11fWa51daUchbnpAun5r3CAlPkHCXd9B4ionUj8qhHDABEBR+M0aEnbckws0/jNO18so9vQiMYpQQ1IgU0RCZvoTm1o5FQPKY9M8g4pzo44TkhBINOD76UUl6VKSVGEMLk4yz+IKN0gdORR22+skgfvEwKG0Ckh3Kc1rPeupAST2R8DbZlWQKO5me6ZvT722li+HGOOsPocw9jtVrpgaVxlSZ6li6wNAqJkHKfte6eEz99cDO8dnJygnYUPNFMQM9BM8mUKxCUGSsi+/o438wRokpJn4gi8gq8FEUxjL5Hoo1SO42ww2R3pz8/lydmIri4ifA+DL6ua+3DaZoRI1s76tHpUUXKkc0yQzRMIaJpGr1jeh7Vde2cMZNwTRrJkUlGQd37D3/2obW0XC59itZabRXAI2LczPLp+37og5uUT/SpEYC11HUcwuDSKK6dfICxoZs0i+j65s2bMexvt9uPP/746urGrmxOGTOjo+Vy6bwLnNq2tZk7Xyzs1dVV3/cnJydqrqUiYrqpILGZXNRijEAjvIKImmTDo+F0bZ7AqA2UzTCrXickRiLFcI/HY1cPeqaOZPWx3ZR577u2VSQrpUQEIhiFydnMWUSUNBJINeLrA6iq6ng8ej9aJeiKISIA0UUjU+smpURoQciYsYSTRyIyutu1Y6+bYd4eirHO9T8AKAXni1/TeLuWM/DgGDOW6PiIiSPC6iSTEvkQRCQId8e9nUaVdbozxghIDKPrqIjgo+oRVTki8dB119fXL959P8ttFIrMiJ9Rz8EJKJ9Let0nAOqaaixZ6xwZR87GGEnYTCzgJEkEDNph6AqDddeFvlORRyXHz3T4uYiCyRQRgBGtiDikrm7q43FxvjQGWZiIUMBaragfJEecc0aIAWPwiOiyTPEYY0xmHAABUIysQoeOHKIgPczXpGn0RuGSGVifv5uIqCIHTD0A3cBTtQ/mi8nrMLk/jkUgPkLt5wRCJibR3DVFFgNIAgJCZqwSNTwp9+eXXzr4qYfxWNOmxGk8J3SpWyM6OaUjVPpjffAFVUPvAYgMDT7OXRNGwtEqPOTOESGNaDs6Z7q6KbPcWptiLIsCAIKg9z4mTwKq3O4mBR9EHHoffHz21lt/5s/9Oz/92S/+5Cc/Z+sEiIGNMd73L59dfO9bXztdlfv7qz54MgYAVMgAEYhACIggAZflUob+K1//xnq97mNEMPvd0SDmLo8xpjAAQPD90A5jSNFDHSAl8b7RZSzT1FU36NxuLmR0MczrQTEyBU0+tx81fYeZyDbpPgOAVgU4TQDpApgJ7HOmyMzAQnZ8OhoHLBmcTotZgJIAEVASz33UaQr88y9CCiEYohBDmoYk9Gvq9jeI1mYxBe890UoxrxCjLh7nXNv0wSdmnnjWkNIoaBBCSCGipJHq+0uvPgYauhhj2zf79hBWC1xWQxRI/E//+//+8sc/TNf1i/PliyWePMvLtKpjdv2Kbz+6xGOsdjdft866zJiECotgGvqQl4vm0B6b1jlHZEMKDGSIWOLsz4mIRVHs9030bK1FNIjGR+66IbKgdcn7y9u7ZLCoyrMnF1mWDV17d39rkGyWbU7Psrzs+p6TZBkej0cN77lR7qFVnERElC3oh4QTHJYYmBMDkjV5vhKR5NNic9bWx+a4Z88//cXHx3ZYVavIrh2YESzg7W53dXtz6ML+UP9P/r2/vn3xjh86TeJ/+cWTNo5aVM/wKj1qRhKNXXGNA+OgRkZoyNm8bdvjsfnmN777n/zH//vf/u3/5z/4b3+7WtgQPFP86te/whKPxyMRMCdLxicpyxwA2q7uuq4sF6vVKrduHAFzo6cWAJRl2fZd13Y6AHuoj8ys6aD2wMPgdRxYMVytQGRidFprd7sdTZbfzjn1s9Q/5y5LlPb7vbW2IKNbZtby0pIJJrROExLFoLVImzM5NRBW/AgRFepV5EhErq+vvffb7ZZw3L8aCjabjVaDStZj5u12mziOH50VzmZ9d1Qet74tAAx9T0RIX7w7hmGosd5ut7e3t3qj9BC5u7tbrVYuy4REkJPw97//z7/+3teenj07HjpjbEgRHkjBViAlrf3goSc9z/EhPmSKioHOOCY+gl/hl3jN81/nPTX/gYiYHxhMPAkvKu97JlzEyHNTLYSBOc31WBonIkmNxkH7WMgan+evodESBSDP5uUNJIKAQgCPpkAeCVnKl+DO80Emj1hC88/P322+M4ACOILvCGg1a8WH2/L41umdZ06PP3S+XVoKKj354bbL+N/xfFH56vHuA0xMZBEGJGMJH3jrMo1+Pbwh85iyarIqE4tnPnc4qZbISKthBAKcP/DxwhARYQFC5Tg9RB4drCDLSQBgnjnWDzLOHo/317fXV1eXYMFYazMjIoKsA8VpFDGkefcBQEhjLeomdVFmDiECwJMnT1RsnSZhdG1m6CIpiiLLCgUsVH5huV4oVwMI9VQty3K73RZF8eGHH1prl8slEKqi+nJZObdk5s1m1H7R7pRu4RcvXojI69evu26U4tVCUWVwdaxbC0Xn3Ha7Vd+81Wql2YJuB3g0EvHLr7ZtUpmcczxpFwrAkydPdrudiLTtAACnp6e6Gp89e6asLo3qGv0coQY6xdlHELPvyWBeZK7MOKXVcqknNaDofSttddgfFcJTcLYsy2HorbVnZ2dxkqWmiTb44Ycfeh9PTjbL5fr29vb29lYBu5BiaYuqqhRSJCLFCsPkmSwiemM1k1FNBpyw8tvb27YXAPjgg29UVXV1dcXM6qajE/FPnz69v7+/unpjjFOYryxzlVglGslAM6KtkyvaDpwp6icnZyIjw3G/38cYnz9//uzZi+9///vKVdcvrN9WR3N0ERKRUo8vLp4hoggqR3W73SqzGEY9Ma8FgnJBsix7+vSptjF4Ul1TVQSdHT49P1FcUuWYqqo6HHbe+9V6pTNzm81GhR9TSi9evHjz5k1d14hSlnmWHbOM1ssVIiouppi+zvGMRTfAfr/vB1eWpfZLiqIgAmXl6wPVdbJabbQBrPF5GLoQ/OHQM3PTDKenpwDQ994Yc3FxoXKUV1dXL168sNbG6PPcvXnzRrfMfr/XZsPZ2cnm9MRae3l5qTYJehAvl8sY/aFrlYSrh6n2nuu6BiDtDcymkfrnsiwXi8Xt7U6dorVUdM7d3d2cbjcffPCrv/u7v9v7UTuVrJ2d2ZxzSvWtqmIYhleffJIm8VYisJY2m5Wi3s65Y71n5rffeUub4iwxplQ3Bx/jbjes1qPTksnMerXUMQgAttapGvh2uyVn+75njiLJ0FgOty3rJtLlVNd1Skk1uxR4uru7M8ZYMjM1baageS/6/TXt0d00DMN+vzfGKco2IxL55K2qVvMjxdharSWPh07/rLCO9g/0Tp6dnQ3DcHt7qys5TFqCij6LSJFXqoGgx7rukXkUTNNLmYzQU0qjhCtAmBRXZDSVQSX+69rT1sJqtVS2+FxEa9/uEWAXQwgp6dwMWjsq52jZqwFf8Z8ZKQshEKGWTiKi48UMUI2ho4Qp50mfk3RDjMwKoMM0NF/mRQhBmRPztJ8eQDEl9h4mvzuZejaIOJG1vXYvtBE75x5zIan4uMq96iKhSWZq/hmNeGZiNLKwJSIDMYzv473P8tGxECcYlJmNobnGnAOaXgJap1/10NSLonyo6ycepDEmcIKUzKi66YtiOROrY4z1MSUOinjOuAcAOOdSFM1z7STPMmdZc4KXpns+l8+Kled5HuLo4AWPvItkArV5mhrXK9J/0a6GrtvlcqkN6RnUnpYEaRqsJ3iYFBEU8J1P5zEJRM3E0uXl1fn52QzIzIt8XmmJzIwjw5Rya/brJqV4fXw6PaDRSeHmPM9V7i9OtjH6xPVCJuXlyntPAq7IFZnRsQ/FeaeaaCRHz1+SRR52REpzTWGM0ZEgvRVtq16pa6UY6rwCABjEslwgohZ0F0+e3N/ft02fUrNaray1xo57Rz/OOWdNps3RPM/feeedy9evm+ZYluX77z/XZRZjdGSILKJoPFGsad4IH3/8cQghz11R2CElQWnblhGstbe3tygcFwAU7+/vLSLOtZzu5yzLtNVjsgwSa+QyxjjrVCJHVyGZh/ZCCKFcLjRMAIAC4TAp5miU0c2sN9dNbZk4krzGOYWggraDd871wQOwQs/aFUfEBCLMVjib1oR+ep7nAA+0ZQAVLPcpZUVRsIxNvxjjxGgjpAcpGX2WIYx63nOiP6fpuR3ZOtoWiFH39hfnoDKRahFHLUB9/JpL0cRcm4Nvl5rcjoK8RGQNTSQyJmsckRALJ0AkBal4FEFGQ6gbL3Mo5Mgc9ofXrz79dcQqL+7bNiQ2RIQ0v/m8N+wkQagHRkqBiMqydAyJOXFgBCLCqSJNKaGxwsnkaMASyv3tXfDeINVdDxMhoqqqoR80ztpp7Age+SsOfYssMcaqKAfAuh+AEIFJHKhtSGYVi0kpsSQfkzHGOcuJow/WWmeNWosKS4zRgjUGRSClJFGscSxsyKAZgXV8JHQoj2hcIQTv+zngTtX1eJf6vgdYfeHznQ3feSITTYW38d7f398rjUKn+YSw8wOHcZmNEZxgxqEQMYYv5s6kxKrLo3NzHIKe0/Ro+n4IXtXqYozGOGvtEEJGdqyXVBqArMjo3IIxAnNmrUHkmBCpKArS7UnkMh0zAWtskTtr7d2xS5wQUWW1jUVV4wpDDCEQmrIsu75//+tfP3v29P7+/tmzt+7v7/3+PkXvjHzrm+9fPDm9vXx1f3+PBlkADMUhAkDiSIic2CdfZrlzDv3wwQcfiGB9rMHGJFjl5dANcRjGMp5AtbwBoFNvUAattTR9nxG6zDog9N6jUyUWr+GCR4NTrynCjIzMFb5mWogP49jx0SyV/oo+Vh0ygDRqszzsa8L5Gc3ZgNZ/IoIYNK1MYTT1jTEKgnP5l1uPckrCEkMIzILGgkCKcdq5KbOGrGGOQGOU09liJGut7Xo/BhMiFG3XW7IUY/Q+RD9ATAQYv4Rb3ftg2A8ptBLzzfKDv/Cn88WTP/6jH7+6u//wj/8k6+Jbp+v3330HhqMf7nxsDzXUdxL33vdmhURki8IhhLZrBeHp+Xm5XPSDr5suiSADDz6qnyqCsyVzILJN1zuXpxSPx+N+dyRyZbV0Ls+mENo1ddt1zPzVb77/3nvvIWJRZPf3KMCKZmrt0bYtoXDSQQ3I83wYRc9H/Gjeg8YYGMVzxm4iGjRk8vVyVa1EzOtP39TN0A4Sjkfjiu0J3B+7fd37gEicBPIiXyyXWe5921hkFCFk/JLRBdHTSgTBcGIAMYbm5qIe5Dr0lJibts2LYrFcighSZIZh8CDETHVdbzenf+tv/c+229P/+//jv/jkk/1b753ud21eWONcH7xFitEbRFUH26zWBznkuVssFhyirn+fYt/3q816uVxpvqUlgRZCIqJsZS3wog9jupaScos0C2yaZhZV1Ca85knL5bpta0RUTnGWZbvdTsVDVRNGfecBQLWeh8mk7uTkpCiym5s7FVDWklVD96wlDdN4o+44770i0YvF4ivvvf/hhx9q+TozSjSp0sRDS52mPg7dQNOu0WCupb6mZcvFoizLE1p/4XOMISaX5vmw9XodY1R9ACI6HA4iQ+6Km5trX21+/JMfXpw/zXIb4tgDRm36TgObKUawD1DmDM4SEaK2o8aUWlcVw4M4xnxD8JGaBHxWq2Fce48ky9Mj8VOVUdK8v6sbvatZRjOzU2eA5jePMQCItYYDiIiS1yTGqbYZ6x/5jG3vZ03wUB6LNn8GKv0s6Dz/gDzqZz9+/fIF/vJflcsMAEaAVUTjs4oW+jP8RSMJzEwGiNwjvBhEHqxlmTlxIBgV25hZHnk0KndERBAkTZF2vvnwSLddn4WIAIulsW05p20AgDB+5tg9BTAT/AePkHEREXoA6GF0I2BhletAXT9ExCzWYp7nn7z+6MMPf7473JMzy+0yLzMGuLm5KaqSiNq+W61WhXPD5NKuObkuQpdnQ9crADGVppJlWd02IY3KSHrVbVsXRbHb7a6vrwEoxvuiKN5+++2syEMIp6endV3v90ddfnPefnNzoyyQolCj9VzxkaZplHKrPFAdgwAA731Zlu+8885qtfr5z3+u8Uomwd9PP31DBM+fP9NMTwdv67rWyW4eBcriLO4nX27m3HWNc84Q1XUtIovlWkQ2m01VFWdnJ69evbq7u1P8URGTLMtiCkS0XC12u90wqNY8xzTibrp+hoGcc09Oz25vb1WqWESWyyVzMsaESZ9aYThlG+iFn5+fd22vsOx+f+y6cZL66dOnXTdo905TcZ22Dike66MirczQdYPmkBoSynKh7o7DMJydnb169SpOqhfAsl6vfdwPAygveL/fbzablIKSdkMIVVUpl/nk5Expp84ZdQvUByQimifT5A9fluXr15fr9dq5PEbe7/eanmnHQkQuL69DCJpjK2YRY9Sy+eLJ4s3lK2PM06dP8zx/8+aN3jdV5FdCvYIF2n4OITiXKylSTWU135t1ObW0JCJtIVxfX1/dXOLUaVOcZbVa7XY75Y3qOyhQpd3T58+fvnr1quv6i4sLRdKLokghaiGpdYeuDQU1tF+yWq30mWajdvOgC1iVFnSnq9DEycmmLHNmFkkqt01Eb7/9tnaCZ0Lxfr83xhRFwRyHIShGqfTS43HvU8zzvFpVzjkiaJrjycnGWtv3bdf1xuDhsFssFsuyUu8+vaXKcUPEosgRzd3dnZ4dOElotk2fO7dYVLvdDqceYUopy9zf/tt/O4X49/7ef709LYAoKwrdvHr4np+ff/TRRzpNm2VZOTY84mKxMOQOhwMAkAFt8ykaNQxdnufr9dLa7d3druu6J0+eVFVjLM73VgMXIt7c3KSU1KS06zrwRASIlGUZB9bvcHpa3d/fAwARHY+NPgvtWsWJ1+mcAxYFlOclEULIMjTOEdGsUa4Z0Yy4WWttlikir/fTOdc0zey5NwzD+flpWZacSGUxlGWvJa2zVmEvYwxOqJ9eS13X4ZHUrPFmxuM04Zln/PmRgpbuBZ5Ujzabk5HEGkIIcT5ztVumQyTeDzOVaq6d58/SvakRxhjl8nsNgDqgoOjhe++9Z4z58MMPtUG43++rqnSThyozZ0U5axxrlNAvLMzBJ13DmjQa5xQ1q4qi7/umaRZPK2vtEHxK6bEPhMacfMLTZWozx0ncABH1GvVE0CM4y3JlMwDAixcvYox3d3fzeacV1sXFRdN1WpQp4DhixBMnyWhqnQKS5M5ZRzOTLE5a9mOWS6Ke5HPTS7ukxCKS+t5bS+vFcgb3ZRpyehzEzGSZi1NX3jmXOKCMRmWKgOmvd+0QQujTwDEZYzTHTikFRKO6djqJqx8HjATW2OCj5tK6ts00hweTjIMurRn4okddZ41+er0AsFqtuunuzdfFSTrfi0iWZZyEJc2k0vmbPyYcaJMSDFVVqetQqetaZegSmoHHLMtiGgW4VMJiJixrj0cfjVY3U0+6bprm/v5eIy096vTzI8FebWtlWWaRfIpaHShFRj1pNEnIsmy/3/t+WCwWeV567/uu0c6czjPpzdTez9yV15N6/pKqZ7Xb7YAZjBmGwRh3fr4BAOdyazP2PoponGna3lqrnVftrBBaPYBWi0XXNETw9OnTs7MzJWKHEEh0Wg60fzY7D+suVtRFJYnefvvtOnb9TcfMMXK5qLwJzXFYnjtb5kVXWN1CutBTSuqNu1wudS0qmKIVoMrwze0LmvjwY0Y4eDCEiJAYJqkd7z0IORqtUfVZ6vMwZHwamyeGSKZ+CCGO47eG9LzRBTp9wwAAwzCEfpiJxrvdLkZ1+cvS5C+v7jTa0Bj8kI1+x2hVYcPR3AbUX4kxZtm4wuYaQGJS3vB8ZjAzolEvyEmE8PMvIksPs4oj0KkKSmZyNdWLnep5TmkUkh8PCRzNgo3BvvNkrHMuDp5QEjBOIVLjAiMMw2Bt5myW5/nd9c1+f3/x1jsdc2pbM402ACICDt6naRLBGON9ryelRn9mFsHECRDUP4cQVbaJmZnVQ0PKojApXt9caX2uS4J00iGM60H5mGY05In6aAygGNN77/vBGDQw4mvj+JVBEUGyMBVs1tmQgMgyC5HJXD5VyCjCIDRH55hUbhjn6DMX2zKRUueoNNfwutIeF7H4yID7/7d2swLTPDU89dd1jE7lw/THEkgIwSJpdaSJLKDMQyLhS1RBYdKVn2l9k6z22MzQVQQIRNT33k5DLkQ0e3laSda6xCx2vC2rzco5i4h1XSNwbnOkESEiwNxlMcaYonbsh2FQ1CmGgTnZLGMQ0EwFiIhA4Pb2NoTw3nvv/4Xf/Et//+//fYmyXa8l9kMXFkWeObm7eXN7dyMphZDIGpOArPFxQEGyREKFyzQdQTTaP6/rOkhrsyL5CCKQEqosjEU0thsGa7M0KYPXdb3ZbJQSRaP+V6bD8k3XzgubJlmS+e6ZR3KucbS0AgDSMFWWZUri/SiahlNna0SN7UiahsR5nms/U6NEgqR+3PP5p0FPq5r1ejsMnVZraXJCsJPw0xe+UogIxnsvEzxNI9kwaDzJXG6MqX3Y7XYXFxdFUaV0r1iAJpFaFTCPrZckg0wSVACcUpCE6UtM7SQlz7GT0OXw9re+fvbtX2mP7g/+6A8//fTTeHvI+/Srv/rBt777Kw3F68vXf/Lpp32o3j7/1um7T5s/+fBwd9fZwTokE5OwNda4PKUUExdFua+PZCBFjjFyAiLq/ZBlI93Je88y0sa7rm+ahgXzvMSROhcQ4Pz8fL2s1Mr19uZ6FHDY76pFsSjKuj409YGI8jzLlPfR9yn0MOLLLnfZo/gwQTAsxhhB8r0/PT198vzZ0Iebm13bdF3bD0NICfa7Y+8jSuh7X9c1cyVdeJKfnp09fefF883T5+fnZ8lITAxfglOgQl9I88qUR8MWMTCgGGP6yaoF5h64CHMyhkKIhMYaE3yfkvzmb/6lb33n2//lf/mff/9f/f7lm7uzp9uyyjKyRqIPQ1mWzGAM6b5g5pubG0dGkRq0pusWkYNm4XMmCuMZ4ff7Pan6+Rhmqe97jinLMp0AUHBWmYN6RTNFZe70KIY7lzF5nuc2159nZs1DZJpOGIaOY/jed//sdnur0ckYo+w2TYU1idc7pnttfv+vfOUrL996+0c/+pFMRAz1KNNd7CdnCERsmkb31Dw2PhM6NGhkWVaVZd/3TV1/6UmAqICOBh/1MHn27Jm1tq5rYy2HaPOsaY5/8sMffvUrXzs/eyoxMYrwmKESgAKQZE2CROZhMEhL2RACkLJhef7YGZOduybzwUdEnFhz+jnZmEBPmVukIowIApw4grB1pu9aEV6WpZ2IAt6Pqn+anestMiPVADWpw4Apc9pdkBgOfr9YVd775XKZidOcWERi9ACZNYYA1aEFJ0+LzyHINFkry+SCiI+g87lEnAFWeYQaA45A8ojc4UN3HxFZEk7mwPRISERHX+d3fpwnzBvTZWP5N5eF8CgN5rkrr+W3EOID9D89oCRpZP/NCIVMomrjL7IQjJQCYwxxmkXS547pGJklAYDFmfYOGjbt5FOH05yvtdYYKyLCo/XIxAMQg5qhpaZrrq+vf/zTn5RlRhnlZRa1fHIWAGzmzs/PEfGw2zOzKueklNA8qFq7PNMvCaOC4egZmFKSxIo468W+efPm/Pz8vffe77rupz/9uCxRNdmKori5uQMAZQYpuqEQsK7kk5OTN29ehRRnRFhEZnah/lelcpWhud1utUlmrW1GKfZc+b88NWuNMZeXl3MxrOoBmvYo47VpGt9+ic4Vx8ePL89z7/urq+bk5MR70jigVCDNDNfrNRlERrUOUxuM5XIZQtDgprK8IYS7uzsDuF4ss8zO0nwphaH3iBhiMsaojK8xRrmHXd/6SeRRHbcU7RWRs7MnVVXd3X203zfvvPPi5OTk8vIyxqiuQer2djjU1tpFWelON5Nl3Gq1atuaiOq6vr+/J6LdbldVVZkXWZZdXJzqBWZZdnZ2Zq1Nyei/aD6sUpWLRZnn+evXr2GCjbSA50d68VVVdd0QQjo5Obm/35+fn+vJovlVjHGxWMTI3ne6VPRGDX1wNnfWGWO+/vWv6wgOCB0OB5WwVJUJDZIKyDKzM1nXDVdXzWo1nJycaBo5DMN6vQ4hKO6pgff8/PxhQp8opDgMw5Mnej/vNAlURjxMlCl9BxrNb5OInJ6eVlU1F+pjy9OH29tbxXzjNIWdmPQg0zpCP1QFiCcNjVxPFuZRNkRhzRGdYTaTbOv19bWKWWsvQSV6FQQ/PT29vr7+5ne+GUL4xS/COsv0V7z3TdOklJSpqulBjFGRkbquFRkAgKZp2rZVFfL1en1ycqa3MYHMuXRd11BV6/Va76fupsVi8fTpk9/93d/92c9+Vi1BEFWtIs/zEFSNs/e+X6+XWv6oP02eu5RS3/fVomCJSKof7RFxsVgAMEyKBMaY7XadlVlRZsai7kpdb3qX9D73fbi/v9cGD5JoAa7nlOY/X//614dhuL6+FpGiyBStVjhME2/NOjKn1FRLBIvFSuHaJKI36vz8XPETbRXA5OjunPPDwMyKaGt3QYsyrV+6rnvz5urk5EQbaXqIzwBuijHG2RNLB0lHnQqabCf1V5r2KIyqnKmXprmNtkaIyDpKUVJKi8Vis9mogImeg1pGhRD6ftBoOadqwzB4P+jac5NOOkzD7sY8SAUSkchI6IEJ79Ngbox59eqVLlddmTJNDK9WK11FDNNo9cSJVuiNjEnapZsStr5tdQHoOj89PW37jmOKPE6fjA0eS8GPX3u73b5+/VqFUDRLUXzt+fPnRZHrRlAMFCdtDc1mVazGTfIXMNGBr6+vXZ67yQNsTuEUJ4mTBKLeHDfN1thpLlYP97lcTRyKvJrLN73wlEKe59utCyHogMWcQsCkegST/NqMzuEEZycBA6j70Y/qSaNAthg0xmCEmbylvKiZ/Dve/8yGEIIfFRhg4vXTpAamsymaK8LE9pu/4VyAz+p26v4aQlC6yatXr/RJaVTUwiHNmtRkEUeXe20i6uLRsZuUkrXOe0/O6oZSpFjzE/VsUHA2TYrJEuJqvZxp6ev1+nA4qPuriGhvRsMCToN6WZa1bRdCODk5gWl8X4HgOT2bCygho/14Y4yuLg1HNJlqlmVpwMTIWUYnJydHM76DPi8fgrbKlsvl4XBQSRa9Lbr8tPxRxB8nBolugbOzM01mNBVUf3Iz8XW0EUJEg+8s0aLUyjqmlDRc6IMwxkTx+lmKoWtupnd7HjjY7+8Ph0MI4a/+h//+v/idf/njH/8w35TOubwsFmUhlc8Xy43fjF2CuWbTW6DgrCapPI1bqohACGG0TYxBS4V5yWZlQUSENK9vLX10t8z15/xBIgLmUa4sQohukmeNMYIha4km1RX1P9W6tG/aub0Aj7y/7aRBocpxzNEYNy19NsZKSmrNFifRd90V6/Va03eeGoMWKeFoLzM/1JSSQq4AEOMXA4UCo5s8EZlptmLmUWqfih+1FmGqGxHGwoknMT59KdYLAEikA5I0yQLqjWIi55xPoSiKtj629WG3v0PjPjf1AACOlHeZiCBGT0TqdyET9t3XDQCQIZhkQFgSc0REhyYmbSb7N68/tUh1fYC2xQnM1WNGnzsz98OAiJlzRHYsBogoQlkUTdMYo41nm+e5sdi3HY2yLWlsDNhM5ME2KoSAo5CojhtbkZgXWQgh8ai849woWRAfxppGqVZNJjQazsWt5jQaBTSq4qRKNgwDp+UXPt/Hzj/KiWNmddPWLE3jo94H4LRery2Sfq6mKUQ0L5I8z8uy+OKFJEIT6aNpmqwsDIxwyRzHo6hlk4SUIKUsK4iI2TNzSqyNu7ZtOSU9DHzXS3REJJFT4rmScc4lEWOzrvfGmBC5bjoRQeOMMcHLNBJYarp5f39rXIZAt7e3JnOHpn73/a+8ePvl3eW9SEixv3hy+t1vfrUsjG89Bx2HNGjcEKK1NAxDZm1KrMu/KIqm6Tbbk6Zp7uo2ANliISLDMHBKmTGGwHtPEVzpvPddN+idBIBhGG5ubua1p0FpntDXNcBTW1VG6ujY9uSJTTbDBBqK9DBGoyPtD2aScRp7kekRzJj1XO7qx2nQmH9R/7pcLkUwpZBSsjQKcumFOJffD7dfEk8eKAOPcQ0R1L0wN7GU3TxdI/NDb0aMIZUKVbG8+fgXSUBIQgBf3DyLXQipvUld9Y2X5dfeugnw6hdvPvnZm9tPP105/92v/MpvfOuDxWaJWfuvP/wBifvq06+6YH/0h38YPro6Yeo2UHKeGXQuB0MpJR9i2w+XN9eDD0HEDxzjfLsEUtT0F8g4my2XWv0WTdM0TZtSKIri9GSV5y7Lsne+8t7F89MUB98PYegPu/v94V5Seuet90MYgu8BQFJsjoN3JrOaHYIxxllr0GpWrdEvJl9MilopJbKkcMPl69fHY9s2vuu6GDnLC5Bsv9/9/Kc//eavfOOdt99qm+PtzdVbbz0/P3/StcMnH78KaIvVSbYxLAa/RL1ZY0gSpkcDhppZKsedkFJKiZnIqlQ9IjJL0lTDWDPiaAFQnDVky69+5Wv/6X/6f/yv/l//1T/4h7/905/85Bvf/Fq1XLT7y5RSVZkys0MMNzc3el2bTdUe28Ph8Pbbb2/PTv/kT/7keGiMxQag7TvNljShNNakSaPNmTGNQ0SyGEKQGDSG6LmsxfDIwXGu6zpJnBA325V2CHT3VVVpjBEELe/3+z2MYvpWs+qqKBHxd37nd1xeOOc2m40Wt1pxaVN8LDP6XhuHXdcpXhBj/Pjjj5UVqE7Zc/2jqIEewTqKfrLdusmTEJl1VAIAVKCDmduu88OwkvwLn6P3g13b+c3nBhIhHvb7k5NtSL7uB45sET99/cmf/PhffwvNYrEkQhbJ7DjfR7OICozjRDP0qbcFU/LTjA48kuqbI9hjZDOlhDI20mbMFEbTWpAHu7kHQac5aBCRs+NkKExqcSKcZcW0bh8cEWSy0vJd34yFvWFmOSZmdtbE4FOI29MTa4mZFXEmIksmycNwJXwW6p1LlBmolceA8mf20YM+MswOgaDuDiDTEN78f0UEf+lNxrcSAUnySCRt/tD5rIHJ98ZM854pjik+MwOQiMTACDPF++G76eNw9FCG4SNm+vjlp4/EibAsU0eBJrdbvTOWCNDMyirzB81tTl1Mum37fsjz8W3T9IbGGDNaIAoRdl3nQ1guq2JRlovidnebFy6keHZ20nVD0zTqGn9/e5dSQlQ7jaJcVD//+c8RUQGCyKlUm/upT2ai0ZkDXZBE9PLli+fPn7969QqAnHMnJ4uUUhJWgV1NpZQp3Pe9M5YmRQhjTNMcbeZON6daauqSHoZBZQe2260i1ArgaiD6xS9+oUe2hqnr62tlR1qbze0xrSFFRCVxNptNmvx5qqp6+fJl6L+423R+fhZKQsTgvRoBxYl5cHd3p+X0ZrNRUrOxxJKGtlfYghGYWSFR9T598+ZVnjuJoe/7et9st4u+bxeLxXq91hy167rjvgbALM8R0RjX9z7GkQ6mQbttW0JjjLm6unn+/LnGsaIolNC62Sx0jFqNhrpuePLkaUrp448/VmVka21RlcMw7HY77/1ischz1zRydXWlxHCNtJrAr5erxWqpkMqrV6800vZ9q+twtVoBwAxFaQEsHGMIeZ5v1mtr7VzapCSHQ630XkW0lcZl7djGQzSa9cEEzahqSt/58/NzbefrqtBMvu+8QiRzkaglACcAET0XlkvjnFP+9bwpaPKNVNR4nlZUBp9gAQBZlilPWYMnPEiIQt+32+02z12MsW1rAFqtNhcX58o3Uk66JnIpJZs5ICyqUr88IgqbPM+NHQmtykRTJe65yzXV7Nlqtbq8vFTkXRWHVedhjgO3t7fPnr0oimK73d7c3Hjvf/rTT0KA9Tojgk8++UT3iFKSFUvVHoxyzzXK6RM5HA7H43FRlBo8FYZrmrhcOkSjAEfbtuTsODWYeLVYaL2gN8pNfNKPP/709vaaiC4uLuq254lUm022Xfo0VTD3sNvluVMbsaqq8tydnLwVY9QGVYyRORZF8ebNG4VCttstAJRljigphbpuz87ONG3Q4KDKPLrTRcTmVsOFBpz6UOs616NQswWFqGDSZJg1TJh5taj0jhVFYTO32/V979ebjYam1Wo1t7fn4ymMqlmglZ2S+WQijGt5tdlsdO/kGer9Wa/XZtL2XG5W19fXuiBVTlofupLf06Qtq/MEIOO4xmzwGCaFEAAIMRBZ9Q3TymWmnepLf1e/g64KxeCcs7MokLpn6f1JKalfmR6UfpS8GOUgaDLt0D5fnucq2KI3Z7lcGkMzSGoyBwAgY0Nd/10JuVVRxNhb61DYj9UlAooPAyKWeWaMOR57ItquN8MwDDEIsHUmxkgGC5fnWa54epo0YKuqevbs2fF4DMEzpxgj2hFJ1EiieiZd16mjnZukNhBRbwUiatRSzQENy7oSNNVRKExV2nhiOeA0Tajn+DyUoIeas/lcum63W568IkIISvLI8xxw5NXGwIHTvG4BIJ8s2cargB4A9HnNMIiblC706dtHg+9z+qGxff6qPE4Jx7KoaJIPDcEr/ss8et7So3m7OM0EzFspxoe2MRH96Ec/0k+ffyvLMm2Qz2kSMyeO/MjjDSfmuFb0Ef35+XnnB5yUmjSduL/fGUPWWj1w56yJiFLkGBKhiSnqAIRuBL1AzW91iSpMb61dr1c4jUqn6cRXCXuNYzAh/swsCPPAgc5waPtT9xQiWiQAHMUSJzVgYwwZA6OYHurpQI+Yr5qBzM1R1JxsSib12NIWu3ajRxAsL3gaTj0cDufn59vttt7XIQTvx7Vxe3urQc8Y0wevq6Usy91uV5YLIjoej4vFQm+sUjaratk0x+VyqTfh6dOnsKK6bYqiKJ27CW9gGPb10coEubYTE1aXsh2VMXBeTKzPJiVNfSKPI34zVyj0A+W5mRxRdeX1wbd9hywTqjIet3POnR5RQowxZlKIz7IMjPo/9KPyqXP5xD5en2yTD9qIK8syy6wmnbpeRUR9lnWt4CMpHE5MREm1Gng0go8xaoN0LKSJiCwhTYEizXXd42PjC4sWAEgxDbNJt7FzrpMm5jVPdSMzIxEgjj5d06e3Xadx3BpEDDHElJIgILPIZ9QGEREQWYScdeQYoDl2KGCQQgxZnhkeBz30C1trHUpgnG8IjD6BY/OAQ7CPnDpTjCF6SdFmOTMDku/acrG4vb198+YVimr/WSLR1a7OM9VqrWGFBEgVc4BEhJM4IiECYBRJKS4Xi5hS17Tej5otzFqWGCIKMQKghpI8z9WiMM9tCAFRrDUiSW1Gsiyz1nVdjyijVpeSpzgRkUUSQiFEHCcdNKxrPJ0PjPSIirhYLGYZ2c+9+n7QhQeTU1OWZcPQaVExF/Z6B1RaQWKCySd9uvMgwARoyBjzxeRWJFJKrOaaKSUwRo+iudcyx3S9+X5y8s2yXA8G5XckP5KnsiLzwygehEicIHFwzoV5IMUYIepDyIoihLDfH2KMKfq+72P0WrPpUVeWC5s5zbx/9KN//fTp03/33/1Lf/T7/+r+7uri6fvf/Ob722Vx+cnHt693VVUNQyBCRmy71hjMsmy1WPRtV9cHKCtm6Pv+g/fff/Hixc8/fa2lNSEKqpgmSwIkAcLD4TDiL1Pm8bm6nYhmQwxNa7TXOkd87UD0fe/caOcqkwKAhiicXmPEYGPMOKgOE51N9/IoGmOtm6xsZVKq0pNDg4ZS2kMIxtmQRBF2tQVbLpfe+91hv9nkKjX7hS8RQYQkKXKkqYMlY+SUOSCklHRoOEb2XhuhY5QzU7ub4QHBERGfvAMiQP4SLv/Q+4hcvvW0fPvFT5qdHzY//MGHrz+8LHz/3ldOf+sv/8WzxWkP4X44vFg/P7PLX/zw9Yc/+vTd9QkCtHXTl5lxKu7iRaTpWkbjfWzqzjjLDJET64S4IWNQCZxoLJIha4gFEIFktVpst1trrfcBgC3C5vTkfLsqHR2PzWF3/8knnwxD99577xV5Hrwf+lZiQmARMQiSeEgdTf6xPOm7TfwLAZAUo4hyAbQpZEMIN5eXfTeQKSEp98039cEPbdcc333rxZ/907/+3jsvUpQnz54m4a5r/NBfXV03nt96/2tnb71z/LKW5NQJSCxzXsISOTHEcQzNWotE2jfVr5pSMipSj4gkIIwIjoxSL4/HxtfpP/it/+jXf+M3/pt/+F//7u/9k/2uXWS83GxQCJGWpVNesDGmqqr2WMcYj8fjJ69f7fd7QDw9fXI83IfJoEyjhMszDVy+HzS4ee9Xi2W5LA+HgwZPTbuVh6h2fLo+q6JUssNhXxuL2+2WjFNpIN0OmjwpjQsRlYlQFJkk1piPxmiwVdP2mc+lSJBWLJo+KvEny7Krq6vM5VmW6fZ3j8QBNece85BJAVDPO83yWWQcWpyU+CYo2X/hcyyKvHOslXaMsSwKGhnoDCCa8/khLsqSh2gK+9Of/2RzcvqWfVkWFTDqZkQB5xwBIEo7jFQmmGBKM0n7+UdrSf8lTXOUMzA6/xZOVvJzLScTtWHEU6YcZnwrZr0bMUaT5c45QxRjhIkToaGwyPNsGtB2WcaTh4wdbWwlyejQAiDHo0wfF4uiWG83ZVkCaGGjHGNKEDXQ8kRrwM/aAOIjGH3+X5+72Mf/OIdu9dDAR2Lon/sVwM/JbjDiKFMyB3+YCFnzTz7+hohIhHOvcQaI42endOdcUcOvLsI0TefA1FeWNFZ38y/ypPM7/iQzIbpHFkbTBX1GEkTPJmYGEUuWQebHBADa8jGT3JMxEmPyvheRw3HXDr0tsyjROTdMwrKHwyHGqJrsynOMcaS3IKLygNQnQMsYS+ah8EHQfaqLXMPa3d3d7e1utzsogxUAdrvdO++8o4VDnMQNtTG2GHWuQlVVqrugVY3iTTDVsXpLFZhDRGVV6zfXm6lMRs3z+763Np6dnehJipPu/MnJych+dc4YowIRd3d3L/zpF27/pm7d2hERJzWyGnhqwOhTe/36tejYbO60KBg7WxOQ0fdt0zSq6vb06XNkUT7yyclaffC6bug6daYyx2PDLNaa09PTlNLNzZ2G308/fUWEz58/X1TLuq7rutbxr7u7u8w6a+319bVqhmRZdnHxDABubu52u50uQn12zLzbDSlcnz05d6OasF8uq5ubG13PVVUpKHN6enp3d6cAhKrH6vNSZVtdlTFGjdsKOanwNxElHhe2FtsxxsSgvNcY436/10NEKU16Fuua0Rnkt99+W7Op/X5/dXVVlcuqsnmeq/S2MUabSQosIiIIDX0QaZbLZVksYowh+KaulWisDgTaGjkcjt6PBgC6O/I8V9QbUXa7frPZGGMG79frtT5HrTRhNFbqUgrKnyWiJ0+eHI/HpmmI7DAM19e3qoBsbaa0bj1WtI/SNE3TKCPe7+7rEMLJ6UYrFMUfF4tS77PubiWR9L3XI1IrF9Wt1qzYWrvb7dp2SAlSCtYu7+7uJrGL8njsNpsNc6zr+vT0dAJtWfsZzrmTk5Ou60JI3seiyHSFGJ2eTjwXPiJiLWRZMWfX1toUE5DJjAXHRVHNQWw+I5i567qqWi6XlTIEdcsrsVdjhXaO9b8hJQqg9c79/b2mIsqt1sWm6/BxnMzzPAorMTklmQEyIjKZM5nr+z6BGGezsnDOdF2nd68sy81moyIJyrlO00yJMQZRqqpIKZXlYrvd6pfxoY+RrbVJOA2Dbpy6OVw8eaYA98w+cc5pm5wmpU2lKIkkY9AYzDJrLTEnY5x+dJ7nhFbv24jSdDUA1Me94kezxJlumZRS27bb7Vb9KuceiUbI1WqlbHRNbJTC5Syp6pMiACKSZYVO2atEWJy46ilF52Ye7qh6HCd9Z5w4trrN9dNnrBNAACaE5xEDVyal77lccpOnGSKEWWwqjekoTa3HoVNJa4cC/1/m/qxXty3JDsMiZre6r9n96W6XmTez6lZmVuuiREqyQehBsGzDgA0DBmzAhCHb/0WAf4ENETAMWzYooGBDlkgQJKWiyGJRxaKqsqtsb3PuaXb3taubTYQfYs219608136xAX0PiZPn7vPt1cwZM2LEiDEIIIQQQpSRXqMNM8Qo4JUuyyolIqkiaOr7aq1jDKLgMVeRkL2XplFwrTC7cMlhLq9y5rrOoFAIQUDzoigGP7HOZ7BSbtY8GNRnYSvpdmSveM7wGuVMjIi6rnc2zJp1WmuA6WnP0UMpEL4OAkSOiGDMJBcu5PR8C2mmvsjpNieQkuEkTgwshlhaTwjvDENP9WMKc88DMsgLmRJBPLUQQnYYSlk6BrPeS8zOYcLqkPPr9PQUcfLXISLnJtLJMAziYyy/USmFCjTquQaH7OknwspzLlqbCSOmrGkuD1C4d9Ju8aMHAGXs3OsCgK7rXDEpaEskoaxOLm9HwGLJi+Q1CbCOGcCcwT3MzEXtrM4sbAkImDmg8t6RmCiN4zgMjCCOMqbtOrkXAVjkdQha9KgenIh0E4zJbM3k2o2IXdflXOJ0zoGlOyW/fbVaHQ6HcRwLUwDQzMuZF3ld1367keew3+9PT0+Px2PbCuLq5t6wBHDv6fd+7w+u397e3Nw8e/bkZrhr2/Z0dba5uRnLsagr7wcjOFQCFn2TSchCdkWikPsbc8g2SsvTp6wyGUJarVbM0yCAZAYofMms0iDyH3M2jLnFN6XsiM5a5xwrjOPUWDDGiOx3IuJs3EFEnGM3EltbHI97IiIq6JFyCiLOShcxRoVGGIVEhPRQzKg8Vo/IIuqnVJ5NIAYtrJbJs16UEBC1CHog4tdprcYYZrhzLkXwESI2A50xRm2tVibxBBvJkpWsxRijVR5GQFCoOEUxUk+JJhd7rQgSgDq27WKxstaVztzd3qwuLgKz0YrpwblOWsE2009mmHIGxGWPMIBPERIopRhBa62NVsbGkJQC7ZzWGjm1basgslR0knCDUkr1fd+9fhtjbJpqtVwqNiGRVVpwZ82hriqrdUpJaduPo9ZYFIXVYlijwEl8mYqouq6n0TafFABzYk7WWuLYt/vtdrtcLut6wZyGIYSQjFFppphlzQF5HRP2V5XaWQGPmJkZpTMBAIjzX3JKib+G70lZp7JtW6mClMKUUDYqZ5PJ6asUKqUSJPhqEWuFqYRElOjrfc8l5gprzPugdXLORabej1rryhWCcmptU5rmc0MIxtj12khnyOCDiLBSaowTUomIWkmPtFcqG5oplJDKzCcnJ+M4Rh/2fhfimFJUCgS/llRvu932/dAsFkVRbO7urq+vlVIfvP/i6vIkpfblZ5/eF4pjcM4N7VAUha2qduhQqXEcVucXy2ZRKBNj3LddaaNz7le/+tXVixemqIhxu92GkLQy1hgKARFdYRCZYDqeJVJJ8SZ403K5tFnLTwKLNMbE8luyYXn+cwPZ+1GmoubDXpRwJCKDyplBJBH1lx0qPzy1xADmKTallOh6z/CW5BMm+yBHH1gjCsoJKCOi1lphT8iv+PWPMB7nlaOt9D+n4xYSyR3JlYTsXjgvwqn7ipCYIk3zJXN2SIwJQDFFerfswxiSOW3w7Oyz9rgnTO32y8/e2EDvrdf/1m9/9zvvPx13fezHFZtwvfvLv/rJ/T197ze+9+Hl5aftjzbbXhtbVk3b3+62u7J0qxPNzNv9PjGlFI3SiBqBGUEZDUwESEBG2wTsUwyUAgfmtD47M1rvtofjcSeF5bPL85NFHXjwY7vf3RnNF8+frleL424/CJFQIgkTKiUUMEm+AYAQ5XYfsCTCFDlRUEqFFEJMSpmU2t1me31zT6wHz6OPL1++2tzdnq6qZeU+/fTTq4sLZ0yzbl6/fv3yy9fNahn9QAB3m4Orly/e/8iZd79TIZaCmiKdUsoVhnkS/JnQWMH4ct4mqQAnEuVWnIBEAiCG2PVHY7S2Jvl0dfHkf/m/+DuFq/7oj/5oD9vvnT2NKb558/r0/GSxXjCP2+32/v7eKt113aGbLI9G7z/44IPPPo+ULXal8B78KLmvPD3JdeSESilZ64wxoksrdDZh2Flr67ISPGK1Wt3e3jKkpmmGYwcAMlcu2s0xRqF78NRunLQCpR5r+0GcDMbsnA4A4q8AeX42l77GGDNPDiGiiL263P+WjFP6WPKZKTkSOcuyVFoLpwwAJG9WShVlift3x+eqqm7CPsWIADaPQDEzwGRBeTy2U3LvYHfYE1H9sx8ZYz784BtaI0fWCgB1SokVhxgntBEZQfMj+JWZjdLhq4rG+T7+OiALj6qav/b38+GYsvjdXAlIvEo+BFR1VTlrU0r9MEhQ9eM4PxkJMmJ6YLO/zZTqoEgkI6KSnyeK19deiDxnZ2f1okFE5sj8gNvKngBgYfHDI7hZ5Vl7EM1hzlpi+BWEXWdW73z7RCQdE0lhhLLARAygpp98/PMsmZVoradHz3n+WiZEg3Mil3MMM1/wnNNzplA8zjMhD7dxFvqfmwrMDPTwnSlFADEDZJN1RdRXcfN5YUDW75b/StmNXUiQSimNqIyeVwIza9DMKAYY3rfW2v1x3w8tERmjN5u7QItICZEPhwMReR+Hvl+tVinEbTuhPJeXl+M4iqAz5LpxulSjwxiHrgOAetEwc9M0pSuqqrq9vX39+nUIwRjNzCKVIBXg4XBgmmZORVNCzk1jjNazKKoDgLu7u67rYvRnZ2dV1RyPR4kJcvxJ/aOyVYYMQwzDcHl5LpRMqdJFVZmZ+36UdtfhcFCZQyqv7/LyUiYqML7bKVRmEYZh0EqJJDHFKNOmMosttWJMgYYkDPHLy8uu6xJM/JtxHItiipN1wU3TzLbtgsGJK70gO7IR+r5/+/ateAwURdE0TV2XgicuFouu69o2nZ3pjz766NNPPx9wlJtaLFbM2Lb9z3/+85OTkydPnsyD4fv9XuBF5+DYJby/Xy6Xz58/b9tDZoIba634HcUYl8vl6elpSsm4ydhwv+/X69oYs9ttZAUKh3ruwY/jOA2TIUptWNd127bjEGaMSVqht7ebpillBNgY03fB2Ic5fQFxNptNCOHJ1TOROhnH8fPPP5/1/QXMNcYIdnx6etp13c313cnJiaSvkMXTYozS79daL5cLY4w47N3f38r0jDHqyZNLY8ynn37RNDGl9FjBT+rwtj3EOOVUomo9yxAjohgwOOe22+3d3Z33UFX64uKCCIqiFByk67qu64UvJnCzfIM0PIwxzCfSLMlIWSQimbKV3ScEGmaWM1rWz2JRCd602dxtt1uxOUGcELeLi3MiGryXrkxVVaenp8+ePcvDRmrV1MMwDH4srJsBDjEPaNvWe980S/mS+Swuy3Kz2QjGwczrdWTGmb0rl4dZkUAO5TEkUe+URaKnOWbPzLvd7uLi4uzsbLffVIuGWsBhkB6JGEUUReHcNNO9Xq9nDsrxeESjBYVfrRaYsT8AELA7v/GltTaEUXTJRb3E+5gSnZ2tuq4TAd/D4SCpjnRElsslIh4OO+Y0RsIUEyUgjl1vjDs7O4tM+/1eG2RIiSIqZkiIWJSWuJpYitoIWYoz7UlI01O7LktgLRaLFNl7H5M/tns5ppfLZcQHdeapTZ4Z4nKDsimkXScbkCIIyV26dILSaK2V+orcFgAMwzApjOdmNmTi+XypkgPoR44XkobJ91DukmJmngomK7Kc8vZloc7ILCKK75lcmyASTImYAGAMIyICowglrVarEUCeEhA7Y+U2IVOCUp4tlqUir0/+xjozuZwhhbZ1rhBuuDRTZWFYa2KMkmErBW3bAqDJ6tsCpMj2fFzRxxhCmJBEwYukXSTmFSoTHYhozHwOAIiZ8MtZSESeqszKXF5eHvatPGo5iapFI9dJk3J9jPEBtaBJyE4B2Jw7Rclz5NXoR8NPcz5ARJAlI4bB933v3IRazlwH2UFKo80eDBNwhMCZsTfX1/IDOROGOV3hzNOSAkeSc0SUxpKaDMZBuiZlWcrQ87wO8ZF93xyB5TslxtZ1nXyIMSZgzOMai8VC4pJzThqlQijRgFVVdcM4n7DiHsw0FVdSU6RM2uBMGOfcQyUiCbCywITYLjduslyMMoYnLuBkMCg9GJtNlUMIwY8wY/dIPgbr9DhO/Hd5YogYaJpQlymWNIniPhBJjTHEjESyeSUCSJoRQlAKytJFnnJ+UdSRwQ6iKMmVqEINw9Csln3fj/udXKe19th3x76LWd6EKHoPMwrvnHv2bAEAf/EXf9F13aeffh6raJ3d7/eIKIrV1mtTFJXWSERhGBUDPeLPm0dohRzhISSKE+VH4Il51WLmls9/0FlbGRFBoeaJlDFmB15ZK+rRBBMnFoqHBGU0GgAwg6FyGVopAAg++dEbY4TcFIISZasZ4inLSWDeGGOcE5cbYwzHBzqJUiIPPfERmBlg2rqJUi4Gks2SSXO3R3KjdyagAKBRm4m0zBEeFNxBqyRiRFoRUxQhGK2VAhJ7+hwzxiFMPRlOAMAIRhsFmCizmYiApqIlskBpC+fMOHph169Wi3jsgJOM2+c6JECeBpU/mKwKilkLhokYUnrwi2cEIGCKkRAVIjAIQDAOA3AAHxCRAMcQD/sjZ7FFIhqDb/vBOadxci7u+/6DJychjNJ99azGlGxZxNHXVQnMkaJCyeeEJoMhjCGMElKNKWTPE4eYBmPhgw+fLRbLoffek/detJtDCNJukmOScvdezkgJ0wlTChGApHvGWUbGWk3EX6fKLR/nTFUV4zgqBVo7iX2SaM7EQM5680PwkOvhuSE89L3PtWUI0X+NbC5M4VhJdFNKKaXDI90Pn2IYxI946t9Y65hBijc52lP2CgAGP0Q1JkQUHq1Kyns/Bj+HJAEFhEHctj0RKRmdNhgp+t7H6PMxNi2k7WYjKfswDDHGL283bbffba6/+92PLdjQ9zGkYfDnZyuUoIGTjEwIKUbSxik1aK2bZvnFF18sf/Sjb/7mb22OnSmrMbBBEsVSq7SPMcbI7GWnu2zZIeFoPtLmPEzeggTcuX09Fy2SpWk9NX5m6TrMM5UAoL9CW56cECBPOiPiXLpIV3wOEeGRYjIAyFEqCwC1YsXjME7tonwAa236r1l1DMwMwveU3x4nwXCRC5wASu99oKStIWDUCrVKTIiojBbcHGZ9/NxnAgClTEoEX69T7lFxs9wTbjxXV1f3n/fc+/PS/cFvfvQ7v/GxIW+coqRfv9ltf/n20q4++f7HCszudluWpXUFKR0ohcSkEMRjE5T3MYRglCMSBBxk1yutY+TESQamlFKAyhUFOO6HNox+GAaEqBUpBOAwDsdAY6H16XK5rCpXFkPbyUsxdjK+pyjCTaSmmdxpeAVxastLFJUGKiSwtgBGH/xud/f2zU3w/nDsAmM3UD+E3nPRrNuhNyrd3d394Id/8f7779/e3/3wxz9VthkiAMe+74n5lz/9q9/85LfejVLMMixKKwIiEidMiRI6u69IxqCV1ajE5rsoCmIExoyboZoNTtEkjhotIPl+WDSr/9n/9H/+jQ8//gf/+d/78Y9+8vz5s8N+KKtQVyAwEyJqZ6/WTyU67Y+H9clSG7y+vpZhQKGnhRBcOQlNRj9Z7RmlQwgyqGWMTSlNempM89aQjLwsy/Pzc2EihzhapXv2sllkL8hhMYdNay0RUkzGOcm0MqcDBO8QyENMlsUZZsah5gKgaRrgaXJTvrOuaykn5oRE2MpFUShQIUVJKwVu1pk9Kt8py2m9erdV4ND35sTMiaa0NuuyqstqN/rf//3f/+KLV5vNnbbWOLCFS8Svb17XzfJb3/pWacuhHSIDAyd6mKmkqTWIM62DH9F/RAkO8pmCj9Bn+CrzFx/B0PO9z3k/aiUpGUuoTBP0KeFxZnafnK5SSilEo1GpSc8HgIrCEVFKE8tv/nJBlIBBITKyMyolnYiGYXj58mXXdc/feyFgIsz20fwY+CXORnaPbwQRE7NC5DlIiiZI/oEZun38b5kZGFARwAPeiogsclhfYUbPoDwz8+QWqlR6JFIxfzM/QvAf11f0VZNBzB/O6DOIHPMje5m/9nl8SMHjZlgu/AAeUvT5LudV/ajbgUrxQ1ZBLBbZCBoA0BAkYvk2TqNPxqr9cceK3/vg/eu762N3AICisP04hBCqqpnnhOZ7ub6+HoaBgB/3fedLtdZKkhFjFBjx7uZWakMpC8UYx2crkaYq/RhTSiGOclgLcppSOh73kNFkrbV4/lRVgVgKBCBbXjKru7u7mcuDkw0pVVXh/SBqA0S03W6lVSwpn/CdhZmb8syQxBzpVSOiHd896FZVVcuHGOOkt6K1LWxMoSidNkok47V5kFBr2/bs7KxpmiF4pZTMiomefmGsPN722AkCstvtRSWsLMsUvda6KmutVFEUwxjevn0ryNcwDKvVWoJVSmm5XD55sjgcDinx+fn5Z7/6vGkqkTrxw2gLt91u3759+/z5c621/BOllDT8Tk5OBKwUraGqKqRjJxkOAAi4KYpMVVVtNndPnjw7Pz9HvJf1KYiDAGcSqEXhZKYQ6mzJtdsedrudmMe6ohBo2FqrNZRl+ezZM++jULEE4MBGa2Xv7+/lx05PT2MgQcOZ+fp659yOiOpqsVgti8LudjtZYDL5jojH41GUFkSQauj9qy9vLq9GUXuQ56yUkuaE2B5CZs9VVTarJyiHUmmgLBQgXDkAGLPJLQDMuk+ybtu2ffHixfF4vL29lfU/D+MiYlnWz5+/OB6P+/1RXkTTVE+fPv3yyy+HYSyKaXRAahnIw4XWJufcdrtfLGqttQwVCcLlvb+5udFar9dra+3d3d1kT53Ce++9J+I2omV86CbaMgAIRimXVBgr7oK2sIwwjwrVRcnMWlsREJbWyDxquTseYvTGqLpe8ITF9/LcjsfusIfzi0E2FACEkIbBg1KCVAoEKY9R0GcxfBM5GsmrnXPJT2Kml5eXTdNst9tXr17KApaUWM4UpiT8O6EhCzAkYUrCiAArMUZjlDw0AafqerE8WRV1JfUFEYmbXwZApuGqUWAQrY3R0uVi5pRC27aCChHR8XhcLpdz3QdZImMGVSWJstYKfUdKlaqqrJ2G8auq2u12xFGQILnykJV8OdOexuxRycxytQIJQbZHlmAlD1NKpxn6FN4AImpjlFJa25QGzG7MQtAOIci3CXqTJkXNQERC6Dk5OZEem846trnECzYP/scYhSC834+rVSEanpB1CAVbNJNyFwtfQbrEUoKllBaLxdOnT3/yk5/c3Nw4IyPO6CT/1AoRfSaWVUUh0X7OZATjbppGGLiScIqqT1XVWuu+7dA++GFEJhncTimxQqOtNoYRRUlcI44hGGatdSRCreu6jinsdjujJ4svSZ8oq/Rw1mvy3lstXsWstTZoiAhQgYL5zFJZvEKuue/7yJSAKQZqWzF5G8c+pSDHvbydlD/GGGOkbTPMh5rMtek8eSPReErDYtRZ/CEHGSUrR4KtpCIMlLLrg80ODZlSQN57Yye6jOTbkPuUkNNOKQRmdgg/sjeUh6MUSACU2CjiTnNSNIPykEVCZMnN9Wzf94uqJqKURS9ltQt2fzwet9stZzkHrbQQTSB7Psk4jtZavHxlBc6IASI6505P18ISE0qvyNdIcTH/GD8y2bLG+RQlT06Ji8JKqJQrh4eqhwSeLspSCgE5eSUV6cZBKSWvRlIjOaaNMdLvaNuWCGT8N/ogW0cWT+b1TiTIyydXt9c3MvIu+odVVR13e9nvNzc3pnASK6TUkuzueDw+ffp0GIZt2rqq7MZBa20UEgGmJBjs3JC+uroKIWziRmtd6hIK19uETMvl0ohCUwij7HatdErJj14xRJ4GSHli2WillIidSyfNuNlsuhMAe7cbxJZXSmVB2afp3aKUdSn/u1osJQUhIsikjBijUVbjBPdQBr4lxEuUjDECP6izMyv34GCj5/ze+2GS0otxjEGQVnikqAIAjBzjg3YeEQncbNW0DuS/yHuVc0IpM9MfgN8NDwnRcdobZkLSZd3MxQllLjYiAk0TDSGEGEnzJOmijUkhCT0WWDFQZAJQkCZATSkFyMycmHzy++OhKmql1N312+7YxhgAbIyTV6lcg1zM1AxXOId7lSf0C60nGaQ8wo9T9YeQhX6slXBDiuH6foNZGAiNTTFGTqIarK21Ram07odh3O7k4by9uamW4ac//elHn/z2vveeiGOqq0pIOoiANPH3lFLWmpCStSalUWvtnGHGojQxdWVVacNa4+iP95vd0AeNLgYu60o28ATfGC2zD3OZNze6rbXMk78wZeO4kJV/x3F8p0O9LLwJVqjreVGprJcUs2o+T23ekpkDpZTYGCiKoiwKzirAckmFfXcxg6iYp5guOQQipjT9CtlisuwF6tXalOUEVMl6s9m+XBj3zGxserwCiSilCEDeD0yUokfQzlittffeKBQhGcVK/JeYMcaYQgwhCB1Ma319fS2V2+AH6QBfXV2dnp7u7+8rW7/+8tM4hI+++a3dYS+xYr/dWzBP1pe7NiTgulkOfT/GcHZ+vt/vj8cji+WRrRRATMloxQqJiRGqssp3NJ2Xcq7M3fW5tIvZvV0/Gl6WMZBZPkk28jgGoskaKDGN/SQrZJnD+GA9jAAaFdDEUJM4EylJkiQPnGKa04v4yOlYYvF+v3dNtVqtgAgZiqwUbK0VXYV3LgMmEtuMDAalmLWAOKaUpaP63MYTshgiShlgspw9EYFSnFtNE6oFKlCkJLHlHZ/emtBUW8JicQax2L/8RdrcX52ffvLN95ratUMLI/Wtr1R5YlelWp4367c310Yp60pWeH13Wy6s0SOjGrwfY7BFnVLyPrqylhREK6OsRoPGalY6sOSmCKCUBlMYIDrs2hRC4XQXR4rjcr2Ovj+G4Ti03vsQAgFK8WmtJWBXNCK56GNKTEpphSqlkBIrBYgBEVNiwV5DGJ1zVVNrbYdhGEbvfdzvjoeubY8+Ev/ys1fl8uTq6Ys23h0294XSCdTt5vDNb35oC/Pl56/Qum4Md69uCg0n6+V4PP78x3/1gw//m2+e/cY7n6rklglArPHEHY6yoM3cFVBKEUcFRmsNDGH0zGiMBUbmCS5DRCaMHI0xxBETW22GvjXG/Tt/82999zc+/o/+7v/xhz/+y+iRSR0ObbOonHPSY5aQQtOwZHr9+rUxRsjjcqq+fXt/er6U8niuW6qi1JkMKyiP1ko6sc1yYYwRNcyxH4QvttvtTtfrcRy1tkTtRLchut9uVqtVyvnKLIKk9EM+YItSdC0FX9ZaS/4tWbVcpCTBkjDpTCXTampByUwo5oEqYIZHggajHwFAeueHw4EBhHanJvdgdzgchr4/1c27Q7RSdV0b7cZxvHpycf3mLcWp23p5efnFZ58NfZDpmUixKEsi2uy3n7389Ob+5r0n7ysNemocK6WV956z+o28WZNt/WDW800J1JTRqmxvC4/G9zh/ZnQSs/gvyMRlbr4+Pg1VhoEg0yrHcXTOVVVhjLFlaXLvTVaCTBEOwxBSbOrlcrl8yHkUxxgVP4D7pbXDMBjnbm5uxnH8+Dvfln6GOHdNgDjI4NlXdZYze2j+S/XIGAceYbZzFsePRELmncaQmGZiBOA0IKB4QpYfRC2AFTAA5oIBgB89VSE8PXz5vAweXeecghJNDfoZy0ZErfQcfucfVjANY0FG/BEftFA4czIeVzLz5s03PXGjJGeYu7D5yIhC20n8wGe3rJVSgTlSePPmzQ9+8INjf1yF1byuTs7OE1MYvRQtyJBCFG867wcB/qRLJ0WybDGpxOb5IWYWbKt0BTOPY4wx+iEMZjRuKofkBoT9GuIoJYnoKmitq6oIIYhiw+XlpTEqJZZZe5GbkENW1Hgpk+Nwat5Mk+wioioV4/39/W43fPTRM9nd8kDu7u6EozA/SQk4MsrZdt07t78kY845ldeD5GnyZGTzCnr79OlTYRL1fS8sIaVUWZa77Z75eLY+CTEO/Vae/DAM97f7xaJ68ew9RhCKEBGPY/jmR99QSkVK9/f3MpvvJ61eFNwqxrhcrouiuLu7M8akBDFGuc1DexyGdHGxRkRRru/7fr/v69peXFxUVSW7IITgnNnvtyk1Ahb77OgjtxPCKEYSRHR/f//hhx/+zu/8zsuXL1++fBljEALX9fX13d2h67qLiwtZq1IMIkCK3Hfjft9WlXv27NnhcNjtdsy83+/Lsnz//feJYBi8yKFIg0TkI4uiGAZuj7210Y9RclRmXq/XZ2fN/X3bdV1TLW7eXhdVaYzabDZXV1cSyiiP9nvvgTlFlnckJ4tsybdv34oIAGU7UJtVL9brtdhjxsG3bas0CLs25SGG+QbncC153TD4YRhub/cxRqnDpUkgy36uxST5ZObT09MnT568ev3y1atX6/X6xYsXIYSUguwOWZDPnz9/9uzZbncIk/IhIoLg19IkNsaIA2F6NNEls8vCuwcAIhCE3Rgjg4whhP1+T0QatHQ+Pv744/vD5v7+XowiBDkNIc3J8wy/ppS0sxDDrIulJt0DI3LSCtXpqVoul1VVjcID03qRKX6SqcqxErMEgbX2+vp2s9mcn5/nZpsSGw9JP0QWvCzrvh8R9TB0AHB6ev706dN26OXBiumibHwpB7qu46xpI4lQSmkYBlElTildXV3JziryML7O3g+C+RJOTHznnIIUk3yTI6LIJO4oItQgveoimyvKq4nZFhKB6loonG3XDbLkOHfflVJz0iXRTArVEILVxnsvy0+Uu+QXSZUhCdX8VOXUds5YU8ztPQmecmv0YAbDIpUu3QXOvcP0SFmYsleEwI5KKaE3zRPtOfA+oJlhMiqfctq61jLNKe/aWiu9ELlyuX0B1qc+0+NpP6Dlcnl/fw9E0qBKIRKRMlpSI4GSTSZ+zRxSebDDMCiNM+Sas8eoAKuqAoVyiMQYlZmduszF+aX4uFLmqMrf86MuMgMZcTgMScJdVVVWa3nj+hEPl5l9GOd+p8oDZ/KaBPEsiuL09FT0c8qi1s4m709OTqRzJj0Sk5V8KIsBzNpx82LADHpKci5bEoBl4wi2w48+iFhaJ/BXO7QzvCCvSVIYeNQFV0o5pwXZl98+LxWttZhmS8cl5T6uUEPmDTjXoblaRyHdM7MsfpuVH1IelKFJCPRBuHkYhhimOFy5wlrLCmfeRsrCVpLYS1OHcjtf/i9mb7lxHNfrtdKTr6YcB5JRyEdy467ry7KQ7pEA7nJf86qTZCDGCAiJSWXV0xAiUSgKKwWIbAGnzXzohBCk6wZKeR+JCM3UBpjhzZnfHWPkyYhumn6OMXZDX0vGaKaWktYagI7HYwiBNLqyEDJiyIKE2llEnJug0vAAAOZJLcRa+/r1a2keh+yKkVKypkgpDd5rre/v77fbrWkK7ICIykVpC+cPXqspe3cieTxHB5eVZ+XkC48kI8WmTynl8lyeLBGeKHrctq0IeUx+2dl8cwh+PrllJxhjjJpcPqZ9SMwg2IdIRatCm5RCoDSXUibbeQMoGalSGTs2xng/SPydUyKllJjbEFFIkz4jM2XJYlYKlJomC1Qe2JStCygVhUYEIhbukhxXMsJGX4dESg5KEUAEOiYefUasWIaO57U1KT9wogdSOYYQttutUgbJC1FfchemXCXOJQ2K8ikj4rFrkbCwpXQ2drvdr7788v1vfassljrPukLWGja5Nzjj4POJpZmJgVAxQACwRhXWKIXMGENIydcnZYzh1atXSqnDbhvj1Dce/Nj2ncSUGCNqxR4iTXiEAjRGlWUZY3c4HMYvvvgn/+Qf/d7f+LfWq1UiErCWiEAxKpVo0tkkIoaECsVhGRGNsSEOReGev7j45a9+9ud//mchpLpa+56ePvnggw8+7Acve3hKIrM4EWdbXjlrcxnzALjoTCeUFJOIzNcMwvswyTOZr1rKzg1w+ZvpsRNZa209fZXwxyl3EaeTUL2bBMm5VpHSURBG2af4SHcpM0cUAIqNg1yVks6BUsCJgBlBG+PD+AAzJZiDuHAJU0KDyWpkTlYLB4EAQJsp3E/b1rkYkwZMRIgwdr0tRUKaufLG4re/9QGlsXBl33bXb+++/c1vC6HVOVM6+7oFv/JWuxSIGeZ+zGK5PB6Px+N+cXYxBFIatLKKUU1hVmlnV9VSIuAk6ZOPjXklSyoAAMJtKcsqxgTAQpWSideU0vF4lAxJ+pPH4zgMh7qubTH5AsuCkbcp2ZvoxMk/l4dvrdXWSF4YY5Qmc86MJ7qZFM+SgB6Px/evLgQ0WS4WGtF7H2JkkZN4N+MNKMaQZVvlLdAjbQ1ZCRIGEbEfPQH6mCIxASIqRsWIEjumlBGAmIlZKwUROFJkoq9pno3ODEYfE6yoaG/78e3bU0Pf+9Z7l+cra+2x7dIwtp3nqBfV2e6+3d1vrLVte6ydI4UMCpUhCMMwaD31t4Q0N46jBZdSYlSG2XufEiq7AIXi5wUKCQi1ihRXqyUyG4Doh1HBoikojX3fH/0Q/LQybTFBHqCQEqtH0ucTjzJPyRhlEUHM52OMwzAsl0sCNCZoY8cxbDf7l69fbTa7qrmKDCPp5Onzt3eHQ6fYGUXHwa+XpXZFJIiJfIII+s3NPY3t1dm6LOzx2P7sxz9+8v3n797aBCmlwEkzgGKAB6w5PdJKkyZKimnOt2zhCIxSyuhKjhJgAiCApLVBSilFa6wfIzLc394x2L/zv/oP/uRP//l/+vf/H7vN5vR85cfIinN3FqQsKcsiBH+/vT87Ozs7O5NhBSlQi6ps2za6SZRGIqRsgfV6LYMguSs5feq67o6tMnYcx+vr66qqkFmk2VBrH7zURQAgw8L0Fd/OKTdIKR0OBz628h6bppHz3Wb1DCLa7/cCg8pxJm5I77//Pj6iu0pYwMwtTXEKd/O2lQsQvcIQo86yXUJPM8YQooKv0VXP0klNXd9e30hkVgpTCF2Mb9++rcpVWbqUwtubt8/fe2aUHlN8+fLzn/70J6tquapWQAkia60jUxSEEVADinfnDEFCzjoQcW7Dz9WCXMscduTC3vn3OlNQ1SOyM4iGxXQWqXkRhhAOh51MeWutZw8lGSOTUqpZLuq6tqaQ+iHEEeABnw1Z1bEsy5CSdEZ/+ctfPn/+/PLyciaDTKGMgYEBGDFP5OQPIuY7mhJOgK8QnGHCc+VnHr6B8yTpLJ7z115gYgGYvyqBzQgwMZ21UpgVGBFRoWSvOZbSgwRzvgbMTwAA/vpdzKF7Lr/n25n/Eh/R0ufTeaaMzWnA/M3zH+TfztWOgknHOaUkczyQxawlBVVKlaW7vt3d3d3UdT2E4XA4NKsGURunmPnq6unt9c1ms+FEbd8L10ku+Pz8XDiz3dDjxPCYWHsZbdGyTtq27bpwfnpmre37ViZn1+s16mn4wBhT1QsBaLRZyoaS85qZm+YMAIQ4g4jCB1ytVvNChUwsbdt2GNJms5HC6ezszPuJXAYAt7e3JycnUsmvVkmKHRmzDSGEkGapDefc9fV1jPHi4kJ+/rJewc/esfuLokA8MnOIUTI6EWqT4CZllIir6qzsMWOvUgA7W7x580bojca44/EIxNvtoWnKs7OL1epku92KNOft7WEcgdMvEPHs4rxpmv3+OGdu0tqWwvjNmzciy2eMOT9ficPVbrdDhtPTxcXFhVKqPfbDMCBoozEGAlbAqmvbtjuI/cmzZ88mq7GcdYzjuNlsFotasNfNZrNYLOpa/+IXv6gmX/tJFmOumWOMb968KYpCQAdmToGkwhd+tIyPSA+j6zrnyhASMwsNLaVktH316o2MDIsaxmbTW9t/4xsfiNuhTM8opV68uDDGDN0wDMN2v7PWhuDlDQpGcH19m1L61re+NXTj27dvpXK+uX/z8tX96Wl3dnbWDT0odK6IMQq5DLVq+24cx8vLy6Iqj8ejTDEK4VQpFcIodbG1Vgizzk3qzNvtdrPZnJ6ep5SqKgkQLC9a0lchojKzCE9P7YfdDgCkQ9M0jQDl6/VqnkperVbn5+dFURDBmzdvZF1dXFwg8uvXr+ULy7Jcr9fC15OKQNi7t7f3ZemkRhYl7qIofIqff/751dWVsPl8P2y3e+dcVVU/+9nPWt8ppU5WaxH+1qARp1FuGSS31l5cXNzc3IQYlVKLuhrHcfSeGQ+HQ1FUMm2wXKxFAHQIQ1EUwqQ+OTmRxEyOWjlBiqKIyaeUqrJ59uzJZrO5ubkRWq7WehhHgRqKoui6YRg6GZaXo1xCwZs3b7SbEAyB1GcukbV2dvnj3FiaMXpElOa0gGUaUDDB9XpJRCEIwchGphi91tj37WrR2CxJH0Jw1lmLMrVQFMXxeJRdPyef49grpYyxIYyVKwTuUY/YjvRIjz5klV65SFnJEs+NMfu9cBJZVLmbplkumxhJ1ow8VZVN6sqyVGgQcbYd2u12gitxxhNSSlpP4PUMpOI8OhlGY4y1xQyeyoqdcTqhkQqVZx55iZnCnKYhTr1YLITx472nBNYopsknDTLfS/IuqeZmebTD4eCzTyNnjePCOqUU40SfOjk7E5tZztNgcohI3sjZzk6wP4NKwhonttaCQjmwhqFHyiNutpDWC2S5g7mJq+eh/HwMyeMax9EoZa2ljC3My4OZlUIfozFmwtz7SYpEnipO/KeJxi6wfoJJLFGonAAkM+sSdubKV65HQLaZAi8wLjInohiDtdPFS28sBI+Z3CmgDcXJoqwwBWV1FLlBpSdHRElF5PIQlHCEU0riEyBhR5iz4xiKYlLOyQDXpLEmR6FsuvntS9qmMlNYCmoAkONMHo7gSxIu5vyB7CThIncnSjiSEghXb+5qcB40Fz3VVbOQMp8zWZCZUU3uiDFLsmRFUyWrUWtVVVXTNKJ9LP54c4N55sAx89iNs1sS5qFVypq6ErgUYD7EIxps+37mgGut+75vmkaqVNkXEgTkqbrChRBWq5UEcxnNQWLnnPilKaVkJF0GCF6+el1V5fP3XiybBSLe3d1JiwKJd7udNNJmISyiaIxidnIgSlCqqkqyJqHZCa7bdV1IqTDGe1+p0jmXXEKliDmE0EPvmkopZVKIQlIWxHbuXEl3SwKlrGSSTmx68O1lhOxXjioLac88QWaW+VZ5ZAMONov4JAY5BfGrZC7OEuzGGkROkVXuc84psoCAzKzzBL1zTooInZXIVRbtlRjntLPWSjaMPJlxi/Yg5Y/WWmtrDGqtFQPzFGrbtpemcd7b03QVItLX8AGJH0RFEqX8yqcKWfaSyiJxIZKWWp3BWlsYN3b7/X5PKUGM8z6Ur9JKEYmDORASEfvkGQG0ssb0frRd62yx3+//6sc/+s/+8T/5/u//7r/37/2PN5uNdHXK0kGeYJW9ZAon21V2YIyRQ9BaF0UpUssIpBQyJ0QR1uHD4VAXRnKpsT0aW/iQxLVWAhAhGFeOIREoMQ6SI0RHTYBGExDd3d29/qf/9Gbb/u4f/MHz58+lmPTeE4rp9lRBEREgae0ox1Nr9cXl+vRsUVb6T/7FH282dy9evP+db3/C0QBPAnASHGWx+TSp7cwAtOxhyNJCMc8J8tR6rQVbLMuycO6d73e72epvOc5DTPJyTbZUlr63LJiqqnofUkoUpo79MAxMUSCeeSEp/W64OcX4uEf3uCkiuVTKh26Mk4aprH9Rlw77vXOubiqp3OQHQhiZubAOAYgJgKzVEji6QycOLcystaGYlFJW6UApRSYiJlAajTFGmRBiGEb1yK1iCCMz13XdNOfL5Wq7ud0djvfXtwh6tVoRkU9xu98Mw5ASKMS2bb2PpraSht7d3bmiODk/nxVXY4yEUJgpELNik6Jvxxnrl8cy53bSFpKMYT5jJPmw2e5D2nfSPZqPOsw9W3o0/+W9T2EayQkhCE7ddUdJ+yBPWcLsk0A0jmMY/SzpI1FR5tFkOOijjz4ixGEYDKojH/fbbUrJlSUjIOr+8G6B2JhiBgcfHIfnFTtzfISdJJeq8vTW3MkPWWGKc499gmMEuYBpwPwd0cyam8PRPrla1Ovb159yu//kw/c/en61rKtj1/c+hkBoCw6g0MXQMrMPkRF8CFVdHm5eHw4H4wIBFMb0fR88KaUIoOu6Wk0JWYwxESeOMowcYxQ5IlSstUawEFJVutI4jSwCL8jJOcNd4hSmMp5JacvMDMjMfTc5RkJ2pU8zK4EJ6WH0Xms9tR9AaWvGMVzf3t/c3BFRvXSLZrE8He4PXddutSoKbRcnCzXuV6dn5xeX99v7fXv88vXNvufDYVwUuFitk+/9MPz4hz/6g2/9zXc/VaIYKTIhglIqpgQp6SzBJktxv9/LNG4OfbYoCp705VEQMYVKCd1ScbZcS4pBI1D0TVkd+nEY4ne/+33r1D//0z/+2S9/vD+oqra2lIK/lH3R9p1zTmktW1hciaRakx54XVZSEQn92ZjJzfx4POTLM1rr7Xartb66uqrLSoRf5cQJ45jZspUyE55bl1U/Di77CGGWvfPDmJGm5unzF4j4xRdfSIrsvd/tdjPTVsAszBKBTdPIlBUzF27apBLTpFBx1qY0UWYkJPZtr7LtuLwaOSvFAG1CwBF9926rwPV6fTt+6WzZte049k3TWGs5xcRMRMvlUoNLiff77WK1vL+/d84dd/tluRC+YVkW0XeJAqJCQK01Z0bwI+xzKkHnqILE4kA7tyhmqFQ9GNNN2/wxKq2UovzDlN0C8zfnQ+cRMTaEoDUeDgdxoJYII3CzLACllAy9KJyYFCrPMEI+YSUrM8ZoRGUtMx92+7daW2uzexvMAS3PVD3g45ybahOP99EIiPy4/Bklhco/L9NsEgry9zzA7vnRTg+NEBQ//s6//qt1Jps/etLTJ+YzegayEaexA3pkiP0o1Ig7CDFn+yN4rP8YIZdz86/hTAVSeW2YbNPHj5jg+Vc8LAwCxMlsYOpmSUXKmRIFAMzx/v72zZs3rpA9xTJaJzuraZqrq6ubmxsgFiZySqkoClNVXde9evVKqvR5/8o5KPWnUpNS5MnJyenpZIoreOLJSRFCsMpZa8XlXCl1dnbmnNvtN59++qos1eXlpZykQn2VwmwYuqZpmqbZ7Xa54ITZSG29XstES+bQTMPdkqTJIIWUSZIYAIB47t3f3xdFJWULZSrofr/f7/fe+9nP8Nc/fgxkSRgMEq+6MAh3XbaP/KX4bok47LNnz8QnECaRR3t5dn48dszT2zTGnJwsV6sTQSjW63ViGofw7GmRUur7w2KxEDezxWKBiCGMgm/KgQmgisKOYwghIOi6XjRNs1wuxzEMY3j65LkYo8n+dc6Jw5g04He7XUzDer3e7/daaxFQvr6+FnCEmQFIpuZlR6eUttvtbrfvezg9LU5OTq6uLrz3t7e3iChtKiFMTNNvw1C6ShbharWKMb569YqISmYsi6IoQogS2KUvRUS77V1ZlkJclQru6molq1fuAgBkoj8P4+/nftjp6akQliWei6jF69ev67KR6YoYY1mW63UhCUBKSazzZGOKM+083T+hCayIox+9IAIue9dL8YtZ1nm9Xq/X63EcnSvPzs5evXolJ5fYtUmZIDt3t2tlSUvRfnt7O47jYlk/f/6cmb339/f3Mfo3b7bM8Bu/8YFz7rPPPvPeF0V1cnIimU8IoSis/Ebpy8rkeFVVM6DZtm2MMAcB5xzAJEJqjDkcDgLpWmUPh7YoCtH+fvv59sWLS7m84/G4u9+dnp4KxCAN2pSSdKGGzkvtk1Kqq8rYQvRMJNNu21bMABNM6GcIQTbFJJmaa39Uk0ir0gCgnz59enNz0zSNc26z2aQQTk5OZJEAgDEur0yQ5RpCaIe+YBLgWASaVR7enYupGfmKcUqeZ8RZuqrH41Gep8z3hBBE/pUVUpiI3oLrycoExshE43TkSahBnBA6OZrj6K2zUn0IqjCxLqyVFYgTLU8LcMYZCJZ5EWliaa2FfblYLIZhAEaR5BbuWozToS+nhnyz3H4/jgAgW/LxkTEBwUoxT81mIeIIKJwB1skFTniU8gbnOdFZ1qzrOu/j3HPijNLO51dKxMyHw2Fqhl1dTrNr2glLnB/1ADg75RhjUKkUoyCJTFAVhew16foI3Cxn0263G8exdA4R5U4R0RaFLABtdMo8cZ8LKzkxibnrOqKktWacEEDidDweZY1JnbXdbqU9hpnyZYxJFOV+mUDNqmJKFdk3T5Yc0WSdJ+GXiHbDRuKAxBmVRU5iFqciSglY8FlBADHrPWJ2DJanNLeZBVoVyAvyKJUxZhwnVxU3OSKmGKO2riyKEMLgR8PGoYjjoTZojAnzDaZkrJVHilnxg3NHHPOMuGwf2YaLxQLyCB0+EtlTmQ8nj1RlLp33g1KlylZMgjXnxBXm5yZ5y8SuFaw5ccrePCn4u7u7yCSbuixLESdQSu33exGDkg8lGoZhuz+s1+vVajXv5ZSSYlWUdq7fIfu7xBjFYk2G+a6vr3e7drEoTZaLEUkfwcFSlv8FSjFLnAsldxxHY3gGEJhZ2udv376V1b7dbiXECpWYHnlKyxXKEVwUhSgB6qyiJt3Qsesh53hlWRJNKX3f91orCdFC2JfeQNM0oNCWBcYYsjdPjD7LSXViqCPxRBASUQCrq4W4MRtjRJNq3x/k/4YQ4pgcFSL2cDwey/3eqEKmOdlVZQgBEtHwYGbismYxUByHIcYYQMkjS2lUSmkEQOFehRBCIhK8b35MGo0yGhwopXwkH1JKjAa1tkrB45YFIxhnIwVE1BpDoMLY3BrSMUalFSqVoldaKQI0CACQWDrMOmu4zFCv1lopHWPUgIqhMDaEIMRl2UIiUyGzAzHGwkxJc4yTHL4xRt6fBH151rmb9bUEZ2ZNYIIXw9wixgiJrLLMbAsbo48cbTE1CRVE0JgokuFCq1KF+ze/Kvzx/n7DzDFZ5WwMIfCglInMETlwstaISDuQQ+A4hEAxpdR2o1Lm5c0d/OCHafT/+r/4Z7/9yR988OF7zqq27yKgcw5BA6BGZYumsBYRi8ISxRD8clUPfUopWYXWqqQSgErA0QMiaW2QYrOo33758kc/+HEYKZL1XWuMUaYIY0oK7w5HBJ3SGEJY1g0zI7BzriisMaYfw94lZ4PVzsZ4+NWv/tX19c9Pzr7/+7979ez5etkQqu1hr61BYiQGpYxyihWlhMBjHJnN1dXHi2Xzs5/9aNk8+zf/xtPlcml0CVYzY9+PCripatlsyFBqm1j4uRMrBwELY3lqSE6sE6XUmFlvCdgag4iff/klwB/++vu9OL8Yx5v0SMlXWoUpJUDWRmlSAOAKG1NwBlMidmocxhBCURTWlszsfUw0hkgzZf7XP85ZAhrDiBEVapqSAxK1BKmQ0QhJDWOcYmWkpJQaxp4JhKUoq3dMnoiS5FsMzlpkJh8BAJUlDraqMJ8ZaAwzReakyFpDKQHzjL/LoSIBqGxEEy04ZGttVWsN+PL1l5joyy9ejX2nnfIqtF1/OHYMtm0ZAVx10obUU1ppPfbH2829NkVxGMtT0/V4Ui/HGMduYA7UoNbaB4rRKxUqZXyKsyKe9x61QlCodFFWAALB6ZREUI+UUSpLViUmBCTgkCJElFSM4mSNODXJUMZFAwAgiylZsNYej/uYfW/lZNLalqVu2/7m5m5uNhLFWctCiBVTrYXknAvbUbnCe4/ERmmKUQEiYaTESNGHdy6DBAqVQaWTyKEoDYCAKUXSxvjkQavARJoTEjNZawAEt6Fh8FVVMwIjypklxA5jjFLovWdMwKFg5dO78eZrszjUT5+VZ6cEd7dvSn14/4y/9dG6KtKx6yDEMIwAEGAomsPJsh9vv2yKM+dVF31IEBg8gUlKsaaErC0Zw6gLbZDYBEiJA4dkDQCiMpBGi2iMhgkmExkTo60l1MkU0RTYLJOxwdqUEhYVKsMARVHO2YwxxlnTtccZNtLayoAOImttAFQMiRiZGAW7MyalpI1JUTPoEGykShnbYei7IwCoSEs0SP60KddFRMuf/NY3kuKRgGxVLs/e3L9ph7FsTl7vR230Ww8qjv/sX/zZs3c9VZ9iDQwpOWeIkjYPkBCwQlCgcLc/np2doFLANDMLYuL0iN4oACIBIWPhitFHYqWKIk3AkNHR19p0nfn+J39ocTnszI9+/BcMw+n58uJKRwBXqkVd90MLnJBgJPrVZ59ut1uK9PTp00RAKRHqk5OT29trVNpoPPqj0xaTtE5TU5Xf+MaH++2u6zos65Oz02PXV1XlA11eXDx58uRHP/pBWZb1YiEs+/3hGEJKjIvFyjq3PWwZDsCEyEhp6OibH31wcXpulD0/v2STjDEc0meffVYV5WqxGrph6AazMM64lJIqlLCTKNLp+jQELzBE4RwRjcNAzm3u75np5OREaom+7611SumUEiMnTsboYRyV1uS9SGYNg3fOtW1PMTnn8GvIzda6CssQgrW6rk+lZgiJOCZEJAbnlEE2o2mKml3Vtu3FyWXh3M3d9ZvrL09P18qx09aPlAKjzBswJWIAcQIpGAEUUgLMGQ7EBAycWKFioMdDWgIkS+t8LqoZIaQICq2yFEk8DGPWMdPWgQ9MZJSpXMmROJFClThy7s7KE57FxITSq7UFAJQGOJNWSisllOBIgYh4+u2IkxiRRgajDWo+7g93t9dwfl6vak4RABDAOdv3o0bFiZCnYQ9kxcwErBiYOQEhs8Ls0kMTvxmVUJJBgSZ4oBqJKBgiKgXT1VHkrO8PCEQEDEprQmAia5TksUoppZCIEyQFChGJGVCjktua6vkQewZGpRgSEakHXvYECgNAYiIiOVyin7zdkYEJiBM9EgDh7CY915MKQQhlM19G8s5IpAD01C1g5tx4SIAaFGhGVkZc3BUQE4GG7J4SEzOj1s7aERIBH7v21a9eVVV5fnnWjUNVun4cog/3/Z10cA+HQ1E5ZVykNKaxKZuLxeVms5lsl4gEtcwWVdXZ2YUw+8qibprmvffee/nl593QK6UWq2UIYbfbnDWFK63q8dgdbu5um6a5uLhQCr71rRfjONa1xHPvvRdoXutJWE/QihBCVVUIBSp2rqzrhSCwKaUnT55st9thGJghxpSSpKBmHEdRak55qEu+6uLiAhHLssLs515VlYhHM/MPf/jD5+Hid+AdoPP+sB/MYK21zgEiAzhbDGmIMRpU+8N+tV5Kf06aYc653o/STJWMse2PcbKDrqToZWZbuO1+J7IJq5N1N/TW6hDCanV+f2+EYyvvBQD6HmcyoCBT0pt0zoXgUwi3t+39/a1S6ux0PQ5d2x0FAj49PV0sa2Y+Xa/3+/3t7S0zr5cnp+tTrS0RaG2ZuWmWi0Vd17Ugofv9UfQH5I40GgV4eWkXixoRD4eDCDKs12tmtrZwrkQ8OOdKV1BkAh6HvizL7X53d3OPiFXV7PeHBanVapVCF31IKYGZJk2NUev15EwYY1wt1qLCOfTdKgtJO+dW68Xp6ckwDNrBsl6q/Gnb9nDcW3c2+n6xrAvnxmHIXAf/4tnz588upW/x81/+wmrTt91yuWSEvu+Px+Pp6eliUW82m5SSUsb7yYv76dPnMcYswALF5MkWxYdNiCZS8qQxxMH/we/97i9/+ctf/eqLejHNyfnkK1c9eXKpNZal2+/3IQQgbhZVWTlZmSK7sVgsQkiXl+u+7zeb3dOnTxOwdnaxXlhro/dt2zrniCbpPHkLh8Phzevxgw8daEXMxPTk+bPLp8TBI2JV1wI6yJrEUy3saUikFLz//gvRRP7kk2+34x6YhDvcH1vvh7u7m6ZptNZE8eRk1bbt559/qrU2CBoYXRFjaqraKlG080Vhtca+7wVDWSwWGtlo1Gh2x77vBwEKxK5Qay090+vra63bq6sr76NzpffR2mK1Oom+E+mPtm2NMaIJBgDzhH4I4XA4HBElIo1ZaJWIqqqa/fSaptGApZ0c7Tjx6WrtvQetmqbe7/diSq+dTsBFXYVjUtZEpsIUZVlKkg8AY4hKqcSQgJmRaJqZRsSTkxMRdYV5ntjopqzW6/V2u+WYsHDD0DNjUTRaT4zvm5v9ixdXc/f9cSdykgMyehh659xisVws6t1up8CAmrDXkDUuBO0ah3zcAGutiWOiAEibzbYotEnApK1zOZkUqyqdkh7Hse+Ds1YpRSlMBLuUtEJEJcBrzK5Xs5isUqoorFztGAMRGYSiqJuqliIrhNB1nWQyRVEwJEACpBhiXdcUE+kJahdeed/3EutijEOkFCdaaDt0dVHOPsrRB1BYluVxvwciiCmwuIMTIhpngcjIpGBKpZ149DC77yKjRlERnfFQjomBOdLU3AUonTt6j8yUO1VNVbVtO/a9K0uFREwxhZSSMqap6xBCGEdBgTnb9KWUqrI0yvTHjolsVYLQk0ERkzZWo4oxyMFNRGgVMqcwJmSrcSCKMSnUAHB+fj72/V+jog/DgEYpbcuqsM6E/QiQtDMpJTRaZMO01jGmoihFq7N0zhkj5IOQgvTqtDYFYsrr3FoLjEM/EpNSSti+wt9iIBnnMqhTSGMYiqJQAEppzJIXEwNP68I8iEJ47xVPugV1XQ+DAlAgrh/ZPpFI5FvdOI7SHpvhO1F4F2OAEILTJvpRdiuMo8wIjuNYGBtjBErD0Hs/nJ+fK6X2+2NRFIlBltbxeAzRM7M2imPSCpMPBlVRNz5FRBR0taqqrjsKV0bWvLV6HENZ1lpbgEmuVuAgjsn3g3WaQdV1qfWy6zqtjCltipRi6pN3BYeQCqP7oU0pVbU0xjiFIPrjKSUAJXxowefLstQamVNdl2PfpsSRWZjXKQVjVFk6xZBSAgaiOI5jWdey9WxRPV8u9vt933ZEpBi01oWxisFZK04Ji6qmEBWAMe547LTWxrinT89CCJPJKiCjctooq0IIVSGUf2ecizECknOF2L0pQK1QS8OJSWs9ZULSABEKmET/uSCRHSIyF8YY8cPlTBiEzLZQWfuPiIxBWQHMrJE4TPn04L1SyhnDnIwzUvZM2bmaWDYhK4NQZtrP4xWIOMYgEPtMoNZglVIyOC8/j498S/DRRAlNznhqvrWUNR+llz43l5Saeg4hBGYSFro8opClEqTSfmcJSl91CQMksQGEyaougVZE1Pc9EWnQ0jYMoR+OQ8f0q1/96ti1ADAEn5hCSAygtfbjCACBEgCkQJHZahMo+X6yM2JmpUy9WC3rBSqd6Hh7d/eXf/mX3/mNj5U1IvgIrIw1AOicUQxKGel+ee9TCGFArQut0WojFGOttVYIHAHAuYJNWi+W/88/+Rdd11H0FKOtqu12u9sf26FPBMdjJ8Faa7PbbbXWnJIMcPmxb5pGW1wtltaYwljnClO4xPRnf/bnt/t/XDSLf/9/9D9crFddP8gDV0pNUsUo9llqGIYf/vCHIYzeTyrhwzD4kRCMaIun4Ac/OekpfoBxhWSKuXc9jynlVQGYJnWqECYzCuu+TlIZ5w4EZxVFWTxGWTDT9C7nUWLIzqSYlbn0I1sVZv661kUikq4REWk19bjUNMGkxYOVHrnbCxiq0iRjLwP7nP1Vp06sViGGoZtsc1Oi2S7GGBND8OOotVaiOomoikLowzIdMw/FSHtWtpXU0kqmIkLc3N/fvHq1v9/Uzg2D//DDD1PkEJK2ZnO79d4bCz5MUjm6KH0/Eitk/OLVl7t+XJ5euKrZ7HdFWSPi8Xh0zlmlrZom4oXaIGwURNRotFISx5h5v983TdMs6qmTrA0zCwVSXrcsLbGhnxrIMUmcGcdRaJ7SSEhBfMxpBjGlypXoFyMNwyDNjLmbrZRR6sFZRUg3NosPAADFqJQa+m5IVDrHiOM42rIg+Ho1jYf3i86ZwBDCNHUoUwWcB5l11gGQ1S57NqQHD194GJ9nqeETBWCCr+M2A8TkndVXZyf99vru+tXzunz+7Kk07X3vQyKNBpCMsst6+WXc27LQzr25u9l2x9vd3RnRSNgYmwZIKQ3jqBIJ4m8YmRNMkySCsCAQx5hAKTtd56TbxSRIGs2ITMwK2lN2iICZGKiyk8n89EBNezal+CD9mmUE5hNNW+tHQsT1eo3a+Zi2Xdf32xjQGkUJLk7Onj45HQ535xcXq8Vyt9vtdruri6tvf+e3v/u9/peffvHZF591XUcchS/zk7/6yTP4zV9/qkopn6LJliDGGMRJ8ogBtTWI+Pz5c5lFyAN0AQBSJmXrLFCe8rx8ytMS6ZF/5mp5klI6OTkbx/C97/9Ws6he/OmT//KP/9EwDFX5PIS+6w62UJpNisxEqKEfRo3KOD2Og5iJM6fb20EpBUDa4GKxQATv/en65P3V0g+DZCp93/uY+r5PKb5580ZYPFrjcrncb7ZCyfn80y+apiyKcrPZkRe1LvVv/q2/9d/5g989OV29evXqi88+X1SLrhteffn6xz/+4bbdLhYLQaw2u60x9uLigpnv7+9lnQtAI0nk4XAYhl4aQm3bSd0isx2Hw14i2BxyU0pVVc2bWhSNMsvg5ng8Cq+8Liv9yCbur31ub2/UEyUIiIBTc+tR0owuTiMX3vvVyXq5XLb7gxAMf/KTnyjQH3/8nZQeKFE4CSY8zLeCEtWmB6GVGZ2cikSlaMZPs9EcP3LsibNZcVZ7IJq+QQxLjTEhefmDtZYVATIkkZSbxmvyEZbiI63neTFPbQ8Z3mI24neffx0/4gMLDE1E9/f33dC/b96z1mplAwXvfemKruskj+NJjYJBIiMDE2ulYZIFemAf87ylM3Q7h7vpNh/9p3njz0enPGdRjk5yKj1SXxGLC5U5RJJ/ztAGMzPjTLJm/sofpjf0yE8b1VfUEufYPu/iuaBSk/mEUQ+M9UlJRB7s4x41Z01DqyeS/uMVO/2KTHB2bjLJYYARhv1+X5bu6upqGPoYY9NU3nuZlBeC5HK5FE4rIvbjUFXVdruVo229Xs8yoMzcNM1ms1Fq8kqKMWKJ4zi+ev1S2q4yD26MevbsWYxRmNTe+8vL881m88tf/lzUD2ZzMJGgnecUmVk4gIgo6dx6fV65Sugzd3e3VVUul0uRaIjRxxjFsVD4mHVdv379Zdd1JycncqnigQMAXTc0TfPy5UtpNks3XSIPEdW76p3bf7lc3tFxHEcZ9ej7foxBmGWldU3ThOjbw1EBVkVpnE0pjV2vrEkhDMOgjdlutxLHvB+Ox+N8ghujAJzII4i3tjFmt9sNw3BycoJZyQ2zwMI0Qs4sT1jAWYknxihrC1khdV2LzmmIY1m5rut2u50ARnJ2yMRxU9WiXtp1HVG8vr6eF7MxBoAXi8WUOxEtFgtGMMbd3d3s9/tx5Pfff4KIzpUhhLdv30qtLmiafK3MeVRNLUr34zjudqOM6xJRWbpj18otD70PIRgzQQyDHw+Hg1Rku92urKqyqqTPIWyAPHNznItEAb5FQO/q6gkAbLfbw6EDgLIsp1EerUQsdSobc7Pniy+++OST33jy5MlPf/pTYZjKobZcNuMYAEB45RcXF23bCuwrIz77/fbq6goAOHBVVTc3N2VZnp+vReVjvV4TQtd1b4+tUmq/37dtu1wuNaoxxPPzc3HJkwgjrIjlcmmt3u/32+390HanF+dy4G7v7iGDrRKjbm9vZdD7m9+qlssl4URzk8q6HyYti3mRt2176FqRWPGjlx6GIKo///nP5aht6oUQXATQ9N43zVLqF+GumixJHEOQ9uTo+6urK6XUp59+KhWuMUa0m2eROgBwbkKjpFTp+977eH5+vlqt3ry5r6pDWZbyZqVKBaKbmxvhgUmfRv4csnwwIrYtrddl2/ZN04QwEoH3XmR5q6oSXBsSsVKSG8jwpUiHt20r1P6Tk5OZcieH+9XVlST2wjJWeapVuCb7/X4cg7DTBI7Pldok8isHByKKdvb8xOZTnIiKoihLL56WnAcZKRvF62kSHyRXhGzA4733Y5i11+WrJppR9sgVMJoJYfI2N85ZrXXKY9yPq9qmmUTbi6IwWstcmsqy17LLJiEyW8z0T2GXS/xp25bFw5bJe6+raeoXRbIVERHnifMYY9d2Mcb1ciUGt7Mkvdzm8XiUvTxXsjqrJkoAMcb4GPq+Q1REVNYVMoxjkP/EkGLkMQStNQCPcaJqzamC1IMyFjD/jVg+ysbBydxyOuO01jK6J3xbqRxnypE87XEcdXZ0lDHomaH1WO1T7sIgArHOOtrW2kiTLV4SCTUAWXWmsMwMDN77434vXysSw7ISUkqILIAYIg5d75wzZnKq14CSSc60cSkhxRAFEUvnYgjKmJRFSITADgDy5TGF+Z/LWJKstxgSqumRChYvLfCY57ONMSJumbKtVEqpHTpWk0qJAB1EJEXqnLcIu0tSI6WUjEg2TeO9n1WqtdYUYt/3ypq5CIpx+id1XR/7o4SauVk7DIPR04ikzuaNsiXL7HhEWTRZqgxJsMWUlRm1tkJ7lzVgrU3pIVsmBKVUimwKLQm8vCAhqosAfYyxKCzHJFMgw0RJrJ49e4aIg5dFMk1I13WdkghpZjcpxJQmKMBmK3Wr9TyfPY5jvVgQkWxhuf4nT55IphFHj1n0NVMhrZwj4zjaYhJwl+1sjJFkLwyTO0XXdbI2mqZBbadJIGBr7TiOrNkYSwNphdbaBFwUhem6TkLkvK8KY/PcfZBJc621dU62ekiE/JU5QaUmWlZZlnJOP2Z3G2VnYZ3EHJNnRpclzDgLGTM8cMUzcDPZicq6lOy2MFaUiVTWJFJazcW2rGnZ1ToLIeUVDHJhzFJLTEskZLH8uq5lP88XANn3oyjMfKky0ZAlGt6ZgoLK3Ru5o8IY+XutdaAAWrmsDcLMYnuiFJZWAcEvf/FzadckYNQqxTSKrR+zyEqmxEoppVWMdOz64/4QY1QKiqIw1mlrlLa743EcQgIEbf74j//429/+9m/99m/VZdX2nXAfnCsQERIQTbi81lrQW4V2HkSdS6xcZbknT57s7u6++OKLuq6Hjm7u7rddd/32lhAQMREIdg/TDC+VhaucjTH60IGCfuyGTbff7hTislrstvtj2x+H8erJs9Vq9V/9iz/dHw5/53/zH6zX694HxRxjnIAxhBijtYVMBKQUqqpExUSUIlurnS2JYByDMpN6gJqdi3A6YgUV5UejqRKt5OVqQMgLSRqGz5+8ePcLzoU9ZFh5flbTVymDkHU2s3wKZE2YnENMp0v6es9JkSyS/E9lWX1OpLWy1iTnKERTyIjNBGcjogoqpSRpN8I0SS33JVtpbguJwaCoJ8/BXeLOjCMrraX/NO8jled95K7NJFc9gQ7/7E/+FRA7hSnxdn/49je//Vu/9cn+sN2/ehWIQ2KfSDurjB59YKMiY7M8rVfd3f0mEpQxHdveHvajj9pEpRSl5BMlPZU6jKRYNImwqqrEFGMETnM9n1I6HA7D2DOztTqEqbUglwcAIpOnstwzTmJBGgfh5aV5OMjJPATy/ADx0fjS9K+YdLaFnJvMxmidhbTkpTAzstLK8tSM0QzTJak8Iv11i21ChUkkegHUhG7IIS1vbRgGCjFGOhwOz549kyOQstjrnDDh9HmYKCciZETU0vB71y+nwkJV8M3NlyWEb374wbe/+S1nbH/Yj+MYGRB0CIGANKrFYrE5pru7683Yt8lzaRPVm344Wa5B2Qz1Ykg+pAQIkUlE7hHRoDLKCJtW5fNe7F4BIEHSWoc4AsB6vXZGz+9RZzctANF+n8pglae9mFkByiwYMjIqAKWV0toqpTQqgKn5J7AMoLbWliWDDw3yqlkZU8RA1haa49h3MfoXT78ZY9xsNpLY9X3vnFk29dnZGSIi0PG4T0z9Zvj/8FYZktZaZquFMTolZ1oxc13Xu91Iwh6FSQ6IaJJHmLfh3FLCPPUPj9wOAJSc1WPfFdZ877c+efrk/Hd+97v//J//s93+rj2Mh/7gnCZIVV3sdrfnV2fOWs0iS6qIyFoVozfOaqOEX5A4WG3WZ+snz542ZbPdbj/99JfGGFBorZZESoLhbrf54ovPlsulOG+3u8P/4N/97/7tv/3vfvTRN9+8fXt7e+ec++3f/v53PvnNuiw3+7vdfv9Hf/RHf/fv/t0QkvTVJWQJ92ocR5FEkMQUs/D63d1dfORyLk/DWieNQyJar9eSa841VUokAATOQjqP5Lzee+850TSjLb83+He3HhVqH8fheEhhKrmlMpSt1zSNYpWAVaJj1y5o+fLV66as6qp6/fq11W5RL8/PL09XZ0w6Dr6qqrEXT4Up1MQYlRHbRp/SJJIwpxby55zY8FwuyoCXfuTZMDNrhKirILfhQxzHkXPqJdk8JxIvDUQMYTqbiGg26sBH0thz4Joji5IukSb9IHBMgFoBEomADAPA4Ecfw3a7vbp8CuJObgrvfVmWwvRnFkH7r9wvzzpFGqeqmx90qn89ivKvna3iScj5M52PwMByXnNuyOUv1FOUnicfAUAxcEwUIiQAptnkUIDx/M8zIEwMxJwSM4s/IU9X/NeEp6c7nQ9fZq6MlsUwhzgUoDnnt/KA4RGwjihCRJPZEQAIQ19ZxTEJX0FrLTp1/dDGGFer1Xc++Y3Xb1/d3NyIWM3qZC0Hh8imHw6HlFgyYSmedRYHCyGcnJzc3NzMabm0fgGgrutEoe0O293kpJRS8H5MSUlHX6jK5+fnH3/88W63+/zzz6WRSZmxEUIQ0pDWWkK0zLFmQUMCgAzfqJOTNQCEEL744rPVaiWYtehIhjBKMi9dwO12e3JyIqDJZrMTuFzKsxmlnRVm67o2dvHO7V/XtQ768vJyHEfhw4o8ndaa4mTvabJEox9G2ZiF1r4fhq6j7OEhPWljLGRLNyFpDkPXdUc56E9OTuS/So4tqotSCQu0JM9f/BXLsjwej6vVyhn7+vVrpbr1+jSJ2iFwWZYffPDBbrdDxLOzs3EcV6vVarXq+xaAmBMzh1Hgnigokkj5r9frsiy77iivnog0Tk5AWuumWfb9eHq6AFDD4MVWes6+YkxlWYtZZdu2WtuiMP3olTJKKedI9JplgUkolvnlrutipHEMzhlx50atDseDKwp5X0opQbtk1Uljo+/71Wq1XC63263op9V1LeTrYRiKwjx79uzj73z7n/6X/8XgR1GalqJVZOwFhazr+osvvhC1B5F9uLq6Msa8fv36eOyWy+XV1VWM8c2bNxK4ZN2u1+vNJoqSZPJBW/WDH3zunPnu9793e3srqPQYQ/JB1ud6vf7Wt7613+4QMVLa7TZlWQrVtK5L6UCEMPZ9LIpiHMcnT57s9/vucJRXcHl5KeG9LMsnT56sVqvr62sBWbz3x7Z9jIsB4pjRLvnmcRzbdijLo4jjLZdLAViFa1xXzdCPNLX5WRzt+n5cr09DSDFGrVFGgeXQ/+yzN8+enWuttUN5O1Mf2nuZGJjbOT5FQYoBQKR+paUki60oiqdPz0zWeN3tdsfjcRiG9bLCLPYqB19KfDx2gsOK5udHHz2bqxtlDCI/ffrUGLPdblerVVVV3eEoeGXf99PFeD8M3ayDZ3OFrrI5mFggyh1JcJZ+hvyM5BJlORUCopdyenoq8tw6K1XqRx5lMo0hbGshawNAURRN04iGjyTwwr5MWX/Ze69g8grb7Q5aayIoiqJqanmVwg94OOweFWsppRjJFUbQOgAQa0NJEqSVIqeY/HkqmhDl7TCztAoEIRWtA1RTL1DALJXFB7TWTmtrLSKP49h1gwQKWYeQD7JZxje6IBGYYBJkkAt2AN77+/vtarUQ0Wdm7oeOIiTg0phIPI4jqEmnGLN1gTM2d92YIhdVlcaRiKwzzjmkqQEg9fU4jiFMQDDnPr0xuq7r7d1GQp+8a1nqEvkBQDSUtNbaWllR8+3PD39GG+T2Z9EGeYaUmyiISDFJT0gQ1WEY8kDWBO8CgPfeaKu1TiFIo3d+v/JLnXOodVWXAmqLvINsFqWUJDla69ldQB4pZoNHV5aU7cHgqybVck6NIyaKAp5orY22SqlAweqJEiq/Trw3rZ1AT6213FSMaUYbJnJDTsNi1l4LIRDJyLivqlKih6xAm71bY9Yylo222Wy89vhoMQPAGILUmKHvUkqXl5dE9Pr1G2Pc6elp3/cxJEaQ1L0oyiRGsgCcIU2lFGQciYhub2+tlTkzJSIwshjkSgS4LwqL2V5LWQOJAKDrBonPKZLkIScnJ8Zq770xamg7wSHX69PdbpNSevXqFSJWzbIsS62nfp68EelMC0hoFMQ0PTHIQ+cKQFybmqbRBscQJLDI7lAMMn40F86y/iXCCLdvhgQx0zLkAqSb0nOvsiOL1B3t0Cs1amXLshz7QXoJASYUBVLsug60YuaJlTzX55D14+aCdsbRCAEUGjQgpi48EeUEMZ4z8pQmQRb5hrIqMEOrYwwhstw2gKz8aZWLANzDT47jXDCHbFAm27gwFgAoxLHrEZGrqR81hwPpN8rRBZn3ISms1lpEPOatO3dZdfbfZOYYw1xdzP/We681LhYLn2LY94hfr3Yao54q/4lExMyRiWia1JgLAyISMxmNGEf/ox/+4LjddPt9onQce6XU6D0REXCMpJQBQE4pJQqDF5FyY4wrKu/9EIjGTmtT1qC1JaWBUWm72+z/5b/8s08++cQYa60ty1J8b5CYGDiRVEBG64m3DhMAaswEnhKRAujbti6q4P0//If/8Hg8rhb121evt9vtq82hKMrCGHzUo744P13WzWrZnK6XnIgoee/v7m+GYYg+iLvU3XazPexvN9vm1cvl6hd/42/+rW9++NGf/MmfMOL/+n/7vzPOdl1HjFa4XSwobZBKVUB/yHsmxphi71xprRWVGcyPXU766WBQyArHGAY/OucMqkDJ6clksygKK3wcg7LA5qPlr31ESH4+ziED1pQ7KPPfW+NiCrKSER50/eER9MzMqN+9krRSc3iFjJgnleaafz4n6JG4jyTWcniHMD1tARfka2cmrHyh1mYuFOU/yeOaUkxmybSGENSj6MOZu20ml1LphaTgabO5O12uQsLV8vT5Bx/6QK/e3h67UVsNqIkBiEOi0LVj30Plrq6ulsfhenNImO73h/v9/vzJk0DDvj0qpQxORbVWCnHSviQirZVzLjGFEBAmbwFJshGRW7LWphRSmkg98gTmcAe5Vp//F7Ollcrui8aY/X4PQKIWh5mcjohKGYmNMaQ5fqYHw9yIABK45+6uXDaleXlMLz1RSJ4ZIab47vUmrXiK6RHoL/HHOCtjdNEHROQsDCLX47PifA41MyQxJRNKKVCsQCPqr1N0qaqiqhWMh83rz2uM3/7go5PlIkmjIhGwSkDMoFEZ4MKZ7eHN9cHbxUl0CqI7PX0xHjdDAk3KokZEAhUoZYc75hxIERUyEIIM0WTQR81LPYTAkJRSTdP4oZ9BgZn7Bo8allL80CMOiDRgOMXEhKitcTKlDgATnDEOw+ADpUQcmZVG50xCsLZA0H2700zE1LW7ZW2bprm/3+63e2Ic/PXN7c6WSyJUSh0OB+ZEJIpLX+sCWpYupYRa86QKN1URKrMkhqGbR3OYp0zUStEIYLQGnkwGEICJYra20FqnGIP3WusYSLAPY6fhA+fM7/727zx78vRP/+s//cu//G/ubrelKULqj7shDBB7uFifOuf2++3Y98YZP/qzsxNGaCc/K6MMDr4v66Ltj/2+CylqZ2NKrLDrequsMQYSJUyym+5vb1aL5bKqHcD/5N//7//hH/7h7e3dx3/wO5RgebIuimIc+27oXv7q0//0P/t//Z//b/9XVOrs7OTYd82iCl4E9SjTP0k6jlIySb9Q2HPSwHeuyrRTkJpQFo8EsTm1KMtKqM3jOEUDrZQUh9vt9uzsTOvJMDbG6MMQU/nuEG20yHEyM2qF2YxeHlSMURQnjLPGG++9K4v3P/rQACqGzWbTDX2MEbVWCpRSwzBIIpR7i5QoKFKmMCEENfWZWGzzJLURNHVuM0A2KpFcUAoqhKnaiTFqVFobpRRqpbXmRIioHqVeChCMkokDpRTz5CMtzslz/JwTPBDf0SzcMcc6/HW6McjEMTMTamW1DTH+/Oc/Dz4tl8vz8/OhE3KDnY09gBkQmBMhgALOidTUSUJQGoEeErEMLivEh6EfeKTXrAABQQGmr/KRGfJ5+msYulFT78Sgyj0tIKb5oCciefqBgHObecasxVlW7lop9YiU/BUcfC665kudYvgwKqOZWSbk5m9+3Eub71EBphQQWSklOiET/zoRERVFITJ0RMRIwEoAl/1+/+bmrbJT7dGNnRBpEbFt+6oqOM8zVVUj4wvGOOcmf04iePXqjWxPpeDy8on3A8AkKdB1gzy9GL3YZKlJTD+07eHk5OTjj79ZVdWnn34q2enhcJCoLslS13VVVSDi7D8hiE9Zlqen533fh9EjgnFWfkvbTqrEMzAkfvSQRcmVMr/xG58QiVF7Wq9reQIxRhnRkPJbbm29XrftQdRd37n9U4rPnj07PT396U9/GkTjfrmQ35WkzHNW4lV7OApjRlIsIqZIwrhUj4Q+D4fDdrsV+zsJUJ9//ub0tJGZif1+DwDb7RYRZ2X8IhvxCTczZZmLlNJ2u102i8l9Xk+8NmIS/LSqqvv7+/Pzc++H43HvnLF2BcRCtnXOLdcrIfPWdX1/fy/VtdCoy9JZYwrnFJrj8YhaifOYsDLHcfTeb8WawrmU0na7jz5cXFykBBIhKWsgLJerxWJRFMXd3Z3gwoi4XCyFOCxLQviYApuenZ31fb/dHp4+vbTWStdZauZxHBeLhbDP2ra9vd1tNruisDHSe+9dnZ1e3Fxf393tncOnT5+enp5+9tlnPgbn3Gq1evv2raQB69MTkdMty1LKjdevXzvnytK9efO267rFYrHb7V592Wuz/83fxMcQZEqpaZqnT59WVXF/fz8MgzOTh9s4jvf398LJFSkG0cqQs0nOGklaJJ+ZSQ+iKXw8Hk9OVsfjwRhzdfWkbQ8AUFWFc6XOUxd3d3eHw0GijcBJCVjAUMGwfDZnMtmedyoWKO33+7ootdZVZosPg2+apbD75RsoRK3t6empIL/z3ys1hawYo7Ug0NLnv/qUma+urjjPehdF0fd9yia0OOlcW7lC2XfzaZ5SODs7E4xY6spxjKtVI1OtUrIxc0pMNIHdPlvBi7RuSOl4PIrGkfyu09NTjikMUwCR5yDw32KxEPUe8QulTA+SM1R21m63E2xasKqu68TtdhzH5XJZFMVms5OzUpaE9BvmClFO2MOhk6WyXp9KlSFZhzCEVCYqdl1XluVy2YjFus5ZojSWrDay4OW9K6MpUt+PzjmAaf5mYrrAhHRL4zDGuICFKybYx/uolZ0zZ4FiKPttYO5bC8FZGgaZXURKqUQQx14Cjs4mMUKSFakBpdQ4SiGZQIMcQ4zgXMHMbd/L4ZVSEoHWqqrafsLfBbXM2rvKey8DBItlo7UWj2iDCjillOKQBP/1frTWdV2XikL+eb1oJLxPqJQSgcQomZJwMwHg5GShs42bvKw5iZLJD860bsxiDnKzUllwnk+acTOTG2byfJh5t9sJM/oxP0D6hQBgtfYxpBittcroxWIRQkiiahtluNyh+KkoRVnJc67i5aHJohWREDtJOUt5K7lTCkQC3Ek1Ide22+0ktstdPGauSP8As9y5IImGjTFmGHvvPWmWrWcyLDunfEQ0DGOMQZ6V/EbMYHfXtfVysVgsxM503v6YaRYmGyNJL3aOaXOokUAhnQmpmLQzkJJk+Ao1UTLGCOQtCyClVNeV1rptW2B0zkVKSeHslC0LMsYIxiAAA2sxGE+Jszq2SEyoR1bbEtB2u6OwYUII67WW9WNtIWPcspsEn2TgfuhqVacUvE8aEQFvb2+vrq4Wi1XbtimR94B6UEohTr0cykztlIK8KasdQJQGv1SFTVVprRG0dKqqZulSkHNN2mauMLL2DodDXddVUcgzb5rm7u7u9vbw4sWFkJFjjM65Q3vkNE2RUm7FQcajUkqsMIxBgqQ0P+YpnxijQ6dEvIESC9w841BS7kqLQN63RAEhcOV9OO1Jm2nFgDQjvLlEmfae7CXZn2MMcryVdZ18YGaYxxZCQK0kRGqtRfBIhMzkDJ5OOyKbrTzkeuQYm/ebPPT5qJBbkyWSkTXh+NCMREikkASxyPLzANMC0pnbK+AdaKV9kPFS6T+/88NMxihrJ9cU6e0oo4VKbDLZWc77qqnjEJwrfvAXPz5sthSCtbbrjqIEBwpRK8UI4Mfgg08aTdu2zICoXFGnlELkCEqDVs4Zaw+9b9tNjJQiMXM/0D/5R//4D//wD773O7/d1IqBBu+VzDkgKiFATbw5DCEYIy9WvB9D8oFRIaLYwZlpAIRvb+5fvX3T7o9l2ZSlKEbpRdNcXV2tF83Qt+89ffL+ey/ee/YcmY7tHgDatn358vPe4+eff/7y5cv16YlSquu6cRxvfvnLV2+v3//gg8K5f/AP/sEHH33z3/7b/z1ADcCJ2WiTUgKtWAl5SINSxNEqrbVmq4mAkkBs0/QNZKbbVNsAy0hszONLMwjImUMhkRQADCpjXVJ6/qpf/0jGMO+d+avmg4oyCWvS8WE2GuaNJjiayhTOtm3e+VuMsSK3n7IhntyRyrPGcg2ST8wo6hwEVbaplX9rtE4paWNkPE32OxGJp/l8bZwdWmX/Qh5mISKTzXNlGbhsZ0G5E+i9/+S73/+Lf/2v237ExGcXT5Qu7nb77f5waNurqyvWFowlgD5Eo9S+620XzbbbD35MNPqoAnXjcLfdya7RGpEmMCgpodShwLjej/04SFKV0mQLq3IvxxirtfZ+kFGUuWME2fdgAs6UEqBKjmeTx3BwBvFxCh2SfsGjTq/kQ3PAyVX0xCyw2qQ0LS1pDBJR34+keZKkT2Qz1qlQp9wweEc8AbJak+iKyasBrayBlI0xfUiJtDaCvfZ9X9fNOPqQksk+tvPi/Kq5FmpUiDg5z73rY51uShMO92o8PlnULy6vyIcxH/whBCYwxkRKVquu3bf+kCpjT9RZfVnUFe94HI8HH9agqqpQyvQiW2QQACMksYZJjEAMQImTs4XNemdKsQz+a62jH4qiKKxzzm0293KIigPVvDtm8OXhXGMERKW10RYAAMFq45xztpCNJC8RgEqsU2IxGCACAlJKWYQ49DEloziE9vrN62VT/ua3PwHivu0KV0VKiYABtMLT0xPlCmbe77cAQABf10lSepo6hNz2AHgweEkpKAVdNwqvRCtFhMYwAMhpyJm9HrJKOOVpA/lIgGJmpZxSmNvjAlfVWtuTk7Pv/9bvOVuFQDc310XVhDhwGA93/cIN67XFaJyqIcXD/aFpGm2V0RoQxeMOEEOMr16/bXSZmJRSgFgYQ8wGEBmM1TEkZl4ul87oNIbO76wxrz/76evL06Ioxj03zTIdd+1RFVVNgH/09/6T//jv/SfamtX6hIirpmYEqS1l0xljlNK2cHJqyHOYJ6XytOYU1lKi5XIp5UpKKcYkXyVLS7Zz3hGgtTHGSEFycnLSdV3XdXW9KF0Rk9daG22+5j2qtj3oTDVVSmmldR5nCyEoNIIaX1xeFkVRFMWXX375/vMXH3zwwZdfvPzpT3+6Xp6cnV5aa9IhaIQoZBkdpU/GzIBTO3xObeGrQ2DyruUa5vg8Nx601sDzYlCyzJTSClDKP0S01ow4wCz6pGAOdNYWiMKsSXNxOJ8yMI1eTFc4Q6WQAdz80TEGzqQJ+SJA5b2/22w2u92/8W/8Te+9cTaFKCV9yGpXjPDIyHDSJaM81aFRqTxlPIc1uTqABA8NNhARZ8JJqgJwylSnJ6Onc1y6gPwVE8WHkds50Z1zXcraFwDKKAJ4uG0ZCPU+pTz1klJCpBmJnuPV/P0PTy8frN57QwYZJCnF2e4v/0OlkFkBMRMnJplIYGaC6fQBAIpJ8IKJkQccfCCAGGPf929v3263m/v7O1uYEMd6sUDE0fsQkjFmvT7t+14UckMIV0+f3N7epuxyI1uGs2ydVO9EpUAbQnMOgZ0z1lYig6AUVFXlvRbdWGHMHY/7/GBJBP3mtyDZmjj7CS7pvT8eu75/VVXVslnI+g9hVDj55apH9ph3d3eUh3mZ+ezsgpklE5AmtHNut9vJP5Sx4ouLi2GQemeyy4Pju4/m7Xa7VcPxeBR8ROZEBUE205C1TylFHwRoQMTD4egH75x7/8V7RVHcbe4FDY8h3LXXfTdy7jHIYnMORLlCAq9oLLRtKwoAMUaROsEsISgQWIyxLB3iZHknFDPnnFLQdb3YUVhrF4t6v9+KyInkRVorpVTXJWt5vVxFSvf396vVSqp9Qbuaqg6jr6qKOWkNfT8mjs65zWZTFIXgy/IoJne4xCmlFOJmsykqJ1ibJA9hjIhHkckWFtvJyUmMXnBzpZRx7unTp/J7tdbWFt77+/vbojBt21ZVNc3dw6QiotD4MRauWi7WTK+HYVg0q7oirWzbHUIYl0snpMth6O7v74UxvVjUh0PpvVfGMnNR2JOTE2PMOPZaa8HuYwjLRTXPq73/warrui++eHl1dSlccgCIMYo4yfG43+8PJyfri7Nz0SzWdrKrmqtaIUIKnnvcH4SeWdd1WZa3t7dN0xDF43E/jqPMPhszpTSS9lhr37x507YH5iTsbEQ+HvcAUJZl01Q+BWvtycnZYlFrrQEYgJxz8upl0Qqc9PTyStwsEfHNm+umaaqqWS6Xr1+/Pjk/kVNGa101KzklRRNDDgtRd8lnRzg7Oy2MFfrw3MIR3jciSqomiOpuc09E1oD0BlK2cZaKqSxL50xZlptNOhx2q9Xq6qpBRE7TVHtZ1nP8lJC43W4H7/veG3cnSMLUaNcmDKPWuh89M8sMuEAH1trVagUAIQTnDDOrzGCQfy43LrxFIqrr+vz8XGJpCGG73co6l9AxdwtEBwZyrdH3/Qw4Dq1/8eKJzC5InsDMiBOmprUWg8HlssEsCifKMHIlssg5A3OC7IhgfUppHEdjHkKfMQbyJLrcrMyKUTLME2lpHEfZ+yEEGeeawVB5sETks5IAZmlTuQaGaYprPhYF1xNYFh4xF2fgnmNMMXrvtbUAsFqtZIKEma02WuuqKgWpn9FJlfsHXdfFFIzVsvaYmRBSiMpMzXKf4hhETQIFHRK2eAjBOGetPbRHedcqH7KyGJRSAv7MJ7W1VlkzI+ly0s3kD9kR0nERwaXj8djnGGWMKcVnJcaYh6qVUuPoZw64bPa+74VeIKeJrB9R0kspaWuT90TEeST68bmmMryrsliwAP0hBNTa772xkhAm50oR80UUXQGWe5nPwWHwAHBycjKGMKMKcorJXpC/1FmxQAJg4UpJMIgIiDBrMsjZJ+R3771S03KKMRJJmYPWmhC8JPCUVW0lP5eUXspYMRSdgIg8u8wZy5bKXWt9dnYmgVQ2mtTaQruO2caZsjavDM+llIBxGAZXFpIhUt4y8xOm7F0nS1FuXxakmBAeDodJEVdr6enKEdx1435/lCdQ1lU3jGVVyCMVobDj8Xg47JSa5tisK6wp7u/39/f37733HjMjgrUgO9o513WSzCNmTqcYdVoZLfE+pQRE0htmnvw9iKjv+6oqIDeJi6IwdhofEdr74XAQHQ85d1arCVCFTD8Xo3WNiojEL3eCXIBZoZByJLxL402+PMY4mIEYSlsicNd1yhrvvQGYjA7k7EFEDQ8Ks5wl6mb+/8SxstY5o3F6nTGGKf1VClHYaUZ6ZROcz+zTJJfc973vh6IoIk0UY5H0kiV16FpC6P2Y9rsYo0ElmaJcg+xHueC8aVOME/1fKdM0pQg2hRBmzMJkpSdjzDgGwS8o10gSqSUQHA6HYRiaZilxeYaQiAiNhkl8eeZMvTMFBWOn26dMvwWthHU76xxJgDbGjONwcXr65a9+9ebll6Fv66Y0xhhnE9MYJ6EPItbKBk7GYBijtS5S8mNkpSMxAiLadvTUe+bu2LZ934uyobUFsPn008//4i9+8Lt/8PuH3T7G6KrSKj3FLw0x27Pi5C4q5ajUjcoYI4hbSimmIFJZx7a9v3673x+NsQ41ezpdrdbrVemKpiqY4uWTJ0/PLy5Xq9AenNUL51KKp1eXZ4vmi7dbWWzb/e699947v7yQiPZXP/nZD/7yL4uyjgClM01ZbQ7HetEoRq1NjjUPHPyUkvfBWqvUpI2llEmJAFLG1Ci366RQFGFEUbGUEj0iPlBcJfLOhd+jwvWvf5RWuZ5Uc601l7v8SFhDay1SR2J1JP9EIMJHs66Ttuavf+7u1ogJgBJzEN0PwRRSElp6Vh6YTAoQAbUGUSACFp8EJgIVACDE1HVdStEaF1JIMWmtAFGUo3eHQSspickYzZT5U8gxkTjDDiMLRasf0VknT5aBx9EDkzbGh8E4+/T55c3btwphiOuff+78aPa9Bs2Bz2zZuXAEgKQbHyK48PZebY6urp6dXHyslFquVtqsr2+0dbosihgRiI3WrBUQajG3TVqDJqQUYkwKQVFKDCxc8NGTTGVIB5sk65I4oI3SShyvGVgrjUrGqkFpFZNSqI5HZmCjNTMcO63gaUrhZqOM0o8BDmkXE1BKCbVCQGetMTZxYmJnLRFPHlYISmulFSUKMbACq5Q2VgMeFWpjoggTI4Zjs20+fsc6CJi6SAiU0hh9CoSgFCpmJEojjewBd0uF4OPK+/D27kVZVyP3nobgISUmJori1js3JBABmHiMAzIA6zZ8+O5whtSU9vjFl3ocvvXhx1dn58PQxRhltXCiSAmQKYYhegX+vQ+vhvXyADgwe+VJ6RFSG+K6UFrr6AOL9TMDMk0wd9YzhcispoG7zKlEpVhrDGHyI5ZzXUrTuixdWRrnEnOctd4UapykA+CRrKrkWwiolbJG2sUTZKO19h6YGY0uiiImT5iMq7TW27u91YpiOBx2u/12WVe/97vfu3py+erLz4auX60WYxcPx0O90imN292dNstnz55Zq28399YWZflu0U+tJwb99IwficliRvGmiYRcTYkrDuV+fsqCvCq32efyQFI0yTwoATOiYqJYFE7YNERQFvXTp8+dK72nv/iLf3Vz+1ZB+eLp5WpZtd3x5eevEXl50oQQwxCOm2O1bJQx2qgYZbjPGV2NQ4vIrnCkeAw+UmqaprIuBdrv96Yyw9BLPaY0Xr/a/u1/+29849nVsLupTk9d7dJwjICuaMrl6v/0f/mP/6P/w/+9WqpmvRrHqJwxaJmSsurk5ERS3hCi+L8URZGFgFgelNw4ZoquMUYpjpP2KMUYtVbCSBK1tePxKJQxZl6tVlorAYx8CIg4KZkChThNmfHXHPbjOL7t3sqM+TiOwv9VSskQi1LInABZad33fdu2pycnh8PhF7/4xfe/972qqo77VlvDzIGTEJw5PgCOM6iaQtQ4acdHH+ZLmd/4XI3I38tCSvPUS9Y9JyKrTSahmKkgD1NzUcBoBuJHbVaVG+TqkVA4ZoEmAOBHkC4/RksBM/SqlWINyBnCBtAEKVDyyY9hBID/+l/9y+98/O0PXnygtbUKRJpJ9oWI4+cC+2GzPL7Tx3/DzJDxX0RAJgkAs2DIFGryiBJncQxR2IBHbeP5LeQKVmYJ1CSxDvLnWWh7undRUsvX8KBSMv9eAp7mhJgTPeh9TV0EYEHqCRiYNGTxjZRYIaKaE4zpMQMoQMkCAUCpaT3I3I9snOgnq3QhW4FCRmTm3WH/01/8VGgskcLFxcXN7Vth7emhF8hVqj7ZEcMwvHz5UhRsZDUKx3autaT6KgpbVZXAo5J1Sz0sACUzzlhP27ZffPGFgM6S3pelETbrXOcLpdcYc3FxIbLIi8WibXsAKIpiGDudCaHGmNIYSeQuLy+VUtfX15Lbr1ar3W4nS1fUFaSUEqS173tri6urq9vb264bttu9oDCnp6eCy8jp8+ufumo696BXQ0Tb7RYAOCaBnLRSwrECAO9DYWxdlG3bnq1PXjx7/vLly7quF4vFzc1NnDgf/XK5FJMxZl4sFt/+9rcFcooxChdMrvnk5GQmzez3+7Y9NE3TNA0zDUMHWT8nxvHt9U5rvV6dFkURKS2XS7lggUHl2YratdbaaGwW1RUkZh7Grq5rSuHVq5fPnj1rmhd93/dt57Ij2W63CyEVRREjLhYrre3btzfn5+vnz59L4L26uhLJhd1uZ8oqpeRcOQx+Yk0aUxV113Xit6HyJL4xZuiEqgmi7i2LUJinomwLuRYT4PVw3EkQIyKRg5A1MKtP7nY7V5iyrkSbTuqIDz744NNPfzmO489+9rPlcnl2cS4kUK21gFCQnefPz08L547H483tfUppsVh84xvf2G739/f3mMeKpTgCgN1uY609OVlLGNlutyHR6el6No5LKYkAN2d9Bph76jE2TbXfG3o0uW+MEQUVKR9ubm6UUre3t7Ik5kNQlndVVdrZEEJ32M9tFe+94JuFsWKTyMzr9Vr2nbwLY9xmswGA9Xp9enrqvXfGbrfb9fr06uopM+/uNzN4KjIUWuv1el3XtfATY1Q8CYtNagBN0wg1mPJIimxqUzgBDRF00zTPnj379NNPb2+3J6u6b1vIMsFCbWbm7XYnb3Z2r5XlWhTF4D2lpAGa5bIBsNaen5/LHo8xamSeoC5pSgVmli7+PMEQQuj7NgTUWrNHmYeQqCWRVsLLer2WXypEB4m9ouqjsmwuZwCXmQVynQ8RuRFXGWVNYU04JtAKEXyMi0XZNM12s98dd4dDv1rVytZG63boE7Oo50soln0tYKW0qZTR8sAFuk0pFEUlhEellMJJdFT67pypdf2xN1YVRXH0g+hziuqaUsYYC6DEIABgQniKorDazAM5iUhri5leI89WADX5fgmwzBwojYOXYal5Tj2E4GOs6/rs7Mw5pxHFXKcsS+lMMVNKsa4rTklrjQqePHlyf3/vsw6MjDj0fW8Vag3OTdosWmvvfV2UMcZICWOYxnxTQsTT01MWlqXW0vUBgLZtBVASIEh4st57kUUCZglB8zk+d4URcblcLhYL2eZW5KRRhBTF/+yBxaUAm6xJIqmgbD0wypVFGP2xba3Wc25/PB5NpogaY/ww9H1vjAZA6RkL3q0zSU6eniD1JutjaK0pEHGkmQwx4xKZoOa9F7VkzhmLzmTeOfikTG2mrEcqUKxSStqf8ppkU7Rty8x1WTnnBDoP2fBpPiWLujKFk7MMMs4uPQYRVp5HRpSCGKcuuzwcyColkrEvl0vRjzLGyMGEea5ddhxmCWZ5v8wsLflxGCWcAkyeKCJeKiAvZJ61bHbpOkucFJZ90zRizzAOnogo8Wq1ijHKrt9stnJElmXZjyMwVmVNdJRpaemSznypMIxD7xdNrbXebrdaa8lzQE0NDzkxlbIppbZthV0nb6ewVgbolDGnp6cXFxdD76XMIaLbzf1utzs5OanrWvIfeW6CyAu+Kln927dv5TZF+ELlEVttDQBEShrVPMQgJ3Wmz09rZgrvyqQxKqWa04YY0jaNQz9qshhDCGY+peZWGyQionntPkbf5hgqe8YP08yRQNJaa2BFMOnlC44sVKO2bQMlISJJuFdKpRAxq5zIaCcAzMfwxAt2urBOTlOZxFGZsAwAEn0w218KLSKE0HWD9BwQUcKKLB3p/8z1w9wkkSJ8XvfzQwwhCJs78tQbmXOLGOPXK+5ifCQAV5YuMqWkAEBabdJPkAuuqrIp3H/1y1/t7jcU/NnpuhtaZtbOQgyTBIcPiYAZE0CQgRdQrHQi6Acf0qC1bvvO+1FYxo8yKh08EVCO1CStgjjJQCd+xKnJXaCUzc+FfzvpUOf+EoiXQjf6oiyttU8un3nvLy7OC6sRqKlKjfD04vzJ5bkf2qpwpSms1YhlpLSoy4vz8+Vy2Szq//zv//3EaVFWdV2///77Z2dnP/rhTyIDWvf06dMYI1Mc+wE4zChtSrO6BRNR1w0AQ10tiqKwINw38D7OG0D2wNzdskqTjBPig5blHH/ng3xmpH4dxGCUmTkOkPHlnFigOGXpaRSFYKqXv0KYIqIQZEJzWpnv/EX/5I//nXevsP92f6oGPvjmw/8tayhPpz+vGli9w+AdAGCZfyZGiBHGEY6H/39e5X87P99/11/eAtz+f/uH9w9//OyH/7+7HgA0ClPsd7ulLb/zwTc0cxgHZo6BU0oigs+cEKjQ8P7zy1VttnXhh6HrB0oelys4qu7QJy5EQZoNamUTit675ow1i32HykPiKqvzz2mKAkDE1WrVt52kuZFIOr0hhIGmD4i4hHTpUcPEb56UAbVROcirBEmhAYAEUTJjBF0ULkQojCnKmhkrXb16/eVnn386tP7Dj55873u/9ezpk/u727dv315eXlbN4naz3x6OYGzZ1ESxOx6F4SVKL9S+u5MExMMwEKWiKOUeY4wxekTNWdxjoiw9eJpNp5X0pSXXFAkp6a1SJlpinj9QSgXPAJRIa41lWckZCqDSpOHOv/P93/3ud7/7J3/yz/78z//s7nZvMG3u78rSVXVRuhKIOarQJ2NjNx4Xy+V6cdp1Qz8O+9imxMF5ZMLCssLRh2pZnaxObt5eW6XHFJ1zx66NwwjDuCzV3/obf/j04iSEEEN32MbFcqVtdXF++rNf/uo//A//93WFKWF7HItFzRECRmZO4x4zqiLxWNISyF1buSPnnDj7WTuJjYQsKXhyckJEbXuUTFR4zcvl0hiz3W5jjNvt9urqarFYHA4HlYHCpq4FnpOHXFDx7t0BuFqtQghaK+/HWWlRjpJxHImns0ZOseubm8K5k9X62LYhReNs1TTaaopQ1zWiTl2YYXScx7/iqLXWqKw2MRe68jNzuzQ9nubJBJ/5vypERBVSRIP5ywERtNZJqRg8zmODee4HMp0EHkn4QYax5C8pVzXzPp2RXyTObTFgnijnrDCloIxWqEbfa2uKRdm27dvb6/vdJqT4m9/5pDBF33YP3yNhQSBjVHOlp7Ie2ONnNf9hPprhEQL+GEGetYzm5Gfal488ReDBWFViD9KjIEOPPnMKMX/U3N/KSeP8VOcv51/7zM9wfp7zr1BKib4+AjATgEIWyvZXnFTErIaZiVIIfhh6IhKpJcmcUSMaba3tuv7lyy/u7u4AeH16gsjD2NmiOGmauq4HP67Xa7EsG8dxsailKBiDl7JQ+hACasiyBwBhKS4WtRBCpaNzeXlZluUXX3whrFIJX1JBCLVZikMB1J48efby5Uuhc87IjuzWWR7x5OTk/PxcQoHk0oIIzFSYoigO+724nkhFsNlsBA0kUkLkFKZCjNH7WFWT9IQY4LRthwjbbae1Xq+b+/t72787Q8NcOl1eXjZN8+rVq+SDcw6tret6HIZuGEIIQCyudG3b9n3/5MmTerkQH7aIPJeO1lrhjR6PxxBC9MGsTV3Xb9686bqu7zvmdHV1dXNzI8j7OPbD0KeUhqHruuBcECce0doWTKEqSwHWJb51x+PV1RWiPhwOsuTkWCzLUkgYClFrfXV1dTwed7tdURQvXrz44osvYggKuS6r9XI1DMPr1zcxxvfff/8v//LHQhFt2/ZwOBijtLbjGIggRjIGZQxFSiFBiGLW6BzHcb08sdbKG7m4uBCMIIRRKsrFYuGsGb1XSgkPUTSU5GS8vr4+Pz+Xr12tVkVRiHAkEb169UrWjLxoyRAQ8f7+vju2FxcXp6enSql5mS1Wy+cvXogcB2RJOgAwxuz32xB8DGWKkZlPT08RcRiG29tbIcWHkBBRupiIMoO8wDw1Nfjx9Pxst9vd3+8uL88EzlZK1XUt8hqCLMQU5Lcfj8ftdivLIMa4Wq0EKJlUFKwVlF9Yb/IwiUgcboW0q51dLBb7/V4yKGExCzosuLNS6v/N3p817ZYl52FY5pr29E7feKYau3pENxoACZACCYoDRJkmZdqyFYpQOEz5jvYP8XTFX2CHdWVT4QiKDok0BYsyB0wkwQa60YXqqq6u6Qzf+M57WkOmL3Lvfb4Gqn0p+gLvRUf1Od/53j2slSvzySefJwHHFA9N7VOERGLIfHp6WlXV9fW1vK8h+pEWUl7XdVe3N6v5YrVabTYbgRTn87m19vb2VrSeJfGQnSigyUPhPiEFX1xcNH1X1/X5+XnTNL6PU7/qZFmdnZ3JKLMx5oMPvihn+N5771lrxdXz7u5QZDCfV9ZmkgM0XaeUEtzq8vJysVjkeX5zc9O2w1D1dndvrV2tVqLSU5blycmJdLAEjiCiosjOz0/btr2/vxdxEmlpi9i3mIrLgT5tLhmDkN9wdXUlMt9KsQQxWUUS5WTESnKSy8vL5XL5/PlzpdR8PhcUXqr12Wx2f38PAJeXpxKFJKKmyNpaHsnFsgCIKAGDGsCTQaVaqbqu5/PKTO7Ho+K/gICCWW+3W1knCNh3wY7mYLLgYUQbx+4XTWmA4OlZZl2WZVkhUIZkUFPJrEenH/kTZmZkSfSn40xqeZmtub6+lr1mrY3eh+BF9QFHnS5EyK2NrLfbrbAGhVI6AV7J933fowlihlRVVdd1kEhrbQwy8/F4QIRqVoYQGEAE34X76JzLsky4mSJeIecIAPgUU8/MrGHoScvzzPNMOr4pRaIEwNOIACKKEvfUGMBR/tsoLWeT5PZ93/c9y+MaevbM3geTqwmW6bx3f8Lo2DlHkYCYYmIkNU7hx9HKnsamjvSDH2ZrZtBYG7IFOU8R0cdos37iXIbojdXECXnIJB8uDDUK/k7rJM9z8TWaEozjselqQG6HzFC9Rle01qzAe48jhsvMU+tRtgONqpiy1CVTFX84PQpKTGipNJVl+qqqKjHOkYxCBin06KskQYkGkWtlraXEzjnnhjHEgdJLJLilUOOFjyJcVentSXrftp5jinme54XkvhOvZVons9msKArfx7KctW19OBwAWZRbmqYRBpVSuizzhqIc3FrrmIaGSvDJ5kZCx2RoMYZlQ6Ma+7TB27YVfQxKoLWWBGC5XHZdk0axGmstQxJSuQypEJHpzenpqRo1l5RSaF53IwwMFM8Bp4VBr8KaTCiJkxfJsAgzO7s8ZeZd2h3ro/bGaF0UxhV51VcTM3SYJez7HokFLJ7ILHoc5MQH6qUAHFIc82I9nw36iZQSj/P4ssIkpFoEidfGGN92zMwIClF6ILI5fYoZaUSc5mQBoOm7wmUwqrPL0Su5Lw+TpwOqKP8haa7W2lpHNNDC5bSbKjR5hTQqQmqtRTVMWrV1XYcAoFUXfGYy1FZRmGo8KTeUUgxfDkdKdBXJOdlIlOLUI2Jmp414HgbvV4vq9vrV808/QeLcuuPu6DkkxkjRh9A2jQbNBCmxUrpt216GTLXq2nZfN74PjCC5iJxbxpgyL6bSyGjVtlrcUWaLubX62DZKqZhSiF5rDSBcMBWCMPZVSiBBPyWKbZqI2HIyHQ6HPvj79TqE8Bd+9VcvlycAVNc1cFou57lR1iiAuNve585wUol6zY7S4DQ0n8/yEFyZfe3r7726ujq7PKu7GpHfffedy8vLX/uL/34b4vnpKVOs8oyU5pBCCGoEf6fw4fuYZ6WQMqpqRhxjjM7lvhcS53A8p1GPWFoUwxk2IOyolJaQLn87TUAPNe3PaCf46OM4lB3H6Q+hVxORjFlNUkTCC57ODFl76YE020gr+9PPn37+//GTl9mLL172N+tvzlZvnD9pu5qItMWu67uuS4mzIgcC64wxWX3YrO/vjzDvmFhjl5Iz3s6c3/eENi+sxBmFkAgBFYFCUBPxUANOreaHp2mMUSN2MVZVdXJycnN1JRlz27YyFiT9cDWxCEePF1Qop8zrhhABJSYi8S5IlIQnQoNOiwWlTR/yqgLEm5u7L37y/NNPn8/n2c//uW+//fZbeWZvb69vr16V1TzPyrv7Td+HJ0+eaGNC8EobhabvB/oPKmPHXO2PfVKKwv2UBHeaXlQGEPSUvcnZJl1bAMjzkkaZdSnnJLuCabyRGUcnPcmZQLEClQgQddv2Wts4TBmlqirKssyy7O7u7m/9rf/J17/+zX/wD/7BBx/+wBm1XC6NMX3TH+pj7goFFqNKPdepKeczimzRdk1HRAGs0bpvmohcFLk0U3FIPrBpmpCiQUal3nzrrb/0F3/t6UkEgMhUFBUpNV+c3m7W/7v/w/9+f4DTyyqytq5wtiRIzByTb7t2uVyiMZvdLs8LCbaSO1rr+uD7vhfXL7nlEF77RiilhH0plXmWZZeXlzRogqn1ep1lmcyJC25FNLRjrTF1XctvkOit8ctDdJblksbJOpzqOlHARERrHADs9/uiyEQCXoZJX+1fFXk+q2a3t7cff/yx1dnp8pQetOQfHhmyESS9kaWCY0t7IiZP/2qq64b8/rXIvgUQl0zx8Bl+g+i6HLoeH8zrwAO3+glRnY4qWWxyzsJP68IrRJ40KBiAicaOLDNrY/oQARIjd75zzrnKJlUwEif+gz/8PiJ+6xvfzArXNSIVhwCgQAusDAQDxgqDQSCMjGl+AMHDCD3DiPnCiIM/LN4eYug0tqnEMZIeGOFa7YY1MGo7ynOQCm2siF5fw7RmQMaLxrQ5DUO4OF02DBwOeXQT+Zoe3otMEOIoJqNHyRSg15rUNFqM8pj56FGMe5qElS6LyzNtjYyO7o+H69ub/XGPiNpOStPU9/3HH3+MWillTk5OhHGCqJXB0He+jyG08/kcMEra6b3/6KPPF4vs0aNHZ2dnd3d31tr9fi+VkkzFSowSwEtkKyYNnJRYKaOUTikJv1KuVqg0eZ4DOMnPj8fjcrms6/rVq1eSazVNk2d2Sv4F05Hf3A/+MbIDOM/zzeazzaYt88NyWa0WS2tt17QAsN/uTk5OZmXVti3FlLvs3bffFjD37u5OLA1z+nLp9skpRCkVolcarTG+740x89ms7zohu8QYT8/PpMUoM7/b7VZsCZQCIL48v/jks093u93JyYnwbEQk9Pb2VjjIi8Usz91sNstzd3q6Ugpi9HJ2CHQlpeMoqoCioihnhKzVu7s7Hmc9i6Jo2/rkZLler5VSbVvvdv7tt99WiPKyRNoCALbb7cnJyaNHj7z3Td3BSE9TSuyP8Jd/+Zebpnl1/dJ73zS+KOx+v5d/O+GMapTF11rL86yqKsuyV69eyTXv93tZMFrrGP3+eJB13jTNrJzPqqr3frfbCa172oZCj40x5oUDAN/1bdt2nd/tdtvtbrPZiLTLJPsgCoHGWSIaJYC9cdY5t1gt+76XDq7U4SkF771wz+/u7l68eFVVxXK5XC4XguGKeILkIcwcgpesXhwaT05OjDGfffZZ13VvvfWWtfbFi1eIeHFxsV6vD4fDF198IcIIehxRl/379I1nsuoQsSgqY4zY5E5bGxEFwRS9e0FON5uNKEF3XdcFP4mcTuP/AtXRyMGaoK4QUm4dAExyJVVVyfX0fW+ssYTyQgUUFlRI1oAwtKSFIKWWMSZGEfr04q52OBxipKIomJEIvI83d2vnXFHY+7uN1E3X19dd1yFz07bPnz9/9OiRMNiqCsTpxDl3dna2Wq1evXrVt+1sNhzZkWi1Wj158uQnP/mJvJGu6z777LMsK8S9RhROzs7OxNExhCC05fl8fnNzk+e5MabrGubs8ePHzrnj8bg6OVFKLRYLQU7lFsqyFEUaZhYbRhxFjWS7XV+v33jDImqR1xA6muDU0yiAbElhbQu8JTRD4dWu1+sQgkhWyriJvJGU2BjdtT7LMmCllQUcHKqExC2ESgFM5KwJoXcuH7H+IVXo+156EvKb5fCaThOBbocUVCkBvNJovDylFsMcfWLph0mqKVIS/EBvQfKoAVnOC9EukIcwhAVrYPQ1VUp1zFWRZ0WODH3wUjubUc2ciKL3griFUfI7jTY5VZ7d3t4KL1Aue7lcbjabkVMC8pDln0+Zs4SdSdpF7lpWviTbxaySIzuFNG0fY7TsC3llZpAQiTHClInh6GJnrTVWEZEzdoILh1F0a/veC+KUkBGRImmtcKSISm9TGNA4tvytNYvZPMYkCdgw8Nd7bY0bXYIQcbFY9CGo15MEw1TumEMOuhYSycMI+0oLWbJBeSmDloAa9vukL09jGz6OYln6AWzinCvLHKAzRhujCYgTTOGrKIrtYYdjK85aK6ICMgu1WCxSSpM8xYg4DXSHEILEQ0SMvUdEJEbikIL0tqU1PiX/EzOVmbMs876bdmuMA3dbpl4mVUPpPVhrlYK+7xH55ORESksBDCXQOecuLoosy0I3wPQTrVYmOYS9KjsICBMNQcyHXmt0zqUUAEDkyHlUNJZuhzYoEH+WZXFE3gFIa+zG5pCcv9KhkQcrS7Hruvv7e4SBqEREHGOWFcxJmiLGGB+G2GKtlW0bvJe+qdbWGOsjdW1vjDHaaK0DDQxxBE2JjBkyKjmvY4yb7T0zn5+fy/O5v11HGyQbcc6dFKdIyWaaFRZFMQxUxpHSEkLQ8Fp8dspcp4w5BC8yN21bZ1lWFaWkL5IBSFdwOj5DCKJ+1ceQZVlZ5jJ7AlopYmNMChEAQoqC9FEalFIlmZMbk+VI40d2i2wweceSWE+LTIByHsqGKDclrbkpRkyxXl6zpA6SGTd9l1LS2jJzVVVaWyICVkoPj8VaG0JvjMGRIPPHPgzs3CBmJEcLwRCLm6bhOHCKJVPf3d/9we99r94fKmurcr7dbY9d6zmUswJRUwKtwRgTg+9C530Ehb337bE+HOpEYs7gFosFAGutq7LMsgwSpZRkPqvx0T6++Bt/4z88Ozvrg58OEtTKKRdCiEmQU9YiecmEWmkZVQNAgL5tjTGiM7s71i+vrxCx7f23vvWNN958E/tWKasNA5HLNDNpjb3vMqe1s1nhElExn8nxvDvssee2rSPye++9t91vou+W8+rly5eXFxca9YuXX/zSn/2V08tHh6bNizwRK1vGGMuylB0iWysllOkGQdhTSjEEpUzb1gCgR8gJAYzWpDUrlWLEsTU3xV+AwctYXodMWGutFSAQ489AgfG1hnV6XWyEwJwkIRY92VG538VRPFe+SPIP+V/BDtLPENP408+ffv6df7zvUwgq6G997Tu5ndXNVhvsQui8R62MyGkl0oJIKOiOx6OO9vzS932IgNCfnM1cWB3u12lRWG3RR3HOlXl7rXVKJMeHtg4gNm0tZdgEu2ghnFbVYrEQvokZdbf5gWtZHMdpBb8xxoh+qmxqUbIFoJQSK00pUYLEERUKUGiMybLCODuf9Ve3tz/++OOPPvqJJvyFX/jWz3/327NZ0Xb1brPe7bbKmqIo1tvNbncoZhUqDaL9ykl8DlAprW3dNIX/8jMCAYxSIYQQvKBSRVGUs0r69sGnabpiih5T3j+4AKUkBujTg5KPNHqljAkhEHMCCJGUUlabFEmhARXLKo8xphRTUjYziPpXfvnPv/vOe//yX/63v/O7v7XZbPDQd11o21Y7rTAx9YqRMHHwfVsrBZlVfR81ZkRUzWbo9H6/1wT3fmMYnXNN30lyBjERB6XU7//+78evnX3jG99weYZG62L2z//Fv/w//p/+3o8/ebk4d6yNs0VelRJUmZLT5q2vfnU+n3/xxRcasTkccbBN01ItrxZLASCmESuK0RhtlPbRW2sz6ziR73qrTe6y0HshkVXVTKMiwMPhsFwuEVGYZTJW6ZyTNSbpI48id1+2O7ytLACXZVFV1Xa7FS0/IkqJiqJkrZpDUxRFCH1d17PZrD4em65t6ybGeLY6e/7yC+fyt5++GTlqpRUYY5wxIYT2YTt8yBmUpM5+OoDUaJUxtVcn8JeG8cmpTCBEpMSoX7NrZe8ISZhG5lEYPSfxAS13gpuFJQTj3z6EoZk5CRqLg1zDBKoOPwCkDSqDnhJo2B62NTZKK52b0PvE4Uc/+REAf/c733W57VuvFMbIyBDlTiMzviYpT2XMwwNdKZUeiOnLTU0o87D7EIlp2lYwYbuylUikyDglCgzIA9EGiBWgGoUI5eGnSFqZSe16urapYE6TneDo9D09KxpFqWmUCFOjTNPrxz42ANLIIZJKDMcZ1Qk0n6a5nXOd7+WlDKTyRAAACvu+d0VuDQTfX91ebfYbobV2XaedHmYypMnHMEkrCsogAG4cFMDg7OxM6Hjz+fx4PO73/Xb7+TvvPHrnnXe87+SX5Hk+ny8Ph9200pxz4iUujDy5vOPxKHCM7DUp+TabjWjUEMU4Gj1577fbrVyS9z6EtJg96VofA2llU2RKAZXvur3gCKIJIBzYN954A/GFc3lZVYJ0yBMTIRELRhkUHpDLLWqwmStnVVFkxpizbgUffMn2Dz4SEQN1fZtj7r1PIUkMf/HihZQYRVE0TSPjt1mRZ0W+3++bplktT5lZKxBE+NmTpyFFJpTpV6113/eSsc9mpYB3WZZtNhvBo5lZ9BYF6QAAKd1xpHeJIKPR+ic/+YlgCsbaPM8//fRT4T1JTDg/P5/NZp988snxcGjbtmvaxWpp7WsDMQG1fR9HHoYSXg4AbLfbb3zjSVVV1zc3RkOe+5SSaFNKDzilJNzSlNJus3XOMYLQQuu6LstS6H6CzyJiXR+IqOs6ud+qqg67fYzeZk4I2qKMLOnBxcXF4XC4u78Rlj0yVFVljO26Ls+zOEq7yDPZbO+9Dycnq8vLy8eXFzc3N2HUh5SsgDlJwFitFjiOcch/SC+zaduqqm5ubsSCSGbwQwjCExcwS4S/5W9FdCLGuN/vsyw7OVkKFDWbzY7HowRqec4ii6EAtdZC097v9zc3N0Tw1ltvHI9HeeBEdDgcsiwrisIYFyN1XS+7T4/yYtVinuf5q1evRmQw7XY7Y8zl5WVZln3Tamedc30flFJ1XR8O29h7sawU9Rtp30pRXNc1msGCD0bl9Pv7++bQtC2cneV5nh8OtbWZyAcLzGofuCUJxiT/HVJyeT7xfyUmHI+NcJm363VKHCNsNhtBAx4/frxer6+urpbLpZx6JycnuFpNOFfhXNM07733nvf+448/VkoJeLRYzAQhAgAZNRO5Cbmehw5P0lRYr9dS+j0cOZ/qwQnckIcgFPsnT57InXZdd35+fnV1tdlstLaHQy3478QtDSFIw2Cz2eZ5dnFxIVRxgcKFUX44HOQty6zGBF2FELLMpJRmsxmkQRwppeRsnuVWjgOBuiamnR5J0ABgra2PLY+WHjc3N8JGl36SnC113S+XcxkR4wfsvYEF/0AmSEpX732MPQAI/3q5XEpKIJfNY8PVjv7kcfRCBH49HZVGNZI8z40V+6iUUkIGwEHxWeLPxBHMskwG/0EN5AxZRaSwWsx3u521aMwQcIiobVoZO5OnIZrp2hg19kXkmUyP69WrVyKLMYz4AwhI3TedvPpHjx6tVsuPPvoojaaO8BoBGMS7J0CAIVmXT0RvycYjDUN4ct7tdh2Az2el994oI+oKAvLyyOGdcjyttVJZXdcyvD6cyH3vY4DX1iyDP4QgpCOJ0E+QVwjB+0EKWY5dRiyKQrxVJcEgfs0eMKM8haDARVGkcWRQdkRm7Xa/N8ZURSFbwzlXloVzNqVks8l0d0hFAEAQ4aE2GQ3S5IXKLciszAN7cEBE2b9DZhUHReMB0HNWdo1S0PdtnpcwKKpxlmUxhZgYlcryQaVEWgWbzW4+rxCtSGpIT917XyNWVSGdoZSSZDLpwRC8bIShC8LD3JigkUAkzaSUkjR0uq6bF4tqMW+a47itekSM0dvRwzylpBElSFprEw1zY87mAzE0RllCepzyTCmFELXWQCRhues6OSAQxDC5HhpIQYDQYVZ4vV4vV/OJaDu0hZzd74/MqLVOo0ODnL8xxmNzJCKtrF4M7R/ZlX3fN00j0VWOY9lQsvuMMZnJMKrMZBQ8AzVNvyB6zW6ejkw1qgHK45BCa/qBqpprrVMKevS5kqUpG9s5x8SghhojyzJJFiXhvrq62mx2YuXM/Fr/iCPHGEU7b0jix9gXQkg+5NZNz1ri2gQxTEX4NEIiZO+Roj9srelq5VnAOLA8bQP5v4GSIJjMYwc4BBQ20Egap9ei6T/TSs77KFKbzCwi2RKsJxvGqXeq2Lf1IUXfhBBjnM/n1/d3pFG8E2ezBcfU1l3nvWDxN5tb7z0lACXiJxqAF4u5VuC9NwiFVdmsSD4ZY3abrVLw1/7SX3729LHvmpCiD0E7K29oWpoAAQAASURBVNdv1FAoppRa6gb/+tFaPSQau0xWpg92ux0neuedd/7Vv/pXWZm/9e67riozw3VdM4WUUqVcXhQUwryqsjyvZjOX2Uhpd9hTgkN9fP78OUOutSbN83n1K7/yK2lkfBtjVqvVhx988Id/+If//l/79e/84i+VZe5j7PtotJaGW5nlddcCgLXOe7EvMFNkVMp0XRdDkM729KYk25Adm0axSyLSSqVRUWuCrobJFGRUg/jvn/xYbafym18rq2oY3WNl5Yyh9rVMTRrtTa2101713s+q9mctpD/9/Onn3/HHbevrw6kqzhcXKWESUyppqObKdzLJZZxzh/3+WDcYORxDZzqlckAd0jFpwxaD4X3XcGQKxEohSyxkTkn6djEFr8BYw6iE4ayUAkQaWRsj46mWQ10PQNqQ56lRUpaIiEmjDjFpQDl3CVWIMTJlxkrCrZVNLPLHjvXg6lnX9eFufXNz88FHH9Z18+abT//sd3/59GylNXZd27bt/ngIIeR5noAJ1fLklFGQIyZKjBz7GGJSWksk+eo3vw5ffMlDDT7ISSRSGn3vabTAFTAxJRy6tiPTGUY8S9q9MOqNSIt3As7UA24vACgkJkTURBSJldLG6L6PiAiKFaIynOcuJU4UZrPZf/wf/y/ffeebv/Ebv/HRj/7oyZMzrQrvm9hTSqwMW6V822UaTk5W+/1eOWTGzGRd21nOkg8MeLZctfvjfD5nhcV81rZt1zSqgNvb2//L//W/OKl4sVicPbpYnp544n/y//7vtof+/MmTu82uDv1bT57ElA6Hg7EKUXTlaLPZHA4H51xVztq2lZlcABCTH6EBynNzzkn70MeQFTkAuDwTknui1Pbd/ngAAOdc3Tbz+fy0KHa7nSgASCWwWq1krFXODuE+M/+sQSYAZmfs3fq+qkoJ+MaY9XqjxukzseBExPPzy+fPP99ut6vlcvDGsVYZkxI5Z1anJ0VWQAJ6wM6ejgwpbwY0Uw2EYkZQRiP/lPbC1HgYa4YBxIQR30StmUFIT8OfjyLgyQciglEaeEoCp18uRyQ/EImeLnX6mdfArjCTx+tJKVmnI5FzWWDPlJquPtSH4tGMmTe7zbyal1mJEX782ceI+J2f+44lwwmUUtGnwhQyGknwOumakGKaDP0QCFjBcGuyg9JIcJ42xcPfQKMUxvC0E/EDbDrGiBjkFQxfkWQ64rXgGCIiIDPzeG1TRhEfENVlISk1KKtIBiGxVH744esDENkM6R4JDD2oEJpR1S0+ECWQ+Qw9Ej+FCDH8Nw1QtVZSFwEA3N3fHOt9Hzrl2GgTmRQP3kfMLAbF8+WKmbfbbV3XqJSxSmt9fnEqD00qQBEHqKrq9DST+vx4PDKnyfanrusQUpYV8/nghy6LWSqiw+Ewm81GCRpOiUIYJDXPzs6IiGggss3ncxjV8wDg5OQkxrjZbEChj6Efp7BTTNyCSFvKP9ntdoi4XC6ZWUAiQW3y3Ck1VBMAIFIbUjfudjsBlaR8Simln6HdrI1KKfUdz+fz6+urpmlmeVVk+e6w994LyajrurKqvPe7/V4IdMRsrE0ci6LgmOR65svFTFnpIArYF2Msq1IomXJhfd+XZfny5csQ0nxeTZt0qoEnXF4Q2BACExVFcXJyYqyVykgY6/v9XmA+Ge65uLjou857P1vMB3dEAHl9TdNYk41loLFWWg5srd3vj7/1W7+VZVmW51VVzefzpj1KrT5hRlmWCbIvgVrQ581mI5CBc6451tbaLLMi06eMFqB5QtC8953vnXPE0WUmhB5BhxAOx53MyyqlDoeDjBGmFKzVWTGLgZj5/n7r/U1RZmVZhrC7u9tWVRFSFCELAJgtqsVittlsZPtLjS1YhjHmcDhIC+Tdd9+VpV43nQyy7HY7a23f9zIfLaPcUi8LpV2yFCJaLpdaawGFZRyTHyjCi0i31Aha667zAJjn+cXFxYc/ut2v9m+99Y6gFSN2lnWdR8T9fk9ERXEufQUBmIQhfnZ2JvDlJEq73+93602e56vi/HhsUkpCMN/tOiQ4HOqqKgRAF1ZslmVCBLZ5Vpbler2uqkpmDowxkSEB1HXnXC4Y2VtvvSU9JGHOwuR7pvVisXjx6pVgCxIiRsreYL8mB+XJyQmPwq9KgThcLZdzuVnBvLTW+93OGLPZ7Jnhna+8tV6vX7169df/+l9/9erVzc1NURSC9QMAIldVgZykK+acm8/n3vvNZmOMKcvcWr3bHQUQl1ZN27Z1156ent7f34si8+3trVze1OCRmffpXuRFO+fatifyZZmLmPhut5PYIuIVWmtjtEB7u91O+JjS4Z6Cv9D/Ze0NuFVkY0ASwq5uJFDIC22ahjjmeS4sXTNagvd9D6AAXpvS88hmBYDj8fgQCnfOxThE8kl+QdgMEskl5RZkXJouMLZhJGs6HA6ivyw0fzlxptHesiz7GPb7fYwxt07O377vfUyCZxGn47HF0TBMoxKnhSkfk930sHxGVJLvyaMgbfu+19rm+SAxNwFHMt/gnGuaJgFLUGrqWropPfViDCYsljjaWoocjbRq5BH1fe9j3Ox2m/3Wp2jzTFKRSVcWAEVlRcTZ5dvFzVXEYdquUyNn/N133/3iiy/6vp/PnTEGBSiIHkFl1oo8zny5xIEE3TdNs1gssjzz3nMi4cDK+8rLwsQBbBWIY6CEWxtjlNd3ulgQUeKEg4N0es1I0NpoXZaldAdTSnVdW2OkMRNGORRjdQzQ9z2PiJmEGsEuBC4LKXGSrxjGqqSdLDVaSjSC3V62p1hBSMdRKMOIeH9/L9GAR1E4pZSMik7pmVIqxSivaT6fM3PTiyI5TT0MPXL2B3ByBO6dc7vdLk9Ch4UQQvBRGSWxJaWUZxlzkiGqB7yNyGOnZAC4B1kSNsYYVEQ0Uc5FI1uyAtk12+229b0xqmkapbEoMuEDpVElTKoGrYZhlEwPbST59rZtxbBhuz2enMwlRsnW6PseiCT9k1cGAHJmrdf16WklB7ECyedRDnql4eTkRL5CwkJVznnB2/VahiSmJus4Eyla5FYe5kDB1lqk+WOMSoPoQaVRirpIeUopUIgpHrsjBe8LX1WVDnowGpL0kSd+RxowWRhLC/XAC1uexcCmIVI8VMJy9CJi5/v4QP02y7LcDK6OWlvh/uAo+I0P5gEBQBactNeIaF5WlA/eRzy6rsttS/cSflq+Xdb3FGeVMilFP7rACcIr21gQSR4HG40xCTh3ufyh1oP2QohBIzIi0WBISkRK4dT//5MfO1BW5Re/rs2897l1A38tBCZarVY3n/3o+sWLqiopUkz84ubm5aubyyeXuSsQ8XjY9n0gor7v98embfuma7XWkVKZZ1mWZ5aKoigLe3l+nllDRGcnJ7nLFODFxaPdbne73//t/+h/bI3ebTZgjRYlEyWNgdfvl4gABw0vrTUorS1MKYLkfL7r5/P5r/7qr/7mb/7mp5+9+K//m//X5cXpf/Y3/4OqzNPeG4sxRiRbleVssUDi3e7wqmm2223TtUQEWjnniqJEA9bYGKNYGBk92Ce+ennddG0I8R/+w3/4u//6X//6X/8P3377bd9HRNTOIgiermg4eAafd2ZWY8ktZHa55mnPyFub3GzlRTCzeG76MDSuJcvBQXfMdF3HPPvS94tqMAHXD8SM1DC+gTL6bIzJc2ftIK4vrTl8oJo/OaGHEMoyfPfnP/z+D77+pV/3p58//fy7+vDlf03wGfr49OzRyeJEsLOQRscwjUolpQwi1m2/3RyPvtNsIVFPvs/KOsGy0AmVVxwgrZuDnVmFKvXeGJOkda+VMU7BIIc6huWEf3w+Haw11pr6cJw8T8ZO4WtrgdcIFIhBqNFaEwKM0mOEAFqFEMhgSolRh9RpxL4LL56/2u/3x+Nxv98vl8vvfve7jx8/zlxZd7VBBKS6rvM8Pz8/PxxqJtQJZEqUByNpBgAobGzq9WajlPo7/+v//CvVGx/9xj/5kw9W8sW+76+urmTAXJlBFWskmCADUkIcQag46vbEcbheYs4Uvnikmk6Qn1LKx6C1NkoDOCEUxEhd11mntVaSvjBAVVUpITN3bXrnnW/+B79uIOGPf/yji/MVqQQYUwzOWSbGBAoMJsWB+sbny/l+d2QDgBoZnXWcCFH1vc/zIstya21b16A06XS/297edJGu+/hRNcPGcxvg7NHCVpXrI4e0Pe76vkdOSts8c0x4dXUlC2O1PBFUPWPutRGvoaFwRZAAezgczDCvpY2xcbSlVkophTBynQRWu7+/f/fddxeLxX6/F/ek8/Pz+Xy+2WymQWmBIbTWIYYv3SDW6BhbZ2zfdkoppbQcCEKSOjs7iylJCS0Pn4jW67XM6NWH43q7OZ2foFYxRrKED+jAUjlIFpRGuTPZEVMyppQa/Uj/BNoLAPB6R8AIrZrRNxURldLinYtaKaPptd3cgHQTERMI1i6/isZlNv3Y9Mv5gW7ydBlDdscMSIkVaFYam2O9q/f7epdVhbIqxpgVOShQVhFE33bvf/TDosy+8s57SNA3A0tOuvUBRrT9AaNf/ju9Vol8DY4/ROEnjJiZzeBFoQb5CiBmjiHwKIAxPiXNCZKOGhU6p4wmIn7w7Q+fvFTCfywQTT+mHpCpcRC8fu0G+XBRPXyVg9Eh0di6TlNInBgYw51qHVIyQkBmAoBBZBkwiVA7k3Z6fzy43JrMaauKWdH1dUopzwdIRZAX6e7INhF4JSQvzoHjiCv70ZrVDMp1tiiKoiju7+9p9D/03qc0IPVZ5lJKwopl5jfeeKMoipcvXwKIQw/KUldKdV23Wq3m8/nd3c1EApjC3dnZ2eQleH5+3vfejP7pElSnwfC2bcuyvLi4COPcd9M0aZA0UWLXI9CDkCKVUiLL8+rVKwnFIYTb29vT01P/M7a//B5mPhwOCOpkdeq0ETUGKSmZeX/cJ07z+dz3Yb1ez2az2WxGo8+7s1b6Zz4MDBsRRYXRIIfGgU6pb63NVqvTw2EnyLLo84hyrpwRoqE0knaBxMU+y6S211pvt9tp0c5mMyn4YwjBpyKvlouVhNynT5/2fW90AFaieNu2bd8HY0yMtFzOJndBQTPFoE+YmxK7hIIqzV0YpfZd5l69eiULrO974dUK6ipESJdnKaWyLPf7vXPOWu29R+CLiwtrX/M8vPcxobQDRXT7rTfeFGiPiErn8nkOAIvlrGkaQQCFgSsa04joQ5dl2aNHj5xzH3744WA5eDgYY6qqEpnOm5sbCZj39/cTKuqcE7784XB49uyZoBhyLsvMsgDTwq/XWotAs8waC8goz3Oz2QjCK+twNpuJwrjWWtjHX/3a2fQqJ6RDQIFj23R9J7QVHq3wLi4uIpOg4QIDif4kEd3c3ORlJWDE/f1914XFoirL8mSRd1336NEjWRiCugr+Yq2dz+fVfCncfHkOInGbZfVXvvKMmbf3a+kiXF9fCxmZmW9vNwCgFDx79qRpmvV6HVISAfemaTabjdDbBbeSCMM8UDjn83kIvSDXzJxlmXNDOS+UOmmdnZ+fCOPy/Pz8937v9/I8/8Vf/MV/9s/+mexZabdUVRX63rmiaRrmJD2bQRamac7PTxFRUBtBSGlk/E1Tp/JXglUJPDqpLTNz0zSykGKMgmmEkETEWUKfHPfMLEj9fD6vqurq6kpeouwXQUiFJDeBUGVZKjRdL0toEHcWyW/BYY0xxNG5GY2aovIDI5XN7vf7lNKgHut9COH09FQsziRoF0VRlJk8c8GYYvRycPV9a4zpuoTIRZEdj8e6DkWBWg/1tQQW0WYR+d2u6yRlkucmWjoCT0uYmri3cjhaZ4wxcubKnxghb8bElMIDZzmp5ScUcr1el2UZOW2326qqJCA8TAa890TROeecSWnoJed5HuRIIpJJiymAS3Sq6/rs7Ew2r+DIftSSjSlpa5HoWB9CCAMZUWHre/1gzCglKIpCJMIFGhKShCwGgVCEgiAth6urKyOUWIST1SqEUB+baQVK4idw4UiRJiLKsyzGJNFg8joWjoV49wpGrLU2Ss3KUtoSKSVldFEUeZ7HmIas2BibZcLeEEBf4PsYRylRmVtldjbLqrxrGgEJ5chDRBFcKqpqah0p4Oni5RyXtdr3nVIaANq2BY1lWU7RWJLYh4vneDxKr1fi/Jtvvrnf78cQF43JE4AA0PIVfd9nmbU2n05k+S6QjpeIuuhBUFdeByJaG4UOXDcNMxd5LqSlPHcCdkn/RhInZhZT6BCCtTrPcxlBU0oBCsgriXpSSimr87zqum6/762F3BjZVqKOIKMPSqkY/YR/Uoxh1AFD5KIo2qZv6sN8tZQdJF3qqQUoUhWICGN0mnI2GrydUTBDpVSpShoV+STs9KMNI4zjFwAwk7ZECFPmIOmEdZYJFeDrrWqM91547sqYqlrMF9XU3kantNZ1Xe/8bnmyynR2aButhxbyUHukcUBJcjs7Sj7BWNLLx4wSk1NWLVvoYVKIInSoUJ5RCMjMIUYAWCxWNLLBkYaBxImqnFJkZqt0VzfOOWdMoICIQpSYruRhNm+MaZrOWi1Bf5LRkC0q/x3ja+leHHVw8AExXr49UJpY3kopY5T3se97JBkAQblTNYjaoLXWuZ9hHzRyXbXWrFDctLbbrWLIV05S8xSj970x+sVnn/q+PVmdtX1/PDT7plXWKWUQFAISwfF4rOtmuz967wFUljmj3XKeyVecX17MZrOqyLPc5dYBp8worfDi9AwhPXt04Uq3391fXJ71fQsJI7MPyTkHiUDrCbaQh6BQh+iNMTwUTuOYdqKua5fLZQr9t77+jb/7d//uT37yyaur2/Vmd3t1fXFxYZVWSjlnlDJVuWibrt4fXr18KVEjz4oYCbQChn19zLIMVJAmqrN507WR0m63AyElKaOU+oPvfe/3f//3f+3X/v2//T/9n7MCSIm1QkRGWX5Dh0PQfzNOOmRZFsVV9kGzRLBdNU4lEDMgxhibtkWUaXswZjDclEBmRnOnL32/zjr5Xhw7JRKqJCJMW2naPjJO9XCea8pmZBBPKfUL3/knvo8ffPhzX/qNf/r508//8B979o+6p38PejqrFl9/990yy0OoE8Su6yIxM8c+AjGA6Tvfdx0r5bRzCUwfQufrrK+TcRzD3OXzBbfN/e26sNVJNlNqAoiJUwIDIKZYWgHg1J2OcagclEJjjFE6+iBqvOaBLQaPIq3TpAKODdEsy0CrlBiRlNZK6xSoPrYhReZWWWNN1nUdM3JMIURr3ZMnT995513tbJY5Zj4cd8YYn6JBJchF13UKTd3VCaBu+ykVlryzbg63t/fVbPGf/a/+zi/88p/54nd//KXP1lgTYxT/k2o+k1lR79OIQ2F87dj2gFgqkN/IcJSwox8YSUsklwNdWqrlbIAhBrWvGJWCxWLhQyfCR1IpKdRECZGN0xnY995799l//nd+57f/xft/9P0vnn9qHS4WM2RV72tUnFK4v94S0XvvvUeYtruDzo3WPRNE8puwrfKi6TvLjprGWtu1vWZ+cnax265VVvTBr2YzH4Nb6Vmixvf3u50rcp1RitE6jBGy3AEDUZQ8cpr1k6xUgAmp+ogohihFRdu2zEOy27adxFs5tdu2mag6iGit01rf3t46kxntlksjnXIpyaYSVFAtiqmAxZe+x67rdzxgVaEPRVGgVpIIFXnVtT5xFChcAV5eXEwoYUrJ5VkCRqPbtr1d32WPnLWZaG1NmZh8i6RJAKC1Blbs8KG4B44fIdqLBhQCAr1eMNOP0ajbMCGqkcg8mCcDoQODQlAKtU9+quVYNuxPO93BCKoOx3FKMPY8xBlhMrs0itHgoa2bviFMEZLF2LaUUsqrPPlUt7VGNVvODOjPX36R5/mzJ28QJOO0Ah1jSkAPE9/hqpgBCBRSGggNADCVrH8SAZ+qUxolAmVpyeMNcbDuGQjhDKI0Ihwcq/DhM2caBN+YebJ6kL9KKaUHKQSOBOpp8g8AmQkRETQwKqnGxQgQXnsMymZnZk4i5DfMsQq6OpZhrMfBWyn1mRn1MPkXQmzblhEKZxDRGtX3/dXNq48/+cRYra2JlGL0FJMoIwukIlERtZIKbSpOBGeZZBYl4MhGk0x+uVyu13fyhAWKJaKmqb3vhIs6tQEEVsZB/GFg2gLQfD73vjseeT6fS4SUCCYAjbVWKLdStTpnYoxlOZMXfTgcBj3Q0eZe5JWtHeb3p3pP5F66rmHmqiok6m63a6UUc6qqQiDj+/v709PT7MuldKCuWzhT0rtyzq1Wq65tCVhSwb7vQ4xKqbu7bVEUxEkbRUSr1arruq5tu7ZNMWau2O+ObTP4xct9Cd56bGprrfcsMa2ua2ZcLpeLxQoGbEUsRsVpNhpjiqIQbp10MY/HJqa0Xq/3+/1XvvIV4frJSSEA3Ha79T5yIqG7yl4Q8q9Q9kII2hrUBrXRmlLilNKsWizmq+BT71ul1HvvvHN/fy8PHEdhKwAQBTz5E6uNFMP39+uqKqXAbNt2s6uLrCuK4uzsrKqqV9dXfd8LKCm1fVVVb7/7DjO/enUtCgOJGZQSdqFohc/n1fG4z3O3WMzatt9utyf56TSNjojC/hOSl9a6bWultXVOWI2Xl5cS/GWf3m834jT45I1nvu3quvY+MmOWZTEGcfeh0YXl5uaGR7rJfr/XWp+fn8uk1DQDrpR6/Pjxq1ev5IEsl0uh3gtJcL/fP3/+nJkXi4UxTpYrIkovoeuaQVJAoTZWWXU2v3CHQwjheDyK5qnoAARKm81mGiwIIazXa5GvXK1W7bFOKe3rBgCsVd77zNjz83MAePbsmWAQ8jxjjCcnJ8IfvFuvu66bVQtj1TRZ/+jRI+HcXTx+tKgWL168ePHiVkp1RNztdtt7nq9AdG+ePHvmvRdhnL7v33vvPTGuF9jC2sx7r3F4gN77vu9SSoL5yo9x3/g+yqGvRghSTvO271NKv/3bvx3HaWwRuEDE+nCQ1Mhai+gEEPHeV1XVtvV6vT49PRXvRO+9AMfOuSxZjulksey6LiZazRfDG2SIvVcMTLzfbOUQ7/ueEKSLM5vNYiQp65hZRNiNMcIblZUgi1Cin/RUzs7OfvSjH4lSgYgIIaIcC2NWOWB5WVkYVIBUloX8lTR7tttt3/dnZ2dSa8u0A446yxIGJ+7zRGE2VkmXq8grEYy+ubmZfERms5lM38oPl6WSClqANkksjTHyAF++fDlVvgKyS94iZ18fg3MuM5ZGdVZrrcmc3NSQ0gwHs6DDSiktLD2JRWo0LZiWhLJmtVpJDS5I5USChhF2F5q/9JettSkwEc1ns9lsdnt7K8+fYpJfInxhM7rnAYBsB6XU1AhOo6LClEFNwU3SkEmKTW5q6jpIQ0jY4t77999/X3A6OTqJk1i0rRYL+d4JeRQaqRwHKQyCNimlxBRSBI8hhBiD9BuUNdZabtsErLXMnGnvPY4yXCJqAWONgFqLkIU84YHQCWT0IIYQY2QCVJNugfSYe4Chc9y2jbz3cUXpNCq4ysMUeR85c42RrFCBwkePHt3e3jZNU1WVuBQMB2LXybiD8KDPzs4eP3683W9ElVQWGCSCkXnT9/1EuZ1oJbKSEAcFYCW3TwEAUgrGqMvLx5v7tdQLsoUz50YEjGWHFi6zeTaVVPL8AKxSSltjMxd6H0JkRmbWMLS4hjU/yqNpDVlmrda9F/3hAboci7Uh3A16FEhSFHBKwEKOrgOli4sLeX3SCJfYMgmRaUSZ5JBon2VZnhfL5XK93hDRfD4feoe9127YZaJwLSeyHFLBp9VqxaOYnkQVGuVc+q43xjAOqgDDaG8IddcppRaLxbyqQgjCyldKhRjrUB+Px6CD9z5CzLIscHc4HMq2MQZVSsmgmhWlNGGk0AKtkPQIBA9TDFZZJAagKaWeyuMQguSOkjBNlRIzJxg50cyAKP4dAjfLB0amDIKeGiMPa0sefQ9htA6fCh4iOhw6pZS1enpkNH5SSkRxUhiRVyX5sZydU+nCzDI+M4W5oS3PoLUW9oeyQ+L75bnn+JHJO2aOTEgyhpOcc1Zp2d7Be61VWZabzebl558ZhX3o6rb7/OUrQkDrYuIYqd4f9of9dn8QX5GymgOAT94YY5Q6PTlxzi1m1awsve8hBmWU9x6MxgTN8WCtXZTFfFZcvfi8KoqzR48JzLFtM+vUCNfK0CWOc7WJogJEUBRThGlIFqTt7LsmhHB3d/erf+7P/9W/+lf/y7///wDiq6ubJ0+eKWXyqjTGaGN++P6HX3zxBVD66le/enp2ttvtAFTi4JueiPa+994fdnsAEHNCIhJpQSEh7vZHZpZm8kcf/Oifn/zzv/gX/8KsLA/1EY2OlIwxhDC1FmOMCMNgaeacHl9fSoknSmMYRtcBUSsl2kDCMiAEo4bBkGnRwlAgfzncvNvtlLr3o6KZGU0VpCEJI6VaDlcBlGGQqB80zVNK0nYGAJmHAoC/9lf+1cXF+l/85q/9/15df/r508//AJ/F6d/Dp//II2asHp2cfPXNN3Nn2i4gaAUKKHACigkBEBJTMtZGSL6NGNNCZw3nNZnkcb+PGYZyVpr5qr7b7dt2bgurdeQEQMQJCDkFYiBgrVEZAwI9EwnKlmWZ1UarQU1vvV7TSNLE0QVFa61Hc9QJAjPGyswKM+sBn42h9wRsrY1M1mRKqSwrUkpgXZblzCwEn/jAJpcoEVGglJJqmna73aaU0BgFuuu6EBIRyIgoEbzx1lu/9lf+8nd/8c9Uy+V6vQb15TGEAQ91/fzly6994+vTeKNk25JISXDTWsPY1oVRRG/CndUDF1/5tdNZhohao6j2ISIr0fxBIpAgZEfrVGMMJ/I+WAPW5AyGckAw67v6b/6tX/9zv/Kt/88/++8//PCD3W5zdye0OL3ftW0PAFC49cWby7KcgWKNBgAP+50zxirb1J3qQ4VKKfX222+3TXNydkYId7ebk4tH3/y5b33w4Y/W2205m5WL5cvrq8ePq9V8ef3qlVIqyxwiVrOqD0P/QNIgSWSlnuSY3HxIaiHh7e2tGPQRpc1mk1Iy5jXzJaVkrZGHI0ew/Kqu65pjy8wwJjMTQJbnuRRdKSUZMPzS90g0pBxC3ToejycnJ6GPwGo+nx8Oh6IsiqwUsU5jjFD/ur6vqirTer89QIKL04uLlHwMxjijndZhetFTogUjJRlRGWN8DPDTgv9yF9NioAdWctPasEqHsQmqjB51Pl73M5RSwEyJEQem/NSV58HSTsHo0cc//RlTCJoQ3un8Ra2dQdCq893uuPMUPAebO1KMqI0ZWLpKwXwx61sfIXjfffL8J0VVzfKKA1BMBMRMSmkARhr0Mcb8DR4khJGIY3wNj/7xd6YQAXncRjDB5QwAYB+4O/Cg4cyKOPkQbDDGgJK7G7aVGkfrpvdFRDw+9ukiYeh8K2WGJFb8ahQaNdI5plwUWMnV/NS+Vjj+NgAYDDNTopSIEabCeyi5fe/bNsbYdX0KgYjmy4VzhhC0Ubfbu+PxsFjO264Tzw/pL0yDd2VZzufzum4jpfHVyLoixIGmVBSFuN5NyfnxeBTJRQFq5SPIY1EUYqEmX1HXtZRMdnSfBxAFDOd903VN27abzebJkyd5nh8Oh7zI+r4/1geB5ATKmbCklJKM3BpjENk5UxSFlPMhhLZNWZblRdb7TilczhZSmzVt7ZzrfRdCSJHkNp88eSI1gsjyaq2fPHlS1zX29ku3vzEKjEkpnZ+fi7NTWRRffPFFjDEvCuucj14pledGEAdmTjHc392GEJ2xfd8zodZa8PqRmpQL6KCtEVWTruuEdYuIWVbQyCiPMU66UikFABmlh9lsJnP63vvFYlXXdYxUlrOmae7u7oTD/uTJkw8//JCIAFRRFG5wSDVd553LvY9ffLE+PW3Pz0+Ns+v1VjhWh0NttC7ySnRgF4tF15vVakVEE2vVCJSZZULlE/qFULBjjCdnp0+fPrm4uHj16pVEmNksc8Y65y4uLrquWS7nSsHd3dZaHaPPXaaU6tvu1fXV/f3906dPAWi32wvNdr1ex+hns3K1WDrnhOz88uXL8/NTbU3X9RL8b29v5RApy7zve+eMc07Kvfu7OwaQiXIe+OOWECYxCu2so1IDAoC4ZgmFUBjKE71OzudpRywWizfeeEMg+8VicXd3NxXkAutL1/Pp06dydgRKd3d3ddcuKut9p1QuEs9lmXdd18egR5mF7XY7nw9T7U3TMGqlzPHYHA6H3fFwONAbb5wURSFtJ2uzw6Fu2965zveh73tlzenpqWA3ooK6XC5vbm4AwDl3dXUl5XzTd8aY67tbDTqldDweq1lxeno6KafvdruyLK+urkIXnHMnJ9UwFM9wujrJ87Ysy0ePHl1dXckaEFRUgqrWWoTaBQ9tmqbM8rLKrbUx+hhjkeXnp2f3mzUI/zRGa63IlHOiw+E4Xy4kTMm5LKtR4CWXmZhUCr1UWFVVGWN2u53wFuW15nm+2ezKstNan5yfXRgzasUoPAy1sOC/MLLyBWcXaE/qRKHBJuAJzM2y1/iJ3J2wy4XxCsIAVa8hPyEbitMPjOoWKQ6saqHYy9azVmeZRWaljEgh39zcNE2az13fi8PBgDlYa1MKsvsOh0MMJBeg1AAZA4DwmkX5IQYxeNDyqAVuHkCllBDx5OREEiFr7de+9rWynP3BH/yB/J4BmxtJuJKlyD/c7XYiBS7SnWJsK2/fjIZbY85MTg+4CjPHlEaRCpLDiEZzbNlBsj4lT5MQrbUWZuWYDzvFYKz1XviHkZnFW0VY8/P5XE4f6apKXC3Gj+jnyCJfLpdG27u7O0QMEadsquuaGCPYLH+dfqPv+q5plRkmnkXuacrSJZgQ0f54FPmppq2nXZxbl80XQ8MjyxKzc04sEOVo0KMzR6Qk70KkPpVSPkXNdsqQ1UDQUTFG56xGZa2NNKg9DDkSgKCP0v1FRCAiSnXd2CznUYbCjnrBMUagpJSSJpwkOVK2POh5EzMnJoNgzGDiJYCssDEiU56XzHw81MAo+gTy9ERSRiKDQJ8yF/LJJ5/sjxtEXeaFdGtkp0htKLdvle5jLxxZM9poIzKI6hwAw2A2qDUy8263AYUCEMmRJLmHQZVS0ICgtFIq+QAAqIeHCQPl1Nb1UWJCCnFshDgehVtleVCI1trHj89ns1m9P+hoBNoef2CYeJBbIAIF2mVqv9+HJig0SvVVVa1Wy6bv6rqedBSk8JRsUMzMmIasW4hHdV0z4cXFBSJK/AcACSYqARGh1tv9zmpzOBxWqxUAtM0wxZXGqS/p1UkRKiFIejwT7ImERjsxy5nuVwFYpbvQgRlUBBeLRVVV7V2rmDjj3veHw8HILJUgsEPKazQh0Ajvjo2RQaAdR73mCZmVFGcqmAXGlbkhUNh1nc0F7SWpohmxbdsyy6c20Sg+BlrDw3gkS1m+bmpehbHSSCmlrs1MFl8PFw+qbdPhQWPxIw90AsfNWEBKO86nwd59arVprY2xs9mscJlEvRACRm2GrtTwEL70I8BlSgnNaxH0PM+ReNwMYIy5PDv/8MMPP/v0k6yq2Nr7/fbHX3xa5JXV9nS5urtb37x6udvtWLEy1hgBmZVhlef5+emZMQY5GaWi97Mij9GHvp0VpQIGoLY+mPncObdAPDZdU++/cfqtpg0uy31IMUZEDSJ1x2SyTKPyMXRdV+aFTEQgKGkRKQbUYJVibTQqreDTn3ySfDg/Pz8cDh998tk3v/Ndk5fa5vvD4XA4fPb8ZV23y+Uyq5brY3c8tuvdVgaWj8cjONO2rQLIs7JrW4WGERB1JDLOdsEbYzTg4XBw1lJK/+p3f+f0ZPXn/71/b6yvUtd1ygxOCNZmSgFQijFSStZoEnoXsx2FBeX0kiWklAKtUoqEQAhd8EopP478yOklP9y1bdN8OXtdfvJhC1f6q9MYF4zT0NooacGJUamcPcJklHg6rTqlFGL81jf+8Nkbn9T1XAEADBRzeFC1xhiZAUdtSu+9MKQABtyAiWMaJB0VKkAkmkSIkJlB8CzfM7G1DhFSIgZWqIToTcQkMivMDBz7oJV+IMgJRMTAogjrQ9RawSR9HgKOw84+RmZmIlRqyM8AjTUxxJCi0tpoPdFRGSDF8TqVxlG2EoDtgx6P1poBUyLmhKNSDaJSAERAlKyxgECUCAEHv6w0gDAP9Ea1Ej13xQxCBRwCGipm0EoDMhElYKON0ggACkVJMHBi1Oi0s8YQUEoMDICstLLGKo0MDAzBewlKA9lQKY1aKQUEgKjM0BJXRmtUKREChpfH/r/8yZ9cb+X/7CIuQ308cAwA0HdtSkRMIRIAJqKu6zSCsUYppRF3h8Nhf6hm1be//W3vfWRKITIMLw5HgImZmQlQA1DyIaZAiAqQE8d0s1WftXFGCaCn87PZMrccGsTUNG3wKfjhdVAKKURmjpwiR2Oh1Kr3ZGLInCqKnBJtDkFzP2cdsryN0IaojAYggsScmJCTRaEkg+KUJuyGmRUMgzyywLz3Ml9Mo1IVjAqAUpDI4aqHSXlMKUUmBqW1Tol9ikorgaW10QK6zfKyazpm1qDrum6aTvISZuq4kRYjIoauH+EpUSFAQK6qeZZlzuVIvL3fKtR/6z/6m+999WtXd/d9CD5EyfP+5CeEMJ+ffPe7v2AzK2f52FJGra0fF4/AzTSKAMCYaUndIqVUGk2HUgoTtoaIA5OFUJzPKIUUmZm1AhncEbVE38lU1wAsNl2tFGrNL199ohVdnC3+k//kb/T+L3Vdd31zY21mXPnZp8+vrm42m92PP/rJ7c1dWRWKVWg8arDKAnDnPREhqxjj4RCWs0obc7vZ9L7PZ3m5Wvzk8886H8/OLkBh27ZPHz3uQ59CWC6Xh8NBJvpjSJQYYEiD+s4LbCHB5Hg8Nn0nx/fq9ETyJO99lrmzszNE7Lr+cDgIbe3m5ibPM9njy+Xy9vZWCrCBlTz+QnliIjAnJ8JsNjNKI2I8/swesyBoapQOPz09v7/faKUW83nwvj4eKQ49jBD77Xa7XjdFqaqqarvOx77r1H6/b/uuaRpnbObmMWYxUIBhqlHxqKgAY1QeXzEiigscM4N6OIyDiDAdH/JmkTiNg/kgAhpKKaWYFU9+y4Dy66fbkXSOgJkYRggVvwxOHVFnBMRhJIoQpGOt0DjT+PZufXfo9mygp94WFjRAZGstGmxC1NaklELyTFRm5Xp7/8MPvv/Nr317NVsCABBnhYte0E8NlMTtg8fhBjP67g7OeABEqNRrO0EAIHgtOCP54cClYBDXMulaTU91Qpz1JIsssiDmtYzGTz10AGlT/7HnM5K2po9iBqUUwjAmPz3S4UtpBJpBUwKGpJRiHIxDjTEpvZar5sHEOyBiGCeXmVksWCVyilmlsmq737x69eputy5nBSoOIS0Xi8vL86Zprq+vxW9N6qIYYyRJXZSPMl+vxTOj73sAKstysZiFELqulRwmBCrLEkDN50sBI5rmaK1dLudEseuavm9BhjStvb3dXl6eCSIgnZiJVSeD/JK3h+jjcfBkFyy4LMu8yFIk6eULj7hpGokbcjrMZrPVaqU07vf7pu98isqq5XKZfJpyFWE6Cz5SFMVyuQwh+D4g4u3tbZ7nE4+15JMv3fvG2NvNOoTw9ttvV1Uls+qoVFGWAq6JWIRECY1qtVjeXF1ba7/51a+u1+v7ey/mb2IXJsqwkQYMXaoO+SUxxt1uk+f5JG0pFV3bthIwBd4S06csy6zN0iAfOfCppTMn1L8sy3a73fn5OTP2fae1Dr0XTmtKJJgpYtpu26LqJNfVWvddyPP86dOn67sNM+/3h5QSKvr000+V1m3bHo8tEcXkBc2U88sYI1X9Yja/urou+17YoMKAk6YFUPrwww9/+MMfyLCmLIaTk5OrqyuFA/Ii1MvdblfMqtXJomkaVJgZ++jRhaBIVVU9f/78cDhINyIxWau9j9Za0WYliofDoevS6elK/AxTSn3XhRBEcEPgpyzLFovFixcvVqvVbrcTQFDOnUAp+cBja03Wp3MDbVbIyJKfiFAGALRtK69GiLqSqAjMKhtBWYMKo49nZ2cCAQuYC0Amc8e2SRRRYYge1dBfF/Rc0Lfc5vf3903TpMTaaSK4udmcnkbRCbm6ulqtVt773W6nAYuiMJlDxKZprBoK4alhLzsoxmjzTG5kNptJaiTrTUR4lVJ1XW82m0ePHtV1fXl2fnHxSDagLKSmaRhBhuXffvvtTz//XOJnlmVi9iiFkpDS5vO8KAqrtNDkEaHI8uVy+fbbb7+nv7rb7b7//e8zc7Uw1tosy5zSMcbdbnd5eem9ByWK8wBIZZUrpc7Ozp5/9rmP0XsvFtCSGRJF2V9CqDw7U9rZpmlsngmMLhaFci6klAT4y/P89vZW2gZaa2kSCKOzqqq7uzsZTlKDPqyS5zASt60onA42aylJG0BQiJTS1dXV9fW1/DZrrbRtDl0tkVzQkr5vEREgEwRzktfPsoy5K8vy9PQ0xig6xaenp9ba+/t7kYdGxBjThO1IxGNIDAOHN8ts3yXpnYis0LQspUSlUcRJRsfef//9Z8/elLxapvr+2OE1gULyfBaLRRdk4pxktE6GcpL3npIQkGOMfewlGqSUnDFmkEv1wr9mZtEQmPqXNFrMTU9eABb5dkTX1Ue5vNwVIvsOAJItCFY7pCojf1FGKIhI1n+gwXuAiJQdhtoHua0YZS9IiUEjEVgE/bquS0yCgMvt4CiO1/cdAANwiF5pDNHL8a0BC5cxs5xlsuqYSMiq0lD03pd55pyz2sjJqLVmphgjaGVG72JhsgOAVVqAr4FTYrRl6ekiACRmGFXaiKgsS+mfEyV5RxPUKEjF8JT4tXFaeKDqK4lH7zseZ7mSRkhJXlZRFFrbyISIhhkVRJ8kWw6BY0gxBcnBJjxkAv2kT4mIi8WMIktNpM0wNT6BJwBAOMjNTfnYwJCQH9OiWAByFrdtSwTOufV6vVgsFIP3Hq3rQxdjlP6upFghBJ8GOT4zaNClosgQWSkAayimtm3BUZbZw6HW45C9MUYzo8G2ra21MNZWErFlesBaM2QLiGWWV2UpZHlrss1mIxBwOZ/JtpVtokehYLlTa61VWulBQUvWW9M04v07DfSPf0VEFPv+0RuP//bf/tv/z//qH15fX+MoLywlj7xrYfNIyjExiScQtXCFLDMEXVWZRB6tB93aLLMeuWmaPM+VE40Uo3iQQc+ybKBQTQQWItKopTCdiig9qkenlMSxBMZRRDXq3EvzQbbfxBo22niliKjvw8TDkizE5plI7qbEdV0n5hFyxsn8RyBm6X4MCTQMGogPL0nCARF5H6Xw5nHek4gQh8lKPQr8T50iHCccpYEwbS2JX0Q8HT/ydrXWaGTKtbfWavPl2s1FNStLf2yPUzEjxoMUohaOWZ7LhtntdpBiCCG27fawLxfzPKti1z9/+are7VLoWUFelCL93seQ53lpq7Isl7O5tRY4OWed1RpZW61QM5BGlZlBP/543JeL7K03ntT18eOPPnr73a8dtgcCHBSIICUYaFNEBMQaVYwJICnR2eBhEFYrAIDdbte33ZMnT374wx++ePHiF77z83/whz/Yb+4++Pgnv/ALv+BTvD8ef/j+B1mWqXIW0eza9urq6tXzF/v9nihaa9Ho1cnpYsVGWUikTrTWum7a1vcErK2tjKaYiEgj3N9t7m/uv/rNb7z//vu/9mu/ZozZ7neAwMyKIYGEfgOJEqUYY/B92zZFWeHIB+xjaLrWpzhVpFMyITtNWCQS2hTDdIQgIjDvD/svfb9iai9rhkbuz9QZFqddAJCRljfffHOKF3EwEM+NcURRtroUsXKFLrMr258u+5QSw2uxDhA+2kTbT8PRLoHejianevTDTKMlpnqgwinfokxGRH3fyrKfnpXcWhxVhKRkTSkZHBKIMNoeTmigUsqnwRK361o5BmZ5QURt38UY294DDINjODYAU0oAxAq11n3fhyi3OThZaxyGjKbLyMzgpSAnCotoPQ5T1RJnFENKLFFIKZVA7jdJwJXLVg/h5lFuWx5LNrp4W2sVagAgTswMk7jSg1hnlEJEo/QgrRMTEaEaLM5xHKmWVvOUbSCiUkZrLdCRCDmh1qhY8dAVi4dDc/jRn1xvp0vfn3W12QbfAaXoQkqpbpuWfUpsFLBuNCoFKncZp1SZOtpDbDnX8fxittlt2TGPllk4cg/ltUZARSmqIGM8kIgTt4GszuugsjxbnhZfefbMKSbvlYa26ZGVAgmbGhV2qaPo++h97FmFzNg5qsxT7FuyirFMqdn3gTiVWdn2de27wpTWKqLIKREpmjqITJhG/wBihUhjYoTjYJosb8ngJcsc+FPaSaYyEd8kxVSoGFSMMdBrJz2TOWNM5/vUpsOhXt9vmmO72WyASFgtjx5dnJ+f9X3fxzBUm93Qjqqqedd1PLjHYF3X6/W22dfX19cK8b/5R//of/Gf/qfGZpTIFfnxZ8DNLs9cnolo55QnSX7pfW/MQKbjNInlDg152R12FK2TYXBrbdvW8reDd8fovV7XrdbaWqE9CgQ2oGzBy3rQSmmikChIwt02B1T4+NHZ8XBblupQX4XYaY3f/PYbiIg6+7nvvF3kc2vdb/3W7/yf/4v/e5GX1ujN5t6CrYqy8z0zahGHVqrv++evrt59600A6L1HnVpfv3j+sm37x4+fjkm54hRD3xujZmUZEnVdsCZr+6RVJCJnrBklVsT7S8oDtrZpmt1uJ7mKiGnA6ACBiMIOmM/nKUX5LhnDijHJaqnr5s/+2T+rtX7/gx/KWSD1OQDICHD0IYSwKpZf+h6RWYiQh8NhuVx2XSc2g4h4d7s+HmtllLU2eE9aX15eFEXB/LnServdCj3KuXx3PGy323leKcDLi4WEcaE9MjMkskoLQiehEn9aqhse6Fo8wDdFmGHwZkBEcVNB1EQxMWnReUSFqBLF4UsZpl7OQ5SWR0s9HBQV9eSjO4WUMX8bUewh/ClGUIp9CHVdH5raU0CrTG588n3XmVjs4sFaTZyUguZY54VTCpkTAV3fXnVd99W3v/bOm18xxtR1rcCO16BEI5iZReJj2DJj3csDkeS1ZGTi12rOyDBdswKEMSoCMachbQMAZkwpqZQwyzgmIlJoJn43jIUNIGulASAx4wOl5ukRqdFNkQYCxOjfSBNerwbe9fiQmdTUSgZW49Xyw5wcRx1bie1934e+996HFL0PMUZkcC5zzhZFMZuV28P2o48+2uy3KrOHwyHEaIw51vXhsJOaqswLeaDCq/JN7b13rjTGMCfBUISBK0Tmp0+fXl9fy8CvHl3Lj8edYDda68vL891ut91upSsjyblUTVlmQggXFxc3Nzcig6vGWU5x2thutzGF2WwmpCqRc1WjUMaQemk0VqPKtFHaKKWx7/uizJU16/1mPp9nZbberZlZiDVllsfojVEi3oqIRANL5v7+XhSEh1G5UVkihLDerL90+8cYBFa+vb0V8UBh4BJRZJLiVuCk6ANaa5TOnbu4uFgtlpkyu7t1Yrq5uz09PXV5lpistZXNBx7cfsg/JaoLDgtjgieYzqSeDAC3t4e2bU9PTwWAPj+/PBzq9Xot8L0coxcXj47HozGGCIgAkd955539dtf3vXP5bncQyOji4tHlJX/yyfMJlXDOGW2ttW3b363vL88v7u7uU0pfee/tpmmOdS1re71eL1fzoig+//x5UWTz+Vycl5jZe//ee19hhMPh8IMf/ECEdGezWdMcFeDXv/71/X4PCuXyLi8vZdqaKWqtq6rUVvV9KQtM2ELWWt926/XaWosMIqKy3e196JzNnXOoVZ7niDrLsuvra2ZSSp2dLUQb9Pz8/Orq6vTkHJBQKcnxiOhwOKzOTkUuZrPZ1nV9efkYAMRxjmKULq/IegCQ1i7P8+12K/xoRBTkSD6np6cvXrzQ4ySyrH/RMwGAyGSIBIN48uTR/f39drvX1mRldmybhTUhelFjEOBSa600Jh+9J0kYFOF8uTg5OVmv16zwO985FzldRiiKYj6fN8On+9pX3s3zvAvee98e6zDyc8U+TrLfqqp2u11WFCNEO0wq29ymlLbb7Ww2Ew10sbw7Ozur69r7F1NbC6xdLBZ98EI4ld6VtAoEHxBA9vz8XNIVuXdnrEw7KwXVbL5YLL744otnb77x6NGjp0+f3tzcxBid5RgjIskKn+g+zJxlVuZKhXCgta6q6vLycr/fS3Q6OzsLYdDSOR73WZaZzIUQzs7OQgj/9t/+WwCQLoXIaMjay7JMfr+QlIf6bkR8RAZ6Xx8lEIUQlDISRc0o9SYpq8R8WbTyhCXCSGIpEUY26cT3zPM8JfY+TtP08/lcHMzkqT569OjVq1cnJydFUYjkt1y2tHBkHkJMLAXZl42jDU5VYVnmiLhazSfWuUTXMIgnuPSA+SHfS0R/9Ed/JIWDALJyj3JJUmamcZrBOdf3PQFrQDWiyRPhVwHLj1lrY++JKMucMYZGfE0UeCXnEQBHoFg57OQ/uq6zxg3V0xi01ciSFHlQq41weFvfyzdOmYycthO2KCs8hIBmwAG2220M9/JCJ3QIkauqkrGbNKoPEzEqtNY6raSFyczb7cb73hijtZI/qbs2dQOOLKtLSLIhBDnZJ11deqCMF+OQqCRIgDibzWIM0qmCke6AiNJKgREZkJua0FtJOYwxesQEZB3mzk2WJ0QkCrFSvfIDIr8dQe00ypuI7rMd063hmSuw1hGRRauUckXuvZdRMADous73QQKXLJgJl5Nf4r0XPaKUAiICsJyebd+llPI8N2iEySoEDrlISK+7+/iaAZAIWJvJZZ1PTk6MMR988IG19mR5KpLQMiUjB6jUFNJmk20+PniaEKRslutx6p31oC0sXnmIWNdtCIOYQWZdHwPHJH8iKtkS8S4vL7uui5FkKsvpYZ7AWtvUnQzE7Pf7cZUOqaksY8myhKK02d2X86F3G2M8HhsELx2jlNLt7a30G6y1TXsURYcY4yeffHJxcSGPcbFYiNmDFNoS9plZmlVE0La1dIudc2Wei23sZrMrisxlw+1nWS77qCzzIjMm0977TbvR1ljlQtfrQkdiI51neQTyCkErVggE8ofMLJx5uZoYo9NmKttE8UDMVSTKS6yUJTLhwtpmsg1QqRijnvjzDJL39H2PIxE9JRLLXQF3ZNhh6i1Lt0dO38HSuo9y8WMeP7Ch5fqJKM+dIGIS2eW3yc9LGscKM4DpzyV7q+taaztgE6POPTMTChLH3vsUX5POHn6yLCuKIjHH5HFkhctHax1DMMZkxjrnZrOZNORYsclctZh3bdjtj/54NABVkRWzwjirrZW0KYSgiH3bCUgAAEZrg4ohIYPSSsMo6KnMzc0VojaWFyenMcEnnz7/7ItXRTlfnZ4vT1anZ2eouIix77vW90Kht9ZC4kAp105pLeCMRmU1fvHZZ9//g+9dX19fXl7++ONPFGDXdWdnZ0eNv/2v/w1be3Jy8smLF5g50JoAdnX9z3/rt0MIVV6cXl7ICWqtbX3PzAiojQNiY+yzZ+efPf/iWNeM2hlbVFmR5bOy7M9bTimE8OEfffDixYsnT58ypK4LiYkS9zF4H5mZY7JWK6WYUkqp7nsauVqSysixJAiF4AiS88mymdaMkI9kkct602r+pe83jHr8kqVNv1PrgRUbh9GqTCnVd172xbSMp6kE2d7w2rhJKUTDo/XB2EGVfTTV2NbaFCfzKMVAEwQ84VY4WlXgiLTKJTGiUgYAJJkWqtH0uKYdIecrM6WUkAYiv3ngMSWVmNYaSU+5lGR7HAkAjbZlUeVlhGFwOPBotyoajt77BFxVVRdiikTy20ATkRC7MmdkZcfoE4kxIwIAK4OISoPGwScNADSgmMuNkAc8rNMm0ARGnXrB4l8D/Uop/fpGUkpMr0GW6dTnca6fiDrfS9lMMsdNgCi/bWhpyPdKCJoenRrb6UPnEAASMCclIyPpyxmUKcXDofZdp5AVDyT38f0O4GOM0XedUijsxPl8fn198/HHH3/3u9+1o1cPPzB6nU6yGBNSgoFjnpgYlXLWGYT22BWz+TtvvHl5fhb7Bnx3PO68j0ZZDTpxCCFYDYDctk0dusBRY8qNrvK88Am7gIooGWVzQuoJqzznY9f1vTcmz0sMnpmZBXQGQugpZsYaY5AhjUcAj07T+/1eRjJp1JCS01HQB+FB6FHImMdJAq1172Pbtn1M1lqxlSuqar1e//4f/OBwOCBqBOVMppQ6bA+HY4sIeY6zWZVlmbLm8vJSAqNSKoQk2UkfAjOGEDabnQY02mY2Tyn94Ac/+NZ3vvPzv/hLoLDzvbVfLsLAI21E/Nxo/MCoAECj9wAyGDMcYbK7Y4wApLWRydPpD6cjWA22pcpaa00hassyuxBCEDOKqpyLfBjCEHCUQgCiyHlWdu32vffeffWSu26rDUXqQEHb3oLCvFz46H/4vX/z4vn19773PYGzMc8AlNZaa+WcM5lr9ztEFJjMe787HkRH22j0yc9XS+b97e1tVZTW6hQhpdgDb/vO2kxbZ7Q7HGpiXeVGjwIjkgYJoyel1DSNTwPLXizIjsdjSnEkEdjZbCbcIuccwDCjCgCz2ez09PTu7k6yiJubmzfffHOxWLx69YqIFouFFG/L5dI5t7lfA0Dviy99j9bZ5A/a6BijEJdevXrlnMuzctput7e3bqgqe0Q8PT3tvRcEJ8XYNE2zqzWp0ubzaiYvXf7tWCqQ1jqFyFIoAk4rHABEF2v6JzBCxkOSykPRorUGRTA0MIb8PsZISmlUTFJ3aRnAkkVFRIwgtNYH8Ovrz8PnQON4I6BGrbRWegRYEZGYEnDTtdqqwlaee+K03e/yKvc+rlZLrTVqiKn3cgUKD83BoKHIh8Phg48+uL66/fa3vp2VRTjG6TblMogI4LV9IiIqraZwl8Yes1JK7IWna57gWqDB+M4Yo1FNfzs9TB7pNtNJDa8HRH7qOYzXA1KuT181HSJySSJ1Isg1AChlaJhA0pP/ND+wXgQA6cmpkXUuaV6kNMHNU1qbkpgkERGJEnfXpZRSnhfGmJOTk9Z3YJF8AsV950MIvu+qqnz8+LEC3O12zFzX9enpeWKSlLvtuyyzUieLnq+E1uPx2Pf96empXNV6vY4xSmCRsm2YDh5tURAxy533Pob0+PHjOFrbVVWFyE1znM1m0wjn1dXV4Xh45513uq6T4lCeal3XUxNFCmPBu6VWr7s2r8rcCHS4U0rJuLe1gyuOgC8CFyJi3zfCsJabwrGnfqwPxEkrk+e50V+uiYSohAKplDocDsfj0adoMie//Pr6GhWIMOV2venb7vHjx++9995ht//ev/k97/1h3xwJikKHEAQZvL+/XywWossheJ8oLCul8rzMMitJ71TvnJ+fP3v27Mc//vHhcMwy2O3icpmWy6VIOsznc2kP7Pd7NTIkmHm93goPWn5/3TbIQJTatpVHcXl5WRTFG288Ep0R51zfBWuwLMu27QDg7u5+t2sl5M5mMxjnDh89elRWed/3xqiu64Vswcz7/b451svlUsj4xpizs7MY4/397c3NzZNHj7/xjW+8//77ne+nc1C8j6wZgAwhyhFRbBvhzSFi37TyrKqinM1m9/f3zHB762eVjwTOKVFJvrq68r576623JLZvNvfH41Fr/fjJo83dzjlnje5GsSYAWK/XIrX37NlTACVlstyIQSXE3idPnhDR8+efS900HdlVVcoop9Za2PoXFxcC+gPAfD4XUEk2bKABaqyqSmZuuq7N8/zs7Mx7jwpiUiLWgchaowhzA0Df92en54i4vd9K1vr48WPR2xHYPaR43B8EhDXGPHp0IUy0Y9vIqScLfrPZCK2bR29PV+SCXzDzbrdTrLz3CZKk/VMZMsLxGyQuChDliuPxSDE9ffqUgNfrdQhBbCenQL3ZbISjJ4fybDZr214pVeTFbF5677VGBbjdbpn5gw8+ED2W2Wx2bBuBtxQNtslZkVtrOUZEnM1mzCxpsGDNbdt637Vt7X3s+32WZdZqAWSZ07FthB1yf38vRnmnp6ez2eyzzz7jmE5PT6+urmTJScSbJmvlNolIPA+Xy+XdZi0c6um4FzxXaPvyGKWoRMTNZlPlRZUXzBxiZAZlLADOy6oqysN25703xgFR7lwMtN9sfWak2RZC+OSTT7TW4gO53+8F8BXYSOAhobEvl0tZ5865+thKCSO1cEyktbbWet8xc9d1lIbyYYBoEJumVQqlejWjcsJENnIOpGtIIwVEKSXfLoXGgHLE6L3P8zzFmFunRzMkHi2+JFEXeEcpdTweu6ZdLBYyFCtglOiby89Lwi/voum76+vr5XJ5fn7eNp3Sr4FROWsEX0KAIq/k+U+g4fX19dnZ2VhQs4CYSikxJhWHZ40gIkWHw4ESC09ffoMZLTTW63XXdVVe0eCkotq6UUqRgrZtUhoUXHFU1QcANHq5XFpr1+u1LL+u65IP0+HVt11ittaosVsvkm7GtoUbsGkj02aUIr/2kDRGyb1n2UJ8dNVIqhP0gJm1NkNdj8jMbdvKe5efZx5e8Rhph8ljOXAnMFDeu5wI8s8F+tfKCjUekQdKtTVZWRDRfr9fLk8k6MGIy6VRCFtrHaIXxoasK0QkGkQ/QgiMJJm/rMMESS5jeHop2VEVcGq7Cls0xujjoMSitc5zdzweJbeRh7NYLLrOh97LRFRRZJOCloS+aftLuJaFKumKRLMiK621oRu8Fo0xVQVTrS3cfOEy7/d7pUCiMQDUdR1CKIoipSCsu5i8bGeRRBNTemWNjIzILciZJU0F4fvPZjMfvTEmEllrL84vxAl2NpvJV0zGgNZkjx8/cs69vH31j//xP55XM+l+rZYnZVl+9tlnzCwFtaRGMpojvTMZ/pA7SnHXNE2WWTmD5FG8fPnSGDOfz733PvYrs/Tea6MlNS3yHFzSDLGO5lC3RujG1hilLWJMHilprZUbYo1icNZpQEjEqCNB5vIQEgDIGFfwXmKHdBfTOEiVUmJtpF8NADTKYkAa4DOJVkoBpaCtISIfSGsNqEHpGL21WeZcjBEghS4wc25znevZbOZEywmTMuZQ11luTxZLiftSG2SZNM8sIgqdEMCysrP5PIYQY0QahJaYeRz6eI1GzcsZM/cx9DFYa4XIYhAhJcVg8IHEwE9/2r47tkeNbJwOvfchGuOADaOmZNquXZRao6LQWQidK5zKP//01bFpj3UHrCCByUpnrHKqrBbnZ8vMakQyWjfNse676OPxeDe/uLTaKE6aoe8jI/qQlMUYIca+7/dIbK2NqOnqIFN4n3723BiTALMse/uddx4/e/pz3/m2ywpW2HWdtgYRk2IVyCigkNjgoW2t05nL7l59/uJHf3R6evrL3/25tq1/+OEHxuaojZotTOd/93s/+M53vrPeHFNKp6t8t960TZNl9vHpee6sBA6NxncBjUkhsFW991WWf+UrbzrnkLvNxjRtT6Hf77Y33s8WC9T66RtvvuFUS/Gf/rf/+C/81V8/+B6NzV1BsaMYgVKkRBRZ5TrJHDCnxDKpKgusPdYC0mitYu9lqSMDk+LEFJJSylkrQvgxRGSVu0JpmFVV23453Ixaa2fH09dJcaW1lomTlAgYtTI0eHxBSqMu2MDHF6Eco7UFGDpvzKyN0lqHlLpaxsqUsGsjUTamszSKzEwTjotsLpB3WRayelGBts4oDSC0YlTKuqLQWj9//ryA7vzi1EL0yTtFeZ7HCJ2PfaJEmAC0MQoVMilMgIkYFYIdhD5fE+uM1VprRcN5Jvx6jYxOEYFxRmutk/IxylPC8ZDTDIyorYIUEVTutAfPenCSkR6v9x4RxKuNesKIU6WNRolLr9KYEmsYNFjl8DLGsEKiSESoVSKSUC2U+QlQVgwaFDFpZZiZIwEoRuVjIupwHPgAZgVgtYYH/duQ0tCTj7FvG4U2yywi+j4ASnd9aEiokRwdQjDGaa289yzFSaQ+hEwEUkIyxiitAn15+0pnJcWtIaAUAsfGex8jaIcUjFGRElECgNw69imA9kkRRbTm+dWr977x9aLIQwjIYJQlZoWGtCJmhTqkqNEEUB5QUyxQaw0dgNfYRwXBLDrzdrnM+o5C19b7uq7znCD1ENiiCRGaSB1hAxAT5GgN5aFGcnRWwLtpt6yvXp49UkpxItD5kYrosni/zVEtFoa1wlylwBSD04oVE1GKHANqo1mKJ1QhRKUCM3ddX9d1SilROF2uLs9Xbdv6TjujFChRf2JgZCICaa1necnMFCjx0KxQ1hTV/Pbm/l/+i98hUsvFuXO5bN7NZlP3gRUS6c0hrfe1Vp40f/6iTj4gsNUGOeXaaoNFlp+dnVjIstW51vrYdFmRIyL69IPf+TfPLh8/efttRN7yl7ObKRFq1fW9GhWWpBclGZ7wgIYfZRjEZmIwxnBKXVNXVYVMClGPksS5s1oLbSFKNwGAU4qIhCB0ZtZaGyPRuFcqwAhpCUYdQwyBQPVFlpXF4u5qPc/PVVD73a3ihcsUtYBG59WJ08Vv/vP/6nd/919neXFWnSUfd8fGZi4GBDRZOet8G6LSzmiXtYedy7L98VAET0RzbVCbspjNTSaGk4OasM2Yk4/cdIeTkxNjOQdkAGeHto2kR7PZbLU8vd+stdZlObu7u1uerAQlFFuzEIRvKFSL16aRWusYEzNobeq6mSCz2Wyx3mzu7u8ZkpySorOxWi2Xy+XxeOi69tvf/rZ+/uWtICZgxtRH0KrvAzGXVUVE2ipr7Xrbu6gx0aM3Hh0OB2Ot0nBze2utnZXzGCMQOu2+8t57j84vnr79BlvV9o3WWhvUCWNk6X4lYABFgSgQDDMWOnE0WqNWMUZG0EprHBoVwAwoXFnhfTCiAo0aDfYRiIAVsAJIKCI7MUUfDSrixGkozEAowJQ0KjCGBJIG6eN6A4NPPWiFClNCVgpQZ8YoHIJ5kRdd7MAgKfzi6uWhP2aFI0haZcl3y3xZZmWdWtQQkjegfRc1Zn2XiELf92VeLpfLzNjtdnvs9pjFb37z5+blqXADExOCUgZi5EigUP6EtNLIgIkUKQ0Y9dDqYyJk1KyBAQgS8KiZw1opYwzFiMyRhxYmx8SMyMAxMgAqY3LERKSitkYZTQAKFcWYYlI4rDR4LSvHYwf5td6ItTaSKMdFZgANCo3WWimWdFq6lXKOMySxGAQABNBoAIBTIqbkh8owUpqYE2J8ZK1NFDhFbTjG1HlvdMaMN3ebFRGhan3fRu+7PkQihNya5WpORM5YAGi6FrUyRtvMbXZra61zxhhzbOrjMQAMDtIACQCiT5tu62ymQAcfmNlq0zXtfDn4axGRADrMLAL3KaXjsfE+htDLvOfxuM5zJ9RCIipclhnbta0xZlZVxpif+9a3r6+v33///a7r9MIwszDaijwjosQUKHkZ3qVUt03btm1bM7PUilcvXs3n8/OzC6VUptlTH1Iqy7Lu+qEVYbIqK69v7+RMj2lQa2FMh7qZFWVKaZmvvnT7G6MXi1Xf90L/0tqeLivFqqs7ikkRA0Hog1FmsVjeh3hzc3t2dv7kzTe/ePXq2HdRgwJ49uyJ1loYhMJgknbXo0ePlsulxC4ims8ra+3xeCvAn+RUs1mZZTbL7HxeAoDCpiyyIsuvX13Nq9lbb7z54sULZBDkGgCEylMURUpsrfW+/f73f3x2UlZVJUTUrvMiezKbCaWdi9lytVrd3Nz0fX93dyfzWsdjAwpCDz/64NVbX3nstCFmRB0j3VzfUQqnq5OmadZ396vTJTM453CO++Ph9Pz8yXy+2WwE3Tgej8dj+rx/IbhPkeVCcDs9PTWnp3Vd68zls6ppmnqzHls4SnoYMuz8+NnTtm1v7++2+12WZY8eXxBRWZassO975xwhIHJK6bDfKuS2bZ8+fdq27Xq9rhbzmPzubiPcUpkkUkr5tuOYrNKzokTEtmkUpW9+9b2bmxsRzUSgjz760eFwyLJCHqbWtmkOZZmfrBaUQn08PH70OITwyafXjx8vLy4u9DhTK+CdEFHn8zkRZcYi8e3VLTOfnl9Ws8IY0zQ3KSVUqJRKEYIP1uZaOVKokJZVoQG10svFzHtfH1tr7erkJITgg49iGEfEMSCl5Htw9nDYbbf75XKeGQ0AZ2cX6/VWJgkEK7m6vRGCS4x+s7l3zh2PRyJ4+vSpNHVioCZ0zrnl4mSz2RRFQQmiD1p3RbF8++039/v9H/3Ry7b/yePHj51zoi/8jW+8Y7U+No2cZfIVQhGQAbUY46E5yBxA6HtENqMckLXZ7lD3IQGblDjPSweq65o2tIIKZVkmQjH7/Z4JXT4YnS2XyxCitdl8nsZ4qwINE5OiCiVAUteFZ48vHz16FCMtqsXueMir2XwlshWw2eymGC7Jp3aWFWZl8fzVyz54B8oAEgCDKrP84A/OWiIy2kAiq2xmsr7pUaHSyqC5vrs7PT0py7JrfK5zYV+BVl3wIGzK5JVVXeiKvFqeLkPsiSMitl2LSgt9arfbpdEAU/oiWtnFfCXIplBzlAIiOjs/2W63Aqkj6iKfx+jbPiilGclkLiuyKefJnWNm+TqGZLTpfSscIKXUuPsoy4a6VTA44YLI6SbkD2kAUEzRB6NBKWl6JuYkoBUOGl9GFPSMdYgdI4aUiJIeHAi4bWsRNCuKzDmjFORV3ve9P3RKgVKAyNqA1ur8/Fy04EMnhqvQtn2MUDd9jDDz3fn5OXrOXK6VmeZX0jgBKYTQzX4XUzRouuPo0Wdcl1ptlLR5RKhdMXj0oQ8yliqwbEopUizzcl4tr6+v68PGOFtVldZG8D457Mosz/O8q5sk49SAgbhp2vl85r13uUspgVbiFxpC8j7OZrNVnlutu67t+z6lkNs8jI55AIDEoQtKqcABLBhUaActF8E6fPKolAB0NAhZhJCSc07IrXlZipaA1koxCwlXRn6l8Cai5thkRS69dSmi0egueM0cuw6tNairclbXdV23eZ4jktAvZrMZc/J+GDIGAAYiTjEFpVRKUT/wYLCDzgkqhSmlxWLVhBYAQbHRhggJSFkDiPv6qLV2RZ5SCj4xszYAoCj1IfRVVYFSckoCQNu2fU8psTFutRiYvLl1SEkrIAFkrG3q+nA8ykwAK/QpZibzMaBWRZ4NpD0tc9jAkYKJKSVPUVE6ts1isRCig0DhEmrQoFKQ567rvHNWFieM6qPO5VojEUWixMjErDCIqgmT5SSesWJCx5x81zujyjxDTgDw5MmTL774om/btu3Pz0/n8zlDIqKmPWqDMgwBAAAqy1yKWPvesHZo5+Vc+hliDIuKpZHjQ0chyvEKAClFYp7lM3O66Lqu70PXH+eLSkSBRrWffjZbuMLFGI9tFzEig1FgrdXWJKSUEhOARkYwWrLdBygt4yDNTiTMSuidK7NcokAkCCEgs+QisgOP+4O0ynn8pJQI5PAe9PInmgkAyEMZWRskZ0+e51lZGK2mU1l6XDga/uCoFyMt+q5pOu/lFBcahXTV5LxxztE4IppSUtoI7hx5kCRnZqX0ZInTx0Eqcbwv/3BaB8YJBWZG4unyvjQH9V1f13WZOa010WDG2nsPoJreAwBotV6vFaZPP/10t9menJ5bp5ubmglSSn3XVFW1mFUUvTFqsVggJ+97QFydnPV310appmkSc2GzFGIkMM4xQgKUShGVAsbO+z5E1IYScIK+l6aiRebg0/vvf/AHf/CD3/iN/+6X/syf+YVf+sW3v/KV9XrNzAnEyRfzPIvIYIq2q+/bpu/DX/lrv44K+hCvb++IREeYjdKPLx+llF4+f87M0ffXL1/FGM9OVxdn5yF6jimGXisVYh97DxGsUaltrTaLeZ5nxiD8/Le/Kdmn0fb67vbl1fXV9bX33fXzT7HMyJgf//jDb/7iL2BW5DZr2zaFiJw4kXE6yzItckJJ7IlEKHO0SEqv52eFneScM9JQComF0PRAQ0PC8RRVv/T95nkmvOapvJTlNAg/hUHcTSk1CisPjAB8IMug9eRp+1qOk4gQldZGxBBh1GClB+6UE79Jvj3PHI7TRmock+GBiTaRWF/7WX3+4YeH4+78/FzCnDEmkiJmbQ0l0KMiBw4sfsSpXH8wjDztXDUOIk0PeSIxTXeHI2VYUhacrokJABIPRGOjxB1rcOtOI/HcOacswOQ/yzJMFJumUUpbowWK0loTgdYaDaYEMUaC6V5wQn7l/1KIEz1qogpOVyUPdlIaoQfK1+mBZ5d0O5v6dX6MCmmcJsNxHi2NPPQo05opSUaoxvnNLDPSMMA/6WoFAADBh8Q9hR44Rkre+z4EBXq6PLn+QKQSekra6ONx75xrmub3fu/3/vyv/Iq1NoWIo1+vBkwpSbsihARASgMSJibg0TiUiYM/Xy1Xszm2+5QGu+SYPCqOSBxjIPYpBk6y/lMChZQIKETS4FCXxi0zkyAdfdeTV6pqEQLqVhXHDo21GL1iZqSeotYG0PbeJ4LMumkHid/31BUnouXi5MmzN6qqSrBJxECAqFGL/Rca46Q1QkSSLkMihmS1LvIcDL68evW9f/v9PkSFtg8RFRXlbLO9b7peaZsXFYASH45IkKgflwd0XaeA7MwCc1bkylgZh4wx+nivUVVVZRTcXV1/8P77JxeXYL7MqQwAAAREQMSU4qQ3KlFFZmZfb/YHU//eewUgXfeHbV1pSk2rlMaxBiLSAH0Q3dUh4MhJLfQi4c3FGEQZLcuyPgQi6tu2KAqm8NlnX8xmeV4Uu/2OFWd5vju8ysv5G8/evXuv+eCDD+rdOs9z67RGl0LovN/vNuWsnFlXFnl/PKzKWYJ0d3fXW1+W+T6FLCvK3BmbQ6QErHw61nsY+YbMnGW5tQ4Ssy20VkInL4qiKkuhS9zc3AgF7OLiItAwX6K1jpQQBzEuGik5WZYJI6CqKuE3WWtlvLdpmtPVmRhkGztojMjCkyljRDw5Obm/v593+Ze+R++7Y9o/fvy47to8L/OiEN/zvu+fPHmy3+8/+ej27bdPRWej63ulwRiT57mo8bZdd3J+IsnP5FKo1GBykkaKeghBgx4WgBnGy2QBUBqMK/CnFTamZSCznNNpJQk9IgKKUjOnRDLQk3xIHP/YijXGpMHp/rWfj9Y6ITMgMSsxEzDaskZlssxK9yvLssTRGINOibpCT56RXG4lSZO0Xu7a930dAgCcn5+3bSOHqQJV13WdqCrL3Lqu6370oz/6pa/9inFa3qxkqgrAahNjlKH4odOCiIiJOXECAPVTgvVykCUAPR6Ur7NWOYZItAZAyZiL/hOWgzz+fyErDP8EhrDDzNbaiX89HYUpJWkAaK2tdUqpFAeNoz/2FZI2ICKPlo8KRdgME5NIeKSUZNiTR1nqlFL0oe8DKo4hCdev65vMFd53eX75ve//4Cc/+Rg1kEYiJgTiKHDwttnIFwmzOD5w+SOix48fHw4HAadEZFApZZS21h6PR1EbFMxONCVkLhVEga3vtdYxkvf+yZMnx+MxpVbSfq31crnMc2FsUZ7nHNNmt40xnp6erk5OmqZ5//33RQ1QEmljTO+HkYW2baXBPBkPLpfLGGNKMq+myrJ8/Pix977tGtkgkaP4zSplhgCIWoyjJfgAKOYkMq9d11lji6KA7kt3/0B+XywWwvIWkKJtW04kT0nGV4UsVpZl33Y//OEPxe1QWMyscLPZiIy+c05rniagJwd5AHjy5EnTHEVDwBgz6b3Wdf3RRx+VZfnkyZOu68qiIKLPP/8cAMTzSkKZiJtN3DQB4Ky1b7zxxn6/r+tGAohzeVXZtm2bphG55MVi4Xc7YW/VdZ1lWQhJAu/nn3/uHGvruq5JWp+crIjI+26z2ZRFprXO89z7rm2dtRkzy0iKAmjbVpbHpAYQ+k5SIAn1IcW8LFJKMq6+2WykGB4HBNOkcyJImdY6y7K2bReLhVSCRARaCZgiss5ZZqcysyxLRHz16tV2uxUhVAmYnJJSquu6y8vLuq5vbm4ePXrUtu3xcBDc/80337y5uRGYz48kTRg8Qmi1Wt3cXO2228Vi8fTpk/Pz8+fPnz97dip75OTk5MmTJ8aY58+fi0yKUMlw1I2U5d227Wxeis2jtdZlViKwMNpEuFy+Tghu5aicoI3hB9N7shOFPVqWpVLmcKjlD/s+xBizrNBay9KVu+66buhXpVRV8xBCSrxard599927u7vr6+u2HYRuhAcnUdrOZoLmi1TI2Znz3ks31xiT5yQstLbv5e08evTo7u7u6uqKiHa7XVXNAUBek5wayMMQc1mW2/1eaLZC98yyTKeUZVlIMcaorZFESOaZQgguW6SUfNuVZSnnuBhCMg/SDVORQkSCGBRFUErVdY2onXPn5+dCG5yYkjI5J8zQw+GQ5zloJRlFH7zNirwoZPtXVWGMaX1PRIaSsmZ72Do9qBnImHigQESC6EnLQUKN0Amn6YoQwrHe53megQ2jejKlgfL5x9xKmqaZz5aS72VZlmVZSiLbMgydxyBDYGpAWhWKijixqDIMfgCSDcqddl2nUVEHKfk0+iJMB9z0M/Lz+/3ejLp2zCx84TZGTmny+oqj6rEEzDFLGRiH5+fnQupEREkPEDEEzyMb2jnXBb/MZzHG+Xwudn8S9nEUOanrelEtZInKOwUAxGHMV2hJq9VKbieNEsAcB/Zubp1Iv8r1S3gpq0L4TzTOuVKI04EuIz5T8gzjHEZRDcSFKfGW7XB/fz/xo4faVmmtlbV2sViIQLZPEVg0GKP3vm1bazWMw1KymJVSMLq0SVTc7XayVuXEkV/F46SatP+lMp3gDhi91mBkBPd9L4zyqbiQ5x9CkNq/7/uiyCX5BK3yPE8+yNFZFOVAg4u+7/uUlB0VnCSFwFEBTJA04Y8LAmMeKIXKH8IYygwqaajMZrP7u433PnPOez/2IYrNZtP3vTZGNqk82LquxfFPrCDkZuUbc5cZYyhE6YtINQQD6SLJrSmllFZTBTFdj9baJz8cqcdaoqtzTgFaa/f7fUppNV+EEITvLxmFrLeyHIAUooFuP0ZmmOBECaEio7zf77Ns0PiVGBhj9J23tpf1JlYBEq6VGuQ1BAKVjeb7OLHF9/tus9nkeW4dxhh3u105m/EokiPwxcDFXiyappFQ0DRNTFEECfO8PDkprq+vJdLK6IY8q/l83oVONn5SaWEWyKlzcXfYU8tNDMU8k1VnyrI87vcAgMiRgjEGFcr9uCInohhD8iFqI4EghEGPQmvtfSclmYw5SKRTSqGIc8t+QLCjPtGwvFAlxZKjj2+ilPwAAJQGY7QmZGalAYBSCllmZ7NyyBdjTCkBsNaqckXfhSlQIgzKJtbasixFzlJKpjwrZDtFprZtlUi1Km2Mkh7RNAki8Nl6vc6tm8/naPSkZkAUZZ/zoNfz5XAzPsDgjDGA6L1nUDEGAMisCT65PEOtPv3i8xCC79unjx5fX92GtieCPHfvvv2W975rYLlYdF13spwrhbPZjChmJgsh5IVte1+WanVx0TTN/d06pCjrO6QYfEpjWQicUkoxkkTtqqqKqrTAVVHlZ8XLly///v/t7//Tf/rf/93/7f/m2bNnWluKDROv1+vVajVbnRzub1IMP/rgj9br+yKzt7e3mOVdTJ4SpAHU0VrPF4uXx6PVyhhTlNXpyRKIKYa+qREgdK3SUGR5VrqTeYWIp2crBfjmm88W1YyBUkpvPnuvaZpDfXzvnSfe+7u79Q/e/+HFxcU3v/KV3/03v/fBxx//+IMP/vL/6G+stztg0sgxESBp7ZQd1H5RowYNTA/hV4k1stJoFDFQWcajYywjTI+OiEKKxlltdEyJfgZUJKyl6XdqPUhzSPN24KOlpIjkdEd8LY4MI092Cq8CzDIzEwu8aweFjdGaYCzyJS4zMwNN411yR3ZUH8ZxBFsSeiIOMcYYU/JKlavVyn39a7/5m795fn//7MmT29vrtg8pcTVbvvveV0EN/UytNXEQlXa5qgGcHbjYKHjKQ1QLwE4Arjj4SeYKSiEOUO/0ISIAlmpfa5PnOScSroHskSmJl85n8qHrOpHGs7kjIvERijFldipChFAM2hiJtqCGGj6EwADyxGQX5GUZRxUC9cBhAEZbrek8nnIsPSqiTNXFFL5eH96vRT8HNTcYsGkdYxTUb6qZjTF6kNkZT2JjfoYfGUuGChxlSlqP/H0RPBkaKykRoVJGyvjIpLVer9cff/zxN77xjYCRiBggxqgRlbXyBi0CM6LSoBBSQFBGmwxsFkNh9DJzGSJSiv7/S9d/Ndu2JeeBWGYOM83y2x17fXmgikUUSDZABNFsRpOMZisYoaeWeRL/AP+NohX9xJBe+CK9SaJaJEWAIFAECJRDuXvrmmP22W7tZaYdLvWQc86zi7i1oqLi3HP2XmvNOcfIkfnll9/nmRkVYcLIEEKIgRNgCCGkQExCe2RCZvDeQVIWaK6zY2h0ptn62rFDlRQy6dc9p1337lmRq9jH1kNQpFDr6CIqnRKLVolC0loTQAJu+545LZdLVGq5XNqyZKWK5Ul12LPIyJBiDkLNGzaaIo4pcACAwhqllLW67l3XuWI2r5uAoKu6TaxcuK/r1ocUAV2AlCIAcUoxcpkZpRQWJQCLHGHgFBhud/esaLZYaGu11uvlMqVkSVnCxvV3VzcQorX2yxtWk04LAI3pDo+NjYdRQmuNozaCFCE89kpx9DpjZhylYKZf5PGQAiLkt8bW00qWDvaUdtNgfuB8CEYpKXQP29uf/+KzzcniK1/96NHj97U1pFTXeUb1+7//jz/66Lt/9B/+4//n3/2Hyy+2y7nZrMPFyUlV7/rD4Q//3t/Ny+xHP/lJ7AIaMIowECBB0LWqIxutAJg9pjLLUQflM993idmYTGsNEUKfrC40pbo9SM7nnDvs99ZaRQYAuq67vr6WtmLgNIVTk1mBoiQVk6FmqXilOuJxalhyrLZt27ZVhkSrSp5C13UiuleW5fnjx/d329/0HEEUqBQppZquzgqbF7ZpGkTbdd1iPl+t7vRgJhO3263N9Hw+10qw48HQ4vXrl9eXb158/sXZ2cX3vvM9UqCIBBuS56gA/aiDKXZ/kliHEICYaLCjgMRjRwmnoKSUggdOg0iMxBJ+h5+Twm+0og0PNKZSSkjACCIpPMGaiEPvVj5LJh2VUqRMgqStYWZtFZHpYr/bbV9dX0oiJDWq1jSbzVKMXdcCDhO7MPgza62NcFu0NjHGROhDOBwO9eGolCphfnFxURSl0dp1MfiIiEYZZGYmTpwQCBgIYZDFCIN5KwADI3KChOLuOlYRIUYOHCMDM5mB60DDbwzFz9RqnY7y8dp5Oib4gWRzCEF+ZGoIyY9FjlMCIMD4eEa8JUE/jBIMEhMwAU6dJzGrmPrKU8qdUmrbXroP0Tk5PZWis/PNcrM8OVn+wd//b3p3+OzVi9zmpA0DMfgQglFasncpHWXhWWvX67VS6ng81sdK/JTkcoS4JKCzxKW6rkNw8ismsyNMAJMyhjGZKCML01aKWBxFGCZIRU5JQRxkb97c3KBWi8UCow/Ri7KWoJBFUbDYaDJKSqCUOjs7y7Ks65qqOjDz2eZMPTAGTJikhpesjJmdd5OhtLV5CGGzXG23ty52KQTPIPntb4jjMBXkUjTJOPasKKUqQWLRb5WgvTk90aT2+/3d3d1mszk/P9/ud2EkE0jCNi0DSUXm8/nZ2dn5+flPf/qT3W5XFDOZuhUgiTkKe04q9jzP7+7unHOnp6daaT+YDcyU0ZPFrlIKgEIYvOy/+c1vIsPr12+8931/lEez3zcnJ4vFYgVIMYTj8SiNVUQUccIsyz766KO+7yPwUMcaBaCQ4vnFqVIqesfMWZGHEES20hhTFMXt7W1K6dvf/raILTjn8twCpJBiW3XyhZ8/f46Ir1+/XiwWEaLgyOv1+ubmRimFSNJmmLZAURSzvJBl45wTmMmnKCrG+/3+/GRjrS5PT6XAfvXy5eF4TClF58Nou22tjV0n08Fimue9Xy6XzrmqqlMEYCqKYrPZfPrpp9O+y7LseDzKXT09PV2tVvv9Xp7g5eXl2dmZ0vp4PKYU+r59//13q6r66U/3RKA1NU3lfd+2bd87pegb3/gGM//lD3/6+vLm+fPzCWJgZq0MAAirdCh2OA35m9YAoI1RSgnw2nV9nhcn5/M+xGK+aNv25ORs3KGh7710+F6/fj16wcXDoZKDNabBqUIpdXd3t16vT09PX716dXV1BQBZli0WCzlJBRhNo3CQ3DREPD8/v7u7OxwOy+Xygw8+EBKcc07aVOv1erfbiXa2SEoz44SMI+JyuZwvys8++2xfuQi8Wm7GiaWjHPEKgLSSRpFYy4qXmrFD66vrOqt0Glut0zrRmpQ1KaWmaeq6FkUFGqfUQ0gjwpjLLxY2IyKlcLEQ1n8nVZXWuvMD3HN7eyvwpUCNVdsYawqdiZjRgO0a1plu27auj9Za6RYIljchesMpP1qByXeW3SoBeZrSRhHsJmJmUSs6Ozu7v79v29aNvusSH7zvpeqH0fosJe66jgiMHdCf4JNIn6/XazN64YYQRMeGDNGogSChXgpbAEipE8n7SShpSi8FgZWNGXzItOVRRsNaq5TZ7/fSkEgpiZz6dLAqpcTaFyAJCjZQkbR2ziHhbreTck+QehrFCX/1q1+JhOlsNlutVpeXl5OdQAihdcM9TBwRKM9z6T5KSaiVHgRI1UAeT6OQXVmW2gwTY8M3BEykpK0o2C6OXmpykEEixqRICVotuWhKqQ+eEJQ1ks/LLo4Dn3coJCWjyLIMQbQ3RxhUKltR7DTGe6+VwjHjlRGBzWYjG3Bgn4QBUp8qevl6zCw7N8/z+XIpeP2UKAq4KbklqcHEOKXU904s0ETYV768C4POEo+ikWlstBOR1oSI8/lc7q08LNf7EL1s3jR6xU2pZhodINNInXHOMSbRDi7Lspzl8GCnSFNKHhMgSqsSgQEgJUBOIO5EMvaaUCs76VbTCPjkWSZfuOt7OUrkc3NbDvEhUUKeMFm5jVYJnzU9hAtkTGRqIuKvU9nEs5eZZUxQtrMxJqVBzXzKeWCUZq2qZrmcCzIp2N3zp0/Fe/add975x//4H//0pz/94osvZM1LViNPXz49z7U8Xz2KCSulYvRytLV1nRWFUATUaFpACKjVbDarqkqMlyFC9CGEYG2eUlosVoLDTFpkzHyoKsAk2WPVV7a0SuGhqxKnspwV1tRwlKlTXVVV7/3pZqW1bqqaRVdXKRqFL42JGgf3T4WkNcslGaNCIO99mRcBZf4dpTX9sNxlwolxLB1sBQOpXh7YAEuNstxjgTTK1DovnW3hwgxwIREiDnVRPhgAMjMyiicSM4sKkrXwthhgVkq1XR9CGKoIYwEGQjQTTmmu1nq9Xou8ct218m7jIjARPA4GL19ehBKiApRSLDGTqBqFZIzp+z5G6Jp6vZzVdXusGln9wbvVYta3rY/xd3/3d89PTj/77LOTlahZcUrJ5JlPsSjK9fpECoCf/uyX3/ymbp3765/8TNrjZAav5/F0SV1Vg2fZCZLTE1FeFpyAjC7LcrleLRaLLz578X/9V/+3f/kv/2WW4e3tbX2sDKnD4YCvX6HRr1+/uru6gsgvL2/Oz8+jUvP1mpRp2z7Pc/IcXN8j5NZ0dXN2dvb+e+/stvf3u61GoBRd3z55/Ojx44vlbD6bF7GuQwiPHz/WhhaLxXxehhC6pqoPt7PZrDn2V69unj9958Pvfuvp2fKXv/zlPLf/3T/8B1f/9//HZ7/6+Lev3uisJKUDB6sNECtNzvWijWhtjold75xzMk1ZFIVkHnLww8iQDSEoIpljlWplivVKqcViprWWbf+lr65rxRJXSGgDoMkR0QhUIecuamWtda3TmqaO4rQUZZYABnhoZDAREWACNFkeYwzR89ifVGrwphuPkKFKRxlSsCaFKH0wAVkEZ5mUi2WFIGJ1OD55+ux+e/fxrz6bz8t33nlvuVprbbUplLW9aG9pgkgieB8cT7CCyL/yWIFPGJYAeWo8n6Zoi4gWMT3YgDSS9YTajIjAMFkzCYElpSTeAmG0lbBFIcOeAND0rTTfrLWGkrSyELEsS8m3eKQwwwPSHyotXV8JU2j4Ico8pHvAzOzCMCAGI14DozKpZD8PKsM0BrHhwBafLUTU+u2smUyEyLBv3/fzsiQYmMkxRh8jAFolS/HLXwNLHSDEGNKE8kimBbKEYoyiWZ1gaMgpokxnmujly5fvPH8vy7LECMwi3i3xKYSgGDn4hCSa4eKsl2KkEN67uHi8XpkYCIC04eTrQ6O1DqHtnWPGBMTMEBOmZEgxwQCgpISAOQMBmupQ5nM9N9y2tWtTnseFvak8eV7s/abQ1uQxhT7F5B2CTimxaFinqJAUckJMKTDH3FptM5tn+Xyhs1Ipo4h8SL53MXocBQBkJ4cQICVmGaMhAThj6Bi0zfL16sT1fKz7sixjTH3bJUBtCw0swYQZOaG1+eP1XCk6NvXE2elc3/dtF6KYfCulAFExImOuDcVokLaXN7dvri7efRd+wwRMCCE4oUfRRM6No4XplJ8RUfTD3N/QxCLilHoBRnlwm37YIJmYAg83nax8GGd35NgVZ2RrLXOSOTtjjEQMQkWo94c6RDhW7mc/+9V3v/vdxWoDpE1GzOr25m63i//sf/yfvvJbf+8vvv9nf/3jv9pevUHH80L/ne98d0EWXIrHxtW1i6lYLJf5sg0Bkk6EIca6aSbPYaEFdQje+9VqZUjd3m7n5ezRo0dVVUlGW9e18FlIKZtlQCiEysePn3rv39xc42j1GWNcLpdt20ocFqZAXdfn5+cTnUHuJCJuNhvfO0SWGkAAKSl9b29vz87OnPNffPHFfD4XNOpvvparhV9A4mSt6WsnVY2gctVxH2N4+vSpUurm5sY5d3Z2xhDj4AyhtLYxhMvLy8VsbnJzdXOdFfnd3d35+TnQECqdcxwGmpV8olQ4EuuMMYBJKZJGIGgiGnSZY4xKSScsMvPUhvE+TJCoRBUkstb2XZdSig/YsjwIDQcCQTMhyDNTiqOPKREpZQgRMSEzKqW10ZPDbUgRkt9Xu6qti7JsDlsmzgpr2chybptGzpQsy0Q7HhFFojelKFQpH0NuM++8+GV1dfP9H/6n9WL9d773dxflCoiYo9HWO2+0iTEGjgycRgAdkQk1jOcLAQKhAiXxfip4UmQYWz4TjE6IADSM4MQoeK6c0SjazVOcAZDJ3ikdxGGMiZTSE9w8VWWI0pPzzDx5APKvU5sRMaVBFQgfNqLSEN6n6k6+tqhqOOcYdNe1OUpbOpLCzWJRlEZhPFa7Z+88/h//N//D//l//p+D6wwqH0JCLyw5a21RFELppdFiV2ppGavPsqyuj1MFJdksM0tX5t13333x4nNBFYX6V5a5pByLxUJQJ0SUjSw+Y1PIEpwURHs9hIuLC0RkAJElNYX13jdtvVgsuroR0UlmLovSGMOAYsqnSBNRiIP+snMBkUMI+/29wGp933vfiwGMCCjFGJu6jTEWNjOkiKhr2rZtF+XM2rzv+zwvY4zMKNTLLzmaE3RN23Lj49D155iEGilcVB/6GOPp6WmWZZ9//vlsNkNFWZEzMyPsDnvBsORmIqrZLBN9W+cGEFxrvd/vf/WrXzVNJQe9wP2CsmVZJrxdeYjamOVyKXXvfr/3wXlPx+PRZPb09DTGKH53s9lcRvEuLy8Xi8W8HJ5I0zRSnJ+fr7MsOzk5OVaVPPqqqhaLxUjWRj8odSJSPDtbz8tSQAHmKKBklmVyB7TW+/3ROSdmerKofvzjH3svbNCh/g8jI156DBPSaqwRzEv0KOVLnp1dTEQ5MQ27v78/OTmRbyXHX9u1zrmyzOfzYUnXKUkanFIqynKz2axWq5vrq65riUiPgnVCkxTl2dvb27qujc32+5qZT05OmrZaLBak1Ha7jTG+//67KcEPfvCD/f7ovY/Rn5ycLBcLeTrMLMR5AOi67t/+238rCLsse5lSqqrKGJ1Skvu8Ws3yPL+5uVksZsvVIjc5IordnEDtsuVla5yenjZNc6wqIkoJUopnZxdN07y5uVN2/+zZM2Ep9r2MB80EGJ3P5yJowzzQJqTe8TJmQSZFqKtKqsjtdouj/5BAPLe3t5PWqvdeISIWwq+SEmqz2cg3lF8piuJwODCic+6v//qvJ+2O9Xo9rjfY71vhI/euhSoJ5C1lyyef/Ori4hwgyciCa9u8LKSXE1KUpovSWJalGDamlIp5MbX35CkcDgfv+4snj0Vgh5klPRB0SR6HxNW6Pgqpv7CZ1rptBxdrQSFkKTKC974oivPzc0FzIjDqQTpWa20tVVVV104Oa9lKl5eXEVgCeAhhuVxO3m7SifHeV1Ul6YdEOTfaDsUYgQkR1Ui5k1/s+17up3eDCPjd9lZSIH7QBtPKwlhgSm0iWwyQT05O5DHFcTBXQBNp5hFqQYEkjwohTPz6pqmMyYwxcgcEqJUFFke3QOGtptEqhpm1Hq5U6mscuK6uaeosy6zNpCsm+JfEIqGc76ujHMRChJcDy/vBILfr+sViURSz3GYxRmmuiJ+HpEzSghI+JiIiUNc1WZYZUrvjTqpmOfKsydJIBD4cKqQkd4DHkVYcR6VhtF+SBqq0YDvXChInO0LeFhTJXRU41Y5kxDzPQ4ht29jR5DzGaNSg9iCqQQDgfR9CEGi+bdsYgl0sUkrEw7Da1dWVUkpE2EXiICUWR7TMmKmNIT1XyfMH7fu+55F4JxFJrp2ZfYyu6/DBkG7fOzG6lL2mgEMIPnkZPALA3vu+75UWqsQA1o2WgEhETd0GmRsdQb8JEJejTe6hbCLpilV1NVkjCIIny0neVjJ8bYxQrIjIuZ5HyWkW15MY31ouj/TwGAcKcEwp9r2sGcEf5FOEGyF/GWOEEWvWWru2GyWVtawKRUrY1nJLAyc1JnX4lhU0cGKUGpDViY42tnCSHBNS94mv25jMuPl8/s4777z33nuQ0s3NzX6//+M//uP7+3sem6PSbgwjtTmEoJUVcBwRAQazyjiK1TjnUKlJlspaK+4Rx0OdQogxNk13fn5ujEnKEIM4QBTFTG6ptI3lIfoYne+EcCxLlwhm69n9bi/LyTnXRY99roUOMC9z7z0QOucsGRmWMYNpWBL7FgmLmTYSr4dSFgbWlaTUUq7QOMuZUorAU9dL4qw2Fkcyy9SeCjy2j5SIlQynoGjzT/fUjIIy09LJaJjyUFpLIgyYYgikCIl8CCE4rTUCMyfSA/afxjFkGIeLIwxi5FNYkZUtD28aw4kxipHYVP59SQ4KgxvG2LIAIoGlIM/zFNxmtTSWfvSDv6yqajVfkFIhhMzYLDMnJydf+fD94/5wfrZG5qZB712MYb06Zea2aTnydn//6aefhgSfvnj5xecvQZExmVWaQx9jc7fdwchxc9GVahjG8YOArMr6joWdCqy1mS0WAOkv//Iv/pf/5f/yz/7ZP9u1x9xmIbH33sWAilIIq9Wm0DalZOfzu/0eFS1Wy9VKHY/HGD0BLGfz5ljlef740flutztWBwUYQ8/ePX/29B/94R+s5jPn+2dPnr78xS9/8pOfhPn89MnFIs8xRiKuXF9k2Swz6nRzuL053F6frxbf+uD9EuE//cWfZbP5u0+fvLi+SiGqgqJ4S0IymZHgkYCHPLXpScHU3oEHEMyYro2A6aiVEYJTSmmdiXOb9xzGc5d/nWr0thoc+U38tinnJO53XScFldgStrE1xoiT4VRqwgC/DpRnHClOQ2CKaQoZckLLaSGn7xSXY3SIaKyRM2/YjPptJ2ZYAMGnlIw1Ws8lnXr05Onzd99zXWutRQIEkYdGYAIajjdARhyIciIIO7xGsRxpYEwpGiIy4wiLi9YxTJgOAIQYldJj8B0sGmh88ciqk3DsRyEw70ddJ1JTe39jT8QslBnQICaeelQCNgUeKtix5ldZluH4JCVllOEXeDBGPXVZgREYUUQqx2+YeGAxT0sCx/HnGP20xvjtPxlZI1LWsnNyLuZ5juMnxhirpgGAPC9SiuCB+/4tB/7By/fOs/PepxR5GBMnKRVgBP1lHRJSP9hMjxLbyjZN8+bN9aNHj2icw0JEGX5RSpEP00EcOXJMxMQx5kRP1svTIjcpxBBC17rghYrbe+8TC/8eAAgwJSbACJAGEAY1IzMQpyUw9k4vdV+iS51nZU4WTLo+tDdVb1HNZ4ZI2AzecIoE3geOAVLUpDSB1WYglSujrdE2BzSRFYAKMRWzhTKub9vgegaGmFyIRGjs4FgtI5NyfxCHXuZAT4jonbc2s3lGRCkMck8aKUaOkYuiyBCJlAYMDEYb0ipykqojJri9vU29X80XRZal3kMfNCGFtLvd7rb373z4Ef0GQR7ZS0prSCxtYVnzgl7J6hpbLzh1p2VaDUevMD/6JU6xQnAoO0qlhxDE4DuMEzwPkWh4K74xtNyyLIvMKSZtzaGqI+Pv/f1/wByNMcVileXrkFgxugCzxelHH64Wi8XfWp797vf+3s9/8qM//nf/68c//VFb7UOX/uT/9ycJOUHs2+6r3/rW2ZMnu6r+/MXLxEgRKELsvAyBbtbrPM+7tl4tl8453/Uu+Pksy6y5ublqmoY0TqwTyTubpjk9Pf393/9959zHH//CWrsoZ3XXSvFGWmmtz87O9vu9lDRCi5MSRbazINfb7Xa/3xdZLl0ESKxJSUeWiFarldyoqqratj0t5l/6HAEoKwpB87VWVXVcLBZa58H5lNJqtYJIMgc9wIuIpEgpVRRFDFzM5z21zDxfzRUM1lKC5SWMD88La4d8QyHGUew7jsQigMQJgUFWOI4yeTHGKWqnkRY9FTYAIDaM8GA9yAp5+2eOihQqEphRVlpgFCoSAhFSVGxQK6WQCImccybTbVvvq/3rmzdk6eT8THUq+G6/3xujpN0reXxKSaSTZYk2TSPj8Hr0nj09PT3s9tH59WazA9is5r4Pf/HDP//tb35nVa6LsuyboIg4JQRQSAmHnE1cZRRhImZmiDKtQw8TAwlfjACIhMg4CFITkfiL0OjbycwR3qYN8iiZGeQQH/PGKW14cHoQACRghiFREcxo2Ib8tn37IDj82n9GZpy61DFNB+uY58DYJEgpRQQZxuxc9ADJ+e767vqpe7TeLMkQv2jnq7nC1MeYQdIKI6qu64zSMvw7n8/F+aptW++9QJwwSMn1UhA655bLpaTtsmIvL2+s1aIew8x93x8OO8FTxN81hCC8K2PMbreTpi8ALJdLIkopyN4EgKo+7g47KSiWy6UtZ845a+2nn75+8oRzY6W2FyzDe2+KwqL23gtfmOHtpGoIbjVfCJAnuJskKkQUoxcklxiszdbr9eFwOBwOeV7Km0syI/DK1dVVW68Avvk3N78s1P1+X9fNBx99kFIyagArpfZbLBaB3GhkyldXV0+fPs3zXL5kjFEbg4j39/fGmLKcT6tI6kBmvr29lQ7ZycnZbrcVhpqIJ1prT09PAZJknvKLUqXbUTubE/fetX2XUlosFkLq9D6qcfR+u93eXt999NFHEsSWy6XIoVzf3HhJRIlj8kqjXJGs2xDC/f291jrLVVEUTVMphW3bL5fzlFLTVLISpk6n3NLlcqkUfvHFpfewWChpKMqsrsAf6/X63Xffbdv2Jz/5SVYWnXcUQa7liy+++OpXv/pXf/VX8oY8zhDEGJum8X0v8x8SRpg4n+VhGIQdEvXlZnN5eRljlN6GoPYSbIuiSMA2M1oZgYokhky0MkgsNVRW2BCjRnz27JmgWkqpr33ta/P5/M2bN33fCrCeZdmzZ8+EgylRF8ceocQ6Nfi+gLiBKaWEpyaC3ZvN6tWrV1J+Nk3TdV1dNd4npaAoZqenm/l8LnwxY7Llcu0HEaqsXMxRq6I63t8f5rMlAFTHJvq9jPsgYoz82WdfHI/NxcXparV6/fr1fu8y67TWJjObzUYIoX3fy3T/br+VsJBl2fZuJ8CEgCBypObW9n1XVZU0QrJssMgjIgEoJbdRw6SFqqpKBGdEEkEps93ebreHPNfL5fLmZi++o5Jds2HvQaRFmHm/3yuG58uFtZYROAARkNFZMLIYyrJUShFD13UieypJ72KxcM7gKHp+OByEYS1lhSEV40DrkQ3YVvXe3UvOfHV1NfExhaYNAAnfCg7YIu8Oh6k0A4C270irvqnzMmPm4/HYdd3Jycl+v89socgYnRBUkc+CT9Ls52FgOtnBimZI/4zOcJyhMcakEKqqquuGGdbrpayfoiju7u6qqsoL++zZ0+PxKD0V55zgfUU+izGODFTQOPFpUGJR27YKMYTQtu16vZbrDSFwQrlwIavJxNXxeDTGLJdLY4ZpmDHTGDw2RM0MBuJgmmbyUkrMTpqaYmg5gSpjTRTkxwS2lkpckO7ZbFbX9Wy20NoejzVzL1PFgj7leeacQ1TOOeJBI1F84ZRS4gIjk1UINMx554Uxpuu6phk8QuUmZ1p779Ogz9P3bvDyIQatNWiSbyUyAsIMldpfKWW1icySqcqjaZoGNSXv5XLkJ/vgAUCbYa5Rvg+PFK6+79MgBqUFB4/R+xAImIi0Uq7vu67TOEhTSrvXj7Ozbdvmed62nRRr8uYTfVuWtzQM7u/uRNcImWFwC39LjEujJu1sNlsul977w+GAiF0XQzgiorJGKQWD1QFNs1zyW13XeO93u3q5LBaLlXO9bD3NShanRL+HWdO0+6b/lCxXlpPoUxGR1nZ4IiNVWbahNoSIWg28EymKkR+4OqfkYhyI1ZGLYnCFkRNNlvGASSrSSsmpul6vj8djcF5rvVosXehlkkb6VcM9H+1bpe/bNI2ezafsPY099bH4iszDpKwwEeWSiQiRz8/PB0HtPD8/P6+qQ9u2RVH0ff/5559/+umnNEqASshdrVY0zrPKzVfG9H0PRC4O+G/X9cyxaerFYilH4cnJCRFVYytUHreUPFrr3XZb193p6dp7z8RW6cVy4ZwTUawpVzfjTHk+y0nl0wJ2zlk7dGWcc83x0BSNnWVaa20zneVmPCoyTyTiLN57MtqYDMBzGJ6f0KrVaDwqA9STeSIjTKd7HJnCyr4toeNI9ZrKnukBcxoKJyKSilprDZC0JqWyOIg4cwguhCAjt4hvJy4laVAAzrn0QEYWAJgxJXBObpCg4kqaFcQAIL6i2Ac/FW/e+65zlOUCVQicBwByKkwouS2+nPGEzOMklOi1D2KF1ubMUSlVzmf/7t/+r//+3/8737c6cQbUtX3bd5rURx+8/+j8LPYdpPKdZ89fv3794sUL51xwrvf+eDz6tkuBHz15tr3fv3z9RgTSE0MiSiECKUgMCn2MSqnFck0p2rJIKZVEMlwWQlDKLFZLJpQt4YJXSv0//9//r+V69U//2f+w3++T98YYUASEFxcX93dbmVp9c7u92++UtnmeX12+AWaR1XO+SxystXd3d8F5Tbg77BSnWZl98M7T0poi0+tZlin41le+9uKTT29evXr26CI0zfP33k0prIrZ9v6OGN55+kwn+P6f/tmyLNdF+fzxk7wwWWHnSrefv/Lep7pW2mZZJu6lPvQxJSKdmImN1Vpm5+UpE9GkBSEC4hNomFJiBUADE1ZeUpDEt/MXv4lvOpnaD8eYULEAYL1ey0kjHyRtvRHTSWkUbpb3mCDRcYJyGGeW72CtTYmc66a4POysEa9URIyYxnAph1/kxDFoa6ZCVw45IopRO+cUgskyGYhLHKXfq5Rp+i4lNtLsCoO3oet7hLewbBpHCPWoIMGD/tSgq6s1iYAywNtrkUv2QxsTmN/KiUxtgOnwUKOB7lRShhCF3ye/1XW9tYNdLCZWetAe6Uf7WhnOkDdMKaUH08qSc0vqIM9r2vLMDIqY2dDQPlWjfi4iKlA0MIgTEjw8lUW1RgIOgkAWkmkNB56PMYzmttZacX0c0sEQiCQ6m5QSxvilcLPr+za20XtNjIRaaQD0PkJMIhgyQY2ROUAag1hvjGHG+XzZ9N3+WK/XaxLZFhaBd0rAKimrkIgCIHokTkRkEUyml3lWaIC+7evKe+/6nhW2TeucQ1IAFFMQXDuFKDNCDBAgAYAGJoYEamNm+6ryCopSLfJYQ6eLgtAg+L51bWTjQWnKTc4hpj74yL53KQWjhuPZBc8IWmvSWts8y0tWOiZOAAwIqLTNEFWyNgXvnYuuZ0zMAITMHDmJHAAAxpgSe0VojSJCBWznRYqAgJpU0mClOCSdL3ICBCbVdRzTzOZW6S6EruuCj0qpzGTb27s3TUvvv3e+2gBzEzpSCECQUGlUoBSRwi/vSgp/n2PSpEirqXSZQtCQf/thLGNapdKLnjpPU19KMjNJm2Spj/FnWK44UonHs/WtgMaUbbdtG1Iqsvz+fpdpc3HxOBudvhPE3oesKPf7o1Z2sVgsFqRIex+Q4/sffvj88f9hd/PmP//HP/7lz3/ClFurXOiBvSLb1V1btfNytt3dn52eK4VVVUHH7X0/1/16tqju986YxWIR82y73TZdo60GjFmuAUlYSAJ1VVW1WKzevHlzenp6e3t7f3+32WzatiUAYiAGIhJEbJqL1FovFos4TAX2QgKSlEt+UqYlpM5RRguT8eTkRLhFFxcXTdNcXV8DfPVvPsfbu9s015JCyK8AgNZqtVjs94eu6zApqc3ymHvvm7ZFIvk+eWEIFBOuNxs76EhmRHA87o3JrDaiyTMlRZJUxBjD2DqdyCDyGoFLlto+jKNasqLG7GvgB8h6A4SEwJwAMeFboHNK97UyMUb5Cxj7FjFF1CpyYgmJWg2aycwuONKEGutj5yEBcdVWacsuOtIo2mUxRrFP4AiM6Xg8ChYzYSKI2ItDd9OUZbnarG+urgtjZvN5G5rZfO6a8PGnH3/tg68bY2eLsj42OEhnjLo0AEg4HVLj8UFTg3FCIhgSQGIAjklkoOSWCmkAiVANPaP0gE3MANLuUw/w6PFk/7VXSgkIKQ1HCfMwrSJ7MPg0gfvy5m9xcAHNh0Pt7fMdK/M4vcmDRw8u+hCd9P4+++LTtqm992dnGxedVboo8x/96Afvvf8OKlvVbdN0h6a22tAoO9a27X6/V0ophSE4HJkW8/m873sxnZNzWRaDmFZlWXZ9fS1KAmVZJojee8kMtdbSWMqygZMoe7AsS8Fq5bnIHwRW2O/38/n8/v7ep7heryWBOTtb8Nhjk5vTdK1RWk5SAJCPK8pc8oflcrm7285ms8PhIPK+i8VCyB9Zlt3e3iIi4aCXPWK1A7x4eXkp91MQbe+TcBG+5Gh2LhVJiEi5zUSgQO5YWZYCBNzeXd/e3sYYiwK8H7K1GKMo2khkAxjMPA6Hg8xpCXt0kilIKZVluV6fSO8KEUVNuOu6w2En9MkQAjALwVPOCGPMze32ww8/zPP88vLy5uZmPp9bmwtcklJSZPKsrNzx+vq6qqqTk5MQY9O2IuLZdV3TVlrr1Wolkgh93y/mK0Tsum6xWBARYOi6QVk7hGHkQublibQcSTIdIprFT58+ns+zlNLoTNjJHwTk7fv+bnfvnHvy/NnFxUVVVdfXb4RyFGMUMldRFNZq57x8jeHLlMPwa4xeKYU40DsEF8i0IaLD4WAG9eqICveHnRCyGOF+v9vtDoiwWMzns4XAN9vtVr6bKDPtdruQYkGD+qJ0yy4vL6+urmez8uLi8Xxedl0juau1Vm6CD+HNm9t33nkiVbPs9MVi0fe9HPqSnBtjzh8/kkr+/v5Oa/3o0SPne8kzsyyrjrXWKBN+mNhmWZ7nTVsDwOnp6fXdbd/36/lst9vVdZ1nZfDp5cuXA8lgLASEOVvXTYxQluVisbAmf/pkVhTFdruNzCmBdBFkawtbnJl3u916vX706JG0UpRSwpWbWJOS3MocQ4z+eGzH9F7SUhatm+12K/dHStGbmxsAePbs2bQHJ2ldRJRFldlCBiZijL/85S9jLyBOklYBakXyEJnrurbWKoXRee/7tg1a6/l8bowwDxgRt9stABhjTk5OtNYit5plhcDfs9nscNgZUtLXlyyiLMuuFdrQIM6QEuyOB2n2LJfzTz/9tG3bi4uLEIIIGmRZ5rxfLBa5Ldq2/b3f+71f/OIXovpd5DO5aWIjAQBa2b6rY/I0jiVJViZbTLpH0n7DQc7UpwRZppfLpVJqEn2WhEd6JxK+ZPXC2FkZRzr8dFTJ/8ubiGajJJYD74FJmJgTXiygjTFGGvlEAwtVdhmMQh+SZI57Lci78Yiny7FSFJn3g8mNREv5GlrT2dnZBOaKh+GxqQFIPldur+RsKSXxBnMuCJ3We5/pQaV9uVw2TdO2rbKD1KQxhkMiAAIwo0Dzer3gUSFa7rykxHkx16gheY000ZWkisdRSGpKrjgmAvTeM6IsRZHV9jFG34vYbNd18/lcjirhdjjn4NeGehEAovOoNI6KoHLqpZSM1agVpaS1Tj6EUWZd+mcT5PX06VORHOEYB6WLcYqraVsapVrkgFCj8LR8ARlJEXUOudowKqtIRdw0TVGYrvPHpi6hLIpCaZS3EjfloiikQPY+EtFsNugsa629C8YYQC1J8oSww9hvEA7Q2JYY/mlWlDHGEIOg1SEE5miMyPwGY0xiVgqycY0ZUmKuhogAJLhtkpAyEilEnBMAlJKxeDs92cCJGCAkCUeSFJVlKS2WGGPf95PAOiLGyBIAi2xoYcra8ClK2wNJyH96Uk4HABm+lwQzjuPgQlyT65IkJ6XUto2Z3FYAnHNlnktHqiiKuq4jM2kdY8ysVcY0TUPxLTeOGUutyGjp/NVdbRSmlC4vL6U1S1rLIMV2u/3ss+uzsxIRO+fW64UxpqoqJqkmWKzmpYaStRpjdM6R1uKOo7UWgSwdtbV2u91qY2ez2cH13oOv+9L7wRsXRzIUjoMzkuzKcpSeVYyx7zqtbXDeuWEulYhkYGpKtafqFxQxDMobMJqe6aEqANkh8hGBE8S36JicBxKkZMZxIF0CKGUAaGpoyJtPF49KGWN8SBO8KK1pqZmFYaS0TilpQcRSEhVC4TLjCDVKgSruNImTZOFx9DpLE6kQvjwHDd7HQQUpIXKMrDOLCff7+xDCBx98sNtt//TP/qztO4583B21bufzOTO6EM/Ozph5vV6dn20Q8Vvf/Ppuv3354vXxeFyt1ufn5ypi1dS9c9v7/f5QrzarlJgRnHPRh3feeWe1Wmmjrq+vJd0R144hM1AEzJwwAidOmcmdc4B0cnLigp8t5v/hP/yH7/6t33n3veeffPIJc1pu1lpT2/aI6GLI8vLYbJXROeZKKYTU1rVzfds2JycnZ2dn0/zU/n7b973B9OTi+dNHF01VLXK92Zwf9ve723ozmzWKqu12fbLhrsusna3Wp6vVfr+vd4eP3n3fN90PfvDD1y9e/cEf/IG22aGqmkhV2/zi5x9/6zvfTQmyzHifGALzsEohReSotebEAINCiwIME1kJxFE00Timp1QY0d4kB2QcrZnkHKIRcPybrwHgA6A0eHpKw1aWrpgYDP15ftu8xbHPhogCMcuLx57eFHYnKJZw4K6a0bkujJUtDjNW/BAbDaMOID6g5Evkks1ijAGCpu1JkUHNjEoZHznLst4NwvZDcjYs74SopiIclWBcAyVZSjsAkC4ZMyhF/9Wny3fzbTtV5jhi0BMoDGP3T4ASGOeeBsDayJ0cHhARyYmY/ICkyxkgpwWME20SGYTfDQgTLJ5SCmEQTcNxjgEAUCsAEBfBKbWSTFo+d/jmqAYGNElEGn1mhop/eJRypqaRdi0FFeKga+29Z4bZbA4AkaMgGvhlaAUAtF3DOhpjNLHnkIhTHNRCkCHKqDVTYk4hgCYJ2pqM1Vnn+m9867fn83nnfEisSTFEZrTWJohd10WOMMqPaK2RgRCVAiQ6X89KQ/2xC66XZu9+f4g+cELUmBInYGBIITIzJySFjBRjZEBDpAachFxE33hSPDPKqwDUsVX5aZbuXeX6ebIZU/IxAZBRJiXW5PvkXNCkIDeoFCjykRECAQMpZWwCjIOACTOgsRlaC8EHG4LvnesSswzqppSAlNYWxBKNYbWYn25O+/6X1mbVsUmKmrpzrtdEKbi+7RQRzBeEGphtiCkCa0JESEyAWilgsprIsgrs+9DU9SIvDSlIzAp8CKA0IjZNww9kcx++iIgAU0xAyvdOdqhEISlphq57fKvILEcwEDJCAjbWyLErpQiP3ATZTdKFonHoD0bNn9A7oSQYY6TDqrWY6A7hUZPq+95aa7VxzgF6QFZK+chaY9M1QAwqxtQT6q7vjbGaTNBKz8rfevrdDz/88M+//2f/5c//8/e//6erkxVlsx/+5GfLzbJpGiRarRcFzjnGfr8Dps18BZG2V/eEeH93D4mBcD4vZ7PCOdf6ZrlcIlgpy6uqEuql95GZf/aznwnhRdgccsRrrX2MQmNJKW02Gxk3EbaOH4Xh7u/vvffn5+ez2cz3br/fSyrinMvHuLrdbieOrVJqvV596XNURFlRHI/Htu/u9zup9M7PzwEwxhh6R2QHHbTCMnOWZTH5tm0HBCorrbVpFe7329Vi3QcfOEnnbBwWhxGOZIntRVGYUcVbW4OQJrgTQD3sn+Eo5AfwlgcAiacwO+X0RBQfDOvwA36uJqqcSz6RfqtBEaP4amBCBmA1vI+EAVAam65t+kYZtT7ZUKuZuMiyfhSXzLKMEHf3B2vMYjX3ozcGIlpr5RjN8lwe1hcvXpydnrZ9h4ioyJi8j2FzvlFJXd6+cS6crDabk5O6apkB4mCDQIAEBIg+MQBqJECAxDxC6tPREwFIig0ERFSkOCZmjopHzbQBYpabMz16RIRfM+YdjvjpRaR4xImnHIAeSFVyQgFBhqNjuonDnxGQRWmLH/z9lM/IEQzAIQ2amzHGCBFV6l1fNfvOdSF5bVUxK88vLr74/JNfff7xj3704yfPHj19/q7SWox0pA53zt3e3hKRUuhcd3p6KtCPsHgEEQAAbY1Yk4m03/F4zLLsvffeE87gYrGYL8rdfi/BRAZgN5uNH007BY7ZbDYXFxei5AsAKbH8bozRKI2IJs9WJxvRohWy2EcffSSAoxkVzwVe6YNv2kYpleUWkCV9QkRDSir2oijyvKzruqoa2dFZluV5HnwUjCzGKPahAgqINuLUoxI8gu6/PBUkwhCCiFPf399LaS2iE6JA4pybz5Z1cySi09ONzbKYktTARLRYLG5u7gQviDEeDgfZHVmWiVmFkPvSKDkosVq+8NSYXK9PtCYRmpBBdSFDyftneY7IoigtaMLx+NbShowW5wMBGc/Oznb7vUgYyUdvTp4JniWfHmNsu5ohVxqzLDs/P4+pr6oKIInT+MQ7pnF8QdiXVdVorauqeXn5+uL8HBHruv7iiy/kwqUIbdv22NSz2ez29vbp06dVVYmLHSIKif7Vq1dEdHZ2BgB9v0fUs9lss9m8ePFiyhslYrtxBkiSc6sHCvlsVs7nM5FaEr+yaT7v4uJMmg0yRSTA1sQOkXTuyZMnznVaaxGH4UFJpjDGHA6729vrDz/8UMqu7f09j1ISp6ertm03m00YLbyE2ik8WRFh2O53jx49yrKsqhrnuonWICszy7L1ajMw7nsn5QkgZ1kWEroYvPdieyhltUxY4tjDa0Lo+/54HNycvvKVjwT2PR6P80VZFnNx4nrx+tXhsBM8Ufgo+/3+9GyzWq1kUyDxcrmUI8aPwrXIUezFpMTQWstTW61WdV0LTo3KCmgCo8G4QEvOufp4JKIPPvjgzZs3TdMwxGl8QbKgLDdaWRH+enR+noIvy9wFb5P13seUzOiYN5+XAsT4Uf99aqFNFBahHwo4Kw8ixoFiIgm/qHMURfHkyZOmaQ6Hg3zVxXJJRIvF6nA4vH79+uaNe/TsrVGkNLlxVB7oe5/nuQiOe+8l3P3sZ59vNjkiToxCEY6QoIQREw9DHmVZ7vf7qnJaa2veHhCSCC2Xy9NTAwCC+fLIapSVL2mSHEATc5lTO022pZRIkdZWqHuySu1Y7ExEojj6N0hIBIChwgpBbuDo/DHsAlEwE8KjeIpOss5Tb1IWp8QuyceEE6M1aS2G1V1KWhoh0orw3gdOMjIrbcvZbCbcTIFHJQfW2klHiohAUVYWot08BE+jJ7q9ZNfGmOOxQgSByWRD8cB1HcbcZck9PJ3TW+9lFUc3MgDgOCQGzNz1vR59NbKisMyzeSk4qcTVlJJE6a7rrLVd30pJOxFyiUgr5QEQpfwcXAFIITPPi3JelDJCIVIqAnkPVbb32+2WiJQxpPUEKUwlrQQ0EfmV3tXhcJDHLUF7klBHxL5t4wPfeyHSLRYL53oXg6CNubGyT9u209ZmWaaIACDPc6VwsVhIsp3neYSklOr6dipGJnRiAAzH/Ef+MDbneKLRyOEOADF6REwpxAgMEUBPfHNShkR/DEnrKXkesFrJwIV1fjgciqLIykxsWvJZKVuSRsFP2Q7X19fr9Vq6423bCtasR6lD55yIFtgsM0pLA7Us5wNhkZno14x5piud0A+JlvP5PISBFCJPROZ+8twuFgvpl8v6ybLs/v5eJmJlN4kIlXNOLk2Wlhm8HwebTTm7m6Y5OzuXVujQ3Brop2JxXB0OTZ5rpdTjx4+F3JOXJTM3XadGD88w2kcPW2WkWhdFsVqtWMOMy5RSVJEBNWil1GymVW43djNsDJNl0fksy5RC2ZPSSnIu9H3v2q7rOoWklOr79v7+3lorPWdZiNPNnRJuFue2kaMhTyg3g7D6RLaS7RdhgM+GtlKeS2xFREbyPgz4SGIimFo6Q/INipATh67rtLWSEwOmaV5vwuOHBCilEIJ49SCz9BwQ0QU/rQmAgaUvAjryUNu2PT8/lzkg7/39/X33G9zqfQgSUmX/H+rKWhv8YGG32+1evPz8+vo6xpg4alsywM32AIz7Y70/VovFYl4WwDG3WZaZf/iH/+2//tf/+rDbz2bz/f19va9vb2/74NuuPz1ZaZOhUpmxRFQfq2dPnlxcnPd9Xx/2IRTeeyTtfAghaJ28qySohdABwP1uL0HZe5/npVF0OB7/1b/6V//iX/wLZc1+v6NKI2KmjWt71wcfKpsVu8P9fr9/+uTR49PNT370w939FgCavs3zQinlYwjOOecUoCY1K0pgXi/ns7y4vbn5L3/+n/vbw+np6btPn1prwbnd3VZr7b1bbdaY0uvXr3/8gx8tl0tjzNXV1Zs3bzzD7thUgXsXf/Hxx9/67veapkGcATCLlFlKKYUYEweGhI79xFhPMU0ZpIRUGhn0Y2KKOrNKqQSQUnTeGWMicEKQ///SlzjCSezwMSYfpHUpsSaOtFn5iBiZeXDomhY8PBD+norPCb6Uk14SoMFRAZJ8//SA55hGI6mYUjZA2yx9mimhISKiQVhSKYoRQ0qUQBlLwCFGazWjIvZEytqB7Z5lGXNESMYYuQtCxiQiKdflJJiI2A+rCxy5mVM9L191XpbaWsldphNl/IYD0IwP1Janpo61FgW91QDIhKRHc9G+aSUCTsoefRjmkqb0CxXBwFxDHFvufvxPGP2pmBmIJFZIpH54Bv9Xdf5Uokznx1T/M6M4+8nDmvphWmutTQhBI01JmLEWAHrfS+bx5cAkQPQBNBChDE3jW4sMgX8wxihYiehDVW1jURlr27ZVxn7zm791enH+ySe/ev36tVF6VhYpBaUxJgLoIqcIGCKDQqOtYkSOAGByMyus7xtIISbfds61XfQBmZAwJaGTC4oDWjAUrQJwDAJfAymwqDVDMvMYD/s2kbJGQ0ghQPCUiqUO+66LrQGjAJXWXfLsvSUCpV10Wuu8mDFzShyBi7woZ4vIzDFqmyXvUenMWO89cCJSoKAwJlqLRF3XRVm62hCpxMCo0eicUwJyLnz00Qec1BcvX+7uDy2xa7tIhAyu7wFS39Qc03y+tBGMMdaUpJRFZITex7FBMogeHvbVLC9QGYLkYoicjM3KxZz/xlz89BrUdokGko6iCW6DUag3xoj81rsSB62ngUICAHGwgQ1TNMChZzAQIqy1kxgOAChAUxRqnJbVWpt8sDmddodo+2IashAiYkh12yqNBIOGaQj9ZnXSdZ0PHiklptk845i1Pjim3/lv/uDxu++fPX/nr374lzE57Xtt1PN3Tr3r2ra9fHEbOIXA2mhjs+W8PFSH3vXKqhSx75zWZKy2Rd55tztWGoxk1aenp1LPKAWyX/I8X61WMqkqsIJ8YSGOyX0ToYxpLyulBMpJKV1fXxtjCIaqTCrV4/F4crJp2gYAJ0XU3W73pDz90ue4XC23XR05jWNrnVLq008/EzHoWV6UZW6tret6d9xJHSiyYDJDDYlDSOJ3/9kXn37++adfe+8bH3zwwenpKfWUGWutDb0bbUYGDCgrCkTsXJ9CMpokMwYAUgwwEBl4tBMcOt+cRDKCQ7A2A8iG+ipFZJAeIrDwfmA6JZVSyEwAPkYgVAgwgtcS0wypNDJ/EBEVFVa1fbev9r3vq/3RsSdDRZEnSIXOY4ycoGmaKCfISGQDgCzLpnb1crWS2nKxWBhj/KjrajNbt61R9sWry8LmhS5vbrfr2Wq5WHzw/ocomvwBY4wotoEpKcHFYTxsgRkYRD2D3oqn8VurIooceMxlxa0cAJh+TSgDaSBHT+or04kGAErpGFOCoIZbO5wOE6oum248W98yXP6roovT4Hcoxzw/UAOUTCOEkNJbbcIQQtDcu7aqD/e7WzRstI0u/tF//GPmGIMjxTbXdV1fXl4ulqsYY9f1SinBhReLhXDfBCURxEeYrbKhEDEBC4AYQoDE0tqp61o0aokohHBycpINLmTeGHN7extCKIpZSunq6koMnXa73YsXL+q6JoLNZqO1vr29nc/nnXcmz4SIKptXEpLtdns4HLIsm5cljxOdAksJnC0VoGs7Wb2v6waBqmNtrS2LmVam73tCRaiaunW9r+s2y7InT54IqpsShDBw4iS8CF58dnZWFMW6yOGLL9n+xljBdpUaZoSLopDSC8aSUqrlvLCyehBRlNZotOGSb66U2u12AnlPhbFgZyJv0nWdBG2pj0R2hgbOja6qrayuvCgEX+j7/urqarFc1nUrkVNr7VzQmkR3IrNF33XytZsmbjbZq1evwtiAjMNE6RAeZQ2vVivJfIwxpKCqD/f3d9771WqFKH3KgKhms4VEXSk3jsejSNK/++7y9dUbUKSQiqK4vt4KGCe9iqptUko3Nzfe+08++eTk5AQVCUFPay1w7fF4FBWRxWLhvUdUAn6dbk6E9C07a75cCFnh7OxMKRV655wLwUsHxTmHiqYCTXJXIQQQkTQbhEshyFQIvWj6X15e7vZ3xhhFemjKWptl2dOnT7fbbdM0Nzc3OHKuxW5EXPXSaP4huZ+oe0vZy8zyu5Izx8jGKNmDiH7ItDtPFMuyjJH72MYYlVK9C0qp3ocYvTHGORaKrgDZIQQxpxFSc2ZMStfH47EsS1l+2+1W1s/huHO+y7JstVoIujpBUVLmv379WpZEVVXGGBFW7u4b5x0R2VGeXq5Rfl1gU4l4IQRCOFZ7AJjP51O+IWdl04QvPvvs/NEjydizbNAIll2TZdmrV6/kdLs4PZvPl33boCKDRiShm74Tfg8RECkh+mTGLJfLMM4UCjguPHpBXQHgcDjs98eiKDB5QWpwVDsJIdR1PRWMIQQ7VFX++vqamYuiOD0LxBCd3/cuz0tEdXp6bkeT9pubG5EEubq6aprm448/DiE8f34aYxSIecIxBbEa5jyUjjFeXl6KdInsPngg3Nd1HaRUlqX4M93e3srvLpfLqT8UY6zruizLLMvgAf1IKSWqOyEkwkG3UM53jlEOPj+KyWqtvYsAb2eABLSRvRNCOD09nbjGD6s5STzky4+YNYuqu3yc3CJRlpCT8SFUCgDOuTdv3jx+/HjIahSFkESaUZ6d/KJAn8IC1KPZicRS+THnXNN3QKgzG3oHSpdFqQD73o1s68QMsj0BQPpARCRDxjHGFN1sNhNHHUGc0q8LcsbJ5gFwwmTDyOtarFZaa5m2kT6ZhM39fi+gYTaabTrXS4o7AWUg/GujUlKCZjCPRWVKYZxaa5qWqJ+yrwn+1lqnEKalJc2YNA6U+H74FeGJTlckRYe0AeS6wqiaK1gcjaP/eV6g903THNrjXR+LQg8KMykZY9SAxJLWyg1+xbzf7wlVjFGsj2nUEZ1SI3jQUKeRzZZSmmyQcGTdyUKVvLFpmgQsyaH8QB96ra3WOvQ96sFRcEpZ5UrX67VkFAN+Mj7ZCcCUxSYp1nq9ls213W4XiwXx8K8wjrsJ6Crl0nhceslblFIxppQgJS+PbEInJFQiosgxLRYzgYZwnLhCxNVqZQam3bAB9SiRP2pmMj7QsZmYJZJ3ye6Tz12tVlLLPDo/vb+/l7xCa80xCmsnxliWikdpqdvtVs4gm+cyfRhi1NbGGLOiYGG2pSSjD5IepJTKslyt17m3Xdc5cEobX/nFYgU2qdwWWOjD4aC1bppGBFJTCmqctUSlp842M2sz0BhljU4rUrR1nHPKDLryAvpMMM2UFWmUeXlZx4N8eEpJ9OvkfnHCGFhCgMaha9eP5rbTkzBGRjyGEj0mZGYXQtM02tD0bvIkphZiXdeJOR/HKPquY2Z5JEwoy0seolDAZCIsRi+5i3Nuv9/f3NzIt7rb2i8tQY/H4/X19YB4IkwoJKFGxCw3SilQxJy8S1rnRJQp0zWVsfkvP/n0e3/7dxazIviOmYssmxfzr3zlKz/96c/vbm5TSuA5yzJUpDO7oU3rekTVtm3s49l6HUN/++ay6Rtr1Nl61XVdAOXazgOGEDhEF+K0rxSAa9o2VtbaFNgYU9js9ur2Zz/96Qdf/cp8sWz7Fhnu6y0iWptFTmVmDwdESMvZLGX2g/feSYAhBCAMIUTgFGPfO59iYQ1CzPMSQdV1e3GyOR76PC/1gmOM+/29emCW+vLly5vt3W9/+9vvvv/ef/4vP1islkqpfLn55MXr82fvffhbv/PjX3z88q66vt1+/uLV8+fPvfeI0WibeIiwxmhmBgUheMRh1xGD5JFxVA/Hwa9AT7SvlIYyUo4xOa0lS/ajiMrffEkzY8AliWQEQ9azLHUeRYWUMgBvZVXVSKKf/pKZhREsYTHFgQQdR9viCVYejsnxO0jokUzChTAG+SGNENx5rG2HrSplMjNDSqi1VcMECiKRUqTU8XjsnYicgiZFxEjDTk8JJKxMmboa2cqyHeJIoFPjRInUPBL7eBSgVCMRO40igNNpOmEcE1wyoM/jP2mtEwyj5VIkyC/KfcDxJd9numkxRqW0tJcRURJuwTJk+cEocvoQRKYHnGU5hqfTV4KJgM7yrabnm1JKiQNEyWD0AA2/laoXYSJjTMK3ok6Sh4ENX6reQkSGVHCdaHUSUUww3UnvIifJ+YgxRg5EREgKMCW4ODm3eeZTunj6jFFdv3kTE2c2975PnLSybJLWJnlPpIwxlAhScK4plfW+D8klF6TgBAACDIFJU+KUEJClWaISsramiz4AAyEgASJEAEg5YAC1oplP/rZmVczalHxiB0Azayh3h6rpukU2A1aKMiaXUiQF8/l8tVkXs3nbu7auGWhdLoE0y4wSp8xoGAnvCjCGQISJQZtskRcrgq5zwm3nyCGExAkAgNHmudJssjwGrPt+fXL2uPfV8VjXtQLc3t61XU2AWWFQgTI2ofIpMjMQkraa/SRHaOfz4Nzl7XWCuFouQwjO+6rv//aH3zl//Cgh9c5/aQDhxEqpNA6Gg2iGj01WGlXJZsUgyiZQptY6Dc7LQ9Ipx59kopLBSLdJOL/MnIYeG2gtGoVxKglksyQa2v7WyiZN0cWp/RNCYEikwFrro0scEHExnzN4wJQZYopEgKBAU1t3tsiR9Mmjp//b/+l//w//yT/587/40x//6K9+8IO/OOs2XXu01pJeh6bJ8/n94fbRo3NtCu93CZRiHZOez8rbu2syVJZ5WSzMUiuguq4l62CWinol26zrOjdqKcp9S+KTMHLcpOCUXb9areQH8jw/Ho/Soq+qKjN2vV5//vnn77zzDg2UGcsIx2MlwrKC4Hj/5WfB4Xhssh4RAdAYKy2lPMfMWKXUfntvbViv1xGib7zWmphl3ErYQKQwy0im+KXTULdV77sQQuWOZnOSaW2tFSkwOZ66rjNZBpgAkhwgEoL6vvchaP02902jijeM/A4A0MaklBBBihBmJqSu66If8vUx2x+IJGJoWWQZIzICe99HpzQxkxq8BjnP85QCIwOw4+iTr9vaR1euZu3uLsbgKxdjZMLCZpzAWjvfbGJgGTiTI0oYNxISq6rSWvfBl3q+WK9c2znvrTGHw6HqW8X9yWZTZOVxt0+BSeObu8sXb7746le+/vjiYraaH3cHZE4uKQAenD95ojYPy15Un0Z6mgjKSZOGtOrbTikjbTyxsA59t1guTZ6FEEgrOVB4Ol8Hu/bx3OeEo1KZHudsZFlyTAAQYkyBxYcwpYTjcS993RBjHKf3UkqEBIBxbAOE4OSmhRAQofdODiMmBoKr21f7/f16szQZ7XZNSpAiQEKlqSjnTXto6vDeB0+++Vu//ed//ufvvfdOF/jq6kpr7ZxbLudVVe33ezlAvfdZll1dXRHRbDbTIz0wjQSO3GaSXN3c3MgP7Ha7k9M1KXVyciLsyKZpjsdjSpDS/vT0dLlcipKy8FXzPM/zwYBLztMsz4/Ho8AHAuNKySrlVtM0Mh8pjlVKKVtYeQh931tlZfEQDhwura34+WhtlTJp1DOVEkA4PvP5XGglRVEsl0uZ/JXUTrrax+NxFvWXbn/v3ThXTmVZCrWQiO7v74XCfDgcZrPZYrEwVsUYe+eKopB7Yq1FrYqiOB6PwlcS/ysJd8aYk5OTqY8uocwYU2S5LGYChMSQuK2b3W5nrf3og6/40Pd977w3xpiRXg1AZVnKOMXFxWOOaV7OjMmELfXOO+9sNpuXL1/e3d1dX2/ni0IM6Lqu04YMqwkKmWSjZ7OBIBxCSAkOh0Ypk+dlWc6fPHl0e3sr0UNqQyECC2rvnBO5uZRSX1Xzeb7bdYfDoaqqruuUNScnJ3Vdb7fb09PTvCyMMZnRkpNLyv3o0aOu616+fCkKs973r1+/PD090UQxehjNwJU1k5KSfAeGtFgtBe5ExM71wl5M47CdlN8i5CJZokwEH4/H8/NzkS755JNPy7Ks63qxyGTTEdFisRABk/Pz8zQ6rEi+JFx+WU5p9KObzWYuBkAIPhRFsd/vq6rabDaiCBFCCsFppL5ps9wqbVLkEMNPfvIyy+DRo01ZliEMNpIyJJdSAkjLZXZ3d7PdbjebzXK5vL297fsjIi4WCwQlhFNrLXO8urqMMVo7yP3NZjNlzP5wkPaq9342L6r6UJZlCGG32wHAbrcTiFxOFj/6BMowiuAgchslPvAoVw2KQJEsHqMzSU6ISH6raZrZbJpjHqY2RSpa0g/JeYR2452/vb1erVZ+dLRbrVbUSGOAEEkwYonnwpqXq56G9/u+Z5Dy8zgdprO8QMSJiitIvYQjeXBKqfvdbjZfggyzl6XA8Ygo8qkXFxfee4ipOVa3t1thhv7ip7+Q3rYitSgXzrkyK/vRq23i4sh/SpfLe991fRopLwMPZpywQUSFqLNMrmgK1BK+hOUq9ZSAUxLoJD4jqelNrLUJhTzOMUb9wKFKWjgAUJblfLYU3qVQqSYkTrgOzCzZl6SmWVZI9Sq3esIEmVn4y5Kd3t3dTSaQcvnyiWkkOc1mMx/6PCs773RmD4Mi9iASIovteDwKu5nGWfMJJZ8mMCQ/pFGXVdBtaZaocRBQnjiPvkGS0uNoJU1ExhhOb7OFqR0lQOTUOSYiggHIaprG5tngwue6po33u63cQK21cEJxsNEajASVIglTsvtklwEM6hasVNc1kgbkedZ1nUzfjmM6VlJfWSpy4QAgcEQKiYiU0eIeP6KfQ/lJRNJVlT/IspG4LTILskQHoGzUNpng6QkpzrLhQSyXqnNO2m91U02bhRm1Vt4FRGzbNsQ0nxeLxUKWiqRPsiSm9Sn3efwCIJxiGAGcCUWRs1KZ4Wg2g3cxjWl85tNgxiNrTHY0AIhPw2w2Y47KDmK8UjSl0f5OKSVGedPvStSCJslNk5UjuC2imkAMhZRluTy+lJKMOcpiSynJtcjilL9ZLBbMcRqvt1b4oIFIVGXadpwLN8YIGf94PPq+F29Vba3cuqqqZGFvNpvdbofjsL5kjH3frlYLRPz4448lvMhtnAAHUVQXIHdCM5xzVNdqfOFoHC2XJpFZEhsJBX3f8xGsM2VZOnAWKVNZmeUpc1XbNVU7YP+IyGGAbGSRNU2Xz4YpgOgDjMQNKZbkCiWIAIAEd5u/1W2QhYLIYr4BAMTAwCkFibASAuTjxK1yKI14eJDApI3t+0HFAsYWU9c5CYhmFD3w3vvQh4HpEXuXZInAKAglBIQUBW1IguWnGEXmXL4SE8r53bb9gGCS+LF23vciWTDpw8rC/Q3kV5iaDKgVwlCNyAAFEcrBsN8fV5tlSHFfd0opq2m2OiHUMcUf/PDH3/1b3y6MYmat7B//8R/fvLn62te+5r0/HA5lMcuy7MWr1yHGlNKhbYioIKLcLEq7KCwRlcUKYOwxMhGJT24dvN/tdkopORGVUnlW7na7u/vtmzfXQhkAopur69/+7t+63d5wghDC4XDQZLI81a4jo5VGAqgOe+R43B/6vj85OTkej23XxRgVkY8BERnAZsWxqn1MqPQnn77Y3l7f3m7RxxDC5f29RkJEra/lIdrZ8vZQZffVxfN3E6lyPiOtn73zvKfsh3/91z/52Seg7eXN7evXr995550+BKWZYiStiCDFqAC0URq0Ka1EBwWYRgBRIo4frJOHXrFEWDJ6OmkkwHVdJwQK+g3iBoggW4AeGPrxOLhXZjmM7ThpUSiFcbTwcs5J8znPy6nzLMePhIAUB5e/h1jnsP7DkBYAQHrQuJa9KYFD4pQMGfGvD0cPPwnM0oQkqqpKIZXlLITw5urKWsuQmLmu6ywz2WwOcTgP3pbowx0YDpuxv/f26J2+z9ROHGH9odKbcFs7BsopOcCRGY0PaM7eexGcGi98xOIZpkcAI/cTRlQ3jsRkGkt9pZQ4JBBRDFGYKfKMJBChYHzj1cn74AMDkCkKycWOUPIgA8LMAsfbIsfR6k1+0g/iVqCUQDTyhUfu86jQioBfCjfHEKc7T1rFGPs+KFDT2ht4HMDW2i72AEnrTEom1Eob6xlY6cfP3yHSt28uM2uVMimyMRCIkcgAMTPHlBggJSLK8www9d67tqXIIQQCVdisjr7rusiJtAUCkdU2xoQkUToptMiAgvshBh+MwgK0Tcw+tQxdMqRsUuqYPANgRhSSZa+TBjKIjMha67Pz89XmhJGUjYEVaWPzgpSC0dhBZpdwgJMiICqlxQBYkQrAxWKhYwKA/e6YZzNRE2uOd77ziMpDVEpvzi+IdNN0pxePUkrR+Xc+8Nu7m89/9Wnb9xmpkCIJjM8AAAgKFeVlIcvmfn9vjPnK1772nW9/+2c/++vjrgFO/+Af/6O//Xd+NwB61w8Y99+MIYQTAjX8FeG0lWDE/IRNLMf5gEHzsLO01lmWIQ8rX14xRlkWgl0659LYLe66fl6U8mP4wEcBRvUbkf0xxjh2IO4hgRmZiBQoZs6MzfPc9yKfSgowAXMKIYgCVUYEREQaizLr+j4r8j/4+//g29/+7ffff/9HP/iLVy9erTcLpRqFyXXV2cnGGt133eFwIILy/MzaLEZOkVwIs9JobQCw77uJ601Eu90OUc1XS0kGdGZTSlZpIQASkYckzBfhwenBt6ST+twYI5CHNLBl7zRN8+TJE7nDf/iHf+ic++GPf5RlOY2yS4vFwlRf3lpGpLbtpAYW+Ex0OSHhcrk825y1bZ8VhW4rmbiv6loCrGze4DwA5HnOgVer1enpaXV/vLq66rru+dN3Dof9cs7KSjI+nFMx+hCdxJYpR5cvw8whDFRoWRVh5K3T+HxDYiAURW9RXQxOqJ1hPCCigjEHA6Ax0KWRn6sAIbEaB3gJEhEoYxNE51zv+7qtO9dWbVVQ+ez58953h+O+bVvf9cMIHesQgndRKaW09s7R2GUkojzPRXZDsL+u61zbAUBVVUWer1enzbGqmw5B6Tzru27f7Mp56ZP/4U//y+3d03efvfv80TPfxz51AOASe+/FERETW60TggCpkZPUdYBpqnhd6yTMCo4ztRgZIISYEtvcKqWAcCxr5f7L/4DGASAY25/8dmYOAEDE/lKCh3855ST8YEwBH3B/0jjdjIhy4Eh/dBTYRmZumupYV22sW1+310etdT7Lg4e+99HFpmpTmYcEea6/ePnqUNV397vN6Zk4vGdZNp/PQ0jD/e97Id08efJEdGxpnESWByFbTDQB+r4/Pz9HRBFCvb29TYPIQDkQe/PcGFOWc2HZzOdz2XTz+VwKraqqDof22bOLzWZzvb1Jo7oxIs7n8wnrjDHO5/PCZgICCrUlRi8TjaF3ITgp/LwLJycnbdvvdru+98djba1+/PixjC0KDiIjdAIWa2159LWbeHxa6/Pz8/v7+/1+X/S/UVfNj1rwIYTNZvPo0SNE3G63IYTlcnk8HkUPIYQQk0caBByzLIvAdtQqlEs+OzuT5qKEKfkxRJys0pxz83KGiCJdutvtjDFyKzabDREBEykTO4cYmHk2mxENfXFjzHp9YrU5NIflciktLkS8u7tbrVZa68VisV6vaSIbjWYAapyQwLEPmkaiQJZlwSetdHVs8qxMKd7f70NIIQRllS3ym7s7ueH5rAwcEDHFcHd3R0R5WWitF4tBpiylpACEhT1wRHwQ8pS0HFJKeZ5fXV3d3W2XYhY37ou6rjGx/K7U7TIB3ff99fW1EF2NUjHG169fz+fzs4vzN2/eWGsTwnI29963bTtVlG3bTkUxDkY+nRwiq9XCWC2w5tn5aQxJ7Mhk/Pn8/HyydZLYKI++67rtdn9xcXp+fn51e9Pv/Ww2Ox6PckgBgFCS00CKQkxZ37dVVfW9QcSTkxNmXq/V8RgPh8O0T0MIPjjSBgDkQNlsNsfjUZZ3Skl4+rJVq8NOwkvrVJ7nRZE7547Nsa7rk5MT5ZQPfV7YlFLb1X60IE4pCfQ/n88FnhB/3Snj7bpOethN04i8sgTM+/v7CLxYr0ToQ7JlhhjjYPfivZ/P5/P5PDPGOddJaZDpSSBC7luWZeKdIGCK1rptW1FIv7i4iCBLMTo3qIBK1q2RpKelR59GuSdEBAghDOFFtLm6uhGysAxPrNdLEXbPskwepbV2sViJfroeibREFEJKCZqme/PmWpAaiQavXl3O56U8AkkqBBhyzrm+78f1LAWmoBPMLETdQaEieSmU2rYti0FsSmKvDP0AgGyHoiiEfh5jXK1WsnHsKBCEiLPZjIgQSJKorhtiuHNOlJfTSMgDAGttWZaRuelc1x2E9O2915ktikLod1NAGBIw8ZeOMYS3MinCexBtWQFVAKCueyI4ObECs05c7Kk8l2vPygJGprNSytq87/vZbFYUhcw9CGhLo9rkBPVIxjtBz340nI8xMvDQj/femIF/JvWX4GtaaznUpBMmT0cp1fRNltkJz2VmF4NvagCQQk62AI4Th4fDISvyIenSaqp5JYxLOA2jBCUNUgxJay2pjhqFtsUYAhE5Jul/+OAE4+6clzKWRwHuOIpPwuhgNBQIyqSUJHZN7Cgp8swoPN00TRjnAiXclXkuaRgAFEVR1xUiWmvUA4sgGrnJeZ6LG4bsJjPSogWbNqYUw1jvvXwZY4yxAwPMjwaJsnMHMYPR81bK8zhKME/ROIx+nhMaGUJwXS+9ARFgoNECJ9NGJtRlqcjw0Nibx65rnHP5rJSER/ABGdUSs1N5UiLUWVUVMSilxIG2rRvSIuMuRRxNIyxMDK6TDG6K6jCOrctyXa/X0kEZOKkpTDhqVTXSFLHW1vVRj3rF+WiTLr+Yl6VRqizL2+0WR4IdjAyb2WI+dTolyNR1/bOf/axt21lRiMq8dJGNUr33gv5L/JFH8JZsNE6oTNFPVqY0WY0xp6enYhggG9OnIE04vdZN0+Qmr4/VrrkPgH3fa9JIBForDjCtYHneE+iDSjOzoB40Eq/SKE8hYQIRUQ0kBSRUCs0gWo/ReX7rG4bCwBpJH4CITINoMjCFMBwSkk/sdjs5/PJxG8j7SGpLRITae584xBhbET3U+HB1DlgbD5MFPjpJJqwxQIOrQIyRjJbEAgAl6HCIo4qiIiIFgwGgHvUclfpyyoNoB2dlIf3bIIrmKUl37v7+vm1bpXV1bBIwk0qMVdf3PqYYF3n+i1996r3/6P3nZycnf/yf/vTFixfPnj1jUpLOLlfrq6sr5BT6rmmap2dnRWabpnn8+PHjx4+HIyTEoszM6GzQ9/261OfnXzXG3N/f39/fX15eZlm2mK+MMX/vd3777Ozi+9///r/5N/9mf31Q+ery1QulUWf21eefa0DX+WNfASJajRpjjEappnaH3f3+fkdat31vsjykNvR949xqs17PFp98/MvqeHzy+PGh7m6329dffF5Xh1leyNQ/MRR5vl6tiqJUSillQkrB6F9d3elsFgB9onpf/eBXf/Lm5n5f1QmxS9j78PL1q98fcECIMQIRM6QYGFgZIgUhRAQgBsGa4yjsIMnWBCNOSTMoijE+BJenqKp+g3azzC/G8Zye0B9BFZ1z0sbQ4xCAZMzybpKowa+TfFMCrbXNDAAAd1Pja1rGNE6Il2WJCpgZmPu2JSLSWk4yO9jaeDnewgOlC2FPy4YNaRjgioh5ViCABBoAGL4AgGxSuXtyN5RSRMOYz6gC8pYCPAFkkp3LNcaR+UtEITitBQRhqxQBuTAU1UapEEKcEO2BvIo8+KonhciIkXlQqQYU4AAUEJHSlFJKDIigiKyyY00uT4oSMJGoiaBwhQCAQ5StIVmO5AGtGwhWNIgu0YT94citnpgdD9eGlG3ShwucxmbbsMYkSOKoo+pSoiGewHh4j3Jg2r1tIDx4IWHgNLU+BHMEJO69995xnFbLcCQwEJFWuu+8UrrqeoVE2jLzo2fP99v7umnyzBpjus4HQI4JCQXqZuYUIyLMZgUiI0FIMboYfUwhJg4hpBg5MicIRKS1gsQ+BBdCZE4IpIkAmSMqYgC0JjpXKvNktqy66m7fN8naWZ5IoTFmploNfdsg+wUVmdJgZibPbFaU80UC9IltOdvkZYpM2jAAECInSAyQmIHHqx4IIwioyHuPpNvIAEio5+uT0LvFLOeY5vO5DC3udgef0myxmC1WZ6Scc/vt/d3dHVn76Pm73/7u92IKf/mXf/nixQutyWhrjdFEKY6cdIUM6YOvf/U73/nOP/2n/2Q2m33rd//24bh7fHr+7vsfVF17aGpT5iII/iXP9MEQ4pQ1plFUaii/kZAG+Rc9mmpaRVN0Qh6aH2ocZWXm+AB8ZGY1Mj5C6OiBO4e8Z9/3fetTSuLSnlIae0MIANYaAPAxOOcMZiEkY4zRhfe+77wC8j4qDcZkwbnkndaWY985Vkp1dbU/7oxVZycn//yf//Pvffdv/+LnP/3zP//+m08/f/7e8+39bYpttd25GAyn2WyRa+3qtmob51xWZtZa13tlhsRRUhmt9enF+enpOY/OzhJgXQxCQTXG+DjouUvKK0e2YGqjJOKglUZE3/rWt158/sXr16+//vWvN03TNM0PfvADgczm87kfLRl5pO38zVeeF0R7pRQDIFFMyfUBQcUU6rqGvLi+u4a7a2GKEVE5y/f7QWjeGNMzyFhl3/dCcpwVc6XU2cVp3VZqvjpUxxRiYYtJZUWSP0kHtdbAPKXXOADQb5M0GFW/x39iYJYWOIwspBRYqeABJGdNaUCoh2QPgZCIkEHgzaERMvQAgLXWkaNCCCn0ob+vt7e3t8qq9cnm2FYu9LPZrChzmSGVmfGyKNquy7JCARijutGBeZr/HZLDsSFX7Q+iPTIrSyTrWkdEJrN939vCphga30FiRP70xacvXr38ra996+n5s9P1Sd/0HKHve7kKRg6cOHGWZcpoiFFOG2YG8INPYBoOzRgYiRiARhw8jN1rFIEaRATQ+q1mFBACIqa3W5vHqSkENR1qMLZpp8MFR5tifDBVAw+GTOGtlg7H6GOMCRIqAgWUyIX+bntXtxUi2pnamNXhcEicUBExLvLCtSEyZHm5KpZEKXHsnF8ul59//oKBrLXT1DkASGEjVZlQrsKoO4mIymhhejZNkyjKhKbWWiQIrLUx+TzLJjKaPNOyLAU4EAxI8pkYvVRQMcayNAJbaGWKvBwOYjVU3WdnZ9vtNqXU932Z5Y8fPw6jxUvTV3d39wBAADEys/cuHI/HspzPZjPRkcgyo7V2fciyzJhMOI8pgVJmtdrQ2DiXoW/ZMm3btm3fdW6xmGmts7sv7zbFmFanK5HjEGuv2+0dIj569Oju7k5AbQAQ2pT3PiavxzlcZXTTNBwwRs6yAhGkThN/sNvbW0GgpA4X1AAABBSjkXW4Wq1klD6ldHNzYzK73W4lo1utVnmeN00lOidZlikkYe/GyH3fSYuu7/tf/vKXIpGpNcU0zKtdPDpDRGGap5TW6+V4Ff3xGCdopiiKw+HY97BY9ADg/R4AUClDJBx2PVDFpwc9dy5IdLJFjmlgYh6PTaoaRFivl8+ePbu/vweApqoRWb7DZrORD32bZgMwsyChkhunlMQQ0kQTYyyKYj6fHw6HEMLF2Ski7vf769ubzvXMjFqhMLxGNq5UWGVZ7u733vt3331XmM7e+91uF0LI85wVzFdLkf0t8hIRnXPn5+dKqbquxdnsu9/9rsCdr1696rqOiMpFkRBa1xPR3d2dKGVL0SFxT768c45ItU2dEk9kiP1+n2VFWZZK9Yh4f39fFEWeD66qX7x6KcBoGMf5pX8jFx5jFB6fsoYYtNZZmcl9mPCdpmlkjkewUXmsMcaqOjRN0/fhxYurs7OlbE9x8syy7Pz8vO972ZUCUshTUNYUeb67vOqur5lZKP/ee9EVGWZZIC5Xc+f6lBI9dHsCEOadMebu7q5pusePL+QsWK/XHOL9/X2M0XtOqeu6zuQZEUmu4kfdYWb2wU9pPD7gjnjvFWI2K6SLCQDEIFiztBD2+31KYb1ei264cOGLYhbCUcTlAeDm5gaAVquVMHPb1slRyCP5V5NazObHquEEPkatMUUIPomJjNCiBVWX003gjsPh0Pf9crnM87zr2PXB6MyaPI6i/1PRIZqqy+VS+iiyaEUm2xizXp0AgtZaPkgNUn6/pgHo4ySDmwRllIKxruusKE5OTvK8fP369cPKBRFrafy7ty1YGolNXdftdjtp4AmYmEYb+bat5QlaS1rr0VM0wOj3o0fjxL7vN5vNJAXGI5fIGLPZbARoG1OUJAwM0QKR0lukMOT9hXk95UjCPpa+6Xg0sxz9ZpQUl4foJwtlAKH0SqNOzjIXQ1EUU+2P6a1tkhr5p9Ohb3692NfKyKeI58FUI2dZJp7VIQTBkdu2jTFNp5Jio5SKiQTct9kwmj/xRWhs/EhmKBxHADBWu95ba5zr8zy3mREkFwHqeuCtA4BQpAFomgOQ4IwEy9l8v99JjLXWItLUZgAYzJCQ0xR8ZOqlqqoQvcwQC9DpvT85OTkcDojq7HwzdW6mVc1jJ0nWjADNcpMnHh6L+fsDDV7JVXhUMpAECXmYJEbEpmmavpNHL7RxRJRTPkYfAQ5Va2cFaaXZWBg0gSVMSdAQBkkIYb1e9027WCx0pu/u7qRblkbhFDUOK0wIiVYkQ/YAb217JVTGGOVEE3lrrbVSg/xpWZYQoWqbruvm85LIOucG1YtR3dePGtaOudvt2roOY/0r+EbbtqQVEYUwGL3K4BQi5tYCgNz/qeklz3GYhU1JjwMT0u3T4wy93BAYeT9DWkssX3sCuBrf5vPs5OSElvTy5au2r13X+5kHbZhZT9BMBIaR4w1AqJW00ay1hc1SSi4M+jhTSTytdfkGMQ48QfHoHLAPF6VTejgcvPezWSGdNz0MF4TAEGOUdNboLI3cqxij1TRdjGBDPAxdGsmoiqLQyvog06wQY4zJh/iWn69GHmtezFhcdR4YxcAQ8ktElk4pERkznJ3aGuIHxxgMqb8SiiLRb7KSIxoajN77mBIM0xOESMaolEJiLoriUB2zLOu9JwYncTABZZkl7nx4dXlzc3NzdflmPiv7ED/99OMsyy4ePbq7315dXd3d3K4W89/7ne/9re9++5c//8VPfvKjJ6ebD959IivyJz/+8XvvvbteLb33+Ty77Y6+qwrcGMT1k7N3ztf13Zum3oGBR+fv/tZX3nUx/N7vfmdV6j/6oz+6vOtefPrJL3/2s/npppiVmpViNZvNeucipdb1dV3R0EbD9z74sEfc7w+SHfrEVdWkwF//2jcB4Fcff1K7+NNPPq2rAwET2UPgPgERAoCvD+nqfgR/ses6QIxIIcU+hpASKIop6UTG5gG59c65MJ/PAZImSjH4GL1nRoDEBCGFGJXnUa1iOvNoctkaccOH8CgDG6OZk/dD3wZHt8yH9OH/qsZwIyErjgbx05ILIUBM8tFm8PeL00ZVSokFzaQuGkIASCGEtmuUUoq05J1Tr0mC6aTcZ4wBfGtJJH0nKfmmi+XR2WA8m5PEtRCCVghMIFcqVgwhxBjX63WWD7JNAg2nBxMfaZDhG4QkYbRNmIAJfiBGJpsO3tK74tilHD6OiAhS8AFI49hWTWNvHB74mw3L44FCNMRJPROIULwL5Z1Ja6v0lAnBgLglAEjxbXmfUhLTWLlYM1o0yOiNLkr5ywlEMKPR34SexxhFYomIAJKkEVmWta6PXScXIjctPnAelwxjIjXgaO3KPLTZIUX4spfczwQiKpaYlNaaJ+J5YkC5dZgSEAYyBkDqqD7Lc5MVYDNGssZYQJ1Z17fO+azIiDQlFZPXhGQImVJgVibLLerBjgwRY0qR0QcBHhMDE1FiThwQDQP0fZ+AEwAjIytESMwi6pqM0YSZtUWWPyG67w91zV3ltbVIRpGGLKiyyhxbjsS9Vtpm5WyxAFIuJiTtEycGbY3QBmlwWwQixRxxuJcYgQGBEYh0onR7tzV59ju/87unJ2f77Z5In25OIELCJEfy9e2NMdnJyYkyVtRCttvd9eWbuq5Xq9VvfesbMcYPvv61N1dXh/1eKm0p2DSZlJJIjj5//vxb3/rW/f7+4NqTp48W/qSw2c1xn4BVbhlR/Qa4Ofggx2f0Po3Ufnww05BSIhq6PgCD9IHWmhG89xxTiMmPSm00suyl0RFGnQ1jjM0y2RG5taQwxsEaN41DiMvZPHCSmh8A9tXRWlsYq7UFsXgGEuOgBOD6MJ9rAPQ+kTYAHKPXmo3SejRICX1dO4cAFyebYl5yjFbbr3716+88e/cbX//t3a9+uD8eFovZ7f3tn/zZn95sj+8+Pj9//OTzF6+amJjQKB2dv7q6Shw2JyfErJQSG66T87NZlklLW3QDYxThgSgbUO5M6xq5lvl8rmnoD3FKVpvFbL6/34FS9bGSvuzZ2ZlobhLRYrH44osv+tGhdBiKSinLc2u/HG+q68qe27qu86KQL1A1tUKyxvR9PxlSSa3rQ7C5kdLOOSf6zkKj6Lqubfsyy63VZCSZg+32VqNOIRWP5M3jUDHqQQ0ARpWMKauJMQpzmUelJqkYxeVAfpyIxv8fumg9vZ1cYeZJ6piI0gOkdSzMNI+TJURIGp3zMWLbt4fmcLe7CxgJkawKlfvFL35hjCnKXDzZZ0XpfVgul7n3Apz1ruv6VjSaZSNI/BfkIgzjQUMt4ZxLPOAI1ubOuZQYCIOP1moC1Fpz5F9+9vHnn784X5998+vfyOYLxiB1SAxR5IZRAXNUCpmHo0orK44/jJiEDhPfjvRFYCVHOQDwr513aXJQ4EQwTOQAACc5+yQSJvFAh1/vM/EDZroalammc3NMNuL0lGOMznU+BtF9AgWoYFdtX758uTvuZ7NZUWa+6heL+WqzlsK1qer5zJTzMsuy5WoRQne/u3Ou895vTs5sVkg1Itio1AwmK7SmGaFAGIKy2VFCV7yC37x5I09TxoQHd8csQ0RrcmN0SulwOOR5XhSz5XItCgkpBa31bnd48uRJnlvpQIigpAx+ScbFI//RGKOVuby8rKsmyzJSKG0b4bGmlHa7Xec7uWkKFAAEH2ez2fe+93dGn7186CW3bQjBWCXanVprUdSRRpRMbQtEG2Pc7/dEOsuy/X7/5s2bJ0+ebMz8S7e/MfZ43ArmyAh399sThM1mc3+35VEZSeK2FLEMMaYkAxAKcF6USmU8zolOTkTH41GwJ8EgQgir1UqYrW3bCitTqpIYWaR7q6ra7fab042weaTalwxElOJlJr1pmpQGecdvfOMbYvm4221ns3mWZS74vmu01mVZlmV5eXmJg138IBQ+Fr0NjKVQVmZ5niH21trlculD33vftq01+cRhlHsr08pyY9u2Ffuj0DspdIvCnp2dKSspsev7tixLIqjrRoKk/BgRCTVsKqQFY820gRHfiTHWdX19d6tGMc2+7/vOLVcLNXgitUVRLBeL29vb7XYLANvtVt4qjL5J9Ovmb5K/SXZ6OBystZ13TdNoZYQWLWCrxLSf//zn0kchItRKaZ0jTP860bMEApgQBO/9/f39fL6UA2s2W1fVAYCqquk6p5TJsoHPIfOXgrpEF1kxRNDappSszedzK1chWi7b7V4whevLu81mvik3Sqmbmzvn3NnZ2Waz2W63frTtMsaIxFyMEWKaF6U1ZXggbZdlmdjzCryVZVnonfxT03RaW0S13x1ThMzazz693myKsix96K+vr0U6WWu93+8FQ/zss8866pbL5Xw+d76L3XAeueBJK2MUEW23W0R+9OhRW9UACYA++ug9771PUcgi8pUkTg4VH4MgLHKUyzrkkUEiX1vOd0NKqjCRvTbGONdJstf3/u7uXnCtaYxDnIqrKjDv5NM3a01Erg9FPkPE4A5EOoSUZ5kPYSL9SNWjlJJzULjbcnDIm8MD2VwaiTuypKfpBBhrOglTcRyDUEpJFJUF71wU0bNJfCDGmCIIt1fikmSAzJEA1KheKDfNudA020mBZCqZJWPURFJvTnWWwLKzWTHxduUGqpHrJseZmEyKgo0aByZo9OijYeo/dN7JjWVmgeHkXnnvV6uV5AB5nhuj+r6PkYRzOhGt6IEz4YRZS+U09m98SgOCD6OjXdu2A1FvsFwbMHGlVAiD1gcZPcusGukYRBQ4QEwT0JbGkX1BG7quy8pCujjWZETkXZj6ZPJ0lFIQ08XFxWeffTY9BbkW5qH9L6tOJWUGNV4UGEEuR+BLOTrlS8oPCLxW5OXd/V3btk1dW2tlCcmniEq7ZCMDMzp40mrCf+UNpTISYaipru+9n5pM3nlZIXVdpzG9SZz2+/1+v5fkQdo2s9kijqT76XELICBvJWj726bUyHSWQkaaDVmWSRZBo8qHXFRVNbPZzJgs+SALUiARk4ygiwI6y7VI5FRKGYOXl9vHjwecUEhpehTRkuXtRoNrZU3gpOHtepvwZdlocpRLYFSWACLiIEgiy1Luc9d1Mpwkw6B65LlLz6bIslmRxXFWPoyueMK+lycr7X/x19VaF8bEEZMZmOwpjujEkFsSkVEqAkjRIUDEcBUAshRFxQuJsyzTRuVoQ/CUBv8JAUKl1S1ZTV7Yvu9//vOPtUZh52itKVOL2TLT5urmqm1bC6YsSyiCl/WMONwTFhuVYW5d1V3rBp3vQZiDU5K5NhjZ6dKjk8AXQhCDbEnvXHSyUNSoGwUAKQWpG6fjuaoqJiVDnX3n69jCKAiAxEENjg3SspZ4N7ppvy3LcRQAyRAFa55WQJZlXd/HUWp2+oP8PACowUTOI6EsCKWMnF5yGj08qySiGWvj4Nf5pSkopBQlbrZdNzxX16VkZE/udjskLoqi9w4UxehBGdTKh6CI2r5Ha3rnlyenX/zqk6KcG2tevnp1v9t98MEHiPjy9WvnXYj+ow8+/O63f1sz++Z4spg9e3xeGqVm+W7nr1+/XM/Lp2dnRiujk8bgu+Ph/vrRo0fV/nh2dvZ3v/edf//v/70C/9UPnx9313/9k58ppS7W8//T//F/96d/+fP/73/847vbN+snF1mWUcTZJu/atm6apFhrZYzxfa9MNl9YAIicZITNuTCbzRblLMZYt935k6dN2x87t6uq4Dwk4ZO6HrX3Xvi/zKwFHQ4sjCFQlBjJaBeSAsqyQgfqY1RWK8WLVf78+VNS0HWNEFaFzKitFjd5HnV4YVS6nLioAsJKLJ6KOgBwzmutZaqFiKSBNgC1v2kQnhlRIf4avZdHzeKUEtBQnHvvEZVs7KmPMoXa4d0QZXYmJlFGC4gYU5CSflrkYh8hBxuPIkcAYMZ5TCn5BLhsmiYzdhjD8T7Pc1TUdU2MERQ9xKeE2xtj7FzXtqJez0Lqt3rQMHpQ9w53mBGmztN020dwmX8d8B2q5RDeioTASP1GRIHI0jj3rUd7aBjbpzHGMIqQMnNMwjdMY8MTEFH4e0REpKa/l5dEqhB/zaBA+tJSyE3Zg5x2RWadc5yGkyCO014wtvWItNivwTjiMJy73st3nv5JIiGOaiRyvZN1oSzLPM+RB2Qw0Zezm2OMEaMlxRwSCQKCzKxGvZEpXWPmxKwVYUJJERar9fJkvWs6UIjGUuJHj59+XtXb7e35o/OyLCkk54ggITIhJUqEKs9tnucce04QAzsXfO/6tvG+R1XEGAkVKZU49MFDBKHlAoDipHhoSKBShOgVWltwjOD68zx/f7kMobty7AMfm9hzjLldztYdtYcmKJ0X5VIXM1C5jxFQJcQUEyImYAUKMQEiJGBEVMSD/qryKYYUrckic9VU17e3x7p57/0PHz19Glw8vXikUUNiRkYgZs5m80fG5nmeZdnxeKzbhpkXy+VsPhe6aB+Tc/3Xf+tb3/z2b8vAbJnl0sUOIYi3m+yvfVubMndtu62P1lqN7CEqpUirEINw2b7kjBAbFj2MCQ8rB4dRA9mYmob07uHzJSRIb5e3LCoZ+VSjXRg8IM6kcQx/tljguGHpASqdUhJBQ0mvi7I0WqcIkgUqNQIlzFmeK6WFdqDIkNYWtbGZc05rUxRiSBIXi/mKIIqvnda1OJMk/tnPfv7kyZPv/N3f/f73/zRw/ODJ48V/+4es6Y/+5E9C3WFMGBOR4RRddJHDfDXnFOQTi6KYLRdi5ZcSWGu1Md77EIOxxqBVSJOmmDC1hfgzBd4Qwm63y7Ls7OxsCkciiyYwsegGCLfr9vZWpsPk+J7N5xa+HG4mwrIsxRyYh5Gs2HY9M2fWpnGYsWkaBkBioRkSkRBwROTq4uJitVoZ0yhl2r6JnD794tOXL18i0wfvfWiQslKmVYYOqEQkY1WIFFx8GwHGiYo0imnICSP6cROgjChC/QoAFJmoOMaIilJKOB5hMcYQfUxBK5OQY0xxPDT1MACYmJARIqdIwBCPXXW3v7vfb2fLRUKomyMSFUUh6FKRpzzLYozW2v1+b7OsaRomLMp8CcsQwv64Rx4qZClCmHlfHVNKy9lc6q4Uo81miNh1zdXV5fF43GxWprAYVeAEMSnU5azo67ap769ur7bH+3/03/33lBEyIqNvAgMqS9556TLC2DdVSInfdiVJa4wMcRAeNYREymaZMQYVAQyZAfMAQ6eUIKGYc8iGYuKH74+ITAgAONoDwgO/8qmen04u/BsqHCmFEJwLPsbAhInSfnevDAWOSaX5qihmxfF4jByyLBMNHOG4MbNYhAkueXZ29uLFC2My72NKHpGFwjxN4HV97xzKYDUyCMtPdCEAIHKSiT3JHCZaWZZlUhw655QhANjvDyKAa62t6/rubr/ZzGDMw7Mse/r06fF43O/3s9ns9PRUdkRZljc3NxG8tdaQyo2dF6XVxrVd27YXFxdd8CJQC6QSoBA/tTL3t3chhNVqo5SSt1XKEJGInArGd3t7u14vBdhdLpcSHicwlEbCl2hrSEiUzdu5L3cFv3j0aOeb+/t7Rliv1oJY7Xa7zz67zfMBLxBGmwSZGGNVH1JKoo9srXUuCeRd17X3LCmr1HVyZ5bL5Zs3b4qiODk52e12mpRcTkrp5OTsYXHODMJSPz8/Z2ZjshgjQD2fzwFIKXXY7Y3JmqapKmcMyIAIIoqswXK9+vTTT6UExZE6kOe5c11ZlsfjUQqx4/F4e7vP83w2Wwg+/tWvfdS2rXNOG+pdAoDj8Xh6tpnNlsaYN2/ehEE8LU8JRkjLCTQjFRZAWi7nEm/3+/1hEPXOmVmelGiq3NzcCP4uNMn+gQL4erF88eLFfD5PMbZt27ZtYTOfYt/36/W6KIrtze1+vyeFm83GGGPyTDagjwwxWZNxghCDUERX6yUi1I3w4GJRFMbqQucuDlJ14gewnM0RyHu/3+/FT0kQjcvLyzzPl5t127ZlOQ8haI2LxUryvcViFUbVIDnRQgjX17fyl64PxmQhOLEWEJZDCCnPrRpldr33xmhJFaYgQwCZMX3wsotjjHmey80RaLWYWxE3OB7rEAIzyH8KT1k8PJ1zhtS8KBFxt9ulFGezRUop8YB6CFlborF0NbZ1c319ba1lRmOMNlI+i6TsEP20svDrJpmvXl1qrTebzZtXbyQ6JgQBeoqiqJraGGO18d73fVsUxeF+J3amOjMROAJPLFprtVQ9IpBFRGWW69FTS2kSpREZIUopaSTh+gimNs0mjnilluxOxJSZeVI5ACDxF7WWZXHq0U8iyzIkZk5ZYUMIQDwf2NwEAIkDEkeIMUaRWZ/Cu7xoJLlPJ6yIotjReWjo9Y40fNEtETZoVVWS7E0UN2NMYnTOSVtu/Kwo54csYFHq8D5aPSjbLhaL+XxeNc3hMAp/VZXcKEEqBe3imB6S8SWmCWM3hGBtLixpIW9N3x/HxrY4ZwgGrUbNIrm6wd9yTHS11qLxhYjX19dEJPjayFgaJOYUqNC7NPJM3WBDYpVSzoWiEMwHp3/Csd2bBvvoJFCmMQaRpZSTXFg+azYr27Z1Mcxms8nu4m3/wBiIQ+tXlpPk8PIzClBltu+cPBfJ+2W9DWVpCLIahUAtZe+AhvWDYBqMA2qyYGR8Vk/Djta6GJJ3zIlwcDOKo9eLIi1aOl3byhcWOzTJGAVNlio1IcQQjDGCRZBCYmrbViD+6+trMUvwoyXvhDbIquu6zvugjBGEMMU4sZW995nNQwiiZOW8w1F/mYik+yLCDtIflV7XRALTyqSYAg7on7VWa1uWuVxj3/eIyhiqqsZ7L90j2bOBkxxtcra+eXO7Xs+zLCuKTCklIy95ngP1op6hlDLaWGsXi4UEOklyJHeSj/beE0OeD7B1MSulASw3JMsyokHCPnJKPqrREsCMUuwywFQUmX4wAy0PAkbkEwAIwMUou0Pyt0EQvO/NYPnrJEQUmVFKRed674/Ho1yIRBWb5VOc0URFkaWU+tZppSMnqURQBv4gIlFeWDF0nZgfZVn2nZcsTkKlgN0+OQCQxaMUyGwpM9d1PbeLvu8rBgbebDZ4GGyutdLEoCf4nIcxasFWBtVIGjVJQwgpRADIyyKNc7vyM3I9xpggMGvXpTSo4jIzMUlgYmbEwYp3avLIr0+jJVIHnpycGKv2+z0yGKOYk3OTVj0vFotsEN4esDAFZiixiA0NGJkUz1NpPeFBEzYtN0gjEVEE4hFtnO4jjL6IA0qoBssXYXsCwG+Cm70PWutHJ5veOVnWosvZNI2kZaRVSHG/3z9++lyoW33vISVjTF2nviUOcbc/MFDd9S6Gu/t7m2ezxdzHEAlcCMvl8tmTR7dvLl9/8XnXNss87w673lCBxWKWPX/26PUXny6y7PHFo65pz09OL1++ur58U2b52dkZx/TBe++3f+fvKqVc1wMAIXrnquMxxfiV99/p+e9tNitENtZCBJVwtVp1fe8hMMFsNtttt/vdQSYTw2EXeqdAQXTR+UhaKfNXP/whpCSxTx49ABDF4HxSqEiTHhovIu1uZqbve2WG7oJPCckAUNs6opy0CiHFGGcmyzN13N3nmamqyticCTlCgBicT8EbpUlp/0AKmUdl26nBwKNakCweid1xnEkXkPdhmfc3X0YbY4xosEzoqgAc8v4chn3knENUzEq+gCxLCTQpyTSQkLtBKUUKZfsMUkpqBJhGGjU9EBHmsXnlxZBUOs9ap5T6ziFjCDGOwxdZlmHiFBiBSCEx9K4LLlprRaLUOaeQtDVEw/2RFAeAhJZFA5AxpI8wytRM2/nXYIhxhG2622ZU31cPDKzHPOOt8MV0UqaRli4vHE9HIkKjEFGN2hLy97J3pq80/rpWihgTEU3I3ZDPIU2LRLCAGCMheO8lJQUARZTbLMVBRNI+sAqcAqZSylqdUuq8Czw4NE5wD41DT9NHxxgFqU+cUoha60wbUgMeHX/DtESMnAhQYQIg0q7vYwQC9ZZXxywAdEqJFBFAbuyxreer+bvvvx8SBEhGZQwQAQGQATjhmzdvHj16lBdzYui7OqZgMoVEIJ54DM6H4JyoZ4QkniUQOSVgjhGYEwcAIJZnBASITBwZEYzSxhilMQG64A0hMmQxXGTarcrurrlPHalCkXWMNfecfM/RWlMmhdksEIUo9tAsMCIkJgOIKiVIkAiJUQMxIroYyrIkrS5vri+v3iRSIcU+xqfvPA8paWPauiuysm9bZLRl4YMbuoChB0zGKlKqaTpSrI1OKTVNc6wPSimsKQZ2fV+WpS1yNbSFkvN+vpy3fRtjRKWCH7qtsyxzKSJRF7xB8D7EL3d/hMTce5c8qweOz2IDiKOYRmQQ0a40imfFBwbcMDpBywKW6DblwVK6AMg4pyai6P//1P1Z0yXZlR2I7X0md79+p2+OyIgEMoHCUCiqq8zUVSS7pVZ3m/GlfwD/Bn+XpCf1a5vJxKZINltGSoUiCkABBWRmZEzfcOfrw5m2Hpa7x4eqxIMeJDPdh7SIyG/w4Zx99l577bXCqW3r2dyNThcThZ8UT4131qyUYaIkkpMQkbbaOANE21rb914pMc6mmFlxCMm5MoT+fG5iDKQ4hY6IMhNyvq7rZmUVY/zs7oVR+t/86/9727a2MG/ffVCG//x/+18+POz/zb//X6vFYllW++bUNl5rrY1e1nPv/fawRWApZlUazUjzWKpBy0tP/quj4I+C08u472KMGBBDDrDdbsuynM1mfd8bWyxXF8S567qREemWy6UtbFG4qiqJuOt7eCb/409V1Wd/KMryfD5PDCZbm7IsJZFS6tw0rMkWg1SXjJ2n0hUA1/Lo72yt1drmzKYwffDb09aI/tEP/6Rvfd/3laumEJdzTCloa5xzsBQewjQzZU7S55i01pTHrx2DAxaKPOvGYfHQ4GaeXGEUVdEHSOyklFhpzpRzFhoevmIjImy04HiV1Mf+eN7vm0PmXM2rTIm1zUK2LIpZNSvK4/Ho+74sCt/1xlnvvTbm8uYaTNWyLFEzl0WBWpFHH6fKVVdXVyBXSs4hZ6Va7/2srDAwdzwe5SDLi3VMIaWsKaRzij5qqxez1Sk1//p/+deUZbVcfvH9H1zdXvdd59ueNZOSTCIEUFjlTCJs2LAZBoZ4FJQbQI2inCil8qyfqpUlIqHE9Ins/A+ebWZKJApNuPHYGlLu/KlNzuNnCBFjPczMpIS1IsWJsk8+xbw7bD9+fN9HX84KUxjjCqVJdOpOnsnm7DfbLSAnIhHOIfbKVEpT34aiKGbVPKTctT7EFmABkMqcc+f7KcGoCrdYLDDIHELYbDblrHLOrddrxBwAH9BJv76+XiwW9/f3MWZr9c3NNcDuX/3qVznnq6sFXPKstdvtFjNeRATk0Xv/9PRERA8PDwBnmRndIKgogGe93++VNXaw/9VVVRnjXr58Gbr+w9sPOKnbtu06z0J98pnQ3Ze2PYMIOaVSU79hKtG/+OILrfU333yz2x2V4pTEezKG6rrW5rt18w6HPdU6k6xWq7u7O+jh9H3//S+vNaurqyvclOTcd511rigKpWmz3dpRodiYgT+Fle+9f3x8DCG8ePEC8NkQpoxRSl1eXnZNO+WERHR9ff327VtEj+vry873xphvvvl2uZwvl0utdYx5vz8iNC3qeVXV3vsQ7s9nAZT54cM7FLRJ8mKxwDVMw90pheVyKaN4EQCji4s5pJ9F5Hw+Wqtns1JrLkt3/3Tf9/1iWe/3+2+//XY2my0Wi8fHRyJKKV1dXe33e7Q3hvpLaxFp22bSR0ZlDip0gpGd1qg0p7Rcj+J4RBRC2O12lDLQjXldB++xqIxy6DFcXl6u12tYq8EjGku6KMvz8cyKX758ycz7/R6tSvw6oAyga3jvW98Dc3nx4sV8Pt/tdl3XKdYIC8aYb799u1jM1+v14XDAcJgerfOQ66KrgYR8s9mICHbBFApWq5VWlnIGsKUGey6nWeWcfUhmsBwMSilsrqbptDbOQWMk55D356Me9X+MVbijEML19fV+v//977++uLgwxtzcXAAnjTHe39/jwTZN057O1tq6romIeRwrCR61CfA4YB8islwu59Xs/fv3XdcppYkIciKr1ex4bKpqGPH2o+Yv1FGNMUVht9vtcrlcLuci+XA4oAEQQiiqEmHQlUX0PeD13W4H0yOfBu+lYlReQlMZ+BduVtMozkkUU8hJQFe31p7Pbcgt9k7XdefDEXxAPVJxp5g2kczO57OPeTabOWs3m83NzQ1o46hJmq6j8aTAG8fVonJB7hpz1tZqaCOM/kA09hSnLtdYULipjNJapyTGOKUyZmR5lBxB+G3btuv62ayCTUVZlvvdcTabQRdx6rWLCInC25nNZherC/QFjTEiCfkVVmYmQoMfO9R7D+gZW09E+uCBO+Md4cqxR8BTJCLo1+MA/frr3y8WC/y1Hw0zptoQMTCONoNAjfDGnStj9IgGKaXDoRlImtZiGhiplLOOiEQxOkO4KYQdMABEhEbGD/6qRo0OuHallFxVppTMOERrjFGKlRoAH2NMZsJGRr8cLwgQfOh6jEGgUE6SAVPSyPwAizGPI4zT3okxSkxi+N27d/SswaxGqjuCBlYUq2F5xN5rrbvgicgqPpxP8kyyRp4Nc0OH9uLy0jnHo0SG1jw2BhxiiHNufzqS0ERlE5GcxRiD7hp2BBYAChAAryml+Xze+YAYEkJQxuAiDRtIzUzgT8754eEh51yUBuEIDWAajSswiEBj6x2g/Hw+18pgj5flIJmCUsU5iH35tu1ns5nThlImpfen42KxMExhlNpLw3io6fseSnGoGnBfHx/uzSA2GI3SIOZjDkNG3ipeIi4PW2M2m4fQg+OIqZQY45i3YMLAe++tNtNNYfGjXUcjjW9aCYiTGGFH9gVHCjyW2WyGUScoe+Dwgondcj6L0TdN03R92xL6RnmUeMVviTFSjsbMiMgYlXNkxcwCWNUWDmWg1vr169fwLt7v9zi85vUStzNsW86J4oRssOGrqys8NPQ1sYabpuGajbVFXegsLTNDbOR0OhVFoYhjHEYDmHUIoY+DkrdVgy4J2krntpkQpRwT2ux4K84MqrhEn8IT6KIjGvVpO+EftdZRCO8DspjGKm0YeD90KqcMPg4TH4aI7ChMDNFXVAiuciOGlazVKUnbtmmk/SOeGqMGNBkwGQ1kk7HlOIwU4b6y0lN8MYUry7Jt2+wntabvTEFJa51IcEnIC4W0Vvp4PBjFZVk2XbtcLt+9e/fhwwdXqBB6Ykop5Jyr5aoqSjb2N7/93ay0hsnH/t2HDz/84Q9jltP5FJO0fTfT5rg/qKK4ubjgi9Vut/n2zdesUtuVRVX97Kc//n/+x//0/s03V4vFYrV02r1+9f1f/OIXV5fND75cEdFv/+63h92p7/vHx63R7ptvvmEeOucXl9cvby7rWRFiH1MyZGPMWqlZXQZKh+YcfHRltbq8YtI+BmixIRNtmi4OvCqKWbqmTVGU0YzVnYSNM2qYg0AcZ8WJJMegrIkhDq+1bY0x0fuiKLJw6gNZMkb96Z/+KTPt9tvCur73LmR2hjEyIAkAJGKTjN0FDB3jXzATGkLwKcIxWYgq5zAiFFJKISilKFNhbAqR/8j7nWjH6Zl8kp4UnZjVmBbknEVy3w8RZ0JRcdpN6AmNHOc/rFQpjZQ0eeaeN2XbWdJ07OmRsJ+T8Og+sd8fRDIzPzw84JBIKc1c0bSnlCRHaZpmXtXz1VIp7vsQc4KcIlKHHAWo+nROMw9FTh6fwLSRJzR/wsRlgITitCnwQcieEDQYx49PgKbniTbylJogbTIG7aFPU+To/Cio1o7ALvpGwyUppZRCvh5G4QKtngtnD/p9riqRu+I8G97FuAieiWCo55f0LEFRaRh64Of3wqO8F248JlFqAKOHHzJcKKc/0r+aVeVRdKaYc+bMpI3EANzCOZckSog5J/DoY+5IhqbacrX6/PPPjzkZ5yJLaLub+YK0MsZd3968ffvmP//n//wnP/zTuq6MMSkJM5Nmp3RRONxCDFlSFhhbicpMKSVWnESib4XIaC0sJJRiUqyHBELDgIuZWeUgitkWOcTcdcuier0oN22z3+9VZQtVUUo+GdYFFSbMFvPVtS1n3nuf+pwyXuBUZ4qIUpqVYtYCu23OhSliTk8fH75++23Td6vLqyzphz/6kx/95Mes1LlpC+vatjVKOeNiiiKSJRptQt/H6I0xnFiy17ZSmphVVZVKsTI6SQKBOufcnbuBqq+ons9QGJzbFnuwrmsFd+nCimRXFtFHIrJ/XLt5mFwjNR2vmWSqfHi0ehvO9dF3gogAlExRDhkejSOCZjTMmRIdfGNzOvV97+zQV58qUmYmPVxAURQY/lU8KE/lYTpBtOaUQ2jRnjQx9jkLESlRT09Pu93m4uJisV72fd/1TVlVIDqFGDNnY4xhdff59b/9t//2/ePue9/73sXVhRTvP3v1antsVuubq+uX7z7c3322/uzuch26t++/OR9PaZlnRXU+H5HudMEjQzV20H41ow0gcGcgFFcXl3kkAY0Z9tAEqut6Pp/DJAq773Q6aeOJ6PLy8nDcHfcHZAJd17Wj6QJqmJV6+Z3v0TmnrWZFYAzhxy4Xi6IomtNZKVXOLlAJIHnA1Pbl5aXmYZzifD5vt1sZ2D09azmdTqV1RGQL9/vf/369WL958+a/+Cf/pGs9KrHBlnqIyX/AlkWknTI0Ig6j8ddU49How8ak8X7LsmyOpxCCwtBMFjXK9/cpMVHMCdM8JCKUSFROSRnNSroU26573G9D6opZRZGKwrFSFuOHMXZdV9e1NybHhHTZjRJyXdctV3UIQ5FPWbquq6rKDKQeUxToAXMKeTabFUXhfe9cLUI+dJfrC631uw/v2Ryvr6+998vVomkapQMz9yFIlu7xHTPvjk8f7t+/evn6i8+/KMtKK9N1Xg+1jaIsWbISIqWy/IGRJlaOtgbkJlKcc+ZRR1/9oazcdFAOJeKQ+Goe9ZqJSGUGwkzjESnPZl/kD1vdCsbL6HKl2Effdc3xfGr75ptvvoqSlGEJkZRwUmyVaFrML5g1pWGmCjt9Npt1Tfvw8FErVRR2Pp9rZatZdeJzIcP84kALimEaPEopndvO6kGX+fLyEpIRatQKV6SZVVkW53P77t2pqs5AWDrfg/Lmvfc+Akf78z//87/7u1+hcEVlhXc9JUJ4RKDS5NEKNcYIpQseBUaBAHrvb29vrbWH/fmw/030vut8znkYqtXGWtt1DRG5slgs6jiOeWltvY/OmRDC6XRqmgZsMmBAaVBgQ0WgV6sK7/ePdZvuHx43/RGKqx8/fkT5A4R0Uc+RbEjO4EvGELz3V1dX1tqmbcd3bUCPwj3WdQ3dWB6bjqAsgX8Hjg4CeAhhuVxDoqEsy9XqIqVUzeZqmKE83d3dAYSC+Mbbt29jzMbk0+n0+eefF6PfOxG1bWDm/X7LzMaVyAAxqNF13Xw+f3h4IKKiKCAHvFwuQVWbzWb73eN+L1rrpmm875wzUOhGa+14PGploTMAbaLD4TifZzC1aYScRErc1DffvCGiqioXi0UOQXImxWgBHo/H4/H4gx/8oKqq3//+92p0loa2Bshl3nuezy8vLw1QKhIwncuyLK1bLpdt28YQW9+3bdt7z8zL+ZLHoUOYWIJwgNU7nZ4ppfunx6IoimLwcQIZf71Y4piez+chUErp8vLy+vr6cbs5nU7X19eQLoHMMRYwYPfdbrfdHgCpyDhI3jRN2/TOmIuLi+324Jx78eLF4XDQrA6H04cPTy8/u5nP5zH5pumwqhXpnOh4OBORKwxEKoD5Ho/dzc26cBUq39vbi/Op3e23KSXA633ff/vm3eeffy6ZZ7OamUngBTPQS5um6UO6ubnZ7vo8etMhhqdRHQXT61dXV8a4/X5flrNp4B2Su6Mbp2nb9uPHj/i9VVVB6tfwMEgOeCHGaJzFPiqKonRDJe7bDv6KE3UU0/2n04mI1uslkpn1ep1SOh+OCN3z+Vwov337FnHJOTefz0NOT09Pt7e3VVW1pzMi5HbsAOFERspRFMV8uc50KJgBjF5cXPR9P00yaa3X63XTNE3XwbzdjOoTAz4+KFkN5wIILjKevyiIlFIT9y7n3I/G9cPRow2P7ChFGYsTXEgUR7NZNWV0WutpDaMqpBFnjCEbY/D6eLQKmM1mlKMezX6O5zMRWTtQgtDzQ98XP5xHYZBJChLXjF5R3/cpyfN+f0oJFqZ4pDISE621x+PRudK5suu6nKmuF8Nof4zYcXgOwz1W9VReYaoGOM/ISmZKQ9Uvo1kC3s5kq4i3mccPGh5E1nvPRtvRl7I9nSH0OjGIRTIbXcLrNSXvPYorcDX6vu/6DrFaWOpqNl/WTdON7AFtrTWumKp4AItKMaUcYuRRIwvUez1KvNZ17X0YcBIwzPRAcy5mFTOnEPQo5I1MA1wEhErQFwCADFocSuHLQLTi0ccIaObUk2BmYtJay0BVyOABTEwyXC2PUtdaWz2yubE28AcmPp/PkyaB7wfp0fac1hfVfD5Hsw2tTbiATog2mhn4mbPZrCwqjHFYa9uuwdegISqj9LNzzrcdTpzpOedRqgUxdpx9HIzsbOGI+dw22C9aa0AEyILQ9USRhWBFI7kn9p6IZrOZSOV9h/ZGWZY+Re0sjQiyjJZv+CDDAQJuzDB2P+E58mw+PsNGOCVhRssBsvJgW+OqrLVVVWMFUvZYbDYEr4e3plkZq0cEJrMIJp+YWQ3DixnIWEopjPZmebSvgAGp93673Q7JMOfFskYG4mNAmoTKdFZWdV3jIlFzhRByiGyZUuKecgipTta6EMIoQR1iztkq6KjK9J0xRtHiaDDHe17PPAfLsF21NXlUrcYS0VpjjGtMrD/p0MkoPoB9RVPrb5RpTil0QTLUtTN6WYNbV9d1mBS7v7+HJQhCg/rkkIPLoJQkD2LbPLpbDJgm6MxGaa21IYN2BK42j20BNZI3ZTTkyTlrw0Si2OT83XiktZqITudzCCHmxOPWVaP52Hw+L8vy6vZm87T78OE9bm1WzHLOu90uVDN7cbGoqv1+a7SKfdd0vSuLPviP9w9NjF3wue3ev3/fWFMqXVf2dNhFSjFGk+I3X321Xq6uL6/O+8Prz140vfzr/9v/rLW+WF8FnwpXxxjPp/7rr95kgjCZ5MzGKK2MiGyePjbbh//qn/zULuf+6ZhjdkURg1dKFdasnW2apjk1hBJUmdJRVZSlKza7LbjhIiwsOWdWhlTUzsaQhEgbI0ScSVLWrIwzRJJzJvjrxGSsUixGs9Mq+r6wllMUtq4q58vZ+mJez6ucs+/a0HRFUYYQJIsw5RwVi9UqcCBhrHjIsSPkPTw8LJfL29vb9XqdaBiPAjpwOBwg9oK4YK0NPuLt66ms/MMP7JXNaBw3hVoaIUirNA4nPQgTfwIo1dhHwtfHwfHmk2CxK0sc7CKSZezr5DyVplM5GsIQffq+t6P/YUqJRtIHETEraw2ahxOZzjkniVRpRCSHFLpeGTWfz9u+U2ow10qjYYIbpWNSSlrbkd41xOWpSP4Hnyl5mk4yPN4p65puJI7zI1PRjp8MxXbcSBwVSMbQOTL18HCZ0yfxiuEdaT1wHILEGGMSGiPDYFuM752gPaVUjPHjx4/O6MvLS6Qm+AKSAQswg+MW8zMCWh41VabaiUf9KTvqNU93Z4xRrEQSM1vnlFI5xBCC1Ybh5/hdn8Vy+XS+T6EXkhijKytKotkEP5THSinNnJLkHHPORhmc1uv1engXSjMpZZVPg6Zb3/jZbJYl/f7vv/rRj76sl0UI1KcUYzazcqgoQvBdj7E4ycRaGTLBCxzqcs7EnHJWzBAt1UoV0BJhVlrFnFPKzlDI5FNkIadN9J3T8vruYkfbs4oUemWUUi5Q9D4UXb/yG5GnsixKZ0Sy0AAsTuvfWONswcxJkCFJzvnjw/27+48xJ20cabWarxfrlY+xcoaIkuSiKBRRTolIqqIQScyiKOeUWbPRJmlumlNZzpTWxigRo4wOIVBSzhg7usLmnGk8m+PokgxczxlrysrnoFgj4hVFcQy773ynsDRWShk1yMqjix5SRFqjWYkSMHqmzCyPCDIWGyAD770ZKatYcjwqQqK2QTFQ13Vd14qHyJNG0fn8iUcDMF2dz+cUoyJOKVFGIyesVgsidTwenXOsTEppPl+mMDT8TeHKemaMZa2UMzlnYdLGKKWsMcLZaH0+ny8vLj77q//dbDYTzj+5vG66thD9Jz++uX39g5//zS9++eu/O91vy1mhyF5f3jhTNKezMWaIXYv51dVVjFHpQUZzWvw00i7W6zUR4fZp5C1iLyCC4etXqxWNpltlVQFDubu7E5GuaYdIwsKj7up8Prfdd7cNjFGg6Gqtc06adUoJR38KsaoqHwKNJZlS6rPPPkNEzTFZa0G4G1/loN1tjcHtII/abDaLevH4+JiiAHAP/lMlRp8aezmnBMlgPVI4JxmNqZKJMWoexJRo7PwVRdEcTzFGrQhhUyhPxxmiHaJcEtFKZVIQk+p9f2pPxunFYrE5+v1xF4K/u7tTRu+Pp81mo7UurUN5k+Mw6tv23blp+hiubq7K0oGtllKazWbM6nw+x5RQ7016R0VRzOfz8/msFBmjxkxDtNJlWSpRShmt0/5wzDlrraDHXGgTuNk97V7evVCGf/nrv/3d73732e3rH375Q2sLY5QxlkWl8KlHyMTOOYzxgoNGirEN9aD+pEgrSoMpORqXU8EwVVzTFwOmz3ny/Zt4GMOHR1cDM4pcfXqhORNDadef2uZ8Ph8Oh+1+c2qObFTsu8pV88Xi3J58DgtXF5XjrlJsnCNlFsfjHsUJsxSFPZ363XZ/d3elFO93u1mdr69vm3YLHQAkP53vIWP64sULEdlut6fDESQMEJMzDfbIIpLVIPO1Wq1msxKkPwBnWiuIRcSYv//976/X66Y5aa2BGSHEAa6aitL5fH48Hi8uLmQ0Q/ej7J48E0k7tw120PF4nM/nXedTShLTrJozs3O2KIrow3a7LUsnIh8/fry6unj58uXHjx9Tjn2frq6uQujBFRowFyJUE0S0XC6NcVBvwPG92WxM+93b/3Rq7ZUFUoa1bcYJ6Pv7+zyaZ0xY9vF06vv+s1cvzk1zOByIiHkA13CnQK+8J4j5dF0HW+8xk+SUU9d1j4+PSimlhui9252Xy7W19tw08/n8i+//4He//x3im4zzXuv1OvQRtlRlWV5cXPzyl78ENgH6YRbM6NDxeKyKwlqNUuvNmzf4AigM5EGbKONIKssiU27arigL733IiVmOx04p+tGPfsDMcGikkQiyXq+AjCAiVW5wknx8fDwej5eXFyDlgRU+m82sK6AUPLHVuq4DxAx8Ftz8kAUwlhq9xUArQVSpqiqHiNdhrQXQA6oyLOzevXu3Xq8BJnrvi3JAk3FEElFVVdfX1865vm/ToOHgwJdPMQHVevnyKqX05s0bvEQivMR6IjjHGI0xy+VyXBu8358mLu0XX3zx5s2bHGMQ2e/3ANDrut5tthgzd47jiMniaLPWEoYFjQGqa03BQqCbWGs/fNgBaJvIhkoxaNGHw0ErO59bZv7+97+/2WzwXUYpGd2nY4x96DebDdp4epTBwVPCwFNhLDPDB6wsS1IGL/fy8poo49UP+X8YHOHqugaccTqdKlfgqDp3bR7VbxFDUkpN2+ScQTPf7/eIAJAZkZHIiSoMqD2Sn/V6DcsyY8xqvazrel4vIHidM2HxE1F3ht6r7bqubf1U6YuItUVZzpQxaCTgaybp7TyyXDGsDCwMR5jWOuaMJj8sZ7RhYup9e27bonBzWaTRgB1lCH7pRMfJOTdNdzic5/Ma5Hc9SgMbbazN0D3HqBleZR4lVrTWzCnnTGPTFNUWjYKzZnBuHxSlU0oXq0E6YCxYBrAY4NRkEYHHgu4g2jB5VGnD2kb7cLc7VVWBkH4+A8ofbhBP7/b2Fh0IEU4pHQ4HJCdhNPGbztCmaVar1TRnsFovMSkuIqfTCQo5eRJ0pQFllhHKR5jCaIjEQZQA2x+iT4j5IScVxXuPeQKwhvveE9HFxUVRVF3XwrIY/Cec1EjIzaiNcHN1lXMGaaBt26JwExp+PB559BPCWcCKFBnEQKQQE3CP+DDtF6yKzns8H5CCIfUgI0MLLQEAGjh6kKtgn4Ke1bZtVZb4x+kRmdHqyTl3ahsiwlqKKSqliEfRD63xxtHMG9JpZjDSnHPtuXPOrVartu18jCml+Xz+sz/701/84hebzQagf13XRVEURWXtEcse/ZLz+bxer29vb5+enmKMp9Op79PV1QqBCK9+ijO4WojeIJm/vr6OMW42m+7c8Ni3MxInxXa8LDSZ+r6vqiKEAfzN/eDXnaIYY50ZgBQYAolwSmKM7vvQdd7aoigK5lxVdTYWYDdQ5s73Mca6rv1hD8SGKAKhQcCXwTCznf6KVIdGFeI0or04v9gYZnbOnZpGKOWcy8r1XZi6zmjDpDS8RJYgmDKZz5MI1hVqDSxUEXHGwOZxugZr7Ww2OxwOqKTMM30VBDQssKqqet8qpXIazDnTOH2OYJVG9R60dmJM7PimujZF+dg+RhGVWcmQMXZdZ6w2lAXJ31S5gRocoDBlXWYK3pMiIrZKg40f4+DBRSRJsg9df+rn83lR2JRSZmJjMxHslUZUDt22lJ77tuV0Ph2hBzTo4jIrTa0PSivnnNIsNOBxTIqZy3KlhRmGAAEAAElEQVTWtv3T09Pbt2+/98UXwmwd7B1oBCBYhHMiIjbG0aDXTFprlmrq1aQoSVixjiGIsNYWtAKcdkMcl9FgNOUYE6XMQqRVSlGr72Yj2rLSxsS+JyKrjSsMZWnb1mFCKmel1Pdef/7q5WeHw+Hjhw/ffvvtu3fvQtcrpfqQNau274W5YzputkVR6Hr55mF3f2hzZnM8zkJyRp1PB684p+Sc3e02pHj54qXr47Hxp+4+hbi8uXlszp0nVc+WF+vVxSUp/jf/r795f//RFZW6fdW17f3hEJKwVqmPMea2bX3I1tr5X//++1/Ker3yKorEpHPKErouJymUPYUIg4gYvZfUdC0mZOMgbyKZRLGJIWqlKGQtxMRaGDQirJ/kgyuLnMVqHYaaXEhRDr6LXmnCmPBqwVeX1+v1crVazYv6uDsBiPRtF0dDUuT6GLrsuma73epnhr8icn19XRTFuWvDJsFs2nsvpHCKKGOGMRDr+hCzZMxwRfruQXiffN+3yDDAHdMQ4R3kOCSRdAGpqsOa70OwVmtnu65TI75JRClFtB+VMkSaBK7oHaDwPgZrrRD13k+NHKsxvZu1UeCmoak+wF4sxhkh0lqvViulhnY0Jia01kCRlFNIOwBY4y6gR4YyICcWliyktdZKdz50vS9LVbqKsgjel0gKUWvNQmbQMLFRhrsbkz+bUtDPzAMnsFgPTOcoIpkoj9kGM7M2KSUSxczKkBVmRciDhbUQxVEmZRqJRWHgR4MLopyZo8SUk1EaMtxItpw2KaVJJ4eZ+xiQ2F1fX9vCaa0TCSsVc9ZaF6WTASxQIUSAFCGnnBMzl7pAO1EUOz1MpQEu7/tgjBZiEVG6EJF6VhJHSQOzGzBTjFGjRv0j7Y1qeVOkj13fCpHWlGMQyb1viTIpEcUkyjBrYhZS2ROJZ0ql++J/8zMpHPtYiMmJWMSykcyuKrv2qHJelqU17s3bbz7n18vlIjcnQ/l6PjM5BZ/apvcxJIm9PzPrFCVnE/MIdbEhIkWKiYWJrTFFQYqxhqfUOZASymhC+ZytdbXwy9jObotvu/Peta21bUip1cTFO98/NkWVwhfX5UXsLhaOOTtXpqhZmZxEF6WyZS9kRAx3lE/ia0WsDtGeYj2fnSl++PBOnCNn/vzP/zy33UrZHIVUCoq6HGfG5IxpoFzPVn0fslBMSrG2JpFoFrQbLQkZZaNLyqrMWSRnyUor9GnjaCMZk8dWIs40KKjEejZLKaUQ1R9hrFulTaacc1RoU4lw1lrnMGjJUYYyWsHMIhT6Po1aLtNWSik5Y2xVoTK01pJwThJjSCkBlFeGaSTljxVIcsaSMDOL4pQlhZhJkF/6k885owVSlqXWRYyxPfrOC3OWbHygqrIpDe2u6NPF9dUF5ZxzHzwzaVbMpEgLlADIhCR9Dsz69osvmLlt277v67IwXbdSSil1N5t9/sM//clvf/sf/sN/ePPmzW7T/dN/+ld933/49te2yFU5yylfzi7W9Wp/PAiL5OgK0/eDaTjQXklZUhaThcRqOp1OoVda61lZE1FlXUzSntrb29tEcj4f5/O5Kwtrbe/t4bhbLOuf/vSnm83mabPpzo0xRildzxcpJaU/4bP/4HM4HsM8p0SaVPJRkzATEz0+PorItVGgp4PZhyNpMobePtwT0cxoV1QG7XEiSjHkJEyRQuf9KXWvX73ahn37dbeuV69evpIkdVGGxru6sMoGE0+nUxZo3BDz0NnKg86+TByKofhkRVmMM0y6j4GIhCn2npmrogx9q7W2Wp3PrSgREZOV1ppFEXFO4ozxMZqClaGspI+t53Z7ONjSVqv66d3u5dWN9yE2bQ6BYtJKO2ub8zlTxhF2e3VL+/37jw8504vbmxzyz37ys8fHx6+++iqlVM/mWSTEaEdxqhyT1aYobYh9iH3bdYPIflXhoHldvU4pScpWWU06pFAWcBHMonh+cdWH3CUxpSnndQ753dO7N/dvFovF69evV4v1YrEgzUSitckhKkG/MwlnUqyMLq1VWmfNSRGxEmLONPZPSSgZYyeCBQ1jTCQiympjnSIKoVdKGPQZRZk5Jko5sxJFOqUkREpbyZQwMaC0c0YkxRiJ3altGt/vjruH7UcfO6qoKot49Kv5wjoXQpqVi0rEasfM53hq2rBYLFKMzhS2GHwpcs7L9cV6fdk0TRZpmlMIfdcehDOzlpTHaiSz8Gl3+qb9RmtdzgoiqqrqcNhlkvl8nmMSkak8c84QZaUYCCBK4rqaOefevn0bfUqST6dT27Z1XRdFdTgcY0ynU/Pq1Stre0jlFkXVNB2kQne7w3w+d67Ybvdd193c3F1c3MBmXCmrtV6bsq7rzWbTnX3o9jn69WpFRMfjsSyr6+vL3W7XNN1qtbLWwldcKff+/cPxeEaeNhKjhpYGYLjFYgGaMzNfX1/GGMvSPT09dZ2/vLys/0i3qSrNMYWUWSnSrNpzQ0qjFI9ZiNjHVBQl+gTr9Xq+XO332+VxqdlESfP5/Hxum9O5LMvAnFJ6eHiazeYvX5rj8bxYLJwrU4jRp+VyWVXV/f09sy0K69xAhnXOffb61Waz6b0H/h68jzGul6vT4ayWWjI/PmzQFPmr//Iv7+7uDofd4bB7eno4nQ7amvl8DvmU1WpVVVXn/f3903w+bzrvCkNazesayj8AU6CI0redMc5aa12htb68uPn48aNI1FqnJFpRURQf3t+Xzmmt2/MRxI4Y4+vXr5nZt50Scq4Qkc1mA3gLOsLr1Sql9O233yqlYgiZCcIOKaXFYrHf70+nE9qoVVXNirI5n3g2E8ohRiY5HE9QZ045Wq06yVar9nyKki8uLtbr9fF4/PjhXkTms/npdPoY30M9iYje33/UWrPRIWVmNZsvyrLc7/eZ+HA+1XXd930M8s3Xb4wxm83WORfKWBRFZlJKOVvGGLtzM2gpCPm2y5kwQBxCSD7Mr64MK6usq13ogqaUQ2biqqy3m31ZzOx1kVLyra/Kuq5r34XzuQUybowyRu0PTykl54yyJufoZgXgG1GilOpjb21BRHVdv3r1SutviqIgzgie9by6uFxprTFwYzSb0dgNONfdzc3hcPBeUvKoqto2HY+btm3X67U19nQ+HI/HVy9ePj09Ucqa1Xy+3OwO7COzTsKzUrLIudnPZQ7MC5AfkRSFNUYVhQ1df+y7+XyuJNfLhbUW0GQePVp0pq5rmdkq2zctpdz6HqjTYjnv+365nBMNgAi2MBEdDlvU9fNqFmP2PmptD6fWuCpkqZer7twcDielzHq1RsSAMD2zXi4XzOKcO5/blCJwSVwMZe7OXdd1ktJht9PWQhP54uLi6WlDTEpRPa+YSSepiiJ6XxVF6QoFu0hdEJEmrTPXbgbPT4BuIAcA/oPh5H6/Z+YQ+pRIaybKMXrvuwJOyHHAyLabPZP2fbTWzhcziOljXEMG9cISBZTve2uK5XLpnPvFL/52NquUoq5rlFUQaitdgcCrlOLMMQz6FZq0woFlLdEwex1j5MxOO2attfK+Yeb1+hIIILO2Vvuut+vL0AcMRqTIrFhrZwyt15dDtmZYiGLsiIhJO1cQCbNyznnfmcLFmMvS9n2vWB8Pp9VqJZmYVD2bpxyJCALT3blhIh8CoIB6tkgkh8Ph6elhPp+rwYcwTU0jqOVgIx+P5wl4TSnFPjrnnHbloiTKmNVQijLnGKMxg70QmD1ClFMSY6qqatu2C76qqvlqGWNs+k5ZQ0p5H6Pk1vdG56IoyrLEPkV61gWvnSVM5ZJ43xtjtFK998t63vc9MxVFcT6f57Oq7/vFfF6W5fv37zury7IkgpBxbW05m5WHw4HZADRQ0PAkpZVZzJeiUgy5OZ9pNC0DISmGSERVXfneV67s+55SVnBFErGTb1OCrVxhjI1xkP0xI2+3sLrTRhmbiV1ZcvTM3PuOmV++fPnu3TuMWFVVlSVVMydUhbEvCwhyt90r1rOi6qSbFSVzD6BZa57Nypxj1/eTlkhZlrCarOuKKLftue97rTlzNoVZrpfn89lKSUTWOG1UjNFp41Pc7/dlWbZtLyKLxarzg6i0cy5KiBSDD6V1yrCkxJyIcsxRs1quF7Y1kpL3nSbOwTc9rA5N13XHY1gul9q5GOK8WPR9L0opZZlRKwllZpamORlj6sVMOCvSSilKlFKyToecU87zuialhJJIYjFt0xdFEWPebHbL5bKqZ8ap7H2mgee0Xq9D3282TxirQr2mlIrepxAWiwXUnyZgR5hDEmttSMIkyuiU0iQ1Y1gnH4hIFGMDgk+JZl7fidAw/QPcZlHPEW181w/HRyISpZW1ZaErxcLIz8+D0yMJ06k9XbqFmWYuvPfxmQUtXLiH6K/VYrEYOPNZntPNrDYxpqlvhj5MjNGncfidGCx3NU5DaD2QCqcm20gDYSIJAVQvW5Zl37f4IcMm0cMahePE559/fnd3d4LJoyYa1TbUOMchIpk+Nbvw22dlnZ85xfV93/s2jVLUDw8PKaWrq6vVajWIOhFPvSY/GsrJ6BL2nTkoDYKANLWq5nUdY0w+IwiKyMXFxXa7vbi4uL66cs7d3d1tNpvN067lLqSoren7nkmX9aww9rNXn+ccIa5HfbK2WN3d3Lz4zBotMRmr1nefndrTMVCpVXVxq5SKfRdEfvPmw+ncm3r5YXv83fvH7Xb7uNkmyT4LK5OZRDiL8DgmE5JoIWb5P/6f/0/L5fJf/at/paxOKYUUByPdTFrr9XqtlAohxRiPx/1iUSv1ou/7+8dN0zQhJMhvQVAMTFh0cZgoJ8E5F6JvmvMAT+cck09dKoqiLB2zLJcrFqrr2hl1fX1d1zU0u/H8ge+A9IEwlHOuqmo2m61Wi9VqNVGTgCfWdQ1sRUaKa845S1REGIuL4wgDgMih9Arf6dxGvg+T0lAcvZsAYU/ZA/Zn0zSLxQqFWdcFLGOthuGAKdsIITinQY2JMgwT0agYg/7YeHYKpn2FhjmD4L1zTlsb+h4LVfEwTO29d85aa4Up9j2O5MI6GWfweZyN8t4fz6e7uzs7Sg8jGmitdRq8BbBJox+G93HL+C3AYqy1kKbEqTa1yIhARksTd2ACnQFKEpF6ts1DCCHEoihQn+OmsgxeqzEPgkoYM5Gx7s8jfXhqP+AitdYkRKM5IRFBPwcFAHpLISfUydYO5O4QvDUG8UEzF67MOSsFSjtrrTXblMzUmaSxI42IjPUWI7SJOIsYMwzasFIQxsLD18/s4HL6Izq/OQlzUc2CTz770EWhT86uzKyJhYH6KuNczsJCi/mC0N21VRSKkp0xhbPOudPp5JyrqqoZeYVv3ry5vLx4cXtdFPPCmZzTuTl3bYvFIMI5JwBn/wDxHBvt5JzV2mgzNOrT0DbQhigTx8wiooQoiiKuy5lyOtmi5LSnWLD2knyOSUVOIolO3eHmZi0k1jhJkD8zQqlwKuaoRCnNKUppqkQmxnR/3H31/iOX9uC7U/Kbw+773/9hYQrHKnaeMscsos1qtZJRm1splZLE/IkGMmj+4NaEwW81xljrRHIKcaL1TRvfe0+cp7U0LAMagAAUvX/sjJBRRH5AqxWhip7OShq5HjlnljzRTKZ2Dn2yr1TTH9Rol4FP5mECbmz/8ESW6bpOFJaksm6YDQQEw8xmHNEoy3K1WqFADSGUusT6+XRtjInsVpggwzLOAUjKCcL0U8MJfX4iavrOjj0JFGA//elPP/vss9/+/ndff/313/zNz8/n8xdffvn49NV+f9BW7/fH2WIeQui6hjT3wYtI33fWWu+DM9b7wRjd+76azeer5Wl/6PugjIahk1KmmteYbjHOajGTdHLXdV999dWrV6/gRwTWDEbwZFT//863WBSF1u30IpjZjGbxeD7gWOH0hDsHbtl7X1XVYrE4nU6jiqJ47zknWxZxnIedzWYicj6fvfKnw5GJPv/stdVOMuccYxyUAUOMRJ+GNmhouTHRoP3Eo/RQImGjiShkvLtRRnCUIYox+hQzE5MiSmoYwyRWSivlk9dOaatO7Xl32PYpPu6f+ux1pxMNIyngkelRQeh0Oh2PR231ixcvAO2VZfn55y/BcAkhQOtpvV4HH9+8eYNzp+u6spwp1fuuL8uybXpjlbW2HalJmPCVwcK7BG61Xq8RyfkZ1/jy8tL3fdd1TGJLq0lrrY/H469//WtmXs5Xr16+vr26ZkVsdOpTCgM+a4wRJmMsykWlNTpVzCrniOGEaaNN2x87gnlYAMjax0ieDUvmQX8csZeIlDIpROwarbV1aKJ7Utx0PqXw8PCw2T80fZMkmMLEFLIIE6F6P52aoiia5pRJWIY0Gzzi5wu17/u7m1sM8eCSZrNZkigilBl7EIKV8/kcb811FjLN8/kcqs1nf4CK/2AKNI45grwG2H1y4Nzv95kEvZaLiwv0mSCXISIwScM5AkmZy8tL/LTdbocxXqXUfr/HQCu+GKomyPDVqIZpR9EbrIeHh+3Lly+dc03TXF5erlYr4EcfPnyAdCwI7LvdLo8SnBim5lHC4nw+f/vtt4dDurqadV1nwnc7hc6q2YkPWuuqqk6ng/e+H1m0uEeEPpy24BpbW5zPrdYM/739/ojZ1ZAi8FzET+S0fd9TFmZ+fHwEnbbrPBaJMSpGattWBX11ddW1frVaIcggWCF8kZLzOZ7P58vLy9/85jd/93d/B4j/48dd5+nqipFRg9gbQmj7/u7uGnSNalZAQENigjTBr37167u7W611Vc981xtTaUuAa8/n8/F4vLq6OpyaxXyFLQZk3xhVVVXTeGv56enp7u4OSWPTNNBp4ZGU9/bt28vLy6os4QEYY5wOFNDfgPjY0QAthAB68mw2a9t2s9s6O1yzNoPyG5K6U9vg2SLNu7i4+PDhQ13Xq/mCmWGEOJmVNU2zXq/X6zUmu7/++htXGNTCrEgbtd/vsQVwgjw/i9fr9XK5PBwOYKC7aoafE2PMISLZTknA9JzIm5lov99DZKCu6yzRaAe1mfV63fctHrIwhYOfImTft6Wd1XXd9f3IEk0hNEqpruvu7+/Bsw5hSNGRoGILVFV1PrUxxqenJ/zwx8fHN+czdi6s2C4vLy/Yvn///nRqcbZqo5qmOR4Hfpgxpm17rfVPf/rTb775FsumOZ1ijB8+PNzcXDLz+/fvYYZpLdQvZT6fY18sl0uf0mazMfzJtBx8VRAyjDHW6uPxaIrBpIGIyrKMIdV1/e7dBzzth4eHuq6RwPR93zet1hZuDX0MmGPYbreaGKsFAcqOKuEoZbCibm9vN5sNwJqiKCDfcXN9J5Tmi9nT09Px3DIT2NbOWaR/gMK1tn3fw50MzfwQs3TBGDOr5rhr7E2UOSCwQ1casREKM7e3tzgrJw0K59zt7e3Dw8PpdMJj51EBBn8GOD7QJ8fJJKR80NsRkbqe8TOBaYQ+ELQHIFUNAm4TFQYpHxK8oR6kT9Z/EAwBAxrAkzHGzWbg0PR9f3//ZJwCkl6Wi6Zpjsd9WZYkSilVlmVONGW5zpUIv5SySIqRQYHf74EwfvJAA3wUuj6EkFOKKReFWywWrvrkQYpzBDMl82oO3DOE5FwCiRjJNnr/OEfi4KtEOQ9jfyEMooWgMelxRAyRZ+K07XY7SGGkUWo5xuy9B6+WZDTzVIONmTaDGuRExMR2wJKb0kUcdnHUhRinFZn5k3skRAystUoxIDU8oqqqCmuj95Fj2/R91ymliqJgx9776IeJE0RUbYfJLSy5n/70p19++eXPf/5zmDmjWsH/pVGdL46iQ5g/w0I1dgASf/e730Hg/nw+z+fzw+EwbTcMaMtIrCbh3W5XOgfwF0Rya63Wn0a+XGG11pANAVYT4yAqdT6fLy4u8O4Oh4NzzjkVogfJx1prtQGpYsqND4edLRymfHAMpZQ0MW5QkeCsyTC+m88Xi0XXtF3XxZS996RpNpvlLCjxyrL0PhZFcTqdEOSJyI3a1swMNnAIgbV5+fLV5vEp5xxzNlr7PkJjXUSYKEUhopxijDHkwV5iPp8rA5VnUUpJGuw3TV1fj3rQuLs0TgQ2TePKEvt3GrA+n8+oShQJkrSqqvBMoBxy7lok5HjF0E3abrdKqdlsFpPBnrLW4jjbbDYIVhMvBN7LnnruOYRgKlMUBfestULf0cHUFZHLOWfVYJ4mIhNNRkQkZyA4RKSEJgA355y1CNMU+3C5xhhRg0yPkkkxwOKhqFHeSJ7N/7pRf51oQCen9L1tOkBFrIBwsYEEhrbWWobnWJ7cmT9V46ZUmMWOMeYcER364I0xUGTVhks9lM0hhNlsBpH7uq5ROIGEq0bx9Zyz1uyczaymK/zHH6T7iBExxu6E4ZFBuGc2m+12uxgyXIz7rru9vfXery+uLi63KL1yzqyVUqrgiois04arVKa2PXMxM6ySW7w/9opy6QqTlFI2mMXbbde2g9hKe27atg19n4lCirD+MK4gxVm4LMsQhbUqXBVykszGmKSyMsrmGKNfLtad9+/vP37++ee9D1NEzkTK6qoslDXduUkpzeeztm2vr6UsS1P8fr/fbzf7vu9AUNVaZ8m+6/ArZFIiVgPgSznH5G9ubprmhCpitVoZoxbz+WKxmM1m1mqwHpBTrlarvu/n1WxqV5hxetEYA6Ms5Pc4151zsI2u67qYVRMgmFLyMSilrNZ4XyEMykcYWMBoyXe+32nQOISAYwb9+Ul9CQsGZwlSxpxzjAEL27ihHYJxDxoVJBAN4XUpE8sY9rXjPaaUaNCFyDnnXnoahYxR6OYkiTOwyBCC97osSxmnoWW09ZtQrWHPKr6b11N8x8mKTTfhvBNQgmvOo8cR4hqaCcEPOlBEnzCOsZMECIxwrzTis9bqlFIej7ExCLCIWAvaAjtn0Sg0RknAyxo0pqcmlhqlP6Yu9JBhMyn65ITLzJyHG59OhSw5xvjNN9+8e/fuv/iLP1+v10QCu62yLEvnYoCfxsibzllprbULITArTZ/yiaG8cUUfA04IpZQSsRboQ+Y86DvrUa4HoIm1Vv6IHxErXVSzEBthlZKEGLSySgjKNMysWGUCjs5CrIyiIACzjHEhZ21sWcwoZ2sN8kKnRISAWVhjzufTmzenuiqur7+vOGmtzBjisNGAxiqFAZJJYVw9h7dyzjF+cokclwozkYE/oXDwSbJ2zixUkRSF/tSFjrRyVp3L7E0KoZ3Ny6ZtH5tjz/n28rIqnGJLOReVdVZl73M2lFXOOZF289n/8v/4X//jX/91EGpDxMDbn/7pn/03//V/P6+Wp81OETvrJFMkoqRIq5iiJiam9AeguUAtnT5ZQWYR4XGMTo0ThWkUCqcxBWf2WJApJeJh3kIpZVzxx2IIZNCnt4+1n8apzBwTazW1MUTEDPmoxFE3XY1asc+bxNPGnN6C0UopFX3Aca2U0iOyGWOk0Y9Ui0HUGnqxI0Y5BRZgJcVk5jYOY0afrNVTxDNu8ETiZ1rz077WWs/qOqVElIkcEfkYDGvkrDlnn+KPfvSjL7/8Mub44cOH4/HIUlqbT+dDWc22D3tbaRFpjqeYsyvM6dxorcuyats+xpiiJInGmJCSc26xuii8z1liSqK0KVzTNF3fG2PqeUVEMQZJAl5q13XH4/FwOCwWi5ubmw8fPozdca21lu8+6imGpGttjKmKEqk/OpdjaIo3NzfIy6dG1Pl8LssSdU4e1OJi27bDUD+JeJ9JJsUAJlrWy9CczvtzXdYv7l4aTbYwQqStynkQQgHDTsbW+LBInvkBYC0FyZaZREF6Qys9aDaJJInMHMaDVUbjDSJR1qacmTMbsoUJKR2Ox6ftNlLUmq22wsJEy/kwdA/YC9WIUkqIsqTtdgs2kFLq6upKRDBb/fd///eYiHeumDhlZVkao372s589PTze39+H2LtirrVeLBZEBBuxnLNz7vr6+nxuwY8bCwA/1v+aWEirsqqa44kzLy6X0Yfz+WxLm1Ka1TMy/Pbj2/1+v16vK1dactMD1NpqpbUZmjQslFMmjGoRK2JUKSSD4S2PczZKYWdrUopZlBoct5RSzFmJGGOcDF5tzKy11WNAsNZap/u+9zEw8/G0+/Dx42b3tDlsWLMt9fl81lZNwpoo9gYwyJrQD3hcSqmqquP5kHM+n9vZbBZCevfu3d3dXd/39x8e67pcrVbH84GZP3vxioh+/vOfh9DW9eLVq1e//OUvH5/C1TWK5KitgezY1eXaWJ1zFkqIBmj6LpdLQH7oWDPz9773vd1u1/ke7NTdbodsDWHkN7/5DTq7U6W9WCzQQthsNrj4nPPT01Pf94vFQo3mn9vt9v379yiHTqdTjGG/319cXCwWC2PM4+Oj1vr2dv309HR5eQmQ96uvvso539zc3NzcoIJC/xJ5CGofPRpHw8vu6uqKmY/HBwzyI1j9409ZVaSOwCuZVVEUpHRd11ifRIP5MNA9YDf4vyJyc3MT4zHnAbVMkqeSYbc9VFUVk8/wyFWKRj5QjNFaW1VzLP7lcvnuw/vD/gTt8rIs1QjOovBxpeVR979pGgC7Wuu6NutLBwh7uVyiFt3tdquLixcvXjw8PIQQUhx8zFhpPAdrzWq1ArzCzDEHw6Ux7te//jWU8c/nszGDsMD19bXvuvP5OJvN5vM5UDk8KyTGxhismbJ0MI8ZIMK+n/JhREU1fsBAn47Fw+m0Xi7wEv3oEhZjbLsGbCER2e/3r1+/Djl9/Pjx6upKKbVer83okQClbPQDIGQXQnjx4gWwftzIYjGPaRBIxZNUmstqNqsrrfTEOwF0iGJ+uVwCuwF+istD2BeRpunwBTlnaBC//fZbHv2ou66zWqccRKTbdov5bPJLVEbjGk6nUxf88Sireby8vDydTou6rmeLp6enKDnGeDoNnlRTXxyHO+Ikin+8dyLC1jsdDrgYlDbOOefcfHmZ81D7e++NqIvlCj8Th91utwcN8+bmar8/FkVR9D3lfAyhruvLy0vIFJxOp5xzzrEw9kc/+tF8Pv/Vr37Vtu1ms/PeX15eTkwRPGFrLZYruiZR8jDKLeAkVcy83bZDq2b0EMPJhWYSNFi64L2Pq5WIiHGFc+54PD4+PmJtgOIDDHS1WgGsRJwJIWChElHTnrSyuBhcxmK1AobedmdnBxXp9nyuqmq9uiRRfe+xgBHfiCj4RFZ1obu/38znJRF5H51ziN74mpubm/RMagM3Za3NRGg/Q2XF2RK7eFpCSJ9AJN/v9yEcmPREX8Aynm4NVSQyxj54GCwzM9Onqy0KE6PPMO1IeaxjRGhwJoBuEtoV6BUVRXF1dfXFF198ePceiMp+32krbdvu9yelKEYqSwVlGEpUuGLi66C06Lp2oD9qlUYXovm83G6bflQ/KEo3HZTL5TKEFKPHExtQjrF9hTUsz8Qb1+tlzp+KdzQap1MY3ws3OeRvOeeQ0/i/3JRWIfhPtX/btk3TjA6KA8UqjY4IzMQ0EKdijFlSYZweBWkn0GwoGcwgSMvTqPRICCOiCRSGfzsWJ6BzY0xKMm1MBMnT8awd932A7ooaYWKWoT/RdZ0wfSp2mF++fBlj/E//6T+9f//+9vYWJ45zLgQvksuyNMZON940zXK9Rtu4mpW4eGhA7XY7tHaec3GUUlVZMrxYus45d3F58fbt2xAI+g+uKsfGgNR1lXPu+07Cp7lnpD0x5vl8Voxmg3H85Jy1tjIS2vq+z865QbUZuET23pPiyf0YhBsmDiGcjwfnHJAfJimKQWIXJpA0yFKq0+nkXInkJ4TQdYPHMsQu0mjnTgQm5+CrWRRF0zTntlHEi8VCYiIixUZyjDEqcNG0OrcNMcUQ5vP5z372MxF5+/YtURYRVjrlDIWWAT0wRjGDw4E0Bke/FZnP58DTcfuAklNKLGksWoeHaYxp+g4A9ES+VKPoq1am7c48MjxijDiyz+czeiFN07DiwlVQyOCCjTHnps0lKaW892KUKYwPIYRgsCWmmnD6TUQDKYMZgw/Dv2Of44rNKIhjjPG+mziYWuuicCGE4JNmZsb8wRDg0DjVzwxtzMCnZqWUMcPgQxpFi6ZNPsFYiH0phTRSRLPE6d+xq4ffpa0ajCCH8lhrNmaS+FF2BPXwXZCBxjkRe4+WBdL6EHpg1omEJIlIjOG7S9A4dB2ndTbV3riFxWKR08DF3m23ZVmem6brw+3t7fX1ddv5Dx8+9H0fQ9JqILBEH7JEIirmy5hl16d+v80haq1TiD4OKi1gKDAz5VEtmoNiw65mR4EJzYFWNBvNzG3KKZJIDgSUQShnYhVjVMaemy5lstZmJodZpyECRq2VqwoRsVoDJq7r2pY2xrzZbM6n9uHpEdEwxqj1HNugKkoaAZG7uxtm7jyUaNLt7eXV1RW2wd3tLbOs12vkWEhZIOiDQxc+lsWsijH6GJE4SjuwzGAfkUbHZ3TLvfeua6d5E2aG6U0YZRZxDiEMKaXQTPvO90si0yKhkVGL9RkHN8sCUDIz73a70bjT0djSROwLo7YOnhIWfKI/IJ1hhzvnaNRspdGHAUdmyHE4s5mtcTRy/EnEOWetyTm3fUdESCXhpjq9BW0N2kUI1ng+OPCwlQpXACDAU1LEPApjyQi6hQRXNJtS0mboseuRzzgdFWMdPlSYwLyA4U4YMU5ZpTQQLiLyPimleISVRQhqAyhX1IjwymjXjozTWjfFCj12xYcYopUhg58PApTvPXJTmOporUUMY4L+k1J2UAovmnLOOWQ05JRin4fu6AS1e+954FMzzhF07HrvtRqShufPBA8KjPV//LFFuaou3+8f4AOJX2RYE/+BXSkCtWKVhXMOl9e3Iuyc684dnmf03qnBWzJ050zDw0Frum/PX3/9+7vby4uLVde1OecQktYcY84kGNhgZk0qS04jo396p8poYs5EWjFr4DV47wOVTzLnTFEoZ1ExU+NXdcnMfdP6tjHLqpjZrgvRJW+z08VTdz7Gft+ePrt+ebW+nVd1Tu3puNfaGsUxRjY6Mv/8l3/9y69/t6dw6GIifX39Yjlf/PhHf3a9vOWsrS1yiD5mY50j5ZuWbR4PAj3JcGNVYkPxaNISQlCKYbJhlDbOxfjJ6RsyynawoSNnS2NM1zcY5rDWQjJl2rP/4MNjSoQqNMYwcuFV6P1UbI+Q/ZTmilKDJSmOGBFJSvGzwxEuHzwiXyKZZXhZQ+ExZX5VBaKlGltWkD3VI/2ZniW4avQcG6a0Ru3aFKMxJXIdEemaVhmN3LEsS6UV5+EGiEgpiklCCDGFqihFZD6vRSSlrBUrpS4uLrTWb95++5Of/OQv//Ivf/WrX/37f//v281hXl8sF5eb7T23ebGoyyK3XZNDnpXlqWm0NkVRWVOgh+ls6b3fH48IekwsSYzVQkobB33zUfpAcsylK9brdd/3uGwe/VdxgiPCyx+ZPGi7BulKHwYvr6oqoSoAWhkRo/eJxwiVuqnduNlskN+/f/9+sax7H7u2VUpV9awoiv3hEGMTQmhP5xxlWS1mdXn/8PH25g4VEeIh3qxiGYkCjCpUkvDIc0e85SysDbFOJOhUYVcbq7occ85KJEmWPPxMZC1o6geJRGIL06f48fH+cNpnlYmJlToedheXlyBmeB/QrZ8WIeKz0i6ltN1uIYUJAUcsKlhZGGN8Hy4uLoBOxhi32/3vf/97WKuF2B+Px/V67c/nGCOmxB4fH2OMy+VSKQVaOmbtJyi2aRqX3byu9087JprP6qenB2utKy18XWKMfXvqW//x48f6flZX8xdXn8HDSmsT/FAMA8gwSrNQjmnaFymlkf5DUyQfQyIZo3hgpnz6Gs0254yvxmlFRJSZxmNxOA6UEFHru93habO9ZyUxBkm5Xl4cTvvsM0i+SFmJ8+G4m81m64vl+8ND27aPj0+3t1eL1RwbGbW3tYXS+v7+Xin1o5/8sDmds0QIWZ7Oh3m9xO4+HvcPDx9Z0/e/WN3e3p5OJ+i9TlAUsDnvfdcNMxyIGNvtFhAMCjlUJlU9M8YAckVJ8/DwsF6voWkGYjK6DsyM9AMtf2NM3wf4reGnqbGjLCLwjVRKhdBDsR1/Rfthv98/PDz0fWuMm1AbdHRAysa7Q+UCSLdvu0yCRAIZ193dHQCLlNKUBvyDj5AghTifz8vl0pWVcZnGtj0KpTgQWhOgMefcernqug52SfP5DFTu73/5BcJyirJarZRSm02Tciisww9EUBqK4THNsNZaa30f7+/vcXKRGlQaB/Jm6EIIV1dXIYQk2SqDMvLy8lIZrbXebrewoUca//79e8BwWutBNGC5Oh6Pu91utVohWCGk5JwBpMIlpWkaNf7qkMQ5NyudUQT36c1mg4dvrR0odVovl3PQosHqxe9Fku+Koh6hUqyNaZkBLY0xHo/Hruu2KWIUFRZ5KUdtFEIu+nDQyJ4t5qCTz2Yzb/rdbgesJ4Rwc3MDPPfctSEElA96ZGcj0go5lB7A0a6urvA1KQ1Z6wT9qJGP/ydf/uC3v/0tVJW01st63jQNlJqNcQAC0Ko5HA6Ak3AoXF1ddU2TYQ+VfNsygIzdbldUZVUV8/ncGFNxvVrlvumRRRwP55cvNRQ5C2ODUEweFDzvB22iKRAppbrWd93hdDrd3NzgmZ/PpJTHIGlKAXH7dDporeu6BlB+c3t1tb7Y7XaYAz4cDmU5I6WA2iulcvTMvFgstLXTlo8xAoyztqIU//7v/36xWKzX66enJzWquGCbILajhQZaekpJO00hK6X6vk85aq333X65XL5+fc3Mm80GJy/K88Vi0TdtzgTs1bFLKR0Ox8ViDv3ZlFLX9WVJYzFImLdA/vPx40fsNRp0Y73WSmt9Oj0651arFVIFzZxjtMZIMUNO2Latj1Rm3u/35/O5beWzzy4RQ9BzenraLJeLsi7rusBjubxc48ZDCKDk4+gcOcWMY1Qp1XXdb3/3uxyjMQaXgR233+8XvsYPyaNEIXYHjTw/hDhsZ5RaPnS2KAAGpRCmZptkUuMsDiomTLSAuYXZbgQctLKGjuZxfzqF+XxeFNXV1dX9/f3D02Nhnff9fG5uX7wIIRwO++Oxs5bW6zVwWxq1a9VISgBVE9AYGx0C9PfL29vbnD8cj16kK6tiANSsBUuEmYuiwhPOTDSa0iNzA0hl1TCzC4gzj0LJuOsJy8KtgTGDJNB7z2oQadSaQ8h5nFxBugg4FcLoY+EAqtNAPwca4GyBDY6fPPHS9GiAhN+Ff0TjCm8NfgmI+QO07XtgoCLStj3YmSP4kOMzfVGllNKslV0uK2RxEyTStD2wQpynMQYihVN7vlp2Xffhw4fFYnE4HKqqwpBc3/cQ7icS52xKqSgGw2djjDaDcyxOCmNUSuHVq5eLRb3bHXDxqKzP5zNyhqZp0jiRCenR6a84BaYa+Xg8ilBVYcJYYVhKKQO7Wq113/cYFBARkYC2hIzEC+AzbXvue59GkigQ2xijdtYYw1lE0tSDDCHMlwt0T7tujMxKL5fLkFOMMAjRQNWJaDabY8wFJX+MHr93oq63fZd2u3q2uLq82Tw9tW3vtHGuDKEPITh20HuPMYPPNZuVIfRv3nxdFIVzQxQFVZ/GEbqxcoxKKUxUgGzR9j24j8Cg/KjrHUJYLBbRd9vtNo7eCRjsTs+cuqAqgfNxsVgYM5BxaZy2xzrB6S/T/FZhfOh2u72b27Io6rrexv39fVMLv7y59tzh15kJL2Bmw0M7tGkaYxy8MmKMeSRPxRit0hOIw4MUBmbM6xj9UIImydljUCKLTJTDEUSTnNO0ICbwZezM0HQ44bGW5QxXxcxEKucYR9EM5xwpY4xRHgXtEGi8H35XCjFlLOLJuWXkZecsImmMyPLMKICZQco2xhAhNiVMT0x7ezq5//EH4Ru/oigK62bADafSvSiK4AdJh7KqzufzbDa7uJCQIlK3i4sLMDKIKCYpy9lyabqua5pmezwqoRxTzllSmsrgDOMsbUETMNbqwVNSQ0EcHRiLVg8DeKYUMzMbpUD5TDElykqpLFxYe3v74ty1MfoQAobaaARG8WdrLYtYZ2IMmenVq1d1Xe/3R5QH9w8Pbdv2faCRdmqUNsYMDjycjTE/uP4iI5I6vVwui6LomhbJ3DgQYXJOOSc7Tnz0vcdqBHEAJYFSquk7nIJYqIbVuH6GERsa/XCG96QGUqoxBipyCPGQhiSipvlu+G9aBtMRhXBgR5n2KY4roedEZsSmuqxo9GjCNtZaGzMc+TSCs3rk+OuBd+NwvuYwDD5jPRtllNJEpGn0LwY7wBgiMkaLiDLD2ZZScq7wMSgRLfiCQTIijuIkY0QjIipGl84R7SJ+5qaqtdbWKKVw5ExFCA51lIX0zAlhOk6m68celBELk1GPArKwz5+5DKzSRGPIAvqM/4XfTuNgwZQu/AGY++y/GrJEfY/1DKYAbh+VuWbWRqeU8mAvhjoHQ0zhOYyCzr8QAdRTmiUPxaFhpYQyZ63t9FJy/mSEQmm4wilcfOd6Y82L1ertV6yM1Skb4TzU3pLSOIBCpFiJZGNMiNm6EmZHbe+JiES1bcsiOVukjFqKFNm3rRKilHzbOedYhjpZM5/PZxSQYCkya60+4bOchUiyYvWMXD+eIxQl55yFRGmVleSUs1BmEq104WxRZqOLosgpz9h9trrR3fGjb7oQ+hiVnR/7zs3mtpjFLv/+3btd2/wwq0W1KDTXZeGsjTkpq06++frrN4euvfz87j72kbv1xd3y4uairJfLS9+lVCQS1fqeiHSKfed9F1Y3iyH450k/PU3dIzU6J/R9n3OCcUpdzRAZch4sBwprZ2U5MSkm8QSrLJnBZRS/5Y8eEkRGqT4EETT2GQc58TDcg6w6PxvUFUlKKR4dJRE9htNKa++9Hg84rdV0wJFm4QGbzrAVwsEdMzNDmYeZFUGdeugz5VE2ZDxP/YQEFUUBtU2jNWtVWBfHyScatURQySA8kkw8d9AuBk6HtoaZrLE5Z6LhFRhj+uC//PLLy8vLnNN/89/+H370Jz/dbB9/9atf/uJv/7ptQkydBLm8XbOorm8u15eK9eFwWs1XMcaQpLBlVcxgesVKYfAfr/V4PAFE7rounHqcztCy911PTCICvGz78aM2pmmaruuur6+NMYX77skDpTTmd8EsMFahlhiRIEMjwzGlhGKy73sku0C3l8uliJzPZwxTV/Xg0J3GgYyc0rE5G2GeL3aHw5s3bz7e3/+zv/pnUaJPXin3CaNMlKGxk4WfNa+GdAXRZmzRMbNSJJKIxFpLWDMT359ZSLTSTMRGkxJbmj75IOlx//ju/ts+Blfam5urU9uICFLzU9s4pXHaQiSx67qA1FZzVVWbzWbqXsDaBQsY+loo2LACN5tN37ebzWa320y0LBHBWDS8wnHyvn37Fk/geDziXEgpoVAnov1+n1Nq2vOsnC3Xqw9NczrsjTFFBSUu0kotVvPO9ilEn72bVX/+F39xeXl5OBy+/v03Q9uHBBbEQ7BNn1yiI0/4stJK5U+TH6yUgqb/BEPjHymzFaX1cE5JIlKktXbGKKVCDlmkLMtEudm2fei2+6eLm4sf/ugHHx4+hORXq9Xj031MvvcEHu764tXXX3/NTClF1IQhxK7rlqs5DsGcBUyuoigOuz3SM+F8OByC96D0bjYbWPqcz+df/vrrL7988fr1677vD4ddOYNTmbu7u2ubE14fiDAhBG20SAqBwIeqqgpNI1RHp+acx+Y6IgCkM0FaXK1Wx+PxzZs3IgI+ATihaCEgW5v2F0BJa+3l5eVsNmvbc1HY+XwGJAVEASDFeewlwwDtxz/+E2hDT5CoiEDSKvQDMw7TjWqceQohAJh+enq4urqa5kz/wSfnDLERDKsizIYQLi8vMceA7MKPQorW2sVi4bseY3wPDw8/+clPvv76a0y7d63fbDYQAEH0NtqBw4SnjSrXe384HCBkudvtgP7rwQkjxRCgbowpY+Nq3DLuqLBuKmQOh0NVz25vb7/66is8fIgj/+pv3372Wf3ixQvK2Wo9m9UoX4HVfvvtt4vFAmktjYwn5DPX19dff/01cj+r+Xg8oqtkJ0drq5lluZxDkQydhgmkJiLvPZYHOr7YxZHYsLLloJ+G07YoirZtl8ulNiozbTaby8vLly9fQoh2sVhAiwMCcdiPy+USWTeOMyTtxcICnjifz4mGMh72jFdXV/P5/P7+XkRwOkzjjJA6AY8kJ4FiEkaqgSkrpR63O+0K6nrn3M3NDYZBB/J128ZIbXtGtqmUuri4ACCFlTMry/fv38NRynf9fr+fz+efffZZJjmfj3i/1prXr19z5vuPjzlRzvnp6YlHXQURabtzznk5n0tK6+UaK6cLg+fNfnc8HltrmYgU0WqxeDA7nEdTaO373rjy3bv3xmhsSU387bffoqJpmubm5iYlOTXNZrMhIJsxYqQgxtieWrRbsLnquk4+fPz4USnCNAkRgWG92Wwgs4M10HUdTkOkHyobZkGrxoc+hrTb7Veri9evXxMRHr4xZr/fOudub283D4+nU4PO5faw32w2x+MRi7ZpOmCFZVniJaYUEQ+hsHF9fbnZbJqmw6spigJQez1bxBglw3l1COne+ySslA4hVVW9WBinB3sGWFiDxT8WL4SVo7V+fHyEYyEwVswDoX5EBo4quxi9oJl5Pp8n0D5FYMKGkw5ZIv4sI1N41GDpd9sD2jPAPZEWOueMtSGEpmnMqLIiMihrYo80TVPNB/2KqVYFIg8lGezTREk7WxRFIum65uPHjyjJlVLGWVIMwUw0SIwxKMbB/Om6nmiw0JzAa9xg17beR2AyVVVd31w17XtXWHzB6XRarVZt8G3bOleOXSgDMTwz6WAQIUSw0eHc4zRRowUfKkQoq4CdrZSK0ceB4zyUZpO8g3NOJOBdIH6ix4B3ih9bVRVGAfDueGAiRyJSWomIZsXKTsanuJ40unbrUdV2PFvy0LKtKvwjFokaO9NE1DRNSgPRYdr7NGpHDHWxiNKDMh7KbOeMMDVdy8xKVN/3atBM46enp9FoYVBd7/oh/oDghY2PEKSUAlyL1YhGXVEMMAjOMu+xlRLQD+eM9xnDkDFGhCwiunlx9/T0BJuH9XodQjgezzjE7SjXAJAd58s0O1KWZQjp8vIalz1xiaYUF7LjeZQnFRGtNCnGgxLMx+dEpHQ91E1gnaKjQERau6qqSvuJ8yejgqsMVpzZOQMAfcL0tdaff/65CL99+1YrW7jSGLPdbs9NU49sDDA6RLHkHFL03hejvAaakVpro1RVFJunp5TSfLlcr9fIrFxZVPUM6qbolsUYw0jARVaDdh2uE7TL5XxmjPn42JzbJ2tNURQt9cQZa2y32xljkF3TSEmcaMQ49JGPIZjQ2IXCZ7Gsz745xzMRiZXFUi9oKLeLqrTWGrTOkGaBAjyBOHEUtA15wNTB98FS0zpj38Xoh9GqGKy1UJbB/jfGpDHLREgctytPCdyEXk24E7iAIfRKGWY1gVYAs/Bn3HmMPlNGHpBzFkl2EJ+NfZ+VUlp9GieZnmCeREJEeKzbpw1seFCgxvMFGWoiF2SmPMhmf2f+OXzAb5/qQLw23D7SEYhLBO/16F6SUgCQ+uLFi+12u1qtMM+LiDZeTLZFZYxJKgKiCyEo4pCg7PxpkDbTMP6L6InzFY2gKdQyEUlSrJgkxaSMUSRs7Ol8Tin8N//df6uM2e/3CE8hRGvN1JDUzDFnlK1Y32E8UFerQTT25ubmdD6LCOj3fdch87u6uhpZ2ILFjVMN4+RVUSj1Sf2TiCZuLyImQK2UYtsOjs8IClOfJ462pAB8+76/vLwE6uScK8vB5nuYXiQ2xk4ENOiswzlX/RFtbnhzIu4gORia8HrqdnillNNGlM6Myw7MBocuqmvEaDOO+RijiDjGaIrBbTw/68fAeggK7npU4dRgXckwOINEZ8pXeu+1UkoNRmE4PnmkJepRXhkbcFr8U+aRFfkUY5+d0VObbirV8L463xtjQAzB750ey9TXoZEIBlRugtHTZJIroka6JTKSGGMIcQIORiQax78mpac2u4wNTBQ8+ZmMQBw9YWXsYw24AZA7pTikiTaOLKooHDo6lEWXBe7IPmMio2bLOSL+grNrjCkKl1LKY7dcRCDOBRHtGCOTpDywQScMMcYoI1Fu4FY4d/yHaw3rTYq6tlXl26A420yesiJ+PuCvPt2gUkoZVuv1xWK53p9b9BRL5yhLSilLzDlra3KOpHVomr7v2+5cVzOc7jhOvI9YyTlnEWbGJLiaIgxi9xTD88DsHvjjPLJrA2dSbLRhMmysrirlipxzJqWV5kwzoy4qxTSn/njYPRy7nkQMe72wi4tFTTfv3zx+8x//47paXdSLecGFYWv55Luz+Nl6vry++PVf//zh6f7q+z+a1Ze+Czev7/75P/3ny3reNafT6ZhymC8WJKICuwLjNWogFf7B6ZN5lE5j5hCGnrDkYRUhPiilJCUamYnh0+mWhy4pk6Tcx35qSn1nDBmej4gPsaoq6Ncbq3LOKSci5D0J5m/jg/5EFx2vWfIYi3B8GqWG4T1mDPjHoV+ilPqEU/PUOCSZEk3WYLtE6PGB04GgCvoMtifieR6l6GKK8KzHv+CxKGKQ8nLORKzGqQgiKooiS8TXa60gJOpcgeihjUPzPKXEmlGoQ8rQOfeb3/7y3btvq2KhcmEoO0Xdya8WlzkKZQm9V0rlGPu27c5NIimKIniPSd6iKJh0czoXJTgs2SmtMzV9y+PINhGB7FmWpQ+haRoiqqrqeDzaUH/ne3TOxXj6RJo4nZgIXSukT+jGMfPFxQXU5T7//PO/+Zu/KQqXkrq9vd3v9x8+fHjx4gURnU4ntKVjSjTOr0nOmpUyxdPuKYRQFbOvv/36xz/+8WeffRZSwAAs0JMsIaXncOcwRM9on+fBTkPUMD85vKAsRimrVUNZciYS1oomuWcm4SzE2hjfn0/n0+68Z6e0UT75s29Z82q1PJ4Ofd/H3i/W66lqEpEwPoSYAgApa+2HDx+stdAQmKgDMSRmRiUDC5S+74kyys7ZbHY8HI6nE+R9N5uNHpm2iHtl6WKssemABCGaZZ1jjFc3t5Ty+Xx2ZaGMijFmkuZ8YmZnC1JsKtumWMyKH/zgB/VyMTWMMYdMSrOiFAOzomc5pLZmCiA5Z2Yx2vLQdRsw6EmvBl+jlWajSUQnFmERJmgujWyvzDmLdD62XXdumnf3b93MbfebQ7s31rZdE2MExKmVXa9mAGStNUAki2L+8uXL43E/n88Pxz2Kw5zR3iYA903TbLdboszM1rnmfG6apqoqITocDsbZH31+B6bSZvMIeAWQ0Gw2M5qhdIx9Cu4VXsFle2lG0WHQKvFkQN6EfAryB+QMfd+D+3l7ewuoDocj8Bdri67bYPIa2xPVewhhNiuLYkjsj8cjwGjwnT9+/Pj27VuQqV++fDlNK/Z96333Kb3JOaWwqOd2biEbPd3FxWptrT0cDqdTg4HuxWKhw3cPqYQQm6bPOYOaAzgg5wysAWkDyuM0SjA9PT0t6uVsNm/b9u7uJUaLmHm/O+KgmW6zLMvlckkiXdeJDKqgOWecREQEanDOVM9m0xgsAKwEHR5mUlLX9eFwuLi42O/3h8NhUc+11ufzOZPsdrubmxvgg5eXlyJyfXVrzX6/P2v9cHV1lXN+9+6DMXq1WgFsRbUF3IFHZQwievHiRUoJIiTL5fLp6Qn/C4rSzJJSUIrQvUb+P2U+QGdwQgHDBXaz2+1ms9lyudRa73a7U9sAf4F2JFASZ4uYQiLZHQ8gCwNOnarum5ubjx8/3t/f//CHPwRirpSCJxveyNu3b6HckkhijK9evUKzBEBhzhlbaYpUWmvEqIELHxJ2BE6BL7744nRqRM5gPr68vYsxfnj7Dt01GueKwLTNOc9mJWl1d3d3OBygONF1XV1VaAMYYxaLxQoj5DlNaYb3/un+abvdFroCTQdPrGmagc8UQuGqWV3iiw+HA1CbqqpA9mxObQr0/c9ftG0rKVVV9YMfvAKOoxTFOFB5jg9PNPKxNDNAfCxy6BohTgIsM8ZQziml572fGCN6AJQyeOjIpiC1fzic8tASyxBDwLpdrVYo5YgoZOTXbV3X4Xxu2/bVq8+w4J9Xhev1Osb47bffnvaHGAeCCy5MRPb7fShmSqnFYlHXNaAx77333ch/bPF2EJ2McdOMjnNOjXVZ13rEddTyRVXrUdIXbND1Yjmbzb0/pARJYocXvVzOwVIvigKXCktJIpr2AqD2gSnStohjwGFBUjkfj13XaWOn2GvMUF6BJuh9WK9XKKNEZLVeOOfOpxZYZAiBOMO+Ho/OODdBq2j5gBZ9OJ/7GNAGfl5AnU4nfHHTnLSzmgaajjEGLAS8cbyR5XKJiX6c1EBFY4x+0swdp1GHHmFpAe4nAmBnAZNZay8u5lhmeOlKEQnXdQ16Ii4A2axzBTQTBrspETBGj8ejc66sBzY6EiBljaNSOxtlUB/SWmtncxYiIT2IJ46J90CVGHSK3JCs6nGGLA+kV59zQmRDOve8RHKjtgON07eHw8EYg7kHpVQiadtzCIZGiULEnOHALWEAYPH6YBuoxpQD8B1AZ6z80+nUeI9evlLKGK21vrhY5VGlE7gcNrK11hSD/Ah+IF4ZeAMo5JVSUCA5nU4Q4TGjknjOGfK8oOrzKLiHSQXIo+N8xxtUyhLR7e3t1ESUkTo2YX2MRsszk6Q8CNCJHolBZVleXV09bTYhxqp0p1OvlMEhJTJQGdC7QmDMOdvCIaxpZzmnNMo2oPidYGsaPH4SMyeSrmn6GO7u7tBGHWZizucYI3oww54aLMFPISyMKY0xxlozmhLP53OQ2FrfL+s5aeV9l3OOebD7Al8e+gSUs7YWm85am2MkSIgoJqLtdmu1AQSMX4rDBefRfr+HggpScUSS1vfGlS9fKOxr1G7WFjGGKQhDFwvfcjicsKJwbsLkYJQ0iWig4s9E9Pnnn797eH/+eCrLcr1en9vGNEZIkCoQkZFnDMQudGDlrNdrjBFNBSq6K9Za7/uRhpy1HvYDejh1XRVF0XU+xogRG+996QarByIzKXwbY6DZGkdNdx6G6NWEFuH54k70OG4wEZCVGhRbWA9t5+fhwDknMjiGZUL/QU1lGD3rUVhj4jjsFkIwrNJ4GTKI6w1lQJQcfT+V90qpfmhD/cNPTgnpDn5C6gNOHaUU+AhKqXm9TDFaa0N3NsZguvB8PsNppOqLzz77rPU9uj2nPbpGhffeFF5rLTExM2UEZY3bV8zEOedETJJ9TKK1LsshgTifj9ZaZ23ft0OXLyUelICjpBQzkE1VVcVf/MU/vbm5wgE8vQIRUUSaWQ/6JJqIbFGEEJQxVTXDywVihXHXqiqwXQtnzNWFiMCY0JiKCIrG0VprjG7bNmdGYUlj6YXMKaWEM4bGaTXIlUwn1nw+zyOpNo4SSH3fg2CFYDfXyzH5GNwVYoxJclVUSCOmCY4YYwjJOffHmIl6FGgmGrLnycdmqjGg56sGlTQTwqAMaHjwX6bBW4+mbCPGGGO2pdVjK3ICT+XZdLxWKHFHCCkNQXlqiadRlx0tbxLWn6zDEuDICRidGi14CKRUTEmEpnYZ/6EOTBrRK21N07UIZMjaQ0p6pGhh504QNq4Qqw5/TaMgQP5HfRs1tL70hFbLZJAoOQ0KTX8Agk+RaoSnByVlHp1IecS+J3jaOUvCIUdtFDPFGNCSVUpPD/z59aeUtIaRYAHIJsYw9Zyny3j+yuCdPaxbYtaSSLgocs4pJacN6eGEGLrQRfGd6y0RVUXpZovTcee0IZ2N+oRjMrNiJSKKFREJkU/x4uru5Wevm6YrisqHlIdBBIpdC/ALwVNrrZUK3hul67qa1eVsVlLKu93Oe8+sRbIxQ3qUUiJKWg1HBkNcY/woJuhmEJEWYlZCiSRTUk4755zWlrWlwiSls2JJQsyKuOTiQpWWslN1fVX/+v3Bp7h7OvWN9Cu7mi/KG27y6d7L4Xi8ksKSD/15tqovPrst6uJvf/63X3/75u5733OzSnP68U9//D/8d//i+mqdvKeUy8rFzNows6rcMseUFBERlPgmoJaI8qifoJQSyUopq7VmTiNwhlU3vW5sBBzzz+MVfYIzUlUURtvvfKdZMrJwrTWgbWZOo0NL13r0Zj6t7Wevmyc/w1GgWSa3yXE3MbNQZsWGzdSzISLzTJCHiABhY+9rYs1KjcfWhMiDVVeMPlooWVHqe++VEKLNmAumPGrPYdnAUBdWBDTORxPUjZydIAY92r4t5qumhZhmaa2Nfc45v3jx4i//8q/+xb/4F//u3/27v/mbv26OJyJlTR26fjEvL5YXTXvKErWyhXV920jKlPOhGeqf5tj0TXt9fW1Kx8xWaWKllaIx+RlmUNRQxRljjPd1XSPxur+/r5rvxpsUw1UDGlOBmU/H42q1YmaM6MKWDScU3s7bt2/x5+VyiY3mnFWKc84h+JSiLazWyoe+a/uU0nw+d9aeDsfYx67rLleXfdv9T//X/+lf/st/WcwKfx4sUsdYPVQ1KaXBuJWG+DB1rI1QHpwqiQYrgiG8xxhpbEwOi4RTFkoSmnO3Pe23p02gWC6qUlXe+/3xgCQe2MpysbJmSH9pNCFRSoXopy0jIp999hkWwLSAvfd91yyXy5ubm6+//nq323322Wfr9XqsYRx0sVHkzOfzfpTDds5dX1/j9J/NZpjcBPiCHMBaw6R82wF2wUMQJlsWpnAxRpzIMfZd160u1siyfNvtttumaSjnqiiVUilgqCsj0WfmTEKZEFyIPp04U3t1OAie7VYiYm0txN/00CvNSGZwJjJba4Vz07dN05yaozJcOuvPvfdeW9X1/W53vrpaLupB+5V4SKKUUm3bdm0yRk1PABUp5pdTkrZtk2TnnEgi0ujTV7MZjU19zAUvl/MY4263Z2ZlNNKwOKiWDUIZl5eXMCIDPhJCgBeWjA6ZcI6azeupH79YLJDLARTLOb9+/fp4PD48PCwWC0AqSH7g9CUi2+0Wi1ZEvPe3t7eXlwNSA1xSa8us7+/vx9AtHz58ALzbNM3t7e12u+26DrhzCP1sNi/LUiRtNo33/uLiArTfKcQh6c2ZvO/m83lR2BCC4u9mN2utjsddznm1WmFBTpnkRGEzxlxdXX311Ver1ep8Pu93R6MscGdmfvnyTmtNrFFwYf3ghUIDBFPPu92uqoqbmxuU+oiuGLD1vse34AmAwY0nYK0NcShxP//886Fot4O3GMQ08HC8909PT2C2QmdZKZ5UWfu+hZMKllMeh9Wcc3d3L/HQmqZ79eol0v7tdoudu1wuy9JprUE3fnh48N6v1+vFYtH3PQp1PEmgBnkU6Gia5ssvv9zv9/v9frlcMnPTNCkE4yw4zjnn4xH09rlEWa1WQNNC109ZJfi5IhJywr5++/btfD6/vr6GD1JZlqIswALnHJshrYIvLopNay3U9geURGsAKGjHikiKGSAmNshms2Pm5XK53+9jjCFzCD2i03K5hJULTmo1WodlyT//+d9orWazWZv60+Fwn/PNzY1SarvtP//8c4x07Ha7orBFUYBZtqzL1vehTdbaibiKZQPq7m63CyF8/PgRD7lte6Xo8vIS5/V6vWiaBjsXERvr9nA41HXlnFssFkDo0Ikxxhilzud2NitlHAV2rrSWY84geBJRczpttzvnLCCb4/Foi6Isy+7ctLYtiuLu7m5Ud92AZj6eVgP5F29tNpuhQXI8HkmrCXejASuwMcbVagURPKz2nOHNlTDKhQ6ZdhatzfO5scpCqqIoCuhoYw0755bLJbpf9AmkZkzfY1OXpXLOHQ4HHGrhEITSfD4vqmGI/nw+N01yLp3axidf1wXzJ44CUgLvPelPtQ8u4ObmBukiEkI8NChK8XiGGmNOpxOKfUhxIoe31hqjcBdEdDqdleKJ6IYLCyGkHLTWQqQ0SeKUkjKmKIrVaqVG8GfC+EJK3sfVajkNeehx0DaEYAvtnBGRsp5NltH4XxcXF0VRWKVnsxn8J/u+LQorkjBIiopVa0MUMFwyIphUliWMV1DTldYBHRMZ8CWcArhla60SCinBqG3KiiFcCEzAjEKv6MDVdWWMYubn40fjwRRijH0fsX2mzGdImEdFtX78TMXmyDqSCY/uus7aQaAjjxRDHD2IHlPujaIbPwFvVo20a2t1oCyKlZAxekJa8YviKBKApVLXtVIURllOQCI5D0qVyMoQ+tCoK8pCRgEKVHVFUWAiCsVsP5pegPqAIY/Q9cw89hr7lJLWPJuVWvPd9d12+5RSLArXtq3WFcKIHSUa0DjBmQWOKX9S52Micc4dj8ecM7qb4BQjFMQYNQneeBzFNqcpH5CvrbXWue1uB+7ww72v66H/sVqtuq5DDxJreGLWWmPbviHKlCLcp43SDDXzPmy324ury+cs9egT/ormNEKKiByPR3BZzuczeqvGKKJcFDbn+P79eyJT1zWNRRa+C8sg55xIIJ8AZVdjDPOg1q15YPlgSVejMzMSJ7zHtm372ONigHaiCQefZ/SBmHnivlxcXHRddzpusDWQWiBWaMNTlrVaraqqgGNqWcyE0tTGwHjZ9fU1PZNbFBHEq67rFsvlLFeI4QCCku8noGBQVcNVSoSipWADjEF84AwiopFWuMoJVXkOIaVxXj4OEjg6gqQ5buAJJQTXYIpB07djWWDnI8rwMDsvuM5nYLc2xrAuhFJMaoKZsLZiTMysrZLMQnk6z3wMfdvhe9U4NTwg5r03VZVzxnjOQI0USTllJsVq6ngMnz/CXLu/n+V8RWOZ4UMXQqjrerlYKnVYrfoQ0m7LzhVd18UYQvBJpHClSEqh7XxQHOZzubt57fSTL+Ne7WNKfd+XpVPMIqSssho6YpGIiuJTIIsx5iza6HFNx8KRiJTFQEuczaCCEoSS1kojzJmckhhtlHXzem7MDx8fy6atZrMqZ8k5zatqetc5Z6W10uDiZa0VsZKcWXFOQ8g+NzGnrDDiF6M2WisdQjDG5hyJOfhonem67ukpIaH03iulj8dkjCWilKNWpg8I6KIUp5i0UliKGUqmrLwfEt+UUt+nGJOxJjdZaX08qtOJjblr2+EoBQhonTNahxiFxJA2Wh+bJsYgImho972z1h2Pq+98v23T3N/fI4PEJvQ+jqBtRAqlR5vaLAlEFWtt8gHrdsKM0ui6qcdP8oH0sB2mg22qY3POISdN2HpDljZRpIkIv2hIjrXO8sk3QERAzqJnoA/+HU3Ptm2T99ba2axGAloUheTkR/37nHOSTExJMmUGXA4eGaDZnLPvg9Y6xTzdVMrD1DBarHnkMsRnpoI0jlNMeFnf98zI/iVnUVoppbwPLLqwNo+A9fSIpjNYRAacRQ9HNUpxaM9prZXiEGLOQ6uTjbFaa61D3ztjQhpcgOmZPDFSeaWAj6e+75U1uGbkiMxcWDslKFNUERHFWp5xrqvCpZQkRTerkAzFkCZZj+9cb0oza2td2fWxrAvWSYzxoWcah+KZIQ0hA4iEKR4JKeauY7YwcKsLJ4HPh6O1+tj4vsOh0DvndrsT5hANq/1hh3KOxwno+Azi9ymmnHJOWms19PAE7xDDbDnnGPo83rLRy8KWRhullCiVEsUURCsmEVY5JSW6UsawKa1b1SW9unh4fPy4Cencvd0//bY9lcWiXtyKGFUVrXRKqUoVRVl2IX31269/9avfSCuWVaXo1Wcv/6u/+PM/+d7L3PTBd1Yro4ykzJokpSAp58gM+77hteL0yc+WYkoRB5ZAw9cV2NF1XYcQchycY6e1CmRnDLY5j2R5wPrFH2kh0FjVpJimV89qqEL1JzUGix/LSoGNqDH+My48GcWzxpVPUUSNaTczm1GrDkHAjdwBcDfyOHM3ZAOj+C/yWhmnDie8bEDDuw6ZujGGUu77/nA+MTOmN2SUXUspKVGiBjR/6PSkgIXhjAn94MzTdYOCv1Isoy1hSinGtigtCoaLi4uqmP3X//x/f3N18z/+j/+X7W5vrb59cd2e+5RTTlTakihbzUEkJi8iZpzmKQo9ny9R2rVt254bpRTakEIcIyi0KUkGzWQ+n79//15pfTwen56etNbVrPrOl5hl8EnHXSOfBjTTtu3pdHp62i4WNfr34E3sdruiKLQ2yO/xWEaWt8sk00+DIl5RFIx2l9PM6tydSfLj5uG3v/vNX/zFX3THdjojjDGk1VS1GtacZYquIsKsc6acsyhmwdyLIh4cBVlIYpIBgjdKqUSiNFPObdc97p7a0J59Q0qySlHy7e21Pdnd0waZfQjBWF244ps3b7bb3fe+9znq5BAH7y8sUYjAgiCPwthaS8LBx7ZtISOwWCxOp1NZzmScUFksFnhu2B2ohHHS4cF+/Pjx7u7u4mJ1PJ6n7riI+C7g3DFaN31vrWWlylJnHnLFoq5804tkdBcqV8Ten47HzdPOaq2Vds4BaxYRUpxTIsVa6Zyyj9FajApNQlgpJ05j4YrnG2TIy583h7TWxlillO96ZlaiiqLIRJmSKOHQN1379PR0Ph9JK62ZtU45g8kYYz6eT6H3h0Nzebms51Xf+xD8YrHQygFMPJ0PdqR+K6Xn8/lms5ueZ+ksM5/PZxBnXr9+rZSCgzzOSrSutR3q5JFIRb5PeEF4lSLS9z2Q5dVqtXnapZSAGyqlmDVlccaS4hgjVOPm8/l+v99sDn/2Zz+BlLPWervd+q4Hbefq6iaE8Itf/AIz5qivjDHghIKxAQY0Fr61tutqaARjv6AFeH9/Xi47TPXFGNGlGDGUoirKzWYD/OiHP/zhV199dX//cHl5YYwJISmjvfdt29Z11fd92333oBuOeya9edoBxprVJR4IqkGlFHhPMcZvvvlmMV+llKDavN93dW3KstTawiIljP5s058Ph8PhcNBKQUmAiPCo/SgGjZQVh0XOGSo92Iwo9mLui8Iqpd69ewfg++Hhoa5rZ6zVasKpoewhIqvVCigkKwEF+Pr6+nQ6yOgJeXl5iREE1LHMGs0Da+3xeO66Bk8YB8GXX37//v4eYyJYGCh9RQT52Gw2w0E5USBBgN1sNo+Pj8BzsfZub2+VUlGyGo1V7u5uAG2AwATATka9kYuLC3xvF/xyuVyv15vNZrVanU6n3W5XluWLFy/atjWk67rebvc5d3efvVytVmDcv3//VNf29vZWj4KqWmUYVmMTQfbQGjcyYCIzh5ByDtjmYOk6bYwxCGtgsuO/gBFvbm7OXfs8keAsfd/f3+9EPlhr12v+8OHdixcvmKWqCmB/qE9Xq5U+nVIcWBHY1/i/GFZAfgu4PAQyhmKk/X5/fX3dNM1iscDAAeopGcW4lSJ0SoBQKOOYOYVgxpWsB5ewTmvdtntrrS0KvN+maaqiMEaDwjm9YmMUtDg2mw1ooeg3IJQBS8WDBS0OO+ibb745nU4ppcuba/zevu+Xy+XFxcXj48Y5F3wC9oTU5XxuaVT5s4P9RoIV2Gq10srmnOu6BiJPY8ednzULcVU4tuJoSE5E8/n8eDySDGgj2kh1vUT0wza01q7XlTEGRHJSvD8dsZfrulZWdV13bs888urQ6sNeBpoG8WusJSDROESMMVB0gRqMKcvzueGRjReC55FpOJ/XyGadc8D08R4nxiiaVTj4mqYzxkgK6RmxiZRyWiPY5ky73W7i52KX6WFaN/kUJ7wYP2HYwqsVZUF7CcMEcMTp+yHxIxqIR0oNbzznCJDEGKPYDHWHBlsoMtupZuRBw50lpmnTTVxLUQy80jnHrEFonc1mp9PpEA43l1dDfyglGnUVILWM5aq1xiAIptCqqirLWdue88gPizGKpJFbWfPo5sdDj1m6rvN+oKzF0a8+pQTfvAkTmPDT52v1eSU7YWKZSZSI4swkiqNk37YTZGkHpXtvrcVGGF90QpoHXAt6NeA7AwRMKWqtZ7NqyL5GGwCttU+fnEVijG3b4kxxzhFlkTRa8jCOpJQCcrlJXQG1jB0ljBAtUS6BqI7Fj8yEiJbLTik6nRpUFkiDp7I6pigh4KfFUZkaH2zDtm13+8PFxXo4XIKfOArovL5+/fp0OiHb7/sWzea+Hwj4j49PIoT++ujMObwRPBzkLZpNURQ+fZL5BYCOZTC965xjzmY6Vefzed8nZGDTm+19K5Qki1LqdDog8msaJJKjBKPUbr+p3EwpNflzgNteVVVMabfbXV5flWWprBEf8e/o8k5eX8iCJu8BHI4QzsZzxoJBQMCyVIrw3EIIoM7knBOlKdSgRYGjFkEgjDabflQSO3fn2s4qrVvdhhSNMUqy5xbY6WAoMUWc6S0CNBFJzhmrEB0UCqRiVpmUrNJQKUlpEAxKg5fXEL77EJQyZiyZMlHIidJQIcsnrc8Bt0L8xToG/gIMcbo8XBI6QiF4hL+u67RhZhZJ06bVWofwCa1DKJzwbjvas+acfUrIZkrrOqWL0eQN/aIMBdKxSJi4GwMEwN/NePp3//6//2O56f+nH2vIGqq/e5D3/4ufjw//v/6N/3/0+Zv//J+Zft40Tc75Rz/60U9/+jP1KZqYspxwqwTEp7QuhxhSjjIMQmLpEpHWOqaUmXwazh5FJDGZUUxcKUWkwJNFDmSM4SxpVHfFmHrOuY8Beho8kgVEhEkN3bNxSkWNyXFKKWCahij2Pfa+jOLLOBX6vtc8/Hzv/ZReOOcGAB21JZHj4aTPIRFG5nNGdCOisizhYBZjJKV4pCrISHBGusbjUIYZFF1RmTOGv3POmFEoi6r3Xc7Zah3T8Kzwc8Yqd2gj6dE2gUfSUIzxOb0d4IUiCqMqAu4RM+noBlhrJQ8N877vjVHDQ4uRR8ktYwyN1Pg8sjAmyEOyIAaWZak0I9BNqByroZ0gz8jUzz/WFovV8uru7un+ne/PM+MiBXD0JKvko+RsBnHhnHM2xs1mtStnbR/Yam2ZRTSrlNLTw6Pvu9LaY5apbd627WKx+PGPf/zy7grYDU4gEbHGBR+YWSsjkkMIwiwymDtPayYNznvCSkBrJkRaY2y5wOGttOmT73zoUyxnpdI6x6C11qxSjI60U3ZmuF841c1z375/3Ld923Vt1ovVcukzU+2cLQqK3DZdn37y/Z/82T/5qx+9+MFyvbq7u1vMVy/u7l5c3eX2JCEzUx+CscpoJ5nw9nnkCCg2MmrC0KfUMxF9srgcXorkonAxRhjDqmcLCagr3jARGaVzTjBgTCkV0GXL391CkDy6tzHPZlU/CGQPZIo8Uu2eH7tq0Ljkqijavn+OCE+3gC0mY55H41RBGkeI8iRonj8NCU7t3pyzYQW15dIOdvDY77iwf5AxK6Ws0szc9B2SD8wSTGUSFhKNevchBEmZmUPvy7J4zoBA9qaUERGtlLHGe9/2rVIKIl1aa8VqsVj81V/9s5cvX/3qV3/77v2bnOMv/vbnfWjWFwtW2vvusX9s23Y+n2utQgjXt6+qcmatzZkeHx8H4oA1KaXrmxvvPRsLjVFjjI89ijHvvfdexZhyRtUNbZB//AGjCp+2aaqqqsoSRwPu9/Jyjd5Dznm5XH78+NGOnldEnyQgkVkqpTh4PCuErFxkxGrjrNbaakOJmLVP7f/8b//17d315ezlMNs01jZKKc0sxuAV65E2rgazac5RlKFMQ1su52ytccb60c1GKUUkmZmJu9j1ITxtn3bnnSp0UZYxh93xIJyrc5lTEsUgfVRFedwfwiwozUpT2zW3t7e73e5wOCilUOejR5tz3u/3OeeqqnISJoUxahG5v78visIaE0Pe7XZ1XZnRsBrEW/SDYZ7Tdd3hcMC5g59f1/XxeGQWrRksv0KwFJ3vY+EqV5gQY8ox5IHckJMUtuxT9+LmxeX6qrDl+XTuzl2Ose36xWIhaZBTzzknqDalHMahGUlJBmLyNDfjYhxONBpsEj9pN8OkHlKwiaUoCs2q63zre5ONUmQL08ceJ2xmOnet1nqxmjutoeKltcY5mEJcLCrAcxD/rev6fOogZCGUT6eT1nq5XGptD4cDsxjjmNn7rukiMyeJy9U8pbTdPdV1bazq+0FAQGlLajiqvve9771//957P8ns1HX9/v376RRAJAQ3FlBgCKHv+7IcFLr74Pf7vVIKpJuyLOfzEq0XInr16tV+vwfsbqzd77fMGrSs5XL54cMHcEIRhXa7TT9aV81mM2uLw+Ewm83W6yXAKRyFZVky3wPBmRBwVIkpBZG0mM+bpvn4cV/XGhVdHtk9ZTlr+w44ixqH2L5z+6NcskZN2gjorBBR0zR93//sZz97fHz8+PEj1m3XN8bYPHCFkNHltuuADYkI/tA0zXK5PJ1OL1++/PDhA2jaRLTbHazVkMvA8LW1xQTqIdFKKZ1OJ4xWpNG2ETEt52GO5Hg8XlxcoMcIhGWqPHMUrVTf93ARQD6wWi1CCPv9frFYgChn/t/s/WmvLVt2HYjN1Ua329Pe9r1sqSQlUkySEktSFWyUoQ/+ZKBgQPbPs/0bDBkuG4QglV2mKZGSSFHJVObrb3O63Ua3uukPI1bcQ/GVfwDBjUTivnvO3Tt2xFpzzTnmmGNoDdHMYWhxGgJtDME55wBwKCW++eYbVKF5BP7TgAueJqpi/Ah4N3IYfBCq6Ovra9SkXdelGIcY5h/h1AtRQMuCmYWSUuvoxt6NUkqppIwS6jE/+tGPmqb55S9/iUOtLMvFYjGc++vra4hWN00DZUxmXixOUO3w3rdti7ZxiixkstZivFFrDa06dCaMmU60kGd2U0pJJK01IM6U2aZYk5H41LVgHV5cXBhjvv32W6Azr19fAybDYv7w4cPp1BnziZWFAKi1tmZCyuQz2UYg+DiIcay8f/dULxut9fF0wEA0hhKgYGMmwZwBxOe5YRBjJJo04qqqijHudjtsbYhC7HYtM92+vIgxwvyzMObt27chBJdFsViI3o0mjzbi/ozjGCdKdeGcA847Q71a67Ztd7vT7e3ldruVRocQHh4erLWl0X7wFFPy4f3Td9CjD6NLPiQ/8VqkNVLK8/40VVlEVdkYXeyfnu7u7t6+fYsaJ8bY931dl69fv0bo6Ps2JRryfkxpSukBxsHDE99dKSUVCSHbvjdGVVXVNJUxqu/Hm5sbYww4jyG4pqlCcKeTA9yGvAiLH5UC7hKgrpgH0abDMQOIgL0Qx0bvUeIhphljMFJwf39fliWgOrwtEkKRibeTo2Akre2QQWpJ05mltR6fGYIxcwh+uQT08NcIGSKrol1dXUkpv/jiCyEEqJSIM23bWjXlsSC541Lhuqa10VkcGRBTXdchThN+P/zBj3/9618752KalQZ1TmOi1jKlKKW11cQ7nG9XSonEtCvlRPJNmCrDKujGATEQCFJKAYQtVHAzoDlkO0FESzwRCDJsNpuyLKFsWRTFc/RNa4nACKESm/U/EabOZ898hlpRzBIiKosjgRyWE2BCiEASCPK+MYWeVex8cMOI99dChtF1YwdZG2RQNElw0LyvMYqBc6GqKgpwQZco4VMWJxBCsBSKJqlV/EKTsSfvR509J3NZOuHUuIFoACNhwB0GGxrVcchSk8gfcHi9f/9+u91imOZwODw83BVFVWb7O7x5aSZJaxED88QsBB0BmHXXDXimiL23tzfzP4cMdFmWu92jlGSMqustWg5CiMJY59xqtUwpGaWVVWDvQjUC3zRkZYWuaxFIEcx9FlhHKCCipmmcG3Ak4d9mwJpijMSceNLVmbAOniIhxjtEFh2VTDFjuNi/+Hvcc+T2Nzc3/TgJUYDp2HXd27dvwWfH9YAKKTMVGJ1vIaaseLVahax4MxfCUkpj1IzlymfcCGLVD91isbi9veUQXT8oa+Y6ZV5FoMPrqIeuZ8nWWsVKC3tKSRXGFHYS+UY3QzIJIXC7fRbqEkLAkCqldD6fiSZzv/RsljoHRHbOEWGP6dH7YejmNG4qh3IbTQgrBOdYhm81KWlwdnXEmZ3DyjR9GSfWZ8L5FFmpPP0Zs+MEtHfnmyWlFDiMY5zdEacGRSaHkhAwsojRC8FEybkhxvhceg9PTmdZYaX+/xhB/d3rb+1LSVnXi/V6vV6vf/jDH4I1M0v5CKEkJ8COJs+BclYQpoloJlIiTMHgvIl5QK+yBREBstOT7tjkwzZHh5CizHmbNH9NJSZlkqOeZpGmZgmSD621MgZsFGTJGG4AjShk04lxdBiiZOYQEjOVRTXhtiS00kQEjSH0LX2cOj11XYv0CWadu+I4lZ0ffYw6Xycu2D/jV9IUc6VSykjFLBCnHQcphTFGGcMhjeNorEHCao1xYerHcua5EE1RYv4UkWecgV/jwlQGHxE+prCePUW11jJzzBGOcxWRYgRpgp5PAuo8zItAN5ccWusoIqdPMggTxp1FrmW2cQv/C+6jUgkX0otXL+++++bxu46I6qpMxD4Gn+WwCRZhzCy0LStTFmVZk2Um6UJyzhmlrVR3H97NCTQzQ+LKGPObv/mzz9++TikISTgCx3HkLHMygeaUmBnsXalICBKSpSJjpsk1phiDJCJiqYXUUhtpiCgRs5JnP3ZDr4yUUqaQUoxaSBJMlLRRgiRR5BAXVjfS+/Pj7uF9MunmzZvLF585UbnREfHo+stF9Qe//U+umqsfvPkxSfvP/sHvL5vaKEUpDm3XPzwoZQpdeIpSyhiYZDJCMbxRBSs5KeHAXYfzVBoewZwh2Xn2xfuQNxSOjHnFAnLFzjLGhBRtWSTkE0pJTP/5+L3P1GQxL5E4OCfQTeFZ0G0yoEP9wMycUsgmqCGE9Gx8SeR+LT3T9jHPzEOAlUxbLI/4STFxcrF3ZsUMtFfnNAV/Fs9eWOQxG2IECqYsrswVclbvHTCOmd2gpErEcz5NSdR1SUQpcYw+t9b1jGKHEPq+ZWYpRWGsUMoYi4ywKCrgtpvl4p/+4X9TLf77//SX/+HHP/7hv/mf/vW7d9++evMySjKltdau1mvvvU1h3oloII3B+xTxyAKTNHa32+FBDMNAQjCltm3l7H8thFaKmEf3/XjT+Xz+mPbQc3guA4XwiAeB00HlAU9mhu8KHDnO5zaEQFLsjwfEE9wTPHdAwCly3/fbzUYoSYIpJlOaw+Hw/uOH29/4DCk+yoPz+ayECBNxPs1JCxHFyCGMOrKyqlCFQrcckU+IKY5leJqlYE4u+MNwisR3u/s+DKWqxjCSFkrrxGEcR0pcVdXQDnN+72NQSr18+RLgIygeAHeGYUA2j1INK0QptVgscBIh2C6aZhw8uCqJJhqEz16URWbS4Q+gPG82GyhvYCwDAfbFi20I4XRqiWjoes7yGiRZKSVgc8oi+RAjjYNvqsXFxUV7OrWn82G/77tOCelHV9pJRsbHIIQgKRIObyIfQ6EmlUMlKPAnR+uZ8EJEikTMHdM8kjI1pIkSi0mXLIQgJQlF1tr9wx4VgtaahOj7vlkslFLH45FZGGOqqlJCl2UZowcr+c2bz+HvaoyJyVdVVTdNjPGrr76+ubnF5CkqKHzWarWQsjodj0opYElt1+EpaK2XS1uWdhg6rS2eGiLSom6EEDFwWZawskFhiRWu5KTpsVqt1uutlBIVSF1Wb9++7fse9j5QJ/zw4QO25263+3s//Y1f/epXKY/U9P2paZYppf1+v1wuUdodj8fT6eT9aIxB02JmtxDR/f3jMHQY6A7PxnFSFvhGflXXZdtG7/3tyxeLxeKLL75o2+7h4QGriIiEUD4GsNugpbPb7S6Kxfdu/3Ecj8Oxqqr/7r/9X/3VX/3Vt99+KwIjT3vz5k3XdaDKAlm7uLgIIWhlU4zMfHlZpJT2x13wE1yI0+R4PI7jpFiy2WwuLi6eHh/xWPu+LYqNc+76+vrDhw9t2y6Xayz4SepByhjj6TRuNhuplC2KYmEfHh6GdoTb22azqev6eDzCjxFXeDyenCPMlV1dLBaLhdYyhGnIdblcNs3y3btvgc865/oewwr09HQ/t9uttYgj4zhiFwBTQCGKHkPf9w8PD69eveJMHnp4eACPe7FYAIkYx3G/39/e3s5pM5DBlMVGRRKUh74/fvwohFiuFji8ZrQ9xvjx48fr62siKovqfGr3u/abr79dLpfWFJxISe0y3TKEMAm5WAPqsfd+u91iKgKD3jgyyrIUUoQQRh+rqtJKp5ROp1N7PAmhKltpIW1Vd+PgvU+RYkx1oSFH+/DwtF4vkVltt1uh1cxeenp6+vrrrwEvJh+wO3BbQgjL5XK9Xv/617/WOSfp+76qmqIojSlOx3bOCowxTFFIVlo4P0yID0Wt7GbTgAJSVSVGmSEj47MGK2Q6ULAgYqMTD/r/er211l5eXgIEH8cRNHkiAr0mhND1Z6XU/f1+vV4jjamqavQ+hOC881Vs7DS7DQwOyXDI0r2cnRihxi6EWK1qJDl+GHGIHw4Hqy6FEJvN5vFx1/eBuS/L0vupBRJjsNaGGMFfttYqJaGchozl6ekUw9dE5H24ub0Cyw9g693dnVKTBBbCYEqTOOTcjnLO2ULbQgNIZWZlDFYjEKi6FkqJENxy2TAzqPSXl5fOuaZpgnPdMHBuMOts2/scc0T+BlgGBxlKmLmg01oTSR7GKcsSAsxN6LSCvgpcCVmEyF7W3vu+G+fxAmxAilTYyWZDY86PWeb5thhjVVVKaTRLVqtVdB77BV0NYwx0QiirYyH2OgoppWZRMUXvA1JQ/FRrzZzAoDLGTDK4i2q5XEJmx1p7Pp+t1qQmtUw1udxb3JDo/CAmXzHYEkgphZ5awsyMkw55HRIJ730+T6f8fxwnjVoIpmMpgltgn4ky4+4xM1ILrTVz0NogPgNjxUAAlKAOhxM2MjRt8R0vLxfoPs7kzvl7IY5NnYDscIjsHfGHmb2fEnilFMU0z3WFEITgZd0AagDkmpcuz4sH+/p4PO73J++9VRrySiklPEEhhItBKSVDwEGPohJT2oh7bXsCoxxJWlEU2GJgG6B0gio6JnvSM6FCpKY6qw4yM8RjsZBwKy4uLp6enmL03o9SkrXlmDlwc61RlhVloAP1l5Ty9vZ6HMcYAkMLUURjUNqQUuJ0OrTtCd2CaXwkl/NTku+DUdPcf2FMS4ReXUX1DKyvVhuiY8ZhWYgwV0aUmYXH4x5nEPY1Zvj6vodhRtd1QknvfQhOCJISrA5Mww8hOKHgXKWUrAKpuTGJm4C7x3AyZ4YyPhFRioIIFdy3336LUIakGs0PPKaZ+Y7SDHsZZyUyrpDl+JWaMHRrLZFidjFOsDtGSWaUI/lgq3KqpLL0cdt3ybG2iihFTkpMU7PGGKGUlFLPSIoQAn7bZnLbm7QsReYuIccVQuFsICIhWEqJBjUctGaUDcVAyNtYSikVyShDCJ6jiHAnmwIoth/eM2anNVzDvGRx0bgXdV1LCY0qK0gRNIxpAg6wRSE5KvLoCn4UQgjj+AnbkhJfgWL0yRPRjHFTllYRuT7P8P/U0mHmEL8fSvi719/u1+/+zu+8fP06ZhLinATMAKJVlmiYEd654PHeV1LGLOustfZ+lNmiIafsn2R5pZRCKEz3YxE+Y1MK78eUkhJF7t8IQdMfFKxgUrLWBh8TR4yUHo9HFgKznJeXl7M0DRHFPLo1d9TRt4QiMGLrDJKGEABWYD+GDFIMw1Boy/mFpGRKmASHlOSkqz6B0TKrbPNEO4pSSpEoZQIXvo4UUqnpH7bHMxGRozlciGwOky/ezGQ0fib1Q1leI050Sznva5GfnRCisGXXdW13Rms3Q9KYgaiVUsPQxRirRTP3txBSwydZ+WnISzwbjyI5PUFbmOfyiwhWOUf8/vUmSWitYzK4V6uqkUKwIJ9dIqXUlFhKklKOLtR1XVcLoSSlKKU2hiklwTF6/uabb1Z12dQ1TiBE1GkKiVP0HmcBwnjKkiD4CpGYiGLyWmsp9bwkpgAboeU0KSeE6X+cwt7WVVLCJzbV5BYiYuKYSAthBEtiid6l0kqvFvbdx/7x8Vtb+lc//Xx9+9IlHTwVUlRMn21v/rt/+Dt/79UP1sUmBkpRusg66NiPMkUxOOljoUxKQZDWxsDrSWudUhTEieNku/lMeSll1pvIVF+RKdsxerQnQbXDk0JWTblR77Iz7zyUxFnLou97ZIp/8wVoVWs99KOS2hiR+n4MAUtUfZJrn7j5WsoQ0Ary1lr5TLBFZlNNnYcP8IcZw8KXgtMolmXCSZ83PiLGlMBxFl7QStOn50tZG5qz1DVnej7+bV6KMn9xP8s955AFjrMGHuScE8xYSUpIUpSz7QR2CbTRNZr/TELC1jdYay6uL4exU1r87u/+Xgjut37rH/zRH/0//+zP/ux87javq1evPx/HPkbW2vZdC1mexWIhtZVC3ly/OLXnDx/e0eGQUhr6frFYQFXTWOvDuFgsttvtfr8/nU5QtRvHsev6732O11dXZ+FjjMDF6rqu6/rh4QHlX9u2SMrh9I1pjxAC6HJQb/j48eN2e7G9uLi7/+izhk/IAxnGGGJBmoqiOLdtWRRKKSlEYraVff/+u9//TWGM8n7ap1rrME6MDJEbe5+iEFGMXgaKOgopmYWQTETBxwkMxUFDrKQURGM/BBG99+WySkPyITDzOIy2KIwtZCaew0mmbdvf/73fe/fhPURgkfWhNJrmG6QsigKCjxAbSSnJLOSHAvt0Ohmtm3oJtldZlSifUC3PKxBr7/LyEqnwmzdv9vv9+XzebDao3JCRK6WUMoJJZDbZ+XyOHKSURV0JIYUQIST2rIVeNYtSl9Sl6EN3bgE8cXZC/7RTpGZmxghLYgwbTscuCcRkKVmJCUvCBmQpcoYwtTynh6KUEVrrpMw0BisN9PumeGKMScxVWeGBnk6n5XI5QRWkkIh67wWpb779Vmu93W6ZIhGZDFhsNmuUlzjLrNXQl8Q2FFKTIJeVapGBgIorpby5uZFSH4/H7XqjhDwej5jyFkJUVaWVF5KVUkVR9L07Ho91tcAD2m63UuphGLSWAMGLqkyZG/WcR2+tBbsQJXGla7CfhOBhGMuyXK/XFxcXv/zlL9EHRXEhc2cXdUHTNJj0RzTGH2KMELFl5plXeHFxYa09HA7fffddd25XqxW2LbKX0+kUI4cUb25uAB/M/bbv3f6lLYpkOab/+B/+g3Nu0TTO+3EcbTH1z9AJwLMDhphSil4C/gghCIWhk2ncCuxvcGxDCB8/fry4uNheXLhx9H4ECRTMd6BOILDPUB0zX11d/ehHS+c9iVSUpu2DkubNZzdtFnOEiAFQXdzJ1WoZY4R9WWmLzNU1ILPHGN+9e+d9vL29tda27UNK6e5uLwQtFgXaPLjbIUzVHBFB4XfGc4HaGGOQdg7DMI4jeA/o0j08PMxUL8QNnKq73Q6ecjjLNpsNUghkp5SnTucjb05diMVhf7y4uJBSbjYbZn542AGmQVQEhbzQBp8uhDBlMQyDUmaYnDAfpJR1XRujZvjJD8EoLaVs25aIjDHrxbo7dVgP2LPeR2WMMbGu6+urC5qU4iaIZBzHwNPpieAA6jdmClFQIHbhNEkpQQbkeDwi/dDa7vf7zWaDr4yNwBSH0QshACRBMlUp1fd9XS1ev3693+8PhwOJFLOjo5QSBGqihA8CbIoC4c2bN2DpMnPft+ezxeGFlYx2wnptJragZARM7GJ8u2a5VMYcjjsoewzeYb/3fc8cwcllFuDDot8Ae0lgi/gKMKvXWmshXTaqUcrApgxy8AB/pZQx+mFwgVNVVclO+iRA+qSUWtnNeom/Wa/Xy8UacQOIDPjaIQToWaeUvJ9gQexfQGM40RDHvPecQt/3cFt32e4MiFVKab1eI9UxSj3e32utgcVj9UKPlbODDpJM1DIqK3Qh+CCVQoHW973WFnxhISCXxbNclZjUqycKCzYdPvRwOMwsB2MNtltIbsL9fQohKP3JQ8sTDePYnc91tVgul33fW6VPoQ8hQMAn9gOwGtSbPissG2NSClIRzo7lYu2cO51OIE/g+JB51mqeC8EEwL//+t/jmq21Qk8q9sgl0I0LIUj+lH+W5fSJPsW+72ERqbWWkryf/FHwm0Bd80S+l1Jiyc0WtfLZ0K0QIsYkhHCuWy6XOahAbWaCcWOMQnDft2h0zRgxjoxh6MRkc+eLwjTNNdA6BHaArcx8Pp/BNkXklHJKxUWmkOMNx9GjjWekQjRLE4V2okuTFM8qMgxrJrSscMOttdYqlDnNaqm0TkQsBSnJKeUkbVpy/GyIH9eMpAs3YW6BSCkjMYBpVLXe+6Zp5o7j83pHTiK6zhiz3+8fHx+hyns4HJAMoyalSRLWxehfv3gpBO92OxcD84SZMDNWMu45ljHwiqIo+n7SmZFZEhNviJU5/xOfS92mWf7sZz/78OHDX/7lX1xut03THLIb3nq9fnx8JJJaq4uLC46AaNl7DyKzyBw1nwVqcNiBeY2I6gf8KHJKKQWdHafGcSxtgYsJIaQY+Jk7oswz38jaoaBVFEU/jo+Pj845ZbS1ltJkTRxjxDPCF4f4Rtui9hEoQFJWW23bFr4C0zxlxvRFtp5KWeYuJZoruKIoiCWHyFJOqFeAeLrDwlZGa61ZUVVVXkvPKTGnlKxSi8Xi1PdEpOMz+p5kmo9wkSmHyEEpk70BA00nOpH5RIDSKAmQeaCdhejJzCQSaAhYcz5NYNBztCunTZHI4z2ZI/M0YCsyw39m5htjiCC7E8ZxFJKlVok5Zj9cgPRFNolGGezCiHUgpSwMBH9HSBaK7KSptSYlWQrJMkaG8MD8LFNKoGwsmu57c9C/e/3tfi2X/dj1SZCUchgmBwBAJGgeyqzXOpf6BF9KY4RQ0M0QE31AEsWZfsiZzoZ/K40FcUFklShsLiKSkrSYmh8Z3WXC3AMLDADO82vE4v7uYRh7KWUiQmoyZWC5SSiz7qEQch4IjTEyJuC8F5lEOZ9DQz+SYEBLZV3jDuDwgHGKEIIpxRSMMS4TjhABnkNXOIHmug5EZqCCKQtAE00FFfb+OI5CflJnpnxKxRhBXn4WMeGMNDW9ZhR4xpo5O63L/LLWJq7mL5uyQi7Ocqh3KaVSmu7D1KPKMgUpN71E5hFjeUglOCeaM+o3j/YQREO+7xVjHL3rjsf15uLi4iK41mghtJBaJaIkCONkJDjGmIiaxWKxWlprhzCwEFopjrG25cfvvts9Pa7r11JSClFbE0Jwo7eFwTh2aTTYsiEEqG8zC2bBHFkSEQFceN57wD0PPiWaJcxkSikyB5+cH3WVLAshbWFNIhFTUEyGJEkhWYkkQiJP0RbWFEVM/Ksvf/VXX/yCtf/JTz9bv7oko4e9c8duIZsfXVz997/789/+/HMVhOgjh5SYlFLkUil1CFGxWJQLVoKEnFlvUkqOFENkIUhMpa+KgmkqhqWUULEVWZUM7luUE1DsuxkKZHAzUiqkxBmPR5ln9BIRIS0OIYhn3Y7/+plm4ICZocmglZWKOIk09XqnqUaol+DNu64VQuic4iCRwkagLGKDRCrlLrKUk0B/zM4KeEejJ/mamWohhOC8K+clqrKTHhY28yf687yGKSsvK2WJCMDHvLalVFoqqZW11igrhIpxJCJljJn8PKfpsxgnXQj8JKXESfgxxOi11kVhlysoY6RGV0KItm0/fryv6/qf//P/7ZuXP/ijP/qjr97/8unxuFwuh77Fnej7/vb21o/hw8f7n/70p//iX/yL/9P/5f9cVc2bz17f3d0V1q7Xa87NY6gxzCTZCStklur7n6MQerlcorynTPBRSqGSnDJO73/v937v6urqj//4j7/++uuyLB8fHw8H/8Mf3mqt+75XWhdlabTlNBnTT4vExxijkBK1tMqaxX50dVFKIf79n//Hv//Dn79582YYjkQScSkKH+OnzDVXDpKUkEJwmPiGSikJ+XUmHzzxJLrCQhAlkiJGP/jhHNrT6RA5lU09hpGSqEhJKY1SxKSFjG4iCjAzSbFcLh8fH8uyhHQJEjDvPXg0kLyQUmJ65nQ6wUuz7/uu666urlbLZd+NSMr7vmeRdDZJF1qJzN+fx/eqqjocDl9++aXNtvUAFoFbEZGW09bAo9xsNsrIrut6N2qtjVTRR0nq5YsX11e3SigOaeyGMHoseMxEr9drFjQfHJz1C+f4kLJ+qCEVc1U20aVw7mgFsG9a1fwp+AipdC6HvPekaPQDANDj8cxJ9ENHRNvLi7Y9AaMpSzuOY2GslJQSv3jxwgX/8eP7uq59GIdhiFkNdrFYXF9fH4/n3W6HKIEeKpQNj8ejlHq1WjHH+XDMo8ST/HQISZJAsLIWosyi71sMEoUQIkWtdVka53wqEoa9AIZi+U1CgcQAwuZQBvZNWZa73e7uw8fFYoHqC5cHNgnEdlNWi5bZ5Rh4JTNrbWOMy+USDM2YJ4qE4IuLTYyMXH3OhZ6envAF+76n3APAtk0pxciDG5n5eDxiieIJHveH/4XtLyD1EIKDaEzdNLe3tzF5WIKjFsXlQcKYiMZxANFHa43mBxEZXXjvnfMwcwMumVJ6eHhomsZoifYVMy+Xy+PxmBKVpU0pffbZZymlr7/+GndvvV7H6PuxW1RrY8x3/+VXRHRzc3N7ewtljPkAwgsbB0KrV1dXfnSn0wnvo5QCIrDb7UIId3d3oOwVRbFcFnVdo/+N6DQMnVKqKsoQQuKg5qw415IQ/QB1cTqVlFoul2A4Sin/8A//cL/f//rXvyaiw+GAZbBerwFI4ZA6dW3TNEhXttstzr6yqHxwQghYJBljri6vlVIfPnx4//79D37wA+g4w+XpxYsXSCOxnLTS81kshJBSF0Wx3++xvNt2rGtyLhhThACLDvv09IRriJEVKSJC0NvtdkiZqqqyZYkwfjocP3y4316uf/rTz5ENrlYrnLYxxqqqnp6edrv+5cstzOs4MfRA0dr57LPPKI8AvnjxAuhbXS8Aj6LCRbWL5ZTJWDJlCwRkm8CRiShFury43mxXX3755TiO2HTj2CNoA7sBD90Yc3V7g3AHFjxC4rwvAHtB2KQoDdBwbMDTqSvr4qqqqrpoFtXT09Pd3R3QPSISgvt+wPnYja4sy0Ib770QLCXVdVkUayEE1l7fa0AteGrDMEip1+sKwW1GAzBd2jRNCGkcegRWpCJA94ikMIybmVJq2xbCTVLK3e4wDB1QDoDmeRZkEli4vr6+v79PmeSOWH0+n4nIGIXBnWGY1NJnkjIzf/vtd6vVUjDPo2YAfE22pJsztJQ5Sc9BOgRJygRGNC+7rmsaRYpQ9SSeAHFsaj9pMkyFDGX+BBERSx88YGg/DCnROPpFVYICiYvHpyDkIgRJMRUFwJSNMcMw7HY7hoBPiIf+hHuCL4UFEGOsyjKlNA4+hAC0uq7rq6srVIjOucfHRyFqUN2JxePj4/3942azahZNDHw8HllOd2w+MoQQXddZpTEfFkIYvCvL0mplWOJciDEWhYGlEK4WXRMEOiJijvjLruvatgXlK6VYlov5KI+RsWWkTJvNxvuIcIT3j5O0sUNGjceE6AppWZ40qSct467rLi9LALLIKo/HI7qPAECxy5B9zwcrZVaH1lpr6b3s+94lRidGSjmOPe6Pcw5TF7lnXM71OzIWTOxtNhs8IJPVorER0FZEAP9rDNaUYoygCCBapsjWFsjoMBrL5CUlLSqtdWTvRqfqZlHVWTc8CimThx+dAsuFs/A0Rp0gtxUzlx8wCBFJppQCS6GsaSR8zqbeRswyFDI3Y5gZtOiQTSZCliwH8QXfRUqJx2Syna8QCpLHUBEpimIlhBACbnhKTRkFEVmNOYYemZXKnDaVDeSBS+Dii6Jo2x4PVwlpFwtm7sdBZXZvrpgkdg1G3GImFFLmI+KJEpGWcvSeM5iA1AXN4K7rrJwUJhDQkDk0TYNu9FygmayTcz63QF2w8PCUEWPx3LuuK+vKGENRAV9FeVgVxVxXEkAZ7/EghnEsikJVk+q9KhQTDeMYiOUif6O51zQ/7xn55ew/C+4ZT/xKG7MQJBEFTjIAU0szUhaz/DxzjATFlWmkvciC4pI/uX+KichTCCGGocMvWGvBMDMGoFICG2UufRE3g5uEUOXEYksT3MM0T2jq7KWmtQxpYs6LmcaVmPKM8LRLiXW2RjwcTjFGXOb8bPBS6uk3fvof/uqXv/O9mejfvf5Wvn72G/9xve5CMCTR354Vpuxc1sYYidLcJZaZ31HXNZHs3TinLHOhjkDgnMuD60qISX8BuWnK4JeZTAYSacnMkFOYoVKlFCZ5t9tt27YAN5FxSqGWi6WyOldWEZECpxGuR0E3JkShNBGJxJEjgDgppqkZ8WzOIPEkvWqsnS9Aa504+uDmc8s5l56pFVNW2EhZtRk1sHMuhZAiy+zegG/NkmMMaGVBgEdKGVOYm8zGGJHLG2OsyG06pBdzA3DGjjNMP4k7pzyTAfQNVZbIDoFCCGP0tOeJWQpYUkzXxgQCYzH1h+e/Z/PM5vgTridk9EHqadRrprHgXnzvknPjaEKo6kWrHppm0YWeKI+MaBXHxODLJykSN83i8vKqKIoQE4l8MEulhLz/+L47nauqwsFJiYObRrewSM59Nx/8QkyjIVNETVFIlkIpEloqLRVJKYRIkUKKQPml1okEM7sQBE1igsuySCkZIbWxXT/6wdem9P0gSUXBtra6sCylsMW7h91f/Oe//O70bVkXP/nNH69uGq9SP7SxDRu9+vHly99++4M31Vqcx+CT1oVgVsRSqL49Ry0VkbWl1GoI3mhD0+MmLWSKIXGSWiYWOk9IMXPiKAFMMwkhIqcUvZgHYoiUkDGGeRnIScpm6mO7PJNIWY4DBwTKEuyLUbrvfaYiN+o5sffe+REQXiKCngkR1XUTQhjHUea0+3w+4viT0EDP46iJppNrQrKeiWAQkc+2UWaSqJ7842aUeT7oEQ2MMbNbKWUPz7kF9fzFzBC2jjEKQcxCa1MUJbxGj8cjECVAbJN8RvLOuZRA4dESs8njiCuRUgJQlXJKGGJMSglrK2O0tRaWbIPrQfnX2q5WK0XKGPP7v/cH7blzfzruHu6/++J9VReLuup7X5vm+Hg6ndrrm6v/4//+//AX/+EvvvovX64v1mPvLjbbYRhO5zOMjDiPTM4iksjYtNZ1+f1WgcPYhSowM3DqlNLl5SXuM3grCPvv3r375S/+SghRl9VqtRGkiB/Pp+7yagsCJrhyCJ6AezbrNSoW7/0Erklxsd6AtyuNXi+WX3/11V/+5V9+/vnnQggEjzApC7ncPZkWZCQWLJiZYpJSSoCn6HIRRRJSK2ML9qNSIpEc/NCPw+iHLvS6MlVhwTurl4vEMaWUPDLmNB9/xpi/+qu/AgQAosr79x+22w2c2aWUIDOCEIHAUtTV2A6ocNbrNQCX3dMBIiTMfDgcoKCqlNpcXozjOHY9EYFUJYRAzglDmxkHwfExEUwojq6HyEOM0YcxJDk3V/BWVprL9WVVlsF73437/T6EYJXxIozj+Pj4KJTEF0wpBR+gzz7dcU5ESYhp2gBjLCkl5lFpO29JzJxqrRfVYo4wQkqlNXjQOA4UkZAsdWWMat4trNJKqaZaVE2JEA3UNUzDAZQhy4RhbRwoOMJmQA2n/IxhARXVhXbO+RjMZDicSMkU4zD0iAOoxuu6Fkwg7EDKZhzHuq6FUOPoi8IQUYrkvavrer0qhBDQoBiGoe/H1WqFIVOEjmnkMZPjHh8fZwhY0jTxDZCobVvUk8PQnU6tUgr/Fik9EYXg8KDH0QMdLoqirmvgQUTJuYhvyixmchwIxU9PT9fX11iQELE57g9v3rzZXGylNvf3933vTqcTSJpXF5dKyGH8/jBurfX+hBIXYNnFxYX3/nzuZvAIjWzvx3EclDLWWpBDQR2KHIAbhhCMLtbrFdBD+PVhPux0PlhT4ShHqY84A8EfcAvmZHK3241jD3D/fD6XZYFYFMrSjyNWTsxO9yCjIfn5+PFBCLFaLFNKIDiTFMCjV6sVttjcrby5frFer7/55puiNJx7+dvtdlE3j4+Pp3OH30wpCSmFEPDNk1JyJGOslNIFT4TZ5LTZXFxeKqUMVKdTSoGTCyE6tkojv5oOoyRAAIfYxXq9xlUZY969eyeE0MqoPLN7fX39+Pj48ePH7XYbQrq9va2qqus6xCswpo+7PTCI06m7kBOipJRarVbGGFi0cdayGwZ3c3PjfTwcDm/ebMeuh5ds7m8pYyQCvndOYwiYQ1Vr4qlkxjU/HfaUe9JCiJ/85A1ap0opIaYDWkoqCvP4eM/Mi8UC6DMSbGDBt7e3kOt9fnrOUIUQYrVadcMAYNqYmARJo19eXqUYv/jVl/eP+6qaVHRwlANrKIri1atX3vv96Th4B1LL1dXVOHrsMrRIwS7EzUwp7XY79Pk4idVqVda1ECJEdz57Zoa8APLh8zBpVeGtGm2cc1FLUL5kdj2Rmdd1Oh2tnTzGjTHeR2OmEh7D40qplCam3vF4lFJBxwmwbwihbQdQcNaLJdBqYwoigUMKyhhztl8Uxe3tbVEUKU0SGbAufP36dYwRVOiU++7GACUXEBvBMNPoPeLSxcXFarU6Ho+CJ6BHKaVzH5QyG0lk9eH5O+ps4BHzxBhCKCwuF4tFUZTM7NlLKTmJKXoYg7wFMhqImQAxiCj4dHFxobIck1SKObZta5Wc7VsRrw7702JZv3379t27dzFSWU86J885NNB5Y2YpNeygZeb8Th33rOi6WEy+iIvFwvnh2+++vri4EJJJpM121TTN4+NjXS3Ksry7u1sulijZbKGNVd0wMEelRFnW4zjiTaqq8sOYsmRWgjd55rGqbIgCqRNkEfLTsCBJSUpN6rrn81kItp+eSILlb1EUzALYq5QgGwnmaXQGOYz3fr1eoy81g7Mppb4fsImqqkIURfO1bdvb29u+H7uum20GMdZgsiKftRbiSxjBwT2fwauiME3TdKezc04pobU6nSYDQJwINHFEFBJybA0sjPm2zAgs7gxOE+89amGZyVIq69qlyQxJQFDLTvKefDqdpom9blBKxeTbQ4u21nfffYdIK/LQ5ETgze88dw4w4uacsxbweirLBolHZYsg1YcPH8qmRNvAZWuElDl8gAicc9BF2Ww2p9PJFDakyM8s7p9/nbbtQWDd74/Ao8dx/NWvfkVEVVVpZZl5UevI/PDwBH+Ry8tLEN2ijRwnwzatDZSjOE+wwfeSmYWYdoFSFEIwUqFP7/3IzPBJAizjhgmclFKGFIdhOBzaq4u1UopTcmHi5GGSCQcEji1cj1G6MHakadbWFFZKCRAZS1Q9m81CPwnLHvfTTD6To8jO8xNaUljNHLOuY1WWbds6F8pSYlWP45jShF+HcRB5ShsADrOLPgpKbIU2RhdibM+H+6dmvZ5wqJRduZimsIJ2wQwP4ZrwlxAKNFkskvHPOLvnScom3UkIGWNUdtJwTJkAModakab3ZxZEny6DPpEKp2mImCnY3nshZhRPC6FCmOA2zLbPPV4Edyx0k70BlZKIkshrp15l3oGfAIWI+nnioczti5QSQvn8+s3f/L96H7/48uffm4z+3etv2es3fuM//+E//leYXA4+6Gee1Cp76GkxoTxaf5pTwE+7rsPqjdmlDUcUTbqNUinFgUV+B/xo3sxEhARiHD85GDzfv5AVRmPWORejX61WCPcQpxNCCCWfw2c4mbBNtJQuJc6etlPd/tfHu+iZuV9KyWXHzhRCFKKqqmXTpOyJgShmrWUhdCZ+pjyjMG8ik0U8iEhrTeoTa4z/utKOMSa6SWZI8tQkQ35GRC4EnaXbQd8jIiI5DG5mTXIe6gcaiUdDGSJk5hgSEYE6LZ6RylNKUnIKk+7SjOMwo3wSKieR8xGL/zTZehS3ui4rKWVwPoWY6NPARIwx+O+3lSOi0hZKcNnUg3fee1YUKFBhlFJBMDFpoZmiEKJplq9fv64XK+dcSkJKnRIjd/n222+lpEVdnc9npcWcJBVFcTgcilIRMUbNlFJJsRCKOTBzYNJJgNoMAS+ljBAiT5ilkDilqIRUxmptdVGS1PjWpzZEZu68LVwipsRBW89JKWUK60SKnPox/uV/+ssvv32vjNm+ebNalXUlx/7kQwhObNLqZz/8zd9886PX66XrTs4IJQthlCQK0afQC8kspZBqTNEPAwuhKKtSEJGIRGykjInHYdCFTdMgfMJEu5AslTyfT1Oz91nDIFAySnpKMLAmImhJycxowNJ1ISSikFKRGwzoPGutR3n83gcaUyIpQ4zJTws4ppCyU6WUMoQoshAeGrEid5U496jmsxJ6skp80iDjrJ6WsnHlvCCFECQlUKSY2W0y058FyNo8F70S1UVKCSDU82BFk03CXGykuRWNcjSlpNQU7nLthD0ic/AJIUQfQxyzvJog/I+IpJKGo9AmEU3T4mLifTNziGyMWa/X7bElorY7/97v//xn/+Dv/frXv/5//5t//c23Xx3uTj/44WeS0+CdSfLFxfWXv/ri//Ev/0dNQpPoT2djjIuThw9Gzzbb1fz4wFiRUlpt3P778abu3MdljDECICvLsq7rw+EAaVS4fkkpz+ezEhKOLm3bKilvbm68997F1XLjwihyyx/PtLAW5eWUfggxeGetDZyOx6MU4vHxMTp/e3v77sP7p6ensizP505Mg7SqKIrZO4uIIoGzziEEyWSMEbn6gtqMECKxSMSRk9FWSO7P3alrXYpCUVGUTLTb74u6qqpq6FpBoh9HwZMguNVm9C6ldDwecQjmqmnLzFA5uLm5AeEF6805dzifIGMyLTwh2ralJGYNlqZplMFACR/bM9yNkp/0uNEUxKK6uLggIsD9Mx4Hrd6iKEiIRFEQC8nD6Ji5Xi5oYpcQEdXVYrFYGGUk075tkQoGTpjf7Ib+4eEBorfik5mtzCN+UUoprZ5zRUxAIqlF/UdEM/Y/DJ0xRlWl1iqxYOZIEzGNmVAUFYUFJWexWO4ePoICfNjtpRYheiwwN/pxHBdNQ0JILVIKpCSQHRRyXdeR4KEfsT1xhOHOF3U1jr0QwhZGCuNi0Fpbqz8VmYJwJH377bdWoxYQ4+gpcd+DwAWwpmaOUBoFro0Pyq0p+f79+6oqgNf043A8HoGl+hTx+FDxvnz5cuwHyiIbOCuR6sw5AObTOacf3kc04VarDbIXsCP95HM+6aKuVqsQ0ul0Ah3v4uJC52lcYH9QMa4XDQJOXdevXr3a7XZgf59O7TC4lMKV+X7t5r7v9/3+9vYWarZaa2vt3d3dMAxX1xeYmloum5TSu3fvQggga5e2mBmpmAoqiuJ4PKZIWmvYG47j+PbtW3xlEoljArhmy4Jjgn43Bma7rkNR8+Mf//jq6uo//ac/Z2Zb2MfHe4BluD9938tciK3Xa9CNQWF+enoiSm/fvhjHcX88NMvF5fVVCGG3233zzTeguwKT6rrucDgUtorZkLCqC+wjKfXTw+O74TsSCRIWwOuVUrYosPBijEJPsjkqjyHjGH16eoKehpSkCxuzISHmiDkPGK0vtlVVoSFUVdViscC7HY77GFNdV3XVrNdr9Oe01qvV6uHh6XRqq6pKSUCKCp2Yx8dHkNS01m/fvn3//v3j4+PLly+llBhAefHixZs3b8Zx3O12p9MJZy56MPf3u8fHx8vNVmt9OBz6dgBqX5Slc26z2RyPx8PhUNa1MQqqLG17QhusHXogg2iq/ehHPxJC3N3dIexoQXnGeZP5krFpGihuA45USqO7Zoz5+PGjUgoq1dDMicyJWWm9Px7x6Nu2NSaAw/j+/XvElt//+T94//FDSilGjz2LftXj4yPw/f3pqJS6ubxCGEMAxOOoymauX6qqUsY4L3FiVk0zsVgoOsc4AW9vbyHfAQZlXdcFUOYYA6fJfFvK426PN8TdhoIwMfvR7cOeMxidsm+5y4uEM4k7xsicJPE4eOB6UsqimIyg7u8fFoslTqiiKMCK6zqHAIv7b7W5+/Dx+voWYMWsjYBR/ZlUxHnWWUuzPx6IJLCkYRi0slDzAJhIMXX9MI7jixcvlFJCi3lUDu+A+4AUAkjQ4XDw2RR3vV5D5h6ta3TdZoFmHEEqD3w455Q0UDRqu9Nsdhqyxj1SXCEEE43j6Fx8fDx4HzebFb4XNvt2c4n1XFcVMsO5qyGy6mPTNF03xOittdJopcTMSLBKC6OmiQRpgHB1/Xloh7kUTSm9evXq8vJyHMe+G1OmARVFgQYSPlRNtqvnGdKpqkokxhqrqorUdI6HEJybdMCB4aIJh9gIyn/I7oJ456IoVqsFNJTmci/kaT/k9krxPPfQdR3W25z9ogGMwwJjNFJqZLnjOM7DuBAzub+/V9mJBEgaMyuC9Ku2dppVinHivM/o8BwtY/TLZTMME+0DmRKWmQ8+n5XTWOF6vY7PJCUR8EHeV1kfD7cLCxLEWNylGRkw2c0bsyxVOWHoXdejaYTNiNYRygSku8PgRH7haU77V0rv/Wq1mgU3ZpzEWkuUmGNKiRSZLB2TUkKainxrrs6wBoqiQL8hZON0n6328P5IhoUQdf3pEC+KAs6NQN5DCH0/IAKIJJKYKBTIouc2Q2EsxH+890pN8g94AQegPJGAUBlCWK0X3vtz343jWDUlIlJKSUsVcmuNmTWRMKIo1NPToaomJy0sQpIqciImZT4ZXOFhOedimoYbsKLOx85apbXGfAbiA3qKuCSeRtgn2i6eNRT5BzfOkNSsAIFMEhkgZzHJoqi0ll3Xmee2n5SrUaIY4/nYCSmbuAB1CW+r4aRJlLTWOuu0Us5L5sWK19xts1n1VUpppIJxn1RTbg1+IkQwOI/lUuZJ4X7RM/IUgJoJ7onYG1PHj4hiCkxsjM3eDoCVp1H3+c3ne0cT66qQNK28lKf4UwrMn4yhphk6nsBlJB9EpGhKal2mjub3TziiKMs3S0k///n/eHn58Cf/9p9/bz76d6+/Na9//I/+1U9/+u+JEuQapCDOEBAKOZzlioSa5iwmNAeYERG1bUskq0Ujp2lxdPmmxUZEMylJZKo+52Atn8G1MxVaZXlWXABPtEWRSV6TRioW9tRKVZPwup6cAEOMsSoKnGplWQqSAFlQt0+XkdvvMsOv+F673U4IAabJBOHlTvLcONVam6J4Dns9Pwye5UNMRFIp4mmEfw4a+F44AHyaUGP4tOA6Qx7uCCFAxoBygMOJkhHzCVNGZqO1BnfVZCG2lBL8tWxhno9KDP1oyoIEMbPW08hYypbHoO8FN1LWAcDXD3lQTgghlDLM3ntiyssjaa2L5tNUziSG8jdfzPhq89P0rhVWCCmV0TRAVHlaBovFYrlZ13XNg+MklCmEkIuy/PDtV9989fXrV6+stYfdY2ksC4XkaSJUxuHNm5fee1MWzIITYUCFiAQJZsUUpSTBVtI0+8KT8YJOFIXSznuX2OiUiGPk3o1933unE0cfQ+96rbWUVJZlURgX4hjTGFPn+TC6wLJaX2wvL3k1egphDOE83Gyvfv8f/7dvX/6MnK2FqkwIIfVpVFq2jquqHkO0MgiSkV0knYRIUiTioe/qslKCpRLBO2Y2hY3Rp+ibauOzTpZPWdSFCHNPMUbv3HNsNCVhlCYpZvaQUpJYou2KB43tBhhX5wkhZu6GYeiH732kc27EYQodoxucc0YpnsSXNY72cnIbB+Bbol+ltXYh5A+dBhixfjgL8sydc7R2ZrhZSqm0TmkClLEfjVQxRu+8EKJ3Y8yiGUiG4J3FYoLM5mBFRMroGCNsg6WUgDWFEBRTVVVKqXH8pDfCzP0waK2ZdKLpjtlSV6pGAfkMT8faS1pLIpLMSllmjogFLKWU3jshBLG8vNwOw/Di5jrGqNWbV9tXf//Hv/nFr371Z3/6/11vlu+++abbnxdmEXv/R/+3/7uKfLm+HIdh1Syqqnq/78C0OhwOENQbx/Hly5fMDP0BSVCE/35282Kx5KK/v78vjAW94uuvvz4cDlprMF9mkb5lszgej95H709aa6W19/7i4iLGCEIEun6o9zBugKdQFIUtioVZiazZ0p7PhZlkNPu+/3h/9/nbz5hjCKyUCpys+sS4wShGdlthyKggpiqSMUIZXEViJMouSk6pd+PghphS69vIMRJXy1prfXd3t6wbKZQfPTMXBdxsPvknw4Rqxi/mkwIQBpZ6CIGlePXyNQZsgciDAZTC5EIJ7AOxFMLQGJ+3ObuFWCTqRqTRKAtnvh4cyUY3FHkAUGtdGxOi98GVVZEiKxIiidevXtVVlVIah/F87ogk0TTwqI0lKZxzUHgsikJSPpGZJFMS04nGYjqmFUnK1iOUs0fK8k0ifSJbSUnE0wERY5JakSChpiQcmsLex9PpQR2kLbTwUmkJMnjKXdvT+bzZbKSU7dBTnsGMMZLgpmkwm4HB8BhjVVVJgBYUpJRCktEllPjAvsE9HIahmEZHXVMthBDD4Kw26BwQUV0vUgpFUQjBCFBISNC2yU9tPByOKdX4IqZrz+czWNiB0+FwkPxpKHX20hw9huXXRNPYEFEypgRZDBgEEcHNzHu/Xm1DdOg0zCVJHkw8EJH3MYSATg/OXAA30E/YbDbY5imlDx8+KGUWiwUwnaZpmnpptD4ejyqzZP6r1+l8Gs0IXAOpwvsPd0jtPn78OI7OWtO2p5nqdXFxsdvt+nZIWR4kpEnHDxmU0RaPCczKsiyfdg9FUUBrf7fbXchrJeXj40Pfh6KQi8VitdwYY37yk4tXr159+eWXUAINKcbojTEuTEG+rmtKaRzH9XoNXhiC7W73OCuwE1FK5PMLd1IIAfe2JiOJYFA+PDwopar6FoqfaI/1Pb98tcbvnE4nFKhSqevra9imYZ2M42jLgnJxDoDJWvv27dsvvvhVd9hfX183TXN3d1cXJa7WGCO0MsZg3KRt22+//fbVq1dY7bjDV9sLoTTW4dTkU+azzz67v78HhXwYhtVqVdflMAyKxNB2uPNCiKZZNit5c3Pz8PAAeWsAo+EZVXAYhsP+ZK19cXvjx5FIKiWbamF18fLly7u7O+fc6XTCoIZzTislJW232x/84Af7w+Gbb75JKUVO3kdmvrm5OZ/PHz58uL+/P5/PVVVdXV21xwOiGRjluOFKKeaJcVUUxfF4VkoBlMTua/OEeFVV3Wk/DAOxBGSAf6K1vby83O/3wHqKogAZHLgJvuByudzv9/MAAdQqQKfFs0Pg1coitXj/7uPxtN9sNpumKcoL4NoxJKUUiQSpLuBBQKKHoUMHaBzHkUgoOQwDyylvL7Ig+ywIBjVuVAfj4BMzJYbvHL7acrFu2xZWdfPehz8F6Ht1XRdFlVKCCs3j3RPGKMNkkqHgNiqyTq5Sauydc25iymsNJwAoywN1mrELIURRmBDC9eUVC7q7u+MkrC2LomAplFJQJzdyAl6x1PtTL3NrHycdcjwkn7POzxzEAKkj5sPGsOs68Du11qCEQ1AFy2a2NJRCh+DAiKzKhogfHx+7rlssVk3TtEMv4RbDFGM8ndqqKlMWT7i/v//iiy+wnPDFQwjWGJrcbinF6FxQ2XFdCKGtRW2F4khlh3YYOeCIWa1WOPWcG168uP3lL3/x/v0KF9ye++VyqZTyfppbyrX1pCGWUtput8wJ2hd4xEopeG7FGL33IXitJzZ3yr1VInre0kaVJLJYrcomhIi3AOWdc1pbxDRjBBGdz+ft9vLm5gZ9TbCpiAhYts/m4TN3CtrQWP+bzQZUhrqu27YdRw8oEOW2IuFiIKJx7KWUZTk1wKA3wpma7bNxxRj7GdBUk8ezmCHFcfQpTXM/uD/ACinTU/D7c7cD6HPTNDFSttKtlVIhOJDqEMdQLM+3johWq2kIBucyIjDlVsRudygKxo/GcdRa4oRVWQ4YAQStO2wFpElokDBP/m11Xfeun4tliKTP2RSWK2SUscCMUS74siyDQ3Za4DfBL6bsly6fSXBMhB6pfP6CWuskSNKkfoYhRWY2uiAhx6GnafyC5iILiDaAeyHEarXCs5ZS4r4bqUaCKJNBr+g5VmmMMaawZXFxcfXx/YdZ/lcI4WPIPQCHjpSWCj812R0Ujx4xrawtx+Scg5YXZdAVz33++jHGWUx12kpGYzuAsySyq+fdw31wHm1dYyZJQSllXS+QQgitwMO4f3yQQksJPXBT6YqJqEOVtGApY4xaSlJKYymoCRmeGia4KSklqZAQT7oBxhjQ5ZCRkNJgN6vstAsXppRcjByJ5z2TMuEfjyeEYKQikkpNXy/mERWt1SdQjKYlbqwmnriiOAO01rYucno9kbl8Nn1CjkJZxsUY03UOXSDKpoiKJidlBPdxHA/n05xexBhDiHNzhp6pWqdMZlFK/PCH/+7m5pfDsCLCpAYA/sRESkkSrKQiMLsxtpySkJpTSimmWakpkcj6gEpJyh8XY9JaSam8d8wkBEVOnJikTJwkjNGZlVDOhYhh1RCkFmgJGTXh8T5A1U4R5mczLqCExIDALP0LjfyUmCgpJSG4o7QUJMCxV0pxSiGRlEIQp8RCkBQi+CiEMNakGKVSgsSEFDI0iYyUsh9GSJEScYxRCoLPh5yGwbGaofLDRAInjxSCKSVmmcMrESs1wZTGmBhTjF5rk5iZ2GhjCzv2jpmlkhyJmaSSWsthHImZBMo6EsxKa2JOnJRSSioAMdNGTUkqqZUuy0NdH7TWmBLy3hMLn2JKjNqA88BdzJIaKU0GKXNxuFwuIbk2/2YIoSjMDK0iZNAzHm7KBsEzNiQEQ8ARE20zjiOlxEPV2s5/L4QIoZ93BLJ/nY0IUKs752Tu0BRFAXbzPFbPRPi+2E1SSvDL8FOYj88XjKwun9MGp1fIwh3xmUoPosHcO1XZHgFiGjMYjZ0hsiQFTg4UAyF6tOyQmwohjFIuhBgT4jVO9BinnY4kAL8JtKIoCiLhvUsh4HFIKbUyGccT8+EqhFAkmsUihACitLWWkvLek5g4iZzSM4bFNMUsMtyglcL9gRwAZ97o4EYAvlVVkfl+LfiqLJRSUonc6u+q2ngK88ALOnpEJEhdXFyklIZhmEX2y7Koquqbb745nY83v/1bu90OWdH7j/fe+4urS6XUx48fq9oIkV6+fNl2J2stJ0LDkZlJUEoUU2RmA1wppkQslFJKR06J5Ol4+PDx/nF38DGQ0kopqXRKieX2dD4S0Rj6qipspZUSRWVZyyhkOwQvdLFYFeVSFVWy1lFvlUkuvrl89b/5Z//rn/zwd9iX3TlSGiP3XvhkBRuhy7L33hSFSgFtikgyRmYppNSlUinFwlhBCXPQhbTWaimreYc+X1d40TPqfUopRs9MWpuiKOI0KpfmDHWxrAWp8Ex6T2McPju6ONj12u/HKSirZ0oWu92uKAohp+3ZT7baBsff3J6Z88WUUnwmJu5jwNINfjKrdDEapeYZunltq2yuYITIwwNTvhXEJMYdOInsQIifmsIu7XKKacQqd6Mpt4Kef6mpUBSyKAotJpoAck0UsUpN9wdysTJ3+EEvCp+kbCDDB+u1KKUWilNgKZWUUmnrR5cShzA5hQrBPoxEyXfGDf7F1YvPXrz6Z//oD7/97ssP777d7Z6++PqLetF89e1XWij24WK1dsMYfcAtqqoK9KuyssfjEVUK+Onn46lt24V6+70P0Y0jM2+3WyAscJ75yU9+8vbt2z/5kz9BWgUYHZgUZci1rKphGOAk5mMoy7IoKqWCEBxC6LtusVg0VT0vvKoo8BwXi8WiabRUrh92u90Prn+KdNNau98frbV1XVMkrbXSngIFhvnnNBQps8Wr0lrrad5fKKmSIiUj8ziOkcPonA/BOffV+3daC4gPDMMwnPvKFiM8mnzozq3WuqyrfuxnBYbHx0cigmCCzGJKwFNgIRhCMGVRlNb58XQ6HQ4HVGVFUUSZQNwTk4fStL/AWDwcDlfbC5SR+KYhG8UAboCeBrAG4E3H7lTZQmutlfHexxSKuqqsjTFySsGHGCNEYIFK4JxinsxvQwgQeQd3bLFYrJcrI6eusJKSVNaYeqbuzZMsUiL6VBDiuGepmBlMZKGkkoZyfisnuzCNyvxiuEC7ou/bpq5taQY34BTTWjfNxKwELMVSAA05D2NKabVaVXXZdV1RFBh4x+bCtWGIGKfSzB4Fl2e326Fr/ng4Silfvnzhx+C911L1fX95eZlILBaLpmmOx32MkShBI2XmpIcQNpsNhqsuLy/qugTpL3KCr9erV6+O7fnh4cEPDhXaarXaP+1QTUgptZbPO2FlWcKZFmk/FJABYTw8PHz48CETbKXWCulB27ZtZqmnlEB8QSDizOuHrgJK5XlYcxxHtECAThLL1XK52Wz09882EGWKmfceyU/iKR+zhYF6r7Ual3d7ewtkUyl1f/+klFosFiTFbrfrug4qxqgD27a9vLxMKe33+7Ztz+fzqxcvnXPb7RYBZLvdan0CfQlDJLvd7osvvgghLJdN13WwJoa6CLoR+/3eKAU+GniyUkrnhrmY3+/3IAYC20JOApHirErMzEws+76HeCiqMCgjbbfb4PwwDOi6zU2jsiyPp9PpdOq67vGx5Q0eqMSqQMxsmqbruv1+D3zTlAXkg8EnBU4qpSQlpdRV1QxDBwlmk3XSmHi5XN7e3j7tD7/+9a9BfDbGoKBYLpfgjKPX9f79R6yx5XJZGoNFpbV1ITw9PQH+Gwffd+PQO+QDKpuhWTMJsC6XS4gn3FxdT0hrjPis/X5fVdXNzc27d+8G9kR0d3fnJjZVlFqNY0dEDw8PPtuBYoVAej6lhG2Lv1FKQQOHWcC6tphMz2KM0YVAecjPe584pJlHlSYfp8ViYYxCw2y73WJCdxz7oihsWRBNGxOgPyz4iqKoFs1isTju9kCFAPFD+gk6Kg8PO2OpruthGJ52DzHG5XKJ2l/lCXrcusPhIKVsmmpO/rEBi80GmshCiN1uVxcltKr3+70bx9mHKoSgpDHGQP4ipXQ6ncqiXq1WsoWxGE+5U99j0+FMjxA2zT5mFxdb3Blm3u12dV0TTSSY06kVYlI0wtrDzZd6yrLwIHDiGGOqqoCyUPQpY8RDXTWY3RFCRBKr1WZoO2Z+8WI1jqNzYRzHMfQIAjiycTrAXQ37Aht2bpGmlB4fH9GQwzEUQiiK6XwEPIQVi0Ak5afp1eVi3Syq4JPPtjfQshdCLFZL7EGROISA7h3CL05tgPhYS4W1WGwi+xCeT93p3KHWQLXYnc4kSSlVaDOOIzNBMqhrB3yikMIYA+cbPJqiKIyZoH9sTHzi5EMYo8zeIQgvua4hJSfLd4Qp7z02jsp28UhE552F+wyJbSQnWJwx+qoqLi4ufvzjH//FX/zF8Xj0PsxMyrx6CW2DxWL15s0ba+0333wD9fn5KMFk283NTR6IGZZLtO7ScrksyxLtLjR+nAuIe0CcAJB474ehW6/Xl5eXlM2iOdOM5oIlhCCZcMaBPJsyiytmP8C5kKHMiZxPPZmHhpGqMXOefckzytlVIntdEnbuZrOZ/4mREoYWeDRSTfKeKfaQEgY8jeoeWZPWFbKLlJI0OoTJVwnYq7WaMvSBXvIk7sFGZVFyHMpVVZVlDbNik+O2lISipmmqGKckKrhPes3IHyh3r3HzgQ8sl0uw4nAWSym7rkspsRRjP0AzDSWYVhZJlMlK4kLw3LgiIvhSAPQQQjw8PMCcuWsHqQXaaS5476PWchxHWZQ4QL33xhRE3gXvvW/KarlZg0LhnPNxYs6FMBEmCmO7rgshKqVSCIGYmefGGDMH55VSM81xu90ej8fd7vDwsH/x4gpPWWV3K3yXtu/mrQQjI3yv5XK5ezqFTyrYcezbvu/BkvE+GkMiicPhsFysL7ZXDw8PYxhrO/VgbFFUVRWDG5XXZalbrZWCRAtxcElKYwynFPw0ez71DIliIlEoIZQilpyG9jx2nbU2eHdsz0RUlrVSJngPwiLOUSLyKVZVBWzaZju1DKqqkBJzTCJprYUWKaWYopaaJSpZ1lKmREM/TLE4eGaWRpvSlE2ZUkrJE4fgR60NTlPZyPO540iTClgIzg3DMGVUUE3t89z6hPtwcufzer0WWs2sxqmcFklqxUzehwANUCmlVoKljBN0xcyrVXd7y8j/ECaU0VjHIgP3qOehXIDaL/qpAOBMJUspQYiTM58UD0JlYRCRB/xnpIOIJAm0d8ZxTOkTeRzJKD4uZXkEncWA8Agg/sBZRHsMg1JKZKoOYgcwOzE1Rj6NKiilEgsxubR5dPBU5vanDMAxM3qhSqmUB8C11jJrL/Jfd+BNGQdRSglhcI9TShyTVLMwC9qVar54IlLSCJ36vi/Lsi6bCb+Qk/9MURTOI/xpHHuI+Nhm6CKM4xidR7smpRQ4fUJCk0UFyUJKbUJIw9DXRa1IGWlEEhRJkZDGDEM3jD3QzEiKGQoz0/nEnEiomJI0VivJUjJJIuKQrDYssPAiEUWK4zjpuz1rz6Sh7TCqs16tdGlTilprPw5CCK0MUUKPBEulqNc4m1dNxcx9PyB8YC6sMEbnpBbtvtGNmcarU0opRKXUiLJfk0iT3hNC29Xldd4pExIXsnZNilwUllhIFsHH5KNWyqDmj5OxSQxBGUtEfT+o7BIAOM8HD7AeyRkReR/atkUvhyVJDObAOZooTsezUEqNXY9Okh9GlgJ14Dy7AOQLmWhVVULIyGzLEmuyzO7bWuuQrfyKuiSi8/lgrY0xFEWRUsTpZa211sQY49RrdaiftdYayHJMQghJnFKqjFUQxRZTj9cobY0WSobg5mX8X72MLYxMvj23u4eHjx+bQlds0piMUclHNtqH4GIMglVpha1NuRpDijL5yCL51aLc3b/7z//xT19cbG6366+++HVTFA9Pu64/G2vVctWejpzk8f6Y2mFt6/V23cnORSdEKqT2Y/JjkkJKYYmIlWSiyCxYiBApCbLqlMb7UvQ/vBVvLqSLhqwIHHxqz+dDqFRZK8mlktvtsq6LwH2xqqVVLNOy98FF5Yh6v4i27gZx7Ou6/tEPf+vnP//5xcWldrHrHhWnlMgIXVW3DEiZZM+egvNkiEiSFMQyBi2kFtKH6FxIykqphdRaayIZndNKR0ki5aBKCmENyqo+i7EkrARj+76HwgDCHWCswTvOUhXM7KNQSoXk29O5rutEyj2b4CH6fvvHqZiRMnFUmno3YC3hp+M4QtZVSuG9H4YoMt482Qjkxu35fK6bkhMrSazIWOWcs4VOPihlUwpwkEPOjUxucK4SSP2T0oJIhMAsUqAkpUx+GmYqss2vYOKYtFamKDAwJUniSHLOcYA0rZxLNSI6d21wA2oznb9UvVjs93sjOfixaZqUhFLSOaeE6IeBmauyJkFucE+Hk7IFERlj+tGllKpKURLeu+dH89j3lNncyLeUUsEfD/3hq49fGqWNEsaY1c3NxatXzcX2iy9+fTx0VVW9eHlzOBziEIXgZlE+frw/3T9ev7iOKXRnVxS2H0YpdQipKMvlyjTNUu++/znaoujSWWsNMRZEhsNhf3t7e311u9vt+m7EQWyMYZJCsiDiiSBQf/z48cXLmxAjZBnruo4hSAxaaR1TojAdhYenXYyxaRooBuL3hdE3L141y/VytTkdj6537NKqWrLgkGdlEOuYKfhsmprIWouhS5wC3nt4AIQUtZEf7z/2oXs43EsjF6bcbrdVUfsY9ocdln2IkbzXStoStNYx+GiNsLYIJuJxDP2oJj9nQg2ptYZOSopMgZ/uHrERchwWZVmapenHLiQ/nodxHBeLFQ4LjtyUTVM2kuT9xweIt9qyOJ/PQqi6XgA4m3FhY8yHDx+klOxi57qrq6uUklYK2OhivRoHl1KyqtxurhRbIyty2h05Y5ToqOHgVikmqUUM6Xg4KSG3262SxrlBaSVjUFLFECklbYtEgiQRCyJBJCfdNyGElGjM4EChTvrBG2NMQcAcpJQpBKvB/zAcqdD17fULp73SRdsd284pJbz3Vpvu3Hfn4ericlGthmFIglmk6+vrDx/fn/u+LIuyqVOIRNQPHQkmTkoya5lSUCTc6BLJ5bI2yiZqdw+PNzc3XTekQBTl6dwzszZaSj2OMQS/Wi5DdM2qvLy8/Hh3tzvcLVZv19vFfr8vy+p49C6MJFkpk4iFkiSV1Obi6vpwOCQSRWmBZKHvstvt2ra92l6g2nTOdV1nikloUgtzfXn98ePH/fEgpWQWL168YGZgkVMWSkKSaE9nP7rRuxAnFpiSpj2P6F4URdE0NWA7gBpd1ykliqJCpXo6nZxzIaSmaZSapE6bRgsma+0wilETEYXk2aeC7fdu/6ZZ3FMLM5rClFrr0mrn3GK1YmalzOZi+/D4mKKzpR499w9PShkiV1e61MqdzwOL7eZy99QZ7Zp6GYUnkeqmDNGNrQekpbX96ut3r169SimNwRdlfXF5uVqvj4cDEbXdCWwm56K1qixrrfXheDwej4tmI5Jrj+3l5eV2tfVhNMbc3d0dj+fPP3+dpplZgsibEKLrBiHYWtSeFqfecX8YBgdSvzVWVcoU1o0hpW4c/W73uNlsYozv37+31l7dXDrvE0+k/X4Ybl+8kEq9f/++KKof/ODV4bALaYTICVwlIYuP9Ozp6Wm1Wl1vt8bAOTZKqbtuIJKoIoe+w9EsmSpbhNH1fnDOgffw3Yf3Xd/b0jaLuqyK3/qt32Lmr379RWULtRDee7aVtZYidV1XFKUiA6a5lCo4T4naYzuO42q1urm6Ukq9e/eOiLarLTNvV1ugAEQ0DANztFaHoCIHknz38BEgCJqURNS2JylpubwQQrx7/1EIYYx1zrFLYQxN07jeMXOKSWr5g7c/YOaHhweiqS9CE4SkhFBE0pgqpXQ6tWh6GWNSCkoJnWT0HvwtZlbCSpaFLlabzTiOdb0QQoFWNLE9/ADxtlevXhDR/niAGM7j4yMzL5dLmSntADrTyOdj23WDEMIY9fDwuN8//ehHP7GFlpKur261Lff7pxQpBj6fz6WxxhgtZAhBsoyBg/dd111eba0tx3FE6Qkaqfe+Lsqu68LotJAhpO++e1/Xdd+7YRiHMUKn2/sgOEwsmSSsLqJPVKbEQUwCOzqEpLU1BQllOE3ydyklI43XY1EUSggyahiG9WbZtm3bOefd5eXaZH9sY+xqtdqlndRqc7Ht+55yhwCVO7oL2+2aOQ6D67pus9lwwefu1LZtVZWr9eJ0Ou12brPZlGU5tGel1Di6th2L0oTRSZUaU11cXCDu4Xy8vb4OPrnejd3YXDR+HAlUrBAE0TB26HlQSsvVahiG0pSSCcWRT6nv+8V6FRIt11vvfRIElg943Frr4DtAB33vqspqrcAvLgqz2ay687GqTIiDD7zdXAohvvzyy9VqtVqt+q6LISilhqErikIpnVL0HAc/CEsl2WHomNmYAukuBEAWi/q7774LQzJmKMtytV4Mw8AUldRCCO8DUIXT6WRM4VxommIYhsRBKyuE0NYKpUxR2Am7DDGC0Ab5Rw1ARbGKHHfHHUgVWEsvXrxwzo0jhIylEKppFk1TjeMYo49RVbVRe9H3PbPBuzkXhsEdDqcY2dqSeVRKEElKXkscmEkJQYm78xHjGoDCsaFijGUpIGIOr4iuG6SURHIcvVKKWaRE1pYhJO+jtaUxgjkyRyGgyMFpcHAShutKSqksCym1UtE5B1gzxmikqupiDN7HaKuSiASpSCzgIjEBOIQOLmXEWQqVIgtOUpMiobTZ7w9N02hbhhisMhQ5kHRuMq/rx6EwFj0kIQgNJ9cPkmkeQCwKBB/FHBMpoQwzC6W6cagsZhSiEGK9XhKltiWYIoKoFCZggZkTZshSJrfJzElVSp3PZyld0zS4ITAjsdaGcYBEgRAa6y2llNgppZh0VVWH/UNujagYo2RJkQjpt1Tn8zmkuFwuQ3De+75vKdKM0fsUfYraGiLS1qCJHkIQTFJKQcm7AYODWshIErNkQigQDAB7ppR2u4Nz4fr6MnhOLAwpU1ipBAqi4FxhrJBTYKFMQGYWWhmpU9uenvY7kDMSRfDbisJcXLwBoria7HwTSV1bjVoy+lAWBSVmW4EaLwTXdeV9rKrG2vK422uhBU/myaBZpZRc8EDJZ0ZCWZacglR0Pp4WZaE4dV3bnkKzXDbLZdU0Sqmn/V5KGYkVM6RyFouFNWp0nEKUJO4fD0UhqnUlEg/DoImbFDTIAlKS5MnuWT1zpZR5mIXyFHwMHjdowlIz4hkyg3jGMZ//AQfw/GXm3t2YPYIpU5zwn2jlGalcVrScEWoi4mcjiinz0QASHY9H5Cgx62zgR3CabpoG7PRMsCXKbGtVlEKImJtpKROROJeZMmvhq6zNauzkkiTzk0MiGz+5Y0/MF1whZQh4/s9Pbj65USaEoOzWRc9IZDgwcCWchTUps62BUFD2iOCsW4+/x1Xh6SApAfQw8QLkpB80XYaCltA0+2CtRXUvMotWCAVZdDGxH4VSyofAaeolojOMGZm52oL4DhAEladj8KMZfJfzkNEzCwVUmzhjQlbxJqIYwwzQiyydLKWc5r6Zz+czAERBKWXDJRJJZaWL+Q4jPM2A+9zgNcYY+Uleee4QZtQYuMz0TFNK3o8i2+ilOD3ESIk4Cq1J5AFYIYVgFow4gq8siBiSx4rmi8mTAVP2KYQo9HQ9s5kSVpoSwsNvUH4iR2MdKi3nzYKljhhN9Kn6RVtyfjfOIhszKq0yTTInwRPEP+/NfujEMzkaPBTcc/w+lh/IBRPWHCMzY0hTZddjfDvEAewRrFjKRq5CTFMUc6NC5RhlrXXOK6V0MUnWlmU5eAdk2XsPq+uU0nq9vr6+hvuNEGK9Xls7jYyBOr1YLJxzyXvMevvs5ICPRjcV9wd/M29VdK0noE1OogrMnxjWKYHXPM2dKaWkViEE51wI/ntr2pAiWA+73c45t25q7Cb0JLFrpRQxxpubm9uXL8uyfDruTVEWttRa11XxZ/+f//ndN9/+/Hd+G/KpLMXD02NMcVVVVquP+13yY2ltinQ4n8plnUhW9cINY3AuSqknUeMYiSWz1poTcUxKKWIKzsUYOMambtarTXfuRZCGVEpps1iuYikp1dYqwUqykLEgWxk7jH3iQN241KUkqpulJR29L+v6d37nd37v53+w3W7P5xZJhhtDZB9j1Nbg/uvCzsymOUgaY0pjhVCcpVcAs4LkBR5fbT4x3dAEVUpJM0mkIfXRWd4E2UbIRHvgtpGmOQa8D6cUmNEUORwOi3qJHYGVhu7I33yN40hgeXgfY5RCydzmFJOhbhwG/+lwCSGBzJJDlsjcf4CGCNcgpoVxUjacNz5+Dd+6zDNfxpgQ3TzugGpZikkyC8EZx7S1Bvt0Uv/ME0vWWpfGCSealmKqqjqlJNTUsIxZ5AodrOC8tabvO2PMYfdUlqUuy/1+33Xdq1evYkjjOHbjEOPemKIsS+d6DEcD3cZtx41qqgqBHf8PElNZ12VV1E1V2mK5XP77P/23xhj2/j/++Z//4j//57qulsv1OPgUSUkzDENQ4+FwKip7fXX74e794bAH8cf7UQh1OuylEOM4bsX19+9N7xDEQpjipyQRY/rjP/5jJQ1YAOfz2Xt/eXmJL7Lb7eBAuF6vi9JIKXVeWiEEm89HnzlHnM0zUkp93ysplVLr9brv+7dv375580pwFEIAsR3HEaqjUD4ZsvWFlFpP/qgspmU2UV0QsaUoEPPHtrdFceiOPsVamevr64l5JMXl5eX9/f1+v8ccTAyBmVLicXRVXeMa6rp+enqaz0oldVWXWPBSfHLlzntKMvPFxcXl5SWIS9B7xWscvdZofk+TjzHGYRy22y0yPdFKIkJujW+B4U0kY+v1ehwGTglteHD0FovFuT2dTic3eudCY8PN+qaqKiMNhziPA0+5QU5CiCgGlnrylNdaN00zn79JJPok1CzQaVefRv2mVjr9NWMS+N2FRFNXGLsDrBm8VdM0Nzc3D8NDSomTMFqH5I222PdSyuP5ZHQBoeFmWe92O631er1aLBbDMLh+qOtaK2O0XiwWqCVG54pCN00DjYVhGKqyhLRxCCGEBFLM+dQpXYLEpOXEBVZKQVThw4dTWd6DGYSg4ZzDJDKOcnpm9iWlBG83hACDe1ii4TBFqnY8HvGVx3EsjD0cDpOLl7UhJMo6e5gWV0qNzkkpX7165Zw7d23M0pZuhNmaQOMnRNe27Xa7BbVTSplSICIwEGOMzKJpLBIV770Q7JzbrjcxxrpabDabp6enc4vJ/e/vBAcf19drtCistavVyoVREo/jGFI8HO58DMM4OueEVt77oe2K0gimq8ubqmmeHu4CqdVq9eLF5f394ziOdVOCCdX3/TBMcrFt24+jb9sWo8fD0PV9ezqdkFv3fb9ery8uLnB7YYQ4c7fxlO/v74uiWK6ad+/e9X3fNNOk9uFwWK+3Un7STzscdqgOkAa3bSvpk14kgDnkIdoYlP2vXr16enrC8gPRzzzzMPjuu+/O5zMRGaNWq5W1+uHhgVlst1uY7KEYdMFrrfu+/+qr933fg8cthOi67nw+W2uFmMbp0LqAFsr5fK6WNarlWaFyuVjguPn48ePxeCyNhRFrWZZY4dhr2+12GIZ8bcYYw2ISMx2GAeEoxnh5eTnP8F1eXn78+P7LL7/cbrf4rJlItNlswJuDelLbtg8PD5BwUWpy5MOQR0oJ7FSTTeGwtuU0fuTwl977lAh5BVJ0jIB89dVXu90OkGVKiZkgEwxeOWXjVpHJH9i8xpi+7/f7/aquLi+vUakRUdMsATf3/RiCQ2/SWrter899dzqdKl0XRdGP43K5aJoqxt0whHfv3tV1fXm1ISJQ3VerVdefh2FIMUkpYXHZtq22pc8C4h8/fiQiSI2Diw34PsYIPavHx9133+2lpKKg5XKZUhqGqRCLPhRF8ebNm7u7B0yDIWfmTEvC7a2aBoPXAP33+z3UYyjrLSilUqSmaTabSTsIOAu+OIDakPUM52wfIUgIAaAfzSqsIggWl2VpzOR3pbXGwgZnGfcfvMhpmTGjw4o0bL/fpwjCVnz37p1UVFVV3/cIxZwEsrv5YPIhopeDTq3InC1sJas0PnTKFpSanWyWyxrJsBDi2J6VUovF4sXNVd/3mOh6fHy8uLhAIhFjVFrDbbWuS1yA1lpwwpxgipSHkCaBXaXUw8OD90ut9dPT0+F42mwWdV1jg1M2b8Syx7H4+PgIDzoUOM+LRz0Ziky5bnhmPTJDB7hpOKx1FmcwptjtdkpNo7dYLUiifJhGdZfLZdM0p1OLBfnnf/7nqE/LsvR+FMxd34Pkjue1Xq+UUnd3dzMOE8LkTjmOfQiMWnUcx9JYDjFlHAny6whWYiJEszEWuYG11g8jLj49I2U/PT1h4MAYEwIjolqljTEsxYzhYBf4bJMos0i3fu4HmHyMUSiJKITIietHOjo4Z6x2zhWFQcU0ZutR5nSx3izr5unpKcaIkLjdbidnCCJrbaRJ6APJeVNO3VxrLaST8KEpJY16zU8TDzHPkFF20eBnHMpcd1j4cwzDAO2psesxRoYFAIJjVddh8lSX2L9EFEJSSi2qGosTiOLt7a00WghxOh2QcoskUEFglQ7DYImLbFg11VkZ61itVqf9AQ+r6wahJy8+MzlS6nwfAtqlfd9zou12CxgHlul4TEIqCAKjJxFjzKqqwTkHdwdw16Zd7/0wDPv9ftksrq6uyrI8HE4xxpSmwmq/3x+Px9vbW+cC8mGEROSc4IbP67YfR1w5zj58UB4Bj5hmk4ICpTkY6hyFZlX6zWaz2z/iqUHb6u3btzebGz4xx/T69aX3seu60mgkIafTaSpKtZaCssxoVgYhojFf95w9y8xFxUTPjDpZW2R8cEJhsCt0YQEe4VDhbKud8qgIfvkZmombO8YYTVnhMKDsIiKEiMRSTskf/gn0iSgrD2BLz1AmZhVF1j2USRGRNFPMAtSolNKovsSkpj9DDPMjwSOfT7iUUkhTg2KGkvFBKs8sI2gGzFrm0p3ydANnTB//ivKNJcrjmVkqnjMZWZLgXLTMy2VKfLMKPgYP5awemPMPqAcwkS0Kl0X9p3fmKVoppcAxn0FVZPwpW/Hy5JAgkFIIIQ7H87RmpIAOVMoaJiIPgIMswVlAYA6snI8NkcmDKdOi8RVijEqZlEI2I01CCCZKHNIEuExAMD6XiKSe0izvMoU865YqpYw1+aapef3MyBQzG6mSmZAXSPb0bsTvPM8/pJRWSVVWROTcdDNRGjFzSiEJGn0Aih45MLPUpNSkhTp4xyQ5JaEksnmttVQ6hJBn3yMRkYLKhFXZVgW4/3zYjMMQ4UEnZUppHFxKg8ojk7hgYhHTtJhFlgIgIilF9D4SAZl6fg+JiNP0+OZ5HMoo9tR2ysqw8yrCRc5YnqBJHkdkrBkMo9VqFVPAZKKUkqT68OEDlgf8fJAZI2ucV7LKMlVCTK2aGbkAJp6xRbK2oJjmvIS8W6/XL168aNsWZin39/d4T/yrlNI4jn2P6aGU8lIRQlitSUrUJ4hduBJUs/GZiogkYimfrxCtNRP5GKw2iLYZ1EvM05wBAUpO046D1cDffCmltDEkxeh9O/T1UCwWl8nF0AddWHISGgbD4Iqi+uGPf2Rt+WpR96MriqI09t2XX//P/+Z/ur66+OmPf/jh22+Xy+UXX3/19PRULReX11fj2BMnIpJK2cLcPzypqlpvV9EnBj9PaUEpcpJBkCDYwcUUBRMTxxBJi5fXN2X0v/74fuBBJEFJRFLEQguxtmRtuaiqoW/b80lwiNEPu0cpiWIstV6UalUtfe8p+pvt5e/8kz/47d/+7Rjj8XhihjNVJJZKKYiH4EGnHJ3mhpPMgqpEEsO5wGGVKrEIsSmQS5kcOdH9CjyBvIAsOaWu6ygma+2sfWay/x72AlaFmjwnY1GWwAiwKlJ2FYfz5N98IbwgV04pKSVk1m2f2yfzycJZc23eDnlaNj1HstCQaJrGKo1aJYRQlnXOaXim7bMQiYPLKuecteH4mVRUCIE5QbDIe8Jk6/PTah7NmS8GZdswjMYYP47e+0Sss+3e4+OjUoq9F1l4t+u6zWp9d3d3OBxwbc65kBgPRUoZgpxLR+RMuAOoTqWUKpvnEBHu/3K9hkeTYH714mVK4duvv2bm3/293/+DP/jHn3322TB0//Jf/stvvn2PKWPvkpLlOPj37+8TsZTKWuhp+P3+2LdERD/54Yvb9e33PkchxPF4hvxl205FRVVVha2Q+KaUPskpSmmMaeoa1c7xtIcH1JyXO+ds03Rd1w/D+TyM47jZbBCTkS/e392BcHdzdY122qKupZRd2+JE2Pf9uB9XmzUknp63u7BywFfSRCob0orcJ9PWSCnbY5tkVFrXdS21iD7iexLTarVBin86nYZhWC4WMWvAIcF9fHxEjH16eprZ9E/fPs2HKUqvnB6gjZogKoKKAklIURSbzcXHjx/RxkDhIYR4//790PVXV1dCydG7NCbkDMAKmRnNVGSMi8WiLApAPDD56fu+quumaRKJwpYcWJJar9dKSJqskxyCyXTTckcHO0gqbDRCTCjLsqoq5ztBlARhJIg4ERNT4sQhezvMODILVgLCWdnTPLoQ9Ly1lVIx+ZSSkLIsy1cv33w4frzcXg1DXxRWJTmOfVkVl5eXx+NJCDG6XmtdVFYIkVwwha3KmpldPzjn1us1RJxAyTS66LtRGVgXspDSew/0PNfkcFRXPkQcWBDNOBwOdVPixLy4uJgfJTIrBLEQ0ji2WRygQN4FbROM/eLXnp6ezme/WhXA63GYAlyeBqWV8t4v1ysWtF6vgWVgzcy5IlYRJpq32+3hcEBltVlfTH7IkyitQnXNrKuqatvWuaEsBaBnPMGQZfRokuyUkKnFs+i63pZlURTrZf29299a61xLRE3TYPrVJZ+IpRLjENbr9TiOAWV/lvh0Y7i4uDh357uH+9ViaY19eHgwxhSFeXh4XLqaiECVWK1WZVGnlBaLhVIGeJCUdM5OrefTKYR0cbFRk8pWX1WlEGK32w3jaK19eHiwWUa57/vT+XA4nOu62G4vvZ+G67vuPToHQghiMIeSUgJ6o8YYYy2R11pjwG4cR9hNh4D8Vtzf33vvX716hVZTSi1u7/F4XK/XSOyBcQxDp7W+vr4+n7v9fo8THEodJMX5fIaYBp4LKZqZB3VdAvterVZA2VCOXVxc6NJAkuh4PM7vAAGZb77+tj/7n/70h2j4/fSnf++77767u7vTk7Jih2OxamqUFVpNbaRxHIdheHp6Kopiv98DdSrL8le/+tXd3cdhoNUqQjdTCDEMA1ILeE85547H42azWa/XXdd99913GFtJn+SkFGw5Z0oH4H6E4rKpofxASqZEsxtqDLw/Houq2l5e+uSP7bEsS4q0f9r3fb/ZbNAQwv59TuQqsg0JAg7MIc/nc9/3Qk0673VdE5Fzk1LNem20toJGpVSiKJTUWl1fX0L5uqr8crlm5u1223fjGEbvo/f+3J699xfrDdDk3W738PD48uUrPNDdbnc+n7FI2rZ1zhVF0fcTGlvX9TA4rfX1dY3oQUQQ88VNRpWEpfK8YMS7AYvxPpR1DZKpcw4Z+/5xP3MONpsN7CjXzfrigrBh54lkVDoQVsKH4hdQm+CzkO/hyIOlIRDkoihSIuSWTV1Pqs0ZvpGZ2IS8Dq0R6CE0TSOFnpOcp6e9sQKNvcVigdLmebDVWsfAiVmkNEvTRmJ8IjO/un0x17yT3Ki1IjuDpcz8K7QhJWOMcPfFlklZwJeI8NVIiBgnjjnyq3rRYOtJK3P2KEIIKUQ2vNudu+4MGYHRBdwElV/n8/F06otCbTYbfCnKtu3MLJWUUvo4xW0/qVrxXD/2fQ+DCiAMxhikTEiD4Tp4Pp+1tnVdj6PPcAq+izLGnNuWWGL21DknJTnnvffr9RofB4jWBXhFtItFBWYuLinyBIKHEFIKRKmqKiknJgeK4kgRY/fe+5QgHyyBO5dlqZSAeDG+YN/3qDLklJ+7zz///OHhAaMGRISSeb1ebjab8+H48PBgygIHFuYIx4zkAO0pikIpg9QacQkc6mZRazEBo3DuRX3Rtq0pCmauqgJtNvnMe8YYg/Y/xlCEEH3vxnEsyyWKF1CX8NLPXA2h73Q+nyGoQgS7NWWMIfUJbUAHMYNgk5sa0oyqajB7tNnUYONCECkJomegGSKzVAorOcZ4c72NMRZFEaMP2fQYyYyU8nA+5WSSUUFIlujKwIkaNwHLNWQtoPPxhL4UMkws3cNh1AWt10ueOlJJKYFqtK4rYwpUK270PriUUj/AE1VOLzGBGEIIpSTwKGNUjBpLpSjL2dQEcEHXdYvFQkn11VdfUaavQX0bntvDMHz8+LGua20LPJG5FaGUMqVx0VVFYYpizHTPGGMi0XWDc+7iYoOHlUIkq7yLw9gvqmlOIqSEK4FsFNIMra0QPHccnXNste+9URokSZ19NQWR1UbT5EZqYfc5I5uodR8eH9FWlVJC7Fk8sxAEHqQmkoIQWd957tliQcwIFCpP7z16g/gdPNGU6bo4RYhIpE+g6gz+MnPkBEQ1/6UwxnxyKJr4ziSlwe+gGC6KSeJZSJFS8vnv53NLSMXMLCfWKrrK3nuaSYi5k4avr4SctdVlvjOcadrAIGQ2MOVnyhgx00hTSinEGYcVz5RqcSdxW+bfp8QsiJ7hhvOzSOITtos3md8Qmd/5fP7q66+vr69xlpRVBcR5BhDF5DI3jWDgQ+NEJeMZBGGehT4+MalRSCtpYvLW2Jk8MrcolJpAXillzLbCQgh+xiVHvosTEasIkUhKQvOHmaWccJMUk48hckrEWpoZvhfPaO/IsdC5IpYhBKkoJZEPoYmr+9eWDROrqUQUk3akj84LrZ7jWVbpEIKbgFQ7iwQBHU4pkdCllnmfSyIqjFFKpTA1AAAGKa2klILU/NznFsL07Aw6MdOsUBhdFDwHvpTS6JzzI04R55wgCQq/yB1CfC+OUWid0WTRNE3yYY6qlG02P2XAalIgQmDNtNxPUX5+ZyHE7KYy719c3jD0MxwG2AVtdjA+5q0ds4cDkjbK+psxftID4WxAwcwpxXnxIzmAAjXOKiTcyQeg2977yEkphQFepLDgNSOmr9drObWRRpk5Ptj704sI9fCslC1yj0pmiRts+3mFDMPwnMGBL+tjsGWhtZY+wp9QKZWIYwhVVcCE5yz7761pmQnF24cPH/pxYEGDd4MbWagY4DUkYmQlpBLyPPZXdeO9l8Su7a9uln/x7/709Pj4s9//eXduiWgM/uHxMfDUE+rPJ6OEKqxgcjGtVpu3n/0gEPdP9ywki8jMiVgIlURiIjBLpZJKSIl+XpKF1AulaqEHH5hJRqUECSmCjyKc2oMboVbhBqOk1VIrGbp+VTWa1GW58ONYGnP75uU//af/7eazNykl7wMzh5CMUYKUD15PTiklNH+TmByNcIIQQeo3KhJEUxGoJ4s8h5iMNUNIalPEQKLWmqXQLMdx1GYSC/POISQismHl4x0QJeeuGM6gGOPpeIwxphi7ccqw5zDyvc9UMKtZ13uaEk1zuJ6/F/5TMCc9OTmEEESe8sEGNOavEfObsoK4G1gkKbct56XLHCkFFhKBCMXV3Pp1I7p0n+RxkIijKpsYN8w2y/nNXBXw2vD3GJOy1orETw+PyG6RyzaFmY+qwuj9/klr3VSltqhoirbvQ4iLxWJ7ebFarRZ1gyH6GXMcx2E+pFB1nE4n7z15f+66zo273a4uqxDjd+/fCaU//+EPhRC/8bOfCWY0sZbri1/84hf/6l//61/84heqVkZXKfCH93cvXt40ZTN0w9iPDw/nxUKLIrx+dfP7v/sPw6+/f2/GmJxz4JoZU/R9v1oth2EI3ltjTufznGBMTj51vVwug/fEEbEO72O0Rlk+dbPKsq7d1LXKY0xXV1fv373TWish7+7uABLtdo9VVTg3iMTL5fJ4PLbd4F1oahUSQ1UJc/FSEWfDQIF0jT8df9poKWXvxkR8//RIkpk4pck/3ViLPwAoB1UWZQCy9tE5IiqKAvMi2DVIjWBBhhoAv2OM6fuxrouiKB4e7mboB25UZVmHkB4fH6GEAEIloKWLi4uvz990Q980zWKxwHfx3rftpLyJIwA5Udu2hbWUTyghhMt14zD0pbGmKhWbq4tLkFkgOCuza8Lz3GDK+oJQSkohxtGBqIXclYgIjhqT7o5Q+YgkmnwawWImIk5IpViIKYgJGuezlZljCrDDxkl0ubl0bz5/enoYx9EWJplgTeGCZ8HL5dI5V1Uss4ZViDH5oLW+vLzEATf2DqCA916pySDIOQebTaPt6XAOISFg1vUCYz1v3rwADB1jbKp6Tua990rrm5sbgPgIUyEE4MLPhm0L8GWY+XQ6bTYrADTGmDdv3jw+PiITQECgZxOKdV0bpWOM3dDf3Nzc398vFiuk7t57rJzlcrldb0DVRNupuLLgbz4+Psp8kVrr0fWI2+MYMbHUdTTn4RcXF4+PO5BnKWsvMitAnLg252i1sVrrxN/fNazritPTnAOf2nNUrJQSed4leK+1lkIzcaREFEG1fng4SElM7WZjkGVtNpt+aOc0eBbHA2UYcwBCCOZkrb2+vmZmrRS22H6/J6JXr142TbPb7WCcCI4kxj6KotBGtm3bNOXr168B8jKLvj/P21NJk1Ks64XKkhGI/6N3SshTexQswe70MVxcXsIm2hh1f3+P5wLVMpBLkPmAiQzgDEw0dGRxmEKdwMDzWSv82nwYsUTlJYwpqqpaLpdPT0+n08lmW52Jk64VsUApipQP4FSKXJbli+ubX/zii/W6EkJ88cUXSPC01qvVCkjK7ctXUCyp69oY1bYnJMYvX75USuz3+9Np0HqbUmCObXtKibbbEtxD5Bg47u/u7sZx3G63aCrgYNrtdsyEvovKM51AizizaryPsNAE5ks5u7C2fF4Up0gJMr7Je+8B1N7e3iafvvn6WNcO9x8JsNbaaj3rq1ZV4ZwjSpCURfNDmQnvAC0aMRAXoLU+HA7745GZ68ZCNSJPMLC1ljkyi3Ech7Hruo6kxEH28uXL0kyaoUKIorBwCUPbHoRHay2o909PT0opyck5Bx5ckd0CsdSRUZRFrbVGqjmOHljt6XQQSgK1REJSVdVqZay1/TieTif0olarzdXVlZTyfD7vdrurqysMOO52O1to7Hpgaggv83AGsh2sUpCUAYShFoDSetd18zq31gKbng8+UF/RmUspSUUg40/1eu6HxcDtcMLcQF3XF5crhE2ca/N8XlVVDHa2nOYGkOABJtZSCmOgGvH+/XvA9Lg5QIqx+ziPhU3nWuLIUVJCrNhut4WdxsXwLFz2qT6dDxg+kNmJIaX0+vXrr7/8BpeRoh/G4XJx+fd+4/MQY9u2TJEpAjjKlZrC3ZDZHAWQ33OOP4nEmelPmfQzqcQo5ZyzdmqcIOcHBxG7Hp/V97337Xq9JkpASJfLJjybOI+BOVO6cCweDgdchs/aKSGkwlbntsevlSVEYBjKeMAlkFGjkzpjpgBhU+YkIeUrS1PX5cNDdG5w7lP2OwWBGOu6FlphdT0+3p9OZyynTBlh58Jut4vOr9drnyKWxKzlCIb73FKaiwLU1+Pgyqpo2zaMk/S/nNRyUGEFYwFAEdZzRmwUh6iyR8VciVurvPdwzsQn9m5iD2CZ9W4sjUUbAIgfBi8QnEMIkSZMdhx79WwuOU7uCzbG2PdTJ+bq6goPEQ4fJrvRrNfrEKZHEEKIWZ/9eDzigJAS8qfpfD7DnFlKuVqtBu8Q8VJK4OzHMI1nwYfWWiv1xBgryxLQ/DEdgE7s93urJmiraRTL6T7HGFPimbmvnonZkmDYGzBzURTLZYPfx9KlPJ+dUa/EWVB70lpMCZVUCAHJNiU+nc7nM93e1sYYY1VVNuDS4aA3he26zjGelyUiITiEyYHTheCemYERkRtHIcRsxoDGHh6WkgZPytpCZhcxlF3g+Cql/Bi0ss45DNXtdocyWCVAFdXWWkVsrR29V0ppmLdAM17kOXdwxFPuLGWEMUkpI8f5sMzIHaWUnAsA/gU4SgFum+PcIogxgtbOHEPAWpzANe9Hn32QtdbJO0XCluXcZkFwISVTSjJOXOOUSW1aT42I0+mktS6KwnuP/GDiw2Z2GJBK8YxLMh9vyK4oo1pzFZ3C5DcCwjJiFhEJphncnMmznHUwjDEQccATMnm4SSs1ZEAfrZ6UX5+aVDRpGqRMAEdlOIER2U7wv3rNkGuMnhnikJM1aojRFsWPf/xj5ApYwSkziGcAkZkDJyPVjICjUprj44yExkkGYcLEceIqpYRkSN4gt5hBW8r4acrucLjm5x89wzqUGeXpr7c04NyFK5kvXkrJIjFJyktXKAohwH3HZSl0a4zWmsQE6AghvE9EPOO2mVf4iUuIXH+6/+lTI6E0lvOAlVLK+9FaG0k490lWG4gczdovsOfGngoRDPoohFaaIEtCKqUUEgC9T5+FqgndY5oAzQlpBUCMzAY30xhjTYGgM/8+XiEEqJlIKStbROfBJCrKYr7nKNgm9gpNrPCU9b7Fs1lgyt0Il5UxnHMYJARnQWUC9XwKIjOA9ba1NnH8NAckFUIQbqnIw5VKKYjfE5FzIw71orA5hjAL0tYYa0lOvgoovfq+N8pik0opV3WF57XdbtfrdczjCIiVUyqf0KaWUkqYbc5LQkpplBJFgTvpMrForm2qopjX9ox04AgBCasoCkDPE3IkBEkhtdLWzCsfx+33lLP51ff9zAcPKUVOowtKKRZoxoSUkjFFXS+c9z555xzHtCzr9998/Wf/9k9e3Vz/8M2bx6cHIcSXX36JpwzYSFHgGJQ2kdT28vJ/9z/8D7Yq/uRP/52xNScRxuBTFIlJTVtS0LSd8V2stSGm7nTsgl8ba6IcB2eVSokpsiRBFLRIJIS0imwlmBSzlapalnVZKSFC3zHJ65dX/+Sf/Tcv37z6eD4XRUFCkRBNUwlSp/ZcVGWMDBkvrQ0LQfyJsC+yfBBlKRjYJBJRWZYxqrmLgHb3FPCVkkx930east4QIxJEWBcYOVlDTBi091rrSEzZZO/TPs2jPNZaW1mZe3jBe4Ddf/MlpYgR4m5z6E5KC+Kpc2mzzwHOyJRSSsH7T9L8KWslFSV06OTFeoNBJ+zZ7H89iazFmIRgY1SMFGMUUj7/iLnCQXmMdHlO+gHkTXSM3FdHRgIaDvoxqPHwyymlum6mrEUprfWrV69evnx59+3Xf/qnf/oP/+E//K3f+q3dbnc4HN589hlaPpGJiDDntd5u6rqJMXL8NAEDGGUcx/1+j/rQWjPjgxNmlzz8lJgZItqltVLK0QeOafQxhHjz4vXtq7fLzeUPf/QX/+r/9a+edg/L9eLNy5fS8nh2+8N+tVrwJnrv//E/+vmPPv/BV198GT52P6Orv/kcrdaa5NP9w8uXL1kK4F84ss/nc11Vxtp3794x82a9PhwOUhJzHMd+v4/Ia4G0Nk1TZkPqZrFAYJ/kX+qamc/n83/5L/8FlSQlRvDx3mslow8+uSF12+3lZrM5Hc9t2zarpcwtXiwYq/QgglEaOie4yOiDlkpqNeMgtixCCFEmbSVTsqYMcbJXQtqQUjDGbLdbQYQrbNuWhBjHEfPjeDQgFK9WK2st6AXAcaSUTbNcr7czlSYlYqayLMbRw7Ya6DAwGinlcrkEi6cois8+eztfDBJLHA3WThbbMUZA1ZvNBjZPzjmplDGGM12ImQtdLOrlol4qpaui9p2TJEIIOs/rME86aiI39SkyKQPkUQoZQmzbbrGohJJSTrUoiUSksGWJCB4YIUWOgYUgokIXOW4ICZNxijEiDfZCCKkm8SJspdcvXjvnXt68/uWvf8EkF6slfB3quk6UlNYoXaYtX5ZIv8dxFCz7dsDGwY09nc5lWQYX3eBHPx6Px+122zTN4+MOx9/NzZVSBl0E0FguLjaLxeK7775DbiClPJ1ODw8PgDnW6/XMLjSmQLUjhOi6Hs8aZ+t+v0dGvV6vj8cjGE9A68psmYBHOY6jJ5do0q0qiuLDhw83NzfIeZBLt21bl5PSd8oD4+/evQO/2PupZ+DcILWCS54QjNChlFGKmCez5dVq1TQNMx+PR3SjN5uNG8aUCD+6vEw+hmHo1nL7vWG86we9MMScsidNjAEFS9+3fvBSiM36IsaIye7LxcVitfz2228vLtaDHzjrJKA/vb1Yp5Tw+Oq6hnAEtMilhFKkLMsS+NfxeJRCAG7AXh4zg6Suax9CCAF+g8jNHh52r1/fXlxcQLkohADqT9d13kVwFIZhCNER0TAMRVX95t//+7/65S/ruqbEmPAtSyu1utneonMzBq8lMa/dJB7tcKkvXtygKEWcadv25cuX9/f3McvaVFWDSu1wOOta1XWdiIFwoZUlpWxWjZTS6iJGf39/r5TChA1gEeSr3vsx+Bjj6TS8fv36+upmt386Hc8IZVfbixj57dvbu7u7i4srVIh44uhVEBGIjUVRjON4Ph/ntLZt29lgEAsV/39xcQHNiq+//hrR7/r6uq7r9+/fn89noG8vX758fHyc4JVIOGGRB0KdAAAcoEApZd+33semmaQJQkjGFCl7M+Jca5pmsayPxyNujveEm/nyxWuji67rqutGK7vf78vKVlXV9j2wfoBln/ZXSP3+SCRXy835fH58fFytVkqasqiJ5WZt5pCuha6WjRs6QOeQamma5ng8Pj4+LpfrN2/ejDC401ppUdf18XikZoFOQAihqqrz+QzaclNViajrutNpUlABqnLc7ff7sN36oigeHw9aS+jGNk2TInVd78aAxsnpeC4Ks9ls6romOZ34mAFH6UFE5/PZFMUwDNaWj4+tcw+vX7w8HA7OOfRi54oycQA/fcgegAgI2MWARFarFaC0TIaV3vuuG9br9eeff/7NN9/MT5NyP9UYk+LEuYlZvsOH0Vr76tUrzP0ASnv75vP7+3udBUgRIqq6OBwO2P7ozuLBSSlH76NPrMJzBFDmgRiVPZkkS3hCbjably9fTmlwhlMBjwInjTFeXFyEEJwfuBBXlzdtdwoxGKuUrrH2jDFaq0Wzwn8WZVkVFkEY9EWggUhZcZNra1NKZWXh5iqlDAEF4qDUVOshIimlylLj8MJ9CCnhfaZiOaWU0jg6PAWkMUhB0ZpCqqDy6B5oFsPQleXIzNCjBxmzqoqqqvaHJ60mvQjOdlkYaEAyjClwJMAX27XMoj3GmBg4xoCwhtIpZV4m5/FHgHEppbIs0Q7HB5VleXV1hdEBFLAIXyklkLKHceTsdVlVDej/V1dX3vu2vW/bTilllAkh2dLiK6usOjChhFIins80MqwcJXWIk//T6XSQUm63l+M41jW4+TobgapxHJum8j6eD8dqUUhLMX7C91BZgA8BuFZNkoMUIyulvI9SUlEUSmuKUXJy3otxUFqFlJSehClSQJkm8aBn2JqywJrKJueA1LHakSTELE12f39/dXUDEj1uqXqmMVAURQhTDRVj5JTQ+u373qc4lYEpKaW6rks+odOMygKhKWb9FlAQcHYPw2Ctna3OpNToQtV1XZbosQUhiJmtLXAlzjnnBhDsUkpd193dPSyXzVx5Ic8BAA25D3wL7z0JWuTxQZzvaL9xTFVVFkUCeVcqShwwkYllLD4ZbApjdfSBmTC+NpNoVdY6A3MPIVQJ6aMj9dfoj7ifc/0bQgDIA64DWjXW2sJWQ++8nyY5xnFsNsu6WYz3jpKPIdV1U/z/6PqzZs227DoMm6vd7dedNpubebuqW31DAAUChExLjLAkvtgOMxzhCIUf+GqH3/l7HHpx2E8USUmkFCJlEQLLYBUKKBIEUHWbzDyZp/vO1+5utX4Ye+08BV6ch1tZmed8ZzdrzTXnmGOOMWQSJaIQTCXBF2whOwzYwICTQgicS13k3ntAD1xwxhgUn7G30R2ixFZAAsQ5l2wqb+IwdCFpHGePgiAGnznn5J0Ngadi2CdZiciZTHwxPAVrrQ+Bs7hYLHCypupl/HxKtBR6xBrjUhBRSBrKyAMYYyBTR86wrKd6nhL6GWPE/Clno0wzzFvHygSgXgKCgRrjLpxzI1b3iBOHf2KS2cHwRx3dGGOIYVoNwK0kH2mnnHNK8Mpj0Ha6cYv5ZfD4iBgjF6xUsmk6pRQRc95wzvNC4xoiC5xxKTljYgK/WOLmeD+ezSzNSkwP5DG+I5LSAovjzKALnnknPEz23iulhBDEI00xnXyE0tIfZ1UeD7G6kREcpt/O+AjHq2QwGsOo88tCkIwF5xEB8ZD5SCEUIbCpQGWMQbwS9ZhSSrJxisQnXnZIEtLkg6M41e04PNFcaduWBJdSSslhqIjFiciltXboGTivlKqLUiqB6D9C2z5EKO+iBSJ5sGZacqnupRijIEYSL/a9xssUZEMIeVZAIQ7nDSXJ7zzPORM+OM65YAyHPeAMzoT19vEeUUrFMAbKzgyMsVyNmlNTVjS9mim+u6SzbJNDvZKaFaNwPmMMnAKkg8fjUWcK9S0l412k5gBnOefH43E+n0sp8jxjjF1fH621dV1rrZng05XIpObBNKMwtlKUUpwIyS4mTeCujufWHZsxnjjP+fg2vfeTxi5PipN4tpxz0A3wgjRMI1P7Cv3Vaf9OvTGVnHnBDsDd4dMgAiOSBAS+cyR/ZfnXVLRERaG9c+/evUNwxxSVS/JESgXnnHcxhlDXNTB6wahtm975/+mf//eHzf3v/ugHnFFdlz/72c/W6zvnR2fw6IPtO2f6YbCXT579H/7B//mjb3zz8y+/ICY944EYCS6ltnag1NuDlXIIgUWyMSohlJCRsUplwUXrBvJR8ehCjIxhM2qlAkXjbIxRcK65yATXUuVSxRg7MyzOFr/z+79//uHL3dBLobXKRx0A4oyzPM85l3kuUVcjKzXDmJqwJP4upYzuvV5/CLrve0C6+MvxCPBRciE4jyF2tu/6Dp9TliUk2CH2KohFNrKkMeeIBw5JXJ6UiLFacH5jjcGHMEaPoCof6R39tS+WupgTLMgjc9GFEKcIiVUVWOR8FLoVgvM0TDMry8PhQD6UWT6dlYApgRY5Y6V+z6eYIHIkpoAnJlWQkVjnRnoajcXh4f7+HsXJNHuOrAVBknP+8PCAMnu5XNZ1jYYTMofUJcok51mWUWR/8kf/69XV1Xe+850syzDuinojjIrYEenmbrfb7fZ93zM3hibsxEk4O3EiwjCMKltj01cJa/uxbUmMiLphIGKCGBrGdT0/Nh1X8uNvfPPZi5cXz5/+2Z/96Zdffn51dX1ysqjq2dD3i9nJYrZsDgfFxa//6lfH/eFJ+fV402w2W8nVw8P29vZ+uVxKKc0welHMZjPMzNZV1bbH/T7O5zPnHEROUYpjAA2rGohYPZuJ0cHcgA2Edw2NF4RHJWTbtk3T3N3dfevy08H0h/3RGz+fLxeLxX5x2B6Os+UghBJSW2MYGx8g5zzCrxCiy5OLfeQw/O36vun33dC3Q1vPC5VJIk7xfZrkvbfWgSigpETtZK3dbI95Lk9OTqz1ZVnDBAZBGGfuZrPhIwmO7/f7uq5R/Euppxl5MXpFBIhWF0WxXC6BsGCdoEuKYxfiG0QETh/WAxYb53x0AvB+tzsQjUQYFAxlWd7f30uuGpFlPD9drqSUve92u50SMiSKH47YmDSmUKJMzf4oovPeeS81V0n7heDGwUMkQqIGxDrEEEIMqVU/pX9c8TGVio5CGEzwwXLOdbKb55wrrhb1IssKzmXXdsRjlikpVIi+6zr4L8k0MR1jxJN8e3VljQ8hVNVMCFGXVdN0jLHD4bDf70MIzhnnqGma09PVcjnf7Q7L5XK1Wn355SuerOfrukYpUte10tKHgHRi4hrjIut6jlU0pkNEx2NrrcWMPOd8GDrwXu/v70dIoizxYFFg6yQLiFpjvd5JSd77s7Oz9Xqz2WwgKYP2v3Nut9lOykgxTVpg8vTy8vyDD17+q3/1v1hLReEn6gnyuunANcZAz+HJkycgi2HzAgEEumGtb5qGSzavZ2ge/Mdfx+PxSEfAUni5VVX2fZ8p3bi9VFzL7NjsM10E7xES8zxfrVZN35HgKDgvLi6ur6/fXV+dnZ3t9/u27YVgRASc/XhoJ0ub5XKJqPv27dvDoeWM8JzxfNq2hQyIUqqqazxMpVSITin5wQdPElGarq+vJ3qmc44iBzspyzLhR622iydPqqoCvWtikq43D0CWL55c5oVWUd3f3uZ5PpvN6rruuub6+rppmt1uh9CHJJmIkJTe398TkRDi5OSEMYbasy4r770LI8vncDhMp8xut7PMIlm6udnOZnqKDDg9i6Jo+pGIDbYswB0i8sau1xtr7fn5+fn5Jf4JC5JSlo4nVhQFEqeHh3tr6exs8ebNTsr1ixcviqKA82RRjzq8TXPougZS2n0fyzIAk4JA593dA+f9Bx98YJI7wtnZkqeJfiEEtAuAWLVtu90eqirP85xzI6VcLBbtMJoGA+lAJRtC2O/3VVVlWfbkyRPnHOdXUsrr6+s6b588eQL5XSLKssw5u9vtumGw1i4WiyzLpkEE9ALxbcCgkaDe3NwgguFExhUiVN4c94B16rrGyQVOGGPsq6++wpIWjJXZ6LaCoQqWBHYPh8Ph4LOMVqtljBG+EUqP85p4I3keDoejlLIs8xjj8Xh88uRJc+xAPwTiD9C8H+zd/f3lk/P5fI78ZIJ6J6xKcj6bLay1Wjd9T03ThBDOz8/zPH/9+nXbmqJQWD+IYzg++Mh7s03T8FHooAcbFFo3gJxCCHgL2+0W55qWSigZAk0PkyJHi8gl1UFEht1uZ/ohBia42u+OWuXYthjUAIonFQdWiL714XAoE+TUdUOu9FR6T7VqlmX94JVSpu8pUQEg157neZ5luBittXnMogsBcjEoTyBEAGcjwH94DjwNkaOsAOyOBbDb7bSW8/n85OTkcDiA6tc0jVKCcQqpAA9h/HGbjMgocemAKRFRCMF6L5QCFoYHi266EEJrmWVaCGEtTRyIiU6EcV4o2ACJKgqNJj3AL+eM1hqwoNa6b/rFYrE/HpEMGzNwLqaK3iaJ7b5pURQcjrvd9oCQgjIZWDma1tOkRYw+RjlVjhP8DVD1cDgURYHNNcHBQFc6M4BEF5LJRNM06IbiXVxcnIzj4ChFzViJV1XVNM0kfkKJJ4dO2/SoiY3z6IKYtUOSlCwha15VVV2Vfd8b44UQu90ukzDXVVJqzsce6mw2wwGE2pZzLuW4DvE6dNJEOj099T42TVcUGVYLdijoEVmWlWXedd2ES6JAwOPC4sQt4Ex/eHgIo0KImEgwMcaTkxN6xIPBqyyK4vLysu8O8KmNo7cW71wXE2dUJFe2cb5cCB5Hrc4YR0QVt4k4CQ5NkeVICXwSAHHOwVAXWOjwSAq5NwNjTEoNDgTn+UQmQ9tsGCxUnheLVVUVaC9prfNCO2/QwgHQgT4Zlg0uGKkFUnG067q+McYwGsl5OIzkONfrOOfOOxYJt4bV6BMEERknRnmWo1Bq27bvIfkiRupDwrI4l1NNCiMQpEl4uQCgkV3XedUcGmst72QkNjRGcsY1t9YScYzMe2tjsO/bRKhX+ehdMG57IRiP5JKcwlQEkuUiEufviboTEIA9RkR85HD5KYThvYIA6N57MZmh7fHjbdtO2JaLo5rw1AqwzkWwLFnELC1P3FukUBN6iw/BenXOSRqdTLFtpm/jwGfTopnYoywSi8SIJBek39u/4JnERyrP00E+/t7gWTJPQ78O1w9tQexb1Cf42Qn6jCHGhPujWEHtgr9U2QicYY/xR01OlNxj04Nzm3xvsNBjIqQjeUWT33tPSbQEG/IxrEzJ8gWgrUumjngFSIZ8ijiPu3wg1lnvInEiCjFa5ya0Y4LnJhSPJR1SnIKUpnE551LqEEaKN76TEio9FW+MxHSnUwTEjaCwsXY03ZqQdCklxOknXDhTeuqe8VSHTzCipzj2q8lOvdwpxMdR69xOzwHmD1Io4lHJDEAbCUkscqa89/SoYQDPQMVFDO8j+Ng8GAVSMVLkcezhqlB6ccvS2KbHbcYQnHMy2TbO53PvPTiZwzAEH0H5GW+WCT1yqGOMMYYRxxdCQMojk+o98vVI1AL5H65hwuUhUceISzmuSdwg5xzTi8iJwcLGu1A0tiKklBhtU6MU2nuTpelzrLVZniHcx0cjC0AGcD3413GUeBh8P+Dw0FoLYoCAceRjwWghvRBKSdwCnsbUcsdRAbht7AEKMQWxMTqN3YuRbKuU4lJGPzpnNl1nrZ3P50VVDcOgOQ9BTPmxlBJT1Zzzv0F3gUzbu2Ok4CN5pVRZ5d7Yvm89sXJWE+cx8QvKslwsFqbtvHUny8XP/uin//b/99NvfvrJt7/12eGwc85dXb/rzbDdH8/PLzKtgX0HRk+fPfs//oP/y8UHH7y7W8us/OSz7/z6V//B9EMkLqREuc5YRN+LY8aCMxbJeq+lZJF49DKESsqmt9E4rSQTwno32gwS41J774nFTOkq0+S8tTbLy3Iuf/jbPzl79kHr40B8Vtbe+ywrhMCjhue4RAbJMA1kTIyMcZqYuUqp6MbzFecf9FIAFkN0zxhDglMYjT2dc8ZYwVWWZULwvu89xgzRcnAeJy4O7yw5lbFIMQSfOOn8UTcCexbDVlOXlKel+9e+IkXOOYvk+VhgYPEIElEzmjr2aXeMPxUj9N9xeAE1ds6itp8Cft/3kgsbAhFlIucJ8sZuZSm6dm0r9FicALYgIm/GNGsY7FhaKDWbzZ48eQL1BjfJYlSVSkIc06wAUnZsh1/+8peb9RqDdYgSr1+/dn337W9/u+/7n/70pyWs8DYbIUReFoyJLqkiDoMhzrz3dVZQ8kXIssz4UcoDdiUTrwH/7bpus9vc3NxsNpvZbPZbv/VbdjBCSOecjYEryULcHvZCCDaI5XJ52Dc//MGPv/3tb//sZ//2n/23//j+fjMbyuBYtGwwZn37cL46vb6+ZtE/Lb4ebr68vOx5lFJfXV2BiZnn+UiWdw4mV2dnJzc3tm3b58+fY2UiK2CMjUhkjMMw3N3da63KqsITQHkWY+y6rixLzhiojkPXSynn83lZljdv331e/uqb3/yWD75tu+12O58vZ8tF3B/btq1nsylv9t57hqj1Xg9NCeFhJCgFaMXWWk+xKIrNcev2pqqKXEL7W2mtXRiHmbCzMq1xnavVSmfZMAzz+fz+/sEYU1XVxcUTorFcmdivXdfBuAlz6Nvttq5rsAURYIkIHKXtdrtcLkHkxIa6v7+31pLg8/ncU9RFXi/mMQkTYxlzzqWUsCUBHiqEYEwShSnpXy6XRHzoTIzs8vxy6EzO8t3DVgjh7aO99sh8Iqakd+IBpCEk3vcG8YfLEbPgkXhEYhdZ5CFGlmZaiCiSx+wFMosY3/c18fyJiNJMIWMsU/m8mr98/vL29vpXX/xliO7qarc6m2mtMyWzXDvrcWI6F96+fRu8v7y89C5uNtu6nrVt64yHjCxjDNkBzrX5PI8xVlUF6NaPzNOj1lqpbBgGraW17vb21tpBiDJNROWLxeLh4QHFRtv2OA2REeEVxOhjjE3TAH/p+4jmyvsRHyJKg8BDsnZEWXt3dycEgTsTQiiKbLk8CSEsFovtdquUuri4uL295cSKori7u1NifHSw5ayqKka/WJRnZ2fOucEYvMMR5G0aIB3e+6Zp+t7gRlDE9n2/2+0kF1Mbg4g2m2PfdpV4/vVHszUQSJ3PZhcXF+u7+9/58Y/M4H7+858/f/qkLGvn3F/8xV/VdZ0XBXQV3765yoq8LsqGdd777XZbluVsNls/3AEsXi7neHpv377N85zxGNxIQAErGbhnWWg8FiRIQoiqqiBlowACCgGsWUoJz4wY4+FwcM7kuQ4hQK6EkTgcmvv7Zrncn5ycgcWmlIJmsVBqpnVRFKYffvWrX4HWFBnt93upNV4Z1u3d3V2M/vLykohAvwAZeUJGHo9wYftrraGcboyzPiA4PHv2DEDDdrv13nc9rOSy1arM09fENcPGB6ouhADRfjynIsNURN/3Qqjj8Si5YHE0ikSvqyiK7XZ7e7uBMj7ohJzzFy+WjLHdbkdEZVnqItdan56evn37Frjh2dnZyckJFI1wtCFq1XWBhzwmn8l8eMpXQQFGdXZxcTFheaCwNU0jtCKirh2k0FIQZ5IzqXKFfEYpNY1uQIAlmFGxRIwj6oNUPBBxzoGAo23pvW/aw2xeERFw/M1mv1iWkfxuvynLcjCecy4VnxAiqJOBjor2IeccI+15nh8ODcgcaCCdnp5qrbfbrUzGrZAw0lqX5TCbzbAIsyx78fz5crk8Ho+74w7dcTDrMR4NHFzJbDaTyHB2u912u1+tFmVZWrvDS0/On8E5h9sfy5wYjTHz2ZKFOJtVIwJS1zBIODs7++53v8s5/+M//mNrB2iLX1xcTPLcwKZxp1VV5nkOJhxLE9JIZhAJsfgpxMi498YnTrfg4yk2wc3zxVxKOQyDd47S2O5ut+Ocow+HkGiMcW5ECbDNu65jQoQQpNQTiwUlhhhVofp+aJF34Z9CHHF875w1xlp7f78loqdPzyeGFtrbExCB6bSmaaq6AHaJ2geROc9zM7gJDnLBAfqA9vqTJxeffPKN+/v7N2/exOiNMX1vVTZaqnRdF4LDXsOSQH74SOnORSaWJycuUZ5DoiqKNIQ6FXpTEjjxzLz3w2DBI6Y0Gss5H/tY9XxSTbTWYjsDyoQrzwR5t2273x8vL88RrEYkdDDee8HV1KrEdsYKmc4yzDcPg8XkRFVVeJiTXjBuB3AWeAbIov1oA07b7W42W2CjvXr1ylpaLqUQoxYHAsjUt8syhRuHHD+OranF7r2XUk9CjiGJXkopMykmSzPvLZ7VycnJ85cvvvjiCzjEGuOs9aiB2CQ7HuJus5VaYXti/RiTSgklphrcOYdJprYdnCufPHnCedd1DRBMnlxnlFIId5hPQo02ccP16MdDMTIhlDGdlHG1WmF0RgjVNE2MzNpReIpz0lpS9NYNRMS5xK5nSVAxJr01ULUm4AiLZJpW18VoyooUdyrPy7zAhkKBE9jI9IoxKKWKurJ2GIaAZ0ucKaWIs65rsgwGM+S9FUKxBFt13WCMK8v8eDw2TcP5KHCMLSyFTJF8bFmhUxJTr9QOBnMPADGwNgRXyLR7M2ZT00YmokCxmtVCCOOsynIBgEjrsbCKFGLgnC8WiyxTUFFbLBZVURwOh2EMRzZ4PoVcJBuQbMYbNMmsu08ugibY3W5HPWMxWNHJTBMRNFLJe9/3o8UqjU6RHAkKetTIXYbBkCDcLUvoCNJisLoo+d2h+i3LUiaNm850UxnmR0m1AXR0SAR0XbvbmTIreCIvA4RiciTM+zSuYpPERIxxMINJVkWIQSzJWT7GqrBXtdbgm+AiffK1m+5lghcn8JcnkYc4aXpMt5zMl1U2+tvGGKMfqdmKvafGTPgsVrxIwhfOOWcsThf3yCsPVyulxBQbSwQWj+FiLhgxTgySzY+vZDqNpvhrk6qRGM+t0XhnAnAji+yR7bYb7d2EEJyxIJMK8zTjxh+RUrMsY6n/OYEaMWopYRQ+Tv3ER9AqIiD+BrKME2Ax4bwx8YCICNogEyITQmB85N9Nz1bJ945hRFHrPCZRl/ednBiJaBqiwQ+W5Sh4Pz12HHLxkVYMlhZPbRwbRg1TfCZG+dyjiZ6UmozhVarcBxti8NZbF7SWnHFrDWqGLFkJhxACyMLkRxAn+GCdHTcaalEzdQJ5aip677qug/wFrp+hRWRMUZboPbRtK7jSmXLOmcEijWCMgcippHTWcimc9TjJlFIQMUcG7JOSIFY+tjbWFcI3rmowfQhBq2xaDDhZETTREDs5OcEgEqVmlfVj6qOShhcAPmsD4gYRYfzWjsoG0hhrzOjvoZLRsxJyAr5lyiSWy6VQGo13HsmHUT9Ua42XDpqJ9z6w9wvGOTcpE2H3TZVSGKmvFBnDP7Eswwk6FT8+ycmBN4HyBsdtlmXt8YgPHCEGsDysDSFYY+nrvrrmuHl32K0fyAedCxaiMb333sWAHeScG9xQZiUXgofIia1OlldffPU//PP/rsyzv/9f/JdPnz/52c+u/+X/939u+w4KA/OqNl1PRPumrWeL//3/6R+cPXu2b/qjMVrr86dPu64xXbtrGz4pBVvngkUMMcb4GJRSSkji3HsXXVCBiMuOKDLixIwbkHlLxYgx55wglmmVKx2czZSyg7PH5rs//vHv/t7fcVxs27aolmQD7ijP8xAIZQAyVymlfaQ5xZJCGYyVJBvHCXHEIuF4v0+HwQavhSaibuiVGLv02O/OG+ccT1EiyzKuyVpLIUKSbDrgaerM+eCNtTh9GWPEovNE1NuePba9FV/fQwjOs2SsOkVIAKmCWN/35MMwjGtvOqp46vkhgU6sJQ/5CPxTCIFCjGyMEq9evcKVHw6HxwsVZ7RzTuUZdiK4ySxE7NPZbKa1rqoZasVhGL766iulFAa03SPLCFwJuIEQQpVS2mHApC12KDba06dPi0zjIa/XaymlUDLGKISCISpxfjgc4NcXQvB2NC+KSTqWMZaVI7ERYXPijGCqay7nuBeAHZTkiXFAwLVvHFYt8rKu+uEYQvhbf+u3yrL8r//r/+ev/vL1alUVWdn3HYvyq89fay2FYG3TfO17vL29fuff6jw7Pz+/ubkBlBCCs8ELwTjnfe+wfsAyA0zPRt9Xur6+1lrrPBNCnJ+f4UmKpL8ZJjmpkThZEVFdVofD4eHhoSzLi4uL9eb+Rf9iPl+2TdcO/VJKn3joyNmcc4yo7/vAhRAi8MgYi847Gg8RHHNCK6kVcWYHFxjN5/PIXJ5ns2KGklsIZkdhljifL60d2gTuANpAuSilPB6Pu93u5cuXmJkJgUDOjUn6GYsEjHjICEycJpccxoUQ6/Ua3oOMMa3zLCuGYbDB5nmOufW+74uigESStQNjowscsuH9fq+1ns+XWZb1fds0TYjeGtf3fXDR27CcLZ+cX1R53RzaEEIMwVqrhPCPujvTfv9rPcUJNk1nMRfElHrvts0TDY0T81DVSPkV55wzGUIgC03JfEpm2Kjv/F6vR8vsdHV2OBx+8IMfXV1fbXcPRZmt5ismmbdGKdV3gx2npINz7vr62jlXliWG3+3gYozX19fY78vlUue11hq99kgeAApMtO7u7nANWPOAkxB+nXPz+Ry6wIkswmIk9I/hiZdYKYLG+QkPfIqxOAltz+fzh4cHVFBwlbTWYg0ghcYOxdO7u7sjonfv3p2fny+Xy/V6DVgzhMClDBRPTk6iDzjHdbKmfPv2LcL+5eXl2+t3x+MeUqpAdlDxXl29c46kHMFHoD9Zlq0WywldgqMUiMbBfL3UVZ5niqv9fr9cLHab7Zs375al+kf/6B8dNw9/+mf/Liv3UuiiyIhIKh7JA3k505or6Y3VQgrB1uu18wb91NPTU7AHbm5u7u/vsYaFEEpmSLp8sEopEXk1n7NknTKtxrOzsxijdW6z2bRtWxQFF4RO/9XVu08++YixsQ0A9eGLi4sY2KtXr/reVdWs7/tj0+O4NM5fXJzPZrPdfrte3y3ni6KAwoMvq6ooqs1uZ4ypyxIZ5l/95W1e0GefZSg4iyKLaUAQVn5YIZxzmFlRorxFT1LKu7t101CWZYD/sizDIAt5cs5Ya09PT5EQgnE84Urt0BtjyrI+HtvDoel7CuFQFx7nuBBiu92XZTk5ciNDAPoD6TnUzJvNhrFxeBwLhjEG4DgwYixqPfbdp6nWFy9eYABozJkjk1JXVdU0Heo1lBtI0qaaFDjLZLKCFgLe4+FwUFnBGHt4OHzwwSUoY977oqirqrq+vsYnCCGQkBtjnPNv3rx58uQJ8M3D4aAL7RMPl4iIBS746dlq4Wacc6aY1np/iJFot2tPT+d4FHhBmLDRJJWWMeqiKM4vTtfrtTF9COH8/BwlNpBZUNq992dnZ4jJSNRvb2+xwdGJrCqHTVfXNdIGIAO5yh1znNh+f1Qq41x67/f7fV3NcRzgrJzNZrvdYZJfEEKcn12u1+umPagkzDhqTBEZY5TMYEpcZvnZ6gTdR0hYiCTOmed5t+kYcw8PDyOoVJbDMKA9zBhDV6Pv+/v7e9RQ+KnJmaDrhmEY6rrUKktaN4T0rGsH9DnGw4JHgoSC8zFG5/yEkBwOB1wzwiCIC84b3Fff94vFYndo0L4NIQh675oDfCd4v153dT1qvHZdV2YzKSWTo4czysoQyFg71WIqKYSEEDBkhmt43MKZTjearAtCCCEs5vVsNttut+v1Gn2du7ubw+EQggN/f0K73KiYPE79g9PAUgcX15YVFXIGnqbPkfwgY2SJAIdRAJ4odDzxII/HoxBqu91ut1u0+REM61oDamzbDrXbxLdjs2rznQABAABJREFUkwsR7Ke45JxDtgtYp0+WTvgzS+pwRAQhvombBVGUEMZsbWS00DgrbIzB7eA3IkGaJFmcc/hODE+gZYJ+m05CxjGOCgwisXpRrUzwN9YJfhEunmiUYGaMoTuLQ9Z735khU4pzjnLY+7jfH7TWx67d77d45pyz4MNE5Y4xCsZB+0AePqFJwzAMzmZZJrxHWMbAQZpfGQGiPMlIGmOyTCDWATHA+0XsBct+yp1iZNOLRoKHBYOfwrdBRBQPkyfO5ZSzIVubMCt8M3JLBDqXHGiQdQg9SjCjKwaEB7sspElK1GiMC4QvtOSNMdYCaYzOOWgKCcZv9wfvRx66tZbIFkWBA2K1Kpum6bpBKRUjOecn+g5j42mulGLxvXY5FhIybZvG1pGBSCWstWZw+Oah67uhPzk5eQwNM8ZOT0+99213pOQqifUzpW2MMWsHIkKY9dZaOU7OjbsmAZtCiNPT0/1+T8SPxxaHJk/TIfmsKHURY7TBcc51ninB7/2xOxzzZjM2YGKM7pG10ePpNiz01GWKXCRcNelC4KvMSkR8XHqM75+1EIIoIEAgIvs0n4iMDfc/Yvw6s5MWMGPQUI+TkEJip05gQXN0E4Qtk4cj/hwfAcRIIo1LOpU+AP2ZPpMlNz5KaDtk6WJ8D27GJKhHSTAef0OcTSky56OXLlxjJuyYJzuFqdHtk04x9ga0AoZh6IaR3w2+rU9k6viIeIvLZo/kdBECeGrdTBEfuw6dE3zh+UwofIwxxIjZT85538NBcTzPYgJnRygzlVsoAhljNqkExIknzjkjEbyPiQ0ExxKsb+hBZFo753wYWRscCkToXuY5fla/Ny1lE/of4U2bxP6VUlJo3Fcc1fdZfOS1hZWAd4rgEtLUeQgh7fkYQnAxKJhJpjUWE9ys8gyLXGsd3XsNB5lpEhzFMxs55ipR1xnnCnAtSxIWZTXi4CENRyguJrh2vAsWoXzNHrkJMxYYi3ky7ZyWk/f+cNxrrbUaV7JPck5KKdj+YOVvt9t6VuEJYOxiGAacskTEuKDIjDUTNhoYjSeQVFNYxycDx3n8bBEr8T3TK8PmQpeIJ/47xMK89yPVK77XDUBijbxquhFKMvFINOPo5OA4FyFEiFsPw4CdMqEAuDCVxsqQSdgQcQyjwcASg4xz3vf94AxCXJym+0OYFvnEPpuWIqIH7gUHLT6TOGeJmorNgpeLh4luWXqwEsdelmUYTWr/JvnmENe3tzfvrjixXOsQAqbGOCbFsgIO4+3Q9rbngU7ms+39+v/z//5/7bab/8f/7f/+vR9897/7F//8v/8X//z+4aGqqsH65WyupfLWReeNjf/F3/vffft7P/zq3Q3XeTlbhRCMdReXzx7Wd+1+z0maLvIYuRIi8oFGgR0pFWOMS0GMRRe995yilrzIdO8840SefLBZXgohgrdKSkFU5DkFz5UKzhOPH3386e//3h8cj13kKjqyZEP08G4eBgvVF6yxGGObulNs7A6OPSEtRn8hLLkp+PM014YQGmIALVqwMYS2bXtychJCYCQY81KIwbkc8JaQRGT6AWoA8Hih5M43geBoPk/za1prCtEaS/y97+vXvlKsNCGEjwFbBhkzwtRYh8cohECtDkqRUqrrhuPxeHd3p7Xe7XZ938/nNTQNYCcwDMNut5tiTmR0cnICQAorebFYYFgPXIyu61ar1dnZxQAIwAAsKEIIUAy/vr4GmxWM0dlsZtORhEt9rPkA3cC6riXn0ESzyfEGyXQQrO+Hvu+DYJ5xRtw6G21vvVdKo0Lo+wHvpe97HkfhIBxkXEn4Ak+we0wdAhwHnMTJSYa/H7peFxqYJu4dKt44DfuukZKXosQ6+fa3v/Nf/Vf/13/9r//17e31dn08NrtZWeRZFbzRWg3t8LXv0VqblYoinZ2d4WZjjJEzFmMIsW0bKbOiGAHK4/GIsUqgY2g8t21rvVsul1U5M8YY24cQKMa+77VSxNji9NR7v9lsVqtVCKFpO/zhcDjY4Lnxr69efXexXCznwzAy4JwbsjxPqdc4SReTCQxPveeQhpkQYLXWvTV93wstlBJCKSk5spQsy4hCoOicA4qR5/nQ99huwzAYa+fzuRAKSMrhcBiSkizQQPyWSYEBdddyuZzSqrIsX79+3ff9Bx98gLBJRGAkvXz5EbxiprQTgw7e+91uV+WFEGIYAg4aAKOAFwEGdV0nJddaH46dFGNSIYRWQnkbeEaMccE4RR5CCI9MPmOShkNsn/IHzjmCEmOMkvb6lJ/gM4hIMDidsBgjRcrzzBgTpzQmWBxr3tu+Hw18YrLOxmwtCREjcRIXF0+44n//P//7f/Lvft72xzzPrB2Eyrq2xxmH2ibPc8vJ2eDdUNdz7z0nwRjb7495rheLxenpqY/OOdN1g5Asy7L7+3vAQKenpzEyHNBTowIvGlOJRKS1JuLDME7BI+Sa5NQiEqUxsRPM4bAj4hD7FmlQkqWZP4T3k5MTtAeArkI0Gfo8eNHGmL5vd7vN+fnp3d0amMiUxEo+Dhvh07TWgL2GYbi7u3vy5EnTVJvNZhq5sNZnWaGUkjIqpUC0jDHOZjNnLNIVrfXd3d1yeaJ1MvO0Xx/Gy6J6evL0819/dXV1Na9nfU/N3fpwt/7kgxd/+K9+FpxXZV4UBRP0sNlwIaztq6o6NnuggXmeY5Kv7Y7AngAH1HX94sULNFR4kuaUSsYoZ3mptc7zER1br9cxxo8++uhwOKzXa2yom9vb5XKJRyGJw5/tyZMLxqIQ4vz8fDabHQ6H29uHk5OTsizPzs7qunfOMDYqmQoh0DWfzavmsHPOtX2Hvg7QjdPT3Hhz8/l9s2/yQtd1/eLl3MMlDC7WwyDEe5nICVRijGmdsySP61yoijLGWBRZ0wxv396D38oY++CDD25u3lXVbP/qWJcFCd4Pg9AqciYzPTjr+yilVFypXO02W8ZYrpTWNLTmdLmaz+eHw8G5MGWe+/3eDwGLhKcx4Xo+F0IMxljntBxhtSzLnj59yjm/uroahkEyZvvh6tXrTCrKgnPu/v4+y4qPP/74/v6+bdssKxgTnLOTkxOlVN/3Z2dn7969c85hwNc5t9vtABOvVqtMaRbp3bt3eFBQesVFfvnqTYzxe9/77Pb2Fu8C53g9O0FCK5ObIgJ7YHxxsvIU980xxkhiDK3o/pZVzogBq0X5sN/swbJfLGbr9Zqx+PHHH6ILcjzuY/Ra52maXkbym80GSx0xAcfW8XhcrVZKZX3fD8Nwc3PTNIfr6+sY47Nnz548ebJer4GjHY/Hsqy7rsPEQIwRrn2LxQI8UBZJ5yPiudvtYmBa6/1+j/KkruuTk5PFYnF/fw9aqhACa4yzMXsHfg1qPyW4BBQEBBmXpFqbpvmX//JfCiHAksFpcjw28/kMr+lwODw8dJ999gJFa+oEEBFdXFxMMQenJ/bm/XEdQvjWd7798PCQkvkReXDOHZs9zn1rLadRI9UnOVSRtF8YY7vdbqxnFcdfgsyIiwTeimQS3R2Qb7q2Xc4zJsa2X57ndVXXdb3ZrlE5eu+Xq1WITkjmgxWScSZRjyPASikh8DJV0LPZ7P7+Hqg0xlWnQg8PFtkmOojr9Rp9hamqKorCerfb7fDhRZEh4+KcG2OOx+PkCMqlxo9gjgRJAk6WaeQdEQP11AS/IIEB91wp5X0E+dckMyE4xVlr83wkR0+4OXYiUkEmBNQ8YnzvFoDaiogGZ20/TAgY5/zJk0uo/OMl4jjDzyIRmogCSLnBcYYbIgAxQeyRxm4MxBxRjBE8ZdSnp6enDw8P4E8IMdpLQgSDj7b2BnsBJQn4WyxJO/a9AUEV6QqgXqWU96NyhVLq7u7u00+/+Qd/8Af/47/8n7rbIcsETmelBGdySv6FEEor55zUSpKa0njnXFYWKmQmCcGJZCiFqYsJ9JBSNk0DB862bTmXjI09SOym4/GIPgFCZUz+8FP5g0c6MbXR0mjblig8efIEWPxU7k1sQkqcAMAFMca6rrHswyP/sJiU3PFUp2wZoASeXudaNapnaCEE+RBj7PsekvTH4x6NNKKglBpM510UQqxWq/3+mDDJsFjMtdbHYxtCaJuubTrn3GI5V0p5H8qyrqoihIB3jWOUc54Vo6kDQnrbtlVRAs1giUBzODQxsK7rzs/PMZxxujoJMeKmkFKCRR6iE0J4N7IGgUVEHwJnnPOmOWLIhjFGIUxsSCn5MAwkeCYlQLCzszNojFjr+76v65ISDskY03HUmaGc5EgD9VxwKZjdOzlFGZUGY12am8BimrYr0ojonUgywTSOTUnGmPGOJb0PnG2Id9YObTsa8jL1vjMzhRKlxilOzrlK/DIcJJ7GCyuKwlqfsvlIDErAjHE2TZFMqOjEmUXvuk/WSVwKFsaZSsYhKzy+s6ZpyiyXUvIkTIGfmgqYqbpgSQIGWTXn3MfAUgPQey+EHCGGEIFhs9HPUE4Q81TJSCltahrgRrTWTHDcwvQ96TDAbx9VKfBPQo1QL54qfyQVim+LPjyGiaejd8JS2SP5aQTxCQePCShPFJ7xY8Mj5u+0zn4T8x1/0CY5b5EETHTynBFCxNRUeLzSWNImxh9CKvmmf2VMgAOkZAZX6+lziIilq53uiJKNGy5mKhdxHgBOijEOg/XMC/Heiw+VcIzR0/t7lKmLboMvaBQgnp5YCCNKK4i5EGOMXOh08uXokTLGJBfe+eDHLghPX1JKT346SKbGBo4ixA7Q36aFHWNsju0gjU+S0wwcZGP6vocwIi5Jq4xo7HOge489TowBuUYdiLzw2LVYz4qP5TdC/5R64pbRlUWSjW3oHrlkYEkAk2KpCzK9XyRkJPgUCkIysRRCAM2cNl1MBHnuQ/QBR76N1B4bKYV79AkstcRdsiLEvGfftNMlTXtkOj6FHIsiO2AkZ8REsIqmj0XSkOc5TC2KoqA0R4kjQSXRqBDCYrHgiY7KxhEkQ0TEufVepCgnhFBS+2CL4uu1m3Oth3V/3B8W82o2m2mVhFD4xMZV0D/13vPgKcR/9k/+m4eHh3/4D//ht777rX/y3/6zf/E//g+7w0EoOViXZZniYrPZnC6WSqmXH3/jt37yew/7hqS0kVgMXPBMl7IqPnjx8W59v324g+FVprW3zvLAmJ/Ci/EO51OkIIUkDvNVF1mA7ANjjFHw3mshBDFJ0UcP9+of/9bv/OT3/g5XEu9DS9131vOxseSSy3xMujER/SopKYQQwLQe38vjiDc9t5CkxoUQTAoa3NDbCWJzzpm+bw6HqqpcCIIrJCtgB3A9yvKAX4/PmSYwUFKmsa8wsfO89yrJ0rngvffOfn0LYUjk30xpoKhnZ2csYcRKKQB2RAQKZ5Zlfds1TdP2AwKXSoG071tQ/FDq5Hm+XC6RbJ2dnTHBr66ufvCDHwCQvby8xHnKGDPGGWOQGkKooW3b7fYBV+jcKKaPIwNr+OrqCpno5eWlSoMCPNEKQggo5MqyDM49lv8jIu/tfr8VWc45j8R9IMh5c86V0t57EFLm87lkPDpPiKLe4ROEVnlVutRrpBEDHXXTtNYAKJXQzpmh66fKxHtHNNqdQ6IHC6zrBmvtYOHLXCqlvv/dH37/u9///PPP/9k/+6f7beG84aSE5M66k9Xp177Hu7s7+4zapofBb5Zl1g4y01Jmxgwogdq2vbg4c2n2AuIYuHjiLKdojDGDOx4eOOdFmeE7vXMizwHKQGi17/vlfME5B+8SdY4NzVdvXlfzxeXp06qec0Heu2HoAMgSkXcOcV7pzHsPDWHikcVIAeYX0Xt7PB6FkqPKkGDOOamz4/HY7O6ePHlirSUKkSKGYTnnjNjp6SkWoTHm7u4uHbgsxrhaLSaHWyQwwBCnqg+lNc4R1AxCCPTtnHNt256dnWVZBnZn37fb7RZBIK9yHItSylxpz8cRZuwmyN5NlcNsNttvD2VZhuDw+dY4KSUVIhfZpx99XJczKTULgzEO94Ve16Nkg03/dwoyKQlhjDEpSXDJJGvbdnCDEOzy7JwxRjRK7jDGOJfWh6HrWTJcnfJAFTMhBJPvDZmn3GnMf6wTWs7r2cPuQQh1ujq7+8u7GGM/HMsyx3Nwzg2D3e/3RVHU5WwYjzAZQjg5OxNCSK02m81sMTcOHtEshCCZRN3VNk3XtijJnAvoS6Ft0HVd2x5nsxlogJSoGOhRee8h34TfSCkN44lZQ0RCcLwR/F8UsVj8E8kOyQC644wJyEzz5ByOZYY+lrVDCJ5IIk567xUT8/lcKHl1dVVVFcy+Jgm73W6DkH52doZg1TSd9/7s7Ax93+12iyuJPnjvATnt93vvQ9MchJhbOyilgv967WYapWbPuqYty/LyrOfO/cWf/bubV2/OTjOulJ7Nbm5vYQMAWe3VagVuh3POO+8phhBgxoWntN/vEaullAgUuH5IPMM/RusML2K5XO52u91uN5/P27Y9Ho/GWu/9br+BuRz2Qp5r8MoBXV1cXIQQZrPFzc3Ner3OsxLodtd1XNBYdhLpTHZdd3p6SkRXV1cXZ+dYuijOF4vFp5+y27f3u217c9N973svZrPZ27dvwNu9vb0ty7kQAmNJU453PB6NGaFSrbW1AxWUZdnHH3/8ySesaZrNZo3DFFRTY8zLlx8g6cLCQygQQuAUy8qR54uIYbxDhpxlWVmW6/Wm67r1eg1ONz4HQJ5PvoVYjUIIIhxGynv/1VdfTVeOPMQmVSIims0WY7keIxEHu9Za++WXX15eXgIQwXGMw3E2qw6HZhhMXdcsEiKVEtLz96kLkJGXH3xwdnb25MmTmIRWvPfe2pu378gHYqzrG6fMbDYrs7w9HIGDWGuFYMNgsmTr5L2XatTx5IlLyxgrdOacsVb0/WgJAK3YpmmAyJdlvtlsMOeH5lPbtvN5jXeHwSBrrTFOKUOJML5er3H9t7e3oDynii9D8EeI8N6fn58DqwXuQyGySEj7Z7MZQGTkP+DcYL2hn3R+fk5EGKWSUjob8kJrrQE74ja5oPl8iSEMhFO8R601lj2gzFG+WXGAWYD75/M5YwfMcwOQXSwWSETbtq3rGosQK2cKX03Tr+/ufQzTClGKccF8sBPtaVbVeAKr1Wq/38MOcdK5Bg08hPDw8OA9X64KJJYACtGAkYyHEIDL8+THFdEOZME5V5ZlXdeSjdN41lo3CmhxrfKpDIHmAGMMIuAI7NgRKGTQlohJ3yOEQHF0R2/bdrvZVFVV1zXnaHN6VEnH4xEj/03XIse+uLhAQBgP7jyv67qua+8j56E3JldsAu5RLuEsw0PGoBIImCDkIvnHjYzKA8kxSCbuDsp5LC0g8n50MxoVSEzfO+cuLy+/8Y1vrNfr11fvKBXagMmstcjAY4xcSWcsknDkk/P5HC3JhHQDIvDT4GAIJiYPAzF+KaSdWkiu9OFw2G73VVXM53PGguCKiFVVBVyYhdgdm+7YEJHIWAj+5OQEAW0kKXfjtDEw+gkVRaQiIjgVYfFIKb0LUo1OVJExEQIR5Xm+XM6fPXu2WCyIdkKwRDsgRnG3281mM2Tm3dBLKaUYWXoMlFhnISKEZvCEv+Mcr6oK4l1gvUgp7+7uEGNjjGU5Crvj+6GmhR+HHnqel5icQJGFtRETforUQgix2x3v7+9hCuW9r+t6EuhA9JtALVQouCOWxs6mDV7OFyGpo4Dnh9FAk/wqpwIzy7JFPbu/v8ecYlVVNlgs0bY9LhaLssqHh84nGV6EQYAtSGyyLHt4eNjvmhAoy4QZLEKTlDJGNnVNAIjFGE0/gH6H5S2EAOMnxnh/v14s5pxzKTSJsSnOGAPrpW3bwP3EjUDkieS99zGMiWvbtlVVnJwsjTFTPz6m4gob8+HhQSmxWCyavkMcxlKcTkOt5TRwg6V4d3dXUxVjbPuuni1ykfVDL7SILM7n85EOzBgjweEhg409FRIsYbK4dBfD49eWdpSw1jtrpvCBUlxKyfnI523blqtxV8TEOCOiGAlTA5yICSHFyJe0wbMRwWRCKEAKI3zAeAjBBy+E0BrGuwynO0tjqii/WVIY4HLsSeKkDw5CDX7K6ngELswm+I+lfhEWEJoegNWm3JpzDie3v/aFdx/pfdESEjkO3xCSdR5jxNgIBCM1RNSQXDyqbRjnkgj1/3ttigkBDIn+yRKi/bhuEUJEP7rc+ER8/k0Al9F79zOwTQN+Cx6F9x6jke+/P/0KOUoVe4qjRSGSUZaYPpQaTeHRFz42JlkVetQemb5w5TbJU+Bq5SPu/PQ8p3tHcybGOOm7TYgeXtl0hLOkFo0ghRMRsUmLYUIGmRTTcxhfIhfWWozVAMzVWg+D5Y++iiLjMYGVIagilzwoScvFqY9hGAZnXVEUFCKL0TkTQqAQvfdckI1h2nEmvBcKn44Q9DbxkJVSgksXBzScweoKiR2M8wAi3UiyWVJ/n1IlfCyew+On5B5pvNIjuG1a+Uqp7Xb7xRdfPH369Pz8HMYUUzM8pe9ESVGrT1Q41AnTosXIJP489W8TaMg4FzEG+YiVHONoaYj0iDHmnOWc50nVWinVt+1Ur3L53lcQ+x2HIvLp9wd2Np6XwMcR3zFmiMlKm7TUsZxCciqQibyPU81YyzlH5x+JLK4Wjw4Lcmp04eHjfSmZDezrdX6JcUY8BAL9M/gQUm/JWqv02D4pqrKez3Kt//Lf//mrr776O3/7b3/ne9/+o5/+m//mn/4TLmU9n6G5WtezYD1ZTxT32+3v/L2/V5TzTXOUKhNCej8i45Hxp0+eHT7+Zghhe3+bZ8UwdGL0HBMxRsF4ZCnAScFiZJExTjpXjlNkPGLXUNBC1fN517RVkVk7GGMCo9/63Z/85Pf/Ds+y/dBlRR1jcNYzKbHVcUciKRpzzgVKuxC8tSGMoJVMkz4THuTSkBFKAmTzfd9LneNEw95njAnGcEAgYcUGH0VjfDgej3YwIYSiGs2FpnzLJVUvnuYMpviD6IdcU2oVY5yAmL/21Q99f3tLSSjmcDgQZwB8OR/1E5FQosbI1CioWlTlxcUFPgQD0WWeHQ6Hk5OTp0+fxkcDSYgbh+b46tUrl9RdsLUhN4Q9G5INGmAaotExNUY/3VeMcbPZ7HY7oCFt39fzuTBms9lcXl6iBEImihzRB+ud9d5iKCWBbqMowTS0gSAmpSLOKUTsyhDCbLlCauW9F1od25ZzXjJNRAlKGzsZaLlN1+mcC4GEGDkUqBxiTMdNUnaKMcRIzlnOmVbCGt8cDt4HKbX3oSiqv/t3/7dFpv/4j/9o83B3ffMmRn/wX/8eM6kOw1FIZq29u7tbLFYyg79oT0QnJyd3dw/n5+feuxACZvqklIM1ZV3hsWdZVuRV0zRt03Rd9+TZ5VRTIRxtt1sQe7XWi8WiaZrPP/98it7dbh9CuLu/L/KqqmoBbmyMw9DVdSlFedjvp5YJH7tfNO0R4kxG7j3TIvfeMxbXm83p+UooqbXOMjUvl0qp/fEQo2eCo+ouisLZAYwqIDinp6fHpjFJRJUx1vcdYwJLDqU+Ng5CPZA11GzI79+8eXN2dsY5B83fpfkSuGAZ069WKym1yhXnfL1ee2Od0gj4+/1+NqtikrebuGNa68vLy2EYfIzW2sH0jHgMgUdFLBdCZVkRXWyaDrs7yzLUKdAunAKLSDTtkByDZaJqqoxzxQPR25u3u93GBe+cOT09lVJmMkOKB6kNRDAXHWPvpz4fwbJ++l1jlhiYd1FL6U2oZvWzy2d3dzdKFkro9tjVs+qw2yktOOd5liE9C2E8qZVSRVF1XWdMHwKBUCYEOs16SC5hUkronuE0R2oxq6vBOBSrnBOsGr33UD9E6AB+hIvHS5zw4ilphLmcEMp7O+neqGSpNxHibBqgRttA6xylptZj4xnFP9znkLcwxooiA+Mv+rA/Hj788MPVanU8jiUomIBt2zJBIBFPaSdLBuZIQgCfDV3v6TcsrS4vZ37k6wmt38vf/0dHM3POXV5cLOezr774Qmv9n/ze35mXVVWUn336jfVhbzkxwX0MdTXHoHR7bKRUWaY//9UrYwwpDa4JRR5jvL6+rqpqs9mIR3PTaFntdjtrbdPbEMLxeMU5B6+tKAqcGkKI9Xq9OjlZLGcYksXrxuO9u7tDVvPw8ACx3devXwshUNDCder09PTu9hr71DkDM8OTxTIEZ+1wv74t8irLMt+H29vb8yeXRVGcnp62XRsPE5ts5HPAv8taq3WO6+y6njF2cXGx3x8TsuOFEFhg1rvPPvvs5cuX1trdblMUxbFricJstkCzDU0piLEChM2y7PT0fHO/NsYsFitU7Ig21thf/OKXdV09ffr05OTk1atXkCbAoXA4HOIo7FPcP2yholsVReSjtCsan865w+GAtQ2yIWOMiGeZxsk7DMNyeTIMN8jSnXO7nWuaq8vL5YRuD8Pw7t27p0+faq3fvdsuFot5Pbu/v8/zXEqdqRFH2O0ORVF88MHLvu9/+tOfPn361CWFDXBjGYtoPDgXlss5cs7D4Wg9AcGh1L9xzuWFBkyDwMVY5Bx6IEoIgf6BtUMITimUtO70dAV0FVVGCGG/P97f38OVaxgsKIfo+nDOibh5pFdprQWhfrPZQETu4uJiGCwOeqwEShWETsqqIQQlpPfeOIvd3Ta9MQa7MvJxHB5wMAatoPCJhM17P/QWmBfayYvFQgjRtAekXhgUmBhFqIPu7u6Wy+WLFy8wQrFanvZ9v9segLGCm+LSDP7p6Wnf9+v12jkHjAnkYqQxeZ4/vXzy+eefN03DpcA/ofcAlkCMsSiKsiwlF3gsuKP7+3vUSjc3N/gcCG0jpc+zktioopApIYX23seEEkzMv5CoPIIrkY3eFfvNfVEUjEc3CaKSjxiW0hoxTatRMxf4LMK1c47YKHFZVdVPfvKTf/tv/+3V1VWWZbN6IRKn8pvf/CYCS0jMoYkr5r0XSmo+Sk/4icojhE06S103xEf8MzcKbrwfzBVCgH2MW8OqllJixyHKoUUdR7PuEcJCFoqSnNIYYkhERs4FLlukeevdbmeNR+9kyiKAjUywJn4jNL6BFU5nR13XmFdgiWKVcAzW94P3dgKjGGNlWUZviQsUuaA9jTBrGiuPMWohXXRgy8bE3giB+HyOvPp4PELRqG3b7fYoBEkpsMJZQtVCoAkesdYK8X58LaTxuyzLfv7zn//5n//F6uyUc47GHsoWM5ius3luKXFi4HyDrFIl4dnHuARgq5BUFrXWaPr2fY8/4M/oIiDaIzCuVit0X9D06nvD+ZBlBT7wkfepQ7AVQgAmjjGuVgsseEAB0IxGgu3T8Dq+XwjR92a3OwgxUtzQwtFal2VZFeXdw9paC8TfeofQMa5nxtM5z0zX37Yjr18p1XWd9e709NQY45zp+z5Edzwe6wovy+B0m0oVJLRPnz59/ky8evUKbL/B9AiqIZEgLy8vnHNv376d8kCgPWiq5TrDVqrrClsDRxX+jAqXpclywXk39AhrnHM40xnr084KmCO5urpCBmitpYT2IHm7uloTkS5ygNohBKBJGCgBxWdqNpRl+dlnn/37X/073o/yEpS0c0MIKtfUkYyPKKUTkIrIMiXE9IjT6lkMPkL7Mt0GyICec47ieWRTEyml9vvtL37xi9Vq9eLFCyGE8WNxGJIlGj5cEBdcCj4W7YDzEtYZ7W8KB08+0d57xpLOo/fOOYwJO+ewzsZaNFGA32NtYnwWuLuiKLyx0/0yNrab0HtBKEHmN9UJyAKFENPcND7KJbUUBrm+SJGNTw8lik1KwSMgmOdSSlz+eJyEMXeZdrUQCltFcWG8Y4wwlcDYKN48AZ24yOmVsaTjPLKK5PtB0emCx6eaLjKEEMLIZX6MFBAFzgmV0gQlhxDgicfle3A5xsgZC0k4hr9vS4ye4PERAzomdMk9gpXpkRFlDIFD/yhGSl0K90hSaqpeplYnovzUd1VJ1B+nYEhcePLBG+tpdGXkyavHWopxXP8y8il+IeAyHvtRrActBJ5lWZbxEELKM1rY6zFOSiruzHDcVnkutbi9ubLerZanea6ttSwSS+8IOZ+1tuta1ACQEAJREbM2uKnlcolpI5nkopCGovWK4AIO0XQKYvw5MIpExjpBI2sYz4qSwAvewuhcHwO82pQS2CiPqcGoheq6/v73v09EMKVFwEJmOZ0KYxRLdXVM+lkx0czxg975yCMRRR4hMDKWmtb1XY+DQbIxaGit4Y46gYxCvC/gKWkbTc9n1HIJcQrK0zUAtUF2CJonY6xKN4j37q2zzEgpgwgTxCmT0ig2MirGccHLMajiqOBJqwsnHLpiIbVh6BG4P4Xfv/alsqyez7I8996bweXZeHoRUVQj6CmEGL2YuGiag9b6o08/+fzzz//wj/6IOC+qEpZWMZBznsXIBD8cDs+fP//bv/cHu6aJXBjv4I8nmHSMDTEEZ07OL7fb7X6/PzQHzXlMjtgsRGKM2BiIwQz31iE/iEK2dmCBSU5KcMVZ1xzVaB4y6DL7wfe/9zt/8AdMqtYYUZftYMqqsL7PFOd+fMsTyDueWM4Q2EcjgXo8j6b4hrc5AcfTiwYFw3adEAK4Q/ReSTlZeQzDEJwLnEs1RiEsY/DIjDFwT6LUzDBJRIyS8Qh4YcgOj/uRVhPQEP4bNH93m20rtqgoIDpRliUqlouLC1w58kjvvTPvxWEWq6VMzt1YjYfd9vLysmkaSF62bbter4nIxxGsubi4wA6dzWYPD9sJvIDCF1Jq/Bd5w1QJ4OFjlZ6enuZlCVgK5br3/tmzZ/hZFJDDMBjbW2vhsEyP+qCgh+R53rtx7gHssK7rcQ4WWQ5aZQhhs9ngtdZ1vW+OYOtM/BGc8uAmeI+jKjpncSINg1VKYeFwzjlnMWlkT+fRdHxIKXOpW9bGwDhHyzwsFycfvXg5DF2M/ths/+LP//zq7Wsi+bXvsSgKazff+ta3uFBfffVueSJAauj7wCU/OTutqvnJycnbt28Phx2q2chGp6yyLA+HQ9v0MbrFYrHb7ZyjkGb9JkwWN8s511KhqIZkwXjQKy5J7o5bH1/cru/qeh7JO2fbtr24uEAKPhrfk9BaR848RR4pUKQQxfuAafI813nW9y3RqswLIViMVBS5Uioysnbohr5pmrIsASA2TQOEAsCuthYT0CgwEN+m8+jt27dYAI/OkbBYzKz1OK0AXgDvgMv86empEALKfcla1nVHE0KApBU8op8+fXpxcRGjx/j2xJ9AYmCsx2mO03NWV307DEO3KJcscsm4Mb3pBwrvU9mUIcgpzxRpkhefC+gWgchFyyK/vn23P+5uH9bOm7uH29/7ye8+f/48sMAkY56895EY8xRDGB1hpxY7C9PJqJhgnGM7cCYDc/i3xWp1OByyQn/jG58ZZ+/ubw6HTV2WLNKxPUQetdbzuTwej2dnF8f9TmsN3DnJ73S73QZ8OqKArZHlquu6YRiUkpzzuq4QMwH1Xl1ddZ1FbQyPPq01hnyXyxOZLBYA6wNinpy9p/kkhIXjsR2GbiqJpxwAJSjKRdgnpAq2QeQ5HA6r1QKTtiF54u33eyjeEtFisVitVuu7e+hmYIz3cGjbdivE9uRkmZcZjgZI6wAw4lwCYUEzL8/zrmllkjG11qJjQUS9GaRWceQ1/w02vjHWs/LzX/3Vhy9e/P7v/z6F+Fu/9Tu/+Pe/fPv27fXuYd93PNeMscuLy0wXx7Y1Dw92MIvZvG3boqq4lCovGGO3t7cI+DHYw+EA/eIJtJ2QxyzLcl08f/78pz/9KdCrKfu9ubnRWnd9vyICDRNzykoJRG+l1OvXr4FAGWOgVlTXpdb569evb29352fLq6srzqI7OqGSACsjawcp5enp6fr+3jk3qxcouLbb7Wq18sEul/PLyyyEsNvtVqtV37doTGI3aa1Bm0X7kIjqun54eOh7X1VoeMinT5/ujwfU2KhUj8djOatns/lqdcoYm8/lq1evgGmyVFwcj8e+N4ftjjFWFBUy5N726SXSdtuU5U4ptVwuAWBNwMrhsOvtYrFYzOvapu4L54RjBQkG5A2Px+NEj6A0q3Fzc9N1Q1VVL168ODk56bqubfqqqs7PS0hUEVHbtsfjvhssHnie51lGX331TvJ3VZUDfxn2BuUJzvf5ctm9vbGWbm5usizDvBo6Cs45ZBrDEPreQKg9BMoyFdK4bVEUxvY8EhHDqUFESo2TrKPggHdZloXgJNeVFEyKQ9vMygqyGEVREI0ykicnJ/f3D5vN5vz8HNuTMYacwTkH3SRQSjnneZ5/+OGHp6env/jFL9AfQscOWAm+DYJ7Nzc3AArQ0rYhEpEztmfMGGPN6LCdlUWMsR16nmanQPK9vr7jnNV1idllSuNNuMdJOqOqC6n4bndsmj7LJCoIqKBi9W42m9vb277vIebDkz5DpHH2GvoP+/0emUAIFAKHPMJ0vgzDcNeNrndcjuYQk0ElLg9JJnbx4XBs2h755PF4nF4xgGmbtEYBwMXAXHScc+hrCT6WsdgjebJnEEn4KHiKNOKJVV0kErqJNI7eghMAfAbnAjJYAB0TIr/dboui2Gw2U9OLkqKUUkpnWdf3d3d3YykUPWRIuRTWOy7H/QsG6M3NDZizZVleX1+jppdSFlUFCEgIMSS7INQOd3fr9XpXVQq88jSckefJexPHDWiweAVd18XocVQBCHPOYZAf9wvu4/E49H2vpURR9vbqGixagKQoqENikiJfJaIYItyMQwjt0E+5LkuOUCEhdNbaqpqhxc4YZ0wIwUIIh8OxKApjbN+NEs9QJaJRjGvUk3TOaTFyBVBLJoWQXuVFXddXV1fee60lahCt+TAExt5DHz7RvNAOQb3JiDvnIkWldN+3wY/4OxFhiyHhBG6GDLwo1H5/yDJNo5zCKMOdZRkk9etMe+8BJW+3D6vVoiiKh4eHYTB4Pg8PD1LKZ8+eYcBRpGF6SkU6kgR0I9CP2e12dS1BZxZCbDYb9JkmcScQgSlNmXv/G0TG/X7vHOV5Tj4oLmQuMXBMRHle+lFQQeJUwqGphdRaN32ntUZSwRgzzmI1+jSwjpWplMIcKg5ioZXQSvtJsGJEw+ezJdoVCV4YbxkX2XUDTvmz81Ob5LaFEN5bnOZSylevXmGRhCQVEJJnD4aikPyr5JbJkn/D9IFTVybGyOk3JvM451C44pykVF3TThKL2P5SqYuLi77vrfdN08yXeaZE3/eCAwtSeDJ4EWVZnp+f39/fo1+bZdl6vVZKVbLEVGJRFKxN5AwhYowy9T+ZEILH9+52NqluTbeN3RsoEBETHAO8LA28xxgjH9ETlvgg3vvXr1//yZ/8yfe///1PP/00xihI4ARibCLwB865TNb2gRGJEcFVSsFocjAGPDUiCt57HyZ0FT1MY8zp6WlZ5oiYLLlq4ikQH7uCeItKKc7eT3oCklAcsSM+XmR+lGwfdcplUv61yekCXu3T66RHUrPT/40hjkBYiCGGkEYD8P6KPA9JKkVKGShSoCzLxiCecFghhGQj/pJ+XBJR8C5yJpIHAk41lgSmGWMUR8iGc04hgnD9GG4bQ0B6blNNPt1XfKSbEYKLcRRDwF96F6e7poSgjUgx/NwTmhlj8N5L8V72RCZV1ph8Pymh1RMShwOVJSmDCeaeWlh41/G9qi+flkqMEUcUzr+YJMi7rovOY26CK4leFoJ4Ws+cJ5Hx6V7wqz3nSP5ijHlexhgH44QQwXscY93R20iRAidGwcs4FEXWmu6Lr3795t31Z9/9XlFm1lrGqCjyPM8lg1oLL8uVEKIzA+qE5XKZSYXQPHGQwTnCg8Jf4uKRTk1HOMaaUPajLOzMQKN9gWeM2WCVUm4wMWmHURrgxd5UWhFxKSWPJKUOweGZI3ATUaTAOBVl7t1onIhVapIZxRRVpoabS3pzXdclsGmk3aEmFI8I0TENwqAOxCfjBSGySym9cy5iiOGRGG4yNhxhejbq2ESX1HjSmwohGGsBKVpvwV5RSnGiEAKQRGxDfJqWCirJnHM2KcmEgJKYkj44EwL6X6DYI3t4HBxC6rRhZ+lkviz410NaKi+++8MfffnlF5vbdy6Gza7Z746RUYy+yHJGFCLcS7quabNMCc5PTlbe+1/+8k9fv34dQjgeWzNYikwJcHvJe0vEfvf3/rbMq6E7RnRKzaAkZyESMc6lLnOp8xeffuNufW+MicG76FiEZRaxyGz0gWIkCozpNF3OObEQeSTNWaa0pOjskClFRIP1Mi/+k//0P/vGt79drRbbY6OrfHDestj7IfJovNWjCL5v2y4kes7jg2Z6LHiGU5Yck4kHLmPCqbXWQiszOOwFLaVLzdQyLxhjkRHn3MfYtAfnHOgtRVHYwTw8PJydnXFiph/2+31RlQCskQRj3hNt596asW3gxm4WE1ghX99C+ODFi9l3L6qqIuLIqPq+LetqumbEYdDWvB3FYbIsgx0fKhYhxMPDQ982ExymtW6a5v7+XmqF3bRYLDBlz7ls2x5PcjaboVxBUoXbKYuKiDgfz/ppEymlXAgQTHTOXVxcYCocqbmcPHLJExs7tXgFio+kxYeHh9vb29VqVRSF5CKEQCFyYpKLMs+J2KQaVhQ557xvW2MHznkuMxQkiANoY2eZ5pyF4K01ebK0jslAlXPu3Di4oJSScvQAsaNL1dhGEkKCCmFdX5UzpdTx2AyDXZ0sjDHNYX9yuvrhD3+4222+8+3vvX7z1S/+6b/52vcYAulCf/HFFzor5vOSiJwNgQJxNpvNXr16xaKA3dBo9+pHIammaR4eHrIsq6oKHZ0nT549PDxQKq2llEPX920nGM+UxviLTzr4ZVmiV1HWtXO+s+bf/fkvv/nxt7qu4VwY20fvo3fGec4JOIWzwXuf5SrGSCm7GIMSdkQIjLHT01MuyLlw9eadc64uFp9++qn1xloSQlxeXmotEWMn6GG6Zpw40P2oqooxP3GFsDiTMGt8+vRyt9vt93vG3ncjcDSjsIQfUV3XEF8mojzPgVihQt5sNjHG5XzRt52UkljIs4wxJqTEgsELEkL0/cAlk0p0vdtut1VRR8kvL5+cnJyEELtuYGle3nsPMUc2fr1vro+pIKMpYWaCGOdZnjfNoTPDw3bbm265Wjhn/vKLv9o3+2eXz87OzkIMPHKQsIQQngIRRe9HBFMwYgHSHDF6Ih6d95GYZExKIUSu9X6/Z4IXRbaoFx+9/NAH9/r1F++u33gftcyIBWNMZBQCNU0DchBjY7sIc8RS8mHoGCOIMAghlssFBFKxp5A14aFh6D7T+ng8gpCLv4FKADB9nONQSdZaG+OybCRtTcc9SqNhsF3XUCpc0f0FsUsnH1f8N9U8bOQ2JnpXWZZv3rwJztd1vdsdEaJBZH727IOpoRtCuLi4sPYqxuiCny3mRZE9PDzYNG4CeVZ4OGNNIicUjDD2e3Ky7Ps+YKPFgI51nuebzUa0xddu//1xu4uH8/Pzq6uruqx+9P0fbJvDz//sT//y87flUpeL2eBDVhbOBkYmOCcYl0WByvn58+eHw6EdQAEeiYcjL6wztzfb5aoE5pKNlnfbruueP/2gbduqqm5vm77fCU5KCWM8MTK211oMppvNK6010cgqjTHCnzPPc+9tUWTD0P3qV3+pRj1lOjs7a9t3VV0opR7u10qNbl3W2hDcUYqiKGazWZHn6O68fXeDCHB7e6u4uri4QIoFNhyWBPiDOCbW6/Wknt/3fQj07Nmztm1vb9dSim9++g3O5eVFvdtvoN99fn5almVvTZ7rq6srpdRsVmHJgWKP1qlz7s2ba9PRyUmOaN+2LVaO9362nN/f7G9v787Pz4BooEMmpczKzIYSwu7Pnzx/+vSpUup4PGKgJyReJGSLbRrNnlxAZrPZMNjj0bXtbuhHagV8UGb1ggu6u7sDyy8Et1yuvvXNb0KM9eOPP9ysHwBZrlarrhv6vo/UnZycWONvD/f/+B//kyovzs9OnDc4oLE2yrJ0zhhjlMpms1FECyrnTIj9fs8FKaWk4jqrMSOFLk4IDqxPhETnXIyhqirOR4jNJctfIqpyUPsD1uFstijL8uHhQYxzhwTwCGgIY8ImxWTvvdb5L3/5SyFEWdZFUTVNMwwP8/lcJFGIKdEtkrVvjD6EUJezqZvCOedMMsYWiwVEZnBCmRix3jjnzpFScbdrrq+a1Zn80Y9+VBTF559/bt2A83HCtrTW3/72N4ui+Df/5k+dH2UWQDoGYbxpOmPo1av1YiEvLi7gQunDaEmFJ9+2R6UUujXr9TpG4R+5tIUQWBKa8KNeuYDfAPAgMJCapuHEzs7O9vt918O+b3QPBo7mXOi6LcrVrhvFLkD5zPLxjFZacDZyvxIQORqby+Rl7RxdXl5676UWWZbtdjtj+8laA3E7xlgU48QDEQGVA2TvvJ1i+O3tbYwRKCQlsZdhGD7//EssJLDRfRirGJlGNvHomqZhQp1fPp1VGWSppRxL1MGOiB4+BBcAcBz9Y0jWIaPAtSmlIN4NgAK/DgEThacaJ5xmUJlAOMVvwbIBejAMQ1UU3vu26fGxfd+7CI3pIs9znIn0aJA3WDeNvCCHYew3xhCVUkplaK4QEUUWAxGP+ExjjPeN9z6T2oRxwBf9GP3IlXFsydCoJQBpuxgjjoPAyDn37Nmz3W4HaTV0NeDhHGO8u1tXVZGWvcBFxjRaFUIAb10IofWoASClHNL0LWMMSChjjElRloXZbkMilj0mZ4AGitwoz/PFYrHZrNEZretaiG6aw9tut0DwlVJllneh647Nixcvqvlsv983zcF7D6rs8Xi8vb1Fn1tKyZhYLBYPDw8XFxdffPGlsdu6rmPCeaZKcKo+phJbCNf3fSZVjFFIBVgDqIVOdjjInFEZCWJ3d3dcjdwd1PXplXnsX+Rs+HUjw08r3P/ErpuQDcAa3ntjnJRSCx1jJDYa6njvyzKXUrbtkRKFUSmllJCyfHh4aJrOWprNJKiueIyYPUICo5Qqy/L58+fX19eYnpmo38fjkTHIcYxOtrvdBmkY8qsQAmOCC5KFGJLCEjpnp6en1lqlRd/0nPND04Cegp8lCs45mY2ds6nrMHU10ADe7h66vmm7I9PcONO2bdPZh91+FutMq8gZHql0gxkojmW5EBHQI6OQNhg9kqblnMcwko5tkmWg1PsiItwACiroSd/d3eGwx+5lCecNiWU9ws2JdsQSjswnSyjG0NoNIYygZprFwCKA7hL2GCVlQJYgS/j4TWsU6JJKYjQxDdgmBHbcY4i5MrntTRVgn+zXx+unEUqetjdEMELSyoipQYFMZcLi8V8hBAcpLKlPgPEuGCf2fmQY38vi+8+JCR2enqFIstc8aS5P/zq9ESIi7ylhedMTjv69sMb0nTExNENyF+TvqeX8fUkmx/8lQVMPYCrPcDFSSueCMQMRcSbe9+LSFcYkbouVph8JZUyP+lERyKYK0CdthIlxg14xS2IFlOirMgkyoLuoxgl44RmFGIe+n3qDwzDAoxMfniV3Ix+D844xwt9Y6733kThR9N5rmU2LOVKI0WeZ8sH6w5ZUtr6736/vv/PNTz58+dwEUiLPsnw8osII+rsYjHExRpjYdl0XpAP4i4A4kVamTqxSY1TFF/7eJaFtLIO+7z1FcKU550qNgmhoC2utqzQvP60KIQQXCt8/tJ1zLsYxrcELdd6ywIB5MeJTQ88nv4hpBscliX2e9PinfjWK4eVyiRRnjCrWTtEGN47VAiccpKR1XWMSjXMuiLnB5BVMBhxqbCUEUPiu64gLbFii31BO50k9nNKsR13XDAh1imzee3qkAC6EiOM4wXvriZhmHd5HnhC0lEN6cTH1dScA1D/SqMGnhRAk54ze6w4//vIUX37y6Q9+/OM/+l/2g7HeeONGyl5e1l07SCkpRMnVZrOz1hJjT58/2x22V+/ecilcH8JgzGCk0FJLyeSx23POX3z80aeffdo2vcoyE+zhuO/7vsxzJXTwwUZGjHsmuC6+9b0ffP4f5M3rL6MLSkQWIovEiDhjHjg/kfNOREJ85pznOoshMO88BSGk9cH7mJXlj/7Wb7/8+DNPqmmddYxC6HvrvbdDUxdl8JbxUYNsanrF3+TIxzTcIIQQjPe9cSA+P4pXeMKTyrmnSDTOeeAtBOfLvJBS3t/fRzbKo9/f3+Nobw/Hs7MzFgmssZgGC6YBOpzEwDqJSBf58vQE5B0RaEzOtIox7sT1n9Iv/uN3+vTZ0+x0aa1lTHjvN5vNw8P95eVloIgzFGujaZpM5W3bgkm6Wq2i4JLz9XqNTBR1Aloy3vuHh4e6rp998ByTaEII76NSWVp3Hvg48HQ84f3uAJ3WySOFCFONMjIWYrSpijPGAEpGA68oClSqzjkhmeACXOxphTvG2qEnP4qYSym7rpNSSynz8r2/hDGDc1YIobUC6ByImGTR+/1+6wJxztq2YYxJidpsVHKcmsEuifXHGIXgzk2WEqMZKU/SWERkjB0Go1Tse2OMIUIZBoEmwVjMlVTLubXDcrlcrVY3NzeffvIt+duM/uTVf/wesywrdBEZ8zG8+PDDsiw3m02kWBa1tc451x6P8/kco9wP2/VMSeQSo7CJDYKHYRjKsj4cDrPZjKJtj40QIiiF8mZI4tS4394MbduuViudZyGEyEgoudvsnfLGDXmed02/nM3X6/Vmszk7OwNHSXAFTrrKJCPyRJKNPTMXA8XY9h3xUQjYObdYzIi5m5tr7/1299B23TAMWZEjqDLGlosF0AqEXCmlGwYp5cPDQ1mW4MeFEGazBd4OmEeAlQFApMNaE3EUe0KI6+trIkIDBmk3VhoqQ7SCIJV+dnZ23B+QznVdF8mPB71S0G5C9NBSDYxxxgLF5XL56qur9d3hxZOnT84vtFTcQ8RsvIUpKUq99vcBmf0GQ2QU+hdCOO6MN3fr2971eZnrKrONOTT7239/M1jTtIfTk4vFbOkGzK5ZSkczFF1YCBRi4OPpgCzMOed95NY6YzAKnams73up1XJ58vHL0DXHm9t3fdPqTDLBbd+D9/Du5ublBx8IJVHFKSVAJzfGzOc1HiMwwa7vszxXWjOKIQTIicLFC4l0CGGxWCDkws4Bk+kh0H6/92mgB0ZAetT61M4Z4AggLh0Oh8ViBdQAHDrEWNSWCCYgJOqkg98bixR3sViE4B4eHq6vr3Od6TznnD9//sRae3Nzl+c6z3OwaANFLoWPQXCRFbm1ti5mXdcMQxdjhPDC/f09IPWuGzVYcRd93+Y6w/Xf39977/H9TEhcUte0Q9c7p7/2aIYTHfKiP/zD/9DsD5/PZ7cPD8VMRsltJKalObRcOPRUtBxrB5Xpq3dvhRAgT282mzzPX758iXDaNI3WvMgrJA+LxWIkMIawXq+hcfnNbz67vbkHFDibzfbHkdqf5zmwvLquN5sNsJL1ep1lWZYpxkYjDYRTlDkXF2f42YuLC2cGqKzcre/3+91yucBJaoxx1s7n86urq6btWZJFIk+TpC+appMzJBFh7U0YpR0Hh6nv+x/+8Icffvjxz3/+89vb+8vLy7ZtgyfwOiGc0jRN0xwYE217PB73SqmnT58iacdEdl3XL16Im7fvEOSdHQ0YvPdd1y2Xyw8/rEIyBhyGAUzV3mZQuU2jq3y73WAumLFsu90CVgZevFqtmqZBWk7EWeRd1xZFtVqtYnzIdIGpJtwvYo5p4fEFt7pQz+Of/Omftscj5/zZ0w9OT8/Pzy/fvn0LawTvfVXX6ArYMNIgsiwrREZEoGpOrWUinmUSRShLqon90BIL3o/rnNJ8bVUVE7wIqMVam+c55xJmZXVdAhYEWImfDWFkOF1f3zZN9+GHH0KVpa5r6APs93vAo6CFHg+t0gIpvZRyvT4Og51a5saYvu9R26LVhMytLMssU8MwAPYd2y0xhBC6vttstk+fPkEoxpPBwIHzpigzpTI8pX7RPzwcfvazn33yySdFUbijwZaUUkLRdbfbPXny5PLycj5XnHPrBgAl1lpwq2ezCnDhyclJjBGEytXJAs8khDAMHb4B8xCgfmMtTfeihH769PnHH3/86s1Xb9++xSublP10kkBkcSQD9oMFPDRxNsM46xyPxyNR0FpmWYayDmxrWHdATwZUA4y6I+MFLgEQE/DTYM1w6BDqdTYSAkIa3NFaV+Xsq6++sjaeni5wqZCXRfBBI2e73QISjTEGHyBYPAyDJ5ZXZVHPlBKSC0EMDS2ghxPqwoSQUrdtK5iXUva9Wa1WjLFuGBLJjAmhnBsV82ezGZ5/loF1lFyXk4Q0esyP+WQTS7eqKsYi2oo4vLIss9YDv0aNjGpxNpt5F4WQTdsA7N5uD7pQZ2dneBfDMFjr5/P64uICXXMuRm0QpdShbUDeYknzinMOMAQ9jLdv30oxChr4ZF8EuD/GSJE/dqujEWgawZw8zzOp8A1EhFoeWr0uGW4VRWHtgISQMTb6nDP27t27tu3yfATWAfJiiQouQwjOp0EHxfI8R8Pp7mENEgm8goWAE6YSQqxWK6SLGOuE8PHg7HC0lCbI37x5g3YswAqMgQK7GAa+WCz6piUfOOPTTFvbdkIr732el1038nlB7MXcUpZlQii0bYwxUgqPStw5qGanNGkcd/Np7jz1wEZoyCV7MK3z6c9CCO/fT6tHxnGD2Fzn5+fWWibe28vLNExQFIUbDA5BoRVy4NVqhTxzvV4XxUie22y28/msrmtvRu0gF51LsulEwTljTD8B3PCtADlPCFaW2WIx01pDT8YY0x4bUNyklLAy/vWvf73dbs/Pz7EdUuUrTk5ObD90XVdmufHQS/SoyCKb4FYWgkOiSyGipnDecMHIB7B1UWbiHFwulyG63faAzdI0zd3d9uJihbnMGGPTNFwQTKentRdtPD8/X+a+G0wdqhh8LPi+awbbSyEES7zFqWgPaIvA+jlhTFOdgJc6YTGI8thUWA1qtFAgIcTHH3/82WefgdVCRHlVTuXoVHBKxie0NIyCBnbMen9TpZeNvOmRUY+NEROdGUUjduCUNFMCL6YA7dPgsE0iREopBmO3hMD6ZEakk4QQSg6VZDFH8IJ+Q4CPJcowvic8IvxOD0qkMg/PHLLB070zIRiNg5/ApIh4jJF8iOnDp9Iad4HFlDJICXCEJUw5pmMGj4sxEBNpOhgmoHmqpljiC1Pqaj568uD8js6ERMQo6Z8ktjuiMLp/E8t1ei9TPy0me8MJ/puWGf7Mku42JaCZpyGmKYsKfowdPmEi6Jj1yUYPDwQNz+k4FEL03WhVETgzxhhr82Q337YtACyZdMaJiDjDcP2srrXOiMgYNxgjhEIWQhSs8YzH5XKZ5ZpTtG749a9/ffj1fxBK5tX8ww+efvrZJy5G4yyT+Yjz+xBjDOSDDzFJ3aNWjDHWRQlECQt4GjqmhGwKIVSekeDejAsGowPT6xvJmNZSmunwySfQOTNSuigqxqfdge1Gj5werbWMJXx2LJTJGLPb7cqyzHQ+TR6FEObzZZ5rnNzTK8N2pjShD/7LlNVha6OBTEnCZdrywzDkealUdnJyJoQIfmxoRyLMra/Xa2OHxWolE9ESzWc2EjOjtXZoO0BjZ2dnIKdPUQK/i3F6v4oYQ2LaNI2x5hH68N4sdBr+wBp+3EnCHygEOwzYkgwTD5wLKd2E/HnPYuRCSCEkVv7fNLHLRDeYz77z3atXr1598VdVrpVSx+MAIvYwDM4F7+MwDPf395vN5uz8tGmP19dvoaPHIldKr+arPM85k4PpiIgx+vCTj/O62rRN6IJQvD0eiaIdGBMhRpGXs866fhjyonj64iPBaHN32x8P3ns50iIJ4SkiyiGhioEJoZUiTWHwrhsMj867wbjVyfkf/G/+s4+/+a3B+UA8eFVmRQhB5oYx1h2bZrO7PL9wIZloKYWAgGjGQEK3FvtaidF52TiPQgiPdIpXPuksW2tJ8KG3wzDkeW6HwZlRSM45t9lssixTmUbBiZptAImpqlGW4J9A5ZvP51IrKSWW9zgEQzEkLTwZhdbamL7pWhD5v/aVXr15G2ntnMvzEvU8ET08PBya0c4YNBzvfUc9HjXI8lzwwVoWIwaXpJTRuykGYt1KrVDS1HVdVTNAz8gtMMcH1/WyLDkT6NyANUZEGIPwPirOYiRrMbA5eraIND0wzkBASpWP3txIkvCBLg3ZmGBUnp0mwoW3joLnJJ0LgRxjzBnjYxyHf1nIsnwYhuBjZDQ4G/woUoxfjSxzt9uBt4KthG9gY7N5pOZJOfLi7ThcCbsCcs4xJjiXwzB4FyNBP3pAft/3PWMkOak8e/32dQg0ny11Xr148ck7+hq4mSIfhkGhzBsG731W5ER0f38bolM6q2uJxTYMA3y98AqQpgP3v7x8CvDLOZdnozejS9bwiKUyiTKj+EfKq5Sy5HlgwPJ+9atfXZ4/+eTFRzgO7u9vnz17liu990c+qvBzjgGSEInGMQKKTAqR5TnxMeTiEHn+/LlScrc5bLfbSRJ6s9k4Z8qyLPLcGPPw8IAyEoepTJr4jLHjsYmRVquVUvV6vYaVUAih6xrcC1C/qfQahqHrImyvQVYCBg3LAVQj4FOcnJxQiJ7ckydPYowwOxoGA+KPNaasKpxTWms/eGutsZ44FUWxWMwOu+NyuYQtHtngXBiGAaRmKSVLDDIiaHrRFEymYxEpMQLUzeb63bt3PjquRF7lgXxR5ev1urf9l19+fvPu+rvfikWWOx+00FJK60fvUMZwLCBLtMSEECLLKGXXY/Z4aA8nJychRjcMXIoqr+gkzOfLTz/+xmsp79a3i9kixGi9Y0xcJN9skG6qCo6gvdYSAAfiIeccfnSz2YyzkV0B5WVjbIxxv9+/ePny+fPnX331FfIKYwywS60z4JhAcl+9uhJCaT2Wx3muJ2KgT9NmkM/e7XbTb2FpEAo5hrUWHSkAYdH7NPkUYoyz2QzC7owxfBTQt7IswUzHTLS1dr/fSymBXFg7ZFm2XC4RKEDTllK+fn293W6/973vGWO22+1ovE6E0hEQJBEtT1Zg2aMVd9LO6O3X7P7FYtHlvuu66MMPvneptPjy3ZUsc++DpaAyrbIiL6quaXe73WqxEGwcv+Wc3z88CCVzlWutvSeAwpS0UAGZtU0vJEOvBSsQWDMRlUX94sULXIZSSigOqmk/tPf39zH6p0+fgiAJGYHj8TibVXVdE9Ht7S32oBDKWnt/fw9J7levXinB1+v12dnZ2dkZDOJA2mrbdrsdpGzxGFnSG+x7czgciqLY7XbDMAjB1utNCOGjjz5ijF1dXU1s9IcHe3ZWFEWmdQ4Biu12n2XZ9fV6GIaiLCcNiroud7vddrvNc10UFWNsNptxzsuynM/nm80GL50xgeWBzYvs0Xl3OByM8SE8nJ1enCyXTdN0XQdx6qzM8DCx9p48eVLXNTqXSGw556vVioigpwliBIg+WAxlPfKsAUZDMRwwOo7IED1jbLFYbLf7PB/JOFrrh3UnxW1ZFIgeqMxns9lsPi/L8ubmbnA+Rhr63uYaW4wxVuaF4KLrutY0QEWHfuiadiIu6Co7OzvDIeica9uWc5rPF3FkEI/Eo6qq3GAk49Z73L5zDmw72H3HGHtr+mbPGONcHg6W6PDLX/6ya+3qZIZOGN6CUmq3O6BCkULP53NEEin5fH4Mgb766q1So5B0nucQZ1gul/v9Po4SJRLgKUoDmKMYZ/u+p8jRwrTBM8bQK10sFn3fDl336aefxiCur6+VUvP5vCiK9fruzZs3WZY5P+6akdVrzHw+//Wvf/3u3TtkcTZZCuGq8LiMMejlQNncJz4s0DGiAA7pn/3Zr7/73Y9evHjx+vUVOPvoCsTABOeo14p8rC6dc2g8aK1xj1prChGERGM9lCumM8UYU9dzzvl6vVeKMPCEVaqUCp60VMv5wvSDdUPfh6IgpAFo8IDB0/f9dnuo62I+X4akIOe9j+SbrgOMo7Isz/P2eARj/exslWVZTH5MMUbGIxY8kltg5U3TUOTeewzCC6liGoP2zOe55hj91BqYiZQyEJEHyWw8C9B9AdfB2lFzCQiMEErKEXUpy5JzyZLm0pRj403Ro7FpULV8IrMbM7a7gBi0bYvZXBw0eZ5PeXjwPo6izzDSZEizWZpwwhfa4V3XzcoZkZtKkpCIlUIIpVSWFcgttdbWuODjvjmUZZFlmeCy7/u27fNcT9UxFJzAxMIOUnkBdLgoiroocXbjF00upvjy3iK5wtvs+3673XrvT09PLy8vMT/hvWdsBExwsGY655wXqmy7Bkk7V6B+x2k8GrJIQojT09Ohd85btB9EEgMo6gq1zDAMaL0ABGfErWvxHg+HgxBiuVwaY6wdJOPg3+Cuz8/P1+uHvu/3VwfcFBSKYDGN28ctQwXl5cuXEGzRWVaWZUwtvUewEgtJ/wrBEH+w/YDEzAsQ5AvsIxBenXMY/GoPRxQy3o5sMBy7grPHJHoWCeEI1m6UlMRvb2/x4yBBY01OIvKZzJwLRME578nluQ6jPdh7GBMtk6lcwvNfrVaRLLqt6AMNw7A/HJbLJaIWNjV+kdYacza73U5x0R6OeFlgOo9Ac4yMscEM+HGcUNgjdjDee6lG/D3L8hCCp1hWeVXOiAgMJ0CgPpltLJfVYrEwxoBwzQVNkO8YZpmHW3hEB8VnZuiXp6fNu957P/LqoYORMHiaZvaRW09Y81ixJ2G+EMOE3DMGtY04VfJpwP8MnJeQSLITCDVBA5GLEGAYSFxxBJcRL/cR6wxnPx8rAT6BiX0/TgRYa2ezaiIB0SOxrQnPnRDMmChy0x+0kDiz8VGUEGpkohjgckl4jpJzFOdcqFESHtvGDuYxgMuTPrVPVKwQgpLjSO/EDKJHA/sxRk+j/jLRyEX2qUoB65kmVY1E2p2+4TEYzRgLNAZ33Eg6V/j7RxTeGz+GRMd+HNlxnRPSba2FtTRetOCjyoGxvUguVSz5mOEPwIVjCC4GrcRERksFHsMemFbF43fHJkFneo+qM8ZiYEM/BhohBBNCCqFVThTbtsW2Z4yBshqS+21MSknkwzh3UxZ4F5To1dbaPC+IArTtiShQ5IyDszChrlme50UVwjQJS0WWZ7mSjLq+LfNstVqVZd4Ey4mdniyefvjRbD47DlaorHfjEw4j4zj1WmicO5vWTEhMAfwNmAt43VjYgVEIoR36XGkEygnDxXXqIrdNg0OXiCIFm4AMmUTJ00pjPOm3BsZwIvJI04vAK1BKSTWegiEEoAPTAsaZgRRfa43DSSYVGqwQkXSl4bqLjYzVBKRjch/iXA6DxfmKL85GFnOW52CsSCm5YM4Ylcb/KYT5fA7WRjcYxhj5AP0+pRR6YnjRQsIRKxOSD8nOIjhnrcWhNXXOsAilGHMRlhpaManoTt9JicgMVAjbASGlqiq8Wv6oIzU18NCC/o+/mr4Th+Nytvj0s2+2h83m/i7TBZ9zkCCabsDsJMoeoeRsPi+r6tg2yJ+0zKqqlkz2nQlu8OSk1FmZffTRS5VpZlnf93EIWaazTFGMfghZNtJUdV744Ju2X56c/vi3fvvP/+xPDw9vYxI74skklYXIuaAQiRHjHOCz5EJmmXVdJLZYnvzd//TvffjpZ9bF4HlgjEfmBtt1XZHnwVp7HOZVGQcbWGRi1C/CXoPOl0y8S2SQ6Mn1fR+IeT8aVky7BmkBTo1hGGzwbdPDYigY1zRH770xZrlcvnz5cj6f92Y4OTmZLWfYDoKY916wUQ4oJI055H8P2w3yHqxwIUTTd1N4CYPPsqw3g3NOKRHar4ebh75nFjPdo2AckrYiy10YZYK89yySsQYEFjBNImNaa2fMlN9HGvVwVHJTwKObzWZIZaANLZNLBk6isiwxl4AUtixLtISn+IbDGh+V5zljhCwHKQt4DV3XGdsD6wzJbNAmgTPQUTGMj1JQKUVDGODCyphSmc6zab9wQTFSqiuoaVqllIsk06woJZkRlIt4Kc5BjDLw0ftOeOh8uaC15lJwiiwGF3wIiDOqKDQjAetza0dsa7vdLhYLzhkXpHTRNIc3b95cXDyp69p7OvwNNp773U5f6rv7e+M88a2U+vT8DHITxGkYBhYYCGIvX74kxt6170DtxLoyw6jXBK46T5r1iCR4qiK54HLOLy4udocRh729vbXWBkGaK50rxVXTtW/evPns429kWSYlPx6PTdOsVqu7h80wjJw7JBvBjZKLMUZGQamciAIjIUYvWWsNbUavFSmlH1+QuLw87/seJO4+OfGOOWGyk8VaJaL9fv/VV2+fPDn/7LPPwBVChAd14uLigk066ckERsqRfY/PwcJAHIOs8zAM3jpU+Gg/PJoMIxw33vvlcnl/f9/3fbRMCPHu+r6e54yxsiwFky9fvgSee3t9a5ohxig4hxXzdBQSUYzvuQLvM4E0OIx/ev369ZevviCKutT9EHiAiigtFovofV5m64c7b/35+SXLWJ7nJo0MTr8IB4QZGQbjOTidOCxE1Kg6K2DPVejiRz/60V/9St/evkPNk5fZer0RSvoYKYluoXOmtQZ3SSXRPSSBCB0PDw8UA046zIDPZrOHhwfOuXfu4eFhqlimHJiSkAtMI1++fG6Mw7vI87xtHZq+IQS0VVAYT70TrTV0acMo9CG6rjscjirJRrtAQinkqxMqXeYFkp+7uztrLSZMcUdZVkxjScMwfPjhh8ARlJph6eICAP3MZrMXL54BrMF1ek9VUUopgYhdXV2hOm2aJhVBMsaYRLz/+leWac65YPTJJx+tFot5Pdsulu9urjmzPDIXKDo7m83sYBRXgkmMpiqlAkVIM7HAttvts2eXIJTd3t5iIkEphbhkbH96egpil9ba27G0bkJDRECljTF5mYGO9Or1FoPV+/0ePh8wpfj+97+/2ayhi4K1EUI4HjfGuMViAakBa23wHujwdr9ZrVZgP2BS4fy8rqqqLMvd9qAzDRancy2CMGY4DoedlHy9Xn/wwQcACnEwaZ0rdby8vLS2k1Lf39875+p6tt1ui0KmatzhfYF9nJUFUbDWQ24yhLDdbrFIsPGncgC6wxRHqeum8TguYozdMCAd5ZwzOQ6L+DQrbYz55S9/CbOEYRi8j1jVaHFBD2Rez0IIk+gzlwIKAHU1su2892gG8DRcj9h+eXmutewGm2XF5dnlatlAnQPF1GKxkFIej0djXAhtXders1NjzGHzYIxB4yHLMkhP4LxGwQKsB4CF93HXbvGrscv6vn3y5ElVVdfX1zjcwYR1zmGMHV7Q4IYT8a5rJuV05wIIHDGy589Pi6J48/qtMYQNhX4MxFLKsr65uWEkTk5OAPWC1cs5FUX1jW98eH9/j/eCvLdpuuXSw0vAObfdPrRtO5/PGWOcRu8l5D+cB2xnHA1KqeVy2XVd17Uxxrbv95sGdpFofr948WI+n799+/bY7PPkC80YaxpTlg4wDVZvTGOIWudSSgDZmHI4HA5CqNXq1CTXuxDC+fn54bADrHNxIXDeTeH6+fPn6/W6bXqu9cPDA4ZCUErMZrO3b9865xaLBXIMChGN1cPhgGkG3CwyJRxhzjkhKM/zsqy9HzWLnXPWDMjQjDF2MMtlqbUGsHg4HCihSN77YaDFQhDRfD7nnLquM8aJQKLvAVRB1AIGSADZCcOv3kNJPNej1SRPRnnYIxS5d85jUpCxIWlVYTjAOAeFChwW3TCgnQb+IytU1w2bzabv45Mnq2EYgI7wpGh0enraNAck+dZaIo/lHcJY6mKb45BCR2q/38c41l8i1V98lBQXYGiVZY3DDrk6RKWcc7nMeIIpQMgdnMWMDjJPjPKAKM05l1wej+Oq4IJXVTURkCegreu6oTchhLYdYGUPQ4u2a6Yqsm875OTTyT6WKuO5T8fj0XTjxB6AVJ7E3w5tA/w3BIcEGJ0kXAYI71hgZVk6F3CEIT32rj09PT09PV0/3HddUxRFrnTTNM6FvCoxLpYSHiiMB8YZFhXOaJW8jnjiCMdxdkqZobeuRVIHyXKAztPLneS/j8dmepsT1tQ0pmm6qiqQ6Yk0EKO1vri4ANNCSGmt3e92XWc++eRDAHSccwygYwvg+09PT9+8ebOczXHveVUigYKx9tTDOByOIYRsVBaKyF0ROhaLxf54AJMMO5RFQmgtdIZ5UONd0zQgjoQQcOoZMzZXJvxQSu2932w2WSmFYMDTnXM+WJ3JEDzUtIHFg1sdI7u+vu76QwihKmdYfm/fvrXeo94p81GGCNeMYUEpdZ7nlhgiBnvE7RNCWGuQCSC/AkMck16QNECnttDZ2GthvCgKKC+LpHFXFEXXddOfEY6wX1D2YtgXrz5ICp5FH7yMLgzMUt+1zdVOarlcLiUFFlmAarNWkgTHOyAimUvGmI+BC66VCiH44AbvtFbAVY0LIdhMYladooe8ro9RxBhD9MFa249hiyvJOdf5KD2OqqCUFafR+YFznpWZEMr7OJstQGGO0TlvfGCMMWIycs5JcC61HtEHpXPEIO89/Oh5koMYAW7rKMYYiAJjnBszcM4tilsfEsHZizz3PgRGiLBI/SNR8F6IseQLIYYQH/Gn+ITzskgUyQ5GKDGhb96Peh1CjYKAWivGWIyhbRueJnynD/HeD0MvpQzBc46DjZAF2uCxXbkUNIqEgBUrheCMKHg/2iKFoFVORN7bGCNngogLoQZjmIONEkXnpjYLLoMSjgP4g/NRYZnGiWyfMH2PHGsqiSWTQ9cNQye0whsBLDJ1AhljXIisUPjVwC/QBANHZoogRVE4mBskhZNhGHwYq45xexARkQAd3vu+67SWjCshtXWubRuE8gnoFMQiLF+d44zrTEPqWnAllBRJS7quqhgjF4LxWM1Km2w3gxvjo7W2LEpw64CuHw6Hs7MzrphWygUfo1icztrmGGLkwf76P/zVrMiVHb732z/Red7b6KJyXmQ6M52hGHxgMJENIYTAMimAik5Uo8PhkAys38diZJAodWzSG+KMz6vaJ2PfCc0fxwKcL3QWkuQ33CSMMTEqQcL2g5QSit4uBu9dbw1qPCGESo6RWJ+9NUqpItPDMPhIKstD8M45B8YxJ2t7RMOzszMYqQMMwmbEiTjV2IlH4K0dnHOeglTCkQ0sRs4Co8iF91YqxriROnBlYvRhECzGtmusa//of/3pfD7/1ne+i9DsU3fapIp9fzxSCDgOlZbee2OH4BNhn78fnOGcSyYojmoqSqnD4SClZGL0xws+hkh9Nwy9EUJkSptukFIGYjovnLMR04jRaZVzzqXWXCrvvWKcMWaFBf+RMRYh/Za6VlLKsVnPvp7dLCULFJhQL19+9uVfvTru+kwXdmiFjM71UsUQmbFDUZV39+svPv+rb33zs0IrFvnJ6tw4q/Ks67r1diOIZVwGY42zH33j44+//b2eS8p5oetgHefc9AMRaSGs7XSmNAvBx3JWD0Poen/x4WdULN/++c+u3r7x0WaCYojKO82YFyxQiIJzLlgkFpxgkYkQyBe8UHn227/7k2cfPdm1ay5K4jrPS8GEc5Zz19s9Y4zlrLFD77zSLBe5McYMQwxsGIamabCXsXKssy7YqToNSUkZ9Fjv49SSyfN8tAAkfrLM8ydPjDHGuflynnICOZvNoCkco++bLsZonI2TnGim71/dNU2D38UYe/XqjQveOUc0tgmtte3Qj+PAIcyrqmmaGIKWQkll/oZ36ikUmVaZlkmNSkgeI3Np0nm1WjnnvPdVnuEvda7A+smL3CkeY+wPJpNSSU2cw2QsUoyME2cQ72OcR2dijCF45yjGCAIyzpqi0Ifj3seodcaVNN5ZCpwzpSRK6xiDlAKjrCx676OW2jknOVFwzWFXFEU/BMDugAu32y0R/cVf/MXV1dWHH374/e9//+LignzAvZiur8pysVoRZ8RlN/Se0fxk9e7qrTdusVhQCIEihDuznIEBYYzhUlhrfYxSiDLPcayEEISQRCyEeDgcvTUxRq41goBz3rkuz3Mhxs4uCRrsIKW0tg8hlJXu+14oSZxVsxoRcjZbDG3Hgyiz+gff/ZGUsjkcdJ7r7OsBp4v5h2+GdemJurbtj070RnW8zgTnKhPWm6EP1XwWnBdSWmNefvCh4iKE4I0PLkqu9vuj1MrHKPPMel/xquv7oswDC1JlxhgHybmstIPJuJ5ndUaKuaCE/N4PvvfmL758OGwuPng+WNMcu1+//dVnd988rU8osIf7zVdfvvnO97/37Nmzm5ub7njgYZBxYa0djA8hVJVWSrngB+vLTLPgYgicojODkGy32xFFKTKplOt7Y/swhCKvcl3YwS1X5/v9XgjhfNwfDmVZejsIIU5Wq6qqNpvNrK5ZYOR3knHJuBby0A/W2qIoZnXdtu3Dej0KiIdgjDNJBjH1AKT3o3BH0xzyPL+6uqqqark80Vr/6ld/6ZxZFgsfzGC6PCu1KpfLE2vt7ngsiqxt+8PhEKPnjOV5/vt/8BOZ6ebYvvri1cXq8uXTlzM5V0EVUXXdXrDARGSCRe6Cy4RgnnkKngmCw0kMwYXIhCyKUmodBDEevPK3t9e7fss0c85b57hWpjMq0yawKChybiW7PWwdp2JeRG5J2jqftX0XiBPnTAjikpxnRKWWnBjzXgouJScWSTLGea1zIorOciWjCUJlgkSt58/OP/7GJ93hEDbrRhdsGAbue6mYYJIzURU5RRo6Z4dQ12VW5M4bIi8k9X0XAjHGhVDeMy48h1XR4JXUfdfVdR08bR52u+1BSimUFGJM7YQQWlJwvi4rLdX97V1ZlqvV6vz0pG3b4zhrXNT1/O7uvizrGOP13bVzrqqqZ5dPqqr69a9/HZyXXGilWaSqqubzeQgBqSBKaKUU2odSKmNMVVUq09vtFiMgy+WScw6Nb/ijdl13dnZW1zUOi6qq+r73XlXVTAhBXBCX1ttqtghEQikp5WZ3GIYORXWRacYYeIgAXrlUIM8a46IIWuv+2H/t9g8hqFxZa5+8/Kg5HP/nn/5xZ1xZlpeXF03TsMDCEDfdA3Kzw/FYz8q8HKvrD5496/t+t9sRC0WZcUE+WKWUkGyxnDVNY9uBc348Dt5fgxyglKqqwnvf9wZISm86pNlNvzfGvHz5wbNnT+AMudtvfTBKamP6/b598/qr+XyObkbf93mWDcYsl8vD4XBzs94ddyGEi4sLFqLO1NnFqXGDT1P/OP7q2Qwg74sXL47H43a73ZgHz3gIoSgKKXlZ5lrLoiiGvv3qy8+fPXt2dnbSNF0IYTarTk9XWZbZIdtsNtEHbx2LoSiy7fbIZXx6euGce/r0qXPu7du3w2DPzs68i/f3X8YYF4tVnquiqIJ1bnCC0IR2s9nMCnZ6ujDGHdqmd63W+uXLGg14Ce/0GLmUZVmW8xlkEGZVbYyhGDeHTV1WkgtnLIVIwSsh0Uj23guu+r7f7Y+ABYUk58LQdw/b7TCELNtXRSGldN6enC5RrcwXSEI8hRi83zXtfDnz3oXYC+mFjJwHYxzntN1u8zw/HlqphVLKeVNT7ZwLnOk8j84TkZDautC1o5Xl27e3p6cLLsXqdIkpnBgcmjogww7DcDjY2azzPmqdZ1m22x2yDOoomojX9XzorQ/juNjDwwMgUSmlFLlW4CdZlcyWnz47xyI3prd2aJqmbfssazEqCjrF/rDt+xbQrbWe8w44oLVWCUkhzqqaiHabreSiKIpD18Givp4v9/v9/foO2Tt+hLNxyiSTal7Vu93OdP2kYHB3fde1LQCm5aJC8dg2B87YrJpnuqjKSkp5c3NTFVmmchaZcQMgcuCnph8kFxS9krxpjn3X7Q8mz1ld6+fPnzZNs9nvnAuZLqTQs9nCGVtVVdMcttttF9o8H9Hepmk4k957b0fnOl2XcfBEtN1uy6IG4Nh3Rgihde69D962jYksQJogxkjElRqVTEKIz549RW8MtiVgCzof67qyLnS9Kco6z3MYLbgQIPb04x//OAT6wz/8w+UyVyqblLtDCFmm0Gu0vd3tD5zT6fLUJTlapGSWxvpIShmZKOsi+nE6Fh9ydnaGm/Le1/Nqt21ipLzSgxvKsjSmn8/n1g3OGEpsJG+ttXYYIFBZCSGEyla5zDPY1ZJg3PsQvffM2kGC2MSS9PNqtXDOgTTG3k8aRcaEcyHGGF0kiuNMfIjBOsaYDZanaUjOuRAMolve2GGwBLJclNYOWmRa674zgVE9m4fjsW+GYKNWOvAAseZ+aPFkmGSBEZNCZrppGtOZqqqYGMdYyywfnP3/0/VnvZpl2XUoNle7u68/TTQZWdlVsVikLMiEaMLUu2H4Ajau/6xtPQkQZPhKtkRRrIZVrMqMjPZ0X7u71fth7LUjJCUPCoWMiHO+s5u15ppzzDHHSCkRTyF6HyglYpy4YMHZYM2qqTnnFKI1pqqqsihcltrgnO92u95YBKXNZuVicN6VZcmFcM4xKYhzrbUaLQUSXOhCk5jGOLAj0GQahqHSBYVYSBXsqLiIzle6KKQajA0hgGqDjprl0cUEGdiYZ8vGsYcOdkwi+XQ6nRaLmihS8D4GICqKMxIyOu/TJHUilSyrtbVWCOW9GdrBDvb6+jrEyCUfR2Oti9FgDqaoqq7rCqkEsbKqhmFIMW5X67klrLgSJCrJk49v/vTD8+fPmQvdOOLsW1SsO5+UUhTIjJNQOyNW1FVZ6r/8y7/8i7/48z/88Z/Ox5Mx7v7+/tReuq4bRwubR2iIIUoLIVwMUivOKdhQSMWkEEJcLpcYgo32EwHITMQy9HuEECS4lBJJCPg06/USRGDQExFabbA3Nzc++W5odVl4HznjSte6aFJKfd/33ajVQhfFMHREPPsAyRTK3JM7AuFdL5dD1yO9mbR3QlBCxBi7vkcaUJRqtV7Ui8X79++Lukgpnc9HNJVhIK+VPh2OYz/wxEUib6zWGr1kVapAIQVvgxdCrFYrKblzbrtbHo9HTpGloCXnJEII1o0xeUQGIUSlK2OMVgVjYmqEuMuu3iybxf34lGy01iguEkUzuBgYhDIY51mzmJHIAho0UWgZy9PiUsokOGPTKNBqpUNIcAmfB1XSfy8ikQWnp+TsEws4T6NTTGj4S6mR2aAn6ZyZqCUp4kf4Z76FlF0puVDee0oTMTnGSVMVFSnl+X3OZUwpZlWBBA3vmULCeAABNxOvUOUSYyl3Y1im2YasTY6WPH3Gp3POpRATj4yx6AMudAZKgFSCuOayQy5LE014BmdTNhuc4YyZyi2ldMGLz0z8fLZ7itlJD9eTUqZksE+QFuMJUOnn4kd45ilEOelV9YwlZAzIkokI/Bp0wHBhKSuCDWHAf0c2cYtYFh/AwSal5EKgWQeoFKcLgOmpfUoUQhj63ucRbJ8BcQzXCCG4kIwxThSCY4mEYIuirqoCvxrlEDr/SqnlYgE2BMXUNBXg7GkAhxKAVy5EjCQFy8iFCDEKyZbL5SzVPxMG8fDxQBhjTdPgyXBiWmsWPFqOjHEpWO/cmzdvvB2//OLV1XbjQuJShZiM8816ef/6fT+aZrEKIXDGlFJS8uQl+CwhpU/AcW6ZTDuFiLJjZ8pkc5GHUqWcWxqTjMynXghjLEsa+TDxxUIIlUYbOc6gP9rsU5d4NCrLlOMbdPZJSFmXA71cyq53ZVkLDo9vXlVV0zQma3WxPFgw38sMOislnHMkpmGlxKeG/7xVnXMxuZRCoqA5U6q43jU/vnv/+PThcHx4+erF1dUNVqb1HkAhjnDw8ma+FTZvDAkJLqazkZxh1WHCHTGKE8HSp6qqvu85sRgTZYuAkBUbSEz3gjfFaJr3QRLZti1Uwl0eoU0pRe/tf++NmfOPn2ZQBh+klBADuX327OHunbM2MtJCEEXr4A7KYwyPj4+//e1v/+pf/e+dc85YtLsjo2EYvHUkBPFpVOXq6gobU1AM3tV1Y4YRdAA7jFKKy7nlnOuqbNvWh8T5NGn4/Pnzx6cHTjr6MQSrVRGCiyEyxrJ0M2OMOCdKLKaktf7Xf/3X3/3iF4GmEQolmbfu1J2IkpAUfUiMiGjsB86l84QxsZQSJispa9/7bN3po0t55L9pGlCoQJ2z1qPhgeePy2aMoefBOQ8pBedMNrnu+x5H2zhOwcfHyQompcSkGM59yBL/KpvIp2wqi+9cSTkrrOEg8HnoR4qffqcimw1gsc1/OSdGSHewMrFrkBdezpOb9jiOUnF8A+VxEGB2hVLIkNrzGb5PCLacT968WKuTmk0OEdnlQ0GyALyeGeifX0TMU0ohhJl4zrKaOQbYV6vV3/zN36CjXhRFyk07zrkSEvmrj9PEHyqry/EcY+SMEdE4jpFNVqhCiJnIRkTDMKSsIyGzk/gUsqREhxb53DiOMs9MpM+GY7x1M1lGa82zAs9ckSKPL8qi6zoM6qbuzLOg1v/w9Vd/9Vf6/Md/+HU7DMNyuaoWJaNorRWMKaFubm6GfprTOhwOwfuqqgZrpJSjs+hHa60vp3Pbd4vFQgrd9z3jfBgGF4JUXCrVNM3lePKRlsvl0HXwwjqdzq9evdJSC8UVJmqdVVqcHo//5b/8l//7//K/ouPy/fff//yXf7bZbkMIb7u20IW1I+amEL7wGBUXLJGUYsLlbdRcPXv2bDCDN5ExRiymlNbr9fF4HPdWStk0y5ubm/v7+7bty1K3bUssDcOwWq5P5/Pd3d1isVit18vlEkIH4KXGGEOMaAX92S9/+eHDB+c92CVKNaiLQghKFSiisM232+3bt2+BCX7xxZcYlZNSDsOwaJqXL18+Puw5T0KI/X5/Pp+9rxAiylJ750BXtMEXRVHqQik1dH3V1N5N+idSCy44cYqUpJSMJ8YS5yzRxHRjjHEudFli7yslfEr7/f7Dhw/H4xFjfPCuEKJIjKSUmITo+55iPJ0YxbRdb7brtVjpuq4Ha5wPnAuKXnARgDdwElwgF/LBJi5U5v0h+hGLxKUQglLYbDZff/31uT29fvvD6fzgvQ/OqiCljHVZ13XNmMBu7bquqooQHVGy3rVt631UUlfVlOiGELwLIPoJzs3o5hOTMcElPLTjMAyvXr0iIpjOLRYLnY1Jf/WrX9WLZngzGuOI+uVyuVot56FgMKMTLN2FoOySJKU8nU4hRVA44fgNgWnwd0CbBfw3DMPpNBhDV1dXCJ7Y4FJqsFNx3BtjmqZBtxtiXynPUycKzrkURUqp67px7L/68suUEsUAoVLMI1trl+sNLqDvey1F0zSl/mnt5mEYzv4cQvjxxx8lFz//+c+fjucff3wNHUxE3aJQSEjAEkUygPeCW7i6ugJuLqWs6iKEAIdAHAQvXlzjE4D5OueUKrSe9LiCT9BFCdE5587nFoJ5SLyttZdzK4T45psvq7KcKYTIYfB2NpvNL37xi6fjAWdWghV7jHAyvLu7g08agu3Dw0MI4c2bN+v1ehgGziWXGuuT5a/j8UgphBDu7u6ub24ozylDr8AZ+/TUrlZFURSwJFqvK5F9d+/u7jAKk1KqqmocLM41JIrDMFBibXvGWYwqBmSjqqpi9mBIKZVl2fe9ZDLXd6woCuudEGK9XPV9XygFGwZ8Jw6dzWajihKnSQhB64nVi0MWT4wEMcbG0YAUAmoCy2PRjDE0p4tCA1nDU+26QWu9Xq+Hrl+tVs6Ftm3N6NbrtSrk6XSKKT49PXWdX28XX778AtOB4IX0w8AZE0K8eHEzDEPV1Eop9FScc8ZPUlFKqf3+MPT08ePjN998CWUVPJx51qFpmkLHrr8gRcFjmcSaRErZ5yBla76rqyugfkgVNpvNakWPj4/I/xeLBUK0UkWMk4IEfimKhUXdYHEqpY7HI0CZbuiVUpeLw8xBVVVg2uJ1MBJCiN1ud39/r5T6+uuvf/zxR4xBsEkfwGOOHgZlMca2bReL1XK57NoBv3e5ajhf7na78/kIkv5MoOku7dPTGUe/tfZwGDebarVaKaXu7u4wgXF3dycqdj6flRbeOciwSCnreuGcA2h+9/EBfssUfFEU2+22H4dhGOA73V4u5/N5tVpBk+HZsxdIfuq63h/3GHqUUoaQxnGEGsnd3T3q8XGcfHHnMhBhjYhQQYg8SWmtXa5WL168OBwO0JlBWR2yQCieBnLFspSgZ85JJvZFDDGlpKSE+nDXdU1VsKzMPq8ThOUXL14wetzv933fMimWy6UQrGmaoYt2GJEohhAwGo2HiWSjrutVs5gFxAqtbd8P41hWOsbIhZjJxUIIKBphW8Vs9RZC8N6G4JSa7KNxvsyFv5CoyyZGndZlSqbrOkFT8o/H2LWt1MpZkKbFBD0xsAkny3rnXIoMHU3GBJribduymPBLsXhSSufzOVACu9x7v14X+O1t20r2aQYdpUEIIea6z2VLRgwNpOxEiqQ35Vl85Ngz+hRjJDbxzBhjm83GGHM4HGC9QPnbEI6Q90LRYhxHYpOyKOrTWZkBt2PMkHyILnpKRVFYY7oOujcalxcmORo/wwv4RZg0mjJqJaMPwzAoNUU/3CN6fgXnRVHYccKpdNaxnOs7ay2sNVOIp9Ppw4cP2PL4KKATIQTGJmF9LHLoWf+H//Af/uN//P/048ASQfwAb7YoKpy8eJ74hLlgwTAfWhpoZgOEnS8e/18UBRgzUkqupHPu/v6eslLQarUCbouCtCzrcRwfHo6IycKKcRzLst7v91Lo9XoN7ezz6YTkM6VYVVUIDmteSmm9hyuvEOLLL79ETeqMHbIqTsoGRViH+CnvPUjuyJpCCHCB1lpjjmQW2BFcMTUdZ5xPU90hBMzCvn79Goc50ABvJrxxKjDDxKxnjM+D+NZarUt8frWqFFcxRk6MiBZNE53vwsi5ML2RKSUXLJsmnjRm82P8xOVJiRj75NuGHEVyYF6MiJIPOOBzdPgk8U6cI7rNJ5n3nhhDuGeMUWSJJa2lyA62yMycc0WhUFkx4iGPVKSUKJeOE+ITP6HDjDGlxIyI8c9kiDmfVCaQ6YYQKBFjE4hW17XphxQjdmmMEbPLxlo1+eH6GfhL2WdsUkLOfUIxybbSlFUTk5yP1mGrQC4ZM0eMsZQiWMCMOOwB57xqKvmmcBNjNtBDaBAkZuRF5bktTFX4bF9GRHCYiTEywefNhnMaT3iu1fFeIgv5kZKUYlZvQAYJ0IFzjlEsfCA2LYuMMdYbTtltkrKysJr0ELgPAW8WIypzJQkxZawN59w0oT9LjihVluU4KRczgdESxkMQ84MSQvgURV5RXJDgik9yKLFpKkGMZW+rvJ5TSpNWFOcTdxvPhEFd1/uqqrTWbduGNLlOzRfmstL/DIIgIDLBnQtVqTnRuWuJcSWLt+/fffzwfVE1dbP4+Z//pQrx/uGpqOrFeoePopSEEFpMkjXDMPjcXAlZixlRkmWhYZbHe7ETEVXnLQaOAwiJlB01ceC5GObYSkQ8oZmS1UgY4xAankW6k5VSCqG0nnJQIvIpjuMwb4HpySTigk2rMaSZWy0+U+oQ2eIW4YVljTNQkJRSgeJsmzCCc51LhZSgD5xGM/LSlWr51VffNOvydHoaBrO7WqcUiLhzcX84GmN2u52UEzwnlDLOqRympZQxJGPMarVK2cTvfD7j4HTOMcmrqgpTsc2QHsUYnYexr5ZKOG+tMRMOyLX3XspJPgiFnJSSYgzWFVLFrCKCZTbNYeWRajn5ZiSWUkw/zaBMKRVKB+ea5eLPfvXnjw8f/vj73yrJU2IxRojOKylFpcxof//73/+3X/9DjAQELTEyxkTnE0XJZD90MaSiKl/97EulVDsM3vEYgnfm0p6qqgrWaa1fv37929/++s//8i9evHgxDMY6J6WuqkYpdTSWEU/JF0XBWfR2xMr0LsYUU4qJMZ5YJAbdeEaxO58e7x/O42hC6gcXkpSihJy6VFQUSkrpXPCwMxGTLrYQgnOq6xoPFtVOSikmr7RGtm2tvbq6QtaF6HQ6nVDeILFIaZp6mxNx4pzlfl4IYTbqjJ/J38+tVje6efY8xsilgA0XY0zKOgQ3Z2zJB8WF1IW3DsUAkuDI+E++U0CQ7L83k0RpinlMlp0SfB7RQupJIXbnC7aGEoKi/9xfkqUkOR+GAYKM2OzzGptjl8x+DDRxl4wQny4GPZiJV4hpGAromsxhcI4tPNtAcc4xBgvDkBkE996zmOZT8mwszHt9JOJTwCnLsrotsdGQtPVmwJwXJ8aJhSn/JqRoAIhZbhOmlKaJK+eALuHsEJ/slalQk8qW8ZMU/pTjZmvTQunNZuO998aG6DE9vd1um6Y5XS6X4fTTe5PSy5cvY/J93//2t7+WTErFI3mmdF0UpjUhhj++efPq1aumrvth8CEkoo93d1Dt7LoBFWldNs9unl8uF8k5xrmMMSHIGOPlfO4vbVWUy6bBQdCP46U9LZfL0+k0dC0xdrqcEY2dcx8/frxcLrvr7d3dw6W9PDw8PHv+PKVULxfJBxs8FspcmSiphORSysF2Y9fHGKuqGe1QVhVx6v14Oh+AC1xdXXnvN2vtnNvvj7vrq5ubm8PhiTEmBJNKSCkxqQeUPKX08PjY9T0yibKqUMFaNwJIxToEkR+KYQANh6Fr2x7v6PnzW8bY9fU1WlB930O1PATXtm3wPg/TXJRS4PoZNyolrq6uylJbYxLRP/3TP/VmHAejmapuK0QPP/hxHH0IPLLJ9JmRlJxY5JwJRolYCCFFmpttiTGpOGNsHHrrDfGkSrXdbRlj0Kd+/vJFXdePj4+Rkh3NYrFYLZfdpb1/vPPePjze0bdisVgJIaQUFCnGxETSgiOOhxACjTzIRMQ5RXI2oR+JxHUCMaUSZVm+evGSc6qb4j/952PTLEMwl+6cNDnpF4vajmYYTNM0xgxdd9Gl0oUqy7IoKilD8BF2avDT09mpz5nJnbiqqtPpUtcKkWdOLHPnftJngyRi27bn9qJUcXNzkx3YJnlrOOqwmKAgXxRFvd6UZfnmzRvEWyJSZYHJ2efPnyMznIsoVOPAti6XlnMax/Hm5kYp9ebNGynlcrnGkgPIZa1t2zMRbTarEMI49iGExXo1mgFhHAYJkBecivkw+ZAvFouXL1++fv3aZ+vClBJWlAs/3W06n7u0S0op6CRwYqPzeJKn02kcqSi69XqBTkmzqIZhmB8gjrm5cTL3Mr337969Q1Ct63q329V1fbmckC9RNryBuHldLRaLxfl8DmNA0iiERGoqhWKKnPVd10GkeL/fIwsiosVyiQM0JdZ1w35/BKIUk08pffz4kXMOKaTz+QxwOcZ4fX0N9y2g5OM4hsDKxSIE55y7vr5+8+ZNSknLQspwuVwS8cPhAJldTFtrrZ8928DOHqpTc7WMCIZWMe4lJg9nlBBC13VlUcuCGzN8+HD88svrm5ubx8dHdOIv/bDdbgFL9X1flc2L2xfn8/lwOESilNLlciHOnHNaqhDC/nLZ7XZKKU4JL0Up9f793WqzgmYUY+zVq1da3zs7uZED91F8agB/99137fmMlwJsFLIPwNZLXaADPdURIUzgXVEiyimlUmSJUdv26/XaBxtCiPHAYkK7XSlVFAV2zTAY56gs9XK9QpmQsg04tHeBCV5d7YqiRTHlvW+aBr8amJFz7nw+d+2wWCxQ0qLdjuuEsDKIhCQE5/x43DvXnNqLZDN0GEPwUkqodbtM3kKqo5SYiz4IDM7daKXUcrl+enoSQixWDRGt10XbtpvN5vr6Gpf6/Pnzuq6t8UB8Hh4erLX7/b5pms1mczwekWcKwZ2LZcnwybh4lG9PT3t8v9Jiu91+/Ph+roullEDeKab9fj+3xm9vFeMTzwZ19HKz3q03P/zwgYi+eLULzmN5wDcVj9r6yc9ca+3GYIy5dC2KVi5FDITW3ePjI8LX8XjkxNBVXS4X3vvtdjsMg/em67o//elPu90OuVmMAdjoRHnhHKeJlBIK3THGsijAgwHY9O///b8XQqzXS++dMYP3EWP7SknQfXCkCrFgjEF7EIkWwKbACfU4ILOHh3Nf0bNnz9DqQPoHcRshBMIUssoQ4zAMRaEPhwPPo34YQdZaCSGI86IoOJfjOI7jiG7iXDIrrYcJt5pAVZ+nEiEtfTgcAJVi7T0+PhKRUipGzwVJxX2YRLTm+vfzvhfucRiGYP1qtVwu1zHGw+Gg5CddBZYNkKTUx+PROQusGZ5pkoFQZRljcBZlcqJ3AJpECdl1E0wJNH+323VdF51PgqVsPENEXAguBLgvE9QGcVoJTsmUivMsYzLVqjG66Fg25cLJCO1v5Of4Nqjzc85dDKMbo/OwHNBad8MIrBkUKCknJ+0ZeEHvX4j6crkwziUT2+02eH86Hdwkl+RjFsoD1BtoQgIx5D3D3+v1elHVWE4iqyCWZam1tsGF6HGoEQiRnMU0gYohpm4ccCVKKSaE9a4beq31YrGAglBdlN5bmI3jLYPWZoeRyUlNqFCacz4MZt47sKXFXDVuGckD4qq1lkVWVRX0wfDbfQyr1arrusvpXGT0D1R6731dlUQEvamu6/b7br8/fPHFSyLedcP19S1uf7tt+nEoiqJplsYYKb0Qggv6+PHjOLpvv/nZer1+//49DFTweFGvMSFYCN573Lhzjgk+te3jZFAfvcdOTJmGa4yx3nfDgJeOE6peNAh0lMgYg0EHJpgxRghZFJMZ2GK1AjonsshwCFBSPWJ+ZSY/keDCeyR+KSUseFSpfT+2rVkuS89FCl5K6YsJs5367jWk/LRigQN4FVqxjOhPJ+JEohTEOVThQoxCCCWVMca5UBSFLLQbzdyJSlkAmnPB1bS25n6LECJEioE4F4wYsU82LAgQiNpSSqLJxEOqiUuL/cYz1oxHCR0AwSdWNeeTT/QMLzLGIiDpXKDOdXXKVGggkBSnZNpaCyiJ5S/KJMSU+zwxoikR5k/gkIPwDlHD+zCDFymzGyQXXAHvS9M6sy5k0ds4WZ1OGCieB3C9GdEW2S8If0w8hezxiAeCgDiVLiGYweKglVLG5NHinpfLHHlx4yjO5xY3QgYa3TQ9dp+Vn/ncKgmZAG6zgezMp5sYfNmgBtiNyr7VeGXY0kU2g8ID95k2jp02Y9CeR86gJmbbtm2aBj4DKSUuOBE5b5RSKX36LTxNbHcpJQku80ojIPFZKSLAADE6XBLud7Fo5sNsxqHmx4ttYi6dsbZpmqaqnXOJ86vdjfv2m7HrYoyX9mCN96Rev/ugi/Nmd71YrfpuVEopKWOMPEVU2jh+ZuuGmM1A8LrR/cMWwB+BSVFuM8zfjHx0xoC4klKIyIhZrHwOWFlxwdiUKWJoPcSpRVGWZXRe17WUMsYJmkFGmxgpVRARY59E1fGE8Rt72yO+Yz1gWc5ga8pt2zlcdF3XNFVVly6EYYS3nhJiqj1iilywGBnjQSlJLDr/dG6H3/z2GJJ4/uJKylIp4RyE1CXQugzBT9z8qZAOQWAjUyyKwmbXBZF5ptOCd1YJoZTqug43+PDwsF1vkAL2fV9UpcgEbSFE8iERRUrAwLAyUghMqeAD3ppzTkhOWVB4unesZ7RhheB5ZOGnMK2pX80Z3+y2f/Ev/vK4fzgeHhJjQihrfQiBkpO6EEI8Pj5+//33333z8xcvXnz8+NF655xljMqyZAGCvO7Zs2c///mf3d/fO4pCVCGEzlgK8Xw4rlYbroIs9Kuvvi7LuuuGtm1jSlL6GOPhcPr+++/7cVCSUYzeuZBiKTU6GRRpfseRuGQ8cWat/d3vfvd42O+eP2/WO07MORuZhIkTMV9VRVVVjAnBVQgh0ZTHIyHjTM6ZMYqHEDn644gVh8Ph9evXCBHGOMQlVGsQwpN5VAKhKYRAWcKI5pGUlJSaJH24/DRoIknCjwihguem4Nz44TwK4VVW4puhBJnVXWMKP/lKx2GMwwCeMpZizO1MLAmwD3BU4VFQTFoqk3XPP1sdk7prURRQvxeCeR9nxAQfyxhDL4nlQYep4cF5mKhzU0yW2ccGcVJIho7v3OuaO2ExRuPdzKSIWRId8QT5XEqpkJOMkjEm+iC1qqqKIkWaBH9CCAy/13ofnFSiZCUTPIQA1bBZRh/LAGdccJ5Pcv9TtaO1FiKf+5IRkTNWCF4Vpc9WDZSRd7yvxJj3Hu1z0AEk4zHG8/m83W6Bs2it66be/9R7bOr65pevbq93fd9/9/VXf//r/yYkezw+kY+XfXs+n6NIhSp4IiklZ6ztuqIoBjNur3aoGJuqFky2p/P56SClxtEZKbjRGWbEKIIzRVEURTUOFjW8kKypl/unJw9D47pCFz9aW5allPzj/cdVtSqqsu36w+FwdX29WC4Ti6fDkWJ2iShEmf0Viajv++VmAYSrKIrE4tt3byKjSk7qh1VVPT09aa1TZFLK5bLpLi0KQiKC/Brn/OJ7TqSUGo2DChkOfRTt19fXp8tZqiIE/9vf/lYWGvBKSqkoKlwMaOZI6BHAwTEECU5rfXV1VRTq7u7ucOhwPZf+cnV1RRS11otVU/qiaSqtddddYoyotZbLZXKxLpvVaqV1OQd8pRQjHkNiggnJY4yfhkwSozRZBypVpJSkUlywwQ7d0F+6s4+BeGr7S13XVVMST1rLqiq2VxsYIb55/ePb9+9TCJvV+vvXP6SUElM/+/LL2+tbCpElrqX2LtDEJxFxmklKQoiY3OhMCg3gZs650oKiD4EL4Z1J4EtuN7tvv/3599//oaiL87lVqgghPT09AR80bjxdzrvdZrFYJIrGmKurK2f9+/fvwamZj0hrvVIFRQgW85Sm6ncYBu9iSmmz2QiujJlUU1nu8RPR4+MjcaHUNCOMIx4jSjg0vbFVVVVVtagbKeXxeERWUBSF1poJvlqt9vs9PhmMv91u9/btW8TbcRyrqvrqq58dDoenpydkaHVdn8/n6+tra/kwDOPYIy9ar5c4djGC1rZtf2ldDEBhyrI4nQ5KqZurq/P5zDkFNwVbzvnV1ZWUen882OzXh/hT+J/uGj5/fnMyP/R93zRCCNEPg4vJOd+2bVEUUjpjIiDUmDy0pPGKcagBSXn37h1lzVCcLPA/PxwOUsq+79++fbvb7cpSQ3k5JZdS6joL84Z5SPH6ZlcUxfG4d86lFLbb7Waz+X74Xil1Op36vvfOoRKhxEMk51xV1c65169fy0LjpAhEc+lrrQXieblcnj17dnV1BZwxpXQ8HvF4n54OKX0qQMDoj5TMYGOg8/nMs9b5crns+14wXpblpA1KqX3/PqXUtu1qtVqv11JqdG5QA8YYS61TYugWC64iYzc3N0VRoBq32aMFJ06Mcb3aMhJ4axNMGeNozH5/qSr5/PlzrDEk89GHfuxxrPvsIoX7wmOXUlZ1IbhSSs1mMEC+4PDBJsptInIQHFgulz5PbOx2O+MsY+J4PAkhmmZZFEX0AXSQrh2Awd3eXh8OJsTQNM3+adLv/vjxI07SpmnqqhKCSZ0V/+14OByQJBR1hSxovV5/8cUXwBb7vm/bFh+exxSmLuww7J1z58vkVXU+n4HvS6Hfvr1XygFV3O12zpnT6TRYU5alViXiyfF4hFo65xxIEwJ7noLynJPW2hhnhhH51TAMxjhg2cvVarvd7g+PuiwfH09N0yghjDFoPqWUmnp5dXUFEj1GDWYHlOPxeH19rXQppC+rinPuoxckV5v18XA21pa1HgabWHQ+Oe9d8MQZbNlijAA9y7KE7pkQ4ubmJqX09t0HbCvsx+i8lHK7rUHcUUI652azQaSXQ2/ALldKUUpMcFBTlSqElCD9bbfbh4e9EL4sS2tHTuLx8aLUuazVarVarVbH4xF3NwzDw8O+abAtSoS7ud5ECQwfPIRcSgnbyjk3jJNjGLJZ7z2mgauq0lri7QCUxwMkos1mg2wNYJNnSQnpkr1cLkVR3F4tGZ8MqzBdAX4Y7v3u7q5UDcA7rZT3PgQ3DENVFJP/kBBEPKNGfEZOEC2RwEsptVJd34OdEEIwn0HbPrsCQji+KAqowB8OB5Th4zgWSkFPlvEU/VRmMimwc8ESRUoD/hxQUWut90kK8i4ikbAB3nSyKWtrbUoRlR1wDGs8AEAcc0qpcRwlk5icm5TH8wmY028+dj1PFDNeNP/s53DKDJED1SmKIqVP2TUOL8ReIgoxgtY5J97okyGkozcTslX4VF0yiozQwJ7wvuCIKAS3WCygAaszZSdNo0vjOI51XfsQ9vt9XVXo24l6amUh2uDVpzhZdmOB4Y6EEDGGkY2IkzE6KQWGPGIMm6sdejBxKsGD5J+OQuy1siyNd6HvUKwh91ZKffHFF+M42mGcOyUICNjXMUZdQRciAIymPGwthEB7DP0MhCmwA9GYNMbwlHB2+Oz1HdI0YIr8BIs/CYkX9P79e0wG397evn//frejcRzv7u5miIMJzqVYVGV76b2LdVPiOieBYmVCT8YMjCUpOZ4VGqUzjCuzvm4Ioe079PmIqF40KHkwKIpdjEcHlBl7B0sr0gQ5wisY6rXDMAgSeLzhM6c6znldLRBtUp565Fxi4U0NS2dT8CobNtbVAh4Gbdt6H1KiECbZWwoUsi+dDVOHaWon4z1RJiLFn7LXmyESxhjFST/eGDPXrrLQdhjTNKgbhBBcod7mnEsijrTSe89YkorHTGSelGvzrwA9h+dmsrWJcxLehxQnlriLSn5S9tBaR2zFFLB1cUkZC+D5FiilxD8DxJETp0hzXhWyOam1NkYiyiZ+iUuhZ/gPKTgiC17PBMNlu7P5QU3E3sxTRk4zDwjHGFKIgnGSEl0gzjljEy4QQmAMf5wcCzMiT0Jkk0DOY3bAm4E/yg6HjDK+X0xSBnVdh+gQFlHCIUHEOpiN8pC/zk8JmzBlpN45l2VmGf6p0JQozKsfBI1xHOGHzjlxPqm6YNUWBQQ3ErYK2s4Bvrc5fKQUOJ/4y1xyniagh6UEF7KUEtpuuirxUhJL4ESkRKAwYHunFFlKzjkfHOecZxIfYyxSIhaBtKNgts4Ri+gCEVFd1+v1eoZ3ccsx8yIFsZhICylqtVqtFstlSklwOhz2l9Nhsd5cXV1Jwc+XdnRWSG1cKooyJr5/OuIhxxB4iikPiQD6hHg65fYAEBCgt/jtIKEYY6Dsg8NpvmBdlVxNQTkykkrOcBsKS5YoEUkpJWf4QayHlKcBMs47o8wBXImJ5xiiLADOhjB7SIYY89g7stvcLJkYoynzSfHu5u1ZFIX3McbY9j3lTknwKf+r8pRiCimxru+953Vdy0UjhDodu0iqqgsl6xBiiizG4F26vr5GsD4eD8iJUTdOyJ3WWC3Be6Q+s5PhXC9pKQH54cqrqnr27JmWU7FBRJyYtw5Dc1LKEZ22NOnhzikptvMMQeK84ZzHkEKIKSWhJOdpHAfGWFUUzk0J+v/8xYmllATniSgRffXdt3f37//j//tOSl2oAuszEiMixomY+N3vfr+ol0CO3OXcdx1nSQph/VjXJVGNaq0Prj23RQn6vFNKCaHuHx+HYUCZDYd65CUx0NPDI3hkfd+vV43QKkQH40Yl5dTxiClSokREFIklxhZVMTr7cPfhm+++/Ytf/SpyPZgYSXofnTMx+eisrsqqaszovPeJAtb2+XxGL8Q5V5WNtXYYO8QZpBuIezFGHKht28Y4saEhrzHHOpysCG7w1UUZBiAgd/Impm2kCYsUEyN+cnyd+3yo6FB1pzSxaSEHHELQUqEKLeAu634abkb7AR7EWHuYifl8QAQbh2KCgjzUSATjLBEnRoylmIglxhkEvNA14ZNx8wQH2+zozfLUAgJ4zB11zrlmjDFm0bVisaoL773S+OYohA7Z5PNTlzfrOH1eVMy7BgcH+vxSStjwIkGUWXcrpTj0vR3N1AnIjD88B49mW4oskc3qT4JYqbULYSJj+kBEVVVqrUIIE1CbrXchGxTy1BEeyAyHzYk4EyKEoITE+0o+JBZTSvDgAo8shMDop0VRiqpAuHj37p1S6sXt89P52J3au4fHeqnLqvJm1NXi4e6R0CaVDBWv1rofByU1JRrajlKyxtjORMY4ZyEmrXXiSWut5cp7v6ib5EN+EYJBaXpRuRS5FKKQxhj0yzEcffOzm/fv78fBvH379ue/+AW2wHK9GvvBmBgjVbqYJjdDiDwVhXI2vHjx4vX718iYiVPIoPxiscD9Ym1fzh1+UUqJJa61DC6GiMxNx5SYnJouVVO74FNKkVJI8fWbHyH6+XjYN6v1OI4pTuRBHHPoFb148QIC0GCHfTqgrZ1pKdfX10oppYTSehgGYHM+BnCciSIKIWJJCsmVhJmPc0EIxTnnjM95WkoJMUtw6WMUTDCGIbrEGUtsUgOLlIqiGF13Op8fDw8f7j8IwYuqPJ1O/TiUutjtdkR0vhxjYs65X/7yl6fT6Y9//PH5s121qn0MQ9d/3H9wycUYd8uNEjpxwdnUMJZSgPwRnEeVmUIMIhSkOAnvvbWsKAqGDq7k1trdbvdd+rYfutPp8OOb7+tyOa/M1WpVFIqIUgqLxQItMSX18XBCwMz8RK617roe70sJFIGp6zoAT8NoMVIIILi9HFGtoSAZRwtiWlFNqS9CSlVVYN0mx4b2NAzjZrNTqtjvj5SnL6FhGmOMPg2DKcu6bVuiKc3GAQ2hA2QpQPDv7+/3+/1mswHtN6UEyOZwGIWgppmgw9PpdDweN5vNcrkcx7HWtZRSMr5aL723Wuumqvb7PecEHbkQwuPj4+VyKYrKOCuEcM6lyLRi6/W6aIuf3v5FUbISp0kIASvk9vZ2vV6CMPXx40chmS7kghZz1AV/FnUvwkvXRcbaly9f4ugBmHV9fY0CuKqqh4eH7777rqqay+UiBDHGvvnm1TiAnpyUUqvVqii0MSYlVtfl5XKBShiQJmBtUkrBJCNBgnVd17bt1dVVWZZffPGFlLIbh7ZtS6VTilVVImm/uVlut1tr7V/8xV8AmI6ZEoSUeM6Q27ZFV2C1Wp3P50hJlwXwWagxlGV5e3t7OZ2JCEoIgxlR2QJbPBwORVHhyQMJ7fse/r2MsbpaPDw8nA7mxYv1V1996b1/fDzgLNZac6WttQ8PD8fDuaqqUutxHIdhOB5PSkkupZTUNA0Sm77vm6qCLqePiTGmi9KFXuqpari5uRmG4Q9/+AMUunyww9jF5KWQ3tpSa2vtH//4R6XUy5cvockG/iM2sgfWac25vQDELIriw4en9Xq8vb31NlRVQYlzbgAjPj4+9n3PeKrr+osvnnddNxc4IQQhWdVMPmDGmBDc8+fPHx4eoFMxtaIzsItzDYrMGNBZr9fr9fpyuQBP/Prrry+XC8jUyIq993Vdl6saARNH5Pl8tnZ88eJFO/QIucY7QLEyuxZjCrmu6y+++EII8fbtW+cc53Q4nACRICex1h4Oh5ubm5ubG+vcx48f67peLFbeR+eClhJNd2PM/ul0OXdt21prD2cbLSlNV1cOL+7h4Xi5XKqqUWryIoPMTtM0jCe0UYnofB6eP78qSnW+ODAMsP7VJBpglsvlUkyObfWiubm96vu+vfRzGtP3fdM0UnE0oV++fLnb7R4eHmgiSuumniT1jDFZDlHGGIkxrHPkYOu1hejQOAzH41FpKgoB4Q7EwGEYMkPQExEQLjy0olDjOALx2Ww2k89YCDwrUqKuub7elZOJXAwhbLfbvh+dc9kMa2oDIMUCYBqzGBoyJZaZcDhhn9/cGjs8PDwgjCN1xJg8InCwxCklQvdCXi4nPqWXInpPxOdrC9733p/PbV3XlS5w/bgeHwLPpvQpMiKO/ymlmqpCg2HGNz68e2eMYSlpKVNKAlJ9nNeLxXK5VLx4eLjD0sXgBVBRNMi11naYDB7xLvrughzVOefjhOkPw4AyIU5MwYnHUJY1QjFe6/39/apZzeUAagTshfSZSobMcgc8j9fjteL1ARPE3ywWCxtijB6Lk2Uyh5xsbINSSijhfXQx8ESUZRuJCD0GrPl5BncGVVke8S90HVMwhmaNvrIsQ4hAcp31XKBh5vA6lCqC9wlaRuMIQxqsDWOMEEqVRSUlVgXnnHMJbpAxzlojiNmsN4IbAQUbzxbRFb8OVw7oCWPlXIgQYzAGcFY79F1nrm+fFUURrPMZGC2KwttQLxocpjFGNxqUJ9ba5IMqNCqdmF2mZ1gfAQoo+VT7M+69H/oOqiAxxqauu6Ffr9eQ3QPcXNRK5ZFZa+3pdMJuVUo9f/78cDh0XVcUBZeiKAozOin0y5cbY0zf90oVWIEhuuvr62UzYg0g1FRVEYLDMe2ydRkQHqGkyhAiHrhgk0qwLks7jlOlWVUB881Zp4s4Y2nq7uDreD4NXa+1dt7NKB/jiUM1WynG2P6pZTzNoDzWw2q5tMEvFgsMKWAxw8kQv/3q6goHOmM2BOcclVwrIcZolVKChBYyFra3zhgDUFgSRZ8im+pnRkRSKyJi8ZOYgMjTmpjQ4VxyznBLnPPEGeeCUYrOEyV8lHOuridxSeQcMYst8k8KD3wuWZHAhUyEBB3Ae89SCC4644X41MKaylc0SRwRTbBvCCnGSWsi/xH6g1Arlt5/QvegHuOzfHvK8rJENA8pB7Q8Mk+NZylnrAz8pcw6y+M4ACyewWh8M14efUbiJkpa69lOMD8BhqfCsmRnzEJLUmrvvY9JzMoAQqtyYqDjwU7/nSZ4USklmIQMP3WdVJNkFajHyGXx0EASn2OByGYCIrOTcI9CiFn5EaAGY4wxNWO4GSuZ+H3ee84n6Qk7aYyg28liDJ++nzE2aUQkIVgIkwsqUlIw+TnnLE0YNBERpfVug5wspan/xzk3xs5RHrUMIqJxzqcgwrTehBCMUgjBf8KVUqX43CYCxiqzjMb8ZOb3SBmi1VJzJb1zHz58OJ+PWuu6LDiTPiXGWLXZxXZIKd1erZ0F4V2H4AqtmZSSTZMEMwiSMkSrlEr8k+PlDL2hzQg0h2cqZaBkrXUxyCwLiwiLt4A0FLUZ9paUnGJKKckscWOzHJKUMthJ3c97Dw147MQpFHIMpVKEhJOfngYWaoxx3sJzpyR8NgSQcrNnKvV5IMELrdClGIZPClYsJudcoigl79qh68+73a4oxhgHMzriSQqZQmBcdN2wWKyIM1hZ3t3dCcEhaDiOcPWUKaXj+YxfSlnPbj6/AYF57xfLBlkOKgEi0lp765AQz8EQSQaajZTRK58JLwg+lCZIvSiKmCbavpLC4HWHSJxxLkql8z76Z6wChQjODRBl83ZVF5vdtVDFaB1jTAhVFNVgDGKa1vpwOHz48AF34a3z3gohUkyr1coZWxTFYr26v78nXSil2vPl7du31gfok3fDEEJ48+bN+Xz+13/9V6Bccc6TD+fj/uHuQ/f4aK0dR8FIC86Z0CyFEAJnAlIgLBFI3vgT51xy1vX993/8JyH19bNXntRofGJiGIbgDGNJtSqyPbqJQk5i7gg+EM5GLo52tJRSaY33GGOklGA2VZY1+P6Y3np6euKcpxRQwWLphhCQPyFVUllkOX7eMKdp7oxN9tlhDrCUNxfPahuYbqZpsIDFSC546x3nXHCZwiRW8z9/MWJKqcPh8Pd///fffPPNy5cvwbhPmRhyOhyn9kYeNJl39FztI3jGENGOoiwVJ/Kmjp+Ny2CdI2NQSpVlTXmgm4jA8mCMEUUuBIXIE0FzOTLuYxAZuKfsx4DmrlLTMff5dcKQkGdWNU6cuZwDlEBZ3nQaEso9Klynxw1KIblYLBYyGyoyxgqlYoiJmNbamHHMfvGopqatRzOEJ1EYG2OQUKJz9gk9j3G9XkcfAJeDdjEPsiFnVUolIX/yPeJ+v/3226ZpHu7utVRCiN32RgptvRn7MXIqRcFU5ZKTSpVNGSksm4WazJ2GoRt9sOvVRjIeZIgk+nEIwRPFmGJRFA0YGcNIRJjpc2Eyb9FaS86sdyGGGGMKKTk/nkaY+EExAOLdUvHHQ1vXNYB7ZBQx+pideIkIDP7T6VTGQihuo2kWizDYTCoJ4+g4FzKP8Vo7hkmlatIENMasr67xip2xs9sPsHvAlEVRnE4n+HMYYyjjHYyxYZgsodq2RUg8HY5FUbBE0Bgd+8F6TD9IIHqTchhn1hmhcD5aJHhS8rIsuWBd14XRNGUlpS51oaWq69q1kzRwmg2T84waE4IjJ4qcJp2QAjE/Ji+UCtF9fPh4OOzX2xVpzjkZMxwOhxAdQpAx5nw+Ouc2m823P/9Z9CGmVDbl9e3t+w9v339811/aP/v2z17ePI9RCS4Ti9MAAcvGyD5xYsSmGbKUEiOWAoUQOAuRsQRG5Ujr9fa7r78bxz6l9OHDuxRD1dScE/QNhOSLZYNylDHRth0KsKlIpjgOBrkEEYGYGVxs2xOytcSmwWrOOfQuGBOLxYoxEUIax3aurn0225jjySSL4T3nfLFooPCAuRMAZxjkBwvhcf9UFMVutzscnqSU0DXebDZgOJZliR8B7nxzczNDBr0ZhRC/+tWvuq7b7/dA93B8Qyt2tVoBN3fOFUUBgWaAL7e31ykla60ZxrIskd8+HY4ohpt66b0TnH/99dfnf3j6ye3/+PhkSwuu7mq1OZ/PiYixNGvvNosKN1iWZdu2MY+szWnSMAyr1ermpgAibK2dFz9jDGhUSmm1WgHMDXnc7erq6v7uEb0Z7z3QXucNfgp79nQ6oVjLlAIWWeJSgGA+DOF0Om23248fP+JANMbsQ/zZz74EtgK8koieP3/+u9/97nA44LU+e/ZMlQW8lIMFOy8B0kK2A8NGACK///33RLRcloyJpmlmElY39CFTMoko59Xx4WF/uXTOEee0XJY46VarFSNRl2UrzOPjSQgG/QFYYOmqXK029/f3PEMS0No2xjx//gynDx7pmzdvrLXRe8P5ZrWOMYookG88e/YMcBXkUKWUaIdcLpcQwuXSSjmZeGutL5eecyrL8sOHD+v1erfbYb4+ZR28vu9Xy02K7HK+XF1dXV/d3lwzqXjfjVLKYRzbtvfeN01TFIX3drFYMJ5AyhZCHE/7xWLhPBSi11VVXS4X/ArOp1SEBCfBh6GLMd7eXscY8a4hAg62OJoxaMbjn4beVFW1Wu/Gcdzv94An7u7uVssN6IQ4H5FMDsMQghOCXS4XY8ww+EWlZkIJBARCCBDiAMmOcxpHW1WVGUZ8QlEUQPmLshyG4YcfPq53FVSquq7jNKGfRHRzcw1k3KcYvWWKypLW6/VisWjbVilC+Q9ygBDC2MEYgzUQAwkhlkux3x9/+P7p2YsO9CPkP2rWuCOy1i6XS87502E/WoNOqnOuKDRnEs3aEMJy1RQKDDnmnFssFofDgTFxdbUVQtw/PBDBaSJOXJ+muVwugDgA1Yk8moM1/OrVc6CW+HtAoqgodzuNwHU6HfrertfNbrdDEdT3/fl8BiIPygvLCmZN06DVOrOGi6JQSsTI8IMTQJzFx66vr9HYAEtDfqbPANmclFLXdSE6xBzkSEgs0cxYLBa6kM5NyT2QXJYnmzmxnDM7E8wMueJzpOIhBGLReae1tjZh2eCyeTk1VAolkKI756qqOh6Px2MXI1UVR57P87QE4tVl6BgTjAlK0drpgEAXak4klFIh+LIsl8ulNQPCb0op8Wl+PUTP2CeAK6U4jiOTAhI03nvQ4dfrdd+PUC/EyTKV5J+BywCsjDFKiaKo55r9fxDeRd4Y2URRysUvlNAVePchDxFyHr33kYhx5izejhVCQNoUby1GKgqV6QjKZcK4Dy4L9000r5Q1NJxzEDgydlRKOUcxhuA9Y8yYYULPY6jLkjJExhjzIczAAh6194HziHNH8QmFj3k8JWTm2TB03nsh1Ax2AX1y3uOsx1mDw7ftukS0XNWPj49f/uwVKvSqKsdxHIdhuVhHH7icpvCN8YG6qiqKogg2JA/IL5qsN4ulgl0A6WrnPGbmmBTnruWcAxbHG6/LaToTfVzkDKgslnUjiM1aFjhJocjctm1VNkhyFosFdKiFkD6bLkjF7Wicc9aOjCXvbVnq3W6HM72qmpT6lNmNXIoiU7DZZwOpkos5ZQ0h1ItFVVWI5Ei2pVZ1WeGPCC9IKtAGS3xidRRFUdQVXF7B6sC+axaT1pxSqmmadujxT0QE6NW6EINLjDBbWRUlrqeqyrIsbRqBJXLGtdbkJpMJpVRow7T6iT5RjFMmVwI7mNHVvFJVjMT5NKAx4yzYG/NKmrNPZLop02Mpw0x2MiJX82/EF5BQypMXKABmyWDskxmfdc6hT0tEUrCJkjDNoTCoI+ArpkTTmBjENydY2TmDK0RFREScS0w0Yl9VRZ3BMoExk5ip2Z/3+VNKmDYKwWOFobb//CmhOp0rcM7F51kabmeGM/CCKYManEulknOuakq8muAnBYyUZyImuCGrNuOX2gk0ZD6Eqi4m5YqiyKDD5H4DphjeEf4eB/kcIlHfgu43Axm47PTJTmfCiOH/gE6sc45HEkKUkz+hx+fHOEH81piJVxgnPGVGpefnjGsTGdqLMWCJzrEMk9f44zwngofjvVOKiFhKn3wstdaoKX0KM+ZeFkXWvfofHQLRy0LTHm1DFtP8G8Mw/3c2fqSkhJCqaEcfUpJSUuLEYwwUo8UVFhIr8BPe7Vzggs3bjWV5k3lVA3lHuYhfLYTwaaI8o0TEy53RJSwS9Bu990LwGD1PFHJDAoizkNwHB5Ao+YCfqsrSh3mqy8XolRIiD84rLihEE8Ic+1DRzbDyDDDhtX5e22OdhOg5yc/bLXjmIYRgXZe6YRgSRa1ljNFadzwej/vXVdUURaXLYr0qnaV+6EJIwUcibr17//7t/f29ELwolfe+lJVSKoUAIBIlChFxwXVVxhid90IrCt6HoKsSsPI86ySlbNsW5tpY89ba+alKKRVD0CPOeRIypIlpEnz02QxTKRXihIixxKxzGNIhIhJSKdW2bQpT7/d//oo+9H2f4KuWvI36+csX3/3i529/+D6lyaE4pORj0loz740xf/d3f/eLb7/jRCmlUheCcetGCIAiGuz3+w9P+4/3dz++fqd1yaUg4otm9c3PvyuK6pe//OVyufzZV6+asqiq6s2Pr//LP/zXp4dHxpi1Y6Fh0EG61KMxbOrDhZQYSyykGGMkmrRBkMpcbbcPdx8vXf+LP7er7a3xBKe4FHxZaiIK1kkpiSVKYbfbYewR8QGRGfU5aKH7w8E5B+9vSsl7b6xfLgvkdpvNBgSZ9XqNpQucAhOs+KiYyf54GuDLhIn6muYEHQ1wbDS8C7z3uUhGlIg+sEQUkzM2Kj5FpHze/eQXcnSoJKPCmT09nHPO2JTSfHbM5whjLCVWFJ+8QMuyHK0BqQHHyhyBD+cT0riYp2Fw2ThZVitIyoyYvgQ/K8aInHUOibjHUumyqtxoaAJwWQjRWk9EQky3yRX3PsSYGGOUkiCmpRLEYow2eBf89PCdB98NN4i9761lSuHZ+kkIcpqlSGnyDJwzirIsieI4Dpwz7z1UqgFJACzAOTtlVynN9Z7IejU8C+RRhjlChss5Y3d3d8MwfPXVV7/5zW+eP39+fX2dUvL/jHirVJKUssGvVquvv/729evX//iPv/3bv/nbD/d337/+0x/+8IfRucPTm9vnq9vnN23f9X1PLA7G1E15e3sbQ7DjyDnXWjoXEmcxJiFE09Q++WHoMK0mOVVVwxiDrRxLk5Xl+XIpl01KyY5GK+WChVPi8XjkgpyxSqnkgzVG6Roof6VUWRac8+RTnJyKNVBsLsSzZ8+qP1XWOR8dKbbf70VkOK36rt1ut13XIzUvy9K5gCr0eDxXVSGFZuU02pV8gGok8BSsSZFth40xL168GJ3t+z6lyBiDYgneC84Xb11wk4AYuinYyy9fPtvv90IwgKRCMK11VRWr1QoZtrXOe6+1xFglZ2K7mZApTvxnP/v69vZWS2WTjTEmzgQTiTPBeWKRMc4xAYDuIBqrQmqtiTOptQvWJjuY3lqbJCWexnEQWiG2AMTHpVZleTweHx8fX716ZYzpLu042tE8EU9c8f3l8Kcf/8QY3y42la7KshZCGOe9dZxznjgXnCVKPPk0iY2UlSYixhJnkjE2uGG52ngbFGO73e5f/uW/0rrcrrZ//9u/a89dCM5Hg1wCzbaiuEopEfGU2HK5bJrq7v5jjJEx6ZybxQ2llFWlQnBlWQolpZSLxeJ8alMWcEPGjuz9crlY6xaLph+H1Kbr62vgLNiDLAvSybKcqJrOL5dLpFjDMOz3l8WiAM+6LqvT5cw5l1x47wXjgnEimmZEcjqNDQ4gqe97JgVzMYSwWq1wcOOAQzhdLZYueKT3wODKsnx6emrbsSqKruv6vo0xbrfbHNYSbhP/PeFQtv/DH/54E5Y/uf37blg/W9d1DaT7+fPnp/P5cDgIIW5ubrr+Qln6b7VahRCqqiqK4unpyTkHxQytpwY2/ijz3MycbNisoY/njy9r7Q8//CC4Op0uxpibm5sQwsPDQ0xptWrato9xEtxMKaGS7/tx7q/EGIHgF0UBWYyHh9NiUWpdEkXn3N3dHWrmsiwvl8vhcACRQmtd1NV6t8VGrqrK86mrt9lsOOdQiAayA4x7uSzrunYuHA4Hxlhw9nK5qELj8eIvKdsyn06ntu3aloqCvvjiViklC6S9cv+wL8vyiy/U8Xh8//54Op1WqwURRUbgz67X67quv//T60VdL5dLKLzjQBFCRCIp5Xa7dc4F5+bQdDyfUkrPnj2jXE4PwwB956ooIyWIHoRA4xiahouJf0MxUtM0P/zwATEK5cY4juNglVJ1tdjtdqvV6nxukf2O4+guU/I5DAYoGz5NCAYksWmasR+886dhwOKv69o5h5WPY10pcTgcAqWMLwOv3H348KHrOsYEZLIBQuFMf3p6YlnMBLODOGQRcoUQxhgMWqFP8/Lly9Pp9Ph4P47jYAfOeV03dV2P4wPaTuh8YCEF5yG2KyeBMoEha3zPfn9Sil9d3fgQMK9WVexwGFBMTaBbjABh16vtdrslwYVW6CJDsiBkIgWkzN+/f38+d/CIBmUEDIPD/vThw4dnz276VQuYuyiUlJMsOx6Xc+5yuSyXS2w30DIwyYFmg5KF1lpIppTCCkfrCFfImED7wTtXFJX3Hv7ewzgWZYlkFdaCMVJK1DTlarlE+6EoilmI5unpqa7r6+vr8/kMu6nFohZCdJ1cLDgRtW2LuTdg31D2QwYIq0Dkw4kIaCb8BiHNjMwKd4SyHafAcrk8n89PT3spBUS6UZLgJEW+50bjgwX3iOfh+rIsX716BU8ILYuiKNquQ7wlFmXWo6uKkmalxBCk0FKwGPtFXUopL5cBB80kKEERqReaPbLQzrn7+/v1skHRtNvthmFYLTdV2QBaiYGMcSEEJpTW+nxux3GsdAW8KKWEep2yHBAyvUCE0k9KfrmcnHOr9dpaezpdIiNIPEFwH0UZY2wcHdjl6BwA6RvH8fnz5z/++PZ06ko1IV0oDSSGaBmr6zoxnNeB6JMpC0J3kcWUEIRdDOY89RvARwYkii+WyX8ZWJuycZE9kOQ0kssY46vV6ng8I06yz9hdOKkXi4XWEjLBaUKxGZKuspime/GxVbUA1uHcNEEYQpj5Gd774/Fog0f6J4SY5zBQw3LOhdI432VW2GMsORc+E6ZlAKNxkAkhWOaYAi1FPWuMgdYKRXp8fGxPZ5WFKI0xSo6MMe55YoS3lmLwPkrJueL4HmOMT3G93s63gFtDo+vHH39EPuliwKtHCopECAAu0TRYeXt7G53/+PF+sai/+uor+PrOoAfA3LquhdSPj49IQa3dV1Uts/7qMIzOmrouY4zoU9Z1vVw13kWcfWBaCCE4l1rLGCmF1LYtoB5UlFg8jLFxHLHlF4s6Es3RqSiK0+WsOccyLssS+lfWWtA7WKLBGhYDY6wuyhhjCGmxqFE/wtNbik+dOSxakJ0fHh6GYdBl0dRLdPQBW7d9Z4ZRZnZpVRfckXNOaOato8AEMSFEAvNs6j8wwhSby0JgIQvBYMVPQSRGQGEiSzekLBksJqO8qUhGTMFFzNsgZcHNTKSa2FL4hjk9ArSHmwRHnWX6EuLsTCG8XC66qCbMNE7lqMsDufQZbdlldpVzgxACJmmsLI1x1lrQ7GOMxphxtMjtDFpkaZrlZIzFNHV45oiQEvhZDWMshKR1QZOCEr++voZxBDIbNNzm/hJlxpnMJuAznIEPB4EIfzmDpDFG72LIcpkxRiDCOIpi8sQikUTZNqEAnGOBKq155u/MKD9qwrIslZAYgcHDxBGFm8Xt8E8uc5zndjSgNJeNm3KWTJT9Gaa/TF7yEldVFOj+DVhFCgMyQqRMHsdl4DpTVqBOWV0aMwIZaglwNfQx8Pz9WKVoAc2kBszaiCy5O30+4yzLpyAbizGijYkCz3vv7eTYMD/MEMI4jjx9UqTCxzrntqv11WY7DJ0NvinrRGGwLiUqy1JwhWxmyi855ynOFXiMMVASQsuCCcGQaXHOzWg+Z1ijmooxns9nrBBsWNh7+s+G3FlWd6Hs+kp5Dhpcdh/89A0pCSGKqrBn03XdZrfD31trvXOyqogCCBSMMakEF8zYEZzEGKMPbn5TRERiEp+dEaL5dJzfLB6mLtT0fmNMKXZdBxRs6jGEYK1D5HHeWktal5v1Lia/Xr7qum7oXFlblkxTLxmLVYmJwiglf/Xq1WLR4PCQUookYoxKKCkl46SlbKoqhMCEsNZwPkndI50tyzI4q7LVOC547j2IbMsJBCROBAGQLqcBq+nUFNz4aSAXCTFktqy13aW7XC7b3U5lu/OU0uPj426zDf6nIS0knfViESmxSMMwODt+8eVXTw+PbuiJc6FYWSYUk4GIcRFDfHh4ePHihWCJcy4kK3iRfOBCCJ4ul8s//uM/Ljbb77777q//9d8+e/Hc+7hoVjCbpklpJ5ihk5wxSh/evW2PB/ImTDsrcuLd+eKtWjYNS5PRB6YUKExPJE7iS8QSCUaLsqrryttRKs6Vsp6qqqoKNY6j97YsaxeD8zFFj1QYyAJjDMxHqGHO3SDk4tZawaQ1nhFh1yBWEBHK3Rjjfv9ojJuzRqhAIg4URSG1csaKbJIglMT+Op/PWmt0vKcsP38PQiui6JQD5WiQPmMuIHr/c9rNKcaiKL744ovVajW3jpB0iizvwKauJMd6s1ksAhLVMcZLd16myTAHQX4Yhma1HJ1lUmALIBrENKlqsMx9Y4ylEDnnfd8WRdE0lZQc3bKZyDADPZhNOR5gGdcYM41kzrGUPsNr5ntEVlRk3yeUzXVRAlI5Ho8xekZ0eHrCy0Jgl1LqssQilFJKAb5MsjF7qWXfVzAOiAhzG/O5SbnA4HlMsigKLFGWFUXQB9VaW++jn4aQtFZj3//617/23t/e3v785z9///495pEF/2kxDSmkrCpGlCITQux2uy++/Eprvdhsu36Uuj4fH41zbXd59/qD9YYJWi4Xztm7Q+uNXy6b9Xr58eO9C36z23z8+FHIerVdCyhmsK0P9nA4DMNAdqjr2iXPWAoxRu+UEoUsIMkluSh1wXxiQg18TBSQ1SyacDm3p/1T01R1WV5C6Mdhu95UlQzWpcSwN2OM0UXFqSrqr776+k9v/pQg7CUCxamhK/XEa3POCe7GcRQCm3eyXcIhCKHBSIStih+JPqxWKzwxsKv+8Ic/lGXZNI2jSYPvfD4zJojIjgYdJpyV8HHFQHEIoSz1ixfPuq5DiX65XNBpgFf4breh7GHg8wgXdm7b9q9efrleLBWXnMsYP7WxY0ohRUqRKCmpU0oEmjMRYppSijgjnpRSb16//qfv/xRSqKpie7V7d/8eenHLZkVE59PpcBhub1eUeAjBBf/rX//6+vp6HK0ZRsbY1fX6fD43y2Wg9Ps//uHZ1fMvX37JpZZEknHGkS9NTdkYiTMeYxiGwbqxLEuUDdZaqeTQt2XVOOeqonJ1uN5ed+duuVwZgyaTvXv42HbDs2dXRVFg9oKyRjDUP6ui9GHyXtdaQ2SDc14vmtx7433fg5g29CPnXEoVsvJjjFEpCV5Irg4mpGOGNZFQQdHCjgZ46/F4NManRKcTCkPz8uVLVehxHDmluXQ5H0+oY4dhgFXXw8PDYrFAziYLraQCpvlP3/9paDuQrZAPD11voHblh7quq6JkgjdNU2rd0wis2TlnjDmfz3VdI2M0zuJkx0B3VVVNrY1xRfhpMQ2lWeT8dDp1XSfENMOHrjaxOPdOwNxQSnhvtS5hJwXFWHCyoEkCvQsEVXwI9Bmeng6bzQoo3lxVcc5Xq9VMXMILvdpul6vGOWetk5Jzzsuyvlw6xnpMa81VJfLJPHfov/32Z4ilq9XCWvvhw0eYLUOsAHhH34+L9Wpyzcr+4dvt9ng8zuA4fNi896Bkxhivr28hwu6cO51OKUQuxdwHhd2W977rOu99WZbr9ULK4bvvviuK4ne/+91ut1mtVnYYEfkxPVAULedcaPXVt99geRAZ4F+FUl3X3d3dcc7n34VzGrlE27YUY1mWfT8eDqei0pCJxwNH9oshsBijlnK32z09PUmZlkuFOu5yuSwWNd71ZlO17aDUkTEWfCr0pCbnvf/++++hriOEur9/7PtOa4WL9H7ilqLtOo59WZZv330Qgp7f3qAkxBdlehZUwowZrGUhhPuHBykF5xyinJlf7DgP6/V6s9mgZ4Cuxlw4r1YrJSfrY2u7qqrAy5ZSHg9nQLRpsoKYDGy4FIJxrL3VqkY99eLFCyitIzeI2UksZTti59xqtfLeC0EhxH7sUpwSwq+//vrdxw/7fYuUm6UwH+s+2PuHj/ePe+ccLiyEcGovcJtEewB67kqpopwkKTATwDlv27ZZVLqQ290Xbdt6b7336Ine398DHUOiBdXplK0RWZZJBNl/tV4QUXu+4AyFJe/9/T14iNhrx+OlrvxmsyHOhmEAV72uaySraKeBkown8+LFC5TqYDQTEZ42CEyoBWCJhil1YBHOOSiR0uy6zJjMrh7OOZuxjgwjToUqUiP0P9AaxMwB57yuK2S2NktwzMjg0HaXy0XpSRUTpydjTGv97bffrlar3/zmN5wEzgvvfVEqzGQIIZbNAg8QxKZaL3CFaBWfz2eYeONowN+XZYHfHrN67+noWUxVVZ3P5yd5WK/XMbuIAfdHbQ66D3CVUpVY/FxNI/jOBWvtMAyXi2sa1pQVUgLAx6jCnAsvXrzQVfnw8NB1nTd2ZhHhxhnjTaOBVKLiCyGcTqdXr15V1dN+v5+hAGyBGazAcBUq7vnVxMzyxvsF1jxx7JzXQnpjtdaLqk7ldGjiFSPnx6EZY/R+qjtSSrObN7pQZXZLQtWMHwkheA9nmklG8nPWV1XWODWKoiBKQHIA4FTVwmSTSeR4+HxjrNAypXS5XJAqIJgAwcNTIiKQRYhiWRaMFU/HA3ZoCIECRcY8VHRjVEp5byklZ0fLiJEA/o6DryxLJVTX9roqtZBon6A9hl+tCk0TiVMicFW6wsUURdGb0Xtr7cT6AuEEQNB6va6qyvSD8W4uw/EElsslbpyI0GZomub69vZyuRDRhw8fOOdgho3OztM8wzDUzTJNPq4kBEdtaIxRQrIEzfQJMOz6S9udm6apm3ocLPYsftdUoUhBRKfTpSgUJpxmSAeIvJTSulEIwbOHIec8UoJJO6IZ7ouIIA/bdd1mtSbiMG+DbzCydPSJkZljeVwul8Ti3L9XSm23Wx+DGSfkEyXV3K+62u5w6I/jyGIRY/QUjXcLWkVi4zi6RI1zExzsYmBMhhDxqiYVIfkJ75v2RoxKFTJra8z4i53UGCdO5RzCnHNF8cnyfs7viYhnDB5JKmA1niUy02ejHIiSIHXOwDcO4xmbds4VWmIvUSZUss/GeMHlLMsSbSKk13gZEz0whOwgXOCqMLaDRYMNDB85VEHOOWMGpYrcfZqmQlgMyYcU4tj1uizmNvL8InkmcKVcVEx9QiIgXLjxGTREhQBNanScZoxy5gQxnlKM0GvOhUr03qcQIR6xWCyKsoSr3gTIwqcuQ8/eTb9unnCcAe4ZIsc2c86lxFH7obM6Bx3KNno8M+mwLiMl541WZQghJS8yJxEpO5s4sJO+qslWHhhv0WWB9R0zHw3/Dz6vEMI5Lz6TPGdsGrexWTTdZ0VyaJfnVL5XWs+PK4Tw+PgotViv1/lAckop6/87YmMIgTFRyE9SpHMPMCU9xwKRYG8oiGL04fr6uu97zhJnrCwK54ySBecK34xPHp2PKRVFpRXD0Ys3BZA9ZBL3PDkusxcZ55wYqezunSnkn1DguRMwx9NxHJuyQmSklEKMLriu6yIR3mMMYRxHCb/KELxzjJFP0Xn0VCNj7Hw+SqlDCIwT46RVMTrL86zK55NilJ3TplURnA/OOsM5b5rGR4c3jnNdKSVmpBIHtsSQPi+Kytpxs3pxc6Xe331s204KG0Nf1TVabVJKFpNS8vb2ljFm7OCcE0niAjjnUgmUcHggYWokpNkEJsYYQxJCpJgQfMGT6scBj1dmXrnN4gxCwBtkcp9DUtIsF0itEKbO5zNMqJ6enqKPnPPD4YA5plkicx/T02/f/OTE/sd37w0pH6Mui2HoVstGpHi9u3r1s6/evf4hOAuqCOd8tMZaq6WMyaOQnsoVpRhRVDFYx7m4XM7/y//1//bX/8e/PZxOo0spsRjj5dydjgeAO2bolBJaiiDo6f54eLgXyVP03owpRCFYO46KM+cImJ33g3NBiEl2RghB6VPnEgRYKWVVlMumrosyikKGGEPyaWoshRC44ERRZpIa2g+Msbm54r2H2TfSaKx/GyYVMKyZxKhtW5WtBUF74Vwi0X/37t089DCO4263W60Wm9XauTg3jYBy3t7eikkJa+rYfd7Owa7EVb19+1YJeX19PeWyfuLSIl6xfwamTDSJNUNLmoiAh85fvK4FFzPBGdiZtTYx5oJXXBFnRVEZ43BYCCGYFMvNes4AMOsXs8EvsBie3QhTiClEigmNRiQ0SqngLVEE6xk/nlJq21Zby6eRtMmBkyZXk2mQE+20mGcmLpdLzDyOsqnBCUIK2I3DerH03jOWUNHNfYKiKMqyDCk5b6Ti0PyJMRaFAm/XZdE3fDLa0iwPLpRlGUBeG0efqzgcGRj1ncuAKVAL4a3l2YwBf/lv/s2/mUedvvzyy+mMVj/9Hn0KtdZEpGTRDUOzXH/9tb5/fKgZ/z/9n/8vx+Px6eGuLMt/+qff/+4ff/Pm/dv+FHhqVaGu12seyY4uxnhzc3X7/PnpdPIxLpvq9vZ2v38cxzFGf3W9NdZ2fe9DiCktFgtGdDqdRmOMJ621AG+beHu6cMa0kIXWDw8Pxpjlcnk5tYDeULSM1tpxOJ/P2+0u8RBcZJgmSZHRNH0lueAkRuskY0IowYRzLnjvvTeDEUK0bVuVDg8cqh3r9RpJYFVVlKZwumwW1KTHx0fQuMDwXa/XvfPH/cE4Wq2mBrD3sWmalBiEvEMI2926LIvHx0ekYafj5eHhAZUVdFpCCOfzETk05o7LqrDWGjvO7Q3O+eVy8d5zLtu207Koy6auF0VRReeDnRZSoJTzFq6U5IIYIxY5wFaRgtY6MZJacMke9o/3j3fOGVJUNw3npJRyo0maw5lXKaX1MCtmBueV0MfjuaqquYvW930qSC70erN+ODwYZ5/fvtg065urq+RTiEFyESkxIRmLKc8Z2CzZqbVGNsukiCEkImNMpYsvv/yq78d/of53//nv/n8pMqUKrfVWS621d6AOCZGnpIliXVZY2EjknDPe+6enjjG2212jgoL/wSRIpThjzBo7N/XRuEqMGs7R3WGMgX0MxtPxeCyKAtTjcRxPhxNuZL1eg43eti3g74eHh+3VTikVnI2f0YuIs+fPnyPzQScJQg0xRsk4gDbv4jiOTVWFkHB2CMafnvZtSzc31e3trZRqvd4657rLpLE7DMN6vYwxzi8lhJAo1XVdFJWUsm3bru3KsmzbXiklsx/U//C1Wq4vwiDDPJ/PoAPjwILMQkqJKJ7P58PhjOT95uamrpsZ11guGyGEtXsEbWvt09Op7+nbb69BI52lhKy1JvsX4ZXd3X+gxKuqQq9lvV5vt9vZSWUcRyKGobd5qFEpBYtFDG7v93uU1nW9yO96dM59/fVXODGxqQF3Ho97JGk4mgFBmt4ApPjiiy/6vodcgPfeGHM8HsFnos8cgHRVCoEy3Oz3e0ByMcblcgmKlhDi1auKaEotPn58AE5njEOdvN1udQU2TJqP47Ks8Uhnazgi8tbFIW6328PhsFgsiPOHh4eIczxEKTXnnJGIIR1PxxcvXiD3uL6+vpyO1mKiKKDH472HjAbui4i++eabh4cHnHfjMOFKPFuao/v77t07pYq6rt++fRsjIS1ZrVbDMElBhmx3/M033whBGNrAOl9t1ngdAO5fvHi23+9PJxtCaId+tVqiJiXiy+V6GMzl0tV1HULoug50ZmiaPz09XV1dzRoRSk4V6+l8WK/XSGVddnEoiqJpmuPxeD4fodldVuUnXu1UlzHg/thrgG8wgFVkfRgppSp0SLFqavipDMNw2J+AvyulfvazDQRzBEv4/LquT6cTcY4Ofoy+KJT3rizLZrUIPgEefXw8VZV89eqVsQMRKSXAx5+rDKycsiytpXEcfSThHI424BKgLc/KPCml6+vr/X5fKH069B/N02rVbzabkCVoMOaLyAauNGD0fhjKsqwXDVCbzWaFrBKdqrIsAbibccT611oPw4BEaF7qeBfYGsD9eeaEYa+h0MYWwF0gqKJqiHkCD9oOw9gF/0lUc71eIzThlm1WlUGwgoI8VxO3TEpZKu29D3EC4FBf4wn8u3/379C3GHsTY5RKpZS8d6vVCmoeIQQElr4fifiiqHAZPkQ8QNzXl19+aYz5/e9/L6VkPEU3ScCHEK6ubjg/SKnP5xai1Y+Pe4AnRVF5H4VQfT/W9UIoxZhQqohxGqOXUiqtAenwTIara671JCKMCtp7Lzj/+S9+sV5vq6q6f3p8eHhwzhVaF0VxuVysnaZgq6oKBOBLC6G892VZW+vHsf/qqy+FYHYYQ3DeY6ahTxNJa4ILARDNzxAtB2ShKSVVFtERNsKLFy/QEkALBPjbtGCqEhk1jietdUpmfoM4vFg2SmEMKqwT4Rpx23tf6SJ5R0ElHxhjITomMKk89bHwrjEINY5jWeoQJsk7/JNxthGiaRpjTFXpom6stThDgXs65y6XCxqHvTGYjZ69cOq6fvXq1Zs3b3B40TynnogzHt2EfWPYZRxtDMGzaaLOGOPILZfLmELyYUYIOWOgdyQiPrFj3TAMox2bssHTLstSVyVM1L2fxHWxNiC0iHoNJnM8z0HiIYAcNvWth+FwOFwul91uF2N8fHzEpbIskDtXjoyxL7/8EnpEMcb7+/u6rqNPouLb7XYYe+99CI6IEApgLetdvLq64lxCzxBdzMGMVVVtt1trp1kx1DK4ZpY54EoLazzgYM45p6wbnHmrc3mVUiqUttYqpUMIwIVzPE+IKqBsQxgEOma5/cCNMULJUlV1Ncm/UNZCmZmpGMQxPnLPhRCBWa11Msl5H3QoqlpbLVNKJLhgUyyLMYaQtC69h1sPk1ILMRnxCSGk0JzzRAFpR5ws+2QI07qhmT36mWcRCkX+mYMfrlXk+daQ9XRw1s5/RAcV9TAgnmkPGAPhZ+/D4+NjWepQVbMZIHYdGsLOOcpgqBBC60likk/TFsTYxFHH2Cw2GtaxtVYwgeawMcZ5A1AfCsyQk6OpdWYxJZf8FDJwirsYQggwdMYGpiyCHLLkpf7MHgpPxn4mLIu8Fnmbc44LMdNapyWYPIWp5eWzrDjn0zAm0h0iCjESizNUPYPdBMngrBlKn6lY4EZY5kHzT6Zqfv6QObuap2/geyBmp8654E8DJS44D3nUAptHCAGyc8wyF1prkcUxGImqRGPAYRsLJb33kZJxtmSTV4a3jhEJxplgMcYYKUZyziqlpNTwcWFsYvjO6JX7zC+OMRYp0CTAPaJXwWmyEprArJTKPKA39yHY1E3y4+jx6yh5IF8h0ma1pBiU4Bhw895G500iIQTEK5qmcTHwEL0Lp9PJmg5hLn5mOMmzll/K5MF52eA1RTY5+cA/BCsBHzLnOujISamLIsQYoTLGGIuwjmKEIRGldPJhsVhEKcdxZIzAX1jUlVLqfD7/+PbNixcvMuSdIO4MwZAYY3R+7kgjT+LZV4GIGCeswJCHJ2YqJWotijFMdnDBWivVBNullLSWZVnzVCai5WJjRl/XtcZ+ZIlx4oIZY3icsjdvvDW2KicDTyGE4DKKiIVqrV3UdUopEsMNYlvNUjZK6hTTolnuD0/DMGD4jmLAIgczyBjDuQeVg3P2/fffA+a7XC6wIUWfkIhW6+XxeLxcLqUuieju/j4zgslaSyxFHxZn+c1P1bSPjw+0WFw/f9Y0zc3NVVWW60WjOVvUzf3HO+89pcgll1IWKYmiCNa5MNklIXYRZ0Kwp8dHzmRVSKmL+/uP/+k//W/EpdAL4JuCq+D9qe3qptRapuD7bhi6093H9x/e/TgOA6cUQxCMeRuUENaOjBWJMWudznYZKUQiSohAMbGYfAzee8H46P0q+OD94fBUb64jCQviAIOPhDPBk5DkP1ltTGyO7NCNcBRCGMbRZc8AweQMqqaUrJuE51AMY9pLSsk58z6VZYndYa1NKdR1Wdc1lyLGSCmmlCSbIt40L5KneRCTeVbXwRVWVfXjjz/+p//tP758+RKeiigeQla5EUJY8dP2jzRZAkxY0gzsxs/Elxmb/AATo5BicNYFz0gmSjgo27ZFj4RzToJzSuDWEZE1fmIrpMgYEzQ1WRHcSj2pbaIvtWwWWC3r9TpFT0RaKeuc95O5wjyPSUSMfRr1GMcRHQJsc9xRymyOsiwRkQKlfG5Orl8xxr7vOZcUk9B6LniEUi6EEB2SKmMMNIuQfgzGsSzFg/Js5pUgISsrPXYjqK+MMWeMlBIu4ZBrBFFlbtlyzrVU2PvO2RQmr7OYdcBEPm3ZZ6ztz7+KojDeNc3SjYa4IM7W203k3DlbL5qyrq63V213kVK+evXqdNz/1//6d4kC8cAYJZ6Msz76olq0bdsN7WD67u3bEAJRdM603flp/7BarZarxowOw86LxUJpHWNcrRbn89n0xlq7266/ePny7esfDcXFYtFeesAWKVHfdcYYLeRgjZbScNG2bQhxt94ILXPGzCJRjPH29vbQHp9Ox3cf3hlydV0L5pnkLvfClVJNvYwxFkWFP+IYXSy2IgtDpRCd96luhBCLxeLq6iqlhGTaew8u4WZV3t7eDsPgrXPOsUSr1eocE6bZQggg+ODDr6+vMaEcQmDi09mBhPhyuYAZgDeSUrLecOJSSkaEsipGqqvmanNVFVWpq9Pj8Xg8eheU0HP+wxiDsAxjLHGC65EqtC4VCeKcBjv++Pb18XKUWgYKfd8Ppq+qZmiHvj2VumgW1dVme7O7Qp1zPp+F1Mi+5prwfDwtF2vnXNt3RVl7wd7df0wpyedcCVaokhJTiqTSibGYhV/mhAqnCQ4slURKIUTiiTOVFlX91asvx9jfXj978+a1T7YsNRMUQ9Jav/3wMUW2Xi5RFUgpBSfG4KjprbVztjYPbpdlCVBSCIGkEjydtm1xxnnvuRRa6fQZe6DPrr9IdJkQ+MyiKKSWfd9vt1twGsC5k1IuFosffnwtLxdjzGrRIAerqqptWyRF8KaHhRdkMfAEBLGhN4eD2axk0zQ45fu+Xy2WTdNcLh0Sae89GLgpJePs7e0tRAkeHx/nYQgMsoBxMhPoOOeDGffHw65qfnL7P3t+u7wN3r8FjAUUAJM0iSZvohAClvr9/UmIqTpFAnw6nVIKt7e34TMhsufP1eFwABaPs6xpGnTv5nIgZbG4GJ3gCj9LRMfjETDcZrOp6/rh4QGadW3bgk0MKViedfa11mCLE8Wy1Cml/f4UQri6ugJbc7PZwNbv6uqq6zqWUvLh+vr648ePaNtTINCl8d5jjOCgwRIcSR0OAhA5+aTGQABEYnYuEVnuk4ja9tz3Y1mWX3/99fG4x0EQ54Sq65QW3nvv4+FwwN5NKR0OB++iym433nuKCekcmN2jtfPJJYTkXIYQLn2HoWAiKsvyeDza0VDedzFGFyaJPyC54PoNw/jx48cYoxSakdhtF23bokRCdCKipmnO5/P9/fl0Ol9fX2Gc3E3Cpv5ycVprPEkienp6Wq+XaKUATSjLsus6KeUXX7wYx/GHH37ARNft7a06qMvlstws59wYbxPr/+5uam5BLGXO/xGEx3E8HlvOqSgFljpqPQw3IElgjHkf0MNOKTkXAk3MpNPptFlu8CP4V0CZWOozcQrUSLB3rbUwQlhvlsijVs3CxZAJWJO/2ZT5cI6pRCR4QGxPl0twDiLsKbHHx+OHDx8Wy3oWA2maCm0hpFVIaK0dY4xl1aD/cTqdjHOYmUYCjxQLy7UqynEcb283ozVENAxDSNGOFocOdso4jmU5QZnQub5/OFylWNc1eleAOLyfBHwwIVdmeyG8PiLCSRWyKivLbOiYzW9AG8K2mitxBOTlcimFwBgKEYUYf/nLX1pr//SnPymlxsGez+1y2WAfgZqNRwR4Cx0CjMqhzwSNvq7rwAIuy1KqGhkpuvIAGQBIee8pshh9Ii4VbxbreTDUWsvHsWmWQozIrzCvwHiSWQGSf+YjgvuVQmOnvHjxhXNuWTfn8xlEY7xcnqkeSBoxEfXx4b5pGsAvxhhQrLDU8bSVUovFwhjT933KDtXDMFxdXd1ePxvM+P79+8Ph0I2DlHK5XCouhBCQ+ye49Xg/WDMjqjwrgPd9//T0tFqt9t5fzpe+902jEELn8rzIvi+oiPHisKTxPcE6lpJSEgUyQL055+dZUkxl4ewh29RPlZoQc02Eh8nznLQQIkZCP2MYjJSKxWTMiJ/FqeqtDZS0LpFBAUeODpYYEzSfs8dMmSc6d60s9LIsiCYxbkjJuzyaD6w2hEABQoIMcftwPn311VfPnz/HhEGw0xznDBZVoiAi5LSQDETuV4PuqRURjf1gjLnebnAXQkrivGka2OSgDIkxLharOdYZ7/DKYtYAEIKVZT0XWWCPjd3IOYcalcn+QFgAWms0QZERFXXlRoNUE32amAXQpyi0qFjWLEIkHIZ+6IbTiQ1jqCq+XDZFoYZhEHKCy4wxnMnL5YK50u12C70v/Dj23Xw8+Xlk1gfw/QWXi0XZti0ErHRZzOkBB5nP+3Ecg/NKKVlMQsRII7suPHu2VmqCsCA05H1ExEYViQO3KArrHdZeDITDAs8Z+3RRN7MgJPOpCQUCfuKMB1mXpV5xUZSlK2VKSRKL/JOwcsg0VQS+fHzyEHyMgZGTmenMMzcW3pqUjYDmFBlLk4igToDaJmSxV6xOnCtYtfMZhvR3zoBRfsg89mKtjSkJyYIPgquiUPO3gcXjswTBcrncbDbWOcBDWutL1yfvfWbzc5YQCpEH4GBIiaXJ0Y5iSkikykqHSURpap7bTPgiIiknB8kXL14AhRdCREY8xgnxIaKs4zZnVzhs5nKCT/zZyQWLZ1pxSilGj4w/5uHlGSBLFOa0w+XxK05w3mMpizd5Y+DON787nlvxMcaU8ZG5FJ8zGLwIpMJYvt5PC4OIjLXYdVIpLkRIHoV5pBRp+oRSSMGmBBeT4LgMBE3A0yHbws6AOG6K2FTGCK5IcBddSlN0w/c0VY0nidXlvKPEOU2znLmDMjUb8DAxtJjyM0T4aJqGuMBZxbKEiLdujimIklporGShFWMseh9oCjfWGs65UoJ7goZvCOHx/m6z2TAhYwhSSq20I8Y4OWcZY8PYM8Yi4xFtBu9S9oCKMRIln93n0OWOn42u82ywWVXVMAyn0wnF3hzNKbf+5o2GgCKlxDPH2TypEFDiXHg/ch4Wda21Fpx3XYd31TRVURS///3v/1//9v9xuVz+5b/8l//6r/+6aSrvI8bV4XvpnGO5F8Im70cGHDyEQCyFEDD4g3ILPwv8DuGM5a8ZsMPrALMgpZT8RNa+fXattR7tWNVFSgmT/URRCIXfWxZVihO8haQhpRQiB1tH5JGc1WrFiB8v54k4FkLILqPoGBW6XC3Xxo6IIXVdY4h1HMe2bYWQl8vlhx9+WC4Xh8MBKdr+eLDGSSnv7u4wh/Kn7/94OBxijNFH773J/MoY42q1evnFy0Lp5sgj/fF/rml//ue/3PyLF0VVFlXFGEsUPr57zyg2ZbHYbCfrAzu5WpsU0cdOMYUQZKGF5JGSj0np0hlLnDPGfv3f/mG53n7z3c97NzlxO+cKUju1TimcToc//P4f37z+/nh4UJx7Z5yxkpNSytqAXmFKLDLuXVRKSaV8TME6xhnFT8jcHKlSijH5w+FQrjZXi003DC4xFhknRoINw8CV5JxLrYXUjDFKnDPJWMC+FpkgkPcyB/eWiAQXKcvKD8PAiSH7lNmRHIs/pSQlf/Hi2Xa7BbeLc77dbqfT5LPJCbx9nDiMseVyPWfJQogIjeqUWEpQt/zX/4e/LpTknGL0xoxRMM65+GdcH+cvzoXIIv4sj61Q9tvE+kdYw76Y88W6Lup6ib/fbrfD0NX1KqXkYwT3qus6wac2PgbhvfeKT+K5OM1TSlyQMTZRVFrF5JUWZakZSyazfa21MU7FJzIezCtUlUxpauYLIbSezL5QwMy84Bk+wFVhO282m7u7O8T5xWKhhARXWnIh9aTvFKJLYMjGVJZl4mnOGWLygk3RDDk3Sp0QgnUjiwmti5SHP5AVCKKyqoxz2CkpT/Cg8vwsjUsy20AXhRrHPsaosqJ0+mfg5nG0m/Jaa325XMbBppTqupFSMrS+pCiK4u7u7ubm2Tdfffv09PCzL15ZZ/7tv/1/lk3JJTud3l89uyJBzphSVzEe2tP4Mb7fbFZdfwnBMcb6vl2v11qVRNQNPVZjTOlwOHnvk41VUV5trv7iF78il96/f++c8yZeukFLxTmXjLfnLjivtXbBF0UZQjyfz4uqXq1WFFMIEQlPjNF79+r5q67vu64bnEmeuJJKMciVHA4HShz4HTS1d7sdaoNx7EO2qcFRhfCupGwvl3ltBO/ruv72229xWqGmhQcd7gurZXzor66ugGla44f+CVT9vu99sJzzYRh2u+v1evv09ET0SVJMSmlH45zXWqfINuudcb6ua8F0cHG3u9JC29Gdj+cQPjVuGWPEWUiRc+6Dn0o49OIFI8G5ZP3Yn4dLpPD09FTW2kXnY1CFXK02hdIsUVmU42DHDiZ1gy5LrUofQ4wRN4juxaKpnffOBWPtuw9vF/XSRXceLq/fvh52Vy9uX2hZjDZqIbQWqqisGShQCCHFhAQPymCL5RJZJaNIjFIkWRTX19eWbF2URVH85jf/0Ppxu1374IRg19fXP/74cdnEvu8ZS845a4Y53QKAiyvE/sKhOQyTqOvz57eCyf1+zxjDAogxLpdLqRXPFvAAstFnur+/B1HUej+OYwqhrmutdQoRWw9yB5/nxt778/kiOZv1f9fbDf5+nkMvy/Lly5fw3ANp4Fe/+tVv/uEfEA02m80wDJILpdSrV6/qet913ePjnoiMQZ9JjuO5KIqXL1/+0z/9fqr3OMeksNa6aZq6Xuz3e2RQ/dBqre/vT0d7/Mnt//j4eDecop9acciKQeO6ur5G0rjdbpHzQHei73utJ8cUrfU42o8f70PWSCWiuq5vb28vlwt4UjzbQeciMDKWFovFer1WSj08PGA2vO/HpqmEEM4bKATCI46xhMFqqFHhoJynwW5ubjjn+/0eyKZzDnDG4XBAMVkUBYCbd+/eQVjj9vZ5Weq79x+UEs653e4aySda8ofDwRh3dXUFfHnG1jebzTj2l9MZABD2HTC7mE0y8BuRkVZVpbX++PGjEAx6r9A3995zIVBzxRgZEzGGCM/exDkn/BPnvKoqimkc+9PpoJTa7Tb707HvxsPhcHNzk+I0WKMp9X2/y8qHy+VSKTEMk8MV5RTae38+n5E6hhCkUE+PBzHpmfbPn8erqyso5zZNczqdkPF+/fXXff87Y9L19bX3FjUsvsfak8/ETODC1ze7lNLldPbeF1X57t07xth2u/7666//8R//8XK5YFQLWOSPP74dx3G5XEaarKWWyyVgkfVaz8UgCgfKRseccyXV7a2G1DimBMD3F0oBfsq1DBVFcX19/fr92xRcyOOVWpUg92HmGDxQ/BPyNK314+Mjkn8EZMAQaDaklGJKSguyNJrep7hsqnnQvqoqnpua2+0WDhwoW26urq6vr621ShYxeiGBCbTea8QZIgphqn+RYKA65hK1gwTfq6iqZrkcuu5yuXTdyBi7XNqHh8emqhaLRVVVm90WIKD33npX13UKEdITwzCk1KXEEBu990LYvm+raiqNgU0/f/4cgx06Kwqm7G/PGIOnEdI8ntldOC4x8z7DAiyTHsJnCqp4VrvdDmDraMy7d+/whBFRy1K3bVcUGjMlyG2gXYNOxtwYw4Nyzg/DMI5OC9l1gzH07XfPgGuP2SIMmTDSsFIX1nrj7DRBGAKlFELQqhyGEakjghUGJRfLSegMfw82sZQSNqSFnkryrut+/PHHsixvbm45F8Pw8XQyRLRYqKIoAaiiSEFQBcoshKgLzSbRgBjCRHSAqSB95rOllLq5ubm6unp62P/w448Q4SxKhVo4UvIewhQNlpy1lknoqk9gCEgMRBELdbPZKC6sfQQdddod2TUqZdNsyipzM2SMbFl8xsbTWfILxxCe8xx2kNJDcw/V/fxPUkrnJhag957F5L1PPmgpm7J69+4dtgCG2q+urh4eHlDs13W92u7O5/PTY4ezAKaJKYvhgJvvnAPjleWhAc55CNOoJbYA0FUcl5AkPj7tAbDMsCzsVdAPEDSNUdKEBU+7ww6jMWaxXlnru65zLiEzNMnM94tMgHMeU1JK6rIoWHk+n40xoOh676OYrL8wV7fZbFJKVVNba+tymlsiIhQ4QzYQRn9objHO9CkcmjMD3acIzATgz2yRCojjw7v3u2tTlErKlcsCLM44znmIAbnuYlET0TB2Sil0fZaLNZ7AMJi5618V5WhNCG4+HBHhjTEUUyCGHh4napZLnJV4qjFPwMusyhV9sBTmigm4rNaaMXd9vdNaw08YxobgsKL1iJhcKj2YqYh2drLuOJ/PMUaMFXZdRxVaXy4mf319PTx0SqlVvRmtqWS9rJu78V1yvvG7SQORcx5ZVnnPhW7Kgrmcc6S53vuqnMBixpjSAukpZXt0logyxsS5xB9CLuax+bGX8JLwyWg1iMx4xZvGc8cZJjKNdA7BiU32AjF8ogDL/J2YIINVwmq1MtamPJ/ivYXUJvaVVgKLeE55i6KAhgGus1AlmlplWcKdFgwj9plkAb6KoiiKKkYvi0mLE8n03KLEK5/jF37j/Khxd5wzxkRKnGjmNU+gMFHgnIfPXBmnNIIlNHBmtJol4mLSMInxk7QIoBma2vvi8/gCAFhkFRj+2VBY+kwcA2c/lD14nj7GgYqnwTibaf80SSk5TlN3QUoJ7dOJXyNYjN5/pqoh89hgCAHaiTEEB+mPzLYexm4+j+cnOa9SXP84OqJMT8hNRZYFeTGWWNW11tplRdQYvZRKZpEKdJ8oToDvpwPATnMZfpJGgRiQ9MaE4LxLllNKKVCKLo5mxHHK4jTLEyjicEoUwfgzo2VShDi15YtsbmaMEcSw75DffA55GGOgAQ/EarVajc7mBGJqCIU86IH9NXa99/7u8UkptahqOFQASxJC6KrE51RVpbiw1qYJ/eeMsdPp9Nvf/vZwfIJrzWq1ssacz+fFYrXb7byPxvn5NBV5EAFnLbaAD05JJbOL/fwfIU3andizKM6RpzLG0Hp1zi0WixQppTT0/TAMUvFm2Vwul7Y9j6O8vt6FEEIgBPG2bVMk5JecMZwr0+XFqX7DgwJfoywqQexyvjitMTnBckvGGAPnuo8fPw5jjwqKMTZ0PfIG5/zd3Z0QwnobYyTO7h8fhmGwZpJlwEijcw6jtaUut9ttTAkZ5PMXzxATWKLhn/ZvfwpujiG0bXu6nIGULRaLtj0DZbu6vW3btj0+NYsmQvHNGa1VCtFZ631g1ta6qcvSBhvbtmpqIo7RraaqFnX14Ye37969M8YNw7Db7VKIb96+3j883N1/cGZUgknBleBwHezbjjEmlIyRQiLh0+i8KisTIuMykFeMJYz05AEX45z3vlKKCzZ0PTQNLFfeBePderHcLldtezbegUZbMIhdmpRSWdTTWHseMLTWpjgRGRB5nLFIxz8t9TiRYVPWMUcVNHWzc76FomLuIcfML0iZDdH3/eVyWSxW84HIGIvwBpHSjuM49nVdf/nlF5QZuFJKm6YjGWNiIfy0djOGgT5vqMTc3A2f+WoipoXc3J4RajFNhvKqqlDEcs7HrldcCKVt8KB3GWOKwIQQQUprIcZKSsquvyA7nNu6Ird8UubNCSGITQBKkY0KQyY+cK6k5NZ6BE8caiDOtG2LRM05d3t723Xd3//6H25vb3/1q1+FEJrFwowjtjbFJOWUjiOU0WfcVQjUzOrAiTMpJaXJozmEgFlCKWWptbUjCfLeGzNwDokgNu9ilrVQZmhMZumblAidJykFIu0wDMfjHjP+KF/LsuTinxFFSSmgQ0CirutMCI0hBLBubfDffvutUupyPg3DcHV1Y4z5V//qr968ed0ObVPWw2Ww3iVJxphaF2ohzGjcMH7z6mdKi4enp77vo4uqLPq+11JdLp1z7ubqurucEgVdlFrrF7cv/+t/+Tut9XZzdX//6Jzvx2G5WyKnt+M4DMPV+tYFP7C+aRpvLBA9JSQTnDEWE2bLSl2V2/Vut75+++F9JHLkrMXc93QIZknuCosBrx402NVqBUrRZr0WnDtrga2kbAtprV0zJoVgRJfLRWutssF327br9RrfDOjHQR3Fp77vHx8fAY5wzgtdSa4E44C28WbNaGMKLMGrQHoX9+enlNJo3M31damrP/vuF7fXz2pVkUtEJBgPLMXoUxJcCoowEk6KC0YshuiF54nzSMSTrsp2uDw+3j8eHrnkxjsmSGuttGzP3TTOPBqW/RJAGSuqUsWIFMh7X9f15XR+HLpE9PzlF2VZ/umHH0PyzbIhTqLgP354473/2c++Flw5Z4ixaIzImo+IA9Z4RlPEK8uSx8QY48RSSt45zvmyXqbb9G3XPT4+vnnz2juKxB8enoq62GzqrrtwvpwQB68hrOy9d97c3N7yPLaFjdN1nffTJO+PP7yJMX711VeYAMVAjyqmgTbsWVCPGWP39/ddN4ZAzrnE4mjGRVVLya+utpzz4HxRVN5brfUwdFrLc3vabtfW2pubXXD+cDg87ofl0tSLBrEFjSKgpVB1REjs+75v27/5m7/BcOhisZBcvH/7DvKLcH47n1shBLTXiqIoKn06nfb7PQxLcf3gEQOO6fsWMqMIj5vN5vlzHx5/2vR1HMe79n61WLx69bOnp6fj8TgaJwRrmiYGct5qrb130Pqkqcxjfd8qVcy6Z977pmnQtkGcx2OcK0ZUJTSpBGAQZBpVzkch01qvlhsh2cPDw+Vycs4y1t3e3kr5qVUGQvHhcEB0ijF+/fXX4DtLKVOI5+MJxxwAjhjjn/70hjH6xS++wRGJttPd3YMxWI9hvZ6KGs7509PTdnvVti0Gw0MIm81mu916b/u+5cS22+3dw+P5fL6+vj6fj3gvp9MJH45HhIP7+vp6s9mcTofz+TKOJY5gtEMInWA+Ce8ivbcmH52cz5ia99Y4H/v+6upqc7W79J0PZx/Tx4/3X3/9M4opRionCzjmnUPbjOInkpPMg+0AbTnnx8N56F1dlyjLGWPGmIeH/VzPLhYLlIf7/Wm1Or16+YUxxpgBeWxZ6RRZWZbrdUyJPT09heAAc6NN0nWdt6YgKopiGLqnp6cffvgB8A3mEdEwuLm5wh+b5YIyZKmyQDMycFR2syIENKwLXaaUnj17dr4c8TfYCONgZkRDK/XFF9fe+8vlsl6uOOfAFy6Xy2Ct5BwK2kIIANyAnBBJmqZB7vT4eAIOhQA4txUnDNQZYnG3XnHOcY6nlGCF6YN9/+FpsWjGcRzHsNstb25uhmH4zW9+s91uy3px8/wZ5/T09HQ4nBeLoJR6++E9JNdjoLkP7QObi+5EAZNt2GJV00gpr68F2Hmgde/3+81mA75kURTr9frt27cTG51SSFGXBZoiE6VRsmaptSqnbkemUs4pXPqM5VMWBc64yRFq1vKaQEMH9BZFEEpvTBUg50c6jYYTHuAPP/ywXq+FlM65/X6P6boY42JZl5WWYuoqAYgAMwYlLR4CFDkwdtC27mpTO+eMoaKgcRxRsEx4PaYGc0GXKfxRCGHQrbcBOGNVlrhZk+VZhFaMBMHWRwiRXZFAX8BNTVApc0qpw6GTfF9V1Xq5ivEEaIxP7OxeZjnd6+trKLbrbCHAs5pBSiTl5EaItD8yokxfu7u7s6OrqrLvx7qeRE2HYaiLUuQmVkrJOcM5q5uGZ94k4GZoTeBH0LPEG/He930PKDp+RgxHX3YYhgCDihCSDykldF4BLGDv47fM6wdb5nA4oPbBSYH2GBKq7nyRQnhjtVJj1xZFFTMDEksL51rXDUoJrRcTwS4la13T1NjR1lqlaRxDUUbnJvLi/KbmXgiW5Xq93u/3McbVao3iAhSTy7m1zqC3gdSaK7ku1kWhiOh0OiXO+n4yoyIiawweIMj1m80KuwB1xNB2JCT6Clh4iZGUEmiJLHSdHcKcM23b4rTabrfH4350Nk+QexIcTcr9fg/Or9baxwDxuvnYnd/FjAnMj1FmxdS7u7sQAgwGoSlBaZLARh0BwPrZs2fzgIsQggsiRkJoXzqoVHlvz+cz8ltUr5v15unpCSECYRCbHV0NrSVIoZgqABAqpYx+ShJQtWGfoha2o5F6mioLEBb3E4kKoR7tUiJqmsp7hTNiGAZYF2CIakb80PYbx1EVGs85BG+y30Pf93d3d+AMee+tG7E+7+/vt2odtWYqNcuFe/Kn0ynVCUW9nC505lhxnvjUq58HylwWpK/rmpJ0bjJ/x0eEGHUxsXERmKy1KU1CGafLEaQGInIO07gTpjm3cdDVD9nuDBW4sxPA55wTXBGLM89LCBFSAlhQlQ22qNa6zsNZWF7Izy6Xkwve2DGmqScjGHfOjeNILNbVkjEGEOfz4FJmaynOuZRyvVkCO97tNuhyh+xJNQdBIuKcvI9FNkvM/YQ4o5Mgi7nPRnpRgwkhikIjS5iBD2wMkX3eYoyMRaRBeC9T60PxOUxg29BnDk5al7gjKSUXk+Tl/BUzMJSyGuYcZf6Hz4mZ/F4UBRoJ8/cjkOHzY5zctPDNcwaJc0gIURRFds02l4vHNJ/OOtoy07pjjIyBvRs5F4wlioFBITdOemEoGuc2GjKJUhfee5cCUUyUfAjEGFyDcanEGBMUko/BwYAez20cR+4/MffxapATzHT1cRxlmqy0fPKRkiAA9YTxQ+SsiUgz5mJIKSpG1louVUopRYosBkpmHMuyjCExxhJnwXsu1Dx6GUKA3FUh1bzR8Hzos1bBtE1yKaucYnJqZvDcphvH8XQ6McZKNYnlIwpzzpUqrEUDeeFTxNpDxnk6nQTnMWEUkZ1Op//8n/+/19fXf/u3f+ucg/KRtfb47t163W82u+PxuFitIXRYF1OO8j+8d+juYdlgYU97jYIxHkyNqqrGvjfGgFyD4nYamWfi1J6stcQSEyyGeHf3gXOOEtEYkKk9Y2I6Ao2Zhq1Gp7RAchNCcMGJLFPrnLu5uTHG3N894PaPxyM8eUMIjE3b/3g5j+NIYeqZMcbO5/Pd3d16ufrFL35RVtxmTOr29pZz/vj4+OzZM5Y9pnD71plxHNfr9W6z1Vqf2wtuGdGy6zpvnXr6aavArh/MRcz9AzOMVdXEGBPxr7/7uTXjGzt6N9ZlafqhKAo7jIliSilyxrggxn2K6f/P1n8225FlWYLYPtrdr1/5FIBAiIyqzKysKdViWhm7OS1mvtGMxvmrpI1xzPiBTauunlI2wy6RorIiMoAAHp640tXR/LDcHahivA9hCOC9d+/1c84+e6+99lqZFVWtGLf9EEJg3P78b/767//+7//8//vX3vvdblco8/7Nd4fDnjGWojeCk2CCM0oxc+YheUxMEM16wdaH3nmpq0VVCF0Og/MpCWJz6UhEUusI0S6Wcqau694/fKi2N6ZacxGl1KCqGWNkYULMOaT0SUc3JRZ8iskbY7yLfWedc6YswMXruk6J0boX3dCcc8zp07FKMcmV5mkw7ZNfnuZGGigGeRJrIiLczW7SNZ77cymlEF2kuN1uEZnndlqMURWaTS1bROkfXNMYRk15XBOfggvzkadPJC+xl3CT9l1b13XO0blAlHJOIYzTYYvFImca2o4xVhWl5Dxnj5sLlR6y3vmFPu0poh+j+HhYyrKMiVDThhAi5Ui4KGieUoqTHhSup+VyiQ+VPxnRyDl/+eWXSJtGuU9rByFTSinEUpcosTjnXdfochzxY4xRTGAidF0XcgLVjjFWmAondCxUcvZs/BRIY+YYyBhD0/Hx8ZFzbsrRxwkNrfnJI69ijBiR1vpweP7uu+9+9tPfkVqhuuv7vmvbH1zHsqzqupZCMBJQzByvRcZWq1prraVmOZlC94N6fj4URfHi9sXV1dV33337f/9f/h9KFJmlxbpmjPWql1KmKhFla/sf/+jHSovow93V9aXvur7HzHgKcbmol4tFezobVQgSN1e3dhg+fHiMMfbDUNerLg4x58UCiDmYbmPOwLkMIazX2w8f3t/f33/++efJJy6YlAITOYLJ3/rqt7yPbdv//bffJt7tdruy1DkrdNNjjCkRtH37vl+tVkVRQJPOTyqZIcZkrSmKmPxqsxSK933PImUmHx4fcTbX6/VyuSTi5/M5Rr9er0GPHcc1fOKCKHMpJfqyqCcXixURwfguuOgGX0wqTzTKPjBnAzOqquq2bb0NDx+e/skf/pOvvvxaknSDt92QQ04pCcYZYynFlDIftZd5CA6HEXQ/Lhlx3vdtb7tvv/tGl2a9XnLFD6djGAUTc9/HqjDoYKGQ7rtLURRKayIKwaWUQkiFNpzzsqyRnUop18sF5zxld+l674bKFM/nZ3qbb29eFbrMORdFRZRyjowJpRRnEieOwVa+LIkoczY3VKSUaI9t1ld/9Pv/lDHx4fGd1FJJ471fLpehNBTHMQglpdYF5wT7cu8j56NHfJiMQ/hkphJjPJ06pd7BLwvX7jwAzjlfrVbgf202G2stYwfgbr2zGO2PziMhaS8Nbhy0cns7QMB3uVyiLur2/W5XsHGkSdIkHJdzvr+/v7m5efny5f39PQCapjmDvfXw8ND3faENwjJuBMZYXVc5Z2N0VdVKKV2op6enMModVvBOwAsBnZkBd0wjbTab29vbWip68wPHv6qqu/J26Hokxk3TEyPONWPs3bt3Souvvvrq8fHD3HTEe04pnc/niRgxbLfbL7744uHhAeIw6NxAbxdhCjGwrqswOZ8jWlrrV6vVZrPhIyPVxZiKori6CrgsYoxtewGqi7ngy+VyuTRCcOdSCCMA3bYXwYlYurm9sm4M4PCu2G7rfvLZBikPaBSQX/z91IVymDvGRUATUI409fC8X61WwzDc3d2NbaS4wKtYa7Fkc72J+IDGhpSSCCr8GVuCYU4/zrocw83NzdPjXkophEoplEWBqlYptdmsUGD+5je/wa0kFbscc9/3y0XddZ0qq81mc3//zvY9qo+x8Tkl21LqRLnv+/v755zpxd31V199BYyv7/ubm5sXL178xV/8H13XIZlsmma73cpJI1hyxQVB457xsVFamAribF3Xab2YMUeIX+MNx+g5XzDGLpdLpCzVCF+ez+erqysw04UQQo96lafTKU1yrvv9HqNgOAIjNbIdfI6cRSnH3QK0EVN9dV0Pkx+G1roo9Ol0GobOxQQVUa311e7m8fFx/3SS0zDE/f0Jil5YGiIKiZRSTIibu91ysUCZv9/v+94yliEvi2QD9Q5iO6i7z4cnpBAhjBXr9XXNOWc8M55VoWbItetaqfhqVbVtp5TwPuEXppjcJHEeQmB8zFjw20adMecYY2Eyc9Jaf/byVd/3Hz58GIaBiXGUDUkCsnfgQXVd4+9njkIIIWaGnQbcEO+ff5wPG/VhhBzHf8XkYpUmTd6+72edDZrmVlOivreMsaLQc9b0+vXr3/qt31rW9Z/8yZ/0PeV8ur27DSEAu0Dpqo351AYQizINJGU04ZAQojpbFKXiozIv5/yzzz4L0Q3D8OHDBxBi0KXDuZBSKqm4FOSYlDKkFGPs7GCMQYuOs49D1UwKpdRutzudToKPvo7g38xVIU0ks6Y5G2NevKg4ccS9VV1rrbgclTrQDwCAo42myUo6s8kbLEW0DYZhaNsefRS0wLHPYQYgmFyvl6tVfblc6vUKgxQwi7bWIsMEXJtzhLgWri2gN0SjvsTz8/PleHrx4gUGO/iUwOME4UZWSkmjfYo8JSl1CEGqkbTHJ78QCDehh5pzBuJsrU2JXAyLRUlEWJ3j8SiEuLu+qatFczrPgEbOH8kuSC2QDiE9xhCDcwP4iEVh6rqO04S91qLrRh0hIURK417inCOejOTOnB8fH9Fdw/XEJtO1nDOjsUuNjhTnPBHLGRIopdDQnATXM+BG86O6uhs7iDQmHi6GaC2aPZxzYqxp2qZr1eRba6RCN4smE6+c8/F43G7XG6289+fDcbFapjE3o3NzKcJoFI+bRSjJ8sgrRcqH2SlsADCFcc3hnxDYtdaHw2E+p5NeX04pSCkWi/Lq6urp6el4PCYaCYtd17148SKn9PT0sN1u+75fLpePj49mcv5kk/YvANj1et2cT23fI+NVSkkNQfLR5hFB7Pnxqe+Hq6vd1XbrvQ+jLCHHDZInzcOcs2BcqNEiDkceyzdv1P1+j3CErYixFbDpZ7QhsYxeGt4JNhtq2xCC7QeHslGP46QxxiEOKaXzqYnHZGwBOURtiqIoJEp9hDM8phxiStkGPxeo/wCdjMG5kNKQUpKKK6VcsG03imQhoqUQOZefQpZGazbZARElKaGiyLQuEMhCCIzznHM/DGbycMOHR0ZSFIXSY8GvtWZCowUnuMORmMtydAmmBbDee6Ek+rE4G+DFFEURk1cCYP8Cr4gjGicjOCll9IlzbgrFRi1/jukJosw5U0rjY4rpIiGiKe+vsV+xm/nUdQc+iLc6w7JC8Pkb8uSpSGOrzc8RqigKxccPRVPrCVndDMQLxueoxyZt3JSSmICPPJGd2aQpTkT5EzQtT4oo8zsBpDvX8GnS7kBqguXz3lNIM1ySJhFtzjmljLQGVw4C05zVzechTvNrILcCQMmTiqsxRgnpQ8CjHtEcYlgpY0YRRuB3bAL6UwaEx4gl550PbO4883G6PE8QP5MjVfkjF1IrjXOVZxp7loyFYRhUoTijOBlKdLYXxHGFCyGYEPggpZI+BiJOmZHgKQTGhKlKqZRkPOeMqYIUvfNDCMHocR8uFgstxuP5D1YqZ7yZmYCDMNH3valGRaT5JIYQxiQ+U84ZhV9ZlkVVScZxYpRSlMalDyG8efPmfD6v6yXaAF3XEtHd3csQ3C9/8Xez/PfpdFLSGDNcLpfz6WLKSikzX07pE5/JnLOQnMGRgHMkWKBASik721Eed36M0Q7OrE1d103T/PznPwdB5nJu9v5wOp3KcrFcFd77y+WcEmkt37z5frvdDsNwOp5pwg0duLFFwRjLiTHGZv8cojyEfnDjKNY333wjpazKBZ7DbrfTugD3J+fMlVwuF3ieCIzn85lxWq1Wn3/+udZaS+VDvLu7k1JyMSJNt7e3UsoYxmxPa12WpXUSZBwQly5tgz/LSdfMGMP4Dw/sYyNdbbaLRd33fWeHTNS7QWjVdt3dZ58dnp/aU5JS6aXsL0csdGnKsV3PWcpUVKXWmqUMFdSrq+v7+3vG2Koyxqyk1FB2c7YPbggh5Bi4YIIrnPTMGHEZvM85Sa18zG0/ZGKr3e5nv/d7V5vt92/ftG3rbZ8pJWLEgE1mkTPDxIkQ/BO6lpxIrInImLJ3fX8JUimZxj4Wgj9NAkTejWbNfd8PzsYY0QRKSs8xBFFxsVgkGoV0iqLgn6g2oXUUY0RWkacZGiKaO9V84pighRl94mpUpGGMcU49SzN8wKYpM+AI8yEC4Jhz9sH94ILGFIBuMCnaoR95K2wUWRKT1vnc7ZvDNRGVZRmiC95jBEwpZYySQkl4aFBGw5lSNEqGlHHQ8A7BQAGEipkefN44MXRW1WJTFIQ8O48pLKBeimnCcMdF1FIBIZJazdSMuYXOJqy8Xq9QX40YsRDeewxCDbYDlu2jc85lzubClWfCevXOEhFkVREoVB49hAutQ45zO4Ex5q2TZQmOkp5MI9Dpid63fU9EGFqcMh8XY6yq8vn5eVGWKN5+93d/tzRw4u5TMjnnWXvhH3398le//NnXy+16B/pVofXXX38tWHber7ablELKAc05rfXv/+EflGXpvc1J3Lx4+R//4//07t3bb775+6enhxDcer1WnFd1fblcSOi//NM/WyxKXZhze6oWS5fd0HdcqOQTz1xLU5nqfD6bqtBa/+3f/KI9X1yMKVPTPQvOQ4pMiGqxaM8tyE2A2pVSwTplzHq9fXz8cHNzo7QMIQTnlNHDMJTVolosPn/9RdsMl2P7y+9+vag8UZdzLgo9VVIJxn3zkxdCEGfd0K6XGz1pumkjQ6D7+3vsatSuD83Dolp675umOZ/PhS6LohCMO2udtda5EML53KxWNbyqkJpeX18bYwAOal103fNkjZUpZds7waTUfLFYnE9N5lkI5W3gJLTWdVX/0e//0Xa9k1m0l/ZyapCKfNoKEoIxIYCOzdlRyrk0hdDy+XD8/v1boeXj8wOxpIxJITIBRpVo28t6/VlpCjBGM8WyqtjkU42bWohgXa+0yIyDT4fPIgTLMUnNQvaXIeRIPoaY2c3uZrvesRTzKOrBGGNcjc117/3Qi5HQIHjOkWcec4oxsyzvru/gE/i03z88Pp6Pp8Wy3Cw3XJExiudR23Ho7DT8G7TWxFmMse+ttVYpwblMKTtnU0reRy3VYqHbtr+6YoC0Hp+fkMIhHw7jiFhiLDOWV6vVaJKe01gIUYb58PZqF32Ax5TUSmr4Ko8zN6vVarVazc0kZC9zHwJjXnikqF2rqjoej0Ai9k+PRGSMWSxGKVWt9W63g27p6XTy3peLarPZ4D2fz0ckq0jh8kRORy4NdOl0OsUY2bD5weM/DEO5K5+fn//u73+93W51wVOE4pxLKQ2Dv7+/P5+PIKBIKeWk2jeXf4gMyNYADs6fC6EVOZ4Q4wg/xnvHLJcxjBIDw02TSNFyuQQlqu/7sjRQwQaBGvoVbdtqzaVMp9Ph9evXWuu2ad68ebNYLExRLZdLNA+Q3M6IRlVVp8Nxt9tRyjlm64JSDPoqXTfwaaYblPAQAkQ8YvTD4MFyDZN02+l0qqrCWgtYBIN6IYT1eg3kEVZmVVWlqIix87k5n89SaiHEermMMXZ9A3LGYrEwuqzruq5XIYS+b81YPkRjCjzGlFLb9XVd39zcVFU17Ab8bN/3z6cj569Wq9WgdXDOGBWnsaQ0uaecLuemaRYLvd1ub65uQwh915VlCQpFzrmui7Yd8MSGYUC8quu6bduqLEEBFpIRjZSOotRlsQCnHpmGKcae6zSyw/FnznnvLCWSUuYQIdoL8njbtloXIY+MKCT280o1l04IEXzqO7uoPhKGnHNtO46O8UlqL6XU9Q0IdEVRQPVYa+3ckNJov+lskFKu6ppPdBbG2Bdf3Iz1YM545ynRfr83RpVl2U7GLTmP7u4hBO/dzc3Nfn8E41II0bYtFH7YpEJ7d7dbrVZEBBYkTdSlel2fT53WI3dvsVgIwYQQq9UiZ8Y510qySX0ewFamEUbEjyhpoF0upRy6brySHh6AMWmtXfCQB4EaBuISilZkTbjLAEHGGMvFkmcCvIDb6tMePGLLiMJMQiX4JwhcSCmhmgJsFOxCyAaizoJcyeVyOR6PULz55ptvqqparzUEpjjni8UCFwrnPESHizL40T9DTYoc+RNpfkRUxD0EJVS++/1eKs45x+GdUWZMlnjvdQEVEeGmUTytNc6vEGK72TDOtRCMid5ZziWwRQHTLz2Ktc58bbw3vLpSRkqZY5JSbDZr7yvvPTSk5jYbQKre9ZyzEGKMPjKulGq7S8zMOYduqP1EAhvB3Fp7OnVlKQstENDgeoLmAbbKvHD4BmstUCxwtibYPXysNWL67rvvcMuIyYNaGRlCwiXS9B36ylDmNcbwPMrKz+O2plB5EsOdfxUsEKHnNc8yhhDz1J9DHa21RpwkGkGSNHH1TqezEKIoFFFGeYIhSMQBIUTmgnO+3qw2W4ZNYm0fAs1gJaoDNZlIzfhjziMRkHN+d31Tr9YxxqI0+/3++fkZtQ+sYkIImbOF0bj40NZtLu3t3Y0xRhDb7/eTYuESgY5/AlKFGI0p0ujvNTYVImU/DLgHGRuPkve+HfqCRvVITFoIIUIaBzpBJEJ8Y4ylCZjyk2p2+kTIN0+qv7hesUyAxee7O4Sw2ayWy5EODO4FsEdrLadcVqXWsiiK1etlSgFQKuQWkISnlJ6enkChwCnummZu4iLbYYLLSQUI+UyOkI2V3nuJxDIloFXYlmjMIKkQn8jz4n+j94hdc6rDJ98jNDzQoZxrZyJimcQ0Kx+mFhHw6LIs4W2mtSaWxiAjKcTIMmVGUqpVsU4xehrDuMSdNw7vCzEivygUU87TNAqKQOecVlWMMQRvrS0rs1gsmBhHKfPM9uVi1tY0SmMZWCaQt4kILrQxxhDGyZHMEmejlLXg3NmPZnQ0yrqdIcU97mOWOOe73a5erIALoyWKmZqp5Q7jWkqU0fNp2zamEVlQWlAY+/OY08Q+ACmgG/qcWFmW0CiMEahlsqNbEYP4pnOO85F8ipbI+E4m7WMx2b7RxD6Wk/kbFiDnZMzoTiamgb7L5TJ12P5B3iOE4EIzxmCBip0KdSv0aoQQs2ozm2afxcyeY+OEe/6o3cGxTInFGZWYLyfse8ZGOdQZhU9pbPEhNGDjxhjThIzggYAUr7WWXGBT4pcwxpqmAa3DTC7b8zFg0xd+Of4+TChznqQzjNExxhxTCH4sDkOYY65SkmicCMBxktMXgk4IIXofQiIaJfaXy4XUah4aYtOIfZxmyQFAZ/cPuN6ZEY508lHxieXNuQ8hRp8ZCynnzDzEo5luu4GI6sUipZgkTzmHEauS5EnWEnMARKS1FsTYNC+JZGKGtNjUqyCw/ya/2jj5ZOJfq6par9eSjSPkSqnkA5DWHKKUOkbfDmO7UiipOO/3BxwivBDY0F9++SWmX8EXAAKeIoWUjTFaGSZU3/cpkipGb2XvPbpEaZoLQ4sYb/4jxqdlSin4iH/t+74fujRZJyPmNJfWWmtMGWN+3t9772PMMcaht4fDaeh9URRCKMYYEZdcyQrdHUopMSEZY1yMsCnnDG26q5trmOfEGDn7qKUQQgIRjMSciwekAt77OqXVagWsMITQhcCZENMsCMoDAJpKjsaD6MSoSdoeZfbNzQ2KRlT+nHPJhevOP0ihZILnTG3bCSaay0UZ7WIIITofU8rVovriqx/9+m//mjFWGFP4gmdiRIIJYwwxwSTPRIlYUZUys+rLL5vz5e7urqqqd+/fnw7PuDnatu+6jhOL3sUQuGA5k/c25yzyOLrLGM8pOueabpDG/PZPfuf3//CPfvazn52Ph+PxyIQMicQoNz/2RWLOWso8SRkjxJFW3dBv1zvORfSjXlXfDzz4gsZoibtgvg5n0pnWuu27/X6fM4MmIM64MQaElKqqrHfowOEH+TRJwxiDuDCyfzNZ2YAosdlsMGLGJlANL0c5gaKIYF4KPkcqDMcxwecXShNfGHsmuB9mrAsucYvDcQJ1iDaGMXY4HEJOi6LM06+iT/B07wY8imEYvv76K+TWdnKstTY4FwA6gCgXc5gpcsH7/hNBbTV5WxVliYCcc1ZMFgVLNDIclR6NDTo7zH045Aw0GTzEGA0zTIyZMd62nFyD8IUecNM0pigYUfLjrZRCiBR1WYTBr1YrodX5fEbanWLknBIjUFrQ8M+fOECEEIwSAkRphL482dOn7MIIKUopwZ7DKstpfsV7f7lc8OOYJlkvl3jUcxAOITgHLvwPi3FjfO9yudR1/W/+1b9CfH7zm2+VkUZexUikKYTkopNKLuQyxsilbtvT09Pxx7/903/+T/7p+Xz83/7rn/zmm28/fHh/6U5Hs48+9H1nChUGW1Sm6Trv4/XNTdFVvbNu8DnS/mF/OpyRX/7NX/3t0DWbzabiuR+c8NGGMAwuM6qqypRl3/fv37+/e/1CCCFIgGizXC4Ph+f9fn99cxUR0gXPjEcfhs6+unuVPBHxd/tvpZSCKx/snJRrrbfbLZSFUkrEmZCjoQXO2ij+aDuIq8zTS0VRvHjx4nJukd5wzr311tqqqpz1jOf3745ffnmDrMNOzi2ostDGOBxOy2Uypnx4eHp+Or96dWetV0osl2vv7eXcdt1wc3MnuTr2p+bS+hj/4Pd+O2cWQurazrXWWhs9VF/TP7iPcowxI3HFtmGCuJTWD8fz4dRc0KFp+u7LLz/f7XYxJ+/927f3VaWRsznnhGRt1y2Xy5DiYAfwdFKInHPo8HhivbUAtrx1IYSUR70ao0tG/Pm8p8wKrUtV6JUMPkENPMYcQ56aXjyEMIDHIEaVLSiDKC3xPF/evUopdV33i7/7m8WiZCxLKeDwrrVmTBS6PB7PUnLU2zEkGDCAQACN3Rij1oUxUjA5DE5K+f79e0APOINImCHMcnt7fblc2rY9nU5Qznl4eEiMEHI55zFFADcxp8PhoIyO1hIR+LljY+l8vru7Q61r7UfTNtT/WuvZ9S7n/OH9/Zc/+grogGB8ua4fJ+78crksy5pzCaIDkufVaiWlXi7qJ/vMGIyDIi5iNk2uLJfLp6cn7yM0bRFnTs0PD6m4wTbNyPwgorIsjV4ApFZK5SwfH59jJCkjHixqBCJiTCAVB4v5r//6r+dKAemZm4xhOOfD0K1WK8Q9a+1+fyjLYr1ed11nbV9VNQ4IumhorYH2i0HMrusA5QNeAaBflmVZmsfHx8vlIoRAfK6qipjAT6Hy1FpzYl3TYsvFaY5wvV49PZ2llFoXXddBmTd+4qI2W50D2Y8xAr8L07Y5n5sQHCAtpArDkIrCgvSKEbG6rvuuiTEia2JMrFYrjB2UlUHL6vr6GhseKTr6ENHalMLcHGUsF4VGGFyv1199+VXO+TfffAu8dbPZaK2fnp4ab9EVm++Xosjn4dEAAQAASURBVCikVOfz2bnw4u7Foqo/fPjw+PiYUl4sKqU1pv0AlwCAfnp6Op/bomiAIQLlF3xsZjDGuq5rmubm5gZa/8CejJZJRMYYE3y328XotdZd1xWLCtcTVJ7Q5EO5t91uBZOPxyekVcMwnI4XXJ1gMoLgiXVELDXGYEQGuxfZBchxfHTcIsxnAL/QWlHKQojj8aikCSG0l8vNzQ3KOnzkvu8hW4aP//79h8Ohf/myWK1WTdN0XUcskeAvXlzryRD4crns90+73Q6Zz3K5fH5+Xm6W26IA1XdCqMerBNAE0NWyLEFiVUoRpdnlWwh1PB5THJHfmSGk1ag+kXNer9fGmMfHR8bYarWy3uM7ceLwQi54QDyINnJSTUUDbBiGtm21lt575watdWlUG9z5cizLsh/6GGNZmRBEjJF7KkotJBv6kWeD0mmaLlUIUz/60Y+QwaJSSInKUiwWCxxnIXPTnrlAit7+l//yX26ur5VSn332GUAukI3kpLWyXI3yg4xGdAz35uXSppRRpwBEK4pivV5DI0JPBhtN02SKjDFoPQ+TGS9weaTKgNuElDjIZbm4HE/OJcZSJhr6PsaRfYjmEwpY/AiudTiJ3d3d5ZwfPjyhWYIAIhjnnOMdMsa4gMVutnaARxfRR90JfHD4SUbnNpsNNA1ijJODZh6sBcBVVaNJgJ+EGuKYeDPKabladF3n3UfPIZxNGJakNBprcz4i5mg/6EwvXrzw3tMkH7dYVlVVeRdjjKow0zkyOKR+GKXnnHN2GGKMQvG5DEFDAtmyEKJ3FucFuJkQXGsdosskhFD4e/TMjCnHS3AcRUpY37IsIYAQIx9rGSI8NJ9GsM5M+tRIyUAc1pO69Fz14AfV6GozSCkFMWtt++FDSmm5qmEdLCaa8GKxWCwWp+by/v37oig2mw1nQgqVc49jdT6fVWEWq0WEI1pSMcbL5aJ1IYTwIeC84/BqrYL3MWImiXvvy7KMMc81GujS+Fc8yaurq5u7WwCjuEmx7pxzkgSySwgBuvlN06DZWVUVdFpQbOIx4uLDdA5Gsna7DRwmnp6eAI6hmb3b7fAGmqZRSnVNi+JFTa6P8M0+HA5TQFZAC1nOLfoBk24k0N6QRtEw8GAQw5fLZQrBOWcH3w7tcrnEblwulxg8gnQG+0QPWTCWQqDJZRpbZR5xmCEd9PDw0ICkmUKtlqveDufzmYHOykbCAchGnHPnBzaNxpJgFCnnrLTKRDFGRgRK5TAM45bFauFYTqGcOOeScaGVmHRttNZKKqWUlMsQAuNZCBESGxGTiQodnAfXAZtvHBDoB/QD57sckQsoj5JKCJFyMLoqjOk7S5Oj7na7RXNvvV7mSaRCF6MbkhSjkRRN9t/4hcggcQihdY327+F4jgzmnkJKOcreBQ+9RTHNTXvvY4DGUGraM6iy1vZ4Ca3VmA0URc5ZqdFLV49j+CM6MyPOdlIFGmt49dHvSOuRSYfcCKjWDHaMV+bY8kpA8aSUOY9NaSGESGK2hmOMUf4HUhhxksCWUsY09jD51J3mk35I/MSVEeAv8mM2WQRorQEiGGPQvsN3CimBlVhrQxwHz+dfjveQaEzlkUNjqywWi5l9ZifJmzlx55NJ64y2YOh+sVx476F61HWdYONPEZESoizLAqhrxpQ6n7sIaRoMISLnbIwx+mCMWa02NCpSUZiUSfELh6HnxFIaifNYPkFSCKHLggmWWdZSM8EFUY7Je5+m+Q7nPbGPzQ8mZNcNMTmcFOe9khJrgZoQfx8nmZQMMdOUUc6hjcEnvvn8rIDK49MhQmFb+skxctoAo+Uarkns8JxH0ByIf0op+SSEePnypffeD5aNDHeBb6jrXQiOiGLyRJTTOIZsB3c+n11MVVnHGKtiNfZFOEcGAxBZfmJMHCdl86l7kdI4EiL6vj+fzyH6mTLvvVdSV1WldcE5J2YWi6UQQgrlXHj9Oltrl/Vaa41hi9JoJEx9310uF8qCiIQcxVu1Vnh6pizmd4JwhAI7JcI+F1ohcSlLg9YlY0xolVLqu8EUo2wlZwL3UIij7RiuHzs4lOUgrqY8aubgZBEfvSihZxdCKLSZFeT/0Rfe3pBy9IExNlwukbKpSu9905y7CxmtV6tVfz71fa+U0KIG3JxSGnzwMZJiwzCsFnVZmGjddr1xzr9//37//Lw/PMcQnPWf7kBimRNPMZEgxkRIMbqxTcVTCjF//fXXP/3d3/vJ7/53RVG0fR9S9jFb550LSuScQs4C7g0pkQteaum9ZzRSG6pqGWPshp5C4ikH5hJUv7VixIwxoMMgOiFhRTGANBQuFkKM4okzNw158IcPH5TRc6d6znc/DSZxUuNBAo0P/vz8jOsWz3zsysRkbUg0GlTmjEH8UYVDi7GAJAnXkVF/mTFGDPYG6gfXlIvRJstO7qAjckeEaqooipRTCoFPTUecIxbDy5cviZI1+vD0LIR4/fr1drv9xS9+AdpLWS6IKEf/+OHD4+Pj7as78Ps451yI0TJ4GosZ4YOUUkrr9Rp+RB79nElWD1siOp/YtLetHfOYsiKizWZzuVyIs+mWtCEEKEiOESCOzTB8gykKWTDBOG4aLkgIhkeh2Mi2Vkplxjn/aDUup4sGt2QOuTSGT2bF1lrBOBc8TTYGyOmllGg5j/Fwustm1kYa1bfybreTUqKGjCwg2dJa58yIyJjiB9fx6uoaC+eca9v24eFhvVxVVbXdre0w5BwjsbIsYoxKmdnWGYO33sem6RZl/a//5b/+4uVnf/zHf7x/fjx0J8mFYOInv/3T+/t3fdsxyrbr20u3u7lKkVIkP9j+0hBR17QtdVpJJU3btrooyrIsl+p0OtsJ12OMcSmfnp66rru6uY4D6EKOiIqiOJ4OQvKqrvu+V0YLIZ1zxEX06fr6+vn58NMf//R8OSFbY4xxTriI4SA3o58oxowx6JrjGuKCDocDEvoY4+PjY13XOMs0u1ZEmtHksjK3tx4CJqfzGUnw69evu67b7/dggTkXHh4erq9vv/ziR99++y0RKWmqquCcpOTn8xmLe9yfpJTWxruX119++aVSsGi3l/M5+RRj1FLFlPBWY04xRiVFURhOjEuGjaGUDNEDc3TOHk77EF1dV6DkLBaLertFdwTFTIiBSxVjPJ/PmVFRaKLk3NC1bd/3pSnquqbMiaioq+vd1fv370/nkzHKlEYpxQVTQkUbBjc8PDz4zinxo3JZo5MihOITe4VPnB0umZDjcFzOmTJRzjFmyYTWxevXX/xLznY36w+P79+8/WbwmVimmDgTdb1SUq5Wq7a9IOEJHs25MVqiobVeb8eGgTToASyXC855N/T4X2AQL168wIBgCOFyudzd3WG5Y4yZszkN0GIki+GQKu/cZLK03W59itba6+0IQvHJFR3BGR3rGOP5eLJX13W1IKLlor6/f3d1dVXXVQxh5uvhzeB2eHzchzDq/PR93zTPl8up7Tvn3NXVlRBjV2yGUe7u7s7nM7Y3IkBd1zuzonc/cPzPjW8X7cuXL7UukPxrtajrRc55GDopZVHqEFzf9wB3qqp6//79+XxWykDiACkQMKMQwrJeo6pC7oFPAVO+WbqXT3Mbc0FxPB6fns6Lhdput23bEpHWerPZoMYbhkGI0VrWe49Wk9YSr9K27evXr2GJEUJgnLCI6JGzTJCwwwuBsY7b88WLnTGGTVUrILnFYoHqGjiIc26zWUkp3++PWsvVarVcb4Bv7vdPAHaHYXj58uXd3R2kcrHQWuv3798T0d3tNSLV1dVV0zREDBRpIcer/PHxcbPeXS4X7NXjcc8YK7RWatTGhaRqYtQ0HZ7Vr92vy7I8n8+vXr0iKR4eHmboylqrxEjEE0K0bVvX4urq6uHhYd6BRIT2P7VdylSWZrfbAaUFCnx1dXU8HjEhJ8fn47u+V2occk0ptW2bImmtb25umqbZPz/i1NhhoJGD3CKL3mw2INguVss8MkrjYrHgxM7ns7NhvV5fX19/++23ZpJpnilNatIC5pxjXVIiISqkQ4PtDofDcrnEWUahwTkXLOfJkI1J5ZzrO3sYTjnnuqqgQIr06dtvv5VS3r18qbU+Ho/4tZtNAb4qxFuUHpX0Hh4eIKAM4WAQ0UAL2O02fupFhRBCcFO34KPJXl3Xz8/P3sVZhQNkNc553/c5D/CVrapqsVgcDoemaa6urlKKq9UKfVmEGrAFAXFCtJSZQik1Ev/7zlp7dXWFO32cTbQW/BIpOSpa4FB8YgWiWpGT7hNNTpjOuePxWBRFURYpEurBuRDDv6JjjagohHBuHM201saYuq5NKRljlquFsyGE8Pbt2+VyuV6v5yR2rgr3eydkV9e1lNI70Gs4cry5mgb6DJwEeDQyW3gzcs6FZGDCARQKIRwOPRGhiNNaV1X1+PhYr1bADaWUixV8BSMYwZyTUoplgewR4KBSKufROBERj3N+uVxQgV5dXVlrh8HBB+X+/rBc6s12RTm37aUoijlnICIhRm4HcB58CqTQ33zzDWjjcF1omrNkHCMgyCuctSjElFKcUd+3QgglBABHzrmSGm+bBHdumBAYBZgPc/k4LyxlUxRoQnjncBviauacC60QnwGmzd04zjk6oIUxyOpDdMMwkrEmCEtprTNnIThw6pHVzPxlhOj5CeTMsBbIc8Nk5bdarbqujTGmNPoTAgCJMWYa1TAgWNf3/W63SZN8q5yGy3FS8J0IIEqpYXDeeyNVCIG4OJ/P3797LIrRamW73XouIEOhy6LvY3NsGWNlUWFgqGma2UU2pYhMg4jgfdJ1w2AtjdpKEF9NRHS+XAQnIYRUMjufUirLCgMlQivkpfAbwCNqmkYXBg2Vvu9JjLgTcN5VvcwTm6coipubm/1+jxS367qu64ZhWK1WwFXRMUVZgdDtvcW8VD9ZpllrmyY692G5rGP8ePSQjaD5VVXVfr/HlYe/hxl4SilPeAhSl5miIRghQvb9oLUWjAuhlDI+Emd0ak6djX1/uLvb5ZxPp5OblJGQmedJeiFNmr155BCM3Gc/yZShfMYGhnhLURQhOgAjgJi9iyNVV6kQwul0QlbjgyWi5EOaMNiUklqomJLtrdGacZZyLopCBhalVsuyQC6IMiyEkDmTchTFp5iSD0YqFlJmtiiKSIkLijGFMPLIpqmBNHQ9kB3JeM6JEeUcBt+mcWIucC6Hwa1Wq81GEhFa29jiZRG4ZEpKqUUIwSitlErZlbVmchVDDjkVZSmEUMooAebCECZkM4x1Posp6UIFCHSkZIzx1p0OR601o8R4NoXKMQFC7bqOYso5Jx8a54jGNj64ZiQi54xz6roOt6a11nrPpSQhAshWKWXK2B/YYTHmEPxMrIOStdYalyhCfFGYGKMyGtS/nLMAdzRnQLHIq7C0CNnOOa64jwMTjDIZPfK8QL9NKeWEJAwuvS7nbP2wWCxiDg+P98jd8epT2gQXoEicaWUgc4UPkjMEDYkx9DSEECzGbK2POTBBSkoXrLdBKRViGl+dc8Z48EFrrZWEiEHwo6q6McbHkBmVi4oxxoXIk5C/EIIoZ0Y08YUpk1KKEUfZzJNgjHnriUhymVKqTeW9l1wKyROR1joRpRDSpK8UY6yqElxsxhilHFNsBss5Z0zESJwrliIR8ZxyyCwlFlKIVkrJGcs0iY0x5id3KU8uoMlGzLuQKPJEWsq27/3k+pIpc8E4F4jsSPgi7DLKRVFVQvAUg0Zdx6UfXGB+XJpMiovFetP0HSgqx8u5LEuWU8w55SQn0FlK7ZzjSlJOuI14pl//8lc///nP//k//+cvXryYtxDujJBTYiQ5EaUcEOZiSpRsyDn3zkqpIHsyqu0o5b2nrC+XPgTXNkPOuVoUKaUP9x8Yy9Y7Il7XdSKSkktFPrhje6xKwzmPyZcLThSapimMYMRjzF0/jC0HJVwIQjIRBKAKa21VLZgU9XqFiLZer+uqROZtjNlsNiE47EZEqsPh4F0YhiGlmMmeTpj4LnDBhxBChPAlC46AICcicOA754qiQBsTIgZzoIQTppbCyMp7HykjWxrxQWuV94z4ohpjOmNMGl1OcNvYDOAihKA4y5yBPpBiZpQH3xGR0UWCsLX1knGeMkuZsv9BSCs517ZnxhjnkgkeY7y+3l1v109PT65tmFRmUS53t+feny+npbLamLJYOOdCYIr4crnouu7hcPi+GW5vXtR1nZkOKRLXplwuIj+dTsJ4xmVKgXOJFCdl4qCRhpRSitFT5iklMsXXv/X1/+nf//vbFy9jjMe2k5z1g/MxLJfL4IcUx26ZIMohshAjRSdlIDLK6HqndM0d1dIYxoc0ZEoukhR6Wa5yFpkslIjnbsTMNoI1hDEGwygIlYgwiCE+hpQTcRFC8nG8VolLF8Nc5lnbF0WRM2/bFoYSLCRiDEWL1sUwOG9dURTRB5aJExVaM8ZCSiEE64ZEmXOeeTbGDMOAPl3ODI8OEqVKKSEFEUX2w7Q4HwPP08wKV5LznLLrLWNsW2+klDwyxoQLQ4yxLMvog/c+hbharTdXu0KL5rT/7ttfF0b84v/4Vgjx/uHxeGp9pFeff/Xi1eeU5WJ15ZOo62XfW0pMCImKGhgELhQcNKkU/lBVVXARsoaoT+IErHPOocgZcuJKYqvromAhgVw2DIMSMjOCKDnOBdwneCbb9ZGyMUYxGVwIUjIlooyZychY523KI6F4u1qPUG+1DCEw20pGlPI4hsBFSllw7WkIKeeQXei1lCBxlGVJU0eWMSal5pOKvZxEA621LOcUAieSQuScV/WCTYxRa52UaR79TinFCFOUHz6bwfkUslKSiIjzF69egS1ireVcCGnKcVKVcgrGGNv3p7YtjSnv7oQQz8/P+/NlsVio1fV/+r/8z8aY//f/8v/88PT4EO9/+bfvtlebulw3feOtPz6fpNSH0z7mZONQ1VVvOyqziHx7e6ML8+2b72RRkC54ytkRs6mS+nq7bfbHRrKm658fHne7HVdEMTFiOFkhhLbpOBP1euWtTyJJJSl4yn61KH/7R69P8ff//M//NHhfFgtiCV35vrcv7l4ZUyD2UiIfPWN5sD3FkZ0BHmVhKmQvoGYQkR3GqX+U3G3nlNFMqkCJSbHebQfnOLH1estJDMMQPS0Xq5TS8bS3zhWVGro0DN1yub67vbXW8pQvdpCKs5yuVxvr+sPD903b39zcvHyxerF8cbu4WrGCD9HuG2aT6wali5AzlyYJckSZZZLovlihlkIpxjLxnBlr2/bcXJ6fnx8eHlkWpa6ruowU+6HNLPk0XF1tz+dzzrEszfNzhxmXtm0lF5IbImovQ9f13vuqrJ2PLPrknSVqdJNS+uz1F7M+uPc+hMgk89x5Yy/y/Kv9L676u9Vqs1vvbNdUpjJCai6sCyGHvkuMS61CUUgKWQnJGWfJxZhjUutq1Q221usvXnz9m2++c30UMqpCbHeb7757ez6dvvj8a6KUycXEOBe73WoYXN/nYXCci+3VDsBQZixSdKEvKqWUKEulpCkqwzm9efNclqaul1dXV23b7/dHzuXV1RVwHPS/z02nJCtMxZGhpQvq6pcvP2OZ/u7v/t4UxenYOpuU0uvFtr10nESi3HUXNfrXizlwpZRuXtw2XYuU4Pb2FuFRsFHGQQihi/Lr3/7xw8PDuWmstTFlLgVxpgsTc4osJY7Dns7n88uXd835klIqtAH2JLmA4WRRaK1lcFlLrfgPO4XudrXajP3vh4eHqqqqypzP+5j6opSo+VNKb968KYqirkcK2Ha7BYYF/eWcUScR+oJIh0IcteZSStfX11pLODWVpZFyyRg7n89KqaKoUEACasg5l6WJ0V8ufUrp+npXaNMKSTzDpGi5WfNMXdcdDgfBuBQipeSdCzE+PD4WRSGlBig2MqQEz0RVvcD8uwse9Dd8T2Z0mZpPRVWtN5v9fs+E6K2FZQjY6JxzqUVRlZvd1qeYeT63ZzB1bm9vi6Louu7h4YFPbG7nXFkvrterlJIqK1RANviHpz1N+tehC1rrylQBCz90h+BevnyJErpY1THGy+VSVZUQ2nuvOBfEcqab65ucc9+3ty9urB/IE+W8KEtrLWPz+E6H5NB7jxRvxCgVX243Vzeb7757622QQi8Wi+VySTlLxdebxYcPH0IIq3q9Wi6ctefDGZdjURRFZn3fkyBdVPVq5Pd1titTyRUnKT7sH8qy9IN9enoAl1nrohuOt7e3SpqHDw9XV1d1XcfYLxYL9AaGYdCFed4/Hk/7slh478F5h1gtDiCgjbqu8cAhx6G1LstFczp///33FHhlsIs8UyJ6GwUnov3huKgWi4VRUjFmlVKLxRJYxtPTU9vb7XabmTicrC5OSNWs9drw27vdhw8f3t9/v1qtivKj2uQwDF3X11WlhBypu0JgML/ruu12G6MHV0aXRUoJAv1EsFGJz8+P3vtEMeZsCp0SeFQGxuZCKCNN8KntLnVdM56VFlBzypM33TAM58OxNAqryQq9XC4i5RBCEjnGyI2oWBVC6KAexnlmzDo3WBtzFpxXixq4oVKC5ey9d7aVQqMJlxgdj+e27dfr5Xoa/QH4K4TIOXBBmLdA4geiMVgmYZJx2O0WYEcKIawdQqAQUvC2rsHzk5YI/gkGZzBnII/b7db7h5xHB2kpfXPpQPZv236xWACIIKKxIZR8P7T1uiZZeBd98tLIHCNjfFEtT6eTHfx2tyYiKQmQPVIprfXt7W2aNN/AUqqqWgibM6uWtZQ8BJd9jMm7GE+XU8hBSym4SilrrVdLFWNuG8tIKWW6pv+2+c3NzY2WKpJrh26xYuVCj+gqY5TYxA9IEH3yyCIy14Xump5xwVICjCOEijGvVmtQSVLO0furq6tRH1lwnyIJDg4E1Fy71vX9IKWsqqIoSiIahi7GaJQWIoYQjFmgF0s02icIIUjwGTpMOcMjyseYrU0pKVI551KbEEKMnjMmmbA5RsqZM65kZMS1sV2rajOhRiPVb7EQzg2MqDJFjBHQHDEilrjkMTPOWeZsuVy2bZsSBefrapFodHgKwUWKPrnOtlrLlEaqBARyq6qCdmsaJ5izZNxRtl0vhCA2KjAgP8TZrEwhGW9OZ++9MaXWOjEeKccUc4rlotRG1XXd9721vZTcrGvMcOhSr1Y6hBRCiCmkLITk6G+V2lhrGbFgw2q1CSH0g9vtdsTAG+Ft25ZFoZXsuq5tmrIo0J2auizs0l2atlmtVrvdLkzK1xRJGpkKijFeTmfbD1LK5nzJjK6urvykZNvYnnPuKTWnM88UrHPWGq0vxxP6fNgDRbFRSoXgpOSURrJI3/chaefcervbXd/A8nq12b7//p21Ds5GjFGpy5yzKkWmSCwxGkVa2OQNBo11LBlxdnW1FkK0l0vftoXW3nvO5Wa16rrOMb9cLLUcUT70SEyhNny18LYoqq7rYDiJUhRqPKijc45SSqZkCj6zmMModYtmqrV2u90iMoSQlDKgNgshGROUpZIyhhyCrxaFlqptWylY9MFZa4zRupjVt0NORMRdCr3TWmsprM+MMUFZccG0tJdOrlar4HzObPBOC/mx5SVH1mFKiWjyPqLRH5MTpdHRKALa896jzsT3SCnBzaTJU04pxZUsy48qz4AA2ERhG7kMkqUYAWGDehxj9DHknFMkPp0Tay2p0TSTTwAcm8SqGWNSjFw2moSfcNeCpwZOSmmK8XtSGvH7FLtuSCkprZVS3ntTaNCWMa4FzhfIiSDZ5pwFji7L87Uxssk4Z5MFLR+1/AVNwpdKSSmldQ4pVM45hVE3A7EVLABALWwyTomfePeliXocQgCBiBGLs4izEHO7GMsXp+EImkQqUIeLSVraex99mBtloKXISboFH5aIMhvJy0VR5MBCiimN1pnpE0mmnHNMgYg4sZkrPTRWTF/zAs2dLqwOVn/sQHKO3jKfTL3w0ooL0mJsXHvLGLPeg5NS1YtZtyHGqLUZcUAalaxzzkJAuHm0FxiVZaScScSMsRgCYBQ/+UWkiRCHPlgelV78ZSKkz5Al2id4XUjNYLaF8hhrZsXD+IkOLMpyEAzRJMcbwxfWK3M2nykheEyjUBS2R13XP/rRjzCe07YtGAdoq6jCIPtvmkbx0S1aay2lNsZEyqASpJRg0nVIiXPG2ei61vWDlOLSHDF+C5nFcmGEEJwxzgWGpEIoWRYpJZbBnRy8DRgkBfkd54hJro0UQuSQQwjKYOwoXV9fQ34LkASlKCeLD6QLNBmpDcNwuVwKUwLYmudh8T1o0oL1HyYJyDBR10cu2PQHxsdDih/HFzJCKWXmo5q5mzyjwWOa+VD2E0cjIQTOPv43xlgobZ1DGz+EoI1KKaWY68UCPLiqqkqth2Fouh9mNwvJM+chBCk1MVbXtZR6v99777UqOMvD4JbLpTGGzmzo3aJaMiEXy4Iz6X14eH769tvvcAsez83d3d1utzufzxgaIia4IM5kTjlRhnw0GKMxJ85lzNFa61x48eLF7/3e7339k9/ZXV2VZem8jzFyTlprO7R4VsYY14WUUmYsxMA5l0wabay1JFVd17e3ty8//7xpnY9RSlnyMufofAwh8sxTyow+GpaGEObmAZ421guZ+njcYsiTgk1MxCfVuXf394iiUkrnB+jSSCkxi7dYLGLMwbo8BWeUZCznGOPsTY9oxj8RLI4xQhgaW2UY3XVEF7uxpy2FlDLGMSuaUdR/9IVwitQ/REeJo8mBXYrNJpREJZ9SAhVosVh0ffPf/tt/M4oH23nbBafvP7x7enriQm12N5UqY0iXcyu10Vre3d1lcjnnEMN8CYppbhRBabPd4qwhz7DRzQ/fGKOVRhxGiRJC4JlwM2JRZP6odx9jzIzgRZMmz15w9JxzJLgxRpBAvzZMTj5s+sLjHSk2QjTNOWfmvSXiSgkpZWYixpDSOJVMk/GQ9965Ade0EhKaNjlnJmScpKjYJM6AaI/KDfjUzN1DChgmrZI5wo/5xg99VdUCdBWlFCadQSfEHoMOKZiJSAdRGc5zwafT6fb2Vin16uVn57ZhjP1f/+f/2zAMf//NN3/7878+nQ7H8wFr0Vv3uH8myqYsrm52r798DcJyqUsXg/f8xz/+8ePDU9teNFdEiUuGpOX29rYd+v3h8Pbtu5/93u8XBeFypAnCQwrhJ1k6JjgYDRiB3Ky217ubb39zWe+WXJBzA3LT1boeepcztAIDfpR7XixKPGp4BGFcIE16Vl07YM/j6Q3DUJR6s9nsj89dN7TtxRizWa3bttWSJYrGmG+++ebp6fyj33q1215b79rmvF6vGROHw4ESk0IxIQfbd6fGOV8UoBfxze5WqKqo9L/4F//iarNNIbEEq7F+sVhkRiGEzBLRR3EqWO4RZYpJlZpLFin6YA/HZ2BtUoqqXhSFTiwxnmMO3vucwmazwYDLnNLknH0MVVV1XYfbH3N9UkqhZHbWOQd8rRai7/vNZoMHwjmP0acYH/fPyYfr6+tYcs55oXRpqrZtF2WdUmI8i8QSYSljjHFZ19jGOXquNJZAa71er9vh/Nlnn50uz5l8USkibowpdAEttPn0gZ23WHBYVLE8WsTAn2fCH2ulFGc8DAPGQjGN1DTNcrmeVlYhUUQLPGYGltD777+PMe52u7/6q58T0eeff84yrVb1MAxmUUjFM0VTqK5pu67rhh7JDJwbU0qr1QpY5CS7fAZTWHIB/iDmC69urpUy33//PYyVcCvNoww4+F3XFVovlwvG2N3dHcv08PCAidSyLA+HA+ccalefffZZcPk//+c/FvL2B4+/1prIgwkLpLhpzui1gNsBHYOrqyvO+eVyeXp6wmN58eLFn/7pnxpjhFCAzpfL5flyPJ/PNAm2eu/P53MIabNZxTgOgCuliqI8Ho8TFm/wGYFqvXz58nw+vnv3DhtgsSh3m5ucswsWWYq1dlGUwFKJclmWRVFY56SUn3322Yenx1IpEC3RXLSTpGmM8fn52ft8c7NFdwRsUG+tUGq32x0OB4RWxFWt9XK5ZDxTTCGEzWYjhLhcLtKM+CMUZhFnkIrgEkGkhXE0qnFMf9Z1Dccz3NfKGIxso/CUUjZNdzqd8DfzvdO2LVI+IcQEvbW4INq2BWjOGIOiyHK5PJ/PvfOFMaDrom/aDX1VVcBTVBCCxHK5TBVRzkYXWut+aKu6fPXq9dXV1Z/92Z/98v7t61e7sizrWmQaNSS11qvVKtIo42uMEYJxrtEU/+LL1+/fv0eKghmjq6urbnCP9/fgEkFtYBgGJfj5fMZlXVXVYAMjQXmsWQBTotTCtscPgviGm73rutPppPVlWS0Y+5jcMjYy8uI4oTXKToJCKKUsCl3X9eXSYlGwG7V2aF0LwbqugcESAHGsI8rt6+trbJiuaWctjq7rhNLoo6SUlssFah/UzviD9x5JJrL3wfZz9oV4C31z7+NyucyMhRAeHh5ub293u51zLud4uVzAJ50A7vHKG6cuONtsNnit8/ksSKxWq8E5PK65RgM+Hj6ZNoNEuNGcMykU5sBGXQ70cbEQeKSoKay1OY3sE2OMKRQXFQAN54O3eblcaq2JEorN/f7oPe12CxRNRCznDOajlBIqTEhOsMnX6/XuarVcrn/zm98wxqAN7SbbQMaYc4NzhFOfffTew0XZu+icE9NdUJiR/24HTLSUM91SKbXf71EUJ1h8C41MD5x37z1S5qIoFnV5PJxH1i3niIfY8IyBDVZ1XXc6hc1GjSwByXa7XdM01lpOIyUuTVPaQojBjXUuTWZxMUYxyaOh4lNqNLwlIim58/nFixfH4/HNmzemKuMoQGGQ8OScF4sSPNOcI+Z70A7knHPK8BKYO2FzAYiVBTtYTKbTKSb0v/joxaW1GBWTGWNcSUPj8ESMUSlZFAXmUdI0EQ5cAkeYT5oBuFzKsrTBMsYwvFKZQgiRM6OUpZQhxTQO5MXN1Q4I0tk6rQs2Ma9x/SFdmbjYglIG9KmUopSJODbsxxI4ZyJq266uF+hgKaU0QB4YGJQlCqiyHH3wcATwQYpC8skBK4TQ9/2rV68OT88pJSl5SskUxrlBF4bxjCpScA6CCzYeEDPGmBDjoLyYVB3QRsVdIITYbrdCq75vYYyEK0kIEXOa2zwppei8o5HojfjDOa/rGjnAy5cvz+fz/f27/X6Pm0hK2bct1sJ7zwQHJQWtROR+8AmAMpiUslA6pdTaCxFVVUWZHw4HY0rseQQubBLsw2EYQPkHlKeUgkIpYwwlrZ0cSnOOHOx9zq+vr/t+BCL4lOp8inX0fdtbXDfC+eH5od3tFtCfQRMOiG7TNEoZDDTMU0egnHpvccMyPo04cyFHdU3W9x2yMqRDITlwq621gGu99558znHJmMT107atILHdbvmkTQ5eIU5sYQosUgqROMPy02ivmpSQQo2qtYU2hR5HXeBJgjQCWTgosPiENDn25EmYmIi898NlAGcNVF9cDDMIywSHrSRRDAwg74iHYsCBiEKMRJTyR3ulPKnxxhhDiowxNFFZJoCkSsoQgk+RTTMykCFWk7olHv1I3x6GzEZdabw3hUefEVH5jInwSXhUT2LeWo847LRUvY9RTW6kIFzjLYHbXxQFBo2RPnLOM6OP2AcR3qSapM2lkGyyOsEsv/UDTUAq3i0eJoK7mMRD5gcVnJ9TOvwgtjLCHz4yTWia1lqokQyOM5Ymj7gJDBoJ1EqMa4SLc344uDDmvSthzzhpSiCnz9NcgJtcC9ik1yGEiGlsZoRpWHvoJjHiSVaFT6UVPg7SdDz/S9uJSdsa9QmfZFjFZMM912MzLDK2T8ZgwSMyP8zIFFMPY7L1w0QGEeVEmTLQc2S6aZLRmbVfUo6X5ty2bRqlMgjX/Px5cxo/2thpyFEIwQXrB8s43b24ffHyzlr7vH/CPEtRFIONvvFVXc8JN8U0vz2ANUKrGCU+Zt+03nuYvQk1fmqtoU4QueDaSN6REEJygTssJ+pD0FoXslKs8NnmnO3g3ZCJhHfEBdO6KIrCGBVTcCHE5GP0RFwpJZQyk6UGzGcAFBKm32PEfptBQEibCSG0MkB1QdmIk9o4jvx8l0+7Mcy9BOxSLLpgYwcrTlMwbNIfTykJraSUGG7Ferlh8N5DZj3GeDweb25u8FOzIzB2iHNOcYGrYg5Q+CzQ7sDZRzFA4Yd1flPMUweIcSFQeEfv3OjUVKSUGOXf+Z3fGYbh8f3TtSq4NDHnh8fn4/n053/+l13X3VzfXV1dMS5NUQ3Wv/3+/fl04pwvllVRFO2lEcSUUm6wZbmIOcQQMxNE8XQ51/XqP/1P/+6P/vCfaq3L5XK/Pz4fjuv1Wil1OQ2Hbu+6NkXPGGmp/GRrGQMj4sSZj8nHtN4srm7uVtud0cWl84wJ6x1jmQsWY2yaVqtSKVMU4wQGygN8cc5n1UI2UY2stc45YmlGD+HsAXObQmtMHFdFUWiJAnsYBiWFlNL7kRMdXRSTQ6Dte6BjRknsjRgjXLpmzNjHALMOY8YmltaasbE8UErF6NXkdDrfI///X1OXM2FXp4y7ZpTLH/ehF4yNGn+kCHzbarHQWholB87KsjRS/GS9++yzNmRiXMZMUpdKahi5cKmU+NhtnXHhGSvhnD8/P4tJ/SDGqKVBEMDNAi4JTZBrCCExQgttRHUnXxSlVGaUJtklBF5kb2M8xyFyUQjBhIjJU/qIdqlJ3DyOsVcR8ZQg/SRxuNLoxeq8d1idnDlnTAhGpJFslJvtmFDmpHUxF5lKqbdv3yIlRRKMPAfPP0/O9X/1V3+Vc/7xj3+MR4RLKvg4P7R/9BVj4KCfT56T8yeaQw0mB3EL7Ha7zWaDKiXn/Pr1a8QKSNymlJQ2K7b57IvPr253zrk/+ZM/vnSXx8cHqZUQ7Hg5JopDZ3/zd9+tNsuXty9Pp1OwbrD23J5jzD64vm8U4/WyQtWqS1PXtVIGGYXWGnz8lEjrwkwK8lisnLPUHwfhV6vVH/7hH6WUHh8fz+dL33faSM6pqgpr+7Iq6mV1Op1Ol84Yw7nhPIMSeHV1RUR9359OJ3z24+E8d69pUs2TUrIsQ3BG6RTi559/8d1332mtUyLQUpAwJDo/PT0JJfu+t71LmlarTdcNUmvG+DAMzofBBmOKEHPy1Pc9Y2XXda8+ew25PU58aDvc74wxH3xKiTijnGF+K9lY1ylpMsUQHQyrhZTD0B0vx81m3XTtMHT9cJFaczGmYcgigK3gHCFWA289HA5KqfV6t17bp6enuq5vb26apkk5C843m51z7uXLl5fLBV0WShjdFUTU45TJ4fnwRETX29tC6pB8yoTI5mMcXB+jJyI5TRNzyVIac13iflGXr8QrF+3N3e6P/8t/vlwui1TWi2VV1da7y7nJFK+vr0MIjHNrPWQfoO5NRIXWnFJKDIcFKrScyRBCUZXb7RZA+TfffFNVNYRcOR9bgyAL18uF0qLrm7Ium9NZa/mTn3z1m9+8+fbvv7m7uyvLEsZ9p9OpG3prLSQCQopQbFuvRzl1Mc1bPD09zbtouVzev3uP3kZK6Xw+ny5nKfWM76D245NDF2PMwCQ8xtvb25wzRJYBimH5ELc5GxU8UmC73VJ0P6yJBMlOsGhRJQrBgCXJyRWwrms2+VxdXV29f//+/v75eDy+fPkSspsIPqvVCtAPwA5UfU3TrNclygE8BwhxgD+eJ9lD3Dhd133zzTecExIkJHvobwGIefHixbdvvoMoh5RSMI7T2g/DZ5999vnnn5PgwQZYdMJREOcF4q273e7p6VlKudvtnp6ecs7GGO+jUoo4R1OtqqqmPYcQbm9vGczVR4MYjpMI60s0KlBjPz4+YnfhltlsNmAmoSafuQJzf3S73QohcJrmC5RzvtttyrL0MeF6Qol+PB4BueKKJ6LT6QQgA6g6TnHTNDDJnO90ANygxXBnD4dnrSXRSNkpiuLu9uX7d++kUETEhXh4eHj//v3PfvbT7Xa7XKayLCkx9LS4oJxzWRmlVNv3jOW6rqSUjOXlcvnZ65dv376NMYL098Vnr/EkjTGMWzwNwJ1E1LeXgbE5+RRCFMUoeIWJezyxSTo8o+yPEyEMq3l//0xERdHBcgDt55xz37dKKV0Wp9MphPD11z/KifVDS2wcOR/lVhgDPPf8fCgKqZRIKeQchTBVVVnXo+THucabOZ8blrKctEpwKi+XS9d1xIcYY9vGuk4QSXOfOKyGEBgb0Q1c2QWVuGerqup72/cNz3Q+n+/uXvZ9z3iWUmGzAbXPOVvbx+hTIs554oylhB1V13U79GiqoeZ1znUXyzltdtcIIDjUxhj8Ab8ZbnucEuc8x7zcLJjgT09PPkVjShxJDM6DtY0NhiTEemsKtVzWMY5ieoDdjTFZ5xDdcB6gwSoEe/ny5nA4oUCbpWOLonB+8MFi5n0YBlMoKcX5ciQiY26AZMUYq1IiSeacuq5ZLpeYMQJyBNxgf9pLxhdltdtssECg4t3e3nrvUw5GGinl+/cfjHFaa5ZJchFjbBorJQGWbdtWSn19fS2l7B3GE2NKSWnBOYeuWozRxREoGKkMWuLOXa7F7YubEELKsVAaWHDTNPWiTDF2XRfDxE1kTBnNOX/9+vX5fD6fz4yRlDITLZdLa60NvigKotSOdX32PhRF8atf/erFixfb7bazA2ZVR2H6T3gtgCb2+72U8urqCvk2y2kuPOeyEXAqEQUWmB+V7ka9ixzO5/Mw5KoSy+UyZwbxvRCCpnGUXAixXq8BlYAiDcNbPBbvvQ1+KQXn3NkJFBacGOmySEMCRZcm2ZyiKJwLSNiwbdbr9eAcIEKAm5xLXRaGjSTCUYNCCCnlMHRKKZ6pLMu6rnsfurZNKSASjlKEKTPGlst6MvDMvbOastba+dGUW2sdo8+Zo/kKWaHz+SyEUEoyJqSUtutNoa6urn73d3/2/PD4N3/zN+N+nnpXMUZiSRuZI82J+pxXE4jbk90RPAYAoKM8996vVqsyl1Crw2A04iRNtBg0I4UQ0dsUQqFKZMVQIr10rZTycDhcXW2FYO/fv0esSCkJpaRSxpgYfWZUlsZ7B50Z/AakQ+gqxRgVF03TlEujtX737h1ljmYSeo3AYQD75tEYbBTlx29jjAll8Lkg7U2T8vIwgOnFjTHn8xnGwz5GNSl45Em0ADtKCBFS1FqbQpW6wsbD7TBr8gBVYCynFNDjB6hNI6ch932/2a5GLpQdVYys7QF3IJ9v25bLkQoZY6YcJRtVO5iUi8VCHg4HlskYsyhKBHTMB0XKc3lfVJWRKsYYfUALhTGmmAiMaS0XiwVxNmJhOcfJZwA9cJBKGGM24BmNDQegSzlnLsRMHZ2BHsGVFAJmX3NrLvgRdMZTyBQzJUjO8cmBcf5KKQCXRPUuuUD4sN7R1IzCV5zoVzmgmaONMT5M9sQ5oAxAVMJSIciqaWnHYERERHj6Smmamm8zVts0574XQDwvl4sQKEc5y2R7ezqdMqPVaskjb7o2US4XVYyJUdYw75YipMgnaHh+OaUU2GrBj46T+ZMvXDBhNNAbhWvniPDpE8MWRIuGRn7oCJ3PvGY2YUl8kmukPHrT+UnVhU+M7JhGTSUpZfSjFCYTo+4wsj3002Ygj4+nIItJ3CBnwPQa3OQ4meDxTPggjNPE64kjGaHrBKZMQ7DWhhARSlj+iNSH4FIi4NcATEeQYpLeTowkG1GnPGlw42TGiQs2bR7BpRxHdfLIfGQTawBrND6uEKaugwZAU0zzUCjFfXAxBZDs0KjnfBx8oEl8FrFg7hPYwQ3DQJMjbdM0Uso5hfoU1vQxxhjX6w3nvO17xcdzJ6V0MbSH/byyLGWlZU45xhiSLYpCKS2l6dtutVrhsNzdFrjM9CQ7WxgppRxaKygKrVKiIH25riQo/CzBMKHve2I5pRRSyJlYziGlOE0ncD7OsGO3FGr0/MVjFJO5OaKtVuN0CVB+OWnHY4nBgUopIVkkIiZHnbIxgHxSxOLOACiMu5NPPZXODvMS4F4EOgzYiE8CeaYqz+dzCAFgaJ5Vk8ZRBjVjzUhu8BlxEIgyCe5D+EHlBcaIc07EMS0FJbIUorV9CEEJkXNUSh2P567rLp2/fzxWVfXNN7/51a9+dTqdlNIp0bltX33+ed/3f/OLXzDGjsejIPbll1+GaHPOuMZYjlKrRDlnJnXhY3DO/e7v/cEf/dE/ff36tanK0+ncxzTzH5vmfNwfOEtD17iuDd6mHHB+U4JQbeLEfYz1enV9dbtcrmPIh9OZSHCeMyPGcpjKxbIqtDJ2aNE3xopjEYkICv6Xy+Wzzz5DEwiYb6aJCJ9HXnDODDf0fKxoGtTI0xwDvnnseFmLj++ny3UYklHIn8b5QwY3OTvknJfLJSpemvwMw0S6V0pRhB4LQ+GX4g+zmzkxtBXxxoZ+YIx56wAV4a1CDdkYwxjZyV2dYnx8fqqrqtA6+Nh2rVHaR77bXg3ODj7EkFN2nHNpJFEmYohdwfmcszYS2xiVWJpmZSAAx5iYW5VCCCY4sHW81TxNDiGwjG08P/4NE3ze5Lh2obiHPrnWWhp9Pp9dPyyXy0KbkEedazHKTKWccw5xPu91XQ/D0PcBAEqkj062MyKvhBBidEblkzRbztkFn1LKeVRsREhHAppzRv0TpgEaQGNssvvAzDuC9igdG+IPLiIRVFg4ODVwc4VKLJgIRAQwCzmrEsIJISdnXXiFp5RizkqMQxsfnh5x3oUyu9Xmf/gP/+nx8fEXv/r549OHx8fHz199+f3990PXZc1CEb/98F3IrigKxpkg1rt+XS+Wdy+Hpo3R++iIEpDvRDkzYYePSm0ISmW5yJnF+JGwL9TI4AD7j0vx0x//9M1vvvuLv/yzHPNisTifj2VppOTEcyLPZS6KIsfUXjpcjgDff/7znyM24g46n8/o5eDJxxhZ5qWp3r17572/ublJKtreeR/ff3//6tWrqiiPx6O1Xii5WpnFoj4d267reA6UWEOtFNr7MAzDZntVLShlmLqkrhuI8qXxXXv5nd/5J9fbq7pephBP+wNCyjB0QsmcIyMuGAY3ueDzNFIwxvjkmeSX9vzh4fvj5RRjiDkLwcqqiDk7P1gbdKGKooghxxg3m81ut3t+PhwOB+89GM2435HJ4KIxxjjvpVJssr+TXJxOJzBDvXVEdHV1pbWEBFyM8cPTA13fbLfbpm/ILCrOISPOGE8sySgY5yEEkIAWi0XOLKXEEnFB3nsSfL1e3wy3/dDeXL/4+28uXefA0+z7PhMjuERw7qeSlYiU+thfmbsm2+327u7u8eG+7/uUMqWMCGmM2e12GCkVgjnnnHO4o+mTvgIQNHA8d7td18CiSkrJvbfGqNPpcHN1xbk0xgzO/vzn3334cN5sVhBbAF5zuVywwV68eDEjsyBMVVW12W1jjFoXQPlnQjQqkbGuiXHek1VVPX54EoIBvDsej6hvx4nmRE1zLxi/u7szH374+DvvAwWIP+ac/+Iv/lpK+uqrV3kiyiD5z9MwwfF4FkKtVtJaH2NWynhvy9KAoP2p3j0grdWqRp81T2RzogToWUzMDBxkLBygpZmQ4Zzz9gj5KWy/1Wp12h8QnKui/PDQoRbouu7Nmzd937fnFjnMnORD/hKF63q9QozlnEO6cZSdy5HxnHKIyaNYwIporXMYM3ZcIk0/uh6VepQunecqgPcR0eFwgF4TLg5cpqMAq6lAILDWemsRqcqy5Bw5El0ul/PxtNutF4sFTPywk+H6AEKVmPi/fd+DCLnZ7GJ8di5st1ejJMu4ainnqLW8vr4GBJYSScaa5nI6/pJyLotFzOPBWW+3333/VhutFPPecyYZYzGFxWIkVMbJYQxsieVqcblcTqcTVpxzYizv9/vNZnPp2sE77/1qXW83u/fv3wODQ7K6WCxub2+ttU3TcCaMUlnK5+dnb21V12wSPUBTU2td1zUQgTQqIWxTSiGk9XqN1ZlrsRjj0DQo4rqu6zsrJKuqivNBKj4Mru8DtIaJyDmyNihFq9XKFKppzudLYp9ILsAvy3tf1xVaC845YTiWVWvdti0MgZ0jGFoSTIyl9AnGNqM5GOccjo5g7mMTogBx/QDshnPeNA1IzUQEKAezGjlnIpRjSUo142gIJphAYoxdX1+bF6pt26Y9G2OIpZg8scQYOT9orXNOITohGeMZaBfL5JxLlK21JEbq1WxcieOJmyVPjOzlcglGZM55vV6GELy3SgmYPCuVpOIqikkY+QoKPHh6zrnVun61eQHMEYwTPExssPv7h5kZhgwNGJZSas6yUg4A3bTW19trNH74NDwBk880ecXjuCklcL8E54lICSkYsUwxxrZtnSMpacYQ4BMeQmA8K6XTxE1OKfsUK1UBmUJStFwu0FNEPI/JAwhe1uuiKD5//frp6enNmzd9GzknLgVUEZxzh8MhpUBSEtGirl+/fn04HP7+N99iyL5pmuVy+erVq/fv37dtW5aldf1yteC9xOPCo8N767pOEMNhwXPAYUF0GtmT09whLrXD4WCMKYqCSZZyllIUpXbODV2oqqqu+QgjJKLJ8xZbDkkyrkj88vV6fffqJVfy4eHBBi+lbE6dtXa9XvPJ8gSc5ZQ+evHlnJMPqFyaprlcuqJQcLQuiqKzw9ifqzQg7LZt1+s1TcPBSKFTCtif1jqYygptsLUmMBpTpAzENaTTQguex2FopOtt21ZVMQx+quK5mvzJkWA7FxQXoqpssDnnP/3TP6WY1ut11zdd1zIhikIDigWDPsdElENwQoxeU0QUgkNYRqTabrdYR845jGfSZNyCN4ZrK08gLOCaYRiViLEQAK9j/OgV9P33z19+efPdd9/d3t7+7Gc/G4bh+fl5RhfRaRicxb2Jlg+gMKMCqNZE6XA4sBylGkmBq9VKcCWlJOJA3maUHFlNUWgidT6faZKMJyIl/WCHNAkMoJ611vZ9i2ZqjLFt++VSMiF4hpQKxqAlylvnnFKl1prFkHNuL916uSqK4ng8VlWFj/Ddd2+32/XNzQ2ayjR5aSLDyTkzJoyR2+22WhSYJYIwIz6anBjf4eLquu5ti9jifcqMDJWopPphGOwgV/USW3BRlNBFHYE/wdXk44dVSSkJJcmTjZEoCSEKLklwMZl9CTmSeRHj8HuUlESUGImMXyU+xY+IKMSITYb1Bqt/AnY554LzzPOoup0iYxMRlRHhYODVw6SPPv9yeDWgcu673k5+dKBcMcZyTGxyYIQJGBEJwaRUKgofQ0pjLc1p7MnP7Nd588UYYRAnJpnOEIKUH2EypJ5ECfQlkMjQEUopKTWO2ywWi5gTH0XioNeuGBu93WaMEsgXm7xT8Uml0EkSZ5GI+GRpNcfNGCOq3/lSAaDwj4BpbCAtFZuMfXMed56YyM4j7sZGccYQgh08fhXC9/idLKWcpVRicg5MNL4lJSRqfk6McxF9cMHPyKzInGWiTIJxwQWlnFgOIaI5Nm9xznmMiYhC9IA7cSkWVTUjwkpIN9jT+SSlmuJ1npOhKc0dGwn4ezwrPA0Xg9YazR+cQzY1VOaPKUdCtABGCZ0+bFRcAwgc84uOx0QISLOhTsBZLYqiKA2IJwhhNLLFYwjBOVxMXgihhcQmxAv54JxzHIg2kYNSnpRE1HSdm8gCbBhk20op27bD0+CZENmrqoo0UrBxRS0XFVqaQgjnG2s95zzFXNer5XoluNRK9X0fYyi0jNGHoVUadA2rjaXspdTOJ8mjLjQjyoynRIzllKL3foSbMWtTFHJC7tDhyJOF9zAMIYS6rIwuUob9dQiTTHxOowQNygZc4ThxM5KLJ4yt2/e9Lgt8P7YrXtRaKxnHr5oBJry98fjkhKiaJlY7COzz8V+tVsjt/GRVRFPbKaXk+oEmJqkQIkQ/FsluPMsoDZRSTKkfpDcPg20OB2NK650x5nK5PD8/o32itXQhcCLn2vv7++Px/Pb7+1/93TfX17f7/d6HvNzsOIm2bdvO/e3P/w4pwjAM0QelRbWsr7Yra22hDWMsBae1Bj7a20Hq4t/++//w27/9Exf8uW1PTcMYy5g6bC739/cpBc7o9PyUojVCcGI8kxSMskC0YSQSZ5SpKBeyKIVUxEXf98Q144JxmlupUB4IfpwNBGTDJ+Fdzvl+v5/vBTxqXElSCWTSfWcx11YUFVYTBQz25eVyGSMMJ7h1sTzC2fCFwKlZLpcxetsPQFS11oyNEiuZca0L4Hd5mucCk4UxpooSO+10Oc+t0znY/sCa9kM4Xxhj2JPYBlJKkN1SSiGNmRwM2fq2875RSt1/f/8Xf/EXP/3xT37yk59woRd1QcSNEK0NWi9KlbuuiyGowkgheE59P9pbzzsfpQtoNdZaxvnl0mIWO8aIz44DyKVA1sImmRoUpUSzlU2sTCGFUELPbUuEKZowa5wpNzm6XF1dIZ3AmM5c1TDGWGKREWOjuBZyOJRcISccfqKQKTOetVZ93zs34KNNd7ew3k2DV8S5R1TxMTbwfSYS08FEQswnDyXEluVyeX19jf0DNK1re6VUWfywVaBSCigA0lZ8fJqwFXwsuOexnNGOQoWGrM45V1WVC+H+/n6z2SqlSPKUc1FVn19fv/3Ndz4m4uJnP/v97f3V8fBfz6eWJc6SUFwlR6GPjnxV1iSoadu6rHLOXIzMC1Oo5aZO+3HYMxGP8ePoRkpJogk/mmqynJkQTDCeGXnvLyB+Xt0si/o//g//gRP98X/9/wQX63p1uRwWy6q/dDieSqnMxTC4nBkOY87566+/vr+/n58wtp/WOoZgfSKilrXb7da6Hs9ZKXU+n3eb7X6/f/v2LXRsjSl9DGWx2GyvDoejMcV2VaPXFWJu244x5oNNkaSU6/V26OwXr79SvPjw4bG59O2pnYkznPNTc1ZCaq1DilJK6N6Q4DyPE7spJa0LzonlHKNvmvPj/uncnHyyKVFd1/VqwRg7nUYKRdM0q+VmBhG6boB6xunUKMW7rvvqq6+A5lhrt1e77W7XnC9g4zLGQkiMsaHrFeZtIRXHR9cgY4zkfCB36S9P+6fNKiVYYhCOzEfULMTYdZ2ShpFYrAqtZUg5hsBIgIz26u5V33c//u2fxZhDsC5YMBBTSkIUzkelxipozpQAz5nJZBVR6O7urirNn/3Zn1Vl3TRNopHNsNls2rZvmma1qpF9DcNwc3MDQOT+/h7wihbSOYchA6N0VVWH4/OyXMQYL/tTUeqYPIQIQ/Jff30LHtbMvgdOh1PMJwG9L7744sOHDzh0qM+t9aBPAoIBlLZarXDjY/NsNps8qWl5H8I0OBxjfHw8KDXqKuLueXx8/Eq8+MHj773Xi9G0ZrFYvHixuVxO8Bqa204p0TRSkLfbLXBDYEMpJSE4PMyttX3vlBJK1ahgUwo3NzcQUwJMKaUsSxNjfnh4wONlLMU4Kvhtt9vz+Yiy4sOHD7vdjnPyFlmWGYbhm2++MVUJKS0ERtCslNbe+/1+r8sC5+5wOMAFCD5LKSWwa6HZBXLc6XQBgo89jyZTmnSZhmHY7XZVVaXpOQPGOrfN2PtnDJn8NKRV4i4eQ7F3yJeklChxY4w3Nzer5aZtWzCUrbUiBARYwM0T2GcQVyfepSQiEJzRvj2dTo+Pj1VV4RIEWTilBC3LGKO3w3x9a60TjZaVQojz+SwZjzF23YDRuzJXT09PV9fbzWZzPB4v5zbGWGgt+DgLD0GPsjSMscEPIYR6WTXtOeeMx8s5l5IPg5NSZs6ejwekIm3b/uY3b621OdNyuRSMESlEG/i1aqkSjViMUqrr+sUiG6XmXjjLWUwSJV3XYVr87u6u7/vD4cQY8zk5P4jAiJKLoaoqirwsy2EY9s/HrrPXN2usDpaGFFnXp5Reffbi5au83++Px4t1vfMDaliU8Ggu5mlmKE9q/rhrwBUYiRrBb7fbzWYsP1Ed55yZFOfzMU2W9THG0+l0dXUVQkAzWOuCiJqmCdYJodDWWiwWMCLDjvUejrkKg1l4CSNVzrkoNGNZTrIM6FqhPO+6DiTZMYmdRmnx38VigaCEjGhRVtbawVnvvRIj/SXG2DnHOcdkA0oGpK9CsBj94dBOwOUCvUnGWIxeSqO19t6iRkgpPT3usT85568/f4VeuNYaos9g1ALgRtKC3Anpx3K5NLp8fHy01iIcee+JpRlOwgABLr5Zkx3RzLp+hjsAxGuty7L8+qsfvX379te//vUXX3zmvT9dzp9//jn6najNiRLn45Sz954yn8EyvDEmRWdHwhDiHr7TGDMMQ9c32+1WSQOBgv3hUJTlV199td/vn/cH56JS3rnhcLD7/aEoVLFeozq7v79/enoCKDFX1ohjkhP6vsD3u647nQ6cU84gz8ayNDQKuqq5z8omrlie5gKllEIwrSt0Eay10DjiUsaJuoEjxic/QOec1gWaLmryux53OGN9P3QdKdWh34yhlt1u98tf/rJt08uX1Wq1cm44n88AmuPk4M05l1JH5/nUt14uK7wKOnOIsYio6Nc+P16a5rxcrhHV+SjumtFuUUoh31bEECoZI4QRa210kIQO2DYzAIK0kQuiTPNW1KOGQ59Squt6RHs4cU45c6XE+XwsimJ/OuyuNkKyzWZT1fXj46NSou/H+XuasBrnehzPsjQ5j2EtTew6EIHRi8Jdhk+B20FNqgBy/OIxxkKbGZkpisI2Ay4LKWWknFJ4/Xp3c3Pz7t073KHQBiyKQkh2PB6VNHqybcRyoHl2uVy0HKWDL5eLmjSpTGWcc/BSinGEl3AYsZQ43TlHzHZ4a4kI+tFZj4QVrNdisRiGoes6KceHL4SA/W8MASpSs0sc9Bvmck9rPdiha1oxidjg+XRdt92usV54pDhBeeL/EeXNZgMBVYTQqqpSpKurq/P5DL1fIpKKgwlHPFWyYIzZPDDOGTFrbZvasl6QpTEuTB2tAO0kmhRz8JGIKIZR9ldpQUyG2XsxZ6Rl83ZEAeO9B9GSJhbhpyAOMl3808w/wvGQE9s0T30SxhRjLIAzm+Oc56WJUTsjzjhCUDeGJj2fqBk4ftjIOBXGGLhzMsbaFoIJGQ2E8QmwGSmmNNpxSFRuDKLsk7InjV6fo6AMPj7eTM6ZsYw2Av5Vf+IQyjkXApWtMMZ0Q4+7Bz84CwzhEY1RO8bMGE1MyRhjTiynvu/78RsmmZvxjX3KvCMiIs5kWSjGWE4E4DhNvsyc8+hHM1khFGMUpzmRND7VxBiLfhqyIMLkac5Z6ZFt4YOf4+kMGOGFhZIx5mFwOUfUNkQkcppbr5ILzkdKGn7Jol74Ub4tTBFfpJQIClwJduqjFSEG0WnUQIxCiNIUMSettZYqTloiuBchOVSZIkyE2cyZUipninHEAd+/fz9zkPGIAA2j2sSDxb4izid1mSSmzQQ0E/eEHRz2IRJcvOEZAc+UcDdg3buuSxO2PkVS75yVUkbvht7iTh2GASvIhJjjF14FcC0uMKxdBQ6O4OfjSWuzWq1y+Khfhk9X13UIvjSGMdY17bt370R21tqXn732MSkl+s4VhQzBp0TW2hwt5SDJF8JInqy1gjdClYxs9pHLlGO2gYTSSgsfPRFxJXKMgkuhdYxRKjGDEXl0R9UIeZBMkow751LM+J5lvcIzx80KLAMnDlg5lh7RoCiKlGOIPuds3aBLQwTZbq61iqOQixCMWTfEGLXROY26unODtywM+hmIJ7hEZ7VN8IC6rns+HnA3ODeqFyGIQ+lvPsU8R2TVSig1ueFlbNHF4vxDNa3zbuh82w/QzAIuIIRgmYbBCSG0lM/Ph7JcVPUyMtnacPjmu+VyKYuF4sJaK6RmjLngtVRwMc5Kee+Pp0tpJG4dIjJGCc7dMOii/PJHv/Wv/s2/3mx2l7ZJxHrrcOeFmEtTNO2lOZ2fHx+6ttGSrjdr66y3vR1Gjn8MWQjBBY+ctFkU1WJRrxfLrdImUgqRBJFzDv1qY1TOLEbvJr2ROXVmk7oR4AAUA2yUXxfDMIjA5jY1DqlzA94DLnjvLfoT4KHISQhMKSU5zFhGPUf04YVgmNJFwqSUIaI0UmOIiBMxIdBTlCiE5mBFk3DT/K/hh9FmMoXRZZlzBjlRl0XyIee8rJdAIjiJDDNfKZF5e5+IOEgKq81aCNUOzmjNuYyZuOAhJq6k1GYYUoxRULYhYNcBpgETHEhWmmaJGBOLhQZpQkopprmtkCLnfLlc8knBEN+vlFJEQo/PfAakkIJ/WlfEaaoLCzQMA3Sf8Z0Yn8IF3Xe2NB/9UqaitJVSdoNPaUg5zAkun/rfhdJoGOBHOOcpoOChnLP3Y2NSaq0n1jOQZe99HAY+yeSB+cgYu1wu33///fl8/ulPf4pTZgcHsfv6/MNeYW3bmrxFZkmTpD6SKJCXWc4j+ci5NFmBo8RijDEhluv1mzdvcs4pxbJcMsHevXsXcx6GgUlhePXZcrUoyvVqw7n83//3v2wbK4UYOueGkEIWSuSYOeOb1db5YVFXru+6SzP0LVEmIuuHGGNRVIMLQoicGCMRvCOiyEYlKyGETzHGKKXBnkS86prGVEvO+c3V7e//7u8/Pj6+ff9dKc3V1Q1jVC1KIUTbdMPgtDRa67bpq4Vu214p8fnnn0MRFZV2VVWFMUronHNhJGOsbdvn52dQIImIc1kUmojqetX3/dPTPqUwOLtYLG9urolYiuRd7HvrnLPOt23nPdW1Pjw/p5S++upHpSkWynz9+vP/7qe/9+L2s+Vy1TW97Q593z/ef/A+CiFiTkxwOW58zjnnjGfCyWU5Q7w9J0qX4+XcnIRkSgsbyBTK+eHpqUdzMYSQXCLGnp+f67p+eHj48OGDtdAwFUUxZpjAaDjnXApIRlhrE+VL2xRFZdRIpEWxjUiC5oQQDOr8lBgX9LB/eH5+fnH9koi2611VVVxIScSY8D7mlCjz3g6iFTEHrbUqDCPikohla60uzOeff3U+X7abm/f3b969u/fephzu7m5mJjJQIaJU1xWwzhCCUiIlappms9mkRH/2v/15P1yWy2VOLKUE5A7NJOz20+m02+1my7uyLIfzaeaCDUMXgnPOScmby2mz2RRF8eHDB+SBQAS8t1JylhWmm6G7ispQKVXXNbi9KSVrvZTyereVUibKXdexywWPcbPZPD09YQjp6uoKTxglCVJNgNFD1yNZQkNdKXN7e9s0zdPTU1EU+HTA5Yc4/ODxx2EH7xVPSUyCLZdLi2lZVLyI21rrw+EAOCDGuF6vcx4TbIhjANZ3jq1WK2g9I+R+rF9SstYxxmb9FjYp/kP8EePz+AbOKUfKOXNrlVK/efuWc/b1l19VVdX3/cPDA+OjkhtiF/N+93J3Op2en5+RAiE4IIdEBYENY62FCOzNzU3TNBC8Tmz08Xv79i0iMx6F5IIm2RmU+pvlaua+rddrgKFgC+KBG2n2pyPIYvOUgJQSPOK5Kunb9kc/+lEI4enpSWuZJvuyqqqen5+xsQE34HLHO5/ZQsjcsP1mMhDqiBACgPWbmxvM2UCXI6fEtNBaKyFPp8vh0Drnlsvl8/OhmLYrY4wTSUFlWXb9+Xg813UNUjA+Dt7P27dvkZ/3fZszwznKmeGlpZSr1arruufn5xjyarXiREWhUR0TES673o64PBJRoo8TnNhgMcb2cmE5S87by6WuazQDsC1Xq5X3+nQ6aSPrssBTJaKmaep6eXt7ezztP3z4gIJCfDITDPYlgiHAl1GvnMmyWMD6EptZa308HocQZ0LY0PVCCKDPUOtar9cIqg8PDzjmzGcimgvntm0BsFprr6+vcTAhBj24AFvalBLZUW08pXQ6HT7//HNcvmnqRocQwDhgnNfrlbIeu5Qmvgs+WshptqDA5kQi6r2ftVxZyuDJ8Yk65lNMbMTHS8ywh4AID7jLGHM6HXByGWNQG6BpsB11JZIiraVzQ865rExJZrPZNE3z/PyMtv3xuE8pNc25LEshFlKOYx9ArPBxsPlnlNM5RywRG1k+xhgpMT3M5j7Np4DmXCzDY1AwnkIcur5t+2EYXr9+vdlsnp+f8yQXllIKIXrvE0OlPI58McbchLxba2NsZrwosTFvHGn1tvPeB5+0KoBmOOfwkb/66qur62shJTTr57TTew/+B4KqEGJVFqDW4SOgob6qd3FScseML4JqCAHMbiQh9+/edX2DLcp4dtbGGJkQuArrurLWns/d7e3tvGEQ3zBngPtOTsTSmYWAlHWz2WA6c24M1HU9GzhBYGGz2WCzQSpECGZtL4TIjPqhx8EHqVFKqbXMXKAKXq1W0HPPozamU4UZo0RK3vtI+eamRjWEA4UidLEoEdirqmIpozs7QrOcxxjKsqyqKvkArY+yLCNl8BmttUAt0RMCdoHyB3semxzb4HQ6reslFMNxiVdVBaW1EEI3DN57EFDERNNEHOv71jnnvRVii3wer4J+ErL60+n04cMHIcTt7S1uUiJSSqxW9X6/X6+v58LZTp5bKaUcU0jeGHN3d7ff72OMRBF39H6/L4ricrk8Pj7mnIVkmaIxC4hXVLmq6kXbXZpLBxeWmVaYp5ECbOyZCjO3FYuiKMsFLBxAYQTIo7UE3BcmhwmgujlEoMPb7RY1FNE4vYQpHKVU2/eXS/fiBdiuHI7oaKtfX19D3Az10W63QysRbwb7f71eQ6zj888/h9Vtnqg2nHMMvKb00YNHq4Jz/vT0hAg53gd87GvG7HPHmCAk2ylFNjFfvfdypvXllGeIkDGWQD6KNFaFiuPlE84PY+jnUM5CCjZpVuA9AQ0BrjpMljszAIcHPaN+Wik2IURE1Pd2sSiVUhiyTqPBXeBSoPNZrAspeXMZMG84X4E0MXZjSjF5xG30dfFCSJ7QpUfr1Q227y1eAux0zmkeMxGTAF8IAZyveUyew1aGc9z0fGJAf4qDxDiOYEzVr58xEdzQQnCkbmziHeN9imneFpAi7gz+DzVnaWKEpUg++ZlQFmbNTaKUIN8p8KLA46TQ+FcohVFmXI7rgucAe8Z5GyCqokM1/y990hugSVQXIRsPFmcbHwdPAHeMMUYqiRwIpkPGGGVGocA8+rxlbMj50AKOtP1AEw4FrMEHp+WYTCAh9t7TxD3HO0Gtq6XSWoMlQZMz4bwZ2Oh9SHqS1ECC27btmzdvbm9vP//8c1zeyMtxmeFIo2Cdv+aF663FxkNPIudMmfHJagA/i+00b4+mac7nM6aEbm5u0uQTuN/v0bmC3VwxkuJVTOHp+XGxWBCR1Boy88iqMT1njEEbCXdAgpyr4IBKnbOQpA0huBg4Z20bALtgBZfL5Zs3b/7qz//k9uXL16+/yDAlZ8qYMoRwPu+JnGfRyKg0BXexru/7duD9ZnvNWcUZN0YJwXlkXIgQAhfjXD9lrrgUQqVE7XBGFEbqX1WVlCqM5PrsvbcpKS6UUsg1QQzECs6QFhYXjAkUk3PeFmKeoed5daa+QEJaoKWEXJ1SSmsz8sGnFi5CB5Jj9KtZyvMQDU6ulHK9XoMdOY/pWesZE2VR4syCvtd2o3XGsT8qpeZy9HQ6qb2XP1TThhCYKPPUn8OPO+c2qzURhZCa5ozP/qMf/ejX33x3f//ove+6vq5raYwuS4ox53y5XEKKYiIN1XW9XC4WlWmaBpPRzgUpabe7/rf/53+3vboRSl6a1sWolBFSalMSUVmZGH1O7MOHD++/f6sVXy+q4B3LCQ+EMSa4YoxlxpUxjNPV1dXti1fr3ZXUJmTiXBop5i6dUgpSoTFGzkmpsbB0k2kvsNE8DWogWZxhssvlJKUsi8Wc4eWp14grU3IWnOfEGGdKKTP5ByLV1lJFY4qiAMmFiIiSVlpKiboUYxmIPOD9AZRBwES3WQgRiXgcW4lsIu3GGCeB/X/8paRGddE7O29XbGallNQqT740WHR8HM75j3/7p7/19Y9RVFPmjAlltB0clzKEoGmcKVYcimmMMTEiy5mCzymNRT42reDqcDoChOWcI9c0ZYFInqYpEGABM8MrpRR9MFJxbea2MQ4U3qefBJGR0Agh4FoDuT3k6JRSTlkJkRKFEIapsxvGicWE6I1fzkhoVcCx+NP+KBvZxLwoTAoRsB1jDCyHlBKbGsDIerXWy+USBqq3t7dd1w3dKAGB/fPv/t2/m1tNzaWN06hdOvww3mSdPZyO4FUxxuzFnQ7HccqSsb7vS2MwezH3mFEIIU3EdP/NzQ12NWwhpJSMkY9BF0YJjRrG+/gv/vt/+Z/+4//4X//kv7x9+9133313/+Fd0/R6Ib1NmgkjdV1WITpd1vvHJ0BUnJMbLLZEoTSKBIQjwRjIzmMzxrk0JWmCc0j+hRAux8NiWds2f/n6y3/7b/7t//r/+l/ffXi7WBldCO+9NipTSikQjT0/KStAQt999x3CeNu2SkqWuVYKQFjTNFC8YczWq0XwgRHarmStPZ0ujOXNZhOSh4CskqZp2rbtg085hbquGR+zHcbzer1mmXzfipja4+Wv9qfu8fjP/uif/fN/+t/Xy+VjtClSnpT7pt2FXG00mZiAZ46TayrDKb17/P7t2zeH5uiiC8n/9he/NQzDt99+2zSNMeb29hZcSGhwoLNrTIk9/OrVKyL67LPPvv322xhj2zcppc1mA7LVarVSSqVEjx8eEP/nCooxFkJAH64b+u12m0LsbOecU0Jv/XZ/2uec+STIjq0rpeRMxhh7O0gtOOcySCZFCEFIqYXhJCpTXe3uNpvd3/399sOHD4wx5zvG2HZ7dTwei6Jybuj7nig9PT1xzmfLNTyTQhtjym+//TZTkFIqabCTYeIdQri7u4M1MdBD5DYppeVyud/vkUV7F25vX3hvy7Ls2hZhDVzF29vbERR2kYjuXr7YbDb39/d4VsfjcaYU4RZ++/ZDzrTbrY7nE/4GYQcH/Hw+nc9HpQwEPXH7A8LAYAdj7HI6YzcihgMQQdsVMlmn0wm3ed/3bJpc/EdfdV1b3gKbB48Mlw4qxhcvXpRl+fT0FGM8nRqcCzSk3717Xi71brfb7w9N02y3W9S3T097PQ16g4Y2QTnjvnXOPT09AafAdwISLcvFmzdvui68eLGDMKgQQilx3J8QfrXWz8fDft9+++23V1dXRVGch5PiSinlvCei3W5HYuTKoV++3+8BB+PuO51OwOshymHM+fn5eRi65XK5WtXn83mz2UXKwGuga4eIJ9joQx4mGY3VagUQE7d8zhnbBnTjEAKI6j7FzWbjnAN1CWq/yBWBUQJf01rf3t7G6GfODbiHc+E9YU8SBRcqUM755XJJxFFsY7JwxIyWi8PzHg4rIcU8DHirQASGrjemRNUmZYByglLiV7/4/vMvrwArX06nqqpubq84397f36PumEsFcP/Bus05E/GiGAVnUGeh3Fiv15999tmbN2+UNDlizJFQHIGj1zQNFyYTE0oJyTA1P1fNcvLmCdP4xa9//d3bt28xYIT76P7+HpATMCY8QHDrvv766xhjTH4Yhr4flst6jlEIy4iZ2+0WyTmqG6MhJqmICCz4Fy9eFEVhux6xDht7fPOcv3z58vn5+Xg8grGOsBNCWC4Xi9XV8/MzPguS9qZpwLPmXMbYY4E4k7CRzDmbQmGQ4nS6CEHff//93d0dEc04YJpcfwFhd92AJwNcmDG2KMrb29tL1/JpfnQOHev1+unp6Xw+o/lBlK6vr20/DMOQKGutteBIffnUmM95hPA+Jk4xolgGBPn4+EhE1lpQFwHPhU9EI/Ee7Gi6ENv2IiZ1JqjPQzXCGNX3oWnORVHxkbg6zihzQZwLYzTwhDwS3iVgaMYEpkj5Jzqtahram7v4mbL3vm3bv/zLv0ThcDgc0Ey1rn96epJSEvGUUmLJORfCR3HYuamfc0aa1Lbtw8Npu60So8G7xBLjLMaUiFJKAPvwTvCFiwCjFefzeb1eW9crTajuiej2xZ1S6t27+8xP0M/NOXZdC63h5+dnzmm1WuUcY+QzWjXDFyPoXNdGjT63eMIhhDwOHRqE3GFwuEGUUpihwZ2OFT8ej4IxqTUmJ2jU7UwzpsSm4T8ACNF5UxbQT8fDxGYrCr3bbU6n035/WK2WnHMtVQjBW1euVmkaivXRpxSk0FqPDC2aGOvIuoUQIef1bitbjdxeCME54Zu9H1XdcTvEGG3wZoKDco64YoQQlSlQ3EXKqEARDIkIkuIxp7bviqKQgkMzAO1hXL7YkIjJ5aI8HA4pJetHxnQIQWoNAEcIhSwAJhaMMcBKOPu4muXkECY+tRwLYblcDkPHOU8pECXGMsoBeGOcz2cUDkjVkBgMw5ApZ4qb7ertu3coE2a0ra7rotRtd8H6gnC2Xm2HYRh6R5kXk01XmhzLQFLBWeZQCpNyGIbZlhbyTQg42HtN00g5CogjLZdSXl1dGWMenvbOOTs54rZta8qiqhddc0Hrzn2iWnY6nVarVc4JYEJKCf2/nCOarHmqsACp4ZZZLpe3t7fPz88Pj/eLutRGCsG35RpwYt/3SknOedM0xihrrdElTYIN9/f32LHee6m4c261Whmlu76nSKQIjQkl9WqxGvxoTjY2ahQXGZwaxoQQAfPjkwmSUSqlnFLIybvJWBbv3kgTRg/KAmcJRjRKGSCS2Pd5lGv4OJM7AqYppVHZJznn2rYnIs4pTIO0SAIosRl3YIwt6/EwxzhqpE5gJYXo5l04Q4Tzv2LSFmeAiONg3NzcQKTS+3H6Hu9HTxZ/wO8QjqWUMSTAzagNwPxnHAAr7Hr1fN8jh4gT+UtOGsE5J5rUctFrGtxYl+I7wcNCKsCFSDlTzrNWxoTcjboEfOpsSymlEGiN4oDhabRt+/jwbIzBBQBXaCHEer3WRvJJqZYmJzo9OT7NQZ9Psvpy7pf+Q2ckABNsJIxYxESk8jMSFNOsdi0YG9cO6aAQIsdExJQSeAh930vKfH7ORLj4ldKM0/z20Isb348Q6hOJahT2RKOc/3yVzgGCTyI1bGo05Zxx5RPRer2u6zr5IIgZU2AAQTCeQ4zOx4wZq8wmp0r+ieRIjNFaC0YKZ2JOvvEN2FoI2f3QIUfHNTa/H5A70I9Cn+3m5ubl3R22h9Z6s9mMZAopd7sdPix2FNYLdydiB5vs7wptTqeTlHK32VhrfQpG6jyOV48y003TbFbrly9f/rntBFHwVnBKOe+Pj217UlIwHle1YTk4d+I55RCyH1h2fR/W60QicS6JCSk1E3ywPmRSSgLvkEJLJmKMwMLcpBVC4/hPDxwZzwG3zkxexrfhEsIdBoLVDPfLeXQrBuss1MCBwtNksYhfC/QQawHRIoQXOYnMjP0zM2KIKHsYY4LGvoudzK8454IYSQmsuW3bMSRwPjMf8WtnASyIMyJYI07mZH+wpiU2mmoiSwD5HfVPoQ0qGV1UUpvmfPmjf/LPfEi//PkvcBhRwt1eXYUQFnX5cP+hac673W6xKNerGhGGJjdOIcQf/MEfvHj5WYq03+8dBqOE9KHXuigK3rZtIm+Uklotl8t+s+kux5g8Y4xiiJOquOCSuBic00ws16vFeqOr2rpAbff/o+u/mnVLsutQLH0u+7ltjqmqrupuoGEJokHPSxCkxCteSnEZUigUitAvUkj/RgpCLwqSIsWgLnhJECBIAuiuLnvMtp9dJr0eRuaqc4HifqioOrXPZ1ZmzpxzzDHGrFsZUqQhlzfUUmMcYgU+xtu7t1A2IVf4AFLMvTQ00hFFKaUkMYxlDylGHxBPaq3mGbdAVFW7dC+qqiIxAulDcpNSEoxba1HtrFYrratpGL33oK0Rxpf+H1YqEsK5oNTaYsQBT7QZM3kEx52Sgzz9/iXFfUQpDcFpXaWUZCVhqKoqDewW5R9ad4xkzSMTgI9p8IkJbr0jljIpjJlijNCHrlarFJw1RggB7WeuQn0QMgeoGOPD/RNjzMeAIc4flkMJjq6U0mLW/2HTPqUERSf+BO1AoEVYIKwaXo2XscvH45EQEoKL0XOe6xnGGOf5rVmZrGvtTCldrVZKqcPhpITgUqIB4FzgIgJBEJRJqRkToIRILruuN26CoRQ+mCjGqcjjl/xsHMf7+3twUWMZE4pvxxhz1ps59wUz+NKy4fvWkYv81xFYtNYvX79yRQrAyw+CCSskfc55JGRTZOkgEI3jqJRign7yySda6/P5Mo8TpRxEnqurq5///OeXy+Xv/94/OBz333791dPT0zAM//m//sn9w/v90+l8Hq6vd9ZNgtFKVmacxstwPB5BIUnB9+uNnWY8GcYYLc0eSgMWIqbIGAshEesw/Nl7P15OVVUFypquvb6+vdpdPx8OwTtnU0wWt56SsusaQhgIATg7qMmHy8XMbh5N13XgzXVd9/79/TBclFLTZIVWdVV5n1KEgi/96Ic/Phz3lCY7W+89zFVjjOv1+rg/VVVTuv5RacE5v7na0ZT2T8/DZHhi5nR6evf2z7h6+7Mv+r73SjOOG1kqoVFipeLvj7m7COC5tcOSMfNpOh+Px/M4nC/HuqslkY+Pj6RIaijhJDHvYteuKCeIG3XdomeJm72u6/fv31NKuRQN7eBiBN8qxtgwTEA2lxFS3jpsFZwm65VQuB2MEIISQgL908///KPbV9772YyvXryWQrdtq5QihKVIh2lMiUppwbGQVDLGvHNCKGdMXbUfvfzom7ffdF3/ox/+0uH48O7+23EcOdML/h5jRN5IaHLeMsYEl4yxzWo9TdPxeL65uTF2OB6Pm/UOV5gQIpEEHTQoOefzGbUoxjzQD0iObjbWWiHk8XiudbXoEi4Xq9QB6YpWtbX2P/2n//Tq1Ss0MBYWWPxABNn31TQZHE9cytgk0zQhml1dXWXFW+aMX1IKUnJnaHDeTDPQLqwUyLDee1BiN5sNkEr04aZpWtSEf+Gn67qhCgCsD4cjIceuaaSUIeWx1QgCz8/PnMO4w223W7ChOWWnwxGKeGCd1vrTaRZiHEeyXpuPPvqo67qvvvpqHEeM/mOMYU4DAiwEs4eDXa3M9fX1NE3A45AZ2jJ9OqQI9nFVVa9eZRHJOI673U4pNU4XQkjf9zc3N/vTETwv0DZhSI1KBDktkBGtNRW86bv7+/vz+YS+CzJYG/w8ZyMLeIZIKaXSiG+MsabCavr1evv4+Agiyzhe0Ibc7XZgQXLOq6pSMY7nCwhru91uu93i5ErF9vd7582PfvhLD3d3yAOrqlKq6rrGe49NiKcRY7y/v18uMqyL955SzpgghIniqYX/5ZzDyE+81ziO6BVtNpsYozOeEHY+nlar1aprb6+vhFCRpB3dbrdwuZXOGOBizrndbtN1qxASejBARYGeQ/2NkHK5XBZVHIoviJzQZVn1q+j98/Ozc4FzOo4jfN6rqgqRgeZ2Oo193wuZ86JYpjLgP5H8/PCHH7+7u0M9TUi4XC7n83w6Xbqu2u/34Hcv9RRGdtd1/erVq+PxiHNU6cY5h+6+mR0X9OrqCvc7IaRt22k0ELU4Gw7Hc4xks5mVUjSmxVWjqioSs/8VGjCnyxnKAELI4XBgjI3jGCmB5WDbtiD7E0IglMWHjDEqWa36yhiDkZghukyaJmQcL/hglFJwcYBtkTJ76XQ6HY9nxtjhkDvueHeAdwtJdpqmjz76iFK6TIJp27brusvxhAVqmoYJPgyDcYGp/MwhVkBcncuIP2AC3vt5nrGZgTMSQuZ5PhzO8IRBuoXb+dWrV1999dX5fO77tq61c3lmJr4jtlMIATGwaZr379+nlDBcJEMEpbb1xbwbxQvKonk2+FTIr5B2Ys+gKolFtlVwUpVSAssYqyNUzs2k1IyxEFFEf5flLsmhEEJrCbZPVYEsn/q+XcBfzrmbHUobOBJIKUGoCiGcz2cuaNvVITop5e3tbdM042U4HA7WWiHZ1fWaMBaCU0oaE4TIws0YPaV5RlwKoarrk7WUc2tt3WjvPeOE0Mi5QsW3gB6I2EqpRAgQw+vrHX6HEHJzc8M5P5/PrjjBCiFIjMFl++mll4bjLKXERYac83I8xRhdDKvVCqtzuVwYI6j60RXTOqsndSHLA+Xgi1iWUkKjD5ayxAXlTLZta4Pn1qIMAfN6GLLUBmFHKbVe985VuONQdwC2ci7UdT0Mg3MGsPXxeKzrWktOBaeUCAFzV75adShvkRfhlg9lrhXWC1sUUX3/+LRer413sL7p+x6dV9xiIYREGS4vxuBnBuJjBgZTsc3E0fjugRPS970QrGkqlOQ4OEj1GWP39/fb7RYttAVbW8bARu/fvHnTdB18rtB6qaqqruvNdkULoRh0EGstSQxphrUWcA0OC/bANE0INSGEaRicc5RzU/wxnHOr1SpnTSmh7+K9hWQ0F03eY9VijND+goA4DMNk5rqum6aSWgXnFzZAXdcff/zxOI4/+MEPnHO/+MWX6MM1TXM87kXR4GIT4t2dc+v1GvMwp2kydtJaI0nY7/eY3xZC8MHHSBZEFCEUixvLVDP8JhcZAHSEIoMNIlVSKaO8QebGOZfZmoeU4VqoA51zstIIatjfLoTovbW20hyFBGzGY4zzMCbGhVA4FcsNZ/IoYUXLOL4YCaU+fTAtN3/iGAFA82JNQGlm1KNDIoQgLGt5sKW0zAPKnDPYVTKbtEZCM0OKMQZGJCFESwWbORd8jBETJCqVG4lLTy9GurRi7JzNSnjxxlp0OmDDcCEyZ7bo2vDoKaVNUy31NvYi8k5EMQRizKhJKesd8DBZsaThH7gDSymlUimlcRxFeUQp042zMlqV4WblxVnubQpOC+v2k08+wafChlvgNqDVeIAxhpSNaPMcTxwDVjwfpZQ+BP8BV6j8xbh8DKRQGR8pg/iwXilGXhyQGUP3I5cEIQTJxVKZ468jZIsPXFmUUpVSJGV4cRH6QSFovU9FsIbLAB9gmkbnsiJ7qa+wo9CFhsbZWguaKj7hixcvELaqMj4VJWKm/jEqhIDlCHYmKUA24mZKiVOaIsF1vnw1XiiQINqsyYoUDmOM8erqKqXkP+jgtW0LSEKVuR+gnr1+/RoIbCoT8PAFEe+wOUmhhKfSMEcJhwRCStlLCcowChhKqZZyv9/fv78TQvz6r/96ojylGIILIb2+3W2vNvvnp9PxifrQ9zJIpWWQgiupz8c9m6Vgvfc8ReUdHy4j5TpR4kJIkRIah2HgTKrNjjFqzAQYC2cHCV8qLrELmRRDC6WUnMuuo4yxxWoNU4+EEECO5nmeXTbkwdwkmvLXzDk2Icjycah5aU4svWgpsmIU5aiUMpBs/ZndJLyXUmEPACUXhRHPpIgxzvO8kFlYoqGcgiXDw+tfX18JkSnbUgrn3Hy57L6vpkUAWZJXVCDWuBjj6XKOPizZ4TiNUlR/+2/+LS3VV19/MU2ToGwMwa1W11fblJK3hpBYV6rK3gWprWop9OVy0bp2zmldf/vtt1TwfrUmjMqqZoz5kFI6V1UzTcbHabte42l3XceS15yM4xjtRBITklHCmeAhUakrxoXUyjjvQ6qUCoROxla6xlnAWlhr5xlznNr9fo+9zTmH1BoSOYTEWIzRY5kd75xLlPgYXPCSZeessv/zAOJ8fXzwY4wRAuZWF3TLcSiQ9NgZ7AyPlCjFBDQTzDVEJEKI91aUMa34c2OM9a5REuuVo2LpHv2FH8aY1jU2Pz6AN5YQFlJEOqWkJomGRKj3VVWBo8o5t85xLqOPjLFE8QWnSGA+Tud5ZmhIBo9upCXLCCmmiuvIOMzH4/GLL7745V/5CZ4AmsSEfDfXGDE/q0PUd4k4lgOvo8oUJjzzVPyyFyEqztpCtajr2jmDfBRNe7QnEGxNGa8HkAiaLyEkripeToHgOgZCCQ8hCZGklIzyGGPTtlqpqqmGYQBExRijnC/FDJJj1EgoaH2wXbvy3oeULuNY13VyrqpqFwOlNJDEVZbpTMUX/i/8CKF0VRtjLpeBUiqlmmfjrSOEMsaVUoSkpcFMCClVhE6ELFnQ+XwGUSLGyBIzZow+mGlyzvV9pvuBm//4+KSU2u12v/Ybv/nVV1+N4+UnP/nVf/tv/+3/51//865u3725pzREb4MPX3759TwbAfbiMKWUmqaJyYcgaEpy8U7hPCUG/3SSSMhsbscI1VJRSrVWxLvEePTpZnfzO7/9N9br7X/6L39MqGOUOjevuj7ErN2ra+2ca5omeDuNo1KqqTslfbmCoeCLm83mxYsXx+OxbYOqmxhjXSul9HF/wJZ7Wb98fH7YbDbTNDEmgo/b9abrVtEHxsj5fJZSKKVi8pfL6XyuBGMsMSmkSExTJRg7PO+tGuuqevHJD7qua9v22zdfHw4HEKiXgKClIiynBD5GIVRINsV0d3cXkq/revINZZSEcDgcnHNV1VhrI0n7/R69Z2csmn9AlMCikFLe39+fz+erqyvigFRmAx/r7DzP02SMMbWuXDaIp0KIRAnw+rqu67ruuuZyuTBGuaSU8EjTMJ7vHhiqESnlR68+LoclEZaA4hXdt5KKMyFSIt46LpW1Tkp1vb0O0Z0++dT5SXLlXPjiiy+EEP2q5ZyvVqvDwVNKueCZnTRD+BymaTqfh3mem1Y558bpgklozrm+70OKSCEYY5vNBmr9zCX0mTWCRA4P31vHKVNKVU1DCe/aebVaffTRR9+++frrr75FjowXrGsdow/BPT09tG0P1g8ock3TPDw8IC4hwcYliDT1+voa5S6yYiSEhJBVtxaFvymEQP6wXq9FIcCii0Mp7fsebAClFLPfDzdfzue93aPq6bo2pYTR5ZRn9Shm8gghHh/t9TXtuu54PKaUbm9vm6o+nU5N0+12OySfWuuPP17hhpon+83Xb2C0ChNkQKic06qqrq6uHh8fkaa+erXGowCauZQz4zju93st1e76ihASQtjtdlLKp6enbLHFeQbsVsKY6enpqWqb/eMeeSMeLHonh8OBc46ofhouD89PeKm6ruv1CukNEC6ZEi1jS3Cbv3792ozT09MTKZJKXEa4KUII2+0Wo8OmaVgojehNghAHmfaJHhhjeIUQwosXN/M8f/nVLzihVVWdTpfz+fzq1Su4kVpr9/vzMGTxqLWOcwa0Bbi5tXnqO+X8dBkFI+v1+ng8nk5T0zTns4kxJkq4FMjQzuczKNuSi+D8b/3Wb4UQfue3f5sJ8fu///shBB9DIizG+PTwgEmAgnFGGWTUyN7neaaer9drLA3qaETO5fZElYodVdf1NE3zZBttm6ZZr9eu2JJa7xj5rn5BsoEeMGUJeAou36+++tp7cnW1Sil99NFHlHP0OJHkCEGqSnZdN83D5XIBIhxCkCITpXFN77bXX331VdM09aYmhEzT5Jxr27bStZnd6XiBS0Df98Ml93v6vl+vG/RI5nmOKWLdYZdBCOnblXPu+fn51atX6Mqj03B1dXU+nzmnwTqwN3CoAQGnRHEWcN7fvn27FF+Msa5vMI1Waw2z7GU70Tx6PQ8OXaCTpU0eQkiRVkrEGJ0xSOzxrJRSV1dX+Hd8nQW6EhjSwITWNZfZN9Y5h+sboQ8gA5QBdV1rTb33SlVoeEipYTKzWrU4+wsSYoxxzv3oRz8KwT08PHzotIlYiiAG0sPNzQ0qOxTsMBG+u7sDyRFaPWCCwzBYm+q6llKmQBjhkitK0lJK49zBnAcHIaRMdAjWSikZowtIzQQPcPGlhBRpNaWUse/02fhNFHGXyxHeEVVVoSHki/6Ac67qysVARU4LkUYyxqybGWM05nHxwMuklLXOiCpS8dlarTUs7/EVpOKS1zj41tqm6WA0H2OE74cuVvI+2BgIiRE3Ba7yJVeEHQ2+CCC5P/7jP0ZbHRUr0HlAK845bDmWXT3pPJulY4od+/r1a5SKyYcQHadJS940zVzYnEtHCr2KpROwMDWRmibvoYBBp6SqKiaElFnVl1JwLjjnUiLgNqExjLm419fX4zgulxRjzBj38PBQ15oXnNSYQOnovUDLMxQeGKxskNsLwVIK3lPsWMYYLhE8DVz9UEyex8F7z5hQsgohCK4oyaJkFzz0zdM0NVUL1GK322itf/azn9FC/B+GwVoH7Ehnv+Zwe3uDsgXmTjgIhJDHx8fn52e4VyFIgsWCwcVVVfVt++bdO+w0dARxmnwMQjIgYHgXBEPvYtM04zyt12tQWJZw5L0XQj0+PqNo6ps+hDDZCSDDUlVZO3kvcCSVEjBpocX7oSqqXBdgLE4hpB6mEYcX2WaiBM8TgM/Dw0Pf92/fvsXJavvOGOOCh9kRvgUhpKoqY1xKARIc9GWnORt5LyglXpYSLjhLiRpjpOTb7dZm++msBJ2mCSAhuk2UEefcPJsV6wkh9ar2IWLC1hyCkMp7L5aKl1IWQnAuN4XAqwVxTErJBfXWO2cq3VDGQowLndPFkIqxLyl0V855wf49wqKU0pgMASAFRCDGRlyQAiHE6XQSjLddHpJIMoSXXxbMdm8dSnok8QVrJpTSVNyZF7iTFKZzKi7SIQRrsoEDuBjo7YjC9c6/SRmXuRm+vAIhJIawdA4ZY9mqNcJEQtJitoC1R8YWir8k3uJ8PmMQqlKVL9qZy+UyjuOSNeJLYSPCWoQWYtrSefMuIiFAQcsKATkGl+9alzAnJKUEBzNsdKTagLlTcfzBRESSEfYsyeGcpwiJerY8k1KGmMmGpBh3IrjIYrrKClNMFa/qGKNg3IWwPMwYKWOR+fJ/hWD0O1ouNMi0CNAAH+C7x5AICVpVlBIksgudUEopOE8pwZgC14bLY3wNpTmIp6IsWD4t0l9cG6kMB2CM0ZhilW9NtNdCcRfBV+M8Pyj8qGLKg4RMMrEsGTJdXuZ4IIsiNE3jtDwx/C/U57hpsASwIETyTQpVFqmStTa7VBR1CYp2vB0tFig0/34kUjrnQ/AMFF3nQml9IzkbGBsul5TS8Hjhun716hVlXIg0TydGm7dfff74cFfXygkddccYtTYej2cuiHPBuf7dt5emXfkYfEhNs5mKDnQcJ8boqt9IKQOJ0RlggqX3wGJM3oflUYBvwjlPFHZF8H/3QKZI6ZAhIKDPT3j2mdVa4yR661HPW2tDEQMiPuBdjDFzcdAmZbogOsxYa0LyUPiUsllbs62Q1CJNXNowSqnRzHgFxIoUg7UmZK80Ya0hlGHKU/AB4y45z+YA7L+h2OWcQ3UE4C/GSAlLKUWfgo8xRYnZr9PkvR/H/Xq9/t2//9/90rsfffHzz8dx6Lrus08/2e/3xkw3V9fQhdR13fdgN/t3376hlLZdP03Tn/zn/zLP82c//lEi1IXo4uP11W2ixPs4TQZ7XSk1nE9N0/RtMw/dcHy2Zo4hOWdDElrzkChhvG3qrutk01zd3FImhFCJ8CW/j2VaPTYq9nld16vVCv2DaZoW405cJcuNSItbZUpJaoXBR0gjcGaXxHoREAglCSHWzClkY5+l64b8m3MuhRjOF9jKA9N5fHxkQuIFSVEtlA9QheCUUgjvhBBUs6T0MPJ5Z9+/pillocZi8YaQGzNlmxpjuJJa675tUI6GPFpK2NlorQhhMXpkQj545yNnUimZUmKEUM5wVXibyRG5JEuUUqq1fvny5YsXLwijpIzYCiEppYyZSDFQRo20dAqXaJnK4AFSzMpTUdvgoqHFPgswNPlATDDMk6AMlZsQAl1qZFE0M38p6JmYSg+aDBKdrmlUsdGXUmopvQtaVSYZlI7OezuZD6kQPkYcW6w4jjacrK2bgQeJYjOaSq8e/I5QXKSFELrS5+9bRyl417VQqqJZO01jClEpVVWaUuqKig1BALEIVksI7PEDU1QhxGWYQgiCm7quq6qGIgQ78PUnH//k137ivXezub+///zzz+u6rlX4pV/65U8//ZRy8vv/r//H09OjVnXTqv3z6f7+UTBe1/XpdOm6rtaKEUpLMw/Lim8hiuFgCThZACSEYCQKwbUSirO6X/3mr/0mphX96c/+ayDm7bvDZ58xIZizQwhhs17PM1VKpZQnSY7TKIXGPnfOnU6XaTLH4/H169eU8rquLInWmMvpXGntvR9OZ8Eo4YQQkijmFzHGWNs043i5udoeLmfOoTigUlaERO8j44wwYYy7efFJo2rJJIt0u73+6e/8dda1IYTn5+fz+QzkCCo0VmyX0INM2VCDmBju7t6dLse753smSF3Xk5lxs//SL/3k22+/RXobEuFSPe0Pzk1V1YzjXFUNpLu4FG5vb1++fPn4+Ci5NM4KIZzzQghOqHMBfnnzOKECBCKAW3gYMu6j6yqE4H3QSnnvBJNX19cpEBeclPL5cICYN6VEKWNMxJQ4p+XacpSlihAwzlKIJAU0CN/fpbZupNQkMSX5arU6Ho/75+PuagM0BwI+Rnml6/P5CYBs27ZN061Wq+f9fXZDtrnzZ4zhUoC7d39/j25oKsrCkOg8jSEELaUQCpCiEvJ8PqPmAaJhjPnxj38shHi4f3LOsRR5dlqsKKWQsR+Pezhicc7BCr++vv7FL34RQgCl0XufjTLO53fv3t3c3EzTBFc0cIu6rjudDm3bA2LYXV95730MT/vnqqqkUFrrLdk9Pz8P03geLl3Xccq6rlOn7+8agnyEjGW1WtV1rYQchsF7D5sRPIePP/6Y83eochE8JRe4NeAlAgAdAZYkdnvz8nK5HA6H83nQWla6QUSt6zpGzxhDL3y73SKe0GxzOS3VHNDJaZqgVgRQS0U2HgQg8u3bN5eTubrq19uNlNr4cPfVN5zQGCNY82A6f/rpp+Bh3N3dBZLgSwA4uG1bTpIxZrfbvXjx4osvvuBcIgfDlgaMPo4j5gxpbbWuMYAB9Cs8utPlkiht237BbnKeQ6n33rnU9zXnHH1oFBq4EYC/TNN0c3Nzf39/PB5Xqw6Jet/XQgjcX01TL851Qojn52elqtVq1TTNN2/epZRI9OQDt9APDUygvB7H8XweXrzopvNAKd3tdtv1+vPPP7+9ve267unpKSTCWGKMSaEppYJxWQvnjPfx+vq2ruvn5+fL5bLdrHGt4JFSwr333kUpOaXsfBpSStBiI0fq+75rV9989VXf9z/60Y8eHh5cGUSMpYyBwKOz7/svv/zSe1/VyjmHdhHnXGulNTHGTNP09u1b4xznkpBMfuKcb7drpRRonmD2AbYOheb5/PyMLdE0TVU1MRIhFKTrQAOttVLoGMjlPI7jCLFXXddVrRaPCKB7+Zp2LkZSKUcphfE8zBOwlLiehmGqKrVdrUczAy0CPPr88Gyn2XtPOMOd5ZwzJlFK+l5yJjNqyYVzLkTHpNK6GoYzaH2o8bEzYySwu/n3/+7n211sm3qeZ9i4M8G11uhzUEpRYyK3UcUjlIRIKb+7e+CcE0bbtiXFgcF7jwYDrJlfvHjBOYe7LuC5uq5BJ8eGBFIMN2ToPxgjoFKBnAt4dKlckLgSQrDQSinUI1JKRtVms7kMJwzyArYYigEdTk3pNEvcrVBFvHz5cjIj7kQpJUb/lawmM9JCCIxxIURKgRDCBHfOOeMZFQvCgxLYOcc5w6daOpHLnAYgxc65GBNcjxGQUxk+pJQKbTPPcyCJcUZITj598WnBnS6EqHW12Wxc8CgJhRDn89kUW0UhBGUp255+QPjDCaq1TowuZS+ySlZUjOgGoQyH/ychJHpPhEBxEWP85pv716+vMCogFb4XIcSFRcOdq++FgeG9JyTFmIydQvSERsZJTHRheGgpT4fDarVKIQjGhFJaSlJsFtz/sr1KKU2E+BgR4X2MLoSqzMaUcoNb8u3bt6BkAVcB5IWsD/sZ6SiwhabJFiXYgbudgH6lbVtfSO5LyYasnlJsrQnDohGWq6YGfRAFWrDOex8pweXCiuXxer0+DRdUJfnJ6wazMadpwjGB6RzQv6qqAOWjRaGUcs4sWD8OF8ys0UFfGpx4bthpOBfGGHjCTNOEQ2qt5VKElHmfzjmh5OlyFowjNhKNhFykRJ0LwzDNs2WMrdcbThlYgK6M4qyqKpD8pkjMwG1PKSqVCZR4hggaiB5MiEQpy6o7ge41+PKEEM6zcy8hBEkjpFG+6DasnzinWkv021D3AYr8ALPiKLgAHPsstA3IHIJPC3BKKTfGoL00DEPb1cEnNHjyZ6O8qpRzTkiGOANA3E9hGMc2dCn4IxuYmtuwEUsJHQP8nvLUoMRoSsm6eZ4mODDASPEyDB2lsgxe99kZQ+M5IgKyYp7gvR/HywcFVTaWAlKwOG3N8wxNDSpJpVSldNNkG/UFL6aFMAtY01q78OqXD0MIAecrFfcMNG1oyq9Aed52RGSSKfoeS2hAJMVKpBSxD1LIFzxiB2HZEwP/qTBlJQLLxnak8QOJri3u+FqrEOBSmk8LToVSSgiGZAu+P7LIAQC6icKQQgjAGoUQCKEgcQBEposXB0tSSEoII5SmTPcOJHvkG2dDCJJnWjEXPKXkrQNmV55zWlBI+HeH4n2OC2npLix4RAb1PqjSRbEPI4TAW1OpamkDSCkpTYRReKIRQjCokHMeY3kXkm3daRkN7H2Y3ARkOcY4DIOusq8CLQogHmPhjUpgGcg2GGOn0xENmZi10gSX03LnUUpxhSPFZ4lAyYKzhOZ2VVV931dVZbxLKQLux8ZeDjO292k4LhgNHj4hBHgoHkIiEdYW+DrAuRB0aJEdpJSenp4AzPkILAO1aJkJWejnOA6IKUsfEpgaL4hquVwzaJtSylY+1lDGGl3Roum4urq6e3iMTCeumqo+7Pf/5U/+eL4ctZKar9998/zVF0ZKQViy1nLFpZTeibYVLlrGOOPc+OBscDEoJdq2h/E/kifrLWNMSsiFUoyJsextSouTDP3OgSRPsUiJxBhCcLxMH62K7zOTmeOMDCY3h1LCEZ6miX6HFWYCPgKxYAxnijHmrEe1D+cKznnV5t4PMkhjjOQCybFSyhhXeFgREYkUp+aUUopp6bXg952fMQ1mGkbM/FEqM/Gruvremrag5xxZL2qtFLNrgTHBEc8JhwiRUoaOLif0o49ehxB2m+3T88Pz8zMhMYVY1QpPDInUl199s396Zoz16+3j/f319fXu+tZYT6iRWjEqnp6eqqaOkTRVHVOIMd7d3V1OR0aitybYOSXqnAveU7iQh5RiUFpWTaeaVlaVrhqtGutJ1VSUsGEYKMtakHlm6LikRMdxpIJidVSZ7rLQMVarFS5XXnx+sHW5FBjXIKWETCYUf3zEH8ozWLy0NPDTtm2Zy2RJAVjRdvVl4JsQIiSCPYa4uhQbxhhjJmxUcHBAkCecEc544qBj/7daCKTY2as6S0xI1h4QzoTgtGpzKZ6b2DJHy9lEVpypOOeY+CwZ51xaa31IiqumbQXjzkyEkEoKpBqxeCCi2ECpKbWCWLiu6xhzfonTsYApyMwWEHnJyxHK0EvGnwN8Rz28/Cx3N7pEUkpBmXOhKgNX6XccEN40DYYgKyVKicW1RiggMcZ5HHOnwUc32+XS11qjVJMqa8dQWxLvgf7gdEO8UlVViA6BgiS23W4RgXGyTqejlAqhFdDGzc3Nmy+O/611hKncIqNTQnqSk3IEKOQbtExwDUWmQIpGDzcRPjYJkRPaNQ1W4TzPfd/HGChNdV3hdZ4O+6pp/upPf/r09NTL3icvFX/79s3v/t1/8O79G+fmaRjev33zxS+++ulPf/r0eKSME4L0Madeyy3AGKM0wVWMp5y04ApLWYsDayvuvXfWXm13SP2dM3/68/+67uQ0us22U0oUbCg7GBBCkHwjeV2e5zRN3sd5zsNVeKI0kRQ9Y3oeLvvn6Pw7pUi36qVWVVVh+AmJcRouvOu6rp3neZqHtm2naRJCDcM8U04C63TLdbvZ3QYXV233m7/+m1NIcjany/l0PgDrt9YOw0BIBAyXUuKCMYbUiBHGpnE8ng9P+8fzcNaNThSGMAIJhhCK8zwaC+nE/f3l5qZfGi3IVwFxgsZOCMkDu4Zhmgz+BJHkuD/gZWGS2/c9kBpkcefjqWkaxqhzbtVvpskkRudp/PKbr9fd6mqzPZ+vJFeUcKU0IWSxQUPO5mxg1LLECGGEQhMXaCJ1rdd9r6VqmsbYadX3ldaMsbqtCCFd11mbx6m9efMmpSSEmuJsrW3bHgwPEDOVrLBVgDxudltkpA8PDyAW5SwrJMEYTQl1wXq9TSlVSuMus8Wi5+np6fd///cJIeBIni7nlJL3FhEG9P+6riE2t9Zi1tDCU4Eh48JsQM8SEHMoMtL9fiSEVEo/PNx9/PHH1pPHx0dM8BNCoO1EKV2tVtDePj/v67pu2pqUbuVf/ulXq03YnE6nzz77bJ7np6cnJNtoWCJXRDaCw47CMha7g7ZtQ4ogEyFQDJcJ+2G3211fX7dtezweD8dnVARKqXG0cF34p//0n/7xH//x119/jdC31PBAeAGDrtdrRijsQQghGDwIzZOUcrfbkRfpyy+/4lKs12s7T1LK5LOxoVIKTLElRkkpleCFUJadAEkM4ModDichREqep5xdI9wxxq5ubxBSmqbBqDFCyOPjebeLNzc3l3HE1YkitvSlTnBXqOu6bQ3MLsfL0PRdVVUI9YAgq6qahxGaj6+/vrtcTkC6AXVhcVGroz46n8/D4Of5gseV63yaG6gY3oNEDgAZsJiuW1HKh2Foqmqaps9/9jPwqL766otxnMdx7Neb169fT1C2pXA6nYRgMcZxNtM0Yb7cPM8ksaZptKoPh8Plcun7Btclgi2g/GVo5DAMwadV1y2oH07cJ5988sUXX2RHNeMPBxvjl/D9OxwOlOq6rk+n0/l8btsWkn8wPV3xwVA8y8vQ1bi+vmaUAAntuq5v2tPpMo2jmV23XlEaSnefIhkLRX56uVyOxyMeNZRDjBDw3C+XC2UJUCZ2PqKTzN7fmxjj+XymlAKNYsX4MXznOqXW6/XwdjjuzS//8jV4A3Wtn58v3pPVSq22mxgIUFpUbcBQFBejsUgMWNab5wJNlkmhUkqlqu12u9/vX7xs0KZq2/Z0OMwz3V1fC8mAOONzgg4ZF3Gbi7QwluZ5nq2jlFrvY4zLZtZad12HNE8Isd1uhRDzPL9+/RqzNPf7PYBI5P/OOTT/wFjiZf45TMltGb9cHo5YQh9yOWOclHIcDs65mLJLNeC5GKO1M2PM+7AkxmjDBx+FEMaYN2/fghGPV2aF54j4DGpUjPF4OF1fb3QlY4yU5Ho2RQqsg3PKCgO371spJZQuBIr5wg7sum673T48PADcWCZmVVVFKceXRT6ptSYkhkBiCF1dk2JOksoYDDxq4/K8nFQab/iCSPxScChygWDiizDGCGEh+IXUiSYrfLUQ3oPPdz0eAl4kpiTy6Je02eQRBVdXV5gIktO8gt8tdWjf99iB2KXzPNtSQuJxhRCqKlMPUc/SQmNacsV37x5evr4FdOac6/oGUokQ3TQb7BDsJVUc7dq2fX5+1lpXFT2dTgAZzudzLEp6pRSMjJG54WtiBzrnvLdCMFRYzrn9fo91BFVxtkZyIYQA5uZ9TCm9fPkSHThjTPQQJXPG2AXDEoQ0xqVEZXEp7LqOSXE4HARneNPgE/qRlFJrJ8ayInnp36AeQQ0CNR4gRFLat8658/m8Wq14mQPECnETK7sIsAghr1+/htkxHpoLmVnIy8jNGCPVWmoVQiApc17xHLbbLXLaYRi0VAD9Q2ENYgPQIrqCh8/iFblg30uyhPdaFRZzSklrKZSU3sMCdxwvhBCwQnG3CiEwieHbb7+NMUaSvyDiKtLCpmnKanqt62majMlzU51zupLAOlAode2qbdv7+3uAWsCaCInDMAjJlFJJ0Mvl8vR04pwgU4KRY4wsJi8r6YdwuVysdYRSFZ23hrYEDyQ3h0MIlVScy1xpMOqLozkrfDRWJmKlYuxIOPMpLmdsIdLjGsOGSGXanrWWsYxLLkYqS/lKilW2VFVd14wWsIDSGKP3NqV0Hi5LNOcUtt+WMRJjREmM/RRTAkEDL443glfUAvw550DcRqWqyiAyREyejUQz2zGEAOYyMqEQgq4rxph1jhd/j5RSsdf8LtAsHDchhPcOoBNWXSmlVPbioRQlH4WIkhfOUSoT/ESeExpC0Q3hyaSYkfr4QYOOZIJ5QcxDfjiEkBiSc856hzMwW4M5pzgeOL0L8XDp1DHGGBUI3Hh3HwLj+eOhrc0Y54wTQhiNXMq6yZ4qqXhskZgIZImJpJjr7fztFF+UF7pMOY8xSsaTj0xxhGmcRuwfzOvENF58zYnOIfply6WUBGMWBDfvF/2sMeZ0OqH5jARUKY2ypO/7q6srUQZdomhUStH4XYME0A8y1Jx2pOi9gx8oniruZnwFznl0eTTtklLg1RCtlFJKqyqPniAL+LXkXrQ0pReIkFMqpUT4MMXGKxUsPqVEOeNSRJIIoyyx5QLD7etjRou0kNYZrTWY0THGcZ7yDcdFVVVaKM55s7qZxkvVtYLEzfZqOJ1o8NNwebzfU876fnN9cxsoM94JqVWlK1GnlM6XmUuhtXLBxRQoJbqSyx7DToaZjOKZ0/3hBsafLL2oGKOgLEaC/qoxZiG/5PSUUxc9tdmPezkOMUaMaswNg6LA8EW9tSAvAVSsEJTU2Bi4opaLzRdfHa21N1kPsfwJISRGAmNQAKne+65uPI0IlQt8QwgRghEiuBSyOIfijLD/hkGk99673OwhZbQFUFpCSIghuMAYs97VdZ1COp1OdV3ZaUaC9eU3X5wOAMtiSsn5SIypqmoYp88///xwGuZ53j9f7h7ud5ut1LrfbipKuRTGBe99XdckJiVEjBEuY6fTKYXgon96eAjWVpoHH72PjNEUCSVUCMmEklqpqunX67puh8nGwDourbVC4hR4SjlJwceUUiLQErnAI0Nlwj6wQYdoyxbv7KW0xqPObRjvOc2aIFo8K30MePh82eQuL9yCVCK1Op/PqZB23Qdecqy8JvqpaCMVL1HinM0QarmqYsq6Hxs8o5TJ753+SGJKCLbMZ70LsGalVKVrxlik2RNpmCZcain4eZ5jYlVVJZp4lrBRYC7GZ7Y+woWNIaEhFxIYxAgCVaNxQKy16LzSQhMghDAmlibWAhFSulyI+T5SZTDpMAzjbHGoKaUhUUpoojxmhIJYm3k03seqqm5uNvdP75kQdV1rraXMILgorHDgmKSwJilLwWPkQ0gJvcyUW60+itKQq6pKaXkZztYZXSn8dVwWdVWhmwhASgjx+Pg4z3PXN5JxLaWPBHW+lBIrK6U8Ho/O5bmp8zyP4xC8+951FEIY59AuRffCUYuYAJgjeos4H2MMKRFKWfnM6AJiHwaknpSu11vEIuQ53pr7+3G73V4uF+dskfEykNecc7Vot9v127dv1+vNj3/84z/7s//69TdfXm+v7u8e/ug//slPfvnXuJCoxBDKliCTO83fZTuJEEJj8smnTDLi0zT7eSSRrimXFU8+UBK3681f+fXfOB731tpv33/jnBFMT8M0TUNVK845WALYEkopazxA3oVJ0TR6abvG6Nerhq2aw/PTdlX9+q+8/K3f+qun4XJ3//j2/f394wOoDMH5tqurWo3WQS0O9OGwPxFCz8dws12/vLn64Y9+8vL2peRq1XZCyEiIdfNuu95sV5fL5eHpicWIU5NYSjHFGLkUjJFECBPUB3s8P8tGBRKrSjHOMdAGc8/GcW6a5nK5QNSMYl4IdjqdVqvV5XJRQhpjoGLe7/cLQ3AYhrquu67b7/e1rkIIl+m8cJMBahyPJ10GX+NEo/dDifdl3on1bjRzsIFzfrXdGW9mO2mtY5SEREopJ4wyRul3zIwYI/OBK+atI4QkGvu2e94/DMN0Pp6tMx/WbCFFQlhdt4yJ8/lc13VVNeBATMNISHz79h2hERCJLpNUFpYQAilmf+GGnedZSl21rRDi/v7+8fHx9evX2/UG+BeU1A8PT9bOq82aS+G9JzHBqnieZzgeIPHGtJyUkrWz9xGEU7CxgGHhyNMygUNKuWRlTdMASUFgRyvRepeS227XVdWkTByOSJbAunr16iXnFP22HWu+9/jf39+LF9kfHzle3zbDMByPRy7FbrfDgJ2Qh/lkxTdDK55zjB3DWcCmsm62Jq7XfUrJB6u0uL7ZkaJ4Q3H+7t270+l8Op1SMRdOKd3fP71+/eKzzz57+/bt4+MjBlpwzlOI0HAMw1B3LdqibVUDzjDW1G0N6MF7v16vo/OQdn311VeEkJcvX2LIRNu2uJKAIyMjCiGEOc6jIYwOw/n29hYPHHPmgb9D3Y+SmFIqpUZrzbmHYRik1qhAcaf7YEHzPBwOIE3DLwXEiIUQjXy473tS5GjOufV6/fIllmsG0IyWD7Bm1C/r9VprzfkRaQOlFEA85zSFAHxZSv7w8IB3J7mfKu13PuMXxtjD01PXVEqp8/lsg5+mebPjp9PJOoeDgEx+t9tZv7+7O2EFIVq9v78nhCgtNttVDNl8zzl3c3NT17UPFrt9GAYlqxTC4XCAq8a33357OBy2222Msa7r/f6QUlqvtnCZQLiQUh6Oz7zwqFBokOIMgB2+2Wyen59R8sQYp2mglAqR7ZXMOGGbdV3353/2cyryUG5SbKyllN98c+/Hp3ZLtJZAT2LxVb/a7ThjETNpaVzSCUJIIKmtalSju90OGG5K3BiXUqprAWAabSR8lxDSdrv1/gGbHEXZj360w5wDrmTwCZUUAqaUMvhYVIkEE1nsNBPOqqoJIQNqhJDVakMIORwOTd01n3TH4zG6qLVerVbW2nfv3m22KxC69/s9QjotVrYpJcGVhvhYCCFE07Uxj52wzhulVAzBe76U86GIlT/77AcfffSJtRZgK1AngN3jOB6PRzxP8K+fn59TStMUOM8DBlD7IBTgzBpj0C1OyeMR4ckjr0MQADuYkNw6XlBFkligru/7frX60z/9ivOpqrMnJ84jzvvCLauq6rCfsIJwCc8FFInY2zb4/X5vrX/58hb8GFOc6FJK8BwghBlj7u/vl7YcIYTSWYiIyY2psI+Bc42jwZ/M1uYZCx/OXQy5VYMDHgqYHmPE8L2maZyZsEmQSMBCFosSCvtknmfBVYzOW9u2baWblFJkcTYjMkNkdICVQkqAvKuqwvVNSs2eimH6d2Ud2KlmnscJMQErmAoDOoQwl2GSaN0hU5If2Lfibm3bMcZ4PO2vrq6UUni8+a2TpyxBAg6Q4UOgHM0SrSWlHLAGKbw6fFQU/riysc9jjIwR73NJDqIxLi98TevdUtjil1DaXy4X+G4jY5nK+JnMHC2YxvF49t6iSbaseCzONoLKlEKMHr2KpdcVii4NS+a9D8GhmljwvTxgifOUEnyxrq+vM3CHnkRKKCqRqMNNaxzHy+Wi66w2m6ZJykophkxjKaCiD5RSJvL0S+yKpmnmefbWLTsT+BUpZg++yB3ev98v+D4WF49lvV7DrQIie3w1ytlsDWhAsXAZl4p40Q+9ffsW2h0p5WwMWMyoJZ1zhBKYmRBC7DzHSD4EPVDkAk/YbrfHwzmEAAKByJppo5TAAmceNOHDMNS1+OijTwDoE0L+y3/5k8PBfvTRVimd+MQYq1a1dY4bvrm+dt28v5xSSgJ+SSKbDIDSm50E8MX6vo8hANjSQuqmnqbJovpy39k0A26Hko4xNhvjnAsxZsqbczhLuBKWb7jEYjRkvPdSKc65dwavmTKNi9niCEkzSZMqVUmpT6cD/hA1M6roVCi6C8RDU66vWHEFSkVZD9jOe48iecGasVFQtC/O3PjNRIn3PhZqOoIXA0mPsvQBm7WAX5ma7gvh2nsfYwJnIRRT3UQSLQTVxR0CfRhc+boMZUKnWgqNqASuK5IMSilluT7hnCshoQhIKWGsoo8whUlSylpXMUZjJ8YYEHz0glJKuEkzZkczAI3nbJ2LMXtIUTQfUyLFQSXGGHzSWgfqnHPB5WG4+OuUUO+9i/nTzvMsQl56YwyGxftiK+m9Ty4OwzCcLzJLw6oYI42lb1nii3Ou6zpKaQh+AW1jIZgvWvK6rhfXOXxTOBvkTjjL+ixEWGvtPIyxEPSw+rH4cU/ThGxANxXOISofoIGpuPRKLRbAkRbbJtCs0CeQSuBiQHOSEqakJoT4lAPr0hxDV00whk+Cm0YKlVjyKS67KIY4z5lyGH0IISSMXw2RElZV2RfMOedsJlnjW+MMOufmyVBKBeUppUhU222atjo8PuwPl7bfbDYba8wPf/jpOM6UsaZbh0QS4ZGwycyM2EjSelullCIhWkvumNCZfl7XvcjDP5MtXtgIGggjvoi2RHHrJmX4mDceFY4v45iWuEkpbZoGT355aLQ4dOPgAO7xxbgGr4MrhH9g571gdgtcQgUP2esgN59SGQGElyp0P8cYk0wiTwohQIADuiUgy5hSsF5yQWKKPnDJldSEppiSjyE5q76vpkV9BV0wbs26rpGjAOuM5fNQShNJbdt476u2aZrGG1tXbfWyQmtaUHhKBh8n789SV1c3XQjho0/oDNvuttV10/arkJJSrK5rwmiKCfd0CE4IpbjwlJ6Pp2maSAhK1lJXQohEYowRIy8pE4lyoTQhbLbuch6VbgDpJhKVEsY42ItpJa1z8zwLyWmiyHuynLwoAETRdiBcI70DfEbKdGPvvWBZSIHLi1Cy5H+UUsJZJElVGr2EyzjUulpMzEkeluVjJMCm8YdMSAR53GuuzG69vb1FAYa9KrN9SqSCLt2dxBimF37vD1LwfKGkxBIDvSKlZLzDNYFPQqUUgqUQQwieMM65kFwpZS2mUDJrLWWi7zqCoaghxBJ/UrFioJQREhe3LwAu+X4vHZpQmIC5R0uIKHYfpHhMIbRihxtjtK5CMSXHKgC+IoToYteL10S+stvt9vsjNvDT05MQoqnb4TzUOqNaPjoIzQiNNNLovZSKCTYbp7UMIZ1OF8aYquqUEuOcMRpTAO1rve4hHcDdBPE15xwFEm6QqqqEZJVUiJ+qrk7ngyojBxali/duHAdE3YeHBxRFf/nHGqt164uq11u3FN40JUaIzyR9nRINpU8vincwcJx5HIEv40bw3uP2B+4Tp2lxMG+aZhzHq+12miZO6asXL5RQx+Px+mZ3y67/43/8w5Toi9tX3vvXrz9+fHz84quvX798Rchj13VM0JC84vU8zyFguEICfC+Kh5gQQnLOGJOMJ8aP4xQ42T8frPNt29adNWYKIXRN+zt/9be11n/wP/9Pf/TH/+EkxGbbG2cvw7TbrnHi0PJ3zsUUtKxNnpWUlvwHhY0gznijFP/41fX/8f/wv/8bf/OvVXX7f/2//d9/8Yuf3756Pc4GuTKnxAa7qzencbLWbjabcRyn0cSYhnNsavXTn/61/+G//9999PJ1pepxGMw4BAyWoCzG8Pbd2/M4QHUopYzOxxjhnhGjDyFxJWIMh8P+MJyGYRCKR66G6YKwYLN9eRzOlyULMmaSWvzg40+++eYbZ6wQAt6CKSU01xHucBGDA3h1dSW5AJU+pYQ0wAXf9t32agcrZyx6cH632RJ0CKO9nIaQIuey6drz8SK1klpBIF/rJkXKGJcSflNk4SuInHI4HriQHA4bJPpaV+uuT4nGkG1eQHdar/vI2Ol02e+f1uv19fW1EOLu7m6eZxgZd13ng4Uh4H6/18VZ8urqCt6C+PCwgwdZpq4154zSVFXq4eH09HBfKck5r2s9z2PXNYSleRb7/f729lZKCeYOzibMamWxmkGyF/KPAzgIfEoWsSNQAEhxl5IbY+hQ71ESQwiXcUgpnU6ncZyMIet1/eLVK2stvDk3m800DYyx6+vr0+H8/v393H7vVAUipZymC7ao1vrx8dHb/uOPPwaxSAhhjOn7FifrxQvuXBafjZcBvJM4Jyw6LneApFfXW1+Ea5zzGL2UnDHmnIkxVlVFqfln/+yf3d7evn79+vHxkXM+TQZP4OOPPy4NM5dSYoQCMrtcjG4ysgwy0DiOwXn2wczk+/v7m80OwOVnn332+eef39/fI70RQtDicbdAXZxzFhIhBHOfzufzzc1NCGGyBqU+QP+qqqYYqeDeWCkzE+Xv/b2/xxj7wz/6I8bYMBhsntXq1eP9e1M80BljaM/gSVJKMcsRdxZi/jAM3tjNZocnozUivWyaBk/v4eEBEYMx9u7dO0IYaKcxxkrpkCjaMzIPVcuMBKXUOI7jOAkhX79+/fz8fLmYjz66TSRTcKjgVPCqba7atmkv4zi+ffcO5bf3ntAoGKOUvnz5EncfSO6b3e72xfU4jo+Pj1iLftW2Xb3f71ORP4LZrbWmhE9FmsOZfLh/mmcf/LPgqmtXN9chRDeMZyHEr/36rxwOh9PpNM2DdxFq9K+/fnd1tULKlCJt25Y3EulT13Vv3ryZpumHP/xhiBuhVEx+3fXIAYZhMMZtNptf/dVfvUzZYnvJz29ubm5v1yAPEhJxbaFw8MGeTick5/M8O282mw26sEv7J4RgjHvz5g1O36tXL1keBe+hGHv58iUp0/aAB93evtzvnxYYxdr56upqv9/PzjIqkO3j/qqq6v7+nsS4Xvd4L0BFqq6klBCGXy4XQhjJvI35Rz/8MSEoXstwCCGqqjqfhhDCarX6+OOPv/32W+B9OOPBp77vlRDoZ9R1zaV4eHjQVdU0zTCeGWMpJmNgmmWur68XItcXX3xxf3+PPqW1HsAirkvcmCgS4UqEAbyHw4FziSFYuKmX9rxSFZBBACzlD9U4jkrzxUAGjc8YySI4SJGaAnHGGFer1aef3mKj+mIct7BbFkRSCPHyoxskkDGFBJYcpZwxLqQ3kSWG1Yd3H9TSSJ55MWdDe28B2nApg8gMAAd0b3yXeR6RlIrsHwIYt4LGlORBLNmMCLtu4QujTtRaM8zY0MpaSwiLPlFGs4qdc86kDxajCDjnF2tJYlrncgMfEuAmYKu6rqGDQBILKAmdg3m2V9s1KwgCK+Yq1rmmacw07/fzPL/t+76pKlv4iKgdcvlP6dXNzdPT0zjPN30fCQGsOUxTJOT25UtjJ6TfYBCDFIWHIKWMyZspLMehpLIZpiSl7aGFTCkllo03ccliVAbJDodgqCQcOla4dyATYMMTOMpS5pyD5WxdV6jU5nl+8+07tNgdeEWLNavS+d68nPGVYX6CU4xGEY4AEMIFWRZCLT0bfCMkyXjWGdEO1swOkUprjZNVfEUkbi5kTYv8BcU1vL99DPPxiLoMiLDSIhbFOZ4eZyJGn0JMCaBoaNuW0iQE45Q5F9BcYWX22OIghOPZtt/5cdvibCOlRLsaG8DHQBhlYhnSRoUQ0JGEENq6wrFa2tg475vNxvrs2rEAIygV0fIRZdNO0+S9A+oSyzh0Vv4vAqC13vtY11qp7Bzbr1pA/03TfPTRR/g8p9MJTd/dbte2hnM+jqOWKsY4m0mq6rq/ZiS9ffhGVVprnd0wpZCEMGsnpNeh8HAjLCYKMksIsUdgkYx+QKhEfoB4kVs9i39lCPA3qOt6ni2uOllc2HkxYUBysN/vQzz2fd8ULQkJMTGK62GRzgmupBC2TJlfyGUFY83nnZUBoyEEYMELxCylpIQv+SuKbS4ELUU1+GSorhf2O1JAXkyvRDbOy8AW/gZcTmL5EUJwzrAzUjH38dk+X3LOsbFyyygA2YyUUskFUxTIlLWWJkJiIiQRSvAQrLWCZxzEOQe66wJzZ+ypqDtDCMDPOeeCZcARn1wIwVgbk19GTzjnsu9IwSUxRCiFQGE0QSkYfJxzZ3OJLoSQSsVC32bF28GH3FbCt+YkA7I+ZWg7xJhIAKKXypNLPtOWHQlCiPEyhBD6vpdSCSE4yZxQwCX4kEjZj6cDQlVKqeUcTQjsTEDS0DQBY4oxCpGdHJGdIOSlIm2jMS03Cn5nAaZx1Jcm5ALr4GUXeJ1jYlz6jlyP8v5DsCz3CAqdE38eSMIYSfwy/tc0TdF7ACigJ+DjQUMhMLchhFAmqi2fHFtfCAElvjd2SW6QMRBGo8/jjI7Hk53NarW62mwfjyOQTSbFi49fM5KcmaSUTNeCCkJYIDwxwYRkibnRGAeyJ6GMgR46zIOfg9ZgcLNhmBIhnDFjnDGTlDolGosVOKIeFhRPZsnC0ZxATCyPN1sKEJbjQ0rZSARKixBCCvaDRlRpPJZiJh+ElJZTE4tpESt2E27OY99IsSVRGDwYoxAihO9qYM6p5JxwhuMwXs7W2aXTXnJlyxjzPkaSUohzmAnNCQct5O6/8ONdEFwrlYsuXLS4O/FpkbIgFWCcS6oJZYKzlBKTwo2BUqpV/eK28sFO06SL7lhrHSgnMXDOBeM2D9vlXEoSgo+h0nncsC0THafhPE6XeZygDGUscc7bugGBwjnHldRVQ5hIlFjvzOlETgNJIiaWEvXeOj83TRVDMImlRLWuwPGhVHgfZjOBOgdqNjbwer3GZkYb+cMAG4q8hjGGiyZbbTBKC2XexeBiUAkWNJkuBwAxpOiDlzzrrepaxzKWED9t20cffFEzdF0HyA/V74IzkjIoObH/hUW7jf571xShgDA2XkallJJVljgkutz9Jk9raR0hnNMQU9M0gTJcr95nZNx7TxKXUpHc76Scc8kZmo6IDwWBpT7mRnKMkbLs1UOLbSiCErYZ6EX41ksYgcIXRG+tdd/31kd82pjdojSgKM75brOJMcJ4MaWsqx3NhRDmpTXGMCZQVbLchyPe+2G6cE6btmpVm1LigibiD/tTCHG13qaUhGBV1TAhvA8pRWvDOI5c0FrpEAjnGplDKqdpt9mA/8UYA+1CEQElclVVTddhNS/nMW/g5X4XAnQnzvl4ePzedUQjHC/lvf/AFcpxStu2tXbOhZP1uCYQjthCEoH+mhAIya1xhNBpnJ+eH8dx/OTTT/u+P50PhNKqVvMwo914Pp+lUErqcR5dcMM0oH/gnfvRj35pmqZ5nje7a2s9l6JuOzwQKaX3FoVWKlKPVIwOPkyLY1HqTOPcd5sU4t3dnTweXr161fVN5HTV9x+9fPWbv/5X9vv9t++/4ZxLUXEmwSJfQiLYW12bbc2VUuezIYQt1IGrTnzx+Rd/8+//nd/49V9ZteLuzVd/+uc/+5//3R+sdzeLpifGGKInIRpvcGxBsmjqum/XZm3+4T/4R//b/+F//PTjT6MNdprN5USSVyKlFN+/f7N/Pjw+P1HBU0owl2SMCUoE40qpRJMPNvrgQziPRxvs/dN9XWsmKC+ehofDodYNyp66rnWlhWCqklLyRjVXV1fPz88os1UxJdRS1W0DI4gYo6o04FrNpdWV9Q6adNwCOICXcaCJSCmhORvHkcSYW1yE+BBjdJVuRjFbayNN1jnjXCwpLqWesUhi7lEBawaFIqXAIkkx+OAPhz0o2C+uX/z5n//ZgR9evHgBZJwxYWdzPJ/atm+aDiQXLAECYIwxBgd4YhrNglTudjt+FkCd4O0G5PT5+Xme508//XS/31trP369k1Lu93vY+4D3irYKqr71ek0TWWxJ2raVMksAcWTwjuAi8eyqlJkZqAIQuD799NNhGJ6enhDBkJSiYuSMKC0OhwPqZ3zgyzhVxyNyyKf9nnGCvuw8z5Krq6stMd/viYQUF192u90eDs8hhMPh0HXd6XJ+enrinJ/P59V2w5WchxHVysPDXXCeUtr3vdRqGIZ5HpHLNU0DhO54PGqdcXbnHJqv6BJtNhtr7fF4PB6P8zzH6IUQSjGt5bt37/q+F0U+QgghMY3zFGPs+yoWek0sY3JSyEn4j3/845fz9Ad/8AfzPO/EFTw6rq6u8Jy996OZOedAgk6nUx6sQmk0brVaXU5nyhnwZbBTkV6CAgI443Q6kRCViqj8379/D6sKEM8BPKGCK1Nt1OFwkFxUSpMy7CSQ1DTNbrcLIdzd3ZWrh9zfP796daOUgj0uK+5MwBEIIaCDpZSmacSTGc6XcRx3tzdZ5ihESunx8T7GVFUagfrm5noc5xij1joGEnwSnHebNaVUKwG6yel8rqomEXI8xGk6vH59xTk3dkqUPj09MSF3u12MEdjf+7u3x1ONDIEU803G2Ha7NcYYO9V1nd1sVe2MORwOm82mbXqWma0xhHA6ncCh5kpTa0+n07fffotDWlUVbpPVanV7OzPGJmuMd0yKYZ5ijFrIBV8YBrPf70vxRXkR6lVVdT4PDw8P65WngjpnCGELqrvf71er1Xrdo+B6enrSWnNBparmmczDDCBDSikV58X9FvL/MaGJLmCj0fcdigtf7MseH0/r9UQIgfkhor0QYr3eLlkWIWS/f/I+Rkr6VQv3GMDZGdISAoMosD1cmQTo84RwhqjunCOJfvnll23beh+TD845XcndbjcdDrLYDiAs8GINf3197V2eLkPLuLbLOCyALJD3SmKstAEhOhPaYqxrLQRzxTfDGI/vLsooBTBMlRLGTN771WoDQTl6kwgRgFyQ6GELoS5gjCmpMW2S0KxOa9sa1TqmFqeUMPAJp6yqKgT/3W43DAMU2j4bdWYIhRCCRRznmXMJWQCs5FIxrADVAPHt6gqzSV1KqakqyTkp/njI3tElQh6OfXs+n5+fnxdoKOax7pFzDsZuiE5pQWOCdmqebde0QgjnjLVzV62llICe8Pyz/p6QaZpIrpIoYyKEiVLKCGGUhBAoit/EKKPee2jUSMj6WkIIZzIGomTFihFHSkkrhddfdt1ut8NkVFJoInaR4ZIEWIwJfnPTodaDz1jTNBzXlnN124aUOCG/9MMfMsbevn2LNDsXoc6hUSQku7m5IYTAggahCY2ZfE07A/t4JHimGIqmMuoJhNzz+Wy8o0U8DeRnvV5DtSaLe54Q4nA4wPME8LrPopZZqSqExAVBOoqPgV6gFJnERgrKFGOklCslZaWtnVPKxkHGmP3hSShFKbF2FoJpLc/ns7f5YyO1hpaUlEYLEp6rq6uUkrUz9r+Q7HQ6ORtwO4gymAdoLCt+Kdi9CxBvjBMitzoQ4lwZM1jQ6ulwONze3qJvSiO7XC5McHTWgcMAorGzkVLU9QpIpgfrvOgIQTh48eIFPslms0FcWjol2UWnbTjlKGFwbL0PH5ifBMB9pLgWv3r1ar1e393dHQ6HkGLm7BYKGqUUfia3t7fO5FgE6CzDU5yjgcEYIykDUKfTZbVagUq1WnVAq/eHp5TIer1yzpHE+r4/HE7gYhNCNpuNlBngQgdu4tr5+PT0lIKXtUTkEfM8n89nGimssgCwRprPDEFvJOsacoK1/AsucudcSrl8Csvw+mIuGaILMWpdEZa1PBDCLKEZrYM3b94gi7XOLV01730lVaQkhO/mg3EmKSEwkWAp62VisTuoqsrH7wLlggWTRDiXQtCQMgMLoy3xXVABIncMubmXJ9oJzJQsZEZSprRprRnngCbzFAKRPeyX4jzn/SLb/i47AP+JfeNjALbivY80q5hTSiF4ICOwf1LFSth7zzivlO7bLiaK8L3IyfGVQ/QLBID6GYi24IoxlijBgwI7knNOQcXjnJdJxzFiyuSc8essPMk1vCiGyIQQySrr5hANFjSUd0TEt2bCNYM1raqKC470bjidkWrElLigyJKNy/0DxgWiQ+Rku90CC5NSwW+EpQyOAMfHDZdSQv9nWSbOed1m6tkS/iBCXPYGK7YVqLqXCIIMA94MrEyhDOUH+xYpoE+ZikuL7SwrEgHsTFbMxxcgCeuCY4+bdbktSFExBAIcM6aU0yxsLRIj+h+4zEiiMUZR7FyXWEwWuDlE/GfyQQjBCAnWYZXx12FCQkkqCZPc7XbeOiHE7KwQgRAfY0w0MCWNmaIQVdsaQpJSwafZGa2pTCxGF/3sPKWMTGbUWidrhmGIlGw3V967YRgw0agcQEZopgzjyWPSEZZGl7FaC/BX1xpTqtBgiDHC2xHBeoknvGgXYIaTirrKex9itrbQWoNbh48Bg3b8MmW01LFZ5i947pYDhaRlECgCFMSheMK4BjBakDHmncNCh2z5kieto7DH8Z+nGZ4YqdBR//KPMUalWqvKeYuQgoPJCzUV5SildBxH7wJylGmazDDKMpGAcMYZCza1vUIjV1V1TGkysxCCJEJCbLqWECKUHqYZZqwoy6dpAvPOWhucM9OMii6lFFOyLggRKiWEYFTwEElitG5qwvhkDKUsJRoDi4lVVWOtJTRdLpem1oyzFFkIgRKutZZSwF16AbiXR70Au6ykrQvObgyS9ayt0XkkoxWcLS0BjDPCQ2ORI7viIp9KQggyQu+9EAya65RSGZnNpOSXy+l8PldV07YtSQmksKVFRAp4F2NMlKTiaE8pDfz7zTSEklzKWgjKEoxQJefWWjNbLBZSKGtt09RACfFdfPSEkNkY72KeIkG5rjX+ipTSORO9l5KSRIRgIX4XW1JKq9WqUvp8PnPOI8lnDfXter3GDYs0ixcTLcRh/CeeCTY/KdznGCOKfEopEjWkd5RSUubfFrgkCKGEECRErWtCCEk0BA8voM1m7Zzz3tZtJRUnhFSVTtF6769vdtNohvEseLYeSoR0XZsRsVp5b5u+GccxGsurKhQFItJ6QkhCo5qxaRhi9KDjMcaguOScc25SpDAJgZcuIBvgFMbY/9bZpEGhclu6YgumDLaIEIIKPh3PyMVhOoxkep5nEuN/+A//gRDyj/7RPwohYEzfeTwcTue6rrz3lCXcCA/v7+Z53mx2d+/ee+9TSMfDQVWCc9o01Wq1+p3f+R1s3e12e3t7+/j4+ObNN2/f37ddy8aJMTbPM+e5kAiFk46CHIduWVZkokqp8TINw9R1TV3XhKaHh/thGja7q7rtrq6u9qfjp5/+8Hg8Wms0V23bxZj5BLn7xdjlckFqfjqdXr3aSfkO4RFbazoe/8ZP/8pv/MqP333zi3X3k//nv/p//8c//s8vbjcuJDNOPhBjbVVVgpCY/DgOlDdSVSSm0Z0Oz4dNv/k//5/+L/+b//V/v+52KfjheHJmahT3UzidDs+P96fRDMPAODXWUMooJ8G5EEhIxDFGaGKCUkqdM5fxbOw0DGdVScoJ5+z6enc4HI7HsxBinsem6a6vr0+n0zCcGWM+OiGErz1yEhQquJuQIQA1hgMAdsg4jpYwxpi3bjIzsLkleaCUyiz9Cc65eRy11sF5JngICSXEbE3f96TY/nBBhWSCi+xhQKktM1RSSs4GQoJUPIbgvKGcE5poIoenx3mcuq4TQjZVDUrL8WhCeJdS+qVf/uW/9bf/xuPj4x/8wR8QQrROC0zAGBuGKaUnSincLVA0fvXVV1VTA+dCU4cQMk3Tr/zKr1Cazudzin6zWpNczJycc8fjZK3lUgCw/uyzz4A2BueHYaCcgWw1zw7oCWhQdV0vpeNytJGELwEKgB3Q/IUsghN3Op1cCtc3N5fLxfscBOquned5ngyyX0Kjc+FiDDgN0V9Wq1VF9Pce/6rSimdT4MfHR3glA83nUkAWjZMFehFQ9bquty83+AwvX748nU6Pj4/e+7atQfC8u3sXY/zoo48wG3AcTYyeMfCVBAxnUQB7b5FINE0DRnMI4Vd/9Ve//fbbnFaFeLqcvfd1XbddV1XVw8ND37S41jnnjWy89+/fv79+cdu27XAZ3r15G1NclHz5rvf0cDigFF/aA8YYsJsZY1fX11LK9+/vttvQb9YIgKFo0XK09E6rFrD13d0dzDSQj2FNrbVtXTPGDocDehLjOKcUYIqlteZKbjYb3GVXV1fZw7Rr4Iq+zHYjxZsxpYTC9nQ6xRj7vte6xrZpmub9+3F9leerz/PMeR5XBcD0+vpaKfXNN2/g7rJZ7wBpHU5HJeTzc57v3XWdUDrEab1h/War6ooQIpM3ZqI0DfuL1nqz2SilpmkAWCyEuLq60lpO00RICiGh5YnNrLU2szvsT/PoQiBNYzdrCXcUtEs554Gk8zgor1KMWMq+73/84x+fz2fv/el4OY/DL//qr3z99dcuhhDC8XiSUmitKyGdtVjTjz9+qZT64suvr697xtTCDMWBYoRfzufE84CBzWYjJQ8hCMGcyy7Yq9Vqv9/rSsYpYlCqFBr7SinV9Q1o/liRtm1JiPiOYIkuI9eW7Nc5crmMKYV5NrvdFon35XSOxZiRlALce+PKNMVpmvBGEGREDw2+EoIB3QOMgMUCEwWfZxxgHWCi833fK1UxnrvmMca6rs7nMwIOABCciEyPAFTiA+fcBX9zc5MoDSFU9fZyuXjnYybt1mRxgKU0BPrw8ABGBbKsqlLzPNd1PpKExLaFV1t8fj47F25ubhDfTqfT4XC6vUVKT0PwMLVn4EUSzmh2mw0hTPMwz3PbtnWt0TRKhe0ESwPGRIwkhGStxelgjFmbxXaLYFcIIZQihNh5XqIZMm0kMDb774ulEkGBn8tbb0EXpSlJzquqmecZqw+AErEL9nSujKEr6UdOO+d5Zpy0bTsPoy/SZ6QrMcaqqmL0xkQEFlIGBi65jSyTvZYMTQjBhaAsYfIeKgu8oJSaiWzi533kPBeJKCu07ud5jsRImcXKy66ATbYoSlngCbL8UEpxvgAIemunaRrH8aNPPsH7wkFIa31/fx9CgJMPPr+PoW4brfXxePSBgG4FxjdkoMB/sEnQGMOixBibNs8DQ+EJNSerMmiGDwYc+e3bt23bYuwbRC2bzQaZ5MPDA8bnkNJ4AMvHWtvWKyTbXbc6Ho/jaKvKcSaX58zqGq0IGpOU0k8DTn2gNKU0m9HYqWoazjnlDANLKUtSKNxo2IoQ6KD4jYXNE7LAd8qdYw21PQdchpYMfi1REoJngrvgCaNSK0KIoFSRum1Bf45VVTORqaL7/R7pB2PMWg8pZy54o9OVpJxZN5OU0TwkXQtfGAgnI+R8PquqkVJ7b7EigIDghQIGzPLiOPLzPB+PR3RZaB4g59EzaNtWcgb/AJpZoQmLlW2Iunahy6BqjjFuVmuc2dVqtV6v376/x5+Dm4XiDg2tb795G0KIMRlD4L7CuYS/fL9qV7RD8/50OmlVhxDQbnzx4oX3/unpKYQEewXGmNY6MH8ZjuYy922jlGKcn04nQSmt65YTKovRMKWUc1bXtS0Ew6VBkUovi5f5b8BcFrg2LiPgSmBCgQr8UWnd9z2y0lA872NRSSNQNm2Ld6Flrr2xBg38SHLdtSDLgrKYZ7lkPiNC24eUcrwyJQT+R5TnxhQchBFVl/YOSDqUUmPmDFQpZYxJJH6IahFGQwiheDXsn5+VUn3bOecwrnFxiXLOOZdNA0SxyFTFOqfcQAFRnpTBYviOMSYcJCCSMUYYryyANUkEOuVYKNtAnS7DiRSiGbxmKGcxkJRSSDH4IKW2Fj4LMbqIE56kQkMjxpgSxRBtzjksO2KMKdIQvTFGKqWUMnYCwpVSci6E6BYiDCICEFbsbGAxIYSZzKQMmMKJohCUte1ut2MkG0cIynB6bfIQ/QGZPZ/PbjY4z3hQSGTR/5mmiXGKIwSEcbkMSEFsS4ubYCGwe7GNUxH+wOru5ubmQ1nEh32C5VIUWnHOcCGFQmBPhVReNl4GVVNhoaJ8CoV4iH2VERmf0dVEsl04pdQ5S4rx8TyOOEH4jma2hIDKSbz3KYYCtuaGBzaAUooTyhgb5gmsMdwH1lrGKWUsEYKdBlYRqbM7lfPzki3N1hDOKKX7yylj6D7Z2VBKpzA6Y573z5J3lHIhNGfC+Fh3bVVVnMmUCGPSWsuZ4FzC4ryqKlYQ/xhjSnEugy9QgSyMBmMMTOWgykFswWP06UOOXlkXIdD3YUKgBvPeh2KiTYrTFm76kGHizK3GUpb0y0ZKqqpaZuZ47wefTZ+dc859p12KMVBKU0Qom1LJhzjnlCYgAlhQNMGEEE3DCc1WM5FcvremjcUUAighdr4oNlt4d1S8hBAmcyjGFk2RiKxtsZzzy2VAkxaBi1LKa62QTjEuzqKtKzhvrtc9BghkyY91WI5V08JYEEsGZTSlFKaYyGVJYoRRn4981LpGbgSYaZrHuoGZV0iRxEABbU/TZO1cKR2KhgBLjN0bigQhh4WCqiBPhciOpnwfMZGTkhjjecycqbz0kSJIJpKFINhdKDJxsrB/kMMhN8JVHTJVMC99XUaXIEpjryaSUvE4Xm7Jv/yzjBCEPAIraE2+cIPLjP4Qwn6/r7U2ZuKUcc4TpwmeDIRba0miWtcxEmw8KeU8jwFOYd4SQuu6ggxQZjVrNuMDEoDrEhjr0oCxZWwvxm5knaz3wEdc0dAAX5a6Rh9CFj8cFHXe++fn50op+BIubaQYovc+Og++Ugwplkc0jiNjpOs6VclxuszzLAQPflyv1//kn/yTN2/e/fN/8a+0AkfV1KWusG5umsZaFkJomoo47oubJ27YRXwjOBfZSzGiPbnf77nKNUld15Tkec1XV1fwsOKcn8/ny+XSiu9vG1jrtlUN/oUSEtf3NE1gTtZ1bTyzwasQctFFKeccdnU5wDq32+26rsM9bn2GSz766KO6rlJK0zTGGIN1xpjn5+fhPF5dXW02G2udc87ESWv923/lt/b74+PjczGzij7E6+trzvnz8yOjIpAkpIg0sZT1OkvowG5f5BeujN/A9ZEinaZJCNavOy6IDX4aL/kK09VPfvyTb7/99oc//OHXb76ZzcSY7TpMpefL/R7KXOyPP/7YufDZZ596H5GUr9fr3/713/yN3/zVf/P//Ze/89O/8vOf/em//3f/qaq5m41NngrOmNhur1IKUhDnjWBstmEcx/v7B8HY7/693/29v/d7f/Ov/x0e6TdffzkcLvunp3k8a85PxyfK4uHp2dDvwNxEk3decLiUSiHRhnGJJR/d8Xh8OuzfPr8BPITN3Lbt5XLBpGhEIc55itE5c/84XF3VL69fxhiBfIF4BZQB+3mcJ3BtttvtZRzO53PNpUbaQykpbB1CCEQAjFCt9XC+DOczNkwMIYTElJRKKV3v93vj/Ga9JoQwkesKlmQIEfoSLpn3PobAGfM0ppRCFPM8RxJSilxJXtx+CCE/+MEPbBzsbGAUvgy2+tf/6t8cT3tAOTF6XMeccyHYdrN6fHwEaXQcZnDuOOeX05kJDmgGGDTucUriNI5SykRCSolxNs3Tql/VddpsNgv0g2ku5/MZfW7KGRhD42geHh5QXF0uMwIysHvv/TRNjClCIlrv8FqNMb579w7hrq7r29vb4/GIWuPFixfeGRzAYRhOpxNjrFuvYMrhbLgMJ+SNWusf/uBTxthXX3wdQkDr+i//DJchdKFt29PpZMzUtm0iFID7MI2wtlitVofz6dtvv+2bdipT4/b7PZLGr776ypcZ1ziAuNHu7p7fvn0rJe+6DsTnGCNlBM0wX+jJnNMY42q1QjJjrQ0hff7556Ko0U/DQCnd7Xb9Zi3LQCrk5ACjCaOg53/z9o1SSq/Q8MhWrQuLHKjl+/cPdX3EMChAVCSlGEldN+igC8Hh0BpIWvpqqP48pO5sruoKyAtmLGcWURFcgp++KOtTCpxzVWlsp8kaTMATQgzDUFVVXdfzMO52LW5wISqgMPhPpRSAyFT4oRBlW2tJTK9fdymlRcgco0cNBeeN5+fnaZrwvVLMcWyaJqWFUFIIhjZq13XjbOq6/ugHn3TdyjkD5RmllbWzLCN/vvnmG8ZIu+oJIc/Pj0qJpnmBq1xKqZSYpiFGggzkxe0rQsgvfv5zxsg0mvP5DA0Nosrt7e1oMi+HCoZPhRwVc2vbVe+cA3+8gIB6tVrVde1ng+sbzzClVFWcUo5qEY8UzYnLaWiaJtJcb+73e9jRpKyloF3XjeM4zcM4Ee9zBFu3Ww7Zu9aYuxCLoDM/f0qVyrUG59wWLh74HNut6rpumgZCDLaHtdaU4UOorZB3pURPT5dhPGOeG7Ch6+vr9+/fI3DBRoMQArr94XzCEUMOmWmeXHnvQ0hMabCsmqbinKI/RLOx23xzs0WkNcaAszUMA8PAQBKrquJSPD8/67pOKelKtm17fN6jlOj7lXPucDgAGF1oE957zikhIuOP3s6z11ozJhdGlBDl5koJeTgptTMkDsDglFJa1Qvr5f3794yxpq0weBbG6M45dDEp4bQMGUMIjdGTYvZCWQoh4CLAs+JSKsYQLV+8eEEICyGcz+fL5USyojSN49g0HeyAcJYppYzlmgf3Jp5nXVXe+9NpYsxgFYzx3p+QAqEqwfVBCz83xkhoBI8bpHhW+naEEKUyT5NSNk0TA68oBDg+IZsNHwzpwYlANFBaDNMEwIEW34aqqhUXwzDECNovhQgDFDTkk7it2rbGNcqLXrBpGsEydx6sCCklrAIQWKKHAZ0WjCFKwJsezVSttQv+zbu3fd/D/pQwOtvsmSDzzMDsv9f3/fX1dZ6PLSXnHDOolFJN3QHNNMaMY+y7NW7MfJqMSz6zQpdUDZAuthnnfL1eN01zPp/neV6tVufzeb/ff/zxx/C+P5yOzmX3SOTJwBMYY7vdShbxaCw/oHQEzJHWoiuCQkIxMyAOw1DVqtFtjBHcTe+t8xxeFnd3d9vtljFGKXdlhhwpiEpmW4fgvKmqyhrPGIPDjzEGbM7FJWYZ2ZVSopR77yUX+cEWOizuApAOsbhSaNxKnPOYSCxiqaqqhORg+K7Xa8qSdbNWNeD7y+nknOMyrFbdPFO45aAoAOyApGvBMZBRIDNHvYwzKASLEb6IgVKOHhKwoNPp9PXXX19fX4fiMzkXhxy8Pq7RTH4npKoqxHBAi0C6xzEopdqm//KLry8X0nUEA5n7fs2KctqYzI9BC3a4TI+Pj1234px//fXX3nuosoyZBjsyxh4eHoycla7rTdVU+jGMlDNnrWh0pfqsT3QxCC4lAlwkgslA84MIIcTkCSFcZBW2dy6EqJRCHe69J4QBXA5FGE4pTSlIKUIIiRDGmQ2Rcp1SCs6ESOLkyGQoiet1j5WmJYQJIWikKSWWGOMVSUQJQRLxzmFkZCLkMk8BtmI+Mi4VEykRRridHWOMUUoIpYQSQkLMhsjeES2aEF2kMRHinQMmCqSQUjo7N89z13XZLIkp3TY+WKhipRQxBmdcSqSu6+GUWe7BeQCX3vuU6CL5LCgYMDLCGAf7FfGdMUZIooXtwhhrZMNZJiRKLZlgIYWQAtwAvXeEMfhihBQ55zySvmsKMJeaWhNCkqtCCGaYvPdUCSEET3SaZnQzTqcTpdS5oJQIxfE5FuOF58engrhlLMYFS1yq69oY73x0PoZ4ppRaG7z38MJbsDnGmBTwaI6cU+wNpBpIboAZ9ZseXbKrqy2ARUKImfK8Rxe8ifE0DZTSMNtFKIR75WLPMUZzNihsaNYzwrmYLjjvjKaC92BGxBjxASDxIiFSSsfzEAvzmlG6QJNXV1fTZTg+78XVFZJFklIAYiWz+xWq9DTPikuaqJutDW5Jib6DwmkCAhhpooyqWmv9nRNCxuWtpZQTJiQXjDq8QqY/c+acAy+GC0EKi4cWFQylMhKSIqMsVZVKJJMRYLfNKWOVTCklnzxJjBFvfFU1yDCQSvqYYKcwXuaMXU4zbriuqVNMgJkiPPi5QI10fX396aefBhakEjSy6Lzgeru5bvoOK+69bxTms5NhGLSQQgmWACsnF4PgjAvunEsxVFq7GCgV1tphGLbbDZT1CPfoEERKqeAkxGka8NxC0bGiYAM3CkvAOBWMEEKSUM45FyJhXAthp5mEJBRvdI28czSztUVrxjnhLFLiYogxckqo4CSE6TJQSlkijNIQ4uTMAnkTHjnjKSUqCI2McJpi0kImFoz38AgaxzHGxLlMiUrJu6ZFhwYlHzZ2SinG74cm67ryjKRENrsdUhleTLhiIeYvPaqlXR9pSoy4GEKKiSTjXbQmkORimE5HrTVXIlGSfLAhMsbmYiUGiONyGa3NDRhKk0sEwOthPAnOpRbTdOaCHI+HptbWKKR3Pnqp60S4mT1XmjHuE3WRCUpCtH6aU0qcCW/SyU1CCCaptZfZZZcSa+1ms6uqijB+HsZylIILXggxnk5taUYuzeHhcsENPV4GwiiOFdgNj4+PL168qKqq0jUeFCcsUUJJiiGQ3IDkKaUp+rZvsPl9DEpVzjlMG68JG8eBEBJjkFoBx9S0SmXSwocJCkmUKSqFIJQKTIwM3+/dHINnhIQYo08ueCFICDExSgWXUsasgItNU8NsIcaUWDLOYDJGoytjzGUajDFcMCkl51QrHtzcVNpQYm1kokqJCM5DSopza62WIgW/3w+EkJAitlBd1/f392goNk3DmJimy/k8kNwQJc6FlIiUAi4ihGQHQEDPVfSEME6T4AC7rZYSLS8M6OCcS8WttSEFqWQcYkqpamqhVAjBGqOrCrEupRiiT8mb8eLMYOfzYbxw88TM1dc/e+EDZWGfXIhMnc6DtfPu+raqaslE9LGtehITiyzyJHnW0yx3AQqekNkrcpzn/fFc13WiPDo/2LNzLuoaD0TCUSfRlOj+8Xm722it02X83nVUlZ7MnOeHEAqAJmWtK6WUMiZAN0MdhWpnGAag2E3TaF396q//BqoF7z0NcbfbkeCdczQSQpLiykXHJDscTv/u3/17Qsg//sf/eKevqqa21k7jHG364hfffv7553Vdt30Ps4Kbq6u+75uuvr69SiF+/fXXQFUI9QvxMMZIaZKVpIkzJ9Aeq+savKcYiVJVIBZah8pUbdUL4jnn5jxIyqL3zar/u3/3b+uuMSn92ec/D4akZJUWhJBa05j8fv9UK805p4l74r1z1pi+77XW25VijP2NH31GjfvRzcfUqX/5L/69jVzIDRE8BR+Sl5J2HTseL/MUU0ou0fNz7Jr2n/6v/sff+au//Y/+we/VQr375tuvv/7m8e7+6elpNJZx7mKYjSWMCiFTgpmY11L6mCLNzKnEaKLUJue8kVoYMzOejvvH58fx5kaM42ytrdtGSnbz4qX3fhrGcR6csVLK3WZrvVOqghEeipklt4kkJUqklJOZjTF1XRtjiu9BDNwHmqd09H2PrIkmIim340x1gr8Bl9KFoLWWTE/TpGPSTPhpUoQkxkViw2FQSXdyZU3SgjKW3bdjIIyTxNI4D4RTIURygnPBCJVCk0CYF23dH/n5cjo/Pz+urrtxnqqq2u024zhSHu8f3uIbtW07z5kWJ6VGkU8YWa23xpjL4URpiiTsrrfv3r1bbdacc1zfRZLC3727OxyevfeffPIJ0hXr/M3t7TRNVV1RzmpV47G8f/8eG7Ku20rrlODyqUIIQnIhhK4UZRApcs5lCMG5RCnniqfEasYulwtnRKv1+XKSglVatm3d9N1luszOcs6Nd43srjebr776qm3bpunO57NSKljnnNNCKi7Q/PvZ3eHmZo0Gc7fqCSHm+fsnhYYYGaHOOs6YEppTQRidsvZI3txsFKbJTfO66+HviSBzcg7tPV03WteMsZCS9ZFSmqyXUr96dQuQLsbImOKcztYq1YTojM/u9il4IThjefJH33UxhOCNs4FQyTknlEzT0HXddrsex9GMKaWkBUdj1Tnjva+qqu/b/f7p4f3+1avtdnPlY3h+fh7Hse/7jz766HQ6XS4XrmTf95sNpzHZaRZCdHWTqlrwihByOp+Ns+M4QpVLKeWJkBCvNtvn52czGqWUoKKSFWMsBjJPlnHyySefOOeGYeA0RW8BxDyfJlTOhBApZV1rLpgQDJA3dUmILBpYWs7rrgerl3PhXKCUK1XN1hIf3WSe9sdxJG1LX758KfNmltvt9vn5WVU6JXDTlFLaOVrX7ThewM3MgIWfvA111ZpgHx4ePSfbbUcEr5ROgkWShunioadm8vj8Fsmq4FwKKSVvm8p723XdZrMBF4/RtOn66Xx5a6zg6nIZCSFt21e8DSkxFuZ5Ph2e67rFGMO6ahfngaurq9Pp9O7dO631uutjjM5aRmhI6fHx0bsotAop+yfM83h1vZ3mtNmsujJTJwnBOD8cj8YYDKdarVaAcoRQ5/O+bfuXL1/ePT5EHpimq7rH0zgej/unJ0SDvltTSs1ogg+c6Rij4FEKlSJ9eHjabreU0vPpIKUkhB1Oxxj9brfzJDIiqlqt12qeZ2tn7+08zn3fMyqen56rttlevbi5uZmm6SoEdPvu7u501aGjr7U+np6+/fZt13WcS0GFmzNqM3HunBvO52kYYpl/EEKghFPCXKBS1PPkzQz6QiNF4kz0fTXP8/v377XWbdsySgMJKTKakrduHkdCyO3VBg25qq9QaAzD4IMNIUktWORcCiHE4+PTJiWllKC1Mw4qLkpTCM57KyVlTHJOApGKi5Qo5yJGrxRHR0dycT6enLHb7VZLZY1hjK/atmobsMVBS1qtOmCmgqvJG6DMSqmmraxlhJBAmWyqpmm8dcfzoCXfrNYkUsHkaThzzgc6tG1r7OSiY4JJzo1JIbrk84gjpAexUNxSSidjrLWcUsk5Jdx7T1Pw1oYQlRBaSmcDbNkrWc1mBsUYL7Jad5RSEdVkTAhhMkZQ1mi+6VfW2uh8SuT29pZSCqv0VVfTFGiiJBHGJSOEpiSoYIldjhfBVSDBo3dKktY6EeJjUkqmlFxIZrwAaiCB1FXtrZecXy4XwTgyZ8JpjEFphTmWknMlBC0ze7TW0zQEpZhk8zgnloTkQrJhuLAiAtOVDNFZ772PWn83CYlz6VxYX699jMYYLcQilCQpccoioa7wzAghTdfhEQMcBLNtmiYtFeb6MsYu4+Sda+smhfj8+LTbbqd5QH/ucDgIIdA0cmX8GJpG1rvValU1ddO182Uw08QZ89YKIcxkQwinaRZawVo1hGit4WW6tY8hUWZ9cOdL17TjOFr7/PS0j5FwLkNI+/3eFTtvQghjQuuac3543tc1lA00RCMVpVScT89N07Vt7Wbz9HR59Wojm2qcJ+udI5ElSpgIyXZ1q5SiUQiq+06M40gZj4krrZP1PvrL8cKkSAmj7WgIGJGivLcovpDbj2HmgjJOCI2UJSGZm43xTmmFNYrBzRNWhDGWOCUx+hgjIfH58aFutJI8hEBJtMbWVQUCfgxcyYpRQQkniXrnQyCN7gVnl8vFzLbvexKTT36erJkd0CpVVYQxKeVms4FfDdYdLBZaHGOAY6CY9d4zSmtd9V3PCt2eMSYECmGWKKGMIsUSQnR9o+vGWCt1pRIZhsFbl8oPqVLXtKfTab8/K8WMMXqem6aZ5yCEYowZkycx3N89h/DQtr2U9ng067Ve8M9aV/M8M6JdDCmlN2/ecM7btkOmBEcXSqlSQksePV9vOhXVOI4xBi6irirvA+NssuP11WvBCoubUso4Qxcf6wdRmxDUFxMWzrkUamk6ee+tzeRi5JfLLkSTlhCiNOfFTVkKGULyyfOsRCZCsBSI8y7GRClVXBAukG2EELSquRC8jC5Ewhqi08VWYiHffccjA3IaIxrLtBg6E0IgqRNCOZ+prLEY4wLX+JB9jM+AKD+OY4huUXZA41zXDRLlu7u7tm1/9KMfLbDRElBiGWcRCt9eFM+UUPi2QvD4wTgs74MQdJGEhxDBsyMxoUE3l9dBjwWUt5iJhGG/38cYgaXiW6PkttYyxr33H+77YTAMvHfgxZwsnxNZhfcRfXXGOTShlHL2AXv3+vo6BocXoR9w22PM3k9A5VJxBUUCh/sADzaVUdfoWGQFX/rOPxfd0VTmLi7UsHGYQpk2gH4BmkJcoFfsY+E04Rd4VmHkHrsZJ6zLcvJdDCxlB1JK6c3NDeQGmeBf/DREkb7G6GP8buIBLual28nL+MFK67quIyFwKFu+V1hsZyJOEAvWWR4ZyyIX9gFdegH0WRkSjd2Ff0kphehoooyxBPsIybzPrAS0f6LDU/GA0mACyDCsjQsAl8bY0ni3MUYtc4cZTBY0VH1MMcbPPvsM3KsQAi8qBArBXZVnC8D1LNNOP5iOJcps6FjcKgjIuSKPEq3rmpBsxZOK3gKtRc55dFlvgWciykjJWPyycyhj2VRRZs1adsEP1uHs8DLOPmYWarYrXSID+QsOCYVPFGMExJB7SDEtqy+E0LrCQgshEskEfEiAQboUglnvog+U8vRBZEspKfn9DEopZSx7AAeKlH4DK1OVAGojAKaiTySE4knSIvBfWAOEkBC84JxStsD6pcxL/IO5iFgvRnK09CEwGhOjXIoQwmhm501T1YSQtu9g2uWcI4zTfJTy+pIyr1VKaYy13kkpmRRaaykELeMdEPlxNFimvSdr7TzPp9MJqERVVZi+MgwDWrj4tIlmLQuiLmZPVVUF80e8BcazxA8EWYSQtm5cyHGSFsondoIps+OstYRRXIIfuphhl6J3nVKKJoJUxYRgxRz8L/8gt/DeU/JdAOcif566rg+HA4y62rqOMcIhTkppTF4dxth6vWZMLMA3+YBncTqdjHO3t7dC8HK6DYnJe5tSatuWpui9h64Tk+hQJaIHA54maA6FhFvskorlQiiNDedCKsZwCPIEowhzc16EkI/ndrtFPG/bdjxf5nkWUuAJM8ZSIj5EIcQ0z9a6FGlVNYK7zXp3f/f4iy+/6dqVDZRSulqtONPzOEqhpJTGzt77SumUQgweJ2u55hAiYGWwrDhiSIzR2hmsB8R5bDPMOpum6f7+njKy2Wzs8P3KA2tMRTrOObjJ+C5KKW+zOX4kBBPnvfevXr0iRRCGG5NzrrVKKU3TBIMmP2cMCDeXkNJ733WdC6Ffr+u6vr6+xjkFB9BZP03T3d3d1dUVUrKu6+q67vsey7TZbILzsLslZd7vdxdHSN7nKfDGmBCdcw6jMso1F3GgxnFERwEtrf3T8/pq523VtvVf++2/uru60lr/6c/+/Hy+9KQzxtCerFbdixfKjJP3ljExzfZ0OtFEXr/6uOu60/nws5/97N2v/LDu+v/u9373D/7ojybnRVWfLmPivGpqkqizcRycNWQaZkp53/d//+/89B/+w3/4O7/902jdL37xi8PD0/37u6eHB07ZNE0xUZFStlMjNKUUF4IUjZwwxQVjLPCsP3DBhuiJS0+H/TheJmPqOrOYrbVCScwaWZw3ZfEhDSn2fX86nUjMgREEH+Ms4sbhcEBQen5+rut6tVoJIZwLID/CFQqhjBACoYAQAs8Z9C7EFi0qxphz5nA+zfMcnb++vg3Bz9GAGjzPc60rbGzGRCI+esIIxpMQGhMVFD5vuBSsgyY66LqC4gSoFqVpvV4TlpAirtdrzO0hhf/x9PTUti3ARISUlNL5fIa342q1icVsB2wmpSRUaPDy5pzvdrsvv/wSjeo//MM/tNZuNhuwqF6/fj3P85dffu1cQOsLNUVd101bYze2bWuNc86lFLXWxjjGGPa5N/bm5sY7AyJzVVUhRlJEbwiPIYTHx0ctpPf+cDhcX19DsIxPi3cEJ+vlyx3n/Onpab1ecy5CCLC5/74fShhFExR4hJByCTUppbu7u6qq+r7HJfvixQsAK6jW3r17p+sGTMx5mrAZgOywMjgIPuyUUhfC+XyGqBzEDpoiIeR4PAYfMVYRpxh+ZYgGSqn9/gxI7nK5PD0NnJNPPnl5fX0NktR2u3337h3n/Nd+7YeEkMVqj1IKktrhcGhXfSzMr9nO8/G42Ww2m02MUcnmfD5Llbl1UvLFrwxORzg+oGXh+JAsOc0yi6Zp5nlMKZvtppTG0VBKtJa0jIDO/Cwp0BDFqnHOoeWfWLYrRG7z/v3buq6ZFNZGCM+FCHiewzn7ijjnYMo/DGdKqVIVrjPvPT4qDtft7W1KNPowDBNnkhBCIjGTTYHwFaOEG2OspagUqiqhgB9HxxiJkXzy8cd1U59Obp5nqXjf9yG48/ncNFVVVTGQ9Xp9fX377t07PArrTFtVMcbD4XB7+xI9yHG6MMZlGTeyWq2wHxZjmbquiZkFVyEEXspYcMkZJ4SQFCNqVajsKaXb7TaEgIYKKfU+0mxUkfM8r9fr1WrljZdSwkHl7u4ud2hCgMEIFZwXd11w3EZ6eXy8j5HALQEp0HHvU3rebjfe++e9retaKQW9rsR5GWZ8gGEYjsfjbrfr+/7p6emLL75KiVxve6QWXdcZa9DnvlzGRVeOPA2hoCS3eX6PVjVQPKXU+TzEOFxd9ZxrYyzndBjPcE0cx/HFixfBe5d8jHGc56urHbhZu93u+flZCMEIpVIisMO6tNZV361pSpzz1SqL5dE21nn0SBYScQ6olhFHRE6zM2MJMaqtG1VmU3HOjbUMdEVnm6ZDXieK+B1RIpZpGcBqkKaaEJumITF5772x0ZPNah1CQDmG7AsnhVNKKO37/sWLF9h+oMM3TZM70yQ7agohYPhJKfUxnk4nIVnf9/AsgnoV+A8hhBN6d3eHihlyk2EYLucxJ5PjOE+273skyY+Pp08/fdWtVwjIf+tv/a2f//mfwgIY0QmAADTox/NZKbVk1JRSa21d3J8B1+Dfp2kiIQKIJ5Raa5vVWogqxoipLwu+HIrIPoTQti1hLEwT2ma4DhiJsFFGuYd/CqXavuc8F+lwb0Ca9PDwgBdcRqrGMsgdv4DPifiPxz4MQ9/3KGNxBOq6hpX21dXV4+MjMgH8IMIv3xQtXlRAC9IiynPD7yNu+zx+htZ1XVXV02EvBB1Hg8PovWeMeG8TzXy1WNw5hBDrdQ+QFLxg4PKIqMY4Y0zTNH3fW58rOFrur+D85XLZbDbNupJSXl1dDTa7rygh8fCrSqNMQwrddK1SahjOUnLnQnIRMx5syFgfpYwU09qu6xbHdvIBpIANjMeCawUCu3xdhiCFRtRChcIYa9s2kYDBCdM0HQ4HpVTTNKfTyXmPEq/ruhAi0LlhGPb7JwRPxphzeW4QtiKAAnxyFFBISxAcFr7UglDRxbGAEISjRd4ts9cfhyCjaZr90zMM9DnnKVFOGaeMUKKUkLJdXg2ZpDGGcwI15zzbwwFdQHBhMzsTv19V1Xq9vrkh+HY4Ju/e3c+zkVIwobTWUuS5psgQ+r6/u7vTWu92u9Ph8Pz87IVXTVXpWrXCR3c6nSqpAwmzCeM4inmeAXUjLGKSWGGbU06ZdxZHdDaTEILVArV3KHpnQogWhBFGWPYjZqXapJSGEL2fcTzg1YDrAXVyCpHQmBG0EBljkzGizElPxbGdFtN3HywvNrUFQPwOk6KUSsUZgc9vzT6wk15OfvzA45gWYiB2w/K/sGmwBgmevzRLGDhn+AX89aZprq9vvfeXy6XrOuSLH6JIeHeES8jAeRkSqrWu6xoGAguShRsFYAcKeyE4pTSmDLpJreHNhB3jQlx2PC8jkgRlyDa89912DcpJ2/SAm5ckACLohSNgXfYPgUGH9x4bY7Va7a6ukLCiZPLeIyEYx5HRtERS5DS+bIxUnDQAtJHiaYjqGvclEn1kBkvqQEpyH0LQ5Q5e/sQah2VdAAUGInv2Exd4IIlSvDVeTSkdY0wh+vKDr0M4i4RAKrhsGMCFVSHxYY9RxjhjhGCnkQW5CKUVTKF2L6ONi0svc86FAvbFYoe6aCfj4uhdttxSyoQQYspv4T7wenbFokFKaWZvnVFlQpFQnAuKWy3GCFI8pZQlshwZxhghgLkj5+yDtk3SWkvJCSE05g2PVIMVX3kuMz2krmscdjNOKQX4IQjBlqCJVdBa5sIpZZ9cUqYn4zmnlHyKiSRWgP4QAoZazLNZQOTvwCPOl7dAyoIXBP5Ll/mlxZbXlon2SogU8sldTkEIIcRAKVnwsnGc8JUXDmDGyilbWgtgpeXiRDBcw8uRtNayRNDhN3amlEI1ho1BaZrnmRFeVQohGz9CCCK/nwlLKXHFAPpDniYtBqyhOB0zxkhKyIlCCJDbxzJXOhWdDqW0xEWGNUFAoNl0jKSi8UTsAg5ijAshRRJCYDQRzmVds6btYvCe0NM4iapmgrBEIqGREkI5pTS4gJ4EbpOyQJxS772XlBJN4PWZiv0LnkbBWDMai7IEqWetK3wdRA88eS4FFhEvAhgaU49DCJwy4EFSauQiVXb4zS49jFBOASt77yMEm9M0IbdDrJBljAkShcV8Bg1IfMjcN18+ifj+GVNSSFL6UlywEILiKtLknI0xaK2bpkYBz/qefNDuxb5F2o23GMcZFn68SKjyVVis7b9DPxnHvp3neb3dkEUJQcg4jkKop6c9xklDckXK/MMY4zCcUdFBxRmKTRa2FRpFuMhIwae01saYaZoIjUjXlFJNU1nr949P+IRYREppDIGQBPNBZ0PVrIKbrLVmPA6T/0Gz/vbNf7h9ofrV1gXaVA2h3LlwOh8BHxST05FLgcQbVy2+IzSYEcMhrKVlepVSajgf82gdwpCVwgmEENI0zatXrygj8zzb0j7/Cz/H03Has9VqBQdJUTwENtfXwzDg2QbnPv3kE8RnO89SSpcS5xwSV2stpQwP8Hw+C8pCqRMYp1h0Vy6aj3/wgxCCYOz+/v7x8dEYQwlDity2rXXGGrPebqP3wEmBm2AI4cuXL+/u7kiB2knpQi1HRgjBSpTGxkYZ4LIQfqQkKqWsNYwxwqgLfrVZEx9fXF2/ePHi5Yubf/7P/+W/+f/9i/v7p6aplKoo5a9evHh+fj4dDiFEY1xVNZvNhnLx+RdfppS4UI/D6Qc3V/t5+MM/+ZMphGScVJUJZB5JCKHv+2mMw8kJ3n76g0//2l/76//47/5ujPF/+tf/ZpqHw9Pz5XRmjIWUjHOJccZYopREQhkhNAXvEkVTFvwGSihLkdAUYwyEBmut8WY6jnePD0oL1VRytKAkCyFoIkKI0+kUnMdsicvpfD6fT6fTxz/4pGmazz//sm9rKeUCX+6//YZSCqx2MaVZZM5d13if/cShdr+6uhJF5wSDQjQblhpjnkcp5eVi2lXLOb29uoWdKCds1fWJYchHgPGR955z6ZwJjlCap+bimmBMUEpCCJdxPJ9Ps7OUJq4kZQHtZ3zUft21bYugh3MBUzWtVclL3Waz0VqjzOOcn89HPCUEHELIarWCVBMz5RhjGOd1c3OjtT4cDgtEtVyvKAXX6/7p6eycW606pOqc8/fv36Oyen5+TpGMo2GMvnr1Sms5DNO7d++UUrv1BnkadrIxhgvBOZ+HgSu5VCUQhZTmVpaNH49HhALnHCpeX8yXhmEArRtDvL8njEtRVdVSUuJf4LSI+CblCi0EKeVut0vFymacxo+3H22321QGrUMeREpbVAkBlS7SJ2ttonSapu1urbU+HJ5jjH3TCkm8//+z92e9li7bdSAWfXzdaneXmSfPuZ14SYpNSVZJKkuCULDhstxAfrD9EwwD/jn6B3oyYMBwFVA2DJRRLzJYliiqJEq65CVvc5rsdrf6r4neDyPiy03VIfzgF1uljYuLPDt3rr1WfBEz5hxzzDE8SRQF8zAMddMYY+A/XFXV9dXN/f09im3n3PV1N03T+Xy+urrqui7G+Pz8jEHppmm+/vpr9OpwHe/3e4jhwtcIWl7b7da3nXMOyL4RLqa4Wq2klJfLacb+cI/0fY/uFyEkBDdNY/BlzFxxKNUALkFyMt/pUsof/OAHQohhuOTmPcuNZELyEDf2ZyVzgZAKpwQXdKMkFywmv94s37zpsA8BHaJNAnEApbLFq3NOyQqL9vj4GIJfr9c/+PIra+3j4yMOI2VXSms8ZRIIp1S2ixijj8Q4R1hsu7XgjZIGlubnU07/Lv2Ji+75+VkpAd2kpmmurq4YY+NoCKNVVXdd9+7dOxSSeViKEMBGcyWC6wBESEJIXdcTiYQQTTT8wWQxHcH9hUiuZMUoVUod9idgGYCbrbXjOI5TDzBihmibplku1lVVTaONha6EG7Ou66GfKDEAy0CWwqWJd7vZbMB601quVotxHL23XBLGKPKxcQqlmSq11uv19ulxh7sypdS2zfF4HIYBjQTOqdYS9ThiUYiGc77bHTabDcIsINSqqqZpWiwWoGwDw+WcY9MyyQiJ63UHCBLhi3POODfG3L26WS6X4zgSloINKaW6rrmU2/Uaki+AdKdpwtQjBPrbthZcoTdmrcUsF34vLa4whGRKLBWcMBaCa+sODTlsDM5lVTVtWztjcU0gk7y9vb2/vx/GsN5WV1cbaz0Y7oiWnPOYPBc0ppk7ElCHcqm1VNbaWmmxYpMZAA6SosbQLRdZKuHUY7YgpbRYLN68eRNjhEwE8jdwZkOIUIxJKXnvXUhCK0pTKopMiHszeIKCFxls13UP90/AhWfmGRhF2FRv397e3t5+8+473Hdw8OJFe2dGpdBfwXm31mL/zKV0jHEofE8pJa7X5APUXdquxk9SKrz3Quk5gXfZQZF8xmooRdYaQm4Y0JQ2m43W+vHxcX8chSDLZccpLV0fUtdd3/cFHeLiheqaKq7183XDC1OwlOEEshLb7dY5N+u3IESgsqBlMht5KdqxoejHIujh2kUOkNJnh/AYY1fVs4yGc65rl5zz0RoAMnUN6maAbVJd1y54rDaammg/PDw83N3dEUJOp5P3MY/jhKC18H7Ej6ViTEVKLxCZDOfBWis0U0odj0dH4rwTaBEgRvwHeGLGwXuHiYqqqlStOeewOUXfPaWcLQBRnck0PE/Ai/P5rLTAmsOeASAv3l6WJ7UZjUVERavMGIOhQyRU2LdN3SWa8+EQAgbovfeLxQLi+7I4Mc41WszuawHbGAgbK/rvQHKxdfG75qqEFS8ZLE5T1UPWPzGgsT8/P09ZU5TglA1DLljmQhUABdgM2BV93yOT0VqPow/l5KKQnEEnBH/czuhS7HY7LQXngTDxEn+IRVeZFEHar3/1q8PhUtfSB783eyV14NZHx4jEhWKTXa1WApAijof3PoZM4gM8SimNKVMyYwiUZl+IWJqiWmsSsggmjQloFBIsH4KUUisVfKCJERa8c4kSzrjknNJECFMqo5AkkEBDSoVDLeVMLiaESinhBiAkq+vaWRtTws84j+nyrPzFPKGUTtaA0RYLJ5QVrqi1UypKyuCox+hD8MCrhWDe+8vlZGD3wZmZgoCovPvci1BKpURCCJfLxVqHPT2fujlRCEWTZc4PcCvgA2LRjMkeUCQQ7wPnIYSAJIMVOj0haUbraJGVyC0vIX1RlMbKe+9NSr7cXv6QnV6GYYDFwYzm0yIPitWIiXDOu6aVxSUJI6VN00gpnfd4QUCriOnGmGnsZfFOfYmz4AvrmYqzDeIL2M2uGKlhEyNfL8VwvsZCCDaR+bhSRgmh8MiWVZ7udM6xRLiQjDHCGUK2UIrN7o6UsUJ6nYruEuGf9/wMaMbyhb8KJPmCeOLRR6imUjpXcXPdTgVXGS31tMgyppRSjKTYauNGhIXk3N7AUxBC2Jgopd4H3K8I35SROY7jQsIbRusin7VxCCFLoySaRUtC8NZaEjPs4n2YeypSSs6lDZ6klBIJwSOx0BqS9lHxzDbFqB0CWVVVhDFKs0OaKxKfkZJUFHWVUonxeQ21zmhFjNG5rPk+9xXy7eIdpRRcaaSAIouuZCxOFaHznI2FON9ViA8oyXDYaelae+fyjUsIQ7sixhgSwijYsriBdFOjo6OyGydGOGsGH8iyPay13mfRKyEEZYyQBK8AHGdCSEoE1eZM9p83FZ4CcugQglJZKpdnVhrYxOF76c2gp9PCIrfWTtbyF6r3WGHAf8g8ZIw+5soWazjnPYQQ790cjgB1saIAk/d5TBAzmVu1iDYFhU+MEcKElHJ7fRO9Q1/HOk+F14ynkIJxMdFIMu8bepSUUiWkc05VWgg8VjL1A44k9vN88IdhGIYBoDx+e9u2bduWj+C9yxYfUspIEi1Pf2bg4jVx9Iwx/Hyu6xqTX/N9j6xaF/vjtm7W62zVjTgPLEApxeVn9RusFf4T7w30BCEEFZTNA0Ps+7FmQgihufeDUA/rmHnaA1sOTcoYoykyxJTCD4aP1phhlFl+fQovmP4pJZQQy64bpvxXmKSrlI4xlwTDMCBVCiRpXcOpJi8USmtKKaWXywXJwDyVwhhDTMBpJSQKwfBBpmlSqkopjX2fykUZYzTWoMZ7fHzs6mq5XDIlIMRGKeu69nQ8xxCqqvLejcNY191qtej7y3orTyydTsN/80//2+++/bRa37WRGWMY1caNVZUdU0MI53PGjLz3MbqUaOaYMwZ6IC507Jz56C0WCxI3KDWnySIjTCmNxjDG1uu1qnXf99Z795eIoqxWa1LXhJDJGlLmIbz3p8vluN+/evUKEHYqnTb8LYmxP58JhOGkpDHF6C0Y9zTPx0glsDnjC0EhKMqllJRSP/vZz0IIb7/4sq5rLhjjVBIphAjOAThAncm57LquvroGF8mUsYw5Ss9/SH9RqWmOWsYYxqhzjuWpMofbIaQ4TdMPfvLjxbLjkd8s1/+Tv//3t9fL/+YP/p8PDw/eBcPcu3cfANZIKaWuQwiH/elyHgghXbcwxvziw8c//fb96Nw3334SVZWoHC2p62a/OwuhSDDL5fL3/+pv/PCHP/7dv/o7tzev/vUf/dG//Jf/0jm33W6rqvI+ZjfZFCmliZKYYiSJEUoJTYlQjrEkHn0IyWeEnSQ7DYES402i8d39x4/3Hxfrhff+yy++uH316k/+5E8SSSj51us1a5m19u7m1hkLWUBE8uvrjRknJEjTNO2PBwTb4/FIixlv6dyLOc3ATQfaJvbh8/Mzp+zu7u5wOIyjqyo3D9jFEEN0Qotpml6/ft00zdPTkxAi+dw4r1e1ENw5i+QZaWoiCTFZKaWljjwyFpVS1rlxHJ92z8MwPDw/XS6nzfXKWktpen5+VkqpSoKwBsI1yglXJCC89+Ai0dIRtNYSwhaLFYgLU3ELhHAEuAvIP7332Ane++PxCFRobsk/PT1hv33xxR0mRbz3TVN1XQcbPSnlYrHgTCyXYSbXIOVjjNnga62tiavV6nA41HUtiu/FaA1eWTIO/yhrLe4RuLTPRSAG+FBlUUqvrq7quu77cRiGNa2/9/gjp/348aMxBjrCSsjjcBjpuF6vq6pKicAIa14WRF0hBBN8vd1cLpfHx3tCiG5qHEzc5tZ6KSV84Z0zhNNKK6k4hrS898Pgb6+u15tVpWuIvTLOGefrxeJ0OoXocffBmA6hAH0pxO2npydr7e3tLUb1Hx4erLVtu0Cwatv2+vr6w4cPHz9+HIYBjh2zQzVS+pSJtC6EoPVC6xWEKXBfAA4Gxo2rH698OJwXiwCL40+fPiG3b5oqFVN7KSVEn0+nE1Q+bfB11+IHzudzjGSed1RKkZDz8zl5wBp2Xffw8JBxEE4456fTabVYgDaLjfr09IQNSQlfrVagVb569YoQIqVWQv7617/mgg791DZNDO76ajUOIYYkOO/73pjxxz/+MZfiMQQSox2nzXJDNW2aNkXKmGib1WT3wClAcUCMrbKC7en5eQ9ECQRJrXU/TEgenp/3oOuGECjhx+MR7nnYSzHGx8fHpmn6y7nruu3m+nQ6WWt9irhiOM9pEvJYLSWW13kjFT9fjkIIQgkXtKqqx8dnQohSYhy9c261WiXvx3E8Ho9ayq7rnA19P2qt26vFY3wkhCDiuRh8mR7GcQN5sOs6pdTc59CavH37dhgGIcSPf3zXdd3j42POkYgEdX2z2SSWB6lTSs/Pz5zzm5ub2Q+cMXa+HLXGSGIm3jLGdrvd9fU1mlsocLTW2HIxxhAdoVGJtq7r1Wq1PzwTGq2b6kbrSrrJoHuKquF8PlPOOefo/YAeh2k/IFZCiLu7OwQlzqQxBunH6XSSNzdV0/gY9/s9YywMQ+YEpCCl1EJ476fJsjTBcm2/36O1gE8XnAW0jZCYUlqv16tVst4dDgfO5d3d3dPT0zRNl8sFt4YoPvPkBc5lhrFWOvkgpeSCAh7BB+Scu+DP5/PxcAYL4erq6nDchRDev3//6dMnbE7kw0iTQogpkbm6jzGmBEB2hC4EQlbbtNM0QdZZCHajlFKqWTTn8xnhBSmNGcdxMLhHIDLeNM1333132O1W281ut5umSQk2H2eEGkRL49yirtE/AEBpixsekk9ZJlSQ8apKe2N9sJx3y+VyxqxlEcJGlcHKGCWFeUwBK2ZogpDUtG1VVZsYE90hDTPGoEFSKNV57lkW/2deKIPxhds2QhN+AOsG4eN5vrxUkQmXKVop+FtK6fl8nkfWIGmitUaFAig5iwsHEmKY+R/GGAy+IB/mjDvnoFOMReaF/kizi9hUVep8PofAnTOEVIyRqlKExONxH2OUknMOlqrAroCVpTHj6XJerVZ5jBh62ZQsl8v7+3tjTKMr772niSbSVDVjDAdWCOGcGQaMdNNpmqqmBluLc65lHnxnjBGSGesYDkOCAY5j27bTNE2TrSp1Op03m7VWYpoG3PVzyKWUgic39BNOdNN02O25wJEMIdcUcRIptHEWm825oIvDGWPs7ds36F9++93XNI+SGyUz1ofjiXQReRS8cBCQWeHlABeey3MhWUw+RYpPN2tGoa6nRUMVTRcA+tbaGCEEn6VcHx4e8EnxW2CTQykFwjObLc/jp6h/ofmOMyWKwVXdtk3XEUKAjCM6wSeAEFDmffKhktUXb1475/bT8/FwappGKKbreqlXbrJDNFLK8+6cnV4zGhsDSbkowmIBCZr/gEyIUgqwlnPOCXUxy4UopaLzXHAQapbLZfSJaopbFred994Zq9oWzxjfDzY456bReu/XNytaiHgZy2MJv72qKl1JoCqTMdjQldLzmRnHcewHUkj1bdsywUksXmQkMc4Y+WxbzMsY+1wG4K9QqtHC/aEMFliY2nAAjISQMcauW97cYFyLzU05vPI8BjJjeawMZWdggtIQAlSBpFQhxKG4wAGjwQrgnWipcBQJY7QMM1JKffAYFMI/scWUz8fPQ/qkeM0vt2vwRHADzQLqIYSqqrighBDMOCAJy2qSlPZ9D7ro3GCHsQAAiDnJm6faEb4LypwlfuDuxovkLvLXubKdG6TeexpzVxO/EY9mxnbntJIXdxFCCKWf+ekkUeM8y4CliCR9BnkopaU/DJfkGe3Fr0bkndFnnyIrshUzcw0vhc4BXpAxFmIU2TCTxZiMye1cXm7EGCM6mVIqOBHNnz0VhdyUwqz6jdeHSRGZwfcSufBAnXNd1xCe97MQwltnrQHjpqCFmVolOddaGRcDSYyiZZLmrgPmr1ExtlXNBZOjCCGQolLNGAPhyntvjRNCBOtSSrXSLoZ+GrmzPsVFs6CEpphIiMkHNxk8a59ijCRSQhnzKROIcEBwcyDdv1wut7e3qijzssI3n4ml9MUFmUojl1KKhipmvoQQhGZhE1ooM4yxJLL/9Xa7RdC31lJoRRSfQMl5JATE6xA8iNq++JnMv9cWDZ9pGrE/GWMpkc+JHfDumGNRBqkpFULAmChbZ+hKCMkwNf+XWAVaa0PIOgZYCq11KFWceeG6GUJYrza5WZW8oIwKmopzHSnT8aFMSznnlMLQX5q3UG4JhETLz6eiEhNCoFzQmKRUkUbjLONSKhk5ZzGGlFwMnFAWA4ucRRKjT5TQRGKMwbkYo2cuhOCCx2Nyzo9jXxokgRE6N6JDCITkLvF8PFmZfsJliaVONGt64jQhBrIyQYnN75yLnFeFSkYIwcXpvcX+n0OBEpIR6p2nSiqlll0bQkiUhfKyrFhVzFF6JsdZa2mkc5BHp+T7v1LW68DtgH+CHQWmFepPKeXlcgFCQYzhnFORTVyVUsY7ybjKDkiM0iQlt3ZCKu/Lu8XexgbOAVzmqUAuNfaPLj7p2Gbz2UHVwRhDlkbKFOf5fIYlVG6VWQvwaLksqjUxAg5gjCktkBjFGOu6wt0hBASC4/OzscZVWo/jqLVeLJaEJO+IEDp4Ui+uRkeHU//F2x8Pg/f+cX11HWMMLk4EtqK0jKwm50zTdEhPsaSMMXxkaFBA4lMXXxS4CaEoChh94Hw0pkwAZE49Y4wqZb7vMSopoxCADEC6x+NIKa1WK/pC0gqPLBQbzDn+hxCct8FHrbVkPEQvufDB/fzf/OnT01PTNKqqttvt9fV1LDM9KOz/xt/4G0jZYwpTP0IDBL0ZAEZIxHE9gVLRdZ23Fi1DQnLOE53Dxo4xMsrgX5sDvpTYD5IzwM2MUcUzejVN0/55570/HY5t217dXCdjv3jz5nd/93f/2T/7Z9ZaqcQ0jSDZ8cLvQHGolAokMSHeP+yMcZPxhCsh2kTF8enQVpu//Td/96/86Mc//OpHtdK3t682q/U4mq+//vqP//m/eP/dd9vrq8vpDIdMVelIKOUiJ3CUCioopTQRSqmNczsZXivEWme9CySM0/R83Om68tEvt5u6bRgjd3d3r1+9evfu3cePH5ngjLH9fg8628PDQ4xxptQBIhlkH4t/XQgBpm0wuQIb6/l533XNXPthW9IyNYWVDCHoSjHGgEHnNkOMnPPVehFCGKbpefd4G6/fv39/6U9ds+CUo94jJHIpYsidA+8dISQWpQJnrFNOCCGlDiEYO1pnvLfWm/3+2Th7K6/ruobvE1AebOyqqoDzvnr1imeSIFgI6nw+o0GIGw1ou1Lqw4cPCLZQUVgulzc3N2hZgX6IggcbADANrjOE0xkVRTBRSqGeefXqFZK6rl3gFT5+/IhDrbU+T8NqsazrmiUy9Get9XK5PBwO1jk8LNpfhmG6u75p2/bf/tt/C6QbR1IIAcARkRYQ+e3t7RdffPH4+Ljb7X76058KIby3iny/JtIwXI787JypKsUYidG/evVFXev9fn887utav3nzpu97TMng8rpcLudzf3d3M9+qSqnT6fzwbDYb8erVKyC2nFCg6rjZE8seesg9mqZTfIoxjkNW7gKaDxYkQHNMuhz3nwghd3d3VVP7nd/tdsvlUimVHecXC+zJlBIyMgTGpmmWy+WHDx/QdUDMPB6PiGac5ISQEILrRmsJPQoUyeDn+uIqj7hX19p7f3Nz5b2HiAHmuC+X0+PjRQgOOPv29jaEgMme0+l0HnrsGUTL1WoFOayZBkESmUFwQkjTNFVVrbYbKeXd3R2uvGmalFZVrS7nC5YU2BCiMczfFovFNNm+7x8fH8fBtE1ljEkkJCJ+//d+h3P+h3/4h9M0aLVIzrd1PZ5PtRTRGtNf+v1zXbdXN5vhfBgNhspCt1zd3t5+efclhvFTZvMhmYlKqdPpYl+Id53OBy7Yzc3N+Xze709NUxNCFovFfr8/nU4hpBDy5WuMwUPEVhmGScgR0UNoRQjp+x5NaMjoexevt9vD4WCtTyTOD90X5or3vu/97e365kZa4ynhfX9mjK3X2+F86S8jISMvrj9YQJBtA0kY6nXOYcqBEz5TOpD/4EgCn7q+vlZSo85NKc1WT5j0PV56Y7JGShlbpCnxGCKlVFfSB2WMvb6+3m45JieAZoIgD3Xs3W632Wyurq689zDkrCq1Xi12x8P7D8fVajlDe0DuYoyg2AP4ozT3nyilJPdls0myUmqxWAgQbqhAUY9UH9eEUgqXHTzl8JoxxsWSzUW3tRZZB7Ks0rMnnJK+79EGS2UUDDF8mibG7Ndfn3/0ox/96le/Op3GtlXWWvi2ofbBOkyT8ZYE75fLJaPUWi+5OJ/Pp8sZOSfy/Gm0MaZxmCqtsYsI+UxEOx6PRe2ELBYdTnqaPe25nFPKFAIivxBisViMY27sIem6nE6n4xH1I/DjaXIz8jC3MFEQzdo4vNa6mDnNCTbnnDi32+3A6sAkDa4AoAPAWyilWteg5dZ17bgwdpx5EpQmyYUv8ncpD5tmQACEPCEEzAallITEy+WE2gSlBHIqJMMA5XGFCSGUirTwfmb6vClKqqFwjXEJ4ncppQAIzsDajEEdj8f1eo0tCvWDtm1x7eImRcTjnE9xwpEkhMSA3msSDGb1k7W2qz6TkCily1VHmECn6nA4IMcDkptSICQPfWK+ihE6VyK4GvA+u67Fp8DZCSF0XeN97LoOClQIrVJKbx3nHHpKQBgu48UYE6OXUi+X3Xq9pJQeDgeM7OPRYKos841UjaJDawiQyBgjLi8kz1lpyrnN5soY4729vb3JNxHPVFz60qs8RgQc5FcoOq6vrzGAFQPDoUalUOnGWjuZSSmFIc6hH3a743LZtm37zTff3N/f397epiK/SQuDMxURVFyg2IQ4R3MZ7stcJgIIVgn9ISEZY2yGbrRUXdPCSDkqjchZpITSrNgTyyDd5XKZnyMrgCGgxfV6GyPxPlSV4Dx6HzBBorVcLLJ5rPcWL6uUmKZch1LKvY/OQS2QtO0CeIhSisaE/cYY07pKNW3bllbp0l+8CY2ujTFcCa21oIIziWo/cUJBN0b5QSGK6jzDWybUhUgoIYRIKaWUAOwQGhBBGGMiMqXUarVqmwV61EhMgf3N9BmM2aZEOaEQ/Snpi32J7tE8MG4ppVWtRLbOYMiBWFHRVkVywVorpeyWC6CfvnByC/jIo88nfwY95+hJCEHWgvPMi1oCWrXGjPPMAnSQm6ZxLqBXOQyXkk84bBT6QnTfWns6nXBo+74PRWEjFbbsNBkfwyyYEguHDuHJWgszohACfE4BFlRVFX0AE2TGtfFZgLtRSgnL0jDL5XK92pKiHYmqxhQRgHHqseyyPKNY5E3xubRSqZCzUkpNU80fdsagY9FuTuWLvhjaTYlyLkGvo3nSUKbCdZ0RXkTcUDSVEEzndA0/icw7FPLmDJYRQpiQMcbofSqiPKQoQeOhzL+UFDO6mbVdQMMMYpZNy5MPM2CHD4tP5FMsHeaMaOOvZmJRCMGZqWkamBCWZHFC4o57CLBv3/ecUCA180U4jiNlmcqBRyyK9vf8IHAKsFdTSpSS6ANCJ6dsJlURQmhKzjnvUyn+c8k0N5NzYGK5MYtCyOWXzZAcPqMPLpFIGcy+PKWUMRpjGIY+2KCUIiRSmmZsRSnF0uceD8ppPGKMtIBGt1wuYR3ri/Lg3FpgL4ii6FXipsF/miL+8/kBsc+a3XMs5pwzTolPEkYGktOBDKUXjS60lpIRkmJMnxsPMQQfYxCCh0DNCyN1PL6y+HlgEJtnipGUSDX3RVCZhxDgKK21Dj5SlgWXSREh+Xe+tNZOZOhwfvSEUiaE9V4oxYuqBkBP/0J+miViQ0CmSAoeEYqyPGOMFALyfAbzp45wP+OwWp3PhfUh+RBCLST3IbIUBRWMS8i1MM5DojESRQiFtRNJTHBjDJ6f9Q6XBeJGSgmY0Yzk0gJyOecwcYJ3jnVjRRYJp4lzbr2z3mFLzBH7JRw8Q6hSypCi4jIVW0VkqELQGdu11iP/qOuaCZAyKOUY+k6LRSdErvHmCPnvQLo+Zfpwjh70+3GK8/mkLhx7GNqmfd/bIvyCInDOe5A3+JRcCM4YlElwocQ/meMGZtCWy+58Pk/DZbFevUx9YoyMAWgGa1tHiISUNiGwhrkQ5ZxDQm61Wk3TgMwppYSJMywvstW2bReLxTRh10chBPGeMzYNQ4yRKz5zPPHQEUw4J5RyGIOgXoqBaK11JUMInGlrbfDs+vrNeu2Px/M4joSpFKlQommElDxR4lx2bUYOMOdzvoxXI+yjOEThMVmLzGQYhuvtGltlvd4650KMYOIDokX5J4RgWp2/7zn6EGqtOedSSk7zyNFcG8w3KRb2crl4bxHPVREIBsgyjvnlJzPi6UMObzRFuUKTAAEAAElEQVTG9b2U8tWrV+UJMqjBABNfLBZ49ADpIPznigEpqnqcHZQ3pq5x6ccYYySJUhpIAmmFQDM2h1yE0/VydTrsQwg8y6oOvGkppcFNnKbg7HS5PAT/xRdf7B4CZ+z54X7VLYRgp/OxbhSlidLUNA1h1FobkmeUOmfgVUspJbSq2vbU73TVSNEsl+u/+df/zn/0e7+/WW6utlstFSeUsmT7y3i5/PnP/vX+8Wm9WNJEaKRKyEQJo5zSbIfg4e9KaIwxBR9CEGUuWDAqpfTRuWBP/fF5v7uMw2Xst3c3TArvzPtPH9u2XTX1OI7Ai7fbrZTycDh8/HivpUBKifudyxxhxnFs25YwmigBOxKV0twXxNQRar+5WYVsDYIbwzA0TaOE/PTpk1JquVzOtJ3dbr9aLIRSraCTafu+Xyzby+kUYhwuw91NGIbL+XzuuiVYF845JjjSD5rJzj4lEkJyLhASI6POeyZFIqHpmpVcvX//3VdffXVzcxNCGKZx0XSMsefn59vbWyHE4+Pj4XDAbdv3vVIihKyOhWsXAQeID0IBKhwEk+PxiBg7V4ld17GiQ4VMjJVBvVhUwrXWITiU0ACM5u+fTqeHhweQvFChdZsVp+zq6urbX3/9+PQESiwaYODBLRYLltjxeEwp3dzc7Pd7FOp480irQgj45ul0QkKIM/Xtt9/ma6WwCP+dL1wu2+0WV88wDEDBUAriVO52O+BioQw7Nk3VNA0wLMbYer2+eXU3x/ksSRRiCOHp6en6+lprbYNHsgQFHs55u1qRQq9GLeB9HMfDMGR+KOP0fD4j5dhut9ZazmjT1ihDrq+vgfucTqfz+SylxpooVTHGUqIztoiHNdMsUkq0VGp93zethoizMeMcVbyPTaM5jzF6Y4xzznsLFKl3JkR3Pg+MMWg4cE7b1oPvDyQO0AMe2Wq7gZgmSjCt85+RQK66hS2ECUAwLoaqbUgZW8RiZg6HsTH6lDJGNndVAw0kfR7YJ4Sslkukr4yT0+H41Vdfeu9vb29qrR8+Hbmg59Ohq/Rf+/3fc9ZM/eX3f+OHv/nbv313d3fs+z/8oz/67uMn4/3+dPz23Z8P/ZZSyjmVUkHQD5AoMpaqqkCknQEOreWrV69Wq5FzCVugzWZzOl5ubm6klPv9Hq0L7/3V1ZVzzhrjnHPOSamPxyPhrK61McZ7p7VWSgohVrcbZ4z3/nK5tF2NdvVcbSHWSUmCTxoua+hUFUAQRzildDz2IRApSdvWhBDjHSHx9vb21atXz8/PzhlCiLWeeBZjlOzzvBo2KjQ3hmF4fHxknABNc/aMJsrpdBr6MdJcLRJCgIR2dYOM2vs8d08p3W63x+MRCQnCDmgEmP3/7rvvLpcLeoRaS8BkbVWb2qAZY+00TYNkPIQE0mhVVYfDiRCyqBp8aufc5XKRUirB8HuhcX84HAjJWSg8PCilVdV4741xlJq6rq+urpAjjePEGG2axjOff97mWhKRZyrKszev7y6nsyhm9bHoWiBucM4p5efzGb7opNga4eeR+RyP57atb9/e7na7aehF16HGNMa4EJSSedv7xHlgNAaoG1MRnGeEciGQoc3USzR1ENYQc2gWAOGgnLuinClF1plFtoObbpz6WcQjhEBS5hF770+nk3MJHvJQCbCDHUfDFWNUCK4mN2FlGOPnU38epq6r0WpSSnXdEpJ3VVVxmoZhoCmBOhpjlFLnaRIpKla9DFzWO0r5ZwSgkNWQTj8/H5QKr6+v5w6EUmo2x56rYDw4KA/gpODKwE1RaLBu7uXMOOD8Ha01aOzb7Rb9yJfN17mIQ58MXBMUOzjpGJnC7UYIWa1WKSUpVSyzklIrUqbTkK7gQXz8+HF3ONzd3eFkaS1xmxhnq6oKKQZrGKEoSbzzlLP7hyex393d3VFCIBYnpXz//j0hrG1bSqkQzNrpeHScc1VpzGh2XYeFTZSMY495rwvjjDEfM+SC1BSl1mq1wr7Crr5cLoyxZbd4fn4uGy+F4KzNnEJXGBKUUuyfT58+bTZXy+Xy6ekBNTgeHKXUGo/4j6PKi/RlSmnZdY8P+/fv369Wi1R0nMwUQgiUcM7oOI6UM8kFIzQmAo2BptFKKawS5/zjx4+4ZUKeJsyilNgJobCdkJnPuRCeDtAP5IdXV1eEkLarU0rjODpnWcyk3tzpoRwmyYDOMv/Mua5tTRE+dSkxQrbbbdu2APHruo0xA2XDMLx584YQAjF6IRiiKObJsFfxXGixhtK6xm8XL2YpkORAAqFWmhWietd1WqhTf2FMhGjGcSSWsUQHOoWJXOvXAlg4gaMOodM0hJDmKtp7j0QB78Nai/sAId5NOdckpUkIhTsENeRPiD64UWJWEeXeQwCXc85SpAlMKC2EEM5PCExCiFQY6XODaG62CM4ThiBIlFIix5038byrZlxVCIHHg6oJ9Tk2BHanLRLG+ESymFrABGO/3xszUkqrSnPOn56eUOZRypFSE0JAlPNlgALnBwxi8YK6O8+AkGJphTCRaE5z55EK7Cp8FrhsMcY4z6IZ0zTRlFWbMWM7d+pwgWXolmYzgaenp08fH0IxlRLF8g5dFx8sdiQrOgmUUkIipOtmYHduE6UimjEvLyuGaaSQx2kZMCFFxp6WL1Lw/TnpIQWr5ZxDrh7fDC/kuecFIWV0a34PMzxNXhCW8Q854/P3xSwLnhKlnFL4UAYEBSY4E9x7b5ytdTXjzrm9EZz3fsz1lZizKKTj2FGsTPqjBxBjNOOABgYpDYZQ3MBCUbv33rvJAGKYNYgzAl4aVrK4r6pitJhXMsVEMugTCnl8vPRo7syk4Lz4hAiuCI2suFiwYmKQmweJIBEPEQVGxI2L39v3/TQM842L3t3D05NSCtVLCAGaRSSL1YiZyYV5zLmpMD9uVvpAqCe7rkOxPWNbeHZzDwOdNF5029GlZJ+btMVBMaZ5P+ALP4+HYt3nPjwrzzEntWV/EkIk576IjyNQMEZTAsE5rypIKCH8hZZDLLoHjDHOeCLogHiAROjkK6WU1I66GRMXf4mtXNPzdtH54L0P1hiWCGWQd+TUUqVVCH7ojVSSUWZGJwilhMdEY6ApJR+oC54Q5X0gJMXIUswfkHKWIoGUB6OUkBRT5IxRSmgSjFHKOGOMUc4YiSFFElNK3kaurVRKMsYow+uQlLjgKRJCHCGEsOCZSylJLTgXwTtGGWc8pcQYjTHGXR9jEoJVjBNiBSNSMsZiCBOhlEhJg2MhMiESSYHQQAglhIoQCQkpEUIqSqXyhHgmOGPRBEMIIZSkmBwhWimwGX0MkVKWEmUhpuiIoZTBGVISTEvEqPwkfQjJeSeFUJV2zscQGOchWM4F4yxMk6lD4HIaDUH/hqE5Jwizkws+uCERIVgI0QXvGRsJc+++F6UkXGRznrkDMYdNQimiNApgJDEg5DrnhikRSuuqgjo8pVRoJRlHuYVbA8MBuBQW3YoxRuByRr23bpqmiiQKiA7bNSXywrczFoUQUaxpcKLhpweAGxc6rg/cs8DR5r4FKBuIMMP5whLB/0JMuMnn4w8HWi2VMda7eLlc9nu3vVpLWXk/Gp9EJROl7WK12lyl0jrC9TrXWsaM/TTWdc2RVTDmnCMkj2TyQt8mkE4jRAhR13VVK84ywcF7P0wTcglVFDCRswolg5Df+xyhKlb4KUEIsdvtrLVcQN4qEEJRhADwVSrnMzH6um548YcBuJxSSmmJFV4ul2/fvvUvyNFIyQBTYtmVUrXWmLtEZTizYodhAEUlg9SExBhvb285pR/v7900oZk2x0egSPN1wAqitFi0dV1P40hLW3dut4zjyCmF2JwzlhFaVdXN9fZ0Of/oB199+PBuGi6b6w0q2HEabdGnY5wkEhAMJVHDMHCmJNe313dvv/jB9eb6V3/2S3MZbm+ufvunv/nl2y8kl5fT+Zs//7PvfvkLXH9SVjGEvh/arnPO2RB1MRigMUUSkXCwQh9jjDAhJjs+7XeH077v+6/ff9stFrLSx+PRoSEdorX2/v4em3m5XHrrQgjX19e31zePj4++jG1prdGLmqaJCT6aiRhSFU8erfVud5gmK8TAucSNjKwYZ3NOULElnHOwkhsuPWBcSulyuazrer8/3j8+vn5zlwhbr9eJkBTpVz/84eOnR+PdOBrBdCxuEzTLfFvOKSTzYvkihDBGEmUpBSYoYYlL+erVq6ar2bt4Op2Ox2MkCdxzXMfTNK1WK0LI4+PjXFkhAyelqUMIGcfp6ekJ5SK8E+eia+6LoL4CwAoK4ZwpYdFSScJijMCj3737NqU0O3YC/QH7jHMOUuRyuWaM2RT2+/1qtdpsNt999w3OCJJG2GOidCDFEhB0UbwrFNtI1UixJkapD2ld6PwKIWJK5Pu+tNZ3dy14WMARcIIShhs4e3h4uFwu0I5PKSFq4eM8PT1VVYUuXbda3tzcPD09gQotpRSUcc77vgeN116y2vKnjw8xRWutHQcUMsUhjaZk4ODX9+f9fi+ZcM5xylB5IgSlEJ+eH5XU19fXIYSPHz9aa9frNWMCfD0UnzFGlFScc8KZLF9okFDBU8zVE6RCjocTirtZ1hPZFBhbl8tFqWzfBC3d6+sN6i+cC/fCmOTTp0+bzWa5XH733UPXyZykZYts9vj4eLn4q6t2s9lgrRCmkGO3batqBVYH3urz8/HqajUMw3qxxF2ABglqHK11SpEVQU9ASFebbbdohuFijDnsdm1ba63Hvl8tFoQQWcn3373XnPwf/vf/u9c31//3//K/6JT4B3//79Vd/S//+F9169X/+n/1DwKnntB+Gv/pP//Dn//rX/3yF782xk6WaE1xubTNoqoqSGpyztfrNapIkN0w5Af05HA4LJfLzXYFVBoxBHn1/vCMlnPXdSHG0+ny9HSkglxfrxljt7e3hJDn3eM4jk3dYalPJ+O8AQ4ri5sOrvKUEtj0yITRcrDWrbYbVCjn87mqxHa79UWjdn/ax0LbIoTAlqrrmhij95GyhHRiGAY0jRAWUCwrWTnnhv6Cc6e1FkJxzq+utnALXC6XKYVhMNF5zrnSQkiNKEQI2e12uPexnkAYcAa32+0vfvHNMEzYUVpLUhpIXd1MdArWnYeprmXk/ObmhhCy2Wyur6+HYXh8vCR6eumS6oOliWOVAD7k8pmxWmvvvRCKc8lYwszibreLMR6PR5wLLLIQAoZDlNJGIfrxq822amqIikgpL5dhvd1goAQAAiFk022EkofDoWkarXMXGUOooG/jEGHbeO9Xq9Xv/NZvX/rTz3/+8xBCcP58HqRklJLVasU5T5GOcZQFH/DewyOg73vu+GK1nCkU0H6BUcdUzKJw/YG3u1wupZRmHPFWsSvQKZyRBMB2z8d9CAFmuSlT3NJiUeOb+Ldaa2u9tzHILKNnrdNahRAGExgjq9Xq7u7u4eEBDQNcSZvNpj8fZzgFEWwq3oZCsOgpAm8IISVKSIRDaSwC/bjssLCbzXIcx/1+DzM97Bno6s6w70y6ikUQ8ng8IsGbiQWxiKenotfMij6tMQaCTuA04NRj+gdmM1heBOE5bcgcyq6bhyFIAYjQAgGFEWHBe++Cxy0jhEgxm6NcLpemaYRSMUZCUl3rxaKllG6utsMw7HY7pYWUcrxMfd+jPfnw9DgcSLWMMUYYA6AVgSfunJg5QIi3ayEAgxhjcLcCVRAiCSGMd957qaXPyhiZ+AgmStM0L1vOeASbzWYcDWOEc4X+HKL0ZehJTEIIZAsxRufSr3/9ayll01SHw0EoCSqFVJIwar1jVAieQE41RQ8K+cZut3t62hGS2rbBdILWOpLMSVJKBeet9fONr7U22RAly0Yn8lmKYG7MsOINCCYNcipQXmC4ipwtFqcWOBiNUz8bbJrJheIS6b2H+HKMcZpmZ1oTvUdHYUbhEGO/++47xMYZ3UYq9f79e6SgxpiUwoyxAG5GdPXFFhulGXKznK5LieCAH3OTYcsl48S6ablc+mBNyARWzvlisdBT7Y3XrfQ0DKdBOGe8z57yLOVTNPsngMGOdcETSuWweWNx5lnhWAG4dM6ZafIpviQEvJiPIylSRgnnLAaSYmKMEsY4FNZZkBSe1/m4Ms5J4aVi1TDJ2HUd59wX0VgcZgTESBIGe3FJYKSxIN0UfuWy6N7GwiYmRcFgTqaL2Hb+dN7bcRwZo5vNBgevqpr3798zxrbbrRCCkHme0ecuUxnY+bx6Kc3ppi8zDvkBk5zKo2uER365XFCNLNoO7CQfw1z2SC5o0cDNI3gFOgxFeEEoCZ5CjNFMWScXGT8pXlUzuOCKIxktsj54drwYSMYYU1FfwceZgWYs3Qx5Yx1mmhUtLesZanwJO8bCQ8yFLqPzjcVIPrdgsOLpQNadF2cYRHNR5GZskSvJeHH6TFsmiaDWm2v4lCLnnIkcIPCCIEJCdyWEkFKk2cyKlEXOBRIvsgmICLnQSkRxIYXknHdNjQrZFG41nmwqBDf0nxE1drsdK8KaOHSM5TcWCkNKFMJybsP4CJI1rli8Mrp5+Cb6E8gvlVLj4IwdY4xA3EIRgPfeB5vtsyaDH0jDMETC8D6fn5+HYZCcz60jWNkgIqfCv8ZtAfALmub4K0Lztpmveazt3I0ANICVPJ1OuLnnAYU5ms/NSWQVYIbi/z+3KELwIcMusYhwYQ1nYuDLaicUDiwtFp2x2I+8FN+dnU7RuDJmYowNQ/7bGaqbNwlidChzzdb76L0xJvioVdX3/ThMc9chpcQ5+16BWPlf3hNCvlfWmRBCSF/+4F98E68E/FoQov/Sf/3/7ddL2pf/i3/+XvmB/w9f+JiJfJ5efkn59n/xh/+d/3z51f/lf/X/C1/BOzvmuRmcWZixWGubRYM/GOOAfvLsYUDmgocyhniY4wmLCOnonzPG7u7u9qejMQbVCCuvIIRwwSMLjM6BBjJNk3zxA6IMSmMCCcp31lokCS/bV4SQQBKTcAw7txUmvMgM3xBCKM3AxDRNi8XCGTv2Q13XjCdX/CGCD1FKqaVUdJj6YeqXYXH/8OC9p4JdhkkwJoRMicCbKBUw0TnnBhcJxkF4CEmLPBODyxTxHMk9SoLHx8d2sZBSTmZAi10IUVUV5xSlBYoWSikUeAnDVNH37zUfPMQW9vv9slsQQmLyjBNCiKDMGKOEjj4gJLZtrWuQB6GMNCHRQno6TZOUMo9Adh0IGrF0ajH5iLiEYXAwDjDyBshmvsJQlmCqFFkZIZFTxjnfXl/vj0fIt6UXvV5WfhEpfwD0tmwXq+XSF4UHzrmLwfQmhEAowW6003Q8Hl+9vg3RbZZLltIPvnp7tV3+yz/+bw/PO1VnCRHsZ84YKDAIsyF4Tvjd9c002eHY//zwsz869aYfbrZXN3/371RS2X68373/sz/7s1/84s8uhz2NtK6ZJ4YLKVPq+1FqpYq4PCEhxui8DSHQMtXEOfUp9ufDuw/v3318xyWvm+bmze3lcqHRhZjyoUikVZVgtDc9IWS5XqPqSyHe3t6ijhqG4eFh/8MffjFMY4wRNUlelsK4mSZ7fX2NZOlyuUBPEE8cpwNrPI4jpdw5iO+PjLGqasDD4Fzsdof1ev1bv/Vbj4/351PfLZqYFTaI99EYV9cNqNBQj6Hqs6FCSimmEH1ijAuRFQ985ImR4/kw+un+4aONfjSDT4Zy9vT03DQV0j8puXNOSnk6nUA9u7q6enh4QGnX932xUWUgqVSVxmUXY5xlKG1RxgQEAxrK8XjEVkSOhNmCm5ubedJlHMfdznz5Jbu62mD7FUYPR7k7A0zY3ufz0Rgzeh99+JM/+RMtOJg7rqR/McbD4bBer0MImLp48+r1PM5cKq40N+8ZY23bzsRtsD7nTOx7j/9+v2dXjZQSifpv/MZvdE0LvrD3Xok89wCsB0gEK8Zrt7e3cEUzxuz+7M8gj0BK9TGnu1AeAF6Af+i8oTHpqlFKgDfd933fj2/fvt1utw8PD0Lk0Ye6FiRmjBWVsPWuruvg44cPH5AoYiTfuQDGnPfRGONc6Dq/Wi0YY0pwxFJSBMdIkZID9RUZGqpI0Dy1qj99fJim6c0XrzabKxwN7ISmaTnnr1+//vTpE+fc2mlOyVDTIWTtdrvr6zw4XxXnzOVyeTweFwt5c3ODsu7wvGOFDVNVjdb1ZIYZtmCMvX37ylpLYyaO3N7eIsfDFjoej3Ciu1xOVeXrWn/z9a4/D1/94A2ia13XwzD8V//V/0MJ7r3//d///d/6nd+///QhWvu3/tZ//LN/+Ud/9ac/rSX7v/7n/+emqSInX/7oh4entneWVSpK9jf/1n/09/+T//Ef/MEf/NP/1x+GEIRQzrnTuV+v1+jNxEgeH4/FJTIaM57PmbXjnINjGBLdX/36FynS1WpV1SpERwg5nU7OuUW7NMZQhq4MGQwhhLx9+9Y5g5FqTM3TlMZxFILAcwhXPGNZ+Qr7fBzGuVijXIRgZvKWcw5QL+pHKaWLYeZ4IVagOwtiI6XUei+DZZxxQQUXuIJB695sNnPEQAITQkK9cHV784tf/KJtW0oTQCjI8Y1THhtCVQuABtsSAyK0qP2eTqc3b27Qx4oxxugBCUFqY7PZoMNEKb++viWEog0G3p8xvwa2uF6vvfe73a6qFeiTfd+/e/dU1/Tt269mhJ0UZaS5gTFN0zSFxaIFdR33AvI3ZFbOOlmMqV7d3m3Xm3cf3mOdh+GCXh2SFu89gMh5/OJlWSGyGPQ0c3URY//tv/njH/+Vn/zkJz/51ddfCyGurzcYT0H7GWYzKKwQiELIvi8pJU5ZSAExGTEQ0wZACaz3k7X9iOIuc4QXiwUtU84A0Tin6FplaCJmzhkWR2uNbQPQ5urq6unpiRCyXq9Xq9XxtPcu47MpEWOsT2S1an7wgx+EED59+oSGJYJqjPH+/r5S2dddKGWMubt7jRd0ztW1Tin5UjIjZ5xjEdAkhFwwM2bMtx9HuN1+88036KQiwpMywggWAt7nMAy62EVSSkNIlDIhWAgBJrTY7aa4diN4olKemey4/maYcrFY/OQnP7m/v//w4cPbt29xuF69enW5XE6nE8IXZFHx4LDaoCxwzkcz4UQ456J16EMghyeMITlHK/cy9MMwEBrbrmaFiKmKVqdSql75GDMUNueW4IShHl8sFqoYgw/DcO4v+DFRBkCRCWgth2EgPBMcU7HG6fv+06d7Y8hPftIUrVEJ3BO4PNJmXsYEtdZVUwsl0UnFu0opbbfLGKMQsu/Huq6VEkMa5xbI8/Pz5XLZrNZS1sN4jjEul0tcW5zLtm1TSpQmDIVLKaumZoGlFzOIUmqwRUmZaaaUgmEWQghxVkbOLEBTFNjnfIOXKfOZ0Y+eFj6XLMpO1hlrLZATwZVzDr0ra70QYFpIlIHGOGu9EkwUoTaEaLzg9XabKEVwxnfQkU1F1AVnHxEVbxXHE6gOyCvjOHIpuOQsANmIMXohlFIipXB7e30+Hk+nA0B/ALO0ok3TDcPAZNSVjkMkhFRVk0QUQ/aILLMzNk+oCcEIYRiERNRGeoElRtw0w/hyZXUxi8wkCxeAlFkzMkG1VilSmpiZnFKVMa6quBAqxpznJRJQqk1mmpO89WqL+ILggmIYQQEnE8GXFhl4AJE+5veA3YmfjGU2P7iI9eVZIZ6czz08mmYQFni399E5X0JSTAlnO05T1r2aJjtzpnDtof3lnMPwLBLuGSxD1Y2lds5hrA+1LmMs0c+IFZp+80SelBIaF5RSwT5TdOdexHzCWZG2QBLGGKOJSA4FEq4XFd4qJQSawt45DwkUyhilgnEUkDMritLAeV5n/FIhhMS2eeGV9+9kojMIPkNpqbCeAe/iALDi4Df/WzTiQsomRTFGLkRK6cOHD8g2Qoqc85AiYdQFzwnnUqhKe+9DMXudTzVuSuPsrJClhMZNTwrkTTkZzcR91rnGI+OFsM+LC1yMkQiSUmqLLPLlctFaLxYLVoThQbVgheWHx9G0WTh/hk15IdHP8A0t9gXztRSL+QYXeVkQLGZONyhjSikTffIG7xOpWF03yIdSSrDZnIVWUkrTZCnDnsldEF9mfBIL87ZJKSmlHx8fI8mkbCHEq1evCLwZGfPFqaBbLvUL42was6z2nGnlDxvzzON82aMAm/cJKYSLlBJagtbaL774Aqf1crm0bRtCoDTxwhcjhKC3jHQKi5aZhilr5pTjnKlbc6Izt0CEEDSEVEbOQ2njp5R2h4PW2hZRXWzOVPo0s5QVLt1yXigCFGMM9UDMXpEeGaqZbAhhzt1xQMDLgEvYf/j678OX876qFil9ZsQD3aAi63wRQpCp8GJ+gsCCgDOOY6U16H7zHVS6IFDXyqDkNE3GEhJyR2dOenSpM0MWWbPzwUeHJhWJKufMNGXDdKRZcxenqipVV6gbm6ZpqjqlhNEtn6HkRClbr9cQeqaUeh8ZE5TSGPKNIKUM0Vk7QU24aWupxDD2lBGpBGE8pRRzNM5dW0bicBl7RimlhKZxmKZpqrsWZJxZZ0lKkVJWKAKHseu6pmnatg3RyeJ/gIVt29annBzHom2iKu2LJ+r3fnHGCWPjONJEjB2l4qvVKoQwXnpWpG/AOsGaMGMRBwCsWGtDSBiL/vjxYwjBmHG9Xv/85z+PMf7kJz9JpX2LjtqcBeHpwG7Bh8AYAcmRFodGbACehYYCug7DNEouVquVMQb4Na5mBDFEzjl5wMbz3t/e3oIdOXdwYU4LzjsxpklpevgoJFsulzYmrVQtlJfqenvz8PBpvIyjNV3XbTcdSQy7pVZ1359pTH0/rddbJeQY7Pl0Cta3dSeq+ubqWjH5q5//OcCy8/lMKV+vt5MxkdBaV0wKKXQkSUvlY6CJpBSk5IGTmLj3XldaCGGDP18u+8Phcfd47k+6qYRWTLKaq8SZtZaVaZgU49Vqvd504kFCJBEkncPhMPeVnXNNI5fLJWEU1z2ub1LkR6TUyNpRfCIjXSzaz/kYpdClJYQopTDfhdePlCohOWcQmJ6mAdk/agldV8BegUBxyhNhq9XGey+EJIQaY7331k+EkBQ+z12hd84pvwxDP14eD0/n4cIl44JKKW9ubmbEXIhs5hwLyWi73S6Xy4eHB0LIer02xsCUAlc5L7K8MPvCN5fLJZzrwKiAyCCYxXPi6svUNu5lUVSb9/v7b755CsF99dVXp9MJeNk0WWhqAwIG+ALRgxDCsmlITHM9nFIy1q5Wq6urq+PxePfmNTor4Ig9Pj6qSiO4Aczq+z5SouqKUqqVPhwOP/rRj66vr//JP/knnz59opS+ffs2xqjM93d7tdaDc4AkkLd46w6HAyGEMQYiXtu2wzDBNHuegZPFjvjjx49CiC/ffDGYiTEGXEwpNfUDQHZQEBLLTDpGRVN3tQZdZsRGZUxsNhvwVO7v71NKbVsrpeq6G4feGIOBaxAv6rpmlOORoeo5n8/FmXA5DNNut9Na9/1wc3OFdFQUlfD1eum9P597G7La0jRNTd0KIayd6rrd7/dm8lJeQAf71S8//PZf1VJqY8am6WKMV1dXWuvD4YC0F/cIUJ5pmjBAs9vtVtvNer3WWn/33XdI8LAfrq6uwBuFh+1cfmtdo0VHCAshUZo9U87nM1QdrLVgjYGxDrmD5XK52S4vZ9QK/vburu/7p3sD1RdC6N/+23+77/s/+IN/xhL5/d//rXffvWfVc7Dmcjj8o3/0j1x/ur26Oj89XM7HH/7wq//pf/YPtq/vdseDH87785kpSRKL6fJ7v/O73obD8bjdXgsh/tk/++fH4xGd5jdv3phpcMZKLmTTIntcLpewBF8sFpCLfX5+PhxGzsl6swTYhDR1miYSadM0nDHgRGzooejivb30J8w7B5/689l733W1sSNWGzH/4eEBfY6maZSsAMELIaAemlIaRwPhRKTKhJDT6XQ+X5jkdZ0HSuYIiSkN3FalACEhhOWyqmv99PQ0N0oppYQzWWlOKOccsr+Xy4UKvlgsjsc9LOkQH6qqenp+mBm1obCjUDR5F50LhMbVavX27dunp6eZU+y9j5GNoxFCSakJIVAuwtbCcQOzHrHl5ubG+szrXy6XMOUDZU0pdT5fZHHVdkWRkqSJCg5+MWC1utZg5/yFsgj3OGOWEKAN3vuvv/4auBLLk9lmtVr4MluDlhXJU2UR/KqUEoSwMSIZy+wvNEtjjISw7777DtbTMUapFaUUQp3exa7r2rb1hVXGGKNUkALf13UdUp7C3Gw2ICucz2cEIptt7QWltK6zU98EOztVe+93u8tm0+KyY4xxwVNKuPFBigcyu1wud7sdPtrT0xMgV6BMSlaVZimlSMnteoXG/+vXr0GQx1WI5cLNOAwDTRqJStt1V1c3eJqlDRZjjJRzQghUXCABB/kykPBmpN4XtfGqqnRdA4AWf9GMESwuSD3EYtACtJcUCVOSBYVd3/dS6tVq4YrGCO5WMOeQpiIXytvYewzcgKjedR0GOCilXdft93uoZ8z9hhnfhKQkniYQW6Ekbkn8PHQP6ro2BXCoqmocR+iyVrXyPhljJBdSSp8iMh/n3Gq1ur6+Xq/X33777X6/32w2SP4557DkDWXqum1bYFkoivHpxnEchqGpasQNWQQD8N6AquNBbLcVL+bkuCUppbvdDt1f8MrRFKGceZOv0bquScz4JGMMPd1f/vJrxkjTbLRUqKzxkyEEF7ws6gK4gq21jGaFAO9zW6JpmtnTjxbfgqpq8E4gpZ2ybiFDaiFVjaSIMTZOvZLZ3B7yI7pofJMiEhsLvRV7b94etDA1DXwaCMFU6ziOELlCUjejxlprTvP45ksWM4CpbrkkhHz99bdo2aL7hZiMEgmjllgHWqiQCDgi+5Bl+zTnnGCZ4wh+AGNMZq8sSWmqa933fUpBCM0J11qb2BtjNKsTTTFGBsmBkCmBkXMqq0qWcT9CCCocUhQDcOpYUYGc97oq8jSksBSFECx4SgnnjDkaYwohSKGBzwLhAq5HKY8xcEGds1JKraWPn6s7Z7Py4AzSgWAPbzGttbOWs88anfm3s2zBhHVEWJnVM4LLLRc8VJggIwrgbGMToEGHH0AJjT1tjHXOU0qHYRiGiTGGkwZZxq7rkDOhvJRFdgD3E8gd2FgQu5xPL3LBeRnRT8OzyJhUyPThGQuolKaFw0WKef1c/LxEFuaxqeIRRGZ4gha7qhAI3t5MFZ8ZIpRStEChspqKvxwqf0oTY5wxktJnnQ3yQj0DWzMVIhXSETlrI0AqhFJaRLQJIdG7+a/QS0xl+nJ+nXlDhuJ7Nv8nKiWUGbpIwocQKOE2WvxzfD/GGGMojQc6t1VmfsT8lVKilHHO6jobj65WK0xexJjm8pJzLiijWqNBNxfzhBBdZEBwgnBzT5O5XC6cfP7+fM4B6RLKRRE/mV/NFpO0mHkQgVKHH/OFoc+LHg6gE+99ShQjZj7b631uUTDGOKG+jAghs4wxrtdryiWIWrhITHFJwqlUSsmStyFUJR/hagWwlRYPZcmoK7oryMPw/ilntND/cQwppSgGYja+J7Zo2jrnIvksMz2nKXP+VxVfU86yHg4CBSkTlwjH+OdoZc2LAIx+/k/sVVnUSOYxw1DErCEEIoszAC9DBqwMCqFdBMWDGCNMBTlhQgjobIQyEDAMg08xBP8f8Ob/nnxxxgkh4ziOMABE8Z0SZUSUMQVnwzw3QCkF0EMYma0mMfgCuU94hfEyD34ZB4T9PPEQA6XcFzlj7F1X3MadcwmGtNm/0eGb1lopeVWp+GJSZ97tMcbD4VC5vMlXq5VP0U2mBDeJscoZdMMpyBBPsX5aLpegZlCaLpczY6yqKqVQKEZKacJcjjGBESklTSSRwAkNIex2B6jrAquChV0IEVdYoZxMUuoYI+oNxtjr169tsN5T5MSKi2EYzuczV5JzzjhRqmaFgzkDVcF9P7uZMy6VllJWWiJRRvKHz+u9D8FqrWX2okwYVP/cBScpBLvb7WRRf6oqBYqQUlVd18M0YchsBvpnQDylJKTCw0qMkjLOjFA52/zOQ3OI2/jUedCyaFg55yTn+NQAwZGbUkrHcQTrEHPfSimUN0CBY4x1rWOMjDB8v950ITol9HSxIvFGN4+756Zp3OQa1VFKgw9ucs1yKZfq4eGBe5Y83T+fnAuSCSWr/jIKxmrdjIMxxnjrvPeUi/XmmlJ6Gs6YZ4wxKyyVjiaz3llrjbeU0tV2db5cdrujtfb9h+8+PTzcvb69vr05jRem+GCmy/6Ejkhbd8E6lsiq6XZPz5QFzvlms6F/sQ86Z1aoo9D8nqyhicyXwnK57PseNzgIULiywwt9Caw2JDjHcVytVjOIv9vteMs54ShBnXOXy2W3M11HL5fx1ZtbIYQQqveT1hWn4u3bt03TsES11nYyuW4PPqVEIt5t9u3gnPfTeBnO/dR/+PB+sV0aM2KfQLoUfSlr4b3J5wLp+fn5iy++ePPmzfPzM1g2nDsUw4xVKSW4UIzjCIlh5xwubl6mvqqq2m63wICen5+R+yG9ZIzt9/uvvvpq5uZjSnou+5E8U0qnyVwuA+ecMVHXLSE9UoW2bT2lp8OxaRoz9KHMn93f34/j2K2WeGpSCLCIjDHG5XnkxWKRZdOtcc6M4/Dll19ub66ttT/72c+w1aFvE2OU8vtNXzkXlDooMAJVN3SCY9IMoSLnCcFBURF85NPpdDzuEZdw1kAOgtbEj370I9DrYoxPT0+Xy4UriV/hbBjH0dtJCBFCBGhOKY/FvhXkRK1lSulyuRg7tW17upznWvpyuTCaq1MhBJDN5XLZdd3t7e23374Dge7Vqxv81eTs69evjRnP5wHl8WazsdYenndCiGGYmqtmmqzWabu9GoZhGv04eq1ZSmmxaEDKriolpey6JYRKcaZijDc3Nzc3N+/fvz8cDldXV0DqdVMjLj08PLBESIin0+nduyel8jxQ3/fn87mqKq6kFLJpurlgdiY3Sq+urt69ezecL816DfgJPQ9oo6OEXK/XKblxGgDyxugZJ6ombdsyRjjn+8NhtVz+3u/99sePH7/55jvG2BjcYT+5gSwbwgm56t4HH60hn57/5M2Pf/q7Vfdvfv6L0dmnw9F6t1iv7j8e/+2//ZPVavX+/Xvn42q18j5675+fnrq2XXQdSWEcx9vb6zwpz6hSCuKYz8/P6PgyxqqKglSIbT9N0243NE0eQgqRwGVB1erLL798enrY7/d1o1HTjXZELt21y7bLTei+7+/u7jAjj7pDSMaoQNtycvDYiGM14o5mxfN8sVjUHTzTcjVKXoyrzjc+55xTaq2FpV9VVf2Qy/kY4+54SCm1bauF5Jw3TfX4+EgpHYZLt1oCHuKcJx+QJskytg/xGYC56/V6vzt6b8E2e/bP8GDH3kAljnwGiBtj7HIZ+r6/vr4GSojSoO9HxphzwRhTt633/tOnT19++WVVq2Dd4+Mjov319dUwDA8PD8DdEN7NNC2XS8XFOI6MkRkiR2VxPB7BBkXdRJdL3FYAiwkhp8tZFiXxpmkIYSkBfx8BAcPXC/eILwbIwSeENWv6oZ8IjRiSa9s2ETIO5hd//nXVqi+//HKyRmu9XXTOuWm0sSgvQb97tVo5Z1NK0LufbE7egMWjxzNDPSmEFAKTomkazOuYQr3H/796tQVqD5ieC8o5r1TtOZ+5VgCdKeWE5Il50LcRMJumCSQh/ZgH9WapohgjoADgodZmNIkkFkIahmkYJoRlFPioeVOKlLHn52eMhmBeEJdLQTAoLc49+CYaKm3bjH22ECBlenUm2DHG0ML3RVgST9BaD6mBvjdtS5wLcKsiRVIVUVcUOxl8B1gt7kFkdH/8x3+MnCEV6sbj46MsWltIv0NIwzBA5bVpGohEhRAEyXo7Wmsa8uPrlkvCWPZcoYRxFky2GVNCTsNI63qe+gW8ILVyzvV9D/vWGZcEYgDEX5Q5yNPphCtPa933/adPnyAVZcbJF6WjEAJlaX+44Hp9eDCU0tVqhSGSUDTBtNazHAeAVyH4YrVESP/0ab/Z5IbBZrWOZT4PIiRtWzHG8liAVMZlHD/DvikXAiguHh4OXVW1y8UwZDdjxthyvXp6ekJ7khZTq6pSYFSCF8w5BxsaL37dbpHwoORHFxY/Bq4AGodAsb33MChGNKPFhQ7/H2IW3Y6BhBAk54KxZddRwqd+sNbCnRWvwxgz1syQGikQtjGmH8f6fEaqD/vc3B4jZBxHcCWBB/JCvsTBAZYN2CSWdkilZUphMjbPflkjpOj7M0ZSZosIYDJaMICB1tiKNm3bPttTimQRo5jBfiBlvIhXICFwRYgEQYdSOphcL+GcEEKmaWB5Rj7L5pIySGutBYExhOhdrCq17JbOOczOhOAYI1yIGH1VVZQSNK8yTheitRZDcKSotZoidkwp7fs+xKgkn6kiCEZC5d4mpXRuUkEgxhgjuUopHQ4HUVShcZ77vocgFH4dmEGMsd1u9/T0ZO202Wxubm4wzbZarVarzWIR5y5T27ZYiq7rcOVgm+KeBrVqHouOpZWB8o9nieGMgiG6oWKpSwggMWslpxDhdmhCBvh4oXgjKqF6eYmW0qKhHCOZIUhSyLxYOiAevgiSkEJCiaV9iuu/qnTBPFPIDNNZeTkRwl7+RlLgy/KVCKEp8Tk1IUUNav5DKkZVM1cU6/Pq1avSrM5Y8zx9MKPYWAQBTr21aIRgQXjhU5OYvdGBJzZNwyVzL0YFcfcjgDLGCM2Kw/SFxs0cyhljMWYt2lSIirgt5jY4KxYKtIiKzgebEOK9c86qup77oimSmQKMc4cQH0tPhRYUHvCoLwJASLlYEY8On+cMXAiZ2Dh3krTWSBYJSZQSTijybzw4IblSCkfGThbnHZgyrkBgH76MlgDJxTOONHfaZfEJQfBiMl+xyDLxubTW/Thgq8zZQAhBUHa92cYid57Rt5LXzuyGeQuJYh+HDyiljClTFPFW563OOTfOwfCUCaHr2hV3UDwyWlBsX6wjWZnWRMuBkJhSbibP138IoQytZxnomaNKC+COg2OMlYLjH3rvMaQPg4y0+v6a9j98/fv3JVc1lKDAMo6FvExoREbOEhF5yEAppWLMRKHT5UAJCUW3BxdcJVViDNqLUspA0jQMczSglEqlGMsmMPksF7nMfGy9J4QAMUlFEtRaO00DMCOkaHOCjjOSUur7HpSZxWIxp3HzHRTKCF4sVpDRpwKv9PgDfhgVmpQakSfkOQYREiUEJAZCKZWCUUJDSlVVrekaEm+E5mFVeLpiEoKUuZ/Foj2dLtM0vXr1yntvzGiLT0MIIRCKqA6FROccIaPgGe2axSjcX+IVFmPgLBk7ItICJhA0mwsZY7pmQfMQQ+A891lDke+nPCfrSiF/mKAu91f+yl/BfR2cQxqHOgSSAtZaTmn09nKcbPCA/0gZxyGl60+z6j2XspqhamwA9LPRCWOMVUrh39Iy74JWBOc8EUaZ0FXz3bsPm82ma1pjJ7TC4X4M4lXXdcfDOS5jYtw5wxJbdcvj8bgPx+E01bIVXJyPfd/3h8PlerNmnYzeVqKuqyWj8nK+eB9pNFJ6JeSPf/JXvvrhDxih49jHFANJSiqllI/hurvD1qLZlTs65/M1l3zdtpqo0/n89bvvvv32608P95yyxWopFD8OF2YHKrhW1fnp8f6x/8GX26urq/48MCm1UtF5khgqgc0VXM7zBDSm+AkhnPPD4dB1nY9hmiZV6VpXM18PV2EIAQtCKf306V5rhUqMFXNUVjgHpJQHyGdSSqfTSXJhjNlsNoSQxWJxc+Mg2sjKzNYwDILy3/7t3w4haa27upVcRZGcC8n7mCIh6ODm9ryPIZDYT/1pOFhvAwkPD5/efvWlc+Z4PDImAJGnorg154coLz98+DCLAM7gPqUUY2qQNTufe8ZY6b5HkO+Qd8Eyy1r7wx/+cL/f4+Pj41xdXX38+PHh4QH5283NDX5R3/eHwwFAKi5WBJYYM/EqRpJS8j5qrYf+cjweGSPe2Lu7O+RO+P/z+Zzb1SEaY2C3sF6uEiX4/sPDg9b69vYaTvc/+cmPDofTn/7pnx6ed23brtdr59z906NSaku67z3+dV0fw9T3/VQMh4dhgBTs5XIJLivbch699w8PD9vtFmt7d3cjpez7HnEFPG4g4M656Hw/jrvdDsUF5IxyO5yKZdcZY6ZpUEopVYWQKA3zrHfpD9G6a0MIZhwQQPA47u7uvv71NzjgXdchpIPdWVUV0LHr6+uHhwdKaV3XkHBVSlibO5TH4xkAgX7zerz03nvvc4EdY4TubQzk7du3KSVdSdDB0FzZbrfeR7T31usl52q/32+327u7u8fHxxDC4XAAv/Xp6QnsNjtOqCgXDWdSAC5hxQMD1HgSSQjh4eGh6zomGZ7C1dXVmzdvGl0BI9hsNp8+fXp+fq6q6uoKtEFxuZyMHbRWVdUEH0Hnp3Tvo5O6vr+/f3p6kFJ2bds2i2pb7fd7Nw3LhVRXartcmGmiIWy7xfPzo0/kH/+f/gv5f/m/Hc/OedIsyDgR74nxRGvy9u3bN6/fni7n8/kcIxkGUyb/Ilb4eDx+/PDp5uaq7toPHz4gjAihUkqfPn168+bNT3/60w8fPuDuRpGSUY9EpZQh+r4/Xy6XU98zxhgjVVUtFh2ebK5HqDDGOE/QCcNFsN1ud7vdfMULIZTSdV0rZy+Xy3IJqRyKxIAx1nXd4XCQlX79+rWUfJomnDJW5B2Q7WPCQypV1/Xr1xKYnZTHuTDBg5NSVlKllKZpmqbEeXr1anu5XKq24Zwv224OJjAkp7NRNiHW2uPhjAECxtjpdDKWfPjwoes6KaXO7sc2hAQgD0uB4LzZJOdMCIExoXVtrUc1TjmPMSKJenx8rBuNTy2lhPSt1jVY9gCgtdacTdfX113X7U97nMGZoIqOLG4rfNM5F1wePkYgRW8PBdRcyjkX0KG01uMqAeqX06pA0KSc59j2+3Nz03FBEVpt8Iv1omma0Uw40Zehr6qK0UyjQT0FsjBjmfHNZb4CYrHxuLq6wgviszjnxnFab2tSRnnw0JfLpRT66elpu73+8OHDOE4sUz5zQSSFiDGiiSWlhGCUEOrUX2LMvMPVdgPsJTj/ck0A2WNh57IXDEI08yTLuBve+cx5nxljlHLrY/Jl5J2w3eEkxGAtDGNyW27Gl3AW0LTLKF6MjJAGbiWMLdr2UiQU51IdRI1SJFIhBKUE2z6lbEWOK+wlXpxSAune+8i5qOsW8DpaFG3bnk6nacKYFG3bBSGEMQKJeUo5pcZ7D3stlP9zUYwL7unpad0tcoN8HNHDEEri/QDdjjFRSl+/fo0y/3x6wHblnMMqUxT7hEQCGhspJWNHLmjb1YoLY7LI9eVyaUTLi2w39meiRImMqiO9BK6I/dy1S+/94XDQWmP0AfsBFxkvDvDtYgk8fRiG9boucFacZx0A9yuluqYZpgm/ru973B2zrgBjTEk+Fy9tKyXndhrarptf4XQ6AeF5+fHv7++nKb15c9W2HSlIEf42Jo+eFn5LVVWU8NPpAtH/vu9nTDmEAHoQTiWOPCHEFTW2GTuNMXJCecH0UqTe+6enY4ykabgZRt3UKSUpeXCEUop9iwxfSulCQD/m4eEJmum+2IocDgdQb733hGRPS/iQoxM8T5wjLJ+HnnMieAfXdLRSOOeScYBsIEoDmOWcE8XNwTgXUhcZY3ayNCUqKRecUprFfzOmFuEuYiGdHGMG2kyRiXxZxkzTFELuCOHZI0ykRI0xQJe894xxoDNCsrZtKUlVrVJKwbqYAudUcnnshyBESklrOdmghOyH/nK54OQTkvXpEcQfHh6wIy+Xi1Sqv1xsUSoMIRIS3ein4hQ5j9jPXSkSKSFEKYUHgJe9vb11zi2XS5Sp6QV5tqDVfdM02+32+voaHWalKhQJnHM8WgSdy2WAHh+45aTYoaBzYoqrEi1S1NhhjDGMseBNxiICgN9OCHFlfmqGHfEirMg84RZBS8CVoQmc3rnICaFg1i8Gq2OMhMSU2HzZIHIhYFXFRwJgwXzlE0KgejaL1MygcqnD4/yC+EZ4IbIRi/5meiHZnIpjjC90ISwRSj4cjJkKlIqmAS2uepQSIThNmcYFfhnnnHKGk5xSklxwnml6+BkfHXglczXFivozY4zETOXGdgohpJTZ5YiYIBDNn5S9GE/Gm5REzOtPGQO+g53pC48eERyAAmdFchothOBiUZjCeU6FXV42iWcpci7mlUEGgPYafTHMhSYbhuLLlceVktDHQLhHpu6sZ0JwKZlkKtIZIlFK3VxdgbU0PwVrrfcZyfU+yGJSL4qcGSFkHEdVZ5VSfFjUTs45JnInIGbhyymEUCuda7nj0TiLSIc4A6tAhOm5M4EzxcuMfwjBB/ciTAUuJQBjkqBCk2fSpeS8sLlnBAqHlHIOWiKlrGoS5ZxRJkQ+npRSyThjDCIhc3sAa0gKVx0J2cy6SinBl49zDoiZMeqKVmxaivQfb+k/331vZfsfvv69+Wr+/pduw733kZBVVRFCcBa8z7K/iouqqqz14zjaGAnjc+8tFR8/ROZpmryxRGbRz5zVEU4Si4GQRLhgSA44zwxNKSWm6kCiwdnBBr6cjpSLGRcTAj5++UKRRWFJvRBfYzKTMlCGsUTmGw1pLqIBIQSBiJE82mytFZJhqppzDi0RJBLe2xjzZSermiYSCQ0xODtVepHb3sMAxKF4q4LuEXB54STWdb3f7+FThNyuqtQ49piYOZ1O2+1Wqep4OetKI23K92/yp/PB2fwe2rYlWn2v56O1kx/zDBqqoPViaUI2VgWiNIf3ly1n7/1k89xD6YoyIRgGM2OM+/0eLuqccxcCqBOc82EY2rpu2/Z8PoI11jSNL+JOYJjaYo+OYeqiGwiBY4mGH4a3ctP9hXMOmFYQVBVCGGdPl/Pbr74c/uv/+v3791JKLRVjDEn2er1eLhfWenRhL2d6OU91XSca+8OFBcYC0UKdj2fsKzt4HglNLAVy//7xxz/+8ZvbH/3RP/8Xw8nUdc2FXC0Xv/nTn/7kJz8m0ZtxCilKxVmkQnIiSHJxtIZSKiijNHkYb9BIKaUiVaoazHm321nvf/anf/K8f6rrWkghtUiiuQwXGngraiSHXUPGcRwuo7WWE+pC4IRCYGo0xj8+5rYlScMwfvvtt1999RXn/P7+/vb21lpbqRrZtp0M57zolmT6Py4mpdRyucBpRXGFBUc2ezyepMxAdtd14ONgxu7m5gYX/TRNNzc3aP+c+wshxPvIGGvqZrlcCqKU1HhZ7z3mk+BLQVLOuxIl3ttE4/v795MdqKBSi+fj8+Gwe/369X6/dy7XCdgCpPC2Upm6PZ1OoHGhi4Mqy9oJWxcx4c2bV23bfvr0SWtdVRWq96qqnp6exnHSWoHajJNLKYVOPaUUqrWoHnFMzucjkJ8YWSyCg5CY18XPDUAAdiwhRAgxDJfkM1M7f3BGXXGLwRSIlDqlpKQax9GME88aXJdvvjmHEF6/fv309PSHf/iHi8Vqtd0ImtvMOObuLxtu4NmLYh5DNHb87rvv1uv1835HMnwvTqd9SgnY4na7vbm5wdhlVVUp+hAjIXHR1IyRpqliVOMIKZ6kpGhqfTqfrbWJFZUbSrXWhOQ9hmTscpmEUK9evTqdTtM0ba6vMIwfUwjFjoUk+vHDJ3yoy+UyUz4ppdZO5zPjnH/8+PH6+vru7gb5HhXcOwMHSMRzQghkuDO9QyjgwpTS0+nAmGia5vr6eubBKaUIidZ6a+3hcFitNuv1ktIE0IQQ8vj4uFgsUJOvtpvZkAqfS6lqtVr1/RmAjtBqLjFQD3rvlay01r/65bOQ57dfXUkpffDfffedUooz5ou7Kd651hKqoNi6lEUptRBCKxEjNKmz4ViiMQRS13WIMZIEXy/GhPO+U5UJxCbWNO3zMBkiu0XXpvT48CwqVQlV1zWlg9bahjGEcD71UivtNEzmb2+v7+/vz2fjnPk7f+fv9H3/y1/+edc1zjl3Os1tm7lQ2u/3b9++xbiDEAKDJpvNpq7r3dP+8fFRA3Yn5M2b13Wtx3EUkoFCCzJs9B7dhRACZTSRUNf16XQC9w1Vw2q1Op1OlFrKJOcc7ZbkAyirKSVUzfvTMeyx97J+ILBjwHZYalbEW5EGEEJm4S/GGKPChlzq4vYfhoEx0jQKaQAJUUh5f39vin0i4EVr/OP0CKbk0E+XywXvqq7r7XbrvJmZsNZaqPswlpCHY7dQSo0hz8/PTVN5741xt7e3y+XyMgwgv+Mnv/jii+/efSMNxVa8XEbniPe+abq5uUgYi4Q0TXP/8HG3l4AO8IbB3Sl4SNJls2V9XkLrtrHWWu8WxcsBbX5ZRmBxBc8zsgjLZnKI1YiBm82maRprbddVaPvFQKaANJKd+wsbGWM8xjgNIyOUMVfXLUimsciIGTcRRg+nI7ucMToQytQ/6G7W2nEcwXnfbreRAP+J3mIeXQMZRNYRPk+2ZUpQCOF8PnMhSp6jcnCOkOhJGC++vr7GrnYOs8XEuUApR2oBGuYwTJwLreU02ctlXC5bXsiRXdfJSuNDnc9naIjjqgUNVkpJqUiR0OL2hizUhURIZELUVYUcFXff6XTKWzdlieFpmqTKhjKM0hAjHE4k58E52TS6qs7nM5iUlNKuq2GUSgjRuoYkacqzMnLGCtD5M8bNlDg8HUhnIJ0DFlmgoVDYG1m1EmIvj4/3yIqXy+VkjXNOV7JbNEqqkBITAo3qqql5mf82xkgpGaGCOYwY3tzcmCkTYEMZvSWEAFnGA+WUGWMwyoa+hdby5tVdU3e/+MUv0E2ZMZmU0s3NTVs39/f3SGWtywClcy5FenAHpBk+ZsAHzUiIJjnnJutwcEIIhERAcEKI3f7Je09oJDSGGJUWlNLnp32lVL7UOAetmwYKBire2DiOkGxCauEm571vum7GWGfYF7A4ZEZWq5UQ/YzDeO+F4Miux6kH0LFerxF/OJPLZXf3+tXlcqnbRkq52+1A3kdgx/yTc24YBnDv8OWcc95IoUkgNlhUhV3XSaGllDc3a3wHctuREM7paAyltO06Y0zVNEopNMZwBvueCHFZLFZzHN5ut/NgYtN0kB/E8jLGbm9vUVUBOJVSaiG5oJDBgTp8CGHqB7wgCi5CCOGMMjZMU60brTUhpndD1VTdog3Wc84Z59M0CaXkDH0mH2ZwyntfJvQ/z/LHGCkDZypWbUWj5mXyjhTCZghBaIWgDMYi/rmWKoVgvNGS41rSWpMkUnSVkikl68LufImMWmuc8zMAhKQKLT7sElD3Y4zL1QoF8ziOYCgQQlzpKwIxFJLhTEKwiUS63W4559CogpSYL1N73ntMoWLgN2Ttwuu6/tIVu8KU0jiOUNLAFz67997aCb27WX8gFNFeVSyhaJEY55wJwRnLogck0ZC5YDRGqpSaJrrfH56eniilnDKYlfsiCDC/YRyM9MLuHPgsbi+8kxkRBj778s+xeKHMXYdQrCSw2ojaeAVwNmeSbIyRc+SFmBv16A3MySIt4iRIjnHm59HgaZpQpuJgzyg/oMO8CRNJISYaOWOqqnEmGaGcMu89LKaaqiYk1/NMcHQUcsOTJBYiiSmRqJTSdWWMISyRxLgQIUbM8hjz2dYsllFQRmh8ITRMCKExMcHLmrAQsv7JnAHTmBIhAGFxo0iS8WVjjC9KDq6Y+ZKCS4ai14xYT0ujEpg4umQ4a7SoK1JKlVJGWHxw3P26CLnOVz7KiURJSJRxXsTCCCEkpQiLMFvq5Mvl8vz8vNysCQdFkbIyQ4dd6r0/Ho8ppa7rKIGpCCWEzmefc66bOoRwGYdUiJAhBmYsgCctJCc0hOgmQwjRXYP9hsG35+fn5MMYPtPDcYli+4UQks+bE7cU0qNYyOOxOH8iegghRmNCCDSvLZ2DWy42KGWEcZG/aa2lhCmphcqFMaUsEvTkPTjRucSlufWC9ZnPiFIqBHR6/sJ4QXrBTPfZwyQTBOaEMqUU/md3LEX2R4fvLW7/w9e/B1/133tT/W9+aILDjOr+eEDWgjgQk/feMy6mySIOOOcoQQPfKy50aVbjrDW6cowzJpxzWtecc+e8e6F8VVWaUspSHjxC/jQVh080vbigNCbk34l6UQyOMQCBxhWCNtJEUB2Re/XTOI86Is+LDlC1QB6DMBWKdW1VNf04XC6nuq4pY1opa20ixDvHqQjOhxAYpTKPT3lvciBVQsLjdO7noeRG6cVYTCRr54E4gJFMyFs555bLbrd7QgrFlUSet1gszOSWi3XTND5YwGS4Q7XWgqvPIGxxJP/vfjHGZvmsH331g8PhgHeI4lwJjaEQoHiAFNtFhxZ1LNM/mCKPMUrBmroZptF7X1UCn5czxpVKIURKUwhIn6ydvPeSM+TQ3viZtQ1OFmNMSi5E1bat95msgdHOpmuX1oIqyDmfAH9PEwp7WFTl9jYlNvhVpf/a/+Cv/+N//H9cLZquab23tdZVVR3jnhPaNLVoO074NAxaVvf7j4v14nQ8khgXbRev49PuIIU89wMJ5GpzHUM0l+nv/id/93f/6u98+nD6u//Dv/f6izeA5r33y0VrrXHGhOSFYEJy56LxhgZKKdVCe+9j8pTSRCLnjCkZo5eVHsf+l1//8pe/+lXdNomG9dWmqirjbG9HriTkCBgjZpzWyxUs3Z6fnxtdSa37vq+rqh/6QCOeZiSJUeKso5Ts92a1On755ZebzQYZSN02y+Xy8fmJC3k+X1yWShNI4WQZ0auyHHYCFgPmAaoOIDi8jOmwMn7EOeeUHY9HQNjOGJrh4OicU6pqV9315iqltFwsmqZhhAQSWSI+TwHmeQVsJ+OcmYyLE2Fpd9wRlignb968Sil9+/U33rnIKaV0mgZSknycF2esc+7Vq1fwgQnBKSWG4RJCwjHnhUcvhJiH00nR84kxxki++OLLX//6l9CLwHgsQhBQSGPMj370o/1+j1Qc/HHEjUKmpkopCI/gF0F2Bocuxng6ndrl4vb2duobJO0woFuv10zC/5MTzHIlgsHEsR+QJu33+9vb27u7u4fnJ+y9f/Wv/tVqtRJCIc952u+UUq9fvw4hiD3/3rN/Pp/phsoyRoqfPxwOiZKrqytk/pvNFRBzjEgeDodf/epX0NV5/fo1xWnlPKVEBW+axgxjjLGqqljmsbBhjDGJ0hRyCo1hXhxVxth67YECtO0iBHe5XEJwaPD7mCglyYfFovn06ZNSarFYIoOaOZKU0pQCRkDO5zO4zNbapqk4b2eSZtd1xrgZiuJMNk0C0rTdbrHllBLH4x5v7HI5YatwzqFGin8LlRJUsN9+++3z8/ObN2/QwkQIQvpHCNksN8gAMTZqjHEx4IQyxp6enpbLZdssKKWba7HfeQBD19fXnElng0+w4nRPT0+MsfV6Wdc1+CWYp6Hwm7VgqAXUiSmlh4eHtm2Xy+X+eYfNTAihnNW8Ippchn6xWNRN97zbxRiNcYGZrlu0q41S1WqxPB6PlW5CCLqu+r7/8OljhiqkkFpN1ui6ojxT/vv+vFqtfvKTnxwPh2/efRdCWC6Xr1+//vjxHs/LGLPb7WBvFUKAh+3NzVXTVPTqapom572Usuu6umuhk4OznEElodfr9XKxfnp6wrJba2PyePRCsK5bolCdNa9SCs75YZi8seiFhhD2+/319fVPfvITSimqAKQi6BzM1eIsSns+nrWWV1dX860NR4REqTG+aertdktjopTe3t4iZn733Xe0DKfOFTelFJ/9w4d7IckXb94SkulNaLpjAmmcelz9mLjquiaEQCnBvNT9/f0wDJTS7bZGeFkulzHGYbhArxm1noFPQApX6w0IOjFGpQIIp3XdolsfCQF2zPhn1yL6QuUPkGLbtoyQeb/VdQ23KiG4c8l7h7nnQsGJUsrVagVDmlRUmDA5Uekm+H4uSK+urtB4IITgWEEbhHGuOMfpQLXIGPFFVBA/No6jD6FpW+895eTu7u58Pu/3+xkoxLLvdrsMOWkNUt00TapqYoxa8hQCcoYQwqJbYVMppbRu8U2Ut5wKrTUt0m1a69E6O00Iwmj9TpO9v4dSBAWzFWgAvtARyeI5nCOmNU0u0GKRynTDgIzFe29t1okGtsALlRibE5cyqs4YI7CmH/zgB+/evbu/f1gsOvi+4odJYrIMUs/gCecMZuwYx8cf8KmlrrMcDRwXitmS9w5XG1IFdF/wbqfJMEbQIwEUgx94//7Tzc0WfWhXJvirKhe8WmtK85zx7GqLi5hyFpOHDGywGXPY7/dCyYxsMIb9aYwJzgvJ1uv14XA47vZffPGFEOLjx4/jOCpaZgLi5+bQvDLGGE6odRZGZWgnA6YEN8IXbzooRCml8LhxlQghBM/C4ta7lBLX2rtAOauKu5LWmo5TYXPTqqqNMQ8PD3Vd931/PB4ZoZvNJpfnMa43y/HSh+CUqq+utqNx7969Q20ei5JBVVewl8jVN8kdC2wS6x3gO7Tf7u/vq6q6ubrGWUZYQzYis8dpIDTPTwA84VLUFUfYf35+Xq1W+LDOuUAyMlYVt8y6rqWUU3FkTSnBHlBLibCG35JiHnI6HA7OG11JQsgwjMaYxWKF3jNSRwBZyBCOx+PVlWJl7LuMj3PGCGOQf+AhpPV6+/DwYK3nnIeQvI+Yn0fitF6vHx8fz4NtG+90cDZwQguMSbTWl3GgIpPQpZQ2ZlHZtmmbrmEDczEqpSKLnHNRUsMopRSV4i5jjkinaNYt7bBNcdJCCFKqlFKM2WET2wgpYEpJaA7YW0o5mcg5v5zOjFEfLCeJ0Ojgcjadv/76G2PMT3/6W5RwIVQIISZ4sFAhRPKhn3rnHCg5TAoUaTMc+fj46AtyhydHCGmFQEcUcQo3KKWUchZCYCkKIfb7fVUp7/3lcjqd4MXscKeiMTsU79HFYuGc8cV/L2UhtuB94JynSI11MWVRCylljM57z4pjL7YCY8wUPW8I+s2VKtiOpAhQMPZZaQGq0OM4Oed88JxztGXiC+fGVOQXaWmK5kdZJDhlMa71mWMrQqFKzY8ezw7XG6BqXORYljnzY8XVtGQk4NKi6oiwPAZn9uVbcs45Z5D90IJE44CBvY+hJFoQ7ZRSohnUs9YKxsFESC+40nj6qOELtguqhSAFFZ0RW5qgHcHw0VCThxASCc6HGASJ+dLC2Z7n9QTjc6hKKXFCEyHeQwI7mynN4RtviRRqPL4JIGBe55mgTYpaMV4kFfFW7GRRdEhIEaXBVYeH/hKdRIYnpRRaMsZC8KUOTDEGSkkIHmeccd51HWXJGBOCS4lRSmmKEYM/hGHDGGOMd9l1BA9dcGcsKQ5+w+USY1ytVilmNiUMvrDxQsoiLTgmeOjIvZLP+ie4lZFE1nXNZRW4w0PEunV1g+0KQ14meEF+KWMiErtarQCNheLgl4qy89wpwbbEnse6McakVLKIkMRZK4Oyed/hn1RVxWQeSgrFdDGEQGK2f8S/yo9P5UYoLW0Aa11B6gna/nnoJkbsB621c3ZuUwGWyvkZI/QfvuVfLsJ//t1fBm/9h6////2q/7e/sfwffelS6OoOOROlZG4+0URijOM0Oso4l2gvscLbRQAjIjfkgnUxoofB5/JyntvAVYgSN8ZIUg4Xs0gceDeEUUJjjLSrm81m460bJoOUhfMsWwZEDKUF2ldzn2xGSxFX8comQgqDghe5Wq1w/ZUc16cUttstY8z7DCWHkCjJYyWIdYnBBKKyxnMuMHtxPvMUc/GGt4HCwJeBIe8IJi1EMWuGPKsxBgYvBLyh0wi4/HK5UMI3m40PFleSL3MzMUZGcxyepon67xfTUEotViul1MPDw4+++gFYw6jb7WRqXaVEIUsHX6zJmpBiFapYuryxyOUDgvHOME4qpemC5pWhFPVzyIP5nBDy/Pwcgnv79q2L4Xw+N3Un2ixQiCZ6Smm49Igqq9VKyiU66Fg3pdhi1S0vy4eHB1GGQPPIZErZWMaYaZpoJZx3+8PpP/sH//Nf/vLX/+Kf/5FzbrFYCsq6pum6rtYVp9xZO4VACOkPJ8757mESifrou6ZBmeFc6Jr2fDiSEFdt95/+p//pb/30p5fL5W/89R/BXPH9p49SMO/dMFycGWP0NJGYgvfZjyESIgR3xlKamOCJxEhiIIkkf7icPv75h6fdswt2cbXw3le6ttYmGkWljTE0JcYIpcn7EKyzMaWU2qomxf24ahsfQqAESCgTHFIG6M6u10QI8e7dO5pS3bbYXflei2m1WpIy8gJ4Yk6o1uv17e3tr371qxg9LxKWq9UKBL2PHz8iLby/f3r16gYbFRwZHLTlcmmnabLWGNNUtd5szue+bdu7u7vVcqWVDNFTygmJlCYhGGNy9DalRMlnjnM/DpMfBjMuVt3+uKOMRueXy/VhMiEEwjiOcyUVLTNtWuumqk+n09dff3376k5rDflvSunlMgC5AKsFbSTIO65WK6Q9dV1DRnOz2YzjK1yLWuvz+QzoeRgGVKfYz4hXmISo62z9hODjvQcXNca43+/nQ02K/No8cqu17rru/v4esbTSyloL0IFzfrlcvPGU0qbKJr1KyGmaKE3QLZllcwDiIM0GMCGlnBU8/52vSDPHFtlISokQ2S0WbduBC3w+n8dxxPpU1RXslYQQQrDbmxul1NPTEykJv2TclfCbUgJbxVpLUoZ0O9WFIgeJChNrjhKJ83h/f885r9qKMYbh1JdZPWxmUTDrpsaAuSwW01VV9f35cpkoTYzlEUDd6BkyUEqdz+fVajNN0/F4HAejtVaClZnxZO0kpVwuoaSctJaY7wRZ+/r6+vd+73e+/fq7/X4P7jMuhbZtQby1IdPVMVWN6+zTh4+q0mBI4NwhO0VHbbVabdZX1trz+dy2rbVHa+1yudxut+AokESlzIZIhBAhanRAEW8JIYfDIZDkvedceu/7aWyahtK0ud4IypQSdVsNw9RILqWuqkoIdjweF6slml4uhrquq7ZzzvXjyBmlnFBOLpcT2KA+2dVqczydKGdSyqu6OhwOuq675XK1aKtK7/f7/nxxzn3zzTezcHkI4d27d5TyxWIBHBCDLDAuappGCCaEuFwujPDlshsne7lcjsfj1e2VUorxPPmHf0UJm7uJoB8ppfreKS0ppd47bIDn5+fr62ul1DRZFiOUFlarFSlFzenkqupydXvj8nynB5I7H0kpJXwa27aWUtppGgan1JkVqQ0c1UiIEKKum5RS8B5CLhC+32w2+/1+LBZbCA6IruM4vn37GoER5Bt8OjBwUXGP44jCFrkBY0wIBaiLEBKCY4y17XK+4nNOPvUhOsZJiI5Eftw/O+dubm7iLHFWRpfm4gUXpXOOUJZCTCIhO8LgFGZBANTi11hrU4hSSsoooG0Mgsyl4vX19YcPD4SQr7766v3794+Pj6TMqw3DILjC0llrp8msVivsf7QkgZJjRn5yNqUkGRdCxJSUEJvNnVIC5sPee61rkoHLKoQwjKF0pv+CtxDWFvUaqmCg1W4yjDFPE54RkFDGWNd142gQtRA5lRaJ0uQ/I1MzLIhhCIRufPP+/qnraiwpBrZmNIlgOlYp1Hegu+EdUkq9C0qpcTSgSxMC9IONo0UmjHn/VGjFKSXMauA9WGsJYTHG0Zi6rpXKvDfsZ+ccowLzInhvyCettZRwxuiMFznnLpd+uVxIKR8eHpCGheICVchzFi8CGRPwq7z3VaVxfwFvwT+RUtZ1vgFDCNMUOM8me4CY51IUNEdcl1nRLgQ75WZS8JnnNwxDJNl4k5bmaEpJCeldDCEcd/v+dI6EzXU07MTw7HCJz5ufc5pSCDHg3H18935yVqt6fsMxxuVyifWniVBKh/HCGJsmg5tltdwwxi5D762f8yVjzH4/vLpdG+Occ3AxxTISQiAKimOOEib6EApDkRCy3W57JnAhHo/HzWYDQu62baC8BFqqt25mm0EmnhBCYAEa4IcpoTuBTfL4+Ijn7r1PKeAz4hZWSiUSwBOPMeq66rrOGgiUU2CAUMDL5O7JQGO6aRo4KiPIkMLVsxDKi1mnN8aYIg0p4CMrpZTOTYv1csGEcC4UyVCG72NDmqIRCoTWOWeMx4YHnoYqCcEWO+p0On36dGgaBgQf+R6Oz3pNEOdDCJTqts2cRVReAOKR/1hvG9FRTxmjIbjkCKX0eDyqVnWcC8y14SYQjHnhU0ovBWRjRC6bZc79CzotE1IpdTqdYA+C+Mg5r9omxjgME6VUqzqFdDwe+/7SVKLtqhR901RScjPY+4/v3r//KJl8/foLJQMhNAmKyqe/DDOKl5IVQgia0Rl0xpRSiRCtVCoMiwzhF3EP5FWIFCFFHBg3ZT/xlBJaTBgVxNmbw58o/mywjJibD0D3GGPO/QVpCzyecezxHVXMPW9vb2PMTCvUJ2jMgg7mvYfSSEqJUiCluf4MhVSLkRma8jUwNxZSkcvAY5oXnzEWSQophhSdz4aStAgQA24mhMyUK+TNqQzssGLHSYpjIY76S9h6vgbwk7iDi+44JYS/hEpjmf6mRexp/kUzKOmLuyhek9DPHWMSEytTJzyrT4LKl+Fd/CIhijNeqQSQqTDGGMkyuzMM6ovo8FwBBhcFpylSwRVVnNAohOA09wAzVZnQlFJMGYVMhbuNL+zJVKwyASWklBjLn1prXcHnoeiZ4geklBpzPUXHHWNZ2C2MZVR6br/jJsC9RSltu8Z7T19YKc5gUCHUx5Bi9AmxRokcfYTgokh/YD9UVfXmzZvlZo0KCqwZSdTc2OCc05SEEIxybI8QQiBpJjrNm2Rma9LZ3oq4WPj+yGBQpcSiG+NjQDM/z4WVdnQgaSaLEcI4kSlPElhbNOOQcpHi5zCDOHjEmfFddhTljHIWnMeuE1XFKfMh2xh6Z4x3iuVeLszc8Vc0Fc+oIujhvSc8v4GykuzFnsw398tegvceAyX4mjNa+dK8629t5W8u08E654XgIcRYGlQxhkgSpTRm4aNAKUvFZdT7oLRy3scQKGPjOIQQOaFCihgDJC8pIZTRlAj0qH10BOLRTDBKCaUsEeddDDERElLMaSijuAwYfojSlGgqfDqBJhnF9yPBu2VFhj5GmGFSQrBzOOejtYREXVewGWWMgu5NCMG7iDGmGBlnKeU5AM5Y3TSlwQMOXWCchuCFkFIIyliKcC5l5XXA8ks4iZQyzrmUghIGdW9CSEokhsA4ZwwdLG6NjSkwyhOJlLBEstx5CH7oR6VlVTXOWbwyY9QbK4Tkgg/94FNo8pv0+PxS5ccqlnX1dum9D5NFg63rOhcC50UaPq8Sl1IhlSeECC7mEErAp4ANZrLeeyEU53mqHWxirbXUGh1TYwwPNKWkuLDWz2eESxlCCClWlSJaaq0bXYUQxql3Lvfq0SrHVYXsJJYBzFT0fFJxqw9l8o4Xf1rANLJolGcU70XD0pgRPyyEOp/PnDIhFKVcqYrSFEKAFqHg2Zp1hrZjJBgkfMmUnLNhISVUqnnR7QHuQItjIWpjuJ957ynhsEdXOuvBzdcWE7EqvhnEWfJ9X8Da7Di1VV3wstoYM1x6wNlKVZxzLgVjhEvBi8Qz7ouXNyktk0DPz89SaEII0xkBxGhXKNMqIYS61lovq6ry40CLYQY830IId3d3Yz+M/UBics59+PAO4s7Q98B1VlUVhDtnkrUrKhxIQMdxnKapqjsm+GjN/nj4X/7Df0hi6s8Xb2ylddd1lCbFlRBsvAwRTy157wjlJJIUvKOM3X/8oIRs2/bx8TnFeH21+Yf/i38opfz5n/zp3d2dd8PHD4fD4TCayVqbUvDepxAR6pxzjpCUCBeKEOJj4iwKLhLBuJIYzfC4e/rTP/uTc3/Rje66TlVyPA6SSUqpbuoo2PF8UERVcEEcp9ubm9Vq9fDw0Pd9LtdJ0nXlnIuUdHVVujusaZq7uztjTKX0hw8fcCPHvn/9+vWvvv51zrN99hLknEupOedPT0+I5JxzGMqjJ4SvWJx+27ZdrVboMbwsSuHIB/7L8/OzYERrPRh76SdV6aurzdXmGlDL7eYmhMAYrKWm3EiQVSrdaEopl4JzShO5DOfDaa8bXWlNY+KcKqW8c65seF/0qQghzljwK4dh2O12y2WXksQ07nq9RWYby1AX6oLj8YjaRkp5OJywJlhhQCoz5xGNYeSuj4+P4MVgTRaLhZDUe++dh/GRUtX5fC6GivT16y8eHj5BIb2u69evXzMpHj5+MiIPCa1WK6XUp0+fzkMPdtusX5fnuhJRSoE/GIIzhmjOGGPgs1ufodsZoMROQBPrv/slhRCL6vnhEU8NZ5NzbkxW/GiaZr8/xhg/fPjw5s2rmOUFVKW1lBIgqZRynCaUFefzGXlLirFbLgGO4P1jS9RddzofAFVcLqeHh4dYxEO7rjudTn3fG2/evHkD/eVIEmPMOMs5PxwOgKggos0JRYm0Wq36vn/37t3d3d3NTYtR3K+//jqldLlcDocD5xxqyNba+/v7xWIBYloIQVQqpaS1xLAFY4wLVtWaEMIFIzTN1UeM8Re/+IUZ7Xa9GQ3ogFnuGfDx8XhE+metzcRbrqy1l8ul6VqYH6ZC95mxwv1+Twipqup0uiilmqZBZw5tM5bl0T+PeGutQQLY7/dt217GjBLOyCaSNa01oQnc2MViEUIihBhnla5CCMtldTgcfCLb9bKuWmSXh8NhmiZCwpnG5aY5n89CE0FrzvlWCCmlDXa9Xh9OJyFZiM54F4eII/N4/zBNlnMJgAMJuRBqtVptt9s/+7M/A+gcQmiaZrnsoJHtnHN5zWlVZ+ePcRxjml3cWQiBFwAClOFYxjd1leUx8etkEc0LwTkfoYhSqxpoJlz4+r4/nU7GmHEch2HougYbDyKTz8/Pk4WAHgNk0/cuhACxoGmalsul1tr6jOkMw+Sc00XalRdBZDRo+eeRDoWeJVdy1S0+fvyISRHcntba3W5X1/WbN29ubm4AJiqlYkRlaqpKSclxqTVN07btSx9dfBMFy263IyT2fW8M4XyHsEMImccrU4qpcLw2m83lcjnt9rx46koplZQuOkIjF9QYIxgDe5Ex1q4bzrmPDpEKWZb3fposiq/tdjmO489+9jPvPUmMpMThVGw85Czatq2qqmm8EHn6LSUKJ2dUx1prnwi846yZFBdRiOPx2HXNer1GlbTbPVkbN9s1MoFEEuZskMygHkeYQrYghPjN3/zNr7766uc///mHDx9IwQrmuI2T1XUdJKeR+HHOIwEjyacUCOFo8BPOkv2shLnZbHT2jX+ENAoSV8452gYIEShIEaw2mw0rwokxxugy1Y8rCQo8drL3BoERN8VyOXvKRVwfpEzzpJRC8O/fv1dCIMZeX19//PgxU9xSHrZGBJZSYtSDMUYSJSRXuJTS5XIGf7M93Vz8FnPshIEJ/C1OK46PlJ/VjfEHVlRSGWNa6y++uIK6LP4T+jaYCLlccgZyOp0+fvz45ZdfMkmHYYA/GcA0SmnV1EgJINOBgLxarZyxVVUN56GqmhgjlJEQJCdr2rZlnGDl58I2pWCtZ4xxQlFUEkLW6/XQT4j2SKtwNququv/46XKZbu/Wn5lbiQ3DgOnoOQ1GSk8IMc7XNQ/Qwk0UdRB2Bda/7/uqVsaYrmmhuYGdczweV2232+1IJM/Pz+M4Vm0TQkcTQfUhpbSOAToghABLxFJwKXFRptKLapoGTZdKaUzkaK2rqpmmCcqBiDNSyu12+/DwcBmGpqm11kpWAGpBwSxdotxgIIQ8PFxev+bjOI3jtFwu5ll/RkjbtrQwP0qFJeMsCMzyDMRms9lsNpdhuL9/RI0ghDDGGmM2mw3OIJq4uF/QIfY+QkRIFnVB3AuoWbz3KJlxvSIBNsZrXbftYhiGYbhoCWfXBmXX6XKpaNazxdtINJczIQRzmXivalUxxhCvhOQcMEZmKhZpZkqyN0XhCFgGPXJBvfegfrRVVsQvgClVWX/tnFJyLqSUTsehrrX38d23X9/ebW9vf8x5ss78+pe/3u8Pb968+mt/7a9dzqO3LtgopeIiw77b7fb29ha7sKoanBDd1AD1hBDjNHnvYwgoCCFVFkLwL2R/U+ntM5FVJtALRb6LXB8QWMhKZALTNF3XSTkHo4BKY44RuBcppd5FxlgqQUcIYa1HnNpsNvNAUF3XyF+bpjFmQsCiWfsii/hEkghJIXzGjjPAR0kIAQborJB55zp/rlfnNxZJwh0wfwf3AbphwJgQC7DLCSHgX88IL2Jf3/fICbApXwJnc4KSUoLBo3NOSqWL/XooY4CAWUHEiMXYba6ukeHRYs05J3wgyeINk5jmQJyySWullMIKvXiRjGvHch3OCAVuWbDXffH2FS+M5lJKYM/h+2hsBu+9tzNqTCmVQlJKBUkYGEEzGWErhJDPcIyCMrx5LC/jdO4Wlh579njFD0gpWaGlV1VFUoYg0X8zNtsYOudmn/SSpkwF2HJzy0FKSWicpokSPqcO0IMGo9Z7i08ty7LIMm10uVx8iqFMSgLNCSFQnjWs8VaRAvLM5Y/DNGYYiCRO2ZwizC3l3JKhFOuPq1cWX77J2MlknSBGKN4zpRTJh9baW4OkENQJKQSaW58jVYG9YpmGE0KEmG9HJjgT3DnPCnk5lJEraHHEGL11lDIhWYxRN/Xc/EBwi2Vci6ZsLgxaEC0jn4Dd8cp1nSWAnHNa1zj4Nutlc5/tj/y89zjnPmaoThU3iRSCrQlrqxbMqXGkswoHyd0XxIXoPWTRsLbBWkuJcwSgYX8ihDBCkpaMUg4BSlZYAxDuj4lzzgmliTILtUQuoudI9501DnphgjMmYowxUVY0SdDhsTH2znECxT80HgIGFHKGHhO2DSfZRI7S6CJNiU3CAaFOYc6xBOdQReCMSWwnbKSqkrSG0CSpKolx3X48K1VFIQLiYcg2DowxVlJSxhjP8xncOUuVklLSlDgh2G9YEw83Os5lrOetSylNsEvlPIWgghZCECEkyaLGnHPuM8te+P83XX/ao2m2ZQlC+4zP9E722uBu7h4RN25ONZAkZCVSZTeiq9WpRkIlIbolkJCa6Rv/CT7xHTVCpUZIJaiiWwVCXdWlm7fyzhHh4aNN7/gMZ+bDOudxy+yLK3XTw9zM3mc4Z5+91157rZWLAbmLL1lpErkDETmHDYUow30lv0wpQbRBzo2ouauPlVPXLeKtIAahgzkkIiD7Z2rmxDl4ecfjaXu5jjHylCV6Zn32EELV1FprawwqjWE4yzLa772ta42BOKTvrNiWovxDze+cmxVFpZTjOMI9GWOq83pGZjNvUq11CA7OOdZaIVJVVSx9UTlPiYUQiIRPPnmH9Nqn6JwBd4aIGCfMqeCEXSxabFvncxmCZCsVUwFRPAmllD4EgBScc++CEEIqPudY80nR971WtVIqOMf87xdvjT4OpzMkaEURp2qaxluHUfFhMnXb4JGi2Jim6fHxEccWauC5O4684nA4nGz/i1/8Yrle/aN/9D8AGwXHRyqS2TEq7/3DwwNXUskKaB3oJMaYjx8/euvwnBEVEU6VFimmGZVo2gpsMiS4qB4B9yD+M8ZiSpJJKcX9/f0f/+Ef/ZP/8D/6v/8X/zcttOA0jqMg9mQssQiovW0bClYovlyvhJZa8Cm4N29efff2R8bYy5vr7/phs9loLf/Lf/kvHx8f/+Hf/we/Cb8ELMgEh3aT4Gk0Uwq5FUQhhcSk4IwJRkxxhqaXVuo89b/93W9d9KvNOvAYKRk3qaZuFwvnHFcpBOeI91PO3Z1zTV2/uX21XC69sd7YYRiIsTClxEhI2U+jFlzXlRb85ubGGPPp0yfn3GqxxOLnRIDe4B2yXK+iD8vl8ptvvvnVr341jkYphaIUHBwgqqvV6uXLGwzrwLkF0B62jBACks0I4zibRjNxYtM0KcFmgd37+/vXr18jZa1UjVRsmiaKufOthLTFq5OIXAx+8qfT6TDuGWNVpYSAXqcxT0+VqjnnbVMBWfApgjwVY6ybGln9YrEgzoAaz3PByB5RkeIwQu7EGENBBa2D+/v7Fy9eXFysn56eDofDcrlEQADvD1AmkvlQ3BeoDHItF6vlcvn+/XvvPez1hmFCvbdeX3z33e9CoKah6+vrp8MetATMZuFZSSmP/QAK+eFw8N53XZfNwRKZIlZIPK1Wq8fHR1yPdVZrXenKWo8UK5Y2XhYo/G/9qeraMLbcrG3wlVRSSiGykl4ICbgnmgdSyr7vsSSI8qAbqrIQgncO/+pcuLra4kVgmD2bLpa8FAknjsWScmTzLoySbDabHz/8+N13311eXobgrM++bUxwjGziaR8OB4DvyCG7roOb2TRZ0EcuLy+9t/004hpQEazXa+8jJMVR5Kfo8caHYXDOccGUbuZ0F/Ht6vpymibvwv39fa0bqRV3HMOvoLrjid3c3BARskchxGKx0Kp247Tb9TGeutsbIsKCAQEckDRnEtF+vz/OXFeEwd1ut1mt6rqOcbaryXUQticU9sZxxGcZO+ZDxBmYf3jvVTbbUFgSDw8PxOhw3I0j1EubGBxjbDJOClZp6YIZjb+62vpomIhmSoy5GCMOSsjI3t09NY3inFPTaCGnaVquVymkrutOfR4LXq1W5/Pw448//vSnP/3JT37y9u3bH3/8cbvdeu+hLv309CSEqHXTdZ31LkvcKKWUct6M41hV6uLi8uHhwVo7ch4D7fd7zqXWEoS4Uh9xNIrEs6mCEE2igDYM8hDAJVxJxDFWvLK32y28PbHBVVUvs5sWSa21/sL7QX7aNA0qbmPMNA1tu2h0BQ4KblxK+dVXX4VyRkMdBQHncDgcd/u5HFiv10DAAQx9//33f/7nf75arYqIvP748aMxU0oLhDV0bc/nc9c1mA9AY0PVFUr79XpthlFrHYLt+xH6LbiA0rtyxBh2ItaD934crY+ZuhRC0I1GyqErWeRKZN+bsRpfvnw52TEU43EsY4RQAKBoWrTNAsuyqirv4osXL96+fYu8Ypomxpj3caZtTZON0c+0MCElcyi6KTrf9/04DOdz07Y1yLmLxWJ/OKF+ZIy9//Dw8uUFEDFWxEmQmczF/vv37x8eHmDnQCwzMUMh9iJ5RnN6HA1jh9VqZbxDByf4MJpJcEAfJlDClF54RvYSQnzzzTeHwwHSB6HY58wIBobGMFIzE7Z8cbcGohcZ4SPO53PbLi4vr0HGTMk9Pu45l2CVLpddVVV9PxwOB5BnrbUpxRCCKxY+3vvLy8unpyfOueAKQDNScVw2Xj2OSKkEDu6rq6vPnz8jwwd/KD1Lq8pYBnSQWFVV0O4XQgF0el4AIvHGQwZK8JOf/CSE8Ktf/SqlgHMTz5xz3jTV8bjXWqNDfDqdEo/H47EkqAn7mhK1bbtcLj9+/DiDMAjUQojA+eXlJWPsw6dPQGBBOIsxLpbtLCQtpYTCHmOsbdvkgzG5fVXwpcAFZ4UAAcSjbdumrVJKEOZ6enoSXNR1PdlcXAOpZIwZYy4uFkgtEMbBMxCSEdEwDFpLmSXg2VdffaWEhAmBlHK9Xu/3e+umxbKdRkvW3N8/bim1XWtNds9aLBZckBmnEMKf/MmfENHh6YDCavaf9EVPGMHKOcclu7i4kMU/DDeyXHaIHs6HP/3TP10ulz/7+V9779+9e1dX7WKxaJpmtVrhvIZgunNOMF7X9c2NIKLlcoFYOtcpk7WNEJyyyeQ0TSmy0X8RsDVm8t6jdXQ8HneHg9Qqxlip2owTdM9xhcDuOec4XhEqUwoz83UYBms9UhRsdiJar2u8Ze89fAJyTNOaMZYSa5taaw13WcbYcr2G+0jwiSilyHzyNuW67NRPcjBqLa9ur6YwsROT++NJShldHkdF+iIrba192D3NCY0bswlATbU3VhAb+mE892gXx+IZDYZmZFRUL2RMyTp+Ph+EEMPhVEtxfLr7xd/87PH+05/92Z/9w3/4D6VubeDDEM+9U3XdLbu2bYOPQggSfIbSjHEhhvG4C8WmLEOBgQCJIrLj1eZzlHPGmJLSOcciV1x4a5iU9EyjAGsIuwWLabbPBjrjwqSUWi5WIYQUIo6cGVcl8jESfIq89zGS1EJKkVIyblKVZIJiDNZH9IJC8EJJHrz1TkoZKRFniVGiRCmdTmfv/WKxYImkkIwxwQSaljEGEH3mO+VFPi/GLGrOGM9z0MVbXHIBeizIgM4FzrnSmvNMSWPEuBCcZ/aoUkpSCiEE6xQXMcbovOScQhRCxGfFBhXFdCJqmrZtGRHVdZ40wTmENoCUUqkVMmyeRe4zpIK4TAUgFkV7V0mFgQjGGDESSnrvcFPYhyxyIkoxiaLwm1JEY0pyIYVQSvMiEkQF48aGN8Z57x3zUsoUiMhxTsTJ2FEIwXhy3qD/Roxw+C2Xy77vAyUq4lyMseQDEVVSEUucUl1XKQZOxAWLxKTQDNxqziowC4xVCdKKvKpaxqS1tqpUjCmkNFlXVVpqzZwXUHOOUShRV2qORxxQXUojRE6qyoWQGItEXMoUAiu9EZDjmOCAMrVUnJgSkljkWfMkL4AUyYWYGPcphhhYTFpILlhwNngfnEuJAHNP05hC4Bi9lCQkd97GFLx3sahMME5CqNnkAcwnvG5PiRF7eHzAURQZDWZijJ3PA2csxuSiB2Y3TUD5MayU2qp1MRCxlJi1JvGMxJWlpbI5ElHuSFWVi0EoTUQUIwsxJc9jpBgpJay2EIJgxCkpwV0MLoXggyIVQogBHaaom4ZzmhJFHyqlK6VhGcw5l0oSUaca3F0qw4Z1XQvB0OwIiUUKMZLk2L8RFAkpsxmXLQqzoWixoXPrvRdC1p2KMQZKxFJVayGEC4ESr6SMMU7WoIXGKYUUiRGyAWQJwXklZAyxa1rGGPGiKiNc2SwJk31a62GYMOjNZoWcFBMXjPFIhAlTzqVgLIZIKXLOq0ozxrx1LAZGSTKmKm2Dd85MNj7fdIwxitCzDimlwIhRkAohlxtjGZNUerNtmz1MvA/eD8vlMoQQY1ZH4WW2CMZTrFDXl4sN3jsjYFVgM6UYAxGLMZdPRBSii8knisN4XskNfVHsQs8sW56GFNu2TZR8DEqp6PMkMuDKjGVGcKWZUipPHcaYgk+UhBKQa4ecSwgBjZbc4csrljHGKMZKqVQklQXjiIGVUhDnxS07bxnXd48PZRogEZeJicSIswQLVswDgkLonJOcB+e4IC7ScbdfLpek+XKzxKUHCkoLEZlIkYglLpIPvJIUmQuhWXYxxqqqxmlq2zZSZFL4FDnjXIpgU6Rkg2eREdFgJmTPRBSCU0oE69q2hjASK/pISGoZS0QRTGXsCMqTm44QKaxjnEUwLyiYaSIiJeVgHeOsP526rmM8KQE5M4IjohSaiKYRaleZJiKEJoqM8XEcrPXoxrM8bsIrJk77w8uXL6dpsmbE5VHiQkgiqrSy1jIm0LGz1iotSLDfizc1i5Ytu34aq6pquxajpiklJjjukbHEGKUU2ralmO4+fQ4hUWSchOTqantNRMZNrCi/a1VdX71wzgEeQvMMnMd56GQGtZVSLLJpGNBFOB73iIoojyc7MsYEIyl1jDGE2DRLSq6Psa4qbEmIX3vvudRCSh8pMZFYdCElxnwIYvS8EiwxVVUfP3589frm3/sf/eMffvjh+9/9cH9/L6WEt0wIoa6bMbrVslmu2lpRw0OiEIS0iddMMVLWsKvNi3//L/5y9/Hu+7/5VV1Vv/g3f/3iqzebSyWl8D5ESiwyzgTjinHurROcJ5ZSCERRKhZjNN5VTc0l2/f7sxm8CN1mKZ1KMoYQHh4eFovVZrXaHU4+BhfiQlZ/+PrrYRiuVpvPo4kx3t3d/e53v7PW1l3bisXxdHLj2Cy6YRim45jaNjjPOZdKOGLTMBLxu7uHuq5BbCHuz+dhvb7QujaTWdSVYPzp4ZElkpzlXRAcY6mutVJqsWhZipzYZrW21gaZaqVvXl4LyUEsyjozlTyc9uv1ulLaGMMotl13sV5OfJx8zyVrZCUiX6n268tXMsnrxTVF5n1MgWIiIkFCOM6kt4lRCIEEjzw+Hncm+qpp3r7/YX2xEJLxGIfjkXHhnGNcKK7qujaDEVKkxGKkmQgWUmy6FnSz4/EeZbBzU13Xddf2fa+b2lobiftISqvzmAWgOeday7bVx8OjGScz2ov1NjFKiWldVxUbx54VQwugHqno2GjBptGKxFerzTdvvhn6iSUmODubySl+YkEptdwsfAyrq4sx2f3jA2AU0EESZ4HS9vrq6gVHIUpEFxcXxpjIaJx6mQQTfLLZgd0YR8SdC0qpx/vzV1+9CCF571erlTHm6empq6sQwtLw37v9JeO70ymltOoWQCdlMZaw1jpncC4LoZ1z5/OIlpLWmhjzIcQYvLd1XTdtq7T23o9jOB2Pt7e3nPPg0xRMiNRWzX6/DyEZY6DJc39/ioxQGbqQuNSzw96rly//4Cd/8POf/1qQWK1WYRoVyUXVUeJN1wDaeHx87Ool3uzl5bVzbhimzWZ1PB7t5ISS2+22qqq7u7vr6+vupru7uxuGYTgN2/W2ft1+9913Pti6qaZpIs4GM8UTcaUlF8FHRrKulHNhHCwj+XC/g4Z+SpGTEEoC60+JLRarlBLnbBj6EMK2bYQQp9NJSnlxcUGJG2O65WJpphAC56gsKJg+hMAZ2yxX/TRKkVuh19eXKSVO5FLYPz0gEn54/2mxWGwutyEGQdwYHyPPc1NCnY4Di2yz3FAgJlNbtR+fPvIlj4Ekr2KI5FNv7TQG4L/GmOFstNacp9VqxXg6HI+yIkYssiA0cyHABcF70rpNUSTqj8cTKOSI0tvNqq11Sik6L5fSuhiJY6jRxgBhTefcZrM9HrPIBjzcnLPe2+120/f93d2dMc5aK+Xp22+/jTGCIau1XrRtCFWwIXlatsupGXbTzjl2e3u73nRv379jUr355o33vu/HqT9eX7/wjvd9731WCk4puGnUm3U/9eCM13XNiIWQBEtSCq7lNCWlFjNzK4RwOp2IiKX49PSAXdDWdVytOOdFvLjiUvoYkzGp6O957x+HYb1en4Y+pRQZ+RR/8etfAa66uLggwVNk53Houu7p6ZAYvXnzIkKaj4KSqls0y+XyfD6/ffvjL3/5y7ptI9Fk7eP+kRg1tXbGVlpTTKCzxEjOpfN5att2sVjd39+jqQA2WKNV29b39/ebyytr7WnoifhitYmRrHNS1yGE6CLnfDyPWmjgOMYYsNGtd2ZybZtw5grJTqfTxcXFcumPx2M/DtE7IQTM3GKMUuqZ0oRmyYcPH2LyjCsh2Tj1TVXH4G5f3hwOh8P+qW6b6OL5fJRlPLRr29wjrKrj8ehS5Iz1/bheLHmtORnWcMaTMY5zPgwT2vDEWUyWM75c5mHxtm0Bd6IkmTUrqqo6n8/n83nRdpGYCX6m7KDtypmMKQbvlRKrVdv3wzAMuqljJM5ZTEyrrKEPSNFHy0rnkhg79mc0BYUQy+UyBPf112/QrYT6wXK57PsTY0wItlx2fd/PovxCCCGT0tJ6zxl7fLyv61opIQQjikSxrvV2u/n+++8/fnyQjLpOU4gxpovVyjlHISYfGl2N4yiZrKv62J9D8gJIV9t674lRSIE4t8FrrSdjtNaREZNCkvbeJyaIMUrc2XA8nK9eXNV1/enTJ60lMCLM8l5vL1NK3vrDeGjbVnBRq9pNTtXNNFkhBAQx6rqWjHvvU3C6UiklE70U7Jd/83M8c5LCOCuU5JyfTqemaV69frlaL+7v70MIzhuQt4Dzeu+Vyn9JFJydvNPLRXs69sCCU4hMSsC1jnzwgXN+Pp8BaCohow92dFpUKaVK1sQiY5woc1MnZ4TiL29e7fd7YwyxGMgLEhgPosIfb7o2xvj4+Mi4vH3xsq7a9+/fj8V/EmVvYDMHi1IKMUUu2TgNOnmZZEwipeCDk6pZLpb9cFpvrlar1el0csGvLzbjOPoYdF2Nk12tVrrtlhdbY0w/DtaFYRpjpLpuQ0hT79q267quktXDwwPqssQY55IJvt1eaq0PuyfnXF2p5H0l+KJrpNSjMTFGil5y8sXqhnNujPsX/69/eXV19ebNGzdlDR9nrJTyYr3ZHY59P6yXiiXOEiVKIOsg96YyVSaldC4QcRZZKFOkhQ+qrbWBgnNOV9Vmu02Jffx8L4RgTEgWlFYsxZSCqqT3frKGE2uapqmqYRiGvtdaQ/r8Jz/5ydRPGOtUXFVaOjP6GDEeWlVKa62UDMEzlpbLDvtusVhADpcoCqVcCMY5IUQiMsagh40eFV7fYlGnlM4T216su9VCCeHSKHjd1Gtpx8k+Q/pSSuA2+hTRItZFNAc0ZyNHP8uqcg5WDgpmVJ5KKSbFer1Gg5o4wxH4cPfpr3/2b58e903dvnr9zU9/+tPtdnPqR+VYu7hoF0JUTCk9TIP33rsQY7TBz818NBtVlacUYboyjiNnmd80v0UEtblPlQpEiOCOCSN8BZh4KOoEeF6Q9Jp/RAjhi4NiLHqvqNtn4HWeDdRas5BFBnQxxUbJXSntAxpipCotihRvCBhmzNJC+OWV0jj78RWwd+dx2qZp4B2JmQVod5aLYfMfhGM0AFDP8yKUUVUKvQGttVJZCQGvXhS9HlbIm/hP4zOhFd9JRWzaWqOUnvl6+GL6YiSYFTmVypaS83dSudYZOsRRxxhTlcanAE8MIaQUm6ZJITqX9Y6x/NA5997PLnxaAs3JYtMyC21n2Ro0KudRa5DOUhESwcWk7Hrn4CVyOp3AGgM+CKKKUkoyjv5bVWtcTCo6J76QFq21SkmQOGIRokkpMWZwtCglQH1tW1jbG7xKsIQAaeEHTdGAx+NiRR1FloEgdFYy4Fjgeza7gCYcVSoFp5SKscgKSy2VSoUsLyVPKXHGE0VsvfmXYBVh+cnCrMdjBNEDg0jWesbY+Xwmoq5rgPThLaA9jiEpKjEHFKT4jN8UfMBbkGVOnws+byXvw7y252vD+tFae29JcBmYL/4bFCKmATjnLroCyIdYqGSp2H+Xv2SNcrD75++p8vA4Q4UsWX7dLobos+4HKG8xRl3nDiERcc19mQxQSjln/TPpGPxO6CJhqWNVFyQ0xmLckcoYKWMM7FEU6lVVccqy0UDbZ24mUgqhZAFqKxxvzjmptCyOcNDlxELyWQZXgGQki40nBiC8D9M07XY7wCKuWJOllALaVCnOL1cUZi7ODvZM+ScUJikrIi1oG3DOiDxuv4RlToXTFIrcGEKlL7IM+F9EdbzHuUGNRRuKT53SmWgDXgBOEIQv/KzUSqQyzaAUg2myR4DJUkW45lD8u6FrJovDFRElRqmMxQkhuuUStipYRVSmLnAXscReXiQjKqW22y36bfv9HoKkdduqLK6XnWbnLpSUMoQkpWSMgSOJvjSeVfLhfD4vBAevlorhMj4LRUsqPGvkNyEE5EzW2slkGVlgQ4g8rKg5laY3rp8pLryi8nDyTFYoqlBIghFIUX+GYl+OYWr0I/F2iAgKV9M4pmIXkx9vGV5JRfgM9Q8rYzecc1wnmJKIqxDVxVeIaOaPYINT6RiFIlrCYD2avNICXZPfizcxxufjQxCbyqxVjHG/33vvheKc57AMHwLOM2EfzL4YIxOZctj3/TSMCHRXV1eIunlo2jkhRHa+FmKz2VCRWXTFtRyCnniV0KpDlwvvGtPN3nn0JFKZDbq+vgZNAw/TGKO1nAexfQyy2P4opQ7n01/91V91Xffzn//NL37xi/fv3x8PkOSbnPN1XTMKVa04czYaa9y5Hz/vDmNgslGn0/Hf/8t//JOf/OT/86/+q8l5HxlX9fl8Xm8v0GTiinvvKUE5irhmMUawC6XK8t9SKy7Z9z++/f79D1xyJihQ4FIopQTjs1A4SE9EZMcJK3a5XB6Px8PhgGdujLm4utxsNs777XbLpLi5uTkcDrOe+OFwwLq11l5dXYXCxnp62g3TeDgdrbVVVbV1Ba3Gy8tL4+w0TZCnm7dnpTQrI/+cc09+wGCQD2At4PdILpSQFNM0TWATE9HT01O3bZeLi74fGll/89VPXt28eXH5MrrIuaBIjOVEK6XcV0MSGEKwdnQp9H0/TYNLlnM+DEOiQJSkVE3bTpNF3R5CmEkumLuUUsbox9Hi1ACfaObfIRuZdyvIMsZ4jGRCWzbG2DaV1vrx4UBExpirm2siur+/v719oZSASSnqCwgQw/3bc94uF865Dx+zuxoXQim1vb5KKSVi3vubmxvn3GQMxMrnvCuEEGO2M8JeRs55PB7RcBJC+NHx4lmPhwyfhuPxeH29RiTHeobF2cPnT4vFIqbfv/378xC7iCM1ZS27rEGX0/6qQl6NiXVVTJCwJmOMnGePFvzTxUXHGQPx5frqBRs4xFi++eab+/t755y1hnO2Wm2EVlAFsckC7eKcX19fY/ZrtaqNMYfDAT0Pa60QCgOgsZDRvPfL5RIE5L7vlRIpJTSnoZcNt8PHx0cigsD67nhYLBawT0SCZO20WKzmXAJy1ZzzabJtW1NRdcvBxHt/Csvl0lqLCOa9x5nYrZbYmCkl0KjHYTTGaClfvHgRiuP6OI7WTkjGlsslV/LpcY+UEn9MmVAsQ1FfJsHB+Jt7dYyluq5TmSakQpA3xjzX7cWzCiFATnfZLUAAqiplvZFSUmIxRcaYsz6llN3kjJmL4hgjtIYzsDLrYjl7d3dX6QYnKcRAa82FUMMwfPjwAU8SB3qM8fXrV6LoOiJRxCrCuIAschmZhsw5Y+zx8XG322E+4OPHj5vN5uXLl0M/gVy13+/tmIx5u1ptlBJaa8aT1to5A3VOVVdqNEjeUkpa1ziG8BXOGKSlN5sNxotRMOJ64JKHHlVKCVGlrWvGOZKxclIb791u94h+XkrpfD4fj33T5EkI8ArB8V+vF8PU17oiTaib0M4H7vbVV2/6vj8fj0ILFBpKqekE8yeRUgIHHMDr9fU1BuSPx+NuN1SVwZWnFJRSm81GC+m5HwcDqX2A+977YRjsOHVdBzXzRdeAjXQ69bv9HtXlbrdfr1dzAwDpKGSFrDFVcV2GQgvSFQRhUWZGeTHGmNPClBJjgjMpRE7/0GZjz2bKnXOyruYVgmynaZpEOf+kMhOg6woKMwBqQOTEDkI/e7VaIWOckyghZfI+uix+GGNUQsQYfbCcc5BXfPGNnE/AWBz2kPshsjnnZs1c9BXQGsRAWNd1aMtBMLeqKtwa+DSMJeccMmSolOCXjOOoVIWsD0sRM2egKhtjNsvVDGSllLquwxGGBFhKyZXknMNpE/dCRWQGA6ms+C0BOkCagaCXuNhsNnVdr9frFy9eOOf6vk+Jce7RgwQJIKUEeWX8Hufc5CCwq+ajHH1ECImJL4LdE2KRcQ7JA44qPB9sw2ma3r17h0OtktIFH2P00eMNSiVV0c5GCwFSEiiFnHMUk1IKwRkANBIe/IWIpmmSKnP4QINQSl1crGeQxzlHnDnnkmAzRIbQYYzBXBc4Cl3XYThjs9nsdru6rtcXGzQSgDci6tZ1/fDwgKRuu90ynmltyBZwsILnio+QQkceMaoVAyFQIxIKwQFKNE1jreGcf/fddw8PD0qpb7/99mm/11oTZ/v9njHW1pVSyoz9XOkcj8ep7BHk27iA3Jm24/l87rpOtRpTSoDm7u/vE+OSi91uJ6U0xrdtzYpWkvcec2AhBCl1Bt+FzPVm8jFGmBC0bXs4nRDEhmFIiYF2nVIgls0zq6qaR4ojNNC17vseey0V5QZc84x+WO/x+gqWmGdVWRkZBzqBogwM/aqqoB3PGAMEIaW8vb3NIv51PQ0TlmVMJKVkRJ8/35MU16bJlF5eBBBCCOdxUEV3BrgPPg9JQ4oJxcybN29evnz5+Pi4Wq10pcZxvNxeLZdLY4yLAVQ+55xQ8nw+j/0wDpNWtbGh67qrm1tnpt1+IJq6ZXw6TEI2m+3NOE2oS+fyj8+T0Vy2bVs1ei71AaZwynPfqUyzYpzBe4/qeu4v8cz5zaZwM5D0rGDmRJnL6Yp9E5dCyrx5gvOcSwSd53hHyXdjCBmTFV+mkj0RUcxgVggBGqcZdY0RG1XK/KbnsWW8aVZGmBGjGWMzO3KuGJGu4Zu9zxLABZsg4DUzRM7Ajohea0kUIas0gzWMJ+YzxOaLsQMSo+SyQ+MMyM7PfD5+QIfC33kZjSy4YQaJkLqlZ3/A8VTFTo2IlJDzckd5M5f09AxaQjci49GUlJKAY7wPKflUYERRqOuYtZzfvsyz1TyErIfLnzlkYi3N+sJIEea8oaqq6Lz33nkrPM/MmpRQ6+K9xBhiDNZGHNaccyg9lSPTgu6Hi1SFpg3wSxedU5T9uNrwTCUGMVcIQfwLFoxfHgl8dsbK10MIVIRx7TRKKTnPjr1CabxuHL0hBApJCJEoCzBNFtq+vCpOrOxv911wVbjg0+kUAmB0hfyVSp8DSD2maXyZk+Kcd4uqaarogzEZP4o84T0D4mSMBGeMMUtRKcFTtmwGBKO1JuKzElMIwQY/Y/EhhFRkB3BwwguCkbcxG/KUTI7lBcAY+v/TNI3WSCZL/OHY8rhrn4okS6HAY/HkBUPZ0wC3KbJGrUwpYe5v3lmoilkRTg0hCPFFijqEAIa8c47KsBUVxBAhQnI0Fb8grXNwQxgJKWs7ymcjbKU4xzSlEoLNFxljXlAzroqqGOvn/v4+htB1XVPVgZIo6TJxhn2Eq0qF45xKY2k+53DLMjs6yvlSIfOCeCLLZBaipS32nsaYEGIqVO657OfPpXjKNsF4aSxaJZxzRiIEL4X2IVuJUjHWA4rHQpaJJ6KUohDCGTtjzfkETCnGiK7knNNj+aWUYohExFKWhsd1zmpuQPpQhwAKYWWeer53VwzZgXRjc+liD1LXzTgOWHuceDkyIh4RsmfkeYknIcTFxTbGaLybD8GQLQQoWIe/482CLWuLVj50YKj0igqgmbt3VNqN81nMn2l0ppRVoXgZt0RfbV4G8xEwn56iqJ/jdZTGfk4DkFIzxsbBEGXpEpyA867kWU3sMPPHGWNt2xrjjDHYdLjIvu9R0mitlSLneG6WhBCTJ8Sr4KUqIdf5/39iGiE4wRrE0mEYUDLFGCErpJSKFCC52Pc9RM+rSgJgOhwOw3BumkZyxRgrjdWEBkb0gTiDWtwsZ//y5UuIvaL3j0IReN/pdFosWiHEnPbMi2c+sk+nky6KN3VdO5vHCF69evX27Vt0hb23VaXm1EsqZX0GTYwxQrLffv/d5eXl7e3tcrn8i7/4i6enp7/5d7/8R//oH2mtGeOPh/2/+9l/c/fuh6f73WG/u394nDzptm6Z/Cf/5D/4X/9n/9kP3/1udzjJuvYuRq5I8GmalNZaaxssJVbWWxY/UUqlFKZp0rXmUkTmf/Pdbz58+rjerITip/4MMFFV0iWHXIhzfn//+XJ7vd1uD4cDhuVjMYrYn47BuqurKyL6+PGj1hqaDIfDgYjm4XGsH/yIc6ZtF9ZatIGNs7xMQCdGh9PROTeaiXNeVRWXwk6Ol14X6mp0i2utffCfPj3eXG2klOM4ckFCcsZT8L6qFbFY6bprW+/9su2+/fqb3/7w/c3VS7+Oy3b5k6+/vVpvgyNVCWNs9MH7L2Ye2H2ScZ+ikMxZf//4ABhidMPFxZoJOp0P5QgAuSQjm9CrUUUu0Frb9ydEOexooA8IZdZaCrGSikkxDAPCWt3oWulxHD9//jx35Y0xXdcJIaydjBk559M0FKm9XOoX7U6RFefatreWExNKonzyIZnopZQscqLEUopmYoylQLY3yMeoAFskcgOmBCVZ1+LubkfE27ZdrZbqQqDsxOMCAIHrlPBe49x7DwmUr7/++rTfGWO8d793+2OaFsl8EbWIUKoFRsAYu7i4QDSb20LO5eYrEM/seeX91dXVbrcj4mZyMcbP93eoZrF/t9vt6XQKgVJKNzc3ozWIivd3j9jpqAXGvmeFfANoCbXD6fQwTV5rDqwWDT+UuAAo8dDQ+ZuzBWzA0+k0DMPFxQVFvt/nwW0i2u12qI0RZIAzwkUZp3bXdRcXF+BtAHlHZtW2bVUxa+1k7cfPn1+9fvnq1SuQKCE3gUSaFQU2VhgGRAT5XRxzbduOgwEAhBYIvKyxu6dpco5uby+vrq6g1Y6MFD2V5bJ78eIFOhYxesYkUZSSPz6G7dZdX18fDgfnzDRNX3311el0Gobsi4Vrm6ZBaoWgjc/C9LTPprKpbdvD4YCHgM+dseZ5JaQy+jNXZ86Fq6ubEML79x9FoR3MRAHk2NbalFiMYRYexWUgSltrLy4ukGsRxRm/wxGwWm4oHdF/vbx0D58fYiTnzHp9FWMcBrhOsbZtR2vgRyeEwKD6x4/32+0KB0FiDNLz6FXgcD8cDgDdxnH89ttv379/j1FjIcR2u8ULBUIKLRdk2jDWIwKt23tvq4qDG4SDFT08rIrVajGTM/C6V6vV69evD4fD4bDLuCjjdelAQIoKyf/Tw32M8Xwe4CE2jiNAt8vLjOkTUdNUSiml8kw9mPgvX76cy/kQwjTF9VoCek7R4+VWxeAuhADmDbZ8Vas5QU15bDrAliIlj7RNyYqRf7h/ijF+8803wHEq3YToOJfzuOe8BpALIQ3DRk4pHQ4HxpimBGAXm7duqpRSP4xzCWDtlBiM+9oY4+Fw6vv+5cuXLts/uhcvXpzPZ+xfZB2yuOPEQiDDbbZ1zRgzk0MUxQJerVZKqdGaDLMynooBYClpGepx0OkqX0VG3kfs39VqgV2DHBUDAbnvyDlkTGb2CY4qFOZSSnDaECKgMI63f3V19fj4iHyJWDbxQp0CuQNUTN57KbnWy1hs50WhoSAZmEUm0cJ3zp3PZ6xhLhWi39u375wLXbeELjkSCfxI3/fEYt1oH+xkPOecGIWQjBlTCnPRNzjnvW+qfEnY3diVM/jrjJ1z5rdv34I/h1bZZrMBpI4xTW/C4XBYLBZSajwuIQTjAaQxIQRA3rquUwrOOUoMZQ52K/Yy+sH9cIJCLM4+YwwkfVjx49F1hd4AJY46dybGaa27rhOS7R72+IUA/auqwsnrgq+qCiZ1WADoN+CNYyVwQRC32Ww24NVi0drib6xVres6xiiZQDc0fvFGqsCLTSmgL77dbJDvGef6vpdSqyqLmRiWZ/dxPp7PZ85lcK7ZbjmRtbbpuru7u5QS9Hamh6FrWjuZSjdt2wJxxvIWSsMmCp0GONZQcftgZWbRGIvcfvfweD6fhWSMwX/yzArgC4j5/v5RCPHVV19lREtX/TQ656TkiQhBchpGoGrwt+i67uHpyRhzPB4xmSGljMl7/8VpDK1Q5xy4ldiqyMDn8gFK689pl3MFp5SCXp/3QQQxTcPAh6pujDeCUbdsA6UmVRLOyIhQCND4O/JsvLCrqyvAbYwxFhN20bfffrter5erBTq3dV1PZvx894kzERmFYggmFBiIyU6mW6xTDMamrllW9arW6jz0nEshlXHJOFs1LdBQRhk2mvN+8C+w1mNRUm+axk5GKej/ZllbXghoM2Q5c1783yY7z5gUSBapsKXwFxxdoZzlzjmWaHboRnWKy5BSwrwoxogZ6hn9UUISEVOZ6VbeX24voOCeP6sAyhIBceaP4O8lzhJKF7wRqP+AisiKc50olEPvPXBe0De990B44jOyJCp87z2xSERaKCB9CBM+ZWrtcwgJLwUT3FVVeZ9PGoRgfI8r0hmxNFJC4fvM2MT822bcBwcJe2ZIhTtyzqKGjxE01aAFwOX8Z/6R+ajgzwQ0eGG9pZS8t6xIDGOpAymO9MXyEQck+C/IGllpBuCOzuezIKa1JocJx+xNJ6W0JfWfnzCeSSrUb567bWJmmmCpxOxOw+ZMooDLAY9u/sp8Cub0N1u3pRBCKsr9nAsQIVlGUdP8cJTK3XXGGEQnENyllHOMjiknr0gs3GSct3Ofdk44QgiCOA4MLCStlRAsRprPCdwOaqG+75+enrbbbdd1weYpPPBwod6bH5HIDQ9VPMqIiCeCjArGrvHcQgiMZRkN733iLPk0LyQppQ9fNGTnDjzaA1LKFIkSwzymQnN7skjNE2fAzan0cubc63JzgfUDPBR9P6gZYsnNDntIzTkxnC4hhJTiPLOGy+Bl9jaEABEYhFOsYQ6viszBzFvGW+eDr6qKYp5BRjKHEwiPHY33GKMLX1ovqfBoUsidGJb7md4X/XTGmPfZgQ2HVkoJjqYI+0op8LWh3hVj5CqHrEhfeoFYJKyoq4fiIJxyMyY7v3HOiTgs7GOMKWUbmRLDuRB8jsyQbZmLT+RVvAxtzEg38iSsT0jwY5N2XccZZr11WWwKmwI/jmhD2V8oNk3NiSulWWlgFKiUcS6HYej7E3BnBBlRPK9ASUjFVhubBdKB3vuqaRjnxjlwBIT4UkgwxiZjXPk60h2pNSiQvkw54NlyyucjdpCUMgs44hcmjx/B4v87XT0pJRW1wVQmCYZhEErDdpoTjWMfvY9cWGO01oIYJYoxccZyl9EHIp5yzywYn9nKSilj3PzGqQxbxRgZEWdMVdV8SKWUYgiitCcrrZu6llJmvyCunA1mclKWPZ4SCon5OcxLDpsUoSalBH40ChJRnAORVEkpdRFNjjHysiaxVlPpp3LOFReO2OTP9Pv+pERVVQXrBLFhmuQs2U8ZKBmHoaqmhKGxqv748ePT09Nqtbq6ukI4QmGAhyOl9NallDK0550Qwphs/wDxwf1+j5c4dyBKRph3EA4MbAEsciyDXK2l7KNd17UU2fj34uICE3bzGRrL5IoLxbmBc6HkxWoLt6hJT4IrLkTVNLqpVxeb3P1aLC4uLux47o9P3/3218aY3eH0y9/++o//3t/73/xv/1duMu/fv797uJeq6sehn2wzDJeXlykl6x0RUwokAEaUAsWUUnRTCIF4YppzwX/12998uvuk22q5Xny+v9sdd0QUo1cut4IqJexktFSUgp9GvH08NAzttm0rWqbqCgbx3NoPHz4wKT5//jx7Q7Fi7IFl8PnzZ5THIYTVagHZrmkaMJPEBOdJEGfG2dVmPffGsEIQkznngrFpmgJzi07qSgrGGeV5FOsdKsamaaTkwQUhxF/91V/9/b//9/+P/4f/08cf75XSbgg3F+O706dK1W3VpJS8i2Ge8GCRiBIF44lznghTBSFGb+wYUxzHsW4rMP5SSsNo4BqNa3PO4aRDFprKZPe8Dan43KpioAd0eJomzmRVVZLVAD622y0vfeimaVKEnaA8nU4QX4ZuwPN+Epi/qBvH46mpdNs04/mEMj+k5HyarG10462TnA/nfrlcrrqV95aUT0W0TWttA1osNToWQgggj3NLD9j6bB+qlBrMhJUDduHHjx9DCOv1Osa42+3QIF+cF793+y9Xq/aFBMKOup0oJ8xoFma2VNuCSmaMgU0ZwrtSKkaaJou9KYTSuu77PnExjiNxdnt7u9/v8XC8969fvz6fj845kD1/85vf3NzcYNGixoEZYCijHsvlsmmqw+GAShtp5Mxx22w23nsh5AwVTdMQIwHExABrNVvaOmeD7+qsQZkK3RsrCp+LdM4nr4VUue6LoOrf3t5+9913nHMmhdDKxeBdTClhS959fsBRuNlsQOlFF80Ycz6fnXPIMGOMYALis06nk1DV5eXlOI4wiyMioKt4v0pWV1c0TdPu4fF8OIICud1uQYw9Hs8gl4FsWNd127Y//elP6/pDKMN2mBM6Ho/gD6aU8CqNMSEhw9cyM6A1eieAaJVi85GUiqk4Kxz8lNLk7Nxrp2fuL865+/v7V69eYbPsd8fHx8dCgQpEFssY19D3w3K5QMqBzoS1NiMg03Q87qWUbdvikoDRGLeTUn748OH169d/8od/VCv98PCAbmWIzmbXn3geB+QqWkg40HZd9/796f7++Pr1Vd22uAvw0OFmmfusQiiloM/gvT8awzkH2zqnfClN03Q8nutab7dbhOUQwvF4lJyHELSUb169ghVhjDEFJ1jSErLBzDqbTzRrnTFCiGE4//jjD7EILWKFD6czmJL9MKE6SIwuLi6QRwHHwdtB+3aaBqBjZrRaVlzmkLJcLh8ediG8l1J23RLjIG4ySimg5MZNo5lCCONgMB2PJhOuhzHWtjX2L54YsKcq1RlqiCxFxjhJKa210+T2+8zWDyFoXQ99dncMIbjghRhxXyGEEJK1nnMRwHUV2RhZKdXVOkYYcgwxeWSnSH5C8InRMAyrVXbUDCG8e/cupfTtt9+iDAFkiTkbHApfKG5ljHs+O3SllFLH43EGK0IZ5ZRSBpun3gHcszIvGGPM87VKJaIQQtd1KSX0IUQxmsOhA1l5hE20mqZp4pwYS9a6lBJxTkSn0wldH9jH9f3Y94MxZrvdXlxcfP7w0VorFe8WjTV+rkGw5iMjX0bY0b5CMg/Mzvss880KFxCJ6PN64XQ6MZ4k4w+f766vr3mi4IO1brlceutGO07OLpcdl1LXdb/bFbROXF3duFILxBhPp5O1yXd6u90Ixqa+DykhW41EyVlEofV6nQoZSBbqJIputJcg2MIos+O997PvohAiRQaoEa/DGMN44pxLoZHIhRDAYK2qapz6OdV8DsE752JEWVHFGGuZKcmc5an0uQc2TdOP736oqqqp6qatjqf9YtkKIR6f7jPeao0s+quoUrGYZ7Tq06dPupIQr5+vECEdoSY3idtGVjoU6OZ4Pp3P57ZtYySoAnRNjcm/0RilVDbhQIANGX9AC/Dbb7/VWr9//14p1ffjdrtVQhTx9KyWPuPyLMtnOe/iy5cv8R4XiwVq7aZpjsfj1dUV5mdwRs8IMqhmDw8P0zTtdw/oaszFC2bg+vOgda11Pes6EJGUvKqq1cXmcDicTiehuBBCCdlum/1+Dzhiv9+fz2dWOJfB5vlLLogJwQtTAWURNnWMEZ0zXmiCqDrxRmKxodJaoypJKcGgVQjRm/Gy2Vpr+963nRBMunHkDeeCO+ckHs1qtZKVRr7YNA3GPKdpwqDBvMj2+z2FuFgsLi8vj8fjbv+ERgTeARDuEMLt6zcYkWuahgk2jmNKFH2w3DPiXNWy7tpae2/rRhCRj6RrEYntdru6rjjn1jm0LPAWicjaM2NMCMalEIW9P46j5FkVgXMSQuL0AhgkylTsjKRorWPMQB5CLSskbl9m+Z9rCHDOiTLEoGQFGehULI94nnMB4TFrC6QQnYEWj53BRCB0qRCoheBzWRvgh+bdjE1kclZiM1hDzzQyUGPDqDBk1oxjX+YH3YzeFoB7RuVQSQbGVCwQw/z7Y/LAtfBgI4tEFLxj4cuccixkYZFHJLBS80BxgXcz0jpDMAg3MWa5iRn8pSK2i8jOC+k1f1CMkCB0WY2EnHORcTCbU0rncZjvFEgqXmIKeSYFSdjc/y9JoXTOQbo6Zk/2DJSjyMZxGwq/aZ5Eds4dDvsQQtO0yA4VF3WTQZP5jlwRAcCv0lo3UMkMgRMJRiymFAMx1laoiFhKyVMAlk9EjDhRct4zNHUTTaMJpWEeoufFaixDYIJD9TXGxGKuoMSXEYFcF82vD+1ZKkAPhUDPEGHGWErRORdTIDQwdR2dH8cxpufNFe7LRIaSOrKMRWJ8aX6A85OJhQ1trR3PfVqtBbFUOgr42fkZxhjh+VVWVIhFiyoUUiTnXKi8LySTQivGOfR/UHXMm4VJkVJSWslKK6V8CC4GJMQhhMiIKym0CiGERD4m1EI4yZ5v29nLeJomFtMMzSitYAcP526ANUxwZA/5waasukBE3gcpZV03QEIR6IUQXddBx4MyKyc3xkebNYWlVDNW6JxTUmJMGzmE+uJjK0GimV/TPAaRyrwIEKn8fBhGFjJsHQtdHXcNwD2EEKPPTSNixhiWmJS5y9XVjfFOSq1UFUu6UNe1LtogJW6ouSLlPOBhMiamyWKAUYjsvAcI3s1yIpmJ8GU+gxWmLVbjvNLm8IjlNG+B+QeR1OI/yz3mqjijotmgLBOcY0zOmZktXqBzJYR4enoCTY/oC709hAD9X86FrmtZHLTxdqYSkRDWQgi73U7AE0nrOdPF2kOtm9MapdBGjbmXlgf6CC6yLCeO2D6+zCoxliKLDiSCtuGcAznihXcvyic655qmqbSORfUihND3PcZFcalIO/BxvshQxBippJ4p0Qy0hRAw2Ih/staGkEDz9GXyi5WhImSK+G04XGKMYGrMLdjwrGk3Xz8YfLwQ23kxxZ7LeOxWpRTnUpQR4NVqNRt3AKlHdis594lg7YAhzeQDNA055/fvht9rFhac54m4UkCR0BSnmJjI5CYhxH6/v7q60lrf3d19+vSpbIHMStNao0mDx1JpGTzKwuC95xLu5BLZC1r7LPeVLQQ3QghaS60vUCJiuc6tU5yDEA/x3js7IZlxNgAIm4dYgeyIooEzb7S5XSelHKdJSGmsXa5WdV0zJhar5euv3pxOvTPTMAyqXTEhF5uLy8vLn/7BH8OO6Wc//+s//pM/qqT6xW9+9sP3v+OUxVsGM/U99cNQN01VVcbZUqZqYBnWWq0lCfbi5c3pfPjrn/2s92eSRDx8uvsIHYCqqhKLHEbWjDHGhvOYfNjbJx6Sj8751C2ac39s6+aP//gP7+/vwWd0zgjBrDfuZHRd396+mLP/VEboUkpZ2dA5IcThcAghdMsFZvnbtk2Mbm9voROFXJwXk4kUcrPWo2hnrG1byUXTNEVFNHvbImsFWwctEG/sDz/8cH9/f9yfv/vNj9fbS36p3n73Xuvqq9dfO5bn+VLOo3KHmzFSSieiUPJY46ably8/fX6fg7AU+/0+BiIuYoxa1Sml0+l0c3ODaDnjCxDEQMJQXoRGqo9ghTi2XW/Q9HHOLZfLw+GAv1dKC8GmaSJYgKYI1BKQ64wN2eJ6jcDSdV2Q0o7T6XRK1jOelNZ1Vdnzyfso60XVyOC8t+64P2CFUxXBuDmdTrvdLlCSUnMecaQej8fvv/8ebNzT6XQ6nbT4YgCO9hvMXbHdpJSXl5f4J+C8EuGuDIr9nT9SivM44skQUUrBew+LP+TSAPuAbV1dXSF8oYmIqhL48jTZy8uIDjHSs+3VJSJe7ountFgsiChGCiEfstvt9tOnT998/e3pdNput0TU1nWM8XA4GGPARUopXVxc7Hb77fZysVjc399jAJkxBoSoqlTf9wBQ5rZcLML6SCG211eqrgBAY6AYOY/Wervd5qI6JZlNnPgwDFKKtqpRQt7d3WG1V1U1mKwVU+lmRrSdc33fn8/nh4eHvjfrdXc6nRbd6uLi4t27d/SMecM5N8YxlpRSx+M5xiNM6u7vH169ulVKPe732Jvn8xlqD33fD8PQdd3rN7fIrO7u7nCD799/rGttrR3HabuNwGtevHhxOp3ev38/TeZP//QfvHv3DjrsXdesVqtlt+n7Hg1CCL0IITGzjOW02WystcfjEQUgIhLeIOIqzp25Bx9jAKgNMdMUgnPj27dvt9srvHSllPcOCcDV1bbv+3E02H3ffPPNp0+fgHcgXcdHoMHAywTGrGKnlLp/3Ash7BjvP39u67qq1XLVjeOoK+lcHkTjXPhCZZ2PUa31T3968+nT3VTc0ZWqYgwfPnyCfRFOf6zY7XYrhHjx4sXT0xPFaIyJ0cMx3hgjGLu4WCOvaGvtzHh5ccFLfsU5R1MQ+1oIsV6vD4dDVZEUWhELIdy+vMXBbYy5v79/fDwvFmq1Wnnv0RuIRWEvpIgVUhUds6ZpR2POwyClrLQ+H48l1MfNZrNou5yGySCl3qzydL/3PgRHpG5ubt7cvjocd+M4CsnW7fpwONR1/fLly8vLSzSrZtgdD3C2VDXGtHXWrJBCC51THSJyLiyX66qyfT+i5eN9PJ/3mSiUknPOei/EF9lGoHic8+hDSmm1WtV1/fnpDttEa1nXehgGa7LxaUpJa6l1O5ppGAZYOBPxuVcHtRlkSsiTUXaBQIDhrVjkL1JKojA/AJxRkYkTQqAk5JxHxlJKeJUoaZFpz1RKxpgoNlpzQojMBBEJxVdVfdEnfHp6wokppTwf98YYJgSOzsfH3dXVFhPGl5cX5/N5HDOCD7/BENxms5nk1NTdw8MD5BQYY74YYs1Mrxkt5ZxznuXXcL+LxQKH9fX1NU6xsT+BM8vLfCFcMaZpwogVCQI29/Dw8PXXX2+328+fPx8OB5AFedH0ICL0w3gZ/UyF+oaiYLFYILDg6yGEEPP8MRYALiyEoCrNGEuRIFuEMx2JfUppuVgjBL148QLXid+Dl0tESNGJRSk5TL8Q2cA3x9u01s5zsVzmpW6tjSFXOvNR0rSVD51gfA4mqkwlEpFUPBpvTAAQnK9fKV7G2R2EU0SNbgSyBQDKj4+PaPKxwne0Plpr1+v158+fOecYUhxHI4RoKo3KJXdMAfiUdmBImXScghdCQB/j9vb2eDw+Pe2JaLfbGeeklLe3t0opJEWpWCVj/RS2jckiTlwoIZ1zp9Nwd3e3WOS0iohOpxMWzDRNsD1DkYUMEEdeU3eYwMBjL1UPd87UdR1CfHx8vGCX0OQ8ng+cc1Ur5BimNHhijLwMEyefOOe6klpr4xwqKRxSSDBwPQCU+76/urrihb9rij1ejHGxWADfPx77i4tV0zS6rs7ns3dxSna5XPKVYFKQpbquR3/iGB7CIdR13dNhj9EAbAn0RZF9orxECtXVzTiOT7vH9XqN+gpbYhxHLMdxHH2Mq9Wyrhsi8sEcj8cQYgzEuKzrSlVVIjEY750nIugYSJFhFHhDWZs3GB7xXLEzloLPjFf8E2AvpL9S8ljUQnFVSP3hPgGIdoYeqFDtkGPFklDONS2+TXJlvFGyappGSYljPhRr1BDcjNvip0JIMRLm71NZx7HQsUMZT4O+Hs98W2+tI8rhA99W1w3jPFIazRQ9aGLABHksGh0zvIU+agjBucxmLY+LnYezEMIHz4kX+p5lTHDOI5SUk48hssIojIlUXRHROPZztJ1X5AzlYIITyRMgG/zBk3wOgRHNvO9Zz4TiM5rzXNnip+biVgjB6YscJ2MkucBUeyoqeLgYIQRjiaB0zPIHhcIIpgK24hEREVoOLLuNZaJ6Yl8w2YLXsGkY8TABR2Phaa0bXc2YFA7C+V/nWh0dfv5FeItxzlP8ogoSiggML1z4GKMooFL53KIDUCjPVKYyc4ubEoksLcqyNkcGoSihFqXoQ0Qyx5jQdShStpEY+S8j/0TUtq21NjovZRPKmFhCj4EE47kBMDdLKl0j7KaCTYhn+rb4nlhG8inE7XpTK62KemxKKcTMoPHBI7UCa9gbO8utzjxEznkKWc7iC/IoeCWlc05rHYKbYSzGGAYPIQ8ti1QLitv80kv7BM9krgRw0s9BD9QDbAdBLKbkvUdC3E8Z8kAzE9EglWQrv+uYBQR4IcizTG8PMwDnXL4vzjn4g6vVSqkK8BljbJrgIihCQYpBe6TSk/NZX7XyPk6TQYpARGA9hBAY45RgaMfR8fLeS5mH40Rhi3PO27aa4yqwOWunUh2lxWKhJTRJyHvvU5wFHIjNzbm82efWyByuQ1HsZV+mEzi2OOp2LDBe4GMqrZE5YCIrQhCYe8vPU1W807kHnrJfU5ZawgNcLBac54c55w2c8+dqvMYYwTJkT0RAzPEHG7Drur7vlWLzeFAsbq5VVWmpqCifeJ8HJ6fJhCyfYhljxOeyPydnKSUmJSukfoy/IOHuui6EeDiMaGZIyZG1p5QwdcXLbJRzbrFo7axaXqS9RWHR9n0PM1i0A0MIpHKg9t5D128W8ZipiKHY+zjncn6cvexJShlE1s+Bdy5/NqFCFBeLBbEYQz7QsQGfhwhWRqdn4QtjzDTl7u98TKO2ydVj8jH5pq1wF977WYIQy3UYhu12GwpTAzGBsrVdPZgp+TCvHzxkxhgFT4lHwY2J1k5SSluGBv7bf3C10zRgqLCA73lapVYV57zrummyoCKmIuEti2iVC14ptVi0p9MpeF/Xdd8PSLglSSI6n49V1bRtW9d1CA5+pClx8IMw1+aL5NR8OxhazwTqIirNEs2j2fPp7Jy7uLg4n8/7/X4OuXh3qAoAE3jvQxCgzu33e3gtykqP1gCaWl9chMgYcW/sFKIZ+6pSRPT69euuaX/43W//3b/9t3cfP/WnU9fWIdGpn0LItp9YllJKIi6lfHp62u126/WSBNts1/vD07/+t//6h7dvNy/XKaXRs+gDOClSSmS6L25fj+P4+ePH6ENb1YLxYRi8oPmls0Q3NzeodbXWi8Xiw4cPTOQSrq7rmeItn5l5cM5vb2/v7u6IqG6b0UwQOdFa//a3v23b+uWr265r9vt9XetpMmgMxxgrrY0xp9MJIB2SUujOzYx70Jqur6+HaRRCOBsmZqdxPB+O/+yf/ReV0nGsFKlpsH4Zj/vz69drzqVPRCEzr4koZqKu5JwHT8aOwzR570iQlJJESikJSSEE69w02hjj8TxKIbdbmVI6n6ebG5JSIhANw7DZZP9VFFFaZybKXCVisYncvw/H43G73Zii7X4+n8Vy5UOMMUqRRTCJqO97PDf0bp37Ut8ioiqlFJe6Zse9ReczhSiF2LSLtz++d33/4vqlVqppGuNsjDFS1kn3Rarrcb/r+x4gY9u2m83mhx9+mNd/Suk8TlASwPE3OYux+tOpB0aADB9nh3MulX36e/8469EUXCwW49hj5SAUI6dC+YrCdQZ9YqGY4T8vLy8h7Q27p6ZpwLqNMYKriEgIXf5pmgArENHl5SXGnDebDYBdxJzTqYc5R9d1jNFyuby9fXl1dbPf7zEqCzHT4/H49HQAw6tpGoiuouzCB4UQlps1EeFQxkEGKBNFB+f8dDpBDATHKO56tVoNw/C43z087N/c3kgp7+7uQJF2zn3+fOq6sxQagRHpAZounPPVql0sFtNon56eMsRTrAWe11nGIN8LHz4cT8uTUhJkzGm0+93xzZs3Qz9xlVtQV1dXxpinp6flcqmU+vbbbx8fH0MIDw8PKYX1em2MeXh42Gw2WOHg8x4Ou3/wD/7Bmzdv/tW/+legb4/jeDqNYDEDAUmRmcmd+7OU0rn49LRfLFa4L4zeJkbgyINGB0u0drkQLKvVHQ/ncZy8p7oWdV3bKTLGTqe+aToiioHW6/VkBqxhPEZd9JHu7x4X3WoYBmOzvCbnfLfbMcaOxz0KE3wRR+d2u62rxW9/+9sQCLAOchK8SnQ7vPcuBIokhWaM1VpWVXU+n4UQddteXl9674dhgLiQKPZOOFIZY9h3SEiI6OrqahzH83E/jpZz/vj4iKQipSQYi94jwiDDvLi4EMUj5+7uU0oM+5QVAhPnfBiMtfbdu3dCiIuLi+Px+JOf/OR4PJoRfpJ5sOx8Pm+3W8So89lLObZt+/DwsFgsuOIqqv1+j+ev6zp6H0Ko68XzuQfJFSSwuqYZOcfSreuascR4Jt6Cy2kmp1UdQvj1r3/d970qipHAxSZj5u6d994Zq5RiggcfcgNmGIZhgr52LOOkUHYyxmipU0qJkdRaVRWKbpzy80A2ezbWjNA9N7+11qwo2iml6rqCSBFqpRijcwFHISAzVEm73Q6aOfRsiBCINhPCl3HnZrUiomEYOMuAMvamEMKnXOYjQcKjnvk3iJOgJEKyXxBDpC0ATh73oYJEE5H39nQ6IcJM04BBc8TJqmkuLy9xeBERGsmr1QqqQc654/HY1U3btv1wygNwtQKGo7WeHDQ5nfcppQSGAb4NGFxKHk8pFVeqmeYphNBatrVmhTmEKmOz2WDHqSLGiFNPKQU5dXDhh2Hy3s+IM06Egi3yEJzWGoUwEN7cuogJv00IEWK2NcIbZOwLsmSMUTzrOMXkeSH/CSG6tsMyw3dyQULmlA+34LxRWjgXZ0UBpGexyDkOw9l7z7nmUnDJUBzNPAnvIu5oGAZisa2b68srHBYYEfBFZxULPqV0dX05jblldTgcnHNgqaMItdaG4O/v76uqQsI2Z9p4U8EnxlhIrKkrJPyI0lTMLYSQ2MLTNB2Px8VigdbXcr3+/PlzjFEovV6vq0pFEuM4OjP+6le/YomEEOuLbQhhu92yEo7O5zNCn9IZw0FXb7lYY21st9u+70NILjrnXIz0+HisKgVOA14rjiH8NnQmGEtaS+dCVhCSSko5DIOqK0ROIrI2ixnE5J+eDoHygoE1HVbIYrHomuZwOOz3eyJqF4u2q4mICwrBSd02XWcPB1botqgF5sGClBLikpT7lGBCVmmt0T5HviSEiJG0VtaHNI0NIywwnrhzYUpGJqWCTtGTRp+vkegwn04nn+L84gH/Q8isqqroPOeCSyWEUFoeDgfsf4SYEALKUWh+M8bm5eK9V1ooIYMzGIuOlHwMmumQPMcYV4jwwSPidd1KibL2C9Fpvn8iYhkTDKa4vU3DOBMJY4wYHU6Fjg1YDZLzBX/8Wyq99ExFBffCivlY+TpXUiqlGFEAjTwE9H6Nzd4pkZIUAs4NWWdaas4lYE0qeCv+HooSCvL4EILJBnGciLTWyANYkblEPi3gE0oplv0Tv8jm1jPQwHl2xkCqkQoRWwhBxASfyf9g+3IheIzEBJvBJgENDe8hhQ7MFBUp3khBdqhUtlkWI2WqOJszQhiaoRrHBJzPgmI0v9C5PJ5rEtza/Iga3ZQ7jVLIlHJ9EuMX4V0pJefMxzzCg6MXIR6/bf7EWFgnKSXGUoye89w/jJTm+JWPzEIxhlzDcrn03nMuvqDSIpMK8zhbjL6A2qzwwefXNF8Jo+ypAiY7sTTDysgw8BzmJYrHjluQz3jrWM+sJB/4/hk9YSxLXMcYU4iwF0tFvAmneGIcWx5nAG4qFsvQfGhFKm9WKKVgIVhXjTHGOR/rzIKJMTpnhFbzYkC4B+rhvV8vlr4oXyPxkkX6h5UuhWB8vvZRjqp4GMqibUd/WzF2fsUzgRffNq/SkLJJC5qNIYQyOjeFDJP9LTVw8cxboCwShveCopQx1rUdpkuQ6IBiid4bqFtMcM6YKrYwM6aDtAP0Q2QAM3g6/wXPB2u1qpqqqrQWuIVQmP6lZUIxOnRcGMsIIIgYvAj/5yfGOe4XIYKBZJc9Hkcs3RkRxkcjY57BLMZYSjnjb5eLYF1I+XWg9MJPYcmllGD8iPVZgFqRnhWN8plu/szbjTE/ojnjKYlCwqYQxUcFl4oMTBRevHympMGfsX3nvYPVzbmIEYNgPqXcLJy54SmlmGaOD7fW1u0ylcbS/CpDCBAuRIRE2hGjr6pqNNOXA8U7Z+zM6vVFMhtYZ9OsiSix5L3HgAKeWNM0m83m/v5+mCZwRvAHOMj53IcyFa6E0tmB2j47AjLLsq6zUtAwDD7kwRFRRuHatuWFdG+MGcdRS6zPAXuBFVcAbBO8ZTzneed676FyiNQ/FiWf+GX0B46jca6RZg7LfCDijynsEoBW6LIU4k+uPeZeL5ao83lTyyI/ZYxRMAh9dpSgMixy8PklEhHkBWv1ZWpymgaiL3RCBHZsEEqBft+f4IMxoy76Y5xzLRWeP0IcdhC4e1op9PMglqq1HqfeOkOMHY/9OPZCiBiCLUrfWJbAgzjn3tuqqsbRz+t8tMabbG2HD0Kxbe2EbQu/OyS4iDxd07JiJKie+Q1IKaH4CfgsxsgFHiATuanM+/4kBANCBCAVbbamaYhFa61KlSCeKOpKGTNGosOp15Vs2/Z0OH7/u9/df36ww3i1vQyR9rsfghmlXKVC1fHeX1+/YIw9PT715/PV9pJLtrm8OPXHf/Ff/T8Pp8PFdmOi5YwF42KMK7ZCIB2mcbL21Zs3fd8nxhKjyMhM43DuRVu9efPmdDo9Pp4u1lZrDUCh7/uLi4u2bftx4Jy/uLqCW5EpNoPzAkZQXa5XeFxPTw8huPP52LUtpUApvf/xHeShlVJNpWMKWjfDMCy7BVLzrmlvbm5AMxSJlFJMEhGhGfD58+dTf/beC65SSn0/mnFq24WZHGM8uNg1C601S7ReX0ipiUgL6Yp9KxckmJIyT3oF7yLR/njw0QvJjqf9jx/eNk2lSA7jCICDMfH4NFYLsVyuD8dHrTkRoVhCacdYijFTaHnxYkLfAm9qmqbD4XBxcYHkYRzHcayQIhKRM9ZoE6JjjI3BANBfrVau+MTgFwLDwurCZxljvA1guhhjzqeD1np//9jU1f/8f/pPf/7zn3/8/Klqushc09U2huPh2FUcqFlKqeu6xWLhfTbDOB6PgG6B48dsLJaAOXrvu64jwTGdPaf9z9ANL5kUIl1dXbHR/t7trzRmWeAarWIkzqX3X8bJjTEvX75EHxHU+M1mA4YXFT/6qqqvrm7Qz0B0Op/PVVEh50VBCFFFFR1PKM96723wnMm2bSXngzHDMGy3m8fH/W539t4zlj5+/Pj69WvO+d3dHUAonKFN01xd8WEYXr68QaTC1t7v90Kri6vLu7u7x8fH1XLTn3OzgTE/TVPfj5wTcowZPpjHSR8fH4UQ4PR1XRUocZFPE9xXXZN3qa4kZHxzh7tZPIczYJH09PSUUpJKQVwI34mHGQqj6Ntvr633OCO01pDjuL+/x04HfIwHPk0jK6z8OeMaR/Pq1SqEdDodkIcfj8fz+bxarVarzT//5/8cqJAxBuIJfW8Q6q3xOO8+ffp0OMS/9/deK6UOh+Pbt2+dM13XrRZLIYRx1jkHpjznfLlc6qZGRspKQ3ex6E6nHvcIhdnTyV1cuPV6/cP3P1prYXEcY/TeGWNSYkqpx8fH82n46U9/igQjUX4g1trFosUiwdkB9HwYhtPpdDqOXdc1TQQDgzFGFIVgRCkEh8FCxoRSar/fH4/m6rprlwuhVdU2p2MefUBxxJ9J0MBJ8ocffghlzGuu9bjI5zscC3DaYiUsFgulcnccx5Aqo5kXFxewr9RaTtNU15oock7b7fbdu3cxRmudtw7R5mp7OU3T/f29Koox6/WasYxW1/WXnI3JbDUEKAqdJ7RPOOefP38+HYbNZlHXNZEjnhkSzhhcJF4cZJHw7pq6C4sEcXN0lUShu7EylYXaCkhL17RN01jv7veP42i//vp113UpZUZqzmGUQkisqgp6sqywl2IMM31thuqcMyE4F6xxeSprMObhYTwez8tlJ6VkRKvVqqpUPw7noUeQx/GxgJ+nEHVdo0Ngs6AKgfSK3IM4r4r4MpJwLAPUd8En5LSIAPTMHF6WzDYjKiW9fz6uGkJIiQXrSRNqK5wFaIQgilIxNVkulyAOY2phDpLL5fJ0Oq1WK4CzWmshmNbaOZPd8CTvhxPQxgzhaVFVVeIs2YQMlhdrExx2x9N+HMfNZpszZK2RaFVV9eLFi7kc4JxVVQXIywTnihEipCmxo5HOAbMOIeDsu76+/vT+U/IBdAEMO0LypVRPRikFDijah0qpFCL4TDO2Mx9eeHQxRiCVjLHosusMNFVw78vl0po8nYxeQkw+F3rBJYrEWK104oxz/vXXXz88PDw+3gvBQDWIhRTIpQBLjxWZ0Jn903Z1JsOyGH2YYQ00Sr8oeDBmrR3NtFwuLy8vHx4eDvsTEgB6pkmL1a6rGqRaFIy+DErOctKcc+jsY6t2XQe/boLNG+fGZWI14uQwDJvVQgiBDLkfjdZj2+Z17qNnjEkhlssldvTT09NitXrx4sX333+P2/z48aFbyOvra+zZvu+VnNC3Y4ydz2c81a7rmsacz2dcmykmolpr6HAyJj58+PD4+PjyZhuKMh5So7ZtiXjTNCGF4/E4gzOAHy+vVsM0oTRIjFeVShQ55/v9vtZaFs29LzRZIfe7vS8yMnO9TKXmDWXyUkq53W4oF++5aEJ7hhWWW8asrA0h63dLpc3JKi1jjE9PRxvtatlZZ6MjY42Ey+FMjZn5LPv93lr7zTffiKLwiG/zIcdc1M+s6CTOrTDOORMCnZOqqrydOMeuYMTIe4tTzTuntYwxVlKpunIugNccn821zVnFfMMAcAXj8cuC495nYe+CM35R58T/AvKYUSpWxHmf43cpJRCTm6YFSBpCIkpCZAjSWss4xz+B0elDFszGBePpK5GlQjnnRCylnAT4ohSBpcyLBaISUjZZL5UKMF3XdYwpxsiZ1DoT9HDMSC5nKBD5BHLEGeJUxXSOCr4A0kGMKVKqimjpfFoAsvElnQ0uAn+Z42MsZOq/DeDmYkypLwhjvkKp0UPDYaCU8j47qyJwzA/h70Cxc9IfZz4skdRZac45j1kMnaVvvyhv4PdY76TMhbEoBobPwX0qcsC8+KjO2FYuRYq+Z35EjAfOYwzzS+GcgxJorCWipq1DCFPhzjxPxXALxpi6PED/zB9P+FxiMU7WWrRDWO5R5yUaC0k8lhE8KqoXlBiVie/8BHxuk1CIQqsSNVh5RPkJhxjnt0mcC/5FrMD77FpJRFzJ5AMlxgXXVYVJSVYcG0x2rsiKhPMcJb54PB7RBHv+8Ik4/KC9z8RVMYvVFNURVvre+FcMnKaA8jiDs1RQRV/G+dFhwx53zs3S6ngF6+Vq2S0QajFD5IvwEytU/bxtn2nazmWnLbo62Gug5/Ayb4VgkhjVxRYpQ2aFmDlH8xBCChkkZUyEkKwdcSLCVeDy8hJRF5+1XC69j0C3rQ0//PBD1y2gtOizftkSy1UVhaxY5GJizIsQ1xBj5EWpJhUqN/4ZMMo8fY9OGc5gqC6kIvaN3SSUbLQOjCceQgjIgcw0zVGaZj/AMocenSeRjTRxsiDzxjV/aZk8w45hZYq0aR7QE2VcYF5UKSX8KnSdqEDV+M4v/YbSlsCSsEXgCK0jrDfkwbIYMXvvpc7/GYrgEi+6RqnIpaGKMEVJGYO042gSy3stS/j5MOMXSil0DpbLZaRkvdNaU0pKKS1VCZ6SCh8EEMAcH+bWaV1Xz1eglBICo2gP4IvAa9DOHIZBaAWaBvBZbORK5mFPpEEUkxCCP7OinYMD0A3UrrGI4xde4QhwZ151LgZeZllS5l0K5J3Bh1RAZl64/9hroqhwhOJOjGOobRaiKFO5Z5qhk8mVBn5kFlLwhbSL7dO27YzsEEXGsuGkDR5nlptMKb1IF0MnVrT1QwiV1s45OED+vj+RP+tLWTtFHx4eHnBYCCGYoFnIW0qZKFg3Ka2sm4zNHu66WKoiEBHRYtlKoXPewoVqFRWOISsa08MwLBYLkhFT2GjjpZSUEpzXmCm2dsKUA+cc0FsqfHMETBQbSB4gqTGOo/PGB6u4ojI9BvDLmIiVOVcLQojVajF/hJAsTUZrbZwVQixWnXOaEXV1ddofhvNIgSRXL25e/Nf/+r+RLDYq62udjse6rnVVIYo6YwGRLNcLZ8x//n/5P5Og9cW6bWsuhJmmwUyVVLGIriRGh1P/q1/9pl00UsrI+TCNSsiqqT2l8/m82WxQ9eGasbAPh4PUalNtVDHnWCwWXddhzZhinWeMOZ5PWmtjxrn2c9YORJeXlyymv/mbj01DP/32uqqqtz/+qJQa+7N3ATnDy5cvU0rG2UipruvRDOPQCyEEtzGehBA+pE8fH7fbNWcMdgtdt6yVFtz2p3MldHKeq1oyKRnv6obFNI4jV5LFlFIiQq80c9CsB67qJzOcp+Pj44NSqmka67Nk0zgazuPV5UqqCnjc119/PRd1Qoi2bZ0zKJURguZdCX4uspFPn+7ngWteOljYktfX11LKfjj1fd92XVVV3lul1FzS932/WLQg8iDIQ5nh9evX958+n/u+bhuSou4WFLxI9J/803/6H/0H/8Pbi9V//s/+r0ynwQbZqN54XyYCofMzTVPdteDpI3AhPq9XF4APhmGgmF3ssrK5zCrb2+0W09CgWSiuKpnD7NPT09o3v3fzPzzcjRejEFltCVqTm81GKcW5CKVWstZiThRBDFwQaNdo3eLeLy8vcYh8+PABtSsvnmAzwIoGp/ceEqXTNFlrXQzX1xueCHKNeEFdlzvi0xRXK11VFQSmnfN933MmLy4uEC7ath1H0zSE9rPQqll08AB8+fLlfncECIJwAU4WABFEp+VifTwed7vDYtGuVitIgt7dHVerFaYfsNeqqnrYPRFndV1vNiut6pubG7AOASrVTR5swotzZX4cZwEksEHfE8WZQxQe0sV63S4WT09PwzCJotaNFALh7ng8DsOwP+yq6gTnRjT8oJsBLFip6nweDocT+hZgD3jv7+4eGONSavxfjCMYysgZ2ra9u3vg3OJ8r6vGexcjeetOp1PdaCJ2eXkJ3a3NZjM5O3Pt+77f7/dts4BznZRyt9sdj54xL2UuAdq23R+ecM1ScnCEMYD/8HBeLrKjo1IqJgaEHV9ZLpf4IFD5VqsVQDpwIJBU73a7eXABPTacQUwInf+Y47Fv22PTNPv9PkWGnKeuW8QKkO7rul4ul3Vd39zcQFsSzHTG2DRN1k0+Ra1113WbzWa/3zsXcVpVVYUCGYsclwfRUoBiaA1CzhsL6cX1zauXt8fjkSVCy5A/k1Gy1jZtM5eZGNfYbreYaau7FlhP09YpJbjI4uNOhwPWOec0j54M575bLvDEovdd0+A4qMts+zAMH95/AteEF4lq59xqtULw0VpzkZMc3OM82LTeLK19xC3P5YwpuHZd19D/YV9YzCEEj1JoHMeuazgnpLrGZHocXmXIrAXSOrcfvPeTHa+vr5EUhRDGsa+qarvdehuIiIlMigdUKoSYp+VCSpjVQ88mzOP5nLsQmqqSUg7D0bs0Zy8xxkAJ6SIcelB1csZGa2OM2eozZYou8ATv/TAMfuFxwoJqLcuQvbVWKXF5eYnd9KVl2DRVVb3/+PEXv/jlixc3kDTE2sZoCNJmlB673e5wOGTju76vqooEKSlCkPBnggMqFBvqRt/e3h72p5gH/uKM5GDZIMm3dmqapta6qqqXL19+/PAZMAJe3NPTExFd31ymRCg6DofDrDkJtboZAp73L04rMF7blmZlBiFESBEaJvgiY0yqbI6COIAxPpCWXPC4+BBzOEUgYoJrVU+TWSwWwoe+74+n4+Ulb5omxfy6GWNt3ZDgTVNJmSVP5ybT6XRarJYwmQ9l5FEWCy6kWFwQ3I9HN4BmMeeuuHJwlo/Ho6r06XT61a9+hWZ/yWMVERU+rxVCUOKMZ+65fCYaKaUUXDnmwBigou6CVww+wby2cXdgymLoBBEspVTX2e89xbRYLM7H/fX1tZYqpXQ89yjBjDEfP35EP9I5t1o1p/OIsUjOOXxxzeQwbLRarc7nYbVa4XO991JmC3GEZbBLQ0gxWiQAKWUpnrZVMcbT6fz0dG4atVqtZJJQSvHeKi1C4E3T2GB1nihlUoEKmS4uLu7v7x8fHwHR4LQap14I4Z1vmhriGzMCRsVBDSRj0FZkofByztEkQHaEiQRoRaBqw4ksBDfG+Gkc7qa6EavXq9VmPXwahmGor6rIeTJJImXkPMJ7LRQ3ievra5wHw+mcUiKWGCfgU/PHz4SymE11HUrExBgvUy1SqGEYKiVDopB8TMEa67zpmjalKAT3KTLvtc7DsCnlhcvLLDZ7Rlvm/AsVMXMliNq2iTFT0oQQnAtdvEplEVmOBZCFQCqgB1/0OqCTw3nCEZKKy5D33tnAmUwp85pd0VTVWjOfXJF4R8dPZmlgPuPajDGpRYpJKMlSJi/EAs7OZeoMfvHctBREQUo5Dsa5cHl1gRSTKAkmcO8z8BozVh5CCJxTQQ89oo8qKgRSCsaY4AK1Yvjbk+mjmZDs4saJqGkqUUyTZsgpFf6v925G6ucTrlTp2Ug3FQM3xtgs9xGK6CcryDIemuLCTSZQmhH8eTXyInMJXgZObpSIM0BpraWYS3d8hQpjbsaMZkRvhu38LB5UZKGQ784vRUoJajMrrGf8rLW2apt+HEURXoiFe4vXgbDV9/3JGKSSMcbj8YgTi3EydmI8E5aRFyLtDj4+77WgqmFlkn0eOQxFgjxjYYLcM7/dGYjBM1RChhA4kdQaKzyEIJQWIs8ncp5HRyGxDRCPMRZDCjw8H/NHeRkK/zRT/0qb2hTxOJyXIlMahVJJ5dBRMZZc0ayIMY7j6L3fbrdSSsFyMxOID+ecKTlLDeC3Tc4uFgvrna6rGCMTPIaQiDxQSApCCFYcQZVSUlXEGBd8udqAr+djqJoMFKpKp5SIMSLmrMMhHYIPKQrGQdnATc1rICPynCObZFJM04QZecbYZrPpxwFMsXksYO7WjOOIIdBpssYYwHAlAnOoc4DdifUjhIjR/fEf//E4TlhUKCSapnOzLWGeR9HztppDEPaXsdaXB4KTG4sQbAtYOaWUMAAA36HDIYuQaK2R3Oiq0pXknJ8nM3eYtNaiGMFJKfF5gFCJSDJuKxsopZSQvoSibzNTP+a/izKMorXmXKKZxFiW70fhB10F0FI4l84B7gdIyiMlwRneEWAUBJY5+JTQmntRWH64MMYYK3wBKl06FJyC5ykHRB5d5GXgTRS+iCNR5shINnPMOedt3YBnl0o7/fXr13Xb9H2fUnTOZnzZTFqqqqqOx2OV1eJypxBBCfkry4pDAXWLM2NpJeZ6A8V5OYsznrvZbEjwGabnheQOsR3v/c3NTdM0w7lfLBYAbmKZAmHPlEnmk6VpGgx7KqUANU7TFKNsmkYpsWpq5wKLqaRNLU7taRyD84wJvMEYc82JGolnVwMxR9qcxbpMKmEFSgb2MV8Vni1IK3O0xG6Kzyx2eXYOMCS4rKSkvAXqul6tFu/evdNaw2gxgRBd2nuJ87Ztz2n4vXjTNE3jkaZpuri4yMlDyE1N5DNudGaauq7brNfWuX4YhJS+dIsZY5yxFKMqPTDcozHGC//0uK+KeDSXwjl3Op3QYEb1BREpJWRT1UR07o82BM75brdr27ap64vN5vFhh7eWQjwfT9Aui5SGaZRS2in3JHCKLZbt4aiYTcMwoKJjPsU8H0OCc0Y09H3bNJQSMp+qqhRnu+MJZ7SWwjnjg2dKEheyqZSQp+PJukBMxiCkbD9+uJNSai95FVfdIlh3LnMbwftptKvVSgnZNpWdzL/4L/8fw9lITXEZjsdjfdl5F7u6A4v8fD5rXady8lrrIzHvY1VVSilDVGkF3uXt7e16vXbG4vgDK9M4ezgcbm9vMeYppWzbBWPZiQsBIdLcI1f4ulJKK3VxcbHb7Ww//tEfXP3lX/7lcr362c9+1tR1CAFW5g8PD/gNQggQrKSUNatVMahx3sfsplBJqSFxlkJ48+ZrQfzh7j6FJJjinHdd09S6qhTaG9M0yBSYFCkEVlTa5lRwNONoJhvtZI2qVS008Tys47MkPVVVFRN7fHy8vrmYS0FAIZhvwEEAUJ6eeT9wYj7E7ebieDzuHp8WiwUxFhJFHwbbE9Fme8Fb7r1HRntzc4OSkp6Jv63X677vyykvsff7vj/uD21bn87nwIiUcGN4+nD43//v/hf/s//xf/yv/7//b7N/+O/8yU//67/+6+VqbZKPFKSWmkscW3CKH4YBPgS73a5pmqurK/ANrfFKqdVqdTrsQEXH6XM+nbqum0eMUcEOwyBIABMh8s65mH5/tynGaK1tGoWHc3FxAVqozJOFmmg6HA6pMCrwF2iJAl7hXIP1WVVZOOvly5fo7QkhGKPT6TSr5cwHE/BroISbqmIxGWsZS5vN6nwekBjg0PyzP/ujruu+//4tYh1j5mJzCfSQcw69TiHEMEzDcK6qyvYYkebn8znFLBLVti1oWUopLasQHeCb8/ksW+29b5oK8L3W+quvvqqqO3pmf4c7RUk/TVNVVU3dAg5mTKDimEZj3RRjRFn+1ZtvLi8vIbKslGqq6v7+Psa4XC73+/27d/eLhbq+esEZ/fjjp6++kpxJQWKaJlL6eDw657bbLXh5nz59QnzTqvLe7Xa7qqow19W27XKxzj3gxbqqqnN/9N6nxIjY58/3CCO4bBAthyHc3CyEEDBfur9/dM7d3CyFUEA/GU+fPn3yMcgkpZRC6qqqJmcnZ/sp29/J4rYti5c4EY3juFqtXr1++fD5TkrtnNvtdlfX2zdfver7/u3bt1WlxnEax/HP//wvfvvb38ZITwfDvv8+zw0EC9JcVVXOGcxVpJQgbHI4HPAqt9vtw8ODtfZ0gkPDSRSVYWBqyHCUEJvN5s2bN5MZ8OqHfgLEk9NCoU6nUyyjkPgIIlIqk5eBKjKeMGFzdbHF/V5fX/f9eH9/DylzSqBSOWBwswo2EmMhxGazqarqd7/7HTq40Dy5vr6GCAOoJNZa4gyS+sYYiNKgt4onLISYnAW1WRV3biTY+/0eqBN2mWAc+QzSvNPphPtC44el1DUNUDDURMBGZ44XFlVKCZMHuXyWAZ6KnHMgyMTZYrF481W13x2JCAc6Uey6ZrPZPD09CSGapgrBWeuEEMvlAmTeqqqEYH1vtJZI1WY+OBi4oIh1XffVV1+llPb7fQhhtV6EYr8BpI8yD8wTMeJszp1kmcdCEquUGspkJOogHKZgM3jvzyXRFSIhmTTGbLdbrZANqv3jE3rt2Ec4oxkbrLWiCBYppTiX0zPmSl3XzhnO+cePT7e3hAgJWbO7uzugdXMGqLXGWSylvL+/F0J89dVXzjl4YHrvr6+vfTHKszYcj8duuSTOI5Ezhojquh7HcbcbmyabgsTkxzFIKbWuEcTW6zUW9pweE9H5fAwhbLdbKlX/5eUlOqDANJHcOue4lMfjEYofYJHj+CAWEwUp86cIIT58+HB9fd0tF0LJaprMOIBY1nUd8l7nHfJ8aMpxQaBSzcRha+3Dw8PFxYXkIvIUY6SUp8Dbtj0P/fF4dHY3jma7tZvVWkp5dbXN9JoQQCc/nU7X19dc8b/+678GyR1PG514IYTkqm4araUpIlpo7M3c3q7riIglgqg6TpxZSgKVtda6XXQzhIUC3LiRM4kXkZ6NIAshrJvGcUSlnHsYnFdVNfQTdujbt2+7rgMfGSucPWPvYnXhDEIaxlLAUscD3G63IThjJ+cNimXs4mkarq+v27Ydjfnw4UNVVTA8CNFdX6+xf+c3GKOZsSb88nEcUdnVdYvYLxh7eHiw3iOC+SJjcDo5paoQAuidRCQE7Z9cjG//6I/+4Eps371755zvmkpxMZ57IVSttSlNd+f92E/T9Cn6zOHLHWilKHFKnLG0WCy22+39/f16va6q6nQ+hBDMlI0iGGO4NdQjyFustYwJTGQi7v3445OU9M03L5GTKCW22+3T09Ngppcvr3xwfd9zI8xgXtxcDXRAmiFtNjRIEOJMRX4hlgnNED3jVMkqv7xEnPNaV4l9sWDiRV6aFc86/LjWejr3FFNIIWDdCC4EVZWUiqWUeKIYgzeJxZQ4VD4jm1lyRQYBTx/VFRAWzLkgPnIu0CPFC16t1owxcAdS+gJDhzyNHubR7KI4kWFQV0bycRdUPKMA2wnJaJYsSKmqFZk4IyZUPJqU1DPFgHMeYowmocMZKYGQkuGNL251WeRIS4XCABnATLsjotJyPCmtgGEB0qrrWqksYKeUwkQ4fn/eqBw6p4QzI1LuVwA2netwTgzTVZxECGCSZqawLH/mpDnGiElTziW6MakQJ/G0VRmKny8GZ1IsmkfzSsOzaqsaGQaPWe+iAH8B65Nz3nVtSNFMU4ypbVvnPPvbFhwppeACV1wIAS4JL6oIMxTOynxTKkP0wzCgsS+ldMbWbVaw8jY//IRuF/6f994FPDetNfgTuDW8ghk+w8ctl8vgHKo4HLqQFtFFhxS/lp6p07KiHUxljJ0VMv78VI0xiSJ6Cb4AQ1TY3PhPZGCpjCxYa1IIX/oZUkqpCrjD5kcdQgAGzTmXPPMT5yeJHae1jix3NWKM0E+wzmO/N6KNMRt1Pv/Z4+mkta7Vlz4QTqm2boQQ0Yd+nFA+YXuyMqn0uN8t2w6YLHJHwJfzJTnKbE3OeUw+xqgEJCYyB1wVMTVjXEz50+eXHgtrMhYzWSRGkmN60c8NGwQN2CgLYlzJQInHSETH4/Hh4cF7fz6fEyOo+yM/RmKXu7hlYoBzvlgspCxm7oV6nApHnnOJ1933RynVel2hGDZF0YwK8TCVbh8rYH3pHBTXjpRE4ZIjMltrlZRInrSqZ3wTo5Sr1Wqz2ZZyNJfZjDHOJOeYI7Gcc0aMMSarCqu06IcqKSXYy7l9klhMnpVWEy8SMbJMAuLFzS0NLF0U3liQc5d73iz4Sv5ZIRiJFMlYl8OgkEAkU2nGeO+l1FrXjCFOVkop50wqVNmUojFWCKF1xRgLznNiSkjvYqA8BTa3GRATqnzjxHnuw+G9gIEinjkC4cxGivnixYuma6dphFI/VgJSojkx8j5bu7iiYR2L84wxxhvLOJlxpBgji3XXhpScD748NFkm7DjP1pGMsfM4wJcZCG/uHfoMeqKMXy9XnHPj7LwaZ6x53vjACCCGjtCN+b6+7+H36JyZnNW6llKycogzxjhL5SVmhfd5ngA4BbBLVESIY4vF4nw+U1HEE8X7LoTABeHHcYql4g0QQhBSUjGigZcI/skW3RV482ZhnK7bLFczVBe8D0RS8sWiPRwOpR8sHh8fxeD078ObcLYtl0u0NoUQutHo/OOATimdjsPQT4yxqggWZWZlkaSc0wy8CFxqKpr+qPC9zY3tpmmgbIgMAdnq6XRy3iBYIaxtt1utdd/3upLWeDyBYRi4/CKbbq1lIm895xzjSQiBSAs0UGsN8THcLC9mv8jX+77npRVUSTEM5rTfratWKklSJMlNcbxhnLsQhWpeff3tb3/9m3HyStZqqRaLVlTdNA1CCApxHMfZx0xpIaX88YfvlJB/9NNvBjOEGKyz6cSi90o3zgUkwUAtby6vnHP96YykrmoaIRhxzlICWUMpdT6fm6rGFui6TteVqvTxeHz79u1yvQYcJoSYpgFo1Pl8rtsGK1xKyVja7XYo17VS+/1+HMdO67/4i7+w0/Tdw8N6uTqfz5/u784n33aR85ZzPo5jCAFcvxgjl0LXer8/cs4XixWykRcvLozBJGa1Wq6Tjy7ExWJVy1Z3PKXElVws2vVqxRizdsrdXx8cI4qUrKUsfJmst845reWnD0+THRBYEosYNI4RvTQVY1RSXF5eQJofcGdK6Xw+YvuA6o71FkuPmYgcOamV5OLq6srnsW74cE7ee+Ns3TZQj/n8ef/ixRoLOxRyNHIhBBbYxqCWXrQdRGa04stVZ9w0Gvf4ef8f/nt/9pf/vf++2R20MfF0eLNZ/Y1gTVt9//GR67aqdC3zQHdOJlN0LuCyocbACgMA2/Nyu8VeiDEOZsIEHjiboejaVfKLvF7fH6qqimU07e/8kVIJkZ2L5jQD73q2t0rPGBvjOJ5OJ4AySlVKVXL2E2YM6jTX19fIYBHBcBagyYSwgG9OKSHg49MZy84HWsuUGA7fYcjUKhSW83MYhiHzvjdLrE+t9WKxci7z2owxwGEfH3ut6dtvv4HcMxo8IYSqVkh3rbXwhRNC7Ha7cRyrWiF0z/0znMWA9sDm2z0dLi8vnQMEpoHBxQLZjIP77W+/32yWi8XKmBHNg2mKVeXHwWhVLxex6zq0iJbLuu97dH8rqXA72A4PDw9ENE1GSlF2d5aKburusD8IroSIp9MJMt/n81kIperKGBOi03k0FoM4fBim1Wr16pXHjjgeD+ik3tzcMMamaYKB4fXN5X6/J4qL1VJwERm1y8VPl4tPnz5RAbamaXLOoeVQ6QZfdGUyablcwnF9GIZ3795BVkII5r03hhYLgZy2qqhddG1VxxiNHV0xXnPOTNN0PJ6do8vLxatXr/b7/bt3H5Tar1YrY1zTNMaOBVnWMXpbDDNijIwJKRl4VMG5ZtFAKRXCtff394vF4vr6+ng8j+M4DCNjdHl5+e7dWyLyPl5dbQF6znDz09PT58+TEIcXV9eURYdzfq6UssbGGJuiAYW6gHMOtAFXZa0F1iOEOO4PT09Pq9UKWasxxjhrrUX1SkSA10+nEyBUzvlqtWJSzEPJ0D0gom+//RZsPjtNvCjUm3HCaPw0TVwKM03IUjLEJqUQwoVw6ntVZh9jYS3M3SBknk3TPD09WeuFYKdTkrK/vLy0ZkwpqUpDkhS3CR43XivOdF4mTZWSnDPn3DAMITiUbstlVVXVfr9HIgGZV2xw7DtZBuOUUotlOxeSKELrWocQHh8fZ+xvGKamaaB0DMT2D//wDxEbpZTQS4ERTipqaQhurmj3dV3nbJgJxZUU0H9AREXqGLNvE1VVVTfN09PTxcXFZrNBQ65t29XFBuVJSqlpumka1uusyeCcmybLGNtsNujEEJGxo2yXWPlzio7oika4LLpMRBRi3G6352GgMvqQV6C1CNrTNB0Op81mJYTwz5heuGVTJFupCPQBB8AzxJDsnL3MHCOAv33fm2cVGdoS0B5x3rdtK6XgUuHdoQ0D1qOWKhRbjudYQV3XV1dX8JrrFg1yY2D6yHM450WDMTHGCkcnjwgIIRbLFk3fw+HQNI2QDF1nG6emaUrkHGTK0hPyixotvKMJ/QalwGwV4zjC4RlS9c8lYRHZVqvVTOWeYQoXPLYVVKSRYQK0tdaSi4JnEzJWBMrBP0N2mlLCPoLo82azMeM0le2Mp+2tE41QSqWQ4WmIbsUY7+/vKyVCYmg4nfphmiYhGOf88elRcYH95b2HZvGrV6+GaULid3l5SUT9YGWRN8CM6dPTU9d1MRCuljGBQgCYj7V2HN2y65gQy+XycDp5H5XKK8oUraGqqkJIwzBwzjebZVWNxviPHz92XXd1veWcL5fdw8ODcy6lzJESZQIeTOrlYi2lNHbEUMswTfgeHF5Q2B+GgQtCVai02D0d2raFChZYgNg+6NNImVUZ6rq+vLzkfDeOZr/fX15eCiGqSlFMdjLrzXqrN9aZnd+FFLe3l4xCSJSK/k8G7BhnM1yIV661ZiwLNCPEUMyz4V+KJZ55lwg9T09P3vt2sZhLQQclIMY4RcaZZIwqWVdKKeF9TD4wxlOKzjkmIxGPlJSUcNKjIvoTY9S6VkpxnlmcgGUZY0RMFX1rPPdQ9FJnWHPuPTrnhMidPeQ3xhhrPSpPWSQpse5nKCQ+U5kEbO29H3ZnXeyhUgG1U5G5AP4FevOckeP3iII1s2eeZjHGlCLnPGU8mjPGlKxStKzY/pRVGGZwEB8EsAaUB2z+GeQSQljvOBczLOVCnKMSRgPKZTLOwAGHbUItis7ADD3MzG5VLO9TcvgeVPIzlsRBjigMU5F1x/wM8Il5VBm4YcpvBGmrMebszlh1MABEZsYzY5e7LGCdkdmU0iwbilAO3GpOwZF2x6IDa4uHMhYt/JGGYViv16q47lJpDDx/R1gbyPKHcUwpdV2nlJxzXFZUNfFEheCzVSCiIZ75WDxD/TPLHXAwvTOxsMVniNk/E7aeMTIcePGZ8C4VDA7dDqkV53waxgigp/TQ6roGsy53GspvqLI8a8T1SMZTgfLxO10MjDMhpCij31gVuS2hVSRiKSklQ4gz1zIlhjz4fD7TYtE0DU+5jSSEEFIitSoYWSb9yTI5cXNzU9c1pYzIy6I+PGOREG8CthuTjz4gjUP1iAMDO1dX2ZEWhxa6wdZaNBiQIs9/x7Ae2ApY82CLzMg+z7pprq7r/X4PcxJjTKS0Wq2wQ9HTwmYMKaqSqeDhhBBidPNuxYvQWSvGQq+GczEnCkA5pcxMc3y9LpYvrDTV5vkjfIWV9zsf5EQkhcAeXC7WSqkQHeDvuZS9uLhw3s8i15RdKLM0uZQS4YKXsDYj8qnwZyUDISKNo8Hqahrtig7vHDOxkucoijo5PnNDRX4zn0ExRlUkRLCIv/ySyBhjXAqWCPMfjDHvozEuhIQVkojAhYdWu/c+pfxwkNRSUZr2PvpnCiTz6yYixrJ6TKk3kIfxGEOIAWAciOogqmitt9sttudu94SDHC8CC1IpxTN0mSdveBl2wa2BrJ1S4okJyZENJA50bGKM122biELh/86BCLdgrcUenJ8q53wYRiTE+BEl5Fx2isKhw0I1xnRdh2QavXqw1eb32LY1Pi5Q8NYitmuRU4uUUirurKy0kVgZwsAtw/8KTQ5WHFGEELHA3CirvPd1o3F3KClZceUCbDpO0/l8hv41igpUsPi40Rp83OPjI5Rne95LKTHHgPc7TwjhyqfJDMNQe/Z74ea2a6uLDZ4JEnfG2OF4hMEI+kNAau4+P6w2SzxPIsIbzP3FEvRw4whu3vuqVsHnV4yIhBTImOxdSUQsWaVFovyu8VI455jUA4c3n6QoHVdLxthcbnnvD6dj21SME3q0wHFscQ0i4oxllAqrEa3utq05p+NxD0QM9J/T6cRIcqkEI1XXk3fGGEpJSdk0zfXNTQxpdGF0QVU1UVSqciEwJryPx+NRaAU2N7EYQvjw4cP95zulVKSwrteH477mtfVRCS04985RiJzzSleRkRRCCsEZS0Rt0zIprLWqqhXLp6G19unpCToPQklZTnaQxxFSkPGDCYWvPD2dm6YBqbyuNTamMUaW/EFK+ctf/pJz/rTfE1FiJIS4vd1UddYZfPXq1WKx+Pnf/Lvog1KKgscZocq4mLV+HE3bLPrzeD6eK17xpZBC2uCrpmbMCyFcROc+aSUSi86bWObDUipW8kQRbpCChGRKCakX9jDtj4fXr29vbl6mlPq+x1mJqs97D4oi4kAoxi34hUhUWLFbwEGPusAY0zWtKC1zPECl1HK9wj6q6/r29gKwKQIvYIu5kMaxdT4PyGAhgyalZCkIxsbDYein/+V/+j/5x//wv/v49gfH6O2/+5vLdXPz1Vfbq6t/86vfvH/7eblsqqom+iL1hv9dLmtE+9evX1trd7sdEJyqqu7vH25vrpVS1k7H4369vYQZEZQD0c+LMV5vL4UQIKyALFw3179v99Pt7av7869Q2N/c3AghOJdaZ90bznkIkSjOHR2c45eX14B1FosFsrkY436/x7ehmmVFu4yId10DHMoWowVUtgA1kGxguR6PRzRrwRnnxP7Nv/k3FxcXi0WWNGWMNXX36dMnBEklq4/7j3j1bdtWVeMiqi2NY+vNm2a326Fr4oug/OPjI7E49/+AA8KSEbcQokPMwctFbzLG+Ph4evPm5uWLV7/73e8OhwNc9U6n3KqEjk1d17vFARvwfD4Pw5lz3p/cetVs1lvgelBo/fWvf22tvb29RTSbj4BhGG5ubjjnIEevVktgT7xwS6+urvDLGWMvXtw+Pe33+xMmq4hou91671MirWtjTF21KaVhPOPBGmPAmuQsD95BFQTtZCR1dV3H6LHCQwhv375VxZ1lnkYCSJGpxEptt9vz+Xx/fx+Tb9vWjj0seYQQHz587Lr26urq4eHh+np5eXl5d/dJqeqbb7+WUldSCcnu79nd3X1VVTDvSSm1bY1cDvellCLiMdI4nBPL2SZooYyxx8d7sKGbpsPL2u/3gGuvxTUiv9IVlgHYyl3Xbbcb58B+iIyxaQpVxXFw9H3/B3/wB5eXl58+f7i+vr66Spzz6DwVwiDmAM7nc6V5aV1HdF+wU1ABgWcnhFiv1zb4xBmYEES878+JRSxpGPRdXV3d398jrMElLxaJOQD6mdJUDjJkyxSjqioigqer1vrTp08ppaqpWQycc/BV5/kMRDxblM1iyIUMikGgwNZaNF1ijJ8+PXRdfXOzQjsNT14o2fd93/eCKxTvVNhCpgjappQWi8XT077v+6ZpiGLbtqBOI9TgNwB5l1JuNhvGxOXl5ePjI5pnKAFi+mJoD47warXAR5yG/sXV9fl8jtEzlowx5/PZ+9T3/nw+A3NHoANkhgAOOAK9Q621SYlZCzlg6A0eDgfAqTgLEK9wgty8eIFC/s2bN7jfkgBLJoWEpLJSqBG6bnk47FAbQpoAhJiZOtDUHaq2qe9j0XOQUmILoIGE9XA+n9fLJT2jrYhCBMEeBEFKSpZSOhx3uOBpmnZPJ+fS7e21K27bhaDJFou2abbIk4e+V0opJWzIWS7q2a7rpOLIlpEcoorEOau1busa2yqlUFUVUhTvfT8OldJt18bocRzM8RZPDPEcZzQaqIiB6/UaTUFkd4xE0zR1o9Ep77quXXSgyU+jXS6XUH8NwfNCzgMOIKX0KbKCC6NdR2VmBTPfIQTv7X6/z817VYHRzIvSTtM0p6FniTA4iO0P+SxcHhQFRVZjENhHQE69903TcCYBH6OUeHh4mibi/MgYQwLvnGubhXcR5/XFxQXG12wxt6yqimIae0wGCOcc2ic4tff7Pbrvcwb+BbaijCI2TbNcLu8entjnz8vl8vr6GkYLVVWFnBY5xhiL6fWr233d7I4H+Kxyzvt+RCKNhee9J0pI8kHWmSaLDXI8Hr336/UVZW5itrW/vnqx2+3qOouQrNYLUDapTPoqVa2366fHPQY1UFR1XXdzc/Pu3bsytNciSHZdl331gj2dj0+7B1m0jBDonvcqYowoxIBc4TaRTUHYqpQJPsYstGLtNIR+miaqiXNuRnM+HeULklKGFLOcbgjBWYdD0RcZ4hCCc7Yp80ScWFLcPxOqTymB4zxDG3NPwxVmcS6SpUiJ+RQZS1oq5LKKKyYlBvljnuqmxLj1TjCBxALAnCDGE3nviXJ2C7hZSslSbiPgIJ/1NKlM5vpnju1CZMwUGBAulXOJhJiV/smMxM3QHs5U1C25zGMMIye+sLBz/PKZRgHmKn6PlJIRBzWbno0Mz+cWYBNgdmBAhhCm0QKQjdHPiA9neTHN4imi1C3INlyZH88E0gjDtwyVomHAikEHVkwmyzCSUiopZdEXnzc5hDi8L0gTymPBU0qskLtTcX/CTc0P0BXhbF6mjVixE9XFnF3xL0zYYRgy5uWDDX65XgFscs4RpaZpxjEPOgmh5lahtbmVXXrCCscbikMkE3MRRURQvsNOm682hOSMZ1xwkRinuU2dwb4QpFJN3SJqzFDmMIzGTKmgxkqpVFRTgCYkxoixEIJQqpaSS+mc03WtVJbsNMb4GCMxwUVkKVDijBJn+D8SkhKFEKLPlYCqKzQnYlFOZIxJLp4pAzDGGNr+eH1KKVlVSLCYEBBnSLk7whhjSqn5OPTeCiGkUhSidRmp8SmiqpmhTxSfc58AiZ1SWS/MubklmzW+ER9SSsY7zrmsNIJ+jHG5XGL2be4hq0LlRlLClaqbGmsJMBMe/q9//esYCCc0enSRwsxtTyl5MymlEglc7UzvxTbJghIlUvEy3tjWTYjZ3g0pL2AI9swHElkXDmME67Ztu2WuA5FpSSkx14PHFWMUBeJHvwcmb0iSZrgWAcE5S0UuA79TlNkc/B1RC1UofiSU94L6Cmc2F0KUaWsqu1VwDgoYZzLGyNOX7hcg3UTYv4wxwVgs9TyXLEs1KSGdc7idEKM3BtknEQUoHzESQrjgv1A/uOI6O8XhSaZn1H6sopmTgveOBTYTf1jp+lBhzc9vJP9UyuQI2E56H90zj1MhBKaDcDQywV2ArBCrdcU59z5PADjnYvwy/Y1bxvNEbTzTUeerzdi0knOkVUJyzebCpq6rcRxTUTfDBBZgjhACCcHLDEoq1qzzeYEiLWeQXOKkjixrvChVLAqKdc80TSChU7F3QCmF/UXFadqVOY9UmMg4vHDX6OXg1sBVQQhF6YXkpqog55obqKidYASkm0wGmffXnGUiAqO6ANIhSiMzlsE6cHb6vmcxi+QE2POyiNunYjwy4/LzG5mRHVTRRATp6kiZEoihsB9//JECLRYtkEHv3OfPH/u+v729xcmrlAIXfno6/F2oiYiInHVpmp6fNfv93pgvrn2zoG2McRzN3OjFRdIzN3Y89hM0FkIAuD9NE+T/Li8vhWSUgrO5K5MfY0ld8PTwyvAAXdF+wSGLLB9coblFJISwdrKOC86XyyVGgOEuNQ5mGm1VNQjgophM8kR2HNy0WDTt/Tg+PNy9fPkK+rNKSoosMXYexmTMOA5CMGcmYmyxaOw0nvpT09Wn/ngap1rJ0XgikloxxoQWiEgQvnx8fHx6emzbtr8/JR5Nb711uqlW9UJp+e233/76N795t393fXP56tUrIcSHd++dM8aY9cUmpuCtizHu9+ftao0Hi2wb6n4YN45FHkcIMU4TWjLTcK7b9uLiIqXUtu3Hz3egqXrvxzFZa1+9etV1XX8+A8pXTPR9HzDKyplzbrQGOxp2QA8P/z+6/ixW1y3LDoTmar/ub3d79jm3iYgbTUZkZNqVTjltl4wxJaokwPVgeLCMoCTgBYRE8wY8IhnBoyXktypLiEfAkoWVqKBkF64Cp51OZzgzMiPixu1Os8/u/v7rVsvDWOs7O3F4P1zdu+/e//6ateaac8wxx7hfr5cvri4///zz+XzuHVdKsZwvMSbOzs5u3777+OPq048/tePYnfr+2M+bRV2UZ+vzpihwWk3RNTiPkz2Ry6TEyZvyKzd2/elp91Q11eP2EYX91MIE7OK9ZSxyQcG6GCLPOv4wJsIsaoqiWbgGw/h5pIN77wczRo9VkUScXPCllNba4/EohDg/P4ccKuLPYrEAVoXcsm17a93T0/7ycg3KOahw3PbGhcPD8N/49//dv/03/sOnr78uZvUv/uBfutPBifD1n/z801//8V//nb+y3w0/++K1vhBBZRoHBkEYNpSJWbT07OwM2wGH+Nu3b0F1j5wxFqUUSCcQ3suyFJRoN4iKy+Wyqirfxn/b9gc5ESDC8XjEyQ+qBmJmVRUI9TFGxhJvQ2u9Wq2s9THG3W53PB7bNpydMUB1CD54dIgSXTe0ba+1HsdOSn44HJDHTtEbZeFyuXx4eEDKsXl8sta64JxzP/3pLxmjb3/7FeXJkraFmfP200++fTju8KKbpjkdTjHG/f5wfVWdn59773FrICZXVSUYq4pi7Pu2dWXJXlx/xGIMzmkpnTExxtPpBHdQl60RcoHDz8/nh+1u0SxeXF31fe9Go6uSMWbMUNe1ymrsMcamaaTU1nrQNoU4XZydI9CdTicirnUppa4qgcRhtTozxhwOJyHEixcvOSdsc+xxtMQYY13XwQOj6zqwhqWUv/Ebv/GTn/wEbEohxPF4hMIpklIpZd/3WpUxxuOhBdjadWa5VHU1IyIYxHFwHaIzxnzyySfv3r15eHiALSRY4UjevE93hLStqirw4EDwRKZU1/X5av3+/T1C0LQxb25upjJKCNH2vVLe2xH7dzZrQM3DOQtE4HQ63d/fF0UFamGM0QU/HTq4eMbYq1cfPz097fd7iNodDgfsCMbY3d0dY2w+W0ppMfHw9PS0326HrlssFjfX14yx7Xb70cuXh8Ph8XGv5uLs7Ozz3fHt27fE0vl7fn7unHvcbiqd6PyA/omIRSW4J+IhfLATmOpu5Hsk+LFrocRaycxF4ExwReSFEHU9w5gLQFKRxXOllIyJw+HUmx6rl7LoWQjh7v52OVviCUMzF7XnMDohaJ4dsSasECmfc04oVVUN5xyjWsCIJx6Y957x6L0HefA73/lEwa458aUcY8zHoFVZFsni5eHhYdrvOpk/OwQQrqQ5dVKOUkosS9C3oa3vvW/bdj5flmXJuRysIe/worHvuEiAABEpJZQSYM8wKWbLxel0+va3v/3w8PD5559DIDtGUopLGSegH8HNGLNen9d1PY49EaGHB50f5O7745GII+ItmhkRwcTYe5/UcoYBPentdvv69S02JjhDWmt0s9GzAe6PanQ+X/Z9i/yNc973DjMESIzBNEIARAXKnulHo5obxs45xwWdTgdI1jLGMMNqjMHQD4o78cy0FmfcdntoWyqKlNmO44jFczz2T0/9J59wQNt1XTtjvLeck3epDZwk0ZvkFGexcvJ48bREKc9r2mwiBfHc6EO9rOu6Ph73CGUECEJrXNvT0xP0ZCJ5nHG4a0QSn6XzCiWHYej6E35AKA55kK7rlou1EIJC9MFKpquqitELYiGE5dlaa61UKhuxooCTMMZAbQaIudsdUFhxYjHP7QGHQXuyLEvJUyFjrS2LmlFqXvqIwUcIT0meXc2w/nGRMbAsNUPe+48/+tgHu91ukc/g2oDC4RchFYvmAYr3GJkxJoRkN4WPxUVG8kopALvWWlXoGD1qc4BOErQYwR+3G3BKhJIT58A5V5TaOResC94bMsh86qIExaqua2OcMeZ4bItCAZQjIu8MGAwhLzaUD1CBR923XK4hubZaLyL5h/sn51O/E/kDjj/UpLvdTkgGawfvbVU1bdv+s3/2z8qyXK1W42BVqTBzxhjjgtruWNf1pLfjnCuKwprk52mzLxFgBHw55yCKaJLHEjyl2du3bw8Ht1gk+TVjrfHJ6FIVWkg5m82cHEJgwZNEgPbeG/+B64pWGGOp+mWM2dGMmfiG5UWZmcUEFxxqEumoQDRHMsRiDBQpBBdRCqKnRJJJOB4QubIslZYuBGut1BidLpRU8HPnnM/rBpxRT0ltIFBi+EafAHiedQYwMIgVLBJfOwrBlNJSJs1+kckpjImp5GbP6MkTfhGzGbTzxmWREKl43SxlVh2dKjchBJOp/cUzbEGZwxX9B+Bmgpak1MYkK7YQAvSdEzKVoWQpNBcZz41JJxcta845Y5iBgpPGgBYfWLQhBK5kCCFmyQVMWPuseoyidAICWB4VEZm1LQTP3EGSEmAlDxR9XgzEGVwrQ4whi0744BljPMMWgRILPgYyznrrwGLAGyQfgmQQCFsul1O/OmQKAOgwfd/P5zPvvRDcxxBC4Dwx6EOmn+OmdNZXldl3VWa1kynbnnCKppnjUS8WK5TiPgQWWfD2OZCRMLgYlUouJcklNilgcGuNc17rQkqVx0zAoE+2af7ZzKPIOumIj2gjo2XyvCERQvA+ep8KP8YYY5NFWCJdSon+B6P8miYcmRh6SoQAyoD1C8EzgiaEIErYFsKcyqZJMY/AVIUmIhcnwDE14UHiwPpHYhpCOB6Pr19/U5blxx9/jOsUQjAmkLHxPFk8m81wkgkhJJPHrnUuYIZF6zIjKcxazxgbBqO1ns0qIorRCcYHMyCVxOueNalX770nFuxocC/oTpd1BQYHBhh5buGWWQtfCDG1iCdksz2eAMqkPZOtqKeQQpmHCwhPZCPa2WKOkl5k9QNsAZ77w3Z001JkebSKiABqiKwDg91hnwkyICZ472HqCHh9WlfEGDJ0JDH/JnqIH57gXZ/VbBixmFWhrU2s29T74BxCQ+AUTDUAnkOhC8ZYBA/0mU+mn3wCM4ddZ5cJJA0xMyXzCvdT9R6yBBNAScBnnElPPjDsaD4dQCnw5sUMyN4C6E4RPoGq2GJEZIxRugwhhGA454LAzgvTlUgphJDDMFjrpzDi86w0Y4woMPZh86ZyKK+HkB0CvHVT3wunEucMU0s+hjEbbeP9miwQBv0W2Dv4LLGCHwCNVwhR6TIEn881JFIIhpwx5p9NFDJGOeZzxRP1dcKaiQiGSD5TtiFCQi71iXP4CkS0Wq1QHgzD0LYtilKsQOfCVHExFplMs6VSysgZhQQ0sMiLAhwrwjg2Cioki1MIAo5vsncobh/3DjTk6upqmgRH4h4yMQGjhSpP/X9Qt8ByLQrv/axJc+6cc1TXpjddN4QQHh8f+67TWsHbDWAx0tmqqqo1N/RI/8aXtbY/HifWCSZ2X7y4goDsfLmoywpBr6oqqdVEe0S1k+JYRmTw6LquM1mGgnPezCrIDuhsY8s5V1KOxgjJpneE350IPoA70S2gmPDl4/EIJWJIKMBDT2vdtm1dVSH75dZ1PQ7WjIl87bPNKUXinEfFvE1M4fViud1uT6dDWdZoP3Ah+3Fo21aXhWBcRt9uN+PQfe+z715czL7/g29JxY/HQ9e1vK6lKmazWfK64VFIeXl1gTB1dXUZY/j888/3+33V1OvVahhK7230ZLvxJ//qJ8QJ2cLQ9Xfv3/Wnloi8dbYfTPAvP/24KMRut+ukEtnaGlEI94KzDHtcSqn6HqeJ5BxQi/f+s88++/jTTz7//HOAlUCgOOfgCONnLIX15cX9/X1kxKVYzJp6kbBaJGCz2ewXv/gFY+zi4kIIEUnGGClGSKu3x04J+fLlSynl5fl5qaumaApVSiHcaCVPQxUxm/HiBZWsmLI1bHIpJZdiGAbnTTv0x+Nxu9/2pr++vgwUv/zyS6DGNzevqqqJ0TvnDqf9arVCAoDhOYxSTLOfAALYMwsNLF10yBBkZJ5WHscexFKcYlVVDdboqiQfQLmdss2QfMlAGkpkTzQDjDEssIfb7m/+N//d//bf+Bthv/nhJy+/+Okff/P1F6WS9/ePToiD+cPZ9csXF5dfffNuaDtfSHSVUqeTkCjOpZTOBcaYcybGGCPD93kMCKfr9VpK2TTNw8ND1/Xn5+c4Je2Q6O1EdH5+/vDwUNe13dl/c+8TkQ9pENB737Y9wLWiKBaLRQgWbDIwg7pusHng5vHxcT5fSqm9H7VMw3/rtQakdXNzI4QARxKJFiYFpZSSi5gkp2TTfLAemfJD55z3YRzH4DwuwwWo5PPFYoE3+P79+8Vi8d3vlj/72btvvtmitwR0aXog1pIQAlMsRVF1x04LLZkslCKi9Xo9jqUQB4Bf+/1+t9thIoFZ21RVcI54kgNCRoFEerlc+so+Pj5iiGHoTbCu0oUSrCoKxpgZh5NxPhmBWMZY0yROIkRIyrJOox6MQRXB5KHPKa2CMx5eEIZLXr58eX9///j4CJoOfvh0Om23/f39+7Ozsx/96NcOhwNReHrahdBKSUrJw+EAxBZ9I0T7sioQP/FH4d8wmp4L8jbKbKfGuSyKynvPGGHOZrPZIIajjYodBH5r13WbzXB+XhVFcX19bYxp21YpIWWz3++bpgIy7pwpy7IoKrzHlL/FiLW6XC5Rprg8NIP0gIjHmLBjpVTTVOivT514ylwcYJdoMAjBBCMphfGShWiGQVSVHUfnHIVAjAGcBajtvVVKNE11PO6BsF9fX7x797jb//LqasE5R49nuVwOw7Db7ZRSs9msqgop9WG3bdu2rKv5fI75bhzuWDbVrAksCexOibdSKtAHkMFaq4oiMnZ79+AC8cgY8cgExUjEYkxMl8V60TTNmzdvEgmDcx5TeoZ8AF5t79491rVERIJ7AbpBq9UqpVJKhZysGmNGZ3szCu+aMnnHMR4FiYkGhAbG6XgMISzmcymb3W43mnGxWFxeXm6323fv3jPGhFDokaCJGHLTnSv98bdetW3rjRVCINBNlLgy+YyFbhj70TDG7Jic4nBUWTdCR1sIlsrSsnAxRJOGsH/xi19A476u6/fv32NtI/FGWNs+PXHOFVfH3T467ympEoMZAIgWJwLI6fhFnnUboLNBRGDjvn379vFxX5ZiHMfZbIbSfr5abjY7LMJpTR4OB9BXZ7NFURREabjNOYrRQ7kYzfX7+3vjfAi0Xi8wi483Zd1YlKpk+nQ6zWazp/sHpZRkAnkX5xyCijHN59X45jB28/nZcrl89+4dEUlJISTDG6XUfD4/nVrGqCwTNy4koRWGOgY3LiQz1o9mCNGB5Fs1DeXaGS9ICHE6nZQQaUyQsakxY4xZr9cYuYuRrZdLwPR3d5vV2XwyuOv7vmmauplNsBvnHGnY+fk59NDkQnLOjXPr9brv27ZtnUtLC2rgMUYlU3GqtfQUOcWzs7NhGMZxENmXNYQPCADwE0R1zHbglXmbHCCSQNZshlE5FzyxyTItiYpIKaN31lrYwGqtZ/N62tG4l9PppGTBsks8iuKqrij7ZiP/B5kdrw9SMDhJGWPeR5ThuHhcGBL1JWYNnY+RaQwFymTrNZ3vLgZs+XEc61kTiTAfg4Zu13XIXadC/ng8vnnz/uxsUVXNmDln93etkKRUoqR476siaWNyzotCTbXPfD5Xgt3d3YHthCcPj99mVqFOxEntksWLZcwLwYxxzrlCV+hFjeNY6QLvdL/fr9frQIR0KERnrUV/AhuKknlD9/h4mDUl6kS8LCFUUZXe+1PXEiOtJf4QZY93IcRsVs/njHILU3LujdVakqTT6VT5RjBmjBNSQl09SelroVNOI+XEuNFSTn0Jl60qYpYaTBCVVLJIk6cokFiOQeM4wrE+hMCYqMoKkagsS0GcMUYxlZS96YUQZaXbLqm+4t0sFgvyMPzhWmuAapxzJYTlCWqcBqyklGg+Y4nI5LdmQ0geKS7Tk6cWlsjiGCEPJ9KzdiXnXAqtlCor7b0AtOG9ZzxRkz5ADCSE1Jxz8kFKKfIzjDFGRj4GzoUgQeCjiaR8yjkn4vDWizESxVzVj865WbOYMC9IO9V1LZLkxQczUJ510HEXOAYwf6GUIsE55yy3jCikxPQ5jJIwOPlBcyMm+qGDBVlCrqUgzjhnCIgyk5rds7F3/KLOfn0ThGqzjk/f91998eV6vX716hX+ryDGOf/mm2/ACEPqPH1CDIxxYowtl0vvnUgQdlRKhRDpgwLmh2lfvEHECIAUPPfN8IqxwmMe6J4uPmF/MeYZ7XTiTodEjBFYyYQATuAXoGfG2DiOaBTrrLXifSrjIfOKrswEl2A1Tp/PMlM45IbN9GNSSsaSoC3nad4K4kdKKcEEe+bGhpUplKyKAlEvQrw7s8hjaoEyIPJYNkRUliXcZvFRgSjGJAkts1gNcSaYVoU2wyiyOSkRffHFF3/ysz/56KOPXn70Kmn7SompwGl8GyA1MryqqrqxWzQz51w3DFAUUln6xnnPGSvLssiWCwndVnoYBtQAyHs+LGMKUQacN4yxtm1BBEPy7T+MbiUoDWtmGipEX12wNBKIVTHh2jobxDPGhJJCSSklp2Qcn1Ica1H/uOwv57JpJ0674CJGK5xzjMXpRYhMZUIHEs8TNT/LqnDe+3G0KLeS9TAMr7PGjlKKRS5AbrWBM0mRrE1SD+gghhA4F0xw77130ftxGAZlgRIqFFHd0OOY50m8m0+bK1ijlGKRpvUZp9qgqohou92e2rbQWkJLcbQTAD2tbSHTlMmEk6Z8xXvGGHyccBhT5D7boSAvhDz3BPK6LNSI7Mc5ATct46zwSS1UZOKDs9NOfC5KLonIBT812H12337eb4jPxKlj1lTheSYGywMBDcA/3pfJM8WI7Zzz4JIMC6gcSDtwhBVKyzzJLnIXc0p3ENuncCGl5IpPV4LcS0pJ2aAP4zi4bJfBa56dUScIKWbePct9qSmkT20kXAxyUBAEbJ5eCiGMY8/T5MoooiqKQqkCu5UrqXV0zjljpxiChwxqBqycwYKceD3469774/GIbgEoV8CkWCZBg3ZXFjWeJ2eyKmUgzAMlGVBs2NT2p4hnjle23W6vr6+xZ/f77Xa7XcznGFbF3UG2zLkQ48jtvw1vcoxLH2zw1DTNJNmEQCeEgG1dYhkrKCqOk3Yzz92vCQMNMeIXKdOfl8slLngy+cHpUxZKKeVcgBc5liVaGngveFZSSiVBzu2VUoNJaBrSHucMkbTW9owB1VosFsETkjTGmI8hUAzeq/jhBGvM4AABAABJREFUgkdvB2tOp9N6va7r+uH93c3NjYtJp8tYWyhBFArBS8G2p93rLz/n9vjptz/79R9+0vXH9VnT9SdrLa8blC6qVEJxYhHTBr/5498IIazPzz766KPNZvPNN19Zaz/66KNhGN7f3WGizrvgozfW/fzxQTF6df0C/ZLRGlkWY3DH40kkwIUQk6WUyCtQ1WO+vus6BJS05Z2rm8YYA9D/6sX1V199NQkOWmu3231RpNTCWvvixYtj1x66tgzeHd3Z2RmXAsbLVVFCTcV7XxaFdy54T4LFEIho7A3QveNuf3FxsV4stVTBOj1TZVGE0VVSE9Fp7KWUIYboXciHO2IFBlFZPuhxm4M1UvJm3tw93K7XS6HkcbcDKGytf3p6Ojs701o5Z+6+Hqy9u75+RUTDMGgti6IANoEjCUc2OkAQFL67uxNZ8CrGOP1RxE8tU9p/eXk5Wy6enh6cc+C4XV5ezmaz3W6Hxex9VIqjqeMcgC/78uVLxtjx4f63f+uz/+Cv/3Wz2zWl/Mm/+OPf+//8l7ISTOpKF63z21P/7vjFKISqit6HoW0pk2ellDakLrjMosaYY3POaS0ZYzxyIoKB7QQzOeesHet6BspeVVWoVwGsDMMgg/yV27/vej5DD56enp5ms9l8Pt/vD865+byZ8iWfnQyEELe3t8ej17qs61pKKQQrpRZiDtSeczmfN30/pkI9CyvN5/PZbOaMZdaw5FtrctQ1Nzc3KNqttZeXF1JKxyznMmaPu29961td17179+5bn37n/e19COHHP/6xUurt27cxRjMml+zj8Thfza+urs7WYRgGCkEw1rUdpI1t9oOKMZZlzRgDebbrOmstZKD73rx8OTNmgHuVZFzm1YLXIaW+vl4R0eZph8QgPDOED4GCc945R2RGh0MNqYLpByICoN+2Po85fhD0VErVdY3xTTwWdP232+39/T2OY/z6xcXFZrM5Hk/zmRyG4c2bN6hZpJQx0mJRHQ495965+PT0hO5X34/L5Zxz7owttC6qEsXX6XSydizLsqiLYT+0Q8uEeHh40FqniRmXoN7lcjmfzxE0prSQiIAyYKNJKTebTYyRR0IYh8yutTYmSz3H+cg5j9FDe2S32bA8wos2UoyxKIqzszMEvaKoTqfTZrNxNlxcXMDUGvhLwtGEPh07znlZ1Cjz5/O55Mw51zQNl6jgBbpBoAEB90HqopRYr9fT8Y0l571fLgFDK5zC8/kcHGHyYbs96mTMmyZ6rbW3t7dnZ2eYhb+/v6/rWmglhDgdOzwZrXTCOJTELeBOu2HAJYlsAo+/COTR5xGfRTN72DyxzGPQWrMQ0QPAPn16elJCLhblixcvttvtfr+H+vnU1EEayTm39gMRZCoGSXDCVCtjaFRAQAAK40jhTqdTVTZNPR/MeDy2x2MrpTw/P5dZ/pWIex+FEOfn5+iKkRDo6COV7bpuu93CdRB0HGvdbrdnQjTN3Dnn7QBglDEWyYds78wY6804DIPyiUCNfGx3PARGzawhxlar1TAMnCfMB2VXgjLzBCFyDMB2yLqnatqYQUq9Xq9Pp1Mh1TiO2+3ue9/7bghhs9mgUrPWck6A2vEJcFG7vX3inK6vz6+uLp6eng6H9tWrl/jTOb9N98KfebAbYziRtZ4LpnVCHkHXMHbgjCOGw/T16upqGIbI/ozlO65ttVoBubbWMh45523bNk3Ttq13joigfoBDH+I8x+N+zIb2U7/WOSdUEULgxH2MXMpANNootS+cW6/X+/0+el/PZoVSfd/vt1vv/fn5ed/3c/i2HVuEC4yLAQyhEJFFFAWH2IjLBF6tdV3XED5GiYT7BQsK6fRqtdJRz2azGP1gRsYYHkh76sE46bsTOAfWSms9qsuu64ahq6oKZ/TU0ptQoylHxWkL9rcxY042LLImk3Uy0WZmlEQ2iCfpAtR3MlteIcphF3POnQ3AxEQ2Tj8ezfn5uVLqzZs34pkqoxBivV63xxPougAHIF2ttdZaDs8k2r33tS1xiDOWuFlNWUyI0Ggtnv+QHODF8zqLOFNccc5T7QY9gxCGYbi4WC0Wi2EwnAgT8NcvwuXlJWNsv99772dVLRVH5nl+dsmkeP/+vcv0xKenJ+hcnU6nw+EghAjB4RCsqiZkmiA6DVMegvbD4bjD05NSp4buMEBq/5dffQm0Byu5ruuHh4fj8QjcHBvqe9/71BoPTRIgzlrr0fTWeGA1iFEyY8J4+NfX1wy2h8MgBIssbVjn3DiO83I5nLqgQ7B+PVtIuNwIIUJW6GNZWTjkqfM0xJfrqJAnK8uyFCINR+MruBhF1Ao1p9JaN1UViKY1FyPFSM5FY0etNYwa2+7Utm1RKC5ZZvHQ0A+UJE0xB62UUqMbcU5PhbFgHKc+ZbrW6dRNJTT6vVjHlFtPz5EmfA6OsamamnJ6iqmNrIyYHk6Ijj+biI8xxsC4xOL23nmllMq64ExwxdWHhjOJSKAKZsVknhId5xww0ykzQ1E0gbbIJm34YB+XcecPQrrAuRAHMSAZuSgKRSxQVt6Zan6cKDprykiuhBClLvAqUY1O98hEQnIR5TFgO0Hq7NkXfmwCBwGZZTUMKsvyRz/60TRzUZYlC5GIfvCDH0wV8tSsk1J6xiN5VDVCcLD9nfMhBGt8WZYy2aqMaBgmmFUIIrq/v8f06/RpImsDTcTkGBMrE58M4FWm8Rw1ASsxRslZhldGxlhRVyFYn+WDp/wDMTFBDD6wjBBNkHdII8xmwjR9Jk9NvVabxvajUlo848kKkTBfrVNPbEKRhOREH4T5QfAhntTP67LkqLSznil+VwgFCRrxTOCFMYEhtXwMJCPEdAAETzGhnz6GKourKKUuLi6+NX4LRCEHXE+KMXtEUDZ5G8eRc4ox7nY7HtMGxEpjGcQvq6pUylpLidLr8kK1qCGRySGt5Jk5FUOi9BJRsG7seqGVM1ZKOaubruucszFGVSZ3BcqhiROjSJxYJCa0Bh8WWRqSpLqul8vllH6hGQ4a0VRSWmuZSO5/E3wPTgE+6nQ6CZYo1TFGDKdMm4WS9OT8+TfZsy6OUqooKuSaPFt/4DjM3FsSLDlLgEHTdZ0LSdgRjzHlcCn8pNEztMGmw3tCVEVm0UKeD/fFGIOyOS4Cq33aRMiMMYXKIs3nc8pMEIxUM8ZG009RDtFP5lUEfg0WuTFGZBUw/F/vU58cl6qU4s4h7uF2hBCIz0QkeUq7MQSnZOG9p8iIyLnAORH7M66qiL3YpJgQF8+k6nNOw5BCTT9PzyzUfDZHxT7CM4kxApaX2RmVC44zHqBGjFFnC2b0qFAUiew3OAX8KZLQn9UScS7xC2gS4uf8eXKA6IH8D2vbZ/V/bISQjRmctSpraOAusPywC2JSu47Yd8MwNNUMQkZaayGY0EopBen2EIIWmjHG2CgYR189xg+KUoAJcKciz5FMSx01OY6PGCOoLt57RCEMTGhVitTMTv1mHx0ml/EMUdbi7QgpwKCBdgcckFjmuSyXy6ZpKPrT6YSi5ezs7N27d9jF1phfCThxzlVRCCGG3kzYsfdeiNT/8CGMoy1LLaV0wQshhCjxGKd3rXOs4Jw7ayflAWMMeqUmmw1Q1s6DeolzzrkkWocGG1Jz98ymBi+u6zqY4k7dApQQCCAIUGVRMMYwwIgFMHkS5AIgjXJjNXbjoNu2rmso1xdFMXat08oYp3QpIgke2+P2+Hivud28/7oqqJnps7Pyo0+u27Z99+auVLqqinqeFCGJ0zgM83nTzGtrbdEVYzF++9vfns+bn/zkJ7dv3n/66afiRu2PO3f0zg8hhHe3pz/3G5/8j/9H/8Nvf/yRCNR1nSx0s1j+x//n/9P/7R/+32erBqG7qiqwQihBqwnEmSCSuq7R0RRC2HH0IQghfvazn/kYbm5ubm9v0XxSydqBna0vyrLc7/eH9iSlLOuqKArh3N3DPQ5frTWmvowxFCNs67ynm5c3wzg+Pu7mTXlzcyMYG5Qa+p5FUlxIqexouGfckw/R+0haBk/Ou6lcz5sC6SJjggkpiWLfd9bb3W7T9/03b76Zz2e//du//a9+8odPT0/f/e5363o2DMPXX389DIMQ1WKxePFiP5o0hgX6GA6p+XwO3DlHwlRT5YUnIHGDZzVacziciqJQRbK2RmRDfQisEwjXdFgTcaJE8zHGwGsBsc57L8vyb/2tv8VDCEPrAvvjf/0vXRy4al5vHzyp7bE7DtYwfoq+XC28tdxzdCwSGBGD1vr29rYsy5ubm/v7e+ccRiLQlSFGNqb5P+/9/f09PLKklM4Z79OYBRC0+/t7LHWWeQz/f1/jOB7C4ebm5uzs4v7+3nuP4hzABNJjdMUmH9ezs4txvLu7u3t58xFj7Ngd+75Xhe77frfbXV9fW2sPhx2GocvsmxpCEIwzpSIjrFutJXAfKeX79+8BsU2t+qqq9vv9OFqhQFMSq9Xq7dv3+/3+6urqcDi8efOGc/7xxx8LIfA5AJSTvGz0ZhhGY1ILkwhMwH5okc9477vu5JyLQYBK+cmnHyFod103jj208tJhFOnh/l5o1TQN+dQtwwPEThz7/t27W6Xk1LEzxhA5m910wRoBL282mym12253djRlWRKxcRy1LkLwx+OxqWqcKW17RD1IRKfTWBSpsD0cDjn7JSk+uPIger98eTWbzebz0+FwWC7LFBjLkrEO9fbQtylhkEJK3vft4TBUVb9Yr2DeZd0olJJSAmcUOvXR0cjErkFLIzVBXcT7cs69evXq9v3rGNn1xeUwDEO2ud7tdlVVICab7OoRY9xutyxnsDF6AEyz2QwSDURUVRVav0Nv2tYVxfH6xTqNVHNuzFhV1axZ3N7eAoX3XhL1zlimBFhWg7FISodhSPZlWsODt+u6vm+tVVhgUsr1ev34uAEQVlWFc8nRBzxNdERkodfr+ccffxxCeP36Nc41kL5xfgFkIVhxUGJdIG7P53M4kZgsydj2UJgZEcNxUCLaJyRLiP1+r5R6/fq10CqEgDyhVHq73W42h9VqVhQFJ9ZUdYzRUbTen11czJdLpA3L5XLahol5rctJmHvS2QghOOsYYz7Yrhvbdnz1qojZ2BNh8Hg8ouERKNZ1vdnsvae6Vpzz9XqFwnwcx6Zp1us1FgBeegjEKKzXa875118/LhZxNlt0XRcj9f3QtTESaV0vFksz0G63g1ZMUSpkoZxzF9PwU4wfuHdTAwy+Z0i0VrPF9ukJKTegw/1+X5UNJGvLpnSZtAeAFdmXtRaXyhibVTXiQAj0+PgIlST0P2KMdV2gxAAptZo1p9Pp6moFNcUY48XFxdXVi/1+D/QASCuye+cM3vXZ2QW4uizGstRSa4jJYi0pLZzn+HP7/R76chINp6FPvG9rh2HYbA4hYDKA3r9/D9O8cRxxpnz7299+etxDgYeIsHHqul4sFkCWUtbNAopc51y/78pSySyXQVn89+zsDD8AuveU3CLNG8dR9j1mOC4vL6uq+vLLL/H5hVSBU4xxtVheXVzu25NSCgJxjLFhGKTieP4IvyxP+q7X66Zpxm60dsTcOecckxDTwF+McblcDnUJ0i7npJRGIlSWJRq04KEXRQH32qKoYp6oqIsatwm1aIAq2P74Po6wKeEfx7FUTdcN42iZIAQoFDVVVQUfJhYL5dlorUq0rxBCvffGjJAAwsG93+/NmHLptm1PXQvlA2utcwGlaFmWw9AhLQG1Zb5ouqEXiZdDbT8Ow6CKNFLp01SfTyCnkkII79J/4q8vZvOiKPaHbQjBDiMmIfBOcfR775XW1vqLiwsIWWB3W2KHY9v3hoj67utmMU/NoRhPp1NZ1+dKBZcEu6XkSgG4cEShKFKnwVrfnvqqqqpaFEVhgyuK4nRqkeRjDUwNuc1mY62FQppUtNvtRPYTSjotRNjpI7fYlVPKJwRxQTEkcR5VaMF4jBFPdbPZPD09FUpJzoWGKAqNXe995CuxXC4LKswwVmUzWsOhmzwhTS6P1opEYYBkdSSi6JOZmM9trgkKcc5hgQA7C9F/qMSUctFZa50FyAuCm3I2aKlDoBAsY1IodX5+ziXrupPgFUBA4OvGmHE0E4oXYpiaDCzwGONoEpiFuQaXqG8T/pKmJikzIGLmtOL6J0znefU+QZOMkhwE0g6CiyCTSokpaicSaxbj01oba8M4Qq5hAjIoTSJEipyI6NmmmoixMQYmeEy4fJzauQAEgaMVSk8gIz4B9wvEhz0DUPJfJGT2DI6iXOA7OC9dllCYBFnQe/Dew5IeJ4pxNiOwEyGRT9jK8/QRcCowkZhh6AmOlAlYej6Ao4JNdo7Tn4MmFO7LRorkcQBIKbLcBKvruu/GGKOS0uW5+4mFpJ65R06AzkQ35lmi1xgDTxV8Pl59Ng1IGsQxt1gCMcZY8DGp8eZ4NN1pyLRidBdjjC4kQC1mFW+8JvwWnEaggIN3IaVkrGAsiSNrrRHcKasrSJm0n5SSjDEp5ZgVfiPs/fKWnBb5ZOaG5WqSw2TyrgHzGlUK5WGfCcIGRK6UNsbgOFFKWe+cDaAhxxj3x4OWCg/8s88++/jTjxEcvf9AdmtPJxxvKrtPNE2FWx67EYJH3nsmBRpruCOsSWMtGcM5x/RQWaLUUsQYIHtouiH5U5JPsz+MqCgKrlIHXiffdo03wp4JtaNUIyLYLGA3hWzNh4uBWiLyS+vdVG9DOx4HTF3XozVYdROCDGoDLmmxWHD6MB89xUzKKNu0okKS+klcDJ5lrLXWKit+sNxk9hPROH9mDuCsLEsUqDyPQqctTGzaDmVZRvLOOcz1REZa63GwuJKMc6U/4ZG45CkBzpjL6wcPE+ACZdy20hrvEYAygkM/dDwLDU3NNlyezgqhCERN3eB3EVv6vo/kPxwBz7SMEMqmdctIsKzbHmMMnoIizjlFckmuQT7XIpgiLZAIPDocQBMMOh0iE9A8NSQA23nvgVxQlhZhSaYDLgomL4xU4k4IdSoDjMUnoM6ZbtBmvwHOeaRQ1SU+yniDMMUkY1luRWVWtRAJtMVBPC020BAYY1Ip9szbwGdVE/w5XGqOt4TNy7PsL1iKqHIxJokUwCcSt2CMMfrgnYAcyHkztda01pOsOXI4zDxS1sFAoLPZimBKQLGE8Mpcpm+zZH7YSS2g0AcQFlsbRdHQDjx3TxN3PjOFvSfGWNu2UqQ5xxDC8Xhcr9dt23vvy6r6MGL37Gt6JoxHhLgQwul0mmDu1nb8z+rGxOin8gyvTGbVKezuEAJYV2VZxjxO4TLHKn8IJa1bLoEaTzMc4GwCpABgHQND+uici+xDb0wIBuUxfL51TgphjPEuFkUxm82GYXCZmeK9Z0zF3AbDhxwOh+VyCXAcVVl0pJSsSu1Gw3w4breHzeNqIUMwD3fflHU5n1+er1cvrq/61nibiBXdMMxV4733MX73B99/8eLF4+NjUZwuLi7MMJ6fX/7mb/5mCOGrr74ax5GII+feHbqzM/m//F/8z2Zl9ctffL69f/zt3/qt8/X56/vbX/+1H/6n/6//Z3tsq6aRUv7Fv/gXv/rqq7u7u2mZYY4KS3G73QLVUkrVZTlaS8aEEIyzd3d3wOgxTDPF5N1uh7Cz6w9FUSyXSxdC5EyVBVmryuLq/GK/35thLIoihtA0jR1GSBY2TROcH8fRjqOJcbFYXF5cLBYLY0w5q8gF40YWqDu1nAQ1RVmWjIQ13gcreUrSlErettYYKWXftk/bzbSRpZSv370Tv//7ECu31p5Op6kk3u12SrOXr26GYRgHaPskj9z1eo1dyZ51vCgrbCB9WywWWK4f9qlWSGpwHg3WDMdh0i8GSw5PzxijdYk9joBW1gXi6t3dHef84vLsZ7/4+X/lN39zXoj/8j/7f9zevuWa3x42t5vReJJF4UgaxiwjYoE3OhpfliVaJkqp2XKBMwvgIFLKx8fHmI0xiTM8h7KoQN2a0toQAuqFSRKE8ghaWRS/avdTVVeK1Dha71uW7TouLi6GYYBEHnBnlc2v0AFaLGaH/Wmz2YBYXZZloFRNtG0LUnOMUQh1c3NzeXm53++HYcBZ5oPHDUqpoA+2Xq83m03f9xAc99k2cDabjeP2xYsXWHXz+fyjj27e395fX18vFgtoGnDOX758qZSybhzHcT6fS8m99w+bzdQaHHrT9wHpupBMSrndbmOMZamXyyVnGpnk69evQwhXV1cPDw9gdSFRIaK6rjcbq5SVjAuhnp6eqqoiYpMq+jAMKA52uz2+GWM0xiEII76t5ou7uwd0O1ardd/3gnGlVNXUIeu0bjYbrTUP4uHhUWuVBOWVurxcPTzspCQIHEN13VrbtZ6L49SrwHEAWuv19TU2CxppeFaLxaIvkgiGLtUwOHTvNhs3W6ZzFhjxaO04joGoVMpnj26euXV4cVlSg4ExMLHGlFKH9sRCDCGA5SqEQAIGDQFr/e39pizUcrmEWvDEDQSpnDEGrv04jm3bn5+f19XM2i/btt/v984571M9cjy0+92x7/uJjXh2dnbc76y1upAyu4kiZYI4DFzUiEiI5MSOJHkYuvV6+Vf/6l+9vb3dbDZffPH5YrEI1g0h4LBTSj09PaE4enp6mvrWCH0oLtDgxBXaY4uzGOJF4F0WKgl8J+bK6YQNglWEfyKlRK5uhmE+n2+32xjLWgikc6v5Aj3pjz++QS4EDS4ptY0p50H+X89mU1WbmpTGqyINT8TkUmOdS/qQWuu2M0jwoAsMFVSEl7Isd9vj4WCqRsRI3hPndDzaqmIhROguep8a3lpLLKdJ9y+EMJvNLi+7tu2NcWdnZ9fXL/7kpz9r2z2X1LYtXg24OFVV6SLpLw1Dx5WU2bJswsUmAAT9D2MMYimYBK9f3xLR5eW6aRqKfNI0Q8vfWjvFf5a1DYfBDMOwWCxyYkaPjzvOSWvpvcd0GhHd32+FENfX1/v9fnR4erMQwm6345yurq6wTXDBPH89Pj4qJbCKGGNKSa21GQalVJEdLBBRIyGVgBl7Kmn7YeScF2XCGWKMi8UCg8hj/povGuDg0zsF0Iz8H0ROHKaobcHZf9o8hCxoptQHZ1R8E/jy8XjcbreLxWK1WgHP5ZwXRaGUcM7O53MmhDEGPT80ZqZ6fBh7xlhT1SiXMpMygUsmSyrjgrfbLctTuV3Xzev509NTUVfI0MCeLoricDiMo8GLVkrBydyYwTkI0qL4VUopqPZ/oDsYyxiTnBvjdv2uaYr90MdsuTyVvXjdOOJdZr2oLLodKLLAgH7Ainkia6NnMGUIwX8YL8Yz98HC8QUbsyobzkZjDCxz8TSGYSiUnug+4CPiPXLOu25QZRp0w9XiPRpnbZaWfV5u+MzRHJ11A/z9hv1+rwsUkMm2EeMmWEic84uLS+Pc+/f3CJ7OubOzM8ZYf2pxMhZFIbia2Hjgf3hLdV3HlGeaiQ2AB7Xf76eaVwrtvQ9hmsAOVVXOmgURGfPBWAixsZCpRfEbv/nj29vbP/3Tn83ns6mXjOPp6elJCo3cmIhev349jkPJlBAieY8lB7sgpURGV5YaazKE0HUna21krFR6NitaPozGjMHO5/OH/o4JboyR3djFTF8H4SiEwEIsqipM9FWf5iiFEKpIXlVExInHGITgMSZxXsZIRMkCEZGLQQjhBjMYK4QYxwFNkhCCEBzHp/e+d6AScxYEZxV5OQ5WSjkSvJLivu0A4QXOxDPSWa7VmfcRAyAgUHDOlZJcshC9EEIKLnhCQ7QS8GkFNONjYCFAvU5lXi09wxSg5M4Fp8gZCcEF57yoyhBdjNFHr4QmoAeeuSEIoYxNAAe66DEEIqalstb6EMuyJFLOOSYS0uGDpSBjlsAOIVRVHSM556TiQgjGYySvtQZjnxEZl+aJcEyGEKwNLlj4KIpsYBqdd8wxLcpCAiqXXLAiQVpo1U5HTgiebCTOBOMheKIYKGI4CKWs1oDDguQiiTgn0DZQiFwkICmB3T6EELlk4HhFHqEBgrfjgg9Z9MNaK4Ry1qLTwRgLFKtZE0LwFBmPzAeKUXJOznEmSqE9eU+xbwettbN2HAZdFKkRwqUPFIlHRsTZxdUl5xAJClLKGANR4rQyJkAndePAtZaMvBkDSwaYPKv8OO99sCySEIIpLbUWIiGJMYSiqPq+54JYICE1pYm2OAlkYwkBI37efgR4BMgGiSwaKowxWDkqxYuiwimOky8Ep5TknAvI9PpYqsI5J0SihWIwzbpBaSGVUppba1nkMXIiMi5hScf2RMTOzlRd1SGQ94aREFwx4pApGMexbY9CCCH4bDYLFLvjnjEeKO4O+/OzSzMmLBswsZBsMGM/DpwzIUTwLIQohKbgtNIUmJZFLFyMURADz05r6Zyy3kVGLjrnAnNMKVWqRCcfhyS9ogvpvAeQh+dWNTWY409PT0opRkII0fd9WRSMSEpFxMqyEJQGplwgxlkkPoxWqoIzxnlCJ202NfXew/eyKApMmCPXWS7XaNt671Ec1nUNLWkKoVA6hECCDd0opRRKHtuTM7ZpGk6ME4shaiYqqa2xi7NFmbx9uTHGBM/gpek85bmBkNlzOIGyp5liLGG+IbK8JoPPrXXGuQbT3HutteKgxHLjXQgR3BZSNIHsMUZvHX6ec85F8s0DQbgsVQzMGMMpCCbR+QRKGGNUdX049mBWaq0Zi9ZaqLePdqir6nhogelzzpUunXORmIsUQyiKoq5LM4zeewRkKZMToHFjiIFLHoLXQhGFyCKhT8OCj7GsC2NMjKGsC7CrUKhMyJoZx0mSAmkoJrRRvMUYAw+R/GhGXJtWQkkpRAJzvfdAvoiSWMGUmnBO0EycIIBp2XD+YeADgTcpOY4jnhuiGXEWA+NSkvdMiCmxQGcr+iCF4MRcltPBq4FI39QI4ZyDk9v3vfVeao0mLnnHGKMYiDEtOWNpJQghEuYL920hZZ58hC3G5BWOW2CMSa3GcVSqmDJd5H+9Ga0dJUkllGmHosDwh9e6ijFqmcSpfXSMcW8tV5IxitGHGA9tF52XUlZVZV2Ino9mZFxyQcY6YgLPsyhr60LbbfaHE6QDp3qScYl/hhAKXaG09i7G4GNgWivOufWOEUVGgSKqICyPyX0U/yyLophlgs9oGJEQLEZfVeUwJPo2FyJE4kJJxXG2QlpBKvur4WapR4vj4AOgrJTqutOpPwmheCQhBXr7SAGVUta6EOJE5Qg5uHnvpSpQfZWl7rsO7TdrLd5g13XBOa1l8CE6b4exWVZCypuXL4P3wAVwQLAQ7TCCr+Gj45JByiMEXyjlvZdc2NEJxlQhuRBKaB8szpayLvqu45xDMI5TbOoyutAfu9QvZpoz7h2z0fj94eLirJnVm8en42G/LFeiZrZvq0ZzHvfdI5OBxVBJEnHYvv1TujrO9Pj9772aNcvX39x77gbToqoRQnzv+9/99OUnY2+U0GdnZ9ZatpwPw1BUmnMeGd2+f9vfDeNpGA9dONJf+50/95LLn/5//3Pf718t68+ajsw7w07ycvajFxd//LO31XkjuXr75rZt2xi91pJzYsxH78Zx3G93F1eXQqhx9FxIxnUUPDoizoTSFRd9PxLx6APnMgSHGBuCO51OcKsmG3105UrvjruqKF5cvjydDoXUBdHFfF4rEWP0LoTgZstFNWuICcbYbLVYSWmttdYFP452eHq4fXHxwnYnOxgwKBhxxgSnkYJVSnFinDHygULgmKeJgTHW9icuxG632xw2WuuTPQYWVK0b14zWzWb1fD7fbDZog52drTCkeXNzM/TeOaYEmi5KcvTy43a7h2MK4CoY9cDuCQss4/UaqqZFJefzyvvofSyK0lo7tEMIQYuShdFYPwxGqQK9n7JM6cpus5VcrJcr8UF02K/X6+buzS//i+6/81f+8sPD8Pl99/VBHsex9ywWC6p0VMLHQIIrIu657y2RJOIhUIwsBPLGkhBX5xfWmbHvqkJba0NMBGruGWNRB+2zUM98vgzWORf6scdzH4bBOd93p9SQKOfOeOfDr9r9FBiVRY0+9LyZOedOXYvqWuuFUkpy8e7dO8mJEQ8uUmBNVe/G3dX1Baqtomiqqjgej57iixcvT6cDwMfFYoGJWswJSa4gMS8UTjRvjEMPDzVakV0cWSRM0Y/jiFkcGBC9ffu6ruu6Kbe7J621VIJY4FwyHueL5va9RUKlhPbe12XThQ6+Savr5fF4pOgZCWdCcL6p6hBCUZVal6fjMI4QqbRCiHdv3yulVsuLRKAJzhgj52VTc2uDkpXzhjHWndqiKLQSZhy11oVKLiAMKvNRFlrPGkUAMRdLxVVVzW5u1Ndfvf7m9Ha5mjPGXPS1LupKN/U5sg4znoIfX768qavi9va9syTy9Op6PRuGYVJWKYpiMZ/PZ5F4RI8EsKNzDicv+ARKKWOHi+YMWLZUC6nFfr/3kJaOvBvGi7Pr4O6Zo4d395mypzgJFnVZlkwFZ31ZakGsbzvDpVKqlPV2uyXHF4uFkDRvGldVXNDT5uG0G+qab9v98difX8yNudNSDUNHnFVVpXUZAi0Wi2PXeu99sFrKEFwIriiqohBNM0cJczwed7sD53y7PT487D755PoHv/ZZHvlPMozjOMDs7sXNlRDicDhEYofDQUgVnd/t2xAF5ySEuH//2FQVC0KSlqSFlvvjgQSXupaKgjVVqXgUv/jZT5kUf/kv/+Xb27v3D++NCyEEcmEcTVU211cvHu8en+53P/jBd5qmGcd+swl1tarr+u3bt5zpcYRipxQi0SeDc0oIb22hVHCeE3GKRHHe1C74qmqOx6MZBgquUEIW+nhKuS1ErkMIpS5Uoa+vr6WUt7dvsUd2ux3n0lrPuUNpL1XVD0djRyk4heBDKEsdQhid7buRz+fOx34cWOBFIdvD0TknJKTzZQjBjZaV8fLy0hgzaxrB5G63a48dJoYpxu1uV5ZlM6uEYmVNZanW68XhsOecykYbY65urqPzaLnFNMfm7WgYY8duR8Rms5m3MfK4nK+2+x1RsK4/tdvv/eCTZv7u7dunoR+eHt4ILYCKMh4Phx0qTQ255xArXaBjgdYC8pb2FC4vi7P1RfT+dDqZYVBC1mUVnD+cEhXMey+0GOwgo0S5yvKMuDHgK6QpCi2kG81+fwRrOMZkniSlvLq6quvZ027r6air+vb+QShNzkupgdCdn5/vN0+n/WHRzARFO/Tz+dxTjBGq4q5pKmglhRAY00oV5NPYvtaaC+qHtu/7+WwZI0lRxmC1EpxpZ0MIFGNggvlgI3nnnS5m3/v+Z0KIzWajSepiNhFWKHOMiMh5F8YhxijVzDkvGBPMasmJQtsdQ3SMMaEKIrp6cQ7PScqOlDjsttttXc+41G0/MtGiF2itlcSVZuNgvfcUo7W2qaro7fbpkXNWFUpIaSxcIqwL9nAafUzFFzpDMc/xL+Yz51wMEVUeHMu7riOiej5zzoHcdnF2LoSEnaDSIkS3nC+wHpRShwM5O3z2ne+13fGXv/z67GyhtUTtM9lCohRlXLDg7++2fEurVVOW5TjaqkruR5wz7yjYaELiRYlKRgrGj4adpJbeGylUWdRD10upoyfGmYNNuqeyLEIIhZLOOWLEuVguZqmDK3Qhy8Vq+fbt2/32tN+czs7OyrJkkZvBKqWWzWwcx+V8AUaFcWO7PYFDht4VE7xpqkWzRFHgyxhCkCwNYXMSLHLBmGCyaqrD4SClkExGH0h4EYMQauh6ZESCi/PzczSuwFz23mMogUXubWCMVbpou+Nxv53P54LFqiqwI3RZFlng5auvvvaetJZCCEfBZjtZBAHGRFWVfd/3/YiedNNUUAOz1trRDcN+uVxKJpuyIU+A/rbtwVoXAhW1rucz7yNjEYJmL168eHh4SLWhpxAjtrDgytnh5cuX9ax5//59UZXG2YJLJoT1XgoBl/tDexKMF0XBI5XZd8eTF1oN1hCFsgbBZS+kJO/tSEILE+18UUlMmoA/OyFixhhg4ZHCBIUAleaUpoY556M13ntOTGrFAgMB07uk/0ucoY1WlmWMgbFCZgnamGUfrbVCSKmTXiTwZSmlD6k7xBjDKAQgYMaTuvFE5ZuqOPSW8Sta60nTlnPO2TMrvNwXCnlYOMbUW8BfEVlvYfrP1Otw2WSJBSUBOgAcIGPM9CdQ7QNG8XlgE+CC9x7MsglxGMcRZD2cB7gwDN9NH/UcDBrHkbIkZaZl+QmUpBB55g9671Ggji6V35yLoevB6Jm0t0AusNmJMoYIUjMRBagmE02PCy/OWssYTZyymF1KnpcNIrODY9aYB8AXY4zGiKRonGjyU6tjgvvRg13Uy2Hoh66nP6M1HBM0n+0IpsujbAM4jbrj8lgklnlwgJNijER+WoTgXRpjQgxg8ADpQGB1LlkLMsZC8NYmBXOtNXI1kQVPYpZb4TxdMEt6wW66X8ZYjAxTgUoVQghrR5uFrTnnFImIAkRnKDExiUhKzjkHo60pK6woznnMYiZolxW6ct6AdCmlHHqD5WdtQri0BgueAd3WWjMS6FYRkQ+wZ2mklMaMbdsWVSmEGIYR+8s5B4sGECKstXVTwrLpcNhba70jOFCprEzCBQdQUlXVqYcTSAiUrlkpJSWbVheefFXJtGAAhEmJuyiKQggGRAkXrxX/sP4z5DcRNpVSgouJAJsXXnLOffaCbHRpic7qBr+oMi0FgQKj95zzs7Oz/X6PNjvnPFC8uLjAh9R17aTF/sJ+Z0JcXl5iywNHlhLqKIUQgsnE/cTzn3qtUHXE8o7ZLY2IlC6xsBEZMFtkrVXZRBudlaIoBmtYJk2P40g8PWG8EYwuisSyJ6UEBLLxBLz7wM6euiPY2jYb1wJoxflKnA3DUJY6+KQ1nOULvJQyUJjNazsasCcZY5PDIRc0bXbcFBF568Zx1GUyOkgNqtzImR5IzNYQaCrIzJ3nnCslUCjiUvHDeCn2wyg6OGJ8YqnIbBXLE81/opEmU5qpPcazjtXUUkIAjx+EOPgU2UabZzjyJ8RMmc8t2xTDp3g13eOzeJu0hkF0AktuAoX5BxZwcsf12YgPVy5yNwJ5eS4SPtg2stxeJSLG0vGH4XoiqqoKmRAy6aZp+r4fRxsjm8gI1lqpVdediqKAwwFjDH1cXAa2QHDoxiU3SJ8Z+vv9Xmu9Xq8RUoCt8+xYAIiciEpdgGchkyuDxzvCY8GueXy8x19M0sPeW2uhD4CulciM/mn+Dg0JmacLp4M4ZkakUirSr9ZuDiFgPgYvC7wVrEkbvJS6kGpaOXinWGlQIJkaDNMZB5zdGGPtyLKq0vQGWaLS2xCcUqps6unwGvoec3CBGIfLilI8m907750zRHEcnR3GGCOFWFWV5Px4PFrvdSGFELv9HpcRvI8xLpdLLHWkPdCsLIqirOuQv4wZuq47X68uLi7u7u42w8OZuqAYx113cb761re+89qazd3bSodmpnvfuse7ormoVTNr1iGEx83DOI7b7Xa1Wv3ar/3aj379h+M4bjab169fN02zXM4Xi4XWGsrdn3zyiZDM2UAhhuurN19/JRj/R//wH50v9G//xm8sGv37/+Jf/d6//IPV9cv55c2vff+HP/vl2+E0eO+//OKLyEKZLUMZY0xwVejROq315eUlfMm6rpUKQRWyJ6Iu006nEAWTzlvnXFmmx17XtVLFw8OD9a6uZ8PQbbfbuq6NM7vdLhJBoPz86nK3OyBQB/tBen7aquM4Flze399XuipUMXa26wYldVFUiieBKcE4lLVCDM455og4O7SnyMLxdNocNpvtdrVa9b6z1hpjMKoPqiYKLeccHiYWNsokIdO8WlEUo02WpIjGnCsQSyeJNkRRcJEm23rgF2iKwQ3m8fFxtVq9ePHi9vYtQjfat8aYzWaDIV8XPBC9Fy9eYFDXGPP111//eNn8d/+j/8Evv37zn/wnf3+3P/aDbQ3JiiulWUQdrdq+V0oZZ1iIUqpxtDqfgHhZVVX51rk8LW59Wrdaa6JQlsJ7L7gcx3EYHuqixEwkqElCzNbr9dPD4+l0GkevZF/X5cLpX7n928PRLIeyrLuuY5Fms5mNYcpj+76HVwqaZFOpMgyDLosYo9a6bwfOSWrFPMcswvn5OazJjsejtR4ReLc9HA8HxphQdHNzw7LUYV3XRVFcXl5iMGuz2XDOS100TbPf7621X3/99cuXL1EC7Ha7xWJxOBwgFhRjDNx9/fXXyJoS5Koh9KSM4c4FvKMpeDLGiLOiKouiOB6Pu90Og8xQhMQ8UMy+xDbPFG+326qqQmi11mRDjLG3drfbeR/mcxFCgDzLNHxGTECAdb/fv3u3sdYuFivQt5tmc/t6W5RD0zRXV69igDwdfJPGm5sbHJRKqd/5nb/Y9/3X33wDy6z1eo1QhvHtmMcidaGVUphH0VpT5FdXV3d3d9g4Usr1eo1XiRGcvm8ZE1JS8FRVFQ6aP//n//xPf/pHxtn1epnHEKVSXggxupExtpzNvY/GmPv77dnZotBVVVU3NzdKCxDfKATjHeYCQW41hrquWywWeC+nztzc6Kqq+r7HtSVeUUjq6mlQRsopD2GM1XX9ne985/379xgAR2LPOX96ejpgOQkFviTYaixLuqHWePfu3XI5/9t/+2+9/vqbf/AP/tP5XHLJpBaRIucklJKSt207dCdvw2xez5rlH/zBH/zhH/5h08zBTMRsX1VVSoinh4cYY9cRi/Tnf/PPPTzejcMgpbq7uxuGYb/vX9yswLG12VophAAdD2AUxhgtRYyx67qzs4tAqUmMm0Igms8l9F45J+cci4F7nxOkJN1mrXVuRBERPI3jCD7gMAy6SN5IVVUwlqDAcRwZEyEEFhhjynu/2/VS0WrVzObz2WwGAPqLL74oiuLi/Pzm5ma5XG42m+Px2DRN23UIv+hW1nUFtaLvfe8zJLe9GU+nAwtMa40MDTn/OI6gOm235ump+/TTq+VySZzW6/V+v0UdVBTFxcUFeDxmdNFFSLI640MIp9MJcnZIeiGqa61FFhQDk4rPF9LY4f7+fr1cJrIC4yJ9uemHN5vNxPPDoaCy4hkylvV6fTgcsJygQKK1FoJhOAN3ejqdpJTn5+dVVd3e3srsoIDC5OXLl4onPb2kk+CTlRkqFJnn87L/oWCMWTe6EF68eNEP7Xa7DSEcDoeyLMH4RxpZVcWsaTabja40SBv4ELCJURrEZ/7qPFO20XBFgRYCBetcCFJqpbgxxjs/GTXhlne73Xa7vbm5Qc0rpZzNZovF4nA4nU6nw6Htuu7s7Gw2m3HO3759K4Sa8BA8zKIozs/P0NmdDhoUa957Y5IeOiCICdQ2WYpaT4rPUI1jiVyMYwhpLZJMHCKgiuMWTqdT8MQY+/73v7/ZbKbUWuUpSXxyURRt2xPRy5eX2+3TlFPZZ5bXU3KLkGLdiNyVccU5h2fbfr+3xuOjUAMej+3FxarvxqvrCyI6HHZExLnwWQPAGhgAeq31+fkSsuZ9359Op7Ztl8vlvKm01jwpjur98RCy1vyERuKZCCGapjF2GIYh+GG61OdwU1EUxgzIfgHB4TXhTJnNZstqrrWOPmCICuFFCFXXtbeOc+5DEFxx7sZxvL+/Z0LwPOcKhQ3GmBDcmABZD2ihe+9jniidOP7eeyFU37eMMU8RdSX5ILkyxsCZVuQhY7gAQq5zGAZrRxyRX3zxxYsXLz766KPj8WiM2e+OWmu4JaE4uru7a7/qrLVN07x69coNvfGuqjQR3T8+zOdzDOeFEJgEZZNCCJHFNC4vnHOOkVBKWdDCYiiKQjN1Nj+TuEnKwgspDMVIjLTWPri+7wPzyNWEEMZZ7PP0+q3FMgL2MY6jSS1KXtQVJsiEENaa5wAuOsxIUIiSWRkqHMYF51zx0mdfr6osq7pGjDPjgL8+HauUNUY554ylWp1zzmMqwo0xShaY/R/HkRgh20CiTyFiw08drSncYMfG6IGsckG5lcc553VdDgPliyQugTXbaWPzPLcbQgjRzeZ127a7/abQFT4fhXSIRNmLU2bF0pD9D6fUH0W4ezajMZ3H+Hf5TG4VCy5yNi3TBLVn9ATRHwmrSqojUSlFnHnrpvBkjOFcoHjGwmCMRQqo1/Lb51NARHGOMA0hLe8/oLpTJGLPdCdCCJBYAViGM4ly+y48MzpgjPkQWCQpJVcSg12YZRvG0XmjtYL+vVQJj+OcB+dHHyboyme1+xgZFmQQSXhESskZWM8J8qPcZcHZg3P6uUZKjKyqKpZXS8j8RKIPXJjnwRfYBNYe3jXKACIWI2HIVBdpht05V+jk3qm1xPUj65oCkJSSUTpFQkjdl2BIcOVsUDKJL3sfiAjtDUxaIc1icM2yLnU7leLJIWqSBTfBeSKG0CkYH4fBcm6E4JwLzo0xh93eZrkbfBsBxBhjxhHao8BBBmuklKvVahi6EEKSug8pZUxN2sWCkoZp6PoTaq3lcgn4yTkXvLU+GYQSEWfJ9IyIQraCcc4tZ3M8q8AFzlfkmjGPAMssDoPyw4UEXUEYBLVH1w1IFxDu3r17hyxhtVopJWwS0KiQlBBRoTSVVUIHhJhG4/G+kCG5SGVZCq6898zThDC6PCyPL+w4VF9I5qbzGz/WNHOlCik957xrW7zZGKOHipxzwAgKXXDO4YMHfGE2m3mb9A0459aldg7CDudcKg7LWKxDHLTTFlZJgQHD+0JrkR9d0oKf9juiXGQkhFAiKVSIrBo/jqNkaWpJapwRljEWhWzbFtkAp7QZbVYFBU8WlsplUSDITO0lBBBM22QZIY7WCPh6Krtme+9DcDEqXO3UuwrJikGhHRWyhzLW2BSQsfymRuDzyCYyf1kIAeEClkQnUptwgkXwyRTidJZNx5DIvpE8W8XyLFfNBKfwQYmeslKElNL7D3a+POuNhDyohV2JC+Y5KZmuh7L4VYzp1GBZ2ohHyXmyyCikcu7D7osxBh8mvZGmmVs7htz9klIzxqRMJwiiMTHCW8A7xVXpLNCcYHcibF7vvVQK5QFjLEQ3mjx+JMiH4IPFuIe14+l0wCM1WX9/t9uhj+6ynlLIc7iAV1CAySxog0oeMQoVzpgU84X7t4i34s1Oefa0WjjnSsiiKLyxU7KhlCIKzqVZ3ekoRLjI/QNnjDfGyJwvoQwmIvIp8zHecc6lkCJEIkJ0pQj73ACzYqDMgdF+vyeiqq6ndosbDeW+TqnlMPRMihC4tRbj58MwsGcC7lgtzlp4E01dFqm498w5czgcJGcvrq6ttW9ffzO8Hy6uLuu6PB5Pq8XFn//tv/Tm8599/eWf9qMvGzUMna4Ga/Zczn79Nz/95/+i++qrrz766KMf/ehH5+fnXMiuO/R9f3l5iZ0rRLtcLuEsFEIwY3+xvpRSLufNLz//+buvvrx7f9/t+P7h4f3br9u+N84vnvqg3129+vRiffnF5ulmfuO8t9F27SC0EKqIMYKR2cznXMqyZMMwBB+0UuNoq6q29mitrcvkk4MVtVgsTqdT152EEDGyGFlZ1sQZY6Lvx9lsVvMZJI+l5I7zEBznPHI2DIaIrHMhslIXTHDcC9JjlLLlcjUOpjt2hSp4lMdj66wXQl29usLUhbUOk1Xee61V23dMilN3jESn4USMheiO3bGel88LJ5md1rAdEGTgiwvPcedMoBgoxhCMcZwHaFMiRYdUC5YfIAZrPRzPdrsdNg5gOK1L5FRt2x4O43IZAX0W2R0EUQhQAkp0LKTHx0dcZN/34xh0s2xN+Af/8B897NrR+O2RyoaNnvp2sP1wdnnBOGNMOOeUkLrSfd+3bbtczlHt2CxAVJX14bg3STosaWdNkUoIwQuhlOr7cRiGoqgQMebzOdTp5vO5D9bafhxtVRUx/Gp2s5TycDjCQ/Xx8dEYc3591R6PCJ4QfNBaQ0T4/v4exAVMWwPdTg3jAuOonTGMiGazGUgnSgl02nywEOLAxL3Kog1IDFDwc84vLy83m42PwXuf4B4l7+7uZrMZKqC27eHlBQ23h4eH3W5crYrVaiWlHIYB+Rj0uPHuvPcueOKsHwel1KJBVSwQxlfLM1ALnXN93xMLs9ns3e2boigWiwVRrJvy8WEjpQTpEjUtSmVkTYjYEDaBxsJsvsRba5pmNktA4f39/el0Oj8/d841swppwM2Lq3Ect9sD9kVZlnVdPz09dV3HOVeqQLY8DCOg/A8JeYwA6Ikn+tQ4jpzJYehOp1PXdZj+gXhXyPP4QHOk5FqVjDEKjKK3xnvvm6ZRzjLGAKhNk9pFUYzdaK3XWkuYf55OoQ6Mx/1hu16vn56eZB7fdjbVfVrrunazeb1YLJRSx/bQPZqQc1chhBsH7FBBTGTrYxzcIjM0r66u9vv98Xg8Ozvz3kKMzsWwXq+11qvVylo/m82OxyOsj6aUGNWT1rrrxoeHwz/+x//4r/21v/bX/73f+b3f+72n7X09K2KMxFxwkcuyPR6ttc6Fw6GbzWZny7NhGIJ1TOno3ayuRXYEMcO4mM33293NixeC07/6l38QrCsaiYg0jP3j4261covFgnOOzTIBlHgFwzB4a6SUt7cHH+n8/BzWUzizIk8eHtaMRATtbMmpLEuErLKswcHnnDuX5BMX89XxeHx6euKc930oSlqv5977vh+LooCmv7We8xgCVXngTAgCl1MQo8x76LrudBq7tr25ucFMeghhfzhOGWaMsakbbF6UWpzz0+lkh/Hu3S3qBaUUJurqutRaOuPruh7Hh7Yn6531FkFj6vG0bVuW5dXV1fv371/eXHjyQghM0K+X86kAx1/H+4VogxndMAzzxfzi4mK/37979yAzjwpuN9/5znd+9oufIy303hdaD4MxZsDpMOXAjA0AaoAjP90/jOO4XK6995vNRkqOIs4lnVNHggOCgJYFmqA4EL/88stFU9/c3KDrOZvNAkuG1WdnZ8e00lyMfhx7aLkEF4hzDe3TrNhZFjVOyRDAMnacV6oo6rr25AE+4rHc3t76TCYNmRLHMvkD5RLPTl3BOqiHFkUxm802m00qapSAhDokp+q6ns1SJoBOKmNMSlUUxenUgbf0+vVrAOhI2lF84TlPShrpw4WYCBA+a4OEbFAkOS+UijGeug7HnBSFsQMytKqqxn7AYlsul8g0fNYaxckC0Qm0k8uy9C6+fv2aWPit3/qt3//93y9LPSFIwOi11sNgJsbnxcXFzc2rruseHx9DNg8wo1NKwdUQWvyj6VNnQnPcGrKCvu9j9GVZ4wbPzlZYLWC/9f04m9UheKLENy0rwUjAGjGQD8GFIDDHUxSqKFTXdYfDoZnPRZYIBu6BnD/Ff5dIjcYYH7yU0obJzT6bGjG23W6rqsBzDjGiHKPInXPL5XIcx8fHHWNMF5JYopxrrUMgpWRVVU65/X4fA5NS6rJmLBrnZB5iVtmninM+m820NkSBsTQHn8pzItwpDmsiWixms1l96jtnDLDNq/MLesZK6bpTWdTQIh+GYb5aAhzHrAZqrsPh8Pj4iFVd13XIZCCcnm/fvj0ceibodBqklAL4JfmQeUtal3VZQcd/HJOP8ehGvDLOuTfeDIOrnJCMBy65ascD8fj27q2cEkEswQkxTEUUi0VRTM2uqqrsKRW0+GGZRaPwjMZxDD5ilJhnhVwheAgJhEpYNhHnfEyuZYlJGmMchuF43OEsRD2GXAT+AM4bzj8Yi+Fz7JiMVo0xISTToZA5cShTKetRPi8RpwMA1Ts29tSo4ZyjIhScMsTzoeYPwcWYmLwxRikT/B1cBI2Ukr8WCSGIhWl0hTF2OO7AD5WKx5DImyFLtWJ7UIjOOeIsl6AB8BMq9qHrVaEnoASAQroAijQBGdB55Akn4lxkZHly/kmKPEKIELzWmglOSmPdEAMgK1H584lrmdlwGTdJGO702GU2fsEB86GBATpPDM658EzvFfKRoFgyxna73ZT/lWXF8j5H8gFsmuVGvffWOQsvQfxKDEFKQQElcZKyVtn8CuC4934qH7CTI2NSac65c2GCL/FUy7KE4zOKQ0Qll7SEGBfCWUt5AB/XFp/JvE5ZILh+MbPCKXIhpNDqcNwhtb29vV2tVqv1GtyTKS0uy9I5g9/FpDk4zlprrWTMqvYxxgxiACMQRVEKkVSGQwjJVl7mcaHInbU8qz5laMOhqQ47VMZ413VAq32iCFUTBmGtraoKOubINogiYxwp8lTaOec8xRwKBGOsrmuwe6qqCs4zlkQSddZcY4z5YDnnQsoJLE6INqfICABWDIzzBOcJITCOlOirFMM4ck6Bp+wB22c0BoUcEtCQJSkmsNXnFYJtjsVcFIUQ4vvf/z5IPSEEMEljjGYYLTMxRsnFVJDwLL7MOUdmRkSjS9Rgyq1g4Kcyy1oBjwZvJa/SP9O3iJnYi5PDWltVxWKxMOMIYw3GGAvRhvSL+BwppTMefV0cQiySkGwYO6xW55wxLZZ0ooNlSWvFZAiBGOuHASpynAsppfciO2vJ5I5o3ciSod84jkRpIAPDxaUuUlC1rm1bIYTSQnLtsmbxEJK/hE+8Y8EY44xPwc1m0zxsrqqqZk2D/rNIWvOUI1IirTs3YlYGS6jrOjSojBlwUsQ8FcGzcDlPCv58wmuIEtw/VXr4NJySCHeUufNCCKiyeO+Z4CJXFHjRCTgm5q0jIgWdJ5n8YdDkm1oFz3NibE/AB4MZSXwYngj5gIiZ0fA8XabMVIrZsoY9ExFmH6xBp5kPmvLalM0HzGGUaI9jTaJBm84skcF6Sp7IMXiIAiNQMEoka3yykBKLHOsNySi02Fg2ilzMG7AVAJOJ7DoSsw8JQBC8iwmUB2UA2Q89y+piHmJA6wtZx/RwYvZ4tNlOIA1pec+IMJMxPdt/8yvGyIiC9877xI/L8v0kpDHGUwzBWQtSOYWQ9i9+cjomEISHYRBSskw2x4UheymKgkvpve/GgT0TXbFZpt87l0+rGJ3XWkfOtFJgo2OYI+shOsYYsdB2RzOknhZ+BptXSkl50ASrxVobvCcKjCXGvda67zsi0lqOXX8UnBN78eIFcf+zn/3s0B9/8IMfnJ1de2vazs/Orj6lsN3eMm4Ej0N35EUoter7kxDi+vr6hz/8IQxVuq7r+mG+XGC7LVZLCvF0OiEuHY9H2L7ZYRzH8ZNXH33r5c3T7ZvXX33xj//F75khXF3Ny9nicTu8f7r9k1+864wdT8EMxnnfmj5QnMmFC05rHUIcrWv7wRiHwg/UJDNYgF84YjBDulgsnp6e0IrQWgfnBeOc8aeHx3ZInipv376dz+cQXicWu7EDyUsRHU+nppmv1ufb7dZ7L4iIs2lLGufb0VCIhSwoUjQjBcD7LgTabLYx0nq9llohiVWFjhQjZ2bsGWPt2BKPQjKuxKk9Ru7h4pUjGyHzAYKGUMM5B+SNiAW667R6scch4qm1Pju7eHx8ZJm9guIkVbaZVbDd7r1Pwk3OubOzBiXN5eV50zRXV1eMsffv33vvYfiZxM3LCrgqeAla648+uv7mcfN/+Lt/zxijhSYteNG1NspCCqm8s5xLnzJASRE9LYR3C+mPrhsYy7s1slQvqDTCwqcptwgjbj2vmyiTCh/u+uLiDOlxoauu68eRnHNc/kqjUFqv11X7aIyZzxsKfrPZNsskgoGXVeri+vp6GAaYdyEZq+uaeIK/ldTGGGTFeKSoWXDeTSnl5eVlofRms+mGFm0DKeVEZwE7mOfxCK11PWtc8HjXcKZCfJNSI+qabN5+dlapLC2NOMAY02UBZf/ZYg4sEv8EgRTD1zETFFDGb3dPIYa+65GjgmAoYA9VafQVZrPZar1AcPPebzd7ROO+72E9BFgKDQnEPQhSHw6Hsix2u91ut7u5uem67ng8lmWx2W7NOILjFiM7nboY/WKxKIpiv9+rQkuhpZSr1RIBNkMqDn2REELwHhZYl5eXoG5IKWFoHEI4HA5FqUBD896fTt1iLtbrhbV2HO3xeOxOPed0d3+7XM4ZYziDclUokdThobVt75xbLpvTqUX/5nQ6PT4+EpG18eXLqxijlpJiyhlCCEoLm7Sh2NVVMSXqOHcQssgHzjn0oAEG9X0PIOz73/8+Ed3f32ut6zoRbmKMkN5eLpeXlyuo0uNsxf+t61pycTweC6U/fnXz+v3tv/7pL+/ubv/O3/k7v/OXfvvv/t3/47u331RV1badEKIqm+B8oUpiou97aoeL89lyvtjv93Y0Usrog3WpQTKfz4+HHWd0f/v+xcX5091jIfnbu93Fxaooil//4Q+/+eYbYH8Aqq6uroqigKfldFaOo5VSX13NpZRDn+IGaopDe8LzbxqYNxw4l94Ha+1+v29SuljZNHBMOutoM8ZWqwXnsmyMoDilYThM27ZlTDRNE2PAhV1f3zTNASU5FrDNisZCeKU1+BBa64vLy6fNaT4voISWlvRqtdlsuBB3d3dTWr5er6f8E7nNer1Gj4pLcXl9Oet7xpLOnvfJ9eRwOKzX69evX2PRKqWUUMMwXF9fO+ei92iRumzoBwlHG7wUulo2SikIJ87n8+trr4X0PhIRE1xKyQSHOaH3PnhyLgzD4L1FHkWZgIJWE8AWIOxtOzSN2e/3p1OndWL+YnV5b4PjSilsKEQwTMpi5w7DcH9/D81ryLFOXYe+7xmL1ho0lrz3XddF76XWIYSnzQNONJ+HyznnYHcxFjnnbdsyFmHY4rNPScjeGBOGy56NGMJIDWF5NpsNbYcThzEGoFxKeTwefddeX1+bMe1NrfVmsxnHEVQGPP/z8/O6rg+Hw2ZziJHOzua5NnQ4lfDzAu5/2X1nKmqQQceYFN7HvodXJrp0xhiElKl6woEyFc7jOB4OByUL76IkRpIzEjEway0LPHiMcnopE3n54eHho48++v73v/+v//UfLpfL56OQwzB03RAzE1wI8e7dO6KUZqBpB9SuSHZijPE4VRzeBSYhDkllWQZPQHKQ7SPyF0XhbICffNu2y+VaCAGEtGmavksThIvFAlYHLBvSPDw8aCmHYUhOMlJiAALh9HQ6QaCSsrICY4wLElxZO+AzM0VGeu8Xi0WME5UtMTWtsVVVAb+u62CMKcuSy6TowJiQkoHYkRYYI08pIXHOUGaS0QeL14jO7vF4VIpxLjFwWVWVsRZ3gXO8LMu+76a13fc9qidKXE8B7Dj4gPO0mjVaa5ykMcZU/xblOI6n00nwVBmpbC+M/tDl5eXHH5d3d3enrh3HcVYWLIYYohDi/Px8s9nY0Z2fn5dl6cwQ3YceZxpgJa8pmXMs60W36wSTNAujNc45qYUkIht8zCSdRF3hqPxZykGtw2Nq5nOULuKZFxwRAe1umgYPbhgGoWXfw2kwoSQmeyXhlSMnm83mPHsxIQkYs7+T1hrzSpip/7PctIDzpyiKaTzKuSie8ZR5tkiaEEDOORcctb3I5EFnrDGOPYObvfchI4ZE03i18x5gR7DWn06nGKG7j7lgC4UEZGkgRm02GynlfJGyPWzOIlnNBiLywU7Q5NRb5sQ8eZUHVXwMU/ebTVRZCLTFaZWnweSEFDAOZFkpxaWYkmzANzyPfk/PJAFAhS6ksuOYgGMhADdwzrQuvffj6DjnSqTBCp74gDE/fGibfrCdpExYnnATxpgU0jnHZQLEhRBKcSJ6riUK4+PRmhBCkbsgE6bJMwMaezWEEJyPlO5FKcHywD6aKFqncZVJ5lhKiW6BtZYJyRgTPKUC8CfBtT1D9yhGjyMnAy4p55uev8tEe8BVMc/ghwBvpbQyUzvEJy4hGKYxxrJQ52eX01DPhIZ47wUnFLTYQUjdUEKM2athQnNCnjCSeZZnAobwCaiCrLUxsBE1gyxwVZxz55gLtus6zglblQWSjGMIyzA+n8155nr3tiUupFYGoURKpTTJREtkjEWleGap+KwYMI59CHFWNzgRnbHjmFzppoMT14wg40OAu0siIUZkdcKT59neDTiUzSYDCNCCYlVVLo9iTFDmcrmceKYZVg4hKxjwZ16XABNZllUFHoSLhLfShA7jvWAUDp1bcDEgkZHK16JQSnmfdgp2NCrtoihAs4rZZhA7FAwmfJ8xFmLyTGNMAAuw1qPaBL4QYyTOELpx3vdDGwNzweMEYowZM8hM5uWcS8nHcbTWCqGklJEoZj8KXDZlLBUvXWtFRE3TCCEwrquUEoxHwaaQQpTwYuccBlpws5xz4721th/as+IMHhFINI2zqfksOBOcRfLO2WBwwiCw6Kw9XUAZmfPoPZiwMlupULIyS1U659F7q7U+Pz+XiVidiMY8y3fgRU/BClc7xZxc76d4hceCHwBDFu9rCkc+N2tj1s+RUsLftes7pVRghC0MFA/4FGL1lPXmblaczjuXZ2yFkugLRp8OEeJcJtQ7THc0Zc/TWYkdmrqS2Uo3fjjmUgwXApO5o8j0fBs8ZjatHYkxpQoc3DjjWKSiKHaH/dPT083NTVmWbhyEUEJEY4wg5kKiLYcQRCa2IxIC5jDZmWcCccQzlrfP6dQ4juKZKY33vqoqrLGYzetVdkTEvaBgm6gNeB0YovR5vuR5dTFR0sZhKMtyu92ivBRCfOg+/NkvxpiQ0ntfZNo+S3xkQ8LxzAxiz1jMIjvOIY/K4wIO5OLFcokhjKnr77KYBs+U2PDMAICY8N5TiGZ0fTea0QnJoJcdfBK2qqoKYhSIe9jOPFlBoDFjp/Mao7iUzSrrusTTFgkkigGQOUHrnLxPjAkWqa7r1fnqhz/+4e///h98/vkXdTE7W62b5dnje7rffSGYXi3mzo82hhC9sYNUarU6Oz8/X61W3ntQOVie4XBZn8pZ530vs8jVclXutk8sxBhj1cza0dzeP56/+Ojp8fHt45Ft+8HFyNWw37tATaV2T7vIGNdysENZe6nVaJzWuixJCAFfDRa9F2y9nNtIt7e3IQQzjFprBO0YIwTvXJoJiDEGpQTnsq6TdA/cilzw3jq4PvNEkvDex67rbl69PLX9cDzEGI2zOMRjjEPXa62Ns9HFQpWCi34wgzE8snEc/SnggVRVVRQFl8I5Ozo7jn2gqAqpo9wd2sftk5Cyakowbff7Pa6qrlNZXpblL3/5drHQl5eX1tpKqyxiq0Czdc4pVaALi1MV/fv3724nFR0tCxd817VCiOVyyTN/M2bSHOrb733ve4fD4enpYYpamKmChRT6GVVVKfEhHE0TCQ9Px/50XCzmQZWcsVXVtF3vOV3evNjud6e+wxE2n89jcJJJFzzkrdq2JSLgGs4lOIYRM6Pl1uuqlCLutnticdbMnXdAZlmInMsxq72jkf/xx68454Jx2Dp570tf/srtb4yF/CLnHPNw3vvd6bTb7WKMANNhVMifNR3btpVapfYki+M4iuBRF+B8AcyBJBPyF4fD4eWLm+985zttf9psNrhUyA6cn58jjMC3c7VaMcZev36NaOacq6oKGYL33pihaebo3KTGUjLdTXVjUVbWu1KVcA9DUHVZhuVwOKBvAdYnvoANffzxx977d+/eWWsXi8X5+fnhcEBsRwh9HE5146qmOR6PWkrvIl7W4+NjJHLOPT4+QgKoqmdCCABMMSaadlmWj4+bvqfD4Zvr68V8Posxvnv3rirLrusglzSlcEKIU9dKrRiP1pqqLsYhiQoOwzCfzbBWnXNSKSm0s4EzOZ0LSLpQ8KYhGymRS7enjjEGAWWt9bwZu647ntqqKqy1xo1Q84Tyw8PDQ1FU8/lSCNV1R5zO3/3uZ977+/t75KKbzU4pNo4jngbLE11cUIC7Q4wocodhKAoVI+NcaKEjY6djN2+qYTDjaGU2qgUPoCzLh4cH1BfDMABq8d7OV0sMLe22h7PlWchKKSgu8OKcSVShcRwvLy6klO9u3/+9v/f3/tf/m//V//5/97/96stf/oP/y/9VxcoZMxwPZ6szHwXjcrZY3t09bB63i8WiyAMN3nutlXOORerbLlinBa2W849uXl6drZ6edmUpsRRfvnx5eXnpvR+6HtkF+DcIHVLK+Xx+Op2O+wNjrG7mIBBwzgtdMB5j9IoLAMS6kH2XxxmdHwdb1Rw/jHeK52OtFUqBcIqIVBRFsK5tW2s84oMLQQjV9/1yua60ICI0A5RaQ6RV66TYpvIgo9Z6GEelVDSmKMvvfe9TeIuhhKnKEp+Mts2XX76ezyuoPKFGQFINVzHEbSl5VSX+Ac5orWWIDjRYpDcIrVLKyOPT09PT05PW+uri4vLyWgix3W6nlFJKzWIEpQzIJuZU6qJEAtx1AxH5GNALCSFQ5If22LY9Y/Txxy+n/Goa4pRS4gaR0KLzp5RQio1jUCrB8akMlx9U4NJoqTNayxD4drslH0BuOxwOTIqYXaa11rNZjRYR6OqbzebxcffJJy+dc5DiQS2mtT6e9uvVuTFGSlJKMFYQEVTjo4vjYLUqwYhvaikkmwgr4ZkKBPJzjM861y1mM0TsGCMiG9AApZQiQvqEnhw28uXlJc413A5OFjzhzz777OHhATrdRaHW67VS6vHx0Tmnqmo+n8+axTB28ZnMWr42zmJsqopzfjweu66jyJVSupBlWYbs+SaEAIs/hMCjEFwJngKLzEPVk3gOo6ToOEWAEF0M9Ed/9Ec//vGP/51/5y/883/+e2VZIE0VQngfRXYvF3lwwVqLVJkiH+yA1wpxvHEcuUgl+TiOZaljZMn1ivPFcsZIoGQuy3Kz2fR9muDnTGolQ3SIXUiY0dHHnC4iwyT/BVqLc66u67bvrXWLxbyqqm7opwoItwBmGPhwipTgqZrDFu664XA4IFpiYyI4I6465zabzbQmF7OZd44JUVUNEUezFpLZKcj4OKXcNrvFYjuAfDZhHbgd7z1agLvdbjab6bKM+QBlLB7aU+ZZemQLhUwCwjHG/fHIpQwUjHdcSTMabAp0p4BNC644C7NmIaWM3rdte9zvkSE8L4u01nUgM9ht3zEptEpzGCEELdPTEyxO7SISBMPwIbpTeypUuV6uikJb6oJ1wzDIUi2XS4muCCIIniBGJCTjQghi6fyGIzbOj9QOQk8vk84m9ERkFUXMTkysRsoSPKl8j5E1jeBSChljDJG0kPO6mVWzwZopsPppxlaQc9Fk+3XOeciQzVRGFkXSo4kxchI626dOEL61FohfeKZMSpxpLaXU2G8AUDM2QRSzkkNSP6QJv4sRjDZOlJQWgFpNRO++7+umnHh5Ihvj4qWeTifELJO9fWOMWiZVXOBNKSXSagI1eFbqlFJKrVyes3heNjPJuRQEVDpDCSyS0ElnAxkGKnBs8nEc58sFylFsYMXZBKLhzaY/ypOLN09854RL5meSCIOoDGOeI2aJKy2Qx/s8FTIlSQCaQwgwUkeCwolN5LWu64wxdV2XZYUXB6giZtnNhESHpLs9PS6eKcaEgESJnEuMwXATl4pCyDlHxEMmZWM95IvnkkkXUw0cI4sxTbLjE6aDAf8f/4koOV0JY4yRECItWgzaYMdi13RDiyvhWdHbWCdY6j5NTDS8I5Z5cKjlyrJGK5WIMMDb9yOAL0hMFEURKIn9U+SCc4rcMz8NdyilSqmfgxoqz2lO7RAQcJAHaK1DcM9v0AYbKTGUKWuVTrsYsDvm48q6cs4ZkzBNnx0sJ1QdGb9UKj/VxNrGRwmu0ESdoFspZcaCiYhkoZkUYTAsz1hlRqrADbqsyyylnNWNS2KwHyTFKVM+wzMTMCTrWmvomiFxFNlxboKt2bMW+jQcwBjz/oOQd8aO2Ww2c84pdYkncDzun7dtUBJwzn1Igr8TNuS932637JnalMhKkWAzoZMUAnAPyxhDvjul3ZNKKUSlQ+6g4KOmroaUEiPYnOupVwehPTQRsTbQm0G0T0SM6CUXRIFzYcwgJDu/WD8+PiLHRaJTlqUMiTALeA7nq0viZRyZ+hToEL4A/ce8zYHZEVGM3jk/4UQ59uoYk5IvQvF0NKC89EmFOYUyyqCtlHz6oyx39fAzLDOFQ/jQ9mMkYoiCKyVzSy9ErjjSfSkl9j/PchbIukSWF8cmwhzoxHNXz2TERUaHcRIh9sYYrffODD5RbBJxW2RhJZG/UimrJAkO2WhcNs8tK+ecUqIs5+hY4E/YbFvPGAdXCC+r67r22OmyOB732+12vV4LISRLQW8cx0KqmI0QcM2MMVhX8az7hBwOt79cLr33uD8sD1QyeNRKSgC1EyEFN+tykgRUtD2dmqZp6tp7TzGKqrLWWmOEEGYcITk6YZecc7AwJMY7QrJR8piPVgohOhy6fwNrIsodPpb1c2JWuBpHK4SoZo13SXA55uauyGNVMbcVsYnQlgshhDylIjJ9GzEKzwEbPGQVFOfc4XCARCzAFITc3oyAiaf1I6VE1zAFFhTJUvUmUWAod9ytMah+jTFlqZMVgQ8xRqIoBOOCgHDFGNv2GKwbzSC5ePPmjd7L737ne3/hL/yFn/zBT/7pP/2nL69fXl1dfffbn/z4z/3W5z//16eu7ftOFZrrAq3KV59cp2YkJ+Y9YosQWOYMZxZjzAUvSRLxKCmE+OLljR3N0J7Gfnh79/j6bhNjFEJTpXtjT2bggnwQstDODcY7ISXx2B2jkv3li1mgyCiONggmnXM8Uohxs9mcnZ0t1meZO1kiGUNO4r1fLpcYSMdKG4ZhuVz2Q4+o1TRzwXjwIVAc2l4pwbk4nk4YkByG4Zuv34zjWGodiFRunBOR1Eowzhh3Lti2HZgQJJRS3gdvhjiyUMX22IEHF0LoutYGL7UYhu5p9ySUGJ0RihelHsbu9vYWkRl7Co1J9Ux1AegVwFmeh0XyBFsqY8DfCc5bb7quOx7NalXh+0zwsqwZY7DB8N7P5/NXr15Btbksy6+/fv/VV19dXV3BtABRxWQxKNzF+fm5MUYJyRgDuVJkdszq6sLxRyoKnhQwfL1elnU1mIErgY6alJxF77ztTsfIeNM04zhyvmqaAhi61oVzSTTfGHM4HJRSyLRDCEiiGBOmH06nU4ysLMu+71HKItYRkY2xaRrkYEX7q7WbcaQSUdu2dVm9ePHi/ePT6XCIMRoTvPeF0m3b4nx3zkHAoeu6QElByHlLz4Yvu66DrgWuB8HqdDqFEO/v379790aXxfn5edu2OHwhpb1arVAsPDw83NzcAOwG9IPhqsPhgPRyv9+/ffv61auP83QF2FUKcR4ZI+e8bdvD4QgsGx+CeD7Z1iMigUcPDIiIwGTHxUO093Q61XUNgdSq2jLGjseWMUFc7o6PPNJqtVqtVvv9/uLycrfb9QMRc7HriqK4uLjo+/7hof3001op3fd9UWjGTHcin7xwuTGGYkQe2HXdcrlUhXTBF1UpujYjL0mVEfi7EhLpxMS5YR9mJX1RFF3XATKIMa5WK6n4dJLWde1s2O/3sKGLMQolpZRlKU+nrqwLSRpwfNv21toQiCI/HlqKnDMZgknZLxdXF5f740FrvVjMDoeTkoXgSskCKCrjEfAHyzNt2H1d19V1fX19fXd3N46jlvJ4bJGETG4HwGqrqoKGNY5v7z3eyH6/Z4wFT8dj+/PPP583DY5UrUr8uaeHRyKaz+d9379/f3/s6dNPr29eXP/RH/3s7//Hf/9//j/9n+zv7v7rf/W/SiF0p/ZP/vTnJpAJbHM6ecvPL8/McXf79n42K2azGicRKsqyJKRe3/rk8ubqejGb/0f/vf/+7/7u726NA1b17t074M7G+KKQy/UKM/XL5RL56ul00mVZ2xBj5EIQ0fF4tNYVhV6fLYUQ6/WaBH/z5k3btoyE1ppzgvalNZ5xhwcITG0AN7nr1uulMc5au9lsDof+Yj1/+fIlOm2CqxhcWZacy6HtdsMA1YWHhwdrx/l8DnQbxyvMVCdK6VTJhhCAJMJztWuPVVWVpQaYUFVqgiamsUtkxYAFQnTAEClL1XnvlSqsC31vGsALQkitmRDHrh3HfsJbwP2cz+fggZ6dnR2P7Zs3b3aH4Tvf+QhJS4gpmQ8+oMM0ZRfYU1qVSETrujweh/1+j/wNxKC27c/P1/P50mbdNqXU2dnZ+/fvJ4AS8XlCToUQxoxgMAB/EKJAgt00zfu3t13nDm2rlFwul9vtFmohs1mNhG3SBJvP5+gGLRYLIZMVAWWPPgQlqDZh88Ilq9DVcyBlHEdGUskiBhMpjrZnz9xlgNJURSGSOlyivWNIAkAkTj1nbFmWx2BPRzObzfBOweOZCn8p5dXVBSoXzjnmh5BmIwRxzhkTSP6ULBiP6BG6rCidD50U0Jp6jn/3LhJZLqXKIss2mAnmmjJwZKdSShibMcbsmDQZxDP+HMqr4/H4x3/8x3/zb/7Njz9+9U/+yT8RQgzDEAJZOy4Wi81mg/cLoUKlFCPhbICnEWJjEnn7ID0aj0cDgZqmaZbLZSbe+omEG0I4P18iR0UjE15r6eF7ak/9crl88eLFZrOBUDjA/a4/4bUKrmKIqLSGwUwTNjieJpATTETAbjgOLi4uOOe73S4Ex1iEyAnWp7XWe41n3h0HIqIyRCJsWwwG4SDDKAaAZrRmhUpiYkDM+74Vz6zLnqOCdVkyxvoQ0BadWp5aaxZCYKHLtDz81qtXr3BOOR+qsjJjQjM45zEmCikRheCKorB5BB9PkueJ4a7rnaO6ZuM4CsZCNsvlXM7n8+1227aGCeJzOZvNnrYbXLMxw+FwmDcNy2026ywoaN3BNKEcx3FenXVDGynUdWNkH8jjOaN747z3gaUqQkqphbTWEotTkxw9T+csfgYHueecZSZyfEY+FULoMjECpu1NlKwMsWeKouAsCUVND7EoKglXCimIEsiotZZZUh2f5r33QHZCYgkJIbRO9FXOuRQpS2iaBkqp2NU+a4ex3MJijHHBwfRKQKr4gK0ryWNMsYkg1CdYyjwcyOAftDURXvEElFIXFxdVXbRtm8vFPsYYguecbzZP6TjJVKPwwbowUUUos54F44JxLnkIgdOH6WklPnCHccIBlsKX9z7EwH2IRNGHEKPLihDYgff390j1/vRP/3S5XF5cXR4Oh5h5kTzzjGIeYcZnjiFXp8nrJkmaPq/AJ0QGKDwRARfgSe9cxEx/fv6LIbNK8eQB6sX4gckFWFkIHqOkLL/AMS8pgZ3Z4D3PRnAIuMOQRtFjjD4GysU8RYi9JnBwencwy6Jn2JZSiscEnUMTA8cJY8w6h9WLW5igECGUEDStt+mJWWtjBMefoKmHuXLcPuocnPpolhg7lGVJnEkh4xhRRQBuxl5T2bVvs9lxzoc+iULEPLJd1QXeAkgiIVuackgThCSbM3W/dSFltvQsisKbZHMnhJiInwiFmAHBiZtwH+d2pwMap0IIToxzNY79dEfGOJ77e/boJmwUDw3AJQ77Cb6Mme2I0FZXBZy1lSSCW6DWnHNM6cYQ0MlfLBZFoWKMSiW8GA8ZYE+MkTHBeSLt4kPQUJnyg4wOJ7ub6QqxYbuuq+tSCMG5JAoTWoe3OYktTJQHKeXxeGQsTQzYrNU+gUfz+TyEQIyN49j1fSSOwJLGO2L0Pg7p1Jw3TYMOqhDCe/LeojVKWSdnKjOmLWzGcbVc4lUWWb3XOcc5IXPinIeYQiJQHpGlDKAsmYpMXgiRWnr4o0AulFJa64nIjJuSXIx2oA+Kz04pVZUlYC/AhUjXIKGIBhISPpHNVYiSB6zIsjx4X6MxQiglJOOJMJ7Lwg9xnj6wTQeeCbN4ocgFUXVPReYUkaaYMC1+RAO0S/HoQpawiFkpKMbIGJ86FkTEGRuGHgsbLwUBLeZJCORqRda8puwOejgccKfTaUXZwRKLLcRQSD1NMsYYI2ecy8hZUnXM6kYi02n5B8Y067pO8ST7Pn2fMRaCd+5Dy1BrbYNHlauUIh9Qi06nNlRxZrPF1dXVlIU7jIAQY8/0RrDU0UiD+B1qCZRtMNUBR08Wynvftq2UMuTWCF4HSjuRRY2BZ02jSDyr7KU1bwwOGjx/IoIuZ13XFxcXSDSnzi52pc5qGIJzbFWwNjjnv1K9lWcjSpZvEyECVMf9fl8X+nliEPN8icvaJsAXfCbQDcPgrEVlhc6Wz4Zs0/nOSBDF4Gk0aaKIWIzPuu/YxcaO03rGW0Bvg3POngHf0wLGW9Nah9y/F8TwvmL0zqa5nylxIqK6Ller1ddffDmM/cPd/ccff1zw4pe//OX3vvO9f++v/9d+/vPPv/zq65/94udffHn9W7/563/pr/y17rT98vNfvH//nnm2mq1sYFzxnM+wwLgshCBms3uPkskVeblcDsNgrWVRWmfiyARFF4kpefnyo4vHDWPicOqEkNp7PZhT1/bHo3e+KKuzphmtdSxenunAaGgN52SD5ZEd2n2Moa5LIVlRFH3fm/B0dnaGBGnqTgG4mXrkeOP4Gaw6a62UUelqHEdioWkaYzCSkshf4NTXdU3BcxjjSGGGMVC01o79sF6upJDWOWOtEkwKLojLQsfIsrIqb9u2aWquZGSBWxpMf+rayBH/i8gw69piqppnWkNRzMuyfPPmTVHQfD6H3QWIQvgXrMMQAlFABY7DBdu/rmul9svlEoejNwHvve97zinG+ObNG63Lzz77bLc7bLfbFy/WwNRgaj+tYaTxAAJS2lboQmmU30KItm1jZKuLywsphrarV7PDfu8pUgizxexwdzgeD1yyi7PzZlZtHh45i+uzpfOpZ7bb7Tg/wxYYhmE2m0Fle7FYJKQj0mq+gIFEU1bGuK2xVVVZm1JNQHUw2cNh8fT0pIQ8uzjfH3a/avdj6uIYYyzL0sdwe3trYzrslstSCGGGxGjD5BPn/Nvf/vYXX3xhvfMuUuQxelXo0+nUdeb8fI74iS8khyiVrbXz5SI4HyhijltlgzghBLojQGfev39fliW2D8BrnA7WWnTOxtG8fv31+fk5DGBhuoOQ5ZwbxydMHHvvT6fu4oJBQwb0FPA0Hx4e5vO5ksVoLdKMx8fHw8FeXy/wpyEas1gsADSP46hkcXlxjYMY/Q8kNvhwvLJXr15hm59OHXbfzc1N153GcZzPl8aYV69e7Xa7qyuFX5/P5/f37w+HUSuLabzT6XS67y4u1oCqkQoCIpxw3hij1kCcNeecALqFAL423tFms4EnUszuRFPRKqVcLpfn5+cwxgR9+/z8fLvdTsXI97///S9++dWXX35TFHK1rA6HU9d1V1dXWpW6kBRijPFw2LWn0+Por67OVyvYgaj9fu+8sQ7W7nyKNgg1YAuyLHR5PB5ns9l8Pl+v13jgOO/AgzbG3N/vhaCXL68+++yzN2/ewLaU5Qb2y5cvuq47nU7OhnE0l5c1PBLf3z6sVjMMXVVVcerHr764+/a3rs5WZ//v/+w/X5e1OZ148C+vXxxPjzdnF0HIXdcGETvromScy9OJlBq/+93vhBBev/762A3n52cJlRjGqih/8YtflLr4D//Gf+s3fvTran0eY+y6rqj0V19987u/+7tv3rwpiuLm1ctf/OIXX3/9NawapZTWe3M6FaoYx5ETr6rmdOrG0eFwnM/njLGh6/HoOEsZAtSNQwh2tOhyDcYMxgD8TfmtYq9fv63rUgiq6xn2FCbTtdaLxWKz2XVdR8SOx9M4jm3bGhPHcVytVuDcIKGVyTtEFNlzeKrNmRSqLKy1wSTcXwjR9+1iOZvoDrN5jTMu5PHZ8MFfOlBMJQkSFR/8YtGMbnzcbl9cX2ut9/v9w8OTEAyrApW+Mebu7k5rfXZ2Ude1c6Esy2P7GkXKarXabB+JaBxHOyTLeiIKIaIDh7qpbdvl2booCu/fnE4tOjFCCOSBCFYi8wmstQ8PDzhHiqK4urpy7gMhSSk1WIPMdqL9EhEg6aIoPv7WJ0T0zTffgP397t2T1gTXR+B9ZabLoD3PGBvGrq5r8J1FpkdMFRyuivHoXfDex8CQbULBHGGBZ/d1iKcLriZtseVsSUTEAv6TcykEUyrRYpbL5W63Q7PBWlvporpsYoyoibKAJ5swDWTIIbiiUNYKrReCRW+tlHI+X2KbD8PQDn1dlCJTjgCgg95eqCRwxygVxXgyw+C54li3SqlAVYhuHEdOqe36DFGJUGHGwsM30VMchsG6kViSqpBS/u7v/u5yuVwsVsMwVJXY7/egSKJX0dTzgUxZKGutc2lWJi+hAFEItEwA911fS61K7+J2s0faj+LFezua/nA4YM5ASmmtF0KFQBD64IUsdMWZRet0v9/jkJ2ECgpdOeek4iIqiJF674/H4+nUQWII6MdE44Mp6zS+M80yymyGPJvNvv3tb7979w7lxvHQSsWFEE1THQ694AqUC2yxvjdCiJcffbRYrVgeWxRKBRA0ZZIsrut60vsF11sp5a1lMdZlGTLdZ0LeUDUgjhlrlVJgVWP9910Sd1VKWWtPpxZJGhFBdyHGqJRwWY489R7AgeM8TwPw9XpxdnZGRJAiQbAVQnnvX7x4sZw3X379NQCci4sLIYRg3FoLKjReH3pUkMd5dXN1UV69efOu73shRV3rYILW2sSRiCSa1dhskaejtyxL450UgvEP3GHGWHs8WRYlT6GQMLDGmM/d4+lIFkK4TCCfanU7jt0z8xnvfVPPkMoglOADAfbbkMCICSaeIjj2DygK0SeMmLH4vBCyQ6Lxcs59sDBVl1LCiTvk8fCEKcRJfLMAkB0++D5F7xNPhCWmMJtUVybgQEpdFIIxNhqDvwuSFIaqnHMwS8S9Q4sQ2Ql+HZM++M6knDCxCHmmLlKIg0lGAXiGTHw4hPAK8MRclrYwwzjVHhO4wBjbbrc//elPP/7448PhsFqtXn70CpskhjAJFwIgQFPCTyZ7lAQEpl7K1C0Iz1SkJwQ2ZIutkCnMgF0mtiCggYn9N9VymKFQqjDZO3GKZVJC7ZdlFCxQYESRsWR6hrMtTGobOL95wpRjajMEKTRnCUeLjIgziqSUVkopKUE6S42EENOL5myCAJTWPFuSxWdSDPRM158oxBh49pfH4QqaEiSNJtgdl+qjR8xFbX94Omy3W1gPK6XQfeFJFT2NseAU3++PnPOqbBhjzkGZKE7wt87W7fgrnKW2EGNMy2SKiOjvHYZwk4VxiGlALIQwDObYtd04cM5JcE8xcsaVjCOzwUfOXEyHIoAhKGjbbFAespMAwjoDup01TMHWCVnMCNAe0h1QuMGvEdkDTWuNKQTKjQrv/ZBBmaZp+r4dx1GqYjr/JjiGcsMMAcoYFwLUBtTzUDMR0IahwzfhuI0d0fejyFNL02Ww3LEEDvhsO8iLy2ulFCNCpJ4SSh9CwrmfzdrjueHUZElPPzWl8AOcczQnOOdSpGMJm1FlojpmMJF3LpdLfDhOiGdI0wcvu0gfAFlcW9/3XH4QPdBat2M3vSCEa+xfKWUIEQL1CSYO0cfUZcT6Qf3Wd918PgdOjbgxDAMXwod0YYg5LDPrY0zzB/4ZiTWmLx8ClyIFt3yQp5WGk2WKANOloorDp02PFIF9oh5PsTrGRMoACwB1/nR4s+xAhcx1HMeyamRWsPHea6WmI4l9GHRIcr1TZ8haWyQXjiGEMJvNUmk0DCEbmKBmjixFG5d9q13WZpk6Rs67Qilsn6kxhkfXti1XkoX/H13/1azbkmWHYTPtcp/f5pjryja7G4IjnBAIRjAEMIIKkaEX/gJJP45U6IWhR0pBQQGIAcNGE13VXQbVt++9x2372WXS62FkrrMbLO6HilPn7vN9y2TOnHPMMcdg3ntRZRiavZiMmU/GOYQS0eyXErznL8RA8dDwGBeLBXRLOOfe+Laqg8waSnjsWANY21khVOv5YW63W7Bc9/s9o3q5bED94EIgHqKViDIGVUcs3A0q8xBd11FKMUaIw2JkBPyXw+GAxhgG5EGZwY8vEyrGGGR1c8erqqqbm5u+75mMn23CX/worUhrrC5jLTbdOBbOi/cwrsSz4pyjnEA0RusCgRcpry2WvHPhN5ccKSWI4oUQYnSRUvDBx5BfrpIvsyMUb86b+REZY+I4ppTmUiEvvBjQsJwPaKTmrgwb4WKstRRzmHXOcfps+LlcLv/4j//4h3ffe+sul8vkXTThu2//qmvat2/f3r5+9e/+3b/7y7/67nQ+/PzH37y52v7R3/g7y9Wnh+fDZKSQCjOh2+0WbzAEssFKlo2UQ+aAMECBnPPR2RQTc04KYYO/+/SpXix/8od/vD+eqtGESJP1dXSvJBpULDl7OBz85Ry8I58YI3LRBZ9SiIyt29XkJmf85TJ1i2a1Wp3HUWu93W7fvXsnhNjstl3ToquBK4QKJ44JznkIxnuXIpNCxORP54O3DjrUuXcecyZQVxUVlc8AfgbLeQLn3MfgY6yU1FUdPVHiSkoigkAcY59HVplkXArjJp98Vel+6iMFKRsX7Gq16JoFoDo8Paxkl90CBY4MY8yPfvwja+2nT58wb8QYM8YBg0YEToGAj4QQu245VzVQM8eamaYJkrvTZLuu41x+9913MUZAgSE4rBxEtsPhEGNcLpcYfGZlsEMJ6b13LtR165x7fLzHd53OB6mlj1NK6dPDh6pSq9ViMkPTVk1TbTYrZy3n3IfIOX/z5g0YtSll3qv3Hsd6SkkIlRIDZgRs6DxlQUPO+WKRzZOttV3Xnc/nGEkINh9bKaXT8fT7dj9xxrfb7eFwGoYBoDkRa7pOlt0hhADTHMHk7u5umqaqashmNw7BlQu+aZq2ZW/fvoVmPR7a4+MjHjXGYK+uruxkLsMYY5RSg2P48eNHa/1ms8IBBNMtbNJU+M4hhOvraxRZWuu2bbDfsUJAlDbG3N3dVVUlpcbhqLVer7OYJoj8IYSPHz967+/vems88AgKtFy0Xbts2x5Axul06vuJMVqv15zJp8f71WrF2JDDHaO58hJCmBCQsIGBfnV19fDwgDCF1QLzQ4C5mEqRUq7Xq2EYUgqc86oiM9GbN1trvJSy66K19vHxEcgOjl0kmUpIhF/4UR+P+7ZdIFA/Pz8DRAMdUimltGA8xRCARtV17V0UQtSNxpBlSul85ko1KaVxmlarVVXXwzCYafjur37Qum7bBmOv3nvnIoy5vBOghDMGlQCz3++XyyXE0Ky1zucjYO76AEqz1mK8+nK5fPvtt6vVahiG4/EIYZPn52fvPfpSr169ApF/t/NoMAzDAOmPWVIW6+p6t3t+Ohz2ByI6nU7L5VIrtd0uY4z7/RFZ66vrBed8mkxb1yGk/+lf/qv/4z/9p//qX/7LP/uf/5dK6S+//koIEYP3ZpKVTiwO3tcttW371VdfKSW8t+79OyGYdc55fxmH8/nCiR7vH7784u3/+b/6r8+UiOjtF69Pp9OXX779Z//s//A//o///Hw+f/r0CakIlK8BuNR1HSNJqbGYkQPUta6rxnuP5jFeruAqd+JNzo6UUv1lXKxWTdchV5yTKyL64os3qK1Qm4MPCKSv73uIbeaMLpfYDslb3/d93+OdjuN4Pl+6rkXUjaXrnDhTMeJojiknn6j0l8vlZM18LxB5r6qqWTSjHaWUyWenBFZUfTnn1k26rje73Tj1yOffvXu33x9DoLZViDbr5ZIx9urVq6enp/v7+znBG4ZBCUJxcblclBJEFN1nIlpVVedzL4SAwpUUOvFcQN3c3PT9+fHxcdZc0lmW8DPF203mcrmIQq769ttvRRnCa5rm5ubmhw/v8QtIyEVRYUIsQh6olIKd6WbTeG+F6NILxyBskL7vq1rpSgqmHh8fMVeBmqKu667rYEKLf1I38FBxwefIc39//+rVK4TlmWnECqEBY0wppc2XO+/9crkGf7agPRx3NC/OfBxwHonmySHk88vlci4BkKKjnMHTpkCAuRk5xxwS0ZQSV5wVltWcwFtrbbJkSQhljUHVMJcVvgwK4waF5nVdRx8wRhNiZDzF5FlKbVO54J0PkgshGeeiaSsfbMMrvA6c74vF4v3797/73e+ur68BAuD5nE6nFFkIERydma+AEw0QNitt+JTdpybn3HK59C7nUXd3d6ClxyJg0i0anM7GuKqSuBLvLVhNpxNAs3q/38cYd7vdDH2gUYGKPrpY17WLQQjxxRdfQGNAao1sHK19yUVdtL8ZY+fzGUAqXiL2LGPscDiIognJOWckOJPb7Xa5XE7TJKXabrfn83mabN8TE8+YIT0ej2hVAlD23h+Px5TSNPmuqzabFWIL4A7vPcWI/hDg2vl1z12KlJJUPFiiwtocB8NIoKcYovvyyy+fnw6n04AZHUBMVSWJGFqMm80GjJaq2D4LIfBArq6ugCxZayHU3vc9hlE4z6KF6/UacnzEGed8vVzNjuJEZIwlonbZzgsPndGBX4gnVVWXsa+qKoUoUW2i5LPWGp/xDjZzqbQs/YdMZWIp64th84dZZz0kIpsRqxCo9BBmCFgVh5+5iLXWTuOTKkIEeLJA04DYIvHFSiKikHJxLgodWEopVEZCAW/i2kIIQuXWDbADR9lQG8D/DMMppSBLPaMbIURGUUiJ70ohgRk3y6QqpbSuL5cL55+pTGKezi4CjqKYBFIeyc8FPG5tfg5SZtmHudrHIkP3df7LAq98FjzJ8HEM8oWPFkLkDKPQCx3MGcjDfTVN8/f//t8PKd68ukWTB2Xw/E5ZaQ+qgpiglvbWpdJ7TykJwf86ksKBK83oz9z4RcQUQsXo5xuJRbuDzbT8UmlD0kgpdTqdGWNSFm/friOimYATyjD7LN/MiyorWhc4GC6XC5YEqnrEqRjjaMwMf2MzU+LWWlFOBSzU5LOtgfHOOff8/LxYLDZZvPLzhL73HqzhF4we6G7HlAIsC3DXuSCM7nQe0SCSUvb96EI+eruuw0mGfYRZITy0FBnWZEoJqTtyBUaQqFZCBHxLXWspJbHIWAJIB1VbpTkjIbOktUhlIqzAGQFvoW3bYbjIotUVCyF3xivxU2DBJIRgIisDhBCgETwDyqZYDFlrHx4erq+v67ZJlLGVUIgAVORxPkOoZekiAcXpkgqbDw8TrUJVejPYCOM4MpNnoMSLUfe6rn0ITUEE8KU4gYB+ZgjghZCFzGo2kbGktbQ2G7vhkJszwhmsnA/REIILPni7QIem7EohRIgxxYhvFEJggXnvsX1ALlssupK9ccbYZrPhXIIfhPFJ55zkQlco2nO2jTYGNosvniczvon/WjhQEJChlJjzbsYl8ftQfoeePu7IWT+3ABF5hBCLxQLVFNb85XKpdYUC1UUPMrsQou97PEwq41Hg4dZ1zRlLRRMcsQIAE+oiIgIXaY6BqYy5WGOEzZAcAqaUOZnAmYpbxmninHPOhhBRmeM2wQaCjAY+H4s8r2eWsWxVKMY4lZATzwfW3CqYsqFiMaotiDzCSIHLs6YbQl8IAa8YTBlVPIvnoSpkA/jwxAhMBNwydGlwzIGwgLuYiW9Yk7EooiwWC+MdY2y326WUIHyBohSLCsEQRycecohh7oDKIiyOZkzbtnCpRtaLxBod61QGnqhofyPezlkU3vs8ZYn4AORxGkakvLMCgHfudDzyF5lJImKc4zIWpVSLBSg5n88zpDWHzVBo0Yh1IEF4F72PIcQYfF21UFrDv/Xe+0J0Mtz9r7AmIsq29PgzGKwwHpiJNlCiEGWIQZT+MR74druVUh7K14XSuEUmWhdDRUaiqZXWGjtRCJHKjBcWQHAerBaIoeN6vINbKeFLbZGFFcDScFYmcsFlgLv48Vqsc2LWWp+yGAuiNA6IQAlhnzF2uVwWTfuTn/wEyleH07E/Xw7P+yM7hBB211d/++/+3b/z9/7O+++/++6Hdx/evf/FL371k5/+7Osf/cEPHx5cTLBscsXoPF95ismFnIcwllIa+tw+D4IAUJ6Ox+TDZnuVEttc3ypd3z8fqSj0JfgBOnv36dPVMPz5n//56eEBdBtyKSbPJNdau9FVWtoYSdXBJ8FV23L0qGBZs1wuXfBLwFuMODEgIJxzxpK1k9JKS8Tt6IzVUnFi82Ycx/F8Pu92u+gD2Mciu3tneu80TctugR3KSXCMaFIKLriYEqO6zhwOznldV7LSMfpE0drJpxApVVU12bHve6G4MUYwjU1qZ3PpmK2qr6+vvffPz8/zoz6fz13XAA+dL/iLL764XC79eZiKyS1jLARmzIgyPqV0f3/fNA3nEh10zuWvf/1rzuXV1RUqE6XUer28v79HLJVSQtpvhmAQq0MIRJxxwYhSiETEeAKo9/Hd+81mh0f9+On5669f39zc3N1/BBEP+Ps4joJXjBjnfLfbDcPgnLm+vj6dTsCenHP3930qVp+quOKga4gAvlqtEGlBCQQdmIiAoSCXvnqzoB9+z/Y/HA/q9Qq7BoGuW6yUUhQjeuoUE0IcotxmszHGVA1XWgiuiGAK7oHaD8Nnw17QFV92fUC4w8NEwgC1jYeHh2mySmWBKah76eJwdTgclXphQk40TxCjYnTOTdO02+3gb9Y0ue00PxCsomEY/vAP//DDhw+Xy+U//8//0W9+8xv0DyD9sVwujVn88MMPAbL1RMZS8KnSYrfbDcMUQoALU4geLUDv/cPDA4u5dQ3lhPv7ewBGTdMAd67rerPZGOOQDo3jZK354YcfqqrSWm42m5///Od930/jGPzAOb9a3wAYAjsSIzIzsJiBS2uJsvhyIom/x5LAWFXd6DndRXqWUmqbBRH1/fnq6uZ8OfZ9b42/ubnBY394fLy5uUEe9fj4HEKsKzA/QtM0t7fL+/t7xpJcds65xWJh7cSYqKrm/vHh4eFYf5mt5ODsirNPKTWOE/rZQggp9DTa4BMQh65dUuIhhLu7O3hdeu+HISwW/XK5nHtCd3d3P/rRjwC71HX9t/7wD8/n836/f7i7e3X7BkSW47HHbHsqefI8THN99UoIcTodpmncba+Hcfy3f/q//Kd/7+//P/67/15y6o3t1suPT09q2YoUiXNdNZsNI86maeq67Xa36afhMgzjYBKjEIkY/fhHP9pt1//D//v/9S/+xb/YG4OYcHd3tz8cYiQQqydrQLqMxcrifD4fj8eb3Su8QXCW5xxMSDaOGWqs6/rcj0hggg3L5RKzYj5FMhgrzEyXaZrQeoG1tdZ6GKbRmjDmghqRQUrY2qNmDwCMEMkxu4xV+vj4WFUajw4tokB5uAotinEcJWVIDqee9Q4JmCmGFtYmLnNb/enpqalU03Q5TR1PWBtKCyI6X46wccMc/WLRnk7DnGPAPhQi/kIINGyQWMJ+83w+n8/n1aKuqmpwE3JCRGZMHiCSTKMVQiGIAYwGM3QGFp+fn4G6TJOVUja6QvoEjV3U1IBx0McdzARcCB0OZBe+MMEB8X/99dePj48fP37SWojCWYTcBI4zIcRkBi5atKthP4DWESLJ4+Pj4XDqugb/cLnsEAoYfdaHhDoQlcG4OYtGqoZJDuDy0zRJoSP3SLylzMXa09MT6nQcMdM09WPWbb+6usKnIdvEE0B+MpMAUkop5pr0fD6T4OfzZbdbSylBQBymqdZ69j5FJkBZnCrPqOH9Ti5DDagsUPr1fZ/YZ9N4Xwxmp2mCoinxPDD67bffbTYr1Ik4egDBp5SgBDWP/RFRiowoo1LzgeKK3gvSYCoq54i9yECMMTFw70NKoVQKwnnLOV8sFpRyYXi5XKqqohDNMKq6MsYROQA+ssg2YqyEc+49LZfrcexRSQ3nQWtNgs91vVKq0io4n2IUjGutwffC1MvHjx+nKaLqxPPBUkQ1JIv2w2cOaPBgsmdTh7q+utoul7ZdLLz3SL9BdgFOZYybJeycc/v9fpr8atXudrt8PPEs/4Jquq5ba6fVauXKmLUQosj2CkDJcPnD28F+RCYghMABx8sso5Ty+flcVSMVIVCWEtCSuROD9fD8/Ixjd4ZEZugphQA00jmntMaT4UTPl3h7uwDcD8gCPB7B1WazE5y5YKeT6xbN3enTcfB8PGT6LV5kZJkqBezGpyjKxphhUyV5itkh1xefXCEEZyLGgPgSQjjt99jVSilWfAWR5+F0Z4xJoRLPzIt51XrvE2c8D/bGGS0NIcQUC2QpUmSMGCXufC6qkYDi951zaFWklMBjmnsU/dC7F46ISikIHAPj8LNKTkw+emxmpdQwTPlzSKSI9Ji8j/ivWtfodE2j7ZatKzopicIcplOKqKhRtAMQmcmzvDh3RUoUE88y03zuqSK7xYPihWzvnEssQ1czTIOmii7EW5Z4jAX+RoXMGFFqF60Qcn7IxpgYKAbCVCk6DPMzYbMAdGEKUOkNCJFH4UQhleBpzy8C8Pp8/SEE3HEIzlorlMSovjHGx8yjnxun2OozQ2ccByrMVrxNKpPdfd8nNt9d1v2cQwaGXp3Jqrsze3S+EZA3seGDTzFGWfiJGWl1PqOQKgu2jNPUGJNmja0XJgM50QnBe++cQYg/nU6oSYwR5Wnk4gf4grU2UcRdo5fIBUHqiBVdWtyalhUvsiSwRgSOj5YXEcM/ISKtZYwxlj4Ndh/SDtgVxhgTBcjjYiHhb/Bn7z1mxxaLBeDOlBL8K+Y9FWP0Pjpn0ISM8TNGYL2bgyaITsibh2FgTMRI0ScmIrIWREClBBUAWhbR5xSjVMpDG70gMtM0+YIfzd0vrBwpJY4fzrmxdr/fCyHW6zU2HQ77aZqenp5Wy2UskjuoD2ePRDz5uX87E36ROuBbcDwXFJusNaqoRqCB4ZwLKWpVRxFjkTtHq9mHgOke7z0G93ALOO3mHYQ2A8BQLkRVNS/zhjl9wWhCVVUR3SYhYkqhiL6F4tUZ42fpG+SIKSXnAmMRU6VYY6qIV0guImVxQ7xTlvicnyH6zc2z+fNhA5UXW6ODT/P8ILZoykF1QHKDhIwik1ypRqWUvHVAJZDaaq0Zcyl9lipCFE1FOYEVIQWlMpwX/7r34ywjIIRwziMrCsXKj4iIMsd5Xr251RGyyQluBzsdBzb2BY7bOYAzzmd2oVaKc2IsX8z8BJxz3gciyxgnyprs4oVaNyt8c1WEy7ExhRCTNbi2HO2TUYzhqmZOAec8+OCLN2AsAuVEZPznZiERTd6ymFEwrFhUGnM7wXuPBjPLDdrcW5pBZ7x6BFVXbE5FmSCp6xooBs4U9MBEHimwiHLIY6y15/P5crnAot3aTCNClllV1WazoaJmg3uvwSYzxhcLDiALIJvPOwhmZXjCM+oUikKF4DkIxxjRiwshrxbg5uCn+3IE/0c/MUUq1PWYrcBISr5aray14zjW9SoUrT2UH7PeTipkuqpoMkopfQjEWEKo8UkKPdPrjsdjYVDmtBuNN05MMF6WcTYhoDwTh+4XM8Y4axnnSDl08aX0ZaRMKRUKeQfbn6dMZ1ZKCWKyaWb3sOB8ygNGxBjrYzJGNnVFRIu6raX+8O57pUTdtX3fB043Nzc/+unP3rx+ff/+/d2nT/+f/++/+OrHP7u5faN0q7XEAmDlh0gwliKLc/k3N3VSSjEx5wNLSQrNEU6E7Bar0brXr5umaSA1EIOz43AeHESK/uiP/ujLL77+8OHDD+++c+O02Wxi9NY4IesUyJlgom26hojXWltrj/vTsluFEPZPz0xwVUxdrLUhRR+dYEIpFaxJzoHJgpk/KI0qLlhKLKWmcCaWyzXn/PHxsesa4igH5KJdeh/7/oKiVNdqGsxwOUsutdBSSq4YOVJKcl4RZ5xTjJ544kLUXfv09GjctNyslZA+BjNOl8vl5ubN7e3t09MTL9a7qciLx2KQZZx9fn5G+DJmBGEZnsabzSbGyFJWJZbZSs6ga+Kcw9OA7ACOfvTkhmFAR9Bau1gstJYvG5AAZdbrNSvKiX3fe+8Xi1UqomcuhsRIEAvWnU2ec9/tdsaYP/jZjjFGMbLILscL51zyjEFE5oQQPESKabvdAkW9vr5+enrC+4plIB3d2Zmair+31k7TgM1lLUOLNLeulbLWI23bHJvfu/2V0h8+fOCcb7dbCPVg+/BiwR19EEV0JXMCGAshwGzq9vYWu6/v+2G4oC6daysAUviFmdMAcvzhcEBvSSn1zTffwFnIWjuOE8xU5uGPq6vdzHjCBVCZvVNKbTab/X6PKRDwiDnPEm2IpVLKWQfce79YLO7v7x+f7v/oj/+T/fPxt7/97f39E2IvKIpSyroGaRHOBGaa8lGy3+/btm2XizkI13U9XnpwsgCuLRaL1Wo1DBMQgfP5DMmyzaajrAgkxnFA4x/z/vf390Q0jqO1DoxvJStKpLRQSq1Wq7/8y79EfGuq+ng83tzcHI/HcRx3u50QiguVUkpJY+XsdjvnDXKYGZXApoalVT9N9dRP/cC5ZJw9PT9s1rvdbnc6nT98ePjqq9dtq//qr753lhaLsNvtYrI3NzcYumcsKV1770IINzevTqeTj+Hrr79mjEmhYdigqyVUbtCNrquGMzmNFt+OjAWYAgjR9/f31Qvzm92uq4q3IQ5xInr37h2ENRljy67jRA93d5zJ9+/ff/nll+v1Gix4pPSb9doXRp4Q4vD8RCzFlIwxhkVn7L/+01//vb//D//uP/kH//O/+jdnY88Pz5fJrtqm4kpIaVUap94Y+/3333+6e386naTWwzDoqvnmm282m52UcriczTB+fHjoT6ezJWuJc9pdLYRQSnHUU0g4gdGsViv048fRHI9H5NXjaEOgqgqc10KIxWJpjEC7JYRgRsPLsCykA7z3ZhjFcpFSIsoe4KzQpKydOJe73W4czd3dXV3ry2Xc7dZd2zrnMCShtQL18HQ6LRYtTpbtbm2Mmcyw2a6EZN2imSa22175FK019nikwvrMW8lO4zgmRuf+Yq1d0AIRBhmplLJu1dzcLWV77PvRWkuMtNZY2Kzw29br9Q/fv1dZnYag3eycg5EgguF6vf7++++RF2F5jNOktW6aBuUIOkYIWc659Xo7jiPy85AYLww/KgJfqMohqIiJiqenp6pSABYBIgPMRdKFkDWO483tlbVT29bgkqcU1ut1jOp0Ol0uw83NVdc10zRNk22aSogNMlhUAeDbIiU4n8/DMOJBISdJLwi2ddUG37dtnh5DSkwZq5UY18AcjzFmtVohrcI++pw7SVbVOf0Ge0NpgcqRsTyvhkwSAH1KabvduviIM9cVCXUi0nXFGKP4ef4eHUHO+WQnzJfUdX28HFOix8fjcpnrayDssriFdV0XXGbru+AhUI5tvl4v56xbCCEkOx9PSqlY4DvEZ9iriGznE6GP7L33niD2hb5U39vXr6/wxBAYUTt3XTf001yfhuKyg/IBGSkrfMpY8kmt9Wa9e35+Dj5JqTFAsFi0OAqDTz5hLtOn0glmjN0/PA9n6rag70jOZUrseDxzDp9tn1LSmiulnp+fm6apqho5CZPZSKlMWxJATsYYBKPQEMJBH0LoOjVPSxDRZIaYQtvVxKKxdhiGy3m6vt7lLRkz6DG3PYQQ6+3WGAP5aRRcYNZjTkII0ff9arUiygAmrlOAyDKOaDbkrkYkrSuoxwCwds7F5LOUHGPjODJyyGFwtcYYKfRPfvITlCHYmOM4QoYItR6Gm8/nsxnHkkjk1KLrOmNG58xisUKekGKEK2CMvq3r4/FoHh83m80MnXHOz9ZuNhptthjjeTjHIgZiyWqtWdVZLy0/T+NUL/Sh98MwSFg94M5BxeLFzhh7b143WGGRIhEJydqmBQDHUlISrhcelSEvZSQRrRaL9IJYhx1urZUFa8Pass5MJkgpYVxT17WUMoQs+gx8AZBnZJESJ0rIn5SUQgjGki2sW+ChkzXzqsKWQMobokOpjBJiuPQosxGjM4HX+5gVyi1qnrZt27ZFaeq9Tz4UjqqYQYqmaSrdEJ9xihBTrv/pxSQ4Dh71woFtLrR4GVjGlstZeNHgn+vn+YEQZ+wF+oy1jh2FsEuFGcE55zzrfhAlFxCzEtAV5FLIsBl9rqtj4VbjpMQXCcZfXjneAo6BUDSM0FdJxVkOUEjBiDP8EUJKLFJgGHCbEVtZyWSzJyTnPDFSSgWXJW9mjiFyDpx8QmRbSBs8MZovDI1l1OSz6o0sSjq22AD6Iu7JOUejmJem3Iz+VKVFybJJ7sIVNAdHES9kWFa+F/9bVQqnEREBncQ6bNsWx6H3URb1OvxzJSXnnBGZcWKJKqW995JncmilasbYarUqijlnIpg8CcZYTQBAY4yYr6eYsJjl/E7LgvS8oFpUZMKwwBLl7oIx5nl/TCk17UIpkbx33jvvOyl5HnXxQgipFDGWiPuQnM89N2zD4PJ0DyuNhBBS03Tr9Roos4SKOlFMSYhZfTUxRtM0GJMV6Gd4nXNujEE05CWVwftyzp3PZyll17Z4F1prrevNen0qM5LoVfDSyqaisxGKdirnWSEXgVgX94+qqgCcfX5KhfFNBX59+TPv9JDyvF5pZuSzKr7wUAKTJZbe3tyf5JwzilrrPNgSI1JGHDbzBUguOBNMJK11fHFViQgxcN7L6YVrhC8iDAjCSmtZ3BRxtTM/TmY/T0opVarGFabCJkYxjA4isg2tNWzovPfCczTA5io3pURF0pcV7i2+kTHmglVKKSFT6XEigIBCO9+y1lpXFcRVQtFK5pxrrXQRbaAiNIH4MJdkyOznhOl4PGpdz2GBlyZf2S+fee54O+A1PD4+Yr1dXV3hwWJJOB9f9KWLQk4Iigsi9jI/K7Eoi9WI4kxQCBRyfkS6vJpQlFVmiL+tGyQ9IG7gQ6CwLIouZypyIiEEKDLMAHoIgSdCsgtJByrSNKy0GHnRCxJC2HGai0BeWsg4Gqz303CZ35fK5mN5ViAUUSY0V7BlkO+iowMyWvaYEjKBrVxAbXxpXiGFCYtrmKZJZCmPwBiTSmGh41ucc3o2jeTcv0B+Ef0arXNzS+fmDWNMqdq5zxYFRKSVsr8Pbwo+sGIkZa3lQoRijSul3O12IeRRtVCsUJFpgPqN5Ao60Yyxvu8TcSkFY0Kqao4z8yGO9kYIwZeuHprTQPSQOM3/RBQyOCUeA1HinIRQIpUufio9FSBxYZZHj9EYwxP+aYoxKimt9WiP4aROPgkh+n6UksuGE5E1/Hw+n/d7rUT07q/e/7Ddbr/45kePd/dmcq9e30zG6KZe7tYP++d/82//p83V7d/44//d26++DkUjBb1qKWVKwbPP+umplLspJRZiiLGrG90pZ+xopuSDNYYTv/RDcN47xwVh6uvLL94Mo2nadrFYpRAPh8Ov/+Ivnh7uUesKxlft0qW42ewCC5dx2D+fmrbquu7ksxE1YyK48Hj/FCkjOHjvbatz4pQohTgNY9N0OeYz7r2fJq8ryRjrmqa/jNiAQDBjJGvtfr8Hi0eJPCuAZMbF3PPjnAupKlGpSislIqMYY0g+MYoUGCNdV6Of8LEs8rrWy+UyRg4N33muSyl1uVyk5HPzoG4bcHyQSCABQ3i/vr6GLoRSinMGdeY5bWCMcSHAcb5cTowxrStY1RMRmIkQhLV2stYi4cGacWXuMBYfJ3j0URlrAL5MMXASIQZvA7Baa61WtZSiv4xKViEErRQGCO7vn7yn6+slEX38+PHVm9dE9Ph4j+BfgrBAuINgyyzcN0c25BJADdD3FYI1TaV1/enTpxDcNE03avn7dj8JIWeeo5RyvV5bqAKWtjSlBAFlINoIDmEchsFcLkR0/+rVKyLa7TaAqtu2xRGPsy8WojE2Ztu2SsUPHz6gNMXVvnr1Cs+zaZrFIiPpgIowI4yzDIsNixatd7TMv/7669Pp9PHjXdu22+1VKpNhODuA/eGyf/vb3+52u+vra6wcxtjPfv6Tv/zd9+grNE3z5s0baDGXrnCM0SPsL5fLGNPd3fMNyxIl+/0TiwkLAI0QwO6r1Wq5XH733XfWhqurptIqRIIDdgjh6uoK8JbWEhy6p6cnLPJ+mFSlt9v18Xhs2zYGQtsAyhJ2MhTT09NQNfXu+opLMZophkkIxbLWHJgZmS6D14r1I4rA0TAMt7c36/X6VFQOQgh1o/f7/W63xbm82ex+97vvvaFzGqSUUiXGgB00aNIwnruMQslKSSSHMdA0TU3TPD09v3p127YtIxEDSZFrEOSr6/X6/fv3j4+n7bZDQrJarQC7q2LqgMWAnA1q1/PwHGPsF7/4BWOMkYDx6Q8//JDZJ5HG0bx6dYOZIXB1rbXLpu7HMVJywU/Ocs6rlfpv/5///f/t//J/PY7jX/zFX3DOI6cPH47i4VjXcrHcSim1FHd3H4fexEjbq+4f/6N/tLt5de7HX/3qV+dzfzo8BxsazaSUq6aeT6sZZ0C2AgiPiuitYEwIJiW/vt6NY5aIBGSJdB0nI9DhPKvuohACUEZmV/iQGPV9f3v7491u991333l/CiFIqYHeLpfL/f5kzNg0AumHEOLx8Rm7ErTxlJLWsqqqwQxEbL1ePz09/fDDD3VdT9PkQqi7GuTHUOT+cTQ45/zctizzi03TPDwcmybTVOHIjbN7tVppyeeHo7W2xvXDebPZLKoKWApgZXz4ZrN5enLWuvPxOA2DtXa73e52uzdvXp1OhzmDSilVSjHQP1NyLsxpLR4pWIPjOOq63mxW1n4WEkOeFooDFlrFsxNGVWlvLUgGUvGmqYJPOFDqur65vXr//v3pcgFpnQo7EOxILMip+MuhuQWdmRmDwkrGVFyKNI2W8YTcDwkYtm2KDCedLuPaELiIMUrBpZQYbUScBPiAdcIFIaU0diRLdV1Hlnm7iQKRQDXqvT0cDvM8NFCytm271XIbAy54lomA/F2MUSp5OhxVNljuQfCiSJzzcRzbro4xLpcNgj/OC5y5FCPumoi6pj0ej8RZJasQwmQGzvnbr96u1+tf//rXXddVVfXw8LBYtnPOjAiDMIjDDi96zg8ZY5tNC1wONGqlMpSEkQjOOSUuhQD5CZcXCtnrcDgg9JVIBQqmMmbEdoauEee8aRrGxG63k1L2fd+2NTDGYRhubm4Q4pBOaCEZo8WarCPG3HKZhQFDVijNtWQIIiU7V3bOOVlJYyAN571PVVU9PT1fLpfXr1/jgeMwrYtWMmYpEBvrurZuci7rVWL0dhwnzunp6bnr2rquo4shBMazTinyIrxx9GhxeoYQ0Pp6+/ZLKE1ba9u29t7/0R/90fPz88ePH4Eyb7fbbrm8XC4cY/Qpcc6bpkKisl6vQ3SQ9ZBSbrdb7yJ2PQAWJavzqT/sT9DCds59+eWXv/3tb6dpwigVMOsQgvPGeRNCWK/XmIq4u7tbLFrOCRcfgiOKTdMZCJNOE8YRrLWXhwfkqOiJXl9fN02DpmBKydrJFzOJEMJlvJxOp7v+Y6SgbTNNk9rIr77aLNudjDHCP4SIzuczorwuqheot7BkQU5UtZpL6wxxMVbpOgTU1LlGXSwW5/MZctpz/SOLdWaKlHiaIXafAhwMhFJd2R4ppRB8CBlH+FwhW8dYFsSYxrEPoes62ILNCzG9cP6ZsRVUwsmH+XhTQkJZDzHOFWHvUCRU8IjnzRlCMMYxxmDnWlUVnLKpmDillExpKXvviUVVVEeJCu8sxBAijHkY4wGCFS+41SEEV3STwwsrJ/zgBgHzCZnVBhBZcLXAJuaKxdsQCjOrINox+EAZgcrEtxn15nmeXWlZoeAHPlIVkaCYra7QmRDTZIlyjFguF+/fv//Vr3719u3b169fM8Y4ZzFSSixGEkKF8HkEw3vvo0OkZsWyPBWdQTRIAcUGH0KKqjjjMcaM+YzIQFYClyeldC4vHjD1rLXwYkZ24r335wuC4LzM4C7NGLPGhxAyThqjFIKV7rdoW+75OI4sRoyjdosFgHU89lCAjLrKMAE6yXmkJZGUuqoq50wsgq0F+2OAw6oi843Q7JyDuzqWelXMG4FlhDKanfE74vibSkOUo2dFXpYLht8nyhVvrtt5mvG1lFJVK6VEjCHE/MkoVoFxvPxz13W4cYCkqTSiEDE4kzFk+i3nnFdaCJFC9JmQW+HG5/ieKNcSSgsmOIbLGGOCsnnRLCkgikYHWghaa85YCCmEqLVEOwElLnBjIrq5uYkxA4ioA0tgzWII3ntWPllkSlHe/s65+/v7mYPZ9/3z8zO64lVVKVWpIon+AtxRgBVmDiwQQ2fNHBP8SwZojFKI5XJ56Xtgu1UxcJiLhxTz62ZZbeYzThcK0Rv35Y0fhiERxxrDNwbv8Y7mJZrB2cQ5k0IKLgD0f26bzcFkTpE5503VTtM0mUlw4kIwBstTijG7dsxRKMYYnMflMcbm66TCu8wwWUHAQxH1xtHghxADaSXxD5umEcQQCe04TQ4EjSyt27YtFDxLfEszzXbeLPjwWasLqQaWEABW57IqPSs0dvZCy3jGVecuArIiqGGCYcSLPIj33vk895RKr44xVsmsNhNLKMaxwlh2JYbiNxHF6IiYEBIK8vhX02Q4B+ggWyFqXUkpBzcQy68VQWOcDLbkcrkEiJPVUVU+HL33XElsEFw5bhyznKzM9+HonDF64zMTGXyrVIR3QElWVaPr2hhj7HgZ+hhjoyt0H4GYVMWpIyW23+/noiUVweWXLGn0UQQXsRzHsbRzqIzXoFrDG8T+6tp2sVgAueZCcS5SisMw4WkIIbzHqwwzq1opIYRkLNMNiCikWM50YoxNU1LFujp4n8oa+49+8LwAYxljmrat61aUyRgpJREXQkmpGROMiRg9KwTPfOByzl+Iy6PfYK1dLpdaazNOgD/oBZUGX+xTnvwo50hOGObjfl7DSNNy9c5ZChGD/IwRiiL8+GKi650zxmgh57RntGHOrbFmhFCY4LZ2ipvtarX6+PjRGHP//r1zZr1eGmMenp9G47ZX101jP73/RBSdHSZjjDNSi08ff9Barra7EMJM0CsjTVYy7pOnF3KHeFxmnILzUYbIhTUuupgYv1wulDijlIKL3kouuZQpIty65XIpBB/MqJT66qsvrrabX/7yl6fD0QUfwj5wulbXkTEWxOH5+fB8vL29rVQ9jCNFJqXgUhAlwaS3n3tsTdOEkKTUtVYxxhAwcAC9fh5jmKZpHFPTNG2zCOEyjmNKzPvIBPkYoDUkGR+tISKMKDnnEot1XfPEQ4guOh55JVOgwIm4gD9ksN6HEKSWq+3GJ2wckkoyxqZpCiH9yZ/8CWOsbdvT6ZRL5ZRSyjkSEfkYUMyjem/b1rkgBJ1Op/PxBHQYUQWT5vylrhpxPAGcmDB/B0/2+fmA3hI0mlJKqOohH6yU6rru/v7+48eHq6t1VTXYsMCS5jyERZZi9N4b45wLUP3KwhTEr66uKaanp6ehn5aLtTXeh+nt27en0+l4PD89PEothmEUggO8QHiB0O1f/uVf7nY7XTwVhBBz9zGlhBiFdjIIv8vl0vt8+rdq8Xu3f9e1G7WJMVrrEcCdM9ZaOKLPX4Sdi4kHY8xl6Dmnqyt5e3uLLAmVLZJGUXxEq6rCrDfIUMBttYYElstnorV/+qd/iuTn5uaGKB6PRyTVyN7BDMXtzKwRQAaMsYeHh6bpDofD+Xx+fn7+4osvMC8SQjgcDuDWERHAx/N5Uuo8E5+naXr16tVXX33x4cMHOL7iaKDScQTu7Jybpul0Ot3evnp4OL1//3x7u3z16lXy4XQ6INGd2WdYw3XNm6bh3Hz8+EkJsVwujbMgMKElgKy+aZrtbr3eLC/nYZom0C4fHx8ZY8fj0Xt/fbOLMX7xxReH5z0mbK5uGBR1OOfeReecMRekGctlJ4RIiUII0zSgrFitVkpVMUaMyHCRBfpiIEoJLBbsjqatNus3zrm7u7u6lnbwMdL5fOYi9X3/6tXNzc0NTNuMMcTo8fkJ9Lc5Xa/rWso6RHc8nFerVUo2T5ZkY+oW1cRqtTo+Hg6s/9lPv44xtl03Tj1YaXO3GJnPYrHAsb5cLiE1U1ft09NT09SV5vv9HiVSCIlz2XUA5pKUfLFcE0XG+XK1Wi67y3iRUjKhZSVPl17W6t0Pp//hn//zf/Zf/pdRSPRVbm+vf/jhh8vlsj+cVutFMNM4GEH0k5+8+Zt/+2+TVL/9zW//9Be/DCEtFoumW6oVC9aEEKiMXs3/K4SIhF5mb629ubk5n8+bzYaI5POzFPp0OoUQuq5hjEF62HkDaYiUwnq9RdxjlNNpzBA8PT09Pz8fj0drfeL0m9/85mc/+xniFYB+YKBV1bx6tbu/f0ZmdT6f1+v17e31MEypTPFvt2ufovEmhADuACRQrPchJc45uibW2mmyKaWu69xkjs9751zdaGTLwG3rut7tdr54t6qqQk8ClAitdfSWMbFet8MwKFnFQOMUUkpN0yzb7v37u27VrDfr0/ECGPTrr792zuGpwkDy7u4jnq1zLgSHKRbOecSERxbWyuwr5MbWWuPccr2GCMl6vdzv98bQdrtNKdzd3aHUQiaD1imqQuecVioUhesZ2XTObbZZswj2oThDnXPQup0bBiioAZs65/pSGfHC+cC/atsWyrkp5robQDCanZv1zhiDCVrGkvfeOjRQ88ga4hJeaLdoYoyn8wFEaRxnGGydpimGY9d1GO5BQNNaVpVCKqvKgClXcnJ2fHqCsCqgOu99ZKGrW4R3pdTpclYi69Fl5DRQ27aYTcGcx6z1rIoZrLd2ZsOEEOq2mTvfMUbr/eVywQQGipSqVrMhsOICiw3HEBrJQghgr7rIjaJh4ItWL2Y3wWumxJ11Aw1U9ADR38KL0MVnO77QfUXTwjkMScNIWXLOL5eLIHF1dTU5TIST1vXxeGwXnap0SgwNQhx5XdeklGQMCJKoT7EYYu6tLp6enhhLp1PfNA6ryPvcHcdyMsZ0HXT2zwBSTqeTlBK65L4Yhl1dXT0+Po7juFi2VVVBFAJWvZfLpe06pRQaDFxQShTCZ9WHum1n5Bo1bAhhGGxKpDV7fHy8uro6HA5C5Ez73/ybf7Pb7XDozw6ZWO1MiEoqM4w8u3MFtCfnemEYhkW3Op1OnHM0IaRS3tpKKS0lotmvf/1rdKM/fvzIBYHYF0LgSUopbbJAPz58+IDrQd0K1Mt73/fnkNhcc4EMhIEbwB3IYZqqGobhcDg0TYORYqRSNk0hhOfn5/1w5JKWSSiliMI4jo33EgNQoszqZjZMcYpLKfLCbIK8LFcc6z66WLctwNyhH3HIYVdYY1JKiYJSn5sSvDD+tNYhkQtBa10paYxRXMx1Pup25FJzAYxMdK6gxIu5YwictW09/3MsoxnCwA4Eg0kIIWQu3sC7BJd5HoILxTwUBzYeiJSoriNjjPHkXJ791DpDtDM2Z61NMXrIdEhOxKMP5d6Zt36+vDmJJ8ExAh+9n5U3dJ2VYlLh9eCZIJPDk2QiF36Ae2ZMATDNjK4qkuDpzMgOE5lByRgD5ZExJku9ygoJWkrFmGUsz5hTkfIAGhKKxx2iMx7p5XJRSv3BH/zBTM3DxcBUBAloLLRBImKJ5vIYDwTZWPS4NlJKgWUkuIJhIzIwPI2XXzEPHi4WywzZO4fXhNCJJk/MhpC5uuOca11z4lJKLoRzDsQNJAQop/G09/u9INY0DZPifD73fc9KEwUBl71gCvPi+khE3sWuXcY0y1XXu901LmDO/hEmZnyHl/F5XXRLsD1RLuL5JcytkCBGMJFDjHbecEGMpxgDMSIWZ4tLxmRKKaQMgwohUgiAL3E8xEKAndFA7/319TUvHvestDSwVKh0PmaghMrsRgwUeT54YozWWaFkDLGgbGwug2PK2uhEWV4K56IofqSpqDbHokeJA4kzKXjuUgohpMxSXFLKrusEz0VajPT+/XvvPRcCD3zGYuaYkFKC1KMQwpjc68MOmqVdcGGr1QrCZ9idVBSf8VG4yDnjx0LlnG/Wax8CUJXlYuGLV2wof8kYu1wuqfzMMFyMUQohhErJWmtjSkJk4RGM2CPHwn5hjKWYrLMYxsGeYgXZpBLGg88RFfdet9WMmKciuTDj+1hm4FYDUNNKSCJw0hE8ZxfmuUieQrSf7T0FjnleOpRQZUHiTgXgnh8aqCgpJUg9OudCiPN0HnSH0TjhvEFKTkQhZOeWue0RCx1PFGo8IJhYpJzRqsWkQijqKGoWGfD52vASkVohbD4/P6/Xa+RzePt4XLk4lKyqKq2UtROCpGRcFT6vZOBcRyJGjMcXYuWIjfGva4WjEHqJTuIy0ELHQ0OiCdi6qirFc3s1FE2eVPjyVVX5lCeWUmG2eh9QYOAyUCeoopvcti2TgjEWA3mX4wPgIZQc/WiQK683y/V6DUtVxC6wJruuE0LFmBgj9IF8cbTDb6qiRjLL00efXRxTSpS4KMbTMSbGOGMUI8VIbYvCY8GInY6XpmkqzTBMALxsvsg5kM4HE4LqHL5gC4G/mZwNIfgUmc/irYGx9OLYevmTUsJyhD1IIj6fs6hjEZZ5kUVGNANEiB+AzYfDASJFStdVUdEFcte2LUabqUw4IR4Ow+B8nujE1B6aAeFFd3mOmfi/c+JBRWuPSDnnzeRUpZF0zmLTLHOmgtZ18lnN8Ntvv91sNjc3N6c+O1N33VJKPXM6LsezDW61Wt3c3Hy4+3R/9/iHdVPpmjGWKF76gzEjEbY5LbuFc252AGOMgZmiuIglgoUX6kmMMS6YSBx5WmKkqjqlJFieHXHOaSWUlNBrUqrabGr8/Wa75YytN8tKqq+++soY82//7b/98OHD3Ye7fpiqtpmsqZW23prB1HVdcW2TZ4lTjFKJSMR5qvWirdNkR1Y8ooHwppSGYeo6wRhLjDvnpslOkzPGeR9t8I2QnHEpVGR+u90Kxp0LLAZBmZgWYyTOUkpMCuIUY/IxkDeCcRanybJIKYSQOBNKCCkGM8UxwmXOWmv6QRc7qbn3gLWHBfDll2+xxeZTGxwxqFE747XWi7aboU8UGPGFzzPWUlW3kkHhBJD6CGrYu3fvUmLI9NDoEkJ8+PABVROmdAHmWkt93zdN15Y6Tb6QpRKcee8lpevra15UO7E80BJhjAGR+eKLL169ehWiYYzd3t7udrvf/OY3dV2/efPm+++/Z4ytVqvz+RzKRJoQAtWsLaIEAHAxnjIfdlLKn//850AGhRCPj/vb25vpMv3e7c8YCyEZk5WsCmgo7TQR0WazYYxpqdDPW6/XVJgQ0BVRSlWVQhWDzfvll18S0f39PQaxEYTnet57H/3YVHVbN0/7Z15EkJCrPD8/Yxf0fa+berlZ2+Avl8E5N6ufQdQeybCU8uHh6fHxWUo5TTEEenp6qqoKoUxK+e233/7sZz8DdPv69evL5bJYLBaLBYj5ANSWi0XbNF3XnU4nZAJANkEx3u2uIRTjYkicvvz61Xff3Z3259168+rVq+Nxfz5f2raFziwOLGyrb775Jsb4q1/9yphwdaXbtjXONQ3b7/dzAtAPZ2NH1Orr9bquW0QhxhJkMfvL2NT66eGx6zrM9V+GPp/jPmdZy+Xy3bv95TgMw3B1te1UA6goFX85qGxh2VRVNY0WsZFJHZw/HS/WPa7XaynlZIbD/mSMefPmddedn5+Or1/f+jDitMWhCWx9tVrd39/f351T6q9v6uvra+gDKKVurl/hPJ0PL/Rp4ArYdd12uz3sDoxIKSUEu1wuaOcIyVJKkKJCfYSoMk3TYrH4q2+/55zf3AiskKZpDofLdsuUUm/fvsIGH4YBSwhWwLvdrq5rJkXXdc57SrTebttF9+nTfbWikPyf/tmffv/uu+fnw+31zU9/+tP/5r/5x3/+Z7/4//3rf3Xc77fr5T/4J//4+mpzOh3+8j/8h7uHp4f9MYW0WKy6xUIrlbwbffDWaq2wMtF5qpuOiDjRerU5n8/exaenp6urK2MMoMBpmk7nwdmw2WwAoqF+x0kN6kBd1+C2I0+DjwLedUoJcsaNrj58+IDvxWDN1dWV9z6lgTG2WrVEpLUkluOelBwNbGun5XIpq6z06px7fn5uum65XiOH18Vrp65rqGZP07RsO6316XTiioeUkD2iZ7PZbDabDeiKYLbOaYkQwltT121O8JhUSnXtMsYIxeTNZnF7e2utlZwDnwkhjOOohACGGGN2ggEcj0RdCCGExGi2c+h3ZtUItLjG0aTSsUBiD2otlOVAtkCxjMg8juPpdKqL4jzW83K5HMfx6XG/WCx2u90wXrDB8RK32y3kpHHBs9xZVSsycRgvuaS1EUq1c40/J/Z1XZ/P5xASZLKhzqSUMpNzxlSyqtpmHEfvrRBiMtM0TVWlnAtVVS2WyzxhIAR2ysxQxr6bpfzqWjOWGOOURSBzh+Pq6gpNICGET0AYh3nqlBXPtKqqdlebTx/vUb9cX18H5x8eHrfbLUoJnvjNzQ0XhI4RVhS6jDiS4HkYylQuqlqUzFrrfhyx3z8r+9kRZwHnfLFYRB+4FMgEEJkRMM3kqPTyL+d+Gu3V1ZWzQRRvCVYG44gRVJ6QWrAXeiCccyQA+ChULq4YWeFfhZDASYJf9zRMxhjYaGWuoZBSagz9lkmLPJwhhEDFl1Kem68qZYzDO6oqdXNz9e7du6qSw2BjPG63W1Rz2ObIcNBOBsQ3F+z7/R45M1IChJGYfIzZXXam8Ldtq7WqdIPorQosE2OE146u68kMl8slJp+SxBpALq2UMsZN09R1qF/yyCayrNPpBOcDUIZRmyAroBCdMT7G8/mcKKzXa9RTIYRPnz6NfVagCkUkk4i6rjPPz5LzxImiXy3ayziQI2Q7YCAJIYDXpTJn7IpsqZQSMlPPx4NSIviE5sT3339PRLquMYeBge9xHCXPHl2r1WoYLrFMYEitVtul9369XjJBeqo2y/VD/JSLeqxsDOMsl8vEGdIaNRv7CCELu0FKac2E/ManOF+3z7oB1YxG4RNCCCllR865POZSppRhKYxgKyUx9J1eyMz54vKXUizYaJzTX7R98MpZkXQURfEZ34X/FHJUnQfoGBGx9DlfRE3uJiOk4iBfl9KOZVf3iXOg4Xm6CjRVKgLQzrkYzyEEazM9WUo5T1LjBJrJFPzFFENKCV5h3ntfxtiBQPnk58gVX4gqZmibUowRU+pYoFis+K++iGlwzoPLtxpCwddUZonOzfwUGdOYjBAxelFmx/BwcEdzlGE8S4XgBeFbfBHcUUqtVitRtIHm/YA8Eq8PUQke3EBq6mKuRRgoCGhRxBhjKjXnNBlGOSQNwxhjmJ8qTm48W1ZUhLz3MUUKiRfrFf5CQBxPjzFGlLVo67rmQnjvIROWUmrqGhOFrOgIW+eis/NkaEoJeTw+EEfyDK6hJDaTu7q60jIP6Plg54cPhGteGHjmrhhtqSJUj+ucIxGGXqWUkFDHBDReMeIg1pstrE98IFIZ77kdL6w0SELyIeQ1qYuB4QyV5i7CX59hn8+DeaWxFzK+8zYn+AmwHByMMc45rep1sZAOITR1Z62LFLAeYvTyhT5yjJFTXn7opqYy8CWEYCTmfgxeqy2mnXhcEF5HGxBO3H1RDarrGt1dVlTFQSfMX52i1loqBX0PYuSC9xF9Gu5jMA4PlvsQWJFaptL4QXE1v0HEirpu82iIUjCkIpa7o5fL5f7+frlcwnw8Bkjp+LlNao1VKqsMx5CwhHELObGO0YY8HS+CaDvI1WUflZl3DKJrpRtWsRlfDilOkyX6a1al+N6qePpBLRqrom1bwUkI0WRJu1l2xkvZ4UVba6PP5nLGGFXJlH+YKgJBlPsKiitK8+vG16HVlyeUHU/ULhaof3DuRJYnZnQlY/Kzts+Mr82fNmPclHshnHNOhOJBoiINIVlrx2IoR7mpm/dUKrqiL/G7+euQT/A8iJDnYBhxxhNOPaVUsA4kzVTapSBCCiGweJAMySI/hSCPoSogDnN/ERFSlNk99XluhvBflVZSSmfyUThXYnNaWVVVJbPLBBV+H5oWM1pXVcpaL8q42TAMibNFt8J+8Vzi38piv2m9SxTqRs+Xp6WKMWLC2nvf92PbMsw5Yh5ICDF7yCBXRjsBw9Gccy4xCRRSSsa78twCCMjsBQkdQKQzdu6aU8ruBdgj/5HEBCsN7Dn2ppjmsxX3a4N/CdNjR1AJa//rH170heu6JpZ5zb6Md0wv/NawwPByWZk+cS5yYk3doayiQgZBl1Qp1VR1eGFrjlAcC70U4QIA3HwKI30C8uWKN0YqzT88ivlDcI+p8AyIBKXEExzvuKoVXiuOubZtf/nLX/7kJz+5ur2ZowT6BM56Y0wM9PjwtFytvti9QeQ8H09t3WpVO29SFM/7s7WRJSZZtagWZhinfsAJJSU3ZWchfAEOAEE1H2SKE/EpTpwJWdUxJecdMmClFOdZTrpuGlXGVubgwDhXWvfD4Ciut5v/03/9X/3ud7/7xS/+/NP9/bm/KKG99RTZcBqHy7BcLgWJSjS9630KddM4b8xklZaCyeiT1kpKNngfUhBChRAosZRSoOBj8jFxyVVdkeDBxOenPaLu9mbnbHAURFYbiEKI4F0g0qqKMXJOXAg3TL21Xd3WSlOiGILxznrHOa9529VVtCax6L1HU1wULyAsRSwtnBrr9do5B/u+OY7h1AshRMFTYvOZLl4Q82dKUYwxpUAkTqfTcrVJ9Hk1QtkA9m445uaYOR9AAJJQbWqt//iPf3Q4nKAFcT6fIYE6qzBRSEgzpFYppeP5DMijP5855/vDk9Z6uerkyEFYM8U/Y7VaTZNbrunnP/+5c+58Pt/e3qLOBIegbdtpGKuqgdzO3IYMIVg7xRgZE6gAZ6+25XLpfey6zjz/Xikd6i+D2inkFfjM5apzzu2f+r43X375erlcskRlLHfMChVjJoUNwxBC9mmv6xro2KdPn0QRVnpZw6eU7u7u1svN7e3t8/Mz++uzOHOE6bquWXTTNAH8ZZF5b9+8efOTn/zkX//rfx1jPBwOh8OBiPDu8Dl/8Ac/+svf/ZV3kfMcLi6Xy3K5RMMgxoiLt9be3d3N6WsIIbic+I3jOAzjbrfFqgNdzphsDlm1jTFmu9t0Tf309AREY7XKyt3GGCq34IudqZRytVrtn47Q5QznUwhhGMYYH29urrTW49SjSLFkvfcxengb4jlIKff7ve8aaLMi8I5mAnfSu1jX9XK5VKpijN3fPztHPthxpBBcXa9mttcwDGiNIL1pFytUkYyxyVrn3PncxxjhDIb0PqXw4x//qOseuq6bnHDGIAHD/yI1ur29naZpGFwMBLl5fCAFArCCC56mSUq5XC4xSoWHf3t7W1fV+XwMISTi2GVCMlskGmRx5sR6bppGqzzRpaQcx9Ew9vOf/eju7s658OHDByJCCxNNpo8fP+L2rfUDYz4wY0JVqWidJr6qa+Psz3/8o3fv3jlvttt1ovBnv/z3Hz68+8UvfiGEWrbdH/7sp//FP/un73/4nrx7N70/H45uilywGON+vx/68fZ2J4Rqmk5rnRgZa52PTZPRujl/aJqGWD5PEa9mncZYxM3QTtNa73Y7UPu11rtd+/j42PejEAKbBYBL0zRt22ZcWCqussMK2OvzGb1cLqtKDcPAiYhlo07OuZTKe7vf719/8VopdelPcPpJw8DKLN3c2Xp4eNjvj4yx9WLJmgY9PBvy1V4uF+ectdbH2FSV1voyDMrByTB7vnHOuyarzXImGWPY1CG69XotBIPWBOccbYYYwv54FEJUCppy3vuIf4JzENlIVVVVxbXWXdf152Ph1TFrLaQ5pNZKKTCLEdxQEgKLBA0c43HW2hnmRgaC52mtfXp6AkyWUgJqhpD78PDgvV9vluvN8nzq87hAwXZiyNkygELOuXUTY2wcDS8EL/ifa63btlVaQGOd/roK3Fwvp5Q4J+D41toQ0vX1NQjFpVuwv7raqSIMgofPirn0zN7lWWTPg0MM+A/ijfNxaa09nU4oQsEHQrUoFU9JElHbthTT4XBAkAwhLrpOabFW66ZpHp+fqcxZAphxzqFVlopFCl7WOI7GZZ1JZO/7/d45BzEQcHKR2BPx4JO15nQ6ffHFF7AbxRg38NYY4+l07roWr5uLTGHGXSipUjHVTEWrdiZPsEJoAA6WskV5JqLhsMPzPBxO6/VaqUp0LCYvuYYIO7gg3kXHAyMCbi6EaCrlg6/qjgvlY4T+GBJOQIUxVoh1SHiWy6VzZuzPIbhS3I1wccR14tpsURiz1mIZK6WQn2itGVeYo8Ji8GXA13vPmXv79u27d+8Oh6OUYrleAyGRUjpvcvJP5LyhxDnnu90OdlCCMTsNsrAPUbOjBdW2LWS7Y/Gkdc6xyOZmJw7icZrO5zNkK06nkxR6GBxjw1x+Qsbqhx9+sNZWVcZtpJTb1frUX7quOxyOh8OZc9ps1jJL/IXNZnO5nG5ubmKMx+M+BHc6nebyXypZVQsiQiTxMVZZMX8MWftujDFut9vr692nT9YGH2OUQgvmKGRskxJhAzrnjHXjOGbZYsTZGKMPca7SY5FSmlOZUCiNIQSibLCGajlTL1PIeBBPWjfGmOh8jJmGjU0rZa6I5vBki1lQrgCzLEuGOGOMMeapYcoqcvlMwsJKKTGWhdhwXFGZC0CERf0puKqqKjg7Q7RIixljtdKCPpOUJ5dnh1NKibz3XsrcFrbWW2sZS/iv0FKOMfOpU0pK6TIQlymKrPzwwlqdseYYI8rpuXpk7PNwa6EnEv4Tl+Jz0ylmzAIdvzlv5i9ocTj5FGnOOeVY+bn6AostJRJCpJitsYTgwX+uTksvK+JQd855Hyr1mQIZQuBcAkyMhZeHOQsqXDmWxfXzEwCeKwuVDysNcmPzibVaLKuqiXHq+56KLhURsTJ2KoRgjNDcTp+RcTVTV3DvsCSOBdDns+xAcXKrqsqYfL/OuVoI0GNR57ddJ180CXBHSlZdx7uuY8W+E+QRJD2MMV3GCUMIwSeqJIZ6MiacOCOKKfuYA3DHDoLCpigSZvNinnstOGygoRljtCYLPs7JBOf5VceY6lojAYLm+fwLCFJ4g1oqXpwqsQBw/KTiUYbHa6ZpLlNDkV/EL6viD+BD4Lj30h1JKVFiIX42+FZSw3+yaRp0zzjnkbKUii/DpID/YozLboHW3/39vRACavdmcowx3Wk0nLDmGWNCKBDl8PAZTzHG8/nMGFssVggvKSUMyECua76puUPgvRdSEvtsYo5YEYs7WSj60Zxlh6vIP8OdvHSS/ItJeVlkSfF1iEvA5XGRxhgczHPap5WSQlBK3jnGclirqkppDlQO6M9cZAJZC4XOlsooFh67MQaRzRhDic+BNCVGlC3jUlZyz1mazFNjOsbovQWMBayKihlFfDGqP+/QGCNk1uc7SomlBOH+z6A2YqmUUkqOVY4PYYxJpbz3MeAcUXWnQdvEDhVC1E1NxSCRc54ovTybWaGr42HOa1XK3E0Jwc/xjZXYUlUV0gVsOMAuoDywYlCO966UwkQ2+AV4Mni2yMNc8NGHILKDqzd2JqoQEU8UY9JapzIHQCmTN+OLqR1eGkXYXEjoRTaQ4bPYHM6CGSuH+mQqI3UxRm9dkgKtJgyI6abWL2z9nHOS8Rm8pjIux1jWuQIxbb/fz1UQK91NZIqy0ngIZRWRK9r9SHyRKWKZGWM4p6ZpTFFrxebCVG9VXIsZY865qlZSyuPhjP+qlEre4VIBfMxhvGvaOWdANHbFolZrjd0x9yMRN4BHSylTiLrOzqve+8SZ4goXJqXUIo+Ppf8NuPnlaW6M4ULhb+YMalaICoUPgnnGfKKhies87vF8PofIuFBaV01jgST6GIpBBZtnDrigmFiwgfPP4ga4OzC1dV1xmQ1OeXEopUJuSnnOINc2vLSN8QBTiLE8W8AcFOLV1RUqn6qqfve73+mmRurFOQ8+jON4OZ0/fPhQMSGl/uHD+/N0ORz3oKWfD+eqskKpqmqlqH7z7e8kV51uh7OT7QUWQ4g/gNjmqmCaJhiyn89n9D+kYpxz4pI4V84nzoiIC8E4pyxzz4kJqVTiwoWQvEPsdTEowW3w58tFCMGVfD4epK7/yX/2nz097X/5y1/+h//wHxhjWmhrbeIsuFg1miVGgRgX3jnvo/MGW8xaC6KQqlTwyThDxIwxkG2JMafNlFhTt/1l8D523QKr13rHiUXGnDFaVk1b9WM6972qspsl51worpKSlTLeKqWYFJJTFMw5d+l7640PoaoqXVU4UKzxKbK6rmHVgD4E6kkUliCm5bRZf65JvDU4MubV2Lbt3EgGshOSZ0zUdc2l8N4nCpfLBXQK7z2mK/DuYjFlxTLDWVxV1c3NDcpIIQR820MZ8kOXK5QpH6kll8JHd7mcZKV9sMQi42m/f1qtVpILa31VVV3XWGu0luDTgQjctupwOPzJn/zJj3/847quP378KIQA7hZCGPsBhToWWwHUbEqhLH4fo8dhPZ/4V1dXl8tlkdTv3f5K67rO9lldu1ytahygy2U3DObu7lOMXkuFchSRfLlcEs/uCFLKYbgAB/nRj37UNA1AEByREKBLiXH+ed6OMQEi8O3tLWAFXDAvQk/eR+xNBHmEpoeHBxQsxhg0thljKTFkg4vFQgp9fX2Nt3+5XECOE0Lc3z9ut+t5V3rvT6dxsai++eab+/t7pVRTEWNpHHtrxrarnDfj1Ftr3759W1ft8XjUWkaWwanz+VyrCnnvMAzL5Zqx5Kx9enxEbpmyRPLEGIOIs5YqhPj4+OhjcM61bTMM49PT05s3b25ur4CqeO8/fbyXUl5d1W3bAnmJ0XPGoH5GpcKSUg7DpJStq1bV1WiNc6EM8Lmr660Qwrm8AKgMZXOecw8hxNPTHuca5zyEhDSypAqp65qHh6d37/qHh4euWzpnVS18jNt1Mw4GSBnnMoSklPzqq6/evXuHk91aWzVNiG6a7IxtIYYEYqd+QMu773ucaOMwHA7PzsVu0eEa0PFF+SOlhPQnCjEEwM1mwzk/7PfYmLBfSzHbkQG1ZMWdAu+raRow9+uqZURh8oyijJESxWmKzvIUBY8xhmkafnh/UUocn4fUSWPM//2//e9eX191XfP3/9O/Y5wfv/sgm+Z8vgil26YZR+OmkVJcrtZ1XUuhpcyZ4Xa7xZg20oyxuOPiuK9rzVjWvAJPmQua7xfJPD5ntVpNk0WaMW8EdEYPh0OM8dWrV6f9AQLBGCGa18nhcFgs2hBCpdQ4jgitp9MJZYixYwgB0J6sZNM0p9MJmQySE2SeXddpXYcQUP8iCXHkW9WiZkf+IISIRLEAW3MOs1gs5qRaStnUeTw3hNC0lZSyqpbArVarVYwJvhdMiLZtRR7Ry6PAvqj3MsYA2mitleJVVV1tv356egIkDR50SokVZ/Vvv/0WYRAmJVgzyP2U+uyxjCuE9sIM9QAcZySAe+LoRJz3Ibv+QG4UXcOc/cYUQsAI6axxiqcES9tUREJ2ux0KDdiovHr1CuYfHMOCWpthJJExPtR93ttpst77T58+2aIBuN1uZiRhti0FfSG7txUlyaat7JgOhwNSxzwepKQs3vIo3rFJ27Z9Puzd5AqXLqCOWK/Xb9++LaMVi0Xb2uz1t44xGudi8sE6BJkQ3X6/xy6G+S12a9d1se990Tcwxui6EipXml3XXV1dofXCE0+MpZTO5/Dw8LBcroVQmOUFMfxwOA0DLRZimqzWuqoFXo1zrq5akPRzxRcj+qYw1LVFYQ/Te1je1lo4Bs8FmpRyGIbLZQQ9lmkZY3x+fh6GYRzHEJIPYbPZpJQ4F4fDY0ppu91ylrLLotat1sfjkSgSRe/t9fX1jJJJKTkn70PTVD/60de//fWvh2FYr9egpYcy04kUCJgYKMmovqtKX1/fPj09QNIaisxSSsaSUmLO1dGJ+e6779q2pfUKvgiIKg+Pd9g4WKI402PInQ/UGlrruqoQvZ+fL6tVnco4LB4a6gIi2m63kknMWzDGlJSkNcZWCuhKTVW9eXP9+PhIROfzZbVacs7bNjuXisK/XK1WjLEuhC+//FJrfXf3kBKdz+dKNx/v7pQQdV3f3t5iP26327u7u/2+X++WqM6EEJRIFlVeHCvYDtZaY0ctpFJqv9/j4Kia7mXtJoVQWgvBhJPGGKlkK6tqquQMGeBDXQzzqcMYEyL7vLHCYQQJESvM2pzlqHJkSiWIiDMWQ57IDom01lXV9H3f972UUggupUIoOZ1OV1dXl8sZJAg0FuZsD0vce58SpRcz/qkM4co8Jx5nYDoUseOXMREVF+Zi5v4MKxP9tcpyaTFG7PxaaRK5/hSSpIL3i5FSxuj7/ixhEhp8CLi8hN0yg3eM5aud61hRmAjx85S3qipJdnRlqD+EIF8ASZT5eCwSQJVkrcUrx/4HSoI8fqZnuhcNUqUUOfQZ0gwfE6MZY2KMK6UozdVmmlFgJvJZQp/B1vzn+WpBDEFqwsrEovd+ljbHJkEjl3MOn3FkEnVd+0JonaXrkJB1XTcLpTsf+/6cUmqaZuh7aPKmlNC0YGUIa71eO+edc8RoRhbQaRBKSiFF8QcvOHsGebWuwTtAynK5XLbbLdiU9IJQhje4WCyUrJw36UWhjvcL3D+EMMUYPltNeq3rUtUk2EYREUtixh+llIIra63xg1KK8dzacc5BAHFGB2zWt8mddrCbod+tsqDeMI52/n2WFT+z1AZuWWullMafCw83hpDmFCH+dQ2mucdTiplskAjstUwwJFaG1nUZY8fvGJup8UpWmOUpJLW6rKWc0xPLS1eUafFQeOV9f0axhCcci8keY0yoHHlwwX3f4zQSgqeUpFbLbhFCQuqA0xp3kVGbEhxwlNZ1zXiSMtO0Qdq6uroKRWyBcw5WLPZILE6kpTyo53A/dwIYY86F+QGmmGFo7KDlsqGCEbPSjXfFzQxJTFsyEh/SDARoXccYASJInslQgDvbusJLDyEgjuDInEYbir0DEU8scWLg4TLGePkQ9mJg37nAGKOYwJlNKdnokN9UdQ3UAAtgHHut67Zt+YsmWVVVmPmdQ7fPVmyKZ9V1gksdghvA9BCCVgqJOwWP5BsXZouNCeecMHYUs5knqr4ZbhbFVTW9UPBgjDGWkZFpmoi41mrufhcYmuau51z1zXAqjiR01LDqMKyKQLRYLFKIoUwC4RaQ62BHBEpQ/5+M4ZxjmoRzTN9nlV5w5FE6IpFlhTjDyxiBLGxoPLTScDZEBJ1oVDhN0/gY8NKllDb4+bRyRd468UyZwWeG4DjnMeawE2NUsmJ1plTXWgNmAljDGBvMhBwXodU5l/xnFWxrPaglgCpSSqAnzH/ANaDSU1mX3/Tni9Z6tV5AchR7RynFpZipwfMGcc65aFNRlFYvHG/QMgHzdx49mU/hl00mnAWc80AJmw5xxnOqq0pKOfDfP02fUmJFCco5J+Rn6ZJYiPap9A7nUAPikigDCv358vj4mHvJUnHOXQjb7dWc6CshZ6URnIzQXE4JyvV63rnEmSr0VWS6UsqU0EBCiMhXruYRwhhjjMHnaTgiklzEomlmg40x1io7bQoh3rx503XdaI36rDzjT6fTr//iVw8PD2u9lJV82j+++/DD7etXq2XlJmOFqVQ9Tfb9x08f7z4ZE079sPpyV8nWFb1m59xMzcbtoJ+HHTTn/TF6ErppauIiJSbhu0BMsjRNEyfGpaDESXAfEhHn0THGkPsJoYmi0KrrOs44F+r169ewO/8H/+AfLhbLv/qrv3p8fhyGSUr+4TK+fXuj15qI7Gi54sSi4Cp677JUl7++0TjspmlijKeUnRsZY1235JxP00BE6/W2bZ3W2vsYWVJCskTWZBcHVzz00M2arPFuSjHCjJdL4aDRzYhzFilM09SPWbpBSi2ECi5KnbXgnLeg1aCBAcFBZJsYeUG7saghk1aV93GGaZAz46PwLlzIvZamadbrdX8xjIN8N+GabTEawSAFgjBjCe8OWdz9/f3z8/NqtQJUGmNuq3/zzTcfPnx4fn7GJHsIQQm+3W6Nsy6GaZoiJeOm9Xp58/om+RBCGPp+nPq2WVhr2kUDjANj6avVynpX1/V+v59RM7S3UW6klEQ+EeQc3xBRU5HGwr0DCbpcLvf3j23brkX9e7f/4+PjIU7X19fBJ7TQuKY3b96Y9ZoVgSyMPxMluBJhE4FnIKUkSuA1gw8I0hNjDLAjQJyu6+q6hi5tKDJxnz59evv2LULrYrE4nU5IbGL0HSXgyIwxTqSUGsfx06dPcCzEjgMNDXVcimxmKSIBs8YCTLm62iIHRqvphx9+6Do4UmYDZKBXmLNG5MQD/PjxIwTinXMkIMaY3TKstQ8PA+ItpXBzc0NEd3d3MSYW43q93m6vUI0zxpqmLTPsyhjTNPVut+OcYLiH945AOk3TDz/88OrVq91uF2N8fn60xqzXm+vr60+fPrVtu9qs3717h+bW5OzkbF3Xk5lwjgOQwksUQmDsD6f/4XC4XAaI6VeaD8NAyUgpl8XUJLnw/PyolHr16tV6bR/d0XtfVUrr2obJOffw9LRZraCShJX28ePH6+vrn/70p8fjMUS3WK2G8YLViLUXQvjyyy+/++6Hh4en1WrBYmIs4fXt9/sYgpRyuWwYz8a/cw/VGANeM/IEIcT5fHY2pJTqup5VE8dxXC7Wx+NxHEfIBz89PaVEVaV3u50qCdj7j48sxlpLHkO0jqV4tVz/w//9P2CC11L8Jz/76e/+6lvrnVKqrquUgpuCMe4X//4XItGn1XdtVdvgbWSr1aI3vq5rqavlctkPl6nvtc7j0SGEV69eAQWepmm/3x+PfYx0c7NGi2i73SKYjGPgXBKoP1pgEByeZv6FgJgx5nIZYozGjDhfsMJBSZnP65TS09PTyrmqbeb0YBxHovjwsCeizaptmkYqbqaso80YaxcLhD7vPaMEDq+19vr6GnI0nPPL5XJ7e9s03TAMJo0Its45R77v+9S2yExEMTIFXpHK5CLuYpqm59NptVrtdrtxMEgRAQadTqcQHGLI4XCo61ZK+c033yTGnh4ePj48MJaurq6wiQB6oKJBGYstPJnhuH9KhaCAEphzXtdqVvdCnAQ+8/h4rOtsZogyUBXzHkhbMMYk558+fXIu7Xartm2lyPqQM7429D2uH8V+SkEKja/Gp1VVBVx77twj+eSc44nNQzNoh3POjYmQJWmaJtisesw5r+EY6TPnY7FYCGGA0eMJ4xPwXUjA5gLT+zyt9fT0BItIaLaghISot6or3BRQ1/kWhBC73U5V+v7+PmSNII84yRirlMZO32w2wdiUEj5wtdmM42jsiGcFyXIlK0S5Gcq31vJSgGcIIkXnHOOJJQI+gFBTVSpaPk1T3bVddz6dRs5lXVzykF+llNZrbYuZTVWv3r59CxjRRAP9GURgIup7c3vbAXIBTorgOddZEElDfju3k4dh4Jzm9jO4XJT7K6aua3QyzDRdXd2E4JbLJaf48PAAwXpkvDiasYC7rjPGh+DqegEWtvf++++/b5pGao0ngNMW+wuvG4yWYbzERE1boc4CagHAp2krjB1gxB/qf/g13COuQZS5qFhEP1Ihv4IqJ6XUqs7FSAic89PpZLMAN8UXlCAcghCeIqLz+TxeRqgGxSRe9s9mEAa7EtZTQggzTlc31xjgaJpmHPv5OgGnPDw8aK03mxUWJyVujDlbu1q0RQoSMjVxmigdzjc3u5Q5jjEEZqHiy9j79+8hr7Tdbg/H1NXNvCOUUjE4xtj5fD6746v2Le4uxmCMqYRyzjHNmqaR3mNrRSlJa03Weu9VpULIRZf3nhGnRDEk7wPnInhiTHgXU6SInIml4+XU9z10qYHrSQFpYDYM0/nccyYisXM/VD4rxmLDQ15tHI9YviFEzjOSpYpgFjKnvh9KUZpCcDPrFpN0VOhgjDEIdWWtiURCCN12QgilsnTs8XjkUkDKg5TwKfEqT+jEEL0PLGT8ehwxbtziKBqGtFwusPfqukE2GUKA0qj3PrGYGFnnEmjiQvmQfEgxRSF5TJihQH0bjZuElKyQpNqmiTEKrmKMgmVQzwWreCYhxhhDjImoqmskJSnG1WoVCq9ZvJCSwO9zSoA5iICjRc5EouDsRErUtU4xheAFp+CDlJJVTS5+iKTMDSKMPUbyTVXPIFSMaRwNDmmcSdM0heBgGAWAOINolWy7DkgPSMeJSEgpSHJBiUhpratKCFFpzRjzIXDJW1WH4HUluej6nhhPQnHv/f39PU7lguMwa90wjETJOdd07Xq92u/3nLOua7WULw91pIwpY/eeMTaMo7W26zohJeNys9GQ6gaNOsRIMIqUkvE02TEkn1KKyetKmdHmatl7M02UcgwSQkipiEgpNpqJS8EEd3ZiHHIs3JvswIM3NbpxuVzGAWhvPkIiZdElKvraWsgQQl1rzmWIUUqZGIkkQggpJuB0IWRLdAxfzLjMHB858RTIGMs5T4GUqpxzIWRFCFQsjLFpGk6nbHopX4g1C8FSClLWwE1m1R4pOWyjKYX+csKq6LouBeIkEOiVlJXWAXo7kuX4G0VKVKm6axbWTUpxrXXfnxmDhjKqZh9C8C7GGE+XoxCCeFKVYkzgKEIJXVXV9fV1RiUCVbphJIapTyklk8W/zqcD55IRccbEi52SUlgu0WMQlHhdtUSENsDpeMETcDZ0XW2Nh1yADYFRiiSM9VWlGFGkFIN3wbvgjbOcgZH6UkLXWZNnlrE7+r6vq7ZrRQjBuglLAvBr1hAkGjEcQFwpSTGtFssYo7eOS5ESE0IYazNLIsamyumdKBPNXIiYEmes6eqUsixLCIHBesKlgqIS58xbJ6VUWveXCxUKMOMBQknee8GlMWGx6FIhxHEu5zYbJm4YYynEEELTNK/F1fPz8ziO6/W2rmtgsgBEFnUDSI4CKSmOl94YE0USQlS1YixBsAgn64yrCiEoJqGyUzMJklKC+mScjWUGX0rpnE+MhJKJkRBsHCciEkVPIISgtUwp1jWO8zhNeSrKxwDLSqmVcy6GgBEnxeWMRCBNESKT/mYmac2zGAKwRd20wTrop3MutZRmMCFGwQlAc+ZJpei9F0o655jgkRJjpOsK6aP37gXZkGaIFsUGLgZ3xDk3LmituWSVUimlY3/mnLeMV1XdMBFjpMSglsATZ5RqXS3bbq4HjmMgYlwwxaS3zgXPWBaUiN6TVD5EeDclIY3Ptq4o0vq+32w2XvhxHFX2AACu5FPwgpHS2ltnpgnGMou2axcdSCuzmqFzrh+Hq5trY71UFTGfUvIxJEbOBewma73WdVVV1k4z2u6951JYH6USTZ0l16MnF4PxTkTFOPMpVkrJMhSVUhJCHY9nvPcYfXTeOcdikpVEw8L4EGMUSv9+uJk4g6UnUVXXKRG4D5XSRFQpHSkBhpsxEfFC4SH/jZLbq2tk/7k3GL1zhpU5g5gSlyKEcBl6hoTVMajUza7xzjnGkhSZicM5D857C8vHypdZ/pQCOBdKKc4lYwleLslHYyckD45zKSXjXFeVcAwsuVx9xaiUij40UismYoxjP07T9Jtf/fr+/l4wfolOuqR0m0gKqoJlatXKunk87O8fHx4fnm0wLoRq2dz+5Na2TgSZXJpMsNYLN3uWMs6oqqqQFT0oBBcoccZS0jypsTfIjuwwtm37fDzKYpLsvSMiybgABUExxsR4may1gsRuvVt1q2mynPOrqwad6dVmba39R//4H/3sD3724e7DL//9n93f31dEx+cjT+QmG2NUdc0kIqrgITWyddOpoY6ESNysl/JyOYXJhhC22y0ip1ZCiS56xykJSYkssZBM6p3rumVKiUnhKIoklV6wwU+D8zJJqVwwjAkuSEoRUnTeg3jQdcuUmHdR6yqEMFympmFPT4/gtoBGFBPjQrXdUhTHORhXGGMA8qaUKMRENIA/IUP8zME3CCk41uu6DiFRZDFByM9yJs00OedWq1VwnhcH6ZRSrbVxVkoJXtWsnc05pZTu7++vr6+dC6fTBbk6EY3j+Pj4uN1cmclxJmOK3nlO7NOne0zyRREXzUJKebW5OT6fz+dTVVXEREx08+q2Uvr+/h5FBzYUeNbjOO77A04uydX9p4evvvpKdfrx8X65XMLeFkyflBK0BN+9e399fS2EgCiKtRbpJWOsbeuUAmO/f7gh5UlKu1wut7sl8OIYY/CJS902K2fD9fX15Xyepsn76LJgeqQYUvJKyn6YlFJ1vZzJEJgHAu7vnEOX1tppmialRGT8eD6hGfP8/IwyNcb41VdfvX//HkMA29X6dDoF65RSkHcXQiAuoXU9TdP19fXlctFaOhdSCkKqbrHwMZ6PR2NHa+16s9w0K+cc9Iiqqlp2izevXoeQ2raNPlFk0afn/VlKWTdL7L7z+ZwScVZxls6nMQTinFYrrYRiPvX9ebJGa13XHhSNEGkYjXVusVyi4mOMheDGsS+trEicmqaSUq5W3fG0VxpUjDynGHyyxiDZwHw0gvlisWrbhVLqw8e7lOh4utzcvv7pT37++PhY1/Xd/cdpmirVVYt6HEfngnXD5ZKHVkGa1roOIVW6Xq9aRietdHRRy7i82fV937Z1Xevc4eaKEn98GNpmXC62gleBQqDgYub9jeM4GkOcbLBSynGauIiPT58Au7Rtyyn6zCNWVVURZzHGYbzE6JMnCn61XucVUklA/FfbXV3XjKJ30RjjfKh1xRLXsmKcex+998EH56YYqaoa7/353DNGdV1VVbVar7XWkRJ4YCGEtu2Ox16pZK07n8+r1UrrKrhxmkZjh8WidcEqJZhIIyWego3hdDmnlLqmVVL2l4u1tlnpKkrngo/x2bFDcFyq5XK51LpLCfWynXrN2Wa5dM7FYJTUVV1DJyf4dDweQwhv3twAItztdkgtOEGBiqZpQOV+Ol7athWcxcA502YyQghrvJKVMZP31hjnPb1+vQNEG2O8v3/qulprDUIlkv/T6VQZg0651wq2rotFG2O0PnZSS6VcCE3VVFUTnU8+pZD649io7jJe8OFt24aQpsl++PCpbRcx8mGYhmFKPkgpjR211lfXW5/8MAwxOBcCF8SI7ff729tbKaX3UUoppd5ur8AiXK+3m+3q+fnZBqtq5bwRQgrJOOegvGid2VqJs8VicRkvwaShn5xNVS1Ol6Ft20rBFMFMwyi5UI1qmma0JoQQTTo/H7wPy+WibdtpsiEkodTT05NzDuZJnEsWU63qGOOyrZn8PGKldbZtXK/XALOCcymlWZfZWhuYZ4wxkSV9kf8Mg1GKvPe7bYO/jzMxMzmM4yJJQ3cNZQVyA2MMkySViDEmSXGKxpjlsgbET0RVWznnjHFSSuGEtcY5t9RL70x/MXaapJSb5QY73bvobCFkCH06XoZhWK1WMVBVVdb0ITrnybpJqjzNvFgsZAgPzwfd1Dgm+AsrXUZCcMGZZCRgZmvdFGOsanU6jcgKYvL9cNZacxKRM4+KyXt3yopbWmslq6CSNb7STUqJCXV9u/PePz8/xuSTN1KJGMm6qe1qFbhzBhxtqLucjhcinkgymequvlxOWM+ANYgzRlxrzaVIjMAyIWLe2+F8EpS8saf9abVamXEUXMVIw9ArpV6/XuNwxMDkMAxUTOmR1oIFBQQJJbm1lsVUSckTwfV9miYzZSnqqR9ud1cikRSCqopzDlL/5KwLabLex7NSCrj2NE1a10KoabKcC86lMW63u0b2+/3336MrcLlc6rqWWjkX9sfTarXyPobgtNab1UoI0Q9nzvlqs5ZSjuMZ9SYIMZzzumpRljpvGAnJUvJJcq61Ds4R5yB3S869tylUjBgvA+KCq/Opr6rG2XE0k1KqEiQEq2stKxlj3G5bVMFVMeJijC0Wq+SDgH8vTy465lnpUiSKLCXikl1fX6Mh17Z1jB6qX0SEN4uTWn02infe+7puKRATrKubL16/AbVov987byLxyfq2bSdrE0tvvvhyHMfn52dbFB1j9MfTE3HB3Witff36NQgoQoi3r14rpaZpAKtA1VUIyTlrrfWODB902wXnnQ8dVd4brinE5FzI9nqpUB3z2LKHe3sexFBSzyyAWJYXLyRo77112ZfAl3kotIVjjLKwh3wINnjO+TTZ2RYzpQyuYRLBex+CT4nPJDKEoUJDCNC2YEUDMb4UPcnKthGnFA4SvFRetCZCoWpKKaWGvFFOAREyUiE84je11kQYpVdaZ8fV0hfNzwoILz6bc06URJGKRl8Oc9ZYOrMRX25ScR6sxeQ4VomU0rvIOadZ3DlltJEXjiqVrrv33hoDOB48hZk8JcpQvyKwqGZYLXPyebFGxGUwyvRDMNaxeUC6bNt2nlCjYnGWCpf8JRu9ANxMVdX8ySjsC3MwKSkXi0UssphEGR7FDMjcXXTO2ckYY7rlYr5giJmO/YBRF1yeKh6JUsrVqnHBsyLWyRgTStYpUwu7LtsngtyB9zI3kwt2ltee9z7GDL+i7RlT/od4I97FGXjCUsczZIXISdmUnAA/AbBL2X85Q94hBFmkPHAXxDDCEIlLXibiselwR6HQYImIC04+C6OLYj+oijb3vB14Ye+CTgi597wgSTCKMdoZMcTk6WLRzvzckJUNitTMlPnsbdvC5hiYiMi8fjZPKkgpl0uZEptjxZxDhBAyX7Jqiajv+6bNy9i5zNEIITCWQkjoHjOeal2HlLmoQKsRuDF+slqtuq4R5XnOLOMZihVCOGM5zwME+JlJkZmA4EFLzzxrKJZCkAtutsYYnQlQPKUsOiklZ4yFmP0egb5xJqSUSub3iFlvwbP0aixqxXn0QXGp2viCCwmIH/8VgSU4X5pb0nurRA3IEubO8xMOL4S0sJcZYwhWjIk5MKKr720AX6CqKvh0oSKdIyH0dstiVqMZQd+YdyXWCZ7wTD6NxfsObSfGGFGE651zzhYHJNzsOPZUZPVsctBAcMYymLsWaXLGGFCVaZqMcyjI27adrAHY5Iu3lcnc4SyPO2/G+Q/Yj7AomUeEZgaKjwExJBMGs5B0WLSdUgoGg6nQyee4gactSvBEwwA4EeQvYE6SUmKSschw8fhNyVkmG2o9T5pzzqMPfd8LwaEmgbD/MlwAChRF0BkLOztKlyMS/9V7Lzkep/CfVYCz/yo42jHG4/6wXC5V2TU+hkiE3cEYi94H50+nU2IUiYgzznJPCysfhBGQNdqqRksgFkY2GEaLxYI448VvEA8BIR3H6/zGQ5HKwQ/nmTrKi3GzKHmeK0riVVUpLZCHIYzgVQJxM8YIyi8rZpHlOAcrgON5hHMyLgYpJcQ9wRz/34KcEHg55+NocPrv93tkfi5kbBdXODfwWCE/FvPSLOkTiUZjJOf7/REkCwzg45ksFgtMaYUybyGKfDOeM64zlpkkXQzQX6iv5OOJcw7fgoxvx6i1nPcvzVKPyRMjbFhfpIFDis55HwPFdDwe/+zPftn3vVKVtZahVy2yi9pyvYmRLpfLn//5n4+TTSnVbROJfvzjH9d1O02TYBJrVRQlGTylFPOGojz8AauJBPErrAc8E6zt+QoR6Nq2raQKIXiXFosFGKOiNONTmRlCHbtcdkJsUkpXV1eJsR/96Efvv//h7u7u22+/fX4+EMXMzGLKmEkomRKBeDEMY/R5LGC5XF+Op6apZ7I2dr21LrIEKtjl8hxjhFEbKlWchIJL3MgcFUMIWkghhJ2ydr+U0oegq2rJ+ThOrCj2gpWJUKC1jkUcIwQXvMeDRZ9Aa41BQIRExArvPe4upYRJI//ClXQczWq1wmlqjAk+8eJwe319jb4Ffh+66saYrutALz0ej4fDYbNZgZEEiB+LfLfbwZSs7/u2WQAvfnx8nKdKP3x4+uab12g0Pj4+3t3dgcgiBKuqar/f7/f7L99+kYrzBzp/OMeXyyVmpXEaLhaLjx8/3t7eLhar5+e9rtVqtUL6h7E251xKdLlcQH7E5kJ/BQnnfr8fD79/uOGrr77i1dM0DRi0l1JGRu/fvw8+EZGQjDF5f39PZRyz61YwKUJRfelPUsrlcgmDhGmaIDyFrBuhu+uyZM16vT6fz0plN7Bp8sfj8+2twYCjLrIYIQSI8AzDMI5muey+/vrrXIJ5D5qVEALjw95HoEJ93x+Px+3Vla7r/v7+zatXQoi+74FfY+wGlDeobUgpcT14Dl3XIezjVcYYf/jhnbXEOaEswmKLMR5OI2Pu9etbWH8zxu7v74nier3GsKaU8unpCSmNcw5jScg3vv/+nZCERu98hOEs3u+nxUL+zb/5N5+fDx8+fADRsuu6vj9/+vR0dbVqmubTp0+z8MvbN1/uD0+MsXE0MVLbLpCWIJZut1sh1OPj43K5JBYZ46vVou975+x6s1Gzyr+1gN6EEM/Pz10nsK5Elr3KFtzzEkWYmiDCoxRGtbCb2rY1xp1Ol2XXAqMZxxFP/uqKg64hhDgej4xnwxgAN7WuiGi5XI5mur9/fPXqVV3X1jlre1OE4JA/b7fbqqru7z/NZvLeeyHYdrsFI08pRZSmyRyPx2nyxjxSFmhKoC4opVIKq9XmL/7iL1A1t23NuYSVNI4qpbVSFXzbTofTYtFhgR2Ox5QS7CWxMSulnXORXIxRCXE4HJqmef3q7SxGjzMaC/V0OknOIMM9jp9dCi6Xy+VyWSxcyWdcSmHu3CilgG8CDzXGrNeLqqpWqxXGifDw2QtHB58igurt7e233347DOb6WuDeT6eT99FNBlQeUXTtp2x1Ts4Fa13TiGG4oJvsvQ/WJQoIiVVVPTw/hGILH0Lo2mWWgOBcSgn5o/P5jHKmrmtiHtkpZ3noBy+OssOBt9be3t4GSnd3d957xarFYnFzc2XdFMpNzXaX5/N5e7Wz1hrvUBqgXwXSXowEyAJwIU4BY8yiabGYN5uNi+58PoNiiQzfGAOAz1obvUcMR1EQY4SPiwseagacc+IcWP/hcEAwdMUWyBhTyQq3RjG7a+I6IQGEGHvuLyGEq6srF0JKabFYwHkVOeRcd8/nKc7iXLkTEedMiOP5DHqEKAOpOG5Wq5UxBnscTL7rK01E+8MTToTic5ZdneCIOI22rmtoxz8/P6eUjscjE6BkDSBuoq7BjV8uF4jyResJLi8hABkviatFmyo3tAS6IElrHaMM0S0WC6i44KnO+4WzPNfOGKOYcO5vt1tfJAqGYYLKaNM0q9Xq+fmZE8PfVMX73VqPKcZxHBPLpPtUPGbAaRVCLJfLWsvnwwH0Z1lwwlgEOef4g9OnKqPPoJWguhzHHg4x9rP1kU9lvq1plvgDympeBC4AD+73e7jtnU4nLIPgTI5sjB+H8/k8QRYGWCI2mpJVKpZjovjHIIG8nIcQQtd182LjWntr8b11XcsiNZ6knMYRK7+cbsk7HGrJWns6XIjo9nqZnVdXy2EYHqYna+1yuYQCWIw+xtg0DZfKOdd1XYjueD4jLkEQgxfVVrxK3B1yp81mE2Pc7/dCCOd8KHaaeNqpGGwiRn38+FFWGsfT7e3tOJiXdevbt29hIcA5h3wH59KYULcSuYosHkLGGDsNm80Gy6zvRxoGreqchk1cBHE4n3ztifFpmhqthBDW22maZPZDLxBVrpqmwb+wX4sppEQzzjiXN3Oby72ITXMlkOHIMhARfAbdcADPNaoooz1KKWQVKHjGccQiQ65DGfhgqCR5HtDOlN7507DQ0RBD0k/Fj54K2IpUW6iMMM5Xy7nITpwvpL6kzGTtlAj2Bfg0XCQeBapHxhJRmuU1pJIxBuij4ZUTi0JIKIrwoiOstJalfEoFSqZZ2ROVaC62eUrJFqCBc86I+F+3/WFl9qQuVpK2H733JPgM0vHCrJyHoFNKlvJM7jhOpfbmjDFrLVYhmicafpKFVI4bL8zNLGbPOcfkOi5jt9t5F6GnUde1sxaDG2A6M55AkEeN9Bk5TTTFbNHQti1OSigfKSFhAQfEHJEaW7Fp6svQY5AkliYbIAkppbVurjPnDJgyEfLzA8SJVVUKDWQEKa21kCyEoGTlvWdECMGc8/1+j4VKlDh9NqTCRzEhywvNgs6u6HbNWFgOypI565QWgOBjyBPruHjGGE80TVPVdlprsJv7cVAsd4CQzhIRY7l7hBSKcymL508o8hRYV977YRiCT8Ry8TnjJpzLGIsHd3ELLDeCBZKncoQQmImbwVNdLHSttTc3N9M0gYI3Ay5YpXVdY9gKm3256qjAxHi5KHjadgEDk5RSP5xjkT3CkYOqrGma3W7XNA0ogXPxyTmHTDb0+EMI3WYjpYYVrFIKeXbb1ojsQojT5RyjzyV0yMLZXdchge66zjvnCpv4ZRwQMj+6ULREKPGXBjhEEENg8yuYQ1aMEZrprLifpdLOwW8CTNSywnECkJHRZ8ENXoS2kYBiR3jvgeWhwKiqCoACSh3gtkRzrM4kce89F7SoFsg8hBBKFbwy+5FmkZyQA1GO4XgmqVhxYjHEIg7FMx3eTNMEh4SUTUQ5UX6VzjkplXxhT+qcc5NhRb0H9Zu1FmJHQgjjsr9HeqH8U1XVrMeC7wXuEGMc+2HujKLoYqVBkooEB4t8PiYAXfEXnm+x9H5mKNyVcXittSpSbjjOMKg+b70cokWeoprn0KG3y4sOL14EYwyPTojcAcXWwHNDuWKcDSnqukKqHYsjAt6ClvLNmzd4j8H5QD4faoVy5ZxHcGOMoXNeVxWlZMcpqVBVjVAqpQTaeFs3dV0PcXDWDsPQLha1qsapB46MB4Xntt1ulVLnwxGFNGNsGkd842a3TYxSqSfx2J1zeDv4nMVigaB3uVwioypbicbEWGIspCQL/stYPgrx/FNKTAoh23l7ouWJLA3PMGSP3Ly1vff4OiTJ6AHg/56fD1rrxVpwzqWSvxdvxqsRZbwOtdblcoHN6eVyGaYRAxp93wN//Hz0KxVLm3Ycs5wOI0LCU4VQKWXthKYafjOlZLyTRUrFey+lWi6Xl8tlmgaM1LAXnWkkHqnIwoQQpOS6KIo450LIzwS0lznI51oxeSxCYsx7fx56+CgKYs65y+XSNJ2PKaT4+PyEUjkxctNUVZWudNd1SJmmaeqHKcZYt03f9z/5+c/+xt/4Gy54Y0YlNC/kpvm9IBp4F3ywxhhscASBuaWEM45eUCVCURibd3eMUUgJWB/3C5syIdSsGhHLLIhzYbFYVE3DGFuvttfXn169evXdd99BPNF7f/d41zSNcZZz4awVXO33+3q9EK3Cui3sWsMLn6Cua6EUBOqJSAjFmBcCWtVUuK4khGjblnESQvgQ8HIpcSLiUiVGUisfgyCahY/nvHce/pjzsXEclcpS+EAZ6AVBgbHPyD6uClKYq9WqqiqorMF0a5a8mFMaa22ldQjh+fmZc4oxEmdCyfnMIqLHx8e/9bf+FmoHZFDOOSHUPHu7359QueFNTcXGTWvd9/1q2WH1Ho/H3W6Hl/vDDz8ALOu6pTEjTrR3797hllEjzREVx992u725ufnw4UPbts/PzwiYVVVNZsREM3IYhO7FokOSOSeHoWhkCSHqul6tO/rh92z/w+Fgt3a1WsXSzs82fZdx2XWM87arY/LRp5SCMWPmWG02iLoppWHqh2GIkWD7HkI6nU4lc4Pw5cRYQlGNcwFJtVLq4eHh/v4JcANgtdevX/d9fz4f0YTAjUzT9PT0hOOVMYY5khDC4XBC8qCLTfTT09NPf/rTlNLj4+N2vQbpFXAJER2OBzNOKN2JCBMqXAiiaMyYUrDW9v14dXV1dXV1OBy8Pb9+fcUynajGWcClGIZhGIa2bVAjKKXQ0Ukpffr0iZf8slicZf6HEGK7XTOeIB8PcK3ruvVqO47j7W0YhuHDhw+r1eZFxx3mMVSwVDoej0CEpZSMxOV8yal7yo0Qay3n8nSCEkIDhIUxRsR2VxtAzMCIn56Oy2WD1PTLL7/86quvHh8f59RLlsldoKtv3rwJIdx/+iQKpQPbbSquNkgYmiZLfAoldbFLxZhg0zQPDw/X19eJwnffvVOKL9ouxqiEfv/+7ubm6urmehwNFo/Sub0qBKvrFjj1MFzevHnTtFXTVtBVoyKI3DQVeP2bzQYp33IZHx8PyDNjDOM4jqPZblbH4xHp0zSOYEBLKam410opwRB49erV6XQahoG40FojdwLaHkJgpbxljLVNO46jPZ8hiPHx40doU3DOYSbWdVsg0Sqro/FvvvkKG2Top4eHJyk5YsV2u7XW9v3ZlfEyIQQKkLu7OzAft1vIc7tchKYUimea994GL1luHxLRzc3N4+Oj9/75+RG9NGu9m+wsjJ5Sgmwr0vJxHN++zenWzFKimEFzlDNQa1wsFtbaSjcxxt1udzgcpmnqugZYm7XT8/PzdruepoHxUiOkLEOHgpdn2pC8v79/fHxc77Zd153P50W3uLq6Yjw9PD0lEBWlPJ0O6HEifRVCsOARLbWUyHKnaaprxbk8XS54ztg7z89nyTjmxVNKwPdnPXT0OPH72NevlAohLJfL9Xr96dMnlsg5N1kTQvjyyy8/fPgglEIqCFJCKv7zPg/wCYDUqTSeWUzOmtPpNE3m9vYGMQ1gN/YaemxYzDOClhJdLoMQ42q1QiQH6odLxfmLEyeltLvaCCGcDfAtgALGfn949eoWURQwLme06HKov7q64kzmzNOnqri/xELvqKoqBQIOWyDjnCUip0L0IyYAg5zOZ1eExXAmYkABkGhVMdA0u66RUtayrnRm1LEyAyeESJGFospVOg35bEXrJbckU0QbFcJBnBhy16ZpKFrvc+GJc+0yTCix5/1bFdc4rbUxYT5BTqcLcBg8NFmm7Xki4Mje+xBhhEhYNgj1Qoi7xyectjjfnXPT5Oua5jQeR9UwTFAYR/WKuhhFLq7KGeMK3QqJvTFGS4V2BcqW9Xo9jBfgWqtubSZHRIDpUzJI1Ino+vp6vV5fLhdRMF9WnGwBffhIM8kppaTqqq6yVxkRV4qLYoBkvDPPz8aYbtGAPV0Xydy5MROsu7299ckP0wReTnphjJlSenrcc0EppWAdgtjj42PM9piCc/7q1StUH0iD0Xi21i4Wi6bp+v789PQ0Q9gIWaBATdP04cMHPEMiismP43h1dfX27Wuok6UQAZXMPbbT6WTthExSa11XNc6y1WrVhLrve6NMVTdd17EY+nC+vb1lYz2PyUeQepACztgQf8H5ZZTVWOZIjaYrFdNzfBT2Ev5sjHEvWLfEslEPKyqlEPkMIfT9UFUZXOOFuxQKn3z+fCAdgNWklEJkxspcX2HvATShF0LDVLDmGastN05UVGxyRCCa7yiEEGMKhYnpnMeqo+KDRyRtMWfI1WzKUpvYBvhwxpN3VhYKHhVXlpm4roo5Q0qp0o3gHAPMSqlKaAzSziVT0zQVXLxK42huDKDiCoUgjDzGeCcpq4gQUQwBtA7gXFJKKnKxRMSYQGt9hslijEiwYoyUbfoYKKXIpcBKRm4qhMzN/2lELH54eIiBZqZSLEJOIUbnXKKgqwp8W875zMfhxBChhmnELa/Xa1wVCoBQFFGp0BW11s75+RBCNE8p2RCRHOOWZ/IO1oOQcr5NyvB94Jyyql1KuNqCdyRbBNFjjCYlTFzr2RBSsBgy93AGOFJKvowLEJH3dgaelFKhPBmllJS5qYitkZd6zI04FjPvdRgGLkRd1xSTDZZzLiQrwKVHjxqEX611XWfTNmNMfxnbLls8ISs6Hs7oCkLdEhEAGba1Ey/GcTOFnChzzKmw51JKjAnGPjM9UflAjfH+/t5ai4cP08IZucbHrpbrw+Hgg02pRU9CFR8tXqx4qVCAU1EPmP88TRYVNWOsaRooj1BpF8UYrbOvXr0ahuHx8XG73Xrrnp723nscrsaYu7u7pqlubm4Q2YSSfd+DpVVVFbmYUhI8qzmrYgrBC00eFIO5np9TuhACxQgaM9LTWWIe944mVtvVIagQQrQMBzn2F8o8770oppopRnA6gLkALok+JEbX19egnNfFD2FekDjt8Gfoi9V1W+ySclM9UvA+EmXAd7/f181nQEoIVlXd5/2iJMQBpJRKZtwEuQhSB8Q0LhnjKXpfd+04joOZmqYJKQYKVVsZY1zM9B8XI9jEkZFPkUcRfAohhpC8d9M01EqjxMV7Z4wlnh90SqnAjpAphzA6NU3NGHPORh8S48F7lshSnsXBSsYGB0QrpcwHbZGupmLlSgXYFUWdiRdZXl5YzIyzmb01vx1cj/eWMYGVhrfAOSeWAwikRTjnwQUmWGH3O1bGhljCPCObB1ZwLqMcklpJnQ1b1tuNnUyMse/7x8dHrF4hxGCzuRncZXGe8uIWq4r2OtYJuPyCC1ZJKSXYMZGy+btxlkhzKTVR3/csBW+nuVSe7w5XjpJ+u90Cyp8Bsvv7e+wIcL6gvCaKIysOr5lZkFIKmYPsQwiM8oCFL3uBOCViuqnDOAqR56iQXiNrn5FWpFYhBFlxPMMM7zI2KwC+fM7GmM0mT1wGH8iF34M2EcWYBMuns3OBczmzNjLMXWncCxpjWHh41KDzpOL3nRdnOblQMytVCSExdpBeKG5b74gzjF5xzjGCgCSklG3ZyxSfP2dQMZZhnRhzmCLGWG4g4SILDyjM2QX6VbHQ+QNjp3NvjJmsX6xWf/fv/b3r29tPnz4551Li9aYmorbWiVFIcbj0CGVciuPxmDj7+c9/ripte9c0nTN2jpnzxhFCACNOKSXKqlyXfuScN3U955O8/IgXNGchRAw0c+gSm+oiDS+lrOuWMWbtiHc0n++MMZC70X7w3reLxTWREEpK+fh4/+d//uen0+hckEphIj5SSjF645KOZrLGmJvb62ma+n5QKlv6WOMTT1JKqKhprUMQCN1zV9J774OLKbDEqTz8uXqck+HT8VLX8OTMu1i8GAKYF21iFILDtI1UiordmS9TWeNopczWJvPex2N3zgGuatuFEMq5CW1+IUSkxP7/7P3JriXblh2IzVVaucuzjx+/7tfvfRUfX0QwQDUCUIPZY0dgR98lCFBD36CW1GArgWwISiQhNaQEQ0oEmWREMN67pbufctdmtmo1xlrmJ8ggkMqOkJlvNy78nmIf22ZrzTXnmGOOQUJrnYgY59aY82UAhz0Vk2FcjNb63/ybf4Ml1zSNc4GIGzOaYrta1wr5gPe+qirG0vl0fXl5ub29xdrebDYu+IeHU4xPRASW3zRNl8vl6ekpB8yiHTlNk7XTMFweHg51zd+9+1oIsVwu0b563TUkou12+7x/SYlBB6+qmlk6H+EIxyvMoFJKyARijMbIf3D7d123p/Gnn37C9EYIYRotpNKRg/ls0tUCgWKMnc9n5xxj6Xg8fv3118TT8/PeGAe5SWs9ohaSqBDCmzdvVqvFw8MDyBYpeSEqZKR93x8OB+/DOIauu6K7o5Rq2369XmNq5/e//z1aFHOvC8M6+/3x8fGkFHVd9tAWQkzWPjw84Nbh3S6X8eZmjQ8rpXRSVFWlVHV/fw/FiUapeVIqhHA8Xm5uNsNw2WxWcEAVQlhrjYFQGH///v3j4+Pnz/dd107TtFwutdbX63kGXlH3FVnJpFSVUjqfs3vH7uZmuVze39+DBLrf7xf9KsbYti0ErD9//iyEABSOLf/1129xNIM2C/4K7KRWq5X38Xw+Q8BkGMbT6YRA+nD/1LQV5xwTFyEExhRRhGsu57yus0JaXdcAghFG0EBlxDJTjLHlasWJjLWYzcLX8RTKVEHmAN7c3AyX69PTse31er221saQO1I///yztXa5XL7/+qvb2+3nzy8sXYnofBxipI+fnuumU7Kqq5YzgYWhtZxJJ7qSjLFhvCAOtF3tQ0aOUN4KAc54QFFvjPnw4Svc5Ldv3z49PRljKt3EuP+7v/v+/fuvxsmeL24yz33fcx4gjzaO5ni+LPvF4XAwxrRtC7Z+13XXYRDFVKO0DFNVKSG4lNqF3C3G6a+UyqaaRGVgvK91JSW/jhN2ayF7ymnyMeZaCWSLOYvGrpRSwoGzbbMOOE7/b7755nw+3z89LjfrqqqMd36aEHhjjKgXgLh1XXc8HnH21UWuF4kik+J4PJ5O191uE4I7n49d13FOSglrpz//8z+/u739l//yX4oyhNTVTSWVZNwGSikorf/whz90Xde27el0+vTpE4qFvs+ufabYGoUQUuFOoXM2DMP1GpRSgfIptlqtJOOTGXgxLbfWVrUSQgzDUOsKDT8hRK10SEwKUkpg8y6Xy2EYvvnm/Z//0396f3//+fNnyvYP3LrJecV5g2uolAIjHlsVaCMODla8qRA/q6oaLlcE5MfHp48fP263W+s9ipTFYoGVBpgV5zXFqKWairliSokLMU1TdF4pOU8kc86fn59n/Zx5ByFLJySojJxLsIZDsMLSwh78khcJQoQRQnAmvbXBuck5yZkZR2v9jJzMJd5wnQRXfa9mxDNGmiaQcwXGTWbOR91UVBgJzjl42wAGPRuvtOi6rms6ZIM4QLHCU5EMJSL8oZTSNAxcSkDnwbMU82JeLpfBJwA7ePNYeEWoPgBYIQOMiXAP8amVEoBfrLXRu4IUKynlZRig2ofDWmf3eF+qWi4YU1+SyeyjgwcHgCjG2FY1PrtzTmlwqgg9HjgTVFV1ul6std5b53jXddh3oKzhMH15Ofz617/86qsOquIz7QDPBbglqhJZughtv0BIwTLTWiuR6apSShe81ho9QvQkkKOqSrNE3vunpycA9HVdu2KnDC5/jLHv+77vY/LD+VLWQBS92u12OBxhO4msAJQRSLmOg8E6nCEgIh5CeDmenp+f+1UPLZq+79HTQuTJ/YnJpohcK9dc3scY3TCc5wYD8DcsJAQTxhiOrbbpIeWB54IjEteAv4jJZiKOApMKQadpGmiZ4ueZksEXzyclQgjX6xXM8cN4WPC+rRutdYj+eDy6aXRLi7xOjuMVuM9cfiTKIgkzk04WNq7SMoaEtAzbmzEWKHEu5vJ7zo+NMcMwBOcEpmykjsVIJKUohIDhL9YTxkWNmeY6f+Y1A7lDNkMFhSwRX3if4b+5/zCjCTMEPB/qqHgRu8lntQoqXB78mwtZqhiWy22iy+WCTFRKSZRm5NT77PdNRZ6CQk7rgbyrMo7NiqkO8vIQglJSKQkzRmMM8kvOeSJE9UDzTMQX72NGKcUQEK+n4saLBcEyXynwQl4bhkFLJWPG6DnnQkjn3Mt+LwvdzxhTF2cqznlVqdfl3Ayj8EISRCo89wOAdOP9pZTO4eO6SAnZLWYwcYsul4vgHE/WWDtNEzESnLvC8kO0ijHCK4yI5KCGYcDurarKGYuVOWN2oejlYzOoCnr/EaFB8jxBv9/vm6alMocupeRchhCYoBn9xBrwRX0CHxbfxR1w1glBqrgBhBBcGcqYsX4iIhaF4MTTZEch1DgOqdCNhRCM5WNvZmXyzK2LQgiimKF/zkC9ESxjQ3ac6rqdB4hw/z0m/W1uXcx4a4EnAmMG4bWuWrFVSD6wm+DKCK1wKr2ZV7tYO5clz1JK6AQJwebyHj20YRim7JAA1YKIURTOOcQKcHIgeHHOAc5yLmJMzpnJDNfhjNbZ4XDgnITo5gO+TB36+/v77XbbdV3dNDhXZKGKo7eJ5pNSCtFZFyszay1Crff+8LIPIUxTZoFB6mi321k7ocvHOY+UgKfPz0tLVVUV1CFkcXpJpZtaVbVzpJSSiiMWSykppq7pgXGIogUEPpmQgoh0JWPyxhjp+Ly6EDdiURbGAdZo7b2v61oBIPA5qiDhRs15Op/RgxFCQFhq7hPgUMGkG1QLkRUhj8fCA0ajk2aGp5Tg2UhEbdu2bUZqXBkOBciulLLGlz3yxTsO07VN0zD64tSM2cMZ+EP9PytCstKejMVhD8cQ4qqUuq5bKTmqTcTPWvAZsJuscc5N0xR9DpjEsiQCPmBJnrKfJP53njBA8Yku9Hy4gmKeShNuv9978MRjxHpjr9TKOOfE8+kzhw5WWpIppRiDlBI9czwvVqgc6EfiGI2UkF/iPALH1lvE02CtBXc4pdS2LXCWSPmW4qitVLaHklIiz8DPc2JK62magCeqwuCbD33Q+RGRgvNcMyYFEYXogk9gWuGT+hi6th2GYbnssc4j+6I4hB8DtsUTCaVYnm/NVqKn0ymk3NPC1gA5KMYvnZg5kKIKElrNMGJTV1Q8QvMxGjN9A3wxqGfgzgPypiIm8PLyIoTY7XYhhPP5DDP6cRylzEzP+exjxUhwRm+llKF0kv6j12W4NlZjPB99vhy7eOYIY2MitiP7n3c6K/JfxhgpdV3XAMRxW8DfkVLaaeq6RV3XnBN0NrE8kMKmxA6nPecckt/4h3PuOg5VVQmZ23KlxGJKZEqOD55LUQmI9jprLRNcQV4seMaJM4ld77yPKRFjddMQkfN+mmyk5GPotHLBL9ebD1y8//CNtXYcphij4AwOjSmF4+lirZVaeR8GY/7iL/5iuVw+P+/btp6miRNDF4eIpNRE4Ddkq1XGGJdCQsPNOZGn0HjwiYhFIkaMGLdw0wvR2dwVmFMCLgX0wbTOAGJKX/I35PGjNZzztm2TZ1JKHEZ3d3f3RJARWy7X//hP/my5/vTdd98NZiTO0HZt684ya603ox2G6azPVVVxJs7nawhps1lZO1nrgfdBMYPoS+s9nyaM2UJrwskyW8fEGBlP3vvtZvfyfJh7h6pos3jviXIRjnzJBS9lHu6ZmxM47ueZNvRFYqQQElHs+x6k/nnCAzWqL9pfUsphNFLSer32Rfh7rkYQipVSwHSo+JjjfMQ5gkoVQydKqW+//fbTp08YC2vbtm70ZrsCxhSDAx8HGAFSIJwvVVW9vLzEGFEes0RSypubm/v7e6VU1ynv/fV6ttZigAkL2xXNmYJBMKVUlZUTo/dC6xrzZC8vL7vdzv794Utc/xu9o7/9B7b/27u7v/34I+f8crm+fXuXUjIusJSWfZ9SIorOGYqJ6qrrmsvlcnOzMcbs9/sPHz44F47Hc7do1+s1Y2wcx9Pp0jTNbrfDA/Xeb7dbHE+r1er+/h46Thg5m6YJA7mMsaZxWBuLxWIYBmg6QwB6vV6fTqff/OY3z8/PqPmNcSlZY0zTfJnMmIl+Dw8PyDe894vFAk8W04RYCcfzabXcQKFbCNEvuzdv3vz+978fx+vbt28xTg6P5e3N2lrjPIUQYiCk6+frlXO+Wi2FEG3bXq9XDH/kQ7z0a+f2SdM03lsijZHh/X7POX9NL70O5xQZwPoY436/x+Q4JJJijOv1+rvvvkvFPxaB/eXlBRkCPNaMMefz+XweYqTlsoGhUwwkJX98fOacb7drzK3LQtnDygfTE0xzXqxrOefRE+cRg5y4zlT8t7GwZ9z5S2O16DemRONo29bid4QQ5/MZGSmYGe/evVNKHfeHsjtIKQZ+CU6r8/VSVQpXIhUPEQr+GmUIcl3Q/bz3ulJ1o4+HM5Jq50bGklLZDhQsVEztPD8/V7phZF+eD5MZtRZKqRiJsYSGvdY6UrpcLtEHzvkwTFVVPT4+hhi//fZbzDrgGjgnzsX5fJZapMTavrPWhpB2u0XXLvD4YoxVrTAjezweabHs+1zBaa1RVFZVZa0Xgg6HA7ifyA2QAEBnLMa43W455xCHQYJ09+4rn6LQ6he/+AXgEohE06u2JUpy7+3Nzc1qtQJlta3aWZEmhDBNI5zQpmm6vb15fHzEJmWMvX379uuvv/6r/+6/A7O45DYY9AxAAzbzdQsAAQAASURBVM04aikB/KF/9oXpUmQ/hRCCK1YzM47zI/ZFTCaEIFK+J0IIN7nT6SS1llIiHUIwSSkJLrz3taqIs7puPz88EJHkzVxN1HX98PDZeHO9jPiAMcbdbkcxoi9orcE6DM7xMgKCYxTxarVaNU1zPB6R7ymluq5brrPAzv39i9Zaag10G0kjSnik7tM0EcuKAQi/PBGTzHv/4cMHa+3jyzNjzFsnlJzhnVkJN70arGzb1rnjN9+8Y4zB6y+E8Pj4orWYnTAz4kwB3ZFKqu12F0KAjyJWoNYCT4cxVlW19/F8vhwOozFGqcq5YK0H/1IQa3YVzndVVFyapvHBzmmttTb6QIkLoSpdSRGIRTygvu+B4M9KDpwnEPU2mw0A1ratNqsV6qPz8Qh4nbhiJKbRUqHLUCE8zTCFtRbGg0KIl5cXH1NVVTc3N1JKIM7ok2mtGag2TIQYTpfLMEzjGFOiEK5zahRCWK/XTVOhgeeyF5+uiiKuLEv6enVCEIUIq89xHBmHwlXXtJUUGqdVCEEoiXMHQbVpmpubm/P5bO2E83qx6DAwMY4GBGeAXZhXwK3TWnOKqnSbUtGWBBUypaQlhxKD0qJt267rvAkAtYkI+TP4dloqIBsQ/4wF47LWx0iHw1WWGfHlcrnf77ETx+l6e3uL2QWc9VDZqrsW3BoiIjYylqXzyuIP0zQNo69qQ9TjFEDDQEo563Wgrt/tds45O00xJq0V5wmwsjHmeDxZS3d3mQFMhbxLRPv9KCW1jAFbR4+nADIxpbTb7ZriFZwbNpdRV1IJOV4HKWUMREVRMyZMydE4TSARapWVJ9frtXYqxXQdh8kYOjFGkYX4+fPnVfVGYksAs8PJ13bZwyoWFvDcr0gpOZebh8h3jXczNoSPxgu/CWs9FXN2IUSMAaDtMAzn8xkewVTGn51zznkheMZJtUYuxRhDJ4SIIEEOGBRRm3P4w+TJaOxqWWarkW7OKSbAU+TToVhvsyIHMUMqPMs3z0fjl0uiTLrMsrYIW0KImXatlJyZ8LK8UG8A3UB6h7skpSTKrKWZJ3542c//i8mCqqrghYVU6XK5zCiJUkpywQRHzR+Ky20o/G7cBFmElaXkdV33aO4xJl9BDzLTb7nWmgpMgBQNnD6EA0aUw2thGceif83ySzAWtWAxRil0UszELDgrpeQFakHPUwgRoptKVxmlEXqAQohQBCUKDMTwA+gllMcU0ms3PGNEESflXFABXuGuEwoPKIQAeNT7JES25fGOzQSrwttlSFkArR6Px1iGZbB4QgjxlT6GLgJDAh+Wc4oZU5v5a9AfxNJiRKaMEeApGDNiv0CXg4iI5xVCQgbKFdSUvXqlkhytHSLabrdCMGvtNE1d1/X9csY1hBCMRF3XABNFIUYJIbzzABkLCv9FDmI+OTjPWPxcqCPdx51JxeE9hADNkHk3YTXORyC+SIVXi4CL6UghxM3Nhpd52BncVEpdr9fHx8fVarVcLhPR4XC4Xq9Il6tKhYA5vuyeARAZbAtAM8fjcd59KSWlNGr7EtySEA3+FwxcPmtZOB9jTAJqiVcivtvtwLTCLXLOpTJVIBVvmiY4H0PGi1mhV+DmaC3RjwHsiGWJnAZ3G2cMbhpgKbSUsMUg6gmfkOCTL2bKRNRUdWJgayZr83QbanUqTc7D4eC9n6YJSqAAoHkh5ociK6FqtVLrAAHWvCBzvYRj2MdQ17Xgykz7GGEnm8AoQT1f13WKfpwmPFNUaHMOocoYx9xBRGhCyVfXNZWAv+h7XvgIPFFKAZUACa5Ybk2dz+dIKb9JmfhOZdojT4dRdoWSUoL0lPlHhUiF+/D34M4YZ3wc10BEFPP5PfeW5kecfPSUd0oqMp3I85qmwcGIu4F3CDHMxzwr/flYhG7md2CMUUS+6GOxUgE9x3sPwaK5caWUst4REey50cGeR0exJHyRKgul3z5jxGh0TdMEfmUwhkvBlYwxJptgl8qJCS5CdBjw5MSMs57lnj8+PgCC+aYh2fLej2bCh3XWzfMTmPIWr15I1ucIsFgskGDgrMFqRFDK/HGdDzscBMfjsW9aJrNAOS9CbyklBITT/jB3K9G6sNbPGAdjaQY0Z4l5XGoszn7/0as582bPwuESwMbnRkrBjcF8zfV0ZlzIRReR/DFGKUnnQoiOW6arRMk7531MfEpKMefI2igdDksi53B8C3kJuU6uHQvBWu6nkPkF5BzjPGDOoG4EEfdReNY0gjFyzhP5yLlgTArhvBdS8pSYy4UZY6wiMY5ERIw5KZUwyjkjBGdTJEqaiSZWxkyJbPBB65oF8pEJp9LFkuQv7pNWKrogKfZOnC+DruuK1Wai4+HYnkUdas4ZF/J//U/+V1+t302/P2mKNp0FEykGyTiP4ApE6RMxJoQiSt4Rk0xwJkTgKXWRc84E44wnbBbGo5CUkodrdEoAb0ngBxENOOOC8yygn3jw87PzwlWVtizL9oX6yhmjxIJzADirIQoh4rXSJm2q9k/+8S9O7/7JD9//cP94n2KSTvopMFkJIWyog/D+xTW1atMipdbs3Uo0MSohxDBdZJQNa5x3KUVijEwixrTU1ltYEwsr4GLqvDO+qkwlg+zaLoU4jlMbxPtwIw9SCElElda2MFOklMZMjLG2aQQX5/GaYqx0JRSfxhHGUmxiKaXaVz74zt0QI/JERClGxng6RiISht/Wy8VXv/n0+VN6TJy7reyC902zjS4NbnSD01NquGK8kiX/Zzz5EJSV7MJbtguT44wLJY0zMgoicsHXrFZiywQPzpMjZ10MQ3eV8VzXdT08jy0Tm+qGXRlnTLKGGPPRM9YnvQkyxjEwzumamOArXsmrjMmnpL11C9c0dU3TuqLKi9V5OMtnzrhmJLjgUgghF3GKSskQo66rdhREpIxy16CkcM5L2Ughtdbn63m4xnieVm0Tk5ZCTMYw3qQQerbY+P4f3P7Pzy/oA82lihJZCl8IBphJsKzKivO9aarVakWcMcGP55OPDrM7sJOdIX4AFiDlIQ1AoIbU6eVyQgaO+HZ3d+ece35+Pp/PoIa95q845/72b/+267rVamOMmwc4+r5PKV0ul7Zt0cv//scf0bQ+HA5CiL7vv/rqq8fHx5TSfn9882Z3c3MDlLaqqrppsAKfnp4456vVynt/s9seDocUq+PxqMrIS4xxsWxDCM4lxlXbtkpl5OLz589a61/84psffvgBZzEkTff7PSAetBnQ/3v79u2Hb97/+3//730Z4MiUNCZjjPf397e3t7e3t8gYeaE7AIGyNvR9s9ls8FfQ6w0heG/X6/Vms3l8fBzHMYS034+7Xb9YrGKM59M4DsYYN412sexWq00MGdOBGhsRPT8/r9drDPH4wlyuu3a3u3l5eeGJW+NPx0se0bhc0HSJWZi7wyE+V69VVe12y9HAaYNdhwHkcSL61a9+9fLy8vzy+Pj4uFgs/uzP/uzh4WEa3MPjI1K1z5+fQqCqYWgGIO2sSbMvIwjqfL6ixQs4wzmHNkNKyUyu73tg2ff39wUEFM45tH+cyYO81lrBpVbVar3wIRCR9Q5zPFioUUZnfIwBXIeYEuDUumsVJyll9EEpNVnDHFutVvgxnMJTdhnJ47+Msev1ejyOukhF4XbBWI9zHKo0DCGloe9bLJiZPI70YM4cjDFMCvTIQeEyxoDASERVVQXrhqILR6UliSQc9GEiUqNClVHXtXAVHiIaHovFYn943u/3/+Sf/JPdbvd/+6//r8P5sliskNJwziElgn4D/jRUQ9FCHsdxs9nIYveC3wJdQ0optUbCiUImpQBZ1dGacRyBqF4uFx9j03WMsbrRi2V3vV6FyKJhaPPHmP2EwMBAT+vnn38+nU51Xf/d3/0dUqy6ar33M7Q3oxbYWSklLiUSXbwbggMTAprCjLHNZvP27duff/4ZgMa7d7d1XU/WYttCfAO3cR5cdt7PQkMsJiHzyNE0TZvN5jxcrbXQRdkfD957yQVKD9RNSESVUt5F8EMxJoVoqbXwPsA7F5t3nK5IOGVWJb60bY+tik0qdY2mTtu26GOFELynRbsQxIbJJB9qpfumRf9vtV5gqaD4qpT2IQ+Z4UOZyTHG5o4C4wlsCZQeaPyLMnkPK7mZ+imlZCQqXaEdiLunhADmPveA8bCwGVHXAywCK8U5N0xBCIFFyDnZMmSPO0NEkmfQAMj7fj+iAGVF5FYIxvnq5eXFW1s1DfABvFjRrOecd12ltY7OX69jSqmua8ZTKHJ2KEwg/oCLhD2SLRr6jDEhGeBgPI7D4VDXrS+qKRjFSEVgUwhBMWFmFB8Wjczj8QCIgKIKIRghqronok+fPlHMzyKkmEJEEIBE0twIwfmbC4EYvc8uF5ng31agaf/iF79IKT08fk6J3dzcoDqWau29R7jA5I33fv9yqWs1H1U4NbqFikSYPMYGwX2oqsp7f7lkj+XT6YR+zDwzCqdotCVAjcK5H8uUs/d+taq226211jiDxaOU0koAn5mmSet6HI1zJ5RaAH+UrFAsa60p5WdKLHKGbuWEKQTvfYyD4EpKaaMlIqH4brvzIRhhGcWhPlvvHx4espJAKL5PePDQyUX3CRUgDiQ85myNHjOO/BpHZ4xBBGCG3nwhk0/TFCghxiETmn9xBkbbtiXKkhFz0Y5KEuR/5wYEDtSQxljw7+a+FitMJVEmd1BR8yKYGMqsLog/VDpCrGj42qzDSz6rXgjGMq4qi6TmXLGzL8wRwTkLwQslq6xTkyla83EO2AURIcYAFw6l9HwbU9EUxsAgld4dMOUoIue8Ujo4P6WRJRKMJ0qMMZbydLYoYjFYT03TpBBDlm1l+OP4OqbvAfS4bIz2xYOIiJz3M1KJHjU62D6EGQ0BfxBt7VccpYy04sfmCZFcyc8iwhlt/6JgO5/x5UmlEEKkALgN6V3iAg8xFvbxjHViBTrv55R9sVicjydW3JlmWKTrOjTtq6pyweK7SikiJ6TyLvOLsecR5XHggQ0BwA5PDZ+oryrv/TiOoCGs1mtkPCGEFEhJmVg2n0wpYFIWC+96ueAkQ+47jqO1eeieCnxvjBn90PdLUWwJ8RTatq3rdhyyKHbKWkUkC01byvxXUkrexZQC51wqDpQT6J5zLviktXYuMk7olMxPDcsGz2W+yVhpYGvimEyvBGowiojtCTbfDHnPbSeciEDKYhwRHGL0oGw/Pz8bY25vb7ESxnFsmuZP//RP0aZikEblPDdjS4WGaSOsARwPuADGvwDfosoJU8q6Bwz1DMRPQwht217HYb7OGVvHNYQAX7sRz8VaW9e1dW7e10opbx1Qb8bEvAtmVBFF4Pl8vlxObdvj+nE9GbiPLBEJzoNPMeZJEZXt2nNHkIgSeSIWoveBxumKu81KIAV6Mvus4la3bYuJIWttSiyEsFwu5yO/nN80A9yccwy+iKLfjSdY6eZyviKAF4p9BuiJqKrU3PCYuXJzD2zGDV1xccQduFwuuDN936eskpRvPgQcOedCsLquuZIzzos9CO5tSslbN5cHspDswLaOMTa64pzbcZqcBRsiFWGWkGnUEmsmpQQG7tzBAtDJEvA4hu02z77hJxOj2T+Tv2quZN2VFIEUEJGLjhEDeZC9IvNGynA5FZmLy+XiLRidocwukJQy+8j3HepGUfSy54QV1ww1UgRbW5RqWUpcKK2qEPM4YcziqkII1XWLy2GfN4uUxHl0PjHHmOBEwbkQ3WRi0zRclQ8evZRyuVzyYtibUrqezlTU2fD4+r4nommarM/DUsBTpmnCdWLeDTVwzEzi5GKYHxMrQiKsCDqllJTKiwrvH4vY3xyOsMaw9tbrdXTZ0SgWnWglpI9zeZmlDNBipNKoaJqG5PgP4k3u//K9o+//wW8REdL//9RljBElolkMGq0/4KB1+aJ/9d0Egz8iT8SI5KvfovK//9HfxZ9Of/+7kUjA9/M/+S316t/NP/xpZPnv/K7qP/kWXt2r33r7997jhYiu//Db/73X/Onjq3/j6/9Zz8b/0a/Xt4K9+lT4GPWXb9o7on9E3xB98599r+t/5t//U3q9///3BfxP5nW5nNVWcZ7HsOaWqvde69xRIx6FZEqLcQzWWl1XWlfTNB0P5/V6PZkLftGY1HXVdrud02bkfigvr9fr9Trc3b3RWqM6izF+/fXXRHS5XJ6fn12ZK7y/v3z4sOWcf/r0qW3bN292i8Xi48dDVTWmCBzVdf3TTz8VRnA6n899399sbzebAbInvmgegsrgvV8susPhgLOvbnRdZX9aaw2wZrAaT6eTlLLvlqvVyloLu5fr9QqDQSEEBBVD8Gid3tzcgHM6s+m11kCcwcXTWh8OB2AuEPtCWxGUeYhsjMYAGVmtVkKy5+dn5w3gy/mh9L2QUkJwA3U48rqqFje7lRBsseys3Xjv9/vT4XBpmlZr/fz84hxxTpzLpl48PT0plZ1vABygdYoTeT5oUCeOo6mqZtktIaAZQogxIb8CQEn0BbkOIXRNr2U1DBcp5UIvlFKCq3EwSqnNZoMWshDidnd3uZ4+f/4cfei6Toq6quthGPb7PecEVMgYs15vV6sF1GCcN9DyxmwW7jaynRnpa+pOq8gYAwseHQt09MEaXq02cM0JKSZGTHAuhVSVD0OMMQRijMEJBuKkLE04f//Rb39rjPn8+XPibJqGuq5ZCEorzjjE7mOMsO9G+QlN1e12u91un18egQ+sVg2EnohoGAbOeaVzg6dp6rdv3x6PR3o1rJzKNC3nHKoyzjlVVxWlee4NpOnr1XddJiK0beuNFcRKSRIZy8YAwL7hQbpoF03TAK0TQtV1vVgvQH+Jydd1/c//+T+/v//03/w3/zVjYtn1wC6bprlexhiNK1ocUsrMPyPCZSMthzyLlJLxBM5ELFyfqm1LdRaF0L6YteLhMsYSY9BZvlxPw0hgdAliGCjMVKq6QbItpTzunz9//gw9dyEE7gyqUWKxqpXW2oSA2uo1kMKKlYKUcn94TiltNztZKJ9I8Jxz43jFHHgIGEnUTVsBBq0bDZAxpWTsOE4RClRYeKrgyNg7mJmoVWZDCyFqXRljVC2RZuMB4Y/WdS1F/kngceg/QTAElaMQgvGEMbJUVOOFEMNwiZGqqgJus1QVEeFeRefNOApiizaPBsriRoZPDWkIFhluCxbhousxtVYpLZlykwdYT0RKKS5oxp1QcRhjIDGHRQ6y88yTe3l5eXzcLxaN1rrru+12G0I4nU41YJ8Q5ooPIpnnyzEkE2NcLBabzQZ8ZD0O0zS2bd22fQju8LKXUr579+7Tp084IzLDiThjUSm1WkXcf1zYOIa6nsBPtyYw4YXITB0MFmCKaLFYEPG+772xP/740/Pz5Te/+RCjQ7gDuiiTRLHjU4SYA+4VTrTtdpuMS5FJKc/n83a7/frrr6fJAqKNMTbF3ZdKabZZLSZrvffX62i9A06ttX58HKoqNptKKaW09t5PELXgtZQ6JYbqnrK071VKqevqFSjP8e+qqt+8edN13dPTQ0ppuVyeTicl2DfffPPDDz8gOummXq+2gN3gijeLw4C85T0Zk4mwsoxe1cU7GisKS3cmngIdgu2hMcaWCTkfIwwq1us1+nbzBYOTCpgeOk7Q25z1mjnL+kLX6/V4zHIcWufqm3N+uVyoILQpZjnNcZqklG/fvn15eQohKJWFwlFHkyaeuHPWnJ2uqt1uJzh9NEbXtX20co5WyI2cc2zIkheskH/nqhXRJKSEjEGIzIVMZVCaZVELotJuipxjbx+Hk9DqVRzPq3NmyAL95JxhTeMakBYgU8FWJDTBsmqEQEyZm2wz1oD/slfKs3OLCdJsjcbN1b4AlIAtYKWa2+acOxeIqOsWUHlDFEBoEEU2eiYCU0EZlFKcM3TXU7Gb4F8keqVzdpqm1WoFdQu8Cc6VGVUEyumK+AMu0jm3Wq1mBzD8POe8a+pYNDSxajMGFDMREvdtZu+6V9rcZUlBJizDH1prNFfrugZzIU8cFKWLGeWfkY4Zu5lP/XEYsOEByXHOU4w4Go21wMRn+C+V9oMQAig5lWlNpFBKSFVB8js746E9KwplDystFYGL4PwPP/ywWq0wrogtjV2H82AcR6kz0j0DPSkZ79mMniBpTsWPCN0IziVjiTGR0uicw9KfJ3rQjitwZ6bKQroXV4gHh4FoHOFIWK21gpKsslCy0grfDTyCBYws0Bgjc3vQzJvIGJNSGgbDWBJCEbH5AHPOeRfnlpcQAhrz6IczykIoupJI9ZD64+nMKt6pdHGIKPgUfIIKBxZbKt1g5+w8CQIKLfo9CKBUJDvmhgHnElqTnNeMMRwkUNZDCqi1jtER0fV6dc7x0o5DhjE/VqDhSNeccxgN01qTy8sbmhgpE4rDPJeADeuLQjRjBKhfMC5UbqGhOQEDbiptAPBZJmPGcWzairHKTiYUoSgQ02NWR80M6P3xAC0zKSXounOcDCGYyc03GUGmaRopM5goOAdvFDEQFGksJGxwhJ2263DYo+tTAjKb95FSinOJtipWiDGGsUREIXxhnXvvfYg1q2etMVwVyg9M/MVs9SsL4mmxtWNKM9trTv2hQYFYPUPP+C7yGHxMqRQuKYaQvYZDmCMYKoq5e4FLaprGTsaTm5/mjMw651hMLCWU4ufz2fgsDj53FKCdUjYpxRgxVBUKDQplJCTU0acBWQDVbA6kMjcVhmHo2w7hF7lySi6l1FY12ngkcmswxtj3PSa2uq5LIZ6nM24OmuGHlz3LLp3ZX3vehro4d+MRYCu1dYMr5NknPb/wdOq61lJOo0mUkJQIyTFxjC0MxLZt20iUGHzPo1BaKcWJTpeBMTZeh8gIuXuwTmstqzwoAGK7FnK8ZHmumW3BGAOmjKecyuARz3Y3Glc7mDxMXUs9bxmsIiRbnEkE8PkGppS8sUopQcxau+oXuFFcCqRx2PIwAOaCfIi8MK+hYxhCrHUVQkiM0PrBosWjRw4wTVOi9D8Efvrj64+vP77+l/O6XK+m81Jy9KpBy8XoK8bUtBIQYfDehxhAO0ANud+7zYbtdrvHx8e+Xy6XfE6T0L3bbDZIgS6Xy3a7fffu3TAMYBbPVT1U3VEdwB0uxgncCBDi7u8fm6a5ucmyzsgGUS7e399zzt++vXt6fPnuDz84G5bL5cuLFUJst1tI2D09PUnOoZGKURVk8tZNUOqkMpk0TZO11rt4e3v78PAAYdaXlxettfP+cDw6FyimxIIxEz4msrimqXAlSBRPp1NVVbiZyGpub2+NMYfD4fHx8Ycfv2OM4cjGsYIM8Ntvfqm1fnp6Op4uUso//dM//f3vf58oNG0luEINiytEhoYzqK7rwPzkpjSGqqrXm2UMJKWeJnO5XCjxFJkUpLVWsn5+fjkeL6tVq15prTRNg/MXb4sEu+/76/X6888/M8Yqqb766qv3799/+vTpfD5/8+EXIbrn52dUE6ATdk0/k1pAW+mXixACZ3LGr8G2Aw5rbM6RpJR5AHTAiLBaLLTUCjnANE2c093d3fF4TJFR4sEnKdVysXbONXVnjHE2rFdb4F83NzfPz88vLy/XK334EJFUS8EqLawx59MhJia1YiGrk8HDyhgToquoMsZwTofDGevWWttWVdd1P/74Y8lANCjtl/NZCHE5nVerlShj06yMUEspwNAPZQCRiiwV7rMU+nAYNxs1s1CVUuv1Gigb8ATgO8hRfYpcSTeNxyLH/PLyAsyxbdu7u8V+v396OratGMckkTgz7jkfhmG9XuLagMujGoosVlX1+fNnKWXTAA10y806BPrd7373z/7ZP/v97//Df/lf/leLRS0ZBB/c+TwB8Wnb9unpabfbzfdwuE5ai0bKYRiu1+FwONzc3Gy329P5wDlPMZ3PZ1kMb1g2SY7IwNHpCcfDbrcDQtd1XVVnxV5f/JNP53PTNKGw+i6XU9ctaq1ZmT2diSlSSmcNpj+RX43TVUuNOwmgCkHg5ubmcDo554hFa61zrm0HSvzl5aX7ooRgcfHwWpdSGu/G8wkPixdTDWMM6Jmcc54osTBeh6AUViDgb+ccGiF4vsfjEWOm0MBZLrvNZvP09LRou65uovMpBcFYjHEq7HVEmKqpnXOV0s65tq6xTSDm7o0FrKR1jZ5EjFGrumkaWTfn8zn5wHharvrtzTrGKBX3gaWYUDLjIoHYKC1UXaPaUkqdz+foQwgBxqcyz0EyIs5YyouquODMlQXearVaYYQlFHEMIWjGhRAHbHHSI6AMjCHiLZdLIdn5fI4h2wZidAA+pfhdcDWu1+t+v9dav7y8lNNkgSt3zsELYWbGSBnArq3rWnEVC8EU6+f1WuVcOOeOhwNj1HXSOef8eD6fY0zjOO52uxBD3WgsBmPGcRQphapSw+Cu10FrqSsZYsKC/PTpcbFY7HY7lDmofFGRDcOAzso0TZdhcM7t95d+2YYQDodDU9VNQ8u+3mw2IDB5F0+Ho9RKULTFKiYkgowbdoSUkiXiRWc/RNcv2tV6t9lsUogvLxmQ/fz59M3Xa+xEkLUZY1JxIVlMXnGRkgUxGYGuaRprzkqp3W6H60f1NEOIOFWx+LGL0R+dEefHx8emaRJj0XsuZdU0qqpMscBBpwdoKoAdrCisIlb0G2KMdZMFmrH2EGCnabpejRC02aydc0Iy7J2YSBTmHETV0L4VQkCW1gaP3RpclFJO0V6vV0FSSU6SQgg3mw37P/4f/vcop3EYz2s9pgCoCIMGM2UylSF3xpiUCmu9fuXfQkREmTAvhEgB7sBsHCbd1EB7wbYDpwm1rigTATOhkvMMdlNxO2EsU7fmxhF61/wVB3D+AfZKETWEgLwNTNJMhJQC91dKOT/UlJISkhUuIWMsJTZT/4CPEJH3GQonIkzEoEAt52Ue9a3rGiLCr7FapErjODw9Pd3e3tblevChnLHIhOaRK/jzwgoDSxOLCd2h+fNWTQ2AAFEerbAYo5bZ5s45B9YanhGWS/XK8a9tW0zZAiAT5YkDlZuB1BxHGANsimSXF6vGOW+QRb8byymEEFNSSo3DkNvFROBIOp8b+HhAWEjBRfzbuAntXKVUClnXqZwKWZ4Cnwh/Gt5ZaFcE54FXYsAKnx0YjciSGglA22sIw2VhkMznLShqVjJJlJ0DKet4BCIyZf4LD5FxjoGgvu/h8Cal9IVEOWP0RNS+alyjkyEZuaI5w6WgxL3318uFc75YLNhrV0Ns/ldOQVhmswcxbmDuCri8F4bxMn8RN5PRTBVU1+E8DMNms8H+wpLDHbBFVN45p2SFbkfbtuN0nQXsYowpBcYY1PQxBYbf8mVKThZKKWMMcnsYVMEloXs0y01g+PHp6anvl4gVSildfMDwFxFJZi1gNEJnrNNYi/iQYpRSep//F7HFF/k8LOxpmiJFfHzBRF1k9UOxGPU+IncRxZzKwJlEspRScFnB1jkXY34uNAPKyXPOlZBz18f7iDQupRR8JrfiLkHmaZomqQXwbmNMU9eIKnhb5O6IAyml0+mENKJYuhcV3VdqxXN4p8RRIroAjnnEnsVTRnhRWmAoCZFWcqGUOp4uocg+YNfMXSJsc2dtYcsKxhgGN+Y+x3xPUjFeoNL7VWWWxVqri3bbfO4IIbC0bHl/LBguhTGGUzasQ/SYiu2tc05xMVNWr9droFTX9TyknFLabrfIk1iZOU0sG5fh2c1TnOgb42CeP4sQAuLgb968IZ5nzSTPV45blxLLWDNlo1QQwIF4QhmGMeZCloDAySW5wFErpZjbjaqYduauQAyIUUpI9IfmzzVNE+a+tNZN08BEgXMeQ0J6imkGfHEuoTk096VIIedh0fuqqq6X0acYo3fBSylt8EIICEw7567Xq6C8+1IB93HYofsyb1hRlI7wSWWeh2XHyzmlhO3wetdE57XW4EErVWGthqJOfr2egWJjk86TPVVVcZWndtCWx8Lw1s7nOIISBoOEENZnh1j3ym0DC1VrHX+47v93/+//EYDUH19/fP3x9T/X1//5w//jR/20Xi91sdaRMlvVMwYluqnSGkdtiBFcSCl10zSfPz28vFy//nAzd1JVmZDFeQQW1cPDgygDYbxYX8yFDNKY9XoL8sr1ev3bv/1ea4JhBnIwTNVgUIOIHh+PIdBvf/sBiYoQoq7af/tv/23btov1Siry3le6GYbh4eGprbMxF5Q3kAjNpA0iklJOo8Ukkyo2XBjw2mw2bdvv9/tUJjtxaIYQMtM56/DK9Xqdsr/FF12v/X5vrV8suvfv30spn56eiKjtavDsbm5ugACeTiccLl27WC6XUvHT6QQmLMoEQtffpxlr5oUYVFVV5HmYVQs9DNP5dGVMbLc30zRdzgOgjYeHB7DArJuaRq9WK8YY7ifytDn5RG/gzZs3v/jFL/7mb/4GvJC7uzvw0w+Hw83Npmmaz58/+xjevXv3448/aq3bpkcN2DSNFGwYhpBi0zTjkP2HgPucTpe2rd+8eWPdJIQIzj8/P1dVA81NpFIhxqpq8AiIaBjG9Xq13W4PhwPnXHASRfYXN3maJpBOsBIOh8PxeG1bjcSmrmvB5zk5JaTUuhbFi15KyTmdTid4Kl4uJ865NV8KahhrM86rWk3WsjLJRzHu9/vzMX377RYVWdO1qPGdc5zJm5ubl5eX0+kEJV9sKMlFXdch0uVyQUkOInDXdYfDAclDKLZGKIqVUqM1Sqmu6+7v7733wKQeHh7Q6lZKrVYL7/39/T0uO9iA0vs6YYoxT0gjwTbGQPk32HA8HqdpEkKFEKpKtW27XPVvvnpzc3Pzr//1f5sJN0ovl+txHPf7I4bknHPg5t/d3cF89ePHj1prEnQ8HlGGrNfrRCF7dURmrYUsAHh40ecReyJChSV0VuQAVoPPi1QZmfP+6dl731R15qYo2fdLDVVAZ1RR/IOqg6orWcaOsRkb3QCHmetWbHxQLDFPANBfqxp/tNa6jLBnYUZc22Cm4/H85s1OFIn2GTjSWlcScx5mu92mQhDEM8VTGMdRVhq0PKCfT09Pl8u03S5RzdUqsx+UqjJlpHiYIxTAZ8V733cNnjuKJrTTQpF6e3h4GsfRe1ouesxM/Pzzz6g0sV9QgMwsVCKyxs9wxHK53N1uL8NwOp0Wi8XpfIgxou8Vs1RCDDBEjQZ3fr1eo+szY2Ixxko3MyifiyDPjse9zb7H9XK5PF+OWPNU7JRmJ+3FYrFc9RhxoMQ556fTiYjavpuhqhhjCvFyuVwul77vvc8SfwC+EeRRcuLKp2mCTx1oQBTo5s2tc+50OmFXrlar1Wp1Pp+BVnkfG10ppb7//nvG2Ga7wNuCFgbCk7VWag3+FgjL8pVWJ3slPBBCEkLc3t7GGHFWzt2+zJI2drXdPD8/M8b65WKapsfH47KvFotFW2sGx6aqwucSmg9ng7YlakbiXyosIUTXtKZYHBOLMUYha8TeqlJEhMbVbrvtumYYhru7O9SDLgbgwl0HyamM9kKN5/HhGZsXEXiz2fSL9uHhwVpLiWPiAfz0WSwbaxhMWZybYNzb4onNOR+vV1eEE7FhU9FvOB7PWsvlcikrqYrwSIoM2MJms1ksFsfjcb/fI7re3t5++PDhu+++8yHzTZ1zx8NZa43JoZSScwbI5OUycM6l0DFGtVTT0+SdMcpJpfq4cHY6qb2u6+3pKzlDSzN+ipgSC2l0TgsAt7vi51ZVFYaD8Jix/+cTHXRpHDapEMd8UTnAaEnMFCcpJSreKiUWY/4ZYEAp5Zlcay1jOSORxU5qLguBLsWiqIBTDfXkDO3jA7qiPMBE9mdDOgU8goiGy9UVGxYpZdv2OFkxNSaKry6abDPjbO4/sCJNO4fsVEbI0WxEf5JzsVqtcdamQvQTRUc7lFkVdPaApjkX4JuBH8hFvhBcitPh3Pt+7o3Eogo6RzdrrTGmDEnLGcohIkzEA/tA3Mfidt6zMpiTZ5xjzGRbUJiJoFmD7NNlRQ4hvnijsbkpxxgz4+islcXiA/SEGKMPFjtKlD52ChGXmlKKPkTGJRcsUSpLCPjFPCiBG0JEnPMUorXuerlgXGi32+EcwhkZi04uZQHizI5H5MKRxorNFxWlMBztaB0Lmam7M1iplYhKoZ2AcxFJMzAdrRTasOCbvE4CEK/BAZyxLSLwTIO1NhFHXljVtS+OW3MDJqbkvaeUoEyPPGOevABii0/NOXfOEFHTNDg5cCUFldOpiFu1TY9kC88CvR98HDHLDggNGBqnIIL1vKiA8NR1633+mDM+iBMUzNAZxoX6EmKOc+5wOBDRer0mopn9/Ytf/ArPSJaxesC1YAkBEJ8VjmYkC9eM9dz3veAckRTn2Ryj8UTwef/Df/gPxpk/+7M/A+0CUCAWTGlR5IYNwkvbtkJKH2wIzDmXQj6GZ9YJK+q68/KOZZgAyTpecwSIZeAA4h5CCKE4CiQhhHOua9v5becmH9C01WqFiDcXw1iT4kuTzM/IPudcqxrPbv6juDY80+VySSwyxkDKwKEbUoRlyhyH55/PazLGOQggbaJX8RlfFxLjFzHkiS3CuYM1zIhUkZ5H7pWKMpeUEsatVKZQhRCMmBJZ42hexulVY4xJsWgaVyQmgELO0tWgRwHQxIOuqsoWd2bnHEtZHd45NwwDHBVmvZE5aCNHcZPFdSI3wSWFEIRQnHOt9TQNoag0YgMizqBeZYwZZ4EOc8q1GfBcXF5TRAlnZwwiqpRu6waEaLytEIJirJTiVWWtXS+XIQRTXFhxGDFOjDHIcbgyjyaEiNETZ+h6ppScMUTkQmJS1EIbM9Z13XTtdRrbtt0fDqmsZyWyqgnCFMYzfTF9Aq/ndQthDno4TCXjNvr5VGLFmg8ZPK5txtnn0U7MEopih4InyAu5O4TASGAAY8bTU8ruDnmtMh5SdBZZR6M1E0LhkhBnvLfee7b4TyUr/vj64+uPr/9Fv8Su5hc+d6MPh8NqtYHX3zhekVRv1suXl5eUkpDZDgTMypubG0StWV1qvV5DYt45dzyer9fr7e0tyq7r9fry8lJV1d3dLQ7xqdjW7ff7tp1SCi8vL5zzN2/WVA59gMLI8InIe38+X7Um7wlO9DjCxsGAjqq1vlwPFOJ0HZqme/tmN/tWWWvh6XR7e4tqAge0swGpIHh8oB8phaS1RRrw9PSE4gI3DcnM+/fvU0qHw+F4PCIPBAfce388HheLRd8vn55epmn6+PEjrr/rG2jUnk6nv/7r73/5y6+Q+oYQjHHGvEjFq1jN1dksphxjdDYsFgvO+U8/fWya6u7uDv3jCiPMPu3Pj2ZyMcaqak6nY103681SKl5V1XLVg7EYcpNdQmZ3VpcGBIAW8vUaXl5efv3rX//yl7/8/vvv66oCiofjCWgalyIZ//nzZyJ6fHxerwKmyMdxfHN707bt4/MTY0wpjTWQsj7GMoRwOp10Ja21zlitdUrh5mYjpbxer8MwsRCk5KvVjff+fD73fSelBCPeW0eJE/G6bqdpGkcjpdS6xsAhUXh6eqnrernMA8ExRu9jIF9sSymmFKOP0Y+jaZqKsbTfH/pFu9vtPn78iJQp+HzUYr0lImdHXa1i6d/3fU8xaq2XyyzwhZMai6ptW+fMfr8fx3GcxrrW2+328fHRWsuU5pxb54gI7fm5yMJShDolSmNcP4bbZEHY8eyI8uSWUmq57EEEvrm5weJ0MRenu93uMl5gAubKtDfnHKRO5B5PT0/I8y+XKxFJxf/m3/17G3xda4AMAGq11pvNBvkGclpjzDgYIgK93XtvrEE+j8sAXYBzDicCuLpZa503xphaaVbI4C6G5DNsZIxBn+n5+RmlFqrjm5sb9BuQS1dNTRSH8UJEVdWEkEEM733XdYv1CtXHnIMhb4TOBkvEROFahTC5SXgBXb7CqMv5PFxDx3FCmQbpnu12670HNTuEsN/vq6paLpdmGMfLlYiK9MEjeEWx+G+B54sVdTweZRHc01rf3WUhZjcZLDDvfQhZWRSLBMUF51wKGUIQnLDdhsFP00tdS6wZKr9CFFOi5bLVWvpgiclZ+AW8WuThM4nNey+kEELSRFrr1WqFAWLsXK3qcRyHaRBCrFYraz0WqjHGe1vVCtjuXIWhNnE2NHWu+wqI1J4PZ7ibgrqRUvrmm29++uknkI2cc5dhmDs0i8UCBXVKKbwSWqxjAzAHWESlNB5WjHEGoEKhx6EGx1cQ26XUkD1HdYZ9B5SDiE6n0+FwQD2OFhomlWEko5RgjK2WVdd1p/MBtUzB+hIAMV70A2aW0uVyUUp99dVXwzD98MOPIKTPEuHYmFiBXdP0Tdt83Xjvr+NARErQNBnOSctVKho7KXsRKSkzh4lzulwGDT1jIfCgtVSoDRlPdVVP0+SMpdJVBYKMDhbuzMePH4lIaAU1/3Ect9t1CEFKjf0bQkAL4fXCvg7nELNvHMh/iAlwYsCJCWQDY0ZYgeB6zroU1lpVrhzYGmBPnr30aL1uq6oa7YgPGEKIIWsgYzfNyHVVVe/fvxdC7Ha7+4dPeJQYaV0sFjE1h8PhfD53XUNEMUaoyyK8H4/HhjdVVUVBxL4QfbDapS1GSSj+eTFNQoBu2jrGL0KWWmvmnCl+VmCeI4JjqQE+q+taqWzfxwvjeD6BEMKwvEJIWufiEFs3FBWIWCSVX29yWBaE0rIG8xdfAQF2rqipVJ54irhZaO/I8sJ0mNZ6doTH4Vf6cmkucZ1z6DPUdQ3uNq4fdw/FP4D7WEh2WG1INaSU8L2dvyuKCvtoco4VQoBr/IxBlCPfSymJOPC4GEPMXvZysVhAZhQHGGUbw3zU4fzuNx1uQt8v0ZtKxSZrHkzG9aA5L7OKMVlrU3HpBURli6K8KA4kvqDnVBD2uf85Q3JUnOUAk0EnF2/VtW2EMkYlYzHhpZiI+Hzb8XBlEbh53V2gIrXBpfAxhBAkZ4w4UUD+N6NgWHLWWkThMINWIc229UTZjixmw3qF/ARPDfjUNE2TObdti+YBY0zw/POqmAMgUgCXjyFMxVNOFMTQzcP+BQydt1tKKVHSQkdG1vpYJjuklH3XxaLMAPDLeQ8eKKQe5gYgmj3ilTY61r9zrkqzISSlQrXGCQfEFhmPsVlAY8blqejlY4OLMlWRXsm/siIXg+TPWj+Opqoq2L6D/7JYLLbbLUR7QgjI1wEr4/mi+4eTcrVaXS4Xa33XZdR7xr7nqZC5FzXHLizFGYTF8SkK+x4b32YpvQwIAiskoj/5kz+pmspaZ4wNPPfV8lLJosBcKcmKVR2WLtkYY1wulywla11+3EJxzilx9AAulwuaanYyc4zVusYRLrhiPGskYQ9iTpAxxgSXUoNVjXuL1A1DaiCV4+mjFImBqloh9M1gHzYv1g/yjKqqtFZScbCPIaKC7AF7J6UU45cGoSySCxTz5Me8DHAbkaygvZZpzs4hv359D9EsFcUpIibvXV5+eC4s29YR53y5XKKoRl+NiKAuncoIBVYd4Pi5wz9DwCBcxBgDJRv89XptmmZZ5XiYRy5ALQ8B5w6O5xBzH0hrnULEB8EPx1eDFLYQdjD34Jw7n8+QoUj0pekYQojR4yLn2zUf87jaueNStw3uvxknHKkwspgbbKOxfd+rMmkIeP31OAsRpXKUI/OYsWxfRqu8dYora2xiWT4FR4DWOjLljQ0hsJQqrZPWLsTzONR1PRmjpPbenY8nJvjLy4sPgWBsyDOmjL4dYwwZz0xgAZaRUsKZS0RoOyFVyrc0JjtOkWX1f6TdyYd5QCy3D8qASG4pMV4pPTLe1s0skaaU4mBAU26ZV1VFpRdClLTWuHWcc1mE4EWxVYScqJQSXX1rbbVQ9X/x1fR//0R/fP3x9cfXH19E/3738aKnd+/epRRwuHDOUZKklGY4chrrSjdtt0DC0DTNNNkYY4z+ZrdBtg+WEA6s1WrFOT+fz999993hcLi9vUVQWi6XCLBzgc2Lby1Qm/P5zLn88OGDUur+/t4WYYGXl5e7uzvQHfDmIJ9+/vz5dRYthDidTlry0RkpZV3rlHKHGIRi0NbyUFSZLzwdT13XzdqvWmsps2oqhn5ijMaE8/lye9uhAAHSNBuCrVYLV+wQkMycTsMwTH0vtZa73c3z87O13nvignCX3r1759z3s8Qi7tv5fEGSY639+eefd7udEOJ4PP7617++XC7H45Fz/vbtWyHEH/7wI3SQh2EwXk3TBOFOJTM1MjNYQzifz8fjIUbvvSfBq0oJyYwdfVEOxePbbrexTOktl7RcLv/whz8gYcPfRaa6XC4DvKRjTCm9vLyMI1UVHY/Hr776quu6f/tv/7bvBlRJ42CmcEECFkIA7gD+x+l4Iha/fve+aZpPnz49PT1l5EvKRITLXq1Wh8PhdLpaa5XSVVVh9m68XHA+IjHY7/fjaG9u1m/evHl+fsZTmBMexphzFukH51IqdTqd8LA45/CTnHVUsbYFz4BRXdcpxq5rJpsV/7IcbVVNw9C1i/am8d7jVj8+P6GIWCwWGX8JYbNZdV2HpWuL9OJ6c0NEAARMccvEDoqFpYEkJ5XMMzpvhnEYBueSLJzQlFJVqZmagIUHFgtWKTI3/spkoqoqwL7OOWBtIGN9/fXXT09Pj4+PgEdDCIyJGKlp2hTi6XQi4lXR8VNFYezp6QkPt+u6pmkECa45L5p1jGnrJmttXbUzConRK8hwj+MoBI8sS9b2fd80DZR5kXbijpUiIsHGKQ8Eh8AY44KX0rV1RYcEePqMY4gybpjRN61Zoq7rhMrk08lN2NEATI0xh/3p9vYWEQbgF+jAi8UCMPT79++naZoDJm4mdhOgGCTtMeLWESrTlBJmJpq2A/0uFJcp0AQ55zxl3bZhGIwZM3+FMVQcwOxCzNQKfHezyTZOj49Pb9/eMSkYY3hzpfhy2ftIqQjJns/nqlIphRiD99a5JASrqoayDCNLKUEeGvXUPG0JLm0s0xuoMrTWQijnRiJixKYxOwriW95FkJ3rLMpRcS7u7+9ZZE3T1PUSvEwiYozBIy6E0HSd8UYq3rSLlBIX5EyW9UOEh2IeapZ5IhCheLlcaq29z/QRhB3Ams45+NGhpXG5XLSQlaqCc1rVoYgdz1AYsHu4bRlj1oulMQYdncvlNCNyzob5FINLHtYn9iP2ApYxDin0wxaL/nzO8w0ztrNcLruugz+qtXa0BifXYrHo2yx3M+MhM6zBGHvzJitaoC00jiNLVCndtx08Eua7h4PvdvcVLikEF4opGmNMyjIxmSIC0fPzM5ANmADj/TnL48hYukCNgPOiLPXOCyHQYgTXmzhDOEJYe3l5Afcf5Dl8fDzQqqo4EeLS9XrF+b7b7dAvREeBiLD1hBAxuhBSjPHp6Qk2hqmMvGN0A/MlDw8PCCOVbs7ns1RcSmltGMfLdtuO46hUtVgsGIlpmljFYwh1ranix9PJnX3X1kop6/04jl/u+2tsbuYFa1WllJy3rDAcXVE8wJ7kXIQyiYP/IgQDpGPFpQ273ceEfYsVBiJUKIOxeJxE1Pc9YzyEqFTFeabrojQFhAoOlDEGwPdisci3o6rAQRNFwEFK6ZzlnMcYnLPGTDGmjNuOuTA+nU543r5oWOM1TxsRUYweyO80TVWlEeJR87Oib4DDBvvTGHN7e8s5x+asqurl5QXiPk9PT/Nqu7m5AWyNXccKDxer0BW/RACdM3QbYxyGsV8s+rqdpskH37ULbFEAHzm4cCWY9DFInh8uUJi5wzN3/Hxx6Z03ME44xjkIAnlmp4hRzJu26zpn7eVywYEnyoS7LPTzGTjAOsZTxnEIsIAgXxSi0poloqyVk7EqzvnlcsabIwCFwkEOqbRGGFG5gUKIFIhIVVUzj2Bj/zDBkyOKgbHs3pYh/lfSHJznljjuQSxqSlgnYGuCEoKnk0IcrSMizEmpV8jvqyd1KaRkNhmDNiB2EDBQVlwBgWAKYpwHJoUQQkvpi0jLbDkKiAoI+HK5lKWjNaMqMGmBqEIs7Y3XwDHOktcgDhAc7GgiGoZhMgMr3uWsCCa4PM4ZX/ZPZnJEpLRIxbEU7EXsegCI2FZaV5wHLDyl1OxHjLCAZ8Q5h24DIjiQU3hFIrzgHMKOwB1Yr9eIwl94rCUCzJ0n5xzjHKt3KoInIQRkZliTrtDGcXuNyVweT1meTykVrOOJBDGWEe3IWIoxREp+YiXViJxl/fp5dXEmiUWIc/HipyfzwOkopSYi9DOpcJyxhbXWiQIRMS6xOCEzc39/zzjfrNdEhHQEwlWgqUqluBJN0xDLWjS8aPwhD0OJxYsgdV3X3rnn52ekkvMZD+AVYC4aVHPzU0vGitDBvIpCmQ9QUiJDwn1GzJkjpPc+RCeKjjz6i84G5CjofvHinocjBigt+gE8Uz845xKqDpGSoPzgqPTnzuez1hpClqzoYsfCuQZHI8aI+SmgiogDvjiuoCCUWZc/13tCCCwk3HYsUZDRZvI1Y4zxPPSgRGbpon+JLsucXuOH0SzJhGjOUTKhsK+WS+895DvatkEm4ZxrhWSMKVUJIYbhmoqMNcqklBLLQwZZO8V761wmYmN69HQ4YqeklFJMSeZxCjzBZtEm5zkxqGC5EI/jdZimKHnT1tfDiSUSxHSjx3Hs+h5wM4t5znpuBgBqmf83n24pYo+z0hZCqvoF3E/JGyOIcSFjiIKYJ0J7zzk3TZm/zEq3gLHkopvnRbquG8009w8iI0bZwHocx1jsc30ZAJr7KAgXc9lc1zUmZ7uuQ4JujBn/Nztubfx/Pf//hEn98fXH1x9f//N7/eHt0//z/R+Qo87Ayps3b47HM0Jx1y2QCZyvFymlYoTipa6zKTQYsrKQTyGshOIFdfKbN2/AEkCkws8Pg1ksFpwLxhIS1/V6/fj4CI7V/f3Tw8NnjO5iVne5xPDigLCJBANB+De/+c3z8zM81oALeC+g0wpSyPl8xXUi6e37/ne/+91f/uVfzjjObrcbrhP6oMiNY4zn8xX99fN5rGtZ1/Vq1b28XDFAjZ98//797IIwjlekhQBrNptN1y1Qq//5n//5f//f/xtiUWnGeELFgUwY87/IUXnxqEfWAUYFKoiu6zDm6Jy7f/gEvvk337xDQqi15rISrf706UkpEhUDYuK9JQL7zAzjpaoqEpRS6LpeJIqUULXhfvZ9P03Tfr/H5cFGxZez5nI+49aFEJwzIcUQsk5CCNQ0VBWP3NVqBW2Kruu+unu3fzni0aCHilwulrHx0/n0+fNnKBCi+himkZFAAQLd1dvbWzyF08n17RhCbJpaVdp7//x82O02OKCnkUCKmlUCqIBT5/NZST4Mk3NOaxJSIh/ebDZEdDweu64TMqMhx+Px/v6yXjWQi9SVdMYaY3zwWmvJOTAUIYQUWjQKvZNPnz4B1gRRHUwviJXDRvLx8bHv+67rPv708/Pzc4g0E84gokVEX8gfWiPZBitfKfX8/IxEt29aww2waSAvzhGSVVcsiNFgJqIffvjROvr665tuscDuRnYE6t+MQR8vRxYZ8NCmzQZfKTEWk4+eJ/IxVlVjrT2fz6JMbsFm0JhJcIk0DNX9XFnjKaTILuehqTsiQljAlQBZRjmDSgcjnri3ZjAQ65iTVWitxBiZFJXSXIppmnyKknNrrU3Z5m4GxVgZDotlFJgnfjqdHh+vd3d80fUxxpAjQJrpU0xwSfJ8Ple1ulwuBoR670UZs6iqismMD3RdB81P3MxgHXKtX/7yl/f396fTaYYpZm5KSsl4571PwwBG1+VyCYHatjImi03jSi6XyzRN12tG9uu6TmVILsboQx4xR7aplEJf6nA4zNwyJsW7d++QVANwxE4ZrZGVrIQgIqAZMUZjxhgJCaQxJobsNTeO42q9ICJRdGKxhQ+HLP4jpa7rWmuOSOKci4FSohSZripnhxI0nPfxeh0XiwURzbRfzjNu8NNPPyml2rYdjZGVlFLiF/f7fYbdIAYrMhFHCOFjmGt55xwvk/Sc82nKtoTp1YQ6AgIom+M4jhe/WtWAZWKMLPctKEZ/vY5VJRaLrgSQa9vW3nul5HfffSelbJoKNx9BEm0GpdR1HNEcBbVoGIaUWNu2nAPr1yklPCPOede1809iFSFRH4bh888Pp9OJSQHIiLJfmlBK8OJBxWKUUh4OByZ4ozQWKgqKtm1PpxPI1DP8SkQ+WJSEKQWlxDy6nVICE817oM4i2TxUjSP78fEZbgS5AOcqeq+lDM5xolTqaJTwSilGcRzHn3/+GYiwc26yhjF2e/cm+oAQ4b1Hb2AmgGKdzNPM+/1eKfWrX/1qHMfL5QJvWKQZgQKSChQ+zrlKN4CJ8D5N03Rd9/j4iA3461//Gopef/M3f+BMNk2DmPOrX31wzmGmVkp9PB7rqlVKBR6K3McUQlBM4Ek1XbfdbiUVAc15aWIhovhHpIhFJ8Vaq2rFOde8Rkuqquq52KOiNn06nYyZlFJSK0lsRvdcyH7xM8AN9y1WNGGdc5zJGIjR7AXEQkgpZZB6vpI5WMwIKcuyntZ7Z60JQacyiayKpEMIQesKv8IFn2egEM7wAWEpNueRTdOBnovo473nPFP38TOU1TlTaXoEYwxWmBByvo2AcoBdYi0ik7DOyjLswyTjhSeLv45wr5RSKus5SKVCCF3f62LIhoUCshsA8QyPQrIzee89ccaKKn9KCVsRCw6pxswTpFeK77gzc2IBRAbPBf2uecgildmflJLgyrtIKT/oOVjPTwpPzRbZIyFEEfXKyCa45PNPIprM3TYq2qks+2gxdF/x70QZFhdCNQ2b34QXdCwV50Z8NMEyDd8W6e25/8EYw2CjLg6ETdMImSdQtBJRMHKZHUlFSWNOviHawBgjSjEGpSpfTDWRUnjn8Ox4cRWLMXLGnXOSs7ZtwSZAPAVK8rovJyQTku1f9pzz9Xpd1/Xnz5+fnp7ev3+/Wq1iec2rSBYG8Yx25VtBAtcD8jIibAiB8URE6/Ua1RE2HfadtTZRnLckQod4xacGmCiLRkpZOWGaJkyFVNlPLwEWRCic5WiUygTeeVgJy4NzrmSVKOBittstfMZxS/HX5zIAn/Flv2/qGpuXiGCl0DSNZLzSFSXC22Lln04n9O2llGacQgibzYZC1E0z30au8hg+Y0wXmaemaaw1nJiUKgc0LhNnjMQ0uetwXq5WuI0U00ycSSn13VKWuf5UeNb52JAshEAiL0gtlbVeCLFer0M5pHHnl8ul0pqIhJTZgDB96WRAhOTu7m4GwdHr4pxrrUOMKSVMtmKuMBSLPKShKTJnQxS5g8oJo6kW+84XEUk8uOVyeb1eMayEu4qeCgwlKQUtFSfmrUsixhgpJUZRCjEMwzSOy+UyFRK69x65MqKTUkpIiZoSFd0wDM6GyDMrmYoRKFgq+AoKY1Tvoej6ERGyfCxOBGdjzPF4fP/+/cvLy2gmNITn7SCLwgOiKBW4HFocc/dUCBEpMw7mss1ai1RgPuamacKlIjrNJy+VGQLG2LJfoF7FppNSCnRkR0Mxt6BjzOwArMwQghJCqmymWjB6tlw23vvj0UQfuMrH4hzJwzRhwc+X0WjNY0qMM6FcmGTXrG9Wz8/Pf/jpB+XTP/r2l95Yb3xXNyklZKkpBiwtKg2GuQmEuBooOTNhm8ci4klEkHhjjL1//14X/dO5cqiKxyyeFBYnkmYEYeeClHIC1i94XddCcefyxfgUIU+WWw4hzJLozhlRmDuYWXPOMSY45xDn+frrrznnOByxFJlS9L99t/zt7vR/+uv/YZDUH19/fP3x9T/D13/7q9///qs9C4wCnc9norjZbJqmOR6Pu92OiJAvoZ28XK5xJDEmrPVwTuOchiHWtWYs257PZIJhGPb7PVJuJGY475DkA0uq6/p6vaaUXc1BLn779q0x5nw+g5UM3CFGD9BESskYzWkeEGdf5l1ijLpY0aDbTUSn05gSLRbFj9faH3744Xq9aq2BAIIn5b3f7Xbn8/lwOKzX6/V6iW4u50+n05VzW1XVZtNeLsPhcNhsNoAVkCYdDi/ffPMN8FYYIU7TdHt7h+pjHMe60f3i3Qwk4crP5/PNzQ3oHXBhIiJcCcqi3/3ud99//z0+iLUWNMn1eg3/dlnUumKM77/6pq41oPnxejkej0Iwa63SIlFIFHAEG+e898/Pz7VUdV1b77zL45hoEiTOmr5bbTZ2nHDKw2uRiLquG8fReb/WS1TWMU8TSrBGcCev1+ti0XhnhBCfP39OkQErJyJR/LGRBiullsteMA6OrRDKuWAmx5iv6/p6zU7OwO6BfLFEl8tlt9stVsvVavXv/t2/w7nc933XZcsEJNvTNI3jFWSRtq37djEMw2rZJwrXYUDaCQr/brdDg/94OEspBVdKGtSJXJC3WZFSVZow/WytlHKa7OefPxLR3Zs3fd+fTof7+8c3b2+RILHin/Hw8AgKxcePH6WUu90O/nKYjkI9iAwW6O1M5n379u0wDLCVozKVCAAO0lvn8xnGXCHkieq6rs/nM72qTPu+M3acpklqjUyv6zpQp7FUwMxdrVb75+eHx8/L5RI5D3jHKVWLrg8hXa9ZajIWtvisgKeUElyllDB8Vte1ddOclOZip1TcqqiVCimQ067Xa5gzv+7xY2vzXGJyzGlRziqH5XJZ1ZoxNgzxcr3AeT7YTMWw1uKdtapTYRd1XSel9MbXdb1aGVb0SJ2xjDHkn23bMsFRzcHtJoTQFu1QzmlOR5kUKKjBTHp+fu77HhHs9vZWa/2HP/zhcDh478EgRLbmnNNNDdgXiPDhcMDwK+4ASpXkAz4sKkHUkiAx/Pzzzze3t7vdDpgv8l6U22/evNlsNp8+fSIiX1xwhBBcSU50OJ84FzMvBPcZtiWUeCKaBoPqA7A41oC19s2bNwhfiD+VUkGpWEBbIQTnchhOxhgps8RlKKKjqL8QKPCJ2ra9XC5Inru6QxC4XK6Hw1lKJiSr27ZqGuYm9O2Ox6P33lp3PB7fvXsHho2UchyML7rtc3tmmqYQorV2FtZD/c5eCUbPBTICvhYOTw3srsllJ0PvfV1LWcQ3ug4i8tOy69GciIXfDVgfQZvYF2IiarGqqi6XUQgwlgSG3bGEhmESIlvVARgBFuScm6ah65rdbn08HoFHM8bavrueTzMRJ5b5V8Qx7/3pdEopof8Ewmjf98fjETdZSCYVNzYbuY3jaKb7r776ShfXNCLiROhcEkVVZ+e5WLSFD4eDtRFhSgrtvQcXBo0Wg8JWCBgMaq3X67XzxpgRLahhysDIy8vLOI6rxRIEO/QYqqJaDDibyuA7dg3abFg2h8MB5qtN3xARtiGaOrqSeAdrbdNWVaWg2COlrOv68Pxy2h8iozdvNlJoVnyJ//yf/oUQ4i//8i9PhyOAdcFVCIFrHmx4eXo+s2tVV8mSd0bfSCCEcoYeiIhzqbWMEQovNpahg8vl4ryt63q9Xo92BMxUACw569WqMsMupdR6wQSfpkmrvFERzVUZ9MDzkzIDTHPahJkCbIYQDJXGlFLZ0QgaMQiRKSHYQgTHgxcJbAIlNPY2NgOeq5SQ1vUpAQPJ2KIqQy5UpFpxhdfrORZ9ZzzU1zsWn2tWCpNFmwKbEyES1qJCCFwMmo3YIZfLhQvFdXZMwvWAgBBfiUoTEedf4KEZAHWvlKOxzlxWOE3WGGuMcy5SQCicpux9CUC8b9pKqsnZeZgF5MdQFG9xWsSicSEKXIuHiLQvpRSKgVWGACJj2WdCcK4wd1YVLeBQBE9xtuHHcM9D0UomInw6nApt2wvBsHVT0XJ1wQuWERZWOK2h6Ldi0WKlIfpXTY0aAHcMaUE28nasqTvGWIgOn3fGmACDTtOESQ1sUV6ERER5yrhOpO9Y2/M8mirjSMhmOM+61Vpr771WCj1S3BasLp6IiITO2t+cSyFYnogSYm59C8GQqcBBBcnijz/+iE77jIdiuWJDzYtzxv2FEMYYazx2nyrG5Sqb/oGWSIzlX3yNJqcio4EzY06nsISwm/AVX+SScds5zxE/ZO0qv1wu4RXjs1KHikVDKhaOPHaELAYC2AtgIKqiMjEjpPgUeI6LxWJWeDDGEGVwXNW5HY3HgTYgY0ykPEgxH71aaRBacWxXLeZQvtzAlBLG81ki5zznXLKc6TL64rBhnR/HsdYgfWerdM7knOLEVy98Cu+9hXiuc3yx6LqurvXf/d3fff/993/xF3+xXCzGcRzGkTF2zc1zCUkBKaXzzhZFb601xhRCYa8gIt3f30OiHRGMikwby2pWnBd3wZSSEpV3AdpWSO5ZsQmdAWJR5k4QTADV4RPhzVRh06MYU3mMRoHvMx976MxrreE5eblcmrYNMSqloIa0XC6Xy+XxeDyfDnOXAhQPLObL5YIxgjkpQZMMQXXupakiLBOKA21VVVyKGTyFteNcMCApBDSviwIgEgXApjEEhK85r51/prTB8mwySqBQ5HHmimLZL/CROedQ0sAnArXbu5BSSj5EYlpXuIH4dVtMcrqum0Oo99Zl1z4NQSpwYZBMIBpA4yzHB8W1kNE6xoW11qVIdfUynB9O+3Eavt29NcZUXDLGHMUQKbEvPZ5UJsLmPaiLbYV3Pt9hnwdUMbyJQchQFIdwVRizwDasqurTp08gf/X9ElkUgBgimqa80rBWjTFSciIXI1BvYSYXQgBEEoq691QstuapJmxtpThizpxOMMYiEZey7XtsDf1fVMtfr+IZ1r6Rc+GDG4eh7zsfIiUWY9RaMTCPpGScBx9jCjEExjljnChyeB0nRkQpphCzcH9VVZzyp+BCWGtjCFyIFKP3cZzG6+XS9l1dNcQYEe33LzPUUlUaYuYhhhiDta7Syhhf1w2lRESTmYgYo0DEEyVrDIY1UkoxRc54iCHFkLuwpR/pnSeiCMklSlIozgUReee4EK97V4h4CICcMS5YiGmapkRJSsF5keTOhtNfpj2+HC4J8qCwLf1iKMoYwSYkpSQ5Z5zFkFKKnPNIuV/onJumMcZUVXVVaSG+6OIzxlJMocxWM0ac59SRMcaFTJRSShIpig+MMc4Y2jb5ETvngm/aFn0MmSc2QvAuccaJhRgF50LIlJKZTEoJ7C3G2P39559++plzJoSUUrCYqqoKRJOZlBZcCest4ySk0JVCQGCMxZAY40rJGPyMzUkpqqpSUhoPLVFyznrvl6uV5NzHGGIwxp3O50Xf123lrSdKgnPGyORuKympYwwheCGktbZtW+e9FMLlLqlw3htj6raVgltnpVCMUUqUKOiq4sR98FLIRHEcB3xk51zT1lppY+x+f+CCtU2zu91NkzmdT1pVnEPFPgrJ26YbxmtTtyH4YbzWdS2FmMx0uZy7ruuaXgiRGI3DMJmpbRZE5L2LEW2/fMRbZyiS0sr5YK1dr9fD9epe4QXB+xDTdrsZrsNkDNL+lJL3QQiOIbMIkdMQPFxGQwCzr2u7YRxYMYlBtM/7Qgjfp5McZchJESIVIsw0TeO4r+uac4nEAFHduxjTl6a4tZP3HkI9jEUpeV1rIRjYrAjaEHWdZ3VRNTw+PhpDyL1nBpZzbrlcjuO43++xGatKxRjBAmYs2xjM0+4hpHfv3mHaVwix35/ev3+7Xq/P5/PhdLp7s1OFGrxcNjhDcYpdLhcAytM0/fjjj6i6dSWB39V1/enTp4eHl+WyVUp1Xbdc9jc3N8CI4XI2DOPbt2/7voeVE0aw84IvZsVPT0+n00WVCcj3798fj0csVIxRsuKIcLlcPn/+DI4zYwyqtd7763X4q7/6K/wiAjuCvNa6ruu+7x8eHoZxqKqqqxaXy+nlxRJLi8WCYnU6pfVmxQUBEXh4eFitVm3Tf7r/Pka6vd0kZwHZp8gWi4UQ4nw+V23DrEWuUisNKis62dNou64z1rLsBADtPulcuL29xR1wzslKSymbptHLPqV0vl6s8VAvQULui6oGMjohGSeMI9P1elVabzY3x+Nxs7mp6/Hjx4/oH5RROWmNqRsdkwdiC/CUMbbZbMAp5pynFJqmGccrRPCwgFNAFXyNMbZ9RxR/+umjtfT+/Q3eAfBrjJEz9vbuts4kX5ZCJuLEcTqeT1rrqmmMMcEGKaWzfr/fA4vfbDaL1fLl5eX5+RkPHRnd8/PzmzdvILDAGFstlkopY3M5M29JJA+yvIZhOJ1OvPgtxxiXy+VisYB+OjolMUah1fPzI6rsuQQgosQS4Ok21X3f122L3CPGeD6fx9Hi53GdSqnbm91qswaNhgoV3dngK0hfRqyKqqqAH+GzAAeIMaSUFQgZY4yE8xNyVOSf8OqYEyopJcYWMTCNZf/8/AwXQXyW6TpVVQXGIk4N59xkL3P6GmNkLEF6+3y9VKxmnFAkKqVC8BhomAkB+/1+uk6r1eqrr75CEY33tN6Bu4NGCCsi5tbayAjdiOPxeL2eZbGODN6lMlWAogO3UbBs2/jTTz8dj9eUCGBrXdeDmSZnbQDevWKMPT4++jJNDoSUcz6OY/I5OZdljANMgrZtb29vq9KLgpgGbuaMqm82m6enJ8QKSED4oiCa04xCBjLGgEtHCaPVjAnBhAgpMcxwq3qapnEcV6vV/cMn7G6cAi4ELC3AGvv93loLlVSM7OOZzt3HlFVSHZD3zEcOMRafsLatqqqSlYwxhujmYRfsDnDA53GZkg0l771g+R+gy1xO5+Mxe7eqSlPMtDwqipq+aDwul0vOuZvMcrn03j8+PkrFpda48yDBpCL+gxJpvV5zYqZ46lgLXg7DXV0sFvv93ger6xrtHIhNdV17Pg9SZlVAIC0oEtu2hXiILMMW5/NZCAaIDMgPFRYpMJ95NlqWoVJYOEZKdrgi9NVauuiEEIzxu7e3+F1UamACOeeeH/2bO4VAAdDpdDi0bXtzc+Ocu46jLFgcGrREBGQD6Mc0Wmvtoss+jbHIUgOMxjG93+/r4tZg7Lhcr7CY9/vTOFLXeMbY27dvv//+ezzZx+cnJSRmm1D4M5aI6Hq94NmhKYv4Q0Q2ZMOzWHRc56MKCjAIR2/udhn4NWPTNE3frVarl+fDOF3fvHnT9t2//tf/GjrsXGaCOWcCkFTPOq11zRxnQnBeSaE76ShWVSWpOKd5H0OwshjcKVU5Z4DDLhYLxgmpDD5A8EUPkbLBIHIv5CVVVQmVZTdsIlT7KSUfoyvyNNhR1mZZgJnipzVmW7IoCRcUsyugANaAzu28njBCBW4ailv+Cgf0hZ09Q8nYulVVTRa2v8naPI6EyD7DPVg3c/EJ/EXrbINgX+mtYD2BkwgkERrTMRr8FmJfXdfWeqIE2SzEtabtMTXPiXHxRRkZoAaaDEopOMhJKVPR+kRyNo7jaCapVYppLtuAOyPVYAIPN0dPPESazehCQHsEDHdW7LxmlAQhrHyc+Dr9xT94Ub9FYI0py2O9xn99mXbHr+BIoMLsizGCdoGf55xjzAT5WUoJGfNrlJ8CzVhqKo0vwBOsUJidc9Zm+H7uDWAHlkOXcc6FyqcO+S/+VDOjpG1biL7j54dhWK5WnHNrDDAgcBVnBFYWyVFRDDaFYGjFN01DLINQiKp9sQ/G/UHelnxgjCXOnA3QmMavWBekyIhVSiEEFmMMKX748AFDLkhrlssljnZfVDjYK1mDGCM6w/iYMUZQRGeoiIolF0I253y2IJt3KBKFGY+be6EAzYNPUiopZaJ89mMBYOVAMQN2l8ATVRG9SZmVnJsEaZ5VKSMw2GvH06mu68WyQ4ZnjLm5uUFZJYSe6xb8VylFiUvFY4zTNM2CM1rIUPjFsngWz9Wj976u66pIYD89PeVHg+1jslYgViOgMdA9KKbD4bjdbhlXRIFzGVJUSq3Xa2IsRbZcLgXjnEucx7jzuDlS6nG8hhC01rhXIXjGmFZ1TB7JX1s3l8vlX/2rf2WM+e1vf1tVFaABrO2+XyJp9nmwh83NAyyhuaOAxkkG+FQVIz0/P2MLo50OXi22JB60LKo70LDjnHvnpFLYFIDjeRllnacCU1HbkBm9yg8af8h7j4o6JYaw+fDwABD2p59+2u12oAZ0XedD+O6770CCgM5+CAHlJSt/FKnG/Od2ux0WXqREjJ2vl7kbpIqxJxXyCxI4eC1WVZUYwWEjxph4Dl9z7MI61EWved5cCP6ScocpRQzT6BlWi8VgBHEjhx2izSYreM5RFBl5LE4j6IyKokwVi4pf0zS6qhznl8slhYBceR4tvJzOWmsu80pYdL1VFhpBqkifYxtineB2ccWv1ldC1lVrnPGKXa6XH5/vmWS81v1mJTxRoOv1KpsqUUo8Uw9yt6zUTjOLOQ+jDdeMidvcLpqrglRI96FQ/GbBJe+9bmrd1EIrJkVIqWoaLiW6IzHGRb0SUlLgnHM7ToyxcTRIHFDSiFfK0ay0iotLrZ/7fIBNQ8iUIiT9x/MZMqOh8E1AWhFvanmXHcOFEGTHXbWbpkmkBL5SVVWS83S54Bwh59w0McaU1lJKKTkJzigzGlKMdSlvOOfJR+YkCeFj5ExTjDjlU0otb5fyDrnHME2n0+lFn1arVdd13XaLYysy5qwVklWMxUC1ELYojEdfE1GttfeeEYUrSSkFeC4pKa2jMZwxYFVg0kkpK5UnTIUQIvGUUsgDQNp6TyQlb2asWTAmE/HsBeIpxTq0uMkxJiJKRN46773WSlYVHk1MKZYRJaWUEJI4t0VUHQkedooQwhaTAyJKnPtyJAmh69Tm3OyVDcmcSrEycDDvO1w29LxCCFOMSqkUBL5uUkoJYHUMiTGmSTEiFaOweaBHOctd8DMoWVWKE+dRj+NYsxt7OE/G6MVN1Uyn0wmDOI3UwR51rSZplJI+Ot1pH4MN7qa/uV6vJhgppIuuqqquaYZhsNEmGRC9UzolHzCY7L3v1s3lcj0rL6UMKTZNMxn30by0ctqtts5Yaw1CfbNqkNIQTXOWfrlcmsYDQcBonZZKSnk4nLi8Nk2jtbJFqVZX0vm9nRwR9U2vK/k4PUouIRS46BdCiNSkfYLjk3ucLkqpuEkxjjNiwhjT2k5sWiwSY+xyHaV0QrDUp0tlBuUvVajrerJmYpNcSSNHhHRkwlzkOpnpRDF57xe79TAM6m7x+HieTYdqWUcelVInblKf5Fo6NwIWQQjV2l0un8ZxZJoBtgg8jWPW+TlKwzs+p6/OOd5zKAWj7O+qbl5g1loh5PPz8+PjY9d1p+slhLBabcBXCD4dD2esc6hSjOOodbZCQZefSMw3J5QpzL5vD4eXEBLGywDTtG3btgNWwu3tLRHFmCUsES2/+eYb59zxeATUNQxD37fOuXfv3kF1N6X08nK8u7vTRQwaCRj4xQCMUDf1fc95zuRRqONYPxwOKIw/fvz45s2btm3DJhyOL6vVane7PR7Ol8vAOT0+HrtO/e53v/PejmNQSmy3W9htHQ4HnJvGGGMsYw9gGgGvdy5MU7i9bcHJYjwAPUTpjsWAeyKEcC48Ph7u7rYAAZHtfPjw9eFwwIgVKjgkbLKIbKD+klLqShpnfTCMsePxOXqfKCAAHo97+DsFny6X4e7ujhJzxXal6zrOJCueTqfrBUfY9Xo92QPmvdbr9Xa7FUKAkKt0Hse8XE7g6t7f3yNoa61j8kQZCpmm6ebm5ng444lA1mzOppDD+GArpUMIle52NysXch44DMNisbi5uQGIPE1D13XWmOPxslq1EBn/4YcfcNnAzUMIQjDGSAh9PB6HYVivl2/evBFC/PVf//XhcBJCKCXKeapXqwVOK6QZMca6qihxXvEYEpQQlFKDyTowKSVAYCwlH3IcZpqGwT1/fHj7bfuP//E//nT/EclbCAGOcNgpp9Nprs2NcUqp1WoFEADvMwtXtm0LuVJcG4Rip2mCbC6qCbQBMDK1294owY7n85zFoVwCDUVK6UN2tQHxHNqYh8Nh5gf0fS+ljNalEIEZLZfL4+EM+Yum7pw9cSaZyGHkfB44p+12Mw/sYy3VdfPw8MDKhO9cZ4UQFovFaEwsw8SMMR+sLkZw6JojrCGDlYyjh8FSYoxjaWGnlAw8QZW1Xy2llGYckqjs5Ih9seCOKVvVoQ1vjQeWjWuIPuSuiWRaa5Yi57yuG6y3KINS6u7ru0pW6DMhoTocDiT4TMaCSh4GFCjEEMKnT5+895vNBtkOAlHimbrHOQeXGTk2qkil1KwiaK2lEOdkO4XIiYFX8fT0VFUVK5QRY8ysLoKjBJLl+LsoZlH8Ag7SugEcieeO+zmDCXM0QBXz+fP9N++3IYTPnx+Wy76qqru7u2EYHh4e2raVr2Qh8fI+cR6w8vtCaACaCb0UparT6aSUmkXDH+4fu65dr9dNUwmtUgqg4nIhZlhpVp/D6kVXLBVu71zqAhUpJUluz4A6Nl6HGUYDOsSLg73i+a0QmsyJ3rzNEtU4plkZUBBCVJVijA3XoWma1Wr18vKy2+2QCDGW5mLHWCNK7QOO1Gq1cu4jGkUYH8EphocOnXQsUUAdKVXW2uv1er0OTVO/vJw4p9VqcT6fJc8umhDTk1IyIV5erpzzqqkZY1AVB/PdFY0RFHoz5wyn83ZjMeWD+pETgT788PDgnNvudn3fYtIC4h64vVg51njGSIGplniKUUiGO+a97/oGXQeUHrjz+hVX+t27O5CEMBmwXC5PpxM+fCoY9/V61ZVsq8zHVUp9+PD+fL7+/ve/R1zt+/58vc6bHVERyvgQzccuRvmGUOmNxTFULXrOOZ7I4XRUSgIkeX5+psiklHXbEpEiOZ4GIUTXdpOxIQSSgojwiWSh0weIrQPIn30bpmkA0mEnxwXz3ocUmqYJ3hWklUDJRpJUuH5ZcLnrOpG+qNMKIZHKqMKDRksE8QJBdhoBjDLvLec8JU4MwFPmCaL00sUiLKWIXjovM8VSyqqqZrhNFLrlfFpfLhcMa6AnD+IDdDybptEya1mgzqQyYoN3ABQ1o2CxSEC+hp5xMKCfA0ykAN86RjtjvovFQkoZIjHOlVLjNaskA4rF6g/FnwpiGtM0idKfARLhQl7QrNxnxBTEa+ecCxlzrHSFT4QHn1m0haeJkjsVkhpIxIxzdF140VlGSwfgKT5jLKEzFkomIjX6Ql3fzFAv7o+SlbHj3FfBCWStN2ZkGexW3k9Y9CEzecVMh8efQOMIgRK6aRiumaap1g1iOrodGIVD8YwbwopyUAZSU9YnUkrFxKh44xY5FAFolYhgAjCOY9s0CApoB+Xj3/ll39d1bbxDgxqJDueEJHi5XI6jiSmhA8zKoH0qrCulFE+UuJimyTuaFxgOhhh9CF+UMUrBLARXlW5CCCmyD19/qyuJrhcaMNjIM+6MzGn2LcU7VzrvX4TRmbNZ2i1wg7Tz8sZbISjjSuZVGkJglE/rFHO6gyoXpwgGReu6BpNitVqF4kldAn2pJwu0hxVYGncMaVaIudeKaIvGphAMSC7Psxrcex98UroF9yfGWFW9994bG4uyPBobCPHWWqUVqkpvHfLaObfAxgmUVcBCCDQOuADnnDOWiFKKUkrJkVdJg6FaxadxTCwqpUJIUnKEeK1qqGN33eJ8PitVEcXCf9GMBBFFYiwJYkFKOZqpaZp/8S/+BQo/uGbjiczKNjixhmEQ8os8WSqa0aU8zj6lSikfoE9dXa9n9FfQzEMIwl6YAbgYo3euKrZ+iEUYHCYiISWqOCpOsLjD2EeXyyVGj+wBqTZa5UTknI8xgmgTQkAf7ng8InjWdT1AdiqEGCNOTeRPi8WibaoQwn6///nnnxljv/71r+fYyBhLjF7j3VRMyUORD0YgAvseX5ymKaRsDcpKbwzp6dxV+o9iPi/ynZxzKQVuFEu5koQ1M+42CMWq6F2grPJ/f1zm9e7jxeJymiZnDOecsy8kiPP5XLu661ssXe/9YrHI0vDEikAEE0KwRNhiVdUwBk00HmBzrzWXucFp7ZQ8M5dh2XYpMpf8GOPjeGqXi2EYSAnrnfJMMckZ88ZGwShRjJHFPLHhi6jIDNYA5a+LoM3cEhZCIEJSsTPFwYoyeJ6SQ9zGomLE+SvOuJQyJv+lYdDU8/s7F0II0cVEHP0kTiSUmo+/lJJzRnLBZV5I5/OZMYGV0HXdaIyPcT6ksH6QEcJoiMqIBs5l9L1iIGRTZlaAKQNDVREL8imSj5VW80mNFggiG0+ZyXi9XhmxGZGPZc4Di6eOka/X6/WaMQaPdXwuJADJZZgVoEDBbZnWWr8i2oP+hoDAvxizRCHYPLASY0SsiDFKoV3xFKJiW4qDQ5bxrBiz+I9SMhZTZc45UZ6zgZdm09RI5SOlEIMQggnOZnOnIlNW8vw8cqGUckQzfDwfQ3M6wQQPIYQUpRCqKB3NEHN6RaaeE1EiCjFh7AdAtCta6qUNyQXnKUWElPkYQouCV2I0Y62yWr31TiullBoH40O4DsOi73/729+ion56enq5fwRJignOmGAsTpPlMrvyInUEbIqIRzGxRE3dcZmzTSI+pxlSLvq+P51OIUVkttubW/TkxnHUUsGqBGdcLKI0maXl/XK5hFcB5v2994HloQTiX0bK8CCMMZMxLGXhr0R5isI5h0CtlII2LmbCcoZQpgZN8VxBXMUkSohBaw37a6WUc8aMh+VyGSnNvYE5IxVCTGYouUGgmD1IgEzlfWcM7hs6o0h1EP+v17PWOiUWY3x4eMBfxOrd7XYhBOBH2+32hx9+mEuhUCzX6ZXIz9ycA3hBRDDMeH4+Nb1mUqDmDz7hdxEVp2mSinPOpcSidTincNZgPA5/aDa6kDLzXQCW3d3dffvtt4fDAXyicRxBsMP1IKpjVxaAnsZx3Gw2VVE2897f3d0AisUd2O12h8Phb//2D02j1tvtbAbVNI2UHIcjqhXO+fV6PZ1OGMN/eHj4+PF+u10JISCOzBj7xS+/OR6PEBFOKf3N3/zNer2G1MBigUCUBwG99+NoraXNRkgpz+czOs1v377NFFHniOjx8REL4PHx8auvvkKoSSmByl1Vytov03gpJbwPBqKRvVNpf6rilI7KFI8+xCgEM8ZIxdu2FoIhxIEG3ndLaz1j8eZm9/j4jKjTtm1I0buIQaumaUjw/X5/ucT1mr755puqqv7whz/gJ2c1A6Vq1KGcV/Bl8t4bkwd6hBCjH7mSmQjpHDLDGGPf9/v9fhzHDx8+4MleLpfJTJLD/eza9n106eVlH0L4/PnH3/zmq8Vi8fz8zDlpXZ/PZ+ts12mIXJ/OVwRzhLLD4cBYtj1A4dD3/YcPH9abpfd+d7v9/PPLzc1NjPFweJnsBGQN1MUZHFdCoyPunOMqOee6JtuEQOZFlRmypqk3y9V+v7///FlJ3r+vxnH8+PFjTAkgYwgBWQEeNJg0q9UqBgJGGQtXaY7PMcbD4QAKfIEULX/V9k5l1sRae3Nzwxj7/e9/rGp1d3cnlALpGPVF0zSiUIKQxYk845IOhwOKRFbE3KDKwmPY7/fDZLbbLUBnhD6kfDFGsMVmhhxcJVHUCCHM5GIYlVLn87mua63rutFgVCBLT4xhnAt5HaZfcT8Bvc3nEWMsMhIgPUjpU+bMGmOWXYvzHbc3MuKcG2ellJxxIUQs9H+ttYtZY+fpaS8lUzJjjuCyBJeZASGltm2lyNYj6Fohl3h8fGx044pwZZawY1mOD+f4DH1iKBCwHZINWSAO4zNvDN2RGYnGHwIWZIxBFgS8FbPvnJi1PriIoA282xcLcVGG4WzRug3BwSQM6fpcsBhjvKNXWSgHdIBT4Hg8Sin7vodcEmPscrkcDqeUwmLROecYT8aY7Xb7/PycT1WipmnW6/X1OsZMgbrOShpIMMolhRDCOJ6OR9/3GVhLKVWVds59/Pix6RullJQcaSHEhXEoXK8DY8x7u1qtQsijOagQsarneh9F9PV8mQ3PXIhENFnjbfayA9U95SnAaUh0u90wxkBc48MZWiJUdKWx0+c3JGIAQ+q6vr29DUVH4nB44ZzjgRKLOHGMMaeTefv2xnt/d3cHVHC1WtV1/dNPPyEyIM9xRekFRy3++gwQVVVGIay1VdcyxpqmoRhPp9ObN29yP2wYJBf1YlFVFeSMp2liEkadmRc8w2JSys1y89Wbr0Zj8NdDGfRvmubbb7/97rvvhmHQVXbb4pw/719Wq5Vg/Hw+LxYLJSvGWKXUMAyn45kxtlovQgjb7ZaIjB3nHRQzfyKDoiisMAZtjUWs+NJUCN5au9/v3759q5TaH56xmxB47+/vrfVwW50BnBSJGAEmxaLFmQI8DXU3KywuLXJLgARnPKVEh8MBOTw6i4wxjCQeDgfOuagE8RRCcNYppbpNN10vP/zwdPO2r+JSYhvEGGMkG3wqGriTmzjnXMnBTClFWSnGmCBSVHEmpcxxBFvXOFtVVQzeBc8EDyliBpNzboLD1E8lteI8JEopBWddCExwLrkQUqpqGv3pNHAuOechJu9diD5GyxiTirPEGWPn07job8yUKt2GECTJSgomkxCSc8G58B5bmjHGldLG2JubXci0r8E5lygY65zn43StdJNCTCGyxKIPKSXBpLeh1k1VScRNrfVks2XWOI1t3SilsYUQDpTSnHMuhWKsFiKlJARPKRFjVdPkty281xDcZrNCZvyadSWERIHBi9P0jGKIQgoGi4Fzsh7sDzdNg3MuhVjrSnIBpEYqbq1TkiPyXi4XP/iman1RgEIgw2wXU9J7H2zQRXmHiLSWKRGsw7QQMZCWFRHDTIeU0hjHeRayGIah1o0UerhO6EKfTiepuA8spqgridRQFS1zMDdjUZ2fjOHOVVXFheBCjOOYiFsXgEsa49q2rQUprYWU1k0z5gWMQghJkcxovQ3B+ev5EoK3eVQnhYBwWaVEgotEyQevoaUvuTPWGbvsF1IBQI+MMS00QEnk1ngoRHG65tnz7Wq5P51jjOv1mify3vPEK9VMYdJt3TZdSqHSUKOOb+424ziChl1p7fzkw6RVLQWzKfkQYiAhhA9GCBGjt3bknI8pJB5TDJLxWkgQgQPnQivG+TQNkRLi9WSNm5ySiYiEkrvlDRUqB6godV1rLbWWXLLr9eqvLqZ4c7MhimAkp5SbTsaYmBgXTFeSscQ58wEE7SS48N5XlcJ8OnYTdgTWp5TydDqEYhQmRW2MCdGxMr8J8lQqRn/4YtsuGfuC2+JElFIylosrUZwxeNHtAfZxe3sbopszy7rWAFx4llP3xJixMPllSilG8elpmPFiiMU7D60oxTmPjF/OV6QaXCiloI4dfPTWO+MsxSQrLZlESjpNkzVWVjrEJIgrWcUYOZPeGWPM119/wC6WlbRhkoqOp9NisWjb9nIegiUumbFWV9U4TW1Xx+QZY6fzy+VyWS6XmF5ywVuf2a/gYMYYUxG+nzW2cNohwyAiEHB1ray1utJElIiU1pGCdZYSx7i0L5pNyJAoRi1VCpEztlwuwfzFCQe0lIg4iRgiReaMVzrrmVR1zXgKwVs3VVW1XKzNNOGqaqUB9nV1N9rr6XRQSr0c9sYYLgWkcoEWee+HYUpEi8Uicfb+mw8Pnz4SLVZ9dtFNKbnJbFbbzWo7mkkpQUTXy+X29pZCjDGSUCEkYxwR325vGBPGOJbJ+InxjAjPORYWUtPU4zgKJVWlxnEczeicDylWVRUpUUx2clIqay2xoIQWnHliCIMxJhD6fFGJadu2b9pxHFNM9jpyzhXnNmb/qLZvm64JIXjrC2BEu82WMWaM8eQFScGIU0qMTPRMqRRjsl5wEaMPKdaq4olIyOBMU8lgp1prHsUY/DBeXfTE+eBcoMRjdDFer1fJRXS+0jpGFn0QDIVrq2txnbynmBJF4k7xJCjGLATU7VbPo3keLqnTulHnq5FSvhGbYOzhD/erqu3WrOIypqCUiM6TT2MkLrhUEi0nxoSUwtppxjQBdNZKp5QUF54S51xpzb23wfPE9RfJ5iiEaJqq75fWTug6BMeu16Hv+0opIto/P1dVJZuKUxwup6bvgB3McuHEVGKMkqeYwFPTUqKkjNHH6NEhxV/0MSRjhchpJZpV8CziRH3bIsGtqkoqwRiL3gKHxTUjB2AkOGdKUvAZmpmmSShVQb8lBC5ljZ593oBZ1g3XhiH/4FyMUXJufRitEcGT4D4ECtFE62wmYg/XsW2ZFMqSW7Q9Y8x4u91u5/59KJMivEwT41hvqkrAUtJ7570kavs+hGCciymZ7JolG6Uul8vpeAHcWVXN4XCoq1ZXGSUEggP4EtMhuD+o2H32f04pUUoUQiSiSlXoNKQYWEptXSulEqEb4AUnLWvGGKkM53mfy9fSDYL8Ng8heDMJxlVx6YkxshDmehvpTeRCCYlbgUsRZZJ0po3g/FJlgieWGbiSWiSoUsoy+CK5cC5KLkMIZjR1XROlmJLkggchRKOlLkQYxhIpIXnL1qtFjG+v1+t+vxeC/fKX3y4W3Xa3+f77791oBSNvPec8+ihI+ckOYVitFoHJyadEgROpup6mgQlarhcz6ImTMflUq3qa4CYiUwjOeCHENBieOE/8vL9uNpvgiCWhRBV9GszgirEYFX1hNFNWi6WdTEhZk4oxRomkFCEQqhHU9k3XoozhxHTWAXNNpUPwKcbz+YhSomnbGCPnkjEWXGCMxYT/5bAtDSGE7JYsWSJK3HsfQvKeKEYc7j54KeV1OFMxG4/e+2L0IoQmIjNOxBg6B/P1hOC01nWtQwjTNGDQAVCsMSZGF2N2H9Wq3u/3p9Pp6fGl6zPjFSlK8IlXcpqmFOh0ODPG+sVivz8Ow3R3dyuEcM7gPU6HI7zaV8t+Gq/b9Vfb9ebl5eVyODNBVVV5FkKK1prpMmgmmqqW1HLiTdVHSjHGYZgoN1FYcL5t29VuMQwD4ymlNBnTdS2q6+fn56pVspLn82VyU9/05/P56fGAMXNKcposlrBgfNG35/N5mFzTxNPpYienlArO9n0LlCcShcslY50DRe8qNUhKy/VKKfXycmCMWX9Gd+3lcDLGCM5Xq5XWOoW4Xq4OhwNRXC43wEO7djFcJ8FVSkzrOoSwXNYpMSHUctn//PPPVVXZECOldtEHmz3nOWNSCNV1gvOb7ZZzHkJO8Jwz4zhtt9vb29vvvvvuh+9/2u12FANjrK27aZp229vPD5+en5/X6zXqpmW/MsaY5FAFEHkhBHpFw9Uf9pfFYrFYLc3ktK4vw6RUmVoL6jQNVVVNo0uJLRdbwO5t2zZN/fjwU+5zSClVJVLizAshTqfTer3um9aO0yFYFhMKeAhlAgPlnG92N95bzhgcsYhL4/xud/v548fr1fZ9L7hyzgliLnipVV8vPn36BHlo59w4jjESzqbT6UQs1nVdNbUxRkpxPh5vb28pph9++IEc/fDdp9/+9peSiySEd04KIUVjjBlGU1WVYNxOjrFhpqwSkVKSIqPIElGK9MP333/6pIEE9X1TVZIxZl3lQzD2ykWTKFhnzudhd3PDGLsMVyEEOlubbmmNPZ2vMfnEKFJquhb5P7SzAHzcvnlT123TNNfhGELwJsRA3nnOeYn3CkWilPIQT13beucYYw0CeKH3Ho/nus5+y5zz1WoD7VprvXNuGIa+78dxQHiHv9blcmGMfv9333369Am0s/PxyDmvq0pLGX2QQgTOxsMYQpBa119kiDnyPczyXM9ndCWbrpe6CiHUdT1M49PLE/bjMAwYmBNCnK/Xzc2NddPFnIVQTDIWmE9eKorR94t2GIZhvCRqGE+AVvvlMpUDF2fT8XhcLBaMBCOWKGDuFlErlWkJEpRCElpwT6O78kRd3QiBAUeYHqlaKTt6EKoWu3Vd11zQMAzW2pRCpmqFyCL1TbvbvbnCvsKYGKNUUlc6cjZer9fr2DRNJZUfTdM0IpIQUgiRYjLexBSnaVoueyaZFjVC3FgsBMGWWK1WXPBhHIlR1TYvx8Oatj4kKcVoHMgEOLBwKuHasKfwLRbTcL6g1wh1ZiIykE3wqe9bG3woMtDb7ZaLCCIaEb1//9XT05NzDoZKi0WHxIzzquuay+WUUphMTix1xTlviQiWQlVVQT6biMbpDPbem93auUBlYHG/3+/3e/C4D6fTME1VVfV9G6Mfx7PWvG2XFJbffPPNaI0x5unppaqqvl8DtH18fAzBdB14hFEJbq0L5BhnPqWHh2Ga6Pa2RjXHSEghGWOr5cZay0hUuhO8YswOgwXqQizyLDs2cc4x+/juzd2pbs7Ho5Yyep+S9861jXKSYiAiYiwtFh2q+Lvdt4fDAVLvOJJcDFLKabLgPM3dMuccEWeMpGTdaumD9cHyQE3Tvby8hBCWm7UQbBiGIjQq7GgX7YLFS4xRSi6EiBSIorWT904IppSI0QvBMGMEH/XlcumK3rRzgRittqutEER0OBxqrYQQ+/2eS/GrX/1K120kisS1ro1xMZKuhLWT9zaluFz2zgVr7WK9tdYGz7z3bbNEo/o8nK21dcNUlf7kT//Rm9t3f/X/+aunp5f/L1l/Fqvrll2HYatfX/P3uz3n3nOb6kiViqaaRJQsx7RhIYBgBDFgKIGD2EkgQQESB0LejACK7AABYki24iiGJCAPeVNgQnBsNYASA2pIiaIoiSJZJKu5t+rWvafdzd9/zerzMNb6zqZyHgqnzt37/79mrbnmHHPMMWgjKZHPbj94++51sI6EqLiwg61lJZPaPu67bmz1khAiuGQJSnt91/VoeT5/8ZzQeHf31nqTaIzOUsbnq8U0lqG4Xs3Xu92u1dVhNNuHB1Ur5411TNXyD/z+nz2dTl9++aV1Y1VVWtXG5TeSUjLGWWvrutZaOmf2eyMrjbcvpUw+UMbaqjbGMSGaenZ3dye4ooSPg1WVZjSFkCIjqlK7w55TRkgM0cYY++4IHom3vqqacRwZlykRFgn66826Wa035EjHU/fpJ9c2puCiKB1XlmXmGWN5NDIzYpqmiTG3rUSZeU9FwSAWwYqJxIQ6HO0Ozrn3mePjxqw1EWMciwKXEJIkst1uh8EED7k6CeYLob6uW1wbY8xZ62xIKbRtXVV6NL31o9ba2ux0hJJGFm3Qx8fH7XaLOhPVEaWU0ky/x/8BqsUYsRmfeq+/gYColKjq6XdpWzeMMcb4RHj8l0BhWnjclNKUSCquX6hRMYaGnQ+yAy/el/EJNXj6TFaEU6eiUUrJKZwbz5ml4kc0e0tNlTjnnL4n7zRNFtNEGYylRihNRYtWFn3hEMLpdEIyaq1HmcGZlPq9QDjSSikz5oWvBvrJOZeKwwkEDUCAy+h0gXgihIA2t3WGMUasBSE/FukDznkIiRDStq1z+7atEXfwGL33aElJKQENAMuez+eEJOecUhI/o3Wli+Mz2gbIBkBIiTFHRlRuWA/AUrHC8YIwuycEq2dtdH4idqHGDiQJVSlFxsEW/l20wZMQGeMxpnFwUlQ+ZknxoRsBYR8OxyznMo6ERvDLhqEbhp4xFiRnhLJEGBeJJRSxIQQquBSiVrULHjR80B+Oh14pBXqvFKLve6CiOJiF4N57JvhqtcIiMcOYslYGizEX5HWxwqNlPigVIw4hGDoZCA4TKxxkPfFE1wkxBFQCJMShCLDi4SNLgGR2CKF0UBheEMtSHpK+H4bIysj4OlzGdrtlPFMCGWOUykkigzFmvfMeZoMSVBScwSXmZgtQsDOAViulYvR700fj5/M5yHQhBCEk/Nk5Z1LK6GIsvovYkrS4emJdOZsFECbGOkDbi4sLXHxVVYkSJElN05AiI4soSotcMmeSxGRDnswAHpUH/aRED/zh4aFpGhAljDGxCNljm9sylo6bpQRE2gBIDugMnrxSSgoCWoHWWpXQxIs7xLt375bL5bxdDMMAFaph7FJKMKKZzOVVUe/CCkkpCZrHn3GPSHHQNd1sNl3XyUy2ilVV6aoCfwS4uRDCDiMvEvaMse12Swip26ZtW3C7xnGMzqeUZKU55x9++OHt7a0tul0oohIJlOQZGkQP7CYhRN8PSkkhRDf0UxCTxUaPy0wZmLoaWJxFVUDEGHFr3vumafD3KSHG73KVR9VYYtgm1jsSEyiBpMj8xUi9t4oLwbkdey5UCkEwRilnkQw2DrY31tZ1zZV00b8z/Xy5mF1cVIxrY85DL6RWlV4wFgmhlAYoICtNYqrr2qVQKS0l997vD7u7+/vd2CVCwXCJPNFoU0oheu5Cdbm5aRff+c53Lm9v/sk//dXUk+V69eHt8598/qPNZvP1D1+wSIIPjDCuGRGMELLQFXjZ2Auwp+BcwocHZQBjDCZRlFJrDHRaEEi1yOqE+ARa/C68j3nyXVUYMwSDGNMSIXisZOyLyceYMSZVhcO00hpnEIAt5xylaeqqiqI5jpQA890gl+M4Q22MNyWEQJrBOU9Fz8QWESRSpPNxF+QJOQUbf7qpUBjfsUhsxxgx5gmg1hgjdTUMA/xw+r7/6Z/+aU6zZxSOj3EcZ7MZUL9QjBZicUtGHJj6K1P8nKpWU/q1OPvwsRDFQ6I1MVkQ4SdiLH1CCsbcAzYaptPwdlihSOOdUsqmREspRSmZaKGccyHY9JkxZCYats8UxyilQnDGGKOl2ZkVSydoOBNgsZxCmbNJhcg85WO5aVfo6hMWHwvBAu+OFTWVCapmhe3ii7BdjJFzhtPE2mnOL6XCuU5P3IN9MT5KKa3X683lhVLqdDhut9vT6aS1UkoBduy6TmtZty0h5NSdKaXr5dJ0Z6bZ2A/9OCCV9UU036foXBjHIRQdnpQSZJ3wGFEizmYLuO44FyAr2foZOO9d12ldIWFTRTEsnxqM+CKQCiJM0zSq0oxx5yxNhBKeUui6YTFrpZTn83l/PAnB6rpdrlZCCEr5MAynwxHLb75cQEgxJ6tFCnMY/PT8lVKc5lPVeYedQkuvGkfMEmpm1u7321nT1u3scDgAllosFlpr7y2UgpF1U5rZ3K4YHxkDVYpmHCwpipA4Lvf7/ePj4+3tLWcSx/f5dIIukwZYZnpCCCBa4NqLxcJaa42VK/0H/+Af/Or13e7wOIydlPzcd1woJiQNnkV1tVl5Mw59X1WMkOi8cyFIznGykDJotVqtOKeoDowdrHOz2UJKeX//KIQIISklJqxQa92dB5Rp5+5YFmGqde4JJdIzxs7n82F3uL29ubq6iiQ9PDx479v5vO/7uq7rul6t5Di49XptbX93d4doFmNEZlhVFdBnQhOAXczUX11dnbpjSuHi4uJHP/qRNTvspgx5c951nbX2cNgNw8oYs9/vm/kixhisg+YD53ToexBLaekcTOwzKSVXEsfu17/+dSA4q9Uqeu+cwxTIBx988ObNm+PxCPUtyRXgSMqyQmgIHq8+hsB5DsUI4E3ThGCQ6pveTNGjaZqbmxtAY33fv3792nuvK9k0jZKVK95ClFL41F1dXc3n87o+HI+OkFfQ+kAOBgUVzrnxahg6nFmTz9uHH34IRx+caMMwxCSbpsEEGEkM+cx8PsesEnY0KaN7SONijC9fvjwcjtYSKkhK5PHxYb1ej4YopXRVnc9nUWS+vfcpkfl8LqV8fHzUWm82m+12+/r1u9VqjkySJJh1m8PhBO+Kvu8//vjjfhhevnzJOb+6ujoej+gHT0PoSikpa2zVGCPjBFk3iP+4+BACo4IVhYSHh4eY7HK5xBt3zh0OB5xETdNgvhtr+5NPPoG4s3MuxAjBja7rOM9inizPyZkY4wcffAC1CiGEMQPCBSJ53/dd161Ws7qu94ft3d2D1hJZ3NQdx8wN5/xwGCnfXl9fr1YrXBjgZsQxFJg4ekCo6vueS+lcnA4L5PA4po0xQnLradd1JOZZ2+ADbhxpBvABHKnT0JIoozbOOWjESymdz+ODGPEEmTTGbMqy2+1CCLXKMw14OMfjseA58XTKTcQ3b97Udd20VYzxfD5XlbLZ0XEUgoCAwozBK9a6FoKh2m3rGhABngmWcd/3i8ViuVwezieI/3gfta5QZbNi/oyd/tFHH6Efw8v81pTR4f8SmjWysSxRvIPo3ff95eXl3d3dYj6v6/rt27fb7RkSFojbyNZC6UbjV3a7HaHoP6XZbDYVvHhK0wvFF0ESR1BRz9p86AuKOg4wlxCibVtCo/dJ0JwDsKI8nor/08PDQ9U0sOwL5Q8p2nrRxdlsxozo+365nIeQvSKB9jDGjIlNk/vli8WCFd4VIX1dE1TTSKimdAUANDadD2aqzWOMVdV47/f7Q4zka1/7OMb45Zdfcs4xaRpjpIzGGDebzel0AokQgQ4X040Dsne8IBSzIbxnVQJMQD6A2w8huNGAk6u1Phx2fX92jugm23FPGiZ2GFNKdaMZy1qvQslxHPf7fVVVcOvBwDHo58MwnE5d27aYH9VaX15eMkYgKsI5Bw0ly6coud/v+3PXtq21o/cR/elhHC8vL3Ec4JmrulqtVg8PD95HmuWSLKYTDocDY3wYOinlf/i/+9+wxP7B3/+lv/bX/tpPfvLjy6sNY4wxQamnlAgRz31/cXWjzudhIMYMWCqD6Zxzda27rmeMMU7O57OxgzGu1k2MXnGx2Vza4BljSJhpGSB2T0TGkdKsxHq5XK7X65TSw8MD9L7AGJuv14yQd+/e8eJahEIAWRY2rBYZ+uOcUkIwH4C2k1LKGRtSdC6sVovT6WRHs9lslBIIIzkFdRDKi03TzJeL4+E8jF0rGqWUDXa/3/udv7y+ipXpDscaclGheHxVnAHu6fu+bTNPB3BGCH7KwnlWbc5yY957ToSuK4jlI/rgroQQJKo3b96s12utq+g8kAJVV1prSOYhxyAxXF9dKKWsd0KIceydY02t+747Ho9XV1fj2BFCnCc+GMrEOHYheS4T3gTmfQBCEUJxAQhMxpjj8VhV2pdRFCEEZxLJtDF2uhdEH7wYLOiJS1ugN/G01JmKukQzPEfLCFgIwVoHYDQUhjymmRDUJuCeFbUgfBoqZ6TU7In4oMseIJqKREgeAyTFpRBVAbY9ZUnr9/aMunhW+uIopbUWhW4ci0FH3/cYb0RP+33VlKIuH0WKBjQv7CEcoqh7U0rCsem7yrIJU+2HH4Z3k66klNKXkXZ8Go6Esmkp3EK1nqESSyRjl9g/fX+erFRijN7D9CkIIZzzSARTShCgwNs5n89FkyEjQYQQITVSOkqp4Hy1WgHWxMhY13UoKohSOCe4EPBcwMqnlA52mOu5TzEFyOgA2yJDPwohuGTW9MaY/WGbUhLF6NYY41zApnUORE4SQuRKSsY5YylEwKVv374dnf3oo48Wy6UNfuxGYwwgGErpdvswn89vbm7w2LE+hRCn0ynGyHnFWIgkWyKcTqemqjGxa60vLYr3mio4Hmix4g0hOGcmNJkxhoHTCRwB2Kp1DStVIUSkMFUQeQakhAhfpkpxIrZtOwwdMhtw2WKmWjBSJA6mwgCwJnbo97///fVm+ezZM6wuEBhxhajb4eEQY4T8DufZ8IeUYWqRZ/EI0BAE9Erp0ZpxHLXOkq++aMDRRLqu44QiocQWPp1Ou/1eSvns2TM8HF8EnfFepltGowVnQPSESwZ1J0oISmhwA2kxLmsarpRKlJDsgpIIIUoJAA3DMBASN5sN6kCckcgtaJkcxB9k4d77FKPWOsYBQXIcR1HUnAmlhOTG4aRwPe1ZCGYdDgcMl2DqDTfiQ1YcQ0oH+bBZMy+dDOJG45zb7UYpOfoiH85mqspZQgqRCkop1Vpyzp21+8OBEHJxcdG2cynlw8OD6YccAKWYzRsptI8OMo4YlYWAg9CKMQaWAZJ7nJer1YoJBYIMXgcyKjOMWKhtOwvBC8Z9eYCcZ98SbATnHAzNkGr7om4BvGxqs00nAs5y/LC1NpAELIOJTGVlhKpKZ9JN3WBit6oaKWX0aX8+MAHVIyEpYzyN/cBiaNvWC2o4iTQMNJxFONuh70/Prm9uPnlxmxiwUVaUl7B57WiQ8OlIzufzcbDdcN4fTtuhP1nDhBBKJ0JcjIwRwZgjicTYJv+dFy++9q1vdkMfWPrj/6N/+/Ly8rd/4zf7Yfjka59ornxfxs0499ZEkmgxCsYRib8guCmVMAWJKJcFvnl+gH0IxpjBY4KETF0QtKyUUvP5fHTWdF3TNLR0MgqNl6KfPY4jliItIgxINJWABWUuII/Ho3MGnHro2OQeCUk0prquaJ4sPuIkUkXxENeGtww4m4n3aQB50pZDpAIyMiXoQHin6mIqJPAnFAs4LiWDO3E2daystUCWhRAhJV1meJFCTLCgEMKn9xJYU8CcoGcEsTw/hHO2gNE4oBF7nyY2IOPQIjUDZG3CcJGu+GJuQ4tEAwLRv/RjUr6nIYvsrMimG0/ojkBZkgte3DXL2RrKw+eMMReyww8p6l0TmjwlolMhx94LcbBUiN6IVIiKqUhk4rX6omYz/TxjjJD3Jsy0AO7IN4wxMVKAAkK8l0EPxQNgwpqnVgqeAGOMUPr8+XP54qOHh4cf/ehH5/MpxuhjYEwEZ/b7Y+tc1TZt3XgX3r29syZAByg6sjvu58tF0zQheM6pdbZA3FkMZxgGypQQilM2xn7KUrwnlCZc/H5/pH2P7hqozYyxwYyM0kk0E3Dz4XgEVg7OfkrJBW+tU0L0Q88YWyxnwOOqqmrbdraYE0Jgx2KMASFgKgfQ+fDe17X23gfvcfQjEVWVruua4QFRSkrLEMccfmxKEnJjgFBU0dh9CNoxRsxGrNdrpKaUZuZjacCzcbQIwkNvUrZjMmAOYgufTqe6agEBM843FxeszLqhZzaMHRIM76PWtSoittb4eia//MnrWlaMyYv1hjKxOxzuH/dVpbWsGZPBE0ZF1ehAggu+K3D8w8P54oJpqTD3DVUuazxh7HQ6aV2jlKirGnlIU88oIbPZDCWAkAzuhTFG9NWG3gghVqvVfD4fxzGFbNGMsmu7HVJByoa+v765rHW1WKz2++TOvu97KbVSKhWr58UiE1CAB7V1Az0NQsjj4+6jjz769re/fffuQWbf5hiKB7vW2pjh3bt3OJhglYZKcLNZnU4Do/Tt27eXl5foyjDG2qqCaxylVGhlhHn58iWIKYSQH/3ox1eXFxNIB5ekx8dHzBdjpSmtdSUx4IgeEA7Z5nJGSBYYhdtLCATpaAphHCIh5HA4U0ohboDMUxdJsaaemSIXSYrBL3a61vr29urVq/urqyut9d3d3fX1dVUUVIdhsNYqqaZjjhBy/+4dStQQwjiOnGUKJxIqSikh1FoLuzycCNihjArsEyFEoiR4MFt1jMPl5eLx8bjarLkQy3o1+dQBJBVCUJaurldVpYZhaJqKMTaOfded5/Pm+vp6Npvh4k8dJqyjEpm3eD6fUa9RwmMg42Bn7QINiRjRgcPA7pih8Jis9fCERGhCSllV1Xy2jDEaM3hvMbSKU0YVv+XZbDaOo9b1bLZA9+jFixePj4+AzFhGmk4xRgjFSCkBAe/3e87lcrlsmubdu3fo9mHjTKwOhOiqqlrf7nZHgKeg+rZtW+vqcDhQziilz55tCGOUUvixc84hnwKIIBRhrru7B0rJ5eXFOI4VpTc3lzHG5XJ5Op222+1ms8kcu3EkI0ks1nXtjI2BUMKlzNYRnEnO5Ol0Ely1jR5NLynF0mLljygG1xjaQ8xBOYbTB8cNyDSEkEASLUcAIKGuA1lkPgwG2VTXDcYYpS9LGkMnnkcIOcUtHAKwvsRut5NSLmazlLIw4IScTMff1HzFlePYjTE+e/YMopff+9733r17N8n+QJq5aRpIohtjYsqdeyCeeL8ppY8++uju7g4+qHiznHOwyJVS2+2WYzylGJCmiX2C1E4DX+P7/X6/36PNgN1BCDmdTs+ePQOo57MFV+7vIqUJLCHIFG1lCTYSJ5kwQQjx3hEi1utljJEwhmwWH2KtxZeiWKCUKiF+8PkPmmY2FYxV1XDO7+/vCSFt23p/QGbSj6O1drZYCCHu7u6c85eXF6vVCrDGNA0GiQmg4TFG5wJjaWobIyldLObH4wmAj/d+MZvhnGWMjW7EixZcLZdZtQ+qOF3XjeO4mq8KLzBAfQIPB2UX8nxadISwGEZio4OJa6dVXdf19bNljBEizrNZQyldr9f77Xa322Hk+nQ6feMb3zifz1AIcM6hRtZaI6muqtnXvva1zz//fLvd3tzcQIijruv5fD6B7+gH9ONQ1TVOf601/GPB2IgxMZJZqgjUV1dX3Ti8ffu2qiqoXQHicM5hQIpRSRL/jd/47v/y3/+f//E//sf/5J/8k7/3O9/8j/6j/8MXX3whuGJUECaQyRgXxrHfXG0ijcM4EJEjpPNjCGG5qgj1VdWcuyOGswEsrNcbUqR0QfRkjB2Px77vnRDoDTPJMOZirf2lX/qlcRxfvHiBylrJCp+jtUax3DRN150Oh14IcXl5yZ5w105dR0IsKitm93inZIUGBt5gJSsv/dD1WqrVs2dSSnBECojfGGomysvpdGKciiSII/P5/GF8sNYqoRhjx/M585VJJmtwrTVUe0II3lullrhtYKOTAzWmUUJxZ0LIU0pJLtq6Mca44BEjhBD39/fBOc75w8NDVVWLxTLFSDjDj11srpw3jLHFvGXL+fXlxcPDQ/KD88Sboe9PjdrMGnY6nM5HN5+3VVUxQbsuHPavB2PqqknRIrNHh8RaQwhxLtMl4AHqs3BwrZTiggohBFfIRJVSMWZnRiEEZN1wRIGzht2YiqRgCCGEXH6oYuXkvfcxI6GEECCJuZ/AIlb5fr9fLpeLxQLUb1EkJp72yVEjkWJRyIrE55TWoNzypZWENTFrWiCnCCgxRppoCIkx8rQqQ2qC0zEUBbqpT4UybLVaSSmtN5RSa7IiLY1RCIGIDHQbRnOUJsCynArAUkII51hMfurAI0bgf3GWSCm9y/5REwYdi/YiMlHUepDfstZCsYtzbgsvBv8O6nGBpxkhCTkZXigpmk2MJSBoqG2AloKKhE8jlCO8SilRVgEyYEX2PkbivRGTZDahMSUfAmMiejethBBNiCxF1M9SCKWk8D72Qz+afr1er1dX9/fvqplcLpen81lLpZTw3sfo8dU5GeIixkgSST5QycfBfu8Hn4UQNhdXz6vaD8OsXdzePK/r+s2bNzEEYCh4CNbkoXikHUVUnaJyxpb01kmpkfyJYgs+jiMl3HsfA2FUhJhpFFDCijGSopqKVRQLswYFDHvCykf7VxUP0qlQnx4pKA9SSiir0+L3KITgPC9y7BpSOPux+ALPZrNvf/vbPlh00efzuXNmosOgDAs+qezGQFNK1uTPwZFfNIwSLb7z2D7OuegD05QxdjqdoSCGrUFiopSSRCBpCiBjsVgorYFtTbpIT59GQTC59y4lCXFDTzOPnlKK8h6BC9S86UFxxinLFDnGskAKRhNijBgmYk9sGaZMFPGEP+EFM8YYZ6jbrclKvkA/U0rn8xlanEqpEFIq+xEC35g4DkXSPccZZ6RSaF9ji00cZ1KaWyEEofPEBudMME44Y0U5Cc+TUpp8oizGmMZxTDHK0tHBc9NNnWLGrQghXX+qm8ZaK0q4pjFZa5nJp7t8ItVaVZUxgybajoZLwbMfaWYgYmmhokspMUKNd5TSvu9CiEpIQJnYMsE7AJRcSqx878MUDCfYkRelUSxUpVRvRmstpWQqElhhuyCsIdSkQPRqxQSPPN0dHkStLi8vXYqSUcdinxxjzDLmOKFKJNVE70wiXz3e/eTNq1ZXikrNpeScxCRZXlchBIiRNVXtHaGcDWYcvanaSlV6VS+I5KMxjqZIEpNiCH62nH/9G1/79KOPx+3ul37tV1zwP/tzfyCI9N/87b/5z375V37f7/lOXdfn7aHm0nlPQkjeBUoSJf35DMdtnEp1XfvCTjXGYUcjJiBjM8EDEfDOWeOdc5vVaookExEDLRbOeaUbpZQp8Qp7JyUK2x/sNbx6ZLohxMViIbnAZjfGXFxcXFdqu90iCVNKFa8SGkNQSldNg1O4LqrlkNAey1ur65owwaRAjw2/i7wCeRsrTqqhsKfxrrFhp52YivB9LNTj6XNUdhEUpSoQL158mFI6Ho8pJRc9E2ywI4kRUW69XnO0MQq9dwpBU8mHxzVFA19GDqe5HyFENiAqY21PYdwnyO/vomwTQpTSGJ3BWVPgG+nLDNYEx6TCgiGEpGKTAGSQUgrnN1qwclL8RVPKrSNX9B8jSSFYxnhKYQqwoXgLT2leKvziCdOZHgh/QgOfzhReJrRwHDz9eUrZ9H8Ze98ExS3Q0g6kND80ZPmIA957cECQLD0+PjLG1us1Y6wfB+AXMUb4cR0O+xRiSFFKbb15fNxV4yCllFIGEp1L4zgqJSjlzhJvvJhLa20IJIVABQcoNo5WKVVVjfMxhOCDczZwzglL6N+EEOpaCyHm81aoPJUIYGixWIzjOFo7ZZLrzWoauZtyPymlHQ0vspsppcfHR865t3a9Xp9OJ11nYXrAzSlRa+1qsSSEWGvRrZmw++nlEkKEUPhFa20o7q+y+EijJEHVR8pQCEAT7wOhNISgtAC4jwOac2mK9/X5fBRCoRYQQsTolVLDMFiTx7mwDMAYWq/XH3744RdffDF1yqXUu90BOQljDCX3lAs5Y3nFsO5Op+54PEdllsu5623w9rTbUy6vr2+f3dzs9/vg7f5wqOtaSNb3fRKECv78+fO7u7uqqpZLRwlnRZEWNRTn/HA6eu+FCOv1mhAyGBOim7ULLaVS6vb29nw+393d5WZY6XbTlIvbbhgRLpDLpZRC8rNZU1UqEgbhIOgdg9GWUsKoclU1TdN0wxBCQLCtqiqFMKE8eEejpavVGthf5osNgxAqPXEJxmwNXn0gjhBCQhyG7nhkWmuSEsysttttSmk+n4tS4NR1jVHrYzccDsPNzfob3/jGD37wg5hSWU5BsAUh5OLi4vHx8XQ6LecrY0yisarVMBhrx7ZtCWFdN9QagxqJUkpoPJ724UhnswavgBFS1WrojbXkeDwh4wJ+gRWC6AGDJpxToCGj1wJE5utff4HEDx27vu/BwdrtdiHEjz/+iCaapaIZG0IABcRlIYiMkWFTrJYb7JTVagW0mhcPm2yVJpRUvDv1zhsmuJby69/8xmq1+rVf+7VxHNfrtdby7du3OPgQ6sFvwNQpPjDj4EoSGs/dMZaOKarjy8vGDOP9/T284hEtd7vd4XBAkoPzsWkqmCUIIcwIxxpm7NC2NXC92WwGOh4+eSwtamNMTOFwOByPx/lsCbELlN4xZi1dxsR+f/zss88Aj47GNc2MF+8BQNh4R1hj4MnhUtu2heYkIGkEc7RXr6+vKUsIJldXV6I46a3X67u7O1T0TdOsLy7u7u7yacVY3/eLxapu5/3pzJkMPgnJPv74BWpMBKjZbOG9J4RNDxlHJ1YCl0JwFXwiPGqtSYyCq1krdrudtRZECmBqQoiUMo00H6yKs0A4z8pRYJ+EMpL7/3+cMcYIY6mwfLz3jAlKOcoBANMQLUEhw4uoMYDI1WpOKQeUmVI6n3tjjJTcOTefz0mZJgfZExt2Pp+HEO7v75kU0xmNzhMC/sPDw+FwwHBJKBNpKdNlklISrkWERsHzJ0wwC14cbvn58+f4x0ZXxpjdbocaEJMEU1ZABaeEcMbRKqOUMi5vbm4YY69fv46FYjWBJ8h5AAEBC4K+K7K1YRik0FNhiBbU6XyIMV5fXE7QvJTSeBf7jnAC2jiwP5TkE7yDC47ecymHoXMus3yUUg8PD8aY9XpJiAa6TTDwbQwh5PLy8s2bN3VdQS5cSonHToriORZGgWWr6UChhOMIWK/XsgioIleZFEvaZj6OY9/lUV3vPT7BOTcrqLTmkjGyWM7GwaLqRLaPjGtq+2FlNk3Tn86cc1A8pfRScSm59wk0O5z7+K39fg+63rNnz9q2/eqrr1wx4uKcv379erVaaa0fHx+vr2d1rS8uLvq+Px6PmJAYhoExioeQpw+loIUpBUTi2bNnp9MJkiCMMRIDyg3c436/j5QgYDoHy7eglDocd2/evOGc13JOE79cb47H/V/7f/3CP/nVX/5Lf+kv/ed/8c//h//bP/PVq8MmxbadW+urRs+Xi9EaKkjV6sRiojHGFEKywQKitcHGgQghmno2DAOhbBzsW/O2bduqrqy1zlgESbBmsYM455prSulisRitwSs+HA7o689ny91uhyVKCGFCdMOAuizPXodsuBJjBGZ9PB43m804jvOm3VxdUkoPh4P3PiafSK5ilFKvXr2yNl5draXkYAB/61vf+uEPf4jFY601fSelVK1igT083I3CjtZoU7WVjjoiJ8ydOqRTgeQMHvggSiDOOeYOUCF3XYf9g9fDi48nwCkEu1zSx3S5uQA+dX9/NwxDjIEQyjk31gcbwOTljJAYhJBmPHbnreJ+HAet1PUHq8urVV2rb3y6WC7nuFzrQ13dOk9OZ/v55z/xLh85KIrQUUE3LBSC5MXFhfce5QHjpKlnEwVGKQWkDtesVMbRaBm9rOvaexNpFEzEGH2MIQZKqeA8khRJSiQRRklMUgklAXJFwTiXzAxmfzwcTkcp5Xwxb+ezSNLhdOSc39zcGGMGMw7DUOtGa8E5TSlJyaXU3vthMNZaY9xUuKYE3DMSnplW8BDHdg0Fg0ZOkGLEIAAhhNLsR0QpnUJDzvxKAxCHYlWc9CbsOz0hTMViiphJKIxZO8YYBZNYvkAtjQ2kaO3hkM5gsbUKMvxKpJQ4FGzzZHTAuYWCDV8HwQ+lBCkQHo60FCLmoYTIjJKpgiUF9MG6TSlRypVioXDKJmg4xjTx14TUuGVE26mCBZiulFJKeT8N9gpdV95nNhMXHCCa80ZKHkLo+rP3sdKNlFpIZe0ghLxe3Fa1wu1QhuEARSlNNBFGlNaccyZ4sIRzEULgjHHOnA+7w/7HP/7xw8PDcr3CZFmIcRzH+/v7y8tLKcTo/YcffoiWqVLKWTuO47Nnz0B/RpMTh32KybvImKgqGYv7Ld6+FLrSfHoFKSWpOC/iRzBPDwVRQhCYshn8pxhjVTVtOx+GIQbkiPmJTdkzK06evpgqjOMwfTLNZD0F1IYWwwQkDbBTQxIghFgsZxNaRwrJFEjr0PWJvN/RlFJdVZQQYM3GGCxaHPa8cLoRjpFSE0ahiYacGEsuhMBJpkVIKX2K3vt2Vs/nc2Q/dV1LqZEIIoPBNZxOsCfyUCBJKUmlCCFopTZNg8vwv9s9NZEQw3vv4PxvGdB/vx9x/XjOBUiqKx27rqurCjncaAd0HQgho+lTpBMQlpe3ViGEkHxwhMFAElPVhMzaFoHFeR9CFEKavhvHUWmNMhI5ig92vV6XjUMIyWiCqitKqWTUF0r7BBxwLkNItOhHg7YZYzTWws8aR0ykKcSQPAUiXwIaNcZE5w+HQ4wx7HdIxZ49ezYWQ15SNK/hYZVBXpRExtZaU8FLkmTqumKEwoQhFaZkKm60QuXpQijGeu+VyhRyPIScEMc8ZzNhXsh6YWbSj0PTNN56pRRg7rptdg+PUspKcJq8TUStm3/x3X+8HY4X11c/8+3fu25mXIueE0uGJJWYN4mLREhlGIuJBm+tpcYKFjWnxI6VkCRaGlOMUXO+qlpWsZQSrStjrVot37x7+/D27uKjj9YXFzaGN2a0gjZNMyR3PnQXLy71pvnBq8/f3t/d3t4mL/76/+dv/85vfjeO9vd96zuc0sf7h4pyJhnH/AElglIbPEQqsYvDe6d7DtS4sC0QbKO19jz0UspxHNumgRkmiEXYkqL88d57iM3RUClFUwJRfTrWaVGlYIRwQl2KCQ63xFg7eghQmMg48cFOuCrOdDQDCKXoPk9vHO0ElBwYpcQ+neSJUkqcpWmfYpUiraeF3w1EjBR3tYmkiaXCOU9FGQAlH3bEFAZBtGyaBpSHKQ9GrSWrqu/7bhhAQwOk+hTCnjp/tLhcTid4Nww4uAFlsiLYhaKCFvNYHLi+cNJTGTwCZ+p87sITuWRWpJCmSh73O13DkwQmAZnNYbk0GCjNlOcU6bStGMvN+2k3YUnEGAUk6sv9IrGZklj8ytOe37QT8UAQi6ZBhPRkRGw648oyC3ihvMz24i+4/RhDqeLYFI2f9pxwZuH2r6+vSUHhY2GU5+6+tYyx/X4nlDTGVKxWqkopjN1opWeMEU9jjMa7QAIhpO/HuusTBQGC0TIp5cEWZyylYIYxlqlwIURM/gkdL5/mJtseMik5im2l1EcffUQIOZ2PAD5wuk16LDj9Z7O5Z7klzHxOEUMIiWbTp5QoobRpGin1u3fvcGQjFKB2oJRKySX2uPf46vOprxtNKTXWSK0SJVpltRbI2i7mq9H005AfiklCCMT6tMrdeu/9fr8nuYGaYaYQIrAehHSUzcFnTRss15meoaLD+xp6QwgJIYE2hcN0OlzQn57NZkCZh2FYLBYpUe8DlyK62J1Pi7r5Pd/6+H/6J/4nn379a9iG797d/8Nf+uW/+3f/3me/8yURJDGyvGguZgu0om9vnqMJB/enlIK1drFYMMGBGFprU6TYJ5XWMcbtdrvdbicxblpUXLCoCOPb/RYL2xjT1g2yoLrN89Hz1VJK+XC/nV7uMAyjHTnny+X6fD6Dy4mcueu6tq5jaQJ564DgXFxcIbPqug7tQ5DEta4x4F/XOT3DafvNjz8KIbx7/QbcN2utklIIdnf3FvV/CG63g2rwrGkaWckf//gV58QGQgjZbrfgjV7f3CjJf/CDH2A3vb17t1qtuu5kzGDtWDWaF/GxUIZIEHhns1ndzvq+v7u7O+4HxrKIOeMcPdqLiwZRfWooIp0rrs4tqDMoSLGbjscjYj4AR/Fk/g+waYyRMQp5B01yuXRxcVHX9ePjY854Y4o+cM2n/hCOQny4LdL5+F3AxHVdU8ZCjFLK5XLZ9x2l5NNPP8HFYMWC6Ar6sxBKAD7Qemp/EkLm87lWCkbouFn8Wa1Wq4+W+HYhxO6wJ4QJAZ6gUKrq+15KDiM+KaVzNMYopGyaZrcLs9lstVq9fft2OiDwjc6bvg8ZEZ7Nj8fj8Tg2dbDW4hF57/t+iDFCN1wI8YPvfwb0OUvEJFrXLSERZzTCbNd1kNN5eLiL7+UZqS3+56RQ6zA4iygXY3x4eMDxqrWG7va5G1JKD/dbqeummYWQcGJC6wBZROnzjSgf0N9KlKPmQkyuKgUHLWxPmEy64q2XUmIk5/ATefPh4eBc9/WvP2vb2TB0lKUAm4OUpMgXSQtzom3bUP4IITabDZBiJFTIKFD3RUIjIUpxkEzlEzXkrusO++7m9kJko8V8mLZts91uUX/F91OnYcrBgAJNWZPWGn3H4/GoeT5bUWgjw0GrBiufF9tYpIvj2OMdOZ85Mark2wUQYDigX758KaVEgwdLpWkalGypTKWDTUWLUIYUGp8DZhK+FyxgU6xlkV6iO4LVPuEAYIMppV6+fHk+xevrBULBlAeGwp0PITApqODn/Z4Qgh8jhDhv2lm93x0h0YbzFHeHp4e2B+aBzudzSuH6+lIIATs+U7RJ8euQe6KFUjBlLKA540XgsWutY8rky+CTi/nN5t5hGeTy3mNYvKoqEqMSwnt/Pp+xiiilL168wLPFoZBS6vseP38891LKu7t9jOTFi6uu606noarixGhE5PHeX19fhxAScb0ZrRuXy+W5G/q+r3WFVFly/vz5c9zyarX64osvvvrqYbXSgDKQhKOviS3z+PjIOV2vl33fe28ZYyFFElk+AQVPJHljKKXgegshYgoII1CJORwOlRLncw8mGa6TcHY6nrTWq9Xm3bt3zhmoX0IAoFktOeeMkdlstlzN3rx582f/7J/9C3/hL/zV/8df/TN/5n//ky/eMMba2QJOocMw+BTx1cYYrSVnTBTpRUIIKKZYk8YYQpgSZDqqKKU+pON+e3Nz07Zt3vMpMc7QbOvHQRQWqff+4uKC0Tw9eT6f1+u19x7ledd15/P5vO+rqlqv15gVWK/XSqndwyP2BXYBKUxN9I3aZt40jbGD93G5bI0x9/f9YtFoXb98+RrzoH3f67qaV7qudWCp359SSsfjEAn58PoqxtC27Xk09/f3Ylr3xphIc52AkIqzDYmdLHPihOTMm5VGOlpVJoujZSSFlBEGnmcYJRrp3odECaNCCGWtj9F7Emstgh/Px26zaq/XfLVaCcEkJ5QFH0bBiZBn771uWKLy4mJ1OPrf+o1/ajurqzaUsf22bRlDWZIrt74fU8pIa4xBCME4cc5NgpLGWMR95D2UcmRXuGyEQkIoAJSUUiK/q9Sk5Q+mRMs/EkJICFFrfd3UeJLAlXCQn06n1WqFIQ4p5fnYYc8/xdeQBJsnTuhTvRSdZ4wpIfHDIev4ZIYXfj6WthVwJQQXay3oA03TJJJ9fqeVioKWcx68l1JWVUXSRNsRGZkVgnNOYoKXTvSJ8RwxSRlKxerHhaFNjbzt6uoqw2cuEooOVu4rTsUncjgkf1hRhJAYM7m7UVVKyQxj0zSLxSoUXnZGGUodi20ss1RZPhdRJ5iir4p4gYc8JXaU0v3hMI4joxTTZ33fPzw84Ck5Z/AtxjtKOaPc2rGuJeeSEM85FZIulrP5ovI+xkBiCIQ6XbG6XkgpvbckESWlC1YIAXrChMsQQqJPnLEUI4cG2WgQUG6fP/u5P/KHlVKQeOdC1HW92+2sMZeXlxOsD+k6HG/gAT0+PuJ1TBmwtXYcR8E5Yg1WjhSaJDf19qXMzQMfbE6PQmBMMJZ3BKCKVORHp+UXyhwxMJTs71RE3tMT/YGC4HtS+hll2ZPp8MYbwQciWccBY60VQgKY2G63xpjLy8vZrIFyU0qpqho2sfkwA8UJIcTaEQcA1hghpK1qzrhxnsZ814AtJJM+RtRCGdEQMsZoDZT+wjAMhDNrrR+C1lqUro9zLoTMqpigJV74WQhQ4zha57DHadaozSpjpAzm412Mw4D8gxYWttYSk2t4XK7I309XBUCNJAJUV0pZVaqqlNbaOJtS2mw2Q28g14hiqWmaqmq67mStI4Swaba9zDhPqI0oaqfAX2zxz51KILyyEIKUebCdQrggESHEaZ85QTGl4D0ak8jzrLUy8VxHEUIolUodDwfOuS7iv/hLzhhi7PueJYIf4EoCTAHYQfOou0dXbGI6MMY4Zc5bQsjd3R22yfaw3+/3i8ViNmvR8KeUSikozcJq2+3WmXGxWDRNQ4rSK97RRCTHEpWMTxXF6XTquk5o8FW5c84ZaxmPMd7d3aEZ1nXdcrNWXHTbx8Qq3oh7d37t9kNDf7L9yee/sX12cXXZLpqqXq7WSaR+2Pfj0Lbtp+2VYjwo5aQkvVeRrttG1iRYF51XRdVBMQrT2sgJryXhqW7EldhsNrPN5Uo19fqDyx+++eqz+5evjo+P/eF7x5/Qf/GLhBAf6fXF5d1Xr453u7VqfvqTT1lMX37+44rwRiiyWAn02IUYx7GZz3AETPI+056lxbluHEfAeVrXU1bNuWRULJdt3/fd6ZQK1RdnhBACidg4OjOekWZ57yElQXIDUsSY904G12LATCXYTOGJwgNjjCsppRyGAVL72EEILChFCCGcyWkUZirFU0GHm6bhknoaQ5HKRVkyodWpzCQBnxJFHhoLlRYS8YSLkdKOkmWyMhUIG8ciPhBRfVp48/mcUsqlzBhEISWVXPR9hzg90ZFIxUZCF332KeuYQuX0FbieWBrMuJK+753L6z8V6bAYI6UMQRWhCY+FFJ5yCDlKeO+mp8HKIBdjzHmHUyyGrPeFa/DZuDjb0IeUe5DT3fky4koLQZU8ISBP//4UdAbaiNWCUwzfgkyDF1va9L63l9cwKewE1EUhBGNGSimgzCnHmL6UFWXVVJgcE4IPTA0Jz/27uxDC1dXVON6+e/duGMYYYaxHGBMsMTtYwTVJPKVIE6tklVhKiWqpXYSQUaKUSqEp4SHErjtLLlVdE5KB9aqqYvKMsbdv71NyUnLoREMNdhgGxnJzNB/QKovpTQO/2GJIm5HMS6lx4tSNttbqukEiZ61VKpfTANpms1ko2lyEUTRxjTEpCbxLEJfAtVdKaa1UlVJKVVWdz+fgEyQUsJU4kyYa5HKV0kAzCeXz+RxbxkRzPp/HMVBKXrx4Vtd1358ppW1b7/dHDDqklB4eHmaz2dXlzTAMj4+PSHtCdMAadrvdRy8+SZH2fQ/TbFwhiqCLiwuta2utEAoaAl3X9b0Bjb1SehgH68yf+Hf+3Z//V//7z67Ws0b5YGLsY/Lf/tr6Z3/q3/0f/ht/6O/9/X/0q7/+m7/52z+5f9VXIkv99q5PuX0CniblnO92O+OsEMp7350HdH3O53PfjULmxTabzU6nwzAMy+VSqYqVeaC6aoNPwwhp4FzQ0aL0gtc9DENMXmsphHx8fNzv94Nxbauk1Dj98b+6rr/66pWbmc1mg1pJcsEYO5/PhFGtNTTodru+rgTSgK47TUoR/ImCELqt19fXDw8PKSUpGKXZUxSBt67r1ababQ9Yh59+41PO+W/91peXa22tvbu7W6/X8/l8GLvZ/Or6+hpx7GK9cc4sZvO+H1E5H49HxG1CJOdys1m2dUMIEYJZ7wiJ83lLOPEuvnnzZrlcckohS22MCT5hdT0+PuL6sQacc6vV6vLyEhro3nsIRp9OJ7jaINQDCM7RIBBvHRyqEUsB4lOWJiBYCMEIxa+jnprNZof96e3be60F9FuOx7NSAmcBFLHxxC6vNjH507Gbz+d13cYYcTGMEbCYkdaiKLi8vLRmOBwOfd/jesCJ45wrrefz+auXb1Dpb/c7Sunl5aXzRkg2jvFwOOAhaK2vrq7QOO+67urqAhRvay2SbQy64Rw0xoCDGYqQEZpbo+lJYpjjbttWSklpAlQKpmoIEUc5IgYhpOtG59z6YmOz01IC5otIzjlHAozOR9u2KYWUwgTOTreMX/n8889hMANefAgBFOm+H6XUl5ftbDZ79+7dw8MDWJOPj48XFxdYzzHGSldoNiQSQA0WQuy2h9lyMZnTGGOMcSnlYXMMKyTUs0qmlMbRcvJ+OgeY2sXF4nA8Gju4vTscDvNFi+iHrB57CjUyyjFUH0IISvj51Hf9CfmP1joGSFHlrmeMcTAG4RSM5vl8roRSSoWQmyVD8XWHORNSu7t3D4SQ2XIhhHDObLedc44UU3pChPe5F4K6gBVqkTFmu90yxpqmiYEEn1KkMaXzqQeMjtncCSaaWClTlxcXMKFPeMtCiPP5/Pr1a8751eYC2CiMGVOxacFDs86iMASSCBDm5cuXWAapkKZl0YlFexLpBxRyjHGg02LYIoZhwjpUMRzCu0boEFqhXTS15Akhb968wcVDsRAICZYx4wTgeEopRut9PJ1On376Ke4RE9v4tNOpu7m5MWacKPOkuFXD0ZRSej6fY0xAsbA8jkeIo5KJEoFadSq9cYh3XTc6SylFtS2LFQSiB8rhh4cHvKOQUkgJUwuMESHE1dVytzsIIZqmMWYfrBucp5SefdBaG+8To4GkSAllrK7ri4uLtm1duCO04nCqYlIJ4ZzLQzYhpJRmM75arU6nE/IQyJQ755bL5fl83u/3V1dXUiudIpdit9vN53MmOAqlqqp2ux1g8cVisV6vj6d9jHE0Pee8aauuO5/OJzZr0U6QUvZ9HykVjBV2tsPhEkIgLuKpjuNQ13ocXVWpEO18vvzVX/3un/7Tf/rP//n/7C//5f/yz/25/+SX/9GvpxRWq82pP1VKK1WREBNVUhCSWAihrZvlct3357puD4dDCI4IhpzHGOOcH4YhkNzf6vrxdPJte66qKnqPJnpIaUIAGBxNipnzrF2gQEA3Wkh2eXWLBzilx6fTKZTBGiEEbHuR+p4PR0rpfLWc8OsYo3UjjenF82fGGKWq5WzpvX/9+jUmyRaLBdLI1WrhvT91R5w7sSGJEiGE4qoPp7atm2cXQkgOfsTQj7Hk5VOVQoogZiwzbtiTgBKwfM/nM6YFQxY9jBMxEOUc4njMGr5JSkWScC5wLlOiw9CzJC438816dnN7pelj0zTOjtYazoiSlHPCeFSKDb3jjP+Dv/93P/vs9eEYX7z4phK1C3F63FK+p0ZOKK3NlmIUqZUUGue6lBIsV1LYuOTJTCUijrW2VEagZ+ZYhlgDcgp43DjRCSFKyanMqOoahSXn/P7+npZhCgxc4FKnwe2prM2BSQg8safVUQghFTcb1LQFzVeijLUCySKFiRnKPCyCFBai814Wo7xQpm5DVmfPhKZQRmhjtIwJPE8t4fc9hidCUQVrC1LKpq2QwZzPZ5zrWBhoIxNClNaHwwFHCC6PlKuFmAYaLFLK8/nctq2UIgQ3DENKFWWpsLMdXlNdZcfCw+FASKbB8ixaT6cbn5pjSIVDCCnltso4nvu+V0pxIc7n8/l8rus6O4aU51/WEhnHsV3M5+0iRgK3X0pp8NF7R2gcRis55ZRSRgQTlEbOiPM+Jh4z+4mlxGhKWirJ8wCU94GSzDlNKZHgKaVMcmtDXdebzeajTz8B+CWVAuFltVqZcRwKWw2Ao3OOpFTX9X6/Rx55Pp+xQ01hRkC1AL9CCAHXFREcBfBUgWM7IBNFFYTMb7Va4WH6olSFwxVPCQ8Khyi2TCi6paWUyoCUUmoac7PWcp5RbEQVDFGyMnA0YY7n85lKrpTqBxpCQEMSZvcFT2GEUs75VOg6b7z3MaWpACCEABy0xdPPjcZ7T3h+Gt77RMlEa4JZClNqIjm6GKqq4lIIIYY+NypTSs75qQuC218ul8YYzj1jAsk345wW4wVCMiNss1nhFnBHaHQJIRB8pMTvZradECLL8BV5VuQHjDFrx+D9ZrNBaOr7AT/sY4B/gnMOGiPwu8BXICwIIaoitpOKKgXWrchxA0khnZbH9ABTmTZFFMLAMoYzJsDu4eHh+uamaZq2bUlpFAUbYowuhmRtKgD9NGzBCn3+dDolQhiGSQmZzWaKC+ccSUG3M4xl2OIx4r2FIQbe5tSTQ/WSEnv9+u3bt6+rqupNpsZsNmtZBBlidoFznDMh+OXmGRDkmLXFKebU8NhJ6c5WUmEH8UL2nCDIKZmWUnKeYTj8o/GOkHjuT4uL20CGTlA/V5HwV2Z4eHhVP7xdtrNP2MeLxcJ6uz1u18S/0GuheVVVrVBej64bLPU2BlXLs+0UTYSL0Vrf9y54KWU9n6m2DjyuvvEM2tAn7Xf7Vz98/eWv//gHb8ZTmle2Ts2CE0LMMLievP3i83QeL+ez56vbWTULp8Ebm4QavXG1897D3Cn50K43luaNj/Ugi5slqg68mtI4hH5uAkQiuUBJI6WkKU2FpVKKcs7KMZdKZ3eqQLB6rbUpZbGCjEjCk6TS+EWQ7xDQEFVwndMkr8pOD2TaQby49mExy2KoADRNCMHD+6xmYkMAtlZFFHjaEfkYTZFRHlL0Liut00SQYODWQNXBYcpLFx8/Oa0iXOrUFZ7P51MRwsR71eNYSEChzOhMSGiaHIkZjSR5mMRSwjknjIYUOeOUs5iSjyHEEElinBFGp8oNGxYHKMbrJmQWXyTKSC8txGSkXgj7iFdT3TuxluqmwjEd/Hsmcih63HhlPoYYsvax/N3NsKlM5YX3J4vhJJ4DfmzacQgvKA4nLHjqQ9NCo6aUCiGnwoyXORg8B/xkuUE+9eQmxBlNAuSEeCZTIsRlFl3hnH/wwQcgK+H9KqWMs3d3d2M/CiESJ1Ko4DJiziXjglVVHlPzySulUgjBp0zu5kwI0dTNYrGY4GallPPZWsd7Swix3k3c6nEcrS19dEiHFYmS4/Eof5cHlyOEXFxcxJicez8kh0ANj5rZbEGnmbmUAEI5kyX+I0mLxQLDziml8+kQipNwLOOSnHNjg7V2s750KphksOzxn+q6rqv2fD7b0fC6RkB4eNz1ff/ixQvGWKUbIcR+v0dXmzEmhPLeOhdwmiCRwH6H/qCeaJ4kW6c8PPSCvwad7XTqGCM3N1evX78OIc1mjfd2HD1jgnMOZUlKeF1VwacYwvJiNT44ScgHl7fPNhetiOPxXnAnePTexnjqjuST29Wf+g/+xL9n/8SXr9/+9f/33/jx28fD4RB8MmZ0zs1nM1QWnHP07GMkdV3tdjut6nfv3n3yyddcNnzLB5a14wSOkKKbHHxKsUcEJoSANIrmDWEJrCsgv0KIcRhj7KMPjJGm0VIqFKKMsf1+n1Kaea8EK+VAbJpmGAY/jsiukQcil4DM1wTRTqUfpMCUUnYcqqoy/cA4SYnc3t7iWzabDdjlXddFkhgnjMqU0suXL1NKv//3f+Px8dEMg5SaUnpze/XZZ59tt1spJYnp+vqacxoCo5TOZrPT6bS5vEAjYblcPjw8XF5e4i3vdrsQXN02qK43m02OV4l5azEd671XsoplzhVqHrzoTpzP/dXV1el0kFJChWaqdPA02rZFHiuEOJ/75XxxPPZac07Z6XTabDYYtz2dD1OZWdf1ermCHG2iOcigoGxbgRlzXrJTVURIUXtiFObq61dDb8axH0f77t278yldXCpgak3T3N/fo1ExDB1nRClBpxnZukqMhhB2u92sbUfTU9pOaOPpdLJmQDfxeDzqumKMO+ed81pXs9nsk08+ef36ZUppPp93/QlBjDO22+8ZYzGQ3W632WxY+cM5RzKAYc3R9OxMtNaLxWK32w29WS6Xu91utzsrxfHMEe1vrq6vrq66ruNSTGercy6l7H8DVWiIK6aUuq7b74fZTELVBHjZlJkLIa6vr/eH7XZ7gGociuhxHPfbg66qzWaD1PHZs2eQA0akaprm8fER1TdeHI7ph4eH66vb5XJ5v30khGitnz9/HkLYbrfeWyEENhTnnInJsDFhAg+GkJitNHZo2xYQ8/0jrEEDCN1IkFC4IZOfUIvuPKDWwGFtjQ8+xZB13pA2IGVNhZIFIMJaW8/qTz75JKUEa+JQxH/RUIwxUlLOvkR00+z343yubm5u0M6pqgps7tmsSSlP+HElsfC6rtttD3VdU8JjdKhJuy5qHVgZBUD0sDY7doSQ/XUQ+adtCJQZyRv+RWt9PI5DPeDFIUtcr9e73Q5hKpCEXxc8a3tGklLEVFNw7oQL3u12y+USCmMoi1AlKVWlBF0+g4IXOBrgpklsB7Fl7Ho8z2Sz1DuiAYhrx2PvPXn+fIMzF7izdZGKnA5RllKk3vvlcqmUePv2LRKGm5sbgLykjMziveDzsc7xytAeQ5sBWCSOZsApqdALJkAJ/yJkLnhxGb0ZBRU5wbCWl2G1iS2BPB83bowZrXVZVTldXKyRmf/Mtz/5/ve/qGs25c+cc+j0GmPamcZDeNhmPpxPwbt4v3t7e32NfAwR8qOPPsJgR4xxs9m0bQufUsQEXP9gRmMMQu7xOMzn8/l8jokffC8ABEIj46Su6+3D45Sp4mwFMPXmzTulxHK5VFLd399vNpuUeNd16/Vyu91aa+tGE0KWy6Ub3fG0R+7BGG9q/dM/tXp4vP+P/+P/45/7c3/ur/7l/9tf/Iv/xX/73/yNu7evFovlZrlKXMCMYdbOoUBrxsBZTJGfjl13HrigpCJKKfTDtJBVVdngsTtUpQU/gmleVQqnwPl4jE0NaCIWdbi6rtu23T7ugZVzzpUWnGcmNXqiWN5TSRUm2a5WoczBwjD9wFXuNygufCLGYTggch6ALQgqpNBIv7XWxo6vX7/+4IMPsMbGcdStVFXdbTsv+MmdAiUrpQReVdd1Pjgusw0OLghNVCSj4AYSQkCNzlurgFO4SkQ0QbkWkhCihEwpRcqMMVorDGOO1lDCKWNay5QSiUlQdjjs2pptvvHhrNV9N37x8p0WUgjhnWGMUZo4p6M1b9/e/c73f2QtZ2J5cbVWurExeR8x9sgYG4ZRSulcFqWa8NaUknO267rFchZ8wD5smnbqKCIVw8YjhVMT8kRtz6fJjhgmCDIWBrcxRvIMbSulvM86d+y9iXkexkSYmM/nfd9D9g67YipQQ7HOe9qJQraNt2CtBXnSF8VntBN98ZEPhd2D82n6cFTjsqhFI4HAvyilzDia4vzji5AuUuqUG4DaWktiUk2DapMV4QvkbRMw5GxQKtcGuHKU4nhi1lrnfSjyYYwx7yMOXV+s5EgxFVytF1Opln8g5bG4vh855zGQxUIXnJEwJryP0+x2KOPJoZCXp+eQUgrB4QlgdMh7b6yt6/r6+hq9XwjXrjcbj+a/UimlEJIZh7ZphsFxLmIghERCyGj6KtHVcvH1b3yilOhO55RoiiyE9NXLt+PYKaU5I+M4UMGFqAiBT102TZoOD6BdznsuBN4I4cx7L7VSWqNdvNvtKCGicNBAOgjFV9cY0/f9s2fPOOfL5RJoJk4L1MCqdCCklGbMDgkpJWhLYSNQSgHa4rDEw0Sa+L6rVv4ywSJ4yKHIz03FJCnz1FLKKU+SUsJxghCWEuGc4ERHmiKLbiMkfUiRL2dloqqu6w8++ACJEU7W4/EYQqI0+iw2TVgRVEVahvHPGONsNks+u2uizjfG6EqhQD11fV6KMo90mNEIIax3igs8EJTHsnSqphS264YJYMXGhNQA5zylTN5hMB0uzSE4mK1WK0IIWCc56MeIIy3D30/oilOkxcgnZEC99+ARADI+n8+Ym44xPj4+tm07ZL0gRVJOO4DpYBtiLWFfP0XNkF0hHJ3P5xiJlCKlhH/HnhqHsfCCYYeYGwxCsJQoCeQ89Jzzjz/5xJdJCMa5837o+5SS1AonCISN8TDrpqHFewRReijL43w6VVVV1zoEx6jAFpi6cXAmjMUJDShDKiIGjDGfPEqIi4uL20p77xeLxbe+9U1CCB6gLxaRjLH5fJ5CePny5cuXLz948ULrinN2OBxOp9PV1RUCiCjcE/xiGaKsZKVDyJD0REKhRc8BBZ6Ccbwzh9OZVxUX1dnEniZezYMLYyT9w+HV23/GGFst543SlayO4/jucVtpfXtxFST//N3rYN28nRFCXPDr5kJpPvAUCeOiWa/XXOo+ei/Jb73+YnfYJkbfvXt37M5HN5JZZVtN57UjcecsiSl6n0yqqKjq2c38YlG1cbCpt2T0qZazxSwx2g+DUDKGyAR/fHyMOrcZQggYMsBqQYWGIIa1hHQipKyZyxjDIYi3TKA1T6n1npcRATVJJZSTkRemHgCyxWJxPh8B84EkiK4D8C8850l8MBa6birtMezWKUxN2BZOHPwAwmAqWg2pION4j4SQvu9PpxN4dtOBhdU4DAOaUrqo+k5PBi1nFJmuKBTjgjH4j83FitHl1LczJhsJcCmDczEmShOI3ohCeBei5AkT+tw0LaW0H/spXk0gMivUoVBYkOCqe+8JTeV0plMLVjyRORZCeB+sNYg2gJ8mNIQVhRCc+KR0pqecpx8GUfS4kcXBwXV6Tcg0KH2vU8QLDXm64DLBFie4GVEd1zAFgQmFF0UjeypcpwbDUzSZFGkdFGPpyR9SOArO5fb2BMezYiwJqtRYnJSmjA7QwDAMQz80TYMf42VmBaTj07G7v79njCnVwBudkGjcSCm1w5hYSiR6xkIIVREEF0JwyiiFo6bA2ZdIZhsolTuLMmbFKij0ee9BmcSaVErBoDz9bq1qVhxQMSuCs4kSHoILIXz44YcYGZlqWprolBtn7hglocyp9H0fffTBWWsBUPoQjsfj8+fPGWMPwwMEdkIIb98+Xl+vUXFgSQ99nxKJMf70T//05eXl3/xbf8daj+a3c07J6vLyEgVLyFMIatq5+As6JbA2SsVQyFobgpNShkCwxRaL1TAYrWXbtpjX1lrDHK9thXOGMUI4UbLGx567LoQgiXz95eE//T//l9/8K//Ji5sliSONnsWgaXLnveK1Oz4GbX3g33xx+7/6n/2J/+v/87/abrf+iePCMAxCMKxzrO3T6RR86n1/PMaf/OQnH3744fG4d84JyaZSc6rXGBMksRLNYjvTmJ1npfna9Z1zjgqOMIKv5pwzqaqq0nWDzwHqjaDKOb+9vZ0ybc5527Z7s6uKgRh2xOXlktHs8QMo5/LyEtQT4CCUUsXVYrFwozl3R1y2976u9c3NTYwEonCPuy3nXHCSUurOHTDrqqoYIVKK42kPyx/E3hjjZem0KaUgtD0RI1KkV5ecEOJsGLrd8XiUkiMmM0aatiaEIexzzkHXzVuJSyHE+Xx2zoGpgD3edeZ4/MlqNUPLE1IYkMWYz+eYNH/+/PkXX3xxe3v7+Pj48icHIclyWbVt++bt3WLhUXEjGgBT8NYhBAkhEs24klJqschb9cWLF9ZacGxRu3HOAU+gOgakiF8chiRVjsxdf/rwww+llKfTCWSa25ur+XweSRro4GL28ORV7b1/d3fHOe+HsxT64urSFNvwcRyH3shs15G0VojnbdugfEBPC8UsI2xi1xJCHh7vzufzZrNBixRrFaOrIQSguhmeUPU45Cr1fLbWBikdbOXAIkJsJIzCI4sQcjqdnAt1LSH6jIIdK8oYs1431trT6fTxxx8jK8M6x4NaLGej6a+uJA4ppA0gPAkhdrvd3d1DVSmhs5Y0IpsrM4W6eNzFFHOjLsYQQteNWovTaeScX15e0iLyWRyPaEyRcw7D26qq2rpG6+txe//ixYvRJJQ8nPNKCRfDcjYH6joJraKngr8YYyjhoMUsl0tKaaUbJSt07qfUd7FYIbBwnjiXWqupWR5soEWNyruAddW2LUnsdOxwMMlsQ5dUpJzzxWKBNXw+HtFG4pwb46oqG1pGSoAzCCFur69DCJRza+1sNmvbFiJ4QkjMwUyUak4oSwTgphDi/v7eez+NL+AieRk4G4bh9vb24sKN43geeuwjkOUh5gOfNNzOallRSkOK+8ftajkjWUOvJiTgnYKAmDej94Rkdx9fclF0R5RSq1X95vU70OoJIWArE0KOx2Mm6QvuizTZFBjn87rvB6011N632y0TfLlcrueb7nTGTkG/ENstRr/bnVG/Ay8+nU5t2+73e0I9FxQzN/P5/ClvCSsZm0sIEaKLyZd3l6vyCbxKKeH4KPVpSinN53M3Os75arWKMZ66DtIiWN5SSutyhUhovL65vL+/x6NbLBbW2nEcZ3VT13Xbir73l5dLay1CYruY26IrjdeXaCZufuPr37KjgYklSterq6vuPCTKq6oZxx73eDqdLi8vY6ENSSkJowATUMT93t/7LYgyI55MeRrjRDHV970sA23IAEMIlWSQbILFqE+ReT8MdhgGziTuaMpFkctRmgY7CqV8jMNxeHzcffTRh5cXV1988cVf+PP/6Z/6U3/qP/j3/70/+kf+8A9+8Nnf/Jt/6+2br+pmIbnUuqIxYQR5dPZw6KqqOp9Pu9242dQiz0GCNS6klL0Z0TkDDJXSQGjUukFp4L3XpRQCCI6XcjgcsCDxcoFtHo9HPKvN5YVSyoJaV/L/vBhIxspwaE5lTiDJekcIAybmHDp8yRizXq8Z58knQhJ8a0MI+/2OCSYEE0Lsxp0LsaJ13/fyUsbgx3EUocycCiEIJSjKsAmBYE42BUpVnHPnRqxmxhjaX1prTAh678FamarrlFII0BidpC2TkpwxkVKeJ62qSus0DMN+v/8Xv/arv/nbf+90OrdVq1UbI6l1JaXEAKBQerX+4Gq2dl6EKCzhKc/VZgoGAsSUHFcVajxAw/Li4gLRcxxHIbJ24YStl+oiP2hEc6TCUxESYpigGTKJw2oNYJ0x1ve9UpJSRkjq+94FPxVmKVIlK0qy+kRKCeHpZM9TjYT8ciw2o9hXGSwro6NT2UOfcBsxk4KE1RRdGHw1fBGV0lBqV7KilAqVmTuEEEIYSYwSrlXNGDO+994zKlA9IiLE6IUQYz+Y4i80Fav4XsQ7733btuB7UkqFUD5YbH7kItNdzOdzpRTMBwoSOjcmm1QQQtq2TSQYY5QUfZ+nzFLEPBrXuiaEMJpVKUBkQ62rtY4x6/rhPEawABcYj5pzLkRmPLUtw2NPhEztOBwAeIZRKWctHmYIIdHQdR2jKqUkuEiJpEgX7ezyai517Lvtcnn1xRdfhhCeXT+7vr44HNl+v53Pb4zt/+E/+off/j3f+fjjr1vjejMyJlCLci5ZIm40gbnjYXc6nSB/ZoM/b7eUMzYwYKygpk7vRRVHuNVqRSlVUoIpsFwuOeeTy2KIWS9sOja8967kGagrkNfirilLk3omK2S0tm2BuXv/vj2A5qF3EXkPo8wndI/jBBkDB8frWK1WQJxBdZnP5yFk7hgtzDKAwjEQxvOAM3BSbLFK12AEQIYsFCourhOJGvKJ3IylEd+lhJxg/bbNOQdyxKqqhOR1XT88PPhInQucZxi9NG9pXVes2Gd57+fzubH2/v6epGzTV1WVUHIYhjiAxRnQGE+Z1k04p5wL5zNND1sV1I83b97gPMM1c46Gv2WFKFQXq2WURsiPARlMoD++FFJxs9kMe5YQslgspsDIOYfMCaBAvFZfutaxzL0OQyeEmn5GKoWwOdWHIQuuZUpCLCaHhJDZYu6MdcEzxqRWZhiFYIfDgbCkZNUNPWCREIKQ0hUFHlpm86fECF1rUjoZYOh771MKxgzJZ4ySS2atpTTFopRCKQWWN6EJWFQYlUWW9kf+yB9RSozO3tzcuDIrjQwSiTKqF+99dEFJvZgvGeNC8BjjYjEfx9GYUWudEkkpEkJ8cFDBRvUlK52jR4xIplF1DMNAKQORBLdWt7O2qkXV7vvTnDRVXTfBUiYjs9FaWbdQJYu9JYk8vHr4lVc7RignlCaipUwhOueUG6WUIcbtibFBnPuOEEIYHb/8kTa+t2MX3UN3SKzoGFJCVOUJt56Qk+VKisSZj8GwGatuVpt5EpWJ466TiepEA6Wc88Ga0VkhROKECyEY987Z0eVWaHAhhNPpBK4QmUD2GAGS5qNqucBi9jGDzmh5YlVPa2mKMNgIhBBRBApY0cEAEFPXmO0wMcbdblfPWgDEE16JjUYKCTqjHkrlzNV7pXXKtpxC19WMzPF2NKNwqI8kCSXRbPbW4URzxSIPCd901yFr+8ZxHKumxnqY4hvWJHC3fGZ5h6wLO5oXqjIrygy+uNY8Dci8DBP4mFJKIXhRZMFwX4mS4/mkRJaawTPHzxDyuyj2WJl4yKmwlZFExRitNSn7+NHpV6ZDARepteYc2zCT0ENxifGFoKSeWCuzMsrDGPPRMc6V0Gg3cs61zoNfrPBqI3kvkzWh9rSIU+NiSGmnTSAy9MpAB5uyNQQuBApbND1xMYVSmlLu6r23aEaPMxZ3QcANEATUupqili+aJPgWrAc0YKbuBWFZmG9qWwL6vL6+TokOw6B1LYTY7fcvX74chmHobIzIGAMX1JhBKRGTZ0IJlnkMs6YZi/trsNYOo1QCbk44gNAUF0JwTmFt4L313sKmGPF8GgKrqooLGYKfcidU8nmSj1Ap85t1xemaF0Eb/O98Pq9kDoBD1yMbGcyIpjUUnFeLZYx6NP3EsYAm72q12m63tIhoYTViy6eyKrz3lPLD4eScQ1TvugEWYd77ELNcFfJnfJQvIwtYA8fjcRwsMBfk7VhOq9XKGGPGTFi5urqKyR6OO6XFarU4HTuwuhaLBSDUUKZnjDHtrBZCcM8++eTy8dXDL//SP/qD/+v/xfbeSMI4TSQ5QpNgUnLJhWCUfvXF53/77/x3//gf/8p8Pvc+D/kJzkMIl5fXb968OZ1O6/WaCc45r3TTNM1+/2Xfu4uLi6pSx+MRupx4xUhm+r5vmpkUUEEJ5/P54nK5WCweHh5QvmLjcM7bYoYcY9R17ZzbrNZKqYftjhRVNJ2VrwPALABAoai15ka1UijL0fJhjMVAhBBVVX3jG9+4uLgAIJVSqmqVUgwh3d/fL+ctXpy11rnMaX14eOBcYtRXakVJDiPYSqmM1U4DqShRu67zMQ8xxBj7/rxcrnGb5/MZ0kkYtAdwhvUA4GB3PCiVWZ+SwYEzEEKgH/riw49fvHjx8uVLNC/xgq4vLx5329lsNmkHpZT2+/1UE719u08pbTabGOPXPv30fPzu8ej7vr+9ve2HM0np8fGRFL14KGymEA+HA2ptsJsppevN8qOPPgJ7Gk9+korCnsU1MB7HcYyRME6hK922eVYSywPEdkLIw8MRyjlCCFXp1WrlYzwej3XdDtbUSn/wwQd918F8DAccpXQ+n+/3e+tGwZVzKcbclMWsOi+y+LbohzCStdETSA+qHsZuv99Pye35fO667nQ6z+ezCX2rdFNV1WKxgIzPfL6cHBon7qr3fhgGJqDwYOfz2fl8do7UNUE48t5fXFxord+9e4cmQdu2TIoY43K5PBwOeLlVVVGWoPyrtUZhWNf1OI6rzSbacO46xtgHHzxD/QhNA6wuqFQLITy1ONmbdoaDGzvik09eKKghHw5v375t2xZzllrrzWaz3W7P/VFLWBYlkrIfNaV0t9t9/vnns9msbetx7KuqWi6XhDM3mrquG0ofHx/Hrld11XXdqrgrQ/ESqUVVVa9evVFK3N7ecs73+31VVdPYqC90rhjjzc1NCEHrOoTzNAdmrd3v97e3tymx4+GME8E5t16vZ7MZY6KMWMWqag6HE3DAx8dHwN+EkMPhhL055SEFAgqcMSDUnPP1ej0RdZGlY2chT0CuEUJYr9eTHjorEmSxkJ1xIqAqJIQEIbSQzrnJQXo2mw0241QgCU1qxchMMF+LYYhpMfA8xsTQSxiGoW1bDJ9dX1+DSqyLv1TXdYIR7z1GIvCZ8PUBVWK1Wr1+/VpKeXNz88UXX2y3W3RMkdWcTqfD4VCp3GeadFpwGWDHv3r1GnMJu90RLzERx4tCIA41UtBkKd+bnKfSzq+K0d8EJYUQIg2MMy5FChGabFLK9Xr98ccf/+RHPwH/crFYhJSgWwA9mUQCHB32+z2khBCNJ0BMKYHcmDEmBLm5ubm9vf3ss8+6rptaArGMhBJKOJNKqXfv3gnGN5uNt/bd23shhBldCGE2DqxMxuOIQSWL04dz7oJHXxmkDeSf4D6jD3pxcbHdPfjidmitxdZA6F4sZtHZ7XbbdR3cIwc7dF03nzdt28JXBofIVG6HELggWgvKUowxUqJk9aPPv5wv6vls9sMffP6f/4X/7F//1/+1n/u5n/uj/+of+tnf++3f/M3f/Hu/9I+++5u/M5u1s9mCpADUu+uHzXJV3z6n9M1iMWOcjHagnM3bOXEkhAC4Hy9ruVyi0YLJewx54Kam1AjzFqxMbystDofDxIKfzWaEUcaI1q0ZshonAqYQopIqJdCcaV3rENJYjJ1ICIlSQuiYvWdra+2XX36JmKzr2nvPOFFKY2HEGAY/NnrR1s1ut8u1j7Nc0OQdpUnsdrsY3+viee+ttTHm9t2T2EGwGRjjnHNKmZSirnMqj6RcCBldpuHg5qWUnFOcXjGGqqqEkDGbkBPOeYiBMsKpOB32v/ALv3A+Hjw7aV3tDmE+Z6vlZaKcyWYxmymlmOCJMp8kFTrYSFKq6pYQ5j1sEARODtAipJQhRGutEBjnzMqAMqv6Zj4R7g69VsRlUuz10CLjnE6kP8oZL+7ASFsxkE5iFpwNIThHhMhs3JhyCp5SEjy7JUwJEyo6UEt8YSunIpeD1p8otGvUn23b+gLH4K0hI5wyflTasbB4Qgg+2KbN8yCU0lk9Y4zdPzwYY+bzORIvrVRd14mEYRyc99M4Bq4EcEnTNO28YYSHEJTOhD7GKaMMLW6EUdANquLrBb69956QpJRq25ZxjoZYLOK/WCfOOaWqEBwg/hjjaAbvvRaEUUpS4oxJ3QrBclMjUsozh5RSGkNKJCGBQ0GIlwsG6FS6I6GklColU/bO5rnNGyMv6iLT9ePDuRD4La21C4Zz4U0QggspvIeSoPrk049+8sX3f+d7P/z8x/Th7rUQ4gff//X1en2xft60/Nxt/8Z/+3d+57c/+/bv+c4wDMdDJ4ToTb9YQA/LhTz/te/Oh6++erm5uNhcXX68mOu6mhZGSolxKhOjVE5LhZQZYeAygCYho4G1ej6fwYzGOiSFe0ISQ+HNGENHHbr+KSXoEU/LKYSAhM8VtVNWTLFSSs6GUFxxpzyDcYpg8hShmJYxy3ZVGEtPOLEmLJUQQgmnNEqhhGSujDMDj3DMZeSoENOmKhe9B2CFZhxDCCSlqtEhhN1u11Q1EmJjzJkxkhLyDzy9SMhgTCp5G+ecsKzWL5RMIcYYKGMkkb7vCWdCiOP51HVdpWrBORSrSRkQQzj2RaQYaRMqw5hoVSCGEBxjBPQfbEZkQiEE50IMATkN2vW8KKmN4wg21m63m/p8Sqmbm5thGBilQojDYTfhdMiWBMnkMlUr796TECdqhvc+ZGonr6qKUo4qOqXUtC2WCppGaCwhxSQpMCIIoZwyZ52UUgkZnCeBTAvAWjufz4WULtgQgveZ361kpWHSVXCEVNRmY4yUEDS0EX4ZJ6PpLy4uYvKM0CeQWVQqT6SmwjrEf6KF5EiLDNRsNhvOg3OuaRqu+LKpcd6hw4e7w2Iei02coJwWRXLnvHOWlRF+Ywxwq/P5LAsHVmtd1/V56K01tBBhkAbhW6C4Iso4mAlRCpXGFA72p64+GTlJSslKc0IF44kEKrlPbr9/WC3nwbrBRedccD7GGElkQuqqSpH2MXDO9+cuD3BQEkJghAqmmKh4pDfXz33KqGVVNaqumtWqt6Z3JjqvCKs4o1VY1W0cLLXOn0dz7lTVMCaFFIESa0ZVaUKjZCwREmjSbSNjnCBFqdWyqqcwS4rLKxYPgsDovXM+OE9IksXiNRSOLaDhWIRcCvCXCCGEMVWCWPXEnQ8n/uHgXr9+ezodlsFfXFzgZOFFNAPB0zmH2m/COrXWpuC/zjlKIwrLaRYSdQjuCKUCIu1isSj4HYcdJVZpeiJqL5TURSgZN+gLscJ7j7qaTdoXnHGaCaSISPh5HwNjjEuxbjacc3R8WZnaSYwppY0xKRHG6BScKWdmHIGtN7IZxxFdf1r+5LPgiXAzQDec+1jYuPgJT0TWlwovbyxDJAXL/V0zVaTwgkmZTghFmZFz7n2Y+uVcCsYYJdl7lpD31AEE9hgjEDccwbygh1MehVwLXzHVrvh8wBCpSAPRItaBn1FFnoUU64uJvBZC4BzkZeeLnw8tjqwxRmNGzEje3j5DsiGKThcpOh4TUQBvv0SkLAhYVVVd19EHSDc2TeN9BP/FGKOV+ld+5mdijL/9W9/b7XaMJuO8dYZzkRJVsqIsUcq1ZDQRY4wpfiRgq8GeYT6f05hGlxXhlBIhBGjsIDCKIo0y9W9CCBALCiGm9H5CyBZJOu/DbNb64gsiuAohYOAXC6CESkcT6ft+HIbswiTFhA74MtElvAIuBhzUGPPu3TteHNgZY1qzum7taEjMFDxSRqxevXrlvddVg0HU3W6HhyylrOviClDkp1HhszJ/gP+LBGAKU2BeX11d7XdH8CIppVzk5WGtjcnrSnb9SWnRxMY51zYNDgJw04QQjBEWQz0jv/Hd7/2dv/MP/pXvfKNZzVN0NIbVqqaED8b881/7rV/+1X/6G9/7/uP+BDE5rOGUUqU1jq1MsEjJe79YLKzx1tr1uoVaGoZqnc1sROwFiMJBJhUpx3q9Pp/PEDCx1tZSNk3Tjx2lFHNUmK4NPlBKz+e+rvMBik757e3tmzdvhmF48+auqiSw+FSssaqq0loTlselJyxDCBqCROMHE/dCMrDsU0pt2+63D3d33bNnz2KMzowo6b/5zW92Xff4+FjXrRCCCW5GJ6V03tRa930vcOz6JDhjnCB7AXDQ972UAmnJZrOpqga9DcaYVBxr+3A4kBTAxhjtgJz/cD5JqeEzKTmXUgIU2+12xph+OBNCbm9vv/zySyzIFy9epEC6oUenahiGKfEL0Y2mF5Ld3CzxzKFn/c1vfvPx8bHrutPpdHFxcTgcQoy6ylPqiAMxxv7cgbY1mBH7aLfb7baHqeWGpEU8MY1AROUC0cZpXY/jYIwBXy8mj9wJ61NIJgQBi4IVbUm04lBj2mFkjM0Xi2EYuBDD+RxjRC4aQrDWzdaLZ23z+PjoXFyv14zREMh+vxeCga6BokMI2XXdmzdvZvN5VVXr9fpW3+73++48KF0UEgIxI2kbst8dQwgkMVek4TnnWtfI5d69e0cIQZNeMI6s7PL6CjZfy+Xyww8/3O0ecUBD2GQYhmEY5vN5CAHD4ySGSccSKfE4jl1/mqyDdVbz4zgOuOLLMq3rnOvNiF4OAJ2QNU/HzbItzpZhNpt1Xee97ff9Bx+9CMUZD2MK8/l80hvMtAaV29vL5Wz38OicWy7X6/USmxS4Z6Z0EILyQRdzIwQEOPgxxmCCV9c15xIjv977+/t7qNze32+/9rVPx3Hc7/c4r0XRCiuwQzT9MI3gpETu7+/n8zk6NKhlDodTXddCxK+++gozT7vdDjdOY6KEd90gZba6oZTWdWt89mSqqup0Oh0O42bTqqrC9aeUkOZxIQB2c84VF/vTfjabhZQ7InVd43TGBtelhgWzZxiGu7s7WNhNMEIo7U/nnNBKSom7cM4lSgghs9mMpPD0KMfZ3TQN+LkFpc19d6zDw+EA3x2kXu2sppEG5wQjiKLg8tvgh7MJwVHKUQmCb4Frq6pqGLJNPeecE+6tY4ITEillUz6WSMBLxGEnJb++vvTez+cNzqmqloQQLiilOWMpuRmdEjbOOXqu9/f3wecUGnndbDarqsoGQ4pQGEBb5xyUjpNPQogf/ehHUuvb29vNZoN8oKoVkopMRS+tO0bzePFqtUoheO8547PZTIjxxz/+8Zs3b1AQJZa16RkjTLKUUkhxNpvBgWm1WM7ny7fbwzim+ZymlKjgKaXj8SgE//rXv973/cuXL6c5xZzAE+q8J4S8ev1muZoP4yAVr1ONN8I5B2kXtQnnvFIa1BbQgbvjqWkaQvLDOXaweWiVUrPZbLc9ID9H/dgPefsYawFzCa5KK5zd359Ph/OsVb/+6z96eHf30YcfVlUlGPs3/40/+od+7g/8/V/8xV/4hb9+PDxY65Rum1qj/5EYXa1WUnIbDCuGQLWo5/O58XmkHqPJIQRv7DiOp9MJz9OG7GgFdCUVTsDhcIjJx5iH48fRLhYzQgiJAa9YUG3diAgAzZZGK1pEfQ+HA2OsbecgGTMposvm6jgysF/G0aAbIVU2kAsezpCVp8GNrotdXdcuxHEY27YdSY9zJ5NYcxFSTAmFEIRklVWZVUEnl6T3Ti+5DizlohDCpQS3E85lCGF0WcyxFJM6pWQspBK1cyYmH0Jigkmpn91+OP/Wt2JKVdU45znTnMvgI2AOn2IIwXoXE+dMVpVgVEhdzerGmGFK66fjeSJX4rm3bYN0ZxhGY8YQgrVo4KsQskENezJbWtcauxe7KxMBSB4sZUXoHQd2cJ5SpA6a0jyhIISQnCFlZDQP4xBCKHlf8oUQOBVT6YX6Cq2YqXYlT5QKvPdSqVBkIlKxGQ2lLYajMZVJ4elDgAggka2q6ilNFVFjLBZkpAiATFWBLCIGIYSUrBRCCAVAAS1ouNLNZ0tUSmA6AEpAZYgDhhIaQvCl9EKtmuMjZRgoY4wJzlFlopLJPgwyr0ZKOaWJcx6eaAEzwSVXaAyAERmKJPR0qExAP14xIHJsaeSjiZAJJRnHUcr37RbGmJ/Ieqzu+8HG7NSBC7i7u7t5tnj+/HndslevvyAkdt0hkfjbv/Pl1z7xNze3f+tv/n9/+7e/e3nxTBSKDbg7b9/eNU0FnJdSOp/PKYk3t7fAu0FC98U5IcYYXFY8AAVJa/243QLZRAdyOkqxUJFk6KLXw4sGJeecEj5lNngyiHcx+fM5h79UmOlTBwLLGH9RSg29mQA1dIPx3rV4P72O5foUDpDZ1hLzSu+7DljPlPAQM23ncOxxbKM3q7VOhBBGGeXRJymyGBwt6sm2qB7zYqTpnGvbVmtthrHMK/EQkvcOxF6YGKBjpJSKkUIHBn+wzTER7Kwfx/HUd5xzjAhdXl4qoaWUtFgtMf6+1YwF40wm8GJBTqBVLM1/PN5UGkh47NiwVVPHEATnQ993XbfZbKQQfQgxBPRgNFZvCM5aKQREuYwZpo0PYAgbP1EC53Hvcgt9t9tZa9frNeKJUgIrgTEWQooxIr+Mhd4upQQ3zVmrpJSCUZq3yRQYxyLsjhgyb1rU/JALFNOkP+dCMs7ktE8JIda7VHCxl199dXV1hUc3DN0wDOv1GsOVJEIQhHDO+1Ke4RtBIJ2yOux3bCLYsqm6CiQN1hAbV6sV53wYejSlprgNqAuLVrL8TGxA7yTPwOLFSSmPxyM+H3mz4BIxEDMzhJD5fM4YG4bhdDrNZrOUiNRqVgypj7sHyRXlgrjwM88/iUoSLs7nXkpJSDTBDME6QpRetLxO2s8/uOz7nhaaACsj0uM4ckiSEaJVnWJESyDYEGjsvXUkuuDP53O0frXaPLv94Hg+PR4OgQTrBnvuXdeJkIgOYTQ0REGIoFIwzqRom9YHy5kQjEUfHHOi8E0kz7wMXpihiCSga2ELAKTwk627D1PmMFW/+BBsIsSQqcUyaSkopTil8B1KRV0HU1MQ0VsulzZYBL3lcgkXAcg4eO8xoU9KGyal1Pe9LX4J3kfGsp0RzncMPxJCUJGCIo2sAPsCxD38pwmZpZSeTicusx6LK+N+jDGYjKNoQe2E50FikkqJopHFy9DV9Pdcojwx2SOFwyIoS0pRSiHNxIoAl3qvAJuapuFcID2dcFs2TdKVaIN/AeoRC70a/Tz8TIH93188LZ3vaQsjnQiF3o7/WhUddkII5D2wVSmlXOb5FZ61vN4LMWfMPeeTWdXaPfFPjpkPlQo0qdOTzj0OBVXMM6clh8A+PcypgEGiUpKTiD4oqlxeqMq0zI0J0d7e3gohwC1APEfkmVDsKfJMz5YW31dTzAlTyD0VFGPQLsCo7zAMh8OhaavLq6/f39+f37wazUgpUUpwXpFIWPKU0t4ZfHLyKZCAQ1BrTRPS8kBjfob5+Q9heu+U0pBi9BFIxzAM6McgxGFBxphiTJTmk8taBxg3FlEgQEWyaN9XVeVs6PuOFUVvPHaO/+QcNiMgmHxqG085Y4w4FyjN0i7gH6zXF+M4BuellJWu4fOD78VT8iECZvWeYLIHhFzsrInSm1LCbDJ0ADiTap1NxhA97EQP92niwD48PKyWWcrWWAt48erqar/fhxAe7rdXV1cXmw0hBFOuUkof4+5wUHVzef3B/+n/8leeX9df++TF+XRYLGYfPH8erPvq1Zvv/vZPRk94TapaXFwsnXNc0JT4ZrPxzgF+pZRuNpubm5vdYY8VgnybUvr4+GjtyBhr2io9cfEFD04IYYJR2Y05xpgeHx/7vp/P503TUM44l8NwNN7hZ7aPe+ioWuLHcSSMbrfb5XK5Wq0gbWGM2WyWsHHDFB14/YmwEJKzBkg3tq0Qous6ypKxw7u7N9gCwLamI/X6+vp0OrmilIXgAInk1Wq1Wm2GYTh3w3q9fnh4GMYBZ6vgivOEH4sx1o0GI7W0mYuXGpekcIcRl6Tiy9WlMaY/d/gXrfXNzU3XdY/7HSUcNAXoNWFj1nUthHh8fOzrHmRtpNZt2womnXP9OKhiKT+aLFgHXAxj5lLI+7s7zrngarPZNE3T9aeJRB+KqsxutwshLBaL0RpKadM0Mkp8F06KSjeYBJ3G2o7HY9eZttWz2UxKScpcRV0zznk7qynhxg4ADVkxNTkejx988Mx7X1dqGAYMmUmtM9klhKqq7u/vQwjosKIZgzertZ7NIqHxxYuPaVZGkhArqGudqd+UB7jp0kxFR7bvy5iplJJRHmIwIzT3CTh6CNT4IimlUtVEr8bahsSZbNrt9jCb1aBhQqfidDpBZEAIMZEQMfGAdggQk/35nHycz2dK51n+KYyjHAYKTBjr+76SFdbVfr+HYRf6apeXl8YYtKBWqzaklCHdh3dAYXA7u92MF/Oupql0llP3gKrHcVRaIXwxxtxolsvlF1986Zz74IMPCCH7/R6vHlnlarUSQu33x3G0nPP1ek0IMcYM1jjnBM8+q59++nXO+eeffy6lZEyCded9DOGp2QBHLkQpBScMeSm427gFpaS1brvdf/3rn4L175wz5liWRDDGUEEZY6A05ZqFkBjIfNH0fX84HEQ+NLk1PgaIisyRBGLIAGn26XRiHet0BwQwOpg/Ry6yrtSERWA7I7wgSovMBSa4MJy8lNJEEotJCJEYhfcPY2y329VVW7cN51xrLQU7Ho8YX3Mu3N3deZ8WixYvervdal0LwXFw4FzDSoPGIwmxadq+H9HURCEMsZfRWQRAkAaQiuAYRdB7fHzEjMUEVTnnhpD1OhaLVdd1kI5Zr9cY8kC9I4RYLGan0wkusmicxECwMtH6uri4wDUj6bVuRM8AwkqhuNd47wlP5WTPiriq0kiJh2FYzpZCiG4YpoRECDGaHneBfeqK1VMIQUjWtPMYCPz95vO5taZtWyQwSOmNMYHARptjk1ZVZY3Dlbdt25+7cbQxRgxIcM4JZ2WJkh/+8Id4/rQYmeD1jePIBRVKMkaQuJ7P56Zqmhryv+cQ9ZTPj/2A86vruoeHB6VUrfRqtSGEERIBcIMaDxvbu4d74M6JElHE5YwxH3740c///M//+Mc/fv3y1fPnz4NPWkql1MPdfQhhs14+3r/95//sX/xbf+zflIK+fvNlM6v/nf/xH//Ot3/qV//5r/3SL/7y939wb+1Yt7MQnDGZVJpSUqrabh+EECI5KaXxDhM2SqndbkcpJSR6bx8fbdd99uLFjeZZPgsv8eHhAY6yWutg3Wq+qBVGTr3W+nQ6dN0wF3NrLXlSR6zXazcOiM94pKUUsoQQJkVKiUlxHnot4PRmOZfPnz/nnPfjSKKbzxeU0q47QQFvHMdAkwYm02YYarVa6edXv/Fb3w0hZP8WfCUrlMkpNWfFroeQEUROQvJNVsUz2hjz+PiYsxlKkVKzIm4g1GTULr33KVHBueCKsCzUK7UWLKqq/fDFnJCo1YJz7n08Ho9mNJxza6MQxHjHGFNCh0iiT1xSKQTx8Th2k4PkxJFE/oGKVMrsLUOLBd/Dw4kQgs4t5gJms1kI3jkyVcGsqBmit4AsZLQGXR3EOGwk5xwp6oEhBEJyLZRSEoXyZs37Q+5ppY0VDMhggryllE3TZEmBoq1RsPLBh5y3TWgaz9KHGT4OIbCCZePUN8VUMBZRhcVi8XQQMpVxUcaYKKk20LdJfwAFBvaGdY5QKpVKhEz94b7vIeqEI7k0J7J3HIJmVVWE5ZnWcTTIn2gihLAQAuYTlVKUZHNbzqRz2dCZFoYvCN3Geu99CF5IIQlE5QSYAtMp9b5kfYKoxkywrTBBgAEZIYSQkrxnPFEuhbduehSM85TS6XQiLDHGpBbBu9PpNAwd4ySF8Rf+q//63/pj/9rP/uy3nDN2GBk7HI97ztTLly8Z49/61recF+vVrXWu74YQSEqRS0mdo4LzMvO73+8TIZvNpl3M67bx3sdicx9CoDCsZyLGaCxKttEYlxJlTMRI6qqFwKYqsr8gX4iCO3jvYRUIpEYKjWe1WCzycvJmGv6lReYS725KkmzxcEDhgWcuhEDjlGbFz4jMj5aJnnLAuwkNR9sAwhGxiFTgEE2F5cqfeGaWkOJUsWIjlFvn+mHgnItMos/yptOkwjB4kE1w8CtVQQ9LKXV///j4eJ+zEClQLmpRQa8Kv4Jz2kUHeleMsWka59zDw4PSNTrwlFJrTMq82mzJCKgilsHqCUznjAGO7PtzStn6Euk+5O0gPoUbJzEh/qDC3+12U/qSUtrv96iLUkre29PJaa1D8Ph2ECUw2YctQwgBL5jQPBVe13VVq7rRzjnKmBIZ/DXGcC4nVGI0BrWuc05wzigVWhMSvQ/v30UhYiAOoOavq7bWghkaiaaUGWcTIdjj59Mpxhij4Sz3BUMIiYCbVg99r4uJk7Xjdr9DTwVDPafDcRgGyXgIQTKOQxFlJHT90PdCcMaTxPV0XSeEaprGOYNPQ9sJI9JT3MaKFUIE5xjlCAvMGvQhrDWkDAkCvwCyNYXoiBycpGn1MsbQ8/De+5i7dFmKqlKnw0kSFgi9/0nXLJaMyzdffollQyQdk2WVijQO9/fR+9PDwQcrpUQfVGsdYlyv1/1hj7OJUzbSPoYQXXTbvU3kcD6tLzaJJe7DzBFBVbg7fPHyfjQOo/00JuU8GxwnlPf9om09cXVd13VNaJRczObt2PU0kf58SinZPpt1OOeur2+klDEGpRQjFBtcSnl1dSWL+R6aQCA5al3FFJFmMcZSyp0PnLApJZx3Uy7hn4xEUEptydSnwxStAiHEer1OKd09PBhjlBZtM6eU2uit8S74EEJM2eYRhyA+U2XDQFZVbFrJyJyklLBdDkWxB084FRosCsgJ8ZmauM2sxfMJIVDKrJ1IN3AmQD8jppAIIYwwJhjnYO8JWsYkvQ+UM0rQ7AmEOKWoqirG8nxVXTdCCE6oUipS4r1LRS8CfTIoWvon7hqUUs44uncIZVjSp9NpKv5ZYYCGPAakUD6VQj2jxhNGzFhOGmkhi01H8ARx4nUjE/BFQg3KPInCsyVSBsfR9x0UvAhOxASOMxQWJS6RJ5rIUwKTyjzNdKzwov5BCojPSjN1Ah2mHtX08+NoTqcTmB2pQP84N9MT9ZIY05RvoC8iiwnzlOxNUUUpRVgmGE6o9wSPlm8RNzc3xpjvfve7SNYZI5988tHFxfp7P/je8XgcxzyNIRTXWnPCU8xjXlxQzqSuNWPMeENiYpT76AVno7NdN1SVSilNNL2UklDSWquEAkk/xgjrMzQdiwJeRDL/lIWA1YILJzTPIkgpYXmEolEXiyHGWKJ5c+XEe7vDg8pQPssZLCGgSjCo7QkhgvOohIH21lUrFYfUY9/3Ququ6+q6lpIjX82lfrCkEDUgyDtrF0NvkO2TxHxWVOBdd4KebHfu++F8c/2MZl/lwRhjTffixQvOeei9936xWNzd3aEUb5pmHMdz17VNc319vd1uU0oxsYf9+fnFyiSWBPnsq+Enb36QEnHuHaefM0IqTYQmjhJdzajWAAiUUsfDeXpWzmXlqN1uhzkVoEUhJOcMKq/b29u60W/fvuWc4wY55yDWhRCc81LK+XwuJIOMAEC0fhzatl2vL/bHIzBoY7rp3YVE8HU4CtEyxClDiosM+ujjOFaaH47HEB1iIC6gKswGrB9E5lT07tu2DYkGHxaLRdd1KYXgPebKYZgJwcOHhwelKsBt3evTm9fvFovFBELd3x/nc6XVCkVHSgn5xu3t8647Dd1orVVVvmDkMziA8OdwOIzWlHnqBZjgMWZ9Opx603QguOQYrHbOHY9HJfRqtYr7FKPnnL969SZEIiW5ubnCwn54eGiapm7065dba+3NzU1MnnGKKmm9Xr+7f3s8digtjTGQoVgul9bawYze22mgFvP7h8MBhACgV8fjcRxJXUfkWrqibdvGyOJ75ZysBnZ1dfHZZ5/BImKzuUDr3Rk7jmM/9JvNBqRpnIk22OgyDRAJPzYdpRRZfYzx/v4dY4Rz2nWnEJwQ+tmzZxD6IIkpWaVIAwlgzSNWdF33+vWj1mSz2QAhQsi9urpaLBavXr3CjHzOM0doNVTY7KvVqmka6MDEGDcX84uLC8QuII+Qy0DInQTHQdDDRCAhJJCwWi3GvrduFLLBSsCDnQ6ObJFX4FccryGEwWbvLKwiDJsvl/PNZnN3d5dICDGPsVNKkYp33Wk+n/f9uWkqdHynuRDQyRkvuqghdMfTp59+KqVMiY6jDSFY641xmAhHynR1NZtg8RAS5FBoSiQx1AXz+RzdfXzsfJ5JIXVdz+eg1grneqCigNu8t/jArusiJaj0weqDXEYIyY4mxmiswabz3jOWA9HFxQoA2TB0uvhjC66kdMfjaTBZedIXucVQJOawtFBV6WxNH5GHROfP57NSlQ0evCLsbsYYMnNZptJ50UTebJbTCY58BnWET5nkNI4jLOYO+5NQcmq9yCIURjK1nxFCgO+z4rvAGGuapmkatFWQrEopoaWZUvI+001wMbqpuZd5ELN4M7x58waXsV6vOeeXl5dd16HfiRW1Wq2sHXPf1PumaS4uLt69exdCsG5kNMNWKaUpg+KcAhWFuDCuue/7YRigooneydRDUrJKxcmAEGLsQEWNgVec9RjpMMYwwZXQQikMYgI4iskbO6Ao42WyH8O7knHGWG8w1Rdi8iQR59zhcJjP54vlbL5oU6TOm/P5vN8fqqoSogITFEu3bVucF77IsuGwADyNbS4VrapKV5LQSBkL0QXjQnSUUkJjSiz6QAL53m999uzZNeVsf9hi9BAskMViwSlLMTHG8NxwollrvbFCiPO5P51OzbxhjAGwfnx8hK407lRrfTgctBI49dpmThITjF9eXp7Px9OpO+0Pz59/aI131jbNbLZY//Kv/LNf/MVf/Lk//N/7+Z//Hzhnzuf9x5988PHXPv1jf+yPfe/7n/3Gr//2r/yTX331+vVqs7SWKqWUkHd3d4Oxi4VC/Lm8uW6aZrvdtm1rzEApdaPRWm820Rh/Op2un92i/XBxdblZrb/66iu8r/3jFgs1D4C6hPCODTX2Qx/MZrNJKXZdp/j7RvVYxuNSSuehZ4wpAZkpSPP74XSUUoZgCSd1XbvoqE/n8zmlIIQIMSC2Ly5WwvDow/a41XWzmq/3+31ioW3bWZrRv/J//y+wQ2IKlHMAoKVEyY7wNItmQrHBA6GriqkXjO9WqxVWZCxmenhhdVtbaznlAJGB6QiuYozOG84p5yw4k1LwznDOWaiBZY+mH4ZeSEZIpJQSnuucGAgTUnAZI/He2+CdM7zMsz8hmMhSgcAk3SC9pkVUCGkTtv1UMQohCHk/xYmcyU6uYj5b3/hi155RkkKotNaSUvAwxnge9mWMvbfTjTEK8Z5W41zAwYmu1NT1IsXbBE/Dl+nFFHO5wkr3L8ZIWZoACM55KFOu1lrOmHhi7APGFmXMFBtKzrksGSGldCyOcLT4wk/FdkrviSeh0Ic5YwhnKVKIdiEkkSe8HlQUSG6YmByBeD6WbJhKAik5Yv1s3ljnhmHwNjCWZ/EA9GMA0FjwfHGFDpG3qipGcsFMaC4vAWHg5MOBOnULgL8jUYglq6CUUi5QDWqpYp7FoN65cRwJS+NgKaWwT3TGcpGqSv/4i++/e/vl7/t9P/NTP/XJ4+NdcOblyy+dN0pWnMtPvvZTzrDzyYLaGFJxSaYR6xCnb9/3LJFA0nK5rJumH4fj8RhjFIzjkeF4izESSq13nPPk0sRlEyobvrVtjQMM7yu+Z5RH5C6AeKzJP8AYk4oPwwAP6wm1V0pQyn0ZVcZJGYv5nrW2Ow/Y9eh9Tu/CeePLFDPSBeQEeONYIWXCt8r1P89gTSqONN77xXI24c7owIeYxYhJ6dl6b1NKoRyxNA9Z584KlwKiE23dHA6ngnlpaBEej/vVaqWUYoxa70IIy2ZprSWcrVYrwrLDOJhieAKcc1xziPFwOIDcFGCoDHyBRkyjZ6yT8ans8d43Tb6jrjshi0IZgF+ZCBRIZSilYBmAZARsFNvzvV241owR2AGhAVDX9Ww2A0iE1Yt0gZZ5txhjShTkl5DyYKYQwlsHmhJjzLn3PS3G865MKWklrLWXl5eEkLdv36ZicUaLJ6crDqVV3XLOJYlKqe1+1w3DfLmw1jLGMfCI5+Bdts9OWelIcs5hEtt1HWyyXPBd111cXGB7OueiD5xzTICiNgZd6PMvfqy1fv78+bTwYgmGKQvsaGTbnHNV6cPhsF6vhmGgiWBTTDAQpBsqXeOYOHbnkidlOuHTH47eA5YKPiKAn4duPp+jWzCJkBBC7JPUKsYoJQsummHoz50PMXJ6PHXGGE5ZSikJFigJIkXI4IyjLbRTa21ihHOeKOFSjM5iPlFwHnxMMHhMJHHBsuehY4RSHyVXdhwFV1RwxiUaCSQFEmLXdR9urmaLhXGWcKIqDef3+WxGnA/OnY+nxWw+DANNKRLSti0tU72Cga9KJtgOxKjlcolF+O7dOyFE286MMagSY4yM0Uni5nQ6paKBwIvgVaKEcy55PkCxZgRjofA1JkQPy7gbhlh64TgyjLPH43Gi0WmpQghwpVFKKVmdz2fkZNMxh0A0odJAqKcOnFIK7DzEcHwymig4CpnIXepxHCll/IljKgJpcD4UXyNbFMYnzJRP05SUTGkALg9NRyxpa60o6hYuhhDe63El+t7CtCCkxHs/9oPWShS+OU4cQgjqDeccZPKwqqERideEP9MtcI5tnintsbB3Y3HbS080mnFesDJwA5naacTK5aEBIhif+groPeRMMlPMsqoSI3Sik097fwK4p4zlXwKXUyFXTi8ilSFc4OmkUCvKsmTOeQQ9Xv6k0r0mhMAFlHPOGC84aW5v42NZwcfTkz9a6xAJYwznYyiOjhjUDSFwynBweB8Ph0PTNIfDTmuNqZQvv/zyzZvX/Tj4Yg2N5DYnWpyklARXs9mMsDQMg4uubqpEiRCMimxSCkUjQD9CCEKza2XbVNOcMlYgMhNazOVR/CshY4xCCVX8n/GQsWYAnk4AAWIjNAS7oVdF3hedVBSWeV+LzJmAzZQW+SzTWkuexS5BYCSEXF5lpMxa27RzACjgZWNiCScyoTGGPOmIjMUYAwFKzO8zBqpvh/Q+hOC8+ejFJ33fv3v3DvqBTS2bptlsNkqp7XbrYzgcDqfTeblYXV1dIbdEz2C323HGEpO7+4dF00pCg/chOBDWGGNmGLXQXdcZH3wgzz9+VtXtY3c31U2UcJKSc8YWNx30rhhjkLNkTNS1fvbs2fG03+/3k3rYMAyg/mBVjOOIZ4VdBuYKIYQRar1DAmyKs2iMcbFY4LzgVLhgj8cjPgovEULVpAyFaK3X67U1/nw+j+MIYoExZrlcXl1dPT4+ppRQiYCah+MPO0gIkSinKUgp3717xzmdNS2uEKdA27Z13W63W+vy/Mrjw8PxeJwvFiEEgM544LqpjTFKMFP+vHjxoq7rH37/B8YYVWn02heLRS5PUhq6PqOHjKIzkZ5012LxjEF4xJpRSr1582YcLPK0lFJ/HpxzF1cbYKA+5ClP5NuUUoRQKeWbV68ppYvFCvQ0zvnl5aau6+P5hFJruVzu9/uu6/CEsQ1TCojYi8VqvV4fj8fT6QSDECi9ADEnZRDZh55zbq1fLBZa12gSpCzfFLAp+r6v6/bi4sJai6PncbfVWvsY0QZAfpJCYIytlhuYucF6LpRBkK7rKIaoyigJVo619nQ64fmg3kR2FGLEzPjj424qPIHHgXkNpaM3b17Vde1c2G6345g2mxYTHrQwGIwxzhlGqdZ6tVodTx1q1Tdv7p4/v8IgDnQzoKbCOZ+QdO+9T14IcbnZID9EZNZaf/bZZyml2WwGOCnGWLdt3/eccJzm3vuvXt9rTZ8/f446mxdtLkShsVBrt9vt1dVVVVXn81nXNcSpsaNBnUYbZhg7aCfiIXDOgw2Msd1uBzjydDpBB2A6LzjnlHCwOKeiDMcoLSNQzgWAaN57IdRmNZNSPj7ssDyokEKIV69eDYOZzZrnz59TSo/HfUppuVzCZpwxxsn/j6o/7bUsy65DsdWv3Z32thGZlZlVZJFU8ZkSLYiCGggw3k+wAUO/0nADW/Lzk/GMBwuWKUASKZkvi5WVycyM7t5zT7e71fvDWGvHZXwoREXee87eq5nNmGOOiWKqxuYaY7x11tp5niNJTdMiVAghtOsOMno45N5Y+CCEAdM8+Bixg8hJnZkul0vXrbf7Pcg0MIYQ/hZCUJa01qumRY3cBhtjXK02jDGonIcQkC8YY+bZ3NzsEfUhokAk/zrGAFfAlaFEnPOY6JIgcMq4oDBlIQTGCESivffg12+3e1KK5eMwh5jFweBZpn5IryTFl6BU1ZUQou97xcVutzPePT8/uzI5YLPZiCLSuFD+UW4nJHf3Uspvbm66rvvxxx9XTcsYO5yOmLyKH0BIbOyEjzWzT4l03WfBB5jQjHU0WWVls94hc0RM5bxRlaYUNaoIkF1r/fz8stttbm5u5sGklPDWm80Gk5ZQ1wlFQP/l5SX58Bd/8RdVVf2H//iXaNooBKCE5xRCrNdrQPbX6/Xbv/1bIcR2u6UpuBiEEMGnkLJQw9PHT1VVcdR4pomwHBRxKVZdBfcKI79UecdxRF0Qah7TFB4edk3TXPsz6twxxufnZynlZrPZbDYhhJeXlyV9FkLQmFar1TSZT58+RRoLycCu153UCiW07XZbVdVPP/2ktOCUGWOm0d3e7n9+90Ep+vbto7UW4mbDZbDWU0o5I97Pl6sVnLQt+eLLmz/6oz/64z/+B5fr8M//+b/45S//gFD+/Pzyf/u//pv/w//p/2iMw8HGfZmmiYNBIXJ7nDHTbrfb7XaX40lKCeb14XBYbTcAzU6Xa9d1WuZaDie5Yo3jGkJo29p4ByZW3/eCV03TUJaUUuO11/rzEHsEVEIIrmSMEYYlFPoFblYs0y845+Cqo2K6Wq2kVs/Pz7ySK9oKxnvSX/pBjLJW0q5mwtlt/4UIIQBu6/veuEykJXmAXkAwveTGzjnJ+KbbUJoCSTFiTEFEtxQsFym9M6CnUU6FEIywEAIhjBNKCScUCGnWY2KMcSpjiinQiglr5+s4KC1kpTmnUF+11vqQKKWUce+9d7lRkXDgXJ+HbOJ7vY80Ny4V4mSMQLJw2URpaV+SpVD6JUOIcGlVVTEmYpwXHwM8Bf91ad5kBabknNuiEw9vB1JwjB4bA7NIX7HIsW7us9iTQJMUML5UlHZpIaEDwwqvGh6NMdaaBduFm0WqoJSqtEamiifJbb/OAbCgRXR/sZtaVkgaOecxIYnweFn2CkkvUD7zLhM/la5gv5bvQiqF40jpooZBF+zbe+99JDEt8SiAdedcirnOYaglhCSSE8XcghdCjGTJZinlxXZ/Jo/jmC1J4AI9L8sIuyxL47Zb+rgZXQ7MOE/Rh5Dh2iA4d96jPNA0FSQCnTfOmC+++Lpt299/9+5wODWVHqfr4XC5udndvXnU9co7FiNzPtVVZbxbdZuUEuUEfZRKVtaYlFLbrAghfd/7kK7XQWolpUbjJC9jXuBrEyEhxRhjpStYFu99SLk+5MpgwHIFMpUJNS5g7ohZ8V9vb28JyZqkuLkhOJ/ftF3AsgUuSUX5AaNg+r4XQqU0IAGepgnyQEh+lqLZUuApxiSnmstzYuux0UhZnQ2UeVVUU4AQ4QqAt+u911pSSkdrp3HEKwghvM+6jcbleVDoTQZVBEAP0MC2rROFOKPBDDettU/xeDwKlY9NU+VmW7SWw4BgTilAcFTsi2iAhekHOk+ripfZDjS3IiopZdd1sXC68QMYTwo6QCidpwhNMJkhpbRQbxA6SymVEgAIsLyxjJ/ihdOHquy8CNDnwesCpwIS1Tg/Yz9477fbbdu2KWVpVGttKDAQoWUSVFUhpCaEROdZRZSUom1RDhnH0dr04fiUAAEAAElEQVSMIrFE+r7/d/+P/3F3s/+Hf/7nJCbKMxbGKZNc0BQXk0JKCaFtGoRHwzAQElWlMRgHpubm5sbOZp5nwhmjmbOArPL+5hbpLi/d+jD7MLB1XTtMyBWCcob9Qu+htRYzHoE6kRjBkl7ib/CAvPcUAGhhWzDoqCyd8sGmlEwpTCLMFUXB7XUigSoCY2w0V85507VcSk+ibmslRHC+7/tuvWJKjdbkopEPLiREjXVdx5SMs6quZmOMd5RSJnJnAKe5JYIlZqaZ03R79zhPU388N6oSTVdVDWOMK4m+DefNfr+/XC67biuEoIISQjJq6ZyUUtZNpTR7Q2lK6PPCXoyzWXYtxqiUEoI6Z1UZWosXB4FLCBEjjXFyRe0K9jaSRBjd7La4ODHGtBR0SQI7r2vy6VJKVU3z8f175LcY06SUioRsNpu2bfu+d2U2Aw78fr+fy+yjYRq1VIjxrbWMzjLLhVkkVDjqvMjNr1YrzjlO+xL0o6pnjLm7u8O/yzx+QHEp8H+h7Xg+X3CRlVKV0iEEbzPjnhUFHlqmzOGGpsLPTZQsfhk/jAynUlldJEkumWCMkeAhd4ArSViuLOJeE0ISCmYpns/npcoOU4wnB0l8gQhB/AefAN8eCv02xuj9vBjkVCBdloU+qBDZ1y//CQtCcv8Hj6UzjDEWU+aMA0emZQDgq8JYjDHAey+YMvv7kwAWt/ga/oZrE59p5rntDHYmFT7mgiCwIkCUSjvUUg9YQosFYA0hozD01QBnfODi0XiRl+FZJwQPLETh+7PCscIXIfwQSoYUu6qSEuOeNOecc/b4+ABzdD6fj8ejc84Sh3gKGBqlNMbkUxzHWSlR1y2ZBu9CItE5stttfPLe+3GaWR69wJwLQjIM7OJcVpVIKQmhrJ3hYnAOYQmxKeBD1U0FN7Q01SIDjDH+4he/QKWnrusMlhFyd3c3W4PGl7yeMbFXYiaorFBKnXfzPO/uN+v1+ocffhiGoa0b2Iqu66Zp6vt5t/ssuOy977oOswqWm2iLplYIFnkpYwwzhZw3l8ulqTsEJCnRtl1ZC5UtSkg7z3PTNEhE0YAyz/OHDx+gEzqPU/CprhqoeeoitQznMo7jarX+6st/2J8v8zBez5fJxvOceEu2q3W725OYjvOYKOv2XRTMsQAqK6UZThqHIUYPLEMIcThcj+fr4+OdlPLx8VGpauhPv/vbb2F+P378CN2AWMZpAFZgpWR1OBwQZmChQkyM53pA30+EkNWqgULlerU1xkzjKIS4vb09n88oCgohrtcrXBU+H2Mtf/Hl17/73e9AWN7v9x8+fIA7wBUDW0pK+eOPP4VAvvjiAf84jmPTrYfrFe1l63WnpVr0Va21fT+u1yYlCk6uEAqxHyUExAvYWyo4EGGp1KXvgbn/+OOPiOgopTQzoVkIWQJ1HEfOKWPcuRBTorkSmaV4YoykyPU657bb7TiOAKmdcyG6TnfZv/uky+QxxhjKllprQmIIbp6nJb9DdTyELPokBDPGHI4vC8MA4u/4tFB4EtvtGuIwhERQ17uue356wQLCpKOKABOK4N8YN00T51n2UAhhzIQjBELr9XrOHjARkArHcYyESCm32y36/8a+73vTdfbtF4/YIEJIcDn+kVIO41g32lqbSFJaGGMu1xNnElQnrTVjgrEsrV5VFSHM2mmR3HFFfBKBHDoj67oFWi2EqOuw2WwWn+VLt2Jd6xgC3Ku1xyLL0MUYh2EACSPG2LYthg0i0wkhCK2CCcYYzCqEs8OeQisG3Ai8XY7hRwM2t1KqqkgIiXMqRIYgQOaAmgEk1G9v79++fQuBL2Cyi4APKTIam81ms12xK0GCwxgLPs3TBHytaZr+OtZVpWWlVY28BsgaJRzRe/AJqhcgwF6v1w8fPrz54ovz+Xw6XXA2VqvNzc3NNJwRpuIZgnXRea1135vTaZTyabVaGeOqSj09PeGkKaV47kvjoQwCxZ9xdJwT1jGlFMzvZGdoGaOsAheG+NZ7L4VWgsNQiCJzkVLSWoYQ0MGAkO86TA93N6wUoVFrQeITY+z7S9etAdbDmSJK55wtXhi4Uyg1dVJ6jBY4hVI6juPpND887sEOnqaprZsQ8vR4IYS1M84GFtxntlaLv9Miv4mHZIkgfV6+BU1a5/P5crnc3t4+PDywRMCc00IG63Y3exg3nARaZEuFyFlbSiGl9Pz8/ObNF8aYl5eX8Hl8QtCNPh6PjArsVCrSZPM8p0RAzgMAst1uCMkjeVJRqRrHEereQJOk4v5qcQLP5zNCFOecMaaqFOKf2YxIM5VSz8/Pfd9Dvvl0OkHX2FobnbfW/uVf/uU4ji66pumen5+32+2q7Ywxx+MZtvF4PD49PX311VcL+ol100IiW4nRO2+k4hg7hMizqirET4lGEOoBPS0MCc459NDz+ld5fJEQYhzHWmnOOUmEM77AeoAvUAVBE9Jms2GMvLy87HY3b774gnHCGLter9YecHHqurbGw+nklXFGVxp0zy+/eHPtz30/LiwuVVeE24x9DYlQu91vGGPff3/4b//t3+9v/2OM8d/9P//nr7/+mhDSbbZff/31v/7X//r5+fnf//v/T1VV0cUY4+lw0lp2XcckjgellP6Df/APGGNPHz4CXwZ6E4roMRo+bNE3+/Uf/to59+7du4UaOI7jPM8DH1Dwq6sV59zOY/Lh9vaWMQKWD/yg1lrVVYn9IitalwvxIhf/GKvrevmvGSxt6v1+f7gc5zDTRORWaq2pZXVdR+lCIiklsVROGGM0ZqAtFOmJpmnVK/nLaZoS4VVVKVXFMnyPvtIBjIXNKqWknHnvp2lgTHDKnQucUMolIUEy7mNIKQxD//LyopRerVa10jESImmj2+v1HAnTXTXPs4tJqDr6xBjXUnnvh+vVe6eUEozFol+MHAY2bhzHJeLQWkopvXchBFwYmHjcOllGOvqS33LOpUTWJJRSISQpNebwLCnHEs+FEGIMGK2GPYPRJBgaFvPE+apqFmvIS0MiycrFcbfbjeOIuByGEgMrGGNoEWJluOprtBqLDG/hXGXdDHaec86HsBTTfCFhkdxk5yilUqm+7/HKxhhUsBGsk8QYYxgOvt/vSfIgSsiiwgk+1NJkGtH0/aqtlZTpQKTMD4RpRuvu7EcS4YnjNE3TZBihC9s/pbReb42ZnHOcMK215IpzTmikhVXNOU8k676Ez1qr+TU5/SzWzFgmqmPjcID7vl+v10uegGiDUhpLWSXFOI5zKlOq6jL6RgiRoteUqUpP0zTOU1UpxklyyccopWqbXf3VKlhDKb3d73abt9baYUpCMms8Y9Vmc2N96uqachaDU1JD1mA2YwykqhofQ60rLgXn3HpHioCanU2KJBESYkiUci64FExI6z3xeTiAEMK4PP9Haw3YFG/HSrkIKe7SCnq5XKSUyHVxsHHwYmkNXsA4mCrn3PF41Fqj+I8PLLgnhVWydrbWMk7A2eFFPxfeHQr0qGkBHvU+GmO8i/jhJe0HSSHGiEJrjBHpnChzPHDfQwjAKLDpoGZ7bxebxmkmU9dt980338xlLBIeYJrn0+UM+JiQz1MN7TT3fd90NaCBUelUOIYQ9bbWMi4ZE4kUaXLv8cmcSSnzfDncBcmBewbOy4yvlFAhW0CZBWdZrkyxDxYaGrFQzPCmaJ6ilHpveZEfCcFTzkKKkSQf/JJn4vIi/eCcT9OERhNCCOWfKzRKKVhIgNS0SKZOZhQSFYKwajMfpO/7SirkLYiQdlX18vLinOu6tfexv1671Yp68x//41/++OMPDw8PXdMM08QIXXfdOE4mZBYqNt0YMxvjfeAUAoUDbh9WCecWjmae56bKJdJ5yv1rCOkQgMIsxL8v7YrLzrlYOny990Lw0+mEQCSmPNa1aZpV22LdzGymabpcLkyKgiVlxUkUpQFktHUty5SClNKqaVWtWR6JKV0Zu0pK8/5ntl2kznnVtrrmqqlGN0VDm0qF2acUVqsV5UKoSinlZkcTma3BzWqaBl5D1coqmyjZ397EGJ8+HSilm/U6pRR9oJwIxqfhyilr93f0i4QJYIuRjCn1fb/fdNvtVnPOhIje17qplAbJ2nMSXEiRXMYzrjPl3HpvffDeLGu7VDKaphmGgTG6zNKxZYCbc44xiRuE+w7QX2RdglhAomCM4VKoSsOVzPNsXBaHAegmtT6+vGDGy2ytpHS33TLGrHWM8ZQyDyil5IJHkpAbyuaZJoL4MoRAWR4Ji6/GYCKk8SGEy+UCwhEp2v04qNAxh43FHUcWMc+z824pHRFC2rqZ57lSGqDeAoDGUqpXSsHz4uTEUvZmjEFhoOCbQRSp/SXs1lpH5xegk5RuJx+d976qGlGkzAmhCB5kwUMXVG4JfsAfQfRcVRU0BHBWU2nMWrLoBWylr7QpgHhyzvB4CwgbSzcApVSIfE0Kso/OGAFFb2styLC41JzzFAmluZbPOXfGLlZ68dEx9+LkPjxROs9obsvL3f3qlY7zgj4vRpiUYja+KMbP3U6sdJLBeuO3cB4gNg1r6V6NSWSlDY6Wii++gpLPJQRaRM8IphgRgpqWUopy5mNYbdacUph6eOc//dM/vVx6DB/7+PHj5XKB+gRlJIbImaCEpZCu12G1avf723kez/05kGCt1U0dQm6bw+IjEn58fHx5eemvVxhbtA83TT3PI+4mHAeeX2t9f3//5u3jf/mrv8J/JYX3CkPHSs8yKTLZiB9WqxWaDBCckPi5SmGtTZQAiaCeW2ufn59JofcuhSusEuIxJSos6TTPTVPBO6D4jWsFX4nXvFzGqqqQNvPyB6stxOfphQhulVL7/f7u7u75+UUp1WiFZoXn5xfnnJR6LTUCaVAcaFa/wb6L/vLMaQjG+RSZll2lJ//y/sO1Wq93NzdTP6xv97vdlnI2+Zlr2ZBmHGfvfd/3bdsSEgHzVVUlBFutpNSVc66fR0ppVTXvfv5hmqxSqq2bUEUA0wC+YYWwRyVZYPgLMgUSE2E5LJFynOdY1zWl3LkAD940zWTGL774Yr1e//jjjzifw3AF5x22Tmv96dOndz9/wFaCf3Nzc4Mb+vj4eDgceBkKen9/BzCRFbLOPM/eZSbQ6XRqqhqhGpJeIdSHDx+s9T6Ew+Hl7u6+rtR6vUaRGx4/xthVa6AkqCXUdX29Xs/HU9u2XdtyziOBTfgski6ljJRRSptG9uOQUuJM1rUax365sLaMjHPOoQ2OUvrNN9+ABNpfh8fHx5vd7eVy4ZJprZ8PnwQVjLFpGpbLPs9jVTWIOi6Xy+XSg9RsjLlcLkJJSunxeHwtMoC2ElibpSkHsCmY41WtxmGe5xljchZ3MM+zVFopJaWOpfaGkwD1bXxC0zSHw4FSyhiXXDjn6rapqqpbr/Ez33333d3dHSPkd7/73TAMDw8PQJCllFVXg9URQqhqhQsIYVxY6f464p4a40IILgW8Gq5P13UAH0mRqIJ8LdLPUHSfnHOoRiOQQwjH8pDhSkpp5pkQ8uOPPw7jjCR3ve72+z2lFPnpEkPiRuQuxqYmJGLFXBmxCBcDPUkQM1GuxhsprmKM1s1d193f34N1Dt4Mvu7p+SM90fV6vdttCCHX65lziZDyeDwa51CfxnnAiVqtW6zJ9XpNkV7Ol+t1EILVWitZSSEojYh4m7a9v7/HkVgICkDVWRmZAJ+L9A32Csd7nufz+cyIv5z7cRzbtkWnoBDibfcohDifz8Mw9H0vhKgqRT7zftxkrBAqJTsMw+PjI2PszZs3znnGPoCsjbkjlNLrZQyBoBGTUooyvPdMa5kH8zKKnI6Uma7epxDCy/F5CTvNbDgnfd9jvoUxJokE1IwrXiLAqWTxDPR/QCsgzFFKQQEpohxpQZBjGX9ViA55tmEsfYGc5SHALE/wm3gZvSDK0JGu614OpxijkBna8t7v1pu7uzu0elBKN5sNNN+GYcBEPilldBn3XK1WX331FZxjjPHdu3foC8lMvkC895vb3XrTXa/Xvh+995fLJYRgp/l5+EQpvb29BfjjfW4thWX45ptvUkrPTy8fP36MMT083MdI6romJOeMjDFMyQshYN2WSAYN+l3XoXcKPlQpVde1s+HD+0/rVZttTlWBeYaVQfN97laRarVaAQjC4+33W0xmoZSu1x3qXnCyKKbe3t4CqrbzuMBBQmUr93B3H6I7X46bbrW9uX05nOZ5BkNl6C+uDNBeLAYcyvk83NxscOpKNYKjIGGMubm5+cXbLw6nI2J+gGnQgF6tVv35MgyDUtXxfK6qKrk0jNfVavXNN9+M8wQHmvmy2b/n3M1T4+3cNN1+d9t13e9///uu65quTdba0XRdd70O1nnjSd3dOBuqljQrppQYxuv3f/f+b779mVCSElGKNI36F//8X/7v/3f/2//hf/gfn54Ozrmb/Z1UVAihatRfPchzv/vub0P0XDBjZ0rp/mbnQoDZ7NYb59zPPx63W3l7e/vDDz+gpIf8wlp7c7P7gz/4g++//954t16vaQSGwODxGSNYLl0pygiJBOYaUWhKKROYCMdIail502wAK9nSJQ90CC6jqioygC9Cttvtzd3tPPRemHE2KSWBYA75MEpAuF20KB3DY8GaCyGSz9glJ9Tl9uTaObOAOFrrRIkLPrpY8M1Y61oplXwqJ4Z2m+54PH777beHw2G32/+Tf/JPcQkTcYH4JKgnwc3eBV+JjnFBqFC6CTE6b3VdiSBicIlRyaVzzhRZgFB4qaAbxBiNcUqJJe+FzVpclCvTz1iZR18SA4prhjRwHA3nlEtBC3KH24s0IBQlR6UUska4BKWV934c84x4UshEMcYQ8iD7JQ8RRWAa/hI1NFjAJeFp21YK7YoAIkyq1rqu63HKeft6vZ7mGXuErUQmMJfRtPM8D+O4bG4sE8kRQzR1h5MKDmkiwTuntL5cLsuFJzT6wEMU3nspcpk9sISiFitDNlmp8WLRcpFEMAx+TbkNn9GEKYtN0wRoBcLGYYacFIpSmkjRJ0HfUIDKgSwQUkYqx3GEsirNAuKUlgH3tLTcOucQswLdhmwfYyyWkXeYar3k9oQQtE4/PDwwps7XPkZ8fh6fCFg/hCClqusNpTT5sNmunXOVkj5evY+cKcoUJUJXEndYCOaDFUV8QMqMaEyTqevWueB9dDYIyeAPUojsFYvQehdJMs6JmINUay20xRcsYHH5skzIXZwfjCli3KWYhCEA0zRJyWNRwppn1ADWSz6D34LXtybL+YU8Zy9morqgVRnBgb02ZaY5K1wwpYQxJsZMNCOvBhqggIlLUav8vXAb42T2+z3yk1hmZwNfBqx8Pp855yG48/lcVZWqNOd8vV6jf3Z5VKyM1jomHmPs+56g0kKY937RV4GM2uLpY4ycZ1O+Wm+11vPkEfqg3kII0VXWNsVOpZScsc65lMD3z1KzOD8LuKyUijFA+hnLhX/s+zxeJhV6OA6MzsLQrvxuFILbolEIef2maWpdwTfLIraDOJiQnC0kmhnxomiGxNztEYRQlNIYPzfpo2MUMGtVVahyI3TDys9mBjuDMbbb7aRSLz8///Z/+fYXX3xhzKSUIow9Pz97742x8Dt13ZIynG2eZ8iz6EqCkkYIUUq74MFAoYxVWvMykUNrXUmFJsT9fo+oNO+UD5Ek9UquPYfLQ481T1kQLULi9nq92tmA3YlUFrbOzDbGOI7jarvBb8kiOYqgBIujpQQJt6lbIYTQmW2Rit6ClHK3283WsDLtDRZ+nry1PkZCGBvnOQmqa5UojTRudltKGeO8UZpSyaKyxnBGtGoZpWM/hRBX7ZoQkgh5Oby0om2aZlevCSHCUUJo23SH8ZxoevPw1s0TekfgU/DtwzBEayutd5utmU2t1Ryjw7wgSuw4BOeVUsF7qrJM7ThPzjnrPVLo+KqbHqYAL7v0DAI7G4YBb+2tlVJi4HCM0Uz2er3UdQ1PurB94UdgmnASuq6rlEaMBct2e38PIhIUtOHgQojo5pnnWUpR1/W733/3b/7Nv/mn//Sf/uN//I9h1lLpearrOvi0OJHiNRhU8FBijHHps5tfB6CwUeBEv1aahhMJReSUJqq1hv9dsm5W2NP4OmATuEdL6MWlIGV2B64/ApsF7UUYo7gAzb+uK/pqRh8ulPjM580hRFNV8GiIFvD8nz17GaibSgvnYpxpES8GfANUd7lcy1fHCLZgIOSzCj+2njEWQlx6qgghlHJCS/NNyMkSRjiglbsgQdmPA5laoHn8eW1s8UWiyP3L3FsWlxMVSwfeEsLFQmeGPVzSTsyLJ6/4AUtIo5RKiQNfppS5oleeCvWBlEGX2FwwfxGUp9JuxTmPycMye+9jBLgQFwAa+d7Qn6/9OQYipayqumm6um5hzO/u7sZx/OGHHw6HJ2C1UkprHeecBz7PVlUGIPXs5nGcCWecc7DSlhpPCOHjx49KKZkHTubKeoFiw0LmwnJRQkIIp9NpiShwx+d53u/3r5EdLAvnvKqqw+HggkfFBfvirQMSnV+f5IKx9a6qKsk4RlFhClMqFFT4bkStcGeEJMQkQFphQBDZLuN9nDujeT/GGKIjhECfepompeI0TV3XwGoh10IfNNbHW6NKWxK86na3A8OIZRZnM00T59mMUB68m9BwqHW73e2rbvXjT+9mH86X3jvDJX8+H67D5f7NvTNzsg71s3zUCV1YL5Sm/X6/2mx/97vfpTKFZbvdPjxojG1o2xahvi8i4Pjf9Xpt7Yy+K0JYjBGpkKwkKUyl7XYbY1yv15xLCFY+Pj5SQiYzItV/+/YtDgbCrculxwFDIIfCTIzxfD6jtIC5u8iwsqn3/le/+tXvf/97a23btrB+wfuqqtqunqZJSq1ljhbwmXd3D6fTaZqMlBJdnjAXtgyiEEJ8992P/uen1UoBuIRpraqK395EQgAgUkbneUbIgV/nnDNCU0pdt44xKlnFGJ0Py0hbLWVKCQx9+Me+70+n0y9/+cvHx8ff/va3Va2NMYxwSuk4DGi9B0hU15oxhhokY2yajLfu5eWl76eqkufzGZCllNKHAGgVuxDK3HLEvUIInD2EtUpV4Gd89dVX18twuVxwyBG6oEaeElr9Ku/hH3K5Ai+ORh+tNZQ0CCHBBawtWISmaFgNw7Bq2zdv3lBKMZ0PNg2uFlzIbt1O0zRNQ9M0WmuoLr28nCkledxiSinmtpXgPNU6pYTBXJvNBpE5bi4rvAFa5DpxbGA6EFrgCmNMtHw1wLmqqpubm6enj7jFj4+PwGcppRh8Akv+fHxJL+nt28f1et113TyOoELD5SFVgQ0JIVz6fpimuq5TCIeXZyG4EIIJsd/vjTFYRqUUHNPxeII3IYSs12tYBrgYEGMXf8Q5B0sGx4wQMk2Tcy4EYm1UPMkGOQUnhJxPyYeesdwd5VwIIaF7AMeDJAb1g+zWncNM6Zx3aH06nTgN82Qvl8D5nBKFGsAwDFC2QeANnvKy5qmMfABR96efftrv9+M49v3w9ddfG2N+evczXFgIIUZCKRmHiVCMIOY4POOYsv1nlJYpvuCYay2maYqUUJqx/kRJXdeSi8W2U8pDsN77xDIiAaesizZ0SgkdNgAr4MeNMfhHBFdYYeDg6NYahmEYRkIoyMtt287jFGOUKkMfi9QbLD/nnDG+DKOGN2SMYftsVW82m1Qm0scYwb6q61pEZa09n8/eWLiSEMI4jqfT6Xq9brdbuN1cYqeCsJiNp5tB3VuiCGgKwwp1m/VCkMK/3N3eCCEwxLVpmut12O12t7f379+///nnH8mi0UHTfr8XQrx/9xFhrZSy7WowGBDK3t3doYvlM0idEpZRFL2129tbQEN4zUX+GF6Gc/58fEY1Wuv6crmAxfxnf/aPBOP/5a//ClbdOff88oKjmFuprEkpCcoX2g0+P5A0zzPjpGkrwigX9O7uxjkM3REThjfUtTEGk4SstYCtlpOMV7PWvry8CCHaquZKZiwrK8dq72IkbLXaxBid96fTCSW9VLQEYJk5k2i2uF6vibASCHnGtLV2s95xLmMkl35oupbQqCsptCLj5FNqV6vjaVSqIkl75zljJKngTVWxutZKSyHEu3cv/+f/y7/73be/nSaTEm2b1fVyiSkOwyDHkdAI+svlcjmfzws9f71eb7fb6zh4lysKjLGuy7PWVWn+RnyOenDmL8PZcah0Jrws5xTaWZTSeZ7769Bt1uCTpZRiDDH4pmlSZqzGGPO0OanEkq3A0Vz6qxCCS55osNZW62ae53dP7zhJUzP5EJ1zIjGaEuFKeO9pCa8zlzOlGENKBKdBSs25JDwmkkYzSilRIvPeMyaaRi8VmODtPJXaFBHWWMllu6pijDyyGPk4jsZZLsX+9vaXv/zVarVyzghR+2BSooyxSjWJEOdcrWpOpJksiYmRtNtt3/08KKVFVeNyXq+XYbgopRdBD0q5EExrSAESzim+q1uv4G9UGTi+kCaQAFrrStqJpUzOBcpYIiTEOM12u916F5V+NaapSJ4PwyCV0loH5wXjJJHokwnOWhsDiYFQwqXQnC/iJMpaV1WVVMw6V9UtZRkEEUKw4BjniZDVeh1jFJynSAVXKXIfU6KF3RksC0RRQRlNkXImOZMxkNyiTxMAGuARMSUfwmyM4Dx4n2KklDrvY4xo4pBS3tzcRJJSjN16BUTVubTebICLee8xjTfGaOb5NJ+bphntRCn1ISREywSCG0wIRQhxLsRIpNYMfW2UkEQTTTElKD9oLVOilLNIAmVUKDnPYyQ8koRWgkSjrqpp8oAXN5tNIoTSpLVUSsfoU4roJL1cLohjpFaUUmd8nDwpQCeq2c57ypixtq5rY3236m5udn3fJ+g5UpIIaEdJCBa9oyk5Z5QSQrBp7JVSlCbO6Xa7t9Z662pdE0KolJF7mhjnMkWahOin2LZr4xNhmojEpOScGzuF4GEZcZu894xSxcU0TlVFg/PWB+YNK+Bl8oExRlIwzhhjhJJCqBRiiokQUnMtNAshTGYWRcIFjJWUEmPicrlsNhsulLE2Rp9SEnO006DrihEf0HCdknMmhKSrOqVEmSCUEUoTJS5mpB7zN5DPIJdIWQmatXVNcgN4JDT6EKUW0GxinHvncEcQKz88PIgyminDLkKQEJTOii6UkkRCjElQFpOfJxuHz6XylFKKrr8eh/7EOd9tO875MAyJESJY1zUIOIAhIlZIhABlk1IKyqbJROen2YAG68yE2IgSkhLhnNOc98ZaSYQUSmobPAwFQDQ8KlBH7633Xim522xY8vPs3GThdKP3qqoo5wjCCATBjdlst+iH4iKPls6CkoxxKaGuyDiNMThnpeTb7RqL1nWtcZYnIfDMnKRIUNsLKUZCbGmEF0JILpRUgHKQeWKufdu2tdIovzPGRjM55zartdb6er06F6DBDS/7GfEhXLAUfXBmZKSmlNNER+e99127VpVWShk7cULncTgdn375y68bHRgzz3/z/71lfRXJn37zJzzO/WmQsmJcqirWjaCRSkbNnGSj15uW0BNy/m61QmgeokuEwGKbKTdwEEIulz5Y13WdT54Kbs18ul44oVprYwxjglJGY5SVlpIjA1GVNsaQ60BoopQKxmlKwYfZOk5ZpSpnXAgxJQJMkxBCWXI2NE1z9/YhY0mSw3EAlvLeKyE4pS8vL//23/7bt49v/vv//n8jpQwphpAoYz5G672xtqKcECJkJRj3KnHOaaKU0roVTFAtlTWmrRoak+DMe5+qKqVEGLXWSkKEoJ77RFxd0eH0oakqnlJyQVeV1lonfvOLN/M8hznUgk/TFChVSh1PHzmlgkgeQiTczS6EQFwkMU5miNFHSqL3lNJhuGKjRSCcS2vt2V05pU23SpFwAXZ/YIwKIZSQlDNKad3W0zQzzqWUFaXWWutdGHoYjUQp5zwSwhiv6wZbkyL1wUaSpFYxRhZZ170xxqD7EgdvoZ0Ch8KnXS6X6vYOFzyfcCmBNYQQmODWO2OMlrqqKueslCKREJPfbdd/9t/9r5yxH969r+s6+kBzH6W13kiuCCW6kpRwwGc3NzdIiVHUMcZ0XbeQ3ZQWw3gVSkZGrHFCiGa1SjHWVWXnudWVtVYowYW2wXsbVYpcyXmeJ2vm5ANJdVW3Vc0pYzExQtE4NU1TJIIwQjm11lJOaYySC+uMtVapilJGCOFUhGAJYZxLrfk4jlSzQKKdZqXkkgPHEL0NXGayGC0zWFjRQ1xWLxV6gS1DL5B9sdJaHpI3bq6qRvMKstGUMqVyb1BKpG27GCMhiXIWYyTOo/Ms36CiubGUXlIi8vPoWgvglVLGtUTkyhjt++t6vQJEnEKkiZKUlPjcPbDA35m8TBIhJCRINPAQQHbWyFeHYWi6Vkrp0GLMGaU0BcJo7lGjLHFBo7eMkFCSzFQIyBlmpURKQSAXgE9hLHqPCYeEkkgiE1ltLMbIOCMkKSWttcfjyzAM+/1ea5USIZxrhWFKxHsfnIfgaQqJRNJUNaU0JUoZdcb318nZyDkPIY7jgA9frdqua87ns9Zys/nvvv/+90+H5xg9lyzOGeZQUrrJWWvrtmp5149XpgnXLATPKWvrCv2FMRHrfIiOUTGA69euQgiCK0optME5lykFyYW1Vmp1upyfXw7r9Vrr3OycUhJChhCFkKfTeZomxiiq+IxxKdU0zZxzdPkwQhG9CCWFEJGkREnwAfBEdN57zzGinjEzmaZp0LLAGA/BGwMdIa+1dsa2bYsN+s1vfvPdd9+B1lRWCU7EVFVT1+0wTBizHF8JphsztW29VERQ2UIGu9ls5tlczueqqgijEFh4eZnAfZNCzNNECPHCMkZSIlpLQqSUK0LIarO6XC7W2368UEr/8JdvL5dLf/60YG3resUd44RRLeZ5fnx8XCAw8IaQ6m82GzSJ7m+2jDHOqa5aIURlax+C9bnYuV6vAbiI0mS5Wm2k1JgmBKmHeR45b5GyIgeptfbWMkU4Tafx+uFjrOtaMH4+nhIl63VX1xqM3RgjaK2HwwFo+Ga7IjHM8yyUQtmVc344HC6X02azEYxzxkLww3BdrztrLee0qpRzTkvUsGNbN0xwQkjVtISQRNnxZH34ueu629tbfOAwXAkLUkrKY6JeabFarX7zp3/w008/EUI4oSwRMxpKqBaaEw74IENFhAteORugNqOUDCFc+zGkuN3uAehfr9cUAomRlQYXaHEMw7Db7YAHffvtt0opsCgoS8N4BWf/er1WdV3V6nIZKKWIumMkwzCApdi2bT9OEM9JiYKkcnjqV5ssdoeGm/P5jF1brVbX6xWR9t3d3eFwNObadd1mvYNgBR5jNqMx5tqfpeJSccK5DSE6G52nlALXjtEPg0ekqpRiDIwlgb6ovu/fvXvXdd3j42P01plJSx697fsgpUahHfTVH//uZ8FU3TYxUc44Z5oK6b2dRjfOmdT1i68ez+ezczNu0Gz9PJP9plrlsSueMeK9Rd7EGDu9HAHYoXartNhuVomQYegBY61WLWPMORNC9N6O4xi8J1WFFeAiai0ZI23bWmuneeCc73Y7IVkIoarVNBrvfdu2zVj1fX8+X4UQZjTIRqfpJBjnlE3DyCnb7XbQOrj0PXQwdqv17quvjsdjjJF4nwjnhLPEtqvtOI7BBq3qh5vKWvvh5dk598UXXzTNep5epnnWWndd5ZzrxxExjLVWMDZcroQQybiScqJ8t7sJ4dk5J7QyPgsDbm/vPjxn2iye31tnphn69Tc3N0B7pdCcyWmcvY/eh+RJSCGQ0FZd8rGtmrZtOOfjOH748GEcz0KI7XY7TZMZp0qq8zhJxoJ1hBAMrw4kScY/fvzovaWUcS6GwZ3PF0458FOhZNe1m83aOfPjjy9MEiEIoenm5kYpdYwRamac88PpXFXVPExVVTGmlKqc85vdTeEwaZkH61HBBew2IodU1PCapiGcWWsZE5wLlJg55ynS9WpLCFl1KqVkonHekMRISm6eeNXUSldv3oBw4F3UWitZmdkpWT3cP0opx76nlBIfruez1ppT8AbSNJkQEr7u/v4RIIP3/ng8oh2HJKEU36x31lob/OF0pJT6FBmFNndTquCUxhSCw+g8RlJK8XS9zM7WXRspwSRGKeXxeMRJDtHNBpkvU0pQSp0L4ziiXxwVKTNObVWzRDjnxufxzgDiOedN02y32+PxCAIQZgkAyREyi+mt2naeZ8mpVNx7LxgnhEQhK6WjD5vV+ugPNEVKqHM2BmM9Yyl3e6xWq5AiqjvGmGBdW9XOuev1erpefvOb33z69Mm5ALXraZqgw9B13V//9X+pqopz6iNNlFIum6YTQqVEbXKOeKE4hnZwyuxsjta9oodHlrIwFK9YdGQeZjMaznmlm3GYgj9sNptxmlKkhDH0XjRVlSv9XIZEI2E+EsklZczZQBlljDBG6lon4qzznHNjrRBKsJQo3axWTd2FmHwkkqt5MBgYNw2jT44LqkWD8phSzTxbxrxPT41r1psmhGDmUUpJRMVC2q9WFEpxhAgWIkuMEGNHIfhqterqBvmj6c0vHt9yzo8vwzBe7x8fq7aKNF6uLz55LfV2vQX1+3odSOKESRfIbEPlk9YieGKtb5qm0urLt29+lOJ6vU5mDEpprTkTWtKu67756uvD4dD3fd210H1OiaYUEI+hcsO5VEqnyEjidd2O19E552Z3t78bhmGYzBRnIRkFmktSbnKqK9Q+YclDSNE5SjlhTGqlOjmEIcQYrVc8kzy2260APJFS4pwtPDWYcpQdvA8x013R3pIHd+DQe++VypJS6AAyZlra7X0Zh+K9R4EU53gpwP7qV78KzkMuDT+fEkUXP5I9xooGJWOoXvKs8GuRtICLBEwcMG5JD1A1TZRSqVUIHjVwRy2AlRgjCvJznvWhAIFxzlP6LJuNtEwUCQtSBnMXiI1QSt+9e4fK9jAMJOYGcPRHcM6l4khukVkREhljuuir0tJTKYrSKH013ByJIilSuSkllOkiialIHGJhSSrxU0oYGjPPY1VV1mUGCmprtOR/oDwwzp1zqKCC+EYLISWEkFJACypaexCqhtLjk08LY0KI3W7HueSUMSbYq95qXuQRluVCzglWgp0xZTjTgvBG/LNqUmZJoCINNg2i6pQ7jD5dLhcMAMS+0L/XGxullHzp2n5FEWWMaV1jWtqSWJLSLSuEQOtTiqk8iRKcw876lJWqGMnFYSxIALUgRpIYGEDWWko4OK2pyEECK0khVmX4e4zRxQC62TJTVXKBw88Fpa9URPCavIyfklIbM1VVxaUgJBIijUFLrxEiq41fr9eUgve+7y/b7XYmYYwuBq4FY4J5QUMglPG2qQmj4JASQiD1wFlgWptX8ytgoaD7vDw/9m4hFqFJzVqLCTAYVLharcD7E0KAguqcW6/XxlpjppQUYg5KCCJ72DIoAGJhQ26VyBVIMCJRsZflD9YHcHbGKL0jhOSRHVRst9vzyxGthSDjIzkXIguzcpKV65c/gWTtb+jZ0dKFndWQQ9yuV5RSLZW3LnBWqVpwJph8Ol9Op1O7Wu33N5zzYRwl55u7Owgd/upXv0KPkrUWoxYXC6O1ZiyPbK3rBs+D3osYo3PZ/qBujN0Zx/FyuaxWHdIbTv9enzsyKFnG3eRZDSGEInTw8eMHSpkxZp6t1nq/30MlA7k9CqFKCdjklJJzNvjofRa6FUJQlj5+/CgoUVp+9913zpl//s//Wdu22/0mfRep4G++fKO1ZmyajJVKpUAIY0rJGGPV1jGmw+Fwc7Mz89z3fUwJagZCClsGhS9CGc65aTLBuqZpGGegX83z7KwrBPCA1i0RAuBm59wyJSkEB7tESs9RjLFtO8SXoC4imDudX3ANg/PLtGJkwjiTjLFxnqdhiDH+yZ/8SVVVfT9udlvGREohUcopjSSZeQreKaWapiU0KplnL4RAUqJ1Xc9jpmaM42jtzDlv110IIYZU2GTee08JqesObBrGGGfZUqHgTwungxDy/PxsvQP1wzmH3hTO5TzPyEu9921bo1cCNw5mUAi5QIRd1zFCYigiM95577Lp9s6/mgQLx4S/I3MAbQQeB3T+mK8xQZK5YMqM0aqqPnz4MJeZWkvNO6WUaG5qEUIsmO/iXKZpgiuH1Aak9FB1Xyiiq9XqL/7iL9C6sTykUpJSGmI2/jFGa7IAKzyULXqs+Bf4QcDiyNjRXkMJEVoLrUMIidJxnhhjiVLjnZQyJRpSDN4lQrRSPHDCWVVVLBGaEkSc+z73cs7DIIsMq7WWUx+4gB2L0YPfxF5JEnPOEWWt12sIgNDSRUTLnAPwreC1sQuf5o9Ikhc3jW9cCNGsKE2nMri1aRpC6DAMta5A+4XBQXmAMeahG146fxdatCjzA3Delr1btm+pr8MIg9X1+PiIe7pQ3WnRo2BF7ZcXjnOukbCs1BFCIDG91sEwxuoyY6OUSDOzyRXti+zEExFC8Dy9IyzU3SVqxfOzoogtsuz157kUC3yPp0UDSkppu92ihYIUKhkiDfRBY2VQgMQVKTUAguRtvV6zrOO/hGFzjPHh4UFr3fd909SXy+X3P3yHu5ADkhBTngY5c57drg61bjRPJKQgmAzJO+eCT1VV+QTuleCUOW+DCEKIebKERqUUicyWqfRYycvlgt6CULRfUBNCjRajKa21MSaI6kzTVFVZgwvXeZynBd7lpVkkm/2y+0LJlBJGWYYQOGfoc/rlr75+enqq69qHwBgDiQwGPJZpn6AcEsKMMUDx7u/vGSMoyeNnchCeO35yjFpw6gm7DJYr2lq3W429g32Y55mBNDfPqG2gpf3t27eYsoAhZjhyCKQZYwDigQymGKy1f/u3f4tW/RRi3/ewfj/99JO11seMgaLGudwsjBjCv3RdB8GE8/kMXcuF3w1tUBTsU0qEsMVu+NI0hjwIQnMpxKZppFaExJQSDpgx5ptvfjVNEyV5CkXGF5TyzrPSFzJNE2MCakXoGgQUAp3c7XaLiC6UcW2CSTju4/EYQmhadu2Nc+7u17/23q9Wq+Px+HJ6ApMupaRU9fT0dHd394d/+IfQ9aaUbjYbrbV1c0whptwaAoIb7JtzrqoxR1Eyhq7z7F9YEU/HmazKLC+AxUvUvdDwx3GchhkyVnVdO+8p1V9++Qa0MnB1oRjTtm1d14+P90oA9M9dYnXLYM1QzHt4eKjr+sOHD7IoNYVAttv14u8Qn2Cumix6U8jdEAj55HEaScBI86y3hm3abrdN0y3z2bBHi6jU8XgUIgfw3nshFKbtVVW13W4vl8sPl4+rFatSWq1WSMNDCH3fE86AMAIM3Ww2z08vAp210zTJabfbMcbmMt7Ae//y8lLX9TRNLlhGcvzjnLNuNsaIIo4HQ429izFeLpfVaqUxhJBzY8x6s8FZzWc4JO/9Dz/8AL8AU+mcO5/Pb968ORwOnw4vMRIayXpdt23LAw3OI1JijKErbp5nfzoxxmAWpJRv3ry5Dr33/vn5eZ7NL37xJV4W6wPSw2azeXl5+du//ent232BPgwXmUmK4AElSe8j5AvW6/V2u67rFvYTPgXsUc7H7bbu6iaWVry2bvq+H8YeEb4xpm1bLCbCD/SGGhP3+wbSc6DcYTf3+z2ouJ8+fXp+ft7tdre3t+AvI1ICLZozFkPuTwIQ1DSCc366nN+8eWOMSZSgmYMQstmI2fmu69q2Be9SFf09LN2Sp8cY+/MFEs+Hw8E5Bx4hknG4wpzMcoos9eHhgdLkUx6DjMo3noozuVhdIQTY2SRrptPSiaJBxofbhcotjnosHXhw05fLtNtxcBzhtQsgnrtbkAWjxhY8puAGWmah4+6TkKEMZATeJ6RyoAYvuoWiNEnTMpUHM/qQEUOrDWJBRbGdEMaXa/7y8oK1lZXuKIV8SkoJxG2cQ/r3dUUQpjKu8DC4UKfTtL3Z08LhwNsBqMXfXZEWiS4rL2VOGGee5XFKS44AWPl0OsE3YW3xmsYbX6RZpZSEwVl43GXv/WpboXGqaZppGLEj85SH0KYyKhy6Dc4ZzGBDbEnKhIPT5Yw7gpRcSsnKQOOQhx6pGNPLy+nNm4fT6TRO4263aZoqxgi48vnpJUYSYwxlqBVXPFjPOV0SbaROXDEExhn3c4kxtlq113FApwK+1FrLqIA/klK+f/8R1pLy3MTsnEMkgCsPayal1JWkrMOlXgg3cNkI58ZxhnQJMqkQAhLAqqp2u931ej4cDr/+9a+dc7/93d9a66WEwom7u3swxvzX//pfv/zyS2CDQgiH4KgEzAtUS4qUHNCbGOPxeFyv15FA3SjhkYTIRHJkUsCanXMwcUKI43COl3B3e8s5dz5sNptGq6dgJ+eccwLrtaQK/FUnYIGVCWi8WO6lqYSUNvwlboMPizGUNJLVdQ0aPGPMhbyFWFBX2pAXBBPemmTRerrAf6nM+0b+qbJa2Qi+agkRXPnhIITabDb4dWMmYwyPIsYAAEty8f333/d9f3t7C6VXPI+1ObaAjcA4BYT8OH+8qHqdz0f0EcRlussrkNSHDH55763NwDpy7JSSDxZ5nS8TBW0eEjgg8UFMAFrBNA+UUq1qVnI2tAAbY8D8nbzFfzLG1FWb659SkpD1Jay1jEusYVUGBnrnkJoyxlR5X/gbGB0snbUWU5KxsLDI2L4Yo1RKQV8so2OCZqS+wK8ht9MSQmJK6PqnlM4LozyxqkwIkVmmIPPLOGUhhOE6xuQJpUuWiGfDNYbrwmworP9yYuGbKc2LH8rQT6UULdJgtEy5WY4fY4wmElNurWWEhsJ3iKUz6Hq9Hk7H1Wqz3SqtFE4+Yta6rnEPGcUJjyGEFGPdVkvumkgeshdDgIcgRVRaalVpWENVVYqmBawniPOQ2lnvQkgAPadpcsb76FyeVDtmtbWqSoEwkVLwlZIxxuC8lExJ6eycpOZdTZUKnBOSKI2Q63YpsJC71WKMWlcpBUZp5Dk5hFdGWIP4G7gSlg57N45jVdcIHGGypZR9EfVHnwuSBGttVVWXy2WcJrTmwcaRlEJpyY/Re2+VEhjJ6L1XSoCqjD3FpVsQE17kGpH8wGqN5zzvSEoZXPzw4cMPP/wQrPvFL35RPJMQQqi6QvYVw+fJdYEkoTKhGx2mMFxYDVi8w/MTi1Fr/X//f/3P1s1aqtPpFGPc3eydc7ubOyXkNPSUMEGZtw4uCu4HEQwXn4fyIWTHk2CmFt6IlAbhGGOIRCnFOIkxg/s40mhgjz5oqWIRV1oCQYQXroiTUs4ma5BmD8OwXm+stev1er1m2DsUdRD0wORerxPnnKaMIQqe8akX+yy44oI2TXN8fvr53fH25r5pOuf8fn/Trlufwh/9ya8nM/PKvfni7e+/fzcNs67EOIz1rla6tj56b4VgIbrcO1amVcTkge4559rHhmSxMC+lxAxfLjgpiofHeXbONU3T9yNjTFbaOYdJm8MwWO9ub28XiCqEQAjEoHIXJxrH0K90vV4yxO8SNsIYg+jKOSsYR5iFkgC+/R/9o380jiMXklHuQxZ8UEopIRolCSGtrqJzxtqqqigliaQYfUg0Re/woPPMSW4hRLQnZJbCZ4zDJqSUIFHqvW90jaOOsxQpgabEer1++/bt+48fbm9v4afsvPTxUDgC4Ok+RUpJXdeRJHQ/MMIBWeLOhhB8tNDFW9bNWhvSkqNmLfXlfHLOV6sVkhlrLWIjWURglKyk4pRSRFeMsWHo8UiwxoRkRADXwTpHYkI1Gv3LwMdZmZWM0ngkaRkngGtlrZWKn04nxtg0mhjjZrPBsBpgPXVdR5ulfmiOpXPrXyySPqlI+uJjlVLGzYkwQoKdTb2pN6s1Fp8rmSgZ54kTToK31mXwfRmsmogQUgtFQ5r6AUGCNfZ0eFF1BTUDzjkhHgEJTYSQPGUOCEhKWYSH0kRIJIQWZD4XU/GTyAz3+30IYTbGlTnAMMtv3rxBtQ8BNIq1qJzhIAEzRb6hlGpXHVKLaZpWbdc0zTwbOE1SKIEoQkSSMVb4hWxn6Gf5aZHnl/Il5vbe45oAmC6kP43KLixzKvXpEEKMCXg1YFn8AKXUx7AA0yEEmqc1ROgjcc5tkU1fIhNcHMR4PlhCiKCMMeZLQw/itPhKTwMwcYTXI1lROhU6M3zi4oxKFO7BSSxoKaeULTg7HKsoE6EJIag3w+anRDnnhGnsiPfeR88SCyFgpMdqtYJlruuGMfbH+o/+03/6T7i88FNt2zKWIknexxi9jy4BuCeBK15VFY3UWi+FqKvqfLp674G0I17KblRqArq0UksQ3rbtp0+f0EGPZZnn+fb2di4DOZF1E0KGYYTI4/V6VXniucNVFd4tCxhK4TMWbbclmAnOLx68rispJfCLzI8rc/bA6ooxQmZ0eVRklbj14zhivBJOOJCRhWMhysArYJHYkRCCc95ashSfQF9d4v+U0jiOuBFAbwvgngW4YJRg4m5ublJK1+sVqMHlcuEiD+uGU7v0V6jKAIc9HF8AXCK3AtQyDAMsKtSoP378eHNz8w//4T/86aef/qf/6f8d4xl3HBAYpQmmW0pNKSdFmhwnBEKWCJizXGOISqmu7ULKGsFIeqFfbIzjIs8nH6aRMIpgA0gBPioEJ3nuxUamjXuEb7ycr1CVMc6i/ZaWqRVa67aNzrnj+UVL9enTsEy/GIYBoiWHw8EY8+WXX37xxRfv3r3z3nerBj9AP+vXZ9V+cIDAyF6v15fLiRBye3v79HSIMdZVi7mpSyTpnNvtdoSQjx8/fvvtt8u341RjHxc/uN/vh3E8nY5/8id/8vz8zEsBG9EsCiSo3u33e2vny+WSG8ZDgCzp4XD44Ycf6roGmAvv9vbtA/JNmGWYHejAwFDAmIzjCNlcJrONYons93uQPGAZIJiDMfVwebggUspFCIvSzIWCrwfE5pwDvZdSEmMwZka2aK0FaN4PA84z0pCubrTWSqn1er3b7Y7HI5z75XK5v7/Hxdzv99Ak3O128zw7wDdaOedmY3SpwyHyxALSgq998fYtXnmeZ6U15xxlFWTWQjKl1MPDw/fffw+fxZlESLxerwlnMcbkAyK9qqooAduaXvoswtZfR4wMVUrxFPu+J4xyzjmTIQTvyfPz8/39PUw6wmmo7UFx4vn55Y//+NfwWQlTI8r9VUpJrUGaoZR7HykkSLyVkkvJ0YcKaFVreb2eISR9PB5vbm42mw1hCTU8mCNZlGrwAKuVAFj28vJS1w1M4ul0IoRsNhvsOy4CTgvQ4VSGxo/j2K5X67ab5/l67QHsoOw0z4Sxj6vVKqVM9HHO3N/f+5RhH7R/LchPjPHrr78+HA7Pz89t2x4OL94TFy+rbR6CwrngZcgBAoOcKO02cGcYUeNiVv9PhQQmhOjaFbwDK20ouIZCCE7T9Xqt2mY8zzEQWpRz4HlRX3l6epomv9+25ZIG5Kqr1SqSbGxhvXe7HYA5mKzNZvNy6BEdKSWCT6jCLlY0FRoZ1FfatqWCQy0QlxenFAY2lpFIGBACuTZrDfpdSNGDVko9f/y0lPMJIca7ZLOU2ZRncrIQwmwt9hEuD7vw8HjXti3qr9575wwIjuB00ldDlY0xhERCODw+gnnd6rquj5czYoCnT4e2VgA3ACjN8xxIatv2559/Ns6+fXwTi0gp55xzOgyDtU6IXimVKNdaHw6HaSK7XVOiQRJ9EIzDOyilSMpzOEJKKYTn50/Y4qZpQpiUkjHKl5eX1WaHK2CMabpmHidQo1JKfd8T57z3QlWE0M1mg1swDBMh5HogdT13Xee9neeZEg4UG1djnueU4+cUQnx+fr5er5AiEUJ8fP+hamp4FmMMcWm1akURdUGogFPNOOn7HoHZ/f2tMW4cx7qSGJiBWMKU0ZcR7jUSRhhjjAvKOGGc4AIi/RmGoevWQF2gxq7LPC10KkM7aBx7Sj9wzm92tyFF0GdTSpXSv/vd7/rePT+/7Ha78+kihHAxVFUFQ+G9l1JTSkczc873d7eo/Terrk7pfD4TzjiTWusQHeLYceyPx+P9/f1ut7sOPZLNaZqs9aiPCiGI4tM0GWk4EzHEeZ4Dizg8AjEH7gMuKrbBZVHjRbfu8zhv0IRZYcQY45YCi/ee0rTUHLCduOSAm5fQORWmMCJLnC2kfhmvLCQIfCz2XkpJUoKwCJ42hDiOUypDyaGDic/Ew1hriXdVpWEWjTf39/dffvklIC1RiIrWWkqzGP88z5g0SCkNMS5TMjI3oapTiK5AkJzzm5sbuDelda2rJe7kXIosxm+MzTpEQHOEEJSm0+nFh4T0kjGBxNcFyxy9nM4xeTh1670zUz6yCcqJIaXEGEklQB+Goes62E0hoS+JSd+fZ6Yjw0R0iChwqa+iJI7df5XOyRgjiCH+lQgv9n2cJs5523UZuVYqhejLbBxkjxm/Zp+FIFOMIcbJjZxL1FUQ/S9AZ/ROLNPSaAaSfOFGwWUyxpbQGY+E81YOcGKMgOPCOY8poTQEcjUhhPPM4BvHkZC4QNWIiSmlJCbrndaaUn46XbTWXdOOw8yZbNuVlBIycIgmpZTeOsh1O+dIgk50ctZCrAq5AVSbKaVKSJdyKs4K77vruqaphBAOKWGICLx8sJxzXVXYfe/9NJl5zLkNTUwojkPoi2Qzknb8BXtt3ewDUUo45xxlSleUkojAKHpCGYnRuZnEtJT1al2lSElijJGlPpQKnX+z2WA3l1Tter1i8GCIETl8LK3ZQIRhiZCEcM6BBePvPthr7+GuUojGTNgUViRBU+lrpqXKCtt9PB6x4wgIgMgDN+FlghlmSsIaeBsQB2+6FfIHzinnnEmxWKE5zMgqQR9YDoYs/As4QtyF+/v7Tz/8+F/+038+ng7ffvstsqztdvtnf/ZnddusVqvtdjuZ+ae/+3G1Wu1vbyxJZp47TAYfhratgw+cMkZoCnEeJyY4Vg/vJYSgmahHliGB6MOC300pwWzWdYWQIsXMh104gIhCsiWxudyFz8S9btsWyZtzbrPZxTJkAAEuHCTSzpTSqm0opYxyIQThZEF5vPe73cZOYyJxs1mRFP7rf/3/ffnll4fzyx/96R//s3/xz779/t0wjcnk8jWaHzkTxphLPyYSNrt1XVdjPzVNw4VAwkxZgvjdIiGKfanrlisdYww2pJTlOznnl+MJtZ+UUqX15XJJZXYNQAEtK+yptTbGTKNDoQICbSCwYGVW3eZ8vnDOwacYxzGFGFxgMkuNYzsw1R12TDeVT2GYplSm3gnGORXWWhLTMAzzPIMn7lMkjHCaNTftbNbrLvkQQtjf7FJKPUtSyo4r7KxzHrcGrnCa5ovv3WxQgEmM4scQMUgpHx4eYhECLuFsqqqq0VVKSQgWSCJlUhzg45TiOI0wvyEE+FlKX1NfqRAiURJ9klJut1tocMNs0iKUj1gCOJQvorcAFKZpGq4TxlmAO++c++nvfmyapm3b6IMQIvoAeI4moqQMhdaKaVGhDLzFYcbBjjEukDRjzDkbYzwcTkjeSGIYkoNQJxbhv5SoD0iZ6BIRLlYOVx5HZfGMhFEt9Krtal0JymlM0fkQgqXJOBsoCTEkZ0kiua+ZU0ZoCoFRpoUUhBIfKyGNDZRyIdRquwMpMgUCGi22rJCwVIw5owMyC5waBjalRCkJIcAIoJTFyiRVQgiJKQTPGOOUpRChF4Q8B2DEYjAXBVXs9WvcjXOOLmxESqDN4th47yHDTQjhlFFBSUxL9RqmDN+1GG0oXeCMsSK6x1+xlV2ZluzKuCSe+RCEc56CjzFPjxWFIA/PmF5xqzn93K4EDCgUxWfUUSilwDFT4SghZyBMLIVShEwLywG7AOMghCCJuEIaTYUuveTJ3roFc3wNK4PWgBgG8QNBw9OrcgvwoBhjStR69LjUS057uVxWmzXSxXGetttt0zSn05EQ8i//5b/0Lj09Pf32t7/N9iolVaFZkChVsUTm2RKWYkje9JEQ64zWWgmtlJmL/PFutzNl6Bzoum3brlYrM45zmH75y1+u1+tPnz6hJIBAejkwQMQIIcZYKfNsmKZpQoio8dAiS4XlZYwthC8shXMORG/Ea9M0obyX4f4YY4zv37/P811jRJYBrWcUa5cinFLKuQwo00xaz0x8/BgvHWOwVIuzi6WZQHCI8tkFlORlrtQS4VyvV+wgpZQx0TTd8XhmLBceADZho1Gtt9Y6b7z3Ly/zL3/5AKQPJbqU0vuf3/FCpLDOQb0aTDStNaPCu3izv9Na99fRObfZbMZx/A//4T947+/vd977T58+jeN4d3eHvsD1eh1CRCCNCw68CUD5b37zm9///veUUjTsC8ZRLIlELK1jXbcmpVSJUAS3D5EzPjnG+OnTJyklY8QzT2I6Ho9cirZtz+czcp+u68Z+Qr0kkoTzeXd39/Dw4L1/eXmBwNdSLEGBXGtNCDufz4+Pj4+Pj5fL5fn5GdR+U8ppnHMg/tvt1topzA7Y036/Z4w9PX+EbCjy9mmartdecJhSyYpOsRACtvHl5QWGaJ7sNE1t22qFkYYCd19KeTydsOO//e1vp2m+udnjbMsy0AzlBLkTTbPGzMaQorXWWhfCIZX2UMi/LuiV1gorMOcR3JIktpgpQohUebyb1rrrOioohkZwQkFZRTYEY7Jer2MkjLHTKU/fioWZIXLPZSwVF76Y9GmaXl5elKxubtZdtwbED3K6z+Iq5HK5fPHFF8v8TyDmHz9+rOt6v9+/vLyg8IzCzKdPB+/9/f09TLFS6vn5WWm9Wq0AFS01YOzmPM9oicDuvByPu+0WCnUvL6eua7DC6KCazQgeK6U0hLhareq6Jil/GmZcN21HS+9F2zTItafRKKWCTzBZ8DJmnIyzcFVa1ZxzraMx5v2nj5vNZr3btnWDV1ZaKC3Wa2Agpus6WWGeSrB5wpt3znFKAS+m0t2LRAnvnlIC4nM+X/u+jy5J6ZpGppTmeVRSwvniY9FZhV6ZoSD+YHoppcZx2GzWlIrT6YRn4JyvViukn33fLwMqKaUw7OM4JkYVF0rppomxjIT59LEXkhQwxKSUhBD7/a2UHIwZxOGgiwUQ3gmBUiLCMEpJ12mcJVgAWJWlXbLve8wzmGeLj8p9DzLP+AX7m1Ka4ue2cjgFQOd5fCIjWutxmL33MJXTNLXtSqlKSu1coJRvNruUTuMwU8IZFVolJHHoPVWy8t6fp/N2u0V42TQNSex8unAmV6vVPI+k4PuX6ylDWMHDxWBxMJU0pSS0QgiKy7vQkHG8r9crjrFS6nq9KqUoJ/h5eCX4vkASqPGUUp9iDAG1Rhyq0+kE5GQYe0R9AJ33N9sYI3Z/aQEHCK61nl0OyPEtJs85zxOMEB1prTnhQPaBawklD0/P+AHELcaYeZ7gIvF2qYDXcFgpJSE4Sn3GhXEcQyBVRUIIVVUxwmotFoAOLvv25h7FhsvlEl4NE1rcMWPs5ubGp0gpFVxqrYdpnOap1tW7d+/ymB/GYlETXnJA3K+7t7GuGpJYDCSE0PfXpmnQsT9by4SY5/nDhw9CiP1+j+jr9abY2axWKyYpYywwNztrg4f2EaC8JbNGM9DpdMLW13WNxByNjN77EHMJFoUrUPsBaiH3REc4Aqr7+3shFBju9/f3nPPn52dUJWFz8BcUIPu+77oOk/0QqwOGvblZ4y0QJ0gpUXjINeNhCEVsAAcJkRJqzH3fv7l/Qym9jgafAIY4bmul9Ak/8+bNMEwfPnzw3nsWN3INyyO47N/3LkXaUUqJ916AxoKvTCkjqjEzhclSH9O6BqJnzIRjFwp9lXO/JAxVVaUUCu5Ml6DEOWd9rg+X7mCHCBJqMnAtCIth8mJKmPF6OBxgOpGgOmtxQywUeI1F1AKThKuFu0RI1LqilLrgYbWBDC7A4hL1wtm8zhaAxQkhWEoqi7Jfp2nSSnRdF2OEpuRC/vXeUwzn0doYO+dhfRZn4nOyWubYUJo4zzprISdhKSWqSIa36roO0SGulVJKrYLzKSWRR4IgMyUx94SS1abCsG/OORQDhdAhuCWwXmC4EIIutF98MaVUCFUopREmaaECLXZzQYR5kchQSikpY4wpRMzmcsESkkV+Q4qUJsZYCjERSijjjKSUJzgvOTN0G0B/U4JzrVDuW76RFU1wHAD4gxiDKwLwvuhUWGuR+cInDcMADV9fZspRSquqKeALION5AVOMyepIuI3e+8+Tx2J2J01V4xuFEJxLQkgswzOVUil65ywhRAillNK6pjLFoIQQjLIQA6OUsvyBIMujOKa1TinM88yY8t4hSzkcDkKy1WqFgAwXSkoJCLKqKsDN8MGwufl++ZCEayo1z5ZEH533KVaVopRG4ygTPiUuqGQ8JsYIjTFWSgOAmCajlAgpBiiOl+FIMFWYjoXFwfeO44jofEn+eR7GFTjn1hj42lh6xACUYwGdc0LlrkbJBSGEcA4PuhRIQpmficuylIhwkoFbwXS6MlEBN8gV3wNahxDCzm6/39/f39OYc3toZvWXy4LK4QOXMAJmAVE4phNgukLXdWBq142uG/3770+Pj49vH9+0bU0pXa1Wp8sZ5C/G2H67plwW1hIKvL4EiwxnQBTp7WkYkc9kZykkikPqVQOanQ0Cx3I+RV3XMIlL4RAHMpRphDQ3H2TVGtg9XAStNcgsyLcxNBwFRcRGaO8F2FerPAmNUsoJhb1FDHS9Xm9vbx8e7zmnH969N8ZcLv2f/8X/mjJBpXTBD+czF75p1iGky7kf+6viwhg3zpPSeppG6+ePHz8dj8fbuzspZdd1SotlAnIona14neDD6XTiiiNEyPQBzox3k3Wc80CSMaaqlBDi7u6ubpvL5UI7llJYAi9f6Op1nSs6OHVd12EcB5Jw/DDC66WyjUU4nU7Oua7rTN9TSmPydrLzPEvOGeUkEmuCd4kkHmNqm05rret2NqOfHWVp3a2FEHY2TVXFmM4vRy4YIhiUoFNheeDiDEOPcAF9JHVdG+8WUSDcUO+9C36lG3T6c85xqnEvbLAskRAI6O0xRucs5bnPkZHcsQgckDFmjK3rGk0kMQZ02CHgsNZyyl9XRwTjXDJv3QKbCsZtMPM45YF+1nDO7+7usIZ2Nm3dvHnzZkH38Eg484B3gXJO05R0RGIJWGqpprDSCmqtJZFky2MtCpBSyuC9MeY//+f//Od//ue73e7j0ycpMwII87vcBRgu53xKhHMRQi6iw/WklKquYpQNw6Cl9NZfLxddVZRxHwPlfL3qIHDMCXMQH6gUiYlzrrkUhNkpD0eazGCMadcrFTVlDCAFjYmJjJOmV6zPGKPWKsYYgme5PzGBvauUDmWc4FJyw/oAoGeMIaZcMg2YNfQ9oAyDVfWls5IUSSLOua4r/OLSKsQYL2ESZeyzWBZjjHNGYp5+jEdCRrEYNFSwyGfBK4IXT39vimzEZc8HIIsAZP9OU26uJIVbzRhjHFoTfokDmeBcCEkojhkkWRYgEiswWrcYk4IVMs2pYMTFQNLnGbZLdr388Oc15yy+UkJbbiuwzgJxBlkGOgGgJK+G7/HPInocdBU0JSxhW8jiA5kvPI7j7e0tNBOQ2wghQIiu6rqpc5P4PM8//fSTMcZbl3taIzXOExJVXaUQrfWUUqWr/jow+tJ1XaUcZWmapvPpdHNzsxQAhBBuNtdAYoyJpvP5fDgcwPWLGKO6WiFLAWwEqIgQsjCOjTFd18KgIbrrui7Rz30DOB7gA6YyuZEW3ishJBIQvN08z/v9ntAcGKeCccsskqaXGLUUyBnONirNuPhYeWDE+JVUGBJIc2BkjDFSiO12e71ewcXDFUOqvJS0cUqd87vdFoH0MAwpsZSItehPbxCwTdNk3ay1/uKLL9br9fv371NK2+32q6++Oh6P6HmPPvz440fvX7755mupFcoG3vvHh7fe+6enJ9TF8YLIxS6XM5hruKTn8/l4tNM0ffnll6jaLgsSiuzDUsP46aefYARwSlNM1+t1GIbNbg34JsaodQ3Eqqm7a3++XC7onF2idDRVQDFgt9us1+vn52cmOJw40ChbFPZQtmGCo9kIMSGMTyrSOoxQROw7foNsCDOmhBBwPd9//z0C9dcg9fHorP10e3uLzTWz/fjpPZKXy+UEN/Hzzz/HSHa77TxZ733brWDhoeLy888/B584k4wyazwSN1faEFNKnFNCYtNUaOjGuw8D8f5ls2kAqRNCnp+ftdZ4MOhIdF1nnNVaowiHRYYoAS4sKgqrVQtWNQw1ISQm319HRB2JhGGYvffex7pmKQVKRNu2knFjzLt379brNRx30zQ//fQTdtk5R0huXuFl+Aq+Aic5hBAjwUg9XOSmaSAYHWPsuu7h4YGQOE0TdBXqWqNw+/LyAugtFX46mLlgbODMCCE2m+7TpzOsli2aPLjviM3gBVyRhgshnM/n3W6H+FNKCSsXY5SSo+xBs142hXRkjBENPfgKMKZInjTLYDaBb6biyuGVANPISmP9j+dTCIkkgtNFKa3a5ng8Xq9DjMeqqk6nk9ZyNmMiq8vlIoUWWgWS5XQRS/d9v9lsnAvWekGZVvU0GkoZQHDMFoZ50Rgg6T2liaakVA5pVO7hnpe4d7fbIcfBgETE+UopxgQAkPPZt+1ls9lAhebDh9NqJTHJ8HV+cb32WissbEqJM9GPU4wRdB6kA7d3zfOnESUNOBfC2e3D/bt3Px2P5xACilUIvYp62/nbb7/dbDZCCBDkRREVgbFCyRnTs8CQQMZ6OByqSmGbOOdc5ClnyPSllPOc6+LOOewgQLFpmlKiba1Tym7COSelllKjorzUuUHonvoBD6yU2m332K/j8fj27dsQQqWbGMg0mqqqUqRAA51z67Vu29X1erbWtm2rjMr0HVnhxBZyVUJRcDQzoAwp5c3NzcKaAszHGIOq28L2o5y44BXN3YGUUnwRQLDj8bjgHqx0E+YyBud1XTtv1psOgmlLYn4+n6XkVaWUUsknQsjsbLa6pb17tVoREp+fnwkhu90O1QvsPjYIz9y27fOnJ0xtjc7nwoySqFjourKzWXJt5OM0Jli2lBKTYhzHptHQU4ISJg4VLL8xxsyOpIFhZAIn4zivNmshxPl8rjm73e2XoOjLr7/66aefnp6enEnOWDPNTVWHEI7HU4mKSehnIURVNd5HSjOlb73eSikDBhwRZoxjLMt3EJKboWGH46txxID1Hu7fvByfh2G4ublhjI1kFJQaYz59+gSUtmmavu+xsLvdTmv94cOHRUM/keCdmc28Wq24oPMwIknf77cgicYYA0mHwxNiCdgQlGHGcRbCv337FkEjZF6wy4CSQwgxECn0fr9PkV4vfYY+ant4fiYx3dzcyNJmyhKp69ol4mMwzhJGEyXGGmtt0zTEzYDskKBVTV23DUxiSklxYa199+5dXWvcGlzepqrNNH/48IFzKaW8XC77x9s4RJ8SSwzOZVVXVEdP0mq1EqEQvNfrNcpo8DdAWGLRi+BcLoEvshH4wgUITikwDBijDEEnIm+b+0BTSJnrsQTlS5QPZS4oAQmRteGsc+i+oYUmgxia5IamLGKwVGbw5LvdTusa8c0CizDGvA8pRc65anKjzRLcIInKrj3mtKeQcZzSNUy/tVZJmVIeM6KqbPWQ2vkQWEqMMZw8nFeYgOXTsJ4lI+IIZRINPiaStVRALSd4PM2ltRbVV0IoE1wplRIQPYBHoSBimUlHKOWMC65MMsYYa2dCOTYU9FJEkKCuYIloTuXIktphWYQQCMcR6i3xIgIO2B3ATEopZ0OMkctMFeS8ZQxHguMbCI2U5fRSKcV5Vm1DFY5ztiSoyHCWlHtJPGJR7/XeM5Y92QIbkSJlCyAeWwPaHdxDOdgchjuVDl/OJSEMJVZX9A0QgR2Px+v1end3p4SEYFMIgcs8c4kxQWky02y8R5foEtng71h2M034OjCsVZnCjLYUxP1YTBQPmiZPTEKkzjhZVj6lRDnTukYfSowxuMglQ92l0jliw6LFGL2PlHOptdAKL6sU1QEm1QkqpeAuRGsNPsp7L4SCksn1OkDwMcaUYlx6ORcIAEnyEhOo0jxLCh8ZP2yNUaUJVyl1uVxoob0DUAvWMUKB0YhCygYRY4EVCCGcsxAobg8pWsb4AdB+AbYu8eVr/GKaJijNAXeDJaExxRhHYwnByEoNswCBOV+kOUlh7y6ZEvphcQYul0sk6atvvv7VH/4BY2weJzhUY8zXN9+0bTvPdra21ZoJ5oJ3znGZNbVL2YmyImmKsIyWBcQ+0pRV15cDjwpWZo1VtdRy2XRkWVgNmDVa5LqWk7nEYbgjTdMCP4JbQicdqEBLuAZPXFUqpSS5mGcbQhRCJJIWi3E+H3e73TRNUolpmihnJLEP7z/92W/+4Isvvvib3353vvRCrjmnxpgQEolRa/3ycrLWVm0Tk79cZqnF5XLp+15pfXt7O4xXHz7rODHGFtTGOccSkVJan2t7KSXOOdTr5tmm0vAYgoN0ElIpyRUhuYmhqjQ2QghJSkuHMQbBFk5OCLEUL3MHXypDC3AeNpsNtD7weNaAlFqhN58QwihDN5Yxk6w0JcI4x5WuGOdSxuAmO3vvlazGvvfB0Uj7vkcvAiEkUpJiLkohP5znuWla1BjwjgBNEMb1fT/PU9XUmOpgrfW5BUEskAoONhqPpmmilCSace3oA9AiVNpRhIZgxeFwkFJIrWIICDFBPKyqynsHEjPWgdJFwTD1fY/pAt77cRyNc9988w0AoALSBTzPAsPhUoA3oetquYkpRF5aHRHq4WzACUYfUkrBIxeKbdtiuHOMMbB0d3f3r/7VvwL5EcY2lRYupASLy4PcQUrpcDhwzlGHkEVbI8bIOckIZyWEEIRSn6KiMnHGKSMo4zNWKb0E4oLQQEJKkUnBGDPBBxa5ULOzxlmQuGulvffGGkCNWmaaG3D8xSHC8uOZQwjG2RgjiyHGyAQnPhvn5crjFLFSOdZFthVUOAxhxwrjZi32HAESrB++GiVuIQSlBJaBFhniVDQlKqWXxgiUrxAOIalmjFGah1V4/1ldLRQFJOcc54xS+vLyAso2ZIVEoU2lGIUQUggfIy+jAmnRDl4eKTsORvEDLuT2OHzpy8vL6XSSXOz3e6UUoZGVfn+cpZSS8y4EwgSvahUDWQLjxQPm00vy0IKUUvSQ6WCs6JWT8mDwgFprXMPl3VkZWYFPw9XDJcV2SKV4jD4ERj/DQ1VVLzgdpRQKp23bni9Hawal1B/+4R+iwf96vYYQXk7HGFOMIZFECA02JJZSJDFFQqKgfLwO2/VaCOGDRaERewejuulW02RygYcGULzBj8OhWlhIJRx1Wuubm5tPnz4hqQtFyRSKeShQEUaXk4z3bZoGahUZCuEcshvZ1IisNqiUogzYH9e6ds4suAzWWRRlc5GJ9vx8Pve96TpSVQoJW9u2QKCwrbAGwLZYoXnCOLx+SOQ7uNTQ4gMWDFGa29vbebZoLqFFr2YxL3CvXFApJWQcvvnmm8Ph8Nvf/vbx8XFxvnVdP7zZj+M4zlNF0vV6hbQlYm+U/fC+pMzPSCldr9fNZkMpXa1WXdcx9gS4ljGGZ0P8A1z406dPOHJL2zgv2iBVVX3xxRfOuWG4uiK9BdJ9Lv/7DNA7F4wx02RwX3CM7+/vjZmGIkOPQHcxICGEqqqu1+t1GFerdrfbXS4XlC5wePB4KaXNZgMoRFUajhhLDZ8F41PX9d3d3fv372FAdruNMc/WkmkapNScc6XzU9msYJCZ6QtZe7/fE85U1czzPM7WG7uIKyKQWLJLUtpKrDfE58ouaAeHw/nt2zXe8Xi8hhDW6zXiSULI5XSWUtZtwwSveO4wA8MJ6SFYwymlSjcvLy9LjQR8t9z3QGOIzofsAtbr9fF4tHbWWkrBeQ5R8zEOIYBcjFwv5O7AREjcbHa+jFrhlBJCoGMAN8oYy+wc76WUSlYhhHHspZRCMCl1LNxJgNpVVUH4+PDpaQEEcfJhuk+nE54KuO3PP/+82+0QZiN5XOofsNsAaxZuIAwymIa8mG6UN1AQyhmfYMAZlhyEgUnaX7uuozRF7z2JODDee1RrSEoQejbGnE4n4x3Sxpv9HebooADzyz/8A1gwrY/Aibqu45y+f/9+MsbHxCn56quvnp6eDofD3d3dPM8gL0Pg2xjTVjU22trgnOtWzaptvfeXaVqi/bquUwhCMMi7YUeqMoiClMLqAiPgD85G10nOqXOu66hzbh7ndbeOPoZwJKVxFmkXglvnCOeecCYrjbl8MJI4RPg6qLIg7O+nIZAUjTmfzzc3d30/YqlZkbxAVLzbhZubG+x4CGG73SKPqGuJKCsEB8Ub0HRgjpAIrtdVrWXx+JRRwaioNJ/nWavazG5xvohnKKWEsPV6e7lcJmN2TReJtdYqJYFTN01DKQcXB2ka57zuWmutnWYUroBNv5wu7969g8ubi9Q4omjEXZfLBScKc/zqqgVCmnwuMJT8XeMuX9+905rhzANMh6VdlEhRVIYX45wPU88YS5TMs4XZyc6RkCV4gKfjpSdYlOlHMUaceVeUaVNKq1V7OByqarvb7U6nE0sslZHjIBIhuovRg8YLmx9fKadLKWdntdaRJGwiqjWKZ908TiWSbilldGmykxByv9tYN3vvqeCLdLsNvmmrSjcLQ19XnwXoq6qCjAbaDqy1UnFeWohQiVlcj/f+b/+Xb2Wlq6p69+6dFBrA1Gq1+vjxY8h82RRjmqYZ7RHPz5/Q24o4XCklZdbRfvrYrzaCUc5FVlMpMGZafhhOFggVxKYWqDCVrlbnHA6zcw5Z0jxbEATR1aSrTECmUF62DoE3SkS4fVDR8aVxZBim1SqrhjLG0BzgMhv6sxId/IiSAs1Viy1F5o5vXPpHQwjXcWyrejBZgMUxh4C56zopcxejtbMQrGlaYDUwtoSQlGLwPpVmMvh05EScc28dEXTdrbx14zhuxdpa+8Pv/04q+dA8OOcOh4MnaUVuBWVit18lkoljiaSEYTXepZQYZ4zzmGgKgROC0ATNO/f390optLCBPIiSF6JSVfS24aWE4JxmeTuEIDD9PEvyRc7lPFtCmNaZxw7HDwoDogSgciljeZnOsFQkQpEMhhWWUmack1Im+OJ3daVoGfeEy4xtxjUjhDjnFygWcY/3/nq9khRwOJRS0zRNZkYqi1gHKDLnPOYxL3nOptYM1TacSEJI0zSUJkTqQgifp1uA6utT4pjeQAXlTCjJiIRCaxboqOtWCJE1qXkGYfEVSIHGcfz973/ftvXj4+NsTPC5zLgkCUvBgFIqha4qGVIEgw8GPWfvMcYYGaOEUeMsiZ/jNpJ1sQ3nfBzHebL4FWwWWJCksKeFEIwmZJve+5SJ8FmPGxiHlJyQKCV3xi4xLoJgyj+bACyjlHpBpUNp4XwNC4YyWJKWvkg0VlCaxXDVK9k+BOX48AJ/RBSd4Kphgz4HxPkZJOecJuLzyBHBec7MZenOCyGEMIaUJ0tg3cjnfrT49PREKb27uyOEWO9ccGUZHYLF9Xp9uZ6AlmbwlEDD0YUQBOOMcezp4oaxiW3bkpQHrDdNw5j0EReE8MQxLd0nKxjjhM7DSAjjvPT+C2GspZS27SqEcDodtdbzNC0dAFXRfn15eaGU4iKnUkmKZew7VoyVzh14WfxfNEqjdyGWQVVYZ5Rnbm5usJXY6BijMRZRi7UzVnJpKlmaVeFHyd8XgoTjEUJwJrf3O8bY09OTtbaqqhghWWXRliWz3nougC9nGBADXM5Sdl5qZru72/V6fT1frLXtZn04HKqqfvvV11rrl9ORJ9JVmnBmrNVMtJs1K/pi0PJDGhPLeChYM2stGjIIISnRGJNzgTHxugATsxCYEkKYaXYhlhOSKyuxDMFDZIPWQnwdpVQpBXONlUcSCON2d3e3YAcZLBPCe9v3llLK6g6FK+ecDVAZnhExLwveNI0x/Eyuf/3X/+2br//J01/9zY8/fZC6Wa123lEupdZMsMaYCdGn8YZE8Cj9N998I4QIyccyBBXXBxfcFl02772gTCnljUfchtNeJAizlBil9Hi8Xq9X8HPruqaJcZ55bcjo6rqeZ7NYAzh1ax1IbZfLdZl6V9ZcxygA+sOR4agghiCEE0IrKVD3IoRQRqRWzjkXvZuDUjqFICiPgfrok+1h/62bgfLjkzFWK2BAYqLH4xGPWtdVCEEpjfOP3A+G93K5OOekFJEkxBnWWppI+jxlgSBewfFGYxMhhHMBDTspZWCMcua8t94BgxZCzvMcUgwpCkpo0diF/iOyDlKmbPHPmglZ9EMIASpcrnM4Z4x5eXnpuk6J3IYPB46V5Jxz1KFTEpwj4IML88mlPLVSLXczFgWkjAhLYq3tutY5JzJviG42a6xk+qwnU4bW0lw1z0kXoct8xU+fPt3c3Gy3u+v1AptgjPEkMsZWq5U3DrAaLAZhhBASvWeMJeejZFKqlBJNhFMenJ+JFYwrpRxJ/Twyzpnm1tm2rYP30QfGJKNpMcI4XTHm+r1zDvHMgo+HTFimi8gG1Ehw6xfI3pdJqqzIKy2py3Ke4ZiWPJAVsmeM0dplUIzQCjokOXxKZajG4nMFF0skukB15FVrRSo8ZV/mTC4lMVIqhUu+ihjSOX86nQ6HwxdffLHb7ZTKvWKx+P1XSC7q8Wm5qpxzlCgSzZJQMNpa64eHBy0VQJ+Mkgi6QNW0VDqzKAeLvEI/aS6K01IaZ4xxymKMKWYCxIK8p0KqQMBQ0K60+DsEkNYaLL5zmXDqi86Df9UHJpSglMoYuBRaabxmU3fgJXVNgzPggg8hSi5eXl4eHh5w5kMIl/4aQiApy5iQQAQTUkmmManpPI0zpzRkyD5ZOxOC5G2KgXC0QVjfbBX8CO4REE+AyM45zKzDlQQaNU3T4+Pjd9999/x8/fWvf4HxcXCghFAcxUK7u+52OygeyDIQBQdDSplSlEX3c55nxkiDSVwpTZNJKSyQLskTqDgv/U+U8nme1+u66zqlxOt4Cfg+nPt6vX58fPz48ePSkmiMQT971omO+RngN/GHEAKAA3uH7VuKKHXdSskhuBxC6FbNUiQDnRlO8OPHj5vNBgUVJJabzWaeZ/wWQGSYSkS/T09Pl8v17u4WSAEvPWGAgZaQDKERjiuqd+nVDHbkzzHG/X7fNquffvpJ8OSZByohhOBUgEEJzKiqqutlANxJcgXLKSVfXl5ubm7qul5QLaDDyHjzJPMS+gqh6rZRlQ4ld8W4b2TFQogYfQj+cHjKAAolnHOw+Lfb7fPzc0oJOipYRrATOKd13d7cOCQghJDrdQDiU0KIHJ3m4lDMDAPBlC8tDpdh6vvp7m6/3++dc1mIqcSly2kMZdQh4ocvv/zSOffx40fMTBuG4f37p/1+fXNzY4z58OF6c8OLuCJ3zoHw+8033zRN8+7dO1xzrXVdtX3fMwZsJS5Pi8dDAwEMncrD250QItjcScwYA/wBsPL5+RncaljpeZ6HeSKcbbfbYRiCT03TaCnxCkD5kTuDiD0O8+J2U0qHwwHGLcbIlXTOgVsAG9usuu1qHWN8//691rUQQil5vZ5xxbz3TdMAPQFMtrwITsj79++rqtrtdkoptKj3/bjA0Lh0iDcwTxjJBezMNE2MEzCB8Hjn87mqKgRL6OiHgpl3EUHIMAyHw2Gz2dzd3YUQwBlUdYX6WaOr+/t7EN1Wq9XDwwOkeJFCMsYeHu5CCJfLxVpb19V2u0W7xjj60+mEQwJzsd/vwU4F0j1NfSgqPSklLSWuIed81bahqrTWUmhjzOFwwL0wxkBM3GUhfnY+n5fAD/cC+76w+lJK0PWulNZ1hXKjUgqsCCFE2xJwsWOMbdumSF5eXoyxIZC2lvf39yGELGRHqS0VGsC42IW+72NRafPgEBgjpYQQDaJQ2Mzz+TyOAa8JPboQwuPjo7X+559/5pzFGNtWKy6kyBapblskjEuFjBByvV4BPoJjZK3nnKO/Zy7MObCaxnGuqmaerdYulRGpjDEheIyEUl7XrXOe0rCURpwLjGUIiHMZI4kxxEikFJdLr1RFSvM9VpgSzlhcAho8QF3rtm3fvHkzO4uyBK5V3/eg9bA8oVphy6y1MDKlO8SnEJeQbAmrkOgtySktBMrNZoOe3fv7+/P5jF8BLiRli8/s+/75+Xm33vmUp97hSZQSYLYh38GWmTL0JRW2X9/3THDO+Xq9BiuOawp/CvFJbJP3AXttrUVwKgWnKcA4IBnc7tbOOak4j9kII/LxLlcRaKlzLF2Y9/f3h8MBXhIOq+97DClF6koSo5Qej8ftdoswgxBye3ubEkf9oK71arX6u7/78NVXTYlR0+Jbr8eD936ax/UaEr4Ji49oGScZO9X3fbdq1us1/BSiaARvYLU2TaOFvNnuXl5eRufgphFgj+PovEEM9vT0JKVsdCVLWz8Sh8QoLTMApZTPz2dCTE4xvF+qFIwxyHnf3NygFoIDuMhzAS/VWnerBr0giP9jKdUgQ1xtdk3TnP0Ztgi/iJNmizZsCM7aDMEJjrl0eUxXsHmbYECA/6SUnAtYW8liwxvJRUcaxkV03syTWiviHA1J4FXHceynHouI9QK2KF4NwctwUghN08hXra9LquDKpG/ccx+DECJ4j6QilStBCo8P9eFhGLbbPVpgsOWLwNBrLhstXZBzrgrmqUTIePGTNPdvWilVCI5zsThsSikGqriiX0xKpQJRI94a6beUCq7XOdePw+3trQ9W8kw3CyHAipFSdcwpHOaiCrHAZAVx1pRSRH6kCD7Qv08CFUJhKgIhrKqUM9ZpC0omQJZ5trilmOKNZMcXGUFWZgb5wjpfrMkwjcZZOLzPGVdhcwBzqVWFgCMWYS9InocQmqZKITrn+75HOIVDJoqwznaz50VbA2N2FmgYAVaMMXi7JMkkJTNZzjmt9BLnoYJU13koYixMYQTHuAY44oQsdFe+PDCQzWLFPKV00QRYLPg4zohall2DiSEFp5bF/S9J49K2Y4v23zRNIWVLQQgTZeqR9x4d+rBrzjlCcsbORG6GWgACfBTnfLfb4QC4AMwlwpvyIkYRSlcyzn9KyQWfQq4H0EJKz/kG4mDOKylBSmu61TRNh+MJJTIhuHNuGudLf23bNnpPOW/aKlGOD5SqQkRiZ9N0ddu2GCxeVZWQkhfVbBw8hA5YH1fk8+irCe8hBFckzHDFEPVC9mHRJ0qJhpC0FozlmB7BNCmKNzhC+EvTNKfTCX9fSAS8yM2TovuZCtX3er1SzhYnGmPEzCt4NVAVvLevoTH8pLUWEHmmtBTJY8Q3sYxOijG64MP5+vx88N4TGruu2+z3c3Cnl2uMsV51zjnO5XqzS5QQQpRk0zRZZ5RS3ljjcxy5gGg5G3QM1zYWxZ7T6VRSEY/rCfaKL+pR0IdagpslDkNKFouuUSgD1tA2FUJAvwKsE4qF8RWbwHsfY25YJoR8+vQJQn7jOBrvUDxb2BaNrqRUuDg48P/5r397ufS7/e1me2fmIFQdox8vY9GzCzb4EELTNT4GKTWLJARHGG2aBtwZ4OC475fLRQgBYCrF3JuPyQnWWggUwhoYY5YGNCQn3ntn7Gq1ATZBijyF9/567QuUwJdqHCEgXwTGxDBcl2u7wKNgzy2gZ9ZGdHQYrlOMUnLd1JyzGDzhJKZY1WocR8E1Z5zRVDcVYyzoNE9WSkEp50o6G266bpoGSund3R0quzBTwzBUTQQLxRWBF3gEKSWUtbuuVUpJrVLp3rAmU1EopVCIoqWBY7nFnHPGOIRWEWAB5kgpTXbeVBUMVNu23jvcviX3iB4KRRVsFBQJwQ9CCLvcnQWhQ6qgtbazgZnFFUspGmM2qxUrw1fHcYyWEZJ5HCnEl5cXcMc+ffqEft4FVwp5cEdWuOacO2cBYXz48AHwB0w35YwQnhJ6JfLshCXQh6VCPyAh5Hg8IjiG3QCP2AXPBA/O+hQJZyRGYI5aSCFEtJ6XqUdSK0qpx3g6xmZnY4xE8JCiSJGmaM3srWuqilFS11V/Phlj9vu9EHKeDS3gPqUUqsdS8sVQLJ4rWwDvUQ/Gv+NkgmiG401K5w24V7ga8NSgQCKdEIVgBUePMANdLyEEITLLmxY2sbUWi9O27TxjNHyAI1gquLao/GPwJgw1AsKFdkApVUrhchXTpx4fHx8eHv7u7/4ug1yUcyYCiUt5g1JK83wmQkuRckGxAfHA9mJzU0oApBjJSC44NRhdgJ+npXqBm5JSSj4wQpQApYug8ddaOxf95eVdwisRasSlIUXOheQKQFUqGh3ee0ozQdU5JwSnVMICl38R5BX2jVAnxhhjIoTwxIyZli4fQO0fnz4JIRJN33zzdQgRdJCu6969e/fx6dOSmlprldbddmWjMWbiXFpruUBjIllALpyNGGOKlFK6Xq9vH7fn8xlHYgkXUdBFyre8IIR3GWOn0wkhPXCZuq5hpaGROpcJePiiT58+WWuhs4cPT0VLPRRCiRCC0mQzgx719XWMHu4AncU4eCgk45UXkBTbBP+OD2yaBo7mzZs3MIk4gVVVhdIlgIZiVzqReSFDLYGKtXaeZ+8jpg+BHXl3d8cYQfDvi+7HUslOKTEm3r69f35+Pp/P6N+v6/p0OkFCSmVFEYMuNyFEjGSaUF4SuMVYbSB3sDnQyLZFtQBvipIAOusx5wDtPsaY4PN82tVqNY398Xj03m92a1CJlVLTZABj+SLSjbhrniMCCc75r3/96w8fPvR9P455Eimmw4ELSQoR2/t4d3e3Xq9/+uknV6RUlvYpoNve++t1nGfy5s0alEPgrV3XQSwY8BPnHJIU3lsABNttVi9drVZVpTA6BZ/8+PjVzz//jP0yxpGUCezG58pZlsS9XLGGgEdB/sUhQULetDVgL4j1QdYcHLfHx0fEVB8/foQdvr+/BxoOwaJhGChNda37fvzxxx+/+eYboIpt23KW2Z3b3Rre5+npCZuypA+44DhsXdewMqAbz7ndbn3puFJFaH7JzZtV98VXv8BefPr0yTnHBfXWIoSIMT4+PsYYAbPit0QWr8hi0Ag5mrYimU1/rqoGGBDiPTCXP358atu2bVtrPfgZS0CFncUnI0NEBsQ57/txuVObzYYQcj7Pt7dqtVpBfWK1WkGZ5/HxEfAKLilj7HI5uTJ9FGED+C6l/J9lSaTIrWzgXhhjxhHTWaQQKpCEPXLOjeN4f38/TZOL4a/+6q9ijDjtCwcW0QJm8Xnvn54+dt26aQQiGezLx48fHx8fV6uVGSfnwmq1qaoGRDrvfdd1rPRvMSoOz0cYLkBO+BCcN/zw8XiETcNhQGHJF94JTj6SaC3r4/E4zxZc6ZQ0HBPmcEgpm1WHQPp8vj4+3seQynYkJgS2ewkehGBSNShCIw6PpT+SEIISHYiujDHYDbwg8GUp5fHwEWLKhJD1en0+n7///u9ub29jmYL+8HDX6OpyudzdPhhjSIoBI16954zN40hTmiaPBSnuw1JKF3Xdy+UC/1W4ohowHBYESxTKTBEtJOJSrTWox7CH4GXjNVURmAUCnnsEvd9sVoh7XRl94azFqDQM6/vxxx8XNTPAWSh4LMYcFwEXZLfbee9fTkcU5DhoizF2XQcyYiEZ0AWRQGujKLMxNpuNLfKJjBEwsY7HI6Kal5cXrbXxebIaTi+6S5HqktIRbori5el0kkxGSjBNwc6OlyZmay34PW3b+hQzIM4olUwpdXNz891334E2jnCUUk8pvb29hRD8EhVwQhllNBEfiHHTAhostXkhBMw40jf01MLlxRilkrjO3mWa7fF4RJXaWnu9XimVu91OKQFjeHvbkUKgPBwOp9P4B3/wi67rVrszFgHbQcro5gV1QXUE9vmrr7/EiXKljZgUHvT1Otzu9gtJSBLygmbrSjJG2q7GyUEC7pyjRbmbF+pepATFRSBy+/1miefhvhEOffjwYRgGpFe2dD8457yP4JKP4+iDJVRD9BxiJqmIZ2ZkhrMFlpzQAayrRCIqWKQ0QcYYL5e+a9pKaRrpNE1CZHMkhOy07qeRlo6llFLf9ylRZNkhuNGMldI3NzfjNGuu26Y6skPTtvzEBXK28/kcfKrq3L9JCk8WuAwrjdgI4EII0DFBLLvg4riHlDMYZewxK+qTPoSlSoMoUxYhfNyrBTTMKf1nqjlGnWQcE/8yz3m0HeJvXEucXSEE5oHgLhFCQgyv1/01OtmWYho+OWV59YRgYrvdfvj0Ebcxydy2sBwXyIMArEGpLZULk1KyNveTSpmJhyKzoRfqa7DWMpkPPYLRYZi+/+73Mfr9fv/VV1/xQv9ETEYIYUxYa7WWQJOFELBNy+Iopb766isEl5xzSnkI1rkQgoulu83M83KUr/FaVVUKMYVIaM4Ps2fK7ICEbpSSLjJWJF8ZE5zmoMc5N1uzAI5L+gf5ZmxfVVXexcvlEmPEYAHGGIAShI/W2qaq8cN490Ry6Qmh6mazQoUcWxkye4UuByCkGJylKQcWOJkwgrjP6/U6Fh53VVWUcqBplFJABjFEwTjlREiZwUefp+Q5j/mZLIRAU5qCXcJoUQSFS15NGZOEEMLywUNhA2dSFpWGEMJkZoyAyCWjMLsiJw2B7rZtYwGP/ASN7ySlrHU1z9aMkyf5M6Xk02SkVseXM6VUCIUYRSnx6elpf7P11tngqq6a3VzXtfVmehmZoJGkSivG+Xq7cdCXSOT0cjRmXBgT4ziu1+umroEdTNME/WLkNssKJEK890CTnXM3NzfPz8+4FLGwd0G9PJ1OQrAYyUIdwnX23s9zJhtyLlGbSaWfCINoFyx1kSZUZSwhvgjLtd1uAb2llJx3V+9jjLe3t8YYnMZpmgiJq9UqvmoJx8lBjIX6gS2zwpBVqjL1mzFGCGeMAb8ghNzd3fkY5nmWqoKDN+5CScI/VlXlU0TOBny5bRspJVRllkoDMhAELjQxiDm0bRuCw3kubP0sk82KzBHnPMaMZegiDwJXt5Tu8L9sUSKyeZ4k5h60bTsMEystI0II5wwhZLvdAlMYxNT3l67r2ra9DD0eQ0p5d3eHNY/OT+OMDW2a5ni6Mtb4KAmVlOdZdowR763WMkZOPNvttj4G70OI0VqjlKrqOpXK7YIfXa/XxTTBsGCj+76/XC673W6/30PlvK5zAXlRsIWxFUJcLhdKE5YUjDlWtHeAQdR1HYJLKcUY7u7uQiC40aDMwNLCVtNCPKQ812AiSVykqpaMMaEUY5xSIkRFKeU8cpK261tnDImzM7PgzfV8fXq5cin+4Fe/DiFcxwmndxxn772dTYqRicyN6rouppQYJZQKIdZ6TWmuySVKmOCcCl1XSkjn3LW/wqSEV5ANY8x7J4REiEBe0U6tsUKIcZzO5ywFy8pMpCVcm+e5rivk4djruq6dscshxE0JZYIi7AAp49QRZA/TBNZAKOOwS7kupURqVaVIfK52j0t2XVXVPBuSCO5UKH/gj+Y8KSGfbUKSEJIx5kNGCuArCSGMca21C76qKmMmzjkjWdJ0MR0AytFlD+xpv99LKdAEZ4dlCpBnnEeSrHcpREnV+fklhPD4+Mhi8s4QyjjnmqkQghI60WidY4wpLXlijDFOieraeRjrtmY01Y1E7SSEYGejV0pKCbOAfgKUmqZpZmW6hlKKcoZCMqX0fD5rqRihy6xmUsY7w9cg8wQYhIqaLC1iKNACH1xqACEEUobdZdw2xZRy9/3rdAUfO44jpTksBJqP0BkrBuzMmM9pISB+Unijy4HMliQmpFiMsbu7O3wjCTGQxLnQOkeqTHBGcvNQLIXkxR1jqG+in+3e5yg8xPy+kYYQBM3i7Kn0fCwsB5xwVwT9ae7j8UoJGnKByhU5HWjLssL6DyGguQFBYwq5LhtjKESi7PvwOQs1NccDNO9gKrPCSKIxBkKI8SbGGHxiPHGpkCPVbYMY2xkL40wpA5ChtZ7v77///vulyjgOA684Y6JStERr+Q4t2BB4ginSpmmqqhaCAK+BPVzy4QWpQUZ6Op1MmViLrnAhBGOZjieKigh8E9o20cGNvADHHvRMWB5X1ITgfIdhuLvLA7rRj0LIZ3YYGrBSUTwYx7Guc/bFOcf4GSEUz6N3UZ7nzvnz+ZoShXnLav4lC4XdQ6aAfpdUii7AbVPunMh11nme5zlofdnvt64wy5wzoFuGEKB98d1338/zfH9/j5WZpgkc4Rw8GMOLQhSh0QeLvkCQQOGYQsxBKfIInE/YXs45SWyeja6yEhdMB4REEJBwzmMI0KkYhiGm4LxDco6S2/V6ff/+Y9d1+90tIZ87SxhjVHBrfFWraZr+5m/+5uHh4Xg8Wuul5L4Q06AeGwpzFoDOwpYFJbxpGsbI9XotmAi/vd0BIOM8j7pCZNh13Xa7xc7C8tzd3Sw47DAM0Ea7XC4osxVcIPs7qE7HGCmBnSEuOOTq2+327u6uVvr9+/e46XhmHCpo3YInASI2KijGmKenJ9D0FlLIN998I6U8HA5o4kEtHJT84/HadbUQTAgB1WnIH8cYvYsgxMGAfPnllzjnnHOUIkKhr4aQSRWydBUv/xfitrjGnHP4MuPdfr+nn6ejE/xfxRXOdiZ6CwFYNsboYhac5JxvNhut9TQPzrmHh4ef37/HJyNQ9973/ZRSAvyKshPAwd1ut4CnKaXz+TxN02azQdbsnHv37h2s1pdffonXXMo8VVX94he/wIJ8++23wzAUbbSsB4UiBGUJVWQYTywICgZAytAtwTnXqsJ9wZzzaTKIFZ1zbdvWghnPOeeEUNQYSCGdLKab5IkIESUEpPlo5yeELpNaUG3y3r979+7m5qaqmoW8UlUVrkbwKdJIEqOUgYC8Wq2enp5w+AGJPDw8gFay9CgAJYi53dDjjsNQw2Vba8dxsNZU5b4DjkQ8gFzbePQQxLrW8zxbkxWECHGEkHGeEf4JwUPwQqiSJkMr5sgS6erGuf8/V3/WpFmSXAeCavtdvtU93D0iMrMyp6pQRYIgCEBkpB/INwr/Mt97pjnTpLAbMySGRaC2zIzMWHz9trvYPg/H7Eag/aEkytP987uYqakePXqO97NVSuUQsYW995fLBcwf9EJCcEoVr0JRR5m11tb6x8dHpVTf98AxBTEcuAU5ZXK9xQy3xUHQaBa9x707F/CLrJALU9OozWbz888/T1NmzKWUOBMp5u1mZ928pHblRIvp7u5OKfX+/XvnIksRXA00TZfDBRlLjFGI4mgF0HbJbJEgee/319fjzz+nxCZnaxmuFszh7du3OM4gqJJzhrK89x66NNba6+vr4/GYQsHHRB3lxCGLWjVWuVf8AIL809MTarcQHI74BVhcjqecGXgbz88v19c7UIOXeTgsdUBYIYQcIjOa86L9JXUZhJ3YiD8qhHh+fobAqzEm5kSySJaBcE11cC3GbFTBxJfZjpwzlBvHcTSm5cYgwOII6LouRIfogWcFmCWEoJRQSp2GS3YMVKecM2fFPADlP0AJ5wZU9Ot1T5T2+z3yf2vt+Tze3Gyx2t+8uUNDbhjOyHPiF1xAdNFwfHRdh+GkXHWZlhM2pXRzta94a0bo267Wqim2FqJKrqNF9Pz8bK3VqlGZ5UyZMyaFFuL5+Vkpg8iGKgNlCC4GkLpSarfbASXDI1o6TCG65JMPFhBzjIUS1HWdc6mpQsRIC1MI0zCwnAHdGGPW6x5zNtB4ads2pwwlQGNM3/Tv379nTG632/P5TJRijCyVJjHC9dXV1fk84PYvbpRqi3w4RJ9SIiFAVblcLjKEgG4n5zz4RCwgqUXGvPCrwW7gdaQUanFgqOGiC96hJCSM0T9PKWVGQHPGaXJ+hkpLKrK5omkaJQoMx2thvFAnlnoeCTpeG3q/GCxFGMW5QtUfbKkTlj6tCx6/iHvAUkDJcTgclnQfuwUbBgzuGOPd3R2vJnu4VKoUIedcMhkFCXqqUsqmar6o6rxXt19xVvQ+5hxxzVLK0c4hhGnCqdasOv7tt992Xdc0mqpcLP4RQpBSA2MCjIh83TkHWcUYo7Wec1raXziTCltHSFdFFYHgUxUMwcrGKwORTVcryBACUSq67/Wl4N6Di21bDNYL/MdLW28JmrgAJTnauUtpWj5QCKQ+y5ZIKU12hnldeWWcoWaYpqlt+wUIQCCoTH5MN3ApeaJSthFnUkqhJCcGT7+l37DUkygPhFApuZQiCeY9irQiz5+rWzqeBnBVnPeCSV9VAsdx7LoG2Ap+N1HOmRhjWheOJJ4b1hIOj5I9UJGFAeyeImc852HY7XZGaWgnKa2pTnznSEvxjw/EA+HrlbX2Mg78Iqdpenk5oocco89JCcG8naUQnHvnnJLSaB5CmqyNMRtjHh4e9vu9UiZRxB2N08V731TRG7y+cwg4Hvq+x8EJ3Acr3BgjOM+cSyHGYcBOrAjyvPROsMf3+y3nfBznZZ8Cd44x4pB4fHxE9sYYzznNs5tnl3PE45qmCf3hEAISegExqZQQE1BgAJp0Nlg7mSpstDQGKoLAl+2gqwscPhDLGFeObdI0DahYWIEgO69Wa2y0aZpD8InKULz3XjCeY7aT5VzEkKiOsiJzVIzFGPAhXwJefd8bpZ1zIRYNzbY1nCtRfU1TijiNUm3dhxCGYZhni9FFXDzgPynFer3yPqTKK8T6n6ZJMq6ZPr0ckEAzxtbrHtrHRLTfby8XgRIlFuOOESXc0ggMoZQlWPnw3p3n+XK5CHGSRjPGnM1ZpaYxfb/ilMdxpFx8pZoUOOfBWaW0yjz5MjKGQmkJtt57TgKpId64ZMR5UU92RR2lqG7lXPrqEEHG68NA1jjOWpc0xbniO9q2Xc4Zm3Sz2YTgYKWtlDJGrVar8/n4/Py83W6VUjF+JpV0XaeMttbmTMY0KSUjYxO5FDoxHnwypll3faY0nE+SJ+7ch+//6dPP3zs75uS0kbN886tf/fr55dHZkLlQSp3dIDnw6oJup5R2u91mt00p2WnOOcPADWkH8Nacc4wh1AmhJQKjKnZ1DslaG8I5xs/CjgAxY4yYgmSMcs7IvHMVQM+1o17L3cjQnAuxopCffTVTndJASYmEAT+AsVac8tEHqkq7sQ4zYRMVzqnUWpk5etQq1lpMk+DfS2OGKgcQwJO1ReY+V/O3VPUcpmmCDjVL0VXBSkoFhUSDNsbSDVoAdMbYPE/OFUULLWUiSikKKZkUrirvHx+fckzR+U/vP+z2exIiEzONEYk/Pj1sdtu27zifichb561rpFit19P5PF4ub968OY/n3//xZymlFGvKYRxnLICmYc45aKsxVtidh8Mx57xaFZ1frfXhcPj4/gPq81jp9ssZt7w1/oWOME55Vc18kK/jdA5Vi4BzTjECLTIr3TTGVj3f5ZRkdewMicpU/SqapmGsIKS8SqhhLSFbQwm9LLAF7szVMAdqJLz2qnFoNm2zgLMlSVBFZQjhi1XXxJLepM8KJKkKyOIWQkypjmoJIXimlFLTdyEEqstm+VqWE77whHEXQNJ9nSCJ1cAW54VuDH7eWtt1nfV2wXSXq/3y1RCBMBGXdQvarzZKVdml0gngXOM6GZIlLqUULDFG4zg+3j9A3DDGOM/T9fXVbrc7nU5fv/3qp/c/g4A5TRNPnIiaRisjGSfOaJgmvLiQojLaqKZt22m0RNR17eyHEFLb9jnHxcEYa2xJLEFIREWE8IIxeVSJwzCU0pQVmbIlhcNLXNanlBIn7LJIcqXw4+wWQmhdmiXTNHVdg9IRSwsCcYDFOaem6fG7OGRxyi+RBOUTNIsAZpWly0r3F7krmHHzPGP2H7Ajs7bm5xDQaGtPbgZpGkgQXjc4fXind3d3WstcOSt46aDX5TouhicJ3I2IBFerVSel3Gw2Ukrn52VVIBfC/sVtciYRja0tKBIyN+BTSzca9jCowlilR+B1AFmbJmrbkuOFEIQsemKC2PPz826/AdD5008/4SQSQiNSYW3jQZ1OJ6WMlIRshTGRcwohQZRpIRkYY5qma9u279dKKUzuL9EDIDhQ7Nq1KkIfi5tcSmVX4sMZY8NwnucZGKu1XmudIhYbG4dRSnl7e5tS+vOf/yyILV1M59zXX38dQgAEDKVvpcXd3R0Y1lJK1LZCiF734zgCOgTWDLGLp6cDaJ7GmBDYbrc+Hs/oQECkGBTyz8dijPiQ+/t7eOWB9Yzbr+QqiyyRiFiZTVQ5s2GYGKN5ngGpo0COMY6Wcn5C0oukBX/6enf96tWrh4eHpXZuDIDCMh+z9DiJpZzzPM+Qs9hsNq9evcLcT86ZMfrqq6+enp5ACJBSns/n3W6XM6H5pLV+enpar9cvL6ecM6gJh8PBuRgjae0QH1DcKZjWcA5boFevXv32t7/9/vvvEcbHYcDWRkuJ8Qw0E4cXBnSur69RF2tphCrZ0SxnOxcWcNd1XbdSSn348KHvW9SLwbo5p1XbwdzSOZcY4dXAwzMUqT1SSm02mwWyYIwt7DrUwtfX15g8kFLnUPTKMe0Op4qnp6fz2e92jdZ6+fkPH+4Zo67rjGmt9T/88K5t29IU57xtW+yyeZ5fv34NOi3yKynl8XhEIAXAgu28v756eHjwX6hEolVzmUYgOW3beldsHjF16oPjmVIqaSE4JZfLZb1eo8soGV/yK0CrjDEXHVEiSosl1ZK44kMu44ScGeU2XgGm+J1zORSWIVIIY0wM2TvLeAbSh1KLUlpgPqpaapC7VEr99V//9f39/cPDw/kU2jbe3NxA/93mebPZbLdbsLBziCBlbzabpmlOw8U5L6VQSrVtu9vtPnz4IL6Y78TOxVvAX1zWHudcCHV/f8+ry7Spun+oMQ+HA3jxOCV1tUy8v79f4C8mOBHd3d19+Pk9qhgwGnPOMBopPXXORZ3uZdW/pzYhHKv8ZbwpWwdziWiaLM7QEMi5IKWeZ4unh72Jf19td8mHYbZSRilLdzwzAu8Km9rFAGpUYuS951LknLVqFm0HnERL9AiJ5vN5vV4jCLuqb8kYA4awXq201sfj8fr6OtWJ4Us64QPRTQm2TtL4AHb8QhUXXGFPAQ0DH3kYng/PPkbPOQnJTufD5XKRQjMm9vvV7e0tHAtxcBClGBs89lgJSXjLqF9yztfX1+/evUOhgRoTy1sp9fr1ayPVMAy2araUrDiWJA1vJFapyZwYJKdD1Rn2LnoqpySAZs75w8ODqTKbaMINwwBAUkp5c3OTCylWoiVDdXYkRj/PHoECt7PUMjiCV6tV8gnTKkaorKK1k4ZKW11OlUBQBhwpkjEGAr/IhHFe5xAWBEBKaa1fEpXgwvl8Tl2xHBecIsWQ01Xfy+PxiI4HikbKbIGQlrkAznlIIaaYqfhOYEuwOsgJbDczYqlsUaRZnHNOAp+/Wq2OxzjHMuwMUwLGGKtkGWzFJfPGTliCC+ccDOLauokLKMyqpueS4vOqCZgrq4vV8ZDhfEEG0/cdGuDoqOMTZLEaKFp7zrm27/CICx7EP9MJMZ2XKLt/bqSGmgHcclu91BbsntchRET81XYD7pIxJrio2xYTWEKInCOatJzLECBcWyZS8fNVnFpwzpRSwzBZOwN4xZPVWqNRnHP21hnTco6NypeQzTlnVK3nYow5OecWHTpksQijSDhKZUiUUsIhh73knOPy82EDSguaQm3TSUySMonznoiOx2O36hGhoEpT8yempApVt37BuZiQifJ5uDDB8cNMcC6F954J3ugW2wYMSvpi+pIxMUxjaxrkygvYB8QEKxk1gNaa0mfdZwQXcECgFCYqjzuEkIphIGeMtW0LIaryFwXnEPJOKQSAm0TEl5YDigp8oJIqM1oqBCllTB5Lejhfprl0OGXhDmdVFYo5Y+fzIOpQJ2OMODPGuJAi5d31rusaypmxbOexkVqzrESWgiWjuBQp2jQ7RdS2TUqER4rNJYSQCg+55DpIVtBeWhplvg4dszomjzi4DNWisFn+gXh9Op2IMdPqTORjyInlTJzJeb6Av5CqxS1+K1alCyDXORc7YEgZLC0HUfvnC/yBS405gRzUdZ2s+qGscpF4dQ2OlR2JIAskdDlBU9VBRsIXK1Go6zo3zTHG/ettSmlyNsaYUrExnMe5aZrWlOG+4EOwTmtFnDN4ZQrBC7Uz1fRULhGV6sBO3/cI93gsWusYwzQ59CdkGbSPoQr+IUfBnUopm8aAVRSxvSu1/3w+Hw6Hu1c3VJnIiwyxtZYxCiHikvBHc86LOF2RlFLQHo3OBWwTKeWcYkyx69u2a6SUPkHjVRklu65hLKVQpd6tn72DPoP1brfbC15smpjgaFHgaTjnGAku+XLiGIPeOWtl0ZBdmgcYkGScZyKpVLfqkNKhSZDL8OZlqdillCFAAl7WrLFtW5dzttZpzadpCCE0TbNew8Weoc6MpcOqIL6EyJz8eZ6ny+UiuGrb1ihy7jKcjik6Jtn9/c8//uEfwjzsNm3wdtuoX/zt/10onShLkZhUMeTVvjFKMcbsNL979+7h4eGbb7/LjCXKhWDr3DxOPmJyFiBaQb5UvQWcEagGl9i+/NuYMr+PFX48n6haIeEDsbzxPHFgnc/nq6srtI6iL9bYUsqlS4HwhWggv5jUw5bhnP/000/OOdM2SGvSF6wTJE8LPAr2cq4BFpehpVJF9jRS5TGJqiCMw2KeZynV+XzCfscEujHm7q5jjMWYvC9DuCklKRVjzNtiS1K3T/TVd4WVoYrSI8Q61FxYO5OUqm0SZcVUZvx8Pl8ul/fvfnLTjHHv11+9bVYrzrnMBac+ffjIOa1WKz9O9x/fv//xpxyLadK7m6uLnYizzW633xtZI8PSmSMivEooaQzDsJTljFGO6eP7D3/+858xc7YEkAXqTSkh612GMFBEiS84RwCIu2ozkqudHZeyKhsUY4BU7CLUklyh4sUfAkslV050goch58i/kSnd3t4ty4NXWZtUGWq5kEoKvwlxDB+uFv3EioYQZ7mo3uOcql7HvIDLBCUKxlidzcJd4/FWuJwrpXimUOcNy3OTRES5drxy9ZD4ZzB0KtoUy0oWdSYGiyrnDJobsJ62bXMu5IPlC1clqhQ1wjguOKSolYq1+uWc58/YupDIVKPjnBPSD8nwooPzC9iKDC2EALuFb775+n/+z/95PB5Pp9PkJ+R105Rf3V7HcnqEtjWU8u3dHRyHhsuUUnp6ehKa6o7jxnClSpcRRWAtgIOuVpN40VN1623bBhVESsnHYIwB0vTp0ydVBx8XUjlmxnE8ycq6QAaFuTQiLmWRFEP5sNQCrNoyiyqjAaKitRbIEQT9EcTAI1uqAM758Xi6uXnVdd2PP/yI5QPgNQRSio2j7/tyisUYG2N8NeRA7RNjNMZsNhuk6Aue3lTvHVbFlO/u7h4eHpBdENH19TWGqQHNqy9MKaC2t15tF8rLZThhGSNHQvcRWEMI4cP7T1dXV9hEPrjNZgM00FS5eV810GT1HjTGcFFGDYzZ4WFyzrUmWVWbVqsVsbTU5EqpeSqqHTFGxAogrYj8ro5Xb7f7db+a3ZS/oODFGIl4qENj2COiGnAtBPkloIEOOU3ufB45J6Wk1nK1Wh2PR1DOofSC3cT+uQALLwIFEEZHfut36433fjxf8Naur68x/26MgXw8gifnvKioKfV8OHhrlwkGzrkUsm3bTEWi6v3795yXmjFXYTfG2DfffDvP4zT9HhHj6em836+XGh6sw+PxiEN5kRFb2MohhJzhwZDBRIsxQiKvxKKcrXWgreWq07jZ79TlgnQ9VFH4/X6P4d2/+Zu/+Y//8T/CoHK4TKvVCjuXV2qR8zNj7HwuDWPcIEgw33zzDSgdWMmRctM06/U2VG+V/X7/9PSwCEG8evXq9vYaniWo5Ver1nt/fX29AEaYYwDxH43q3/3ud2/evNnv9y8vL0DcoFprre1XrR/tzc3NME3oBHPOMaNjdMuId12XWeHyh2o3veQb3vuua/B/h2E4HE6rVac2SkoJHhvwNXBZqJJ8Y8zG8N1uBysabISm6ZYOFlBggPKbfnU8nvG7sl4eShvnDsMwMyaUMtb6eT5oraz1QAyw7+Z57vtSRDPGVqsV+iLW2ru7O2PMx48fD4fD1dXVZrN5/+Hnpil2LG3bNl11whACZz0KqHEc/WxBwAwhXF9f//zzz1LKtmvAG315fEIkx+0E68rJSKS11qIIbszz7L3F7HIIAQLByxEWQkDp5JybJyeqsRMwK7S+gMfBsz0Eh2h/c3MTqsgb1cH61WqFns3sQmF0hoArBAUEZ8e33377zde/+N//9/+cv/DWSzkuKaJSSmpzOBw+fvyIgQmhywQAkrTD4YBHDTNMzvn5PHDOb25uXl5eMOCLEpWIQijGlbpKjBKRFDqlFHLh/+JsBTcfYA6WB5RhWPW6T6GMpwPg8t632iQfGGcQW0ckBGKI268N0dKKw1VhIgrsAcbYPM+r1Qa6w69ebVHN4cZxBvX9eprQK01N01nrlVLaGCQz1jul1DAMLH9mYnHOU0673Y44w0LFaCzLnw33Kv9PChJLMEcfN8XyoLy3h0PAcED6go5JxR0noQUrpEiMGCvZKRYG2m/EEpZKqo35tm1vb2/7fjifj0/PD33f7/dbDMTEkMdxnudRaxljPB5fZqs2m83rN7en0ymGjCYTOAGg6mMZsDK095ksiA4u5/zl5WXd9SGk5+fDzc0NUXGVxxuceWFOHI/Htm2VNLe3t4vFEa9qaefz+fn5vFoX7QQs+GmaFpsoVJoxRpB1sGCWBbDsdyCiOLJXq5UWkogeDkfJeN/3mTMiPgxDdinnHJzf7NZSSgrp+fkZjZ/FPiHGmEMM1rmUBAkppVLFHdG5+Ze//OVPP/30hz//qZlnlNIYxcYZdHYXRZJzChXkdM4lE03TjE+jzNDMrWmKlFKbFkEfWgq+CmyVX7YOO38Bnkqpqcv4Bn1h2sYYW/UrPIXVer1er5UWqnjgpNKdVg0rChjxfD4T0SKSjY2RUjqdTl+SpFIVjshVZAATSYWf6z30pHBTnPNu1fNqNi2EAOfCGAOkA+gqNBmEEJhwxM5pmgaKGUtulFLKMaUqdg5KS8zFQpdzPl4uvDpREtGiNI9YU3OgosjBGBunCQVScD7ngoKlos+1CqHQwL33OTOlZKV1sHEchQDQWb6wdYUQKYV5npHGSdUqpZQWmHq2dpJS2mrkjTjbdYpVEYzoAyeG0nrp3y4AFl6xnWfKXFa6BEqaUHklWBhIFrFpW9MsImgLdJhrjxo5q6tCzCCqcGKojU/jqQKsHG8EgRuAeKxfOUfIHSNgIVlfr9ecS6S8jLG+7fAqkbzCBYhVaeaCtvAmpWCt1U1J8haliFBEQgoWk9JnQ2gM4IcQMsWc+XyZc2YYbwnJC4YK9jNn5HK5vLy8oE91PB4nO8P6Msbo7KSNxOEnlNw1O2Ksqd2gpm28DYfDoWkab90wTEYxLkgKPY4jWPzYqYoLKRjltOpMu++9Hc+nx+dp6HNSSh0uY2I8MT46d/f2m5tXt8fTMLvAJMs5cymA6s7zbJoilo0iJISQ6pTWx48flVJIDRHxUSiCCQJED+93nueUs9Z6s91ehiGmAgs65yRXIQRDiJh54bSiK77gpKwMsHs4MqEsBCUEZxtiCBCi0+mE/4SjojEdXtNCQMMyS1WCI1dmkKh29vjApezPlWqETY3v80xJ6a5tD4fD4XBAfNBaSyCdnCH4IIRiu1FMgZcGHvvCltN7PwyXritRe7/fo0psivFdmZ7D85nnCY+FFXeL0jzH7RAxFNUoSpUqnmOl+cd5jGUubMldQIERukRytJR0Y7gU0EdGDgSWSqQoqmw6Kn1cBsAj4KFt2wKc4pzzLL2PzjlvXYiO80wpEJGd3XkciEgITiyhjed9FJyMMVyWJiU+vzGd9z6G4JzDhGZKiWLw3iefFh4ulsTxeGy7ldYaQ6AxeVBdhmEoDcIqBRCq1iErYi/F6hDWdrnwF7gQLcpsKWVKEcdHqkxGbx2Xwjl3uVxSpBBG732ws9KCMc9plIK6jmTO4+Xw04//OJ6e9uv1zdX1zdV11zVWShwBJFUjxDRPecre+w8//+xmi4yQc55hvyZFcMWWUzCO1iBW0TzPSsiQyxid/MKsdblfpDLoxoXgN5u1c+54PBAvTGQ0D6CvpZSC5bEQMlc5I2stdIrSF6YIC56Cb+JMWcqVpmmWzrHWmgkuGBecu3J1xUlmyQc455FypEyMYoohxZxzCjHHtOQhjBWztXpkf7Zfa9sWizFXNQb0WPAD2AKiChfwqiidKssVvR80gxjDsMuCr2VrLVdaKeVSwpgnESGf85dhGIbz4aiUcs/xNI/dZnP16rphGltsnket1BBj9GE6T+9/fPfzzz//7d/+m7dv3wqjr1+/joxWm3XXbqdhTKmkAUuRj7QypZBSWtpy1tqc08vLy2az+du//Vsg0dg1uppcAQtGPNFFzqJMiS13jeiBGgNj9XP1GyxIX5Vpy1WODDFw6Qqk+sUYX6DnGCPnjFeyJJhc4zjCzYmqSyp91rEtjV4ppTGFQIS1x4p5qQbCAmUwiNikqrtFBGyZo/JhX0x+pFSMWGUd/OKcy6b4IQM+y5lSSlTFK/CFK0+MfPDi84H/uReIRci/IGjHyi7HuzucjqfT6eXl5Ze//KVSCv2MBe9OlUuxvAtkR0QCqaDUSH6KlAdVuWr8deQgvIrdee95FIDndlf71jQ556Lpacwy8BFCQAl6c3Pz84f3MXmKFIP/6cd32/1OkMicHQ6n29vbeZ7v7++l0MCw3DwzXWAXXnohSSm2gJ4LtogaEjhdBcJsSinnhDqNMSakwK9AOjOltNlsLqczJxacR9W3VCULvolyFOsHxedqtbq6urq+vv5v/+2/xeiQguJn/BduKzgFGBMAvGA3l3OGdgGucDl0VqsecckYibICh3vbCkzmgRu+zI7ElJSCrKReKhelFFHC/gLjW1UHCGzhjx8/cmKcCuU5xghDoQVgZbWd75yjlEGPQJyc5gGHMtYw/qj3HuRoRsVkdSFKAwteGgMI0aHM5vMlSlymUQgEVRZjEMUqynnvtRIxxsvloo3ES+m6xs4RnIC+70+nE57nNDmkgksRoZTSUp/P58w+66hSMU5nSBpFJYcuw92oY0GDAB5xc3Pz4cMHxtgw2LZtkP9AQQLjKQvFRwiltUBWsFptOKfj8Wit9T5aDOyv18a0s/WmUeM4phxMo4VknGvU9kwKPnHn3O76Kuf8fDz3fXM6H/D6KiJ8ub25g5BCTF5Wg6br6zJkDcFD9JwOh8Pt7e319fVut3t5eem6qe97ONFtNhvMl/gqGoOlgqQaLzEEdz5POE//5b/8lz/88EMIQesGopepqn+itaN1IUaYah1kqjwrEW02m6vt7scffwRbue97LU00aZqmw+Hw6tUr7LjEiDIvvAH44oaAQguwOG7cOYd1i/21RM5//Mc/MEZ9b7CYAVJDeeZyuTg/f/vtt4IrVJHAetCIwhJFSnBzcwPeEkZGvPdEKROtN733frPZcCmJ86enp1x7XY8P5/1+pTHiMA8oFZVSUmisMc45URrHCyD7WJiA1HZmmgeU0owxdziQIshcDMMAzngIQcrPzCGjVErpdDgucitlCkrrushLYrPAQ8DWd7uttVYrAV7a+TTsNtvT5QzyoBACp/Dd3Z0Q4v7+/sOHj957tPxxyhwOh7dv347j+PHjx++++26cLofD8fr6FXI/KUVKcdFWZozd3z+/vLxAAjGn7KZZMi6FWm9WwMGx8KBF79y8gD911g1tUYLXHHSBlhMWvUOq0qlLgQOgTWv904f3UkrGOPi53ifAozklIUTb9kRDKQFEEYpNKTESaIF470+nE5cat09ExhTkbhzH7777DtT4tum++ert8XjkRJfTKVMp95bsF1yopUPTb/rNZoOOCCp9VK8wlMOMY0qp69ZEdDg8YxkgoqJhE2OcZ9c0GsG2NDtJoKmM5wO67jICBTkXX+0rQggX55e0xHvPc+ma31y9IqLL5bKITiykopSSMeZ4fEEvwVZ9jPP5vN1uv/7663/4h39YrVYxxnme3759++nTp1Do+RwoCupWzrmg4maM2HW5XK6vr+MXFtDeuto8ZpEyTvCma9u2TZGKeLcU3nn8GK9y7cHZsc40AyOKznddFyl37Sr4tFAwQwjjOB4Oh9VqJWVRMsGJxlgZkFoUdXAEp5RSDgtFFTHq1atXu93ucGg/fvrw8nJerbrr6+unp5fhMmndYG4Y+30Yh2E43726a9t28ENwTkvZt+1qtfrh3bulgPLeS6ExNnM+n6VWfb9SQoYQDi8nPxfqG96mMa2UBetzMUAeBy9ltVpBYfzh4WG32yFz4Jy3bXt1Rc65cRyxtO7u7uCW7Kuw21KwWGt//PFHiMkcDocY6e3bu6ZpYvSY2hFCPD8/R+dx/Wiin04XG3xBLSJgSYkBjq4r8Rar69//+38fQvjf/rf/l5SFejtZ23Ie7ByGC+fcGPXnH3+IMaKXXC0cZiGKH1LbtqxIYCYhtPfWWWt2zd3rNzqvZWPMNI7IepUxUkrBOMtkp1ly0fe95MI5x4i8Le4xC+UEWElBVwWH5A2CLM6V4BPLPFMJsnj0X9JDYoye/FIYcyaFLMLhWGFSSmQJQoiHh4fNZsNqkYnoFqqwzoJ51XLFYFPFGKm6mSmlBOML/qKUYoyHUGSjQ+Fra1aNXLz3xBnKbFywcy6FGGPE+VFU20LWUlHKnDOt9fF4UkpX4j0PIUCqbDknnAtCFDNKALvBYcLdIBmllDnnTw+PSN+vrq5Y21dZUnTJOFJGKSXnMlYb01qrcBSWiC/eexONNnIaRvD7Uu3ELgExxJBSKb9TSnaaY4ypcGkNHCQQHFto2M3zcirj+GyaRmqFDgkeZqwGnbnOKqLwpjrhKyrvAI0y4oxSXpARYwzmpBbfGFQ4kGyXVahOlGHwwo3CJBqQPmu91qV8JSIfQ0Wuix6rkCyTRJZAhTHH7RTgLIS7wOzD6XJGhi2FsLZoaAQX42eelOCc+5hSsZxi2CkxBylljmj1gDvPG23evPmqbQ3ykjbCzSmgVZhymW9qmoaz/HI4zNVqxl8uLBez6ZfLZRzn7nrLc045nM+D1IpzLniWnBojGAXJkkyOBWdPj5en++///MfGWdO0mYn1bh+ZtCnH6cpPYwwuU+akQ7GeS6D2cyathftTKuwYrUFXhMUBCr9cpbTxHSklmlV4HcYYWa3em6bJpHCnOWcliu4eGu9CCLCfcjXUdt4vdCdiCSRH1Hv4JlJzWYdwF+QLWb6WinKWUj4+PsYKESL75JxnophS9MEHn1LKjPI8iyqggY/CVjLVFy6HSCmzlIkxay1nrOs6o3XKGXRj/GJYygYuWMo5xVYb733KGYn7Up9rrRfpnhgDkCZWOdf4MQRPIorxs9AQhNvwk5je9d6btiUiwcr5bavy1wKXL+hSLu3KAG8fAEgBnGKj05zx9JbfhZaiFsVnyZiWVVFX/BYK7NqY4SGE0+nUdmsiPk1T9C5Tt+41qP6zcylR0zRK8Zg8M0JLxblMyTNG6GGgq89rr67m+qUZk3MZIUcJLatmd9O1CJXzPGutMQdqlJbVXDvG2BYJ8gLK+8rzxX8FgIuYDypNqs32XCc8auZXpgoYCSVN4knLa9ZFwUJjeN9xoinF0chsx6Ffibah/dXmN3/xL1/fvG2b1XiZfn581MqQkFxAcrfx3vMkNpuNN269Xm+329PlTJzHGMfjMQefUlr1G621C0UsEm9Z6OKEVk77EFwIxDme2DKTTpXMvuwF0zQ4CwS0bmNa+ucLCnx7ezsMQ3Buab9h6y3Q2wKEYblCxRW58gLSIfziMlIqWpN44Hh3qA2WUJ9z5oknLpAkfPkDmPjD3wUiE0LgnHtfZkQY/4wGMi6stULISniUQnDvfYzFJn6hYyz4zrLSYh1lQLvReselZJwrzjFUmFPQUq22m7/9u79L0ceciImLndq+55xzrThPMvPNZtM2jSDy1mmt33711dX19b/813/969/8BRM8cTY5q7QWQkNTmCh5j34VI0pCSCl5CCX4U9FWEko1ovoAL+03xM8ljBRQlQiveDkEfVUwyFVlGI8UKxxvmQlBlEEJlFIulNUvTl7w+uWC7yO2I7FJiThnIYSFB/T69eucaQGIc501QX7FGOH9grSC9LLyXst8WMqZmGCMGLGY3LJh8YGSS8YY54UGi1UaUlyCFZaitVaJUojC24Mycc5TVRjDevsSBM/4fkxLo4IxIatuA6q+5dwp1VpObdv+6le/enl5wZIepxG/zr/QjvPVJ3bJq6UsUCCKjZwTYyzlRERSFBnKGHPKmX1+g4XhAWoeSKxUFcDAsbq5uZFSjuN4f38Po6QU4sP9883d1Wq1snZima9Xfc5ZCZEiORtitMEdhBBaKb1azXHCwsDfQswfhjOvYpfLcfz8/AwdCRQI2PU4p0AOGudpnuftdgsroXEcvfeClQ9XSgFLha6uTTYXHvNnuz+q1GncFLDOlBLCJm4w5wyDWZQV+/0uFK3SAtCj/gcWvHSV4MkDQEFVp1NkKUiHEDABiU7TJHKepimEcHXV4h8pBYjm5cpvrdRmbnTLeMYZBD0inC8L6EZVOzsVoSFMXuu2NbPzMfm+aU1zNU0TdBVSSkpJxgqfLqVkTBncxp69fnUDqQchhFJCVsM0zjnGES7nEYi8MSYEN1krlOJU3JuR58NR0HvvfAnFzhXDOtCDlh6/lBKiOp8lCIjliAnIonGMAeoQwuVyybH4Z8hK5h0uU8755tVKyJK9U3VJwSp68+aNMebh4aHv++PxBaU4YAgk8zGWjl0ss8wJERK98+1mNQzD6XRpWonNgsUGXxkpJXE+nIbNZtc0DTRSr662+/3e+REiEpO1wfvvvvu2a1c4Lonlruuw5pFReO+dC+AzCiE+fhz2e//69eunpyf0NqSUeA5QsgIwmnPGJBbSntPptF73kEFYmlh//dd//fr167//+78/nU7l9BcC6x/IbIx+vV4rpSC0igUfqnd6qv4ryJRSiLKRfd9P8/z4eLH2w5s3dzev74Zh8LNNkRDcsIOAuvLPjgug9XDoauaQkZdKKbvOPD/Ytk0AuPf7vatCi9ZNu91unmcmPLFknS3VaA5SyssworjYbDYvh6fvf/jTdrtFrS25CIFnRuBPzPPcrVZEBG4753y3vUrxuWkaKUQI4XA4XC6X77777v3798NlAnsxV18opN+oLFIunkzWWpLJY/c5n5pSNeBIatvWmPb+/t4oIRjznFPmwIiJaJpmnokryTOdXg4XzoUQyCGFEPM84vBF2MypKHfFGLmgeZ5Xfdv1PWP59evbtm1//vlnkAeNMV3XOuewH/H6Pnz4EGP85ptvQgiwEeu6TnC1NKpzzm1rGMtNox8enjinVKWlOOf7/Z4x5oJbrdecsePx6L1F8Y5JvtPpFKob4TzPTQOCVxnPl3W2rByRUgBszZWak0u3mC0J/DzPTdPhx7rOnM9TjLEzDa5H6wbh+nweT6eTlBzTWpni58DC+AzyptbPz8+A+Kdp+uGHH1AEYU6lVqMBsK2onqJKKV/VTuZ5zjlOE0f/Br6mSIw3m02M8XQ6PT09MSa0lk9PT+DJLmo5kKAEO4pzPo5zjKVsj3Wc/f7hYylylXJVKynnjFEMVTXNlwwT2aZkfJonKXnO0nv/8PAwXQZwmHKdrwLDzxh1uZxALYpVoTjG+Ktf/errr7/+3e9+dziclFKPj4+vX79G8gO8ZRzHp6cntHnatuWM40wEOfo8DkvmXPCZlEsOlgtFYGHqrPrNOI7v3z9fXXVGFbMo5GNGqZkoWGeMEbrcbMjpMo2I0utN72yAsjMWbUrpn/7p/dWV3u12ptG4KkBY2GLsCxIYagGlhSLBeFEkOx7PRHCB0sejOx6PaOtKoY/HMw6F7XbbtJrmkj/EyqMHlHG5XIxSsS5sQPbOFz1V/N+nxxfEjRQj4FDGGLiel8uprPyQU0qtNv/23/7bP/3pTx/uP4F1DiPEZXyBc9602gebMyEJWfIZnM6l7rB2v98bY/7whz9AAX+z2YA6wDl3rqTrSqlV2+GRYm4MT1c3xuj2w4cP237Vdd163X//4w9EaZ6p1lPSOfef//N/hn3r8/EgGWdMmLZNKQnJrLXb7ZbzohiORA53ejqdiPirV6+UUilm1Yh5nEIIt6/ffPPt25fnx398/J8/v//pF/E3pbrGCY27GkePeSLk4lh2iJI4vF3VnWDVJKTpWmQVS5iLMTamk4IupwGD+QXozAFznZ+xD8UX/KhtW4TdeZ61MdjzKSWQbmJVvG2axvvsve/73vuYEm23W6Q4YPe8evXKVD/AlFKsk4kppZQTTpQ//elPv/71r+/u7rz3jFHtLIVpOpWVlJIQYvaOcx6qBnxKKXEuU5lZXjYAYyyENM+jMXIZZPDecy6RyiASLaUa6usQQmJkjDGqGccRGE2O9OrVK8byAra2bRtC5VYTSaXappg8HA4HY1pRp/LToudQt+UwjmCyCMnsNGNeKdWBvoWYHKprNn4LDLhUWpcaTFXOmOAcrz74opmwKMUopeDuCG149HMQbYGeC1E05lJKfd8nKjRVqkMHROSCh0A255xqxRiKoKdJ1QFcCp1iyFSYcSEEoqIsg3fUdR2YUDnnvu8RsGKMfduh/uQsM55DiJhixYqNMaYUXPALqDHP88KpxzE2DRdM7A7DEEICHheC01oTLwqnWuumaRj7ZyAsrwQoKeVms9G6sX7GqcwC+q5BSskZh65czvn5+ZmojPFi013GQXKFvJmIFt9nKUXbBq2bmJNSqjU6p+DGizFy07aaxXbX3a2/Eu5onx+5FLJpdCsDV6/3t826u1xOJHQIoe0EtlJK4XQ65RyVLo7qrOpDSaVY1dagOvzrvzBJwGsiImQJWmtiDKj9NE1KCyE0BsSMMTnSwk51zmGAcRwvC1zFBBeSjeMYx9i2rWClCazqrBZqRfDm0Jdar9dIbfFNKYsnuzZmyddxZqMghwZQgQB4gTVRLSzUaZB27ThZVoTFC6yQs5ASUY8xlhhlzmzlnIpibxWJcubElYDsCEgQqHyo2vrhtIgxWpumaZSFKWNRCGEh4QiB+WyqzDjUb8Y0KeVFZ7msOiJkyboOevM6Foo0SCstpV42Zjl0eWE1wmJLVjYrY2xONmfSbdMaM3s/DEPTNEqa1SrjoArBSSkul8tlOHVdR8xLadpGZiNajRVCQhjiJidELZtylJLBmQTTdo+PD09Pz0juV6sVGEmygke43+QdIJhUGyF934dUcgJkKowxxjmqCESY2ZUKXErZ5jalZK1r+w7YcUxpmmeLuT/KKcXM6Pn5Gb8SgpfV8B1VsVJSCBHiZ41aSkwLqbTkeTweDjkPkrmZ4m6/4Vl888tfeMs3+9f3p5Bezm3b7/fGWZ+5IM5TBiImKeXNehsaJ6r1/OxczGm1WdsYUkrjdJFeKmmEEsB21/0KnQmsKA1IVKmQ0lIYLBCqlHJ2lnlHRCHFVL19gvMRnB1jcjX1xkpAwFlSZJRJnMjWSWGE31S/sKmB5AJY4ZVfjHWrteq6foH/8E1XpMbLmIL4gtiID1/+FxkE1oNzDpnil7KnRHkBp4xucMbh4hNlIcoRKSRxznJmn7dM7QMhmLA69xPqPOnsHAFt5Fxx7pMfhmHVNPpqJ1hORDGTnmehpA+x6YwMouna1jSSs/EysJz+xV//1b/623/TNM3v//iH3//wQ7eCodR6mqbj8amAm5U8i9eXqkgR1mHNkg1gC1RKwBeWEIcGAz4KFNey7NtWVoFm9oW1L04ZeCuZ6u6QUsz5M7WWV02JpeAMIeRMtTuQRRUgAtjNOc+5zB5675G8QQ5lSVSoMo+IKKUMD71Um2Q4XJBK5Zyd99m5z9zMSJQ5cuucMydGxRWQMcaR1wkhkEssL7GgePkLuT0iViZa4rJsljuiqndRDvGYsGBgMjxN09PT0zL0sAivEREUb1JKr169ArKJTKmEpqotjicj6hiZ1loIuRQbecHiMwklBYeIpAAKh0HXEB3nTAguhGQMrDTSqIe9F0quJIYziqI3kEcistN0c3NzPB6JmOQqhjSPtu97yux8OC1XyDmf0rRarYQqvqM4vJYjaRF/eHx8tNbudrsQgvd5GAY4MVTUlS8P1ns/jhOKDl70zbjWAuEay0xVgZ3PIH7KLrpQtblwLIKSslqtOKfn5+cY43a7DVVMGUAkZKwxkMsq8x21cTmmiRbVaVyDUiqnAq8skou+uiOi4vDeX19f++pOlnOsTllhOYhl8eZqlyg6z7MQrGla2YoQQsyFnFEdTfmyxYgSY5BELNplwDhubm6EYA8PA5YlbgSDKfM8Bx+BHVtrfbD0lJAJM5Y/t1uUEoIKdzhUe8wUQSie51lpgUBR7kJoLEghhFQ85zxNc/CJcy4VRymEW379+hZF/uVyKaNCkdCTdsF+9dVXeA66iBsETK6EiARYOlsoeKvV6sd33y+bJaUEAB0YHBoSKNGBU4NJDULcEs+hO7Hf78Ga7DrKOW82m/v7+8NhEhe6u9thRh5LZRynzWYdYwRWbozq+xZXKwTb9Tvv/VIfPT4+ztP777777u3bt+9/fkcpf/vttzHGP//5j03T7Pf7d+9+xqq7vr4W4gDhRFCdiOjTpw993796dYuaF6sr5wx2Yaii5ykFEKVRuk7T9J/+039CiB6GIcZckGXnkPxgh65WK6HV07t3OHlznQxWSikullQhhdisG8jcCSE2G/3y4n768KnfrKWU3BSjZoQmX1WPYJ0CihznXGsZo+66LtgA9FwIcXNzE+P7EMLV1VWo5n7zPIM1QoxHH7RSs3PbzeZ8Pi/ADQ4+jMxba7H1gPJjRBUzx77MYxXzLu+9YGzVr1JK4zjyKqczTR7J4eX8QPUrhKIJK4RYb/rL5Z/p0eEydrsdNsLSxRFCrFarruue7h8YCWcDmg2sigijkwc7IlWtTfu+f3x86vsOSpKAnqkWAlio2Ato4KFn9vDwEGMcp0vTFrq0qZ6QwHrQBEJa/vHjx7dfvcbeX8QkUV/j05QSm83qdLpgNaYqoeswPZazUgI5rZf29evXMKMKIUipjsdjCDEXqLEMu7OqVIOTcfbuywwhVPdCzjFkqRY652azyTnvtvuffvopRI/9u91ugUfn2vsXVeaIiEyjljuqVRtvmmaZoEW/B4uhb9rb21trbYyf+XNAYxgrHpXWWqVESsx/4WSDZ+KqSPo8z+v12loPvRqQshdGQs6BVXMsUYVKQgjeT23b7vf7eZ43653zs/f+7du3Ly8vyOW+7NkbY6bR8irb+Pj4mHzc7bY3N9fTNJ3PZ8aE936/3yOsoXvEOcfDPBwO6BngaeNpENE333zzD//wP6bJ4maVUh8+fGiLWy/HLjNfSCpxWfQwfbFDKBxt6x327LpfIYcM1nXrFZbQer1umsZZv9vteOUHoKWKcwcnDjgTENwXXyheYsKbMwmLWvzFcRz7vgQc77j3QZrMBJdM4TTHBcNbeLPZYLWXBclJCPCoYs5ps9koNeD0+fbbbz9+eNSa58zm2Wk9dV23aF6jJnJuzlXxA3ymkJK19nQ6KaV8sMaYtm27bv3y8oLDLsaopUQGyOp4cUqEQW3kb63RDw+frq6uPtx/wk4P0Rtj5nkslItIQojr62vGGIbCwdbP1YEQZps4OJqm+fWvfw1VAAi/pJTQMiSS0zS5aQYMiyTTWs8YW602Qojd1dV2u/3jP/5TSsEY1XWdc3PISZDQRgnJeeA4sj1Yk0JyVmjv0zxAU2i97oH7Y5bIVz1VzNkBQWuEllJGGZ+fH/mF7derN2/efPj0cfQXic1f82DRNHoYSqzHbmeseDrlqhOKYaIl0BPROA7gVixVt7WWcuHPe5+VDkiZrbNoqhfx7JyBxEspz6eBMdZ2BnuSV6+JpvqiAr6MIQghUirDkjgyGStkhyUrZZXBh3iIdISIIKFwc3PDGFsOdaqcaOd8YdDUrjg8oC0mOxgr5TGnhaOBLQSUBIA18trL5ZIzkzLFGCHFsgw+ozaGzxWTInjfr9Zdt7pcLtDj45xP04B+nVLqcrlY69GXxlR1SDHmNA3j6XTquoTWrrXldeScvbe4975fIxwPx0kKHMA5MBaqyUAqM7moLX2MaeklAEnUSl3t98C+eVWcQRMGg5Bo+qWUrHeYb4rV6AaPVwnNeRHQwDx727bPhxdAirE6WS0XjyP/crmknJT+nGtiZVMuqTw6Wqk4SZa6EX14PGpRhYQQQ9H6w6/E6vC7ZMlIar23oio8hsrvk1rxzOd5XJIhdL1SonEcnbNXq10IgVMxaaQ6p29aDTSklk8ZJc3FJ+8fd1f7rmumabLTzESZR2Y8M8bGeZJceO/hYY1nAm5CjrSQ8aXkOaaYUwxeSWmMSpQpZR8shbDbdJvW9I3QLHNlerP67s2/naeDj/HpcDlO9jS4phNcUdu0s03RFrECzjljJqe0UH5SWiREEk4OxhgyEvAFlg274Aj4YUyKxZSQk2mtBRS2hShd2crh0lp2XZNSGEcHfpD3HoLLgIZFVZFGVGGV1zkMA4461IQIgrE2VEAcLhepFCAniFEYY2Avw6uLFGNsGou24GewuI71zcOIw1tXO0HGWOaMMVJKeu9JcBc8l6IoilKWgnvvUk5KqdIiThAi59Y7JngjP3sUUOXTEX2m+DH22Z8TOf/CIIh1ICOl5JzHWEaNeGgLFUIKIPiachXeNL5MV1RrOadUF3DMaeEnZlFc1xE/pYRQqRJayZBCphhySp4yB30gxuBcXK1Wu/1mnmfiEQLiRNkHR1PknJTh3iUpdcxpScJSzBTDl0AbQHmgCU3TiC+grs8AJ1GM8fb2Fs9BahVC6Ls1iA+MMS4IK5MTQ/KN8JtSOhyO79+/J2K/+c1vUkrHw7mpPpDeey5KAGm6tnLbAzLRUKMHEcs5U85LZ0LwnBMnYpxZznLbdoKbYOf7jy/OhX59tbu9mSYK2j0fhjD627jyMYRMXJt+tbHWxRijD4LYPE3FnI3KWD2WnK5GhVJojE1st1ujdK6Gfl92fVRtu7I6iGCtnZ1FLbd0NKMPsZCOiyoO8pVpmkKIKGCEENF7jCBYa3OMoDXFylvEgsGOw26FQCpydyTZQDew+7CvFzAXJxFSPQRkqjrUonp1Ym2z0sOjuvidqSYtQB455847HAcxRvSql4xCqKKNjgJ66V3FKsDNOYevWqh0sIX/HiKMMaVzjqUM6eSmaeBbMI4XEnzVb9b7nfUuhkSCdU2HNDNHJhtzmSclmM/JRy/6rm1bQWKcrHNBa933ZWTYOUeUWRFiKjg+YxQCCSG22y2mmJeXDgoPfeFnAn8zpOmgVACOQeWAXiAWdqqSQQvgnurEGOOloBXVvIFqlFgQWJxr9Fn+W6J+QMTAcTl/Yaa0QKisSq4tuDPGrsB8l18IwuTMcGu+0hrqA2FSypzl8oFL1pdS4plIoI8oluIwV0Y8J1YLFb5EFfqC7r0cfMvzAcDNisyOEEKEGIno9evX2Fyoo5AlTtPEpaCqaIzHjj+KZ7IEdmMMZpllHT1xzqZU4CEeE5ccy1tywUrFyJbvSCkzRRh55MyU0EY1iYpUGqBP0xgQ/3PO4zj+zd/8zb/7d/9uGAbFZYzxv/7X//r3/+3/g0uyfv7hh3dKCYjapRRYJjdbXLNay1RZqNjvqBGWrGnpUQGaBCyVqje4La4AATd+fX2FCFBBpcKvB8p5uVw2mw0qxlDd7aiaRLEib14CHX7G2nm/359OJ3DfsFQQam5vb0MIl0sZzFq6HTnnm5sbZOlYbKCjItoIXuuoGFHXsDpIEWNErWuMCTEumo+qKox/uUrxR0UdygS8cj6fSSnOubfZB992ZbpxWSFCMM61995OxVFZKJ1Senl5aVuDMi2lzxn709MTJiA5i4jeSinnZ9C0URcgSAKwwM7inDOVcyJr7fpqF72ryz6GXNrMzjmSLKektO77/nw5QvVCCo0djVePt/b0JACdL8/H28KxdcHy2ncEwMQYM3BKTHFBvZH8vHv3Luf86dODUmKaolK03+/QDEBXDIeXczNqfhD5c2ZwJGqKAVSMcby6ukLyg0gYQuj7vu/Xp/MzfgxaW9AucFUZFpyAxbsi54wTbRzHq6sryfnj46NS6unpabfdOucOhwOXgigBgmGM3d7eHo9HhGJwKu/v77uuQaiEHGdK4c2bN8AUttut9x6IRm1wyhgZvo/oBPob3qmU2lr7l3/5lxivRhNICME5TdMUpxG5Hwq3zWYjBHt+Pqz6lXMuxgetTc7ZuYAWY5wmItpsBAkOJYFgy1IRkimlEhFglNPp9OnTp+12i+pSCKG1vLu7E6T+9Kc/QQxaSnl7e4uDAOjY9fV1ztnNM28Zxp7C6WiM6ZoGGT4aCUgMsELu7u601t9///0wzNvtCitndpbVlskSdZ1zLLFVX7o18zx7B0KSR3ft17/+9adPnzD0hqgohHB+DsEgklg7KWXQakopEUvF015JoI0lJ095UTY4n04417AwrLXeZ5ytwNHwfchgbjab9XrNGIshJLZAY5lzrrVCK4hYcpi1Unw+jLMdkXtst1tUOgiYIYT1er20WJxzHz/c7/bFAe94PE7zcPPqDjEK4Enb9ptNGWRPlZcmjVZKHU8vqOymaeKUQnTTRFJKwXlOTDDer3vGmJstlwWWxY7ABYQQMLUsq44W0gxrrbfTZr3ruu5wPnXdCtkalByMMbt25+YJcy0ppePxyDIpo9u2hV0NUkdE3Zzzp0+ftld7xtjLy3FJMoHTOeeVkjnEl5eLMWaz2aCEFw3EHMgYFULIIkPLQsoyLIVga+1kDHwCimMNcKq7V9fDMJz86XAYrq/3yAaHYVDKnM/n9XotpR7HC7hoxhgIQZzPZ+fcV1995YN9fn4OIaDXyOpXCAHbnzKHMGkIYbrEq6sOANF6vf7w4cMwnAHkLfEHiw0NS6CuuNSvv/76t7/97e9///tpmhgT796922w2nHNgkbvdDsJWkJJA6ou41zft6XRq23aeXYzReyuUXLj/GEcABjWO07rrUD4v/FkEcxxnKcSu61ar1el0Op1Odzc3b9++/fnndzFGQWyudSsOlAjyaHTOKRSAqDHxj+Px+O2331prH18eeJ0DU6JwQFerVdu2z8/PkNc4n8/BOvxpH2me57Y1vPL3+37tbNhut0Qcl900Td+bcbwwTvXIyHitQJ9ddXV6eHhkjN68eRNDRtfn4eFBStmvVylED+fwlJqmub6+hrmCMUZrY629WvVE5Ofphx+gPiE4lwhuixAfnh6+ipq56bSR79+/x4wa4phSChvh9vb27/7u7/7X//V//fDhQ86567rdbocpLiKSUgvKvugMM+/j5XIcBm+M2O+uZ3e/Xq/7vp/n8TIOd3d37z+95xgUizGmJJTs1yvno9EaatdIZZGgxqqhihcHr1Q8qK7rpsli14iWZZt1o1SrQoqn02k6n47yoJuGIpewS8k5G6OWohSfgjWdi/OgBfaPhYIQgHx3mIZc3PPKdCRwPUZimqYciYh8sJkohPDz+3fTNH3zzTeAS4QQGFpZr9eMhPdea4W8BBWMrirsmCgZhiHW4gd5G+dlQJhzDjZ7kZKpa5Qxpqq2KWPM+fKAbm5u0D1AeZZSAlUB2Zio4p7ZMTwE3BeWJtb96XRCEGyaZr0u43hECZVz13UxFvqzqmruC5GTiEKIWmvvir0J/JQlVxF6MVJDHck5N01FzVYplTkLIYzTBWcGZuJqMCo1Yag2bjgdn54eEOOkVJfLxZhSxuNsWLpGuTqkY4mzKiDAKvETNUNZCarBFB4aD7KOqCPnDjVdU0otWh9YtdYWn8Dvv//+4eHhL//yL5uuRbVfAO4QjTGmenkjWdFao+AMIXAuivUcKzWbEIKxYtZZa4PMOS04Qq6qCCGEh4eHptG77XYBrHDjSqkQimBc+kK6PsbIk4CgMxEpITF9Y611zqIXkqtFHrBIVFnEy1Ah4oJgfJ4dkLvL6ZwzE4qPY9nPIRbqk7MTsbTdbvu2w7QUr/RVpZTUah6LCuH19bUQyg4nznmIYQGJfAzjZbjarHabbW+ol2zTtrv+FU9eK3bxKqS8fX3zfBz+H//v/+PF2pu3/7eQo1Bd0zSJcswp+kgpM8bWXR+oiEqz2n4IIUghjDHQsMfJuhAM60qTeBRAKMZpAsmRc+5nD1rKwmVA/YANC24RTGZzpSEjKHnvrJ0FK1J9S+JSVXHKH0X6iyIh59w0HTCjGGOIEfuFCAMEDKLwSosF71jQXuxiXFiMMTqPAGiqQhnOTibFPM9McB+8hlOH1rDBIk7WW865YIJzbloTY5RM4WBDWSu1ilPMlfaONW+MAUdMa/327Ve+quLiz8JABiXHUoHz6tuglCqtDmM4r5pcJcIbJC5SqoXGhfMD6Z2LhWGXqtgO5xxMbaxbCONiX2itBQmtNRNFHwmMJ++Lfz3jIuecYhBlBC+R4Eox58I4xxS51p1zzodZSRZjVFwxxmIdLgYh6HK5IGF69eqV4ByuC8BMOaOcM7ynsDKVUjIrnD6IYETkZ4taNIWotQ7ThMOLc+69u7q6klIh34X8ZbGhqNQ5bN7lKS3AU86Z80LBW0JlCInxSwj+9Hgcz88xzCL7FJy1c87Z+iSb+279KbFGmtXDy6lrV3Q/7q72znmWyfmXzWartXYpJ1+oeTHGmJMQAk7QslpVAA6wNhFnWipsk4KUVeQUiyHUwTfAJdbaRBnUHiklOjRSK3I0V79HlOsu+OPxuN9fcc7Hccwxaa3A9PHepxA45+u+r4uTlmw4VZYWIA8kQLUJT6gSpZTH42m73SL85kqhWq1WwzTmnHVjrHPzWOInMCDYZH8pVYnmJftCkhgIbKasq/cUYKy+L42Epvgr5pwzr8a2gX0Wwl76ZwBqUfnjySCgYaAYRkm4thD86XRKlHOMXAoXPLIXm7z1PiOMh2CMkY32OUdOjRK3X39tlH5+eGRCciYoc6lKGqqrSZr33nunlOK8vN9QpdJDNcVSSj08PByPx91u9+nTJ601+NLQtiqgF2WpFZrZorLkcJHY3YiB3vvVqjC2GGMxJa01nPdEFbbCqqQ6gbjo/4AX+fz8vNTAjDE0vXgVzooxAvyVdeJtaSEQEUjGuTJbQ3UcYqzoVNCX6vlVM3rJ3Tn77KBdoerEORe8NPMW6Jyo0N8ZY5WqTkIIlss0VaqdP6p6lFiiMeScs6pejqyKJGA1LlDaMtXLpVjwdM45VRVpVWV88AqQhco6iMAYw3QUArIksTTjOWPGGKLysnJVI4kh5pyUapDxxhgzz0JwVFBYOUsuh3+8fftWZPbx48e/+Zu/We+2f/zjHzKjTw/35/O579fb7fb+/t6YRohid7Pu+zFNy5G9cOq11tM04HqwQpBaY5+CehZjXOgdSKtQbwM1UErlXNoPeCb4Xayc5S2nOtCDIONmK1QhbKLzrbX03m+3W3wOr540wC7BewX3EI1qBCJ0blCPYFkCCV3iDL65Wq141QfDEYxJyg8fPqSc37x5g9eBlvCCLGDZGGOenp4wrANws1zeXEhV6/U6xGKcgKDNOfe+ZJgxRVOdJ7XWp9MBBh5d1728vCy4j6hjjnBoYIxBneB0OlFpZpeGJe7OGDOOM7r1jMQ4jrI1KQUtFed8GGewA8DCmSenldpKiT4l1sA0WimlVKUFiHPTWr9aKSBryElQF2y327Zv0HnKlWnEucCJ1iqZE9tsNmD2AXP89rtvUHun9DwMuW1npdTNzQ2yoxDCdrt9eJhCCJgQX6/Xr1+/RfeCFZcnQuXYNDpVjlQNLPTmzRvUj031RxVCsFpII1FEPhlSDCEIXsrSy+Wy326llJv17s2bN+/evXPOvbz42f1xs+n+4i/+AlS1xnTqVTmFsWzW6zUCGCJtSqkqluI/EfCLN2/e/PjjjzlnY/TV1dVifoNDDef7brfjXDrn8H7xxpfOLmM5sWJOI6rwEZFY8I7NZuucS6G4xY7TVLrFjcG9Xy6X08tZykPO+fbuVa24OWPs7u7ueDzixOR1RsR7HzkTWnXVwZtztswZ4K/84ptvnp4eQM0bR8sUA5syVoZv0zQw4rtcLsMQsAz6vsco526367ru6eUZKUoiQl2GZf9yOmLPXl9fn4+Xw+GwvVoJIQ6HQ4wx7QhFATIQBJam1WjSECVs1YKboIHRFJkmWe27x3G044R9jeZqjFEK0W63gFxvbvY4lHE04LF3XXc4nIhIaZFSkkp575+eHsC7JyJoapdjuuq2v379ervdfv/998Ngd9urlNLz88tutwU4BRM5nMVN00zTvL/aIjnRWh8Oh9P5sN9dD8OAlH4cn3a7HYYj0xf8odmOWP9E5Nw8DW6e59VKxhgF5/BDQK2Xc257k+qgFaqAeZ6PxyOTYjklqXo4nU6n4PJwma6vr8G0XeAFzsTT06Ftx/12A4HQsvUyAWVeeKYxRgbTVCYPh+jT43q9HkcXo9vtivhMCKG4RDAmRP748QngfoyRimxaBPyCnG216kJIUkpo2m42m2kalkRCCIbWI06uq6ur/JSFYAssRkSowmKMd3d3Hz9mzgtpRmuZUnp6ekKGhk7P4+MjyO+p+qd1XYctEEPu+14IlnNer4tOxcePH3F69n0PMQSAACklEhwZeNd1St0hg0JV65z75S9/OY7zn//8ZxRB6/UaZHxZtQEhtoNficU23LRt71yIMb68vJjOaMFRdCBJA/9DStn3HeVii2WMAdwRfPr555+Bj8umQRwmor7vqaBPT03TuBhubm7+7u/+7r/8l/8Cr5GFa4g5eOTbUKZ6//7ctiWFE5UyCFiMU8n0Xr16Nc/z+XzJOVNMusrgNO2+bdtxvAjJhFAphWEYLucxZ9b3ZRpASok5SKVl27QLhcI5nEeFlTKMY85kjPbet51BuOtXmxij5CLw4tGHowSoxePjo/f+7du3CxyPVjrnXHHFWPF4ZHUMKOeMAR00qKyd9vtrznkIT6vV6uXlLESZKMXO+vu///thGH766SdkAjgyIO2NamW2jgjz7lJKaa3PmaYpbtYRHUSlhGl3wzBgQjrGmCnxQpkFm4RHmV5eXqTQ2LMxRudnkA+Q4UzTBH3/UFU0RZUezSKv9Upr+Tg/E1Hfrvw0SikJUrTTZKWU4NDhMF6gdKgjqWIHH4jIuRCjZ4ydz+emaYxpj8ezUgIpwngZgNOHlFOIvMmZ5chRz2ggNL/+5V/kXHhGkGHVEnYxab1p55nNNiI0UI6Yj4Pw8e3NzWq1kkLE6JEL+s9DbeVl5JyAQ43j6BxmRYXWWnCBXlYmci7knMdx1lozJhgr2hr+s6I09z4CpbLWk/V2tEKI2dnVahWc897P+Dn+ubbJlVCTM5LpEEIUSkJ5gLOiE2+dM8YosFEYdJYJpfI4juv1NlGs48LEuRRKZxZ0k8pZmAMjnnKIMeaiVsy7zlgIVipBPKfoEwUh2Gq1YkSX8dGHSWu9WW+AUHhPxJk0WhpNxL3znBgjHkMQXE3R5pwF5z4ERZpzZl1glKDCsfDIpJQoaVKM0zwLIXLInArvQ2s9TJfM0mRHrUSmFFzSRvGcxvMLrLFaJbUS43hp2zaF6GOYJ6dVESXMkXIkLogRjz4FVoC/lALjhGl3IvLeYsVCZiGnPMxjSskYpYQUAkAbR1akpGBC7K72jTY5pgAKNi8oKtqtRHyh9DKWtZbeOTfORCSFDiEIqaOn4TwSkWBcMJJa4sAbx1k3WTct8ZxZyimfhylTFlJIKYVQ3IWXl5fj8SwY3+/3KeTgZiFAhiUtVSC23fbOOSn56XJkgtb9JheNXZdz9tYZo5AsdquWiC5Oeu8FU0wozgUlUpQa8twfG8bDOIRGWm5OpIwxQq3k6g3P/OXp9PsP91Hf7K9ff3wam1b2PGNW+Hx61lpDdb1te0FecO7g85MSZ1lqjG0W7R6j22mapNA5CcaYnV3TNN6FFKlpNREBfdhsNiGE0TkpZWsUJaal8d4nllOKjAnOJWOi61Y4xZdbRuVDKXPinPjsLBFBfkQZnVmBh4BuLDU5wBrOeYx+nifOeYxFXVEpJZvm+emJiBok0CQoJWIkhOBNl1JiPAdXxJfhTvv8/Axgwgbvi3mLiMREzpfLpc8d2n1CSSFEDMHOc+mKKf30/Nw0pu/7TFHpZklWkKATZymmHArLMuecQlh13brvGWPBWUbk7bwMFVKZO2ZT1UBA7T0MF6WUUtpOs9ZaS+WcE4LHGDAf7qr5++Hw4qvEgXMzUYrRK9WoOnHpbUgp5Zh8wXSo1U1nOiLy3KaUtNLR+ZRS02jGGC8yha7KhLUhhJy4s1FIwbVk3AZnm2Yjdaeb0kwmyrO1XVPcIE3f26qU3TK+6gQn1rfdqgOcMTEhoD1KVUIkxphDTKwUG0TEGVv3K+fcbEdjzDjMCbNyiTUNBLI953zV9dM0rfuVUmqyMzbUetMznhnPm+3q/fv32kgpZQrRR5dSypW1IYTg8DNgKVXNxByTFMxZG6akVNM0JoRumqZhHtuuteEUo9crHUM4HPx6LS7D4dvbWy0kScOUlrm8RyOY91ZyxvBgq62WlLIV6vB88C5cXe8pklQy8hxS8NZFXyif9QhjmosYAudcCN40Tc5IbohzkTMJLqZhEkIooYIL8zwhJcWtYXY7pdQ1rVE6pRS9F4xxrZTRXIoYk4+xaVum1Gk8bDZXMSTO9DhbJbkUWcgcrGWJSamz1DElyUSSISYrVduvV21rTqcTEzmkMF5GnqWSLaXIckyzaFhHIrthCiFEYpRpmp0QUw5RCS4YV4y5GDljMaambVOilJidU0rkhRVCRB+it26awdrWjcHMqGnNZCetRQhBGy5kG0OBAjPzS19tGAbGeNt2JSGQQjDiUjDBOeOGMRe81poJHkLIKU9TscxFWnJ4filzqWSV0UJInzLlMnq1W23meVZCaRIhBD/PmmVLPmQfPKlU/MqNMUR5YcRg86IaaVrNeFZacAGAtlR6tbAENVhJqVarFRMixtIMICLMWCBumLbx3s+uzDZxLoL1RCzGxHmhn2spJBdeFJFc0FgA6Bd+NNiImSjnYN0yJv95j9fvQHKBiJlqYkFE6/U2FQaHYIw5Z9u2SSmlHHyYGZdccJYZ54JIzG5CEpxSislzzlkWKVGMMQeeUkosE4lMRRAjUkZyJWPEE2h0k6pwkNAq55xSDLE43VvnefKccy04wLsYMxEkewLnXDKpDWfVA00plaLXWptGQ/GQ12FVjJsIIZRUuQhSM8YYp6JyFmME1p1z9j7gh1MlnaWqJTI7p5Q6ns/TNHVdd7XbUyYhZEoppGB0GTckogISxWrvriVek+Qix+RCMYrk1TFJYAiMJZfd5Mer661p/sU8ubev3/zi7df/43/8j/PjWWczn53WetNejeP4PF2YdLvdTljmnW25OV9OjTZZJ8YEYzRNNiS/2+2ix8QMn+xAnP3rf/1X7969m6Zx1fc+U/CBiJRQlIhTmSSwwWeilIhx7pwXwmltnHMss/PxjIvHodm2rdLidD5fLhc+C2MMJzZeBpxZOWfBJGq8tm01WtFta62NIfRd55xfsAxdFQIZ4ykkrbW3rus6o2TDJWP5hYKf7IqJHLIbrG4b03SjnV3O3WY7nM5KyJVpX07H4H3wPvrU9X2j25SSUKXDF2MeLpdV3zPGpnHMOfsQ0E1JOY/jGFNardcpkncR2Ctl3nWddVMISQjR9p2okwHOwRG6NGyICAAueDY5x+gjQ2LPyOiOMcY2IqXUmOZ8Pp9OY9u6q6srRiYnFoPlWQXvLpdT0zQ8xRRiIia11kIbY7yLjtJ6tS1tQi2G8SzrGJ8oNuYCGMSnxwfO+f5qO46zUkoIdTqd1ustmFPYMmgAoCVcGpy1y+tieHz41Lat4LTeb733P737uN9fv3n91af1h/P5HKPPOG5TAAiC8jDGaIyydrLBu+iEFiEHP1nv7Waz6roOQQPcF+fcNA444yyXdZAixRittavNRijlq/TNPI4eDRsfBJEg4b23o7Wzjy5+8803bvYpZDf7ENJXX19pI2P033//fd+3RLnthPfJuci5EqJxzjGWnSu92Lu7u+fn53Gch2Eq9nTRmbbd7Xbn8znm3HTdZrNZb/fH88BVIcelauv6cjoG60IIT08PwHRi9u3KOOcYZz4EiFbznChmychNo/d+PJ+Cndu2NUYY0768vBD3Ps4hzllEwRWEx7yHN2YzTfN2u2IkptFGiqvV6vn5mYiaVpexA4qzdZfjxU7TersnSk2jUeaj8yQ4F5xzrX/4/vtM1DRN0/ZcuJiIK973PZcyhAB2NvrT2/WmNY21H9FXICIMlX+6f8TiR0E9Xi5ta1iO675d9+3lMhJLXFBMPpJ7+/Ub0yjvPboXPljvvfNz05qU0jQP69XW2aBVNw7j6TTsdjtGZO08jXa1WqVQBhTC6FQxQmRCqOfnZ2PMbr1BQQrghuoUC9YVCQ4oU7eNMUYQA0qbWC+EnLwfhlE3xocglNzvrh+f/skYEyJprb3zWqtxnC5ne3oZJDP7rZnGkRFdX+232+0wnMdpkorHGIVkISUm2au7ax+jnf3peNFaK2ns7F+en5eOnbXT83MYxwsR9ZvV6XSa3LTu+sRElgoA4n6/Rx+xaZrtZjWOo26M1PvZjlxJ3WuwiLD14LAHQDOllHyIUqKT55yDGrJu+HfffXd/f79er639TO/LOe723fk8DvNgjEmBMmcx5nXfQuFzmiyAGqMMY4wiU425umpSijzz3bo7XkZrreKs6/tgNBFp3Zycj5GkpEjZp+iCVwzNngQgOOSUc+ZKp5QyK2Im3nvgRUqppmljjHA9lVLaOTw9vdzevn78dG9HCIbMr1/frrv18/NzDjFGe3OzB2yaEp1OY+EF5ny5jIyJYRi9j1IEpZQCI8dF9ICFEC74ftN56ziTTdNFH4KLjelTStGTYDqlOTEKOc3RTtO0aXvH8uVyQsK53e9yzi8vLx/vPz0fXjjn4BNcX+/9bHPwu/1aSf3x40ekcz///HNKCQqoeJWXaaSi+BiZZGjqjOO4Wa0Ph4NgPMf0/PzsnNvtdlJKkxgRzZPLOT9+emqaZtX1KaXT4Yg+h7WWWGpaTSz9+POPDw/jzQ1XSjWqeX54vtruLsdTqw185qfg+9bE5O3k2ra1Kayvdn91vT+9HC7TmYha06zX6+PhfD6fpTSPj0NKtNmI7Jlkcr/ZKaUs96vVSig5TROXnhiLybIkz+ez4IrzIlZm7bTZbIwR43hBtXhzc31+PhwOB92YruuEFpT5dr+fP30apkkI0bfVH24K33333fl8Hscx5+iDd86dz7bRUgi860vXdcoYIhqmaZydMSawJI1+tVk/PT2dTqcQ0m5Xmu7OhaW1DHvbcbzknK2blrMVBAzwq3D6PzycPn78r7udxtvs+/7wcmEkUiTGcg4R5ykaJ977V69ebbdbjDQBrpl9fLl//Ku/+qvj8RjHaMcJRIRvv/12GIY5ZqW4H0elVNfIlILQLcs5zbwl5WNMJOfggw2f3n/arjev+p3lcwghCRZyssFTYIMbBFsLIQLsE3JSSiXOWM6FDco555x88XNPCzsM/wBYHmOcpjNRAoWw6zrvg7U2Z/ny8oKghtJos9mgDg8hNG2P/J7XZhoE79BlSlXMDjWe954L1XX4FclhBdB1GMypRJgyCS6rybhSMta5ciRh8bPGQhm2zblY9C5HNXw2QOVG/QD2Jep29KawpaFEs1qtNpvNw8MnUBVQDIB6ACgHTdEYHfqiRGxtNoCJm6ZFH2OaighLpgiYDC97niAu7HNm3roQAucS68a5GQ7RAKaBrq5WKzdbhAAgVqIKEKf65b1nROAgSykF47FaQuec4eoO+xzMBTTaCCF016SUoOSwdGZYppyLVglVq5bL5fLx48frqyvO+fk05Jzbts22DHMthGXOuXO+1eZweMkxOeeNMSAUffPNN4xz3BFGfhjBgWSO3mmtiYqyZ/D+NM8YXYHMCFFVncOXL6pbsHb8YrXwcRxTzmA6NE3TNn2KHq5uSikui/JGrjKj3luoIEE3xejWEVgnRcG84pgxRk8kMisDbk3TSK1QEiw4lA8+xvj8/Nw0HSeIZTeUciXQ0TiOUJZ0bkbQjDGiV8mqRRWWNxQheCW+wR1CKs64pFhGkjmjlLhQ+v3Hj7//n/+/zvBffveNpPz67qbrupeT/fnl8Ps//NkGEqrb726JqTevv1ZG40XHGK2diUhyxRiP0WeK6FgCw+WcwJ5QSh2PZ++90W1TXNQ+P3m0ELFi9/s9muHYTarqZCEagPOIVwAwpZbixSVJSonxN0zlS1vm+nmxzotN16L/udCCQIjAG4dvCRHhA0HnxPYHlXXpyYfgOOfWhXEckUljC6AuxQqBVDErs/xoU1lgKyBKYxAJSVXXrjjnOYWmaQC7KC2WdjTqNF2FETgV+JjXKT90pFMxbm7B4V2v14szMeLYwjKDoo5zHkcLiA9NY9D/x1tDxx7kC7wsPztW7d0yZ4DIcUeb3fZ0ODZNs1ptgi2TUNYytJ0AzEkpSXDEWCL60lgJaJRSRWKFiCBL9/DwIIToui6lDP0vdLljKl0waCZiltMY430MIWByDUl/qpP+MUY7ziQKlpMrDS1U1U4hmZIGS27pJ3POwZ1H+2GeZy44r57UwGjwY957dB1EdUPC+gExHKQMxArctZRSCymlJJZB+X/9+i1jeb8H4YWllIzWIYTT6QCJt5h4riIwWAlSSkxyMMbgIIT3VXTkE2E7xBhdlVJZGCWVogKXZGOMYYyg4VsRZ+xivrRIheBEZS6hqh9EMBbBYst1+KNb9TgfsXcwgDLPM2NHrVqiZLRMKcQYBctKKS1NzowLGUJKLBlmzsMpkxRCWOtDSLmKM3DFc46mVYKbaZ4zRSPVZbLOWSoyHcIFP9qp0Vq1zWgtki0ukg1unu0ybplZ1lpzljNnOWfijBGPsdgSSgkz25hSzjkiXwGSlWPpaDrnLpdLCBFcM8zED/MAU3JjGlEnn6SUSklKxWePMYZfCVUN2XtPlX9aTg0fxnqpqMpwdsuqmBSrnmyMkYpVr17qHxysShfyFK4khmyt7fv+F7/4Rc5Za7NYTo0zpIHK4uecZ8pLZ73RhtfxIGxSpvXCPEAoDvAHg0tw2+Ik4pXOhsWw6jrKLNQhEuwF59x6vcYwxHIacs5BbaaqF4T7VUohU8Jla60ZMz6GL7ct8qUQMyNWMdvEiREV4VoikDWgY4CtUYxJclWTzNU1K8YYC3mW4agdx7HvexbLIDDyexTPCDXladdohu2WUpk5xRUej0fQebbbna6aS8roGMM8O601pZw/k6ZpwX9xhSklKQWCJxoMVJUZkSTnal3IOef0eTYopYTqRIqiWIJnvqQrOB+RHqoqhou2HPglKID3+36z2fR9D3bMf/0//w8WisxxLlor6XQ6KzUxWWj1Ly/Hy+Wyu9qHIn+xstPMGMM4ws36Vd/35/P59vb2w4cPjPNMqW3bmBMQRikFOPjzyyy14pmImM/eWovzYh4nrDohuXUOZMN59kiDOZWbRS/2i/yBikhlU173Et53my0Ox77vpSzBoW87LdXpdIo5ZUYuJWk057zNtuFcZsalwgEqhIA3QNM0YbIvLy/tqifBMXgBUguKve1+o3WTksg5s+q8hKYgFqGo3k2Y2+C1o4kbd37GOoSwOZIBHBZ4xeA7G2M451AqCCEoZb795hcfP36EUJitbAxsq7ZtOX8EEzyXKXILfTYsCTxJlD/YOEupFWMchqHtDLpHCF9Qu0WnRCl1dXX15z88Nu2ErE9KCfW8y+WCH3POQo3NFPODYqJVM/AQ6zmL77vJM5YvF8kYu729dW4+Ho94+CkR2ntNgywobDabyfkvO6+vXr0KoTCacYijUQQOARHBuhDUP8YCUkTcnRBiHMfn5+fzeby7e8UYI0p93z89PXVd5+zp6emw2Wyk1NM0cUFN28oy1SenaUJG/fj4KIQwpkVxvF6vn56eECGxXNu2T4mstZO1KJpIpsenezt7Y8xqtbq6ugIdKsa8sPxyzpBOUrzkciHDvqmIqIYQACqV5pYPiN7OuZubm81mczwekVp0XSeEQi8huzzNM55eCGG12ggSEHxAot5vejzG4/Hy5u0r8HmXfXE8Hifr+75HOoFC+HK5xBCwZUIIQkpsUtQCPhW3YSEElCvO5/N2u00hXl1dMcFh9YQaiog4kzFGYklVcylRfWUwcLler733Hz58UNJ476d5yF9Izy0PBCkuEW02m5QIwizPzy9dp7/99tvn5+dpmnhNyVJKLgawT6SUfd8fngbFh91uN9nJ+wCpjddv3uAeSXDMM93f3yO/1cZA2wenMNKenDOMIn/66SccQONoV6tOVaVKa51R8ub2WlTtwaZpmkZfXX0zTOP5PGgt53lmtdxu23b28zK9B0jEaM2FwPYP0U1znJ2zwRY0QMjJ2XEcN5uNlJ89n3LO1pU5WmJCCBFqHxTTpafTCdMesVjnRSICKRhJcs75m2+++eGHH0IICAK5SuHhdUAv5XK5SFl4lDc3N8m7GOPxeDSm9d6P4xhM3KzW4zxJrV6/fn08Hrz3Xdfptmmaxs9FMlhKOc8uxtw0AiERlE+k+oi9OD3xHqdpMMYgNuKul/wZPEvoTgzDdH9/j0GEWLz+io45r8LQ2JXYFxi3xXIiwth6Op+91t4Yg5LhdDq1ncFdeO/v7+/7tvMuvnnz5nw8HQ4HzvmrV6/O5zNUWE3XDsOZW351dUU+Qk+16PBQER5EtjDPcwoRtUlXtS6Dj+glAMS3liBcg+3ZLA5G1VUYjwJjBA8PD09Ph5zp7u4amQawcsZYZsRZUWtM1fYZBHbOuTTycrnstlev/uYVGDOn0+mPf/yj1hKPqG0N1oCLySh1voyA4Ow4cc77VeutU0qR99M0aSOv1JUQClUJum6VgJgilfngtm0ZJbz3imYUcVQkORDwyTkzXmSaV6uVEMJ69/LykhgZ3aKgc85dX1+Pl8tutzuP58tlWiZIltNwt+uA1OH4e/funXNB6mKLQkTjODKeoeYMASKE9E+fHhBg58lR5kEGIuq6ldbS+3i5XFBb3d5ea62RGAA//Nf/+hZbDzETnTnO+Xq9zhT9bEvjJ6V5nq+urmD5hovBeZ0YvX59+4tffP3f//vLPM+b6rqB7ALSyihtym95p4TsVn0ikq0RUs6Xk59S8EG6WWvNtGSccozDPDHBW90KL6y1liyx4vPRdV2z6ldpVR6Ncw7pPsAaUbXPl/WXc44xcy7btpgIad3kPLatwSzhUpOHWgOjqrHVN/N4PgNYbBqNd0+VJL8gFPjFRc2taZrF2xqPlYgYE94XAzciaprOOefcXLHsIhRoTCmNUkH6LeCPpmmG4Xx/P6B6WRSycDbnXKaMc87eWykVylrMSlMVW1l4Flg0YOA7B8MuY60dhpExttoUfAQbAIIP1trT+YA/FGOEbsA8zymHck4QoLQkJUcPnxfjyDmEqArdLCBQaq3HcWz7DlyJGH2qpqJlHj4nKSXLFFNESYznKbVKKXlfBFlSStf7KyklSX4+n9EMwJpjjHnrkg/YuqAnDMNwvlwwT8E5H4cZx5vUqqxUXka/jVF929lx+v7PP+QUr6+vr6+vUibOea+VtT6lIITGPDgK75QSDMoZYyHFcRxTtUI2xnAunQuhSnUzxoLzp2GsGF+PzR9clDLhjceUrLUo4ZRSjFJIkWUKIQhGNRNNVQ6leJjkHHNKGAJQSnEusQZqYyDnnEOKyc7owDdN44JfYGJWxRmi85nHlKjRRillbRkpinWsGJcHe/cF+e37fhpGAFupStku/+Z18HndN/NkRz9771NqVn3bdtvddsOJNVr3nR7mzHI6//Bs1JmIxkz9+s2uXSndusiHyVuX2q6ZUwgxci6UUgyGvhSsjdYVUQuEJJzQjLHzeUDS4IPVCiAXXKc5ajxIK+CyY/G0NCUEVzl4CHFg/NbX6ftyaiZaGkih2iiJqtXFq2IsMolF7kZKuYSjBVnDcai1xsuVVWF2rok1QgRGOLu+N8YoqdtGp5ROpxOGVWW1L8N2jjHvdrvNZjOOF2xPxspLkVIJkWESTUTDZR6GQSmJ7yTKQI1TVapFiFgCIFZjrgiLrhJpCGuJKFUDJfxXVHGo6GKM3gfkpqmqZ0JNEvozeGV93wshkCIzovL5qkh5cFn0NDA1DCSdiBqllykQDIK9ffs2Mfrxhx+GYXj79q2UchkZwyXlnBcLqfVqC/F9RJv9/goZDyuGpc00zziP0QoCFqx1g+0AX3JbrVmNMX3fz/Ns9jufInLKBarruu50OaPTu1mt61kblpWDf+Dg45zDypIxhir0cDgAhl5iI4KwrqJMS/BvqhoyLonql7X2eD5jdNFa2/WNMYYKkhWfnp64UGD0z9biBhGpvI8hpGWuaBgGeCLhL2qtpVA+OMQoqmNf+QtlJFY1muvZKqsyUrOge3hKGLjDNilU8ZxzTrZq3C+wKRYbmoVKqXXfc14Ays26T5FrpabRci45Y5wLTolz8jEQcSIhJbfBOh82611wyc0OWTIaul3X5Zil5G4a2s1mnK3QavZzSCEzYvVGQozWWh/CaRhyzqvVKuRMlGc7Z8raCMQlriR6qwKbsViTscnay2VgjLU1MciMJUY+OuT9oAciE0DnBmoG2N2Yem6apms6qtL8jTY5J6D55Y0QLUNXWCexokvW2uCKKo78bLKXef6MvTLGWGayFORxmdXA2uBVL5iIAOMWhJ0KqIo+DVoL2GjOWcYZmpRLKaiqtzivnjNLf4tpQlSUVZYqx4x0CItw6cAtLdUYYyJmqpAiIhuus23bEIowdKweU6xK3+IpYe/AhxjLDwujbVuI8y4rvHyCKDrI5WylzDIERSUXFIoEFsuZWOEUcxwouQi+leoIr8B751zE27m6uuq6bjof8BenyQLXZ9WtQUrNqrPi0u8s/1YyzrOdbdu2X3/9NeecMZwFcp7nl+MLNi8AaFwJUfEQxr0sZ1aofp54RMoYxgrnKKXEhcixAHycykPAwiAqt8/qqOYCZC+7WFTHVFlF0jKZeZ7RJnz//j0QMcbYr371KwDlz88v4zj+7ne/KzPmlM/j/Obt7es3t9//+KNQ6tV6ezgfji8H9A4ZYziJStckyMt5ZIwBLZJS5qrkTpRXqz5RxuQQ0n5ZFFSkmx0Q8MnOqY45owULNNw617atUQ0Ydk3TQMxRVjnFJT3mohAP9/s9zxo61MH56+vrGL33ngiIpIDG5eysUsrnFGPkImulsg+cE+fkQxJKJkZKKZ5ps11564DZeTjdERumkYgYZ5hcRjoqhVi6SvM8yyoOi6BR2hJKoQxZsEhXxLWUtfb5+bRaNdCRQEBY4jMC1DjOQoivv777N//m36SUYNL4fHiB7Mb19bVzTkjxy1/+8uHhAUc5atfL2a/X9vbu5urq6v3Hn6ka4V4ul0+fnjmju7tbquIkqfiiF3b2OBZRDtT21trtNVF1d0TSgmZ2bdsn+PIBHUM5fTgcbLEuVDd3t3aasfGfn5+nOZzPx9/85jfayJ9++mm/3242m59++un169dN0y1iLAhQSilpijg7ilatGyLnvYf9Q6pmg1B4YIxdvdrf39+/vLwQcaIAIgIkdyH0lHJuGuW9f/Xq6nA4pJRWq5W1drXupmn+3e9+/Prrvby5MU2T5zmEwFyWkiOv894iaLjqqQDTIKyKGOPjy7PgihjTTYMiMaZCb/fea91wzuGAvYxgo62y7BdI08cYbfBSyhhLcEO4RpwPIbBUNPFwkD08PGCPOOe2260QCqeD1jozsXTUYvScE3JjvC+gosYYracF08RC2rxavbwcU844HwEdxBhh8YLaar3ZLEsCb1+Tbo25XC6hWKQKX5XKEcGWRB1NbtyU825Je4i4tfM8zw8PLzB1lFIywhEktOlOpxNCBBQhECpTSowEMETGRNu2jHEMHcIaervZzPMcQ0g5Y9IIutJS6vP5LCVBjUpr3XUtADsg8jFGb61qii354TCu1+so44Jv4LRlKcuuW2DQ6+v9H//4k9bMez/P89XVXggegm9aHaotKtb5OI7OOfhtHg6HaZqUMbkwLULKQUiWc95sV9jjugF7j0yjwuCWWoZX8XTirO/7zWYTo8dxvNvtxnHUUkkpp2nabNchBEwqDME1TQOOEZZQriyfnLPSqoIVzhV9re6HH94Zo3a7HcDWVOmMOeftdt/3a9yREMIYM9h5HGcwgkMIbdtdLpfn50HrzyApChyfCq5dn2pSKt/d3QCRPI8DryYfS58AmCy6jNM02CqOipiAe/+S/IS7A+ix2WystUoJ9P6fnl4g5RxCWOQpgMXjCo0xQhQlT6Uo11b6brdDTS3qhEqOhXNprd3ud23b/vjjj7gvLqFykPp+DTaSaCSix9XVFQANQDooNIzSWWalVNd1LGUpZeaftWGFEKtVZ0xpJS7gFavEBaw9hI6npydUUqgUIHMRQmCMK1P26TzPSpsvh9V8dfZ6eT4iOOimUVXR9Obmpl21mAYYx7ltTUpl5g8Spti8p8MxRLdbb1jKIQQjBFdaSSOE+Ff/6l9prf/Tf/p/BqJMEqBl23cxxst5NE236tuietH3X3/99R9+/6f7+4Od6Jtvd2/fvh2G4f3791JxlgQ6ItM0932/1bsY43kcuCitYsQZtPqgh17ZABK1HgrbdrUSJIQQ5/P5fA7GEDKfnLO1fhxHIYFClLL0fD5DKF9rnSKtVqvr6+t3794N4/j112+8j4hyOGR3ux1Kg8vl8vz8fH19jVPj5eUFkXyz2dg5CgHPaNF1naB8Pp+//fbbh4cHoByPj48oZ0IInFNMkYj++3//74+Pj0j+WdVPRh4ipfzmm2+MMc/PzzlnGwLn/DhM0fu+722ws7NfffuLy+VyOZ0Pw3nVdpGypzQ7KxvTgM+RMuVCwXHeTy+DnMbhky31TM6ZKC+FqKi5kanGa64qcC0HOcoqUV22gAgvxBlepZNj1XulKiSfq689/lbhFuUMcMS68PLyArshX63MOeeyIvQ5Z+cC55KI58wul8vxeMw5IjnANZ9Op8tlHIbh9vYWTQxsLWwYEJZzPRdFtS1KlcSBS8KNQ0YPAW6e5xCAApdbnqubsJSSsTzPI5GRUl5fX0/TdDwe4ZfIeZZSL8A9kolpGkPww3A5n8+M8a7rUg6qVEE+hBxj5DnH6EPIKRWGy/K+AJQgR7HTDO0hFBucmKoObykma61oWvxRFE5U2aA5l64y8rCPHz9yLYUQlPLSHSIiTmyaZtMozAsjau/3+1evXuXMpFCr1QrZTEgRIJILIeeMA4YTOzw9f/r06enx8be//c319TXGkENOXdcRK1rMf/jDP2nd/OY3vzHGTMOIWtEFD7JD13XB+SXNdQ4cc+9mu8Cv2+2WQXgoRjAUnp6e9vvr9WoFphKr/KCmaVIoqBOv2t9SSuwQUAK1KnAY55yx4hy4eDtwzjMjSRIQpzGGOFsiJpXRXa2NTB6euSFwobVmLCupcRfT5JBAnM9HZHU55+A957w1DcbrlqyxaZpEGTqzkjMpxWRnw3hMQUqulOCc+5BCmBmlfnvd9itOOUXvZ0tMZK0pZcnY7Ow8po1qJuu5aKbZdj6bphsuJyGYEhoCC7KqrQEgxuZtmqbroHs4IaXG065oV4rJA74BpgAsFQtmgeo453B3Wa06HNgIL/iLSM1TSpwzdGURN8Eegs0XjnwM76SUuBQQckE8WXBqxNNchW5C9SiAk8kSAZZO1c3NjfMeZdU8k7XT0glDhywW27GsFAHDhScnEaWUiZISmjEOazJGwTl3OZ9jjEQZVjZQMkW+tbBEc87WO1nQJCGlzDEiS0BGi9QWtBGiorGrlIJWFL6J4AzVMyRAC6jddR36lpW5Gay1eAgsFSUKJQVqG7Jsu91i/DBVppjWTYyRpTzPo7XWdK0xxgbPOb+6uir0umrVhS6XaZsQQidaLJJpmt6/f4/4v15vsLPACpxnl9IBfpKXc5lGlFKmROBI4h4RprD18Fq7rsNYWaoUA1yDC15Ucf9xnoLzdRcTlhYuONeWOK8SdYwxNDhBzRNCAEDHOYgLxjLDkQFEHhgBvo9fTyltNtu3b79KKTLGOJPjMKNbM4zn6MJqtSGi9x8+WevX63XOmXPW9+t5nrHOQYoB0rTAbcaYnAqS6L133gN3WBIFxLelsEGRBmQtxui/EPcEL4yItFaQVSllQ4qJ8uzsZMsQQ0gxV+AVH962bYwJB1CwLsbMSczTJIQyRqVEMH0WQnAmrLUkeEW3PSfJoY3DRdcVbXciGueLFOL59OSip2kWQs3WCSEoZq2U9Y6IC9VmIm20VJwLIY32syXOckiMEYpV3TYl/EYKzs++cFohtO2cm2enhfTeLyA+r3MS2HGoLlh1mkZ8LlgS56fTaTkUFjFlVgWF/Re+BQVUFaUxllKaq2V8rjYJhYbMqn7WP2e5AhgVXzj3sipuG1NZ0vjrSJYQqNGOWq3652crpRRKok0LOaMcPwuOee8V17GqVTLGAF6gZYh8I0E2JH52yFCfx4oFajAiFikzwTNjSsq5eoVP0yQl3OHK9NXyoHjtrhmjFh1YzrmUONwtIL8CZ1ex8hBiTImqYDrnjIhYxmcGIrRbMmMy58QYZ7ykmkur0nvvfeCcE2etaXNOoMkYY969e/fhwwfBSSl1e3vb971umxijNFoIkVOx66Ev+p3We6UFWg7OBuzZeZ5DCJyXBirnbL/fK6XqkEGusQjkiZJCUyXOEJX9i9Mw1hGx5V1ztPy9W34LXznnFKMoLHKKsUxpsGo6zzmXUizLLFdrZVTaMcZX17fjOEJFFOKGV1dXQoinp+f/8B/+w7t37/7whz8Mw4UyudlPo88hT3YSQlxtryY3hRC6piVKXdMOwwBCJYpk59z5fO667u3bt+/fvweRHFH05XioB3Rh96O4bfs2+ljK8sZoo1LOsy1Gc9ZNWBiXccg5f7z/JFhxAI6Vbde2LezXVuvu877z1tqEji8KB9z7arXBSF9m1Jgm5nw6nbgUKyUpM0YktGSC++hiDngds7NaqaZrwVlZBpuW3sBCuGla7Z11bq6AmtWNggm2s2WoFgOj5/P5eDwyxlD3yjqll1ISguoceokeqtpyEpFSRilmrf3Hf/xHN9uXlxfs8ZwzgAm80BjjbEchmbvMnHPTrK6udzk9g0YAR7Wlt5pzDoG0psPhgJFeENLxOQgaOefT6YToMU2TVPz169cxxsPhgBEZ5IeMMSk5UWKMgYUNI1ZwtNfr9f39E+e263rk1TEnQDzD+DiO6eHh4Te//XXT6PP5vN/v27Z99+7nX/3qV8AiY8zAHay1mbPiwROTEAKJEE4ZEJiwDVOI4GZ++PBhHGchykAGKkRfbSG11pRS3/eMZSll3/c+RqAn19fX+931999/DzhV1bkrdJWgveOTFKyUwPjf+/t7JoVPcXI2pSSF9q6oruE18VQkcR8fH40pSo9AT56fn4fx/PbtW/ShMfVLMSGTZLKQ7r+oWRjqpmmatJChmKwShCWpDuh0XXc6XbAIu67TktvSDyPvffLp9vaWiMC6QPVHRLe3t5kinjDISev1uusaH9n5fD4chtc3+91ut5CIsX5Kb4BijH62I1q8kxBQg2GMYf6DFbMWL5REcoKkBcSUVL2C0NH8+PFj0+iuW3311TfYGsfDOdT5tlDdlQGo8aq9G2OMIU/TNI4zr2YGOeem6XIm5wKjhGtgtR2IyMnKuAlprRttfLB3d3fzPJ8vF+DR+MklRY/RLXxJpVQk5tx8PhyJaL3psaGMMSnGvlVKqV/9xa8fHx/RckYpzSBLXPJePwyjC3673b569Uop9fDwQJznnLtudTgclGALrLHb7Z6fn3G+oJ1QsPjarM05K6n2+31iNI4XyOkiPWjbdtX19/f3RBSTN6YZ5inG6EEPgpYXK2ryqPRVYxDHwA8TdXSDMSalbtvee4soJISQUhtjCuWFMcFlDOn9zx+U4EjAnHN4yFrrebbGaGjUog2PRTgMg+MozVpVRxiRVkHzEDk5Ul8qNHwPV6eadRczPZyG2GuMMTARh2HImSEyk6CHh0/oVKGUKCs5UM4ZkRNUJ8DiSL/xwG9vV+v1epqmn3/++fr6mtcUwjnHMrVd9/Lyst/vh2F4eXnhnK826w+fPiJnyzne39+j9jm+HJRSC6dHSslywr2AqSN5GeCQUq67PsYYUkLu8fr163mevY+vX79GHwI/hhMWtF9jDM9klOaqqNvjgWy3WwBNKSXGeU7Fj84Yw6g6YVCprVCI4fafn58PRHUjxJzzMI26MW62JHhinARJIXLOlLluWs758XjUUk7D+RgOjLF+1czz3BDJtj0eTn////0/4ZUyTRMJ4pljAFQ1hjEWgzseXQhhvV6/efMGRKv/5X/52+12+7vf/e7Pf/7zbrNSgvVth/A++xC8ne04Trbve0TytjNooWFAYWn8E9HhcBgGpxT9i3/xL7z3h8PhcDhcba9iUdI382xvrq+nacqMaQ0l68jZpW1bLkgIlbNFwjkOM/KfaZrQKvj48eOrV69Qv6O/iBiCYDhNEwTob29v8TDP53MIYbhMKaXvvvtuvenP57MUYrfboaf76dNnJYaUUkrh22+/PY8Daljwt1JK6guuEm4W9DJsGWMUZzzGeB6GD5+Gt19victxsv1qE2Om4F0M3vv1dpMFP13O8zh12oQQSJP3nhS1TX/K9nQ6dfwK4GZpLAO2F3WKMH9hSpNzpjKlWJgvS6K8QACp8i6psnWcc6wkz2xZ2VrLBcLGbkTaFKsvPII1IiYOG++9/kI/YentI1NkjElpvqzHpmn68cefiGiz2YCtHAJbsvPlNSOsLDLQsY50heqthPCF8wB4zel0SiksWb6vk864X6BCQggpVc6ZWPEZQNcUvP31pseLTCkiM0C3HxEElbS1Vgg2Tpec8zLDgv0sONNS9G0zTZNzVinV9y1jDEYWCJopxGXzS14KtiVtRRTODBxegfRLMI7vIxbzYikmsbKBPmNJcO622+1qtRrG8XK5aN1Mdkae3XVdmMYYfYwklLTWvry8jJeBs4zz1VTjUcW1kJxLtV6vZ2fx/LXW1k7jeLm6uuK8E0wSUdO1SDIAollrvXVCSa215CL6QMTBdgnVQRvAMWdcVe0LnKMo43POMRJcgLXWLviaSRTFUiGEncYcU5bQVSyTMvgrl8vJex9SJM4E53hKwNmjd7zyjPDM27ZlLDOlh2HivBBp27bFBChk0I0xypfWbq49z8PhAPUA0C2FkolySBha4U3TIY9XSsQ4huCk1EqaRDwlii5SzoGRdd5IoWSTlJ6miYWUc5ZanIfgYx7di9ZGSC248j40RgohOGM2hJQIg/8xZG0kBjSgZRFjnCYL/inVmVA8H8QAYhy2HujEABcAGIdUD64IIRTRhpQK02FpgVD1BwghDcM0DOfFeCTn7GPAg2qaZrVa4QUZYzgxVErwVFlwjbqR+YIlQeEU0AwAfezZvu+vrq5CjI+Pj/j1ruu22y0qN3xHKbXb7TYbOp/P8zyfTielTIweBNKmabwPhVUqDbEshNhut9vtOuccggcjdbvdxRhTyowVIyMcMAitzrlhGEwF3ymz8+ny8vIScnr9+vWCJ768HGo45biRBZoBIMjrkPV6vZFS4HBC+gW+TNkdMXvvQ04RhQRnnDG8X/x6o0GTLI6dK7NpwucAiKdU2BDI6TmLOeGc01prKdH1AcckpeR9cVIFpaJpGiKeUiLGcs6r9YpzifKs70u44FV3BVNUOAKA3rLqH7X8mFIq5uLv9H/piYYvVA4A34DlxDkPKS5TS1jnhcIZIlprCOPLYkaDetHVQjOjFGyNiTE2XXs8n3BtiShTkVtp23a92uIsW21210oBYeFVpllUCj86HOM4gnWLsKakNo0OIQilRC1xqbZyEa7n2aI37JxzbjmU83J6gs2Bp1frjgIF5sLlKY/oy4Me2wroIc5uIYR1gTExzQMRc27mPAshEmWRiYjP3uHcCsmjPFh1G+fcarURQkzznJIPwTs396u2X3fTNEniTdtfzlPTdFJKyY1zbrPaKyVmZ3MGluRbo2Pwzs4pRsH4etNH54kYER+G6XK5cOJowHhXfJ9SSjxTDiExbowRjEshlVEoxozSr1+/5tWXFTsaEQzP53g8ns9nJRTCSM5ZSnBYhK2+VUII3RgsBnBAUuWXaanQJ1jqXizFipwWmlhwxfyQ8/Jycb58iRLmnBkJznhOWUiecyYWMauLxSCEwEgmYyz6QERDGADDrbp+IY7FGMn7VOmKWiqo+MnqLKe1ZllLKUWdlycitP+RCjdNE0JcLhIXgN/FQYaomOsULWOMcyGrDBrCHX491w46Y8yYxgXPGI8xWeugiVG7KVShw5RSZoxxYpAGBcyKUpoxRixxxlVT/AaJyDlnrY0xGWO6VY/3AvDo06dPf/jDH15eXpyd8Ie++uqr8ohyYUgAy8Cjw5XkTMNlEkJo1WhFdVVIPA3vS8wMKSLFDSFAaAJwc/6Cd4yXC87v0jYLVcYETxLZRQjeBbeA+MvvluAvM/aIqKavSPlwbemL0Sj8FTB/pZQpkufFt9BVbzEiuru7e/PmzeUyeO+32+39x08fPn0MIX74+aMLniifXk4ssaZrnJul4pxLkklLqZQKzuWUY4xGmc1XG2h9ckHKSCbo5fhsTJtS4sQ4cbhBnC4nZA5d10F4hHOWM2wdC+u2MOmkTCkNw6i1hrBAt+rRvcZiQ2NVKUW5THVYa93sUSrfvv7FZRyenp6EUIfzJRK72u6Is0ZoxpgWQq7X0zSJEBijAiVXLjljLKdEOYPLhr6siAGkE85pnsdxtKYdf/vb3378+HEYhlXXo8jPlQzI6iQTAMFhGHa7HfDQptVLMZKqu91m81moB2lM3/d9v16tNg8PDwDjEOF//PHHy+Wy3+8ZYyG4GFnTgOAyLEa4IDtP03RzcxN94JxjTgtEJ1+/3rzZvXnz5vHhmTG23+8fHx/7VQu4E2c0+ODoCnPOhSwiWqZ6fWPZS8mFKLni09NTrHOWj4+Pm83GGPPmza21tutWi4kiEb356u3V9c00TQ+Pn3744Qc8Z+/927dvc/7w8vLy6tUrpHxLP5gxFhkXxCIvBh5L95rq6AljbLKzMnqz2YQpLnqJSCaVUuvt9vP4rNY5x3meHx8fc85MCt70ypjz+f/P1Z/0apZl2YHY6c9tvvs1r7fWwyPcw5mZIgkSRRRUqgIHEkolQZqJgiSA0i+QoJ8iSFM1E6k0LoADUQWkhAIpkoCyHt5bZQABAABJREFUsq9MZkZ4uLu5mT17zdff5vQarHOuWeoNAh7P3vvebfbZzdprr326uLj47rvvjscj+ogAsChLhBDo9gohCKeEJMooo4Qx1k8jbKCu6/XqYrfbwV3EGIG/g82Ky2iaxuY9QQQtcEjfYE1IromOWTJeFlm2pmkIifv9HtAnsgjFxTRZzuU4nscxAlVEtvD8vIOZOefW6zWldDTHuq6XyyU+BMCE9x49TjTacb9wLOixnc9nyiiN9M2bN9fXkx2nYTw7b4UQ3bKF1SUSxmnKmdXnEROHwQjciJ0MsDkppQseQLxzbhzH3W63Wm6cN/O7XiwWv/jFLx4fH+eZAJC9Li8vi16iIkULdLfboV7z3td1bY1/fn6GFgqSrqurq7qu0L85Hk5tGylLERMnWnHOpdTTNDW6kozfXF3j+FNKu66zRTWraZrz+cwpJ4QsFouUTqDsCCFcDN54Y0bvUwjkUilw1VGMLJfLRIkxZrPZ/O53v1uvl21bp7I11zm3O2yBNi4Yc849Pj4uFou7uzsCok8ISCfu7u6qqtrv9zhKcOaMEe9D17VCK0AfWO9JPBvHkfAcjnOmEaMQotQ4U9XUTAPRbhZXF3N4ikWZU0o5jmPVNt57TOZ9/Ph8dbVEzAK5knMaAtNabzaXM9oTY9ztdoxyQtz/X+G82VyAFF/X9elkABkvl8uUSPqCDBtjHIbpfB5wTOb+FrQL5m4H3JqUfNZcAgSE946e6Dw9DOeGDBmHkZA4TdOxnxTPeylubq6rWrkQgvc4YkDxZrYTKAvQf0BlxHmmLdaNxkXyovMwjma/v//q7Z3Uepqmruuubm7u7+/ffXh/c3PFGOv7nvPMukXthoKxbhucXChW5VoGwpu6atv2eb8DY0kIcXFxcXt7u9sdhBBoP4Cqwgrfoq7r6Dxqt8ji3CmMZRKXc04omw2AUgp+2Vxuw5XN/hbBznovhaaEkETOQ//qxa26uDDj9OnTp0xOD4SxFEK4u7t7cXu73W7/g3/8j7bPz2/evLq5u/n+++///C/+8rjbCqVxQAiNSgtEN85p01SEMOOd1hpLGsH9f3x8/OZXv/7P/tP/9Le//e3pcHj37sd3795dX19jhGVOcUFaV0pRwWFy1zeX/XDy3p5OJ+eMEMKn2LbtarW6va2enp5+85vfLJdLPLe+P02TRY9BSgHgnlFhx0lrLWXEeJ6ZfCKBUkoSizFWVfXwcO775+Vy2GxW6/UaLy4VLceZ+IvUZbFYYBb8/v7+fD4j2jrnQGz1wY4jk5KHGEM+8vLly5fwgbEwq37++WdMXfCiIiClDDbrnxBCKOWUsnEcYowgq03BBRIlp7XWgrkQwre//vbT40N/PgvGEyOUsBAmmsiiaay13bIRPpuoD2kyrpZCKNkqddleCs5pSmImkiChgdemhfhDCMGQDoD5uXcRwmdC2czxxD8RwmIkKVFWPoQxxrMSRcJpn+d9kCug2sdnYiZuPlSi6Ld+WY0j3Ukxz4oKoeaaXwjxzTff4MeGYaiqLGDXNHUIEZ15fCyyNySRtkjY4A3hHSiVB5NjEbQihMzLCeEy5gJSa805CyE656ZpEkpyliMQ+njrzZJzOQxDCJm1HULAuPQ0TdFH1GyZalRoVsj+KEucUsE4LYP/2+dnSmlM6fb2tus6C+ifUGstmREESlNKfd8Pw1BpzcpUBRAZzAtrrZWQIQSl1GRcCC6mjKGA4IZ16hmnjpSWGfMCeoLm6c5D75wBpRRLXcdxbOumrhQmpwTni0U7TVM/DpTS9cWFMWYYB2ttDATZdkppmqa6rsd+EkLwQtxDggIKhgySaoIsWRV1QsbYMEyRBEIIp+Js+pTSOI7W+q7rYukihBA8BFKD995D3EBKSSlW/7FKaW9z6mmMERyNcYpzkSgRSlaiJkWvkzHGpZg7uilLHGYh48+09JgBHWst6qgZ/GKMoWMJ6yWEzOzgfCoj1ldmOWyUUjhx0+RSiImnlBLjjFIaeEgpUU4VrZXW5/O5qipBaYyEMzZNw9XdCynlMBprXUx+sVhorShNUkozDU9PT1rri4sLzqTn3roJZQwmnpArYys03ik8C1Jb9HiBweHUzxeMyE1p4lygkgkhjOMIVt+XbAXwUABJxBhXq816vQ4hpERDyAJbiK+MMXT8YKXQAIFl4l2nInlpjAVF2jmXRejaFn80BtJ1HZ6ztdaHsFqtQggpZm3Z+UaQvXEuOecQOfFZ3tR7Hxkj4zhO1hTcGSK8YJzRpmlC8MYYV5Q0ZFYNy2PU5/O5UhoopMmraZy1ljNBBaeCV1x579F+QJaPeC+LSDoBjuyslJIXLAPZEtBGwFigsczVoG7rhRAxZiUZWLL3Hmuv27ZtmsbvPSuCkuhDzOmFL7qiSikmuHVuhqphohPNDFCkO6mM2EBtbbFYpISlzB3jWYMZWc4MDwmupMgAKEg9LMsl5XEwJP2guo/jmChhNI/InU6n5XLJi7IHwg2eG2IZKV1cvN+rq6tilhmwZiIXzEgC8NhR2+DByqIGiO8IJZEZI6FBeQDgvvmqdc4F51PC6aBaV5WS3nuMk6O3ej6f0blERYdyDs/ZTFYvK+fceRhgwAi+UNtMlNgibM0KhZlzVjyJgJPkhQBIs8RBmH+FFhUI/FFaBthTSs5YPPMQwqy3kDCeQtg4GqU1LIdSWtWVtXayNsYkpWacD8feGLNer00/RUKNGWMkjLEUad8PhKSYKKE8EXZxeT1NdrFYYh4oGNctKs559IbJ5L1vFFeq6oejpHTygyCEEsqiIixKqWJInAnORPTJGkAzsqoYXrfkUAN3bbMw0E9k3PvgfWgqgRc9Y3NiFpQo75ExJhgqpTzjhaNKS88jpBi+GE7MiB6hxlrs6JuNFu+XF86voALuC0u6QyHk8rKzIXyhk8DKNAaw8Fw8+LTdbmOMyFznPncoqrXj2G82m5QaxHHAHJWuKKWVykqC+Lu4d/x1JK8k6wXRUJZkEEIeHh4YY227QBcZkAQtEhlwMtvtFvaPxzhHavJZ88EzlteHzNI02K2Hn/ky4RRCOOdpTv/ypSb2uWUCqwbrOaZMvJqDkVCyk0tgN957SjPjta7rq6urly9fEkIeH+7nRh2jwhozg1/lmGAWO7er0ZERZWMB8nhXJD5xhaCoAIbLvXD2meudSoe1ONWcP+TnyRj8CVwNIgtO9CzHQUsPUhSRFlK6U3OawTlP6TMb+osA7UliruysRm2MqwXBAtT7EELXLZSStW66bhWCe95tP32678dJa344HFrfVrWeholSmkjQWnsbpmngQnnvu9vu9evXuKNECAIxpZQxIqVkhMaYvPdYf40kELeWSv6AQgCbKicz5FsmRGv94sULY8ynT2cEZcaYrqtxHGNMqtJI2+ZgnWis2yqE8PH+/auXb47Ho08Rbt8Gf9g9T33oavp73/xakPT85EMkPiVGmSchMSq4CjFSH6SUldIhRTBjSJFDwYWBWTKaaRiG1WoF6IcXYRYk8HCnfd8v2uVyuTwej7v9c9u2Va1oEURCJGKMzrVSCMn7QCldLtewhGURKMAKh6qqSExQ3kSakcNoniqzQoi61t4GdJ4qpZfrfIVKKV1nLTJ0QOETLi8vkZQeDgeI9nz48ME5slhoCGRtt9tpmtpFDQYxKWtmCqqejw/SXQiGImeYe1FN01CaF3Wk9JnnLqWGYkbf9xCpMMZ0XffmzZt3794BMELs7roWgs6MBV4kd4BawuBhfmDGIYkNIQC6hZHwUhxxzvOFeY9zhDwwpcQ4H8az4CrGGB4fm3oBoEcIMQwDhONDAZ1xGGGTAPpRNFHCUf/CIcRCCUxl5RQuYMZu0PRSSgnJEGTxiNATbdvOewtJsXKQOT78dDp13Uqpyk1mGAZoziDDZEVJCXY4I79CiEVTYYMlIQSpaU4aK+mc8zHTfmPIPgQ4FDC+yEmMntLkvJnhP8B5sAH0yeBjwRdBsBj7AcwnX0afrXcwy9vb27Ztr6+vz+dziO54PHZdh9mF7Xb78uVLdAt++OEHKaWzoWma29vbplkAymyq2hjDKZumabvd39xcKaUeHh5iwGijoJT2/bRed0iB6rqudbV73j48HLpOpZSEks4Fwhns33sPxaEYY4gBYv3IA8GRnCs75KU0U6kMEkjv/XrdISEB8ot7oTRSwq21fX9q25yobzab29vbn9//NIxngJVXV1egLT88PCBpb7sVjoAQglDPJGuX7fPzo1Ly9vY6lDkqoRUtWSuKHaUUJ0wIoeqcYcLhREIopTdX1/DSzjlCI6z3FLLmYQZPaKSUGDu6EPr+9Py8k5LXdatU5ngJkelKlNLn5+e+HwDZI0d6/fq1Ne75+UAIub7eKKXGvpdlVOvFixePj49PT09aU++DUhKQiHMWxoYA9/79e2NS12mcXPSwZwFfoDpKCcYwbiVAClyv17hZYFYz5JXyippRCNF1F+NogEd777uuZowFktarRcQQs/ewbQwwwQlghJQxhuzdWhSJdoa2dSXnJMpNhhCyXC6Ox3OIrqkXuB4wc8HNwirdYTjXSqPonspCNbz0ly9foladN0PgaUspIyVISLbbLYBya/3cMp9RLMwhITU9Ho+II+iNwerwv1VTsy+yMmst+NRzcijKmjvQEaZpqutWSnkeh8fHp9VqubpcnU/DeiNwC865uq4Tz1zvf/fv/t3lZvP29ZtxHEHxOR9PN1fX69Xq6flZMuaCJ5SklHyKnBIQoUIIbdtwx5MPbVV7IYN10zSZYXz7+uXT09N/+V/+S7jo5XI5s+CNGdu2pYQopeqm8d6nRBaLBZAcpdT+eXt3tzSGootgjHn16tXm8kJr/fj4CJZb3/fWeSEU4Ai0w3/66ae6kimlzXLVTyNGKkNwSPyyc7M2JbJaNUgOY4zjODZthTQPxCb0yxFJ0UULIczCzYSQxWIRUgwpHo/H4/HIGAGcWCtNafr06dPxeHz9+nXbth8/vgfQ/Pj89Pb1Gzw3HJbFYoErhFcHSoDdA5RSxXiMkTKuBB97U1Xx4eO91IpSmnww3irFJZP75y1Xsqub5XJJ+zSPBcgkkXaGEI79UQCpmdssCL2IH7SMQKZEQ3AlUWZzCORlkhfAYpE/pkgN54p9Lpy8wwIQ2bbt4XCY82z80QzqS02yfn/EUoi2bc/n86JtZ8gAAQmkEtT5hMbZ0eB1juPIeSa2WDthztFaE2NCsotbRlILEI2Xcek550DCBJIUjgfJ6w3TlxUpLcu4KKXeU2RR3vuYEjqlVVWBJw91JPq59/V3itKqaWBPUuZWW0aUStlgJpciTSkdj8fT8QhAhxCCPUJg3aYQrbX4FZaIarK2UcIUihA0c/3AalGA2oP/PErsgwWZZIaYSWYsJTyl4FMMLlGaEpUyQx6MMfhopEFQ50QuOE22aZq7uzssDPn5559d8Hd3d+M4TZNhjDEqKE/Oubu7Oyll34/n82DGqWkapSpnPGpXPDFRuFezoSJHEYwzSY/DMSWagn1+fsaCNZBhXZGWB/uVc86YUEo5Z4ydSEycy0AIMoBYViWEEOqKw6phdUzkzFXkBUckUeKsxUFAtYygiPNCCMgdipQy0nvPCBWfhTsy0AMjBFUEJXq5zei9JYyi2wzdkrmqb+qFVikm4lwQXArBnKOMkUiIUDySoGvlvG3Xi+DTMAxSi/NwWCyWl1er4+E8juM4Hb0TQjBrjPc2pbICjrIU8lLEuVoDXQuVw+3t7fl87vv++u6WMfbp0ydYGm4BzWGcRIR55GRIa+CdT6cTIblIRmoCXgw6MZA+JEURP5YeHQZ8cOKQb7nC0WOE4hdn5xPKPNec1iNzhd4FSUxrzRlnlFHOx8FYn7XmvffjMCglMOI6PwfnJtwL4MVQxloxlssFR+MRs9V934/j2LYQKyBCCCEkNnPiTmMMc27kvQfzmpdNeozyxChj7MWLFwCqWGFfIjwjeYUPhwgD0NgQAkmJCR5Lp7RtG6QFuObtdns+n//gD/4gJTKWrYkxRsLIctkppTebDTpkjLG2WwiWd2Biw5soqu7w3pM1IcXoP/tzgHopJWNt27avXr3iXGBAYWZheO85z6oFMUZalEZRC+ENwsNnsLUMw2qtp2n6zW9+8+rVK0Iiylfw32lRy4lfrP5IKTVtwwgFcDMX4SAOo7pjjN3d3LZd3roOXB6um1K62+1IkU0MZdkAL/K7M5eQcx5jkFIqJRH4AUbg4OTIlaIWCr/FGEuURkJUVTWLRQjBhcCl5IXytjscGONSV6rKqaFzrq4rKDD6L5ZYhhSlkD5kfmKat/CV6xzHPLLNvpCVJ2WdOi1dgRkQmeFmWGbV1EpIuMdZ3y2EYH1glIYYdUkP0AOOgSRKda1TzPATIalpGju5iLZlSpQKXakmNM65tllSIpbdJoZEExWML+rqeDiT1CdPpsnR5JRkX726vHtx9fO7n+xp++233xF6Q4Xc7g7PTwdRq+CnGHVdVYLJEEKMGSKEKk5KMdJISEwpME4Jy08AhX0oYw34Qu4Fg5mmSddZ2yT6wDmbgWkwR6AMwBiDkMyMvSIdh3VhEkuX7VsIjnPqhQ+UTl5dXRFCDocDsv/4WaqLpsJOjUX1i5C8ytA5F3wGHOFy8StVVRk7JhLu7m7IF6tFWJGWFkWFfC665jGg/Edjxonm9GDGcI/Ho4+x7bpI0mgmwHx2MrNXnBNFSv8OMDq7LFs22uGbuDAmOGdymiZCw4xNh+BxGZxJQgGbstkFkZiwM1gWtTFaAHpdVZIqPDrJ2ZyXIhNAYxtyQyCgXV/deu/RcTRFk33eECtEHjpxZWwCm/3mIwN6KUIkvjjnc+mLGxdCzugkcobZn894vSszVbTEHZIHDrK4J7TjUsrKJDOqDsOLhcWMRzQTEvGZMe+NYEIIEgXSUdgVvrTWNzc3KSWlFGH06enp6urq4uLi/v6+Us2bN2/ev38fQtBa9X0fSSAkEho5YXYEVSJNbmKMcSZTINb65NOnT5/u7l7sdlt0E8epF1wppeqqen7akUgiodM0jWZEVwZ+KZHPEwZAClarlXUM+CkhpKpq773Wum3PCBwQeAHmi6YO5SzE2OgqhHDod5Glm6srM7n9ft+1Cx9DIGmapv3z0+XF+vf/yTct59T57fsPb1ZLp6rTOA3eGh8IIdYbwWTXddMwcs5Xi9Vopqquvfcg1jiSjMuFnIyy7/sXL168efV6u92CAIX3YlxWM+Ccx+QZZbqSmAsGwuvKBh3GWFVlImpd1+D9wFaBMaFfApuBMZtxwnoGRB9RCHFIlbVUzthhmOC7oGWBNdqvX79+enpq2/a777774Ycf/uiP/vZXv9JaayhBAdru+/7FXXN3d/f+/f2M1YI8uKANMAh8migqcFpLgHGEkOD87fVNXdfH8wlEMEqpEAoSUDPmCw+53W5JYugbMUbmuebD4RAjQZ2MSGqt7fvRWj+zXHGzSBtIGajfbDaYxILPATEZJxcOED8/GgOqctM0xoxa1wj9nHMmRYyxH06LdsmEmNwEstTxeLTBloEPL6UUkuFjgftgnMtZmH8AZSGEcH9//+LFC3xzmqbVunXOEKJZ3kYewBwXQgz9FHxKZQoEb19xVdd1SqGfRngkCFMoVcVIlMqwvjeWZcmFhlKKPBN+bLlcXl1dPT09hTIbB3g9hBBTwJB+CMG6iYsWhTAK/2ma4IqRV8AFCSGwoxIEFJgN7BOOEUcbWCrnPDivhEQmNo5OSgobTjRrEh4OJ0ZF04wAuJ21jFDB+Pl4woTujz/+tFx26/Uah0W1VUrp/v4e0mTT6KqqOh6PbdvWuoIzORwOwedgejqdlZJaC8YY9C2dc3Ijvv3229/+9rfTZIVg/cEpRSMlnHPFxbfffguqe0rJeccheac1ivfz+VzyqABwHw8QPx9THj9arVYhOqB7i8Uid7yshZ0TQiYzPD8fYvLXN5ehrNzAz/zwww+bzaaqqu12O03x5i6tVisEjqZdoE70KZIYnAmHw0FKuV5dsJSmaXLOSyljCNZ4Z8OqE4mE6D/viOKcV0rBOYBXHmJEJ3uaJlOYxff3D13X5lNGKc3bGuU0OaXccrmYpmmzWc1QyeFw6PuhqrTWchx7IXTf98fjsV00QvLj4fRZM9N7pRSGSoUQYL5D1mMYhrZt0Ai5urqqy9ZuSgNKgNVq1bbt/f39p6dHGBuln5dPoDsFOA+V4yyvOheqy+Xy8nKz2+3gW+papxS8T7CEaZqmabi83JCyKX12Sqm0zSCpAbejlEL+NgwWP3w+nwFNIOVoqxpn8+3b1zHGx6dP1ru26XQlq1ZfskuUUVrrqR+EzMACohshhE2TqvThcGiahhF6PJ+6rgN2lGRijNECsqeydkgILIxlcCPgv8cyFYcgAhgtkJxUwKflvq818DAAQCqlUaSLwhyds8dQWHchhMPhMBwI5+erm8tAwof391KwzWYDSbcYsl6T1vp4PP7lX/6l9/bN69c3N1fWYiGtr+v6PAzGWXiwlNLzdksp5Yy9f79r2+PFxQVqNGApMca7u7t/+2//rXMOPVGkc0jCm6aqKgXnzzg3xlDBY/BY6+eciy6L7kopf/e7ny5vLiilj4+PH+4/orjGra3X693Ts5Rys9kwxlAnbjabw/4E41wsO5Dlq0rhqSLMdV13cXFhrcfmSVjvMJ6RmC0WC7hofLksy8ZAjCBl9W6MMUQihDBu8tbgTVFKfYrT8TzzG05Df3V7A32Yu7u7OfEAQkhLTgI6l5QyLy3AnGKIUgifPKW0rlVd10pIayxjTDDeNE2lVF3X5/MRM9PLyyXyxv14ooxJogghKRaa9peJfij7qWBeGXws+AIrnGJYEjoAswLAvGpvHhKkhQEXy3yldc4YM00DxEFEoXP/9NNPHz58+MUvfvHixYtQfj5EV9UqBK60kEJbYxAC0S1MkaZECCO5C53yfPfMhSGErFYrwCtYJOi951w0TV7oFEKAp0DkC4WnrLJKYG5r07InYaauGGO0bjjP9YwtbCbY7mazQZgUQiRKGE1fRBpwUoj3bj6HrGheO+crjwqEkaL/kEvTL2hBeAhSyru7O+99jL6qqmEaZxwW19MtFiml6DwRPITAGYvFyBjnIYSQojHGmCzBk2imXOU5dJZHL6dp6vteSwXmHS5jmiZwt+GhwJ6oqkpwGilF19Q4C3gxhSilTDGGkIZh2m2fnp6319fX3/zq234aj8cj51JXlVJquVyGkMbRUEoF43KxSIXkElykFSeEOeeAIjHGAGsqrICLyTjs2iaSc1XVvHBJcDj7YQDlBFl70zTOWCGEtVPMArUMAAG2pgohGBVc8YK0EpwL47LUVz4FJM3WjqJubj3NpTUeJmZUcWrAdPNF92oce+yyaNsWcnvOOaxzefHiFbCnFNLT0xNIK7DVEAKjAos7SMqVrRAipYEQSmg0mSbACSd9f2q7RSuq4WhTStYOz89jjJGyNA5DtV6n6M/ng5QKAojWBc5JSnR+uciq8Tzhub7//nvIWj1vH2PIChhc5F4cL1SRWBrInNM5MONnmqYZRzMjpLOjoCV9AeMG/9eD42YDBh3gbSCf74pKFyEkxcykLowVWVUNY2JOcJFYzDU5Z9y5LBTAGIske//ZAzjn0F4+n8/r9XpubzDGpFKcZVEqzmVVUalV27YpUu/O5/PZOVdVFWMC7W7OWYwJo3NMcDCepBQz5lKqREMIJSQFkjB8rbVG1kjLVEcp5DIthRWtfPCSgDRJKSeGHph3LsuJznXpy5cvm6ax1s2OXdeVUrkSgLADkrkQQgwTzwu1Iw5CSDGDXySRlKe5F4sFRm5xzSklpitKqXPe++Ccg0QM3G/XreAPkQfAhWI2zTmHqQJcMP8sne91JfESN5tNSqmqdNu2cydJCAHPRoqIGy2LenxKjFAMNoLqDpI+igGcqf50xmNE02g21FAU2YBozI1PkMRhkCQLnkqx4CmlxaKNhbUEHAq8pGkYaUvQN4ox9v0A0KSuoU7O6rpJKTnnobWSkoVP0GWPNsxyTp2naQopV32UM04+LwoTQmA2Hz9cVfUMQMRCG2SFi4pPiyTBYHyZ++GFG47yAPaP46mUioknQhgTiRLIRwBSV1WF10oIMZOp6+rm6sq66fJqE0LwLqIMq5oGKzShFBSB5gvGSJzOR8nC8/O7y6vN3/v27djvr9bdzfX6+eHDspqqG1XzU9utD8djLe1mxR+fn13wMSZGVkooT8U4ZbUua2mikZBIaRrtKIQgnHDFgYkzxqKHwjtH+wenHuBsZu4TCu8kuZjx+rnGxtMehoGJTEVHyVTXdQqREILGgy1aujyvhcysOlpmFGKMP/74I6oUWYTzUPzPP0DK8gy8r9EMoItSwhddk0qPjdDIhZBS1Y2mlLpSTzrrkJLCiQEOmNsPM8qMe5xRCe899Hbxuwhzv/zlL42zyONh/4A+cWFIjQAJHQ4HdNfmmIiAArCstDoihgM4k/HzVKbHZ0qppBRSSsG1c87YEU8DuZaPEUdsxmgYozEQLqgxBqkLLZwAhBjOOfwGIYRTFpzv2gX+Vl3WJ+JFYJ6XFNxzbpWRLH8h5kgRCmkoFIFXvFnjPhPeOROijGrlgFXOoCisAqWU1gzZQijLfCil3jusnIXhzd0gVtbhppSw32KGnmdkGVHGFx2kVOQ75+Ocys4SVIC+MHq6rru9vUVpyhizkz8cDjc3V21bn88nytn5fPz48WNIPsZ4fX0D1Kzvz0II5wyTIvj4/Li9uNp8fP+BFaIrCkhjjMbuFpKcc+v1hdv5OUx773mpO1IRPjqfzyF6VKre++D8cX8QQrx9+5ZkhVkSwmdpIyiwWWs5p6vVaiJmGgYDCKDvoYVS1Wo47v7Df/KP/vn//H/2cnP5n/9f/k8//vbHijEy2H5y7aqjkR+2o/WBCa5U7tAgymDeHzYwnHshhJaVtb7vR6nUslu///kjZ7mdE4p49zwZRgoRGFEVTXegyQg6QExSGbiEeYMWisM4R09S5MhCCNvtFnEWl8rLFIVSlffxdOrnv3g4HEYzIViD34P/0Fp3HRmGAT4faYNS6ng8fvjw4cXdq4vN1eFwmIoePSwHA3CUUnSFC5wxzQNkzgUh1H5/nKaJMd40OYDiVKos4C5SSgC8OJPj1OMhxNK7Sil5HxljWmtnA3Jgay2qZYDgqM7QNobZo0UKjg4tkixIluAbSzco62VrrfvTiZAIXBhdkMlZlPHgf1VVdTqdxmmcnOGcwdI2mw24NedT3y7qcTD1RfvxwyeMO0BA4+rqKhUtnfv7e8h3nk62a3VVVbrWEHkwRZ5xvV7XjT4/HvGgAF0JIT5+uH/z5rWqFRuz4uIwDChC4X4BTMxIRAhZMAQtNM759fX1119//cMPP8BXY0IRD0cw5kkI0REacbNXV1dVVUVCUKSc++M8r4NnIrhyKPM5XzQNiHIpMx5axtjj42Pfn0SeXR6Di0iQhmEIgbStUkqFFGMgN9fXKdLn52eEVOxpTNHPXJynp8NyWTtDzDiZ2qi8EmmUUjoXrN1xzilJ+/0exaBQclNtTNkIV9f1p0+fGCPWuq5bwG6ttbCltm2hSnE4HMAfdD5oLYZhePfuXa2ryU1SSkLjmHc8RrQQUAZKKbuu8zHCt+dkKUYS8opv7IvD+UVn7u7u7v7+/tOnT1dXV1xQEYRS3Hu/3W6HYUCSGWPEucC+NQjUns/H4/EYQnj9+rUQLPh0Pg1a6+ADY6xbrERmU2ZRbBw0rTVQV1BwlNZaa+wAnzE7KaWuK/xuJKRtWztNMS9i1YyxX/3qVz++e7eQ8ouB12m5XF5eXv7xH/8FiCzDcIY5rdcdPAP4QFrLh4eH5XIJqvj5fD6eDlooAIVN04D5AQAapBBT5OCmyfzwww9AeFJKq1Xz4sWLudG1Wq12x93x2DNG4EutdavVEloxKSXowKSUYEugE7E8quhnQOz5+RlBBycXjhdVDB7j8Xg8HA7r9RrgL0xrsVi8efPm+fkZKvxzTx2ewVpr3fTNN98IIb7//nukwTQESH90qyXyc+AbQHVPp1PyAR0FLMlkZSu4mKncBFWew+azt2/fYjKAkZyZAN2SUmKiHVcF40QpPRdQuOUQgncWxol8GOaHhgeGMNBzQvdutrHSIq1CCFrXYR7Lk+S0iz98/7umaVJKgbFa6UoqSvipP65WK5SlWsrFYvH46f7dzz9//PheCN40ra4ryoT3vu+HZbemLE3TtNlcaq0l40I8At8XQvV9jxKJ5sWqrdYed4GEU2tt7YQkpOs6kpLzvmkanyLSXTg6GhMEgjabzXfffbM7HmYWFOe8qjWqA0rp5eU1Ht04As7ibdtKxX2whJDD4SCEiNETwhMJiURMtuE6+77vuu50OjlvVqvVarV6+PRkjV+uFlNR8zufz84FpQSsHSlECAGP0VpHaIRJI0mAcTLBI42J0e1hzzkNocIJ+vHHHy8vL3XRS4yZrEDB5wiFSlWyBQVLc8G33WK55ufz4L0nMYXgE4tCiOP5LKVUdZUYnaZpu91Kw+u6TsOxP5+V0JozzvlgJmtt1lxnhUiL/GAYhnEcGRPz0ET8u2osgPOdM6DUkaIdGUJKyQNZm+sl1GMzw2KyBrXHPKaHH0b6JVWGj1ORzb2+voYOS9M06GwQQjDCMB85zmSIjhfJ8+VySQiJkRQ0ocZqMtxCKCLRyKppWYOGqhuV4UycwcaVuYia+wwoM1AJ4Lhm8bLyi23bhhSDzwl9KCoZIQSsTcdjRHIMA9od9j+/+1DXNVZSouNBKOVlbYUoYsooh6pKcV5zzvN+PE/mLj0mTaZ+OE+jVmrupQPLn7v9WuddwzNaWkkxw2TwMlVVQf8RDxy3vFgsKM+4M/6v5CImH4vojCrq+0LKGKPKoqLT6TxcXd38+tffDcYSwpSqrHMhRqUqKcUwHBDvI6GcMCxYg5HwaZoJC3MdNXcIpmHEMwneg1BWVZWdjLV2vz/isWOyXmutpJz7K0KIxWIRQgplEuTrr792ziAHQmi31mIrFKUUpzpDmVJ4a2HbGFieTwfeglKKUzZTS0QehwwCNBOtAebCuSPFAeCYUloul+jiwsHd3t4im6eFDcqoCCEEFy3x1tphMufzsFyvpZTWTYKw4EMMznrnY3TOxRgiSSxEkqKzZs4n6rrilCZGcNBCQGNgkFpZ40mMSBFwPGGECDMwhpwp+lQkLwjKSFG02kElttZCkzeWPVEsy3RqnOW5ku+6bqZ9CSH6YaBFQsdau95kRTAU86FsApwBR875qT9zzlNAdc222y3+CvBZhHM8ZPyVmLzSAswRCJIAoOy6lhACasl8roUQ0KrBYAiTfJqmRAKC/TCNfd9LkfcfTtNEckkPXTyVrYJzymedopzccM69dbFsDMc3laowh8WLDiznHGpoqczyz/6QsawOZK2t6xq5lBmnjJRJlVJUSs3dy2maUsp9pqZpnLPjOOx2u6qqYkwzIVcpRSVvmmYaR8ISamxBs9w8LaQkTCGhYsFDo5RaY0lZEYO8xBhzPp+Xy+UM0qEunYxBfPmynYDfxTPBe6FlcfDt7a1zee8H+nWc82EaZ1ouMh64AnTvIknOGJd3IGhguHgOyHWgaMYI5YwTRhljdjIIwOQLQiItWhy+LBhA5F4sFlyUNVyJcMpIjC5kXV3BOGEJaxjRZ50Ttfnh4L9xFlAVwFDx58AJTSnOOB0h5PL6CuQgnAvBuHN5XxClNMYwl/FwyzjCrkisoDic+XGJfu7F4vnPIS9RQjljRUc799WUFJylwj0sgdUrKZSuvbfWGMao5MLYMfngCeZUHGWKc+acJYRSwmmijPBIkuBRMcKorxoeQlx2N69f3F1drtbLF+fj83D8ZMedYnF/ekphYNSxRMPU75+3++e91lqobuqDWG5SoErSEIn3Vmtt3RhTYiSRQjkJkcSUoKwWv1heR8vwPn6SFdZ2omROnQuEJ2E8cyOWlRbynE0RmpHEeS5kRv1i/AxkzA5tTsbAOkmF0Twz2mZouMS+CofXe88o45KWNzurVYQQAgQopmni9LNsUcnR83dw1tDXoaXLjnsXhXZECh0+5IXpLSudaRRUmC+Zc0LncoJEymh5SlmBFy6Lc8Y5R4vIeieU5IISz0juZCfKymLeRPp+iGEAT1xpTH8XOmSKVVUh/4RLlJIKIbBcFwECBO1UFFrnxI+RDL/CLaeUQowu5E2PKq+sYAigkSTKGTQHUkohYPKYYV1HLPRAPHaUi4Tl/k0IgSYqCld9xs5mrJ8XaicY9MYYYy2Mqq7r5bIDnoLYWj4kK/7jHmPKDYM5WRJCeO/mX8H38Ui/BNDhMfCUZoIFZktVpUEgnaaJEXZ7ew0IfrFojTGUJmvtw8NDijE46pyPPnEqp8EwxiIJ0YchTfLUCy0IS0KIxbIihHgXOQvwe9ZZ55xgBMpdyKO01pKLufcwY6nYVFFpYmlGx9q2dcYyxrp2MY4D7hpAAzYLbbfb4/H44sWLZtX+6Z/+5Z4fF3UzjmNdifVyuXt++mf/4//hf/+/999tlPxX/6//57//y79ohGScCyYllfvnrRPYAMGxNDWlsFgskHA675Jzxo6cMkCTUspEyTQ5yth+v5+m6XQ8Xl5eonwwxnLOaUibTTsfPXQNZ6Ws+SHM4SClSHP3V3jv1+v14XBwznVdh7JiPpixzBQiVlrvgDFxLinldjIxRjRTodszTRbpCqXs+Wl3Oh/g851zV1eXc+7HmfRls9wwDB8+fBBCAPOCPAVjLAYC6bblcolIqoo6rSsLjRErt9utMaZt29vV7d77VNS31us1Ui9Q+NFFq7K2clbbxAUAnVktN6vVwnsP8M6XsVfOOZCFzWaD7OLx8RGo1lh259Z1fTgcKt0AOEDqGMpoLC7PGIN5dvj8cRwDSYj7cIA44FVV4UXgT+M4f/3117/73e9+9/0PTVMjH5tHb/veLZf29evXHz58uLy8PJ/PAElvb2uUJrdX123b/dVf/dU0Tev12hjz4cMH5MCAGnH2q6paLFprrawkVl+ii4Oypeu65+fnDx8elaIvXrzgBPImJiVKCEV2FGN8eHhwzmmtsacERGBe1rXRwjCb6Xta61QYVClSaGB2XYdJkeDzWjZ4D85Y01Sn08naiZBOSum9RThA6nU67AHnLZfLEHZN0xBGaUgxeTCILy8vXRGN6fteyeqrr74CE+XNm7rve60JExzIplKKksAYu7/fX152Usp+GCZLuo7DCSPUVlUVAzHGoG0jpazrFsJTeNf9OKQyNNA0DZdYqHgUWh13+5SSlpmrKBSfG404ON77GNM0mfV6vd/n7R3GGOfc9fU1SwRsUCSxVVXd3Nxg3SLAvtNp0Pq06JrFYhGCcy7AMp3Lij04XPiEruuaxeI8DJyLlNLz8/P19SVQ1LmJwoqyli+CxXM/8vXr1zQlNOQ2l5f4QyTGDx9+FkKkUNqlxrRdB7hqbkgs12tK6bEMWENOE+wfNH5+/euvrbVcUCjtWuMRE5UiQgjvIxohQjBjRucMBIXwChCAlFLb7R4JPMgZ2HeF5Kfvh+fn7XLZYbwMxt917Tj20NxTSlVFiX6u3ylNSok5B8AuXO/94XCo6/rq6gKuA8cHVwJXsFgs4Am7rnt6erLWokIfx+TcbkZm8NhRuc8pui9z2NM0ScWrejkMw3a7tdZqkTd/CEbnG5yhNmttrSvnnC4ziOg3zJnGOI7b7VhVhMRUVRX8Jy+Lbc7ncwjh7u6ubduffvppTi/xItCLhU9WSm23W8aYFBwoP1cypXR3dze/C2QLGITdbreHw/D4OFxf1hcXF6jv0Hubw5AQQkqFwmS1Wq3XVGvNaUJM2e/3Dw8PV1dXUopaa8bYcrmepmmchpCSqvR12wRvaSLOORXpOA0kMSU1vEfXyWkYjTFM6dvbWyEU2njWBiC8SqkYibU95zylgPeLudi61mjjAf3/9OlT13XdelXyeSsou7y8hKd9eHi4ubmhlD4+Hn/xixeCpFDYZpgKgn9G23W1WkHXAimuEOJw6rXWKfEQ3Wq1gmoivAqO4eFwoCx1XYfItdlsCCH73VHpnENCOScVtbRZmIiVdS+Mk7ZtnZlyQ8JaXF4IgXPpnGNMEkIwWDxPHeU03mblQLwj2DyAdZyySImLQWjVT6NSiiv+9PS0WCzAwNsd9ufzyDm5e3W3WHbVou2HY1V1VaWFFUopJdRwOlabvB1UzF33udYKIXgfrfUpuTkhRusSDwjcUs65MRHgoCtqGJirmFcSMyq4zBxhWDYeNCyYc54oGc10eXn59ddft207z5KPU4/DSQj58OFDgVZ5hkgibZoG4fDh4WG1WmmtKUuQoUT8QFb65YGnhbTFCj0N4VZKjavlPDpnwSTCUeecO2fnfM6XxAhc91QUHuZ6Hjkiehf4EOiflioxzc1/7z1ygqqqkVbGQLzLjICmabSunXNNs4CbI+SEaJpS6Ps+FHINaiTNNPIA+AX03y4uLrTWVGRNQPwrY8x5P3NecM0IS0nEuq7RDOAiD1fCjfKaIcLNRAnGmFQKvhXvIoVIUwrWJmzSNENdtwDCOGU2paZp/uAf/P2vDnmRKEmMEuJdDCGN4+B9BEGeEJYSoSkZb/CyEMlQH+LYJ5q3ncJBHA6H4LKcGQpXPGQlZK0rGPrhcFBaI8dCsAH6DIPBMUOCK6VkLLdVWBGRaNtusuZ4PlU+K+sJJfGHoFY0jj10aXFA2ro5nU777aGqMnCGDBUmh9WLOfUcTrC0aZpOp1Nd18AmLi8vjTGEZOgBfvx8PqcQIS8Tk08keu+9i1zmsoQR4q311gZKBacppBCCqlQK4XQ4UM5lyssMCaMgLHubcQ1EaGsdoSQHS5ZSJFh4DULo7LZY2e2LtIkQP049JTzEzF2Cr0CJMp+dGCOoOgBQCCFVlXcdzMX2jMgwxnhRzoG++WKxUFog3F5cXByPR+imffkzPJNoHMfauhBoWfw1zz3hnfIyRYJOdUpWKT1rfGdxiaIgPBXhWucctHdxEIxFWahMGK21ulZa6/48ns9n0K9i5pmyuq7h6/GZKUbQ7kLI3WzGWN02JGYlH58HSxmlTUphdi8zQiHLJD6qAq1rzn1IHvx35CIpJcqZYAz15wxWWmvR314sOlD8vHdaVsg8pJTTZABNOudQB4YQdFVNZuBlmyspSx3xSBEpHx4eYtn95ZyjheGOS93v94SQ5XKJD4eznd/7DPwRQkJ0jIrZa81THVLKEB0gJ1k2AfjC2IVDVkVNghWKH4xWF0EevEpoIKAYQG8J98IzD5FzzonKsqEz3jGjHgBKZjmpuq7btjV2mAed8JCXy2XXLiY+zZi1cy6lSCnRWrnSySOF5zj7HFnUBjAkyBg7HA7WWkKyWLa1FuKh+DHE4lQY2TxPYMyd4IwPAsbCUx2GHl/WWvhGypkvmxVw/XP9jBI0hEBTXOS9VeF4ODS6kkqE4GL0ZnI+pJQIZUJxFULiQigpnDfc0xCCS0QIQTlpdU0IGYYpEeaiw/jIsmujH5Pvv/3V62Ung5tSnLSWJIzn40iiJSQyRjiX33z7LcWKYK6NcW9f3dVaEcJcZIMZSdDL7uJwHLSqEoE2rHMuEEYIIc7HEAwlQtdVDA47AGaHjM5//GLtCWrU8MUmYXQWsegS74sxprXWWhtn57cvhIg+gNwEs3RFeHd2QTMHEKUd4CoYGyoBvNA5gsPyZ8OekWtrreRCSDWjRXOeBlgZ32xrOUsWIqecEW0Yvyy65HPLAf+LX0cJB0GVOeuNX7QlfAhzo4gUmrYrG9IYY9bmrBK376NnlHAG3k2RY06JJAZsxdiRZIq69d47myc0Zwh+huSsC4QQrWvOKUKn1tUwDbN25MwGTWUWMqUEfDyUkThKUmk5kBAipRk6B5yBSkNn6ecsqwWiet/3Ke/DyONNvlCJXfDWFsHl6OMX2vd4ULEIYswXBql9IYSmFC9itVoCkpuKcjrMLCdjWLDhQ/rMFk+lcZW/g2eOxhveEVwBHiOu1jn3+PgIyX6Y3Gz8TVVXNxqRWmtVVfpwoNbazXqdCm38/v4+j+HHKLhijBk7+hCJ9/vtoW6rbt0ZY5umATpGCZkmZ60VTMQYt9utaPJmdkaot46IND8iKeV+v2+aBkUjIeR4PIJ/jY4pHJ2WKpSxMxxVIQRjBAFR0/ZXX//ysN198803v/f3fv2rr95eb1Z//id//Pruetw+/u2PP/zNn/3p3fX1YXd4OhyGYRoiZ5WiWvJKEiYIIYKxaZqUCJxzzEwQSjjnkgvZSHIaOOcu+LrOwsRN0ygpU0oQbgJYSSj96cef27YVXDFOkOXC2VJKURjPra8CEyhYDggxc10zd1DITOAtC8wL1MLmGOqtE0Ks1xf45P3+uChDhIDPpNDWWjM5IXPDw3t/Pp8553XVIhbAfpRSOFkAnQHmUvJ5I6UoMzRI4J3zUnIhxHq9fn5+fno69/3+7du3wXnrswYUQGS4mhDCbreLgYxTf3l5Wdca0XOO9YQQDDiO48h4nqWAYSul7u+ftNYfPny4urq6vr6+urra7/cYswhlqLTrOkbzR1FKhmHoe7dYIB3y6PF03fJwOByPx65r27YdR8MY54wSHhhjKAPx6F6+fIkMZxzHn3/+GajfYtFSSi8uLhBe8fNoFYAhCCcPzd8QwvbpHjUvyBldkxkPvgxbdF2HZgOqiRcvbk9DD4IUUqkZqQeb+OKig1M1wVNCQh7F4zhHaF/98MMP4G+KsoFp9mzGZAbc3OYkRfEsF4MkzG3I1WpljAHxS0o5jGdgQ+2yc5OBqZiiCe6KrBn8W4xxsezQ40cmNo6jd1GWbeSIjFLKd+/e4aHVda21XK47dC+Ar11d3nz77beE/AnCLuf85ma12WxAPJwTUedcijmmhxBSCijB5ot5eHgwJlYVjyRdXV0xxlRdzdgcpn4JIZ1aIAhi2M57X1UV1sNALxSWTwjp+7heu0Xd4DgYY25vb8dxzCAvY8fjUQhxdbVhHORxU1UVYX6yNsSYEjHGX16usREOdaIxRtc1oDFrrfc5PVgsFljNvV6vAVCGkNq2pZRDYwSJxA8//LRoqouLCzCEnHNScS0qzmnf931/YowxIVNKkBLGppwvB+zgiJA/U0ofHh5ALsbrE0JwQQHaUJa0lNMU8Ka891rLtu2QvVNKrZ20ltEl4Obns1WKLBaNMUYIrpRM6bNs1M3NjTHjjz9+Oh5PVSXbtgaZl9KEhlYoslEXFxdoFVxfX6eUjkfg11RKjuHdWNZdIFjEMuBljFmtO+kkpXS/38/My7wMSYgQwps3bzjnHz9+BEUPaMnMyQMTC3gU/sput+Oc39zcfPz4cY7RlEZrp0BojLFqagRT5EjH43E4923bNsuVAM05JUCKSMZKJShAGZntGaogkDs/nU7H4xGvGJkJY4TSHPqnaYJkCiCptm2ZFMMw1ILjmoUQnz59wqGAe+GcX11d1XWPegQNXVRYM0QGC7d2f3l5fXFxMQPQwZlpGFfXy8Nufz75VeeVIjFGMwwhJFXpOKXj8dgu6qury3W3fH54fHh8PJ5PKVFWNubt9/vb21sc2N55SjkAommahGBoTWld4ymB7o26m2Vlj5MQDJnD/f3DMBjnAuFCSql1vVgszTBiJOLq6gpeSwvZNPxwODSLdvv0zDnvFqumXjT1whUCOGPsw4cPgGI/ffqE0MwYSylorZu2Wi4XjJHdbnd5edl1q7quP378CBgQ4yaHw66pl+gVodCGGUNtyRURQrQKip9kqBoqJcdxbNpayNyPWSwWxjhe2K4wOThJYJJTPxACOiuDtjXy6pcvX47j+PDwoLXuxwGs/EiSmczV5uJitd49b4/bZxe8sxNlRGgRY3x8fEwpxeS+evvVdvvU972QinO+WCxtHIRQnHOB5BvH2BgDmYuqalCEz4gkTA2sYZj7w8MDK1oWnHMcLcYEmFMppRhyzg1KMixbSklIngvGyVksFrQls3sy1gshtKqH8bzZbOZ+GitfODDoKsNzwVHqSobgZrxJSomlK4W6W1P6WZLCFbHmlLLuHg6/1rUQHO5v7gWRQhGa8zkEZmQkKeU8gDDqYwCVBhgBJ+qYznMlE11EDkcIQYlyPp+lVClSCC/CQQBlRvfDe488XkqJDWwxJsBwjFJKOfJs6x0eCK65aRprzDAMnFAmMmqPssEWmR68X+xXnHsd0zRFkjjnnLLSp42EEFE2v9NCmKKUSkKAaAghlJCjG0/nE2NMV9UwnoWU5/MRj1dLxRgjiVnjjQuU8hgIpYlyxqVQlS7DO0GpSghqrWWMA3KVUv78888gYqDr+OLVHVSW5oux1s670eZejZYKBVXbLVJKKYV2ka0XMB8joKXnUXchxBzCUwrGWcZYSJmuoip9PJ92u12MXmt9dXXVKSDynhCFjiillHNZVRVNZJqmlCgvU5YAbkhpcoTokWwxTiilGMbJTxsKaJzHGCnlc3r39PSEuhpKQCQmDqlQn0KwrVZXF5fH8ymlVFXV+Xhq25YkogQhknLOmRLWHJ11QlSEMMIYiVEwxRlNHBSthNnuGCPnUkoZEun7XtDPqxpxRkTRK/dliJgVWWRCnKJqHgNBMTw3BmjhhKL2O5/Pxpi6bi8vLwG1z1AsihxZqpoMTJTmPDJCKG+GEPCLeIlN08DaMWlCCHEmO31cTyhfpAhZ+rIHHCc9Y6lmqKqKMRmcB9Aw12+UUs4JJjPGcaQpSz3EFJum4ZI550LMw3QppRhC13XLZRZySYkSEjHbAXxwtVohVOM2edGUD2VzMdxUyNKNAX1+ZHh4ODBa5xwXApUtSg4kxDgLMEL0XfFUMf9VVTWwdUKSEKIfBxwEQoi1DhkbOsMkMVIwbhSEUsrqM/UvxhjRYGdlLQxjjBStfFMUG4DvwwnjA0mRGe37nhaiXwY7RF6kOwcaSmlMXMrPazMZo84ZpSqlNef86fkBoKEs2/AwXoCDFn3eBOjKqkA8TIdJLq3xUkqigLUhnzehszJTjIuMhdxalTW5knHJuCv9la7rUF2QwmcRgnfdghDCKVVCWBFiFvPJ68J8WT+C4+a9E4LHqL133jt4XMRE42xHOlOUQwAQp5CtCPfIGBVZUQrd06yrC3SDMXZ1dQXdQITgyRokZ67oAuEhzG1F/KFpmoZhrOt63S1j8IykFL2zQ123UkjrvTMWT55zyhnljMQYp2EUTYO9GbxjQjBKE4gn0Qdr/f39bvf0/rtvX716ufZmT1VyhlozJBKJ5NF54zwRyqckdRMjkVpPxnVdF0K8XG9SSkk07z8+Ph9O1nDGufeOch5DJIQSwop1ER9ISiEOTqvswVzZGIkR4znVw2nCOzLOwp7xfAqSlZWX8YqhfgPUHtEWs0H4FWQO6QsqK6wIrx5ilHjymC1ABj9DfjMqjdygaRrqII6UR2Wt8T545GOpqHzOeSpjDAWV/EKWB3eHlHfm3+X8h0bOxOw2s6OLEcluyaASidF6H/Ki8yxiWM5I7mrTwhlPidCs86hToQ3ivMuivEwI4YKG4GMgzgYhaOTEu5gS1YWbLwRjSqtKo8gXQjCaL5tSKlRMIavAfQkuzyGGFPZ3KtpNuIYUE1YI4s3iUU/ThMEjZB2xbBby3jOZN8IZY+Y+kHOeMSaUZIyNxqQQlZSzQFkqUwuIdKRoEZTScR4otFLKtutgRaZsLJi7R3jLmI1jhLJMLMjFLcLdlwaTyirFUEgkKSUmuKTKe08ZBWsJ7JXlconMk9DIOMs8DpJmbF1KWTe6W74SQrx+/fr3f//39/v9fr+fJvsXf/bn796901rb4BIllaqHqY8uBBeDDcbae/Nps1l37XKaJmPMMAyUkEXbfbjfry+qN2/eQCoUV4tGO24KdujKXjVCCCZ/55aDLIIJNKa2bqzPbWwYW13Xf//3/2FKaXfYLprmV1//8qvXd+f99u9/96vdp0+fHu639/dNVQtVsbqpbFD9kJ52k3cxRW88lYkxNkwTVhpiEAQEukiolHK5XHbtWggxYnFfmXnyzqEXBT9ACPnF11/vdruPHz9mjCARxglAur7v379/v1wu0eLFq//ywCJ7R4aDwR2gjXN+8qU6mRDidOpxbL2LMYTTqYcxY8cgKfuEsSEKMCXyCkDPvEirx9LrQntyxmjgZMayADCGdD6fj8f+4mI1/wl4gNPp1LWUMXZ9fb3b7UIgP/74I5cihHB5ebndbk+nE1wQaNGEkMnbYfBNM0qZaS7ojKLptWglQljdfDFPRkBcrZB1Pzw81HWN9n/6YpIAhS2jghBSNxoTipQe0D9Gc2tuB2qtq6qRUtNhUkJQzvHnnDdVVS26zeFwOJ72lNJxGi4uL4Zh+OmHH1ar1cuXL5+enk6nE5rQwIuRnmEpN8AF1HHIqXB0516amQxeKxClOWQAbeeLvMQF2S9AJXgGnN/Ly0vIcVBK7ThRzkkIyNxC0RsBgAifvF6v517aMAyoYubqj5cvxKlkTN1o1L+4Qnha5NUgmeY0JgZiLW6fFDkday1NrGrq4/kEpSaEVCHENE3GOJS5AMdPp9MwjJREvHps/ZqsBzHw+fkZdIoQ3eFw+Pbbb3/66adhGChTKBYQLiGuIqXc7XbWOuTwiPhtWw/DORVd/re/+Op0OO52u3GK2+1WSim0YkWTZOyHOUYgv4X4LOQaSFFhQhNiuVw+PDy8e/cwjmMsk2c4R1LK7fZU10KrGlVMVVXOG+cc5yAznnCnIYTzcUDaj/xtri5TUc2O0eKo7nY7ZLnTNBHC4GZh86vVSillhnHdLZMPkxlgSJ8+Pdy9ur1YXY/nHsoG/elMKbXjwLmURYIcF4ATZMpC4MvLS++9Uur9+/f7/Z5xslqtGCfn86mqFDy2KANeGMWTUkIZcr/fC8EI4bCcKQKgSFqT5XKJRd8zeiuEaJrm06ePfX+6ublxzj09ba11mMiklD49Pd3e3l5ebU59v9/vlVJaN3Wtn57s6XSCZzNlC/fj4+NMtJJSNk3DGCr3hEbp+XwWXOE4IE0SQgzDAFkDuM0YIz7q5uqq67qHp6cZXIplQgj1C+dcSOZcAA8X/xrLUj4WYwg5XUF2h5mJ4Lz3/nA+KZ53Vs2oFM6FEGK1WmFAcz6h3vtPnz7BPrHifh6vIUUZf542hgrE8/Nwe7OWMutzxhjBdERxCiZcjNEaL7loug6C43Yy0NNA6oILwP8VRVHz4eFhJif5adxuT2/fvthsNilt+76HBF+iHIKuQqgxjdaFGOPj9nkchhhjIpQwxrlUWsOb/fzTx+WyEQzLBtt871LHmGkWGIBIhQkqZY3ZI3iqGMmrV2/Gcdzv901Tv379OjEKvcqu68ZzDziuUppy9uHDh91uh6TosD+1TUcLXeB8Pl9uNiardfG2bVerFVTFt9vtdrttm8YYUzcal1FVFTqLhET0jdBXjjEiwIH23nWdFNp5gyPjy8ZpmA0cLKRalNIh5Do6xpgiMZNFtO2attHJeOe9tWUvyNXV1fv375VSkvEQsipLSunVq1e73Y6xvG8AJcPj4+P68uLt6zfTNEUfREr98fC//V//b37x1Vd/+Id/+MOPP/708b2N6Xm3nQkuhNLvv//+fD672lPGUyKYCo00ee8FLgLhiuTGtZ4RGYTbmQ+Fygceh3POWBYXR4QG8AhbTzEDUpMdr66ulFLPz8+ok3UlgaViWCkn/SF3UOe0zNrs1FDophCrSkmpnXMhBXhSTCUjBQlRa53XRLCsT9oiJOC+oGPl3BlVRAjBe6waZwhyqixIlJKlstFbKUGIttZ6H4RQSNwfHx/RzMzJH0vDNCJjiD6gYNvv9zHlzB73m200eYAvUsqbmxvQAfAcMP9urTXGQT0NL4KWSa5c4UCqLw/+8JQ8K5zNEIKzvda6P59jjJvlihMF3QNkjTFG8I4ma0hhJKWUaCJSSSEEtJu9dXORRiklCWtqmCwrZVAG47SQmAAdor71IXBBSdYYoSklLoTgajRTSolyQSkljDvvOcmDpeyLBWi54mJ8GAYMg4A9kSiRUrpgfcwz9WiiphBBIsMVEpZ37sESYLejmZqmwXZdzrn3NiWKRP/LaA18mXKWCnsIxy+lhGTx+uq2W9ag+UMlKkYFRw8VnrquMf2ByBFCcC6Dp6kQvlCiXF9fO5+fWCgar4SQFCNKo+fHR8FV2y1wBLBQAnRscEBm9FYIkWhGOk6HIzI8KXVw3sdECDn3o9RqvbzknCcbY4xU0BBCipQKDkWtw2EHoJlzibKt4tzayY4TADj6hegKkl0cYfTWnHPI14NPh/OhbjKR3BadnFQ2qhXHIpZLiG9k/Hpu5+DFcSFSWb8pyyQv2p78i+VLqcyYpNJDhrPGbCMtCumkjLNxzgmJSomqqvBecBjxXqy1y3UHeTK4Oyx1xC/OQMw0TRa7RjmJjuIWdFWHEKw3aMtNY0Y0mrruui7GTL/C2kwpOUw6xhhClr1Dzz9xwmKcn/PcZkMaUVUVY/R4PA3DIARfLPJtRpJ2+32Mcb1ZAp7ANQNRReC3WEVdiC0QGkYtga3NoMzEGO2EDUscDw2S4pyhZ5CB17m5VVCkhNBOCuVKa73f7yUXcK04yKGs5Y1lNwXWXOC4KaWUzEMD+NeYPCgDM6AWY/Qhr63A+eVlxauQUmvtXZzGQWs9DMPz8/OLFy/AY1JKPT4+csrA/kZnAigb3vVqtcJH4cXNcDYsGX6YlMm4z5BcAdYRcReNXq1WMZLzkOcxCaHzdFKMMaXc0iic9Ao5K/mitUmzJIVVSnnvULcAg9a64pyllKRWuq4wYYqgEGPc7XaSi+VyhXATQoiRILjMiSwvMjJKSSnX85FE2EVnd0YwccBNEfxJRYiJ0swqXXZNJcW5P459z0lYVDomXteNDymStF4vGafDubdmJAE6A9J7F/NAA40xMpoIST5Ya23b6NN5R8jtNB4l8zFM0TsSvVbKess4axaL3ftDSqlug5TyNE7Jh5RiXSnGKCfM0PDtN6/lu4fnvVGydZFZh54cwqUgJFHKJOc+JOcCTcjRaXmGWNeTFXVmIBiPl1NGOJmTfuRkssh9wjPk2XNC0KminGUHGCI8fyzUP1QgORHkeRQXZj8/6viFegZeE2wP89eEkEQSKUMkiZKh7xPJGg6iiDb8ncDtMkl/Jl8g9MCqnXPGjqjcEoneJyVzzQAPz4rKMGjyaI3EGFMIgnEpZQqfW3qzc4N/i5kd42eAnnNOCnrLyqoMWBdAXuBBc/ODc06ywgBklKK3NlHifWCM8TKUln2CoD4GzkUIQUqBhzY3FXjh7KeY8IgoZYQQqCXMABktAkpzY4mVKRMk5UCOnHMgEeNmSWERAgvmlM3eI5XmHKxIlpXCwMJS2QMRY2SMKyURm8CBwCHFk5FF0iSlRBNlZfJPawVSjy/z/vltpnybIH+lIsbiY8BlKKWMs8v16u//w38QixQD48QYP1faM6S7XC6tmyjvYDyAD7RS15c3McauXbx69Qpzox8+fDgej8v1StdqMMPpcPbRqVqRSHSjUV81dQ2LstaO0+jzfm+LygK8SzjM2YmJIk2L/874SN+nIjAVQgDJKJHEORWiklK+f/9++3AihEx23O+f/+X/41/88//F/3RZyfe//U2Y+rury/V6/Ve/+c2f/OVPelVd3r3c3N5urm+sd8/b/c+fPk5npyq9XC5TStHnido5whJC+r7XsjJmpJw1bcWF6Pv+cDiQlEozhsBagEE8PT3BllAgWGfBF5umNG8EwtlBGlN0aT9nI8hb5jwBeUutKyScQghVaULIdttzNuCAozOK0Sv83WEcATRTSqHgh3N9Pp8pI845zNYcD2fgbn0/DAOpawMlU7Rh9vv9zc0N+rXBB60xzhznSCQgWxfj+48fpJTXtzc4qkjR7WRITKtuaa21k3GJoFvPmtzJG0cDHYa5O7VYLBbtghDStq2xY/aHRVoNxDRc2G9/+9vr6+uqqrbbbd5El1I+AjRB4x5HAy7Re79er1FwASjBuUMmHGPkRcZNlGXUy+USRyYvFSSU0jQM51h0BqCWsFp3jJOqVomEvu+ft8eqVpic88GGEDhJ5/OZUg5cDD6Hc54YBWZtylYJOKjzOMCuADfDPGAYc9Rer9cITMa7ZbcehiGxnLN9merAOGdgKCXqfdRaUprDEE5fKGtgnXOScy54IatqvJrZu242G+8/D2/tT8dGVzCYueByLjPNYdu0jNcIIarKIyKs1+v16uJ8Pm+324dPD0B4n3fbetJKKWjlLRaLqqqqqjkej7/57d+sVxdAOZXOGfs8lOnKjFqInlJ6e3vbdR0okIyxbt1oIeGCXr5+tb7YvH//Htvq7h8fzufpYpUZ9JzzRIJzDjkYFE5gQpRStGSEzCrhbdteXXUxRpSNcBouK7DpU28IcxVrCGdMilqITw8fGWN1raHBAgsUF3lcQClhzMg5j4TFvKM4IoIAfkFsRbLhnIkxLJdLhNHT6URC/PDh05s3L+u6bhf1+Xz+9OkxJQIaAS4+hIDZ//3ebzYcpZxQEgaGNhI0ElFHo0jngnbLlZTyeDwifQINC2k2YBaYWdu2eC+kXD8aqJh9B9/fOQekRWgFTRuWGG4cJTkczm63CyFQlupGh9g4b87ns64qNHIeHx+Px2MIOL7cOff8/Gxt+Prrt1pr5wIALinlarU6n48wD0Kz3LmzAdE2D39ICSGIzWYD+BVB5+7mRkqJBGOmEcx90Kqq+r43dry+vgYQDFKw1jqG7KgJITFOdhpnJCqFyCljUsKPOcrAh6OUgp2K5vdyuQQDiZQhS5hWKMtRMQeMZTyAYnG+rM2z4+fz+XQalp1eLpdwRyml9Xp9eXl5f38PRyelzKqY5oADKKV89+4dI4RzPva9L6zwGR+A5Z9OBzwEBIIY41dfvZRSnk4nxggGlWKMo3G6zmvMQVrquu7h4WF3OJaiMoYUYW+vXtz97ne/I9ELVSECdqsVIeT+/r5G/UXJaAzlXHCOpmPJ0j0mP0LZYuq9v7u7Y4w9bp/hHD5+/GiG8dtvv72+vDqdTmj9Nk1DBX/9+vVPP/6MitUYM47j9eUlnrYx5nA4XF5eNk1zPO7run79+uXt7fV5mJ6eng6HAyERuDACxKdPn6BkO8NoMZKU4ix8geYEKrIY43K5GMcBM6AoJEMIy+XydB50Jdu6wRIysPFSSlMPWr2uqooEb1wWzfj5x5+HYWCJYalmLFpqP/30E2yDEPK3f/u3eL9PT8ff+70X//Sf/ifOue9/89vf/e3fvPvd7/7z/+P/+X/1z/+X/5P/wf9oCm5y9t3Dp//d/+F/fzj3q3ZRVy2riGjEcrk8pGNMJMZICZkmGyiR4yjqOsMuwHmllEKo0+lECs8CImVIQL/sU2mtvbfwEThjTdNY65EfS6FhOonGn3/++fr6GhuBY4yI9/C5YF1RSgXjsBv4IHiTqr6glOIseYs1g1ZKCfALRwteLJGAypwUacW2bRkTMxqO3KWuayD9qNl2uwMhBIppM48A5Fbk4qlI5CAKaq2EyOkOlJ5QiKZISdlSGn1eouic8yGz21Cxo1wMjjobhMwUP0bFXOkh+Y4kEZZSjOeh55TBvyPV0FrjlkMIzk54QSE4qfO4a4xRSqWUmjiH9xmd9d6TlADiKKVUWWVQVZVzZcKa8VyJkTSf+Tk2e+vgAfGZOZcFBJNISLnm5ALc7ehjQFbBmMg2o7K/5jzTNFJZXUJInEFJKbn3lFM2I4/wdPhYY6xQcr/f//TTT7/+9a8RiSnjlNLengPUkL2pa+2sxS3M+RngA7xW+GI7jTO01LZtJIlxjloOG4pgOVA4GsexaZrVcnPu94ivzrnDYXc4HADQvH79OvvZmDngNBHB+OSyN0EGj3SkamoXvHWuruvJGDNNaJm0bcux6ImQ1WpV6cY5l0iqdXVzde29b+vGOXeaTibkAgOJ0Xb3dDqdsIAVDFYsPRvHsW27i4srLgTWaQolQvBUcO+tj866wDONIldNKE2Lckt6MhZDeazIkuIUQxcY7VladCqklEpmwjtG4UCdMGUdAdJuXfaLeu+dDSnuYYS0JPEhBF7gvFj2YuHudvtnxhjSnVBkTwFuoq0C+TA0kIUQJNG5LEdpBqNC9mGLEDm67lj2EkuzgVKqpML4CQ6CKFL9pOyFqGQnZVZZQg2Dgvz27vp8Gna7HaNUKTEjOySTU2gCs0xKpSTONWq/cZywXZNn/SJgNIZzfjwem6YxZsJG9RhjCFFVOsSA/AAAAZ4bzB7JBx5FSNEZIJgejhdvM4TAOUOLG317vM1hGOExLtabvu+Ntfv9/uJyzcsAAQ4LQChUvGM/cMooJSnExGKlNFJPuA5RlvCgIAkhlLEGE2Mmh1ZaztpqIYSnp6e2bcG4AeSELksqzTBgdtArhGsCr+fHH949PT1xQV+8eAEZkzxwyvNwCYz2fD7/9V//NTrSeDJIIhHFcGznrjItS94A3uXEtEQcmkU8aIwEuZdSGu3JmTRNKQ3hC9w2umnKpDZUhripruuw1xGZVijSunC/1hoXPMjpvmhDza5gvVxVVY0s/8t2BcuC6XxusLnCuZ4NJqXEeR5OAtc7pYQG5NzxxniNUhyPPU39v//bH/e7x1/+8hdX6+502LWLlY+EUiG5UEqFWHZyckkpqOJs0XRScecMalrOWdM0y2W3WjZPn9Z/+Id/+ObF+pdf3XlnnR18DEISEGF8DFVTxxhdsBgUSSEowVNylaqlFJJK68Mf/Le++3//V//188NDu7ymVDMWo4uUUk5ZiIHExDkVUnsfSZystVAAZ1+IWc/181RW9OB1fJkVkLIxiZbOXyzyU4gpQggX8rK7xXLpjAX0jzcFrZsQgvV5+bjWGu4TtorSXX2xezB+oTuU+/qMVXXjbNY9J4QwmtdIIvGAo6PZgadIPjN8aZF9wIiYD5ayhNRoduy4QqAGlCVdScFICM6nwFgzTRPugjHGObPTRAj+FEPhKkSGznnRk7XWgUGJhIRyVno82XnGGBkjUoqUtJSyrlql1DRZY0yMRHMenU0pJZo105jgjFG0pmIgcxMIhyL9XXEJ3Muc1FGg9fjbiRBCnHWccy4EYzyEYCfDGGOEhhizjDuhwfkY40RGYwzlTCklpZizixnpo5ROk+GcC4ZZJQqfhlQkFboKXhD5QpiIfKYvCc0YIHta6M9wpL7Q1SmlNFFeFDOrSs9tiViU5QBo0rKTgJZFkZxzLrhSKssulQsTQmBIAsdhlu/QWuuqgXo1i5KX/t9kzPF0ctYqpfa7I6X07du3GMm8vLz6/vvv9/td3/cXV5vE0jilSlbTZIUQlaqWXTf32u9e3D49PU3jSFKKIThrZZkewFUhccWlSqlSSsuuY4xdXFwAzsPDMcbsdjugPJQlYwwGX6SU1k6bzUYpphU3Q/9/+7/+3yWJ0aZXN4vw3a8/fPqrn96/FzU9G7f76Wf16XkpuFLq9uWLCzNZ76z3Yz+oSuMhxIAJEgZw8Pn5ebO6EEJAIZ0yhniRCu3aFV31P//zP08kcEE5zyKB+/2eCwruJ4jGpmhYe+/Pp0EpZY3nnBISp8mBhYRZNyTz8CqII9M0ob9SkfTy5UvOP8Ev7Z4t6p252OZlh+ccR0ABQ2QJMYvAoD4fBtd1XGtFqZVF/Rw2ycskFjARpdRut8OSBjg0gA7wrpzz1WqFBQAzUDL3oZHUHQ6Hp6f+7Vd3m80mESjs57WlyCefn5+n0d7c3Dw+PkLAwTnHqIg0MsaMN3Vda1Wv13mp48wWx4sAa6puK7DqgN0gX0J3HHrEYDsB+QXJA+GYU1p33WQG/C5ETlGSfPz5/dXVFQi5lVIhhFprRuJwPtOYeTDw9qKsrT6fz1DPozHUdQtPMlPbjscjFfzi4gLsbymlUiLGoLUEOYxzvlwukU15n3nZ0E/gZd8y3gJ0Hjab9fF4dM6zlLunMyNhdkGUc1VVkYSYiQs5GtqyuRQFi5vyruntdts0jaAMlw2QDskMctesD9MPc3Z6dXUFyd1vv/3Vfr/v+5FLyaV0IQilVpsNpfSw2w3DcDqdKKVS8W+/+5UQ4ng8+nPAuB70aiFLcj4fOedV07joCCfXd7fe5lteLBagIaeUpmmC3AQgY8pSt2yHaaraSqkKWSUh8f7+A6UcK9wjJU3TjOO0PZzbSi6alrLkvYdEOFaVzOuR4IiAVBBC0NrBXMiyXaSUYvJIQX2MQinlsuIWzpSLwcfISwMANgB03lrrY5ScYuDDBh+CS0kYY/CIQIUGaAugI6WklGrbehxHSlPXtM65oSeHw+Hly5dgN69WHeb3xnFkiWQ8Z9ESRo/n+65rXUjwurqqYCo4LzB+6HdPZmBF9Y6Ur8ViiRoBZZQ1fm6Ek0KzxWWfTifnXK3I5eUmlfGvy8vLY3/u+57SjBs4Z/H5IDltLlaUpePxCE7Jd999N03Tu3fv2mLGm80mFjE9a+35fL64uMBBCCGgUQ1H6r1FxDyfz4uuAWt+LlikVjzGcRylVmDObjabqqqgYj8MA/I9vCME3xlMH6deKRVCmqYJyzZ//PFHHFuhpPFZhWNGqClJlFEXSNu2kGWQUh4G93rR1pWagwgrHfF5Vyov03iQNIlF0g3+BP89SyOmVPCrlFIid3d3IQTstG/btuu64/GIeIS5Bzzhi80V2G8ZCvD+5uaGMRaMEYxFSp+engBW+jLJl1JKyQvBCIlM5GnRqqqsnaSUIUUmRCuUcbbEEUEpnUZb17VQarK26zqpSyEf4jAMSgjow83SkU3TXFxc7PZbpUakvgBqTqcTZ8yFMFlLYgTKTyk9Ho/ee0r54XCinAefiMhrk0IIh8Ph+fEJ4UzXlfc+kLzf73Q6PT8/393dvbi9hdg9Xl/f96fTgdKcMl1cXIzjeDgclVLDaOFa8TBRjTKWV83jjaCGXa9XUBUGxITq9aeffoBLN2aIhUkWy9iT5AIZFK5BSok9h9Z6749fffWWUl4rllLyKZ4PZ9AFQKBEUvQf/0f/HanVv/gX/wJ9Zc45mIXLZfVnf/Kn//6v/vrycnO9Wf/i9Ztfv34rU/r//qt/9Uf/+l+b4AOnx2m6ubwikYYUz8fjeBhfdC82m83h6ZCQx6ZojOFaxRhz2qq1Rj7qvWdMzIQI4A4gGoCAgDoWxBPOKQx6zoZxA95F5IVSSh8dLXNAMycaRwJIPCp54zya7SF48C+g/g4dbkKIEiDi5ebYOBiK4WjIVjgqhKiqvMOhHF0LqVA083Hk5vweYDSaEkjKkVVba3Fr8xoBXDYehXOGMQYIHuhDIlltIDfzk0HiJaUUMpOkMOnz8uVLUrZ4SSkp4YJLY0dUktYF54iPwZT1pqCEcyqQYc8MU4SQFPNEpAuWSyGlHKdJSklTzgOyKydUay04T0VfD35KKVnXNedZJJSRXH0RGp1zdjLGUEhhSCmhNQwuD07jPHE8DYaxPK1JCDJFct5tz33vnGNSee+TD10XrLU0ESGpKEulYkpC5rEgUsYBKE2EphhjXWut62kaqqryMWQ9o8Dqur69vWUsr4FGfc6lUIRorZtFzTl3ZSsjoZGSjEkpKfDWMo4wjMfjUVV6tVoRRqMPuuyRCyHLpZMiZxlCnlFKxM3BEmESKSbyOU45YYQxZic3OYfAj5Bwf39/OBxWq1Vp82atKMQStH+FEClSdGtmn05ZIoQQGn2w1k2U0qrGqivnQ2rqhbGjEOLm5gbldNvWVdXYybTtEpiREGI0k3MupsSJZYyREChLnDMf3TCNnDIhhBSCJBZ8IIRM42imKcaI0T9kZpxz7MPE93ESfRFlRnY1Dialz9SJ/jwi6CIEAm5GxoynbSaHEl0TTSkZpxF1GuyR5z05YInm6SH4ovDFwisckFTEFpAAAR17/fINejm8sDjnis7M8nNFxp0X2ogoYLe1Fq1EvKaZhYGLDyHIRmqt9vt9IrxtW6H4zF2CTwCuBLi8qrRzEYUiY4QJyCp5dJhz/c+5ixFIrvex7GKNqBbatsHAI25ESlk1zTiOu91OCk0plZzhtPKKcSmUUkDVgVL5GC6WHeaXq6b23kdrgbLB7wHmRhIphIxlyF1rPQzT5cUFoflZscJwgQMnMXHBbfxMnsVfnKGfgjlmJ5zKdiBkgTHGkLLiM+c8pYmXATQYAPARPElGBRNZrxYJEzxqcg5+HrsdvvnmmxgjoVkxAA6cps96O4AJvvrqK1akJ2PMo5rw/KT0XGHeM3qLChyOWhbOPuyHcu4DKMyZDDhO1nsfk7e+8M3LOAtlKRVSZPxigwJjeT8PbBv/CpK1c47y/EhLvGay6F+X0yFngMZ7x8pOCSklpYFkEaHMb8VfLDGRgXwdQgDhyzlnnVVfiJ5TSoQQiRDGua6qaE+/+W/+Yn949uPhH/6Df0SD688nVS+JYM7F/ccdF4wxZl0g0UcXeKWwHS4GEjwlicWUOCeUMcp4P0y//NW3jx/f/xf/xb/8j//Df/Tm9avLy7yalcTY1vX+eIQ0ASNUcq4ll1LayVBGsAaTEDEZ8//51//28fHUru5Ox14qYr3jlHBGCI3OG855oxShcbSDFAz+ASmNc5nRTAjhgipVA5SHtQDpUEX6dsb18J05KKCOQt6GXQjW2sPhAPkmWmaGgOHWdV3RGkfAe89plnWeIZ75BAHXFl+sOc22Qikh1PusmCmlJDTiqmCuUkouBJaM5U7b9JnwPkPYczI28wdjEXz33le1UkqZYYxF0X4YBmt9olSXDRYhBCHkjMJzzjlnMDNUYsfjMRVBCdRjEAEn80rDAhbHCHFzXaJMjBHSey6lxDhljIfonHecCEJYCJ4WQa1EUkyRJFKcSZoJE7KspCaFCPnF9WQFWxx8UTQrUtG4mFs74gtRbwi04MmnwjqZM2fO/WwnjImUqDFmzhl8WaGGiECLAtWXD2EyYyh7qFIZuUtf6IZ574MLgHg2m00oQ0KIVtntF7QiFjUGuD7U2+C1IdixspOACZ5SCD4iyKa/K/CN1j5gLwBzT09PVVVppXbrHR4jpZQkdj6Pm83mz//8z+8f7rt2GQk4CowEctqfqKCEEC6YrirvvR9HCBOjVsxF+zDQUlenMsStdYVrHsdea/3Tjz8653jR8cOPffq0vb2LGPaKIXjvF4vFNI7b/VPwfrlcsrqlSgdnmQ5Pvf2v/us/8zEIqZOgDdfGE8a4aKvT6TT87ne4TR8jqPcBozxYOcWzRLv3frvdrtdrNw5g8Cmtu67rz0fvrZSdtVPfn6WUwVsuRYwxxRhCAGrMk9Ra87J7FiphMUZK+Ha7u729WS6X43RijNW1llJ2XbvfHyEBjEwMfWtG8jj/PLEKYlrTNIJxSsk0jVLKGU5NhACGQErTdR2gh+PxiIWcELKsarVet7OutMgjHRwlCcxpLoUwjgbmHZieyCsAQSIDAb6MCh9fYCijsbHf79uWHA6Hi4sLHAeeJeYo/A8wr8fHRy7ytgbnHCNRa+2stUUauG06IJLPz89wRDMMgVomkiy+jJOLyTkITIWy7wE97/NpOJ8PqUj0dG1r3QSZr7mnPvUD8CDgC8aMlFJKRdd1V1dXmWrHsmpWb3q4OPDEKaUg6MQib4i4gI5XtWhJFnwHucqTIsBVulPU+7yZGRXu+XxGqwngfoyRUk+omNMVIUR0/stePmzPRyIZ45wrLYZhoBEofy7qEc5A0UgMvR+53x+MMYu6SYwOwwBeOTCv8MWC95m8cj6fMb4tpVwsFpGSwUzAcEUZpEDCY8rqFBgzTrT3PkaPoXVdVt0kRkP0wSVMCSslJNchOASOjx8/0qJSFQlpFotxHEdj3HaL7dlzUpR8oJSeTqfj0dS1iDEuVsuqqtbrlfe+0VUI4XQ8dl2ntYbyD1gXeJLgOQ3DJOXIlZRSgp3WLFp4/hAT+kNCKZT2KSXnQoxECIoTLYSQWuwfnsF5QmYrpZSKowmdGKWREkKwJxOYqTOj0KpuNBd0GAYhmVItKjgYrbGjc+7iijNOxqlfNC3n/PJyczwegcsrLpADQ7HkzZtACBlMb62vmrrrOozT4fjgCCulrm8uf/zxxzn54WXrNWZTcCIq3cxBBDB9Ho0q9CZjzPl8BniXysKwVMTccGS0Uvv9/uHhfHOzAFoHxXBKqTHjfr+llC6Xi8QIoST4nADwQpXjgrZtq7V+fn5GiBlHs91uvfeLRQP3q6ssNUMpdS7gqfsYtOa2LFNBfL+/vydlPgB8LxQ4gLxmhmXTVrjCx8dHaPsAcBRCCMGQmcPUGWPR+cfHLefk1atXo83V8dOTWy4hHJHJPThK+HMIuHhKkJZGB+vVq1fgYuPEwU3BybNC0kJtuFhU2YQGC47LOI7IHz58eLy52eAznXNmcufzGVreVVUl4LmcY9LIeR9CQCxAHgU3ODf5GGORpMmaGL3UyjirlCKMUZoHrXCIDrv9cO6VEOuLzdPTk/UuRpKpls4aAxXTnDQqpRKNwzTWbXPuj5lSEAgC6OXl5fPzs3MuRsIYUTEyoTjnV213PO2ji4fDoVksOOckkWmaDtsdisGXL1/+/PPP5/PZx3A+nwfjXr68bZsV53K12hx3x93zMxarAot/+fIOIQzth6Zb9NN4PB5fvXp1dX2x2+3iF3vF27aFLuLF5oozySjHcXh4eFouF1jRzNNnIXs8TPR1gMTCMHbbA6cLSCbAMlkiNti6rpuGz/SCGaNrb28xCoaP5ZR56/7oj/5IqKzWi30MwGq69SpacjjuPn36dN7v3n3//X/yH/yT28uL8XD64YcfLl/cjsP4w48/iLpeLBb9OKREeeRPT08Avoz3bnAphhl1FOM4LhYLxnLQEkIwxgHR4jvgOyyXS9RauQTNJAg2jqMx5u7uDkcOHL1ptL5wtUQWw03IOY7HY7ds8SGx8MWQx8O/C6khSkII0aqeScGV0kIISnNXDSnInPQwTpxz1k4hBKzjMMY4F5RSKVJr/OnY+2C7rpOSgwE6jmccOZJYitG7KLjyxC6Xy9Vq5VzW1HMOo7VZjsoYA8EQ5FWcc6hG8DJAgZFAV2Y/U9n+VOiTHHZDigQ28nI8z0i85pqQiOr35uYG3iElobXGauBZ1tN7Dx0rY3MhgQzS2zAMg/yChimlRAsbpwIRd7leAX1GUFe68t6P/ZB4QtE781+sDRQDL4HM2U8soxyMcSnz0xCSee/HMUtFj+NoTueU0u3NC6CugitXxEPh2QmN3ntjTa1zh8M5x0jGX6ZpaJrGWmt9Vr1EZ+bly5dos+MNSinbtoWqBhN0HEeXQTRScuJcngG8WzQtftE5VzXgVzrG2H6/H4ah6zrAqbFMvFZVFRP2yyVWOvNCCC7ZHFoyQYCKvu+D80KogkpIJJ14mOv1uqqq592270+0LHOrtMYzCSFoVYN1gvkvpPtZbJqxWFYeYU1wjJEkxgWtEMDMgHL6fBpi5IwRIUSiMdEoBIuEuMlUVZ1IstYQllJK0EJPJMJrM5LpJ/lsigwioMbALcwLvhHzxBeCyx8/fhyHrBsAqkUIYZqcc04qjjIDWTKIEt57JSskajkDZoBLZqg30y6EENZNp/MBvZz3799rre/u7ma8Et7GFzGstm2fn5+RmM6pRkrJOY86P8YoRN6+jZjBymppU1TwDocDI0TKbq6U/BcbosBoULylNDVNIxX33lNO5rpruVosFosYHOpAIURKkXNyOBxijDH6/fHAOa8qjZ0bsDSIn4aY9Q2EEOjipJQWiwWgupRS27abzebUn/f7PV5WIoEk/vz8jJhRVZVWmnPuWYYakRcirdFFqGcaR+89HkXXdblfKuXFxUUIsdCcs1BdjDEEPxcquRhORDDORI4UMxoyw/ei7FkWRST3cDigjRHLjLaUElKYMBLsrECdjLYBEDRX9qdJxRGGOJMpJTO5RD8zfLEVBHpEzjmueCpfjGaxKnxJKW9vb+u6htwY+qywMdQAM9Aze93Zr8IBwp/PVtH3A6rlGGOIn3E0kIOooFJK52wkiVHKmCCJoKvEyog9Ft6CI+aLbJwpy1jqtgEHPxRlYVwtUjHn3OlwRGmHZ5VSnPG+UqAKADqqyPsicVR5X25u6BJCdru9EHwms3jvldKU0skYTGQbY8Jxx1P49S+/Oh23v/3bv/r2uz9gvHYkxZiwFG7RtUIIO5kQYqW1qvJmvASqLSUkMetCIyHCG1vd/rf/o386nXZ/+qe/+ZM//vfffXu1XC6//uVXZpokFxWv60WFKd1Kiv1+/2/+9b+F7+KcPzw8rC5vuGz+9vuPr978HqUsEXo4nquqSixaa2miNDkSkvNTDGQyfV1dIDR7b2HkSCF8sMYYwXO5AnANikmwBFfGHXjplQKnSIWCCqynbduU0r/5N/8G+rbDuZ8ZH0iZCKNSCJjTNE08k4MZslIUNkA9gB0A3ZjLHhuCMUZwHoJPKUEZB8z3jF9zrpSiRaePZp24LBAMVyCEoCng+mMZa81AbXQ80Zj8MPgQAo0J8QjURSEEuHh4p1prStk4jvAY8OqgS+Omrq+vvc97XMHbIonF5NMXG1AZI5QSKTMYOk79OEJqrOWc1zqrRghGjHNt24YYh2HA1g3GPpOLSdn3xfM+VYNoC5/2JX4aQsBLy0GwdNbZF1+0CKrEMiiKo0c5nfkWpHTmYtbTtwDXnLEhJELIcrkEUPhl7w3XwAuZHYdUFF0RUbYPzT0AUbaw4te11ilETN2FEGLM8S6UL15mXOaUde4zxRiFlHM+gzwcXyEEzsgMUs/diEQoITRjJUJY66FMlUpHcHNxQQgBeME4sePECf/93//9169f3z/cD6fz2PeENutmGZLHUP9kp8ViMU49pVQScT4c22UHoAqhwRgTv4gs3getyZxFAzPNd+290poQcnNzwwUFRwGFLiFk6Psp9JRSqWV/PC0XS+sIlXxyRlR1opGQsD+ftaz8NN5c3iihLLdcK+JD8slaq4QYnXUpUs5ijCSlEGPWT4uhaZrt07ltDZeirrUQLESntIDyHlqewBpSSta7EIKZHB5y4eIwVgSRcUenY88532zWm81mmqbT2aPcKG6Ho3RUXyzuRr8ZVdtgzePjI6V0t9tZa1fd8nw+Y1Z9HEelxDRZSHYgdCJJfv/+PYg+SouZ8cqKBg7uorQwdUpJSs25cM5Ya/f7/Xq9xr1M0/T44BLJuRnOF0oYZO/oj85gMcwezQbO+WazOp2nLxstuHGAJ0opqmld1UqL0+kEYlf0FmdcCgEMqKoqYdncYgH+8urVKwieng5HynMbDMURRISRlGLfGqby+/MIyCyRfBJLwkZI2Qv67t07O04Y3QBgt1gs5niBpJcxBhnA8/lsx6nRFcdqjWSFEG4yc2Zly7oXPJNiP3ruGMWyH5gxZu00jllFsGQOWWn9cDggt8HTA0QIryKlDIwhny/TV4EJJWJE46FbtoSQ8+FojOFc4s2iwoWqzHk8oxJ/8eKOc+4m41NEbALogFwila4ePDMSs2maVF1RQt99eA9XiaSLkrx5gnPeNM3z8zP+KYTw8PCAgCKlrKr26urq3bt30ACxwYMhiDvdbDbjOEqe07mmafppZFSElJQQ8H5QpwWDJISA2v/+/t74LBx6c1OBl7ZcLlGMIxbIMnoLSPHpabteLxGjUV9778fxfHmZpYd12Tqz3W5TSpQlxljdtsjqh2FCNjtN02LRCCFQu2mlpdQ///y8XB5jjC9evFgul/1wCiFESlyZiYHBhBAoS85mTtjcA5aaO2+EZMGH4NxU5OAIISSm4/HIJfv06YDMf4pRL7rlcgl4NKV0d3f38PAwM693u92HDw/r9QJGLsu68jnTmDFiZJWQ+IiBDP3E8xIdbCfjISTvo1ICJoo2VXDO2JELyjgN0b3/8LBYLpFyg8K87tavX7++uBiQgSgtwA50zjEmkUQtl8tICbJcFFY4I8jt++EkhQZKSAjBhDcr2uWr1UoMOdWfwx9hlETCmFgu12gsKaUeHh4Q8QuTg5aOEaOUQt1FCFE3eTfVx48f0VmBH0C+hDk2RGop5WrRee+rqshOhgit7c2mxwud+y4YDotl6wYttBuoRMK2wXD/kmsVYwS5G+GjqmoANd1ihXWIulFjP41mAjHOOXd3dwm0wTk3DEPwCRcAWCCFAHEJWsY+rq+v67rG9iMzuRlgzfkeISEEEqOW0lqLPKU/n6fJri82SI28dYwRmtLY9zVNVduM46g4CJ1eMN21rTOjFIxz3g99358S47rO231E2QqIGPrmzRvn3PPz82rVbTab/X6P7G65XN7c3Ez99GP6nQt5gyUpnHFCyPPzM8LB+48fFovFciMASqB75I1ljGGWGscQL4Ix1rbt0247G95yuby6vmCM9f0JCKoxpm27ruvM5NCdmqZpvzs6F87ngdJ0fX3dNE1M/vHxkZXprhDCer2+u3v5+Pg4TRME9+G4GKdaa0IiKSuCGGOEMDR7pJQYDEopGWMeHh6GYWCEAoKLMX78+NF73yxaxti86J5w1nXdNPo62BQcl+K7r3/5z/7ZP/vtX/43f/zuHaXpF1+94U3zw+PHKQZGY6REKFWRKKns+57UJKV0Op0oSXzBGROCKwHoihAaCinY2pz9h8KqgKFj5S7q0pgHoKwQAvBThm4JGYaBEi6EQG8B+MtM0lksFjHmeXkcAywKOx9PyDCG0eHQKqWqqkokE2lpIoAzUMSGELAZBkdonPpxHLG8GDZhjPE+CiGUrMBXJ4R4v+u6NsbYNM16fZEjjdCybL/1QRaVj7znmtIsHzEDKMjMclOFkFgWqYUiS4r0nZV9X5i1wTLi+fIQk5xzVa2RgTVNM04T2qRSSms9zF0plULgXHrv27Y9nXrOEwIMo6nrOu0cGFsxpb7vKzXvu/vcT/bOoTGilLLO4YGEEAhhMcboQxDBFEWzGGPbNvNFTtNEMb9JPGVJCg4eJXz3NBjvaYxRCcEIoVIqJchApVLGmOvra8bYou0SGi9UIAed0Y1EsjY/nB1yFOjiUUoxxWatHaZRa+2C5zE+Pz9fXV0JIfb7PUQwcOWMUu99CtEV4UJZNiwppQhhtlCeMeebUrq8vJRaMcYg0kLKJKbWUhbZ+/P5PJqprlqtdd+PITrECc65C3YqIsJ4iZIr733wXusazst7D80ZiMGB1rE/7J0zc48RtR+ymesr1TQN+sxSSsY/SxCwwkiaQ5qU0hrPGKOMUZbatp2MeXx62qzXUnEpBdo8dV1zKRQTiWnvXUopECeYsM6juvbG2WDISCRXCTPMhdTpYt5M/SVcCJeEPhhsBnUCeC6YC0P987k84ARTaev1Gpk3jokUCoEwpYTsvFstQLSB9eIDT+cD/AOGfZ6eno7HY9/3UDaIhYQ70yKgtmaM4Syr35S4SwvcHEDaKppuCyAOIL/gTw9D31Q1rkSX9XFVVaVEfMy0Uxq51hJtc6UEZG0KbhiNcYwmlHD7/V5KwZgEgPvp00cX/C9+8YumqcEjKEWXJ4QwQquqwp6WGD1cpfc+BA832Pd93/c+BoplKEpZawXnQoiqqqqyBh3pOxB5OASwEiACTvO2kyzwmmUHOQcYREiG7+GF6loTwmThldMiC4sOBJZWo6rkZU8dvMeMBuK3eFm/U0AZgwahjwHuUQixWCwwtYSLxxusdDMDPeNgCI1t28aQkBpSzgjJApQwMDjYlBJNjNKI5GmGjHnpBSL5gEMDaQiPOhbd3lgEKOFMrLWQPZmTMMiBsUJoSilZ60OMdS1xbGUhSmstrbWn0xGJCG4Hu7CgD4NRwVD2gMFbzjg+7HAYelbWLcJiZ/Y6svy5o0Bppl7iMfIiCowMRgg+dw7mdhcKqhm/EEKG4EWeKEzOOaW1+GIzXvLu7ZtXwQ/V1eWnh3vnwt/7g39cNe1p8kqpZlEznmWvooyCCvAUvQ+cUCFkIIkm6mMYjVt0jeKsH88NVzfXr2pRPz8+fLj/+MNP93/zN9+/enH3j/7xP9w+ftrvt+PQO+fGsf/xxx8/3H8UQnEpAXFGxm5evP7mu39MGBsHk5LmhcE9DAOpRNNWKaXhdCRc1EWMGJ0YpRQCn7UWrVNI8RRgRQJ3gHXFwrPzRQxhHEdIhNOyoJKXJUtff/21Uqrvey74l4Rl6120Bvkx+j1jP8znCLgJDG/mOHyJvNDyhcVuzlnso5NS4L5C2c/unYGThLnSREqyZ4UQnFIp5fH5mfC8q4B+oVk8DAP6nc45yTj0o3AucMTGcZRaw+SsdeDFLJdLCM3r0kxFsSRllndH4ECagWaktSYERynGuifO81BXjAQai95Fa03TNNZOPk+gb9D+p5RLKSllMSXnnINibIyh2LP3Dk1EHPYZMKKJeO/BJ8BdA9+cUTZZZK/n5hMpYhe4kXk1DS8bGklRuUG6n0IUgs0eIBRBD3ylos0yP/Y5e3TO0QKXzKd4Tr1Ymb4C+TdkehSdrav02jMxf46zyG3QYJusBWQ2I0TwfkIIJXMXYe4QCyFcIHBPAFDwycAUkCcLyZxzbVOZKYtuxRjt2d/d3THBjscmfgyHw85ae3VzOQ191VbUwTBkCGEaDed86gc8E0x31nVtrKVFBRXbJq21p9Np2TWhiMliiwlOnFKK0M8jKYiPMUah2aJehinuTwdjXPRJtfXo03E0i82Cc9JVzbg7GmOIC1qyMaW6rvvDsVY6hUgYq+tWMxqSTyFSSmPIhxHlrhJSKRVSRAASSoJOgR4k5xzCUPf3H5jg3jtUXjhfMcbd9lA3WfcDr3v5BdoC0H9mxsGTVJU6Hs9v3rzBwayqKoW8hEprfd4+e6VQUxhjBj7EmCGM0+m02WyG4VMiYRhHa8LV1eVisbi/v58JcY+Pj1hpgKeKVgooe/CB42hAo5mTw/1jUGq4u7uDACWya0JzXQPrdUV6aI4+SNdFGXsCwIfDRSkNIY7jKAQrkGgKZZnN1eVN01Zv37599+7dx48fBcsrJZE/4IwAI8DX4XCYpumnn37C2aSJXC4v8QZx1/gxzMsjG5mmydlgjIEgA6XUusl7//z8zDntp3G5XBISj8ezGYZhMKgFgPXMpw89DyQYpii2wSHj2VZSzckS0JlQSksArDFGGz1msb+MPmPeX5oZjmAsipKn4XTgXc8Ne3S4EeWVUj4RDB0qpVwM1hjOOcLH6XwIIbiivIT1HnVdr1YrjNn9+POP+CcUOI44KWSImWq3XC7BrkDqQgjxLo/YA60+nE84GqHsh/Te9+cRlqOUqrUGowIuAugztAKqSh2Px6+++grNLVEk/mXZ/6GU8sEmRiMl/TQqpZTMA3O4pPmYhBCwdBQthNPpxLi6uLiA0yBcgNKLevbx/tMwDDGQaZqWq9WrV6+EEGDrA78+HA5VVa3XrYvBnU6o1qsmc+pDSISSqhJ127Zt+/j4yLnE/HcIYb8/ck69T0KQaZpub2+r6uCcydKRNNcvM9cKvwgg6fLycjgdh2FCtAVlAe/Re9/3PTA7IcT5fGaEjmJMKckk5pjVNh24FwhAyE5hh8hvJReXl6vj8Xh5eRmLwhjjxBiDiWpEGe89lugoWXEmE8v9sxizDjiuELMsOAvoKBCtn5+f+76/urpCGXIeBkCfyLcRZV6+fNl13fv37z99+gi/gZMCBNxa62LOgX0hy+PTKMtRm37RzYUnqesM/saUKyMhBOd5tnI+O0oppTQrxIIXL148Pj6aMpbBOcekAtLyue+7XC5/8YtfbLfbb7/99q/+6q+UUqvVCj4NF8Y51yLjFaDLAG1LiaJBhSx0uewQKE3ZPITLm7EO2GHXdVBHTGWSUpRV1XOu8uLFi5QoVMvnag7PBFw3XfbrUkrRR5nxTQgHNU1zOhwAueIHHh9PV1dJaTFN07t3D4uFbOrFNE1d18FoC6mFt8tuEdN+v//N989KEcYIWF8Af7qmdd5omZ9513W3t7fvf3rnvX/7+s3psOOcayUopav1um3bH979HGI8n8860xQ8JVklrO/7eUscqnvMEsUYj8fjeB6VrAizOOlXV1ff/vJXf/M3f3PY7Rljx+Px4uKi67rFYrFYLff7vTW2VlpxwRTpuo6ytNls0EL49OkjovPFxUWkZLXqYoz0lXTO/ckf/1nTVlLyt2/fPj4+nk4nBE0sqgV4AtN99eqVEHn6B/3yV69effz4/nw+Z3W+Ij0P0fDcvTBD0zRd1yqlOKGQZrq/fwAqDf+MaKh17YyNPrRdh+YcHq+1VkgJN5tS2h72hJC3b9/aFFyIjNPj+RRIYpJ16wUub7vfvb25rprGjGOkJKTorFONEGWPhQ1h2a2mcWiWSxuT1lo0TcsYh8P1PqbCh02FNpXbESRWlSIkSi2UkCmRaZqEqMoISQwBK+YD9phVdV23VUoppAgVvOC9VoJxRgj2+NW1rjjnnDIldFVHxhgXQqt0UTYMGGNQhxBCjLMzm8zHOE5T/MIFIPFlTKSUTuchxrjZbIQIlFJdyRDCcrWIMSIDKNEoyCyUwfAdRESlVOlpN4wxLoX1jjAitaKJzEglQqaZJmyjYowxSkMIIaREBGWSMeKcMdM0jaMQIoZQLRY+BJDCUkr9OBBCmGFSaMEVp0yLDIhopdqqttbW7WIYRxu9UlRK7r01wSefNroWgp7Px6fHbdM0SmnKmPe+rTU8sikKSiGS7XbPGKOUE8ogOad1plprqajgIThjkuBMqyqlFITkjJFIaWI0MUak956kJIRuG4XbT5RQmry3TPBFXsuWGGPeWcZI03bOuc3mMoTACO8PRxg9E5QRzhmjhCQSYvLWTowxITjndQhBVdpbxwSnMYUQfLCEEsYJp4wmUgmVAmWR9Yc+xuhGd5h2jLG60TMRph/Ozrm6ajEhyKhgQtAkQIDF4TwPPSGE0sQFBwgVoz+dzm3bNo2apmkcbQgV8ErnHCPUOzP0QKmo1poRGn0ggUgqgw9EUJpYIqQfBxyT43lHz4QQ0i7Wk7EYqbu42pyHU0y+W9bTRK3x6KkIoRgTUjXOOZcCtSZvCDQWgGkkREhdNwuhpLUToyymdNzvKaWMc4QEdI+NMZwKkgSjPEYyDOMwWK1bkUT0kQUSCOWCJ8K885IpljgJhHMphIK/IylxiG+c/cXFhQh0cpPgwkdrjMEsc4wYK44owwkhlHAh5OVFi2zY+twxgrUs1yu4kZgi45KGxAhrGxVj5IJSlrx3hBLKCWEJaAVJKQCSEEIKkWLFqCCJSq52u93ueb9cLgTjXbuIkRTQRHLCo4uJEG+DFMJTN9kxTjHGqLSQWjDGXPAhD40qxtjFxTXqAaUV51xJDid+PB6vL68Zy/MZbdtKqWZlczxzYwwnCptPjscj48Qc+xBCVeXzNVO8QbmVUjJGhZCEMMaYmdxpP0iuUqCH3WG57HQl+/NBCh0z3Y/4EAihiZKQYkgxpMRYnpFBftC2dV3XT09PnPMYXNMsvPch5Fl1vFOIjTZNHWPEIsTDbpf9mJLRRylkDMk56PwoxliM1rnP6q6TRfouaRCV0jPZc5omnwiGK/u+hwTb5eUlegPGGJ+IUJoLSYBoK01InJwNIVDOJmelVkwKnyIDtuv7mHxVK0IdoTHlmX6S8fRC+kPhGpzDb/noCImUZnkK610JW3mZrZTSTmZOo4VQQnBKwblWM340c3xEoaDGREP0hOV1Opyz9XplrVVKQpdWyialRBhljCXrGaUpYWxloiRSSkkKJKWUSIjMjJjeYFJJSghNJJCwWC4IIZwzISRKTVYUEoqkW1KVAqMw+qCESimmEEOInPNpGA+nI+fi6uqKJCokS9FLKVkijDGf8vYeIE2gwqAhFCOarFnSZ7/fd103TdiGLL130IGVUpKYlJBEJed8sM67UFWVGYxSqr36A9MTdn7/8Ls/vgm90ufQX6zeXPtQ748mUE5HU3NOk2RSBZ9CHCmlIXifEvFWKVXVlTF+mnq+qLwLMbGjjdth5GIh79o2XXPOnx4/OXH57/7kp7/8sz+lhPR9P4wmpaSqjVpunA8uEtWJzWaTFoub61varMcpuJAYo4ymFD0VdLHs6lqjJFB1UkJRSidrJjsmGlPCvp3Re0cpJTRnQUOPBXG87wddNW0lE7wuaO8xIsVHZkJTCs5xzmlKlVLOuRgZpfTNm7fGTCBQQEKHfiEozLmIPlysLxhjw7kHQockAS8O+A4tEwZoKTHG9vu9ta7rOppIrStWkNAQQorJuxhCiMECVgay6WOm5o1mmidYkWefh+lv/vqvf/nLX4LBjYKKMi5FSpEyKiTPmCYKRUCBSrHBpI/37yEvixP35s2bMs6sZlgEMTrGoJT03rdd673XihDCYyAkMSVrkwi0HUJINFFGOCe8UZLVIritZPRiSbWON2vx/ucfuqW/FMzaadUqIes/+Yu/ftz2X33zB7q9PPY2Mh0iaygxxqSUZXDCFyv7crgsTUQhZN/3iSbrbaKpaqqQ4jhMzoS6qoSS3rrPjCeSV+1Rayulx3HUEnw9w5nMtQRjQz8ppVSV9VV9dIwwQonUCvktiTSl5DFAxjN8UAnOpUiUkOBdisFHxhgsDToJlFIQ2IFJMcZ89NilGVOinFVVPU2TBXGLEDcMvAync84F+nOUKqVagfwnMCJQXmJNtFQq+BRIMCaLEgguGGWMOiZ4imEc0aJLcy+cMyaFoIlKrmKM6/XFOI5ae1Glm5ebfhxcHLWW4IU9Pn1yfWBRTf8/qv5s27Lkyg7ErLfdnfZ27h4tkEE0SSkpUmwepBd9Av9B0j/xN/imMaQaomqQRRbFIpIJgAAyGYjIiHC//el2Z309TLPtnvcBI+Du95zdmC1ba6655jx4SgWjEUMGNHAWhIsuUqIq8eMPP93c3TBOqIicc8r4NE3OWUZYSnQa5t22FUKGkKZpCtHXdRNjgnZq27Yx0BASETE4T2nSSqVUdXJjkpW1CTwG7RijTcfjOayFNOMUIxHNSgsdFX+aLtbNX331Vduujsdj3/eSUWZM01SC8MlZypiPAS7WPNuMyxhjpepxHOd5dpcLIA/0bDB9fz6fCWFt3Q1k1JKHEEzhuDk7C05ZcVuCLKPgPITo7EwIadsV55wxwZjwNoQQ7m7etHV/eHmllLZ1o4Tkms/WxBhY8DdXV6CXgmoXYuRSPD4/YUs2zibCpNBS6LqKjDHvXIpx6HutVEppt9lrrWPh8/rkhWRKVxigBufAOnI89rtdkwIXQvzj/9OXf/u3fy/E8+3tLbDp9XotJFt6z6XZKbz3UugYI0kskZQIkTo79xpnt/sdOn/emRCCM7ZrdmY2xpiqUjHGq922XXVCkMvldBmGu7dvV5vN/fv3wMVc4FWj53mWihPC0Z06nU6MsZubm3GYOZOTNVVV1U3nQwohrFfbEJ21drZWKeWzrA0XlIFFBABovemWLo4QslbRTvN6vV41q7EaKX0FYo7tdj732+1W69p7wG0R3HbEc4gXT9MEW3trXUofZ1K/+uqraZrg1gXEB8OXkkle9JQYy+cCIZpSGIoyrWteVFyBfyku+vNFKXUZjNb+fBoJIT//6mtCCBwQpNTOBUI8Y6RSwjknGCHRBxu11kkwKWVKNEYPFstut0Owurq6OhwOzrnj8VjX2scYvZdSUkKHfpqn913XDf1EKVWKNE1jA4HLCeeMMdrVDTAEohTAR0IIZSkm70NinnTrzfX1Hvwba60xU9M0KOwO51OMsZrnGGPbtrCsTyHYaWYij7CwkCTPezOqapjGaZ6rqqq0HseRRC85FYK3bdM11fF4nIYLp0lLrhQPJDDJnHHj5TLP/Xq9NtMlxsh4/OzzO621t25ylrLQdrpupNaSENJ2+nQ6peSrWnnv67blnM9mrCtNiJhHeX6xXUek1gt2D9gxhKy7hcTgzZufPzw8jFO/Xq/HMYBmfjkPnAvOaAgh+MgoXXWbYRhOp5fb2xszO1U3umntNAcfqqZNKVVcu2DX6403Pncvqmp/fW2Mmaytqsa7lCLnTDPGiGfDMIUicFdVLvqohN62GYjcXW0ppe9pMtOw7trT6QQhac45J/zc91KqwBJjrNLN+XTe76uUSF23KSVGCKGpONlgoIdUSpwuF1IMCebZS91aa4fJUWrb1WaappRoSlRKjTPXefN6eEa2r3jFeR68wMO0wffTyIv+xna3fn05GmN2m02tNQaaFqYtTG5TCkpV19fXIEc7b5bxHSEJoZ4SFkNctSul1OFwMPNkZ5IS2vy2qhrvIyGRca4ku727nqbpxx9/3K7WvZ2PL+e5quZhVErRmP7mN3+NOEAoWbrIkChhUk3WUSGBxv/sZ+/6vj8cXpIJTdMkkijPQyGo/tCpopQSwpqmG8ex788gvgCMFkIQGpTuDocDIZDfYSGkrluDB31/f59SwAS50phVZawQj0Aa8957F6fJEEK6riOUwMsqq+54r2Q1zpZLbVzoOnU+9+M4b7fbzbrjnPLiSEEp9cHySIVkVa0gtrPdbv/qr37GKY0xfnh46JoatAx8vjGGBc4Yc7N5/HCP6zkcXx4eHoQQkGu3cZRV/Ytf/OKnn35ad6thnCmlQkrnTXCOC/r0/HC922+++uL+/r6p1Dc///p3v/udtZZEP/bnyzgAN4/Jz/N0Oh+sm89DLyhbr9c3d7eMidm6vh9ToqtmdXCn58MzsgvrZucMIdHamRdRI2DcbVWfXk8xxuu7Wy7U1fWOMXY6ncbxAeW51oIQ4rwRQtzc3ly+PSktGKOz6StaGWsSQfjhMcb9/vpwOHCpEiEvLy8ppVppSpPznmnRdh29JLhVcS5/9atfvb6+LlzVEFxK2f/cOVdVTd02uq5QvyulEiXWei6Vc1YIwQhVWjFCp2mazn1KhKe4rtrLZDjnlqWBkh/nk9w1X/3jv9R1Y60XSRyeTlJVdhgJdRWThBDFxfF0blSzbjuTRkYTiT7P1tncvcyOT7RMXKbiUI/hjrZtKUeky+ZFPiu35mli2AKM04TsCuTTy+WilBKMO28A1xJCGKGEwbnyAnl+a+0wDLT4LEspEyH4leWLQOvQqo4xmnnGAyVFqw4ZG102WzGFw4kL/0P05733VSXm7GYjUB6klJzzIQvPIeYnMFLruvbeeYshFGaK4Q9jDBbSeHOUMe+zngYhFOAIwP7NZlNVlXUO/UBopyKdAqs3xYiDZuGOLUMBrBClU6Kgc3LOKYkAkpxz1s2JELTfF6oUeuCzyTYsGSaLEcd2VVXBZR3APDda7HRBswIsbq2NMSzDGikFtDRDikoJKaUxASyGaRoIIe2q8z6Pb0CUbR4NVhHn/Orq6v7DMxpxrIyc0GIOCfEpTAJSEkEhBBUCS0JrTUieFEPrMqVQVVVMfunnl4dJnXNeSlRQkBJDvps5TTRpXS3N/yW24jyLMVo7LzQi3LIx1hgjBINm7kI1ArBlrSWM9n0/zyyFOM9zglUrU9Zmyew8a0NEjLHSTdcKSilj0ChwUirOeSShbVtOGWavoFkhVB7dGoZLjJGmHL6xPsGCxGPhhTqKthVjDAxxMCirqoql/yzKgAYeiFJqvV5Pw0iLbWYq46v4LrJYUZXhDpY5U1EpxWie/kPzOZ8un7Dw+r7HAFFVfJnBOhlP/fX1NfYaGqdZc0aIpd1FPnGZ45y3bfvzn//86mqHzzHGZVwmBQQuykgIYRx7Y4zz2WmwqjeQl6KJ8LpRRdR4gX7GYbi5uUkp+7/jPMYCUEqnlChnujBxsDUopVN/eXp6yhWC4qWUyrrDtIx9AGpRSoGEIoSSUnImz+fzTz/9BAR/mkbGs4855+J0OkmpY9k7Shf/LiGYyANroMQCU0ZZ630QQixtc2ggIDxCsAx+g3j1mPREn8Z4E4sf7CItApzdOTeZGXOvXPGF/4u4EYvXB8jmyF0wyUUptf1FcFlXylorKI3RY8yCcEYTqauqKpaklBDBeUg6RhZCiiERAoolp5QGn4TIQ6lykQIIQTLmvac8i6uGEBIh8IxVSoVYXM6K2EWGBWkGnvADjgO8R3CbrJiUhkiyi21MS0yOxerQGMO5qOvaeoexHl+cuCj9SNkD7gYSBrLbGCM6GYsGSIZsSrSRUuLXEUiZyB4szvlaV6lM/mLHgQuWUooxee9jgKB2YpxaY7HRUvZczalqLEoC3jtsOkJIXewBEUtp4UTgrimlCOmYzOq67vn5+TQ+MBaYZFXXNHq1urnp2nX0KRgfXBSSMEYoI0rzEFykH0+iJTgoIed55jzTzBcqDf6ldZSG+NnnX0tBfvfbv2k3+5ur66qqXl+PIaamaS7j5Gyo2y5n7dFpVVnrQ4iUMJCVtJaERkKSlHlcXXIRQuz7fphGJBsYn/LeE5K6rrPOLiGOlwFka210Mx41tIDASEIwAdEMxy6sY7TWs/dFrIAjni+K5HjCUsrgAmBc5Amcc1BUQJWNMeLEQRaeUlqcWBYAGuwYrAdXlENxluFpI+1xznGZbbKwVQFf4oAWQrx59y4X/4Tk/VKG2wghglPG2H6/B6kZDwfh5fbmzXZjGWMQyUEQwPs1RQ+NFY/QfKCEqKWK0aJcjIngiPfeGWNSAshOaEyExLarCOdVLQW/VJLZ+bRqOKPUzpdp7L9/fD6e+v/x3XsX5Tf/6NeVYH2yKSQeuUuuPAaGbBNJAsSy8pudzTzPQuTpCv+JdrYtmgaxeOVh3WLIw1obs7dwIiS44JNPjEZs5FAEUrnIWhy0mPUh5LLisIrqDuHLFW0BHD2CC1qECEiZSV8oC24RkQi5oijkeo/Ig28UxYqAc45ZFnQslFLeh77vU4rgjqH3wAoBCjeydFi991Jl1Y7ljgjJtYCQ0ju3sKhwgA7DRSlljKNMrLrNH/7wh3fv3l1dXelv9eF0JCQuRO/cC/S0qpRkkgvmXEbopJIsMTNnkatP1TPGcby5uXl9Pc7zHBOd53m/v0LKR8rAkw/WW6e1xI0fTyfECu+9n33btpiTU0odj2dUkpj+eX55ITTCMMAYg6hojJEyR2lcD5IlMEWWrb2w21zRBGCMIcGOMaJbIIRQQgNEc85/+l5AIGrbFlZI2DWLXA+idExZdX2xc/feQ6gKWhmhSKksnYZYhLxDCI+Pr9bam+s73AveprM2hHA+kZsbDjqqda5utC3mlqEYYGABE0LW67UQD23bjuPYtZu7u7t5nt+/f0RHqiBoecG4IqYXY3x5OQ/DsN9dSykTCYmk+/v7d+/eVVWFYdBUFDZijPBAw11orfv+vNlsmOAYgRqGM2QWUmEsIiQuOr/YWQCkxnHkXAohYCMGfQPGGGWJJopqDq9bCIFuN4L54XAAGYILqottu3MGeqnIsvAY8R6llMj0SHGmAZiCVXF7e4tVijwNcr3W+tfX167rttvt6+sr+C4LGXw5klJK2KFQXXPO4QqRdCGnWkoAlM8Q0cZTVUodj/0PP/yw3nT4cERsIURKYYGqtdZKc5IoKqNxnPESsQEppU1TRUoQf7z3w+AZJ1zwqlLGmIqrcRz7IRJKYkqJ8Men++12O/S99369XuOEOp1O6/V6msbNZrMw5WNxUHh8fOSc39zcII0B7s8Y40SCsYu2OiFEMK6UCiYaYxqpcReTmeu6NnOmmRtjGBMYp0PLBGk5ZiVjjNAdijEeDod2tYEaidb65uZGCDH2fUY8nUOyZJzFbAcvJrGcy7ZtKeUgdRLoxlCxwAWUvoARORV361CmyvA5wzDt91vv/WazeXl9QnTCG2c8sygulwumS9G0AGGOEJIIBRHYFUvhRLPvy8K6bes6pFTXNdivXArifEqJcQKeMmIy7ksJWVLHzFQghLx9+/bh4QErrZzvzMcIYGERPiaEPD8/393dIRt/fnzElmGMaV0RQubZliZ0lo5ZEma4ZOEwQpxvmoZzaowJzg3D0DQNJmUJIUoJ8MRJ4Yq6MsiIk+t0GoUQ667DrUkpoT6MYS/sqbnYnl/6PNCDqwJJ/HQ6Xc4DVA6QoeEKx3GkNHVd8/Lygjj84cMHXPOHxwdB86FPC10aoFMgKYaotfbeSinxBi+XQQjBi5QoQvflItDaQVDCqq6qKiNOlB6P5/1+7z+Zv0xF+s8YwzhViq/Xa0a51vXlcvHeg+375z8/4xzBk1dKpUhD8st0RUqprmvJBSWZ/QA8oe/7zWYDMjul9On5gXK5lCrgnv/qV7/68ccfP3z4CWUL0BUIZDnnDocDCtLg0+dvb9+/f2+tVUW1L6V0ufTYjMZ5BGGglLWufDHxTmVMs+/7L7744uHhYZ7nRe2HcVIpDZEWhFDIY6LyRWKDkYUl+9VaH49HY8x2u00+lAMOr8mfz2drrdL65uYGjaKYEs6X4/EIwZ+rqyvUAqno3eE1IXQDrsRk0u3t7Xa7/fHHH4dhuFwu2+0WkjUpJbjWG2NeXo5VxcPDAwBxDqCSMoC5lDKlqA8Eu+bNmzcPDw+Hw+H48rqQpRhjTdMCEEDHDtICWNhU8JKxIEWUzjktFX4XN8KEzFJpJL28vHgfpVaCq599/XNdV+/vP0zTRKhAyda2rU0jeqJa6tVqleYsO+lI3BEiLpcLSqYYI6VZqBFrFzsf3x1jTn999EvgRrisqqrr1ni+5/OZUspLhaNUtptkjIXoUC+h3sPUZwjB+7haMV7a3aa04jns0QMRxYUPOw2CDIwxSogtEkWxzBahoAepMBVl7gX7gBIiYMfz+Xw4nHa7HfZJSimmj7ZLIbgFzoO0WUrJmdxZqmvtnINeHmaXYoyEROedFHUIgdLknG/q+vr6GhAnTlA8ir7v/+Zv/kYp9Rd/8ReI11LKFH3BtpQxC8geSWGJOheMMVW3aqua0Bhc0lpHLgiNwUfQIXG/cFCEfjEUXlCgppRejy+qqBOSMrqemQs5yjv6iQNVOTaSlCrGrDGPaUEAc4wpqMakPGoawRlfpoBJ0bVJKT0/vyYSQL0kJMIEr7SqOuTHmPOtdVZ9opSO49i1a0opcEAYGCKVvFxOwzAkknVg5nne7jd1XTsbCCGJsBDyPMsCcapKcylSCkimz/0Fn7bdbnHjooyWkzJ5KrKl0mUYBs5lCMEmuyA+hBAuAX55723TrJWQUsqIteEy0INCEWEOJ2LB3PPBME1mtVpRSp6fn+1spJRt27YxDsPgQh4IcsELRkOMovAeFVRiQ0CGYYwhhC0AcfFEbhCXOechAcfhS4oDECSVURpShIlTIGBB4mCgLKWUOKfYO3jLVVURwggh3uW6EavrcrlgnhSb7vX1FcsJk1xKqeHSA6LFnFQtpTHmcDho+HjEiPIeLx1n4VLF7ff7lBKAMyGEcwGLwdms0iM5p2XmvWnaXHZyBXlTpfU8TpgHvFwuMca27ZB5dF0XkudSEEKGKdtJs8DyFJvPAB//RHAT3wixPyEZ+yi6yhc0HylyVTWEMGMmY8xqtWGMkUSapuEColf06ekxxsjuYJcnXl9fP/vsCw7nd/rR4gkZqqq0UqrtOjtnwzoUFfNsf/e7v9lut19++SXyJ1SqVVVh3vDt27dorkBcDHztVARAUrHwQtsJtS7CLAoDaOjDCpmVKVEo4WDgaxERLgV5LYSw1jBCEonex7ZpAuQpBNdK00S8dRR4rguE8ISGE09osJFEgXuhVAYmRVnywTKeWc/FuT7SSAmlC7yy9JlEGQJIeWwwLmsV14kLXhwYFgyuqtsYeSLBB1R9Ep+JAgAPAfsXuY5gsjwWtpBeU7H2KvsrpZRgOUU5U0opoT7FjFxRscSPcw78UtTMqGNTEbySUnIphMAMClsCi3c2kRxwcETiz1PRyS0R3mutUaCmItQQQpayWZD3VPhcOotp5NX4ePxw/PD9N2+7f/V/+b8G0/cu/fDhSduGrW8boTmjhDNQABhjouLBMymlLbLsWfBB8OWxIwjLMtQfqeKcDMYdP7xudrd2No6o6OjVm88nY1MknV4jwDIqnHNNrYQQ3hOtJCHMeegUs9mMnGeS2uUyKCGrqoZYTX4+IeC4jDHM88w4QUOFc6mUcs5778fJbNZtJMQ6B/MjwljwXmottZ6maTJmhGEvpfgPktsbmS/viwgJgiGgqJQINp1SOUalon6eSoePFp/6jIx8lCZLGA9v2zYE74vDAf9EgSGWweGUkq6rUPwnBeOl/5HQMYIdObrpGTopIKmQjApNbGZzsyK94lOUQnddlVddljtIqWj4iOJaiRiOvYaF7b3ngkopU2SzyRLtaL6mlISQKRGWCBcspaC1Ohye1zfGTP00jE2ltJSMEJ6a7/vhdDg+fbhPrP79f/vrv/w//vNNvZ5NjIwQpuu6TimO42iKcwBW/lyM43lRXmaMEUqW8C643Gw2yCQppSmmVPyWYVZOCIkZkhb4zJRSitnOcakxfFFaW9BbvG76ie3Hgs4Dl0Qixz/xRhNCIGf23iOwpNJ/xQEHvCn6YK1lhMaYSEyCcVHVxpiQPOdcKgVXWBwZIQTvkdFpWtTeF6B8eSblP/iyIPH6WO43ZzsQYwwrd7fUvavVJqV0vlxECISQu7s7HD0vLy8QHAAvDJ8cSGBMhZC0kD74lGhXd2YyWinrDKqmtm3Xm264jEIILsjp1EPU+/r6+uX1CCy+rmsX/DiOV1d7znmMoqr4PM/ex6aFhSOXWpnzmXJWN93h9XQeh/V6+8tf/vLh4cFaO81zgDdgsChKcYZeLhc0xUoMz94zsVhrxk/UUSBcC0hxwZeXroO1VlWakCgl/1SXrGSDE1AtlEWoQlNK/TigpD8ej5XSoLZgDBlwxjRNp9MpUQLgbKk+lg4xLyzsplGXS79Z75b54q7rfAiUsc+/XN3e3YEAFGN8fTk6b+q6BvKCzwxF7xJtZiC5dV33fSYQjOOIv4IjRSjDRrBlA8T58vJy6U8QDMG1oQaRUl4uF2OmrlvjxCEx4etwAqaUzud+mEZKcx5+e3NzHvrX157zbAeNb8Ryvbu7QxeEUtr3PaMc2Ot2u43JU0pjikiSQUtC6ovnVinlPMydrjOjpdG4/WEYQvCEZDGKWGTxsZWcc4SgA2dOpwFc4K7rPnz4gG4ENvL19TWqb2utUnmFIAgD9QMtwGcVzghQBgGtaht8HTIH7Dus0mEYb26usSQ23Wq73QJrGMdxtWo5J6fz1LRg+mos5tPpRGna7/exmIGnGIyZF+QOKuR9P2KRKyVcDCj3Ukrj2G82O8bYZrM5nU7H41EIcXV1tV6vYdj129/+9nK5DOdM/OKcPz4+XV9fSSlfT0ecQSEEvBogfchM8PkQPUAsJWW0n5RGJnDzTnbzPAuZGVqstPAB3GutN5udcw4NXSFYZtB7P45j1WaqAefcGLva5GT+5eUIYRDkP+fzGSIzTVWHFKuqEoKEEChlMYaU/Ha7PZ97pHCxdPcpSVVV1VWLHpUsAp5t2/7tH/+42WzW6/W57zG5/+HDBxhFXF1dYZEgw0wptc3KGON9PBz61apar9eEkN1uh+qPMWKM8ZwnH7D7lKogWDpbo4oqCys91BCCljyxJEsvCign5/zh4TSOx+22pYmQov39+pphNV/0KmOM02QYY6Gc+LKMelxdXZ3PPcBZY6Z2tTJTthrGlRhjZmuRhJTQxFMKSglahK2WMzelQAiv63qKEfQpZFDTNM0zZUxgJvXNZ+/atv3zn/+MSu3p8WW73d7d3b2+vp7P56brsFoQHgkhP/10urmpF+QajaIl0YL4Awrkvp9jfNhut/v9XghxOBzGsd9sNq+vr5fLxdpwuVzevrvr+x6g/LKeCxPIY0kscFBpADPU79M0kRCJYHgU33///WrVfvbZZ7RIFC4pOooXQE9NU30ar3wxq8wZVwohBJIoZRQtpSWFsBa0oYg3orWuqzbS8PDwUNc1ptNITLDzBR7y9PTEyw+AVDT/XAiueJlcXV1VVfWb3/zm5eWlrvViZlbX9TROQjIci8fjWSsdwnkeR7Ew060FVvPu3VtblIgul5P3WfaTFOVx9PYQA7uu+4//8T/mIZ66hWqEKGSvaZrMOCFFSSnBoAvjud5/VDRGtw+APqV0s93i84dhEEJUVY2HgPzns88+i95fLhdKydPT08JTBBm86zocVcaYx8dH4BWU0pubm77vUW1Za9GWePv27eFwwP5CCamyjKFYrapxnGU5N3FE2pQ4ZcfxWCu9WrV1o3EXn3/+OSGkP51xJb5wwoBewswJ5TPnfLLmdDoBJrXWKp6H7Tjnjnmc0UB329X64eHh/tC/udv87f/487/5N//mX//rf/1//3/+PzjnhLD/8r/9t2EYA2VK1wh0jGe7VF7xzXo9zcbOJlWJC+69zyVQqUzo0iRZVnAJHzl8c8lDiCFFkCUppSEkHIRLF51SGrzHUpitCcGF4KZxjMW/FQcAFlmG/+cZSQYeQVVVhNLL5QJZTFFUrpwNMVoAB/IfKn4gdidCFJL+lKRS0I368ccfr66uttttXdfGTNZa5PSc8/V6TSm9XC5DPyWSXZWbpkEWNc8zl/Szzz7DhuyaVkrpfYBEGufU+xCjrypFaeKcU+9SDMZkn0AhZV1VCJfhE8HT77//HikCCrZEwvnig/MIoJB5RYOUUpoyNy0b0XhvjWWiyFRBKT/GmAoUtcQmqhQ6QsgbMPHkXN5OgnGh8/UsfYVutQrRkcQIpeM0EUKqqkmOpBCNmUjxnOWcSy4YFyklQmXTVN57ZMyhkAtSab8jXhNClKpgj8s5Z4x47xONzjlo6yzsDMF4jDGSXGb7EISUPgbJWdXUMUZKWLKWUjrPIzY/SQwjaev12szOuwUlyfg79I8yPMR5jB7ozEKggOqunY0rssJCiLbNrlYIgmjpN021QIpt24Jr048DCgnwSkhM3vuUK64gBKsqtcAH+N1pmuB7iaIixrjb7aZpSJQYYyghOOG01nXbLPhdU9XeW1Q1rOxTIQTWKmNMCIVGXCpSyyDIXC6XvE5olFJSWhjZhTAFsl7XtKgkjTE0sQXqXcpOWoxclvQXMdraDC/SMuXw/Pw8zhN8A1BFQJ4YlcP9+w8kU/nYNE28JHn4xq7r0ieivVprqRSDvTUhSCuXdVVVFVz7YiDYa84bZGBVVTkfwc+Fk0xuvXCBEwJowvPzK5Sqnp6enPcxRtg34/3GIqy5QGAkQjxdEUI8y7ZpJCeWCcdhSmSBNlKiYOU3TTPP41LYe5872NM0cU7RKSW5qT7hu3RVYX7i5fUJSdKSEGPlzNaU6B0Jo1WVT2KcfAgURXrV0zL2uxRFPmYfYVYYbTgsZaGHGJMTRHxOCAGRZL1eYy8vUDX4OH/+859Ba0I5EYKTko/TpLVu63qejA+BMUEFtiTNrC7KQgyRRkp5sEFWkkkxhzmGRGneNbhyY6dpzomOlHKeZkppIinGuMD9gn10L0Fc6vszFlI53RKUqbGk+cc5GHU8HvHPgFaHCCzEQ5BESrFgK0j4YoyE0PV63bYtqpq8GqOHKKooZKtU5iGUEoB0vfc+xk/d4TIlvCj/LDhvjFFLHURIiTjnbIo05cEXAO4h/ANoMqXkvPWzb7oOewQBedmz2Fyq2KbhCV8uF0JoXddgXuMydJH/ZowRkturfT9gi9H45mdfXP3f/tVfaX95eP/j+MP7/nKiTd80ayll9DFELxWlXA3TKLmuqhrwDRhGOHeC84kScC0R9Lz36BMo3UgpHx/udb2qqqru/DiOUldz4Em0Qggt5TAMg7W1ZoHy6K0QSmtJiYADHGMkkUApSSkIIeq6NsYxkvugqQgQY6mgqGuaRkgGrgFinbWuqqquU1WV1ZNT8WNEU8oXMzdUGgvrmebHGxcKCR54KIIwKSW8SuQ/uPEFIAaYiCeG7YYAiwyKMcY5u7q6Km82E6LJP2xv41cQM733WqquaRGCkMItwZaUFn7dNEuZp5RCrxHpSq72y+gMYRkOwxEptYJeB5eCMIoJKnzXQsHGe8elJhKCT9bO05xFnKWUSolhGAiNlDDKGaUpkTDNQ9vWhA5a1tVuwxIz82wnOw4To3XX8l980z4f+9/+9R+vr3/26798Z82FU2YwjBU8kDs0nNB1wPOx1tICWKTiZMUYo5TZwrVPxcGYFIvwJW7ouk4pOeedc+iLkWJRuOxE+kkDDHEbzwqlGvINUlTp8e9JGciIRenSWzd6sxx8IQQSExP8U0jaGBN91qwfhvHDhw/v3r0rfOcQsvkzSjHhvZ+GWXKJgINZCuQzj4+PiwfOgpBSmoX1cJ1I9lLh7KBgzh0RQhIhOEnHYaacVVX+qy+++CqE8MMPP0ipb27uQgjH4+tPP/3knIuRcE6FTM7yEBIhkUmSBOeU1FUzz3MiMYU49gNhVGpBYrq7u3l4eHj//uFXv/pHwzQWrKrnUkj50ZMA9byUuTFPCLHeQXCJFLf3qqpiSsfjkRBiPun5xRgPh8M4jp999hn67jhesaGw8VMhJeDhgAYL8BFMqGEYUImIMlKGV2am2Za1wYthFDI9bMPj8YjJGFLmO/E2MYgjGKeUAr1FVoCoklI6nI6I25ikxIBmyb1z+rparSjtz+czqMSr1QpIJfDBl5cXBH/gy97FiUypmOPJYiqIM/R0OuE4VrKCpiQWNrjAdaPnyQD8AuKJm1VFwDQLMJaWZwihaSrO1x8+DNgm3nt87E11TQgBgo/B0xh9SmSzWWutVymRPdFaPz4+brfb6+trMFiBDaEPgWsbh2zOZuyESXY8588++yylFFJarVYppZ9+ei+l2G+3WA9VrWDtKLjyfsSuwbQGvDQA+sMoCGfuMAycU8QZpBm73Q5pJ6xfsaKcc8bMdd1iXhPgFLA8sBkAiKBgAS6jlKrrenbWFxdrZGjYksfjydo81QSE+uXlBUcVvEB+/vOvnh4e8MkLCCAEOx5PmFEuCWH2UUf40lqjcXK5DPv9ljHWv75komII+/0eGBYpZuBv3rwBqfb9+/ePj4+Y8b27vsEOqqpKKRFC6PtzXetPNaMopR8+POx2SXYrgD7IGUB/NsYIrYQQXdeRkHXSL6dzCOHq5rqqKkj3MsaFUEuFi50+TdPz83PbttizUsrn52fCWdU2+/1+u1qvVquXl5fVajU7yxnH/SqlGCEoJ7F9QgiRJITN1aqFch06FqiShmFQsoIRbgjBTvbq6oozbq3FQCRcr1IIX3zxRdbOFmK1Wn3zzTfjON7f34/jqCu5cDmxHtbrNc4vcImwCKuqIjRSlqx1wE9YIghcV1c369s7xthkss+QMSaPtuHIiDF6j9IV2TLuhRACuTnKGKi1GDjGXy0dMoy2z9auVrmlgQVDCFmv12DEj+MoJe+6brNagRn6008/IX/Y7Xbn8xm99mEYJJMhhHXXuZhvGRHPmIkxhj7KbrNB8YKqDRkpehuz9ff395999plSqr+MMRBIfgH7hsHMkh2BcLbbjapIioGRU9VKlMH0EmRiU3ecZRcHpdTV1RUpIq5ln5K6FkBXEQfAV0X3nRWTGGBWoVCROGfzPH//7Z9RSsgCXnHO1+tOSvn6+uqcu7q6QhGBi8napJm7loebp2nqurVzBu8FGWMiybsQQqiqhvMI8SKYLkLfeWEfGmPM7KggSGtZGWIG5YJzXkD/tAxjee+nYVBKEUpTCilRmO789NNPOHGur/dY5Hjy8zzHMUqhtaqHfk4p7Xa7UMwhUko+BEII2Gx4+1rL49FbSyh1t9c3QggucsZSSUV0fHl5CdY9v1xWK/XZZ59VdRtCSCFSSlCjkRDrph7HEeDV/Ilz6d3d3f3T4+l0gg0vkGJES1s0bWT2wjFCsKapmFD39/d/8bOfcc6/++47StN2uz2dTlLK29tbFE04czHFgsMLpw/Od2hvIkUERYBzjtGczWZze3ubYeW8r9HGGxljUqumaYZhwAlCQvzpp5+urq6apml0NV7626vrrm5wmi9tOSllSmHRJ0mMv56OjDHMb4HnzhgjIeJ44pwbZ2Ohdp3P5+vraztPhLCubb75xa+++Pyrtqu7rvMuTtYM46jqJoQwTci7uKqV9544wqQUQthpYg2L6LKg5pFSUprVoJYUDQmEtdbaGTtBSmlcFpoIPjcPY/xodeqKVybaLIfDYb1dMSaX4gQFDyGEkWw10zQhlEQ/xlhXlXVuGEc0EnEsTaMhxYtzqaNk5pzGpfoyxqRPDdmllFJCkpJzXmINhBGMtRY9Ouw9QolWWhUnB0orhJvdfhNj9J4opSBxgJT0+voKZDcpRdM0KcWUUl1X3iV03hZybj8MUgjEykRI3/dv3rwRRYSRi0zDxNAKHuD19TVjOXmdjYkxap3n+kOKGW1kLKUA04yYEugt+FI0uklKwJiMMc6Zvj+j62WmbBErisNhLrooFdlfItutLi8F9hmmWCoJIVKIBDBQiogOeeVQtpRSMcYQEi3+e0pVcP/AihJCCJWHkvq+p5Q3TaNlhmVDCM74EEIkOeW9XC5o5F4ux6XTAJIRPFtwO5eh55wzQjmXIcyRpBACJtrmeX45vKIxIKVEcYhlucz4y6JISykFKRhrDCFeKSUEY4w5Z5eyEFvUOVe3lZRymqbgfEqJM+a9X9htJT5H5MopJdiVfP7559hrTHDJ1VIYQHMVijRzcXct2K6PwQHVCh/n+p0QYrXSOHiQjC4dIMlzAxkqtPlSyoglTkSAdAgCIQTJOTquyMVBwjXGCyE2m40og6XH45kxtuo2aNvgaEfx4MJHp3tVTGnHcUwhSinR8kHtipCHlizy8lXXWWsxpdi2LS2sTDNnZRLvY0oR6xNpNBUw262smymlbVszxnzISGVVVT5YxLp5no2zccpjg2A6YAnFlAghbbNarVboHKIXugTGtm2Dy95xgDiVUnWd8SbvPU5lzjlo195nhinCd9d1xjiM1yEpAX/cmGm1Wu/3O+dcCDHG+PDwdDweY0qn0wlzAF3X4fADj2mBukiZ9WaM2dn81V/91evrK6UUbVW0AcDjxlJZ+l7L2qaUdV0HjFgp9fr66n3EmUcIFULNkw3RMcaC80v7Ad8YypQ3yrmrqyutNWbfGGNMVPNsdV21bRd9oEJSSn2MhHLngw+OEMJostEH66SUjHJKuI+EFqodISSSREhINHLORcoJGbYeYlSIkRTU23sPhiildL1eN01zOZ8vl9OC8RXEhCwDYliHzrkYs6gOPn/BQ7ngoBYKIV0xDOFFiofSDP9ja4MsE4Jr2xamaggsWACIId77GJNSqhESeb8vaqooj9u2RRmMrTGOEw7ZmKXQuC9TpXVdC5JSym7vlFLOsi/ZAoni1TPGCKELHImghLZKOfUoY5wxVtdVKHQz9wkVlxbfAkSMaZpU0ygePJX7qzv700+B83/xL/55e/XGs+rHh5fAOHRUCGFcVO1mwz1dcj5UsKgwKcv867rWgH2F4F3XnXrz8vha6Wa9WdVVNU0TEZVzzoeQUow0cZKqetVAW1AGxiTnUgrtfaA0aq0TCSkRUMxCEQFIIVnrCfGqyky0EAJOdl0s3YH4ExrHcS4gSJZSwWmIxQYAURQS4n6/p8WJTgjBBIc+ICusz+VXUnFYxTImhFwuF62zrzICLN4jGhtgOW23W6xhxAF43MUYGaML6PBpt4kU3eQFAKVFGSmVMXNfhs1RqaJ/ltMMDls2snS5AKaXDVJBawmVCViWuH48VSa4sRYdEdymtXa325GijxQDcW621qEhx9hHmztCSIiOMvH6+rrZdrqu6lpRahJVl378++++vf/w1J8H51JddYTKn/3FP/nL1e48zm23HacYA2eCkzwHGheQVAiB+TYk+q44B4YA++tQoN6EFFQp5Yz33pdtlQghONoA4y4Zl1AypcR41uZe3nIiuWOEDQWYAHCbKUojsgh/LRyrHK+owLKRtUjF5W+eZ8G49z4VT0K8l3melZAAOhljb9++pUVMA8tpmiZrQ9XUODfxQKqqYiwvQlSzwNrwIpZNijRVKElp5trgkRKSNY6std9//33XdW/evLHWUgpIkcUYu66jlEmpgGVcXV0j+MA3709/+tP5fP7DH35/Po8khchSSqlpa8WZNVZI/vr4st6urDVU0BCCN5YJLpTQWl+Ha/qJIJ7SmYcB4azgw0KSQkqM/BNshgUz5VLUQiIDjMs0JGcu+E+mvzVwPVZ4/avVijHBGGEsH1WMsZSoEGq/v37//j2ewHq9NsaAVRoK3xbiCal0l2lRJllKACwALFHs5efnZ/xfLI/dbkdiwjn75s2b5+dnxHCt9Xq9nq1BMYmqDTaDpDSfFi7her0ex3GerPcenWwAGc/Pz0v5DUgIIBG+IpVhnaqqnp6eFhnfL774YkEG9/s9PmoYBsoS+GioC5Bd00I9A2UV+Uko+kIYahZlDho5nrXueD4BFieEqEr7GNp2u9ttACbiAF2yTaDtiHI4DY/HY17M3hDCMBcPZKFMTB8JiXWj15vOGNOt6v3uGjijz3M/cTmwABzgbDXGTFPsOqqy9uiMxvN63SEfAL6Df393d4cbxx5/fn7GuYNBAQjIAgwFcWSJveh9wqkbJ85ms0FdthTvlFKIoX333TP2MlqY+CjK5e3tLU4EAJdYjUhLIKUJfjfKEO8zLEUIkVKBIuqc2++3CEdVVT0/P+92u65rkBeBQ6OUAk/ieDzi6xCFUGKABfX4+DiOAwQVheBV1SzE+Rhj1zUA1jGBfXV1Za2Fi9rDwwOTAsdudB5fxykbhiE7BtOsXiJ4nqrJ5TbnqIJzx46T3W638m458hhjCzlMM50iBSuFEOKMwSsDcQQVNx77PGdnKWzV4/GcUsLQegiBpoRi7Xzq6SdzTlJKO88wQsRtaq1/+P57LeW7d+8Oh8PylhFzUB8Bvri5uXGFo+2cMzY7CSMzQcqxcGIOp+P5fA5lPpJzHqxNlAohbm9vcV+uUGJR/zrnVqvMvwbzd5qm0+VcVhrjXHoftdagul9dXeEIsJ/YYwICPhwOhERC+PPzc66fGbu6usJU1mqzScUWr21bO1nENMUFbpCQeHt7fTqdQCkbx8Bp3noodeHoiB4PY8zZ8N2f/36/37979w7QhNb65eVlHEelFJhtKSVA54h4eML0kyl594lOoJIVFsZ+v7+7uxvHcemLbLfb4/GolPrmm2/+/Oc/f/PNNyG63W6HFOiLL75IPnd5gcOiQKiq6uV4gN7sptv2IdoQEUaWzMTaeZ4j5xwIuF1cQIPHhfkyRubcGXsZR1sIXhXDjJRSSfgZpdS7rKRKCdeaIYBjwRNCtKq996qSHIoWIUYSXLBSShs91jmoY/gidA31dnt//6gq1XVdjAT5DPiaeEQA35cFD9FFIYQQHDXO8fWVZs8Dzzh1zknFpeQIyHXToUEiuYBQGxc0WCcoSyktUP7PfvYzdEGsmdqmAtmcMSYZ53UN4AjM4qUhBCwR0nBVVT0+Ph4OB845ZNakkFgwIYTD4QCq3Ol0+vLrn8/j+N133wHQozStVqvVanU6nYwx5/OZc/7tt98mRquqmqZJamW9QxWwOBvhY6HsAVjyaruTZcIbMdwbq7Vu25bJnNtguB8ieMYY62drydPTy3brsGyQy5VsNmA0+XQ6cZ5Hi5RSPhHgaQuFUQiBsS3Ukjg6CaVoFxnnd7sdI/Tl+ZFzxrjgWodEXw6nf//v//3v//sfmlXHmJBKNM3V6XL23ieTQgiJpbrrmqaZY3wajk3XMsYEliml1PuM2+KAx54UxdMTR0VKCbs6F/xwCaNZNDCVMU98YNNWXNBhHEMIdVUhD0CywjkHc0SpSiqFpBbrfhhnrDzU0nhM6OviE1hROMIRgjwJpKQQgl+0XwtVHigYDgzOeQgOlQ+wbFCZ8HqAkSGxxu3UdR1jFhiqqup0PMFzFgc2eg7oQiDXqZqaJK6UQrMOXY4Y41CUHIdxXMieAYbUyUspSUy4KoidSSkhzY4jMyWKq+Wcj/NgrZ1HgxuEgHWIEUpSC5RJiyCGUmIce1wtKgogfQtk8ylWlRMpSrmg5Uh23nss0FDGjb3350sPmXNw7GIeDMnC8DE7U1HvHZikKWXtvxgjBqutnVOSoMnvdru2XUkpU8BA4seBYia4cX4ydn+1r3UFgZ5YbJ3xb6RWW3WllTgej4EAApC6qP2OzhrjOOd128zziFcJjZcYoy59wpyeal2FwD+ZREaiHELgXBJCjJlwfiCTxhzEarPG+A+SSCUkIppSKpIgFQ8+lI2tANxcLpevv/4aQyvjPOHZolLCIQrkPfftLxcwT1FJeu+dNVgqk3XzbAlhdZ2LVdDzaVGTYIzRRBbdm8jIUtJkfhny1BApF5hfW5gyS6eaMYb5BkAYVTFSYIwpVSmlBFcoGwCRCyHevHnTnM+zNQuuQQh5eXl5fX65urpC+qWUmuYhFVmAGKOqNOf8fD4j9dHZiDykjK1QKDagYt9u10KIYcjSilJkjdFpmqy1zhlCiHVZWRLpMrTJcltFChLTdrvdbDanE1Q12lDaeoSQebI4k0SR3DLGTMMcY0TnDFndwv7wxecar5gV4YuFwDLPc123lM6MMZKYlBLUiUREVVUhOOd8SkQIUde1UpW1NmZQOKDZBi05VBQLKoonjJBCUqKUwjZ6mqY8ElXMZ/Em59kg+GhdjacDngwiLYZ/U5Gi40X/QSk1TcHZMLnx3bt3gLSwIGlpsyM23t3dUUoRk5umSYkyLqbZkMS11jFRlt3HEhOYDbeJUKVEkpyESBitdBWTL0VpBt1W69ZaC52NJXClwkbM+KD3qtJVVZGUNSKnaXLWXi6XGLMVNX4YY0IoWn6w9hDHdLEKxAaJKR/VwWdZHlam5vF+gdrYMYvEKalDCMNwAYzLyvwBpZQQ9mlTFjmWlAqLBFwnlJRobzw/PyN1mOfZWoOsKMyzkpIxZjhL44QJJCY4QKVcEjMmeS7GlkqVZunMPAKJ6ARhEJyDkArtutVyGiIZQIsFgYVzcclO64wxIaUMSQXT/7f//u1Xb3fHyelVKxtxe7fZ7u9kzX//h2+NVbJaESq1qrzlMeTOMcqYvHOlREwGDIfUB4Xrd99+Z4y5u7vZrNbYmIzLSihCCOX5iGdZfMCv2pybBp+AHnIKHoF3bl4wnaZpGGGUckJIoiGlNM8G+kVd1wnBMa6xQHjOBQj9xxhjxBCxQjqEQhdZO/CFrusWK4iU0jhPtmjRuDLPRGLWMymXRJj46A4vi7rXss7BjMCJjBppSX7atqOUSilA4EWRGcvPUmGKwlXHC8VLX3reaHphLyCvQAKzWq2gMIbpPyxmGRO42+M4XqDDXg7ilMiHDx/A3QO0hBsB3iGLND+cIXCz6K4xxoTUlAH+9rkXlr22znbudSV01T48PLI4GGPGYQ5ONLsvug23Nk7GBU/++N1jt7LXt28ir0efZN1Z7zjDyavzwghZzH3JfEpaGOCKCph4warquiaEjf20gMuERNxXbjg5h6AhpVSVnie7wLilwewpy32FTyFvHHDLoY9AumCL3vvoAxr48D/F1WKGSfKsTxJSXF4ccnXUgYDP8BKxKpDPhxCsNZFkkqxSitO8qnnR+CIw2SuimctPSiSlFD0aNlRyQQgB+8FaTyn9z//5P//xj3/8Z//sn3/99c85lzZrRrMQgnMehwhW9VdffYWiLsZQVRUgpH/0j/7R+Xz+X//Tf7lcLt6GPvRNUzddpbSw1hxfT01TccZTYYtLyTEqtN/vUUmC5Zfx8RSDt957Y/IYODQTpZSXy4XLDHstTSBTvJVE5kYoM1ittRDZ3g1BaTlwwacDahZjPJ2y9W4IYb/fLwXIhw8fUKEsewFNhfP5nOua0reglFLOCKPGmBhDpTVqY3xpcHYyM2HUFoVurXVw/ng8Pj4+opxGxYQmNND2BavCY8HeR7DCv6eUVlW1Xm0/fPjw/PzadY3xbrfeYI8AH0E4AikEnihYiosMOh7v/f0j8o3z+bxat84b51zTNj7Y4/F0e3uzXq8/fPiglALKOY4jrmqa0mbD2rbFFaIHfz6P0fv1ej2Mdhzmpmkq3Th7WWbUlnYdoiLg4BCC1jVUZbHyhRDe22katK6Ra5EyZhF8wkPQWu92Owg4wHDJeActThyg++32+fk5U8Zc5Jx757gQPniEFKXE9fU1Ei1KKehNi0gFL3I3sbBiURWSwqA6HI6EkJuba3wafndJm3EuiyI8tdlsmqb58OHD8dhXldBNjYMSeQvuAvnhmzez1hqMDVdG0xKNMflEQlNpUqkinQT3bxljXHRgSRaLC0IIiCzh6fV9v0xhj2ZmjG02G1SFKaVlwg83ghzSOccJ9c4pLpIPg3NCiP7x4f7+XtDc37XzVNctVhc+YbvdhhAoIXVdPz0doWWBKgaRGRvHxQSQtK2bqqrQWYLsuxAiZqfkLBdAODPOJZrLWyBKkJTFwkg+1HX9xRdf/OlPfwopYp28vr6qMvWCDQUmBwbVCSHH43GeR3xmjFEI1fe9FLppsFarqsiB5iJimpRSw+VyPB6l0FiBCNHzPD89Pd3c3GS9ZjuhWSU+yRDwpawIJGKa89ODGP+X8szp9kV/CeMFCGhYis65drX68ssvnXMwkpnnebPZYKgf94u8paRtsaogp+aXJvpsbTqdAHZj3+E1DcMA56eua5xzLy+H29trLSVC03q9foX/amm1dl0XdeFCJS+kiNYvwn3o1jQN3a7Xl8vJOde2NTRbUO9oresiO/7y8oKHg2FxIdQ8u2lyKE77vgcNGX2d/X4P/UDk9ujf4FG3zSrGXBl570EvPRwOjLHtdos2TAjBeXN7d32+HFG7LZWRnWbkh6nMAyHKuaInht0NaBJ9Gvx60zTPz8+oxUzRgVnQFVb0uPB2xnEGwovxcYhmAEWJMTZN1zQNJRwtQyAJhJDD4QBtHMA7MZAYY3B+t9k2VZ2KkKySFapXkAywJJA/aK05pVdXO6EUzj7nzKLLxIu5wnLO4ujBu8a/TykBhzVmUkrFok9VVdXSWe+allPI3EXOOUvReJ+KWcLCsSCEXC6X2VkcxN5YpVQUWe2q7/ulEscjopSeTidZ6VDcCEIIsJPd7/dJuGG4rFbvrLXOZeXV19dXIRQAmd1ut9ttEJMRwRDw+753MVxOl5ubGyl031+2223btl5rCEXgSQIIRbFDQgSnMBV6EP7wZz/7WQjhMg5IA1arFXobwAH601kIAuMTpIWsjEjy4vRgg4+UcC7GcZJSRsooSUIIYNy3t7cZo0eF0jSVVIAQ0QA2T4/r9RbtH7/dztP0//p//3/+6T//F//qX/2Lxw/3/8t//s/vHx5XqxUEP8/no+BcNe35eALAcrlcYiTr1WqKF+t8jFHEzLmQOJPO5zO2EP+EAQdRMld+WCFTBBJTiJwzUfQTPimnsxIxSYkVFZ6l2pFcRErbtnUu+xGBQYlt6b231kMxCncOqD4VLkA+zDA3LYQoUllCiKwKWugM7XqNHBT1obWzEBotU/yDWAierHAWsKuNMcDfkZPVdf38/Pzhp/fLGBTSU3xCLOxsSimlsCNgy4FNyqhmiFFJ6b33ztVVtV6tQgiUMO9y7wgY3DAMIZS2fE4+GhScC8sVDyEWVRd0A06nk4+BEBJ94JxTxoL3HIq9ISBgoSvLi58JnmQIWUUkxkgJR43HOcd/4/2ioxWLoi7nnDIlhPAuKq0zNMxI/OSVxZiklIxkgdEQgpnmqqmbZs0YO50OSFUfn59yRuBD3494U8NwVkqRGGPMAsrGGCgCd1238J299+v12jn3+vqK00UqhZMD0ANgnct4ubq6ur299t6/vr5673VdVVVlzBQJmd2MIIhZFaHySKkvYggIDU3DSjBkKU04TkDhVEqlFKAlD5AU9ZkQgjCOpEHwzAlt2xbmsAAxn19fkAkdj6+U0rpdtU3jisUlzi10zvHkUfknrPmQ/TRUpSmlwfkFKkVUJYSYacafxCwKkWdg8ZMXsM9j4CklFA+MMZoyJzfGSGiENhYhXUqZB2eMAeSUUjocX+bJQg+r0CTZarVqQgPJY4zU7be7m6trmm0nE5ISYzOqSznz3kshkD2oYuhEKU1luDgR0nZdiHGeZ6kqrbWx3nuvtA4hOWtTCozzqtFCyRjjps4au5SxcRyhDZqKMgZGCpY9bozhBUvD2YBjDzlf8Gm1Wl1dtWj1Iw0qGMRHXSf8bijOPKSQDnBY4thLkSqVR6ptAcKQvWGPK6Uo5VJK6w21yRiP7OdwOPR9T2lWb1jqyRKyfJsHWyYEPdTYeLkIcUvWW3gKdJrmeTY0ZY11BHOsEZzKyxlACFl112jALF3uEAKwbFGmJYQQbdsyJqz1ulaUc0/4ArwKlfvGTGJ0wJIUq6aVXBwOB8Y84UQwzgNDC5fmTiQTQggljDHBZbag915JTinlDP5jOaUjKVcF3vsiYd8CRMOeopQCPUFqjs3FGLN2JoWvhF9PJHvW+YLpL3tHFitdXsxtkFFprbWWoMpilA9vhBdzXWtzedD3fYxZDXwcZ6UUbN+RpZ3PZzgyhZAFebEmfQipMKwxph1S7LrVch6FEJQQhHNJSCr2cZzzum6U0pitRlpDKV2vN4xRzvl+v7+5uZmmmRAyz1PuuMwzLQRJzrm1DqVCSul8PlLKGeeKs5nR//i//fbzt9tf/foXT88f3r//8en1VbfbGFw/mTfrG8orH1lKNCXjvV+t1oxlQ0WA8iEELRVGF5fiKsb4s6++NHaSUgqe29iVlkJq770LKcYoGLF2HvuL0iJ4y6RIkfrgssxSIfJeLj1eE2NMSi255FymSH2ah2FghO73e5Z/KCGEUdE0ebis2XSA2imlw9DHMj6VStsbmasxBpqVT09P4IdyzpnIjltLioIReBThuMe6rjF0wrlwxiAOLE2spTuO7YlXvPSEnLNQ6lgyb+QwtnhI0uJRQz5hwnLOdVGvwxZAUrTwDFL62NeJRSEkFRIrht8nk7UmhBAQU4oxj63Avws7q+s6OxtWWAIgd8QYUZaQhRZKo/cB1amEaNg8Y823q43W+nIeUqKTU5EIWXfdtiaESq66dh0SIYlOkwkkWeeI4JER6yYqaKMqsAU/bSHjspfmUxJZTdIXRRQslRDj+dwvBd5S0qNDgLAfY7TWOudna+oYgs8pAq4cz1OqPF3OGEM+JgrBTWuNLikCGtq9SkhOmSMuxgg/7bAY47D8HlPxyYnFECJD1YQWiFCgS7SsJTx/WdSicQGqyraErFicIeAv/warlBWxEZ+1Iz7OtTDBkfP803/6f/71r/+xlBLgV+mOBGwqFPAxxs1m8/L03DWtUur19WUaRiSWb+/evHvz9ub6zY8//vib3/zm6fmBUlLX2s5utqaqdF23SonJTJ4xTlnfj5TSpm5BWSUxKSWk5CkFQpKdJ85ZShy+1LYYmUgpX15e5ku/2W2xDv1HdSyRUoJoAyFE15C//KjwmIqeDEBbRGnUxksVg9IAXJO2bU+nU4yZHgjhAmwTIHSMscXbBg8ZmS0iMy+93pQCY4TSNAwXpaq5yDEvmfYCX7IypiO1opTCSgd/C2c2bC6QDxDVu65rm5W1dhiGuq4VqWzwu+s8u33++x9QOyB/YIwlUnZNSk3TADtWSm23a/Q+l0Hv/IFKwSU1FKGPuVhGY9ls1nHVrW5vbylLq9Uq+vD8/Mw326enJ7QxwGPASQF4IqW02+2Qfvd9T1O8ubkZx3GwgzHm888/x2KD2h7ejrWz9xUtmshd1yHbV1wtpQ00rI1xTAiS2DQaxrJQNfL8cRyjTyj4CSEx+kRyVkAI2W63S+K33W6rqjqdTgsIiOfZ9z3oTfYTmYu6ruZ5Rs6Gk0J8ouyMmA/+Jlbmdrvf76/bdgXHLYhuyeLewTnvug6av2BEee+nftjv94SQqm28sfM8e2khbZFSwuQonjCqgKurqwKNmePx+Pnnn3POT6fLghYBEAgkoesWY0S/U+sa2HQoDgFmnJy166srulieJmgJ0pubm0rmPqjQKsa43W4xBMAYu76+HobBTjPW2P39/du3b7EIu65Ln2hAYTUOwxBCQCfp+fm5qqrr62uca957oRUIHyQxYJ0ppcene5C+X19fOefr9dp7+/qaLRaj84IyZyZvXVVQHiklpHKQ/MdAmlbe3NxIKYfhcjqdYiTz3J/Pl7vbFlfrvUeTPsaYKMXC894Lxqqq4kze3t72fU9IAHQFfZurqyvjHKIuzgWcEfAuWoK2D1ZluQmDwxShDGlJLGabEMzFXsafZNDDm+PpdR57reu+719eTrvdCicLWjv7/R5jH4Irwf122+CBY1tdLhdXpqaA0u73eynl/f09IQStC/B7+r5fr7sFXIqEdOu1qir8A9yCtVZzsd2tkXKgUYdX33XdarWqqoqyJCjzvuacHw6HeUrWEWNe3r7dO+ciIbDZnOcZ0Y9SGkLSmq/Xq+fnyziOILQej0f0n1gZOMMOuvSnvh/3+y0h5HIZxsFUVYZNYowfPnxA8lAVfWepuDGGzkkI8fT0hEnBhaOG5ArBecnPsXiw2VPhfi2yQrHIprdti/8bi+6HtVZWGqqhC3AshJAyK9rT4vCBa2uaZr/fxhjnyRpjhmESQtR1e7nA6S4uJWoIwbsopSQ0Yi/ARnXJ4nD7Sw6Ak9R7HzFP7H2MEf604ziOozufp6ur7nI5dV2H/QtInRDWdevL5QQDybHvtdZKITFnfpq4yC2ZTENRlXOu73s0TjilbVsrpdDsZIXoLUo3SDKOniVvu77vUWniYQI5wcNHMPfe2z5Kxc/nMzhwZQexeZpTStbOjJGqygEf2x82lXVdPz8/ojfw/v17TOxprROj3WbdNM16tbXWPjzfp0Kln+f5arffbDYAtdEH2mw2d9c3McaffvoJBQ7etRayqqr1ev3427/BZkeVHWMEII7JXRiegb8PdAjcZ0IImJdYFajrsfdx7hNC8LtL1dC27WUcSMhdgd1u9/Ly8tvf/v3bt+1us1VKEWqPp8v/73/+n421v/3tbz/cPzZtSyidS6KOQyQnzzSczhfBxfrNm93d6nwZjr+ZxDBMIYSULNboglPgDmkeC80QJ8ALWn5K7cSXfNRnb1ZKKXfGWv+RkryAMqwYlBtjUqJYOhCg4JynRG1ROQzFhhi/ghkiNDkXIg9iMR6osVZrDcr9cttQVPE+257GwuTF7g1Ffg5fBMTEFHvulFJMCUmktdZaRwiNMYF1D8AFzyqjfkqN44T0C0AhL/ruQAHAFYfiD966c9lfHv/4eDxeLperqxvOOeOcxiiEijHihKOUcsloIkjC4BrPGGMY5jIzTnTJizSnlLMxuJi2bTG6uATB5XVkIC9RxsQ4jSklY21VVVJq66xSyntYCOaegbXWOoAjUnA6mbltW++tc15qZbP2v07JCiGC89ZazpO1ljMWo7c2LY9XCLFqO865c8F4wzkH0o3orCvtgieEgDyeC2BGuRTO5pys7/u5mJ+2bcsTUFECXidjDI1irIpYFMORLFJKQ8gsNgQOYDFJRKUUkO5Q7Ok559Z6KKxLqT8tzzin3mdDQgj+GmMiuMCKGWOttbLR2EFa18Aox3E01iIzGIaLlHK9XjtvIq201hCDw1zbUs8gDxjHUUnunGOChNIkXDoBtGgpLiA15xxqDD7YxLICAC9c6VpX9apFaou28N3dnRBi7KcFd2CckCLmDjdInDewN0EorHSYi/1RSgmLXGstlETEr6qKEYp0FnddVVWIDhW4Usp6B4G/VdsJIYa+x0ZmjIUYgbWN44zsB+f6svdpoYalFBhjlGWZnehLt59S59xsxpQSjvbD4dDWDc7s7XabUvi0kk8p1xUZ9yGc0sAKSouwhvlHrSWluRoHaozfWvb+gkiO45giTYlCLgrjCCGEzWaDd4E+01IoYre2dVMpPcs5xni5XATjVVXZ2UzTBKfTVEi+yztNxdoFm1GVkVK8BWyWJWHF6UITmYtDoLXW+wj8JQM0MUKEq64qIRjqVVRi6M3wIiabUiKEhZCPj+C81lp2IoRACaE09edTCIGQyDyjFHhWSCEGEobLSXWdcabrOqHE6XIKIbRtK7VKNOHrSGJSCEpp8CnYYKJRSiWSFUKssfM8c6E2m01dVdhBy97hRUp+HEdrDTR2sMgREFjxnAES5JxjXGL900J7FEIQkvBsGWMoRH2Zs/FFMQNDrNYayB3QYvYSY/Q+M9Scs/PsOOfX19d4C6gHRKFIYOliJhonJrJVwXldV1QSEMoIo4TQBRTz3kf4E8aY6Mc/Rx62LLbiQMCHoQel+uXlZZrm1arDzB2iKBjQhQ7j0ZbGGNA0DVI1U3LnZCu9sqz+8em47vZNpX768NA/HJWs7lYbKaULiYRofahFtgS01g1Djwe4xBmslqo4m0spE/EcGqnOOoBugldVFSMZT+d8HpmpriRjzM6DMWg85GmMGKG9+/GUTykxgneHZDpILnzK7EtAh8gruKAoKbWq53lG5Ocyd8VCQjDX3nvC6DhPlNFhGp1zkSTCqOCZd49VkWuGmFx0wGQPh8yItNbS3NP9KFeC021pAcaiZrDMYIXiZ7uw6nzxCfRFGmWpQEIZVmOlBbvA2TgmFvR8+TQXvBmNszMeC89K7gY7fbycMWQKcFMpjUVL2EfIA0vOF5UYpHOoe3nR95RSSSmZwFURxqQsegWVbjjnb9+Kl5cnpTac82EYZLVB75lSIYUIPpmUqqqe51l3FSFERz3NfatawoPWFdhtpNgD4kWworeIhz85L6VcrVbYyHiqIQQIMeHojzGGXNUkpIXgDhOwH1J01imltK4Rh8HzwrmMwwhVATARfHvwibM8T5YiXZIrRnK88t6TSOD4570PzutGcc7HcRBKhhBiiVT5gr3Hyy1pbR7yQJkESmAIHtp8qHVNlrHSvHh1imJrnoqsFvmkmUozi0LAeNN7r5JiWoG0jr0sizGyUiqEORb9WRwu5+MJJ8s4DpgEwirCUtztdl9//bUP9v797vX15eXptWkrqUVbt8nR59NRSEI5u0wTpYlyaowLIXlvuq5zLqsKYCNgmVlrKXUxEFS8JKWubY/epxCR3XHKGOOUshi8ECLFiJz55emZCf75u884k8Gnulao4ZFGohQEP845BymqH374ARUX9hqYLt5bzKojCxJCQEXx086HLMJHWBjYy1CcQ6tdFi1LVdyZKKUxRfj9DsOAQwTzuVgAEMqAHBP+ry4q/LxoHSzwEyR6rLUkJfwJXr2qK6BOgIadc7RMnbOis4x5OLDD8IOsA+3wEMLV1dU0TU9PTwBkOZOBJim0917JSmwUIaTveyXl5fSBc+69e/PmjZTy+fm5aVcLczYDdklCSr6u66w3fTq7oke0oMOoWcZxRHFurXXO1HWLXggKIs45SSwGsvAZsexxACFKg8uWUmrqrqm7p8dH3JRzLqWwXq9DigD0Md2Fy8gPszSxEKXruj4ej33f41TFYgD7eL1eY244UpIY/fD41HVNVVVt22yrCkuun0aa2Hq7H+d5tVpJrSdj5nnGLMLhcKjrGrD7OI6bzUYpdTqd8OKArg7DsN1uIxfH4xGlFjb7YpMui6tt3/dKKdiIWWsfHx9Xqw36iHh6kFwIJCGpSCm3Ca+vr7/++uv/+l//a9/3lKa2rZ/7C6U0pfDVV18fj8e/+7u/E1qV8oF6k2sryvn19b6uW5hngCf48PBQSYW+BZBKtE+89z6hRvvIvmqqum1bYA5ACUIIj4+PuqlpkTbSWiuZMX2YQllroXaK0HF9vacp3j89xhjx1VJKrdmS22MPdl1X1/r19XWeMGc8dF2ndc356L3x3rdNtyiGpZQ4y1rD1ucxuM1qhQ1FEnv//j3nHF3JWExcF27EwvmYponRPHW3EE1SUbZBQh5JqnW1We9CzDfYn88YNATjB0/ydDrhIePIOEzT7RX0MMn19TWkZnExbdta4733gdrdbickQ8LgvT+fz6T0yRCdAJjC1gXK0YuWy4ImgUWxgK3oHiGlwT2GEFSloTwAdeZaa2NM3eimae7v75MPePWbzcbMr23LGWOIsf3orbVo77EsPi7BHKeUbrc56uJigN7EGBGQUSmPU08IAWrUdd37n+4hjh9CQOqClAZhxAcbIkUuDUBcZgPezEAHTRCrS0qJB04F19n0hUSfmePgo8AUlJTmNPRRUXrXxdsQMNEyTCyltDZLOCIs930/TZO1jjF2OByk0OM4ep/NqD/77LO+72N0XbcGyz4naYQTQkJ0yK9eXl5KQZ1FDlxRsgXohOFIZHeEUq01emwxxrrOc9X7/b6qqr7vMwTMOdRBwa5jjF1OJyxmkLeapjE+S0PgyIPoMIHTQEoPD4/Wzjhk8foA4sHtDJd3c3Oz3W6/+uqrP//5z3/84x+991rX+/31PI+lTRiHeYLhliCcUc559vEqakXn4+upquRPP/0khKjrCkEvy5ymNE2Tc8YXV8b1eo3+lk8xN/+Efnx8DCHc3d1BFHGz2YDC+MMPPyBnAy6slBJanV4PeJWTNZzzdds557799turqytgPkLkuVLO+eHllVLaVjWwMhw6SysXxyXhTEoJX8TNZoMTEPgMunreezTLrbW4QhT1Cz5WVVXXdZ99xmOM1jvK2WyN1vq//te//p/+p/+vtfbdu3dKVcZM0N6EvBKmhay1SSTGqNaq73vWxBjJarXKnFakp1VVLVWuLUCY9xZXkFFUKZbTdBgGZ4PgHALbC3AJjlhKSXJhk8OBCvBFSumMtT6TZQhhxlqURjzzfehSFWDmGvBiDHGBg5egT8qgAWrspTm8hD9jbfA2RkEpXa/XWLiAqEIIhDAUz/M8g1kMLBgpeEqMkBhSxMm03W6VkIgLQgDikTR7dmfilXOec05oVFoInvluC7CLHNGX3vWSzQPzxa1prQlhPoRkLe6irlvEL6Q+49ijo15XFSl0hviJMJZanGQICTHq4jPAy2Q0chdSRiYp5YSY4/HImHDOcUEZY23ThDJSTSllgqs8i+1wCmJTUUqNhZZ3FosATyRGEoINITRVbWdjjOE8/y06Flpr5yJiU0Htdd/3zuVvTClBCcjHAEhiualchIdsJI0ogFi8NA+stf04dE0LnSAA1otELxPZBwOvBi8CdSApejIFlGeftotDyCZ10QdCYlU8TwDbIYzWdR19YIxxCoKe5UVYvGk6LBjEX6SzhAI4yEaCKaWnpydOaCjyGuhM4AZBM4kxjtOw2+2i83OBF3ElTVXP8wwgA9fjg2OMudmdz2fGGBVys9mkwlERjKNawI7G0TKOo3cuBrIA3M6bpeCJ0aM+rOuakFxVOucIYTFGpQUXlFICk3rKEuNMgo3oHGWsqhXLEsaGUspFk/djiqlQUZCguzJwZIpwVSSpypa7uaEihDBZ4y/AUw6qJpRmyQIS6aKRJ6VUeo0iuaqq29vbm6tray2GhjjnlKZxnEMICIkhhLarUwpKqrrRznh0XEnhw+LVXy6XP/7xj7/85S/rOmv5YefiEQHaQ9GilOJSgquYwHkXQlCBgANQMn7ygxtENYtlc3t7u91un5+fEV1JTDQRJRWJKYUouXAx628udCqczVhsvrCPVRmyjiSDUDR9BBoopVLypaVnipiscw4lStc10GXDeiZF2DrlYjUAhCWE0BQZJkgo82aOMZ6Op67rlJDAUyQXsq7n2VwulxSZmW2khEtLKa3bbp5nygUljCTCheCMBZ9QSEhOqZR123rvSTbpoqBTzbOVQoD4gwTXl/kvnG6Y+eVlIBeRQWuFfRrKNIYQgjCQy8R6vUa6kBLyuo+NK1qINpfLhRFujAkBxvRo2uX+4jiOXdeFEKpqI6U8nU5SNtN0xHfFrPbLABzLMqSMz2GFJNV23Wa9nucpxphChHSJtTYVYzEkCtiVKQTCGIbgkI/O89x1nRDi/fv36CsjtixptBAcKT76EGAOWmuB2kspqwq2kw4jCJRS7x0XlHMaSDiO8Xg5mWl8fT2+vB7fvvsqsmDDWNXdNA+MMUphP2IXSgItQ1TI0TllNBGacgYiaPLeDkNOEyMlmtXO2RiiEMx7KzjjnGklWIrGhJgYYxScxHmecEDg7We4hHJjDKXMWl/XdUoRBRi+LpVheVJ0LZDL4vJ++umnqqlubm6WfAMYIvKKWOYG0DnAKkVrB0f/AjqgPkFegYRPFlapzwPgebBmodwiAPoitYxon8o4BdIPnFOkiMzIYl+GdY5haihv4iLxxkNxg0TBY4yp2yYRAmREq+wUt7QJYZIz9Nkkp5xTeaQs0YQiBI0onBQw6lieTMboCUEw55xTzpAfTtMUY/LecS5C9M75lOh2u3eBGuM5U4zVLLGurhMlhBAhk7W26zpKCcD6EFwKfhp6QsixvwiheJY7z+3qBWlCu6iqKhLTEuhcGRpFLxNUMtg4V1qnFDjP9QZ2WSRpvd0QQlFPcpYV8fBYchrmU0yBcU4ZgxAqzjXOP5rvIYoqWTlv4JKEC8ZBgHWVTweSEs0TY2gFqaIjj320yA1P0wycd7lxYMWKKldU772FGm9WJ2PFIyEVRztezOVSCXwppe+//z7G+ObN3fKPSWFWLg0zMDNUkb/HN6YQpRRLszMjTZRut1t8y/3j42zG/8Nf/uNf//JXv//97/7mb/5ms10xxu7vH50zXPLNfsNECi7Obuacd02m/6eUmqbBcADnnDHiHAdb83zuOedcUGMMqpW7uzvK2MvLSwpR1Q2lNIU4DhOhiRCy3Wx2u93f/t3f9Wd7qA9CCGOnbnVb1/UigQrVAgSxGOPxeDyfz+fzGUK02C9LigLYEccoAine2jRNWMbYelD2w0qQknufj2bQgGKxmMaS2G63iXFrLfTchmEA9IxHgSUB8Vy4FKLZgClSa+3bt2+/+eabP/zhD6+vr5vNJrjMW0d2hO8CRtmfzstbZpzMs1l6n8BTUMTi+ePDlywCqrvoUaESiYFE+tFuB7wqklJT16b8KKW+++7vd7sd5BSqqg4pDsPQX8YQAlrsIbpxHPHqt+vNovuCCq6q1H6/f3l5OZ/PaOEj+ONgxcLLup9UIFXL2kopaw0hnM4zxs/MPM9ts0Liiipda01I1Fpb75DNMkZRSKLexqDIUlBgg6xWq3mcMBu+DDzhUIZiOByHtts157yuWmt8pdl2s/feD30GpC6Xy/v373GmnM9nxCsc7gj7sXgO80XzJzjs6NPpgDI/Fg0ZrTWYpHiVpGgcIXJKmVWkkKWnQvBvmobwxegFHQr35ZdfMsb++3//72BwxxiDdVB6sdaO44jJPKUU+lKMseiyd/FkjTEmhFRVFaDMuq7X6/U8jKgFEDmNmUADSoyinUOKwudus22aRjhLCkFnnufz0CtnMQKL05ZRjhJjWbeh9GJpzE4eGdtNWcYT/14Xsy9K6dXV1fX1HrPtfd+H6EyRyEDm1l9GVMqIxlVVnS9HzrmkFEwUHHyX85CKa1ydah/sMtoFqzEq6HL0M5rPYl88rlNKKdLRjFdXV5CjeX05mtHutldN0zw9PS0AGfA+/BaAwuAT1Rngrut6Mk7X9a9//Q2+DtuQEPLDDz8IrparopRorSdjJmNcCDTGZfm5otoEaaNPCxkk2MhD5tkyNuCkAKcK7CUcBKwMXscY37592/f95XL54ovPCGfPz89LEpLKYNnbt2+x2Lz3qlZPT0/otfs84y7w8BHc2ralNIHfiioJmwV3Os0DpgHqWkNtgzEGYfolbrASaFKRBuWcr1arw+Hgva2qCgQshBQITPMiozwMA4zdTv0F6RD2IPtk6Ar5HsYW0aEUZTwdKQfCO1qMrohe4goBQIOUibNAa306XgxzdV0PwxE5D8YHKU3zPNeNRjSjJMdnWlRY8QxjIG1bUUpBuETMASYLkn5wjhByfXsLlBPYJfgxP/74Y4wRrVCodszz/OOPP57P/eefv5umiZCI/WIKJ3KeZ8oo8l6cQUoLLhqllLETIXG1ahDiMCR3OBxeX19Xq9XxeJrnGQ3U4/F4PB4fHh7wQFarDfYmpazvR1nJ0cxIz7bbLSUcROkl1RFCvH37lhOKGT5VbABM1jOwlFLnXN9POJ2Px+OXX3759u3b8/k8jjOOgNeXo9a6bdvNfv2LX/zi+++/R0uJEQoC+G63Q2JQVdUf//hH3AV2qxACk3/o3wghzufzfr8nNOM/ILQZIRAWUKdsNhtEDELI+XxOjAJ/x36HAhJOtN1uB+2Ovu/RMgd49eOP91LmChrSu0KIr776CpwtwCxt21ZNLcdBKGm9a5qGS/HVz/TldMbpjwljXBVu8PHp/nI4J0bupi8QQegCZqGkxM53zk3TlFKWC0SdQIo3N6p376LgPH7Cp4OVbSoqJMZ6xrLSHOIIOieQoOKc+5AWWkcIQalqtVqN83S5nJAlYIczwT+FNoA4k/Kl8zyjcsKpkIoTaExesHzYQ68EmDXKSyklrPZw+i5DW6IMWqaUKGP73XXOp507nQ4xRtDaSaFgL611/ErxWLDQT1ieey7OC2xKi/843qssThq6qlLpvzEm8OaQjqAkzgSlUqjj4Y/jSBhdunyVys9teWg0T+JkigQadIwJSmMIYTmKgKRoVbdNFUlauE6y0ovD2zzP6RMT1eBjqtICvkiV5z4Q3UrcZzSRmNLCswtwjSvWFlLqaTLwNf7k+Uf0GJumOZ/PkM8LIUBAUBXDbiklIRCtiyH5GOM8zylETtnSz7HFPyfGCOlMRN7NfofzyYRYFUlivFaAL0opEP9jMU323pMYcFhic0YSpJRCZbq999G5QKKnlF76k64rpZQUkmV3NZH9f3Eosuxlh3PaxcAYq6TinMtiGot1BXbkcsgxxkLx18JrwsLGNOji5hdJCtFRSvOpnMiSYK3ajpQZH2hrLsjXPM+0CCAkkt1UMc3HGCMkeu+32z3eCJYuYwTOWrLM3Witl2EuvEfnXIoRfX7USB5+XISM80QpXUYZQghSKYgairLSKq2DAyDolsamy6R1tXT7nXMhOnwvY2yz2eA6NeeCK5PM4XC4vb3d7/ew/WWZpxwopZTEeRpSSqvVap6Grq2VVCQRmkhKAaMGsXjXOhusG+u6/vnPf76kCzj+sWsQZERhIiB4YssTGr3PzCYkkcieRZYR0Ojzo3Q0xqBoXLAwvAjkalgDokxIIBXDHemiGLUUDFg/dV0DfY4kHw8Q0yjfnhFzk2VkGlK8LudpQjGP5wD8VBRhd2OMlNlwNS8Ab4ZprHUNdhuVuquhIUCUUkpVxrjTcRjHkVNGiBr7nklByMizligfx9kQA2yUEq4Vc85JxhedkOxZGiOI7VJKziV6DAtmh7oUuCoeOCoQLBu06hC3QzFECiFwzmIBniQXyzMJ+aBRSmlrHWMh0dz5Y4QTslg/KRxhuqiq0aITLYRACw2zh6icpeRKrXiRn2NZfiQP5sfivDGHQEgiMcPuOFuNsZEkbHMhhJ1NTvEJWXxjYHOEdRVLn2+/31tr0BLGlYBNg+43dFHRaQb8jVkNZJzee0IDZYRQxlUdnO1nd3zu60rp6mq1Ui4wRYRzzvojY4wkYoyHrS4eF/AmrCVSDBiBgVJCog+e5HiCbSWl4IyHEJzPOI5QQimVorfTSClllC3QG3bTbCeQC/CgSKSJZN8SgGKQV4oxs9LAWQ4hxJSHJ8D7UEqu1+tIMlXTFZPxGD/eDmJI13WMkZQS5zSEjBk557x1CzQMKgGybXBVeJEvSEX7Un4ixJyKTvSCJuMzl/+7gAJ4pEgi8brjJ6qRIYR5nmFLjUnDfIiHkD+ckuVG1us1Z1lXDcwdPDesh6Uyj8XyIcboo1+KqOXaFjODpZIEW2SaJsIo5YzSZC2mFz3nQnDwqaUxY0qhrquUUvC061aUKMaY88Y7jzkbyYWdzTxOUsoQQ0qEEe5tAMcKnmlLzQbZiWmaP8Fno50NiD8ppcw4K11DpZSUGk10kpJSNW450ayOQgiBVjOqESVzRppKAxgPX8oKbycUV22SWEQDpTgU4UUsfCjBBaNckDz1jEBNi0QbLkMXiRV8nRAi+rAkopwzVdRX0CwMUArmDHtHSlmp6nQ62SJbibi9DGmmMu9Pi4spqmhK6evrKyEE9QYt3lDY0dY6QoIoA920DBp675B6AWnFc4jFQwJf13UtTaSuK0LIr371K7Qt//S3f7Czq9smknB8OVVtnSghkc2zFXm6n9jJJp8CyYyBlCggDIB3GOSbpmk4j6FyKOQQc8w0o+JtqgoJJ1cyhHB3d/fDD++FZN5bbBbU8AtTZPmPudgXp5R8SCwlxhIhRCrFOE8kc/GWXi+gh9y6pgSFH/I3HM2EkBCIlLl1FItGzTAM3mduUAgBTI5SN2XaUM4uLJVSYmz09vbWFbe9VJSv7+/vD4cD+iuPj4911eLcWdQVUkpd19VKGykBRPpgF/hSFAbSUstIKSEUBgz6fD7j3eE2oSWNlAwLHsA3JYQkdjgch3766usvcJEgC6eU9vv9OPYppeA8I/Sf/rN/4pz7u7/9lhAym/H19VRVUko5zlNbV8hAGAnX1/s3b958+PChBNUs1x5C8B5FXzidTngaPvgFpzbGYGJDKPX09JRrTEJIiJRSsLOXk6hta4y9CpWJzN5jL5NpMsgTUFdihcdPhIOmyVRVBa0VfAWSmd31VQwEoDOWAZ4GBmvAXIbWrTEGHmJ1U5/P57dv3xpjgEAB2YGOB5h3lNLn8wVRFzjgZrMahokU73Ec96n8lN2KiR+mdVYex40vVdtquymwlEUN8qc//Wmz2eC5ocs1XjK+7Jx7//49mBZo8ONpoIQHrGOtRWdoaVkxxq6vr4s1Yp4ULKEyK8LxIoQ1z/PT01PV1JRS2Ibb4iyCuT2s/EQCLQp46/V6t9s9PT0RQsw4tdsteFdIes00Z91SH32J23jX33777Z///OebmxvgxYzn78LbRPKWHb2sBbaOo3m2NjdoQ5DlgQshDofDPM9Scbw4zD5a72P0Wmtr8gIGNAbuNtoYl8tFSLaUxpAQQYTJLS7OiXPee/SPq6rarHfANCilbbNChAH44EKYwV2g9Obu7nQ69f0oBcXpxjlnMjuXYCOXle950ele2EtYaahejYFbZqxrdXd38/z8DCWBWNBq7BHvveA8kmxB9Mtf/pJz+u/+3b/7uz9/+6tf/eov//Ivf//731dVJVk+u/EeEUmmaaq7drfbKaX+/u//PhYXFs553/c4BKUEuMVRuRcIKCgthBDGYuGFzWZFKQVOirWKqm0hKuHBCsmSYyA1o4vTNE2Mec+CTFpVVSWVyGY8apomoZUqsvIxxuQdCiusLkxILDiyKRJGywvSUgzDAGmIh4cHCIOEkPC3i3YEY6xtVgDrGWPDMB0OPcSpHh8fmya7WJnZUZaklJzxx8fHL7/8sqrVd999p4ttpuAZbrLWjqMFRx7BGW/ZzQ7wKORMMTqJ2YhcYJYuKY4/dB/v7++rqmoqlTJLKb9NHK+IbEBLoUZ4f38fnbfWXl1doVPonHt6esJ7BHvgcrlAUxsT4Vrr3W7HucR1vhwOzjkfYzQGHQLGWN/3JDGY2SIyY1hkGKalK4logPhsrdU1UtlE6UdDiMvlwgupZRiGzXqHG4Ge0r/9t/8Wwhd2NokxlE4xxtfXVzSwvfeLGv52uwU5HZhJjJGkNM9mGIZuvUJRYGPMEE1MOPERZ3gZh627djmIscJNEThFFoSh6lTEiAAlr9cN1hsmEtBjGMexbbPDLR7aNBopNDxdMJRGSLy6ubazsdbSigO8PsdzVVWtbmNwnFMmhQpKsDxxkAmYCJcA151zUvJhmLXWOOpCAOcVVksi4xSEIMICkmvbLOGfwdBEV6vVOI4xEEIJTaRpGvQeca4QGjHhC7JAokwoqWK28ltqqnxUk2wbimPSYLz6E/vsUIZwKaWUpehiomxpLqkyFooNCUgTRyk2Axa6LlrmTdMYa2FcFkKYxpFSyHSSd+/eQVCGFCeolChJzHtDKYUmQ9eul5mUBdWqqspx7qwNhRWL/ieuOaaswXRzc0MpDSGhTS2lDM47Y8GpMfMcSsMNnx9j5DBvKXA2F5RzBnMtPEO8NRztqdBnRKFBWWsTJd5GrStgFnihvEjIgaOEWIO4M01TfxkBoaaUAIVhJQDW4ZSVhxMIJZxTa4OooOycPdmQvx6PR18QBFuOZM6Z0hqRpVQyVnKRaJRFcQbLDAmByLKzmc+FsxmvgBUdzFh8EhgTdS2QTVZSMZ0HbGtdYUdIKVOin8YCSuk0jZzzSsmPXLNgPXTKJHoDkcSUUooFK7SzqZuurmvwtVOyuH1rLaFLZZ6QoLyejrXSKOkDyTeCuOBjIMUOe+jP0JRATYXczkwzpRQabQtoJaWkjPkQpFJt01AhnXPGTM45RmhVTAyWlIgUUUgpdFVViWRjMewLBKZ5nuu6Rd+ClnY9L9KoKeUGkskCEQFVVnYeUEoKAa4BLcoblNLNZqOLQLkrni1t0wgpGaWMMevd5XLpmpWUcpqGVBQkYnHnQ8WLlZPyQDqniS8SReDOME6vr69RjAmVs6JPYVYcZkhlbNbVzQ6Ti24aavXzqZ/mLCAOQHPZ5tvtFu0BbL0FFHAuEJKqqpKKLzQ3HFSiCCqllKTMdDZa5DuQxh0OJ2NMjKSqGqUEYgWSjKq4DOMJLAST5bHEotIlCotTCAEFHsYYy0E08399oapxTpEGgZa13WymaXp8fLy+vsaqQC90gZ9ghYyQwhgbhlg1NeN89iESKihPlEtVeR+tS5wT5xOhoq7WoAjFMVJKa1VjXbHE8II4l8FFoSV2NEvEOROjd85B6YIQkhJZqhGlctJWuDx+ykA5Y2WURAgRQkKHo66zdxmOYayW8/mMQSa0uLARUI8ZY6x1ZcxF8AINMEJ90cy11qRMKF5JKSnNayDGbDzivceg9Ha7BQl6aSYV/CUa81F2tuu6yZjEKOfcTDNlKThDuTyfz0JI6zODiRACd1DU+Vj8UqqsbhRCCOHdu3c47imlfT9g3hb9A6xA9Q/d8FD9xhhTypeXAf1obIhNu+ovQ2J8HoyoOiokS6RZaUqp9YFSSmiKMVCawG7GukXwJ4UXnP4hrRIHemJMcME5haVZIoxLwbiYLr3QigrOKA/Rz9PkrFNKcJbrzBjDUuRjeNN7Twhz3i7A7jQN1pqlB7AAjvhb0IFDCAuriHORaFriaiwGRCXagL8ThmEYx1lk/RbJiph7cB41VSrDRtAzYYwpnsPXEg9JkXumZcw5lXnepdTE6NyyzfGHMcJAgc6zSaULjmQDb385JREBeDGuQDEA8rtY5FxiQsW4JGz48T5zahA9lMou9lxyXOGSlTHGBOPYMtiSqmhNGmM6rQEDYbkylvWghFCYt6BUSgmndVrXrZtCXWnrhQ/We09IdM4jNCmlqgq6scIYU1WNoALauCn72Pjl/S7dAkiExTJKgiePo42UW+aScU7hqocqAk9MSul9wGvKL0vR5d0t75EwulwD1vk4jlrV6AXSQggoJU1gnKAiTSkxKaVQKSX6iZ4y9g7nWRErpYQnHEKILDM/SCCU0kRJSJEyGlIkjAoulVKSC9BkvHVSqrZtrTXOuYXZunC3SeE0LLgn0IGrqyuM/frol1xaZdNvplQG0AvEz0qpQ4PLch8QN88MqZK0hxCUQOs6u+y+ffv2crnsd9dPT09mdkhLzGCp4DGG6+tbxtM0TSHGy3lsV/V+v/PeR0pC8JvNKqUUOd/tdmWFrF7nFyiz9dOYhRfqFnKKzpjr6yvvPc7Quqpu77KT0rt37xZUd7fbwaUjloFOFE3W2rZtuYBzUVRK4I0LyQijEDdHbhDjxxbaNM/4k5TSbrfDZADqFClljCQlj/wBZYIxOcgbY4L3CNRI15E/lOgXoV9RVRUqWNzU0jzAf8viweC8MYbUda0rLRmXUrZtez4cQbjmgiotpikbWeONoybCqojFaY18QqOZpumLL764ubn53e9+h7dprQ0+WWu1UoxS7xwhxBgzjGQY5qZ9AuMYcRgokhJcMG5nE1J0xq7X688+f5tS+umnKSUyTQ73u1l1oNctJzhqrrZtl6nWX/ziF7vd7k9/+jvkVLlJkD7WBWgA13U9zNM8+3n2b992SqnT6wE0gviRjUh5sWOqGF2S55TS8/Mzmjfr9bqua2uzBwznMsbobYCPnFLKW4KJUkjzuRjOz8+b9Q6V9cIgQZynRWgF2b6xk1Q1ThNrLZrZxmCaKssELe0f0ETW6/XV1dXlcrLWal1jWguVDj58GX9ZulOEECF0jM5nG8DwseSkBOQ40NkQMIUQC7sfbxbwHAo9rTXYozgQc2AJEdBSP43DMKSUReTfvHkTY7y/vw82FxdVpTPiprUxhnC23e4JYU/3D8Mw3NzcjD4gwAohdFP3fd/3/fX19fJ1WBtmdsgAU0qzGUEqtNNMdGyaZnZ5VKJtW29s3/dagz3mF/kCnDWgK6GiJzSCLbsAEcialgXjiiogPgFxm4Q83xNCePv27ePjozEev2itjYQopbRsOeM+mfv7B6XkstdSkdHHJ0zTiCi02+3+5b/8lx8+fPjNb36DkiFz1PKvhHmetxsqhMCgRrfpvPcoKhdOA97X8/NzVTVVVfkYm6ahzs3z7I2v67qqmhCC9xMvDi6LGAUtHsgI7HjOu92267qHh4e+t+/etbhU5JCkCBjqSqY5WGOQCVSV+k//6X/x3jMpWtaC+4hluaSIjDFKmPe+67qXl5dA0t3dDWDiy2WUUgKOWMBcVgQwUczi+RAap2nClVxdXdHC4eOf2KRjo6G+AztKCJFSXHAbTHtba0vPKVMQYplzAuYwTZOI2VkOJYBknDFgSolSClFm4OPLZeOsRH1Ud61S6uHhQQix3+/xvmBaGGPEQYaUlRCC1tRqtQohnc/94oNFCGma7nQ6hBAqWZ1PfdM045hbkojwWuvgMxUJYM67d9vVaoX/Rsnvi13kNJkY4zCckN1BbBa3KaXEZDkS1Kpqrq6uECpR2kzTgBMQUTEVLSyQ0pRSf/EXfwHHXVRqaONdLoMvitvoXUFfG0nUZpNN/FKiPkapNRoYX375ZQih7ephGF5eXpRS02gopev1CqcGppx/+ctf/o8//S1jgrE8mYRzGamjsZPWWitZK82L+hxCNPbU999/D+XJp6cnyhKJaRpGUBbQ7wH4i84cNgLgaQAOw/lCKcXixNLyKeP7YPwsOIOztm1baBzFGG9ubi6Xy2Uc0HOKMV4ulzE7wGP+hpEQI/GxsKNyk8k5ADuIVKhK0Ar13s/zGEJcEDBKKWWUE74MQCBuEEKEkrJSV5t927Z/ev+nyzhoreV+319O2FMCKxIKElnrp++RjkC9Gza7yLqstYSk2RiJwQrClWIhBF6o9dZaIfKwJIIOGkHI7K3xVZUrDRz2UkohBeMfR6umaRiGC54yShSciFg9kgt0a7NqzEctuXxkLkgToTGlbO1CyvA7KqKlPCOECPFRxHZJi1HauaJfRoouHoLyy8uLMVNVqb7vAd5SyrK6LaUgwyIE9+QcQo7jhJAF2uOc87qOIXBObTFIJIQoVaVCq4H0gVKVzCqcaZxHQuM4Goq67iMkkQgh4JhQSuG4ygopKZb4QinVWoOKjnYxjIBT8f8hjEopKyWRvizq+D4GxGLwxPGIco5ZVBHRisAFhBRxwoUQYgqiUDtdiDFG5zJZXuqs2BtCeHk5xBirqmGlEc2y+w2licQYU4hSqUhCcF4J3jTVPGcnd0B4rAz20pS9LOy8DNQwLVWMUdR1KkJXAK2UUufzMT8ZIeZ5dsYqkamgSinnwjAM+/1eFQk2ShPWDK7QB+tc5EJ477kU3sdpmjhlpaUhUgxaCymEtRZBmXMeQhqGQVXLTGImk9LyI4Qw0zzOPaWclqHaXE4kQgip6lrAGijFlGARy46vhxDCfr8PIRnjqkrxbBWlIJwSYjTDkIplEMpOUnwFvXPYADgq6qplgntnlnry5uamaZrT6QR4cTmZAnSojYHBCMZzIKYBFDIVjcKrqytf5sSRF9KiVJUKUyalNFuDs3mRXkEDE4dQXdeMraDNhyzWOedcRrRTClVV+ZBFiLwJkDh0zlFCKGNCsBDC8XjM78J5tOKrqrLTTDjEfFwIyONP+/1eKY2DEGVDHixS9X6/N1YXoDm3EDEmg1YHMjBZ3JkYY8EHrB8cLYTEEBhs4pSs+mn0ASNLqPBjSpn/1XXd5TIY47BucRLANpOVaSxEf3AfNpvNw8PDAvviuEX2Q8qkhVKKO5lIIIRQkpuf6RNv60JCHKZ5YJxIKbz3m80mpdwq8973fY+GIue8aRrnAsA4KL4ZH4m1lCVn7DzPV7t9Xdfn/pJSUtYSCvGBWgm5Wm3O57OUa1xeDEQJGRnnXKoaDz9qrZ2dY4w+QgkhuUDRsyGEEJKZX9gvpAzi4ET4VG9ngVGMmQjJ8xZI75buQkrRey/KoQDaoCxm3HBBWUDSBW2xs8EnO5dVxc/nc98PoAS6ImVLSN7OPgbjZhITIZUufiDeZ9YqjmbOeVXVk5kjIRAjJjEpLaLzhNJ5HJVSznnBuNSKc365XGgiTdNqnUfV5nlOiWDrYfuDrMfKOK3WCgkQaFOIh4SQJbAvoo1SSkq9tTm6kugT5dZaqfRkXWJU6YYmQgnVUsXoS41K5nnm8iPhkRX2K57J0uRY0n0c6JTzEKMUQuvs12GsOz4+qbpKLkgpXQxmnI11kksupDNOLMIU+QqpUtUwTHgdBfVjIXhCSIhus94ZYz7//HPGeEgRTQLQV0u7LruJAjqkpSUDDkvW/PUe2xlHAzqUIQTnTNu2KQlKKYl57AAFFSDFPEhYKKJw1ZNlJCIULjywWhwNWOEo70MZpcQ/izFaCz6RwTUgoiuVJQUXCj/6aljAsQzuxBgTyQrOOTMJ+a9SpM5iFp54Fxf2mfhEr4Nz7rKMTFajwoOyvnhEf8LTR021YOjWzZTlkbjgKU2Z8wLYQiklBLha1CfPOGGJMEYSpUIJHkTMAnPcTFYpRRIzsxu8CSTPXvhiiogHtbS6GWNJyvL6SEpRa5U3C6UYg6urar1ep5iw2V9eXoZpLHOIdCmAl0N8KcIRRQmjCOOsiCxdLhfSsYVBU4DvrFdGGV06W0vcXjbOAlsYMy/IzpJv80K3x+mG5h/N+lRZ8oKVUP9pPCRFb8QXc6cFK1m2agiBCZ5ilCRRznwIMSZKSSmqeYwRlOpQuBSsqMln3JmzWEzqaBm1CcWsGy8Fmf/j4+N+v8cm2u/3/+Sv/unz68v3338/90ZVMvkUA7GTr2rOCddKy73mnEdPUiJmmAkhH8YHFC9wcLq+vobAolIRN4gU1zl3PB6dc8/383q90lpHSiil/XjB3wIWzwNSxeJpKaGxPtHQGoYh2DxsiwgfYwwhwY5MKCl5VkBewDup8/hLSmm73ZLSHGKMwceCMaZ1nVIyBlNiCfQ39KpT+UHxsuh7hhSXuA3OlyiONUsyhowX0Anq2HGYN7qS3Qo82RACF9R5Mx6yYSYyJaQuSwBB/kMpRY+cEOKc6bqGcw7tYJyYp9OJc+6Md85N4/TFF59TSp+enoXgQhBKc38URYGU3BhlrU3B0RS6VXM5D99++20IoVuvsGaurjbgJFlrz/2lrRulFOVsmqbvv/9eSgn7pgUIRlFzPL5eXd1cX1+/vr6GhQxOCII2BswJJ9ttA6AWCtHIsoZh4IzsdpuUEn5daoWs4HA4IM3w3k9TbGr+/PT65u6dtTNaj2BA4R9DKzPGyEQW7vPeE8astWaaGGMIO5RSwBZNVcUQzsdjCGjZUsk4tslP9x+Ox9xX3u93bdsiA0dLD0YyCzHfOUcIU6qCdvOShEdKaikwYU2GPhXSnCrDRogn8DnMqruMEhKNmZBCjONYFW/qJSOKMdYqPzfn3Js3b3DXuqkBAe92uxQ8oxz8pNfX19vbNyiHq6oC+95O893dHSHZHA/QGy5gaY8JIY7H4zRkxvSCBa/X60ZXNni0T5CsWusws/X8/LzedCEETijwZVY8RRfErevWiL1LSF8UO733x+OxrlpCCOy+URNJKaumsdYH2IwIwTkHJiCEAEEeUJqX8Wq7Q4YWQthsNsuoq/WeFD9JzvkwDDGSeXZNk2mngOCzjLX3gOlXq1XbrP7Df/gPYMAseHTOT4zhUkhVRUoISTZ4O81UwPKdiTz+Eiil45h5ZpfL0Pdz03x0JEJIKXkg3e+vq0o9PDzwwuQA2lPyWI+xIcSNX//61+/fv4fiEPuERwheMPlEDBNXPo6jDR46S7/73e9ub29TSpfLhSUClSTGGEm5yNpsNjbY4/Eopfzss88Ohz88P1+kJOj6LKmmUvXCQpimiQuKACilBEEH3w4tZpzg7969E0Lcf3gkZRanaRpjp1ioVJBJBMMaEjT4Rjz5uq5pzHiJlJKVFiz+dzQzY4y5zCbZrrrz+Qw4bpqmtm2B/dV1+/3334P9hoTh6upqv98/Pj5CagnxH4fL+dRrRU8neOSQu7s7KfXj4+PUp9Uqsx9SSkt/zma3LUIIWcjp6/X65fmAG0EZBRwc8DErIh51VxtjIsUQv/LeHw4HPN79fs/LDBmgVbTWSB47SCXRZYQQhA78CXpm3vtxHH/88UdIR5bqHlk932w2xlSPj/cAByZrULLG6DnPgkKzs5zJpTrmnL9586aqqkt/wrwIPtAYk1IrZa7r0R6DHik6WwgpyMC5yoqFANzfvXuXUrq/v0/FG4kzqYuZKufcuaxAUtRHSQgBTDuQiEmZDUKaAcydlQZVCGGaJlgUgDkBP0bdNNZa3dTGuzRPXMlGSaGVDrXxzjmH2VbkcoCb+74fhuFqu0M1YUMmReGN4826IiV3uVwAL3DOcbSBI6WUQiWbSkMXW3gpSaRS6G1rrW3wwzBUWm63W+OddFKoomjJiqtV7jVpjb4lEpGlUu2HHpEupQRKJqVUcA6ijVKiELhyjGaMpjIhGGMUQvX9GYcBEDoUsZZZQgihmUuF+Ig31LatMRNjJHvNF8SQECJ4lmFClER7FskcwIJlqYEssPRyU2GIFDCCxUgYEyjhYpldHceRljY+L9/VdQ0484yxutaM5eItxjjPc6WFEmLVdn4VQgiwwUUNgFQAU4ToZsToVbEjI4RY66u6/uQBYvQ+TdMUQ0gkUkI5Y0uymF85BMubGjCuUoqQ6HwEOK6VRM/Hex+8D94DS2XldvAEKGdoIUQfaWLRe2McBkNijIiWus7lMSHElTiCmRSEfllED2SR4wGgiTSlqWqtdUrUOTPPc1XnSQohhHO5i4g3W1q+bhwnNCGw6IUQ63UX8owJnWfDssALCyEIxnWlEk+U0purayHEw8ODc06w0oeJKcTAihSyUur+/j5GDzYrkEfnHERdM9dGKQQgWhSLMiZF0asQhGZjMQAEUG4KzqdEBeNSSuI9Z9LMDmg+4vs0TSlF57LCibUzMERCSKeE99YYhie/dFByFRFCCIHTzGzinAcXg3c2xKZpkMXC/BPQFdqGy//lnBHt2uIAAJfvSURBVDPhOefGTE1V13WNQdqqqjhjbdMg0IDctNlsIknO5heNK3l6esLsOdK+RSINzgnn81lrrbReYFZk83g4CKD5o5QihEhCXIFUlOCfdlBwwqEsxFHkQm72miIFiDwM8TqESAhpmgaGb0JCLJ6aGBjTzhvvvQCnj2Z9W/wuUtXT6cQS2W63UkHmUjLGHu7vkdbEGCllsCMASwVtubqukRzjgYBpiBIIzwQlJa45By6mrQ1SSiEZIRFqGABqU6SAWUMIEMimlISUCCWJkkSJVAriXwgjp9PJ+wj7F1aGVDD5uNvthuGCagHH55INiyzQDIaFiTGCYEuLBARCHy/sDGwNVMLee5qgu5JF3w6Hw8vLy2632+/3JiumZXgdjtWqlj/88EN/Pl7tttvNZrOqGafn00OltVaB0ihUVakU/Ewjq5WjkYYQJmsYpYkyH4OPnrPYtKvcBJJyHEcpeWLUOS9lDa0YKWWMzH+kjuZKEvEKrRdknLQon2Ki2bmgtY7RA1GFx06MEX6AAHBTSoCbF1QuFstZHI4zMMqU5jEXYHVdKaUgbTTP0InToog1VVVOKZxzTdOoOjusKiWBaiJQ5I6FFIRRVOyrtuWUDcPg7byYb0zTlAiNMfJAKq3Xazr2A+fcGIsawBfDg+WsBKCMh/P09HQ6Hb/++mssabw+pGK6WJoUJQ0Af8KW0dGUMC1hCaHJe5BEpVQhOEYpIQQuZPNsCIGfYebJ4rn5wuZegDPEK6y6qqpCzE11gIbGGEIo55wlUloLJIRACU4fGsvU4ZIix0K0JATWiRQjxjAIQs6HDg2llDNeVRWOAJx6OKRQOTjn+nHAK0OmhBoM2wQpky2CV+QTbRBgT5xmmjPCGl5BKFw8Qj5yT2yR0Qd2gDMLQC3eYyqmHIiusszwDsMA21LUhwuW13VdjAF8dgRqLN1QdOqxenMm43PVR4qZcPjEhm5Bw1FFk2KeWTK6/Jn4RU6z96YsfGpWFI1RVzjnQvDe29mMbdtKxQmhKeYWkfMmRk8p8OLImSQijHNPi4U1Z1wpodTKe49H6KMjjnLOBZOEJZrokpYsmRVuEyfaOI7zOOLrtNYhxfyH80xontSBmEClNMqYvu+P5xO814yZGeOgShFCGGXIqZC757yRs48rPEQl5Ha9kVKTlEc48aiRStV1TWjEf2Cp+DLnToo4O34F0QzbJC2CQpxGkiLJSTIGPpb0tQSWsKw3pTQqbYCGskzBuzKUs1wekGtkC3g+OiuS05SIUnqBuXHBUsp5srqSWABlg2dhDeyRRagHBT+gQwRnFHLYoWBidvcf9vv9X//1X0/TJKXSqh4uE0nKGEOIEYqLSvo5BpLm0RIGnwnSNDpZMk3T8/Nz3/dwRfvuh7/Xut7v99Y5xpjgoq5rpufz0F/XVUrJ2jmLgwsBssWy5RH/27bd7XbY+9hrAKrGyQBeWQgf1s3AZ29vb8HYwAMZx3G73barDg1FSimSKEQ/IDXIOVkZZ44xSgkd3uCcMdPMCl0aW8kWIxwmOMra9WrLyjTP0tXDyYhp5YXiCkITqtPD8cV7X1UVYxK6EwUFluglADfEYLUtYs2iTE0t8Mc8j99/3yOOAc3ZbbYhC6D56+u91vLq6gZZhJQc+Pk8j1pvOOfffPPNptG77VWi5De/+c1P9x+sC865pms3mw1OMRxDl8vJiBwesc2ttbyM/eH4u1wuGFR9fn6mlELceZ6MEGKzXcUYfbCb7QqNBJj3eu+HYWhAIB3NOI7b3VpqZYyxPivwLveL3KnSDWcOHYjX19eYPJ4kNpRgHMAigvPhdMTlVVUllKqqigTinSeJ1VWbSA7LZQMSlEUI1ACRIRKF1AV26GiCtm0Liglodyr7FtB1t3o5vJZ60yK/TYxitsla2zRNJbN7WPiEmIn1U+jJhFKutUYGBUQMrL3L0FdK41KXPh8qBcD9Ly/H19fX/X4PpmRbV4JLNPgJIW/evHnz5s1vfvMbcJM3m40ZJ6QfWKj4tN1ux5V8eXlJKdW1xmwrK/SIeZ4nayCV672nn9iKSCml0EopHL6ZREKpEOKrr77abrf/63/5/y8tPVKG05HwICryIjSKv8J2Q105z/NkjHNuvV533RoP0BhDNDj0VAjRtq1S6uXlxVpbVU2kBCgHJokZJUwIUo5InUd/vBBiv98Y454exuvb2hjXtqt5nsDrRAN7HMdu1YCRCiGp7777jhCy2Wx4GYvZ769ZmYAs1VmQUs+z5Tz3CxmjnPPzueecbrfblNLxaJR6ub6+xnPA0QYA7ng8fvbZZ9gp8RPGHpb0PM92nhHu3r9/f3d3t91uMfHJOX9+fvbe397erlYrY6eXl0NXN6RMPtngE6OcZIPiGMn33z9+9dVtCGG1WmNob5oma8xqtQIC3tUdWms///nP9/v1/f2ZsazijWeIlQzlIpQG1CUhxHq93u/3mHpB9tg0zTiOddVyQaERFKLbX20Pr6e+75UWtvygFB3HHjknY9lNCuarWK7QH19OUpwp4zh+/fXXx+MRpSIalq+nM2QuGGPzbA6HgzHu++9/ePfuHS2MydLbk8fjEac2+pEIes4Gzjlku4EPvry8bLf7r7766ve//w4YEX4LxNB5np3z8zx3XWeMO768utkQXXV14zpnjCGMYaAHeOvDwwNjrGmaYjPAvPfIcK6urmD5g4PS2EkpJVVd1SqRcL4MjAqta6DzQrCUeZBpQX5IHqDM+XClGx8s4Agcf977ebYhXFJK6/W6qhprbbte+RQXAivnfJgnIQQNaYGPcC789re/BZKOPWKMqSqFog8Q2VdffbVer//whz9wzpF4jON4PB4JyZpCiWUXnN1u1/f99z/+gI4giiMhRKUbgLyocQiFrzWNRT0CO4jzLJuT02klN3XF+576PJhS0Ops6M0E55GHEOZ53u/3/fkCwBrqqShqysGaaQ2iWOO8vLwsknoIj8i4zudzvalvbm4+fPgAgAtYNmqWqjir4ZQ/HA4hBMaIMVn/UwiB2AVUCmeHJAptCbVXTdPES5znub1rqDGi5wIyHEuFsBRRKQWlNP4EuAmSHuzeaZ4lV1Jmcd5YUBUo42Ap4N87T6AQMg4DpRQiLzgLjTHDNKIHu4T4bvW/c/VnTZYtaXYY5rPv4ewzxZTDHbu6egKa6CZlECRIMFE0vkn8DXrVf5NMehUfKBE0g4EEG40egAK6qrrrDjlERsQZ9+SzHpb7ziTvQ1vXvZGR5+zt/g3rW99aG8SjQg0IMWb6oVIqeG+NR52RUgoFPTHGCCmrqsLMfzbjUigDFyhKIBEBBfsRSxFfWqAIKeelzydFuCNkbQdqrY95rT6VKEY4F0urHMsejYjRehd8WtB8zJGA+1BKQ3QEzDpCtNaMCc5thCibtYSAJG7xeVihtJDCMsChFFxZlz3lUtmkXqrDlBIeF2NMfMFjWnTB8AQKaEucc6Rs2DnnrvMVWDznPKR0PB4BtqaUptL6xmAopVl+dxwppbrSGE+FEMw0I5DVdQ1mB+hhIQRrvPMGrEM8HFd2h5e4QwoXb4HXlzQfvAcNeR4nlD6MMe+jtfNqtRqGAc4tbdtymScBhJDZGmhQvry8cCnqujZmmuc5hUgToZQuEp8oL5TS3vslnRdUK2KxBkuvSinnfd/3LnjMHkIIIaRAgCxnTLNq8rVE7IskMca8t6Ch7XY7Kri11ps84nPcpiLOaL5wNeScpxCtdcYYMc9cCOCbqiy8AyIghITw2f5FyjaTaMapbdsYG+jS4Jyg74XWHuZaQoiQ4uVyYYxo2NyFQChlnL95+/bTp0/G2q+//hoLDd16LZXa7/cwxUYlh7ccig+SLVvDiLDokaZyUCczL0TmWETutNaQd1+giuWqhhAYU6Js/KHrKKM56pyrK0hwUrzKZdjDGKMs4YTggQCYe/fu3dQPf/Znf7be7BBnHx8fOaerVROcCyE8Pz+nhAbSARqAqWZaLM6KkBOiB7oytH/45HAdwafFH5/nEVswTbOa5zlFiq7VByslpzQ/qwWFR0T1IQgh6qZJhDw9PR1PL0xwrbW3zlobQqrrGlfV+4gkhJcSCilJCF52PDJsWlUVo1kF3mf6OY0RsgATY4zLDBB4G4wxq9UOcG1d19999x1yBNJq122UUpRwItn1ep2tudmsGkm6tnq1Xwlmg5tf39SEhhhH7+1ar6W0xk9hPCrOY4rWmGidUDoRQSVlnqZgx+FMCBNCKN1QxoL3SgnG2Gycc4ZBLJPm7W/vPdZNxnG0WH9j1McMstBCfUVLb62Fywf/gmGHmw6j89zvMdC4LOfZ80QUx9dhGFzIMAT6TPR4CN1d1+HDqKKXQsocRQjRCI5cwxizziqR5S8wBzLG1G3DCVnq+5za53GGvS3jLnitdSRUKRUiCSFwJlOhHIZie5h3Dgr0kFI6HA5oCZRSd3d3wEnxFyHrgWGEz7k8NNiALKChkHqaTFWp6D2jpFIyRudcijGmGJSQdh69j5RzyrkUOrG8GkyKkgMeeD75he1IKRVCUsqcs86GlGaP9GmtC1nfXzCSYiCJSilJ8TCgmUGWGf2s8ICMsZzz4HwI2aQhJq8rmVKiLLEEVg7RdYVSZJ7npqmWyAM7e3wEtFsxLpz6rBoBCUvcKeRTdERYF5NSa5lt09D2hLI4Nc9zosVlIWbJAhQJy7ZaXdebzWZpk2BsW1UVlpl4UVNVSq3XG15cE1xRAB+GgZCsJozSE+dzCSyYReFxxRg5ZVIKEhMtqXmJcrxIaiw/vOghCMEpoYyLxNJCJPfFxhAUtkWZKj/GxLjgTdPoCofKxUiTJ4wtTsvRR++tjzFJQcA5R4WwMAMWtItSvlq1MUZrHWWK8ShY1pFfyrkl6+EM0y8GyeM4JkoWYC5Rwplc7BwXnsurV6+q5rNNPGN8gTNseYb0Cx8CJjj2QkIIKWZHXCFUCCGGYMtqHSvsByh4o20jxfyDUkoojdBDKMrL+HnBOBMSP2/z5j6ngmKZgHmGvBljyJmX50oYt2w5wwhQ4CrSwk1eaA0L8oLicCHXL5FhGTAIwWOMzuTL4n0MPinNcdoZ51oIWyAPrStEP5YtKKiUyjlf13WM4Tr0xpi7h/vL5dJt1o+Pn06HE7TOGWPQ/cetD/00a0dYoiwxKc003d0+UEFDSCQmxnPr5Zzb3d48PDyM4yyVIpTe3d31fc9n9vZtRmYXMBGNT1VVsMrB9Oh6vQIi90WYEhMIRHjKBNrX6/V6vZ4xQbHWQqMmhTy+Rf+ytAx4HfgrQtngBojT9/0iUIBOh5e9sQqao0J4762dASLM86x1zWluK4JP3sUYbW6Gy9Ju+sIeALAIwIvD8VkqvsTApbDEHwGbUkoeozfGDMM1JVrg8iyhhjgWis34MEypUL2qqqI0VZUCvwc12PH4EmO8u7vBGQAZ5XB4rqqqbWvN+e3dfp7nYRjW6/U4zD4GsCNRUy0W3yEEqdUCGLEiofDq1Sv4XmC8QSnlnDKWW0Jjp2tvb253IYQPHz68evXq5maH/Ylrf650Y62lKe33e7EWhH5eNMGWLQLLPM9ANq+XoaqEtRYLvofD4dXr+7r4RXPOSUzGuKenFwTtbt0hfi44CwlkCW5CiBDd0g5jtsqKIAMOZyAJvscIblgGLzW/XIIzYVntQTAOTae88JcXs6rT6QQICVGlP19wvLHqtEROa+04jpxTwrPcDaV0vV7jeC+T15QSdFH6yxVJCl8QOPvDm9eHwwEa0JIzXmfVgq+//nocx9/+9rcokNbrddd1imNlZwZjA7k1pYTKDcgA59F7r0Q2nbpcLpGS63Xm/LTt1pzzEPzlchmGoWkaRgV6HHTxbYXVAdP3PRbeEahXq5WP1JY9XUyblq55KTZQrnBBgRcnSq31pAyMMQ/GgzLGnC4XJgTuNdaMMAJZtyu4YvpEifdpEYLPmUshbh8Oh2ZFkK3KgnJty1aoUmoc5uATdPywUA9H4qWmxUlDbA9lxozrj8CyNFNKZR35uq617oUQ8AYvo44JOcVaezqdYsxy1WUVr8KjllL2l0Go5Jwbhunjx4+o9JRS2HXAmVFKcZEVvbiSJLJ+Gn3KG4Q455QSzsnHj5/u729ppNNkhFCEmLatz+fzzc0NZQk/OQzDp0+f6rre7+04zgiJ+Ivwxl9eXtbr9Xa7bdv25fAErACae/gweCyZnSPVIsRc1/Vm2z09Pb1792632+ExHg6H+/t7ziVjsEEiMUaoQCBrz/Ncyfw7uZLee/x1TdP8/d//PXg8qhgRGWMo5VrLaZp2u62UWkqHyuT+/t4Y83w8rFYrY3JViTkNylH0HYyxcRy9/0xTMMY8PT0qVX3//cMCN8cYhchQDEwCAPv0/VkIcTyehmHY729xobDZ07bt09MTIhuimRDCzT6EFOMye0uYcski6YNoAMBqnHvki9vb2xCcnSE0FLGBsVQaXHBKafCp1FeZSoVoAzYuBKyFEM/PT0KrBRnb3d6EEIZhQuqUQjPGzufzAitN03S9Xq/95e7utm3bFOkwDFD/WEZBqLg455fLJUbiXDBmXK/XUsrRjHgdCyRlrd1utwAfrtcrLRhxntXVLYoBxARZPBgQxPpxqOs6UWIGi68piWia3LOD/bPb7T4+fXLB393dQenIFKdlWii2ODw4P/gkKNSnaWKJKKmSD1KIaZqMmaqqQSEEbwYog4E5Z62VjCMaMMYoTch0jLHL5ULz8pz3NgLu8DFoDb68J4RNkwksbuSaEDKa8TL0Xexo8OenQVVVjFFIKYfB+mBpUbAqFU/EBtlSFeGL0dIbs7JHFmPUSunsNh59Icxihta0G1yJBeLEDUTBWtc1wCkcUELI8XiUUoJj5ZwLwWHOgIgZQyA0cq5cWSxdinJRtKRjjCE6XoQasN3MitYeQrwokoXA8nBLEY4pzc0DIm/F2DBedaWklClEjDIWBDnmxZYszSaK9p8xs/eBMCqlBtWXFqX5jBkVTIoWNWrGUtM04zThUXj/Wd9NSmnmGYr1LNvXyP464iZf+iultG4rIQRXEilzoZMvFz58MeRp23YYBh8Sy17weQaOX34+nxdwZMmpldKcMiChNHfGxHsfA/Heu+Dxd61WK1oMi1EQ7/f7lFLf985gGIjl7jHGqLQghMzz7GyomjpGH2Ne8wcdrKqqsc/txO3+xjk3jFfcc5KS4JLntV8fQsCcbXYzFK7xGZ2xWGFGUEaB7r1vmkZrPZm5qWprLRX5naI+wPuSxTcPdTyQQeChIneYYSncceCl1JxzmhghMJdLTbPy3gIj9rHgSnZWUiDuYA2t67rrOFyvV2/mruu26w04jDhsuBog56aUKGe1rlNK1pgF28WM5+HhwbmA6CaEiDE3n6vVKqWw1GohBGMdKQ7O8OvAe0fFgJaSUppSDCHA4jwUdUvkSFb2N3GS8fS01ihJcT1xDRF/EcKQJGLhXON04VPRInqulEohLhKZqNswN7PFpWocx3fv3mEKdTqdum4DVCWlYK3F/jshKVjKGFM6q1VWdU1IulwuEJ5DENNa//KXv9ytN1prxjx4vk9PTz///POf/Mmf/PEf//Hz82G325W2MDEm0NKMYXR+Sim1bQeoHTbccGvEGuZiiiKltHaOkUlZxxj7c7+Ad5Qm7z0Wf1BlyiKBarxvy2I+01mLQCuNY7NaraybXdnHDCG09QrvAlQOjB9pkX+t6zqEPGTCcOXaZ6d7ygBJxHmeQ/CxSNnWdcUYCykCQJnj52j55evD9pnWWkrtnItFWkckp4WcTf/48q4h03ffvK7WWnBFkx/Gc9+Pu1bWNYkdM9NMCBm9ECxYOwiatvt7IatrPyeqYqL9aKCZqLU+Ho+zyTQx1NB46Ri9RO9TSoxzUpTaALVQShPJotWEkO12C0oOej+czKWXyIBdyFvqUK5fEDQEbeS1qqo0zWrp2PjDjAqVgS3+jbSMDEMI1poQQl3X4zz9+3//7+d5/u67b9u2fXh4QPUvhJBScpnFEIch01ikEIyT+/v75+fnv/mrv/6n//SfVlU1zkZSTii1Zo4paa2VrHCMUyHnWpuBNlxkTNoXVQfOGXDPBeJEt4BjhgCCihxHkRfBX8aY1IIxWtX16XSQRL77+b2P6dWrV01Vt6t6HhKloWob6wLlJIaEMTjPZJA8he26zF631mKXA8+fC+WDNbN3zlZVteqaaZrmyWqtUyQxJzuVYoCCx2RNXdfws41Fpt9ap4r6npSSUnI+n4VkC1JJEgshaF0dDoeuW2GQ4JzDlJcX3WFKadeuQgiu0MZTiIzQmFJw3gQL2hQlRHBeVRUoWmjsMZOWZWkOfSwGsZxz4+w0TTF6wWQs82xEUXwd4DgZpOg6xBkpJaHR2UAz25eQMqaNRUwGudg5l1Imr+Fqs7LHsGQ6jNlSUdAGLoYq1jmHGJ6TLyH/q6oX/TC6MvypuZjrop5BdbsMHXG8jTFS6hCN94EyAO6JU+bywlnUWjKhnTOEMCl58IkmqkQW12aExxg54z74FBMESaRcJr4en+1LaCAWiseSR4QQrvggUUojCchZlFJwhEmZ38NTDgVnnhnnFQeOmxVjJCmhQMJ/QjkRUn41y4zKWsuYkIsQKhO4CChO4N5jir0HIYSLbHfB81ohsc4F/9ms0haJEuTlhX6SUmKU82Lqgp4wMb78cAiwFaELSoVMsQx+FmA6JYyyPvt+2yJ6tpCXow+zh4CsZiw0TRPLYpbg+dHlYkYp51xTFPN8DIwkPCj0S+MMLW+GygG9ruTin/2zf/b4+PjDDz/9+OOPWkh4NPngpVZKVdbOHAY7hE2TYYxEGuumiiTg7NngIXQrVB4hwDNWKoWXa4xJNCqlfAgxJYS+xQEJ9QYYnSi9cBhwWe7u7hiXKBRvbm4oTaDCbbfb9Xr9/v37FD4TALMJxzCwYnWDwEsKqxHQNvpqWVQspmmIhdEiuVhOOBimXdeh2zfOUkqMmUhC+vu8EoqMgM+MPUJb1DBQb/eXK+67UooKuQSWlKkwM+c1opb3npCsLEdpWo6rKEs8u92uqprL5bK8SpoiqIiMsc1m85vf/AY2ME2TI952u93v9+/evQvR/ae/+5U5Xf/6r//6j/7Rn9zd3Dar9h9+/EFXDVohfCNbWPnLpcMEDlEU8R//vy828iklPBBCiDGWMXo4PFNKUwq//e3v9vtus9/htDy/fPLeS96eTgfoeC7FQyqcWfzO4/F4d3cXXDwej9gTTZEO4/Duw4fXDw+hOGeQ+JmWhF1AJij2k9BKK65gq4g/4uznqR6llHMG4/Su615eXt69e6eb2lr7zTffEELO57NSCsD3u3fvzuezLm5pWuQNGBgeztaAOxxCqFftarX6m7/51f39/vb21jl3Op3mYaTFuQtlPxAfIQQh0bmYQl4k2u12VVHxrut6tmaplAC5Ap3xPqsiLLs4y17vPM+VrlmCluZpOfAAEDarzhhzPh+11oskyPPzM+HZAwCJRqnKGeucqzljjBFKtM6LNbaw7zMeyiQqPVd2btBn/fAPv2OMrXYbpLaXlxeWsjUO9AFgywacVxbnhhhjVavdbjcMw+l6MsZwTp1zSuWdQmDNjDG8VgR/ECQBg65Wq7ptRzMnlqP3Mj7BJABv8Hq9oiQDa5Uxhu3M/X67HPi+70Mp+z98+MCLYXgqWymUMkRg3GVUF7GY4qbiMb70jLRso8bC/cIqMGPjPM+wcYOb4mZzD5g1LvwVxqSUr17dzdbO87xaNSmlaZratqOUT9ME8IcQMo5jVSspZQxY8Izb7RaoEVjGUsputcbXTymRMmvZ7XaCwxHHScWX4QdS5Ha7VWpEpYEX1/f9er16+/atMQZ6zbd3N3Vdf/jwAeN8uM9h7nI8nBGRkElROHHOd7udlBJwOWPseJxC+PD69WvGiDGmqhpcXoxnqqrSWm+6tRDicrlAhBd5GVBADKTSjXXz5XJ5fn6GlEEISalqu90KIZ4+PgKTQUC+ubnpum4Yrk9PTzioq9UKcgcLFQDQDeeyrut2pQ8vJyEEpQ7C0NC2xpXEDBJwhxAKWYwxdn9/dzweh2GAjMM0TajY9/s9SmtCyM3NDUSopJQuBu+R3Dle36prnp+fl4qLFYYZ8mbf9yE4wVhKASeQl6UBIYTQyrtICJYaed+PKKUEBX+UIGVDoicSCrr0wk7DLwEq2DSNUBJrQ6YI4q3Xax/s9XqVjBMmOOf9cIEmHgZRC7BpjCNf8ITGcbzOPVrFUChlh8PBGPPm4dX5fF6v1+Nsv1wHITRCXIKUJZimabD2ulqtiCHgPH0e/9AIEgvnvGmavu8/fvzoU/TB+0J8BE4C+CgVjilkmhG0Eevqun51d4/BCb5OVVV1rSnlywgqxjher8AoKKVt20rGkbg/fPgQYwwkXYa+reolPkieNToopQ939z7mdhjEbefcdbyGEFKbS24txDzPXEqtdbaIjV8sVOKIQAcT/x5pOxS/L8zlgHEgxjmlYhagyL0HijPOeYhXSmkKhLKsmdt1He5hVVXGWZxm/HtUurhFeFtYxU1lyTRA7I+T4NMy5iWENG27EJHwxPF0AJT05ys4rUvEBJET7xjXDyd4qcnQoksprTfwmnDOIY+q/6XbTxkje0o5LcrLnPOUCBisMUYoCqVi9rIQHDDujjE6F6RkdV2b7JInlCLGmBCcLHuyeBfe++DTNJrL5YIZHYxodF1RmlwM8zAClLF5B1kBa8ZnZmWVZpqmmCg68LquZ2Pw8zykcZ4htRNdtqJOKTsw0GzJlVjJQzZ6znkkn0ncszGqqA2mkPHuvu8rLb33xHpXXHpQOlBKu64LKS41AWqakIlRPATLinVMWhQ5yzYuqpm2beu6xbsAIrDYW+PngYTGstgL0KSqqugdsiamhf4LCQtCiHOGUgrqyoKwpJQoF1LxEIj9LDPNXTG5xufUUnEurZ05l0KIRKPkDIszda3xGbDW7b0/Ho+Es+12O/XXVNa+1us1dEKklD5TFfMinmB02TnAe0F255z3/ThNE6gBzmXzz2mavLer1SoSIHTzNIxLn7PdbHBnlVLw1ogx+hAAUi8yhXgLuAu73Q41E1I7duXwdy2jne12mwGLlBdJ0GJBNzmEAINdBEQ82AXpbusGQ3JUGyklF7ISK6V0GAZjJjBJEfu0tvCYDsFZa1leg0sxsLZthcwUv3/zb/7NMF6nafr+++9RzSBzbLfbSkLDZ8Tn+T/+H/73/7///n/46aefHh4esK4VUiIkZ0SttTXeOJtiWKoxEDoKTJ8rPLygqqpCcN57KTR4FoTGrmtVMXupqoYzjoyiK4mVSedcTAlnLKVESJYkJowKJcd+WK/X681qnmdQRdBd0MJTw20C3x8Tvrqup2lc/ItPpxOh2XyD0cwM9d4ve/eo8EIIxgFfo7itKL+WkIJ0jr8dq8cxZALvqpIkBRrdy4efDu9/89v/UL+62/7xH/3e6ze3ybsojUx9MlNdKyrn5EPSuxRjrQkTIYUpMkaSsy5QJgnJDiFYXIgx3t7ewo8TDzyRgGs7W1PphhaCXowxFK1naCguVF+8/aUvwtPz2W4o4tTlMjfEBXlZMiaaW8ZYiMQ5RwlfMGj8WuBHWld4VhhtYgyD//v8/DxNI4oPrKfhrmEetlrDGHNyziPzpuhW9eqnn376q7/6q4/vP7Rt+0/+yT+x1l4vPeGMUt6uVkhklGAViUC+iRZyHAI4giG+2tPTE4YKJeg5Qgji4Zs3b67XK6LWQmqIxS1TCIEt0dmMgsWurY0LQghEYCHE+Xw24yCEcDEwLgllxk7GTk1bLcNXVELv3r1Dc+uc07pasGySAk1kv99JzqdpcLMhIe423ezsZDwGNpVSgnFCSPSWEDIMPaWfl3lRLwK+wcbxPE+fPn1qVzUhUQhFKSWJKaWGYeAiZ3+lFGMEM9qqqoLILGBSnD0AGWMxC8BTImHhi4EKdD6fdVU55371q1+t19vteoNZrxAihZAImYsZL6ptpRQjfKlhttstELGldMGxQcBByUhoVEoTQuZ5RrQhZUMIJ9wVijc4LChtl24TOQVHMRRZD1S0KNm9D1VVdV2Fvy6W4SuKSwRZViRl0BTBNgdPvsquvPgAcqEaUUqtd8VcNxAalIYZI1OiEpyklHQlCeFMEHD6CGGGWM0qaA5a6ymlLjgtNI2WMAJHwRijEGyFlSBKQgpfQFFZVg+dGwrLBZZFoAsJ5EfmvSeMppRiCJXWKPwQHrXWXArO+TRN8Gd2hXCNx75gtYQQ6+G4hW/HAREirwHLEEI4j6oSnCORSDCFHOd95Jwqpfq+RwDHZ5imSYq892Mi2kWRUtIi54jP0S8kmrlLX3oGkHIMMmjiy7rxQksHLxLZh1IaQrTWsuCXsgGhYOm7SMyKW8sQwjnHuKRfCLUv/x61yhJsUXR1XTf2E+jVKGvrusk0F0rv7u5O/CSlvL+//8Pf/8Pf/e53z8/P8T9gOToF570PkLrinFPCxnGua3kZLiF6LhljREopeVZWsdYOdkopQUECha4QwpcmAgVM8H6htizlDaYIQoi7uztQrfH2z+dzTEwIfjqd9vs9eooQHVwozudz165w6RA8fRHijFloO7u8IHV671er1YLKofOnhb27dNQg+qBGQvJNKVFG27Y9nU65UZIZTkJVjL6pXHCPd4GmgBVSMI4EpZQR6sr6NqA0QOSybFgiHCEy6CJbqZS6Xq/b7VYIhmkZYsVsRkKjEBqzXmw0Iyz44ta+3qxubnfv3r2LMXrrTu70t3/110KrcZ6A2jSrFt/leD5XeRE7J27EHywWoCg6Ho/WWoBEYDOklJSqAJUqJUCdxmFmjHz8eCU8gyOI7Vh5/PDhw+3tLc+8AQuxSzwloGOPHz6uVuubm5unpyfvImPsu++++/D8HjQLXJP1avPy8oISAhyOWJbHcSzxChAZIJjWtNnyB4M/7/3pdLq5uWGMdV3XdCsgmDgqeKdt2+73e/DRSLFmwUddiOrIF4QQANZfffUKf/s4jtM08ZJHEGwBWOB/KiV8ivAmAdMWuPP1eoXCjBISYjtSSqzho1NYEIaffvoJz0Qp5V0+8InB6sCheRFC/Pjjj3VdPz9+klI2TVVVFZQHgNPx0qPxogmGAIh+IZAEpBLk6JQS2ivGGKazuFyMsWnISkpM0aZpXGlDrLWNbsAUppReLlcA5XVdXy6XRfxaqxoYKwpjpVQM5Hg8T5Px3lsbteb7/b6ua+ineb+swTnOs4orhInW6/XpdMKNFoVkjYv56dMnHBjAXti3UEqdTpftNkd7vHfB2HC9omlFBAOWYozRWqPMWwinmK455+DahcwO5O7l5SXGiEe0NGXIpADLQmELAekGx6hkigCydt/3QoibroOsJepbPEP6xarrMAxYdCYhupgVt/BYCCG73U7JCvIjiHUpRiyyr1arumqdc7MZq6oapsl7D1kMREg0s1gmUMWVmhXHiNPp1A+XzWYDOGgYBmAjzrnNZiOEgD4JKqKinfWZAw6U7fvvX8PUtK7rm5sbSvnhcMjLu9OEW78YBak6NwKLngm0+376+Qe0Y6LsYMVCF6hXrXNuPs8ZMZ/Gn3/+GSEORz0WN3hUaEC6Yowp0fV6zUX2w2BMwMMAJXfTNNvtGh912cQF8Rw+B/v9LbDXJWiQommDSdWnT5+u1ysJbL1eB5+0bowx3nNK6fF4PF+OuKf4kPg9zjlCKJ7tMOQaCekMDxM19jzP4zBjQhOiqWtNCHPO6dJoL39ECLHqmtNpIGR6eNh779+//1lKud/fImGJoqAbY+RSzOMUY7y7uyM0nk6nD58etapv7/Y7tcMxXq1WCJ7vf/p5HGeMiJZqWSklg7TWKiFxvBESj8cjjQmCDcE5WpTTrLVCVqEo6KJlNkUEz3q32+2gTbrdbnHfzWBSSnWtOec4G6iFAIakIsaAd7ogioSQ1WoFcht6TO/95XJRPMv6ocyoqsqYGVUYUFbGGE2pbdvL5eK9n4cRTxXTiKaptNKn0ym6XCR46xL5TEFATKi7WgiTQU4Sc2sQSdM0alKbVXsesy6CuI4nwRVj2JfOYp2MppRSpdCEOM5iiJaLxFKQXprREE0MOMWSERpnO0ktKKUxUKVUosQFryo9TROWu4WiIUTvLWAUpcBE8GNvzudzIqGu67GflFLtqsXpPx9P0YemyowzEE0YFYwKkpgQNKXUD0MIiVCOJzhM4/V6lVIK0cRASIpVVdU60S476UGOc92s4dxCGI2e1s2qqipCOeNku2tCCDHl6s1Hx6lglFVKG2cBeAUzo0y03qHM8tl2hpEYXQgkhEiIELzSOqXIuTieXoZ++v7778GNPxwOlGVpFS4YZvBN06QUBKeccYwpkGzAk0oxCsFYIoEkxGhd7aqqct6u16tlgtRQSlwIIZjJaq0Z5yRSkkgixHl/HYe6rpum8sZRTmshpskFH8w8euc263VKiVJZd3D2s5QmpQRjJCWWAnHW4+wO41VrrZSQUjarFtNalB2X/lpVFSV8GrPMFqaOQJY5l5RSVTXox4y1iMtMUMGkMaaqICwbFr6MqIQfXaIEd0NwhWxHCOHCKaJX6w3lghFa1/rp6bGqKka4857E1FQ1oXG1alNKWktrLUmRU+GtE0KQRJNLiSQYN4cQrpcLJtiU0mnMI7XL5QUheLvd9uMQfWCMDePoY04VtizKScadNam4iom6ojQxQWNyQKJTSlJypbqUKKdCCc2p8KoY8lCmlVbrzCyrqqrvx1S6ZRajdbbWKvogGFeqYkxJWQPitHaWUtrZRB+cmUly43jhHJYdLoQwW8OYsD6EIqHOhKu1AsMLLB7kY1F0MBhNnJHovfOGSuVt6LqmPz33l2vdrKY5ck4FJyk6EoLzjCTtQq3raK3V7UoJMc7TPGYF2FrW3ns7O0pppWouqA8hhOB9rKo6hBBc1Aoej65SNaUcRQPmw1JKBEStKy3Vy/CcUmrbboHmGSPX65lz2jTdMAyQUFRK0RQSCZxLGkMlRX86YjC40i0j3Bn//vhx262DcI6ZtmkGn4J33Lqurv63f/5P/rv/9r/9i3/53/3Zf/aPHx4eJuPXm93sY2RqdilKSUWlFQU3WRRwh3NOQqBMKF2Nk7n2493dTSLExyCUTCEppWKyIXguiDXm7/7u1/11/vM///PNpiU0MkYYk+MYrPEhREp5YJQKauzsXN/3l91ux0milAvOQwiU5H1YtMSMscv1agselIoJGHAlSqlzXilNmSCEOO8ZyyrGbdtqKVCv4FSQLIqduBA1V8hPkYS6rgmj4zxprZ210btIklASMdb0V6RDwkNihOrWzuP27vV6u/3bv/qf//6HHz58+OHH3/3qv/izP/72q/t9LTUNjKQ0hiZRqSofx0schPTDPH96+nQ4z3V322zumvX+dr+xPoGBu1qt2qbx3nMWuZa4qsMwOOu4FikQKYQQAkr3lJC2brz30QcmCKUshOCCb9uWMDqZ+fnluNvtVKU/0/RiNGau67qiksXECLUhc0gpTYRRzgWNkXE+mbkfhxijloqkMBkHHsT5eq2qSiqlsUtLknOTEEJVAvZrlJL379+tq+a//j/9V865SEkkaTZWSimrCkXb6ed32+2GMfjapRAsqdLw8uOn/+n/u33+uBX8w1//93/2R1/XUo+M1fXaRqc0TykYY5hULgZBaSj6v0qpEDwqntI5yNOph2oK6iEM3gghTdNg8UWIbGmAIE/K6h9SZPS2Uipw7mPilNeV+Pbbxnvf9/3Ly8s4jlgck1Le3NwIIYZxNNZerlfv/WaziZGeLsc8yopBKSWU1FpZ6wpuRZqmXq1WPgaR4nS9zs4Harquo2wWIaiiMaK1DoFLTfreGGOcN0tb1XAOY8CqqVWlrbeEEMFVInlJ1rsYQgAsIhiPhHpCtdR6pQ+HwzxZMHOttdjjYYL341DrrImRhy6zo5SSSDAiiilxIX784Qe0puNwbZsKuD+ltGoaMN/xGKWQdze34zjmUpXRcZ7wX21ZfieMWeeUUiFFH7xQ3HvPuZZKxRg7vWaM5dUiRjjjIQTKqRY6g6eEjONoJhNjZCBS8czUwzYMlKNYkZAqGiGE0oxvAkFYQPwF106UjPN06a+MMV1JXckUKUbOh8Oh7PRwcr3mOU2KOGmcc6ZZCIIxJqWIMQ7D4Ilz3nHOY+TOeREEp5JRFmPklBHOXAwhRaEFISSwGFisumrBwStVFRCHcM4DSUIqqTR4FbBM1FqRmNB3mXleegPOueSKcxFjlFwSQiijVFDOeWKJCGDrIoTAqeCUM8JBz5BS0kQSSYxnpRpoQE9mDsFtNpsUI2dMQksnUsalsxadXoxRcBpCdgcNISRKUqJwH0kpESKkEJQQ7xypKsS0brVapubTNGqlCaUxRMGEj54RZmc7T0YplWJIKaUQfAiTG6WUhNEYPRPMOy880U09zTNhPKRkveeSx5hiCLpWoEVLJilhlFKWGKMiBhICXFXpgjkyxgQXqO0ZYyE4SgljaZwuouyPU5aW5geNpTEGUBHA0Hmevbd5GyylFKKqcifsvQe7IpOUW/uWfXX31f2rb978xV/8xcvLizXGzjPnfNU1Qggzz36ygXJmqR1mfKr1zSqKQAhJhCcbnbV11XjnCI1cMEJ9IqGq5TAY7OhQKrAhi+yJWgvFv9YaKg1aaxCKn5+f0dkGwplSl8tJadGtW8Bt3vu7uzvOeX+5CqE4l8ZkT+CUkrcuwSqAM2OMrBvOeYo0hMBZNpwoFkxZJl5rfZl759yaspDIbGxd1w4zg7oexzFGcnt7f3g+Cs436+3lelqgIuBrKWTZIoyHKeFVs9rvqjzMUBUhxAWv6+r0+Oi9//bbbwkhx+MxJWp9VJXinJNxAmh1c3Pj/WkZ2aI7/c1v/p5zfn9/v6xjM6pWXUMI8T5WVVO3K8I4l8rHFBIRSl+H8ed3j1VVVXV3uVxo13nn+piYcTWzIcRxnnC5UkqMxLrWUJcGRultOB8vm90abfnxeMw4LOPB+RQip2yaJ0qplHocR5rEze52rmdIIalKv7y8kBC1kNbHdVcNw/B8ON3d32xv9oGkabwaYxQX3kde7EkwvejHoVm1lJKbuz2EgwgP2/UaBx64bT9euWRgnyQaheLWe61UJMxHYozxwb4c5vv7rLFLCZmGGWhgolQ3+nrtKaXGuLbrhBTjMAMFu14GGqmbnRDicrzQSDerTQghpVBJZbwjjFLBYwzWB6xW9ONMCAELUqyYnY13niWihXQxpEg3N7dtU4HUfx0HqSRXcrXZ+CyUT0BsQjqYZ9O2rRLSFgU57CjfVBoBGRSBIvlKUC1rkQXBwZmI3tdKNrqa5zn5ZCeLCNn3I1Dp2UHkUHEuIYeybleca0wfhZIMWnwpNWslKPE+4DSC18IpoyJN0+Sd265XSqmpn6CzHDkxIRIaQwiVbuY0n06ny+XSNl2lm+BT8EkKxhhbteu72wcYPDDJjsfZhWCmacu3Wmiu5G69s9aez+dgB2eCM9Pb1w/Pz8/OGB+j1vr29naajNa670dKWUq0qhrQ/KTUimvB2bpdj+PofYwuSsbBBQ5FBQ+PdLtdO5dBfB8sZcnazFcAIIvIY609n+dxnG9uwu3trTFumqamWYGEhJoklLX1UIjq3nsgXCnlmf00DUKIuq7fvn398vLSj9emKmahMxxuKCHEU49lC+tddPH25p7ds9P1QindbHbv3r1r23rhWyCcOuvyDJLwWMjjMCEIkRzPp26zPp0P58uxqqqYoiBsu12PYy8rnrjzyfZTYpwIygiNghGSQt3UjEfOqVR0GOZVuyaEuGi9c0yyROJ6103DeD6f26ZLkV4vA0msbboQ3fl8JtTHZBlrwLfz3hISoX6KGRtAQ5DN8XyU0oBopZTBOi1kcN7FhLMnhOCEBuswnmxW7TRN5+Px9evX+80+rRPUPLz33ngSyHAZGCObzYYlIrS6jsMwDNMYKSWrllEiSRKMUimqGEy32mAhAEA2Y8yY+XpNZUSkpJSPj2PfX7DUG0JQqtpsdpRSIdjpfIgxjtOpazaRMOujc844l0hgMm9XABvEaPrw/FxXbdd0xpgYvfcWVDFCslirMYZREUNkVAiugg8xkOBTrRWnKXq76TrnzPE4MikSy+I8s7M2+IUqZK0lNMFdEHHG2FzSRxIZYzHF3W7nnEs+0JhIiNvt/unpqWlmDOReXl6C803TWOu1Vow5Eu3h+bmt6lmOqmN1sUYE8Qt9kNZaqIq54EKQWgAT3612nNKvX725jgOKScIoF2LT7ebJTsa1LQshffxwUIpRwb33Nzc3Pobnw8EYskop69uczlF6xUUKiYXUSB2kij4wQqXSImQ7ehTtXElquRSCUoo2J8b46uGNm31KKQZCqWeMKFWDuu5mRyLZb/aAyEYzr1ar63UAok2LkG/fj3ieYI4zxrzxfeyNlBCJQuvnXJAVEYIllqjgPkbKGaGcS+6cY5xf+oExUkYU+8Ph0NZVtF5oYYhjzoukz+cz0cyTdL1ehZQyRdL3Y1VVIUyhiDhTmvcICCx+aNJaUcrqWsI2F6yQmDzMatGos+J2vYgzTONEKa0qhX4ABbRzLoSElRkOI8my9UmLEhzAr7F47OJxL7A6+GiMMSH4wk/RWsPmUrBMQ1iQUMaYtYYW1k8IcfkbQebHCBQfW0jmisCNlhW2iXnkYBmgSQC7gX4hNIwCaDkrSkkhRN/3xlxvb2/3O7JYc5CyTjXPs+QC8RpsLFq2YsEEwTXAI5VSt219OuWqcRzH9+/f3909LBwxfJhFzgmYQiCRUiqUWK/X2lmttZR8GkfvPXRCV6sV9JSlUjAfE8W/CLPN4/E4juN6tVm05BJJSikUykPfg+mA4QzjSFczWBWUZSWWcZzwGPHt4Op+PL6gdEByEkVUFPEaJLuQ8kZwTNk/yjkHBwMotRFC1+u1MxaLeLEIlcBOGucTdEh8gFT8D72Pfd+rKnPnq6padR1mkvic0zwfjsdhmKBghcV2zMfwsmIRpMOCFVjwC985k6Ei3NvzsirmlpzLheGC+TYIXJxzkrhzDnOR3W6H3gA/udvtQgjDMF0ul6rKG69PT09SyrrWHhRpQjCEt0VdFGFls9lggwnjVu990zRK5EqRUmrKhUUdgGAXQqCJpkhJjG1bT8NVKbbbdzEQkhxlfDYTSa7RjbM+JUFIiDE5Z3i+F3EhcJFIY3EyjTEKwp1zT09PWtf39/dg+rOiHY/xPlKXyNZ2CYmhUjVGzVBEst5hYLvMnDHEW61WkEO1yWBRUXHGOf+jP/qjzWZzc3Pz4dMTGENCiNla4ck8z6fTSdRgOwbi3bZt/7M//7O/+B//9f/8b//tP//n/3y3u6GCJwexDiWl8NOcUpaqxKFFwGmahvNsEwGgamErSJatpQnhGBfXdf306Yg+zVgbAmR5cLazx+B6vUIFhjMcQnDOUkqxBshEbngQPCnlPvNzU4oxhHC9XmGaAcJ1jNEXF4WmaVBZOuekYCjuF0JlCCFGQoq3npRSSCaLyEwowp34U77sDMqi+YPBvvdB17Wkq4e3X0dvh+vzaQj/w7/+y5c/+L1XD7dtrQkhJDHAQ87ZyzAcztOHT4fH5yuVq9/7ZS3qHR1NCHx2HiCY1traGV+/rmu4GeCKQYg5lgVz5DKEHSGE9w5B0gW/JBTInjBOYA6GCx6C4JynEFB4LbGLUspEBlZQoPhiwcQ5nycDLo+1dpqmm5sbNAmU0qapwScKzoMQobW+v7lTSjEphmGATjTgFQgyOmtC8OtVR1KQgtVSRdf/6i/+7Q9/92sdbLVbk7V6en7Rm3shNVpA772UEAUKQkgS8/peLKKK4ziCobYsg6M8LVkyU/Lx9MAjAEcG9PCFT4H5IgbsCz8L3wu0UKQkrEHgSEAnB2mUc47lXyjzhBAQFXlRcy5X3sYYT6cT5XmlUWs9zzM4AjFGXRwmMhUoxdVqFZyPMYHjhuiBlIqXQil5eHhAOvPBIiIBAE3pM4vZWvv4+AjNvpeXl8wjYBR/cLPZeOtARwJST2n2Da/rCj+slNrtdsj7dV3f7O/wYRbqSp62MhZjBBWIUOq911oZY4hUCAuIaROs2AsHBHHV+2xmSMvebnmY+K/eFqkxtBwpJGut1pgyZuKGkMwab62hNBNXCSHGzCiiUFszxvAdkcsQ03DeKM8xYZ7ntqmGYZBC4y0LIRRTlDPvA2otxphzlhVVLkaymDiOxEKYRTiFPR2+L8oe5xwU3pBhoXyXF7M4V0IyxlFqZzS2jFJSjD4lax1UWQTjC32M88/6actNWUi1eEFgHRJCFjtKnCgmaJ6ulTOGD8xFXmuNMdu2AIJZHhSaQ1O8N6d5jsW0gGXX3EVYjNhCQENoWuiKZXgsbDGoxAEghFDGonM+OABAEPFEucKlcC7M1jRNQytGJZesIoRUdT3PM5QQo/MhhLpupZ7HcaZUcC5pTXjKG7jOBaVUDClGTylzxnsa0HvEGFOKy4FMRU9jCRpLrE7F0MaXfcGUNbizN9owjNOUN1GQCgGuwcAdJK//63/zf3l6ejq+HP7qL//dx48fhRBNyzjn1plpIk3TCMnmeWZKPD5+Uo2kTFBKrXXJR++9iopRgc0hSIfh8QohlKzaVQ1fzaenwzAMDw8P+AHG2DAM0OXb7/eA1AGqdl2ntAZXDvl6of3yrNpMOeeU0vP5XFUKB3X5BwF2miYIKWQgVTLO+eVyMWYCsQ7Lo7zI3VTFzxxdDEZZYBBzzrnAgr9yRXQbZQMuaYwxRCe4SimyIqPfNI3SYpEkOp2up9Op6zp8HR/CPM9d1202m0t/XcCjaZqwskaKhAWlFMR8WrZOT6cTRv54yKyoByDyIwG9vLzc3Nzc3d399NNPtOzlAPFHUbTQ/BFaSdGQoYnhu6OMQcrz3j8/P79+/Rr6A/M86zqv10Sf+v4CXy/8JMpspSohovXZyx0LH4QQUAjtNHMuUVAh1Jd4RRDeEfPRdCAnLtcT3Sti2jRNT08v3abb7W7QsimlpEzWWkqyWqMxcRwvr17tN5vNbr95fHy8XC4hczW8MeZ4PO52O1ieXq/Dzc1u4ZgjrPV9LyuN5+znqV2tpFRKqet1mOd5lnIcR+dMrSvkiHEcqeCE0peXFzPndhJZL4Tw6dOnqhhdgLF7uVzGcawqDZ44LZRq6BLwstdCCMH++8LZR0iHuApaAMSB8/mM+mRprqWUISRKKXZncYaRm04uYg5kjAEFihTRzrZtpwkuzf8LA140YshrVVXlcjdGIaUPtqoqKSSo8YjVqWxXg5kEcq4Qom3bYR4QV5cq+vWrt845dKDzPA9DOJ36x8fHkB3RBZxU1uvN9XqlNN9BU3QRh2GgMUFMD9VmjBEsS1KI6n3fQ1sDwhFPT0/OuaatQgiMipQSrOd0sYM+n8eUyG63SymdTicMWjChx98SC7n+9vYWyQLBqu/7qqrGMQuCgTgppURbuoBFMUYSFuEye71eL4NfrabNbksC+fHHH3VT47Ljy55OdrNZ4wLSonfHRdZ8X61WvBiVe+/HYY4xbnfrh4eH8/GECMYSwYZiCOHu7s45lxK9v78HuxPBEMcVXeHHjwfB50UnxDmHGSFHwR8WtUMbP/Nns39mjBEUNGNcSjkgIPVgsoK4cTwewRrebDZgGICWgSOHgcpcrJVTSsfj8eHhgRN+vV6xi4zzAxV1Qsj5fLbWffr0Kc9rY6rrum1ymEWHZYwZhmG32+XhTdl0wc1C3gFZlRel7GEYOIdu7Xmex6ZprE2cyRiN93GYpqqqzuczjhDneeNwaRnWq9Xt7W2MUat6u93+9re/HYbBhuzpRUjebUKaXtp/7z2kJhkhyxHinOomC5Evz6dtW+/9fr8vQr4ZQTqfz8gmsSgu4Mtaax8eHhQXZW1FCSE+fHiCtIXMfpjO+4BDKyWf5zkEh4XjEEJiWVB3eVZ93zOa5VOWxpYxJoW8Xq9c5fGYlIoQgiUS/FjXdfub8fmp3940wPoSE6tVW9fBTLMqxgyxyLthNhBpVuQfhsFPRmrVdR1uB1cSoZ4XrTOc+a+//hrbP6hYjHGgY+JWquL4gr8CCTTGmBLF7LCu69evXx+Px59+erfAPkvvWeZAedcfSkGEEBrTMibEd6mqCtIJOGnIaK1YVVXVz2OtdFVVIfJRjIIz6aVIIRJCpGDwzKWJCMFCdJwLLgiEPjmTxgTvbNu2MXlcM47PFCLSWEkJAR0XOkDnnLfQwsukbjwRbF6Akrbb7bigaN1RSXjrCiqXO/yl20GchcwFz8ZHimQjFK+kSok75wREzQi5Xq/H41Epsd5uMps4d0pZoSJ9Nrj/XApPk1l6A5cFnnI1TIpIH2ITUtowDNM0aa1SSr7o27oiKop419Qr9LqI4ND7m+d5jgkce1sE1BJhgFRSCKQ4BoQQCInTVAyFig0RMisqrQIPZU09VPlI4c5FrXUjGyFESgGb0W3d4Ierqpmm6XA8MsaEyKrHtAg4xhiVUtY733ul1Hq9DhErw9HaKUYSQqZVMsYIo3iPVa1xHqC9UFXVw8MDCi/cbWOM99aXdUJfdGwLWZVRSNQLCc3oRQ0WGj3e+5Cicw7iVrGsBoQio0FpIoSA+Q+Fe8DojGYPIqWq/X4fkgVghB0fYwyW1oy14HxBrXscR1XleiifUm8JIbLsxeNiIwfEQNAVl2KL0+LL1DRNSsmYrIPJOZdJEkY5pwjKgPwYhcCrxatcLpctOrBAapCnl7J7v9+jHCE0vhwOtHgE48Ypld2x8aZyV8w5K4zF5d8viLkxhoTIKCWEvDw91pVqqip6m1JSOrkwSpFSSCHOjIjIknWG0EyKC8FprQMNZjaEEGMcjrUQwjgL/ZNf/OIXjAm0B/giaB5wpF0Rt7FZ/GvVNE30aeklKGetbqX8vIWKSgLdGiEkUUJT/r42+Bjj9ma/Xq+p4LvdbpwmLkQjZdu2IISiaqQkskRicKfLebfb/ck//kf/6T/96l//T//jdrv/43/0p9ubu+iSCeFyvTb1ivN84PGR0OForfG98BhRrxMay52yQjLw7BINb99+/eb1N8vAhn4mI0e8wXmeUwqH47MQQkqOlavd7oZzjm5QKiUkA6wppUwxexhKKWlZlA7B4V6Xlp4TQiAFgHoohDBNRgi3tE8mw1ssFfmFqqoSCYSQRYIJLcF6ve77HqPBVBxOnHOXy4VQee1Hsd0Kwb757o9v9g8//P1/HC8Ha/u/+fWnf/+bj5UUy+4Y55LSeZotE1Viul7vv/n+j7/69vcH40IiPsWqrr33L4cnznmltBA8JYJSZsma8zx/KXyfUsLcArceKqWUMgizSim3m33bdBkccVYUwXpUzxkeKjkYjVxICRE7Ftk7zrkzdqE8KKW+++47bCRhyRFvASlDcoEZal3XjoTpeta6cs4FiP0FG1II3lW1rrSydjZ2koR17Wq/3//Dv/vNj3/zH4aXw/p+HxP9vV/+0fbuzgTJJY0xVlpTmqZx5NhriTmAu+KwCqwKIQUvGiAymihVbMFRD6FYZGV1C18fT/VyuUBwCZukvnhroEnb3exDCHVdQyEdsAgyPkZ3yyQbTQVAFkqz5q9QGkoA8zwTknU/rHdo0fGBbXHrsiR3KXncUmQ0Ntsss4P4DFCS5yV0I4oAsXcxRrLoKgJrQH2C4hXzGDTAVVWtuw3SYtu2z9cereDyfBB/EL5QJgJMT8XDsBQYeRe1KwPOJeHqMu8BIMWLFJ3WOhSnX8bgReFijKB+IKGzIseM6iiW9fal9FJKaalTitM0zSaL+aJ+xR8XQvT9lRYSBF59KqvcC0a84Nq0KDYwxuD/DLUjKbL4LA5VSNGYPPiXUgqRVRSMMYJl9VutVSz+M4vgDKV58L/sWwghlloc1QUtes2EEE+i9wZIHKpE0IVYYSQsQDxkvvCQMxCgFC9aE2Dlr9dryKoioJX4yUB99dnBL9e0JE81ElIwNuEYY5RyYwzVGtkhFtWIGKMoshvGGPybfEIIWMA5A6Kk0UrxLyZekK5a7iMeET7kly3HOA2eZxFJ1FeEEC6FtfY69DESyqlLIXEqhKSCJ0ZpTIIyqrW1fhiGGAkTijIxW2eDVzFwzqHxxRi873xKXkpJaN7qDSFIKZaFG1r0fEXZ6OfFN4UXPY25oO00ZcZ9CCGkiECE4h8wKCA57F6QmMnUr+4fXt0/bNebDx8+/N3f/d3Hx/dcCC5EDHQY5q5bpUjnyRNCZmcZE13XcabP/WjmwLkkJJIkda1SoiGgzo+MCcYJVqwopVUljXEvLy+gs3311VfYEBdCHA4HCMjs93v0tN7hbipKONhSyw2llKNFRCi4Xoeua8tMHTE5D89IyiOlcRyVFpihAmCKWcmXL3dwAcFxxjCbd86lEI0J2CDBUYFlsXMuOH97e4tLJIRgnPBEY/LRe6k4ZYlSCqm3eZ7fvHnAaUTUZUV1Z04J4OM0TbhxywKE956QLBe+2WwQ067nC3C6GOPhcMDaIg4tlqyh73Q4HFDqb7fbw+Ewz/PDw8M4jjc3N7/4xS/+9m//FtHg5uaudP6yxEa23W4JS3gRuJf7/Z4Ris9pjNlut4RSIfh2u/34/nEcBwh3xuiszXOm4/EITgwOKlZh8J/O53Ojq5ubm1RkQ4ZhANiBksA5t9/vQSSnlK5Wq/P5jMO/TE0QPeZ51lpKzu00SyW11rxIYKeYOOdv3ryBQhEu9Y8//sgYQy8DWsz1eh2GdHt7e7lc5tFUVUYPQXZ7eXmJ0T88PERKUJfaMSs/IIAjmeJhHg6Hm5ubqq5ijD7FzXr34fGj1/LVq1e/+c1vrLV3d3ehmOb5IqRGaQKIfH9/vzTFuDJIQMuwEBxPaNdk58yUIGCNh7aUvrhW2IWVMivLAd2QVdYhXKgzNObFlBgj5xJI1jAMxgilxPL3Ho9HWIE555Cwnp4ObTvu97d3d3eHw2EyJqRUN9rZvA328PDAGFuEtpYKfwm5GH4gHMkyJo8xXq9XaNQqpWKcX795YGVqyzkPKU2TIeR6vV7BlsU4fyliT6dTXevy6KDaTzBTBKeKFMvW5VHjXYQQYGAeMsWEffXVV7vdLoSfmqa5v78HX9u5gMtV1zWeLUjQOJbL2BXJAmMGoOHIdIgAABDwMRDrlkb4crlQSnDyk43/6Tc/V9Xx7u4WSMg333wDiAopDGXSfr+/vdv/8MMPeALLo6BF9gQ5PYMMhKSUxnGEukjGMVlmHALhrarKxeyc2XUbUAWklIxnse8YY9u2w7VvmsbZgCgHnVjvPRfUOYPBaszK71FrhjlfVcR5AbrhvKG4xXhJCMEJlV+ISACy+BLcqAjJm0OUxhg/fPjw/Px8c3ODd7HdbmGCSmmklAaSuJKNXm3Wu8fHR7xxHD/8zk+fPiE1nE4n4PW22CTwQokDogo2EkZ0KLlTCkopH6xSKoa4oG2Qb1qEffveEEKOIaxBUkwMv4cxtm0zCwTOSTGzfCiiwc3NTSwitLXWy/nBBQf2goe22+3O5/Nu26CenOeZcRZjHMfxeBxXK4eBJZQh8aCWnuV4PDLG2nX36tWr4/GIt1zXtTXeOSeEQr0BYVhGkyseXZEGtCeUUnyMGGNTqxyIZCZOOecAapuhx1gOZyB5D1wIcynGmK7IbreJMT4/P6fZc8632+3j9NEY07Yt+nS8OIwf+mmilOx2u77v729uCSGYwK3XaxfDsvyBpx1jHIbhw4cPyJiEJiFE06ycc4fDgROOHIfrk4pGHB6m97mVo5S/f/+eMfbq1StsaSxVBIQxRfkHc5SqaihNC0DqC1FDCAFnVIx5KKWeJGutn+du193f3E7vR0TLEIO1VnDqjTFSVFJRHkV/tTQlQpK1hjHGGGVMcCbn2V/H2QcmhG/btmkq690wXnGMXNH2Il8wa9Bi1Vos0PAyxldKxUi895xJpRQqG7xmUrbjT6fT+XxGlYmDi8S/+mKLMITg/Yy2IQTHpaA0GWNEI3F0Ukrb7RbII0IzI9Q7z0h2RlKqEqCd2sxyEkIkQgXjGQYNfp5n5wxWxcuUIBV8hBtjPn36dD6fGaP7/R7Gsikl7wNKClw8zKMQgOZ5dt7gsEouIAGjtXbBM8bmyeImSCl9CMuksa41hgyq6L1iqIuKodSydEHPcUyd8SklkkhKyTvgHZk3jYSErn6apnGaOOdaM0IiK4NrXCGtdYyEFYUgmCx57+FIFArFhnMeQ3Zr9N6jxAT4kkLE5GoaRmdsosQ5RynBpcI8jRRVmlQITSGEqmlrXZ1OJ+CwmDc6587nc7NqL5eLEON6vdV15b2HSQtjrOu6EFzf94RmAjIigjFGiuwJDrgnJLGg6hiXee+BNTPG6rqNhReJ8hGHHFdxmSLiFYDPorVWSkpdrJ+911oCBcPEO6U0zy+AU/GXEkaxrxRj9GYOIRDCYkohJIj0Y4dUa4lNqNPptFpVEORlhRsSY9RS4abElCcQGLPP87zZbXGDWLF5ZYx569DDhBBEqVqu1+vHjx+llPDeVZQrrqyx8zQEN67qfd3y9Xr98dOHfhi26zaxyKgwwV76Xlfrpq6Frgkhxky4oWCKxRhdCE1VS63gLQ5wn5CwJIxQVjtZJk7SlPJhRprx3gcXIaUHzhEWnfIigtak6FpiSD6OI+VMc56KGuMiN0YZQ4uIUy0Fh6ftbrs+nU4vL0+cMUHJNYZus/v2+1/89V//9a//4Ucmq6++94TK1XoHwViIGRFCnLWRcyWlFIKkNI9T9EEo7oylLHnnpOSCcUY5YyoR54puA2OMLSsOUmAG8/j4pFWNT2iMOZ0O/QAODsdRxOFB8ceFUEqgJlZKXS8DzqdSyhUTvHkecezz9JuJvu/DFyRl/DCiN2Aaa+12u6+qCuIAIQRjDGckpZRCRNYcrr0QwluHJorXTT/0p9MJ70sIYaJjWk7WUFYnJj3Vv/8n/xstmTFXwdLjh/en86HiXFAyTXBymFc3WlVV2+02+wfG9eSCVM1s/fnwAgXG7XZLSKp1RVm6XkaQj5Zil3M+jjMKggI6xwXOixHb0AKheJqmSjeAA5aYU0A6yjn3xdwMYY0QIoSMKS4dPjJg13XX82WpfuZ5PhwOy/wDYRD3TkqReFyGiN5G55yPIcYg+RJXCTjyQrD9buNmk5z9+PPPf/e3f/tX/5//lz9fH7b7b77+blDs1TffBCZD5JxTzmXfn2N0QjLFRYwkuhBIbnHRdFFKFyXNGD8jbjgbEAQUheAZvrCsQR0GITYUFujnebH4wLnabDYxRmRPxlhda6WEc46QmFKIkaREMWoSQpzPZ/yGJS5lSFRrpM5Q3G6VUlCxwKgPhxPoBiUUzTwWBYSSzrlpGBcgZp7nwU9VU0NBG3voYz+gIQSpTSn1/PyML0KKAi/EAdHeINSjMSaFKL3wBPNfZI3Mjl5uGbooKUVZWlou2vV6BbTNylqSKvanLBMH/IIIhBCEEJfLRSglsmcGYCnKGAvOM8YkF4JlegKJCat5wXtG6KppQTjC2wSJ+3w+M066rkspCKHmeRaSBZ9CCCBwgbBZN/p8yilVfqEfjTkEzbsUlImMHiqlSAqcSeAFSNMhhJSI1J/bUUJyH1LXtZ3twlVEcwhKJslM4cy6Wp4nikn0GwuB4HIxAIsppYzx1WqFJAJga7lTKas2y3mcWBnE4vUBI0sZMiYppffv32OwjcO5rHSklJRinNOUqJQyJI+XywucR8BHthb0IsaItVYrhe8YY+y6rtJNSgmCXfM8r7pOlJUyFPSA2tGT4KEtw5Kl4sexxGZVVWkMXPGnYgyKqbqpnLcw3VVtXicHjAvOi/c+JEJDlFIKyvw8a8rm/sJjs910FSMvw7XSijDho9GtIIS5iYQQLudTpZuxzwCfUvleEEIIYSl5yKVSzlTK234ppeA8I1QJiajIOCWUEUIkF0Rl+0d8Oya44FLk40oRD5cpDiHk5uZmGIa+7xtd/fzzz9v17vb2dh6nYRj+xb/4Fx8/fvzrv/2bcexjJClEZyMlitDAwKyXwpo4D1ZxTTmdh1lWsr8OKSXCEqWZQI1EjIgBwwwc5qXcXQ4G6ueu68B6WyDyVBb1GGMpzs45OzuEOHzNKluxJTRGMZIQUghBcrEUTtvt9vn5GUpiaJVdEW3kXHw59cQhwTHm2dWNOO+ttYnmHUGctwWGwK/C3Kuu65/fv395enrz5g2uNmqPhd0G0x3ANKmIbveXyzRN0KBDEYvgicAFOCMWdVFg96QY5EBiDtcWTdDNzQ1cGe/v7wGuYTwJoBBf4fn5Gd8OyxYvLy+p+LrTYjYVfM4aXUexN5lCNko9HA5d1zEqUE8i11yv17quheK1rLFHDJMoIYSd7OF8QIwys0skrdsV5vR4OGAOghYKkVbM/xbMHXicMeZw6FMi221dF6PFJeYIIZSQUel+uGD2aWaHnqKu67dv3x6Ox+Px6HxOMfjKGMvd3ko8DTMZhEfk8ZTSbrcDLWaz2QCOwRNYr+N6vb5cegRAPFvRdfiom81mdvbx8XG/3//e99/e399/+vQJUq1oOtB1zvNsrU0pUEoX5CsVkhPaDYQpVqx3ltfEC5lu7PvlXy4bujHvZUrkWWtn1JOc0xg8Y8xa773HJ6eRHg4H2B5670NwEDSglHJex5ih6svFIgKbot5jjMNQfBzH6/U6zjOl9ONHu92uZPFKXa/XJDFQprDhhBuEvxqQ1oKKAl/Gf11Urd++fXtzu5PZgcOhBmjbrCeJFQFAe7/97W+dc9vt1qNoyXv9NQRzjTHXcRjHGWWk95FS7lwgxGldE0K8i4Qm72PXbUJISglr7adPn7755hvg6b/5zW+qqmqaJoQE4ufLy8v1el6tVjc3N+gEsXmAN4IXarOavAP2hCeD1NM0zfl8TSmt12s7zafTabvdImmud4Jh58zFm5vm5WX88OF5tdJfffVV27bOmX4cmPhsRGHshIE9LdNHzjmnuRr33gvKUkrTkGFob2zXdVWlnp6eGGOAiQGWcc4jJVTwinGMDVJK63VLCY0xRp8wsHl8fHx4eEBlBYFSBDe8JqWFoGRVN4lxa+3z80EphUeEkw9UjpedWgBBOPbTNN3f34/XHsquS6e/VCyk2LJN02SDRS4AXPvx40fOudYa8oYoTry34ziuVitjzOlwoCm9fnhwzg19H2JsmgZgRZbfnWekIZElwk0oy4skk40opNWhRRnKujPKb0oZxIgPh9OnT5/2+/1yHwkhw2C6jvkYL5dL27bH45FSend3B5LybrcLwcGJ9+XlBSXT5XIhhMDa2thpwb6htY3pCDoChCklq6enJ/DEq6qCFmvf902T08Rms2nbFiEOevEhhLaqlxUHrfV+vwe7ZRmHeG+1rlerFXCJyc5CiIc3rx8fn0hKr169CiG8vJzX62a73QKhRqa21gpJ3rx5AwoCAmauAZTknDtvCcnYZt/31tquW6GF7LrOJ8c5n8tyv/e+qioQIpHim6bZKAnMCi/x5uYmV1KcBWeR1jHumqZpv7tdWhLBGBVyoWZvNpvz4Yyxx+LiiAGhlNLaOaUEJhZOb1VVjImbmxuM8NFoYKjvvV+tmqqqng5P/rOIfKzr+nodQDMHogWyJrqqEAJlhAUVzBiNadtW7fX7n3+MVWRSEEKEtSchpDWXlAJnSnIeUuJcxeQTjZRmdu1q1bQNT4kwNofgGJNLl4iUCYQ7hKC11qoGBNM0TdG1IMuYsRQfcfn/aWH9MMZiUWM0xkCdPRYqMeI4fgleRwiBc4n6xjnDUhIiN7qk7M6AM++cw3/CMVpGlKnY/pxOJ1XcY1Lxbk4pheBho9l2KxBGll+utaaJUErfvHmz2+3gZFXrynrnvYcxy9PTEyF0v9+nmFz5B8WTtZbT7HbIBB+mEeM1YywpouxoTlZtC3IiL7rgGLvt93sp9QJJL00Rzdrwn1lpGTWIwTnHWNYciD7vwmMOtircmVS2P1AilFZHppQSJTGl4BOhmUIvpEQWBxeFUqqEhLHY+Xxe/LJTSohNwVsNDoRggivCqDHueh0wdouRYFCDlrJtOyn53d2NUuLHH37ALeI8l7AvxwPGCcfji9a1EhKzzTKMSowx6/IEDI3KQpzBUjbe9cKaL818oJR2XWetx7UEa1hVWik1DaMsFmreW+ccF4IxBkOtbr12zo3zhIYZJqQgwIayt8s53+/3odBbOOeRJO+DlLKqqvM4hBAISZvNpq5a4yxqSvB6nHOEZBsTbKDgA7ft55EMEjZiH7JOVVWpvFZ09YyxpqpRFmf+F83sD601VFaV1t57TmUlZJiHtm2SH/3c//L7X3zz3dfq78Kvf/OfpNRd01obOWeMi0TyTqUQn53Kucz9TwhhtgZnA8n1er0qVeGeooBTxY6JZnOnTFJLWYEnMMKX/+oxMRN53A3wHfkslDACTjqJCbRr7z1hdL1ex0Csd33fd1WnlArRSUaJsR/f/fzu3bumaR7u7/vzCWD98+HYrNebGN99+mgJ+eUv/xgTrGkaKqXxXdA8AMAKIVSFrOecIxT9J6GUBk+qqopJjOMVxy/GFGJWPiE0IqXxws5zwdzc7fteccm4ELqu7l89YF2dUkooXa1WWinnjPdedGup1TjMNKsMf9YBn+ds9jgMg5QykXwd8qDLLfC38D4yBsE7nSGzohkHNCYWGhEaSJAN8V8vl8tC80TnM0y9UpzGFEmiQqpmdXOzV1oGZ42dvl3d/kJyQuICq3WtGofJ+kAol7pJhBEixtlchzMqMCFECN45Z82UUhJc46Wz4pkJGMJaC2l1UhRRad7a4wW3UoDhbm844oP3ntFM7ddaD0NPCJFMMMarqsYvByqNueBS434JXSkhJReM0ByHDQRhBacM/zL66EiglIQUvfNcKybEPM8VbBBSooms2kZWcjambdvr5VQJOffu//3/+H+eD8c7f2qEvLm/++HDh//8v/4/b+5f/fD0st9/xQlH4qc0RecDoSnRmBLNqAjDo0ASCUVCJxWSGiI/tjvv7u6WGIKWSRQ9d1BdoLbBirCDEAIgCx41odG6WUgJDVY05HnrghDO2OV8Fpw7xiDE1HVdVVWUkK5dZUQpRS4FZUxVmsSIUhhxIxTVYGy6pZS0VMAjUFbicyI34b2cz+e6aodhqOtM62Msb1NN0wSONqw8AN7hly99LwIaInmMMTgPaIDEVDV1npP5YK1NIcpOUEqsMUIIrZQr2yR4kpQwhAhMWBcwkRcuGIIY55xzNo4jp/lgH49H6EchI+c8q1SMfiqUYfSusejtIIpaa/u+/1LD8XA43N/fb7adytZhefQopXR2Xj4tISREl1K25EZkXu4RL1JReSZB6VJIkJiaJovMkDKmJYQSls8SovoCLOIHrLWEJDSfwCwQuECBlUUgFY8RyBRI5Tc3N23b/vTTj+GzIAxHHkfGZFJA6m0YR58lFxX/4sIiWKEYwFOihRhijMHfRcsUHzEN/4QQjJmYyBUjxlvWekRJJALnHOfZVJkxhto1pZTbktWKENK0LdZI8WZjjBAnSYUCKYQgX6zG4ww0TQOG71L4LccMlw5/tmkaZ2wIQbcrrPo553Rd4Vc556KLVVXRSM08V0LM/fkv/vW/It78we9/39RynHomqE9hu9/dv3pFOfP1bhiGefSUjMEzoSohtfNT4TsDWabe+0jSAn3ibCB05PxYZdOqBbRNRbcaZP9l2sQYR5BBaQd8EMyvpmn68aqUqmsdo1+VfzjnxtmXl5enp6fJzMYEThnnYp5MSMGaoGycB6tqVevauNkbX6+alJIZJ0ppXbfW5tkGKdujgPsRUrTWv/vd7xC7jDGgoF4uF6VUDMRa267qFONsTNO2wA7y64sxlSV0YHZobYxxTVMh/qQy0WHU4Vhutp0PWdrIew+wMoQUo0OjhBe9YHxobRbm4Gq1CikuAzwpufe2qpRgmdMUScImOA42NldokfXr+x7Rb/HSwJUHx8IZg/eLih0I6XKDmiYXmWgEUkrb9WaeZxd8okQWTSr8QXRVKEeBdkEcD8wboBiueI0CGgN6wnl2PwNCcb1er0MvBNvtdhh/guUdY2yaZr/fG2PgOnU4HBgVhNJIUtXUEDbBIwXMLYW+hmslq3kcYf8kBLu/v1eqgjoNIjxQPEyI8ZoWegQiJELNd9+9effuPVAGZGRaeKmkSCRhpvv61Vu863mejbU+hNevX5/P5+WCp5QqpR4eHt69exdCOBwOnNKuyzImQgg7G/jo3N/f9/0Fyd0Y06isAbK4SuJUN01jZ2OMiSbr9iIz/vTTT7/5zW8KFJXVopYy2znHuaxr1rZ1LEs5i/NQKtNonD1SbDZZ2aGkReObfbHLOE0TwM2QLFJ53WihFeV8nEfngnN53iOESJHG6GkxzgKuF2PEs11kyqFbCtxqt9tBqQxh+Xw+xxiZEFCMAeKBpil4//j4mCJFPE8pOeet9VJmW1HnHOEED4qmJGWWk8bUR0oJ0Pn9+/ey7M5aa3Xd8jLMruvEGHt6ekI9hjOz3a4XShn8tDjn5/PFxcQYwaInBAPruu77C15fpi94jzGVlLJpVvM8Xy497hGqO+99ShT0T0op+HwxRpwuRJ65+AkDaw55l59iL2S1WqGX/19tFWitr9crKFlKZwyHU/AARucImHnNqgU5hjE2W8MY45QdDmcEMUTRBfMilAPgXnXrlNLx5XA4mLdvt21Vc06ByJ/PZ5xYXjSXlFLjONa1xt+CORO0iSIJeFwQOcz1vA1VVRnjhuGKnnrsw6tX9ymleRhTSsmHQJyoG8pFpNnfqK5r3Kn9fk8pnUZj5uwTvoiNAKNfSNOsuOyijv3222/fvftwOByMMV9//fV+vyeEMCrmeUYiYIztb29BvgwhEBoZFdN4PZ9+evv2LaXUzrPknBIiGHMhbLru/v7+6enp+fnUdbXWWkodQoIcyna7nec5BFQj+fPgHg3DpFXtgzXGppSmaRLis0BlScQEtNfNZoOkZt1MubwMPRl6hLKmqZD0wZADA32e5364sGKxi9+PQb6UAiRC4KfTNH333ffee2jGhhA22w50oru7O0xesUSLhdr1ev39999/+vTJOLdZrznnl6E/Ho9QI8HYiRSNzePxeL1eN5tOCOE8A9EY2QfBcL1uvvrqK0DhTdMcj0etddu2n54+fvjwAZ5GWshhnlC3s7LLJYTw3jESGWOQTzxfr0XAhBtjgvOoovvz5cUYMGNwAlNKVHAEKxwVzEh8ir7vUYQIIV69epUifXl5Qau12WwmaDRRBuo9smHbtvf39ykl7ECXkjjbR4cQYCDcNCtCCHR1cCBxjxDV88Hb75eSG8jytlvHGO/u7hDqMdjAxA5A0zAMIYWuqlbr9v3l47/9q3+3TZuYQt00uDWCsfHVw1fn0+RCINgM6o1ziXParFYpBevmGLDgxryLWXAgRkIJvo+UkjMZY2RUoJsKIYzjTAjRqkZf4Vw+2TFzfDi6FyUrFNCEJdT31uWp8ps3b/AuEXqAayxwMH4tMMplfk7LxnQoNvRLbyaFJCS3QwCr8RxBwAEiiQmVtXa1WgmR+X3QdGNFAhJfAdMJQggjdOnQ8DGccylzTzgqD4gJtk23lNcxRsooI5RL6WOgPBu7Z26UT/ifKCvBUCApFmYQQbHetpm1ZIqM9VLk4cfwPPGOIgnGmEgKeURKlAKYJwuh8OS32621EUe/7y+gB+b6kmSPURxHa2cw2JfGAF5M+S340G5aIFkppXEcq6pKNA7jyIuiQtu2UujJzKA/43shxcqiytK27cvL0+V0NsZQQpallVevXsUYuRCEMCQMIcQUHGMZdZqmiZCIL4hMD4kuIUTwCZmV0hRCHOdx6dbwdjC+jpFsNhv8T8zDI/lMBIgxlhXg7KiGIgbzz2mahmGCyzP4ccNwhcQPCtmqao7Ho1IKq9BfIoN4d0iT1+uVMApk2XuLssCYkXKRUponq7TGVJ8xEkIgLH3Gv4xZsPXT6bTebsBPx9PAmr9SMmXFcyE4R5IGeEQoRTRpV20iZL/X5/Ph8HI4h+HDezkOh3cf3tNkgx28ICQwnpSgKRBGYggxGJOp/ajw+n5cNS1OPnA6gPK7m1uacjWDvgsfANdcSskYMUVqwxgzTdN6tcnoGKNaonKNeOYo98HTQVaDFxwhJMbM0zSLWJjUiJXo0IK3nHOplTTy22+/xcbD9uaWEDKO/W2M1Wr19bff3d2/ErpSqpqt0bqKUda6sm5OKcGphlKKZbdxmJdPPs2zEMIYSylltLperzH5GJ2UMiUipaSEx5hVjHC6bm9v0bjiajRNozXshgO+5rrb4uLgsuDMEEIoZzc3NyEEyK0gpSmlQmiRzvGRuODQdYkxYrMVzXCh4gb0gefzue/77W63UONRidIi6bMcXVwH7z1KB1uEpCvFQkiMiXkcGeN109iY3OwoSYRrx0I/GkpTVVWJEh+JTrWjxISZEGZTdM6CBJEiffv27Xa7hS34zX6LC9utOuRp/I0YumAtF5QZQggh2SlRKeV94lxM02ScVUVyFxe/bVtrpvV6DXCNc973V2wvQigpxriMOvDwr9erlKKu62HobVmnXSZ2mMM55wAELy2lFhmxijFKrRihcxiEyARVKXnTVNdxMMYcnLHTfJrmy+G02+3OL89MyfV+P6e0fvP64fd+8TyMTNUpUc6Yncdtt1KaPz09ee85l5HQSuhl7BGLmDs657ko8QH7wA80TRtChCYAPuFSNyO5QFuNMZbdlttqnucIfnWupAkIcZQxYA1fttMppWU+ATcPNAmoIKfRnM9n3FlWNAoQbKWSgDzoF1vkS6mEEtZ7T+fJGMMpM8YMwzAPY2L01atX3vunlxcAx8aYRMmyEYlfArIJTjjqAbSUy2EGEiHLhhYhJBUSK9471EidN8GnutKcc2u81BJVaQyEsYw0ATs7Ho91XSw+nMv9khCEkKaptdaX0xmYVFVVbbuarUEjHWOklABKxp4Bz6vEHKNolkU/TSzKWmhf8bpBUsONqKqGMTbPtq5rSjigcM65riQW/XRxYKfFmQP1FSlc1BACvOgyaBgialNIUe33eyEySS2JjKpTSmKRSgO/I8YYArxjA345ywOSPDxYeOjIxcgsyOmYny3EOu/DglygWFdKCc7NPCNYGWME40uWIYVfubTrqOXu7+8Zo/M844EXp8Hc/EOgNsYYSQohpJBFdRgTDlvJMdsdI2yiOl8GVLhQ177HXTifzzhXeLwkImp9VkUDCQORBP3hQgUAPlXXFWMMe5FI6JRkxGccx+Px+A+//XvO+W632263FPpOxgohCOXOBsk4JUko/uHnn/7uP/z7u+1quGn3zT0V/ocf/t4GW7PvrnwYx1Hf/tF+f7vfvX0+HJ0Nzk3TMLmYSGJCSM5zryJR0fnAC4lBFXkWlKBLJ8OLPGsGNShZyJvLqaOF+RhjxNLY09MTpXS9Xrtg3759KxhHlkRlGGPSUu92+xDi09MTBvOMMUI4I3SeZyW4lFoyIZm0yQ7DsNlsuMjahcO1DylfNJyl0+mEd4edlWVt1jn36tWr3//93/+P//E/IgIcD2eEEUR4a8zROYC/hJD0haSSyBbojHOOtTytpXOuyDFVTSNjjMMwKA3O0VxuSljSh9YaCDv0fJdjzClLLHLKAA1wKV5eXqZpevXqHvXkarUy00xIVEqFlOO/1pptNuM4Xi6XrutQaCERYCcmhCzEJ7XGNQc2hO+CQIHxNimU1Vj4gMiwddt0m3Xf93A+BGtns9ngB7LNRlne+nIhD6EP3YEvAuUvLy/39/dVVWHcPs/zPBq0yowxQtIiFpwIgYR0VVWcS2MtyF/eRdRsqH5Llo9KJe+i4Ont27c//fSTtVZwNY6j7KoYSYxxv9+jM8V5sNbe3Ny8e/cO6fLx8fGrr76yxf8A+WW1Wt3f34EOjxSTUsIG2/F4XAL1ZrPBfiE444vCwM3tDlgezl5d113bAuPjnKdCppFS7re70+kkGAdVHA8WqQpb21XVYOIF3owxJgRmjXHOMcE/fPjApEiROucoSyAQQE0VhXosqvGQ6g4hDMMksj4V4VwuYC5j4nrt27Ze9lF4EZ1AmOWMobQghHAldVVRwfdSp5Reno/IQYRkoV5CIj4tflW32mgpRucW8e7C9M8ohDEGuzvYnU1lc3pZf3x4eN00zV/+5V/WbcsYu7vbt20LJOtyuUTvvfcpUiwuqCJntF6v8a3R4mV+ZV2fz+dPj4evv36ri3Y2quLj8fj111/jDMyTNeP0/PyM91tVClRTkv2ZZNu2nBJcn67rxnFGPPE+hURiJF1XUcrbtkaQDCHN86C11loyxupaYWS+FHvOuePxeLlcTFGbdC4gNaBXen5+Hke73695UUtbcIZlDaJ0uxozBpvVS4i1FpN+prUQAjRbFGOU0nmaaWKbzebt27c//PCOMQaXWmMCpkp4HV3XVbECD3fZUsL/TCRJKQmNCAt3d3fj+HNKiTGSxc12291udzgcPn78BBFnzvl6vcYfx1QY0A1STyBBCHE6ndbrddM0p9MpOF/pxhhDKd9sdkIwmDriH2zhq6L1CnDg5uYGoKS1dhzm4FOMAQM/Siln0sxY3mqdc95HxtgwDIwJ50Lbtghu82znOaP51roY47rblqqsen5+dtauOo39hq7rrter1s3UT1rr06l///79w8ODs+Hl+biUJdZ4Rl3XdMNlSj7JWrrMrdEpUSG41vXpdJISZRHkkhFRo9ZS8zr4dLlclg1IzFQYE4yxP/zDP4A+Hil7DIAwWWGBpJSGIWDQguKEEFLV6uZ299NPP4UQxnGsZCWE4FK6EHBxkNkRE07Hy93tw+3t7el0WmAZQghSDLL/sueEW/bhwweElMP5JCgb5mkZV6Omwnle0lAoG72EkOfnZ/S5IMVDyWQaTduKEILW+s2bNwvXG4fKGyt0JiehHQAFRykVnQ/BGUOnaVB1RX0SglvvhBBgHa3X60/DiGIVbGLUbJGShUWOAxxIKlcsCq4o5/NkKaXYsrper4fnZ1TmLoa6bpElrbU0UjxSVAiAd0BCwnVYwCXwLQC444vc39/jaiMvoCt5eHgwxvT92OhqmibGBOcG8wCl1H6/v7+/5Zxjs79pmjnM8zzXvFqv18+fnqZ5UlrM0yQrHUIQv/f92xhoXRNzmihJPoQQg1ZtpIQRHkiSQlMJpg/Rug5+zMyLkF1oKOGovFOhT2JoljM3nChCtgVArcyYiLj6LL97/AdCiIAnaYw46OguUAnRIkmB7IIjsvQMBW7OC4nI+j7LWcCKJKaUBOM4xHOR0MYKpyheOhg4oJpnjMHxtmlqwijGDrGswHjvE6Gk0LpriF55iJDkQL9er1nZckXRhjobDkUhhERzxwu+LUnMu6yeE4teBxfUuWS9g9D2Mv8fx9EYGyFUVHgiAKl5lmx2S9VujPERin4Jf2Ndf4ZattvtbMw0TYwpY+bVahWC++mnn6qqev36tTEOUrx4MsBoYvR4bjKLgZJYFirbtvXWSSm54M45yGOg3qIxgfdU13WKFGUBSiLEEexH4J1ibmyt7bqOEoKx7e3trdYaWAljYpFYXXCBEEIILktJ5jHBZ7UWzgW2VLz3hDCpVQhBVxVNxBeTOikl5xIEIqXU4XBAFlwgGzzA/X5PaXp+fgbnAvB6WW6t8CjAxcB7wQ8IIWjKhn6UUjBfqiaX5pzzaTJSplS2etHVoMPknNdt41xomma3LfaMjHlvMUPDgJ1xwsq9AHzsnIPKOeZXJOKEE1LY+rTsDVBKfSEm4NPaGGJKiYTHxw//6A+/Ox9ePr7/gXCSUni+HJ5TULK+vf2mkq3xPkSXUhqHmTBa17XQCkaU0QdCiJS8rtuqqgijwjsslUP0LaXEBPdTmEeDtgpqD5hRJ0qY4ITR2WaZy5BlecnSvcNTFYkQnQmllDLW9z2JqapzX4Qw4mxwwYtiXiE4nabpN7/5zc26efv2LVq+GMjhdJRSvnr91gYvpVyvt9frNVGyXq8ZFYQQTjPrCiA+Yq4s2xhIWrYI9TDGYiKUUsEFZA2d8977GLwQijEmVSVli2UCY0zwPKT8B7FQkkjImb6oN1przTzXteaF9V/XjS2Gb7IsieM6wNuHUhoTXYpvlFAhhBiCy+E61HWNETEavAyZxYilJwyEETpwLFF7AWEHMwjvpa6ENWkYBs4E42yaB+tym0oIoZSESJyzVd1WVRO8t5FRWbe6naapv46c80Y3WE0FOy/GoJSyxs9mlFJeLud5Nku6xZnebtfDMBUIjy7BEFUjhlJQdFm1axTHQCsoIVrLaZoA1iPvKqXO1ytKCjyKYMPPP//8zTdf8y+kJFzR6/TFOQFhDecQAQTjK2utc3mqlEIMMRJCrPeRRRIThbeStVLJ6DxnzKbEGPvuu+8qqez5x9uvv9ntdv/ov/jPY9Wk2a/qthKahtjWFeecCt50K+ecs5FxifgQY1w2TFerlWDser0yIUKRr0FzuN/vpVQF0cucRJRHoJvFIm2Br2aMiSnDtUiC4CzYIm6jILtclK8ZYySlzWaDwIXwAmAU3X7wUKmicBkihHDKgPKHVPSaymZfDlZFTB/fBbySqtY+WFRsXEk0q4jJ0zRN06SUrJTmxb51mSLv9/tYrOpw2kMZZpNiK4RLRylVFZbufdM0b9++tkW3nZIMBuUqPFKSGGQMWKFxCSGgVrTsZCCLVU0DkvKXACtj7P3791wKJBFKaUqxnK6sYYdIjhpxKak550AoOOewSFVKD0PPOYcWGynb8TEQUEdRPNCirbzd7vv+morD0oL7LDA95zx4h2eolJZKLBVFSgn7/sBYxWdLwKwJTr6g2C8EAl6WsYQQIcTyRzJBwccAyxpCCDaKUkrgDLHM+8s7W0IIoeQwjlMRCgepxHtnyiwWBzX3t86GFFH+cc5B3gwh7zyKItQTilgZ8nv+IjyllEC780VEO2QAiGXIOEbnXPTh+fm5qlt8HayDjOOIVQz8flcm9+hkxnG0xgDgrquWEBKTd8b2fY+9S6UUDDlx9VAwc5nnQ+gcZiFfvXoNXNJ61zQNgVXdZscpCyRZM0vO1pvd/cNrP13Gyfz9734i0cVIhah++OHdz+8/des2jL/13m42u8267Vbby3U4n3tnMfDiUup5nqd5ZgWW4jwbii5zGhxLHBKc8FgMwDnn1mdTVvxDCIFvH0L08mDx23DBjTGBcc45Vrn/5b/8l6fTGZH29evXNzc3P/zwg7XWmSxvXakqkqQE2a63iUZrZ6obM81MUJq9MWfcPhT8SI7IdPgbv2T6f/r0CXB2Xde66KTjNFYaiplDs6rxxdNiNssY0iijAvOY4/GIJI6/KBthxSilTCQfuYeHB0opmG60GImLsqANEsyCROM541TM1nDOp2kADHS5XGKMkgugySgPpJTXYRBCgCOMo0gLTZUQ4ssSvTGGlMqhresvO7XtdjtN0+FwWK/X+CIodFnZ9UY4wiQGgRRPD3UFhC+Ox6OUsgQQDl3IAl8ybMW9evXq4eHhL//yL5eBH2pvRjkhRAkZUhyGEcnduXB3c+ucG8cZiA8utZQSSsRgZp1OB5TuSEZeRiw3gJxxuVysJUIyxobj8YiPilDDOVdCVkpDFRDtGKaJeMLLgBY9FGNst9uZQgwHYetwOOAnbfEfe3p62mw2OOEogUAuuVwuIFDP84znLIRIZTCz6dZL/grOb3ZbpTY//vhjJRXnnNGUUgL4+9VXXwkhMJyOkSFxkMy/pLqqPn78mEjYbDZY5EcCxbkCVvVlbAwhpEQYy+wivEdAJDrruuYqFCQGIB3OuePljOYX/x4EHcYYAMEY4+V6KsE2Tx8X6IQUMz3g4Mu/T0V8KcaYEsXO0HLklmnoL3/5h9vtdrPZPB8OaH9eXl6QE5VSDq7RUqEUcUUqB4AO6h/waZRSXdehCUWdieIE+7hSaAzgMU54fn42Nu12qxDCNF055xh1gx2y3W4PT59o8fha0ge+rFJss9kt3pvAjKbJeO+V2kgpIaa01DNCCMwgMTpaHhQyF5D3ebbefy7tUJUBhMJ1ywYMIVBKT4dD1TRa18iwuOCcUKbUy8sLhvTH45Fwcnt7m66p70eRvW1J262wax6/YAfmwkCKYRq11ozQpbWhlDofKaW8EKe8c/f3N2ivkPgulwve4DxbXN5pmiD1MI49QhY0gqtaksQkF3h07969u7297boOgzrOOfoC59x2u2UkMiZK35AtdlPZNzofjpM1dV1Xurm5EQCIN5vNNE3wjl6tVuiPcJBCSPOc1XVoccaKMf7ud7/DvDAGcj5dQ7HQ2G63+GEp9GTNOL6EEPp+vL3dV7I6n89dVyMm3N7etm376dOnVNwskar2+y3Lnk/aOUMphXYcBAOUUjESBBx8bJztec4z9devX//8888xRhg+Xa9XyrPoPHRdIBHGOcdJQDR4fn5mjMDBEsfJGPPx8fDNN/doD4UQjAoXwoL2CCEYJ1Bf5JyvVqtf//rXIP7j0knGLaWgPBpjoCwK6h7EnaCqASRqmiZGBWr4WCStlrElYimaRMoSLAHxWoG3zvN8uVy0qh8fHxGsENYANGdy52hXmxZ/IygFjFBckCg8sFrnXNU2eS17JkKIh7v7LNKiFIIAtEARUftzbk/ANyVlAb3ruv464osguSshovfn89m5LN1jw7zQDjjnwYanp6e6rqFku8DK8zypso8IUxCg/NfruW07xtjr16/3+/08z+/fv4fF2uFwSikwyWpV32x3IJuGkDms6AFBAKc0FYyCCSr689hP48TGpm4aVo1TL4sfqeCJ/O6Hf6jr9nQ87PavmrZSlWZUhUSnaUo0dl2LoDDPNsZ53akYi2x/WR4BTocchgoej9U5N08TY0yILCUs89JcSsXjHjGCi6LcJASKNgwPUf0v5FMME5bZBXIJerB5HmMJyjZbbeQ/mFIQQsQYpmkSWqAk6vs+Jaq1Al3LFqe+hWDL80ojHcdRSq4qjRApy14wY8zOYAdjYaQKIWDkwynDfkdd1yFkYjIw9Ny0h0xxAjiLl3c6XqSUuq6cc3Y2+MlxHJ3nBTdn8zgh2l4uF2ttjERXFV42LhKGjWUqxZzzzrlEozGGS9E0jXPGzPPy7ng21/Kk4A74VUqph4cHAKkp5bYK72tBXWOMEKuVUkJOC68GwuSokCJJkDvADISEKITo+/7jx48ksc1mk2j2c8eVwyVnQAkJQREPkhFGqeC4XfueUiplBI8kFKcUFCEL3y34BGVwNPmHw0EKvd1ueTFBrnUtixoa8pxg/ObmDq0gTgKcHHz5B/fKOffx40djzOl00FojOCJSLGJzCNDAIDIrEBWPsc5g3VUxlrc1wewI1rRtV1XVNOZZNGGweZ0w1PHOWetTSrBjSnmITTnnzmQxDWPmzXZLCMFqUsE3SYxxGIbg8jp8EehLrKwq499fyp7gNE2n+bzarF2Yh3HYbDavX7+e+yOjcZh6zsmnw/OHH39Mid/fP1LRPbz6bvfmu5iS0oJQbrwjiTEhaEqRBM6pd26ahqWjDikpWYG0juoHMRSlBprDvLPpHNokO7uvvvpKFUMtVXSf8QpQROJf0mKQTWKmmjJCSUxKqzGNMSb8kpRSU9UY/9BETi8HTmi77tbd9uOnj1rX3Wa3Xq+td9frtR8mHxJjSUo5DvP1ehVMSikZJ9frFXZ5AE3ADWFF/dxBu1kIkniMKUQDX6AYIyFMCI3Iw7hY4DPg3UJJxrj3frVqGGMx+a7r+r6Hrj069kprKXkemaY8q3vz5o21FlALmluc4YywCAXPFixwXS4X7xzMrMMXdoXou4a+r5sGjxR3BMdjwTJwu/H/nM/neZ6xvieEOD0/5c5c0JgYW/Txy3Wr66brOkbo9dxzznW9dt6M09T3PcYnwzD0w8U6i54kOIeO5Xq9bjabebKQskU2xRsfx3EcJzR7uESmqP2iHsWDQieAxwjQJ8U4jmnZJVRKoyaYrMHPoLzGjmr6gsCywKAheExGcd/RKxJCgD7jVBtnY4xCcOdco9rZzVrrFGIkhPO8XUEIISEyQpnQMx0pZ48vz3MK+2+++/0/+/M//dM/fbqcXwbjGN/Xre0nary387mfVK2894wKrWvno/cGi5YLfLNqmlTI1+fr1RRLdBwMVGZoJJSSeNEQGoLIV/y82KExX0FvuUyaSeEZ5Q4hBCDLCE0kMUoYpWFJf7gvmYFIhZTy5XhAK5tSYjQxKgDBoxLAtWqa1lrrvYs+sCJLJ4SgzoJGQWjcdmtS9AdxaIEvAPWodbXAnUivOLT4ahhsY0BIv3BEAEViuSA8CwXMKclYhCZitKHw/qzxnKcFQkVh+uXYcvlPgMKvw0AIYYz2fQ+2+zJQx4YspuwhhPP5pJQK3gOsXLLkoukPKArzTlwNURj38zzFQLCoG0JglBESvQ/GWEzaUA4lEoBMMZbZRkvex1vDV2ACYhQkxkjKQCXGSGmmvSx0TuygrNd5TY0xFn2MeRssIVAsA5IQQowJZbQrTOF5nqXOu1BKKVSDlBJX9sbwUqy1IcWmaXzxN1v4GoKxxJgtJorII8M04nigcMXGPaXU+zzLnItNAiqN5ZH24yCEkFxYa0MwKSWHUk1kL2jOeYyeFzUbNDaksE6892i08A9jzMfPEyBals3X6zWKpDx1poxIqaq8uAA1QC5F3TbudF64RawsbGmtu26NW8Y57+qKEFLVddd1JmAaxBRvXs5nXbff/P4vz8fDD59eSAxC0vV61dbtbGbq6PHRUfGxP80xprbbKNnUbVvplbXeOC+EurlR6/V6mmdSFl9ws1BLkCJziXAN2Air98vGrlByQfxjZugHhPSu6zB0RBRFvpO6maaJkYy1dV331VdfDcPw7bffPbx+9fLygkb6/c/vPn78iCKwzl7EJEYfQlitVk1bEU5fjs/WGiaZNU4IwZnkLOMaCDtIHOoLd1NX7DfAXgc9om3b29tbkOPwUUmkh8OprhRCJbRT0LN55ymlbdPFGDmXQuCVCWtnQojSehxHyipSdAYKNM9RVaaUoL6FD4lHqoSUlRRC9P0F/UuiRCnx1Vdfaa3BPPXeoy7CuJtz3vc9E4JETynBvtH5fEbEAy0A12e73e52O1ssLiulUtExA4zLGPv67VchhL7vCWFcMQjH49bA+A7AB6V0u932l2twvtYV5VmPBSDIcjswRgKTtKlXjIq7uzsciT/4gz8QQjw+Po5jj4DMSAImOE55T+7p6WyMbesGsAiKsa6opUdKIiXXYUrhs64RHOf6y8AYe/fT+3GeUiLAlodh2O/3menmPUKTEnIYhh9++OH7X/weJjrgMIJ67L0Hhfn5+TmEcHd313Xder1+fHwEhouTD7wStvO8+IHP84w139mMS/MohPjqq69Op9M8z4nSEEKtdcjC9Mo5h4eMZHH/6kEIprXGtvW6aznn82wZYwDFaDaJSkgZszXX6/j2mzecCSFEUzWrukFBQsseG8gEqBMwWkBWRSkOuI0QgtWNudj/SCnhyL108csAYwGOrbXTNE2TAZ0LP2mt7dYtWteffnqH97jutpRSPCv5hcM8jnSMsWlWXddBNWLZsBmGOYQn7CHN8/yv/tW/Ah0HyRqPHds/2+32/c8/T9O021Uo/PAPuqSlnrRDrpdOp9N6tfrFL743RdF7v99jwOmcy5eUMcXVq1evsCvDmJCSokQEEa2ua2+yG3zBf2vYaFWVdjE7zuG7rNqspc6yrt3kvdVCb7ruMvSIGGArA33GZgyQWefcer3ebrcvnx7XbePqvB+J4Fz4czWgJUrp69evHx8fx3Fct6sQ0jzPyJ7Qrtmsui/Hh5ttN1sLxkBKFPjXdr9Ds4kKHGUPVkKx04lpAeRJczRzESEaoFBKyRMH6edESNM0f/qnf+pT/NWvfmWtffPmDQYnVbYocKgrdNHMxBnDJ48x3t/f02KLve5aTIudc1rLqqqCg7+9oZTjeIO/iV+yGMqhgfrw4QMOOS9KMlLKuq7PRSV/aWMBa+C/oj05PL+kSLF5jzuFHgrvbp7n2ZqU9ZfI8Xi8v3mldT1NA6YdqG+nybZtJcpm8zRNiCqc80QIY+J8PqJBNsZAqXy93vb9GCNp25YxAYSxOKbG8/k8DNNqtXp6elqv17ub/U8//TTPFv/Tew93wWma+j4bsVhrvU+EkBgX59Xog+06CX5A17Rd1x1OFyAzeE2XywXYqPeeJAbDZdxHlA0xRkFZKLyQPsM+ucIBDokrUFXVMAyUchCqCCHv37/PWFCklFJjcqzz3hMagVkvTTpesdY6+LBsET09PUG7o6oqM6PCJOM4IoBc+itjrNYVYDqWMnN0u80sde8tZdxbN5ABwQ1FoFIKw1TE0tVqlRgF1frt27e4cT///G4ajdZack5ilJzPzhEhgC91XWec+/4Xv3h++YSNK+BjlazAkfJF1wHFyRdbC9Q5twTAaZpSolVVvby8LHJV2KvA0QrenMYTojfKfqSMaZpA+7tcLkoJ/I3GGKqy44gXwXt/Hfq2biJ3xjvvPf2//9/+y6pSX337zTzb/c3969e/d+29sXScnbNB19Vut6GUnk6XaTJCiKbGYmykPJOYSMqKcqk4VCABYDUpFEkdGKYB+xjHWQiRIkWJRgiBemmMUUi52WzQx2KqDJgV/Z4q2m14VTF5Keq6rsex55y74CEDSlJiVIjPu8AuUeK9SylJLruuQ8HXdRtsB5TeJjNTUEZoDXaDaJomRh9JZnUtYG4oS5QlUcVhGCjNmkdSZ7UmLNEvDnWos52d0TQywZFdvPcpUqiPx2J9CwKCD58PkCQssWxYb61tmhWllBSgsPzLBsErhEAT45z76FJKMAyZpmEax91uB3N2IYT3MYRAGavr2piADTutNezFYl4ug/wxrIQljuMwXIe+r6rK2SC1QrMNy2YMc+Z5Nm4GzWQYhqenJ8kyZ5YQ4mwQ6rO9JPAsQFG2OHRxThHXQlmgAGRG8+xOcqmiD/hTjDHn4IOcSYJCCPyGhaxRVY0unnIxxmZVL30gDgBWhMCFycPNskiFIQf6T8w8vfdaS2QO/M48ZGMC4Q9trdbZZwkqDdZ4LNd0m/V2u75er8fzqaqU1vrl06NzAbJxwJpRBUrJQwg+graWpJRwO4lZBzBM06Sl0loPw3C+HPc3NwiaaNQTJYwJzrmZZjzGtm2nacBVCt6nsprAOT9fLogjwzC8un+9v73px2t/PU39y5/88tvvv3n104//YMw0zdfpev7xh9++fHqJSY8zvb1/+7/7r/6bkNJkDGWCCh58opQyQmiKnHMGMXGhCKORMOdc17SY3TGeRx2sqGyjkYsx69+hn5xHR0jErAvBfZqmEBzWBsE0BFECfwraCIQQa6ZlFkUICTErcGEkICTTUk3T9Pf/8W/P5/P9/avXb79mgnOphJLe+2EcVVmms8ZMo8EwlhFOss5p1l3NhOKYGUyMMULBjozOOc5aQmIijtLkveNcpMjhTx1CSMQpJaqqmiaTUmJUVE1d8PcUk1+wJyiROeeqqtIYwFzPTdMkSrAfCqNbM884t4xlxgcegvMR/RK6PsYYKTz6VOyz8GUfHx+bpoEouXNOSY6yu/S9GRnBiBEVDyoA3JTL4SilrJsmpeRTRGhNlIDCqZRqqiw77r0XlNmY8rUVFBlOS+gAYENZoI7B7KHrOsbAaswBmWdfCI+6Fr0H3jjyCBpOxlhI0Tknhc7Ho0wooUuTCp0z+cAYSywTMXJJTck4jiKvblAcJME4Qi4E+6DNzgqLLc+irbXWwlotpSilZIThN7jgnXMpRS0VIcRMk2Cc0kRiPB6PKN/fvXvn43Cz3f3+7/2y7laWsn5283X0o/3q1QMhaQ4mCZIC4UxKWVGmGLWr1QpSaJC6W69Wz8/PAmIjheqyHIyUCNIWpRQZs+/7vu9vb28RD0VRBENnS1lCiyiEgC6EMQaUq+PxGELeMRzHkeEcEo4FZ8ZJDk0pjwObphFcpZQmMxtjUIdBUFjJKqSYMxqlxpjVqkOKrEs7gaxBGA0hTMMoFVdcEEKqqooEs9ig62q/318ul2kalZBom5ExSfkHNW4igVIquMKcAE0jkBqcK8zMZN7tNYwxKQRCKyT8UCnCNG3hZqLfEELsdruF8ZSK1ZWU8nA6ee+bpmaMDdcs5Hq9Xr0Pdw/30I7QWtd1ba3x3ksuxBcabamQMkDMxA1d2hitNUwiUzbLzUWq92GZJKF1t9bg88yzSSlBkwYXNhVuL5456q6+76uqTikpIfA253nmPCPyiAxKqSJNm3EN773k2fbZWrPgel/Uu5/1KIFHYPGfppwsEH++1LohhGLQC+3gGIixU/rMDlOcMnACkMTBgQCvmVJKIpFFLAuThqWsIoU/jj4ZSOLxfDqdTptujcEh5xzazXCWDnlziwD13nRrlAchZhV1LNyAMSSEMM7i92utUwoA2oAXSCEYFRCTqbSmNCFioF51wWEPw0wzEtAwjdjDZQQDlUBi3nbKOtopVVUVUyApO4WO40iA83ofnIvRM0KVUhBhCySN4yii9d57FwgXgquqapwPKVHsQSotOOdSKSHZUiHj2qKkTF+C5pwbY/q+x2weTTWh3HmTvnDAppSO47CMN2CktkAS0HrGIDkUYXegk49Pn4AqHo/H4Tq8e/fu/fv3P//4w8vLi9RaV5IQslq3bVsnSnwK0zSM80RpElqklHRdQfXFF7e37Xa7228+fvw4ZVdtjf4C5ERAh91qg/SBgTGiHwSgpsnv9127quu6/vTpU4xxv997l+BJm0hA0kRvstvt0JBf+z5E570HaOitSylxqXDBu64LZVUIbKYisCMB2PX9OAzD/naHDAu4HzNFJbIqAjwwKOVMCEayC2LbtjDvxewQbweXTilFOQeenlLartcldwT8vJYKiFuMhHPOpcCD2m63x+MRchyQqpvnuVKghEchRD9OCzQzjqNzDv8/NMH661hVVW59kwdIt16vn5+fj8eXrN9KBWaKk8kyOMfjEVcPcCRU7HY3e6QqFyhWA1MKJEYYpBvjaCLO5d0UTI6xc5lYXnKy1h4Oh5TSqmmbpjkezx8+HN+82d7e3wF96PsePDtAjWARgouHvAPEAeOT4DMEo7HhbsBGn1JK9/f3dV2fL0djDIAYnPD1en25XCZj7Dwv3TfmXra4Fnnvv/nmm0TJ+/c/FxG2llL6/sOjUhViMiI/p8x7G2N0wR8O193tere9maaJ05SKbwqlNLGcqYFnWWsfH5+FoOiCMSdYriEufiw0Q0qzSdNCSAJetgyfUnG8V6pCUwmgtmkaHyyKWEr5OI6cgUaWUnHURA0DhUn8EpBXQLjp+14p0ff9MExS8mXQ2HUbvKC6bQH4WmuHYRiG4fXr18P1Ok0TVGillNZ4AEbglSPhDvNAKS1njwquQggAHxewghBCWVJVdTweWWJ4RLPLaiqxaHUCgXWz0VrudrvHx8fz+YwFxRBC13W725uU0uFwQH/U1O04jtM8eu/btgYa0zWtKy7ilNJ6lReFXVHropRCGhvg4/V0RA7KQz4lBXyJhVhEcnixqLXWkhC997OzuAVoIgRlaDYF5yHGRMJsLaAuQpgxxgUPOv88z5AMwgm5v7+PMZ7OB8CF1lpWNKCUUsEn4yxlGd3eb3f4FoTESqp//I//8el0Ipz9+te/HoZhs9nh/JQsk4fWyMtoMRgVMfn/f11XstzIcUQza+sFCwHuY0uyNR8gXx32/18U4YN9cTjC0kRMDCWRBEGCBHqp1YdXVUMdjBMRE9NoNKoyX718+VIppRuzWCyQeo7H4/FtaE1DJH744YfT6e3z5899a56enpiTEPlE07YtLrLf76WUt7e3wzwxZermeDzGmDUlKYW+751zjdbn5+cvLy+1qFNxSK4TN/04DOhy4NIvlYrBF6Ll23ACDAAQ6pveFJMA52at9eFweH0dVquuliIOh9eU6OrqQkoptAkhPDw8CEHr9RrDBo7HI/QnzrnLy0si2u/3aCOWkhEhV6uzp6encQyLRbNYLuHULKW82J53Xbdc9g8PD8MwYPQcTkDDMKxWi5ubG1Qd7u/vZztmlY822PgkFMo5t7e3+/3+8fER2Pv9k8HbPDEv5rpmoCxVrmi/zq7gYiGllFou1tba2w/Xh8Nht9vFGLfbbWM659zLy0tKCXu/aXOpGBdXRa4bA11cXICJ1tllKKBAopRq23azXo52vru7a5oGI5cbbbCRtZBA2n3fTs7iKC2UxuD09Xr9/Px82D/ntvt3B+eUkg2+Sri22y0Y/6edXS75bLUCkoRrFrozm67D7XEx6IPGCCTaer1eLpfDMKDaBy1aBe0IlSAJfRYKZ3AbS9sBEYEaTSnPLDHZWywADCPYlmM1VegeDcdjPJ5Oy9ullnr6bQjOh3MbiNf35+rL57uua3ZPDz7GP33/MRGtzz4sl+tILDg653a7fUrB+whOpNCCEbVoSoI4t+LW76O1RjkXjHPKvhYci51QrmqqBhs4pSQkRbhclYne2JCi9JmC4AjF5ZCIYspa2voQrc2ove86Lqql/K+lZ3OYhzkbFqthGEBLYewMnqMqbb9QdZ2dbXHO4XexgEvjklDZ5GieZ5WJ43xqDc7PYgYp2XWdd7FUPDyVUYTMjHH2UkrBihWr6mMlpVIq47YxN1dKKVViF7+m8ExVh4CWGew6nJeEEEw0jdn+zHvvQ0Cmx4yaQL5UPGDZoYwxzs3YhLWWi48exxGRpe97pbJmUynFJKfRjuO4SAsADtArKFu1bUsiZzugYTxqPCIhvvpF1DvBg62VicqbA0PgO3rvDfoWBQtBpPIYbiAVY0zTaBQ8pJTQtme5aPkUKtafsF1DIZGImKX3johCisxcbTdkMQ1/fj7E6OH1JvOQJRNSNE32/saaTKXXUut8nKYi/cPiWa/XISQoEWxpgJ2mCX4k0zRxK6WU2GWpGB1q5qTI+8jMGOab8tAMUeFd0zSYjPGeDUxl9eIoXkoszns/TxMqrtvtVghxf38fU1qtVjc3N6fTqWnbyc6qMQtaOnv88cd/cPjLx+8/3j/8oiUvtGmY59fh19/2o+X/PO53x/jXv/394upqnOcQCDqRRmvn5vE0GK2VUj4ESox61asPRX8ND+KvTjLIqWiSisUjWBVvHDBfSJmLRYf4U6u7kMbDRa5tYDThjFR1jSmtsQHzAVUxkHqjDew+lFLOBxesCilSkqZhpZhYCEGcuTnJqvJlXPoeIBCI5ed+hyFSjFFwEoKJOARvrdOajDZoWZJSek8pZedfZoaxIzPH6InIeVuZ2cZ0sjT1C2Zrbc6abUP/54XyIxIDGCtRbGGEEKlM/KAiY0H+A4uRG3UVVyAritYPyB4bHxSMEAINsMzM3BIpIpWYKLmUUkiREmEjAw2G4ENIkmSMSXDqWhNjpBjbrAMNxmjvc0O9lIqZhVAp8Wq1mueh3g/ujUqHe/0u73NTPQvFlGFNDenlLdUoVPniEq8yoxdyD2A2BMA1pRY1Wznn4KEEKFlTOD5O5Pm6kZmT9aZtExyZYuz7noR4OxxSCFEqCjGl5CPppu2lOrOWabt/ePznv/69Pt+uzy+U0UrK1WbNTE3f+jmQYNM1HEQIrJUGqwLNnZTSW4sQkU9BKbkymY2IYozzbI/HI+gALDYigvCqMi9SSuIYkw/RjacRwVkWlS4EFLVoClvSKiYFFauUguwO6ydvN+em0UophcxytnEcLy+2KSUWiWPOU8B2WO1SSiKG0zRuA6bMrWmEJEmZ73t9PS7X69VqBR/wzWbT952d0MtMSmnUrlxxkhGSVssVdgfK3qIMxtztnq6vr66vr6WUfgree+8tcgQqf0giSghv7eS9KJ7XpeqTvap9sVyoMo2a4pGSAO+QzdfrtdYmUkIvIbBv33fW2mkYsQERKDIpUFHIu0xX9nUkYvzJzLkUmBJznhsmhJIyCpGrvygdIYbV8kAhdonz+E3Vttl7J+Q2eVUrQ3XNo/2zHvXdbGOMKSSTDQFSRQKIVCGEcZxqoTFXs1KMMYJbrDdT03oNxXVHG2OU/vp8BKEzw4ZiR454FT0OwNmlBC8EKFlGUFZZKxgK7BfrHWjHWFRmicgYE4phulJqs1n/9uuvb29vVxeXABLz7MK70X+ZaxC/u/OK7vA2BiIREe1jjN5bDJMA8kEPQZWxYO/g61NM3gdj5OvLYbfbCSGubq43m81srbVWx8TMMVESkiILIaXSLJTpFjF65K3oYxLJKCV1v8hmZYGkFKyU0fMML1Bwc2SjI5FYoHMoAr+VfZHNqevvBVIDJ3lf7Flak32Bu647nU6Hw6Fts+JeFD9H/O5ELJQwSltr53HiPHTk2Lbt5dX5hw83eNQfPnzo/tx+99233vtPP/306dOnn3/+7/7wcnGx/eO3f7DWPj0/zfMcyyizftXP80j8tWCMYiEzexeBYEMx9CCqLEOy1gbvx3EM70YacOl5V4qklOi23m63UPpr1WKNgfGxJT4j18SYbby5eMX0626eXV0VobQWAV1DdznaYZpCbfeJxXmsRhtRDHNzMhKIGIKEMGXMZlPck3BZLp5R+ddPCeTR6WS7rmtzJ1/o+z6F+Pr6CiIADnt93y9WSwTtFLPVPp4MFgbgTYyx0SYxcamQMTPqK33fp5iDOZWGFefnx8fHzWYDnWZKqeu6aZixEXCcBCfuXJiGES582O+fPn06OzsDj5BSWK1Wfd++HQ7MqWmaFAhb6fz8HIOL0OwihAhEwEW4yZeX8fh6urm5gdxBKfX6clBG931/PB7v7u7Oz8/BgYYyHhPqVyj1cI7A08ZlBVaUMaZpiAi1B+smpGmofff7/fPz883NTdd1oRxqckyOTJT3CBbAL7/8oozG3CMAZnBk9G5dEZGdbQiubVv0CL69vaHUmoKrAEkWMRn6iUE1VrwKPDkXVytRxh1hoZZYylhIx+MR+LAKCUORS+P/vry81PsMZSqSENS1LaWvSK+601QgWt9WDgHyfDfb9XLVt521lqUAfM0QXYgQAm7pdILhCT88PDRaLxYL9FACYHSqQUUc/CNUrnj4wzDMwwzqQ+chsRhvlGKMKWb4PQ++75cVAODKiBUAIaM/gUbEUd1aj/qrMWa326F9E2YL8zzv93sfXNM0CPs4dx8Og9aEG357e3MxwAQcxaG2baGjwBPDNgeVdjqd3Gy11tfX11h7UAZIKdECOAxDo7IUve5Qrp4YWkjB1ufBCcwyhHR2tuz7/vnwgpWQUhhHX8lr1O0QVXBZwPsQgp19jFFLpds8kw0H5LY1Xbc47J+/fPlirX3cP0kpIbSs56ZY5IM17yBlexe352fM3Lfdx48f7+7uUI1QyiamRdcDQ07D4OaxaZq2NfPsqNCClY/COvezJaFKJqKa0VKSzgWUH1yZKRfLC6E4+CSEiIEAGqWUWqlYwAzwgC8vrATQi9MpS5pqWhFCrFZd2SCwUskI03vfqewOOk0TUk/f95eXl7vdHvUnrL3FYhEjpJZoh+q67JIUrLUam5qklnmOBdRLXdcdj9l/A317fd+CtBFCtJ2B0MoYg4Oz955lPo4JIc7OzjDyl2sjcqGDai0KdLO1FiJL+v2xujqBgNbYbDbbzcXd3R2OMDjmhBCmeYD8Cy8gapSFgEhRHBXFEhaVD6xwoDhE7xDCN998oxqDEsLVzfXxeDy9HbPCOkGq4p2TsSgzYqTCf/rofAhf41WFrDFGLWSzzO7niOfbzUWKe7T7dWWYJ3pAlTEhBIhxQ3RQDimlnA3TPAO0Pz4+4kmGEFIKtrT22tKMi6Y6rM8QAiSMKSX4eKzX6/J3plixqSskwEVScXyNpemZKwFSfNIpJhdj0/Vt2/4PNsC7R/M5YvwAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#@title Run YOLOv6 on an image from a URL. { run: \"auto\" }\n",
+ "url:str = \"https://i.imgur.com/1IWZX69.jpg\" #@param {type:\"string\"}\n",
+ "hide_labels: bool = False #@param {type:\"boolean\"}\n",
+ "hide_conf: bool = False #@param {type:\"boolean\"}\n",
+ "\n",
+ "\n",
+ "\n",
+ "img_size:int = 640#@param {type:\"integer\"}\n",
+ "\n",
+ "conf_thres: float =.25 #@param {type:\"number\"}\n",
+ "iou_thres: float =.45 #@param {type:\"number\"}\n",
+ "max_det:int = 1000#@param {type:\"integer\"}\n",
+ "agnostic_nms: bool = False #@param {type:\"boolean\"}\n",
+ "\n",
+ "\n",
+ "img_size = check_img_size(img_size, s=stride)\n",
+ "\n",
+ "img, img_src = process_image(url, img_size, stride, half)\n",
+ "img = img.to(device)\n",
+ "if len(img.shape) == 3:\n",
+ " img = img[None]\n",
+ " # expand for batch dim\n",
+ "pred_results = model(img)\n",
+ "classes:Optional[List[int]] = None # the classes to keep\n",
+ "det = non_max_suppression(pred_results, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)[0]\n",
+ "\n",
+ "gn = torch.tensor(img_src.shape)[[1, 0, 1, 0]] # normalization gain whwh\n",
+ "img_ori = img_src.copy()\n",
+ "if len(det):\n",
+ " det[:, :4] = Inferer.rescale(img.shape[2:], det[:, :4], img_src.shape).round()\n",
+ " for *xyxy, conf, cls in reversed(det):\n",
+ " class_num = int(cls)\n",
+ " label = None if hide_labels else (class_names[class_num] if hide_conf else f'{class_names[class_num]} {conf:.2f}')\n",
+ " Inferer.plot_box_and_label(img_ori, max(round(sum(img_ori.shape) / 2 * 0.003), 2), xyxy, label, color=Inferer.generate_colors(class_num, True))\n",
+ "PIL.Image.fromarray(img_ori)"
+ ]
+ }
+ ],
+ "metadata": {
+ "colab": {
+ "collapsed_sections": [],
+ "include_colab_link": true,
+ "name": "Copy of Untitled2.ipynb",
+ "provenance": []
+ },
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.5"
+ },
+ "vscode": {
+ "interpreter": {
+ "hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/python/app/fedcv/YOLOv6/tools/eval.py b/python/app/fedcv/YOLOv6/tools/eval.py
new file mode 100644
index 0000000000..5543029c1b
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/tools/eval.py
@@ -0,0 +1,169 @@
+#!/usr/bin/env python3
+# -*- coding:utf-8 -*-
+import argparse
+import os
+import os.path as osp
+import sys
+import torch
+
+ROOT = os.getcwd()
+if str(ROOT) not in sys.path:
+ sys.path.append(str(ROOT))
+
+from yolov6.core.evaler import Evaler
+from yolov6.utils.events import LOGGER
+from yolov6.utils.general import increment_name, check_img_size
+from yolov6.utils.config import Config
+
+def boolean_string(s):
+ if s not in {'False', 'True'}:
+ raise ValueError('Not a valid boolean string')
+ return s == 'True'
+
+def get_args_parser(add_help=True):
+ parser = argparse.ArgumentParser(description='YOLOv6 PyTorch Evalating', add_help=add_help)
+ parser.add_argument('--data', type=str, default='./data/coco.yaml', help='dataset.yaml path')
+ parser.add_argument('--weights', type=str, default='./weights/yolov6s.pt', help='model.pt path(s)')
+ parser.add_argument('--batch-size', type=int, default=32, help='batch size')
+ parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
+ parser.add_argument('--conf-thres', type=float, default=0.03, help='confidence threshold')
+ parser.add_argument('--iou-thres', type=float, default=0.65, help='NMS IoU threshold')
+ parser.add_argument('--task', default='val', help='val, test, or speed')
+ parser.add_argument('--device', default='0', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+ parser.add_argument('--half', default=False, action='store_true', help='whether to use fp16 infer')
+ parser.add_argument('--save_dir', type=str, default='runs/val/', help='evaluation save dir')
+ parser.add_argument('--name', type=str, default='exp', help='save evaluation results to save_dir/name')
+ parser.add_argument('--shrink_size', type=int, default=0, help='load img resize when test')
+ parser.add_argument('--infer_on_rect', default=True, type=boolean_string, help='default to run with rectangle image to boost speed.')
+ parser.add_argument('--reproduce_640_eval', default=False, action='store_true', help='whether to reproduce 640 infer result, overwrite some config')
+ parser.add_argument('--eval_config_file', type=str, default='./configs/experiment/eval_640_repro.py', help='config file for repro 640 infer result')
+ parser.add_argument('--do_coco_metric', default=True, type=boolean_string, help='whether to use pycocotool to metric, set False to close')
+ parser.add_argument('--do_pr_metric', default=False, type=boolean_string, help='whether to calculate precision, recall and F1, n, set False to close')
+ parser.add_argument('--plot_curve', default=True, type=boolean_string, help='whether to save plots in savedir when do pr metric, set False to close')
+ parser.add_argument('--plot_confusion_matrix', default=False, action='store_true', help='whether to save confusion matrix plots when do pr metric, might cause no harm warning print')
+ parser.add_argument('--verbose', default=False, action='store_true', help='whether to print metric on each class')
+ parser.add_argument('--config-file', default='', type=str, help='experiments description file, lower priority than reproduce_640_eval')
+ parser.add_argument('--specific-shape', action='store_true', help='rectangular training')
+ parser.add_argument('--height', type=int, default=None, help='image height of model input')
+ parser.add_argument('--width', type=int, default=None, help='image width of model input')
+ args = parser.parse_args()
+
+ if args.config_file:
+ assert os.path.exists(args.config_file), print("Config file {} does not exist".format(args.config_file))
+ cfg = Config.fromfile(args.config_file)
+ if not hasattr(cfg, 'eval_params'):
+ LOGGER.info("Config file doesn't has eval params config.")
+ else:
+ eval_params=cfg.eval_params
+ for key, value in eval_params.items():
+ if key not in args.__dict__:
+ LOGGER.info(f"Unrecognized config {key}, continue")
+ continue
+ if isinstance(value, list):
+ if value[1] is not None:
+ args.__dict__[key] = value[1]
+ else:
+ if value is not None:
+ args.__dict__[key] = value
+
+ # load params for reproduce 640 eval result
+ if args.reproduce_640_eval:
+ assert os.path.exists(args.eval_config_file), print("Reproduce config file {} does not exist".format(args.eval_config_file))
+ eval_params = Config.fromfile(args.eval_config_file).eval_params
+ eval_model_name = os.path.splitext(os.path.basename(args.weights))[0]
+ if eval_model_name not in eval_params:
+ eval_model_name = "default"
+ args.shrink_size = eval_params[eval_model_name]["shrink_size"]
+ args.infer_on_rect = eval_params[eval_model_name]["infer_on_rect"]
+ #force params
+ #args.img_size = 640
+ args.conf_thres = 0.03
+ args.iou_thres = 0.65
+ args.task = "val"
+ args.do_coco_metric = True
+
+ LOGGER.info(args)
+ return args
+
+
+@torch.no_grad()
+def run(data,
+ weights=None,
+ batch_size=32,
+ img_size=640,
+ conf_thres=0.03,
+ iou_thres=0.65,
+ task='val',
+ device='',
+ half=False,
+ model=None,
+ dataloader=None,
+ save_dir='',
+ name = '',
+ shrink_size=640,
+ letterbox_return_int=False,
+ infer_on_rect=False,
+ reproduce_640_eval=False,
+ eval_config_file='./configs/experiment/eval_640_repro.py',
+ verbose=False,
+ do_coco_metric=True,
+ do_pr_metric=False,
+ plot_curve=False,
+ plot_confusion_matrix=False,
+ config_file=None,
+ specific_shape=False,
+ height=640,
+ width=640
+ ):
+ """ Run the evaluation process
+
+ This function is the main process of evaluation, supporting image file and dir containing images.
+ It has tasks of 'val', 'train' and 'speed'. Task 'train' processes the evaluation during training phase.
+ Task 'val' processes the evaluation purely and return the mAP of model.pt. Task 'speed' processes the
+ evaluation of inference speed of model.pt.
+
+ """
+
+ # task
+ Evaler.check_task(task)
+ if task == 'train':
+ save_dir = save_dir
+ else:
+ save_dir = str(increment_name(osp.join(save_dir, name)))
+ os.makedirs(save_dir, exist_ok=True)
+
+ # check the threshold value, reload device/half/data according task
+ Evaler.check_thres(conf_thres, iou_thres, task)
+ device = Evaler.reload_device(device, model, task)
+ half = device.type != 'cpu' and half
+ data = Evaler.reload_dataset(data, task) if isinstance(data, str) else data
+
+ # # verify imgsz is gs-multiple
+ if specific_shape:
+ height = check_img_size(height, 32, floor=256)
+ width = check_img_size(width, 32, floor=256)
+ else:
+ img_size = check_img_size(img_size, 32, floor=256)
+ val = Evaler(data, batch_size, img_size, conf_thres, \
+ iou_thres, device, half, save_dir, \
+ shrink_size, infer_on_rect,
+ verbose, do_coco_metric, do_pr_metric,
+ plot_curve, plot_confusion_matrix,
+ specific_shape=specific_shape,height=height, width=width)
+ model = val.init_model(model, weights, task)
+ dataloader = val.init_data(dataloader, task)
+
+ # eval
+ model.eval()
+ pred_result, vis_outputs, vis_paths = val.predict_model(model, dataloader, task)
+ eval_result = val.eval_model(pred_result, model, dataloader, task)
+ return eval_result, vis_outputs, vis_paths
+
+
+def main(args):
+ run(**vars(args))
+
+
+if __name__ == "__main__":
+ args = get_args_parser()
+ main(args)
diff --git a/python/app/fedcv/object_detection/model/yolov6/tools/infer.py b/python/app/fedcv/YOLOv6/tools/infer.py
similarity index 69%
rename from python/app/fedcv/object_detection/model/yolov6/tools/infer.py
rename to python/app/fedcv/YOLOv6/tools/infer.py
index 89841b0af9..95b3fdc7f5 100644
--- a/python/app/fedcv/object_detection/model/yolov6/tools/infer.py
+++ b/python/app/fedcv/YOLOv6/tools/infer.py
@@ -19,14 +19,18 @@ def get_args_parser(add_help=True):
parser = argparse.ArgumentParser(description='YOLOv6 PyTorch Inference.', add_help=add_help)
parser.add_argument('--weights', type=str, default='weights/yolov6s.pt', help='model path(s) for inference.')
parser.add_argument('--source', type=str, default='data/images', help='the source path, e.g. image-file/dir.')
+ parser.add_argument('--webcam', action='store_true', help='whether to use webcam.')
+ parser.add_argument('--webcam-addr', type=str, default='0', help='the web camera address, local camera or rtsp address.')
parser.add_argument('--yaml', type=str, default='data/coco.yaml', help='data yaml file.')
- parser.add_argument('--img-size', type=int, default=640, help='the image-size(h,w) in inference size.')
- parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold for inference.')
+ parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='the image-size(h,w) in inference size.')
+ parser.add_argument('--conf-thres', type=float, default=0.4, help='confidence threshold for inference.')
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold for inference.')
parser.add_argument('--max-det', type=int, default=1000, help='maximal inferences per image.')
parser.add_argument('--device', default='0', help='device to run our model i.e. 0 or 0,1,2,3 or cpu.')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt.')
- parser.add_argument('--save-img', action='store_false', help='save visuallized inference results.')
+ parser.add_argument('--not-save-img', action='store_true', help='do not save visuallized inference results.')
+ parser.add_argument('--save-dir', type=str, help='directory to save predictions in. See --save-txt.')
+ parser.add_argument('--view-img', action='store_true', help='show inference results')
parser.add_argument('--classes', nargs='+', type=int, help='filter by classes, e.g. --classes 0, or --classes 0 2 3.')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS.')
parser.add_argument('--project', default='runs/inference', help='save inference results to project/name.')
@@ -39,17 +43,22 @@ def get_args_parser(add_help=True):
LOGGER.info(args)
return args
+
@torch.no_grad()
def run(weights=osp.join(ROOT, 'yolov6s.pt'),
source=osp.join(ROOT, 'data/images'),
+ webcam=False,
+ webcam_addr=0,
yaml=None,
img_size=640,
- conf_thres=0.25,
+ conf_thres=0.4,
iou_thres=0.45,
max_det=1000,
device='',
save_txt=False,
- save_img=True,
+ not_save_img=False,
+ save_dir=None,
+ view_img=True,
classes=None,
agnostic_nms=False,
project=osp.join(ROOT, 'runs/inference'),
@@ -58,10 +67,7 @@ def run(weights=osp.join(ROOT, 'yolov6s.pt'),
hide_conf=False,
half=False,
):
- """ Inference process
-
- This function is the main process of inference, supporting image files or dirs containing images.
-
+ """ Inference process, supporting inference on one image file or directory which containing images.
Args:
weights: The path of model.pt, e.g. yolov6s.pt
source: Source path, supporting image files or dirs containing images.
@@ -72,7 +78,7 @@ def run(weights=osp.join(ROOT, 'yolov6s.pt'),
max_det: Maximal detections per image, e.g. 1000
device: Cuda device, e.e. 0, or 0,1,2,3 or cpu
save_txt: Save results to *.txt
- save_img: Save visualized inference results
+ not_save_img: Do not save visualized inference results
classes: Filter by class: --class 0, or --class 0 2 3
agnostic_nms: Class-agnostic NMS
project: Save results to project/name
@@ -83,19 +89,25 @@ def run(weights=osp.join(ROOT, 'yolov6s.pt'),
half: Use FP16 half-precision inference, e.g. False
"""
# create save dir
- save_dir = osp.join(project, name)
- if (save_img or save_txt) and not osp.exists(save_dir):
+ if save_dir is None:
+ save_dir = osp.join(project, name)
+ save_txt_path = osp.join(save_dir, 'labels')
+ else:
+ save_txt_path = save_dir
+ if (not not_save_img or save_txt) and not osp.exists(save_dir):
os.makedirs(save_dir)
else:
LOGGER.warning('Save directory already existed')
if save_txt:
- os.mkdir(osp.join(save_dir, 'labels'))
+ save_txt_path = osp.join(save_dir, 'labels')
+ if not osp.exists(save_txt_path):
+ os.makedirs(save_txt_path)
# Inference
- inferer = Inferer(source, weights, device, yaml, img_size, half)
- inferer.infer(conf_thres, iou_thres, classes, agnostic_nms, max_det, save_dir, save_txt, save_img, hide_labels, hide_conf)
+ inferer = Inferer(source, webcam, webcam_addr, weights, device, yaml, img_size, half)
+ inferer.infer(conf_thres, iou_thres, classes, agnostic_nms, max_det, save_dir, save_txt, not not_save_img, hide_labels, hide_conf, view_img)
- if save_txt or save_img:
+ if save_txt or not not_save_img:
LOGGER.info(f"Results saved to {save_dir}")
diff --git a/python/app/fedcv/YOLOv6/tools/partial_quantization/README.md b/python/app/fedcv/YOLOv6/tools/partial_quantization/README.md
new file mode 100644
index 0000000000..3a15a39dd8
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/tools/partial_quantization/README.md
@@ -0,0 +1,46 @@
+# Partial Quantization
+The performance of YOLOv6s heavily degrades from 42.4% to 35.6% after traditional PTQ, which is unacceptable. To resolve this issue, we propose **partial quantization**. First we analyze the quantization sensitivity of all layers, and then we let the most sensitive layers to have full precision as a compromise.
+
+With partial quantization, we finally reach 42.1%, only 0.3% loss in accuracy, while the throughput of the partially quantized model is about 1.56 times that of the FP16 model at a batch size of 32. This method achieves a nice tradeoff between accuracy and throughput.
+
+## Prerequirements
+```python
+pip install --extra-index-url=https://pypi.ngc.nvidia.com --trusted-host pypi.ngc.nvidia.com nvidia-pyindex
+pip install --extra-index-url=https://pypi.ngc.nvidia.com --trusted-host pypi.ngc.nvidia.com pytorch_quantization
+```
+## Sensitivity analysis
+
+Please use the following command to perform sensitivity analysis. Since we randomly sample 128 images from train dataset each time, the sensitivity files will be slightly different.
+
+```python
+ python3 sensitivity_analyse.py --weights yolov6s_reopt.pt \
+ --batch-size 32 \
+ --batch-number 4 \
+ --data-root train_data_path
+```
+
+## Partial quantization
+
+With the sensitivity file at hand, we then proceed with partial quantization as follows.
+
+```python
+python3 partial_quant.py --weights yolov6s_reopt.pt \
+ --calib-weights yolov6s_repot_calib.pt \
+ --sensitivity-file yolov6s_reopt_sensivitiy_128_calib.txt \
+ --quant-boundary 55 \
+ --export-batch-size 1
+```
+
+## Deployment
+
+Build a TRT engine
+
+```python
+trtexec --workspace=1024 --percentile=99 --streams=1 --int8 --fp16 --avgRuns=10 --onnx=yolov6s_reopt_partial_bs1.sim.onnx --saveEngine=yolov6s_reopt_partial_bs1.sim.trt
+```
+
+## Performance
+| Model | Size | Precision |mAPval 0.5:0.95 | SpeedT4 trt b1 (fps) | SpeedT4 trt b32 (fps) |
+| :-------------- | ----------- | ----------- |:----------------------- | ---------------------------------------- | -----------------------------------|
+| [**YOLOv6-s-partial**] [bs1](https://github.com/lippman1125/YOLOv6/releases/download/0.1.0/yolov6s_reopt_partial_bs1.sim.onnx) [bs32](https://github.com/lippman1125/YOLOv6/releases/download/0.1.0/yolov6s_reopt_partial_bs32.sim.onnx) | 640 | INT8 |42.1 | 503 | 811 |
+| [**YOLOv6-s**] | 640 | FP16 |42.4 | 373 | 520 |
diff --git a/python/app/fedcv/YOLOv6/tools/partial_quantization/eval.py b/python/app/fedcv/YOLOv6/tools/partial_quantization/eval.py
new file mode 100644
index 0000000000..8213b94582
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/tools/partial_quantization/eval.py
@@ -0,0 +1,49 @@
+import os
+import torch
+from yolov6.core.evaler import Evaler
+
+class EvalerWrapper(object):
+ def __init__(self, eval_cfg):
+ task = eval_cfg['task']
+ save_dir = eval_cfg['save_dir']
+ half = eval_cfg['half']
+ data = eval_cfg['data']
+ batch_size = eval_cfg['batch_size']
+ img_size = eval_cfg['img_size']
+ device = eval_cfg['device']
+ dataloader = None
+
+ Evaler.check_task(task)
+ if not os.path.exists(save_dir):
+ os.makedirs(save_dir)
+
+ # reload thres/device/half/data according task
+ conf_thres = 0.03
+ iou_thres = 0.65
+ device = Evaler.reload_device(device, None, task)
+ data = Evaler.reload_dataset(data) if isinstance(data, str) else data
+
+ # init
+ val = Evaler(data, batch_size, img_size, conf_thres, \
+ iou_thres, device, half, save_dir)
+ val.stride = eval_cfg['stride']
+ dataloader = val.init_data(dataloader, task)
+
+ self.eval_cfg = eval_cfg
+ self.half = half
+ self.device = device
+ self.task = task
+ self.val = val
+ self.val_loader = dataloader
+
+ def eval(self, model):
+ model.eval()
+ model.to(self.device)
+ if self.half is True:
+ model.half()
+
+ with torch.no_grad():
+ pred_result, vis_outputs, vis_paths = self.val.predict_model(model, self.val_loader, self.task)
+ eval_result = self.val.eval_model(pred_result, model, self.val_loader, self.task)
+
+ return eval_result
diff --git a/python/app/fedcv/YOLOv6/tools/partial_quantization/eval.yaml b/python/app/fedcv/YOLOv6/tools/partial_quantization/eval.yaml
new file mode 100644
index 0000000000..3296e8ac50
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/tools/partial_quantization/eval.yaml
@@ -0,0 +1,8 @@
+task: 'val'
+save_dir: 'runs/val/exp'
+half: False
+data: '../../data/coco.yaml'
+batch_size: 32
+img_size: 640
+device: '0'
+stride: 32
diff --git a/python/app/fedcv/YOLOv6/tools/partial_quantization/partial_quant.py b/python/app/fedcv/YOLOv6/tools/partial_quantization/partial_quant.py
new file mode 100644
index 0000000000..6ca5956079
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/tools/partial_quantization/partial_quant.py
@@ -0,0 +1,126 @@
+import argparse
+import time
+import sys
+import os
+
+ROOT = os.getcwd()
+if str(ROOT) not in sys.path:
+ sys.path.append(str(ROOT))
+
+sys.path.append('../../')
+
+from yolov6.models.effidehead import Detect
+from yolov6.layers.common import *
+from yolov6.utils.events import LOGGER, load_yaml
+from yolov6.utils.checkpoint import load_checkpoint
+
+from tools.partial_quantization.eval import EvalerWrapper
+from tools.partial_quantization.utils import get_module, concat_quant_amax_fuse, quant_sensitivity_load
+from tools.partial_quantization.ptq import load_ptq, partial_quant
+
+from pytorch_quantization import nn as quant_nn
+
+# concat_fusion_list = [
+# ('backbone.ERBlock_5.2.m', 'backbone.ERBlock_5.2.cv2.conv'),
+# ('backbone.ERBlock_5.0.rbr_reparam', 'neck.Rep_p4.conv1.rbr_reparam'),
+# ('backbone.ERBlock_4.0.rbr_reparam', 'neck.Rep_p3.conv1.rbr_reparam'),
+# ('neck.upsample1.upsample_transpose', 'neck.Rep_n3.conv1.rbr_reparam'),
+# ('neck.upsample0.upsample_transpose', 'neck.Rep_n4.conv1.rbr_reparam')
+# ]
+
+op_concat_fusion_list = [
+ ('backbone.ERBlock_5.2.m', 'backbone.ERBlock_5.2.cv2.conv'),
+ ('backbone.ERBlock_5.0.conv', 'neck.Rep_p4.conv1.conv', 'neck.upsample_feat0_quant'),
+ ('backbone.ERBlock_4.0.conv', 'neck.Rep_p3.conv1.conv', 'neck.upsample_feat1_quant'),
+ ('neck.upsample1.upsample_transpose', 'neck.Rep_n3.conv1.conv'),
+ ('neck.upsample0.upsample_transpose', 'neck.Rep_n4.conv1.conv'),
+ #
+ ('detect.reg_convs.0.conv', 'detect.cls_convs.0.conv'),
+ ('detect.reg_convs.1.conv', 'detect.cls_convs.1.conv'),
+ ('detect.reg_convs.2.conv', 'detect.cls_convs.2.conv'),
+]
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--weights', type=str, default='./yolov6s_reopt.pt', help='weights path')
+ parser.add_argument('--calib-weights', type=str, default='./yolov6s_reopt_calib.pt', help='calib weights path')
+ parser.add_argument('--data-root', type=str, default=None, help='train data path')
+ parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
+ parser.add_argument('--conf', type=str, default='../../configs/repopt/yolov6s_opt_qat.py', help='model config')
+ parser.add_argument('--export-batch-size', type=int, default=None, help='export batch size')
+ parser.add_argument('--inplace', action='store_true', help='set Detect() inplace=True')
+ parser.add_argument('--device', default='0', help='cuda device, i.e. 0 or 0, 1, 2, 3 or cpu')
+ parser.add_argument('--sensitivity-file', type=str, default=None, help='quantization sensitivity file')
+ parser.add_argument('--quant-boundary', type=int, default=None, help='quantization boundary')
+ parser.add_argument('--eval-yaml', type=str, default='./eval.yaml', help='evaluation config')
+ args = parser.parse_args()
+ args.img_size *= 2 if len(args.img_size) == 1 else 1 # expand
+ print(args)
+ t = time.time()
+
+ # Check device
+ cuda = args.device != 'cpu' and torch.cuda.is_available()
+ device = torch.device('cuda:0' if cuda else 'cpu')
+ assert not (device.type == 'cpu' and args.half), '--half only compatible with GPU export, i.e. use --device 0'
+ # Load PyTorch model
+ model = load_checkpoint(args.weights, map_location=device, inplace=True, fuse=True) # load FP32 model
+ model.eval()
+ yolov6_evaler = EvalerWrapper(eval_cfg=load_yaml(args.eval_yaml))
+ orig_mAP = yolov6_evaler.eval(model)
+
+ for layer in model.modules():
+ if isinstance(layer, RepVGGBlock):
+ layer.switch_to_deploy()
+
+ for k, m in model.named_modules():
+ if isinstance(m, Conv): # assign export-friendly activations
+ if isinstance(m.act, nn.SiLU):
+ m.act = SiLU()
+ elif isinstance(m, Detect):
+ m.inplace = args.inplace
+
+ model_ptq = load_ptq(model, args.calib_weights, device)
+
+ quant_sensitivity = quant_sensitivity_load(args.sensitivity_file)
+ quant_sensitivity.sort(key=lambda tup: tup[2], reverse=True)
+ boundary = args.quant_boundary
+ quantable_ops = [qops[0] for qops in quant_sensitivity[:boundary+1]]
+ # only quantize ops in quantable_ops list
+ partial_quant(model_ptq, quantable_ops=quantable_ops)
+ # concat amax fusion
+ for sub_fusion_list in opt_concat_fusion_list:
+ ops = [get_module(model_ptq, op_name) for op_name in sub_fusion_list]
+ concat_quant_amax_fuse(ops)
+
+ part_mAP = yolov6_evaler.eval(model_ptq)
+ print(part_mAP)
+ # ONNX export
+ quant_nn.TensorQuantizer.use_fb_fake_quant = True
+ if args.export_batch_size is None:
+ img = torch.zeros(1, 3, *args.img_size).to(device)
+ export_file = args.weights.replace('.pt', '_partial_dynamic.onnx') # filename
+ dynamic_axes = {"image_arrays": {0: "batch"}, "outputs": {0: "batch"}}
+ torch.onnx.export(model_ptq,
+ img,
+ export_file,
+ verbose=False,
+ opset_version=13,
+ training=torch.onnx.TrainingMode.EVAL,
+ do_constant_folding=True,
+ input_names=['image_arrays'],
+ output_names=['outputs'],
+ dynamic_axes=dynamic_axes
+ )
+ else:
+ img = torch.zeros(args.export_batch_size, 3, *args.img_size).to(device)
+ export_file = args.weights.replace('.pt', '_partial_bs{}.onnx'.format(args.export_batch_size)) # filename
+ torch.onnx.export(model_ptq,
+ img,
+ export_file,
+ verbose=False,
+ opset_version=13,
+ training=torch.onnx.TrainingMode.EVAL,
+ do_constant_folding=True,
+ input_names=['image_arrays'],
+ output_names=['outputs']
+ )
diff --git a/python/app/fedcv/YOLOv6/tools/partial_quantization/ptq.py b/python/app/fedcv/YOLOv6/tools/partial_quantization/ptq.py
new file mode 100644
index 0000000000..6895a36ed0
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/tools/partial_quantization/ptq.py
@@ -0,0 +1,161 @@
+import torch
+import torch.nn as nn
+import copy
+
+from pytorch_quantization import nn as quant_nn
+from pytorch_quantization import tensor_quant
+from pytorch_quantization import calib
+from pytorch_quantization.tensor_quant import QuantDescriptor
+
+from tools.partial_quantization.utils import set_module, module_quant_disable
+
+def collect_stats(model, data_loader, batch_number, device='cuda'):
+ """Feed data to the network and collect statistic"""
+
+ # Enable calibrators
+ for name, module in model.named_modules():
+ if isinstance(module, quant_nn.TensorQuantizer):
+ if module._calibrator is not None:
+ module.disable_quant()
+ module.enable_calib()
+ else:
+ module.disable()
+
+ for i, data_tuple in enumerate(data_loader):
+ image = data_tuple[0]
+ image = image.float()/255.0
+ model(image.to(device))
+ if i + 1 >= batch_number:
+ break
+
+ # Disable calibrators
+ for name, module in model.named_modules():
+ if isinstance(module, quant_nn.TensorQuantizer):
+ if module._calibrator is not None:
+ module.enable_quant()
+ module.disable_calib()
+ else:
+ module.enable()
+
+
+def compute_amax(model, **kwargs):
+ # Load calib result
+ for name, module in model.named_modules():
+ if isinstance(module, quant_nn.TensorQuantizer):
+ print(F"{name:40}: {module}")
+ if module._calibrator is not None:
+ if isinstance(module._calibrator, calib.MaxCalibrator):
+ module.load_calib_amax()
+ else:
+ module.load_calib_amax(**kwargs)
+
+
+def quantable_op_check(k, quantable_ops):
+ if quantable_ops is None:
+ return True
+
+ if k in quantable_ops:
+ return True
+ else:
+ return False
+
+
+def quant_model_init(model, device):
+
+ model_ptq = copy.deepcopy(model)
+ model_ptq.eval()
+ model_ptq.to(device)
+ conv2d_weight_default_desc = tensor_quant.QUANT_DESC_8BIT_CONV2D_WEIGHT_PER_CHANNEL
+ conv2d_input_default_desc = QuantDescriptor(num_bits=8, calib_method='histogram')
+
+ convtrans2d_weight_default_desc = tensor_quant.QUANT_DESC_8BIT_CONVTRANSPOSE2D_WEIGHT_PER_CHANNEL
+ convtrans2d_input_default_desc = QuantDescriptor(num_bits=8, calib_method='histogram')
+
+ for k, m in model_ptq.named_modules():
+ if 'proj_conv' in k:
+ print("Skip Layer {}".format(k))
+ continue
+
+ if isinstance(m, nn.Conv2d):
+ in_channels = m.in_channels
+ out_channels = m.out_channels
+ kernel_size = m.kernel_size
+ stride = m.stride
+ padding = m.padding
+ quant_conv = quant_nn.QuantConv2d(in_channels,
+ out_channels,
+ kernel_size,
+ stride,
+ padding,
+ quant_desc_input = conv2d_input_default_desc,
+ quant_desc_weight = conv2d_weight_default_desc)
+ quant_conv.weight.data.copy_(m.weight.detach())
+ if m.bias is not None:
+ quant_conv.bias.data.copy_(m.bias.detach())
+ else:
+ quant_conv.bias = None
+ set_module(model_ptq, k, quant_conv)
+ elif isinstance(m, nn.ConvTranspose2d):
+ in_channels = m.in_channels
+ out_channels = m.out_channels
+ kernel_size = m.kernel_size
+ stride = m.stride
+ padding = m.padding
+ quant_convtrans = quant_nn.QuantConvTranspose2d(in_channels,
+ out_channels,
+ kernel_size,
+ stride,
+ padding,
+ quant_desc_input = convtrans2d_input_default_desc,
+ quant_desc_weight = convtrans2d_weight_default_desc)
+ quant_convtrans.weight.data.copy_(m.weight.detach())
+ if m.bias is not None:
+ quant_convtrans.bias.data.copy_(m.bias.detach())
+ else:
+ quant_convtrans.bias = None
+ set_module(model_ptq, k, quant_convtrans)
+ elif isinstance(m, nn.MaxPool2d):
+ kernel_size = m.kernel_size
+ stride = m.stride
+ padding = m.padding
+ dilation = m.dilation
+ ceil_mode = m.ceil_mode
+ quant_maxpool2d = quant_nn.QuantMaxPool2d(kernel_size,
+ stride,
+ padding,
+ dilation,
+ ceil_mode,
+ quant_desc_input = conv2d_input_default_desc)
+ set_module(model_ptq, k, quant_maxpool2d)
+ else:
+ # module can not be quantized, continue
+ continue
+
+ return model_ptq.to(device)
+
+
+def do_ptq(model, train_loader, batch_number, device):
+ model_ptq = quant_model_init(model, device)
+ # It is a bit slow since we collect histograms on CPU
+ with torch.no_grad():
+ collect_stats(model_ptq, train_loader, batch_number, device)
+ compute_amax(model_ptq, method='entropy')
+ return model_ptq
+
+
+def load_ptq(model, calib_path, device):
+ model_ptq = quant_model_init(model, device)
+ model_ptq.load_state_dict(torch.load(calib_path)['model'].state_dict())
+ return model_ptq
+
+
+def partial_quant(model_ptq, quantable_ops=None):
+ # ops not in quantable_ops will reserve full-precision.
+ for k, m in model_ptq.named_modules():
+ if quantable_op_check(k, quantable_ops):
+ continue
+ # enable full-precision
+ if isinstance(m, quant_nn.QuantConv2d) or \
+ isinstance(m, quant_nn.QuantConvTranspose2d) or \
+ isinstance(m, quant_nn.QuantMaxPool2d):
+ module_quant_disable(model_ptq, k)
diff --git a/python/app/fedcv/YOLOv6/tools/partial_quantization/sensitivity_analyse.py b/python/app/fedcv/YOLOv6/tools/partial_quantization/sensitivity_analyse.py
new file mode 100644
index 0000000000..bcf1fb09ac
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/tools/partial_quantization/sensitivity_analyse.py
@@ -0,0 +1,125 @@
+import argparse
+import time
+import sys
+import os
+
+ROOT = os.getcwd()
+if str(ROOT) not in sys.path:
+ sys.path.append(str(ROOT))
+
+sys.path.append('../../')
+
+from yolov6.models.effidehead import Detect
+from yolov6.layers.common import *
+from yolov6.utils.events import LOGGER, load_yaml
+from yolov6.utils.checkpoint import load_checkpoint
+from yolov6.data.data_load import create_dataloader
+from yolov6.utils.config import Config
+
+from tools.partial_quantization.eval import EvalerWrapper
+from tools.partial_quantization.utils import module_quant_enable, module_quant_disable, model_quant_disable
+from tools.partial_quantization.utils import quant_sensitivity_save, quant_sensitivity_load
+from tools.partial_quantization.ptq import do_ptq, load_ptq
+
+from pytorch_quantization import nn as quant_nn
+
+
+def quant_sensitivity_analyse(model_ptq, evaler):
+ # disable all quantable layer
+ model_quant_disable(model_ptq)
+
+ # analyse each quantable layer
+ quant_sensitivity = list()
+ for k, m in model_ptq.named_modules():
+ if isinstance(m, quant_nn.QuantConv2d) or \
+ isinstance(m, quant_nn.QuantConvTranspose2d) or \
+ isinstance(m, quant_nn.MaxPool2d):
+ module_quant_enable(model_ptq, k)
+ else:
+ # module can not be quantized, continue
+ continue
+
+ eval_result = evaler.eval(model_ptq)
+ print(eval_result)
+ print("Quantize Layer {}, result mAP0.5 = {:0.4f}, mAP0.5:0.95 = {:0.4f}".format(k,
+ eval_result[0],
+ eval_result[1]))
+ quant_sensitivity.append((k, eval_result[0], eval_result[1]))
+ # disable this module sensitivity, anlayse next module
+ module_quant_disable(model_ptq, k)
+
+ return quant_sensitivity
+
+# python3 sensitivity_analyse.py --weights ../../assets/yolov6s_v2_reopt.pt --batch-size 32 --batch-number 4 --conf ../../configs/repopt/yolov6s_opt.py --data-root /path
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--weights', type=str, default='./yolov6s_v2_reopt.pt', help='weights path')
+ parser.add_argument('--data-root', type=str, default=None, help='train data path')
+ parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
+ parser.add_argument('--conf', type=str, default='../../configs/repopt/yolov6s_opt.py', help='model config')
+ parser.add_argument('--batch-size', type=int, default=128, help='batch size')
+ parser.add_argument('--batch-number', type=int, default=1, help='batch number')
+ parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
+ parser.add_argument('--inplace', action='store_true', help='set Detect() inplace=True')
+ parser.add_argument('--device', default='0', help='cuda device, i.e. 0 or 0, 1, 2, 3 or cpu')
+ parser.add_argument('--calib-weights', type=str, default=None, help='weights with calibration parameter')
+ parser.add_argument('--data-yaml', type=str, default='../../data/coco.yaml', help='data config')
+ parser.add_argument('--eval-yaml', type=str, default='./eval.yaml', help='evaluation config')
+ args = parser.parse_args()
+ args.img_size *= 2 if len(args.img_size) == 1 else 1 # expand
+ print(args)
+ yolov6_evaler = EvalerWrapper(eval_cfg=load_yaml(args.eval_yaml))
+ # Check device
+ cuda = args.device != 'cpu' and torch.cuda.is_available()
+ device = torch.device('cuda:0' if cuda else 'cpu')
+ assert not (device.type == 'cpu' and args.half), '--half only compatible with GPU export, i.e. use --device 0'
+ # Load PyTorch model
+ model = load_checkpoint(args.weights, map_location=device, inplace=True, fuse=True) # load FP32 model
+ model.eval()
+
+ for layer in model.modules():
+ if isinstance(layer, RepVGGBlock):
+ layer.switch_to_deploy()
+
+ for k, m in model.named_modules():
+ if isinstance(m, Conv): # assign export-friendly activations
+ if isinstance(m.act, nn.SiLU):
+ m.act = SiLU()
+ elif isinstance(m, Detect):
+ m.inplace = args.inplace
+
+ orig_mAP = yolov6_evaler.eval(model)
+ print("Full Precision model mAP0.5={:.4f}, mAP0.5_0.95={:0.4f}".format(orig_mAP[0], orig_mAP[1]))
+
+ # Step1: create dataloder
+ cfg = Config.fromfile(args.conf)
+ data_cfg = load_yaml(args.data_yaml)
+ train_loader, _ = create_dataloader(
+ args.data_root,
+ img_size=args.img_size[0],
+ batch_size=args.batch_size,
+ stride=32,
+ hyp=dict(cfg.data_aug),
+ augment=True,
+ shuffle=True,
+ data_dict=data_cfg)
+
+ # Step2: do post training quantization
+ if args.calib_weights is None:
+ model_ptq= do_ptq(model, train_loader, args.batch_number, device)
+ torch.save({'model': model_ptq}, args.weights.replace('.pt', '_calib.pt'))
+ else:
+ model_ptq = load_ptq(model, args.calib_weights, device)
+ quant_mAP = yolov6_evaler.eval(model_ptq)
+ print("Post Training Quantization model mAP0.5={:.4f}, mAP0.5_0.95={:0.4f}".format(quant_mAP[0], quant_mAP[1]))
+
+ # Step3: do sensitivity analysis and save sensistivity results
+ quant_sensitivity = quant_sensitivity_analyse(model_ptq, yolov6_evaler)
+ qfile = "{}_quant_sensitivity_{}_calib.txt".format(os.path.basename(args.weights).split('.')[0],
+ args.batch_size * args.batch_number)
+ quant_sensitivity_save(quant_sensitivity, qfile)
+
+
+ quant_sensitivity.sort(key=lambda tup: tup[2], reverse=True)
+ for sensitivity in quant_sensitivity:
+ print(sensitivity)
diff --git a/python/app/fedcv/YOLOv6/tools/partial_quantization/utils.py b/python/app/fedcv/YOLOv6/tools/partial_quantization/utils.py
new file mode 100644
index 0000000000..16cd009144
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/tools/partial_quantization/utils.py
@@ -0,0 +1,92 @@
+import os
+from pytorch_quantization import nn as quant_nn
+
+
+def set_module(model, submodule_key, module):
+ tokens = submodule_key.split('.')
+ sub_tokens = tokens[:-1]
+ cur_mod = model
+ for s in sub_tokens:
+ cur_mod = getattr(cur_mod, s)
+ setattr(cur_mod, tokens[-1], module)
+
+
+def get_module(model, submodule_key):
+ sub_tokens = submodule_key.split('.')
+ cur_mod = model
+ for s in sub_tokens:
+ cur_mod = getattr(cur_mod, s)
+ return cur_mod
+
+
+def module_quant_disable(model, k):
+ cur_module = get_module(model, k)
+ if hasattr(cur_module, '_input_quantizer'):
+ cur_module._input_quantizer.disable()
+ if hasattr(cur_module, '_weight_quantizer'):
+ cur_module._weight_quantizer.disable()
+
+
+def module_quant_enable(model, k):
+ cur_module = get_module(model, k)
+ if hasattr(cur_module, '_input_quantizer'):
+ cur_module._input_quantizer.enable()
+ if hasattr(cur_module, '_weight_quantizer'):
+ cur_module._weight_quantizer.enable()
+
+
+def model_quant_disable(model):
+ for name, module in model.named_modules():
+ if isinstance(module, quant_nn.TensorQuantizer):
+ module.disable()
+
+
+def model_quant_enable(model):
+ for name, module in model.named_modules():
+ if isinstance(module, quant_nn.TensorQuantizer):
+ module.enable()
+
+
+def concat_quant_amax_fuse(ops_list):
+ if len(ops_list) <= 1:
+ return
+
+ amax = -1
+ for op in ops_list:
+ if hasattr(op, '_amax'):
+ op_amax = op._amax.detach().item()
+ elif hasattr(op, '_input_quantizer'):
+ op_amax = op._input_quantizer._amax.detach().item()
+ else:
+ print("Not quantable op, skip")
+ return
+ print("op amax = {:7.4f}, amax = {:7.4f}".format(op_amax, amax))
+ if amax < op_amax:
+ amax = op_amax
+
+ print("amax = {:7.4f}".format(amax))
+ for op in ops_list:
+ if hasattr(op, '_amax'):
+ op._amax.fill_(amax)
+ elif hasattr(op, '_input_quantizer'):
+ op._input_quantizer._amax.fill_(amax)
+
+
+def quant_sensitivity_load(file):
+ assert os.path.exists(file), print("File {} does not exist".format(file))
+ quant_sensitivity = list()
+ with open(file, 'r') as qfile:
+ lines = qfile.readlines()
+ for line in lines:
+ layer, mAP1, mAP2 = line.strip('\n').split(' ')
+ quant_sensitivity.append((layer, float(mAP1), float(mAP2)))
+
+ return quant_sensitivity
+
+
+def quant_sensitivity_save(quant_sensitivity, file):
+ with open(file, 'w') as qfile:
+ for item in quant_sensitivity:
+ name, mAP1, mAP2 = item
+ line = name + " " + "{:0.4f}".format(mAP1) + " " + "{:0.4f}".format(mAP2) + "\n"
+ qfile.write(line)
diff --git a/python/app/fedcv/YOLOv6/tools/qat/README.md b/python/app/fedcv/YOLOv6/tools/qat/README.md
new file mode 100644
index 0000000000..deef45cb42
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/tools/qat/README.md
@@ -0,0 +1,80 @@
+# Quantization-Aware Training
+
+As of v0.2.0 release, traditional post-training quantization (PTQ) produces a degraded performance of `YOLOv6-S` from 43.4% to 41.2%. This is however much improved compared with v0.1.0 since the most sensitve layers are removed. Yet it is not ready for deployment. Meanwhile, due to the inconsistency of reparameterization blocks during training and inference, quantization-aware training (QAT) cannot be directly integrated into YOLOv6. As a remedy, we first train a single-branch network called `YOLOv6-S-RepOpt` with [RepOptimizer](https://arxiv.org/pdf/2205.15242.pdf). It reaches 43.1% mAP and is very close to YOLOv6-S. We then apply our quantization strategy on `YOLOv6-S-RepOpt`.
+
+We apply post-training quantization to `YOLOv6-S-RepOpt`, and its mAP slightly drops by 0.5%. Hence it is necessary to use QAT to further improve the accuracy. Besides, we involve **channel-wise distillation** to accelerate the convergence. We finally reach a quantized model at 43.0% mAP.
+
+To deploy the quantized model on typical NVIDIA GPUs (e.g. T4), we export the model to the ONNX format, then we use TensorRT to build a serialized engine along with the computed scale cache. The performance arrives at **43.3% mAP**, only 0.1% left to match the fully float precision of `YOLOv6-S`.
+
+
+## Pre-requirements
+
+It is required to install `pytorch_quantization`, on top of which we build our quantization strategy.
+
+```python
+pip install --extra-index-url=https://pypi.ngc.nvidia.com --trusted-host pypi.ngc.nvidia.com nvidia-pyindex
+pip install --extra-index-url=https://pypi.ngc.nvidia.com --trusted-host pypi.ngc.nvidia.com pytorch_quantization
+```
+
+## Training with RepOptimizer
+Firstly, train a `YOLOv6-S RepOpt` as follows, or download our realeased [checkpoint](https://github.com/meituan/YOLOv6/releases/download/0.2.0/yolov6s_v2_reopt.pt) and [scales](https://github.com/meituan/YOLOv6/releases/download/0.2.0/yolov6s_v2_scale.pt).
+* [Tutorial of RepOpt for YOLOv6](https://github.com/meituan/YOLOv6/blob/main/docs/tutorial_repopt.md)
+## PTQ
+We perform PTQ to get the range of activations and weights.
+```python
+CUDA_VISIBLE_DEVICES=0 python tools/train.py \
+ --data ./data/coco.yaml \
+ --output-dir ./runs/opt_train_v6s_ptq \
+ --conf configs/repopt/yolov6s_opt_qat.py \
+ --quant \
+ --calib \
+ --batch 32 \
+ --workers 0
+```
+
+## QAT
+
+Our proposed QAT strategy comes with channel-wise distillation. It loades calibrated ReOptimizer-trained model and trains for 10 epochs. To reproduce the result,
+
+```python
+CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --nproc_per_node=8 \
+ tools/train.py \
+ --data ./data/coco.yaml \
+ --output-dir ./runs/opt_train_v6s_qat \
+ --conf configs/repopt/yolov6s_opt_qat.py \
+ --quant \
+ --distill \
+ --distill_feat \
+ --batch 128 \
+ --epochs 10 \
+ --workers 32 \
+ --teacher_model_path ./assets/yolov6s_v2_reopt_43.1.pt \
+ --device 0,1,2,3,4,5,6,7
+```
+## ONNX Export
+To export to ONNX,
+```python
+python3 qat_export.py --weights yolov6s_v2_reopt_43.1.pt --quant-weights yolov6s_v2_reopt_qat_43.0.pt --graph-opt --export-batch-size 1
+```
+
+## TensorRT Deployment
+
+To build a TRT engine,
+
+```python
+trtexec --workspace=1024 --percentile=99 --streams=1 --int8 --fp16 --avgRuns=10 --onnx=yolov6s_v2_reopt_qat_43.0_bs1.sim.onnx --calib=yolov6s_v2_reopt_qat_43.0_remove_qdq_bs1_calibration_addscale.cache --saveEngine=yolov6s_v2_reopt_qat_43.0_bs1.sim.trt
+```
+You can directly build engine with [yolov6s_v2_quant.onnx](https://github.com/meituan/YOLOv6/releases/download/0.2.0/yolov6s_v2_reopt_qat_43.0_remove_qdq_bs1.sim.onnx) and [yolov6s_v2_calibration.cache](https://github.com/meituan/YOLOv6/releases/download/0.2.0/yolov6s_v2_reopt_qat_43.0_remove_qdq_bs1_calibration_addscale.cache)
+
+## Performance Comparison
+
+We release our quantized and graph-optimized YOLOv6-S (v0.2.0) model. The following throughput is tested with TensorRT 8.4 on a NVIDIA Tesla T4 GPU.
+
+| Model | Size | Precision |mAPval 0.5:0.95 | SpeedT4 trt b1 (fps) | SpeedT4 trt b32 (fps) |
+| :-------------- | ----------- | ----------- |:----------------------- | ---------------------------------------- | -----------------------------------|
+| [**YOLOv6-S RepOpt**] | 640 | INT8 |43.3 | 619 | 924 |
+| [**YOLOv6-S**] | 640 | FP16 |43.4 | 377 | 541 |
+| [**YOLOv6-T RepOpt**] | 640 | INT8 |39.8 | 741 | 1167 |
+| [**YOLOv6-T**] | 640 | FP16 |40.3 | 449 | 659 |
+| [**YOLOv6-N RepOpt**] | 640 | INT8 |34.8 | 1114 | 1828 |
+| [**YOLOv6-N**] | 640 | FP16 |35.9 | 802 | 1234 |
diff --git a/python/app/fedcv/YOLOv6/tools/qat/onnx_utils.py b/python/app/fedcv/YOLOv6/tools/qat/onnx_utils.py
new file mode 100644
index 0000000000..19aa131118
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/tools/qat/onnx_utils.py
@@ -0,0 +1,293 @@
+import os.path
+
+import onnx
+import numpy as np
+import struct
+import sys
+import copy
+
+def search_node_by_output_id(nodes, output_id: str):
+ prev_node = None
+ for node_id, node in enumerate(nodes):
+ if output_id in node.output:
+ prev_node = node
+ break
+ return prev_node
+
+def get_prev_node(nodes, node):
+ node_input_list = node.input
+ prev_node_list = []
+ for node_id, node in enumerate(nodes):
+ for node_output in node.output:
+ if node_output in node_input_list:
+ prev_node_list.append(node)
+ return prev_node_list
+
+def get_next_node(nodes, node):
+ node_output_list = node.output
+ next_node_list = []
+ for node_id, node in enumerate(nodes):
+ for node_input in node.input:
+ if node_input in node_output_list:
+ next_node_list.append(node)
+ return next_node_list
+
+def get_conv_qdq_node(nodes, conv_node):
+ # get conv input
+ conv_input_id = conv_node.input[0]
+ # print(conv_input_id)
+ dequant_node = None
+ quant_node = None
+ # get dequant node by conv input
+ for node_id, node in enumerate(nodes):
+ if node.op_type == "DequantizeLinear" and conv_input_id in node.output:
+ dequant_node = node
+ break
+ # get quant node by dequant input
+ if dequant_node is not None:
+ dequant_input_id = dequant_node.input[0]
+ # print(dequant_input_id)
+ for node_id, node in enumerate(nodes):
+ if node.op_type == "QuantizeLinear" and dequant_input_id in node.output:
+ quant_node = node
+ break
+ # print(dequant_node)
+ # print(quant_node)
+ return dequant_node, quant_node
+
+def onnx_conv_horizon_fuse(onnx_model):
+ onnx_replica = copy.deepcopy(onnx_model)
+ graph = onnx_replica.graph
+ nodes = graph.node
+ # find qualified add op
+ pattern = []
+ for node_id, node in enumerate(graph.node):
+ if node.op_type == "Add":
+ avail_count = 0
+ for input_id in node.input:
+ prev_node = search_node_by_output_id(graph.node, input_id)
+ # prev node must be BatchNorm or Conv
+ if prev_node is not None:
+ if prev_node.op_type in ['BatchNormalization', 'Conv'] and \
+ len(prev_node.output) == 1:
+ avail_count += 1
+ if avail_count == 2:
+ pattern.append(node)
+ # print(pattern)
+
+ # process each add
+ for add_node in pattern:
+ prev_add_node_list = get_prev_node(nodes, add_node)
+ # collect conv node
+ conv_node_list = []
+ for node in prev_add_node_list:
+ if node.op_type == "BatchNormalization":
+ prev_node_list = get_prev_node(nodes, node)
+ assert len(prev_node_list) == 1 and prev_node_list[0].op_type == "Conv", \
+ "Conv horizon fusion pattern not match"
+ conv_node_list.append(prev_node_list[0])
+ else:
+ conv_node_list.append(node)
+
+ # print(conv_node_list)
+ # collect qdq node
+ qdq_node_list = []
+ for node in conv_node_list:
+ dequant_node, quant_node = get_conv_qdq_node(nodes, node)
+ assert dequant_node is not None and quant_node is not None, "Conv horizon fusion pattern not match"
+ qdq_node_list.extend((dequant_node, quant_node))
+
+ # find scale node
+ scale_node_list = []
+ for qdq_node in qdq_node_list:
+ scale_iput_id = qdq_node.input[1]
+ for node in nodes:
+ if scale_iput_id in node.output:
+ scale_node_list.append(node)
+ # print(scale_node_list)
+ # get max scale
+ max = 0
+ for scale_node in scale_node_list:
+ val = np.frombuffer(scale_node.attribute[0].t.raw_data, dtype=np.float32)[0]
+ print(val)
+ if max < val:
+ max = val
+ # rewrite max scale
+ for scale_node in scale_node_list:
+ scale_node.attribute[0].t.raw_data = bytes(struct.pack("f", max))
+
+ # check
+ for scale_node in scale_node_list:
+ val = np.frombuffer(scale_node.attribute[0].t.raw_data, dtype=np.float32)[0]
+ print(val)
+
+ return onnx_replica
+
+def onnx_add_insert_qdqnode(onnx_model):
+ onnx_replica = copy.deepcopy(onnx_model)
+ graph = onnx_replica.graph
+ nodes = graph.node
+ # find qualified add op
+ patterns = []
+ for node_id, node in enumerate(graph.node):
+ if node.op_type == "Add":
+ same_input_node_list = []
+ same_input = None
+ for add_input in node.input:
+ for other_id, other_node in enumerate(nodes):
+ if other_id != node_id:
+ for other_input in other_node.input:
+ if other_input == add_input:
+ same_input_node_list.append(other_node)
+ same_input = other_input
+ break
+ # Find previous node of Add, which has two output, one is QuantizeLinear, other is Add
+ if len(same_input_node_list) == 1 and same_input_node_list[0].op_type == 'QuantizeLinear':
+ prev_add_node = search_node_by_output_id(nodes, same_input)
+ dequant_node = get_next_node(nodes, same_input_node_list[0])[0]
+ patterns.append((node, prev_add_node, same_input_node_list[0], dequant_node, same_input))
+ print(patterns)
+ for pattern in patterns:
+ add_node, prev_add_node, quant_node, dequant_node, same_input = pattern
+ dq_x, dq_s, dq_z = dequant_node.input
+ new_quant_node = onnx.helper.make_node('QuantizeLinear',
+ inputs=quant_node.input,
+ outputs=[prev_add_node.name + "_Dequant"],
+ name=prev_add_node.name + "_QuantizeLinear")
+ new_dequant_node = onnx.helper.make_node('DequantizeLinear',
+ inputs=[prev_add_node.name + "_Dequant", dq_s, dq_z],
+ outputs=[prev_add_node.name + "_Add"],
+ name=prev_add_node.name + "_DequantizeLinear")
+
+ add_node.input.remove(same_input)
+ add_node.input.append(prev_add_node.name + "_Add")
+ for node_id, node in enumerate(graph.node):
+ if node.name == prev_add_node.name:
+ graph.node.insert(node_id + 1, new_quant_node)
+ graph.node.insert(node_id + 2, new_dequant_node)
+
+ return onnx_replica
+
+ # new_dequant_node = onnx.helper.make_node('DequantizeLinear',
+ # inputs=quant_node.input,
+ # outputs=prev_add_node.output,
+ # name=prev_add_node.name + "_DequantizeLinear")
+
+
+def onnx_remove_qdqnode(onnx_model):
+ onnx_replica = copy.deepcopy(onnx_model)
+ graph = onnx_replica.graph
+ nodes = graph.node
+
+ # demo for remove node with first input and output
+ in_rename_map = {}
+ scale_node_list = []
+ zero_node_list = []
+ activation_map = {}
+ for node_id, node in enumerate(graph.node):
+ if node.op_type == "QuantizeLinear":
+ # node input
+ in_name = node.input[0]
+ scale_name = node.input[1]
+ zero_name = node.input[2]
+ # print(scale_name)
+ # node output
+ out_name = node.output[0]
+ # record input, remove one node, set node's input to its next
+ in_rename_map[out_name] = in_name
+ scale_node_list.append(scale_name)
+ zero_node_list.append(zero_name)
+ # for i, node in enumerate(graph.node):
+ # if node.output[0] == scale_name:
+ # if len(node.attribute[0].t.dims) > 0:
+ # print(node.attribute[0].t.dims)
+ # graph.node.remove(nodes[i])
+ # for i, node in enumerate(graph.node):
+ # if node.output[0] == zero_name:
+ # graph.node.remove(nodes[i])
+ # record scale of activation
+ for i, node in enumerate(graph.node):
+ if node.output[0] == scale_name:
+ if len(node.attribute[0].t.dims) == 0:
+ # print(node.attribute[0].t.raw_data)
+ # print(np.frombuffer(node.attribute[0].t.raw_data, dtype=np.float32))
+ val = np.frombuffer(node.attribute[0].t.raw_data, dtype=np.float32)[0]
+ if in_name in activation_map.keys():
+ old_val = struct.unpack('!f', bytes.fromhex(activation_map[in_name]))[0]
+ # print("Already record, old {:.4f}, new {:.4f}".format(old_val, val))
+ if val > old_val:
+ activation_map[in_name] = struct.pack('>f', val).hex()
+ else:
+ activation_map[in_name] = struct.pack('>f', val).hex()
+ # remove QuantizeLinear node
+ graph.node.remove(nodes[node_id])
+
+
+ # relink
+ for node_id, node in enumerate(graph.node):
+ for in_id, in_name in enumerate(node.input):
+ if in_name in in_rename_map.keys():
+ # set node input == removed node's input
+ node.input[in_id] = in_rename_map[in_name]
+
+ in_rename_map = {}
+ # activation_map = {}
+ for node_id, node in enumerate(graph.node):
+ if node.op_type == "DequantizeLinear":
+ in_name = node.input[0]
+ scale_name = node.input[1]
+ zero_name = node.input[2]
+ # print(scale_name)
+ out_name = node.output[0]
+ in_rename_map[out_name] = in_name
+ graph.node.remove(nodes[node_id])
+ scale_node_list.append(scale_name)
+ zero_node_list.append(zero_name)
+
+ # relink
+ for node_id, node in enumerate(graph.node):
+ for in_id, in_name in enumerate(node.input):
+ if in_name in in_rename_map.keys():
+ node.input[in_id] = in_rename_map[in_name]
+
+ nodes = graph.node
+ for node_name in (scale_node_list + zero_node_list):
+ for node_id, node in enumerate(graph.node):
+ if node.name == node_name:
+ # print("node input={}".format(node.input))
+ # for node_input in node.input:
+ # print(node_input)
+ # graph.node.remove(node_input)
+ graph.node.remove(nodes[node_id])
+
+ for node_name in (scale_node_list + zero_node_list):
+ for node_id, node in enumerate(graph.node):
+ if node.output[0] == node_name:
+ # print("node input={}".format(node.input))
+ # for node_input in node.input:
+ # print(node_input)
+ # graph.node.remove(node_input)
+ graph.node.remove(nodes[node_id])
+
+ return onnx_replica, activation_map
+
+def save_calib_cache_file(cache_file, activation_map, headline='TRT-8XXX-EntropyCalibration2\n'):
+ with open(os.path.join(cache_file), 'w') as cfile:
+ cfile.write(headline)
+ for k, v in activation_map.items():
+ cfile.write("{}: {}\n".format(k, v))
+
+def get_remove_qdq_onnx_and_cache(onnx_file):
+ model = onnx.load(onnx_file)
+ # onnx_insert = onnx_add_insert_qdqnode(model)
+ model_wo_qdq, activation_map = onnx_remove_qdqnode(model)
+ onnx_name, onnx_dir = os.path.basename(onnx_file), os.path.dirname(onnx_file)
+ onnx_new_name = onnx_name.replace('.onnx', '_remove_qdq.onnx')
+ onnx.save(model_wo_qdq, os.path.join(onnx_dir, onnx_new_name))
+ cache_name = onnx_new_name.replace('.onnx', '_add_insert_qdq_calibration.cache')
+ save_calib_cache_file(os.path.join(onnx_dir, cache_name), activation_map)
+
+if __name__ == '__main__':
+
+ onnx_file = sys.argv[1]
+ get_remove_qdq_onnx_and_cache(onnx_file)
diff --git a/python/app/fedcv/YOLOv6/tools/qat/qat_export.py b/python/app/fedcv/YOLOv6/tools/qat/qat_export.py
new file mode 100644
index 0000000000..541005d3c6
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/tools/qat/qat_export.py
@@ -0,0 +1,169 @@
+import argparse
+import time
+import sys
+import os
+ROOT = os.getcwd()
+if str(ROOT) not in sys.path:
+ sys.path.append(str(ROOT))
+sys.path.append('../../')
+from yolov6.models.effidehead import Detect
+from yolov6.models.yolo import build_model
+from yolov6.layers.common import *
+from yolov6.utils.events import LOGGER, load_yaml
+from yolov6.utils.checkpoint import load_checkpoint, load_state_dict
+from yolov6.utils.config import Config
+from tools.partial_quantization.eval import EvalerWrapper
+from tools.partial_quantization.utils import get_module, concat_quant_amax_fuse
+from tools.qat.qat_utils import qat_init_model_manu
+from pytorch_quantization import nn as quant_nn
+from onnx_utils import get_remove_qdq_onnx_and_cache
+
+op_concat_fusion_list = [
+ ('backbone.ERBlock_5.2.m', 'backbone.ERBlock_5.2.cv2.conv'),
+ ('backbone.ERBlock_5.0.conv', 'neck.Rep_p4.conv1.conv', 'neck.upsample_feat0_quant'),
+ ('backbone.ERBlock_4.0.conv', 'neck.Rep_p3.conv1.conv', 'neck.upsample_feat1_quant'),
+ ('neck.upsample1.upsample_transpose', 'neck.Rep_n3.conv1.conv'),
+ ('neck.upsample0.upsample_transpose', 'neck.Rep_n4.conv1.conv'),
+ #
+ ('detect.reg_convs.0.conv', 'detect.cls_convs.0.conv'),
+ ('detect.reg_convs.1.conv', 'detect.cls_convs.1.conv'),
+ ('detect.reg_convs.2.conv', 'detect.cls_convs.2.conv'),
+]
+
+def zero_scale_fix(model, device):
+
+ for k, m in model.named_modules():
+ # print(k, m)
+ if isinstance(m, quant_nn.QuantConv2d) or \
+ isinstance(m, quant_nn.QuantConvTranspose2d):
+ # print(m)
+ # print(m._weight_quantizer._amax)
+ weight_amax = m._weight_quantizer._amax.detach().cpu().numpy()
+ # print(weight_amax)
+ print(k)
+ ones = np.ones_like(weight_amax)
+ print("zero scale number = {}".format(np.sum(weight_amax == 0.0)))
+ weight_amax = np.where(weight_amax == 0.0, ones, weight_amax)
+ m._weight_quantizer._amax.copy_(torch.from_numpy(weight_amax).to(device))
+ else:
+ # module can not be quantized, continue
+ continue
+
+# python3 qat_export.py --weights yolov6s_v2_reopt.pt --quant-weights yolov6s_v2_reopt_qat_43.0.pt --export-batch-size 1 --conf ../../configs/repopt/yolov6s_opt_qat.py
+# python3 qat_export.py --weights v6s_t.pt --quant-weights yolov6t_v2_reopt_qat_40.1.pt --export-batch-size 1 --conf ../../configs/repopt/yolov6_tiny_opt_qat.py
+# python3 qat_export.py --weights v6s_n.pt --quant-weights yolov6n_v2_reopt_qat_34.9.pt --export-batch-size 1 --conf ../../configs/repopt/yolov6n_opt_qat.py
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--weights', type=str, default='./yolov6s_v2_reopt.pt', help='weights path')
+ parser.add_argument('--quant-weights', type=str, default='./yolov6s_v2_reopt_qat_43.0.pt', help='calib weights path')
+ parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
+ parser.add_argument('--conf', type=str, default='../../configs/repopt/yolov6s_opt_qat.py', help='model config')
+ parser.add_argument('--export-batch-size', type=int, default=None, help='export batch size')
+ parser.add_argument('--calib', action='store_true', default=False, help='calibrated model')
+ parser.add_argument('--scale-fix', action='store_true', help='enable scale fix')
+ parser.add_argument('--fuse-bn', action='store_true', help='fuse bn')
+ parser.add_argument('--graph-opt', action='store_true', help='enable graph optimizer')
+ parser.add_argument('--inplace', action='store_true', help='set Detect() inplace=True')
+ parser.add_argument('--end2end', action='store_true', help='export end2end onnx')
+ parser.add_argument('--trt-version', type=int, default=8, help='tensorrt version')
+ parser.add_argument('--with-preprocess', action='store_true', help='export bgr2rgb and normalize')
+ parser.add_argument('--max-wh', type=int, default=None, help='None for tensorrt nms, int value for onnx-runtime nms')
+ parser.add_argument('--topk-all', type=int, default=100, help='topk objects for every images')
+ parser.add_argument('--iou-thres', type=float, default=0.45, help='iou threshold for NMS')
+ parser.add_argument('--conf-thres', type=float, default=0.4, help='conf threshold for NMS')
+ parser.add_argument('--device', default='0', help='cuda device, i.e. 0 or 0, 1, 2, 3 or cpu')
+ parser.add_argument('--eval-yaml', type=str, default='../partial_quantization/eval.yaml', help='evaluation config')
+ args = parser.parse_args()
+ args.img_size *= 2 if len(args.img_size) == 1 else 1 # expand
+ print(args)
+ t = time.time()
+ # Check device
+ cuda = args.device != 'cpu' and torch.cuda.is_available()
+ device = torch.device('cuda:0' if cuda else 'cpu')
+ assert not (device.type == 'cpu' and args.half), '--half only compatible with GPU export, i.e. use --device 0'
+ model = load_checkpoint(args.weights, map_location=device, inplace=args.inplace, fuse=args.fuse_bn)
+ yolov6_evaler = EvalerWrapper(eval_cfg=load_yaml(args.eval_yaml))
+ # orig_mAP = yolov6_evaler.eval(model)
+ for layer in model.modules():
+ if isinstance(layer, RepVGGBlock):
+ layer.switch_to_deploy()
+ for k, m in model.named_modules():
+ if isinstance(m, Conv): # assign export-friendly activations
+ if isinstance(m.act, nn.SiLU):
+ m.act = SiLU()
+ elif isinstance(m, Detect):
+ m.inplace = args.inplace
+ # Load PyTorch model
+ cfg = Config.fromfile(args.conf)
+ # init qat model
+ qat_init_model_manu(model, cfg, args)
+ print(model)
+ model.neck.upsample_enable_quant(cfg.ptq.num_bits, cfg.ptq.calib_method)
+ ckpt = torch.load(args.quant_weights)
+ model.load_state_dict(ckpt['model'].float().state_dict())
+ print(model)
+ model.to(device)
+ if args.scale_fix:
+ zero_scale_fix(model, device)
+ if args.graph_opt:
+ # concat amax fusion
+ for sub_fusion_list in op_concat_fusion_list:
+ ops = [get_module(model, op_name) for op_name in sub_fusion_list]
+ concat_quant_amax_fuse(ops)
+ qat_mAP = yolov6_evaler.eval(model)
+ print(qat_mAP)
+ if args.end2end:
+ from yolov6.models.end2end import End2End
+ model = End2End(model, max_obj=args.topk_all, iou_thres=args.iou_thres,score_thres=args.conf_thres,
+ max_wh=args.max_wh, device=device, trt_version=args.trt_version, with_preprocess=args.with_preprocess)
+ # ONNX export
+ quant_nn.TensorQuantizer.use_fb_fake_quant = True
+ if args.export_batch_size is None:
+ img = torch.zeros(1, 3, *args.img_size).to(device)
+ export_file = args.quant_weights.replace('.pt', '_dynamic.onnx') # filename
+ if args.graph_opt:
+ export_file = export_file.replace('.onnx', '_graph_opt.onnx')
+ if args.end2end:
+ export_file = export_file.replace('.onnx', '_e2e.onnx')
+ dynamic_axes = {
+ "image_arrays": {0: "batch"},
+ }
+ if args.end2end:
+ dynamic_axes["num_dets"] = {0: "batch"}
+ dynamic_axes["det_boxes"] = {0: "batch"}
+ dynamic_axes["det_scores"] = {0: "batch"}
+ dynamic_axes["det_classes"] = {0: "batch"}
+ else:
+ dynamic_axes["outputs"] = {0: "batch"}
+ torch.onnx.export(model,
+ img,
+ export_file,
+ verbose=False,
+ opset_version=13,
+ training=torch.onnx.TrainingMode.EVAL,
+ do_constant_folding=True,
+ input_names=['images'],
+ output_names=['num_dets', 'det_boxes', 'det_scores', 'det_classes']
+ if args.end2end else ['outputs'],
+ dynamic_axes=dynamic_axes
+ )
+ else:
+ img = torch.zeros(args.export_batch_size, 3, *args.img_size).to(device)
+ export_file = args.quant_weights.replace('.pt', '_bs{}.onnx'.format(args.export_batch_size)) # filename
+ if args.graph_opt:
+ export_file = export_file.replace('.onnx', '_graph_opt.onnx')
+ if args.end2end:
+ export_file = export_file.replace('.onnx', '_e2e.onnx')
+ torch.onnx.export(model,
+ img,
+ export_file,
+ verbose=False,
+ opset_version=13,
+ training=torch.onnx.TrainingMode.EVAL,
+ do_constant_folding=True,
+ input_names=['images'],
+ output_names=['num_dets', 'det_boxes', 'det_scores', 'det_classes']
+ if args.end2end else ['outputs'],
+ )
+
+ get_remove_qdq_onnx_and_cache(export_file)
diff --git a/python/app/fedcv/YOLOv6/tools/qat/qat_utils.py b/python/app/fedcv/YOLOv6/tools/qat/qat_utils.py
new file mode 100644
index 0000000000..e5762726ff
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/tools/qat/qat_utils.py
@@ -0,0 +1,153 @@
+from tqdm import tqdm
+import torch
+import torch.nn as nn
+
+from pytorch_quantization import nn as quant_nn
+from pytorch_quantization import tensor_quant
+from pytorch_quantization import calib
+from pytorch_quantization.tensor_quant import QuantDescriptor
+
+from tools.partial_quantization.utils import set_module, module_quant_disable
+
+def collect_stats(model, data_loader, num_batches):
+ """Feed data to the network and collect statistic"""
+
+ # Enable calibrators
+ for name, module in model.named_modules():
+ if isinstance(module, quant_nn.TensorQuantizer):
+ if module._calibrator is not None:
+ module.disable_quant()
+ module.enable_calib()
+ else:
+ module.disable()
+
+ for i, (image, _, _, _) in tqdm(enumerate(data_loader), total=num_batches):
+ image = image.float()/255.0
+ model(image.cuda())
+ if i >= num_batches:
+ break
+
+ # Disable calibrators
+ for name, module in model.named_modules():
+ if isinstance(module, quant_nn.TensorQuantizer):
+ if module._calibrator is not None:
+ module.enable_quant()
+ module.disable_calib()
+ else:
+ module.enable()
+
+def compute_amax(model, **kwargs):
+ # Load Calib result
+ for name, module in model.named_modules():
+ if isinstance(module, quant_nn.TensorQuantizer):
+ print(F"{name:40}: {module}")
+ if module._calibrator is not None:
+ #MinMaxCalib
+ if isinstance(module._calibrator, calib.MaxCalibrator):
+ module.load_calib_amax()
+ else:
+ #HistogramCalib
+ module.load_calib_amax(**kwargs)
+ model.cuda()
+
+def ptq_calibrate(model, train_loader, cfg):
+ model.eval()
+ model.cuda()
+ # It is a bit slow since we collect histograms on CPU
+ with torch.no_grad():
+ collect_stats(model, train_loader, cfg.ptq.calib_batches)
+ compute_amax(model, method=cfg.ptq.histogram_amax_method, percentile=cfg.ptq.histogram_amax_percentile)
+
+def qat_init_model_manu(model, cfg, args):
+ # print(model)
+ conv2d_weight_default_desc = tensor_quant.QUANT_DESC_8BIT_CONV2D_WEIGHT_PER_CHANNEL
+ conv2d_input_default_desc = QuantDescriptor(num_bits=cfg.ptq.num_bits, calib_method=cfg.ptq.calib_method)
+
+ convtrans2d_weight_default_desc = tensor_quant.QUANT_DESC_8BIT_CONVTRANSPOSE2D_WEIGHT_PER_CHANNEL
+ convtrans2d_input_default_desc = QuantDescriptor(num_bits=cfg.ptq.num_bits, calib_method=cfg.ptq.calib_method)
+
+ for k, m in model.named_modules():
+ if 'proj_conv' in k:
+ print("Skip Layer {}".format(k))
+ continue
+ if args.calib is True and cfg.ptq.sensitive_layers_skip is True:
+ if k in cfg.ptq.sensitive_layers_list:
+ print("Skip Layer {}".format(k))
+ continue
+ # print(k, m)
+ if isinstance(m, nn.Conv2d):
+ # print("in_channel = {}".format(m.in_channels))
+ # print("out_channel = {}".format(m.out_channels))
+ # print("kernel size = {}".format(m.kernel_size))
+ # print("stride size = {}".format(m.stride))
+ # print("pad size = {}".format(m.padding))
+ in_channels = m.in_channels
+ out_channels = m.out_channels
+ kernel_size = m.kernel_size
+ stride = m.stride
+ padding = m.padding
+ quant_conv = quant_nn.QuantConv2d(in_channels,
+ out_channels,
+ kernel_size,
+ stride,
+ padding,
+ quant_desc_input = conv2d_input_default_desc,
+ quant_desc_weight = conv2d_weight_default_desc)
+ quant_conv.weight.data.copy_(m.weight.detach())
+ if m.bias is not None:
+ quant_conv.bias.data.copy_(m.bias.detach())
+ else:
+ quant_conv.bias = None
+ set_module(model, k, quant_conv)
+ elif isinstance(m, nn.ConvTranspose2d):
+ # print("in_channel = {}".format(m.in_channels))
+ # print("out_channel = {}".format(m.out_channels))
+ # print("kernel size = {}".format(m.kernel_size))
+ # print("stride size = {}".format(m.stride))
+ # print("pad size = {}".format(m.padding))
+ in_channels = m.in_channels
+ out_channels = m.out_channels
+ kernel_size = m.kernel_size
+ stride = m.stride
+ padding = m.padding
+ quant_convtrans = quant_nn.QuantConvTranspose2d(in_channels,
+ out_channels,
+ kernel_size,
+ stride,
+ padding,
+ quant_desc_input = convtrans2d_input_default_desc,
+ quant_desc_weight = convtrans2d_weight_default_desc)
+ quant_convtrans.weight.data.copy_(m.weight.detach())
+ if m.bias is not None:
+ quant_convtrans.bias.data.copy_(m.bias.detach())
+ else:
+ quant_convtrans.bias = None
+ set_module(model, k, quant_convtrans)
+ elif isinstance(m, nn.MaxPool2d):
+ # print("kernel size = {}".format(m.kernel_size))
+ # print("stride size = {}".format(m.stride))
+ # print("pad size = {}".format(m.padding))
+ # print("dilation = {}".format(m.dilation))
+ # print("ceil mode = {}".format(m.ceil_mode))
+ kernel_size = m.kernel_size
+ stride = m.stride
+ padding = m.padding
+ dilation = m.dilation
+ ceil_mode = m.ceil_mode
+ quant_maxpool2d = quant_nn.QuantMaxPool2d(kernel_size,
+ stride,
+ padding,
+ dilation,
+ ceil_mode,
+ quant_desc_input = conv2d_input_default_desc)
+ set_module(model, k, quant_maxpool2d)
+ else:
+ # module can not be quantized, continue
+ continue
+
+def skip_sensitive_layers(model, sensitive_layers):
+ print('Skip sensitive layers...')
+ for name, module in model.named_modules():
+ if name in sensitive_layers:
+ print(F"Disable {name}")
+ module_quant_disable(model, name)
diff --git a/python/app/fedcv/YOLOv6/tools/quantization/mnn/README.md b/python/app/fedcv/YOLOv6/tools/quantization/mnn/README.md
new file mode 100644
index 0000000000..91f12c935e
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/tools/quantization/mnn/README.md
@@ -0,0 +1 @@
+# Coming soon
diff --git a/python/app/fedcv/YOLOv6/tools/quantization/ppq/ProgramEntrance.py b/python/app/fedcv/YOLOv6/tools/quantization/ppq/ProgramEntrance.py
new file mode 100644
index 0000000000..38c9c66859
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/tools/quantization/ppq/ProgramEntrance.py
@@ -0,0 +1,189 @@
+try:
+ from ppq.core.config import PPQ_CONFIG
+ if PPQ_CONFIG.VERSION < '0.6.6':
+ raise ValueError('为了运行该脚本的内容,你必须安装更高版本的 PPQ(>0.6.6)')
+
+ import ppq.lib as PFL
+ from ppq import TargetPlatform, TorchExecutor, graphwise_error_analyse
+ from ppq.api import ENABLE_CUDA_KERNEL
+ from ppq.api.interface import load_onnx_graph
+ from ppq.core import (QuantizationPolicy, QuantizationProperty,
+ RoundingPolicy)
+ from ppq.IR import Operation
+ from ppq.quantization.optim import (LearnedStepSizePass,
+ ParameterBakingPass,
+ ParameterQuantizePass,
+ QuantAlignmentPass, QuantizeFusionPass,
+ QuantizeSimplifyPass,
+ RuntimeCalibrationPass)
+
+except ImportError:
+ raise Exception('为了运行脚本内容,你必须安装 PPQ 量化工具(https://github.com/openppl-public/ppq)')
+from typing import List
+
+import torch
+
+# ------------------------------------------------------------
+# 在这个例子中我们将向你展示如何使用 INT8 量化一个 Yolo v6 模型
+# 我们使用随机数据进行量化,这并不能得到好的量化结果。
+# 在量化你的网络时,你应当使用真实数据和正确的预处理。
+#
+# 根据你选取的目标平台,PPQ 可以为 TensorRT, Openvino, Ncnn 等诸多平台生成量化模型
+# ------------------------------------------------------------
+graph = load_onnx_graph(onnx_import_file='Models/det_model/yolov6s.onnx')
+dataset = [torch.rand(size=[1, 3, 640, 640]) for _ in range(64)]
+
+# -----------------------------------------------------------
+# 我们将借助 PFL - PPQ Foundation Library, 即 PPQ 基础类库完成量化
+# 这是 PPQ 自 0.6.6 以来推出的新的量化 api 接口,这一接口是提供给
+# 算法工程师、部署工程师、以及芯片研发人员使用的,它更为灵活。
+# 我们将手动使用 Quantizer 完成算子量化信息初始化, 并且手动完成模型的调度工作
+#
+# 在开始之前,我需要向你介绍量化器、量化信息以及调度表
+# 量化信息在 PPQ 中是由 TensorQuantizationConfig(TQC) 进行描述的
+# 这个结构体描述了我要如何去量化一个数据,其中包含了量化位宽、量化策略、
+# 量化 Scale, offset 等内容。
+# ------------------------------------------------------------
+from ppq import TensorQuantizationConfig as TQC
+
+MyTQC = TQC(
+ policy = QuantizationPolicy(
+ QuantizationProperty.SYMMETRICAL +
+ QuantizationProperty.LINEAR +
+ QuantizationProperty.PER_TENSOR),
+ rounding=RoundingPolicy.ROUND_HALF_EVEN,
+ num_of_bits=8, quant_min=-128, quant_max=127,
+ exponent_bits=0, channel_axis=None,
+ observer_algorithm='minmax'
+)
+# ------------------------------------------------------------
+# 作为示例,我们创建了一个 "线性" "对称" "Tensorwise" 的量化信息
+# 这三者皆是该量化信息的 QuantizationPolicy 的一部分
+# 同时要求该量化信息使用 ROUND_HALF_EVEN 方式进行取整
+# 量化位宽为 8 bit,其中指数部分为 0 bit
+# 量化上限为 127.0,下限则为 -128.0
+# 这是一个 Tensorwise 的量化信息,因此 channel_axis = None
+# observer_algorithm 表示在未来使用 minmax calibration 方法确定该量化信息的 scale
+
+# 上述例子完成了该 TQC 的初始化,但并未真正启用该量化信息
+# MyTQC.scale, MyTQC.offset 仍然为空,它们必须经过 calibration 才会具有有意义的值
+# 并且他目前的状态 MyTQC.state 仍然是 Quantization.INITIAL,这意味着在计算时该 TQC 并不会参与运算。
+# ------------------------------------------------------------
+
+# ------------------------------------------------------------
+# 接下来我们向你介绍量化器,这是 PPQ 中的一个核心类型
+# 它的职责是为网络中所有处于量化区的算子初始化量化信息(TQC)
+# PPQ 中实现了一堆不同的量化器,它们分别适配不同的情形
+# 在这个例子中,我们分别创建了 TRT_INT8, GRAPHCORE_FP8, TRT_FP8 三种不同的量化器
+# 由它们所生成的量化信息是不同的,为此你可以访问它们的源代码
+# 位于 ppq.quantization.quantizer 中,查看它们初始化量化信息的逻辑。
+# ------------------------------------------------------------
+_ = PFL.Quantizer(platform=TargetPlatform.TRT_FP8, graph=graph) # 取得 TRT_FP8 所对应的量化器
+_ = PFL.Quantizer(platform=TargetPlatform.GRAPHCORE_FP8, graph=graph) # 取得 GRAPHCORE_FP8 所对应的量化器
+quantizer = PFL.Quantizer(platform=TargetPlatform.TRT_INT8, graph=graph) # 取得 TRT_INT8 所对应的量化器
+
+# ------------------------------------------------------------
+# 调度器是 PPQ 中另一核心类型,它负责切分计算图
+# 在量化开始之前,你的计算图将被切分成可量化区域,以及不可量化区域
+# 不可量化区域往往就是那些执行 Shape 推断的算子所构成的子图
+# *** 量化器只为量化区的算子初始化量化信息 ***
+# 调度信息将被写在算子的属性中,你可以通过 op.platform 来访问每一个算子的调度信息
+# ------------------------------------------------------------
+dispatching = PFL.Dispatcher(graph=graph).dispatch( # 生成调度表
+ quant_types=quantizer.quant_operation_types)
+
+for op in graph.operations.values():
+ # quantize_operation - 为算子初始化量化信息,platform 传递了算子的调度信息
+ # 如果你的算子被调度到 TargetPlatform.FP32 上,则该算子不量化
+ # 你可以手动修改调度信息
+ dispatching['Op1'] = TargetPlatform.FP32 # 将 Op1 强行送往非量化区
+ dispatching['Op2'] = TargetPlatform.TRT_INT8 # 将 Op2 强行送往量化区
+ quantizer.quantize_operation(
+ op_name = op.name, platform = dispatching[op.name])
+
+# ------------------------------------------------------------
+# 在创建量化管线之前,我们需要初始化执行器,它用于模拟硬件并执行你的网络
+# 请注意,执行器需要对网络结果进行分析并缓存分析结果,如果你的网络结构发生变化
+# 你必须重新建立新的执行器。在上一步操作中,我们对算子进行了量化,这使得
+# 普通的算子被量化算子替代,这一步操作将会改变网络结构。因此我们必须在其后建立执行器。
+# ------------------------------------------------------------
+collate_fn = lambda x: x.cuda()
+executor = TorchExecutor(graph=graph, device='cuda')
+executor.tracing_operation_meta(inputs=collate_fn(dataset[0]))
+executor.load_graph(graph=graph)
+
+# ------------------------------------------------------------
+# 如果在你的模型中存在 NMS 算子 ———— PPQ 不知道如何计算这个玩意,但它跟量化也没啥关系
+# 因此你可以注册一个假的 NMS forward 函数给 PPQ,帮助我们完成网络的前向传播流程
+# ------------------------------------------------------------
+from ppq.api import register_operation_handler
+def nms_forward_function(op: Operation, values: List[torch.Tensor], **kwards) -> List[torch.Tensor]:
+ return (
+ torch.zeros([1, 1], dtype=torch.int32).cuda(),
+ torch.zeros([1, 100, 4],dtype=torch.float32).cuda(),
+ torch.zeros([1, 100],dtype=torch.float32).cuda(),
+ torch.zeros([1, 100], dtype=torch.int32).cuda()
+ )
+register_operation_handler(nms_forward_function, 'EfficientNMS_TRT', platform=TargetPlatform.FP32)
+
+# ------------------------------------------------------------
+# 下面的过程将创建量化管线,它还是一个 PPQ 的核心类型
+# 在 PPQ 中,模型的量化是由一个一个的量化过程(QuantizationOptimizationPass)完成的
+# 量化管线 是 量化过程 的集合,在其中的量化过程将被逐个调用
+# 从而实现对 TQC 中内容的修改,最终实现模型的量化
+# 在这里我们为管线中添加了 7 个量化过程,分别处理不同的内容
+
+# QuantizeSimplifyPass - 用于移除网络中的冗余量化信息
+# QuantizeFusionPass - 用于调整量化信息状态,从而模拟推理图融合
+# ParameterQuantizePass - 用于为模型中的所有参数执行 Calibration, 生成它们的 scale,并将对应 TQC 的状态调整为 ACTIVED
+# RuntimeCalibrationPass - 用于为模型中的所有激活执行 Calibration, 生成它们的 scale,并将对应 TQC 的状态调整为 ACTIVED
+# QuantAlignmentPass - 用于执行 concat, add, sum, sub, pooling 算子的定点对齐
+# LearnedStepSizePass - 用于训练微调模型的权重,从而降低量化误差
+# ParameterBakingPass - 用于执行模型参数烘焙
+
+# 在 PPQ 中我们提供了数十种不同的 QuantizationOptimizationPass
+# 你可以组合它们从而实现自定义的功能,也可以继承 QuantizationOptimizationPass 基类
+# 从而创造出新的量化优化过程
+# ------------------------------------------------------------
+pipeline = PFL.Pipeline([
+ QuantizeSimplifyPass(),
+ QuantizeFusionPass(
+ activation_type=quantizer.activation_fusion_types),
+ ParameterQuantizePass(),
+ RuntimeCalibrationPass(),
+ QuantAlignmentPass(force_overlap=True),
+ LearnedStepSizePass(
+ steps=1000, is_scale_trainable=True,
+ lr=1e-5, block_size=4, collecting_device='cuda'),
+ ParameterBakingPass()
+])
+
+with ENABLE_CUDA_KERNEL():
+ # 调用管线完成量化
+ pipeline.optimize(
+ graph=graph, dataloader=dataset, verbose=True,
+ calib_steps=32, collate_fn=collate_fn, executor=executor)
+
+ # 执行量化误差分析
+ graphwise_error_analyse(
+ graph=graph, running_device='cuda',
+ dataloader=dataset, collate_fn=collate_fn)
+
+# ------------------------------------------------------------
+# 在最后,我们导出计算图
+# 同样地,我们根据不同推理框架的需要,写了一堆不同的网络导出逻辑
+# 你通过参数 platform 告诉 PPQ 你的模型最终将部署在何处,
+# PPQ 则会返回一个对应的 GraphExporter 对象,它将负责将 PPQ 的量化信息
+# 翻译成推理框架所需的内容。你也可以自己写一个 GraphExporter 类并注册到 PPQ 框架中来。
+# ------------------------------------------------------------
+exporter = PFL.Exporter(platform=TargetPlatform.TRT_INT8)
+exporter.export(file_path='Quantized.onnx', config_path='Quantized.json', graph=graph)
+
+# ------------------------------------------------------------
+# 导出所需的 onnx 和 json 文件之后,你可以调用在这个文件旁边的 write_qparams_onnx2trt.py 生成 engine
+#
+# 你需要注意到,我们生成的 onnx 和 json 文件是可以随时迁移的,但 engine 一旦编译完成则不能迁移
+# https://github.com/openppl-public/ppq/blob/master/md_doc/deploy_trt_by_OnnxParser.md
+#
+# 性能分析脚本 https://github.com/openppl-public/ppq/blob/master/ppq/samples/TensorRT/Example_Profiling.py
+# ------------------------------------------------------------
diff --git a/python/app/fedcv/YOLOv6/tools/quantization/ppq/write_qparams_onnx2trt.py b/python/app/fedcv/YOLOv6/tools/quantization/ppq/write_qparams_onnx2trt.py
new file mode 100644
index 0000000000..7b48dc8bcc
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/tools/quantization/ppq/write_qparams_onnx2trt.py
@@ -0,0 +1,94 @@
+import os
+import json
+import argparse
+import tensorrt as trt
+
+TRT_LOGGER = trt.Logger()
+
+EXPLICIT_BATCH = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
+
+def GiB(val):
+ return val * 1 << 30
+
+def json_load(filename):
+ with open(filename) as json_file:
+ data = json.load(json_file)
+ return data
+
+def setDynamicRange(network, json_file):
+ """Sets ranges for network layers."""
+ quant_param_json = json_load(json_file)
+ act_quant = quant_param_json["act_quant_info"]
+
+ for i in range(network.num_inputs):
+ input_tensor = network.get_input(i)
+ if act_quant.__contains__(input_tensor.name):
+ print(input_tensor.name)
+ value = act_quant[input_tensor.name]
+ tensor_max = abs(value)
+ tensor_min = -abs(value)
+ input_tensor.dynamic_range = (tensor_min, tensor_max)
+
+ for i in range(network.num_layers):
+ layer = network.get_layer(i)
+
+ for output_index in range(layer.num_outputs):
+ tensor = layer.get_output(output_index)
+
+ if act_quant.__contains__(tensor.name):
+ print("\033[1;32mWrite quantization parameters:%s\033[0m" % tensor.name)
+ value = act_quant[tensor.name]
+ tensor_max = abs(value)
+ tensor_min = -abs(value)
+ tensor.dynamic_range = (tensor_min, tensor_max)
+ else:
+ print("\033[1;31mNo quantization parameters are written: %s\033[0m" % tensor.name)
+
+
+def build_engine(onnx_file, json_file, engine_file):
+ builder = trt.Builder(TRT_LOGGER)
+ network = builder.create_network(EXPLICIT_BATCH)
+
+ config = builder.create_builder_config()
+
+ # If it is a dynamic onnx model , you need to add the following.
+ # profile = builder.create_optimization_profile()
+ # profile.set_shape("input_name", (batch, channels, min_h, min_w), (batch, channels, opt_h, opt_w), (batch, channels, max_h, max_w))
+ # config.add_optimization_profile(profile)
+
+
+ parser = trt.OnnxParser(network, TRT_LOGGER)
+ config.max_workspace_size = GiB(1)
+
+ if not os.path.exists(onnx_file):
+ quit('ONNX file {} not found'.format(onnx_file))
+
+ with open(onnx_file, 'rb') as model:
+ if not parser.parse(model.read()):
+ print('ERROR: Failed to parse the ONNX file.')
+ for error in range(parser.num_errors):
+ print(parser.get_error(error))
+ return None
+
+ config.set_flag(trt.BuilderFlag.INT8)
+
+ setDynamicRange(network, json_file)
+
+ engine = builder.build_engine(network, config)
+
+ with open(engine_file, "wb") as f:
+ f.write(engine.serialize())
+
+
+if __name__ == '__main__':
+ # Add plugins if needed
+ # import ctypes
+ # ctypes.CDLL("libmmdeploy_tensorrt_ops.so")
+ parser = argparse.ArgumentParser(description='Writing qparams to onnx to convert tensorrt engine.')
+ parser.add_argument('--onnx', type=str, default=None)
+ parser.add_argument('--qparam_json', type=str, default=None)
+ parser.add_argument('--engine', type=str, default=None)
+ arg = parser.parse_args()
+
+ build_engine(arg.onnx, arg.qparam_json, arg.engine)
+ print("\033[1;32mgenerate %s\033[0m" % arg.engine)
diff --git a/python/app/fedcv/YOLOv6/tools/quantization/tensorrt/post_training/Calibrator.py b/python/app/fedcv/YOLOv6/tools/quantization/tensorrt/post_training/Calibrator.py
new file mode 100644
index 0000000000..efe358dd1e
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/tools/quantization/tensorrt/post_training/Calibrator.py
@@ -0,0 +1,211 @@
+#
+# Modified by Meituan
+# 2022.6.24
+#
+
+# Copyright 2019 NVIDIA Corporation
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import os
+import sys
+import glob
+import random
+import logging
+import cv2
+
+import numpy as np
+from PIL import Image
+import tensorrt as trt
+import pycuda.driver as cuda
+import pycuda.autoinit
+
+logging.basicConfig(level=logging.DEBUG,
+ format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
+ datefmt="%Y-%m-%d %H:%M:%S")
+logger = logging.getLogger(__name__)
+
+def preprocess_yolov6(image, channels=3, height=224, width=224):
+ """Pre-processing for YOLOv6-based Object Detection Models
+
+ Parameters
+ ----------
+ image: PIL.Image
+ The image resulting from PIL.Image.open(filename) to preprocess
+ channels: int
+ The number of channels the image has (Usually 1 or 3)
+ height: int
+ The desired height of the image (usually 640)
+ width: int
+ The desired width of the image (usually 640)
+
+ Returns
+ -------
+ img_data: numpy array
+ The preprocessed image data in the form of a numpy array
+
+ """
+ # Get the image in CHW format
+ resized_image = image.resize((width, height), Image.BILINEAR)
+ img_data = np.asarray(resized_image).astype(np.float32)
+
+ if len(img_data.shape) == 2:
+ # For images without a channel dimension, we stack
+ img_data = np.stack([img_data] * 3)
+ logger.debug("Received grayscale image. Reshaped to {:}".format(img_data.shape))
+ else:
+ img_data = img_data.transpose([2, 0, 1])
+
+ mean_vec = np.array([0.0, 0.0, 0.0])
+ stddev_vec = np.array([1.0, 1.0, 1.0])
+ assert img_data.shape[0] == channels
+
+ for i in range(img_data.shape[0]):
+ # Scale each pixel to [0, 1] and normalize per channel.
+ img_data[i, :, :] = (img_data[i, :, :] / 255.0 - mean_vec[i]) / stddev_vec[i]
+
+ return img_data
+
+
+def get_int8_calibrator(calib_cache, calib_data, max_calib_size, calib_batch_size):
+ # Use calibration cache if it exists
+ if os.path.exists(calib_cache):
+ logger.info("Skipping calibration files, using calibration cache: {:}".format(calib_cache))
+ calib_files = []
+ # Use calibration files from validation dataset if no cache exists
+ else:
+ if not calib_data:
+ raise ValueError("ERROR: Int8 mode requested, but no calibration data provided. Please provide --calibration-data /path/to/calibration/files")
+
+ calib_files = get_calibration_files(calib_data, max_calib_size)
+
+ # Choose pre-processing function for INT8 calibration
+ preprocess_func = preprocess_yolov6
+
+ int8_calibrator = ImageCalibrator(calibration_files=calib_files,
+ batch_size=calib_batch_size,
+ cache_file=calib_cache)
+ return int8_calibrator
+
+
+def get_calibration_files(calibration_data, max_calibration_size=None, allowed_extensions=(".jpeg", ".jpg", ".png")):
+ """Returns a list of all filenames ending with `allowed_extensions` found in the `calibration_data` directory.
+
+ Parameters
+ ----------
+ calibration_data: str
+ Path to directory containing desired files.
+ max_calibration_size: int
+ Max number of files to use for calibration. If calibration_data contains more than this number,
+ a random sample of size max_calibration_size will be returned instead. If None, all samples will be used.
+
+ Returns
+ -------
+ calibration_files: List[str]
+ List of filenames contained in the `calibration_data` directory ending with `allowed_extensions`.
+ """
+
+ logger.info("Collecting calibration files from: {:}".format(calibration_data))
+ calibration_files = [path for path in glob.iglob(os.path.join(calibration_data, "**"), recursive=True)
+ if os.path.isfile(path) and path.lower().endswith(allowed_extensions)]
+ logger.info("Number of Calibration Files found: {:}".format(len(calibration_files)))
+
+ if len(calibration_files) == 0:
+ raise Exception("ERROR: Calibration data path [{:}] contains no files!".format(calibration_data))
+
+ if max_calibration_size:
+ if len(calibration_files) > max_calibration_size:
+ logger.warning("Capping number of calibration images to max_calibration_size: {:}".format(max_calibration_size))
+ random.seed(42) # Set seed for reproducibility
+ calibration_files = random.sample(calibration_files, max_calibration_size)
+
+ return calibration_files
+
+
+# https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Int8/EntropyCalibrator2.html
+class ImageCalibrator(trt.IInt8EntropyCalibrator2):
+ """INT8 Calibrator Class for Imagenet-based Image Classification Models.
+
+ Parameters
+ ----------
+ calibration_files: List[str]
+ List of image filenames to use for INT8 Calibration
+ batch_size: int
+ Number of images to pass through in one batch during calibration
+ input_shape: Tuple[int]
+ Tuple of integers defining the shape of input to the model (Default: (3, 224, 224))
+ cache_file: str
+ Name of file to read/write calibration cache from/to.
+ preprocess_func: function -> numpy.ndarray
+ Pre-processing function to run on calibration data. This should match the pre-processing
+ done at inference time. In general, this function should return a numpy array of
+ shape `input_shape`.
+ """
+
+ def __init__(self, calibration_files=[], batch_size=32, input_shape=(3, 224, 224),
+ cache_file="calibration.cache", use_cv2=False):
+ super().__init__()
+ self.input_shape = input_shape
+ self.cache_file = cache_file
+ self.batch_size = batch_size
+ self.batch = np.zeros((self.batch_size, *self.input_shape), dtype=np.float32)
+ self.device_input = cuda.mem_alloc(self.batch.nbytes)
+
+ self.files = calibration_files
+ self.use_cv2 = use_cv2
+ # Pad the list so it is a multiple of batch_size
+ if len(self.files) % self.batch_size != 0:
+ logger.info("Padding # calibration files to be a multiple of batch_size {:}".format(self.batch_size))
+ self.files += calibration_files[(len(calibration_files) % self.batch_size):self.batch_size]
+
+ self.batches = self.load_batches()
+ self.preprocess_func = preprocess_yolov6
+
+ def load_batches(self):
+ # Populates a persistent self.batch buffer with images.
+ for index in range(0, len(self.files), self.batch_size):
+ for offset in range(self.batch_size):
+ if self.use_cv2:
+ image = cv2.imread(self.files[index + offset])
+ else:
+ image = Image.open(self.files[index + offset])
+ self.batch[offset] = self.preprocess_func(image, *self.input_shape)
+ logger.info("Calibration images pre-processed: {:}/{:}".format(index+self.batch_size, len(self.files)))
+ yield self.batch
+
+ def get_batch_size(self):
+ return self.batch_size
+
+ def get_batch(self, names):
+ try:
+ # Assume self.batches is a generator that provides batch data.
+ batch = next(self.batches)
+ # Assume that self.device_input is a device buffer allocated by the constructor.
+ cuda.memcpy_htod(self.device_input, batch)
+ return [int(self.device_input)]
+ except StopIteration:
+ # When we're out of batches, we return either [] or None.
+ # This signals to TensorRT that there is no calibration data remaining.
+ return None
+
+ def read_calibration_cache(self):
+ # If there is a cache, use it instead of calibrating again. Otherwise, implicitly return None.
+ if os.path.exists(self.cache_file):
+ with open(self.cache_file, "rb") as f:
+ logger.info("Using calibration cache to save time: {:}".format(self.cache_file))
+ return f.read()
+
+ def write_calibration_cache(self, cache):
+ with open(self.cache_file, "wb") as f:
+ logger.info("Caching calibration data for future use: {:}".format(self.cache_file))
+ f.write(cache)
diff --git a/python/app/fedcv/YOLOv6/tools/quantization/tensorrt/post_training/LICENSE b/python/app/fedcv/YOLOv6/tools/quantization/tensorrt/post_training/LICENSE
new file mode 100644
index 0000000000..604095e5cf
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/tools/quantization/tensorrt/post_training/LICENSE
@@ -0,0 +1,191 @@
+
+ Apache License
+ Version 2.0, January 2004
+ http://www.apache.org/licenses/
+
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
+
+ 1. Definitions.
+
+ "License" shall mean the terms and conditions for use, reproduction,
+ and distribution as defined by Sections 1 through 9 of this document.
+
+ "Licensor" shall mean the copyright owner or entity authorized by
+ the copyright owner that is granting the License.
+
+ "Legal Entity" shall mean the union of the acting entity and all
+ other entities that control, are controlled by, or are under common
+ control with that entity. For the purposes of this definition,
+ "control" means (i) the power, direct or indirect, to cause the
+ direction or management of such entity, whether by contract or
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
+ outstanding shares, or (iii) beneficial ownership of such entity.
+
+ "You" (or "Your") shall mean an individual or Legal Entity
+ exercising permissions granted by this License.
+
+ "Source" form shall mean the preferred form for making modifications,
+ including but not limited to software source code, documentation
+ source, and configuration files.
+
+ "Object" form shall mean any form resulting from mechanical
+ transformation or translation of a Source form, including but
+ not limited to compiled object code, generated documentation,
+ and conversions to other media types.
+
+ "Work" shall mean the work of authorship, whether in Source or
+ Object form, made available under the License, as indicated by a
+ copyright notice that is included in or attached to the work
+ (an example is provided in the Appendix below).
+
+ "Derivative Works" shall mean any work, whether in Source or Object
+ form, that is based on (or derived from) the Work and for which the
+ editorial revisions, annotations, elaborations, or other modifications
+ represent, as a whole, an original work of authorship. For the purposes
+ of this License, Derivative Works shall not include works that remain
+ separable from, or merely link (or bind by name) to the interfaces of,
+ the Work and Derivative Works thereof.
+
+ "Contribution" shall mean any work of authorship, including
+ the original version of the Work and any modifications or additions
+ to that Work or Derivative Works thereof, that is intentionally
+ submitted to Licensor for inclusion in the Work by the copyright owner
+ or by an individual or Legal Entity authorized to submit on behalf of
+ the copyright owner. For the purposes of this definition, "submitted"
+ means any form of electronic, verbal, or written communication sent
+ to the Licensor or its representatives, including but not limited to
+ communication on electronic mailing lists, source code control systems,
+ and issue tracking systems that are managed by, or on behalf of, the
+ Licensor for the purpose of discussing and improving the Work, but
+ excluding communication that is conspicuously marked or otherwise
+ designated in writing by the copyright owner as "Not a Contribution."
+
+ "Contributor" shall mean Licensor and any individual or Legal Entity
+ on behalf of whom a Contribution has been received by Licensor and
+ subsequently incorporated within the Work.
+
+ 2. Grant of Copyright License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ copyright license to reproduce, prepare Derivative Works of,
+ publicly display, publicly perform, sublicense, and distribute the
+ Work and such Derivative Works in Source or Object form.
+
+ 3. Grant of Patent License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ (except as stated in this section) patent license to make, have made,
+ use, offer to sell, sell, import, and otherwise transfer the Work,
+ where such license applies only to those patent claims licensable
+ by such Contributor that are necessarily infringed by their
+ Contribution(s) alone or by combination of their Contribution(s)
+ with the Work to which such Contribution(s) was submitted. If You
+ institute patent litigation against any entity (including a
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
+ or a Contribution incorporated within the Work constitutes direct
+ or contributory patent infringement, then any patent licenses
+ granted to You under this License for that Work shall terminate
+ as of the date such litigation is filed.
+
+ 4. Redistribution. You may reproduce and distribute copies of the
+ Work or Derivative Works thereof in any medium, with or without
+ modifications, and in Source or Object form, provided that You
+ meet the following conditions:
+
+ (a) You must give any other recipients of the Work or
+ Derivative Works a copy of this License; and
+
+ (b) You must cause any modified files to carry prominent notices
+ stating that You changed the files; and
+
+ (c) You must retain, in the Source form of any Derivative Works
+ that You distribute, all copyright, patent, trademark, and
+ attribution notices from the Source form of the Work,
+ excluding those notices that do not pertain to any part of
+ the Derivative Works; and
+
+ (d) If the Work includes a "NOTICE" text file as part of its
+ distribution, then any Derivative Works that You distribute must
+ include a readable copy of the attribution notices contained
+ within such NOTICE file, excluding those notices that do not
+ pertain to any part of the Derivative Works, in at least one
+ of the following places: within a NOTICE text file distributed
+ as part of the Derivative Works; within the Source form or
+ documentation, if provided along with the Derivative Works; or,
+ within a display generated by the Derivative Works, if and
+ wherever such third-party notices normally appear. The contents
+ of the NOTICE file are for informational purposes only and
+ do not modify the License. You may add Your own attribution
+ notices within Derivative Works that You distribute, alongside
+ or as an addendum to the NOTICE text from the Work, provided
+ that such additional attribution notices cannot be construed
+ as modifying the License.
+
+ You may add Your own copyright statement to Your modifications and
+ may provide additional or different license terms and conditions
+ for use, reproduction, or distribution of Your modifications, or
+ for any such Derivative Works as a whole, provided Your use,
+ reproduction, and distribution of the Work otherwise complies with
+ the conditions stated in this License.
+
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
+ any Contribution intentionally submitted for inclusion in the Work
+ by You to the Licensor shall be under the terms and conditions of
+ this License, without any additional terms or conditions.
+ Notwithstanding the above, nothing herein shall supersede or modify
+ the terms of any separate license agreement you may have executed
+ with Licensor regarding such Contributions.
+
+ 6. Trademarks. This License does not grant permission to use the trade
+ names, trademarks, service marks, or product names of the Licensor,
+ except as required for reasonable and customary use in describing the
+ origin of the Work and reproducing the content of the NOTICE file.
+
+ 7. Disclaimer of Warranty. Unless required by applicable law or
+ agreed to in writing, Licensor provides the Work (and each
+ Contributor provides its Contributions) on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
+ implied, including, without limitation, any warranties or conditions
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
+ PARTICULAR PURPOSE. You are solely responsible for determining the
+ appropriateness of using or redistributing the Work and assume any
+ risks associated with Your exercise of permissions under this License.
+
+ 8. Limitation of Liability. In no event and under no legal theory,
+ whether in tort (including negligence), contract, or otherwise,
+ unless required by applicable law (such as deliberate and grossly
+ negligent acts) or agreed to in writing, shall any Contributor be
+ liable to You for damages, including any direct, indirect, special,
+ incidental, or consequential damages of any character arising as a
+ result of this License or out of the use or inability to use the
+ Work (including but not limited to damages for loss of goodwill,
+ work stoppage, computer failure or malfunction, or any and all
+ other commercial damages or losses), even if such Contributor
+ has been advised of the possibility of such damages.
+
+ 9. Accepting Warranty or Additional Liability. While redistributing
+ the Work or Derivative Works thereof, You may choose to offer,
+ and charge a fee for, acceptance of support, warranty, indemnity,
+ or other liability obligations and/or rights consistent with this
+ License. However, in accepting such obligations, You may act only
+ on Your own behalf and on Your sole responsibility, not on behalf
+ of any other Contributor, and only if You agree to indemnify,
+ defend, and hold each Contributor harmless for any liability
+ incurred by, or claims asserted against, such Contributor by reason
+ of your accepting any such warranty or additional liability.
+
+ END OF TERMS AND CONDITIONS
+
+ Copyright 2020 NVIDIA Corporation
+
+ Licensed under the Apache License, Version 2.0 (the "License");
+ you may not use this file except in compliance with the License.
+ You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+ Unless required by applicable law or agreed to in writing, software
+ distributed under the License is distributed on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ See the License for the specific language governing permissions and
+ limitations under the License.
diff --git a/python/app/fedcv/YOLOv6/tools/quantization/tensorrt/post_training/README.md b/python/app/fedcv/YOLOv6/tools/quantization/tensorrt/post_training/README.md
new file mode 100644
index 0000000000..e2624aa4a2
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/tools/quantization/tensorrt/post_training/README.md
@@ -0,0 +1,83 @@
+# ONNX -> TensorRT INT8
+These scripts were last tested using the
+[NGC TensorRT Container Version 20.06-py3](https://ngc.nvidia.com/catalog/containers/nvidia:tensorrt).
+You can see the corresponding framework versions for this container [here](https://docs.nvidia.com/deeplearning/sdk/tensorrt-container-release-notes/rel_20.06.html#rel_20.06).
+
+## Quickstart
+
+> **NOTE**: This INT8 example is only valid for **fixed-shape** ONNX models at the moment.
+>
+INT8 Calibration on **dynamic-shape** models is now supported, however this example has not been updated
+to reflect that yet. For more details on INT8 Calibration for **dynamic-shape** models, please
+see the [documentation](https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#int8-calib-dynamic-shapes).
+
+### 1. Convert ONNX model to TensorRT INT8
+
+See `./onnx_to_tensorrt.py -h` for full list of command line arguments.
+
+```bash
+./onnx_to_tensorrt.py --explicit-batch \
+ --onnx resnet50/model.onnx \
+ --fp16 \
+ --int8 \
+ --calibration-cache="caches/yolov6.cache" \
+ -o resnet50.int8.engine
+```
+
+See the [INT8 Calibration](#int8-calibration) section below for details on calibration
+using your own model or different data, where you don't have an existing calibration cache
+or want to create a new one.
+
+## INT8 Calibration
+
+See [Calibrator.py](Calibrator.py) for a reference implementation
+of TensorRT's [IInt8EntropyCalibrator2](https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Int8/EntropyCalibrator2.html).
+
+This class can be tweaked to work for other kinds of models, inputs, etc.
+
+In the [Quickstart](#quickstart) section above, we made use of a pre-existing cache,
+[caches/yolov6.cache](caches/yolov6.cache), to save time for the sake of an example.
+
+However, to calibrate using different data or a different model, you can do so with the `--calibration-data` argument.
+
+* This requires that you've mounted a dataset, such as Imagenet, to use for calibration.
+ * Add something like `-v /imagenet:/imagenet` to your Docker command in Step (1)
+ to mount a dataset found locally at `/imagenet`.
+* You can specify your own `preprocess_func` by defining it inside of `Calibrator.py`
+
+```bash
+# Path to dataset to use for calibration.
+# **Not necessary if you already have a calibration cache from a previous run.
+CALIBRATION_DATA="/imagenet"
+
+# Truncate calibration images to a random sample of this amount if more are found.
+# **Not necessary if you already have a calibration cache from a previous run.
+MAX_CALIBRATION_SIZE=512
+
+# Calibration cache to be used instead of calibration data if it already exists,
+# or the cache will be created from the calibration data if it doesn't exist.
+CACHE_FILENAME="caches/yolov6.cache"
+
+# Path to ONNX model
+ONNX_MODEL="model/yolov6.onnx"
+
+# Path to write TensorRT engine to
+OUTPUT="yolov6.int8.engine"
+
+# Creates an int8 engine from your ONNX model, creating ${CACHE_FILENAME} based
+# on your ${CALIBRATION_DATA}, unless ${CACHE_FILENAME} already exists, then
+# it will use simply use that instead.
+python3 onnx_to_tensorrt.py --fp16 --int8 -v \
+ --max_calibration_size=${MAX_CALIBRATION_SIZE} \
+ --calibration-data=${CALIBRATION_DATA} \
+ --calibration-cache=${CACHE_FILENAME} \
+ --preprocess_func=${PREPROCESS_FUNC} \
+ --explicit-batch \
+ --onnx ${ONNX_MODEL} -o ${OUTPUT}
+
+```
+
+### Pre-processing
+
+In order to calibrate your model correctly, you should `pre-process` your data the same way
+that you would during inference.
diff --git a/python/app/fedcv/YOLOv6/tools/quantization/tensorrt/post_training/onnx_to_tensorrt.py b/python/app/fedcv/YOLOv6/tools/quantization/tensorrt/post_training/onnx_to_tensorrt.py
new file mode 100644
index 0000000000..48c4fcb552
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/tools/quantization/tensorrt/post_training/onnx_to_tensorrt.py
@@ -0,0 +1,222 @@
+#!/usr/bin/env python3
+
+#
+# Modified by Meituan
+# 2022.6.24
+#
+
+# Copyright 2019 NVIDIA Corporation
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import os
+import sys
+import glob
+import math
+import logging
+import argparse
+
+import tensorrt as trt
+#sys.path.remove('/opt/ros/kinetic/lib/python2.7/dist-packages')
+
+TRT_LOGGER = trt.Logger()
+logging.basicConfig(level=logging.DEBUG,
+ format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
+ datefmt="%Y-%m-%d %H:%M:%S")
+logger = logging.getLogger(__name__)
+
+
+def add_profiles(config, inputs, opt_profiles):
+ logger.debug("=== Optimization Profiles ===")
+ for i, profile in enumerate(opt_profiles):
+ for inp in inputs:
+ _min, _opt, _max = profile.get_shape(inp.name)
+ logger.debug("{} - OptProfile {} - Min {} Opt {} Max {}".format(inp.name, i, _min, _opt, _max))
+ config.add_optimization_profile(profile)
+
+
+def mark_outputs(network):
+ # Mark last layer's outputs if not already marked
+ # NOTE: This may not be correct in all cases
+ last_layer = network.get_layer(network.num_layers-1)
+ if not last_layer.num_outputs:
+ logger.error("Last layer contains no outputs.")
+ return
+
+ for i in range(last_layer.num_outputs):
+ network.mark_output(last_layer.get_output(i))
+
+
+def check_network(network):
+ if not network.num_outputs:
+ logger.warning("No output nodes found, marking last layer's outputs as network outputs. Correct this if wrong.")
+ mark_outputs(network)
+
+ inputs = [network.get_input(i) for i in range(network.num_inputs)]
+ outputs = [network.get_output(i) for i in range(network.num_outputs)]
+ max_len = max([len(inp.name) for inp in inputs] + [len(out.name) for out in outputs])
+
+ logger.debug("=== Network Description ===")
+ for i, inp in enumerate(inputs):
+ logger.debug("Input {0} | Name: {1:{2}} | Shape: {3}".format(i, inp.name, max_len, inp.shape))
+ for i, out in enumerate(outputs):
+ logger.debug("Output {0} | Name: {1:{2}} | Shape: {3}".format(i, out.name, max_len, out.shape))
+
+
+def get_batch_sizes(max_batch_size):
+ # Returns powers of 2, up to and including max_batch_size
+ max_exponent = math.log2(max_batch_size)
+ for i in range(int(max_exponent)+1):
+ batch_size = 2**i
+ yield batch_size
+
+ if max_batch_size != batch_size:
+ yield max_batch_size
+
+
+# TODO: This only covers dynamic shape for batch size, not dynamic shape for other dimensions
+def create_optimization_profiles(builder, inputs, batch_sizes=[1,8,16,32,64]):
+ # Check if all inputs are fixed explicit batch to create a single profile and avoid duplicates
+ if all([inp.shape[0] > -1 for inp in inputs]):
+ profile = builder.create_optimization_profile()
+ for inp in inputs:
+ fbs, shape = inp.shape[0], inp.shape[1:]
+ profile.set_shape(inp.name, min=(fbs, *shape), opt=(fbs, *shape), max=(fbs, *shape))
+ return [profile]
+
+ # Otherwise for mixed fixed+dynamic explicit batch inputs, create several profiles
+ profiles = {}
+ for bs in batch_sizes:
+ if not profiles.get(bs):
+ profiles[bs] = builder.create_optimization_profile()
+
+ for inp in inputs:
+ shape = inp.shape[1:]
+ # Check if fixed explicit batch
+ if inp.shape[0] > -1:
+ bs = inp.shape[0]
+
+ profiles[bs].set_shape(inp.name, min=(bs, *shape), opt=(bs, *shape), max=(bs, *shape))
+
+ return list(profiles.values())
+
+
+def main():
+ parser = argparse.ArgumentParser(description="Creates a TensorRT engine from the provided ONNX file.\n")
+ parser.add_argument("--onnx", required=True, help="The ONNX model file to convert to TensorRT")
+ parser.add_argument("-o", "--output", type=str, default="model.engine", help="The path at which to write the engine")
+ parser.add_argument("-b", "--max-batch-size", type=int, help="The max batch size for the TensorRT engine input")
+ parser.add_argument("-v", "--verbosity", action="count", help="Verbosity for logging. (None) for ERROR, (-v) for INFO/WARNING/ERROR, (-vv) for VERBOSE.")
+ parser.add_argument("--explicit-batch", action='store_true', help="Set trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH.")
+ parser.add_argument("--explicit-precision", action='store_true', help="Set trt.NetworkDefinitionCreationFlag.EXPLICIT_PRECISION.")
+ parser.add_argument("--gpu-fallback", action='store_true', help="Set trt.BuilderFlag.GPU_FALLBACK.")
+ parser.add_argument("--refittable", action='store_true', help="Set trt.BuilderFlag.REFIT.")
+ parser.add_argument("--debug", action='store_true', help="Set trt.BuilderFlag.DEBUG.")
+ parser.add_argument("--strict-types", action='store_true', help="Set trt.BuilderFlag.STRICT_TYPES.")
+ parser.add_argument("--fp16", action="store_true", help="Attempt to use FP16 kernels when possible.")
+ parser.add_argument("--int8", action="store_true", help="Attempt to use INT8 kernels when possible. This should generally be used in addition to the --fp16 flag. \
+ ONLY SUPPORTS RESNET-LIKE MODELS SUCH AS RESNET50/VGG16/INCEPTION/etc.")
+ parser.add_argument("--calibration-cache", help="(INT8 ONLY) The path to read/write from calibration cache.", default="calibration.cache")
+ parser.add_argument("--calibration-data", help="(INT8 ONLY) The directory containing {*.jpg, *.jpeg, *.png} files to use for calibration. (ex: Imagenet Validation Set)", default=None)
+ parser.add_argument("--calibration-batch-size", help="(INT8 ONLY) The batch size to use during calibration.", type=int, default=128)
+ parser.add_argument("--max-calibration-size", help="(INT8 ONLY) The max number of data to calibrate on from --calibration-data.", type=int, default=2048)
+ parser.add_argument("-s", "--simple", action="store_true", help="Use SimpleCalibrator with random data instead of ImagenetCalibrator for INT8 calibration.")
+ args, _ = parser.parse_known_args()
+
+ print(args)
+
+ # Adjust logging verbosity
+ if args.verbosity is None:
+ TRT_LOGGER.min_severity = trt.Logger.Severity.ERROR
+ # -v
+ elif args.verbosity == 1:
+ TRT_LOGGER.min_severity = trt.Logger.Severity.INFO
+ # -vv
+ else:
+ TRT_LOGGER.min_severity = trt.Logger.Severity.VERBOSE
+ logger.info("TRT_LOGGER Verbosity: {:}".format(TRT_LOGGER.min_severity))
+
+ # Network flags
+ network_flags = 0
+ if args.explicit_batch:
+ network_flags |= 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
+ if args.explicit_precision:
+ network_flags |= 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_PRECISION)
+
+ builder_flag_map = {
+ 'gpu_fallback': trt.BuilderFlag.GPU_FALLBACK,
+ 'refittable': trt.BuilderFlag.REFIT,
+ 'debug': trt.BuilderFlag.DEBUG,
+ 'strict_types': trt.BuilderFlag.STRICT_TYPES,
+ 'fp16': trt.BuilderFlag.FP16,
+ 'int8': trt.BuilderFlag.INT8,
+ }
+
+ # Building engine
+ with trt.Builder(TRT_LOGGER) as builder, \
+ builder.create_network(network_flags) as network, \
+ builder.create_builder_config() as config, \
+ trt.OnnxParser(network, TRT_LOGGER) as parser:
+
+ config.max_workspace_size = 2**30 # 1GiB
+
+ # Set Builder Config Flags
+ for flag in builder_flag_map:
+ if getattr(args, flag):
+ logger.info("Setting {}".format(builder_flag_map[flag]))
+ config.set_flag(builder_flag_map[flag])
+
+ # Fill network atrributes with information by parsing model
+ with open(args.onnx, "rb") as f:
+ if not parser.parse(f.read()):
+ print('ERROR: Failed to parse the ONNX file: {}'.format(args.onnx))
+ for error in range(parser.num_errors):
+ print(parser.get_error(error))
+ sys.exit(1)
+
+ # Display network info and check certain properties
+ check_network(network)
+
+ if args.explicit_batch:
+ # Add optimization profiles
+ batch_sizes = [1, 8, 16, 32, 64]
+ inputs = [network.get_input(i) for i in range(network.num_inputs)]
+ opt_profiles = create_optimization_profiles(builder, inputs, batch_sizes)
+ add_profiles(config, inputs, opt_profiles)
+ # Implicit Batch Network
+ else:
+ builder.max_batch_size = args.max_batch_size
+ opt_profiles = []
+
+ # Precision flags
+ if args.fp16 and not builder.platform_has_fast_fp16:
+ logger.warning("FP16 not supported on this platform.")
+
+ if args.int8 and not builder.platform_has_fast_int8:
+ logger.warning("INT8 not supported on this platform.")
+
+ if args.int8:
+ from Calibrator import ImageCalibrator, get_int8_calibrator # local module
+ config.int8_calibrator = get_int8_calibrator(args.calibration_cache,
+ args.calibration_data,
+ args.max_calibration_size,
+ args.calibration_batch_size)
+
+ logger.info("Building Engine...")
+ with builder.build_engine(network, config) as engine, open(args.output, "wb") as f:
+ logger.info("Serializing engine to file: {:}".format(args.output))
+ f.write(engine.serialize())
+
+
+if __name__ == "__main__":
+ main()
diff --git a/python/app/fedcv/YOLOv6/tools/quantization/tensorrt/training_aware/QAT_quantizer.py b/python/app/fedcv/YOLOv6/tools/quantization/tensorrt/training_aware/QAT_quantizer.py
new file mode 100644
index 0000000000..356330fa5a
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/tools/quantization/tensorrt/training_aware/QAT_quantizer.py
@@ -0,0 +1,39 @@
+#
+# QAT_quantizer.py
+# YOLOv6
+#
+# Created by Meituan on 2022/06/24.
+# Copyright © 2022
+#
+
+from absl import logging
+from pytorch_quantization import nn as quant_nn
+from pytorch_quantization import quant_modules
+
+# Call this function before defining the model
+def tensorrt_official_qat():
+ # Quantization Aware Training is based on Straight Through Estimator (STE) derivative approximation.
+ # It is some time known as “quantization aware training”.
+
+ # PyTorch-Quantization is a toolkit for training and evaluating PyTorch models with simulated quantization.
+ # Quantization can be added to the model automatically, or manually, allowing the model to be tuned for accuracy and performance.
+ # Quantization is compatible with NVIDIAs high performance integer kernels which leverage integer Tensor Cores.
+ # The quantized model can be exported to ONNX and imported by TensorRT 8.0 and later.
+ # https://github.com/NVIDIA/TensorRT/blob/main/tools/pytorch-quantization/examples/finetune_quant_resnet50.ipynb
+
+ # The example to export the
+ # model.eval()
+ # quant_nn.TensorQuantizer.use_fb_fake_quant = True # We have to shift to pytorch's fake quant ops before exporting the model to ONNX
+ # opset_version = 13
+
+ # Export ONNX for multiple batch sizes
+ # print("Creating ONNX file: " + onnx_filename)
+ # dummy_input = torch.randn(batch_onnx, 3, 224, 224, device='cuda') #TODO: switch input dims by model
+ # torch.onnx.export(model, dummy_input, onnx_filename, verbose=False, opset_version=opset_version, enable_onnx_checker=False, do_constant_folding=True)
+ try:
+ quant_modules.initialize()
+ except NameError:
+ logging.info("initialzation error for quant_modules")
+
+# def QAT_quantizer():
+# coming soon
diff --git a/python/app/fedcv/YOLOv6/tools/train.py b/python/app/fedcv/YOLOv6/tools/train.py
new file mode 100644
index 0000000000..a0122097c2
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/tools/train.py
@@ -0,0 +1,146 @@
+#!/usr/bin/env python3
+# -*- coding:utf-8 -*-
+import argparse
+from logging import Logger
+import os
+import yaml
+import os.path as osp
+from pathlib import Path
+import torch
+import torch.distributed as dist
+import sys
+import datetime
+
+ROOT = os.getcwd()
+if str(ROOT) not in sys.path:
+ sys.path.append(str(ROOT))
+
+from yolov6.core.engine import Trainer
+from yolov6.utils.config import Config
+from yolov6.utils.events import LOGGER, save_yaml
+from yolov6.utils.envs import get_envs, select_device, set_random_seed
+from yolov6.utils.general import increment_name, find_latest_checkpoint, check_img_size
+
+
+def get_args_parser(add_help=True):
+ parser = argparse.ArgumentParser(description='YOLOv6 PyTorch Training', add_help=add_help)
+ parser.add_argument('--data-path', default='./data/coco.yaml', type=str, help='path of dataset')
+ parser.add_argument('--conf-file', default='./configs/yolov6n.py', type=str, help='experiments description file')
+ parser.add_argument('--img-size', default=640, type=int, help='train, val image size (pixels)')
+ parser.add_argument('--rect', action='store_true', help='whether to use rectangular training, default is False')
+ parser.add_argument('--batch-size', default=32, type=int, help='total batch size for all GPUs')
+ parser.add_argument('--epochs', default=400, type=int, help='number of total epochs to run')
+ parser.add_argument('--workers', default=8, type=int, help='number of data loading workers (default: 8)')
+ parser.add_argument('--device', default='0', type=str, help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+ parser.add_argument('--eval-interval', default=20, type=int, help='evaluate at every interval epochs')
+ parser.add_argument('--eval-final-only', action='store_true', help='only evaluate at the final epoch')
+ parser.add_argument('--heavy-eval-range', default=50, type=int,
+ help='evaluating every epoch for last such epochs (can be jointly used with --eval-interval)')
+ parser.add_argument('--check-images', action='store_true', help='check images when initializing datasets')
+ parser.add_argument('--check-labels', action='store_true', help='check label files when initializing datasets')
+ parser.add_argument('--output-dir', default='./runs/train', type=str, help='path to save outputs')
+ parser.add_argument('--name', default='exp', type=str, help='experiment name, saved to output_dir/name')
+ parser.add_argument('--dist_url', default='env://', type=str, help='url used to set up distributed training')
+ parser.add_argument('--gpu_count', type=int, default=0)
+ parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter')
+ parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume the most recent training')
+ parser.add_argument('--write_trainbatch_tb', action='store_true', help='write train_batch image to tensorboard once an epoch, may slightly slower train speed if open')
+ parser.add_argument('--stop_aug_last_n_epoch', default=15, type=int, help='stop strong aug at last n epoch, neg value not stop, default 15')
+ parser.add_argument('--save_ckpt_on_last_n_epoch', default=-1, type=int, help='save last n epoch even not best or last, neg value not save')
+ parser.add_argument('--distill', action='store_true', help='distill or not')
+ parser.add_argument('--distill_feat', action='store_true', help='distill featmap or not')
+ parser.add_argument('--quant', action='store_true', help='quant or not')
+ parser.add_argument('--calib', action='store_true', help='run ptq')
+ parser.add_argument('--teacher_model_path', type=str, default=None, help='teacher model path')
+ parser.add_argument('--temperature', type=int, default=20, help='distill temperature')
+ parser.add_argument('--fuse_ab', action='store_true', help='fuse ab branch in training process or not')
+ parser.add_argument('--bs_per_gpu', default=32, type=int, help='batch size per GPU for auto-rescale learning rate, set to 16 for P6 models')
+ parser.add_argument('--specific-shape', action='store_true', help='rectangular training')
+ parser.add_argument('--height', type=int, default=None, help='image height of model input')
+ parser.add_argument('--width', type=int, default=None, help='image width of model input')
+ parser.add_argument('--cf', default=None, help='config')
+ parser.add_argument('--run_id', default=0, help='run id')
+ parser.add_argument('--rank', default=-1, help='rank')
+ parser.add_argument('--role', default='server', help='role')
+ return parser
+
+
+def check_and_init(args):
+ '''check config files and device.'''
+ # check files
+ # master_process = args.rank == 0 if args.world_size > 1 else args.rank == -1
+ if args.resume:
+ # args.resume can be a checkpoint file path or a boolean value.
+ checkpoint_path = args.resume if isinstance(args.resume, str) else find_latest_checkpoint()
+ assert os.path.isfile(checkpoint_path), f'the checkpoint path is not exist: {checkpoint_path}'
+ LOGGER.info(f'Resume training from the checkpoint file :{checkpoint_path}')
+ resume_opt_file_path = Path(checkpoint_path).parent.parent / 'args.yaml'
+ if osp.exists(resume_opt_file_path):
+ with open(resume_opt_file_path) as f:
+ args = argparse.Namespace(**yaml.safe_load(f)) # load args value from args.yaml
+ else:
+ LOGGER.warning(f'We can not find the path of {Path(checkpoint_path).parent.parent / "args.yaml"},'\
+ f' we will save exp log to {Path(checkpoint_path).parent.parent}')
+ LOGGER.warning(f'In this case, make sure to provide configuration, such as data, batch size.')
+ args.save_dir = str(Path(checkpoint_path).parent.parent)
+ args.resume = checkpoint_path # set the args.resume to checkpoint path.
+ else:
+ args.save_dir = str(increment_name(osp.join(args.output_dir, args.name)))
+ # if master_process:
+ # os.makedirs(args.save_dir)
+
+ # check specific shape
+ if args.specific_shape:
+ if args.rect:
+ LOGGER.warning('You set specific shape, and rect to True is needless. YOLOv6 will use the specific shape to train.')
+ args.height = check_img_size(args.height, 32, floor=256) # verify imgsz is gs-multiple
+ args.width = check_img_size(args.width, 32, floor=256)
+ else:
+ args.img_size = check_img_size(args.img_size, 32, floor=256)
+
+ cfg = Config.fromfile(args.conf_file)
+ if not hasattr(cfg, 'training_mode'):
+ setattr(cfg, 'training_mode', 'repvgg')
+ # check device
+ device = select_device(args.device)
+ # # set random seed
+ # set_random_seed(1+args.rank, deterministic=(args.rank == -1))
+ # # save args
+ # if master_process:
+ # save_yaml(vars(args), osp.join(args.save_dir, 'args.yaml'))
+
+ return cfg, device, args
+
+
+def main(args):
+ '''main function of training'''
+ # Setup
+ args.local_rank, args.rank, args.world_size = get_envs()
+ cfg, device, args = check_and_init(args)
+ # reload envs because args was chagned in check_and_init(args)
+ args.local_rank, args.rank, args.world_size = get_envs()
+ LOGGER.info(f'training args are: {args}\n')
+ if args.local_rank != -1: # if DDP mode
+ torch.cuda.set_device(args.local_rank)
+ device = torch.device('cuda', args.local_rank)
+ LOGGER.info('Initializing process group... ')
+ dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo", \
+ init_method=args.dist_url, rank=args.local_rank, world_size=args.world_size,timeout=datetime.timedelta(seconds=7200))
+
+ # Start
+ trainer = Trainer(args, cfg, device)
+ # PTQ
+ if args.quant and args.calib:
+ trainer.calibrate(cfg)
+ return
+ trainer.train()
+
+ # End
+ if args.world_size > 1 and args.rank == 0:
+ LOGGER.info('Destroying process group... ')
+ dist.destroy_process_group()
+
+
+if __name__ == '__main__':
+ args = get_args_parser().parse_args()
+ main(args)
diff --git a/python/app/fedcv/YOLOv6/turtorial.ipynb b/python/app/fedcv/YOLOv6/turtorial.ipynb
new file mode 100644
index 0000000000..af2645bdbd
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/turtorial.ipynb
@@ -0,0 +1,4514 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "view-in-github"
+ },
+ "source": [
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "8gBC7pTzB_ds"
+ },
+ "source": [
+ "\n",
+ "This is the official YOLOv6 notebook by MeiTuan, and is freely available for redistribution under the [GPL-3.0 license](https://choosealicense.com/licenses/gpl-3.0/). \n",
+ "For more information please visit https://github.com/meituan/YOLOv6. Thank you!"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "fZVZhl5uCHka"
+ },
+ "source": [
+ "# Introduction\n",
+ "\n",
+ "YOLOv6 is a single-stage object detection framework dedicated to industrial applications, with hardware-friendly efficient design and high performance.\n",
+ "\n",
+ "YOLOv6 is composed of the following methods:\n",
+ "\n",
+ "Hardware-friendly Design for Backbone and Neck\n",
+ "Efficient Decoupled Head with SIoU Loss"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "lmqEfutmVHjs"
+ },
+ "source": [
+ "# Setup\n",
+ "Clone repo and install dependencies."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "XA52vLvX06io",
+ "outputId": "44505140-dd14-45f5-ccef-9deb599a1015"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Cloning into 'YOLOv6'...\n",
+ "remote: Enumerating objects: 1807, done.\u001b[K\n",
+ "remote: Counting objects: 100% (821/821), done.\u001b[K\n",
+ "remote: Compressing objects: 100% (226/226), done.\u001b[K\n",
+ "remote: Total 1807 (delta 630), reused 697 (delta 592), pack-reused 986\u001b[K\n",
+ "Receiving objects: 100% (1807/1807), 16.60 MiB | 5.25 MiB/s, done.\n",
+ "Resolving deltas: 100% (994/994), done.\n",
+ "/content/YOLOv6\n",
+ "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
+ "Requirement already satisfied: torch>=1.8.0 in /usr/local/lib/python3.7/dist-packages (from -r requirements.txt (line 4)) (1.12.1+cu113)\n",
+ "Requirement already satisfied: torchvision>=0.9.0 in /usr/local/lib/python3.7/dist-packages (from -r requirements.txt (line 5)) (0.13.1+cu113)\n",
+ "Requirement already satisfied: numpy>=1.18.5 in /usr/local/lib/python3.7/dist-packages (from -r requirements.txt (line 6)) (1.21.6)\n",
+ "Requirement already satisfied: opencv-python>=4.1.2 in /usr/local/lib/python3.7/dist-packages (from -r requirements.txt (line 7)) (4.6.0.66)\n",
+ "Requirement already satisfied: PyYAML>=5.3.1 in /usr/local/lib/python3.7/dist-packages (from -r requirements.txt (line 8)) (6.0)\n",
+ "Requirement already satisfied: scipy>=1.4.1 in /usr/local/lib/python3.7/dist-packages (from -r requirements.txt (line 9)) (1.7.3)\n",
+ "Requirement already satisfied: tqdm>=4.41.0 in /usr/local/lib/python3.7/dist-packages (from -r requirements.txt (line 10)) (4.64.0)\n",
+ "Collecting addict>=2.4.0\n",
+ " Downloading addict-2.4.0-py3-none-any.whl (3.8 kB)\n",
+ "Requirement already satisfied: tensorboard>=2.7.0 in /usr/local/lib/python3.7/dist-packages (from -r requirements.txt (line 12)) (2.8.0)\n",
+ "Requirement already satisfied: pycocotools>=2.0 in /usr/local/lib/python3.7/dist-packages (from -r requirements.txt (line 13)) (2.0.4)\n",
+ "Collecting onnx>=1.10.0\n",
+ " Downloading onnx-1.12.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.1 MB)\n",
+ "\u001b[K |████████████████████████████████| 13.1 MB 21.0 MB/s \n",
+ "\u001b[?25hCollecting onnx-simplifier>=0.3.6\n",
+ " Downloading onnx_simplifier-0.4.8-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB)\n",
+ "\u001b[K |████████████████████████████████| 2.0 MB 43.5 MB/s \n",
+ "\u001b[?25hCollecting thop\n",
+ " Downloading thop-0.1.1.post2207130030-py3-none-any.whl (15 kB)\n",
+ "\u001b[31mERROR: Could not find a version that satisfies the requirement pytorch_quantization>=2.1.1 (from versions: 0.0.1.dev4, 0.0.1.dev5)\u001b[0m\n",
+ "\u001b[31mERROR: No matching distribution found for pytorch_quantization>=2.1.1\u001b[0m\n"
+ ]
+ }
+ ],
+ "source": [
+ "!git clone https://github.com/meituan/YOLOv6.git\n",
+ "%cd YOLOv6\n",
+ "%pip install -r requirements.txt"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "dTJcbev3VO6i"
+ },
+ "source": [
+ "# Inference\n",
+ "First, download a pretrained model from the YOLOv6 [release](https://github.com/meituan/YOLOv6/releases).\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 49,
+ "referenced_widgets": [
+ "07dd33f907684614ba2e5bfadd48ff7f",
+ "21a7574d0f3e4638880e61be9973475e",
+ "0f610d79cba74702a5f0dca9712f6cdc",
+ "0f4c5a98a3b84e3e9231b58c93e5959a",
+ "a4ddf9969ed4474dad94e0a0d71b6239",
+ "f31b5c163fe4410d985d6e66767e0524",
+ "dbf3237c84a0431e90508105e56395c3",
+ "e272cd27f3ff47ad98d6b011e07ab66d",
+ "109524f358894009b0d3dfb1977e18b9",
+ "bdad0e7d90954729a4a8fe10a7884f04",
+ "8c6dc1b0b5014feb9c9ad7c2442e1727"
+ ]
+ },
+ "id": "g2LM77g4i-TK",
+ "outputId": "61d070d8-2cfe-4bc4-b998-af581c18296e"
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "07dd33f907684614ba2e5bfadd48ff7f",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0.00/36.3M [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Download a pretrained model\n",
+ "import torch\n",
+ "torch.hub.download_url_to_file('https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6s.pt', 'yolov6s.pt')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "qXrHMtniHtBG"
+ },
+ "source": [
+ "Second, run inference with `tools/infer.py`, and saving results to `runs/inference`. Example inference sources are:\n",
+ "\n",
+ "```shell\n",
+ "python tools/infer.py --weights yolov6s.pt --source img.jpg / imgdir\n",
+ " yolov6n.pt\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 734
+ },
+ "id": "9LUHrwwrWglt",
+ "outputId": "fac2f29b-7a9b-4e45-cc15-b36b09dbe148"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Namespace(agnostic_nms=False, classes=None, conf_thres=0.4, device='0', half=False, hide_conf=False, hide_labels=False, img_size=640, iou_thres=0.45, max_det=1000, name='exp', project='runs/inference', save_dir=None, save_img=True, save_txt=False, source='data/images/image1.jpg', view_img=False, weights='yolov6s.pt', yaml='data/coco.yaml')\n",
+ "Loading checkpoint from yolov6s.pt\n",
+ "\n",
+ "Fusing model...\n",
+ "/usr/local/lib/python3.7/dist-packages/torch/functional.py:478: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:2894.)\n",
+ " return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]\n",
+ "Switch model to deploy modality.\n",
+ "100% 1/1 [00:00<00:00, 6.76it/s]\n",
+ "Results saved to runs/inference/exp\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAIYCAIAAABymspaAAEAAElEQVR4nLz9abBtSZYWiH1rufve+0x3fvOLiBcRGTlWZlZWZSVQVTQNRiEVqOliEAUGVEsCDKMx8UNNmyQzYbJWizaZelDTJnUbIKDEINENjUoU1SCohioKasjKipwjIzMiXsSb73zvuWfYk/ta+uH7nLvvOefe9yKrWm5hN87b24flvt3Xt9by5cvp2Zu/BKZgjGpwTKBgrFZ1bShRAgBwzQgAOHQBDqhAHhAiMmJVyYghVcM1IFAbiJU4sABeSBwSVQ3qocEIwCTshGC9IRVFIHgWD8CDpSkI40nhVWtV5WBJIchVRSRRBJYqSFlLCKEmUQ1VfTY5ePYwL85M2uP0dm/nJe12gzFKzlCwMgVY0Re2HgGkJgQOZJUZxhDVLDkH42ziU5JA7EUqDkYte1VhECvgiUEKG1IlERPUkhQCNgAYmpIR75kSGK69ZyMiwswKB0BRCWBsB4D4QAwFCcH72sE4NayoqQQHImImEkBZYQEQBOSVagAqCcBYTtR8rYtPxasAAoCITMwjJCLOORGBqKpSUzZWQ6oqUCJiZiIS1RCCs9Z7TyrGGEPqvScosfE1m8QFEdHKWgZpCAFKxjhVkkCqSgSQAFANqkqkoACIqAFAZAEwQ1VJGQCpBYThiUjAAMcuzBIDEKVI7Zzs2ISInD/XpYGKZACqCkBVGQazf8aCsez8yUKKz9sjdlnOhlYDVY3jHFcNkSGiICAiRQCERb2vinxaTYfIT+tiFMdZfAXAkFVVkAEgBACsTV9UAyli7Qu0kV7olKqKSDP47fFodaQ9SrPnQqIgNcaoqvhARBCf55M8n4zGZ9NyWlXVJB9XVQXl1lxiAIjf16TGGDaJc6lzqWHLJrXWknVEJErKpExCYAgpJ56YCOqVPADPqDgF0A1CkApQalL7686/2sLnIJjV3xFh4SM2BdnO50A7Qwj1Qouz/MzcPI5zLz6b/eaFqkKo47Kat2iIiEjlwhpc/iLtRmNZIoLynFq0VkFT+ewtEc1pWxyfdtmL47Ny3OYrcYnI1ti01l2cbsvrK2hrndL5BF74XvPRa8/n9tvlxacEItIg7eKYrRqvof38vE5etRAAYJEbNDSLLH+m9mfF+Zy80BGdpcgHbGLZ+yojzRjIC6NeSa21IhWUQQIEkAdAUgAMeOXAUACkCpCKZ8hsisS2jZIo1UpoRkiCIrAyAGElIkjNqoBAQ/yoqhKIBQrABCUJgSIAKyCiQaAqFURFaxEJQUQVohAuA5WeXQkOYtUPiorJeSMEJRbWwBoUpcKLUWJwCFCFGgMyIGGtE1RnRSKFY6OoiIihvgrCJAQDAoQ4AGwEAILzPg8JOV/XMLDMHCpSFkxnq068r5IkkyAKgZGgIqFmNpZZVcVQUBHxDGM9A+ISDhDVQHFmKQsEAEMBD/JCUFGAWSGE9t/VkENiHM/nRJzEqgQgFCUROTaRHQQogoiIMSYylKIu67oGkKZpkiST4ZkxxqApz8wi3nthk5oQvHoRb0wkXJk5FLUqkZAAhkg1xHlsjAkIgCgCNIDjWtE2LhgYImVSIoogDaCFwQxAWgs+8p1mHERbI8NBNaK3IZJZnnmKTAozhD/PefFJ+2/ksu08pHpF/gjAJLF7DQADEIE2ZAtUfVVO87zKKxQhVBARRlxdIBJVJZBeoDwAICha6HsRgGccbcbypBG2zqEaKzkRQKQR5qJYpyrMUBUEIlIJSEvq1CYNblKboqSk4qpigM/lAI01K5FhgRFYBUOsqLVE4q0QewJTI2Nx83VI1QgzkWpQ0sBaGqMEoWYZ0ozFtNMK/nj+bin3xY4vVrUqc1tInY9Vw15nb7U14FfIZG3xbrX0c3lahrGLIgFUlXl16/N2Vzb6YSn5sPmfW8P58GJFzXFGfdialz/xhQWyauavxPgXof+5aVnPiT8sk89CveZL7O2jFFQFFAAzO4AhAEcAFigDDPIzrCWAoUykmC8Lbf4jEqIABshCFSIQAhhsjAIQqAcCIlNhQIkgVhnEEIUAGhgeEMisfo3PBRpmdUrwXlRtlW8dFz6vrTEmHfWrI2uHCiPsAIBKgkCNgYnQGGuvCABSAbEW4q21TgyJwkLBKkxEKjUAAzsTRwBlIUGCqipsUGcsJVzXwagFwAmFELQGkTGGGBTKyqaJRw0DqSLPIREvhkQbRVNgIJIQ174UEmstB1KwwClFKTKKOBolsosA3Jaez1Mj8cG3ZgEvznvTLOAAVR9U1RBHtFg3bEyECvESNp1j5hBCWZakcM4xs/f+nMXPFNCoacWyczqjehSnd8BcSFRwI9na+KUAYiWa698m+Barmo3/yinOCjXatCgcoG1ItsTNiHFbmUYcu2WB5rK/c4BXJlbMW7k0f5RIZjprpF/5nAszRFXrsiiLqa8K8V5DEF8TBIiSX9O/RdEBYBVibau/8+S9R2vZExEkjiTmmN3Wz2ZPWnpJJJlmfSZhZUBC7X2optOiqiQvUZZa1EkIRkSISPViWSVjmAwRiWFhVxmjxhg2wRg779qcBgZBLQBhqVm8pVEC6WphSZgAFVnS1Za1/wsZlgCJFnWjObWqiiV+HZNZxT0xZ3tXWkEuNN4CwoaGpvhVjF6xKGTMBO5LrTVRfsJSwSv+eaF41ERJVrxZShH4579XVriKvAv5qekVr5zPK9PCuCmdV7v8fQPOcWqF4PXCX/DDpvYgz2dpFIWJYCn4NcLkV998+2f/+6z0TsQIjDG1MpRN1Ja4RiOfNl981gdS1UCs1KgnDLCKiQotodGUQbZRj+2MiYhyIBWjULCPWqZGNYhY0WiZrIAYFSEIO1GYqDTHjmnzqdgatex9ZdQH0DSYKafRmhHNv6AaJCRsWoxGjHrmoJqIEKmw8d5bKAFBQJyQseJr4kAKExyRmTcthForl5hEra9LsCoZkYSZKz9KkoTERhyyDCtQwjSUzjmjQPBEJrAEghIYJCIKG/VRVRUEFW9hAQ5koHPjiAC6vCSiMrSceIZ2C3OxrUhFe0NbtdQABhljopI25xQi0ejbIFa0nwAxS4h5ZtMrarzSfMt5ESFBtNdRNHFHQ/SM6bvZwgtozSYA56LP+fP5gDAg1Gi5MwsPgVaD9PnQtde/EhhGSUhZEEg5/v6N+DtrTtsEsNJsKSqYYUgBhShIoAZQUhXxhljOQZQXPh+phJZYvcBB5nbR8y63R+BCZp4t7JmVslGCGRBRanEQAgkHSaAdY0AS1Cr6mjRm/DadF5puDN+kCtSslQJBKMQpSkCc5DOhzAAQA8+oDFwHhQmeWDma0BlLDHRBQ11ufXmILtPAsFS8KUiXVD7v4CqldiUxi2RcYhNemX9lnedENu8XcXc+PitH4Ao0WmELX1X5EsGrSy33axn2LhUmXgAgV6qYKytctgRcnf9FUns8n9voXISyXdDe1755/DP/9LXplILPrCHREIKyETDUsQIkpEKRWTcYHO3yM2mFIDz7ZlBWkJIShKAqRAQ1DLDUIKmNCoGlEeEAzHb0mBRWPSsC2UAIRErqopqhQVUZQipiiJVZLQFKKlp5laCeGcYYQAEvQYkMqYUSKJAGjiudoEIEISKQCQiKoIDAMgB4wwyk3pdAYRLjtSRFIkoKZa+qUYOShMrxNLEpKwdfcJLmVW2My2wieS06McaEECCauqSsq50kDUWZalAJagwMT9UzM/tgSJkcsy0qYWZwIIiVCoAQQ7mBExIlUQ1CKyY0t5fWhXnRaE4L030uWQPn+AAly3FvWGb7AgqoMjGbWJ7ZqqqXphJDQUQ46vHhXB0hIppNCY6aHmZ6MBM3PfKqIVo7RQqgscqCQQ368sWpvCB8CEVsPkfoRrmmJV3/vJ6ZAjQXUBBn8kUAnkPyrxuA4672RbWbmmGEBFUlDVBhEBnUcW9IQdqIr3Es5zu/ra8c97NX73ECcxv1xaQrua1E+bI1SgoVkIqCmaP2zLM9LWYOwRNpREM0fgMgAqks8OjmB9PMdHFusCGKm8CIwocCgbgRw1WU4BlJoFGa5Ja90UBggq7i5qt03/iuLXXNRu6SNBMU2iNz/mo5M9AafWrGoSnbZJhpCzjnvDJT3KIxTC+3DM/oXzTAtlh8FL4XDdGzPKv7spBtdbsXS7Wy8ax/57muqGEhEc12UlrTo03CixuBn5OiKb7xvZip10QhRDGO9OJmwXzSfpfNXZKeK45YVb2+sRFqv5HXykp1rQGpISDMmOZM+mAPYGaIjsX9uWDCdIE/auO5RKqANlVJACQ1qhSdjeIWIRgSt/RYo2laQSJkhRgQQoB45oQUkAASBBaAxQMc9xEBAtu4U6xaiggZy9BmsUsA4lRmkJnRTFCBauAQ2FYETRKBqUKwqimx9QWmORkQYIICjWMCCUAIwffSrJqUbFzIsrH31MkAE/I8g5J6Ix42RV1CCpe4MbRiUkoR970JIEvqexIsCBJqICRumlglA1IjIIi2nFkQ3XVU5/ulFyS+RpVlQGZmXQjFbbWWkadRiGXulAESIj7n7iJgMIjZgYQazx0SUlUVBZFXYoIRgqrauP5EVIUcgYiJQKwiDd+dcbXocATludQVaWoMtswNPEc/AGUhjpuJrc62wOaiM1EbV+b8fRGy5gXjjqoSoIoF2LQvCK0BwkrKuDInWNv6+pxCFhEiNrBMiig/aQBETDRZC0XFGBLHcHkXjMCK1Ron5jLQosjSGPCXpBO6MLwt0Gp2SYhVlaTZGBYJnDa7zJg51ICJmcWHed0zdkYAR+SMn0W0mZPMrKrEjfOdIAgBSlbQDXBBs0qLUpyIUQkqBFXilVwyVnWx3cX0oXjrEvasVkNXaLRXtts2PqONgs9DsTlmYBVKzTMsEHO1PreS2ueqgM/VyOkioq58fnF4L21xLlcpFr/pCs37arqX6sQln+9FlODLvju9mC1k3pAtSIgRjAnENpph01TFU2gbNgnUmJpZDGsc1gASsARiACbuzgJzEUmgSqTMpDBxWxcKEItRRPYnIChB1MbtSeWZgKTKChYDNJuLCNxULhrIaTNjldiyRkOmQj2xEjOziyorUEND/DKBWM+lCTCUUSsUlPqkc2hNcn2nd20LtT95tmuGZ1tMWS0U5WYKaJR2NgDIB/Uc6iTrTMkcZMZvb1+7+9L+wyfZSehO8g3jJC84lABqrSeGxzd2wuaWcwNYVwdvCT1V2d2tdp/aOlRexmvdzg9+wd6+VphQSTDGxB1SAICN/zcXNcLmK0aDRDRPKEUAaixjaJzG4g4WQ6GK4EV9KMqoNBNEVYP4EIL6Gqp5PqmKPITAUNIg4kWk1+sRkU2zLMtckjFzWQcfqhAqlzBz9BlCWVXTyaSqQzfrKhho9vlEKq8eErrdHoTmVmsiEwG4LHOQMcaxTazLrE1s4ohtreder9Kax9Lsg5jZBDWYbQLZi3OdWxoPRQ1bWWeaLpZAM+q+GsAkpLzwN76FEF/MP39y8e9qOYHRoEjz1cSHUNdlWZe51IUvphAf/T4xc6mdeYey0kV9mkTPdbpzFTbuyDZcO8pCsTGR6AuGS1Lr1bkuG+FNRYgUomVVlGVeFEXl67quJ/m0qioIQ6I8RzMwICZmtkRsXEpkjE2sdUyGyJBxZODpfBwEAUASuO91Z1Jt5GFQwCohrgRe5LBtTJqTesEGM/P+vSCqXmJspJZJrv1qtn9/9VhdSM/l4G1G3wwXVvs3vIie2q42CkNmCQ9ekPLFNLckKeb+1Vf3ZeG5tLSF5c83/3U1YQtSywoyluZG890v7sW061lsSBQrzEMrUqPSvsAAzlzkdL4i2m/jP60xRkR8VVtrfV2zcSIaanWR7vniZhJjFCCJzix19MaaaRvc+tv84Jn43MjuNNODG9oFKgwRZSgDUchvTLzE0W+lQXQhkBCBQAxig3hWKQ5c0x0QgSwQfU88UwJVISGKOBbHnajxjzHRScYzF1mn7HXv/U//IF59BWxAtKWCf/nzez/7/wW5tA5GAA0gjY41IAbYmSQPoXKm6Pdf+cO/Dx9/A1W5ZhN8573d/+bvnQzP1rNuyEtn2dmkNHT3j/8RvPwatAs28DVIUZV4883x3/6bsNZIyAn2zvXx3Zulo2Bt7qMJMfJO23zHJcFczxcANdoSLqwTmXMoqPpQV0VV5FKVpptwZOXiq6qaTopxPq7yfDKZuMQkiSFA6tpZ2lzf2NjYKOoyhGCMC4N+J+spwXsJoT493COui2JaVZVLDKeWstSwq02isAQG4DUEMXVdhlAnCUG8SCAiy9YYihCYW1JWY9Q6colzaeacI+fYZULxZIiJIhriloeIRtUwcnMiovjPlrrfiB0r1lubTV9cM03mEFbvrC/LyFfzspZJcmZ/mznORPpUhUR9neeTaTkdZvD5eBjqiklFxECNcSEEZm47fuPco1vmbHvuag4gFmmAMIjq3HtgcSN8pQbTPCOJGNbol0GYISFMJiHP64nVutaiCmOpp1o2LIYkGjNEBGBjnDUEhrNghnHkrDPGggyzZWuUCaxRlPHkSZEEbJUhkdCpQ78xDEA5TiUOsuLUXPvHgsmxbW9c6GybJ56/veS4y2Va2kKjWMaGpfzz77KSkitSu48X9/hXixTtUiu/8tXULqLpqvzLy+qySXVFE8S80K/2qF7IuWoVL0M7ZgIoE7fEQb0CgF9k/F88XT3abRHQZmrJUxcGvo5Spq/FGQupwawiZCxCUERvS/KghElDIBaIZ7IQQKgx7RqS4Dnu31UlW4YXGCtkAsQlia8KVmbDqD0sQZtzKiEIG4JXUmsM174kF08DesTPw6KAKkfVEKGGZRFvicQLp1mQmiWQZS81iK0qlBksLCDEPWMAQAUFkEIdVCaW9vrZx/7k/xz9Af75v8jf/cBmqfvB78Pv+u03ptOHv/jL2yF0xDPVgDAIqiLCxqmHdNb2NtY/9u//eUyn+Mc/O37n3f5HPoIf+qGb/+v/7e5/8pdOTo+7iVimUNb9rW3cfU2+/PWzf/XmoCzVKGtg73E2dFIiKteclqoFm0pJYYmNUDTKadzns5gpTOdz5dzNx7DzoVKBYQYQQlBVZlhiY7kqyuHpcahKZxnii2Ky3u89efr49OiwKot8Opa6AuC9jwi3uT4Yj88mw5PNjX4eNobTk8SZfr8PCqejqXHXnj59uru73+t1fDkhBO+Lvf1nZVlsbG7tbN+9ffeVs+GorPxoPCzr+s7Ld5wzEKl8eXS475xhQ8xsOVo+TJLYwIEMK3mBhIC8mBpvu7xOrAILMIiNMSpQoQBl45SFKY6KEpgbhNaZKR4UXalh5oC6IEcD52c358+bH9bi8rSSQSzz4nPG2vK8xUXnLIYQw2vwtg7WjctCLXtYaIDhAFFRGGZmueB/FDd4RETn2DDzQI4yimC2W6ochVvGRW/eBV7QfhId0QHDIDUkTUeiazpzlvlqqpnzqItactTBKhFEBNGbSjW6gDCpNWTYCMNYl9iErPVsmS2TJbBTjmMjUGFWFmXkgWquvYBBJu7Rg71IYGU+34bQ2SGCNuULGk88wXyZmXGh+yJCzEQLZv3zEb5sAlzGcBdezaWBBUrOn7C2H6rqXClb6N3cwhFfzrsTRaXZGeRGq14GeGrOoM98EVp9aUPgxf5Gg5k5f0WyOALKCyaExnbS7uMstStvN9fOP89M2pywiHXOYTWoKubH3s7ptNbMSZwdAmwkyzYSz0s10x6LqSGj1SNtjVK77xcBfnFZtflPe8BtXVaZM6yABHZcBW+MqxXirBCI1TJZY6X2rGDLQlqHOmGWUJN1dSC2nRDUwRKEJMBwIGEQOQtVWOdFJUm8hCpUaWIpqKhwlhZV6VynhiQ2Y/aoJiAGKyDOOSUpysJ1u7n3bIwRcWCAvPfGC3dcWecmNaiUUzdWL5bZh4xZlQ3ZucmaZy6yM1utgAl1EK/BapVmH/s9/xO89trD//D/mByddrxMVY6evPfqu++4P/QTG0fj6ptvdThADRQQARklEiIxKa2tf+zf+/fw3rvf+W//2+542q2q/afPDn7tVz/1+//gzT/35z74z/4v3clZXYxBZLIUxj15+CQ8fhQmk4DakXaUqcidIZBSQiF4w6TGCFiVQEZIAmmI/KkxwiEoCQmElECkzDae3J3meZqmzpiqqkII1llrDEMm4+Fo/ySfThNrnKGj49MnDx8c7O+eHOz5ulzrdXv9zmh4eniwH0JIkoTYgGljfS1N2JJ4rYZnBwf7+dpaf9tvJEmytrZ2ePjQ+2m3i7U1W06Mr33tqyQxIuZ0eHJ4ePzO/Xdee/2jvd6gt57pJDx8/H48YZz1ujDKCbFK9FCz1irCtCycc96LiDr1mTPGWB/qs5F3aR/kmA3YsnXEzGyVqaprGCZOiC3YNZuUTKoiJNHnhTDzCVKwZTSmzOYwAkXzQLTrzG09M2Xn6r9tBhyfMFHcAGjnnC22c4Fg5oEyW70UiQyByTNqBhjCGgwg0d4SI4VAaH4MSePZpNlOw7mXx5yHqSqbFmMlQuN3LQtM5hyB5g550QeKGtvj7OiDUQrRhKREPoJl3IVSDQThNkkAQYUl4glBQWBDTIEIDMPGEzOTJQrx/BhDiZRYwMLiWZQ5+nYQDGZH7wAKS+g17/ILKnNXZ/su9KAF9H1BdXYhLSupyxD+4mrl1QS8YD3PLf4inVxJyUqN/Or8KhdsDOcIeglt7SfceigS2tkW5LDlNB/MlRpzW6KaU3VFVcsPrRgVCd74WkriDmxaefbMpaPaEolyXfdq3zMkRcmwbKiSGpSCupOAOk0l7VZFPaikg6BaM1EglCKJ61WlJw2VMbVxwdiODwKVUJFLhmR0bbOu1CW2KL0V7TlDqKHq62Bt5gMk6Y1gdL1fFvlarTZ4Y0gQyBoEnzgXvISglLix0eCs0zTUYU0sKt8sW2WoBTyUI6trREpnlEiMSTc38ZnP5v/kn9nRqD8dpQI44wr74Etf/8gPHa395t96+K23NAQY0xyrIQZpTVQ4091aw2Bw9OZX+mejHV8loDyfECp89U183xfsnZeqb3+9Z7iwbLsZ1I6PhkBtnJC18D4rJLNOgw9SsWNOnAjUq0mNB5ESiIVqYTUiRuEUUFJjlGZ+p6oS1AdPRFmWqWpZlqqaJc4QnZ6eHh/tW5SOlSR/8vDZ08cPj44O8+k4+KqYjAlSFWcHh5IXE/G1tbasPVtjYEbjqnTGqJcwWe93Qp2rJ2g6Gh4dHz48Ox0yMzM/elB0OqmIlEVgdsamVZ2DQuWHw9EuuOz1t7e3t7/5rbcePnnc7WYf//jHLEPKmoxzxibWRUFVVZ1zla/zfJKP86qcJknqbMe6TBjEVogFrBULmNnCMBHDMJuUjGOTqEnBSfTnoYg4FOV/kmb9NBqtzv6q6vzgYFs+b+eZ/52DK89cyhSI0vQMqDSC3LwUNbu4em71JVrYZCIAGv0XZifcoNKgZnw0O14132shhBbSMuwMXKEUIq2ImzVo7Lfz9U/EIvNz/A2FLVLalAvRzFldmeN57ZnsIXJBTzJEIAqRAUV5QZku+uoTKxC9r4KiBikIgURgDBPNvMUUIcoCQTUQAsGTShxmMCnxzNOkESwuKqPL7HvmZayzTq7U+M995i9jnx8KtH49CDeHlg/BzRtP6Qs62bkevCr/XEu7MGLN8/bEvyq1o1aprC41M6g8Z0AW9MJ2keZJa1gWlOmldluzrnmp7ecvjr7t/O2BoosT72INq6WxhXGY12bZGiUVgutkZ0Ht+iDdvrV/cPjKFz6Hm9fB6r/8lZP33rN1SINAvKjA2oJs6Zzb2Nz8rT8E60B0+nP/6vTkuFPVKQVVCs7Zl++Npvl4fPzSR9/Axz6N01O8/fWzhx/UaaKd7vrd19zHP4mkh7L033779NlDTI6TqjQEcSiMya3l9e2N3/bD0BqJPf7Zn89Ho05dJGBmK77KO2nv5bvD3aMccvMHfxi3biDU+MrXTr71fj9VChVr4ObTxEMvKgCTgTGhlmC4JFFn0O+Pj494kveVwQG+Rh3W13sYDvHaPU6MTD0rxx111XiOSYIh99nP4tmzZ48evqRIqhqQ1BCFcPD48TXxdz//vbtvfVWFxr7e2bkGItvtvvE7fht6HVQ59g8Pf+3rxbQYGGfVFuVY1BOBjMHs1AcAgmEJiCdAIj8WgSE2xrTtVxqqMreWs9QhSD4djYenRVEYrY72dh89eO/Zk6dVVRRlfnZ6IiKDXoeZCRjn0zyfAuj2MnauruuEjUnSEKqy8lKVVVUl1jDh2d7+/v4uM67t7Fy/fv3wcD/LulmWTPJJv9+/trN+/fpNa93u7rPD472zs7N333mr1xv0+ptZd80afOyN15LEQvzTZ8+gvLm+ff36TWuTopiWZaGq29vbxhjnHLGyUVIf6jKEoPmYjCVjjXHECbERwxRsIBBbuJrEQTIVD/YkzMYpEyAz74N4epvER5uBgElnnsBzZtMovjOUBRbRd+FJg70tnWmBbZzX3Ardd46+1Lj9GxU9d9Q636ONgBsXLy9wl1Zmnq3w5q/yfBtYVVvoivmyb+JzzQKJXBJCROJbin4PjdMyx0MvsXLThD0DZm5iBgiY+ZgDCmalJsIfCUSUg4qXaDSOdTKDNJChaEKUYGbelnEghSGEC1rvJUzzQ+l834WGekXNbeSY89mVzH0lrLYV1vbbZb7/3RHWrm3+j5X5Vz7//1ua9ff8d0xXwORcCLssW/Np5AIAY+mrtV3oXySt/F5X9+uyZEPtnapjUwaEzmDtcz+AT3/6levX0V/HwR60sl/4gWv/8ue//Q9/+vVuZs8mnNlSadztZrfudP/Mv4tyCgCkGz/4+aO//jfG3/xWJkhAZdbH7/pd+vTJS4MMn/9+HJyguImT4+mz3bPNwUf/+E/gI5/AwydIeihz+2O/e+fdtx/+pf90C5KEWlx6wjZ7+d76n/lfYjqGDairrR/8of2f/H+cvvXNLVHrTZX2pzev9/7wj+//zD9+4/f+GNa3MTyFBnz/b978xS89+Ic/vVNJxwtUo9Qb3VVYAU1DXhtDZG1F1c6rLwH+5MmTTWIlJmUJwRj2ZTF++F7/o6/2Bn06HVI8+8MEUZA3yqIeZY5et2LD1qoSJVY1VAJvHNb6uHMd1oRQc6eHrU10kjf+5E/g4Qeoc4jgh3d2ft8fPPnJv3309bc2BKlL1Ae2VgzVUkVbPyuMgslAWcAVg1h1HscRzSk30QDRxJCBVONRPpnC16GYPnn//fvvfOf+e+85Y0MIRTEF0Ov0nXMiYX19XdR77wfex80VY0yv5yrvbZIa0n4vzaxlCt0sCXVOqXTSNLG8c/P6jWvXk97moDsYDDqjs2FdTU9Pjw8Pnlhry2KSuYT66+Ozyfj0ZHR6ws5ub1/rZdfWsn4t6r2fTIsiDz7Q2tqac4aM8XWddbvTYlr5uqpKlxiC93UpgjSzRAR2zqbGpjAWnpSYrAERgiOTqPHGpjABxooNYKOzQNZgjcZLaqJdGBJEH764dM+PQGsTY2bVgmkxslns6AtC7xVGvw/J1BhERL75DUWMRonZNkpzIrypW9sqS8D5bqVChfSc5TSCGgmpMIRngM2I+9Czv5AY7pH0XFvk+cEuBSlIAQ2WYyQWGOZIswoZGFIWwMCE2eYZa5uGADKAEjf/RYWfyMR9F1WFwCiMxihgzaFhpri7qMqN5obZt2tptxe+yGwo6DI4bKXZninRZWFtLv+8V/kKLJ1cB4MXxCKlFbBxKd5caHqFuXVFzMZmtlxyXnxFrKvVlc+IuKSaS/Jfpj5+2NTo9DOf9nNVmNCuX1XjAf+m3fnMne9ht+SbNlWXrd+rlvZ3m9oVWmc7UFPWAWQmPmy+8gq+//vx7jtv/eW/mpRFzn77zs3bf+THP7a1vfdX/+ZOtxekkk52/XPfa37i35F/9NNf+tKX2HIw9Okf/C3bf/JP6F/9K0df/8YayBuLj39861OfBOq9v/23Ro/3umWVnp5JYj76Y78P21sP/+bfOn7wJPN1ibD22iuv/ujvevmH/o2jf/pPmJJc6NbnPoc/8SfwT/7pl7/4K64aq+VP/dC/ef1P/kn8v/72wRe/bGqpyFQ71/Dqa2/82T+LR4/f/kv/OXs/qqtPf//nk9/z+/hXv1Q9vt/xi3GjhBB9fhBEBEhSrG3g8eNqfJYaqusqsUmU6xOm/acP+vU4XetXjiWANQbCVAAWSnWJhx/gR370lY+8cfTFL2onNaGuXXqWpDc++jF0MoiQYVWVqoZL8PTxk3/5C0df+3pal8ohWVt/+ROf2fzTfwp/8+/sfvGXbnAWAcNLTZZFgy4HRWVSxAMh0bU1AHGKCZM44snoDN6jLh7ef+/Lb35pd/dZal03MXVdWabtzXUAZVmWZWmtLYoyTVPDHACwNvoMGWNYBEGRFx4pp5YLLwz3xkdevffy3WIynkzG773/8PBwfzIaJ5azxCn8aHxSFXkMi+zYwfDaYBB8VdZVNc33q6fPHj+5c/vezZfuOIubN7ad7ZyeHr53/9vdbvf69etZllZV6atSQkkQCLOhbifLsmwyHaoqheYEMaQWUFC11oJJiI1JxZRqu+w8mZRUhQ0RqWFmS6pEBmwg8UAc4t4v5iFzX2BxXc0ylhUaXL6e28nEYAzaOCiQsmnCt4K0CXPJMfKNzgJZNOyGQTKDn6iVztkKolagGndv24FKFKLRLXQeXm0WoWr+tzGx07xfJIAoMSCIu2kchZSZqgeASb3ObArt8JnnaQbTTYpbGIjny0EECNhIbBdAIAWEhAIghmLQzdlhhln1tIRVz8Wtq027L6LQXFb5JUrbi/LuF8TgF68BHxI8XnDeruzvd5EuE4kue0Izg/l8CiF6ol0ZwrMRf2dZ2qM6/32O5VfUc0lanntX9Gt5l4SIbBBjOXFpUpcj6vRwYwenJ1/6a3/9zslxtygq5uHxyf3Tv/7an/4zN37kf/zsn/9cWhu7c8P8+B98+t/99LNf/pW+r2qt1Npf+af/4rdv36L/0Y8UTx6mp9OCgK1tOH7yF/4CP/hgU00CpLXnTgfXtjAeH73/fjaepOVww0DfPCzv308/+eleuu5D1bt+E3/gD9V//x88+YWfe4NRFgVc8vAf/cy9wyP8gT8oh0f52w9yBN/toLeGf/WL3/rJv3HdByqrrcTtf+nX7v7wv/HS933q4Om7oAqIWgFzDOxAqH1urSWT+ECVNxhcR6fnIHU1XcsS5DUZA1ErwXFAx8CZ0hCRUC0UjwOxgYTtxO6+/Z2b776z/ft+bHy093R/l0e56fbC3Vvpj/3bqDyODiFqidYRhj/1/65++h87mJfB0EA21KdnTx7tvjIa4/f/Xj7eH37nHWEjoobYOjspC1inhGYfh4SU41QTDyJiYjAxqAmipP5wd7+TmNPDg69/7c33v/NOXeZriRV4NmyzxHs/mp6GqiYigIsyTPPR2mBDmcqyTJI0SZKqqsbjUQhBQykivs4dc6+brA16O1vrR8cHVTG2rER6dLR3sLd3eLRPMFvrW5ubmzs7d1W8tdTpps6wc+7kZHjjxo2z0XRvb6+qqsCyu/fk0bMPkswRqZKrKm846fe2oP7Z04PHj97LOm6t119fXzdEofIwlZhQ52MhGE5ZHAHWJM4aZ7mupxqvz0LF7NR6cjXZDqs0x5YMG+PIOGIlI/GqnugUyWQ1AjOgLR3lMlb+YbkYLvC+1s5cC/ENmeagrS6WvSCYg2M4K1JCEw5aoo4awW7GOzjCUYRJ1QAiiWfzwCCKUZbZzPc2lgJVzluHNLAKigqcIEatU4rKeAxyJyKIPukISkEJxDCsGnR2RH+hciJSYiWj3Hg3zwI8GiFH2kRzU4DIxHFTVVYQhEkZEojinV7LX+QyzWY+pFdneG66HLMvZPj1WIwXin/3ihfJfD+YiNCupx0XTC+4Qczzv4Axf4Vgcdn4NAaMS2DyamFoudq57/HC25aweKH4zMBF8xm4ALfzYb8CaFeOyYJZZVmffq48FDNYY0xQqevaJq6sKzx6hM3tXpBOnq97HwxbTg+Ph3i6h9deH/3Cvw6Eu5/+FPq92x99/fb6BqocDBgLdOESdNh2UjmdGOOgAeNc9nZv1bVCQgiJoWmev/93/utX/90/+7k//EfxlS+Fg4fjk8PyJJ+cDCc/+3PW2pq4/+pr4OTxBw82qrJf5j2TVHWZWTN6550BUffle3L/sQVdv3EL4+nZL/zCtdpvlLnxPqgclwVUsL3V3DPTMKYmqjBBnHPxDiI4kxrGeIjphI1xzoXx1NgMIjDsJdShQjkVDSKBiAVsGgOgwtdhWvQ6eO9v/c3Xf/T3vPKn/zQePcQ79/H663j9tfD1r5pXXkVeGQV8cBTWRKgGYDUQGYTSq9GeDaNvvzX4t/+t3iuvFO/dd8YaAiRIHVkV5Hx3UAEBTFRQGunPh6qqinxcTSa+zjPG229/cP/dt48O9xih03VVVUzL4mh4VlSlCnU6nTRJQGSN6/R6GxtbqjqeTEUxzcuT07OqqpxzaerIpJ2OhaRpYtcH3V4n2762vfts/2ExHvQ7hrG1sfb9n//cYNDL87Iow+b61mDQG58dV2UuUh8c7k0Oj7Kkc23nxs1b7rXXXsvzPM+nj58+Go/PFKGWAARBgAYD7Xe6junJ0wdVLqVNQhCoretpXoyrOidmBot4EYhXbyrnHFtDJFCFkigrPHlhEYSaNAgzkSG2Ygy7hI0FW+MSkFEmYqusMBxdqtpL8bJ1eBGML1unHzbNj9CbmVeVMMjrxaiVJK0r5yLju3A504VlT4h2kiYct8ZQHrFfDKjCkAZgEX2vSDqzthMTFMqEAIrxFGcQq/H+yobdX6D8AnlCMAs+U8xNEDYBWBtehjl+GNB5ZA+ihSCUlxk222C2Ek5WyjrL9bx4ekF0vzA+S6/04iGlZXqeX/Oq20ouI+nXb1l9kbFaHY3uyjrbADlXeVXOnbDmhmhmlrZhufXd28cLl7VknW394hKkX6DnBfVgohWBJ5eSzhYyAWoDSqO1MUZK7zoJQoBKaNaAIVWq66Qo8c47+L7PoZ+NJxXuvQQNeO0ert+EeGj03OhgMsIHb9HxaUfhA1AJvvOdRDxCLrDWJRKqriThwe7xf/x/2/rDfwi/+0dNP1svJ9g7evj3/kH28BmXtU8s7tzFwV4YDmMsKFIxyhTkbDIdnAwHL987Cf+KRXbvv/+q9726Jl9Cg5IwlJmRdSBkYjBj5kAMYoJwjNHhHWCNNYG88VMcPcTN38b9fnV43GWjqmQtpKYkufbSq+gORkcHHXgpKXGZxFjNSoBlDt0gN07PDv/B39/56q/ht/92fPpjGI5O/qv/chjCvf/V588ODlArmQQhBwHxtmCXQAJgSCXxZTE6xsmwd/ulKSBaW6kt01SCTRIRbvbAEFR9IBCMAUMCZjfKTaej6dmwY3VjrfuNL3/py7/6q2nC9+7eerb39IMnj86mk7KSJOvadJC51DlnrbXWxh8nZ+OTk5Mir7IsY5fUQibpZd3u1tZW7avNtUG/16mr/PbNnbs3rx3sPzuzw6D5wcFx4vjs5PT+/fub62t3XrpLxj3afRgelb6q+52s3+t976e/0Ol0Qqi9r0s/LcsyyXg8PV1bW+v1epPRlJmfPXvig9/Y2hyNRltbO2ubWzs3bk7znNltb29fu3btydMP3nn3G5sba4POhioxDKCJM865ui6LOiSJDSEIqK5Cv78uXgJEKvbFmc06ziUiJGyMT9mlAk60I2Bix8apdQgGoAA17JjZGEMzMRkz7a+VzgMFKC2eIESLl0XeMReKEVGHZHaLCXQWKSVGIw9BARAbgUqoFZ5IOTodA6QBTUAfCiIE00QPbozPBBJDHIPAxTuxWpQ0G9VE1EDkOae4CPFNR+YPZaYxNPwOSsQm2rZFlGCsTXxdWjbOWBLNXOK9pxj4vbkVGIhXaSkaWzozsYmWZyJi0pifm1trldTHcKesBiRKMdhZw4uDV3HcxJ4WnbtitaG0/VEWjncvaE7zsvP8qhoNEvPQQsu89ZyDtlqP43Y5kPPFWXGZxRTt3c1ldr/SRrpoDW7C+i4C8Cyaio8gfd7rWfSWhdradS4ri7NzvedFeD5P5vW09ey2p3SrW3SOzBfaXfhwRNGNfTYVLoKlqnJrzWpzUWlcUwQ0d621Tw+3a2h/x/a56gWh/LLxWRbjiCiGGGocUFo9mlWlxMpkQKIChVgiNZaiOUlEkKbxkyRJIqMzWMOssIRehiJXXydgHBxif+9f/N2/2z8Z9eoqAXxdg7tOg8tP1lS1rh0LJuNwdqbes0vEawi1YWIf+izF6fH9v/E3wtYg2Vlfv3Vz41OffPnP/dnxf/xfVPuHCkFdwVAwFBgiIIixRoi8CkyCcQ7AJcYSUJZGlb0QERlT1bVA4SzifTiN4ssAzTbDQCrGZXkxNZnLEiqePsk62eDG7XD/oU07dVkZUiEtRbfuvY6TccjLRBk2CSJqWQD1lXMmbq+ZUPZqnH77vfF33tPNwaQuU6G7H/8kfDh+/HgDCkMTNSbJtJROlqCqRcRkXVGf14FdAhF4D9aggefXz7CRINRc00hAYy0lgBh1WdR12et2WMK1rfWtfvfn//k/+8qXvpQmdmOjv7v/7L2HHwwn0yRN17e63jOREdj4X1HJ0cnxaDQiMtbaJOmQccSm082cc0mSnI4na+t9k6RVHfK8+OCDhw/ev3+0/+zocHfQSdf6GVHiOu765tbtmzc2t7dirM4qL/q9HgUA/O577z99+hSQsi6qOk8zY4x54/WPvv7qR6rKnx6fHh4eFsVURKral7781re+qUr99bW1wcb2tWvB6/7+/oMPHh0dnTCItOtcenzwLK/KrY21KEBsbm7Wdc1EIcig3x2dnWVZx/vKJimBqkkRjHUuJbZVOYGzLu3VUhI7tkmwKQdDbIktx3BTbOKOsZomascV4nB7P+nC8+eJ0vPTwM3vmZlQwRzBn9QSSvESAokHxOi8YMPtqXVzHxGB5pGbVmwvYSZG0LlWseLiyosCfjvIpapGtmXmID0TQ1qHXuI/gwSKFuPmeeNQTcrMhlhEmJRm0VW1CTGtMSdBZq5Vs7h5RPOb01hjqPm41S0r0ajdneeqLO2OL7D15YIvqP08V5G6mphlgI8/rnbQXVHtZZd18oUY4BftECvukqJVmt/qwfkNswld2sqLFiGs/PQLnfpQdc6X9nPLtkW95ZXYAHyMnqO+kYRAliqlQEZg40W9dQVrQDKppt3EABDHZx3C5z+Nr73bH/teDbz1Dn70R6/1+v37j7amuWqAdRNMxRjDBLaU+LouILlRCaISEIRcloYyN5k7rSujtDGacn5aPH5v8k7nwc/9i8/+qT/V/0O//92//Fc7eRXe/bb53T9iXrodjvbZBIQgxBNjBtdv4vad3Z/5xxalBBIJSDIosUtCVQhUrVUmBA9AqUFfim5xhHggWFGTl07aCUF9peVUsuPJ+rVbQ2NDnnuoMjyBMofOALsnWqGqhC3VSuJgLVMegngAU6nN1nZRSZbLLecmw6ElHZvEXdvG4RENT5OUJkWlL93JPvbR4a98WSZ55tiAqmIiifWD7fT6y7h5c/9n/ymYAjFgU5epMaOyhnXR35RjV0SNBtJQ+TJLbWp0eHiYEkYHR//8Z/7Ro0fvTyaTozr/zsP3ptNx1u1sbW3lReULKao6yTpQnUxHeZ6rqrXOuiwmY1xVVXleEHynA2ZWCqLls2enk9FQpXYEw6J1/frrr2eW+90kS10nTbd3NrtZenY29vX06HgvhPDRNz5e1+HRw6enZ6N+b21jYyPP86xjb928wUG7WaecFMPh0Di3vjnYvv6Juq7vv/eBKavpJCfw+PTo2aMPykJffvn2Rz7y0c3eILlxz0sY9Lds4kRkg4NhHB4eSkBZB+fSxGUuMUVRdXpZCKKASsVKwXshqkPCZJWYvA2+9mC2qU1S2FTAbA3bhK0LcMQWLoExpJZY1TROwRdg6Xzf8VL7bXuJXgnDSztzS2mGqYtm1dbbKA2QSqOBrdRgsIpxrBQdZvWfx3dVATUbhDqz8M1Qv0VDDKcRs2GBxc9Y2AKKkCjF3e2LgS+EwE2bFxTBy6Bx1aBdGIG5ZrMy84dix89N3wVsXJEWFK/lT/Zh0zKULo/AypoXHioC6KIye5FgAO17x18kuvLK5ua674sknXkPAOcSHlqlL5OqlyWPy6h6QaluHvlrwaTRjs0+J4+ZrbWW47W+ImwNbt3E1pYM1vL+dG86VkLZSW9/7A0kFl//WqfK0zoMHz9Z3zv4nu//gfe/9lZtDIQCsbf25d/ym/HS3dH/8++E2jvLIEWoUpdIXjprfVlZsoGw84f/AB48OvjK1wlgH+qqztbWcP8+PvW9672eKSbHD9+/dnr8kS/8wLtvfRtCpFoxlZ3uvR/+rXj2rHj4/obWgdkyUFcSAsEEkAGzpXgtA2ZGh+ZMIuLxfQZZsoAAIRjjOEg1nOKb30h/6w/il/71/sEBGStMlXH3PvsZvPr6/l/6L2xZuSTL4bq3buGlGwhF+fa3NM+NInVJ8qO/u/vB4ye/9vWOsRWq0pDb2cSP/E78yhfN0aGUE7IoQ93/wR9cTwcPfu5fZlKzeM/G9PpnzB/5wm/C8OzsnXc36zrp90II07zwWce6VAgazzGLgggCDZ4U1kDq4mh/b3w63H/89Dvfemv/4Nl0Oh4XY7IMY2ynr2yGZ9PJuEiSpNNbL4q6qiYArHUuS1ObgplUR5McMmkmCGsMalSH/ORodLh/UBVlv5sM+t1Bf9DrJKPR6GA66nWy6ztbtEH5tAxe88nZkyfvbW2v9Tvdd979dpp01tb7n/r0p3q9fgg6mUwYRKLGYffJs6osur3+JM85cS5J2YQ7d18Rkb29g/39w7PhOEmdtZoXk29965sC2t7e7vbXgmB0eua9FGUxHp8lzmRZdjYeHR482NzcTJzzQV999VUAIkGEVLw1pEqhGAvbJEmhvixzNgmMDVXCxpG1bJy1iTcWJoNNndZqE7Up4uYq0zw+7WzVSWs5X4XBlzyPaDTXSqOduYnveK6/qhpjWEIgAgxUFljkwu92ayvhpE1PNKUsHLN5LltZtvtFQJXmmiwzZzHxaFO8Z0Jn+3BzFTN2fpkPLlCoBF7S0i8D42WhZAFOFpqjJYviMjEiq1n+dw17z5XJ2hpSm/I2nStJXcgQf19G5XI9UVdbDsW6XO1z069fPviui7cv27iM4qtHHkviznJ6wdG4Ym5jtsAXntiiLnrOeAoCUfE4PIHiM/+b/13+D35q7/37daJvfO4z+L7Pnf3lv1J+6+11Vbacj06e/Wf/6a0//+df/fP//oP/7h9DPJRf+bHfj8Se/MX/YBBqwNYBqCr4iuraQhEkMSbUZans3ruPP/Tj177nsx+8+bWOQiAf++HP42Nv4Cf/63T/sK/l+Kz44D/6i/f+wv/+I3/+zz/86Z8xIQTovd/7e7E2ePx/+A82p2ddhBGxFQGIDYl6AzYGRV2aUKKqoxIsjasnCwkr4iUKkLi15Ou8zDq9qqwf/9Tfu3vn2vU/92eLL/7ao2+/a9Pk1R/6PD75Sfydvy3vvN0VXynlWaf7Q78Nn30D4lPY4ZffzIIE4uTt9/DHf+LOb/rB93/pF0M5efUjL5sf+i149sHjv//3rvtgtKpFzcmx/wc/Zf/En3nlE9+z969/oSjySsLde/euf+ELSLNn/9H/6dpo1BOeFFVmyGVJDgnNmVRFkNmGrwpY4DOLg8P9s8ODp48efesb3zzY21XV0+EpZcaH2tcyHhchoN+xadoRoPJ16UsytLa20e32fAj5pKjKAqJegmXT6aZJkoQQJpPRyUlZ+wkbcsbevHnNGfZ1eXp6enxYrvd7g8Hg1VdefvnubVJMpqP9w8PTk8OgVNXa77md7UE3S0aj0fDwmc97AFuTOJftHx74qp7mE4hHaW1vM+31QhCwvv6J15Mk+ZgPp6enh4eHw+Hpg8f3z85Oy3KooDwE2d8v3vpGlnWu7dzyXpMku3Xr7jQfvff+VyaTUS1TDZx1evU74c6dl5iZKHB0EwdIAwXRGkIIXshW8CZURoxjY9VZZavkyHXYdX2aUdJlgBA9feLlx9zciDgPjoEXFcnPF2E0v1yygKnltRElfkYMZ3WucDeruGVanIOHzncWl6B0hoIXNqSJSMOyE1bTQJuq+V+QqgotnSLVi0lENMoT1MLCi/LBIh7GTaImvk1sbsWZ1KvV38u02IVSv7Hq6XJaiUDLjS5TezWFL6KjL2H8BUBdFjiWf7S6sTTHeBEwZq2ez9rLjN4L7V7di1Z/5Lz6Bd37khYaMhbzt6qcLSFtZVoGy5UfcVn8vUyki+mC81drEjYxugNmwioAqKhNupkPlTKZxgRdoCwe/dovv/SjP3rPl0ANyAf/1V8pPvhgx9lpmJJLvarPx2//J//nj/+pP/XKT/wxJCnKCnsHv/qX/9r1urSgGupJ177xjbOHH/jETINlGIGi08mde//b3/r0r/wifsfvvPeZzyDp4myI9aT8+X/+9O1vbSDkxJ68K/Nv/sX/8FP/sz/x8v/i34FxKHMc7H/5//qf71RT+GqiqJ0bHu7d+OZXRuNRCWWrCUMd11Lj618evf+4MBg5phh/Aef7UsSqwTNzst4fTbxnMpV/7yd/8vU/8kezf/O3vfE7fid8jZ6d/tzPPfzyF68zQmILpbqf+cM9K69h90nJyNNUSQrmZ892X//lf4Uf/q2vvv4ySKABH7z3jZ/6/1xPkjrkUzKcJVWQ9x8+wE/+tTf+6B+78Uf+CERgCUy4//6X/u5/c6MsxFd1kuaWUmPK4DnpViFYa1iZVQmiZJogBSpVnk+Gp8dH+2+//dbx4UFVVY+f7rsMozMkKda2B2sbtipq5zIDCpWvSp+mnW63myRJXlSTyQTgNM3Ozs42NzfX1vqqWpV5vLxBVTudXu0LAJX3VVEbxs7WRpYkvpjYJBlNpu+8976vKkCMMUKssKWnB0/2+llGUkuoHwff7XTSJMvz2tkMZOq6vnP3loRqmucbazuDXj9NU+9riH/4wUPvBWBnuNvLrm3vGKOjySivqrPJWVV6mxg/lerZruFkZ2v78Hh0dLx7MpwwY+/wuJumee0Pj4dK7t69e2yYWEQqhkldAqCuC1GyMfRSCE3wZ+NEDMGADeqSXG6lR+ptdLhlYmKJ0NusrgiOV2kYCyvzMr45QyBSmVdPNPPaoIv2qzZDWVZVG3xtxeBqM+LLhPrLGD3QZuIXNgUXcVNVo/vyzKOq3dCyxowWM1ogZnk8qR0vDI1HFFH06zHtVtoVLqh3V6i5beCJSS9aYhet5b/RyL1yHC5rZaFfV0sblwkBOrN2YmlkVja9ZGW5dAQWBvaybP+DpgvyJT9Ho9XG4PRC47mQVs6l5Up06cKlBYln8fnwy7/Qffho77/8v29M871e9tqP/zg++el/9Ff+2u2se3dnO6g8ee+9ZFq4ulCfO2fqurZJVtaes+RMw63X3hCTEpkH77696ZhPJwPDZDD2vkwzVe36YGtvORURJQSjZWJzo5Jl127djsEH9vd3/WTUL31HoQFESo5ywtAlN+/dY9HU8IP777q6WgPZWmBMAFXMpHChNuIdGKgM1ZNAYf32KK/68C4IN0EHZ8qEAuKVKRCCwgZma0riypqCjV3r37jzcl5O93afUD7eELFFZdWItWdSu41+GbxRdWWdBDg1UwllJxtDemvrOztbqTNHB4eTk6GtJRF1AmutD5XXmrOsYC6NXbt+Y2Nz09fV6eHB2dFwYLhT5VxWcGbXmtf/2I+Pd7anntk5IWUFSTCIzmgioeS6ON59+O5bb33ta1/b3d3f39/3PqxvDrwEmyRFVaZpahJHMKpU156ZO0kKoA7qvQ/Cxpi0002SxDnX7/ct03A4PDzYm0xGltlaVvgksalLOt3UEVmmjbVumtitjQGp+LqsiryqihhkWEQG6/2trS0Kod9JIuBPxqfGmOvXbh4cHGdpf2Nzmw3W13uHpwfT0dnWxnVfS/B+ODyeTIdVVRjj+v01Y9M06waE3f3dZ/vPxtNSBZ1uf7C+XXsty3owWAdQFlWnm+X55PhkfzzOOxlXtXQ6nW5n7aNvfGJjfa3fYWhpyRpLIlLXtaoadkQk87vcyTDHCE5GyZBLTdKxad9kA5et26xPLoNJlOKOpHA8EdtcCm4uM0HTxR3NZoHFVzHkJDUXPwASg4GIQMGGEcppNTpGNS3zM18VvipV1V0IVd1cmI2Zb6ciqKqhRRC6wAtmxm1VjV6+/ByDobTYhwJgQyLCNIv/RUQhlFU+HY+KclJV1XB4UtbFeDyOtJGcI5wQiMjY1JqEbcbsjE2sTdjEG0SsEtHs0ggi0nh3g5i1vL43nO4cTW4UOnL4zt2NJ+tJxbam1bjVxlRciS7LmZ+bfxYha4UmtCzotJGvnb/Fl9sRmlc0uoQZcX+d213TxesIY4reAKuN89y68u/Szs502fM8vAgecQtjfg83AJKrNOD2MaGZ8CnLc/W8tg9pYVqsvLXrrKrt2ppVMDvUtzCeCwBJz4vO0RZN2vOhvfW78HZh3cV/2ijGig/EplbC3bu4tv0jv//fSmuvZUnW3fr0J1AHqMAI1MNZBEH8/FLDZRAG0au/6XvgS5BDELCCDZQQDXjMCGiC3JBAaxgGN4H2ALpXh8gooAqJtyiUEIFlVRAzfH3nez+GuoISZObYnE9gGXUJ9RCdDI/Hw90Nm1aydnPzetJNhGDi5GgOddgYclagJasBJyAI6kDsLAAxlIvvpTeuf+SuU6+VT4yVwOxcbbTypRVx8TIAAGBhLmNUoCDM7FXWX7nnhFW1ZoYyBUkMK+oglWUqRULaF2IOxfV7LxuY4CtHGm9Zur2xfrK25gFrrYgSabzvVQiiGkIp9dSX+YP33v32t755dHT0bO/ZeIKbN9dslllIURTOWFL40lvDtYSqDt1u6lUssYiUZQ0yaZpaa1U1y7KTk5NpjLyhmmVZlthutwto1kmKaZ5PixISfH10dASpDKOTJL1utrbW31gfJIlLnUtT51XYuqKY7O0+hsrJ8WFk4m+/+yzPy153rareGvQ7tZ/kRd7vmH53HYKdza3aV6Px0fXr1wCkjoIgsa432HTO9dYGRyfHT5/sFUVxMnzY7w+IKIRs9+kesfvBj/3weDzuZH3R8PTZB5YDGXM6Hv3yr/3qR1577WOv3clSE4irsgohRANIWeVp0mGIEFRFRVQ82LENDEM+gESgRCawgTEGbNioKtg0l0A3Rq5zo3Gb4V4mSl+hQBBrE1iqCejUaL7WWg1GmEmUlvGmVaC9vJdbb9q9kK0x1i2TREvOSjTTgxf4NTPTzDU3RjBtq7xEF+KKzEhYTO3x4cXYiQvcXHBO1fx81Dk9cwpXcrerxn8JrVsDtZDzqi3AeSUroXch2xWVzE2X7a6hdY3dQpHLFLLLKG2PUltFW1n/HGDmj1eO1XLrWJqZoNWZrxjSD5sW4LNRtpr77C9MNp1ZXJb7e9k/l3H0amKWx6FN5BzX5z5ZNjXMCmJXKlU2wdoG1tfqey9DAqvEcOhG4yEB3wg0hNkV8Qbzg14qII/zIDi2iUmnvhH6mstpuPG09ABmV4yHCL0ECCRAFSCleCEbiQjUG9SkIUZ3ViEK3vpaxXsEQajK8vSYjg4mxqTObvuta6GXiXNOHakGDgRmOBUDIHC8rEVs4PhPIjICAIF9oAASFjgBKauxCgY4QCPaGkXLONaEo5cYJVphQYAGFla4YBga2IOVJCi4ohRgpzVBAhsARoUgpFwRjazxICNqlCrUaSepitIaq77qd+zZNL//7W/u7+49e7p3/+ETYmzs9LjTUWOm07Ev606nM5nkxhjXT9fW1jrdfgj1dDL2IRCrdfAh3oQjRVE+fvig9mWSWGZOnHHOBqms6xFsWdRpFiNEZqTBMnU7yTQfF5Mxk9a+PjodJdYB6HWTqpgQqTEu6axtbW19/HO/qdfrgczm+tZgMKgm5e6zR+OTg7OT3b3d+8dHp5Px8fExNBwT4eWX0jocdjqdrLeRFx5cTksUdQ1Nb9989frOK0cnx5PJ6OTkJHHZ8PT41VdeuXn7JWcSw+n1a3dPR6ev3Pv4eDre23s2HE2NocdPH13b6t+6sQM2CgZLEFiGtVbUU7zMCjEAsQappVbL8ErwlQlBYWEYbGMECTKJcYmSab5zXLzRL26mZyyrGjg35gpR9CU+X5MKzDQVARGRAWh+RZqoqg++qhGEmJuzuUwyO+84Y6Mgoni5xOzhOd7MreVLfGEFa1iGjTaPJiJiCiFEEUQVIhLjVVlrmTnefSkiaebqEELwrZufeEHPm6f2wxACmcaULfEYCcgQzU+XqmLOs5S5XUMb+y/TUOeCxYLaulK/WdCBZg9X66yRJBOPJrcHcPaKWncVz+ufwXmYVxWvBmnfm9vm9Qs1tOWGdhdakLlCulr5u93fdlltrjzHTEGaZw44N2XHORz7vjiFLjh28Txc+aKddkG2awgQXSlTXoZ8C4IF5lG3pFmi87FqPocuHhPSmYWgjY5oTZU5ee3m5vQvTMiFnGjNw4WH8YdV8Sqiqs12Tl1BfN5xuQcpKTFIGEoQM2M6AhWwgYn6pRgFhCVGdvVKIHEKC7UAmKyyl9lV8qSkSkbYGAAILAA4BFWCWkWAFqoqauczXkSiv6coqcwsA2LZiwo8AFAJf9qxR5kxhpylPGWfJkiyhBJVFQpEDLWzePuIxxWtAIBnAEjApCKgwDYwoOSEmxi8AJRVG5NaE7mHBBAXKyRWcGguPBdAhD0rbEgAKFuQRE6gmgCwCgA1szLFSE7x0KSaxkICQupSkeAlSOUzx/no9Oz44PT48M0339zd3XeJ2blxk5w9G4/y0Zn4kBjbG/Q7nd76+vr2zrW9g6MnT54AyPOJSmA2TDbr9rIsA1FRFP1+X9EBJIaGXl/f4GifYRLRPM8BlHXFIEM6mqCY5mejoWXqddJOmlWBRMR5s7lzx9dlf7B+586d/tqgLMvC10nCe0fHe/uHVV7W5dSA+mvrll/e2toJyi7pqqdut3vn9g7gO11b1zVg82mlZJJsh5krL3XtN9Y2Tk4PGXR6ehoqf7i/9/TJ7vXrtz7/hR/c3du7ffvu3sHu3v0PJnmZdTshhKKq3/zyV3/TF75/fTAoy7ybddiohNqYmcVMVClQE68ARBp9SFRI68LzmJmFLMDOmBh3IoDAxLa5d1mDtMD3OeLwbKUJEc3uRbw652pla0VbJG3NkS7axFbW0FbcrybjAkPR1sOWSVxErLWdTupDUU8LX3of4rVdvETJnEVe8E+hRqE/H8nG3onzf/IszkMbvPWi9a+NPW22foXKcvVAtYvPfzNfUs/F2zvmkHg5Fl7g3fO/ywx61p3FyyFWoleL5ufPSbTGcGHEWiRdOk9WQuOyVBfpD6sc65YpPyfg8rcfKl29HC4rsvxwoZL2Pz9U/Sszq6o1IFIhiIXY4DE8xtmBURWI0jySJ+LqEGIlB4DgBSIGMz9GjnxNASgFslDLIFIwLAKIRQGWZidJVQM10RY5llEVgicowCIUJBr+lMBQIY3xn4g8x7KswZAwhcAxpGw8rR8MiQEzDCypAyw3eEtQA1VQsKTxAnErogQPjoZeBlSZhRUQsBCbqKFqCORnN6MzIUayZWKCKimMkhABjRcoSIyqgnJjiChRNSrNLTJcARwEzZ0uUfslEwhKopEGJo5G0lB1s47WFflqOho9efzwV37plx8+frqxuZX1umVVF9MpMWdpp0RpnDs9G4toJXJ8dnY6HBVFRUTGWOJojWDDqTUZM2dJh5mPj4+73ezWzevUhPwN3nvvfVWVRFQFf3hSF5OpsTTo9VPrer3NQb8b4yoYY8qyPJlUZ8XIEj3df/qtt98zHDqZdQbBV9evXx+Ppgjo9/v9XsdaNp2Nfndta3t7c3PbsvXeQ8rJ5OhsOjo+3C3KKQIl6SBNuoAlWGc71rrN/kb6cnq2cXpwfHRyPFSV45O9r3z1V3au3fzal7/y5OlT74NxrsrrqvSlqbYG2e7uXmJtp5PWdU2QTupCXcVYV/FSApK4oxq1kQAlqA9aNl8QZFRrFXZdTjo2ntqKvHBmryMSpvnVCO2lFQNXAS0GRjPDbMOY5vvCl6/SGfNtNEIsRNA4jzQk8x3K1gq/CmKlFaUoAt5CywDofOduxp2ViHgegk1Vo+I7VwhUFSQEczHU03nsEeJzjGyuVIJgFvZkbl+Y9315ZBaez/W/Nvpe0fEXTPMuL7HjRT14nn/xyQyB53Qu52x/6FnN53C43JcZDF/YCZ7XEzU3XC4orOrOhS7MdMRo8NelPi3FWJ4FhAFWTLe2YHFFo/Pa5pHHL8u2kv4mQuqqIwBXtPjiz68gYKXosPCKLlplLks25kU0mEnAZCyTsWRpEyg9yrxKUAiYYGaPZw0TZkpivJyn8YxtspD6GE5dSYmJTPOZm1OVrIiXlylYBEKkACkbFkL0WNZ4qQviJJjvGCni4d44VYma+1WgBoERCJaYNIah13iVd7OAzmVEURIhkHJz2QvAygCLAkQCSxCnIMhMClU0oeqliUkfGTnA2hxvIigJGAgEGFJw3LQW8jH8ICAU5ZE482hm64mMCaKKAFR1YYyBBmuYRI/2dt/6+lsPHz+5cedWkmRlVU/LwntvnXMu7fddXlYqgdmO82I6nQavadoB4JIkmhBA5L0fjUaqKIqc2dy4cWNzc5OZ67r03ot6AMEXnU6nqqqyLLvd3u3bd6y1vqyKohjl5XhaElFdlnVdr62t3bx5c3w2UvFVMfbFNEtpvbd96+b2Wr9rDPlNnySJKu3v74/2z/qD7sbGunH28PjA2Wx4eno2PBZf5MUptNra6Hc6Wa+3BjWjszyfjOrquA7S7Q3WNjdKl633B50kHU0np8NhVQ7396vrO5sbGxunw9HZaHp0emKMuXPnRi/h4+Pj1LpXX7vnLNV1SQoRscRE0fJB0aIsCKpgxKgQUCXUZVCu2RJRJWLFOwYzmFJFlEaJzFWhshZSnJyNiSTeFXW5982F5w0qnT9ZhdaxzvOqrl7wTZ6lJ7jIv9pNqSrxOSC1oS5N05BX3vsQYuw9kMywZJWreOPmTXpuIVclBHBjnGhj8AriX0C1Wwl1y529tIlVuwlYHNtF0yWuZOurlMUXgoFlG+n890JOulJbXa5/wTCwjBNXA9XcpL8gTyyP3mx8nkvahVKXNf0ic/u5xFPr1N9lra+s4Qr0XSEZfBjl23r1hhBggwajCcR4sBo2XqwqAoQ03mECNVBYFUIAiWJ2WwDBqFhVQCtOAMPKIFEuFRKirqnE2ux7KAKRsEIUIKsEz8GoMIRUoKJCAhYDivf/KQMB5EmFlKGGiBg+7knHU40GyhQMQ6BCSioMYhBEIcoICjLGgkglgUogFRYLqALKJCREqsIU97wBMBSk8S4aK2w91KgY0ngDoFOGqoFphpqE4InAakihZEg5iaAME0g0RgiBg3IjuzXheWc6DkDwkcspIR7xKIpikLjR2ek7b3/7O99+99qNW8Ymo+nkbDxS1X5vDUxFUZV1YVyadbOqDkVRGNfxUg/Hk16vVxd5jLeSJAkbystpXQfVsLN1bX19MC0mIrK1tRVCGI1Gzpm6Lpm5119bWzfe+8Ojk+FwWExza22v18uSxFrb6Q16zKPR6Iu/8qVBt3Pz+vbtm3e63TRxYlhPxsXu4bFImIxO2GDQ6/XSbHt7sL2xmXbTvf0nT3d3netc37rx0isf3VzfCL7qpNZZOdrfOzw4ODo62N89GB6fhAAyrLC9jbUb129ub187Otrb6vR7fT48fjZY2zbaf+O17+n2NyfjstPLinJ0//3vaF1OxrK7u2+tfenOzTRNQ/DnsNcEhJhH6A3KDdwZqMAjFKFkr5IQBKGCoCo4yVzS5aRjjJVGSzCqGi9RmAHbosGTIDhnds0PhcyMlouYeimux1jJlyzgC5rEpccqdPk5EV3k2+1g0ZiDNVH7oFHzk4jszCY/P4l03kQ8yslM4KZbvMjiLwyUNqM3g7gVHC1aJlZqh/M87QG5QnNameb5ReZ3MV8g9cXrWfkt5pU8lzMv9+4yAtpDQeduXMsm3/PwpQv1v4CWJhd/87zCNg1zyGl4/KyF1bNRoyKjrYznaSXULdRzIaZ0XInnxed6ubbpOM/+IQ/yf1h8Xfl2bq2Z2TnOB9AqNTdCqza8yMwmejSusULiXbhErGACSeOCFJcVSaxWmlDpRKaxuKk0biIMaWRe1bitFEibU1tKUfFVVor3BgZSEAmCiVu+YACsZmbta/yeSImUVX047x4IYAksM6ZF8cCHMpTgFUyNGgsACqLZdR2ixI1iKgCMSoyb3xAXlRmQQJjAKjyTykNDleiMMo027WZ2y2wnyxDIzNSv2d6aJ44ksWpghSpCtMM7E6py0MtQlN/8ypc+uP8dAMYmJ2fDvCy898aYug5gCiIC7mTp6fAsr0pfR681EVHrapHQX1/rdXvWWgmBlQaD7vr6wJA9Ph2q6mAwGI0mVfDMZpxXzqR1VRS5r4M/Ozsbj8fdbvf6rdsb6+tlWU4mk7qsT4ajqqo2Bmsvv3rv9vUdaygvpo/uPxqfnYZQe+/rKly/0d/eGLx069bO9rrW9ejk9Jvf+s5kMqbU7Vy/tr21c+P2ndPDs698+WtlUSTWMNXeF0YFkCRJ7r7ycr/TJWvW1jc/+7nv7fTWHz9+aAxN8zP1HkKnx0dspu/Jt7e2b66vbRa53z94Nh1PGDqdFMcxHR2+8ZHXbuxs59MxjI0fSIgMKEQXfcyCuRMByiqitfrca2BDLJ6hnKgaFrEcjEBAVjg6cy3smS2yzhnfvGypXpDHl0X4Obt8cWl6JY9eDb2ryl5E38XMOuNoEZInk0nta2osAhpCUBVjTONw2dKnibSBB5ImkH+80CI6Xl3Sl4uizIyAJSvuHJIXGHf77XOH5Qq1aeHL0uy7nz+8xAB7Wc2Xse9lxXReR+vVpTVf1tMFwhaR7BKp5fIk8QBSe1rGSmYn1xcn7bI49aHSC9qWX0Q8uuIrY2n850r8cxfLQuUfFrDnO7UCCkCA1kYDiw1kpHHAE3AgFVZPBMDITOagRpxXBUqOH0ZYq0bGV2aNgYyhLBAlYqhCiUCNVZkqAqwGCCmsEgcE1SAUgEDqlYgaLEyUWEwlqFQcvHIwTRAdUHO4C8ao4cA2EAkF21DBIOHAFFsMABsFIUYegUIDiYCVGEwEw80eVQBByAqBEIzOoh4II97OS/CkgaJEZiwYYBFWUuKg5FkYxNEBzSAhCOvci5YCzwPQN3s8QlAyQkYQWDzBdwx98Oj9b3/jK9OTwyw1R4f7tWI6nVrjrHPTaV4URafbX1vbOBuPhsNx2smSJJlMptYmibUeSLJut7fmUie1B7FLs16n2+32jw6Ps6yzvr4eoM+ePbOJ29ramUyPrDXWdvPibDg8s9a+dO9Va+10Ot7d23PO1b7sZp3rN68NBgNDfDo83js5Ojk9mozOiNUSG+MGWzub62sbm4Px6Oirb71b5KPM2m7W7Xf63c61XnctNZ1HD/cePHg0HA7Pzk6lDsRIE3R7dqPf63Q6692NazvXNzc2iChoePvbX90/PCmKqttZW1+/duPavbX1vaOjw4Oj/f2993b333c2W1vfztLBxmBrNBrWXr1gOgyj0ZMQpJP1ulmXmVWDBlEgKMCGAKhRCqqBo0tyDHoVKoGUk2BS7wjKpIYRnVRNQpwwG7VRQuW2VZbOZfMLR3qW9Z4o7OqSTYyImNmAfGunbXmdE6jFIM7rnDGRJucl2jDNlV26yGjm0Dh72VTbKkizdlRVQwjxDFtsdB7DudWazIJLQ8QTG8yPZpJG+bXN+ufMerZJfLHX813oVfrcFehydVpmjs2XbAHeFVWtVCuxytQfB42WLgyYVR7/mmWS2ghxycOrzKftVq6QxtpSi6oyt4ucm511yemsmY3xdG/r7Wzf+lxnWk7PBbxFOeNFZdEXTS8u3S5LPCvzLAh2z52EVjVmEsRTP4hiHikavJmFzYoG4RhgGdF9FwAai1yMWExQVZ1d6C0Rzxq/fCWJiqMyEyzEA40ZtukSWOKOE4W4ABTxrHC0yc6VUiVtArY27A9EZJitZWZiEbLzyAnNPCKQEShp3MIWViaANLqhNKYbhVGCwXzlxSh8zd4zmjCxcyMMCUERBCrN8WLbeOUTNZEkZ2WF0A5zT0Rzm5s297PSzKAQayep6rVOcnZ8+NY33qyLvK7r0bRU4uHpsNcfdLv90WQ8zfN+f81l6cHh8f7+OOuByE7zPAisM5UPaZpube10OmmovQgGg7UsSesiP9g/3NnZsdbuHhxaa++89HJRFMPhUFW9Ynh8UlVFf209TdOyKM/KETE6nWxre7vfyZh5OBy+8847IYSqKoL4JElMp6NB2Lk0SUaT8umT7/gQDIOA9QE21rcG/UGWZL3u4COvfuTmjWtBpg8fvff02cOtrfXHjx+LVtvXNn0o2dmNjY1+d1D48smzJ977k5OjTqczLSsoWWv3dved7SSdbuJ6a2ubZ+NjZTWGnj192Mk2Pv8Dv+Xm7ds3bt/ae/rkbDQ8Oz354MGz1LnPfd9nE8shaFR8o80/Kk5BBPNDeUSEaBOR4EsAXr2pCs6qtBOo0zPQ4ANcYikhnt+EZloAds5QiAjNBAaU565Ns+kedzcYWM1Y5yzvsmWsxDEcyhwRLza9Is0B+wrNrBmE1nPV5vjPzIKnqrq+vj48C2WZA2yMYWep9iGIY7OSWtMC9abaCLh0zvpnfEYvWD7bTuezhTMfqwUjRHsQFoZiJYwtp/awRw7QFkEW6secaFUwka4Y2PYXXBbFltttDxEQo7brrHVg1bd7kbSC8g+R4izluUSyTOfy+DdDx4tBTJdrWK7nNyq9CAReli4zD1wu135oSlTVElsiAmnj8QRAWJVM1BgIUGEyIAAOEJEQQ940Mjwam5QFoXGSmok7xNAm4s/8kjJBXHdq2Ai0ubkCokQShQAKUGElgMGIxQEVCQpBMKQMVSaNhVmg0pyh8r4iCuQUhphAUEGIDI6jqb01gWKvY/Oxe4LYblSq5ywaiMWUTfMlANIgogATucYXdibxRalFeb5lEv2roYhmfJnZn4kMk8bgAiymDt5Ec54P1uig0ytGRx+8843R8PhkND0cTXOvlSDNei7NJtNiPK3Sbk/YHJ6ejceT3iAB0zSvnes4Byab9bKyyruJC1XJRN1uh6HT0Zn3noiOjo6SJNnYWPPeP338aDwei0i/3z88PWHmje2dqqrKsl7f3HLOGUNxn7jIp6dHpycnR3XhnXP9waZLDABmkKIs8sk4Z6KdnZ2N9UG/1+l3006alNN8fWOw1l9PnT05PXjy7P5weJQX0xs3tlOSLMtc0tveutXvd29dv7Y+6HU72eMHD8ml4/F4e+u6CFyqxiabmxtq+fRkND6dpEm/o1RWcnJ2kmVY39xgSk7OjiRw2sm+8Jt/eDQ8soYfvP/tJ4/uf/GLv/jSnTvXtnf6vTURhBCgQQHiAF9kWVbU3teSdrohBF/VnU5HxEPE1EIITFCVECpxuU37CJXYxLgEbAOIWMiaBhg0ajDxXtJ4claJSJtrQebCLocYYHnmQChESgjQ2tdeZXYqMagiRrwg4zDTACT6WKgymxjKQilgPldj6xoaMxMRpIVVjcdBnMmt8zwz/ykJ2gZFVTXGxCUWKbFEAOJBNVVl5qryRKxCbK0Ps73kRhyf30kMG6/bFIksOahYstTE9PBE0bZNEBHMXMsvxhlWQvSbhEbZnucSj6yCAVy85AAtRnmuky1C+EyKnq3rWWSH+DbMJbWZRkvxEichPd9amlUdmcmcHGMo7n2ivZl9QXRrh+OI9C/7x53rsrNXV3N/mVHali3OXzb16IwqEDUX3bcNKgrMbnqet64zpr8wthJ7Z4VnQueCb7Yi6PntQE1t8evr6m3gZgLrhefaOrO78u9C5oVxuSLPXOBru/q3i7SF9raAddl1hAvfaF6Pxbler0LAbH84+kw186W5uZQRT82sMutHhXj2Yr5smEhmo9b2BWCJt/PGzsQTHVEbnuvESiBWUqg2NqnoFaVKiJEB4m6uEkSlMXQIiwG0iXYmDAoz11eOEfapdTD/othicN6zc9m5LUS3hm/eq4W533KXabkqKOZLaz58NP83CIAh21gKoEZJ6+pob/fs9OTBg/cfPX1qk65qEA03rt86PDk9Ph2CibwdTobTvHLOJlmnKAo2rqpDv9sDMJ1OX3/tnmXpZv3pdFoURZZl3ntVvX79OhEdHx8/fPiwLMssy/r9fl3XRVH0er3pdDocDl2apGmapunW1paIEJnR6Oxw/yDPJ9Yma9c3OkkKA+99XZfqgyAYm3YHtpdkg1633+ukCZOoD1SLHh6fvffu+2fDE18X/UH2xhuv37h9czQePnr/QVnWr7/+kTfeeKObpYk13U66//RRmqYifn19vdPp1pXuHxwdH50+ffo0z3OvGKxtbG9fOxuf9boDMJ8MjzNmYf+Nb3y99vrSS6/0Ol2Grq/1P/GJT73y8p2nTx68+ebX1ta613ZuXbt2bWtrq9vtivi6qp1zk8nEpV2bpkVRdDqdTqdzdHTQ6XRUKahyZF6iKh5VKb4mdjZJNXTIJDBWjTWUELMyE0QxDyZswNHQGj39OV6NHrcx2o4YzUQAK7jt9NSaVMsclolEtAGoOQugxuR0aSIiwMyCgbRyvrDi0YScnNsk4+9o7rrEWeyCDzPJXGHXi0e4Zua0pS7oBd+fub3hu1aWdH6R+0pql6ygbRa88Cp6kwRodECiRYezX2/6DdEIqWVOv7r+Rc3+/Plz5lW7tnbRlc7tC9rkMmReVvmylnx1qav1/gVbUTvPuU3rcmIWevFcYlZWaFdmbCq9tLbF21S0Db6LTV5KxwJBc2wGIsNbYZprH7FcOSXaIlX8J81JIwFWjPhzR2354Xdt1rgsxQNNEYANAerHk7Ojo6Nvv/PuBw8fg4wyVVW1vrl1fHxaVjWzDSLeB1W11sTr4USkrCbr6+uj8dAY89nPfnZ7c6su893d3bKsjDF5We1s73S73dPT00ePHg2Hw36/f/v27azbGQ6Hk3za6XTG09xaVxTF9trO3Tsvl76ug3Y63fv379d1CabB+lqapkQoqqoYFXVdi6qztpMkLmPLlDrDzo7G45M6n06nEvxkNPTerw/6d19+6bOf/pSvi9PT41/51V+dTief+sQnX3311e3N9bqunp08u3HtujWm21u3Rn1VPnrwwTvf/s7kbHp4fLa2vtlfG6x1Bocnh8Oj/WdPH25sbm9sbLmk6xIznuSnZ2fBqyo/efJkfDba2toaDofO0t3b17e2q1c/ovv7++++f//+Bw8Hg8GdO3fu3n2p1+8HX8CKF00spS4ppnnF5eb6RllX8UOHEBhVJWRCIFOLL8HO+9QlpbEpTMo2FQlsEzKW2CgFbRZIK+5dY26Z+fEC0NmJnPlMw9wwTnPRcP5bYsGWETJCX9yT0/lUX5VmcLXaCDbLc575BSftnAct/F3ZSvSYjprR7EjSeYzlNi8jXIoWlxEPXFpiJXOPQ9yup61ptfPPh245ikp8tQi3M5ouG8bl8Wk06ReXgK6s/8MWXEaRhqTWwyvaWn71gpbktsZ5mcTzofq4siOXPVlOK0tdgfQfdvwvg/NVAHxF7Y3guBi2FEtDefVnnukBKxT/F5SzohfLQo/mAvgyeC8Qtpzhso90mYh0CVW6sv7lqmYVtvgOcYyVZRla+8ODvf39/Xffu59Xvt9fqwKlWbcO+mR3v9PtWJdI8EqUpV3rQlVVVVUlSdLpdk9OTtPEffKTnxwMBkcnx0cH+2Weq+ra2tpgMCiq8unTpwcHB8z8yiuv7OzsFEVRluX6+roxdHJy4lza7XZv3LjRX9vwKtbaEMKDBw/quma2zhqQlGXtfRVqH1SMTVNrO2mSZomB1lUxycvJZJwmVkQn+TTPp9tbW6+88tK17Z3+oPudd+8/ffaoKKf9fvczb3zsxo0bRVU9frrbSZ015tnu3oMP3h/0s+PD/dHZSS/rDDq9Oy/fufvyvWleT/KciDY2tmBCTzpnoyGPJEkHVemNcYPuYO/gQGFEimKaj0ajg253rd/t9Xpe7fr2tTIIW3d6Mnzn/vHDJ8f39o+vX9957dWXYRIo6rqGqHPGEtdlwTNXPEWQ4DkadUOl4pSYQwZfiu2STa3rQDIfvHEJXMJsAyIGqzbq7zl3JZ074AuDNB4Q0gsLakGPbKaNzufJBWy4bAJfmGx6YXJeMZ+X4WcBFxryZpM8GtxiGMXl6b2seBERzYJvYKmnDT2Xe9q0F/gLsviF35eN2ILtcbHRVev6avVouYnvGjJ/Q9LVrX93GsXKOheGb3kKxRR1BlyuSl7BkK8A7++a5stU5MtKzWlYUOIXdMvnkrcagBdbumh5n2/MLBicWut2vn+wYgU+92PTuVzfyhl9p2ea8TzPHMjnCcsm+MsbXF5v5w2+wCJfJSXpC87mdtmgwjMTPcFPp2f7z5698863z8ZTNfZkNO4ONrpp7/6Dh1mnU9Q11ZKmKRFVPnjvRZBmqbV2PBqtrw0+/elPEdFXv/plIhKvAHq9Htg+3d0/PDwMdZll2fWbN1yaGGd7rn9ycvLkyZMYW2N9cztNU+/9yclwMBgUZXl8fDwYDNY3tqq6qIqyKisRYaYk6zCzNQlZZwnBh8KXvix9KDT4cT7td5PNne073bs3r10XkW99550nTx91U7u1tXH7+vU0Tcllp+NJlrqdzU1n7fDkpJrmAn34+FHwha89U9VfW3+4uzuZTE6HefCoayQdyjquDhUbqKqrpA7sku762hbb9NnurogErVHkaacLTvJKt7ZveF+ejMb12Rl30v5GqGu9/+DpW99+snd0+IUf+L61XufkeL+XJp3UFtPcSzDsNFqQJe7ieRHDzCqsxMHnUufG5uRSpAMjFbmOaDCkcGTIhEZzPZ8J7RgcrFC+MC1JQTAEvvp21ZkjTLtkK+5u2+B2mQg9020AXDTD6oqVjvkWyYqVHquKm2GKEPdhl03rMUULDWAIIiLM3KyU7wqVvjv0JW05kKM1Vi/W4koJZtWtRO3UfhvLyovwwBch5sO+WpmaPdol+0fjY3vhJXCVdNQqG3O+AJ9v/75CgnxxPLusoRe0Ej+XzpjmM2F5mrWPSMf/tw/aLVf1HABui6jLgmF7WV5G0FU1XxyUF9Ev0UBUu+z5kXlmji4fF2iYHxRZJH51K/Pf2rZlr3rbfjIn7zKZ97LeaXO3jCgFiCES8dXJ8cHu3uOHDx9WPnjhMnhTV2cnZ2UVjBNfi3MGQFn7oigwU0EOD4+7nfQzn/mMavjqV7/qvc+ybH2wUdc1gKOjo4ODg263++qrryZJEkNzlGV5fHw8Go3SNN3c3NzY2BDw06dPmS0bM55Msizr9XppmoYQoGyMS1PS6I0TxNc+OIu6JJXa5+Jr0do0e/s6nEwH1NWyfO/Bg729PRFZG6yrD7WYaSkmsbWYo73j0+NDBk4Ojw/2q+kZ0gQf/yi9dPfW2u1eliXTaTHY7r328Y90Or3g6dGjp1Xp2VJZTafTcZ6Xw/GpBLNzrdPb6JW+vnXrzsnJyWQyKStflNVoOn38bM8k6TQ/s2n32s07Z8OTvPB1URq2/TX7/qNnw/HPf/57P/Pqy7eL8XA6LbIs1bKMvuvc+ExFz4egqhoQlECOTSWm5CSjEDRUEryRGtELy6bguKdAjXlR43E9JfD5kqTmUoe46RLTbNKdZ5s9WVxfK/XXpTl7YXIuTvU2oiwtiOW5vfC8YUPNOf5ziLq4rleoDs1yJGpuNplzgKUmlum5mmtfUXxlulrvWa7zaqF8JX+4zMr6ghRe1sQVPHPlq8tmzkpkIiIsHZdaQflv3EZcyzL6IWD7xdOLlFqWri4ruPJhk//KypdHfgmAZ6ahywd3djgYmMWhPb/Q6kONzvLCXjlphFSBls+TyuxmskjunOaVhF/WlzYfwSVLq+F8q2bhMktqqJXVs/ZyACZmGwMSRHNkXeaH+7sPPrh/Nh5NiwBjXad3Ns2PTqaDfvfgaJp2rEszL5JPSyJOkkREijw3jI9//KOj0fBb33zLObexPpCA0WjU7/eHw+FkMrlz68bGxoaIhBDOzk7jVlxVVVmWDQb9osjv3z8G26zTI+IQpN8frG9uhBDKsgwiohJEvJd4+pOJ2NhGAxBlsrBgMDQEKVOXgjQI7+0f+6qu6qqT9ca5RyAYnZaTh08OT49PJmdeAlSQOdy53fk9v/v7vvADn3/t3sv9XuJMODw6qMo66zhFfXx8OByONre3VOx4Wk2n0xs3b+3t7Q2HwzTtPNl99uDxg06nJ6KDtQ1jk4Pjo+PhqRecjYtnewdJatc3+hubvWtp2u2sDYdnZyf5tMgtdx49PismXyynn3nt3ktk6rwsE5s0t9mcL5toKFbVeJhNFQIVEe9DLSG3vhTf1eBNCCYNcN3ZPQLnH5qU4sKRVYxmDsDnk+oScXa+1JcmlVzBFGPl88htl2Vsy9w4X4NMdC4TEMfgmvHOnHhDzvxUVHu2n0cMZrZMBrPrjDjewcYcdMZvzl2raHkFrRwHtPgazazXixkUaHHShcV+GUCuSLLaDWnBhn7eUCuW1uwtz80VL2Jde5HEWGIsL1DrxWk2L64zP+coKa4enHns5fmTtqgxmy1NdbOJegEamrISTSsEQKU9biuoXfnkChvAwpOFnFcLbVfw6qvbel4pnXeuoZ+ABQBerG7Vt/z1S50vWNuV/eEF+/ScALrE7Wv++wVX+NUmi6vHepVdeoV4tSxTEwQSqjIfDk8eP35c13UQTrJ0Wpd5VQ/W+96HTi8BUNd1jIbvnLPWeu+NTT7zmc+MRsMnT550u11rbV3XzrmOS09PT0MIOztbg8Ggrus8z72vnHNnZ2fOuU6no6rHx8ci0usNwLaq/WCw9tprrwn08PBQVb33IlJVVZnnIQRjTJIkzlpm9nUAQCrM7GzqHBMkhAwkR0dHUlci0ut3e2atk3WLorA2G4/PyrO8KsvRme+kdPfu3V4n+6Hf/APf88mPHe3t5kX9z/77f2FZTk/2d7bWOt3s+PhwMj7Nsmw0mhR5VXtKO2tVHb719ntlHe699urmtZtlkLKqptNClMfToqzKTq+X5/np2bDXG6SdtazT7fYGaZI5Zwa9tV6vj7BXVGUQuXZ905fFr331rckk/9hHX+9ma2UxtkQsRNHa0tzBJSA1zBGNSb0GiHiFZ/UMlVCrNoEpGMxKaiwZQJrbtwAoeOYXHeevoGWkOp8SkDYrXbkYV2ilL8A3ZpOt+dua588vG0u0qyIi0lZw4BjRdQbDuJwt6MwkMKOkCSwQR/yF9ZXV7pwLDS2s6MtUw6vZ+ozmxdW9zCiaJ5d2gS9aJT9EehGQaKPmiwDJZZrZqlutVrRyxbC/CJNcqKeN4t9dWll25fdaOQ3aYlmbmOW+tGW4eYY4qz8UwecA3AyZNgEjDbNQI1DH2iW6iph4TCKed/xu7PIN3a1D7vPRj7Lx/NvFDLNlfj7R24NIREHEzpxBiqo0Vo0xOnPTEtWFwIFYxbxmVM3E2HMVpLnXs2HB50VibbGeq8zOK0Xs+WeL1woFqbOkU/m8k7oP9ve//GtvPnm6x9atbdyYVsEH8oFUwnRSJFkHZKqqquu61+1ubGwQ0XQ63d7Z3N/f3336xHvdubYuEtIkBXC4vy8i9+7dK8u8KvLhcFjXdZI6qGRpoqpVWTjnrDE2Sa21Za137tzd2tk+GZ4eHBzUdR0t2M45AGwtW6shlGVZ13XinAR1bEQlSezael/Ej0ZnPvg8z9k4JktEouw9TaYVGz48PgihBri/vvH6R3Zu3rjezRIN/s2vfPkf/vRPMUK3Y/qZ/egbr738yt2EZXi89/TB+77U9fXtTtrduXGzrMOjp8+G4/G4KMvK33/wQRX8YDDY2tp2LrGU9G1aHlV1lXe73fG0GOfTwfqmsjk9GYkP1mF8enJ8fBwq3L59+2w0Ho0mhrOj05Nf+uI3BfYTb7yWul6ZTxPLJjL5AKLZJQ4S4mW1qiqolIhCAIVQCVnPDDVGKyMgBJB16qwyz/CUKZ7iU1KK+6CEONsMgcSHmljJcBBPgDEsIirCzL45z3ouPi748WIOqo0mcc47Lqwjbc/Y9sxcMYfb+UXUMhOz+OYsrDFGKzXGlHVlra1DBSCEQDCznVEhsrESZigk6r+NBcXQHNIaAq5kJJEt0PkpL6J447Kqts9fXkREubgA56O3zOgb4Jndy7swGs2dE8TzYZxrNMsMUOfHmGlO+blyvqAANBVerKHNqRbya7yvN4YJmh1ipFmCynxiXNT7zvuItnA3I2n+D50hAVal+fnXOFDxiapaewFK0GJxC92Zd6o9LecZ5nvqC0y+yaCM2RcmGKJzeuaUt5teEI/aDV2WZ/67TUA7zxWCBRFF/4b2WqPW2/a6i/20CwQt/z6nHhdMBK3qvpu0DEvaQr6VfWx90bkIybMb2ZqbdGl2yOEFybg6J1Ek57s0SrQfXiZ5xQlnlCXU3Sw9PTr46ptv3r9/nwg2SadlJWzzPCdwXYUs6xLb8XQCYDAYMOjo6Chu35Zlub+/X1V6/fqm91U8zuu9X1tbG42Gu7tP0zTVNFPI3EsmXtLQ3IUuAsA5d+3G9bPRePetvel06pwbDAbRxB0hH0CSJKlzsZuGObU8HA63tzcHg8HR8YGIT9N0NBoBvLmxlef52XBoLY3LYjKZpKnrdN3Nm9euX79pjDk9Ovzmt97yVZk6w6I3bt4c9DuWpd+x4zz/lS9+ybHfGWTf972fU3EE+8orr+wfHnz9rW/euLl9jW492Ts8OT2z3lORn47HRVUN+utZ1ieiTqdjHZd1TUQ+yP7hwfGx6XTT2pfdTtLvrw366/u7B0+fPi3y8uikBJBl8DXe/No3qqr6zCc/lnW6Whd1XTOzc44MhxBqCQYsRDO/ZWWFklfRuvIcQvQ0CkGdCBIlTQylZCwbUtA8HEFkuHPuDITIVLTNSS/OqLazTwMVFxnci0/RD5Ui+2vBGzALa8WzBIAkhhxhNud+ZBEqVENUp85FgRYrJKJm/aIxua/UgKPv9HfBcJZRttXuhQwL4vLCeMYrpdugcnVaAE6iGAhIl6D2OcQvSAPt1iN3Wmr0OSbWRTovOT56NWHLAsqyQLPyLV3UcVcWWab/ssp/QxKtUruv0JpW5pzX0xYgdGYLuYL41XvATfkVF0PO06KJbC4QLVO2Mi18htbsp/aThR/agmahxpWUqOVptcS/LnbuUnc4Wsp5GeXLn+GKZbmClVxc20HARIYZIaQd9+jhB1/72tfOxhObpAqaTCcCE7zE9c/M0zxPXWKt1SDTslTVTpapyPD0dDKqbt7cIKJBt5dPcxJlxdnp6dragJnZ0Gh8JhLdp1XEh9CoDo3gRgbAkyePzkYTEUmSxDlbVeVoNIr7xKqausQyi0hd11B1zrFLtrY2vPeHh4fsjIicDEfsHIDj4TCEYF0iIqLo9vpZln7kjdcmk+H7D+6fHp9MRxMG+r2epW7WTZUwmowP9nePD0oJ2FjD3Tu92zdvneWSOp1Mj5/+6gelL4u6mIzkye5pUaGsIYaYjU1c5f1wPDImZWZrnfe+KCaqao3JJ1Nrk8Fg4Gwnn+Z1Xvf6nSRLB4MegJcHvbIsp2WhCLUPozzfOzreWe/1Oi5LbFFMJ3npnINhLx6UQomYm6huqqQCkXix5jnGqBBgtCPqYROyCpsAIJrFzGoYZVxnGp0A6HL2PJtjMl/UMxY/Z9BXIfF3zb9i+DaDJpjbhcXYwpioBjFRCIGAWTSKCNCm5TV5IdJTlLRXIuvC+polbh/ZepH04gOykHMBmOMCRAunF3h0mwlQjOtHxDMDgKo24Ug+pJy0jMGzgJdxf30x/2VcdyXMYHHc4yTk5RcLTSww0ssY4LLicQVzvgIvVJWwOqTl1enDCqYLmVeKwrhS2pgvxfPxuZI8i0vmIpZJifEaV5lEzptf0vMW5vFyZ5babWd40W2MeNPwnAYR4eaznYPlytW1moZV/7xiZs9/tJfKQqML63P+PIRAhgyIDE1HZ9/65lcPDg4G/fW8rr0XCRiOzzrdTghqbRJLpWkqIuPxmJk3NjasMYeHh2dnk42NbnSwqsuSSKfTab/f39raJKKizOu8JqJer2cMxXhYc3qYGcTe+/F4fDaeVnUwxuR5PplM4sWI/X4/3kUvIrGsqva63cFgQBIGg0Ge58fDU195IiRJZhzXpVcJadIj0rOzM2uTGzdubG9vfvOtr3lfVfVURLqD3lqvn7oEKkmWPt3bdcw7O9c/8Yntna01IPg6L0WGpe+zrUlLradlfnh6+uxgrEgF6aTMp0WdZsgyZ5x11ol4Y1IiQ2QcO09CMMaIajg8PCTVu3dvv/H6a7du36jy4uxseHJ8KFAiera/d/Pmzf8fa38adFuWHYSBa609nOFO3/DGfPkyK7OyVFUqTVUqCZAYjIQkBploBBKiAzdDOzqgG9F2hLvb/9sdtN3tNmCMhY3oxg4DNmCIQIzdAgwaQBJorqrMrMrK6c3fdKcz7b3X6h/7nHvPnb73smBn5H33O3efvdee1rTXcHn2LM+SN99+62Fmb986vXPjNLGaEAKyJkq09a5/ohA6mmSIRDhwI44CKkIhYPYl+hR1IolXkqFKhVgQkWQVrhJkHa9DEXG32fpc6RaWX5Uo8RygHL1X+tY0H1G86B/2iAMQQuik22gcgLKFhQXWWCLasvW8cTYTILX1I8ri1s+wy6y3B5iVT/P288Nl6ySu5nZ3MvuzsXt+V9zVbqdbSGCr2Y9EA7aA3G1zb79wGEG9SDlEQa8Bb/VWXOiIH16Qz9s7S88F7wV/ivDsXeVrCOdH6rTfYL/yFl9yPUcSX9H93Xaoy80lj6clPtnylNjf094nqyXf3tCH6BwBbEQsiPU3AtSsTkgIAWPwtFZe6Hl8P4+O7i1b3O7e159bZ6taj7NmREi1/upX3/7Sl77ovbdZJj6wkIhjjrE6CQCYeTjKi2LZNE2SJsN8QASLxWy5LPNEDbO8qqqVq3SSJACQZOnZ2ZlR2poky1MAKIrCWts4Z2xqjAUAFqka75vGzxciSEQmMUFYvERE65qqHQChIqO1EREF6OsGFBR1VTWOGYhU4+tiWQHJjZObL718bz5bfvjgfVR6OBydXVx8+atfzhIKwQkjEXnvprMLFEDgizNAYJ3nTVN5doxiTJIO8uWyfHK5/Llf+qXL89l4BIkxy8IxqMWyZhKGkA9NkpjgfV07CWDIpDax2hhj0jRfLBazxQKQnXPMpnbu4mr2y19481e+9CXxIUvsjZNJkhoA+O3f89vefucry6V98+03l/PZTJvZclGW9Sv3705Gg+Br7xtEJEwgZgcBwDaVLYEACEd2j7kUERAnoQFldTogm6IEEgEjoBMk6sJhYTepiKAo+gH3daEb6sS4hxUAUBvdN26k3gZud7sAwMo//rkH8/rSarZiWhEiRAJuVW0iIqF9TkTAJCIxnjlAn1wFQdSmvSHqc7QiXVLSa8sWxw87ROiaEW2duGso1poZ3XeKI0/Qm/Y1w7ELW4/Yh20WfJ+fNGKb22YDh8QV7AS/db+dpcpWv1HpwAems89wb/YN/aRVzy2bo9tRs2/WhI++33Zn/rmvX8M9PJex+EjgrYj6NTyr7Aio0Nsk1F0zrX7SW/UiULDeYRvu+f1R9V+5hoM4xBQcYhBWuo/VMd47TkDegqoPSb+XXchekE1rXz9wp7LV1PXUd+/Au8rRvkyE5f333r04f6aTpHFB27xallfzIkm0UipJstls1jQNaeW9N8ZMJhNgubi4aJqQpmaUD6qqMsaICIu/ulrcvn3snHvy5AkA3L55y3vvfNM0TVVV2pgkSaLdRNnUdeXqumZmre1gMAghxGqegzFGKRWxj7U2OhDHIUT7rCRPptNpWdaBOUmSwXD86sc+/tJLd733X/rSlx4/fpylA6VxOr9qqjpNU4TgXGCWPEmtURK8JsyybJCk3jeJ1XW1/Oo7702nU014Ob2qa3d8PDkaHw8Gg7pYAuPtm5Ph6LjyzEiNC413IbiqKJeLRVMWbGvvE611kmRWJa4JCpfRaqhx9dnZxeV0ZrS1aZIYOx7lZ2dneWruvnT7V3/1C++//+4777yDiEmSlZXjhXMfPr6aLu7eOb1350aWZs65TmrttjcQsgBKa6KIgMTAKI6DeCCF6CRkLbMV42Npg6CBBYhbJ7ouoiF2WmUA2GUuX5zqbG3OrT9xx8ZCDsdV3iIzK0+alfUAxctgxC7r17aqaaVW78GzxvgdI4IAXY6qnVPbkb0XPbZb726NBV4Y7fYpd5+AHSI5/Y6w18K2jLFZ85o/90LejyG4AefhgfSx4uZGWmcyANhGU3ubkk3RHDZJzl6Ct/vwetGw33u/u49U+p0+l0U7BNVu6TMfW6/vtnCYxq2/HwzE0c7pXvO8lRJpE0Hstn4NHHspsbQOGHskxUOD2Vo2IkLa5rVXjR/iXJ57MGCT572GA3puO7AzZADQSFcXz77y1pvO1Vk+rhoWodlyWdcwGplEJ+IlKnkk+GGeGWN8UxdF1TQh0TRIM+99dNgdDAZXV4skUYtFoZRKksQYM18uqqpqmmYymeSDAQBkWV65piqbmNS18SFaG83ncxJQ1kBkDYJnYQk6yzJjNABUVaUAjTHGaCI6P798+uzZzZu33vi6TxwdHZ2cnHjHb7795ptvvsnMxydHWumLizNATrJ0MZ+SgKIkSwyCNEUDyEk+SGxutG1qHzxWtSxmi8CUJubqapEP0qZyC4ZRPnjt3sfG4yOlDBKdTc8vZvOrq9nVdBpcsIkxWlNmRbhczkgIwRCJtclkMpkXc++9AHgOrmbHGFDXrq6dPxkOFoV75ysfLJdzABkNj621SumXP/2Kc+7s6ZOHT56VhbM6vXvzWLWJOrlLjoMYzZqlveqgNjm0B2AOHli5kskGhQSiGbSKd1kaOAACARJ2HqMxSUFv68atE4+DrITj3rGKW+hr34cvUkQEUShm+14n8orMR3viVl1oxCaENS7G1gqaMBLutRMB4q7wtOFZuCuetuduZ1wfVcCSVZKozb5kDcnB+7L+l4MkqqW9bZ1VU4yACIdSNRwmeH3PCxDpTAh6vE6XGXYP7n1uwZ7MA/uYsxeBdpc7vOaVvYQWegPETV3F9et7PYLdavOadg5xHrvt9/mY1VZf4/MVPwm9TFOHIde9RjfrRSor1E9jEv/ZBbr/pM8K9TvbPVFb1VYnbL1HW7vBfaQXFGBM1tamaIvToVELRV1ZDNODJBITp4uwyB4/rQPUN4YO3I3B/pyytb32rvrGagErQoN4+ezpu++9E5xTZIyBy4ur+TxkGSTaIOLjZ8+MUYPBYDjMQwjxgpYZhllirYWekcjTp1fHJ1mWZUVRhBAGg4yIrq6uokYaAIgUKJou5tOreVFIniubZBygrmphrJcVAGTDJEkSazOlFBENBoO6rkWEiJVSoJXjcPXs6nI2HY4m3/Ed3/mx118zxtSVe/jg8dvvfOXJkyfHx5PoubQoC2b2ofGNU9oapQdZBsBlsTQmGY1GVpu6rorFlBQsl0VZLInM1dUcQO7cPj05nrBrTo9PxoNx8OIaEQtPnzxelIsnF0+R9KuvvCIi0+nlcnHl6tpq3bhgzSDLWIIM0jRLjfdNYxsfORjBEKRuPACEYIAXoS5BArM/Pj5uGJbz+vh0/PSyevjw4cNHH0oIt06aJH9qFN25MQHxq1XEvrpSBISB49ZhEAbwQoTMIoCgAihURATSvqUEId75inS7f53iTABw5Q2MPS2UdDgYUfVtmnaJ03oT7vievijdioaPnQONRBZBCDtXIgCINs9RR0KkbOfKEkCQhVu2ImjGVnHflpZLZhGIeddABAPIhtp2PeRrNWcftewy7n3EtSEP7MNmH6kjXAvQsgX5BjnvHm4hRj4QIGiVJ7i/7rwTh6Q3wI1hdmU7HfXXUKSnuu8/2QJg9dMuadxtcGuB5LCGZvfFr2EIq3evYSy2KPTWn6tVRur9utIbdYGvd4vuUoB1cxQz2EvfJ28V+ioiC1rFAz2QwaO9Jo4NBvHQYxjXvElP+43Uj/AcRQohABGO6XNbK0rpGiFiZmQUBo0kJEECEHnPiOi8B9+gMICodiREhIKBFHRBFQRxlTlMpOcrDADMss7mu28BDh1LESHS3XRt/xSfb+1O5gASGGQ5nS7nxY3TOzofvvvw8bxYHJ3YTNs8zWdFPR6Pb9y4gSjB1dPLy6pqiGAynri6YR8AIIRQVTUAjIcJCJVFnSb5YJg9evBABAajfDAYZNnAe+9ZXFV574NAkiokXZZVVXkRQGyGw9TYVm5eEQP2TWIUgGijtNbz+fxyenU8Ofrc57/1jY9/ElCVRf3m+2+/99578/mcEbIsgwC1L5umaZqaAAfZUCkVQsiyBFjYi01Sq42gXhTlYjFzTYUohHL37h1gbxQN85QQQnCNr5+eP3n3/feAMYSQJJlzTpCdq5U1F9x47+u6DOwRMXiwOhuNRqNhXhUliddKjdJcAhsyReMCo2dxvtbWaqvqwEmWqxAQsQq4bKplxU+LJ5fnb1ZVgwYV4vRxUYcHX/f6K0oZo5KyWmqixlVJmocQgBCYsV1xFdNoAjOKFyZRmqUJ4UqFBrjREEgpAYXEUWsLEQVKCAis0DfBCweJlk3SEwhaORkABFR32UehvTaSnvCCkY9tXT+BgXCVgpA5rI4p9QhiK24jALY+xAKCEPOCt0ePgYkISaAhrbXS2lpbVQURESoi8J4VRlyDioiieK+UVgYAVkQXV7I9UcywC4CA3N43b6pYtxBx4FVGXoxzgsiI2EYu25+NdSOuZ7RgoS002qEyZmhj2vbUXYfoBMAq9y1GnkM6r60oU0tgxHjP0GZMl56x0tpEdI+meiWPtJoG7Dx2479tBuV12uW17oR7wRswOrADdJmM19xSuxAiAIS4vgNubd1xPcwViV05SW9xCVtzvvvn7vN9lJIhJm5faRG6mjHUWr+FVTvxgqzl/xRhTN3NgVDLnlndiM3NvedKR8IkAOvsxQjgQ9NuNVrvBwCJPiNbrCFuXRAQblHrNn5kD4bdO+DVrYDsVAYA7i/VCzIbz+VKNs7Yuqd44UQAYe9b0EkGLRVFJNQQQxqgdN7Q3Yr2ts1ekDYPrfQFm379rT13zRa8Bub1mgkwh8yqanY1m56fnJw0LOdX86ZpksS44CfjcfCMiKenp9776fSyXCyNVdZqY0yxWBpjvPda66KotcYoByullFJVVZ1fXIwGmVIqSVMRdK7xjivXLJc1CygFACEEttbevDnSWnPwhqKN7tqnLYQQr3sHgwF4/+zZsyD8Ld/yLR//+MfLsn7n3a9enF8tFouyLJumAQBr7Wg0UoBFUWRZ9tJLL1mt5/N5VVVZRvP5PEtszExcl9VsNvNN3TRVCIEFJqP07OJ8MshDgJOjMXNYzGcgQee5zVJX1YRqWS4ePy4QIc8hT72rSwBABENKW5OpfDgcI8vF2bPMWGuVUnQyGY9Ho7OrqT+7WLhKAElrJey9J6Kq8aGuRAQTUzRhuqh9QKtzsap0TQhBB3hyUX3xy++PR5/SIJrIJJYhKu+ZSIO0qmdEDO1XIkAFGAKLeAWiQo2+EJ+EJkXQjAYASSsA6VksBURUoBgVyIZZ6ZYMS11cw9YRfnPrUV+RKDETIqBQqxRrW9izOaPORx30hlpbTEW/8BiOrWXZGYE53maLxADYKCAoxB2cqsNw7efqBLXatT10rs/sRkS4+rM7RxvEoE8e9mKeLZx4qByiKFuv9ztY9XhN489Fhs+F5FCzLR+A64QTq9e3Ot1AQTsy34puXY8k+03t7eJQ1y8yll095RYAe5vtf65gwx25f12h1ybR5rLu8+hZ/YSIrcnH8/Spq677+7P/Ra9Gu+6m3Ub/dlQT13ff9XioDV4nD4litWz92mP0aE960ecW3NR1dO/2Yd4mvf0ztu9sfDQ/RWOstaoBOX/2pCgWNh8x83S6cAKjUe4a3zQ+T3J2/tnTp943zknrXElGW0Ai9nVVNwKgNGaDNAqaZVV5742hfDgIXlwTmqacF0vvAQCYwWhKs8QYQ0R5nud57n0zn8+RJMuyqK+OmQq72C6qLOtQNHfv3vu6T31SKfXLv/yrjx49Kpa1UirNMyTMsixNU2ttnudN09y6dUsbEhFhHgwGSqmiXORpxuyLomiaxrm6aZrgXeCQ5Rn7ChGHw+FkPDo5OaqXi/Pz86ZeVlWdpsVoOKyrRgQlyGgAaZoOBpkCdL4OIQTvjFWjbDDKRmma5jZBFG5c09QSQprntfPjNIXJJDG28c4DAAh4tygKkySIWHtXXhZF7T0bY7M6AKosodQ1lVK8rOqf/bV3Tu/c+I2f/2ZXzOpqsWwarbVNEmVtuVgY3bKqTCiACByibZYEYiAECd67GqsSsCJICGwUw+JxBmCQAJ041UWRbkMcxx1JvUMZBWFopShBge6MrOJ99HamIICQREVv14JsnLsVySWM4nTXb9Rmrb4DkEBEP4SoAImIhKKI0B4KBEBsiW6MXCXCCO0FOUUGub2LXYGAuBNdtvfTiratZNyVtNCCvZOVqEWUAv0ERC+AGRhgzz3oIYKEvSh72LmEXSvnwdZPfXbhBSnWPpS1hyZ1SemuI4Tdl5aM7u1il6vY7XGX8KwGtffdzdK7SaE91Be7SEEbpSOZq1729tUf+4ojw750tQNVf3L3LtNWnetLR+A34mSsvu8zwop97O9hI8jU7kTuZZGuAeu552GXQG6WvlkH7rItIrI17dyZ+29vwa4T6e4buqY2VvdrLrjJda6+hxDqMsynl+fnZ8458r6qqtCAsjAYDCRgng0R9ZNnT2IMjSShqqqs1c65GHNKmJkhz3UU95i5rusQQkxkJIzz+WyxqABihGKM8vHNmze99yxBa9KanCsFwmCYWGWxd8MXG/TeW2snx8c3btwyxrz11lvvvvtuVVWT8fF4PAJAbQ0iZulgZUSdZZm1FkmqqqrLMgZqMMYAy3xeLOfzEIJSqLUmQs0EAF4kydLRaPT0ydmDDz5k37x05zYmGQA55zhAlo5SmzDznZtGKVWXRVmWg2w4Ho7KcrlYLKR2yZCkrgaj0Xg4nF5eauAkSRofVAgja+2RzrNkWdWVa+rKNd4PkswDV7VzIQBhkqTgjQtI3Z16XTtw3hp494l8+cHT1+6fDS0oAGut875pGtNGXiOIsRckpkRYGTZziwlDLY4AK9IlmoxDTYokACjCeGcKDLh1j/tCcYMJ4i1vWAm72xVaxc9Kp8UQBeNuNwLALkq5fsNrrYPWISgiwi4aIEYJTNpcKW1YprUfwToNFAAxcmeJtcHu7/a7wnpwACFcT7RW53fvAdzb1BYS79PvLYwMPVS2G0bxUPvP/XWLhG+Qh32swHqM18Zj2RpjRI+744UXwM8vOJBrej9QeZsJwJ4g238lYnbphaLcaFDWLfQbxB6j9jziAtAjnKvP7pVtd7Xrm9rLMwGABtmfghRxf8KWfxO5+BAQ68bX204OjOdgvpf1rnoed7LLn24NdnOlr2vhIxVEBNjgxEVEkwFxlxdn3tXjo8nDJxfvvHOuDYwGKbLYZBBcePTow6ZpRpPRbDYfDHKttVLKe+/9sihCkkISjaU0OlcXRaUUjkZDID1bFLPZkpBIx02stNaDwSDPc++9D84QWk0gzjtHChKbEYEIMwfvfQiCbewOlWQDa+3Dh4+nsxkAKDLHJ8O7d++iwGKxAAFCdL6ezhoQyrLMWKU0AgMBRt9QYRYPl1dXIThUShEJBEZArQwppZRNKM/zDz/80AClSaIT+/DhkzTTN2/e9I0zxp5Mjof54OLZWV1WRunT4xuTVwZJYrxzTx85MMl4PByYxDd1MbsqpufI8vJL946Pj69m06rxVeNmRYFB6xRzrSusljWmw6OicRqrZVNJCECKUHvnDBkATqxxWjnw+XgwWyy/8uDJNz27sCfDRLEBJRDEB66dwS6CBoFwK4mqaCGoMEAQYQAl7CHUgRtiB9wIEwECEAOCBEAGkiBBRGKQLYUdQUaA1j2g3Uu0Eh6FohVsT7IV6gm0AsK92BdbjaxPdPdQOsGpI8/deACkJZwx6RAIxrCb3kdlvKC0MT+449RbqrAqKzBUK61vW1r0Tsqe49O3KV5pnldHqc+F95Dmhph9qPF28QBWE7lFgbaG0G/kRfD411b6o+s/hH0oaAMkgRgzZaca96YrkpM+QdogLbu0P7awkky6tyDumr3oXQR7a7EreR/kL/uLuGJu1szcgTVc97VvRVox/4BSYU1c9+mfn8c3PGcbHCbA22WLQVg/R8Tr+fH9fSD0F2D9U391n7eD+6Sr34L0TE/6BBg7jTQCiKwBYJYuheILHZjVNj3E6bw4B9R/pb+oRCYB0CTW0nQ6fXZxTgTDob5z5442KUH2zjvvVlVz8+YJQxuLKk2yxtXMXBQuz5U2lCQmWikDQJIYYxIRXC6K2azWCmxiQ5CmabRWWZZpTSG4xWKR5WmSGmMUMwASs6+bMnhRSscsSUqZVWDxxoe3337bJtlwOCzL8s6dO0cnJ2dnZ1VRiIgxVkTQU57no9H49PQUkEMITVWHEKLOvK6qsixjUHtjDDP7LowDEFRV5X0V/aZC1TRlleTZ3Ts3P/3pTw8G+ZOHjx8/fnxxdr5QU2EeD0c3jk8m41GWGJEgOujbd66urkJT18vl8WQ0zLMkNePhaJBmdV2T8ChLrdYEaIDKpm4UZDobDYcBdKJNZrRe4OVyGViISCkVnNeaUqNpMgwhG4wHYuXsopgvKjwZO+cUBBUJKAsQIWGX9hdAuMU9wIgCwiBAQiyOxbN3EmpUBtkye0Td2j12Didh353T1sFj7B1UiXYSa3GZr8mb3ifGnWPMSnKKVte8jd+YO72goKBsR3to93OM6BxPX3wgwIiEgggqIvcYNqv7dZ2gQAiQcV+Qih7YGwZWffKwe6IPkfBrH25oAl6QJ4BN5AMdwTiE6A+VFQPRk7Ha59uSX08u3OLmobulwzV13O/GufrzkKS7eiI9He9qUFuU7JqR7ko7uzOziUUPTlHcpVso9xA7cg0k6y+rZntlC7YDfAPsZQE+0jzE7zvpCHebkM192d8chzrDNWeN+9b+Olhb96d9v6zNPNf8bz+V26rl/nyJtFkzBRlAkOLZaBkAiCLDNnirKAH7qa/0gm5vjet5Jb61NitrqpqoqesysHt28YyUeuWVY1JGa83Mj54+eXJ+OUpsCOFyOgUFSZIEz3VdI2Ka4mg0YvFRYywi2qbGGO95Ol/UdVAEx8fHRVEVRaU1TiYja21ZFUU5Px5PjFUEUpUFMyuFShGRVnHIAomxaT4IIVxdzqbTae1Dlg1I6fl8oYxGpcqijv1ycDUzABwdHd+5dTvJUlKgUM+ns6qqkiQRDldXV2VZak2ZTVh87Zz3XkCUUgzinGua5mg8dM4Biqvqj796/+6NG0aTFuTa3bl1+9bxKYg0VZ2nydF4spzNc2sUUN3U4vzApoNbd4C9NdpanSYmNVqTauoKAW5Mjq9m00QrOx4N0mxeLJdlISJkTR1kWVQUQjBAg6RCM61hUVZGWwJZFvMQHKpkWbo0mTSu/oVf/JVXbn7nrUkWofbeA1KWZQgCoGB1XKPmWQAkYNSSxdth5uBr7ypjUuFGWMFKfBDpOw522xj7+6YVszckkN7222GP8doMwdTzdYidqt532anZbz6Cp5AUUZv+JErOHGOCCYggAAmRAAISIEhLQjF6Jmxeta4wxlbpiyaIKLzhVbGqc4hAbqJm7j3fmIndF/fBsgfRrzx/BEB43f5Ga9dShy0SssWg7/b4HNjiVOD69UPEdS8rIyKriNBbBB7aad8QqLYWAnYo1mGYn3+3IrhuX1ppbg+n1YdzPWPIiLir3A0HCGEfwK2E2FstdBP1XPA36u8tIqI36+1yoB+Bidvqsut4P6Qb5+d58vvhQogc7aVjm9GCN2Y661jHNTojwv6IVrzqapv2qXisE8Nf9MsuTwofUSndH6zWpFGdnZ2VdZXlQ264qZ1iMMY8eHz+3gdPM5vmeXpxcQUEWZporRfzaQiCKEdHI+99jLOIqLIsR2WqqiqKKngx2iLi46eXiaGTk8lkMhLg8/NniHjnzi3fVN6H1rVTgvcAgRjZpNloNBrkw7qunzx5cn5+XlcOERmJmevGpWl6995LSZJcXkyD9945pfDo+Hg8HidJWtf1+eVFS8KTxBjjnAveGWNCCFVVsPOkWpOZaFgRJDRNFdkgQ+jr5qWXbt+7d/fezdsP3n+vnM8LkZOTkzxJhnlujBkm2bKY33z1fl0W7P0wNZrIGGWUZgnTywsfmkTnxuimKJIkSZJkupjnaeY5eAFKLaEolKZpBCCgH6V6aEapVmF65YM3pAaZWZYVWgvB6cSm2XBZVNamwobJpPkAiFxVAIBNExfYC5vo4haVxgxAGBWxwK02TAGCYBAGbthXxA4lEIeVGBjDKRCgwpUVVLRzRkCMUu2u6TLG49Mx82sGcfvYC8GGHcuqqQ1MJGvZeQMXdCZbK+E1AobdgRERYYm+QC02ZBAU7Ey1e+9GKFbBsDrFb2fXveXfDC92u7abhaZvlbkxlI8imO7ta7cd3JFHX7CX51bbpWSxbBkl9YliX2Z9Ll7dS0Gln95xk6ZuELmdsvf51oS8OKrEXjnElOyd+T4+X3Xar7kL29Y6rHqJmW2jCcvWW9fMQJ9l6X9ZNbLG/8ys+pPCrVtw61oFfV3x9st7e9oL0G6FjYnYlbr3HZtDK0dEoXGw4sqVYmbq7BJFWm6IBIE5KvrWYHevbU3Nagn7B3u1G1YtSGestoJsd7wEG1PEzK1fsgQOIbPJ7PyZUuri6mq6mDdiUsqstc6F5XKpCBlktpgiQpLqEEIIoa690nB8fBSCWy6XQmitTdK0dsEVTVM771lEonhqFEwmk8EgK6uirst8YDOb1OVCa13XtSJARFc5IhpOhnme56Ohc+79D967vLwkpQHAtTeM7L0/Ob3xyiuv5Hl+dXXFwcUYHbdv30zTtK7rx48fOefG4wkHbjPzCQ8GAwBYLBYaKbNJUNr5OjinierGxygixpjEWCKsizLR+mRyBCwfvve+0eq1+y8bpVtLbA6hDgFpmKbimsxotIaAUQBQhIOwH41GgR37UFVVTJsYrdWa2iFiRMlZapXCqqoa70LTBBYGnGRZE3w9W6aWJpPhoiiAxAkjsAuN1po9ZzZbltXZ5Wx8/zQULBw0oTIaEBlBoRJgibmfUIiQQHvvlNKIGJxHQiFEMiQM3gl5wYBKIWHM+wuBSYAFKE55uwmldcLf1E/FDNlRj9NKBt2v2CmBpTVsbWsS9pSTAH2DlLY16dIcQhcXUoSQUACAFRF1yWjZBxJAEUOqZjZahcBE5JzD7saOWUREURuIQHUUG1ZXRevMoT2GeUs47TIe7iDPjdKXgdZdiEgb5SNWol7Nvh/nmsnezefaL7vkqv9TRNawiQSuITxbP22hjpVgsPrSf942rmhVIT5VuIGvtkhynwwcAmw1dsToJgcQN2NEcixbr8fvK9/iraFtxdbepUBb84mqsyqHtXv0VuVecCjoJ4HYbVNWKxsFd4Tdy5luWq5TjO+ST6LttYZ922PvMFczLCJ68wWGbsTrk9E1JCAAQnQQyn+LZWv3S2eZ3HW3tovrppWw54a/ucz7dQjXP/yax7W7bH1PgNVZir8SkWvqqlxeTK/Ozi584DRPoQEiWi6X5+dLQADg2slwoNI0bQI/e3ZlDQ2GuXOuKJZEOBgOtbbe++nVInIgpWODMMjzslpmWaYUVnUpEoajVCkC9lqrui6LcpkY6z3fu3M3zwZ5nl9cXHzpS18CgKZpkiQZjSfOOc8zZlDK3L1798bNm8z87Nmzqiq1NsboPEu892+//bZz7uatO4PBwDnvnIsuSWWxvLy8jJ7KibFluUQSa22citrXXcJ5zBIDEhJj2VVPHj/MNN4+uZEnSVOUw6OJTmwIDkBlqR2kA+8bAo0kEJgDgwghoCYRw8wYkKURgSAAISAiR+IT1ntDEVljkAQgdVp8xY45MzrXuql5Vi2UBgc+QAAFIsE7hwQa6dl5+d6HD05HNiVUWhNR4z2iarghQKOiOZkGABSGLmoEAFDMokuCIMCBORB7kCDAIgoAVnFmADiKw7SKvQBrutjKuutjHF+N4i9Ay3J217TRn7urg1HSxtaGa2WuiD2Gsm22jR7R9tMBEJ8LMgKAF268dxy4c78JPZNUjI5JCNi5JHUh64AQkLDlWp53oPaKLKvn11DEfv0V3tj7a5+irKjv8+Da00L/4UcSIWAfwtmEfLtEZcNm7jhAROE1htl9/dBkvgg8/Rb2EtotxLuaGeyJpId6ee6M7bYgnZ5j76zuNhif9Ov39xIeiPl/zYytxnVodHvLVgtrP+DdevH0t2Ym+97f+nOLF9hbv/fmfpYQIzLaF3xjhW6isxiA7wbfErPVyVlzhAgiAUB3lO8gPB+V4m4xUqv13jM/cR6596QtBMBKyXJ+9fDhw9m8tjax1rrglNEPHzwMAYajxLmgDAyHw6Zp6qIyBsaTkdZ6NpsRqdPTUzL68uJqsSiSxFSVAwink3FduavlPDOaXTPMT0RCVRfDLLfWnJ0/PT+fikBdw+h2evfu6cn4+NGjJ++///DiYpYMQCk0xsSkh2VZikieZ7du3RkMBnVVXF1dhSCj0cCYpGmqcrFcLBa1d5PJJHh/uVgkSTIcDpm5WC7qutZaD7O0m6I0sBMR7z0AGFIQdZE63iYiJuglpDYZZHmWpoPU+qKoqwKSxBglAqGpndKKwCoVZSUvPTYLOYYBamO/RSFLKY0o4AGAWZiZBBAJFRFZo5MQpCJ2QQQosEZqlrVDFEYRTUGYnAcWRscQ0gSWRRFCIE3B11HdnA5Sa21wDXvXyrIABCKwiqZOQtBeyYoH3yjxLD4GZsOYTgmBMWb8koCtNTV25lFEGERWNqgqksmVuNgx+CLSdihrBBQ6CVhAYjhngV7NqB5fSYnRazhKvyCIwAQrV2BAEABWgkaBR453GAhCGEA8B6WUdI1A7zx2pwaBEAhjyK0XP3LYFuhyAW2jmn3Yk9ZhhXbuAluDsfbMrn+NPPxK7ojPXoQS7KL1QzR1C/g+3jgkF249ERGgdgBbFWJSkD7925mW1VAjQ7S/guBu1KZtYPrIdqUpXInCWxPVg2S/rLxTreurW4rY2SEC9CIcT9xBW89lR++y21R/jfbS4Gt63AvY6ie9s9JddAvceoFXfvOHWLlDROhQuZ4l3IF4//xiT3uwOTWCKEitJwciAmw3sjWV8cshkJ47qGtYE9hk1VddEGFq6OLi7MMPHiJCmqaeOV6XzucuTwBBtILBeMDI83mZWpMNcudcWZZR/QsA06vZ5bQYZLppPDMQQVEUADBIrDHqaDxg9qRgOBw65549e1ZVTZbZNE1v3LiRp3lRFL/4i7+8XHqlYDLJRLFSGANqNk0jIqPR6Pj4OEmS6XRaFIXW+ujoKEnMbLY4Pz+HwGmajkYjEVkul0mSWGuXy6VSyjmnlMrzXCOUZcnMWmsSqOs6GpFprbXWzMEalWillVSLGllOj44HWTq7uoI8u3VynBmtFFptRCSEQChaG2EmIlIK0Qi1KvcQpBXciAC0hNZgJ5p6xbkPEumKEJERbBqPggSoETNlJknqnVxplQA0IIgkgZmDJYNIITTHpyfM0DRNUAQiSZIY0lHcd876smxc7bll/oiIQSNB1OCQUjFVvYBj9iihi2EuK/wJJEIIABgvUWQDVa0Ra/eOELYRy1vPJGyvehE7ixVBIJHQngEk7kRfiX640lqBrXdshKkVfFdnpzM4IoQAMevJqnQEEolIQgy6DvE9ERFmtRJ1Iy0UArzGVnvz+ODq2pg+osBBvRvyjfLcY96nhbso+98cXVxfWfaFJu7/uRt0cyURrr73mYYYI+8F8e1Wp4fe6j9fpWvcrf8i63XdNF7LoFxP3rYeArSXNR8JyN12EGMKuxcaxfVj19H7cPcdaXtYZy/Yy1J9JOl7p4t95FBWXCcghlUvXa0YFDRsvLW6iN25B+r/Kf1wuYdZsEMr/VHLLi/SBy/Om0ZYzK+ePX309OkZoUYB9s1gcHR2PlUKhKFaNqOxSVIznU4VwtFoUjZVU9Wk1WQyIVQXFxeLsk6titQXABCFCLTW1to0tUliXFNplQDL7GpeFU2eZ3mWDwaD2dXi7Sfv1DXUDOMUlVKMoIiiZotFlNKj0UiZRCl1dXWhlDqejIhoOZ8+fjgVwTRJvOPRaOQ9L+aLdJBrrZ1zaVcUyGw2mxcFEVmjiNAHrZVoUhGVa62RzHiQT8bDxfyS69qHpnFVWZahqfNEGaPy0TAqjhAltzY1tq5rIAJFBDFuLzOzCEasBcQSWruJ1k47BgpufU+JxUdahSBBAiEFhYSiFKFVmKdlk10Vy6dFLQg6ySwrgtanOQRZFtXl5ZVUmGc6H2be++l8XlcOkBUzAkXLI44diIiQcEc+QUSCCAffKO3YB1QcDfFBBEVAIF4DS2t73Ar4LXrtpYcFYBCIkaZwfXC6fSutjCsiK+khijWtJBHrSqSE0tfpIKylDWql7MhSxBhfUeYJhKIISK3PkVKqDW8NXeSsIEQALCR76GA/Ghd2qrhdwvMix2qzbHr08ppH77/Ve9KLFL1HKb7hlnWonS2QdoewQiyr479FKlafm+9GO/bOGqDrYedL20XcD3u7BoD2EgzbV1es1d7S9SjRIrqFrRvgVuPRvTB+37wK3BrLNubf5maiJqs/gm6W4oleTd1eerS7FlvlRViQPoR7qe9zW3jxcjAd4S5MALJKUdAvWzL4R4WgZdKvfRE7RdxGL13CL8Bt6Rh7J3l90XVAjO6BsX74gizbi3N20nmYdLQE4/enDz+Ynp81jUPSIQRNWms9n86i7UieYWJ0UcwR4Wg0LhbLqqlGRxOTWOdcVS6ccxGEJsBkmEWHopOTE0Bxzo3yTCv0rp7P58tF6Rzfvn3r6OhoOp2+/97DmIAhTfF0OPShUUoNBpnzjdaEpFeGfyJSlmWWZVVVXV1dxXjFMdMRAGdZtlgslDKDwUAnNobrunXrVpwZX1dN0xDReDwmFO99YJ9lWfSYca5WCMaYG6fHeZrMLp6NB8OG4OricmD0yXiklGqapqrrNEliKmKlMPrptpG+WQIHEcbu2IcQRHhLobSyzkVEIkBUKup7mdPEICiNxMxOvEatSTVhMCub2fRJBZDnRivjnOPg00TlNr1xPBkmmYFGAyqG3CYqSX3tERCESJi6ezgSYmHkqIwGEogJj4hBiWgWDWCi4QwCokLCIADCIiwCurd1OW7p9T1x68TDkVwiA5DImlS04Z9ZALDLqhTtkkFEULATUruMJN0pQsTIdSMiACtQnV4TO+9CVEAhiBIwQJqBgqALEBilJbTS8u0ijKAYlVJRMSEAIhgkBrzcMdXee3yej1I+qhhwgNRtN9VHxM9tv49JrkEgeECg3OqoR122lZ9b0m2/a+zugFd/7o6ljxJF5NA9wIsjwL5AuSKNfT7jxSdhb/vXw7a7QP1fdx/2BbAN8PZxUXt7PNQvXLsPDw1ZbwC1qosdO/ocH7brSrddvsZ3RWRD3hWElTquxRRKutxw2CvQ26N9VXqXd2UbwvjZGjW0NV/0PH/NCoCosdHiry4viuU8NdaD0sqCUsVi6RwwQ5LQeJh7cMGFLMvJUVmWSZbkee59uDy/rDxYhYjoXLh767iqqsFgYBNTN8VgMBgPR9PpdDGb+jrkeXbv7l0g09T+4YMnF1fT1CZZqn1oYgqp4+NjAA7sRQIzRIPVluWEICIXZ9MkSazV3oOrGwHWWmtlmdl7zjJrrSWjj46OrLUxycHFxUVTFoiYD1JjVVPVkXJba6MYZQiRYJgPbt24WRULDl4nFo2q6jIuZVmWcHojCACqLG/FayEyaSY+oAAgi3iJkQ+REIXaC842Ahes6EYboUC6qOKRbsV0gUweCCBGUVYKj6y5mWWPFGAA8o1gIGAQJ050MBObac/ATikIy8qkOjFZnubsHYv3wRMDAAqq7ha19dAlBI7GTUqIRQfQXhSxkng17MELeUEvxCACqsdFxBu7jvGMHQBAly+zd0zbK+BW/gARoW1T/Q59IMAq3HQPjazPPwJFGiAAAESIAMggjM5LcKwdGy8mgGUERuaot8aYEiWqZAiISBkgESQBYCAQxdCGLuFW5X592SJp+5Vnsbd97+4+2UWgAgER+oTkxUWLvUh/b7W9dGXrOR6WEVdf+IDkHWHfJR7tZog4fece/XklSuEbMZq2MG3/GmI1hB5s2x7Sh3qnLjNJf+z94WNn7gOBt9DvNcTvIz2HzUnbqtbBtp78Q8u628tuBd1/s6N50CfAgKvTLKsWroFvq+9Dq7yXI1jP9Wq7dNhkz65aMVk9T18AAGAUEGnJtgiDtK4I1zPULyjUfm1lJfjGjqL1fJAgPjjnTJqwE5NoF+DqakYESQIizMGLuDyxCLhcLk9unI6Oxk3TlGWhtU4xOCdk4MaNIwEeDwdaayJI8wGzf/Lk8vKyMArG40GeDZdlPZ+fF8tKBKw2AJAkiWa8deuGQNCaLi4uktQSaecaH8QYY61RSjUhFEVxMjmq63q5XIYQFBIRucZXdZOlo8EgGwwGWus0TUMIRVHcuXNnPp+LSEz2EPNDiIhNExVAKSWMgGKMSayZDPLj0TikZn58GnxT1uXJydGN02Px4lzDzKlNkiwNAhJYKaOUaqpaaaUAJbABEPIiIswAoowRIEYA9szAzCLMzESKRKwTEwI5xtA6QKOABHFNUEgsFIJmkAmo48FoMD6dNbVjYQhpmgZHvl6+ivrjrE/mkNv0ljnRbKoZw3wZNxBBTBKHQTCIDyFgK/IiACAxI6AK2ipUC2VRp0ymJJUAgHe1dyWLC00dvMdoQd2RzTZ9HmO01UJEBS3j2G0xZgQApvaStafVRAZuybBgdM4lACbmFU5VSAAsGINeKVqrl3wkoySkUBPFSBtNUnBTc1n5QQ3jWtV14r0KzB4FUBEowdaVUWurxZBTiKAUNDYsM+1VNNzewA99L+QttLuus6mwhecd2EMUdFeTiQc8Srtfn9N+n3LDDoF5cazSH/gGF7V22dqotgI71tRk+vPTp2QAG8ivw7QvCNfGhG9RfenumLcGAl2XIv0nLzQbWyL1yrZr7ZYWp+V5d9tbfR3iAHZhexHqtvX5UXiatmhC3XePW+UDZoncrHTXsVG0ANmIH7viyveUuDAUr4CkPyrq2lEAATdVIgq1iAhG7y6WGLBOQFgQcRX5lpkFgoCAIvZBkWJGZTTXcadKFy0rmqYwQLTIwg2JntcavTZrZhdQXnqj6B8qEaFO2jo0aoAN65JWIoFoAR9CYAQwmpjZNxUHx86DImNMURdKp43jqoTBSOeDJLhGK2XQNo5HJ+M8HzrnLi4uiqoEACQ4OR3YRBfF0nufTY4UEaEmwPOL6XxeTSZ5nufMvCyL2WwRgiS5Cc6H4AgJSR9NhiyN9365bBDROSciRFprbbRGosDO+0CE08VcRBbzpTEGjWlqHo8nk8mECAIEZh+COIfGGK319OJ8WZVNUyVJQkqhMqhUkNp7v6hqTSZLB5aormdK/Ne9/lqamMuLhSXUaV5eXVhjq6oa5aPKBxRGYAI0xiAqEQFSZC2ChMAEoJRCwhCC59BaOANoJG7NMkUCMYpjPwxwowzJxSKrWDsmozka8AJrUcDigON59qJE4+/61I3AIFGNqlC8IAXAgCUklSrL0j67DCCpaEQkYO8bRayUYgYk3XgmrUSCBhTnFWqlddPZhXFAZaxnDigeyJDRPhgU0Fx7l5CGjl1zno0xGByhOBfIWiBbe9emXxLClnRxIBYUFFQMSoAAg0BAQEUiAZ3XWjcgXpnGS2KN9bUSqAMYpZUwsw+agVCYUEgJADAr78UpSsSjCoqUqiUYSynHDFQiAsI5sCilgrDT6FgUJKRVLSURYSAuRIM2SFrwsQ3v3scnGBI0zCxAIqC6E4cSsy3F5IkbsTWYWSjq6vfQvA738dbzvqSyaqovY61/FQIRpeN1dxCRiBh3iTFsEKGVbNf2EGka8zbJXCGdlZwtsm485pKKVw+95xAdQjsqu+qdKFqz4zY8ka/p+e2uLO6iwV3fExoRUXrW4P2ypflcRZbepTQdgdwvKRKtL25X0xidrfsrAgCIqpsE2YJHepLuSnpBQiQFwQNAi9s3NZr9de+9vr0ebe/dzKykTAQFIB0nKiIS+tcBKk5tXytAiLAy/AQA2dO74Mq8EQC2QlFuKRkAcWUEGTeYwLYW97lF2muMF2UQ9tbpE+kOzo7xj8ENvCBiVIOpuN4Ae7wMhfrKEDzc46GCcV6eqw3rE+B91USEOaBIYiwRgKLGN87VLEpE0lzVtUfDmdFaa/FgtCZjllVZLpbeN4iQZWmSmvl8vljC8fHQqAFzUGBBwsXFVVPVw2EGQGeXFyKilPEiHKCuHQEkKd68eQNRWEJV15HuKtKKFBEpTQjknFsWReMapdCm+WIxy/PBcJjn+TBLByGINYlSykuU+SSwK5e+QiStlFK1d1mWhRC01jE+g9Z6Op3mw3FVNQbUaDKsl/61r3t9PBzV1WJ2fo7AwHh8dMShAoDlchmcL4vCjUYxM4RJDIgEEc9gI2OHIAKqxykToggyBmitgRAAQQRBtKCtq1HFk4ozIXDgQkAUrRDqCpQCbULl4woSKb+Ya236R1YgYLzhhOTY5LIM3JmoEAOqBCiEpiK0iMCgmRlVRMM5BObQEBFoDcyAWuYlJm36dJImsvQMgRILHMAxM6PSoJXUNXEAELAWZo5JgFDEIwBIJw4gB2y9R0iIIv+pNIN3LMoaElMyQppkw9HxnVegKi4fvg9ldcpal04Dg4RAHgiFFYEiQJAgiisRssaDcaCHo2N97/b8ww8W82kOdlA5qApDtvFeadSnN+DGKdgMWhVEqY0SJlS2mS6biyt1ecVjeq9oTJ7FY0AaBAmBoccbH0ICcEAf+9wjLPtUaLuv41rjsF32Rp5qN8W+skuNEDeUq1uQXENyVtWeK5P1Yeu3idi5de8zL9rDi3z0cujF1bz12ZdrysqfuA/e7vysae1+PTz03918uN48W/O5A1uLuQ+BGhmi3p9tjs51+ztgQG914veDRljd2FYJSQ/CcZ2/2FrruyF4HmpqBd+Lewh2iHf9urTujrT6sd+79FVPLQu7waDttr/1vW+2sLuJ2zqR6dxsrF+55QqBA7umLiEEZNFaE1IIARGSdO3lEQCMMaJgenHZlE4TZFmKJLPZnAhPTsZJkiikqqoWRVUUxXLphkObZVnUA2tN1hoAFhViaMZ8kBJR01RNXTnnAEApRQqVUhC4WpS1DyKh5SJBIcsgzQZZBgBKIYsXYO9D4yWIGGOsjqEnCBGjAbbN0tlsNplMQgjB1YR49uwsTVNXl8TMXhZzl6fZ66++nqfZbHpZFJXRiSYyiupamqZRoDi4xbK8LaS1RVBE5H2IsgVEwz1Zs0SIRKQAYxxmzUiILMAYhEBC5GhJMwTPXgIhoiEEVBAYlAERcExIIIDGcNPoNPfegYBWmp3DxIQgWhiIgq+VZwSlAGoMAmIFEHSoa9QJCgEoCkImAfbOe0RPmoBExEOInEPAzPrgGMAqci5G6wTFBuoQxCtlSKUsHKMqoyIU8GWjtcXGY2IBkCFeTrcJzVR7WUcAwEEISdhRqpULDmVBpj49efmHfwhefQVEgXPHmYZ/9k8/+Dv/v9uswdft7hVQDEAC5AIzejTp6DwYd3rz5d/7e+DTn4SyGGXJ6J2vfvGv/A+3zy9OKAVBY22ptf7u74bf/FvBGPAeFGoVA6EIMFvP9p/95OzHfxywSTALy0bniqMxPOLKVGOFeRn20qo1H75CYbu0Cjaxah8Fb53T3SLcCs2wTRGjTk71nnQS5v6yjSV26eJuhS3sDK1ctYWC1tYqu3jmEDVdSZw7BAn21u8//Egiygs2u69EU45tknQIM0McBSk4IORA7+H69V4yEtyYN167wsuGFT1E78BN75uOTrHISg4W6Phh2NkWhxZ9a7R94LbNr0TkxeniodInlR+h8s54cOVWtPUcFHTcgOoxO7ttyvoK+TlbZJvjlj2b8rmbbHffI6JSKtEqwgAsiTZBKAQWgcE4b1kDxiSx2prSOd+4xEbPktDUznu4eXMyHo/n83lZB+g8d8fjFAjn83nTuPHxYDXYLM8nRyNEDMFdXFx0+qo2Q7CION+E2i8WVe0hy2gwyJRSgiIiRBTvcZ1zRA0RGaWBUIC89xD9fETFPImIqBM7GAycc0ph0zTz+dx7v1zOXV1Za4M10phv/rZvHw9HRulhNvTeZ1litZ7PS6MT75skNY4REdN8kOVDIgXQ2oVlNvVNEz1dEBhBRb9eEYknIiACEZBCCUAMzBJQgmdmRGUtoRNgAWYADJ6VJtAagkS2zFeVtrYsiyRJAASAEaWzKiAARQbZewKCEEyGRAQhQGBlkuAcpAZ8AA5QBwAwiQVFwTtAIOo8lRCastBpFk81ojCIIAMZAKW0Eg7ggyCF4IlABIPzOs2BpcufxESRuexwhzDFGFhClBjwHhW6siKtasZikr/6h/8wnE4W/+Knn/7a29bql7/z8/Dbvuv++eLxz/yLY6CkvXRur5AF4uWPrsTUx8ev/Ef/Ibi6+uf/9CtvfuGNN95IPv/tn/6//Mdn/7c/Vcxmqq40Eftm8c9/snzzncJalkYhAkCjcKboGz77zfY3fMeDt7+YciUKUCC1GQt6H6xZO0ELIsieyBC4ZrJavLF1mrZo8K70ec157CPobalxs5E+HliRzOvP/W7XWxLeLgOxK/juAvaCRHGjKdmAfNXslmT/NdPgwyhxLSGtBntNgyt/Yui9DJtzvlVhL/CHGJG97NrXUFYjwsN2TltlSzSHayRg7PyAW4rTqpGvg+bQmFadbs3Uc7P2Rmb8uSWGEgLYNv3f3ccxxlafALe/UY/fjJV7fCVtu2ds2O0/h3L34MdNBVSU2IwyeZ4Ph4MkmVa+ZKaqrpDAamL2SZJ45xDRWuuCb1ydZwqBQpAY6/H23RMROb+cMnMMqeFZlLE+uHLpjMHTWydE0LgKRLIsGWRZDKG1XM6JSCkyxmjT5kVoGs8hYACtwRhMEtuGbRNQpJAoXgYTRZsACBJIlDaamTkAEZJR2phIql1ZDgYDZj+bzaqiYPbB+apY5mkCocqsuX/v9sdfe7VpGlHR9FqMMQgsEgAVCPnQMPvJ8UmeDZXSCIpIkxJgiYoBae+dEAEQFYIo4OiGhBQzAqJoitl4EVEEtSgIwB6d80gaBJWwshrYgQgABx+UHWhjgnCWp64ujVbgAQmQgwCCssE5NEJagycgRl87CUalXBcEiVI6LOYqMaAZtAVPIOgWc0oMiq2DTxLlQyOAdpCHymltgBtNxBxQUIJHlOA9kFJESogImZlAkc2gqEATcAAgVApCiNmEO6rZyb8AXDlSIM4bImCANH31+38X3L/36P/+n4azZxNGQX7vrV999XOfhT/0R/z548UX39JBCDRA64UEokCYTNpk6Sv/8f8Jvvzml//6/5gXy5sKH7/9pfC//LPXf+fvvPEf/h8f/uifz58+zatiQAaePA1Pz63R6EOA0BC64XAxGtjf94PwMz/bvPWVI+aqdW9DEKWV5gBCHXrBbj0JoY1//dHKR6VM12CM3Vci4QCAllW4NrKeyBrX7xU694J6Tf3rYNuRg3eh2iJI0lMEfoSOnjdFL0KnV/DsMjS7oO6dor5W47mUeLf0WJD+BosP49Vuz2ab9ze10UUb6/W6qGGHhrNLgBk2X5Br9cHP5SYOzctqHmVTxd/WuXYtcR1Vo1+HYqCcLUrcHwsixlwrPQb2Ocu2ye3i3hdhc2MdArv/VpQpCaluytTq1CZl5VwQV5dWQ5ondV3qYWZ0hqC897P5zIUmT9OqahBhMpmMRiMGWi6XIqiUYeamabz3VVXXDkYDdXLzBhGU1VJrPR4MtdZ17abTy8ViiQhpmvSzEnnvmYVFSGGiLRERqmjsEOskSVIUBSIBILMQoQiEEFC1kxlTCCdJEsm2F14sZtba+fSyKIphPmjKajQYagjHk+HtOzfeeP0172oIGFgeP36YpslgMKiKWZ5ly/nCajWfX40G+c2bN7W1wQtq0dpYpBjuMTr0Cqi1xTsAADAHEWEJgsjEnZkKA3sUVqiJtEdBq4PRdWBRJAgBjHLuiLQO4JalSRNmBs/GmDIEn2UVAqBCAeMh1Vr8UnlnmMFoTrIGwDEFmztEDGGglVJYVEtBCDapA9PxGInEseEExSnSITiBRhtbe+/SvCRmUoohBbASsA4qeGAlCM4YxwGFAFUzHDDFuJQ+cSHVSCyAHK38O49eBiAyBthhkoB457wdjuEbv6n5iX9MZ+e3S8feK0ODhh/88q/ce/fdl7/3ex9/+avcOAigMEa4FBQApApgfPcuHI/e/8IvZovL203DDBObLooFf+EL9Fu/e3l8TOdPxobIMzRhQgq8h6YBTWJ0M19+9ju+Eyani7//o7eYTQAySmstwiw6xuuMR6qPjrcOV/9EHTqk1//0IvqqQzITrFHHftl0t6n4+241EelLeKuf+tz5XrL04jTy4Lg2kc+Lk6stYA5VPoTJu843BrLLDewC01cS9H/tLwS+mAS/t2xJlVtz8lxBeYt+xWcv2HW/PD8QR2/fIRyWSg/dBB/kENvIluvMvu3zfe1fT9VWPa/7WjMjhALYUdz+K4e24xry+Aau66w+d1957oKtOkVE6CI0CUjTNFprlECAWisRSVJSSqzVComUDl4Wi0VZ1GlOxiiAVJBG43EI4dn5OZFOk6wsy6dXF4hgCAFgONInp6dEcH5+Ph7mWZom1iyXy9l03jSNJkqzRBEJhxC8SIgBmqJYycHFiMSeGREVaUFwganxzsWs76K1zvMhIoYQYmono5S1Osq+gV20cpQQHj14QASJscv5bDKZ5IkFX58eH926cZIm5uri/GRyUlbLqlwMBhkpABRmFxrnmbXgqy+/Ohkfa61BcOXngIgcWr5UpI0hxcwsPsanBI6mpB5ijCcUALZGmQDBVSyqRLE3bvg0eebda9/2eXv3DiBe/PzPn/3yL98I3mSpOK+18sBKmYWms7u3P/293wfM4MIH//ifFufnQ2UUAwRaCg/uf2K6LK6K+t4nP3HyjZ+B+Ux+8Vcev/lmNjxZKko/8fU3P/NpyBUs5hfvfPDsi2/eXBS5D0ojs2OjF8ZOb959/Xu/DxDAu3d+4h8l509fMgk6BxBYq3majV966cmjh5XWb/y274bRCNJs+q9/8cnP/9wdIlMH6sI39zAAg2/A2mYxo8RgmqlBDpPjy/MLaDyhQvEY2GDAysEiwO2XIR2GygE3aqVWFQbSS4v5t38W3nlr+s6XX9GIpTdq4KuQaFmeXY6Wxcc+99ln776FTgQAlQoihIJWgaAT1IPR6Ld8N7z1lcWjR0fLwmoLHKpiqcfHQjGg5jZq7isuuwAj1yHo7WO7IhVRsN4TBXot9l0vnVxPdZ6LoGEH1ex2tEVOdt/tSt+W+AAJ7OTgbUIie7DTDpn8iArtPWXbV3j3ra2+toTg7qcVM92qGTYrIwD2UgVdN7dbJbKnYeuZyK6i5UVmYw9LF+3JdyTmDczfqx9HdFAFvb4zWA8SYctv74AO4d9ika68YH2CDVXA6nyvtm1nTLEhsD6XfK7qXAPP9Rzi7jIwMyMPx0d5nnvvG1crnYhIYjSDJKkNITCDd1xUJRIMh0OldT7KBXC5LKfzZUyuenFxsSy9QjBGN7U3BsbjcdNURVHkqb118wYiLhaLR4/OgodbtyZJar33dV2KCLMHACKNqKTj0KPdsvfsvRcCIBVC0MoS6sRmAGCMGQ7G3vvlcqkMWWuzJDHGICiBAKCUUpeXl/P5VCkVvLNaDY8mTeNFqVdfeeX0eDwajCUwcLi4fHZ+9pilsSYtF3Pf1PPZFTAG50+OTj75iU9prZVSqIwxJoj4ptZIhNRJvSxtkqMQ10Vrzb4hHy0i4loDETjXKGUF0SsKqJJPfzr5xs9MbpzA6U2YTcH5k3/vD8E/+18e/M9/60RhApqZg7XnAKM33vj0H//jUBSgDTTN/W/9tsVf/NH5O1/kRjJgGI7ge377yQcPXhqO4Td8O1w9g6bCB4/4/Q+ng8Er/5s/BF/3SXj8AIYJNM3Jb/7uk6++d/Fn/5wAh8BikmfIRx9/7fR/9yNQ1GAtePf65z+3/G/+68u33x66YAlqQj6+aX7vD+GP/803/le/G27ehnkBTTP5wd83efnlB3/v7x47lYbWiSL6AUPENYTQ1CZPvVILgeN798E10ydPb5KCqkQUQKWFEzTFl7+Sv/EJYy0qwqZFcdC7oYTpFMZfz0GYmZQC55ROAakUGA0H5mMfYxDvPZGN3lCAABK80svE3P3kJ+H4+P2/9lcz71KlxHmdJ3meXjEDAW6GTZR+p11Cp5jL6fqo0dfgny3JbJft7lOFXZKw1fIW3YLDyDp61OySh61scnup/sGhfk1XmCvKvZfb2JtNaGseXhD94r7b0K3sQ7gZUXIvtFtt7v2+2iR9d6a9LfReia3s73GXIsC1a7HVy9Z22juQvYBpFq+wp/JGbNW/so4CzczQevDvv11YNc09IKIVhm8zw+xe5zAi7Bo0YU8bA6u0NtB6s7VMUBfbaPVuG56wdbxbw4Ao1DlSIQiRYvb9vdU/mYdOF3al/3C1p1cH+LnbFOPNeqyJGA1u0zzTNmX2EjhgGA6HADFLu3bOJ1l2fvaEGV599R6L90FAsCirunJKqapqFsuGGYxBCaK1ZufH41GapldXF0mS3Lx56py7ePa0KOrxIElsKixNWVlri8YRkdVWKeVYnHPCoJRqHARurLVaGyTlXJDgQGhelIPBQAiZ2dVVc/YsHq1xPkzTNLG23SiBF4vFbHYVQiAiELaKJISyKE+PTl+5f09jazg1n8+Px8dXl8+qYjrIbAgBCa8Ws+Bqi+bOrbu/+Td+Z5rmjQvONQQiEBCUUipmR0AIACHeFIowCAMIKHTeE6HWWmJGAMSYncAY0xQOU9NUvqrdy6/fh2//LPzqrz78sb+kr+YAcPTKffsH/717t1968pd+bFBWiVFz1JNf/+3Z//oPwN/98Uc/9dMWoER6+Tt/0/AP/xH73/+3V2+/ZStfazv45CfTz3wj1FX1//lLF+9+JUem0kGSvvJ7fi/cOPV/8UcvvvyWEnGEt157g77v+05+w7dd/tRPp2wLMpNf9y35H/hh+Pv/6PFP/hQwBm3u/fpfN/hjf2Lw1/7HD//Vz99qyhJJbt6Gj71+70/+SXj/3Q//1H9mqgpIbn/+8/A9vzP8wi81776b+xoEoy1EG5VGGBBBgRcoEWtr4M4tePhELq8MiqBDRRAcUAKNP/vgy68UZ6eng+Wzh0m0Jmvj44lCGgnDux/A9/+e06/7pvpnf1qAEYLDMEsHJ2+8AaMhOMcBFSUAIOIUMAKBghL9+SA5/l3fA++8VX7lzSEGj6IVsHjvA5CNXnBa29DGuG3zEwvvQV6royb7MrOtsTm2MTOfW3YR5SEE2sfFL0L8+hh8q6mYT3kvJtkyzuqT/9Xgd5n4LcwJAG2MtxVXIe0LK0K1qtxyOdxmfo/IM3YXU6rvxWzPEzBgxWF0o9lQGa5ej8F5sPVowBUM3AU3BNgUpSAKT7EXxi4elnO+tz3Wk9bBH41D14Lcyo69BXhFkUXi/93kIghAYOkoN2K0nWy72HKvWk/Lmphuzg8E2Mg72Mr3e13FP1rZGv+6hxegSasWPtLzfll5u693JwnRweh217R5fXdb56p/Bp7LLq1e2Z0iQJMNBmmaxnQ+KsZ8kOBcfXR0dHl5aYy5/+rLDMiCALRclouiWlZ1UdaN84hgjU5sNhwOAGAwyIjo8vKSFBwdj4nw6aPHzrk0TdI0zbIsz3MAuLq6ivfl3vuiqJxzWhkiXZb1aDRKktw5nk6Xs2nZ1F7aHK9SlsuiKJg9ojRN5X2jNTVNgyKRLi6Xy6uri+VyHkLIbBJck1mTpTb45pWXX/qGz3zSEKZJQoCz6XyQDti76eWZsQLirFbe1cViVhXLLEs+97lvSXQSQnduY557ZgmOg+PgJTgJHthLYOGwYqtFRBjbcE6kERWiAlQsyIRO2Aun4yHcuQXL+b/86/8TPnlyOpseX11O337rK3/5L8Orr97+jd9R5+lUIH35Xvb7f/+Df/QP/vVP/vPaVUVVVhx+8l/9HDz8wH7f72hMKqQKZrh1G05P3v9LP3b2q798tJjnV1NbLzUGuHsX5osvv/fVJvimavyyfO/NN2d/7X8AAtI6kM1v3h38nh9a/IN/9OE/+Ynh1cXx7CybPnvzn/xj+PG/C7/v95lXX6kRtTUFIEwm8Gtf+ld//r9OL66OLmfZ0/Ozf/WvoSlf+exnGVUUD0kwmkEAACBDcPF0BMGKEYYDyFIN0ngP2vjGAWkAJFJaIQxTEEABzwykQQgQA0gITtX12btfhS986eXf8wP25ftPB8Oz0fhiOFR3b6c/8AOwXMDsShEBI4goZZCM+AACBdHgjdfg5Zfd3/t7N3wwzNFNv41YJm3eRZZ4CSI9zNUuetQZYu8TNrHNIczzImXrrRdHVs9t7WuDZ6u1f8N3Xxwprcj/Iez9gsNZH76urF6P0lGkiyG0R3XlY7l6N94iXd9+H54+Xd+CYfXn9U0BwEq33yGQIJslVtrieKSnUdii/c+dqH7BQyro3Xqx9+7BijHZiDayHiEEWGvbCWL81205uMUUIteol7Zh2OLF4kJyNynd0iKp5xhQdxdNvVF1Q+wPBzc1V7u9b63Qi1D3VVMMEgBNkuXD8WAwUOoyMKAi1GJY5YNsNps1TfPSvfvKJmdnZ6mxs8WyqkPtQ+N8DNIESKQVKlqWS4WUZGlRLAD59PimIfXs2TNETEymlAaGqiyZ2TkngRlAKaMUgTADMENT+6rkupkztBObGG2tRURm7xtnrAquLpoiJhlMc2uMtso0VbmYTatlEUIwxhitTZa6ujkaj+aLKQp/4rXXbpwc1ctFZq3WapjlR0dHCHL29AGCX85mZVmOR8ePHzw21ty/98Y3f8M337hxwxXepokLDpCZAwoLBGYGZmEvwMABOICwrJRaMYsBAggKUJt4AJBBhBQqZAnA3CxL+OBDGA0HPhhgEI8gOjTNww/gyQP49Cee/cxPpll+4zPfCEfj4dd/6ubLL1kO7MGL3DMJ2AxSm0xOyuUHNjXADhbL8r13XyekyikEZmfns7P/7v9943//Jz71x3/k2S/8q/piVj196s+fTp+d84PHKmAj9uSVNwDsoy+8feog44DgR+igCRdv/fLJ7/re0f2X6q98Ebl6+d5NmF4sfuIn7i+arArEOFT5ZQ3AAkcjAIjh4QAAu5QPAAQWgQUbzjLbkIarK2iWjRFMklCwzsZcNwDASleEMC/AgQUdEzBxCKQQERWhD5BWxYd/8b96+Xd//8l/8B/A02fVF7+UvvFxuH8ffvZfwme+vpktLCpgBo4RoBXqfOk8Ht24+/2/Gx4/mr7z1cHlzBoVQYvRL1GAhFEwBM/R1VUEZI3OVuj1BZFal1PiRfWl1Esgf/0ruE95uHWc+9+fC8AW2eiPt/9n2xQR4CpxY3wI/Ss1ANh2H92Zul1LpT6QfRkmfumTT3gxuhL9GLd6AYCoCesPKv7JzkNklREBAVbZRgIjShQPuhANa+FKxTHFAIYCsJ5J3robJeE4PYjttQiKREUqbq1RvAZe4XLc1I23uaJXPG5Ly/ozQ9GFEGPy+RcQGnud7+YD7uZuZxfFoa9sIvr0H/YRp/4ytN/bUAEAO9t07y7vt9BXQe+6MG0xPsyM+/YNdgpq6cFwCNrnlv6Lqx3/nFFI/11gwcFwMp6c5qNhkpqmgYBIAMZqQppfLU5OTrIsO5/OAGlZNrNp4QQFKYY7FhBEDCGEEJyTQKGsCkQ5OT1K0/Ty8mIxX54eTRS2br5FUSwWBTMoDZoweEZNQqoqy6JkYCAFNh0455xzzNDULobpQBSbaK0JWCrXBI9KA2AoRaxOQBBZlFLD4TCxxntflss0tYM8HY+y1OrJaBCcQ4DEUF0WTpOGo7opzp8+nS/OF7PL0Wj0bPEYge/dvf/JT37y3r17y3klAavZLB9kbYioOLXMIAElgABKG7lvNaWt8kiiPlpCND9hEAFBcqEREaO0bwIEAZ1i7YkDoSChBkkhwHvvwGe+3oxG9bSCV14FV05euw/LCuqG0qF1HhBhuYSvfnV5dn6kqGIPTQ3vfGUITMtCIYEmAhmiTB89evxn/uydP/jDN7/reyDJYLmAZ48v/sZflwcPRTgoDa+8AufnXDXQeGg8WfJ1Pc7ss/NzuDjPX/uY+ykbfPPk0aN7wQ2dV3WjGQ1pECBASDPgmGqPAaPmFyCGfEaGIBACUZIwUlXDdA6v3JNhWj29GIoE54BQKWok3Hr5FRgdVbNCu4AUldkEgopYgI1NQlXdkPD0x3/cv/Xll773d6Sf/TxcnH/43/yFkt0nvuM7qotz8J5IgTHQNIDSkK6yUXr7JXjltSc/9mNZ3WRKtaAiYMe+E5GsGGWM+ZoENiNHAkAMMwgvgNf2lr1Hu39ID539j4oWtpj1a+DZIt4Rb1xPI/sk+RoJYfVkl5YfArgvhq6obzSiXLV5SBDcbXDvn1tDbse7D/+LSLwi7I+3DRXXv0vuvbiZ+hDWPa6+Q1ijexGIQUZhFSC5TTXNDAAcoyNLL0QoiAAq6bvAwPNXuV+u3xU7ErC09hfYi3HRvSzS/frcbtb9RX4coGcovSEHR0an7fpwuWYn9XfbmpXbeDdugkPRunpMKEYQezrtqAHrd4cb8MjO9cZz4V8fEpEkGx0dn47GR0opRDZWAQTvQlksTk4m2Wh0Mb0iYwc2e/jBQ0DtvIvgxpx7jBDEI0Oe27JstNaj0WCQ5XVZeedOJmOtjHOhqqsQgvceiaxRSZJorb2w976s6rJkFyBPVDoYxqCPyKK1QuDgWWtIU1vXjXfeKkhTo5GCd42w1tZkxiptlEZEItKkkszmWQLAmmA0GCZG+aZJrB4mmWuqQWZuHI+ePflgsZhPL56W5XI0HOVpTinYNL99++79+68WRek5cABrbbsQ0iY56iZ6naYbhQQZEQMLKFAsKBINoQFi8FxuuWAJHDyC5CqBIFAHC5pEoQSWgMY0EoAAykoHSRjg0WP48Ojn/up/f+NykReVQk2oJTgFAZ0bFcs0NyURTC95PtMclFHcBKmDGhhoqrTh/Ayf/ek/M7x1UyWpff1j8K3fevJ/+GPzP/tnykfPRAGUC9DSsFNKKZUBglI6BFKkgRIoQ+UBxYTA4NudphWUxdRai2oAaIGMAAAFRmqRSSRhQiACSQa1x7oaGDv/6nsjgMndO/jeQ0XRsAl9KJUaDe/dg9liWcwnEggBWYAIBCEwAkuABAldoFDOfvULD3/lS+NsvKwKseH1b/oG8M3lh+8PXAjOKfagkQPXJrmcjN747d8Hj56Wb76ZNWVrGgYQFd0EIAgNgSAJIgEBMmI01xWQXjCOfpj6eDQ/unPw3rI34AMirrWgHT+3a9e691DDzhnf+8pH1XO3CC0KRKtZ2abiuzmMN1o4BMwWhe7jsX2xmteVd7FxzAcMvYHHGV45L6ywZSxGRxy7vvleCU4gwuLXXXSSKawuhTGsVkzFlNvQ+s4BRGYO4tVzTHwWOffYRUvJmAEZhKRV1MpqfjvqiwDAAhSD4MQnFOVdgLUUu6YpXe/bU93WP2SEdd3abP4psr4V32In9zaCiDGW9QqS6w/PNSR2twL2LO7iBlvZYclmoqgI46o+9uTp6wHYy13uvns99b1+6wMQkkrzUZqmQTwDpsbEOBvWplk+nhcLEcqz7Oz8araojTHBI5OIcKuBRiAEQSjKJtFwenqaZno5nyHB0WgIQIv5sq5dWToRyDI7mRwbYwKEqqoEwXkuGy8Iw2FmrZXWTzFmzw0hiGNgAaMao0Ap0pqM0kmSpKlNkizmB8yyPLUJIgbnAzsfgkiwmqw2xWJWMI9HA3ZNFcLpydHx8VFTF48evP/k8cNRnr3x2uuDbOiCP794ktnk5XuvWJM7LRqDRxmOh3VZrjQecROTAIIC8bAOhdby8iCCWklog7OoKCEDKAIvopE0UgiOA4NOAMkZ64k8YkCzZFHjCfz6Xwf/+ldgtkwcwBd/Db7vN90dDPmdB2NBqZcAUCKA0SkKJMZVDnIBk1AQDgFEKEmD9+xrTJLAynuXCcujRwXg+x++98Ev/sJv/aN/ZPTDP1z+6F+A2vsvf1H/zn/n9OV7i6fnuTLO1Zglc8TB7Zfgzt2zv/PjBIBaK2VAKUBABa6ussnI1WUjAVr2PLTmAX0PEARABc4BCijKEZZVDVfz45M7z5RaAmcCglAmpjAKbt6B9z4EF0irBkJQ5CkhRNU0KREKCZmSKCCMBNg7dXGOaXIWQB0fw/QcL89zaxQAuApcQzapSOTGKXzzt8Bf/rH0apZgF0O+S9MUgFmEo48RxjWM+keQLgxgn5nuH5yDKOIjUratk757PPvfr8dLqwZfRCrakhN2gdnqd2+z13S0hbK26OU2KhOBjlKuREnoqCZuOLmuEd01s7E7tBhLYPX6Kimccw321N3rXjqwt3rpNATt7G2Z/mwOX7aGFj0mVhxA5FLjzVsM4Nxld4yzHfdglIYhACMQUbRLbPvoTeyhmVjDs6qyF+C1BPw8UrG9X1dsAhzYfJ24jJ1y6XCJJvsvfIL61PfwT7zT6QvF1sFO/Y7S5gCBnQMJmzv7IP9xqP3V/gAITLXzZd2IiNYm/qSUGmSjxXxZ+2Z4dDxfLh49euYC+OAZILRm4QDxol1AEQSG8WRkrQ7Oiw+kiX2Yzi8Xcw4CWkOeZYPBCAmKqqqauqoqRHSOnQetIAgXZV1XVQxvAQzCYBQMcxwOh4M8I6I0tYgY0yrkea6Uca5OB4lzbnq19N4rpZIkSY1VSgt7Zs6yDEWastJZMh6Pk8SePXv05be+xN4Nc3vr5uloMJRAw3z06MGH97/h/t2792azeWIzsSCpLMrCIkXT/DUG6a1qt5t7U0rALIisAAgggAAGAhEJIGyNEQqOFNy/B/fvFkej8vLcOC86La0evfpx0Cn82hcnzqdC5w8fnF5dvfydv+nLX35wsZiPrClRLobDT//6Xwd3bsz+yl/VHowYqBwwGm15UZGhIAKsa5OOf+CH4b0PH/3CL0oxG6dppjFBgQ/eh/uvWptIsbh69OGN2dVLn/vcV7/y/uViYb2URA/z/Fu/53vg6RP37peH6EoE7z0EEUHPIVGKi4VTGIgBHYBj9IAewGLcUAhRGo76nsAliocgxdXV4Be+lP+279c//0tLfkJ11Sh6Msjvf9O3wOnN+d/+O8p7D7ggHL/6qrnzMgGWX/zVZnqlg/gkyX7/D8L7X33/X/5cwpIOkytFyzsvwff+TvgX/1g9ewTeOOcMAhgj7JjyT/yu74er6eNf+bUjZgQGo8DFQJ5tUF1GiFmb4v2mAoxXDHF9kbaz8VwnWeL2od4UD/aewj2VW6S/e2qRETfk4Iiau4Pcy37zAnR6Vx6VzdurbRmgqwPQy3R0GOX25YFdyXXrrVW1NgYAs3OOiGJKbziMxJ47rtX3mBq8ryiO5DN0BHJlk7ViONauIh3yBYComiYhJAKle62t5DCAqCVr341RmmU98HaKWCSsVNCtN2MrDTMIIUlrVNFGwteIAgxEhKwQD5IpjBfRUYe61lU8Z970XiKOuNby9QoBbOsZdmd8Yxu1Tv0fgTkVEWgzxGy3L+vAmz2jAwBkYVh7gyIwdokpuozCz+MAdkZxzZNDFV6QBd58i5j5ajZbLK6UQqONc94HztO8LMvGuywfepaLZ1feAQKE1s2EAEXFSxFmAYAA9++cTkbD+ewCUUbD4Ww+vTyfew8mI3RsrU3zQRC+upo3TWOM0drGi16rQBBcXYuAIZiM88Ewy5MUUbRSxmgA8N5bq0mrNE2TJCFQdV1XVeVcM51dMjMF1FobY62ieLudZYlRxK5pqvJolL/+sZc1qHfffefBh+8qhffv3btxcto0zfnZ2XB4en7x5Js/+7nPfv7bmjqMJ8da26IonHNGJxD8KsqKiCCHVqsMbfSJPrMsEO2hWYlEvR0CC7fMnbU6XBYQnBgDDx7Apz7x+T/5I/A//Y3m3fe86I/9um+D3/jrz//Cn4e33h55r5Fmi+mX/9yff+NHfuSNP/Ej1d/+W9pVBun2D/4ADAfn/+l/Zj1TQOsEvIfgQt1QmvqysUkS0AeP4c231A/+8N3X33D/+ue5WowUfMdv+S3wDd8A/91fcbPliN1yfvXF/+K/+PR/9H9+7Y//seJv/g0LQijf+vt/P2SDD/+TPzUsF9oHEB4JAwcEUdZwUWkiq7UNAeoKXG2ir/POBmNmRCBtiECCJCG88/f/4et37977I/8+/PQ/q7/8pknTT33Hb4Bv+Rz8rb99/sU3b3kGAJNm5rOfg89+DliGi1kxm1uS2gd66y3zQ7/3lTde9z/7L6qyefWNT8G/89vgwaMHf+8fHDFC8NGZREID1pwcH8OnP1X+jb9plkXauEAcWFQr5AIh5J4nTdDMQMiEQEyAghBECEAJTBoZBEgCawbLkDUyrsUF5pbWyvaJRhbGFnV2ckknYAUAQNnzH1B8zvFvYBAUak2A1n20PcXQvO170r3dumjG3uKvMatxrBO/9/McR/C6NiW2Gdti4BYGICDENtug55ZBiYlY11RzLwGmlVCEK9KuEFECr2xmO2Co2ymsFOkAzoWyrLWmAei6dpFSxmwHkaQBdGNhZAjYJpcj2Ix0tInigDQSQxB2zoUQEFUMzgMCPvimCcwMGABAAmuCmAYm+i9htIlHjMZcMWp9tOJCJACBnr+L9Ap2VLwDjESEYqTbXiTEHtih99kbhRYERSREOnq0SjeNiNglxmBYrSaG1dxiVLAjCwJqdIC10oyqpWHIAKCjznsDlGgy3vO3ky7qKSJFmf05hF26WYmZTrpGukvgeEh6dzC8Dn8jrXNnBDEeAAEQBoFW3c/QWgUqQhYRZVRwTMqQ0gCkFAoJhgAsoJgBVMvXgPQ0AmulR8dkrnkLBFipmvfcHLcs22pcmxN1HQ3eoNZASkHlKm3o6CgfZcn5xTIfHBHpxjOLJ2tA6eWimU3LEEBZWzeNATCIXtAHRhCjVKaVITwejZqqsNYSweVsOr2oCGAyGdTB50cpkXYcvAtV47wXa8g7L0EUgwgoBWlKx8fHk8nIu0ZrssZUVSXsJJC25tatW413ZLT3/tnF5dX52exqBgJpqpn8YDBIIYHGa8saUMQlJpXgm8ZzU37yjVdfunX65MGDZ4+elmV9Mprcv3//xo0b3nvh4v4rJyZJP/vtn0vzbLosjE4BxDcNodaKgDiEIuYYIEJAEJAQHLNnZiRRhBA55qjIEiBEIAosLIFiigilRKRsqkx0SuRdEC2AAtOr6U//y8kP/KBdFpYAyuXyP/9/4MMPs7pWHFDgSGnz5Omz/+f/6+YP/4H0j/5hSKwu5vDgwZM/91+Op6Wpg0aSYg4/9zPw4XupgapoUquhrpU1pnbTX/uVk5Nj+J7fYT79aRinyfwCbAL/5J98+Au/eFPENs5oovOrR//X/+TuH/iD+R/938IoGy8X8ODDh3/6Tw/n8xFLYBiSah6+B7/ws+7ijJkBlYRAAFnp4Gd+Bh58kHgAiamB25QMBMDR1JMFWwchTENzezk9/0v/7ekP/RB813cl3/tbW1T6D//ho5/6qRt1kwm74FM9hCePYDmDR08hCILxXOZGn/3SL9w5HcF3/Sb9qdeHnsHm8NZXzv7nvz1ahsQDcFBIIIigajLJndvw//17s5/555O6BCAVCJCZIEAARA14uwoDKVE5IE2kW16JWk20DZjXPFpUuQcrAqxPZi4VcuC5c8Tcuc9ak8stShDPaWsoIBTJhiBrMqvvwJEMx++yIn4dKUXB1mQHhbafx5kHAuD+r7ufsWaLZDZ+pV7vK0jW7feYANka1xb+AQAJrACFpCUBgjFaPgeXZYlI8MGRUoIYfEdCAIyWJ48fP3r3vfPz8zS1X/+ZT73+6qtXV1fe83A0EZGiKPJB6pwjQFQkARgCgYoij9YUJWbVWkZ6pZTWGhFr565m0/l0sSiW8/l8uVwi6cEgM8YkSXJ8dHQ6mWhSABxCYO+s1RK4DQTEAQDIUAhBKQQATYSglDKIpEALcRxcZysQ1a4MAOI3SGlYpVIW36Yw2pQVdzXtHTO3sifvvqFCbAPztZPfkrtIhjnmrwNGwwYAHIagxWluRvmF1gsRA8TMoogRUN76WXjnvQ/+8//qqHGP8+wT//4fgs98usgTYM8QpxRxreze5nS24L6mrF7sCNoGAV5Xg7C6MI8VIi/TVWYRkcCyuq0MLBEnh3J28d5seqG0Fcopv2OyE9CaAQ0qRORoMyy9qCPxi+wfSLcwuwYOB5yvNhdyq3RaoLURODODsBL/6N0v/eLP/cQXfvkXHj9e2HSktHUCDUvZ+Caoq1n59Mm0ZlHGBBFgttpUTQ0AWZIEV2dKvXb/3mKxsIl27BbFkgPk6YAEq6pyHBi4rp1niFEWlILxYFAWSwhgDY7Hw/FkoJSqqqKqqkGeLpfLmyenWlsiGh8fFWU9nc8YIYRwNZ0u5gUyZBbzJNUJieaqKE/SyZ0bd5RGkaCtDuzGw9HHX7v/+sv3zp9++NYXftXXVaIzCXLz1p3JyXFduYuLi099/WdOb97I87wOvmo8aaW10coSKABCBhTwTRlVGp0XQQjBheCi9UQ04QARCYzRnZQ0MwdhCZ44EAcULRIch3xRvXJWpUueqeTj/+6/C9/4DT/zF//iaTq+fXyM4qfvfmV8djZsKgXCzIQEQCHIMrEP0/TojTdEUY7h8otfOGrcqEJFCiTU7MMwKVyVgSIXMtAQGBDEqEJ8meaz8dHw5fsea01w9eGjdF7cKEPuGhAHCmoXwmB4pu3otY+50YjYVW+9lU0XRywKMHAIGmuFDQcKOLAGi9poIxwaQpdlPjRDF3S8HtvaeIKMTEIRvQcICnWd2sc6oVs381snwTfFw8dmOj1xIWlqYhBSC4JCoQwyV7uJw0wAfa20nrNfGAqnk8FLd3WSXz54rJ/Ohk09IvDFkoxoIGgYtFkQqzQLwuR97gUAwDtRJCSCwCKNUXMLjSJs3TpadV0gYGRkNIESz6mwrt0giEd9ldnSqCAeFfTu1K4JAtyzmJVWwfg1f0b5Uxg3nrf9tIcat57370qjehM7It1CvsPWb/XbruFqpHToc6VQjW2qTgfakSUCUSKiiICZpRFkpRQLuoAMklgdQtCog/MooDSGELQmz4GIoAsIr5Ti4IiIQ3uPu7KUjjpkrXVgh51g0qqSQdqYHqBaZiJOBFF8XSGG4CLFVTEuuIToxoCIQKi1DsIxQyuscLUgoiIhRmYInXK5c88BAGDqUpRwnI7u5gphpUTZKrt4e30pTj2t7FaW+Z5ugwEAOaAiD4iMhjUAeCVeB7awmGRPT0/nNlNKewisxMOBbEg9QfFgeXF160cqiChCW6qATf1z/+Fa7RAfrr5/zeCtj+5HbOEF6681M0TCwo03Jrl37/7F0yd19VDA5KOJ8/Dw/Nw5N18WZemUUoq5do4BTGKmdZ0nRissinqc0u3T07op08w655ZltSwdoWKo2HFZ1gKQWE2ohAMzGA1JopQKEuDGaXZ6eorA0/lVURRJYoajodZ2SPro9Aahnk6njx89Pb+8nM6K8fEQCL1zRJBnZpBmGoHFG6HR0cnp8Sl7Z1E3TXF5Nf/U133im77pmzThu2+/dfb4wTgf33rldVTq8eMn9+/fn06nrq6/+Zu/+eTGzYvLaVU2xzdOQZQQIqjIxEaNiwCjVkQK2LMPGKIIhARApIDjnUMbgwIBvXDU3CAQoBIMgkBBEEAzWC80r1KnnQ4QGIzNq2r05MJ/6ddE0YhD6hvfVGASRBWYmZ2xSeaae4juS18iYO+bU4CUlKAHhMY1NrHehZGgYqZoKmGocTX6MEgSVS5y3/D8fOFKm2UnVZN4yIMC50F5cD4xmQR30jj/5ttWqbquRwg5KSUBOBAwClnQIQgFwDoAIUhAAiPg58vcKOQAncvjBg0WImAQQOb2O3tdyU0M/OFD/+AhBH8KYCBo50CcICKGnFWuTD1baq0NSGicNqap6oG2mVPLx3M5Lz3ZcfDG+QTB+0qnBIq886SQFGQBqXGlbzJrgAMAQ2bFu+jQqkRUQxhAgBSTQBAVAIBYGMUTA5BmJAEwjMSAoJnHtc8dB/GgkLYwJ6452v7YVwetR/C+5s+w73mvt+i4tZesdr1HMinICtc1N4WZleHPxq9Rh7lxN3n4EwGiTC0SWpIvhKgxSi4QNImQMDsBQjJA2leVCGt0pIB9kAqVUlKxoITglEZmT0TAoohCCIAKu7ha3EV911q7qhARJL3C1S26liZOQvuQVCc7re3RCIglRLFKW+V9YAZrrQ8BwG/6REUlZhDxreaSsJ32eAqimNpd7hJwzM4JLaWkzolld5k6vLFelxidDRAl6j86qhiP21rV32uDFQMiBwIWQvHxbkEwOGhsw00ygol2JB5CzCLTBp3bhGSPFcCh8iJXpLvXA1u/XlMHO43wbgW5Fs5Wb4DYmaEDS+f0vW8Ie2HYIvn9+teMaO/zXc1BHLhW1upkNDzKskGaGUI9mYwvZ4v5fB6AnHN1XQtoIURGAPCNMwTeOXYwzul4PEDNzOIdX11dFVVQBKxgsaiQRWudp4PFYsYg42GaZomrKwGXGLr3yXs+NHU1CyEoJcfHoyRJjEmyfBwcX17NnXOL2fzp2QwQjm+MFsUyy7Isy/IkJRBm71lI+Pj4dDQaVlUl7Kv5cpAkv/Hz33p6crS8PD8/O7OIJ6PjG6fHSZp+5d2vGmM0KQmc5/lgMCiW1fHxMRk9ny+Go5GIAJBAjGAVuSskZTSBBCVSRTUckQCyQgjgAFABECIpYGYN0HBAQoXIUXuCigk1aATOTZKg0oAU7Ru48SpUfp4a9syc6Cv06WjoA4QgAMooYu+YWFlumlJpoYSWAgvxmANA0CPlfS0iVmmQICIhBFJKBhiC18hkEfyCBTE3l/UiGx01tRRVsIOsQSeKXPAuSJolIkLMepQVEuZNnRgUwYAKEYNzWW6JxXkvmhgFSTWNz7PxIjSd+wRufSIiQPRfjAx7GycB2QN4ACJLFeIieGXAmNT7BpE8izFYlk5DIANsgNnpNCEi7z1pA4JVszRKca6XrvTsjFWNr9GgVYlvfKJ042s11DPfaIPeB0q8D9ENSWkgEAxIRFoxiWiGAMhakBECscQLI2ECwRBISCSUSVIRCmqgjXTBGEW+3fMluD6GIl2d9hMROxE52lJFix7s19n9RMTNOi1a7+JuwzZVXsMT6+uorATp02nsfcYWdq+3qYtKsaoDffg3P6FLqAcAShAQCAVRSEX0JizIiJqBWDBwUHnqvQdkQASTMGAkIkohs1ckRkloSoVgkLwX0sZ7DyBKkYCOAk8Qr1KLiIIqhraMJDOEoFQCANyGnITAjNhuxRiNMoSgFSJqElBKNcGBUlbpAoJvglJgtHXOQT8UcXuJKVFP1puWaPAsAKIoZr3ruQkhADCCWq3MPoS/QVMAIASPJLCO09nydjEVqmwauxEo4ACEDMSABMoKWu+oCWOl6ooTD0qwEQEEEtLC10nA12hTt75cX55LZbe6BoDWP7i1ZLvOAzg66XdX1J15+gH9sEgb4HpjCF3bByDcNZz+NxL911OBIixa6yTNRuOTk9Ob5WIeABnD2dkZAFiTahLn6tp7BiBQqbUgvnFOAYzHejRMtSaAgIqePTsXDwoBRZMDEo2ECtVyMU+SJMsSFreYTTXB5CifjIfOlwisNCitUBlrrU1SY5L5siyW5QfvPklTSm1CCsbjYaSI3nsOHllQWAmPsvxochTqoMd0ejRqXHl0a/LxV+4f5fns6ipLbAZilR0fj5uqWswvbt265ZwL7C7Pz+/eu4+Ix8fHRVUSYJYOgmuj+JIGBQjRqAcUUjRTCUAayEFnhxLTDkZ9B2O0ZcHoVIotioeARtiLImYIHqpQBwgBwRkB5cHPZxMj2XjmK+8AAFAn3nt2oJT23ouw94BaLRZXN18+nZwOTWqaxmutg/gAogAJ0DdVkiTBeVTkQhARZTSwOOc0kSKDJvXaqMEkjG5YPU5VHhiAgkqUAhhq7aoaOfhl4ULdlAUhz4slcyM6Wo6oyoNi0IkuuSatYobKmmxkngRClIH6alLslEObh1SMEu89CglSw0ErtADgAhE54Io5SRIDFEha0wyhJmpOCZVSBEoJAOD54lLYsa+KYlGWUhRFHepgAhE03hERWtRIROT8wpiESCsCTRZBgdaKtEId56q7Y4uBKoWEUs/jZZNPla2h1PTk1mSao1A0pts4v3FQu2dzfZB70nBfN3YNx/8Ch3ifqnnfMd9tE3EddHO/yrrXPu4E6FhDQHukbY4WERCgjcoPAAiMyOKdEwkKIckyrfXVbPbg0bPL+czNIM0Gs7J8+6vvXs0anWS1V55FaxJ23/DJ137Td3weqvkwUQmhAmSg2jVKmSQxLshsMX/06NGHDx+dnV2woDLWmhSUYubgxQWeLReKjEi0lmptqUSkrus8z9uI0F1UfxFGcXdu3/i6Nz6WWhQXDMoox3JZZVmGiAgKFQEhKAJERGVBIXfUF0JnVh3TivfC066u/zAArEN9rZZpl4HrAnjptt+2qC7nLa327UriB8SovolskBaVBzmaVfZqgY1jwYBKKAkACKxBKTD7AnGsNkRvc6x2OeLuAYC9T64pfckSEaFHnlft7BUZr29zHfNspYuW9YmNhPqF4l4ePqUfaZgvUlzwNs3Hx7duv/TqcnG1XC7nRaidS9PMBfLei4DWIEjecWjKSZZ4gZOj0XCYF82Sna+Yzy5LcaAJDFoQCRxacw72msjVVd1USsFooI9PxkbTYjFLrMbo4KY1KR0Yr65mReVn84IDeQZUpnGirTVJ9vDhs9FRIiIsYhVZZRRKltpBluYmy5Pk8urJJz7+ys3TyaMPPgjDye2TG8VyfjQY3Lh5q1g2bOHVu/eqZrlcLp8+evzq/Zdv3HmpafxyudTWLuaFtTaabBhSgEREgq0XWCusChJpQfYcMABGZxZSCCTAgBhtPonbfaUAAyIhMWhhZMVGWWMcIgL7EOjq3XcqWJQ51hrRKwUqtPcu2oAJjkPQZV2oUdq4qhRIb2T2zngBnsC60ICyRCieFaGInocAYBmC0YPI1CMiotHaeM9CWg1Go1t3q+y0gEFmj9AkXouDgIgIrACJQyiX5eyiKRfclM2ClR6AVs45FFQCJGSManAQhIlIKd0a0aDvNupaZwnRUD5G7uw2LQkECOxLbSyyZmbWCgWsFwMkImh1KX4ukqICYVQshCSkrAnESIQAhpQB3dQln54sF1d1UVea6kRfIE+XJaXaudpkhtmtPEBIa2s1ERptlAZBUoq0iRchGKMEayLu3R+NGzYCalF79jXQbKCfjbSQeBRSZuMwbvogrZyFehdJ+yM6rZINfA2HevsWcJ8tT7/l/kMW3+MYcKt+h7XWyP0FNWrtQwRQXdQjlNaxlTF60QTnnWucc0WxvCqml9CUKV3Ol4unV0/Prx6e+xKgcaUHyHVeFXMB+Llf+uLZ6eh3fNd3VvXcLeeJ1QLaOZXnubbmw4eP3/zwnffee+/Z+UIZCEyJQgOmrurL6byqvAC4ACbRcbYlqiyUcs55H/yyjnmsWxGewBhV1yFbvP8tufrk6y8fnw7K2cUQvBmhIUdEqJGUAq1BK9KKSOugqaPfLD4EF6KfBCqRSGghiv4QHYV4I9rz1ny2VKYjwNEaHpVG5Ji+nQiiM5QhAzshNoEUEzKAQiJABerIgQnAi2LQRLN4FRC58zEijn7AHXGP36/bev9mFAjXtzI7+wbabbmX0CJiFwBMiexx592VelcsSZvg6Xlw7z0/u8BfU7oKO/Gu2187I4DViOIDRUAqQJIPjmySFUXhXGOt9QLLsm5qNgSsSUSUiAHINN+6e4edX85mSZqUzp1fli5AZpR3QcBZVEZpIFGGdGIMqbPzaWLg9u0TY6muSw4wHA6D8zHtoIhUla9qVxRVUbnSgTE4GKUuhOXSpSnVztuUmqaxVhujE60zSwrBGgIO5XKuwH3da69yU7z3lbMbk+M0TV3TDNMssdn5swudZrfvvJTlCS348YcfalT3XnpJUPvGVU19ejRxQaxN4ylqBd5Oro0+V60niSIIFPGTUiTMAAQaowlfaPWrAkLIwjEvKqj2HkqkrioS0IEtkEF6+OCDJ9UzTrBiSExahxDNGgm4aLzJTF00ZpjWrmZNlZLLZpmEEWkB8agREZgdaV00lVKKUh2YG+cDkDEKCD1IABZmq40Ag5Z5s0yHR9rqigCVOBBKjPiAqF1g1FQDhzRpuKqd6MR63wgDJsY71kTAWLBPMtt4pxEdgGjlOWhUnWmPRNtn6EIJAJL0+FoSDgA0yIqm0chkVNOieBVYIiGrEUFBA6BIAWmGQIAeuRav8f/P2381W5IkaYKYEjNz90MuCZ6kskhXd3VXT0/PgMzuChYr2HlavOwTIFiZP7qPeFisYKaHNasuXkkjM8ilhzgxM1XFg7mfcy6LiKwZgUnKzRt+zc2ZKVf91AV2YiqgPKva620mEAYN2PUxOxMPmYQrFyUjAjERu2GIIbA6SmDqAD0AAhP5QOScqBX7VxC1oEEbGECtqIxmxohkioiKoA4FKKKNacoAY9wbcY/fSzu9GadIqgBMIAuHVgTD5KiHQxv6RpzvHsKnQ2vk4KzdkT0f381EvCH7D1nggXJwW+Pfm7AHM3cTiG773scPTU6mmFvxsJf+uSIKRF++ev0f/+N/3Gy7P/vzny+Pj16dffP1d2/AhZVSi9AZAIAAXebWABbex5T+9te/+9nP//SjJ0f1yUlKEZmUKQd/3bW//vqrX375RRdj9Xi5Wm+VWdhZ1qv19mqdzSBU3KlwzFnBe3TMxWeZEOcnx6nrNCsiShYRRQBnePT42dvzN3/zy897sH/x8x8pQk7dUR36HJk9g9Foy3oCQy60iASl67sIilIe3WMgCmogBjYlFRmOOv2BDC5J0UVWjGVcxaI1RFLKiFPrCAQiIwIjjGYAxOQBJnBKGOMdashjFot4xiOWYAoFnY4wmSiSIqAoPJSE9Y7xkIX63rO+1/zDE3HHXe4AoSHiVBZlt9Yfq7+JzOAdpev3XhHeqdXeO/8Dl92NPdkgJAPg8OKTn6Rh9c1Xn798/Zuzi8t6/kjFnAsu23bIavBowS+ePF7UIbbbYbPBIeWuY4QXMwfMBjQMQ9+pWvaO5sulmwciItPF8qkPzkxijHVde+/jMLRt5zggohmKWlLIimo4a2pkQsBh2weP3oXz88sQCAAcsUNQSZppVtfLWXO6XKJgHWjYbq4v38zqxrNDg8ePngzb7eXlVZgfffzpZ4rUblsSO1kevX31pm3bp88/CWrCfHFxUVeLtm1DAaxmJccAaEhIZFQgGRABmLySGpKBOmLJmZiKlVzkdZE6zrNJyY0HNCj5EyDq2ZEJqrECqwViBlRV9q7P2QgZgAAdMTcupZzQiGloo2+4wvqqXX1SfaIaFZSIJA3euWzZ1ZWC9ZoB1NWVifYygJEhgGcqiKEIg6RF5QaNaqlmEAIhFDVmBwbCZgrmfc6deQbHIkjoBExVhBAIEJG87zUDYUYAMCUwomxjdwPQwrPRzIAm5CAEA2VEQBADAehj9OzAINvYKW4wC8zoSMEE1Hufh2jIiGyIzE7BmJ0BZNPKVWaQRMA5xjC0KozCllGiZc8hiRhI4AAAvSRXBUWMJkguU+GUxcQzQTMCAyMa1WvBkQ8ao2jRsxVxzKDOBLlYD4YAWNAr75BZCYmXguAikHjEubSxTOXQsryP2IvSzLds68l4ILstJkcAkZsiFpBupovtWRYd9H3a379NQE8PsxAbP+jo4di5EKf7BzMkRyymu7gdgpacB2L3b//m3//6t7/PWerl0Tqlq7dnry6vL4cEAoOSm1XQxs7MEZpiqNx2SAsHX3178b/92//4P//f//UQh+AQRblymeh8s3lzfdFJwlCZ9zybEXAUXG+3V9vYG1SBtar+5McfrTbr8/PzrJpyjBkqM0T87ux6Vru6mcUYO0mI4Jxrs27PLxDoutXff/Pq0ePl88czBGwBZ/MFISM5RQZCY1J0BKg2erDRxCApimI2spwjACjkUn4KYIwIoDK+RShBGkUzEQUDNWQigLEIDcaSMlFBFjJHRoRAY2wMxZSMtFx55ECKWGAQDJlL01wdc9aKFwKFVFGKvVx6hjrbQ4QcOIXv0/Lg1rQ/atyWk9MFbboPUz04SGa7BPIbUrYYuKr7m0fEnUk3eiRUQbWkauy8BPdgfEwLwsFSD5XZ3XvK7n7uzB/j2QAwVUHv30NpmyqSuarZNRUvnz7/wdn55auzi3q26Pp4uVoP21E2PHscHi1mn330+JuvPh/W/WlT/dVf/fWffvZZXQf27Orqut384asvv3r58uvv3rRR+/5auTZiTxic7/vIzBx8H/Om22rKkkHYUorIPsa47WLTVFWz6OPQtx1aSaOAGGO5Wyaq6mCpNxXy4eR4eVzXsyqgWiC4vnh1tFx+/OKjyvuj+Qmy89UM3HD69Jmr6q7r6qqqZ/7NNy8Xi0VKqes6cD5lCewKhBbB3u2mZmpa4J+K+etKj8ZS1WDaxQGRiCinQVVDXRFyztkQFDBnrXwgoavrizwMTTOrfQXRUM0ZgqhTYBGKOXjusox5XEBQtGU1YGTvYk7L5fLt5WusgZ3GtPWeS32hC15UAcGsoENo8WoCAjgeC3LNzCyLuoqJIfWdr48RTTQRe4AxoUPBEBnQLIukrFLqFEVAgdAAnAERSMpmprxTSRVLIwYY4SnGrjkGYKAmpSF8UfBLPLBUawX0qIoGRc0BBHIoBVENwYFBjjymsgoCZhUicFaSTdlkrONn8kO/dVXYdGusvHQYat+1fV1VZm6EAEQcNAcmN9WrkBkxMYIlQSNkMgIFBcCxchWAAEiBHSqqomgBznKYySIK2YiShVMzEgA4zEAerZlJ/BUDuKgmeCDgdsX+MNmYk6KPU5rrDdjdkl1vkwm7k9+qu7YCu36xe6C6EU3CdmeZmE75KvuGBIgINxvX756F2d/qTTTF9kcUZUSkgrdsZqoiUoUgCrGPoSIRrevq6urq8y+++u7Nd1klNLVvZm8vry6vr9sh+abedhmZUhcLD3aONIqJHM/rftsHhpfffvf5l1/9+U9/lIbNrKpj6vu+//LLz9+8ecPMUkBrEQzg9dlVP0AzDz/78Z/84Ac/+ulPf3px9vbv/v5vry4vVMwxeU+qNgzZE+SUO90goiPKojlmZsfBgWrO8XrT/+r3X5L7yQ8/fX5xefHqasVIxawNIRyfLBfHi4Y5pyQpezbvSHKUNCAogpViQlQ1zaUUzcZvfaBCmUHJIjJAKipaNh1jloYIVnJKjMjIiExR0TCXpnVYYHH3UkAUBFSYHI0aGJIYaQYTQzUCQwEGxaw6YlQ9iAW9Gx9o4X2gYN65gh+afp8Y+y+V+n+E/f3e+Xdfy4efslMREMiIEWDbRSGt5sebPsUhi8Dl5XVK4r0bYn587H7w0ZOPTk/Ovv0m5OG//Vf//F/91f/hk6dPQ6kzcGgOlPFPPnv+9uLyDy9f/s3f/eNvv7ga2v7k8TEaMTNTUFUVRCAVNAhA0Me02QyAAwBkBQUkM0Rm5pIif9jAYjar23bjEZ6fHv/g4+dHde1UQVPF3jR/+vEnIfimqo4WR5ApRTHAo8dPjF0WCSHMnWuvz8zs+fPnVWhijJqFQsXOoZgpcOV2PTCK7k5EwFxQ8UxNNQMQkiMysGQGZhg4ZMqSCmwesUNENJUS+iEiIhaRaBaYjBiQDGX8UmREFJyTUsyEMCG+mmpG9o6o67fz+fxy83bu68BkakSkONYfq2qBxtuVSSAWXKN9qzsxK/OhdInYpX7syicOtgdDUY9LuKhoq2YGoMUTYFCkCSAikgKMWKRUpOw+MjlJqTuDAMiAFBSwyG+YMGAL8N7IfvZZtQYIwGNYmQBJgEYF0giKEDVANAIcSzmLXoBj7kgZzFRiZgTII7srmBdFo6BRylnRutQUCYBKAQmQIikWQOniVQUb49zjUyBo8TtbwZLC8lg4+taLRXtYtHP3iNH+PeBB1e8kTGGsNRp9jcWqRtzjQKFNgbA9ylDBAYFpESx1KWgMpAUaBJUAAUeztYBy8AjHAQAqAEZAhlp+oqHimHc4HSmlUEiACJiGSKCMhlmDc5vr6y+++PzVq7dDzKePHiejKJYU2yEN2QiNmAFovmiydZDNRBlRskIFTe3mjbu4uH753esf/uBTQl63W+9507av3rxdrbe+DqKCBqYYc1wu60ePm9PHz/+b//a/8z784z/+/W9/8+vV5ZVlCczZNA0ZEaqAYJhVp0g88gTdJCLMFCrqor65bPmLV19+e9ZtN2/fXpkC2QiUO1/AD3/48Y9/9IM//eEPmSKYpjygWRWcmabYm2r5r1AcTvXm+cAQGrfqruZ2J5WnjYsjhZU8FDQTJAY0QAFC0zEjdFoOkcyACpIXoycFEmAdXXElQMKADiBPJH/HBb3zzOwisvfQ8G48AK186L05yPTbZ98/DOY8ZS3uET/uCrZDFzTsrM+bs76vxD2UjrdcTB9y+oH2enj4MAZcONqEBrf3hyOzcy4HH9Yt/PZ3n79+e+GrOkeRCOTlJz9+8eL5o6fH81dfft6drf6f/9O//tEPPnv8+Gkc8kZ1vliY567rONjR/GQxP/nkkx8slqdPHv/6F3/4/eX59enJcRczErdtH7MiU99Hx14VRCQLlC2gAH3sKZP3gRkZSQQY0HlWzc6TSkbVk9Pjo8U8IPbtehGCQ3Ko6HG5XHomAqpchY4FUJmOTh+Vx/RgOQ3X11dN0yyOj9gFKRaWiJiBUemWWFj2LkuuBG/bvkczNDDNkhJIRh29zXmIRbcteLO1D6iYTLMYmpGhDzUiIrCCKkImiAzMkBiyQ3GojLVVIhJVjJDAAaGAAgI6U4GULXiX+9SpWCfKQMGbAZqOZRVgAETEIIoj2x5RAEfspBHvRtSyiaIaqKEaEk+5PCXhbBwMLEaIXFg9jeKk5PbzmOttTEoEBTkcFZV0VxKDY6Br7EmiAKXn39iUsSBFGxRk3dFtTTC60mA0rhkRadTOi9FJ5bmUQBFIQSZjrNRJMpEDZSzNuXEnfRkQDcgK67RS7TIan7sYpzEAEyCYKFgmyGSGCMXmMIyIguiEubzbIvRG9F4iAy3JeGNunpGh2WgDF4WnVKWNLwFK99bbRybL1SYfw+TQ3rsGJ0kM+/8jgoFOtvg4dSpGByj+/x2LsBExmEbYYBt/hwKrWCS8jhCZpmZWoN5oFM5akittmkNgCkamYkI2xqdFjYnYVZpTYPdmvT57/eb6eiUCvppfnV2eXa2d921v7DklUQNVcb5BFUYWxcpVACDJ5k2VUj+fV19/8+31X/zsyclRmAck6M7Oh2EIwXtfd0MEoJxTTlbXDbG/PH/7q1/+IoTwu9/+brW6AoZqVjnnmDnnrGDe++2ms1Rak08xQiAwdaFKkhGpTaqtuI3023XXdQDctyIAvrzWFj5/++1/+MW3/9f/49Unzx4/e3oSiDSZQ0HIqsX3ULB8AA2wuIlQp6zy2/7Iw18m2VJMXMDS8Lf0GxMj0gkMfCptnbi9GRgrlYJsNUYERVBidQBGwqzspBRnl9jz3XaEsJcht2QP3kwfuDXnIYF3r/X5vaTjTlzdkouTBjp6yycOthfttiumsr3lfffmb3vg//87RFQkOkfs4Ne/+s1/+tu/36zhJJj3/IOnp8+fP18uah22X/z+N7rZ/D/+5//pX/70p5R1uLreDtGAc0xVUxOzJmREJmqq8Fd/8fOnz55XVfW///t/2K62bZ+ruuqGGLM579te2UcTcM5Vs4qIkkSJkjMwq9kgYsYoUuKwXHyGiHZ8ND89XjLpZn29qPy8WjBC7fxiMZOYFBE8DcNwevJ42w/EnrwjA0CNbXd9cd5uNqdPHhMzMhEQkwN2KYuaElGMPTpfcqELwJCNBYXOeecZZUhdH3NW0OLrxSFGZg7OOS5ljth3Q0lYy2Ce0AWPTKCIppKjlIgFkjLCmB9gCMQIHsf6QQAo/uTi3/ZVk9LW+Xq7vV5vh0dPThNkMwUckwxQRAFUFSd/IMC+u7cBEFoJs0MSlSyScMrVHqXXaM4Zgu6lMCIhSvGXjQ7kYtTaHiZpl49jMNJHaXFgO61XcSw8hVJjighWoCpppBPGsUUJT0sBFJRaNthBW5aCMN6p7aOazmMbQSn8yYyBc8mhg8nlWpQnG435MQxrJrvMS1EsCdYIpblcCWSDGhoxWIEx0lLFgjrC0+KhvHtwKEJ5KwyjH2L38+4RGt9f+esIfSEABChF2KPdFPajq7K8Jy0WN4yZx6NzGHhsZ3tQfYE7nrWzrfd8dScesMS/x/nla41miZoZkAIg8eQzN0AyBBJRImRmUylQxJvNygibxZwzqeGqHc7OU7PI7DwQueLjMmJPi1nV9WkQsaQZlACwQkJ7/uJZ17V/+OKb2V/8+duL84uLs2+/+ebtxfWQdJu6tk1IPbPPYuv2CpAQ+e/+7u+IyHvvnAOAYRhUta5rIogx55ydJ6AAlHJWyZNjCLGwRAYKRIBO1aGbR0k5CzA7pOL/YcwG0Ir+b3/z65//ybO/hD958eQksE8poWnwXKAxYdJ7Ch58gc9DxN13LF/WcCzi26tx4xEZqweAVQWREA3UIU7m32hWlZ2ghmyUVY3RKQgilKZ1u4/PgGwkBoSgRoAP1AHDTdv3ISvw1KLXWAABAABJREFU8PiNOYfHR1XiQB39EFFtNGqpADB2nTtIobL9KQ/d1S1p/UcbxPflQ96uwLt5G/dfaLqB3cyiCltwfhiGWeW2m6tf/uqfUkrPXzSOqyrQ4viobui7V189mVU2dP/qr//lX//8n7eXF+3qWpLW9SwQpKt1t2mbxRwqb1TzPETJR0dHVajbP/+LzeX2P/zjH/oI7DT4OtTEVaXcWomqIhZMOAYOAUoehOQIBiWLzzMFz2ZEbLPKOYau3VbzMKuaj549mXs/bDezWX18fHx9fZ2S+Jl3zokIMrAnSYPzIbbbfnO9Wl81s1mzWAC5JGJolQuhrjnnISUDMSIyURjFb/nkTJhyNjNQTClmFSNEQENYtVtJMYRABaBH1fKw7dvZ6QKZzCiDIZKCgBkD+BJmNkIQNCAAV+zSUWAZgBmIiRWM/Tikgh2/7ftBdNXFP7z87ujpUyPdCZNSMqWmYko8CipUIy3gBwioJfVaQSxFTVE0AkSjUIK2ZGxmky8VAceIsplMPdQQQIDIcKLIoswjgOkI+l9KLIoyPpoTe7w9KmlZqMU4RFRTA1MEodLKg9gQcvniWszBwmBIjRBRARkIyxszA1MwcwRCoGZKEFVywdhFLMXDOPl/R4WBUKAgdQMhKI5l/mSAYASKqLvpaMBmCIaQJ9cuAKrilO2NVsxxIDSQIpL3P80UqCSlFXO5ZAbYdGT6effI2L4DELVk0AAUu3j8eTATClhIKfcpakXRRYrFVbg6Ik41kCoFybz03sFydSAckYuBFKD8blDCAFiSqsb7NDCEXPqgaYl4EyAqkI2qX9EKIUn2jgfpQTMTdsNmtbk0ykCWTa+uL9uYkoFFmwdqtwMRMlIzqzzCk5P56nLVq6pqUlgsqqPlfLF8LFmB/N/+/S9ikq5fv379st10STAlMiCgkNRW21TPKhETsOVy1nVD3/fLYyemIbiaKzNDBpUxYYI9Oc/e+z6mYUgiioiE2PcdAVR1VS0W3bYd1t18Pr8cUuUcAJY63/GVIogCO/jq1ZlzDkQ+fXGMTDKIkJXs9+ln0YbNTBwSFNB4AAQtyFijDgJj6vyoDU6wZ+XLAYyqn7EAjEAcNxzEpUxayVAMRNEhODFWEC0kUTYnqhBkMkUwVGdjLuT3tv/2atxdQXhTAN+UQHDrlNuSUu9LbnzgBiYL+B4X9Dtv+4PmTIL8XSd+4K0+fCF2xMDClF99++Xbt6+fPnuMGd68OUuKRyfL7bACjBfn14+Xi//zv/w/VeyVfHBVhlwH5713PpuiaW5X/aZv63zElV/4yrP/7MXHf/Wzv/ji24vu1VW3Ta5SDh5Vq8obkHMu51waizhXI2JKCREcexHxzGbmiL1nMwuOgyfvoPbu0fHJcV0t6spycp4RTHI6OTrtuu70+HhxdLRptyHUSCjDIKrb9UpiP1vMTh89BnIxJwAChZyzDUOxAl3wRiVpEEATlHp7YkJq5k2UnIaubduu3WpKwzBsN6umqRhQc9wOXY7JEVfeg3N9F13FCEpoXBrmKjhmmipVyADVSlSGbIwJlbBlaR9cuGQBwFtv2j7ZxbrdpHT5hy9PXzz/wadPHKKCiAiqEZFHzjYmOuEY60U0EAICZlVAQ8uas8YupwFdJBOAbIYyFs4UlLOypdUOcFhHpF8rJZQHuUVmo/97n4W021Wje3NnjiOoljyzyTq24ksumjjAxHl2i+xbzCiO+I/lCGORsWIghAZoJe0RkE3T9Aj2kMsKsaTkIiITOiqmLwKi7SumzFCFwQBNx1bHWkyTndd6tBCLfQwAoCWFa1TzEXDXKYFGXWX0SNwMsd1HkrvmLHbDND18kJ3pWvoalX+XuPuEdFjOEzNGNC03BICMBnb4sYzuvcqEilUSyEYnwuhZmZ5uegNjWkAxbkrTgpQSWvZ1GIaxTHyz2Zxd9+eXkoGAQBSYPeLw6PSYzLz3KtKEkOrgiFXhyZMnCjafN0R0vbmuqmpI+Z9++SuD3HVbZq/Km74HQ/ZhiBEQ45CZGcAkppyj90yAoJIzgJqCqSQpehSSiaIrDjYsEajyFpxzpStiQYFWMO+5qnxKKasBQLGqJauIARowrDb6xTffNjUdL9yyJlUVkbEI3szMqGxnNcQxedx2QRCb2kbR6A7dOUVt9P+oWgmJTqkDZlPXCUQQs13dtiAiSgHBVdOiDkJG01GxHl1BWjTF0g3pwD7e7YnxM+823MEv3xuacUrYGN3EB7HPvfA+JNfDyz0kUnc27nvl3+gu+wDZ/O6lHrT1Hxz3osLeONeM0CAPCmap2/7yH//2enWumq8vrlKfP/7sk2ZeXbcXdcPddfz5v/izF09fUK8Xr84W82Z2dIQMETIweB+I/ZP6ZLXp2nXLKdShnc1mR0cnP/rhD//yzy+S/vKbN1dxEMuCObJzCjBkUtWmqgiR2TNSjmKWmQDQPFPxhDIgOWqaqqnd0aw+XTTHi9ncUUopoM3mM0MzhKPF4mi2rJrA3rnKsUdUk5T7oQVNLnAzn4fZPImJZSIExCiZOzNC5733Lk/cWlQBRFUL4voQs4CB5qySRQQ0o2WCy+26riqNOgxDYNc03nnvA3ebDbAvdoXzBKZk4BRSSpoUFXfNXJm5dHOR4igaO9yUZClTYkPukvRqmyyrJG3b/dNv//DkdDarGYIzLbV9SIiglnbZVQBcrBplw+KcLSHhLDlh6jUMYBEQjUgVirlmgIJOkIiYRnsXgQyL0xxwkiildAfJcK/a4sjTbRItI0kXPgLjs+lUyEdj+LMYc0SGCoRjxe0IjVAqsG0sNi2Joja5Rg1BTTOAEpgjZHSMOvnC1Q5jziU7G8dIMBsw4mFeSEH3thJnAyuRMzelLSmB0KhfF0+02CRBUQ9wZWkvxIqb4CCHudgYokaIKsBEqmPPqId+IkyJXWVP4FjvyMC3zi1fhcDUAJUKTpjYLl5MoKOOxMCFJ6tSiQEWb3V5a0XHGdEOS3Lu5NkobhAr2QPFg0pU0rYmO3t6mWDOhZwjIhJysdI+evGiT3m9yUO31Qwh+NrnrMYYjo8WDnJdOcfONbPFbPHk9BkycfDbTTcMQ1ZNw9CEBsGePD45OzvLaPV8oQp5GAhZ1DQLKjV1vV63CYQ8cPBN5Z0jk6Hyvo+xVMUxGjE55xUhJxERUzYVBiR2IhazhtpFsS6nvk0hBDev1MPR06OLi4uZc0SUh9R1SQEq5KoOMfbksBvs/Pz66mrVPDliZkTRrAYjuM5hpFJgL2VGloO7EP59fHyv2Y1CcYofFeofIw5QykYAWQhJAFmVgCAB5NJopLiix6RKBABnOLmg9VBA7RpKFpV4p569xwt9w8C1KYcQdjmWd+ffs9RDhnjRUA7+SlNhNWmpTIBdoGsK/e4sV3vXyndvbPcs957yDuk7KRDvX39/BIEIGGjYtt9+/XkahqHt+jZ/8smzp0+eboa2Dry6vPzo0clf/Omfq8j68oqRyCDnLCIYqJ7PfKjV2FX1DDltWwO4LtMAT4+O/+yHP7g4f7vdXGeCaLbNahL7AYiAEYB9VlATc05VvfdI2TNWTe0dkwERBcdHxwtHWFcOETerdXOyVBBAzjkvjo4X82XwddPMu9htt9vmaJZjIkDRPHR91VToOFSzJMY+1EwiEmM2MxdC8B6JVEsXBVIDA1QVU8goQOyrpgoVYh1j3LTdanW16bbb7bpt2+XRnMk7guPj45ppE3vtZN4EY6diSbMv1mBKQARtXw1JNQMgkWNmJMdsSWPpZljsMwBSg2x2udnGLGebthvabdTLTTR0v/vq67/6s8/opKn9fLRWC+qdCCIVY4VoZyBNOu9Y4SAkESWRZgIFKTk5JRmYx5CiIREROiMaZQjtoaxGE3JMaJgas99snj2qzhPkBE7OOoCxehZAi+9a91KQYMo31tHXBiVLezcUbReSHI9opuJLZHZEnpjGZBc0m/jVHSLaBYNtQuSf2n1OzLBYyURYuidN98cwLltElJUqvpGQ9ED60shZDphY8coXS6DYObzDKtlhK08/saSyFj47xuBhjy5YbgB2EhoAtaS8F3AQVDJS3hkPOp5SNAYeLanpxqzAFECpZil1SGSAo6EMVMBFccdbECaEg0MeVV7azuDTbJX3JjmlhMgfvfhkvemvN4nhfN4w+apt4zDY+upyMa+apj5eLpiqup4ROnKu7ToQMJDHT05fvnzZNE0e+vVm3XUQpQdyyNC2XUrJ+wogiaiv3dVVO1v4qqr6oSXHNuSuG2JUchAjeI/e+yFFzGrel9sWMcnJzNh7Qp9SyjkP/eCD943vup4cI8OmWx8tZhfnyqiWQRPMamiaWU623nSOgZmHmL97u37++Goxr2tvKLHycOBsKK9rtFahJLbtvRc3PuiNj3vDzCufTsaoEBCAjGGIghWjRkQGpa81ookZqokeCJQJRYrJiuaOjuAe5OQbw/Qgh4luzqVJuQA40CzKRoWxzHFaZs8nFEac2dGlNsl8RZycKhOhjmvhmKWPU4ldSXIzUzAiAiNSgbFVpGoSoVFvLwVXDoDMSkuLPUc7HIegfTf0o+kzwF5F2LdcvjUK97DJpX+D+xRXo912sG+G7sXj5dWrdQBqVxsi19T+9PhRv+kqT9uYnp4++njx0fHspHHhzfa6mfsoCTNmsHlFDNgPNj9aJsAwb5beb7bXse9WV+ezo5OmCj998ejyoyee0pvN6rvr1eWFEAAzkIJTytuhqeo+DrEflseLTb+tZ14MjEAsDzE9OTk+OTqOfevrRpNE1eN5HWNmAqhZTF2omsVyyCBpQGKwgOocWsox5+yrYEQAnIyqqsmmzvkkGciYSEmTCiOgqsOQVEwsq4iarwIHL9m2XXt+efHmzZs3b16Z2XI596HiOPhKL69W223nCOu356AKAMvl3NdVCCOScwjBAZLajNinPBdSBABTVZECLpGYWXN0Ijlrvaz7rH1n351ddpq+PXuz6q6vri5Lpluf4mDp5avXP/3hv1j3bWkP7rzvuo4dS8E7QDAUKdE+LBgSAIjmGZjVsqWIohrVVySl1BrJEFUyiTnAmE1zFrESqRqjsWyqAFoyMcHMZBIgU+nRlHU1RmFHZ+iocU8A2lhoDQtKwG5/KpU0MBMkIGIYwSWUR+AnNVNiQEQFQkBCYBeSZhHp2taz63UQTVmyQzdKdBydsQqGquTRaEdfe7FBMOZdFYW/lJMKgtgoI1mBxExMuMREJwrCHVM6UJ33GMgj6eWdPJ7mFmfgLYPiwDAoqW6CNDJGu0HIco9TmnZuZ9tZHGM/dSzOgGl9HcvVdMfcJg9zKcjB8vJhwmZSIyK0XMppCJGIDA1AadTqDmpMyB3YWOCci2lomkpE2z6SQfAYs6R+RQCPT9zTZ88fPzqNw3beVGAUHOcsKpqGNrdiZm/ba0YZulWf+qQxJfWeh9RLIhfIEHOO6MA7NsKTx00fsxGePHqmqjPfENEQI3u361cYQkDEruvatnXOVUh938cYGRFAmOx4WW83PWRFgyYENE2xqzxurs4ezXlZ159+8hEis6sfPXm+HfLbN2dff/5F7Le+IUH9/ctX1aL+5MVpAA9DO284ig0pBl8RsIoGdgJF4UUFIAQxQwMBc8TZlKwk31k2JUBmZ1jefdHJCvsQJIJ99tUYQgbbRXoY1SxFo0wQQJixVHuRQIaCj4lcfHz7JCwrS43K8hRkecCV+tA40Bd28Bc3HM53dvx9CvLBnN2C++OGBzWOBKB60P5zhPEEYHYjElZx331/L/Rd8r538l05ff+CODkE90fMzJp53cdhvV5bltQPfcyBua58BDGUZT0bthu/5Ccnj1cX157JRjAKcmRmJoYcGuMAqkkykh4tmx7z0G1DX9V1/ez0+K/+7Cc+4PHmaH68qpvzt5cbQ5eHzGoEKCKqWcHatk2SKnPFscOIR02Tcz4/f9tU1eXZ+enJUWiW3leOzQdumsayEDkEJhqL3BCVAKIIIjrnjJBdIBd8mKFzzswh1kezmPrr9Trm1DSOmYck3quI5ZhFhYM30e++efnVV1+dXVx570tYqG4CM/Z9f35xVlXVMAw5x6R5s131201KibxjF1ztUHUYhhwTIza+Oq6qn7z46CnX5BDEEDGEUPoVukApDZqSiPSSNn0+v96+ubz8+s2rHtLby7ciQAr9sJ0dL1Dl1atXXdfVIaSUYk7OOXSsB19WsUSMShLP5PhCMCRfEqdxVDvHzFg0LOmVxb4piV1Y/MAlb1tFxEob8NLgaHQ738jDuHd/3iKog1Ho+rDp5+2SQhxjxghojEVjx8lMZRGzHWSNCCIGZp7M5N1FzQwRdLqQ7TOu9eA6WCqwJ1NvDN+OvukDf/KETnqPivwO19StCbdCXYcHYXplgLd07u897r+fvQF8e87kgNn/s5jVu0a0tyY8cFEzAyIwE3bBe9+2bVXPfvazP3979u9EjBEWR/O6lqxEZgT46Phk6FtE6Pt+NpsNw+A993273m7MRjScpKKq5NCQm6ZR1RRLMb0hMhARUooS6grJiWpV1UQEQKFpdBIKBepVVefLo+XxCZoRYbdtt9utiAyxyymryLxuctYuxUEt1BR4VnnOeTiaz3/wyfNPP/oYEbukbbu+Wndv3r6OcQAAZFLR7ZDfnK+qyj87rgKyCQAAMxM5NKCxORhx2cEAViL0MIY8SjYBAxrYPuthbBN5R9Ubd8VNhm8lo0qZyDQbsUkuwRec3MwFJbco64jo3mP+fvC4R1JOf7l3/k6NHU8uhHdABbtpeJ8IHL1xI4PZ8xEcEb7unqJYSrgfoI33bu6DMdYG3CLRu4S6W3P/Zm46ug0AmIY0RBH0bojDZgVPH3EeemKXJM9mi29+982//mcfQxIU1SzsHIJCThhIDJSgWcyQIDg39L2kzpHK0G2vr3OXmmbuHT0+ffRitQ5V8+TR0+enT//2l79etX301EdVSF1MiFBV3jmu5ouqcSlHQmyaxnvPRI4whOCCf/To0elyWTE4k1nlXHB9zgyIZIxUEk6BxiQIUEPHBUXVV4FHGFinybIAYqirZZaoBqKATH0cNAuRsywvv/ju5cuX55cXXdcpGhHUdR3qanvdffPFF0OMPvDGIRGY2dC1MfaOMQTth62qtNusKoDqkOq6aSrPSJvN5sp68UeAYCaqWTT5yuccc4FDnLnEdD20Ly++++btd6t+2+dkiKEO7WrY9KBugxmurq4ur1ePHp2UiimcMNd4bBJwiDJYtgcV6YvkgCvyAckZjVsISgJSOaUAZ4LojtuqFR8OGOxcwgcbz27J30MZw0zF8jj0Uh6Swx0CsAPH2401EfcJGTgNZgbjUtxpMatmuyOxdnTxDtLa8Y3dHRY0jofmv4NO7z2rrH/4+OWdIN5lpmV9PXyn+0e4e90Jb/vWg9y4T7ttwOwqR+9V9xFHqWY7OL+SIL3jliMnKcQGJXi58yACwDAMdR1MkpjWdS0im802K3z66WfnV9u3Z1cqFkI4aY6aZk6gACCmwYUMdr1Zr9drM+v7PoSgqllIRLg4P9T6Lnrvc85mGMIMiHLWYRhSGkLVzGYzU1QwcmxmKQ0hBBGR0lEYTXLJrgp1XcdhqJuwODqaLRaScttuN5uNJAmhdqo6UGy7nDXGiEBDP1jKPwn1thtExPnmV7/57Tffng0JGgdN5b3zSpqivn791js9mr2YV5wlA6NjX/buCJJI9+zwO5+vOEzQzMY0dxz1UTMrFXfFjaJ4wxtq48dVLK4ORVU1mVIudtrwwa4YmzHc3lvvv8V7xnsnTEvdI6d3xu4uFHSLjG/MvOnNNiuAuzcEnkhGEaQdOs3E8u5c9PAZ73vqu3+9V8+4rc/ee/CGhlGy0kVmdf34+YtPP/vhkye/NLl8fHLCBP2wXZweff3NNw5h3swgi8bBxIwtJZGhd1QZoDrvmzomQ8uGlpL0qUsiVVMHDn3fJ4K6rpdNk1I6nc2OmvnF67e/3X41P1quttteZOjBO3AeJPU+NDlFybGq68o7JiJAz0yAi8Xce6eas4Fj9N6H4CVlMwFRZgTiYuHkbCLCSM45G6OE3gjNDInJk4mOfbwhiGWRhIh924vI9cX1l19+eX5+6b1vvCfVdbtWsquLzTAM6Hg2m3lf9X0/9H2SRIAiaYhDCG5WV00dhl4CUTNvmCil1ITqdHm0CMG6HqEgH4wYIEVwIrKqig1kvFoPr87enl9eZs2A4phCttXbYdnAZ5/O+tRSgP/hf/jvnzx5IpLKdk0pmVld1ynJ7ivvNvMkYhnIoa+cr8nX5CokZ8RlZxbXpE3jYEONyB6lK4veIS46EBTTn+6XWzdwVW84ZR407+4KiVtXZ2bJ+4ctE1QV72C4IuKt9kHT7cNu5ijnSqLKvTf08Hg3z/kv1LZvfMo7fwSAW9L6HSvfepk7pnrXIr/FlO5lJg98OK0qTwx9n3LO81kzmy+I+/W2I3Sz2Wy5yNmoaeZHx6fMPufsHPuqEjVmfvXqVUqJiNg7IjIAsoIWVxtIPwxdN5hlZu+9M8WuH0S0rpsnj49iFu/9BA0MKaWUUlZ1vnQILjhrVBpLb7dbBhz6hJgBFY3quqmqGQBcX1/PZs386HjWb9u+AzOJogLgMYstjo7Pzs7+8OXvX748A4TAgEzknPdexUy6zcYuzq+7F4+1qpMmxpJijaVrs2Wlh+2lwxd7+wM9/HVufHpUEyg4MchoAqp8QNdkNpYkm42Ybg/WAdtYFX334H81ixkm0b/b5TDpKftJtsvpvH8cmBojL5jgdsq4gdB386x3jYOtf8/pcPP7vZfI731vpVglS4ZQHx89/sGnP/r000+Hbbds6spTFzOBra6v5lWY100aYikttywp9tJ3XBP7GdU1VpVpyiLEAV0QUXPog3cYUt7ENDCn+azebDbBoFnM//rP/sSRXXRbpBDEmlmuQuOd69Yto/V9PD09ZkBLuVo0mmPf9/XRcdM0XCp12UryvOOwWJCpiSTnRuxh0ZxFTdQ3lXdeDICImZVI1ZBBsjhHQ8xdv2Wm2WyGJm3bfvX5b968en11tSLkyldV7eazRf38KXl3eX11vV4XP4eZeO9ns1nOqRv65Xzx6NGjGONqtQJV56ht++16ZSBNqErFAor12/bxbH5az/3AIBFQyaFz3PctAYJGtqSSrs9Xr755+erNhYLlnJngSVX/s794/vHzx+vNBYaT/9v/+H95+mRJqOt1BiTiAsGBo9q7Uy5LcY2VchFEDs43HGYuLJyfE1dA4cCaMZvofLepBIxtr2ciTilXNjl7imv2YXG1W4po7B00QgrfPGG/LXdeX8TJPkYYE0QKGe4ZQrnVkglYLkREzpMIyWR24/SAB9LrHhmGeOAtf6is8eGDh8/73gnv+Ou9VznkwtMqHxCSsxH4uvxjt9QhZ791q7ubn+YUuwIBSq3wbpW7Vy9Oi/J3NTP2ro+dIlSVT1lUlcgROTNA5Co0i6apqoaIVHNV+aSyabv1eo2I6+3GORfYA/K27bz3VdVw4NIysm7SfJ5MOcaYc0akxWLpOFRVVVVNVunagZmcc23fZ1VyYcS0YS43SkzBOxHLOQ9RsoH33rEDxSwpxtT3LTMjQ9VUvvahDTlHRqiCy33bp/zNq9e//OUv23ZgD8MATLBYLLigcigQuai57VPbx7ysnAARqhYAZ0QsFUeFjexp7dC8xMmruvsuI4a/AhIBkGlJnATEsTFhefNltiKVIkArKFpauh86xDF+g2NKO9iYikju7rY73BaA75dVu/EhMwu3uffcwzdyi1re8afduOVTKzkyMJZ/IgDCfZrLOxaEB4h2p0Ddet7btHpn8m2ZXWAaiYchkeLy+PGnn3z23dcv49AFzyHQan3R1D5AmM/qrJIkA6GISExmwszVfBFmC9GxHhEdV82xq5YxtZoF1HGVU+6TxKryVXAqkR396JPnzcz/w29+ww5W3RCVSxOLat4oQh18YAIzSanbrmd1c3RyerSYNVVdVyGQBUIUKdpA7UNOyVRGM04lxyQixTNZvgIQmSIQEDoAMEh9lizROWbGHNu+7drNtvHus08//uTFRzFGIN80jQKuN+28aV589InztFqthq6dzeumaQCg6zqRCdYg2+nRI2YmtO1qBZa8I+dcTppzRjM2rYAfc7CX53qwpREsdT2pgImiScpN0zx9+ryqZ0fL5uNnT54sZhXBxdtvFmH2k7/48elJtV5dFn6EiKVBqJkNw7CDgx4XBiBEIwYEdJ7C3FULVy/Iz9BX5jyMi9yfN4BjuuzkQz5gFw/t1VubeScXp399j0DmoUL80KDJi37Is9Qy4J6l2APy5ta1djJ4VMFxZ0XfvKX7yhI/RJO+++z3Uu6tU25xiQfXB7YbofT7x73s/qH1p8k33puNMde7dz7m65SvEFOvqt47RBr6nsiJ6duzq6zgfcVezBCQjbDfdlfr1Xq7uby6MtWUc/A+5ey8xa5DxBBCPZ8553KOIsLM3ldMfr3eiLTOueXiONS1KgzD4HyVtQXVrDoMAwCFwCIQUy5tc0VUNTkXmJnJz5tRkA/DYFmYmYi8r4A15ixtW5QYR8SIgFgf+9//4YumaURhiHBysjg59jHGxfFR37dD10JOjIgASWCz7bqjZuERAEEzKJUimns3w738/PAzvWP/3OL5ZFrA1BAItFTuONR9ZOeW8W1m748B73KephLz+8etezq83jvn3w4XPTTz8C8FNm73VzuYBjf8bHpovx4S+d2x009v3fndI7eO35pwl3MdPtqoZ02PAQZNVeeU2Fcnp09+/vO/ujw7v3r1jWpUyDENqunps+dDGsKj0J0rEdoQRZJn5OCr2RGHauh7NNCcmJld5XzwMANTJzgE13crIiTm49Oj1WrVdWtMfNzUf/LpJ81Z+O7sfN337XY9qAZfq9p8Pt9sN8E5h5CGvlounjw6QTOVbBmN0Bgdgi+DiRAYjQEMTFPKsVfVpvLFQmI/IlUhIxOJJF9xajvAHIKXmC4uzlfX15ZlVs9Xq5UqHB0dzRbHvgrE/ikgiIoIZnh6dErHjyQOaUimSj0sZssktmm3BsTedW3fbldHjScDyhrYFos5AKhCIJz7atEnkTdQjFMwydERoyGiX7Xr9TCkJE+ff/K8Ws7mR1XA1K66di2ckeIPfvzss59+vG7X9axCI0SMMYoYMxfeMe2fsknGZrNQOvq5mqrG1Qv2M/Q1uAqdA+SCHQs4QaVOwGSFkxb0ZzADNDPFkjFtu9zGafPrjagz3gjQwE46Hmxvu62s3hBsO9v35hS0YszvaK0Uw5RnH6EPiuF7EKt+mLPcjyU3nmEP0toeN+QBErt7zbuS7+7B9652Z+Xd/RfT59Cd/h6GevfRHuY5ReK6gy9oMCXKToJhn9FtZgbCSM6zZen7NiVp6pCTrdebl6/PYhJkNoSkAlkvV9cXV5f9MGTT2gd07LxXyQJmhMQcJVvbMnOSnHNGRO/9ch4Wszkjbdrt+fl5VVXNfFlV1eXVSk1VTQyZvfMVESkMO/5LxGYm2RDAOdd2vZk5F3yoSzMVM1PJiJAlp5RU1bJ555Qg52QglQ9djKFpqpy7YZhV/OOf/sn1etX3ICIgQuyIIAlcXq+608WyqohMEzjCotEaHVQE3AwB3Pwuu7Jyu4lGoSUtEAHGGm2SiaYmlbfkcpgVDHZVNRO8sUNubIB39QM+LHT/wPEO1fJ+ohpJbnyA3Sa7sRen2HD5/eYF6aCp18FVUAtTwIJ9t3OzPUwcO2XnAW30PU96ONluOpTeuQjEmAmBfKgXyx/95M/O37z+ddpcXZ/LEId2O6uYUGazuu27+fFydXYGOYukqq7JOxcCoev7VUWEoISUsogO7KEKnjT27arrtyVZ5uhkSQRnF283m/X8+Oj56TFohpyXfXWuuOmHpqn7OJCleRUYsWma5Xwxn89QlQiO5jPHiJIdUfBuMZvPmgYk05ieoGigqjknszGOkFUYANmpGBsgmYkOfW+aNcVN2+WYVKGp56Dabrqqauq6dr4yAB3RFYXQHCMaltSPnC0mSynHZK++/u7169ebrvWevfdN05weL1LXzivHjASIooZQ+/r05ARirIyYuaTslsxqMRlSDCFEbFYxX/YCNmwuu677eubx0bJa+EHz6kc//PizH33WbTdoZqYxpRACM0994m6Jt/JLEaBk6Iwq9DN0M/Q1UgVYpO8kbiZvLREZkYiIJpucT4ijH9hubJsxhfLW8Xu26Oi4NttlLNv7zbXD7b2zUPdGGSIiZhHdF08DloJg5/Rg1n7nP6yIl2wAMymhIrPSw0anc++qAh9EnocTdve8O3JI5rdk8O7St0j4gUGj0nNzzd2Jd9X0yTV949JYwuf3MU88+IIAgoaGpcyYDxSpElxQUxMRBCagppkTpjfnF6/fnH/59csoYEihDjHJ2ZvXV9fXXddXVVCEKlQxJWZuh76qqpxzCAEAuq7bbrdVVYW6KpivO2WrZFkWL0jbtqvVatv2y+MjQhaTo6OTumlijDmHmPoCBO3YEWLOWcRy1kNmKyJl/7BzfW6JyRPFGHfmmYg652aL5eXluQH1g8wbz8wXFxfkWCyX9M9SPpDFrtdtzImoobHfCCKZiRxqfnjHXXTw+4HiRfd9lFvZPLf2CSoZGyga002IuvKxyrcrYKIO7p4/XakQsFlJATssHLwxbm21h8YBARyuYwAjXMD0YPta28N3hHddAYaIKFP5+ageElmp/SWE+xLeSuecsnVsctMdEsAtKrpXh7jNXw4Omow66S19tkDEmY6JdLDnUigq3rmqnlnKP/+rf87Q/Ye/+d/XbVrMm9XVijGfX7yevfgReUfeCQgwheXyxQ9/vCWUoZ8ZUk59Xl1db7eDO338rJXhu/Vl0HT26jtVrcNJznnIAzl89uzp8XH87s1rAHi0mC3qH1xtNsezRZ9lSPlqsw1NHWMsAsY7Plou2/Xm5PRkUVddu5EYm/ks9i0eHxGRCgBAzllS9N4jKBMw+5QSGbJ3AFASnUREAIgQFCSJZiPgpq6r2tKQUkpP5qeIWAAyzcz7yoC4QogxSV5tNsL85nJ9dnX91bffvX57tt5s2m0rCdigCbBs4NHp8kcff/Tp06fRvA+MiCFg8D6EoFlckW0ihYnklCRgJrOq/m7d/80/ffnrL7785jxSAAfACp8+aZ49ak4W9t/9N//8Z3/2pzm2ngNbFiTn96Xeu01iJuWTmo3Ab4hk6H01c82CqwX5GboGfQD2hjwyTRgBME1VNGVJ3ntQn7OqpMOuOnBTciBiAdB5aH9OAawbm1BVGeEQdbLQNewF1XiVnUfdTKaDe2G4E72FcIjIOde225wzuXBT0h1K352eLUxh58TerTo92m2ancjNVJVvpnS8g+2Ut+Gcu8tnb8njO6/uxgo3iH2cZgcHxzd5mOl2V5qaWcnBoZsivyyB95V7FoeGmRDAWGJsigBYgNAMzHKJwlRNMwZBAHPOTVMNw9D2Q9/337z87suvv0UK5IIgXW22l1erbd8hYmiqbOpCNcSISEAMgN0QiSj3UgofymPGGJm5ruuqqkzEERIjMcaU+r6NWRG5buaqagp1XTNzGrIVwGR1aMmxy7nsk9D3g6o5xwBQcr6QQSQPfV94Y0qjP8Uxw9igkIGw7TrnKwV59OhEs3T9tosdV77tNgGpaapu24XAzCIKfd+vtvT4eF43IceUsyEhqDK7HS3svngxGG4R9f4b0XTE9ntmIo7DbVPivIoIpmKIhDRuBiJQcRh2lxurs+ygGcO0NgDA1OFjWvo9Wub3Hu+V1t9vKSQighvOXd799bbJTIQ3Ld2HlNx7VJubpPvg/cAdLnLrr4dHGBApW0bTqmmeP39+9ebZ8fHSzLpue7xwtaMYe2ZGYCJqh66pA9fNoIaCzJiHfru+vOouBXmxfHF8fHx+8WZ1deE15TQgove+9KzNhEQ0d7MXT59ut60YUkyPjk4enT7Z9P3Z5VXBXNXQ9H0fnHu0XJ7M5/MQlvNGJZkImhIo0Qj1w8xZJeecCItFWHgxM/HooPTFgFMzyCJg3WbtiIKriJwaqKprwmyGzJiGaKAMVDocXF9ftm2rWdp+uNps31xe/+bzb749u7gcRmCjysPzp0fPThfSraXfdNv11QU/OZrP61Mmn7PmnOfzZRUaAHDMjlMpcyrkQ4DMdLVe/7//v//u3/323M3c4vlMNHG2hXNt211A9xd//uef/OjjjAJMjqjtB6zfk4ZjWNqNESIbMvoKXUOuIQ5IDskZIZKJASNiIVMkwMwhkIQuvnNr2fjLeyly2ofjvw5WmEpyb8rFe87d/347owrvOJhxtID3uD+wpyAxoympey/FEeAW2vJddfYdN/aB4xYVv9di/pDxXibw8Ik36pjfu84O8K9Mm3ZeIaahrmvv/fV6LVZaX1OM+epq88VXL9t1F3NardZvzy9FqVk267ZLktuYekmGJcsPBSzFqKq7TIGS2+G9B4Di0oBJ3xKRoetPj45zzn1vOWeVjIiVZ2Sf0wAAImpmDGzIzExARsTkgZAoF9lTlHtEyLl4tq0kVZjZEDsXAtnovxQVJpqwTHEY0pAHh8S1Y+/KKV3fDoMaqHfsvEcmQfH12BVmGAZ1wAClRl3hIEPw4GvC7a21VwofcgLjfe7Se0eBVUFEM1XNJskIDRCY4P4Y8MPb4o8QxnjDctXbRw6zyG4Mun/+nSefsOCxJJoV7jB5tg/zRAAAimq/o8l7ZfAHkOjh3d5wDQLsEhX3ATMo4nivO8MOz0jBVMVAUh4opeB81YT5olrM6xxFU3z89AkrXV9dxthXYeGJq6qazWd+PgfnVGS7WndvztabK2rg8ScfLU8/zkpdSvXsqLLcbbbzeVP50Pe92QBmhA4cN4uFGA0pStcjwmzRuCogwdOnj9++fYtM6/X65PTxo0ePENERBM/90GkcGA1N2TFP5susqjdxGMGlNKNBKfnlUjyIiERqxd5TAPDeMyIYqhkjM7vSvzonAU2ImnIXYxxivlpd91Ffn113UZPYH7569fXriy5D42mxWEgamip89vFHHz97vL16E7e1R3jx5LGq9jEhu7quQ6jVUMGaqmYEdNMtIe6ADF9+9+23b88RoKrnRqJZT49OH81meXW5vV5/+eXv53P57LPPPnn+oo8DOTaAArOKiGBF4d1Llh10qyIgMjnv/Ax9g64GVwGHkjxppavBFBuxYgGLJJXdjt0bp3vMjVssuyDL30Mad7XGO3u4FDHp5I65L8H24HTEG2wBkQ/9zDdmyj4xW/a2wuFS+7Po9o3Z9HNvQe7skvG878l/vidp3+PPu08Fvx0pgwN+ch9DH6cUToCTfXM4895PZmY0dSmGyalRBjNdXV0Auaqq6nr29vzs7Ozs6mq1WbfnV1eBHQd/db0eYg71vI9pvd20MQ0xlyREBRExAFCFQoNZ1REVI5+IYox4kJQwBpViqr0LIcxmdVLpum6IWUQMTLIpmCmydzlHM0RfkXM2KQdjh2sckc6HoSciI4spwTCUoKGZxb5HxFI8gCRiWZIBgEcvIp48gPZ9XyByEdF7b6JDr107BPaeSAGdc3VdM2exTAYIbCJl0ZsdfB/Sgfac+8aHPkyGuscpu4dEnbZIwa30AFAwWExURJTVxmCQFQt4LOWm3f7fb4KD3iD3CeV3qADv/tN/uSq6E6uHR3YC2O5Mhom0brny7pLcQ0+x86nBAfG8+/TDc+HAMLbRQWjGRmDeEQJY3FydX1yfv4acPELl/OPHJ9dnV9+9/vbHP7h6+rghQOdcUglIyE769vr8Yth2VTM/+uixcbjedsSVD3XdLDzk08fPK48ppfPz89lifnR0hMyiCshh3lCqkH2SrAqSBjQF0aenx9uur05OHj957Jxbr9elCkFzMknIhKB1VXs/tjQowSGVEZ6aiB1xAS+FKaoHO4PJpGkazTkOWVWRjZnNskpktKh933dnF2/fnl9u2u226zI2J08/XdQnzWx+2aa3q632fUpydbVazr1nPFrMmzrgfL7NsWJQBRdqYyLmUDXOVwpkJSuEsBRjmCIiMiKaiuj56mLI4AJs21XubTGj5XxhKrPZ7HShjx81qr1KFI2WZT6f9zLc+e4TlSLAqDMCARM5dBVxhVwheSA2AEUAE9vt3ql9gSpkU5F07z46VOY+VO++EXzdUwNNnP1e8oGHUekPBh2gsY6hHJ0GIMBNsCecfuGDlXfNqQAVEEd8qPddGb+PAXD3QW5x3nvPuuWLfq8D7F7f9TtZ3+35dlAA855nKRtMVUwd0Gy5QOCvX3777bffnl1clfxxJAfoB7G86dsozgdkt+mH7RBjkiEnRCTHNvZQlAKVI2KlsMI5LS7f4tMeM2kQi9kKANfX108eP14ul977a+JrW3c5W86gZoIAxIhMkLLkHB2oiTB751xpc6QAu7LgsmDOOYsQj77JYRiK7N0pqCUKWwruQwgANPQtIiJ6APDe+7kD26TBiNQZiJhl8d6TM2A01JQFVD07525kER0olO9qQ/DQR7l7ok3Mboe+fujWBiz9IVQ1mxXsdHP37vqduBrXhd3Xv29bPHBnd5/kHaR9d6PvGdz4p6Kz304hOfDdT49qtCtqBOJpc5c1HnjYdz2CHrzle97Euyl599eiednUGUJVDUTNTAUgkyVM29Wb199++du3L78IDNQ0hFhVTRvfXl5cX26unj35iIiqqlJC9t4UY9utr67renb87LlbzNf9IElnwS1Pn8xmi7jZxE5iXPfd+vLyupkt6sXSEPs4ICInSjmGutG+X68vzGxRV23b1nW9vr5smjnk3PYdI9TBs6lJApVQe880q6s6eIcAMIYANUuKgIouOO+9wajoWgn4o0AxORH6vkdE4JLfnFENTclS327PL88uLs7fXJy3fT8ItN0waOcWz58c1SdPnj796MXZ+hqvrjbbdexBLbGrjhYzhzivGydyenRU+9As5ovFrHIezMSwqSofKlGjUBE7mUB3AdEEBAQ8qQPLoGqVg0fHs5PTBSXhuP3Zjz/96798cnrkFAEhh9qlNAApwe0wJBY8Y5Mx9woIiIk9+wo5IAekYOTKbgREwNKIHsEIiQkJQc07qMKQ2oe2Ex4YuLvteO/mw5u50A9v1/IghxWrJf9T75tMdl/ZMQLvxJKZEaFNjis2kykFarqQHjqQJh578zFv8rVDmWdmhPtQ67uf7gPcAPePwyveFsM4tYE12znY7r2TewXzwSipo3R7/Xtuhs1KB2QwGoFkwKyu6999/ofvXr35+tvvcgJ2ntmrKTpLgF3fp5SAOQMNXd/GlMWMyDmfRVSsBJHUCGBkRwBIRN57HFPci66giEaERMBc4s6mqggQQlgu50bmnEtZY4xa4I8gIwiYqEiChMCBAxMYkRmqgHMsIuWtaFTLgmPvJh2GWFeNiJTCp7HY0jvnXBpiTDFZ3KXfI3JKQ0ppVjdVaCqnKjAMgwE0zdxxAMtZM6AxEqMDo4KJebhdp29hD32C+wTGDSlwVwbv/rZbH3GXTW2ACiNSBaGpg/dJ+IMC2huC+ZbGd3gTt/bc7q8fqLy/Wxm8NR56dzsfY+n5bVP05e7twV0yu7n+rWnvVVfhQPoeeM8O3N2j+atg4hhT2663F3l1cfnd55fffuU1/uTTT88uW9dWMeUh5e0wXK2vCnlQ1QjzrDkSkW69spya5VE4Ou5N6sVR8LPgPZlG0P5SN9drjashbpGoWR75ZhaToEdmBkxtl0zFRAlwsVw2TXNxedauN5oiNbMcewAKtSew68vzNPQI2lShRHmLdlweMFRNsi7GSFOfGSRiZikvav9OBAAMSsM7QjQDTWno2lXXbq5XF1dXF9vtVtWOFkvfLFLCDEHIba4vc9/362vS7CF7BPLw+Hj26HTpAw19q3FgoqPl8cnpcTObOefATEQ8ewQ2IA4VlbpjYENDozG70EBiPp5BaLhLQgRHweV2bTnXmp4+Op75yhFyHURE1XBMTSoCprQR3NEYmk2FA8XJyEQusKuBK3QeiUvzhbIxkQiRQdFKUzO8vdn+C8e4V8ceYocb/i6dIozh2IekBR3ML+rGjQvxNHaJSLt1uMCRgOJOqNvoaUODWyA7dxnZ+PvDvrf3Wo13HVTvPvHeN3Dr4EPWwgfyt3uXeh9XoUMYXUX4h3/6xS9/9Zs+ZVEA4+1mC0ZhNl9fr0Qh51xVVdM0m213vdkCspQ0MWQGMhOEUZMpLUWK9VlCv5O16ssH3aXj5Zw1iyfu+x4A6rpeLBZVVa39dtt3ufKi0HWdgYgkLAhIhgpZNatmRC5tc72vcHJDOudUKxEpfQeKo7tYyKoKYCISTVNKwflye5O6AIBI5IauG3BgZh/q1A9d1GVDL168qKqKNBpkU2T27Aiz5iFzYOD3G74f/uFuHbnV2XAnnsxKxEfMBJRBQFGJSxmS3aAnmPTQDxx3xe2tf5Zr30f5u/veR6TuKhR4eNb9ZdEHtfAP3jgBGALDFLTbmc67LOgPfuLpxnZPMUkZs12Sxfjqd3PK3iqtYRVktBIMWERi311dtuffxqszl1rv3Sx4Rqrr+tXFWUZMBK8u3w6p91VoNyYiYgjZIOXa++XxsW9mWVKSbNaj5m6zPnv5anV2TSJmUFWVa2bzkyNwPqsheiAK7I4BQUTq4WjWOOdi7DXldrOtnAc1z+TqZrvdJrPVaoWmwfN8PkdTRhpR+hFVraoqTTGl5JnNTER2pYrTqx8xm8wkcAAA1axWWq9pktgNW/a0XC6Pj4/Z1aFaBD9PmZE8uGrTbq82m+eLqv7kWfro8XqzWXebPMSKcXXxFkyGTVsxfyWy7R7//J/9Zc4CBlXdeHY5axStgVLOaojsEMXMJKlCBrVPTp7hD0NrLqoZpFkVrq5WeegAkgNBZAOHWEfpUW25aIahK+J1jArdNJVgtD4JkQmZ2SF7YI/koOAR4CTHCng2YDZTMzXNpmJ6D0cwtMkR917+vlORH7bMdtr5B4VOJs/xAbImAAKNsCp2Zx0d25zvKAImBvS9uMqHjO+lpt/QgB8eJX/TDoq1bp24f14cOy+ZGSKYKY5w//d8qYN/Hl5930R1N+22LDcCEC01weV8QhB49epVjDGE2WqzXa3XQzID5DY284VaBuRkkLt+1bZDir5AXxkCgHMOlEUTqDFSsXY9OWYmLtc1M0HcWcYAkwfYRJ3jvh0kG5NvGi5V/uQpxqiAgGqKBGIEzGagKgioOWeEUQAjYopRrQhjX8ApVdU5qKqq27Y0lhR5RFNVySlnoRq9cza2/kQRUbPgPVHpC6LIIoCOmZnSEHNKlUPmAJjVrDTdsjFB/Z5Qws1/2r2/Hm6Dcbrd3huHnqeb0nf65LtYjRkojL3DRgWcdvNKL2BCulnXf8ex9b00vnu35rsmfwB9jash4x51Esd7hdENDwRjmxZUmPon2iFfuEljh3dId7Bt30XAhlgy2scuxOUOd+UWOsFyA5qCGVneXLy2fp03l2m7yrEdUn99sf3mu7dcn2JVpyjO1YLw9vKyHfpH9TEHn4aIJo7G7iKgWYaeHDZ1gJzffPvy+uwsDxkRXAihZnMGzoXZQolc8CVJSvronBtSGnIChCS5jwMRieWq8jkNjpbzKrz69hvPrg5+6NvKV4vZPKWhqMaI5L3vNtvg52aWc3ZEJcxQLoEGQIroEJFA1cDMck6VD875ZJBFyIXlyWnTNICWUnLsnasdN2Bu20UzDME9Om6OViHr8artDOH86vLNm1fX19cVQ7e6Ws5n4PD09JiR5otmtVpVVc3kRYEdhaoy1XazNe8k51KGL6oppUFTZp1xeLpYiq/A82q16rotx+6T509PlkElImLwVUwaQuWJN9tt8DwZlDvE05FJKVLJtABUABUCzw6Id32EinMKS1fMqaERABIxmkd24nwGNJ1248HO4mKn4tSwDKeUj3fGriYWcCucpIfT7pLjIXsqv45QaxPrAoOpkK8wlFwaJKqO/dPQuPDisTkSwB6wfhJaZgL7miIzu4FhUbSUnYNhfHkP+dwfHjvq/kCF46HxkN189/itCx04A97xud5x4V2/57G1MQMqInu37bsaA7sKOfWbiGyPT+fXqy0HX1UVInZDDwC+asqH0yQA4L1HhJLDzMw5JTP1VQ2oKRU0FRGR4HxBFT0wzYmQybGp5ZxjjMMwMHMVwnw+Pzs7I6IcfEoJ0UCVi4eDODCWHDIFU7EEQ98POWmSIndd8XuLiEiu6zrnDBIBxgJxY2LOcRh0Kj2vm0bBYoxZDESZWM0kGzGHxbzrVr/9/R+O/I8eHbnZ3KFan3NAa9iHuu5jRFQi2sUWyweig7rqQz3xIW5/19txy2ezK+CGsbkIjVjQJqKDqnNCCuDG5kgjBUhhK2aGyFbwY3e0Z3A3sHRbX7sb+9SM04BDlXnne9kvRjhhdcKB7qzl8gUhaIIWKEKsdEDPOROWKAky+5x6ADATJCNgQwIAorEN4yHOzu6uJkSF/ZGDx7lhGd+x3ctvO92CEIKhCEYAZSBWhILHjcrBdbFnIiYCNTTp1uecrvrVq359udlc/+7rr7746vMnT56puNPqmFTRaLNu+x7epqvzi6snn55WzqtqHLaEOZua2ert6yMTd7SMQ9euthdvz+u6IZLqqAq+bvtOUckRulosl4cNziWTLvY+UMXNZrMiIjebabtJKrnLp6enn3784te/+60nrCsfu/Zovnj65PEwDABQWnuKqKZ8fHzUbteFii6v1+yr5fJ4xFwtGd+SRLWU7RO7EMAAxADZMYKqGrCvm0KEZhhzTgqAUM+CIgxDIqTZvIkxescpJaord7T44enRZrMhIgWjpvKBq7pumkpS3qaOvNSzhomCYxZCTZRzavui2iuCIdShDpDnVbheXUrcNMvFSQXPj5+kx4/nTW3aOoR5U6sqZCVko8zO9noYAox7o/TqNQRGNEIEQiNTIHAevUfnjW6IFgQQMCRQUzAcExiENIMnNqIEZgcobgQIakCFFZKZ7ap93LjybdOZRoGtiKPVO1Hcrtz2hnpOfFiPgAc0W8Dj0Qi1FKEZgdkwtE2ohm4dnPOOUtbS/h2BBcwAAcim9oKT9CVEZGainZtNVQGYHExcHhWRaWrVWPhDEcUEZowqelcIPyBl97/fJdv7JLFBQdO8qYIcnkUHIJnjETMzm/BND1iwAhShu0MCMQBCnbSrO3zmxtfZ3Y8AmKHmjIhoOsQeieZHSwVoZouL1RqxDtXi6CSnNKxWK1VyiMycs8YhI3LT1Kra94MrmfcmoOYZDZyCOcfsXTa1bMzsCAFczjmw6+JgasQEyAAWfD2bzbq2ndUNml5fX283q+Pj46ryXbf1jhDxZDFPKaUk5UUNw+CYPalq3nYbcoHYS8QQXNP4lFIcRb6JJM2mlpMJICCRqKgKgZWILweUAwidrGpIAChiBBpNIOamaRJYBrhY26++evnnP/44am4CLqvaEbbbzWI2L3XhZhnHPg0jf3LOj7sdVErreCREJBy7KRxIDdrthDGaeLCjvHMl1UxMyRhBwYRLN0JyAgVF25MmtAqN3EEZ/rj87hq3RjGP9e6+/a8x8I90xxe+swfDQkTE0tR6WvZg8gEvuOcGvu8N3/fPCWfjzmJjZj9AVXkZ+u125SUF6U3ab15+AVm++vLz33/5la8X15v4/NmT5emj9aYbUhYjQdpG+fq7b3/08Q9cqCAOqetC8G5Wy2Y9tG1er7OmNiZGt5wvssp8eTRbLIdhmFVuvV5HkRLq6bpU8Jr7dktgMQoBupKqxti3HRk8ff60CvXV1YXlNK+rGIeU0scfvWiaBqdKPjIAQPbctS0zV3VIKQHQbDYjoqwCOPYGEdOdP48RDccu00UrREQugOTkS6ACiZkKa86kOqudqhq5iiEPuZdULefPTuax61ZNpapDiikLAKFojqlxM2Nk7x0HRMymIBlTjinllEAVJxhFIkLDKoRFHdbtwKkjdoHBGwVCripCE5E6eABAMBNhJAYa29aO6bvl2ZQw7CKaBJrNFEwAcRIXiGxjdmSRNGNViuFoNZIBGVlpGEykioClIyGATQ4VBJhocBI5N0D/7cDFfO+OLRkIh9SGDwA57SQEIiIw4FToB4iIBJhzLv2kASzn7BzFqDLp5EUg4eiQH1uBliasOgWEdnheh7lYI0vTG0cK1BqIHbY1O9SkD5/0rnXyvcb3OvderlXUjv0L3GPjPmiF7xjIPUuhVVWlqrHvEGgYhtdfnImYIamVTFqqqoqZu6Hvh4GD77qhbduY0mw2U9VhGLz3o20rUrI/S+fpLDoMW+fcvKnMrOt6MgghFMCiEEIItQGllACgpEZnU5ICwQgxRiIgBs+ECEROmBInM5OUs6RZHY6OmuNFc73aiKIyb7u03W6IvRE6dmqQUso5M1Ht6xijoo4gHiailnIqCkF5hGEYDDDUlWOWlMruJQMxjTE6T957B/l6k759s/rk+XG/HcKTuo1bz7yNvUNXVZWopJQAtey0qmpAAI12bXsR4G5C4l0aOfyatyzM3UHE0gCcpuQfASVFJElm7gYU5Y217mysHdnftXr/uHGg/RUudg/L+BCpbPvI6/TzjgILkzC+Rbpwmx5GZ5fZPXRyeOSB3w0sY6ksAQRARQDMZoYGDhGMZIj9sEFKPHT95ZuvfvcPx/Pqi9/9frVanZ4+zooxapgdJeXNIF2GNmsyIIKvL960kJdNw/0Qu7w4oaMnjzap3b69zG+G49MTE7MQvPNtjEpEofIhzBy1q4uu2wzbzeJovpg1fQvdZit9rqvKUnLMSA4ATFLadt650+PTnPT6+jq4arlcrjfXy8ViXjcMaCaemQxSjGDoXVWHighEJMboiYt+WjioTQoiSOHeAAAIPKHOjPXayGMTVABANUYCNDLIACKKOgZsNacUs8TBAXrkQdQZqpGhQ2JyXNfzRT337FwILtSu8kyMapIziqAqqqERqJYgk+PggWa1nBwd930Lar4qnoKKmb1H015yBPDOOdFsZsRjGv7BXhqpwu5QzbQb+cYOMYQ7oRUkAzWl2ztz2t4l+4Ynn9AeUQ8RJ6yr+11TcIDZhA/70+6Sy0OkjVNgyDmXBh1jDSUXL9QpdTtNAIp6MeZ/jLc03cDubRAiTZzOFMEMaZo2Tp7gr8enxxs389ATHTDHexoY3OKSH/Lgh8sejp1Be2vCDU5dIg425e7dt+A0v6gX+6sE72OMUPpNBT+vFper6zdffrHetN2QYlbRwTlzLgxx2Gy6ZtY4pJSjmdRN8IGzKgCIyB5FUhQRDZnMKufndU1EpRLXhQpLniQRmqlCH4eiVSmiV3NM6/VahyGEsFzMHBKagZgLnhlDqAM7AHDEYNYNrZkZaMU8f3rSJT2/uOI8HC8qIJfFsqoYgiMwzJolZgBAUwJ0BGisKCYIMFY5MnMIAbH02ZXiR1aQArGXUyJ0VeXR6Pp66DYXiO7PfvzJ1ab17NjTMPR1cJXzaIKg5Byo5rz3Y4077AD2fLeR7pW+h99ulCyqO0V5R3q7yaoqAooohiU4cweI4759+V5B+0dI4ndQ+J547F00tptfxmGc++Dn97ifWxcy2zOvd5x155ACGI3wnQwAYMIAquqdc4Zdv45xU0PGuNmcv5k5+rv/+B9Wq83Hn/3w9fX69cUq1PNvvnlbH8XtkDd9Or9eX3c6b/Crt6++eP3tX37606pp2s1m2LbHL568eP7xNXAeYjJF5nW7bWaLEFw/tOvr1ePTE/CgwzZ322+/+mJ5fPT48eN53UgfIxGIEiKqsQGi9UPySKdPnoYQ8thTxQMAGJ2enha0GiJ2zvHoiEMw9N4NQ3d9fb1er5ezJY8mEahqKbIwAMLRqiNAKx3P7+QmoJoiMKKagoGVRtZZJEZC05xzjGjYeCcxbVetd2wh5CQAwIQcqvlsedTMiZwLnirv2CuYiJAWJ+9e9xq7kzIxsEWrQiDEHCM5Fuip8gBKAoaiqmCjsk+go8ex7K4DM7SIGi1ZZQd78gBtcWLQd/fLAbtVAM0imkx0Ejjv2nh4w8Hznv15+LYPucn0y23Jccg7DAxMwXhnYe+csc45HZSIFBXGZEOYtNi9XT49oNH+uaYynulmD9SIAzN3vDvSOxT9Xu38ISPhAzX7uxe6731+v3t4NxPf/WX3W0FmRSwV83y5uv7D51/++jd/EINt22dVMyxe3xhjSvB4NhMRzLkgR8acYjcAU9tudxea/E9W/OHMDhGGIalqqJwjHtEfAZJkiWKKzOx9YCYAQBUzYwJP7B0FQiIKTEwQyBiEDDwiMVUQskkIIauuNq31/bLmWTWLgkm0UxEVh+yDc45y1tJme0QjJg9oqkQGiKhZTBUL8oZZHgZVZWYjRCVmcg5TSqiWk0rKJyfHfbf5+1++ubxev3h8/NGzo36dm1DHLmfYVh6QIKs4Yl+xai4p4eNHwVFRPhx3Lbd7N8kN+bU7roamqAgqBenckEUyADnACTdqF3Z9WD189976wD/dHTv94nCj3/v79xoHpF3wAfb6+82xi3t97xSJe0mouBzUCMABKqKWKJymbMgeoQaRzeX61dfrt69+8Y//qeu3/6//5d9crNtf/a//6/nldcqrR4+fpS5uhtRFGUTZgaur11erf/j1r3787JNHy3lut9dvzj275XKx/OxPMsEmtjHG4WIVZs1R8H3bfvXq8y++/bIKVFV+1swkdldvelR58dEnIQTn3ND1wXNMCSQ7T93QLxazup612z5nDaEuTHZW14tmJpKJqFSPS8qIqGo5JZGcc059rH29WCycc31KzCVTCcGIcXJdWmmoWXKICaZ2e8UJiwjMo5GcczbJJgIque8copmyGTETY8wZTE1Kx0moHCMyu9DUtSPvGQkZAUlFDVBUVakUXh/g8hM5QzYwT8y+mjezbbdhM5XMaAgWUwwVFjakqoiGRCo30lYLFwOYag/2m0EJbmtvOBHagRVYTipAjwCgE1z74Sa+p6B3FPNkAKY3XZd3RMWBCLxPv7x9tZuBSUScAjc4mW4KoKV2lBjEtGD+4YizL+R4F3w1BNO9ymHTuHPkluf1htlqZjClzxJhAd+9pUzcfYS74xZbfO+4l+fcd/CBBVFh4iy7BLqHZ98aB3nRKg5HOKouDt9+9/rLb172gwhAUkNEck6yqqrz/ugYCAuFqZkVv1RBcj5UhkbwXgIiHLq+27YAQIwAEIch1L6u627oS3kIMyMBlfwc1aYK89NjRmI0RmDU4F3lHZoQkjdlMM3JlJzzAOAwL6oa2XvI3lJU6GPOfR/YA6NHyoDFRmfPGNxkpYtMu2Ose3TeOycisetFEjpmRpFE6HXKG2AUNNAswyCDaCaen1Rfvmy//qY7Wbz62Z9+sphVR8sas/imrpyPw9ZIa1/HHB25qafF+KnQYCcKDyniA5wuY90HAaCOmc17+a1gmBUNDUjpPe0IiyF3iwV8oET8I6TmXUm8O37vZIDDmeUXhV2x8/cZH3zF96xA080TQLEJUA3MGNBUB9lKf8my1u7q7Td/+PJ3v726uPhf/s2/GZL8wz/9IgMOKX3y6Y/JzzZR1+122w0+1LMqOOe21v/2yy+//fmbZz/52fL0pP/u1eV3Z/22Xz4+pXk9PzrW7er40WnFhIhPZo9Z9Mvf/27oV20q/BLaQaLk5dFJCIGYkyYPrCCAqkBAdvr4UduXQHVV13Wx4RgthDrnSISECFDSbVBEY4yqUoDavfd1XZcU+xDCKJOQbvhnzNQO0/oIUaHkeJS6WgRUQLOiKaKaqUTNYESOVXKBvvNV6Lqu1J7WdeW4JsdNNaeC6SaqcRB2BqSqqKaqnj1RghIEJSYXfFUHzU5zTHA0P8o5m8moqxKZGbPz3iORihGOJXBMo/izAyNPTZ0ruc66e9JR2BQxfCdICYckffCn8lBKZGCoeFhWeK+9O/31oOK8/Hu80O29/ZCn5+6yuw9XeHURweV3NEgwwhPqNKfgaBb/x+QYmNYp6WP3O9jNpuzOW7rGjoAniT1ZbjsBfyhUDgX2Lfvj5uXuvMLb97N7A3fnP2S/3jvhcOYfwU/K8N7nnHJOrgoueCNECovFctMPLKCSraBAIjahCr4mxNo5Iur7vpTP0tzlnF0VRCTnItoAEUvTbpPR0VVAVUNwBfRq3swQjcgRAY79qYgJguM6OM8OTQmt8q7xzjOZoSNu6hDYqSSHFJxHMu+XWWJOKWhyFk2trutlU7VR+5S7aMkgA4lBVtDSfmQsSsUMBjB2djfRkpU9deM2RWBmQCpqmeaMyGNqIcFqu6nrerVpjeDoqF6t+//wn19++sni0elsOUdi9scz5GyW5VBJPfg0f5TR985dgWqgZjDmAgso0IMx4F3yu8Hk0Z4kuf1XigEDwLsdxQ9L4vd4Aw5O0DtevxKJuT1x9zgPPdQHPuyBY0pK9E4tgZqKEtoQN931q2Y427755tuvf/fm7ctHTx/94pf/lBBfXVzElMKsvtys6jm8vdxcr7ZDMjRyGDSp9/Wbi9U//f7zT198+uhouRhSv7q+Onubht7Na543Q+prV6lZmNXVYvGDo+Pl6cnlm5dv3r4aYh5SHrJxTqJJkYGNvctohkhMQBhmc+ccV+KcK1EfRBRNjjCrzmYzVRnZuhRnY+l6a865pqoBIE9mFiKWTKp9WtIBCkoRZSUrt1Trj2++tM9ULZlHrKBmznlVMjMgNClZOMTMC++dc6UKmalSsLGTEpFpElVgA+fRSneE7INn9nsHUUHJMATxudt4X5lZygmZYuzJMTpGIAMaW16ilTbAMBHnJFYRAO727UREAuN7DR4rguR2w5yHdt3uxR0cVQM47D4Ch/vzpuP3rk28Yy67PW8PoNTdtOF3lza0UpKApYjTOdfHAQCQWXIGKFEHmoA2FVSBR6PwrkTcCWDYZ03fHuM0M7tTRnjve3uHGP4QNfqWdN+ddc/lDnA3S1LPrdMRsaTTTfjh93izR3kCAHh7V+SY1CSEgMzX6/V6vd1s27OLVbNcMEtphYIGIfjimy2gGjV5QI1ZvfcV8TAMMe/z20sORNGNQuUXzYyZi6E8nzfM3PetY1LLDOaZkaA4nILjuvGOwDMHV8+rUAfPCKY5OEID79kzWyJGZGZQWV1fHJ0s50cny0W9nDUCuO36796ezeolqILDgKjk1DiLClhrGSYFF0v/DnZEFHOfY0LEuq4AYBg6U3XOZTFm1ixZzRMDgYo4h0DUdZ0ZPH1y0q47Ucqi1y1+8+rNyRLOLq5+9PGTF8+O555SFh+CiRoUT+WIsc5gNvU4O/wieJBDgAcUcq9quzuAiGPbM1NANhM1g3wXiOPwGt9HvH6gWfxfMu69xN6LNc0pnPGPUA4OVYr3Ps6D649YClKw48wMVQo6DFgG65z28ey7r379D6+//byZ1TEO//BPvzDnT59/dHb5h5dv7eOPuRVdbTpFqqoqJS39nJfL47eb/vOvv3l1fr6smsXRkkCHlNREc+YYnVjOPXp/vHjcZ+kkNcdHhmpVcCEA8ZBizjnU1Xa7Vc3e85gKiJhNva8AgMicc32KWDL+B2VmRMumkjIiMJGBERQ4LQQ0ZmbvNAtM+K4pZ/bhwIEzfRpyiKUYTif+uU+gKz1QTBTUSEkUQSCmxI5UIcZERFVTq+ow9E1VM7NIUlWi0urQSqsf1UI2jqBITxQgg4J7gYAIhAqYsvQmi2bebtZVqEOoNWb2zjMDM+JYMm9YEEyLe8ONSIC7J0IHpQHZiDSyV+OKl89uAD0+uJd2xt8OVHkSNtNmKwLg3Tv4YGea3pZ2h7byh6vRk8lZYsAFtNkKomf5U2HcxfC9deLkA2AUhKBwE8KzpEUfStzdLd0g6f1qpWiJ7hGCDzzFrSeFAx/bOx4Z7hW0D8+8u9ot8f8Ozf595yoiMrHzdHZx+Ytf/Orr796kZL4KqoDIBIgIIbjFYuG46vvezIahcy6EEMCy6Fi1VRoYEHEpYShvWHIC0a2uQwhVVXnvwURFHaMnJOC6rpaLeWBnokwUAmkenKeZr5qqDp4dgSN0RJKSiBCaA0NXjjszPP74I9HsCcNizqbbtsfKf/rsyWrThabOFfZZ1l1sYwIgdn5eVYNIzjiQWsyqJmYAwORdE1RSP0RQY+eIIOdoCMRkCqgITKBmCsTOVAI7Ijo/u1oslsS1z3Z2sVoufbT8zbdDzq+Wy6UnL3Hw81oB8A7O8Tu+2mHHybtSYyek7UbvXTAzMlA1JAMFHZsxHF6DCMbV9/RQANzHONWEjUL7jqH3yG/Yk1OxEh5KoLh/o+PBFR+6BCKW3t1UeO8EDrDrroVYbITCGE3VEOmusbK7BE5jukYRD3Tr+I1XfNCT3MzMFIvVowSqZkKgalHzgGSau6MaXq3eXn71+7NvvgBMHKrL84vj02ef/fSnv/r9F3Vwf/XzJ8LVy1dvmN2wTTFn7wMiBq7avnOOX5+9/e1vf/vjp88rV5nn5YsnJpmRQE2G2MzmXNer641vZo5dMqgfPXp+clLU65RS3267oWdGUEuSKiYRExFmXxCXHIchCToe6w28K8DGMfbEBAjlnRsiGDnnQl2ZmahOWVbILhhCAWEAomJdIQIh4fj2qDhTHflR7qqaosrYW4gBFYAB2XuzWdJkZgWfXRHQ8dwtSkVFHTwTS4pRVGNyIeiUYYXM5AIzo7eqEs/sYi7vQcUCM9fBK4GpC1XuxbsqSV9akTNzlsRc1/UMTFQFuGBnGtJo/x7sTwREHQudC46S7uWoKo6OAdv5kxERp47UquNypTLKbpDV5LdXLZVi4w6H2/L+hqt5opVDI2xnex0evI+mbntZRw2ADIl2pENEIbhOlAh94O02IWJKaRhSscNKOygYk++YiUUE2U1kK2M7BjZmBjIoKL13wqQ74iraTCnXusMQ3qVtqxZE1LHnKwCUjXqoMRy+k920uy/nljZTRhEPhwGvQ+43pqrZWDN6593u12RX8AyoxNR3/N3MVKWm5vPPv/jd7/6wagck7+vFZtt67xazuVjlfSVinl1CSkN0nlRzSgpGzrusVjKfc8pGpa2CK4oyApDTKjhEBEuExESqyqZNqCoXHNIMoQkuMNVVBZaragaorODIPEMp/yUDqj1iYCIuNeuoBIxoWQUUJCfP4Xi5qH0YckJy22W6WF2vtgN5nFfLqLbZtG+vrxQ9heARq1mzxaEKYdv2ZpDNuq6TnJ0j51yB1g91leOwWXVHJ3N2kLNUVR2ltWyq5tiGFKvKd9uuquuYk7FL6lbrdLyE80v59//pV//9f/PPT5ePun7tEACAiweifBM0xD013RJ2e2LUA4hQVYeEY1c0GKFnURHMQBCBTIvrCxHEspndwIK2AxdiCdzcINeb2/K9SuItZfMhaX3vOFRaP8ASnX5Mg+ge1/Y7qHT3Nm/Q2Fj1eD8S1gNaLVrB/gEBVDJD0FIyG2O38Lp5+zJev7m+eN13W+egbVtRffT4mFROFnP3gx92xv/5l79hP9NsKYkaOQ4557bfDjEaYa/515///sfPPv7Zj3+MPpBlMRPRNAyjUZktg3pVQKeEBmBTu00kQ3ZEZCKmajkpUcmLByyNAVBAaCpFHXkfKBEROURjImDzgIhYIGR12he209gKyG9Rzif0ZESkosrAvizH9pttdOoaGAITApAheSTDCtm8ZBPLJZUNAJCMiDUnzaIgWhoLExgzOafAiITs2PsQgmfnACBGo62qKhgR+SpU9ayy3F9dIHsXamRWVdOMzKCGiCWJ2jEq7rNibmyD8X4MkGDKw6IRZXScs98nODZVn87d899y4mQw7l+mTvk779i6t7bxLfm62847gf0h63zgtQ7HiJbAu36rULR/mCxaJhoRTMcYkBGN6fF2QE3TCzmktd2z3y/kDo+8404PDx2S8F0T9iFOdfcS+3PvxAI+xM4+HMWjoKoppdGoQNSsBioil5eXi8XiRz/6yZfffPf27Op6feE8V1UIzhkxApfcJUSsal/kNxGoQNd1WQ1gLO1NKjFGxczM3vvgeV413jMiqiQm8ER108yqENgFJjatKz/z5B3NAiPBrAkASoAMWLBbij3tnNu9aDQwIzJQRDYD54iIkQDAOwYzNZvXTnPjmVO2ZJQVap5V3l21XZtzN6S4WQuRAQbmLEaeEUJKKCKlaTEijGiUnLfbbQgBkZLEUFcE2G3WImoCmqQ4bJiRvG+76DyHeoYwrNv4j7/8w8/+5OPTo0py5KnxMEy2a/meH/4RHxqHynTx5BSl23BqxrDfK/t/HoiZ8hcEmPK7bivXD4/pr2PflfeK4UMGd5dl4ANe6B0kye7I4T/3d3JHjdjdfNF8d2ch4mGM7R5qLMdvLWWkOmHnqoyN5zSg4oyhwTZ2F1/86j93qzePnp12GtqYPfWNp2G7njn35s3F21U/q2brPrNbEIoilTDPkHr0XDfzdrP5zXcvf/D5H168eHG8PAJ14E0o9dI7QueCIWPReSECelQGJgeEoAYcOCCllBOqmaqYgoxWfhGBhKRghCM+u4EU1b3IaAIgYhwh2ksGn6jZbovse3fYCA1FRKV9UJkyFhVM36iIZEJnhABqpgWsioiIEckMgIAUIAqKmBkgGRsQYjIc05JtTFnULB306GsOtQuVDzUFD2BZhKeuujtdVbXg4ZKvG8XRWCkpl0ZAxmCUkrjgcBQIBAjFy31rP4zc1nZ9+iavi435u2R7BJuysYu2hKP/+WAn3/1lfLfjW0XEkqaiU4t7uI8udn+5V3E8nDvNfMgXxYUW4D4JBJPyWnLHnJtKvIpUOjiLiBBvRJqpmJugDK68BwVBhF2XoYOL7EUv35DNB/HXe1jK/t0A7LxxUMDw+OYpZjameT/Amu4+eXHyT92Z9u8Qp6fbOxCm+zj81nfXLK8IwAiMS8css9l81jTNf/rPf/vNt99VzfHJycn5xaquSUSaUDki9iRiGTTFnorCRoCGamM+sU5Rc1UFMSodC8lMc0p61W3qynvvK+eYCCVDJmKaVyF45xFmTdU4FzzPmwrRTCMRMpPnSWCNFD1JBBttfTSDEdWZR4XeDJ0nwCQZRRe1r4JLGbohZjHxofF+iF1Tz+nUX602g+h60xIhobX9QEAOIKto6U+MCNmUYLmYD6nPOYqBd35WhaHv67pWEZCoqmIQ04Bo7KpsSua6wTyRB/r6u82TR9ujoyVYpNKIy4zGLP/dJ71vPzxAC7voFIApgiKY4sFGVbVsooKATITm7q4ybq8ite+4uT8oDHWfx2b8OjujZ/rLh2jlk2Fwd/HRSr8rbu+7n9HUuHVXhz/hPt5660FGQrpzfHo0KuCCZmhaYo/Gpqez8PqLX/3i3/5/Zmw//Mufrzfd42c//Pt/+AWoeKbNun/7+uyv//xfbJT+3T/9xlZ9P6hz3gyimhigd4jYDQnQXbfyD198/uT587/8yZ+ezhcOVNRc8EUMEJIRaBYV8ORUhQs0mBoqMjplJ+RswvI1nPpAEwITASACTo3SJhiE4jYZ7bwyxmDEzQ6PtneKGk662pTjWpS48aWN7llEHiUf2+iLZSgRRwCw4q5ERHDoALIBIxgjFGBnh2PDlnIvisihcs0sNEehmbtQk2O1bMMgcRiRSwFVNSUREWAI9UzjoHFgF8ZebFiEPoJZjLGZu1F1e3AQgOJBgHPUXwtCAeiIM6OjKGXc+yuniDjB2Lsbyosq4txgbH4HUPrQTXnAo6P4fhawM7If2qIfPg7JfwdpjnvtYu/AwMllMjpdR1fe2HCHpk4SiEjF+z49FwEWnHbEvUsfEQF1lIcHsaFbHvL3WScIUIBo7zFJbzHQ6X3au9e8ddbNNffn7liKfs93Phq+U+AQCZLEL3/91eu35yL4+RdfZjVfV2/fts+eLeezOsYIaqDGgIOIcxhT9N4TYhr6DOq9Z8CUkvcjCLyqiqaUkiIFpscnp54xBL+Yz5ezxiGQQcXkEOeBa++Ws6YOnklrzwaZqC458TatVTICXagPt8T01EZESK6gqyBiaaSGCdWZ946IRaHtY4wxiVZJ8+lRl3XIMg+0oDALvG3j5WodENQMSCvHAja22kWMMS+aGdfzbmhzzGopplZEmmaRYwbR/x9rf/osSZLkB2J6mJl7HO/IrKyqvjAz3ZiZBTCLXZEFubL8M/ZvpaxQ9iO5IhQKuQRWAAwGPeiruuvM810R4W5mqsoPau7hEe+9rOwhvFuy4kX4YW6mprf+VFVRtVZhBlRl5lLk9m7XB9qug0B+8+H+81fXm47MqsfWvG7ScELmON0IT2q0z1PLE6tvZoYKYHiWBb08HEjBb/PpBPR4BB8Z33zOj9Lox18SkQGlqeLTcf4ImE0Hmb9cnrPkJmdffvqBiI60iJpEESEj1EDKWvbvX+++/+pl37/68novdvXyKqV42N+762n/cP+v/8W/+jf/0//lf/vf/10XYkp6dXn55v3924f7IY+K4G1DoGgVxqC/+eEN/fv/ABz+7i//6mVKjGZouRapnJhDSAVAqwYLYpVqRQoqZmIAxBRj6LQWQFat7cUnt6GHLfzlwRV5QAAMIQBAQCAixoCIiqBaUQGBcGL6M9slDnPdq07SdCHIqMktRENAwql5NS5BCF1eIgYAQCJkMhBEY891xIAEzEyBEVnMBHB99YK6FcZV678bIgOjYR7zBNzbeAEzd10s+iAEzLzdbku5zeODEMauByJUG8cRcYOArcsPfEwBbUx8sT9VlXVCYyedKASbL2mBfTHzq5kI/UxXSRBRcXr+kT49q1YWNzkx6c4Vx3bOE5kmi4cuPy83yLShjFz8yyl8+nwytai/ay1gZrjYj8RAXss0VRW3FT4qwYoNH2t+ui6eMpklE7z1o/c4A5qdCqwBJj/JdPkiOntyPsDjCkY8Jt0sJK5NKKEnQrud5gD7DK2n7jQ2fNzRfL5QpJpRCAHQVJWJY0rf/PDNv/+Hvx8LrDdXt/cPH24PIhACXKxXkXisohhciTUzdz6f2SJem6dWOTARl1JkMALcrvqLy83lZk1mCMCAZBCIukCrlFYdb7rUBb5YdZHRtDCZiKYQfbVU1dQICbgpXkudD3FOQ/KCdXB3EAcmA0BvmwYIFAhoFUuAkoUgp5eXu2F8d3NrJEMZL1LqKG1XLw+j7A/jfsiVrZoW0WqGTCB4e3vbb/oQwoax1rrb5cvLVZasqkqoBsRkoESBDMjU0MxsrAIHXffw3Zu7L7+8u/zpSxADrW4CGCF4EeMzq/Wk2MJJt8ZJhwYzRS+uQgCfCm1mp5mZPCWAn3lmm9lP9onPS4BHln7cAGcB5uVnOLLyf4raDk8KTnMR8zFZDqe/LvnLY9aGjy5BRAMlUwDSlrpFbIAiLIf7119fd/D5X3zx7dd/+Mc/ff8v/tv//r/8+h/X6/UX11c5l//mb/7FF5//9P/z//5/vX5z06/Sq35TMqhJKUURAydAMgWE8OHmpu9Wd2P5hz/8oQ9chsO/+sXPv7i+hiU4ETOIFVdOzRQb0qc5MnyIiaGUYsgCggaKRiCmxhjt1MiYIsFo1ZAMwZx7ThNCc6jijN0HJDs1jmcmi5NPEpCJyFmViHirKEIGBI8ROgAQTPRARGZNWHehEyyqakgKRBwCERITBwyRKSoFQ0YKprWazjF+Qvf9qFbJaGrKzGG9XnVY692bw52ZRSZFFpMyZudNZ1zznGIX9mhzySHahP5hoAbivgI6nu2XaEuVn/qEm88BegoGzkp0kz8Lv+pHaPiM/mcJ+Slb6ezOR20AAY59vU5261IAL79ZGq+OPIyToYwEgLbAlp4ln/9t7oxFUPQ+jmRIjScsBvl4Es6+USRwZKU2inPD5fxlp37V5xMyv+PZm7q6OF2gk6oDZktv2Y8zMTom5QmYtYw8sz99/XVVG7MM+QY51nooBf7yL69DJLWKDjPM5LZdrTXGWGvV6emlFFXwpDPPO2Pm9XrNjKvUBWItNaYYiQkNRIEscdqsum3fpYgRMRAwmQIENiRyv5f7ukNIOFk92cvPpul1AQNwTA2ZPAQ6S+taq0lGRDbDECIioY1VNlfbzSochvzdm3dDrQCwXq36aGhFqoIAiPuelYmReBig1qq5dl3Xp9XhsK/VczERmKrUgGSKZlZK4UCOrFOrEhlSejjk27sd/fwLsoI6e3e8Utf4RBeciOSRG3VOxZqJ5GTFz3qxICKCp66GyUqx+XcAcCf7bAEfBzXtvCUtPrbEz/bwmfQ6fZOnyXHevbP8tsVP8Egcnn1zHtg+uTMvhnEs1fgIRzv79UnFxz8wgJkCVEACKgCjarZxgP3dGuv+4c1vfve/M1MI9be/+c+qcPXicvPi5asXX9y8fv/3f/8P3795n16++uKLl7/95vXvfvvN7lCB46rfMMecy/7+4e7ucD9AsUEEDnv4h9/+Ydg92DAOv/jZ1dVF4hBISx5WISQKQAZWAcXbiyC1FgeEMXDAcYAQQHJ7Bfd6mWDL/2gzz6020wJNAqGB9dqUgn58fe9QT83J6PVNDsbp1HIkGDNBNCR2vt6m1KjZw0QGhGqIQEQGol7OTa0lV1tgCmYiYGjASMgBmQWMzMg76BECoSmICHhmigG7IewgQQYpEKARQAzdqu+6yIEAzZhINUsZAVxpbcVgMFGji47HzBphapqrBmqN40xd5WZidUcDGdhkE52JMSLy9BYEAptmDxHxrJjn5OnP7a8zq+jj1L48FGhZzXxc65YHcDw8BgyPnEmERMxMx+7ubgQjMxEqKGHzhSAcZTYsmIwTns/H6bhPLb3zb8BVBpu51gT3YdD6hZ7Z0Dh1jjr5ElxfnMCkFijxiKgn5vJi2BMo6XwHs0dx69O+kMw8GYpIBMOwv72/e/v27dsPt4AdUj+OhRh+9uWlz7aqTr19LOfCTFUbDdQq5mjs1myvruuqR22I+xgQUUT2+xw3a4aUQkyRV6nvE61ix0gN00al+cIZKCAoMnVmBgpm6JTpiWLQ0L7MEExUtUEhIYUJzLxxFd/+zBwCTbmKEIk5xZTCOJaxFIq87S+2m9XN/cObD7cP+906rbTvQHWf66FUM8xGBgJom6tk1XYHIBPuUiQeDiWlBIyIqNmUGsOoWddrpkTjoALAIWbVnuDuYZ+ldtYAmn05FAmb8/SMIp6wyubv2zzAY1pttzVrGSvgWdOAp7trYpHMTQD7lpoIxmZhPu+Tx+r2o+c+MQ54UlP48y1gRCQ0cR6HOJc60OS785BVU9qn8T8/fed/qs46y0Lrn9SRxweZAqiaIlSwAeqhHvby8P7Cbr/6/X8MXby4vPr69bdff/XVL3/1q/vdcPXF5o/ffv/h+3fv39xsrl68effh1999/+Z+kIpdtyYOQ805V+LAHE0Pm45UlAjWq6Qkb+/uvn77BkB/Vl5db7dqwkjMvFpvIxOhecoiojETetYCQQiO6Ezo8MwG/nattAqBW1MKbn1eHQoAj/Fd06MzbV5NWBpboi1AP7ewnU6emIKLITIzE2AKSK1JC6pZS65UZlZFRfEwIYCBEphkKQQKTSqCsxtQtGpqeRykCIY+wXqNZFZGy6PVModGESAFWvcJoJZc9uOYSAGJQiLCnId+HQDUM0sREIxaxpgL40Y/DXV8KeoUXfY2tXUiKiXjkzwsr2E4KpPq4XWZEpdotqWOE8uEqK2b1DndnVX64VJ5fQpd7pnj6Bh/6pja/TpC4amnhAg4OIf1tk7WghEE7FgvDU/LJZMxAhLBoopj+nAs7ZvFKqKRgdI5WuxiDLNLRk//PedXjy788W/wKWY1ax7PXLXQJCYB/Ggyj0cpxadURDx77f7u5o9/+qMRV5W3727X6wPHCAiXl9uLzTYPexHhQEMWLTqU3PedG8FEhKjjOAJQTD0iOlI0M4cYGDDnHANtt9vtZtUBdikkxACWAqxSCgSgNXAMRNiAqFqWiBmqZ/AaIJIrVU7VtdZ5fqZNdpIk6BTimrsfIsKe7iQCZshMaOtVBCs9JSW+ulh3ES8366HID2/edbFbd3SzH3YD7Rj3uexzUYSU0pBrSkTIu90BiLoYvTE3IagCMDBzCKEUAdQYUtWKotXgcFM/u4TDvtSxRhZgUHL+A4RAzCYV/pyjTcICAGohyNQcRqCtv1mrA15sVP+JmR00EEAVjIDRMz/4pBfYUl1d8JqFF2L6fjrIzOhEZrdswUnQ2xy9dT49raURk5l5Iy1oBR0G3m2RnWrRhWsIQQ3IgLSpv549RGCA4BJluVXOhn26o8hF0yTF3WLWZpogupdVQWdBwwwy1j5s8pAN6nD7YQu43dJX//HfIz/8/K/+e6CL//Lb/zhm+HBXLi6v+v76cMC399/cjfVwP7y72w37QgKceuWoQGyWVfeHh2HIihCRqtVS4V7yZy+6tF693d1dv9jc5z0PCiwpRN1bBV2lvgyVu0hApGoyRKIugplKGW/e/oAmgbnWDAAKgsRVC1DwQnGP0ykoIVBzkxK0vCoQA6LArNjiu0Z0LBQ1MwABhQb74uvs4t1RJbGxSFUFA0Y2NTQIHMigiBoQMalVAPFHB2ZVzTkjSIqMmpGwQ3vYD4BhFa51lGoFVFX3NUuttYooKgcMISTDy7HEGCUfHMMLAKTkGFCrhC6Jln7zYrPdv3/3/fZijaRWSp8uh/0hbjupukoXWmqFcWKrrcvcnKrh+qsiuseR0SKhGbYOBGyIAYDUwOWKthQVUDA0JCI1Rg7eH6pVDyMoAthcXgmIqs0pzYgIjgRiTVtq1Nh8DkcD76gweqTflqLI14e9bWTLW58+4FGGEZBXczMB5KpMEXGc3ImZmUC0VkFEQlfrFizp1Abyz6rCHJab0TmTI2mrGgKZKZIZVIBAREiKC3CDZbtubL5xm3Y9IGJVcc0NcT658YTFE4+lhrOWOZ3ZPkxrvuAN7T4nTGNmWhO+4zTDU27t4mJdqjrVFJFRNQbK4yEE1joGxr5b5QrbbTwcskh+cbXarPsUqLu42D/sDmP2xYoxDMNoaIg4jgczjDGO43h3/0AIIXWqWosKVzJITBcX2+1qDTnvx3282HSbTReZsQYs61XXBe4TB8bEXYhMgADu6gZ3KnhrMwGdUwHanlIDNPBggdc+EM17X8TMnNSDo3E5xbodLyJmQkQhkFgFU6ly0YcOIQe4/MXnD7vD7WHcrsLdob673+POiGAYi5SaQqxkh7EU8V5nQAbMVMe6Dqhi1dSQYh+rSKlDiD1RGYfSBRgHOAySh/GLn1wMwyAmKZLkHCmYKBnMu2gZEFbz/gKLSkIgVWNWtwWs+R2n3WdNC3GGZpMv7BgDfk5BRmyRZU/oPQvsLU978pv5X1cBptE8UXs3ffnsMI4a/SIq5tmj7ooEQ2mOHnPTqBVlziGrufzjU11wikRgNF3XrjUEEFOcBPPCS8HMoeuCmUAlwn69ehnwzR/+8e7mw1/88ldf/uyf/V//l//7WOFnf/XPbh9G7PTrb3/4/od3r292FIKpZbXV+iKsSDnuihwOuRTNWUophpD6CKMiQAhAEWKMIUVj2JdxP+zWCYsmGcf9fr/b7barLce0urgEQmaMMarB/f39mzc/vH///ovPP/MsgMWKqBGwhx7Qs6IE5je3Iw9vti2CV4WYyeQSwHkFsbnrDKwqMBrJ5NUwU2PEY0CRACEgTyjs6to0BgoQNBcABEM1NbMYgqlpzcyUh72ABUKkUMZc6kgc39zedl3Xh8iiVjNolcGKVejWw36QXMzM3dRmRsTjOIp5yIw4dOvNxX53JyKqFUA5YL9KApBir6qKgMAA9YwmXef1DDJFRT66T4hQZ73EBZLRrG5OuYHHHg/HBGnTaRKXPmePwLU2Nu22c9ntYrM8NriWv545ctsrPOoA8+QxP2mWo82xDCBo4WgZT8n1Xv6NzVnl1j2hIRpP9jQZovfubGHUBkI477ipignJWkLlU+ryPH/tX7MGzTa/+JHznBRWLQGMfnwGlsdzfKxNEi5OWxo5qGd8zhFgaq0IRERqUnPJw5hzrrVKNgC4ulq/ePFylbpxHKXU/X5fRJFZvUsVUQwB0EREqgJh13XAIgozsse621xdbgkMaimH3SrFzz57ue7jdrNadaljCoQBPQlJGHjRO5EaVLubI4/459KqoRnMhNBwQpgx09n4MZqy1RhApnt5dpIiAiExtuROihgJVZDXicm6FJgLAFDAQ9bdMAyjlKoYgyGbjaoGop7uhiJAHj5QRBSVAOCdG2KMQBBRJ6EhnoaChB4DCEgGUwLps+u+9O2d+UiOnqrH00Wea+D5pf9VjqX/YX7kbB8vRukwshaeF4GPVQFn60fmjpNqfayro+fTC2GapqcNX1iY70/MFGrr2zxJmIbFg80z6aGO4H8b6CiEIjD2KyTsTR4of3j37Z/Qri62v7h792Ecb//mX//y6x8+lArjze1/+dP3H27uapXL65fMltVi6nNV5JAPZcgle088sxBCCt1+eBABjh4cbfHFMowtOWLKmRLVIecANnx4R4FdHz8c9je37+9uPgzD8NnL6+NsT8J1fn23XpqiAwrQWH6zjUyxiWHnKX6K886GpDqLbee+iIbmYQG1hhsVgBCAp5sAIHEkYJtMZTGpDVVYoNZKiMSogmUsRKSqVZUpAonWXLJSgG6zTikxhjpmqJUpdJEjMZi4ahwCA5gRACP3ScECoYhJLQSWUt/36/Fwq7UaCAUKMY55iCmUWmnKQZwNSGtz5ShZoqpGRuhdigNwQJirJWdhA0sG7K/qc7agu09tJWKndcm++s8p08e7I8BUkw2fInWnoc4ZFvMjaHkgzxHqmaKICFs/HfScu6mOfJK80JoUInoTrYlvoC4cvUhE+hSQwNlGPvvyyW0OMGuI2OZjiv4uz3/8rMfHj45nsj2eyEU9OUQBgIlCCCqWh8G7KUjJqxSLVawakAKiSjUVnaBGTbWJWAMxGA6jOyGsqoiqgJrWqpvNBhHd1kQQMUkxvXp5eb1dk2ngEJkjEwFE4r5LwVEDrbGCOXJHjzgkwGIGplWeX1xUW6Br8kkQunsDAIQAAUPD0BadKvbcmen1TU29q1DXKRIR5YIUkIkD3g95FcN7e7gXIQAIVALVqi4oBEydv/jOY5TqrE49H42IwFRri9a7zo04+X5miYCT7fuUgDsjLZdvC7L9GOWYPV8H/E84TuX/E9L3U44npe/H9gAToiERgjUYv4Ym8SNDPdsPTw91ipZDq/44KoQG1DxSRqElbQKZqnsw5MABQY1Bf/jTP/7w9W+vr3/6+Wd/8Zvf/Yf/8f/0P/z9H9//6f3DKPbHP32nggJGwA9D4QAUInLSMhwOY65FVb2OI0Y2IEe2aGaQtV6hjoFQSjmMQz/261UX+z4QmeI4jlWNAhNRzuPd/c1utwuE19fXU8wJ5pkw95aygPE83ctZWhrBZgbYcohcMVqQoMERspTMWl7VrDWBCSgqVACe4xNqRkjMZA6QIQUB1Sq0GtJJDVIDrY7T7Pv8kEesNcaV3zlQQERmplVPRKWMBqYIbDMYCKoaASqREId+BTmYDUaExkShC7EA1lopUur7BkrlwKIxmiKAY2XS3AtwMkxdHTIAJmIKXYgdUTAK6KXYj+gZJxH+JGVOX+mjahnwcqDlVT8qdD/xOHv6k7t4KU5wyoNlZgug8gRQybQr3VfZ9k0TTFP57OIpjznAwtP71FvOhHcm6sATXh/ZAI9f01pewhPzgIui/8dT8XjmZ4XyOeUGEWdn0Xx4C94QIyJoqQ/3u1rrer3+43dvQXS96jYU+n4dQ3D/UAiBYyC1sYioGKAh1qJgoUsdMw8lj+VgaIEDkZZSLjZrQhjHHce4WcX1KkZmVEFQFJBiaiFEjoEitQQkAAA1c13oKd/nct5w8nMs58qnRgUAW2o3GXhlHmJoASxsaSVE5BiTNsX+bYKyYSQOYIQKBqQhEKGRae1actyhqFUJBLOK3JyliEhIgEjk5SEiCrmYGCCqCSJ0HacuEAAjebYBNJ+5PCkWzmjsiZ+e2Y+PSSUs/zieNeUCns3pJx4nG2CxY3ChOJznDj5/n+ltj6N6dBovzV9EPBtrI3dzovqIofzEYaJI1ipDYCapqXjRlNEIwVEnwcRIEGk45MFGFtnUh+//9J+D7X71q1/d3O761H399Z++/v7mH796k/rN+51eX192IYz78WEsHQQzBSmCdCjZAJGj598GoipWSmnZLsxEDi7j+QVUShnHcRzHmDhERGYEUtW+74rUUrKqxhhXq5UTvW/jSIjYWqk7lyEGMGldC5zftdmUKboGhi5WxSburISoJ+vOcMw2RwAyn6IZIUhMHeYK0bscIioYqtZSxmEAE4ocQsgqpmoqBAImKtW0IsI4DmMpqlCkQhWAQBi6EAnM8mgRQ9dDYCkIaiGwjYU4mgMzQ+C0DZuruOktZ1BgKV1YmYy5HFJIXej24/1ms1pvN0bYdasq0pCC9OguNmrmLACiKhMDohCqVw1jpNABBTxvQtBUlsXfT2wufDL/8qnTAGBK4zjzgD1P1WaI7vK1J5OqH4vhsxNCiFJ5/nXe1ycn2hFIfWk0n+5raEqIGT4qwPWUg7Ornnudx9IXAExxdjucnQ8ArUGTT4QtGikuXvyfwPoQcUqnPbGG51vxIy+Fg8CYyjCMdRy9d8LV9uLqYnMYh5qHzcXVetWlLuWczSiL9+TWXIsCxdQp4FgspYRAiqBSVMGTpQzNk93UspaCAVapW6dAUMtYVl3qU4jMHYeOQ0BSEY7Bzd+ZCN1ZYc4/H2mESAEn+1inMAUiRsZaa0ORISL2HGmcfGkALfHPlFlVGXhBLWaelWkQIigAiQJoSimrMQhpHYSJtjHQh7vD3ZB74YNZLQYARuieOqcrBiUCUwbv+wvKjFYhMVxu111gM/HURzNPPnCj4hj6fUwMp38+Tid8mjxgsVOCc9qPkNTxyk8jxAUJnm2zkxM+nazb+fr0+aae82JTcIqaT8+1t1NGt7zhx7+Z7o4ABGZIE4KxIVgLbHiqmyGACTTAo2qSd2Wfc952yYYPt2+/y+PD//Bv/rvLn37x3dfffbi92R3yzd2hCLz/cOhWl+/vh8ih1tp1nXAsVaoqchhzMSSbvSeIZKYeeTYEw0DchQigpY6qnauJAKACpRQzi5xi33GIls1MAbXDjghqLlWyWWdT1PZsRdDVrpllqLmdPde6LeMinmZARIaGU9jLzOY4kN9kvrYZwt78i9FUPVfbzNAAiYkgRDJRnmjUTFtZsDXQPQQYhuEw5hACx2SGuVZm3MbY9+uqBqlP222f0go0Mq9DGG9uLzEi/wBVgELs+s3FZby6hFJ2+O5QBpRacsm5MMeu624P7zYXn4fEYhpCzKVQpKKFG+P23CtUNEJ0dzwTGYAiGoICGSBgRGRARmQDnFOI21RM/RpttoqWcgIngNXnNVRfgU/xV88UrgsfxpLsF7Lw3A07D3gZ0QwhFDqCe585SJZMABGn8B6ZCWJy0Igz0b8cwPxGSy5hbos9cjJ/4os/x44+ftUsSGZiPhfwzyoEz975uUt8n5hht9qk3S6Po5n1KUrVPMLlpTF4IaECQNuPFMAqEgGxiJWSx5xLEc9BNNSUUjWttW5WnVplgHWfVl3qA3eBE9M6xU3XxRgJjQECeaYVoLUUoqc46NlENddWc9tS8xg4tTMzIlesoEZEnhAMoEzBQI8CuCnjqLrkQuBlkK7iugsrIkYCJpREuQ/j3dCHeLHqalUFZFIdSCWrgilY66CFMKV9gJp34WKiQFAAmGC77UMIqkNL1EbwZppwyhUff36cNNH43kdTmpaa4kkK4qQVTuz4z3Egn7lonlQEpiSUR9e2NBY0O2pWiLgMa8/788gITvTtufDg5FnLAXhbpo90WDo72o6F4Po5AEDTBxHNc3sdrtUA1EBUM1ghFpW6XW2v+jge3n73/ddjFkir//T3/y7EVey3RW5SfyVwvxvy7/90d3UJMeZVl9IqDQUUCEM8jLmISstWIlUTMakGZmKqarXWLnFKKRB5x1B3mORauGQxSBItYYxgteEba6mgRoAhBGJooDAn2bBoZiAVEK3xVvByXzMjUSRSCEfeOif5Tay2tTlzuvdYSOsb63NlAAiCigBIQOp1xaQ+s9ammxBT0opojmhtxEBqJhmtEtQs5ZDHsWRDTKttSr0q5Jxr0aFq3uXQr/t0gf1F3Kz6GEgL1Lq9/mw9qhh4wlit1URUtYuRAouI1lFKMVFmNsJuvXr15edGWEQIA5IBqqpwozE6zhgokuFSMFAg7jD2xHGJ9HRCXbaY88bv5t8eG4L6qJff8TjzDE2S5uTPs1+Xfyqc+JOf09zbvsOmsE8NExfOxulY3MGVYZmaShzvdhbjWA5guTFxcn21Zz3JVU7PP/uz1bm1xHGddYKT0xpQot/q2Xl+8jjTOeYv8fR9/T/HP331FxyoqriDNsa47rthvy55KLUSWkJIa3hxdYXMQGAmtWqIvU81p1hFD4fDYSzDKGWUPIoIcICQgIg4BBeJDHZ1eXm9XV3E0AfuAgaw6+0WQQGUzJBdVWLmKb2jOcKOVMFwfBfzTPIW9idEpND6vihMGxoRmQIFAu82URGIPNhvjUxdwDJGMxOoM11x49boWTAAAKCBQMwCWAp42cVDKoNoJVsnFk0IUopmJCAAQ/WM6Mk5pKqBmJkAmnKrCiHC1eWWA1lt2qlNjfUWq3lCpWbWMO09MgJ0RgZL8p52jsEjWoVZAJ8duMgGnOn1Od3t8bUnQ6fjoH/02k+5+ek7MJHi3HbwqHI/qzrMzOK5MZ8eNBXgN68FALizlcAU3EfjOVIVtJoWQO0idgDD7dv9++9++P7rN9+9+/r7/8fPfv7XP/vFRb96sXlRvvm3/xYs3d6MQFAMVCAo3T4M+/2h36y3F1d3DzsFEu+Hg0FAh2Gfx4qGgRJQEQFATSmEQIgWOTDSbGiGEEKKnqZkIMxMDCTEjIhBzfOZjgThBqu/8BxbPVtHbdX0R4Z7NmlL483MxNskqPnN50tEpCFOe8dtVzcNQwillJJHENXqLeRgGj8C1CojSiXTcTzc3T8IhPV2c3F1DRREjNPqsNvtDvvtmhEhl2G8k1THy8vLPjExY6mMVlWIgAjyuDvc3x/ADkTDfi9SEkEKTCmq6Fjy9avrVz/9/CHvjayoUNNaFHSRgYWGMEUlCdVMkQSYOFLsKXQUOjuav+d0iI+sC0Q8l76orWnucz6aU8vsEzfpcQyIbSyfdhFOArglrC+qeBGorfcpr3DE75mh4Vn46VymHisb51eEiboWivezZuiTMzDJ7wll5tHlM4v7xHk4e/RjhaCN4ZEYfm51mNkNRHdfIcf15gLR/s+ff57Sf3j/4TYQ3D88cLfyW5aSh1yrCiKa4cN+2O9zFdACtTreJ5hBrYUDRMbNul+FsO76QKRVuj69vLwIZGAiWhkw9akLEQBUBcDiBKhwppwR8WzqTAKYEFHkGG8ACnPTZpGmWLTPAIYWvKzRRBUIFIAR1AjMIFJsjaGmRVFxtYmRgJGEKpsVlVUMSPw5xZvdWOuuY6zMgxUTAa2BO9EmHQkZCRDZzLquJ8oiRUQBDAlWCS4vL5jZs7HAvUToQxClJ8xcOKNbe1qCNFH0iKiWNBCWmV3zddbaTQCAqerkEGor8JjmYEHEZ4NYftNI0+/11AlnY13e8COcRaVd6JkgNZsnWs6WgY+NGo7a0/4fmqDglm+Hng6AAAbeEIidgyCI1hACAEuRqe0aemFrrodNp/e7H77+wz98ePvmmzeHf/j17a/+8uF//p//8sPDw9fffwDkb765Xa85CAOJqN3cDSnFELrDUKveI3ekwGC1FqkZkRkDmqjqrhyIKCQDwmF/uEiby81WpBgEZjTCLDWYRjPVSkTEZK2UdkorMI3EACAiNuVwPZ5kVW3pD4CmpmDMHDyRGdr0qggFcuGj5nlBCKCoVksGR3ym1sgVzawacACFCgUEiJmYqUWgBWo1ATePVQWNYoxQaxn3YEoEZcx3d7fDMKrhZ1++iv2FUcoihCGtI3J4uL8Zxtv97n3qNv16vXtnb4edjAVNN136hcAXXMHUFBOqDvtsddTaxdj1qe7v+kDlkJENI/3yb371sNtZAAYSTxKRimbUkOnMEzUNWs4RclIFQUYORgm4w9BVwZDS5PnBSTsWAHDHmCmqCRAomEhxhCCdjFqnaleJVJUAzTz3nM+kyOPNyBzNHKLodKM9I8jnZCVt8vKYCPp4sxiAt58LITwcilNX13Vzk93lPpoPv6GqBxRo3nGwmFOY0iugqWsV46ktMt387PUbb5nwwtr501Cm6SKEVgw5JQk+1gDwUfXIiUq01HWm1zmRrNNrep3CMYHLQNRaPt3UVqNFnYlIvERTgYhKKVdXV6VPDw93r1+//stf/LPrF5+9efc+pTSUUqsihd1ur8CqOgw5FwWAlEJHUasNh1xUkWG16ro+9n3fRa8FgBR503edahkPu3t9cXEJpF3k6F1KzYg9JQMd0AMAmNnrEhWAzPx9j4x1cksYEqjXlrWe666LEQd0ZAs0CkyBaq1SRg4M5qXl6t3bVIupOj6Nu9EarjITEWoVj8WYoUyFIQh2seoRgogB5TzuLjZ9rqBGd/eH0HXMgQiMUEwSBptQQGqVEPhhXz5/mX75qy/XfRrHA6uCGRGY4ZhzMAoheKbK4nWt9cqYvLnY2ubhTBtncmomgJk8BKTNSbOAz7bZRz3Pz0nBmSgff39unj+yPv9rGcfPff/Y8H/ywrOZAs8mcEA1UPKsodYgD3VKQgZVAGUzJEJBEGDVOrx7uPnT3f2bDw93tzstAP/uP+1efPH//eUv/2IU3o2VIoxZipoWCykoYhYwgJAShs7M1EQMTdEMVW2CcqUQvLeXIhqgAja9/hhknfv4Ep0WQRoRcUDU1hoSTlfkSeXJuYz3UVkQ2VHxR0VHRvAI3dTCcMETzWwyzR3yGVsDOyQ005yLVMkxdO2GFNwMklprHYlVpZY81JrzsC8icdX3qwtKPYVoHBADIQGxceCu2324C4RV8v1Nvr+/Pzzcay5aS8lZ19svgAGVSGU8RC27m7u03igKWkGQ/cOOGe+Hh5//8uehS8aKaEJkCGaEnpCtrceAVxKhp1gCGZISIUYMHaUe0yp2m9CviYKSt+S2ucMooqNyO6diBLMT+Kcn6BPb2c3NM8XO4Lnqu8erictK+pNI8NGJ/dwuPh9Pg00wpw01AiDVWmtl4ob4M4nd2UW5VK1b0fMTxoWTzTK0cdKgAj7Kf6ag+cIzDI95zrn9cPxsDpNicMI3znfHc8bG/Ov0js+OE07vpqqAoKqgBoCqUOsoRYjC569eDXnA3V5Va60iVqqMZQAKwzCORWLq+k3iQ7l/2JtBSklVNWcAqJJDMYshdCEPh9h1mseDVo7hct1v+xWjBSTmYxmZ/wOTRU5TXYkP1aOpfHyRpowjsmP3APsl3uPLZsunTRoBIsbWmlDMCEwACFAcxcN1mYBQ3D+3iD4wRwAwMnRkXahmIaAWNQTtAifCFKkW7BPlyvfNwBBVRjJCFhEQLbWaWQhMDDECADBCaLY7IQIRGhKKojavtU3AsRNfPaGo5fzAHJpZLPe0r5+mlhMoSr9ietJEdpP6/nHnzJOb1sxw0mdnqqMpP/xH72ancbJPPM5mxPDEh/BYd/7IKyCaHUv7BVC9QZx38wADJkIyGYcqhdFA6ib0BHm8+f6H737z5v27d3e72yFLhLsB/u0//O7y1U/FkkC8uFztXh92B6UEGIJaLUWl5o6ZxYqoGKgX36gHYmHOL0MAsiaSrQoaEGIIIYTQhRjJS3mqgBEaUrAJOYiZARXRJjsHZ/qeJweYEIFP1SZm1ipoADoFrxpM6mRJTEqhZ+56xxyDqYxLpXEyJKSgqiDVxJQI0VQVTHTybnqSiSpUqVozk+bxMI4Hr5PHmLrVpltviZMSAxAQmYEoAHLo1pevfqKlmnII4erVF6sYrNTd/X3Nw/bmTj7cOll//aevsgzbn/xkrAcx2Kz4MNTtRbfb364u+6vPriE43AMuE0EBHI/aEB1MStHj5cBVADBC6DD0GNacVhg74gjERKxHKgJoWUuIQO5WcYXD87ieFJxtasAn+DGtnuVhNc44i1VYSN+jrDmue8uInpsGnu6IJaM5fj8B2vCcbacTKBJMkM427f32LDNz5KCjZuakg8eGlc3KmcY2t2icv7L5niezpKdib8ECHyuXZmaESwyi48fFHez013OzZqm4P8X95gKbx7kp5I3Jmurje4fJJxARVbXmbCJElLrVkAdEDCEg5hAYkMdSU0qAYSwP+/2+W0HX9aXq/f3DoRwAoO+462IIxGhoUvOYiJiAAANAF3jd9X1MaBIYA1FsgvMogJEJ0KNDR/7pUmrWrdzpTBSIGt6VtTojwJZjCKoVFvEFv3NgUgG3bsxLlJgQI0uFFncDVfW2CYpNCvr1zSVJ2lARzcigj2Fg3vZdlXHVhSzadzjWioC11gAUU1JRF8MI1vVBVUOwWmuVoqoY5m3mFedoqHNR70xbz+jIs0J2jgD95HZefv4YEtYnir2P6MtnPzX9+tH98Xkj9ROl76wfLK/Vx/Ufp8+dP89q2vkYEJul+JQRT0QMKDnL4ZBYEyNoGT7s1mG4f//66z/9/utv375/yBbii88vN9d62A3fvL7ZjWMVXF1c8vuCXEsGjg2/y4iwShAUQ0M0VVNUdRhkRHTUFkBQF1MuqhCBGZnxxN41cDOFkY/zTMbIANXsSEizD23aVHD2E02gfYuA34KpzWEFN4KJ5riv+Tcm04kGoEwEoGpqtZluRABMIMUIyUigTIE6QLRxHPI4jrkiIqeOY8ddpxSQg03J7u4FBsKIHYcksaWkHUquNQcACny5ud4Ywvs7DwUFwofxAOPeWDeXG5QxkA35cKiHz3/yOSWoixQRMDNUsqnLQtP9J3ECaG7nhR7ThroVdT3FNVFvFBvuQCMnp7nJdXdGk9Y8tEsye07x9d3+aOt9LCN6yQSXX+JTwEbzNwsVfvoTECf/SqkZABz638yIwgz1i4hz8xwxjOYQaDY3ngQzU2oTuXSZzL4+JxtFVVAFFVMygiM9L4/nXMpnJzcu6VCCTx90evL8+QTzEk811BMVdnn5E6xxYdy3klWzhWvdzNNKWvBwt9vd3z2M4+jzrARErAD7w4AhcgzlMJaHh5CUiLfb7e3tLbSsViGAQJQCpxgiApsmwu16dbFZp8its9nicDbYHMgTWyAiAJtj54tEGwSYQhXs8FEteXN6wWMqyeMlm512BojWYJSM2GpBRM+ebqeBqapUv4NXLJoD0qERAyJYYIyB1qu4z6U3OAS43K5u7gdDy7W9i6q21mqgDChmyJRzHYZhv99vriJRQJjRWBtkMp9WsC2slfbn2Que7PTlmp4e85b6pwBxLGU8TtrBPJQnhS48tQbLoaPjNZ+e9GnS14H9Hm8nb8ehs0EAC+Fx/kaP5qi9jjrypiE6922uPwVyuNFaxzruItQVWdCiebe/u4cVyGH/cD/cDYpp+8Wr6/XFy//06z/sa/3q29dIIa5WqZISF6kVwIaM6EE1qkVLZ8TB50WsVlVCMiA1FKnGYcZW8oLgFELiQAYqpYoXo3YtkXFi6I/np1XsTbbIvMEE0IAUSU3Bgbuh2TcAAIrM1HCKmxYyxY/VDMBE0QQd+RZApxAptMiJaa42aTxFRURAiJTZdz4pk5cKK1gRLcOwFxFDUCSkwCFh7Dn1YKzgxujUP4CIwewwQs1GCGgKeSglAJLC/sNDGAsikwGiffbZZ3axfne448go4ebmHaF89cff/LNf/TytmDsqtSAiIQNqaAKzQUVS457iGrwpGgHGFaYN9dvYbbnrKa2ZVoA8A2B5RRuqNWgDaOWGT4rMeVvB+Q5qxQJwxtcmRLZHkHDH1GonA1t4aGdGOm+0pY/x8ZCa/7tNexNCM41NuTPaTGEzzz9VAJfKCO6AUUQFVAI1dAQd8NCOAQK27GpVBTimCk6CifS02nK5YWHBMY7i/DEDaen2y2k/Ct154s8unwUwHn0JTzjPlot15IenIIV26vBvMBRmLpPcRAshmICoAmLOOefc+nUiGLjdBqgWQri+vr6/3717d4OE19cvUooAEBhj5MDIhGxmJYcUA2MXQx84MQWiyJ5aQt5xr7VvssndCoSA3kEDAWcAs+mFHW2VWojBQUJpnpMpug/Ay+iYN7o3MfP8rSUM0LwRyJuIQcOQc+g8wgY1jQBAyAhgyqoKRmjAgJFwlXiVoIgGlC5R1yEULEWQoE1si6aBSFEVxE6sOnyCWCSAgOilYNPq6LKF5bl2NVOPAUArr5gMt0Xs/6NG8FNAHPMDHqlv3i0RHlHb48vPjo/I0TNdEp5SGvF5B/ijy48u6I/vkI+P8LiT/X82NQ8AcA6sjs2ouQ+w7hgON3fvvsu3tyvEN+9uvvrT77//4e27O62wAs53u9fffv+WQrx9GDYXF9129XA7CIE6A1ZQA2ZUsbEWpX1IkZmraREptRIBiFaVasCEhuKlI57ejGgGEuPKcTnc/vDFNzMmtgWHtckBuCSRI//FZp81b9jCHGknWIvgTv5GAqgu1VQVDRSRz7Q/EHfiqnrU0FTVkFCxqokCMwATp97b6QSkmvP+8DDsHqTW4ZC7btWtNhSCIAEnxagUTHzTLpRQNTGJzFrBTDkSEgpYHUoZxsvVFY8CALVW6uLDw/0Oco5mWXa7N1pzKUPo8MtffN5tk4AgO7NovEmNtJVVgPePaj52ZEAGiMAdxXVIF5DWlDoOa8AEED2HwCYBZgQgBqCtZX0jusZ9lnLRTvego396NfjTJHyUwQs6f+zW0pZovdwIs0R50hp+8pjLkOb2iCJSSvFCSr+nszxDQOQqSiaA0VAZJy8AygQI4kIRAFoHm8m7AAAzFCzNsYDn+MljlvcRUb38bjkP8+fl3WZXqh9nDjM45TAzI7LFT/Oynl+CJycgzv0vyBSJQlE7DDmPFTyFR0kBmamIlFoMOISwWqXDkO/u7hAhJk4prfsQORAqSkWT7Wa17fpNl5DMtEYOMTJM0BPLMfsHT7KbX/bsnCm4cHxlW7SmtLksRw1t6qATGKaUNJtzDKe4q+qE2MSEimZ1WoJlXn2r+gMAaO3aYGJH0qWgpXaJY6ldpEMuIZCAdYYqJCKqVkpBRAPLIjgFR0uutaqqgx0iIKkqTnDD+oiW8JQCz8hpDsktr1rWOxyFFBgihvMtOtHcGdla8xLhPB3w1PEcubdfnxGij3D2/rwDJx2zfUadOdEZxT9x4afcv02GS9/Z0lNmINQYFPL9m29+++7b362grC8ufvjj77/97tuhkHIn0h0OeHtzF0O32m646zIIljHLwKu4hjTsBhFRUQFTM6k2jmNVASYkqipVBdRATaeKO+fLRsiMIQSXuynEGCMzYzOFkZGIArS0TDMzqVlVJpA3NTNaCGYRsWamNSg1bsnLbiKHY+mnKLQOvWoGSKa+5RarMLuqJrLx6iYhhCq5VsMQOXREIaQupZRiX+pYpRQdhv3D/e37Mg6M3HWrfrVO6w2mJEiAASgYEkwV/2iKgIaoKrWUD3f3XQxpFUVlOBxQSkJOXRru77UYqokURn64//BmL4ee1hd9KeNmtRqt/ou/+9vt1dYS7vc74s7Dc6BKYgRgiA4ZDIaAgmrkkQJiC4nTCtOG4xq4BwyGATGYIhID6DKK7FPk6Hhw3L0n3qClGAA8lyi4iBQ8q9lawzx4rLYvWMD5l9OlOMct7cTJdr5fvBLJE7KmwqSJC5sXtHiY3nmQggghIyqCqpsXMuvzbpqqYydMwz7WJsw65XIa50NPJ+K50x69L01X21TbfUSFW34QaQJ4zt+el4lO/K64fGL7vOROze18PEFbLNUNa2YGNam1eBnC7d3dMAw557HWsRQQ9dYL4zgI4GHIpVrfry8vL1NXDocBg1cboogwUhd5s1qlyFebdcccGQIZAbTaX8LW97cVHyC6UwIx4EKigiuPTgxsp1t7KbkJAyI6XAgAOBCkJ4Kg2oT0rNQwA5oIbSttVFWZg4ISgFprVb7wcCqYgRmqoRqaoTMxIjRNKY5aUgox134V8DD0iapIjFzMcq5e/iuoAUEFUmKvUxqGknMuWThCnBhs2+WTaduq4JaK1CwoT1fcFs4heHTgwgXrV7V2hGcUek6yCGhPpiye3fqfeDw33FN/2kfiW6feJCMwAjIyBc8iWBzLnfmYHz3xFseBzT5bTy8QQqGyt/H9/e0P333163zz+tXPv/j++6/++M0f7/cSuutQoRhyWncb0n0JcXX54hoDjlLCYTSzoYwK4iRoCBxiIAwpAuNhP4QUHTPVTMGImIlCNTVjIw0hpBj7GFLkEMLS+mlKEqGXENCc6zT9upxwnIwts4YRY4o6e1JcB3RLujmeJ6XUHWui5mkKZoBMoC1ibY76C1P/yQbtlsu+1qrEq27VrbYYojM1ICtlPOwfch7zfnc4DIlDv9q++OwLNSwAAkihS/0KKZhoLQUQSQ3U4TxQTItpv+4ANOex5L3V0geGWg8P+8id1IqIKaWHKqCCwcZ66JReffmylPLqxaurVy8PeTQFCjwhMnlTW/FBIlGtrRWSI5IhIXE06mN/id0FpjVwhMDGgQyVjJoP1mGtgDzUq2BkzoWaPF1g+y1FI84Rn5aupXDsUWAA9PS+aZro0c96tr9mruH+QGvd4J88jql/jQDcC0AEQCJSay2lzAlEXveJU82bIpChIbGRemjSUwVs6umgCsCKipO1QYgqcz6X95hCT4cQsDkfVScPjf87k/fZHJ5hQS/55jMzs7B6J9GPBq0z9OJWsxh+bJMcmcmpv9r5r9n5UG3y5CMCczRRrwZOgYdhiMTr9RpyHapmUQXrU3fYZ45pvU6l2lhkd3srpkxRSsWQUgp9ChE5BmQiJmDEPBwwwGa7iYlFSiVb96ujkF0QxgkbbMmUikBnXebPZgO9ImBq16CqRogYwxSk8EgEcYOLMlNTp1E0MzFzuFwAMEOCACCIhDprp2ZmZKBYiYiRBLmKMqKgxRj2A3ZMiWidYiSwSDRkRi6oqtB3kYiqFGJSAWbOpajAYYBDttogg9igms1pgQoQGKa/TipBzl2q3uDIqYK8tZfNfPV8982fAyDCBLxgk3sZEU11/uxuWG9g2VyM1ogXp5qwJ/Ro57vL5UQ2a3rQBFjmns9GqTZ5tMwMUMnAc3Tci4HIiOLv4yPzuxmILx95zTUGNSQwAyUFaJzFDBVwNmfPXXDznC52JgIoNf8XTgZ8gzAVkXXPunv9+g//6fb2u5cXLLL6/k/f/PH718YXX/z8p1uN7/7hN4QqhLzqgGPo1hxXCkWhfLi7v7vdhRA0UYzp7m4fYkTEGHpFANWXL199+PBBS83Vuj6pQUopSy2limoKJCKJ6MXFJqIO+3u72ORamOJqteLozb/Qa+jml0mcjKyUsZSiUr0C2He+qlQVM+uoQ515qLRq4OC5YGYtud8zdhER3Bpu9odvtCkTEiaLwSlBtJqCAaX1htKq32zEuKh0qTNTqcPu4VZLXadul+/77mqzvQxdny0AoRGnrk/rfiyiUtfrNZc0DENMQVVLrUyc1ilL5ojlMIIJmxJFLXV3f9cxMarWARG1GEUyQ0yoYBhJUAesf/k3f20hAAUgAFO0CfwWDJEVHcdHInGtxUhj4qqWqzGmfn0JvDbuKPQQIlAAZDExpKl3L4K1HHI1cPNdrBIhAYkUtyYMmUMouWlLjKQgqBOG9sTTgZpdPJNw62604Iai1TeuO8yX+hYYLnL7fY1mxXzhVERUgICISECgLRADblaHkG72Y9/3GCDchzzkEHm/31cDLc1ZisCiqmhYqwUEECMOqp6KT65aijpIMCIaqgKqUvEiPDQDRSIRqYWrqTC7Ve07Eg0MgYCP0CjOhQxmXzoBgR3l7swDJ4t5iSHvq+NATqZmSs0aRjWPZc6eChVx22veX7AAnGl6qqobzGZ4jAsZkPNMraLmG5C8kkclxilxSS2GQCAd0xBIDzqOI3FE0f1+TxguL17e3N/vDyMgY4gU0IqpjH23SsgoqrlSpEghhdgzlsPQB1z3XZ9SJGByzuBFda1RwpzsSeQt4AFwxkDxtffpJZwri3DqJYlgaOoYsy1RORD78iFIbZNUzdTbprXcLgASE0NBpi4ERGQ09RROQzNHGhEGrCLk3kdRU0UgRiJTAgsY8qFEYEW4XmEvNlzkD/uxrrt9sUOuCiC1pNXaVA673EUAoJi4gu4GeHd7+MVPLkNKuQyRKSICIUhFOs/tRUQHRZ4VspmozIwAEM1rDj2IwoBhgrhzKSMiDTuZCf7cJCwv9Dz78iO275kydaZsPndJO23uGWm2CNGfHeonkYclgBH52EZ0ohx7hO13NuazQU5jQACYhLZ7/9GsseJ1F4abN/d//K3cv+a6T7jSFH77+u1X377+8i9eRlq9eXs7Zh1q6WIQ5KsXn11dvRjGAQOBEQIzg4gAMjCGRBhQFVpnAqA6ZnbPqpkZhsAKOA5ZTFfrFAKUkkFqROi7FFedEYQQZjsmxsh0vrg4ecyISKrNkAv+kxf7ioiRmfHMTRaxjmPDWHNH9Kw2Ne4t1nTbeaEb/QJ4JhtTTBwDMDl2XeTQUVApr1+/DozK+Pbt27v7neC4t7CxsAmxS33kiEyEYbtaobeCWXEKDaC75FxKUSkBqY5FVdexFwjjvhDGbnMRQG8/3G6BFYliUNE+hdWKx7ubzcU6m7z88jMMrMzqUk1tmfuoCAbesoI8+xdp6rKSQkgrjhuIHYQOKBgywiyo1IXkjJJ9vCccpwkXq6PTAXOqznlpwzE2/JENNZH0s0nRizM/+vOiSXDbzr7VgLxoyqvhVXUcx1qrEZuimzfmbeZQ3dIn8/6qwsZmyqTOW53PGoJ5zx0zaXCE7npEMRMwsQmNBNWzCgwAHFDYYMYA8WNG83CCRAP1aqdJbLcmP4tvnEnYJIDdb+ppdoagoqDizgxmBn+ds6l66hszs0dBNkaTU7bjObpEpFoDc4wRtN7d3u52DyJ1GIbDOBQNYxUzqyb5sCMM63UsBmKaQorrPka2glIrqHV93Ky6QCR5PAzy2YvLVQzrlGKgQMionquBRDhjOHvqla850sT1PC+aPURKGICQKDTnBIApKiEiTN1YHAvAq00ZkJAMMAJoUBJ0zCuvRpsTwgEd9RmbqYCIAAzm5Y6zHSdN5aL5QoyJraKCMnNCBCAVEJXtqn8YR9NMSH3PCIoQzGy1WpmZSck5I2JKQYe62w+1VZR4DVLLp3hyf7l0mNnmvNBTeS3MfoLHknESiMfbfqoAbjPy5GgWw4KFKTzr7Mvvz17pI4LwzxnY2VeKJ1X/n3DJIxkMAC0vBhiAAZQQ0ATMU6BkFXi3+zDcvu5sHFEAIMTVh7vDh/sx3Ny/3/3w229ej2JiUIoAuemPb96869ZJwQ6HLBkEjCMyhfV6S4FLKVPuj+Vaq2k1ZWoem5JzVTWAy8vLjo3Gh6vLy9VqhSiz3rqUpky80PjZfQBmTQB7YqO3cAI3lVuyib+1+tby+wKA6QxFaWDU8lzVHBvWtcLlHE7uhJMZRkSOgWNEDj4CRqKqdb+3saTN6t3dh9/8/jdpc0Xr7W5/N9y+/+zy5fXmIqVkqolDF1OM0ds6DePemyp2IXaAeRy41tRvd4KCIXRr7gMR7Pfvbz+8ffWzn6Xbfbm/EdUQoItpfLi92qz7vn8o+y++/BIDAyigOQc5bXGvkxBS7+ztmUyGgXnNcQ0hcVxBSEDBKEBDzCAAs08QgfC8KEVEewbo7tOPJzbdJ99Q0fxNTrMp1EG7JGut2Z0oeSy1KnIU9bp1A3CYBTRCAzQCJfMYrwXTgESADsfifRYa6A0u2+kAtBRWAZMJlw0mox8AwBxX6OyNmu3i3asmgXt0WSPAHFKevwFobkMFU1y4ik2siot/jz8iUyAkpDmhfXahPZ752QHhq3lchdMzZ9c9E/V9L2Xc7/e11hijKzoK4Dg2IsrMSFQqSC5FMqKpQBkghRURdalLIUopVeu2j1eXF30M6y51MQYERMe/IwAg9loiBkIEQgro+c4cWxCU0Ms5EbEpNs49ABFRwXMC0RZJTM6B3KUBHiq2KS418RZwZQYACdHcT2aI0OApEYCUCFTRzLMtwN0ZYAYkfk+XZkgGoo3pKRAJoqQQVl2/KjbuM6qllFA4j5mIUkpoXK35aYYM798PpRQRdjYNUwdSdvYPTyzZjC5y/AnbQi72Dtiih+MM/740bJ4VwDgletifIxeflK9LO/2/9kEty3KREYCIYAqPrN7lkJYf5q3+ePCGNCW+q7buLYpkpKY5B5VVHzuL4+EgUsdRIUQh/vr126E+7LJRvx7HcTfmrlshJhHJOQODqJqiVIir5PnM/bqfXogYsZQChKoqAikxMx4OY60SmX/285++eHFx9+GtqMYYQwgMsOo7Pmbx6JyYOr9IW4gJVIWIvP3ZnBc3sw/3iS0npxnK/udi3tyn1voxPGJATRVYjgHQ+xyEkBAJTMAMQGuVu9vbVZ9KHffjkPp+fXmhqd9VUYQvfvbTPiUodn97c3f7gCar1Wq1Wt1+9bsQgoowGBrFQMGw67qH8YAIIQQiBoxmYjZeXGxUK/PUNhLh9vb2nnY//dU/ryqbzWa9Xu/LCGZIjZkqAk31Nv5izaK0iohgJIbAMcZ1SFviFYdkHI2CTdwcpzj6cR4W/3m8H5z8mFmZkdmMYAqKLih26Y+ws9vgFE38iDh//OVS1D15ifsYlwY8AqhqYKwm3tcSGsiZ/8fmgKyhuEfHPHIBoWVgeYMRQyJtLSrbpKhD26uqIbiCaC3OBI7eAKhyltT2qDtenRJnzqbihGPC/FQXts0/pKbiFjbCnPBAAgamZkAIk8+VcFHjePosXKRJz9IXFgt2NuEufRu8NmOMMQUKIZhZCEHBiogiFilEoXkdKmWZ/MDQwGhSCmgQCBi1i6EPcZ3SOnEfOEVOgQJjQIgxRCYfJ5GHqgghEFED1ghxOb2LHdCIohk6gEiBiKRVdzkGj0tfQGQAJQqgZqBzCdlEcgRTnlYDDka1Nrk0QU5VVUNjOA27NiWSULyvGmFLCEUjhiAcOfQx9UlThcNhyONIENBwGIauS13XkVKujqIKRM3waDqQvzA2P9bj3eQDeGxSPrZA5g80p64h0jR1AvZMM4YjodCsHLa6+FPSd031bM/j4vi4l+zsqvnPx3nRsyx3hggAxwa0DuP9BE/7UVCC889nrzArNuoxdmw4UQCmNSsqkO0eHrIMMtq7t3eCOBrd7keDuNq+uN3vd8OoqsTpYtPVooTBk5pD6KvsScwASpHVugMABfLSR1QwyyHFqqMhSK0iogCrlH7605+q5pxzItis1pFDUCWiEBxVVJmTO5PdqTWvw+xMVGJgCLN/zE6sNM+Bhsa8WqU8AM6FKgBgbKqK3m0EtE00Hu+oqg6QOSN+IM6tk4gBVbSCgRESi5ZcM5He398j01//7d/cDOXbN+9vD8N6czHkw3q7Wl1taBPifkgprNdrJrr4ycubN+9u3r2/3l4EDOUwvv9wE/gOaGTUN3d3pZQUV6WMIehnL66jwiAcW8grZMWf/fJXtL3YDbc///wLQ1UQJAZEbaDsPmyzJ9QyBCTCgGEV0gV3G4y9cTSK2vLxfdrZS47+yYeT4An7fpQI+dQm+v/jkU8MQuH0mVNrq+aFU2v+4pYRXYvD+JqZeUoRSjUgT2xGJiIB9ipOs6INcgxbsREhG4o0JGF/ok3JLGLmpnULUh01nIVeAnAe815q2/NbtPNnB3ST4lMF1NTI3CNgBohkXv+gaNiaxNqUNPPEtC2Gdcpt3Lo/HTA2M1qk4BTWSYGRoZqS1FqriFSzUkoIWEoBBAUlDl1MUqhK7kJc9R0arLt+nVJgTIjrPm5T6AKs+rhOoUuBwThQCjGEAKBA5q5vZkZgIkIORARzAKvZtXisc8O5W+QRCctEDBCQaGLeHntHDq3Q0rP9kMg9i+RiCc0UECkwKKgikntACKeiM2RErAZqxjSJcGzdrKFZRAYGpNqKM2PCLfe3+5GR1l1/iPJwnwFq33VVTdSKmCqYIkRKfbm87tA9iB6WViUi4PbgWa9dru9y082/OgHboxqi4+of97IBANmTFvAnb+DHw3pylEsT86hJ/VdiE5/k4JvG9hFt4Jkd65WXCEZmAoBiCGABAMlyGd6+fXv/7jvsACn96bvXb+/2BUJFBqBB5MP9AzGvNxvHqd/t73LOZMEIvbH1OBRkMhoR0QjZWs0uWxAp6+3WzMYxm0hgJIFACFLv724PD/fXn11st9sYI4uCWQgBAAPxHAlGMq86n+RmU8Wd1LxCxCaXyzwDiyJ0WE7IcpYmbwMYASChNjzh4w3d9zpBz8z3abdSq7VWU8JADBSI+2CSQxfW/cVnX/5k9TCkbvP92/e7/fDDN99qLuv1+n6/qyJffvnler0WkYsXL96/fYch/tXf/O3L6892u93r12/6xF3CWh5++O7bkvM6rfe7+2H3HrTsd4evv7/528tfiAhRevX55/hXf/Gbu+832831yxdFpxzXhd7agPNPSUbRASXIKHHcYFwR9UAdYLSmrJxN2rNQG5N8PXnAXOvVuDSC8xoDj72iPre5H90fJtGFj9bxufM//ViwEo9bWzWQakWKY42pZzRgVQhtBpDQqln0gjs1BOAFFB+ZR98cqXFBh5NHYvbK6DwG83ax09hxYao/ySLnP49Gc8suOsmU0XnVjRAAW64WguOTEuKjwqenZ2kyH88GY0+gmLXzQwggUsrImHLOXdeNVTBw7FIeazWtOecqIYYhF9ESQiJAMjBRKTUgJaIU2cogqhBt3XUXq3UKFANFwhn4GRGJovt/mZk8XZoC8pS5eWSG/ofbiDirC5MpDOAwt9D6IxGS4RJIiwCqGDctvsHZNqbTZtV7D2JLy5pcdeDmiLdCUj0pxDkz8AzERA2MTBkQVPsuxmHMu4OIrNehVjgcRu5SrRXBcywRAGqFw35swAbYKuvczptDE7hgC7jgcstZ+pQDERugxORa/uQY8JPERk87qOdt8+T3kwB+wvGLE6zRp0jnZ9WMxd3wFMDj/O+nLzl6X8FaVy+zAMqAFdVATVSsjHXM7z7c3727K1Cz2vv39+9vc9aoFFXp9vZuzHm13YYuVdP9/q5kERFMoajtDkNKJArV1IogsoEDIEtMzMxd18UYh/0eFEwhMClBIN7tdu/fvz8cNBKDKKptVusQyQBCYC+ft0V+poIggHextfkNETFEUwWss9naAHnUGKY+l4vZULSZSzUmR0CGhKSgBKYt36jJDdW5/RQgu9Y1O7IaTRu34maMdL8/EIKqPtzdX6y2L3/x4rPLz7795vtxt7//+oe3tdw/PGDAVOU6rfrV6u3X3w27/Wq72X7+ajC4JZGXFxc/+2kZ6orgF1/+MqjZOO5u3u4/fPf+h6//8IdfX98e7OLnRKBaN5dXb8edoLz84guIpKVgIPWkUE9f8NjWowQoaNWIxGGFcQW8UorICYitpfJODgQ1O0rkj5EcLLw7+Hy93WPzl54a3o8866Px5jN7EZbB0eOhMNV1LpkgMyM6kp8BGDbAcDBU0/nlwMx48shNL06Ts4kma3TOcDlRi/0DuanqPNq/PNN7nMEowpStCsdvm29n0X755P7eypaOMlvNjIDd0D9jdbPyejaBTx/m8BQnfssz46TN5zSenKsBPjzsTTHGjjIQSjU1hFLKMGguEEJd932fYmIKiFebNVkth9KHcHV58er64rLvElsXiBCYkBfytRm+SIwRG7gVkxEZyVHngLbbp7V3G8FTUhGBwNDUXdbY3JPWIqRA83vNk3wkmCnY39AvEVvu/BxKm3YHYstwQTvnS8ysUlveoiupAAhqIolD5GBVzKxfdSXjbqhaSkA2IzA0UzPIGR4evLgDDRTNHOUXTbFRYjsYnhAfZ8Fg/4/vyjkT8IRgFtRi9owLup1hjbSX0vd8cz7ascsnLWf/2ac842T/RMfaR4za6dDHkvgTDzNDFYckJwDTCpJNKumh7G9QR5NiZh9u7253e7G0z3WXAdfbkDo5ZE4p57zb7WqV4ZBj7KopGe72h9dvd8hYp9Y6iOj9FXLOSDEQr1YrUDVR5pYJrWophLdv3tzd3AWCy8vLvu9d0JYyBu4DMTO77THXFz1uetHkbwiqKtJAr2YkGobzBbVFWHGZQtJ0RC9SsSlffZ70CX9OHcHIVSvngYxgFKZ+lyJFtGzXK0SM1IkIqeXDcL3eXP/137578/7Dhw/jOF5267Hk/Zvb3+/+c0jxkMd379+vLi7fvX6DMVLk9XpNHKlP+93eBEJMVrVfbe/f0+9+94f97vDPP/uMTJnAQJnx4eFu+3Jz+eI6l6wOFqatrp+JtD7tW+EQ1Bi4j2kdujXFHmOHMckUlMK2aVp1Y+vl02bt+J+zVZm3CTM3RHuijxtZH8sz/OjhTO0jYvjsG+eFS3lF5sXNQoTMbECEIXCiYKRzgqha06jZAIgCud9+OogIid2sIfLsGmyhQj33e/tjUVv6vEvxJoPxKGhPLd0TtIQfmZDpXzpP4ycCMbMJG8TTd5sf6COHmQHQMpi2cA4dtaalJJ5ZuX+OkQHg9vb29Zu3xUhDVEAKgWoNHIDSNlquYFUQMRCvu64PFBBWMV5dbK+2q4tVv4q8ChjJU5mVCGIgpGBmzBy8Ch8DUXCUH68IBUTTZgE665xT8FSACD20RciIrkEjuFBHRu9Q4gntAOLuXCBaihFryZvzu88LRBTMDEAA2HslOeIOTdiV88lORS1DDVSh9WIzM1Zd9/3N/oNJvdiuM+T7XZbKF5fru7t9REakUotqDbHrOlivW2pqQGQwASUiUjR0mfwxyjnTKpph/1HaWF4e5k8ThtZUCqw2Y3vaVEc867At+rIoSqGpKcryzKXau7j8hARhQfR24jAFmNuqLCbd60pntHdoCE3VvTo+j7ZIYMTT9M2zrfic6tB+JQAQk8IVUsSH29cy7g4P9yCHi2Rf/eY/DoebYXzYbLusdneQ9eXlNWzePdT9/V0pdSxFRPbDXsUuLq5qLdX08HC/G0vs4JBdgSaptt/vmXkYhvfvP2y3my++eAWqjMTMWiwQMXFkfnh4KFpEgAMEYt9FtdbUxcBxmqiG6U9kRBaAQU0nfB9nvhyCLso2yICQWlQGjy7QmfJmlAO/piV8YQu2OaaN4eQ58gydEGBhPzklOK9VMIpBtWVQmlnPsRZBBDCNFHLOQAlJOITPfvpT7Pr7mxsQvaiah708ZGV5//b7EMPtd9//b/+3/3V7eXH7cL/ZXv6b/+l/3F5cr9D2u4e7YUDR19/88bf/+f94uLu/urxkZhEhCmaS81hi/dnPflm1KB5peBr+lC3i2bOIzIxmRSoTqyIAG0cMa4w9UFLzwDB4b1CYIpRLCLqZtFoSLxgRmdqSnt39ddwLk4HlrMfvAY+OBQ2fO13bBlx0SKOG9XM0Ck92KBkSIRy9lIhAzdoxMCOP5asgAhk4tl+MkQJTiLXsCSMgqurUDp2BAwKWaoGROJiSGCEEVFazGJILVBFvoTt5RwHnQsQQQs4FVp4MLGjaXJ2euFRFRJDZX0fVO4Q2fyYCu3nki0hIqmpqxM3ZyMyOTyAqiiAiYuroLgG9py84wCszmVnOZR2C5NLF3qpAICB08J/mSWqcimfOM68nzIxr2imzMerrnlKstUqtq1V3d3dXSum61WZz8fr9DWHsUp9lYMJDPeS6VwCFsO7WZb/HlAiBCa426xcXmxioD5wIImoXUkDkgO51oBCQfG9iFVmtLryyUsE7RGGpWq2mlMwMGcysFvVma6UUMbh8cWlVaq2ri8v7+/s+BSRCZhFBw9ClWisRU0j7/T5xYiY0yFCmdwdEZKJSilYhIqTWJTrG6MYDgO8Ft4+RkLQWZi61xi4JSIxht9sZoVXz4sBAmHPN44jAIqWa9H1PuxFAzKxKBaL9bg8AeRhjWAFA13W1VhGotWXaQyARCSE64ZVamNmODpvjas48bbl95m02k8GTyp95jR49qgOeTzVrqcWPaxCfOz6iUC+l75917fxWz32/vOPHldyz05aK50cuNzMTCWCENu52w8ON1qFjSGmVdx+6mAwp9p0irbZxL6OOkUMvcncYB2/fwczeMW+3u1dAMcxV9vt6GEABYooEOI7j3d3dZrNBxIuLLSJKLoYoUCUXAJjrEIpUDMhgKVJKyb1JMVCgo65DAF42s1T/l++71I2mq2aeb/hIi3puaay5QFpsEuCojuGpLaLgvhsza11oEJHQ4TWBFNh8xNgsqpbJodUqQLz67OXFxUXZ7WXIUC/zeMiH4Rdf/GTI4zp2RWX/+q3k8eF2///8X/7XbrMKIZgJAXaxhzpuu83Vz/7CxrHPysy1VIqUy/7Ln/y0X4X6TD/dJ97XkZ4MFWOIPYeeOAFFI24G9PlF+ol+l6Ue/ZEBwNGUhunkJzB6fvRFlv/i86YwAMAESYlTscHZr365iJQipUptHTcAFcQQ1RQMRBSgJT5gBULSqt4AHiBzddujhQcNVes4Fu//Y2ZgNIylImgpGYDUu+VIq5dDRLOqeqxM9RazoAzs4XoBQ0VF/0ZRsVpNnIoWEDBCBqymIKoIFCaBbZARARREHWc/OHcmdy+BVO/Fc7KTllNkjxzUx01xOuVmFkLwTCu/iUOMIWLXdcxci+ayz4aHohwDhQSayciBTruuCwSkgqLrFPqIgagPtOnCKoZV3zFBHYeu64jCWIvkwjFwCEac1RyUwwyGLEUcdwDGOuZaQwjr9Tqte/Np7foQw+3DsNlsTDkLpNW2inSxKyKbi6vD4bA75H7dA+Iostps8zBaFjCvIyNAawFdURERFQJzW5OREBkXPUUQmAjMEBU8mQsrVxERw1ZMgQ/lYZbrTWkAzrWKYM1DFwPlwoz9ZrU/5NgFO1QzyDnH2GSfCDDDrPlZszfU6yRxEQd5bjc93nf4VOQGlnbp9M2jfsAAYK3yeZFRQmbGU2XPnxV2+rOOpQYwf8CJlF0HX77qUhmZt0K7vLVCOrn5Utw+zXfOuKgBADFTQB1yBrMQwnZ17cHVfvPqUBl4AwghWN+tJKTDACVLKSWGLgQupeRaVNUARSxXK4aAECMoMCKWMjbw9PVa7u9RbRgOhxj6rgOptVYiiF0qpUipCsBGANJ1Xd+vmwCOTChTOO34HpP5JkdasCNo7aR6RwAxLWeU1MIvfvIi0j+p9NPSIDbELTRANzxOp7CNY0ExLQVD0SAAkhoYoLWuSkiEgTGwAQmpmXQRCAOHIJHG3aEOIwXs+n5VyjiObouP4wHUcs6393dcquQMADF2HXNIW04RJUs8dA97xGBWDQQQvvjyxSF5at1E583T4/FyH7YsWSoiGzDHPqQVpw3G3igBMhLP5r9rJm3fOhTu2eZsysr5Lpqp93hQi6bibFXPDqpHst1N5sUjnvb0nC30pEdNtm8rvfC65yf6DSC6oTlFLgnVrIiORcYiuapIQQo41d2CKYA3tyZFEkNAYzYxIGRDgEIUAh1bAggq5pyHPAK4NxJyzjXGkmsxwGlFWtiPmpHgPbC9LRNRQLSqIqaMpOCgoC5iBQQVZVSpVkAQmfwcH7GWalOEEhEB1UTVvdBA4zj2XYQ89jHmnFOMGlpq0nFl8RhiWOq7tqjnxtZUcUbcBGZQrSKtjZkDazPz7e3t4XAgoshRlUhyzvUwjBxDVVCRocpl3wemdd9dr/vE1jGmwJsurPrUhxA5gNYYAk5uHiZ2O1gQQkq51v3usN8Ph30ZSlFVd0enfr3dbj883Nzf7/pu9eLFC45BYESEzfWaSPelhhC71YZiDAQQQscJxrGqMjFFqCpd12sptRpyABTTqi3xisARQci8IMeZBXEAsLayQGBeBwlVjIg4JkWl6phkagAxdAgVSWvJ0NJf0EQD8bA/GEatwgFXId3eHcCImaWKZOm65DX9ABCCr4sj8U7GxQRSxE9s1ic2lH9JZq6Og3nTntn4XO7N4yWPYsBNQSOkPy996fExy8IzdbsZEz+anTIdP6rUz497zoCY3/mMG37E4JifSxOchar26y6F2K+u82FYXXweNm81roksJc42rvpYK8MwOudx51V1CAEkZq4mQEiGMSISFUE17PteHApSZL1eA8But7u9uUkvXzjGfYwhhDDWop5xoGoAKSVvvQAeNVShOe3q9BVOFvF0To4xpyl8gItf5w+PZ39pb7VS1Ukwmx0xpHyfqVvJAAKGLadfQYkcSd1914FbDyViZEIiRQBThKp1BKoAjGgcSSt67kgfYkchHwYz61cbVcX15udffnH3cJdzBgCKkcMa0azYMI6MFDmBWghBLF++eMk9VS2ItExdPlPvHr0yASUMK+62Ia6MohFbgxg4mac2nzTlSTyV5YBHT+SJO+vxYQhqxo9+9UueFPA/umnwNK/iyUfP+xYACNg1grZQRDhxK0fxrbWWqqVUI5kKsRBREMgQSlWDaoEBxZAMiLwbGKJ6ZV67bUClVdXqTNYIEbNoKWUELmBo9SiAmxHulqWoOuoGEDWvho8O3ISoXovq+qgRgXk3DTNpkDtmBmPOAIaGSMDIrb0xiJkFpWEYgcmghhDCBEloZgToRuQsbr0kZjHVp6G0Nrwjyc0nzOEeRHTMmT51m60ViFRRiXGs3kbMO22rSN/FLvCmi5ebPlrpY9j0abtZbboODUBrKWXVp1IVQIgjMhuAIYSQPtze3tzev7u53e+GKiBiuWpVibG7vLr+x9/+/v5+9+qzL9Jq/dU3rzfbbb/pEfH+Yfzrv/7Vy+vP7u5v1OAwjMx0kXoERZLtZlVrfTjsrzYXKFla0JwVShER0cjIMSGTO2LRALSYQDWNIZoZGqCxNWpDdcRAAvPgNEcwU1Kt0q3WmActIuMAAFWEKXoKRSAKhCESV60qREBIUk2nyKaaxRgQCwfHClWbjGBoHJL1nIkel/jJ78FhmyY/xyzvzs6chfCPZEHPGvefe5wpCB9xdp0qiU9YqM9aq4sHITIcw74nKBy4QBT56Iif/n1qBC5AhsQaQkY6KAYMtLq4/Pznh/vXm3Uk2sdId68fmu6G6JU2tUgMqVuth2FIiYlxyDLmWqoQphC5OmB9DFnqarXCA8bIhLjf711d7fveCEXVEGDCZ3JvCTM3Y2uKhy29E23SWljdRbNzH/Z5gRbNbTayo+yeLfZMO8sFxaNHFB1IRJsMds3RPZbn6A1+hBaha90ZKhkSKkQIwd1H3oGUGgyPleFus74IgXKuMdF6dZV3h/sPd4RsUsAseH+1Ws3TQUCjN+BQLfs9oJKVAOaoW40eED/74vMPBlmFmdyAn1QHnHwAaGbedgmaMoFEwbgPYRvC2jgaRkAG9CigXzxVxj+uZD/OIbY/3Hj7aI7CKSk+Wx/fPs/JpPBIe57X7tyJPR/H7da+nyuAjRbvc/SgaMubR4+RiUGtWl1Tn5oiwTExXLyhNaKRATGQqQIgKmmYLELwNttjLk2jI1SwKrobSjWqYCJiU+tGXHR9gAlMY8k3AKB6BjawgZiigTtCldC7PLckRL+hqiKTmaCRn6lWVdUziULk8XDAwAoWJDBzWvBWa4bdrLf9ONtcimSb+mGoSssuJoqRJ6x7K7WM2Uqpw37cjyVENrDEzJG6LkUUtKJ12G5Xl+tuu1qv+i5yMClm6HHuGFkVxMBUAVmK5nL47e9/d7877PcDAofYA3hPYjMt33zzTa2qQN/+8P3+MCLyer1WhC9/+pM//vHrX//61z//6c/+4i9+8ZMvXoUQYuDvv/vu1atXF9vth5ubGOPV9jKPQwATQ+Toje2xVmCiwEjejhPVhBCMGAHNxPuVGIA2fxQrgCFxDGamKqVWQEYESmRQqokSGxnHpKrMkZlTSln08vIScl533cOodRy3m6QW7nZ7x9MCUVWhFLyB5lJbmss3Zip6UgDNPy09H8vN9JzYMjPvHGctC3p53gn5nhqLvtsWA533qj366ROJ7wkl4rGFajYL0TPt3mXPjz5r+cSzsS2269NXGYAhAwDHrpZBclYbFWCspdtcfvnzf/b9V4fAdn3ddwP88YebDx8+5JyJCIhAIIQQuz7GWE1rURWRaqDe6RrNbBiGbr3yADAzZ6mqyiG4RrZardYX2zFXAcPAtdbJcrRaqxd+IE45+rNJ9QgYCE4X5WzmbUJRMLNI3N565izPLOhMdr4qDkWHgMv2Gzbhuy8h2cwM0RRQ574+gamBJzRkWgMjQwDrYjCtpZiZcuiRkLrYbXqoVvbarVIg3u8fui4S483N+3WKSuqgOzGiqkjNoCUEIjZUyGWEjvrV2rHcPbwCC9qb3svf/SSZAjFgXFHqiXvDZFPp0VN043lLi+4mTxnB8zzbolq3zegSascAFyJ9dh+dKanTSJ5w9jxJBqdC4tnK1GfObxJLVcW0mkq1sVSM0REXwMxhpBARiBEgGBIVQ0V0IGg2BO9Lw+xFLIxYQYH3wyjBIgGpAB7y8DBmqVoQ1XmngIEgBUQTsVqzd95cqvtebFm9fZSDSBi5GAZUqe19VeeyTFKtQAjg9Wjeq0cMyFsCYLGacxhGIjqMmYGJckrbJSecZwYnbe/xlD43vRN+jpi3GAOIMW626/04pGpDzUgQY4xRk0kVFTNUizFIOUAXA2OKdLVZX6y6lCITeKsyD1SJCIWEjGjKIQnY7dsP3/3w+u3bD1UNgDB4J2dLKfUhHg6HeqjMHEM8HHSzXUVO+8NYTb/9+pvtqqeL9XfffffNn75ihP/2X//dT7/8yWH/cMt0SAkIA/emslqt8jCS51qDFQCq1cyAkAKbgIqIghogBwqBwGqt0OJZaAZmKmqKlLMYGhEJBs88rWKHXCKCiBaV1K/GceQYxBQRAnGfwtu7exONhIjYx3hzd3CIM0IUEQOstXr00vu6tmYHzrJcqPGP8NInpK+XCSzF8aScHUl0+vtRP+BHD/gUMppv/fjMx2N9rBs+Ft6Txdy+OTOgj/c0I2LHYX8szp9+ETs/4Tm7HJyTeXZlxXW32dUdaJXxQMhgNQV+9eqL+nA73LxLkQ96EJG3798NFomIHZuUIxgNh6wAtWoptVZFoMisCjXLaruhwIdxH2NMkPq+f7i9Gcby4ievxnFcr9fr9fph+CCmHJOWgkSoVko5jMOcMctTx+zl2zk+RjPhEOZFP7L1U58zu8k5YTHaJBNmsAizMz9ru/I4Y37CxIyWEnqW4kIqpgSEhO6C9EjnhPvIiOh2JIIhUogx5ypaQwhVtYgYQrzeouhIUnI+7PdD2fXKKwgJax4zMtVagLjr1qpSdaRQY4qcxYoBKEAoFRA7gAIuIu1poTXNKrouYRwodBzWyJ23PHI4Y506KyMAtuY8T/X/aPrkCY09Ph5volk8G51sY1iQPS405uWvSy357J6z0J0V2U/b6YjOv8wcKtKTsMYqRbRKbQ1xqCFKArQOCyEAMxgIUSDvM4Kg6npkbrBKiKbAh/GhsL7YOALJbnd4wFKKCXNr1qCgVl2sivpN4mzLTq/s4DmkWs1wgmhVbc5bbNgRZmDIgcBUUcexGAg14B1CNENGsiqCoKCVh9D3PY0lhY6LeIK1ohfbnPO65Yw/Jq2z9VfV2aElUlW169M1XNw9PNTb/cPDw74YpzUApJR0LFqkmK07KHmIm7jd9C+uLjarvu8iEZI7baYFFUOt1dlSzvXD7e23337/+u0b5BQ59P06dSvmoEBdt+rXq7GUX/31P885/+mbr8eh3O/3u7v7q6uXIvhwv9dc6mHEMnYpgtQPb75fMd7e3qLUrusMYdP1fYolV1U1Q/LiJiKKQUTUoHVrwDZIjkQYkAxUEIOZqnp6ewvQ7R/2PsmHw4GZvQPm4bDfrLpa8244XF5uqwoQ13F0BShyYEDv+hK8QdRBAnMVIWJVpcCe5eo53r79BYwf8dLHh84+nlMr2dt+mKe+AJ5tqJmROicVsKMAPjl1yn50b+OZxHyST30KNzkRwB99vfmGbpfgwi+/fND062Jenr6vArRbPJbiS7vhfBgAgKiiucoqrkLsVXIdRzAwFTTdbF785Kd/8c3hILV8uL1/2O+lmGExDVnUgEJgQBlq3u9HJAYgolCqVqlmKAirFGOXpNRxHMdDVlUiur6+vL6+vr+/77oOmUopIhJiaw+nALmWYRi8W4OYMjGSIXjzOyQ4GsGu0tmRSqCBR7bE0eZy4VbFYXNNzlKdQUQ4RbufZ8/P8p7BpoqLLEb1yC02i83weH7TNImXgoqmhmg+CEe5H4YhpT56sRlqiElVSylS5eLFpeRRVvHqejXc3O93D/26zzmnVV9rzaUo1IKZk21XGxmHkEj2dZN6MfH6mSct1Lm61MzQgLxlemMZAbgHisYRKQDRRFZtqk+oyPDJuMasXMNiQ55NLCI2T78XI047uaV42BSxBAGZwaInfMCj7vTs8cRuNXo82vkmPkqEeUuSY/n5hUW0VM0io+LuMCggNoQHlzGEaiJKWiOxERIqs7UCHwAxteZGbjSQSt0NeeYAh2EY2UYD0SCmfkljzVP+ORb1fAtEZA7uzhCRGGMDWJ7m1vMtbKqcFBHTljyjVlPfN71BtS4c6bVWM42BIIxXoKSADMRQSgEjjwGTTXrw89N+xg+XqpKIAJjXVUs2M0uxA5VV111sVg9DlkEEcBzHXZauj5GEiDabTbSySl3XdSlw18UY45Sdzf6mqsocfIZV9fXrH7766k+7w2G7uSTu+m794sWL689ertdbJOIYQ5c8R/rl1fVf//Nfvn37tta6Pxx+//uvrHK+3L55+wOT7O/vtU8vrq7vP7zXVy+3684k37y/W683h9sP778/qMLq4tLQnRxIaORtxUV9MIgUQusCoQgqxhwRTQBAWFQ9tV4V91VrrUPO7969QzL3DoLUCjaOw/39fej6nEvP0YA5hJxz3/efv3ohN/d3+z3Uahj7nq1ynToJRuIxZ0RIKRG5Hj4VeSMieRu8j1locOSr045un/37YxHB8sJZAAM+GQNGNYCi4joLALgriQxwUsDndJ8nrd7ll8vRT5/JdzNMlgfMORjQ+km2gTx64XYH8x6WzspVtRKBiRohM4shILPHS7UasMcnvUUB4rlpMj3A5YMuBqxuFzr0zKBKm2so+yh3Mg4mELpVYHzI31eIh8Pu/cNDkbrt4W6wq8vL3VjE2FuJi5QYwQAp9EikWjEgMleUGLrhMPapyzmDVREJIfziF7/IOSMFA7p72JciCJyHHDmoGadQxlxrHUuG1FU1qpWZ3SYwz2tSx5xjASGgMHvb5vJQ5nkVGBJgURQzRTMAbSharZQTEdDk2LuwVVk7r9Ha5ouglduju6OJAgOZgJCZP05VkaN7ddQ7DWMAA/ZapimNzFCRmw4Ru2SgItkU0fsOm6HURCwlgygRqULYrtZdNK2XLy4VLKhGETGLkEyiyIiJh7sDUcxjpcRKSiiBAc3zuBUdVRZaTx7iSICoCiamqkgYY+gvIK6Ve0WaWrN4Is2UKImz0PXG09Pubb6cibCx2QNmQETqGUVmZqZmYiamjgqCMAGYaEVEBG6FGo0zuBTxCn7H7Zgqtl14cEMk8iHYtJUmIj+63M0MXNhPaWlk3oREXS8iIhdeRDzBGYKKCVhVOYgMGO/F9p7IYmalTHWcgZnNEEzICjIRGWJFIwANHanqAgkUzYCGUjUSg9dcF5EHKQ85VyKO5NYPEQmgoyQrWOTogpyITLNaC/6KPACATkUSMzMppcwCGICY0W1lzFkVvEWQIoh49SqXUrqug3GkRLfj4WqVhnzoA6lVoh4ZDNUhKdTztKfKUZxdHwHAwKrvqWOI0ddCwICJDFRVasvEVhEQ3D/sVykyaiDItfTr1c3DQy0lRFivujyMr169vLq6tlpTiIhYpGLoEFHFzNDxjYdhv9lcqOrbt28+vH1DYJ9dXW8vrl998YtVv9muYkqBCJS9DXs1owC0v70HgKu+B7CLVXyx/Zdvvv2hT134u1/+4avfVX319ofXddi/+Pzzw/5uve5LNgSQnO/eviMrpdYYMMSEEFSgzmqQQq3luCK8QNhDHA/jfjiMub5585a7/o9ff3sYh5zzzd3t4bAjIjMZhgHB1ut1rfUnP/mJqdz97g9/96/+5e7mzoQ2XU9qYxkSyzZBstoTjbFXLjKWVRcPuYBAFxN5PQbDqk9aCwUmQJEyMTqZY1AwycGJ081wbBM0efMXEhIaeTmXCZiDWU9inYkM0XBqqvxUGdLRIjz3/R6l1amIPRO3+FS09fQJuLzwGeP5/JLnjGxDPSYfnSqYiNhKb2iygD/Jmw4A0JJOa4nIwKRmBdlLLKTk2PXVdP+wF9Xrly929x9ubu/f39wBwour7WazRc6jwO3DrWDpunQYR/BuIMSIpqaBIYWkqinE2RuGiCmlWuv9/X3OWUQOeSylECIgqWrXr1VyKfXth/dvP7y8XH++RjKeUFAm1wVMxOH1kWKeQujWgokBtc0wty+ME9vMMKtpvpp6BMJxx8tHJk3A2AAAitYwmZJiCq1U70ghcIy2NCo+UhE2/42ZQXuiZ9wAgopUlWomIFVEVIqjzSEThHAo2cwUwGNpBgVFVIS98aK5jDdEbB3EHSBzpixCaAjDRzsSyRANKBgzc1JmoICOKzLrhEtFc/Hvn3U4fLcwEAULiiouhI2QZCqMmrwLs9Rf7CabRf40see2tdnRFly4yHBai+PJeJp4AQCA2kLRhq4lSHMSQhEbqt4PWX2WnfUIGGJAVG/wBYSoRA0Py13EKGpmIAhGxA6whbyvO8lmRqAg8HDY3+q4JxqtJchYa/eAVUQAASDnHRERRwCotXqGRIzRrPkVl8lWbXGnrOMlsxIRqUri0NMqaIjAzDpoTAVIgXC97gPYNnQlloycgoRwNEhgUiP+Ccc0MA7BgMAk1DFv+tV9HlJkGLOIUUgXF11AIqIuRVRR1ZoLRAg0N/1bLLoBAGw2m1LG+/vdfr8PIVxfXV1eXL/47FUIqy6FyEQqogqK3BHFmPo+V4MqgRgRq1bQGkD+8mc/ef/+bR/oX/7tLw9D/ezq0kRXq07KCCZSa63KCsicAncxWB3VkxRdJ5184+KAKapiyswckieCxBBuDod37999uLm7uds9DOO7Dzf3D7tDHg1t2B8MddWnUso4jvtcAWD/+z9cXqxj4r//z//l7/6bf5Hvh/1h77CACpQiJ0Ito1BPISjWWfcqxWOXkPMYCRmtYZXQBIn8lHfq1DB8fFDrGIJH+DibcgIAwO26GbPIW+gsQkRHD9iRJn5UZh2Z9UkE9/jNk8eZGG63esS4pvDXySUAAEhTzxI6ZzTtJebjqPv/aHLiUtKjgRYNTAAmJgbAGDy/XaSEzqrsAUuM+OHDh9vbBxFA4PV2Q8zdqmewu73VUhoqKAWkaECqmutQDVkjIq9Wm1pKLQWkImJIab/b7Xe76qxtLKoaY0SgrFqhCmgkuNsNH3aHsdJQgEAZiFAZaYLrdw8DIaIaqcnETHliQ+66JHSzDdGL/2otZg2NGCfxMsnd+f/HtVCbOP3kvdFF3PFES2NiYhNYXO4ZOr5CjTkqACLPX6jU6RYKyGJZRbRWVFStUqs3arXW3NDyMCKZg9ACqIG4AAY8omNCQ6FyynHvOM+04fQzayDNWY7MHD3HkrzdBXk7Lk8VmVG0FoS0oN6J6I7OJ1jMzAm1L45ZM33CpXRUXJZ0e1yXZk80YIyjZ/skS2BxzzmLAKf9M58wM/TlPp13ont0XVPc7/OQwSmrdQRGYBodg2xqPOd4C365IIGognqozuEkGff53pI3ZlCk3X64y7sD88GgDIrITfZXzxQgAMhViZCwAECtVcSYMcZaSlVtbQznWfd/VY+qv6qjHQEnFDEojesZATMwaz0Yc1WEFPJwKZmxdFQTVnLsfnYHm5mjWZ8GI3zG7AnuNq9+QNIpp4OIiCIBg9p42K0vNrdv9thcmoaIXddJLmCGBgGR1KxK6kLHzNDaLi9K3BjARGy/Hx72B2Z++fJVTP1qtbm8vEQ0UEEQM+YQOCRKvcVYxACAArssIgwhGJAEhevL7X7ckdGmC92Xnx0eDn2fPrw/BAAk5sAxRgwIhIBYa2VsuIoM7DvOTLRkT0Q2sypkZiQkALfv73/44Yf3Nx/efbgZi755+16B8ji8vL4+5LGjMJShDAMR9THtH8bNpiulfPPNu8+/2ATCX//61z/77Cci1Z13zGG12qxWG34oKiUyVsKsliKZomolhkCw7WPqArrOR4ReE2kG5HCY80F0noTxSMH1zJv2i+KT5RDT+Wb2lAX8/AXLkx/buPOfjz/8Vzlm9nEiI5EB6vSs0+G1EybhC3IaL/7ogwCc1mNkMgOtQbWtByHHcMiHZAGrlGH3cPfuh7ff74ehig1Z+iIiA4YkVYwspKiqTNEwpbjiSoeYNauJGhlCrLUeDoc6ZleOUoy73c61eAASkanECIio1gpgGNNB7N3d8MPtQ6395xcrQkgMRKZazRgYPJFEjVqhSGvvZQAIBEg0N/tRBJqKuDx0N8+hmfcZPf45C9fZGn4kHs6TttyQA3Kn6xKzya3MWeczeZzTj9hKMQEI1AH/yEC0miqqidZaa5UipapWBHdlB5zaOioqoInU9nSbqgDnprWL6h00MPT28RPIlJcpEQEhUACe5MdC0YNnSP05n82TJNeMTmuNemwq93I1dpJpi5sj0ISENd/kSXE+/7o8ExYK1uLLk8tRDeh8j8+a0wQe1By5pZTDCKXCKZ8AMxB15FMjMCBlVH8d9/arujAkB+ow1VXWUUcgFkPPuBlGHYJmZa/jVYUxmyqAw1aoqULJZlZchVC1Wmwcsmty2sZMRM4xDIBMi7sSzRCsupPFlEjBGi6H5xUyCmFDhDYzQg8gWUSIU3egkyX4yLo/XqOz9ULw3YkEgKQvX76IMdzc3TKYqWrRnPf7ofgOZtKYkmcNB2Jvi9RuBODpA36M4+jIHn2/3l5cxdiBeWC7EFoXVjFECh0Q12oiFQj7vg/EOWepmYgITdXGcehjKJkOwz6kPoQYI8dAm75PKSCwAMQUHY1OWzdlNhCyAKjoYRKtmkdiL5lVM5M6VEURef/h9Zh3tWYpgwkQ6mcvrq8uNkXlxdXLh4eHw4HWn780s8PD7uUVjiWb6Wal97e7Mma7toTvvnj5Yhj2SM5O+xeXV2/vht1YcYqdmiKYESOTrTr42ZefRWZUNG3z79hnHzEj8TQ1eGYCBgqP7b92KGJzQ+KJBfznHDblrcAp5z378Imi9+McypDNHGxn8hd5vxSTMzpGZH/ziTmCTT1BTzg+2lO1lG3YywmFaTY5cT0cqIyJmRBKLVlGsbpab5kQRG0c97v3aoMku78bU5+cN1WVm7sPIrLarIqoCDJ1KXSIEEJIKSBbjLFkkFzG/YEAicG3eM5ZqpUsahkAAhKqFREKHBhVVQ3u9/lP378lop+/epH6HgMCUyACUDABaf1eFAgpeMvzxhl8d3tuT3tXnfQVO6aGAoBWA1MyU4VjVQyg8bzKR7ExHTpThwpVgFahhApiJkTBObSB51crKZBjepvCVHBrAICErZ+uN2fy3tQqKggGJqgqWs0t4pqrVNUamNlvP9n2M0dKKcxUx9BsloV+iwjkLcHbqwFPvdP8z4DIZ/Qzq33LGVjwQMBTjPRzCn+UlTMfRIRqhNgC1B5zfiSDH2f1T3f2/7op1hrFAJxYzE2ntSNsBRr5sixveGxitdzUqmjHVjDWHFH/P97+7OmSJMsPw87iHhF3+dZcvsyqrKWrqruqu7qre7aeGcyQAwxAAiAkg0TpRTKaSQ+QSQ/6UyQzmelJJjM9aHsARYoACHAIkCBAzPT0vlZ1d1XXnpV7fvktd4sI93OOHtwjbtz7fVnLAJRbT82X98aN8HA/fvbzO5CiDVllRIOUF5kRbTt1i1KoGdQoJeun7joG1IdOjVK/GgBkMVQFVTAEdg4g9ZkWZoKU1ANGRElCIjnAlFSlAOBSWV2venYJDMyE6MyAkQAzwTFTlxyUSZoMLEoAcewB1UyY/LChELNPtbMp3Xeokib/Sef0SKmFWXdJqh/qxjpj8kzm1GUzM1T1zu3tTvenk0eFLwgLQjMkAGZEUBA1E9Fg4hFNJAA4TK2qCMi6hBcDJjeqxuRKRGT2jr0CqokvvJlEVQktBgViX1Rl4dk5iDFabSGSxpQagKrscLaYVd6Nyv1VU4emGY+qUDc70zEBhiBmhskHYoQABQAxcSIHBAAxEY0tWEg0keSvgkm0IG1sV561YN2dVG2UvenRtatHQCmaYOPxuCzLpPqr6vl89uj4uG6b8/PzGNuP73wSY5wvF1cOd40ACFWMHY7H08lodtzMLAbyVFRgDUYLBXCIsDuCawc7jKkwN9eVYGcfbJ3ToXRIVAZdTjEiJhAEMNDEfPqDcMlQQAQYdEPK120+YItzkIH0nGUwoYti+P9Pwzo35lNYXJYZWTZ/gbn11sCqWdbzE2rm49HI0Q6bRSUD17atSKjPzpanp4/v3VssFueLZRvht9746mLZzOZ104S2bYm9IZmZdyVTiUzShAT6ymwipIoirYoSZ1yh3Hw7aCvCpsnOSGiq5BhTu0DVEO3R2bKN9xerxgi/9Oy1w7FnTyURqoAZmICiJndY6jaTNquPbxJCB8ZmhJgAgDDbqUnT6iJnah3WPMBG6DFRWF/7i4M/BuufuEkymgeCamBP97+13g8MOeytIqA5/0skShBVZUABNU0JrprSLAG8qSIRUu4pq6YAgqCqWlUTxN5Z0j0l6wsD5Bbo0h8xs0NANOSMuWG5OmDYH2iLti4ekE262nAdb361/nkSh5ZUkOGEMVPz5ybjboIbDuo1T/n0W2192/8zhX7N0BRzs15EQGglSc++SCODTDFTMjzQUAz7en9T7Gx9yM5JQDMgdJAUwy7tJRknqioSgqgqKCrEFIoGydG7jOOoCdfZc2jD1hulWw5Cwut2cqmwGVODr3wxmIEaEGiHK5i7h6lFtWjmkwOAiOyy+nswutTL2Km8G6OT64bpqWrWxtLxjYOrx49Pz8/bmmtCxzscYzQjAIuxbVsUKzI4fFYmMjgdAyZImVRp49VU1bFL8tSImHyIjYgVBXtXmKGEGMLMObdarWJsnXNF6VLOHXlXN4G8VzWTQICOkQyitI5cog5HKbE5Fa8jAmBCOMGko2lsQ5SAACaS4xemKTAnKoRGjqaT0d7u1BSn092iKGNQAJhMJml3xuNp0zSLxeLoYO/q4UET2nfffRcAvC8/uf2Rts3xSbm3O3HO100AEe/9qCo8Gpiw8yX4uokIICogMCmh8hm9KkfodB2pfNrpuKhVd6c+I3sNOdvWhdgrp5dbwJk9b9LKUE+/0KFhqCBs/fG0gRsoMIMvEibwRjYyAKzzNc2s70/e/yaL4c6EGBTAJesZIPVRB7j0MHzKJGPbNs3M5vctVhN8zvsd9LuoteqcdRVXs3YxW52tpAYWfvXLLz7zzDMf375779GTed0ieGI3O2+QqSrJsUNkszbVBoRWW2tSU9yUAJVQ89omxhhTXhkiRlMGTN24zEyDFEXRiDJ7RXgyW0aVRb1axfaZK7vPXzs4GBUjJE0JBWBkgCpg2sf9k0sXkFE3qj/T/xFwZ/OAJvwBNADTGHsBDJhWOwH3dG2p8i2yqZSSZTRnPW2L5CFtpKRAzOCd6QtSBARmJGanqgqSLKBUe0IpvmIAhOTQm0dEI0NEjS0Cq0KbRESq50dQ1WpSAcx78dZvMXQqReJW+R0MALuiNkRETrH/7sU7Bj04qd0C9B8lD//lzR4uPR04BN+AdcpCsqKSdjI81he4QO7mlL5bq0S2hpIm2ih9Gcjgjb8vnXM/zIzJERGooRn2Le0AHIOBQ0TApOOnA5nsiUSDazpKVipajqMn49Qg4XOjmRG5HHzIC6SGaGhEgB7ETFJuGoO0qZBcEExz1qGI6PBdctwgeyyUeZ3ST7n8PbfjS/MFyDNGSxllaSJiFlVbs0iU/QedoZPCPZmcAeASSJy0/t0OpHmt96I/QYCAyEgT51XCld2dw/H0uFqcnC5aWxF5RymCoAYWYwtoReWLyqc+80NtOMVPzAAJCiR1btASiufnSyIYVVXlC5E4Oz8/P5uv2ubx8Rk5JnJR1UCIGcnE7OZzz+1OJ7BcVS7VK1VisfRFjC2xI+LUd0k1gplH1pSNIWJmjKYpzS1ER2AmKiIxCnRJG6bTUSUaJ9XIuUJEiqJs6wBRx+OxhdYRmdr89ISIplWpYPPlisC+9Oyzb/36V4e7O3L96OGDO0+OH/rixu7uLrMDo8LxuCrLwrnQNqDIUHhPxhFX0x14/tn9gsVUCftUf02xCoE1sO7FI9CvMAxoujNjDUDJmACHyv3w6CVL6HIgDhsESzv9dBuTckvE9hO61Fq/9B0uFdX9dHDTsflXGPm2fS5nCg591i03zCOwshw3XC5VYLUoi9XE7xSOfYzz+kk7P35w59cP7t5+/Pjh2Wy2WsGNG9dn87PZ/Pz8/HzVmgBLLWdnq4PDAxGDVPFdeF+ViioW2zaEIITkvVfVlLqpqikPijwjkYUAqU5CDQAckWdumoCEhNxomDVN/bg2srY98r5AYC1xTMBEZMqcnfFkxNjp1wrorAOt2mC4lJu5gpmBkqbqFySBVi21L4KhXyUR65AcEdYUqZm7rRudrs27TSd29zcBQOosgYBEWIwqAGvURFRMMfUxRWpDA4QOXTaPOldq4aqoajGJ7AgaEYwB1KL3HoZkaWAGBAlzeEAAm0cCEQ0s1Q0gOWSXJqqwAbwwpNXu72z9b9F/JvunkB91I6V1afLyIKTy/oGM7Pyql5yR9edbJ9RSRLPrODncguHccDCeMk3w3rftOhKR/RP52KandwZBV4WebpcbQ+fTTcyARqjUkYYmmMt+NXq+lp4lueMCACNEEwMBIMKytBhAFZjBOUekGi1GKx2lFlyWFiyF39BUILVpyKgQbKYgCpwFW/JF5n8CABMmazn5n4mRGBKCeSqj7+qeDf8tsqDTO7IBIDI6ZpEQl+fn7LAA2inLsWcVVIetiPcewEAjoyAiO9rauGHtlXeUlVdkIIhRGdiXJRTIzKhy//79u3fvPjk79UW1u3fw3MsvH928VYzG9x89fvLksSHE2M6Wi3du33UIV8vxG69+eTWfqbZYMDMzFUnnFglqikil80VRBFmf+kwqjKwYQwMAJrFDi1cDBBVkjqEpyyLGKEHRWkTa3ZnGKKNRZWZN0zgmRFSJRLQ3roLE2uTrr7366Mn5zJ8c7u/PF6ez2dlkMkkCmJnL0hcluYbqIABSFOPK4UpXh/vw3DPXR57BAiISgWlq72YADCAJvKXfn36nLq0H6cVq/zfkc3eJFp4uc9nJMvgIOnm1/huyg9sSqEk3kafR2Kebv58uVjsbK/0HIfGgHu4ftokbs98J1AQAM+6aZQ9AKjns76yqA6lz2dMHEKCJWxmW0/3nRgXG1YzZFxTi4sn5J28/OXnv8YOP5idP7j34eBVRGV5+5TpoU6/as5MnsWkn08PZon385Hw8mYYIBnAwmnhfnM9mbdvWdRtVzKCsqowVEAJ714ZoAEXp6yZ4BUB0vgAAMUMmiQIGq9WKU49XtaLwiKhoH909VgUwapv43NU9GBWm6gm5bZnREaeoaIK7i5qcygkEel1tgoimgKn9LSKiGRmGqJpRC7petamRKnLXQ2G4p5KtLUBEpnVE2RTNFDH0DCttlpmJSN8dLP/KyMyiGgFyURToJAQTBTWT0EpEdqpiAJbxBY0IyTGBUYxE4ApvJhIiIRWO2+UihbeJCCD3ruhgmGB4BMzUUDF5JlNBQtbrO4ufrLtPyikZUu+wuCuxCenfK5emZ3Ao1tSMFgAQzSx2Poasu6iC5jDo+kAaWYdy19WVXaRkBABCTjOCdG2WYSqmYNk07bzrthn27d8lMYjOoYSImAq0wDIwhRGRhEhEyZEYAqgaoaZU52TTYJ4PmfX4QKkiHwAEVK1z9qR8rpQCgCBIoBrJOzPR1K4I0btCUFuJGjM3ErPQGnKKeaJEk+x1QEBrRSG3NjIkNksLAIxJ9SJGUUBTQyTHKpI4XnISpqR8MANkBlC1nKoMhqYYgrjxyMxSiBpRmXnYGWnoYYLLQIS2FhwBkxZORBICkS0WC21DbKVZLXaK4ur+Li6bRYzsWSyKSOH48GD3+uHBqCy8IwZnRNrZ+rk0HBNkBSXFpG1aJCaCZjHzrpydnJ2cnX5y7y4wvfCVr/hy58GT07vny59+9IO7D4+bEJerend3F8D29neYcaf0p7X86Oe/fun5Z3aqar6YTXZHoWkTwSX0b+fYEUuICkiOJcYEdBFCIIRE+SE0qWw2RBERYu9coWBlOQEAMARUX4ycc03deF+qQQjRDKqqbJrGM6qKBgFTj6pg1/d3dsYv3717+8Pb56vFfLGYTcZ7RGgaR1UxHY3uPZkTQts0WmtEdSXceubKdMRVyaFp0ykhIuwkBTGZdE6x7E3PwrVPAtjaUxFBSoAZ63S8LQV3+OHnTcKyPtr8WZf1z8CB5BtO4tNHd9nnVSA7dpW0+42BG48eFFR/jjmkQ6iIaki+rKbXrJiQwHK1Ont07+69Dx8++GAxO14t4u7B9RsHV18pp/NW58uwkDZKi2T1YrlYBDAKIbqiKMtKRENYNu0qRXmJXDWqUi15LjRCNMK2DU0TEMC63grrEFlCPQQAAMoWEBoYKJJz9x6frlZN07REJAc7u47GBY8cgqGqsUUzNkRHRKlzgiVSymue7No+kySpL0we2RI0h9k6EGwdfHQOXa81oXUcjlLH141thS6UmxDm1KWSnj6ZMFkpatoVbjIjsncpoAtRTYAcoSS3tkhcb3z3Fs45IEMhNA0WzUQ1EpFzKYchgwaLQgquQ58r06fAdOpmWiU1AyAFp+AICGCdQH4p9fafXzgFdvEaHJTbDmuZPrMV9+c8UJuDugSgoRf68njk1kjb0/uURcREqdv3pFR5D3WErvRpoyFKbzH0/zUzRFa1/hBnJTkTAfTga+mJKeVacmk0Y84KN0JCh0hORCSHnPrBpmJmkNBpshPZurSwVBiQbXQzQ6TUGhaNAWKvophZDIpkYiBiXblQ1pO6DKyeEDcYdL/OW/xza817Po6IikBGRglPzO1dvdYuF4XzjbSVd1cPS79cBYnRVAMywYhd5bggxgFW0tZARE1pyWCqAqpGYgrL5fL+g0dNjFdv3jJ2v/rgkw8+eVCLzZrwla+/UV6/+Sd/+Mc3nn1GxB7cvfeD73/3Rz/5/m5Z/OHX3zg7fmRmX3np+enuzmq1REKFnJnBhphwkYzYF+xc9oFpJBUEADJGVmXphgEkF2CM6r0nInauLJPLCnf29h0Xy9VcDEaj0Wx2rhlXkxgQYtDYxNCKOgbYGVUHe3ttDMk6UFU0IwLPblRSaNQRikUEO9iHnbEnkLZeAoBqQr5LvrQsPahzEPbnt6fhoegdkHS2VeGyE9rReafjfaEsaLtg114KbWEXXNDDyV06rc2xjVRFaxN9426XTO+CJxA3H4ef5RrqZ9itkBEFNGCemC8itcEgjKZ08OzzV2+QmjZiipG1ieHR/Uf39cnxoyeebToePT5rFguJAIpajDmInZydtW27XC5TVdJ4Oj04OADG5XJphKparxqJKWk0dxjt9Ih+LVBVDZHTTievjWECmBDVR0/mGj4WkfjS8zeu7AXGaFY5LZ1HQiUC6jIwk0GmGTKaCC3BHXVxOORUJgBiAgAmAEbAMmA6iS6lFx6JtjR3O8K+7javanLJaNYKDdY5vWQGKeW32yuCDLYlhkTEns1QFIGsIzFDMMoaASBi1+8IEZE5abIKGkJoJQoiJhd0SqIBABEhYsuJPpumCaIlRI5k8QF3t2egvkwLhwXoPdLpkPx6ioJOwKyPwGa+/XChoHNKpN0fVHRuEeqnkvLAU5X9Sdkx8bSBFzXs4bFdP9cAYF1U3TlLkIicwySAQCV3FkbMLCwLM4LMxyxj/63d6danruCgPgoNyHIQOCl2AGApS0lN1dQQkcHWKYTYPQ0M0h5luADrFzmrVhd4UWIh1rv3L7KafluTCycvdhKVlHI11tua/Q8GZiDpPnoxdX2D9oZTIsdUjdRsNp+PitLY3X/yGKHcGZdNMFWMCAQ49X5aFBUR9ykJOZu90yYBkhqa7oompmqKAng2O5vs7zaz1Zu/ef/B2UJcdXD0/Nde/eqrb7xx/dlnp/sHrigLP5qOd/7pP/4nb77zYWP+lx88eHjnv/k7//4f3z8+nUyqq3E6mVTRIlha9+Q2MgJEIiMkVxAAmsTQ4QkgSgLtiDFBQxN7Iqcax5VHM2RngCIihmHV3L3/0PtSNY7HVdOsCMF7DxpXq4VDh6BoxoSIyESTcbW/Oz2bzxJObHJopaZSRFQVTAZLC8xw62j3cK9ybBrVFT5VdqFBlxSPWVlbjx5md306YC2PBTP/yZS2PjJPGYj4BeqA4XPbwRd+8hnz2JrTReH6KYJzW2SuZXz3OEun/otNo588EqhpNEAk5YLHPC2+VO1ec2zeDGOol7NHTx7MHz6qysn1Q7x99861K1eWDS3DE3iyaAU8SWgFoBEJTdO0bWuGzC41+0RHqfOgiLRtG0SwszNgoNys+WASDIQZhthy42YDLIpShM8W9W8+vFPHMH/xueeuXQ0F74I3RyWQqWlUj4iIDtelrmkklsqD9c9g0VYAtMY6vKzX9BOsTO9M7qzGhMAFyXc9XNK+zCNttEaJmvRMRkRzGQ3YMDtyex8vMqFjhsI0mijmrEUkBtAEDpczvzC7vlOtVTRrVAMAkF83zEFEQDVy2JVj5cgl5v/mGSoIJNHriAugAhFtEP3dItdLqXdNeGtf1jaZdX9dXiOngy8y+jGm1NwvPAbaw/rplx6K/kMB4+SPAYCEmzIw2ZPq0289DSAoNlSKXrQC9L4qxGyxIdJgqyGJyKFmbxlrHHrHbWeC5qhBQoE2QKLkVVcRNVAml4ul0Tqw7qyoZ7XQckEIwNrWMY0AXR0fAKTYPINp7N08OVS/DhEMXxEu5atPo41+talrhCfJYkfe3T9cnj1R1fF4XKBNq+q0rb2rBFVRGc0zjZ0bF0XlPCdhf5FpdMuVxJ4GRWBVXTbtw+PjOw+P7z46C1S98vq3vvLGb+1cuVHu7o0P9wJyrVoRIeI//bP/+p/+V//ifF5XXB3s781Oz/7rf/3nf/qHv/3ux7ejXPvKqy+1jaTCbte3rSZEdgY55JfSQRTBpUIsjaFrTWPKRmYJhCAlTTKumvZ8uTqfL0WhjdFEVaUNtYV2d2d0/fCQEcZVVbfRM7IzDxhMkbgo/M5kOl8t0YxAJav9Uq/adhWLyVhjRILRBJ65frBbFY7Bca7sVzAC7YBUbHigh7K2I+Nt3dRMEV2nZw+vT0j7G9lYiQrXSFj/rsYXknBP/XmyjVCTI3hAuAopsxdyJ1pIwIW2sRCQVFeADDQICR3vM5SR9P97EZLReJkVzTOyZxOK6sxNbLIbsYlhwXa20KYYjSd7+1cPj05PT8vfvH04HsNZO51Uo2qxWAAALJfLOBdEU4uq4J0vqjLBAyVc09Vqlcwd59jMgih365C4rVnuZt+94HrX0tsTYAgBEVxRntftW+98fDxbnL/04nNXDw6n40PiaUEeqTA1BMfJ8M32oibk2tTFg9NiZbQ0RCYEZjOPhtEMzaSz9gRy9zRMAMaU4ZRSNoqYQcpiJUr6EFqq9ARIJgYiKmXcaUJHRGxgjnOZDQEAEDCkcqoMEkISTYaCHJABVSMAqUUuPGJq84AASuq8+Cgte5/TZLqz1HdT7tSd5IfE3Ac3uRgIEQiQiUvkEpEJnW5REaF13ZBgU1nM5mBC3YQs9SzT9voauMCasTej1iR9CdFe2iH4aWPTUzXIl75kDPPL6FJXeK9X5YNjopqiwpl1KXRR6IGI6ufSSenOVZY1+wzBlsLM/bQ1x57RwJhZ1UQMEZkJ0VBBBWKW6OloMJgmB4+YwBr9ADq+2uN6WteOMl+T+hBmOAHqCA+w88h0XkQ0AxEJqqyqqlGVLPUYTr6BywpAe8a95dVLykziAEQ0qNkHclyNJnt7B/PZTGK8dngQTk9WbeNAFRTISuZRVVSuKJARBEzREEEQMOEo9LNARFVomhCDMmvThNOz8w9vf3yyaKgYHx5cn+4fTHf2HLlH9x9cYyp3bbo70RjeeONb3/3v/3uUeLCz+/DunSt7+2R0fHbyvZ/99I9++/U7D+4//8IzxCQiqR+LIoAJoCIp5WCNdCpXf9xyJRgxpxokJGN2oQ1lWT4+OX14fHbt5jMVV6fnc+Vyb3c3hMCrWcH0+N6d49OPHdgzN25Mq7EYeoyiIQQk7wrndqbTs9k8ww+aprbDsQmxBVeISXAeDg/Ka/vTgloyJGI1NFPMGSyd/FQghxfOWdcnG2w7c8Iu0R0vQw7I56ITwFtSM1snn4H6eyltPe3zLyqVh5bEUDR2f/eqsvUxHhjwsiHZAQACaS5t+AyQ6q2pWkKCUIQuj1cMzUCA29ZIDNr2fLkqXTme7FXIn3z0sUj03jHbZFru7VezphbQuq4DgE94Vnmq0raNSGxiaJom221dKfClE7PO7ZzA7sQsC2lEzIapGqABE5e1ru4+Olus3nl47fDm1cMXn7lx88r+3qhg7wUSwlFWRXvGmB69Nli7ggokAvDoGKB3Gq8xsIhBVWLUZAo757ynXpFPUhkG6ayp3qOvwiQiZSKilJuEqBSzkdfVEab/KAAQopEiE5moZBWNFMTEVFOTE+99ov5BZM7M7ODgwHs/rAl1ziWHIAKmHu1JNbe1d5eIEICAC2ZH5AAzDFaCec2LANsSFC+zgxFzEhYORPXTyZByvBa3he+/pYJ7cfQ3vPTOaQc6xxf1/lNEJIOEoAA4DPdCr8Vu2dmqvYc505xi4mGc+/5hDslDf5az9ZARyxFRcwTEunTjvAnMia6SlRwT2RJh1BzjB4CuKFnXjrzU2KKDHk93UzTKXpk8E8lORernZgqSLXLcWrd+f5Mr5eLnly51SmQDgFyBLvkOi8UK6hYNTLRtVuOy2J+OfKDlcilg4GgyqiajKhFzmhyk2v8OALK7f4aRMUVxQs4zhTrqN77xjY/vP4pYtsa//PlP3nrrra989Y2vf+t3KoQr06k04fxs9p/9w//0f/cP/jffeOWr//P/yX9869rRk+Oz3cOdZ8b+j//gm+H80eHO7vlsdnTjetuCSmAANEjBAde9ZTqMmAMEqqoJmSu9OBAiMiErAnL50d1Ho53d6dXqlx9+8uv3PvCjMRVl04Rmtbh6eHDtYPfq0fOL2QkbvvXuRy88c3N37Hd2yZFqSqxDIKLd6U4jQoCyzks3Ioht68AmU7hx8+q4JFJJFee93owJsRoSGUtf270hFz5LiFiON21/3kvDT60DHt7lc5/2rflBz8MuHO/PwX0uMQguWgBI6ygOohno8PWglygDq3EtAJ/uLVzzI0AyUkM0tkgKptYwADEoqsbGe4xtWY12CR2z+LaVWO9MJuO9vf2j0f7pytxo0X7y8KQBhJH3qcRIJIjIYjmXmP1pZVk653IGiaoheV/GmAI2WWeU3PzNwDR1n0jcsH99NSkKp2AxRlf48XSvbdvHT+bLRf3k5Oz07PzRtavPXNm9vru7Ny5LxmlVCiCldpm9Q5WylmqpR2/S8IgAwSUcRw/MLJIEj5gAApmZWFRVkQSUjz2eJeL2VmreKwUzTaSsKoREjohyujUmdUSJXIY3IzCzlGIDPXp+/p8lH5NpBGRVBXSdx00zdgLijRs3SipDtq0x5WEm7EtIzkdEYEqptGYCSMwMyEQMriBXMDsgZ09JcrlIRZk4sbO7tpI4hhZz98ll2iptZTNtkexl56gzKwEsV3evf7QlA3rxcVmgefgUzkcwBd3B2FFA7TDD01O0i4MnXpZU+P74A3SNOnD9pp0hnJGwImYFF8CS5U0dhk6KBSezCQksJmNTTFKoPnsNzSC7dhhStwzpVFrs6kIA1vrB2jPRUcGaTSFismbNAC2/jwECURZmGwlfqfQZOkVfcmS6399MD5pl5KYeJmACBn3aBFFKn3fE8+UyLBaHu3ul52Ws9ybjEVR3Qw2oBDwalb4siSGisXWoHya5t5WhKSMiEoJZWRVlBaogBlZZMZmMxuObN59dRl028eUXdLEKd+988F/84qfPv/zl68+/+MrXXn/tjTc+ee/26195bWe0My7Kk8cnk8nozoMHVw93fuv3vv1P/z//DxeKq/s7o9EIQEOrlLiRQcrBQrQe8zmtbIq1NU2jJoklIiIxSZT5ojlfxOnh0Z0HD9/96Pbrv/3tr/97/8He1aOdg4Pf/Oa9tq1/+fOf//lffmfkSerlG199fe/ouXuPH8rhqJxM2TsyBoWEGjCZTGW56jLwEQ1ETAIgmvc8mlSH+1OJNVvLZSkp/wTJIBogGlLSxLEvvtmI/q7P10YM+KnxBbssdJtoxvW3vzQP8jNF/aXjC8naL3RbM4JNZIOkVYEaMGGKOBKjmqqhipnkE2Hbt9q6+XCqeUGBEYwBAQjBGUY0RlSwoNKWzCKxDeqrXQ2CplEbcv6Zm88e3rh+5ejWvcen0YoHj88ePmmcgxhDwt8AAE4eMgRmElEiakOIMTr2zrnU5Bvy4m8rCr25D5Bx/RKXIyQz7BKjIAZF4HI0jaG5/+T8ydn5R7fv3Lp+9eVbz7xw8+jq7tSPCo/mE+HltpPAaLmuFxHRtGsSi8hmqWam4M6oNTPENsZkbaQ6elAJtQgiVlUFKZfK+SxdDAEtRqM+16YzjCwaqDEzs0cmJAYmA0cWyYjIg5GC5DaukOCDsRdv6WYpeKxIzERJ/XQABN4YjA+vHvAsrX96y2Tpgppg6pWRKgeyZcuKoOyJnJFDX5EfAZepQaTl9O6NOGx3UrKwSNWEKTSggyzKXvYM6LFzNeUsaIKEIUiWGjeDUUKYZVxL0ssaDf8PMtY6RPpn9wczw4VE39TeoPPibHibsFNEYMiw1AQEAQAiIhqYKmTy755E3c1Tpy9EZgYEBpM2NSU2hBSSyKubu2yZGqjltG8zM9Pso76g3HeOJERil7bAiMgIqCu/1ihmOQMw96vuRjLvRASNwXVmQIY933jQUPsxs3XPHQBI+bodLVumYEgIAXVd707GCrI8axhds5x7IAX0xN77wmWUHsMuwNErF5ijwowUTZjZ+7IJUdoWmEZuFNp6XFUjpMlIytEU0L/87M0I/u6Dx3d/86uffO87N597cby798rNa7c/+mS/pDbMR0CFtM/fOHz7rZ+fPjmZwM6V60dAjMgdcEUOYVCXXm5mIBHACDRICG2dXg0RgygYEcJqtXp4fDrZv/H2+x9DNf7dP/mbf+1P/8Nqd8/YLZb1bx8eeeY///Pvni3bcwlg8i/+4oevvfzMjZ3RVLCJ6CJojATkmbz3KpHBjJIpgWbQtrFpoPTgHZUeCoLlfMElliOKIQCIgQKYghmQmAGQds64jmjXvo2hBNkUvXkXPk3oYWqZTWbmgNdIbOnnyV/A2QrPmRdwUQfo7zZwGeHmWe0dj9sUvz3Wc0hsGSjXU1ruO2bJ0kpuS2QyjaopmwIByFASJJ4ZmmLqm5DSekAkdzTF9cL1quvFt4GhnYKAyaWVIktcgUWQyIBIHAJFYCauJt6bBYVyemWkuLt76H0RmnYxOynIjq5Ux+e1dlAKqoqKzhWgFiUAQNOsiFzpvBECmCMEgKjROccpf0wTLHzqXYoDuOYM0oCAQKQGOedUEUDTC5fVyFRU45NVPL99/8HZ/JPj82evXX39Zbc/qXY8uaieoXBABISpASsSUsL0NQTVKCIFO3OIiCDIhMjgnIuxTK06RYEQmdQAg7YhCgRl5AJ9Kjk2VYeOkURbR8gJJTirFwqqJoYEsmx8VWLhmjrAqKJIHDGoKaErSvQOgTEqKhqDEWI0wITX36hINa4MiJmX8zPCUI6L08dPAOMb33idx351WjMwCTp0TL6JDVRGklKBCJkjYFRwWCC7IIFdWRQV+9J4LG6CzOi9WYGARJEyK1Y0RMpKBWiy0BUROeEN8YC4LMn4LiSJXbsF6xi7KiITMTpWyX0IU6fgDE6BisgbtHqJV3Md30XbvBL7EEOG3U7HLQm/lDYLyRmQJRlK9iF1fRshm7VB1JAiIBIFic45x4VzUDeQmp6mp/QHrZun9VwsiQfOMHaQUFtMAckoZxgCmFjqbYgAoIrovavrNkgnbMnASFUd0jrcbqYimsqURYmQuiOj675PvQDtQneABpiatROjakzgOZByCRFFAxA4ZoRcyZqko3POuYKZHLsuDSKXXeV3TuB9Xdgl7SJQV46QRKaI71rtJP2bnG9icCMFiOSdH43N0VR0cfyYIuyP9o9PnpSTalyUk9E4e+DNCPp2Zzk5JreuFnTMZhhCIOLRZKwCIQQPHkwQYOychdZQd8eVEV/d/9LX4KX7Dx4t2/bq1f3Xjv7a+elZ4Xl5coqmD06PxczV52985ZX9vd1rzzwXYxuNlBxYxpj0QbjIhRsAyo4gBkllSKJmNi7HJ2enwO7wYO/jO3fn84WZ+8EPf/YHf/IfPPvqq9W1Kwum2WrB4JjIG/yf/o//h7d++tPrhwez2XnTrqaH1Zvv3o0vXi1HhXu8eOW5I5ClSsvTSV3XSDiqfF3XjOaK8XxxZooOwQSu7o539yprmtHVfeclxsioLlO+g3XgAzjFmzRaLt/PFR/MFGM+CNvWJmEWfIRoKeefBmJTezoE6Jx12TGTHM6UCu7ITKGrKO+fcEFcDXhLF9zq/7v11af89tK7pf9/2Ze9Uw4VtvlbSqZFRFAFVgKDtBT9bb/gTFIvHAMwQ1EgIARwSMxwdrKMUXcmu6i2nM8Q+frNW622pviLn7/13R/+5N6jYwMoSre3O358tsx5VMQphcMSujyuvVjQeQNhsytRb2KaGRD2vY21d8YCYI6T5cQX7EzDuq4p1cCyi6oPZ/W8uf3R/YfndfPC0fUXb167vrtTeI4SMLRGUJYjAzAQiaaWMpyxLMuUZUrMhsjG4JywIEdXlDHGpg71ahFWy5TWyERt3aha9FVRoqiqWulK7z2m3gwKZqa52oqMTMTaduEMRcRpyd6FesXsNQIYqRHEaGKo5nJjCAuhtbpmUu89M4GpWXQWNap3Wsd6fn4OJTx787kbLzx3dnyCiJqwny1VPJFB7lVlQAoOnGNgBgfkfYXAztAZFcgT4grIKxAgKyqAGAECA2Aud0kyNENwJMT05PrClN42NIAGbgzIwq8bfaGVmUFaIUABUugyAEwY2MySw/fzU3P3oA2f9qWXPfUsgBrkA6eqkkLsmP3SYL2Z+rnnlOE/IcUCuiAcIhpnVpYbOqRqdezKkDo1Yq3ed2kHG5O3TtwO3w47LT/r+pvXQxTrW5d0iayIqGalo1TWFmN0zjmktq0n5bSzg0FRMccaB77Ky9bWLCVyqNk22OHwGjObr5aTycREfVlMd3eI/flyVY0nk52dum7bNsQ2gAkBO6Lk2d54/fRPNQUFBEZWBJdONSEiqvRdFClXVJApqEkzKqsXn7kqqkTctu30YOwdr6Amhit7hTFNd/fYFVx4Zm5WARGZPUg0yhqUtg1WlWoElfy6qhratm01ipmV5QiYVHW1WtV1bX76P/77/9NvfPuPau+/9Mbrk2vXf/CjH7d1W7nyFz/44Tu/+rVnLstyUTuNPNrZXS6X73zw+GA6ujK5ulq2Y89MGNsQRFJ+DKExgpmFEFSECXan5B1MvKtKH6MoUVGRtGIgaADpzKZQHCGA8Ub/7LXzpmewFzcO4PLSwf6rdHEKV1weA8Z1RHrD19VpjJf/Zk1bFxzinyWDh+AAA5F60XruYzdPn1LWbzUnGq4F22aazNMns/W8CESQ0KnJwMBBRIuLk9M4P3dIHKMRutKZM6npweNHP/n5T3/5q3fmdbh247mIvr798HR2muKekvp4ILQxYoJpREIkYDLEnPjLYJYrXGUjTRegg6fvoYnWr9+1Te63LP3bF1WS30imqjGG8zYuQvO9t3/9waN7Lx7f+MqtZ1+8fu2gLEdYEtKyDeTQEXrvKe2FiUVhSyFnMBTqvBSEjhChhFEhdVEtXLVcLWK9ik1kIsfcqC6Xc8/OETUaVBw5zrzUiIGE064zGilAMR61bdsua2RutR1Ndhw6QyIkFSMNJKYEzlHdrApHXLKFGOtllNY5GhVFszqFSI3Vs3Y22Zu++MrXdvb3bj+8d+jGjCQIgqJqzpDReY+qqugAPZBnLAGdgwqYhQjYE7Pjit0IqTIulVjBFEAIEI1IQZENU5TCzKJZSlQCyK5VpBz8u3gEenVwKJs3qDqHjdcnCzet3k+hZ+x8kjDwV19qJfe/uFyaZ0axLVQ7A7SDZUwAjdTNs0Ni6mf7eQ7cwJrfcFb3TySiGIJl5y1kQ2LtQMYuw3GbJ2wypcuZZvqNqiByl1gH2J00V2KMUQyY2TkXQgghjL3vOXI/Lt2LoVutn0zGvrbt1+ynqoZqqIDVzk41Gbd1A8Q7091FW7P3hsDMRVEkgzsZTr3AzzIVEMGMQE2RMvhJSuZHIkQm0l6BAOv1KGMGi8F7Xzofo0YEQljNZ027attaDMl5Zn/taDqZTJrlwoKQGZoGiSCKRIYWNFa2oZF11oI5z3WzQqS9/X0VOD09PT09mxy6IPG73//eS9944xc/+xnv7O7sHdw/vfe4nr399jvz2bKp46N3Pzw83C+LsUQ6PLx6Uj86Pz0+9lpZfevo0DSI2Gg6adoVJEsUQNVC00qQgqEqC++grHzlPUAEVGYfU8QEIWcR4HpfOupNbLiH1IUhpvpFWnr6oGRG9zZSqgPe5AIdGV2UtJ/+DBs4ePsbDhW6L2oH9z/8lLfZml4/+t9YZ+Ljduzt8z69R09HRDBRVW3atm4IwUzr1cyXRVX405Pzjz/56L0P3v/4448U4eWXv+xGO/cenrRtaOqgAkEUkpPYVNUQwCU+xT3rWkekiCghZBHlZgb9uVXVrv/QRh7Htqaf6gEYzQy1y+9wzrMngnnTLO49ePDo+N79Bw+ef/5LN4+evXL92v6uyYoBEZExdaRRjSYxJsiBRBqJATKQEqQaUFe4kS/cznRcN4vZvF7O5/O5mYXUXETbEM0hiXPSILJzxA6JkUFTERSwgYjUGlSVAUQfjqIAAQAASURBVElj3barEMvJTq4SNmAxB+aYnBI5bKWRpgaNzKgMQeNiflw6v1jMJoc7r3z51dHeDpdFIBzt7q/mtTNQUmBEBmUUwJWAIYEv2ZXIpWEJ6AQLcKUxkiscOeYS0Ak4RTZiBVDMFrSAESGZJb+IpGIuNDbotaTss70A6XDJ6X2KNv3p41OuvCjXP//dPnMC/UFLMhjXnde+2BMlp/3ikN9tzTpzv8Gi9SJ2EBaHtS664Za3LXncSyjs79v/JAUwDYgy5Jx2n7Djto1qGQtaRIKKc6PhTeCLbByspVGewNatkjCMgGJQ+gKdXzWzJrSu8GNHqXTCOec8JSQ5NFCLjopeFej1gpxNr2gIbOubAwCRM7NUD6m5VkgMyUBDWK7mktRLkVwtyShGuDPemexMy3JUMkEM2jZONYQmtE1ylYFzaaFUNUktQDONIDEB4sYYiUjUZrOzg/1r33zj64+PT+4/mf/wu3+xe+3WJw/uvPjqV2+98oouV9cmUxxPKkcIcTLyi4WenB6PxuMrVw52xjvNyaPVfBn2yqZ2orsm0kbxkuDkIUMxkYkENSgLcGyjomAEJEuViSmzJBucmxvUYWtcsmvwRc7XppMDYdAIdgMLOj0TOtcNdAB9+S5PoS1b+03/CkM3/74kZkx2uQwm+7SznjhaprOnmxqfMQwRfMYg6MBW2mCrRc2crN92vjjjJUkI777zm7fe+sX777/fhDAe79ZNExtpmqYoitFotGiX2NcgpcVCQIdAxOQIKeWv9EGF3FI+5f0O2WJCJMDsV7fOzNqoyxxc34giExNjco8agJiqln5sEuqm/eDeo9OzxYcPHrzypZe+8sKtW/u7Y0RONSYxAigjuaK0BPcJBqZq4ADRkADZU9AYTAVQmbGYjkeVD3vx9NFsOW/aVQgBJRbEXuP5+cJVE1RxxOw66EVTUPPeA8Oiadm7oqgwKvmiadt6NQ9ogIoGBOgRigAeEVBFAqK50kWJIcbRaLR7Za863H32yms7k3EIodaIBBpMmma3qtqiEYoK0DLUDpqiCCUJeXAF+opdyVAZO2Bv7IgI0EXgiKzklZwSI6OJEiilrQFLMhhypDZ3QJeceLmdZfP5yQ/RKJUgA6aGzNjt/hcaQzuYnpbpnFGTclgnmZodm7jkhutSnM3Rg6Nt1U12ZLd9L0vT6/J+iUiz2ZfpbCg4e8ss8XTTVMnWxW67wjaxhKaRz5ER9mhrvTn7KWuICIRJn8gR+gRtAQht23qPDi2KtCG4nbIoCtU1+9o2MCgnP289bQMebgACeildCFjdNlVZpTzFajKuQ2shHl27fv/hvaqqTLRtWxEZVRURhaaFYnOR8/bjoJSLERKSHuXwO6SYWGcCA6Bpvay992qpvNCpCKNdOdgRES58VY5HoxEzt22zPD8TkVHh29WqrmtmdM6pmDCwcgzBOYeqAhpDYzGYCgOenc8mk8l0ZzJbLs7Pz4uiePHFF49u6pPjxfkqhHr5s3/1L9/8/ndvvfjSZLJzdPPmtWk59Xb/0WMCKCooKnv4+PYp2MGUdwvc35mqxtPTJzuT6Xg8RkxVFVmyMiChOQJfwLQqD3bHTBbDqtzZIwxt25Lj3jmSlGbopSbCQCqtrR3YdKvk4959RYMCtEvPHHa58a4j7QSDubaGL/4A7DM4yGdqf5/DCL5cBv87GZ9fux8OT66rTUwYeBLCqm5m7WI2GRcjD7NmuWzb40eP33rrZ7/81ZujnWk5mdardj5f7F25XgVYLh/MZksEoK43ZzLKmRDJETIRIZPFONSCiVhEVJGIsEsoxU5m9ebvFhFAJ4D7d8ypxYgJLiqVYqCKtupdwd6Jhgdn8+PF8tGyuXN8/JWjq89e2X/u6Gh/OmHnLcYEVJ+gEVI1X1Jpk3kRRJvCLSpalFgTN5R5mMietIvV+flqMWexRRQMAogrMSVMDmgjYEiNScHMqqpaNB6JzSyudKccifngTCy3PiUih1AIICiiY1+JxWWzKsvq5s2jg2efc3uTJ9IcI0AMbly6ajcEsQYnh3sP6vZqxXvsgsWlc/cc3B7xo4l3vtRUi+y4YEJm9WAQEQAtpi+MRYlTxJM8kRlZRMqpQQXQWNwVKCvlHo5DuxRAHQBx2KaL6FNItNvini9Tzxcy5366OL/Ets5fwFD1TrcdukbX9DOYwPCardtuNN9Z/wpg/Y4bobLh+8BTmMzaAr5wRpMAZsqaZx8jA8C1T/dCiGo4saHF2d1w23tExIRGlhFhoStuQkQgwNRes1N2U2ZGyoLeiPvaJbkm/YHdZkSDwzvg5t0fQGLqnCuKIjQ1IjKzalwul957YNEoMUZQNaRLgQT6J6JhaolGmECjCVLpBJqZOecUhDirLEJYlYU45kiEnOzayc6UmYB5tWwWi4X3Hs1MlBFi00gbQCO7whGJmoQYqXVQoGrCadHQqsQk2Pb29lbzhUR13vmCQ5S6rk3tuZtHH9+9P90/eOlLzz8+Ozt5+MnHxydvipyfn17fKSj6JoRyVI53RgBw7WD/oPTYLPZ2Jw4jIiIDMyKRGTB7gJWqOkTPVHgYVby3M96ZjNuw0hiTdiSq3nuLMjgCDKn9s+JnZjRsOS2eJlwuHlXMLuiLh7mPanTXDUkWLtRB4oV5fIqEG0xxy/bdHNn1c/lNyADsUzNJhjPBjCTwOcT/pRNOrAYUxFCNAlDNuFjO7o9wAq500orJ2fmTByd3IofZYm7KIUgxJjw/f3R8PjufEQIoEJohqJoBOEe+KJhZo3SwTaSmCXcpOaN7N58BiCpBUs7pgt7NqfOMddGkZMWkCqNCwCyqYTRN+LWIiKAYMfcwB8eOWg13Hj45mc0+/uT280dXX3v+/KUbN492dqbee3IImhHliBBjNtVNASBEOBvRnWvVo+vl6djPGQwcMFgMxPuIt0iMInhlAlbSxkEgtS5W2sPzahRmjtK7+m2GDsgEDE1IDJIxDlCkMGzhGo0CxoAs9lDsF8DmLKAXgggMhAAR2ArHExBP+loJf8jjPZJ55T4u+HtTfn+qLiyIQdlFOIcWAdUaNUqg7GTGkLEqyZkHAEFQsASMJKgEwIZHS/6Pj75xsymoq+tjYAI0NQADWutP0NPhZ1FiMio3PWC0ZVBdpOdPUV4HnqphAPgzcrI2n9XHw9ZtEwdsK4V+YS0ecwkF9uwldaDmpzyin3x6rf7tcn4WAmSMRsxwLtILXsgTyUf+cn7XCzzbLBAavGAyXPM9kSAlSapqURRtbCBrtKmgXxJy0vpJgwTJT13GznhK1vBTFiENdtSsGh5B0DCbzVarRdu28/n5fD5HA+LUSR5jjKBWepcLEZPHpCtyN7OBNzPjNEPv+TdgJESgDJxlgOrHlZgQQekdAHnHSJwy4JLPFhFTFigk1E9VIiqc7/GxQU2jKIgigsqwxbtpXK2WRVGUVSFquQGUo+WifnR6/8r1nYdPHi0e1nuHh89cnV4Zc4xxPi9eOtpbzI+A7OzkdGdncnBwcH5+vn+wq3G/IpmOS0+IiE0TEIiccw6IkmEjRFA5mFSOLJoKgjKahMYIiEgNgdi6rlkEOfO2o9shMBz0mt8WCT396OkAPGt9jtJepOoT6prPdZC4ZikLOqWzUfeV2WVuqU3y+kz79XMKQut8438153bv28HeJbupfn7OoarIjD0AFSA7dI5LhuMH9yBKORpFwDt3Pnr4+MHu/v4zRy8+enhyPlsE1QcPHpwv6qpygnEVAClzuwQmXpYlM69iPXxcr48PrVvLSfDYhYM3olyIyeKUbc06e0KUlBE0NdoCIlWNUUfeIaBpBHSOEZhblUUT67o+ny8fPjq9fXT/tVvPv/zszWv7u6OiiqFJmVykDkjNQAFNqSwLYX3k9E5lT/a5ZkcR1UwKt9K2LEtdhV0rfv9rv7cDu9/5zXcf2XnLOixpy5tiXlXLogghpVNy3TTOOQMlYGdoZkIKAIWQGAQyprFTckH3eXx1dx8AzuezeVsvIDYVClsrbYVcWuHrdqR4ZVy0jtS0Jjo1OC2K89IdXT90ntQRtLGdL5dhteImOomoQGSKHKAUnXBRjaaj0eTR8eMa4wqpIQECQGUFNJtBvA7edZGRlABta1LcVk8vxk+GpmTa8ZR9P6SKyz2VTx8DGWbdUvdffj7Ri7nkeihX0FICb9eWw2LXn+MLT2z4ytBlbGBXELV5WgkAVAARmZOfTDpLEfq16xfeunHx6RcF8JYd0wsL7BK7RKQoipTCG2P05cQ5V9f1pCygc6Fn4ziJwKe8eF/OYN3mDh7Ue8vXp7tpmqrgZrk4Xs2jtG3bHB8/AbBRWYrEul5mnYNYRMz5oRNg8FKUq9YVMcHlWWJnmNoz5r5ricxIzYCI6rr23jtXrFYr54uyKOq2YeZQN8h+NBqFpokxIqFnH9rGe29AJpriu0yEBrENJhFNEM0kGdsiIjs7O7PZbDabFVXpEYMIKzhPyrZqF9OJ9w6sXgiiNygdlDtFeTB++KjZ39+3Z64+fvx46uTqzauN6OGNq81iJs1SzUajCSIX1Xi1qpEdk0eLCEYojqHw1NbL1dz7Atm7GKNzlCCBOafL47BfSLcXG9pz75yAC+frcw7McRDC7ILuIhMAAMyQS9kTQhhaH7cgJNzwD29R7fYzLn3whb/XB6/7p1nfxWh9z/zm6eJOm0tXElEIQVVTdhMiZricZFqpmgkScSL9p0ypO3Abgg0RrY1ISJiyjRTUIU4cNQf7Nx7Ol1GWpyenwdCk9VwdXb+1u3cwm7V37z24eevW/gHDg4dUtz6YwHzZQGjNORqNxkVRmKEEqaoq9QQhIs+cmBpRaiJdhkAhBMggGBBVeluqr8dI6hN1TWkQ0SjVNjHmwnhlwtT2VlUQgAvXxMjMnOAYxRBwREXCQl+19ccPTs7Olw+OT96/f++VW888e+3a1f293arQpkEABArSMqNIqHisURxwQewiTsz98YtvHJ+df//xu25SiaozujW98TV4voHmd5//6p+9+13yAK0yc4TU/iHVyxIoxBjQzAiiRu/YUuomgIAAghAAQAuJGAvXwkHjfvuFr/z+wTcDrDx4Bbgv9//Nmz/5eLVaVloAIoJYJFIzZScGbSo0mZJ/Y3T0N9749ggmDF6BG1gewOiH93/2Fw9/ecbBNBJ5i7Sjxdeq/T/+8m8zjBBg5wb/xf2f/MWDD7RyrbVECGACEkHVkao6ANbOT5TK+RA6JKz1IKYEvJCorWfKPcgJMyNarvQh6lywl4jthF98gZ4vnso+OXn4a+y6F6+d27B9hRlIghVhQOrETWYLllNGzIwZRCABmfWUmWx4GvTq6G5q6TU7XNKsSgIDs2hYC3Micg4ZGddaaaqUZRExNec4pL7CSMNniaj3rlcN8v0tTW+t43bpYwAAHWIiQkLKHEysbVtVcM6lBt4hhNHIObdG882/HQi/fvUZUAfHFgaGAXb8BxOtd9OAXOClqgKoJjI7O3v88D4AlaVXi96RlaV2VmnlXFQBQ+cKRhIRkCRPGAywy/QUEUIm5wBAQ3TMAsmx0Nk76AABmIoCzEzUfFEiu6iGyKGJpa+aNkaLbYxFWYbYsHPEGNtgUQyBDE005cxQhtOD1LxSVGNoiSC09Xg85qIAgLZtuSjTW1dFEYKs6trqlpG894AQJYwLF0Kztzs2bZnw6PqVGGMb68L5ZjEvPJObgAkAMHPTNIiofTESUWybwgGjjsdTQpuMJgbRFJ1LYtiBgRkIAne5D5kkuhz1LZvHNgtuhwqlZZEaYd3HCy53jBhdVob0uWX50KC8VLh+njtc/LBTEDZiJBev2dJEko7Su8Uu/mZ4/UVlc3sC3beWDioAmKV4rWElbiy4unL9ljWzO3c/evL44WpR7052x9Xkww8/Pj9bTCbTa9euLdswnp0r0diV6IqT2dKvxBUVuyKEKGJJrPbqM14wfLemtKV/dTu9kaiVFixdkDu3p3g/KBgRqCIlRt+tEhkKWZYkbSvoCq5oYfKbBw8/eXJy5/j42WtXX3/55eevX9ufjEa+BG1NCJkL9iDIzLGtPe2IiFP4nfFr74T33qTby1ibScHF/eMH71//6Ki68va7v6l8sajnE18aQO6OllG0lByRAhC2EomodEU6SJkRpdqALo5JQSfqv3rjhW8fvPHJ6uMPP/ywbpsbN66/evTy3/7mv///+vG/iKg49qvYADITiEkdGmMtSioRAdw3f/uPfq7NTz782ZPFjCvnlL569KXfv/F7n8jJL48/kspJC7vBPze58nde/htn8ODnH/5ysVi89uLzv3Pjm+7qlX/1yx+fF1BrmPgCMmThBtlLAoLEHBS4dPTHuP9ELTeZULMU/0Ai3awVBoAscVHB/Bc4sf9uBnUOci07JIqckUvJn9f7pZ9q5a/V7gsHMNH4kMIT2atpFOnLFM0yssVw9fLfHffow7L93Tq/AvSit79/707vFZGklKRWAd3kbSi2N7SKzzE+/5X9EoXYcO46AcntIKGJsR2NRm3bNm3rnGvbtvDeAEHBOT8sRhqsSTZsACClTGd4JdW17ZuCX4C5VpWYkBOSBiIiMKISUsIXY+YSfYbm7lBc0w1NUoGlpcTJDE5jaeU7JApVgODUERdKAKAJyjS2NSGOvKMY21U7XyzS4cJpOewJhojee+ccETvHntFMrKtLd4Qi+Q3RTCUgWlHAuPKF56qqyrJUIyRIS0JEGjsPYmprCfQ5T9XFI4x5cS+c+05LTp7UpIJ9gX7AF8dFQfv5RW+XbNWFJcD6HJOeUp52L72Qydifm8E/B1P6HIHxvn3p1reZf6olgFBGEMfAxXjvWrvwK/GHV93h1S9du/7oez/8wa/f/EXQYhVCVVX37t8/my9WbVDAGJuqKkdREAS5MENQM1EDTPB2hMAEuWFun2eKWTarggEaiK7bJwxUhMQ+mCEXdQABW+q9hhAZyYzQqM+GFAMAJlRQwIzvpwBmykaVq5DJCALEGuKsbub37987O7375OTLzz77yjM3nzu6vj8eAfmohqqeyRWOC43ScjEtsFCQyhy2cVRxayIsc9B//u53PThAXMUw8qWKCUFqbhPaOkFhe1+t2hV7VxRF27arpvHsrANoQMu9igHACUyEnhnv/cmNP/jLu3/5ywe3V87U2Vt3H/3m8e3/6PW/88ev/9Z3fvXj43oJI4gxOEY1xJIVpK0j1/7lZ1+ch/hnP/rOA7eoC6HGuYjvvvPw299Y/d6zb9w/vfcAWm/4tdHVv/3yX/+ze3/+9r330XHQ8KsPH0/1rf/lN/5H01f5n7z3PRvRsqmFPFDG+AAABQJMfbs0VwU/zREKuMWUVRUJKGVwqiYj0syedhgStaSeM8OmCFuPegrZZx/55ccWDQCH7e0uXpayfnK1ySAMe/Fx1OVCI2b+bv37X0gaGkyQugS0LSdZT/mdz4wG+Ue2IemHyqt1wBdrHXSg8g6vT6tryFvJp2YmIhmsqpPwmpzW+QH59QbndFCvf2FleqfAJTuAWBQOTGKI2jZkurc7dc6J6mKxCKFpmtY51zTNdDJJakNnkDAiKKkBuLQO2w/VFItPgsf6pHFASBAzzMDK5I2ww9AljqASvS+QxToHpHPOOSdNk8SqSDBJToPenDeLYpCSWdVEQY1x3dmbM/YtMoMCeMdcuIn3C16sVhZVgKFpGiJMXj4wIyDnXMpoYUcEpgYCqqqUJLYagqUKdVUlgqqEolxnsIKBiDSNAChzxsOnjL17IVvxU4cNVLp+H7GPsg82tvs7S33ASy3gzVvbUwqQNp90yefDyT1t0hf+3mo9ccGtvZlegQlwoz9dg9jPMHvlIv0N/+if1dHuhq2Z+trCxuE3Q13WC1ABsqIoAPTo6Mbv/u7vTfevfvdHP23alp17cna6qls3GkHQ1bKpY2NGwNS2LQAl0hERi5Z6kGlqdjqYAK5DW9izGqYO6mv9dglIfO1I7G+iCR+CUpEBbeQS9K8DYF1mtRo4ciFGEQGHRTlWjW0Ij87r45MPHj46+fj23VdeeO4rz9+6frhXlYUDNIUIwIAePbdWYM4K3pOiXsxoRCtpa8PRZKSNigg7CqrAhKJT9NyYtwpqAfISlYrR0loVKctS2ygSKXX2NVOEvu0kG4xa+d3Xv3of7rx758OzCZxA7QocFXR3fvbDJz//5uHr7/i3F7RSEEEQVTFVBQR2jsi5spoetxEdYwHqNWqr5KqiqKVRiN5xbMPETb72zAsA8u6jT2ZTFIiAFDSg+LPV8Yuj65XgWdMWhbNVgtBBxYTlbgqmOWSLiU9tEd5WfeGQqvs82/5gqxpdSH78q42nncet0VFRJ4Mv/KiXXmuhJUkGga4bqaU3XT/3opjpTutAoRzYbOv5QPZoS9yapJmZKqRj0RUr5W+xcwvn45AN2TTzvknDxfmIWdamsCupEhFDGySTbDCET1/J/vttpndhS4eSPkkadBzqZjWfx3qlIY7H1c7OXhtCK5HrFQAgWQhBQRCLTbaAPSsgIun71uSOFYbaFT0SEqIhp0QsAFAz4sLAiJly3qVBUmyIK180MdTtyrNzBYuIxFjXS5WgMZokyO28WDljq/eZpHRo1eTGBzMyNSBQI8oNNWIMZOqIJqPSETQhGNlqtSI0Rk5inYmY2LFLf0Mmus7PYQKiQMzM3nMdamJgIkArCue9hyz/BNFSvM9k63iut+Bp27qxlYO/17/tNlgvqLBGnBIH3dMM7aHQuvikS6Xv5Xr0Z4wtO7gXP+srso4Pa5+zdZ9vJIZ0UmlLjvbX2yW+goH7fvDbrVfOaguBJSYDQqhnZ/ecrDAuTeNyFVohHu1euXHrjd/CN996a7lcrupmUTeybBQccrmqV4ZeBRUMzYjBI0EXtLakI0NERDIGgJhmS6kxEZoByCbMTfdGmV/nt6Dhe2Gq/sx1oCz53XtmB2hKhAnIWBHNcGUBHJARA0AEEDTzQKzgHs6XJ4vlnZPTe09OXnnhueeOjq7v71dGMShC4QO9eOXohSsv3ID98dT+1ld+683l7V8cv1+OCnM0pnJ/Z3x2drIAiWyCOiHeOYcvH9x86drzlfNn87Pvvf+rh3tgBTPTarUoHXvmxG8zUlpnZKLBGPgQdo7hbI6teMdMpFFVmoJn1hzAfhnQA2IQZsdIjAAKHrzEdk7w/sN7NyZ/8uLB9dWj86IgNfRG193kG9NXfhneOQ2rsiyx1WuT628/fLcmrJMlq+qcC3W4fe/+rZeevzbdO6/rRrR3XWQss7QtGbR/ezzN1rn0IFp2ZchlX65HjjV8+kWDp/dHCTtH8fBEp0tSEXO6YEvng05LCCEkI7goCrPzTgvuucTwiZe0N92SNwNBtRUwQlWFhIDRJY4RERmYiUo/7fwulvGf0mwwaTu9mMcBsOvmOqiqprLfJLv7tcW1kWr9HbaYyb/NsN5c3rwfIgIwu8JXI1OVGAGZmDHG3d3dGGOQCADJIs8vSJgKDJC7xAFC6ztb9ruf9B5AckX+nB0gG0Lq321IaIbEqWASABhRIRS+shgQrSrK0WgUpT1fnc3n57GtscvJyx3BQUQhQwkhJiTKfqopa4ecz+uf843Mswux0aiSwvkAjlDRxlVJoGiUWqQTMaX2KamR1uB/qaFHbgwCCgBNswIw54AR2DsgDBoQhTP4JJnG7AK1tQ/JLriQP+dWAljK9qes9CQ4/LU+NDgIlJOwumDgxXv14YGBWbZBH585my/81WcO7Kx7tQz9TESpvQ11oDzDZsmXHpWt5eit5y3dQkwxFSN0u0HsfVmMp6P7H99+ePvd2fmTxbIFHmN1cL6of/Wbd+4/euCcV0NyRVSIEdu2NfRRQNWYvJnFGBnQMwsRIkoCFlAF7pQm1a0ZYraKukDC5httX9z/t4eHRcAE1N7xJsxXJ0IzSnCwSGjABrnbKzASAqEWKBJaCXdP5ufLdx8cn774zPHLzz/74tHNpWPkEaDfme7duvK8g3K33HumvHVvtITTD0PTOvFfuvncS5Nnvnf2/Vk8o4J8o3tY/sHrb3yzerWGGYN7cfT8s9de+b/99B+PiFuJiMjMCQ3fhgfBiAzJaOJGYxi/dfZB9NRKdB5jCIwcvbv35NHyyvkL129+8PgheHLkrVk5YAim0VxRRqKHZ0/C7Y//8OXfeu3lV870PAJWVNyAqzOof/H22zVZG8MEqgbag4MDvSeU0mgINEQPo4rLCsr98a5bPQxEKfpEPZvuSChhOGzLrvQeQ+Lc/GqYNJSYMmXnxedOMr4wtqbQ/fOC6N0olsjT6WeIGzuRj1U6cSn+y8yIce23yecRMGElXqYEX5zbejIdzxFJGUVi7C5e03us1rfqSokAgHCz2Uz3q97IHj7dzIgznlcCVUlrYqmfAZlZrhbt87ZwMIn+Jlv/hM1V3TIkhi+79XYGpkauLKe+aNnNoqBjVxYpZDWdTuu2CSEgm6oaqFlmfcmD0rfDXs+Tkj631tWISJGQCJCRHWCSvpyykyAnhnVRZaIYo8VYFAU7BLDTh8ez81PVqLHtXy3nzWBintAV4XRvbQYAKb3DmwGAZ0ZmZKeqyOiQkRTURISZyTERxBhNo4kiQgK/Sf5sYsIUHgQGEAABtZSIriIaYoztarUC0NKzc7lKLMboXPL5RTOIUb33XdF3jgvhZcVsw925SFdwmVxLn/cQ0DDYaMQvHgPubaiLFHMZ5X3OcbnufokJvjZWt0dPw/3B6GCTOw54wQl26cnfsvIx5Y5Ccm8BIDtXGI13rtxAkOnEf/Dur+88eOvx43frYOd1XDSAZGIym0dBMKqQXIjRmFO7mb4izExULfnOCC0hNqBBqukdvkiaT29O9eucLhNVA3CDiszUQQIRMfVQTR4hy9Gd5CQxi+lEImZIXSIgBbUG1cQsYzYymaEIgBii975sZHm+qt+7++DhydmdR49mry7p2Z3ZtQN5ZvzB3fc/Pj/ff+1v3z2+/V999P3Ho2XjtAI/kfL50ZVbcPUngVxRFgpXa/z3v/XtI7r1T97/108WC1UdA/7eN3/nf/Gtv/dP3vznj1CK8STGkLSGfpPQcu9iNhiNJjXEe2en4AuSRlstylEbapUYYk0gh5N9fUxKqnWz4ypbNqUrgTBaNEVi+N5PvvPcFL528PqL9Gzq2PbYjv/iR385w5XsAgJqa6eL8+cmt3ahtNjUiFGlRFcZvXLlmQlQbENQbVWJmARZkC013EBENDUbbNk21Q2yjteEm+CO+971xKmAc0Dxn2blXtqv7KLofYofK/uJ0gebt1C4ULtrXbp+mmpfBYeDHbPOzNr6YT/fLBMuYxQInHs8dMaxdcuSbquqZqnlHxHZMJUaCbeeNZRDF//ZXTlIsNh0KnaONDPrch7TC6gCpdDptk9yGETYWvl+Dhd1kQuLQGKqERwAsmNfeu+cK0IQM2RXeO+Xy+W4yD7VITkhIpEze6rvBDOTYCIGRGQHziE5YkLgoiiwbU0jgaqKmWmU0K6aZkUMTl1z3oS6OX70CDQWni1I7qNn5gqzgo0MEBx5NE0SkYgA2Zg7QxljjE3TmFFRVZyVBiJgJDALSOzICYiBIgpSAqCTJH4SqFAP09sXwpmJiabGwMnLnXqrMzOgOue4YDQsCioKiDEpK8qpfB166dtvzeVGJm7EX9ZnJ/ej26zfgf7rwSAi63EDEqfYZPFPQcDpT+pfCdfi33JcJFnr42RgZCidf2WTD11gf5t3QFzjc24ZwWuxppatT3LkRjv7V51zh1evXrn+7Itffv34+NGv3n7n7Xc/OLn9pBVDMHBUFpPFKpqhoQtBnK/MrG1bACuLAlBD00KeMQ7NG+wcy0NZq6pq6gi6xjBoNsgmBUi8bq1kGXWvAwC5vWwqCB4q8mZmFiE77jD1VCZAA5Icck8OBo0xInpmT8Ri8uBsvmrDfLbYPTuqjl65/vXnQoVP4jyAtR5mLq5YhQyDUFBuZVKVFAAceoVvP/vVr9Nz/+gn//K8mVvhokhr9Iuf/uzvfetPv/nsV/7NJ28uQ+55lHaCEozzes8IFccwEYOoxo7FJMSWmDFV0wMYpL7FZGTRdMSMBiZKYiNgEfv673xjevDyL+fv3b59J1o8PDx8+cbLf/13//T2L/6zul0EpysI33/vzWffePGvf/MP/tVP/2KMZugL5186vPHC9FaAGCS6wpvVjIgmZkLrPE2gpAKmIMaFk5TRYTpCg1Qc0yGlpOo6NFM1sYjAW95JTVW8Rpv8gQC0a2xCKSeLu/sPqcuydw7XotcIUmcuMOhNgG61NzWA1MqQ+ioORGzbVnFQzdj74lTXqvHGV3C5Gp9aPCEkKKKueAepI3pYHwdQy00SsbOwO8Vz/RRENNCcHztQW5OMpI0CsAF76UR0+q8qADszC7r296Yr1jL7Mz2CqHgB5m9L2F/YI/BFEZsWEYrR2MxKZjU7XyyDcjBv5iUooSPAXKORInp5rfKUiEjFLGNgZV8KAwAhOsZk+zqH7NkV5BjYMSCLSEotliihjU1drxaIFlud1YsHDx4U7ACgKsrYtgAmKjFGNUPmwoCICF3KzxQICEiEZAxEAkCgotjWqxhjCILMzjlEKosRJuAspITY3LZ1XS8ZGUCZOXf0QgImJIeQTeEEt2USLRemU1dRRtD1N4oxRmlKLQy0c3Uk90zyuK9ZTs82P20/LwtodlStgxO3IYryeSM0YkbnLsQ+12mHqfZ1fX66oD0OiLin8mFGfv9ilksYAXonUcdzLiHWhH7Vzcc2U1fW11iSO71fBQAA2aGJiSFSqu0REWAZNIKxLindekShLaU10S1hToTDvrd1em1GIlSFKKIxBvCjvWdIg/Dhzb0XX3iVXv3W/O79B/NVu2jCf/lP/tmPfvamCSGPQlBVcFykc+ucA7DWRCVVmiipETkgzjEbAQAo2MUYVQQBvPdmFkIQEUKf6keZmTBB16BzLqgQEeUEkzRrQkzJO4opxx/ATAAMTFLmQu/qTD9QBUAWg5yEkmlIAIwQyBGYpJRJIj+e7Ajo/fPlB+98MLnp/+bf+v2oi0lZAkROjZmJUvsJYzPGBlpyyCguwlevfWkP/B+88I0aJIVMVNCXhQO6OjlAIwBh9iE0nHwP641SA1YEQ6yhLsgjYq0RR0QAJhHAR7AAbdRgIgBInmMrMTWNAPTRdsW/8vJrj5998f/81n/+JIbIiCru/u0/v/PWv/c7v/8/+8bf+adv/fOPbb709h6d/l9//g//V2/8/X/wrb//oH6wXNYvH75WAP+bX//ly6+9GhzGWtnQA1vqBQMAIacdEDGTqplRJwy68Fs+AZ23KzeKR04N5pmc4yIGMQu5CMukw49S7BqZpVZmqNnLmopWu4VKCX1sZn3QlDOGy5rlZzGcMIDQJ5sowQIjmaIiGplbGwED9SIJMOvijoiY3JKqgIxEG70yAXpJmgVDv5tZXbDkh8ml7YhqqXAla76CKS/XzCQSkCUMyCAqJqmF+pob9PlVSIgJMS9ZOelRiRM55xARUDEjWa49woM9yrwogTs554K26Y/07t4XoAoaVYIxmnlEpA6bulMYMgyfWdLgycyg30OA3JFdLSteffwiOc9VnHNOAUCryS5YaJq2muyT3zsYT588+guPVdtGAPK+bOvGOQKU1EMaAJDIzKKocwUighGlpsXsmBnJRZUunAoEpMzIDhGjqnOOIa5mq/nZqYXaAbBGEUG01fmTsU/J2QZFKQrOO4khZVd5dozICkVZAvkQ6lExNmkZxCPOViuIwVQSCpcEK4ri7ie3v/Sll6rxNITIReGdiyHVN5l3I65QpTU1EzFCREIgBTLVVCitkvG8DDEB/iFxvWicp7PVEiCmHWCiUeUQWuecSVRDhw4NmXyM0pk9Q1GadMrtSA2AxdjimuAMUgVK3w7WDABlXZZAiGAqXTIBEzow0u12hP0B67Kxt8YlivyGD+eLffsp44ten0YubwBCRCbuWm8nvSCpwCkEsgYG21ZhcMPdh0nRT1w0hUkIHRFiUXh/fn4OauPpNZWwWi2q6fi1r92a16s//8vvPjqZh2hGEGIUYyI2QFDtwZHyU5ghig2yzwAgQdIP+55ap6d3L2MA1KcWQg4Yr4E41ulsCKk4XXu+vP7v0wYNrl8v7aVXGlCjctaEk/uPV0Hd2Ik0RWeuGQITo4GKgAkBmaiKHOwc7NGEgW8cPrMEBWgdOIRiBW0N8sHju1SAQJSmHY1G2gRAE0oyeI3yv1itxjA+nO5+fHLPj/xKagYtiFkcK41g52RxDkRmoimuBYbI5AkBuJWr+1f+y3d+cqz1YmwrEBMZc9G0+J2f//A/eePvvn7z5Tt3fmpTXjoza/7h9//Rt2698vIzL06q3ffnH7/71q9fPjryUJ6tZsHEe9/OWxuDIlDyL+RipBxL7Dc3W3ydXtcfYMoQeJKC9GmrzSx15aGnOGkNAXWIZqUbUiQppgaQOgyDda5htC2DuDP58g+ziO4PQvKEDbR4VIAMKBFEEpAQEDZN07QytD7XU+0b03Yvvn74IO0FEZOajxvkur5JN0SN0hOIsk0co/bP7Z+Oa7/BNgF3Tv7B9QPHI6fVNDDsJVk2vy0X2+QxtIA7qzjB510aLOiN8o33+hTTOTVBzQCTzgAJGaO56srN/+h/+7+/+X//v/x3/+w/Z45tWy9m5+PRSDvlKq8n6hD60zCh4iIDaDYL81yIHDlmZiImBDBt2jqsFjE0oC1oMEAALR0vV/NYr5jZeVcgFVUZVUIMiOiJUQVMmXxZTV01joLjnYpJpUGMETBWk6mvfHsc0uqJxdVi2Tar+fm5L0dqhuAUnJEBOjBFNET2vlABwUBKCaIZAQ2yjYuWYep7pSeG6LwHB03ThNhMJtXOzh4wpXAzUc5O6MZGnuOAfvDi1gxsv41vs7KlW7vZnXGDwa9YiYmZ0H3xGPBTgsz/DgatXY5PexZcIN+L3/b290XfFwDgIKcnyTAASCp/Mi8AANEDACgBKrNTi9lBq5BadiGBipSlB7UmNqXna0fX27p5+PjRe++998Mf/Pj+vQcAlGoFMSU5J7bbxwURk5PfAJAy8nOvdw99CdjVTWLuxLAdW+pffPCv9CLWb78NLrv0wG/qd9v3x01nS3+BEVNRoGMjZl9Ea5CcQIwaIkqrkSAi+ALZKzmAElwJfnG+XEFz++Htf3b7pydl8BVLCIV4RAwWlti0RXQO2HGzXHr2BhAJhICVOPnVEVahOYOzG3v71fuwdFIUrOagpSLyizefF4D7sxNkQASTmGvxCJsYAip5Z55Pm3aFFK1FDOxdG2MA2y/GLYTdclpRsYxREWqGx1P5N2fv/6snbxdFVa/ag8L/9tGrCzg/W57rhAQFiyQ4JYVslVQ7S2YjdpqlYhbG6yVFRUBG6/wUeQxZeL9rlMgovRtbn6yXRAb1kibpAMkhmUgik33O0wYkStIWFQAIInZUmN3juUsSXDoSIBQAuMIjYlEU62T8nFawAeC35liXsYuewLAPoGyOfqkS6IdKzlzoJQhzf6htwB5ROoCB7RumD21A7UMHXX8iELpaZeuZilkfcs5XbgxAonUNLAAOdzIfwJwOuU6ovHSZFcGScOkUASQEz+DK5157/fjd91/61m//i//2Hy9mT5679WJpVjKughiwWSeZBmve/z18UVYFS/qxckp6TlHTZrman4TFzCRICBJCNADUWuLp6eli2exOdwo/QsfVqFRUz6PlbCbLUBblZLrjpjtaTGr0buxHVRWbBTIUzBBXusR2GcA5E0WmgpwKeXanJye+LMf7V9g5JodMqsmnhYZMvM7mQzWz1PE9ieG+NG39vkRAjgUkxhYAUks6I0xgMalVYq+ePc3e+xQ78CIl05Zie8FoBoAuI6nbGv6sOuDPHBtn7FMv+8xr0rCBEMLBJ5+yRpce6V5bxk4K5akmfHxMi6G5/Ae0J9F1LTKZGsRsiTIRJddosqRNBNCIoay8iNx7+OCjD2+///77f/Zn//yDjz5c1g25Qg2ACJEIOPnFEDMyOqoBMiIYyvrFuzlfuoA5wKPrVx5QG+mAIPo/Lt5q+MnTVLmLj4bLZHBeZFVDyDmTQMgugoiqMxxxoUDSRFUmAgMUMGSqJX40u//89efl8c+WFFpdEdoIlKIpmzkMGiQAILiyMDEhUFzD1iOAkNaFPYCTKzTZUZ6HiI4VsQTaWbmplWewXFAMpiY6gsI3UtZaBWAk9rYKtZlpY75gi4CeBMD7AgPU8yUCI7NEA7SJLxAhgLbYBhchtpUrmlXgUXEOCy4LsZUlqSmNhVI1siZ4m+xz3Sj2HKzfcMHJgBCl2+XNM2UIpp09uk5eTe4UpFQsgQYARCCQLdqEk9UHn9cQPLDJ7inZeckuAswJhwDYFYFsbPemOBaRlEST/ujea0PbQ+z8NL0beztVUzoju6OoTbfUBrGZbTZhWl895DCbJH25v+diZkxP5+mpXZwgK/IqSp3Z3R867vKJhnfOM7m8vvOpR+mylTFKUXljI0DNngpAAtNv/sHvffjmL+X4k6LwWBXLZV2Opotljc71FV+qysw4wB9FU4AkZdOrKQKiBhASiiiCGCCCSmiWs7icx3qJJqACAAHUQmACM6uqajLdLYrCCH1VTjy3dcOuLHf97nTHj0bqPI1Gk/3Dg+tXi8I/uPPJ7OSxoSk6LsvCxpMYZnKOgIUvzSEzn5/PV6vVeD9l8KSOG2gJKcjMUAEEzTFa3ncE1aimpqnRQ1qfHItg5iAxSACmsiwTYmiXqL9BHx1d4dbipz9oEELd2qzh34O9w4GjkTcutmRnr7Eu8K+QBT0cwxlfOvtLr8nH4jLgdhzkRGx9+EXnZoOB3aMz3kX2C0ryamJul+4Bhp67JBpTdx4yNZEUpU4hCPXeGWmIzePHD+/evfvOb977zne++73v/UDFmH1RVNHyJNS08IWIpBCymWVXP1KXCIqWeh2CGViKI6SpZvuGs9YGHfBk0sFT9IhSnV/q7JmMlg1j+JJN2VqorT2yzfzMobwfKkOISKZtbP2YowQC894vVs1pnN+4erP62M3nLVTgXakMwWGAWGNcmXHh3j69f7Tzws3J4erJcuU8AIxbv+PKb3/99z5c3v7RnV81DAa+UWECSF3EDVghAWpG0ke8/OntX/2vn/u7X73+zOLk9lkTgsVSymdt8idXf+v74e279fGyiJ74MBavXb+1W8vRB78aA8dQizk2/OazX/rV7bdmpWuYl2qocLUpnt89QvCfnJ9GV4x9eUX591/97bc++PX90+OmKBzSTmOv3XzhCJ79L975Z01oAYEZKSpCQ2FlRgjMRowExEqcge0uLjskjKneYWgdcDdcTHXGZO92O4oGgJzo1HKMNtlzyahSWMtdS5WdAAA5zrcRSFLsDGhi6DD4ABBQU4cc7LRXuCBRUpVIamWT3Imffkw7Tfepl2Xq6gzmzRWApLy2Es1MlRKTRYSUKSgydGUn45i6l+4/z0ZtetpaMumawqHPsk6FKLmAM8PLD+V9GiKiysNTiaR5y7qXsrU0v7iK63ffYnTpnyn1kNSZoakiRBN10n7/P/1/Pnn88N57b/LqpF4sbP+Kqw7btiUICHkyXZA+g28YpiQeQwJCIFNCAhBT0BiAWEMLoGiiMVqzImsZYpTWVMn7gnxsqWQqq2VEQFJiU0JVAHP7Vw/aSa0x+iLFrMlboHbVLJfO7bjCkytirFXNsytHU1UIQUIIQEwGRVE4hNL7pl05QEVk8kiEQOg8EUJsgQqymBICwNCDxg6hNaXF9ItnZiISYxtiC6CjUVlNR0XhgDvtFi1VliaafOquPH1coM/8T+oKNz6dyMEoobz921rAf7XxVxCoX2gkntG7oJM87zWewWWWzITumw3BlSbJSACkCCqR0JWe0FRNm3p5/+G9e/fvvPfBB9/9/g9++IMfPzmxooCdyagoR9EAAMqyaGNU2daR8xlWUzTM8aZtt3OX0JjtFerAqtrQAoCmnOguBGWWYaV7xjB8UP/HRcVoKFzhC+5Lot3CwVkzI9pV1KYNo/H4+7956+9+9W997YUvf3B251E8DxJasBXFFZhUaGSB4K3jT87D6u+/9LefvfXLt9591/nyxs1rb1x945347q/eeTsWGlKNuuYAJmU4khxKUQQt+M7Z8b/kv/hrL/wOPXvtnfu3zeTm5PAPD1+/D4+/8+aPVpVx5YpIRwdXvnHjtQPg8SerGJTLwsbF937+wy99+z/56zd3f33vg8fNuVXetfDGy196qXjxneb9N++9F4ogjTTRVcB/+qU/+s35Bx89vs9I33z1pRf4uT+7+68/XB63BSATIBg0GGsMBuYAGbjMGSHskFjz8hJiH/zfWuqB8qo9JSSEUDZk6o3XDQsz/bRXtDVL341Bfcgl+eExlWYiJLEDya7drPXC5OrsqEIxpzhtPBaRmYui8N4XRcHYo3cB4FPZ02UkdOFD3YbeREQkwKzKWEId69zjndgbuI67Q/FpFnCnW6xFcqcKp4nl/wGBmjIiJptBQAdDRJir1KBw4Lr4jEP0hU4ZJv0zZzcTmEuYrB/88udPHt7fq0CZz1YNkxcCISClnnetjRlUM0BFQ+u2PXFFRTUkQWWIqtgiiKlabCw0EIPGIDEYoGdGXxCRti0CtdLOV3Mui1E1NvRI1q5qRESmZRugblPeaCvx8enZZG9fJUAUZxgB2zbGtokhOl96V7LD1NKYiJxzZGAgqIrOEoofARl6QAMhhNQk1FANDMgcAQmJmIAku0rAyECQgcmTtYhYFH40GnlXBN0uyurVQRyMpxDMNoe8yEIRczEL2YAiL6GAtYb9+QRw5wzuZrxhG22ZUNs/veBOehr1fcpNPg9ZI2Z1aG2uXZjJeua4VlEzOcLANEhcBBCAYlTP5AiB0TEArubnp09OHn388Ye/+tWvvv+jH//67fdOz6Gs8Pq1PQF0SMy+bZuirIhcEPHet23TPTpzv9TMbZ2wvOH+wv6f1EHoQgf+55xThSgxGrBC39QlBYmG75w+5px1ufH6n4c/Xtzo9d+DyzQ06HUldctBSOcW3gsnf3H+1u9eeeOVKy/8ePnO23c+aGH1yexJvWOnsowo5PisDGF57//7wT/+D7/0R19+9RZDEaD8/uzn3/vol/UYI5r3LrRt6UuNsMVDFQGAUDQw/+jhh7C/843x156/dXMEBQJ9CA//259/Z7WDrRqKxqiR6CHMS9g/XZy/iLiMcentXGY/+OG/fPF3/+Zff+aPFOIYqgUsAPAHZz/+8Ue/brygN4Nw5sr/5u2//Buv/uE3d1/9/d1vrWDloPju2Y9+evLhamI1aDApC2+s2pxjW4KyohcnAo4cozkgRmRDRkRABuScjp/SeVIWUtd8RDZLF8SM87KnE6sAGagIsl2VaiKls6O1uzTplgQGiMbp7mBowKap5E0JlACQEQDRSC2hB3ZAFCSECskvtLH4SRsIEpOdgYgS8t/56HTNkTo7DBExl1ldIDzr8Mg7OrQt8d1zxfRfIjJAkUzOllOiwHsaknf/KNUL5I0ZkBI6fL1u0XO8Nj8IwXLJSzKwOvVicDq2NObuj6TdwKVjQxXuELz7F9xcHM67RpbqK0GdGSBUZHrt6sG0KhenD5f142q8e3r2ZLxfMaEhg2SXfm+UdzhFSThBghtHcim5HlPFmgnEoNpqFAu1NHWzqkNogYAcIxMyETgQm+7uKVkrEVxBvpBWGADRqrIoilFQm89Wq6YOIiOb7EzHulqgaFwugkZGCE0dYxtD6zgP9LpYLJhZYiSJEJyxgqgRAaAiEahZKrFLCBwGCNbV+aWivZRFlXYODZk5JTYXRVFVJQLFGIESJF7qUtT7iof8TbswAWxl2wxZdL+2wy3rFLh1hu/mWM8Qc7q1+6skYcFlPuGeEC9eqfYUSvwfZgwXCHBDWqQ3177qt5Nz+frMAwepGZrtBOcIQRtZ1svlyfHDd97+5W/effunP/3pydlp3cSDvd2ikvm8bZrAviBP3ntDcoVfNUFERpNR0zTdwUtTU7CkLpiB9MhBkMXbWrFKAljA+n8ye2ajAbBfunOfFbIW22YmCq77+0L0d2vdhqTW3+rih1uDHItrX/vD31pWAJ6CteeOfvzRm3f8+zu7o4/nj5btkiv39ifvvkc+OnUFLduaSr+Kem/55B+/9c+f3zkCc4/a+vbieFVJ8MYGphEMLAZMe9NtlObaHSXiYDIv6Hsf/OKX4e1n9q4WCierxX2dLUtbxBV7BFNk/8Hjuw/v3t8N+PWHj14uPHIbINYsd5fHP/jBP3p+dHhYTrVeKenj1ckpNM63jKCrMHEcpYkh/Pj7/+oj2j0od8zRnbNHp75xZXAilcJuUbTny92oHFYQIhgrFGog6ESJmZkLQ4+IySMNyIYMQJ2bmQEogaKk5R3GgAEouUINjZAAGAEH0AoEAGiDghYjSEwFNbH29doluCDr9MzhSUUEQEM0ME65LemDRP693rwZAGZmV3hAdY5Tr1zn3HhUnp82eBlFXcTYMltnIXWfY2eaJglCm98CJGxhRdWUwEuYypMg1eYmcQuqkqX+pbomDmZygaLT9cyM3UFN3qvhfXq4PUSMMcbIKSMahjwFt6FL+rF1jjaU7wuzFTNUNYpmCZqLlZgcHJ8+lGa1rGc0clIvdnZ3C6amaUoa2dazOuU7MwG1VLoDOYWYLcFZmIK0Fk1CozGISBuDmlbliL0H7wDRCNHxZLIvjOH0dNW0IZwuZ0sCe3z88Pz8tCiKF7/08vUbt7z3dds0TQNmqjqpSjFdrlaCFtqaHHvviUgkqmpVlkSUcvpWiwUVEVRtZM4jITIxEjchmKZ2UECAqeIPkWOMqpIiAKkTTWruEKVe1YuooRoV1XhUN01QmUwmCZSUBjG1LctksAWf5hTcUKS6W/U8fGtzu795Td8d0oODRLa9FpDui2CqSETIKQmkn95F0bthG236M9fzu/QlNufXM6D1u3V3SEu2qYz0x3zD3h1IjvVqImZwHDMDdGvXdBLJGlXVMYkEyMHX1KODzXR3PFquzudnpydPHnz80fvv/PrNjz967/z8nABuHR3VEY6fzJt2VRRFiCAay3JCRFXlowoz+7Ko6yVRV0jQ1bQmayM1D7XcnAu6vNOcEdBXUjokMwsSVRWV087FGFW1KAogDBIduq2NIDAjSDgJ0Fkk2I0UXU4pCdCF5C+ayD2N9l50IsKuAYYiGPJXf//br/+9P70zahP4sbl4Ds0SlnauAiIFRIpAJBaBTRXIoVobGc/YljHcP1swFa2ilmQsTg0QTNQbOkSx2NdEZamCaClyhSZKtWJD4clqhUbCEAqNKIxAaNGsIWlKM8IKyJzGGB06VIyocy/Lqj1p7i2fNCVyquPdZ5wG01pBzbAVAlYoYxtk9mhOSOQQDo12YtuiAXpYNBTh5krHqtIsGZxp23KkoiocgZBRAPLISfp6QAJ2SE5iRMxdYhPNRwVA7iuzicgw4xAjommumUFkyIWuBgCEPuXlGQhQrrpXjeJShyJFRFBTNYbEmshS99dUUt+1jmb2bYyi4AvvmQAjGiAqIw+7IfWHHxFXq1VPSEhGjG3bOAdiICJ9wgskOA7TPoyyPvKd/6l3X/cWLdCaRQKAqgkIkksWcCrT0pwzQambFkAC01gf/ES668Ynif47wAIzIAJmJss4HkSkAGYWJVWwJ3s81+nGoGUJzJwysVNLYJqMHRdpHTqkQyQi0QQNxj2zWp+o7VhvPrQXWCKaGTlUhWhA1BWPoijK49mD93/zpnNaIDN4MzNhVp/ZTEdC2EGUFL7Mh0gVLaQ3RXZEnOPkFtFMYtS2CSGsVis1RF+hr7gsgTLYGRW+ES38ZG/XrRaLla529icHu3tHN6/PZ7O7n9z59Vu/vP3xxy+8+OLu/tUYowUj0HpWr1YridFXhUN68OC+qjrnptPpeDxumxCClOVIRBw5ELM2ghN2yI5VLEr07BSTsIpgqoCmYhkJ1SNGEe6FRaIi59xqMfeVT6xyNK7UhCx1hU9t47Pbhpn7bl2DrbH0VZ9ntzZsnhK52zJyzNRs3Wq6F3BAZAkAkcjBQCUcUsSWLva08ZmX5Yle+PwLaxb/TixpQ+ecrasIMK8CsZoURWVmzWoJAJPpyCEtFouHD+7dv3v7w4/ev/3xB4/v36mXs1FZXn/pS48fnUSluq1TJCxIIAfely75FQxTZl4fLuo0rVS7ts6VunQdrHPuDflIYpOqqT+561iVwAAzq5eXRJTVl81manCZ0rP16K3rL/623xRDCqZPloslWKsyNapa24nBGzYWCcyBgWl+EzVN+dCI5jDFxgmIoQBEQQeRRMUMgJjQsRIARHB9XzPrS70z8HJWphRILPlTQcAcoTWREJFBLRphFexgBdPZstQEoUQAIM4A4/yjD/F8CeBYAaKYmYmYRi68IZBHR+jZOWbHhXOuqqoQwvWrh1GhjlKWFTVw5Mvi9NwEFSOCYwOK0ZQASKEAcsAe2Rk7Q4fqgDw7D2CWABchObzUEggG5FAuDdIpUxWRWx+HZOJx4VyMMZoROfakGluJMUrJ2YlNZmBkikqgYGJiJghKzEXpiCiKiQgoOCT2xAhqEUXIgUMHqYSRthAxDQAYSTIksoJoalQCWcRcUgXbiVJdsy2Evs7nUk5ykRtgFrCJ2hPHHFLm9g+3AIKYOSU8Mq+7/HI+QQKdJ4ks+TqTsZtKhhBEVSFBwhEV6eD3d+5Hf4i2DlrvvX4a6+uv7A5gukwRkTLWcXYbEAFYHFU+yjKCWNRls9yPBwgecf3ueW4AABBCQMz1r30bckRsY8jMJLYEaCBtszqfz9gV7MtyVLmyMASVmDSPuq4VwIAcF0URmlaapjmdnR8cXLk22Ts8uH58/Oj+g0/u3rm9qhfXr91YzGciYlHGk2pnNLn/4O69e/eA6OjoKD13NpslJcl7RkMCUImCGGtCJBYhcsmHQ0ZdzirlrNXOMFsPzTkEZqYaATR1EU4Q2cP8w7Q7Saam3b8oU/u7woAJX9imS8Ks3X02aKDbYELk/geXCeDeZYSbiHR/tZGm+MV+se2i+RRpvTW5z1AI0EJooDuKAKAqIjnvpK5bdrgzmSDKqp7dP35wcvzwvXff+eTjD+7f/cREdybjycFhXTdPHp+Oq53FsgGhgotRBa1EUq1GTEhAaIbZcSxbCRF5kpjwGqx/g22h2B/s/rcpEca6hhMgWksQUWQ/BK0UEVBD51KrpaTxXbqJWw/a0tS2LhuaLwMiA/JlUwsZTKCYNvLd//c/+gff/psvTfcePjqJTcMhEIE6amITVnVs2mZVn56em4PDK1cB+fj49Pjx7GzZfnJ6HhSTK0+jmBkBA2gERbQyueNwXc2a2pnlNVUlgNIXZcXTabUzqZrlwjNeuXJ4sL97dXdamo1amzxoqjogMbNDQ1Abt3rz8fL68aI0ZkKRYBq1CTFG5RyRZYLUVdS5onA4HnFbL68d3qhGO+j9ZKIsNsJmRMyoJK3IysIM2COVCE7QGztjj86jMFIBzpt5hBKIAR0YIZGl5uAqaAqp7ZMNw4hZX7QONrKz8yyEFQAQo5nUtZiJ934yndR1jWZMLgOLoqhAtEgOiJCRYxvOz84tBiZyjsqyREQyx+iIyAgQUTUyIzzFgZVohhC5w35iyOkTG4ojrZ29PckhYheLhf6rtJlrIbupoW6JtO4nG3HZweeWSwIGoigfHOO+UCdzajTA1EA2WzyUqxIA1LoSOCSiIEqIyavUs+DhUV0fKOoyxTYnvOliTm6nbf9zt0oCkGOdCA4AIwiCsYEz3aGqLnZOTheAWpWlK8kVHILQoLK503UQEYkTp7eUnaZgpgFM0ZdN0zBi6Z3EejGbr1YrIvLliJwD54gdELJxwlhGZLOYKjC996ndwWJVI80VqCiKnStXy1F1fvaYIcb6rAmRvR+Nx1Hi/U8+WiznV4+uHV65UhSlqrZt27YtqHnvPWdcP0oOjxAN6wKAPTKzmSazlXN0BLfAghKtrQWxRtUInSegS0lH1OSBvCBl0v9SYTGmQEaymgSgV4b6C7sty37XwRdrWoVUMrfxlGSJUE4HkZyE9ZkaWffjra/6Tz5FRn7KuDi5tYy65MpLbLVLb5gP6lOm43y3zdSFzwwIIcZ2Oh4xwWx+cn766PTs0Ycf/Obtt3/16OH90rmd6aRgCm27WCxMbFRWUSR5OSpic64NoQ4tgTESAEaAoeELADmet+EETj1MttfhokTsP7eMcpipqi9V0g6kPq+hqqp2NnCawIaAv8jd+icOP/mUPe0fF1UkBuccxJVr7A9fev0PDm6tfvUhzeYIOvZ+Mh2h4aK2xXwV61gVO/XYB9N4rienZ3wyc6crPZ65Bw/rRiWCGTZ13bbCiMwYQLlDwOoNQ0Qw51VVE4KKAhtABTzyxe7k8OjK/Hy2Wszs6unOzaNnnj2qTKnRyWlbmgmomKoZEBYAk2Wzf14XQCU7IEMwiCCCrUCUBOYuBMbMzC07220KRgsf3IHxtBpPyZ9OJiMAaDyyc2XhHaNjBFDToKYAYsqqgWKCv/GoBXGhsQV0wA6pAGVAMhGVFrQFbVEFTRDEFIhAlTC3xUu7BpAXxCwBJgMzk3NelWOMy2Y2mYxUVSRajB0cIxAZOFjUq6ZpHRf7h0dX9g92dyYF0+zsSb08Xy6XIi2iY+8AQKUngD4WnJOuVSOgmmlic2aGBs6xmSQsrTUlw7Z06YgnEVJ+nY7Y1obsJnFmhQPAIGM79hJ0+8g8jYati6SYWQoJYYeqMTx3RJTcV/n+KXAkksA8k4RGxCAxhIBV+bTD0r/jZw7bRArrb9XfgYA0R8wMVSxGMh5XO+f4RCE4TwAxWtSoRtxrJZ1Sjti1qyLs0VLy/S1GNXWEplbX9XK1MMDxeOyKUggRWTNeAalIK5GZBUhMDMwcOS0xfasKDGLQqllRVtPddnF2en5e7e43bWjmM1ApxuW1o2ve+7Ozs8VimToSFkXh2cUYzbB0vnN3EaCaBAmszjl0KRRPibbQoKs6s+2BAGiYUHYlpVwhMDNbxxp7aTJcZ3oKEx7KnU0S3fbsbvHPfuUzjW1+0rVvR3eJ9DUzM8pmsg5ud/kYqm9bDP1pP7n48/6F/wqC/IuMVPWrEiwaIpJDxw6ZcG+y8/j47unJ45PTRx99+N6H779zcnKsqnvTHZUYQpAWEuysmrRtLQbseISOBZGkGY0UHJFPMSoVSf5hVTBDM0w1n2jWuxa0BwEejP7YE7nEXLptgyRXEbHD9Fh3XEkVmaqKuYdgctJyTzxbq9qdzEsXfAN/6cLnuPmtmmhRuAjRUAvnn3/5lSe37+0sm7Kxnb1dP/FtWMaTuSwX2CwwtPPHT8qy9IVvVa94d/T8c/EZ99GD4+W8+WR5smrM+ZKYGWpnRhHHTAAGJqgGJoZgyEAILRSA7Bx5Qo6OZMw0MhiLHfjReCx3T5/IbI77e2XbFmBTX1X/P9r+q9eWJEsTxNZaZuZiq6OuDp06syoru1QPu1qP6BnMYDjDAUiCLwQJkMS8zQNnCPB9AP4KgiBADsiHIdiNBgGymy2qK7Myu7sqs6pShMiIG1ffe9Q+ZwsXZrbW4oO5+/Zzzr0RWcluRyDixBa+zU0svb6PojEUWARVCRkhgkajkWIWLSAToiMDGYmIYWg1BABltcCokuBA1pt6OplUdbNZn08nFaKW02Kxv3AuI2fF2zzLxKChDInQGIiRlCUGBlAkIYvsyGSKhkxGJgeTo7EAhKzAHthrDMJeJUDiNBVIgQ8ESNVVCKBdcbsyRGctInIIwOCMdcYhkTStAqMG1SDiVUUhRFCNeTnbf/DB144efGX/1jumnIEItNtZu9mevTh7/vlqeexjdAhkHTk7uKcpUEzas4INkqXTXiwSiUiEB8aBka69ak2ivFY4jBTG6LMjtTqEr3t9DIOlnb67I33rvyoSx3dIzmsaFfWUgkMsGhE75pyRGCUkJIwxDtWRw9i4KwW6EgUd8G/Hj4H9g6l8iZS7JkJTzYiqAkIab4yiPgaicrG/L75uVkrBx6AcnTEJvL+7ReftCQCmdm016Ym6hm8C9L7NskyVl8tl0zTWWpcVSiigxlhjLQJyEJGoIgCYDBcxKKKiBozkkBOocAtoImsUSzbL5of5dCbRny7Pp7MZAmgMztimaZaXF9ZaBUWDWZbneW7JJbvHWed9Q5TAJUlQRKPEyOhR+s4wVUgtzQqKkpo8b5hZwBwGhi5VxV1WHsabMRl1CIi93BMRHbeowXXJ2b0iN9b3qgIernELByIqpfIOJDIAI37Na0cirb0OIaF/O9dw52Hor30GfQNU21/+orZticiklh60hiDGtm3rR589PTl+/vjJw6ePP7s4PzOI1hhWSC0WiQ5GRGPgGKOqorFkjAFK9XjGuMwgkEGiyAosMUaNKgLpn255Ut1ItyhXPINr07I7z0QDGsswG+l4J/wpVklbLYRAA8bNyCFOgupLLZuxfffaJRj9vXtxMi0CqnI0iMDRsGTC4P3txd7+4X60+urlqrrcGBCL1sdmttiLMbZ1GwK3PqoXk08XGb19OF9dXMZtY0xeGmczQvEhBNtV2pBqNEKIqJZQDaXUYWRmXxawmJZHs2KS2zzPC9Asz3PEWFX1er1eFmJsViKxoqJJ7KcEqiodDZSqpk5CBEACITSZtQapZaPkgVsR4RCZMGoEaJy1QbyCFw2vTl41fm8+nRtjgstimWcuN1meZWBdjiSYomqKKlGBNQRlD+jUeDUMxqvJAQ2waggx1BJb5Va4BRYASiZ/ghKjXhz0sgFBKYoSMDOjqIBYY9GoDx5ABAXI5NOD+f58f3+RTaauKMvFIezdhmwBbEWQDMG8BMXpPPBhLZGr1ZKZERnBgKqSkJIoUwpfYoenikOdYGrpkBQkTMX9N6KyI5H3pqzW+CzcMBlBISngHnymw8pQIpNs0GSwpslJXgbcOF8igKjGIHNqu8JrJTbQKctdem+AdUzx/3T8AcBa2zE63BjzcH6hpzgcDuNrH/xNFyKqgiigpo4oTKy3UUEQ0NpsMvXqRSG1YhukBKVNAy3S4NNfj88DKCjEzGHwVdM03ns0ZDNHzgIZY1FBOXrtuHkIFFhC92XqkgeIJhUlF670qmCcySdoHEhkH5XM4dFtEQmtF4E2BhXJstyYRGXhEMl7z1GzLEPVum2MQTRE1nCy9pRZAkY0SXiKqEoKLyqwdtU8PEhLEWFWFvYcRcRYkq4RC0WASFO+P61PrzOvLVk3S2PddHNpbro0r/uAjoQ8KYASYGqCSL0qNALi2N3ipk82MiFvbhF4g9Z808i+4KmGt8ZfGm/rm7H7v9ylaKDMbOaMsvjg16v68vT4xenJi4ef/vL45fOL5TmwGCQ01ihalzW+FQBSUkWJymKH3lwGZRUB7iwVAASjiiIcY4wxMvdnZ5eputJNOByM4bQDpBW6Eii+UqLcWbWJInCXXesC0QrOOUcGFRR0l7h9TTT7TRtI4caq3Vjf/n8RQoyWIAPwHFxEreuL0+O3iPZuzVrfbE9WYVWXxXxvfz6bTdSS2ryqNuuT83a7AVRjbVVVTzZn01z3Jlg3GDVIYIsgznD0qJL45BA6uNUkH41zqtJwAFVn6dbe9O6txazIrBpDOJ0vVgd7p5dnZ5cX84IeHB0xALnMSiOaCE7FKJRkTdeci4QYQRXUqSqwAZvwR8Wi9ywxAiCCKTPHzDFsXQZ13Lb+0lhZb1b1UnKXTecLnu9JOSVfNnZrbJnlE6LEPEOYfBklVBWIoFZYwFjFAGiZlaMX38bQcvTKiX6cJGEXqWD6IyWCU3G0UJFNG99G9nnhcoccfVVdtsHnZbF3dPvW/Xf277yVLfahWABZEAFikAiKEAQwkAj4AG0bLi4oBqf5xM0k8xxqYAENYB2MtBF04eWhqLCrDexxUpUIBHBQPEmX7fYz6RC606u7MLmIbxYXkMoJpaN4vLGZDSX4K0SUBFeZAvVkRUT7GuwBpFklASwm/ylFwjt7Nw0aALT7LQEAR1ZUqG8rSGXe145Sf5ZZVQdc4t2REeyCFwCpEvu1Tzq+FSJGFYtDMgkFkciQMYIQfSPAgaMIAGUSWCKTdcN3B4AR6Ap9uyp56ZhNlADImLpaN43PJxObZYkDMneOiISVOXJCcCTHKj4wIBMRRqTUHwUChJGo9mryIp8ssrwIwbe+sQB5nnsfow8WrRpo222euTzPq6oCBCKSjqMc0KI1jpkBRVLHCoIogxJxQEREqyyppKZXvayaYtE7GLKEiho4pOlN9IWjvTrgmFJS5NeEW2cq7TyR1wjAQWPDawQj7Grs+715bVk7aZy4c65XQeO1gPMX0+b8Stdf1ntGxFSQlmoQhpNPVx+1YzEB6KrXtKPL6ag/RrF71AF9XhE0s8Yh+La6XL46O395fPz0s19+9PjzT5u2yqwrXI4WmMWSEYGmqV3etRwwK3PCkelYq5I5ZjAdB2EASybGGER9ZGZl6I2Xrr2kOxI74+uG9h3Pw/DukE4G6AgWiAgMUdyJNlWNHAnQgRtauWB0kq/9RK/sbyYOrqvnYZNdM+TTx2KIECOmFCDg5599mr3cfu2dryrpxfoi1u3t23fnB4dgCFFtXjQKh4tbi9mR32zq7WXTVJvtSnwT65UFKIpi02LTbpEsFRkaEul6s1CNJKQnDgAsXV7WWKLZpNhfLOazsiQoXIGob799T8FXH29Xq+15ad+5/0BESI2ECF0bF6FCKvliBejMfAVRBiQkBjXGuNRyxRmzJtSyGJsg/Or0/PD23mZ71sTq3/m930fR5mwZm/p8tT65XBrjsqLYm+3PZotisjA2z9zEubwvxSQEg0igwsAQnWJENCqi0WNsMDYQG4gtCiIaJEGkqIBkgTqXq09pSGjEANjMgPJyuW5juHPn1tfee//2/bdhOodyD2wGYoARvGqMwJXGStpAGkkiKAO3wOJChBC12khTkSiSUQJOZS0IhNqlXw0mjwxYlCMqI4ilDgdKEcikMtTdHu67CZOFCtd24PhKta2ds3D1LFjsfiPGmPRs8r2Huhu80iLS143LLk0Dvb3b/90xsadzNnTsdHHLPj+9ewpRBUUDojuY2MEbHh/Y7kiOGpGHarpf0XkYvoiIpATYQU6ISKrKttYVkzI6QCza4LebyxSTsNYyRwHb4eKNZIsqJ/ojHPY/IiKsLy+YmdLnyZAhQBNBNYTMZNZaDSE0TYstUteBqMogmJB8CSkxCs9mM0DLQE3jAaRwBSmCijXOTm1sW1CcHBx53zSNz4q806CEWZYBUhRmbg0gGCCRlMRl1mR/kxJY1ER5pGnOk0jkDkaw18GsEiV48d0EGkMqCqCEIKnaWfo6Bhmk2TVxl/6QTuhdfx2Sj3QVYvbayiYlPrzfYR4TAhgESgaiElKHBT1W5qnVUjuSgGTAKkiXjMSd8hgMRria7FHV8c4d+kfhuqC/ksQe3mLtUN275Af0YGxd4kko2b9dKYaQQVYhdUAmIZqiNdwqAxNwKtGMEVjZ5pQXhqv16cnJy1fPXzx7/Pnnnz1/9qRpqiKzhSkISWLScxRYVBAQvfeIKAhKklIPplfAEiUjbJlR1TlnAocYg0LlfdX6yJoSdaoABNaaQY92xXGKAECoogKQiHt3PWrDrugffHSeE96ZCICQRVKIMRrTdfO1bc2+LYrCOcfcWesdhDUN4F9dkCpV0PTL0Rnu6cPJpEzvjns5koQDSARtmDBl0JhEDPDoydNv5w8Ob91TjLNyopM9Vlr5MJvNFDhGAcpVDJjCFGCjlia/DXp+ulxdbvfn9vOzi9NVTaASW2JOGH/AwiyolOoZkVgRGIJzDqPltiKdZiab5MWD2/sUpSjywtL9O7efP3/ebOq2DettdbA3URa0CbwClVVA1ViPGBRaDhABDVrnFMmLWgsCnBHkaATzw8X++Xo5PyyfPfsYMve/+a//G5MXv/zsz957/2v3v/q7sPa82ULYri8+f/780ycvf3l5fnK+Ork4e5ZP8sOje1l+5MxsNpnkWXlxudo/PMAYlEQIFYIKgDYgHmII9VqC5xA4xKSAFRGIgFAgEymQHJjUFBQpksPMWKyriyjx8O47b7371cM7d3G6B/kEyEIIsFlLrClGqFquNj6ukQNFweghthq30a8jN1XbBEGl3Oaz3GaVjxwEcscEiEDIBErqkLvjRwgKHLlm9k1ThRDIGh8lMACmWH5KtQwuB6hqFO3Tt6kel1EA+06krlwCgRCodyW6ghoRQVAAR4ZZIkCyTVJwtHNjAVJUWTuRlcQEgaFOnKWxs4iAtSgiQ4ebiHQRaQDbRyq0ewAAIAFRBRXI86yT9cxZViKCaBRwCYouaTZm7p30G5EkuOJXAAB1SSLoz1oXCeiNCU21cNhjbCmKEFqTqWpVbQ6O7pICKRpLsW0RbCeQwSioIiswItrMtK3PqEAkQhs4FEVxcbk8v7ycTqeTsszLshXpGpWyPDRtE4JVFGYCZI2qSOScyWLw0zKvtxVhbmyWl3NWMdZWTePyvI2S0Ie45ciebB59Y4wlpMBRCbM8TyJEDSKqoigCkrExQU9iZNYoiJi84LSRIkQiEuDEjiMaRaIhjMEbY5q2UdXWh7qtwYCKVD7kpVOirh7dUGZzVQZUkaS2u3qabv/1rtGgj7o6gm6UXa1D1zuTSE8UBh9658l0vjWZHtSpA8IhVVYSJLJCVshYRMUvhaL8Iuq/fqA3Kg7G76ayiIEN8Ut+DlKYvHsqGHUA96YrqUaFLtYEgKwsApiqBGIEDINZAIih9Ryr2ewwmxaX27Mnj55dvHp+8urFp7/8+OnTp7H1RVHMywkzC4v0+BLahWFTmRQAsqAKqwASGUKDhhKwgKKQEgCLxMgSFFvmECMrSJ8AGChoOokwgPO+Zia7WRqWs79GBgp0rb2IHa5COvLp7n32q9sxqU4bejEwNoCapkkfHMzhBE6ddvyXLnr3B2iqT4miUQXI5mX59tvvorHVehNCoCxjJESKgEjGmiwGIESTl6mnmVsimL3z7rtn55efvXi83lQRjVGNAg5FRLJJKYgWrDIACiIASSKuFImpw9X76H1ENM65zGHuTPDNrcP9xXS2dOc+8Hq9rdwsskkCHVNSH5FVOWoIXPtWFa1BIjCuIGsQhUMrSE0kl5Wqur+/d7k5tXn2P/tf/q/2v/vXweutr38HXAF4tFmeF/MjS3H/zr39r33n2/6yWp22J2fV5clHP/+TTz/95NbtaM0q7h0WxaQopyE2yopqARXAKYsAIzOKN9KqBtCgwGkPARpVjF7LuWMJVV0756wjRMhs5hAvlmdHt2Zvvff+wd33sdwTJRQbL7fGILKX+iJsl1BtqPLiW9GGfRvqxleNcgvI6iIatFnWxDZ4Nq1kxSyz1oO2vqUsU0LQmIp7UgkYEgT2AGwQyAiSIqoxxlrT04XheKvc9DOu+4IyWNs7CQi9EwkAqoBdoWrXVnVNt/WFVNB7EQxAijCiaeotAUMDbvr4JkknGmPS4U+KPNEypmxOSkEmU+Ba8/1NZ6h/8N0I3yQn8YvzcYP3nJLvPT5JVpYuOmMMaODpgjR2FZqpj1xt3wyW/pEQAhmjCKyKCMaYEELdNmDtZLGIrY91k09KBbrcVJMJxtbvTfdC3QBrkTnDKgAIyj5M83J7cQGi1mUc4/OTJw/uvxV985X33vXM5Wz67OmrV8cv5/O8nMza4DNXEHkOAYjQZcCi0jU3g8YoHCSCKIklQOZkS5GqAoOCSMRU2r3bMyiJsoNFPXtSijGKKitHjSgaUoKgJ+JQBAQRMJ3rBgA75tkrMz8I3t3GGxN1dP/uMTBfd3WqRzoq+cQIgojU8V4TdKi0mLIU/1bIGMYPYLpoTvf6l36XgKBrXSVQhs5C7njNE/ld590jABpkMkTGWCVhjKnHjRQIrYDJnLVFFuPm1aNPn716fLk8+Ysf/8Xy9KzabLMsS6AKTcPOuZRjkw4TRyChHioncHDurFGDpu//iR0iYDpXIQqzsnLbtiEE2fVw4tWs6vWTpkADlRaOwnRXdfAoF8AAAJL6CRAtGTGDhwCAIKBRxYBaAETklI27sUB9yckO4gqVBcgYwsSZ1cuR3vS5uXzSRYK4F7IogeO2rl/FE4gtIhoH1hCIRu+JADIwthBgZy0r2SJXDBLM4mD/8Pah/OKz2rMYBdQIQCosUIj0ScWu0gepM2JijAkDaFM1m20dWBQo6QCRWBTZ3bu3nz1/3rbt6enpnXwWYIo9uX1vpgiqojKpAjKTBlXhaBgd0bTMQwiucAIQorcERPT2O9/Yf++7UGXRLGxebOuNESj2j9rtOkRFmBmam/zB9LZO59vD+myyeCv84B+dHp/M9/jFWbB5NpuUmcsn5b5zmUMmy0qFCkRBjQrMyF45xhi6WicgZBe9ahtEtoZjZqfgSYJnl9eyLsrsK++/Pz28C1hAtqC61osLy1vx61iteHuJ1Yrruq6jb6NoZCQhg1lhbt2f3r4zvX3XzPYgMFTr9vx0c3bcVhcSQm7RWROFRYEACVAJlFKJhERpFAJgJBDgCCzKXXRKk3eQ0nu7zNFIs47F2fXMyxW9em3nEpFwH9HuTs2VD4x/Kp0aGkGCoHRnCbs2kA6gOlVld6nlcQomVVknxDBjVGU4L0PaexjhSHbDF10dEP+YFSC5vLvCzCu5ww53pMfK7YIPaMmSMdZRDDUu5n51EUKwsGsx6geWHDUKHMsiV4UOf9m5zWZTt+18f1+QKMutMb6NZN00KzPKFCEz2eX63BGuN9XlxXIxm7RNoCzbCDT11hiDsEZD2239svVtDE8ffvbOB1+5ff9+ZuEb3/zai+OXF5vtbFJMSse1tm0jpEjIQmAoxKgqqAyIhEJEEBNrDbFqNz+cdK1CEKu2A6XSpJZT/F9SKIKZpXdS02d29BiUtqSicu9ZXdGpN6/Rpu0WYzyl2NXfjNfriut87Ys7LwqwCz0SSV8Z929AAf8qanX8AL/Kt9KWQzSq0Lerp7PTh4yQACTBIQmDqqjElJTt0zO+LK1wdfzi+GR5/urk1Ycf/fnHn3yYmTK3eVmW2qNNJWC5xDym2hV2JqgDVdRk9fambsJxUmURAcJUjsgKIbB2HXqRO6DArmFkvDZ6XdzsdNt4cgaP4eZX0toPLyZcG1UNIaRJVQAFZWY1FrFrmexvu7t/lmVp33bKG9Gg0tVBXrXl8ea+ZIAIYgwpIhkTJJwtz39+/ov5nXcf3Dkqy2lRToWsdFpaUYisBpYYIXI0zjosVitmjou96dHBonCrVRC0CKARQAHa4AnIYNZhMY3o5ZjZGCcIVRMv1pvVervaVvm0BODcubZuHjx48PEnn746aVfrbePbaIu+pLOfTIDMpnJ2SSx8KXJAoFUTnbUG3Hq9LWfSSoWu4JY//uzhRz/5yTd/Z9+Ws+W6ns5vZSDb1ZkgYFYgOk5zg2AmB1DsH1rz1Yvlo2f/D92wK/ZjVV9eXs5mi7wIRZbPyywvJyZDhAwRFQj6HczMoh4ALGYAYsGFeotWciIItUQ1YIyJ0jYHt98tJnONtqo3RQsGGcFDdU7NartebS8vwmZjkSaLg6M7+2Yyg7yA+Qymc5jMIJsA5MJIpYFJm7upirT1uq5WNsN8UoIyCCGaVAjGKABBgZEYkElTrqwrSWXo3b4vEwmDYUfXt316d6dYe6nXbznm7kAmjK9hb44KuHY3ASCz43PV0cEZR5WGyJP2lBIgkILbw+hEZIBVGL4oY1Sv0YX4xshhd6ZGRvmvLD6v3D/NsDGGI04mk1hVUcRaM5753gM2qZ7GGOOj2ix3zhljVNdANJ3ON3VlBDKbe99KE0CprkNdtZ/98iFGsaCxqWdZdnKxNsaCyVlhb76oqo2Ct9Yu8onfbJwjY7PHv/jksw8/Prh18Nb77y5cls+nJ6+OuXBhW3PVmNyRNQRo86wlz+KjlxCaoEIAhVpjbUxZwGQ1QFdnE6PP8xwgH4S29BehCaFNqAysoqpRGACMs0QJ5KavqUIEQOobUt6kfW8u5fjF6+7QjSsNz5DRq+laAEDsqYhN8p7Mr6mAXzv0NzhJf/mb73pX038SbyKwxsQXDj2csqplYGcxCmuadGMJC4LW2wrAHx8/Oju9ODm9+OVnjz57+KhpmnK6KFwGAByi914TBJpB6IuLOyGSCB0TxaQm+rMdmXOnoggBIMbIYJm1DRzZRFGO2mtTHOrzRmuws5jwC6er170MOPqiUgfyJwIsaXkJ0JIJEKhXTqh9haEmYBC4ueGS7kVRSn0LnUeNve+eUHjSUAhAU9iOR3V5KbQunPgUNWoEwovV6qTFcPS2KlokSfkckVaCsZYIVbeCZDAXEZtZMpk1WZBtae1779y99/nJ+mUbVcGSREGAqGpTHV2X5E6sPT13BiKRlRAvNtvj88vFNCtR98rMWeOberF38OCte69OzkSkboMHBkg1oprmH1HJJHHmQC2CGrIG0DrKc1vXwftw//7dyp9um7NXbfP+1775/re+/ulH/1ro1bf/+n90MPta5SvPTVHYuhWLBm0GKAoNgzAWTucSby/uf/DuN9//7KOfHuVHKiRiVivPq7Pc0aYsppN5OY9FPnNoAQSQAF2KPStEUkFRAiYVDpqbCbDW9dY5l5c5aHRSP7h9JDDz3uTGUrsBXsXtcnP8vK7rGl2xd/vuV7+XHd2BsgQkmC2AI8QAKmBMknIEDJs1xAbEF3uzfbmNS619G6JQSo4CqRVNuVQEhegsWSSvCdbWGNPxtybtOxZxBjoWxt0OVADo4utytfG81xmjI9Dbprrrm/+VhEz6tUFHwk6XIyIqp6JISecFd+NKlVnDMewOqYhgKl8dhaa60yZj3a+j2O+V68phf70f/AXPMtRowDCx/SYhl7m8LKBuEBJQtl4zXwCQyKWvW2utzQQAjM2zMsZYuGx1sV5fVrEN1bZZLteKpmpbImqbpszziTFZRgaJo4LSfH4wm899yyyNsgBqadx2cykihnKKcnx+ev7o4f233r5creqqyp2Vug3RmzxTJAHMi6I8WLjcZJmjDJR9CKHmYCSicapRRHq+Xg5RUo1Lyr+qJnxVTSvFzCFwjJGZBVggKjARWEtIgB2wVSrUGpwc6iPzowUZ0YKMFys1vA0rODLaXhO7BkhpspTRg1R1k/aboEKXuLBKVjpmYvNvkQ94rHheO+gvu2QAuxnVYw9/UHJY2rpWVUPkiEA1tPVyeXpy+vx8efLs2ZNffvLw5fEJiy2KSVEcpiJ17z0qZFkGAE3TcOBExKGEuzgPpNsnp1dSzeT47BEBA4YoQhJY2hCDYBtZQAGoNxGueJNj7Zv+O1bM43dlhx195V0FQbTD/ybhgh1LksEe7wYV0v+GEK5N+2AndTZm//XR7+LN8egurX71QRCYWWNUVQE1JqvrNoBuq3q1WYNEicoCRBRAsjIDDUhZVpY2y4UMMxOCy4tmjc7aB3duPbi19/nL45YBrAXwChBZgAhJMGlMUFUBFEMm9WuRMaqxaePJ8nIxdTNnpm6vacQ427btg3v3f579XFk3m02DE9bMUDrGkubfex84WjTG5QYQVGL0kX0tYTqdz2fTl5enr85f/J3/5O/9zt/9GzjbA9xrH3386afff/nzf33vW+9OsoOoYlHmixlE9ayiQlatdWBKBDKT7FC3vwV/a7m6fPXk1Z2Dd4Bd07ZgtFHmWNVtLOs4mbSFKwwCKIooihhEUJNyXaIBSFQhRisCIGyN9WF9cXFx9+69+cFdKOYmGsI2Xpxvt2eri5O9+eLeO+/j7Xeh3AM1IAoC4DKofVpoVCEflavYxtj4wpKEGrlFabosWYiR28wiAZJJSNWGFAQEASRG7YmuB5dCEQyCwG7zJF9t2E3X/IluG2sCALxy+F/rWUJXBYMC2slMUUjEDDLc88rupZ5UTvuwtY4qS64cRwBAMIBKNmXsBK5wuY1taB3Rk1y7dBThvCbx9GqgK8l6vBHzvHbhtbj8Th+DKiqhILi8jG2UnrNKNIJYIhpPe5DUh2MSdrrLijxvQdS5vCgmxxfHzx8/Z9YYIIhc1vU3vvnNfFKGtrYAk+l0e366mB9+8I3fjKwYgiuL8/OXZZlzCzF4sCZ3RfBoM3swP3r54tnp85dN01iTSQzgo2UgFFbVKG0rq4s15pCXbjKfuGme24xVWu9zyjTBXmryIFQkxugT8weRSUl91cSuARIlxKiqHWsLooAaZ8kiompXq9yn9QDwKqbCbmXfMP3XfCeRLgr7hbpMtKsekhGABQFhqkFXIgVK4uumAn7N+P5NXTc3WWdDXnnFAIhCBJRU0JHeTpF8TYVCqqhdB1mel6CRIEau1+vTs5Pnjx89fPr08c9+9ovttm49Z64kZ5vGq7bO5o1vi2KCiFXTgHCe54hZKnVGAUTsQ/tD9FgBCDG5nqgKiYuGwQqDjwIGWSiyRJEQJEWt+yDYToNKbz4nddY9Uco0Qyc2RlOkoDEJjOu6OYXIUpFnj1aMiJl1AGBN14EwdCINSlpTReX4J4Y5H3InXZ8Dgpqul1JVuj531L6krrtQASDE1sSYIiqsWLf+dLN8NTmb5Y5iDL4hoqIoRCRi7pFtNlFLTM4a14qKSOYKQ26aFbOsOZqVixzOWhBBYyxzVIXY7We1ZIBSSTykeQ7CqbMisqzW9cWm3s6b9dYU0e7tzX1Tz2az27dvv3p6fLnaNPlhalIbW0V1iE0MFlgAgSwIq9RATeCl1fXj4ypbPPhf/Nf/7dFXvgtm2rbeCuXv3fog8sVqDVWAaWAOQX2uBpDQkEWDRKgKIbCAKXO39/YBf+83/sr6X7z8B1V1krsjg4bIISCrbBvxzbbZ+izLnKHcFahRtQFg0kJAGVtFAfBkrY8VgSmKLHLtwyVk9u2vfidKBoFtRnB5fPbiYXB28cE3Fl/9BhQLUAfbljcV+GAoALKIRmH1UTggR1QgBQPcqLJ45sCh8c2KQywJ0DivFRMqEoFTSfCghjD6wCCRkLuCPwZhUqHBq0NE6sSPdEnhqzIrhR54iJwlSTnCANjZnf0hol6dU0o0J27YTqfuIs8ogxsKZChFegbtC6lFfhTZTm322MWNJdX3p8+KgKKmJijWmHTuFciOdB/tDIix95mkx/ipv0BqXzFZRtdNmTlMCgAAJeLb6JwLCFHAogyJbYCe6Eg1pTbKYjIIpbIsm6ZxLlPV2Wwmt+TkxRmRzqaTJmoLqycvjv/j//x/+Or4RV2tvvO9v/KjP/oXt771tcVvfm273YZXZ4KN0/n+0R0fzWazMkveP9wPmL/17gebZvtK4r29W88/f+xjEFVSkhhI1JrMKvqqsbnbXGyXr7bG0fRgb3F4MJ3OZ+Wi8QHRAFjhNipDanojUzWNcS7LQJJdpAmEQVg7qUVKAhFQhKMBi2iTHB4JPd5ZgjdnmLp1/OIFSvtz1Od5PZ2cRL+oCCiighoAktFNEAmBkqJBoKsKWL9c+/4lvdgrG+gv9V1N9VR9DpUINbVtdzCtbDACKofGN9v1enl2+vL5i2fPHj/6/PPPnz59mrvS2GI6yQKzsJBxIuJjKIpJCB1KWSoFHJxCRIRRilEQIPWJ3Bi2ICgzC4SoRChAAARAI0yW7hGuadCr0/KaIMZOZ9+YuuQWiwQEk8yk4WewI0qSa1a59uh9g5s7DKa7G6dT2l3pJgDXn3iw9/XaqynnIWKMAaUYNAo+f3myOXznYrWxECSEIrPqiENg8d63h4c2NqSMk9m+QUKLmZ3VeancGMSJM4sSli2ogHWGOSKaDggaO3FDiAAJPDYhC2rubIy+DtJ6DgrrqnZ2kh4Hydy/++DV0+NNXQcWtIagL0zrbdsYYxVatLU1RZZTPoGssC5btDHc2bvzP//f/bfA98EUMa7zfAJA4Nty/+0IKwWTYJVACBWRDAKKCAcWRGvJZDa00ZUHk6NvfPO36PzVkz/+Z//k3TsHKBRrT86oMSKqoY2Nr7PWWpfnbEEyio4M9OQ2qo2CWEuikpBdVutLW+bf+Nb3bt+5DwDQrpvTy3r5hCzefver+Te/C5SBddC0HLz4aEMLfiuxjgm+IDK3ntuGo1dBAVYEJokxxtCAeANiJXquYUZCghoFENSAWMAE+G8JM+tya23X3tZlcUa7Y6SKbuqhfifywPaMo+TCjY3WFb/EMISHhvjw7m7D64PcSPFMlN0d8Ap29O4rCZOQGQhFE9KWdNloJbTWckgtMICI5s36Unv+se5E9yFzHLJX1zPBr7nPteuqyz5MKSEBYhaCz6xDstA5jslulrE1k37ROcepipUwy0o0l91BADy8fefbv+VOXy2X56s8t7OpPnn14sWLl3feur9eF+Xh/vvf+fZGpcrNnQdfqfP85Oz4zlc/ODi8rWZWlNkv/vxHxaz86nvfAmuprr67mDdPnn/lN7+z8V6i96vN5vzcNxW6zAg2WyFnSjuxluq2Xp5dbGu/fxDne/toXOJAFwEWBgAiNGRrrmEwfVBFBEgVSYMKKFHiWuMoHDgSqwMaMMNv7r2xCf4F037tM72Y3HWTv26Z0jAJEZSUNCHwEAB36rWXtbDzgMdSWzt90w105G6PTIDrUdPdQFMAk3D3Q6OGZezbgoeb9BsRYAgTGI2RAZCMVRFM9eIJdR8MiyKrtUA21NXy4vKs2awvlxdPnjz59NOHnz98tFxeEmaTyREwBFaNUUABJIoIpwCCx4EKqX+SbvzJqIZUhS2ggIm8zpIB0xk0ykFZRJBs1YS8nLQRLy4vqyYyKAvGmMxpEEnwTSQJg6zruxUAQAICo6oKhKgDlfeABpD8TkRMGdxeqSsiGtu1RCfruhs3C7m+/w9RVdu2TThZqTqBiLLMDPmMrpB7QMgcqdg0AAGPgoTWGGPJABnWxB/cId2KSGAOmpDhEsKfBcDYwKaKr04ubu9PL7B1EJWtcONc5tykWq+2xu7tWzTq2xbLEgBjDLPZYlOvJkV559Z+bsABxC5fSyqoCFEisyix5mQQVTXPihACoRHlwOysVeDjs8u7+9N5sedDbBrvSlNktizL2Wy6OduuViu8c5eZrc26QjYEEvbVdlZkTVNt6uM79/e//d1vA7WWRNTduv+t+HJZNRuG+rL60OS0t/fVaXFfMbPz+5oXgBA5kCgqqQ/QlaQBGBKTgYIxoJGxuGvmzbd++9/57JefnL48O5odEWr0QVMOiAWti0B18J40NM3c2IPZ1EcmoulkElowFDUIhJYc1VVj8vKv/+3/yfzu2+2Lx+354yLw8uwMF7N7v/HbcPg+0AJsBvUG1me4WcHa+20Vm0tuKxGRGBINTV1VzjkfYpaXAHC5ucydUwkx1NbibJLlZX7RrrOpAwzKrAq5y0QsgFOKXjaiLjAGz6BqVK4hyw/Ha5AVqSd1OG7aUzykTwp0XcJ6QzIO8ePRbdO+HQhOdj+XPNcuLyNK2JHA9gbrKIwcO3yuVDArqsYoGQMdTwpYi4om1dwCgHMd1XEIQfIcRGOMud0dPcQUAOvMglTogV334JXQ5TWxfm3Shr87U0A7wGKFwcLoPiAi5DJmtllRL5e5IYNAgIAMSgSkCMwCiBpj0/hyXjjnWNl7P9/bq6qKrGmDAMHR/bvbJl5cbvKsqJv21sEtv23bup3OF6ttNT3Yl6YVz76Oxfxg/613pwcHxeGty0pqDny4f/DO2zjfM8bt788AWaoNKnz9vfcj69mTx/DsSWFNrJrSZnR6yiQHBwer87Mf/8mfLvb3NmvftsuTk+10MZ/vze7c3Ts93+Z5Xte1hJjnpXGZy/OokjsXfGOMiZETzkFRFB3rOQCAFEVGlIrmukWh3X7pZ/VqIfTOWhrpO+0jiFc3M6qm8k8z3GpYR1U1xnWLYrsgYucuK4mIcw4RO1A4YxATEta1nd77Z2Mb9tr+0OvJjH8zlwIEjkhqEJlZojhLloxIJONi07o8hwI3y5dn588vLl6enR9/+LOfv3j24sXzVzFCWcz2927FqHXj+yiBpOy3IgEpookpu3ZjJQbVhSPwEEVwfTl7P0ZKXc2cAJ0VgygrSPpnZMpgH1V+bXWFpj7Fq0GqQdF+wRRd/4mrrrOqeu9TDW1a5mEbMTPALt3bPfLVlBWMwmsAoKKxCy8PRHgJqw8SDDaoWLHWEWpygCygqRo+Pru4eOtIFZ22MCuK3DZN7UMglzEHkehQjEFWjcIOKJtMs8m09O1sUu7PJnhWAUgHhda3TQsoAwuTsckk6/B7uykmjqJ1Ey83dbU3nRaJssao6mQymc/nm7NtGzwAdIV1vY0YQiiKHECX6/Nbdxdf+/Y7q/rEFriYLt566xsP7v2+nb+zmIjKxaah508en7xsjw6bxeSBy/Y1tmTzHB0AQIf8jiAp1k8mMbkaaprWUe4W9w7uvf/+13/jJy//pPF1iG3mirzIg+e6bTJEC0UbvGdfWNv6+PTlq9t37gvI2fkqN5A7MKh7s3nb1szw+3/1D+YPvro9vjCR2LenJy8oLxf33wpuCmpcBNheQruB9UVcnoWLql2v68tls9kkOF8DiCBNG9i5ykdrajBkiEAkxhA5AuMy1oez22j26hB9dXnr4IAUt5uL/f37VVU5Q0TkmZnZZs7lFoi1R9GBkcAbK5jxTrtyTEav8NWGJbiqtIg6Hk9Ag13PzxVBmfTy7rDwlfMyDGXsRWAfr07fTBHszvfVTvWzCBJGVewIG7J+MLsQVz9gVVW8FksbnelfxesaBvwFH9Xun4TDAWgM2tTqmmL+g9HRGdbpaHeZJkNKHZ22qrrcoQEhvH33DgqdHp8d7O1fXj65OD5drS7uvvfWYrE4OLxF26pZb5usXG9rLMrprcPTzfbug6/WbTNrl5Nbd4ydN00zn81wOlmBPHjrbXvr0Ci+d7QIGTz+5ae/8Z1vkOgFBmPBzOZTgw++8gGhffLs5fOTV5PpvKz8ar3dbC+zXJsmmsxNyqn30bnc5YXBRGfH0hMtRGEGYY0swiDGGJuhcRQ5jJXum6Yd3+DLful1c3MCgCIQoiCRAl7Hc4M+dJLirCkDqW8swrpmiH3pkyRekNfdBF+vgq4MrA9vKvWRUjYGUQ2oiR58K2Um1uH68unJ8ZPzi1ePH3/287/46aNHj+ptk2VFnpd5ZkKE1WYLatC4KKIdYIek5FJyz1OUFnGnh6AvWk4jQIDEjIGIgGKMgR4DJKpC3z8gAgrEDD5oYIwCLMo9JF53zysKuD8vo5dgBBUE/dnoFkoM6A1QvtFBHmQZ9lkoQmLhGKJnGavVbqfGqNpVaQ2/0gmvqx9OV3IBVJVVCPsKcOpdh5R9AU0tDf2QCCirG316fH7n1X48LCdOnMNpWQbvVf10Zpm5jR5ji1ookIiIscZkxXwvqhwd7N062rOPK9B0fyBMoEuqCiIShBO+oGgyJ4jTs4ARibXAxaa6qNp5Yesm2CIC+sV0dvvo1vGzV03dAdTpsOJAQigGT85O9van77x7y+XtxfZMYswPzOLevezOd0HvAkS0/M7+d975Zh0vV0Zav13W6xdN3UwX9zA7YCGkxM9iWTEaMQAoHkCjAKISASja4ujr3/69T37yUWiaYm8ao5yen1iTHR4eNG1YrVZ7e3tt2PjtFgmRzMnlJRFZ4Ml87lC3l8vFbG95fPm1r/7Gra//bv3qZVlMQ5Pv331v23pa7Jfvfwv37wI4f/6cQtBmGy/P2vOTeHbZri42q+V2vcmLEoA8EBFFUUJHrEB6eX6Zl1OyxmbWlgvR+uzitNR73/qtv7P1zfrs8/X5s4nT/VkRt2cFEYcmR4mGkViQA4QGKyxAKYH0jTXu2PO7npFJOmakFnsTFGF0B+hixVdFychaTZChoITXLFIYYW/B62K5gwLuVfKwmaFTZSPblFQSHmPSZwnlBns07PQr6bAMQADDAw5pqfFPA/T4tG+4qEsLyuiVkYGC/SMYImuty9lvMRUjIYpEETsocURU5RgjmehM6kQC51wIwWUWiLz3rnAHB3uXZ5ek5psffPCjf/UnHz1+/l/9N//l/aPbP//4o4vN+nt/9XeXJy/m5cIYPL1YBjRbX23XW2en0dvZdC5qa4mxmOT33zr8ylc2dYixLRHNfPbgG1+dPri7mE8/uzzxEt//re+eP33hDU2y6ePTCzcDU0zQZZu6udic3X/rgNnfvX9nvndwcbGaTCbFZGZQEZitbWJMK9IndhOOUGpRSzGoxB3ek4ddcWGv6M7xbnzthaN47fCVIdxy4w60E/xpO6ABEMWE34KIBsFw12R1pQ1pl7F57TgGH/HLh/srPNUbviykFEIQkAS2DKDW5TafQrN5+PDDVy8fPXryy3/9ox8+fvx5nk+LfLK/N49Rgo+AaIwzDmNU72tjs95pI8EOxbv3h7sJGpYErnp+MKiiHoIRlTp+bETVzn5RxRC5bULwkVlFRa8u8K9yjSJXOlbAg0i6Ob037wC9FIDRrhoqBQbLd/z38OFhAFet+NFv3cigJH+aVaIKZclm6pqJkSwrrLbNJ4+ei95++/aiibja1AaFgKpq48oitr7GtRBmuEcmQ8SWg5tOS4gHB/v37xxNyhfbCpSUYLcq2LGyMgOCFSCXgPUTDY61yQ+QVR03ddg0vmxa23gTdD5fHOwflcW03YTupEpHqC4AxrjKt9O9yftfvWvK6tnJL5UiG7aX6LkCyEGnYGKMIepUxZfzW7B+zuEkbFcKXFJB+wtCE5nRkTAICIGARAleBd1sAYgSxBiyi6P9O3ejtU+PX8SXdHR4e286U5aLzdaQJcSXL17MFqUqaNsW09nlZr1Y7HsfPnv46NY8P9ifvTh5yapHt++++rO/gMnBrXuT/OCQo8/e/srtdz/A974NDUO1Jl/xdhNW583piV+exYvz+vKy2VYSWMAIICMpYurfaNvWWBejZgiUZVRmtd+yKCvOFwfw3tdOf/AD9dEY17Y1AaJ1ZZ5dLDcptNdlTCIzM765hmS8l8YG/Q2t+voDMtyBWZiZI6pyx6itBq46zWOL9k23fpOASsceQIBkyEdjH/xNoZd0iFJ6KG2/sYInQmOMxIRL1Y3r5jMO796MJt5UEqBD92V3JfQ7AFBCFIOgZJxzrm21JxlP08WU4FBEujRpaNkY6wyRqohDYugYYzh6kUAGDw/3Xz09Xkzn3/32t5qm+r/9n/+vf/qnf7oJ7YuTF++88863v/3tj37+sed4b/+giUxtPFzsPz4/VU2omui9F0A3nW5ZBVRAq9AW8+nb7799eX4eNpvJ0f7f/YO//tGHP2djDu/cjXVE46bz3Nrs/q072+1yW4nLstLl+/v7WVFmuZ8v9vK8ZGnZRwbkxFRNPXsBdVSUrBFENAhlBnv074Hd+U3Xr6KDoV8s6MMGN9/qUyekgITm6sp2HScdXWVv59kUU72ytm++fj1v/S91qURnrbUZGAvcSrvdXD7bbM4/e/jhk0eP/uRf/qvPPnuY5+XB3tsAIAKtR0JnTO45NHWrqbU3NzF6AOjy3oygICwq3AVUdRywSlbS6PQmUk8AVIiJzFxBBRKdjQCyoihGgcbHqg4+ctdW2ieiusBvp1m/hNNi0Hxjg6Cfjh2MwHiQwxfHa5x0sLVWJGWKQDXheQ1e+8Da1pOhGkzn1RiiLjibQG8VkofZhwq898YYBDNsPgK0xnhEQgsAlCrmCMCaNsCzk0uyuJjNZ2W2vKwyq5M8CzHa7TYrSkeouBVyRUlgMIboihxtMZ1Obx8sDhZm5blVRmMT1MMYk0hEkE1UMbYj8Ux2CyIa46o2Lrf1rWmW2geZVVlSFFpWp6o8JCBACUBUMM/db37nA8Llyfp5Ey8RtSjd6vxJqE/AVIKtF29snkOG4IAbNgW5CcByW50HlRzI5Pt5WagqaiAQQlH2XG1FrZsdWnQaFQRC2H7+4tnk9sH7k+/+vX//PzvcO/zopz/+4R//gL1kBiWEo/2DVVMZS61ndN7m7nJ9URJlzrS8/eXjp21ofvuv/C7N5PLV2ftvfQVd4Ym2aGZf+Q4+eA/MBGQLPkBodXPZnp7Ur47jarldna2XF8GDoRy0FYNqrAA0TRNiHZrWuLzc2zeOIMvA5So8zcrYtKdPXx3+9EdzV23ruqq2s9lMjAF0Z3WDWekr76NyxIxsYfJMcmhbemNDx5VrlOW5rpywg7tBvGH59Wud9uwVxhG8inaJiKCIqdYCAHWUYwKAEby5jnOqu7Om3fZQ6EPcKqpgwHvBvlDDe19grj1wSqqJSqGam95VhwncOa2pkPfKLyaRM/7iTXl7IyKGnb+FiMYa61RRhNN9htwnmpQsZ5GIYhN0lCIqR47eIkAIamxmKKoAwv7RXr2uqvV2MZn+1nd+45NHD0+evcBJvlfM/+H//f/58Dc++fGP/4xVvvdbv704ODw4ejW/dejZTybFxepsvb6cTnLwviCi6EMIsyLHgCePH3HbzOezs7Ozw8Nbp8slojk9OXuwf/Ty1fNqtb5z6y2yBgBmi/mtu7PJzEyn+WQ2rSufFXk5nRlruA1p5wRhUI0h1eNJZM8cVZkMGWNcZqUPeyAiggFQ7FJa16fv11Nq/TJdfz3tJxwKAyF1S46rrHqaLExsSK+7968xoKvD+jXvgAqGDIhw0yCIQmiq5eeff/jRxz/94x/80dOnTzXAwf5tAMsRiahtvDEmUtJ0NsuIlUMIoaqsyaDfmYN26NgOrtdkAlxNtg96tLM8+4h0dypERTQEiZHrOtZ1y7Grdr+2nMNsvMHIvfLscpVW+k0n8Gb8ZPjk4OMSUSoSTtWdw1eGz0CfToMbi/Wm3x3/UAfigdi1nPc7qpNxzqFHD+Hl6fbu7e2kKLPgc4oikududXk5nU6tJW4hUGYxxbYxRI5RrDHzMrtzMH+xvKhaQCsWzQBz3wtMFAEfvVPnjB0cfVVVoDrI5aau9icAHQNoXdfGmP39fX5xDmNTBoEUrKM7dw9dzpebC8h85FYjQMPR86e//Oni6Gd7h6WlReDYtI1FKEsnInXrAwsSgwbkxlEEDaSOgRGEWEPTcF2RmWxOTyf7twgtiFo3f+uD3/jWd76XLfaB8/D0GVqTl8Vyu1VmB7RabdTa9aadF2XVBDfNmraaTqch+s+fPHz/6x/8x//Jf/rOb/++PnrupkxkyeYaY5ZPJrffBszk/IKUodn4izM+O+bTY396XK/X683FxWojUuRlsd00ihpVooSmrSZFmVuXl9OiKExeeoQ6+qhCtsxc+ezZs5PN2aZd//7v/s78wdvr9XrThKLMJrNFtVoCkDWZtZk2EQQMmsRWe/Nc39y93Z4HSIai2b375VDkQ1Cx25ZXPZLRT6Q3uy/s3upxQna28rW6J00kANDZfpjaegATUHrCt+lrcNJxG744HBC8LlqTD3s9zPYremY3Pzl6i1JLC/ZZ3v5JVUFFI6k1mvon038EQJiDAKACsBR57qP40GbFxFqo2QvzYn++Xa0JYH82/9ZXvvbk1YvJfO/w9u2/+IufVevq/v376/X65z/5881mExmZ4G//R//e1NnZ3v5+UWAU38Qid3GzIaCz5VlBWDp7e2+/aRqMul1tmsAaw9HhYW6KH//JT/an80mZA5rNdnV4NL99Z0+wKadlG0MQ3t8/MuQUAcgwKBCKiLLEyNbZED0ztzEAiLFgbIqu7wSd6m7GFPTmbrkpn28uxOiTY5l5bfkIum4IUjQ05D5SKbzu5G2/bX9lJKwvGGJvRb4xOvqXupAAQAzGtr54/PjhT//ixz/60Y9+8bOfGzB7e0fFtIxRYqq8DVEJQ4r6iURWADHGIKHLComs2mGpIyJBB1TLHa9qGh8lqnrsAstAmkxX7CqMe7M76WAVBBRmjixNE9oodRPq1kcFosHMGanbbsnTn+leMpTF9xuCe1zbzm7tkIN6td0JBOiS2IgqCfDmmuIESBDnhsgYkzzdhG+l/V+qu0C0puQJmOEODCiqps/YjbdmSnchIoMmJJM+EGfA5qoqGgVTY4CgcegsUl7H5uXxpWXez3S/xK4/PcR2u7EG8gIoemA2CmgMAImAQ5jk7u7h3uTJxboFVFEgFFUSQouIIr0YUYgxMhskNMZ0FGlACma9bbd1E1ib4AuXbTab6WS+t7e3ybJ0GHeWByoZ3j8oa79CxxmRVqAKvkU3nf/5n/+k2Pt/ff3b4XDvD6y5H0u1yCAVhLrxrRCVkwUKNRfL2Mrs1m0h5RR+atWvW67jdA4uMySNhAggtDg8ur8PANxsw9lZbGNd15vNCsAQWe8bAIxBUYw1xWq1KUy+v7+/Xj1fnp3+zf/gP/wb/95/On3ve2DKNcfFQQ5g29OTfLZnmhqOz2E2pXod1svm/ITWy+3zx/78pD5dXl6s162PYM10RrMFoVFl4DrWG65BFNGWxfQgiCMk5sAiwVdn7Sq3drF38Pjs0cHR/p233z9/9QrU7s0m62o9LQiZiTm3pnT2TGMUBuvAuj4yCumUKUACjtGrihnHx+uGBu3CN1f14i7f2YdDxpf2cB+qCe55nGba2dAAKTDU0Rn2L45yhPR6pYiIWeaq1ue59d5bu6eqHe7NSE3S63AeRne5Upyxs/JHz9Gf5tcM4FpwYfCioHemBys5XSICqR1DEZFEBJhRNRV1o4IhAJMY2BJCRgCyaCD66NlPF1MnLnp/uNjz3rvp5GBxcOfegyj86vRVmWdvvXXfNyFGqTfbH//jf/KLP/rB/uGtW3fuRsDpfPadb391djAvpuUsc/Xq8sM/+wv/3nt5XszK6c8/+egb3/2uCv3hH/6zhSt8VRtym81msb83zcr5fGozw4LMwfu2LBeL/T3fhJSji1E4sPee+qhtehxmJsMARkQ8++Rb9jD1aU7THtgtwa94DR8eOz/j7XpFpyYELCQkQtSu6grgtTFmVb3SOJBCFjDalF949T0EKcNxI5QEMHTl72zS1z+hprslKgGo18vl+atPP/vo+z/45z/+8Y99HQ4P75Ru0rahaaKI+Bj7WCtHDsYYMs5R594FDjHGzDpIyOnp5n0oOIHiQZcburYSu5ZZ7GislIGhLytUUGH1LD5w60Mb0QcOLAoWDaEogw5pHxxy8TD8W1OK/rUroX12IfWSjo30K3NKlArsrhlxOChLY6x2zKadN6zSNQ8pDAymyeEehJSqArAII+w6hrVPbg1lVmmvxygi0doMZQBljYhIqEQEhtRYRQEwZ8uN367u35oZt+CqBuVsseeb4GyT28IZdCb9hEFr0IDN7bR0t/cniwyWAECkKiyqqGjJoCVVUQFMAAsxCidEtDQ3iMaQaX3VtNoEoaYlIm5lOoHJZOJHuG+qCqJM6kPQ0tx7cP9i1bw4eVYUZnXOk3Ly0SerxUF5cPvu4cEtBKcxIgKYCNWS/Tr6wIxqDAsS4KwsOAZrKNlx4sXXDYRAoOxr771ByMoJBBYyDIY9FeXkF3/+6ccff7zdbi3O2raVKNZmAoSGqqbJ8jIGXq+2pyen/6P/4j//a3/vP5MmhzUCN6UtIIT65ZMMQNdLWy5qX0eiwjFxK5enq5fPN6+e+fVqdX5xdnFZsyn2j2bzvXJx1LIYoyVPyEBVbxrf+iCR7Gz/8DL4Svjeuw/uvfv2yfHL9mLpQ52ZrN1ULx9+7r1nUCKaz6fbprKOGg7sQ+oPtC5H03rf87AijiBUd+pteDedO4sY5QoUlErHuzI4lEO2TJMhubNpYei8BwBRNTv1s5OYkjb5CEIS+jjhFdHZfT5Fc1JwBLSDCUEiksjWWq68tbZpmhRkGqIyXZe82OF3b57yof94rACGEXee96/sh+lgjigMIbsu7kqgIgiYIItQ1SAgQKK7VxaQKCyoRI5QuAkxYSaHEICUHE3MFCPEuq1X6zLP0dgHt+5cVJvjR0/fvnPvbLO8feftbb35/NGjWwe31pfraZ4dLuYnr47PX758+egJusL75ic/+BeHtw+KWVH7ej4tnz5+/OFf/HS1Wp2eXezfvn2+vGzr5vt/+H0T5P2333n/nbt1iAh8+9btvYMpYJuVhQCTmMl0hn1Gn5m99+y9997ZAo02bd2GJrIHECSLhAyKDETdKkPXJJkilDreBmP5+eZJF7iuQQcaBhkvaBL4mjjqFAkRkLTfvek4JKKuxFeVGL0sAANIglnW9LeqjGIlKRU6IFQQEYhqokaHIQ4uqqZ/Ekr58BTasQ6ZgyIQUVRlYQDqOL9YjDGooCLGKpJyu12en7588eSP//iP//AP/9np6enBwdH+ndtN7bdcIxoB4Z5kO3BkZiLLqQEonQFlAGMROXaDSSctCvfHPtHKDlGjPq3YMYkiEiomC1lAO44+Q6AEMQYWCKJ14JapCdoGCayCnHrGk87uznYPZZlKMzkyGcTU49Q7waqKaIRFpPPU06FK/AopVQO9zErdwdZaFB3C3ekDRISJJJzZpH1m09lEBkWyyc9GMi63IpFFgEGBrUnVWF3zIpICdioRBvOqq2+4kqVGNKoozMzoUImQgIGFyEaQhtuCyABWWx/aGHOIGb+3XxTB1FWoi7A/PQBBZ9Fk6KPYolRgBvaxJaMPDmbfeu/2yfpky0JkAkhWTjiqBphmk8ghRq/KSOpDMBadMcY4YykFDXM3Pb3cPnl19tX377beg1JVNQbM4f4hKiiwhcx0DhN5oa98/Te/+cHBx5+0p+ePfe1ns9nx2er+u3f+q//t/6EofnfTLGbFHhpDsQGK69Nn1eoYYsxdGSICWJsVngV9Gzm6IpcQ27ZR8IriY6CiVFESW12uM7G2yJvLUEBcn316evJwtboURsooRlEhazNpxXPtjVeJeTZ5+er4t3/nf/DX/uA/aE42ZICql9JubHO8evEIt2GzvCjzbMti9u9hOcHCbi7O1ifH7fpys7r0VU2TLJPp5fnKSLSmaD2LM2RRQmPQTvJis70A8qcXftlsz6rw7d/7g9/7D/+LZw8/LoLEukVfz7MZovz0T/+0LPOvf/3rkeOm4mKah7bKikxD4CjC1K2mFUTQLowsnRBIUoJ2KmcQHSmCq9rDVaoRVFWJEdQIEaXuyUFQikgPgyBEhkM0xiijiBhKmn7kg2rapjs5iwMRd6pwVu1IRbUzeVM5YeptY02BNkhn1llb13WeQ9u2i/uH3ns3ndV1PSvyyJxpZq3tiiRoJ2pVducIE89PTy0zjCr5KOaK6h2pBNllLrWTx4CIAtKRFUhfxUkGXQakbdMY4xQEFA2ZKAwtGINEBCLcNgRis4IscuMTDrYodXYGALCoqDU4nRXqvd82Fm1us9uTRQB5dXIynxXf+Oa3Hrz/zn/3f/nvju7fefu9dz/75GNE+83f+a0Xz56TkogYsmXmquVl3GzyMnt5cnrv/t0PP/k4CH/ru992RblZrp88/Pzu7XuFdfPZrG1bS3DncL63yAgDWmi8jyqT2cKWeRAGEOXIwVvF8+VFnucqGIIHp23bROVyUhhHIbQQpZwUHdEO0g4JK0n7hCWPu1h9N3s8auPppJz06jZtYOoUBvZEQSB9nIYQACGh8WASyGRd6kUnBAVJUHBEhMYOmXyCkU+wS+/jG0uytDfu0m4em6KY7MwrlyAmVA0FRFUlA8ZkiIYAhQWNFY4q0VqQWJ+cvrw4P/nkw599//vf/+gXv8jL6VtvvVPX7epyM5lMk3GtqpwCy+mxRPqC5AGCSgfqj92wNcG/aGI27+rOAKAnxx4ZnskR7fgmAcCAGdxNAWXVKBAZN7X3QdsQA0dAm/rlESAhgJsu2Qy9C546VtNpxAEW/Fof4WgEuyIR6BXw6AGvtxhhX/PcP//O+TAuU0mB9uExaXxP2aHV735rZB/gYH72zcRgTF+BDCLBC3MvT1PIQYlMCGFbbRdZtqmluqispblF8pEAZ22ZFqgNTaisunySQ2YzQw4pszYrnZ3nbppDXQOAOksoahDRoqISkTM29WGnX4wKAF2HlbLE6Ksm1p5DlMxS9H7Dm8PpYVaURD2SWsdMp5ttnRXlkydPOMqknG7rlSIc3br3v/4v//dF8YHCW9PisKqqycSgg9XzzzluVQIBkRohA2oSWakwA4h4iDFKbISDMPvYZiLKwMog0m4r8d4EjGF98vLRk0e/PD9fopgQAoJVovWmYuYst1EFQUPTFlnx4M7b7aqN0U5ykfYS28uz5x+3Z6/qV5dx2xBwg5ofrqNx5JyEIG3lt3VkxKxkETc3h0Upkm2qtZsQmiwEVR9VkbLcchlj62NbKGeZffbsybNPP218c3B4a3v8PMtKDkHURx+C0XZb5fNpgqGIMSYMcLLGGNvbix12I4z4VlNM5VoIut+NkkiNuhpjAAI00BVhjT8/3Ie5M1v7akplFhbtmDpk2Pmdy2J2AB1fhrd85QB28aGd1yOScsV96XV3SEff6qJBHfrjTl0ON0eLGL+sJPPXuFLwMcXB0JhkRmjywEhBWIA0RmstoggAh0jkATIAQdMluYQ5Jb4ACQlmswm3jXEkGYqPvuXMFfvT6cTlx6vlJz/56fmrk7/3N/9O27YffO3rv/Vbv/ns1fG7bz9oqvrls+fOuRhj2zTLk5NmsxYUtiAIf/Wv/VWXZx988NXHD58+++xZriTkplmxv7eXWeAQZlNnDTMoR1FFNJbQqqpoROU2tKFtm6ZB1RijIUuO1tWlaCCLaDoxKCAxsLGJTXoUd+kMl6GZ5YoT/JrYQ79qaSOrDlZjWlkefRARza55lVCBBAgosf+ms5BSIV3jKWBCu/g1yBgURRXwGqGEAlIypUYmQzI9yBgHACKskQFZRKIIAqmwy1Cx3ayW9Xb10Uc//8Ef/Ysf/vCHRTGZ7x0Ambr1okjWVnU7aAsewa6KKPUHu0OmAwUkTUb18DpeYe4clPSgVlWEDGBvhWhHKQcAYFLCPxFdRWGFwNwGFpGoGGMMISiI9IVCiW0TjUnaV1VJgIhAFRG45xMdYhdjAAEzCp3BSK1e09Dwuh0z7CcRUdylo6jjUkakIWlCiAiS0Op2dVsJtuIq6shOH2vfJYWIue0Qu7yCqBArMZI6RARliGoY86wMdeOV0OX1qn1abQ6tnR85tTHqppFtLnls0ZnMWAR0rWdjp1l+kOf1fCr378Q7R5enj7ZsxbpSgxIKOGmVM8gUiYwDQZZWIisSIpJlgyiqLBpCrJpm27SEKiFwE2duNslyATVXWwg229UPfvCHv/+9t56/fHhy+rKcZQ8/3/yNv/FXZ3u/o+1RI1oUmGEOUbg6Vd40TSUCSFaRQLrlBoBUeQMAMfqUgE/MH3mKj4Igqm8FhC3G8+WLjz/+8OGjJ20VJmURvFgLxhpfr4lIiWKrlqitPUa+XUyq43NrZzwxRmG7Wl8cnzbL8+qsMgK+rfL5/LAoa9b1aiMiBTk0CoRkwDeNWDctZher6uLi1SQ2MzoSBIls0Ji8NBy9sPcbY6uymK1PHn/8J//i7Q/ey/bmCAZdllsbIzVhw6zr9bqcz5wxkcN0MvcioWnT0U5piZHRm+TDiDvrDTtWVFSR9ErWg24Iw9FuBKKul2N4kXBXWZP+BV3UGcfFOH3CJX0LrmWgxvIBRoJ7ENSDizEYwemwpDKsnac1/l3EUTDx11e9r/WI8GomXKmbuMFEH4ak3PX0d+NIljTFFGmThKuLANqRnZOq5zYvitlcV3HlvTdEiBhaT4j35kfVtrr8+aPlh4+/8hvfevTxw1W7KWbzlsWU5cHbD4pZWUwn1Wb9Vfubl2enIjHLbQg+z+zHv/iwudxMANvlxcK6PJuWRbY/KVhiQCmmhXHoY8MB0JnMOIOkzKJKIm1d1fW2qipFVBFjVIW31cZmJsuytBbWWgYWEQNj22jUadlVzwgiaE+Zc1374m6lRk6LgnYTrrpzWK8JZ0rYVn1Kvt8b17ZZCoEi/hp0hN0qJryKXetwX7yA1+0+7EbfO+7JriQkC4AaquXy4vTJo4c//MH3f/Sjf3V8fHx0dNs5x1F90xpjy7IMnqvtNs9z7rh5BaDbzKyK/fRdIzVj7szw7pwjIAIRiij1ZY/9juzm9IZbDwDAoKyiUUUxcAyMjZc2RCCjylEkBhGQ9BMJGL3TwYOA0JG1dXWhVXUcZIaRaSZXCZGGf98w1Xf3GbvLgwubIPQQ0RhjOhTfBIqZPr9zsuE1m4l6wxFT5XN60ZoezUMACVyPup92NkiEiE3wRTHZ1tvZZGYi+NhuKlmV7bQIhKEoZmBdLiXaEqH2djWfz21RbLOcQJwxd472371/+/Hx9sIDEQVujEFDrg0+ICmiQYeoBMgAIhI4YkRUla56zsTIm21tQK0AkVlt1vupATq1uHTN+pBn5Z/+6Z9aeR7jcYSArcz3YbvdVifLya2vF9FBbG1uodmsLp4rb9gHECJjuniHcdZmSkidORWZGXoUhtQdC4RRxAAaMBYw1Osnjz/++c9/fnm5cbawpqh9yxILsmgNoPoY2jZQljOrNi1XW92us/2JNi0Vzns/379rIDem8dvaL5dKGRhrUpAigGROVNFC1NjEDlNRRCTWTYOmciafkDNgLHgV3SaDzLf1fFLuF3j+/LN37iw2oTLGYD41EA2b1pegfrPaHtzyNpsIIDAEzzFGRUUDZNFleVlOiKoxG1LaXiIywNMO/x65IDtOwt5T6bKbVz7cBY1AJDUBA7Nai8agtVkIoRdt/bdGwecrp673Y8YqHOCKlFTt6RwQAa67zqqacG3T9VrHGvtxpNzvzZv8etdVK2Hw9buTSyO8WxgCbAqKjL3eTWQCIoIp9IXKmoQiIIgiiggCxhjJYj7JS1+ggAQVZQmS2cwR3j04Wm03beTTRy/Oms386CAu/F5W2ukkbGtj0BqzXW9O6/ru0WG1XZ8en6HGRTmdmmz56mT56qQkmk+me5MZoKAKQCxLZy0BdUCezljnnCUCEeDoGx99k2hknTNRNUrYNusQo8vJus4GMoYQkKWrdNmx2/XC7leosf+V5h92UcaO1wgUBMEiqpKiUUQCg2bsz7zmt28o4G7v4zU9dOPaecCK0odArmyxznIgihpJAYBQDYgiMRHE9nR58WJ59vLPfvKTf/yP/vnzJ69m04N7d94jA41vRNRmGUc9X66JaDpftG0bJRlDV3QSEaWqDbrabzM8DQxlyYiiQMDS1zz3MykICExIiXz8iguoCAIqAlFiEzUw+6A+xG0b2yAximrHlZuIiyOLiIqXwUBOw0sB0n5uu0EOzwIjQXPtAXcjGR+50Yt6FRKvlxq9zo5BU9eESXOR2E9Ru+OKCARKA8+RmGTN7LR4SpZJ8ABgiEwHEJS2u0nZfQASFQYWicBeI8QYZ3uLbQ1tE0hNRvmzZyvLOC/3ssxWTQssBrREIG5mMuGLV5vqYnnydHnyvKlqi+6dOwdfe2/9px+dpT2GaJwqK7JVRSRmUjCYASITq0oIQSI7V6Q+pdbLtmpzl01tFgXa1gOmPubR1Anm+aRt9LPPPv/ggz1jJnW9WSwmy4uTuj2d4AZYkRDaS66PLWzOli9JckQHaNIkpWJAJVTlKJwo33EEeMKtR2dZPANZyNX7ly8f/uynP378+LEzmbVFCJLKDbipFSDh/YvathFEg4T1+sLBbUchAHhWO10sju4uHoSL8/OTZ08KN7k8eVU/eRpVOII1hYptmjZq9DGwIELGDJO8NMiV96Gt8umsmC6IYLMKUYHQlmW5XC6zjKaTUrbLy5dPonGcTa0rhA2Sy/IpB6yqanO5mmTGORsjiwASWWutAwVu27au2y8QGSMrs9N/uy2tfRxVdcSwAGnH7tary+XBIE61020sMhRbdbJHQVRfgweY7nTV1hSiwVfuffGdhEVE5Njdv6/D7wJCHRNtMpeBFUCkgwC+9qNfMDNfcI0FVRpwOqldFBBS3ht3QS8yil05Tgou99k0DaGNwunMduFQEbSpbB0BU5eVAKAgltNyu96yxMmsNEir5Sp6X+azPMtY1Ds8eu+tJ0+egcD7izvNutFq9WL5ETrb+PqDr32ga0/19vL5c3e6Wl9exBjv3rvFF9uXnz1aX1xOium9u7cs2TLPmqaqm3U5yw8OF6gxqKiyMblzmSULosqeY6g2l6Ft0mxnmUXQ2m9Xm5WxSNYg7rL4jgyBqiiRDqugqn0l1viSPgryRsXca4rrsldHzAqw2ycESti3HxFZUgsQVOCqhzjU0+gNLOhf9ZKRBzwOb+Dwb5UOUCYlJw0iGQXS6LeNX52ePPqLP/+Tf/JP/z+ffPJpRrPDgzsi6H0M7NPJjIGttdPp3Hu/PL/IymIoShpUFPYNRZoSn3JFMUMH8NIzRCEigkEi4LGb2O1FFVQk6vTlWE2KooAERh9jiOCDtEG3tRdFBbLWojGqGmOIMaZ8WDqPaU+k0Sb8bh3RVADsUHVgcEVHAa5rS46vW6lBVV8LHXeLJJJcVVUFFu0HgyMOYOgdaOw8jOsBmfT1EMK4b7gbrFFNqCVklYIIg0QAJYLZtJTg50UZRGMQluABvvPt3/xbf/C9zETDOp0UbVsfv3oRauAHD1ari9OT5xdnz2NoQtu2AsHbqYHMAEePoAlk2RjDpIqqIinHbQwoaMLmEhXnIAijj01tmiaGqUajHNmAiiIgsIoOUUEydctWrUQByRW5yGcnx5t33oKL5cP9xVttc28yuwtx1WzPg6+i95ktFV1X5IYGrcPu/Cfsd1D1u8CQiMZAFkWVUCzJ9uL84Se/ePjpJ97HYjpj1hhbshZBW++BkFWNcc66pqqNpdxldbNu2m118nJ2676ym+7fAs3yqXXiiiqoFMvzi9VmHTgYkxmQ4ISjttKIiHOltRYjuEwRw6auVDnP8+neAgDqaqMIzrmysOv1OsbIoZ1Oy4uzk3xxoKYgi6BgkFw+QRD2fn25spNifrgP5IxxiCQorNy1GAj2OeBRTCUVRuEu1QLXmLA1mXQ7YI3X7XPYaV5QTBEdExGRuc/X7lClr7iJNy8cVfinDw4vdiNUGgpE+pB155MQwZBputaDNJYq2gfZdvOACNAx/Pwa15eKgvQTzrlobXfku9HvQmtJIg2+O3QdiTCENJOxLQBt2woIOkQhV7q8zVtpGr9t6wbJznK32Wz+5t/9O5eXl6+evPAxzqdTEWl9e+DKhz/5BeVmG5qiKJbnz5QlSvjZ4ydZ7ijGuwdH1tq9xayqqnW1btuawe9NFuW0aLhNfTvGGIuJ4YiFQwz1ZrVWEOWIqFFjG9uqqaK208k0QZin0ipV1K7+oKvXGzk2r/Eqd2L2i/belf08dpl0SG0oJoosVSW0SIbQIhpEgzhOPSSgYoKuNCFhQf8aOjgVz3UYzto302NnP6rpx40cGucMoFUOqm1TXz598smjzz/9p//0n334s0826+bo6L5xtm7btBsSkFOMgVlCYGtEEGxeMGuMwn1wL00CEWq84fV2IabhEHZ8nwqIpKkMAWng500FU6BEgCqgqTl4tFLKrIEhMLdefNA6cBMTtxQiaiK9E5VUE0cGAQ2ZTgFrH6EaOBABAAyleLCCGspUUxDhSuj+yjL3UXTokUTGx34nyHqlnoiNu+pKY0CVU1dS5y/jECHvT2M3meOikuFuyeqE3jIQEQRJ/RqqqARKqISaOqyMAYOUDBLvDVkLihmFVr73wdG/+7f+9gfvvb/dXFycPTfWUYzrzeVmVd99cOfwaE+kypwKt+vlybqqgWBRwDSHVRtyBFCILOocKXfgeoYIEIGMEpAyC6eQuygY9Mzb2s89FxZR1KtEEcxSNxmlLIwiRtbMFE+fXRweLG4/2GPdkGwul6evjn9+987buV0ABBBo63B5uSYsgAoFA+iMtYiGjEOySggYAShlh6ArVEQREWVK5hEIQX1x9vTzTz++XF5krmQhTnVMyQYS0GSushpEJOdVIPK2rc8vzvL9bC8rBXPKpk0F0rKhiaGJx63NJqQ+Rh9D0BitZ3JWRMgaY60hRxYABcm6PCNnTe7yPFdVa8kZcgBF5t555x1EzHM3m0+ttflsJpMpUMaBVKJ1RCKSh2bbNNtqsVhwVOGhKTySo0kxnU/DycnlVXHTSb2epDbt6o6GBJKN3G04QTDjbX9tKyIiIXWuZvc6UMoqqXY8dVf9xcH8fZ0fnD6zM+VhJKYRAJREJRV8qqI1pArSg7dTf1lryIxG2DVYDFmI68/y5mtnCnzJ516niRETgzkBGjSGAEUERFQ6UaLYoQggJipdUCZrqF+P5E6pCiiyImyrqsgnYCC2AQws9uc1mdXZZVEWRk27vIwEnz7+5b/7P/0fv/j80cmr48//7ENoOLfOEk7z4pvf/sbzs+Nqs2GmKO3+bDJ1Dg3WvnW5zbIsNCli0qCBYj6109wbadvoLKWOG+YICeI0tG299d5bwhiDseR9UzWbNjRlWZZlLhJV2SRMnh0B+nUjLDUiiWjaaeM5HKvV0ZXifAZSkBSw74hT7esJeoWaun+RBv+q3x5dAwkQwNCGs7NB8dfIAQOk8Iek4EcaUH+OsMMG3EX52BokhxCa1eZ8vT57/vSz7//RP//+939Qb+J0srh3927gWFdeEYxFAdUoCV2VCIW1aRpBcs4NRlt/VLoyyxDCtamkQQ/hoIk1tQWBJqQ8BUHoXb3BC0wnaFgJVQUgEQmsUcRH8EHbIG1QHyIaCwKKoiKAQESZc4gYohJBqm4YhoGIkXdlX91iGoLeXBgO3rBCSeeNRjIczW7M10zv4ZNjfWyRECDqlcqvxDc+mp+djd/VE40OdsobpZbi0f1Hm5tIMNUUK6IxZJmIQSHG+aSsqsZHthNEgK985a0Y2qKcbTabEDjLZ1meb+um8aeRq/lssVhMLWLbbEK9ttYu0C23vF+etR6spSjkFa1xmMIKRCAKRCCUMrqCAVG995k1xuVI1HqpmnaSFSVZFY4qYAgZEVOLpKqqGuvZODNfr2HfU9XUCDa0fnn2+Pz007fufAB+EzcbDZ4DkzGAxGotGTQZkQVyAoYAiKyqqiBQD4qWPJ7QkCM0BYGoVhcXz1+9eC5Rs6wIQTBKKir2EqMSKopoU1eC6vJMRSrfBpF12z64+26xf6f1GnwsXb7aVhnadtMYMGgss4YmGJcDoaAgCllK3GcCStYCoaFikdsqKBEIAgGSNWTRqEHEO3fusshsNhOEcloEJeuK2kfnnA8MaJGczcrmYttWLQexaK3NnMvTVg8h1HVYrzZEcCMHPK60313DXuoPZ7+ZR3p0rGv7fa4iwgyqkbkL2BARs8BO7Q1cI/2ZemOadndYBjmQsKDT4ESvngWFGLvyuv5YdMXYIpJC0/1pSumnK8b0//8XjqKor5lSTDUrfWNwZ1Ag9tiZ0Ie7RATBkBhCM3R89AFvBICiKIBAoyqqseisNfOJITo/Pi9cnqvJjP384w//+//T//Hg3v2vvP/Bnft3Th89+/pXvv7LTz4yCI8ePnSTYm++aGFLkrvcToqs9m2R55fri7PVBUCqY5J8Uu4f7bvceg3gOnWlwMKgDMohtL5pPPYFQMbRpm0b3wbl/dl+nlHbiqoaY4ylDoCIOsaKIR3er/LrPeA3rFEKeHRe0fCxzqQbAbbspLESICVmDCLbCfORsoeRhO+LsHaRijcuOfYjQESO0ZBBJJG4a55DG6N2oIKICeqMEGyOEOPl6Yv16uz5089/8IMf/ssf/qvLi2paLOZTp6qNrwGALDLYkEJJIio9wjuSkgFB30YgZEm+bMf7xiwiqba+VySc+oxBVfM87yO6XXMCEaJJZmBaB5Ku0QARU7s1DvYvESXoclAia9ptW9UtA7GC9wHAtj72XjgNwRwAsNYMi4QjRoQ8z5Mmu7bk/cIhAFCvXLUPKXfNPyMOGTQOVFGGZl1JtWYp2tzXMKqqogISBd8Yg6o0NAxqZNZUYAWChGhsmg8WLz7Np1IXJMSuNhuxn+deWKmqCkCMYrXrbgQ0xuRqHCmLatN454wCV5X+3vfuv//ufWO0adcHh/OTF6FtPVA2KfeMff782ae+2Y9tjAGVdVrOqqqKtb53/61vrHnz0fPzjUymRWGzJkYHAMZE8YAGU7eolAhRAYgYwfjo48qbvXw2zSNjiKwac9GWWQpJp0FEjEEBbXxryKpMnz5evvVuefv27RfPnvumNeBPXn1+/2BlYMNxu96cxxgmk1LRWJcZmyuSAhmbWZcrMEdPxkURQw41xshEpMqAHNsmKyeG7GZ9fH7+/PT0NHNlJyCQWBRRCC0hiSKHYMn51rOKV18W+cvl8rvf+93y8G2lmWLt/fr8+FP0ul22pm6txu3lhXLMXRFZTWYiR0PWWOtjQBCbF2BQVcEZMlbitvXVHqCC7u3tnR4/QQJrbZZlCkZNbrK8RTAuU8TcFW1oMlcosHKGsS2KCTd+vbzYu3V3s12BoAGT5zmKpkZYSeBDpOMcx00DcWQodsIIALpmwiunozOmVUEBWSShvCGqiGQZMe+g5a5LLcTBkNU+ejTc09qUKuoMUxFBAsSe67BTzGAIkxWezherWItJ3EtH+vkGl52Gm5jOyEiduTfiW93MdKfzyqQhosguX9YdSenM8Z1Z05t8RFSU5fbyosiKNtZkMYYIotZaVRYRRRJQZ8gYAyghBOdM8glV1RKi7WluJSlvJSIQTdDrk1lp4KBdb2OobchulTmfXVycb378i19OszJW1enyWFGm8ymrNE3jnPG+MYA+tm1bt23rOaiyUVCEEOJ0VuRFnlkbY7TOERFHtjYzSb+wcghN0zRN48i0bY0WVttlG305LZ3mAtoEjxYJU6ZT0JBRGSAyrnkpKWQCHYhFh401yOqRBTae/wF2Y5zcBJHYv3xl1w1KEK961el/R4civftldITJksK+jkk79LUUzx1imCDMeTGJgUWEOSBJXljl9uL0tNpePn/x5E//9Q/++Ic/eP7k5WSyOFjc8S1zBE0pWpTehUrJIO1YOwBBRQUT9Z9GZR7XDKfPC7MCMABh1yNKiCadz2t7XVVFCWWoIE+enGofJRstBqjhVJoUhTlKiBIZWpY2cGT1IeFuwNiiUk0dUAPR7xXf9MrydBHgQRKp3vBoB1E1vDKUOKrqGIpSh17yUU318JZzqQcsDj8EYzkIV7aI6e82bJQd0MdgASAS7naqsdj5AMAgLhlNhASGE4JHiPDBO9O/9vu/8+5b9+7eu1uUWQzNenOxmOdHi6N6u27qzWp5efIS55P9g/17k2IaNfjaW4LS2HfvHhyfL31b+1CrKgqliK1Jho5AVEFBBDLGIVrvfWdmCDZtaBtuiygqRkH0StypOxWISBlLrLftcrnePzyazw+W56/W69Xtg2q7fr63V7a+IYxRWh9DXhoyhoxDxJTmSTHnPC9DaBO/ECj3JTywrS6tK8vJrUnhTp8unzz9rK3afH8RYlpxSumUBO6Fqhm5GAQNeY5iYFtXArNitufZWEZQ3V6cbM6e+3WFMgGlF6fPm1ABgCbZQmSIBLANkYjIGAFuRRL2DKsocl2tqnrjbG7zbDpbQLsWBA4CZBAskBVCJWPEiEhRFIiomurefVtj0/izk/Pp4nAx31/6igNzEGstc5vnOZFPDLy7nXYFCetKTvTazr8my67uZBgoKa/JtcGBG4Vmvvy6qQIRFUAIDSIgkEoHs6Aatc+QDiMdjuT4Vm/8odFvkQ71jr/SNZYh1x/86rOoalQgl5Ex0mPDwegUD+UynVnPjKTCuuPPG10psKEAgJKKSxWILM4OpsZqS5V6xuCty/Isz/NcBLYxXpyfXF5eTCcTZQkcpamazZY0pc8EEYigbpqqrfJJWU6LfFpm05w5kLPAQsYpJZ3Hqhpj8E0TQkA0q23lHBrSqHxydrp3uPfg7Xc2m9WAPT6W88O83ZilL1op3IElvL5lDvsJHO6so7XAlBLG1BoCAENx+qCGdtng4fUvCUHvTIM+W6KQ4j8K3WG3wqqoq+Vqsb8PICq1MdpuV2fnL7fV5T/9//6TH37/h59+8tlsNrtz+21mqZsNogE1KihdP3OC1oJUS8GAAqiC2lsj2sE4A2uao84h73mcEABVhFSRFEGRFGQ3TYMNg8wpcomIPfCkGkCklKXbWUMEiCqsEhh94BA1CgTPkVkVmWMiyhNM6eOUWezDmpgMgm4N038jM/Z10R3JnpKqDgxuqsoj4lLp7dyEvkepixcxOQnSCYl0f9MZQiN8gEE0WJupKpJoalPdbbV0u0GV9uZU5ET0p6oaWSOnhR5Q3IatSShKagCMCgmbru+RLBhLxGoYWEEY4K///u//we/9/iynWTlBY+qLzfHLxw6bg71Dwrg3m26xyciU+SR3hSOTbH5jAQ28d+fgYnVnuX386lzJB+eKABpCyI1TBe6yCwDd3KpzTgWD95tNw6ExBPNZkTvD3rNeEWHp76aNE8XM2i3D+XL7VXwwmx0+e/bq6dNntw/vn55/5DKzXrEAGYs2d2RN4iFGRByF4okMM4cQOEZDCcWQkWS+KGOAzFK9Xm+36+VyOZlM2zaQMQAK5Dp3A1RBUQHFgAgjtRIcUdO2oibLckIlCRmobDbV8uT4xQvGaUR88eyxJcxsZq11WU6ZITKCAFGBKHCUEDGzxaRA60A4cxh8HXwFAGosumxbcalU1zWZYG1mnUXngKwxGbEApkirRWPBWpPl0nJVVRcXF/cf3C1cSeBUKLN5jGsymDxa6Ftv0k7ZodIqAeC4IItB6M29ISM12TnKyRv+Fa9rqjFpvhHxQ3/cRmUy2iXsATBB4XVfBTDpucbZIkSU3oT+Vcf0l7yGENq1nxiJ9Z09DSrWWLSuQ1oAILLMXkSgT08KAmvELk6hEtkYQwkUf0S63PG3djEKABABVsBoMJbWch6rJnqPbZAQfWPK6cxg8HWFwk5VJDgA8EEiAwGztNx6YSYBQ/lsYktX7E2Ncy7PQmgLYyVGVQY0AirCCux9u21q9oyI871F7bfPjp+1oW5jqFtPaETAOgt4pah2bOENa3p9Wq+yYsBIrAFAv0d2HeTXEn+jmUk6+fqP3nTAhmr2q1bBlyngm1cKoqpqh+egSGRUebGYBb+1FrNMq+3q5PT5v/qXP/gn//Qf/+ynHy2mi7fe/gAR66oRUGuMgEpkUeBUqIwKnZWkmAopE3gQUHKCudfB0ENqalfVTSqDYQcCQhEAYjcdJJQAwgbjqIMgk+TsJawu7YoqEUmGWVZFEGWBqNS0ITCwQhtj5CF6sFu2HuIq5URxyKPAaDcMniURpQTkOD8xvkSuZLDGl+oORO3mdXPnYR9CGXT/yF2+YjMOr3emce9PD4XcdBUcATtJi8yBVI2mJjMwgETWGMOiAD5yuHe7/Dt/8Af3j46MxRi9QfRNxbFdLs9CjAeHtyeznIAdkHj2beAYrLVZmUUVZp4VxQcPbp1t6qY9rqroDBFqIhlUBANkiHrrTVXBWES1CRmiaqBpgwigNex706prhe4SZN5HjgDGqsDJSX2xlukkiwwPP/dvv3U+nTycTPNtPVHdM9kkzybaFRkIqgGEAamYo0pkEUFSgxBFVAVBmqYldHaSrZeXr169evjwUW6PiM3gr4lCTGtBQoDCCmS4w24jRLOt/cVyI/hiki1y8X5TbS82Z2fnx9WLddus16v9xWKvWCxm8yx3QkjGpBxmZFZmMJjlzmQGAZnZGfK+4dAoEIOLok0bsyLv9oAyMkskQhYNAOAMRmZBa8AAOutKFA7Mp8en0+nUoCUxqBYASSGEdthX400II9Ao7BNxg9sqqCBXoCYQR0qlf4WIDJD3HobCrt5He60GvDaM0Rvjk9KJ0WEwPaPJcBPobC25cufh5voGj1ZVQQn6Tvr0u1+gp69L9v4m/WnV1747/Hu4iIiMC75JzgkRKFlWISWllF9DVWUVjKxGKXiALCUsFXoFjKgsrEKQqs2NKCbZF4VtbixNsywLdRvbGH1oQ9Os2ihCEsloiI2vm9wQhyjAqhA0tOwDiLV2MpuYwqIzJiNViRrJWTCEihKZu90hIfq2bWOMkQUA1tttMXU+8GqzZZCmaS4369ls1vr11Z2zW299Q3DlTfN/Tb/2f+BuBd8cYLm6Ctp7xoCIr60AHAb2egW8s+6xH1z/OpnECIvCKoygSh24dHROfLtdXZ798tOP/tE/+n//6I+/f7ne3rv7XvBctwm4nIKwJAAmEQZVoeHopX2ccp4gEndVA13Co2u/S/q6T0Ni6r0im562PwzpXCIApizPaGYIOv4uSPhdqQJERKmno1AARBBRzxJY2hg5YozCUVkUejALgB79vO95BlDCVL7R/aoCpNrOIUGLiR+yx4Ad1PDYetKB76wvx05SP91HeoyOVJWAncfMg+MLo7PKfRXYoICvndjdK5LasEAix+R/i+y6MzubceQrAIqKUorBEqkAJq5kRLJAagmqy/Xv/ZXf/sYH72q7NTZj0W19WW3Wk2IqjEHd3sE9q3dyR4a5vlyGy1OiYGyJBjw39XpLsb13e/E9fbup6o+frhu/sbaYZHnQDr0BQQBYQAWtqiqzMybPc3QKGpAsqwgDQZeBG8i5u/MmpFFBQcW8eMmPHi0fvLtnysnZafXqeHV469msKhx9I0bM3UyYyACoKEZASBjhJjGfACCiRZDUlqoRNRikdd3s7eUgl227fPbsxWrlD/fQGhe5VQABZugy/SigiFHUZk68IBgObE1+cr7+2c8/+uB9OJgunJf6Ynt6Wp0sm0fL41VoIrK3VikvaJEjCDOhmCwHiQjgsiIrnMsdA0uIICoi3vvtdp1PKLfGZjkZB2i3VZVnWVbkBnML1hE4AwCpNNIBOQAQMkId7EBd169evtwvy3rr603TtiHLHSiPFfBY/F2RbiM5NnxkHD8eB5N7+3qIZieSGeh/CHsxcEO9dRVF1x3HIS6FfRoINHWQ7Xzr4UwMt0XoUlXaA9/CjevK80pvoiIOJvtfSiW86eo9hOsHuTMnjDXGeFVAFFUkBMKExaL90w+TiaIcIpERI6kfSXq6GCICAUil1EhE5BypqlExiGBBCnSGXCmBVUTW6zUiqjAqtNpWXHk1kb3nqCiAhqY0yct8UpA1TOJy18aWjBHVsigic2ppA2UiCsE3VeKZAzQUOKIzT1++OLu4LIpiMs29b05fnboHd6DfOaO5peQYjKZahhXvDKMvvAYPE7rERLfLBnyr0Rxy94upgP8NBtbORxwvYpIYcDWu+NrRDD+sg1E2OHqYXo4Aoa7XJ8cv/uiP/vAf/v1/8Omnn+/tLd6+917gpDC6vDeRVZAEZ6Sq2pVPp+YlYOggZphZBFRFE0Bk6qyFlGkEFBRM+lgyY5RSGSWppu57RYBUY8ygoFcSHKnKCqGLQmgHkZWQpK7AYKXGUmYUhsgJAySRe8kQFxpiWAC7yb9mRqVXUnHTIJWoj/IOHupglQ9VVKo6UOHiaJmGN3s3bseVO/7A2AUZFHMqG9Hek75iWY/ExFCDjTfyQ2NRopqAvXtsbQ0iEUGZgFlIY2bg937nuxB9tVm74Ijo4vxsfbl0xihS3YYFZVFIouYKEVCMKiMhkc1dLs63wVcHi+nX3r673jQnqw8fvRTmOp/sEVoBVYmSmlAJERVoABJAIlRBZhbu0FSurUiCb2XPHFQNTMq909X5k6cXkDOAYYBXp+f317RYTO/uveNinE6yqNghggsyaKpYSRuACDNrgzEhNsxeYgCJqq7IZ7fu3Kkvnj17+uGHH3642LtFJosxAqR2EGXdNWUCgBhSUlQwaiQGoOx0vf3XP/9oXfHhbGEZt+vNZ89enq2rZcvBWjF2zXJApGiisCqzkCHJCoep5sBSUOHAlqicTJqa0diq2lBWFjjJnU0wUjFEBOFYmNiiRSOY2L38htVkmGUAhCYj4yJCuvPlxQpqf3Jydl5dBIl5nhtzXYxgn6NNbQtjrYx9+A56kTdsrU4B92kcVRUBAeFdroT61Cx0MIE3gnu/4rU7Al1j4mvSuiJqiHq3u5O8YzvjprWhI0bRK7PxhqsX+q8Z283PqOpYUu2GAUiIzmVbQEsWJKQ8FzMLIvYk9ZSEL6iIiEYiIrTijKKh/idswp4U8U0LSlmW2SwjJIyoqpEUMoOEwkwsqLRfHMQYY9N2z5hNUJQicWzJkbO5McY4a0xHUhmjB5C8KAARDbVt44xFRAQRid77um5ZxFqrCG1st9vt2fJ8ttjLi2y9vowcJrkWReFDhN5a69wb7BTwF6/7sLXeZM0M6zv88UUeMAiApMQTAAKKogAwXy2BhlHYJv3v6/qA37BLhvMhIn2lMBGBSmRtWOrnLx7+g7//3//Dv/8Pt+vwzoN3MzddrbY2z3wIAGCMU9UQY0JgH2OzI4gKAqQsbMr1wv+Psz99liXJ7sPAs7hHRGbe7a313qulu6qXAhpgo0ESJMQRzUSQEr+Mhmb6IIkUaTIt/MT/ZsZs/oEZs7ExmYYSZySZBjYASIANoNndaHYDvXdX1/7qrXfLzAh3P+fow/GIjLz3vgZHYWWv8mbG4uF+/Oznd3QsbQFQMFKrjmhX5sZuXCxgaKgKvPNDSrVh67zAHI1zXiMLAABKVmu4PU/YzKqdpyqiWckQpgRmM3RIjSQZEdEUjQUBcLRWvZgOvTKaRmWlNjiai1s2EAQiUvBHGo8l84jeDmIm1QEEHH1i10ph3pRw3nwCZlvdpa/iZMiiOnDGjDvQjI1cJ0RvKgwVZnaefA8Cmj1sX2WwChaBlIwQKW0uv/DGrXfeuH9++mzYXNIaEG17cV5yihxXB0eMJrIJgUEl9b2WRKoiKkpqzDEsFm1O67RdH9269+4X33xyfnmx/eDFxrYigVoyRTBBUAatyIEaIrmdh4CikETzrJ3OtNMqcwQYNkWSaeBFd0Ln6ydP17zsT+5EauDFaX96fnZ48GkbftTwttEDJAYFU1NRRFYjazIIIxiYgqojQFvJJllKKircHEqSTz7+0Y9//O1PP/ns8OCeKRIFkWygBrlyc1BSEjIlSaoNBRlEAYX4Etufvbj89OwvDtsuMOacz9bbXBTikiKJlL4ocqNgqR9CJCMBaLAJiChUgVC5bbvYdE1EpqHYpk9pWA/bkPoBAJLoMgYALWnYrs9gcwkhcgziGdLLA8LokQUMjQCHEFUlpXR+dnFxenHZb+moNXXMNdDRPVXNy5lZOe53qltxYjb750zZFHNqtJ0/8KrD1naC+eqzrsAom4HBnOfu9iN66g3umqAQAZDDvkiVb2jXmCUh7BJfAcCV0Slk46Q47abrUvaXHzeI8BlmwOSY3LvGQeDJmy/BNAx39dGIpD05z0opSAUJkEk958RMVSMHUOvLtmQ1M2/zEEJUBIiEgTll2/QKySvPTAwC+SK1cSEiDG2AGGNkDMX7mIpR4IYwqXRtDERAOAxb1ZIBAqOJVOlbDIiK2mbYnF+evTw7oxBC0/ZDPlgdv/bgrkl+9uzZrduruRUxfaA91KCrszpnj5MMvvLT/G71w/yc2mJhl2/r/3oQan65jWnV1wcJcxf0fiTDM2rGF7MdaSOTg5tWiEYtuWyGdPH48cf/4z//7//g936/bVb3P3+rZDi7uFSBYr2aAZBIErAQAiLnnBlQcQcUV9PeFQuoqMP6+SgFjBTFanK0zbYHAeCQCiIykVQxYkSB0MS01vLV9O9Jm76hJBFRCQjITFGtJhKrgRqXLAIsklNRgFBEHHW2zmAViFWvmTRTq34CT9dhrKWKk/U59txVo8AIFYXBZuVG7Bip815spqbqhY9+BxpdqQAQAs+TsK4s83RbRKyAG7ZjBx7yohvqg+tQHb5uTj0T0eecQYo5fonjj5iolq7rNqfy7ttvH3Vd2p7JsMmlpH7YbteSEzMf3TpBtH69blerklNen+mwljSACWHLTCGUErAJ1G82qyN5/eGjr3xp++mz0/UnF9s8kBIiBkYmJGoEQAVcxwcQZm4DiwKRipScpdGd96maXiZWe3zbNieNISdaZ+iOZXW8oBg3KZ+vy7PTs2360apbFzg8XmHLt0wbsAjWACM2GQIjaC5JZADpQXq0jDCobMqgr9269cF73//B97/x7NlHb7z+OsLRxdmlFqn5z6a1ByiAIogBmJVSGmqKWYhBQLldDklEZT2ch0B9ThS7YshIZUhjwj9LLltNC25QUa1sUuHQBMQQmrZdtLEhsZR6jm27WG23g+R+c66SlcFiDNv1RSLIUpq+IY6xW7SrJUUKHENshVjAApMiKyAiqwpzTJvzUhKILprF84ttKsWBomp9Tu1x5C6fq4KzQj8SXHEJOnGp7ZKAEJEICImAHAlg4mhul9yoONpsd+zv9utf7mBctY4NEICYkFkVxo2AOOtlZKhTk9ZpRPUFR0euqTuxFGuTdsy/FAmrWhzuOJiNf9q/r5ITdd6QiqrnR1YPJRkwORrg5LAXMDQHHTIwILeDhYjEIXX8bjFGZu63qeStgvdYcze1CQITKrEQAHGMtF6vRTMHAs8TIpKiTRO0YCkpSzIzZqYQALSoNk3TtG0xNbU0DByCSDZFLaXv+5QyEDHHvgyX6/Xp+WW7WKoqUXj06N69O3cvz1/+4oMPQ9Bbxwc7da1iYCF4T8ndFO0F0V818zCTxzf+urdMe+01p2CHozJH9IAGGarMU/wIPLXYwYAVEAMAu6+ncl5T0IIWCEeUR5x3BwYFyGlYNkvJQ1jEtL38xQc/evzk03/xL/7nP/vm9xo6uH1yJ/WXBhpa3m77YUiICBQAwLGBEBiIZDTwbCytASBD64ckhugdBHcTt5sCrajTtgN1c7u4QnBCbcLt9ckAAGMApJ7r3egAHNmYGbyGRoxqeDcAgAqkJEPOAiGpFiVRE8kAGEIsqiHEcUhIBqrmFS0+KqpizolA1axkJaIQq0col4wGhkAFgDA4AIgBiE5aSZGCwDFGQyilAELTNJKLw2uAN6ofPcRpGEIIXEuVCrhDhlHF+xkzIqaURMS7HqX9giVE5AphuvOuUwUTgKL1ZCJAJHU71VO0SFAKondXjZYBs2AZ+m0CgN/66teoqGy36/PnTWhNy3ZzERsuYKFtusOFEYIiGUaEJKlrqB8s5SHGyBRXi4Og8vT5C5OGIHzp7c//5BcfPj7bDKeJiZFDMUUkATCBYKwqoCZigTWJmPYxBgAIIUBKjOz10wCgVguytaTNZnNweBK4OV7c+ujJ9rNPYXWoq+VyvTk7u4xHt1effPgR6dM8NPGBxuZ1LKvV6hESe0umvL7EgKmsCfOweSplC5ouL86biIHhw5/+8fOXnxys8PbJ8eZcnj05BzNANUHiJrBCKWIZEZOACGABMOzLFiP3prkIgLUxSC6CJALAjSoYkhoghyRJ0rDdrvlwRRxTEUYGoxhju1guF4cxtmpoogISY2smkcKyW5goaNY8bC8ui6T1ev3a/Yfd0VFcrA4Ob7WLFcY2xAiRIUQRYLQybJMmahoRaWIctpeG5bI/DXEpWYYhNU1MKRcrHvepZYEj7LCXYM6QilBEOZAKaG0vXtVHRg0cEdFAzHaxG1MtSVTBK528ljcXzSo1CqM7cYXVu7MXl3FuMfLZCWbBHC4P3XuoSgYYCBAlZ1PEEZiDAxABN3Hs/sR9Sou2RQMc8bZ0DAn5HiJEL3VQMxP13efdvceNXi1arBlhCpVD0eQSn8sAV5erqr1v8ZsZEFJgVC2lbxdNzrmIGNTOxMC16VmRAkZEIUYsmnWwIAWgi4BeWRdDlGJEvDo85BiTFDAKIRTT2DZNDABgAXGxzDBshy3Hhpl1RJ5HRGwZTCMHRIMAIqJghoocAyIyCSAip9wjoqkQgoikIW02W0Q2sIvt5nKzPl9vQttttv0bb7zx6OHDPPQf/uL9NGyPV0eq6eWzs6NbB13X9cNGJDdtJOacBwMBA5on3HnM0RGp5lEPMxsrdOdHvXDKQXBRCOAODxv9yIho1S+iasAcEM1EwDKwpy9lsOpoMRM0RWRVMChAEub2uc6WU2t6sQJVZWykY+yWy2G9Xdw6XD97/IMffu9f/fEf/PP/4V+osBY6OjnK2baDABZkahddUSlZcx6YmSgAgIKi1k4AWjOJzAvTDKFU2EiaXIZatU503W1ufgGAN4wspKpAhCAQCIAM1bS2ucZRHcadLLddSHt8e3OFdoQDUTU2xJS1qIlOvnsw2BUs7S3YuB5zwbab29F4x6mLGSAiFqmNSKZFtdElEokN2X1HHjPeA7SabTwcK4wnbWakHtirHnZb1nYl4TtKQhQwBAhTeHv/XcY32jVDRfe+1baTqghgZIakwgaXm3xyTHfv3LJUNA0xEKOtt2skE8nIFNqGiKQu7QhCq0pEGHbloiIWOJ6evbj7+huhbX79V9796Onpy7OXHMQwMLCNS0zG3iqzoi4wEMe2bRwzAVTNqq45vR0ixshD7rOY5N4w3rl9a62nTz4bjo4KAPz4J+cGvDo5vLw8+8EPv0Mb+sI9OuneVLxUGzg2ltZmSi0r5kx6/9Fb5+cvP/vkvVSG1F88e/zRcolHy+YnP3v8yYfPL06by8thuVwSMTApGJbCgEahiAEykQeYfSeKTmkCmiujQDI1J0avtiXmIaeL0zO5dRxXHYMYwmbTHzYREREZjAiDBbFSkzGIQtO0Uoa07U9PXwx937bt25//wvGdu8vDY+TI7YK4tUDUdFrb+SqQectVA1DAUgQRBQQI2rYV5sCNFAMGz/Kf6NM90cxERDjCz00iSlUBiJGAAdDz1xw0ZuI5I8IUGADEyA5JK1JBEx0W+lU1BdOGmm9Jl+Y7OY2zPIwpjbOWRo7ne6JPAWHwyR+N3pEVaOXmgGgjQoDnMOIsYHujEbYbWwW0mf3rhVv/zoeOoUHSUegwoXhVY83x9s6xRmyEjiRIpG41uuQkgpyzMDRN2y4X3WopIlJMTLvYASGIO5tibEMMrSw66ROYoLfnFhW3/UHJ1DFAgBDMYYARiULTee84lVpZU0ruN9thKKratHFIeb2+3KaMFNqu++pXv4ZoL54/Pz992TWhsWa7vmQE0dy2bQgNUyyl9NshNiEEVi1Ivyzfar4Q19n1Lz+ucv7ZYSYoDGiGxu4nHpel5vqN1qRrVsGhlHZ3NHMr2YU+IpnuBYVLKZFaCnj+9PHjzz7+f/53//1/9//6X2/dOUCESPz0xVM0OTo4XHQHfRqSWmiWWbaSi6pwYJwA02slDKiBqKl64ZmJKiJX6vUT/Hu76kYYnSxmYCjuUUSs0NfkYRv/hqvuA4CqaAZA1U+PoDCBZddQnqk4urwBVCyqndSBnUDarQQa2Ghi07UOvlZdxLOEc3VccBfhe3zBzMDIDNzHrAgiYm4WGOiIqDsp9XMqcAmvqoDGE3QGGnjIchT8jmcyYWtMmkR1W82Aba8QGdTp9pS6KvV55gCcKyWlwP279+7cup37lyklM82ah2FgxCwlxrhcHjBzzm4SmSGYggHS2HAJ0cC4WyyL6POzF/3mZXd470uf//LHnzx98fzPHl+UAhwoEAKjJ2N7XqdOo4gxtm3r+zwoKF6vGLHTsxer7Zru8yI0jItPPts8fWyhbeCgBaLnT/uDA3gYmq69tT7d/OwnP/211367425IW9E+CsEWV21LzRJahpOHsHrj5EEbjx9+9JN/0/X6Ui8++fiDn/30FzndXq+bJ6fnq9WdrEJAgRiLkIIQFoyC7jhBGRuKVD29xt3rv/52YtOiQJESQjg4ODg8PATWUjSGEBo2M/IcfzejMCpbUSXAEBpcGELTx5g1HxwcHByfHB3eWa4OQ7MkjkZUNIMQKSJH3y5kc3hjEMmBOaUSOHaLpmdCRO99eeMxWRvzTQHVMrsh6nZFyxz92cDkCOAjOPmMOK/LNn/iXOWaPrzKGWkz/29VZF2R4Vq5IbKrXJg00ekFcXrQX+LtfIUn2XbR8f1B3ThSz8y+Ip+JAnMMZhmqbHBuVedfvZ0TjkmgIzZfKQUxI5Khe93MNKcEDBpCNHCrBs0QhYE4IAGRmYllFeKmZTAwURUtxRwSEgBApSQAI2Q0KqqIGELDiKqac85DKUUBdRi26/Ulc9N23YsXp4JgCEPa3rpz+87du0TwySef9tstE2232ybEk5OT7XbtGVsxxa5rmqbJeUDEGGPuC+p+aMPFBVwllV8ufSfmtr98N19V2SnWKklUVA1XKFlV3feBRggjFOW4VNNNCdEAr9IuGi6a5TBslgfhs8+e/l/+z//X/+/v/v7xyQlAaGKjKv0woGnoh1TEkFerlUhuW1WBISdJyVvlgt+9CgwwQzE2FZnYzagTTHaj1P61s/cfUwnMDA0ISMEQTY2qP8sUMbh8rC8/CZHRylT0tCwDADEFAM+qN0NVkFc0+wQAV7ptDNRcsauunGxmMUYbMWgma9rMkMIvWWndZ1gjU75BNOKIW2lmo2zdIajAPL1rH5j3CvP6JVXIs/PrOyIjQ5l3Xps0wRjg/t3bXdf0azGzlJIVcwSwPksXl127VAwiSTQ3RCGEFKKUFJCJVKRmxCwWKxGJ/enz5x+/vrq77BZf+cI7H3786Ysff5JLYY6EodgAhOo137VQG1XMxuQYn/Rp8LMZhia0ZjgMg6aBTY+67u5Be/7pVi62yyVsNnDx7OUnv4C334BDgrvvrNoshH3gZrU6CEhe9lPOnl+cl1sHJ9Auhst+9dqb794/eP/3/8euOdxcJBP6xU8/jYvjrjsyVFGHriFPDSgmpoZGCCoewNvvB46zjKQxcxVs34fRdV0IAYO1bdMPm36biMiWs2gWEyGTMZiIWVZhpsXqgGNDgKvlkUFICpIKR0ZEcXXFiByRrhTA2v9aARUsEDJZv+4Xi1VoGvJQtBGMhXqTplijoeb4w7sh1Y1dA0BiZlNzF7jG5lwAA2AprrE53BMpuO7+SvP3yoa6Qtsj2c+RCB0C2N1w1VjHWpswNXVx+qfqsNk/xhi1l0bdPIbre+pVfOZ/x0EYiIMgilXfmRgym7cLcwVdwIAYaqZ55QBuDbth03SBmYGoqGgGIuIYAgUpTBQcbwsRRbOqUVBQUXA/Eygg7+wByaWoaggBCAkUiZjR8bSHYXB7oJSSclKARdterDep5Ni2w5Bu3779+htvDMPwwfvvAygjMFps2mEYShqWyy6lvu+HrHJwsOy6JoTGrGy320gMNSQ8Nx6uxiPmJ1xfgmkFf4kYNtvBCU4wiNUUQPHe1QAwFc6SmzpjvcArgTgm/Xu8uH6d+rw8WDz97If/0//8P/ze7//rprndNAcvzl4u2myg0dq2adZDb/12uTjOxQCxaReAsVxcpJQMvPOnleKYTuZJg6JgBqIGo2A2dzjvZCaaeTEJgDNR2WUkjlREZlrASJEBkUa051EImUp1qgOBgXc9YsC6A7VqKABkgKJlKEWqijBp2ztAit0qjmMgIkfWnHRn13VtVv/javLEPUV3d7uyBKUURWBm9IAvEnMwKZ68tuPJuxmYDkNEr28hz8n0imXz+JMxo1QoHJ/MyWtdfVQzGth/03qMGYYEjGwj+foMABMRMcBr9+8ympbChAw4SGJmh62JoQ0hJgOTXErouhZjG0ObS2+kIGAmTI2CFiVu4nIR0/bc8tAtFm++du/thw9+9vi0nGVmNiQq6NgtUHs5u9CVUqxkVTWkYJZszg5rMTdtzsuby7s6iJGdHC6efPQ0PR5uH8Hf//d+7QtffAMhPnn60ZOXPzt9fPHpc/h7Xwjy4smWMyyOAphybLoFIHzy5PFnl8//2luvk3zWLjsQhV4XR2987a+//oW3v/bTn3yv3/7uh5+cpj4d3XrUtlGypu1527YWqCTFAg3xAOxlhR6lMzNTN4lkKoKfSmAQQEGJUFQC4p27t7quyXloY+w3CgA59ZoTmoCJASMAcggAyBnRyiYXUSJu2kMAEozEsS8ZNUdEJkamgKSqgIqoKqIqmEspxURUhQhKSX2fDg+PczAwLaXE2AJsrzAp2KMZmDDa/Nvi9YV/mZfVdUgbI1bjjv9lhuZ8X8xpeCRULyHz/cs44nPJvtdySiZR1REUYRfx+eWPhn039f8fnuT5EK5aw5Pz7ea7qQEFphjyQOARTMKaxrOrxjPB2lcNxm2+M+uRzCxLaZomtovQRGYiZiISQ2MuIQQO4KjRgKHjpmvTZqMlm2UzY0Dz2lGRlPuhZEQmCIGJyBCNEQS0lKSloIkqDMNQFAJ355ttlnLr3t0XL14c3Tp59OjR4yefmhkzMrIgmAgixhjcyG6aZkhShtQjRMamCapURLBFAJ6S9XxublyxObubM+ErUtmVqqsLNUYl6wPU8RvU3bFgCBOgGADBmAPntUnuGb16r1dTlZkBSNOEfnv+7e/82//b//3/YRDbxdHp+WWIXZ/XqlqMVVEthRDU8MXLs4NV23ZN4BibpoiaWSlF3Fc81ma6FqyKqlgzQt0GNbCKtzAabZUxoUFBYEDx8h5H+QDHpPS0MUSH2MExT6nKYH8Y7l7KAMDQmKACkJMpqmpWLVlLjU87gfK0GJ6FUTfzdLv92bOZZXwlRjW3YK7bBNOWsFkppOvUU5bmqCvsJF+VvWaAapO1fY0HVcZXyoxyZkR2E0PD0W4eb3XVBEesPn0icmzoUuDh/ftgKppd/00plZJCZGbi2CAwgImIpR4XXYitNIuSNgDZYQuJWcWAIDSRAUrJF6fPHh2ehMPDd97+3IP3Pzm9eDKkASiqGREqgLedcAgiAyslp1Ryzhp4vui7lwJSY1POOS8a4lwOCP/+/+FX/8F//Pfe/fL9g4OubQ4VrMDmyWfvf+P3/1fdhM35xbKBlkgugdtFWISc9fTi7Oj46PGH77/3b779m7/1Nxdx9dknn94/eYMk3XnzXtOcvPnOV771Z9/+vd/74/PTxwqyXB5lCyZgEEQ98IiBakNLq76f6isZ1/GmVGG1nHNDtFgsuq7r+00phZnbEIZhW3IuKXMbXc8iCg7qG9rQWJdSUQwUYqQY2iYNpYiBFRMIEhtuKAbybmkqWjJKKTmLCHgXFsh9vwWAxepQ9dJKQeQYI+J2XjnuIhMRaeyWPEnB6QPACNGKqlq85wqGK+xvojRANKtBKzEgRSCkXxID3p83wDELurKSvcEaABl530NV8/JfVwgFGcYIGjLWHMtdYcZMIb6uTE9fXrelXnX+/77DzJACx2AjAqDzyQkLYtzDlZXN562a+DmbGUcAAAVSsLZlDgHURDO1HTVtbBfeoS6lXrOKAceIaCrBADydX8us6AMDETFFr5SV2siyTylnlWEY+pQAKDaxaL515975xend1+4fHR09e/ZERERy17SXl5eROYSQh6Hruq5p1ut1CKFtQDQDwNBnRGSmGBoArJFXuJkw/l30p1dcctVc3lGpgZGNBcHohThzwpzOnETDTRZwZbLV9p3YFlEAzIDr9eb0f/mffv8H39+++fnXHj/7bHV40KfBhJqmK6KSBikZsQB1iLjphywlxjbGBoA3fZ9yrcys9YJknlfmvmiomc8OEGuOxWFWsW9UQasVjIq1waXb9GBKhgDq8Q1BG7PgQGFvmyHS2M7WAFAAEA0dm4LARFQtq0pxX/QN8zNptXW/1a8VEEGpSnqrJYWzSR2loFQlY54rP91t+pOZtTILQmQE0DLm7qKHSacR1f2EI6OCa6Ld/wej1ev8DWZFUzdQwrVjHOFERiBYs1Tnr6la3AIGKWQqWrxelxDMhJmDRxbHqntDAGKODXAwraDZgYNn+jA2MXbD9uLs5eP79+/T4vj1N9768uc+ePzZ808uhqI+O+TmClJNREdk0TKk0g85cVgY6bhzxvclAGhWq09/9v677zwKbM8/e/xrb7/9t//Gb8Bm/eLjx+Xo4OROs1geGx4+eu3B7/zO586efHT+2Qdl+7xN63i5iIvl+vTxi/Ww6fPdBw+e/OLTw0gvfvyDRdMetUeUEaSxnA8f/Xp7evp3/vbbf/XX/uof/8kf/PBH33/voyfx6FEvaiUTBQoBtKBKi5TVDCjPItlEQRWKjCUWhgLqURpECCEM28uPPvrwpKEQGUCbEC836xColJLS0ITIHF0dJ+Asouqth9EAixiRRQrtgowNADB42atFikBUSjEzkKRFpCQrAmaIprmkftMtV23bJktw2YcQ0F1luE8tN5GW76ydWPXkuB3eOMy3Bo5lSGiAjACGihPpTu6vK7Kt4hjtK7UwVhzNttt0iZkBEjIz1RCYnzPukXF73Shur2y3V4dwtEbzdtf+O+y+PbMc94e9fyICMiOzC2D3nqsqESoR2a5/rSGIae1444iqCGpKpajqKrZEhGYlZQJm5jY2EJiaBtvQLVtv74ZoWy2SMxMCE8VgxRB2hSgUmwaVMYRAxGBGKZVS8qbfpjRshm0qg4ghM1OH3Dy8f/dn7/3s82+/FUJ4/OTTGKOJdk07bLeHq+Ww7fMwHK5WInJxcdG2rVd8eBuuYRiKpK5r2jbuMWbc46t7q/GXzbzOjJNXnUMTThq6F5rN3bMGo1k42dOiWlTJnS6Ir4aihClmNqJeuaVnsPmjP/y93/3dP7pz93DT5265WG83AEDYFMHNetNEXLZdKWW76YnILKSUuhYXB4tISimVombm6pF4xMI7uupkpdiI1VynbDL1pnbcODt8J6j3GkAgQjOHuPLqt+pcrVOgaHgd/Z0mpB4wKt66ywwR2bsNGkBtVliHNWUX436kZ+QM1xZyFi6aBCQR6Sy5bBKEbnEys4soAJseF8KsCGGW8DVZqNMK1lzIefrYzK9yRTZf/+bqBO31A568VVVbckeZv54BmZWjA7h7cmwgIVLpsRQxs7Zth7QmikSh5hkAFElmohCNA2A0LIZQi5UBRIQCHKxO1ucbGbaXF6eLZtWtll96560f/vy9Z8NlqV7SYKUvAAxoioLKiGZWiqRU+pAXcc9nOPJPLKUgQCml5Pz6vdd+9e3PRYO8Xp/aOhgOm48Pjofl8WuA8d5rX7p766G98dbLJx+cPX++vbzoLA1FCy2/9uu/8eJ8Xc4vHj66fwh22MY0bADXCpEWcfN8vVzeJYsHb4b/5NG9Tz/99Ic//dn/8v/71y8v15IsdivCkEyhpBgjjE3pzQyRkMndhimXeaXEbo0QEHGz2XhZ+DBsjw4OVbVoBlEtBUSx1ueRkS2WR2nYivSujeWc+0GJ+eDoEAiLaSkpDWlKFGCOZiJpMLdOVQMaMEiWJOXg4IACRwp6qcxYSjEvgNzTx9DtEnWgbN7r1wngirXn/YrL0zlyzvwuMO59IhKvlBidBHiTZXmFsOEGvjHD8XcuMbbZwGope7ksehK36w1aofr2PEy7296w+2E+gOvj/GUa8F+Gm7h/coUegBCg8iXflAwM3mDV8XNhtH3DGMKeRuLvdXp6enBwsFgQsqVtTwZhibHjLAkGG0wtdQAgKYEWrDNpGNAwABqaUWBSixaBjKD2TFOVUsp26LfbdbGSJQ05EYVusYrNypCfPHv6xS9/6ez0haq2bbter5ddq6pt2/R9z0Qu+AFgtVqZtwVXAvA+lcVUzJA5qhYkz2Z1dWhE/J0txF+6LtOX+Ir64Ok+Iwk5RpTspI6RjU3YKvM0BRMzlzgcoPp0xjQEokk8TAPy+GUIFBp69uzZ//v/888/+2zz8PXXTy/XoWUzoRjKUAAwhha9RyMiiKIaJmiakETlchNj7JYrUbq4uIBq17JDQWkSIubI5gUG4jvKGwADc3A5hFyFsKsFRDSD5jCPPaKf4jWFgMRA5PFgM1NGxBHVqSIBcK2JAkCdArWOzIVQpFh1I4yubFUzk5KZuUo4AEeaVFVAntbDoDYz8GrIidBtpkQzR9ex5+gZqto0TSnFKsRVRTZwkTwnlEmgOjgZj+VVkzz2ZLE5p7iuA+5uohpCc/3k+Ye9/W6mCo5MgmS1nEAkpXL/weGd20cmPagwghpEomHYEoOKhiZ6eH6z2QADESEQhWaxXG02A2gFc4gxiiCA5qREAaBstqch3++Wxw9fu/P6g7s/eboul3nVnZSsbbtIHmaGWizFsRGVfsi2aFU1WxHTUJfA39EQTUsq/QAMX3333cO2tWEQyBnw+eNP28VKhj7loVseo26XyxXffuPu3TcOXr48ffHR0H9m/WUwevH404v1+iCibTcSwtlwihgsEcWulECx0bQOTQvhHnV3Xn/n7dff+uq773zxD/7l7379m3+2Xm8Wi4cBwtBEDOTEL2KmaIhW1BQAqWk6ESk273YPRKhQUkq/9Vu/df/4oM9DHrp+MxCFAJDzINIZiIgEIjGLwCrGvGg78v6sRoUIkvTrDcTQNhxQDYKqWr/dAGLTaBp6KIP3CY2BQMWkZEkAulwurYFeLnFsABwjgBJ4hMX2eIhTzDxT2mqa4dT6gIjMKojTDZYKTv19dzorjCF/nextrDA1e5biZLBOf+Ksn+CoyFZEBE/CD0wAoAJmEmOTJYlAE8D9/NNIcs4SI4Q4DVVVa2/vEQh3WrP9fLEbhPVcFkJVsq8OfiYPKqOpbAGhiGAX28XiaU5LZgJEqiE8ZCIlE/DAnL97Ua2dwbFibLnyEQgvzl72683RrZOuWw79Ross1TAKhyZvt8qXqWgIQcoAAEgQGdVoSL2JIEI23fZ9iBSZiQBQwVhV19vLF2cvmKlP28vNtukWt++9gRwu1hei+fjW8fn60pdQtTRN49SrYk2IaGKSa+uIce2bppGSVLUJjUgpSXIoXdcUSQBGjIYgAgAawl7Z7fzYM1R2+tmuVs1GO9ABHmx2zBdvWjgRATARKqXSKjOKZhEWAkBQCWAWbnAQTUQ9jWa0tADgvZ/95Ec/+sFqBX2fQohpSNQ0pRSmWD0+IGZEYMVtyuw+IgEMbMiITdMsFovLyzURqdkwDEiN58jlXGi3ryZy3E2H7UBf66uWUkZimgxchDE/FAAcDXW0ocGrimk2rdOvHvUR8QiyOhsXEa8LAtgrNDLYM0dKGQ2UWR2t7bkv9rxV82v317Ae/l6juK09GERk5DI4n4Tp33rD2bOm20/nj9RQO4rPRvjK47rYno//yq/MrAqvv/baqm1p27tfMQRGUkAWABzREogwcjBUEQEKQOwJJIoBa7NIICAm7rplt1xtN6fn52e8PD/uVnduHz94eOfW+09OL840FxOTMTbttmDNT7QCAN4jgpiICKBUsOhqBxRVkFzu3Xtt2cWujWRACFJKRgHdODyLlh7kFqIBL2Nsu3tvPbh///zZj/InH1gysFz6F8vFKtICSirmiCtSZKAIYFiUSDFAAxTAFEAf3nntH/z9v3/n1vHv/sGfPnnxpF3dNqLNNpMy2siya7jBJl5AI1Kxz7mIDLm/d/vkrbc/fxzp6dMnKaUQm+Vytd1eptyrqqrwGOoxQ4fwGX38CQQMRFT7XqzVSC0iBmKHXhawNFgpJQAEAlU10VKGIfWlpNgGjlyoWBl3ys5bW32202inXTAR7RUpMtGq22nzHjJVgyRCJESdfFVAgNcSuGzC9nGj+lWG5VX/8+5ZDpGGIzm5VC6lEFMIGBtP2EQiappmcpXXNRr3y3xUOLNwaMYfwG7mCbC3nW9mGpO+rqpou82OSCklYlgsFphzSglRoBZ27t18Ck7urq1xql37FgBI2x4VmVmB83ar6zXHCIAcGhGDJkpJZgaEGgh9AlXRICB1TQMMRJjzYGaI5eX5y7PL83YRP/nkk265unPvwXJ1rICppNhRsLAZNmbGgMxcEUvFdiQ0q+aYBJRVhIMWRpMgpaKqbRtDJAfn8SpQ1fLvFGmbHXMeO+efr1o1dExAAK//nLBOzRSNUQVMwNjA4cjsJizoOQXsyuHBTFTkZz997/1flNXRqk+lgApY0IjecQZgdEUGA0QSRMsCIAIps4gbdojYtu02JREpuagqQTXRHMPMRpYzMtQarpiIck58jsw8vqR5q1wmp3iq/YJn8+V3FvWu8YCIjvFIjKOPTRW8vk2LuClc6+7n07RXhgQVLJqIAjDY2DoIyFSBvDYXzHTs4LvrgKYg+3K6lmuLSAiB0E1/cdve61Tm22MufW0sWzLYuaNfId9rw20Y+0s6SAIRuu5v9iqJe0NGAyIC6FikYcAkAp97840mYlkXycnRZ4iIyLMCVSQDKgDHGLOknDO3HSBybDg2qBFMAInAvEgdAzddt93G9XoTz150y8XByer11x++dveTTx+fkmakNqOG0EjJiAhGaiKmKpqK5JwVIwBcyWQ0sxApIwx9OTm5FSMDQUkggIEZFKlg2ZbEF6iFTQPA6ijmbSbWuGwPbn1xdfhwOH/2/JP3AM6lbMvAHAm7ZWg5dA1QgzEqkpiYDiDCSpBU06By2EX8zV/9WurlX33ze88uzlq8G6jpU28AtUvX7qCiglgZHAIToqgUSaWU1er28fHxwspisSilJMghhCVCOk2lpFJKgzgmpAAiO7AvcojWAoCWrKIKgqDAikwErnIDqqkUNAFSAEA1kaIlW8k55+Vy2XXNRkpN+rOCTGOywc3ibU4zVmudCXYJGXWnesuzuU6p3gStVmTVPtA2Kpsjg94P9Zkrmr8MimF6BOJ1Zgow8n0i0iLe8srncDyJpo023XD6s4rhnUPxl00FXLN96wf3ruPVX6ubynbcwIEdpCioNW0b20ZS6rrODEWhiM6e6OGY2p3BRp+cA20SIACKABGBWb/d5qF0XWeiJQ0IzsMZGy+fK1iK71BQAkSqtU4KCgRYylYExWiz2Q7pErgUuPz5zz55480vhbg6PLlDzOcXL4sNzNjnpAkQ0dihipGIap/a2chxaqzu0S9VokgMWiQQK4KW0qeB0JiaqgjVTjpArwgRTPbYtKBzu8LmprDu1Wrurf5EOVi3m01kCmigBqpa1MYWxjdbwPWnip0y/aOqWsrL8wsg8ES7fruJTVNyYaSsBcAACyKKh/AMFSAwg1EqaiXHnHPOMUZEPDw8PDs7c/GJiCklIPJiWdjtDUREsL1UvfkLT5GqmbSodrBn5e4pp/syaTZfu50M4B2ZRAE9CWvUvGAier+OeOcjmjIhJwFvthunjihUNmaETit3PXUT960EB17Asdps3NF7ysCVR/scXBefs1ccfXREV241nQn7PY9fIYx3t4K6b6cHwetvPGSwVLKIqAjVPiFA+xyn6zpIpi5VkJUjhVZzj1LHyhxFk4JQ4NB0JaXSrzdnz0Nn9+6cfP7hnV/89JPLjXJgIVAEVy/BMSvAAMDLDaFrrP5q07oQAQmWHi5pk7NkzQCh6RaSkyhEZEI2ZDCTPGw3F6ZoRXl5QAkHKcTtcnl7GdpAxkEu1xebbEztqjukdqkhxtiCc14DkVxki6K6zZYLgJ0+f7nqVn/rt35bOf7+H33j+fMX7fIWWHVaeiKlggGQwI4MJrXPxZJbhzkPESw0sem6kpEZQ1hAjW0PCOoZW87KAQCRmSP5/BiYJTTTkpMaCTEzWcBawksKBQm0FJFiWgjMO5csDlaxjWEgTNXZ6wkK1ynEqdpqKuWey8Rc0E2KKbhI1unaGwnYQ79gNGlU1ykZcY/SrlH4q+kZ3H5VGGuACIBCyFJKEd+AFAMYDjmtls2rNN06YF8rAJhFXv2guai+eRu+8qhWh0GNUlfXHjBzTlsXU6WUlgIAlgl3FrFW7RPS2EUKRh6Fs+eKWkQUc8eGiGkqmdDxDBzOVqwglJK8zLeJUj1MoEVExCHdkomC9H1S1G1a//wXP81S3vniu/fvf64oGtAwDFmSWhaBPAxtu6gjKmZWW0QSjMMfGc40YzGElJJrcmaFKAQKKQMADH1W1cWiJWaRomDMDHYzFvckfa//NC1EtXlmTp1XnIzgthe6aECymvpqoqACAupAG8iv9IkDwNSMYRJ5qlqyLheQswgAhUAMJRXC2ITWzBTRTBQka/UhhQWbpz0hFlOT6jFeLBZDbHIYAfFH2eYRVoWq2iIgGl2nxemquuT7XW9hJlb97N3skGt8jkw4hl3BVBwmoNZwidP1lEwyc/K4aHCC9UciIXhnY0QRMUMGoLFVsMyWqjYLmPRZJBjxhRArELq7WSq6ntWdpqpoxlyV1jlZMIydtK/XqQF4tY//qrgrJXIaqhHT2fSOCyHjoBA8o/s6j3AAPyIb9Qk/Iee8bOHh/XumAjh6VK1q68zMZkToJbzL5RIZ0APhhMhEGIi8yE+hwpEhM1Pg2DaqhqXvL16GRThcHn7utbv3TxbnF2vltiCUJJG9anNy2EZDG/Js143pXQDARB3HpIAFzk/PUn88BGi7mPLAEdRIkBEoCZZsJH0uVko5JOEI3B2GsNiuC2Fo73zx0a23Ls9fSuHFwXGzWBp57iLmzdrMQKFY0rTJqbe+aDGUFGPoB1ksj/7Gr//GxfOzf/nHf9FvzjB2NqYpiQqQo6KqxzRFQcZ4AhADYhpSSdnMKBIwKQAyNd1C8iAGKJJzVi2gJTBXgBr0Vx91OQBGMsmqYpLMyCDoaOdh7fpStxsCgAmoAFO3WBAbFTQzAjQEpP3S/Govuq658zlPWwkcP9dLfyYqgh2yy6Tj+m19v+vM7LNZU04YBW31XhMAQK46tMEuV3KXCD1atAYjFCuLWjU4x6ISUDMLsRMrOcO0F17FrCcxNu3TMZD0y2TqdZ4+Fwm+w6s/EgARi+fZ+OCBwNRNO4pe60+r1SqdnuWcvY2VOUQ+EaoaoVV/wRTzdo46zqEZIKRSKqyEWe63nBMzUhrayGDUxGiFYoyeJ09eC8Hu50JTtWJJZRBR1qIXj5988uzF86OTO19844vLw6NBtG3bVIYkG0TUQmqla1qmyu5mFTw0qmOqVnvGELl7DJxnVPRpYvfkmTDHkHJfSsmZGm6Z2aFO9ZdWJe0m/C+DRpkWa26oVMm7Z4rIhGwI7kVWVPNkXbZXZUGbCc7ssOl5CGiGYlCKZijdctn3GyIAFYZgAACsNcW9OnVKVmII5HnohFihSkVksegE7PJik2UI3CBzKWVyucyfO6fmiZSnzTmZBWN0dvf61eKczdTefcZvFEGkACEYiqnDXuLYwsin99pS7SFGMbPDX5Rcgyg0Aejg1UWddi+iZ+zvua18eFcSmFWVAWmssZkTih86i+jMiWPa1HN6ms6f1Bc3RKbLcd90UAey2ae8yix3Rv94fkp37hzfvnWsJYEI1tJrBXSMYCViIgIGE2maTsGgloEiIiOyI0wjmiCYFmZmiEwFkQBMcjKT9Vl7yOHuqnl45/BnH10OKhQjmk4EYGaIDGiqkpLknC2EuiUgThPCHDGABXr68sXp5fGSS8tBJMW2BQABBEEsSABIRUwRIfZRFGIqR7dijF0umDIjdt3hI8agBkNWjqSmJW1bIi0CJpbz0G+G9boMGYqWtG2bxqQxywfLg7/+a79+frb95vd+kpSMOkCUMXNOwAExWERGHKjR60CkCin3qiXGVQiBAiMDcihpq6qElvMguRgM3DXmJfTIQEoGQBA0ooEiZVHP3qvEqUVq+IoB1KCAGRqgipacct91XdOGUrKR1OQdrGBXM3qrxumcGu1mC9imE6+It7lYmkSmzQ731kzOKtjp25Pj96psmxM57pOxqBICIhh5IUmlE88d8+TinHNKSUKY56VfP6pKvK9w7L3OvmNvzhx2n6eq0/1amqZp9qtrwA2Vy8vL5bILEUIgRAyEsWm3aUCHJoKKDgQAY4y+qkfTnSde6nmvRmgGIgJSQghqZcgB1NrQarGmGXM2vZUw7RQgyZpK3ua0yevnLz+hgF/40q+c3Lpv0IbYpZIMdUjbfth41A2NmqYbLTQWGxtsmKkqIwIwkbnnbhLA7kP1HNhaQgPimNYxtEnSdjuo6mK1RIScByK6AdtktgpX1mj+50i0N+hek55kAFi72M8Zo69pMUD1zGIlhIKIwf0rc6oBELMAtQRYDXSH6We8XBxK8Y4lZAaqEAABVMoAgIpkSO7EISREKKWgmgVCDi56OSAzgUHbtoqYhlL6wUevooZG+yDaV3YXzOAS55Rqs267RARj2wAcnS5jSe0uYCz79zE1Fe/9wAq18SvM5Jki2K68sJYq+hQjIjCCGhE5qvXOfT1CZs7Hf4XLuMwe+QuCxyyIEKsORUS474qvhL6vp9Wb0p6OcoWGvArBVJmZcSeAETyR7apov844xvvDNJMTiyEiEHj06MHh4UFJ57kMtj9mdHOWAdFE1JuoGKJDAte2iBSAogGQWWFSEDQMFNsYhVFyKVn07IyRlgwP799dLJ/3SYGMASUXrp29axaWr+q632rbEpHJjk7UrJdhowCSPzl7+vjs1qqFZRsOFosxN14EgLUjAxUzk9OLcwjNypqctMhwcHISu2NVKKU0TRNCBM2gGSEEIiW3UERTr0Nftjn3JfW9qRCks7P1anmbc/P8+fpwdfJXvvjGhx+894vzrXJzLbHI1YjiYoApqnixv1V5UHIxNcAYW21Eitb6XYRSSpGMiCydASFFJGJkguII5kYEGogCVFu2PtGwEBEKCJiBoKqpkpmqllKO7x42bZtl8FhMcOhyKzY2O4FdlflV5W8im/FP9Dp2MxlP34PKmX3wbW6qIOIOSlPYNQm0mVU931/To/fvNm2Z3eWEOAm2yaWEnn1NtUbEvMX95LTbu9Wepu5NGSZJv79Zr44HZ8bG7D6TauK/1joNkeymuVVDwkFMcblchBDOL08jQhsbTYMDPXoPpQnZyxAAGcAc74woqmqhompqpqZUY+jenZUcpldLNhM1g2JS0KT2CwFGFQMmBfe4qLPBlPv19ixLun37wWsP31weHbtHJ5XUtnHdrzebTc4ZjQJ5TISR1AhUaoUjItaUWUCHsqKKykW+6ioSY3RRzSGoqoo0IRYtRBSMhmIpJSIKzSthHyeyvHGBpp8mAeyG2RUePj/GLTD7CT3Pt6iaiNWyLMQ6Jk8Y3F1t5tlMgGiKCjtr7+johAg4UhPb08sNM1vRhoKgjiRSYWGdQzOiSBmjpBgBQoiBGyICxBjjYrUsamkoqsbuQ0NA3AVWndynhvOTwPNjmggYsyXrn4bmya7k28rA8eRGr7X3xDSPJJEikalKLXxy5l/zqhzNUYFg1g2UMPhtvECoCmOkEFABxcokg32008CmhXR1RMEAgTwrbhZ5dQFpI3g6M6NaKQXDDfWsMKvTrW8/3QcE0N27e5p4ncaZx35aYrippcScTEem4MxTa29qQiBjZkB47c7tg24xbF+aeJjAAImUxJApArBXcBkqEjFFnZVSKwIgIRMBgVHTNCn1phKY28WilNKXtZViuU/r87ZtX7u1Wi3pRU6qIYtRReMCVFYQEzRwV21RACTyIj0CRDJAXay6rgMy6C/h+ZOnt4LGPDR373Z0aCqumiqCKauhCVDLz58/z72dnJzIUPoLlxaxWS5EtoMqIzEKiJoSaVG1kra5X0vKUATU0AhQSy4AUIa0zetc+tsni7tHR1/8/Ou/+PaPIXRIowz2ZCTFIjpkybkgQ613ESAE99VBRTRJZhWlTySbGVJQMxEhEBRBKBQRCYmAgWvCMQAiBoqFrGIyixlaIAwcvAt1EZBSUIWsIAkiLFYH3LTWoy8lEYXaDRom09fVStW5SrdPS+YZ62RSYXfMlf5JtwMAIM9UN7SJR42BX0UgHHNj4Zrn0MdzY7RuTvD1XzUz4MCESKYC4rV9fjkzG6qiMVOMsQ2RA+Fct9hh1O6M1Sl5auIDqKpAgMrur5znk4LxFYw5GGkVDVDJVEFquxEFIoqhaZqmXTSLZdc1bcNhuVy+/8F7Lz47f/DG60cKH/z8vUFssVz1QwZTYDAF31xGNT8N1VhYUUmrOr7714UwGJJbLOIagGQVNBHR+ta0HfoQo4D0aVCFEAIBiomyvf32l+7ced2UijeLYogE6/X69OLcisTQSilMcblcIrmOJ+a1CbVnTDU/atykIlMgoXcSghCjeRK+56EQBg6WTQQIQxexWBmGbAjL5aKUdAM13HRcV5gqzdzky4SJFSOaideFASAAEeAY7FetVoGACQCpYvAWy0RsWkg95QzZi8/cs4EEalI0MMUYvEmhiAjkRRtKKYBBDA1NzByoylkgqmmR5BEXwJQtl8TM215DHGKMXdfEGA+PT8Rg278MSDHGVLKYN7Gq5iABIPGYAOl+brf9HM+Za0TXqq05etuNKYwOhzpLSKTiUD5ghmqVO6A5XyZQRYhWvW2ASFYl2KiWYIVbMm94Yd7MF81MinibspoFqFp5ExAoNNSYWd07Y3i48hyqcYlRtxhfwwAhmKdpF0GipmkmpWQuLBFRwJfKppE6fXjnMY9ljU49AKg9r2p7cCafEKtKZa6eewzgLikwqpEz37FjCjcpGkZmRVCEAjaUATK8fvculaK5SNYQo4qp41shIyBAaJtFKcqhSSbcRi0lEgMABOYQBjRTCYiIVEpp20UetiWnwE3Tdev1Zkh50VHeXlBOqwhvPFh9fPbUrCVqiCBbjlo1Z2UCJdV8cbmVuyRiDAEhqLd+wrzdXHQMr7X01t3jW21nfd7i+nEpD18zabpmsQzNArQUNaIGmPPQh0CXl5fD0N86PpSc8rBZrFZJmmZ5bGZFKcZoqVhOzNr3vZmxo/BK0SKaS5HE2EhJAhlQSho2a4jh4HNvvH3n5x8/Pjvl5iRAl3LhEGmqrwPM3jPVhoDUyNKMRIFioMhqpW0XaPn8/HzRhfXFadMEU2qa2G+HrkPp19wCwoDUIJKKmgICE3HOBUCJofZLMwVAEyxaAiGoBYwaEGwtw1a0R5Lj4+NcAJlELKWUUhr6zbLrQBJOmYKEiBV2vhLkmDZctcBpC9TQdj1TDKRiUU0KIoDjSBOlkkJgAS3V4WQ6NiOrsdIZw4yEROxKPCLEsV7fJmVBRMU9dgiew4FopgJAxESgqKLGUNycLUWnUma1gq58M4kZe/REAZlG9lVPhOqMQRGIIRCDSVHT2vfciGLIOauZi65SMgI0IaIjN2IiVJMBrKyW7eHh4cHq1uHy9ioeUmCB3K0aGXrLw59/90++/vU/+e2/9Xe++oUv/Wj9jUgZm8WQUsusCAJZCBWACEcmpMxsZMGCz5KClSTVsAFP9VLvLkiEOauCIoKQIlMvg4gUFSA6Oz1frA6OTm4j83q9FpGTOw/u3nkXERUImbTkEMIwyOLo4Be/+ODBgwdnZ2enp6f37t1rY7PdbperDpFyKkWNQmTHwxTvluNmBsbIo3lAxAFVixoBhBgBFdTIQM0EDAOTgSphMQCTRJeyXR10qQwA0DQNguacvT7YRHBU7Gyk0lkIci5rzUBijDuhOztBFVxDMFNGQjOsOWsw+WWxIGACAgMLYDIjWZr+rQICWMHzlgSRfKzMoK7keYciAfNsewRzn4QqEdVmyDu3KnqBi5SSFYcsWaQJuW3bGNrlcilZ+r7nhrxHAiLO3Fl7Wkl9Z9/De3DH1bbzFtRjGAOQpqTwKRheFbedTm4Eo9JhU+mhqiHvukLtNJkxE1X3HEcAU5LylcAVzAEEdlGxURTXYMyo+CM66PMuPDa/FVwLjOHMVXJFI6tdWUZf2nTVLkQ93lMVDBG04L6uNxUszY/pWaM7gcAMCIkgdHD/9m3U2iF1ImVvW43IAQJzACOr5WJkSB5rRGRkh38iEjCHzxtv4rnSHBrgfhi2kZENItJBy8sAlyrIqABsuzkBRERSsKaj8/Nzq81tmSl6s4/DJf7qb3zxNz//9qPDg0WAgDldXmw2p8+efdatlod4axmMA4BxEQYBUTFF1aS5XAD2W2ta7jcXEOPRSWqXtzguUFlzSusztYSxMzMVKZJBFU2YiLDNOZs3vh1TtWPb3rl97/Ovv3Z6+dOixcjQBClqUUNS1KI29DlBiixNaAMYcaXI8X0VjBgBREMIRmhKSMF1UgZDU5MCRIBBREhNrfYBRVQw39bV6tsJMxUBMhUrGaCkvO26lkKDJiRBtkKhujRy2lbpu58Sv2f57nwwc3KdEfmYDzD+XffTtNHqHqk9z0a0u0qHe/VIiKaKV3Ip5uaLf5hsVxz95jVM45wPa7aEmamAeqVn1SPApiyw2UJUvzNivcFYE0GAoW1EJOeC5hBA0QeaiizazilBVbo2kkoetqiIqCHaYtEcH9w+Pjk8PFwtFquctPSwaFrVEhFw2Lz47NNvf+tPv/+db/zdv/sfvvXGm6XvH9678/Mfayo5NkvItQzBUBG8VQ0ggiq4nCWtzZ1ijMycc67vq+7WFS8Edb6hgDn3pRQHewDEw+Xx4uhg0a2KSpayXB12XXd4tPLVETMwiTEOw3B8fPzTn/50uVwNQwKA5XLpE9UuGiSyWhUZbKwmp1nXL898GOnHPDYHNXilYGTo3TQkhgbQQEgsG0TvUCxiw5CQaxHm5NAUEYI5Ne4Y+Jzq5h9mNHbVQY049iAYBaqN0RMzg9rEi1AFEQPMuuPNefdE/6M0Ge0tBmYEIxlF1dSi4Maj3tMIkaouBVKKEpFIHhBFpGvag9Wi36bLyzTmUV7dwHPDf5x9M3MM52nuGAzUN8x8svbA6sxbPrh+7avobGbSie2a2PN95YtUCRH2HBTogdeZ6N1RyVw815ebsRJXRetdAMAc8l1Hp/p0f9t3NU+PVpwNGPdowi/1GbyyLgYCI7jmdCezWWHHtHyEVSTvRyarhjhmaFsNv+mihXu3b4lm1QKggA6K5L5hQ2DjSKGZGqGRQRjbK+GkS43/EJGqMBIwOzhJjJECl34w8Yyi7nixWDWwXiduD3IBA6pJnri3SYYhz9cCgBDkq19+9LW0+OK9BzEplNw2rXXNQYopX/b99tnZh+2wvHVy//DwFkNrAmSRgQRQRDfrgbalaSjljE2jRk2vwaPaZSjbC9US4qGnE2supWT1DD+oKalGSEDO7yLT0eHhu29/7r0PPv7wLIVuRRFUhpwReKFmUiyXoUhGDkExs6DHzoHcSVFb/nHoc59ViAhDNGQgVAABA82oBRUr6oyMwQjYaeE7Zc7AU9i8tYuqSEkMllI6uXN/OtkL1kMITdOorifxd4WlzDfFSMyuIdVtc13J27+k/klQpYeqznnUyPxgFKOzn8zV8bop5lls417Yo2onPZsUWEUY+xXu2KxfiDNv8/QbulLlarW3DBr5MJiiCAkqMDMhqqjrB4G5X685YNd1ILq9OCXVRdetVouTk6Nbdw8PDg6a0BEGEcu5MIdwwLlI1wSC4S++861vf/e7X/+T7/7O3/7qF770bs663lwcnRy3y0UZqJQUcAzz2K53DEHNiYVqIQgRe7ZlBepxiBWrMlhVs7tXkRAgclzGuFqtuuUCKgov5b7EGI+ODikEQxQpDh7Ztm3O+eDo8OnzZ4vVspRycXHBTKvVyuc2hCAiYOiQXWY2InPtsm3mVbyjhCMcI+1mtdmea1GmAIYEHN3lbqZQhm1quhDGTJ0phxdHMAm/97Sm03a4Qp+7WOeMUOfqwhUCnv41UI/SAipi2ev4z2RwAAEAAElEQVQHDDcdc5lvNfvA/T2KO38s+peIu17WUyBnovFqx5jjsKNncyBiII4xInDOuVg2q5Cmc7JGpOrAHQc0CaT5ROxE3d467ZiLqgFMQHfOKuYKTv0CRgGjgLMxzJ4yA4sfT975hKeRT9e6y6LOwKzD682Tvq9tXBHq10+4cb3mM3/9qDlis8KkStBIk8Jx/aH13XefUWtavcfJLed82MSDg6V6BbAV90D6MoERMmFYcAyI7D2rYD/fvvoeJvUU0cyYCIHd9UehBh1LLpgSNuG4a4/b+OKy7HdZrOXrfpthGOjggBClyJRDwYCfe+vRvWc5aDFVJjJDiuGgPTFtsw7btO2HfHb6rN9sDw9uL5cHbCBSO1SqB12CajEA2VxuUyKggGSg2dJGRBhzjG2YeT6n8jlm9ngFBc4pb4e0YPjcgwdvv/76J6fv57Jddt1mm8yYxzocRGRkhKAKGYqAqXoGPiMyQPY57LcpDaXpYqx50QEDCYKqRPO+2wpqqoig845AOHOlzFffTAhATQA1FTk6OgohpCz+UjtXk8uuseJnYgE3kujsX5sEn/+5xzqm21YOyzNy3amkWfbyWKaDaKSJMeH/yp2vb41RAN+sOris13E5JmVuvHjE7HnFnbMkRMQQzKCImRgjIRqoHiwbAOgvzkpOB8vuwf3X7ty6fXxyGEJA1FJk6IWQYtstm5WImCTVIaf8rT/5l9/+1je++W8//ff//S/+vb/7HyEyB9QCOWfmWGRo20MpBT0s44BXnupC4BlN89nwfx1rU8qOSYmIKmz6FGNs29ZTn5B3IbD1ei0KMcZuuWyaJpVSSlm0rWO2eJbi8+fPLy8vHz58+OGHH4pI08Su6yZKEBGe83OsFrBrA0SE4Bk8WgnNzYtqMbgrwnUfVklQxQFFAva+L0ap+EwUZiJiBIeGK3NZO1/x+drtbY1X8OTriz77aScZUcUYTXdlSDuq8sOru6+k0ZtJSkkVKCAh+XjQ/VXV3ccEpLV2EM2UeFdvV4uR9+SliOScMzM3bVgdLM4u8rgJDZHAKpjUJASvzMhEPTMh6k8Y8SMBEGpI2wEEYBS0Uxm6f/Oq3TjnF74BafRRVCVgZBr+WDAjBNUaZ90f1Vxb8B8qYt78zN1ajqJkXP5Xre8k9fcKG3BM/rrxvXy01dBkqq6QIgBghIBT7oAPnl2/BKggGVTjqDB7L7SST46OlquuSAYtqFPxIhMSMFMI1C0oNlbnsr41uRY7Oq7HyMV8NhhHrchtRzMTzaxy3HX3D1efvDwdhjVgBCCtHkkFc+NbvAsaAKBV74h3BF40hw1tAahpQowRpKihlxuu2sOjAy4lDdu03W4vz88vzk67lkUMMLTNog0tE6IFyTL2voQQAxqoQMo8bHpmaIK0bcvM3tPDEIEI0JCwFFMphMjMuSTY2tHB4de+8pWfPn7y/tOXiV9TC03DBTIRGzFbC5axxuqgIRSBVbdwtyEzIwoiDsNAgTEwNxxio8RETOSePUHdr2gZtzGMruNK8M4DVE0UFF1tFRVE7FbLtm0HLUHIdQvvzrkzK73Y3vZ2KwB4YsWVGoeru8Izsq6Sqyv345BrloUxjxQ47XaAkUtMpvNVRfaXHIpVlvottXq6QURrgxDaofHgKw+71u+lzjkBE4GKDaWQUQwhBGIzRhk265TSsmsfvfnOw4cP20WXc6bYiCgrtaHBpimKJWvu+0VDBJrSyz/8+h9+58//4o/+6NP/6D948z/5j/8BUUxDiW2zTRuOzZ07d56eflgkTfqbo3QigoAYEBO6FxoRfSmd1cYYRUSCqKo39/Wat5NuhUTMHJvg5qOIZJFtvy6lNF3bti2H4PmsbdcYIDIPObdtu9lsXpyeHq5Wz549A4CDg4O2bZiZCNwYY2Z36KF6Mp6H6AiREb0UpLLYSilQEUcRvZ5zXDiQ4DWHXuRphmreiajhRooUE2qwpjyA5yoWj9YZWKUlHSl2pIc9+rlGS5NEuEJm4597GODO4hCkNmOA6pPcUyHVDEAMeCRvMLOcsyow7qyWSQMBqOhltg/3hWM0180ORQXAUkoIO+9HlcFNE2PMOXtwGcZycbCZ33/3VlfN/3Ez777BMSRbf7oJYXEuSqc3mmoMYD/4NM3vJNhsXsAOk2zfucX8s4NFOx0b7a3QFdELcDWgu9M+5iHwnca6t/bXFbcrz5r8BzbzaU/kdVP/RYB9wsI9pYSIggs5BAUtrz24t+xaG3r3Xk5ciigAIccYmoZDo0CAvgN05JWIY5m4ywSYdCwDMyEiVEXEpmlSvzbPz1Q9aJrX75y89/Tsk4seWgYEQDZUMobaTwybplv3W1DvxiPMbBVsgiM3EYKkYpaYuQktAgRozFQFlotbJ0dcSjm/uLi4PL1YvxSRrj3oug4ZELEoSCohRkPjBiGQGSDFGJYSikmtCCKisZ6CiMitaBFJuURE5sgAplKyfvnz7/zq53/y2fPTzfoC4irGJm8G4mVAAkBVMAEjjUxuSB0dHS3bJROFEIgTEWXREKJV8xaAgiACEcdg49oxIAIY1vps1392WBWVPFStqItdEgDNOce2adqFjRkdzOzVd4jYti3A9kb6GYnn5t33KpK78gGm7Yaq6uG0aevfAE5ks2yA/ULhq5X3MNvgghbGgY48BFQA2IMw1WlZYdlrcG1+qGurMw7g+9QhMsxdulR9v1aGIZdeUn98sHrnnc+/9tprbdvmopK1W6yIqEBBRTAuagrKyDESYT59/umffvMP/+Qbf/yNb63/3u+880/+8T+UlFWIY5NSL1LEwuHR8WLxZL3ZLtoFAGgdf1FVMDXzxqxVtFU4i7FmEkcwA0+8JaKiEJsOZnxJVcvonXaQfwCoMLpEiJhTPjo62mw2wzCIyKNHj148e3ZxcXF0dLRarRDd9V2dQ8w85z8Tw8QRuY/R60WoRgzVc9wVzRAdPEipqrlQXbug5j2eKRAYM2dJJiZiiOpYxURXydLGEMl18hxVyT2pMZ8TQK1pQzsQCj/DoaH93gomABy8tO2KEKpOFCcdshGAxQAg52EyFmt2g40tOW9UChwBZ3wrM8NQF9ldCQAgFSYhIKJ7JJIUVSWcy4Y9z890/2qNwd73MOYdonp3wqkgmBxpfBxMTa/wQOMkqs2wqj+AU8ToiuSbioxt8lWhwpWiC9LRvQ9SiqkbzzwmbNT0JT9xN/91eubjsatvN062jeOxMW63Lx1h6rxtZkpq+0SjMziOen5wBC6rqhXUTDA0Q6p5rbM7y/jccXJMXrt3J0S2pGNDhXHwhEBMHLlpieNEMKrmRfwIQLVjAhkROAi7h6NyKSrg/VyIurZJHJTIwEpJXVw+vHPrwa3nz9cXZexLCciGSIY2lkvymNnhh4ABsAmQITE3DSkqEYXAYGZZOARiLgpWgGN38trB7UevPf30w5yHplkuugMr3rfIRITDCOKmWgwiITdta4epvzTxZEsAQmYGJiJSA5fBRNVnEjCYwpB1FcJX3/7cxx99+uefbpJJSsnG+lSnrCwChqFWtcDBwUHTNCaJCHy2RQRQtQAHjRSQGzMTw+AgxiY0ZU2OCAzVjXytjGf8IFYygorm1fKwaZpcykQ/IsVhH16l3e4+X/nzmodp/Olm6Tsd3uebqDbCHFMlqhNquhDRqzoQdWezjntZbpT9qrbL/py53BBHsCnUqUfsNPLp2L0C7RwAOjqzEBGVVLJrS2aaUx+sLLr42uv3Ht69f3LryBSz2mKxQg5JVaQwtaGJqlpgQNI2Ipo+//gnP/zZD3//T/71v/769v/0d1//b/7Jf9Wnoe0OQVFLz4Gi4WazcUm/XLSinqxDCICOMedqhGbmMC2EJ9Ph1HVqWjZEAKDACsoxNk0DAHkYhmG77rc555OTExgZIzp+oboPPGyH1DTdZ5999ujRo77vh5yXBwcT6jCMICdeiUFEqt5SB8eqouoAI6rZLgqGSFR9ZTyukYJ30AGtKQ5uYNTipICMkaKZMKFqKVnMhCMjg6pymEU8Z3z+Oo2MXLr6Vq/8iqPtMDvfrckROtTJxADMEHVnAb/qqGydwNOdPBJQh2nmrAHqfka1/QtHp+i+kkhEQDFOYswX2+t2PFafBpkeMd6KHdP/+nRU4pgiGWQ7ATkLp/uHeT3upOhNCvI45t0rTL1Bpnvu5O4kaOtbISI6MU0/zadiJvjrmOY/2b4KP/+zzvMM9wP273xlzqdLfFQ3srAptxlnh9WOhw6oOWauVUUM5iebV3EhT4wMDTwrdHWwABUyRRz9z4hAjEBGCEy1CJjQkA1k7MFiADuUPxv1a0Qk4oIlmwYiMCaiNjZd02oaepFSyrKR24er+8erDz67eKnZLBrFCo3jN0fY9sPq9slEAKWUCrXINAxDJOlC4y2MzIiJKKCIJE1k3BB5nocafP6LX+7XG4QIQOfn52m7JgMwLCoMEAJTDJhzQQiAwAEhAiZVUFBUVAQCE1OkGtbillWKigISIivqdrt98/5rv/LWmx9fvvdsMwyDtt2hGDjXzqKkWlTKmD3ZtZEZIaknrUyErWCI2DQdN8tSlBwh/QYsXAUAIETbU5RH8jA0BRM0BQRVbZeL0LRZMGC0Hs0slQwAOefNZjOXXXOyfBWPqZtixjgmpW2+F8aIhEtQJE+TJSAikApIMhHn3rWefwCVyVSTTuedwmH/WdXvZfs2kGuZRaXmhCDATe4iqyWOnqmkcI1BA9HoarSSt5b6o1tHbzx88PqDh6BW1P0UAZFU3eBDQizFsohFawlKv0nb8+/8xb/9V1//w299Z/s7v3P3P/9P/zMGbLtVKUWGZFLMesn9anUcYvfd7/2AYuM+cRwtmXHdd8xh8vl5LGNaC3f1+2cji01nZNt+vd1ut5cXIhK79uDgoFbsaGUgfqsYW+Y45HT28vT27dsvX758/vw5Mx4eHppISqlpYowxZwWAwFyyRzFknCrPcJ4y4BDM3dKGiI5J6So6gBoSGhhILckhdoeegif4I4Dr6zkERgQpUryoB1msVCyGa8Q5EciNGiHucXWrX+0ONbvqqa3JaoCAZFZrbyp/N6v9gP12bpK6c9ilo+fChbDzqbqrfZKgXk4+H+gktCay9U9DyUmKN7stKmKaUm0D3rZt13WllAowxsEIBUzH/hJjYG+ij9rkyatRbURTc+GhUO1cABTR0DQUwjh1RMQwxzomvJIWNUExV4yCccYnVRERkWwCn8KbDhgFnqPSTFY1EaEajngI+9sY/WRfGiJSBCP0//aWfPxcw2KjrU9jmtju33HepnWBkV/7LJqplx8g8OT2J2BQnDjXhAHkq4/AKuOYzSjEw9VB20ViaJsmsicZVP+B53CmXIrpNLx53mBRsbG5slc4kIGkbAix7QydpSGIoVrbtgAQI2+2l3lYv3H/9vESYCgxUEAopZBVldOjG+fnlwAUkFQraQlYkmTBsg4UzbBkSQVFQbIkIHNPWs5pM2yGkgx5vSlqrWDMhhAaxZANIESOEQOmMuQ8YAzI7jDExeowxAVSIGIiNq2Ns3xbhSbO10gRILCoLuPyt7/2Vx8edf35RRMoSek3FwcHy1Jku92GiEhaSlFBVWjbtqSsWmgMiNKufyjlJFJw0a0Wq0MknvagqtYm6tMqkGPIOP1AxdUvBQkCmMpgkgH0+OQ2EANh32+c7a5Wq6Fk55JNC94buO6MMT+r5tbt6XCiWiZO51QJtVXtnmI9pxAbO2n6hTkXnfpMzPSGcV8AqlkRM4sxutXlGFLTbXe8CRERmya4EeaPZmYzzAlSqtsKANxIqAE11bn/dnJ01ybZbkpKTVT0Yq8kJTBAGWy7eeeN1//G17724N59ARNmi63GRikoBDIgsaBAYBIskWCBSOHs4vEf/PHv/cGf/fnvfn39V94N/+y//qeHR7c3qRwsV2iwaNumDZ5c6ZCZq4NFzgPzroeBw3qMFSRYSnHeC2M00J0uM2ZlACqSU+pFh7OXT588/uj0xRPRvFx1h6tFGxhVSkmqut1ucxICBkBv1/j48eO/+e/9tiGcnr44PFytVitmJsKua8e2yoTIRcyDMr5bxyCuKaDCzj0+MaIkpZSiWtzNAQ5aCBGhAYtWGCQgNISRMBCR885F0/oGbJomhnYYct/33lLJFMGIMHiFlmNA7CujOLHWag6BGMiIAGkeML6qv87F+JXsC9BXonPZqEeH6nYEBCBQrNDSTISlqJiYse8Bz3OadMZpt/jVI7v3UmCY4DImMeBr3zDFGKUBDwYTEcygSkdBsieo5mMGmIqpr1XoIgLAMAzTPMxl5ORkNjP3tE43xFdkot94zC+cHgEjW9QRZ2uapSssY3b+Vbt5etMrj4Cd56f2i52PHOfGevUnXZ26+Yc6gMm4HyfnCm2Mb3H9/XWxaEG0pFy8UWi9P5lDbcxtdBCz2noOsaqKY8cxRiwT6SKimAExkcIECKtoyAQMCEx20PJrJ0efnp/nIsYQYyQwM2VmBBuKLA4OY4yy3SA2gKpaKNLFxdlmKJGCWAEzC4hMRS02ramaAZoxBwrMCKCFqMMQAFlJqSntamHeuZmrPi6m3hIBiAkMTDi2DZNqEREoSQ08KKIzoDTgitOLARSMaXGyin/1V7/40ZMnn23OQ3e7bduh3xQTL6poQkSK2+3WeYWIWClZLaWU+lSyoMPrKo4KNnoyS+11X8lutzUmbHNyn4mBmYCJgyKbaSBwt3NoWgVk9uqpusGbpnFIXket8tj+FUBNHM2vOU2OA7l5H137km32a201iAAAIlf3+xVynUTjdXqeP9EbB3HFP6z8khFiQ8ScUzGFnLNqrMkKIDZ2SnXfmx9N05iiQvGmogAoIlrE0I6OV/35eZDy7jvvPHxw31IJTVSMRqTIBoCADGZjLWW/3WK3bAIumZ999vGffuubf/TNb//Lrz//2m8e/bN/+l+zcWiadrV6/vz5wXLVb9ZSsheC96kslsvDw9V2u60bDZGZHB+tolpemwQ/vMWQTTi1iDHGNjafPXmSpSDiYtHFGLuu9XStfpvapgGARdtxaADg4ODg6dOnYvj666//6Z/+aUrJS36Xy+U8geYKHxvtWpvzCpjS151KK7gvIIrnXo3eQTBzBVcXbaeqqgWkACpadfWaQsONcEWNQmA0FTEGBEIY244547kytitENRfM079VUsBYyHftIAABdWIx5DC6zq/GWiatcxcg3MGQ+mMcRmDkp6NvYxy5OV0yhysDVQMAJUIAk9FNb4ZFRbNxDG3bti11XXd+uWlDS0SlFE93rEtSOcROL57PjnjKQM1l8592e8mvqq4277gxarszJH/AWix0lTqvzGb1WoxO1El8XlGacGp+gEFVzZ2FVNXw6wK4kqCZklZ5OeZtXX/KvvgE2Je+Yrt8zJEhMgAg7dncUKcVan3+yCUnYpi/O7q+5U1TZqKaABnw1vGJZ7ZDqSCdRLVDiAKSiamYZOVm0tTM3aBY08sN0Qixpj2LXwhUFXYiQuIY21IKeemBGkBZxvDo7vFPPz1/nrZFoWlXVvV3LpZjaLzFZBw1aNeH1tv1epOaZtG1TYhN0zQQYh4KUYARDg1NsaiplCE3y4BMEJAMG4wUsPR9TgmIgdgMVEgRiQkxAlmRgUITIYgUhY0JmBooqqmIzBVBb6ZqVLRAwrjoFn/tK1/68c9/+PQHL0rZtPFExbouIGvqBzOOzCqZCcysT0PMkkVFzIMgkzI5/gfeKZspqKFYdpr1JByAKmpr76MqFHdkqVoITUoCsK5dSC3WJM0l1O3JZkZV3l9xxN28d8Y764wyaSSHvUvqcNzOcftFAcaEloqCh7t9NG4KL7Efa8ZUEMEMaI4ZOR/hTDPeqb9q7poU8VQkINoZ5aUUaJrpoeOdyP2mpWSHpgETG3dME2B7cdoxv/nGm288erhoWlVAjEZBvW2dGoCKGqEpgkDhNkpOq1WzfvHh93/4Z9/5/s+/+Z3nbz6E/+Yf/8P7dx8wBoy83m665aJoERAzMVEkGoZhuVw1Ieacu9VSISCwGprGUiAVFfFe7AYAJjqayOBw/P5ChAhMIrLZrstFyWVg5sWi67rOvYCgqkW6rru4uLh1917JqmqllPOLzYMHjxTh5cuXkkvkcHh4cHFxEULYbreR5+4HX24CMK7iBszAq19qF7UKdOoSCAxEVUEzoVjRYp6tGWJoY9MiUkkDeqYhIwAReAIUDALMkcxyLqLiRTaSctd1rj6ZmcNoGICahZt0tbmYmKmwN5o0e8jBO/buhGJa2xFeVxurn2di6gA1AO4OX0Xzrl2AxGymAAqEU641jtpuvaSyTvQVtdrtSHzkVTCrqmrOOYTAzIvF4vxys0/Zs90yJmZPyuyNp13/ad6Abwpj708Zzosxrn+Y84X5Dp6vxPyJ/rlCmlktRpxuwoB7j97XJ+bibZ9Yr9rZ1+fnxmmZ/uRws0FPY+cKHEPjV6SvmU26oaphmBifAUAIdHJyonv4bQCEWl2fDumgJgomhGiMZAjAJt4NwiPu3hDJGWxRJzMjIzBkQDaUpmlTSoFiURHIIJkj3j1eHR20L54OogM0nYiYKgc2q9g67jZ0Bc5J9NNPPlg+H/TwDhdtFovl4gBXHEIQKTEGDi2CkgqoMqARqiqDcQgcAjcHZLC+vLw8O0elmh8rglQxHoGgAAZi71hJGpkFQGqV3y41t3oU3NWvYNtSSOjeye3ffPfdnz351gcvzhU7Dm3Thj5tHVVxVMWgH/Ll5WWHYEqmKB70oR17Uy1FCyOi4QgzxQCCtVpoyg2xujtHV3DVXFVMCkUoJYcmtm0LQGKKIxK7hy2s2LQrr1Av7HOYX7JVYYr47v25+8a7iTtyJWEQkbFmYbcj5tcT0Yi6Uw9Vm2pCaEbYLogYAcgzXqawqLvQwURRgRAIkHFUnT2zfVZkMh8vI5lJLrWYFcHy0GNOb77z+S+98470aZvycnGQRdCIgGQqFUUFUCPMRss2WLncnJ1+73t/9kd/9Ed//O3HRwfwz/7pP/nyO2+ndYkRLVmMsZSMJqoFUc2sZGUOKSXRoiUjsjfJCUgmbGhsquppRKJj/iAAIAIRefOGkQlYzrnv+2EYDk8OmbHrFo6bkXM2xaLaUDg4PtpuhtDEUkqWslqtuq672Kw//vjjt956CwCct/tUzHNTcP+YrR26AJ4x3sqURNRAyACDey9JwdCwaPZuEG0XARwnDUCt1Daz6LnoVt2cjKa+zCVJbANzcBD1KzR8XRZcMZyusOLRt8TzL+cHjlcF//+rzqt3B0U04GDFchZw9KXaW55QGSvg2lgFNNt4CjYZxxPwYiXr+jQyb5+k5otERDG0TdM49LGq96WqxLF7h7GsGGYbbzYRe7WGsxn0sVU7cpLfDvztKNM6M4XhGr+odS2z7+p77bMeG73WIxPcSTIcychGY2H6aRRso4R2h/8oFFV16pt0ZYQ7R8UMc0B1lwZyhTeZ0mQA7CkoMZgZjn0dp20Zxvnc98ygghDuwslt265WKym1Afi4oRTHLp4MSKZgAqJjPbWfYYDVDt4dhGpgaGwuKkgQK9BrDBi44QAAhYqqsspB194/Ofj0dOhzwQrhBERkQH2/iQd3mDkPGaBB9B6LdLxabH726fuPX/Qnpw8ePeruN8qBghKBoRUQr3tgJgECg2E7mAEDNMtFG1aLpkUjSTKsBwAwUwSvEypgpIoUgiEoKICxRmiAShIRUq/u8epGAABBYDMVZA6iMsg2Zvy1d3/9p0+eP/vTH2/6M4y3y1CGbQqRYmhSzmDCABfr/vT88nbXGrhTgVQVGRSsqIkZWhHJggCgPHeQuNCqaJg1+aWSkG9ppGLmYHmoZqJd13HTVj8wAzMHCzBGapumIdpM5iOg4ayDie2sapl2Yg1Xz+BuRvzZfTlcYxY+4r2hznccvOKYVFiAWsw+KQTzfWdmNMKpq44cDhHAQgyi6lWxwzCoLsZkJY+keHq5276eOgQhBLcPmYAZzURzgrT90juff+PRQxEBQiZOJQOgiiAqIYCjcqBW+95CSqlrhu/9xZ998zt/8b0/f2wJ/sv/8v/4a+/+yrBJt+/c2lxuiGLWrGClDKoDm6GBFD04PPJEaE+pAWJiQUQKHAkRKYToZXIjurVzKjMzzdn7T+Sc+zQAQNsuVquVWwymWLKmmqHCUNsCksvXzWb7+be/oAo/+8UvytA/vP8aaGmapu91tVigaaAajzMDvxwA0NUVMIAR1EkrPQBCLoKIBKgKRUVNCQjYU/cdXQoJPH9S0SBLgtFlzYiIkbDBKYvFDJkiNyLFTAJiGQp5F8PRdWx8pVx0j95e9fkmGUoeTLjyrV/lAniWq2c7fq2qDtJiZpEZiEopl5eXAEDEkg2ADNEmQeLm+5VQpX+4pkeYGcKuNaONdlUlBaMYoeu6imU/pl3MVKG915jk3O798OoJ45/1/wCAuDd38zFPD7qi+9yoo1zZyfMzcUwTq8mB7gmwXW4ajfHmSVjZNW+Ey9eKOIt7muNu9qrz5OYy8OmE6290/TOMoQdfjoqUtP/e80fLxDpNum7ZhADDgLuWcOPtyDPX3Mgyr1CtMLGgnpMMACPQLgESQq1FG21sZ81kQAoIhgREBuodNKUwh9vHR6v2/GzI3lt6UnQ4xlTylM0xDf6rX/1NucDTXzw+f/E8D8P24uLk9u079+4eHR2oiZaSDYMREoqp5tIypX4wKUMWgABLKEUrMo+n8oGaZTAyzcBMFJzqzGuszBTFbOcl9t1RFS8iKgZExkWRtr3cvXv/q+9+8Yc///kP3h8ULk0IMTIhEKrkEIiR+iGnVOjgIGVDarhJNvbpqcqflayZ1QsytCqttY+QAoKaIhEI+cBGeBQ17xagBUBFCqCuVisvJytytatMNfL2iyquC1G4tokmljet8DUn9o4p5SyllFojgV5IA2bAfIMMnsTJZF1pLZLBaSRzYhhXalIV9vxPCMA8OQvM3XVmrew70ibbyHsqmJkHR4dhsJw+9/obr99/0HDoh+GgOzDiYRgCR9AEiIDs6TYEFY962XAZtk9ePP7Gt775p9/6YT/Af/Gf/a2/+7f/1naTF4vlxXqzWC6gyOX6slmEVJKZEhgYJUlEtN5sJBdmFqzlpkSASIhkwIRqVKbXgRkjrXmZIGMj5OC5sWlqRKE6TaECZBWmrmTJ2+Hu3dcohh/8xQ+6romLxcnJiWhW1dVqVUqZ0tOm1R+NDRyjH+aWLs4citXA8GRRcUUIzajUfDqO44G4K2lxACwtklKfUiolL7uw23cAAAiK3qSnDAkgcGRCNrcFAnvztGmo0+eK6nPNvbxH6rY7ZlSp079mOAPimM4bKbU+UtUAkBDMhm3/4sULEa8azIBghjJCTFjdPfV+ozCrNpmNSJJ1JwBAhRmu/Tu9ESGoTtm/Dt7tt5oXw1T6dj3lergJAKf64Os6sccePAhbX9l8ruv+G6dgvMA3fy3Imfm2nGh2N3YY0yt28LQwhGHc4TWdcspuuFFkll2HYMeP88o9m2IhOAvPT0mhVsHf/3Lt7Aqrmo4d7TLXpxhe7ZK2rzFM8wNgXonvU4vTyXvzAGSK6kEeI3QKtzDuByN0vx4gGjAymVbsTg/IKSIR5awKSMAOaAwApSQ1PjpYHCyacJlVMiuBWVFB0y422+1WREJopuxfMVwubz969zf0tXc+fe/nn3z8/kcf/OTs5aHmz6G83i5WvFg2FMAMFcGE0AITIWYDExmGgTCAGVMk9A3paHhKUMhNdqgsGYxt7HOFiIwknj6uBrQnA0rOFMyYEuhQ8juvv/7XfuUrTy/+/LOLLeFy0XSDlNyLamFkIBxyKaIhtn0/MHMTO2Yulg28BMAABHQQIai4TlUIKQIZwYQXgCMelueziKqJmakIG4iUgLRarXZb2PNmS/VF26Q97xPYqygN546cnQ/co3YCgGAIY2MYrHLaaoWMN2c2pDFl4ZXWr43V7LYHizCJ1WmQ/mvlCDuWS6AGiCZihMyMtGN30/vO35GMzKxYIe+9BoBoKSVUObl166233iKEUrQLHQJoETJAK3U/AJsBmFcfMaK1ZfPk0w/++Fvf/sZ3fvjiFP7Wb3/+d/6Dv5NSWi5XqUjKxlHS9nS5xMvz05Y4o5mKqjLwxcXFdrsVySKCjFB7sSMY6BRhIIrEgGqEAjtziAOqKho6iBszG9owDE23KN6tFyrGgCGD6XK5ulhfLhcH9167//zl+YePPzm5deJB6NOzFycnJ+4CvMK46uOQzUao+VGVBwAbYXFVNRC7XCilQE10AjE9OD5GRAQ2o0HsfJM3677vewQIgRZtbFtedDF2B8sDZITzs+ehjSBWStEiaIDEZtrEWDSnVBqCMKsJvkJXiFc957+Ewn/JUUWleR3wjnR0urFPCBGVqWZOh+2wfXl6kQXACNSAAdXECmOrWmqexySJ3J0i3nzj6muM5gJNqd5OEZPakFJul452JldCLP7BA8g0S764IsmuPhFqkVJddKweMP+TQ9Sx1ghhV8o2fqiIdDcKy72xzaTsJKjmBQ/TDLsM1lld8lyk3ZAYOjNk57edyjx2fuzRhY6IKCOmyDjgG2dp99xxhLtse735kulgRCDvdyRd0wKAu/F2j8PqRzFRAO8FUFAVQRCYwSVuVX3cZVLhPgEJScG87kjNqrSoaNDguceMqIjFFEAOF8vDLrQMhYyRi1XnSkqJmANxzhuz4I3BKTRKcXF46/jo1snBwZtvvf782WfvvffeD3/w/dMXL+8/eHjvwZtNuxCxbMaMHLDve47BIBJzTsKUGQMyI3NVx6h2HUE2AEVTRGRiNUWLakoc2VAxKyTzZHhDm6KSIQ5DH1BbiBZ4s+lvH935tS9/6SefPXn5g8eb3BOtNDuVac6KBH2fshQAGEpuiIFNCUTBKw7QgMQQ1SgrBnfKmRkT2Ry5AsEMwRgBkA0ymdUCHqc6VTXC2DZmRohtYE01DkrEACTg/pKdETn3MI0kxNM+sgpMUYFgpzMryMZI/pPKgpU4dkLCm8D6ie5pmPbRRMkuVadL5rzyyp+TEjKmhCHUzEEzUebaqlGKZ0ErM8dIs9EBABCoWrUpkQklOGFryYvYvPXoYSSOMYKRqicpCph4j15vEGrm2XAMBkz2/Onj7373u9/402998BH82q8c/ZN//I8abmJozCznfHJyd705IxQV7UIchh61SBERwRAvLy9USggBDbQIYgEIgMHzGAOCsVkBDervRmATDxSREJkoTCYFEnoAVQVUd8gNAIDI55cX9+89uPfa/ffe+4WYLRaLUspy2ZnJrVu3RGSxWGw2m7ZtS8llZ7N5hGjiPO4HnSwIm46UklvPAOD59gwkYJ8+fnp+dvnZZ0+fPHl2cQ45Oy15ZBsMIDAcHsHd2/HOnVsHB8t3v/zF2EQ0k81aZBsYvAYpBJZec84cNXheSwFDM+KRM+mcTmjmSMNxj8zFMwAA1Agg2RzmmcxkLDSHANXSHU1ydH9evXtKKYRASn1/sbgdnzx//P5HT5bLVc7CAUsRQ+26drPZhhA8M9Fli29In2EAnMIpPgQRQa9pQgQg2DVgNOaY0pCl92z12LAORUTIWQAgcwByPBBFBZoVUlU5j2PTXc8z2bdlVfOUe1wUACyEwAGH3h0jhDA1iDIAiDF4EodnYRiYp0GqlUm+TozDHzItRl0qDBO2pT+6mLoHg5mt7Jw8U3GqjbAblS619tNtQqxdBLjGXeqLM4tmA/GJBK6QMaCGSAw043rm96+WxPUEePNv1RQJrAmkAmYyBnHDbluQA0vUnhxZMiIx47Jp5GwdIokh1JrnwK5vA5iyh7QVMggaRkJvNuAWlfdkRqwxSAMPqqJ3fwYwVUsqOTBSZIyEwtADmhGFPqUYwu2j9vAlPV/3RgGpQUIGkW1uVy0ZEEEBM2TnJkQEgUXw8M79o+Pbt28/ODi68/jTD54+/qjfvjTNd+89ODy80xc1tqFIE6girBkxMiIXQAGGpjEpVpPICBFN1CCbGUNj7njngGZKJmhiYtyQAaIhAYKaqKr1OiADY9AskZmRNuv0uTff+srb773/0eOXFwnjglJRUy0QVzFJVtQmRLWCbIP2TdNB16zPN4FCq6xJ2JQgKCbRFEJnZgiKaoS16x4gmCIyGSEWg4KMASACCBkpgGlRVaCgwEBklglFcx8Mc0rL1So9fRljLKWoAiKoGI2gacjeWLIyL/QkYUAavzIARBA3dj1DymBsY65eaFKKCQtRGIYMOzevIY52guyKjMddqYheI+qC03fl2MthhmE545hAhLU0g0itFhEQoajGGAXQSq0iLaVYDO6I7rglQPYSfUsxRBNSMCFQlaCKkt589OjhyR3vEVmbj5uSWUAwtUI6DKlr20hUTIfNxfFqeXFx8f2f/OSP/823fvSjF4/uwX/7X/23q/ZAUkJkVeuapr84RcumIKJSCqoF5AR5k/MiRtGt5nUXu0ixlwKEgC2G6DElIhQRDBwYMDtHrcVqZsYxignYDusJ67SraSFERFZVMwRDKXb/3gMR/fDDj6warBTYe9HX9JqUUm3wYKCAFTxBpZRCVHPvwQCJHOXTd5AXIgOAmXIMHGMpZX25ff78s8effPb8xelnT40ZAkHTwPERnhwddF3DBItuNQzD+eXFy/PN5QX8/P380/eeFIA//De/uHtv9eV3PvfFd16/dfdo2Jxt12vPqw/NAjVuN+uUhsPDVWyiiPjmBPWxeUWGmfpKY+Wr7u1TMSBkMgACNOeMZJMYNiAwRWAiUyQyBICb64CRAIys9lQABUNm0Pzy9PlmPYhxhFpOVDti0tyadBVGHda8dnbcl1U7bl+z0XY5R1NCY82KqvZQAePdBhuNP5z31oYx3uynjYlL06EjGe1ec5RwsvOc7QJQ/ixPCpvXHozQYjt7dH5PmylvAGNUyWxkTx6Smun1M5DL0frczSTsOz2uPGWm49/gXjYzBXDkhalZqZkBzu951XkwHz/u/zS98rgou5+0hm45hEBgBFq0GAheU1AMgdBbktbxTLfHmRsAXTTNsuGcxrUSN/osUSSWEBIDmRgQAQc6XjWHi3DWOyYZmBZCYKLlauHUY2ZaVX4AFRNVJQXi0HUn7Rttd+vunVu3j9/7+Y9/+P3v3n/w7O133u1Wx+ToyqqIyAyIDECmCETIZhYMAE3GRR/fS9SouEEP4NnnSoaqCibofvQJ8g9E1ZArIJcZg08qym9/9Wvvf/jZ+08+vkhn2x4QYNktxCyVvNkOF+vLNJxUpYqwbReqLwuI66kihCIYEBCzZgJgD1tDDQmigfczAzMF41HtM9tz0sKYLWhmAMpYMTdkzElumoZo8ApAnGU4Tro3uoE5OnoBYMIDAFAwVjRykOddLMcAQCtSUa0PGe9p5C3Pb3J314Ci2mwMuFNqr4ne6Q5m3iVXR/QCB18CVTUkxF0Htjkaz7gPHPZSQ4ybvucmtm17efri8w/u371120QRgro2aa6WG5oqgkhpIpvZ5foyNF3btiLlZz/78Z/92+/++Q8+a1v4L/7Rf377+CRyYw3mXAKxmYIVUEE1MGJAQMzDVkUA0QIEwsquBJrIFgJzJHYNGMlC1qxaTIC8lfTcVQBAwILeQb0mUoiZqjZNMwxJVJbLAxEpAsfHx8OQVFVMAcDLWIhx7GSxx6/8qBAfM67iyRmeUU+AtdJI1USRSbK8vDx98ez5k6fPP/v04uwCugaOTvDXv3L/+OTwzq3bB8smBopETACgbjpybMSwH9LpxeXzFy/OL7c//vnTjz9e/+K97//x17//q79y62u//qt37j4ctpthGFLuzbRrD4hL3+dhyBwpxlbA0IHuR/5c+Zlbd449bMLA3pBxRECb1XmiGgSXxJ6MbVDFXHhVN19E1JkzJ4QAsv3kk48vLy9p7KFYe2eP1i0BXgGiQqI5OjHc5COas2Azt84ZDKQYggIQAoMpjN1h93egOybHBHpAIsIxbuSbcLrznL/PP9g8hmpXt6uqO5SIqLpJdexxdEXyVcTXa+UQ85zqUcQieQk/gMd0/T4CjgpMNEJ2zCdtziOuUPN8GLNnTY+r4eR6zxkkCMCeZ+KKhqTeE/Ym6Q4uUKuuslNlHGxIvdFkhSkFGMt8efas3Q0B1JA9C5fQA6Poddij3jAPyvnaiAoAErL/ByY4+rEPVweHqw2/fFlUPE/HCF2fU2+ci4QGZGBgZDmasKCaFVBqYjw6PjlYrA6O7j986+c//cH7H7x3cXr261/9zVv33xg2iVpGFGQdyUMBybkyIk9aKYxhHhidH05u4Mg2xMZsY/6C05ERoDIZoKp4FYojERqx0hu3Hv3WV772Fx8++8njoQkA2IiF9eUlt5CknF1s1+ttbJeooJLYVHMG4sIlF1VCLQbRCEwMvM0Rohujo/zACsYLDiCKCuiVG0I1YcQmkVNUAV1RMCIseUAANAlhT6GfkyjdQEJ1X8FNx6SVTgeOMSPfTz4YVe8OqaO6eIWyQHXnjhq1APeQ3fhYf/S0fFpLetHMywoQAu1KUDxOw+xlIFXldUcPIZqUSA2KdrF58Nqjo6OjnN2bBKaZxgBFrsExZaTN+rJdHIKgir33yc+/873vfvPb33v5Ev7RP/ytv/7XfxOVRITMc6vFQExLrSZXNVUzyUNScM0Jpah/TUSKPHLDES4EOKBXzwGAyweZFsdJ191WNlYEIkAIcTsMgRsOuN1uV4fHx8vVer32LumGwMwxhJofrnalU4VrNwSQ3LBxJ79oKRXPpGmalHPREkIITCWXi7Pzs4vLn/7opy/OZNjA6ghef3jw63/lzq3jo8WiJSJ2HbJsyyBiwFVSQBn6oUcgjE18eP/g9QdHZvY3f+Odjz99/NHHn37yJH3j2y//zbe//pV3D37za3/l+CBGVEk59RnI2kXXLhQY1BTMAIuakee6g8s6Z3kOOCqOejsBxfylx6SABgAAZC9C0H32C2rICGCgEBosQ/r444+32y3HIxhVRf/AWDvy2ex7qGt2VXhM8mY0gHBPAI/iecJuHYe74/I6y9n7JW94ndc7+7aZGYf7bRXGa3fCdZIoqrpz1M+cXVceSjSZdk5sDvlmHlmpCgTtypMYd/04dX9yYCb5rjxrrijMv7lBDI8a20xsX2dVu1vNdaP595Mj6MppSDh7qIyVY6qqvOf/ByJCIkS2q4XFWIOFuCtZqfkd+1x4t2rAqglGt9h8LcqQuqZZtS2BqQmaeBFUEdlutwI1d5Fq1hi429hVSTEtJQsBiHHo7j98qz3obt+7+/zTz3LO/XrTNq1pKf8bZ//5LEuW3AeCP3c/EZF51dOqtOiq7mqtADSAbgINDggYCBIcG5Kztmu2f9p+Ghtb2x0b4xg5QxIUSwwJAgTQaIFW1aVeiVdPqysyMyLOcd8Pfs7JyLz3NbAbVvbq3ryREUf4ce0/twSOdT1N1VGynLp8SqX2IK98CUAgD5RUhFTdm+1HMZfWuJg2s6hkSYmSmDJJhH35s2/92sc3797/yeMBYS6m1jazwZZjtKdHx4+eHF04PyMiaNKYYj8Q0SBto3NLbGwUUxAGj0CGua+t3IiIg3hyFggopcCZBXsqgK+7EHNA8gRpbxliFTkcpWpzygF8622yg9skeoag3T7X1Y1SsgmcUQTKomGbmCuDO/OQniaq6a9UssALvYGZXJIRmQWASR3Qe3KpR+5y7gKrxvmsRRqHfvn6y6/s7e4mGJEHgNwJk7ywPXu8CUMaR7UZkQju3Ln787d/8aOf/uyTj/Gbv379H/3Df6gOOxNNmsYTe8lULcJ7F5gju4xm3mme4jAOw+BAj6FtBoWCvfMLAKbAFBSjt7SwIFlol4QSR2qwTbYApmQqTZfGCAl7B+dDCIvFAiV5k3ON7zp8NnEcmuV28qrr8oQJz1eDWRz7tgkCXiwWd+/e/fTTOw/uPVkssL9PX3jz+Rs3buzt7xBBbYhxSGkQiMfSiWgWKOT2xuqsmIh8syyt4pjSGHdm3edeff6tN15/uhjeu3n77Xfe+8W7xz99+8++9uX9z73xmReuXztZHD99+tDIEpkh7uzs5IPglbcZuEGgyZgAzXZIyVr///XaqAPeIt8qPn0fxnF88vBRSqmdh9wrY9MUM7OUWyB4yQ1MS2PWU1f+LiGXkxCZJcM69XzLKq1JdFb8h/5XYdYKMjdZAf9Q6WzRVQT/GewAAEpDQDMLrltMBJvC1Lw6Zls61orYLCaQi0yoQEWS+w42NRIXyQCoJNnjGQIeZ/GL8qCMIFPfjZIJZVhvcRUSVH2CZ73lzFdUpjYdPNsGR5vvzITB1bAuKhqxEHuHMoaj6Wd5nAegNRFW1Qhl43zx4Qk9dfxE5KlXzMacODSUFAZWinGQdjZvuWUsxoRiqnZd1/e9iExhTc0oRRnH1LGFwK3kiIAyE+hkuSKevfTq5y5euGFDNLNglIBopho1jdBo7IgNpfLENSf3ahjc40Qpv9LhGAzr/bXiXK2Xp7EneOq1WmQIK+FoXO3tz7775c/fvXn71t1Hy34UiiHw6gjLxfj4yeLh/DCEvZ2dHWFhDuPg9XttOxspiBmH2rzP6yzh/DavjwOjEdYZfPWUFS3HiopoRAJTBcfSZ0xgqjHGEYB7wjYY9ynnsE8VBf4ivzuTLjEblZzlMoa1zucRLitLbF43OqHicniJiCrgw3oAGyGYX0r5+TSBDIF4wDob1N2t0XIOP1BNcCZiJbBpEFouTvbnOzeuXhHQOPa5I6EzFDNYhBkbK3FUiaZNt3t0/Hg/2K0Pf/qzd95/+/3F9efwz/75/7Czs5uGkYg4gEhTHDUl9iR3NUN0tHqNpoqUkoFS0hhzf44QQkqASJA2tK1jL7OxJES3a4ndK2opljx5cqgGT2lSeJYyKTipsYSd3f2mbReL5TAM8/mc1RE2SDxrSY0IQizkvUSNDJY0jbHi23sNmaoyk4QgIqpxuTh5cPz0wb37Dx48GobxYP/cV7/81qVLl1yzH8dxGBbMCCGQsI1mmgKDWQiqaRzGFRExo+s6mJraOBhAIYSdZsYtn5wcaUTSFYE+/5nrn339xsef3H77vQ//6kdH777//bc+f+2LX/jM+euXDh89sAVfuHAp2Qq586ZbX0rWAAQwafScBddNvGsyeJud0lmERlnVRdiUvoxK435CvRiLAUMaewdShmdRETlERibuTXQI2rThyug3/jQ9MOthlYfYBCwXk4QjuN2/cThLSHizGZ+ZZcF2pik8+Zk2Q7nVsgfgtSKlfsQ2Qs6bqc4AABljlAkAN7PXfhSmgORHtyqGpc6satJr/KnpAk5HO12u6TpsTa0oJdvmsk234xkW9sbiYD1BO9VDxsxgSpYEBtBsNqsmaRbBRh6udYFaDS5wIAlUXKCWrcaUC3w5GAelSJRTIhXEYHfMetLA9KpKt4gYUxdkp+WjUWPGt7AQJMYIJktGalDng8wsCTpCxUgMnPFhiUIgm6lRP4xKoZ13NKahX0oXmFlKRT+xMHENWNZVIojve+1Fsp7mqdzg6iWyEkJWWLVTSQGBMZ2cnLzx/PO/86u/8v2b/+Hnd+IIeJPDONJyFQ8Xq92lBx1bhAaAoxd1/ZKCBCZVmDGpVf8ZJpSQFVZTs0hqHnnxXn9UUuJHi2McVJUcT6U4kEMQZpZCsZUNPIuo/v+/yuHL/65VhDNmVK8thrPFOrY+yaJiksJtGYgmMFPx8BX570fVJwso2EiMmJAATXEMsJeefy43BQGSRVdJxQAjxeiRbzIBNYQQx3FnZ+f2x79474N3//J7PyPGP/tn//iVl15eHC3m3awRJrPl4pg5N1OAmiEhpRIwdRUe3IRSwxA85EhEnjwcQguwI/zAjMDMYolEDaVLsXqIIcMrrTVsb2xDRHt755j56dNDZt7d3V0ul178Vq2tSvDV3vUiomKUg4iEmByZy3RYrRaLxWpx8vjJfWaaz+ef//znz+8fdN18HPvlcqmpTyl3LdSkJ6sTVTAZUxiG0ZBEJARu2q4Nwg3HfuAmdNJ2uWbNkKIm9rg1kTVEpAMzvfLi9RdffPlrX13+5ff++r/8xd3337/7q7/6yisvPJ9Weuf2w4vXdiFwXHciOOYj+fLnELflzT/d+WpKhFX9q5yxxIA3L8sFaTQpbGdiWHSha2YpWUomEorTjFOK7p4NXlvLZkiecMgOkD05GLa2fQuLycdAABiU1OOpDLhHhJiDYwLnrS1pzFORD9QqWJwpemvoeHrk6hN44hctHxa8iOKYq9HcenP5CheZ7YUFvg4olrTbbUrFxcrFp2c5WduTeLkG12lTmyk7512+gYlMnW4qAFqjGtXb1gE8r4GGpynmcN06Fzp/ZYMYspVPk7xT3/H1Wm3i/M2a1o9c/qu3RRVmaXLWMeUioryJxAUZ0QCtShYxQ4Q1qEYyM2yF7FhEYozeG4opMCmTAaltmhHaEu92bVgOURVCqpR0o4sO57cYMzEjGUUFkyaNhKRGcSRN1LRzlRbg/vg4mIYgaiZBvFXLOA5M3ATxjpxEuUeo6bqKzLfei+mrR+K0AEZNEjRTUjNSM1ZLZiObGe/MdpeLUaV54zOvfetLvzhafPDpIRJzQ4g9+sGG0U5WS5611DXWNGG+2ycdx3FYrlgaJksclBoLMOWCgFpc+mdpqNPPs5COKfarNPYyawFRAwkn00aCWcptV56h79PkOac9zL/kmmhyBVUjt3ibHl4CNqZgJZHHKDf/84dUxrd5fidf1KIzWsaalqIDMXNEds0SkTnk46Y3CzUqwWoxXr148fL580gRRggENbWBDKYB5t2XoZQUMJPATL1GSz/6xXvf//m7jx7g93//89/59m/0fR9CUNUYE0FjWs24VUumBk2qIyypRktZcXdAF4IQiYiYRV+/7EyXUBC7vKQjrPsbA1ZasLsfGxnMOk8bxEx84eLlvh8eP348a7u2bYc+ts0s5Pps962AiKBmsJQyercLYK8jcsFMElhICxRXv1z0y+WNq9dms1nXzYnIkvbLhVoM4qnX0cw0IaWkSWEsIvN5lxITUdd1/q00xmSRhInE0aSNEjF7jcwQYwjcetGpQYwHjSkuL52f/cE/+NYb737y53/x3h//65tf/crRF7745oUrV/vhqQSiIOyxXlZCIgInrvXzyimnQ23lXp26eAJb4fIoZIm7QYNr0ocZoBU/c9pTr2maejx8r+rPKdMomFm91gcbZGpeJHfKDCUii1nKVRlJJbSwFjPlRVPy3xKfNGlhNj0eU7YyFcBTjlPinUCRtQlW2/BR6Wg7fUK9+KznE+VcBMppLMTMTpRMod5Mk8TRGpmejn/65K1Zcy5yL5trpxa8XLWv4nTxt1bp9LXOvDvLf5CXTrOvIvefLzcwB/9KUjAzQ9ZfcdjnfKfA1BQgYQJxMB7rn8xi7siFZATHa/ZKRL9UVaQxwjBooNQJCcNScmU/xijzFlAvWfZ8ezMvQ0+B2laCSHJQGFLtQjPAAF4uFgRj5lbCMPQAREKQVr3TnEaQtxQsBGxGaxtXRXJeRvWdWPZwTIQBcsTACMkNE4CSKlkEmDmRjYdp1rRDkueff/4f/PrXb9++ff9vVv2oqliu4mIVV6Ouhhj6xQw7CE23e7BarXRIY+xlaIS1CZ0JwC0EOSmKiNYtmEnIYRTF/b/MbJXIKTPNOI4pJQGiaTIQSoOvYjwxO7jH2i+ViaQgo2Ez5DWhpYnjytbCrNAYkMGZN2jVsiGyfiZVb5a5IHH7eINQ62NP03nmMDAmRp7dxOFU+GvVoX1vp0/QPNAYGNeuXOZkImGMyQgUxDSaeZsqnzKbJSNN2jO1B/vzv/jLv3z7/U/efn/x/Av4w9//3TiMgZiA/d354ZMnTGlvvrM8WZiZIVlKKUXTaJYsQVWDCMSNww3AgOyvYCaIK+KsbGJRzR3qqsVSBMPz5wm+ckYgcjRYfu75F+/fv79a9W3bwuGdpa3GQ+2p5QSf/eIxeuV0jNmKayVo0ohR++TAWF3XXL182VfSk/ljHFKKrpeDdBx7Kp0TQ2jPnTu30+0AygwWiIhwo4oYNbTSyY4rIqqa0mgavfdRSqkNYqZqcPU/GgKUhOK4ZKQvffa1569d/4u//MH3f/DwwaM/+81vf5NZWphAtGUhJWSZWNBaASoWmrmgPE1TZ1J7voKrRdh0Szo7U2gIwQwpJglwiauAhNARLZbLtu2IaBzHtm1zFpwZHHvTK8ZSKsm2BkB5zXkJZJo7ZBVzMKmaEAOQorMCcOHHueB3I6FXRGqFs58Ol4HZHNnUT0s+nnO9yWi9P7yZlVSpIuadVzIRFFoLcD35szCIrIxXzcBSVFWI+AbXVLLcei8b0flmEaHS5LgaZ4VJ+Sdrh24+3iXZARPXUJ2sgsyMS3oIM6eklQ9WSSwi01hFHs9kTQq7IaLiitK1A8OrzlJKLjqtxMvr0sUYg0BVYahrC84dPkjVTIO/gh3liwFz+BuubakIzKFpupSQoseq1qqSJrjwJggFQWKMHIiHFC3FTvj8/o7dWwJGlDXFLdwiP6KL1VFoZq3ZyeHTbnfeNK3FkSh43/oh9o0EJDUKUYfQNr4aKSUOITQN5XbRsewIATli6hkmBAKoamwlG4uZUYlNWAD3MSGxsqEBkzGbGqeeLTCaFCGzEbxcDW+9cP2/+8aXfvThX/YnUJPD45PFEE+G4YKObXsupRTaJsx2F0NqgXHsZ9qOfRwkCc0bCV4lQi592XGRrBUxS6aao4kpmSpcDKds3cYYF4vFVSZogupsNntypESSUuq6Lj1d+e73vTJ74lJuIs6cs7CmWmYujjezKuOz0g8Uha/SvBmYuWlkNYy+wgBgpKpjVFWDA7dN+5a6iy9kzOGtsI7blGequSICy6hQRKT+kBSNSQ0UHOR5jWQ3n8+HfpD53PsEey/bxdGTt15/dX93zjAGBZFl7JmgqhhTEwTEKRqYPFSBMe3uNTc/eOfHb//kpz//qI/4wz/4+5cvHYiwKVio7xdtI+MqLoeVEMU0ACk3mqegBqXIjH65BIXZbHZ0ctx13aiKYDaMqs74vDksjISYNZIl89VImsCBEAGvwhIuYClMcnJycuHSxV/9lW/9p//zT4jYEQsYIatGqtFMVQUWmoYMcRyHsc+dq8plnucFiuOgqqYWmJtZ675rh6xRkGquJ9Sk/bAcxxFQhrRts7u7H0JwhT4EFglUekEaEkSa0GSyIQAsZBIClA2J1My8FAIppagAUSCyaEjaUkNKw8nT8/P2D37v25f/+od/+t/u/PG/+6t/+Pvf1rjiWdO1ODo53pk1bEzElmKuzcnCytWugTm4l/WXCOIqAfGMJKyse7KwmmnK9dFN0+zt7bkx4ZRXs59OG2RV2FToBgD2jNZOUzF52gKjzbIZ/6gepDqG+tetIZ0emIvauhCTD23rw60xTAVhuYG25s4FwXE6NVUl3h7S1vPP/NyKR7pq3NNYOE459rcesv2KzVgXtq8zzIJ6mye7lVzuMNUSKGvNWdTmhzigegGiQjn8uRkiiRHDqhuweChNQKmOLLvvSYiSu3cMZMhZjiib5Q4SdaUxxcC0M+vO79m53Sfj0gZNqmiIp7lOrrYZ8fuf3rlCey8fXGqaQAaLBJOcpAnNfovESqRgI2IWA0OKuUeoufG2WdNMgEGMjMHTNS8kUZUA5IZhZuCcfywO+gVzU9UYQULfL43aJvDebPfLn//sb3/86b/801tHMbG0Dx4/eu7y3jAM/XIpbRNCu7O7t7N7TvtjJWiKbdMSmUgG7XEDjybOYTPzgEGa1H+bIYQAxrAciMO8nadhTOOg3HuLOpGGSTLebhrNTISYrbb8y3qh6mYmQfbET4nT16ssEablbf6J/7FpmhQtunVlVBRKmp6KqUbIkx2Z3lDF55QzwIxdHS/dtWumbhkbWY5Ar11xq3EQwJBiGiQwQ4fV8vzBuXk3CyyliauSAUkDC4JlywwCI01qpkHCydHRvUcPP7p969atxde/+uLXvvIlhkKN4TqpWooEx8iJatEseT4qrKTck0oTNFHTdLBFiiYixlkBouygYDf/2FhE2mY+rFbDuIhRk2mMOo5xTFE4SAjLfjUsUuhm165dm813//zP/5xLRTsZHHnel9HBrZg5xtj3/XK5NE3ZBjAXBOwmXBzGMfZN0xCx5BEhnyWAYDGOw7CKaYSNzDybzUIIQsGhnosr1DK2/No/wQ7rtGFF+I9EBjDDTMySCIxacVYGhx0LBJjaTGQVV2mZfvs733rxxdv/y//63/5f//N/+cN/9NXQoB9WFy9cinEwjcvFSdu2lCVnxuEAGfE65Je9WvmONeEVSZMdz+skrCmBKkzNGhbNRMwAhRDOnTtHROMYmZmIo3pzt5rAuuaJldewcBUSWtsgVk6U355AZLnD2ga3ompZ5jvPxr4oH+KXXFOhWBst0obP2U69rn43WzBUejDhrAYXNMF8BpAQ1zmuVsGjzWz66/bil5HIdMAAwCTeo6fes/l2fy5R7tc0tTmM1xj5GdH6lAB2kqm29eZjM0PULJocSS6ZrUkKxcokNWa2lA0bngzTpWUORZ/amupd9I2x+jM7SH3yPXNVrt7pqSUppRgig4OGpNZIagN1bcBJb6ZBGjg7IK8XIZ9sgvzZT34x2A4+88YrFy81UVUHDg0H6uNJXsHsCSEStwoCZZgmWus0SMg1gkabderkAL850mNq6r4Q0lTzANxQsNIRipHRcRXEUFFiUKJRY5rPZimlRdPeeOnV3//20Ycf3/o/fwrrhsfHT5bjc8Mw6DDaEEcZ2jDvdnaOh4WQ9uOqaShGjjE2opYzD1gmmqs6KsIptVUBFhlSDByCtKtFP6yW+7u7I1lKSbhlbv34JNOCMHOGUkiTa0P91e2zdpZqmD93Zlp/ywRFDKAiYVVuUM8WsHZBO63SBOt++rmVvCpTJSV3bxgcLLc0ryhVdl5DzczDMOy2MyJSja20sAiNVy/f2N3dZ+YYk5aTAk0JCECOZ7XBdVAG7c1m79784K9+9Dc3P7k7I/z+73z78sUrZskBaWCWYrSUzJIhWUyaXLAnOJovspQXkX6MOUdB004IykmEArm3yKsGCSRGHjXIq6mq45D6OKqCSYxljGpKSnTlyhWCfHTzo3bW+ZP9O6BU+x6wmY6xd+UyRWFKuU9danLbqOyUDgxp3WsNodwMSTWOqqpp2a98J0SobeZt27rQbZoua7zk+TRGRK7sZZbN63RC95cAcOoiM9OGDEYY0gimRi0wW/JiQlaxpulOFstB42y+e3x8/PDe3RevXvwf/+ib/9u/+qt/869/8I/+yRf3D9rDw9i1YbE8unzpYHlyaGBYZ8qg6P4bJZKJyWFVkXRCLAwZSSGZDtcBSADTYAaR4yAYMbMFTYOR7J8/x8xJ1W2OFDMmKjZlWJFV68Yg9Zln/lolX62TnMpgPFMobguMZx3dZ30LBSThtESfLMLGJ2al18SZJubkcyt+Tin+8PqKKvhRXMpbX5+McG1DuNW2IaqfYeX/rcPbkvd/l6tOp64Ysv3EqLB+RH3fm5mAoqfiTaYAQAkN80bpN3LJLxGZMpHaGjhTUIQuEREHL6kmImWqaGKud2e8eDOiSAYmC2LzJpD2asqNH7a0Nf1E/P6dx8vbH+mTk/jZz710+crebG7CKaqqEoFhmswUSmAOwoFIlEDC8CI3s2jKWiMma2XlzK2hYu6rC4xJRbhlGBZv1Gyeb6nqyUSUGCBug4wxHY7D7sH886+9/Pe+9oWff/iTe0ssh9Xj48OL83B+b3dvT20cmjDb3dkfFoeBE5kWz5v7mDPV+VrYWn829hzgrAMBIFMDcWgb1kTE4zguj59cuHpZYZnhKFlJISySLB+o6QY5XE+h6rUHy8462qfPcTVBk2YTXYRdD0t6tjNpwgTXbq0pQZ4+BeRIZwASckmkMCVyvZaZzVwakqOVsDlytXAQOBSuqWk82N25eP78rGkBUsTs0iWYWkpJxXHIxYjGOBK4C2G5Orp58+Y773x0/x5+69de+tKbr69OFnt7e6rK5IAoSePIUCA5eFs5VTWw4vk3FNUM7B7DpmvjSQ8YC8EhsDxMDwBQi7GPnkJsZjFG94ozN/0wGBMkPHft2tDHO3c+mc3mbdOmlKioP3WXBY4FolridO6jBkCW/AfvXWhmwizinjwDZWocx2Ecx5RGtRiaZjabz2azrpnV3mVd1/mQa8w1axIGTNyTZsbERilIa0jEOTBhbG74SSFAECGfvpRSGmIfZqK9Edvuzs6TJ08o6msvPf/P/+nu//T//JN/869//N3vfva556+PcTnf3VusBuKGsnGrAFOBiqrIa1vSd/LhxnU2FCUKqy2N1khVQxsODs75kZq2a/bnTlnzVKgkHevP3jWz6L/e4tdZbS4i8iWuhl8+eKWDL2AT3K7qt8zWoWVHKPIzz5DFFYySSmAyTTUGnCmxmNRy+nKWo+puwfXL64AwkXxW0tDy0OO6rNnAa78stmFApm/PXyFYUXEm3fScqmDwttqnNtvzHC2j8p755NPXdBjFswLkfp/ikTNao5dkZ2yV7qvVqmJOcXHXVf5OE0/49I1rFcQyU/bqJD9clP3fysywzHbVzXqmUnJcukcYiNG2YWeOC/t784cny5XGGFkVas4xvc4YQKLAO+c+uH8nPn5n8Xj1rbfefOszL++3NAwrDo7sa2YxcSKRIF3TNF5tQM5FmKnqE9lFufbTFJztiqULUCJ3vFsiiFXoFSaAKbcda5QSxUhQb3CSQAaeh5lG6/sBMIQ09Hqu3f3mF778848e/O//5e7JArfvP9oXPr+3e7C3txPEbJiFRkRgmqKNSYUR1atVoqoQkZFJpk6zaX4mUdZyjAiSUprPdmN/EriLaXn71i20Ye/yVTJogjkALjM4JOunml8Ve0SlcndDPbV6bvISFsvK7AxWVR5LyJqPFTqsxbjlSW4o8zqV8jR5b+m79ZOtRQCBOO+hC2ArqfpU7K2MAAoQI43Lhunq5euztiMSLfMkgEFJNRdqOLMeU+xH6drE+vFH79/88N1H957OA37n73/X2BpiWPJ8PlXVhILHFS0NDluhzkJJ4Qiexswlq8pR7kWcIfuSlWET3JQHNI1sGjWmOMQ0gFQTxhhV0XbdxQuXHz95cnx4NJvNvBeZTSy8vFxmoMwfmiDVt++xcEvjsFr2fZ9MhblpsqR39NMx5SbLqhGmxHbh4JzXSgk3RFIg6L05W/IzRZOuYpayH4w5uFsx0567oshxrFxpSDA01polzSj5OYHDaCAdYbqz2/arSIqrly6vlsPde59eunLlj/7x1/6Xf/H9P/3Pb//eHx5cvDxfroY4DHvdLqBEXt/jIQDjM1voTK46bJS0oZrZtHZallsl6ujsO5kKBwRJKUXV0AqV4Ctvdpgqetm2A5NO8dytk1CvzZhu9jvVk1wfvNagi5U8+VY+SKfUagPgwGwTQsxpTtUldWpsnh90hr48HXz91vSTM+frEmk6TTrlVCeiKV7EljU8ve1vHdj01+m8ztyX6T1bT7ZiAW/pCpkGSICRiPq+39pBAGbJTMyMN4F5tx5uxUqmqf85U6wwa+nrw0RWCa8+zeVv13WetSegedu2EoRT3dZ1MKbgXDLPIDt3niz+209vLpfLkezN15+/sL9LaqLIh4oRgoTQSmgCkUJJmEJ2gBXb97RW8cxNIQoMUosoOXrMgAZ3c3htdFFHXYE3TSCilFLT8Cw0GjUivfbyS7/1jS98/4d33z3EgydPrh/sPz1ZHBwdSqAQdgKhlbZfDaQ6DqmdBQmNr0NxHJoRBWTQI48CIeNEEIE85r0ahq4JpiTcSFp9/MmHtx7cfuNLX75w8XpKBMsZSWstCmsS+iUEmU2oZ8AHnaZMIiLWwE1KyfN1k44KsoK+tXWCsEnz2KT/+snZByqraJbMct4B5YwE7yQgzFS6emPNWyJr3N/fv7i/L2DNid+iljydGGZcckjNTJMKUdc2q6F//8NbP3/3vTuf4vd+73Ovv/RKSn03n2dHRVKLyTTCzMybduS0MjV1e8Y76Pj9IYTcFqBpzRNLkVSV3fJhwAhkjnXdNDKu4mq1Wq1WzgMVNqR47ty5/f39+w8e9H3vfXGYebVaNU0z2ejisUROTHOTg0vRillanixiHDx3xEpZsGpkIs0pWtHH3IQQAnfzVkREGp8rkYo0zDBLxDYRYcUOEYcXXPfVJZRu2CDknh9s3ljCTHL/rbX57vhWO6E5WRwFRiQbNXEKhtS24cH9W6++9vLv/3f6b//9D//kP/3lH/3339Uk7Ww/eX2a05hmPz4VRCkUc+JMws7czwAgVKm7TYgbSSLGzONy+OTWrXHUpiMULA5sOlFPC1oIF08XvAswK5l5xao5giUXoFgzU+/BMBFOHq+rMJkbJ6YuwcahAlBgTCcOAXbrqhzLiTJyhpYwPVd+ithTW0+lTa5HoqXxH28sfeZ3RZxPOJQnsq+pub4LgJvoHs2lwhpU1Qvhw0Yh8jruCMtVj+VRgK7nmKfJzMx1+7augsk1McrLetZ4diZcMz/eMoGtHse4WeZUOoFsxEU233jKU12/mb0Edaau5xWiMTP1HG1S763iiR4Sx5SSamoaaRtpYg7ZehdyAjRncgFAXPVt6GRu90+Wf3nz7lP84NHy+Ftf/OyFrgMlYwJpw9JIkBByBZoZGCRCzHnHiSlbul406aV35H+psyNjmFFtDDRx0wiROU6nJSIyCgQQpaqExDR0TRtEiJgTC4V+0HMHO1957YXf/PL5h997crLQ+0+enj/Ymc+EOO3voW3beTeL/aJpOjJq2p22nZFGIzjkoIfnc6u0DfOvbjsAZg5e7CIAQ2K/un33Vk/0la/udLTPHEIInmFedmpjc/2SSalFiUytKwnrFpcIz/ZV1Jyt2C3c8VCh5ZTcueSku60QZyVs89Rvk2JyzxHKcXPVBElRw2lUoGotqZDD35GIjMNqb9Zeu3K5bRoyOFi+ESeLYoBlFGqPzThe5KwLbHrn1p1f3Lz37sfx8lX87ne/1Zi1PI8xum8wxqhpgDcuTFbiCNEFcK1sdz+1qoYwSymBKXAYhlVKIxEJS4UUBagURhuRDf1ytVrEOMSoZhaabr63e/HC5fc+eJ+Zd3Z24jAye78G5UnoZ1vjKZLChXTf98vlybBYerYUgJTGun21N7x3gWu70DRNCAFKDGEQi0CUhSgDyRsjgEORXuz1UcxU8TUrwHeVQ0SUqxyNi2tlJGJP5HeCErQQ1nHY7faHcQXofG8O49WIGGPbtovl0UuvXPnqly//4EcP/vIvfvGb3/na48e3WhmIjdCUfJQamPPhnS1QpkKHiu28PjFKnjNPZOTbxo2ICBkzcHJy8uGHH3uFp3PecmZc+1Mz3XoHJgVzp2VzZbg2udwlsaUNPOu79ThNvaBmk9Ro3v6iw/YCKJpjnst0gSZvoeIkz21jyl8nO71ePViByZxI7o112Ly212r6TNcoz5jyBEx1i4PY5nV6L7au0wwIyAgNp9lWVcVsQltmNqYYNS8mGWKM0ZAKKxeiulY5BOtOJFOfPdvGsLm4YUqvb1bvXkdMJCAhygOcElWlAWYeNfkud23Yn7d7s1kgqKqACGJTMCNCGYly08q8e9Tj+2/f/9Mf/vxnH9/tk42aVKP364SwY5I6xrMRg1gh3rhgstSC+t8mheQlzX7pNJ21O4XzW+qWMTFzYGYOAnFko2g6jmOMqetmKaXVavXSc89951e++cJlGgd8eufJ/cePHi+Onp4sHj15dHJyMqY4xBTVlv0w9sNqtSpA3EzGvuC1Qx8AuFefC6QxYEptO0sgkCiIOezvnm8Qbr77/vHhUa4PlOD5mBK4iC+yzdCsldyltdWoazePmXmaquSG0NtkyYCSgmgcx9rKM4QgxGaW0oaPRyc0dSblT68tUk/wTo0TU0uokQZwhOxEnr9Z1EpHZiZDYLGxnzd8+eL5SvPivSbVFffcQzevNmVVfnly/MEHH7z3wSdPD/G7f//LLz9/1VSFOLu61SyNmnqySAa1lK1JM83J4OphVCeqYYjGnDTClI3jkKKBRUIbspFaRLUjvsQ+DsMQo3rRcxx1Nptdv37909ufzLsZg4ZVT0RQ5VJNV1MuphcRNU0zm8260OgYlydHx08PT46OQsj+Re/f6rpXjGPur9qG+Xw+3+ncX01EXdf5D2aJONcjOfWTcAghSMvk1jYxM4c2SEtBIOz/+Z2OtumhIv+POBCzIxEINzlw4MhAEkJom6ZjCl3XqepqtZrN2qYVYVodP93faX7lm1/b38ef/fmtR4+Pm3Zn9PDLmsYqr3Zb6xT/3/y10luAmTd5M6Vc0qSEpE0gZRtThGLOHSQ8efL03XffbwWBJaUETyQzi6oSQj+6RrBuUwxhJrK4dkgqvAX9pNaWc5G8AWZkUG6CISUk9ppxQI1M3c8A5Pxe14kAIxYPzGRbrSIdV9PBuwCbmae9ICXiXHNYRTiXlmqU46ZklkWRIpdJFxisjCvilk2OcRKXL5cl5gyF7QFRTx1MZmbR1qGvbdu3biFyxNcCT3pVEZSd3aSomhVGj/eUSs0ayDMzZMtbptoAuevDU3t8xaY0QVCNWFs/5gY2qgYXBI6oDqMgHJjUpAk5QAtbrVYUJIIAtqSJkogwNVTgOVNKQgIxxKQgbx4WTYkoJ4iopVyqyOahbSazHOut4rNOipkhoqopmtnIEkLT9qtxFqhjmwVTi2YhcCOQSMaMwCwgT1jpZuEwjTsUCNLyLMbVO7eP/sNf/uTi7t61/XBxpxOhSApLFI1ZY4hgYmoULVEAKVMic7qXRAEedzJlP4o+zHxIDQUeIfc2E2a1nB2tBlNvLsAeFvIEj2RKpqAYxxCCNIGYF/1S2mZQs0G/+tWv/vo7H96/987THrdu371wcQdE1y82enLMQaSbLRYn8ybEOIw97XYtTEjF2C1gMiYDmaERT0uBqRKxEJFSGseUUiOtShzHnrkh7VraicvD/uS4Of/iajhZDmMyCiGsThYQkKCxzswiejNvi25QC5L1kuTV/yAiKJIZTJlMi2XmpWhcOdf0hIiIqeM05TIkZm6h7hHhUhWKWlWMGsYqrVCK8YBN6Vs+QbJscFsOjHNK1kljmoKaN6+PmoxAwn3f78/OQy2eLA7m8sLV8ykOXburnr2cBkYy4qx4kCUkMgqsQ5+C7FJo7j366ObH739y88lL1/Htb/0mESUdUsJsvjsOQxxO2CIRaRrHqF5w63lD6j0CstqQtX9y+CtKlGLgho0SsbG2bft4cXJu/4aE2bg8Co0Qs0HGZH0/9qsRAEEuXz6/u7t78733vQ1r47FV5LAIMzVNm8uZyrq5zmgxNixqcbVcLhYL1Ugk867NZI/iVTBlJubQdZ1INjOqCDckcPUvevYMWSn79h0xSjTBk3BOyhAq2dDOaNb8wUsWzYiUlAmNWdJsQq8ZcTIdk3LTqmqn1rCMYwoCRrKUnt6/f/7S9e/8vS//y3/7o3/7H/7T//X/9t8fPurb1lZPnu7tHQyjKaxhVo2OWeNMk4s94wPjiV5IBcSS8xAym/XgWI3mJmbOUE2qd+7cu3vnPjM0ZkyoimyiqhKKWodM3BURaars45RNfFo1XuvjZ5m/a2lhZiUbEIW/FR9phu6K2VOTH+6KmKoakleD1LfT5lXfUpePMv/P0rY6fKbCYPPm9dJPh/2s6UwmdYby7p9U5E6ukjhGnbSpeMawt+d12jLIX1d71nSqBVw3K8bYD8P6yZoXM2pOoapPnmyCuu/Jc4Hyz7UbNCk0GRJXI5vJWAy5hVTNUnBxPF3MPAgJru60bdt13U4rs1YaEWYOlAOrtccAwwAdU/QDQURN00mYPTmJb39w6z/8+V/fe7qMwHLoVVXjOPZLD0OAGRwI4gi7hIYkGImxlPQQNxQCbabob50CH3xJIGIwMQV3qK8l9jpZr+zUxn+sCPP5/Fe/+JnXb6ABjhb46bs3j/p058Hjp4eLfkwgYUYf+2G1YCDG3OScdFrGxh7IV5B7L7S4pJmCJR2GIcGk7QYLT07GR08X44jd2bxfrsxsZ+9gZ283pXE+7+pkPfqjMN2EtZpSVz5UOT+XiN1DsZ7pBEEXmKS+b9EzlaxAZGf1JlUDzm/qr7TtM6sfwrv2GXnjICq9b0hVkdTUXL3KcPTCCozj2AhZ6s/N53vznRCCgZ25kGXg8bwUSKFt+nFQ1VnbmdlqObx78+P3b360PMFvf/vXzx/sj+PYdPMQwnK5BBQaTaOptxLP+Up1zNMf6laSmsYUCDoOqho1geRocXKwf15Cu1qtuq7rQtMvTsbYP3369OR4KdKoYnd3X0Ru3bplGoO4GWlkKsQhhHnb7c7mVDSYbHrnA55CCKt+8fTxk8PDJ5rGINIEFpEpSLWZ1uMZArv03fCP5m4habJBeY9y0Hey9dkIBtXamcr8Jv9BS18y5yduNdf3Tg6ANxDiMgYDlE1THBoJ81l7dPjktZefe+0VvvkR/vwvvt/N9pbLfnd3fxxH77Dc9312axarpqZyGE0puYycWUTCKXdP8d/AnUIEZMi+Dz78+O79ZdO0ZgaYCDvrd/OOKahlSVZrkGOMoZH12ZsgGU0Zfa1qzw704uKfHjCcuvzrKSVeK02VCteGv+VcQVS//PrkYzqMjXdRjtRZxeqr95QS6/UYgHVEWScB0en46yG3Z4SQT89uulDTb1XScU4qQhXlOOeTFxQfH2edESZMcPrhdD23rjqElNbBM1pDo+Ta8/rwcRy9JF/zZLP6aerN54uUVoVGUqGcrKQ8GUZdNWZOml0Z061B6feuJNnsJ2NWAWmyEIImESURadvQtBKHaoHX8HyudDIFiNUoaQqmQUgTHS/Sn33vvSsXLszn3fk57fR9pEF51tGOeliPFJwIBhMQQGIEr7JENnQ9PMxuASrMcmGLB9c9u4J1ErViMDOMyNjDhVv0gEq8081JFndEvva51370hZffefDh3WMs7tql8w9fuHQ5UA8JOy11szD2cbVate0ysDBMWTTIRqtWFvNKSSNCA2KipBiNtekai4uxHyLC0YCHi/HhMr755vUrV66tTkQ0ahpU4zCuhjS4jgOrUQgkeEoqsXeGgwfKcl6TTnww05N4JjWimLOb9AkrGFhufvDEADJDrQLYjB9vS18iIgrQCCYj9vAVESl5sYbDuDu/z/lYREQSUkqE1DLOn7+4M98n6VLpk2DqTIYKmLlDNFO0FNha1g9v3X7n/dtvvzPcuIbv/MbXZ/MwrhJTpwZNR1aCWlmAJe9u5MFoLn1ZJ0CYlANqZEwk43gY0wkQiWVvvr9YDHt7tre7u1ocjmkwHU6OjoQRmFerxY0bN2KMDx88aNp2uTpp29bhzIgoUE5+EFmDH9Q19ESqsV+uVquxH4goNA2Lg/e6IxPef57hEd+cojWVvpUGipN7kuec3zVBUcwZOVTZad5flJyaNWcjB/M3YyARkRf+MZGqOkIOKYGUgmSYbzPlbHabsSRp2tlioX2/2t2f//o3v/buR9/7wQ9vfuHN54SbmDgmakMMTEOvpkJUXKRn2pC0Pu9OEhsxYENCKQ3yrG4zSyk6HOSnn95ZLtC2rU7yn1GgO3WSEFgFRk3QP/OaLGjejNrQ++8iosoB2ziR9eetXdza760BnH7Oevu3Fcz1DX+X8fzykf+tn2wy3G3b+syXPuv+0188cwr1nme9xbfVLy5LVyEdhhhdANdvKTmaD6DVmqu6vKL0tyAiILtP7JSqhEyyzhCZwCINmGkSNM0HN0jGfSRjRtM0jaOCbq5tRilRMhPmDGbr6EKztutmO08T/uyHb//Vz957tBiHIaahN6Tl8iQOo45RNZIl0mTZuIcLZCDnd01iiFsqjivjzk3ER02oUViGa+Jur7OARHNi1zN3Kqbh4u7et77+9ZefPwDQdHj35t0Hh8ujflwt+3EcvUwoKlK0cexjGlOK1ZCaEE8dGzOFjK9EphoJ0szmxu2j4+OHx8fUhmtXn0tjJE2BaRhWqjrf2TGznOGWy2PysDVHyglwvKDSQYitgBXl9Smm0mnCzFOeestcnTtNxFOmPCXhuhfTN9omFr4ZkTEpkbry7RoWCoF5BgDcsvQAE7HF/mh/t7twcIGkM2qSqQdvzQhJcjckUiONMXbtnEjGcSRO7777zsef3D5Z4jvf/srly/tx6LtuHqMOw9A0MsYVztASMl8681LNB1BVR00pRQlkZila13X9atEvj+ZdF4f+6ZPHDDs5PFouTy6cO0hpfPr0MaBkaXd3LkIhSNM0Xde0bZBAIFXzVDurTuiUxmFYOfRVSmPTyHw+D01GzQNAbueF0DSNo2p4cVRmIKeu09FlT9Ka3DIJAE+ummVziuFxWTrZ+JRZpCnfCdO3M4VyTwgyS9GUlASHj++/eOPGN75y/f5dvPOLm7v7F08WK2aOMYLRdV1K6TQ9bh4xVNbn17QOuJSUZfvVDVby5uHj2N++czcZjClZopQ1Sip92TawhV0wF5DbSvqenVj1UGxahETV87bxnKn/rdy2XTV7esIZYSX3Ui7+NMM48TaX8Fw+gwS4ukQTm9UjWEy55tvKqHgNO2D1aGwu5qZaQApYhXCaTHBSu3yGszo/pz6/yhKawBp4sqZPiQBAzIwmVWV0StaeEgzl82cI5oqAU/+qmpMwqyeKiLyxicgsgrcqcYitFHPn8IGZmgcEAdA6qpQ5IunUfKeJAwrkLWsEGKve6l5BZgZBRES0banrGgmkx0NKZOapNDUuS576YAkkMpvNht7GVa8UUjJpZ+/dOZIfvL0z73Zff/7CTmcWV8vjzkzb0kORhNQSMTCCGgIxgYnElduaHsk5Gz8vXfHWlB2sWbulItxNr5J7APIWgtk6NSKmymsgwpoM0rz1xpu/9qX3PvjkRycRx729c+suAncNWmmEhBBEWpEmaYxxlZTFWu8wn7uQ5bKB9amsiHXDMAjPTMLj1YMP73x8tDi6fuWyRXv6+OlOt6eU2rYlEubgj/L9keIn94WCQbNHLZFvLnm8+zStnXVNPHggIl0zOssRvvrrWujWwzKNMRVBtQ5dUfHYFSFG5tW6yFVS/opUPGBmpFrxy+Dgk5cvvDCf7ZoGP+psiczMBBl10PNTSJFAHLgB9MmTJx9+9MH77z985SX8+q/9KlJMSWkuthw0jrOuHb25mTuxi6q6sSqb5oHBQ0PjnMWTpRPQtu3Qaz/2u93BaOOwPEIK0CiK1eJkuTi+fu3qrO3u3r839KumaVIcGmnaIO5acxKFacb+M3f8WNIYo45j7+7oEIJqIINaNDVVJaEmhDFFoty9RnIXNTOzagRjYiyZGUgK3Gx2IzOxl31lPlAPH4hAnkaYvaUTgLzMkXLKDsNzDh1mhrzKQ82MqTFy+Gt124JgbKYqnqQp3C6Xi24+UySMcvjoyVe/8MaP/ubO9/7608+++YX5vCPq1TgZh0BRs/1QEn22OPCGrunuilzAhDxXy5AmDhquYIMQU8DTp4/v3r1vBtcOtletsEg+Kze9/nWLbqYyuCgE21bgVHeYfmV6TY9TXfqqJucvlhqA6QinD8Gpq364pcKcvu3v8vXp4M98DoDTM63Cvg57OniZYLydOZjpGJ414AkbWi/F9Af/a13P6f2ZwZkrFiSQlCyqSuNNPqi0lSyvru77XIbg2xTLTlXcgo01p9wxyU+fgMiYporm5GatK9ZI6GbtvGsEGIdRVRPOWIRGGk0Y+5hgpa5XxgjiNgLv3z763s/ev/XoZGU8JEWKw2qZ+tU4jimOlqIhsSZYSjqqxWiqMAfhIzNzr9emtl5eXdHiZEMwAFmYsRALJBDECJbF5ClaIjFio3Z/d+/Xv/TGF14Jix4IePD0+NMHT+49evL45GQVzXhG3Cz7cYzRUwdiHFIa6+JP9zc3ViEQRJN1u3vUdR/fvf03P/vJ/fv3z+3uvXTjeYHZOEJTv1qwwZIujk9C4C3qJm+MzGwlFFfVQj3L1UHV0Nw4GGsynpg85E8rD0GJVGwQ/5lHwAy6LknfpKIMjUle08FEIAdDK6yTcqm620uaRtO408qlC+dDaI3YNWFozj9JVhc2JSQOtFwuhZiM3/ng5q27dx4/wq//6jcvX7og0jRNF2MkTsRp7FeBxPclC/vJNZ1jHb+qGtIYe9UkTasGlka4IaLZbLZcncDirJWjp4+ePH4A1eXJ4vq1y53Q3dufjMOyaxoi7O/vQFPnZbklg9WgwBq6MqVxGIa+X3r5mZcSEZFn2PgnjgHCEwvYr9oLpBqy9YA8wzJeW8xSzF8iIhJjYXeDTb7hXy9PlnLoNk6fP7Y+n4hqGLSifAAOAxlms9kw9rOubUJYnhyd35l94ytXPr2PH//k/YMLF41gLCl5x6BKrRvIDafpvI5wjQW9QblEyDW6ABTCjx7ff/T4yGEVuWAguFVkxYStZMGThB1/XKn52DgPvogAaNKPFgBqiq6t6wJtw1Bek13yueU0aabcVLwiXZTc2XIVmcHZvPeNdHC5+v6qEW9an64D+miLHS9bx6DEhyY2Omk95Q7aSNj2iJ6+eNIbuDJoVWU3JL2if4odWrZu/XMiooywPV1APIMr5U3cfFolnRS364ZFvPf4Rs2Y8wuRBu5/dL3T01bUjE01Qp3+AEtmAiOzyAUKxs86SKGMktCXc17KUmReywQOBCVybGq/IgrCaNM08/lst2ubcIJxOvb1gJmDgFVHTRINxq00M+uHlFLTdP3Yv/3R3Qv7v4imr17dPZh1Ogwp9/5EEBNRZmYlIzUT4y5xQRKh7Gg1pqLi+poT4FA8hZInkQ4iVpQ2RIYEzQgZyNm0zOwoIg4xYIammUUljumrrzz/u7/ypXduf/+TQxjh4eNjoZQIYTbndkYmaRiaQGOifhyz30GYYEyUTJkYplAzKBfAr9RzH4d7T2///IOfP3jw6Mqlq68899zV8weUjjWuuuaSolssjjsJDG27kAiJ1gmsKGFTNXdCkxVoODNWnH0KiHAGQIdxVrAsl4jT1H+2/vLmlzb18rLIW69bi2piZXFHV/bZEAhk1ZkH8yRuCiE0jQONjdefv7o734EwgZMqE1QjGaKJKQwRpuZAVgRVbVTvP3r803ff/+jO8rWX8K2vf5FBwl1Mg46RyYQ1jevOb1Pdt3BFrzeZ4OuZeegxpbRcnezs7CyOpQk7w7hsms6Md+c7qzgO/QlTWp0cM+Ta1csN6XvvvSsSZrNuPuv2z59LKV28dL66tVJKY9TkgKwaPSCdYtQUCRpydTGnNDKZo2f7J642dLOmyMUi/BDqxq1DSMK5XzgH8jZxle9R1ncmu8vOAZgKagyvq/CdS5iqF5SZEXnfeqeUcouvlml05sLMZqQa3Snk4S0hIKHr5oeLk7ZtzdJ81vaLo69/8Ys/+NH/54c/eu/LX7xBHFKkRoJqLwWXD6VaZm2ub1N4/mgLirIcGmMObGZqCapQOzk5Wi2H0FKyKllBJSTjjKMaHy6Aa7c1WzsV19ZVLSNGETbTz7eO0JkTWP/ZHDMl6y5MvCU7CfXlcPFsuoal9BFWpWFLNE6FVhkJYY1Dsj22SjdOLacFLWW0gbO96FPddvrz1v31V1Xl4t84/bTTD69jO1OVJiLVjRnVmz08T5PgE1xT4skDmVRhSnBTUsk8L53WrzPLoHlGyYzZEjKSERdXnwPI1UFnMTzJfBYjA4PdnxGETSpvFVEr3IoZ81m7uzPbm89WcThzTdLYE1HXtI2Qt/kCUTQVVU0jCT860j//8TvNrL14/nNdB0rJqNdBQMIthAAkF4YOPOsKGsMTQhzaetvt4Skhlvt5bLa3IhAJmRoEbKTsYKweLNVEyutkCyUj4m4+G49HMrt+5dJvfv3Lf/XBnU/+5HYCnsQlt7R7EHcXfdN0YafpmjZqSpFjIE4kwqzM8IQjYmMFzJKaijv/hFXo3Xffe+/jD/q+f/H5F9589Y2Le3tIq1kTUhwv7J+72Fx8+It7HZFYWhwdmQtgJTGAIJqBGHOuO60TQv2QqsLVNKBgUvsh2Jaj+WiklKAZX8eIKiubCtpK7Vs079Hlbf14k/7LzUZkxeuygZGXi26VyBCIA0bE8cqlyyEEAyCcxhWTFqdxSlAyNVIyI+No2jQCGx/c+/TOvYf37uOPfve1l56/npJF02EY2iAxjc6N0phoczqV/9Rh00R7MxBIoqZV35+/cCnB2ibElbVtG5VTSl3bGujo6dO2kReeezEwPnzvnddffdGMmlm3u7M/psjM0rQeVVRFjHHVj6vVMA4xpTQOQ+2MvuUEdRbhpTH1rxUUui54iUp4tCj/MN0jLkVHlDOasljxGdsk5GfwOt4Nw6xuYk28wgRlhktIuHAjAZkpi7dPRc4sNjNAjDEOQ4zj/u7uarmahUZVj1eL/QvnX37hwo/eefzRJ3dffflqXB3ttkEppjTm7n+ndmpqCOVZEAAEiIB5I8eDiYjGcWyaho2iRoR2GIanx0fFRjfxer4sYlk1aVLOmI6etwXK8OVwMwg5PDOViXm5eRJPrVre1p3Tv1JpGA4gsDteyMyGFOvmbVn2+VybgRiW1SZsjqQW+FNRLOpbpgRUnIdbH66v6vp27dDdrbpZ6VSnU2KrG+LW13bywEhZU0FKiSdrEsp8ffyWtIJFG5cY40TQTgVhnd2EMnKs10EAqEwSJZN8a1MAE5A3IyIiGI8xrsZhtRqYQnTMayaHUwQnS6MRGRsTCbG5HgMwc0oRUJvoFlb1tros0zpgVbLSuDpmQ98XOamGEJg1DiN0ENZxWIXQchAoMXKVHbIHmAFTtT7GhhvuwqgpNA36vmExIgv6cBn/y/d/osPyt7/xpRvn99vQjv1KhCygH4bZbAYzVgap05ERgygQAcLCQIZnwdrtWdHI15SpMDUViKpCEzyLogmaoFFFJLu4I5i9uFyYoZxW/QkZt014ulzcuHHtn3zn1957+198/w7Q0uPjxbnFSHee7s0O2nZIqtx0LHtGMkQK0hiapMLSGBBBY79i2O7OPDA9ffT4409u/uL9ny/7k9357mdffePalasBlOJq3rXD2Is2OuLG5Ysv37j25N37e52wJmZEQChYHHc6SSkxDJQYpogAMdRKVqyQgVOOFZeVcd2ZeE20ftx8tdq2jTFaNCIyouiJwZYzAGzTG2dmE9eI8/FtdblSdd6XQCBjIhYmxTj2NZsjjgpAAsYxicg4jjoOI/pXXri2v39OuDWmpEMQ9CeLBkpqSoOCyLF+FUQgtVW/mnV869ZHP3/7zrWr+JVvfrMhIFjUvg2N1xRoHE1BsJRGNqSsSQiRk6sWNkLTrB+XKG3bnpycEKe9g/nR8eH+/v5qNTZhbkQcWiJ6+YXXdnZnOqzu3/v0+ReukSmRgIlsbIKo2RgHEdGkxDKbzYK0ljCshnEY0hhRcgxtwgPrOld+LiIuAiq7oCJ4M/dkKg7n4LKWaxCTCMwoeVMVOJYq1ybyYGjCOihcRXhSFTfq8loJYJb9rGIZOo0ITh4MOGqDEUkIPFrvOrJ3d0aKY4xN6FIaVLUJ3cnx4Te++sW33/nP3//RO69+5nWkY02xQgrlkVTtsGLhTR0tlMHIAiqbM85uQ3UkKau9CpDiarXo+8EmO70mWS/Zx5qJlzPgbqe1k3b69eJiNc/Zo8348SaXnwiD8oApzU1vmw5sfYOtubmqbt2PYitPDfHpjtYfbEsenHWd+fm2IN/Q6c6+Tj+nrC1P76lDyoO37UHWHZmK4Tqp06uXknsIttfwNKsyM2ZSHVV1kvDF45hC20ReO+23XmEakUTZzTqirJ+tVYTNhVCrqQ2mWk6be/OorC0zW60nnoCXtUF2um6naxcn6+lP5kWAgYoGZwokMyJSYiYlNVPDYLh/iB+/96mO+p1vfPG5i+d25h0ReQfcGNhIQhCmaMQGAwcld+IWraV4KabCIE8KqEd2ShKUNWglIpKQYFTxOaYSBZp70kkg3unIPv/iC//ku9+4/6+/d/OJzXfo/Zuffu2zbzx8fAhqLh/sUNM8Pjzc29s7d/4gEfoIBEoxMXMjNN/dCcLHT5988vGHn3z04cNHDyjE69dvvPzcS5fPXeja4ARGpkwhBIzjaBqvXbr6wtPnHjx52ijEEJgabtTIbAQQvJOGkJEiN1LAev3XP1vxGJWzRtuUU10pnj7motHX0j2mXByMdSWn6RHTpz3r9FXZxiBvIwgCDJrQNE1KCUjz+dzVqcDEGi+f3591OyQhaTSYkAmDPMfctQ2qCZw6DvHc/sGtD3/x3kc3Fwv82q+99spLLycdM3SPERsZHCYsQS1H1PJ2b9NP5UvlQwYkjtp2fHx8uH/+woPHT4QiiZhZN5v1Y2pn3blzB08ePTx8/ODCub1xWBrMENkErOyxDUCIrSUYJbNxHL280PXsNW+caDPFDzotAFv/MOUbdf2nQVmaNliYVKz4K8rxmbBiZwK8YWVOz055EbuecCavw8aCWpUU0zuTl8o50zZK5o0u4oWDvWuX8eFHePhweWn3nKbjMY2z2UyjrXNZyrMV61rc+nbfzuASl0rJbFkwJXKQWAoUkIZlvxrGsVpX0zJF2jC0pgLYFdLpomwcAcAmEJrrqOrWbk2fWd95aimf5aP2J6TpzROB6vdsB0dPv/E0VZ2+JgJy06+Yc/OSmRVnwEZk96xhr9X5SihbN2wNRqRx1HVP5t56FCYEV0l8K3Mt32PkxDh90dbhKSkGVkG7qGipo6aj4+MgLZEYYOSF8HXACWBVijEykQQxTqQuZhwZrprd22s7pa7p0hFlO9jT+5kZBXVBmEIjsyBd25wcLydCy1PaGQVj3MyQQBYJyXuNCrHCSCORBsKY8OHd1fHRh7PZzlfefPnV56+EwMTctK2RxKhEyRRsRhIMCmqUiMjhltU9RsZr6F6PfNd90RL1JAOBjKQejTUBMDExvCMdVIzFiM0EFtkSi5IEpOeuXvm973zjZ7ffP/6zx48XFgS3795pwuWdnYNFO6bh8e5snmCL1YoFO2G203Rd15jZ4eHTRw/vP7h/996nt04OD/f3dl58+bmrV69fPH/h/HxucUwaJQSQpDGGhgNwdPT40ZPm4MK5V55/7enTp3ceHt18cJx6szYSUVRzdDNLiZEMZLTuh5HxxrMZt0HkOHUG/YhbwV1iziTKGdUO09DJFrVsUXj9fPrSeptl4ss8hQE1CFGMcTbbiQY17YKkGKGU4qqb4caVK103N5KUBuVIqowENe8qbF6ZD2Y11RSArpGP7tx9+917neBbX//q+f2D46PH1HrYIqnX7XkYRSMVyVpdbhX91JC7gUG5wgCbcghsPB4tDp87/5mDvSs6HoeWm9AtV8OVi9ellU9vfwiNVy9dXi1OAJCpkduLIDbO5qYCoqqrZX+yWHmXM1WVCV89c0mduRJRLb/OmA6lMWv2XLprmgOYzfP6/VTX4O/UL01wNB5ky5LJ4dvqqYHkdhfwWhs1YqMEJjOhnE/nuIG1e+MGCm4p0V77+VDyMACIKmDRmz3bCikKjW9+9sWbf/rxz3/6wXd/43P9yZFDpjMJqrWT6fkMVa8K+Y0kLM9YzDBGpKpJqPH1GsdRVUObMQWn6oOLltqgcP20Z/xcxG2OAU/9zzUAsPWVM68NmXTq5ip1nLCsCtupAJ7cXznj5tTO9ms9S3ZO5Na2FMlJDWf0ctgQk1uzO1PeP0tLoK2ow8TvjQnHqQJsew2LZ2J653T8tqnh1vvrw80sxvjkyWE0dYxVWCX3ZCYEJjVDNBLV5N1nkR2S2RydTN8X2Rdy0uCBicGaSkrOZpZ4TgAhJTYkZcfDx1pFgNk0d81IldRxsnwIDDWIEoQJCjamhiEaoz3p8V9/9POmkb29HRDNQLssRtFMLKp3SmSCkRHDprCsm3tXKSErqZO/UvkhnwfVekKJjT1wVk60mTGEObAFJTZC0mRtuPHc5X/++3+vC3/2L/7knrX06MnR+fOz/UPWvt+b78REDx49me90L7zwwurw5P2bH4rQ06ePjw6f6BhnXbhy9fpbb33u3N7+3u686+aiYDNphcXMg3wMISLTRb948OiRdO25/YuvPffKvYeLn3/ys0dPkIYly9xhNEPVgMlKywqYknuVK8FOf966NqjUJqp8NgbWORyYHBw/0BOUnukDp8e8EML2qfQjkOOKADl3isnMTNPA3Iz94tKNS5cvXiASTQYzpDimyJYs8xyDKiTA1X3VWeCHD+/fvvfo9n187o3559545eTkJLSN2pgtXE8dmvCuLcoBcq9YX43pxSAW6uaz4+WQdHz69PDchYtPH6wspoj43HPPrRar27fudx0xd6vFsm2afuinz8jajUeDUhzGuFot+qE3UxEGgsYNY6Zek8Bt5uoiQgIzqzUAng+f5axDRExSoIky/jlg1ScKwBv8ojopqUCYTTjeFmpT5m8mVpolnx7z1uflO5mH+CeaACbjpAw2b3zOrIExrpbHr7z8wtUff/yzn330nV//3KAaGk4pUjgb+mLKUc1STQ8K0xEAbq45RmxG5Milm2rKdZU3kKecURQ/mvvT1312dTunqo7mDPG8juCe8ZXpxk++65WUBWcTRUBufttzbm06eCrmyVb0aDoqs4yE5YSe6zVPuaNPT8Qz+mplJ4DSKWnD92VrB/j2o6au8iovAaCyqc3ek2s9jgheRWaqaiGEmn7ghp87mYyAnJ3rLp71jBzYuo5ZN3LXUUfrb5QgawHPkkyPTo5jTATxJA7NhRuhTta/y6W0MTNi74GeR8O+Z7WZrqfUZpmMM/Qt9jkR5XQ8Ihg4Fzasq4C2eJaRJiSwR6VJHMKKk5L519VYY8QIYhjCCHzyZPzBux91O/MvfOaFq7yfdNlI2tnZ8wbjFNXIwGaJTJKq+/OyR2SC8bX2rrogInLUBzNvEUaKSZOfeqcnOFLeESUSM5gKqGGjRshE+obRdL/5+c/PlR8+/nf/7nvH3ODJkyd7zLuXLg1Mnzx+8PTp4wsXzwGzo6PDR48fHBzstY00s/MXr50/tzs7t7d7bn8niHRtQ5pMDUzSNkQW04rYug5ppWDj0PTj8PjJo6uXL105d/2FS4/feunxo6d3niygPHIISTVNZ0HqaH/uS56Wqm9dpxTEzNxTTGvZWWgpJYu2RqdC9osAzzinmy/aUEnJ2MgY4hAALgPNKARJKbVtawnjsCRq28Zg40vPPbczn8chEoIQayJNIww5k1Ddl2EgUwgBbcPv3bz1zvsfryK++bWvnt/rTk6W85395WqAWlTv2ptVRpCY46VkcnW7bWOVJpf73kZNLGibtlsuFxcvXtzbOwjECr5/747GRRegSYhC29BicSxCRAIqFSHIyK/r6nqiwMSNjBzN4NXpuUNKJWZD1WCcPjnjhXlIwJjBDGIBFeTI0teIahIWB2J3inBxbtRd4VymzszuTPIFAXjdIX5NM7QZcfP6w2nfF8dhtWK8TRksFSNca1E+BwbnzD/OlvEqLvf2L924cv6n7z558PDp7m4X46oLjUdvARiT2DqoeurKmfxrAWw5hJA5a+7xqlD13mtCRKPGhpo61RI0ZQBp0wW0tSjTq1otU2WEir5Ts2OmN9upyoH616z7nHYRV08XEU12ZfPJ2xK37lzNTqrQBPWeDO6zGUvemt3Wzxsn/KxV+jteTut1FtMZTd9VFw1n7QVNrNjp7hCR8bpMsxKwnbqzzsgYaRJEAADjvu+1eESqJTF5pgFZ/qgqJzLaNqyduNxcFU+fzauX/QprTOBcVFaJau37JyIRnrXWtc2sCZBYt8CmRrBjZyixx6Tda0oWET2LzUhMM869moZGfvHx0xj/BmzzL7zZ7M5siDudai6IYGhkJbUIjMQm7mLPC7jhjCJaZ2pUaauqMBREsDS9OS85izA58g8RsYRK42yGICMZmbShe+vVV/7p7337kzv/5me38PTxuI/Hz126MiYblA4uXtnd3316slDg6rXnZrOubcPDB/fuPnjQL/f29/b2z10kSwEQRjDTlFbDYGaNCFMwVRJ2K2lYxcfjMA/tuf0LLz7/wmePH378yZ3VCosYrW0UojAOYkgufGv0okrf9b6cIrDNufuCaWWboGKdll6902tqc2xdRDh9BCa6dVb2VA0wAzswYYyDWTJDTENghY4H53ZffO55gYwKgwZmSqoJCSnjIgKcSNkUILfdTB8+vP/hhw+vXsFnP/dGHFezrolj73VsCgOSWMoHBKaeokAT2B874zCWxF0wY1gtZ905hGYx9Pfu3pqRSDs/Xi7HMTaS2iYYJMYxDSl4yoJXkHCgIsz8Re70YqHQyDjElMYxjkKhoiVXflLGo5N9UoC9m8A0rcYVSBQgo2IQc9lRv9nTzbBu+gvQxEM9Ydy8Rkr5266puNlavSn/sc0rW9jsrrukGhkgSIxLIb5+7fLP3n3y05/94rd/+1cWT+85Mhqq0bKpKlWlcSoIwrR1WlavygrmRVUFc9d1bdsee2uqyUDX21+fsDlh97xPp74lh6b3+5oCKACeG4JkeiC3Pjk9pGk99dR88+rmQikbr97aic1RTWSw/bIxPGNSz5z1sy4W3451Rn59YB1kjhduytTpM9xvNn311p3TLGgUr0t5V/XC0ZnDXi/v5pOjwiyvvhXXotZSE/NUk+xihRKpigimlJMTBjf0HiICalw8Ux1l8IF8jydjsTHYu3uZiHShaVohKp1jts1KL/yzYmYzkRKpMIhNAyO1YmSmipHJmq47PF68f3c5++k781n7pVdfPN+242rZzjpVjRbEGNFAKdmKpTELhdGsPQf+YsDdfeIH03InP7VSx5wtC8/kZJ81M3OG2hQhZmlmKaWmNaIUVSSxaEIKY9iZn+9++1fD0J/8P/7lf/7FTTx5Mtx/+PDyjWvzvW5nZ2feNSLUtnvjMNy6c+vo6Om8a65fuUIBwziOKQboCE0alYWIJbQtSxAax9VqjMwtMKZhRVE18uOHT02a8xcPXrp+/rXr5+4fPV08RdTkmg7nLQOb7wsAJQMYBDbbILm1LndKfzVTh3fIfMp1FzVmbPmvzbwJBMIpO9jfpWq04doxAF7CTpnwM3qzwxJoaT9jgAgR66o/vn7jlfPnz4/jyNyOY6JkaQTBhjgCEEjIicJQghCD7enx408++eT4GL/13S9duXIlxqHrZBhG8qIAPyZqHgwuErdMLrd9MyICk6n7Mhk5ydfMrAstaQSQUkppvHvvdqspUDvbuXDu3LlGwjAuk/WaDDGKBAWMBJ5UnDtS5wLUcRzHcXDU0phG08Qw8SqJDN6SyzKpINDR5D9meO9xbxEoIrnhwVQYs9SkjczrMjZWIDJH3amciohcVG3udPaNbe1ylho+OiUz8+w/dlFKa9adpc42GEV5iKqAkgSQIY1mNnreiIoO43M3Ls5b/PwXj3/jNyFNG8fjjrrqGD5T3q+JkNYW8IRHO1uAV+e7Vg9QaGfztm2JBiIhMlUHtLRybMBCXh5Xm9v4JjkS6enXb9aBZD92wXA4YzWrCKBqCfmf1DxTbjphM1tDl5VD5gBztMmFqxydfndDGyogglvi30XIVDJNtZvTU5h+svn5hmKxxXS2spEnq7FhuQKanf+bjIayaXVWZvgpuQ7AW5duvfFMvWQ9mJJqATXSBCS1qBrZOddanYKzYrNEXt8KhiVLxJxsmpJaYFhc03Fd0rzpQvZ2IHvaQa4Y5zwvEmYOwQzJePSGPmQgKJmSGlmaRH/zG70EAgBIk0NDEBjSNAxAkyOecG6KabY4WXWzRoK9e+tJJ2/PpHvz+pU2NKEVEk4GUi41rz4Jc2lJVPqfIbvJkTlWgDfoVAEZ5y4XMHOfvFqKqoou+MOykiDitR5eFR0aCdIMvRq4IaamHRTMtr+z/3vf/c7YHPxP/+///c4niMOTk6PQzmf9w6P74xBCILJhGMzStSuXLl68cH5/78G9T299ujp/MD9/sNcGYRFfEqagmvohpmRBZqorDo0xN20I1BwdHfWWrly9+MKlq69eu/rhg/HByWLQOIIVUBhn50oxKYqUY9S4xlrBWhODJ8VMqaNcKeVSVDMkoLYT9YPPpd6INg9dfXhNv50+lqr1AQDCHJO7y8GWLLB4d4VmJsyq/fKFyxeb0ParcdYR+hhj1DgYWxpGCsIEQjCnQ1IVY6Z79x/f/OhjEXzlS1/Y2dkZFlFH7UITY1Jk0C3KcMFZezafCpO3Is6zOO1lJAIw9L2EbjkOYTaf7xxcvDCOx0/SkA729zTFIWlSG8cBUGFerZbtbAagoJGLMVkyRe5xF8tFmhqWMA9BGlVNyaKOlshICUzsbuOKM5WbCxEHZna8qu20ZxQLWKqf1mchhefkKuEpF9r0clA5TJvOkwmpVAOlPAQTpWuSprxGSHSDTao1b/AkMiZiTlSxLXe62fHh4YVLF86dw8PHuH3n8NJ5a5vOiACBpYL1l0emW2ycsyYSvOJQoa6IA4QUTQnK3ITs1NDYNrOWG1JOo2pCimaGAsObiMiSEZF5OXPMnXm4wDk5T8kltrSOfWKK6swe8dPqrK++u3I48zK6vU2q0dSMoKgqVT1pgYWquxjZwABT9K7A/nYmR7y2UhblDQOY1v5nqipzUuMMjpqXVq2Gvie76k5Rj4I7Ma1P/oZO5JwCa3+OeJ8d9/xoqHPxw5YomVJKRiTFr2Nlb1VTIiJhhikIRBkxIAT2cm0vuavvqlxpfaTVDCaSA02+5qqKmOpJqDnD/oQElbYZNEEt+HKmeP/+XQ7SUDMaM7WECDGCjn0/m82sKFuA5tiFMo0DhSYfP3KmmYG31Kh478SD8GUwkisHvGxT2DTFlMbRk2HAzOOQGNiddbtdF2gBtQKqIEScYGCyhJwhlFsNklJI0ECcxmimbSgGU2Iza4XjkKKGUfUn7zwQ/Lz9hoDUwt5s3jaQMSUihBAEqqpkChMxdavNCOBAEog4m4IQFmIjBkGx1LFtm341jn3fNiIMTVGEGkHTBGkaCYElhKZpuHFe0IQuRYsaiRsQJSYA0oRhiJCd/fMX/uC7564e7P3xv/l3f/6DR8v+40S023RCODh/Tprw/I0rFy9evHTxwrn9vdXi8Bc/vnN/XL5w9fzFvVcDN8m8ID1jZrC3djTE3mKMJDJGXQ0npojL/vGdB5fPn3/9hddvPnz64GTx8SOd7XZ90lGHrnJNNjImClYQ5YiYwKq5b6FvX/XcwI05VYTMP8cxpgQhIpEUbVQ1A7tHnAE2T/AxzSZB0U3VzLTkpkzDz/k0q5mBVAFX3lKCmkEkBQrwDklqI+Gk7wcN1/Z23nzuBU1BmnZc9Tb2poOwaUo5NsOIpojahS6BF2Mvzfyjuw9vfhxffbH93GdeOTleds3MG7w6Q/Oq9ujg1qbF2bZG1CdhM0u5yxKEWC0n4EACGzSOq+Uwu3Dx6XL1X/7jf71+5eJzF/fPH+wSVmYYk9XyFQPaWWdEIkRCFQaFGFCsVqshDQxlqMYhjmPXzXfmezGmqIgORmZIRemxnCtUWolwLvA1IyF2uqHyN/bk9SyFPbWKcuaHo9mAAWIwE0/Teze5lhGR4/hgWm8GJVf6/XgUIBsYHMXrVOJBZkPEDKOUPJ1AHM0CFFVTnzSlaGZC7LUMZsnQj8PJjevzOw+XNz968MpLn1kc3WWmpKOo+jnlETWaYNtAkGpE2QIuc1NXOdlgLGTrgKC3pNCY0GxUN6JYsc7lMYnNrJWdqXx6xmXFzVIa+mZFdGoRTg1T/1+9kzaLduqhmlaq+Sps3TMVRU6VU53LNivYqvCYjur0XKj4SMsNG8Nef8VvKObe1g1bantVAEXYnRBElNOAs5WwESYnIuZnutOndsZ6LgDcpNBqW+SRTBLHNqZAJEOyopRENhAoxtj3fZPTjCglU41dE5qmIaKkWjAWlHKgWAsdboy/TtwghGRMntBVqc6xKg0gYiNhTiKChpNCmY2oaVgJbSNBKKyp0bBuf+l5/841lOAgLZ7UxyyN64JKCQSHyCiAMxLawNCP7z/54TsfsLwiXdiN486OtW3LHJIlsyAigCElXROS/6tZVnjRMUBILh5CCFV7hXecjFECt+2uNE3TNMzCHJiD2/3BqYWEkIH9cicltfnOfor98WLYm82//Stf3+/o2vW/+j/+07sDLLSrnfnBpXP7+/v7ly9f3t3dPdjd353N5qIv3Li+Whx2IWgcGXPKyEFMVsbtbZAlaFJDAEcjghfZDGkc9Pz+uc++9Pwn9+7df4rjxZJmbdu2GPttUjSzqotXyiQ/g9N715IYMPe65dKjtAa9ARFT9ppY9id7q5A17m7R/KCqNGEFlPlV9pRV/0oCLG9SCiFoTFZS9Yfl4o0vvnFhfw9gVbM0WoqaRoPGFC0maRuNyb2vPu7QhMVi8cGHH/UjvvLlLwaCEcWoChMySwozqAv9aprl8jwn+6mpV2a0LnMwMyO0u/PVMj0eeGl7/+if/d//7b/6Fy89t9vNG/ffGExPNdYyb+BI5IX1STWlNKQhhLAahsPDQzIcHBx0oev7FUnDIAnE1qioaInJZ1EaskRl9p+ZhUpvsI2470Q42ORoZPMG6zurhTrlVxuWA6FC3FTTLu+sWkXQ9r8LpLZcs8mdp8SHi+8EuJHEyUhcI1KzpCkNLCSkFy9eTHrr9p2Hap81ZiUws5BwsR7rfulWXTsBZtuMb4PwVaunznG0M1ZfJdkNCnbe5qtIlURK2cB60+tyTCUNkF3505Wlkp+cRamhtAQp/n1Dpc565/T5tgmsOF2Rre0sfk9s3ZxMvQTPCgBVHY+des56TZ4dS56sr88i25p15E68JXvcQ/pGBFgFtdCpwK5DJaLp+cyfmdaFPT2GjSeUZ9r6T1N9rWghm2qExthwAFiTEQkkjFGXw3hur+XQig4KSWkEAA5jspIXufF2s22mMJ2X/982CalqJFTONpjNLNXTlcdpXJMwN2GrraS41wdNHVmeT8HMMUadsDkldG2raRSE0IUHR0fff+cDE5a2uX5+p5HQkEEitS0jWDRiVeKExMxMJQ87g94wMqgFtLT30XI5e00pBWnms65rZ9I2IQRQce5BzFK25Ngjmua1HpmpCTMaMROW9vylr3z1m9duXL948d//2//443uH2N9PaXU0O9i7duESQHNpWvBsfvDma2+M4/Ly5Ytt6BhFhTWvuswLD2PhDjlvzEiCWhpN0zg8WSzme91r157/8NqdB6v7HzyKalF7CLPHfQnueXCDJGW1d5uSq2JaP8w/qCpRRUqfnPRNqjYzKxXt0DU8HJfy9y16W++v2yFeuetAHAZvXp1MGwEZMKIxeeutt7quHUw1Jo2D6agaYxy8JQ5bo0mJwUGiWTJ0oblz5877776/O8evfPPrScfAIaWUNE2LOGhtEtDUH+9cpQ64+OF89EXnMBsCHYJu3bff/8f/w8U3X/zRu+/wThpp4ERmaoggH547fFx2lsxnd2ulFGMMzIuTk8XxEcNm850QQs6oyt57qTd7jnFM+Yx41cFauhZU5xIG9tITiJdmeao0eW+GAACefjWRDropgKeX821fBto0pU6Lg+leTznP1g9OZdltugVdt4b6gZkR0ziOly5dCnzr9u3Hy36EsVpqmQNxqZysLEtzc/S1XQEzC9NN3WJPqgoPNph5R4uMeVTydGxi25UKIkz+XbPsLbE3fcv0T1tMcOPzs75F2XrYfmbdCcMG10a5ebpVmNjfZ45wiiK5/nxzI591VXXh1If532nL5BzymZjdWdBOYhX1hf7kqUAyy4xsOusab8Tm/tYFnAxrY3iVgqfDPj1brTDxbiORDElXy4EPdpgZChFix3shSik10uYBGMiVPCIiY2XNzbLXw8NkkSmbvOqg/J4s5cLHU58rB6lWkRWLp2FpQu2gxNMJbk2ncH+YKU+CGsxMTGRGTNyyrZB0AO9QEx4u4k/e/5jJvvbGK+f3d9oRcew7gCkYHC0vwUjVhAAQe+aMZpOGHJWRSJXM1awUCSBiTQrjZjbfO3cQQpDcRqYEyYyK7Tedhh8ICiGomnAI8zCOw+rJIXN45cVX/+kf/uG1S5f/1b//rx98dNJpv9yZPbzz8dWr1xt0iCrSXj53kQPv7swK9ylRWMueAy/LATFxS+J+ZBilpBrNhuMn0l441+2/+cLL91bj45MHj5dKImwGAlvtEGwwy21KqFKXFZLf2JEzfi3Uy8w1YjW5q/LNdXpOJQ+a1A2fwZfI8wX91LB5bwqzmKIIo+GgyVZ45frVl194cYyJQDoM49hTiikOsR+iKQfRNDq0mRF6NQnCzHc+/eTRQ7z11qWrV68eHx83XdMIG0w1UkaVeAZg0yndl06pwn4x88nx8c9/duetL976q7/60xBa8CpF79OssJGQAPam2kZMIdgkuuSvTCnFcTw5Oo5xPDg4mM12hmGIMTVNowTTkjZV1DEASUeaXBVgkiRYcfszM4cM2+7W7QYifxZL29GxrTlOBe2WKM1q1ymDYb1WgFcW1G9R8dc+61pz3VLfmFWBEEaNq9VqZ3bx4ACPnuDBg4dXL3fjMIKZ2CyaWfWmbIt5Kk2DQk4nfMblb6xkkamWvSEJYJlHExFEygyNIFakH2iD2Z0WdVsy2Ipl6Tn55IRZb6huVcrD5qK7+XeIMqSXQ2NWPZqqte3Zg/5hscOeNf/TEgvOO2j94XoF8q/rrmHTb011ny3Wb8XnRBMy2uRDGUsLp86bmZEnOk3KgaoknRyS7XmdgU1dUj896UPdLPdaO8rdbEpMIjdLIKb8NzMiiUQGLJarh4+fvHTlwMzGYWjEArGqBm6kePkMyQBTUOnHZWYO48VgMoGa7/X0gPn6uFO4ALmvlzd5Lz82gWgToObhyxDCbDYLIci43oK6fQnrTnP+B/8jBwqBSTNigIhIzuk0y6mFnFIKbQdq7h8O3/vpe2Y2n4WXr57baYTREwVuacwpOMYMS2ZwpV3BDnzteZ7eANXIpBGLiUEBFFNUFpnt7O7snjMzDsTMpjUBR0Fq7C51d1xSaT8GETAFI7VkxE3TsZmNcZjPrv2D3/6DS3sX/9Uf//Evbh4/ePhxF0bW453uNWlnKTERsYqObKRKJgpCQV5y89UYMIUSBRLPRUwgAavFGNM49v1Ot/fy9ZdvP7lz686Dpwu0s3lcLTxsScYDOY8oJ2ZNl46n/bdf5dC5Q8FUa54wUJJFKs+dEnw+TqVoB1POkImQ4EVNTuFWvG3GHJqIRAkHCd9469WDg4txsaQU47hMY2+aMMYx9skscJNGCqEloggbzULT9avFpx9+bBHf+OpXdBwERu5Z8VjPKeNnU6Mgs3XiILkOVLFO4UhYRka2iNd2Dr75+v4P/+T/ODp+8NUvvr7DslouRBqzFMyUYN4Ol1jZ+wKKenc4lHwds+Onh62Eedc0IpbGwFARVaUgxuuiL2Z42lTX1exlolx/H4jIKPe8ImESIWIiJDNwMBRL17OdSSp3y9vh7tyyBnWnslg1oGjY+QZzo9AAWEwoiovjgTrPoan9MzUUsVkxeRa9WUkcrpeqCXDpwvnHT598ePPjF57/yrByxD2YJRBTzmnNlOjCOItk4+KC3kJdpTWPIiLPSBqGYRgG73dxemSV0LeuKbLV9Ct12lsXFX14yna3tMJ6zzNHMrHOp9Jx+oR886mKutPX1vi1YI7UF23J4Kn03RretsBb37MNV2vVlrXyhzLrCUFOlL41E5nK+7wCnnp4SuTXB2+IsTNVh4n+5N9azyuwkMGUlLwPUjhZrN774IMvfebFpmvTwKqjnxcFcWiiRVbkJENmsuRVQ8hlIaZQJ7np7kwHrBne1TZxLmldd5gr6AGADA1L14ZWBDFOn0ab6vMWHWQXn6spRdEnoiAS0xA4hEAxRlOCCFH3dLn4m3c/ojSmL7zxxsvPtxTSGI3ILBKzMJtSgphZI0bsEIcMUrAA5P5GU7KUoMpAVBDRfLazt7vfdrOUkgjDK/NTwml3ep5OTgUwpdzXkTiIMDdJ49iboNGYfvXrX794fvd//l//t7ffO3z84FMdll2QC5eudhdnXbdjSmNUbowd698MEzwpY0d+ZxICorGQCKHhmMDMiZYni6DzS5cO3nrlxfuHj+8ePn2yPGYWQHLFdh6i5/UCyIZqORIb+ufWzlT6rCqjk+W0y8KUVrcK7eq+51gy2QbxuwFgFDwisB5DrvxZjoP0uHEVX/rMi2ys1KbUWxpjHDWNNsSUEgQETWls29ZPp0I5yL1P79y+c+viBbz22mt937dN49DK7DBtm24u2/BeYjp4TMJVW5+DIOgu7M4Cpe/96R9/9atf3sUQjw932iaNkWEAs2XJr4GJAgp8tsvdlJLFZDGp6mzeNk2jquM4ukBNpzgmc26IJsF1mvy0vJ5MWUevAV23mjaVYGz+Wo8nTfCwpoK2iEOrn1MxwNb7tb1oKJ6WNYWcWtjJw/MNDCQyouLnc8XIzFJKKK0m9vd3mZ58+NG9b/+9lpmzlJiQIm+/aM1g1y5o3lzb9ZEmwOzk5OTk5GQ9ygKbPhVCAErOoetotj5TAKqX4xlqxsajmAgbMmPTD7ztxF+fScttR0u0eONPU1ky/fqzLqJJP13KE3+mmvSMGUnmMVQhnOpgVDWEPB3iilJQCSgnyhZHGk/fvT1yy7Dlk89VtXhd4c2DbUv2T3+uiksxr2prB183x7TdwOdiK7MrFWvNrFv0w9vvvPvgG1++ut+GponD2DCbkZlFbz5nZpZ8bESNmWfYRvcYsrFRImIywYaWOiHc/OtpnApB7mBGZgApMYggIizqpoWZKSE3aNq8zJLBUOAIMjMyI3EPgeaNogBxV6+YJoYyM813Hx6d/OjdTw3NEOnV5y6f3287GymRNIGkJWKDqsoItLkMT0FkUGMxhSWDauwH0wFgSyrS7O7uz3f3PEfe2waZqnfHoglncWkxTXrMRYDSiLCa1xqZSAtTyHwxLF95/TP/lz/6g3/37//jX//sXjvrP/7kw3FMLe+Gy520XUJidyRBrJq/nK0kI5vU+Yhww0DSpBgDyWq1Ejw5l7pXr7/w5Gj1yeMf/fijPqkmahKZIZFmSGcwW8Yp2qbnU79WmjbmzLJrDPjMK5sQE5cm1iuGAqiUTr0on1Cufp4M+6SaohGHJv3qF/dfv34xDkNS8c644zCM/UrHCFLx/uKAmY3jyG3n6Qe3b9969Gj55uee39/bTSkFolEji3jNkbnHxlS9uCL78so6lFFXQ6o0VGWUDuUex43JWBdjf/+Nl7o3XthlHD9dHLZ7c0NMAEGICZyIiCDEnMy8qpyIPPobx3EYhnk3I5glZbKcXUFJRBSK0vTWSOB5zySlfVUVwxOB6qi0RdnxzkvgWm5ElEFb16bXVBKdAXmkrkAlAJacSyeinLSbeydk4tRMBATKMFMT0ahrrSc/OUWkWPMwbNKMuYoNUssw5mpQCsS7Ox0R7t7H8fHQNh2nJVxj81momlXoAiLyHiK+caeyTyeEaADUlKCKtFwul8vllJQnhE6U3ZBWGg+s/+R5eluPPX1V6Zv/pfr19bW1MX5tWaj1hi2NibaNzrPnu6GXPcOcpdLJ4FmP2rqZ6g8lVUQnV9M0ZuaVo275FZ3OXfrVJbOW2XVsZ+oClRCnkpWeEYnfWtjKu+FBGls/czrdyc0wM0FOXieirusW0T65fe/jTz/dfflGMEspiQRiNpCqSim7NfOygAgmTgGB4YS6prGtAXOJk7GyWXIjhY0cLKv2jpSckA8QswiCWGASBpPx5haT4VRNAkhNCUEkOm67sLfr9BByTKnrupTSMPYdh9BK8kJJYePZ41X84bu3lov+ePHiW68/f/3inlgiSiBWElMjMSndi8vrlMy8UbtpIl73wxCRtm0BrFYrEm8Jb0kTqU488ASHefC8oZzpxSnFIK2IqCYrVXYpphTjziwse4jirTc/O2+7aP/hp7/4BLvxyeOHTZhBaOf8BRGShokYxpQRAQoFkDkAkcsAIwgzSCwxwIEZSNHG45OnVy5eunbh0udeuHqy+vjmfave/txMwOui9XRyDRUjAc5PJsuVCY9FAKRSoy9CaQKsMSVm6NlRVbftdOLsrZyjaG/ZTEc+Pqqauo4vBnzjC1+4vL//6CgmxTj249gPq35Y9jEOEqijJjK3TUimqnFGMwZZ0oePHx0v8cYbbwDaSnAqZeYYU9LoLg31pqjFUjl9YOsC2eTn6uJ0iE8WCxy/+tXPpeE4Jpw/2PNSb6/xg4tqFoGosXcEqSwlJcff6JvARJwr4TlwCGYWY+TQrI9PjaMTFxBi382Sdl7aMHABcPY/1gB8EcCVktdp7VvMv+bKTOSBmRnlUoKJJbZhd62diz6ASZ39hmFWf51KX1+QM+VGE7phdRJjZMGsDQ3jZIUnh4vnLrXQVU49XifKrfeRKPvq/NeNZgxrCjUTEW9/0bVh7Mf79+8vFgsO7VgaH6IItox9WYw1TNi6mYkwUUbV4s0Jr9e/XKpao/RTEVIrms6kRZ10OFBVT20V4qQpmdavV1FdvVKWNgqKpm9cL3mZkbvTvZR2y7U+pRUuGncuRiyLOZErzjLEIUdijEQZM9Vn4V9UcIxR1bsLeKf3RKXlgGU/XnFIbK2Jl4NN2iR4d+HM07zU2TXWAtNR6tAriZQ95uzMzQBECdMlSsU6JDYlVdhqGJquO3y8+ou//v5nXr4RSCg0qkk1ts1OCeEXF1PRDBSRsu/EVJUsgcjECOR2sG2a/pbr3crFbMYOWRlT8oRBT2MOAW0bdmadEChnlm9XrE0px2Bm0UDucGGRBFP1tipG3uU3aUMs0qlG1VzCv+qH+XxXzR4uln/z4aePjw+Pjo6+8fnXL87p0sWD1XhCTdt182FYQY1obiQk3BjDFKpmMWpKaZTkSTnKQAhhGIbFYsHMII3JqHi9VBOIajNpT5TwCkV3aXraaozr5CMnIW5in/rZThfHfpHkxVfe+qPflQvzP/2z770t8nCIS27p+VlnEhpu26bxylgix/E1d/wxFxoLzBQQU0oGcBu6YbniJjANq/54uTp48bmXjsejR0+ffPrgqNdRJMRETWjGcWS2UZXUPLMjs2DnJRlDG5VOYC6MbTbr+r7XNJoDqaklICY4cMqEl0KIQZQ7VZ/iGH3fhxAIYmrM7Bmm/ThScFONk1nuzmeOBmmzgOPD9Jkv7nz9i99cHsauk+OTRUzDyclJShpjXK2GceyvXL3U972EVjXt7uwvl33XzYfF8ubN9/fP4eWXXxz7XrodP3Qxxpq9UZlDkf1ZIhJRTXqaMl6XP1XkAFBSYxssNTvnUhyMR4P2/RIAc0iqSolFwKxKjmrccENMBEoprVarcdVD06ztYhpsEnpIKQEM9nRldiu42Hk5z9kI7sMzx2Bw3UVCboLidXLMblpk/mnsVhtVj8VUKEzBjtb1y+Ytm6AMgmlyvlS5tVvaKW64x7AW7ValrPcDzmHvwltcBzIzWALU5SAorbtCqprqGKOIzGayPFmcP9htWlDEg4eHL994/ujkwSyIKkLgthXV3jUSz1FRVSXjhl35e6YFPLXwhmG49/BBH6M03VS4rl0Ia+a+YSJXNlfZ51T61k+mtFXVkylFbnFMbNZvYaLgZFWq5hIXrQqTAUwlTX3mRixhMhedGIhTCT1tjTm9YevrZcs2PLfTOwshUo3s5PumLpqs22y/4swH/l2u0yxp+vPGMLBhg2NzZ8vNySy5k5uIwIFDevf9j/7mZ7/4ypsvN9KQkYiCyZKuYV8Lubv2wWrGXvF1RjuR9U6ZQ0USEYwYrGxsJsBoBtUoBIUpOFmEakqmY9I0ztpGwuCsvKynbi0aEZEaankG3HMFb9thRA5CBTNNMFM464KZWRu8HSSHdj5g/PjBkaWbi5PVlz5zY5XS7t7eXjtnb7Udh2EFksChdcAg02SmphGmautywRx+64UDBQvJA+eW2+7kHBxbt+9E2SlFEiV4T1uAiLMEE2hStcQshtAnayS89MLL3/17xI39t7/+haXlw3vtuFi99vqbZHx8fLgzPwcSkKVoiUYiNCwk0GiSU65LA10OytY0HWwExmHoF8vl+Z35tYOLn3nuxiePVu/fG09ibLv52I+eX8OmtuVZmXrW11OqGmFWxfKpUHO8Q0w8yVTMZ5pceMYBoaKXu4YqvH4hg91UcUxoDtyIXd613/j65/bmFwBA4zAc9f1qtRr6RX9ycjKOY9K4u1jMdmdN146G1dCH0LQkd+/df/T06bUbF/b397lwD9cFYeY4ChszLjrnaY7kP9BG7rfzWF+fpKowNg1KySzV4+Y0ZSTEgUgYwVzvVEoxrZbLcdWbGRPVeJ8X3lgRh9WZx0QZHqQgOvlf165LIsrNbooNTDTNXylDynec+nxjvpjweWzyotNHuNoOW3/KrHgtSG3DHiwF4lvcz63QqV3OFMCRBaows6Spbdq2hZ3g8ZNjEDOHUihnKOYfzrqIKKDMRE/dQyV3fNmvPvrooxjRdJxHqATvrU3rm83Mazzq/pXHVviEjWsqX+snfh+XJkwAci50rpotH5X7q/lbXKY0PaJsBIMlVbXaJhaTbV5/kruTroenZSPrMT6DIMw1u6yx0jrVrTwDpgTDRsbdJEaOmspYs2bqC+qrHc3F/7jJaDb+/SUyuO4ONqjd3/5M77QrbjnpTMlKDYm/TSa0XiarRCQiQdr7jxY/+Mnbr7/8wsW9TpNRtNJ6EDn1d7Ly8CBrxmbI2Bqu5uZeVT4FJgPB3N0aKZftl6KRTQ2MSIx6wIgtELdBhDacFmXMZZGLbLZJpJygE23PzMBmsHz2mNmLcWFExKZGrI7Vd7yy924fPTnp7x0dfuVzr7z1cse8HESbwO18DhtsiGJkDSUmJTJFMIjREHM0C4DGcRz9Ha4oG7nxYUpc29ejxpMANVXADMyB1LKOqBVrFsI0UxtYKLTSD6vVcpx33Qsv3fj77TebcPzDH3968uh2k9LdW3ydXu66/RhjE8R9+4HZY01xTEyUkN0OxsQcTI0E1piNEdRq6o+Wh7vj3oWDa2+8mO4eHR4e3zl5gGYnrKwXZrX4S8r4TnHPLIA3JHYlYgpqcXqoMTm22DiSm2KshJOK/g2Yk5wDqSpxgdvlZuz7V6/it37lrdlsF8k0HqV+OQzDMMbFclz1yYzGGI9Olu1sBg4EioomBCG+fevT1QJv/PrrXdfFYUgxZVhA1Yp7f1pgoHKHon+gCA3G9Csuq8FmyXuBjEKRSWGF+brULDnCBBZVGBILCDrEse+XKY4hBCaOMVJgX1hyqFfOWM1G7P0FSwI/yDvYQgC4fp2RbQooKJiYw0QOee9h8THXral8G1PuWlfD0+Mte/BMXe+3WrdKlQvn5VqXG2VFwDbz3FT9pKtGN4n9Q1XNCUT5IlVYgndayXXMlrtcA7AUZ/OdnTnSY3x6577qW76bLJwSVIGtIKltpFt77fM2OIpWMaEEoqOjo48++shsrV2evqbUUxdxehLO/BZOnbRffhUUo41TtNZ3JiucBXA5Xf7baQH8y961eZ6xqStsHekz5/h3mVqJ6W60TIDxtArhbx3zaVVmTdYTQa5Y78vWma8/uwO8fP2Zxj3VBL2cdqHs2W9mbAFEFOjDW/dufnJ7/3OvBbAaBHC/6OnFccZAWmDlsN7EfOdUzwPcqeU/GTFRjQ6IpugnmZlNBGZNI20XJBCTOzTOcJz4JaCInD1x5t5Z8fowm4ILvXkOs5Ewg1JKZAiznaT6YBFPPrg7GEWV129cubDX7O+0rTDAwp3GHkxJ2QhurFNS95z7qNQ0jTG5lSxe8BWhHpLeICKAajaT2phLpb3TkzAZQbL9EqQZFaYQDk1jqV8cD4l0vHz58u/+9u+Q/snP3/745PDecnVoOt54/rWmaYy5NgURCSkl1cjMgMHYKMFBxDl3f02ghoi5GcdxsVic379w9fylz71w/c69uw+PbIxDE8iQg69ueFDGJkPBjIFXA01JxdYnPH+ouSbBvRHbvjTDGWdhekBsYioUeltTow+LvSQJIFDq8aXP7H7mhcsAlCUuhzT2fT8MEVHNKCBA42qxWB2c13EcpZsZyziOI/jTTz9tBK+8+FKMUVXrySKijNhVihDX1O/TdDbs/QM2PX/1JqKN2ZklMoOqR0A1KxaW4f2VTAmcEfSE4KVjNvHZoshKcn8u51QAJTiMKxGvw2FFgVUqgSHkfywj5GzzxtOsdfqnKVPa+ryIzmwF+k04xY2f9cPpqz5wizywySLyTOECOXsgAEAtpRQazOetYbj/4Hi57Bmc0hhCUI1OYCkTdKltY/NiBQNCjXGeMTI1AidNDx48uHPnDhGiKYEmkEyUSR3VN+n0uo7HTGdy5ipvvzcpytMt6y9A9jyizgG2ZkJTNjpl3NsyUidG9eTtnAPmvsTbrHkqqCo0mqpWc6pKoy2qslNm5elfzYxIptKXXN9cIwGZakRuZL3Wdsv4uc6DJojT2CSjOheBY0VtbMd0j8yMOUxXtH5e7vfAdjKz5HH/3AuBgQQ1KJlCjTnM7z86/sFP3n75pecu7bSsDiyFGD3ex+WxmbMXVCUFiBwoCWxGlelMl5eIiAIoTumEKqhsnTIRKDmUpSM6A5jmCfIpyieiqSbu6SVmlksvCWoWiBEy7FYVwNKIuYWW1BIQGKGLGpccfvzxg5PRDpfDWy9cRVT0qWkk7IKg6I1IHAR91KQWyT0CpTpHY1SRRKTCJMxE3lyWrMgPZIIn9n44qcyMjKvikqkD7iokoRGABmllx9RGRAw97x90/+B3/n4n//Gvf/yRDauH9z4MDBGa7RwIzxVIiVWEhENocwYprWWlK0Zg9gzzIBJHOz4+mTXznVn4zNWr91988fbjW+897NsZj0mTeeK2Cwg/MlpkKzZrN9YUnc/iJq+s22rFmQRAaTuoNN3leq5rgohLQYYCSGZKkUndkR+ANKzOdfitX/vGwazrlwOUT05OLGFxslr14ypqUiJYNImr5TCmcUygGNrZkGKKJ598euviudmVCxfjMDAFcUhnL0NiiXHM+kWeF9X5W+WwRMVhw5O5a10cD1oaWEmZVuBEFl1YRBhMAwcjAYlrGsTGsDSmfrUYViuQsUAtGgqqJ1WCISI2FjeBQVyzrjxHhLzeACC4c6v0USBiDhOTyUWxYHLu1ufaZ0GpmAlTHw/cl6mWVBXJkZXzAhHlKuopFoJDluX1XJOSbQXyJkrMmmnXL3qAjCkQWVxHoVH+5DpTgurOrAUNh8c4PF5c2g9Js/2tyLtZvzrZOKJpP+Dti8lUpZGUhtu3bz9+etQ0gDGhOj+2TsBaCk4riKZZu1NhdubBOP359Ga2tZ+cKAffPL+pailTSbYlSvO0ppiizj6fuQSgTQ8VJqrDaSk7Ffxb5HVaGK+XjLj4mdwA1KoS1ecUreKXqXKnX3p6Vf3vU+2kDGwtg+t+rfW+zf06NYaNCIfl1BgmagddvPfhp7fvPLj0+gvSdKpRY8rYtmd427Z1WFVlLnmVp+YuIgnwilQfhllkwJhLky44j0sJqtq0wUHxpqeoTtBytZ15sOB0Yq4V/zgRTIiZVA1kpvAZB5JhGBgUQkiWxiEhBA7BmBdRb955cnx8/PjBwy+99tILlw4O9ucd9aFNjSTmQOqJipbUguRURSrZc8MwNGaNMCMYCOLQT87BjWh0Voekk8IqJSLWQBn8Auq1UkCMIwmTNZYSWJk6GCUzFYzan7t09Vu/8RtJ+Oc/v7k8PHyIT4zo4pUbl9vn2m4elVRB4BBC0gG58QfAZsqOmM1BOIgmNSWBxn5YLk/m872Le+dff/7FDx72nz6+OySNmiF0wAxwrhYhVof3P3VW3KpyW7CSNBFEoFgLs+l+Tc/j1o5PL0+ozLqvVnwyzUajH05CUnzhM/tf//LXBYEQU0zDsDJFjNrHNCaKqkgpgTRZSqlh0ZRUlUXu33/w8HD5jS+/ujeb9WN057ObwiUfmFVj4arZzq9hO7NcOe3+vylPqGfTv8ZAzJUEyRAzvEv5ljKIRbkBEVjIIkEXJ8d938cYHbsqOTZIYapZXYPjrzERGU84Km8sL4p8KypytYernMsKMz2jKAPPsFbzl9frsxY+tPGVba5S1+r0M+vnLk1l0p9+Kqe0pJ0SrftVCCiqeuMcIbbUz2Yd8/EQ8fjJ0+sXL9sQwUKSKFGF6qsUN2V3zxTAvjohhH61vH379mKBtm0j3OVeMp8n1xRc5peL2F9ybQvLErDAWmzkG+E2cBGQZOudKAobzGAel50IXSZWYB1yLGthRTrVO7esK9RaZAdQmMS5OdfLwsnXYaudZs7UJzKh5G5Ia9EIAMbF5ttQIzChp9OLVv8/beG+taT12151V3BJnSvlOysJVjiL+hCtlW0FBm19wCpCj3lHK4axCXfd/uHR8c/ffvelaxcu7eU+SBwYQG3yuD5UrCCyGq0Bkgedy4qVFxkmem4953mJPHU5K07ZOSaMwNS2oVYybCoTCujpzC8z34ly8ouLUIkBC1pS6H1ECSmlFE2aQBwsGTMCk5nGODRNEzV9dPfkZPnJ4ZBeu3H51RtXL+13B7P23GzGjSQjJYAETAk5S00kOxXSGM2saYK4qQYoO48gM+fmeYlyCQjINblEib3Ux/MR2VsPj6FtLCCBYAGa0khqbCwcZg+OVgdXX/nVX+uGlX1689PF4eOUAUTDxUvXpNkhBDPSRKAAi5m7stM8mRFD27aNKx5SDGRQHVZH/ZJns53rl5578/mnn9y/+/OHSLl01I1z2vLDbepjU0p2IOLsLslUiqlav3EoKoFNddl6HGr6VUqpgkW75SGuEhgnUFIOGPcDfue3vnz5wvVxHALHaCuYLvuVGZkCEgg09kqQqP9fyv6rWZYkSRPEPlUz94g47HKWtJJUsuKsq6q7qrqrp4f1LHZkZVawAsE73iACETzgAb8AvwP7jIcRCEYGg8YCstIzPaS6WGYl55k3L7+HRoS7m6nug5qZm0ecWz3rknIzToQTczM15fqprocBAuecDALvPv3i817w4tdeYEk7SxVEloyVTaWaI2n9FokvFXak1acpQ1BVpaAq4Oisu4MDsVK0YIHSQKTE5NhZ1+J+3XdrFXG5f7ezml1j5gXzmRjEDAZ40kRBAUBMfSkQsmXmKU2ppfMQztF9JzvO6nozZ5i8lWq0IL1odt/COs5V90zP5+QPsKr9HDkup42h3uSit/uLhBiH1BKrUnFSckCW0zlYABEh562uUjTMZg0zNOLw8JDcDSETFi7be9sqfTp8Ta952UVUScjCXKEfHj4+6taYt551qmPYvTU1bS2DLrlIllFXHlHvinL++NipsaiqMvLffLd87sYdtJoybHJY1Dd02V+x8fR8h9HPXLZuGbMJ3VK0TjlJzR4mIpoxBTaIq4i0jamjnFxmEwlImcla0y9u2GKeomIxm8u3sTql5qoIYKfMFAbVzdxRULYwSk54rRLp1KRI2g+NuWPKTgCvdh80s9n65OSdjz7//rdev7C3aLlhq0lQVWJUwWARsQxJTooURjcAn19vnUL7tmp5JAaSRSk5C+S9rfpsNmsdN1lBqZdH1YwcE64jJBM7xyqq5IBIIEhVk40oiip8CCDG2DSNbxoRiSpt03jHq9VqttOGYWD28/39FeG3H9/9/M7Do2X/xvNPyV706hYxpkx737BzECYi8t7ao0cVgWjUEAIzhGeAMFise7CErH0ZhUhmfIhxYE6zA7CwwQ+q8ypxiFFFqHEtu4ZIGX4IHbEsDq6sV6fXrj71i5//8u/wtx9++GHsT04e4Q4kxnjp0q1mcUDOGdFY21SACFaKTcQsITbtLAQMIbSOQDIM3dlqPV9c3N/h569f+vqtK58+figEBoVgIa3I2qhqJI3JXAI4FRmX1TKnp3LiscWxqRRFJjtrojhWvcvqE4r1GWMUVS51jEieVxMdrDQoQfHSs/jln3zLoYmintRE5snJiSgJLOGIoq6Z4jAMhpqwt3fQ9YPE8MUXXzDj+vXrq24NP7PkOEMVHIY+mvM6iV7ShPs5ckvJUjiLaADQXFQzUrKZ7jEiplKXzK0VyuScEEclQB1Eowzdujs7GyS4xjs4SfuSlUhF2GeTl5yJYSiIlLhoKjaTDlkYF428qMUbzAoVx65LgcuXhcXVO0tVITHG6HKI2fK0UwxkS44Ug2pLQbF5Kw8y/pMkrlgeViVu86xGSkAnqVCbMh6iA0TQ+AZqsKMAcHjaCbWiMcbgXENEqpIbpmzmbqiqB0l2UjCxQAfknlDMDFEJ4cHDx8KwFq7GLHgsSDF8VxXtKbksUjI3gRgTQ6oWk9uSg1LD7qQBKhQVDDV5B1UDi9EcuVHV0rWmrLR9KdlJUisyJbHZmiynStmkTatFF1QMQp8czAFFpZ8uMccYzcwtyUpqTJ2grObwgShSeQNnavMiioxSa8QJhYo07Iz1q5XyiJoAd96pzS2Rs++VGK6QeEV2qbysUK1kBaUQcT5EVSVGC20RpgXsAKy9H6zju+Mi54hcgYcEIUdwRUR08Em1ZeOOgBDYQyXCzXa/fPD4V2+/+9TTN5qGJA4KR0wSAkCzpo0x9mGYzWaQCAOKVaaMbAtAdezfqakchczhbIKWgCgxJNVWRSGg1nEXRIRBjWgPyAwgCYY2a/0FLaMYYBWCWVY5+9E5JxIEILE6WLVVSN2aRUmRJ8GIh2OMYAkyAPCeowaNsZl5DrEFx0hBoI7ZLR738W/ffP/B4dErT9/4+q1rV/YWO548O4raNM3QDbPZTEF9lJZJIIEiMy17EdrZdQ3YR0UY4oy0cTx0PXNqf55aHKA3RI4gQjSQ844bB0eAADEm5GbPBIkGDxYA18zWy1PHNJstQr+6fuPpH//ZL2aL+e9///shPjqzPCvB/sXQLPbYNeRYRaGG6M/sGogOGkG+64dIcC1i7B0Ubrbu4snp6f7B3nPXrn/7peX9pfz2k8cnMVDjpQ8OTFEVpN4TU8qtcgpSIQkqVjYPyBCi44aYkc2UCBWrQba9nPwHIJPWmoMZlWCwcDU5DhKTuaDpFOdcjKKC1jeQoWVa9rGdO1njv/nl689fPfAgodmqX591vYi27bwLARhMA2CGxBjCmgiLxeLw8fFs92C1Wt/9/Mtnb13081aYvHNIoGgRqkw64tsDyVYEYP0pVZ3nEn8hEGf4pnpHmBhW0RiDJ43SxxiISJmiIJLmYgdq2TnmMPTd6iT2azgwO2JmdswEcFTN9UbM5OEYSiJW/M2OHakwMdhZ0R2zs5h0Lga2GWaBXajeV6VHMsI5cMpyoJzBTarO9q8qRCygIAAgAgkuyT1VVUu/dnClcXsWKxGjXp+MJePeRGTxKM4R6CwZFKoOKqINO3ESQtAoDsTEohLJ6vRFIURwxIFECE3TLNfrpmlEEHrZ3z+YOayAL+8eR174ppHhuGkdx7JMxrsimIgp0Quxz1nubGK1gKErQUWhohoFGdELIE1iTFOhNYHgiYOMad8p35iSS7ZM+rgSUw9DkWQANmzs0r2ySND6ciKayJfzHlG0XVUloA8BgMNYPWnnpfbLgKrGEEtYqJxWdrE11SqJc+c//ryf6m9GgRcjMIltn1+zVTwN2Tqs5vCPzXCZ3o2fqNwon5aHlL0F2dpO+o1sDj5dMUZnc786VmurG4IQu3XAJ1/e++yru994/hY7hCFYxjKyY8Czr+9MJCBiK1yi5G6sX2ckGERTMMdlYkJIhRusCCkP03lHO7NWvaUCT15EpVK0M1RTzH06J/kuMKlLihGf3JRJ1c0etmQ1lEi1j6okShppiDFC1iJvf/LV6eny9HT50q0bT1+5sD93XgXSgwRelAMcqzpKDRYQRQftOnU+NmJ+QcMJVChzKjjSNGYiUWrIylklglhUSR0AODZvIGVwKyUAHEIwICWARUnYX7tx8/vf//7M67vvvv344aMhyqrrr3SrG099zS12NZCCvePWtTH0Xd8zaHdnf3W2ViJlIXBUQJVFiGS1PNtZtLvzxTNXrr187cHnXz0+OUGgGCOcAzlPqkAMIahIhpxPbhhVlRAtEKuIMSYcRhn3OKiye8oajJS/FVqqgXRKarWIzOfz9XotojFggOzv+tNV/7Ub+PkPvn8w31sPwBg2duv1ehArDnf2JZNn5tVq1Q2B2jZGOTk5Xa3iSxcvtW3rmta4ZLLLU+MWK6RM+hzlJFZoguDQUoeaizSpjt0kykxmjwRDRYlK3vw2lkURozoHVpEuSOwTUalY+wTjObGEdVxSphMmMDMVAykLLTIhmKm9tndzXsgmU6qPskw02UrZWht1biWN9nqq5m0o2eAj/tIGs9Wsn9XpO8geR1UFjfXAiEGqAWgJBMhY82autrS/iBRw3DgXWTkoBlOVCAQ8OBzO1qEJgTVKCDG6PA/Jwblx+E33dM4RVVWUYu8JVVOx0HXqTCgzmCYFqqpMm+5vqsyyyQezb6rgMmm09UeRf7Y2WTiOl4+KYHrExhNhwltTCbxz1gkAyM6cvJZJrJbUDOtlS5QkbikR2ZavKS2wqtWz74uxXpNaNfipl2b8YvOweVXVmjoBEJ0zmHJMnkuTnLwsiWsJlAMEmoyCc29Yv77kiAygBSna6Fc0tI0n0Cef3X73/Y9fuHntYN6SEwK8c1A1FDAwhmGwxmwYkX0kYYqRrx63vazjNk6ERyUAn753zjVNM5/PtWnr19x4HbUEHE0QYdYa0TqWWAtVTbUHVK2mbQXRyt9AROaPVYVA1xFsCgXDiXhL41Q9W8dP7z1+fLK8/fDRN7723MtP3byy05Jna0+nKiqpszEHUSKaQREiLVkbeAfHgSiIeqhITDE8tnpkBiBxMFZqBUqsbE5dR46YEUHsc3AIAGazmSdAowSNSstVN3N88eqNH/3kz2eL/d/+/jdnq2Nm3I9d7Lpbz7ww37to3tcegVTZNQQRZeecQghO1QduYxxmGlWixNitG8xmVy9e/uYLT9++d+/BcvVwqU0DdX6IqlBHKhKHCOcIYUy5dCoaERw0iZnkeJgoRzrZd1kbyeGn6jSt9kUhknJ5P6zYwSkUjXoXdM2Cf/qLV1/7+jckuKGPUA3DijWlwWgqB+cQ1ZrVg9vTs/7h4el8Zz90/ee37x2f4vLVa+xnlqRkFC4iqBrEZt+YkZCWbZvrU5FsYKDmMHnYGURCRDWAhNQpoFa7D4WCSR1D4tD3fQg9klsuOvYW61XNjJU9E4M474fx2OYGZeY3+DwR1WWf9Sbd3n0yujxh3caS8mTG/gSx2RbeLKKE5TnevyIA+yC5rjc5O4GoAUjuMpKoGfCZHTQ7wOxic0oXa6fiG4lymNnCAyIR8N4TQ09PEAaZMTtq8vLVaapWwa9FizJVMxkNkgR1Ratbc09VDBVZViHTxvY6bfy5LYE2hUe1K2jrwvqrPNfnR5S3ZVKRsjU0SZnumjK4+nUYhqZpmKnkJWlGdtx4u3PZwfYmL1fZN4mAaHLVOBmYzIZ5GQkbJ28+d3tU9TDqn+q3Tv+WoWQKthf3PElT2thak59kfAtlmi12lidn7330ybe+/tLei8+5RqTvVZXHOpAcJkglbpVGXHlEtp+oOnYSxHRX1/oiMzdN45xT56yNwcYlVMls+82N39dKyaZ7ptar6hj/uL5Cg0Rm75UciTdoB7ZGfHNx+uBsfXh65+RstVr3rz379PWDnZbENZEIShByTsFRiaARghgYgDhxxB7OMyParrXQdyanlJloPFBVGUGEKFren4gwm9LgUjdmwjAMClWJADWzeei7PgwMcLPzwx//bG9//z/95787OjqM3fpRCBKHW8+8NN+5wO1sGCIR+cYDWK9XjWNSQDnCQ72qRAkWYOy6Lsa4f7D3/LXrrz3z7KePPj7rBnhSx0MMEuOCfeNcRJSgSDl9cCAr+3aOW3AUKMVq407o/En0v02ptVt6dCmR9AELzyLinHc7i5Pj1WvX8C//6qczv+jOBiYKsRPtRQcRmc92VtIjguCYCaSi6vyiG/rD0/UezbpBPrv9VRewd3CR4EQiHJ0/2mqI9a8hBACGG4ac721WhI7vn7YqTCW0yiCwas5FJbStF43D0PdDJ1Gdc+xcwy4X6ZImQI1ky5a4NACqGGZinmQ7leoR5OnkDW8QprzlHIlQBcLs+aqaivwQsxgTTb3Cz6+yydNQjqSU1FO6eVaWvvljOvAEzlbehawiH4LURgLM1LaeeegEfT9cWDQsTrSwsriVhyUggpIfyyJJtlsplOcVBj6mGmW7MzlwUreHlOOqajUbVDJc8stjoyXy5uulDpcuZ/8lKycPgmDlXmatZl1p425FHucxAFY8qdq4UZBoGqZdYrRElBJQIRpkFFG2ovacsaM7KnrK4mT0B2wPafuzbIneNB6kuR1fh4lyGmJ5Yq2RPWlKkVeqJtxtaZFGrtb6t2ITliTEdQpxtQFoM4FYVc05THAxqPMz1yxv33n0zoefPvP0rYNFE2QdRNumGVMNHIuV7tVCV4Q49zlR1lHVmCoc07UojqV6tp1zzjkkz+ZkTxLlBNDydmlFkvFYK5/nzhsqv8j2YU1hrS1otHoQqCovu36xs8Pedf3yk7tHw/DRqguvPnfr2l5DDg0aIrBTIRcsUDcED6eDBIFTcs65piVv+JQQVtPHiciz04x+QDogIwsysyoxDGbECwuRKjuACBQkenZCQozGe8dNt17GOIC0dfzaa9+Ytf53f/+rr766G88OO+/vqly68eylKzcb1waVqCBS13iNA1hFGWoVCkxoFBSik+iJB4r9frv//PVbr956fLK+//mpgoVchIggIwzF1GraC1g0QMWBwI4YDBEQ5X4bmUXFFFWrHMtT26t80Gmrkvp8As8aSBRSgDTo2gN//YuvffO5Z0OI1MxnGoZ1xy52/RD66NzMOQUHhk+KR4h+vivs1hGy7td9/OrhIzg07ZzZF6jDbAFrwkuhTBemCI5SNQ8zJ0GLiESo2CKmylckB7WoRiWAHCQVFFDCiIRK7LvVuu8AOO+ZmMiRM28PWQ4EAMtmH+fEqopARGyRR7bU9dylEwAmAEejCE9LwEm7GXdQNeel6XKJBCe2LdEmJE+C2fLFDyaUnRwiE0e0qpplnDq5WQV/xc1KdczYcJkEoxs0mQ3IOm0ym7fseIk5BElKGpnatvGqQwQeH51c3XExaGlRky/dyielggU9On45/bnFzK18RUS0Ap0pY0qayNThsyEYtul+e5PQ6GU555jeQVVHjKSt+ySZUz6XfOCiPHLWyIhoohaUlEgRY6B1LiWlZI2JEVy4+TYjrqX1xiCRdbRzmcWTZqA+p4ilbQGf1Asat8q5TKdckq+aGOgASEeL6twX0SqGDUq9vZmIifohgKiZ7xwvz97+8LNXX/n6N1685RrPMbHLmDJurN9ZorsU48kw0ZWStOnJh0opmCRy0KhMmJZiEYGZvffUNERUN45FUXeIyDQAKk6HcXJ41IvG+ddcvrUx7XZW+oaVxUIfkuNJFuXjpnV9FE/w7U4Mqy8eHgf9bNn133jpKXV02fnGY0Akg0iV6NURiTI5UYXGGBslVUvFTwlHFq3PKZAJXyJ5EjhnQsB8kWCzbARwHoBzzjcNB/S9DlEIcH4m5FrHy+Xx3PnXX/vmhd29//yf/v1nn31x9Oir9dD3w3oYugtXb83mu0GiAo4pCihhdHuKAXAKjURMTRBxg8Q+Njv+6RvXv3Hy6MHx4Z2joZfeO+fJx6CqllhnS0+kqTqzIHRo7p5EWVcypi8kNd0WCskepmpj0sivEs1XTt2mmXVDtzef9bE7OVm++hT+xS//YkG+N3CPoe9WJ+oNrJ8tp9ZgoZiVuFWNi519hVv2YRVWp6v10fGpMCjp/axhiCmvyaAdCg4lyr+1ALYFzQ2+bDsQcu5IUlnNhlOrqyndhVGcwApZrZZ930cNbTv3vlGQCqeO1GX75w6TcTNddyTvUe9hYmtZwczMMeOeYsqdOCPtVNtictTSASRQkCSr12LkJlBrd4dOV7msHbI8tm9KKQcqU5iq88tVhcNvC1ooVIhBQScB3CSGNVqElB2axomCgUePDv2zt/oODg4JW3CzOrQcGzFgLkZwkklaoKjtS8ecq68Uo31ZIp3JlsqzU3ntKsnxRJuViFLlFka7J+dwG+LcOGVEjqj07MyujKJLJPz5ib0CQDXqWGLLyIg5XI9KAsjqh5k4JayTwXDnu9WWLuVj41nlhvW/G2+9PQ8bUvyPqCxZxG7qQ5ODCefdsBbS9bA5I8hQJnSqFKx8n4liaCtViIyscw5IGAQOUeazNmL52Zd333z7g+duXdlpvHMkIdVxiQaJESmE7gSwJp8gHu1rY6/Jz2oQAUJSm62k07Q5ZmblvAm1bRv1niqSKLNBRCTlc0o6VXOHVLt9urhV+iVSZH1jSs0SEAyUNG9CgnZ1ANpZE7pe4qBEzs2CyFcnq9UXt1csL60uv3wtXt6ZzeaOWZ1tyaZVcT54dhTN/pGOB/bsmNmBnHOwFHqOACEKMasKmFTFHizgGNVa1kZVVU9OITZOKkxKlJicbzy8P1se7+zv6np9slpdu37rJz/+Wdv+p3ff+yh0x48fLlf9agjrK1dvtbNdJbIkE2FHqkTK6kjdQBAiMDAMxFh3SjPZP9h9+da1Ow/uf3505/YpdIjcLAYeRGJDzpFAJuEbE6NRU1DOcpxLBXBN/yN/gBjJbGycjU24sb9C3zMg3g9Dt+fwT3/2ra9/7RUWVtUQV9ydauiFEaL6dqbrJSz6h0aiEqNpZkBzdLZ8+OiInT9ZnnUSwbCuowbNYZkD6dUUSP5Jyn9uDI/sPxHNNpvarYDkLzT3rNUwhuwVUGhOZbOGxT2yP6bsGuOsYFJlIqsZR0zmOJlmkTZXIuc8rNRSMKurTKyWGWje6TG2NeFmFjUXspHbPqmqngGUuK9Ao302bcJmJu04Gu2WErEq+gtV/JYhkJxKnUIzQdP9swB+gkfEumeWe0OLbEqzh+ztA8R7btuWCax4dHjUzl7sTutEn3MPIToXiMOWhcwkTAI45qc657JITi9ZZrnsBHMt5gqWyYjzx3G3l582RIhm72KeAhvauNmyVjURSOWGtYJTn7Atq/KO3cwtJGbn3DAMZjo0TeM4tWgs71juUE/CxrtoZXNvTQUMyavi2hOSrSf53BOIqCBZPuko59ezQbUdWX3JuTGLkbOV8iDHWjYS7qZ+ksmWU4CZW9eshzXIu2b+6Gj13kef/sn3X3/q8r73LsbeDNNBlTUxF8tYgG1VUeVI6jfRzLfFoYLIEY39qYgAMqkjBCZF41zgkaiqYwJMY48WVRZjQagVkerdx8XdXtn6Cd4GLxCQglUTXFV3ero7n7WukTBECPwsEB4uh8dvf3C2ftoJh6sXLtFsMTMgZkKUrEW7xhFU+hg1xNa1jthryhxzzpl+WRDiUKGKkzFuElXNdOfJqbJ3rhliICLnG1JBlCHG2A87u/t9d+Zd62cIfXf91tM/nv3s4MKlX//274Xd+uzho7uK0F2+cmO+s8++ifCqQnAMBTkBK0mkGPpOnWvdIsCdLM/2dudXDy6+fOvWp49PT89OH64tCqHM1FBDGdDJejg7JscgtkZQo1lDmTJFptkSRERk/ZOHuMkBNioparoiIhXxns9Wa4p49Xn8sz//4aKdk7KLInFNpG3bBhnioE3jrWrfe8fkuk6JmBuvql0fHjx8NN/bPzs7c40HwmxnzswxBlT8sPL40fnWISH3ox0NtZTZay73nD6hmiETiCtvjagihKHv12S15c6LSAiRfWtacjF1a8ZF2ZSyYY70k1mcTbCAVKIhmae6hul8bvxbM0xgZD7le6sIFLUY/yhK6zuU2bAPucpA65/KUfx29SVSQr95JPVV9f1FBMUtMN6hvKGKBoUDmYBwzmEdcHx0RuQkIjgJ02V1iZ2Mh89PTe8MIiT5GpmBhod+HYM9mwDt+958DjUpM7NYg27DhKtWFJPPY11BRoTZtMbY5exTjCjNRARwjNEpnPfKRohWCerKnHKmPBFJOFOZd0uKDFDjZyEECcIZzTQnpE2z1VURYkRkl5HxRVSseTVvawzlXXyqXMmVX6BIyRVW5FbtzlW1kifEaBKOgFIkjuopmUbZbdNZ3hKb+cyV6C1vCiBunFM/yDIkkfomJaCxMPTWera2gx2cOh0QVQ3+iliBKAK1woWoavV8XTewa+d79OHHX/z+rfee/aufh2GAn2nsu67zcz+EAPAIPqBAUrvZMqWtWjGBM8joUypvV15HNYFn1CdY4RN5bwY3GY6zbQDve40iwgxWRAkAlNI827VRJcbIIPtMREWX12rpc9p8LISnKkpCamP2RNwQqWcilYgQO/LsWidCoqJwCvQDvfPp7e50vfz6115rb0I1YtidNWGQ1s3WYXBxaOdzCHrpXcPDMJBvoF6FBoQ+DJ6dgTyEMFZ8iTljfaq+E1WIwik5VfVgUUvWTJF+BkBMfkZBBnazKD2zc7P5OvTt7oVvfvcHO3u7v33zt48eHa0xPBhWw/L4xs1nFwdXlMmRc0oQCEVuFbqS2DctCXQg7Zanly/txBAWvPPKMy998tWdo+PlUSfLIbQNQojr0F8gHwSREVNKTiRFUIlqmaqUUoM1CQNmtcbsiWmW6CSRVtA6KZU4AcUoZVzFUTBAPCOoNLNFXK7+8kevfO+VF0IUqNMQdej7fh1VYk8e89W6D9CmaY4eHS924D2Td865O/fufn77q3axd/PmzTv3NEi4dmnWtr7rVgXembKnMJfJiOi4GUVKjhhrqtVO/4mk/2BoZ0n0SuntQylGIYB1Coh934cQXNuoEik59kycHANsGJXGq8i8yeYNYucLd3ZWqpQFHhEEbBEi51zK7KvYUaUGu4I2ZZJcbWyqll7DFRaVqgpM41JRIRXLf7YgrjU2wKYCbR2JJvLVLMdiRYz8OUrUoLWjzkL9ygqN5hKaJm0550KQwgltRxOlJ5maG1UdMVQazyHCMU7OVlFUmdq29YPEOABctBiCI4r2FjJ6KabqIIOCqkRBDCH063Vv1rjVd9dnahUuHfl4edgTXKz11Gz8ioQUOvleVUViJlUD4U1n1M+tgbZroZ5eylDsYszpD5MhaZW7izr1aTqMvAbEW2ZZGc+GYAZN5mFD4GU9q3ZdjnndG7O9PW9lrmrRW496+w4bN9GpS2AqsMf5IdO+Y8IrGBdxmrgn2S0ImCB1RC65pSCR3LsffvLGq1//+vPP9KuzxreEGBIWYC42A0iFwSAYM9DzcCK3P2vqM2E7ffNgZjCnli3VtfnI+qdpe0zmmDW/m/2TShcqlQXTNaqXoF5uUoNzd1AWKIYYEb35VGMM2kNIwezB5Pf3L8Ru9fGdh+tu6Lru9eefvnFh1ofIoNXqzM8XTdMOfYT05BEHgUgXRUSapskREwkhEDU1V9TMMsxuIgIcEOGSmugVg7JnBDifYvgCEEOckIIaYag68lYtgldee2O2M3v7rd/du3evO3n0aLlcn55cuv7MwbVnHc9ISUIMEtWphXJCDI5oFTon0q3W7WKHmvnBovnWCy8+Ol1/uTr55GGYL9qzLvqmkb5X9gorgtaEUsBwRNklO4nY1Txn46j5QPGf2Y4vHKPsOEs5IIHT1a1r+Ed/+uMdcrFpSZvYLyExqkhURKhyJIJn7cKNm9fOzoY+Dg1RkPjZ55+r6tnZ2cnZqfdeBOt1Nwwd782ZKAAMa6ULpaDZ+1Jzg+IfRcYO0uoFsmfRrrTUdTMuAECisifHTYhd168sidq1DZEjdkQOTArOxk0qOyi7poznXH6V+AClBCXbKdt80jacOW7q7Vl1EbA9Egvvyq9nva4nG7zOktne+LXo1cpZSlNrpHqR9HZUBOmUkMpV2ctLhXIwfaLVKZmLmFSdc8xQwRATNszo5aViSbNpTtmutm5IKYZHGXIouxlFwYgxrtc9E5xrQozY4ulprFvFMPnMLaFoKbIpcjk5X1UTpqiVlhOAFAPTlEcaFTpt2zux9srsZETQioDychq9bbwCp0o4U6iYcvxDMgQ3YUJPE8E/cbPUlplqhisJ+fvt2Tv3z3MF58Yxfe75HEh10+WeiCBXMZabGOqWZesUeBbKFqR9sCIoqy2X6ThVxyyFmBwAZiin4BExK/sPPvn8rXfee/bpp4m9MhghDIHZp+0vVvBjARurAlJCNAcbWQKOjvrTOdvviYcUHXZ76mzTG40wMzmGpPpvlFWjpE7Z9/X23pTBRmKsAFzC7WHNoHcq4lSCCntmx+Q8rCGdiIpEcVDue/7ywSnc7V70m09df+bK3nzG/fpsh9m3syEOUJ2rH4YBRFFFdQDQNI0jFxWCiMHUdjGwIpufkJeMWSARzsSx2WSsUJDjmBULE3vemV6jFrYjQImJunX/8tdfbZh+/fd/f/jocRxWq1O0rSei/YOrfmcfjmP0QZTRsCF5koiuPbtuFVqAMSzmzdefef6rx4efLj9+cBjQ9yzW2jCy86lZlaooCyhV4bCTHLCvzaFCAEQmH1CVUeQTpoppEdt2IQOq1kpIhxX+7GfP/+Cb3zWPjqCPMQSxCiCNKQ2GCY5IH9x/xK5d7Oy6xr/51ltn6+7w6PjobPn45GhvbxEDnIP3HkQhRm6a/CzLWgZVIapoBi1Ux6pUSjEDS51Wq10Vl0WIxCghwIIdzrSIVCrZhxBj9N575wge7CjtXQYpUVJGAE5ZxbYdjM4z2EjuFpMZLJv5bja06daWYKAVxxjBJDQzk5FjyMS3nIpZ0pkaRag4I3UsDzKBgerCJD/t5tlFULgAldLB8iASQHmKrTNyjzha6hN5lPpdFims1XiA9KqqqobWpkDXxy4MOTwAYJuTc3rx85sxJG7po/Qg7br12enKe8fOYVKVMb4AANE6Sad61Fg+W3wCabiF7IB66jaVnboUpy73zjJ3cyR2SKmDLKpljGRaWA5k1gvgrOuqUiGXTa56XrVxPZhycrl2Ik0rTlEP+lxL+r9G+j5pAPbX9pDKbxsyY/sONQliqmFs4JDolkpRtlkehygVlzLB+dNV9+Z7H7/66qsvPvu0SB+HwWDwYhwSh8w5z6pKogmYJQtJ1IQx3RI1CdVLUNBHLCN4YwYml+D8hDVNTYKBTI32LJHxiajoRCtNHCBVijmTk0g9OWaKg21pBwBMpKQQEl13q7aZz3YPnKP7R6v+7Y+x6mfNizeu7AjcMMTV6gzsG8eqhAhqnGiwwF4CBSQiIXJKZCDHsaibpnmVQap5oOFAjsnb+0VWtv6vUBhkChABFVGKUK8spHG2s3t0cnTr6RcuX7z2m1//6sMPPwzD6tH928vlujs7GS5dnS/24VvnPCk0MkEYKqK+cdJTCNL1a9/QYjZ/+ZlnPjl6eHSy/Pg2vGeNg3NELCBJupiyConEKLlSbaQ31B4gZAE8rkhW8et1HcmgYtBm9oM8Y7g8w//mL3/cUgOBhEG0j6HvYx9FY8hQ/kIA931/7dq1s25Y9z1L/ODjjxY7e9dv3Xx2vvf5l5+tVqvZDPPFrJ35LgyQuOMXIhIl5kifZiUAEs3nmv1hYjOOYu7Xh6h1TJAgscCSO2L2PMTYD10IPRG1bcvsYYCRRIBLNTZgTWasI8oUXu/iaVOEccuYOcRJJ6WUV1gzj8roonPgAsvutpzn8YUs7B9DvaNKcnIdsixDqtZRt3/Fece5309uVV7DEn1sHhJnGh/hnBNSYg0Ag5Ux842tY9+j74InL5JMmqQMKqeMk9GDRgWKknITb5mMSbqT06PDkxOCs8bRzk3YFrKdqk9IxM1n1sY4NiarjAaJ/ZoASHez/rWpmkCrbCYSVTD7jcnXVM0N5OxUI2ayuANAyQME1UI6quxUI4MAC7IWm9tuzcXRUrugz5W1tEGP1TdlmcdvkmE+zp45h2zJYu3a4XOm9x88NOt0G+OsCS534gQmClMOLtgqiCiQnM+S3ea5xCNF3zXDQXPlEhSlBONORD5698mXd3/71nvPP/OMZ9eLzpxxhNqPkdNxRcixLTVUhDfVploA/7FZILVoaNlOrDVlCtiXBNTUgBnlc8r2t/ql5DVLGfaiUILbmNv0WVLprQ0vQg04h1hB1rVQhyFIF5XgiL0j8s47n7NuXAx0b7l85/N7bduSPn15t1WHVTfMFhTgYggMxxJFQQQNEmVwnjw7710A2IHUMpNjGWEpxrMjaHTqwI5IhUUcs4gyl7bQAAECqy0DESnIwfkoun/x6rBazXf9D//kZzu7F978/a/X627WnB4/7vv+cPfCpf39a838InQWg7KSEnRw5BoljQgxhijcy87N67d+sHywOju6e391LAJoQ2CJpCIkYGI4VoaIRohGzfgGVHm8tIqhUnasbSxKmYSaWZWb2DfsENf457+8/NPvvLpedns7F0VC1w8h9jFGiYiKoEFS3jEWi93Vat0H3d07+OizT4/Olov9Cz/80Y/29y/96lezTz/74LDH8XG37ru9g4OLFy+thx69xBg1JETNLH8S4rCqmp1qmzJlDGmx8ciQyIOKFzOAI4l47+31YwxxGGI/qCh551xLjglMNCYA5XdnVWSXRmUX0nhO2o5pKBAIrMR8ur00J0NtfImSuZI8TEZSqWoZBglVWcCiETn3qhzpWjWYEQOMGjmAg5t4Nqqnq6oBiiDt5ZFL5A/jN0XA2xM1t2+Kme3nqZkqE1lOR6BtWwDM6DsMwzBrnWjIm6i+irONZ/kXTzjI+g1oOD09Xp6tmVOx4ATHgCbn13RczYKUEVDOlaBSN1xdjkrz2j6K0Bq5bRLD54wcgPdeRCx9pgyMmUI/8b6OPF8VYNUx5zDl6biJzV3Lzo0n2lVcydqaQdSfz7mwYig62SSoL9+W9+NaTD5s/kpTo3Zz2s+71XiCeTiq9dLcflUEquPWZU31CeWqXPYeKYF8gJv5yers7fc+/OmPvv/8rUs+NIJAkqohKT80b3uhaidvSLgnCWCihNSjGiiD/Xl2vmlcRxvpDuPUEbI9lFBlNL94CXSVsZVZBUAoCRqVEZYdBhJhKEYMA0KRUBI9bFtkr4Lmdm8KRBWNwbNX1947Xf7mg0889LXnb964vOdJgyLGQAGzpjHPmY1WRBDYNQpQjAKwJBB3HbGxKiEkIs45UQWb0hEhXr2qWqMRT6QhtalNajzBMQPkwqDLrps18zB0g/bf+e73b924/nf/8d+fHB7psBSsnFcH8n3fNJfaZu641aisHAYFpA8dE/o1OV4s9havPvvcnYcPP7j/ybu30YuGADF+aPVlzI6cgyJ1KNgm5A2SfgKpj4hLMHWKN/dFDH3cYfyrf/HP932zHpyIKILGTmNAhEWgoyBY5xxREe2HuH/h8vuffHTv4YNvfuvb6/X6b//2P1y9cvP07ORg/4LE1cUd79v5EOT47LRt26ASY4wSuXKmi4xWR03SeaV0epCIBAYFjTFy/jnG2PUrzbSnyipgx+ybdDtSy3NAUiGTFYuKF+U/uaZ5+79URatEtJFOscGyMl/ZxqIa93K9gQGpvF0lBJvMpHyOIq9uvux/haVbfip8shxlg2xM9Dk3VM5NLIWUVCybDt57m5EuYIjinLPQQJ6vLRQOAJULukzsGNp03kP65fJ0ve6ZvWWKFpopp53H7uvmxlYOMZ5ZL5PF2CT1E3LVsm36SLMgTy9TpOZGOdOGpKmGQZkoQ7mwSF8k2S+oFp6tZTg7yTVk9agqSi1MzQLkTjeEQVZWtt5IVZX9OYrLFimj/uk8Wv8Hju1z0uCNuKclAeN4tl62nFMGYAq4qpbUAZsSw51IZfiwVVFVBfumbe/cu/+b37154/JPZs2sW3eN49pFbz0JYREBS46zyKRVrNqMm7eurO/mRiRg0gg7JUIT8dZUGO8SETZTN+dCUNH981uLCDdGyJsSN3/mPE9ClnxEAODEMVlCNCKREqKIMhNRm6ZINIUAxTXenqFM8M1Khjun6998/mXv5Bt88/qFnTl658i5JqoxAIvmpZBpFJBEqwnOGCWJxdTrroAhWVoOu0YL+qpqhGsICa7Dls1SRUmZyBO8krStXwnW0jvnm8WOQi9evvXjH//iP/+nf3969ng4W57K0K/Wfna8s98d7F9t3Awyg9Mhduy0D8OcEFRDuxtCM9+5/PLzL33r9GzV3//4IboIOJdyR1VBwep+WYmYo4wz/0dov+yUkbDHnyb7t6aaEPHnf/H06y99I65017er5WnPyz52TiGKQTCoxpjqRAgKuMVi/9Gjx3fv3X/j29/a3d97770Pul4ePnzsHDnvVOnC5Suq5JoZM4UQpBKnpaAowywagLMUtmYLKlMJbH/GKAgxhOBUnHMhBEUMoXfOOfagRsA5jpv0bFWxqJwQamj4ic1Q7WIkWe4AM1knKqYU6V35FcpVNt1s0WyoogS3AWTAWkNXt6yO9JMBDgpg4eZ6kyYBzMg57aq6pZrnEU4kaK16oohwsw5SUlstd+ye9gqxCLhKLE+wtyAqEOc8AGZ0A2KMcKzDpp2dX4YLYEUSwGzvVU4AJAh5jTKsVquuG0RZQ0qBlkmbzvLCYx1w/adpmnmVGKmf4eiyqPh+MszLAk/FTC1fqZQWxCpNvMRTC41Sla6c+dTEh1n+NB9OmWHKEntU26bFuKOUqmYAycqZzHj6040u63Edi6ZZiWeamtTjLG05zepfp7HkiUqL84709JxPnhrZPfkoEEuoqZk0SHRJ+oryOLeiwbGDlefn0EFQdeD5zv7Ro4e/efPtP/net65f3BmGYdYsRDLQvkBYmRjTAoaibZtLSmvtKu9qLq2Jy0Qo5zSNWLmdq4klwOCRVaNJJjJ/FFK7eEq+49S0TjwomeWJwml02qMiXbIOnwSNApCIsELZsbN8pGg7f5BIREzEPIK1pd5cxKpQdto2nz8+gcfurG292xO/N29njQuxt2c1iTCyohDhHBN5IWeL2yIV2qnLhGf80cznKMSAqAH/AKKK6Aiq5ErCSA7/g6Hohr6d7a5XoZdh0c661Toq33r2hb+6dPD22795/+23lifD0B828z6EENdLd3CTyM1mM1Jl7xAF7EUpDKsQZsT8/DMvvPbozvHx6d2jFbHtC8eJJUcp5qez9Rco16WDGwtKsEZAMDRkihCUlEzbg5ZgP26TCHKCXca/+ue/bKlxDHKuH5ba9J6TqBAgiEQlESaxWyKIvP3uOw9Pjn7929/M93fPjpervpvNFjEOAmXnnr55y3vPQN/3TIQoABwybGqy6gTEEE6FzSIAK5OCrAdsUKGpHcyqQQYJAxGpOfri4LztODhm71uQU0IMYu1cwabCmp0wemKomr3Mo/IOKhU4OdEHhTk/wQywr2uvdvWi4wUFb3HDA7fNss79cvu5299s/Fp4rAVjUUmKOte6VtqAnAJXsCpJSEHkHcXIokEVBCF22ZCDBlFsZXvBDJ5p4Ygvk5jVfs5hWiKhMAwPHjw6Pln6+SVwDDHY+hX8aFiep7EwYuuymDADmNi7XBoEw4swRPIoobG60sw5E7YSRqzjSkSl3rrIkqY4LjBVbeJYdE/J21LRiEQRCSXG6b0X1SgSRZxzQ+rMQ5rcNAyoSKCcQ1p0UNMoG2u9bsDozqwrptxtaeMVUICO7Q7m+3JMRBqVySFFN82fiGBmDTQb3z7dULTkaCDvluzEzMXQzLaJU72jTigPY9qXqGpI1dHjmk5UCggARwyiEELRIGrPU6LXMskikIJPx1a9Lcn+ZwYj6Cr0PNv96It7v/rdH/7xz3+ws7MXQicixnPhYNzWMTkyzMp8bZpT0ayQMTtVUUtxilmTjRhUVK3kDqoqQVik8ck5oYgFL02Iwc6x4yC55SITOYJEtVZPDiBVYSL2nsFQBIlDH1XVe0++EZsEpjwjap7kVIusUYlzZFsVsJiedbU1+4QoMTgtyp9m5YO8CJjaT744muGL2WL32cu7kM6LEKubtUoqJKSqkXzDTDr0PbU+aBRpnPPMjYg6UiYNIQiYyPxowgqHhpmJgmk6xF7jwNbGVR1yxzpQaactAJqmER2aZiHkQwzUNJ7dWmS+d/G73/3p1Ss333rzNw/u3ou6UqXlenn37OTK5RuKRTNr+3XvvT9Zh/29eYyh6854dmFOzfdeeLk77T9/9OWnh0uNotEqCLSX2EsQxaylQWMXhNAEjUTOezeseyYQQQAlEmQ7SQEgqgBoFI4xGBq2VQ97vw7hYD4L/WBFXFFIYv+Pf7j4/vPXWseOZuv+dNbwat2D4nrdKfEQQxCJwqIgatark3Zv9+zw6PHjR6fr5Um3dEezs9X62tUb89nOELpAHRoHjRfnu/1q2TgiOIEghhCjxuyDJSRYCIHGHB4lTkEEYiVSTRUvlqynEnNFkjBAnh0kkiqRsmP26ljJEpydcy6IELlEnSBAmZmYlbjosqIWfDGfFZtRAyAHTbIBoAzLGSIgazzsnIhYaY55qVgtfSCa9CqGMmW/lUSZNe0wdLBy/L5nthIt0wJVuSo2M/aUYRgTi88RQpOgVo6Vyk1NOmSNtoLgDs6c8FRs3NG4qh5HtotlUFWlEVvbVDeNMdkk3KRmoCbTQ1AAq3VQ7FqOo2MmDawlRp4c+cauM7biVDexDuTM3IdweHioQuQbUiHWqMbAoJpcBHUtXW5MzWVhimMdOYJtYjh/KM8sbqJNe5+SK6k+Z0xUJj5P0TgvgFprN7WCU5vOlfmSophmZBSlhdnKOjbNnfQsMq/rxCwu8nj7KMPIN9T6y/Je9QtuvGz1djmpEkCGFSRK0Aoj1W55sE1yFJcG4/yhbrxClmRKldU7eYowlEsGu/XlgVn8oFXsg8q7H37yrddefPHpK70MSszKBgqdl0hiJlaY5sG1TU/1SExrZBoR+5RLqac9Oo1EyPBoBGAFWyVfVIioR1XXmHdsmuRsXacXl+qtc4SiWprRQ+Uoa9HV1KkmaL0NG0LVwHOzxV8IQMg1iziET+882pl/vHj95UWzd9YNu7Om73slNGAlTwCBuXHs3BADK7NQjGBEdaQU2QHKysKMCDhKnAslxu+cueUMtYCcsG8sXTbFyNPUi80Gk4cXjQQh0QGi3RBJ6bnnX7p48fIffvfrD95/9/joaHd3QYrbXy2vXLu57y5qjORosbe37jtuI0XPIZA0F9qLL9187puHAz/4pDmMqkFVWdk5570bYuyDgl2KYxr91b7o0r+niovZPi5Rg9JPm5kXTdOt1wLs7+x0Q8+kC+C/+Uc/u3XpQKOu+rXEnjSQIkYlx2fLdUQjgiARwiEMvm3ZNX2Udmfx7M3rH3z6cdetl6vu8pVrFy9fWq3PHh53Fy9fWq37o6OjRdu0bdv3CeSLxro0FdUIZqXcrDIBwQkkJMgREYEkDAspJgiAxjmX2o0QMUfvwcTsODU3IiiEYDC62b9YWJxNUjK6eIKbfQ4fIKKSwbpx1Hs/E7P57cZ9hMpxZKclYMjc4klETKrlhRyvoipHpOa9BtSTRQFn58FkZ42DzB5mNW0XaSQbKdaJ++RKsOq9rGGRBhUmF1WjaoxRhOHgnPNzYAUA625QciJa+tgC4OyeE4LAksuqMqQtISHM3HXdl19+pao+2SLYGGsxiNKgq2hrKSEHkIGHqEgs2/ApYkbjLNdrWa8u5XNs+QCAJ0lJtmBlMYoYq37dJJeykIa/WK6qT7DssxxpINWxkRmKqK4u5FyHozp6Gqhq50Cptjix1+krn+9mmc5DNchKoNZDgo7JzNiyxTekL7LQTTJF68eNX9V5RuOsTqsX8oPqSa69FOYGATPTAAB/ePfdt1557umbV5Q9JysuubYoKyPJhCWBgi0lseq+cq4TcvJ2mRxlGJ44qyKSHc7jclgRlH0uzv/M+YkShigza6XS/YOHaoqIabnh1JXncyAjy42kA/RDdE27XodPPr+7N2soPv3UlYN2ziQDQ0Azs1kQMbCQg7AXZSdKsScl9Tw0DGWKgZXVGmykvAoBEGNkZtaoKWeDRQniWpvq7M8oMzvuHWJVCDGEhOAck2I1dLPdve/96CeXrlx77513jg8fD/3J3t7e4eO7d+5++cwzz3lCv8JsNhsgLEMblxxbN7/6/HM7fyqr+YPPV+vo3WDIGxStOqpNHIiiKjEkkgRoZMAqVa3Oi8RyBRyRphA2FA0AlzLeA4T6Xnd2doZhIKAHDRJ91O+8vvsn3/8BczsMEqMyURAJEvu+B9y6H4idiQomiBK3s0enp79/7/35/qWdgwtBPm384jvfeUOV7t+/P5/PCU4i7tx7EIh82xydnjRNY2DbJfvCPOusXlJDXxLAirljKkyi4ibNeSqqIlAhIu+9Z2YmkIGQsRJz8aukfc0EV7eGSw5CSkSIVCujRFSnHIpByZvTvvwPKFyFcgWEDTSRRFIrzJ2Tcg0LN7DNYlpm4YpF6KZdnYRWxaUnXYGnG6qSHfSEzVjJbBKFwnpX6MiT0xM5D9asec1psZuKsskaR9ZKSU3Zdw7OgQSr1bppmnUWlxu1pvVx/g+W+0CMk9PlF19+mbWV86EkymvXv26w+3JJOU2nR7m2njvKhad/fFrLyRtPqefrSYfRtClfJdOhkPu5Qqucs/3QclUhi/rLjVud+0bbE1vPZz0/VB31dNU/1fNfSng3VmeiSfyvOTbOL+M0LrEx7HE2CEpoWjebLR6c4DdvvfPlvQfsZkaKETEiGjaektsAqi3DrsmmUsoq/+10Wjbeui7uckjUZZZqAb7eeKL9tDFdG1O6sZobS1CO+syNcab1ldFiKDfr+17J7ewfdIp3P/zivc++erSKj5dhCKIRhu3mDDpGJCopNYoMya5RJASFEBvMoQgKzZcjwUyEqCHGoZcQJQ4x9BIGCYOEIKGPcUAUSEjXaMhaGpQdiMnxuh8kdfL1L7382o9/+mcvvPSyQE+XJyL9rKHH928/un+7W56sz45JoTGw9Bp7Be/v77/wzM03XnjmqcvcYCAEiDoVRCsJ9wluAMJQkAhUuKqeBGCuWyUGOThKjlCWnNLFCpAKJA5dw9R6v1r3DdMc+Oe//NHFg/3TZWeJ6yLS931UCqp9EKiPUVUSs+ZZ00V5872PvnxweNSF3739/qPDs6+98PVvfecH3Xo4W6+Pjo7jIES+6+PR2VkvOttZqAWnichZeS4ViJG0WJk4RUKMo9aYthKURFUjIIpIpOy9a7w6r+SI/RiqN0FpUHRZbm6wJhPi2yyF81GT7sbOqjdjvdG2N0L9zcZPtTFjTzx3H/2R21ZpEzEH7BL8an3ahGNMv6yfUv86GtPTo+xTInLOmf6TXs2ayABnZ2fOed0sPznHWVvaEUqdJ63Z4nz4+PDeg8fknUiwDDoTL1Rp8UVPoVwrmRiiqeTJRz+RoKo59GB/lkAlpXK3qVQwj3l6cSrC2CqGs41lr7G9TvV0Izs9TKMxZ0QMARY5yPTBqZMjVFVyENLeppBgCEEtFWRDt6gToDjrfbWChjH16Y8fFU2co/Fgyr4nseHqxW2OnYHsJasVapjbQA1Mn6rfsiW/8diNiU2XENfPLU8UEeeM2ojIIScwiPUsFWmda5xrF3j3s8/f/vCTWzevexWCVQ3ZXCkAJZd9SfUMSJnnekiJ6ram0ZBuXRVoOGcmdfxcfa9cgkk5JGGpUwmxi5J/bfvaUfRW65w6uuTRbmoKACw5y0ad7uBg5VveC3EAg9qjrvv4zuPF3r3hxqXZxZnzUA5K6pkcHBSsnPKgTUZCI5iiZ4qeEpCy5cYxM4MAFR2ISEli6q2XyCAORE6UWckTWV5UTbtGb6oAMYNc38vuhYv9at113cLPQxwWe/s/+PFP9i/uf/HpJw8e3l/M5pGYJZxo3N3dnTdetFXfBF2vwqHKYufg2osvfnP/Ds/DgMDURuccO0BijAOzZ1KVwakMMEjnBG1nhlhiBDabClKGakQkgDWl5CnQNhTCwDa5zosMrz2Dn33/tZ35/KyL3vuh6/q+G4aBSBXc9cE17XrZ29oNEtrZ3oN7D+88OlwO+vm7Hy3P1g3h8Hj1q1/9/dHp6cvPv7S72Dk+PTo9enAWTt7/6LML+/v7i9agRIgANby41IhELDOZnc2uQCIoChyREZtqyoe2JnWemBx5Ju/9mAZIRGzID2bGOqFCzARAqrBt8ecajVWKoM1K9sQAqaMaHIEMjx1FW82gBVzvBUA1N5JMPrZMMnlDJR0ip8WaAxJbErqIuif5uuqrtvZv5asrHk0bJgreoiYnSe4IUItkU1xEFKKJeWZjxu43KgeW6w2YArVcLgGEXCImgCV+EZFOwr3yhDpg0oZJYrz91f3D4xPvm8wvwALDoajEWGVqTH2/ZSKK1lC922gHF689MxchWhHE5qrUc12fWQ6tBF69AOUzZVsB2WjLpjaLCCcnTBrlxuMK69x+Vs1Vy6/bYy5/brzpxvirm5y3RES69U2+flJXXs3k6Mn4r9EANoa0/aCNZbXT6qLF0u8iLQEBhpPOfohxtrN3fHz61nsff+cb37h5sAOII1EFCZE6ZevCPbIPmgym/CWKSFLlWSQmkyDv7SRTVItolyzVM20kFcSWXJk4RvMtM5EqSAoIZcp1mEjZzcWdzNXG1G0wmpp+iGijD4cJFwWUidktV2tPmM8XXz06Ht75uHHu6s61uXcK6kPPTB4RJiajIBdBR2IlZhEEqPNaYGoscUvrx4FEhVNUzNzsiA7OibMkLa8krGy8qRQHMnvVCLDfaVfLFTPPFzv9eumZFrt7/frs9Te+eePGjd/9+u8f3L+nKjOHo6MlI87aZrGzG1ilIdEAltnexRu3Xjr4WsCn9xmiGoMViVFovIsxMCAqnOoNwOQMZRBZWTMtR1TJotWEZJtIFiu26A5QEo0tOxnwFz956bkbFyREkJcwhDCk2VOsumEIaBofY0dEERGK9dB/dvurRydnXz067sVRs+j7/r/86nfNnF94/tnjk7Onbj13ulz1geDbj7748pWXX2Tm1lDPJCi0FNNIKguzHr2jtADIsptFRMJAqd2vMqFpnCM452o7lQD2rvg1pfIx06gxpzJREAguF5dsuov+a44NHpK2/DTZmWSiFG+QvQU+zNNgdSj1Dc8VqDQVMTF3aSvMzdxX27lBmgww435bw94S/3laLJAHqGkZMIXF1PriRjJPmpXpEmAQ3FaSakmxsPoqKje33HNDwiq2L1kSngJgxrpbfvbl7ZPTgXkmEphIVCyrpyrnQWY3XL9ZpRpk9ErT/6dCJe/eDKEHkGWBVHAJJX5sTynC1BS+6bqOT98QbGXZamZXpFQ5kxPiz6htOedKAna2nqGq1uDTSldKK0OiBII84svlp0+TdEBjbKTWIbi8bx6tK0RSrkqil8YX19SlhBiyEaI2JU+wSWFpW5hHz77Jc1AGiTFzaNovuTp/Q+EoR24KVD832aAmvLouNDttM3PvfvDpm29/cPmH3/AKgB2JUtnFZpxpUsErfTY/cAulT6KoiETNL2QrrQAMiaqCTLIrkm85T/TGu6iWWOzo4dCcOl5moGYKE5Vxi6EVTlGodFu5qVwtVJwa5rqM8PB+dba6/ej03U9vX5y3dH3/YNFQjCH2II/Ej8SSZ4mcUhK2GiUiUqp3UlEBOKb69fQ0+0c0QqMKOxYip8IkzMxKkZnFje4EziAjIEeK5arbWexCQt+t/LzVGJb9mtmtg+4dXP7ZL/7y7lefv/f2m93Z8bxtj0/ue46eLkaWwHDzGFzjhHbnF+bXnrn/yUNxKg59DAHKqrNGz+KgDlA4wBOCgL0LqrDEWVIhcDTyZKgySJD6ABSVVQlDRNtCIjxrHNbPXcKf/cn3F41br3uiputWMawhEJEhxBBE1XV9gEBICQ7OnyxXdx8cfnX/URfp0tWbd+/e709Xi3mzO1vcefD45Hj9+Oj09Ph4f29x5fLNR/e/eP/jz/70R9/FEEa6Mp8QWampQokdq6jEICIqDKiEaEXqpEIQRyAmBjuCb1zSkNLaGWIBy7iFze+V6hsElmSIVCBhHeeYC+ZGbj5AQNHRzBZJFcNaJcNONgis1g5AhhZIFqOm7p7lJySmZzaPsaEQ4zAMG67jcqTqwe1dWW0ZOySDXek52y6LJAM6RDpNp/fUCljCgZjYMPyFQOOc5COzR05Y1KmXUoZ4IWaGsPceGIpEGTc2oHouFnTyyEnXdfcfPFyu0SwgUdhBo+TmrJsWXgHfGF81c8TiIq+5m+k+CRshC+CUQZ77HdWsbXrPUdud8r7zHRH1TXRqpJYgeXXjUZyrUoxakPxqSZNJdgIDUnNhVS2NIiYUsCGGp4hgZVa3v0zfV4CU9eOS3NUkgJEt+3Kfc7fNZCSYzPO549mQFhtzUh85Rj55WaMET96y3jhgvti/fffwD+99+MNvvbZgcSycGpracCRCXeViEUnJGPUzWUfADXMQ2x6DCSGTKdlClvPGT1XmCIAN1M9CD/aHKdkA8lpsKzfVI6ZzU89VfX75Pu0FuFq/JMWsaYIIeUeqQ9TZ7m5Yr9758N7BrPHumWeu7M44OkfOEeAASBxSNTWzMV8IVCMRsQVYiABD/2HAemKWis9ICQ7CmHMkbkREmcGRnBNxcGNST+V5we7Ofog9gdvZLAxrgfpmpqoIse/WjXPXbjx98cLBe3/4/aMHd52j9eoo7vjoKTTcNM6FnoaBZIb5zhBg9YCNl5nHWZCuk5j0GxAlld4RJbeZpTfS6FwFoMzGbJPvI6EYa+NIJErQ2YLcgB9+8+mvP/+8RHJo/Gy2PDkZhk6Ddv2gQNvOV+thverLGnHbnD0+PV138G3Dzf1HR4PAzXZuPfvU46M7w/FZ3KN45z6Jrrru4uX9dmfvvQ8/+foLX7tx4YCIFAxENbYOAkGCEnFMs5kYOgEigdTKnsQTHJNzzAQRccQMMqzcxDlhQEmSKU2LA6+CUK3NAy5JNjWpGv7cxr7eVhYnnyUVN1cmlqpIKR6sNlDFavOZkg3ZOuw6suMn8B+1Ih8iIBmjJqqtaf1UWGyywfIrVc7IjYERpS55BIfUITwqACWRyAyyxttOBSQiwwCR4mHZNNm3DyLyMG2AoRoJMyNekcDt7OTk5PZX94eAlmi+aPv1OgZtZuaCk/rFxiWc2MUR0NI+oTApw84lgDJ2EiW3npSccttbIqO8xFaGs921uOwoOyrtEJGmaYio73tVNd1qGIaUywe1lG0bUgihYcdTz60mExVFOUCSc4ZbFgAQU0XBXC2rEpH1EraCzlg1ktqm7PpL+5D77453syMpmjQmHJWeppa4V9+Tma1E9Zz+fOlZuR+lKEBW/lemtx7tBmnaN6JScHbsYGZYVXIm6xhjKgEnSvBMqr0MTTtDRBC9cvXgrXc+/M3v3/rzn/6Awrpbni329tfrNcc4mzfD0EeoptLIlKmYqWDcXfUg8w/lhERd8/kcWI90WF1FSszsiBP0d3bPUDLZR9t3GIbC78rk1MXfNnMVYVcNxKodnmyXnF4uGTdGAMMMYuIStCcikUiqrXNd1818uz5bqwCM3374pZ+1zNeu7jhnLXedt6ZzGknVs4qhMRArOx+CEEXnUlYAsSopgzkpTIGZHVmRKIEohIEcC0sOQVlf98ZISpmInIO1mIVt4eybIfYNZYA5Zt+wD/0aQu3O3je/+4P7dz+/+8Vn2i/Xq2NPcTbz0s9BK68P4AOcc02LGEMIr75w4zdvfdENoP0dCoMoBh3mjevXsfHssx4smmgYDi7rfiIC1oaZADb/GZHmJdvZ3emXZ9d38L//73555cK1uO7J+X7dkYpnDCRE1HVdNwjYOefWQ+eb2Xq12tnZ+fDjT5dDvzzrj9arrx6uG4enbl49W62jIBIHkFssHt95SDoo6VM3Lq5Ou7fefOfyj78bV8sL+/v9Gsyy7NaDqBAHgMkAIiLIeceq3TD0HhAIITLUMXnHzOSgcCwSVB25VBgpyZx1umEBK6J1uwRSHlDayGOH8sJeAEjm2JJdL5RNow0WUJAjkVrNpwmnbA4RQXMlT81CE28VMbbctm2BVWBGdnVBDTVmhC1I29n205hvZINh5gREEzc42DSXigtKU9rWEAB935dB2uWlSCnGqELkjKGZgwlNw2Ad1usQArmGwMy8WGAp6AKGYTCVwjnXx6BThj9OYOG/sOIkGn9ADCcnxw8eHYOhqsMwFH99/W4jF8uzv/FTmYuKg6epFBHQpL5lY3CVuU7FD3zOaTVJVPKvlhlFIWLzciQ/yeRFMIYQ4ijsR8ZaVCoZL6kIV6vU6I0EQj6vWLmWu/XJ9r0J7CxsaPPMSqH7r0zpOve5+ke12vqbDZouX9bkfu6zMsdLU+XYSkNM7PkYh9UQurh+/+Mvvv36qzcu7g7cxRibpgEQg2ZrmDMS7RPzEstEsSJqLj+pxpw+2795MXOuI9e3Mjz4+v4br7+t1WysYLkkG2Ppc5m3ckLti65vZi8z0nBUk3AFoEPBkaQDvfnx5zszPnj5mdO+j1F393i9OpvPdxJlpMAIqVBE1GgeKeVsRDKTgSMACVuAiDL0FVzuLZTDMNAoREFjqg6OlTaTXsr0eQKJAyUsqiCD840jCKlobGbuxtNfu3rlyvG9r04PH4Rh1Q9L7k+9SqOE2Qxr1hgAN4O+cuvSK4+/WN3Fw7PlbGcXoI6HSE3TEIA49Gb3OSJJ8W1FSbNh1XNpWKlpGgmdA/7RTy9946VbEPZuN4QQYxdiH8IQgnUAhogMQ4B65/3ZerV38dLh2frB48Mvb9/perez2P/f/qt/eu369d/8+lcnxw9dMxMC2J8t19du3uy79WzXv/jyq3c+9R9/fvvGtYNvv/by0dHZovHdMHjXouF+iN6zqS8ahSWa2ujYpBCUQQTT510uC8zZXPXBKYZXkaLUOTrF+kiSrOIqRGQgWTnZAU+wHc/dF3/kHEy9u3WdyPaFGxKk/Do1jcbVNEWqjgHH1B15fGuuUPzKY8dbVfj/9WCKHBl3I5KcE4IqLDRKZiWbpyhjP+cddP6hyVlLquphnZOnhyOCxuPDo7v37vuGnXNhiMgdDpCtgUnKKYmqpYspYZwREgEScEd+sWpkyiq0kYANM/mzlMnRpokstzfUSQAV2e2RlrBMOioLo1geavGhYnlUntvpPQWWnmN9NQwvU9SaRFq1Q+ZOAiCqOmuwV2w0QsYgOf+oqU1Vi96KZJNONkBOa7LYTwXWmE6zeasEAI0rNemOOZ3w7c8bXyamX5cSVulCf+TIWz3NBidfMAGmU3qBiLq33nn/u2+8cvXbrzvXDMMwm83gm9B3nHsl5ZElGax6vtpRL2IJJNeqUpmWWpMo12b1Zty9G0+hjKOrmfST5AABAABJREFUo0B94qQBiCm9iwCI/ZUDE5VapqbRpxLXNNzUUsr8BmRZ+BoJUrnXMAifdvr7T+4Q8xvPXwVBT5YXDvZiUGaKACDOWpjBak6q3EMGkXrVAouuqkSqrEzwkngyAFJNKCijzwBgayxMEswQdqUKztx0WsQvRUVQz+wa1Th069AJk/fNwaUrfmdx8Pjk/lm3jOuH+x5Rd9dnR/PeN9K7sNN6fOe5p27r0ZI/O/oI/erMNRfEzXp1xAqJULGqXFVii/OTsKZOhskFCoW1SR4B38g7istwfR//6q//8dW9fRmaflAJUWKQIcQYg9XlKiwPuAtDEKKmXQ94/+PP7z48unz91jMH167cePr/+H/6P1+9fu1//B//7//23/7r+w9O9vf3h4BV33vuZt5fvHTNz3eFWnGzs2H46v6Dqxcurdfdwe7+yekymKObWCFeqWkapzIMg+pAOpCVKcERqU9NypMAVlUh0sI0EqoCLHFEVTPewObusN7ntYDRRPyOSopJJv5616gqbZX+pxgt268T4i83qUVmUdlrfl7+LXy4/Ju+JyDXyEx2ZEx3sENEzLQ91+bMv46FpiJiCOx1Ss10uojZymKyZpCHZJKeyQcVEJRgzRcMOSi/eAQ2BVxWfsAb/YA1vxwlC/jk0aND17Rp2apoQbpB6VSczcPqGRMza5tFlb2KLTZXmFrNIusJrb8vOUdlbCWiXIRrOc08HhvPSisXpYpJZwrOtlFu1yX108cP1ahqq2VCYVv2btou0zjxxjvW0jcJsGmeAk2vrPW0beGxcdRr9A9+uT1CTHfXxmjzctCoiJTMi8wy7DTvW3K49+jk9+9++NJzz1y5uLs+O3EhtM4rQcFW7snqqt4KEz06jtMzLoqIlGKe7YkFUraII2ZmylmFaeEk6aTl3QpUZ3zClP7xqf4jBxGhiiKfu2pcqsMs7yMmS0KUAOd39r46fDS8+/He7uy5q3tD7HcXYBb2iRiJxDlHmlMdU9sG0iggtcRa79ui9VmEW9g2XRzT+jh1XrP7cLIuCYBa2azV0QCpK2W2QglQdkGEAeMn0g8xRInUtvuzdnZhPj85ua/hJKAfZAghYAikAo1O+dkrV3+699oxy8nZFx/cxiCn7OcRFFfBs3qHEGwaHaMkUQorG4oyshEvSY+LDKdwHlEUv/zp02+8/EpYiWtIJJBGSIjR2v4aIKa9SBSRfpC9/QtvfvDx+598cbzqX/vmG818b7F/6caVK33XzWcuxtCSO9jde3R4Kkp37z3YP9hdnC7+y69/e/bo4W6LDz+7/ejRox9981sXd/bu3X988eLF7uz04v7B2XLJjh0xQlyeHa3X68bxzs5Ovx4sxdNqPGsdURIGRplnAFwCZxV11Rr8hMBq6aucP4wXbmr/NWc+j2lPPqC2Mqcn6BNEdU3z5VnYYmX1mWZQleRnjKrtRMwXoRvjiPFQ866NV652IpnQTRKImBMW02is5/tQCFkwZqfpuUgbRGSOS0ou6M0N74hIQjg+Pj4565SaINatCKEP7DfvKJUY3l4wOzuBqhv5jIxgU7og277TlbAZkUwtk/sX0WslTBsKV61PMbP3PkgMImScWjmKiEVnqxvaIwyT1adCw8raI8lWKgxxgqybb36j8lyqvpm+kQLjNnmSbMMWWdvbCaX53KaYcvV4/tZtt/n7uYOcDLWck0RS9rQTmVA8956Z16PomwDY22J51YSwZ7Itgv7w/sdvvPLST698q2maELrS4rR4w6aj2lTd6o2d/qxSTtKvkouUpjxoAm+df5uwifx7oqi8PzeWeJTuG/wreSBIVcFUU0h9vogYCLPmPC8FQI6YNQ7EZEUXIiBy0MhQVj47XVOzcxzi33/waT/c/Pq1yw8OTy/tHXgFGpCKgFqzoVSdn7BjKGJCOAIRWdjOsjqjEqVCW5iBnrHBrXG6BiVWdnBMHqoaBQZxbepymVUmgJqmGYYuBhGoo4YaYhaSNiJ0PTC7cGm+COsH6+Vy3Q37DasOkYWsbLI5ePXWpTWvh+Uhx9N378ShWfrZvvQcZPBuFDlmfEipZFBmJLe0LRqSjzx6aofl6qkD/Pf/4mct70JnGgemLsZ1HPoQQowSBH2UEEiF1utemf2iWUn8w/sff3H30WrQe48eX77i79x772/+3b/pY3j7rd+vl6csujw81oB+3SvT2Wr12Re3IaFRvdufLPaeIfZvffjp919/wzXzs7Ol09CdHS5mbd/3h4dHp8fHjaeDgwNPfnW2tCZ3yaHIlrhrpMU2zfanLRalFGWyzI9UwpcJfuSNtkYJMDgJXKPutP4bynTqUJQgGsresZLwbHpNeFo5J4csU1/eDUZR9m95XLGRamF/7iX/4FEE7eSzQK2z/bS1zKa/uFiGkvtPJKvJAs2I5kYiApGUCcqmLVVIEmmw0yckpqNuKwvaHC7MGuT09DSKWmIle5FgjdiN+dZJKKML145t5aJ66oZGVj6maXIuWUgb4iRPFmgK61h+qudaVVPr+OnTwUSl2oZZK8+bnZ85oxZzP4v2Ct+q6k5YHleelaJok/e1PzamOSsoW+HhmqFvyAklSFSFbYTNUquNm6cPTzYBn/TQc38tdK9Zj65f7py7qZYsj3qZDHKd2bN1FbGwjaqf7Xx179Gb77//ykvPX9lru3UvIspODPqdSArwypaoUxFh68qZYVcVwRiGqoBIJtPPmqqqxrYe1UQZzxqbpRcVc9OwmI7hCdRef1/PF03IY+KnqdJYJo4WzQXr5UuDAF6HuLO7Cxc/un1IQS40O+7CfNEPc3LglJgTFQaCb3XCWTHL9KMkIqSF1VBGaEl1qZS4D5B5WRqqY1V1bPiPAEDO1CbbQTZaIiKJYPbknYhIGGJUsjJVduJbFgdiv7jQUIOuXQ/DXCWywEUihlB7cOX1515crddn/R8eHp1+ttLolq5t4lpEIjlYhJwUSmJxLzIbQ4lUU+0GsWpEinyHqPhnP7/+xteeW8x2ZGDVFUIn2ouGIBClICpRJVLuBa/tzuLTOw++uHP/7oOjnYsXP//qzhdffnX79t1PPvr42rVrA8dutXTDcPnKtQdHZ8f9aTNbHJ0cLuLMN27ZDQ35dz+5415+7sa1+ceff/n6889f2ps/enibCXe/+vzzzz+H6AsvvHDp4MLh4eFpWF+6dKnv+8KIRoFELAqklPWRgeh59lY5KjE5JhXbT2KVrpUeWgun0vUTUxah/1BIqxDwNnvZFr15SLzxIN2y1sp2AKA5udVMYR2tWynx4EK0qmp+oGIx1/NwLjtNMwCOOrGpAMAxmRtq3LxA2drbS0FS3TC9i8coECdPjRJOT08tbMqU6qZqlqtFG3oCF64nOs11ZCLr26K5wvWclK5K6owe4w1OpLnhjpU8a3YXbyxbEW922zB2VLQA1iSXdXwWj23bcxWyseAJXAtlqzeNWVlUE7xLvai66WM4j5QnhubGl+ceqqkmT6uT8+XJYT6dTCqR4I33LVR17tPTi6R4khHZpmYzES1505ohh9wQEGAlCRJJpYmAaTwOjbigqkSD4N33P37n5fd+/M3XPHEUIWaCVIIPxcG2sZnLoRiVzTTPUBF1T9A8tg8yAVwb1pU9bU+x3P7CGuoZIDpvR533lIqWKkagkXLvPx2VaAU5YgcIkTNeIAAJkXeLRSuCIKrcfvng7HcffeFefpZFDqJf6Nx7rwImxwxFNM9y6QUKVVaXGIfVxLAqRYPEpWwZOJWio2imH8u+VY0BlgjjlRypmoDInces26bruq5pZo3z8ELOiwTEQTV2Qz+bN4jcrTtF2+7twEk87ANIwUIaKfaqLfze7lOvfg3H3enj5R+6j/HZw7DwDs5LjMk2Z3MOxFTiDgKYoQCLZuI3K5kQZHjhJv7lX/31Ls9cw0PoXQxh6DSGGAcRCQKBRpUYoWAmF0jX/fDBR5+sB9x4+vmnnnv2k88++eTjD3d3msPHD+/dvfv8K89e2N/91ouvvPHGN/8f/69/e//hUQhhve6iBmaezRbKTrrw+b3Tt3//7/5v/9f/y2tff/Y//+3f/OH3/2V9ekQsT928dfPmzbb1y7Oz1s8XC484CfxpWSe2Mhv7no2/pGw7YsGmHEXmQMlMNhvaSo8z6BWqDUJE02gRkGFqrFEbmamc9oWUzAaZ0L4AyOkHkxJNKgBzf3SDbP+u0/+wxSF1PGQsTAI0Y1WS8ob0hWmCej4bpIQhyCK08RTvfd8HgYHcaFCBy5h6fP7dxsuRKsb8ZjVyPnmI4fTs2PRipSAxhtQdbPRqFr3oSaIiMStS2uBoG2ZBxcIkSvXrOSpJlrUAEuxntbRcn1ZeflSCYlQiSzAWEQLlJFhAx57t5gVPC5atPVM1pnx2InvSrVQtnQYl86tUpm8u7UQr1C2vZv0iaaoJKVGi1gHPnfpybe1KegJB/JFRnTuf5ZsJEZdXoHK+auriXWLnrm28iGiEhkjMKdEILBBuZ1/ePXz/o8+/9dKLO3MnIq7xKmasRlg7JC15TNaZITdy0eQaAABlsfQjrQA4AdVom0hyZz0tBUVFqJvAV1j/o21VKTHELdZwrnQva7T9a0l+FhFgdMC4lOWa7mkpayLinHPOhUKKQIwKFsTQeqchwnG72D076T+8/XAxa/jpayKe4NqZNg0iE3lWTQU5qRhaxYIrIzHDmHgeAKvBNSSrOLA684JrwS0q+9E59T6tjYoYLWe/mGucc5QBe1UYoqAYhdkrHFjdbCdIE0TZYb7T6NlSU/wiKLoQ1t41ly9ee/2FV04DHusHd+/1QNe4RddDCXAC5dzgvYYc4tF1kfpiggAJ+NMfvvLa11+dz/zJctk0TbdckUoIIYQwRImCGDTGGEQUrgtDu3dw9/jkky/v+vnuT3728xtPP/X46PDKxUu/+LOfPHXz5r/5N/+GRJj5m9/8pipBtOtXi9newcH+w6OTxcK9/Morn376aRT67Pady23z//y3/+Zv/2a488kftMN3v/P8yy++RNkh5H1L8AIdhoGbSgCnveKISIWUsxlDVYzGctwLc0jfj1G/DcFGYwYWQVO8oCZdkGywGFUFJq4drUI/1cHABATiSWJi6+Zlv0y4NzKvs8Q+qEIS4pVOQfiJKIRYf2PMOcZoFnPNDLNf1OSU1d+7MYc5FQcqK4mq+UJFRBGZGyKnOtg4kwVsxQWWWpGwRnONlo5FHGnMqh5RsiFLSoBzYKdEfegfPXoQu35n5rqwapoGQxSAMKJZkoG5RYGi8Y1qalkZi63gMAyDI3bEibVBU6eOKkOVNTGdVIWZ+6qqBFV1IMrgAtZylRyrapAY+uh9W1AISce4moHsDxoBsE+BeiICq28MGElElR1UEGOEc1JgpFLOasr5CypM7BqvqjHxGm/JOJThJkzVYIYANMaehQjE1etCTSSPtGhvZPgAqZmjs5wvi48SsdrqsqGaqSXJsGMDUogqVsOKSlRQnrNkt2WQxcL0Ky8IYsxs0lHJLrbxA1AdtUWdqiA0UUGyz1YlxoFHLp6hL1QVkMjmu2EiR5ZgRcQM5xkchu5Xv3n7h9/61msvPmP9mplZRcQKjK1GIoZsukku8RXrx0NgEVFmYuccVGMIIUIZXEp1a+AnG6BzBJDmQJqKsoNvmhCCxgCADddaoKrDIN572/UCZWaQiGrTNMMwSIgmKSf8Ky9+BurJrCWL8/FcYsCaHKcpS5EOEoKoqJUheO+HYVBSkSBB4TBrWxEZhuja3TXkzU/vxhi/8bWn53OV5YrnIXIUNK5tTI0zd7M3bFoRCEdEB1c6jAo00oCIhmYEBChBWcECZiaQxMAqDae9TEQicRjWQmSQHkWvZmZOpEspLRoMaqDK5BkQCaIkcExeWYMP0nrCQMqsBB2OH98Z5svLV6/ML11/jr+t/uqZCuI7/+E3OF2tLh5cPDo5DiJRo2e0rtUoMQiBybFqEGhUeOc9Q8IQojLjmYv4l3/9Z36+24lnGkjDMAxt49Zn/aC20CEEUVVxEkWhnnn+3sfv3Xt8NvAOt7PT5Wrdh2efeeqv/vIvPnz/g9B30msfw//7f/p35Jqjk8dXL184WS0BzOdNO59dvnz5ww8/JMaN69d3qfvVb3/70rXZ15975tUXn71+6XLXdaoWKWVAicSBfUPknCAzODuiKOea2iSWmBJ8Tc5KIaaUJaRJXhq4h6Rk+0T8alqtVXSAiCCqFE3IKSIpJQVWxRRTttZMVVEvAMcuOY0q/kNEAMc41Hq/qirGMiFN5eVm8UhMDnWLUmfdvg5jSRhZjbU/tw4ZqkQsEkOIxjSInCEQhBBUgoh0XUfkQI6IrG0JkTPyJFKoIV47IjPkyCYhodNDlVlFYoRILJMHQIKBIwmAGK3TuF66eBC6Zcukq+BokbRtyvNovNcx5zpgg2LOC6wKYNV3q9VKc+dyk9COvFKudZpaBsNgDA7OOVt7VY1BuSgv/5BbTs/zZlN2DqQ12PgJqYDDtKAaUl/Pa2QBjNikRtLFR1HHsDMaEYBU7p25pI6ksxUwGPXL6Qgxtdopu+/sc5yCjNeXbIw8xdimYxjVwydML20lK051TGy8F+UShXrb1MfkbgawQ5U6OVmjlARYjYFZyfaLkBpKccpzFsTQM/vj5fD7t96/cfXq9as76/WauAE5QhRNxbtOs8UKGHIqVcQLYlDOm0jncLGIDKk2CbeUDpgPJG3XFLDSHq0MvvxZqyDjq+Y0+1QfUtXCUWnqhTH45KYANWX2Cp1oMehzQJZTCXXCkjGoFte0zrLVUutMicxraT99cEJ0u6Gnbl1cxNV6l7C718Z+iB4Z50MEyhYdJwFcRISQQJ0N1cZPwjCwZarmRBycjsAMaWaYGRkgWqclglnFsGaHjsjaxRNAbFgT5FiiaIwEDep863I+psrQrY7uPujbk7Nb119+5sqtv/z+D+btTOPb//F3/ePjw53F7tnqzDsQ8yADC3t2Ch5i1zhPzKQiEkMI7OAbDD3+h3/5+utfu9U0M+1UwjrGQBpFYAicEoEIRI1Rg2jQOJvtnJ4uv7r78GS17jW8/e4f+j48evxgQfKv//W//uKLLwS6s7NDfffmH94RKLvGz+YXL14MKnp4tFqu7t25c/niwfLo8dG9u2uN33rx4l/97Ie3Lu9Lt5QgzE7AbuwAxpYuWPcAGOdTNvd72ZVaa/qJricN5WSawlIOVggm61VR/hNLWmv6L1cV7pRt43H72IsUvbP2GZOoQL1rzLytX01VzZDOnH607EMI3vsYZb1eEVHbtjHScrm0XBznSFW7rhuGYRiGppkRwzkD7KrRGgxAqG5uxrnCi3KHBiVlInFERBQUKsFukttLaFSwY4lxPm/ZgRU+5TSxYZ9V052cmCkJyxhnHa3suu7k7LQsbTHGJmIhob2b5hUo1/mwgkDBSCfDI6d1yu7TeqUT5MQTlnZbEliBYaJU4wo2Tp2QQq4dSlUcNtKkjCShmPp/FeCFwn8xlSSFdjdYcPqVmDgVbbi6KXRO+q+JzxhoedZW+h2QMFkz/7WiaxojOzXLrlNynnQQFTDXyRuVX4uAsV+etAQT0ZtU77QZxv2fPpclq5QVVSD5UFR0sI4uAuUIaEMM0Gy2E7rTv3/rD6+9+sKNG6868hJj3hhUgMEM5jeaPDUnrZpEpfrABvefzp5WK061TFdFhgqZvK9YNs9IjYRS4QKNwkTkGCV4YQJJqwFM57wQ0raSNJl9ZQAmZTWBBkhJg3LOMVx+F5t5jcT3Tlf90HlP6p6+vPDchYY75yiqI8dOQY4iQ1P2lBoWRyCQUiPshMg5EKKKMsixmULEqlGNW6lwICGkKgAiqEZVYmaSggBfCNzYaKrNzYxZiZgsloxIgQnmvhaiVMrL3pNriWi16s6WD8J6udjde+rKM7/4zm47b9r5r//mP8Sz1VnjmkiIOvQRDcVmPvMgXQ4atWn80A3OQQHv+Wwtrz/v//rP/9GNvUtxCMwArTWsEIeuCxQjxYgACRKDixECiYpmd/buux8enz6+dPng3uOTDz589/Tk7GBn997jh2dnZ9dvXrtw7RpE7z141HXiWv/1V994dHS4Wq1Oj473F4uZ83duf6VhNTw4/f6rV//0R9987YWnZrqKqxWCRKhrZyBk4O6kC2aVr+hqgJF57fJVrulcKi+gZlRnzUWPqqMxYLSa5EAWPWUnW6cjZBGUqJ1S46Pt3YSED4G8rHV5ApkPOG83z5zQY3WKkMAKUgcV6AhyYFDYudbT3IHZSAC8R7deisisbUTk7PQ4xui9D6Ffr9chhK7rzPslIsyxcQ0RsXcWbrSbAmY3Jqaf2S+IKBrnrHekpj0bJQLEjDgIkZMIEZCnqNjb27VNyq61MraK24g5Ne1BW3XAksTY0IfTkyUARTRXJ5RFhFydkzwufKnHKguTVIwKEERSpvzm4m1wH815Zch+/w0BU1Z3S3jUet85RuRGUU4tOcZBSp3EcM5N7Ms6TVq3VL+sZo5PmaicOn6/8V7nPlSz9a85vetJvPtJR57PSuHUMSWvHhuV1mZZ8SoD2LihqqGKSnFuaFZ3Np5bVC5VFZKkCikHBbGQKEGj9FAlYqXmi9uHv3nz7eefuXGwaACxYna17B4lZdIErJCEwoYSUK8LUL/yJt0CIFJnTcyjFmeP9WQqtzrH71J7CGhc0+1lzZCiIiImqFLyYD/UNEznMrWtoxB2FsAuBhUKzAXgmYTAcOLakxDe/vKeEH/7a88yEPvjK3v7ikjenEpOCRHEUPMfCqIYhpWAyJs3PMTBOc0VqJoLolkToAeDorET2xGSEO7G3VHATUf9tfShU3NPqLFjSkGYTGAJ/Z9c2/iZb0SjDGfd0ao/W64GbfWNp6/j5991+PzX7zz89OGggGsxbxAF637lrN+PpfEpPIPYE8Ic+N/9y3/y/K1ntOfQrWaNRxgkRFXtwyBRY9Q+aIg0RBElIc+OlP2dBw9923jgdHWqq7VGnIoo07PPPfe9H33vgw8++PSDj+Y7i6+9+NLZcr1cLnfnCxZd46iFIK6H4+PLu7N/9t/+5AdvvLw34351GLrlrPWqvH9wcNb1SAF3W2mSrJ9s7LsUkI8WP5tkvUhFJHZ6uSpjnI0bpL7nP8xBKkPoXFqtWbGey3vzmdn83bwtEwQFskqL3WzfSPawiponBkmVR2waXq/7k5OliDB7Iur7fhgGE8AxRuecwRK3zZwcWxNf5xynSPaIiLzt70tpvKU7UB43M+swGAKlyACHGCMpomgAdnbnIkEkMO/kXDk7cllstoe8zcH0qcLAet0fnZ4xj8Z+5rkkVPmlC9vlzewy631h/n1JU2zrP1mP8amUVzEPLu3b4t0qs1KtbjIxsiqjarDGhQkqkOIWJFF5nOb6JpRtRDHbJ1ZMvAL+rdkuJQ+GK0PaUAJGBl3R2cak1W9fnTY+y6Iz9nbOsOdxzmDyi55/lEcLdHTGPoHpnyvORzFf5QqCSBlU9wywn4iZnSXjTGzutNWFCJQj1qok2kO0gZt5LxGunfdD97u33//261//7hsvE4QkwqQvCEwikCgEVooiqtbWTbfoqRKWT1LIymmOmCrHtarC1NRML0+aFgDmz029I1JcCrCmNZIKQ7hyqzEo7/yJ4jhO4Hkmu7WLKf5Dg5sn4hCCc44cg11Ka4gkzNTMRNv7y1P54n7j21dvXb41b9f9sCC2eLkwAaRM1t6ANKs2gEAHlVYai39ZWkMepqWoGEtSTP03ydwlErb1UGbmEDXFgJE6fepQ9pd1RNXEcOvN5QmWC2PakLUlYzNuDk9vO2Imennnyl9/hxYYhjcfP1ghRlMaZBl0QbS3v9ev+ijSwFQ3f7YOv3yN/9tffH9vZz8GOBp0kH5FIqzM8G7opAvaxTAIIigSkffk/ee37x0tOzfbeXz/S4D39vZ2FrN+tQb40rVLZ4fH3fHZ8fHhq6+/9vRzz7//9vuffPTpL37+c2L+dXf26M6DgwZ/9f2X/uJH37t2Ybc/PQ7r1d7uPGqzu7s7DPrw8fF8sYvsh8s6Iyl07IamasanzU/qlwCzbW0HZBBKJmTv/TjP5oh2WQEt+523oAJ0sndsS9v3kw2Sjwz5yaqayn5yvY39TkQGrph9e2ZlUTavRrJnYAhi6qAZiqwgODGlLm1FEomSGLuulqceChHPFIlDGE5PT09PT9t2TkQ7i73S7wfAfD7vwzAm2xq3yho0VQkuACqno7PyxyQR0oAzN0sRaAohMGEQ8cDeYq5xQJ7ifEchgBQOFDK/ri3g/GyNqvr48Pjo8DjJfwJKhWtlwuaVGJekWu+J5Vfea5u/bHzWadQNmSaL63i8qkjr6ih3K+KzPkjA3pUM2O3x1N9zbs1U3qi83Yb0KmMu/3LqLTMOY/tlyzjrMZ97Wp7GyZd1LEdV3bR+bkJJW4exuI0n1lNRX769ZOXLYv5t3ZySMbxxIdV6htXEi2pkVXjnXLPuhtmsaRY7dx6cvPP+hy8+9/TBbkskxUKyBYoqntjSLFUsXjk+evyQ/sx7vlKMbFS5+Wo0TzYre6TUHxbrijguQcqcQGosU6tl9dhExIHKukgUomQPlmGU9uPl5vXn6s9xL9Q7i4lLCgw7p8TKZmhaug5YaVBWZjffP1ot3/7oi53GXXz2JlYdgEY9UnEQq5A6kMADpGTRciVWQtTASmDCZF+YnkHOEbFFrRJSZjX/oyfMrC5mtvadkhtvI28xMBuKLQAurIrzZFoPXyWrbSJ2Qzeokvd+5pt4FhYiL17bPX75ynqQ33109PkDAHKwuxgC1svV4cnxrG3jMMwcNGo3rHeB//6f/cWNvVZDhLL3Eru1EoLogBiAXnSIEqKKUiREw9Emd9b19+4/+uTho+NV/53vfm82mz28f/f20aHz9Oabv3PCjnixWJycnCxPjiV2+3PnhtXjR/eb9dGffevpP/+T737juZvd8aPVoy8X81a8SL8ipsOTY1F/8dKVVT+UrsYwu8UCY0KWtWQLkGUJp0B73oBFTOZmM1QIrN4UXFHRlNImh06Ve9oqIiqX1zAGhf5TEkZ6/DgGyVjQ2OJ1FQ+0TcoEsCqIoJGR+JUoQYKqSIwCgg4aZT2sTHtcLbujo6O+H8ztVDZa3owUwkh+idCYGTSKtnoS6v1og7RptaCvubVjjBAiVXJ9PwBwoNbrYmcW44lzLpuHFYh9Lpi3v3ztliUy21YAuf/o8fHpmW9nzIwgAIjHgLGkekvNdzQvllS57nm6sy27LRLOpYCaPsbm1OX82iFjT6961qYiE6hCnXOgVG6S3BqqCjA5qNhQ6+SCWtCmkVS9LMtQK/wNsoktBFS/dV7mibzRSrfYfOWqwbuqACoGfwOIxFE1UqWkl3H9XKMRTDWJJwlUIyOu7jBVIM4R3ueuHYA8qUlB1OlcpdOUJzhi6Y5isP4iA6JGktXQqdIQxDSNEPGbP7z/teef+eE3X2UIV9F0SqENawjF9SRv+NWrynnChJQmngnDltMYVDnBt5RngWHmhZgZrETO8pNQNb8qt3Wmk1DS4kUltSA2shGlinMRUYq0aVqXegVtdJrryHK51BjMV9Uo4ptZJEBArCkEB1ElpySKpt3RBo+XJ+99cb91/sZ+6xwtEIWpUWXviTlklwUrvIoQgkNANKAUR04ElJHzcsRXAFCCZLOe2PCi7Mr+txFaT2i2XltqrkXnEtSrYyKKMqTv7QxK6n7es0wEZu+cU/JEwrOZiESdk8K3A7F6137/5ZdeeurZv7v24d/86rN37uDkeEWMWeOUqVeJDI/Ua+jPf3Ltz3/yYx7iEFfsKeq6j8vY0BClWw1D1BB1EA1klVIqogIiivcfPlp2PVN74cI+Ir787MvDx/cb4tCFdb/mhlX1YPfgy89vN+qG5bI7Pf4vf/v/f+HG4v/w3/3yteeeOXl09+FXH+8t5ou5Fxna+UwIIaJtG+cXh8dnbdum1acyV0QJEYUV2Z9OFAFSw6tKAkFSbbPRs6t1NQBKjCnbyctTLO7NfY3MQHKsEqh2etpMktQmrUSvaFDL7CNQ6u4zYURbzKE2tBRAyn0yIwmqGhVRyVRikYioARosUoAYoEq+OTs9ffz4cQy6f+Hg6vXrzjkDL7PhgR37JsYoUM9MpJaxkxQSZhBx0klNRVAVoaocS3NbpzRmTYZZqRBRYL3uVaEq8wWaxod+8J6lE1WffLMAIKnOIBfHZQu4EmO2kqcnZ6s1rG2ZzYRSLHmtaYVqVjHVqgoye8yMrxYJ24uxSRxbR+H49XICcJUKlljVRBkfL6+ftUEHxit52nqo8HH7UC6xEyQ3lC6vVkvZ8uii7m1UtZcPvIWE9aSDKvM6RdCenKv8X3nU82A3KenZqMpmNqZu/Cwj9g4RuXPsYeMpefVz2S4ARYQERFFVFYjGKJYK4VTDzs789t2jjz/76luvvdSSwrHDOP/eew0ZIMXKF1F8ROPajStYvUg9V5QjsqoRUUQ0ugg3ZrWkS1Qnq78FAKRZObMWNcVNZyVDOsLgaRkStlZtg2KrRVHk7lgxjDnVzCxIwJaDRKfskAoqoJHJqcRh3c3budvBp3dPhn79g1dfONibIwgNgdkpRYJAPKmAHBSknpxBD1oXPBgkTSG8jOCRm5eMFCjKTgWiSlnzMS+V7ZQQDG0FScGhxJIyVlESwGBY3ZpzzjroWYxDwFFJFCLK7GbUrlZnviXHvFqtdmfNlf39639x5ZVXXvn//fqdf/+7L754BEiEA3sH50II+zO0K/z1X/7o5o0b3PXWFqLvh9VqBd8GGfq+t572ea0zswoDcgsEkYDADx88WK/XrWuXy9P9/f1X33h93a8+/eSTw0cPL+7uro8enTx4cGWOn/7g9T/99msX5v7k3udt4/YvHAyxF4E4itBl1/tmEUNsKPi2kSzlAEspZBRvf6qmzalYxbHETCORpL2QjbQq4+Q87Xmb0s4laYA2v1EU2jZXhzGiBIiUNml226T3SHeu5rbcbfOhzqDIVQwyMqaOOyCJokGiigRVJYkcwhDjcrk8OTsN/bB/4eL16zf29/dVtQ9CQkGlYTdIlEGCiMbYNG4YOuveSER14m9ScDOnommaUT6iCqnAUD7Q5Fwwx0LoBysxRuPBpCHGZmxLnJdC8wzmhfNgRvYkUHIv02p5+ujwyBwiVl3unJMQm6aJRh254quwgxACM5fuv+U1eLrS5VW2v0kCQEeBZ1sAyeZOj6uJiojC0I/CXuLIKYhDCIji8lQ654g5NavK1m2Z5YJtVLsWY4wNs0aJNArR3O6qrOI4CQAgyo4p9VkyJUsljrWwZKonUY6OaGG8qX7auGsmU2bOmo6k7FO1OgktCVPMXNcWjxtS1Xl37pzLNrJadgPURLmxOhtLmaMnSbmzbUnjBrMxyUh/RMaLGUoSh34NiONm0KDk2sU8dD1Blmcrvzv3s/bN9z74xqvPfeOl52IcyFu9YrQ4mDIpSKJqUg/VQicl/Qc5VhpVIJGZgTip0K30j9Z5tAQh531Etj6ICnUyswODKcaIjIdaXNQ6+uKsd4oajXnOjxPVDS1Nocl2HGs6JSNNltsWH5pEpVxlEGPM35MQiBNELUGJ1Moam8Z33YAEGsA8aw8H/P0Hnzr//PNXL7Ti0Q0NxBHToPCenZOokQAlb84hVnIcQqSUI6uqIxB5JLaOxVAwiD1HpSjmwDA0poIRaBlb6c8YLSGENMbQ9dbhNvknRNgzO6hSDImVW4gtMQEwcQuISGhnLmBYS3ANC+h4NQD+jaevv3jryg9f+fDvfv/e258cv/MVmhj9fKf3YbnCP/k+/vxH33h8eHLl4EZcnUkMOjQz2l33HcLgoUPfDf2aXRu7wfEMIhSkbWdDCI8fPQAFz0qNu3z54qPHR+sozzz/4lNP3fzO9777//3//I1XtzefH94/2r2Av/zhS7/4yfdnFFikX6943gpzF0WE2TWADiKuXQg5YhpiZGLRgJgc3iACKCqpJBeCeVxitcFd06iYyUZmGdv2M4UFoO0NC2TfDY3VSueehmw5ZLyqRM9lyxChYAYnGyPV745sJFE7JcQskdQrD9k9ss1PWDEM653ZvI+diAj5EAjgGEPbcAwSJcQhYIjeQYfV4wf3H592l69ff/7567PFgsgN0UQckyMHL6LE5Fs4gsQhhDCfz3Xr0cmMRxKOWQDFGlqx5hgxKgDrNE+MYT2g5dWqc4y14NLF3b29vZNVliOE4rhN/EYVYk2u4FMZz8SY1Rjj/QePlivM5sIOyucv0vYMbp937gvUn8sS6nke2iLhMHWx1ifU9ywMbkPqFBHCVW/IWlBVD0r3sU9pbOXLKqIwOTkrDRsDKA8tFnCRWykRKafvb85kvTGKglvpZcg0nL55QiFwedntefsjX+ZLxjmsz69vuCHCq6lAFaKa3NwRxRAlBOeocTN2jRO/HLp13zXEzLy/uwvosu8/v/3wsy/vvPT8szPnRaT1bhgCiAZrpGqrz6QRYlVpW7Zp4QIb9FC/i4ioZqOSWVTG4svRQaJsvZmYqyzCkWwK9RofEhHzKllzBdA4UZpcbRNBm8c+wsdXwY7NYVcbJzJmRMQgJnB2WjLJIB2gxOZh50h+HfSo1999+KWI+it+ryFB3OHWNc7B0mcgIAcDkGSl5GTLvDJDuGhxTSaqU0CFkUM6ucLT/FFJq0gBe9WYwXvTiwRDATP+yyoSlSRIFrv5lcFgYnVwjlSAADBopuqYggo13PSrfr1eLRazn7z23CvPP/X37935n/7jW2+9d3a8XjbAbot/9dd/eXGn2Wkur5ZrB4HE2A1DP0TtYwgQte2uEIBjFCLnnPPED48Pj46Po8h66C8dXO6GfrVaXbx8KcZ4enr6d//z/9wdPd6h8PjR6Y9eu/pPfv4nz127GM9OnMH9kCo7TTgkJHBQFSIVaILcSC1CKCGdJxFFRJnJaC0J0v4SAhATqEMiUVU1uwDnHZrN+sk3T/BBPukmeeEmaK94Ak+gXLtRD163zi93sO/WwzqEwbctsw9xMK/n8fHxrHGOOMTATCenRw/u3fbt/Otff2W2e7BYLEwnVgBgtr4/sArU8iBxANP5G6r+UP0Zoawa6vPT9mxaDt0gpWZUV+tOBQxcvbyvYaxxYCuZtKBtwtgaHck+udsFChYoEEEa1v3jo5MIsE8tDYIAIuZGpy2mUAubcohpcjoZt+bIrqnU9l9qHJGwCqp5KYKfSOM5gBWqCrbk4FFIkNhthTJEFhV7mYgqqw6pLIpVxb7efoR3XtX6riUbpbZ9p+JQJQOGbtDcxj1RAXXbafIE8VZs3+qnmtC1bM6iImB6lHSYjV9zFbVu/FpkvHF4nHfUetKo6o5Hlb2UfxtpOigIIYQ4dDPfNE1D7En5ysHeMAxelRRt0w4xNH627pbvvP/Rt7/x2q1rV2RYg50pMyOPoIzTIqkmubi/JmPLjunzXmYMIRcviKhw4n1SvjGonOlMmmlSChbV8CcgZuBWczBRgVVVvXU9SiHgcdvXClNNV9sDzzUHGcTHogGiaqlDKuTgICIBQiocIKseX/Sr/f2z/Xb/5v6CWdeybpoO84b8QixOqiqWzCWSkPfyq1j/BaJkZElOPTeOQMaXxUxVIDXSZhISpK4MaePnjFNViEZVNWdqFLUQaAh5h1q6Q0lPZSI0iiHtapqxBKIeFBD6xbwJcdbFQKfdlZ35X3znuZdvHfznX7/327c/+8Nn+OHrs1/8yZ/NdNadHA9DiG6IwzqGTkOgqIg6RFkNAvIxkOO2HyJ5BjO4eXR8sg56vO4jGE1zcrZa9d1O6E6Pj+7d/vTq3mIeu+euH/zwz37yw++83p2dDmfHMDuMyMrybE6UmKkBlDUKIkUCEpRy3iap84ft67H9kQIoYETJIM4UheyJGrnthEFlaOziPa4IGLTFAQyOw00SrxK3RE58SGRZc10YxEquBqYEh1za/gGg0s3jPBHICtEorGCO1MSeJJwNQ8cOErE/P1itVqdnR02L+4/uPrh395mnv/b0s1/zsz1hp6ohRoDYO1T83m5tCImWGe5Gr9amRVeNSgoErHX3Ss1dFDBUSo0lUyGmHgQ4XfZ28bO3rodhyB1fhBmKgKrLXyoMNvliCzeuFhEYXbc6PV0Sg5mjRLVEEtWE81rxCz3PdkyPyX/W+oWqpm6jE8SfFLioBTDlhO8i3TfWbONIimEml1IThezlY2a4SSsMZO5M2ZrZ1iRqsZQXtPCjVB5eM0qXs4vLhfVVWtk66fWnDajrOSlzWAvdqQDezK8eJ788rqbFyZkT/bcew8ZUbwxvugqbuWybBwnBTd5dtXFusBJQZufMs+sWOzsnJ0cyiEQJoiAh7xzTp5/fff+jT69evepca8YTM1uDgTLPmhZvMrxq/omYS3bQBhXl9HJJekzWMutqZgsNmDkfs/euLHpKRdFN/0Q5oZ66bRreWMFa3NaRvG2aBFL+C0lKJS66ZyRlxwpIhMQAAZMDmgjt+v7jO49bde7ZazM/gwYimqHpwkDMzF5z4wJKEb6NFtqkOXjBGQOo/KkKibAYsBlbIiIJ77/EfLS8GhGpkEAAZlXRpFFmcB0jRYFq1CDUqirImhgT1CkxgdUqy0UUApLGadcNZ49Xi73FsxcX13/x7W++dPPXv37rRz/56dWd3W65Cv1wsLvz8PGDGNbaBw2qgTXEVT8s+6g0X3WDb5ogygIwZu0sCK+Gwbfzpy5fuvfw0dnZ2fXrV7U/pfXRAcen9/d++ZOfv/Hys/3h/bMHX0noF/PdQRSkdQjOchENvtdq5ygBVSctJsldBYgVrESEyebaoAGp9MHyZeE8/+BR78pzqQsjxZ5DtCM4Ru33MpFczhNlopCheani5+fdUIUoRGmdpxxP9A175mW/XA/h9PjMefrq7v2u715+7VuXLl9b7Fw463pIyhJn55gcCBq1wPPVcoozvy+h6/Kv0apWRs5ESKuqCiHlo1u0ZYgxikQV8u0QZLVOKtCN65eHbp2QZFSJYwIgAnLYcWzw4804mEwG83K5fPjosfUDsepmAJSTqhlONY7eRU13Rva0xVLxWBQ7VWTgP3uLkfWXGxglnsd0VJUca+06nhqg9lxnBQ22mPkRRKRMcAxmIopRSHLcQh1AylCQ2a6kYwchE//DMNCY9uLKqM7VBmoWXCXamO9uzATeAFrbeF+LEGe4/E2jtt4wmXSShN+4m1bMcePLsgVKf6RyZv1a25pBif3bvePGPJAUcxAQTFs7p1IiqCc/8w2JOsuiYXYN9+sVKZz3rvHLszMVhQ4AH56E3//h/Tdee/365f3QLxkUg5IqxMDzLB00BQWQbIVNC5hGk3xzvcq0JIIpU1Gcq6qo6y+rRP8ynxux81RvnRYQ5X9FvSNKaGsYl2PT6i1fbvDUsihlkAZgyyCF2qwQvNkBzFBRsogYWFW53Xl4cvae3G8aavnqtb3GKa+6CBLnnPcEgBw7Iscz1gTcmuGyRtVNcj9UtRo5E4GqBhRABMr9hyIRQcXyM6y7tqiywhFbJyZVRGuvoyqmFnO1X0QkiPgky40filcD86NI8IA2zXzolyGctgu3s9es1zT0HOMgsn7x2u7zP/+Ti5cvQ4fZjJvGPXhwB92Z9H3f930IMeigbpBGMIuD9kOEg7B11YVrZ007b9odLIfW+b22vbo3e/apy59+/N6uxH/601f/9PvfW8zbk8P7M8LefGe1lBj6xreGE+OMOEVVI4EVUZVIYm75mPZIhFojKiVT/wqGa7X9E+oAq0Ipg6wVJJjkzzOGQNkV9ES7xZjVRo4OAN46fcJzEBUqyIBcRfY7VlUSV2xtu0hTj2ghEGsCTc78IRWeaTJ/VYSYFl0nEnumCIhGDH2/Xi5j7Fzjv7h9ZzbfffmV7+0fXHQNPzg6MudzEm4pkUqz04GsRK5ouOWtKUGiovo37XzV0cVbbUPJHCIdkrtREYi9Xy77PoIYLeHChYWExy4ZHgSYDHaWkGa46UB6pN+UvgCgp6enR0cnSnDOBVFnuSQRopFdTpefLoykZoXnSIvxNYwBbdlYqBR/752eRzFZPDyRmJCcctkxl1Ue+9lSmbJPemJPT95la/CoGK5OyZEouRbt6ZxLTXDeC9bjrOd8QzrS1k+jiN2yljIxjdeO2sNUU9lQGojOMVvzr7UZty25N98ot9SNG2eOr1AZplY1GmMkct63ShwF5ISISeKscUwtM/u+HwZAhsa5EOInn93+9Muvrl6+5HzDQWMcKMVm8l3VomqpVKZMxcYM11KtHm36LjmXlIicdxSKD2r08VBVSVndFtM/yx41ddWWZ7JqG4PcGFK17ulPZrYQTL2C5WBmU/MysoBXphgt70y996RkdWKi5N08uHDYdx/df9g48c31tl3EVT+fz5zLCL2qhk6mY6btSJxl+5TJrEv4VEGUWy9Ayq+qAZm5ZypVVWZnMsbqmqAE4gn9aAHelCAMEMN8ZbnDMSlEOfwvnP150GxHdh+InXMy762qr7797e8BDw9AA70Ajd5J9kKJ1DaiKNESRUpjj0LmOOyZkR2KcIzHCo3ssUNjjzUKe0aWLY0nRK0khx5rG1Li2iKbW6MXAM1uAI3tAXj79u3fV/u9N/Mc/3Ey82ZVfWg5fAPxUF/VXfJmnjz7+R0E2+kyzpxrWBDQGlNaa4HAzaYF+Ed3r0/5ZOv8hc3zlzrW16Na6vFsPBjPqqb2nrrOboJdEWFriQxYMg4A0dR1Xc+q2XS8vbnWIRk1k+H+cETjLz335Jc++4lV8h3yo+FBrywLwlnjirIbRg6YqhV0VgFDCqeII9FYugOxHGQqIBKgERAAIgkrurChJKOlVKWtvy0QdqLGU6nuex9LD033+cBLlP23/CfkIs7dUyfi1MeJCLCU3WI6HbNv0OBsWtV1XZYl2k7d1Lt7O6vrmxcuPr66frbybjw42dre4KZWKZ9IRX3faTxpxtIMJFm0MFGL48yOXFEWBTFHFgSyxjmwpjgZ7AuAF7h8DoqCeMoWjLJYljpNGqJZAB+eg6JEDFBS4/F4WlfWUlEUVVMzMzMAM7VMofX450eyfUXDQRBCbNE3BgiQC605BrQkijBZhEuGYKJLRtAyE2ARp83OAq9HSndAEWHNKRW1Za1EHjBXQTtPXiJitLgkOuJyalbml3Mi3XXBmSkiEYckrBtigj1Lj8jdjNp6BGGR5aU/8xnL7tmqCDmLDOBlwPmtcrHR/hnhZxeeCPN0ma7KVwFb+Ji53yILVgpIEA9CBK6pEDqE1jGzd2AJfQ0eRYDR1Z7B2no6seIY0Bo8HlZvvHn96SceP7va8YAGSdqelRQzGkhTUnLaiBMyZ7MuvJ2eqfX4SScJf8UDyGjlcZixLO1A4s2XC/nDWoQ7IgCA/0DNcmGNUtZeHqlJa5EvJWmDcYptZIBQiNgiGPAeVWApypt4RGoaD0IOzO5wbMn1Vop+Wa4Xlh0weq/Uzg6IBNGJdLAACJIkxvwIAHOPjrbIBNLEUUBEC1EkC1BI5gJEbRIJCMiaciLehEx+JUBi8Qjg/SkMMXwGj8hAjAKGWbxzIg6ZAa2xzvRQSmOImMW7ajbzxMYUK+vdM2udwXB3Mj06ONzZ3thuZiOeTWQ2dOPBeFbNxDYwYtMvV3pYlOwATYmAhaHpYHCw+6BjfTU92j842e4Vz/3AM1/6vk+eXyt9NXFeJk3dKzuIOJlMAKCztuEVDZxjzjEAAyIYQGLxqgtB8NYGkDQGiuUQMfVFgITU96AJMBgMO03rI4xOhjlqz0gszZvkdS6RhE7d7AvyPpyp+54DwSvjBMXJjIdknrGU2hAQuua9wSg+6c6hv4qEtrDCzk9rbBrDwGwcA9iyYns4GH3z5de3t7efWOmB6R2eHIrI2np/PBgWJSGHmpSwdzhWYSGEtl76ItpBIOQdST45ABBR1gUg9IHOz1kkwvQTIoN4kOPjgc7QY4+fLww6Dh4KMsDsghqS4Yamw4K25mxZMwPXVT2pZo2ibvq6YWASMITGWu+DXc2SYMODLiYSwxk6OBEJ6aOtIy7nHRj5t0bh4iL56PVS0NlF7+EClRgIJzCzYw+eEdEQpYI4nSY9wXtfGEOEBlDj50kA5wQXSVkAksaKSu6JOYZkTgleypjqCQlkMaV2p2Hr/xeIPpX6hLtFx848Q2/nmWhuh8TNAAlraUH8pCjdAvuGZV+FhI26vC2zvTo/+NDhMnzJQBih4ZVNLO5nkoKKmfdIYsg6F/rrsEcU8Z6NLZxz6+vr1WSKTuqmKbpF3TTv3ri9t3+w3rsArjaFEULvmbTFGosmFjKGvpvpiYyhlFXnGUz+agngPi6pGDGcp/oFFPhs3hiD+pjtRs4VpjzbWcnSZ+D4uFTznS9ZLoYNEs5zzHz/55frRuPYeI4RLJCAWGOc8957kOjqJjSmsAToO0hUO3/voCrMbt+UV7fXV1zT86YEMIZKMoQAJnRsies+11s6KAYh8CQkAp5BgDHkWyXdQwSjcJnTJkXdDh4EtKsECYIwiudQXaY0lS1WtrgMAOKd956FvYApLFhjpEREFHZuahHKfg+QptPJuKkNNCsrK+PpZHh0MBkMutYQN9xU4puqHg8mbjwbNVysbm/31taN7dlyxdrOSqc8ng3GBw9kdNg18MlPPvODn/vMZr+wrhof7HQ7JaDpdDokUNf12toaM4ymk7LoIMRyvOQ5Q4NE4L0goJAEb41SCnkRgtiaVvFkBACZyDrvJaSqUU5LAIA0t6/jDeeOZZJbYBTf4+Q5MsvMFb0+Mct0YRTvqqBmZkbQQlohF30DIALAKT1AqmomIjPHDZOQdVTevP/wq19/5f4jPn9uf3dm7hxNnnrsyvmzm8NJg8IWbezBIgAk4llA25cSkUCsI45aQV5M1b6U+BQVTodCoACysAa8kEF92kICDbOWAvoGwMBgNNEfL53btOg8SjZ1QbAigKDKtRSlBQtC4ETy3GjL+wePjo5Oup218WhqySCS954ZRRAQhFirGMUrczetYiXt//U3z54gwBYJCHOwGbSiEdRsYRFCCt1jQgSXtPgdARG8ql8hS0soGLQiIsBtOa/OGiEWxogIEgkZSNAcIsAIRlmmIAqSCLNmOKeOIwAg4tsOckYbyAf0WgEQIjDGYkANM6FGWbyIaWlxUZKhUcxbzUBrKRukDaxCbqwRBP0lfafLyI6ItGWsKgHQAm9FvqYqNIqGoDA6Z1I2KUcUm3xPos54LFle2KjifKrASVcpVBciAhnFDEYkg8aSEQQnTCKEFsB79oBCZCrvqNNRujYFIaFndt5btauaxoAcH+z7pvEiQAbAFj26t3v0yuuvP/+Ra5OTYcMCxKpGAzvkBqDRekgt/AnMjSBZj4DCotk7oX+DIssCAIIRNE6EvTOaYUTYNJWNxrSuGpDmCgXjJWQ3CAOgAQTkgJrO7QJyRMnxIOhD5yIEEM/e+9IW3ntp3U7BEEfFVPdOO5/q5HtxvV4PABTOAgC8903TCJK1BIaIbMqFFxEB75iJAK3RjAcBEc+OK2OKhhvy0CnXmGa3d8clPbSd8vJGVxpmmHWKwhSqkHFRFFo4ISKMFCA/PYiIKQuBmOgbXcqE6AUdCwAY0wakUFC0TbPaROARkQTIGCcMgBZItD+ltkf0ULsGUQS8JaicBwWzQoVmBAZtwYEAhpEIgcCA86hhP2FjDAf1yRVFiUVB3LA0Zcca75m5aRoQXzU8mNRHR9Pj4aiuyaM9Ge6ubZ5dW9ssi5Verz+enAz39y+sm09+9OOPPXb5/Lkz4NxsMhCE7uqGaI6sZ09oyqJhEZGiKFg8CAKRSMSAQQIh8SCMhARk425VroLGoG5vNW9EBAhAgJk9IOvmpIKMwbyGIrERyDXhOQ9ibDCKRCYVYUZ2wTG6OachiYjy58BmOehTqidFm0TUzAEOzVtFRM1NCb5JFJFoongkQRIgcF68l47tOOcYQARM41BEwNV1TULTuvIIbO1w5t54/8Zvv/KOt4VbN7fGsLc3HV3/7uWtu599/sNXLm49++SVqh6VBCIwHY1XVro2ZjkjifM1ojFFCSxN4zUoo5l+YYeya5oGAMiAQKiyFhAvyEAMsQCaRdiI8yIgnn3jHTsvzepKfziYoi89m/HMewL28ORj5/3shMAzSFEUvmJrugCKC61TrQnQoRmqBWOC8FEuwAKT4d7ervMsiAZ013Ey9XSFQlq06r8MkP0UJj3yAhXVSR1We6NlUgihIWzrDmUyoCDkuqqKpRUAxxe8cAIG0XkncwCQ4ISJAqRHfslcMW48X91FklmKiJCelITQXPWL/sQCprX7EXEh70gyCyZS/JwAi4Npv6TQ913mLONMzcwB0uJo5+K++UJA1D0/aDz5kZ41N8Pzmb0L57cjF0oOFhFtOs0CEkodOdr3IoIK14jC2pUBtcK29hqw8CKirWkAANF4AQIDALfvPXz/5q1L26t1U4OIhSIsgXDETzWCLbJq4ALAmt8h2ntgnn50FvMFYEykyErZHiSKDYCYxZgvpIBXRgmRdbZ+Y4TWcZ0tDUbI0rm11/vrycYYAMmucs7laxEUfG2vKcIWUHEzw7NEhDkAtbRLyShVM9PiGO/FewKBB8OpvXOfrj32+PaqADazukOFKUzDjlnLVpGDGxJFwAAYpIBGS8jaM0GiywtEAm6XCTVL0VTSOdT9omcmTGy91oMwiGFMVVckrKvmWLjx7AVMCDqoYZ8KPYPHRUDQoxgiXXqvt0JhpgKZyFhAR+wQCyLq9tbK3prtrKPZ3d3dHw8rKuDR+N4ePdrc3D5/5nz3zLlrj59/5qkrZBBRmuExs7OmKIsuAHnnAqlEtTsdMUOqbWcet7OGZoJfOg855dstUWNa7lxAtpJyCRtgkUdF538KauS7Q2IGydydY0M8yY52SMyYlMUgxlpvH7WMMwhvFs2/QSBgYPbMDMjcVDMvwIQowM4ZAkBw3rvaV+yL1bXhpPpXX/7tw5lMDc08ghT97c1RU3Nv7f7R5M6Xv/HU1e2dg2c++vSVjV7RK023v86uYYCysCpcO52OCM5m07pyiIaI2HkCCFhaMQ9GwCumjsQmvaQGPAuzFy2Oc8hevKJtCgOAMWY6nRbGoC12x9VwDN7DpbO4ttYRPgLxpEAlCN5zMImQtXxPayx0Yi1EHyYAIAoUBUzr/f0D57wtFIInevC0EE0Ne1Buo2JyaZHAax6B+tsxxj41P1JXjtvizEWfKhEF6G0IDBIBALRoLjnEgvuXM2jvJDKzQwBC4ZOaIOrM4aAJtL3T09ODRgqtOokYrPMk8CCllugGULdziHXN4eznWyuNPBeEIgEOKb1CkBzzfQBb4Rp6Mi8K5gVWnm2wVi7mb5Rc5QtXzTlU4wdZypZcEPyR8WY8CBJHnnNbt0i1p2oAqbyB0CChocZ5KCwS3r774M233r30pe8rjDTVTEiceIuCMa4uISN6jpbS8HK7QUVUOodkfh6QF+6w8JnC9Mf7Q5rqsBaqzxElb3wIZywUYyxU9+rltQtdvvUB+VvkDDQdzKw9qIlIyRqAc+oCiGidEpCby6IERnYNIbC1h7WbPDwsy3Kt1++Whmt2pSNPnl1hbeN92hAS3KSESMBCFLKmdOG8sjONNyNAqKUO4HZGZ0aiXEJ0wCBgmQCgQTExuRoZmOe9o0IceaEJxN+2ZgkQLNxW1zMGvgNooW19iGAsCRGRSOF941lYqOysXr6yffnKk67h2jV7R0fHwwGIPX/+4vlzF4wpqqpqmqrX61XVtGE2piBbOmFkISKvjsoQyJW4WKH/W1DUJLmzJLSDylcwuLgiWSEypy0uANpg2S7sl1i/YCTlOWXdiuZPXtzjSWDnGyH9ipGwwoaUOfJWb0q6XG+WaZNZtryAgDTQEBqDVgSYkT0QexIWcQDCQgCAJXrfNFXl2TkU2199/fqtr778xrCGoQPor/aKzng4u/r4FSC5/vZb47r63Oc+/vrrb9z7rW++9tbqC88+efXK5ScunJMaOiTQePbOGGxmTcPee29t2S0KZq5nFZYFAINw0EsQmUk4+u8kLEkIXzECBQPCgzA5BgajJj+5SV2WJZHZ2z2oKkCAJx4/v7bSGx/vmRhbxBBMXNy5IqGZkIWMCyAiFIWbzfYPj7X9kyGT4NAQKRQEZ+cvLM/8MafZLahmpwoMZo5x+0VaSZ9bYcMCAE0doCglkri2e5QsK1hSIZoSt8QK4OURL325oB8svzgkFqwGQkQ4ygVnfpOFu536xPbOywJy3jKe+yl7qaQrCC8O/tRhLH+/INoXxpn2XvgzW+JwFQhkur3KHZmX3Om2iGiLgpnBM8W+liqAXcMohKYznszeef/2Z1547sqZ9XoyFXAAwOA13khAHkgwWkT4PbI9c6mMkLVIg1CXCUltWL5FmI0PXkfJnCsYGPScDWQ0fSazgHNFSpMJ8ogUzM9tGnwiY0nPja7g9pJcURABAGstETF7L96SKUxvJrOJb967v7/V7RfnzmyWVDvPsxkYYHYMjGTV2gYRjv0xwworSr0qyPowXN71ujNB3cf5y4oIMwHkSdTiRZxgdEqljhfIyIiYA2lhdIOFg2OrAG2uKJB0EVZUCwABIjQIYGzpvcJ/AQsJIlhryT777LnGi3PsHNe1E2mMMd1udzqdivii6Fhrmdk5NkDWGlCWxUnfjLtiKctpgQHCB+xB3TsYKJUEiSJEzMKheypdle/9hdPygSXKDzMzD3CkT21pbM6iPb14ZE5Tyh8hwOCFgMUBq8YJoLn4AEAgntF7x1I1tW8cOF83Xnr9V77z1je/c9P2up/4zKd++xsv+Ya9q5qm2dra+uhzz77y8svXnrj4Y3/mxz/2wqe//Cu/dHvnYFq/993rtz7z/PMfvvZEB6VnpDAGENkxCJTGiuNxNTCA1tqmniVxEOaHBTWFBNiLeEBk8TGA0Wg6HZBAqFNnLZETEjINNw3Q7uFADJCHx6+cJWRmLm2BiN5rBe9SK5oo6xHRAgDE1sTee/D++Giwt3cgov6R4OqZ2+cQe7bnSViLlAEijBgwnjBaA9FEOqW6XJeN0EDwYYdMj7CJOYUZwhELYOaACzBGl/MQrIhn9sELAYKkEZVY4QDqKWpFgooTAyFAu+D9hmhMA0DQunGR6GF+S2QXy8KvFBNzTmW1p36zuJBhMvHUO5ya9A/Zqn2Pm8/9GsyNfLuGr9LfFOJW2ciTxU8IGjCKqMhptPFixJCwKyQEzIqk0+l01L3MCDfvPHr73dsXN18Az6J42wAaxY2cN75+zowQMdVVzylzORp2a78m2da+RTanES1QqxjbCaCI1AiJ9j4AwDVfbsjWXT9ba/VpCwuUDw8iCAxlP0GrhGn6G4gISkCoBrWsEACgEfbiQvoLi5ECxByPqnfu7HSFnr18rvSIyMaaWVMbtNZSuK2GilL+WgTo0UkI2hUTAKDJBwwKiJTWWWkBmCD04gAK+MeomZ3CGBBykQDQ6TYlYkitJ1XMYqJChS7OyDIgYUJQqYwSAGGwnZ33iMYUJpiMAAhEhg8Pj7vdbmE7SDp5AgDe+7IsmR0zO+cQjTWFiDilAvYSStOD7qNUCQCq/ooSJLaYB3HddV0I23oS7Y8lOTsCNLHcKL46QuiGlKnapxJbOrQCEELSrmDqscPthYIx+SvpURrcTQ1U5mVtXNOW4SgGPoSUA2bwhIabEAgQIO3t48E758fjkQXsdDoCVAuxBw/2t7/22vUH++Ma/vSP/eknn372+u2dnZPjyjP7endnv2pmzkE9q9757ncfu/R413SvfPjj165dvX3z3V9+8ZWbjw4+8vQTT16+UPh6BchVDnxdIlqDpI5JD+w8pvRCXVwERHQQ0Nc8g3jWLGgP4j37YDCDCKobhoVByNhO7SaV8OFo5gFWVuDJqxdm1QQArA2uFyIyBkSy+HzLowADFrSuvIhBAeDDk8H+wXGUT8LMFNTeeb/WvNxdKMMIbCJ254hHW5+TkrBgXgbkYdr0oAXNK3A6AX1V3RVEVJQdtX2bpimKYoEEc462wM6SPpKz2oULlyWWiEQHe3b/Jat0+Vb5l2kk+WmYKa0yb9ou3CH9yXxKCcH3OJZHko/nFKb/vVwdkPLKVOARkWb/anAPNRpBLT7jwtMRg8WDMU+etL0EoSVT1zUAoLHHA/f29Zuf/PDT/U7PuQrQQ/LmCSGQiJ/DLYjCeGFRP+CtY4U6CLQFde19Ikf6wBnOySn9qQAFc+8ri8oZxBVnZmvbysDlDQULdBir4xZWDRGZHajaGsdOsQWaiAgCFRbRsBN2aExJhbl3OC7tXm+lpM3+9lphyNR11S2IfYMhRc8ozIEghNC7xocxekSjxyWZTu1oxceBBWZEmjgnqBXTCvnB8SIGEDIc/NLgvBcDbYVO8O7o+iZfAkaWI6E+LcuDFAIUEhUwaMiENCjHrLyrsNYWxZl+dzqdTqdTY4qyLEG74LFjLxCjNghIhkQwBubTblU456CUx3efi32kCQnKC2Yt2GKbI0SMCRVE1Dqf5zStD6LC70mi6YTMaTwXGNY9CNDWf3+PR4QHLVXXtNxbED0jA2u6aIA8YhZfc2NtsVp2Tw6PHu4fbZ27MBrVv/qVr723D74EB/Derdtb5y87lmnVdHrdcmvrm9/61g9832de+PjHbr337nde/e6v/uqXG8crW1tH49nI4c6gGbxx/ZU3rj/39OVPfORDV8+f69tur+iJNLV4g0XtXDNtyBZaVuo1lSruzZj+mw4XV5RQEDBaFgIAwILgwTN4kFnVTBupPHzosrl8bmN4cN8Ygyjet2Zhm3Ybtm37pwWQ5C0xhsD7g8PBzt5RzIJbMlOYEEBRjRLScmKgGXozpMeHciVV3IJ5ScE+4JabpEVdYFioEClxxKQtyQRaZmNN6qGE8V3iVg9jUEMXQmOvqB9ktm94ogAgxAqBRaE4J3oFARL0WsR1jDGeZZINifgByyaPMuLCHEdhRwDa3i0UfsdZ8uk10ywhImnmALRvl7NjWNqW+essv6wshXhzIyZ7QckubGWw8sXkMuHY5EcCxk/0hSw9XRKRCEhqPYlg0Qp4j+7WvYd37j362IceA1fFN2Hg+NZq9rHwKS/bvhdEpX1u8JrFhJx+Yli8CcQS77nvpT0hUJcOX5OBNTqYz5sIMxfGznGxXLPMVicttHJqNeL0z4wLU8AHznDcNPdVUefCdgBEACPg0QsoY0GVKkQlG6ldfXswsvcesD9jzNYmInsG8IoDaQoxRoRINW2MviggETAJi1pXVTiAAic/sGcgQpXUWj2hEy0iTsCIWqAogsChjIQRQdCLAwAR1MLjgCugRSdKfthmgbTmL4ZOIIhGUKN4gopkBwiC7D0iGmusyZIHgSezCkTKskQ0rmmapmGAsizrujaW0Gg5OPpgAlDcrcoKtJA/YHInA7fdHhKKzRla+xWEAhY2kCTXRVBoDBEJtPhrAIBZtuMprIbzb1o+wyGHYE6NY2b1BYZvuM2GCNYEKcW1DMRn5BrZh6ZPCojaj5FgWUAEvRYHCgCIc1r56UFmzq3313fv7SLSk09/7KVvv37z7oM/9Md/7Mm9k1/7rd8BgDfeem2GfGfvgUdbWNNUrr+2fv7y1csXLwkUb7zzTm+lKFY6773//v7hXu0q27FsZeb9e492K5A33n3/ifMXLp47WxLV9QxJeisrve6Kr70ltMaIgKEiyCt20+kEgYOCpnXm2cqqzQtaqM5houpZhVb29/dnM7AAn/jok8Rj4KboFN57ESYi3zQAxWkqUag5skAEhkDJQTzU9f7h0e5eZYqe7g9Eo/ozCBCR9y4tWGTNiyJn7s/YfiJtDJqvhlwYnMZ4ZK4gdU4epw9Kv8xsykLt4GQKqx2crkoZgBii7hzYXPyy1Qfn7JKW7Fre2hqCc/1JIHMx5Bsj5/jpnPyN8ySyfEL0jSRaS2kAqnTnS6B/xkZ7p+sNkoUMwrKcltGTy5Ykg+NTPlCtTnjucxMST9etmJq2pA0PAJAB/ZjYO7NdZQCFvDDGFLZTNQ5NZ+dweOPOvcevnO+qOAqcVd1rCJKiF/HIKr7iV3NKSZoFHTNiCCeEGKQARFaeT+m87GwpRGnJC+fLurBNWJiZ0SLGiObc/GdKVTh/qT1DOpOZTUmEFG3NOXqAJI7mmCaiMhfHQSChIaLGOdNZGdbD93aOegWtrvaNMWvWaI2AYk6BBbFGiJilMCgqLQVRRCLcRx5SEWhlSZwE5dKcZgyMpDN9bPTCc56hFruGQSAmTiNi2E84VzEvIiEuFIpI1MTAVC1JoiABhpkbzyRsjCGDIiDeO+cINJ2qIbJlWXoR732/32+aRovDCDEkaMcRRnYRnx08ggbn97XkSZFalgqg+Y2IRkKhVZa1CkDGJkMikARjoqgF4klvnb5LF0aON2fw5GS2wDcWGNfyEbQnyfZ52mDpHADvhQiQUMCL9+y9F/aC3WJlcDIW22VTvPjtN3/tt99+/Ormxz7zA8Xt+1/79mvjejIYj994882y2xkMq6ZyOv6jg0NL5v7DHSjMzFe1NN1OcXQ88OC7K726mSLRycSVR5OeMQ923iF5q1PaoiiU/xDRxmq/Y4tOacuyXO30ur2yJBLv+r0OAZWEhtAgomFgEfDcOMfIHDQLZnQCjReLOG2ctfbh3snEwWoXnn3q2vj40BBYa5tpTYQKF8E8j8gb5igosKEbUmRPHgDeevs9JLBlkeXQszAjGuecVUbJyKEZSlxaG/LxcgQfZTHZMrcrlPOUtMKYGp0FX5byS0YCTY5P4iARl7UWImxFkpFJ6mjdpGZpqXiW2Hwh3SeI7YwoQ7GJzPHQ9CISTDpMPDdubAAMEIA4f7R7IFYFpvvnYj4nei1QS0g3Em0jYwodTOLUAKBjSwKM2irDWEKjHg4kmKuPh3y6KFnyC6I0DPcUSCYNj7ciU+cK2PvGsxdBAmOMMYoXwyIhDJx1SEQEQmNMLop0PMws0SXrqrosu2TcyVF148HuZ6bV6kZX2DtuOp1OPa0LKkgk+SRSFrGIoDECxCR1Xas0bScngMcyIrL3HAvoEsNK0aLWcYqtPAgRFS9KY6JGM0LKMBAR75TNogioVwoRrLVJ0YR4f0QsyzIAdwQMAWWaaIwNVYxpA6haaYwxhiVYmonYoGXHixxWRPMQEQDBq8nPVTMjIud8t7c6c6PX7h3YTrHRf7pwXrzvdayw+KYSEYuFmlKeCFiLzxDVGS4EImjbWHjAR0gl+wAqkyTY8ICI3oXcaWYBZE3sYBbntEefIKIiAqE17JmySWsL5EOsQyCi7xFRwKVvOKSjC3rPIkLqEgOnidKASrHshcU7Y4xzTgDIkCB69sJARLO6QkRDFtRbIkGzECAF39NVU2rxIoJGQcik3U2BewR3PSChEcIgp9GAIiCEd6JUJJlxIQyvDkIm9A7JBaSIBJzhTLgGUkchZeTKOhBjsx9EhezNSAsRUViB9CAWgkafRa6UZ+pgntIf7WDdQWLRc+W9A248e48GsZicjASLkacXv/2de4NR97G1OyeTf/nlr+zu793YOVrvk2d86tqH/spf/c/+5S/+q5/9uZ8/f2G7Rnn1Wy/bgs6ePeuakyuPXbl9924laHqdXmEmk1Fd+8IaXzFQxxv64T/x77z7ztsvv/ztja1VMDgcDgHA1wdXLp87Pj4uS+um1eraClcNoRDw41eunNva3Fhf9XW10usapNIaKwZJGt+Yws4mUzS2blgIZ6NJZ3Xz4Pj4ZAYNwKc++9zW9sbhg0fdbreuaxs7bBaFerzD5BhjiIQIBAMsnhUQ9F5isRrMJodHJzMHq8bk8TQRERAik7vIQmEnqp+5zTfWS5Q/pDpUXRGOQM0pBozz1hLN0xNkggTmD8S5NhItT59nQJBKhqRlzZIJPOVlLWrDkkWezkl3S+fIvKsW5jEx8kek6vWMJ54Ssk03jMJsURDGfzE9N0/8yR+9MLfLDzr9h3mDqf2QrNYlFg8f8AwSdU8FSKzQbdK3Ka/pPjJf95yPzYugkLVU17UlMgXc391/sH90Zv2SBQKtGUXDMJeZnM+AtlqNilFIlAknBG8Ii5AFVeDEwxwEtIpTrWxZBmVbeGL+e+RjmRkRzheRgK+uZy487tTVSSubglR6jnMO2zBhmMl08rLxwghCiKzNaoFBAD0ykoBhaBqP1Klo9t7O/kbR/eS1K4IMzgGAMaa0gArKAaT7QgSRUQiRg8d+Truat8sh2xQLH4LdLMABv100rpxeIJQDizjhhBWNEboHMrLUX1oCAG3fJhCXVbkQZjmUGvBj8CpsUup1Ws/5/m8YmsAG74nJPb0Q/8jL/+LGN7E4PnieOWBftfprLPNvVeH5zRKXNTJbzGgDlj4nhizqq8jOiTxEHfgmp+R0LWt5bCwHVQFsbZnILz9I2kfmK+vRiYfRbNTvdgxBNW2gxNFk4BpzPK2++d2337l/2D9//uqHnr554/b/8Cu/sd6DP/KFT965++Cdu7tPPXHNGgLP1mBT1Y1r1vo95+pOx3z2M59+/vmPvfvejd/5vW+UtjwZDsqys7rarWfVZz77qdXV1evvvv1w/6i7ccb2+1x2p9NpZ30LAC5duHjv9h2yXW8KWlvZHQ4LY5kdOP/o7dvbm4fiXX+la1Cm48nqSndzdZ1dY0qztrZmovJBBMxseOaxtzeCbhcfPHo4HDze7685VwO03HJhYtv5ilvcQqRgAEAUmE72Do7V1JJGghILyMIAAkZYXdCosF8eAITaCGx4Dml9MAoSBNjesC1JmRhiBCcTiY5fZWAqoYImq30ZmZmZrF0gERXAiIYz1qdEDAiKSZSQXzjzeiUSUeAqjqcp5afiGcmEay5lGQkwdDvOmb4eagnp5zwxLVdcIjNCaX3ei0cQw8kFHczQlM2rdtgcswscPy5veNASe1pm7jpXgO2vkl0VvuFg880/rp35hcFTCmvkrg7CaAW2vtlkHaThJT0DMaTRF8bWPBWkotd9uDd6/+69D1+9VNpCpGFmIBQgiaCv7ZtSy3aYAciKVEkA53OSmgSACIcen/GbuGLR45nNIQJA6H0UddR2IfTgvFVDYIgAABHHNTOCNUAz1wxj7nF6jv7nhQXEhDBehByPU5rIdWEps9WxGJq4eQQmBPRckPWNE4Noy4eH1Wv+3spq78PnNkiAQNgzOaeJU8Qg1hoig8QYgtKaOQEiEAVDHDYAqHHYyjD9Mm6BmNCgeD88ZzEHRIFMGqf8OARgYRLNoQ53BgiRDX0eCUDsTAUBupSFxWJofqqTwMyhtjjCxqBar4CiFeaQZhgVrooxlPkJgOj5mZEQzg9vE2+o7ZZDaqoO20QCIWjxUZPwBglNjyhR6cKypl2f5kT3v1I9ACiiRHIThtGl/SUA4AERIBYIzeXOgoR6E9AcKm5qEdG4g7Il1VM4enQk5aSBB2Bgz8hlpzscT3tOLNrheCxFeXtv79tv33z3fsWFmR2Me2uDk+lUAP7qX/5LL3z0I+Na/v3/8H89G5588xu/+yu//AsXLpytmauxOzoZbqz1b9+4bYme+/GfPNgZVDPX7Zn+6sZ0On36qWfKsuys9GbOT2bu9178hog4z6Z2q6vrRWGMMRfPXHhw+341rarKPfXUU91u/+TkxDNQWQLz/cPR+bNnNy4+/tZbbxhjb98bbGw0jaucY+8BGQhgbaXc2FzvdMy9hzv9Tn9l+8zRzsGtu4cP9w6une+JNIiJv2GKCS4qRhByDy0GS1QAmIDG4/H+8QmZlrNYREAjzgMs7KvIwjI2HQF6KKKRc4zJ+XbJ85sssG9CCY2PVcdsNf383/Q+GAA9TjHCctmZ/5l+TdAi+exkzDYMMveoB6lmaSGMnYvVhR0yJ34yK1aiZppngy9cnthQvtkklw2n3XbhDsueg/gip3yZJmqBX5+i+oQPkKht4VAcURVbEhptziXlftDLQk5arRrkTUEiYsvOcDS7eefB+DN1f2MFsYKQbc1BpY99mRARBIVU9npO+eqyOG/5s3RdvPfLbdr0Uoa5mPeCnDttnrO0uOyn4CjK6RkXd2k++bleEh8NjGByFNKoW7Qun3nTMyyNKlQAHrygJwGFRi8sEKN3rJ6r/al79cadnnniysbaercUcbO6LoWsJUWgRCFjSfOtYg/heWTs9GrxRdK7LGgJYdjKxJljgGVuJkUT/dGEfqaLKjKJeEjNOZTJhVACIxPSHFEFzxa33UogIfWn0BCqo5xiLD1kmSGa+KxFRWdh+SJdR/5gDIhQmpMWN6+NyMZnn3LD1m5qfSpzJzDz/CMTo1tkR6fdPNZ5gkj0SOUP0Eu0CceybyUPqWDAr2QRL8BVXTfed7vd0WAAhLS69tJ33+hsnnvmk599a/dFtJ3BYMx37kFpJwDfeOmbP/SlL/7iP/55B/A7v/mVF7/+uyRmcDSrGLsr/e76etXMGPnegwc/+7M/e+f2g5WyBNdUVWWtffLJJ48HJ1//xjfWVvtOgjnV7a7UVX318fP9fn93b+fOvbvaYagoisFoVDd+Uvler09ER0dHnmnSiMOCTWc8nULH1rYsev3B4UHjZbVTItGj49nx7HD73MaggpqbC+e2mQ+sgX63V9d1ZK0Uc5QlrWZ7sJZOIgBYAJ+ZPnx0cnw8GKKxIfkiRENDugVABGLmEKlK21uxbgAwKq1RJCOQop4kCsCIE5SWNmxaNZqUcejo84zQjB9FysLWC00AEZ8uPAWj56Tla8ysWp6o21wbJosQQIKjIqJQ06nvpWSHyVQPyKopq2tBoiQ1MxfqMJ/0lDjRgpYA89wqp/vEv3KODLDMlIPdgDFWbcyS50A19qzMILfjg5ift4AxWtIaoJTUnCprEwth50VFGMJ/aW5UQCxIOx0PIWmdd/trdHEZUyD7Brjs2EldIZmiB3d3dh/sH22trxAaFIYISc9tF5bsXQAUm11E0sZIcjGfOskIppVboiQKSYAyhiqABYtkQRkKoQHMypDiDKdvWs63pAqkPzmaypDlMGLUk4iIIyp4asQGAMCtP6DllgJGGEMeAHtKuN8gBgUYDYFjqlynWPHk7uyNS7hdX3vsqUsXe2QL9uwBLBGgeBBgYURK/bYYBW3G7nOKSqw8vXuiZ6UrQFTgZJ0d5rnqlvgVAlJKYAEA4VBDjIgxrEwQy9FFQs6wwr6rOsjgFGdf2LfY3RoB4dS2iCXG+0EooOEGchI19xWVOnHYtFJaoTtnkSIhERCFvq75zouvj4iQ1WymOfSnwThArKpIrFuiQs+SlBediiiDPbcbI5e4yp3CXhURxiyAG1ex9UkYq/SMzCzRq686K0TdNPBu8SIyntYE3DVmuH/Exvhy5Rvfuf7Vbz36kR99rrOyWXmYTCedLnVWu8NBdW5r8xd/7/dvHf4ffuyP/+jP/IP/5r/6W//V+++///GPf+z+3uGdgxMg8iKV+FrYzcZvXH+jmdR/+A/88MbG1r/+tV9xtbtz6/2dg8PZbGoMEREIrKysNLMKqdw/OAEsHu3sN80MkD17azoP93e9k6Lo1N4ZKEzZ8XVNhZ3OZp6BGbrd7mg8vXhxrddbWV01m/01V7npeLa9fabX761t1V3TGQyPrlzYGu0e9btFWbi6nhMHaQssfxPkVhAr8aT9/d3BYCRokhfOwxxPyQVJyi7OGVmCVg4x4Ki1KR2YeCyTlIikqqR8oHpV/qceeNqRk1c68i/npmDezlseEmTyTwG2UjJXGkM6Z+GJy0NauHOem52PIReB+TAk6j0LpdILHG35Qd/jWJAZC2M4dWaWHnr6jCUySONZdqDlY0grOycRRbTBEYtTtuacKzu9o6F7/+698axSHhNABkjmDm6fpY9rmthRI5N9Pp2ecuMTEuRpVLEwvcu0l18i8zdPy3TqnT/ohjDvElh4VkzObMHMcwia/LZhFdRxK57JY2T4DCSGau8AwBp0znnPSGUDeGNnfGP38MHRYFx7BguA4rw44cZ5J2mRGXz477T5ydPH8sHk075wgsii7Z54PTMkNydnR/wy/stGAlBpABJRscE+PNd70f9EUJiEyTOBWAACsSAkbECIkZiBGdgDexDNIeekRZ2yjvkiUnYgasr5/DdgltdrmRIW7va9eV1+6PcLnGohVJ8fSZrmk5+G4eORpj19zn/SD865ju2A2MODwcr6mbGU/8NvfPWrv3+3BvjNr77y5d96cePM2U7XGFu+8IlP9VfXvNDYw/7J+Cd+8s9/8Q986dzZzec+8sz/6j/6D37sT/yIBT8aHltrP/Ppz115/HGyptfrOc/91e5jj186u70lXH/39VfHJ8fbW1vWWmOs83wyGHoQLzAeT+/dua8TeOnKlXNnLxwPB9aUprBFp5xVzclg0Ol2AYDIDgaD2WzW6XRcw52iBEYDxoohoaauS9vZ3j47q5rBaMLIiFIa6ZWAwsg+rxZZ3sjp+/SrZQTtw0FEAs3e3t5kKna9iAXErb1LSCGPNeNQAJo2ggyitYnJdyccOldCME3RkNZ3GxFpsn6iweshLIwgAUQ00UrKq0/vIxrzQc07RgCIuc06WqeKghJsTpfpHJS2kyBkGUyBNIODiDD0TUJAk5+wQL45v1iY95zi822T1kDLd+e4bWYEL5wvErCN4ve5dNeq5rniIl0mkvniwHgJIsbo75wZDfNCIueJy2/9QXtebyvRoxUnZe5umD134QjsRgBYDJJHqF1lrVUcIgF45/0bn3v+mdX1FQsmNfJliM1YGPK7ikjjeFY1giVFdx+f9qaadKBsNdAaBstcjXIt2Nd766xqGnCah/y9UGOES1PEzCFNG9X8bFPz8hVX0tcsCEXIyp+SppERDQUrMF2bv38cj5atgggqElYBSEASi+oBNLdBnKEamDyA7dbN7O7BiQWUi9ud7TUrKA1b68kWCKxtnrRXsgQXJef4XLmcyAdz6pHJkNMUUBAA0FZL6u9KbyqKjQCxGjcalgABk5mQFMJIOx0CoBGE0CgVPVN4ewAAUqB4CRxAhDWTLoB1xTODGz7P84gvhqiYCgAMJNHnrLpivLO+FQEkX1SsncrvNJ/eNbegmRIJ0NJku+NSlwoREEEijl20hSEGYgijcwcRtOucik/NZQkcNnhiQITFOQDwssjcQqpXtKCY2bP33gO4ae3KjfOvvv/ot37/1eNaOv3e8eG0FPzIcy+MJrN7D75WudmTz3xk+9KVn//Znzm/vnr4YO+3f+PfuGbyzZe+9bnPfeLevXvvvX+dDPa7ne3V1Z4prz321Pb69oO7N8qOee3dt2/tPDgenfR6vc1O7+y5c+/euEnG1J7XNzZq10xm4wKLxy5fuPnue71eh5CeeepZV/uHD3cNFFXjp01VmKJbdtnx1ub24eEhCff7/Vk1WVlZqaazg51drhvx0DMdN238zL39+lu4aouy6HSLxje7j45/9Ief29hcO9jZ7fV6reNgjoUmnhDoU+nZapW0Aqk7b44HUydQFAXH1B/vPYuQ9tyOylS+ryTryJGsuqAZee52S3Q+KblJjSXbAn1kXJ85Ym4kSlLHjjFGNEOSIkfMd/h8X4dMrELS1OI3eg7FDKdFl2NioMpYi6Jgxf7MOEhK2koDSCI8T7bKByPZ1OVyK0PYWFy2U1lVbCATBEP6XgQwq35pX+o06ZtGlffqaRd0nsvnBJR/uXCrhTsYYwQo1SzqMBA+UO4u3CSp+a6qrSGDdlbP+v1S20Xbwj54dDCYukurCEY1OQYUhT9QtpqKSj0IA9ZOoHEgXSQW4bRqZNQ9jYIMSn/CAmBUd1GCAUKF+5WFkuDWlZSPXzKB6jzLKTTmswrk061eyKhCMlUs3iGcwCJktPPKKXre/DwTgBcKWP8IWihDHMC3obCkIHxFpxQ03guzdMre7vGkmuwaYzZWVgmxI47IKpYjeUvEggZEM5U8C4CYhTEsvEXGlWLVgABHFcdDSMNaIDMvOWeDUDtDSIB6LcTfVR0IwSP20X+GwsFNHcMQqHAlHME9EJFBgZcVMwZSew+iOacdYkjrFxGEeX8ekhBaJIbW8A+rhpDTD4a0ZxQEDFH0BVoSFPTgSah9uxDdT/qK9utSkp6zDeIeb4+0BBkvSqNprxKRpmlUAOO8yy2GtFgVGvDsnTCzEAp4TpoTs3hgD5Omsb21l99496U33j9y5KkrM0ZDB4PB/uHxYDipHXRs5/bNWw/27huL3f7K8WD0v/tP//pTT2xtra9+/WuvHh8M37p+Y+pg49zW/s6j9bWNMxcuXn3uiQ9de+LXvvwrW+fOI2LtnauaJ598+tlnn93fP5xUs27XTicjsoad/8wPfN9jly7v3L/HzE3V7Dzc7Xa7lgpXNwUZ79kYU9f16upqYDssdV0bY/b2jgxCrywuXbi8t7c3m80q12xtbewfHVq0Zza3BHg6HRcAH//IU66ZFYUxGubQpEFFYEZMETEIOneLTGmbelYUBSI2glj0H95/iGoNcwhiGYNgSu8bDpF5j4gB6VSFSojdBl+YczELBlhEZrMZkkRGBgCqj4HxIQkliEcEi0RkHDvPjIjGGgCTvNkCIEAEBJhuFezmlpyJDJIxpU29UcOgQKLG55wC+ZAIMAsIsfeucZqLkbgGYogxT+sGUaFtkTTfU+tTi5KIGMF7TfABJGQRIiux/hiyWmEtS9QBGUBQ3RmAKQI+pBViJfQiyfJUmiIiKcSWc+E0NmbRB0LLjtVNvAS7wbHYlAXAI4YSbDLkPQtjpqyoJU1x6dSyFRbRNpAcK0a0j6aGDKR1lhiDBgg1/I6CCwPJ+UXOILz3ACwWGmBk07G9WVMTMHljqDecjd+4fuuxjY+WK6ZyNRgoEcV5Q4hIDkFi8zPRDrWmNxhV1F/3vjGmk3giCbBzzqMBQBUkAmRIWLElUBT5TQS1baYPdfPaMFDx/BExQcGIiLJVdbJY09Z4ICbBnLsx0j7ICZkQ0TfBl9MtOwCggY+maaqqQgE0aK0NwDxLFknMqlW7MIo9RNc4QA7oD6BVWV6AkbRbOovqrMihGp7FdMojgdfvnwibT1278PhGz/uZvoH3TVEYcR7QF13jWKw1zCFWlTzPiMiCImDIIBlmbhqHiEVhvXeZJKbYXBuCj8qzKYi9IJIxxoOIOEgYlGrRA0iK1yppK1J3tDslpCKH7g6qdSFrMT0QhZJNjbA7H7DDmFkQjDGISNZGszK4SQAEHagaI4FIokqBBrQAJJJytFxEmFVPDxii2nQWUbRaOqpzlN4DEAAs2LDbA7wYAgASeueYGREsESI59gklKZEQolY+AbMIoCB5AYp1X957wUJEDCaC8AbIGJJYfwIgwGKIQLwIOgEnngyLOFdPxTNhx5CZ1VPTtczgUcR5dOxrP3VcFZ3f+dZrL/7+w83zq433w3FVGnIoRObVV191Hr70+S821fgXfuEXVjpYlPZgeGQKeOLC5r/3Z/+cw/Lv/f2//8YbN/6j/+VPvfbmG7/91Zf7G9tkcDyb2sHw5o0bnd76k9c+NBoPeiv9g/HhmQvnG+c2tjdG90cWqGNIQLiuV3srjz/+uAdEQwBw++b7dV0bQx9/4aO3bt8dj6fCflZNu73O4GhgLXlhAzgaTD796U++8PzHXv7mK+PjEZmi7K/2tzakmsIJrHZ7vpHdg6MewAvP9rZ7bjY66hYlxr5KEL0UChGnvcg4wgmIeCQUZluQAe+1xyNzcXg8YgDvvQR4F+BQep3+1/LNyFkivc57mVRak8H4yHkLLwqPIJ8+OMqlhxdE0PZQc2LS+znLI+dBC/w9kmarOmScMdME548gSzJD3SARYdM0xpjQEVm1HFUL4n1US8iZ7KmHWrS5jolZok14hXze5o+Fb5b/FGFIsJD/fx0SLYn8O2iXac6+hzj53nsgNDE1T1RnmL/n9xh5PEcirm8EGEIwQiDkme4+2BtPn+pZw0YISDwXRQFO3WMEKBSK50AA64arRnzrmZVgACQXdEYPIlJSAQAiDF5rQxVRL/jVI4EFtohLWfH5WyxoGK3K+G97/Xwj+CgYVLBp8NX5GrGA7LT8WTjvVgnUawwzCrhE1ABChIHVUsi2I9FkYm4a3+n1PJjD6eSdh/vdAgvYPLdWcCMFsKNGaiwMAbBp0FiKTRTmhpSyAdRhm3uP5v0eCEyn+l2VvrQ7QgpkaLNxBVVObh6RUOHFiACilni2CCAiGqrTaHFyzkFUYpYnLX6jRBxqkkFQUCgU8oZaEkRt14iS8SjInRnZS3H8V9klLj5UYUMWmWfO0GLcIXCapPTMnzxvcy+4mgA8swcWL1GvFgxoOQE3BmJwR2/oHQM7BE8gjCgi3rtOp+OYlZuNJ6Nerz92fjD1X335tbfvDLCE93dGVx9/7MlnL7326u/3+ivHw/FKvyyh/CN/6Ie4Gt+/+U4tbjSdPvH0k595/vlyNLArq/3O2sOT6V/48z/2B3/4h77wpc///muvV77ZfbQzmN0yRTEcDsngd77z2mw2GQxG5y9eeP3114loPB53u93JcLS6urp3eLC9ufn6a6/dv39fAAhxpd+dTaa1a/r9flVVs+l4OBxq74TpdIzYCg7P8IlPfOInfuLHv/biN06Gg06nW4ufTasVkm7PbqytP9jZNWVnNqmf//DTvdJPjyswhZxWYAIwx4FbYgKwYAxkYCuHh4caEl5Yp7DU87GHJIAhpqHHjcc5WeTnQ2BkkCBfWtbDkSfMM3QQVY3nqghOecUlW2r5V4kW6vz4ARG1Qia/zxwfyRKgBAGJnHMAgDE2nD1dY7Gom0fhEgEUkSGtTOuzYuaUYpbeGmNzhXBnyMaZ+bEXGP3C+OOoFn/9QJ1AMhyxJRcic4to1o5zKd0nn4p0PsY8d5mLVM1dsnwgIkRkK4CUyhskcVmWD3ceHQ+HmysbRVmAd43zHWuSm07tVK1YZ/DTalZVFTNrsyGaX2WI/hsJnPgUV7AEQ01XJxoHAAgGIaUafJBfvc0zAsgXriUelSt0WtYCZKpqdnNgZmMxr5haWLXlIm3dxwQWIHa/mfP3ZuwDGQFtUbDzBhCN3Z9OvnPnLuL0E1cf27C2sEXjHFBjTAdFnGMLVkxeuTCnCusfspT5v0DJ+U+Y0jJEMzRFZQSqbR/y+kIEV9Q1KrGlRwTVY0HNWsdQcxx1SlUJE4gEIDMExzK2XNJnvCiUJQVzMQIJK8o1BOKAEBpoVfM083rHdE6+Osl+FwnP1GRi7SYXILCz80NMTXG8VFKKWCKIyAfLDBARUdMbQqcsZSu1eM/iA+mKR0EA1tZJiMTICJiCAowkwNIIIRJbQPAIznskqme1dw6Ana8HjXl3Z/db333v9g584QufOHv+3K995Xc/8cKnnv7oxw6OD9+58X6vX3TX+sP9k/fffH339vWO1BNusMSrj1/prvS+8/obI0879x/0e+Z3v/G1/tkNNCBE1nRWV/oHB3uupNWV3qSavf76q2tra9778XjcLTsi4utmNp585CMf+fSnP/2tb33r/fff79ji9q0bRVHUdd34ZjZrrj119fj4+M033zTGsPjG+SuXHjs+Ph5X9ebmxnQ0BsACYTIc/bN/9i9u3ry5urI2GI9ODmcbq90f+MEvfuU3fnP/8ODs2bOXrl39+u+82Ov16rrudDpEwEtJ6x8krfSwAABeYwyMiOPxuNvtjAPnCstmBCGhzOeSPBPA6RuVOemp7fbLtlN2ciYzwu1Od0iSoZyaM9kZgJaWqS29vH6O3uxTZmFhjuaeko0Nsiqj0IQ4nqapW5pTccpNZMnxeto4T10qZtYIffIJLzOs/G4Lsi25qT/oZU+diiRo82+Sfp28HTJv60AUsageWsrUNVUjQAhpeQA4bxVlH0xU4hAAEBTkhADAFPboZHB/Z//xi9s9pMar+9fygvAUYnBecDqt6rqOAhIjkG+by5pIT9+oYW+RjAkWFHMAhEn44QuiVGSR6S1MUTwhSLjlFclpNa1yurYoigg+FW5CCEQELDJP0su0kRPMHDRsliGRa4H5tUSmqiokLMtCTHk4q999eABCH3/satE1LMy1M4YMAXpFpgzqZf5SkikW3vsoSOcIKRHP/IuE75ljJnIYPxPRclVbMNqCLNGfVCABIBts/Uz5JDOCARM+GCvIic15EdB2EyH2KQBG3XCKRMpRDGu/qFMX4nuoF+3g29/nGGZkOHP1cu2aSnuoKSCZ9E13TXs5H0ckWGZpwLM6TlEAhIXFEApGeDLFYwAPAI4BPAug9+IUVYcMiIxHIzJGGJ0x3va+++6tW7vDnRGsrRePPfGhH/kTf2zzwpXX37tbNbNG5Oy5s9QxO492Vsj+7u995U/90Bc7JRx4fu2dd997572dezvD8ezbb13vFbYhe+v+/j/6Jz9XrHSFipPBybRxZ89sjSbD6XTcXemXpbXWEkCn0/nQ0x8CgHfffmc2mxHRE088UVXV22+/XZblZDIZnQy2trYODseXH7v4R//oH/3mN7/51jvvPvvss+/deP/oaPjMM8/cvXv3DPtnnnnmt37jN5umefLJJ15//fW3rl/vd7sA2DTNaq9TFMW9B/cBYDAYra1vTqfTlRKuPHbJuUPnHCAQWpg/FlZ/YX9Z8NFKYgQA7yW0AYgYabpr2lphIS3+hBYhRZleXGyV0grSlPHuIAUl1IqHm8+3g8ZouKQ/ETHKtQ9KLTn9DZfzpCLzChWTIBrR1BwMASCIuDyBFBkAUeNJIfIJgDHjAm2QDYFoY5B5fvK51U+ynxhb51PAEJ4fahIJgfXIYm1xfub3Fq4LInnpNF7Sn9QoW/Re5sUP+T2T2MDMsqGohiv1IHMAMsI5ppO/0aliAyC2AFL0IUDN6DYo3nPj4L3bdz/x/DNrQhbQU2hAKe0LkohnD45lPK1c1UDmwlmYiiSAiYLnglOMMQ4Nl6y3XLi2LyL5yepibJcvn6s4gNBjSURUqVt40LKsQoxJQKyIOq2/YZkA8gGnVU3EFcx4aOk3zLwAANZ1TaZgQzPfEENh6WDGo1u7WK58uDDbJRXSzJCNIlWSYWYCStl2FCNZalSGFGQK3l72mt0oWiOUhr5AsZkA1kZJCIpBHnsKZW+k2g2lN3LCEpqcESl0hkqY4K5AEV1xKwBqITpOfEvnRIMPRkTDqcBASKgF1ZrmIYjaqxFiNTAlNMA4rSrATBarNpl7OeTWCES26cNSCQempJkWEms1RfQVVYYq6SzTp4hgQCgHAEieetHpFBZ2CD74csRorzlhNtYKC7MAs5NQ4wIAUjsgZCLHdVVXKNQhIgFCP21q09ncG05+/atfa4x94TOf3x18697DyZ1797/5rW/94q/8UmN7r15/ZzqriMh7uXLl8s7dBz/yoz/yBz776VdfffX//a9/aXtt+8H9g5XuVJpqc3N9dzRpqFjdWHGuZuqN61mx3mPhu/cfra+tWmubamqKzuHhcccWZ8+cn0xmRDQYTx6/9uTly5dffPHFd95+2xBdffzKh5/90EsvvTQcnaytre7t7Y3H4+7KymxWbW1tfeQjH3nxxZdv3rx59erV4XBIAmfOnNnf3z88OFhdW9ve3iKBk6Nht9vF0ly9+vi9e7cZ4NKlC5ubm3dv39xYw2632xw1AFDYzkJ7lX/rYQEAsK1wMCYK3cwSVcxuAGBhw8tiBiDjFCKStf1drK9IIQqK/enyyyEg7wYOFSS3QpVmwib/V2PAmdyaO3LxsDzg5fOXL0dcvByh/VMy+wYDMm3+OnPWzKmPaGVVNs7IHU5F1l18i/xD4tH/1rfLJ3PhER8kI/ObUzAEYc4vdtpT0vCIMNnEHyQnchkTvwcU8NqbTkJhGAgQUdE19/cPj4eTs90SGA2hYyCh5Kz0Al6gYa4dj8YTqus4qhBNyF9NRGMLpEturEkiKsSAA+qFy+nhVMKLXy7OQ7oQs2z5hVnK05jTVSJSVRWERt+x3wmI9x6z+urvLX3TBoQk0RVOpF3NxWIqREBTRJVbUFC4mImbiX/5+q0G+GMXz11Y7SAJO9+gR2yIwdj2ZfNUPgh52C0+FzPHMHxkBoqVvFRcG9nJnBKTz21iOCn5KH6Znk4xHQoRUbv0RNcvSYDyIMei6Q5EFNskJCd/yIgGogShgUgQRS9EE0JEYhnSkqI8h2aVD7vlFRLy4RZLddMf+TLBPPkZDElA6c6Q621RAKs+w+xFSz/bNqYIQMyOnQiEAl+Ieg1EtUznkkEQxIvWfdpK4JuvvHZr5/C9h3D+kt05mAym/rOffcF0e//wZ39+VE0dDqcNb26c8cJuWu8dHBiEr/zOb3/uE5945bU39g+ON89eOLN9fn93b2Oj50FqFirK4XRqrR0OJoDM07og+exzH37nnet2bVWMHY1G58+f73d7u7u7o9FImJumOXPmzNbWmVdeeWl/f78sS2OKyWSi+XTD4ago7Jd/4zcODw87nfLevXuD0fDcuY1Hjx6dnJwg4vHxMRFdvXr1YH9/d3d3fX39Yx/72Buvv3lwdHRp+/Lx8fF0OtWduLLSZdeQgZOTo57ISq+nWtS/RajMHxZEwKQi1yDDsbDMC04PFPAiweF1ikjDGD9r3Z4AAKmvcCuSBUKG6BLsBgAgmNhwBlDdOhrnP4XR6+aZ66JzmiRrjQNMWNDhpcJVSlwp+JdkqogW8UWGwMFhRRQgIWkOjQuyGyY4u/YRC4eiSUNINTf5Xlrgy63/YL5h38Ih2Uulb+K5+Xgk/gdJdUiXY5atvVDTIhLQYnU3ioiwKOrf3Hsxe69WRWj4SCJA2hQBhR1JRF/Lxjk/5rTVAQWjw2Bu6iyRsZ3BaPpo/+jJ7Y1CwDNyQAskzSXRPE7npfE8nlVl7fTVNEgSXplQEBiBQQwocltmMkqmjJ5irGNE1EoOjHaQSQynX/NSliQV0k7CoFA2udBa5rASUaNjXXJg/jlVSNILs1WPP+kvTJQSplp1bUEbYwRTWO8cMRdkBcW7mqgoy5W9wfCNezvONc8/duFqv1N4bkzjGl8SFVCAZhuHtLVgrqX9BNn21G7hiBqTDN7jVnjEmWzFmHaeQASkoIyFKQpmKwgJBpBIEQ2sxe0DEIAqEYAIDIS8B0QFFWBQoHsDAGSsMUWazGhFqvZpE0ZCWkRF5JL4wl6W+JUkB3j6KsDAMLMidmHA/xVh1n66EWoXJObBBlqCKFmZQ5WLAKQYWbxJSzoceW9w9oh4Fk3KJUKtNwF1Aggj+VDtISIhiz5pbN43Wn8EwGxw4ptx3Uw9vvzG9Vv7x521rWefW3335r3jb7+1P6g+d+XyY48/dnv30d4bb62sFKvrq4PxyFo7HY163dIW8v6th/+X//pvHw9OpChmdbXW725trw9GR4MZi5Nud4V61jOWQGud/sO9vf/ir/0nH//QE7/2la/8y996ccRYlt1PfeozInLj1399ZW29qWe9ldX9g4P3i5uTqu6trB4dHdy9d280Go3H47IsEeHMuXNraxvD4bjolMPxaG9vr9PpIKKm9dy9e/faE49fu3ZtODiuGjw+PlYt5PzZs5ubm2+/8eaHn30K2B3sHZ6cnLA0ZUlr/RVTTZq6bpqq2+22G3yOivM92HZrsCBK/mGfW2vZ10TEmYUUrJCF6NrSTdNNcvFMocqwLVDT0qg8U2BO0p8izEBEyBCcdiSxCkviNuU3poGlWNeCtENEhXxbTsBppwwA5kfbjjCP8GVCN4m309cBAAC05j0VT6fT0iVEBLHiML8Jnmbj5vMZ/2wXJZ/SBVm+fLe5F5wfUhqM9yIGYB5SW6Lkzu+mlWYiYDicmj8lv3OiOhVN4pmAPDhBIEYIYL/QNA0CO5ZH+8fuaSm1iSdpEVfChQcWcAKepXLeCAgZiEwJT1N3dDU9CMU/iSgWs2nAC5cJYOGbOEU5XbTYpfPvO3cHAGiaNomJsy5eRVFILI/xnkPOrBARLUOuLnzOp1q7QllL8VbRgMnAv/IXmVQza60lUnzssuyiUF3X/Y3VneNRNX1oCcrz29u9chXYItTeJTAAjPH+MDwJqZckgCamAkSRgBAReE6zgOOeDqGofM7TAUuH7sd0MjNDC0QLhgIrwFR3IAaJCBwRFUVB1JaWERktzdIqOyICAyKoQbT0mPTc+aTU9qA5Ogl0lSX0nY68ka9ge2V6cQ5MBlnYe0VmXdhTkRmGm2hOQ2BoQqoeccggleiXEFUHdMyevfcNANS+9gKe2RvPAtMGDqf+xd9/42BSfeaLf9Cu9MvO2uvX/+ls0nSLzpvvvH80ntx7tFN2OiJ4fHy8unmmaZpOUXLjnPDGWu/e3t7mme0f/uLnf+93fnc4HABhb2197/DomSevbm1tHQ0HDx/urKAdDYYG4PU3vvu5F56dzSZA0OuuDAaDvb296XSqmVC1dyzw4MGjnZ099k1RFN3uymAwOnNmazqdkgFfwerq6sc//vG9vb2T4eDixYuj0cg5NxpNn3rqifX19bfeemt/f7/f7zvnumXn2hNXLl269OJXv/7YlSvdoux2y4cPHz526fLa2trh4eETTzw23n+/rmcd1xDByspKK3QgmXkfIFAQAcCCADRNqnux1s7GI7OxDhjQBGGJQyFAdI9wqicDABM3XnSWBKAVg2QMSazNzSmJI+wZxWbmEgEvE90EOdR6gRL/am+ynMKjzEstywURot/rzpq7NsOawIX+g+CJSLkGsxMJYU7nPKIg2MRomoBS2d4HAsqYB63uT1uRCACsDXXD+r4mlo3mAiyBgeXMMe2xJOnTCekzURBXC+khC07ONHX6Ut6J+hXSORj7OoMhiLo2gAIde5kX5ES2KCwAc2gjjSKChFHf13MSGYgaEPlN8hdkLYijiKUlISSMprBkZ9PZ/Uf708oXhXjSkjsdHIsIWVtVUxacVn7/cHDJB+diK94sGmMqZk19QI/OOSC0nRJ9SnUOOwkD8RPEljvqo8vHjLndLKfof9jK5PZlI7gKNE0DEHZT2npKCXVdq1OUyGpj16S35Y9IZJNWFjGWXiuGlDWQFb8ZY0TAs893UEqYYmaLBjx7FAIRT+KFyRhjnJNetzeaTb/z3sNmOvro4xcuY3e9Q6boNNygE2OMZwSAsiy1SWrY10QiHpwHQ8xMSNqUjyUSy6JLBUAEPIsRJFS3cGQzyugERKwxoUl2FDAApOHblHyAGGPtulKhoCvAZxoyxpjGOyBD1qKxEtoH6vPIGBOc0q0kE+UJYYIjAgKhNYTMzOIwY0qIKN4lzS/6J5gwdpbTbQWi/UuU0jFUNkXtVrxaTai9s0ACa/XsNE8wdsAMlaPM3LYLBEjAVcwiUpABz16ACVj7HQELQl3PCkIBqapZp9Opm5rQzlxNgMxS1SIGhtUUe6uvvn//zRuPHg2m0rGvvnfr7PkL7779ddVUyrJ79/b969ffE5bPfOaTLzz3wr/8hV8YzaadTqfTK+uJRzCD4dRb+Oz3fer8xYuXrlx+/dtvfOqTL3zo+U+8/c47d+/dOv9Y/1zROXh0iEg1gOmX/+zf/Nqtvfu3b9/eHVemrKfj2fs3bq6vr3e6vdF40uv1AKVT9GazWdnpee9PRpM//z/5H1+8ePGnf/qnm6aqahDB23fv7B0cnDt39ujoCITYw8bGal3Xw8FxWZjhcHjr1q2CzP7RybUnu/1+nxDrun748KGIjCbTnf294fHgsSsXC0vbm+ubG2ujnV1blLFpd2QF0u7NwDAplPOo3oyIFkSg18tBmMvSjp1zvmXiRtB77504X68UvbTDE8PEgEuweEimCeZMIXHbpa3WXphGTLHVWv5TLooWGLeyEhVsEtue6H2Sp1dZcF4zx1mbvDTCZeENGiQh3Y2nGBlRdZgbDEBs5De/HsuDn+ObS9bwspTKh5e+yc/5IMG2PHJcMoKXb57fQVnZKY+bu4QBQiBNPe4UkgnytZub54XRGmMEGSPGXbJuCdEJM+DB8clwNl3rrhoDzjciahGEpRfGyvuT8aTynhXsSp8iLU0yM3g2ZAjJkGFYfNlchU3CMtzlVI9IZtmfqujAvO2LWawUcV73EmmaxntfliURhdIqABZGRvAegKJG0WpLC8Wg6blpVDLfyB2jTFu4igRA6+4glMMwswAKA4P3gk7geAJ3jocb670e1M2U19c2jCmgKIuio65e51xVVcofiIiQfNu+QRQwERkQAzJjlpqucyXpT2jJu3WcLPwKLYVLsityDxnN29AUIc8IkEFMEZTpaC6Hzd40Kl0zG5RRREyW9JpPaRByqrrpiksY/am7aeGbhc8xFzqYVu38xFBRugcCcEaW7cD0mtjjJOctAOoVQhbHmvAPbAyOpqMCqCisc845Zw0hGEQZDCemu+6L8u7eo7e+ff3REY5qckWHAd969/21R7v7B8P1brff7T4aHBVo1tfWp9OJ877olR994flvfefbBfNsPC0CDi+cv7D94osv7n1o3xgjAEJy/uy517/75mAwuHfvXj2eoshgOGjYf/75j7/0rde//d23xBIzd0hWej3n3O3btzc3N40pmKGqKu99YQwDNp57K72Dw+PZbFbXNbOc2V67devW2cl4bW1VLd2m9r1eb319fTQajUcD5dhVVTUCZWneevPNw8PDTqdzdHRkCtvr9WTq19fXwbOrm/3dR09e6DWzqe7TvBft/4+HBQCwdkH/5dhFJ1ioTErNFspITxzqducFhh7zTLnlRDmPmN8zAWkBEYuiA9FBKgLMgG2rE8g3QM7a0uOSZ3uBrNNmS7YmJEMljnlhapa/DPyLAAgFgazRyAoEABpi73NFJI1BRAhy30A0qQCSaQcwN5n5lLYp6B98pHlYEIeQOeLymUmPyE5GAPCSlalIbk5pMFxnAEUC02xXRE5n+hib7+jIENQyCKwQAIKZAS1yU34QgWLzggpW1sbEAVzclitHJ6Odw5PzG6slGkQHCjdDIhrkAmmcPzo+aRz7lHSKnIo9FkIhpNZldBylCdRvCNHlvhbJMIRDWQgAoEjeLy8oGfk7qZ87X3eJzUu0N61ensIlCreV9yzQfLFEbLkpnIftIaclteW0OWR8tIreltJiRkX6VUOmRhAEGMATiDhELMgQGSig5ulwBiPHrjRiaeZqy17EM0JpSm1drhheOVkiYnAKJUkAIK2OOrd5wyuzgImeHpnb+wvErIUOqbRWT1CiU89fPpikAImIsGjGFSIm1Egim3Cl4pwQAIAJugycdgh4Fh8MGxQJCYSIRNAmg4nEnBjlRXG/tSXCKqRyr0CcAQAAjRNTAPWLvwYvTLuIiCiqDCh+JLdJMIrJLwjM6EG8OGYG8c1s2i1KI+DqqqoawnJWzVT/YjHHlXv37s57j/Zv71XWro2qxntH1lgy49H02aeenk4new8fvvDRa++/d28yGECBD3YevPzay++8825RFMzS7fSFXWHgC1/6fiztN7/x8htvvEXAG5u9N15/fTqtbt2+Ddy4Ztpb6az0OieDwd/6P/0fn7947h/8zD/+te98h8H0C5BqNh3X/97/9H9myP6Tf/JPnn/h4w8ePKiqqtPpTCYTY9CWxWgw++bLr0zHo9F4urW1MRqeGGPObJ8bDsbWlKqkVVW1s7NDRJPJhBmefebJ0Wi0+3BvdaM/Hk93d3fLsmhcRWgM0blz55R+qnpWT8a9q+vsnbCznZVTGeDp5BGXyQIR1E3OuMNuSXsypMGTMWiMAXdKmjUiqv9ngbNL21fydBMh0keb2JWUiIWAKMAHmrwLI9HTVNDCvLs16Rk6VP4Acb40PExNDhZPiH7FnFfm0b70Ly1bGLpPYg1JGtUpZ86/2vJPcpoCsXzOv+3LxWXCJW197o0QBEMKD4JZqF8MTrLA6dvMQI7KRC4YWkElp5EHQExAFUQ0yAzknOt2u8bibDy++/DR01cvGqs3NCI1Cok4ZmakhmUwGjeeBUiAgJByzSu3ikKZlNadLL41BWl1eq+h5S/Tai4RVat8YIvpATnZ5POTBG0g2gxsPFDmfHxBIk0uL1mSWJDFLPVfjiAk8RIdD3ovlGQjtQvEzOwCF5lWMJo2FSJ0S3DAzLVrRIRL7tiOsSRCdV1DzOJOc05E5IMFBqjA1q3FK1ENSu+FiihJUaHBdh5SGDutaR5RitwJ8vfNJ7zVw2LFXfLDS/CitTV4KVMsCLYP4Egh5i0B8CRl1UQyYFgis8U7ICblO9+JiCEJNPc2tVtG9O5xHvShGqsO6B5tSZuIZxCBkFcPIugdsPTKjquqpvFF0fEO2WDdCJqi5vrY8Tfeeuute4ed7c2ai+mkWV1bRWEGf3Ay+MN/7I8+89SzJ8cHl8/3/9yf/Ymf+PN/cf/gRAw5X3/zG68+9tj2bOwsmgsXLoprhqPjuq7PbWwVpqzreqXfq2eTpoE7N2+I9/1OZ2t18/HHH3/zzTcZ4NzZzacff+L7X/jEL734SlW6zZXOrKofu3TZVbNnP/Z82SlQ4Pnnnx+Pp9/97nd7vd5kMplOh72V3mg06vf7dV0fHZ0Iu06nmE6nTdOUZTmdTnWLee+Louh0Ok3TnD9/3jmnFNjpdhX8VaOW0+m00yun0+lsNtvaWMUCCmuMQRFflKaaNafuu1MXV+nHAiIEUBUQYYGgmNdNowEnY0hBLD0Ls7OAOauV4IgOWyVuBxO0PmGKGQGqgS6wqvhny06apkk/5c4iFyNqOTdZlpcQC5xyWZvPhSazBJYngReKiMZvcpGjewUyKyGlS4gIiMfUUVgZYYTZVsYbvEGacpLyUXW3ZwgCqcY330jLki+NfznomNgZzG/UfPkDVH3gQNxarkHnzg2ChO0VMj/1beNWR4hvwxiqID+ItiDyeQXPZcUZzrh8SBz1HKkohusEAEDz3gnEByNZu/ZwNOZRgMSDF7i3u1OJ9JihcbYs9FVD5EvEez+Z1VXjBQvEzLZA1ORPIjIGCaltpaqjE5AsDJFnyC+878J6pRPy7/PFTes1fzBEFyj5FrtRokgAAM8RDgrEey8Oy9LKvC0oWbLh8jiZPQADUkhOhvnOB0LKASBVBrNkWdaY3DZC7BpPRISGa390Mjoer26t9TqFQOMa3zRN45zjLiOiRRCXTx3igl6ORmLOGgCkAeWbF6LdgKFUCZSGTXTEYFvmGhUmASTQBh6QsRRIVnUmfWHeO62/J4evrmRo3gAtbzE5k8VgmwbqBAztiAMz9IiojCblNsed+IFqbq4rQhL2be+pIEPTCiZYtNDUnJlhjqwlvlJ467YEXUBdjp6BeTKdAEBZdutGjoezcsVOahy76dt333/r1sFgBmcvXq08r3fM1E2O9vcZYG1rZWVz82Q0oQ4NT/ZXHz87OD65+MSlw9m4qdze7vAHf+C5v/pX/sr/+T//v77+2ttrZZ/FHR3uv/N2c/3tG82s7hg7HgwRYHWlrGpHVNQTx1Pu2N72xubBzqO//Xf+7ksfef5rX//qxhp+5gtfeP21t2fTk4P9/W+//NIrL7/s62o8HDz/8edeevkVIrDWdrtdAN7e3j7cP/jYxz52o6m996YwdV1ff+edfr8/nU6ttWVZikhZlqPRyBhTluXt27dFpOga51xVO+fYEFhLrmLbKYbD4ZkzZ5BkbaV3MjleXekhibVW21eIZPtF5lYzfphba9vSDaLy906nw8xEQVf17NXvoBVj2gow0Wi60bxXJ2n9hIjqhlpWDZLoSppgGnTO5vK3gkw+tXS5RLXp2jzHatmSCNfjoq79QUd8x1y0t11sEQJAf/ZrELuQGA2kLxanIh//qePJJzCbuvbXnKMtC4kFwTw3nlPecc77KiKWcrzMoAx5CRS0fLckgNurlN/L3OBPHUb6MixTa/CwshVIXaqcM8YcDoaV98aUrhYRTy1cFzrnZtO6rl1dN1AUUU00AJA3sUnTpTqZiBCHvuKIaOL4E+HN76hTpje9oPdOv85Omyv70YMyP7BkppJE17SCDrVJkXkMe/5W+XjyjQYAGkGH08ijVVvFQNaAvV2UjHVoGRigA6CiKND56cwPxo0XQgsELOIdc+0aqmcWiblEoYXXJETRJPpW4uqeCX/J0jaBeUVT6ZAxF5zhZZOgzac6btXlThjSXhVHqG7/dOdFGo2jWqCENG9q/qbEj+D1BW2sFYqLiDC+dnzl8PfiDbkF45xfu+VlyvdOgPHxC+cotJXelsJyMHstDG40JYIBy6J7PJ5VHtYuXT4c17//5puVMeXmxc0n+pNHw7K/brwfDofD2fRTH336iz/0hd/43a++9vadl19+GXj60te+9cbvv3JwdHzz5k1jaXP9wmR45+zmGSPY73bW11aGk5MvfOEHbtzu7e0dTCcjckzN9Nql87ce7k4ZVtbXLZrJcHT37r1b9+4AOIPw6hvvvf3Gewbg+Y8/9Ye+9Ae3N87/zu99dWd/7+6dW2jozPbmo4f3f+kX/9WkmvVX1zqdjvf+3Llzo9GoKIqqqhRgyhB1Op2qcp1OZ2t7e39/v2kaIppOp2tra3VdF0Wxu7v74Q9/+OTkpKqqtbX1siwHJ0fOOZ147V2kEncwhDNbW01Vdzqd6bTqdftZztPcBjxVvoiIBYtQVWFbZaU7MU+YvfPggYJpRBi0tvCM7PMcxYgoSkwLMaEerVM5dXQ3AXyAAAAAiskRp1LbIl3O88GcGeWtpBOZikjq77R8ExERD2RUbEi4awAvFGOMAUxYbvn4UTsLq3TWLEeK7oIlDg7Zfv4eYgkzvWdRRzltHsJVQSLOeYkhehYX+BEvFksAxkzato7wtOHl41eQvmWiy5+lS8AIYEitCgNGYoRMD48eBAANoubIsggKozVl7RpENMacjCYHR4dXNh7X9AWMvgoBU9VuNJnO6sp5z8Ucz82njpkZtGsXRftAqWJu5Avuh/w+8wpQbnDkehUiwvwsKesXABYh7awFsVQvF891XadHKI0ZY9AYZl5IwoJ5woA5LhAM2YhN3T4ipwrI30VAYl6P2s5KA03tmFmwQTJIMK5gOJhMp83GqjUGbadD5Nmx976ua+/FoG0TKsUjogErIoQFQKxpnRPAiaXEWcoygSXUzjJi6tAQ7HVNHFNVO21zxBSMD6+ZFI7sy3BvXDAtsiTBkIOfeYw0J8DkM8Y+0DB4EEF122hNOkDsUqXmZmtVYGb3R/IhgCC5E2pCS2+x/aJEzVbvJS5Y2BkfnsPikPmDnc4SsNeMH905vqr9lGvX6YxrfnQ8ePHbr914cPKp7/vshcc+dOvo1YPZAx7vNNNqUg8fO7v6F/7dn/yBz3/Ozarrb91aKbsvff1bnQ7snUz/n//tz66smP7a2ngw3t7c/NZLr/637h+8+/67jmoyduTGT3702Z3RK2VBs0eHf+0v/oVPf/KF//rn//tvX3/v8mNPDobD0XRWrnQAeKWDs4OTf/cn/51XXnnpYPfoeH/6i/+fX9o5eXB8vN8t6WjYEMJ4vLuyujIcnqxubNbVbDgc9vv9a1efuH79OpX43vvvWqSyLNk33ntrjDXlmTPnHj7cmVb1+mr/7Nmz586dOz4+ds4hQLe7okGTjfX1fr+/vbVx/fp7hUEDYow5OTkhovF4bBDOnNlqmpOCFi0iWGLFpx4WrGmmYwD2ETKmqiosOk0TAsOmsCFBgZlZrMkFW3AopXXFqE9BNH6bpoJlyFycI+ucODwvpoEkkZbzOJy3RfJXTdJo4do58kVEQyjAIMgMsugPPO2GRCYzNcRom2A9J7kKkVojG9OzPmBhMHqTJOOF+eaHfFsuX/sBrDa/FvJE5XlGnAmM9p5ehWI28uWYdHoKEWraDiPn0j2SAgqIUb+lAKJB0FZxkRHoTbSbm9c2kekemjLjAYzWVmO0DTRR02PDvlnpFM5Vx0N4tHfy0auPESGzVxmq+D1V7Uazuq4EGI1GwQA8+AwYEURCymuI8wmE9K2A0tGyOYmJUfOEARChVCQYK3NTsbBY+Sqnf5V+nHOdoisxaY6zwxiEWOCZzBfwQNqLbr6bFi6VdbW8PW5PEQlWKcYKwHRJNkIO1aEaRyBVhkgYiawpfbgVNA4GUz+cNGe70C2BjCkAGmD2XLnK+NqargnDDDtFx+MLIgEBAmEh1KYoYQZ0xTWYGX3IQWmLQKfLNAnZjgsvG+eHQz+VQNXaM3T+5BYGS3POiSgvJlmGdBfvMeXoA4h4SayAY4NqEJ8i/aZNsw+LwsIgWlCkjSVJSBAw9u5SxF+ZX1Nt1hnK4hkBFcqDAwJNahgVfR6pfEA9QxICOuQaJyLM4lhFsLJ59EX3xoP7FXWu331we284A7Dra999/86rbz8YjEdFp/TgK1cj4oP90b/5jS8f7+//1pe/0u92GuZzZ7YY/MnxmCwC0fHxYH3jzLSaOs9f/eo3PDbrWxvjyeS9997trKwcHx+v9lYqhu2zZ7orqz/yJ/7E7732N4+Pj/urq1QWw+nYWDw5rn/k85/8c3/2J/7IH/mh/+I//xt7D/ZWV9dXV/r97vGjA/fX//f/ydNPXP3n//yf/9Kv/+7FS2eG01oAC1P6hm++//5ocNLtdzudYjarAQDJGhAANxgMhuPRlStX6ro+ODj48Ic/fPfuXQ0JO+fu3r3bNLy+3q+qChG/+KUv3bp1yyJtbq0Px1NB6JiS/eTyBXNmvUv1Ud24oiiqpg5Qo0vYQYlyFli0hWZWEIYoIJFnsKZomgaxEFRpwmAABJAK1VA9+8hiFJpXAfbTdg2OR/aNuGAAKGtTNQ8ClI8ag8Qhn9USaKGCmvAJnCtqat5jluuUNgk3DiNoQ0LLQkTHnoInCrz3EnsZoSFEEGHPgoweAICACHxgJTjvPWB1KQBAaOWCyq91jxkkRCOISEZ1WKO/hk6iVnuOWiTOEkbCkoDXpAeYF9Lq9YppIwgRPzZwgbYgFUEgz8XIP8RlD+7KmCLZWr2o9UCxsXIUimCz3BM9Uf8XPCKZfRY2M4ZKM0EEZAHvhZFKEEQGBBYURgYkw+qtbiSFPIJgY2E2Id0zhOIBQ1KxICshgIBDAURQ9Cdfdy01TUOm9DDbO57MqmajLKbOgzACMIMzHrud0dTXDXawsBKSPVmbEwsTCjKCkI05Vt45awomEPHAEip9EYXQRNhCRgjV1cBpWYy0/ZIF4ksgJjAHRCRS+mFm0e+Dw4qMxkTJGgJsXMOA1lqyxgsrzIIl0zRN0zQcK6cZFaJFYoODSEVCAGgUCx3z0I/OJCplERmVZ06YkNAQAmBsOSEihhCJnK8VeAIIASh4NZ0vy9L5urCWfW0KI84/Op4OZixkrBVEpMJIw65uwPF4Uq32DYipZ95TYcoCET03IuJ8XZYlgQVkAhLxAmhtQcJGIdTICqNBC9Y2wCiKqAwCohi6RCZtGWbdlUgt1IxREz6sCAAGSCsxMRsPNMqOpNtCjePY7swCGhWQabtolntgApnezMwingQI0Td18hhzBuXduHohDk0CSBhiyQBeBFVpACDU10WVmQGaRjwzEwqzDxH90EVSMJYZcVQXovLgjUFCrKqaBECQnSBa55qm8WVZziZDKKjhZtI03U5vUruDwcSsn/u+z3/pxi/+ylYxGU3daNaMjsdkCyLwU9g6e6YZ1A04RL794JGrXmkEio31i5cukcDB7s76uvnBH/rBX/03vz6aNjI6kYa7vRV2vt9fHR4NnHO7kx0A3N7YGB8PVzr2//aPfubzf+BLX/7aVzfPnWnq2d7uCEhmdXNp80wzPjg8PD46HDx6sDMeTqiUa89ce+LpJ377xd8ZTq7/4Oe/7+qZrRvfvrr/kSuf+P4vfPnFl+/vHq50+6PBcPvCBfTN0ei4290qynIwGKLA+uqqF5nOZiL84z/+43t7O7/6q7++u7NzfHRU1zMRuXrlMWbeYbh0/tKDB4/qyt2+d79mQeMRwQD2+mvsoR4NP3LtzApN66YxRVF5V5alrxuDQY6w5vnGXD8PEpBviIWCPLAAMp2MSEAQhBHIsHPWlloEKOIZxQCn4jwWTd6Log4MIyAQiGsV8CBFAACm1UyJhhKiE2GKlBIj4qLUCLJj3hBcQLBKymAQ/Op4XMpqTnSPMSykSV4SGgsiKZyTMC09UebNa0RMcBaSQc7mtgXEpKog9aOlXtd1KDmYE8DqJ7D5ExfGkJ+fj6pVyeOH5aSbhVstfMlLyVzp3/ab+ZVJv54KFkbZgDHLgmb0omU/SJh1PEz3FAkSHST5fPN2lnq7YAaIeABR+F1CACJAYcDBcDKrmo4IFlbEIwCCqb0fzaajaTVr2KIR0ChyHC+hINiy9NZaRvICESHZCZdaeiPBbZBGy9mr59N12sKlJvMtnaTTKJafSozViYii3+iceO+F9TRh5oa9gFhrGYQZXCw6WF6INB4RSc6I9H3aEe0rxKQtmbcp9bSiCHCM4GPhHBBpvxYJUUkScAK1h1HNdeN9IWQBAakgCwYJCm9nzcRiibZjkJlZA2+WgLX1LDaIqOlUEpvlAUCeJKiO0vnene0eX8g2D18C5BOU84qEEzA3GwLJA5diGfHfOSdZIlXlkkG0K+MFAAGtKp6b58CFs05isWchCQhIyvsSAPDCiJDlx4WxEopwTL6SYM4AaAYfsMfAgYODPW5zrGeNDWYGeuerqrFFBxGNwdpVXrhpvHQ6k9oPp/7Ow/2zj1/7i//z/+Dq85/4+7/4Gw8OdoSNF1lZXavrGgnOnrm4sbGFAjduvvf4tct/8k//me3Vzf4rr/zaN77eb2qeNgcHR3/8R//4Jz/9SW/xy1/+ssw8Gqqaup5V02py/sLZn/qpn6qq6d/7e3/PzaYIQKbYnUz+u1/41+cfvzgZTy5unT88PJrNZmVZDA5OttdX3nn31l//G39zPDipatfprVy/dePhydEbb98cTeXXf/03n7l8/pd/+ZevPHENER67fOnW3UfcjIqicM5Za62lpmnW1rZms2o0GH74c5+7dePGo0ePAPDg4ODmzZtEUNf1dDoV8Wtra0VRnJycbKyvbG5u7jzcRYZ7d+8XRTGbzKrpbDQcFUWn11+bnfDVK2dJpijAHoio8c6QZPIxsrN5GkBU8EQUAQtE4/EYIzQuxoT+XOJSSHJmAHUBzUEEKwmSMZyVVCb+ngFWhApLZWEhHYNQ6Q8gQkMjwDyP1qpTk/W5DOMEQWnzL/TSJG51F7Y6ASKwpOzB6D1X4FMRYQ8IqN6eYA5CJlzj9LU8lFJ/Rkj9RMNBRICgGjRFpDBrLSJG0aIvdjp0SXoFnHctLuzkhQuX5TQERWHO957/qoON16ZowgfUNebaA7eDBAADWDCQF/LaDVYQGElEPWLkGZkEAJygmo9zjFFToiLVqvqSwMAX8egTFBoAMQOiEWEgezwY1d4zFODReyRPIuRcM55W42o2k8YacMaSgGUovTVsPBiH1kepTrm0DzZuhks6r49Eepvz/+e/YnR15gIvzSFl9eiBVkP8goAloFN5j4DWGCBwzrmmoZgjFCCfwuYy+f0h5sHG5+aUQwDIrIZd0EeZORqEc4we8q0E0AKYROeEiGBkEVqj3Hg4HgzHldnoFR0QIgIyRGSIUWA4HDth74XLHoFBxIKBCYjIo3rDhYzaDd45iPgtqu6ziGdGzjgPtuHhuYRqidg7wUsx3x5OlCoFYs2tJD2vnSgARDSqIemeBVbfXqpTV4szTVtwFmWrCSiAgpx5p1Tp16ofEIh2anKPZ68QvG4sJCJoDIMC6XGoLmKxSBpKRhFQcSsAAgYBMeSViogwoqBBLMi6qq4rX5bW2MJYmTWTaTWz1jKDKTo10wy6t05OjseT16/f/4t/6H/0N//Bz1+/9V++f/NeiRYMVFUzOB73O92madwm1yiD6RiJHj7auXH7zk2492tf+QoU5b0bt0hwNqte++7rP/qn/uS9ew+48tWs/shHPnJu+8zBzqO93UfrayvraytDcoBeEPub/dm0aqpmZaXrq6ZbdqqqWl1d9cY0Vd2MRqPhzAu4onv+yfMnJye7ewf7N+/Z+7sNm+2Nrb/9d366V5At8OHk3cvD6t2bdw2CLWg8GT3c90IAVBJZrqt6MimKYm1t7fzFi7v7+yhcFMX9+w/Pnj1fN01Rlggwmcxu3b1X13Wv13v06NFgODh3/vx4OKgms3Pba+wZEepZtdLrgIPHLl+uqxECg1DHFjM3C7S0EGXIdpM6xiR+aQGxqiqLiMgCnoKMUUcIs/bKIO0Dpxj3LRIQZi5i7dcbBGcWNdHKP8g5QTasBbHBIDFxp31EGHF2tNsJIXcBLdxQsqLJdG1KLpNAs6B7QJ14choWdFIp8AO6cmaWWlBaOc9vQZQ26LV4c1WxW9m2dORvjRk+cGJDyxcu8KPle2aX4MIlkTbaM9PrL7jO9HdCi2gAgnW7CCOlypYAxBKROOyFYYTPklEq6KXCGksGAIxFMgjAnpXq1OUwGIwm02Z7pYNgvNcWysROqkk1m828MAp7RQxlZWyAQgTkvffeM5AHtICACIZIBGR+qbDtY9gKAMl/PyV4n9ZLv+HYeIOImH2Sgi0BZAw7rWw6Te/JofOxGCI1iJcfnQl+WfiJaC4HGBGRsD1zYX9JrBklTPnDEsVG7JBCzF4EXAPHJ8OJW/NoiQhJjCX2SEAFQNkU02lVTVzjeGUFrbUoQozWkmMfUgZAkBgAvPcpJSWNRC1gF6BeF6uxOceKCrsvKgqn+ZBUP24JL+VeUfsnZLsvEXx+n/wETBknynbU4wUL7Kj1W6S3Szs6nhaCtSAC4FnQIAihRmqUMzM7RCvCqKXt+igRZBFEDaZ5YWF1egoDuNp3C1sWHS88G08rV5nCFmV3UjuP1tV4c2fvzfs779476fb7E4cjb7/91ns3bt7c2tqqJ9OmabplOZtOmqoGgvdv3Gp8PRmdzBpPAr/8K7++sblpOl32QBEIYefR3k//9E+/99Y75KXb7VbNrOFmbXt9Mj25dev2L/7ivxCE7/u+z959+Oje/Yeq8qz1ukc7BysdMyNyHk2v99xzH7v3/s39/f3N82cuXbt2+cLFl156yQGWK73ptCqLzuHJyWZ/1VqZjIedXu+tt94CW5ZlYbvFydh1V1acb3xdgedpPVtd6Z8Mh6+//ro2DD67fUZBUquq+tKXvvCd73xncHJSlqUqcNPptKoqW5jz58/e33lUFnT54qWDvX2/ItubG64en9+CrY3+7OigQ0bEIxkTyvtO943NfYhb24I452oTuZ6IWGs1DX1xV7NCx7XSIhKmF5AI1daapLlBHInXICIQA6hzKdAnB++jxmysovZDsIHC01XrZ5Do0mvz/NK7hRSVLNqayzYNuRVEFCthtQaOQlcTTT5KgjM82sR5EJFQvkdLNQzZTgYA5xyHGHDIGaGsOXF2YXjHuUlOdn8Ue2mHJ5MlCfW0CnCaCzrdZ0nOnQJZtXBJPhiM8S04rXpVCD0Sk1HLk9UhgqC+3uiLQQDwSCSk3mSd5oC+kPlpYk+YJNtY01LSGyjeMyKiYW6chKw9PBmM9g6Ozq331/qFb5xTP0rDzXhaT6ZNPbNkk/tB1YKSwXg2SI0hZNQmsZrZJCKacZfmOZsvBm1oG+VVqDCZV1xEBAA1JJkmMOPjASoVMvpR7zcFR1GY/CQnstqqdqt67zFvUhL31PdeX6UBDnhOgYRMsKJcdqLmhaAwY9TLvfeCgIAElkKfFQFAQSCA8ayZ1E2DPTJA6IE6IELABKa/2nXCdeMmTeWn1Ot0SioUiJgAQZAMiiCKWr1pvwggkIZ+BRC1OogAioyqU1lgqwZJ9I1punA4WZK/py3oyvaR3gyBBXGOXaZNNzeN8aEiol17OWa3MbP6BQUx9csSzxI0VIZsgURgYbVERMPM6qcTFBREZmTWqngS74SZmJhEo8gshgWAXMz9Vte0E6cqpnOOTdd5ds4xM2FBYqraT+rO+w92bjzY2Z3Mdho/I3QNeId/9+/8NxcuXbywdWYwOGFma8z+/uGVc+f39nb7/f5TTz4+Gg3OX7xYdo8P9w9qlv3jITP3bIcbP/WzCxcuzFzztRdf6hmzsrIyaaaDweDSpQvdft/ul92V8u233zYF/dk/+5Mr6xt37t5Ha23Z3d0//okvfv8f/uE/+I/++T995+49Mnzh4tluQePXxljgd9/+7sP7dweDQa/X8Z5LS7PZZG19ramm9bj+G//Z//batSf+4//0r+6OxqYsR9OxAKM4cA177xtmxlnlts6cMcYMRwNjzNHg5Dd/+7eKotjY2JjNZs45W3SMLarprNvtavrV5tYWEQxOjjbX1keD4Xg8BizW11dHB8fPPXOtIKmFjbXOgW/cMpAfLK1sBOZOAth7XzfKR5TCyKCIKDZslmaCGoQxH9CVKBBlJj8CIS53xQmxz1PwnnA+xgaZZho2TFZxAZl9nF9CsZ3ccvo0IqbeD3E6FGCEM7SB098oSSNYLPBqhwoQXOUQc8RSJPiD5gqXgFvzX3P9Wv9MgnZBc/8ePHd5AJhZZkv2QQu1KIscKq7C/KMIkBE8gaSe4eFChCBTnSCJGDUwMGVvAol4wFR46uPbUMiEBc3VTJY0M2rMN/hFtTapKAo/qw6PBvwU+pj/7AWamuvKV40XUAenETRAyEYdkIwL8dHEcxMxqBWbzVC+7jnnzLWW6JZs1y7srAQ7TNRWoUddDzUQEBGgkpqV5hMAFNnEIID34rmWutPrZovYama4ZBYvkITeON+e+fn67gCggTRmxyn1mjCVe+lQAZAIDEpV88lk1vAGohgtXkIRZGtQiPrQE5LJuJnVlXgPZY8Uv76wiEhAhtgCodH5cfmowqPNos8/Tc7Cfsy2z9zCwRLPSbOhH4gMM+d7otWTTp1PCeWI+YrLvFBNzBAAFM0L5HQeEs9P+fkcN1FIjUMA1NonBPIAxCjCDMjtBY020YlRRe8b7z0amdXTWdWgLcqyVzdytD+4+XDv/vFofzLbH9W1IS57RafgGqiw65trADAaDEXk05/9zKMHDy3QycnxuTNnvvjFz2+f2/76N7/WX19DA492D/pr/YJs0zTM0ul0utjd2tg8GJ50ux2KMGQPdw6vXp2eO3fGM49m9fpK98knn37wcGc4HK+s9BuPxpZTGP0v/v2f+vBT19YvnP1L/5u/0lmlvZ2Hw5PBYDzqWTTG3H+40y1KIXNwfLi1vlkUReOdq+tPfuiJP/CDXzLWfv7zn//l3/492ykHk+HGxgZ7T8L9bs8UnU65euvO7VWyJycns9msLMt+v7+zs8MMRPT6668Ph+PV1dXZbKYgWc4573FSzHYP9q21dV3vjAfTmVy6uD08Oe5Z/+yTF6eTga6jARTPZE3M4TgFKmCJbhEALAg7X2s3Xz3Vey9oMSy9Ug+TYCgsyl2FyAntKCcmjvF/ZrYhWgYA4EEEgD2IiCmXHKcUzhSNkQBI5tUUnJOp2YYJWm3L92PsLZ2pyQ4GkJCcOABAjq22icR4AUjZD4jt62BmceqdJaLPLNuC6dAYsB6pOiVfhnxttMPXqTIyrdbcW4dUyLnTvoeAj3O/eMKpBVoiErOpYsQrcpKQ5BLi9EkHYmJBaQBYi1m1tQsKCxCioBgUD2AZwDCqQcMhsqv1SAwc3A+ADIKAamJpiN8TIQJJPEE05i7aG9UDEiBbaxuC/ZOjRrhm58ATGmE3q3k845kAU8FOgFGQPIJH8MSevI+g0LmQI2NS66YPWmKZ70Kd6CQ4oMDEFwTnfR62zFSZkO2fVh8RjbGubowJQHIQfSfeexMcxbggVCSmMSK2/k6JHtHlbhkx6t8+NIwHgVHjBIhaRDEf6SAiBmbHqjB45zW6hHEjAWLdzI5H1bRpAEpDgEhCgsJAQAK9lQ4jNgy11CzQ+NBVzGJQSRrw3ntjwc2VXAd2Ej1oOmAPgDmCG1HrHs+nGlnalxSX1jrwjWzK9F8tGIbUfCtWKTC7U0WwqkNhrliEGVvjWBA4xLnEh4x0Ca+UzX+bzgb5TkQWCIqaZleBsBYcG1aEARAGJ8wefBTVemsvALFPgxfw4th5NMTElWseHE8e7A13jsZ7g1FT2Kqw0OHJ1GGBvm6aiQOA1e3NezsPz25s3X/4wJTFs899tP/JT37jxa+trvSfe+65h7dvFiyHu7t7x8fr2xvOsZ/NCmNn7GbT8eXzFzbWVqe+GU8nvq4H08nqag+gPjkafGf/1Xv3HhUlFd3+R5//1N1bt3//W68jGlPYpvIC8A9/7uf+2l/5j//+P/5HxlK/1//2S680Hk2nQGN7/f5g1lSea+cuXn68Y4u9R3u2U1Lp37lx+2/8rf/7F774xd/9+ksr65szJ95xQdYYqutqOBkSTTc3iqIwdT0bDE/W1ta0PcPKykqv17t48eK9e/ecQNM0nU7n6tWrh4eHjfciPBqP19b6Fy9evn/ndrc0ZelX19ZHxw8unKHzZ/vVdNAh8t4bA16IwHgtbsREHkqlLbPFbJMCgIXYaU6rPETE1w1TQUSRELRUSDehyRlWTuhqWYYvoyNak03SZ8rsgFM1Vmw9SPp9cF9LlnUM85mceQQl/gvpnBTrTUI0tOjSzURhPETka4fzRkN6FkYMHcmU2eTCWjg0vVMAnHPGGGVS+jndWTIbJdeJcjaNmUqR2+u6n0Pa8Lxe/z3FcHvIvMs6Td3CWiwcwYs+b3BQcLsJgxdkBDAg2tnMo9ZuMEgb/U1iKTCdIMYS5QiEjubq7RCtbRISjf4KiyTMhphqorVcdQO7ByeDSdVb6ZqiNA5B3KTxo7qZNa5x7D2yF/bCgOE1CAHAWmutNSAEgiwe5HtYjiKCtOjA19mISVU5ABPAQg5EC0os2t1Ifa36pTEGCZ1ryrJMN9TLm6YxnRKid9ELAAAZMkWB2Rjy1VyI9S6TBBERtO0vl8/RL4PHktBaK1mq5jxVAAgKSNXAaFpXHrxWVRtQtzKpGgZC1lprpcNWjDiYzmadTgcMGUEPIuwsgWGYBdbkpA00sQjRHHaFAGT7OttNyxHinMjT51ZIZyfnfXzT90t8ae7e2eTzwvkwz+LSGs1vN0DE5L7OHhHc24HqvbeAQCHzjb1nAAZpvHjvHceULtQtZlmEGbz3TtgLrayuHw+HOweDwdTvnkzv7B4Npn7iubtRbJ09v2071e3bNdB4PO6ZYnV19cy57d2jvZOTk8KYGzdu/OW//Jd/7h/+YyK4d//OP/un//3Tl6/cffdGU9KUvdjO2soaATdNYwrTW1/Z39/d29s5d+Xxbrc7Yd/tdRHR1/7hw4d1Xff6fQAQ071z96F3MB5Ptze3qrqeVVWntC/+/st/8S/9h7tHJ5ubm01V93urJ+PJpYuXa+T79+53TdHf2Dg53P/EC58aH53cmt3oNCX6xhv41d/4rV/41d86d2l7NqvJlFcfe2w8HCGjc0xki7KcVpNOt9AUQmYuy1Jxr86cOXN4eFhV1aVLF7bWN4bD4fb29mg0Wl/fqOtqb29nY3N7NqmcA2+5LMuTk5N+2Tm7BZtr5aQBa0puarIEWrkQufiyzdNKIMQkSiwgNk0TM59bOWeMURQ9Y4Lfx2Ao1WEtdyOyxiKiY69Zvim5CWCR5sL3RiWxBQBml7ZNLuRcBGVuKV7CVs8JOu0Q39QpKUMI831ljLFI3nshodC+1yluVWgJkJp0hewGERAUJLKt/LMFAIjGoKL5t7zD09g09JsKljjrjbhwpkR/68JuX97nyQq31qb5gWhv5bdKE5U+Kx/Pv4Toik+TDyEzyKZ5UAISacExdAVxXuR7VJhdQWMRxTCB5wIImIUaRjJsBQMYvY7aWq2NDi3lk6GDiK15lwS8AoN4QBTA4FpgDwzCCI6h2yl9VSFir987Ho4dWC9EjOzYA84Ypt5btBYaXQVmRiQUIjAIVkOh4kKFDRGpweS8K22pwTMAULoNDs35SRZpg7vLkgBi+0JjjIllAhRxmrz3RBLqTzEUrJdlCQCOvXobvTACqEOs3VJx/p1zRdFK0DlpBB4JFopndJsn9VGI2Ety1xCRJEsu3lDD0QxcNTVE843ZW2udc6HSg4xzruwUZQkzJ8PR1G2WguC9N2jUfmR2ZKhTWu73JsB+5ohsp9et67pm6VgsyxKAHDMCAoTmDRiVe02BBg9Ft9MKMBGFESEk8YyxYl6hVAJPAJ/M2YRpISLsmYzBEHqPC8ohexK0yjoDYg6dxaVtrho2FMcG1yKKvgxx8TF6y1KjYPW0AUCoGWfm09iCQsQom/Y+4mGSrZ2DuJ2d6pECtfPMbKggECJw3DRNU9fj2jWrq+sz751Ysf0337r/1s07h8Pak7107cnVy1u33nyn6JVAvaee/Ojx8SHTPUFZ3Vx1o6lHd+3aEwcH+7t37qPI8e7+/+tv/+3RwVFVTUHkz//kTzx96crR/u5bd26URJtnttkTg2OQhpvReLJiTEnm7t275y5dYAQnDfqSCouMve5qU7v19fXjk8Hvvfi1lbLs9/uTyWg0na30Cmtw5Gozm/7hP/7H7t/beeud64qMcfHShcOj4xJNV2h6MtxaXb/57vXdRzt/8HPf/xM/9qN/9+/+P27v7JMB7MBgOHGOv//7P3/mzJlvfP2bx8fHxlgUmc1mZR9PJie9zorSv8q71dXVuq53d3fX19eLophMJuPx+N69+4eHR48/vlrXdX997WMf+9jv/c6Lq6srZ86uz2YzZCDga49d8vVYhBFLU1jvGmMKBtEW6VF+oRYpYAxcMmtKCyCitQYUyXdBliQmos1JqE32ZIBkhrbcU7t5L+uGmBm14RGZmMmlTi4JJEZYKXY/XVAYFz5QYQ3MnSbR/6a3xwRVkFvJ+j7ZnXHegJDTrAdcUmzDyKV1U2vejUTEY55PWl7Yvac+BZYE8Aed8G85aV7NP/WnhfHAvPwOg8zvszQwBrGGGu8b4cZw0zHTonHsnTEgZMQDgI+tKCACeqSn56ILQgzr9NdCEhIGIC0rLgz6rpnZupK607XVrJmSf78+tt11MoTEx47vm+oeTPfMFHpQN35gZ2W3pGpakHHONY03PWMAjTHoxXunep8TJyBNwMYNmQc6ehVIObExc6iFpdSqfZFQIXov0jbhCOe0cEmS0Cqzw6/BBa0SoiVRRA0chY3+PQigncPMnwxJP87drRlJLOy7hZukl9KhqmHhBSZTN5lx40QKAgABrw2FrbUsgCid0oDvVjxjh0TULVamk2o4GZeuWSk7llBqmDpXO2QmLUZiZu9ZUAxR8rSJLAKF5h/SVg3QQDrmeTs4rUKaKIlOfsQ5VtBOxZK85Jj0mz86v+3CVZwaW+e3zb4CAAWF0SGWZaeu62k9Y2ZV40CgEa6bmoiYtTrDCLOqLLN6SmWBxYopYMx0MK3fuXFn53C0ezKbOmiQxrXrVdxfW2FjqOxubJ1//+adR48eejHjyXB9fR2Lopo1RwdHhSnKskMg3NS33r+9RlAUxGS7RTkajbz3HVtUk2p6MgQ0RLbsdS6ev3Tvzt2TwyFbXun39nd3189sPfPM03dv3CFEYRiPx8YUWxvb7MSbZjgc9FfKwXT26Y8/e+PG9bIoV9fPrK6uV41sbp9hwI2z2weHx6PRaDAYFEilscaYSd0UK70S4Mf/9J/8+LNP/nf/+Kf/yJ/6Mx99/qOPdvZ2d/d7nd6Du3eKwtRNZYxpmsZYapwfHR52V3pf/MKX7t29e+fOnU6nc+bMmUePHu3v76s7ipmHg6Fzbn9/n4j29vZms2nZK+u67vf7rq6Ojg5WV1eJ0JLf3FwRrgmRmY0GPQWZxVjUzF0AADg9MTanHwunSd95aZFzHNZGhbkA1r4fOTFxVupUUGv8aXDFg/JcijxNFdOYHTjv4Mp50zKXERFDBLFcVHFgEvvQXMScuVhrtf9lcERHZZWIMFh438ujG04GkOSaVhs0Kg1J5CdVIxMtc5Zu2t4wL/uXHrdoFufMkVPj0tOWNl/NNAP5c5fekUWYyGRnEgAA+9afsjQnhbFN3XTL8ojcuEvwxBY5TzUiCqIxHgEADfvYQKnJMpowMxZzmzJnSQEwQfGwFHwfDADWutgEJIKdHlXTGmbvrNfd89aCAc9HA3/XlQdN352nHpVF40xtxzza5IbRYGFMUXjPiDidTPpUlGSEmYxBJPZOYg1nu45xatPgQUG5wmkqbxQTTr0UABBR4ubd+5K5mpbEYbvK+USlCcluBpgl0xFRWJ15GDwR4Twmmn2O76NWY+Y+JbWqvQiAb8kSZW7tMNbXoVEoJxSByQRG49lk5lY7HfSeBLx4IkLSzn2uLEoEK75okBGQPays9p3jajobjcfdTtHtlgwgGYY2iIhnMQISkO8w+vpJQHOAMUIlo5K3KhZEgJBNWcwLAQklEFmwOUyj9sNmBAiAjgEuQ5mTEkLuLta0OQ7jhFjd22r3oisQ+4HPi9t8ACHNClGxpoWFvatdLQq/geK5rj0rTioiohR11TRNUxQdYWhqJ0hgug2YyYx3jke3dvePJ/WdR0dM1mFZ9Luz4ZgR7t1/SGQ7nf5s6qez+uHujjFGENZWNkYHg83e+mA6+va3Xjt77lxVu9V+t5oO1zrwUz/+p8X5v//P/vXP/dzPnd/efv/WbSypJPz+Fz7x7q1btx49unz1sWuPXYW6Ru9ms1lpqCZaW+mfO3fh+lvXm6bp9/od6VTTaqXTHRXmYHyyurEyGQ0/8uHLP/OzP/2L/+Kf/szP/JwUnd2D441He555OKu6tixXV27dvQuM1aw5d3bboKz2Nzf+v4z9abBkSXYeiJ1z3P1uEfH2l3ttWWtv1Q2gge4m0QAJgcNN4BjIIWnEkCNqREomM0m0GRszmRbKTItJP/RDNI00nJFIzgxmEbiCIDkkAYIkGt1ooLur0UCj9j2rMvNlvjX2u7j7Ofrhfm/ciPeqOdfKsuJF3MXvcfezn+/s7pw9fPSv/tWv3jn4t7/3vXf2CvgLf+pnr1+/8df/07/x7Ve+PzXnr79ePvn002+99dZoZ2tycWESkyTpsir39/cfP3oUqoHzPBeRzCR5lg/zwjkXAJitbbIsm89nIuLEvfXWW+PxOE2SycKZRElpd3azvd2htWNE7R2rpN0VPaSm3hx/Em8XEdG9xbe+ucNWBIFOuELEYoR1WzCWx4BsPGa1fy49+/KANpjClWfKuj0nrTFxWYD1NIY1k04pBezxEnfrv846jaDTPy6/S38w2LrQoa9xrxPhE7jqfy8LuBOKpFaxPWz1+u598ZId80nJYv3TNmTehrTo9bbafGsAcM7lJuFljUNfGf4j//6fHS4hQ2WFEcB4RERPnpEDPAeua4US2okjKMBQ1cgIyLHCsTuHiQFYMSCiAyWhk4xno1ACnqj3JGWq0QpYFgLOCT//1Zc/C5oZEuZdpmdfvU//7PvaobdWvAPnyai6qrIsM0KualTbdyhJkujDDIVzrYrbEajLme+oEStGokkaVstqaXXrp5uU3oXSnwtSCjFUnaxZw9KWkHarOriy3aWVKa1C0z1X1tbb6nPHHgBA1tdt/0Bs68DWh9q9i4iEcK9SwB4WpZ2XbitXRhSBQxDvQRnNLAAOgBSCMegYvfOC2iQmTbXWejlfNM4qi6gSbPsliCB7CcECa21IZWqjTisr/PICjoS9CogG2wh9nxQbnzu6Qc/W7xM5PmjdW9DFI/rhocip2rnoD2/jwN5ejskBbImIEVjYsRVBpZTRej5dgMambKxnIHACFSgGXDbywUcff/Dg+PG4mTkwRTpnkxejqiyr2mKaQlXXtVWKnfPFYPTwwQOltXMuy5KmaTQp732aZoPhcLlc7u/v26asHNy+tv/c8y+OBsNnv/O9jx8effjhx9dv7B+fnX319/2+n/t3/vTvvvbaX/tbf6Oqlu+989Z0PLl58+Z8tjw/P9ea5tPZB+++lxb5AAeTySRPc9U0Rw/vH1w7uHZt/3R8fDGevfSZF++8ePd/+pf+4i//8i/fO56Mp7M333yzrmvv2ddVmhhENT47TwwRsHOOlz4vksEg/9o3vv7NX/8aAtw4HL3z1ltH9x+dHp9sbw1K60ZbelktDq4dnpw8Npkpq2pUbFOuv/7rv352dqaUms1m8/lcZNVcIfQ7YeaiKJqmybJMRET8xcUFW5cOc1nCcjlfnFV3b1wf5On8tMrVKOR2IipGpq6bUcheirDbm6ZUf5+uiiNXCyuin3NbnIMAbXLMuqCSViISkXi/wv/4BIEaL2EBkVBR0K27jpet1itzq7Gukrb6eyYomd73SuDXLYy4c9pdCuuZYhujWmeR4V+S0C5NBJEQOs0XRSCg9kBPF0EWBPEhurCuVsNKEK4FfRBjP6kNBgEbcBhhkAEGpCcdu0evpXxfJfKld5Wss2zsecyuVETgEmNa+4nkYGd7KLhAvZS6yXWlUdihRhDRnkgA0DEKh3RRBpQ1iR7xxNt/hbD7HB7twQsKtgLYo2ERQBbPGpGAGkaTKIPmtFoqFaETGQCERTETJo6rRX17hKW34rwWNVRZ6sgrfefWEw/eOGlKm+tUmF3jGQU4LoKYDRBf3zGzZ4+xlhlIOtGGbXJfMJNWwZZuafUpib3KYIiwgzEfChQFiQcAQshB9l3tlQfe+GnN9g1J5uHnFQKo79lYkTfE9aAAYpEMxgRagLbuD2Jet1/dxwsAoQgBsveGlNJodELSNJYXla2dIY0BH1ZEvHOIRN5Z5wEItVKsnHc6UWVdKdBZlu3oZD6fVU0zZ1c5zdqEN3GxSQ+w9cFDERlFD29oYz2v9l3bDWhTBgfkCgDogMBEoEXuDTek3lXhQ5T5kXIgEnEAOQLxokjszotKAUDkdZHKgTWvLO/+2hAXxHOos4hBPRaHwN5bByIKGcizryvHTZlSIl55R6izWqWPppN7jx9/dHx2fFJPS9AKag+g9LL0lrmezgaD4uWXX377nTetrQfDYjqepWmqFW4PClR4dHJSl2iMGm2PdnZ2hNTxyYlSanew9eDseGtQHJ2O3354evr49QfHZ0iaiWsvjYfpYv7ee+8dHz3KjSaG4wdHdW2Ho+20yNVEpVqfX4yffPKpLMsePHiAiE1TM3tl1P7+/vnFsaubPIXXvv/q+7/3+v/nr//HF5NxXVdGYzmb5WmyNcjn83k9lk+/9Pzb0wvv3cX4eG9v53RyJlxV5UIR6GGhtb5/NvvFf/qr04uJUsaDToeD84vpeL5QhqblIjW6GGTDdHB8fDyuavBMpMZn54GFem+NUdPpeDAYpGk+mUyAxVmXaFNW1XBYpGma6TSw5MWicg6u7w1RmB1rgyyAHFYjdIm6/6Z64NURLOC+l2nl5mJmDA5JaZlMi6zQKXHQy0nG3iboNsMGA+q+pEvZpH0hsR5U/kF1jRsiZyOi0z29y8SGtnl1R6b+TthQGq7UIcLRd5mGb0IsfGP/90WXSMcQe4y4dV/3X79PjStJ1P9GejkFn6T09N/uMiWjFtTTgS4/9Mo7kwCxeuNbr9Y/n3/13/sTS20siQLNEqq9gJi68IInAAAFmgBi43chRAk1wSIIwIghzb77BgCAAQKYZWhezYAsBEoRsBIQRgbNjRexuypjK0opIeM9CxsmJYTay8BR1iitEyI/gKyc8fXS/Bd/9x9++BvfGtRcmNQ7jwBKqcY14qHrf8wrYDeGdXdLq/cgAOi1fkTQTWVXCN7fC6v9EqX0amq89wEqSyklHbCDMEXFEGKRloiAqKAaYl+EdMcVc90bwCYIezQ3wyv34V9aW7+/mwDAexdXLwp7h0jaqETnyMCCpfWNx0xECIkw5HlrBBKwthFSaIg0kMa6qbVKEMF6l5LZ3t6ulvPqbFxa5Ys8JJ04Z5tGsSAoAgg5a9HZ3i3aPj3X9M5L/Ed67sFuXn6wArpxbZ8OfVr1y6LiSghJWK1NGxaztNK3V2oF7Fc6dGiZGhcJcMChZMde2HpxVryHJfssV1Mwx+fTdx48/Pj0wmuombAYglQ1YMVWIVnvVGJq2xxcO7x5+9ZwVHz7298ej8dkyHqXeHcxnQyNSRUmRb6/t8cioGg8uZhOJoYQqio1erJYDvPkv/lv/1vvRRBI69F2MVks00H2je98/8M335nOStZQ05QdeO8/fP+eSRPv7WJRFmm6MxweHT+ejCdbO0NbN2J07exkMjl+fProZDww8P67Jz/6Y3/45jWzd3DtMy89+9uv/E42KBTgdDpjB3/oq7//3/6TP/vzf/sXvvmdVxDFEwDhsiq3d0dN1cxnJQAoo88mMy+YG4NCu7s77uK82BqMp5M0Nc3SPvPkMwr1xx/f3xnsjMdjpdSNGzfm83ld1yISGgQURdHmYVV7Ozvee03KaL1cLMDZNE+2trZm55PDbXjp+Sdd0yilCIUQOPQyBeuxjapiu/8Ro9zpKYsiMTIqIrqnAvdMTFgJ0e4yFAEBVFeICmkBIrDvKO6lb60LAEVEJCQiHGrjehsGL5lo0AvF8SXLEgjDf0G4dVEqaXklh1yOtuomZoFCzJ/slns7gKhkYICG/wS1ekXH0KkGiRAFhJkj5vP6hdBmfa99GX2atHFmn8VvPHFjRi5/2T9CeCzUpbWnqStfBHqzdqX4X81p/0BGpoTNbpPe+6VXjr75VrG/G+5FXbt4NAAA6ETYoQCAauH1RTxiKGvEAMEBwBRd0UrARyD+kCxNHoCVMAkxKBZkZHY2JQ2AqFIGcXY5LJKf+MqXDva3BeD9ex+9/fZHp+OJJ0gBBtadzfkPXPsUcJot6df+xi/+w/nFfYa8QYU6xPm894CYJLHLHgB4iB3iRAQEgRSFUhzoz07fzRDphIiddtQnbF9Fwy6dvi2HC3nXiMh9x3V/mqIXanO1QE8AYywW6pUerqNYS6sIhpJe5LXpFhHB+Hok2MWG21kL40dgj4TSBmjC6yiltE4Y0TI5IA7FZogMKEAcCrtRPDCzRyKVaNv4JEsRVF02jnEwLJQaQW1xXLd3JmZumoYZVGqic4MRNQkx9iIsGHWU3gLuScr+99IqdxsCFREDFlgkMqyVDq7owygSYaIDYm+XDYOIIUskspQomrkTwP1AwtrhRVZmcU/dUdp77xvnnPOCoDRrI2n6cDz5+P333/jw/qQE68CktLdzvZ4vG/bD3d3haLS1u3d2dvbBhx8xsDH63r17WZalaXp47YbzMi+Xg9Ho4uTsZ37qJ59/7tlf+/a3T8eTx49OsixbPD7Z2tr6Iz/9P3j7jdeP7h8BwuFWOpvWn3ru6ffv3bcmKa0dz+c7W1s1NCbFuat/4ie+hKC+/9pr5+UiTfOQmH3t2jURSU32O7/9PdJqezRo6gZRsmF2dHL26OTscHvrKz/8ww8+/uj87HRvb/uFT73Q1O7G7s2D0f2XXnphvlx87/Xfreb1aH/PAwx2dswgE1ST2jYe2bof/fIXz48ff/Da63s7uxXC0enFaJCPF8s/8Pt/7MWXXnj3g/ff/eD9l1966bvf/u5WPvCWx/Vk59p+uVwSUZIkL7/88uRi/ODBg8ZWp6enxpjFfL6zs6OVSgzdvHX9/Px8b39nuVzOxhfe8TYW24f7k9PJ9QO9tzusy5NUpSieCL1lbbQQBUU5Aiis76k+i+ivWL3SmoUEV5mFRKEACYmRxbWWJWqtusXa3/yIKGFBrrtPGdeAk9o9Eps6wCV50KmivXus6fJrO6EbPMei3o67KdV1KOMuSuScS9PUEQDHLqHSFfn30iaDOxHbxmSr7d0bFLMPvqZQvkktonq7466IGG0SLbRIU2tK9xVybv1Yi+21F/ZLq3uPQxHpklDWxtNBXbTnd09fo2r8UvVKdTeHgx7J8bbTXM7dg8oJg/VJzJwiQCWEKN4Dh8iGIo2IwMjgCZQgA6Nji0JIgqDCv4CxSTMzC3IA63eRqRIL5nm6nE9BGWb2Qlpr6yomob3ntp/KiOjD108Wv/NeNVuiUgBil1WZFua6RmRlcf7hMVZ1kWWkEiLF1od+3c57ay0q6up9A/+MQhVjM4M2BtxTnq5ShDrJRBFqYiV91/1G0QhbhTOdd8LIsUODUspb258SbPsnbiyzVgBEj0IEzwEISY+8PsU9xQBERHq6WvQYAfqm7t9/fQjSVwXCKyhjAJwDcICOkVojnhADrDQqQkHnLaBOtEq20nJZesfGpEppa61C2N/fL5qpUlokwNSg996Tg5gOSIhtJ8fwAhLRu0m3wyKR2PdjhRwnIoAehESYFPUrI7qZWq8LWlOCu5M5wjUHGlBb1A4tLw00FIiYk4KMQY/j9ShYyyoiVkEM+goiEgMwixdoausYGEjroZCZLpb3HxwfTcbvPjpfeKgZBtsFgELQ1unxxXI4yiYX52W5eOaZZ4rBoKyqZV0xQ1NWr732WpIkN2/evHbtGl2cT6dTB3D9+rXPf+ELb318781333HeLpcszDeuXf/Kj31pdzT8Rw9/SQAm0/p/9T/7i3/sp376n/zzX/5//Of/1Whn25CprWUCB5Dk+Y//5E8N0uzRycnZ9AMkMgYXy+Xt27c/97nPvfXmm/c+/DBNiIwOneea+eLTLzw3Pjv/4Zc//+SdJ/a2dn7ta//q7Gzyynd+dzAYvP6911JjUGQwGIQmkF//zd+aVNXXvvFbTHq5LJ988knZ4ePj49K68Xj87NPP/Id/5a8sgX/+F37he9/73miQfnDvAyB4/Y1XkXRCigCBZbFYlraaLxckcHh4eHT06OzkFACsq4no8PBQa/3o0aPRaBRKagFgPp9vb2+fPj72XoxB650wa4CbB9uZ8tOmyhLlvSelBZkMqRY/TcS3jV89M7bNQja5elhXum1xGVpvErMLjmx2TVjO3jsEpRSJIHuPQgopqNdhTQdweCQEQELq2il0VbPSpelDwGUVAPDsowcLEVplEXrABdDCDgTN2oe+v0E0xl1IAmKM9t6Htq1EpEiJeGYvJN6zOE/RBcTCjKF5LcW+wj44ggC01s6xRE8+IigA9CAsHMYeQEkiBhaiinXA7L0HFkYOPkOlVONdwNdhZkGIZnbAsQVYq88OYWbfSkoAwYCjGYyJVV/eoFkTEhAysw/eiHYW++0oWhbJRNj25g58IqBwR12IAQjBcyyuJVIBArcfS+5kNrZNbXFVtB2KLJUAi/LILB7II4QmLUToBGPjIw8eENEABWTJkEwa+sSgROQrg5qdIAEhkQIEJQDCGFovSIx9tByQEQBkUQ3AkMeQ608sRnSzWDSzEhscDAf1tILKpw4IFDiratBK0FvhWuMIWBnUGohCUjW16wFBUXCBhFoUiGvEtz4AvwJg6ZQhZiECQGwrnsNKYhExa/Xxa5y3W+ErsYeIpEWEGWIvIaIAAxkMwe40CPYWI6MDQgRFRBQ6IwkIiCbN7KTF0eagcSoV20iDJ6SA0yQApAiYQUBYQjsWBAitA4wx3nsBHzDw2LMAaKWVUkEHretao7aVVaCSLCNsCPX5dHZ9J9/RSVYUlV1qrcQ5isnFBAQGAMWDWOucMUAoImwdi84UJuBxMNrmuVVgxMpSGihSIFnaMuPUgtdakgSIQISEsYMJYhFhTwo8eIgpdZ1PLOK7BH2180x0CkegEoXeXDHH3gNA6FomPVRdAgRgYGsZlDLCwC6AdAbQIQUA3sUqRA7YWAjMElCJGCTgakVO6Ng5ZytbFIUHdM47Z1nQmHQ6n6k0LQUlLx6eXDx4ePLhx0dLCxYgGZqiMDAppZKGbePrpSuF+VPP3X3mmad+/Zu/+dvf+fZwe+fxo0fXrt8EUlVZOxap6+Pj4+vXDhaTMVo3StXf+ce/9P133rr/8IGt62FeMMJstnzv/Xf+yT/7p2VZJnnm6kojXD88FJH5fJ4lCgAYQelEXJMng+mi+Zff/E22rhIZ7W0tFmVdVwcHu+enF/c+/PCtt94yGoCZwNfsrYen9q//zE//4el48q1v/+bAmPfefydJUxFBoYuzCwDw3OxsFwCQImKRnoxPf/03vtEwZkmRaX/nxq2Hx49r5956+w23nF+//aQT9/LLL8t/0xhNQDieTn/9G9/e2R7O59NvffsVZfS169c/fvAg3xq6uvn8Zz9jtC6X83sfvHdxMd7ZGS2q8tOf/vRoe+vR8dHW9vajx493tnbPTi/Aw/17971AWuRNs1zOm+3tZpTCrf0tLY1G9N6TSqywaKmaZVCzhVlWGLXBGg3JTKrjG9g6qQBAQ9v6KnIBZN9V4kZfl0LgFoOyZR+XVOkoMrFTA7uj79Jc/aRUlwIS7xAKHzfMNWwdRxv1qdAVTQoHrTW23GEODp9u6a8EVeeJ9+yDPdMazUFYQg/MvRtAAEDoSo2ZOYAV6B7oMfRs3wBs2+1qIgpstv8u7c0piPOOquu/rl6/c6yhtH62vvesPblHzBX1W987ddT3Et2PGCEHV618AdYo0N6b2phFZ2/FAkrvvdYIwBjkQuhU1PYQ7BzRcUnE9qwUlY3Yuj7+G2OoLMAA6NvcH83eQQuXLbBqvYchBaZbHgIgQB6Xs+VyWS3n1Ww8840lFiWoQBN5A7H/LAqQoGLUAVmBYi4rhEBCWzLfkVS1BTjSAjKsprvNLegwxlcjXJHr6mPj1/6a7xDXpS1q78YT/xWS0IUdV9eu1oIEab3yCXXN9TY2Z6cHtF1cpHXlxsM5J6so5ioSYW3Tr6QCQG+5qhpToBd2jMvGNY32JgghVMETE9yzMT4SdGLSqJQR58MXjkEzo7XOcytWGU7PLqCg/YMDW3vkCDJvtAahgMUWy9XC/pYAQh1qgyh2/gAIaRIQ/fNrYKKyzrXin5GEG3awBxEMCw45tEgI7CssYJY2pIUh/9PHteK8ZcvMpBUBOt9Ya0VEkVHKEElZu6qxZdUokwGqeVmZYnQ6XZzMlm8dvfnO/ZkiIKMa8IPtLYcym8yoAeZqbCVNlEaqwetEXb957Zlnnvr2d3774mJGhCfHj0KlmULY399Nk+Ts+IQEhsPRxXTWWP/tV74/GOg/9sf+iFLqX/zKv0QEFvm9N95M0zTNh9N5hQB/42/9F8/dffqtd94zpJqqHg63mqbJsoKZa7G/8i9/LUlNkSZpmjbWGmNsZT88e//h/fvzuj7YG9lyUZZ+72BAqG7u7z/44IPHj4/uf/DB+Ox0XlaLqs6MDrU0w0GSkCDwsizrqgSt61p0hikZ31h2/qMP700Wc1/bxWzuqurVN9/+11//2l/7T//f77z/wZ0nnjg5Ozu7WG5vF3Vt0zQvy/KLX/wiAB2fni7G063BcH9v78MPPwTPF9NxlpmzixkgWGvn83mapsfHxwBQFMVoNDo+Pr598+ayqsfTcZqpva18b3f74fHJ/vaIxBGG4jABCqFPJqYA8ITYtTZfBZsub3+JAnjDl9seLdgTAgBhRDcmQoa45/tXdXznSj8cxLXcuY5X7RD6ewB6rrmOtQEEK2StqUPoWigAwqEZTsSRbkM+IiJBcLaYPgQABKE7ShuXibXI0XUGUVpTW8O80lkAYlprJEsYwzoUZceUVWK6qzrHo6zHtrsIFPyAzd+jDPZ+Co271+gmm9PRv0nbCjBGELqf4gg76/vShRvzteZuvVSd/Enjl5XohXYlrJx+vRteEWJYfRnxWAARsJWFIYu1H94I8r6sG+f5/PSirJvgz/Pei+UCAuI/htA48BqAPrQCH3rCrC9ysLVmYq7Deuik07fiShAnwfZc33iXadX2QpZu60gL6tKjEgb/cUc0gdDRQiis7a5d478hlAMisWy2WzPdU7pis41LfACakJCitbIauW1PKSIuuLC8q2vJs9R6qZ2Ulatz5zwiBQRnlLYdeOi95iWGkAlASAmityLivbfeI0AM73qQLM+lKeuyWS6XWilGYTG1dSBK6cooRQpIgu2uAEgBOUEQj0JBuerpNqGXX2smIEduuSoX1sCCEPpdBfi7EHSIy56ZRXzMBAD23AggCAIEzyELswpgAyQAQsJOmL0we/QehJ11CpAQU22cc01dL5sKSC1Li0rrrEiH28fnFx89OBru7n/9t16tAC4aAA3D3cPT8cQJ/OGf+unf+f53HXvhJRF85qWna+se3T8aFOb19955/+i+rV02zKuLBbKkGsvaKQOk4FMvvXD37t1XvvXKm2+9A1wNshyABfztm3d2t/cWy6UT1sY0nlOTlk3jAVSeKZH3jk4eTy4AANH4qm6orOqaTCIAW6Odql4CcGVd0zhvmRTOy/ne1q5OzJ/9c3/85Ozk1772q1xXNLV//A//wcP9g6/92r9++/17Tz5x8/HJOQlsp0UxGn58evxHf/Ir//Of+wv/8O//vX/6z/45KzVvJGG7lecKNGo9b5aIcHF2qkmNTOIrR4LFzuBv/9I/Hm4Nrt2+/eHDB3k+GG3nSpnKVlrr0WB4sLf/3nvvaRDvHDj74P7Rw6PH7O2dp54YZPmHH35Yu+bRo0eNs8658XgMAJ7tdDZGgK9+9avf+e5vM3BZzbZGo/PTk9EQdve2ra3b7rLcRmGizxn+TYeseJ9IAOJYs20uMReAACfT5hVf6omLa7iMm8wXkfvJgf2N3X9wuJtvYWU63td/ULfhVzdX5J102VJ9hiI9UzK+b3hWyxe707ociiC8exJxxY8QVv5G6A2grUeMXKnPsvsv+wM0oL42syEI+xPRvZrvJcVcMVP9O7d0hlZBEQyKSEzF7J8ZBMalUayespru9qGX37o7vz93l1/8ymMjWQlaxah/2413lF4qTfeg+XzOSLPFvPFOEAkV+9ACS2FbVYKdDObNRSI9m3J126sEW3dhWD/GmI03aoXl+q3W6XMVqbFbh/379G6L0CpDHMuVepN41WLo7sAc5c3lR/N6gnd/WsOW7Pf14hY7NqB0RQUFwXpZVsjikWhaNZVLvaBWKuQ5CIAQEkpQhRljWVN4rEYALexB2HqPzESUMDCzDIfDa8qcLybnk2meGKN1YlQoC/aeRHttKCbLkybSAKhRCaBCxT2AkY5EIv1t3vP6CEDLQ7uiyo4g2OZsBk8fCjADgwiLeEBxzCgiJCzI3jogCI8CEWZhBhFM09Q51zSNtdY5Z70gKiTtGdPRqPb4waPHDx6/dXQ2PZuDMUdLCxYhGxSi9cnFxDNTmjw+Ox3tbB8/vF9b+Mrnn9974vaDo6OP3/O/76tftOC+/e3vbo9GWvBgVCwWS1vzwIBjsAKL2fjRo4dOXJbn4nhRlRrhJ37yx3d2dr7xjW8cPXrEzgEZ721Z1oPhcDgYzni2mE+VVh5JIdW1TZKkrmuttU4SZg5t+7Q2g63tyXSM3jfOHezvv/zZl48eHb/x1ptvvvnGdrH1xU997nvfeeXtN9+a3hw/OPro3/1zP1sMB9/45ndefe2tLC0enx4/cXPvxo1rR48+vnv3afsvIN/OfuarXz56dPzt3/29baWHW+myKRvnjMoTZbx1jXOjra28KPLR1tN3nzk/P0/GEy8ojExishRZqqr6+te/vlgsjDGG8MUXX2wc7+/vz6bjw8NDVzdpmh5cP3jw4CEDWAeJxjRNx+OxtTZL0zfeeAMAtre3a1cul/PJ49lXPre/vT1ajh8YowhYAmxLULSAhUN4Q66SeOtbEiDIlyugKNd2YLs5V4tV9S2hzaO/h3sndMo49xf9hqAKD1SxMSuGPnRtuj4jBstSMJ7Q2ejRjbvB8UM9aNBro0eIInx/91Ruf6IVxF0LaY4Yclainxyj5cRtQ4JgCYdKTdV7o2AkRWkdqgkQEVWnHEmvTAXW+WN//GtSreer36Btd3EnDjfO6XMcFI6Yx61bO17bVq7+YHnZm7v4DRF1DWthJZZUZ9K1Y9i8VX/e+wJ+Yz3AlYtTeheG1gkOgEI8Uy4ms8WymswWVW2tZ2MUCQHpWJ0ZX3Y1WiIFEOER+qy2K+sSWSmdV05T38Mh4AFX6FciAutyFBGv1Ee7IyzFbhV1DqEo+VrHFiIKIUVSd9RTrT7e6ZncrfC4PmXN9br63H7T3/7hG1o5plcbNiLZ4ark2QmjxcWy8gyIera0VeMbzyo2EQnXcUj9BgBgEIzx1FDOpLTSCOhEwFvnfehhBgAARVFwotyFLMq5IWcTyDPAJAUEL8TWswig0sqj0CqvJQDzAre4e9BZCPGPNkiFgMJORIAiMkxYLb1VETZIrPYOXixhiuCgnr148U5EQr2vt5YxNE8gEPIerBcRYJGqqsumREVaG62p8r62zbLihx/ee3gyntUynsGUQQFMbFg58Nnn75ps8O1vvUKERqnv/OY3TULVzP/0Fz/70vPPPzw9nj1+vGvgvddffeaFF5974olH9x88/dTTX/nSl3/xF3/xxo0bP/ylH/ndV1/73Tff+OCDD15/862qAULc393XdbKcz6pq+eDB7Ojowaz0w9yw9Zky1kmqDYiMJ+NCa/DsGu/A185niSZSzjtXLZVSWZYh6qLIiqKYL2ZL7whAFL3+7tsfPHigSR1sjf6jf/8v7e1sI/G//q3v6nfeyRP44MN3r127vigXO4e7RycX//v/zf/6P/o//W9/6ef/5i/+wt95/+33KoEfef6ln/jK73/3w3uvvv/B4ZN3kHwtdc3u8NY1bFxZLwVwuLXdOAvsh4Ot+x8/XCzKJMnAS1FkP/JDX3znrbe8t1rrsq6AUOfmfDJurJ9Op67xH927jyRJnr300qfLsj4/P//Kj/3wRx9//OjRsdEEAM43r776e7v7B17YGLNYLIoc7ty+lmg1d02WZH12ETdvr9YoeIqvwHPoeAiABCSsPteG1mkZt3Gs2l/rBL6xgeWS6n2lbN74qWvD0pkUrUBdC5dKz/ZdDf0qUdTdv2P3Ih3guUCrtseh9sx9apV6abk7XnqjdiRXvKOEpp0tG+o44Ooq2hxh/8++RtLdflMk92Zxw3UvLfRd5xrtywZsQ1OrgUuLPtAeUSx9shndTUEnCS4Ly6vI0i9f+UFndu+1Elpr+hlfvlbaWCy0RGZmAfEA1vrZbDZbzKuq8d4r0iiilQK/soQ2jv59sOdU2JxHiKG+YPL2XThdOn3npO2+2aBn98QrCSgiRKpLlO0RAfqrOkQPriqS+cRJadMR4DLadiuww+fuEa2fQ2IpEYY0wHayvHfhPlprQoxd3xHBcWOxcjhdNHMrtZUiUwHVMlIGQmIbMlJElglJhahCliECkmKtFVgBYK2TpmmaRqV5vrd/LZ1nVVXWdd00TZPneZoZnWhCAK2UEMSCRBEQJmg7uvVdKZH47few4jaholMg9lyKkx4q0YBDySeycGjAIABhFZBEE9ez9z40TgZEZA8+TJaIY+8cM7uycs41jKBI1YKLuhrPynlVe6B8/+BHX3p5++DG/UdnH3z8oPZ8dj5umub+44vXX3tte2cvNap21jWVUmjLxgB89lOf+pEvfP5bv/3bX/vab4CD87PFtdnkS1/+0d/4tfr4+Pji9CxP0s985jOf+fTnzmfz773+hq0aUEFPk6zI80FeDMzu/h4zf+Zzn/34owciQqTPLiak0TXVo9PjG3t7zz333KOHDz++f/+JJ25Z5x6dnA6HQ0U5M1dVBQCLxSzP0/HkIljDt5+4c3h4+O67717b21tWZTVfPDx6cPL44YNHR6PdjIgMwryxT29tPzx+bJ3cODz8U3/qZ6Fa3H3u2W9997u5zoapOjo6+va3vnV8MQaAuq6tWzCzUri7u8tleXFxUVpvvUvSZDqdfvTR/clklmVFmqaT84u9vb0XXnihKIpXXnmlsk2SZ421lfXj+YwtN02TJelkMinr+tbNax999NHZ2Zkx5lOf+tRkOvXez6ZTAHDODrdHzLxYLhj5cHuo7fTa4e5sNsnzPBoYsTcgQcRTbnnFJwrAbsfFLdYrQ+rvVcTQZT2mLgkAxL68a2Kpt6I/Sei2fGfNJgMAAR/AZAAl9vlERMSuIL07UwESEaOEbSxr4WGhiFsbx4CIiCsEA4nSd5UtgrgGu4GtxPZtYzUBEfCEClECDmBn4nSOaEQMzofwmaMlAIioUYcS55V+EFn8Cn1wgz7rfFb6dL5UwXWVLFtXxBCRJOA5r8KQa4y1xfNCxFg9vU7wtcdd9SW2oXqM9pwg8sbbSZePcNWxdmarHm08a/3o/C5RArW58L1ORBBNxpOTs+l45q03Orbwi0ng3RN7w2BmaJto9ccWWwT2ZuBqubVaVSH7vZ01EQRQSCFDp/fMTf0JNqx/ljApLRwV9xMgwvkehBAw+mpUK5LXxsYiiqiPbR6fQlED6I+hW8kSkfNWRnMgMIYELlHMDHApfxhb1xahoPKCjcV5ycvK1j5FVAqICYg0oggweM8S8+8RHIhANCodYsADBaVRsRJhIHHsG8fERifp7t61slzMZ+OqXi6qmbV1lhVZknrPiBSxWhARSTwDqghVtW4giASTV0JvckRACknroY9W2LbSnx3wIIwEwN6jBFM2tHjBFlvDhd5/woFaxrHzXgAF0HvvnbfMzvlGG0Iys7o+m8yWtc8G27u3bt19/vnd/evpcDhfVNs3bn7x933ZCd9/cGRrTyr9+P6Dj+4/nG0v7n380bSujQLv4c7B4JXvfc+x/7033lCpSjO6trezaJbf/t53GrGlt//6t35jPJ7/o1/+5fcfHZ2Mzz2AMrpxbjQa7O8fei/3739049re9ds3t7d3XnnlldlyMRgMtvd2z6cz71yaDray7POff/n69etNU07nkxdeeO7g4OAb3/jm4+NjEdRpggTT+cQ5N56OBbxJNQAzu6ZconfVstIASuFf/6/+y+EoAW0GSX50dvHyyy//1L/1h997773ay3C0dXxy8tf+47/2J/7Un/jP/+Z/trO1uxjPG+uPTo8/+me/3AAcHFx7+O77pIAInMD49AxjL224uLjY2hrVdf3aa68nSaK1no2nSZK+//4HSZIuFov5cqlT4wQoSbcGg9lkOhoO88EQ2IsDTQRC9+7dC3b8a6+9VtXLL/zQy9/8xm8wszE0nc4O9g+JyNb1zva15fF0e5g29TzLNbumv+FEopPoB7kQ13ZoXDi69xVS7MMBRBRy92C9d+/aKsbNvQ0QI15rjKDt/rHBiwPsNUaHVBvT6jrO9s4MFT4Bni0Gn7QKBpBzDqmrjcH+kKLlF6151cnsUNQB607ajZoEvCp7rdWHV39Cjwt32bAEqxg29N28l0RRnw/2n9W3v/Gyz/mSGoR0hes43K97xOVlET2TgJ2LcsMg6IbUUanTFTq3J0RX5BVO5ivFFayz+/7JwaDsDDVoY6sUC942b9WOp3WTEiFiwslyWT4+ejQeT5xziTHswYoPUgda/UZiJisAKfarSHA8J2TS+oAZvqaFYIv1iiuHTfxVQFZJWH4zTnyZIHBpQ0VlLqqM8T7Bw78SwGspbJtKLfaO7nGdfhOOJDMbO7e/HtoLe8Y6rvpDSNu4MzS67pInENu2myphb72DhmDJtmrAxXQqpRABFYRAAQsCgySkKPTWCIBpGDL0UZTGpqmEUgFuVT2y1rLzmkya5mmiy3I5mV5UdRnGVnsQEZ94kTT6y1kUkNI6GqFX+bRWFIiAZ+E9AjpQi6nHggDWeSLyAAEoMlZfOh82jheOkAOxFtJY66y1jmMdnWfnfOPYN95Xy6UV1Nng4PaTxc7h9u7BYHtPJ3nVWLusrUBRFEqTbepnnr7DDQ62tu/effpiPF3W9YMHD2az2f2H949PHmZKnZ6e/Nqv/+utg0Pr/ac/96mDa4evvf1mOZ8/eHDx2c/ePT85z4tMiL73O79LRj/95JNA+O7791xVa4LJ+dhbOT09+wf/4Be3R1vHx6fOOSJ9cnIyHOSnJ+fVsmyq6tvf/q3d3d2HD4+Go/z+/fvHR480QpGklr1tbDEazpfjw4O9vEhPTk5Sk1y/fr1aLF/9+Gi7yLhpCMAiNASakOclSzksRh+8/9Ev/uN/9ujRI0DjEXYPdv/Wf/kLP/8Lv7A9yLcoUcocHh7cf3xKCM8++9TNazebal4ul+KBAO7fv5+mKRHleV7X9Ww2A0U//MUvHj14cH5+XhRFmqbL5fKDDz5g5qwo6rpOsrSqSsecDwZ1Y1FAvGua5sk7T5yfnzdNMxwOx+PZ8fFxbStELIpisVjUDe/sbVdVxczD4ZBQigRShYMsLxcXiV4rC4ru5xUW7A8wgdeSEjQwt/U/3IqiuNuVUrE+MqwtYRHRWiuloGcDUQSF3wR0lDZVsn1c+6W4LoUSoztuVfJBMfE/SkSlFCNZFu+FSLWpLszOQ2gSLgChQraHCC0xVyJWXwCskqtRY6izCm/dpZaoPm16r+B9qO1DZg4WMITaJPHUHt3GDjZ0eK1Q9SghZwYptEcNQIORza1nAK2EMcWyE0QM+xwRg6EfLgeImeiRt4asWELAWMsbABwAKDTtVkrpkD8Cq+gmcMytg57E1VpbW0dVrlWE2kEKtL1TAYJhR2GpBD1K1j2unau2k1Ut+8aNmQpHeK9OAHdtdHtLfG1qOGYHSLCdulA0W/fowVG4VQh5G1LgY0gVwqRg9FRa54Jx3I1QJDhIWQEqUtjrlt3pKJelLwAYY7pJ7BIJg/HdvVcgiPRcONCXnaCQxHmrjUZUzjlmDtU13nvHFhG10t77qOYKeO/RU7cNN4Qxr9DUAQBIQR9FpyNmGGdcV3ESEWMTQE9tOxPnPQIYYwAMcwCaBmNM0zTG6DBZTdOASJIkTc3KwHhWVW7QWI/KGWOC2gOhPTZCG9/tdFABkJBqgRbS1LiyUSphZq2pW6KC3DhOTbKzW+gkOTk5LusSALIsm5eLpHZcAABpTSDON2AgE4mIM/2UybZPtnLOQQtj0AK0gbVWafTeJ4lx1jnnNBlvu2CWOBfUVuV8syzLIiuaqibSDE5ARNm6LEPVceNc1ThmZsDae1bJ4PDO9ZtPHNy4mRUjK2QFAc2yavLBNhFJVQFAlqaDYW4bDxoXs3Ht/d7+1s0if+7uE3W1tLY5Pn5km+r0wQNA/ujR492dbDY9mU3OMqJlbYsEHj14yAwszmB696UXM5Ncu3lDRKrp7NHp+aOPH4DSRWbE2mZePTidD0dD79ytw5uf/vSnX3nlFU2gUBSCs/bj+0dbw3RnZ+fi4qKcLp979tlqWXO5XFh3cziYTqeDojg8PCwXFQlIw7asttKkXFZf/PznfujzX/jmd771/Xffns7rgyRfzMplM9dZ8f579/M8T0xe1U7I713fzXQ2PTmj7fTHf9+XD67t/52//3cn5fKLX/6xQZ6/+c6b9WIZNPcbN2/W4qfjyShJfV2BoRc/9dKPfulHP3h//1/8yq9u7ewUaaHIhPK5+WKZpikwAoPWxjubaCMiy6p64YUXn7t79+233/7gvfd847XGmzdvfvDhhx9+8NFwODw9HY8GaZZlXotOjLCbXlwMGbYH2fziaGdUeFu3Rhmt3FohyVBcu8sAUV0WxkFfx8Byw6rcsO289xgTjkIp+oqtdDtceoYjIsq6lbWhhvev6n5dfbnOuDcUc+4pGu0G8N1DQlpEMDO57bjQSYL2oT38Z1mNpLvhmvzr6QrSK1UKZ3QcVreyAXutWwGAhCI9Wn9p4I99P2dHmdVDPyEEi+uW6OXTuiPqNL279YbcvmM/R2BNuK4e2n9c//vVi7SP6BOtx0ZXukh/9rtjY2H018PGl90TN2i1IUI23pfZiwhB8HWGg0QEELvgNyMwgFDsNXt5UqRXd96Nre8k77tMwjehprPzK3RDuhyz77/a2py2PaS9950NGh6ktfbW9d89yIkrb74xEZcfvTER7dqWq+/Q2yPQixR0/pUuKNMNmJkF0HmYVvWy8QK5iroQ46o6nBQKx7hMbL3RoRYwEWA3rV4Emb33IMKICSKGLGKj01u3bpeLxWw+KcuSSJNRzGydE0GtgIjqutbaKBOTXYLcDdphp2QAt94LYOdcSNoWiZXu4e3KukJQwfmD7Wrx3jfOiggQKqMJVFUum6YiosY7JJosl431+WjL5MOi2Hrq+s2tw5tJUQyGW2k+EK190GhRVVVjjAk5tN774NAmJWR0McxRm9rZ5bKq61p5nyp198knBPzzT90hrV8Ynz988EgJANCD+0f3zdFyvqirij0wQ7V09z98ry6b11/7vZs3b7qqHGZJUhSLuhFBYSorV6SJbRqtk+3t7Y8//vj8/FyTKsvyy1/+0tbuzne/+53pfAYAZVlqrd99772iKOq6vn64d35+7h1PL8aubsR5FriYnyHK1nDk3flTTz319JN3xtOL777x9sFO7hsPBIM0aWxT2kVKHrUihLJ2aVLMxwvvoHI+395+dHqytLXW+ld/5VeevHZtpNRMAESuHex9+cs/9uj8/Gtf+5oxXhuqnNva2jo+Pn7ttdfyPN8aDrVKrLXL5VIIsyyrqkpEbt26df/+/cFg4L1dLBbi/dnZ2ZN37lhrsyxrmibIHaVUkiQX56dKgYhoTUlqzh88uH3rxvz0wZPXYZAmC3ZNAwoIsJfuLBTw6gEAUcWGpC0cLF3BCONm17AOuLhiQD3BAygB0gkRnY/eu8293XK3/vfrkmDt+/Wkmx7HVxRiQiLS5Xxu3Co8HxkxQP2vc2dkD97HrjhtFXLL0a5wlq5eAUBFpkPIGAS/Ule4jgGgy1DtrHmISDoR6xgRu2J/EQl4uBgQBCUWOVzmd4gYsIoI1rD1Vy/YCrhwUf8EkRj0ZRDsurVTvKgvfUUEYlBgJQBkXc3a+L7PZAFWhRztacEUXg24bw33j26xbbi7YXOKrxDGfTr0jci1BeyF2j7Noa9hG1LxHTxyRNXAgMoB2MZT+w/qDFboaRt9ebkaD658+ARrryMioeVwd8llubjSRDEax957kWiSdgGCIC0EGLGLaoLSkeLd8LpHhByF9hkB8zUu0cuanIgESvXFc/gnoLUjS5fJj713Caaz916pgJVGCCIMqJT3drKoJsvGegCjRRzErioB/gYQUUGIImAPrZq7eEH4E0AEnACF3Kam4TRNUSvnHIHKs6HRKWldLhauaSpbsfihFHmeI2oBCHI0VDWBUNBDXUApkRbcrnWkAIDzIgih92Pd1KFHLAAYnTIzO1dbC8xhqTthRGTE8Ww6n88zYxihtrX1jokWtXOMO9dvPfPsS9u71ynJknSQDbZ0khKBc66czMtqWde1t25vb292XtZ1I4JKKdJJURRbgyGlyoE49mKU2R6JH9hFWS2Xy3kp4IuiSNLs8LDY27udKp2axH/Bnp4df/TwwXxZnZ+fn56ejsfjJNW+8caY8/GYuRnPvZs3d198cnwxnZ6P80x/7vOff++998ravvrmG977pmlY/NNPPzWejc8n54hYllZEkiw9PZncvH69LMudvYM7Tzzx9ttvJ1rXZc2O0zRFEWNMWS6qpq49fP2bX//w3bcfP3r4udv757PJUjjbzueTcm+Yfu5HPvfrv/V7ikDnaa6SelFrxK2t4cV0+k9+5Z9jArrI5uez/TT7Kz/3PxLP//f/13/2weMjo/TZ8Uld1df3DuazSVU3Jk++/zvfGwxGJ48ej0bb8/ksSdKHR/dNmqd5Zh0rnezs7Bw9Oi4GI9J4dnZiEu2ZLy7Ov/vd79q6Di4uZnj86MRaO51Op/OZIKBWInJxcbG1Pbx569r37z148tYtEklNQsLtgu1tMWnLArsdFFTqyLKDO2pTY9bQZwq9fN2I+NMhwfSYTnd0/pxuJBt8E3rZrd2wun3ePbfnycSOcWPLMq4U6p31QOtO7O6hHVPe4JseolGyJvAuvVpfZehG25EX1/s1Sc/72rkoRaJh3nHYFatdf53LbL3/Td9MYeYOI+nKY0PXCUPeuFt/DN1PHa1oPWd7g+yf9Gf7zdUm7+WBrSlM61nBfQr018MPeNNuUYlIyKAJPn8WFmBC6uM4rh2EKtZGrz0aWj9QkIjUQ1PZeC/EHtZjTzjBykm+ZqdeptuGhtF2N1rZ1tLWx8dHkIBEiCYi8leTZ0XbH/zNinp8hS4IrUIWt3jYp+3NsLWAg1kpvax7RGTPi0qmi7qx4gyrFnFAwr4WiUCkiADRTccoLWAbIypADs8kQkSPBAwYiGEMGaOYeblcaq2Hg608z5fz+XwxbWw9WwozD/KBMcYYw8zWWqWUItMPBECA1Aolum3KVcD99M4RgW28V95ayyLLsgzUIIWgoPE2eNqa2ocJYgSrSSmV58V2XtSWqeb9azduPPlsMdga7uxneTEvq6ZuyrKczWbT8dmynLOzIB7YTx9+VJaVaywpg9ogokmyJM/2D/d0lqZ5prRhBPGSAWdZiluDxlkAEM/gmVClJslMggpxd3dra6gSU1XVdDpGltFoJMzL5RJQHZ+en81mF4vlw5NTqcriYLfI8+PHDwhlPpuFqT082Pn0pz718cf33n/7HiKWtdy4tv2ZF1/4/quvI8Af/x/+0VdfffXtt99WCg8P909OzoosXy7L6XQK7I0iFEgU/Xs/96ffeu21999+48/8yZ994fm7v/D3/v6rH37gXJOn8Pf/9s/XF6dPHvzX46X74OHpa29/nI22EqOst3uHB8dnJ2BkdzQQgeFwmBZ50zQOPSm8uLj4zW/8hgcERUCiE1UumqfuPLW7s3Nxcuoau5wvGMCLvPDsXUB84403vvrVr5aL6vHx0U6+k+XJcj5DAhIwSo8vLvIs01oTUVnXJycnw63B+fl5IEKaptba0/HsC595ztYLBHjxhbvL+VgTKqVC044+wiD0uh5c3mXrW261aTW0YdqeYOv7gVc38usQBH1BCAAdgs8VbG5j8wshQPAiB3W4f8NWXq7FhzbHH0RvGDYhM0OPU7egRsHqDf/1UsnWAQcAAAUCYLKIgMRkcgAIvYMCHVTg6riyyLu4YN9kRMRg9LaDYcSY4t0RoRM2GwSETbG09r6dAOiTN6hhnRQKCM/cOuSppxjBJzDfUOsclxFu5tBtyHJceVxl/c8rjr5nsv/inZDb0NWu1Euu/D6qiby6yqMgxnzdUO3Nod9EqxuJWlv0q33SBjijTdl7VH+0Vx6Bg/dfsFMa4hQLhISAfoC5v8ivfJDzQqQhxHdaPdg5F9oMRKEYE5WvwLrqjSH83TYvAmjPvyKsTkRtWGfzHcPIA5xx1zcJEZnxkiMMAAAVMYeWysp6t2zqRW0HqRqYYLpjWKhxZ4qPYKKhPTh4BlHrYD6IQIqVBhQvLIlO2bsGQtsxEkFnCbRGMoPRKM3McjatlvVsuQBRRUFBxlMvRyEuCfDCoXcvCzB7B56dAHslwtZarcmJaCIWYRCVqMpWtrEM3ntbNqUIa22ydIvIZGmWF8PKurKyxe7BnTt3x/N6D8zhzdv7B9ca7xj8uJyfPj7i5VzqZj6fl4uZt40mpVDEs2VRIhqR2IGrmNmWXE/k4qO3syIfDoc6yWpvG8e5TvLBIB9tgVaOxaS5UgSoMpOh1NViaquKAAjcQKEucnae66UCsJOL4XDrqf2dz7/4PJN6fHLKhGVtq6Z+9Pj47OxCUJ2cnQIQsN8fZIsiVfu7TeP0js7ywQevvvH87Tv/57/6V199/Y29rUFdzh48+GAynTrnL6YLYSwGOdvm5/7sn3n9+7/34vN3/8hP/eT1rfzow7eF7dvvvD5fjA92tu/dn9y5PkCxN7aLuwfbcwsvPPP8vY+OMFHj+bgYDsaLKSLeOryWp2Z2Mf3g5PFf/U/+moic2TnnypfNp158oRiMvvO738Mk895rxQr1zmhnmA/Pzy7IaCDc2tq6ffv2h/fuaa1Bw2wxVQovxme7srW/uzObzXb2D6y1mmi5XA6Hw7Bl6rreS3YvLi4YgQEZhL0bZei5ee+9jw724clbN6qzjzw3wb3aW/ShmUH4Q8EnHxwy+iDwIAYADYio10pIw2i88xDAUHv+IenFtPoMVCRCZfXZwaacW+cUG7E37OWX9gV5n23BOueKd7gEUtH9ejUJehB6/UdAa82ISKuah2FENMuNMfRdeX26BQdbJ6jCBd079l+z/7L9YUArccOHzpSP4/mEqY336VNbVtO0IUu65Lj2y6vnaOP+sL5I/o3n9yfx8v03fpVLFvAnjaE1x1aOhxhx517Sn8Sque59AWLRXjioF6ld0ac/a+ve8rjI15tcwfqSw7CAOmdDhEeNjqKuujfcJ2RXwVVT0xfSMcm2tcW7wbTUYES9MYyOkt12bIe0qfpceWzSpL9BrnpQmy3Yiupep1uPsKz9rKz2BgUDqQAhjgHrQnq4fcH87evbvL5UBIlRFIKEci8R5RwrZbRKGcCyR++NUUlaEGpjStdY7/1sNsuLNE3T0CQ05LUhotIIgt47YRbwQd3hUKjL6L2vm0p7cmyVwtrVDFBWCxZBrZLM6KLY3h5mWVIUQ9sIka69OEpqj8Mb12/euTvau542YLJcGMvaagPVbP7w4f3ZxWkzH6u23S8Js29s09imSbQhgdCQikNZPykR0UTLi9PF+akxBhQ13s2EUClIEp2kzJwPRkzESJPtbfFsEADF6MSyqJAwCzCfTuu6Bs/j5VIQ0DWo1I5JdWqaRO0c3m6efUqn2cV4muaD09PTJEmaquIv/VCeFsaY6XR2cno+Hk9f+PSnDrdHT944JG4+uvcug7CrBoNBYrLZZP7w8fhP/vE/9KUf+vyDd99683d/+0svf+ri6H4zd7/1zW/cff7uhx9ebO+m+1t6erH4v/5f/m+3t5JXX/neT/zkH7zzxG5CMJ5cbO1ul3VFGq9tH/yBr/4B9nY+nZ2en7/6zsfPPHPzzjNPfPDOuyZLnn36mWs3b9w/enh0fo6kdnb2vv/GG6fHx0qpPM9D82NmPj09nc0ng2F+/95H8+mMvTOkm+UyQE4CS1VV1trrh4dJkozHY+dcnudpmmZZ1ngXcjaNUYnZKRezqoQffvm6t2VilJfE+bqtsiFBjpgHAjHWt+62vLTd1gSTDj1Duj0citF7+SaxLVzHV37w7oX1c3DdSNqQYX1Gs/I8Kx0YKktAvIp2SdDcO+ErIsjiEbBn3YZt3YFpBJpg6xqVHijdZTbUer+C5bQyagOBpeeTDsZAzKq9xJKodadvkF7WLaT+l5elFLblWxtyDi8lu20cK3l+aUY6rn356RK7KFCfSr2bhtYLq9Tl7rgkyKH73I/LdrIEIGoI/Z82Bt//qU8f6CrRo20HDB0KVfsiIFoRs0eJ2XaMQaZFJzPENgCRpArQ92VMT/YHr2/nfO7PQkeTDVKIRD9uuFsU8G0/wNbZEO/TCdp+jCYoWOG9Q7qSZxBhJAoIxtFcRCBUqm2auTHLrVBcUbW/5y/v3+6qvgLUaR7KaOG2a1kMoq9qFhQiO6+I2HNUiSIydQRInlf1ZLG0uzmDQAj4Colg0E96MjiADUiXrtEbJwMyoihCUNpbp5QGhBjKRat1giDs0dkAeZUMB5kUti6rqi6bphZh7x0iegEA0FqzVyhirXWNFfAo4FzjrfXeAnrvbdXUyqvG1UTUWA+KKEm3t3a2d3fTPEelGcGL894TOeu49pwXo9HO8PaTzx7efLKxbgCKBMZnpxcnj+1yNqOfkp8AAQAASURBVLs4K2fTLDVuuay9d67pXlATKqMdgkZSymCbyMYssSd2Ysh7713TOOecMCMRK3TOaVLVufEIZJLqIktNkhCKB53ltXWAKsnzw2s39vf3Afj8/DzV5tHRw9OTh7tb26cXZ1VTD7d2zh99tLO7jyYZDIa+md3cGyER7QwA2VkejUbXDvauXTsUwGVdvfPma4hw82DnL/+Fn2uaZjqdGmOs9afHJ5Pz8d6o+PD1V1986tbX33/zb/4n/8+6rncH+DN/9Gf+8v/yf/G/+z/8H3/h7/93f+kv/vnHjx7+6r/4V6MUlkv4808+/UMvf+5nf+bf+v/+//4R1uJLWdpFnmYnJyflZJaJzlFpwz/2+R/y9fL+G28hqu9//3ezt9+6OD0Bh8Pt0bKuR8Nhaa2vqr39PQCYP35siN5883VjzMXFmERcWQ+NqeZV42zpGpMky+USABTiiy++OJ/PLy4uQilwmuaozf7OtvdeKTQKp5OZyk2awdNP32nKZQ6gjKqaaAlJ9IR1cvK/1xGWeFBnNVAa0PhW+wo45FZA2JgAnWL/SQYcx5ZbV3svL294aJGbNmRPd+e++kAdNMjqzK5iJGa3trHo1VWRm68Ppi8Fu9G25SU9M1ekDafz5UGGc5Ik6Y+5I4j4zv5oM6g/2RPQKT3RfXrVDfuyPDDmVc9mWOvwurokWsASGHRffm9I5/jQjhRXQqfFvrz+8sg7Aaxin1Xwa4nWax/apfKJk97dv3vfvrtic8xtbWsQwFE5QBZBZg64V74VLk4AdaIAsee2VbHs5DK2NiBi0zR94nfDaGlIccth6B/Nicla3bUtz0NCRMe+sxG7HdOXuBtqh1LKWsttXq73FgBIgbi1hOp4EUCfNiIi4oOp3M+rANicuL64lWCRk+p/050cz2wRJxERZLVJQRGzaCLrnSIV4qmkAroAscOy8tOyroVZVCC3kA/xa2ibWYXJhDULOEBYdXl2ggRKCSIq0tZa8V4ZrVCBOPGglaGAB+CFWUBDahI1ojRLZrPZoiplPhfCJEnCthXvmLmulnVdh2CYc866WpwjsiLOOSfGOOdBK1aIOr128/Zody/Js7px1jESCUDtvFGqLm0x2v/sD30JdQ46FfF1VfqqOTs9nZ0e22rpy7ldLHxVjsd2WTWCQEYrrSm0JlRaa0NEEoJ/KlEA3gsRKaM9MSJqH/MeRcTWdVnXSWbmi2lhUts0vmnE2emkLLJclC7Lcri9bZKMAcrZpB4MdrJ9k2bm8MB7n+XPzCbT6Wy8v78/nk4UYFWVk/H59Ru3gP1sOitGQ0AUAUTI82J8caZ1ogFJG43Jwc4TSaoBYLFYKK3zPF8uFiEPwFZ1XVbnZydP3rw7vzgZ5OnhwfX5sjZG/aN/+EvDweDf/dM/szcquN557umbi3J6/Zr61rdf+fpv/lapVQJg5xNDVBh49Oj0N2dfs2VjELwHVHD00UfXD3Yyo5e1Ozk5AQDv5MbBjZPJmBWiUY7FeluWpTFma2s0nS8Go+FsNksSs1wuP/fSp2cX46P6vmfWWm9vb9++eWc2m52dnd2/fz9Uh4Yt75ybXoyvH+xfjM/E06xczGZ1lqAt4cb+9iA39fgC47IUAATkH2QSIcsVUjl04oorX4PoxBRCIt4qaFvPKgWI3guzV0ohKAQkCoa2dP9yjy3qxIQ3ga7ejkWYyYT+pvHANiS24XDu7XxumkY8K6UUaWk92841FHrFRpMGAmqDE0aBLgUspGIqRd77gCWCqzIhEeE01V5adJ8WbEhEYmAtoG1B5AVe0LPEvqxEqm0dxCKNs0mSRAsJIhqG844gct5WtAUkAyaCNkMIoS3zVUazB0FUFKbUA4AAcw+3JBBKKRXLaVoTsCVcANplpRRCRHUW8EEtC/0XCZEJO69GIEjHiAEg5F3HsGowNHklbDQqRETGiEuKgQAhOxchotLE0GKAyxYRpRNE5OAPDrqMtBZiy2oDETQChUbo3gG06NvsIWTYOY+IEYE8ZLswA0CWZV6YOVZzxsWDUZy4xhujvOU0I2RSwq6pWBcAoAg82269xRl03nsvBEop79k5lyRJu5xQCBkgFDgFOitAYRQvgEKoiCjmNAApDDHcuJqphRkPIrOtpRZm6SrC++GM2P6S4jyokLfrhUIMFAQABdGDiHDAXAsYNd2eJ0RSGBcyr5TXsAHDQ1uxD+18rDv/W6taKYoUVsjMHlhaqGVUoILiTtg4i4pCN2sk8taRQvRUVbJEuKibOfCW91tGg2uUkDPovSXQKrRNVMKBt4BQGzVv/SUIjB48A3vPgqhQJwbZR+jm4KMAZgkIGFoDoAjXocxXq72D/bquq2VEr7S2VqAIxTmnCROtBKBpGusbAVCJQWud9Yo0UQIKLMtof//gxs1iOEIiC4iGlGLvLYoUmRbgJEuffvqlItudLcvFxclieracThbns2q5XMzmrqkJeD6b1Mtya2uHmUmbxBQ6MQ0LIuk0BaOt91mWZcUwz/MiH+b5QCklCKJAJ0ahBi/MwMxNVZf1UgisrVNFpKCpavDMzLZazM5OBsY47xfjcyKd5Nn52WPbLG/deSI1mo3JsyIrRqenp3owuHN4azZb3NzetuwZsKldQFc2aZKarLGVtd6YlGtb13VoM89Ng3mOijKToNHLurLOKaUEQDQkKf3wD3/hO9/9ztPPP/vpF186Oz2/bhSSrmz5uU8/O8yLcrHcLcxnX/izi8XM1hU3tbX2Yrn8s39iu1zWi9pNllWSZ8vZfDIeV1V1dja3Do4e3Lt98/D5l178xm/9Xpbg7u7eg8dnjx4fidKzyiptklTlgyyAP8ym4+Fwq7GeVGpd+dTtJ5997sUH9z86evywGA2WZXn79hPe+6qpl1U1m8211gJIRGVZfnTvg8Soo4f3Afjg4OD89Hx/f7SzMxjSo8NtvZicb2WDha8YScRRNLJUKGpHCuh1Ia9eIPBHBbH/WC//OWr9iIiggVWeD6rY0wgVoFJECggNs23ZvTBENFciwrawvS/5+wwdWlutkx8902Fl1a306G5kRCKitZaup2wbA4tlJ63s6SwkQFjZHK0DsMfysD+k4JDs+5PDaV0SyhoQBwnAZh0wrsyg1SuvWRU9cwRghWqCPbuHe6AlHhAFYn/iS6rUuuXH0JaUdbXRnQURkaRgRWRq+9R2tktH8yufEjDosTt7XQPoXxhNWPAAQLDyZEDrn8cuNBgi4uvGd0e9+I3E8pvVndsDO3wJ7ESCoh5o12aCMaK1VoTzLFca01Q8WxF2Ns56eyZAdF+vFEGlAvjoqqJsw1iMhUZhn4Texsgh50IYQViiC/mKJb0aYUvAvgdow42Pq1g+9+/ThaJ7ruyVzQ0Q+t+FOKLqZ1ZukPTyGsCeHd2fpvB/ibBP3J8R3yZtEZF0dFNEKATekBbGDAqBpvRSMlsWESEJkfiQTR0Vj9DTgUGI4870beF+xLMJ0e7Yzjt2+kMhEgEI2e6OSBMQtdUQHPOrEQBSkyRbEcDHe8/WeeeyLLFN5erGCaVpSsHx4B0ADYZbVmDZ+DQrbly/Ptw7UKlhUgLAyG1gQVGQ+yCJUfPZRCcnVVWenz66OLlfzWeT05mtGmt94x2iZFk62N5hZbJiCNqkeTHc3ikGozQrskGRD4rYX0gZIlLKEGkv4tiTRiH0HhwwEmmtswISdmmeADCIZ+98Y1FAAbF3/OTCO2vrcjwel4tlWS6m0+l8Pp/OZzdu3NrZOxAQ8K7bpHv7+1prKatlXQIgO6tEwPu6nob6HE1KI6GEQCSVk3O2OaEGoyjLBIBQtELrvTFKq+zk9Nha++lPf9pZv7O/51EYoOAsSRICHGTbO8NcRG5dv+a9B4ztMIIx01gnKjFJNp/P5/OptX4yuRjP5saYyWTyxK1b1/b3TZoOi9HDo8fHjx6/f++ju4e38q3id7//Rp6AYppcLG9f35sul4ay2XIhCE3TvPLKK8tyDlpNptM0zd99911mttYOh0MUOD07y9K0bpqdnRERNU3jXNM0/qmnnrp//+j27ScmZx/f2TeZQREo6woN6sSI5dbaic7n0LwS2wwVaK0MkRjnAgi2iCAqbI1jDcxpViykLUtvvbs+lMJ5FqLYkwGRFLBbuaf68oL9KouyZaOrnX+ZAW2whk7t9RK8muicE/FKaRGy1gaLBNq7reSZiuyYYo+fNSfbhhSBgPHbmssbd4NLB7b5k/FZkQqbjGztw5oIWRNdzJ2koaChdMw0lHaGaSPArmh3fVTYka47uvFHhhvFjIhIryatPymrfzcYcTdPErDF2i+DI9fQKnu2PZE279DKWgh6TrsGOj9pT04jdvllQtI2Deq0h+6eG3W60IqrTgBvLDCllHMsImVZGaMb61KjtFGu8dD6SKDV0phdKEtTMWdbukf43noOZllQksJMtR1/V0+nvjaJKzp3A+8veIBgavtOonfiDTe1rnj0FdDuCAK/I1oQwN1iuHyT/gDkUtY3dPrlmjZIEkCTe6ozAEjkPxvpaeLZMbN3QEIAVFVuMnaT8dxnW8wQPTKrvtQsRDGiFONi66+PIL2FARTd7hHxwCNATMMkAWAPFMx3CXsMAaTxcUfEMJVCLRrRe49ESZ4lIN57ahBBPAmZYW2tA8i3B6O9w9Hunslzj0SEThhXc6EwQpH7ItPV4vSCa+vqRw8+OPr4/elkoqGYzmogMmnO4EtutgdKJ2klePP2k0/ceXJnbz/Lc8vSNA0gmrQINHciDTNb69h775tlRQoUKBAiRHJawHvvtaU0NQDkvSdBAtUIEiU1os4p31Lp3i2xdrmYjM9OnW0eHz0oy3p0erq1tZXnOTRLhx69NeDFmATRghVBt1hED5NJMoC6rpwwJImIWO+IlK0dcE3KkDJg61jIl5jaNsbo7b3911577daNW9uj7el0niSJFSsi7MFoU5VlURREuqmdSjNktt7ZpmFm0YSCVeMNNYqh0LrY3UlMhk/camrnfFMUBQBfXDwLIIposXyGEJumMaCMMfd+/AtFUQjTclkNRqOK4b/+e/9dtVwkWXb08T0RyPO8bJaj0WhyMTNaDYoszxJhVy1LAjjc3w0MwWTp6enp1vZumqb3HhybPCei00ezH//M3YSUU0q8JzLOOtXuOmgXMwIwiALVwT9cebRbXIBYQh2w1jrUGXgGRPQ+YO74Hq8Pm4MldH/r2j707svrMhWCQLlU8tuxg76A3OA4zBxgGrurNiAJN67a4DgbTLzjPoiIhF5W1dLd9/0/N+i1Znm0vGBDuvcHw+tlTitmh30ncDDXAELiWLhtaylJL/114zUBVoKqG0BQEeKvcTBxdsITmZnb8HhnbPUptnowxAKeH9yArxtPRwK5RLv446Vs8zhU3BTenRu2/+4A4NtLNp7bhTO6nMFW8LNSSittEmWMpnqJAgqRoINcXQ1m9aFn9WLP3u2/fiCq6jf/6CuCl8zKcHnXNGnj126RdMPmFg+yR2TpH9BbjeE0Ih3qgOMWwDU6bKyT/naTNpbRDezydAfRvuFMEhFuuyVCb3mvhgSEgIIiKAmRs1DVUNXeOpaEoBW32K04ERFpa5riEHuDacvrMcYlRXzbWkNIQUgQAxABD6JEPPhuYQsgKFSevfc+hnUUIKIy1CKLsXOOrWPnjMI0LWrHoNQgHxxcv5GPtqyIAzSJccLEIIIiPsa8iBSKdTVp5ZumqWe2WYJfKpKyqkiZ3Zu3tvcOk2JQVouqqgb5qBhuJ6Odp+6+sLu7b9mXgs77srERbytS0oOP6QvMjMhEGrUiIgWKxdmmsbZeVt5UylnPzBq1td413pi0LBdJoofFIE9Nkac76bUsLQj4xo2bp6cnF2cn4/E4z/OmimXNSpmsyIuiWFYVorK2zvNca32xWGRZ5pxzzEVRAGFlG42kmJq6EiIkLUoziPeeAYgoyzKeLxbn59d29++9915RDMq5ZIMCCLzzhALsURiJ0iLxznfBNdKJIoOISllkYG/DwqvLKnq8mE+PH9u6EvF5mpW2mk0uRCTTurF+WTdP7W57EGdleyevXXn9+q071/ff//CeQ29QVJp4YJMmpxezH3r5s9Vi+fDBx0qppqy0pr2doW2qZVkWRTGbzUKwzwM+/Oj+/sHOxdmps3D3ySfqZUngldYKqWmcNt0m3azmCF8CrPGr9d2/SmPUoEw/LKSUYq6JCJAAfAj/QSxYd0CoyYRmBdhmbMbFfslRydFxSO2A+hwFlAq51QQgrR2DAQUmwHiGUXfQcbG5bs9FKsEu6vsJWTrpFR7ng38zoCVvmIQQK18jWtInHrxKW0Pscpr68JNt8HR1fwXRdA5NV0AkvK/vmTAooVIFqVPpAUQ8wqa9uPopJkesKTrhiISKeGUErd1mWTpzFtqS6N6H7nvgCBsiEMKPPQsJL3kI+pw9cN8Nkx1xzQjrjta+31R0pKda9f8Nrk6RLuF5JQn64qR1HYshpRSx86k2ImJ0autGG60TNCYN6UmdmCci5WPWbveImMEAACEy3Q4vBKe71wrLsPdia7vxkw6RQPk1FzoHQMR18gJA21k5tABgIkIhBGHxIQEaCEOf46gQtL4ZWVdw4wDXldRWg1gTw2sHS2+agnsJu/GEuxGELI1OB4pALhyB04EInIVl6axnD6JAhUJgEUEiWDfpN+a0pSS3OYoCyBJTFJBAIXogBFDAiOyDS37VpVEYEQNYldYaCGMeArNnh4jSZqWgRhBorHPOWaW3Dq7t7h3oPLUCjEppBYqkEWhhf8CzMCAgUMKYMVO72nl3dzcrBpJsjefww1/9QzeeeKph8d7apkkpMSYlZbLhoKqa+XxOWgFLXVsCJBWqoD2AB8Gw2BQACIkT5x2EKlIRFgfCwracL5eLmfeCAotFWVdNbgy4WtidIBLpra2tra0to9OiKAbDrWIwOjg4vH//vvdulKYAUNclMy8Ws6apmLkohkYp731Zlo3zrI33zM5hZUHEVY4JfF0KeCBtksyYRBlNCOw9KcXevvHmWwfXDk/v32dmN6i8uPMzSJKkrmtjTJoXtq5AcLA1yrLMWi+CiTLMDGwBIAEQFHEsigDAMwCCSoxG3EqyuinFO/CcAB3smrIs55OxBnbWTiYTpVTZ1E3TDIcF2FKB3Rklk0VzsL813N396OHRdN785f/J//jlz33uu9/+zq/9q2Vjq+WiOtzdN5pOTk4QcblcNp6JqK5LMgQo7Jra2js38Pr+3vLiQUGiEL23RhOzk4i8ETHsLgNxSNw4mxwgNNwTIIn9gJFCVLnbmRw7L6xyIEE2JW77gPVHXvI2/4Cj47PdVcys1CrdFCQaRgG7deM1cF3T7/Zt/7aXx3O5bAZ63B8v/dQxyu4RV2k0qzvEfK3YZQj7zw2kX7uPdEp/x2virTbed/WUgKzUEwy8rmph3LwigXrUOUuwd8KmNO0Yd5f8skG9jrCX3/ryTfoT1MmpeP9PwB3rqNq/Q3++PmlF9WOTAmK0FuGqKgGYtNJaAYBWida2Azfpa2n9ddsNgIhCSGXtLQCgTZJqx7nCGCe1ua46emLvuZ2usrFu+1ddnhoJDvMw/wgQdMfeBF2eDuqh1PXnsX9/7HlN+mdu3Ifb0t5OcQn7UURoc7RKhH0sLmLnnLNQNTCeVsvKukIniYoh/+AyQESiXtZKmHphdgCmC7HHl+sc++ARSQC9hGJuQoUY0t4ZBXybEYgsMYkMETH2+PXcQtxHwgp7Fo8CSUJE+/uH6WgLsrTxwCAqISFsmgZQISoEBlARZRxRAJTJvfcIwM6Lkzwr8uGuV6OdJtu79kQppvJuNNpPWMiFjD+/rGr2khcDEZnNZmVZJtpoD8wO2rosLxySwLVSMVyISKQBQIECw1QjCYxG20ZpEiiLsixLAmwW0pRcluWiKsfjcZqmIJSm6dbW1uG1/RuH1/KiEObFYj6fz3WV7eztGmPyPK+qarFYiMj27l4xHFjnjElD/howive2bhSI0VQ1lffMCOBACBGExRqjZ7PZfLm4kz0xHk+3dnYW5bKqlsVw4IBtXVXLOTPPpwE+bOmcc84pZZIkUUqlRqVJnirlMc4iKMpIkTakUESquiIirTMMahiwSQth1FDXesmWlcZMadfMydPp0ccHu4Of/oNf/af/9F9+4VPPF/sH779/L0H4D/+D/+Af/N2/Nx6P9/b2rLXz2dIYU1UVkh4Wg0W59I1lrfb3d613wzzTwOVs8fmXn0gJnHCSJM5WYjlJtBMAZJBVRwCAoM6GcLkArLzTl5VyxGieavCCAXUSojKutfbeh3hHQIHDTn0m9JbXHtmKjpAhHCy8vrjqs84+9++fAz2227kWIbhDVRRmLY9e6QBRN+gV4UQuTLFBb9isRAStVu6ZKWzy1n/Yca4rxJIAiCCumqhscK6VjOw7w0M+9SWnbPisAKHloZEaIa1DWlK2V4QUp6DOr+koCNC2b4yPEAGAUEbSJ7sTERGNekOwXXn05+hKLWpdDvXmWi7/Su04W3bf49IIa/fvDSnYWLL2pr2nU4fF2BPV3cJQSimlWIKAlCRJ8jwfbW85ZxdtrrtzbpUs3C7F/m2hTYCImcoSNxD03q6TQz0ah/jCJkkFg5W08iqHfHnENXJ1jjhpUxlkVfve6dEAhMwcdiWhCr09rPcKVf+huN7SsS9QP0nEwrqe0e2FVjwjIglJF4ghJABkdiICl+LNqAhD7ykUtIAakGC5dMvSVi7NElKEwLGxhCBQ34u22oZrcp1b/wQTUqhKh8DnFKAKKeGIKKHxmLSIKwIgokwIGbCELh2IBhGQAKDxzlpbe+tATJZu7+4WW9tmtFM5771HrRKtURGzA8RQ8RfoCEoDhhQ+MSpBZxG886xJiSjXwPbOjefvvJhuHTw8PWscK6rZOQOaAD3UoEDrRJGqqyZ0ZQUA5xyzQ2AiasGSGIm4tgCASpNWACZqIcJESud5pow2RCDboay5boju2Kap63oxnVZVVS7n4/OL6XR68vjoow/VrVu39vb2Dg4OlDbaJEWSkRmej6eLowuTpWmW7R/smyKvmR2Qrdk5FJUSAWpITSYonsinudZaKYMsxhiVKO+9YSk/+ujuZw92r1/Pd8usyGvryrJU3opnKmg2m7Fr6qpSSo3PT4PLRytcAojn1OjEpIiI2miTKkNCaIzJ8gGSBoQsVwBkrTMmBQBrfbo7uLO/+/E7r3thx75e1kjWueXF6dmDR+e3n3j+Z//Mnz97eG8r0++//YZ3sL89+HN/8t+ZLWfnFxd5PghyYbaoiGgw2nl8crwzGs3L+tpoSMCnj05feunubHIyq+D5Z275epkQhp4IBlC8JQ0hWWLF/aXrAtAiRX8Cu40aIYEIaBABk6AiorjlQss/WnWeF5DgpxWQTUdW+B+0hsjGTu7LoL5K3j9hY3DOuQBbE2dI69iXqffE/p9d2zvouNglxg20Yj3dIT0Qg8vD6HgWr3dOvDz4DfWi859570V8J7k7H2NHnzB4dxUEIPR4YmeotY+72o7hXilLd/8NnrvB6fqX9993dYPeeNbtJFjdUNbeCABCllqruQEA9LvY8jrdsLX+2zS6lSbUH9hl0m1QIEodIQ/eOS8e6truKOW9S9M0AWrKqutsEwMJiCKy0X1L2pK5Lhzbn5FwPrU1waEmKtxqI1e8+9D2FV7Rv0eo1SoKy9i3GElrAhg7Gc82/KpCCSmA99iDJUdaORK6XISNFXXZs9JHge5G1b+2W4FheJ5jp8ggz/rBciJy3nrPqBUFMYkEIqX1y9o13MVPor9NxDPHDCxpVxltiHQAaDFYZNXdBABZYpcJjGldDAgeY50lkBCj9+wlwNMpQGZh8RJizuLYg6ZisJUUucpzMrohWi6WSidKmXACRsjfVbofYkwED32U0PlAHaVUkqbL2pUl7+3ukM6yLN/Z2RlPp/Pp2DV2u9hxrlEJKkHPtvGVd5ymqRhdLpZZokN+eJi/wBYE0CRaPAsGsH9GRUpphTgc5sQeBVxT2brK8qQYDEtaOueTwWBvexuuXSMi75rpdM7OPnr06PTs+MGjxx9+fP/WrVu7u7tKKVLm44/u6yTd2to5uHbNAuskKcu6qqpooQKG/rNKKUjICwuAmJSyjJTixnokRiXAWZqwwnwwAK1B68q5NC/y0QBqZ5s6TVOTnqdpbn0zLAYhMTvRhIh1taybhp2ty6qxjpFGW1tEVFYLQCyKwmQpEZk0MTotG1sMRmmaMXtxuhL/5N1nhd3Dew/qaslSU1PtjgaPj89vX792/vjxp5+5S0a7ulncmU2m9aMPP1g0dmd/O0uT8WzqrTuvzp979rnRaDSbTafz+eHh3rDI7z94cPvmwdZw9MFb7w8zuPvkLXAT9nZeVpnRWZ6U5ZKAhFBadHZu0Z8kuLgEQ9Vmf793+yt+g4iIWgSQKO58BESs6yXmeXBzipfQriv8JF7UuuOuY10bzKV7mDHJKolpPbrTMbLOzRssTekCfgKusd2I+9d2DCV2aEEEEBejuWvQ1iLCvqcctKlhobCiexHu6SstHtaKc3UJqwG5u+XjGPC6VmyCWffR3tcFW/cW3GZHB+dVsIwAoCvoXNnc0vfHruzePhvdkLKdPAiHSTPPHltAxPDlRoZRJBQChExSoo7YsG59tvSJAoIIVfRPALWtowH8xvld12FE5DapZzWPIcUvjFAradN8sEXbhnUxHP4MfpowI611y9bVoSQDUTFzcMEJYllV1AZ3w62cc957TJJVI+HQbQdDt+vWe9yKZABAUITo2XKvnH3lx+6tzyhQQkd3hqBQhu+7NR9Mnw3nCvVaDnfoiSCilOK4p8V772PlOimlnHXdGgg9RrvlujFIEGIfS+C6+zNz6IcW9sjm8gMIndpixLfnoaEAZALgHceccETvPZFGjeK8R1EASOSYxxOeLCoPe1VTq0R779PESBxJcCITQ4v6igAQ1k9spQwhaZwBgxwCRkZmEAjtoURQaaUJQUJ7v447gSci3wbRQ3U7iDAgkjJpSkmi0gxTA0kCSqHSBhNEFQqosUMYiHCDAiAsAkKCgEQaUYOwZe+ZjK6dVE6yrZ1ksDUcjaqq1MBslxobQC+uRGa2AJ6YJDBu31jwnCpta5doRUQ+OkJ0IEItweLnROmiyJRS5JGAfVnWVT27OC8Xc03C3jZNQwQEHpCVSbO8MFmuTZrneZLubu8d3FouJpPJbDZ77+23GfTnXv7M2cnptcO9oigAYDG9EJG5c9a6sK00KtIqK4ZE5FF0mihmts1oUFjvXGNB/LJa+gXvbI/OTk9mk/HB9Wvz+UwRAUNZLQgDqjnZ2hc7+0anGQkC7GT5aP/AOyvOu6Zm5wBAPJd1BURVVYGrrbXAsnBOzTBL0mldJ0ky2tqu68YqhUrrwQCVdknRWDy88xwgHz964DwOh3nZvLO9c/D46HhxMc7z/MmDvTuH+ycn09974537pxfleFLR3IMYkkGeXYxPz8eny6o6ONgdDovZZHp4cHDjxs03XnuDBO7c0Inybl4qRaQpTZPJZJxlKbdAyJ4ZERQpQJLY+qzDs9v0P8cvQUJGBGLwT6ImVCEAyVdaQoRRAPduBOtHFACXgJC4l7TZG8SqDrKvbjMzaew4EcqaRL8swvtm38ZpG4NcifA2FTmQYsNKiCf3UsZiUlPLZ/tDBVgDjtqgALZYHJephD2e26dPx6OJ+tVPK+kVOfK6c3jj5uEj9sAyNyjfpwn05Lf0vrw8Zbhm9PeKZVcvu+5vXx9gXz/oP737QD0vRacjXvmO3eHbMG13CaEGDPIpRCijK6Wu6lwwxCA6yUQ9e3H9fT/RUQ9tQv5Kl+r6Fa5TFdqTmK++24aXeOOzrB2hpeKmOQs9bGrsuQ2CSOuPsx0SQi9nvr9fpHXFUy/3vvt+dRN1hWXfHXEz9ujQ6RXCPF00y5q30yTAOTnnlCKtkw5yFaMrLZZ29bXzeITO3yvqBk2ZPXglEFoLK41ESIChwhtZBGzsQQih8JK8CADqxJBJVJJQkqBJQBsmBApdQH1Lz6Bn8uaKiLA5AgKNtQhAxuRFkY92WKUOUzLD88mURRpbNcsZNxWGbGadcKiYAhZG7734UCUFWZYxu9pa5xwQap0AIWiFRGmeKCRFsD0cJISnj49PHj6ajydim7oqfVMTiogXz6jQujLLMiBcVo1nzAbDQTFSJsnygoj29vZu37jxxK1beZ5PJhcPHx0VRfHg6GFIkiqKYYzdDEfT6TTNldbGKIVKGUVK67JclMv5cjFjkOV8cbB36K1DlMnFuJ7OwINzzjuXZAUza506gYDXQkSojaiAWRFy4b1Jco3A3rvGIoohs83Og3h2Gsk1tWuqpqzK+YxZRsWwLMuLk1NETItcRNxyqdKEyrIYjkiRa5rDg2ujPLHziYAeDXfOzi62t7ZSjRfzaV3Xe3nx4z/y2XuPTz5+/PjB4wt2sLNdDHd25mV1dHx+69Z1Inr8+GR/Z7vI8yRJENExvPzZlwapWQAjEinlBNI8F/aRz4em4gqJSDxedmZezcV6hxZpIw642rFExK6tb0CMyBshgUY2n9I5J0VilqOsZM+aaOyzaboKZVdExGP0s0IMQHWlCLjuHLssS9ojnL8qk8D47RWssM9uWiJsmIbRBFyJKwlMapOyESLjErRh944bojR8QwLc5ruBiAIkQAUYk+wiBX4QymjHT3vytQco0RGlNUkVYNcFKGb0tFfKOiAG9Ui95oJrHwc9mdr3wTJzAHPqpmzFjNdFdV8JYIj1vrgCju68sQCIERx8VU4dQvkh5YEQFVEoXwMRYOamaQR8wBMAVBtk7ARMN86WRD0HOIRsCrV5IURHfOdR7wQeQATECOjiVwjOS3Tu/9sJ5rDyuzy9TtHpi1MU6SO99Km6tqe43QEASq91qeo+cAhpwUojQRYQCcHmaBm3qnmPaSC0udCyIkzoBEVEYVWQF5jXMlvaw2EarmJh6iJcK0/dalN3ryAdVl0MwUJHVRQECRFi9r5RoDyi4oBYByIhXZzDxg8xKkEBIgGS1IjWYjRoIyrgZwE70a2bCalXjC+CakXnlaqKANooQCdcOdFIebGtMHOsisQYY9iWucHJ2Wld1/PpmIEYfJIkJs2NSZEQImSplMs5EaFCpbUyOjGZMhqUVkppTQZBbHP26P7x/fvLyTgh5LoR7xMESdDahtkiSN2wR7K1JSIkhcCLycX0/Cxoq4i4tb1tWdI0ffqZZ2rb3Lh16+Riku0dbGlDAnmW7G5tK6Wmi/ne9cM0TT1z09T1omJm8DyZTGaz6dbuztbW1rKx87OzRVVubW0VRTFr7GBrK6EUlEpMYT0rkznbKK2gxc8BUqFaVZCcADKCUozKISIKomGixjdIOk0znQ/Y27RqMCnAemcbnWpna7ZOMVVVNZufokIPjWMYDrcPDq8nRT7Ms8HWYLi9tbOz89prbyzKORtC8FoB+xoQnrm99eSdnfPp4v0PH9w7Oj99sBSVZsq40glhqrK6ttcO90/PHl+/sbe8OBpkaV3XJi2aapGgbqxNyHj2BCStnRs3kfRU6s0QobQndLJMhVWkJdRX9Hhu3ycWGQqAgAQfEfbYU/+Dil5HQkTuoURtqADYy9q4rB30JXRPeq2Gt3Hy5T97UgFW5ACAFn9KfUJ5zOXbbsiJPkdYfdl/rlw9znY82H3o36ptnhhdDd2ZzjkiAhV8sFH4bVj8/WdteH37j958u8tW+zrXk96q6v7sSfeNu0VZ0hWMbrxyl1QSf+JPnM3+C670icvjb2/LzLAeKRCR6D1h5Zybz+dKo9baaA1uvTKHr3ijvrogl2azm7I+fbrPl2/ViqjNhdptjf4j+tN6eWF3A8UYc/1EF9Tl1SuyFqe/kvLY1fu29NygU0uT1bP6MRrsKZerkQYsbiRh9gINq8nSNrXzBpTCkC/dNI1SOqhQ2NOVL48Q1lxrMYMyFKyDQMAgZ3FBMYh4luEUDgU8wGGnKUJNiMRKgAQRBD2KQgEOIrdts9F7WV4bmBD0cOVIKQDwla+b0smsrBUlAySDoPRoNEiTw53bzcGe1ol1TFqdnp42vqlruyyrqrY2ANgRpUaFoneFZFSSpKS1FoAkT8G7+cX5xeNH5fTCLZforfcswLWrQciDeOYsH+R5XgAWW9uN8wSSZZnRWpxl74MXY7FYWOcnk0mWp6OtgZ+wtfaHv/B579hozczVYtE0TVV5W1XO2fkcl8vlYrGolnNgMUqXZSkIrkpn4sFLI/WoKBSgc86D7O/uJUmiJCVtEk2oFYNoFcrTAzU5qNjMkCSJa7MiSWlAadjbulYanXMl1hBSVnWSDLYIcDGbDEbbtlxenJ/VnpGIKNEKSGGapo9Pz8fTsfXgvX3+mWcOr1237CfzyWBrILYGB1rrpmlsYxM0tW128uIrX/zCC+PFOx/e//jo1DW2nI6dcM1ybXerXC6E3bDIrm0/uZjN33j97eeffjIdbHvvrOc01cw+VF+xAAMLMworNGFvxjfdlFCt9I2FINGO1XFRiwBwWLLSiyGFfzkUDIIwtuWOl5TodqP2NNkozHtIUr0N3wXSOg23H6JbP6jbBp0GcaWc6+/YTmKtvgyNzGmNpSIiAwER+EuWfRdXYxRGUgpigx0BAN0T5H1R8Umcsf/E/gixb1vDytro7imtosUgAtJW+l7t2Whv1X9u4FTRLulfuXpA13xxQ1TEaQe4ZOCu3oIg4k2GlOHe56sG9oOgyzcWSaTPOg0REXWAFUSRVcpuR7S4ogRFwLMXBwgq0dSVDHUPQkSFEZQ75JYHGRKJhJvJUN2bAAQYBmKMPX0AIKDNhbgo9hzwneege6n+221ITUQMoI/B7dmlH2IXoY/lYZ9IOhERJoGu7W9U7LrJ7fyrImvOpP6f1BPwnac82HsigsHDJdz5aPuaBPW8BcEPHDSAqpHZorHhBVRoYSGhjKObvlWzVIwO5P6abN9RECmszMjXMZ4Z/BUiwpFi4doQQ6VQxswEiICESlHfOYFrhkc7jtghLUbQIe7xkGgd5925hgRQxAARe19WrhGlExFY2LpBqYsUAIrBAJTWiM/cvklEoDSDVLWdz+fT6bQsy7IsQ0DHKDVITZanCGS943KxmE1Pj44mp6foahR2znvvVZZAbtLBMBsMkzQbDod5mjnnjDFpmhpSzlpmNiHzw1sRmc/nSaKTJJnP556BiFKQ+6+/6upaACxwWdUehLTy3jdN4723dSMI7EFrPRwOTaoDYqtralQ6ybPh1lCcLKpSULIiY+QkS6xrTJaziDFKESN37jcyQb6wU5oEY6QMQktkRmKVatWIB2HvPSsinahMG2O8ljxJmzqpyCeITVV554EAPQKrvRu3kryYLWqjsPKCaVrWZeOanSJfsnXsjTGUGKOVeCmSUdU0j8f30SQvf/qZp5++8dHHD5zAeDLzLEqhnU+XyyVt79544rptmntHR0/cfnp3b38+m2ohUIrRsTBhbA/gpIYQ9SMV8Bj6gcj+Pg0e1natEkCIAdOaOh/3g0BvT4Ym5z00i0s8IIRp4obpdjJRC3u8YjdddKdVq9fkU5+VbLKZdh/2P1wCD1qd1rm4+zZ3cMX0+Eu0L/0nCGBsi1hWTtF1S6J7tZZt9YdxtbUB66/ZEzzxg/c+vBfHgYXcywjEfeU4Owm0KUR7oFet3dB76JpkWU1Hn+v1b9euk1X0vbt5X3nqqRTxlVYEv9rIWRvw+jA2bdDgdPXWdZ0/OjIiY+imgIiaEqMAkEHQWU5wLd0JNty/60/fHM+lEcK6o+nyWu0tsFWt1JXve1nvwUsRZUTkiHIMIgIMvXYdm8s+HIEIG+f01az+qLpFgrCmGWzcmXtugw3FYm38Qth20WYRJYAE82UzW9ZhaMIUbAhjDHhqOUqXCo0U9Lg2m7JlCxAdW6vz4xNDiS8SqtaID1wMItYNsMQENRAhZhDQ2kPoaMpIqCQ6s7SI34ga9AgbfYX999UqsdZ677VSCSkAEW8BSRH5unTeN1WFiItlhVppTUWSAgCSRq1MkhVFMRqNgu1RlYvz8/OTk5Ojh/eFMc2zNE2JqFosFfPe1khs2jSN2cm39/bH8wWmSToYZsUwSTJDytna2aVvbMxhrhvbNNZa3zTW2rpaElFtm+Bae+bZZxnonbdex7omAC9S2UYU5YMCEZfL5Wi47b1HVEWeB/d7OiyMMalOkyQZjUazRVlsj1gkTxMLvKV3kiInRK21dQ20W4mIAoQNgBAKEUro/NNUyKKNQfaBgESgFVpbs+3LMOvZi7dGUV0tAWBvb2+YF9PpuKlqTVQvSgZZLCu/aG7cuJGZ5Ld+8+tf+tKXbLkU2yxLx8xGJwjouGEWQiWOkyTZ0Xo6n50efazS7O6T1xfLameYFsXw1dfeqGuua+B0eX584jJ+8e6LxeigdpQkWybJp8szAtU4r0GUUkAc0uWY2ccMX395Y/Z3d/8nfZk1tEJitfKCPQsxKHU10wn4cHG39JxUV8rR7qGdgr/Bhjou0GflANAG/FYoQqhW/Bd6CS8U1eH4GWNGY3QwdYwk7ut1oQ4R5RgRESSAIbaNcURaG3/FiIkpJl/hxn3WHLnBpSy4wovuTuZY7LRiuK2O0pNqIb4urpNP0nNob/ifV9K9F4bvBHD/5M5F3Ge7HV8GAJDVePorJPCj0Aauf8mVMqy78DLL7r7ZFFHUlnJfdX6Xzk1EIl3xaDRbFZHSGkL1KghAaD10BSpNm/rQE8ZxPOGE4ARYU7kiricItq2fpE0qhNZ87t8KhMKsdc+9UhhH+lOwNSlMXYdiFtsFeXAhDThsSQCA8AqXZ1+kTUOD3vwiyeWRrKashQSLDyUKOHFhgcl60kY3Zd1Nuu0c6t0dCIRUeW0qZ2dlaRvnvVIqhFraKHgvBIPrLq5Ve2RsnWuRfSG0bCySGgLE7GoRUuBWCAId+otQ6+gWHxHuEEWCZ4GZwVKHctPxQFQQ6Uvx2dL5lAC1QgGx3nv23hMyUkii1sysTBpSmsvaee+oggs70wioDSmFSpGOBzPnaZLlg719YMHxeHJ+fuG906QyrcQ6W1dpkhxc38uHI50W2cE1JmUdW2uhrBx7V1eurmbLxXhyMZ9MgYWAvXUIbEiFJvOjrZ07d+4IqnwwTLL8Rw+uMfNkMlnOlojCzMvFgpmv3Syw7YszGAyEkJmLolBKpWnunNNJklE22NkR58G7ejw9uHGdiIzS3otKTJgaZhZlADk0ixNARIXRjcqCjOAQEMSCeBREIBF0AkqAvYNGvPdNXQLAIC9mk0ko66AtJ46H+TBJUr19MFvMM2+ttUcf3x/k2fziXIs/Oz0ZaNKEkKSlw9o6EKM0obBlG6qrE2201s65xcXFaLi9UxRN0zx969psvrh9+3Zd101VbxU7X/7yT1RNWS4XqTJGJ0luswSbyTl457wHBAkIaSwsQP+GCGd3xPM0MxOvbUgiUkpBjOOSdKosQVAzBXzXk7Zd/aBUBHwgitkLHW+6UkhcZujQauLScx13P21cuzqo5+LuCfvQK63vOI3bst8lhoWRQcAL47otDi0fCfJy4ycigpBxHoQBMUQxvwbV2x0colUUXYHyCTE8bBO+iMg5x+2f3eCjPL10Lbb10O1Z3P+te98ggDmGEjp4+shMuskiIgAl4gEoQGPiOupyCClx9CytJZddae2taRX+ijVwWSr3ToD+T30u39GqFcDAhN45IqVJI5FjG/R9Y4x4bouQESO9gLTiUNyCaw7qlmybh2Ao2F2pPtRr27ChQYTt093w8rGhVcT59Qy0thTDabGDpIDywpcuv3wQagwdAjehuFYFct0e2hhG5wfG6HahdnLjNIX1ib2d2I0/JO4xELQ9KxFJkWZ0tcWy8ZWjQYpaaxDwzhMRAMaSplj7eIUfAgCJCBW15sUmVWNSYYskH75CIu+FsfXW4Nobh4ETBa85d5kW3aND8mn7b/erdLsDACrbKKXSPEMnHcdomRKiUgygTYLOJkYRAIImIg/ivLe1Y6yNMUmiETE0J2bmwWCY50XTNHVdpyYBYWmcrcvlcvn49AzH8+HurkqzbDhAVEbrVBE3XDfWWisiO9u7o9HIVjU7rwCFnXPumRvXDw4OEpOdT8bz5YJQlWVZNfXu3sGN23cQgACVUuI8ABRFsVgsAEAIsyxjZu9tlmWIOJ3Og7pQDDLf1EqpZVlaa/M0WywWSaZtXeWDoXVslGmcE8+oKGwTafueIRGRruvSWxdWl9aKYlGcAEV/T2jSopAIYDGbNcsFA5aL2ezivLZWGc0MIDja3vIgO6NRapLn7t5lW/rGlvO5IVqWSwASoTRNkZPaVgyolEF0wexWRmdJqpDENtY1w8GADvcOdkZ1UxoUStSPfeUrBzfuvPnWW4PR7mIyLZLsybufIamOGZty5psliCNSCKhC1SKAYDAR+9sKGbsQai92iaCVChE14BAn8QwsBIiqE4SIKG1yKQp4ABGMxawUAF0RbOhdiKot70NFmkAxShfuVUZ771l8CAx34JlBdMb4Gaqg3EZVNaz+XoRGom8ZAAQRxDVRRHmmLrmXWSh4boWZvV8xDmDHzCgSygsFIaRKEmpY+T0C04lZwB3H11oDAIsTb1u20Ku8QkRCQOq4aSyrRwSKpVwcugVTCyrLYpsaEcPccdC1BcAzkgrMD1bVPq0ysZ7X44W95zARnfjsmGnIQpSO9bYdeVEpbCt/2tEGEaKc9SKiDSnSAhTA+xCxdQx0/l4hEWYKqhHFktPWA7MOftKxvX4uen++8BL+Q+DvNsab23BAaP4q4oWV0UGfCKw1pDorHVyOIgEvIjGIKtTqxXWOwNApbR4AA+RBN84eS4/KV5QxzltrQ5w3jjagfENboicxPAExl15ExDMDSVD6W1mFnkWTcs6xRAYUxAYqYhZolysAgURdIGTrMIIQUnB5iQcgrVZYUi1yNYXWPSSkFHoQYRfXtCLwK11WQqNP1MENEFTA4DOM1Bb21oKKFd4SDH1FjlmnSehBKwCxLjnarCFuCiwMyIjIgJbFASxKdzZ313YHdcNZQsAS7I+WaLGhMGNMzo92K5CQAuIAq96vMugfMedcACGOnwXAewAK5jiIMDlgHerUPTEwh+ZWKIIgsfqfGWI/bwyIc+HObQRYQq5MW7QJpIDFaVQq0QDaMRBigOhSRnkEJONBQjM3aRx4sb5hAFSUxCbKoSkfdgquUkprrUya5gMSQhRFxM5veWutPTs7u//RPURFWrGHnb1doynP82JQ7Bzue+bBYIComqZhjsipWZaFXXlyemyS5M7e7snJ44/vfXR88oiU0lpfP7yxvb29t3eglEqS9HQxC2OoFtX49DiAH8xR0jRdzGZR8dW6qiprbaJ1Rnx8/0GSJBezOREtp7PR1paDmhQ1ZZPlgzTPJov5YLQtIt75wWhY17XOBnW19OJJkMUbpUNawWgrm03mJk9c3RAgSDKfzbe3tmrvuKm01vPpRCks5zWiYlCz+bRpGnvjhtZU2cqJGh0cvvPh+2AUNBqAwEhtG+c4aFyCohSSVsq52llmUCZpmqbIs9lsAijeWldXeVacjmeAalHxtVtPoYJ0uDdfjGe1Ee8O7jz/6P671pZGEYTuGSCeWRkNgoEDIxCiEkTE2ENTIRBG5ApAcsKamVUnnNpt5pwLzs9o0AgJemFk8CaJrUgwpNAjRqX3UvhWYu47dCwbetZMx21X6nnMj41iprP8PKzqHTsu2bFF7zct404YdE+JjsA2vNpxf26R6JVSwqthY+xWu7oK2+LFYKRADx6oO4eRRRj7Ck54a0LwgFqvvun5zPv36YqwIYLtrSK73QuuSqxgNTzp7EJZe7SIQJtWvEElxz6kqXRfxn+7L2PVWUze69eMtUTGTjpdwRF7t+3fv2/Q98e/8U13dDHmVoPoEnMuOaURKMIHt7UdJBoxJBKJd7JKcA2yN0rgy2nhAOCcU8ER1NW8imhS3nuh6CUiiZ5waT03l8e/cdvVaheBFvICWr0KeLUAwjtKz+K/fLcNz3PvNEKUKyb3qhnpginMDP0VGJ0Za2i3ItFBHfM02/NXntsO7LPXHtQzMEDVwKy0y4ZN20lm1bY3BKAlQP6Elwz0jN71sDiu9iRs0mTDN9BzkgMAcmvsegYiEWYf/ATSAlGJMICOVrLEf2N7VvCIGBCokb0TZs9JXoAD5yRNjDaZY2qc11lKSkmwJgQEWZxndrZxiKgToxIDJG2PJgq5XVFJ9p7RB0poRBHvSUS8CCRZeufJJ27duvX+++9baxeLxcmjo/DuOzs7eZ6bNDlXKkRnBsUoqDhluWBv0zS9ce2wKIr5dJJl2fMvvnD3uWdn0/HDhw/ffOv1yXj2/+fsz3pmWZLEQMzM3D0iMvNbznbXqq6tu6vJ7ubaJEfgYGYAQU96FkAI0M/TA5/mYYCBBAGSZkSIQ4AUuHRpmmRXL1VdVffec8/2LZkZEe5mpgdz9/CI/M7tpgIX536ZGeHhbm5u+3J9ff35559//umn3nWIeHtzo8rjaC2JgFNKaQ4hYHGo2bnww+AR4+nBycDMzvs4p4c0W6bN7upKptOU4hD8dHw8XF+JoAV5hRCc94AEoqiOCFjlcNjHaQYk54MocEzg/bNXr1SEuv5qNzw+3l8/f04Az7yPMfowfPHF926fvXj9+rVC/M1XXw37wzjF93d33vu+353niVNSEO+dc4GjsIpa9hohglNEAey6LsboCIlwHhOIDsOA+PBv//0f/+P/+r+ZIv/mN7/aHfavrq4f7j8EN0yqn/3gd99+3b1//VeBYOiCTNGIAANSbfBjoakLK0G1fc1SJnkBdrREk2opzocOVXJqoCOnCGKhixnFqTSMySFFlPN6ARaiWc23JaxmVW8KNNeVXZkitelNJJk4PHHuKhvYUH/daFEX+SR5MrR4vMwylXjF6gAAxOrcbfVvwDVXWDgHIIJyat9uFHY1JS02ZFWtJjv7XeuWrXyi2Fxw0XfZrhzKUt7zEXq9svZv7qyMbcOwzSKqjVMgA7a0jd8wFYNwGyn95Ew218e4V54t54ZcUKDqTUCEBf62Jcxs5srKEdEKMqylBy3CpV7MH6pqSNQ6OBySc25ObOW+axHsdpnfwYOb7xEv3DGIKEu2UdWV81OqSjnYsBFTsB2z3RqtTKvEyi3To3a7zVICKrL0aqxCEigYEIqs4BlYVGE57NZTYcXRl7akKKhOgU2UVMAY9eHxdJxubvcdQlZqi6N1BbG6p6tvoDp/n4btkwShfYCsb03ZUhERFFO5AQTIZM1tCVKBYtFRMHOc/SeooNB1QxqTiAa/E/LnKNR1V9e3jF6dReAl4ZgkAUVxPBF77yEABMgRHoiIRC6wmocUVBFVCZ0nB4nFei8jTsyR567rPNGPfvKjlJIwn08jz/Gbb76J59Pd2zdxHIOnlOZpmqDoWt77XTecpvH65hm5fmL+rR/98LMvvzdN07Uf/t6XP/rxT+//83/8kz/5j//r65/98c+H3fVhd7U/3N7cHIbee78bhmEYPBIAQmLnXYyRTR8QiarOeR0ncwA57TDFeT53XacA02N6iNF3fb/bnadZZASkFB8RHHXUBadKgiKSyHtSvH+I+/7w7PlVjBEw3lwPp9NpGk8udC8/++L26vrduzfjOHtyV1dXzqNqEpFfffWbP/uzP/3p7/3OOE8//uH37u/vD4eDQxxPI7GCQprTHCfynXMu8xQkQu+9sx0Aiff3HzhNzDzFmcifTuPDw/GzLz/91Ve/ApBh5x2SZft0w57jJK578envONo/vPvFxI/eQ5pnj50ZT7LEV4upFSw1ca6WNfT1ZFb0DT6sav0jAiEVtKsaar2/JiCV27GQjwtCvD4a9Z413Vk0b2nSYza31UFWfUkLnd18315ZA2vnsDaBLqKAAaHJQs6cmFaevxa4uvGfEZmqVAnuRj6wx5b5N/maLY/H9bUBYLsd7ZJtkCZcFtoBV77w5kGsZcieqphxud4KS10tJJs72lm17HmzlQuzXFNzKFaBygU392S/UQMHUjCXtjkaGIG0OOYvilKpKl406aug2+Cefem9t5m0jXLbzWrnjx9JN9rMof3YMvKqvW0xs3nkCYxab5BZ0uuYeJHp185wKywiEmFNSrSbqXRDqji3mU9RNG0BDtABiEMSlvvTeByj4mBSgazBldebacXTpubvuDagKDBffSxT5JILlRCdQ1ZFB17zIOvdXARireyZTRchnOfRex/CEFkhpcPti9BfHaf55sUzcWY2G2ECVgEU8NTtOyUUxKjGadGjU6QUJSUBtRgaFGEiCwEUAXUE3gfyZqbmeZ5tGt77Fy+fd6F/8eLFPM8P93fj8TSNp7u798JRWZQTz9P5mL6+u4usU0xR8Hf+1t9m+d7XX/0a0f3W939IgIfd/vtffvE7P/nxn/6n//jLv/rLlOZv3zy+ffO6D34/7Pf94F232+0OVzsAGA47TYKeeh9ijHGciKjve2DmeU5WFWWenSWCi8R5RpDH8ey8//DNYzfsybvzHA+HA5XIIe9d2O0D0nDYTXNyQg6JnCfAXT88f3ZzPk3kYJzT7nDrh3R7extjBGVJE8fJd+HHv/2T6+vrb37zFRF9/dWvg3PzeJ7Po0Ml58aRzY19nkcAAHRASEpKkM3/qs65FHWaz4AuhHB/f//ZF5//wz/6o/v7D30f9vv9w+Pdi+evPvvss9PpBP7weDpdXz37/Ps3RPDm6z9lPQ99h1LPxKojTyWUmTZSDo/wC06qlLpLC1vNcrpYrzdQVdTcyLNBfFKRIlfWOCAbtqAuakmwXOotbA8GIQCUViDQHh6AXDE4f98QEAc1RSG73aAhfHaPdebJH52vGVNGbpKwqiIBmLEdCqhwBUVc9GC95CL1G/MTt9/XluwtB6o3cB7EWrmC+Q0qsWsfaWl6+4r2XfXasOvN25cbio4FxRoJJLbEylk/lnhW3lsBngPMsYZ8f4TltBBb85vl1+UnE3QKn6urqIMTUWWsiGitRDCXR1+yvhVyNDupVVT86MRs/JwGZj1/QGz90uxdlai+2/j80YvMvAOae83VgttPbPqihipoboZX4ieKoLPh0K4ihuY+U+1lyezU5MSLmdltEN4GEra2qBVmNTaDIrCCteEGU5HQHAIeAAHS41kez/MUlTtQQOVkpvI8so3dtOwsO7JEZfNHfMDQINsaSZpVNyaFFTSK3OwwG3YMb1qgcYljV2VVtd7GltDL6ewHj4oPj++E3PPdIQw9ECKQc96RF+rjNCvOqtx5ZDW3RUZpI6ZE5D0ZjWRNZkAQFAgOEBiFUyQQ731wjjEZfo7jKCKn8YSBHIW9f7Z/dktEn6d4/PDh3ZvXp+MDxygi++fPE/M4T5988sk//Ef/5Hw+/7//xb+4+/D48sVnf/iHf+fTTz+ZNfWoP/3tHx4G/+bNt9N5nOdZFeYY58hEUz/Pj9OEqPvxrAyh9/vdTkuF/Pl0DOMoIsxsPmNEJFFN6dD3osoxBu+mcZxZ9vu9no4CKpTVJHZOp2isgVWuD9e2oTFN0zSlKVxd3zLHUROQAvDI5/N0Do48AYgedvvPP/3kw7s3zrm+78dx5Dgzs/dOVWdOuY8Ix5RmAAB06DwCIpCKMPMcJ+ec8xhCcL4T0fvH0//+v/vfMbCi9H0/jrOmdDrf34Rn5Ho3DOD25zgjwYtPfzKO4/t3fz54pyla3RFVLhov1dirBe9EnUMGsUIcSxgng0ZmIYdN1xfUhspLZuEt5kOTjtnSAlxMmlB//dj5WQ5DbUfYRue2SU2NLEu4Kqe8IVjbs9fI+5WhEjRutqyDNmYrogtxQS+HxbWaslnmxwj0lpV+pCBGC9LLqzJmbPTs+g08mdhazR5tkhIiInKTdgIXRK3e2Q7Y6n8VDZ5MpqzPtnOAtVaHH5EwchhwuTknbq2VdayTESW9dJCuqrIYG25tIZtligi0DhGD7XrVWqw1bfekJ5F8s63UlKBpf7WPBfjLaNUSYFj6HbBt/y7DLgsv6L+Syeoj1NRTKxIPtw/Wvy814PwurHKwIgZQQiIFcYiAcJzg7nEap5Q6CB0JgsuL+thaqktZc3TCX7f2Os/N6jYUAFRUWdWTMoDD/K5Vnc48gv1dy7SU15m2EsLw4fH96fx2N9x2XQeSzg8P4LvZBfShC9CFHpz35JMLICwozrQbyfRHmCWmxMkaKSoAgVhBE+XkvQdCYZmm6Xg+oWhwZELbMAxpHMX78/kc+i6E0Icu+G6eZ/L48pNPX7x4Nc/j3fv3b968fvny+ZTmT16+BJA//vf/9t3bbxHSftc9Ptz9h3/37xHRBeeIFAUVXn3yuSQ1VSClJAx93zvnpnH0nohoHqeJgc8jAPR9HzVpiiNi13VpngciQDzHyMzzNL24ffZ4PoUQTqcTqM6n4+CdztOcNZnczs51D6o6DB0Q3o2nDx8+eN8dDoe+383n88OHD0o47Hfn81lJv/167Dp/e3ubZpnHcTccPsTpT/7kT4Lz83Qej4+7IfghsPfTNAFLN4Qk/Prtm64LiAhEToBcNk8aqo/jfDqdjIXf3T0Q0adffP7h7v0c0344iIjz+P79e3LhcP2c3ADI0xnHOO273Sdf/kQwvvn6z1/sO4SUbThFG61pRjmZTa0Op7ilEhbliuNq3q+us0T+Qs6KQTtrbLlLT+ZVuDntecjy0ZKvC00hwrUKWxG60FAFQMGtJ6alF4UZs6pKqbZTxQVwBESl6QLkRNBy8CqHXuid6OKXNYZkmkGu7bnUozctqtbLBVjRa1zru5vrSfaJiEB+GecjDK9qk1V6aF9aNSFsdESA7KTcvHfz1KUfsfKzrSRhLv+y9nYm9UFtlVrYjvzkbj69vxfWhXYyK26tkB35ZZwSNphhUqf2JFM0StxyvuYnXmwAzXw+to/thC/vrF/akdEm0U61lNjIa3cgUg5IzvKyaW5Ga8H1xLrWBobiDEatjZrXaLly5RAC5FKOSRWdBSuVQrMiImIGMbiEKtWikq3gItZNdZzg7jg9nOfbPXUYEBOsUWjZlmXreYNp33G1D25ZeLFrOczGvEUY0ebKUsT28pT7CpszjgCUNbJ89dW3//Sf/tNnN8///M9+8ebtHbHydHKqfL5XDNz10veEXkTQokwZ0JEjgpoGzZySOETvABSUEznrpSES+f71G42MiMw8nx95jpY6JcxH76dp4jlaC9fD4eCcm5O44Pc3t91+x44OV7e769uXn37xzTffcJI4g0NKM9/ePP/k05fv3j8k7m5vPw0hjHHufWDQQK7bdbdXt+Csv+QsIsPQAcD9/f2z65uU0jSeWSXNUUS6zltXiSnG3W53f3+fnAOAeZ5RQbAbxSV1BD7OM4gqyMPDAyKkcRSRrus77xVpCIEIT+fHKU1I/mrX+65/PD5Y3zARSSnF0wMzX+93MM9yPD4eT2/vHt5/uB/Hcbfb/fKXf/nf/bf/bYzR2OocrZUy+S5c74ew28/CWmJ9mCOSL5UtpPPhxBxnpoGIaBiGL778kaQ4c3IhpCSaWAMMQxdCmKapHzxrDD1xcmOUw/7li09/fP/hbkrHgOCRAFcWps1ViCT78nnFn7que//+g0WiE1GOTkSsneT1Yrhoq21IpP1dD3abvolFwaLGAweZmuS6VPUsYeNja49ZPjxP8baW9GDJu62z2vCzVgu5hFFMEWvXYU01XGWZQHMzIpLblluyl7Z9Z9sb2lyg9u2ti1EbptgSbiwqkt3fOvA053tmE+fqjQacRgdtuUtbUr99SwZaI8pkQrwkiUr7lDSDtO/dLLMOrrplhGsqvDxl77VuehsgQ9UdARGRMo2zBds/23zfpZfnRxhn65+2WN8a+QwljLnGBFQ00KLIVtStOFn3FxFzJFCBDDP3PshypzabvpQsrYU+SoHZJ5L/pbQ2Us09cHNgWtmyxVZRrs1Z0PL6KtrWzWXmQG6D58sWYy4HD0qApMqqYgGcpwj35/l0StO1HHYqqi5XEWk3RVUte0LahDqthXX+BldLAS5/dRa/rwrKAAFKbZ/GVJgF4nZAEbGyJAbGFHma0z/4+//o7/5X/036cPdnP//ls5vbw/XN+TQKSppnlknPpzl47ztEBM3xmA49IXDpJy0pMcf7h0cPCmmK8+RQQ3AqaR6n88PjdDqjgu8CxzjOE6FaJq6VtZeYuq6Lp+Npno7HY7c/AOI0nsJuTy7srm+urm/87vD5518Kx5///Ofeu7//D/6JKs/z+P0f/jRGd/Pslff+/v5+tzsYGXHOpZSmOCPqQDtA6ftARN3QEzgv0u933ntLO+6Dn6Zpv9+fpvHqcP31628QMYQQYwzOj8eRUHe3NzzPKcbHx/vdsLu7ex/IxRincQzBO+cBdN/vvHcxTX0fmFOa46BKwo7k8fHRI3Vdx9MoMf7VV18dHx+//vo35MLjHH/np3/rD3//D37wgx/8X/6v/+PNzc03v/k1UrZc+hCGQA8nRoCrqysiunv/QUSTMDOzTJBARFOK83S2xIcUZRzHELrf//3fn+d5mtOV7+/ffxiG4bA7zCm+/fB+GPa+C30XpmmKce6Di0nIP/vp7/3Rn/7sXxJFF8gBqaTMv8ppRUTIEn9GOQ8gUJS2amud53m/30ut8kMOASyO3sFipJJFXobs+8Tin8qvFDGERgDCtgI+Ns7gSlk2R6j+KyIE5JCsk2J9ChGFxRFJCVsNITDoOI4hhKZfusOnlJhKPVX1PJ4dOSNZAI6y0C91XfIUMaqtHWr8FxdKvZDLhj/VS8uFNVd4mZgAoJlGzCbWyi5VoGnJcQXdyn7YdMWoj9Q7W/q7Yc+Vtax2QRbZpT5lUoVBvnKaPIciq9WXVoa9AEH0O/rVZ/SQlXZruISOWJuMYm3mbHgFjJZybQmdqiqVu6xqs9hG1T1tAYKIFglcv8mRd6rVVlENKdJYPmzqRZhZuY0122YXvl67RrYHoZ6OZlPEgsBUNZc+LqzCspmxKG6WVeRcLkWjKqDk6gblkPalXkqmEZa70pyOJKKqIfi6d3nT1zlOyy6TAkgScAWeoIqEjhwAOmFmDp28fsd3xynBjYhpcgIg+RipYea2/zTl9GAUkUuLRcUuWF+brdz80Z4LFQFgQ3FRc22gApRyEDnlQ5iDpZ4LeHLO+747/OhHP3nzq9/cv//w/MUrVSSiod/dPR4DYmJlQASBOKWUmO20e0UIQ7/bX/lA0xSVdBgGBDnefTg9PMyn03R+kDg7Qofah847AVFOCQGG3oGy9T4yz6AjjfMJACSl3a6/Pz644B8fH1W1G4bQ7/ZX1zcvXr589Upo99u/91MXuvM09/1hGG48ua4jjkeQoDwdH+ZhGE7HOcbYdd3Mc4xx2HWqmuaJmX1woIyInJICikjXdZHZd31k8aE7T/Oz5y8RcZomcqHrOtftnHOoIJpA+JX7Elhezl/EaZrnUVlY4vk0nc6P70+neR6dmjvcIaK8+xCC258HIvrq9ev3798DwDdff2sxaLvd7uWnn/72D3/ye3/79wHkq2++fv/u7qc//en/9Fe/NDrjvZ+ns9UJYI4xJUT65JNPY4znaZymcY4p8SgCohJCeP36kZwi4tu37//g9//w089evXv3SOriJAI8DN3Dw3F/OCjh6fRIBF03eO/74DjNStCFq77vvvj+j3/58z8eXgzAUdjkNq5CIBpdJqskrgDgjV5AYRtUes7X/FqjXQDAwiqCbmschgah66msdHyjT1Ti8qRkenl//bvS7vYIkYJoE3i9JuXNH1K1lsVS3cTRqKp3vmZi5EytZszW1KYtVb0w8+JT15Mr3XxfP2KTNLKJOW+J5gZolwQoZyUT1cpKLdGhbFLbsr1VCdKLN7aAfXJ19RVmM7jsDL8SCJoHN277JzEEC8+DNcyhQbbNIACgpbJSVdbh42hW/y65vw0FX89kM73WEV7vwQtb0WY5tRzjgpOw1FxG2mKdNvaPJw9Qne1qj4qgCU1Vmc3GmQWrmAtKOTyAGCd7kErq0ZOIAQCLKd3EPi1w1kxCCJ0QqvKUIDEmAQfqARCdNZAEyKL7x3ZH9ek+0x87Ypvb6ieAMslMRhTAwvQoG/saZ4Hdczyebm5uEHUcx0BhnmYR+OyLz0Apzirgh/0VAKaUuiEMV9eW6jpNU7QWv5icU0KfJMYk82nWFCl4QIeOiMA53O36wT+H26vT4+78cD+eT/M8MseKRlVbyPiMBABJUgQREWCJPKLzrBLTFGMcz2eWtwIahuEHP/nt3dUh9Ls+eOx83/fjeY58nk4PygkRT6eTKg7DkJKISNf3doTHmU6nk2FU13VkLdoU0DtVnbwnIhe8sPq+U9Uk6pxz3jsiVXRdcM45UGZUKzrixDva3dxInA3T0hxTSiKizOPpfD4fj8cjp9khzPP866++ery/B4DT6ZSijHHuh/4nv/07n3322eff+z5S93g8koPpPL549fLh4eH+/v7589vz8WQMggvlVyRQOI5HLR70rkuRJc6SUlKWly9fiqaU4gB6HM9//LOffe/LH4nAdJ59r/M8WxuY+Tw659I0O0CX+6POIiScEnK/u3n+6vPT6X3vVMEUDDJbtDSktbQuNAYsgpqTNExl1OIAzmf4ojhcwy1yTq2sa2UsbypVHrUYRDeUYzlCOXrMQgwUERUXfWv9YC79mH9qZiIIoE/QRygVjDbzV1UUVRFP5JB06X6qhvCl/dOWzbjS5WkLE0JARGfhXVuItdQ5g1QJAUEXrbFlUSLWrSw8uaICi2Xj2i1gUBUl69+gUJOeAQDWbi+ALZtRbeLs1mEpdRobfvYky4Rm+7aUdL0RLYhWzOOibOcTaLb+iIhEDhEZVAEIkIiAt/JffYVe2J8RUZtWUE/S980jlTK2S6u7ll+6Bks77ErZRRMrc0xAmSvUKqQLhpTypkDLKnB9AYDq6qc6+VxwqhD3dnIikm3JIlRS6SzjAIopHpc35tMtmeHmuGsp+qWqOOvRoDgluDtOxynecnCuGloAlGrK30cRaV0DTtfQePJ66lcjGuXZZhB7RRUMEZfDcjgcYozzPBNRNwwiEGf23p/PsRv84eo2DD0AnacRAJxz8zynNMs8zfM0jaf5fEoxqs6dhqg6SUznCMlh6JCdEWnqfei7LoTr58/iPEpMzPHd2zfKwjHGaU4pCQszSoKUohnnkggDOBeYhDnBnJA0CSsKkCaep2k6He/+zW9+ebi++u3f/b0f/eS3Cend16+/ev3tEPz9229VZuO1vQ9xv3fOed89Psz7/VXwfQhh0EjgRQTTbPUrHLkUhYhSxC4MoHI+nofdjohElbznGM3MQsFr8ELEzMypijXTHEHFe3Ml+dAF55wg9Le3r3rPKc3jlKZxPp1fffaldy5N4zRN5/P54eFhmqbnrz6ZEr/+9u2LTz97/3j/vS8+f/v+/Y9+/NvkwnkehxiYGUVVksZoaS6CAEpxSklFhAU4Z0aII8RZ4rPnN/M8HY/H3f6QUvrZz3429Ncvnn8+xpnITfM5IBCqMO/6fZwSIToVQFFm1ZQUBOMQDs9fffHLP/sQyAE51UREtfmgnWS1chwIYAy45XCaGAijRGrSaSo6bnyxLf3KiH4REtLSaLggx+0fNoX25DzJqlvrWf1+81IqhYsL+bNpAJa0n5ZXIbatXRYaDdkT9gSrgKdMXnkhK2a2wHar/JUJlGoQ2bgKlZytb7ucwOZqLcbtlNrNrV/iRbx0O7ENY263bwNwLH1k21+xsda2pmnVXPBhWd1FNavNVIkIGktMufVpCGju4rUCWh2tGlGfYJDrJUPZLyhiV/7pI8qWFkvyBvJ/k40rOLCKhd48aOuqDeEbjv70gJvryXPXTl4LA25fp6qIbeodEFErQLcYstoy+78W2SW34RbwpIDCkBJ8eDg9nCLfeHIXwBRAXOFAu+rLq2Lsd5+O9TiLBqxaG3IWZtwIwe2QqjrH2Pc9Ij4cj6o67PeJFRGH/c67Tj2p4s6RkhORwTnQDlIfp2nybnQ0j2dlVnHiqYs0pZSAVaJwmoWdC/M8z4BzCggCiK7vHYRP+u+rCM9xnmdJXGcTY/Tes8A0nQXQe2LFNI8oGgjBkffOe4+q83hOKR0fHrz3ve9/9h/++OF87nfD3f0jgFwfBuU0xVkSP0p69/6NIf/14Wo8HZ0Lu90huO5w8KzAKXrvWIQcQYzkfUpJQDmSU4mnByDvvVflmJIqhq6bZlOSiVWY2UiClJQWYU2RUXIuEwCIA0VIcwSgm+ev4EbmcQohHO8f5nl+pvq58jiOzPzwcJxY/uIvfxGFv/eDcP/48PnnX7KKcy7GSACJRRJzzE2HRSUJgKLEdJ7HOZ6SRAAi9ET+fD7P88QcWaXrw/3j0fvu5uYm8YyoMcZxPPW7GEJAQWUGEYkpAQOAWK1GUEYdhYfdTX+4TemxJ+9cIZ4opMVnBKqCSgCoXrWWkkTKDCPHg9he1+/tJFUEXZhuq5yZOYfKOKCudSXqQlPak5w9x42ukw+ALJp7PmAsIIJQjETl1WxFYO1BQgRiZqkVpUWWoYvUvxy55o2V3DCzosBa72wPOafs86N16FN72gU0W7qeIg6ZrmmzRs1gqBCuNLR+rCbEzXzoIvOqfXbz6uVLKvy1aMW01SrQ0iNlXdmq2Ue+AJFDRG389Ks3XohWm0m2f5tXEouXxFI0zRttjl1XJi9FIWNQK/xn8DfAEai70JYKPFfg2TJCqcwmD0duYcPtk/XB9pt6WwZaBijCIunlvavbWvf6cjdVVZYGUVDrF8NTUbsbIC8gbW9V0JJmZNqJdblWFEtuqIJpFqe0HJmtoFaThQCwBIUpEdQ+vcBa4vUAHs98nFKMTD1ZGRVYiblbkfdj3PdvcpVSmtJCAAut0MYPYkujLNow1FwNcgAwx0jekQvzPLPCMOyQ3OPp+Prt10yy312F3S6E3hMpErMSdSoiAgmjQ9/7vd8H4DSfzuq9956iNZUlBnWRkBAI0c6OEjPPyChqxkjwPbrOI5J3JuodiEIIoDTHUQWdRxCcpjOxElEXghktSCGlNM+zxUw55+DqzSvE58+fa2IldMExxxhjitN8Ph0fH+Z5FI4eSVTP4zQnDtTZMRDV3WEPIooIzOQcikiMSTWEICI8JY1E3gGAc2FwkOaZ0JMSqKKIgBKoA5dSMsEiqXJK2eUhut/vGadpmil46A5KPgIzo7u+dfPskDjNL25fosIXv4U+hCnxeTrdPnvW7Qbv/bt372KMu94hIjPHODMnQMs0sVxgAlTnMUCQyCmlyNEUg/uHd95T6IbHx/u3bz/84d/5o88///wXv/p16DtOIAJxmk+P97dXL6yHhLLEbOUxUzEDYYrifX/74tP3r88Kiii5nkrRTwGwRq+woheREnmUkR4RHVFNzbNoBM315FoBPD9zSb+qjtIS7v8/rsyhWw2yMY5tJN+F0JePFkjVDmUYqYS17+lG+agp5DXisT7+N1zF5pG/lna0889LaDSAy5fqXyfyXz7YcgttrksGqap6oWC2j7d6dgu3dm7QaJB1ZFh2ZMsC2wlfsuFalggxp4JWqv/klRP7QMEKIqsiEpbY9TW2rOLJN6NeUv8ieWwhswF7++AlN7WpIdac72Xadg+ntKy3RAA45/TCpgLFY3DJqqG4JArAsQz4tFq5MKfGFWKD5Pj/JlS7DvWklFD+zAyOFEvNQkZE75zHGBXPs8QYVTt7f97e1VDrxAcBq8AsemER+RvYGFSXOcN611R1qT+p7BClYnvJOlaEbuhTSqfxTMHv99fv3r27v3/4/LMv+8eTwvvdbry6edYNVvzBhxDmmEhBOJp655wjAFYIQw+IzMwIlMQatAjKNEWcWZFZiFlZk2jGSecckQMAFoGZrReXc65jCSEIEiCqqIgy+gSMipwUUpLEiCgC4zidzx8Q8bPPPvvyez9U5cf7B45xdzgIke+Gbo8hOATleQIA4fjh7TtCneeZAHmOLgROCVWnlDSn6GkUUcKkoqrTNHZdFxzOHDWxcy7FdH93tq23WEdRUNUEhJi894IIoixMElERhZj5OJ7A+STMiuPxKES+H65urnf9bhg6BHj/fpokgWgH/v50v786ENF4PgMAM6eUut7byWLmyAkQHBEXM09MORLIrirwWS0Q74llmh5jCP2Pfvjju8cjkCaJhCH4XoGn8wx7ZY7OdQpivS5UTdRUcE7BzVEOV7f373c836useMdCHBAUCZS9SoJcknTpU+a8Va7J+nJxR4H19KlkpWBwi+gLA66EYAmdrXqyqjPOTos+Z5lObTnJ/JSoiqBHKMkt7eExD3Ru84cgqsJSGQAWLw4iEuQ2YdU1275ISlqUc05AIWEuAVu0kw1jq9zrkgY9SbsvuUY55KSqpISAtQsNNKaCDUGXopPC+jJtu9oYllewYNY8MigEF/V6Mwgigi7Vo4xbfJzZNbddLvPCCLxZyGaeT+CordfEIKvInSOcn5iALQYRjVSBLElcxrVaQ0Ud39J72ve2kNnwp/y9LJYh3cJvJYLkr0QBSxZ1ngAiIouFf0v7ugqZyjbqx404qJpzcFc4DOa15owIT+YnreG2kRsEBACc5USpqGpXIrAQcxaDwTn3jTAqUSeWcYYATPZVQHFKAMCEDBoAiPwc0zjPMTrUzgqW1ZloNhFveeSyxou+LE8ew4urVtf9a4TpvEDAdstUlVmjaDf0Xd+/fv3mX//rf3M6jv/4Hw+73ScIfD4e796P1DkHut8PQx/mebIMTi1KtqgkYdf1AqpEgTx5VlVlBdTDVT/6OaXEIlOMc0pJgNVcD1ZF3/JyrUsbJWZKCVRBJCYRTSqYVLpuYBFriqgEzkpuO53m87PrmzSf3nzzfppGFL263suJ2fl+2COiQhdch973fc8Sb3BAVIt8TtOoqtN0RoDz49EhiQg5iEmpNGZlEetEBQoCIiwWV9V1HSsTOiJiQBFhc95pJyLASZglRothiJyG3eE8P+ZamxMiYvJBju/OfXe4uglDf+idkgOkGGPkeR4thWl4drj1PnjvzQE/+F5ABdQ5B4gpcQIh8jmUUJiZRaB0coPj430IFJFFEaH75JPPX7785MPj0fXd+w/v9t1BmeYxiYyD+zAcOh8O1o6MyEIIwQkhOnA0xjGQu7m5fXz7wBeVgFeIjRaE5ax3UnXOIZGrvj3DWYTcFhDWJB6e0g7rN7i20GJzonCT5VKL6Zf6F0ZRtUm7bIhFSy4XAmG2+OztkxxNijZpUERPkAsnwvKK/O+c5pz04i1vdnVdsk901LYe2oy2utNm3JhA23sYskQjCJi1ChSQ9qWl/66ICNKWqLYT21BzaASL5r1bL2md+SoeaT3+5hFoaFMLzHqD8JIiDIXbtYN8xyqq5VNESv9E23WbpLIqtu8t42LJrAXODfhMPsNCtStYCndPQB7xiSJWFVbLDK01bMuVaXPzdiH21MZEjIhAKCknnm6cr9CYCmolHesNCgDVAWQi4WZHqkWqRV0oNqoStbCC/5apw5IlbIeuDbnIGAjinNPSEwham40swJHCly1fOGAQTZxEQZPCNMssqs5D7uzZilUWAWegEwQgBQKIuCz/Ozjo5iom9ksHTbV7Sz1RmivCorMat4iIaA0oBChFGQY6nuf//Be//k9/+dU8z8n97Otv5x/+4Ldfvnw57HAAFzwej9O7t28DoRXpQxDv/a4LIQQiYoUkoEreo7WplsRgRyM49aQIo4PjOY3zJByPD0cpuOHRhdD3fe9cmFNi58gHVU3Gnn0YQnCErFZFBcQjeUJBmuCTT14OofOObm6uh/BSgQ+Hw5wkkev6XYyRiAQ0CTjRKer1s5fTNKXzEci5wTuPbrd3SP1w5ZxL84SIp9OJiCTN3nuOKTLHNFuHNxFxzl9f73N0PXkgsiadVIIeRBKqirBKUiJRZo6Px/sk0odgmcTTdE7jeQZA56bj0Xf9zfMXQJ68E05d8MBpHEe4uSXvYownTcx8e9hpYsKcHikAzMysFEokuaAoskBEMUbRD0PiGKc47PYCPqZ0itMnn336/vHd16+/2QUVEWsh/Hh+7A/PEs+akRudIwAhIUKKiilqJL2+efH44Y0CI4pqghyV6ARMHCeApKqeBbzm8qtG5ZVyfqcxMlUoJRhQWfKnhuQRZBbIzMkS1XM9OlFQIKeatTrrG+oge52JCDPLzOQSvTOyY8W8EIQQkRyQm2NERCUkR4AokLvJItlU83GyUEszCJCVwQJF53wgFSgx/QhKlSMyVEiqSHKigZx2YZ5zpAMIo+aWUMysiFaR3/iLqlp1FUQl8pyYyANmfZ9yp99iwTMzA+aiu8yKaiGmpCKqCASiyqwh+NzECoBrXpRz9JQqaTCXWvSroDiZo2hFjxSw4aZmsGhSU1RzYncdX9ft9gr9ypcIOJeN9jYRRBARa8LamgvqxJp3LewQSpI4IjrnrHoaQPbAlc7MWh7JC60GyZKbxOQdIqCS2aPAkfedC346H9khWa9XENt3Q0TVXHxAFVNKAASA1mIZPWKlF8oEgOSpWEurcIOIiee6rprwY+sCIlVraWDyqKQkvgtW4gccCbCqEoACh9AbQMQYvOaNcM4lFZGoquicBxCRpFKaMpmFgIgIoWA4gygQOQxLK8zcJrmpe4XZpy7Zw8ucCrpag3BHhIDCAjnWDNlM08yG2I6s709iZockogroAikKpyQqHr1EBgA3dMJzmvg0zvfncJzTzrtAmnQWEXQdUQBVolyL3liuZS8JKKuS9SlvHSiC5pheuHLt6piP26qCB6kDVVYuXSpAVZ0ZyZxjI4OgKAICgg7REQJHHoadd92vv3n9b372Z2+n0If9v/lf/+JP/vzdj3/87bPrm+cvbn/6O799e7V79ew2ij8ez13wHalwmnWOjkII5IMfBnLBOYdQVAVCcsQcd4eOmRWYRb989kKVU0rv378bx/H+/uHu/DCOcZwTohv6vRjikR+GfTcMiDjpmYhSSrc3z1wXGHR32Hvv3r//8ObNtyryxaef7W5uSWGaJkQ8Pp4ZQLyfhff7vXNumiZ0Tkl9F07jiIjkO1Zwzg27/f2HD+M8d92u3w8uTjHG59c3RCSJnXMOc2HqNMfHx3tU7bouAVBwMUYFJOdVlecEgH2/c0jzPJNC1/WJXJpmEVTw5L2M4xT54Xj2SNM8Bd+nlIbBf/PV1yw6fPV1vz+8ePHi9vYWu/7hPEbhMc7qXHcY9p1DVOX48PBeJTqklFgRQgjeexX05ESUkIIPQh34IcYppehQjTuMcd7f3P7m9bcP58dXX37ez4cu7M/nyTmnTpH0eD7d8s08sSL0hx4djdPsFDoKwpP3PZAb59mR399+kk5JIJLOAAIIAqzoRFUcEhICZzMJIhZDECOGonjVVuFc2YmuTXb1sl65WFrIaMm8jGwFXxtXa/YJST7i5X4AqCGvdfDqeM4+xbX1qZK5+joA8EhEYEw9j4OiSoAKxSlMiOgIy8JVNXEkZuGojODAYQ7Ms2GZdZ5nxaVsApTSsc1s899E1GadrNhk49kSBNJSNLF6uxmMQWpRmlu+BRe1w+pV37KBz3/R9ZERFva5uUGzg+qJbgSbqO/LV6hqU9Fpudp3tU+191BRKnFte1RsXAlEohZUg3phgm6NKPCUObrooKxFdyfrCVa6BupaAd2ApY6TzcLlQJlS7kr91II4Vmhi5e8wUalepuXkWekiOGKBw+YSWeAs3Brkt5XabHq4MpIXc441LJIlbdGO7+I/U9VSt87C8bz3RCqqgCRme2cAFE/BIYCS2fimGBk9o08SAykimgAOQCIxMQA4JbNv5RmaaFgjKzeo8tdgez5ml7ZrG5xFHDCLInSEbVxqjgVHQBDVlPhXv/7mzf30/sgdyZzg7sOH+z/9U+XYh+7f/cmfPDscvv/5Z4Ty7Opws9/dXO+uhqHz1HkXWLzTHrxq7LrOVHMiSBw9ITlImrwnRDcMnXPQhcF7+uTVc0RMKY3j/PhwfP369bffvj2dp+k0TilOY0Tn+m5nwVl938dpPr5/Sz74ruuv9hYbdXN9SNO864c0zW/evDmOIyJ2XTdcXXtVFfU4hyFYr1+RlFKa5+ScI/SIGCMfj2cBunn2QpXHOIkg+jALgjCiS4mdc+JC6P1w5YarK/M8MjMzB84yH6r4IaKC9348nvrdtQ/kkHCe/U47H9CZeizM3Pf9eD4TkbmlU0pRVVWHYRCRd9++fvjw3vfdl9/74W7XO8Crw57nOOk8jjPMZ+ccBkDyXpABq313npPvgoCbUhzQhRDmOB7v78bpGCN2PhB1kODd27tnz17Embtu+KM/+sf/8//0/xiGQUHHaRyCf3g4Xl0hEfkuee/JO8zaE+XEUQwzs2AXur3Ko+akADU3kZQ2P1TzgA2zK34ycy7KDw2TQ0VHlSRvMLzUQKZKebN8CqDAqwSGkrdaxHW0Y2bumU0R/xq+TKU9w+a8telAKEbJFgmg0CCpH7VOzH4q9blsnqreSBIReY9ExDN79IIpC+SIDlFKi54qhwOAAzLzC+JC+6AxLRrRgpK5SwqKSEh1erkMpGn26/jMFijt8r+D49rbZQ1PbX5diT7fNew24/lyhPaGCpANd7yc/8e47/p72XyzXuVaHME6OIEC4tKAkJoCLNjsGmZfpplRi0Ip2e1i9ilURkQEQkf5GDUx4blC+NaWW7RhLKW26ksX70lmh6rZA2E/L/ApAwKAoVbbx9o6I5ViHbnjUbObC7RZYj6ZlMN57HvS1W2bXahrEVzCJhAR0auqRU3X3RcRRHLmsNzY5GvMAeU6eeTgfJoS65x4CEvIpmo1Cz8tftkNuHaIlEqWix9Bi2K73HLhrm+QtiCYqoqQKKAoOEAQNPc9goIjBMTjNP/i118dT+d55iQKjnY3V+ocg84Ovr2/+/bd21+/+WYez7vgrw/757c3z5/d3Fztb69vnj27ub2+vlHgeQohIGoXwjB0qhqcY45RUnDeE3RdpywOyFE3zbP3Hikcrvrnz158//vfn+dZBB4eHh5Px3dvP3x4uL+7f3z34f3xlPqxkzk+KsfISQQdueB3w/76+vrZzXPkBC7cPH/2susFYU5Mzg3dwWoUQrSQXIlxUtUhBAABmAFxjuM4WTjUdYp4enwEomHXxZkB0bugRIooolFBATX0WUwTCU0JXlXFEht4c33jnDM7ihnAgyMBnSOronAchgFPx2zuVtjt+hefT8wskuI0T9P0+HD37bevj3d3wzDcvvzk+fUtqzzc34HS9e2z08M9OkUC0hysgQoAoiin6ThHNevp8fwwjucUJx6n4Nz0cL66fvYXf/Wb77364vn++Tgm8KCqf/SP/sm/+pf/y27f315dv3n97bOrZzJFcSQpGG4L6MTsFABBUDz5lGbnwrC7Ej0pOoAEFkcIQApMmW15RNTG3cuFO9YOBgCA6ASSfU9N7Z6CyqvaOpWGtt4jWB+nuh9PRk60BzufTKwalWoNv1y/bqEXxWe8YTB55GKiAzNC5vsTZfei9ZFd/MoMDADOua7rAAAITUCz+WTfqj2bqT2uqcOKiCxrb35v2XNNn21J/OWAG8CpKrXRwg1HfBrEFwDfsOG6cYiougVynUyVfp5kz5fj/00m87EB61DtDWvSDIBL5oyKqklkCJcAxNJ22hXCbRpw5QE12N45JyUZKaVE4Lbs9qm0mToxcgSwZIdrdpdAxR9EyrZ1UFV1bmmyBE3Mc7sFbbxwedEWXEQOPg5Gm+HHdMbldUW9vrynjbLWYn9yzlm7NwVV4IpVrKoyOwgCiIje4WnS85TOY7ztOwAL4WUmRhTKzvts5m/Xhrh0Q6pLw48be74D20QEIAESohBqptMEoGxZK5JtAtl0Jyx+GN6++fDmw0NKgopJxHtC8tGyrQQex0lZxpROj0dP2N09DG/edV3XB7ff7188f/b85vrlzeFq6G9vbz/55NVNtztGRpXTOAbnOE7OJVA+7PbzebyHk6KkUg0XEXfdLnfbRGSkm2cvXrz6PKb09u3bv/jFL1+/fq0sgnq9vw1D73y32+32h6vd7tD3/fu3H+7v78cpAkC3G8g7s6nM7rHvOttEIrTIpq7rRlVE9N73+11AZZDxdH//Dh31HGcgTAQqwqCWOtUNnYVtJy4SmCK5oABIiFYYAMF5QnQAguQjc4xJJLEoapqjjnE+XD0bz2dP4eE8dr4f55GI4jyNd5Nyms7nx8f7NEfRdP/h7t2bb3k6pZReffb9L3/rB598/oVFjI9TBOeRrdVHPkfCIpoU+Hw+ns+TDz2onk4nicmT6zsfKIynCREf7h//9t/9hwruOD7ub64eTseXr17+k//Nf/Uv/uf/13yY9/v9+/fve0cu+DjNvuvIO1YBUbHQIFVVYIEQhqEXoLcIJs1wxkosChiovyBM+dSU0OXsGiFEC2zSIt2raqt/5GYDjWLEiirq3Db8oTwlALkvKcBC5S9PTaUCglDzMrHRcdViqkW1sUg/eeoQEWqAT6lFlwexPh3CzIXfk+a0cREsjX4tfc1SswBAVXJ/p6KaQ6FHsBYOHOQmLFJkCFN3WlnB0qPkQodohZtW4/+OCz+ifX73napqlcNxXedhw57r3xXUDbfOq6sEGrE2FP5r5rOZcx6KsqFVVdGYpVVeM2+FoUFDlA0PsRYNLlugggAEQKBk1dbqlNCkUtUiSooq2K4CAJSAOMtWb5TOxbKyWUULNFJXU90yAC0QN3hEdGBJ9ob11MqpVfSp59GOtTWCt3BCAd3aAMpV+G+N6lqEWlWlYt6us8V1b4Yq9glBCT+3RkoAFm/vAwCodc9DASt9mhLksEdYpFFTsBQYmEUBVYDmyOcxRcYk1NX9Q2kVWVjLqVi6IFSTfgE+btC1Ppv3b4ERtaPBgsMMENDSL20vkEDJiApa/LkyKP3y11/fncY5KjMgOgBSRYeU2Iohpc6HyJoYAT2CA3bn0xxjFPnQ/ebNvvdO5pfPbm+vb37vb/3u97/83uGw++yTlxT6aYq+CyF0wjH0hyROmEU4xkcAEEBhOM8nYU3WMzhlr4pzjtk9e/HJ9e2LYRhQ2HUBCFnR+4Gc9xRCCP0EH77+zePdXZzHx/uHaT4SkaQYHO2HwYXQDf0w7JNIEun73nnLEIO+772nYRiIWU4kNA++Y1CeJxc8AWicfd/N0xmyoEmWLG8m1hSnYEYXZkEohSlYgThFBxg8OshmpM55ZFEWO4XoBDipaDpPynGex/F0HsfjPE4pxT74H/3ghz/44ZfedX7YH8dpmqZPP3213+8cCQKyiEg0/4iIzHGKMc5TZBYCifPoka52A+4RVLuuO5+mYb87x/nqxbNffv31r7/9duIknq6uDvd3j89fvfz9P/yDP//5n53j+fb6ZhzHXnuOPc8M5ABISCxCQkVYEYCAHPmeMAicFQhAFNYYruShpe+kzjkFtYg4o65aI1wa+lvO7XI+jFFVDr28Io/SGOWeouybb2rcqBZPGH9EnK1cQNfXSmMol6qWFgWwWji6VPZJRCBrn4ikIYR5npmZAASX4KY2prclWyuzYXPUS4N3RVWgpauBNt7rPKU1n2vpe0vHYU3rpTGzZzh/xFv83ZeuNWB4ao/am1uPAzSUsR1ts4p2pfAUrJ58I+ISkdRMbK1YFxOCM46FYjJZEu6fmnw7ww3vL92ruLLPzJDSNk9J1wXG24UYkti5qE5oE6GkhBRX+NgftQDOZqhFuNGcj7B53eW1AH/9ajvV9bZ2IU9A3hGWkpzQoEdl5PBUxzMARMDcuVMRQB1ZEJmQAxFggIfzNDPEyAklEKJzSI4VhSMLAvSqatq+Ul2SFQhZbR9coFZzkWBrpFlwu4bo20JMyDZqY4GISmZOFwBRpb7vH6fxV6/fPY6cErNQ1wVCP4/Rh4AAqNYpC46P59Np7Pt+AKc9ilASp0qSMEncBf/rtx/+9Be//vmvvnp+ez0Mw/c//7zz7sXz58+urw77fefo6nBQTkS06/1u2LPFazkAJUEhcn3fp5lV1Xo8eKIhDLPOEmVOHE/TzAnJAz3GmR3Rfr93SM77l59+cr0b4jwejw/nx+P93TtU5pim8xzTxDGhI0Q3qxLNRMQs58d7Rbi+viZjLUJXN89UNSbe7XYUPCI5Ao7JSoAxs3PAoETUOQ8sYnYPix5isZi48+kMABgCCqYYrRORIz+PZ6fCkQ/7YRxPnfPn6aiqzNz5nvYYQgjPfdd1IYS+D7e3N+M8v394BHJR5xefvPJdSOPRATPPaZ5TSgzKHNM8jnMCsAht13tP6A2LnHMiIKAJoN8Pt69e/Luf/ee/94+/efnpp/cPDzc31xTCm2/f/d2//w8Ph8O//l/+ZUqJ2XsiUuCUIBKQucMx2JlSUPQKTsH7bq9yBIiy4OGiRHlVBlJUMTcPEYEAeZcsEyvXwFJVFkWxvKUF4y9OL67o2sIDyhMtg6n/NidkrWNBTgmsjA2sG6exT8gmImy0sUpELLckRzqAQyCp7j5rVIMrBlY/LYOY5lF7EYoAgEfinMqERGSxvlCoMBExaBW980xESbPyaukzpLmokDBbeQi1xEsFAPPki+aYM9Tv5IgVgOYZaw10Gyb95FUDreuIVIo2fGxTlmeL9HBBtXMjvOxjFVml69QI1YVpGhZtB89jrfI+GQBEltGefEpVUSxQK2e0wRrpV8BRQHPcgBilz1XBLIjPqnlYAyXAmh7azhwKw7buW9DUU6vszcZBWligUxBRQWlv1hqT3/hc26VlwK5LQtYtaHl5FRBxqSzBAIDSnN5WC1zX6awvRTDHsxMF0EU4yGIEIiJS6RNMlAP+NyOpIjnSlL05nJJD+PAwnceUDk7EzJQr0w5qLfZeIWD68yKs2DuSCgIWiD0pdD7hYXENzhsAcqFERHAEatW+luWG0H/zm9+8u3s8jgzUAQuSz82pWOdptmhEREDBm8PNNE3AEOecuxJCAO8ZlIb9w8NdRP/28XycBfH+z3/xlSNwgIf94JEO+8H4JQA8v706XAVHOITu+vpwvd95JO/watgZHKxEpRnqnHO+G44xha67Gq5934nIUR9TSnE+v33/wXtS8JOGZy8/ffHZl8fz6dV5hBQf7x/O45GZeZ5EBAlBUkri+67revIuCSeWx/PpOM7OuXEcnXMCNI3nYb8jH6Y4DsOAisJJEch7BACV4tgBbJw+NYfOOSRESRojqwKqss4pldiCFHmOigiAIXQAsNvtzFNxOBx2ux0zxxjfPIwMCv1+v9+rC2/ffQDRvvPj40nirCmqMAI4QHau62gY9udxUsXQ71TxfD4zc+c8kgu7fcIpdB0cRwBIPKrEFOPd3X2a46effvLNN9989uUXf+8f/oN/96//Px19ontEBY4JidA7o3UMEEJQJQcUWViw7/bZ9lZwqR4KABMBcswuVypQxUMLHhNmzaXpEGFFiFfctxH8AQBzakc+39qoGkadW77SntcLgg51YpnE2DcXBfi0yOC6aDBNkqvZb43lNLzWTD2EqJoVJs1aiLk38lCW0OacAxWLGkDEWlErI03NUFnzp3oVA3KGUkqp6zrnHINW729+VrTuRZ3/x4ADlTQ3qlJlBpeQ/I5xAP4anv2x0Ro4t/ue19Iu4b9o/DrPBnkaU/MF+zdpSZlFtSTmOE8EcYILfoa4CjWvL7LtNqLmnKv2FRFBdOWPwt5MlW1U3jpIu2oii8DIRpRaO7rlDapqPuMsYuLSla/2fFRV4eYpUC0iXwsQLQHqNnSd8GZW9dX2afP95S5UENn8881SWttKcksFtKz3q6goRGFmRkfee0kJMD08podzBNorsLVLAgJtejW23FfUquCtcvSrv0lVHa1s13/tZUGgaomOAKpMSiIJHYI6o46l8gGiQuT0zbdvjpOc5kTUASXWHFNj++WcI3Apyul87LtBFRnQKTKrCAA6BMeSHk7jm/cPw9CToOvCrh8+vH0TQug7d7o7P9zfH3ZD13UgfDqdbm+vh95xnFX5sNsf9kNA6IO7PlzN4/TJyxfPbm69970Pu93u9va2G3bPn+32h2sEeXy8n6bJI3V9F4LjfffJJ5+czufHx1Mfhr7vEej5i5eewvWzEVA08d3dh/Pp0awzx+ORldM8e/HgvPeh63fDMGjieTyHfnDOnc9nABj2MI3xfDz5LhD5ru8750XkPE/CbA1kCT05QEWrzoGodo5ijCnNItB5pyrz+UwOWWS3253OR1A9j9N+v0ekFy9eKEBKIgjOuYfzmKIMu05FnIPdcBXjdHPz7PR4t+v799++dcIo6JGAQMmBowA7VU0p7fohsqRpZkDnO0AZ53R9vZc57a92v/n2m4fH0+EA8/j4i7/88747vHvzLoSgqi4434Uf/+5P7969//bXXx0OBx89qVDwHj0RdZ7mcey6ThUAHSdmdd2wUyQFS6xcie+q6kFV5lgPUue8Y7YaZlrSMApZz0FYC78pVN45B27xIWnRg0vX8ZV4TrlS9FrgLSefleudNVXDkiCrlrooyJuiDU2NMcgUzaQIEgAVBKVWR2kpqQhbByOr7GGSm1GPlmKqKikEcm1f3goNrSZHWbiyQ7QG2nW2zNZDF6y2e+5bDKAZMoqIPvi6orwWFkTMFbnXlL0uBAitgBFQrgm11iBXey8iKlBTSjK0aesnK/Q0a2D1mwrnNqnU7jW/i92la+Jdx1yAlrFIi5VeGksm7Lo+xmgWLTAfPGuTriMAK0Esm6CJIO+cEAEVi8Xm7URELs+h/sqcWLjmT1fUQkTvfUrbos1Y9tf+qE9h6ZdsH2OMmJ125SiVdGFEBFMAtPQVzgx1CWjw3hueVDaMAGjm0ZJZZFNtumouM2yPSXt4F/lmvSn2LlX1FBYUQvPtNU+VmAxAUEIkZz2eAQCxYAtZsqGKJBfCNE1d6FB4inr3OB7H/VUfBNQa1jMzEGoV5qwqVxEOLFmiLVNfz3JksxxsK6VjFtwXFC2YrDbteo5U1ZnaLQrW0V0ZEUSk64bE8u2b94/HsR+uTnfHmu6hAGRBsDF61DHOQ78b47zb7ViTMM9p6vteUULvA/jjeHahn5Ne7XYs+Pb9PQtwEkVAJer3p5Q04H64uh72SeQ4C2L/8Hh883hEPDFz6JzqaxD1/qvd0N1c7Q+7oQ/++vrw6sXLVy9fvnr+7Nnt9X7ogJCF+9AhyM1hHwi/ePUyPbu9//Dw8O4+UDjHiN0A5AkD9N3tZ1e3ACnNMcbDPMc0PT7eE2CcRhZCpWmMqHxzczOOY0oc+t1u14/TGZyVw+Tdbn+ezp1FinEi9IJA3oFCkqgMSOqD9wTHx3OcR0/OeUpz0gjee+9ANIIKJ7y5vo5JWJMAe+emOIEjJBKVOCdFcH2wOLLOh3SepumUBL749MX73/yVMiAgCBKGofNKLorO8xzj1BGO49j3u9D7KSbX7U7j9OrTz+8fH16/uTvP0/Xtzfv7x5urq//vH//si+99/8vv3QK4V8+fvf7q61dffHr/+OAcvvj0s7/887+4f3zYX+0A3XSeu25AwXmMRC4lRupYWASIvHDtdecQgUDFimkDql4EYRGRampJjKVjaA7k3ArIC7PU5sLVT/DUtZGpoQYDO6oqRfUvRmHLgMpHyOKNFRBxnuf2FfXZQvu2Mb3SlMY0jwWoApCFalo+ClqSbqEsdRo2vp3/2km+wgoARLTrcnW9+pPJ7A1Pqmd+0Zwy4VuSvDbaCRagto2boLz0u8KyLndhRZEbO3yxG6/sdfVqd629p2pyzSsuvKFNGo51dKmMoXkWW/i0y2+/JCJrEmAxClD8gRtwISI5K2OhqpqYBaTlN/Vm57yUq07SeFgFbEWA7brWL918X/lfe0M9VkUM3W6Ngxw8ViGJay1fiz6eg/Ual0Gd5Aa87bVBuWrrslSl+ng9I6uRL9AJ12q3MSPLqEPI8SNQ86usXEyx74hqTDonTQJUOr4Ynm/Wq1rEBVxMRC2QAbLLqdbpa3dh80fzkUGdqoIyKlksn6oqKACLJHRg70Sid3fHd3fH03FWCVYXSJ0fhkCgzMyqgciyoS3Coxt6LRnSMSUgjTGq6jRNIuLAWWEWZhZFAkqiqpJEARygSxaahxTcEGNKGJxzSTFJQuzA4fn4iCwfxvO390dUSCl5gsO+70O360PnXecdsh52/SefvNwNncb51YuXn3/x2e3VNbHO0znGewU6vHhOPjjfOedC6EMILnTo/LDfcUzPnj3z5DzCNJ4fHx9Pp1MSBt/vb3bDMJAPKSXX0+3t7f394/5wcN77BHHmYRiGq/3944PrzBiWUK23DcdpPqcIAinOiQVA0syI2oegykooksbxZGk8hEqo83QM3eDUIXlE8A4QnIAqy37XPzw8CKAnJ2kaT2dEdEi7fiAi5ztwdDyNKLLf71F6nqfDbj9HPU7pPCWI0/uHh198/e7+8eHXX737gz/46f/h//h/+uf//J//+jd/9auvv/nBT3735ctXd3cP5+M4DMOHDx/2V4dPP331+fe/h47uHh6eP78NCOQgzZGIkBSRmBmViTx5hCQM6ClnCRKRc4UPAyqvGTAihhD48dwgak7ss/quAGD9WCh3zVkoTntQ6/Gu5AYuKMKG+lRCTz6rBdWAltSoxupd2uglmyVAYbQAIIhaPIFWV0hLlPxCdrNXiRBQQMmibXNlIEFiXJQnC5/RyjvL2127Lm1qBQCUGtcLpaiVksxRZyI8YclRzgtcEaBiV8hWsRUYN5RlQ3Ztnpeco5jQwZhUnhhehqwXPPhISFeFg32qO1l/t6frbDdzxhyUh7JKPFu5JwGAFFBULIY5Rwznmtmb9a+RQc3VjGTq5RZW9br8vt0vRIdYF6Yb+OOFCwZXCqgZe8zP6WBZYJXSCm9WZ+H1dGGn2uwgg1rf682SW6A9xX0JAMw9t55hLjxZLRD2DQEys2Fi7d+iACsMvJDYBAGFqn3LQsZg4dMCqkwCAjPA4xhPc4zJBw+50QqoihY3fyY4ZevUKnvV+dcpqKrJgbK0WlAE19a3f3rHC3VSzT1pRASdWbxTUC8s5Jwgfv3m/d3xPEWxvESrOWxnZhpHK6KQmFnFOwLS4/HB5QuHPnjvCHWcRkjRgzqHCKKSQNmKfDALMwuz8yQIURhAnAuKOE5RGcg5lUjCHhRE9y5oleEIEVgEzpG+ef8QOh/IWREoFB3+8r1wSmkeene9213tu8PQXe2Hm33fDwERuq7bD7vdbnd9dfXs+uawG7z3z66fQUpd16HKYX8YvH9+82xM3F1dTZybEHRddzqdAGB3fY3dNTo3nk5hfxNjnNV13X537VI8lqJz4LwDoHmUxAkFiRlVicB7ByAOVABTYgSMcXqYYwhhv9+HLoiKzudkCJalQzMlxojovD8dp5Tks88+Y+bj8bg77AlURgGOnev6zu9c7zyO4yiO7h+O37z9EHYH9bvjFH/xzds/+6v3joAV/vL1m//h//b//NnP/yJxTIkjumlOfd+n87Tb9+P5yDE9Pj7eXt+8+OTVm6++icI+MblOWZzzITggTUlA0TmnBJDa3gZkTRgALa4eBMHXc2JX13VtHGYlDVYSJ58CkSppNiS1oQVPK73bA/AkcclEoQ0FUgWAVFpWOedQgZmNDZp1vnqDTH2xetxwwY0qq1jxb9OEMoPRfIwBWLMt1EHlWACNm/aS8Ztao7BI8baWNTVfyGVVZzNBbHWONaW4XEgLxvVGPM1j2nsuJ6CN0tO+okpRHxtzLYjUwbZcall+sxH1MWhYQgthMMdBeVEJ6likist50dIKGtABEhI5Rwg8bwBol5GSdl/s8UvX+2Yjli34zsy3jcujThLWXCSPqYv7BiDzOmjQFXI6AGLpFsRNw4YW4K3AVKa3bOhmX1pZdtkpwsuQ7PpgmeACz/pjuWHFs1WtJGRW+0CAAB4ez+dpnrkfnDkKQJVxKwUSIgoCKUhjeWr+3a59ga2iZjv9E6fV9sdkAkQptwGiCjCzBGcVZymx/uqrN+cIABSnlFLqd4MPQUQcUS4pClDs9ljnVkgWAcA8T6fT0TvnyBECiFpxBWiwmiU56Mq+KCKO57lt9WMjxxineQohWOk3sj4HICnB/tkLIgIWUWSZRVTZpyRdf3XmdLw767s7EHAAjsAT9AG6ACG4zvm+6w7Dbr/rnXPPbm53u93zZy8Ph8PV1ZX3/nC4dn0YklIXhm5IklwY+gOBwHlKoetDCMzSdV2IAQBSSvv9/uFuBmujg4jgyEEIyiwOCRE5Jk0sypx4kigijNT3IfQHABDmx8fT6TSeT4+73U5ZUkp2YMuBEiSNSQ5Xt96H6XTuO7p5dvvVX733CMNuZxlZXZQ5xfF8Po0zhsHd7J71V+coX79+++37+3fHU3/l+/3Bh+6bDx/++//x/357PbAwIr39cPz5X/7id37042HAaRo7F4Lz33z1NYh+8cUXr3/9ldlfXehFBFURnCMUys6mfLaaQj0iwgwCIJgh4FFzzQ1z5wzDwJd9yxt+kDGmSJoKgAgmwi1noDnel5qTRSYXVp0jkwEg291EHSAUgmWEAxGrFVNVW9lfSsn46jG1j+aTNvsaLOo6OI8AKpxAhICQCFhYBAkK66dqzrIQFzHjNyioAAKSElrjceUcq5GLZ2U2DLjSk0o2Z/XeVchY6CzmzKiyLlqFl7W0Y0NqtRFfWjYMDXki5y4Jbjts+6u9HlbULe/Xdxu6P3bhWsZStbLjeUcNyrkABXpQkMYcrSU6EJXyR1CU3P+q8IYn9PKKsIY8WSCgooyiIGW1j3I+7Uennc+5IHNxLi7gyi9SEKvVuOWmduSSOOesm4LI4sQFAlXFoh7aE3UXyu6sBiQiwaLy11Z5LBUvoN1NQSRSyUkDxYQMidMSYtlcCk2JSrGseICi+15yuPJhEdHKH4jWgRDKwYUccUy5SJxqMWMcz+nxPM/MALkfmJ2l4l8AC0LXevhzyRLz6dYlN7PS6g7P6zXh+XJf8CmxEgmULHtKBFBLEZ6HcXr9/u40JRSVNCdJHWabDCKCKDmr4Z4IFAQJXBc6VbWG8Oxyk1PvHLAAgaBayr9NVFS89ywKim23L1I4HR94jq4LKaXEGoYuIp6ZNZDrnKCmlABEgQUFwakoqpPETkE4eqJdFzSEcRyd98Pu4PyVlTuIMc6SplkoEZwhpUl0QngwP9hutyMCFO6CR8Sbm6vr6+tnN1ce9dnzm5fPXirps+tnYQg3hxsiIKLPP/+cEMfTQx+6w+Hw8PAgfegP11rPOxIihpTCMBGRpBSnWVIEAJBkJPHr12/EeQB03izrs1NCHB6PE4ha62JQJSKPhKhdH9IcnXPDfp8kEVPoe3DggiPvj+M4xTTsr9APM6cU3Nvz9M27+6++fv3Nm3dE7rMvf6t7RjKz5eyO8uA6GhNMk5DCv/13f/yjH/7gar//weefyykpoaR0PD8eD4e+7+d5fnh4SCk5CkCoqj6lw+FA6JFIJDFHyPmQGUVV0ZiVZpu0eC2FT+24DcOwMeg1EmWmAkbXauTOE5hd7HXt4WwRvWUDm8c37MTIMBE55+2jiJRWaEBEVSqsnN7uQcJlPqtaRVjuUjP/WqSLlK47BfeRABl0sdQWoR7XeqFNyhSv1lvcLPZJ/9NiiwbI5TmflNPbZ1v+2rxdm33ZvFrxKXOEPlEbeavY1Ttbtr254WNPbe9phIYVgWleAU9tPSKBLkFPUJhQs+9bVbu1oFohIVUVTj1uJpZXZPFTrQVlo622M1zP7Qk4XApAHxOPcsZ8u2NVyigXueXtVEqaMLOAwioTCcxCvhF2dbGsLDtIa3DVf8mt7B9Pxu5tHoSq2jYLRESTXxfJvojqHkEQHVi7Hg/kpjgfz+MYZxk6lwHT5gct4M1nvBjuNrvwMTxsR3jyhgIBE+aCEUMRoYAkAKKESETv3r85nuY5N8JwDizbVbpusE4e1BQG0KIGJGECREfkgzUdBCQGVshJUEYqUQGdlf8iK6pt7cpUKQrHGBnYYZdA0TsXfGKOKqCAwkCgSASK4NExoVdUIgjBOSSHoMxW2xktQ5KTSim8hgFcoECm7TgRB2BSsaqeJKKoJN45l1K6f3c//eobUBgIHEJwAAS7fuiG/ubquh8CM7948fzq6tp799knn7548SKl9Onnn4s633Vd1zmP3qoosrDE68OVc8ENviN0zsU4SRTn8XeefxrTlOZIBBzTOJ2A5ewfMXsUkiRm5lITijtH3bATAVX1RKfT6cP796EbYprBY8IukpsjvPvw4a9+9Zv3x/Mvv3n7cE5EwAJ9705J7o5nRUfOUyAfOlWNMQH6bje8fzjiL3+pKR7CP77eDcfj8cisTo/3dx7QzN1EdO5G34WINM+z9bxy2UnLglqEznr2yUIk7PL5OwJVJYWh67HBeMk18qAGYRUkbmTnQiAW/G4LBeS+Q006fEvTC+GChdC4OtcNOducHIRVUuByOTKCBACQewYSAJQwC3CASksOQx6/BoqgM2N9dRIBAFSNwMbBnCyIXOcvAK6KI+spLX8zqOWcQub1ilb+EBFAiRAgR5luSEaFZ2UwFWLt0lt6pKWcoas2OlUsJU0WU8F6wpsBKzO4nA9cXBWYLVFG3OqYmgs4qDT8rEY+V4zKI0gu+g8l7Iggdy6oSLjMc6Hd5qi3+iRm01ywTlcX2/ZpDi/H0kAPVFXYSmIZJ8PGn9DYh9C14cqbKdXltDC06TRscYH1x4wfgkC0ampZowdhsdwur15VqwCsL3J+SX+qlmf73kTbtjtIIyA+vcWbrQcABVLk2lppeVoVAaiwTwSHIHGG0+kU59s1PKE1BtQL1ZKUHKwBVx64DAbMn+sU8p2LuaHOXLEpYDDLvMMBnWkOhIhv376/P5+jZXbFiKTWm9c5N40TOgLCmJL1okkpecI+9JKiQ0Jw5MI4xhjjNE1dML+IQ0eSlJnJyikzADkkVARFQnKcUpyjeBJU9goA3ndIxPPskZxzDp2yADiH1vaAgNB7r6xTSqA5b8IFEnKRk3XrtfrWqjlcgzlikb0I0DKbRaTruhhjEhinZN7usDuAiPN+nueJJfjudJrldPzF13cCsN+F+Ke/NCPH0PWq2nXd4Wq/6/qu6/q+d645rcB96K73u91ud3U4XF1dOUcOXd93h77ren+9Pzx//nx32B+udog4nQ7WLV2VDZVRczxsQBjHmZGub27uPnwIrtvvD/N46q737+7uv7l7/Prt3c9/8Ztff/teFPvdDugqyTnNCUkfz/OH+18mgaubK8D48PB4HmdVvb25efP2DSN5H94/PPIvf/Hq+vof/P7vE+A0jsO+P97dD10fPE3T1Pf9+Xze7XYhBBWJkQE4AIbeI6JIZIlusQdlJmO15hXBw5LMpkja+eXWhUaBgGb+UEjJ6uzp2oNYC8gh5pCMYq9b7i8nuRwuzT5m51Bl0VlrqaCaoE1EYKbI4qvTxgfsnKuasR28+l7KJdzAkaXrli4I9qtpGFaxD6xLIqAqgzG8RoheKAW2/l0o46zoQqn8VUzlS9pSBoXp37iFTzZUXkghlg/ajg9rnlf3zhQ753yNminYv8g3JWNk0cWlaWXf0rHW94brwPI650vdBQqxrFBy1vSgluPYoESDeHkOlNUoYZEmPQmbaxmhkeQ4p4IBInnvNc3acK/8CtEoVqqlHUeYOWeOFasPIgIssegV2nVrNhXRF5gQmqMOL3KB2s2tD1D7vWYLeYXYMvPl1ZcgX11tuBa0xbAKgy+YZvBbyb7fIeflOayE1DqsIAMggAoQZptHdtuzkgNRdQyAMcF5xokxqYRF9rBnmjHtjAAKLHVQNgjfirkL6uZmVE9YgSrCGDXLOKPqVIGFABEJFBCcKN4/nN7fH0UHIokxJpFh75xzKaUkWQa3Oh72JRFZ0XjJYZuiit57ot08z0DiEEiBmeM8OwrOo5Y2MZDbdTvVmFIi7yKUBl/OAYAVjQLBxKwWrOq8CGgSQSEEAVERIsqeSIQkrCbs2zuIoNSMC31XEEyMngFn3qaqXTcws/dhitF7p0SnBOQHJFXyI8eu6/1eEJEB1FsRSn2MIiI3Q/dnv/zGIwQPRE6VRRZ0FYHgwdrddh06QO/99dWeFPa7ftcP+/3+sBtub29fvnzpCYdhUGBgIaLO58ZNKqlz/rNPPv3m9Rv55q33XoH/6i//iiW9u/vwH372Jx/OU7i6/XCcIvbYdQ8zx+k0hA4J+yH4wESYVKZpSua97tw8pYfHx67rRWQW3g0dA/78L/7yB19879XzG4VEgHNMEckijcZxVNXrw9UwDACEojMndNDvvAKa597n804AyKogarmuROQRHCiY7EYy394OCpAkoTphUWVwhOhEE6coIt53RDl2WiQVmggpzRb9ZLhopAcAlcUSE8jlmh5E1HWdJXGjFrcoWIoBJgFyvhIyKpZDT9YYURUURVkkd+EFVLLKq4AAxfuN2Y8rUnNg7Ew711vV1srkEJgIIs/eecoeULLCt977GCcAUEtyzLYhrAZAyZzagr/AOccxlfNvxZ/BapRfBvWIoqq4hrdXYBKSNvE7lWq4xqFbCQ3rEmTesoe8HaUWXyNALCTYBm+Nrm4V0L3ox5eCRSaW5R4FTWu9cLkHF7o/z9bAy6uqFvLEwp7Q7BQiCkCWUKuq6EpjXZe1tyygVMxRBUIXPGV5opQXR8xln1SUxSM5c8YYfKvDHr2VT1ERVamFIHIclmZbt3OOCGoeUy2qYfUnVNU1Jv2WNwBY+Dq0CdxEZE0dVJlrszZLtd9wOyXDPBFRVkFAcGY1J8nGZ4M+KlikJKIjMguYApDl7ClaGiIyCAA4y9MDFhEFhmIwUmwLrELk1MYJLqjb5DIVeirWkc05ULUudoQYFFgYVASQWAXAoaL3ZM+gg2/fy8OZTufp5pmfWQBRMQCSACgpgJAKgaAokyqhmVBtjTYZTgqgVmTYpF2tu5BLF3iLnW4N9MXsvJIgRYSI+76fjuN+dyUE1Pn70/ybN3eJEZyfTicH5IEDOkQURO86BhZm54KycEx933vvp+msKs457z1zVEl5oy09RUkFHFIfOhGZxtPNzc00peN8HnYdosY45cispAGDJA29D95P02TEyLokBXLCMsronAtDEFXnnEQBJZVcCcAChTyRZqFIFATEQjGKN8SsQEZwMPdyRgcCDKRTHAFgTjXxUolw5tn3nSKqknCJEORs7ERyD8dTt9vlwPfSo9WC7UNw8zwb9RGRScQBjpPenx+cc/ruaBzEkzOLLig75yyToe/7YRhUdZ5nAu0CPru+eTgdg+//4A/+4F/9q3/1z/7ZP3v7+vVXp4evR4wcriSMcRSkXdeldD5c7+M0o8ckklQ0WdIfEakISxJhFgbvvSNMgjGBcjqH9LP/9Cf/2//6n+qs8zynJN6DCjrnSCWOZ0nz+Tha3WIlVSCVNKc5pRR874hMZUfaiUQK4Dycxjn0g1fNRUksOGXw3rlqKEbDSqr+GecKmq6UMwAwirnJdrWuw6zcHloRqY7bZZDacRSaPrJFeK/Hw7y/pUYdKAJn7ZE2ylDlgu1bsrS7JDksUj/VVsaI5BpC35rW1+TVPmT1AQEaNTHPIYubW1jZW2TFNFeDl6k+rd00Un9eYV3dkwrRk+NgozQvj1+8pX7futhXNzfWjnVHpmUJGzzBkgNGlPsrt4MXapCnbQkea6shtDcbna1/U/OTEACAA/REuF6dgGrilJKiIyAgApfVwCKuCZFRsdXCN3gFzXZs3OrlRdtdqKegLHapjWVkoHmaANBsEhuw2xyXTbDNak0UzXtlbZnIINalDAWVwiZr1FpWtGG3y8cysEmyHo1BghIqIKnYgYOs/ZPVy61nB5Gi6BgpCouQA1W0bFoEwE23JkVqncobdNUn8ikYACzRwywXS0lRzLarUqrUQrWFQFSFUBG9KqaUfEd3x9PpPFsyZI70VMtvUgZxtFQrq3skIq60MILidzfHXxG/kIU1Mag67zrnpulsNjeDT0ppmqYYo1XHNDNFXbhZaIio1GDJIic9ddJtPt77SiiWan2YXWst3CTbNrbfV7wFAPNqQuk5XTiCW7qDFGw0LxgCiqAqiKCAKBIrGfhZFJUsHI0FggWvZTccqRLPnBL7kE8KzqM/l9Z8hN7pN/dfgUgS+PNff02h+z//9//D1dXV3YeHt/cjIs50VnIOgLn0lXJkBYZBKBsmmatuQySoWFMBFRGoO8f4eD7dHx+vd8Pd3QMAEM2KIHPSvhPm4/GoGADorGclFZ29xyQ8zynGGArpcOQVIiFa22C19rfQ0OL9fh8CAFohiiyOF4NhVS5XNRNq3VrTBSsJM58NFXNoe4ClpJHIKot02eY8fsvMtMQOQLGTkbmz7XVmFV+Ns8GehkutrHlQGDYtqJ6TzKrFuAxj4dTLeSNdKsXb+YSWYOX52NpLceeVfWyZcyXHWrhNpSlPUpx65YjSCwIEZZj6ikuY1L9b+r7hIps5bAZZRevkOTsA1DbYqmHSrqnbhU0rgvUcVgt/8mrAlRWdCg9VhUZ3N0qAa/5RL2kwGdeBbIYqSFq7J4mIc9QuraKHWfyxMMZFkKrOCvuU/8HsclYiJFERFgRw5HJBmDzbmvu3Enes7j8CYzMNM3tCwZ/yiGmEy98Zcoa99IR4gdlWVp4tb687VU+unUotx2edoS71WQTrrk1WegIa4VJVE+t5HCO7pODRqZIVRge4iB2wOVd+06x9eRfp5n4k1MbqY1C1wRdFGRbzd0YkImZOIoj49s27+4cjW7M0EYXSQgMBQVPilBJbhUUzJjUCZZ5YI2xlzaZE8quqc2R46Jzz3nnvrUCeaSkxLjkjLFJTVCxln42OQ24mYWZqKp0us/VCLhz2zanS5mq/3GBF/bd1jVkxtjYQpz2uLa3IOAO5F5xyAoDCZ22z0YpEm+swH7ccKpwnaTKHGXXL1tOHh3Ho8bDb9y6kGOfIX339bYJvyXRCxHmKfd8rQozsHMYYpaS8o4J1wRMRIlftU1aOyeZm6z2djt9+K3/+F3/5t3/3dxVgv9/HeQwhpPFswuvpdAr9wblAKugxJUyJWZe8KVuR9x3ARERRou2OV13ltu/3+xAWPQYRNdOonFFf8g9XFyJaMlyNPa6ojKV/8AYJNnRq2eM2BqfEYoiIw0WPbEfyvomOLpQIS3oSNFGyhU1WbCuW2DIcFTGzJTr18WYBC2FCRGpyN7FU2sq8vNHMcr3Gte7YAqXemXmPW53h9o/23/baALPCUJ9i4ZeP1wcvR2uZ7vYwN0f0Y9PbvAmXSsJa96495Cu7RTu+LJAH2L5xM/86c9AnpmRzsIiV7S7bzWvRcEOnKkjrv2lt/Fii25puUdhIgZgzCLZB15slbEHdIjNAUVQKY35im7YM2AL9agXGFTdd5r+UDNuIznB5KCpMmkNRD5Gu4+1XyKMqqjPDaZxYdqIoSJp7pxMpFDmAGuNxlTabrVyDaP0u0rUYp6pLToQCIBCIAoGyqse880JErEJKiPT63fv740k1d2RBREeI3qkjB8iaNuSi0BmpaJAdFVantijxlUzlhDpSRGTmeZ6naZrn2aqREy3CnzGPDM9SjwGcceLMgNt92SJPs4PQnNknb8aPCOsrBrxmz5dPVWSo7BkRK4RVtZoE2rdnTaaBEhHFGF2J46qDi+jVfue6cDydo5yvdvu78/jlq1cPx6OFRwEAqyhSCYgJJvRgKQBcl7Ahd8bLCPTxeL7e9b0jRXzz/t37+7u+78dxBOUQwrFUXZxSTCnNKTrXDT6gI7YGCibOKgEAgkPvzGghLOSCAHjzNtaVD8PQdV3pLb+1Q7Z7qWqJldmIwczOOct4qucZEUUXR+ZTO5rL9C7vakmM5nOCuj5nzVBkPtmsyAiaqwMx26k1Cw7N0wbrWsmBq7HF5Ec7EtX/yhZcowCQNQ5a00pV1ZTrPREStsF+DY5WIrWhZQsDLv9lYpq3ZK0FKhQt50Jw+QhLfoLNfuRqD9LmdK0GXA/pyFeCi1tWuyKIWExS9chZpXFo4FN+omqhzQxDC4jWIM3/KoBaIiu28a5g1f1VxaIVStlnKVdlD9iw9qqrLhBAAVCL0NsApy6QSnKtLXYhhZl5VBN4WSmgikC232AxujA5yn7T9WHJB0qXj6IWFd0IJXliWyJY4gbNPGMU1Ka6QKNMmNoFwhrBoD13WWpfdiSPqTYKqK7M7+2UyBQMUERMrMdpjnqIitbwDopZ1ZoW1z5oqlJMYmtagCuDRPO3g2pQhWbBa5HRAGewNVipqqgmkc4FZn1/d3+OM+I+EwqjUeUY5prhxUEmkqOLa031lspnuCHm9ljeURnHNVqQMeASdpqbXuCiVGRLAFoWU/nVTCCmIObeGJrgqTPbbmvrCtkcdlifX6j0RNcN6LKBXcFoNSxSpgHAOG+B86I+2Wg2bTt4iuCcQyVMXCUYFk7Cqho5FyTIsosqqM4p6TwT4LDbs8L1Yf/+7kERXOjmxM45ciGxgvVdAA0hKEsN/EZEj7RpKA7lpBPg1SF4ojTOj6fxN199c3O4+nt/9+9Mp7OIEpGBmsiL8DRNSZjguu97TjqOswsrdQ4AVBCCkwaBPSLCIuRq34e+7/lxIipFsrLNp270YkTCJna/yrlVprMgIHOLbiiXllQ5LHXksVxwceDrI5doxKAo0sbUqKqVg3e+1utfvddhuy4RWTTgSge1KR+W//gIH8NqeS5LqLWRRQS45KQSpSSV3ZaVrih4g88NBNZno8KnPRvtpjRL28pMm4MET523J0/gd3wPi3a1/f5jlxZxXkurD9NELVSkoMoiB2QvwEUca4uHGW7QMMCLWdSFFCxVLv15KmZpzeNZ51WX75CITOPZjLzBlvbBduT6iIhUS1I5SqiqLNF79ySyXe5pxZA6h+I/3hrwVxPOlmJUXTC/RcJm5qYxNydrrf3bYE/M9QJtzN8PCxovEE7Mx/M4RplYevKQid+T9VEu1vKdBoPVIxdy5IrCgACQKucatGINIcj77vh4/vB4TKLoF1MKZrOBiogkWXQpA5FmBrmdJ6KA+hKmWrlpK7qFEPq+LzUsnarOc67URkScMu4xc7uirH1QJr+w4GG+gdZmmPq6Fgj1m3aNG6BVXMXmKLWYc0m3oREQa+X5y5GrQFw1nzq+XV3Xmf25RVEi8l1IySRpn1IKoWce+64bxzHG2PV96DrmDGeRFFwnmExSaWHSsgnT0e3jPMaEGFD74Mi7++Nj5PRwejjseh+IyKoxOiWMMbLKGc99HxTFB9rRHqU9iZiSUO9ZQdFZtwGPiLKY1DGEEEIQOaLrkbTKK9qInca6EJGsZozm2LkqnRrwCFee/Lp5xRrjyo11Ix0RMaxMee2xh2bXwXJJc07VyixWhPgn7CSGrjb5zfFYcKv0a6oIB4XNbM66HTkEyEy9HIBlUSvZQiFnMWaVvMxBysBaxOuF5G2OASJm48SF97SiUV0a5aDYRboq4Kmuldp/aQHvYju9YNjtH1XDSyIIOfyqZUXt4ytiurb2FMaxCmNZQVoUsMk++QjNVVXMgZ1LzIHpUkSeFIkWU7PFA+dyp42Nwa1NYfWIFkwQJLQw4RbyywZpjnho57lh5PV+AUVHaDWMRAGBHBjusqWVI9TIRC3tF4sxVhDRacYYLTKNZTBjbqJnL2KAHM6EDVjzNDQrE9WP0x4WXAvvC5ybPDFZIycRgURVYPuYdWJWVWZAzFKHKYk5PQ9hnGWaZY4qQUu8EttKSbOCW4tvQDHhbvCzPQjthHN0SDZxoDb2gGJpd6iKS7UEBdODRQn9hw8fHh6PjOiAUFRVEFFoAdE8zyKSRZ/CUGuvxjVZ32Jse9ZEjK0CYvZThhAso6kiofXys3h7S0e0A6vrRAZC9BZSRNqMvyJ6GxxuQUeXFLUgjIhkwQJLPmh5Si7SFNv9yvhZ6D2YZdjUMASF7B5GKvNsZB0i8D6bxEy108ZpMo0zucAs4xQ9ufE8hy7M80xEfd87n4uJ1kc+thd52CKB5xRGUE+OEITldOYA56F7+HD/cH11pRydc2b/8N57R5zQ9mWapiRxfxgIkTktlUpB55ScCzGCpYEAgkdEbowk3ntbrXNO81TqvJezV8CK7cboKq0QDF7aWKRrpNlG+mh3rhX/K7y0cW9UVCMFRCDv6hy0YaIV3NoId5XsFuR74tBiCSbUXJm9IcrN3LLWW84bYq7/NafZVDoisqq2WoLv7fjWYRocfQIbCjS2Go8hqF4wAKOh7c3r+l/bC8tBqmtZloxYztdWDKoTqyKq1dyG9ZFuF3K5uooMALk/aMXR8sjCCUS4GEtWe1T0jQUn6yPLW8w0AuicI+D2Tiw1w0tkw0Jv7IaNo0sXmw1u5mP35ADLC2FOL3AMl5MCmLvi5GEBMWrUGp2LF4LgBUQtBqSCusX2y2/aL5nZisIb9mZGUljIImCl1DpxN3tdvyUiT46IZp5bVLE5Ly69hY+CKigBIswTnCNPbHxEKd9PTQh5vbY1atoNqlu/QZUFrxSaB2tYlhUSFVVWZRPKygh4/3g+jUnB83ICgIjIBRMly9m3c934FFuybkYyVdEMcGOiWnLYVHW335/PZ8ObuTDgyoZtI+yYBO8BIDUM2Og2ecsSniv61RCU1sna0tsL8EKlOXmEtRXN0AZL2LyuQwcux1TlzTiVOLNwnScUhk5EZrqXYoK29D/n3DRNdoNFmVkeKRAi+dwgAHGe5+vr63E62fT6vmeRGKP3nb3UO0oSCXKf8Hot0ysyQsXA8Xw+7Puu7+bzKQI8nMevvvn68KMfSDm2OSzAdSypzE3mlIYBAMA8+qzZ6pxSAuxYgRBZhZA8M/uuw6I3DH3fdXm6MUZmpuCtOlUJgeG6H9z2a2uCNWwoNUruAL2zbWFQi0fQ7P9YSXCsGlMkWmsVay22PmJmX0cl7b3srvG5KigtJ6TQ3GQF5dD6wZG93bDKuKatNLu0TUBT1RIIRkRW2y2UPURErbwec6quOSokE5kMJMQcAqON6R4cqVUIaqohAoAtpMR444a4VBJZK2lcsgQsVhdoDIlGXqCosAyLzQeKI789aXU362Jbe7uqWjOMegJbsGtTGLLu2lo5yLSjHXYhBHnHlw67UGR5s6DU6VWdo67FhZDRDBGs4kGM7LAdGRERnLW/1EaNsF9rzfeWoIhITKkeWoN5O/9KZrQYSAz+WIx2xc6RFVdRtYRLABVgS0iEkmhXYkZVVQsjXOqXGaZNyWQXEhVlJlq6eYJZVAAKJ3OVZBCI84joVXWeM8muou1m49ozSKWHsfc+pQSi1VgaYwQAzkFtilWYJiR0kMNKVr4qUEYAVjiNs8L1nMQHFJHO+6bNlYgkVc5dhetR+4jAtzkLreaXw3VBVbXUxF6iT9qhYowIBEBv3304TnNk7Z2b45SPmw8hhNM0ITiTII0VkYl6heCYesTMghhjVFArH2G/zvPMKXnv7bbHx0dV7foewTkXnDPHII3jaE9JCVwyTKhNaJrTpM65vu+naWKOWkorAMA8z0bVsVTnAADTu8gEkMomVU2Ur+nv1ThMRN57lpzMM88zqHZdV8AFZd9tI8T22jlnAhW6su+KgJYtjqDIqRi90Ez6EQAI0DlTkGxSaqcsY4MVz/FOVa1EsbOF9f48Hu2lKc3zPCKiz70wFFCZBUAZVFJG5kroUhJrnCEi5i5EhFwuAt04TSzQA6Kjr7/55re++IyErdsEAOyuDtMYzUjuQ5jiTITTNL1//34ARwRkWQtIojjPkdAjAvMMULoh1QuXABkhQHBOM41zotsKsfVw1sW0J1mqna2cmTp+Jdn1qGvxB1NjFNVGqqoHj9aJubkkSqmtYc4VZjbM0EYItUeswpGJZvnsNbp1Xjvmhagq66IRYpMZqZzqsKjlGBNKU8og//uUsFnJhGRJfPP7Vgpp6cv2VgBoCM3Cw566TYuPyu7nomtqI6JePtVSKF0Mntk02j5ep93y9SfN2k+utPzxtFWgHWSDh5UGtWNWLVlrsFUjo5iRM7OrBoYbfN7sQhVENm+/XNcl9C5n2DgI6opW72wn3E5v2eWiq1lATrtNG1a0Ge1JeG6WLE0o+AZPbGTLeshzKzTaHl1eVGrvtQ+WN6IiTBEeTtNpTDw4VVJNLIoYELENsFJrfbJSvP/668nlQ+NlREQAgVwXJQGo0857AnCncbw/jnMU5zsj69lWjyiiwlBbp+dY9yXDYrFXMbM2JsbE7LzPZLBIvSLivLM/LK4Hi4WmmpoNtqq5PDVHqTY/XZqDaYoxpWSibcW8Kp5aHaSKw/XZFj+rSUZ1JZ3brzbDvNEFGbz3HFM9cS3828K6Lfphc9Xtqe+qGad146p0CFvKJqrWFqN1IVsNpRw0zswmOXnvmSu7WQ3TyoVSmuF6l527iaULnRCeYzqO0+P59Gy3s8kzc24BgoiI8zwzsyXdpegiiIloBcKYWJkgKBJ658iTUlMEIxtUdam2oUmFVB25RJCSuFKUA4p8Yuuh4iFXVWubjCALDSt4uTA5sWp1bealmPpbgV6xtuIHNNS23MOFzha/0brmFGzZcNWfCypARS8s/+UDYzcuNAiANfcPFnIM4HLJ6OwYJMDs5W2syAYlyTrBhY9K8sgGznpqCoG2m0BrqmKON97SyvbY58OTvWU2H4RSmas+aHNGyKnMm5NTx8FyMC4Rt53D5nEuR12Ld8AIykaGq09tGN5yOgXqWtoFXn6sq4NyRPOOfyRQyB6UpITOCH0LzxZ5Wk8noPUYsF1TAFC5ZO3bt2CrR6Jgri8NW2ICgKIIuVZMC4ryeJMVarEEeX/NMbEiW6rrtKXcgdi08C3CbJYPRWxy69Jo9ebWYpE5AQAs+2jObAEEyuRpNXp5LzlFEX08Tec5IeyJrGLDCoalI6VlQ2wkj6evhehf/GSjOfRoXcigwAOUVImQOZLzIbjH03T3+BhZoHNziqkkdKAPgrCx8Rh7qvtlwMzqY9E1W0thhblBzzTObMuxnWZOKREspuSK1czcliZdMzYrCubzHonCwmrZCjW097cEpKWTVffFtQUrU1cA75zNUHOyLFzivmrNpwHEHDoOOdF6pUepqtUggcWcuEL+1cFvXkNZtlNbGlghPMkhSLAUj8oh5Qpkpmuj28s45Gyl4Fyl+fmgWfVfcjElhzrO05tv3z3/4Zd2GM1OrNncJYkbMKalVRkAqGJkjbOK09ARIiE4X/cVAFDN/OGVhYKVKMtkWlUBTJJaOWYqUa5v3VAxcyFXSWqhq02ebkvZF+tZyycQTRisH+sNUri+7WO9WRrHWLt/KUVpBFLV3C+ocuVqCi7TXhAloyC0qLBw97KKpdh9a9NrMfNC3X1an7v8aRnhwkhQjaXaXABAZXV17HbM/K6Svd0a8zfTW4kszeMXi3viy/rSS0J/uTrMUkFZpt2M25v1QpSx/SKXOy9czn/z3gJnISIqxHQD4QVk9fvm13yPqjZuNlyLMnXtDZ6s1nJJAS8n0C7BvhQRyXXOG1f9mrM+CVspsQuXW9xicn1Lxcb2yNRjqOsRoPhE2vPY/rqBjOnMwnGcYJyFS7KWqMkpUErVODNLNd7Zj16XiLFM4PLgLb8qgIqq925OrHPsOjpN0+M4cVJ2ykmUGVSB0CKZzQifQXQh9Lfzad8eQkDv2jyLDDfhWn7V/AimEHvKFqZqCraLwLWwXQwz69J7Rt9MlUJEIqwe00zxGqwzvtuuYrMibUS6OiUAYOY+5C4O7Wi6NliWn1YkCNa8v84H19fqxDWAJWoBngNaVTWmGQBqWZLqWasCxGZAkVwMyznnJM8/pcQiwTkMHYvMc+zCwElfv/n2J9//zLwq5psnygFv1FRGu8QEZolRVEUl2yRK5E4RVMwnIQJElGIS0MXXqBR8F42VXqBysnRyRF3nAdfj2kKtgWPWswGKOdck7saYY91DQMzQsBjiTCvyRCZhFpxYVIS66wu50QyjsscOIFeVa2siUtPl1Ga6GtCgnBgABHM11YpGDhxYcGvlyoTMUgtiGBJvKNElX7ykI09+3Dx4iaYFLBapnm1Zdbb51U+ppJu/62HDhtkDQI0JaGZu27giEHWQdljERSarLmf7ZTMHq7amK8mseakUNabSOyBEKCHLSxcEAGiqOjRqnOImiGFZTw2lKyac9WI/njHT3LaCpxI07YlW0gas334hu0gN8859+Vb2/0qn6htrtmO7ZGMYm1lVhN9wXJXc9wTM62ymWhE76VDqCRO5JeYHIRvD1QFYMXLNKcsKAMCSLUaqajbmcYbzGOMsCUujG7DAFdRihUZEB07MXIctjdsU78yX5s1vjOF2ppQAQLLBZNkALcYqVUUFArx/OD4cz5zrKpMQaGmunqIgouXOVahSORrMTMVysOE0y0esReUFAEIIpjbEGHMWCWDnQ95WWF2IqLLsVIsh1YINhaGaMzUJVx+FknWJRpAFwYzf1/O4cWlVks7MrrhO1apTNZRtVQqgtKzGslIQY8aWH6MAgA3DFWBbQ2W6LfRaroa0pQ8tqBWUlUWkVs4SMJ3XJa4d5+zupfclc43VgFIlAlXVVbEAgBVYYOZ0Op2Ox2Nw+f4Y482zW7NhsIImM9QLAQrmrtKsquCsszgSAjnLUFp8wGZZDeRCCFqbCFmVmGLKq0f0kj1sjvFGiqk3aGOQXBhAA8fMHdc5shUD9KKyVVu1B9eM7fLSi+jWOrhb9zmo91geqsKizlYErcJd9VsLlnoNhO3qNshUX/0ds63PtqDbrL39uOFty+vaWoYXulcZ+a/RSqGYIrVp01Tfs3nQ/q0i52aGrXiOuFpmfXYDleWei7DM8scWwvkRawKROYTVD1rsBMU/l6mnRQXXXV6vsZFsLrasTOPprazovdlrufTZo2ulmRYsRQDQJnsNEIFcLWwO2NR83kB1DavFIafNtTEJtjdsbq4f65d1T9O6JRS2C89+YkOhxY3iAL0DZjhPcZpTCtgRLmYkzPJK2bindQtoMKpdo6ouxHYNB3gK2xV1ShNh13mPiG/vP9wfT0QeyU+SFFRBnWntIkSUVZ/FTmNxTE9MDzFHF4sICpJmZ5yUi2rj8WIpNGtmfrYhkvZrLOX0W5xsaQ6scU9KpnKegB0H75ClErQNPHEtrNuAOXegkeAJaVNVarVqyJDZQCO/bk2dtDHHQoP2G9LXjtYaaarFxbivzTNyghyxSJtJtrBqF1XudwiShFNKChiGXWCeUqTEOrj379+/eHaNAEpumqZhGMZxRERUYGYVTYkJkJsMbAAQgcjqvFpXDtXkCVaWGdOAsenvraq5SygCM5NmgrchKFRyMxARnLOwUoblJDRHIhPES1V9OfOttlEihDcoBTkYITX27ZICTLTWqJYdLZtEIpwTgjPQCUqDwmrqEZHcqcI8v00cJlDWssD4bkUszopmcR3mbIoVQceFEJg4ulKDcHW/mpfb0MX2sAE4FLNLrsX1BO9s4zwNRCV2o8CqSHhPsN66p9WbWz27zaZtkEEKPCvMt6p5edHqgNW/W7P/hhFeXloUx8J0jfRjRRVR0ac6JeQpIQhYWyBTDV0bAdJMCZQQAIVjHWGN0tuR6z3N2k0vr08Z6Oo9aNjSzNPgvApjQUTFknj6lAvg8sLi74c2P2pN3TbW5oXqaeEHpU6CIYBF4lDj7KTMZxEkZ6Caigz5e0XEujFYYm4RyaNPMZ1PcZ5n3Q/OkZIoEJDVJFnKPyksJZzbndxAHkucxHZHWkm9fI8A5oSBKuaSgijP8f7hcUrsXBAgZs7N8xC896IISCkJrukSQD3+GSwi0s7kgj/lp1JKFk9aQ70iWziPBwCrhL/YIRpupM2eQhF8y+CCmAXN3Eu7uVPLFFvPIH3ENFI/WvR1fqmCJBZgAGgLrbTEJAkTUdnxZdiyI43qtZRDAGiO3oY0qSo0hXqsoZ81SiqHCxGBvNclWdQpOkCH5Cy7weXpl3NRgnPtRQ7RUW3HkLFaEcCRaIoMAvrhw4dnNwcHRETTNHXdYIlSaL2ZYxLRGGMkkiaSMQnP8+wpivSAoAoe0LVVDoio894RJIlEHsillLTknqaUMk+8oNfUNlQpqeIGlJZAtK6yDeG27Z9TUlVTx6m+rBjB7O7sXVBSWCpPERHAQiYWCtLgum1PcxwW/RVRsVS8bG6GGjdEZPXP84Q9LWkwRiVzBRBICgi5B4ux8NVMtAQFaZEfK9uoRGpztVDSIm1UPJYmxLcyqwoBt641VmfVBtfUuX2HA8MiCVtPcIaDv2hgUO6//HJjv8XcG1hExJIxyolbIjMJF+uxtgT0QkvOYGnNsGbg0ySEsA42bGiNatEMMmlryVNz/h0g4kqkxfWdT8KthcCG+LY0RVVLSO0TtiWtleYy1KwcKlaR0TCnDcJqx28n0JLIdtrtDbIKksiONEvl0kYxwiJGl5NOBBBFFIUkZ1QCAKEFjjgoCQKu4iFATExe4wSn83yOPIv2ZmgxigO5TKBNlT9invkvvXRdMqUsX0E1+ACqMU4C8RxF0DsKc5qdhUsioiPnnCQREZ6jtdHCYoDNGaYlYEWbGgl2RL33DEs1VGgiY4goWeBVQf7c8qhJ/6t7XS8ozxKRsowxtg0uDYpqXkcKxt3BlV1LDE2UZb02x7yijc3Z0KAaeCGrjya/riwlAJYJA1m9X4cKASyyU11Km/99cUCq9aJ+g84Zxdya4o1e2TwdOVYFZnDkGgq/ObMVsPYxxjhNZ2YO3gOSJFVFQq8wzyxjnInIgeucnxNbh83c/49IiWIUZolEiUWLq4hZIrASRxaHICoenDcYAYAqeO/3u6AKIWASiUkJse97Fo1JlEjYQrQz6WwXQEQ5JjMxAHgkS8sxWCCic6FaXSwRaCVwAcco2kSgtURQQb33wVKhAK3bV+SsxZabE4DaZuQCHZCtdiXYQHNzCFCwAicirMrCgmL6uhKaiUZK7CKiV2AVUQG0uu0iDpboLVDN0czO6poyF5+6iDhAj9k8kOEs5htQBzmKe0UrRQGAQauoi8bILYev5g9UI4FNoMgODUIjAHCMBeGQQRHQlchAW6wFnm0w8mM8gJq0onKWtm5+m5WVf9sMiIhcrJQW9A1QOoW2LIoAlrxYpwpZnJDljFUmDQBJBDgP603LZ5nnOYqtnXSp7ZBtDGqdeNl1nRcRRSOjwJpAa1fpxvAAuTwdluq7lRBANiAs65WVodgmtgR5FeK6fOOg0klNpdENAHSOjG4QkSpKaR6j2chkzbMJq6hnKGCshEUrGlBDyAyRvC8pj6kaw43RQiM4EmFCmHlGy5u0fH5lToyAoIqiDjBnJ6sQ0RB8FEZRK0PGzJGTWrqaIgkAMjdmYRccBZxmfhzlOGtUECQEBRYQRCVVRhWFCGCtGhYNuAD5IzaSjNq5r3NZUdHmm5rkKvkIIiJP3HXOe/9hHE+Cx6RdAEfIM0tKSRjRz2kCpfEUve8IFClrmSaSaBF/U0rCnCUJzZ5LEXFEZrXyhCmxHe0w9MwR0XVdp2whNSZyEaATVRYgQCvtNI8TeacgCoAESCrAIGpgCeSK0k0iCoQh9CQSIzNHVQxAqAgMItD5DlTTzKqqAtGKpjdBrJUrGy5ZkamKKoRORJKw914BNGfU27HVlJJzARFBrCg3+JIQxcq2i6qloxwRYm5Bnek5C5rgC2jR65KPcN5gypWzFJcawAhFK7Ni0QSO0AoICogafykhU4Xu1HTEghIW3d33/VFPrOwwOHUCpDq5Powpnafxm2+++a1PvugIE0iaoxnnU5I+DAyjMBF1x/s7HXpBEY2OfJond0Ufjsfdqb85UHDeC6jLSjuiI/C+77vgIHEU7LBYaJWFQQGruLe1Cdd8tc0p2DRjaGjQSrRHRKNj2HT2XY5S4RmVV5nkRQA1gre9+ck/qvC1fGzYQ9d1zqHI0vWz1RHrpaooCqpcirygmS3BiQgLO+oAoJi4sgkdllj2+hBA1pov6EY2oi5T3Uoqf53Jsb1hrVlq4RQ1722RKy/3rv1mJSI04+eNWFdsqKb7S0Z+ubl1X+qL2vIjVZWvN7RoszzS/IooRJ6IUJ0qE8jadWj8ZsHe+m+d2+Z1zW1ShXbMxq6izGnrC78Aoy62FlgfBADjAAooVhyGViFjyyBElGMgEFAdlMS2Sxhutkwv4jba8TMON3Vdyp3G65fJYHNuC/HaII+oEnBiAQdg+VlGgkVSTvATAFxCwZVEMTgPU4KH8zTy3vqcQ4mFhFKT0kKyPhbJvN6m1TftPQugVrBabvNEJo+ep/HucRyTAgmKFTpVyp0DZPHjMC9WUUQltHwjl3dWdW0M985pyQ/GIowuLKf1+DS2rhYb65fLeivSlphkhuWgqdmum8I1phpWpbmer0qKofR3L5Q5SxjMnJtPwOIWtNuqGLfgibUDQALIjTew0eNbY5jFMWAxT9Y9ypy/dGIGgAVv1mSkxf96kCsBV9XaBbV9RfvH5YCqyizOgQqAKogSEqAX0MTJ4DzPkySRxOfxGNygSM6hqvpAMNoSHDODKw7p6XwiTJo+3N999urL+7u3HlErE1BBIOyDE4EU2fm8uZknmc2LoMYot+heFmOGxyYlBrG9q2JYcUbyshlCquzcVp7FYiFJKSXbFcDF9NGM3D6izd8bAn15T8s/KgOum9q0dYF8xhSAScRoPUGu8IxgOhKWusO62mlVpdy+RAiAL3xXKzzIGMAtELSVHp66Lr+vB3uZiWX9loCRzQ5ejl8P52bMlmSswFW6T12eENgg+mpTFnQik3ntxDadfdtZVZFus3z7gq2RthkeyuAtJOvfIgIopm1oaYuisAptztIyKQKVwunZ3FA4xCr8syX7JAg5OTGvvpzt/19l77psS5KkB33uEbnW3uecOnWqqi+j0cxopqcxSYCNIeMfBm/A8/GHB8Aw4xUwDBl/AAmZYWgQQgxi1JpL90xXnTqXvVdmuH/8cI/IyFy7yqS06t3rrJUZGeHh4feLqWoNf+GIFhUZoY77aAGoTnniyyIyTPznzerw4f78D9zpkp5tSKgyzsZdSFISJTrXxmFnNh9z90UVI6x5nxh7ldkZAc50DVM6cmsmhKp++uS//u23v/uTh7cL6EWox1BnzbeDx+8Pq7vnuC/i8+mGPiUCcG+bSb3i+0+f33/4iJT+dV3XIOmaMcAeCRdhvxEBu+wSnpprXcLsN2M+AGsMg4R0sQydB1vwcnIEt5Osnf9hOnd5s2R5qbFGkrVWJ9hrXqJXXXbzIhr3ew9pVlU/HEx2i9uBtg+WNmxgB3pyZ+UaX6oq+uvmB8eAeacIoqDGkdCFOd+9GaxeLuOlPjHRMclB5cbIYSSf3+7dlwruI4xxxj9jBHd3N9Vq3lqUC1guArj7rXFtHi0jRQTiHz58+NlPv1ib1WUx34pe6lN1x7Istm1Qbbfn5Ys3l3oVv7Vtq/qwritkioLOruO1vnnzqigI7WoYxxT1+M3gW763Mztgf2zL/OWJ/I3GAwML5/2bQTzvN7nncQ8CfSLxUQnz9Mbz9h83z93ZQ064Xz4PuzObXv3D3WH5VCmF083IMBYeSIOTL8X74Yjxc3zgSUA+wXk+fqf1YsLL8etYBe7QFxPDnj+/+N6xg5wyAlU19tTvonw5Eb7x+PSi++G72rdTyfODMyHor4gDb73YmSv8ZGaYngqZ2CPUKL6LX8uRbfzQWo5o+RKbDxw6YvJMJqQL/ph+nR1+7EFS4wXjNScsevE6QW+eAycGMCPJPL2xC/OYM0LiiHLeA4VKKdRe9cY9OyDKvtK4wph5rZft6dPHJzxn4xrZa2kJRr1uAMfaWC+j5Ys3nMjI6ZK9SgnMjKKfPj8/PT0t9apSJGRFCWaclSZTjxS8KG7GqlOA5niLrG0LxhDKQ8QEzfgMwN3i4Xko9rjxH1/1tm1sZuBQnbPtgdRhOh7qrDeTCDhKjdbvt3LMPHRis93yB5zthQMrfIo8GuPM5/3kvtyXf8yMGPhzT6nmbb0naLvSPGUn/wgtOo15N/n8G9hohtvanm/rrW2vHx4XwfOnz/Xv1NvWSimE1arX67XRq9n2+TOWh1KWZr5tt09P3//209989dNrs/V6XarZpuw9nkrF9frN11++eYVPNwGVaHQTUSlaPN0bY80vknIAMrVaw9G0cjq3IgfWUkoZ8tc9wdWRfyZSasmi7TKCgI4GEJ4tbzOJQZpxDua1FzfA/PBtPIpw46pKr+QVmdPa+wfP+xrPFBx4KuXwxvtrBuyJGs7AmRnDTD33t099RmeCLt2uMN6YaKoSXs0AaPjjQBgP+74vMOs6DMDu3tMTpdgPJ7IL9Ax2Tfc4EFHlpDgGRZjX2w/GWUSb4TBtNLPN6w/IJVFyKvDlEO8jyPwAkZ4XHqyojMnE3k61xfpkDvMhkJnK4ayKhhx1D5jrZkaPvkgkmbWgZV/1XPmIHQ47Oh1x+8euCEajTnY/YBQVRxS62yPtvbccj+kwm6DoaV/G3DAx7AlQLGEVi+/jW3eQWhc3iiiBjys+PXtzMxK4AmAUtIUCIYj5Iev8hxgqx9s7KYoKHpzFiB1zJsRGrcUozfn5+da2rK3dNgeV7sgikqqQiCJIkb30qLSSJe5HQSegZ9924732qIfWbATeus/i+l65iEf+ccK0sftjVaUU1UKd0hboAKxl4C+cCoEokM0hIF2KjuiCHkJ7QrBElehONtJECY0CZcyfhKBnRymcQP4SqpzQ1jMWMoCwvzoiv/LZ7qacaeM4ETvp7pnN6D1Faq3uh3ai44QeMsiPbkpVVa3ZJ0IBUxGYSzNZ2/ZGH4qU2+0JgJaS1WNELpeL+FZv6o3iUnX5/ra1bRUxYVPg8fH64fu/rZGSJiKAuAFlefPm1fWiH58lO5D3iaqqSxCdg2HndAZmoDB7qx1+mhHonrz+EA2Jm2dhSjqDnwc50dn7Sb70xkR3d9+2DPSNtgS4S4PhHsBop5S4HGdqUY67xezzR+8H/FL1JZJadhI2QHpaxf1672+Yzen3mMqXVITTS2fv4Izu8VSzFjpBBmX0Y/8igYZ2IhSvfqlI5D0b4XSNL08LH69zj+C+gmG7JV8aFd3T3HlmX9r9sDLBdigWp8mMnR2/JHjncWadsguOJAdLkhDU5NAPrnvmIFOc8z5XvrA03GH4i+diYMJQMubb5tlKD4qZ/znfM78uXN3uWTogzVoj+C5EGhKipEfORnUA+PyM33789HSrNwK4Ak5amMmTUDpV4C9gzXFdR8S7h4+q+lFQHldrjaJPz+vHz09GiCh9dAopiMkQpBMm84mY3sUe89x/yv0DcLlcSin0Zv3KIPM5QK/D7WT+GZ9ftDjGDeu6lgjV6epKJCAVzY4O41BLL74RbGZsaPz0/PwcExgJ/XHpnRAgU46iTKuOX/mS7eEe2fb7p4J199RvP1p3Lxof4nNUTpx/AjC8jid6OB6dmQVJUtxZiqbkgtCcQBFjWZ1P69PmD6A6NRoQNHqt1X1blkUaSrmVIqra2nq5Fn3259tnSPvy3WuzRrIKfWT3h/HozevHy6W21i5Vq2gLZw+FpKLXFup4cID1jiWZAkuSOJizTlSs58iN2LaDonYCX6DL2AwDQtCbUXPcXKacoQNuMaMSSE5ZTuRk6sGk6GvPq4vRhkkEUGeWklHR3cwUq3CBSNfnUgcSkSjz6gJG3HQXOGb45IHZUzfzkm4SmfHmRFzuSW10DpHJ2BjXzDDyVhUQ0o1AuZZuFMq0uF6RGndizf1hOI8PDNWwE79dTDkwuYAJIH3+88gx8VLOkUq5iVkZfR8tWIKYn+7fbV19pxIyIMiwziVliRzKlIgjbTqnfFr1mL/0dfkUWhnoHdoweoTfTlWSMVAIv7Oxx/DocZskX9j+6bJhNp9kexFxQDTiGCJvEoxwBBXvC1PRLNzW9yVsbzmJrtvpyHro+Cki1lHEuUcmAYzKTbkWKKLskRQVJRyQ5Xrd9Pbhc3MpUBEL08SQgRTcKIaXhDYEd5ww4YQVQSlwUm6mjRtXa00vrz7c1o9Pm7sbrEittXpjZiv2iCQhtIgie6alldgyojq7+cTO9iScgQnWGHg9jPnJYMIsARYNQ8Vee8DMtEdx7zRhCpuKb0Z3sv2kZ3y+i0oUMhurFpEwzrglUw+NImLjgd3Tt8PKD2iJScIbaDDIu4i0KaoZnfJnROpgdditL906AKCnLRPshZvCnD4yy0/bd9rTOQgrhu1q/QilnIXYKGwyJdP2C6k4uUC1FgEI3czX5rdtNdsEixNPT59ef/HOzZdl2Z5uUoTYBG2pKvAiqFU/P32/tg+v316v1+XT5w+v3zzW1lqxCGGHquJy+fKL11+8eW32Pr7RArY0FIgIstD1wTs4I8H4624ke4T5cDNwvnn+JybucrpiwCyO2psGziA+cd+xB+yGpp0Wd7kvvH8z/5bu55jfO6MapysQIsqP1W53AmATYxtsYAKRzCPhSDjmxc70dz5RP4R24xseeXCuqDsQOZUVPO1gIoDvZymusbQZCOO9o9rqOLGnMI37gzpvMDvRP23ffMOA3mnM0/jdhB4frPcBZKlaa+F6Q4f+oD4iJYrEzVM6kJs7w4D3Vtb7nZ2wzksYn1tro/ouJ2v16RQAKNHmfdr3tF743tkmv5TzW34EdGQGuZxO1mlPQ2MYHj5VBejuNSs9zY/k3EQkC/vNW+wGlAEQ6cyjYMQ6xRVaRcYDN0i9XLYNH562m8Empz3vZv7ve7HD/QdpSxfUAahqXRZ7bpu5NWzcRAYfSrNKcxtBoLZFdC6YjHdXLk/FHeNX74UKcDw7Zakjz167BRbAUqukvbox6zkfzPtz3EzEMY33JufrSDcsduh0wMykmyvYo47dfdu20TlxmNDGPzEJ3OPZyxQkJZP4eDKGDQY835PjQ0SjGaLNbwTp7tF3PLJJRco9UZphEh+G05oZhMXW2rLUcUNqGSSnLJ6xBEl/f4zpTmpKUhApz+u2mW1GRuxm4/r8/PBq27btUup2W1Fo27PbKurumyjb+gy2X/ziD373Fz+XC2/Pt9Zaja5SAVlBwbr+7u/+zs9/8s2f/l/fuTusmdmyPDw/NQW2ba2XMvbgVJNsLJ4pBxX0YliDvsdiyShwwVMO39wtZwAifrrnjui5PUNqG/+UUQYknkX4JgJH9/hA702hSykRzzaSZ2KEsZ4ZUdB9Y+z913SqsyhT1F9P2YK7SylOShw8yZz07Aao2bICRwaGifqPJc9wHrMasM1IF0hoMLvX+a74+xhkkIxAbpBZ/NddVZfe7HZGcc1ZgZ3h4S7TjJ1zjwMgIkZ3d0YvX5FoDRqbpKIjbuJAUxylaOKSNXdGQfmcj+xatYiCjAMjVJFAVLonT8CRm44V9el0wyn20zvfGRK6+bYz5m5XZC++NoMiSHCMM5n+Oj6CZg3dIejuke+LyU8xgz0zTHq28V7nhONPPxSJ8y8wm8CNQQH7l6WUxb3NtNV71izJIkpwsJzY057eZn0SBMR9wC1AoS2DxnsaHoLOWK01ztq2rQ8Pr2DemhP47oP/1W9++0c/+4nv1c0Q8UK6KL3N2PvjjHmIC0EzZzJ1EvTnM9WaXbR+++H9+49PUqtaVdkliVJqrbXdVnInAiS7X/ighAwpZKxdRJbLXtjHmpt5rXVZrp+fnjJyre+1Fqhq0KU8U2F1496hSNIRm4hrRnEbuqyDW9tEZFmWII/AuqsciuWSUhe6RB7PzmWhBsTSTzFReHb+GvQzqj+SjD6AIV5kA8dOVENjWZZlmLj3VYiUoq21qCCyU9qhyqkWHb3d8goeplNJkAD4cQnspbKiJHlWBY9sC0ZcbPwfuis+C5EDLmabAzUSG0k6C8QcTqHI3373t3/wd/7ww/dP799/++btW3GqCLz9xV/8m6/evv7ut7/59fef/6Pf/Xsi6r79h//gj3/7s4ssvNkKYFutBgICcIGBELkul7dffEEyMibdPWseTGWn7i9O1/hupnfzB+za8IHHzFxHJpvGzIFmtACw7YUmDuT1xLoOlLRfwD7OGPOeUZ3mM/T4+Y2dvKboPr6RrvXm2++5oI7bXpjGGGf8ZMcSmzPtGKOMJYRxDMDwMsz7Nc8fyCgk7c7p+2nMqx6g0G7xnWeCUQTuqEyD1KLWN0Iny8eQ7sfN0u1IQ6yZAbWPOIFaRFLxTctzaKWHijExwig0dwLgYWumR+b57F8eoY0jHo640BPMx5KHpBL/Cr3Hp4OwY++on5aa1mmCQ5bPrb5f2nRr/nRa5oxm/Z8osqfKjE1ZtFwul5P7aR+t/38phb1IC4DSNbnpFszwdAip6+bff96+/3zj8qa/FBG89kM4PEPg3/c6ITaihgzleePNINBaq2qxdUNUggBDt41CDcg6X2d9VLrvkxNeDQXLzNx20X/GkxOhmyc2XxNtubtUxLNSvUyhWPeV77wL2TNV1H7dvzFNGsfCwGO9ciygNmLFT3Me65o/5P1ZqJUzgpyocT8X+8SWZS/uNIA828Bn4jnPh5MYyj1Lah85LASlRJ3LtFuIUFEp1FI3o9YiSvem8OulPl4Xs+f33/7N7cP7S8G3v/0L/fa3v+MKMWcrVZaLKNptXTduqnq9XutdIQh5eHj42Tdfq0CFCqHL8DdlcdZpDS8f8kxh2olFp4B7IEb/xkS068FKAhpC/g70F6/9MHf4DqQ5ff9Dj0tnwMqo0nJeSGLVNBMXuEcjGqgqyNHjaMwhKelLU0WeYaiG5iRKejfpD6DirljajLsvsgcgvXQDtjvyTd47HFF/XvLOxmInDv2OzrLR/NQJ2vM3pyu/VEU/LTuIiZkBp5muZ33cbwrJSLzd240ehSGSIiO6uB1bU74EvVyRAN3bnSZTAaj0QRRKmYG2rzf7cMxt6UgVccz5uiTpiHhepmNp6Pox8xcnCbF7VTd/wv79/I9jgtLOIQDpNZb6nKw/GiwuNYP4n0/FIn4oKz2+6Z2a5siXo3Q4fBAsYBCW7H3k9AVFZXG7fXq2T6u3Gg5m7USDDhUU77Hh8cYXL84vd8EukUy9kycZXRI+qSuvrX1+Wp9uN+Ol1CKp/Xc0lgjEKhJK1VTHN25IefHQlnH/KRLkxokbXPlgU531FpF5J2O2+5lKySvUa4qIipoYkV1hBnO6Nx+6e8QGD1l5bHR8jyO5AFwEKuXE2+YBh1QhI7g1tI5d0Y3zInNBj07BzBtOwuU4X50inSM/ZGIE89WH9X3jYnWiohq1LU6Sh/cyHdKpqJlpVmJHKUXTPkFzCuTT+uxe13W7fX7yRoW5PRdtbJ+22/fb8/uP3//6j79594evvr5cKj7fUETUAIkmSRRs5nXCPwAK8vF6/elPf1oqSBOpicNQ56qo0g/7oHQncQY4ELX5+6ETD9Tv40zQxA6U0wmfHxnXKIo2oHya0mky884ddNPD99Nn7nhAOZ+oObjpNDHs6dEz65Kx3/3+3fg8AUQGYt2D99/lSlp/jEu8h8wM1ZzcS8oxpu2eB9xJwN0MRx3N2Tl6v5tkJx79URlsuOtqnIqenlytYxrzyJxMVNK1kNNe5xqJY0WUfXXjjQMH5vFfBPi8wJ1QYiI84XiLO19qqH66Dt/PMJy+PqqxeZruJzjWdf+63AU9WzIw4fPw7GCisy/O+Zgn+sJQJAfvj78pb0FANcOHZ/+8sZljlwKHGUzlh6tw7J/3+38gZAsAlZP00z9ApbTGz+v2tMLdNWWjBi88Ni1A1pElADq1txzAdPpefHPAZkZF/4GsAZ+ijqdlTuY93q33GI4wH40TuMbOzrcNDXimRfMj4Qyaz92Yf27uSxpCP4P7QmZRO9/ee5ed6N48vXvEjoZUYeue53P/7MDesYODBw+9OZ4bMOmlZjnltogIpUrV6m31LNdhD9crrX14/7dbW//8//1X9vTx93/v57/8o3/wyy+/+p3v7ekvvvsKF2YXaFdF1dqM67pWMtteS4hapCwP33z19fVaP69bqV2NiBI4Wa7khe08He/xt3TpCTs9IkatIWYUnoTYp5J6gGB0r9x38SVztGodyNSP28tW69O+klFeriOHuRSi7G9kN5MyIbeXU5BdaHX0SC8gyw7Ejg95Cip0RowxPSJtZLinRXak7HT/QLJnII8Dg7uzqtMBjiWES3JImidovPilyJ4WJccBXzxXqhr6CDlj/B7ogSMxEpHs1oj9nIwGORgHvqgMWXfKgzxMbIotuGcM7HVxcQzCn1fRF5iTAQ45i3LQrYf5LhzKHdPEY4Ad7DzvS8RthO3EwGF+h0Ak62Tt076TYjkJIvv8561gcJLT1oTisVs1pF+jsucYfwB533FxkWAwlKJD7kyPJt3pi0Sv330eo8QpXkIwmQowzRJEX1fWtbCG9x/5/uNtfXC5BiEItdvNJPMWXmpKeDgpsEmVSc1pmpImuk48eFy11tVlczrALN8Y0bxW9AAxkO6J+Ye0/oBnMxw1s/wlHMCFBL0dbEszaZqn5L3Ye/8phooa1wn6cZlnm7igbD0mW6w7ZWXi6FE4iJ1HApMoejhx+/juUW+fgyq4W+RkRq0VgNE1I4bJlLM4jzKqqqC1FQBc6B71QSIvwGFjevOx7VblCWdQQHhGL0+C+zGh64Qh1poeA7iOi40O74Ht0Oh8lUHhpmR0s1hK9a2ZwcwIM7Prw/L9+99++PDX373/zVdvX/3il3/8s6+/LBc+ffi2rfV6vfIpgkiae7PNfVHVpWipp82GA/Xy7t3Xr18/fv/0cfGiWpwiMnLoDyTjpTWcj59M+s3xyxc0ieECGITjNP4A99iksBXIlOwhI4TqeN2j+NjsEbQ1Mx6Smcl/J47NPs7T+Gcqf9B3uY8Z45ezDhf/tCnadn7v/KJ7Yn16+yDBp+lpL7AwP36/ikGp4xqwun81XkKAeyDHP05TGkd5um2/4cR99899yjMjcfepLVqMNkx2Bx62Y9FLaso84eMW55gvzmF+kKQmmXjhelFJzaeODIxd+j68SHZQ3NcSx0uKAnb8Oezgzk6OuzDeGMEsL8pAg2qjYxp7RaQ++H7/wdeIfa/FSRWouLeqV5f1ecOnm9+2xgtBFRTCDGyk4sdiUA7wHbOa4bZfw7J9tz/UW9ueb1tzINDPjfRSaje2kRR6Gka09y/XXmdKJqjOB3AiKS+r5Sfgy531KB+c+Xq2GVLVqIwrkQcvR5F0PlzzxNDp3ryJmDTa06uHgoGuuM++qnml98dnPzgH7TmBPMaX8mMU9QA6AsCs+I61nOxkJyBLJ8gyMZEDjepXuF1IqorWtAC1ttEMDrRIWlNvVkS///ThcuU//Pu//7Ov3371+vXt6ZM4VRzC222FvhKBiAEaIYoqpLCSKSTmbNxRr+/evXv37t2//fUHdy/lYi1X5T5KPe8ejnk7e0bvLl8fDp5SBu0QirInbZ7V04SwIMOXjxT/npK+COjDUD3NN0CvHCL7fsM4rpg2ft6Y7Hgqu07P3ghn2G0G49/P2+QnjsuHg06AjscTzTX3He3mB4/M4ICXnEya8WEY5/Ol/fAUSEEWghjW14HB2JVLsAee9LTWUZE4dTWnV9xrPCF278FK2jNSEhm6GaVEWyJkdMM81ZkD3bO3nMQRzjMKxdnOMy8zP/6xS5zBoUTEsisXgaku9G6NngWFrk5xL2gwrwVFu9IQUYfJgEVEiri7+h71PZuC+1ATR+yVD19cy4nt7V8GGueSzl09ZvZwf836xDjpEWzIIwmb33hgJFJm1nJ/YCVtfVy0cKmbtY+fb+ut8RVFpEicNfcIRWX46Ef82j7IPOK+Lv9RC38GSIxGOiD5/LR9fn42Q+9h1dzbZbloKZDw3WddDu0R7HNN7GFvOO3L/GUHBbW3SEohUSUaPSDsor2rGLAnyTB5aryrCA7hLyOuaj4snIohn7YpwoZHnGMJZbQzZtJUdZQVGSxAutqDfsDPG3oWvn1oHVEwK9qkuh4qBZEsujdiOg4yTnTmI2TNOFnGOZ2d0CP8/nSp1tiiQJOxS2YbJtRFpzytNQekqJSlQMw3dyf94fLgtjp4uVzdfbmUh4fLH/3ip3/4977enr67PX93uRQRN7uZ6fX6iGehS4Qzq6p3L3TtWNNR2QW6vHp4/eUXr8OksGtLAneP1j/31yAW83nuCHeuHTHOYUfK8X0HE344wuJMKbx7YsJUk0JQJKSHdU6cjRQfuHs6rSKTmPYCAT3S984d9/mMOkqxYTjRIHOnR1cQhTgo0auNoCDqocyQ8aytuuAl0UyOpvgBxh6qfqCSgYhj2BRsey34iUTubz+dpfGuUw1YOYoCGLbHke/EjPUPlk1VJaRHfMQ9c5CIZlH7wghxgAWBmzWVGRSzFnWcsChEVIASHXaj3F6mMpDB/CPnyu+CmkgOVs0us9+n9MhoagkEjinBzPY6uMk94TAezMdF9kg34cslr3OBJGN8nbzRTAp0f0yGRfrIaJ2Q7F/+A2LrfBAAJH5uTVVLr2tvPXx3PsKY5KROuA9wUFVbt0lBmYSzpQJu2S/SATw947uP281ojCqHKBAFlCgYtcAEWZP/hVVw1sZOP91ZbqZfAQhVmtu6KSG1VtFCL6rVScLgzBBoc+m6voMR0NT10Qz+uDcbDAgHnmSdCcLMyhQkNZ4qqlHxAyO2yx1dWQSyW7K7Q9zMw647uOxMWDId6D6VoHP4+Gc0hIidCk7Tt6zj6kRk2Dn3YPn398w7MNOcSFtCL+U7fM+iL8vc94d9kDXVXitucvF2yra/Oj74nYe4A/xAhMeHshRu1ppbe1ZVLai11lqt2Wr4/MnXq3xaP7W2Xa76h3/49z5/+DdV1kho/vT581fL9VIX2xpRvTM1ESlAzLu2zRfbihC+ibxCWXCzL9+8/d2/+/Ptf/0XX1yrJQGnqZdl8dGxo2NUyPWDkrp79tth1IUx0KKLNcIxCVUtiHirFORUALrTTUQwSokird4kTuclaQrJtklW1qWEuhOcIJrIRuVSapECVaELhU6LDOBeM1ZSrI7WV3TRUPdEa4GbGXspfOmN2TffyL1GsIUcHMHIDhVVre4tAtmLqG9NaymqBioRs2x0oaoIIK1l5uXA9TgGpRSNBgN9RhxlECAZzzKJ+SJSQkI0mllZFnbVNlFTi2VBJZlrkAGiKrBWVLUXhy29ddyEqdknThAlwEa8BqLqbJIVFyI6rVJEapjmnL7tlaGcAYiRahxiMiN3ihIVgMNbGlxz14xta7VWSMlaKLU6uW3bUivMt6dtWRYt2lpb6qI9xDpPKVBKZWUPSj8UY2HPI5xPYzdvoNSltdWd2qEEsiBNf0ut7LJOC7CWKIwlKiXalwJA9PQK3sroTAWhlChB1SPvI3eUpJCqIdukTpnUh82RUcsACjCqbJlw19xTXaeIkQqxJMT5G0WgRXfTC0SIIgLVtpmAbNbYDCIiTljzff4iKjv6pVsfItLtTG6tN1m61EW6eyg3XVmKwFCKblzZ2lKx3vD+4yY/v/rzTeBwqSywG7jQI/1SImAEgS4neZQ67FvxvSOS0ybh4yCDu6RqC138w9PTx09rs2UpAvN4y+b2uCzxoiJqcDNblrJZJt1KP7nmbq21dRscNxgDm4rg+rg8Pz9H6urnj58eHh6u18u23bTUQDcRlhrLcbMNpApI+JCA0ycWJ6hJppW7ql6uta1b6EqdrEYXXDZLW44EcUv6aSHoJ3EoS8jBVXVbVwAKKVq0dN+/u4o6fS/cBESzOIKiAu6e/uSOtYRSa+5FQ0ylqDqsOVVZlkqyuYV66LdNRHoFBbp7FC7USx3827l1agZjnIAS4q+TgLkZxbvFgsJMIDazUrvY5E5ail0qZgxRImzwQVSNJq4U1L10hDsbIQ6qYlsr8FiWzeW21Pq3v/7Nl28quanK5+en68PrspanT0/f6FXERJNEevA6NERxcQCkdUsaAb1cLtelFoVtK+RhiQL01NaaSh0LOAlTE4nvyF04ImfzNpU5hKIbczATO6S5E0ez4csmMqooO8iYBVbyL0esF4SYG2/NIpt4ZlnGoqybpZDb3329g670QV6cz8RaUqwTkezj6nQk4EKzc3opZURwzKFMU8RlBK4Fr9jxG4hGMS+AJRSycfLHhOfNkpcUWd6F2HnX/uaFj3QZi8KMu/FzN93As7RhqiOR6Q6OClzzmN3nFEoDAHL40rrXYKh6g03mP6N1TgqF2lpbtPT9TQ37eb29QekwccVu+JKi0qPnxvbNgGIkRO2WbUZkITrC4JjQjOksMFLOpl1QVXoP+JxwZuy1N4tgR0+jdsJfVTHgGdV3zCHqwa492hlAusDag2AOTf0IlJROQRBToNmxBhaUcDqmOpouGFwNx6D9YX2ZD0XgbMF+HmOLZLpBippto5OBiJjADE8Nq6FBuxChhuxtxVzUWRkaH04HM33SP2BOm58N+DiwmTeP3EjtJgxCxcFCB02wW4Nz5rpfAFiK6u6Ljd/jntk0Gv7LYTN4cW61i3SnG3LwyPQVJ8Vpfsz3Pdw5fT4cn6Czd/CZSM9hT0c++k6eBBiYf0wLPJDZ/t5EhCN1enFTOFHsGUTzlAaN3Vc6ofGMGBgyXx9qWPXHPafZqmprHqfT3RVSioqisdVyceLzsz/f8LDQvW1b+/Tp05dvHtHgFS7SHOzGrehQkfxeioqH8lNFMsJaUYQOcxCvHh7fffnlw4K2bUu5FqqIOo2EqDC4+DDIz7uTdCeWJ5EtFz8nAY0a7OJMo12cyk6OJd2MHvosbcSb9OL1h9AJJkzTyxXfiQQVsj5YB260+Qk7gAgg9BDMk+1QaaCDRSmAN25uw6YqIhDvPXvS7JxmDk09DyFhJCdjnDqMGaJXnEiwOeFSavJ+gMe6YBz2ZKiEq5XibOxY77ARdcZMnw5alrHUALL2Vt8okkIHjwdrwlTXgE86gGOHCYYUHC+LFcX7egIy4AzG30dzzy5DiA6owcmWKtkhfD6TEbgOOrMiB/p/LlmrPBN/+3ykaE6gKJwG+vGwlSqq0lroSormzgZrAigixjdutlCOXMI+H3Eowf3oMmzIAXAqICV1KWuZvBvEZn97L38SNvZGHwIZgEgeVqnjtIcOEdgfDb0F9GCRAoW7wgETiotlXx4IaAlaUJR06SkTuX8QkcLezjpczyLFO60ZFu0Z4Mx03n6Ppt3MQ0kXURUjYl8U6WpgygzY82Jzc4GeUU33kOdS4lQRopTCtF6JM5IFaBs+P68ucBUDG2iiVHEwekl1WoL98ywhjUX160U2c2C9+Vncfdu2bdu4YzI4+VBpPrzaPuW03PtBpwloGIZUtfkW9f4i15bkSLo9XUNwSbPizhh2XMrQE9kFym67mnIZVMb9L9VHS392yDe4E+njdA58CEshxdizSMbpGOJiX7iKYO7nPW/KfSnc0w0ndjsz4MFcx+54Fvjs5a5ERHR3pR8NJIP7aq+zPWKDunpzgMAgU5IdodnaKotcLrV5i6EavW3btm2qr1t3SpqZW63lEgsaaiUQQqSKSBXJXIrYJ7iDfn189c27L189ysePbiDctRSoLnJxUERKVI0HZpDH50QFlUupRUvrkrWfNrb3rkIU+tf8y170YwaCDA7jpEAhnJ6d03NnxOXED2bpppOGw3y6FqJdmSY5ac3znRhtdHJHS1c6Dxkj0+QPYav9Ihm6V067j1xEfFLRSJYu8PcDgLhHuadN97UP2O7bcsLpndcKCmT8VR7qhmKIVNOzeVAIDMuGIPaRKRn3VauiNzHNDdSkx/eljOeDkRMIrOCeTxwa2yh9pXNwX7dWRIjqzTa6LGWJEgqlyuW6qLfpjbG5DnPSoqVHvGhsa/8AIERFAnBvdakjQ0omQfsk7B8HkQHhDuf5L8f33llihyukF4AKMSXO2CA8EMieOxUfAidYUEL+dCm9mgz7PWcUBRCaVoKop7LgqNNjUmvQqw3Hr96iTj41LDpMrBiUa8a6+SplMRo9zN+iWrQQmz3dnpkeKHXQSS+5cjkSSB5dhuON8c1cPGRv7XDUX6fVqbk+r601C6mVaQ7r/LVjdN/cQ3cE6aFJ27aVw6HLg+wdaGtrrbWahRW5LIvcuVG7sUyO3FeG9eUEh/mf8wJT2h4nt8djZqzJ1BbzfsCh6CKZt4iU2VA3Vqc9iEGGyT1uuzvsfd/LiEo5HOcfSPT3PsiwUQ3yeB+0hWCKk7HBuy2HB34/OLeP6radnqTcU+te0ivh4xQp27Y91iqrUUCVbTUQqgVUahFCRZu5u5ey9PqwMUOlOyUbj1YXh4rthmGDU6+Xt1++efVw+fb9rV7FGsWdKgDhTKLQw4iS+DoRrDFYAkF3ikRxf0E34gU4otGnShHNABZI+F+1N6s/82CGJJbdQSkiMEe+8ShdYCTa9s4aka0bKb+m1FEqORqwClFUqqQpkc7dIZ1e0mysLRqiws6i0KsLxX/NXUsRVZr3bFTWEEtDLR4e7+ju7D6i0EUogpgM4skwQ8ouYwoQkQrBW5Nep26YxLmEgg8F4WWvjkkcwjUpcAgFFiVQ81Sr8mA7yP8btatU064YMPfEAZ04VhyAIY3F2grgmv6/kiFUu9nTzHQ+AJJcTjpVIF0YZVELyE6IuovBs4fu7Xa7XC5ai0fJGgHA1dqlKFSlFlgzupkJuCwlIYxMHeYQmd0FUZuNYcjI2TAN4wyhtZMb6Sbi/A+pqSP2S4uHydc9tFaL1ILQkvt/RcRa04xUFhEXMATMqPKN3BsRpAf+ZMNj/ysDOfuxyLp27jIqO86clRGXRkE6rSVPLiVF0q7tMxXf0aINNI0CcYI8oVH+CJ2DAe5UZp+obCnLjIiJ45ZWdy1hNF/XjZL1xZg0obhEWrAchYd5/coeL3LPjIWpf99zr06XdXU+31prTXWRHs/FvWTV4eDjyOp08lzWKcMzvhn8czw7S284ikSDo8gcrBc0gvuvKb73xm8Ta5lUxih1niUGzybfLje7iEJ8omwMU8U0t6wppKrsraHQD2A6jyQYZKwrvDPZgC4xZmLScrzQw2iHNHOC8/zPwX1VMrMAAETHLqATfwGiXYJAhNpsky5cnoz/MwMeV5TRdrDsQXCuRdvmLtIab7eN17Ku63Upz8/P5Lto8YJhCs1pFJGAWCQQBTKidoxSgLkBBIp+8frN4/UC3Gq5uN44clToWbNTem9XgkGgVahStLCH+a3bVjSziZjuGynoaln/H7JoWTR8Uk9Gu9ecQxcJyegmHTwbMGeENU06aGobqTalrpbYBGHoeV0gQPI5knTZ0wwHNUrzGZAEFOGnf/n8D7QI9sZuvvYgTPtfhl0hmhnG6jgPMtKQBi6ICLIyjnTmE29JMQj7fjsgAg3n5R5hvqMakH5LZyqW41ehNJzJU3To26fXVxTam/ZXYFhBmNYK74Y878pHCvUyZAZWiIfIGS5DFR2dM/oqgov4qM2i3cKRYdfpdzAYij6+eSxYtu1m9HpZVPj8/acLitU0Dcf91+v17du3bra1tm1bVKs3cAF0qb5NeeQyBE6Y0WE0T3N090DrQCQklUfizx77w667oGfyxEbG7icSBi9PmpSkVEQClGcCjf4HCK63W5snoQxMbigZoIuBPHGjI/t6JYkXEBB3Ay+lRu/CGMwTb1nLHswCa9LNsFNQbW6Z9hNnvdIJUzQhADMCUjQr+pZSVEC0bduEScolyL3q7LQ+IPNRkR2UlD0v+f4a9x8elLKu/nyzZtkXz+gyxQADCeLT2+dhh1n45O9OcFnqfBFMGxqzmRXdXRIyTD7HkQfAudcuDh7M01pO5xd3GrNMxpv5y3FPUHtNE136iTBZFJDHYsjH57Tg+2mMd8mk1mOiThyW7iD1c2X4ck6fw12+7wDR/E3S/kko2Q2QnbPoVE1aOmeTKWwTAAUORrhrWbTWYqQRn56e8OUXRpTl+v3Hz615KWp0OVrFjpeKZDxpFe6CWIFAFaKq9et3X756vAIfoFKScRQGh5aQjxm6ogAktCjTQowgkfGPiABlF71EQggmNcMYY2FZ60XEwTioBqYZR6KpTnNkRGxG/jrcU64I23/AzwmI+KQ1ekTuCaBCRg5ZJtJT052ZrjVqcC+KEOqEMvwqAVOQopQpjzfeIs7I7ZeoixPbqdK3jR4sPFQdY7Rr1YgbDLiExu69RkAEtlDCZgFoeCm9qBgZy+y9smhkSWmlV6ECLFX8ueBGmZA+gBNIucvFrVss5vNj7BqViKf2ApJGaKmT6JCeIRfQzCVl0sCHHvWE3Qse1ZRCFtISEQAUNLdkNiLWOU0ENESwJUWsudQSZD0YGmlu/Pon31yX2m7eWsalKqRmrz2G2hmERlEUhUoUhUffdUTUvghcup8JicNKuLg3o4pKcXow2oIS2ZgOF4ngqdxHiwBpClPwEodGGGINGs0MiTQk3FTEJXCAUUhaKY4UvsJwLWSjhx0oZBMSxLHyzG67owizvloWIJN+iAVILMrMoFkQFBIRhZG+YUiU1oX3IIiQA92DpStEqVFNMDC//wUQIbICgOnp0Ij9TpNP4KFCqigA36ihhaeqveeRJv8eshQiWDykmS7i7GA4syK5o4cytfp4bnzamhmiIoS7a6+sR9cwE3hviSzZmki0nFXhHDALre4XB2+bqLNHJ6MusHZjkshUEnWsJZ/SPSw0rFFkmxl8HjZAM6yBuUdA3Dn2GbE7uk+UQ7dORQuDAbufwTfYGDobPgk3M9/liBc4NmvZh+I+7IHjuqlqVJ0bgw9+z8nNkVsgNdOFnV0vR0h4kvi08+8xjUH54utS6rZtY3AfaqOzlMrWRLG25qLrtl4ul+fn99u2FRU3aJFSAPFRq+uOEzuAmtIwNSMOu8Hh3dsv3jxcx36rRpfu2nyI3qk5pYGx1myBGXVZRKWWGm3IOgkOn1DXBSjdABLSonbNJtSdgh0LpdOFGcRyUNyQaNT/zkJAvqLr0zmIINV9T6uUmYWxIFsOZ8JeFw0SFUESZFTw0bDcTv91LLSBROiOtIijQ3fRq0hZaltTZdjXG6KlkwolWlh2BjctF8A8zPszgkpq//s3yEWpaoGgqBIm6AzSR7StkNmeVbNUoYhEsK93t+G9MOvuTtdlCj4K+i4IYpAmjrI7yYwMtqSTgBlDlWiCwASvh9EV+9bnSxMWYLcGJgZ0wvHNV19/+vThdrsJoJDtdqu1Pj6+rk+3rgxplMe73Z4/fP+9LhqhdmODQylJo7Fx0JSwgDCs9BF07JGEo1XUt0aQ7t00D3cafVkuLeysggJRjeQZttaGxi8dU6Qry8n4wy5ERCfSroUTdE2BAEQ6A/JMxwkIBBcgHMwqoAOlhzsCu4UzAwmXZTESkx4Q4aW2tbC0Byak7CIy3JkKsbK7FUvpIWoyKeed/WM+8h3gNA/TQrNWrFTtSjtVqOHkFlKCs78QrnQ81zOJmFKeZhyekXk8CABamq1ro3cu6O6qBepOljRydO0tN4mlpCN1jpaKc6e7itjfMDUxjGTIgzm0i7lBI2UyOA9KmGfhyKLGkSx3Omjs0uzLn/jrLofJdA0QReh2kOXUIw8+jz1cZil7SWD2WiXjjZhmO5Y/2BK71KKqQxkYEQb3HH1e2mlnx4Cc4ubG/c6GOKXHgiSY3AFjhvHrtrWyFBHZ3Iqj1ui0AXoT9+tSzLm2Db6qVneszR4firuLZmAmw16PTsY73OKqRQD3UFGFjq0hDEFuf/B7f/ef/um/LQrLjhDLum1zVoNOPGBb19Q43GEuEIe7+7VeOy5EXwIJo6m57bk6KEFqRJTeJoRV9GwJZWSRRCeZBPoiJWwTiVUR0Nq3rplHi5bIj4ymu7VWp5vFvhJIa7ZCqy4FYmDE1CICeTiYNyEW6jdDzCS6ZwUqUlSLiDKKSSUJgouolmgwglIgpGi48ZzbbS0oBkZGmki44iXLJRcRqngQaJUCkWqtEVDVoiV8eqBXVdua1j09hkw3v3geMZpbGk5Fi5q5FA0/nFBESwl106maAYRSEoNqmYHsJMNoWATW8x0B0CkQFdWi67qGHNM8YsClSI3AkiqReJJtcAJQofcHc9LQMcN86250JaRoEaWZk1q0SPVGilzqxcxu21Ygrx4et+fbdrvRIoQWiy62WfNWnapFpLivQlzKou12+/wkSw1BhAIVrapKuIG0COLLLtyEQi6lEhrCCmnuZquJQmtJOzwK3T26pSAqtmeZ/hS8mEmdipKWBO+b5oCglGruzIiKopomYhVxpm8CLppTcgiMANH9DkFTAEJLhrow+qahrFurpYLdyxvEnhCIbR5C64jKKRlE5TGXtDhnlh5KqXSK6Ha7XS6X5q0Uid6gESURu8keiiWESlHCyCqVIuLhKoLUQriWci2vIP50uz0A3csoIjJkUzcbzqyZW6Q82jXCmbbOLegH3Wemue3fj88bdTWIoBTZVn+8Pnx+fhKRuqiZ0RG+gy7/ZZBUJBkhMgWaAXh4eDAzbyQZjAJkay1DG9LYLtu2RXPlKBzk5N6gV3RoySKSWgFpUVmmm3xLKQg5g0rnSAGVHtGSwValTJ1Ms03vtt2WpZpZKRVAa9uyLKplXVdORdkYJhynu1Vd3J2I0r+RxeoA3KICV6jsYYvWSJdHtzFEvHdIA8uyjP7ZEf8YN6BX2uIUXRUxImYmUcsvZDi3Zu3y8Ngl5u4pR1lq3ftF9hw/7EzdR0PJUR+7c8r0asXftm3LUkOjq7WqhVsGBLRWQp430wbRer3W2+1G8v3791+8+abWCvFt296Usm0rcIkjMHn7IuSE1d0LuzqviqIhgL99+7aI3m7Q602qrOuqYa2WXVI4XdLlsvnL1otfpyLlbLSTtyAS9uOk6WRkGFJSh04/eGlNEaYmepBwC8KJyOCsIZBXURcvQITGJULTSRpMnFKl04t8q4gUUadLcn5gShJlV9TQV22TU2GAYHy8lKmwg6T6LmRZSul6ZotgUBENVBGNgBIym3C6e5yceEWcZNLDfu3NMlokI+xGRlZ6L5DRcz3rVLUWVTD1sDhgtSTVZlqumCoT9w1CeuIlIs4G+naLmU/FNQvEhliNdBLPwBmR6jIsHz2MNvKna29S7JIigYhAVQIO/alQ9D8/fYy3e240iihp4eMIKikoHgnf3bOLLKmbvUMUIFhFIqotXOXhEnB39IhMDZFLNeYWpf2V6d4REUTJsx61AGQAf5kKjEv/Ph3bnPLXJSs/gRkidX5KxLv3eTfRwgWoAjiaWZRxKFSH1FJHf83OQsIOxDJFQWd6SWBpSKhdaQ7UGbsgzqCnqioRUivdvsUE3ZQB3Q97Sr1EthR0d4/Fq1CKXlp4HBAuIOsMuNba+HKJwR+6ZuY6UG4g6jiecSAM+ny73baRxUfrreBlD7uVrqXtBf6kCzNjrFEybHwvXZrwrgPiwBUOh2Ka1ZmiHn/d85QQ1Wd/4ObDfHbgiIiGiDJOrvs2Nx0nd8fsuG3IPTEF2fuUJ2JoD8VqbR3zHG+XOx/wvqKJHQ7dd/ajzaxnfDlgyG4pxCRayXS1tmrP4BrSGO9qsO8oYQZKFqGjCiCRYIuiFaUI2+22NbW2bq8KdF1bHySFMxFJrTUE8DAg9Z2tiEroAqM3d4AmbGLXV9c3b1+XC6gopdCkhWPxWABugGNOl2TkDnZmMzNUIJxeyUiiAEjKhE73VkvBvuPDuHgsmp87FHc5sqzFPqUZKUO/uttsTz6Y94VwYkBx9zCihuge/VwFe0zFLBbc40SXjsd8RCl0sztrTFzr+txlNMId7ixhkvKIw+0YH8ULkXqtAJGNbRbjhlWQAEqS1zwJiyCCVTvqh+3a3cPdCEEcBdLZ0yylm98HDEPGFEz2OifcZRIsSOuSSZh0vHU7MTqouzKA6an4PPeRRd84GXHQJOGtiLgExQ8UgNPpo8+QfPj0qZSiUg3ZmyHURF2qF2lgo2/wJgSkXJbmo6qODhfCAc9ATqvWEmYAjNkO0jatKJhcUIHdNCqTgAINDrVXKAOGa7NnIk4xt4NYxMj9kQRlb52bwXGAG3FRUbBelu22kWzWaq0igHh3K4z/ZPjv0cOdOxmNFxrIULzjCspyaxsAb2uttbkT1EOcLbsI189+Tpl5mLr3B06J/HCjFkCwORnujHQTobm5Hprj9ksRseIx4r55wSQwvk/qHxXpc5/25BNASfn4tD1twwjP0JNkZ5BK2jR+5DkwIktmBIjCVSUyRya4pejVOcSJISVj5i4kjWmTdNgcxweA4Y5y955m42YjJ3C+5mC0eK9Ciui2baWUMGstyxJm0lKKtwMPRrcuRObCWCmASN/zKbK1I2fS4Vm8YBLHLAJzGuq4cakDyBRMN985s/N5KByZN3sb+yGh3o8ARG2AnfHv73pZngnCqEupjlvGLWm96PXTxye6GEj6UorDen3SAQFDxjuDZG30JWKFwmZXNPjBw8PDz3/+09eP9cm2ZlZKbXtxnvN1+KrokMJUtSwLADYLTxtKWmtiFQnryM5xILOdHJA57oJd0dQuEAaYAaCkWDHudIGjKXqCU+jUSnFx8UUX9xYmaCM1bMR7NwVQk2hwBPGK98YBMTclbXhISRPRUBMoYeL10GCSQIOAF+T9IlQtVCrDGBJbIpl7UnTgXCxonNzAmGYOoBBUKoGiGv5F0camVBevUlGgVKmlHGOYM4qC1otqeQaXiffCnAZcMJGSGU3nEwKNExeyi7i4qk5Rr9FDnonefUDtwUdDEjII4OVIblw9TJS0JnVRotFjvaCTRobtS7N/mTjAxnFEXVWVDjpVFDBzMwvznRRQxMHOfdlLk6UhnOKCMs56tEAFlbAwhZQaSqqmn1gy8llEoIEHJugq0YhF4PC1UyRXmFHfYWKG9VIvYXgwpwY9VZH0B4tLj7uGsleG5T3Nff36VQBzvTXV0quOOzIe8LCpSXQk3DFClSiXP/IjDRQyz5pmshHJUmQzLyrwES3scTo6VEusNEzOeV7i+eS+pqqLViq3dqOxZb2HhB5JB5t5t0Yfic+L1rjZcnb8zIlJOOfHac6nm62bhZlAVUmT4UOdqD8laBRmQj8UBz9EPu5a3f7N7HgG0COzOARYwKPh4BTVkYkkJMlRO/rAk5AZCPPQ8eowa2FiMEW0lHLbttniFcbeoVDO6R5HLjKBop9rEZGR1NevYQHeWWPPu90FiynRmcfWyLNr9kd2/ATP8a55hsNIgO6tjwdjJqVbXufJiIgWzXS4tDyFRSkcrQ0EVmzGV6XGfD9/fm7NqSAl4vhKuQzIzcAJ5lIjAjnOlaSjYt02iODLL96qWEVp9MfHy9PzBoHN1cZmoMAaXEUjTTYVQZUM4RSnRBHX0Cv8tj33+I+o0xbTFbfoNymyE+3ggr0YXtr6IKRJ9zFhVyBCoYKCWVeSUMmk5CjCJU5xT98ZRF1EXN2iV1S32RrNEi/T34MU8EPvChdykBI6vQRb1MiERJEde0mHFokYWaHDndYMhC2Xq7M5nULRLGnTti18QmHs2p1/ADIiRsIMSfFwlBtICZFCGhEhK8p+sAcZErdGwpKw9jwkgyvFBWHPHioOSYEoE3SW0XOSnghlY0MUBcmSWL1wUk9yD7Ry0kPB75HefbMiKdT9aKRyOCV5XHo5pTdYFlDc2ALLHB7OCIJCXuvirdFNRSB0NzgUqgjLEUUJUOM/VdIoTMNCNIEVpSJSZruRLSIvzNm2zVG0ilJFHQ5mBKy5C0To4nBE9EF00Q5DudGLSMTsejBTcZRYDgi6uNPDNynOLNABFpHIv2JYxIXICOye1t3pbieRTuC64N1Xb4vg+48fRElsweG95wWLSIoIIujAj4MWoAxnl2oEDjLyCIwHAh9yRh4oSZsbxIVZLjcKvYSHmnF2MogkNdMaNCCiegXUYtYAFIFGzTHvjUAgWouZj9DAmbmO05EQ2LWcQ1AS++xTomWUK9gTjbaseQ33VmQJ6uSCiN0OZ9ms499NYOccs/wqIg46Xf3MgDn10ePdUHHUs2vZZGgZXF96Fg1mxj+FVkXyF0PL6Xk97i4CMytlUa0F6u5UCbsRRuZVFJPKaJZc78Sidg11WOnzGA01dKQPDVydhJ4xyQGoboTa9yg+RJocJt6fDHICRRRZOGxNlj2MaKxw+l7Gswc+PZn6GYF1IqUUo2O6k4fwYaU7gc/PT6/K5en5uT5U39rzao+vFvNTYPbAk0RRAA6vqqoQNSoRRcwLZCGXy/WLx4erY2vtQSs249NNSrmUMmmkMv4KlO7iLDUKQ3Y3yrqq1h5RpITD3OgXiITFgilZB16ALFkPatiJaKBKKbF2z1SU7lziUBPRjYZRxaH7WV0iGZwOirVVwOrZWQXJx7gQSiFdQzdwo6WBJ8L8CyQTnTL2L3A9UtczYhGGUmKPFOIFdQ8VZ2MkegFQkzTwEr7Ce81QVURvPveE533VWWR54d6oPHazAVhiRY0ikS5scEPkPEjJzDNCQHcsGWZZLgoqzczphaCgItLCgqM5oCpNpKhSmHm5SgLKkekcyhkxrBoM2yuhKogy7rEEo4rTRbOxnGZsK0FSmZbgENZVgzITQAlPMAVAlRDnx9FGzcPvC9nM2FhKEbhZlHcAmquXGny8bWibgMUs6lxg1+ND1Y3s3oyUUAHEi5P0QlGPrhUgreTc4I4aAqWL0WAUQclYo+LOAheqqgtRCNIk4poDePRYvnpGJhcqyQIicU8LnaC6kEhgetpVCNRIhRNXB4AHlZ9//fbdF29/9atfbZ8+fXj2CmgvHT1qoIUtJvVepg2AFHraGFQXAMNoQUC8pVc/LOXGBVqidZFbieixTqY8lOf5vIRtVYR0IRbRXojDRaQSRbW4F8KbgVZEwWyWEj3jTiwKmaW6XzNP7FR1dgTsRDz4xfAJkbI2s15CPG7UrOVL0HEIwk5GFddgHjvnQ7fSTbOd45JGGu2QJMZT7LkSh5XemaMmujeYULCTyWdBAti2TUTqmCoZJiGtJdh2sBxVlW7z4NGqMrPDmWWO+U9PyTw33A0SOrd0H4dM8cza3653/RPnOYynjjuPAYrc0SnfN+Y2Cn+OZ0POpvr4Z0ByTCA4O4CkEwJQnb4siwjqgufnzR/rttnyxeNt1aen25sv3jobCUERJ12UGXoLmIhQisBUtC4uMBbjYlgcMFHzi6Og/OzNl7/77qs//4tvywXr0/paapHibUigOZe0lyCTfTVCoGmColFzOuJXkk4LnUYspccme0OkKrpbVNIH04M9xfQWLdZl6vGXYz+IzoZ76BAjYHaXGQFIpNuJh6mEGf8MABdCGhlcWqQ6jRDX5o0O1XDydH0jd3o/InmaAaEx9GNFEduNMbYHo6TkBoWLbRsjR0Sh2q00gG4hFO8Z9wjWa95l04wmo2Ql/VIKENEfYeGBuy/hgWDXeIA0gIa5vydtGUIBLxQoNEiiauSwUlukze0tPaNatvdCPICE63AUt4pFixTxpDsjUmT9AAAYkUlEQVRI0sPMZ2emtUzSpUeVZgCRnK0gXBjR1WkSScNRj3ulozfTgJCua9PAePdgKS5SGi/klVycF8MDyistj+ZXh3nrmXeZsiYinNrck6QbxEvwQRQn0MtNkCNpIVHBnZZFgSAW6GckDa6AtIxqJjm/d8DNWpYqZ69dHign3Z6fXsD+3/iMMAcgQ8ofVr4T/f1379p33/Ht23/z/N4BtQxhkoxsMKUoEJsb4O2pdxHZR5E2KGnv3riv9iIS/b6kmaqajYDIAT0A6IlSg830THAn4BFxaq0BKLUAUoGLqjojxkycRUQhzSwD6KcrKo5w0mvzsMRWnm6WWNQxJggSZgWjPT8/M3MlmK1/Rc28alIV78UC4iyPvM0ZYTo+ZzmWSN5GCtNTfk5n/PvcDrADe1BzvFsy+L03fJv43xDQ0UVSkr1X5Z6HkyXOZw7HKNdawzYrIqXWbdvyaHc0n3nYBOdD5M1+liXbrarqTMPjTp2qXgyVfQbCbCseHeFkghW73l9KsYNQsrd/GL3nRSS4yWxTnQUXTBr2HDLtEZUtqXglQw8WgzSVm1mtWDeUpbq7agX044fPP/3ZO0GJOIBp6bnE3dJBqYUx71rhy/MNv/kbLFIvpZTtFzf+F++++dNfv3/98PqDPV1ePUZzSsWZEUKcUjzyQgoAdY/EHNUSLYe7Z1skMkHRTbjkUkSlKM3NthLZSuF2yokr4NDSPX8T5gmKaLj0M1lIqSjBYptvcKG4omRdrYAfzYxmGzxk/KqKUpbYewoE0fqUUktrRXrOok4SYQYljd3qYa6SZxmR/S0ikXVermXGwhAvhJDlOpbU0zApItfrNdIepMcBJgOrGUnvXvqRo7EKsVwvQqxto3m9LEI0N536jOar+/Ez2xIVCVaISK011uXNjB6w9WZSNN6u08knaRbB88w+vg7AFUUKvDEg33c2RQSGlT08rd0M2E+pKSLAVt0boqmR5VnVWkAZRQzSQo6wuqfNxGAwL2URL2YW1gIKaP4g8h8UfUORzV6b/UGpfyLy8eFhuyFO8iAu3QIPVajWSAwBULWUUjZrEX8hXWnoQTAZ+B3n1j2aS9Y4Zk4zplEL6Ja9qRY8pUZGxHZbVTVOUfwUPuBywD4ML7hzJcMipll2ny7uKvgT6B9dlp+9evz2m5/82YdPHjlo2sO1uixY+m7GxIwO3ylUqAIqu8duOKmDUa3rerlczKxUta3wJS2NggjqScyZFuLu0fkxib4qgNe2/V7VL8ULqM2X7fb21cNjWRqqtTD8TF7VkCVmDO8NneLG+Ao788hwpFJkhGdKiD5mrz/cvnoyKe62sm0P1hRowEOpbuagAeZQoIaqTYla4jvVtpxQSEIC4S0kt+h9tJVSInSqBCtChjMI0ufqXdFCjtBT1RqqFheYmW7aw1bYWmtkiXiYgGqKZDLEtRoNWbbV6RtcgasWEdmsOXBxl1r85loEwPq8zjCV6f97GlpGxqEvE/3LQbLlKCPGzaVtMv1zfkvcvAAhIy5mAMLisbiv/U7vml81K9tmPQMixf2u3PcSSZ1bF0EWMsbYKUzh09u6aXQ1dW9mMclbuCQnp2seHjQH6rN9or8CXgu+3uRye76+/1hurX778cvP0oygf9HKtWHpdZJShCNhHrKQtP/lfyz/9i//6r/6r3/y/Sd5WD54+7yoXRYNboAi6XNVC20sokSoEFdmOFIIlD55fSBR6vhgWMewZfVYzQxb37+JPTmYHdJ1EanF3IPUA8+CSYwRUrvtfxXFYcK96pCkHUwBzyZuVMKiOw06/QXQDTDHyfzAFULRhIp7YPZ95Z1RJpSTeeRHr2TkPzSfGaqnv7gzcE0yYNf/e7kSDJU08mK7eBWfz4KcjDYYI3wpslbluAsHCPQXHeDTv9zHmXHj+OCPrz0oJEREUeip6ISof7X25bYuxFbks5anpWwvdaHp404i5ou/D1VgNkuKz0AeMJdDMxLtFWmmTIwxQBobdVjAwl4ms7oBjLk5TESKwyVrW5Yo3QxtbFpVij7d2sPywLYpnVp4hOfUzuGEOX769UXgY8IrYT+8x6cGDkivWrz/BAVg6gBKX2Hx9saeL81e6fKe6798/qtPr6q8evNspmJ6f6COxklMYA/XJaO/SdQKdgVQonSatxA6HfL48MVf/fbjP/nnf/5h822zUgqg662R6Jnf7BHvXXICa10Y7a47EEJWHqeslIKem6u95sYo9Ihu8wzxK0aItwRvuG23IiXVQTqAWuuc1Mvpilef1LsE6RT0NG8ByT49lpIpiGaGsH0lSdTQZUMc7Ms02TlWW+rCHug0B8969w9OJyLzeu9In7D3tUQ/X+gUYBCxMWbXf3qgvki/c9L4d/Nh2A9SEGR3Wu+RLpImjRCgyVAVKQWEZSH8DEGBRn9up1Ql+XCpX795/Ur9m6/eXNSL2N//5S+Xi8BvDy5vPuqXW328tfcP/n/83P7qjbcSOfcOoMrDw6+/++1318vlsl6EFfiS0j6vikJSi6uq3zYpVZa6ruto0ZkoNcHPZxIvmLf5/njkZvDFYX7sYh6IMeDh/nsmdH5c9k3FNGFgHRSz8+Do+mL3I8x7dpy5KuZwf5s+T6Yb+fdYL85E8LjeY7TCC8++bDvi8UHFDhmfn905xHG9+3mY3jwXhf7hyZzXMuSelxcyl//9wVWOMb0HiwAMMzkBLUJhZt8290p5h/Yu5dt/FwEopxqm4ZffvnvvTGZb4gTAqAqjBCQ6iQAAMjM3/UyKsr/i/lX34BGfGJKOp4jo5LgCUH3EcxMzTOUqO5gSdC9ytX1dvjsXD0sT4H7LfhgBMDh0/jNANxhwQpLiwg0iaP6g5Y/f/PS2SOPVg2y9JBLNuJrrl17aVDJ3OyLHo7Nn8fi+aXSX1yrr8vOHx//kP/vDzUl3UZUsQCvDApFFUSAZCocwUe2gHCdriG/B3tJp1+1/8xkYY6IXXRniL6LrczStwWBvMmzo96P1mUggf7cL5jjSa+wfKKQKomyqSFTfG4w27xEdOgNSrBkzTKvJ/EbFQeFxIIr89Hlypp9TlzDxMJXKARvz5pinJ2eJsqzjqRM8Y3eG32rAfyDHzM4TYlNZSvf9V9VoAJovBUUjEMmaiFCX5lTVAltsXZRQrrfnN+tl/f4jS1tEr1vFmpHIYwYGRtZj/aD82Z/8x6++/e7P/vH/pOv6WEpbrYpqZsk2d1/eftUMLsAiovSJB9xzsrB+uECllBAxXlJiZtZ4ZJM/fHqnJ6YBD6ECc9O3H9zI01izqeqOhdyzhHtFcJ7zXCu1vyv3NU7Oi/ypL+H8k/RskR/hakikOWQ+jEekt4QLqejFFc2PdOV4Z9snTe5FIBzXO61rMrnjnkoCAAY6nSbWCf68qH0V452n94oIU+kJHuMKKv1CVrPLJldtj4S6wFqKTEd43Mk0Mb3kbbxrh5eCWnZ8jn8iA4zZGXwPNwY19VPdgwq6AytYnRxtfj94ORBWqByHmWMUkXQOKaXCb3AHmm8MS+lAMT39/4v4JRgFcOfJJP1KmSNdRRNYjrwdfXV8KauShLA4gIhMD/+hgMXNFZdrQV11bSZAj5kac325PkN/8yzyJsCGai45jpDmkFqktbZcruvn7zzr9kApVCkoRtIsTJwuLr31NVXmHt4yYWywnOAzwM72dtbVr2gtmuGOE6s+fTMLHSlZTgx11jJlYszj2dIZ4XhXyYy0VJm9V1VPkbzXL6OAlLHFAeeAw2imObHD+LzXQkdXijyw8t4m2o3Vp79HjDpQ9fGUMxyOB+vpaMljEQw7dCoizEUDQU90fsg3GLYK77gUjD/cq4TAS5QfiaK5qmzPD9LgrekVWOrq5pUXGFgIgzf1rUBEikgDKNhEnZRf/5//8+Pz+mbb8Ne/wYcPoAAVZqgV66d/+o//+//mv/3v1lVLffW8bqrqBb3CwC5HiAibUSUbNiDDzAZaZM3hbnxnD2ucj8sAhMEin3Xqn5rbXCDhJgo0sswrjaSMM1c4UdL4v4RyGMkNhNFFlCp7QYl0zDCRgemgSfRgjiYAR4uuMNOyx86NteRRhBVkI/QTb6u1DqN3THDKMO5N6HLaInIe4Z6xnfC75+exzdkFE6xODw4GzOnClMh/r1LvEH4J/idozIICdjN0ui2Go+F+kC7BRMKFnch77gCQ2jwUyLwgYVM3bbY4/tEvf/Gf/sN/8Ejhp8+PpRTIBvAHhIN9pThbQQ7XbMLVHaoJN8ggGejJM+jWgsBkkkMPlqOT5WR12D/3r8MrlJFrURsuRlBK+/zon8Qb5IH18iygXtgc0GhONZjHOI86b8q/2/XjFoQX/C/5Q74kGlO6OCnFVVAaFMByUd9a8SIw1M/0rVJAU52cTRPJHpYxIvOzZ6LMg2E8TxZhqogweamLNTEXWS7GbBfvGUO3n+u+BT2QSsUmFXjs+IBqIK3LTi3noWQqRjFOHO6O2DwUdtPFQc6OVZ7oz7htcJfTsDKCpbMK224W1klYinpkgTOlu6I0bfjeP0/IOeEEdT5cjs7a41fD+cTNcxt9uE9nc5TbHPrCmPNhd8g8cTrm4zOEM53VGZyl0eO0SteAG13lIj1vPS2XFAHRbiLCchER2qa+PegGa6gP7o7NyhU3fjIxqa9VldbeP9qv3vq3j7ipmcIFLqji9MvlubD8/Jvld34CqTCiCC4Fsv7mr/75/+T4sPnjxZ59A3rwi8M9sxCjWO7mJoDCIyrQQLIBqJeluU9pSRn2XSbKIsfMMIp3P+IuPe2eSNEhS/bwtugSwyMSDE7Z8WzEMgBRVNWYDn9xXCQbtjvogAGawRExDncqOox8fbMFAHt6ku8hGOM/AhUhS84VVunusmUt5YkVUTRc9dTOMiOCJlxo54M3iWw4nl4ysmcxBKBIX5llvZHVN2I65umNF8WDMyGI8Q/t3nyf0il/YJ7SPMmx4yIc8cAZLHdnLVdVF7dGZxs++3FpFhIZoSHsc7Kwqz8A/8O/+rPXf/Zn33zx6nGpvt6EStQRlTMDsM9wPswgWXUPppsd59LzI0NveKE8VjC4XhYnBVBPqjSGmhd14F66E+hxm0dJJU8diJLnRcGi2y//7jf/5X/+j3725vHb95/+5f/3q3/2r//1r/722ViIS0YjhkR/9y7pWiPJWmtEEc67IJPF5RRnMAB1WsIU78r5tnAieuTRSQW1AS7uvl6WUoxvrvL3//gnP/vq8YtSHhc1MxObRHObdaNsRUod1q8oJ0JxUTgk0hIRFVJ9W5ZiIKDETeXyq998/Cd/+pff39hDcElmLLFqNbOYZ24BDNTl+jASeyLYMECRzKDXNfIMicHorTRyfwccyKy2O38/FIPx3si3HuGQA5KZTvPS+ZKpoAqmoy0iy7LsK0qUJ5nxoBHJnPbnTi5GFWVE/RDx4cAeUdaDUIwqzeP7rN4aQUApuUyhcN03LD0+MSXvo9Aw1jVuPtG9gOdM6BI/bQMQv8IZIaJQ8WbD0eBt3xp0DZ4kJVL8VOFVZQgftt2++erNT17Xd68ub798sNvt7eX6x7//e00qtNy2TUQW4Hnxb698Lu57XUtUODflTeT6xZsna2ZEVVyrFUK8/fyd/N7ymz/faq3rAwGFUlWFiZ0DChHwAmCQGETIXFHrhGM/uhNVHT72RLix37TxvciILz8iFn1IK/PN6PHrY2/GXrpoFIsPQG/WwpgzokzjyNmwX3Vf3WmPZxQfoTczrgwDQDfj7EDYT+w8w8lwFJ9HqlzULs6XShQ9n8tcRL2VuajejoiDJYQQI0VntB63Se+aMg7A/kZkG695tuNBnRL25wnwpP9xns6d+1yl92VCF7Mw/GczDngX4GaNJJlbIlLC3D2dheLm7rXIdnu+LrUW+X8+fQYRRcKUZWoDvaNWfpg02vi7TKU3h1EnYBLBz+gCZS88IIzQ2VgopGgppbQtA01TwpxeHWgRotuI+UwbD3aVwaZvxg0xZjTl+OsPv/mTB5Mvi7959+H5/Z//pv6zv8THZoYnQZjEJ217Ep4GUpEMBjZrLWM7XHZqOCOGH9vdwEa9kH6CxIfqI1rdnTQBlm69aHQULxtKw6sVH27f/bLKNw+1stXriOrfQ9ju9m5HMHETofQKmSRIAVULWluXZaEQLEZclvq//+X3/9v6/DefmH1EmjPz8ZRcR/MAkTBc04GH5rUucTpaa7bNnf72wz4yuAIEEeg0hFSCpXe70MyoZ3yvUOnbS2QAykyLxqZ4ZhcEDvTld/x8kQFHlFfu3SjXFUNtzSPvPIQPZAaKqjZrObHoLwRED/g8F6O+QthUJhxzOuAanSkx0djdfiG9O0sn2vDh/+Ds6QtqJgpyTx7a7XZW6wvl/EQYDDhaQSQabC7KrZkgWu96y/IjPeYKAOEpjHdjEwCgqNSqz6v9nadPP9H6Tp5+/6t644c3dlseW1HKwm0T1VJoTXwtu6FeHFCpGlHWUlqkGmpRKWvjZvbm1eXNw+PP3n39L/7vvy6L1OXx8+15EbpbkhgydCoSpSxmbu4wqFaUdE1F7nyuYnTrJkZX0pSRd4pWstkRdhoKSFLZ2eDFnn3btUfv1pfgeimNQkrWhGBQ1NYcCYJelioNciJSINElLqcF3ZFjp0FAVKpC9omqE9mygecaTr9szcvQxQUhhGeDuda8ty2JEsNMv6EoPLoMC8SiGBFij9KlFQ7JxPQhte3nMzxm3qJhStQ9QLa/G2c8DzfIKLgV5nYyVfDw89ETRoP3xnwFGR0d+CC5Vchtkd3Kyag6QuoovzSVTyAAeoZ0ALsJnrLLXIS7USBAkW5vQNbf6KN0MkXAuyYd9SkaS1kcujldL1oEqmxWRgflozzUZRSdaEQXfyOxN7nkhHJ1CeEglodo0iIFgIFGJwmViDVdt0ByD6I6UHsp1XseJI8BsXFAdkpHGsShWetUOtiBInBiW/DZPzRdHpbHt19fX3318PjVx+/+FltwU5Vdu5LUVWPts8oCZxUttQxLTFy1p7cNVrpP0j2XABER1z1Hq++k2QhDjY4P1MzdEyXUYBQFW5hX3m/rZ7ZvHpe2uqv5RAOGQNL3LsTXZJPdGiwAewiMhr5VSmmqHuV1CKd44Se25yLPBUtVVW2J5lDV1lpzes8tJJPlPIksKrUoyc3FSj/lXUxPFxB2JSwcBU3ojgHtLRvd55yZEjayaoDWnrPgIllnZ3CXftzUHYZdKZrBpJqnVkTIqE2zm45VRWufttEBWUooSlpEoC3pAWsRm2zy7ipTQYz5UMwcsdMFRdTGz0YFuxnJSYkq9dk5kdHBp7vRQ7DbWakjQ8CKFPSyqdPrdI3zq8IePhgDugDitpQmpEupsjm1CLUQJigQia7hsahcmoelSaklhKRagkZ6RVlhnwE+XLZFnlX9+vDk9on2sEhrN1muhKk4CSUu7kKlE1JgqO6uS23Aau1SKkmjSKlFtNYqxFdfvlv0r81IKaVeNLxmgAg1MjXJEOg6wqnUKj0/stQyQDO8v9nIKNjdnJMTGzjpH+x0fxzymVySjHbTkpL4gYgMg8xMJUGI09yjlLL2GlaioshGF+5eoEExa0qOMyHmNAGfTtoBp9G9QZnnND2+A6rrnfmTJpuK+cx4jAks83Jmcjl/OZ7ybY0E5ujGqADP5ab3ibl7tBgbazx9PrmQJf00vdzXPEkfmJ91J+KqNYSVw75k1yORDFFNHY7Zn+poEo/08nlnu8YJwDWCoQQQF0JFVQrJdV1LKeZQLbrU1po3q7UOeuE93S/kAw8pYZI64sbVHSO6ZDLeiEitlaIOU0Wp1VvbWosoJiCDd+muNDHPFOEUI4BOibaoBx1rEDEhQWhhyJT0FIlAgg3CLNIO7zG40azKDXLR7z9/LPVdvcrXP3335u2r1+8e2m+fLYJUu3k49q6qorfA83EkzWspRpgT3h2EoihqkdvV8U5ERAtVI6UnO7aE+VfFIbOj3RibJlB1FhMrVIFtNKETClVXL+W6rTcYNpEVfmu3qlE9YByNw2EYkEwBSKQhA62cPXSLhFicdlIaHSpmJqVu3rzIRm+AilK0BbeDUJSlknBYkpswbBc102gP7fSN2JwS/KwH91H2Sh2qar6pKAiLOC/NzmfrlnV1TCUaghlhtJpvQg/ojbqYWNJ07947OEiUda11YO58xIZiHgJwkL0IpxERlkpVAmbmTndK/FWmVdbFlCRUy2gYQkZGNNiz7HqFkDK2obXGnXqgS/taSoH76CAXRYgkiq+EVN2ZSxxtkobQhHQElkuW95OUtROvHEBzK6UELNk5sCpM4j2liVNJUStOVSliWVc9letoE3Sp0X6xOYRQF6UL1M0dwkY+qECwwb3WZ3u+kZflsq6fnm17XJZmXGrZ2lZUBFKaCZJmAnTB/w/py6LG9YN5TQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "!python tools/infer.py --weights yolov6s.pt --source data/images/image1.jpg\n",
+ "# show image\n",
+ "from google.colab.patches import cv2_imshow, cv2\n",
+ "img = cv2.imread('runs/inference/exp/image1.jpg')\n",
+ "cv2_imshow(img)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### You can also use torch.hub style to load the pretrained model or custom model to inference."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Loading checkpoint from /Users/jianghongliang02/github/YOLOv6/weights/yolov6n.pt\n",
+ "\n",
+ "Fusing model...\n"
+ ]
+ }
+ ],
+ "source": [
+ "import torch \n",
+ "\n",
+ "model_local = torch.hub.load('.', 'yolov6n', source='local') "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "img_path = 'data/images/image1.jpg'"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "{'boxes': array([[ 7, 5, 405, 527],\n",
+ " [ 254, 80, 638, 526],\n",
+ " [ 196, 195, 253, 413]], dtype=float32),\n",
+ " 'scores': array([ 0.88261, 0.85719, 0.79435], dtype=float32),\n",
+ " 'labels': array([ 0, 0, 27]),\n",
+ " 'classes': ['person', 'person', 'tie']}"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "prediction = model_local.predict(img_path)\n",
+ "#prediction = model_custom.predict(img_path)\n",
+ "display(prediction)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4sAAAL6CAYAAACfGsOzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9e6xsS1rY96uqtVZ3773Pvuc+5965M8OdAQ8QC8jYwYzBwciKRGzH5hElViAJlizzMHZwYoQhilCiWEJ2Yie2COCM7SQOoBgmIo6M4kcUxw+IsYMDBhOGmczz3rnnud+7u9daVfXlj1rvXr169d59zr0z7u+oz+5eqx5fvb76XvWVEhH2sIc97GEPe9jDHvawhz3sYQ97aIJ+qxHYwx72sIc97GEPe9jDHvawhz28/WAvLO5hD3vYwx72sIc97GEPe9jDHlZgLyzuYQ972MMe9rCHPexhD3vYwx5WYC8s7mEPe9jDHvawhz3sYQ972MMeVmAvLO5hD3vYwx72sIc97GEPe9jDHlZgLyzuYQ972MMe9rCHPexhD3vYwx5WIBp6ee+f/ZwAKKWqZ+XXf/Vbvpk/+vN3QfVm7UA30cB1HX2vRtWxqRwhTz0//u33+MwvpRw+Z/iD//0rPP8F8UrWX/zpC/72f3mCUnD8SsS//6GXOXrBcPKZnB//jvsszj3ihH/jP32B3/z1Byv1/vDXnPN3//KHCNeSePAORPDiwAvee7z3hNc+vHOO9OqM+cVjrq9OSJenqHiKSo5g+iLT4/dgkgN0PAldolRrXFrd1Xnedz1Kmaabtq/MZv6qTXTnxfB3EWmVoxv1N593f6/Du5tiXV8ARV+361CN72PL6cJNrp0ZW74tWyhh+qtGXiVhzlDUr4wBFfQ+zlePG3UKWtU4l3grpVr9qJSmXGwigsJjtMNaW6UxxqCURkRwzjXapLBeE5sYpRTOOcR7tFaoonLnLShBGxNqkRofEanaWuIiVRf4rWhAq48FQivrwk3xyqMRZXrzbju2Y9bcTaGvrO6zdWvupnXssj3raECTBpXr3rswXkoJggAKKd/lGT5d4NIFdnmFTS/wNkdcDggaQRHo60od1f9hjgsKKZqoqjniAUHwiNRlIIL49TS03Ufl2qKa3xBoEFLgqECUoqqhKEYT6JIqqnLlwpfu9JfQClX/7lLEio5KSIt3eG9ZLhdk2RVZljJfLFmmGZm15NaySJdYmyHeI+KKggyVTtnXdKOsFaVAR5goRimD1hGRSTAmQZsIrQ3KxGhtiKIYtCror6LJfgztZatzL3SIKolIo+0i4KRZpq7q0xUd8I18NT2ry1g310MpY0Ao61htX3cdQOjDMl2zK+o21nn75ner7kbZRim01q10XgTXKSP082pZ6/Z17x0ivsWHrKMhShTlYlPlwmilK9pYverrY1/Qg3Y7wzxtti+sovp3OdcUKAuqxrOa40V9SulifBWOxvrvaVsL/6LWvrZ3ob+cen/aRIfXl71KA0KB9Z5eP5MK73Xtao11RdPW7wl9dH1Tub1Qrt1Oni6a1c9OcdUUdrKWx2s+C3PI977rhcCIrX/fk2EMP4tItymD0F+mWqEzK/U03q3wxErxB//MX12LxlOyLAr9k7kGZ5/8fY//6K9ecHDX8IO//F6+7rvv8r/+4MNePP7n73vIH/vZd/P9/+g1Xv3NE/7+f3sGwN/+Myd84JuP+JP/8D1823/3Mh/+Ew92glfFvBc7YDWwnTV+I6GZ7QSiTUzhNsLU04R1eI8hvm9HMEqHj1ZoVTJYxRRQqvUR5/A2x1uLQjAajFFEkSGKNEaHZS7eh/dGYYwO2RHEO7xzOGvxzoJ4TCHkWSeBYdTh4zw45/EelI5AGbwoXEFvffFP6SCkBgY8fJSWgon2SKE0qYmWan3K5977imo0BcuhT6mM8d7jxeOlYN0kCAm+EED61tMqI9f/bEy+oXTdzy5hF2WOY553B606CuVDLQv146KVRutiHRSCWt8GuAr9Yx+2KBnUZfbhXc1TEbwEIXdVYVOv4f5611UwHpexoJRGKR0EOa2L3zWzTfluHb5VOc39qu5rVaytqs3qdgzkyvuV5E2BZvM2WerZaqHhSczvfiGr/L2+zetxuSmeTXpQKhC2rftWsIMtd6343hWueyqT6t94GJ753bRvR9gNVptoQDNd8+8u4UntP0NGlG3L6f/sAsvdwC76cNCyOKrjChwefyrnR7/pdV77yimv//KSF78o4d/70CskB5pP/z9Lfub7H5Bee46ej/jWv/gyz7wc8Rf+9U/z3g/O+Pj/teDLfu8Rz74r5m/+0COUUcyONd/zt95DvvT81H94n0//0yU6UnzTD73E+3/nAb/w4+f8ys9ekS08jz+R8+W/74hv+FMvDaL6Kz97xe/+gecB+Je/8Q4f/hMPggWlY4kQgWzuEdEsLz0vvG9SdAgsLwJXvDz3HL882H2joI+56dtcG6LCaGhqTzYJjC1rU+P7atqSsV8tZ0ibtvMFLzXxH2NJ6eLZy0K+jQTJBrYIw1onKSyNojS6YPyULrXFUDLRQYNWalql8ynTlYxfYJodYHRtffPOVggaZQo+vbDEqMJaXs5WFeqTYqxEhbq8Vyipcatb2tAgVky3tNLWedb0SJ8ACEFjrIo6ivZLs75uvoHpOrTJDM3BTe+2mX9vp7m6CTZpnZttD2uzsL6VgyLtMkp6orRC+TDXvEhrVnQtHn30tMk+todmOyaiTd9qPHpHu0mH1pbYyTIiRbs1I9IXAmNthVGNPlMgBf1AFQ2RSsZW9bBU+cOzjsBY/V0vGNXpiidNmtBQmqpmj7aKawuKpd6pOQ/W1R3qW1Umrs3TY3lbB5VSrweP7nwcou5dGrmOTvTt26tlbaJNN+cv+n73pR0mrOvwKl52dQbV3GrPsfbuXrbLbzYICfUqUuP6dB3eK0kG+R9F6U6wjWJ/GLZXRqyUUK2/8fzSk9uXxs7PQCf61n+f1W3d3rTOQtf3+3MVth2rkcLiuM558NGMb/mRd/C+3/4KP/Fdb/IPPnTG1/2RZ/nw997nD/9Pr3LnxYh/+uEL/sZ/9pBv/dFXAFiceb7nb70HgB/6bZ/gu/76u7j7zpj5mQMF/+BDwar3A//4vdz/SMqPfMPr/Ce/9F4A3viVlO/7uS8gmij+1Ac+wdd+57M8+66Yn/zue/yOP3SX93xg2mwN55+13H1XaLKJFNNnDNePPUcv1MywiRX/9n/9Ej/0wU8xOVC8+IUJ/9afexGA3/0fP8+PfMMb/P2/eE4293z3X391VL9shJIgVVak2uC7PQlfhdsu4PbC6X++aYMaIoLr3g1ZBbfSEvYwANXM7rFajO2vJ8mwe+dav9uCsW8xqEYHK4svUooEN2lwgYmWYD0s3S2UbzDmShFFUavPRQTnLILCRNPwTjziXOHmKoUG37eYQicWsRalCK5PRXm+NDsq8OKxzhPpSdjiq4ZJWyiWWsD1Xle4le9aG1iTTGndWjBlGwMvVLjkqNL9tpGwsdDqKVFuKKqyWGyyYN9mTgwxgs06xry7DT5Da3XbjXKse1LJrK4akQp30S4tCAVSWrfKMkpF22pdqqEoWIvFCq5jrcXdYnxfTWokPR+ZrkxTCWrSLzAqCJb06nfpbtcoqFNwSK5ByrXSZdbLvq/7W+va5bHpCtjbjmrYpDXm7WELyiVVJy4Hvk7R0PaUgpXqpAn0q9PExhpfNy/75tA203/T/tgURtYP9jqFxi4Fi34Yaw3e5L0jAmrNjl2nXe2rcV5OppGeWrFB41lrTvTRo5LwVxhTLsJyl5EgSTYqbwqlw+3fBBVuNxi+ms6HMtpKl92AauC2bkzWKVmelmBVzYH6QUtgfCIGi7cQttmfSugqZcd54dRwe9NYA559V8T7fvshAF/5B475ez92xpf+a4e8+WsZP/L7XwfAO2lZ5D7wb96pvr/vgzN+4jvu8YFvvsNX/P7w/OM/v+Brv/MuAO/44gnPvjvmwccyAN7/dQfMngmC3stfMuHk0znPvivmW/6bl0OBazeIGrr943Lh5/7SGd/3D9/DC++N+fD3PuDv/NlTvv77nuMXf/qSr/rWY37XH3uWT/zCgv/x2+/z/b/w7uAKNQKCprZm4uqNIgiJWmmU1nV5QoNp3m5g9/D5Be1FXhLvYGlzQuFuqUDZgjHUUFj+lFIYXa65MHectbhCgMydDSc9Cp5MSmZRQKytNyQtTEw4S+i9w6ZpJdQqpTBJEs4xig+Cq0glrEZRRBRHaB2hlUd5obIOiw/noaSc8oXTULU+moKzVJt0yZQWj4MlsiFkiw7CQbC0muLcWbCoiFZofINlbjIMq9yzyLAFYFcwZGHsEvihMraFbRUkT2bjlcboNuqkpJ3NlFS0kRbDNFR2mXNdwjYzWT9Wg9yX1vWZt64laAiatakBrPpyipLWlG2eJ9k8lqr6hO5ru2+L+OpMpDQ8D0bOkEqIbFVHMbdvvIaezHx7YjCymStM7ojCdMsb4+0HqzRiFyrvMdBcTe1n0tV1bADVQVl1ZcWn1aQBaCu6d68sGKrv7Q6tGfA5hPdbAWPnzQbLYvVtZK3tHwU/yytfmvAf/R9f0Jtlclhvc3/gL7zMJ//Jgn/+N6/501/9Sf7kz782SESjpK5QG/C2k6Cj+Ln7asTZ65ZnX41xVlieOw6eax/bfP2fpQC8+L4EgA980x3+9//qBAhnHr/rZ94JCt77VTNs6rl+7LnzYiNIRpPA0LBgNKhNyfR1NY9NN6CSOSp5j6aQ2cwzBNtYF4bKHdIcjjXdj6l7k4ZyZ7BGA/+k4CZMfjdPOV+kVJ+WbagYRl1YYUpmTddzKRRACEgQMrWVpEV5jQ2wzINzxTnGsNuKNjWD7hzKB+uiNppIxQTBKgQaEe9RRXAnFIQoOyo8bwTp8eKq740GV1+9tIMbVOtElUyv1Exvc53ocP5KdBnAgFJhDF61+q/F0KydHx2OoQOqKVRUFs0+Tfa49dGXfpMV5DYb49j19sQ2347mfh2U4++9VO6nIYsq5DpZ0aJ2+cjuCJfKkfCu/lGN6QCNaq7NSiE40EXlTGsJimrVTrFGdG0LxQOCrGombk/2Trm1Fb9c27V4KHQ7L7QvvKu19j24Ve1atRi3am+MVW//dva+QXfKLTn4vv1rrEVtCJehNnfXdWucxpS9BQ+wpoBVhUy1RqSBy3qhtFImdt7pm+BzA1hLSxWDip1m3uFkq2t4pWU7ooNh323X152L42luma8ou4VnZ+42E/YUU9VYuv+M6Nu3Qi7r9SJpKKiaf7t5mnv0EB1qZFyZB09TGB3iJbddetvSkY1uqBt9rRtw+hnLJ35hwXu/asYvfviC9331jJfen3D1yFXPXS48+GjGK//SZKW0hx/PeO0rZ7z2lTN+9X+74vSNnC/8mhn/909d8v6vO+TBRzNOX8956TclvP5L6cbGddH8st9zxD/+yQve98EDfvl/ueT9v/OwpRUGuPvOiHu/nnH50HLnxYiP/N0573j/BFA8++6I3/g/F3zVvxtz7yMZ+VJaLqwrlapak1ot1z4GstjwmwKjUqpxREJqQv6EYLzQ18/89qUd4w/eX8fnD4xZhENMQdOq3D6/0dxZStcvg4TIMjUDUlkNHGX0txD9LwS7UaqYd6Ulz/uCAxCUOJRd4vI8uJJ6weu2e5nRGqMMWkVoEZT4QrhziHdB2JQiyqQPznm+iJIa3GML3KiFx4pxLtrorGv1URXwpxACg8Dp8b5sDyhlQgAeY1DahBCoWkCZUG6x7qoIgMVG2ByJFdll4zwtyyqE4oH02wiO266PXShZNimIbrtm17e/nOv0CozNTd4XgZLKOVNb21dxk/L/UtnScK2qGOVKubIiSlYldPFeUfCUttHe/qnPH5fNU9WbJp6N971jKYPCdB80k4dziKVwW1ZU9ouvcKzaXdCIsD7LprWthF0BvV15s6W1sD8GRjFwdcM6DR4S+ur3XXyGlZY9SoZbQG0xr8sdbmZbGBgqdy2sGadqCa3hM1aY5PJZkzZQ04d1dOKJe0VVQk13VT2ZerdpTz9P1CN1b1Hv8LroUT2N4UkayZreBWtxbHX1cPmDeDfQ3AhD1TTK2cRfNWHIs2ddvic+n58QbIv3TtxQH8x+nbMpvPCl8Pf+2qf4iT8Oz30RfO0fhZODh3zjT8GH//inSS+C9e+3/QdgfgtkGk6STzEtjhb+9A/CyccAgdd+F8Rf+Sm+5Mvh438E/vMPnqMj+L1/BU6f+SgXMSwieDANZxpTDafJNQ+m8De+HX7Lt8M7/5U2nl/4HfCr3wY/+BXnzJ6Fb/pJuD/9CAAf+q3wh38ReB98zQ/Cn/s9H8fE8Mx74Pf9FXgwO+Vr/yz87HfM+Ts/eh+lAi6PDj+20h9XE/ix3/oNu+jaPexhD3vYwx6eCjTFunUsdp/oFMRMyJ8cajuFV7/3G4HgQjyeSx/gYjcIp9uX3V/W25kv7RdA1ZPWcw9AW6myKgi8jTtzSxhk/Puk/K3g6Q6e2kZgvHVd7XPIn6uC39MANaSVePRrP9942Q4y8Tv+neKeRQph8ZPw174BvuOXnxiunzPwl78K/tAvvNVY7GEPe9jDHvawhy68+r3fBHi0jmnes7hNEKkuY3kbRrO86a0ZsKfL5Zfll3d1roONx1No8+KVi/tKjePL3Ai1T+NQLUVdbbxC9uCdsktmXqnSfbqscAi3oXLGew+ttSyq4bk1CkRtLqflpDZkeW9Y2nFr03XTi6hhncqIdpVNWF2LavVnp7wyyJ9uX504iIv3bqNLZoWLXj1esqGWcR5GMs6BfrM1efy86Wvnt/3p/2FtAYOWxfZpkE4FPesq8gkvLd+3UsptYQd6v43ljBt8WfnZdSEBOErP+c5f/EtU+lbvCO5RHnHFfVy+uGbAueqciJ1fcn35mPnVCcvFCRIlSHSIJM8zOX430eQIEwf33SFXnjH+7tucy+g2unuJaV+evoA8zYUxBqehMmUg3RjYxZYz5kzJTcuQ5kZCvQIVVJFNy7sKXb7E2bx8W3ADYd55myEux9s8RDh1DnGW5WJBnmc4l6PEBQ9NBC2CLu5DNEaTTGKM1ugoIooi4smUeDLFRBHaxNWF3tZatE3Rprg2QzzeW8orX3LrWKQWaz3Oeaazo06nFS5whStseemzF890ehCivRZtLl23tS6uACj60YvgsyXiHEorMAkqitHRBJ0coOPGbx0Roj2GYDdV55Yu4NCJlK+6D1pzur0eVTV+Q5vQpvXbPbO6KV/3ffPy7jGwC/fSPtjm7HR1Fq5gactvXgSf5/h0jksX2OUVuDneZjib4/KsunS9tCC06iuNDMoQZnrt5q8DklBdpO5XzWdrxqKk5W2aWwfeaVszpHDJDsWXNq3ybHuXz9KNPmsz+NLafxVgCv/Qascux1IEA2EtuZzlckGaLsnzjGW6JM2XZDYlsxnzxRVZloX2SF0vqpjfxUGmksFWKkJpgzIx4W7GiChKUBiMSdAmDpGWTRDIlNKgFcaYwqK3ZgpsmOt1tPDm+NYd4sSFmaNCL9dCFrz+X/xUUUbZht0IHzd10+4eNRhI2fi7/RpdKX+sa++G8prrbJ0wLdKw8PVWt54ONgXZpmAwnqasFzhEQpE36YKbzpv+fG0h+SZlNU+odIpdqUrR3+bB40FqpKAXCtqYblPdpav00NnBIejjP9el6fLLff3QosMDE6b9bvisdgs2TMTb0Kkx9GgMHRjphtonErXh7mvwA/+kKyjuBoQdMfed3xX9elJn5mT1+7qBq4JzNM5tlYyrV3WQgE1zJrxv99jQZOkn9OsnvGxx19Q6WNfbG8e5saD6iNKgRqiTTq15N4zhEDSxH9igKkf6FpLdHscVOjKlFFrqfM45bJZirSXPc7y1aMnRxTUW5dki8Q6fpWTLOVm6YDG/JE9TXJZiswxjDJHRaAUGR+4sCiHSmqPjI+4cHmLiiKV3IcKpt3hfhMc3oeu9tzgJjLXWML98FFroHXmW4lyO1gZjQhRUwWCUJo5jcDnF8cqqD0om2/sg1DpncdaSFpq/8uLzql+0xhjTGnefLvDWhqA2OguMapShrUMnU3SUoGOLNjHaxBidII5qvQWZsAx+U/wux9A35peqz+U015BS5W4csrQMBQ0aMDiTNmgZxyp/biL8bdJcjjsnsxm3vndlkc1Q7eFF/aVmrAWjDcqY6u7PVgTdbj2hsr5CafKyXVyqvANMei+T0RAApDzrV50LbJe8Gk6pbr/UnbIKJbe7JQRFU3E3KlLInSVuzU9TQKHCvTrR2GAg10U5XTf2TQasPQf6rEcd5q2BWy0Gdt+3nwztLJvWSXvOdxd0c59dV+b6/aBMO7wf1flG6Vs6fbhyLmtzES3cbgpN+rjKX/SvxZVfqvwzfJNonwUt/GkqzLqB3UplSGOey+74zTFQKpfaWJXQwytUSdZd41KuhUbeqsjxAtYQqHpQ1igIQpukqH9I+VPF9OjM2XLO9K7NVhEljW2/61NmrCfhw+uqhcO2k6OJe5/CZsv9eXiMxtO4m6zr4QA3DSLc3ebGwypRvUlJY8aodSfOjsrs1tDCvdpD1zMSVDrksjbfEPrqzV4ItwcoYzBxRD4PDC0C4qSIP1Bv4qrlbtBkfJoTf3Pr6kW1NsXGMvpgnZZmIz7N70PaQzUchL0i/wXj32XA+4JTrMdkTR1KtTw/2szBan5vdGURVAi6iGAKqriLsCC0SmEM4dJxDS7NyRYL8ixFspRIgRYhcZ5suWASazSe07NHXF+dk2Up1qYsF9d4mwbhSxzWWkIQUoVWhtlshtaKbHnN8vqMONYczKYo/wzZfIKOJvhoyuxIiEy43iW/WjB1x+Adl2f3OT/5LJFWRJHh0i7QPkI7ULnj/PEbZO4apy3x8XMkx68xPXond555Bbl8hHULcrdgmV7inWWazLh7/DyJmmFdRO40ziqurx4AOcbosHa0RiuFaIMTBcqglSGOE0RSRFkMCiUaXAxMQHmcS3E6QkcRs9kEbRIwIXiVFOtUaUMIglPTEi8lY1wEEiovNFe6WI6FJVHrcnWCijrzoH23o6qJAFKFcVZ1mdBaxyUt9iNcgrpzdJew1hJ+w41oRThQoc9Vo9+qta4CbdNFFzlnw7oRjVKmsIZVi7FQbJWMQnnNShiT8KZ817HAduh5KUyO0c5WfEmPUK1XZLsOo1Vj28CjTqd60xbMktKARxWWxNJ+KaigOCm8BxKTkyuD1YYoirE+eCR4D94KiEITtDi1cBQ+0sEwKHYkXPWkNKDxDqLINK6A0i1sW9Yi1T0vGPa1vm72jfnQHLuAWREtWQose5UCbbEhrE8KvNczp20Gtmx3u9w2j6OA8Rb9si7drKA/Jd35MqbcPujOI+l5HtAZt46HgoKsMvrlvZlVioKt2Y4JLi3Tve1sKbQbLG69URc19+z5jTEee83LGAXakPBepOgZ3o7gR//PVhl932/GwtUlqf4gjn0eZoKnvgWgGVW5VWLxf0NJ0l27TSGvKKe1Lvsxqtsaa/RKt63BpiNg1s9XaxkrgzQwWi/59Fg/x+AwDpOyioHAY400Y2DYstin8LgR77ErhqW9ea6rY0h02zXUGDVqVU0CUjKPFPe89WNWMaE6fFpdr+rJVNa2vpWlMLla/nrYxAQ1yxgXLWpj3TdlKNfkG8SpISg23Qn66gjKnrGzR2r61MhTKvyDNTiMvSJYxhSqurAeXwus2hTCSoGf9w5nLdblZPMlPs/wzqK8Jc1zbJqynC+4ujxHfIa3KReX57g8K1rnWVxfs1wusDanlHgC0w0Kw+wgJY4M3mXYLAeJyCPLfL5kOc8w5op4aoh0gsQxOkqIzYRlusT7nIVdkHqP6CmKCZoM5TTeCpKDsxLuc5QFoh7icsFeneGvTpjGd0ALCo8phOU8XXB58RCjIpwoPAqnNN4tUcqDDvdG4qUw8hWXi4vCa421y8AcKyF4YApKOZQIURTjhRDtNbc4ZfGRRRmLKIOidJOLwj08qh4LBZWLoFaqECZ1wAcdLJE6KITqex/diihQsrkUAuFK1Ml28vK/xt81adfAGAtmX/q1Gt2R5dwYGgxk/X/9pdUlUDphtIto0N22+NXTFw2rXVMwb8kCVdLVNvYzqu3MlRDSxGQD6asVzjWrsZKleNWaDapm05qF1QqMokc6irb2XYod60sT8TXD3LTMlvtUxQ4qKsavPR/rggO9rMdpxUgkjXXVxL3oqMbQ9eAonf1rsCkr6drPa9reraOvk1bbAT0jOVjnrmHFxY4Oddmwdw8pcNcJRCvCd2O9VfN8sPnl3jWO72j2c1vcUFVZ/QW0q9wWxnpdbLKc9+TYGofN6cLfsQLuVsp0xaDwr1aXygqseh50TECqm7lHEOwaFMqhr+jB5rp78R8aj9b+JCtTauNIjxTqRitnmrjcksZsdEOtN+xyQT8dovY0YF1L6s16i4Kk/VNrRUvx0njftGpVWj0V7qrTur2xlpttKWDc1pS8Dsa6tg3B2An8JDbGsXVscq9rft9ESMszQStpVUPwK6xgSilUlgXXSR1cJ63YYGlEinM8gYFyzuFtSpYumM+vSa8XGDxagVbC/PKSq4tzTh8/5vTkEVeXpywX1zhnmU6nTJKESZJwfXHN1dU1y2WKeCGOksKF1AOa2WxJksQkscYoRWQUzsJ8kWFTi1E5d+6kJOYuNj5AR4fow2Mu7RXWZyx9Rh7PUNExOjokcjmecC4rc4KYGUpytHP4xSX55RkpmoWZ8Px7v4ZkegcTTZgmRyCKPLvm9PQE55eh36KY+PCIqLAcFtcmUt4HJ+LQ2hR8p5A7j1YzlIpw3iHeorTDiEfJFCMKIVyxYZcaZSxEFmUMSkVBWFQGdFQpbbQufGUFnPeIVihl0EqjJArXc2AIJtsGo93RutZurioojYoygVCXarjSdehsPbXW38k2Fp6Ey/1N1/Nu6MCY88+b6xk8bzUybfGy9bxSQo3AYnsmcktoCteqcT9ij9DdxqHZvn6ZrLSqNoW+KkO3xI5Sbp1AUqddw5717IVBTbYZpEO3d70u+uZIW0B6urBeAH4y50IQFt4AACAASURBVJQ3QR8fM8qys0YgHQu3ae/TEujH1DnGw2NM2dv0/VhYsQD2ru9CAPSrNKB37awokdbhW6hgG/trt5xSaVbWNYYO3QS2df0cGoMmndpmbEYZbkbCja/OeOWFd/DDX30fgMs4PLuTn61JXe1Qnd+7g7rkXvXiMHSTt4rYFlfh5edf2piqnEhl9CbV0J7W/tESLEKUk/p2mok99ENbgwVjx7zk/wFEwhmCUkcvvnCdcrXb4CyOw5A6sOKQwu0xMhqFI13OWSyuuTg7JRaHRtAC2i25vDzn6uKMh/fvcX52RrpckGchsE26zMmtReFYptco5REs2fIa53MQT6QV3iuUJBg9weiYRbYkc5o4V2gsy0yTZhF3Do4Q5zFGETNhpiJ8lmOvTjh58Jh0fgrumtjMibziOtNc5oboMMaJJxfPwuX4SCABkQi7mGDEobwg1jO/eh3rnieZ3OVg9gJ3Dydcief00eu88eDjmMgwPTzk3e/7YpROQARrQesJWk2IdERkEqIoLvrf45VHRwalwdsF+TLHZQsyuSZ3eeOcYkQUTVCSIypH+SDweaVAaTwhCAoolI4qQU+0QpRGG41oE847mhi0QUsU8miNqIYlqY9DVL6pJaJ95qpP/9hgf/fLu4LS9XBTqo2dtomwbthSxiqXbrAzjUNgA9RKrRCcLEznWkpsXnq/2pY+Mbdk3lRdDsUdp7oU18r6pFKclO5sm48+DLRjAG6y923HEG7rebKHz1VQPcLGHnYJm2n3sGC0hiYWtE1K4fLzcAybxx2eJowSFsvtAOpt46d++Mcqx6o///4PAvA9H/mZageQKnE4fxIMZOs21XGNryZOmb1XO6WoAui26hFapuuSP1jRLEprQ+hzp6jOcqgiv9QaitLisU7bHc4U1v0Q6qoPb4us2YxKl8XGAuoupp1pg9aU/1bCCh4bNuwxG/ou2xbkjMLKJfXh89olRsispXQ1jqI4KAucJ0+XZMsr8nSOzZYkPmd+ecHi+pqLiwtOTx6TLhdk2YLrywsuL86xeYZzliSJECwqcoAjsyEgjc0t3luiyBCZBK0jnPNopUEJKgpWNucFrCA+xTpwzjCJE5QoxHqyh5ecXN0nsOaag9kLHE4meG9YLiFKIrTRqAScTzHJBBMlTOIDZscvocwU7w0Xp4/J5ifk6SV5esGD+28QJRfEyTEHswsmSYK1GZoJ73j+NXScECUzfH7M+eUpYh0ozeHBHQ4ODokjgzEO6+Y4n+FchmBJ9EtE+hCtY0wUgfYoD0q5QK284L0LH2twuUHrCEU4Z4WOQEVQnkvU4bsohdeglcF7E8ZaO5R3KB3hTSEAFhbJypJY+a2VdFFC3xbTIsgpdTCjYjZB2zeyIrwlHb0Jw7oLJnesq9VTA1XS9erygWoN1nBzOqaKMay3nO3avbJnbUpX/a6+rWTuKrX6dZurQnK5t6jCU6U891ULfp2IvuIRCW7eqKFzdcXaKrX0qt4PQ6RYX5TXcCddA93+3fS7hOaaWBVte9JXYzpCA0t3bJrnLlczr7NGryolm7BN5GJ94/ncb/HsL2vIsrer9b+pL8fkH5WOmscapdxpmp9uWffYOreBJ2EF2w10hexty21KGw02r7MddpvbjOHRFA9au0ChGFMDcmpznPo8HLaF21jCb7Mutil/LGy4OqMBTb6lJHpdOttxFylJd2BwGuWVWtYNmtjbwqYFWmr+20LRME7SnYED0C8whpor9ySlqDpIFdpyJLidlgxnyXR2BNjNfTRmMuxmIo4m2gNm8aH50NuXI3HbFqdNz9eUUluSlAoCQQtnhfO+iD4a2DvvLN5abLogu74iXVySL+Zki2seP3zE5cUFZ+fnnD5+hLXhmos8T0mXC7xzKCX4CEwUwtGLKHIRcFJYLRO0rq1ppSJEaYUxSYFVOKInlVVAE8iCArH4NCPzCzBSXJ+hOTh8Bi+KDEM0mxTClia/usZMYlQUIdGU2cGzmOgQ7w15GgiAKI3Fsnj8GBY5JlqwnC9JkilGB/fOOwfPoeMZOp7i/ZTlYoHNF4gP60AbhdagtWB9GgLXuBQvGfFUCtdQG4LOKAKhEof4cJ4R78kJEVOdVgF/FQRArctQ/wZRGjHhio0QwEYhyoQO08U7EUT7wjMAEAPeIFG0wiBKQ+go54QQghUBDcGyDvtfpmuDrPneR8NuvkqG5v/YtTHG7fumUAtJtaKv5yUgtAN/7RZG063y+47wqOW6MM+r+B0r6YrNt7Fv6PJMbkMvUe5HNcqlkkOjin1vvaKiZvJKpqxiuKRk5najrBhy1yqF+753K2XdEo+3EsYyek8Dz3VC5U1w3JRnVJmr+pXewR7EUW1WbKybz/1dvo5mD8GTG7td8tdNCE4Eam2a1bVbvel9X/fVujlS7gAjeWLpD6A1Vhh82yhJ18Bt9+UhGH1msYVEc09uLvTyGdUWAz3buerJ2yx0iHnf7IoSMOj1FS7+tAS+LTS+bc3lcCjnIWgKe1prwjkqirvZwscYU1kpQpTFdpCWVU3wah1D86bl433DBXAbgvNWb7Yl7AaPMGaCBAswKmjjpRnFS1BGF2fuHMvFnGyxRGwOLoflNYvHjzh5+IDXP/kJXn/zHmmWoZXCe1vciWhBCUkSMUlijAmXSU8nh8TJBO8Fl9hw96LzwRXWhxUXacNsOiHcXWiDG6ZSGKM5mCYksUcrwShhlkxx1qNchjaKyeExOlaYOObwxfdwdPwyogz2/ITp4QHT6SFxdED6yOPknCw/Zz6/z/XVp4lUjMIgeUasUlTs0WrC0kxZZkvSdM711WO0NkwmRxwfvcBkcodYH2LMDKsUXl2S2XOyzJHZK3K3IE2POTy4E+5xUxMUEeJitJlhkgl2uSR3OS7P8T7HRMHCIRIiNqbOo43GxAaPRhkdrK4mQUcJFEKhczoI3kqB0UBYlxiNsxHauHDPnJ+EnVJHoAy2nFuq4a6nw7wQPMVECDK5q6/KKTjrMK2koJatKTq0Xrsba5travPRI7ipnUFoh1LdZzcHVf1fC+NtrXT5d/19fruAlX2m2H9WOBKR1t7XhJtYKIpflRJ2GyfXllVR1YGXepn+sp6yfCkPetSstK7eBwhCokfwNCMpVtuwKoXH/vatO+dTtrDZUlUn7FFEru2C0YqDmypBb1rOOHjrhY1tYKjt25zpGltHT5inG8D2RoEx+G/TRBkQbMY824zL+Ctj1gt5w3nbILXRqLOQx5zX65cX+scpkOLNRqnt2/D2gF2eMR0Lm91Q1+Cg+l5tEMB2JpOP3xcHi9hJQX1lqyIyom5f2NznUiMEucIXjI6Iry/TLq0SQhEiPpym2sOT3Aa3mA/BTFdr7aUWDIHivKlUjJEyBptn2HSJypeYPGN5dcXj+/f5//7fX+P05IT51RV4QYkPAWecAw3TgxlGa9CCzfMgEOYWbTRZZvA+IU4ilLKgcoQMtAuyiwKUx+klShTKazyuOFcJyyzclRgZQCsyl6HRxEfHHL36pbzj5WfR4vBZhl/mnD16k3R+wvziTU4WKVomGDVBDnNEUlyeslxc4jIBiRB0sHgai2iP18LR5B0oLpHsksw5stxh7SVZes3DR/c4euY5jo7v8swLz2M4Zja5w/FBQhTHZGnOyaNLPn39WSZTw2w24ehoRhQbptk1JjZYlyIuBBAKEKLjaG2II8MkifHOhr7EobwHpcI6VIW7rtd4gus4SqNMVCtoVDjPKCZD6QQVZRg7DYKjjkEV16oQzjlWip8qimp5VUq467KMWSk05lNLziloSENptNO5/MRhPIM7SvBRCpRHqSJy66ZSSyHuLeqToBeQ0qPzqULLQ6V62Fai1pbscAVHad0WaQqFBBrXKKQVuqfo41qRWeQrlKJKqeJu1dqCOY7JaShKZXUNqK548Pbl8dbAk5qTq1aZXcMm74O3uyVmDzuGShrsg/YaVeXKHXCNbsXvGPSwWUGkoXttXItTldWu73MF2p4fNTyNI2PD9ywWmlLpPmtZgWX13ZYb4taa1dIds/Ou2Ykr5u/G/902tInalgxFywrQ3o+rzXCguMpdp5G5OhvpfbheQKCrgdu1Ve82z3ZR101gG/eVTS7JzXchKulw2kB4GpG0Qo7G+Jffaw3YYn6FOAs2I7u64PLkAecnj3nw2c9y8vAei2VKbl1hxSruLzMaL4LgseLwucc6i/jwTHmP9VdELkf0BJBwZtGFewlLdzPvPDZ3iHeIOKiItDBXQhJDHEESaQ6TGZNkiko03i5J51cY8WAtkmYsr89YXD7m+vwh1+cW5UK00uSuJ0lC1NJpFGEFhBilIqbRBBUZlFFgDHEakUwiZm7GIlswny9wLkd8sIwu5ic4WbK0l2TLcBdcZGKMiUjTjCzLSNOUOLmDF4O1jmW6xPo3iJNHKLEYsRijQtAbkcp1V2kJ1k7vcdYG11QVrq7R4kOAHG3QmMLyrxFcWI8UrKsiWDONR2uL8h4VgXYOjCuiphb3LxbCIqo8F1l4DRTvJPgBU/v1F/k8rflU/u2bleMtIOverLN7jYd+F8FblMca0tmksRsLqNtVC4xF3sotdD3N72Nkxp6HbtNsWkbjceNViUgb+1Ea3ypFaMmQVfOwkbqw/g31YMBR9U6N1k8pcCzwLLNVgmNxnWLTm6V8V9fTrbdTWzO68Io1qkBQynW82pZN83KXjNZNrTxPA8ZZv3aTZpt0cHML0G3gNgLt54MgvI4vuul8DMt+DV9W6qyql5vrqvDrq6nXO0F6v1YCYwe/TfW3Sn6L5mfz7yaPwU1wm6N/w5bFCtGRiNDeRLpbcFfP1dw8hhj/7SZuf2f0sQPlxOmeWdw8J0JpfYJrlbenjKY2tRIIKxN/Oxpqee6DckPvMcV3hca3q7l9F+Vv6+ZzUyZvK5AG667q66fr8SoYMgnjuDy/QOPQ3jI/fchnP/FRHj+4z8P798hzBzrGxBFOwJMXblwKrCe3ebh30TYvcC/mrrc4vySKD4BwNtI6h1KTEIhFNHnuyFKHlyXCIrg9l+5iLsMYYRIrprHBHdzhWB0T55rs4iFn6WOMBqMgEk26uGC5vGaZZsyXCrEWoyw+gcRMSJIps4MZzgkQoXRMMj1Gq6QIDGNYXNznyByijeIqvebs5DFpusDaFEHI/ZLLywWPzx4TxRKEXq1RBMHQe49WCXFyTBQFYev6asH5+TngmcYRdw5mTKczpgczMIKIxQnh3GSksDZYFilcRJXWiGjQCk1Q1EQqRnRYj846GnZjEId2DtEW7SXc7W4s2ltEF5NChTsYlQ4CNdqgTHmfYxBQRSY1kdVC5bonUp2VbNKqLjTn9hDjvYvzQP0CoRp8fxNYp0ENckhbI1cq20rrUq+w0SMIt4SXTj+1zxr25xvS5q6MR1XFdmcna2FoDd6UMnG9R1TpQuL6e2N/8eIbtKlxlZM0L3Fu9pu0y+3WFEyGhaDYtX5LQ4CkqqfZD0PKvGZZ6+ZWFQOgLrDVpiG4yf7Ut952sRc/DXgrLH5vZd+Uit2h9zAer7F0cpv0vWWEgrbLc1Mh7ykpK1YrLv/UdK7gnOokK4qdNS8au3NlgFnp+lKJtgpjXGG3hdustaageNs1s6mMMeM/PsDNE4U+Ue6thdsNUCkorGfsqokgqhATVXGmTVdCoC98foJ2VlX39ZXlfC6Zz3cN27R8l4uuFw9V+sYHF2JvbXGlxYI8XVZC3kQpzs8ec/boPm9+4te5PnuMzVMiPHoSk3rInWWee66uHpHnS6y1iIRL5aMoJo4TlKK4rzEiiWMOJi+RxHcAYbG8wvklzqVYa8nzK6zNsTYnKgLURPEMrSAyUbhk3ucksWI6iTiYJMymU545vkusFWdv3iO1j4gSIZnGKDnk4OA5Dl78Il78wq9gdnCAdxqbC2mWcnR4zHR6yGx6wPzyApdfg5sTuQuuzu+TX11iF3Pk4JjDw1c4OnqJl80x9p051s7JsnOW2QUn5xdcXM25nFt8uL0RLwJ4FDa4cYoGMURmwmx2B60nnJ+/Qbq4DkF1jCfRoOIYFXvEOZx1ZC7H2wUKg6KMYCuId1ixOO9QOgS8iaKkuIdRoSjOGZaRiXE4Z1HaIs6HwEImxusY5X3lLaC1RnSwICptMFGMFC6tWmvEGLwOgqXyQetQvgOCV+AGhudfRKhdvv2KoNSFroC1udxxMJah0MV51aBRePIQGOSGVloVjs6V8NqI3t1ksFpt2LQvK0oVmRaFloHzoSKU3FulNN6OiENHOF/3fRv4F3kP3cMedg+lVmgEDVWlgqvwPqDUsTdpZCncNRzN1y5Zqf4IgpfVpJuDFu0OPt9oywZhsdRc9uoS+5/VitSWpVEBujI799R0AyZ+e+a/fZ+ZL04KVuUBZcj16qzTGq1ys53dTUxEF9YKKVzXijKVBAZXAVLcv1ecuxGlEadQGIyJCfdhKcDjfU5UuEZ672smsqpvvMVgXZ91y7wNNIUz7/1K/UPpb1JP/wHsYUtj8/mKqZ9w5rQSIhqW3ZCuLE+BFJECi9nuRZE5IU0ty3lKJJ5YKQ4nCQ8/9THefOMzPLh/jzSfM7tzh8gfcDm/4tHpOYssI80tqXUF4zUJAVuimMgYjIkwJlxVYYzGRIYoikhlyXwxZ7lYkKZZ0SaNUWCdQwRMFDOZTkimM5LpAd45ppMJSZwwiWJwnoPZhOOjA55/7hlyuyRdzsmvHWmes1zMUYsliZmTLk6JjOHkfsSd4+c4nB0zmx5y5DPk/IzFOSwR0vwquFuamHjyDIfv/DJMnCBaYyQp2qTxVqEzIXIHmElCevqYg0lO5D3H+oAzl+JEg0ScXZyHNinhYHbIMlXEiWF2OGN2dMD04DC43GYaM/FMDyZMj464+8w7ubp8xNXlA84fv45WB0TxITq6gwhoNEo0ShRxHJWeoji/CK67yqDVQbDEig8urN6TJDMU4WyyOEFJBNogbl6Ml0G0CXSisKqKTFE+BmUQFDoprTKBqdfGgNL48iqPkm4pFYKJqHDnIzqkk8KsXW2n4tEEmtKk1H2CTdv9vn999advr6H1VrZtN8ym2tcTrkIqAyN4vDi82EA3Ca69WgtoS2HUKpiFgmFRZTn1btRneQxLuGktarRX0Vr/Va51gmKPXCqN52N7RGSdYBn2lNJSWbSg2nOluOoleGr5Qk4TRIcATnhLOL8bYSKDdoEVM0bjnSouyi5pYZG3KeGpcqZJMQ4OT1CmlEoOpWrlZkvJ2ZqPBaNYuZN1/7Z7q7t3DQUW2WRV3Oz6OryvDNU5XCY0LSBNDmndNr5azKp1ui63+b5/r9+GZ9rGy2ton7+pVeNm1j7pdFrJxw5Dy1OsQ9P6FBN1nd2/68dyGO8OLiOh6b3QcHvZrOcZW8eaYFR90OWVhotVtXzXytLhRQvi2WonFPgLqIZnBIGF153o11IoqyqauqWxpTvmt8k7Fpo0rG3wKNtRr/Py6FSdF6p5X+1nbR62xguGJ0uAUfcsrkC16Q0zGOWWXRKtamxLbG8MqtrA24t4OE+XfHQ1FUP3r4Tym1zAek1/y4VKARKCXRSq3c46rgWN8H8RlbF8roqzaaVmuFNXH4HedC5vVxqPIWF9yD1rF/WXQvrOQSlqYt/PSLddqBTiHYhHSqbWe7zzaBRJHKO9JVvMeXTvDU4e3uPy4pR4NgFjcOKYZxkX82vSPMdahwNiPUPrOFiizARtTPjocO5NAOfBphZrU3KbsZwvcU7QyhBHIa9SRaRPY4jiBBMlKJOQRMJ0NmWSTJgmU+wyJ4rjEAlUGxbZkqvrKy6u52SpRYlFi4U4x9sMqxRGR8ziQySxGAUm1ljrcc5ibYYoG9pgNCqKMfEUHSXhRjHnyLMFmcuxWR50J2IRWaB1zMHBXWYTcDZCza/Jrcc54foSKO6KjDS4fEm6uGSRRMRJFK7giCaITDATj5lMMdMjdHSMl3Py3LFYnDONHOgIYw5QositC0yyKBQTjFeIBicWpYPmU5SrhUXxIRSIt8W1Aj4wzOLAFxFUfbhGAx01zi5GIB5lkkLYMyFKqioDgGiEIAQihlLzWpgbqa7xkCJYTsUY9UgoN14C6+n6EPPZXds1fbiBwNhSIDbbJgXdD89rGi5UBLKU7wjKtjJn6aXRW18Lz3p3UE2F0WjcqxbUbVA1RuMhCGndPbX+2+jr6qmqBLpa4PVV+6RULhDKVUoXfVlcq0MdtbXSgUldfrGdtfEp77psPA9l1QJiM8vqTlzjujp/ZSVHF5oMnHSe34S5a5Y5BDfZx2pFY1VTm1/ozzXiWXed3WyPfVrWkCddT7f40bX10Ll1uLZpYpd+rK9xtPDQWEMbXakb35+M99TIxD30fsVtviX09ew1a/Ho8GFQCbL1flArBpp9N8awdLP1vDtvtbEKllKnUSbvQ7uh91h5PjZtFzYHuNkSKuLcUaNWnaoCdrsgFrfyKVadySflMzob9JgzjNtDJTB7qu25DEZQuZh22nfTHhvq69uOw5BQOCbdTevfRuM5Nl2ltem7IFlVpKeNB+Ccw9sc8Tmz6RQjjgjH0dEBR7OEy9NTPvKxj/KRj/0G3luiJOLw6JCr+RXnlxe8+eA+14sFSkdEUcxsOsG7KAguqmR4dbV+nHPkNiNNl1xfX1NaGqIoJo4SjI7QOgIdEZkQpCWKNFEUhfOMywuO7xxiIofSGdblpHZJllsurxz3HqRcXD7m+vKK69M5sykcTA0HkxhvErSZkiQz7hw9w/MvvsLB4R2S2YwsDlYE8R5yy9H0ACMeI5ZEFsxPPs78/JTLkwd4fYbPHd56fO6Jp0FuEmN4+V1fz/SZd2EOjpjr+9y9f056ecbF9SPcocLaSRCU8yWZf8w89czPQGRCcnBIMjtiOn2RO9FdvNW41HG+vODxw1POz0+5urgi0RonE2JmJFHC1fUZy+USmzuOj47RJtxRGZkZR3eO0cbg/BworiMRxWwyYZ6miFiieIK4JUpHaBOhlcG5DAd4E1xPS0tgli3RUYI2ESZO8CJFpFQFxiAShfsclQHlgoJABSuaK6K6lpuy0oLSPgiWpQESVc/gDcqZtnbxZrBzxk9qK1mzDlUIxaoUmkUQL0Wk6EKjLV3RpMhfCFHrXNJbe0kLlXEd02KIVFVjR5AeLnOMtatp9ew+L9vU2jualrg+gVfaVtXQpz4Ecg4lt5M3nxbjoXV9fKJqX4dnbDI3m9q6llFfK+x329QR1FlVZIy1gt1m3+oTVLexVN6kznV5bnteaZu6xr7bhVVtF/n6oOtpNYbXLBVjQ/O8C4N9tgXHJ+X/T4BXvQn0tkttd157FRqNU90vJZ9U9Jqs0ruaZu0OxqyrljJri412aG6M8S4s6ytvZOjO4fLWhbE06GaWxRHwRPVGim0s46PLLOdW2zKoULKj00JNEX5AnG8yRfI2IJy3gV1qXlpQjMmu29nV2nRJdrctufPEUUQSKYyD64vHiHfE3nN1cs2vfvxjPLp/n4f33uTs6hxrc5yzLD/7aZbLFC+Cjgx3ju/inOCcJ0stzlqUCm6moMnyJdY68uLajMAPhvvS4mhKHCckSRBwxAvWepapRZRDG80kmZAoUMqgdYx3MefnC2yeki7miLNoPFo5jMmwdkFkFK+952UmcUISxSRxzDRJSJIJ0+mEO88ckhzOyMSyXJxizuZcLh6Q5ku8Vxy9+uUoNDZb8uDhP2d5eYJ2ipk5Jn723eR5hHWGJDEcP/cMJj7A+ztMD57BqWuWi4fMF6dM5AiZHTGLFe9+9gWsg2Wace/Bm7hck+cpaZ4jGOx1zvzylEX6gBw4vDPhueePeNc7vxitheM7ByTmN2EkITHPcjB9gTgGxYzpbAHkxAYWacrV/Brx12QuJY4jTGyJTIIugtVkmSWJJgA470F5lHdAHiyEhQuwsxpccE9VyiCi8DYGY8BGODVD6yicQ40jREeVYKl1jDdxEEK1wRdWR6UMxA4xBiUGpQUwUNCM6nzl24MMjIKaBK+IioAmRA1qCnXtwCyl+bC3yf0y1jjYZAB4UjRuC2gKikFYLHuiI/gogmmwMA8qXQt77fK2UyCUdDgck1i18Cmkg9/4iVlZCdTurSajcbjFGI+1bPyLBJ+/fbFuXpfrq0vbdghvhy5V6qngURkwb7jHNYWnbQW4t3rudvG+qeGkhLHefk9EWCwtMN3qd2bFalkBbyi1l/9XCuE6rG6r80Q6bjcjcWzgtiLctoRRgu+2am+w5Zor8Wzur10twToc1i2Gpy1IjtGY36DQMDaNsRrSXo7VKpdFV++qtI2/Un6TwGjh8TYnX1yyvDwjXS5Yzhfcv3efN17/NGenp1xdXHCVXuG8w4sPkTiLu/00CmsdWebC1Rk6nCcSwpnD3DqcD5og76Vg8Ex1blGrIEBYJ+BsEFCcx0mNbxUkX0JUz8VizmJxRbacky4XxEYTG00SK6LIMJnMiHSEt4fM84wsypgkFm0cBsEr8CTkNsZaT5alZGefrFypI625PPs0RkcBBX2XwxdeJI4TptMJ8eSAzC6xPsNEE8z0GYyOiJSQpp/FZhk+t0w8CFcIYCJNHMc47zCRcPf4kNxOWKYZ19dz5vN5uDfROcQ5PJ5s6bi6hAf374V1Q32fpKhgxUvTHOc03hucz1gul+Q2BLrR2pBmc5aZkNs5s+khURRjdAxecXznGaIoQiFQXXXjEdfYw4o+L6/OUDouguQonFOIErw24UyZj1A6Kq7WiBATo0yIIivagAoWyhAsx6OIqe+dU4SrOMoJ3KaRzfm+alkrMmyAm2yw25ZZ4SihZd0lWsaNbgoejZb01xEKrsvYShJiC4GxHAnp0POikIF6+2jVKn3qeDYMbPR9be7zjyhtsVqHQGrKK+p+bJfdYnVb+yTULmHl+NyM1q/kadQxqjxVq/jWuaF25/8mC8G2836MdXJd+jGwQmVfEwAAIABJREFUbb++1crj25yTbMJtvN1umr8sY8groY1yow7p/G783IjLCJqzDVRzuKRNI4WEreoIFa1/dwvozouqa/ueU9O6FgI72LZuZS3elQzEOJmnmea2R8BuJCyuNY/XslHnC1tpEtfBiotrF6+BOm56uHQTdAXMXgZMWDmzWOcvL+/upytVOQ1r47bwtCbvtm4lt2Hg+ohSn1C83pWrP1+Vp3Rrq96HT2XBKMyP2igkt9h0weL8lOuLE85Pzzh5/JhPfuJTnF+csVgsSBdL5m6OqIZ2XQdLifNgs4w0s1jniaOYZJoACutsuFajGPsoitFxYYXS4RyjSAi2kmU+BBIrLEtK1xoG7z2uOFvpnSPPLNfX56TLBS7POJhO0UmMxDGRiYniBI1hOTekWUYcO/KZYnogJCgcKgiKoskzx3Kx4OzkMxwfvsI0ucPEJFxf3sNEESY6QE++gOOXXmFyNCGeeUx2ROJPyP0FMIVshqgcrc+4nn8KPxe0jTmKn+PaXIM2GDMLbrXGo43m+eeOET9jsci5MFdg32DhlyCeaWxQPlwIni099x88ABFMFHF8fMTBTKHzFLVYkuVLkHC/Y5plLNMFxmjiOCKKDWm6ZLlccHl1VgiHE4xKEA9xPOFgNgueoYXFFwmBnbQxhVuuKxQDDu0NUazAO7yEcVGaQojUiDNoExXRWCMwCcrkKB0hSqPMNFgdjUEX0VwUhUCOqu5UF8J9l+0Q5E/ufMVO8qhyXVO7jZYvSiiCIogQznZrjS/ctRWylcfJGCVaRQs29N0Y2jfOrWxIUFz/fEXL3CNwlXSnDELRRDkI3VL1e2WlVbXgWLrSijRPBrUjqqpmeQPtXcdUDs6R6l1TYTeUvE3/u9/HMlvDwvsuYFyZt2H2thHAdqUQapazTmAb2ouHcFxXz01w7Mu3jZJZ1ioxVONTpC0z9ODfrWNVuhl4N9D0MXzx7oXGvvJkeMEOwMoYVaRAWgJHqR/vr78vMNS4dXEbr4Kh37fp923Gbox3w6Y27tSyOLw91PPkrdVxrYdaL9x5yE2VEsMETiBYiTz4cjPvyaOUqi5XH13zW6xJLKGLxa6w2maBbAPNRdUUEsPLKlEhNAqJEa6uLphfnHD1+AGP7r3O/Tfvc+/efR6dnCAi5HnO1dUVPoEyYBHAfG6xueAcHBzoKjANUNyD6Mlzh1KKZDIlmUyZTqd4L8ElNbNkWVZZK0UozifGxElMHMeIdzjvWCwvubhMcX6J9wui4p74eKJ59tkpsUnAe8TPubxyOJ+jjWd2ANPZHZ49fokXnn2VV9/xGhEK73KWy1MuL+4xX5yySM/JVUxECiomMTPuTL+EJJ5gjOZ6ecby+hM4F5FkCdo+g5FjpvIeplHG5elnyNM5mbX4HJxaYs2CKxKID4niA+L4MMQvVjmTSPHyu54j0seINzjnOL98yOXFCfP5JdfXV3z2zQdczefMF0vS/BIPGBOxyDMEcPaTOJczmRxwfOc5kniKtTCJZhwd3uXu3bss0yse3PsU5xenLLIzrAMlwSVyOj0ks5bDw0NeeO65EOSHmhdwXqp1LoXSyOPxPlyHEizFnkgThBGlQCucDsKiNqawKkYoZcI5xngKxblI5afgJxAlEJWbplQRVJvn5D5nQG2gEQ3F2aqyCFjnhroL1Ho227H0pbbANd3RWinGYtGTdzsQEbw0rs5oMPPV/Ytr8JFS8Rl+tdKFoamtvbuceyt7c7fs3ehA9vAWwy4VWk8L+nFexw1v07YG77FSaWdFDFkbniIM1t7LYN8G3t7z5EnO412cfdyWN965sNhGpNDIFs+elBZjDKxqCRRdNfQGPWilVe3bsEcRuUJLXbotbOyFHsvYmL7bVZptYBuN4KCma2yFqhard74oq3laM/6q0EqJSLAOlpbG9Jr8+pL06oLriwveeP2zPH58wvnlJcs85/x8Tp7nKGWZzxXaCHGsODicMJ0aXOyxuQuWPGUAVQSwcSilMXHCZDIhjhOMMeS5JctynBO8F4xJyP0CL8JsdsjBbFYERAmBcJyUwkmOeItWiihJEJfVDnOiyDMXbnvBcHRwhIkC1y6A0RHOa+bLC958+BvB1dVZxGV4n2MtKDtj4mJ0mpA7y6P5fWbTM7QGhcenFvPYEOuISTLBTw3eWUQ8SWSwboF3Oc56jo/eheZ5vAjz/IJk+h6i+Jj4cEIU1ess9RGPLh4V50Ad1gJ+RqQNk6ni+DhFRxq9EFSakttgybte5thcUIRx8T7Fu0uMyVDEHN+JmC9z1MUll5ePubg6Y76c49GcnV9iTHBDzZxwOb/mYB4C37z04gtgohDdVGxhgA70QkdRRTWstZXCIDzM8aXS1VMIhxrxBuNtEexG49Fh3AphEcnRYtHe4ovorJiiUG3C/KwMTf2CTv1st8x9s47RaVF4cb00oBZAio8ug/wEpY33viDnpbQZrmQoz+1VguQILXuQQ5vWiprej9PSNxSjLctieNl0V11pY7vEnjT9eTbuPw2hsIy4bYxB+0IJ2RIA63IKR+AqGIL0IFEpOUeOde0h1PNs0LK48qVJoHvraOI49P6msMmqtYt99u2i+G3Cpvl2U2vsbSwv68biSXhBDNbRENpKutNOvDU6/XlaC6g/0dOeOzVfO4Je3qQC1TguptrlB9pGrTRtIlU9r7jGztGF7fnsdbBuXeySTx13ZKF+3rXub3v9HtxAWFTNnXDd+zYW6zf/EXAbX/4hAr6CVaX5rcOyFw9a1vNW3p7i17otNNKsbVGlMK8j//Xl2oVb6W0F99sIpLs+k/AkoBQUy7kQ/gW8S7cr8R5/fcni8ozL0xNOHj3k8aMTTs/Puby+Zp5mpMV5wyjSqOKqgxBpMCKKwUSCMR5jYoLgFjwJRYUopsYYoihGKYWXYFG0TgorYkQcJ4VnnnB4eIeD2QwQrLXkWRYEKZvhXXGRPQpFgtIKoyiipU5QRRRJozWT5IgoCW6uipg4gsgonPNcX5/jbAreosSj0Uhx/i5RU4xJUBpyn5NTXE4voMTx/7P3Xs2u5Eie5w8qFMkj7r2ZWZVd1W1dPTuzZjNPY7Yffz/Bvq1Ni5npLpniqqMoQ0DsAyKCQTLIwyNuZlZve1qeSzIQAAIBOPzv7nCv64omKFxt0dJQNZsYPCZJ0cYQVBKdKvMrghNgK7y1yBBdSoONFsGm8Tjn2CwtD/P3NLYiBI+WE6RPIuiVkjyf4H0MGlTZJc55POBstOwpJdEqQ0iDdQEfHEYbrPdsqhLna6pqgw8OhMB7QV03KBXQKlBZixAC5wNpmnFxeU0qdIw82zFoaD0DWk+CEHDeEdPhRDfZLudqlCtaYV1ICNFiLESXT1ESgkcoDV7jZLszh3j2FalbpYZESkc4cdj6qS4p5/Kc57qCDe+NUGoLYhl86lZiBx5PS17bHH5j3To1Bi85YzVUBA757BiAPEbnsMEhUNz/N+yVO3S1l/04jnm0bPe5kVyDjIDhFm9uLahh30PsKJ3ai3bG74SA9BqC2Kn96qlK2/138tg9r7GnvwYde86x8X0MnA2v/1zPcI6sMfYcz5pXfdEhX3p969LRsRSMeqb9nLQzfoJdRvyEYCD9Iw/+3VeU9e9sUCwMmNDOWwmDvvW5fA/X7DnPtZXXD6+dfqbT4O5ceop3y/5afEpbr2tZPFR77qW9f6X6w8hvT62r+zucPXSDNxxEwUtCr3Za217BtA+2Q6fjGEudQR8N9SxL5KDNn8KV45x2xnXor0BHlBBw/kYeqwkjG0MXUhhiKP7+ThA+huv3HmcbNrcfuX3/PR9+/JE//eEPfPj0mfvFkvl6Q+0cxXQSI2YGz8RkWBejoRIiqJBSItI456z1eBfQxqCTGNSkE9aaxuJ8zDWoZILSBmMSjEkozCXaaIosQymFbWqcXVFuSqpqjXUNSkTAGoLGNZosLTBaYrQkNQnaaKQQKCHJsgxtYgTVq8mb1vJV4dyGuq6wzhG8BRwydBo9QTYtSGYZyhh0SEnMb4kAuMLZv9CUNzTegZBcTN7hNhV1VePTDDP9Cq2mSAqymcCu3xPWC3RwpHaOXK0oVyucq1mvK8qypNwssW5BwCGl5KJ4g9M56JQ000zzGTJk+CZlub7DhhrvAz7Y6F6bXpAlb3DOUVuLEJI8z3ChZrFaE7xlUiTkRYGQkoflkrq2CBUD/TjnSUyCC+Bv7phMr5lOA3mWMUu3VqZewRZCdPHzDnAgAkIoAmKwb7qYt1NIgpB4b2P0VRmtzmAJQRKkxglLCA7pLTKAEioC5Y5/KM3+6tuf6y8V4s6y1B0p9+g63VPpdQo00UYWlKJ13e0BzyGvOcaehhvnY6D5eSO0VSz1bY70b79P+/c/RqcEjr5RtgKNbFNcRMVVVGCJLrBNv/dsywcveoVH3zMxcpZ02POw697ag9ETYHD4+Tmg8dxxeaz8sfnwnPVyCow8hV5jrX7Jdf6lgOApoXZs3z7FY5479ueA5b4//QofUxB0QKYPNTfa51Og43F+eZoOnuGnxpUHQuwTpcMjcviup0YXXGs3+GHf3EiXYCQYzhegp/KO1zSqHAPCT+EtXyx1xhell+G3U9Xufo9oAcKIJfKc+sRjyXbbl7VV08azie2G3p1z6ixZpwSIfe3Gl6TzNONfti/HJvmXbDcGknFYa/HW0ZQbPv75D/zp97/n06eP3Nx+5uPnzyxLS+UEl++uSRKNUiBFoFlbBAItEySydSWN7qbee5yLAWqSJIlzzoMQEmctdWOxziGEwuiYUsOYBITC6AwpFffzFXVZ4qzFu4YQBFqZNsqpIssSkIaAJs8UtilxrqYsH2JOc+/AOR7mDqLTI3mQmESjjcEkCcWkIM8n6NSgtEFrjVYGpTQejVQGXE2o7rj/9H8jfEVwjsWDxbWCJ9Lz4+/fU9cW5wJ5luP8P6E0JJnCBUtZO6wTpMkF0/xDG8xFczWb4UNF05SsVyuuLr9BqwSEQBtFZGmKVEFe5EyLlNlEMLt6x3xVsVg23Hy22NIy3yy483OyIgcR0FqT4Pl8c493glQX/MPf/TfK0lKWS7LiB2xwLNdLVusVwnukVtgQuF+u+H//8X/y9votX719yz/8pkDpBKEkBE9TN4TgCSEghUMED97jfI1MCnYUV3h88OC7gCQKHxRKaYIP8cxkG0nX0+ZSQhFUggoSiCk6hJAIpfr18lNq959FYggFBwLYQGDr3WlCjEQcVDw/6p3kMMBN2Pt/d8M8Chj3ZJjHFHU79w8MCgdASJyu52AwHuH3+zQEZwdlhUARz8aHEN2xQ4iu7KH7P+yO07adkbb6Pu623dXhQ4DONZrDAQyh+/M0es48/jnn/S9+zf1CaLgmO5fnx+gpc+GpCvRTdT/XkvTl6f9Hc23r9nXAJjvF66l3vuuW+frj9kvcb/cVH6eso2N0Eiye0qrsWNz73w43BSHC6J63W+d5mpZtk8d23d0Ib1tN5rFJsVO4tUbvlu1LtJtgp4l4tnvBgbYouiYKKaPOScT/fQg7iHgoQH0JOqXNPbf8T0k9kN+ZO0dLnw9wQwAHGBXPkXlICARqEB6lDU1lqZb3rO9+5O7hE7f393y+W/DpdkVpLUIFskSSGIlS0X3VOot1FUpKpFTUjQMpUCqCvyRJY8oMIWMCeOt3hD8pVDwKtyPwBpytmc+XOFdT1RGYxZCo8VylFCG6OhKiO6tUcdS8690wTRHP+dGDmYBUIlqrGosPFikFUitcEFSNxfqAch5VN2ht0drgGmiUQGDxrsKJHJNOMNrw9nKK0hmIeKbPpGl8ViGQBDaLB5wtIZSU6yVhtYFNTbVeUNcO56Cu4CaJeQylsGRpYKMXGK0xSmGyC0JYEcIKX6fUaKwD5xqUmjEpZhgTMNqxLtfYum6tsDZaVgg0q5pZdk2SFBSTGSozSBq01MzUO8p6gxAJiZ5S1Z6qqqibirLaIESNWEmEga/KhFmRolV8RhE8BI9o/6d7l+2cE8SpLNocdT1UCF1S3WiVjClVBEJYRHBI78C7CLHadCtBRvAk8eBVH1l1IN50y6JlOBIhu9+HPLT1eBhdOk/R2HfzePf+cXATFXOCGO20h3q9coiYaiT4GKTFB7yL5xVF2Fq8ulPFfXhY0eZoHCj6IwzathejhG6fe7f/23E7bc3b5+/tveNyzeCpT/06BJ1bANcbD8Xufrh9jvhtZ3RFTJERLYzgnYupZrwHH5BSt8/bvR/6vW/bpYHbanu9d3xt+xftlu0UCyBCQHTRVls5IfjtkY/OonmCiR/QMQvgccHncK94ynZ6TCv/1D6O92sfpMPh+z9V1xGLwXbEd0vvrUXoghsdTxEx3ufDMTyUG0+P27573L5FcYxOyyvH5cnn0ti7PxC+B+9pR0YNu9f269xWvR+heJ8PHVTRfh8fr11AtP9A488ldj61/dk93jZeXc+M9joY9r4fNHbmAgxw4Lba6xS2Ci0hdsTmEU+Tsbmx5WfnysGP8YKnzrth+qtxoPk4LjqXHvOeOEZngcXDC23le2XCgbkv0PH/vaE92alh2+NA9cT9JwSbg9/CSJExFNwJE3sbZ8/QxfNBnBAyzm4fhZYOLLrg24Anrciz7/JwxKzcXT9s56cDd4+6S5zYhM7u5dGCxzRJ51YMeBFz2XlwISBE6zZIQChFaBzV/JaHj3/k890Ntw9z7h6W3C3WYCRJKqI1TgHB472jaapoRVIRsNnaIYVGCYU2GWmaxoATUmK9w9kynon0USiGCBh92F0bTVOzWn+mLOc4B0ZHoUsKWnBoYlRNIVp3xhgl01mH1gpjNNOiIEmTfkilUiTGIAK4smSzWUBwCBGwweHqBikalFIIHzCmjbxaOyrZpoJQkrT4mqSYkhdTZpdvSdIJUiUIoUmuMtI0wSiJLdcsbj5RreZU6znVwy2JuWMlH5jf31I1irKG9SowdyVKBtJE8OtvChrfIL3HqAQtU3xY40RDcIq6XmO9wgaBlJdMioSJUMymlvliTrOpaDYl9/MbAgLvoGkqLq/fMrm4ZjK7wIYGYXwEo/oKITVGF+SpZz6vKDd31E1N1VikhmW1RCwDt/MrTJKTax03r+CR3hMd80N05RMx12N8qZ2ygq0g3rOozmrTKQE6pUa0VoruXKNKouuqVHGeBgtSIXSKQMX6BCC2KT6g3VxD/HC46e3++5S1tF3nY0Ljtq2tdW/nbhDbk8JDsIiIUWVDC6SD8wjfbvmttbV1JO834K6+MbYviEGrtibEY8xlXMjd/7y93oE76CSbMBBshn0Yp07M3xf3d4Wj4b99uwPhdFvDQPkk27Q/3hF8++whKi0FtK72DIDgABj0gHE7LCLQQnS2e/7eg0XlFf0Z666yyK86Kzo7++lT9q1TAtt2/Qw63fZqrPw+/TTeNPtC4vmb1hBcju7/B9+HZTugvz1jfU5fj/XzHGF3rPxpoH++rDPWp+39L3vHj9NQqcL28yhI6T4PeeShDH1Y4RBn7T7TOWB/COz23TR3Zl//fdyzbhTUy7CHFR+Zw/tAdGT4+p/3wWJXdtiPjlcO+NRYX/ox2nKs0/3cu6+v88T4PsaPdj6LdrCPAP/9vXNY5qgsfYYc/hT663RDfSaNWTN/Ogg1Qp00MVA9D92sOgbTa+B3bt2dkOdpA1+jyz/riH1xElIgE4HzMiZ2DxVVcDG1RAhUywXr+XfM7z9y83nBP/2P93y6+55NvUZlcH39FVoXCJGwWN9T1XOca8DHIDZJkpHnBUkWmEymFHnBbHbJ7e098/kD6/WKIKDalNEttQWHQkik0jEyapqhdVy6ZV2hVMKkuGrfu28jg1qMzpkU0xgEJ0BAE0J0Twyhoao8TR1w1pIkIlpBhUSIgMRBcNT1ksVijiCglCDNNJkxKCVRrhM5NFIaZt8EnBVIkZJnl/z6V39Hnk8xOqWqV3jfIEKN1pLm9o7aQ3CBqqyxVQk+BrPJiylaQzFLuHiTkniLFAlSF9Q2QWeGpEi5/uYSLyVKTTH6GlsVGJaEsKEsLaDIleJCG5QMBF8RXIW3K95eaOZ1yU25YfkhsFqsqMsNLqywq3s+L4CgeXv1O/7Lf/q/KPKCu+WfuJz9huVqzd3DDZ8e/pFVWeGdJE1mQADn2KwX/PM//yPiv/xn3l5fkWcJrqxIjMRohQBc60YqlRqXu8TOP4NLA8GdgLeOEBqCqBFigwwC2ab2EEmC0ICzOBfP94UWMEkVz6spqdp8n2NA8d/3Wg9HBJMD6vj0qI3mS9PhOxFi+Hu3D3BQLoxdgBhxNniEECRJSsARcDTO4V2N88MourBNEtzV+7R50QGAfYvolreNR/1+zj72nDl7jgvWL9Gt7Bj1wGsI6M+78wDgvzadEq7/WsZ3n760zBVpKyPutX5Y8ghgHM7z5xyrenX663zdr0478/7n2GLOpBeBxUcXt/j5nnx/AY99PqlE3q1s7zEOn2sI3oZnN071b2wj7yP9de12fe40sScEumMA8hwa04a8NvM+5l7yFEZ7yuJ8nI4x2pFnFOClJzQh5s1LNM4HnNeEpsGtFyxuvueHP/+Rf/1ff+CHT9+htKeY5Og0JQRNVdX4UCJESWIUTkpcA1pLrPOsNmU8KxQEVdmwXG54mM8py5K6aQayaVTPhxYsIgVSaZRS0aqHwJgEgSJ4x2q1IklT8tSQmqR1N9MEouupdRBoCFTUdRk1iULQoGETQaNzDqkEaZKitEaIBJVPMFqTJholQUkZ3WmVwNWOjYWNdaxq01tqBPd8+HCHUqAVGG1RIp6FFDguJm+w1mKbBudtG2THoHWCkgaYYMwEJb+mmCWkeUqex7N9QUiEiFFi62qFb2rq5s/MF5+QpQPrcd6ijcJrjdOGmLheI9AomSLDjFROuMgs8u2ETbakLNeslveU5RLvGvCBavGe99//P0wm1+jkit//+V+4e7jnfvnAfF3h24AF3q3wTZvnUgl0XnM/f0ApiZQXpEYTCNTOIYjuxwjwzqNbABc1ou1nH8eR/loXUbUT5H3LD0SrCNgACgmo9r06HN47lAKhZXRHbevrdKk9rxJbK9iuYD+m0YxKiafQvkA4frYOthFcT/FOWgviLq8aCsfDFS/amzpn08f62PWv/603Dx7nI4/T0IJwrA/HNMljtAfo2OOJQvTP3T3DUBG5FzoI2Ebv7c7W0lqj4zzZqTo+Q+jce+P+tO9YdNJKBP3Z/KdYko7R2Hw6tv8Pvwtxho/dT0BPsZodH7PxtTUGGcdB257e6uQeu6dAGJEbtmv9RC0n3vFTPaS2184HVi+hU+PzHBnsXBJ7HwSvGwxlrMHH1A59+3vWyZPv92W9eqTe0Ms3L6UvobgaldW7I3tn8IJRnv+F6SRYfK55sy936toX0iINXRqeS6fci4Q4P9jNaBdEJ9LsAsI+kMNAWItK3bbsC+bEa431WD1nz4Uj2sPnAMUvSYGACwEZPFIEhASHIoSY/7Bezbn//J7PHz/w6dMNXjSkSY5JUpROKCuHcw3ONygVXYmFkoggQLgWeMZUCXXd0DSOsN6wWm9wrk2VQGtx6gWZbdTHgIhWKedaoNBtjApjIqBKk5ib0TvXAgmB8LSJuFtrpVStcBiwzoFvZ7WMAZbiudluTAQSgfXgg8C66OjXyYxSxqiu9SYG8gnBEVyFq5co6TAqMJsY8kyhpUDKQGgqsBacRSGQAvCepq6pQoOSMWiOThKyfEaaJyRpgpIxT6G1DfV6TV0ucG6NdQvK1SeUNaigQAqEMYg2umhjBd4pQtAIaREYghAkAq6ylMQ3JDikzZCuwQqJc5amrlguHvBeUOQZdbXE2g0BizYZPkRAZhtL8KClIZEJxjSUZclytYrg/WLWCurRrVjp9t16F113+jm+xzdCd/6l8zJoB71XRrn41UmwFYh47jU0GtdjUImWmm01cguqhkotESDIlieNCaRjwPE0CbG9b19ZdMBXB9i4cz89rxF6frnllVEZE5dQ1/65Fe5t5sO6z+nMiLvTyT1j9NL5wmaPZcd6c4RnHyo3t+1u5+DWhrh9jmFF3S+h/75jKRSHALzD3EHsHq0YPE1vcezaPaXAfA2h/Oe2aD1HcXpYbnfeddflk8Dw45bFXUA29vv496fQuSDseLnxsRDi/H49VX58TOZ87niMzu8OvO0ocMbPur0KWApx4+i2nhfXN5hD51bXKb7g9QCS2NeOPFb2Cb8Pr581L/rzqWNA8bw+fmk627L41MESYnfBnir72jTmmnn4+/M0BVt30LgZPm3ijozJ3uduo5VyGxXVD/nEnlZxn3me0tSeonOe46muOMdKPgfMv3zudO3tb4i7h8pDABsCGZYu5oeQSYxcaUuWtx/48U9/4P0PP3D/cMfV2xytryCk2EZg7Wec3+BDgxAFSqYoJTEa1lXZdsMjlKGxDmtrqrrG24BUCqlikBKhk4NxCsiYA7Cs+mt1XSMBoxRXV2+YzWZorSN4q+t45rGPdAjOS7xXmET0lsSmaUiShCxNybMUrXXM02gbqrqmqkrKtk0lJa6x/b3TYsJ0OqUoUppqAVi8t9hmgy1XGA15olBqxnR6xaTIydOMVFi8i5YkbXK8g7KqeFg8sNzckqSCLFdcFDmJSFGVpV4vMEawKReUmznr1S3eVVjb0NR1hLTFBSpLSZOcLC9AKnwQrKo1m7Kktmusv8M5RyEVVzrh4mKGkjVGWXSqyNWEqm7YVA0PDzV1lSKApr5hOknJCsOVv+RhCevNJlok3RyhYVZMuJjOSItoJV4sFmglmU5nGKUQQRFsA2E/emeIm3KnFR9qc0PYAqA+0hWI9hxtIBBcTMPRlsILCHiEdwgTCFIiSAATzzG2bXX/CeI5V6A/PkFn2eR8ofzc6y9169tR6LWKth67HCt/wrJ4TGDvBIou2MRjG38Y8Jmzd/nhu36s6MFDDvnaoH8fxpOwAAAgAElEQVRhq1zoAHu3Nyit8cHRWPDe4Z1v83nGs4ztk0LwbCdc19Zgjg6eu9u75MBaOHymHSVu259hLd249bqvruP9GLYXxsZ07LcnzK3nul+/NkB9bE883d7uO3len9gZt5f1Z7/cOPgf0mu5+h4o3J5Vx+PA5FyQ/ySZ6aw6xfafIWCUI8GM9hDeYY2PDVSvMT5rdnXeCWM0rnx8nhx+uhPHq9/hsz8BCDvl3XBo/R/wxmcYUcbueU2g+ZOcWfx59XZPo+M48nkT+ylVDLWy8ezYVrveCXTHJsa+n/pYmf8gOP4CWmEFgSBBqjXeB2wtkElBs/nI8u4v/Onf/pE//O/vWDeWq3dvIS0oy4aqWbNZL/Fs0CYlkTNEmNHYkrrZYP0CIadoEy1mzlqqpsaHgDQJja+omppQQ55lNE0NrfClhURrjZIaIUQPAp1zhBCYFgXFpGB6MaOxlto2AFxcXBBCwFrLZrNBSUUQGh8CQkjSNI1nNCU462jqhs83D6xWK5qmwgeHlIE0Tdv2FSiDMSlZmiEEbNZrvv/he6pyQ5HXXF68ZTK54Ot3f0tucrRSKCVQumFt1yzvF1j3EeUCdVVS2wopHHmeYLTBqITZ5QWT/II8nZKmU35clyw3D8yXHzGJZZrPmORXXL39r0zyt1E48BVJ5pBihneSxfwjy/kPlJs7ytUNt58+slw01KUjWIEUOVI4lGyYXkpmVzl5UXD19prbu4BQgiSDdHLLuvrExgUm6hLsNVdX33Bx/Q5dJGyqCPwSXWDLNQ/3H1jMP+OQVFVFYy0fPn1GSc311SWz6RSTZjGASAsCO4fOzqo2ZJgdNuj3P0+HJdnauzwiyHgeM3hEsEgs0VU1Rsd1IeCUAaUROkEag1QGqRNUVLmzZVAdMJIj62U8uuJrUBTyTtQ+tFrBDn88We+r9fDL0BNgzYk6ZL9HxHfX/t7OnaiUED1P6VzZO68AKWQ/n/aPUQySmbQVbT0e+v1Kbu8/6Fv/zkYA0tgtYfhBtPMi8Ois6x/6Kda0l4Os16DXAmYvoi/Wxpcf45/bOvyzUW8dG1MgjdEQXfZ/tt+Ht7bMY2jpf136kvKpoD/S0Td38IBfsP1fOj392V/1zOLohOqVIM97Ma8xSY+eV+j/7LTIqPVPbBdNOFich7QFbPHe4XmO/WU91Ndu7x/29/hmMqbxP+aSsH/9OTS0Xp6rTdvvxc8RSONYEwd9AbSUODxCSIwy4Bpub37g0w9/5PPHj1RNwAuF0IpNFajqkropsb5CiITgDR4JosRT4/C4YEh0TOBe1zVNXdNYG6M5ImisjQFtEGgfNf1SxXyKSZqi20imIoBzHiUVpg14k6Yx32FZlvHMoYzgsmpay6LzBBFoXBOtTSLgfIXz/SBQlhuqsqKqKkIIGKMwJiNLU2IeyEDwHmujVTFGeY1RNbUxJMZwfVFQ5BOMSfFe8rBYYl2NczWBCu9LrGuwtmGaZygp0TrhcjYhn04wWqIEOGtZrO5YLG8IPlAGSwgBDUzEjKvkDUUyIVQbPt39bxrb4F2DSWKC8eAt5WZBs1ni6g2u3qCcYJZkBCNRUiNlColCFprf/uZ3TCdXKJVQV47S/UjTrLBugy0dVA5rHSu3ipFlVbTOFeECJQ1SabQQbGyFdQ0uOLwPNI2lKivKsiL4wHqz4frygnfX1xRJihCtS3Fv0uuUFXv8I36KsrqMk3kIFiM4cC0zCXgX8DYgZIymHKPpSoR3EEx0e/WABOFl2/4uAOik+N7NuRP4R9b8cywx4/yjtfq3m/rY1r77fRstlbCFSt21IYMPg7/PoXN4/ik65O/nabg7180xpbwYfI7/dGPBrtZzRz4UOBfduGM+u60nC2ILFGMAHDkYUd9Og10BbHdfj3kbpQy9i/tOl4f3D+vZe7b+62BjPDbDdls/Ts+xNh1zeX0pPbXeU0rgQz4x3saxOs99plOW0MfaisWOn3HevX+YYieceGdD89F+PacUwue+QznSt9M07sH2WrSdA1tZUuwu8eBHn27fgrV7tnlQcB/TD76/ltX3p6Mx5vLLUAyN0e7utUtjvOvncL9/Flh8miviy17OucDiFEAaZ4jngr2w3bB23GhO39ufz2gX9FGFeUSCdIEH2jsO+9opTV+4YI/d/5zJdwwwPgUontPG+O9jtR9v59zNUQBKBKwPaCkx0tCs19x//I6PP/yR29tbbJB4KfAhUJY1VV1iXUx1IWWKd5IQPEGUuBABICJHKENVV1RVGYFi6/7lncP6aFUREqz3UVhrtf9JmqJEF9I+njlUUpJow2w2AxHdyeq6bgU/hVSKTVm1AmFAa0nd1BHcCfA+upF652lsw3q9jsFmbEOW5aRZSp5lFHlB0ziauqZ2TeyvjecAnfcURdafkXwzewtC4L1jXW54mN9RlivqeoP3Eah6L/BB8tUbQ54bcpMhzRXKFAgJ3ldsyhVVNaeuVzT1hkRL8nTKbPKWCQU5GcYJHhYf+f7HP1GWG6x1KJ0h5RopavAeHVQ8DxkEqUpJigxjUtKsiDkJiwQ1m/K3f//fSdQVtg7cfv5MWiyRjUW6CkfKZlPgbE3dWEKzxAO1bairJkZuTRKs2rBc3VPVJc7HwDVN7SirGMCo3FRsNhXluiQ1CcV1glKSIEUbjbSbuMN5HbVMURCIUKBfDz2G68BQACKoxkdLsRQKGdqE60JD8Ajho9zmZUwRI1Q7PyV03gw+ejaENs3HTnxz0TW+tfqMMzZxsMkN+fNxnixaHDGwGo4UFR2C6oUZBndsx0/0ktWIoBCHd6d/4xT6NoadeR4vHlMN7pUYynJi97eoqONJMs8+yO+iJTvniGMkDwT2rdD+iCW57UsvpgdPl6ORgZJz6DXTKf2/NO269B0qK86ln8ND51Rfj1/be6YQHt3XD4DriWuxyu162s7N40DinLgX+7fuguHR2wfXhu/4sff0dLDwksAm58yx3fpPnznsP/freciXuhqOy8vnyq/PoS++Rk6zzOdV+QSjyWOy7jF307N5zg5GOC1Tn1pTh/14vZf9Zd1QxRd4w69EYl9SeKT0UPKJTzX+bEPQenIeHpl4nRC0FYaGwuBu2VjNzzu+L7FSvrBlzp1bT1NuBISvCC5ByBhR9OH9/+L9v/0L7//4e+bLJT5J2VSW1WoTAWNV4h1oOUXrHOdKympJ2ZRok5AkUyb5V8w3t6zWa6qqIk0TZKIJztFYh2qjnEoZcylqY0jTlKIoSJIkgsTWFJgmJloVk4Qiz1iuV9R1TZpkTGYzpJI4F7j/+B6kwCSGYpqzqUqwEikyFDnWRuC6XtdIOWE2ieBQKUVd15SbmuXyFq0SQohWgyzLmV5PybOUPM+Qknimsdpwt7xjsbhjUy0pqwVCdFYRgWJCkb0hTy+YTq6YXTc0zYaqXPE/f//P2HqNDB4jJVmSk5mURE9J06+50oZcaZJguPnwPR8+/IHa1zysl9ytN9QWmiAJMuOChon05JlmOhGIRKKNJJ0UTC/fkE8vyWdvCcIggkI4wZ//9E8sHu4pyxVNU5KnU7JkwmX+93w1u+IyK1mt77lf/5H7h+/ZbD6xXHzk8/sfkcqgE00+MyRZgZQT0uyazeozjQ3UTaBxsCo9i9Wc29sVeEumBJezKcZoXJc+I2xzwXUWxl7d1oGyfjPZTRS/VTFbwOFdnEfS1mAaQCKSDClSUKFNbG/b9ly0QrZuzjG4ku9BbGh3shC2ydyHgHFsFR2uzdeUUGJdUm4DP2055K4Qegrq9ON6Bhs5yw3ybBrh5XtC4+Dqo25gYwrZIdDrf2jb6PK3OueiwsgPkrGLLSAVosuxyKFFgsDWWhRapcZW8XnKG6avb+z3o+/jzBc1aoY9ecMTyv409NdlwTlOz5ULXi5TnBa2z6/j+e/hae2N85ZHxyEc/fIf9NdI/bv+Za7/s6KhPlcjd6rkcxnCMdS+39dTWgDR7UhntD/cyHe38OPL80nPJgZCYasy7rWwUsaYk2IbLGBfizemxTqn7XPGaUivdYD7KS6o57rSnFPvORpOALwjuA0q+RrrLeX8nu/+8D9Y39/g6hprHctmSWUVPmiWyzlGJ6SJIkk0TfNA1dTUtScxVzFZPZ6H1V/4dNMQiKkMkIKqrtsIqKCkwIWAdw6tUyaTgixLSZJkm3gcyPOc1Bgk0Xr18HCHSXOmsyu01iyWa4IPSKl4+/YbnLc437BcrvEuIAn4ULNcLWnqmNQ9LzSJiWkv6maJ3bjeMq5NxsXsEmOiq6tSiqZuWG0qbu7u8N7SNDW2qWOU1xD9G6WaInBICVpFK6hzCx6Wc25u/wx/aaOmBo+3DVkSKLKEdFZQFPEZE6PJs5Ti279hOr1mVlxxXQcW888slp/xd38kmy1Yr9fM5yXe10wLQ5YolPcomZDrjFk+YZpPkM4gljWb5UcaH/D1Alc9IFQg1Cuka9AokuxrbFlyv5qjzBIhElTaoK0iz66o6xVWlCCXKKmwXnLzWWIyz9dfz3j77g3q3YQ3b9+xXC25u7uP50CrEm9rfvzxM4XR/Orrt3z7q18hZUqgtQBGX8Cev4jeehcFeR8aIlCMwvrQWhPnczexA/g6RmoNAodCuAaaGuEbtPMo41EopJJ4F9vvUnoIqRBtLsitNbG1mIddY+jhmtr93oHa8/jEE5RAPc9s+SLDcTiDd/R78/E2hx4fY9eepp0+q9hoG/H+zqrYfd8p2QO06FLam30O6kvTFKkAEajrqr3QnmWUKq5JH/MxxpOIqm8fMQby2gimsAM2h212/8fttN2r5YgFJhyO0/b78QE8sG6dOdg/pdL1KfvZOZa63bl3Yj8f/H7KchVg5/2MlhlYFofW7lP9PFbXsbI9TztRz37515JPjvXpufV3fXup2+DouPV/ukJjSp0tRS8jttbFM/siEXtFuy/tHOjk4xDimv5Cyo5z5sSXWMevrbx5qqy+z/cOdIs/ET1qWXwqcDhGW/1k/PalmPO5puKeuY7U0WPJYdEBT96tZvvDPmM4SaITChVBtJolEZCiDWwfIAQHwiHwbQACQISdtfgUIP+SSX8whmFkV9+/58w6expVrOyP5fb7vrvW9vuhVaPTE4q++x3D7I06Lf8UCGkQwdFslqzuPrC6/Uy5XlPVjlUDm8bjXCDEYJQoqVBKA4HaWqwPMRegMrggsNaxLkusi9EGBdHyF/vbWWtikIkuOIMxKUYn8XtwbRAKgZIxl14IIbqTNQ1SJUjl8L4dhLC1HjRNBHNltUEKgcdjQ01ja5Ah1qkVQglAIok5FIUQKKUp8gmTyQSl4m/ONtRNxWazYbVetm6xbV42oVEqpsGIVgkb048Q00W41vXVeQdCoaVCKYPOCorckCWaLE+ZTDLSRJMkijxLUEbhhadyFc56KlthnSVNU5LEgfeU6xqCICtSiixBIZlNZkzzgotiwqzIqOuSprHgK3xtsXWFqx3KCETQbf5IQ5oU1I2ktgFbbpDK43EonZKkeUyXEZr2jGo734JoAVd8v0JlZIVCm4KiuGS5mGPrDbYqWc3nLNdLbu8EaapJLy/Q2sR3KxVtKNN+ftCOYcABNs5oKSO4bOezlLK36kCI6TNa4QDfEGwZN3PvQYInnn+VKIIGhAapiDk5kzaOiSRIuee6JHug1fPy4UobCG57WxxnU8d7W/TRrcvdWkU77/rwQIMm4hjEVyMGi/tYg0cuHLX2tf06yqeO8P/tQ50cjvisoQVOe0ovOm4GIWwth4/uOHvMMrqedpZj2lQ5vhc4e9fjM/1F++EVYi8lxtY6Ged0d05yex87QO9wE9gK2sdaHrg37zzvnhJl8CxPdxE8V4Wx7dXwUbrnHFwdlBW793V/nyJP7HsY7F/pgER3vUP2e+V3vRV2y+x2ox33nRu3L3WnLY7LKcee7THl/9Zza9/D4vk0Jh+eeefx+0LYeafjBsuxtrpxH7l2wguhWwvH3CKPNjdsku2c6b/viHu7qXb6WS0eB4pH191jry/s7zSn6x9zjX50XM7t67BbZxpbHmsjhGFqksNgldv2xu/9KegkWJQD9fE5AzBephXUh8w8WMQOI5Ecoucvo53YUhiH6KLNL7e7323XenyYQfHtxf2JOPoSRWsl7OoRJgp5VAgZLTEShXcBQkWQII1FC9WWbxMh7/D5576bp7/XYen9O89RLMg9k8Q4g97f+Ib/HlsYY2JTe26KmAo+nl8LiBBiMBnd3ieIgRlEPO+nkhy7XlDefc/yu3+lebhntVrzsGm4rRSVBek2KFeR6ZiwHgFlZdlUgDSoROMVlJuKum6oKkmaJP3UaWqL1BqtW2AlFEYnSKmo6walEoQ0MWCNkBgtY5AboK5icArbJniPZyBrlFLk2QSQOOe5u72jLEsa2xCCI88zvHc0Np5tzLIMqRR1bbEukKaGLC/QSYqUksQkXBWXMRWGrajqDYvFPcvlgrquaJoGrRO0STHakOiiBTQeIRxCeJytcU1FWa2QCLROyPOEyWVGluSkJqPICtIkj3kWq4qLWUaWSZJEkqQKu54zv7/hpqlZr+bUzQZwXF5eIMSExgQSU2GMYnoxYTKdMslmvL3+ikmeU6SGIhPc3nzErpYkKGyoQU6RybuYVxMfFTVKUUyuUbXDUzJ/WOPKDUIKTDbBpR4XLI2vKFcbTJBImVBMcoRIwHrWi5JaCNI0YTq95u/evGG1uEdh8a7ix+//jU8f/8LHuw8syzu++uYts4srJsWMaX5BkALvaYGnQAQHwoIoo2upVGgtaRrwzgESpQwh2DbKqsdoHU8cBkcIFcIHJBYZGkQdkCGAs/F+XSF1gtQJOB3dVNvIqUgfZWwBtAoQEQZBFuTOchsARTHgUYd8YcwaEMK2fHfWsAMgvSJHSAiS4AXBWULMv9IH84G4vkVo85DSCpVyV8nW9xdiGpGwK7R35z0E7fP3dt6O2vOdwROE7/vaA7kdqWvQYBc4A9hqrvyWd4rB+O2NXXcOcMeyuPdQW/7a8b5Dq4azHmdjrtcgfAx4pNoAWB5AEUdOsT23un2CIR2cSQS2xoVAcC5G4O1GxbuYImgfqOxZzLYA5TEBXuz+vlPPsAnRg2OIeyxAFxLkLMGwHYle+Be7M2JYjjBYGvsixrGmwunrHajvUjodelntniME2swnPVod6+nwiQ7loR1gsO2bGM7NvX53a/9AqT5CYx5A5wvgu/LBtszry46nlPJRAbI3T/fWvQhicGlg4RuWGWFQY4/dzUGxN/W7e46dIe0BSORqo9e2YtRW2eL9gCf1fRhOiuH9IzL1ERom1xkDgodA6nHlQ/f9uZ6LQ9rnm+eCs8eUIeNW5v05c3rOd3z+fIv38fE4d6x+ktQZhzQ6y/+DwvF1FkL49z9ifWLSjsYG45jAcPy3MPzb/Sy3ot1QMxlCwLuK+ef3LG8/Mp/f88cfP/Pn95952DQoM0MLH89KKc27t9+wXC9Zb9YslkusCEg03gnK9ZyqavA+Wh9NEtq8hxEAelsjpSJJsxYYRhe/v/3t75DKoyRomdJUmxiQIjRkSUrjIigAwZu3bxEy4JxluVzy4fMHmsZircOYBJMYTJpinaVxNVJIkiSlqmvWmxIhIoBT2pAkGXk+4eLqMkY6bcdltVqyXC1Yr+dsyhW6BZoXF1ckSdbnVnPO4Wx8xuhSGRBSIk1KoQyJSTDGkCYZs0mO1ipaLHF4X8egO2HD3XxD9WFDudmwWi4JYYOSkKQJf/vb33F19VuMzijLDZ8+/Z5NtcA5x2//9u/49Tf/wOXFV2RpQmoUxkiMFtx+/BFrs2hFDY7pNENogzQptauZzx9YrZcsH+b8cPOvMYBNG602z3IK/Y7L9L+yWQi0z5gmV0jmrNb3WGuRWQAx59PtJ77/YKnrnK+++oa3b96Sq+jWm6QJeZHx9//H/8mvf/s3rFdzbu8+88//8ieS9C9kueHN5TVXs7+hyC8oihnFNM5l7xWuniJlg/eW9bokSRK0iSy8qtekSYYxBiEEDw8PGGOiWykCERqCDDgZ3TWFB2lt/F+nCG0QWiNFgtANok2rIbSIyikpEUoThCAIRQyM0y6oEUG0baWFBE/ZtIcC0qGSaOgWKsTju0i/Eb4q8zyzsgOF3mP3dWDwuf063ZVeNGslzUMXZkHMzeK3308IGbtd7xDD+LXOTTiIDhD89UkAwzd4qu+/JOnmYCmNXf+ldPbfBY2huy+0qF9A+5bfRwrvgP2Du764Yeevk37ueCKvTS+KhvrSwfjy1sPn0Smk/bQzKjEoxHHQs28529M0tP/0np+dMNFd7V0xHu/HS2hHE9Jrp86/7wktIU4GHdpPED2kbjwPtXNRdG0T1G0lI1qDwq7l2zuaqqZc3DG//cTHj+95fztnWQcsCikCwVmklBids95sqOqGxvmYIj0IfIjnCbszAlKK9nyOJwSH945AtP4IIamqGinhYnbJxcUVb67f4f2apqmoypKmaaL1REBtbZv3MAKBxns2yyXrzZLFYglCok1CXuRkWYbzMfJh09RIpfCAswGExrXPkWY5l1dXGJOgtQYf0G0uyLuHO8pyTd1UeCBJMoxWMX+iNvgArolBMmpbRksP8Wyk1hKpDEpLZCCCV63ROsFaQdM0hNBgmzXgYsTRakOwAYFECc1k8oZ37wpMYpDCkCQpD/MHNpsfKMs1eZ7y5s23FNOMr795S5YnhFCyWq+RkwKlDN5LlBEonUFI8dazeFhQLxfY+nvWZcl8vqGuGxAWaTRJEEivWW/WWFuy3NywWfwjIYDR8TmEnCGCpHE1PjjKzQpr43h7u2Y5/wyuwjUleT6J502zBCE8WVaQCUVhA5fXt9R1TVV63pf33D9YsiynyCe8efsVk7wgTQ3KBHCqn8Xee5RSCAFKSayzeO8QQpFlOa25jJhvMabXCB6ki54cvj1jGrxFeI1wGi9SpLNIlYBvEF7HA4pSIYJHBQgy4NvgMj0fGlmpnRHs3IjYopdcQ+8RMEZRwdNa+k64PnXXOpe1wLjGvSt7kl8JekPg4+y0SwEybpMbWs6659mCrTC49NJY4gfdOvgoxFa/vw8en1N/b2EUcgeQDrXz+20ci0OwU/WZe9jwPZ5yZdx512djf3Hy+36F53R5f96dsgiNW6tHyh2xLB2l58hxx8SavsqXC8rPced7aXvP6feYRfDY2DxNcfY8OjWnehd3TnOXneMEY1as/WfuTdov6flu+zvfx9o8Qo+5Nj+Xzr3/S+Ki583z19lFXpxn8Xl+v6c5zZhrwrFr5/i/75c9dkhcHCv7CGM81lYn0OwCmc68L1p/163WfNftqBV02N8kjgHL42b8x/r5VDp2x3MZ7e59w8/7z7jHhEUnMA7LHN6/Pe20BZOhZZrd6MvWfcI7h92sqFb3zO8/8+njR24XGyov8UqiCQjvUDpBmpT5fInzHut9PPPVBgChFUyVUm39Eh9c69YFwQeEkIQATWPJ0pTpdMa7t+8ospyqrmnqkqqqsHUdz9OpeH5MmwSTJCipuJ/PeZg/sFotqMqKfDIh05p8UpAmCVVV9REPhVZ4H/M0xsA7Aq00eTHhYnYZAyr5Ln+iiPkOF3Ocj4FwpJRoo9EtyEWArS2ucTjrqHyFILrzaqUQSqNkPAsoEEipQUgCgrq2OFdjbclmc0/wFc422KZCBk2RT8mKlDdvv+ZX316jtcY2nvn8gfvFDfOHG5xvuHrzn7i6fsP1m2sm0wQZLE2zoKpqEu3wXqFkwPp1K8AL6iawXG0oF/dUy89UVcNq5XABskyhZTy/p2Wg8jW+Cdh6RenumRTXaDNDqSkJBh8myMZQ1mtsE7Au4ByE0LBZz2makk255vLiDfmkiDkztebr9B3SZCT5lKvra+bzNatlyXI5Z77axJQpJmVdCt6+ecPFrGAyk+jWfS7msovzKc4zQdO4mD5RBJIkw3kbz6G16yq0h2yD7zZ/j8ATgm0jwyoQFrwF1UBoED4BpUDpmPY9EM886mhtjGdq26U5OBO2Y1AbrPWTAu2ZCvgeH55pFhEjYPbYmZb9a32XWgvqaXgw/HQcqAz7AFsQeo5l8dlC8RCssR2PA8ti/PSEdnaffAsO2QOLrXDafT9R4y9VI/+ksR9RkpztkrYv3A9du88QRF7igvfYvX0/d2SR16OfGiAeq/PgdNJrtXUmjzsnIM6xa4+5oZ7b3kH5fVl5KHt3RXjZ/HsqneU+/gvhJ2N9PYVtzp0DY+d5n0Lnjs/P4oYqdhw1Tnf0y73oXcZ7enifNvg7DL61YIkgCEjADers9O8DCvH3fQEn4DkUeXbb7ADKL2VxPJWOWxVHNHejv3e/7XPk7bhH//coIA3TBAtBTDpflzzcfGD++T2f33/P99//hUUDOi9iSgFbkqaaIBWNFXy4uSNNE5TRSJ3gnYsQVAhMmqBDiDn3God1fnv+UGuWyxLvA0li+N3v/p7Z7II0Udzff2I+v6EqNzR1DcGTpvFcYFFMcMGzenhguVzx6eYOhCdJNN/8zW+4vr4GoGkaKtug0wSdJgitmM/nECRKpWRZQZ4VZFlGURRAdFdUSuK95fb2Np539A4h2tyNIgKVxro2T6PHN9tIhzJJ0TJaHZPEkCYJ0YYVsHVDbdu8jz6QKxDC472NVrVqjVaK2eyK3/zNb7i8uKIophT5lB+/f8/D/CMPix9o6jmJmTC9mPDN1+94+3WB1pbG3nDz6YJE1RjlUMpwd3vDYvmZh4cfmU4dy+WS9bphuYDcQKbekutf8+art7z5RuC9p6w3rKs1QXiC8mRXGUE6QqhJ3T3l5pb1ZkNjVxhzEa15waG0JS8UyxVUVTvXbAN1w3y1YrFak6YZSZJSTCYkaUqSJvggmUy/xXOL0PcEXbFcVDwsHcvFmu9+/Ce++uqS6+tL3r75hr/79h2piZY+oHdrJniU0gihEMhojXquexIAACAASURBVG7ZbAd7RAgRmfgScIhggSbmXHSCICWQ4G0Wzyy6BHSKUBqhNF5nCJ0hVMznKFXM5ymUaufPdg1G0LoNaHY++b179jfCsNW/iYGiqFX2jJE4ca279SVy7/juML6/nTqH8lI6ZZWLQ7YvjPiW54ZewOzcfGNd+2exDmo+23rWAcXBj4/f+FdMr/l0B3v6C+frf9A59JQ3+NO+jOfMrTFL3dm9Ft1xnYFdtOPtYwaYZ/TvOfRL9Uz890ovBovPemE7QsTw/tdddMesjiddP8ZQeufWcm7D+1qp3qbV/d1j/MQNuhN+urMiW8AYdjU6O/3b6+vYM30BOmX9fVldY5bTse9j1w7v3T0u0FoTQ7TqxYvR5U0iaOqKarXg/uYT33/3HR8/37AsG4LUrOsGKR1TI0hMxnxVc7dckaYpLgRs4xDOo7RGtu+tS34dfExLYJIinu8Dyk08czabzfj2228p8pT7+08sl4uY7qCqezfWIsuihTIEbm9vmS+WVHVDbR1CamaTGUWRo3WGkglKKbRKWS6XzB9iDkZrLcZkpGlOlhdkaQZEK+NisaIockIIWNuwXM1RSqKUwhiDcxbnLNZZnHX9u5ZIdNKeiRMCZZLosShjhNdocbV4Z3F1iWtTORA8tt6gtUYrzezigjfmHXmWM7uYkRjF3eKB795/x/39PUrUaKlJzISLN1+TJjH4jdYp1TrFaYU2MLtoSEWG9IFNeUfdzKmbOdbWfPixwVYK2wh8XWMDuGKJS7/jw+J76tpTVZ7VylNbH9OYADKJ7rZSOISrgIAxFUkCjY2WxIBEaUORXKJ0QZJWfJ7f473DtxFLRdMglEabBCni+U4tJBcXl9hmiguWqqlALFA6kKSOPDic99zPl8yXG/74pxsebr/i1796x7ff/oosyyjLFdZaEqPQJiH4OBejoXvLQ0SnGvHtOvABhMWHeP5QSBHP8YYGbIOQhmA1aIPUBqESROIQ3iFUE91dTUIICQKDVAKPbM8EiwFQPL7mx6P0bcWYnlP2Fku/W3RQF7u3jjR4ojPn3LjjHhppKzyJQS37PCiCru55t88cdvjS1uPkBOAd+Tz2/Sj1xQL9WHYWIrEd2/0enNteCPQ5G+P8CggZAy7Jbhd8osXjeTSIkBt79kiZp1tvxq7tuLnu1fqkoytHf289aR6xTg3n2ZfyLjqH+mcWh4qKXzqJnhe9cr1sRcwhS9lXWD3Grh5zIX28F1sl4g6NsOSjAZGfOG9eNBe/4Bx6jov7l+zHT2Hsec6a/6KWxZNm71hi55eh608/aweL6LFN66cASPsuSlvv0kOgshUeush0nX5X9OCQHgTu3t8Bxt0FeQhk4+27nKbr36nJ95yx2rGWfpEJfWpzHxTpL4f9H0bu7cY4QOv22UcV7EqEmFLAViXVasVyfs/N7T3z5ZrKRdAQ8yF6nFbYxrGpG8qqbs/ExaAuEolCtm6mMW2Fb6M1xvZilNsoUMHFxSVXl5dMioL5/J75wx2r1QKlZLTiDbR3HfBcrlZsyhqEIEkSkjSPZ+HSDK0MIdCfmyvLkqZu8M6jlWZSRIuWSZJ4XtB3udnakRQhAlXrUDpajaSMufV8kNEC1aV5AWCb6iMIAahWYIx1Om/xvsG7Bm8bfGhaN90YoTPYmGdRJROUThEqwTrBarVgubpnvZ6zXM1JtSZLNMZohM6QWiOUwpOwXjugJmApS4O0a1xlmS/uKMsFdVVS1zVGWxKlUcpg8oQ0zTFJQCqHc5401RgdQai1gbJuqOoGtEQZjYgOyMSIo9GVtbYlzguUMiiVYcwEgsUHQ5pb6qoiNDHiqHW+/d9hnWOz3pBoTZ5mOO8RwqDNhDS9xLkVLlTUzmFLQWMDIVicr/l4I+Owa8U3X79FCIU2KYiAbw1BUkaX5zj345rYlS8D0FrAW6E+tHghpuvxINpzjL4BbxDaIoTAB4/w8d4YBbRbWwIhFL23RCv9dGe2n8czBr0eWBQjazzvvDbsCq3H2xmnPfza1jdaisjhu71hjDcdAaW9INQBxq66XT5+cNtTePjOnhBa/WTYGZNtfe0OHM4RYA77EPfIAZ8YATen4Plh17d9f8xFclcJfGYDj7TbUy+HwHZtDcqzNzfa258y7/vzlmMD1C2FJwiVQ1hwosDuT339DDpxaEX+KYXbn4fOe679cRryge6nXfNIGHzeNrU7vqf8yE7TY4p8ceLb0Tq3lZ+8W/TFXgYkX1PGPGeefkl31peOxWuVfyk++lncUDvQ1Asa/e+Dzbn7Jew+5HMfeHwjOe7v++yJ0f0JA5YQkWLPuIdxTcXenhPPd8Sce6GzCgjYdZpk5/6u5e7zS32YjzGboavSOT7x5yzO3aADAGPnZfYTLm/zye2y3LH22jLbgdx+7WWzANZSr1es5vfc393w6eae+2VJ7QUBF/vmBY0TLFYbVmVN7TwGsG1oaYkEJN55rHU0taVzq4t58KCqauq6ochTfvXNr5lMCmzT8Je//AnbxDN/aWpIigukUITWrXVTxfOL9/cL8ixnMp1yef0GbRJUa8kzJsHa6Na5Xq9ZrRYYZUiNIc8LLi5mCKlwwfP5/g5BzLWmlKZqarRWaK0ioDQaqSTOuRjIRKo2kbeEAcj0rRY7eAhDF8Lg8K7EuyYGUKEBEfOGEhweh3cB60DIALWjajY8PKz4fPse7yuE9BRFgWgmOK+oPZRNAzIliBwpDKv1ZzabJevVCuELyuWSzbLk/rahrBqUgCwV/MN/FhRvDRfTgjy7Jjdf49wG6+4pporL2QV5lpEkCU1jmS8W3M8XVNZGYBoUTa3YVGvquqRqKsq6xAeBMYok0Rg1xSuLVobLS81iuaAqS0K5wfoIFhvrKMua+/sHvAOlEqpqSWMFRl/8f+y9WZfjRpbn+btmBoCke0RolzKzMrO6TtdDz7zM23z0eZhPMefM6anuqamqXCSlpFh84QLAtnm4BhAkQTo9IpSpqlN2FHISBGyD2bX7vysvX9aI/ZFsoO171RCKwVqoFz1360d2Xcubu3ck/hvffPUFq9UC3+7wvsdao2kzchxQ1fhOBqoLAzUp+TGLX2MGBcNokByJFkmOHCskekzKpCogzsMA+pO+T40OXI8ujGWjjnvy+UE32Eu0RRfb3v+taK7Jo9nkc8uh1cnA6F+qR47QwAwCmoxXipZQbzeTZ07bmJuVMfXIE8zcc328RGSkg0OE0v3vQx8PhvJk2/N9KGtv0ubB/WcEvR96dp175mMJkvdTNC8A+RitjNjj9Bg828DZ8Z2AkLnGho/H7+W4wenniZb/ZxbST8t5rfZ1NOCctdlMjc/gZ/LR53MQan5bnRUG6Y+zzT0VgPHaebpK23fm85TujrlVf8GCg4vKq2f2+2PN7/vuHfP0LdofbUQ/f+C7+RulzpiWOYo4+fUYTf27K2dEhGLRrO7Dpf2BOnfAntT616PPB+XZTN+zyqW1cLwurqdLmZJnUayClcFVNGckJ4RIbLds3r3h7Q9/4ds//onX65Z1G+mj5t9bWEME7neBd487rHEsFivu321wlWq9KteQEvR9wHuPAJVzat1Houu2xJSoG8s//uN/BeCHv/zAt9/+CWtg0Syoa0fO0LYd1jmauubh4YG+78k58/XXX3F7+xJjHAkhhUjnO2IKiGSM0dx7MXiaqmKxqHDW0fst3/75rR7xVqir1biGYozcrFRDuVgsNI+g7/EhjppCdTUUYsgKIPPez2kIvmNsAYs5k1IemXrEjvLWnNWLsXKflveowpN39/f4EDRya9/jqgpnHJtdJsaM84Y21Wx8R4xv8X7H5nHH9iETfCbFTE5CJUJTOz77esn//r/+L/z+t3/H3//ud/z+t//AzWKh5po28PD4F9o+0kbDoq6wAikENo+PbB5bbj/PfBUhJkfbRbxXTeFnn71i16553Nyz3rzDVYIPHe/u3vHjm3/DGoNxDnzNbbNiYWs6V3N3d8d219F1kRAMj9vAD283/Ot3P7EQx3IlLJeWm5cLPqt/x4ubxKcvW+7WP9K2G7quo20t1J51H3n7/QOb9v/iv/z+9/z6m6/51VdfYIyF5Ol9h7VS4mcp025HadXw3g7FdBppOUEy5XpCclTwGHuIjpwCKfYYW2N9T6gaklsQqwU2JqRaah5GV5Fx04R7z6AZQ5qFawRNTx8Ne2uIX9gxInPnwodWeR1TIOyBo5S0N0yujd17DrYvoMQYo3veyEEbpgS5ylLambzhY2Hwh2sUPv7c/pLKBcz4n+VvXubezGVg96yq/hZl2Nz/WZ5V/ppClL9G+aDUGXBZwnGhhqO/UwAyI3k9I4U8Lh8aDfWpe+cr5UD7eSpp1BsG3dM+wM1hFWcrvzCP58xQh3LOb+F4zOf8Ny8Rs2tA4zUH/7GEn5xnmYhyx9Gzeeb6DDDPkLOoJo1Mzol9QmxtM4Wefrdj+/jA27dv2flIl4SQDTdWA7HkBH0QbLMqiZE1OI0UxiiVqKgpRnLKCqCMUbCYM8ZlXty84PbmBT70rB/X7HYtzlVU1qo2OQnGCrbM8Xa3xceIqyrqqmK5XGpbMeK9+tap75lXkOXUX8waQSTjfYv3QgwJYwUjBjGGnCKucjTNklevPsPVFSklNbclEVMiZg1G433QHIoxahL3CWNorfq76Rj9qLUdV7zVwDiVQc0WizbKiKXve7zvyHmLDz2Qsc7iqluqqsGYihgitolkIl3asNsFgu/wnefxMUCGZlmzWq2oXMU3X3/KV198yt/95jeslg0vbhckl/nX7/47ldWgLr7fYk3GSA3S0Lcbot8VUBTYrNcEH4tPoiDiCFloA9xtVfPofeTFixfcvnhBjBEfYbfrNeBN0KT33ntiCKSS8zLGSMyZx7ajqoUKB5XDOaFyjf6zS0xVUdfQLGqMyzw8VsADXXdPlISpDAtr8SHy409vVIMdI1989oq60uBJOXoEjTwrQ9Tg8lYUoBeNXxqu6V4RkWLxqelmck7kJGQSWTQFCilpwK4S+TcjYGpEHEJZYyLkZA7AyDHNuBQJ7vx+Hjft+HGkF2fqyoXZeS/J8vSougp/HJ5jh2M/+n1i6XBc+ei+cFz7x2BADmj8qYZQBXGH58AwhpnK5ps4+JYPGE59H4eQ59zZfK152gHIvdCvk/Yu/PZUOe7Hdev5mvrzwZKYOwefZEsm8/S+bij/npjdj2m2eKkNuEZ7dCSZyvvzEIFz9PCEbn2UXk/qexYvdqByRqn8tH+DVQcHPPA1fb5ET34Ja+458/RUuZbXnrs+b32Xz2uc59ofnru6x+fLZbCYZ74cqXSeJHtnAMu0Tjn6vq95ODBl0ljmY28jmYxpdqGIjC99ligddXv8Wdh/kYNb9LIwMnD7ke4lsuOBIVO2YZiPQ5+dfb+enps5YjcL/vL+/UxowtG3QwJyWKZLdTCTPazpTA9P6j0Vbh0f1BeqG24fTCbJiBFy1FZMhrbrWa8feHd/x7uHe7qQFdaLwRiISX3bQhRctSDHSPKeqnLjQRBjJCb1bRQE5yqcU4CaIjSV4/b2hhe3t6wf19zf3xNDpKlrTS8h5VARg+RECIGu7zS4S92wKPkVYwijmWvMYFwCiQq4smgOQOuARPAl4ETWwDxiLOpnaGkWDavVDS9fvSKkyG63o+07ck6E6NWXLgsh7MHiYLpmJgRt0ELkGPdvJqs5tbMG5wyVERKRnBVwpqh5AXufNTUHSYPqVA5nG5xbIMaRiWS3JqSePvT4PhF9JgaLmAXLleXF7ZJPPnlFU9f89ref8dWXn/PNV9+wvt+wbTu6bs3d3R+pnUck4vuOlzevaOwCh+PN2+/x7SOSPIva0rVbfdch42NGjCXg2MRag98EAIfYv8NUFZrDUKPMxqj+pUZEzXWjCg80QJEKFDrvyaZCbKYxFlsJxlZganJW4YNBgzA5V+NsjTMVVaVaP7EWK47UR+4fHunaHouwaGpe3jZUtSnmwWXpmyKwOjp8Mnmyi1SYMlo/Djs9J9UIa0JN0gAiBTJpQBuIqRGjYBExiAExlpyyapoYaOiQ75SxL4c0dUrpjoCgSKGvhc7Nkp6pcG7y88DwnGHUpnT7PMtzUuuZ65Or58wUp00fk8Nj8ndVOZ6MXAQFek5I6YtMJveAUT35VOjk4JN80to+wukxE8nRtzwyy0cM6AQ8H59lx+UpBu6yy8PQzgzTNjcHx3UdDe/guJejFznurX09z2WA92KdfZtjPw6WXJ6Z//3z+8B6l8vcXJz8NtPH2XU/8C2jIKT04GAjn+MTzhcZ/j8+elDhESd5/JKmfZ52Vd/XuRGeIwPj+znswqTkybuS4n96zOs+r5xj+qfvx5hT48TnAuizwGbmfR/Mw8fCeJkJQTw8Aa4N2nRBBje56ajNky/XrdFjQHcOHF5Sulyqd/x8dp0+UUTm/Z/fo1wEi9PpOZfVYG4KnyL2IsowFB7ziEbpyEo6c6SE9NfR7nOGXdeT80Um2++pedSzxo5MRM5h343JGTgunOJjo8EjhhtVq7J/MKE59/TenARrapIEyBYRIUZPkgRGNS65aJ4wAmky3pFGlHmSPJnda+bi9J0dMGwiGgRmJEYa2GIECpxb9MMGmr9+0g+ZahVP73mKoThLtQSsTcR+qyyQMUTXEHxmlYVlcnz/5i3/9Md/5v/5wz/xh7dvsFa1botmSeczXRb6HCH2kDpiUFPTul6oRjBnQtCoo9Y56kXDq5cvR41j13V8+snnxBh59/qO169fk4KnrircoiESVEtnLYnE5u6B4AMZ4evffk1MEFOi7T3bzSOh74jRs6wrYnZgLYuq1neTMrELGDto/izOOqytiUDM8NXXv+L25Uustdw93PP27p7e98QYNPAM6vNmXKXvGtUSWoZ0DYkYAjFov42xkNXU15R7bKWAtGm0X5vto6YQCYGuU7NaXI2hRowGxYio2alPO8ToAbhZv8MHT44GcNT1isWLGz7/9FO++Pwly4WjdpAJPLz9ie//9V/4P//yfyhwtoa6sqxW8KtvvuKLzz/n19/8HmtqQvvIev0TP333J2LYYU3m9uaWpr7l5mZFVS/pYuDHNz/wsOm42wht1+JjJKTIv/z5O2JMWGtZLVZ89upTKuewrgKpaUwNtmXnAz70GGOorSX2ntDtcAImNXT2JT5E7HZNT0/tEtH3tNsNb9+8I0YwxvL1Z7/jsX3UPnQdxlh2u46Hx5YfX9+TxfC7bz7nN1++YiEVuyyEnHHYAhzKFskepKRNMEVikg1kV3ZR3oPBsvGEjMQdFotkQ5ItkldAD9mTUe2ypIDmf6zBai5Gk+pyaA3pOfYJ27X6wSy27F8Z8vJN9vwEZWWEEDNJDNlYpXc5KUgV7XvKSlcNGSuGQD5PPwYwMR4JU9qzn4M9nT+MeTqCsSnpSRn1BZ0yXNP69u0oKBtrG++8PuLhFHAV/9NBqGPKEZ/VOgIJOl9GMAZy9ggJawx9pgS0svjowQRytuTCJqj5qJ7K2jsz+af5PUXUl1X9obVrMSWSaFpOM4lCvdc0XpeC4/pyyFpfqn/PXk9A3klNE+7zHEAY1uuwrifv96oel7REwzmqnhIDwJj0IqPvEX0f5tzAPjYPP8uoy+Hfo8ZkYFRHXmSOh5PJv8E/JB7UMVY9xYDjhykoPWj99PnDByf3XeAnTxs8/H3s5ykPNCfc1ndy+lZm+ZkJzRmFcnsidBaIXKvVvlYTfq6eOQXD8zS8Z3jUArL1zTyHUz+uJJ99Zr+nhDzmCj7kV8dh5MMnx09HgG7O0uC5Gu+593DAi5fPQy7sY+uLs3y4TM5/9mMbSNU15WqweOna+Nuz1LPnv4+MjX65prar29W2ZH9gcfgSZl86e0D13BefB07iGkR6QADLPzk+6ApjUQD3YVzjxFH2wKv6+NSdSu/f79gZHrv28Uv3XV5f549Gzc1msGa/mVIMNLUj7zru7x74H//v/+SPf/gjb16/AVBNEJkueMCpWWLvVQaQNDJkXWuair7vR63bYrFQ/xxjeHh4wDlHVVXc3NwQgme72bLZbOh7z4vbFVXliDlSNzUxBfq+JcZIs6hxztK2PW/fvsXYCuscOWvE0gGsl1zhmIyCQ6M+klYEI66QS2X7a+dYLhZUiyVd17H+/nv6ENhuOxBwzlHXNeJUO5py1sAsIYzUpakqXAG1yiBOfJMydG2HMcLNzQ2r1Yq+73h8fNBchFbfjw8dEVgsGqqqom872nZLzgljjZrO9h0xBuq6xljDcvGSm9ULPnn1Bc7VkIVut+Pb774nhR7JHmMA75Ec+fSLT1k1FdaqdnPVLDHW8u5uy+uf/m+Mg6pKNAvh9//tf0OSINnipOGbr/4OHxPr7Yaf/u1faG5+z+cr4dUXhjdv37HZbdl1LaYO9F1PDJH1ZkMMmUXd0NQNdb0io6a8i8UC46SkEkmI6Brq+i3v7iIPmy1VZWgqRwpLlrXBWWGxuOGbXy1Zr7fstjtev33Ntgvsdp52q1pkVfxoUKX/71++Z/uwY/vY8o+/+xXSBCpRP8MQM4JG2dV8jDUZIeasGmRKFFT222hKkqYHX06J1GfE9qQomAg2O5WNVR7JCUtCnFXtsCt+q8ZorJrZbXrox3a6vc8zRGepwmQAF01Qh98nJ+heMDhPvAceeBYoPlEuH23PBYqlrsk4dU0c3nOgQ5Z9kKAh4rERM3PvwIgokRkC0g4ie41qrH7SYCZn4z7w0MjojOfA1HLmkKGf9nZ6r47vAkN/tlz3Ug5e/RW1zK3ffP74eVaZ8hjnNIZzGiThcrCd9zXvO2t1dAKW5JB9mX6cXeh7FviQ15unAVPt+BW9Pvo25ZLn7r7w1kcQeFznQe/02gXgPtfEs9/JFVqoS2UO2O2rfn4sinP3P8UnH1qRXG5zT2fn6f/HMD0+od8DXR/lBTKuzSkdO6nnaNwfaz7n2rjG+uLA1F5gqmJ8YjvPlotgcdr0nI2/HM3yJbvb55bpwXNpQX2EtQIcLr45e/8ppDo2m5qniPsXc6mP+g73pqX7/pR/s9KXqYhz0tbZpPYz7b7Hezk4yD6uKPjqOi/5DZwlHHu0v5/NlKicow+eu/t3fPvdt7x7d8du12Ksgr2UMiEGRCDESCxBW3IquRmN2ZtmDsxXOchjMd0UEZxzGGPwbUfXdvSdp64drnIYV8xPcyKnpKacMRLLOKvKjYxXTom+79QnsjANo0As65yMB5uo7nrwKxCb9FpO9N6zWW/pvNeAMjFRVXV5PuGD1/QeKan4IcZRWDLldFNWM8SBqXNicM6O72hvvppIOZYUIxo0x5Q0JjGqf2TOgpppZr0/jS+NF7ef0jQNdaUBhHa7luA9m8dH2t2anAKGTF07aqPRQF3lkErTd/RtZLtOJd9lIKUtqxvh9sWSqnmBq1Y4cQpkQqL1D/S+Z9uuCXELGEKGXe/p/RYfWkL0qkExCbE6htZ3ZCKRCKYqaouSvD5b9Wcd8luImja3XYuJGWhw1pQASYlkheyEqq5wrsK6noxqbazJ1LUlRtX+pqzRaLftjset437TsO4+pbEGW3xYsbmskbKOjQpQAHJK4yI6MLef20plPelvgZwNKQvIjiyCIWmeUSOAmtomsRiTAdWeYCYUXaaM73A6jx6Vui44L2sTYYjhcxZq6s+TtTsdC5dpxx5IlOcvgJZT7cL0cJaTZ/f07mMdYrmcGzrizKQ/R6B5Co7GfT2hITIOSA6eHx8q1/Yke9/eyNiX73vAeCgFn/88z1mfPxvmr/8s/lDlPL5e8HmZOX/quXM+kefm8EOLygDyyXs6f/P79uHM/QMfNal7HHO+vEuu68Nz+CPt0DUg6imN13OVDLNtnOnHdK28jybruI25us+1ee65X1J53/k4FNpAZn7PXaIzz+Fnn9u3abk4vj3ivVyuEHZdBotmMilD2+w/5KdqP1OenqApJRpYhdPR7iU+H0msx0fY2CPAG/zsZKrEPGkL1MQzD+BQpofR3h8M4LCi4bSffr/EVk3b3JenHGZPDzyYzvU1h96l387ZyJ97/n3eTQZKDgIkqQ+hyZlKhHW75cfXf+EPf/wjd3f3+D5i6oqM0VQHPgARH9VbS5nbVBgsKekK7BjsZQgSE0I46ENKiXa9odt2RB95+eoWsYIYTb3QtS05RiRnDNB3PdZYFouFBhYpZkrtbgskjBGsLSbamRKoRAPeZDHkbMBEFM8JJNUU7tqWzq/ZrHclOI5gnSsmaZHeR7abLSkGQIGuUExQjVHgkTXRdghBfytjryphuVwAanq72WwKqBZi1DHlnDBiMcYRQqLrPCkHDRKUFXynlLFOtYJN0/DF57/CWkvbtrx+/YbNZkO729HtthiBqrIsmprK1dhqgassMXt2/Y52t2P90PLwVn1UrRFubzNfOcftzQ2NeYHfJWwdgUDb3XH/p/+BDx198KQo9C1sdoEfHx7pg8fHjI+oNaUFrO6IGD1t9MTe46obLIMAwSF4FT6EIlwwOkfed9is/oZGLGKrElBIQbN1gnGOerFgFdV8NC9VE9R3Pa2P+JDw3oCLBDxt3PF2/Y4X+SXLZsGicRgn5BSIoSeEVjXDxmLM3o9Qijm1zB0wMjF9KfcSIxrUKBN7QU3tQ1mfILkhp4qcBTFqKp2t0zBTZnAvmDTA9NJgNlq4xBnaMGjWVeWVT2nD5HwY9uv+p0O68+xD+4rbj2nlz1em5+X+r8yowGQAgHkP/IcjZgjaRbmOmD3tzJPw+GVco5bQaAqeS8zs0VXt9WTeD9/dzyeQvNyvJ55B11A53T9yW3NMZ/klT++ZaGbzzJp/j/b3ioB5furwHe3fzSl3eK6Byz/vteLn67nE4f086+R6hj9PhEI/ZzlWxhwLDaaA8UPLtXX8NYHi9eBrAHl7392TcrCgjlbXOCQZF+dx0+/L9x7fc40voxzVefJEPqVGF3njhwAAIABJREFU56nu/vOwm/dw43K/nxcN9WfYk09V+ZSaej9cmXz/uGV24qcE9ilaKYPU7uk2hrN6/5yUa8WgMA+mpnasUMxkc+Q0gtDj9s4t4o8HtX+ZZUgEH40DAyYLNQm/XfPTj9/xP//5n/jxzU+IWFaLW7oU1PwyQUjCZrPV6JwFDCpIA3Iko+abGsAkK+grQT1evnypCdJT0gir73ZUteH2tiKDBnaJmbbPGIHYe3JMmuLhth6ZsK7r8Kkv2jY137R2iDipJqJKXIqWpvCDIqIZWhBCgs1uRwiJtvOa2qOEuPfRs2u343yJCIu6wVmrvl+gWk8gBaMgM2cg0SwWNI2aXkrOLBZLRMB7z8PDAynt/QZM5RSoW6uJ5pOaPTb1EiQRvKcLAWdrjTR6e8urVy/50x++ZbfbEZOn7Xc6ZhKrm5rVYkldVVRVhSTBNTWZyA8/vcHZwKKp+fyLL/iv//A1L29f0tQV1npi3mBzS853dG2NxJdYqcn+JaFr8QF8H1m/2/HuXcuuz3ipyNSE3tN2PTufcZXBVoa6chpt1hjEWBJG/fsUMiJSYSXiJBFMMfc0WQVyKbJZr+m7nhThqy+/5PPPP+Obr7/iqy8+JaQO71s2mzWP79akEIsGwHD/sCbExMvPPuPx/g4rmdrCP//bn1i6O1aLJZ98+pLPP7uhrqWYAgtqcpoBS91YcoSj2DPDUjogI6MWfVRF9ZA80JN8T04tJK95Hu0CcTW5CiTjMNZhqhqqrMFwjAXj9qCkNDjVECr/OJgsqobbiGpLD+JKnzt0C7vwUU+FKUMiZ5v+K5epOPcI5R9c1vc+mLOnGIsP8uTQGRjlQQiVBmY0TQCw7AG4cjPXaaSOe33C3J4XHp6W/0in1jl2L8/8vTbL2vv0QbmB/bu+dO9zihz9nVmjz67339/7//fX4/Pll6tRnAK/C0B+8OE59+wvpMzx53MjOr72rLdzxbAvg8V5lPScLkweO//cVBpwXPaSgTnN2WVJ5nMW85NRic5UdR6iSmEkztd7+NN8TYO0KKU0ciV6wJ5K/w7MVI4w7MX5n+nb5XJ5bE+29zNJjM+aqDIwNerILJKpxXD38I43P/3A999/iw8BWxLck2KRvg9zPyg3joQSGZqmIeVM7HtSiFgxuGJiasVomoXgabsO54SmrqjrCh8jWVIRAKhPoYhgrDICzjlSzrRtO46tskZNV60hF82etWVZ5ERVVWpCW5i3RC6mnxp8R0TNHNUsNOMK4BQyYSqlzpqaI+6HqVNX7rXWFObTjOsupogla4oRhD544kTwob6PvmjVAovFDavlCmMNwXseHu/xXlNqLJY1MWce1mve3d/T7naEEEjJk4vmSoPhRLq+JYQe0xpMNmzbDET6LrBsKlKqyanCWDBVxtXgXE0tFTFt8XHDuzay/ek13a5ju3mkqlqQQM6B9UNP6w0+ZXzqSIBPiSSlrkpTnSQiKSZMFnK2hBBx1iFGU1kYWWKNo6oWdF1L53tyjoAlxp6UQNAot7u25+7+kZgy797dEXNPThqIpBaHE4N1BgP8/e9+i3UVj9stvq3Zbh64e3vP4+MjnRN2raMND0Q+4fZ2xe3tikW9HElpikCwZU4n8OtIWTVuqbLvRdXZeqOo4CBHXYcJIYqQjEdCjaSEcZVqGYkaldUmhoA6qtbWPHxi9qbix/Qr531AlXEf5mnncvlvgIhMapqeHad+4IdSe86W/Vklo+B5qhEZadCc3ZzIczwFnlX2JuJDxOcyn4MWqpgap6JtFZQWatTchKDgwCIkkSFMjmqQzRBw6CjuadE06XqIoyZzb4Z1rrdqXvxcvuySlvKwT4fn4ccs49s/qn8UCM+Uq7QHJ2MbTAphruanLHKeOn+fnpv59BxTfuhsDce0A1AhxdEknahr1FVijoc70IpcoSn98Hc/gOZr6skHHZxr/yk+8tm9mwhZntJSHffjb6EN/NhtXi9IekoVImc+w94y5eOXD5qPvE+BBez30ZQmlO+jbG9yGg5FSh3jyfhEl67SLB4cEUfzNxuO+ML3p0oeVKpHh/nh333dl811LyxU2ff9Kv+Gcw2diJZLrTJDbI/ulcI8zBwF+ybHdZAnNKmEQx+7uCfCz53v59hXD21dMhd5bh9OQO4zyjnBwMn18q6HOwxQIWwe7rl7+5q3714reEJQdknnU/3nholWLZ9qCoOmEsgJ1zi6rtPIpTGyrBvqulawFyO974tZYWJROWxVIoeGQ8Y8xYQ1grNDVDxNxeG9p2karBiMEaqqImb1A/TBY2xVCMcebCp21GAqg8+gptAYmEfLYeOqed1vM9WGllGPC21QJBgjxXxRb08FCGIVHKec6XpNvTG+DxGMdYgIrnLc3t7iXIUIPIZHYtT9YqxqoLz3eN+z2WyorSPnSIgBNWNV8IqgKT6iIFlwxkEawKRFTEOmIkRofUvTW8RE6uQQsfQx0YVE8h0P9xu26y3r9R2rVcI61fb2CaRa4pyQQ696GQviAJMxTkloTIHoy5izzkkukyZiqJzF2YrK6drpfdEODsx9joRo6LxnvdnS+8DjZoM1Qs4BYzKLpuKT5YKmqqgrR20tt6sFddNw/3hH3+9Ybx65u39L6FtCyHRB6FOHVBByBCNY2+DEjIAhp7KnC2c30K+B2uyB10C+BnC193Uk7WlWFkPyBiQgNhTT5RpS0PGaYhVRiJhgSz0Gsh1DzWt3JgKxUcN4njPfh3OaHlXF1H94HxwQT+0Gh2lEnl3k+OtR+oPhFimiz4/IPO3p3TDiPH4c9iyTs1I13cdmbHuQMUQ7HfqoQazygEXHtoZI3io0KOtEZKxrbh71fN+fIT+nUPGcxvL9Kzxf/0CDry3XvP9rQOZz19FzAcbxuXrxrB7X11Gbp7cw7OFDRUHhcYrf/7HW+Rgw5lNG8aoxXVPOgfRry35+378PP5vA42cCcMf1n7v2oe0+Z16eanfPH45PnDw7Nb/+2ODxfXnf4dk5wdCpO8Y8bdpbR143qotg0Rz7PAxAdj6c3bOB4lUTlI/D384lMh3+TV/qYTsfvECP6tt379p698j+qSfGQ304dIW9NL+M9WDcWdiLrGcipX3goXtYz4QhudDOuU3wFCG5rg/z0tRzoF/Xq8HnpIxQBkmBdz/8hTc/fc/9w1ts4yAbSELtagUrXWDX9riqwdoKZx1Vbdk8Pmqy9ZSgToQYyTnhnOPm5gYj6o/2+PhIHzQISVM7FssVOWd6H8bANTlr8Jf1znNzs6RutO3t48NoGvby9gWw9xMM3tP7nt731LUr/oQO4yxZhJgiPni63hO81yA8SbC2oq5qGlcRciKX3JF93xOSHyNl2qLpKTOo464sVVWpD2NZBznHAkY9IkLTLOn6LTFG2k4jx1pncVXFsrnl1atXvHj5gk8++4wcIj/+8AM//fgTb16/w1WOalkjIjyu10TvSSlSVwuMREJIhNADCVM7jTLrnCaIR4PrLJdLqrqYKEaoXUOOgW3bsv3uOx5vVzRNjcHw+NDie9XYvfrkBatlzatPDLevFvTdvebKFOHzl5+wWnyKkRXRL1WzGCGkTB8yIUViDPi+ZbN9h+87UgzEGEghkETIYqkqHVtlLcEHtqZFNKgtIiVSqu8Jd+94XK8xxo7RaStnqZxjuVqwvvsJZzQq7TdffUb4fkfK8N0PP/Ln777F+w4hsXCGPhpSL/gE/esN9489r9888vWXPZ998pKb5ZJFVZFCzzFdHQ6YQYJ5IOHPmZRDOWTL9UzxbQtkemIGjEVSBSSIFbgayV6fyxGxUamVU/COsSU10JSi7+nm9O++k2dOwuk9k2dn6xmkq5MxPo/Z2wtTLlqoPOMMej8/ylO6LAPCmwj4rDWk6BA0GNUwXmPMKNgpT5e/acT241gYhAXsha77Vq/p7BlB5fz5MO+fd81p+hHLM/jFmVfx3uXcOrjk43+q+TzPs+3XvVwc23PW5DyPNDw/V8fzAPAQr0KbmU8j8SF8zzO36/XtTfbLU+W8T+9lPupa/vRSf5+0tJt8Pr53Tuv5VF+eKu/DIx63eW5N6o9MluAxzzrBIPkylnjfNTfHL49z+My6nhTATYcuR79dKM9KnXFk+fg3KJcW20CE4oV7Pqzlq4c+e1CckxKe+0U1EqomHjRC00ACgynW8FmBspq2PR2S+Li7zyuXgeLBne/D9PwMZTBMEzGQItuHB7778x9589OPhNDTLF+SvVOzvBxpdx1tGwi9sFw2VK7S6KMRcopq1pVVg1TXNUaEylhyTHQlB2PoNV2EdZamafCppB1ICd/3LJqGHGG76XBOk9RvWgUpxqm5obOWrm+1vhAIIbBYNNS1wzrVImowmAofA33riQUEqsYvkaNGSXTGkENk1281ubotQoYUi4IokQmAhZQwxlJXTqNxioGUCP1gFmsUCFplOFPO3D3c8/iwBoTV7S2/+fXfsbq5ZbFa8uLFLZDZdS1/+MMf+faPf6JrW2KKLJdLnLH44NluN8Uv1GGcY7fbYaVHKGa2xhYGR+g7NbZz1mDqiqqqVTMr0PctQTpS8PjQsVu3RA9N46mcY715xORAYzOpi/R5SXYLFvUnfP7J31M3qiGuKoO1jpAij9st601L6zs225bHzW6MbmptxloPdSz+nS1d70mxQuISJypEyEDlhNubBZ03dF2L3w5+yYmQI9FnjNHoqYgjBOhNxgdhtVjhDPQh4f/8QAhvCTHiQ8bZz6idpjd0NvPlqy+pF0tySqzX93Tths2bHX33Ayl40ic3uE+WGInoUVBdt5mkBA4wkGXwXpRRI59TKDTQQPIqEIk1RNUuJhFMjkgVyQJWajAOIZXfjOZkzEVLOKiRcz4ADaYAmyx5zG07MI9SVKQy5NiTQ6r1bLr0Xsz/hyGG59POvbB0eGys40w3psB4zJ+Lpt5Jh1XOPFzm38iYQmffj8Pb9oB6OMuun5lfkm/UqHA6YY7++n15qnwUIflH127J5B8ccq6cncd58J2Z5tC8BFp+1vIxJQO/8PKhc/pL2svvV65HAu8DlH+uNTvWeNyNp2Stk/IeeRafQK1XlucfghdrY2AQrl6KmUPDozOq3Dmb+eOWkamJz1D9DAFRMf2pyvtEalT+UXx4hgN2ChqPiO6QD2wwTx00AsfjmRvrpdXyMbR+15ZrpFnvW7fkDLZE84yZ7WbD3ZvXbNaPxBSprCFHQw4Z3wf6LhJDxohq1tTfL9N3LTkmrAhiDbaqkFyge0a1dD4Uf0IFVLayiBgyMknaLPStRpJ0xlLXjijqX4jJVNZhjUYg7bpOzRpjmqSxMFir9alfYqDtdrRdIBefPluC66SUkAxRIjllBZCArQymRGR1RatgRCObutJ+HgAuynhrMvdiRpazjjcEQgz0EVY3NyyXKz77/HO+/PJrqqbGWkdK8LB+5OHhnp9++ontbgc5l2ihlpgSMURiiRaqBrCD9Fh0LqzDGKdBc5Jysap1szhnSQmC132dkprwBh/wfU+MQrsLBJ9xziOSqOsFi3qBuKhRVJsF1eIG0yyxzRLXLDBW8L6j82pSvN3t6LtATJlFsyg+X5GUelLMatKbEsn0+CBIjkRrybnRPSpC7SyYBmMgJa9RdHNGSOScSaLpRUgGHyKGTBQVUmDASMKkwDarljnnTFU3iHWFmc00VY2pDEkS23bL3f0j7XanYD96bpYNlRFWjWPZOOSJoBnHe3AwLtkDRQodSyVQTiigUjX7MpjyiEFCD0YjCCejAoCxbqPadrWjKDT0gvnQ0IfSSaan3yDcnKOHYx1nxnhy/T3ozhQkzdX5sRin/RmVxxyL+YgWjwneZR8wbdq7wzFOwPhRO7L/udSp72cwSVUwfyKbP/k2dQs4bGPSAOffyb6fvwyUNvABY5lhwq7RSDxnTVxcr0/cM9v2ZI08Vc4xtbM8o8z8OrVOG/dJPtTwH83ncfuHdT+vnyf1f0A5efc/Q7lGC3hO2/gx+LFj+n9ujU355nNtX6vJfm6ZM8l8f97xkH/f002Aec3pcTtz/Tm+77n7fnTTm2nveB2czMXR5zzz+VK5Ks/idDMcV3puKg4Gf7ImjnOYXGj8/IWDHry/bOc0b9K5hZ7H5uaYh30PzkCek04eHIxydG9hkgfpuZoH7X8bgrVMD8ycFYQMgPFyyRPgen5u5xfx/P1PLfi/robxaKJzYVQ1RwSb9SPv3rxhvX4ko6AwixByomt7+k5NrOraFm2V4ENgs9nQOFGfsdohTUNOmRQCofd0bVuCEaE58qoKMaZoYoxCoCwYsWy3LVaEm5uGelHTxUAfAymrVs9aFQp0XYcrqStiWQejOY9QtI6Jx/WargOxUNWwqCtSTMSQSBEk9SVdQxkbDoeac1pnCnATnDjqqsKIIQT1CdToeEYDxQy5JGNku92ya3f4vmf56nN+/Zvf8MUXX/Lll19ibIUPka7vef36Dd9+/y3393c8Pj7y2YvbMf+kiAbE8SEoWBrzEYI1DmcTVWWp64acrPqA5oixolpJazAGvO9IIWlfbaAPWwXuPmGlpu+h7wPWRD77oma1esWy+Ryf1lQ3NfWiolo0dMmTsiVGS4XlYbOm3W0J7Y7Hhw0xC2IrPv3kEzIZ73t22wc2/Y4YFDyKjWSfMSmT6wYhkDFIFuq6wZXcgyG0VM6RyYSIpj4p9CWVnJeCK2kNLKHrIQeIPTb15JQVSDc1KXtS1LCmzU3Fpl8TdpHXP73lzY93hD4hCSTXLOoGi+PF4pZVXStwmxxEggpYFGjtwccJ3Zvgi0zR8JEgDRFORdtEAWYSi/UdGAtiMcYXH0YKqtPom3sraBkBcGlhcmBOI3IWmnx0Io5CtSdIz5RxOTZ5PIYkZ6ncex1AlwDEU88cIPaxn+Oc5AkjMkyNDCad+3yfU5y4B3uyv3/sT6GjefLaC21NaDqi0zEMjMuE/pdXcsiMnhnpE5L2a5isp86dZzPTTx5jgzBtvh9zY3pf38NrynF759w19jeATNKmnTUDPvh+GaDuyUd5+Ry++6mwPefJLcNznJ/2KXA8FjYctHU85zPcrBw9cq4tre4MmJ3i4EGRcOb3awTkH7M8ZaZ7fh2emdMn2roMYI8n5rSlg+eG3ybCKjn49bCWvP940q+TWs/ijaN1Otuz440+c+kEMuR9fVeA8msFm3P37AWGZ7u333cXylVg8VLgsnTVCTl3j5Tn98VMrl/GxHO/KZNyja/c3jTHclgOF+/UrGZydYIaM4hGKT2QlGbmF0C2DGayQz9tHsyvAlES0UAyGrFyyB2WkyfYHSbVmNwwmAsdSNZliFC6Twx/9lAYp+IpAjCfx+kckTknbbqW8H0cAplOr4j6UUlYYXMg7TZsHr/jTbch2ZovXn7DclHxl+6Be79j23bcvKjUF9A5moWl73tEIre3Kz7/5DOs1a0TYs/j+pG2bel9TxaoFwq2gk+EnJCUAYO0PdGrP1sm4RpNmh5sJPgdxlYsl0sWiwXrn96w6z1RMvWqoVo2mNpBWuJT1oAiSdM7ECI5JEyEpS2gL1nCJtJ5BSFld+BqoVkVn7+qxln9bLAM+mqDRZJRDWeVgaDaRmcw1tG2Hbu2Y73ZcXv7kq+++g2ff/klv/ov/4Ara2/b9vzw3R94++YNd/f3bNZrUlKAd9vU5CT4PpJzIMQe79VcUYxhUTeYolGPMbKqb0cTzpgj1qJmuk5z9/Up4VvPbrMj+i2kDpGEGLhZLvn88xeQLUYMzhmWiwpjdL36tC1pPjzcJXzXklMgl1wSde3UZDNBzjUheM1x6SyP6R0xqVbV94GQ4ghishesVDT1kpvVJ6xubovmNGGypTIGa0GqTLpxtL3H+6LRzolMIqdAih7rKqSqMLUFX2PMEmsN2WSQCCazA3Zdryk/PPyw69g+PNC1HX3YkUxSKYKx/PQWXoctf59qfvPbGmMTC2sRqXnXqzDAZI/za6ra4anpcQhCnbdITgRc4eAO6ZBQzBdTKtpEAWNIviPHQPY9Lna4sEXqJSYHNHWGIxtHFQKYIvQyGhEY0WibmsMxljaNBkWKuQRlHbRaaU/fRH1vc6Ete0p2Tou6P1TnDtM93bzELA3nAgWsTTnHjORT+jRby9Gj0zoOmF4pet3yQC4AXwaAn2FwXwAhph7rlGkPyeDSkhAz5IgxDiO+TL9ohN4pw5FBxlO6BEgSg4j6TYuxgCGjVhSDZlJN3Ic+6+86uGEu9oMdtLHXnDvnmJvz/j+nZ/I5fmFWIyLCvAY+TxbNsBmuY6iPy5xWYM4f79py6ZnjsastR7n/IJXKYd/Kwyfsw/nTe/pLOrh8OM7JT2WZj3ZYR5Xv3186+D4w5Yc+aTJUtr/E6ds5Ht71ZQpZZsARc8D0sMxphURkFJpeV+buPf9WLmkkD2o4+fmpyXmajxt41PkyWCrsvwnqU60uHtOFIpO9ncdUX0rv9vflM3FWTvs7XST55GdjS1C44wUyM5yUg7p1D+/UHBL1gaaONHxm3qaaxKdmdU6TeQwUh89ja9OxPVH/9akzzvX02k01ff7sM3NA8anKhirPd2T2YBhoyFGnRsbiWFo1zOxEIzr5Wq7NRMArkqX54esin54rwv6l51HzJwfX58Z0MBczEp2Dg3P832ROTmo5LM8FcteafryPxGTuuSduJuWMdZbYtXS7LZvNI82iYeETZEu729H3mgzdWksm45ylWS5HRsxax3K5AoS+7+n7nm63JSQVAFhrCjEReh/0reVEzgaRjO96NDy4JmUXU84wI0Wzk+i6TjWOgGkqjIFq0WhuxwTZR1LQvGg5ZtqdJnsfTcRIxJSRlDHWsFgtNF+jMQPfjrVgncEZq4ngEY0wSipMt9aRYyZlT103CqxCZPe4wYdIVdX89re/45tf/ZqmrjHO8e7tW7qdBo7p246H+3t2u13xTUwYa6iqiuVyhRFLCIEYI1VVcXNzg7Vqmuj7nhRVQ1jXNbFvyZIxzlJVhpgh5oQPPX2rdYQQ6LuOHPyo2V0sDX1IrLcty2apdWSNKAuRGDp6r5rg2jlEdF6CB0kKWLqdZ7MO9D6TiFQu4SrBVYINhsTe9M6KVe2xGCq7YFHX1K5CcqbdbAAUsFZWI8o6hyyX5KZiu+vY7TqS3xCLdjSTSq5NNeWMMWGlV0Y/6PcsanIsUej6QO8jXa9gN0YNrpNFzXxT1pQpkuFxnXnTPPLtj695dfMFVIIlk3OlfcNC0pyaUSIpG4wtAWimEvg5yfGw7Ya/KWo+yayghBQgenJ05OhJwQMecCRnGHJTqi9ieW6g1Qd8gjKB+YC2FRp8RqK9f/749yfoyTlOcsrQHtRzarFyzIHuf7/AZl8gh+NvZ+45OE0nZ8ywX2KMI+041qRqd4+ZyenZMzB0afx8/N73/ZyZiyfKhwgOP4bQ8az53hAVlun5O8eK/bz9+xgmzPNmpNee23DMyVzXzikDftqHoY3rwMylMvJL09bPLdSZS9eYMZ5kBDgGBMdtHF072Ht5b9U25fcu8Ul7YcJlenGuXOMn9z71ntMqzn2e32vDn8MZnpuf498OgOIz+nfc9ullOf1NhGkAsXF5Fex++E5PH91Dt/M8PeyxybPGcTqAs+UpgcZVqTMutv0kKJiIccYz53wAltPz9Xlg4nqNVh4FgvsHnoF8hYPD/+zhckU51IrLZBMMPm6M3096cgUx+5BySdJ5fP3Stbln/3pFAIM1Grgl+J7ddq0ml5UjJ8v2MdL3keD3mcmNUd89H9VPz1pDXdf4ztN3PW3b0m63uMoiRrAlp16MkRA1OmoqKTYQCCEUsCYlhQb7CIRosBwfIl3nuVktsNYiBmXSM+SYiF0Yg9akmAldIJal4ZwZGZkMuLqibprR3NPHgGQ1ubXWYIvZqQLF4iuWo0qVS062EFTjkDNg9HtVVdy8uOWrr7/k1SevCCHQti2v7x7YbrbqI9h7+r4nJo0Ua52lqjS6Z7NoIBUza6Pa1dVqReU0L2G73eF9T4wRYwx9r0BHsoCRsZ8h9PiuIwbNT5higJTJWf1LM4aUhRDVhFa1ozoXoaTm6LstOYHJlc53YarVFNTiQ6RtM71PYFQgkDOkJOQc99BABr9K9a1cVDesmgZnDc5AjkH9QQsol6y+ok1dk8QqIUqZvus0QFHKJMxoukymSJmDNljGpUGJ9HLnE30f6XtNk4J1ZF1ASAHfKSpYbLvAw3rHdz++5TffvMAZy6pyWNSkdxB7xZzUesSooCEJxXd1f2ge0IbprhvAWU7ln4LeXCLx5hiI0WNiD+IQUe3iCGxmzd724EYUzxfgWuhlAYofzo4fNHzSlZFp+FuQsw8sOauZ9zCPKr0+z/g/ZZqWSWgalmPgNAD6+acv8Q5nGaYjE7LrhYv7/k7rudYU7/S+fPT3+LcPW4HXjP+ac/ZDmMtDbfzRb3rDVfU8Jbx+iid4H7PdYz5wP5YP49nOPXOpf+c+P/Uente3UyAy185TAHwKTk94+GeUOb5xrsy6ep15bg5Iz837tO1DgHa+L7P9lJk+Fpp/eOadmZ/J+TDn2nZybubT68/q71E5buuSkOKacjnAzZkNcL6j+6ick1oYZ23o3HOA8EeQwsGZRXkwmbwXjR+I5nsDxcl8TTfAAA73Qt3nS2evKYfS9pnfrrx+XsLz1yuDlOZEwGAslVgq69QXKvXc379mt13jveBcRUqGdhtZb3oQuFktASHGQN8HnNNAHCEk7t7djZL5GDIiSbWKRrV1Gogojik0UoyjOYkUoNg0jQaoIWs0S++JKRNTxjlDtVRtYio5EmOJhtpte00lWLZTyiC1IJXF1RoN1IoC1+VySdM0GGsJMZC2W0iZCktT1VSV03yJRLzv8D7gQ4fmKRz2raXrA0hEjOGLL7/k17/5O25ubzHG8Ic//ht3d3c8PDzStr2CP2tZ1A0AlbMYW1HVNa5qcFXAt8hTAAAgAElEQVRVtIWaP9IVf8mcVatJRv0QncV7T9u2uNpBYXB3vR/nXn01e53fMseVW2CNJUWPMYaqqlktl9zc3HB7e0NlDb7d8vj4SPBrYtjRtVBVQl07FoslfecLGBRSdFRVxNWOerFgsVhgrYBoZNiYQgGvakpS24pFs+C2ecmiqamcoa7AEMlp6HdLpuRdrBoCgWVlMcsGyVBXFT4EfPQEMqOBSIhs/T0i4Fxd1mcixkTnA9s+EaMhZzXRjUlIJiPWUVmLjYkgqgX30fP2seO//+t3fPmrV9zc3PLrzz/D9lEjyfaeGDxiQaoK5wzWGoIXIFGZczTg2Fek0Lec9mL9FEhRQURuK5wskawmjMksin/mADRKeoeRNy+mnDmObeaPTRhFxrNBxnFMxjSAZM6Szo/ShZ+1jEBf59CIIRulYWIMkhPGHEu6h8EfHZQD4JT9WTbXnq6PISej0paT264AQFM+5BpG+Bpg8b5n1Zzm50N4lg/px1Mmp+cY+I91Tn8sXu1D65kFpuOevS6lyF6BdDw3c9ohmZIMTgnGXD3n+wvD+5rec9i5w/YOrx9fO8A6RyD6Op/J69fHnFLjWoVPPjDBk9P7Sz1TE9ZLAGz/+9Xdnzw40zeGGCLX7ZnnBPD5a8gd5ejzc9u7WrN43aJ6qiuFWM1pyLh6Xv9DlEsSKt0McwRkf3WW+E+kLv9ZJiVDjJk+tYTNI5vHdzzcv6X3PSFqUvuuj/g+EwNYB81igXWWnDOLxQIRQwyJx/t71XiJwVWOVKWSczFjDBpMxWq6hd1up5qZpFFOm4X6ujlnsVZI5BH0xBgxrmJRVzRNA84QfGC3benXfvQhMZQohUbIxlIZy+rlDdWiJsWE5KjaS6P+eTkFtZ3Piaa2ODE0ouklJEeImVS0iUY0sX2IkZg0BYt1Nbe3L1itliyXK+pFw7u7O/787be8efuWzWaDsZpL8XZ1AwWoVtaRBaqqoqoqFqslIamGxpf0H845NT2VPM5B8AqoBu2HsxahIoYe7wPr7YaYShAbEUwxpc2mRH0VR0Y0AUhdKcBbLnj37i3vXv9UAJvnk1crNTfONa6OxJToQ6bKBre4Vf8tY9ScV1wBwY4Qe4LviSGxWNywbGoEDa7T7rbqnxoSi0WD9JpHcLVacLOydF1L17ZYIpVrAPXBsCnRGINrampTsagq+uDpg6fzPSFASBAyNHXFEOQl+EiIKmBIZT2KNYToCDkTTbFMyBaDRsHtO82NaU3GB9j18G8/rHm1uuNVpb6R5KQaUOdUAxUCOXXYui7CsQveDfmIcg0aQol76QaaEiPlhKEiVZuiZReNSDycHcmCycX8BjSvTSQPvjkXsMmHlOOz6KSJD1cc/U2LKZGFrbXYbMfAVrFMqzAwwEN07akv5H7wApOoq0zUAmpqPxR97hDUCbzXHF5i0i4Dpg8Dgz/X/c8tH2bB9BEB48/E3X6wmd1HK08Nbr/ghz1y+twcfzcH8j5OP0oLz6n8ZyjXabzOvtMj2vrx3v1z65lb4M9b8HOCpIPaptcv+lT+MsoHm6GelnPH7Iy054mnx1qesbuuNSv5oPJRCeUhazJ8kiK9yPnQD3JvgnUi3lKp+4ykdX/LED3wKMrSmfE8dTBP/x5//rm1ik+N89RcCXJK9N2Odrsm+A7rLH2Ebdtxd7el7yMiQlUNDJQtvn4akbRre9q2wxpDzrkAvCF4REbEkGMm5oSImgSKUf9E5wzGyRh1NKZEiJGU1G+oqmqMdRirpqt+2ylw6gM5pj0TLoAxiLOaX7GpcVXJg1g0gtZAZQVL0kitRY5fGTWJtJJUiZeLXjuVdBVZECmBY1CmsmpUOyli6PqebbujbVt2bct2qwnhm7pmuVqxdA0haKZ5meRey6gJbhgMC4z6v2lQDO23vsfpu9xr2EMf8V5Ne1OWsifsAa0wxmANmtgd/VtVjpwj2+2avm+LRkq1UrtdV7QqhrpuiDGVoDoVTbOkchXWOfq2LXOvaVcW9QKpFxiBpqmorCHFwHaTybbHOadaW2vJMSIpEX2PZqzokRx5sVqxXNyiuSIDNimjHhO0RHKKWNF8icYIXhI+JkzISL1SIUPI5OiJw5hE19+QkzD4SCrmogaNvismoQFGIuJKPsoQef3Q8vZ+y+OrLTc3K0zREAkWUIAn2UOw+l7O0PJj/+eT74M6PCf1WwRy8hA9kjySffFvNEg2DKar2mc0YE5WwDIkSh4sMw787iZaBBWKnDenmyu6zyYgSDs/+T1Pfvv4h/ygoT3/24fWPzkLShnpQd4HiTjUVOQR/40WHBP1pIwE6n36cx4gPMfc8H1MCofn5s3v9uWcKeXH8Kuba2uun3PX5s7fOZO3c8+//zn9PEuna7S+15ouXnvPufved+zTqg4fPTRTP31/p89dN9ZLgo8ZGiFn6Nx0jUxruXJvzd12ud+ne/KsT+IUPU8/5323pXw/4OguvMP5cT13vcwbl86aFD9R9XXr7RAlf0ztv87f4Vl80K8r67kaLD5f4jMnaXl++WuYMo6H84xEY5Zwf8Q+DQBABvH59PDTDhws2+NDfn/zflNeUvOLDMzehHh/oAnO8ee/vvnpjOnpzMFOzPiupd1tSClQ1zXbNrBeb3n9dk0y4BrLcrnQiJfF/6zznvV6zW7XkUOmXt3gvaf3PQu30KA2UMCimkTGnPA+U9VgBVytqRLECBghhEjfa448I4a61kA0KcNu19FtO3JKRdvH3llaDGItpqpwTU1zu4KYSD5AChgrODE4IxiJRUun793aClO0OoM8Unn3QYNg1ITV1RjjsM5SL+riN6hAcVMCtWQ04E+zqrm5ueHm5gaXoG3bUTNoxJGTal5jiiQxWOeoncPYErhFGINswN6HM6VIThpZs217QvCEBEYcYnNRtKqf5ZCP1BkLRsm8tRVVZQm+Y71dU4mhcbak2RA2mxZrKxaLhtXqU41QmzNGLItmSd3UOOeKb6OHnDAZXt68ZLFYsGhqmqoihZ623RK7FqqaulLNcGUhZU0+H7od2z4gknDO8snLF9zevCQl2GxamujwoaQ0iR3ZWiwZazPOGHqJ9D5iSbjlipgz3gdy7sk+kEXnd4i+mXMm5CE9gvqxWluRbSbaSJJM1TjEQNjtePO44+3Dlsf1jkVVwYA5h4iXOalWT4JGvJS9AGtW/nqwFw+TwmfJkKOm5UhCjj0kD7GHVJNT0HDQYrTNwdy1LFYZtFIDUMyn/oT7TU/xrxx6+uFlgp32XMzHqvs9AMf7gZRT256c9ylrcjr1YBwAokzaHC1ddNkVEH/AjjJGaDw82q4ex3PPlQ8BEc9pT8Z3P/07/npVH+b6cY3mdAo0njrr59q4pp1fUrkGkD8JsEcMcshLvY8iYg6MP8/ybv63i+aZ19R9zWsb+v0eLNr7ros58/FxfQ6AUW8ogHFCWodrZ+q86noe/je/16b92V87rGIPrGbm7lxfju69vNd/pj131LdRDHgsWLji3f4MmsXjMsdO/EwtXZDIzt17HIJXy4f3VaBEMp0hRleAM5lsnmNpyvTfUHLZUENbao73XHD/H6HMv39Too1aY6msobKW2jo220fuHlre3XWQYbGwLF8s+OLrr3DOIcaSMvz0xz+z3XrA8OmnL8gpE4NqRiIZV1eYDMlHckqjFmy5NNjKqjbROaJvCSEiokF0nKs16Im1kC1d5+l6z2bTUYP21VUl8E0ipoQ4g1s22KrCVBYfPbHtkBBZNBWLylFZwVldF8YqGEw5kXwipEjKPc7VWKPazLqu+P/Ze9PmyHFsTfM5WEi6S7FkZlXde62te+b//6geG5u2sbtVVkZIcneSWObDAbi46IsiFJlVtweZCrmcIACCwMF5z2qNR8SpNqmE2tccgj3/9m//BqhJ6X73qGlEjOHh8YHPnz9z6gcOhwPj4YWcdW065whBE7MbY2l3HfudmrI+fHjU/Zdy8TWMJbn97LiekgLdvu81RUIugVdE8wFKisQUENHoo8ZoWPth7IlxIKcTB9viDLSdJ/Uj45jIxrBrPb/88siffv4X/vmf/gfdruPLly88PX3lt1//yvNvTxgrGCOkEOh2Lftux0+Pn/j4+Ij3vpjwJXJ0PDjH3llevraEoLkOh+MXHh92dG1L1zra1tB1DW3b0HV7hjESQ8AKPLQN0WZGm/AYGmvUDHUUBhNI1hDbhpQNwVhiFqKHnRs59EeOw4mvxxedF4rfmdV3rk6tGtjHGUvjPAMDXdcoePXC09PIb197vh5G/vKzhRxIUU1bBQWuIiA5ILkEzSm+j7MO6v4dKuQi/YiQR4g9RAdxQMxINqZoF4u6tYCRqvmqOQJzBYq/s3BqVf7Art+jrLX56zIzT5sydj3KZK4rVdhZzuG53Ro07FZw9vvLLU3gxh289WW9BhN1Lrb6W+6Et+6KP6783oLde8sljdE3AxYu6Yq2y1t6ecu4vlUgdPM9vbXdN733H8XDy92A/Ueu0x/muvX3MMXvWL4JLF7SKL3WJtYZeA3ENv31+Pb52gKKbzFheS+oWPMtvk6ise53VmEvTly2pIXKKVUtzPnYJ4nIhX5ulXNTsbeU8022JWm7JT17LyJwjeiklIhxBCCGgTSqD+DL84HTEBBn+OXPe2xjcDVNBUJ/6nk5Hvny5QgkvLOklDkdjoXRN9jGQxZiiozDUAYD3quGUn2uMikFYp5zoDnrsNYDhhQTh9NJzU5DxAJd0W6mmDiOUZNeO8P+8YGmbUAyMQbCEGiMxXctTdFepqwpFFIaEaoGT80TjbVAx5RoXQzOehq/AzGkBMfTkaEfGcPIGI+IyKTx6/uenBXIWus0+E5I5KDrPaV1HlHvG9qm4fPHT7TdDtc0WKPRY4exp+97huFUNJqWHBPHlwPDOBBjQLJGIBWDRmdNqYDLYu6qKIacM2OKxKBawK5tNXpsUmAxDplPHx758PDA5w+POO943D3iiJg48nHXsHef+LxrmaJ1poizloeHPd46JGd23mKN7vIYIzkETIadb2k+ftSIrGj6la71eOdovKNrHc5ZjLHEUX1EvbP4hz2n00Gj6TqH21t8YxnGkVMvHAfISchoPruRzBgTw6j5FbMVxFlS1zAkw5CEU4Dj8YRxKPAHhqGHnPX92EyIAWuFtukY+5G/fTnwP//Xv/Lf/vIT+05NhJMYUhwhgimRWLMTDYsqZzm9tvGEbgaj/rlV0mqrOkoUNOZU1mocEK9+t5T5B8vs/6Yaa5U8l9y2S8n0miBcpRd3l3yFNv7Qw319nr0nM6N4rkQjXuzt+Uf7V8HPDNJf5ZmXqqEswTikJKNflGsmede0e9cA7K0zZFvLtAZ51yyHtkwj12Vua6kUqdcume+9B6C49/y8pYU7f8arTPuP4KOvnPvvCQxWPMnSmqqUi5rkK8zoLbPCe9/zNRNcvTbvv2X9LQ3z1ObWs7xxXK/vg2uLYD2H97a5fgfT89wxp/eYaa8rwD0+gefzO1vZLzSOxbXhrjV6A9Csxl0jjN9T9y3lwpyeiwDvaf0qWNxi+C8DxUtEfoZhtx74kszuUrmmPbtpZrGl3i7JMb+VWK20lfdumgtV9TlmYrD8+2r/G0Tk1WFazLfmL7Zn/ppZxC1z13vauXXtrWVmcl4zDylHco6EYWDoe40yWkw0rXXsGuVirVdN3zAEDscTX748M46hADFhHIJq1hCNPGotMagmMUSNgGqNwZfgLUk0zUMsyWRFZAIGIpaUIEQ1K0whklPGGiUcCSHkRDRq8ukbR9O2iMnkqIFHHEUDWXL3QSSlQEojKQVE7OTPp4TOYNDvNMCMwzpHRrWlYwgcDi+cTr2afsYe33TknEtetkjbdnjvcdYxjIEwaoCfVHMDFuGGtRr1tWs7mka1qDkmBdVGGMZhCmxji59k7af+2MlGe84jCSUPYU6q5SrrMRYTYCMZ7xpy7IvPZsIaz8P+A58/fuLnnz5rfkcr5HAiEvDO03UNj53HYCaw2DQtXdtiBMLY462fzLhFBIrfpTEe07XkHHV8EnFW11LjGtrGU3d7TsuUKYIVBVRZSkoTO5sRkyMpoZpV63Ap4ARszuQokC2CI2SHyRaJEHPGojkSyakA2zDRJmeElCOSDN56Yk6c+sDfnp4JOWuqDWtIGHIq4KH6CC5AxWKDFXPE5aEPlbJV5d8yzYUKTQpYzDrXKQZMLrSp+GLWpNt6QpeIuSUfKEXwUvuo3b4nb1so6bbor9LNH8BM/1il1PpceW2tsux8zWzX87ECsDnrYF0nd/R+pc7WeXDZDPHOyJYb1y+1ueVjdc8ZtTW2bylvPQ/vBQXnz/6KMb40nnrPm0Z1u9yrUbp077LcauccBC5NDi/yswv6tdX/rXlf8l5bPPEWAHz993b/W+Ne7dI3zuuP0Kpdm5/ZCmF9rVrIXRrNct7vMU1eX3+9Zrbam2+ceeQlbRQqdLi9fs+joV5dM2ev+xYPfQ99qjhn6/qZqPeuNXMTLG5JL7aub3d4YwAXEO+3L15ZMBdvvpWbooA8swzfs72WEq5Vi7JeACIyHcJGVIo+m2K9lthW/LutzZtkTutFWcfyqv7lvy+ZiNxdFtKOcxi7UXm7iTu7yhnNVYjBZOF4OvD09IX+2NP4lrbNZDGMw7N6aGVl8F9evvDXX5/466/PtI0GMyELT0/PGIHGO01W7yynU884DroBc6b1mt8whKB+YjkRY0QooM83WOMZhsg4BPp+KO/OYp3Ow2+HExlovGH/8YHdbo9vWnIKvHz5QoojTuCf//RnhhQIKajZJwElBREEUtaUEqlMmrUWZxseHx/puk7zL44jv/7tV16eX3h5eWEYxuk11XevYDjTdTt++uln9g+POOf58vWZGAMxJkIIiAiN93x4fODDh0/lWTUNxtenF1LU3ISBjPMaTMdZW4BoIoWIc45qahj6gTFoOhMRwRgFhQqKI5T8bilponGpQCzpfKqpa+LPv/zMn//0F37+/BM/f/6Jf/3XfyX0R8YwMOTM4/4Dvu3omoZdu8NZBcNt2xL6ASTTfnpkGII+Q8pI2xXhAHir/pCQiWnk68t/EEPCCHjvcNar5jglBdqtJ8bI8XhU38eUFRSiwN6Kx5qMlNybKRWtdBqxJuEbofUNTS/4XhjDSIwZh6U1lgcPz+lAiAGxGtVUo9Zams4yDD0xagoMKZrLYB2u6xBniKLBb4yAs5pDssBgtPZyLxbadSaYRypQnLWKlRkwBWbErPkWkwlgAibHmb7lzBosMgsJcpwBqlTNSA20smVpUX0bZ/j3mlZsHMBnB+72GXd2TZbX1jW3irCmsfO5MNPtJXP0TedjPvvjjIeqTda5T7n2uZBBZyaBV9V8ULSK6yElalqM9wA/71GuMd/n4PgSo7ZlOXO9r7eBmvP+fo+yJfTdVBJUgcm9QvA7hPbX7n3NvFeBxJofvQkUz36vLiz49KnOHePdWh9vBbDndV6BxkkM85a5vA36z59PyuZ9JRRYje1127fo0Eobd85PGjP1l85pbtXoLZbaeS+b87Ah1VgBxfVLvsrq50n4+fqZqKLiVwKzDSBYnnPJr98nhHofGlifY9q731lumqHei+C17gzU5vqvieaaNP+dlIsDefto10tnNt/J5UP9XFXdlVkIIZCJWq/mrBID1pGwSBJM1rATVZqki7a0IxSRQZo3RR3RhddnLl249nyX1sJM3ZaVL9Y93/N3Q8WJyG8R6GpyWTdpwhiPsw3xr/8B8QvRHPnXo/D1eeQ49CQiXh4xTjDGE8PIcDjCMNACPgjxJUwr2baOZKBn4LF3cIrkMWEsfHh8RAzENHI6HjEF6DfW4HYNOQtxSAzhxDhGYkykkKZ9Fsu4LQbXOB4eOvb7jpQD4XhiHE+0XrCtAq3j+KKRR8mMoUdM0vVAZhgCgsHahu7hI137QNt4usYSU+TLb//Jy/HA0/MziCGHpH5iY+H9BUabGcJA23Z8/PTAP//zv7Db7QA4Ho/keETIeAtu98jHjx9pu47GN8QYeX55Yeh7Qgya89FouggpAG8cBkYybbuj5mk9HJ6QnLAFUGJ3BUxF4hgxuYCyMGC8rn9jIsZHvHiccVgDQ6+g1/mWh08fsd4y9Ef+43890eXEhw+PfPr8SXNkorFUrGRE1Pc0poFswXujjEpMdNaqNrEuRJn3cKIKcgwP7S9kX8wmY2KIQwlWZDEIeUwI0PlWzaLRPZ9zJgsaiEcazKNhHIOaHIdAzJ6clIikmHjwHi+ikVFfTmQbiVZof2o5fulJgwZJUv/FRE6WGAzkBiOQs8G6hiH1fDkF/vb0ws7taazFj1GhoXj1XxSwk7bQA6q1zFI1gBGptKesexCGkLHGzXQjQig0Lpmk2tI04vJIjgNJIJM0cFQGTfZoIJeclkkX50L4W6yMcp3GEhdHxxYLtK1s2PzH4oy6RNpX5kvnlbao03lbC3ZVNu4Xo8B1kxG8/3ScBTtLBj8tyK+m78k4cupLGhIV24hR2pVy1rQaBiQlxKL0KanPoZLVctCUqMRkNWM12WjU2ViENVRhJ6hApzKCag5/LyC6Kb2XZZ0taLAN3Ob2l+4dhbWS8zqV0dO2b1pI5cv9Xa7/fSDxLfdWRv/NGqj7sSKw/e6uWSTNdbaZ72Uez/lNS1mSZgtVzHVzpUfndbYGsP7zlSBnU1t4f6mm81s6tLz6rEK5e/pTUDJ/3mpVyrKcdkSV8ryat2ujulHMTINW62UJPq9Al1ffL2FETJvWpFUjuar/qtXzlheTtWmiWmnB+d58Tccvrebl99eVaqWOqddWh9p23Xvp5+LfZVFSvgh1+b2axXsGdd+mWRJbpkNki6TeMqG4Ns5zreLbia+O6ltNJJaS5aWmL0vdOHmboE0TsbhfH2AlgbFbW0ygmgeVBjc3+2Xl/tvL5XktROL1S31Vc/M8vRst1jbOJf5nQonpUNQ8i2HoGYae46nn6eXEECKZjDNAmv36hmHkcOgZhziBAvV9K5o57ybG/ng4kVPCWYNrNB1BjIkYRiX2VgOLOGcBSwhRTU6jRgGNKTEmjfJoraZniDFhncU7i7WzSSQ54pyhsTW1RwHFJYrhOI4Ud0vIma7b41yDdy373QdyhLHv6Y8DMSWej88chwrkdhrQx1jGoUeSriprhf3+gf3DAw8Pj7Rtq/kQQ1A/OMAaKdFjO7zz5JR4fnpiGIcye2qyC9V/NJZIs6YISSJD8YVMSd+JNZryIZeclljVYNjoQAQjMFbJXtE2CWgeS1tSPpRNmFLidDoxNC2NGFpr2DlH49TktGvUzFSymriSE7ZEV20aN+0dyTIzHHm931fFGCyeLFL88YAFbcr6oNOt1XpAX1ua1q4xRsPLlAMk54xzgqSSWzFHDIlsNdJrYw1jLIkmkvpOZoGM+nha7XzW2qEAXIwGPjocA1++fOXnzmDbhuoXOOkCc9GolrydCpSLXw2owEEUGCRRM2q9MGxaPFSJ0VKTSCqCk8kEVTWZ8wGaV6TyVak8Q7521lZasWhkmz+9cHGmc/efEuUZLtBC5R+v0+hLFh8XTemYu5v4qRWgLKbjeRZWLc+JXM+mubXyzDK1c/7fXPN2+V4NWgWKy2YuaX6vn+eX5299ruTpu7eYpt4GvO9jkvnW+bxbY5Xntf6e73W7//nM3r5pMayKAlVk9ZrHKfR/bcG1KPX+uo/Kv1u+jXOfcztvfc6py3vvrzzjov6ttbd8kq0G1Yz8NRmawONSs/ctWmEWz1j5/K0OuTGXy/fM+var81YW6sUay608DXabZm63kVd14DWdfCsdn9vLK9xwaQSX2r/0vuq7vTTfFWvcKlfB4jUT1Gv17y1XbW2/s413LYs3qO/0bZuoqoG3DoVNfCTnAW3yfKAXxmpa83ceXBfHdo3w/B5ze0d/m9+n6wf3cu1mMjEmhnHgcOx5fjny9PyieRKN4J0ljvX9wOnYczgMChaVTybFBCK0jWr0Mmp2eTiccF59Bpu2nUBbCAHnLL5pNbG8MYwhMgyhaLx0fDHDmDO+PIexhhAD3gnOKQiLcVQwJJmu63BGTS91/IYQI2Ec6Xv1rayb/8PjJ5qmw7sG7zu+/O0rh+cnDoevJDJjCiQy1jvarkUyxDHq+BJQUl38/PPPPDw+st/tiSlxPB4ZBk1noSaKBmMNbevJOdEfB3777TdCCJpWY/+AdcXUNCZNCeK9RpwVo+9m6Kc0H9ZomxYYQij5DwWMIWcHSYhFg0EuaUByVnNjazHWkfOIdZYUAykFnp+feGw6HnzL7nHPQ2NxxhDHAbtvi3bRkHOAAm4b52nbhhR1z1lRwEvOat5a/FCBGbgvgFjOhmwKSEgLyWoFRwUhTut3g65MoLGA7QYFiqG0lyJkNLpv6ywjmSFAHkcggcnEHFRrhCBSfQE1VUgk4QRCDByPA7/99pXDY4sXEOtqNg7tKyWyUX9BGwcdv9E0F2ItiCNjyWKISEFrGSvj/EALgeEcnKaaPmrbUqWrk9pwvleo/MwbcycuGZfF79X1LTpTaf9G+Tb2/nJLK1NT/fSKXzg/k6/T6LWWrNLKyojknCdBU0rrp9G1rXkupRodF8ZKljbI0/u8MILFOL/lPLklPD4HHD+KV9F74BqwPKt9d1/n7j7fasJ5zxxc85v6USbAt8Z06R1fG8+92tvVPlmkaLrV973t/l7lPsHQ/B6vved1qcqKa/O9goDX19eVsd80GX4l/F8XY8wm6H/1jZTzYYPWr/jCXE3or4yvLLNLQOuS9vxSuXcfnDdxv8Lsx+3h79Ys3ribreVzfnD/6P62q15mArZafUv9uYtiqvNKJlcQCJVxyxOYxGjaAmMcktS0B2YCMPFNZ5856+G/Srm4HhZSw1v315+Xl2f+82+/8e9//Y2nlwPGtjhvaLwwBnDGEWLmP/79V04hYZ2h8QpmJINzhv1+x2jzK9kAACAASURBVBB7BYRjxDnY7Ru894g1vLwMyph7x8fPn0sAnMDL0zNPLz3WWoxrGErkVGstn/cdw3CiD5EwBjoHKQ0YY9jvHBnDOA7knNm3Ld57hmGg73uenl7UvCzBOELXdnx4fODj40c+fvzI169f+e23Lzw//S9+++2AMYmmFbWnd4K3Dt92IMIYAv3Qk8g0bUvX7fj8+We6hz0Ax8ORr89PpBTL2HZ4b0lB00D0R81FOY6BGAIfPnzAGUMYBl6e+gJaPY/dAxEF1SklhmFUja1zGhSmileSAkFDKOsfkmSyEXKuAMqiBqCaPsNYj5Q8hTghBSGFSOsdXefpdg1t59l51YDGGBj6E96rprNqNEmZcRxxCy2uXQDCJKnk/JsPMMVVVQ+Wp0NL9ERa0bspwI0pUvSiaay0QAXeolrVUl+DEgkpq1Z6KL6eMUZc0QM2Q8D0keNx4MkoRk3oNGXRSLnERIrVXNky5oSRjBjD0/MLff+RtG/x3jDGhEjCGBWc+MZhfIex7ZRTNKUIKSApY9B23QT0MmFrH68OaRS0xIREzeUoRZtMylAA95KSTmDqzvJdtPENx8obK39TuRsQnd1Tf0xJjQMUzWKZX9HgW7X9lBJGLCKzdnsuhdEyFezHdxH+vkf5PcDPe5bfe37+vstb5uI+wPhfrdyzz+5e++89hT/4lbzF/+4e8LSyhnhnsHUL/P6jlW/SLF5UZ16pd639W9/fO9Hnkr+rpUj2X0kf5PUhO1+bAaMekff0taxjUK+0Rdu1paLCksVBvm6mpl2orQpqCnkmtb0TgF+SSn1r0Wf5/nI/w7GmSucbfcWYi0Ek8fz8hV9//Ru//u1JE8R7jzFq+midajpCzByPA06yRhc1Ahm6kqRdTGI8jKSccBa6pgFgDIE0KsPvvcd6B2I49SN9P/B8GDDGkbMQYtL0d0BMiX446RhMxlpw3vDQNTSNR7L6HbXegUBMgcOXQwGLI85pRFZvPfv9Bx73D1ijgV3+7//r/+HlcFKgmQJdpxpOsZraAasaIREhBgUdGWh2HQ+7B7puh/eeU0nrMQYN0NK2LU3jaRtP3584HY/0xxNIQEqk1Wbf6byMI6DP7pz21fc9ODXtTVHNR73X6LFGhDgM5KJlss5gkiGlREiZOIbJN9BaVyLAZjKa8N57hzUGJ0IYYhEoZB4f9nRtgxU4vLzg25au8ex2DY13WKuRSBvnVBGY1uag5ozOWVt8D3OawF0uJpTLe0Hv3zKRF2OU2TZ5WtHVz3Zaz4sDx1pLHEN1k1SRUwGc3gl77xRQJ3g2gp+Xb5knIUWQlNUktbQbc6L1DY+dI2cz+YfmFMu94JwDk7GNx/gG4x80TUkYIY6kkJAYkZzK46TJtSMZwzzivACKs+Yro2a1NgdIjpwiJpX3t9jqQkn58sZyDw+zebBPCHUWTl30OZHr0bDfxszdDzovax0uj3NOmTGnzajXph8EpvMoKajfPPXytF/XZ+ddw/9h5da7gjfLf1/df7m8jWt+izbrLRqa9yzfzpfdpy2tNAHmtC1TXxN7c05H35a7c2tNfKvS4luBwJxe5prmVK+fg5lr5ZLVxOs6l9vZ5u3zN++TZTmf+9UoqmWDzL8u6jlvgLp7V/5E85jf43qOq1pxedP1TABb5V5N46u5+YY9fHWO76h/rdwFFu8t5wvtTeDtrJ0tEPqHo/Opfyn/l6NzYf6xPcZ5071SNcu8MGbw+Krj2eiqEl6BKVz5eW93aNvu+e6e+f7WQ+l71ha8fva6ZjZNDsgQA4eXJ75+feb55QCiJp+qwVKt4Zg18mQMCfWX16AQxgi+KakwUtAol5biU2gJQf3wElmT3TtNRxFCpD8NnIaBMSZa7wojnhbvPhOTam2cNRgreG9pW4+zlpyTmnkWrdY4DBwOR8Koiex3u5bGexrfsN91SDYMfeDU9/znX79o0KQCbNvGIlbIJmvwEFMCh9T5Q0GQ9y1N1+C8RtEM40AIqkGy1mIMkBPj2NOfTgxDzxhGch5p2x3OqY9mDHE6nJwzq31sxOjzGQ2c4q36e+acNIdins1ya8TT2bRE37ExFucqs5B1zrxT7WAaSWM/pQP31mJFyCkx9D2jUZPixju8V9Bpi7lnzto2MAFS0S7OGJ8Z4JHyFJxovf7KzxkNy7mYWxYgstL8zLt9xSzU5ywwS/0sRdv2xtC5ORXLg7W01nIoZoZz/FIpvpfTzlBAaB3et6SYGMfAMIyIMSQxYK2+B5mfV3JEiBipvotMZE4fcZZsnYmlVh8nUFNAMklT3EhNk1Fpa65+7vJtB2mxxLhGdy7Su4WQkLM2/ogz6dzc8NyMcfoOJouVNSMp05o7z7M4lbpspz9q5+v+K1M7CTbOG3jHcu3dvVWrOb+3bxvjLZPPOi9aZxpNvXp1nPO9Ky6VtwLQqz5h31DvVrkmgL4kyL383tZAvrKSW9ttrntlL+aZP7v7GReI5bzla2Dmfcrr1q8Kqc75o6vP+LZ1dLu9xdhErk6MsHyHy0gbr4HulnDiQuyj7XveWO81zth45pzXR9gNsPUWk9Q1yHu/fXir3r2A8aYZ6lsau6edrbK1QO6xv/8+6VkFXNclS7fV2GwyLmvidfkgM2LKsRCnGzf73Dp7Zb2o7mGiLhH0S3NwSzJ7T3kbIbu71QsHx4aQIQyML1/58rf/5LfffuPr00F9rFDfMwK4R8vLS+B0GjQPHZkQMykG9o8O69UX8PB8hAytb9jtGoYhMMag+RGtZb/fa6CYDF++fOV46kk54b0hxjADRWbgobn1BOct3huaxtM4W8BqRKxBsiHlxMvzgf4YEDG0bUPX7WkbjzWWw/OBX3/9Qn8aGUJkBDoL3grOUfK+SsnjOL0cqpbOWYcYMwHemBKn4zPWCt45Ot+imsEjh5ee4/GoQMxpIJgQEl3XYq0jhMDxeMI5TT+hQDthjNA0Da7z+ttZDJnDy4G+PzGMPVVzZ0uewpQ0yI0zC7A21alML3zYPdDtOoyF08sX0qgRhCOQw0gYejW5HAMxajRP5wy7XTuBcQBBgay3Du89IQyklErU2QVYRCCryCgzBwlZmYVnShTKctgtflLOmqplsV5VC8l0ohoxZc0UM8HSroiQjUVjfQrGOvAUSbvhuBv4mBKnmHnpTySKP6dRI19TGPyYEmIdYIhJtb4vL880NjGGEd80NLaFLKScGfseM4wY+zwxcLacn8FkUjakXBNjaNRamzUv6fLwlgWAVjPiAg5TQjT6E+sbBLAgJV3K2kjjZtlijy4ys+f16j8iK9/T2sZrSe57sJLb999idtfPkVfn2+txmgVQXPol6olkNgJMrvuCuvoVnL4/j/Cj+I4lQ/gux9Fm23XeF0KRjbqvr+Wz3/Xz2872e+t86xx/K+9wvczPudqf5d/XfaZNPuD1gIA8R4G9yV8ame/TDl+Ncvl+vnUJvWWeLvFR9fulRct9ypblmjoTbNwC35cHeVWYdmkfnNd9JbzKs3vGSoQir4WH8uqZtnnepbDrrnLhJb9FmXUv/32+27+Xh8560+vvrvx9Xu4Ci/+7l28nfOuNofbWxVdxEmdQIqUq40kumhTMfL+oKV1lEuvPkoBOi+eP1r7+TiXnNdW4tHmMMZxOR7782//L05d/53g8EEICpyDEorkPnVOT0ZdDDyWnnXcgThQIxUEDsxj48NCQU+b0fKQvAMkVf7wYo+YGHCNxGJGcqdhsTAnvDI1THyBjLY1veHjYIcUcFjL7/Z5GUD/AcOTwclBQOgbGMfHp0wd2ux27bsfzywtffn2i73v6kzL/RqD1lp8e9miS+Ig10O07kETMAWs9NfpryhTfMNU6kSNhVH+lrmsYxhPH00A8RJBiBpTBNxZJNYJXom13DINqnEQM+/0ea90EFL1r2O12fP78Wfl+AcmZEAYN4pMiVgz7x4cJvMUYNUm8WGwjPBTtogYtGjUPoNE5/eXTT/jWk9LI8be/svcNSYQYBr5+/YIDZP/Ap65TM9ycGceBYRhwzq1yYIpRM1GsBtURSRpltEpO88wk10intgh/Eppbs2pbLpLhrEFdqsa00hjNqSoFUKaJoU9JzUVBI40akyZz0WRGBZvOYVwihMgTEFPm9PWZgUAWwTQNHkcKgZzUZ9p5T+M9Xdfy+XOr68+7eeyiNMY7j/M7MkIMY6FBSsvSBIITool+qIFR9ODTTTABl3rqT/u20rRAxp8BD4XIufb2zsz95qtZ9LwqclbhH6gsNeIz5q3ihznI0Jz7rH5fTf/y2YTM2SCZhAP1LFrnFlspLWUpKPj/y1s0Rj+yvI8Q9weVSWLzffOxpLOr5v+en/3OsmlVdeu5XqXzqd/zw2ncJaD0CijWkr+f9r9ud1PjcOXZL0/M++7X9538a2KCe3v7JrD4LRvrPTbj77Khc5HIXlPR3ruRcgGIUlidXKUeC19F0KTS9dXJUjIydzcxbnUsmcsb/Y5yz1zeo939w8oGUFwSn6VZahx7Ti9fGE7PSIpYYwmivlgGg82GEEbGEAglmI21mobBtmoemaKaRjbeYzGEEIlDAmtwvsH7BkHoD8epnZw0Dx0ZiJmHTk0ajQFnPdY2Gik1g7cOceqXmELiOI7EcaQfehDBWYe3ntQZGt+QMxwOJ56+HonjQIqxaNiUoUtkjAXrHMZ4jRTqTAmGM8+PiEz56qTkrpMibUsp0I9Jg6KUnHrpHASJZupUnz6jmioRGudw3qvZqrU0TUPjG5qmKTylqHnrODAMPaHkGvTe4Z1qZpOK5FUbJgaxhibOmrlYFEzeGrqm4cPjQ9F8JkgZZw25aGXHYZjyO4oIMQRiUtVUzSNnjFWwaBsFNmSyCNY5SEl96DgHEGthULVWWK7Pqll4Je3dEPBUIdACQq2uGSn+PFSsJfoOpKQvKfPReMeHxnNoHH81GnVXJJOJheoUgVXOk68lqNZXTX9zSdeSSDESQsQZh2BLlNRGQXKJrEoeZ+OHnLCAiM5rWMzW67Na16vMNy9+ljdOD8yZkvKu8q0U7BVorIxEHWt+m2T5rj4n04NvH/eyLNedMUYDHtVjJLNaf+v76ljS9PfiVqZQuUUzqWt83UY1hz0fyzJa4Vuth96qHfvD3VfuKJesq+59/q1yiXk91/yc06VrpoBbWqNrdS6N61pZuhrM64UibNqqe8cYzviFW8DqfNbeCwjoc2yP9aYVm9zeM8tzZmtOllrvWeFwqb9S802Pff1ZrllGLMf9ap2dy6ku9X4G9G71tRjy/OdKiHle8ub7W5vmvwa/l8qW1cfmoL6jvBf1uwss3mt3e695zPmG+fsCI1emVq6nztiepylxBguOZ/q8kp9Xjqky8TCtmSULNRHTvG7h3lm897D9+3ov18s5UMw5F7NHQxxHhsMzoT8gZLy1jAYNhIImlO6HY/HLy7is4MdZS+M9Y9acdSLQeE8OBQAmwe8afKNmlmEInI4nxhLAZjbj0n8fH/xkUtg2CjBBiCFhxWCdGiQ+Pz8zHE7EMBJToOs6uqajaTxZrOY47EeOx56vTwecAW8MjbeEWFaEEbAJ37Y472atQQrT/Mw6Hx2fKUBRQFNDxMQ49JiSwsMayDkpyEoKNKxxUFJKxKxaSmsM1je4xpcIno79wwPe+8KsatCSvh84HV4Yxx41CXU0jccaQ45xioZqrcOIKX51adJgGdFALY2z7NqOjw8P6ss5jNgM3hRNvggxF81f8ZEcw0CKzXIBYazF+RbnHCkXE02DashMwoSyR1Yh2GeAWLeL1IOjCIUqMFQT0+VJtt7XS8ZoiykwpoQ3zYrTUi4efFJphq5ba4TGWx4bz6lx7Dz0ERD1B025BstKBQyOOhc54xs/gYRMmqyxUoqkmDFZEBzGec3lmCIkIYu+D7IKFQzqk6lPcTkIxQoYT2BRzVKna6sKwgxf3lDkXAS3LdHe+n45RpbjqfT8G07je5jPLfK7JXW/DC6kLI1tIUUV+qzxoq7GyUQrV30uszCkXivnWA3KVgHjslw8V37Ho+VHnG23AO49Wp6lQDMVIdutdSGrtXe9XGLMr4HB5Xd3mWt+Y7nU3uVH1722BVa32r70zquQ4ubznPNWG/vu9xZCbIKoxe9qjXMJMN713FNfTHzBW55zS1h0/gzT58IZn4M7U88z6jkE9d1vDv8Na/NHreNrWtJvavdCP29u505BxD3lB5uhVnD0j19UYvG9zzLPR2Ukp5Na5irCvOElZ5CkP2dz+V9jZr+xXFlaKa39x1IcyaEnDkfVvHiPJSl4SQZG+PrlhSEYxBi8K4AzJUIMZIJGzBSDJDgeTrS24cNPjzQ/fSLGyDiMDH1fAJ8GxglJAWPTWB4eH0FOuBIox1qN2iliaRoFEc/Pz5xOJ75+faFBaLzncf+Rbt+RUuB47Dm8nDicBkJUBs5ZcKK+fU3r8Flou5aHDw9kyQqWY+TryzPeNxgRxBpCCMSYVJvmGhrrpzU3FNNMEeHh4YF+HAhhYAwDIYepnsUSUyCkABh819K0Hd572k5/+5JPMQOnvqdtWz58/MjLywu55Eg0xuCMxTqLsaLBgpJK8BrvkVgj2lpqKhoR0X6cpfWeh67j4+MjMWYaZzk+/QTxyDicIAb2nz7x06dPPOw6JGqqj1CCEjVdS9t0ON+QgLFoaa21YHSuSGruCuVsqj6OpjAmqUC+IqBwRhBSyWOn67Wuy+pbUpR509a/JmqqxYghzfgQNU8XDE4P2gyShS5lPoTIOFh+2jnGMXDKI+OoZp6d08iwIUZO/chD107mqGTV8rZty8+//ELbeqwVhkEj0pp+wKeDRqUl6zrDkq0lWyFlQ580HyQ54Ti9Zm1zOcAmoLttenQOfrLwTaZIf89ir289W96iYTr/fWmua4qWaY1O/0qRJF2+7zIAuOCH/w9XXgOWizUvAMZrdf6uLXm+odyj2by/sfrP9fauATqzEFJsjWsJpu5Nz/D3VJZ+93/vpWoAJVV+WM86BYvzc6Sc5zpGpuje30JP/qvsqz+qvCtYfG3SADlXH70b9y7/EKjGK5der1y4do/kaSLKLJi/aRzmfDTzOCZCUv+to1hwfXmWlKiaf0F2qtZrko1nsjGabjEHjKgvEoBYSwo6DwaLzaa0W6IPsiSdc0TI87m4Zd5ylaBXwrqevYWkfRn6nklKvTTNWhjY3ixv2/6lb6PcY5rmvaS8yMWMLo7k2JMZ6bMhGjWjazGE2JPQqKDj2EIfkJiQFnzji7lkwonFi6ZKiCmx23e4psU2LYSR0+HA6dRz6gdijmAyYmHXeLyziMAYj8SUaFqHdQ2i3pKYotl8etZgOMM48rBrcV2DtYZkhEPoGU894zAShogTURPLlMkxg8tEk8hGaNtOo5iSSCEwJo3UasgQxxITJCNisGIxZQx1rcYciSmSinDicHoipswwjAzDiDGiaRTEMkbYdTuaTiOyindzwAwSOUdSFKJo2gdbNGvPT08MxxeG4URMo0ZKNWpmqrbBTqPOxoSx6leYETANNA+a1iQnZDjQxMinDw/80z/9iXa3Y3x5IaRAIwaahpxGxiHjnC1atEzrOoao8+9TxiQBcWAaxLaac5BM9TBWlZ0BKSa8ddc5C1m1fbn4gk76xlzXqMEYS8ZgJKFpMSI5pkIPKGlUZJLmanL6so8MWKzmSJSs+SOJxJRwUiO8ZGKufoNqgtuYxH4nJBr+2+kn/v3ff4Ux47KhsZnMSELwSThZNRHeO0scRnY/PfL5w56HxweG8UTOPY0TDJ4cAhEYGRaUQH+WfsQmK3VVIMlMB4t0X8glxYaAGLIYAoI3HoxHjC3acUGsIKaYTKXan8Uai6RYhA6JyTIjZ6Wjk/ZLo8HeDa7YZkunu/NM72a2cv6tJZ3RvaqNOz8L00pW+GosFzRDrzUHQo1tK5JRU2Vdwanm6kU1y8YkTdET1V/bJ092mWEMU/sZEOOQYnauoZ30DNIZjWiwIQX7efKxt9O5Wsc3g9O1lHsZqfUtjNwlRv/anG2VWUO6bC+ffVfnmbO/t9/L1vjuNR28bJJ2Xn+e39smo5faeg2wVoG0LggU5rvngEbnwEryzDsYkWkbzvOaVy1NPESuPOP6fagQTpioSGW3JAOzNm1znMvvp61SXS/WO3b1LFMqhzK+OvZF5bntNwKXC9XP6cW97c583RZYXn5e8+ZFYrfqc0ujeAmA39pz1zS/pXc94ErM8goC8zJymTCxt2nam6/bmvZlvt735ljyYjwbZfWcZuvaksutLiLn6/yOccx/rSSiM52q+wOWKWRuC1lv9XcfzbyZOuNeE9QLNcqivFHvfDGeff5WecA9Ktg6+dOzzMjuejuVguSzz4t75mh0520uIKSUvGFTO+XrGhWlMpJTzODFIlxs7EvPfusdXT/I5NXk12eZhrug9K+YK6kemrK4P1/eQ2940SuiVm6u5lJmaisXs8sIogxkLpoMg6bBqExOiqo1NFnDM4sVzdhA1tQV6AFjEIx3GGfJBsa+11QMw0AIAWNFcxda0c+mjLVE06wgvDJPVXs59L3mrcsJ550GvCFrBNWoCezHcSRHaJyh8l6CYLzFtpquw3qHGNXOxTAWLV3SOamHMeqfZ8WqFC+jmsYCFGOOpKI3Cv2gYCclyIKzHu9apGi4Gt/Rth1t05BNJWBlraZY/KOyRre0GtgnjoHQ9+pnWdaYGNV4iqnRgfXwGIZRTSCzIaVA07QaJbUwsbuu4cN+z6ePH8BahhRJYcQKZKOmq5r+wpRh5OIPWZijoJFsNXm9AhcxaH7LnBbrt7BHkqHmABNRqadJzP5bkNN0dFVYCVKTeJQWF9t51jDKcvbK57oHKxioB2maWj/fE0Yy1kDjhS5ZPnQ7LAZS1DVuIZW9YhGMcVgRnGSaxrPrdnS7Hb7tOA1HTEwkEZzzJRhXUrBQR7s42CaTqAoiFoAqTzRpPl4NQpYqJFBBgYgtQY3Ks4uCRXJe7HthPqLzvLhZMkVLZm59klxlhCuAeX1lYgTWrFw++73Z6o3rr8dwd1ngGmWga0CZeb3l5RhLPZnulbJu1u+x0qh5VdYZXwS8ITNFs5127ZpRquZ/186q95T6LwHP+ffLPvX3Zgurz/eepd9b3mIydg0wr8e51dZt5r+2swV8Z97mIns99zGzMROvdanu+fU1GDvXTi/2553Mcq7fV1R6R6l7ZGvsy/7fZKp515UCQm7Qqal2nn9fvucKnapTcsZw37OXLj/DhVFM9y7otKzX4QrjGykA6XKb97zN60KpmTpd1ypv0fHMJLSgng9zvWsKrO1rl+a60vO3Y7JbWv571u+7aha3FtUSLF70ETlvZ+O7e8s9D11V4O/Z5qLxV6u6EtfN6tM/F/qmHPWTNvS+co/PxKVy6b3ce1/9fE2nuDmnb2Eacg3XflY/z5td429om87OucREIIZIiAoiQZOZOwcSNc+4cQHjDNYZrJgJDFtrsd4Tc6bvT/TP1ddRGSjvPbZxGGs5HJ7p+4x3lsfHHdia01Bz2JE1af3h5YXT0GOtoW0sEOlfBjXjK3MZY67uagwpTWDRNY79hwd2+2bSXKQUC1gcJslXBUwa5ROsOAUQWQghcjqdGMJAiPrcrnFAZhxG2lb9Dp0zdJ2CQwWQgvdtCWJjiGlEsLPsJGpUzlp0DAoC4jhgvaamiGksie8VlKsZqD738/MzD/sOAWIYSWbAuAZv4JQiP//yz/z8y8/sdw8chkjfnzidXtBXpgBnt3tU7VOCGBOneCSFyDgkTifDPgQkRgVFKeGd02VRU/0l0IN7ocHP5be+IerBnpn9xKpgpIKX2RxvZqTqIb3eo9VfecFwFUKRRhUAxBgX9Skms6JCidK3k5r+w9F4yylExhhI+AmgUvxdlcZEfvnlZ/a7FmuE0+mg+8WUMVnVhafEhBeWWphrEuhpt8vioZkFBFI0/iJWP4um+UCqtHsGiYgpgX5Um5rSWynVjyk3hav132maCkMIKyp2XSN0iY7n1ZI8r6JjK1+WOavrKMao2uyztlNKi2EUqX4FmQUkanNLaxMuAO3XZcvHastk9RKzdX7e3PJh22rnvQDgtwrV39J/1TDc0iq8Hst9++Man7Ccry2N3HlvUutujOn8Hb4e7/K96t/bjP7b9/3d/KEsPn9D+/euzfct94/12nju1XBvjqC8r/rM19vIqyGf0731HGq7t8Z8/vdNgdGCvr0a26rvK2XBc166vvnd4nFXVfKalpdRsBSYfIs2cd3F67zkt8ofkjrjfcjzP2ZZqpTLF6ozKCDz/OCsoCjnvAp+qutcF9BSinGt39+r/C59TZI09ZlaSs7zzOFTGfscNYl8TCMpR3I2GClJ6bMQoyavL8oNjDFYY9WXzjhyUC2Ycx4xhtPpxPPhyHgMyswaoesaMMIwDIQCeB4f9po3sXFglEFLMXI6vdAfe4YhMfSJbic0rcNYw/F4JCWN1GqMwTW+MHWJkCLON5ruwzt23Q5nlXFLKTCOAzEGYgyQM8bYyTTUGksmk2PkFE7EEDXPZBJiCZm/XH/GWNrGsut21OAV1mowm2qyNI4wjlLWY5zmzTpNnqBrvfgiGINzBu89NB390DMMgYfHPZQ8hSGoNu/lcKDve5xzxDFoGylDODAeT2Cg6yz/8i9/4fOnz3jf8dvTf3I6HeiHo5q2iiNlR7INYz+QE4RxxIjmzxyGyOmkDKs1Fmvt4vn1J6esJpFFul0yFFKZ5aXRiUjJmyppcfCVz9kUi2mjzJ5ANSmf9ndlaidxfFYAOAlvMmIM1hhi8Stb7jVT8g/WA8BloRPLQ9fy6bFjzImYBmxriSW4DWScBFqTaC0Qe47HnhgstvG0XUMee4bhBEZIdh2tlbO/Lm1UESlRnyszJpNwyFhXNp0D5xHXYHyDWK+mkOIAFaLoalqYti5EzpvCo/+dyo1XsRYC5mm9JLY9SgAAIABJREFUGjFlr24wd6ujZalRfNX6qnNVKC8AAuX95KqVul+Aea+Z6u/HlP8jlWuc6u9f3mQeeLvW9w3mSr9SnePOrt0Dsv53LpPF1GLPvt1E/Pve69vfwwbNu7fu1SKwMMmev6vM67ng8PyzbHx31yB/SLkJFt9CgM+lKVpeSymUf7wRtveuHr+jCN+TeWJuZjE/S6bueteyWg4T6X4tDuZ8kUzM1kabE4N5Y7zw7YTtmpp78+83dCNvrD+VPMldYPqp49C0C9WPcQ73r8AnZyElKb5oYIwGThGr0f3qNBmrvn3WWmLOhJgmDZhqfgSMgq4YNajJft+y23Ulz2AouQTV7y2MsaSZyPimBHZJSdsN4F0JgGOMmsSWx/LO0XYtzpW0FE5TUKQ4qK9h0RJkcknToYCTLMUEMxFjoO8DYVRG21rRNBdiq+JG/cRWwEk1C/psYX6/C3PpGgkzkSEs10SJBJoSOQkpppJ/UVOF5ITSg5wnwDv0J02nkROxH8q6N5hkiVZoWs+f//JnHh8f6LoOYzzeeUBTfTjrMcZB1OifznnI6t9mLOrPiiULWK/A2zmnwKWY5k4ROY0p2E4jQ0rJNVKFnULNg2qYtYCUFVnncNZKiqEIgQQFyWF7Ty8A1UwjLGIyxug3q/0sag47RabEYCVrZNSu4WUYOQ1B133K5KSTb3PC20zrhXE4Er0DB9bp2o1RiBPEyPOYrpq1MP02xirMmNbSsphpjgSjANE6xDiM9ZM5agUbE900C23WSkKb6wEz7cs/gofbopKTPiaffbsSAi7m9ZzPuKucnRfTHp4FGoUdVlN0a4nJLDQB6lerkXDNhoT7vJ97wd68fs6B4tbZcUlTcF7OtYXXzqdLppv3CjffemZe0mrc6u/8jN7WqF1vY82g3zHYG22cl0va3uV3b5nbrbavathF0FRA316uj01ezdslbcw98/TWdfnWeZur3wvG5rV1iSdcXru3bGmQL/KGm/eftzXTmXt517dglvOIt9rTpbFdWotcWKZy9pvygLJRJ6+/WhHeC7zBG8ots/UfZoZ6rzTw4nfyx8h/V+N+FwZC3+otwnltLBNTdaH1OlGTaY9sLMCtPy+8o3eXfi3W8/lbvUqKt8aX33CwyXoDznRlxXkhxmBK9FEjKNMy+fXUoAxUUTgihsY5TcZOnmTp1miAFmM0J2PKiZgyrWVyV4M5N6C1hq7b0TQtkBnHXiOrZiBBDMrYa8AYBS2h5GdMWbWJ1pr5aYzOrneO3a5VoIUmrR/GnjCcJulH1eJZ0fFWrUGMiZgCMYz0fSQGnUYxCoKtM8U/oACighxzmd/ZlyBNfYioxlWnQCPIamDQuD5sBHJOGvCGqKk4imlsKqA5pcQY1Cw3xEBKiSEG8qg+l85ZnGhwHW89//SXP7Hb7XDeI1ga53QMJZG9gvQ8AZYcNW+gMsFJQZe1+KZRba33xQSy+CYWbl1NZzNUE8wCzARTplz7y6vAE9VMtFQvgFGKJlwReZr8+KYlSF1Ls19k+Yv5k5kFICwPVZm+NyYBsUT9tTzuGp5OPU9WtUmSVQCRc8bmSGMyjcvE8QTsMEYDLBljiKLmtcYI8UbAvSU4y5Npo5lpwWqDV2StukIRW7SJ9UfNUnPR/i9vmwQ0IivhG6xpqcjiBt5+yN5TlkzMUkByG6V+H3iZB7BsSqa9u2qnLMQl8ypiMNZgYg3+o3sw5agNyvmZM/e3ZKvuGu8Gvtl61u/RDl5jvP8Irc+PEsxqqRN6zlCud8K3LPdLppS3xvcWMH7t2e7SItd/3zS12wzGNi+SF3T7cv0tZcFd7W9c//41el8/y814DggvaQHfS6hySaE0Q4PLc3EvqL5nrJfuu3b9UjuVN3rrvat2FpLBymddFtTdL3h6z/I7mKEupQPvUxa8+Q8qF0UF717OF9o0ggXTUTf077gurpatYcg5M3Dn9H3rYl8fjTWtyBooIhpztPEt3W7Pw37Hrjtx7BOnoMxsjDAMag7oPZNJp7MawTIlJTzOOwyiOQ7HAYi0rcFmJRYpqf9h07V0ux1d15Fz5ng6EoPmNmyaHSEExjSSomDEk4EQE8fjgFjt56efP4HVyKQpBAT1TTTSsG9aWmeJIdAfjxwOB5JJYDStQs1laCoTXcYWQyDGjGpWM85p2g1jyj2uRO5NCwa/pKuIJU3HuY+RiEy5LBHBmll7Vk0kNU2IxVVNabnndDrSNE3JaRg5HJ/oT0eG/qQMa4ni2vc9rfM4a0gx0lrLnz5/4J/+8hf+z//+34kRxnFAsJBCCdCTELcGYbkumgwxatCcpmn49PEz3W6Pb9qiVSxaUDLRGiRlDVgE5FhAtIDae86gemIsRM0ta6L7NXAp4CiqRHNesWbFmCyOHZabKkMxYw4XaUZ9R8YYUlTT9cZHPjaW3xxYNM1LHJKm+bCJnXN4iZB7HncP/PTpkbZpOI2BY4wYEt67CaAtD/ZvYXDyci5UDICIA3FIiYaKcVWSUTS2BRhO4K+aiqtJ7sKNaz3fyGrM/6VLndLFmlkLbOp8GKr/bS7WBlXgYIwKEyI1CmppLi/hIQWgV4GbWfX5aljTu14WfSHXtA//yGZ9P46JWzKlsA0SQa6aTf2dMBLvUH4Yp3ZHo0vByz/yWr1V3vPZ1uap6YwsnK/L5fn3fmP4PQHWt5Rz6xLg94IjV8tdYPH3nNxzIJiv9P3q+LlTojHdvMjZtlLJ3vlm3tL/zLSc18mcYxwWREhk+zC9OJ4L0sAtE4P6+61SkYtR7RafNxnlC+1/s2TtrPr0LKU9I4KImsCFMeCcL4FaLM5mAkJIGoTFOcF7wZpMiIHWNlR/RlMC3IQYOR6PDHEAIzSNIw1JgZJVjeRu/4BzmvNuGAZSVDBhjCDZkkIkDJk4oqapOROSRkDd7TraXYtvGvp4BBLWGfZtp0ALwcTMcDox9gP9sUdSwjmLeFO0aWZaAjllUioRQGtYdDT3YlMAnmoX7DT3s/ZQ5883jr4fFhP+eg1XYJiNW8m5nXMlz6Kn8U0BMlWDYYgxEOKAc4bj4cDpeGAYepq2IcSRGBNd12JKkvkPXcuffvrIP//5T/zy88/EMRavwQR55Ovf/o0UNWLqbrcn9JFkM95bhtMRI5GUA8fDkV3r6bodjx8/41xDzkJMlCi4rqwdSDGqfjnX9SUgeRKOrExlpnyoCsRyrjEi8xxyO6vGJrG9PxbTvF7qefZtzIt7lofvEsQDiPMggjOBnTHsEFyCw3FAQtZUkTvYN46HtuFx1/Lx46Nq1nPidOpp9ntNryCWcRihbdQst/Rdo8xuldd7feNv0cA2xjiM8brnqp46C5KNAkYpdY0l2wTZQghnbZ8T0mtjef+yOkeKpHhFW8u45u/KmOuvbx5jBXJrIPGKD6vLdJETMaZYaENSH21n0Wi3KqxZax5yfbLibnMNIK5fwQQya3uLtXvp/LlHc/UjyveulS3g+17lddvb9c41NWetsAUY7+GfpnNiSb/q2jpnseoiyPOAfoRQ4J7Z3erh6vp6B5PMt5bvm4s1f3WLF13OyKW6t9bD9vXzPX2eigbmaNXn+34OIrd1dryvv+v1cmtO3n8tLEz18+w6MJWFwE5LKpt/Y5z1/K9X8223kXvK76BZnB9olnBu0pap9grkfENfd6mgJ2bvjlbPQNfq8Dy7/6JvBbwmrmw/3/3w+Hq5h3B8D6E+P+S3bPl/FIHNeT7yJk3Fq3EVpjNBjBlTzB6NaHLXyRQvJfXb0xzsRZvIpDEjq2YujEEBoETEOayzyq+KBulouo6m8RqIJgRC0QoKQkqRfhwZh0AYNd+fmnwpuG27lqYkRh+j+uoZUc1c6xuqiWcII+MwMI4jMUW8NSWipJ2Whz5+qkrExUE9Zy81IsXfsAhHVnSp+HBOwVdmbaN+lsnMc+5P56E+bzVtnVJXWMty/YpAyrE8T2IchpLmQ78ja8qSpmlAEk3j2e87Pj4+8OHhgX3bMfQD1nsgk+LI6fgVIZcIrZ4oUZ/ZQIwBMQrkUkx0Xcd+98But8cYR5LiO1e1WFWjb8wcKbKMe9JU5ozkDEUzo0BuBo/T53y+z/L83xnYe7UfF8KPqukR5oir0/eyZgD1O1N8/xKtNbTW0BghD0lT5FlU82gtu87zuN+xaxuMMEUYtUUAYUXTt8gCJFSN3bYASGcs18mS19eYwG2JhmrUv1hKwJW6f5XpNK9/Fst2avOMMVmPaZsWvadm4NrZUGosGPwCvjKr9zlfu7PP+s+0jsqEX3rexb/LvmTycVbhVjEyKCSw5m5cg+HN9qd+1wz2PSZjbxL43lnnLT5l3+Ond2sc95b3ODNvzfs1XuKSYPnN9ae5fc1nnY/vMnMOEz19J37iGkichT1bY7nMbN8Sut8rkD9fh2973vv2x3eD8zMh5esyC5zPgWK9rtfO1029tt6TW3Xft1xbe+/crlxoeDWV5VxYzu/iDF2nQdpcqYt/5Qx8LLp84176brB4z8I/X8T57Pd7wQk9cG841dzTTm2slFugaFmn3vseG/J7y3fbUculbbTd16XN/dbD5u6S56ANyiwVxrwod3KGbLKCpjEXrVvVHOcCBiM5JZw3GJswkvFOCsMEiJBiZhgHhn5gGAO+E6zV/IaS1cfNeU+32xNTpu97jscjIkLnGzJqovry9aWA3Hk+rBG61vPh4wcNcpMDX5+/8rFraL2ncQ2tcwxDz3jqeXl6IsUIGYwVfOvIzqnpI6n46KmmgNJXRjSoS0kgP6c9mJMci1QfRJnATcwRZFTQu3iHqgUytG2LFFPdlNWU12AnIKmmpzo/qr2Y6aR+FxnHnqevXyZQ57zjdDqx6zp2bUfTNCQCXdfw+Ljn8+MH9u0OK5bD85GHDxYhMg4vhOEFZ9WU0YgtD5nIaSTGAckZIxkjll9++hOfP/3EbveANR6Kb5w1dno7GSbivlqhFfxNWkVNO5FzMeMtUXX1XRTP1xLEZ9FymYj1englUWSxP7JGQzWLNio9ykV6kmEy4bXU3IXCzlkevOPBe/4aBkwULGpA2Frhw67jp88f2DWeHEdSyjRNo/6cBgxJc3gW0C9puacv73sRTed+biUqogILKSlTRFToUcFKzUlaA/VkUIFIMmQMEdGcqJMJ5WI+5XrwtPVcv1+5zvRWBuo1o1TDF50/x+LXG8agd117tBlg1z1vJoaigtbp2vKGug9k/nsCBIs27x35ewsTlwz2+Vn0e5oJXmL4twDp92oqLgGY5Vp8XWebe9wW+lwRZF0p5wL/W4KaS8Lm888/VgC96OOcWd+odz72b+Ox3ifAzdv6hEv785rQ5J61eu1Z7ls/Myp4i9Di+/b35Wd9/bfZHMfm3FRT8JVcLq//XggOzwXKc1C8Wi9P/Nn9J8MceO9auWe9/U6pMy5A2/8i5fc4iKoJ4T9CWR7OP4roLTLeMQnRJ8ZlIXvJgnMND48f2Xd79ceJkXGMiNd1KSZrgnoDYgyN9ZpQPieyGGJI9H3POGiajN2uxTQOcQ7f7UGEmPOUTiPFObfg0/MT45g4DRmbNdWimMwQwBlwjefxwwMxDRz7gRBH2s7yy8dP7FyDiHDojzz/7Ynn5wNjzHz+3NG2HmcdY44aFCcqGJuCUzBrEZeHQ/VLtN6D1ZkKMRJSRKIy8AYNamOMwTg1a3XO0TQNOWes9TRNy373qAF2hoE4RsRZrHPYUtd7Tw0iNGvFtDx/+Y3T6cgw9ohAKv5/1ho+f/ygEWNDwDnHL//0Cx8fd/y03/H4+IC3FqKusafnJ/rTC4fnv5LSCbGPgHA4HIjjwKk/cnx5JuVACBlvDZ8eP/A//sf/wafHTzjXYJyaQmIcxnv1fYyJFAN2Sl1RgSF6CEiNqjsj4Lzw/bJGzXhJmRyrNLCKBwtwMCWAUVqg6AvlLk1Gifibs6ZoqX584oSd93zoOj7v9/ybCZis+TBjHiGphlRyYhgGSANiHd3ukb4fCCScyXTdjj6JRpdd9rtxsE/jWuqxZGYc5zVpyKaCQouzVgFpETLMrUxxdicBR0qxrHuVDE1MMjVxeFnxuZr4/DgG7J4yA8bVt5P0/ZIk+b4i0w6/VWKImloHJp9iEwwhBoZhJISBWCMe5zP/mXMTsmlJn5tVr4GGCvTWEZb/MU6zt5UfyeS/X7m+uG4Bw+11vFVnUoV8R/l9V8lbeLmbViF/x2ULwF3Thv7IMVwqs5BUZh7v77z8SGHGH12ugsXqi7SlYr9lUnJZLT/74a0E7Au6spIonfUxLfLNEcuC6bq00M++l5pseHmpovc8Sarr893aQBODsjE0te/K6+ee/izxDkUTUqs8vgTWyNWW+/9j781jbVvyu77Pr6rWWnvvM9/7hvted7/upt22iXBsbMciMQhkYiDYJGCCiHCCEQkEoQQcwpAoBOQQAjI4CjKTAgGkEAIhEAbHRlixIQoIEoENjhPUdrfb7X7db7rjOXvvNdSQP6pqDXs4Z587dLtJl3TO2Wfttapq1fCr3/c3DjqIkS4izsdEUk3fX7h+vvpn+siK0y7LaGD677LUe6PO6yRxu+59GolafsZLZr6TVD7NWUjoUfrvHRiPnkdzO41FfIMXRwgViKEsBCWBoKMkXQeNcyBKo8SwrK9i/j+tOTleUMwG3yqlIthyzuGshewn6DydddHk1EcJfCC2EdVOFj0rMbMKXRasmxUhWIyGk6OoOes6S93WrNYrrOsoSkWpNEqr6IcZPDGwiyM4R+i1pSHHX8EnDauEgIjGEbAha56i2Z8WRc5zGFyIOfiAgKdu25h2QhkCJrLrXmg7x3K9IuBxrsPhmZkKUxbJNzSl4kiLJZuXZjPaul5F09AQI51mxpQQU18U2lBWBRfnp5yUJXOlMRK1Sq11ON9gipK2rbHNmrZu0XpGkJKARlRD162w7RpvOzSO+WzB6fEZH/7ghzg5PcUUFU40wXtiVFcgBT5SIUnkkjmmeFAhmeYFifniUn+zqa4Qemmi9xEIRQ1NipKbRrVfryOmLYz2sAD/+ff/Xe43q32bYIvdm+ykMKVAgQA+4EKMiNueJYCVDuCfeLTi7/7fn6L4Z2/Gnqns9zqIXUaQ74ayQSSuKwk09D6JSMppufH95NUDL5/d4b/5bb8Fr9JekoHuh5BheTSXlrT2d3XndsxQnK8tX60JfdxNz3rtQ75HBsHflJ5nUCbjPzs6nsBY/8iYMZdRv7K5csZ4gojpwXqOppsFDBnQBYlRf2OKmP7hoaMTsCfJnD9EP10fUDozd/FdA45s4j1E9Z0GzNocszye/RmmRiM9OYiGzzKSIB5uJrpnkEcBYjZ6d229+5jF8bXbAosXo3lKNH5S9aA1uQ44ZOHZYO08MG+T+emnZr/P1C6tZ9y5jDbAiGfMa31DZnFTmbB3193XC5y3eaZdWtBd2s9xPfn6pqYVGVOU/sa9/TmsjNu/7p5RvtMw7l/WqI4yqvoQ+Va252qn5i+EvQO9gwOd9DmQzlSGNdgrAULkIabjIdP1GjIVjV7Xuc2dvtV9P3cJTnbgk34FpZ80iZk0qnFNGyA35QbbambzXTa71yODG/jsG2ndSMi9vdt6SnBtHfCMmsXbEL0QxhsxUfWtOTy022zd1y/Ua6nIdHFOuS0ZNvAtJSqbUppMDHIjsc7+5nRt1M8McMgMpiI6FKlRHYN0Nj82SOg3+sMgVd/X361DTXaP25RJ3EEc9tR/CBh8FmlcIIAKwzCPgeJkY3pEeaSEwmiMBBSWQIcLJaI0RWFQ0saoigTEqkRkoqFe13YEEcqy4OT0CBfUxMTQ2pauc9guahSDj3kY69ri0zxpnaJnagVaIUGhqxJVFgQlONehNVRFwcl8hm88bdNwtbxkXTcUhaKaGaqqwoUhgb1WMW9hcG5I4K5icnZPBCnBx0NBiNjHEgVBIeXh00onIOTxPoJOkZSX0VqUKQkILgEkHwLWx6iuMd+fj/5OWtBGpyBCJjITPmoyg7V0Kdrper0iBAeSNJkpomLA4x0ggdm84PToiLtnJxRKKNAor7A+EIKNeQGrAteusW2Dd56iqCKgDUDwyTS1JrgOYwynR6e88vI9PvjBj1DMHCEoXNAE76J/KCES9gTcBInmtVnzl4LuSgKMUYmYnkkaxXSuxWA5oogBhegD3kx3VEjEeqB7iQJwv1nxm/63qr8+Xvn7tJBbjEvaX8E7CDGYU+c6ruoEZgW0DsxKYV5qqtIQQsw7mRl5733CB1GzN/R+Sr+26U2sv1dKSX91gEkSA1ChonAMkajhzXWLQJ92I7FW3vPHf979BGqjuSo9/c3jGNdoBqDDeB9etmlbZg7HlcneudhX1zQGbqwjfp0HatrZrX5k3LsxrpnR67mXBMCzEHA4O1SiE6OjJM1fFGwMgMH3dENNwNPwYO5sHAcZadkjsx/pY8ATJNu+D1VIWmO7BNHb50LIh/N0Mkfn1nAOs1X2M93T8d/m3zbW9C2Oq5sEtON7nhb8PTtofDpeZ5Oh7jX6jHmdyZ8bz/vBGiAZZk9eLf/j+y9kdPnQeq8rE95kB1jcJwjYBI7X8UXxyPAjHo3hYH6Gki1axu3fqCDI+z5+E4U+SUCUZe1ho57NvbplRRZuGuVRX0a/U+WEBLumyqVIN0NyZRlbJ0xLXhdCCjkeqeLIqmTKL+Yx23Rdy7lgRzS/7+v4vNtcM5MXA/SUzx9tiF1zNF3Ch6+Ha2lAAp3jI2vPTTeWz5EZ6iHl2TbLF2xRCTz6zVkc7OZjAIgceCOWEWbcWeSa7561fOGp2jXCjNnshHl1RFVUsOrAOVSImjUthsZ3KTqq5ejkjLpuefLkMVorLk6PKasyael8T9/rVUvTtHTW0XYe5wLORbAoAkYrVAKkWg0+VrN5SWEUwVmunjRopTiqZizmMxQF9x/fp20bIFBVmqIoKIoiBnxB9WkllpdXCLEtpTTeebz1PbOsVYFojbcBW1uUEY6O5ngXcNbR2hbXukSEQWkQrdAqMeqiads2RYy1ybQ0vodtHdqoPuJp29UURoPWMWiMjQGBuqaha2o62+KsI3hHUZkYpMd5ZkcniAi262i7htdef41X797l+GjBanWFUiVKDIJiebXk7OyYaqYJdFxePsZ2HYXRKWhPg/hAVwv1+pK2vsI5y/nio3zojS/h9ddfpSg7sLPI6+bk9hkopgjJfXLyEKJEMzHD0QQy+rkGXJ8iI6twx4fn2FxrU6DUy7Y4gIlitJf33DYRVOU+hDE4SQAhHV852JGSGMQmEGLApJTOZIhK1zu4kkHBBC9N+iiw89vr3iwLdzJ6mXKYkSHcTewmwjMZHcuZobg1RPz/SRmv0zRdkX5E/9GcnxUgeDUZ9y3JfhrjHAwsTOrO4CHlaZUNy5yDtX+77tszt3n5HXz47QCl11R/U7nuXHxawegXmonjiytjunr7CXqRPFHfhmyDzGnZ8w7jA+E5lWtNiUeAJQ/K4Fc+BGCD5E6xq88bbXjvUbfaOBuCE+gF/fmbWP+OvEg7q4qbfyyQk10Eob83X7uu/vF9O769di1uP/fT8UQ6dF9cCxYPNQm87vmnIXJPQwh6JmyoJX+zWfv4qenl505Jbq40C3tDluwwPlDTRpEhrO5W9dc0/aKZpZuI9nWSrbFk5TZrZCxxymxrz6KO6spSo6hhMZjimNnslGq2oKoqtFzhg0cR0AhaNAYdgZKpaOqaum7x3nHn4oKyKgh4rpZLtK6w1tG0jnVnsdbhnKfrHG6kiEIiUMxBJJp2DQSUCJUxdG2TAAqcnZ8yK0pUEC4fPsa7DqVGPkUSI5S2TRuVXC6m/CDhm2zYqEWhstQygPioAXOdo2stvoPQ2RQAKDF0AbSJ5q1aR61kZvhc51E6atocHmebqLjUiqIwzMoKUxhMinjqfUddW+rVFW3dYF0Eh1oiIDM6ai+8txSFRqSgrpcIMKsqXnrtHi9fnGO0YNuGeVGk/JOKWVVydHxMqSMovnz0BO8czrbUXU1nG8qyghB4+OBdJDjOTs45OTrlSz70pdx79RWOFsf4LiaqV+JxWVvmYzIL30vMB2AfQtS24rN/XPZXHP0PaUzjeMccUjmVy/b63ZKqbuyPdPPwMd2/a6tct3syiMvgKebRG75XQroWfzJwzKYzIqpnGgSJ4zOSYkdCMxK1btKcXef0+N0kfRYm70uW7O8WHk8v9SCzR9+je7N5r+x4ZtSvTa3snnu36NUEpH5+GHq5hpkbl9w/pRRBa7yEIZDQVF1HzP3pk8Ayav232813b1i95Cpk8FXe6mvs0EHvFm8btArTRvKnAdROBAzX1Bs/7ACv/YTGdZX7epNVzOb34/Ksa+N5AcbNep5W6Bt6hnu7juvG4br+9P2SqTvT5LvRnG9fuaFItvKavv+m5ixbZdy2jLXyu0ovSGHj/UbmF087N9dZc+2qb+xilt9V0vXx/Uqr/tohfcvJokatDrK+vGb642JjT6WzJMg25LxJqzvUERg1MLnnJiC7D5j27zTqd89dSzzzt7vWi2VHV3aIpkb88HV0/HkpZ/qjelLdRM+9txysWTxUJX/Tc+Pnd99//XPXPbtRU757x7XpdXkGoLhNzMYSm90s4bi5fGtkwmLOstDXN37yegnHRDB1w7Qcfui8mAU77sPNkrj9RST5yzAwFcNfEtMeEGXQ5RHF7JhyNqcoS7QWnJfoi5aejxE0o1nmcr3GOYcxBfP5jICnsz4Fr7G0raWpO2oXoklq9lUMuV0i8SfOmvM++j0CQaW0GS4GzCkLQ1UUCCH6861q0AGjVUw7kXIsEqI2MILT0Ae1EQLZbUgBOa2AS8ntvY8mq86HlDAegssd7eOiREsYDxlkRzCZPY2AEH0zvQITNGiJoMl5XLAQwGPjWDiH62IQDSUSA5cQARjJhLcoDFprRCKAXsyr6BNqNBJ8jFJbljFVSTKFq4or2jnBAAAgAElEQVQqag47x/JyRVPXtO2SprkihA6f0m507SXHR2ecn1zw0t1XePXeS8xnVRx/p/Cqo8+SgSebovQHgw/D4RFCAoeOIahNBo3pEMmAZMR89kAxTDUqIWwHA8lMxPUM9CYw2wM6ewITJtekX+d5fWaclvKAjrVD6UBUojar2U2FBGwT+Eu/dc2bP2JZXAi/5k8suPMBvXXrD/+1jh/8ozWIcPqq5tf88QuOXjIIwg//tSV/+zsfIwKv/6ySf/tP39tuKL1HhoAyXN712hPG71oTsQPp4qSODbq/r46BET6oiRdbJFmryGCOupMOH3hMDIxvrjuzStvmYhOGdUNwuKvOTWFL+nb0aczoT17x4CLjuAWw8d7DZnlKDPHcym3PyevWei4vUsBxXTvXAe/41S7+cqA+O5fFdX3J/Rj1Zz8g3VPHNffl/bPvnsHy47A2nrYcAs5jP4bfeY8O5xX0yoZ+4IZzR9KZNqqiL2Ot3nDD9phsCpEir5SD4I0Op/w1m+tpu/GprGoTRG6UzF8HYBARj3j2bd478uXZF3JoYfPz0GCYLNSBxgzrfYoVZFrHpL/Tdzxk107HeGxYy3ha+lZvKk+lWbzt9c2ye1NOD93xptsnCdqWKuzqg2antGDHYpuWQxDk9j0TwpcWRt6e+2jReN2GoXMj1JGY0z2SvO1exU2+udw3e77z2c0NyrNLNF+EGU3PhEjuI4zHJ2p40sbWBWZxSnV8SrWIgFGXBbpLsp/kf6wkAxdF3dQYXXB0tKAsS1brJV3XoZSi6zqapqNetzRhCOISgh7IShYChBAjDzpwNm527cF2HeI9RWk4nldUpaZer6lXK+q65uh0hjGm10zGJeBpmo71usHZuJ6MUYjOsZM8EmKETQ+01tHUHmvjuCgF2ihMYXDe4kaJ433nwHpCSvomKgbLKVWBUQpRsQ7rY5RNFzxOBTql6EIM9lMURRzvEMfAKE1hCsrCUBYlzsU0HL4NlEX0AS2LguOjCBCrsoipG7yNB4dSGKVoXB0DCDmNBPA20K4tTx4tWa8f0bZPaJsnHB0VuLoleEFL4OL0Dq+8/Dr3Xn0/d+5e0NQuanNdSeOu0IXBlBUJ5TI5YsbouZc4RvDbg96QXpZoMh7UsHX7Nd8Dr4GWhRAGN8e865NpbzjEd2W8eUdndmbLw4Quxb+uC4jJwGA4y3KOP6UURscX8CEHPFGI2qVBYYugBOD/+ost83Phd/69E374r3d8339V861/YjE5xZ0N/I3fu+Y//jtnHN01fO9/ueLv/Zklv/h3nfPuJyw/8Eee8B9+32ssLjSX743p9pTdU0oRRlLxfM9+CWlm+J8zc5yZKg5hvAM7GYGhomfryqGMpsTAQL2PUm5esn9Plnox6VPPYA+c0UbbI3Aog7R9E4xmoD800HOnQ1t7T6xdQHFY+bcv+czI7zhub7vNg2sdgZFDtT27vnvRllnPUwC8Txty0/tfByR3PLHx//jMH/7P9+6tKgxr7BCFxiHa0+t4U0haO6H31d26bw+fu6++ZyqyuVsyzzLah1kgl4CijG6Nf7KH4QAkQ/B4xj5y0/nNZ2L+rm8vjFKQ4GEspEx0Pie1GoSZOw6h/mOYBH1k++54Nof0zrlvY2Pc/vlRWxsKoIGWpXUwRnMi2atl+L5/OL93SgvF1OJnb8nduObeyXgz1ahmqub7Ph7QZio/jXwWd5fns0mmjMaLKJsq5EP77UfMJEAfBTXnHpPB3G26+LeJ1fj9bmZbRnzWCxSXPs/DaLtybnzREBzKGIqy4ujiDvOzC6rjk5i3wkfNiQ6ReHch0HmLazrOjheYoqIoKx5fPorApSwoyhmffes9msbhgqKz0YwvMy4uTIUCwUaQHwjMywXOdXhvUaI5Op4zrwyLeRGDsXQ1IbScnZfoHFTGOdq2w7vo4G2tA1KeRxX9BSW6MeI9WB9w1tN1nlXjSBHyKQpNNZ8jAsFH08qsTVNEU0OfwKMYKEyJEsG1LWsbUNEVkbIcAIf3jrZu0DpFQFUlhdZopaLpqqTxVclvUxdQAQsIskYpQWvNfD6nNBoVILgWrQuqItbl24ZZuaCazzg6nvPo/meo6zXr1ZLHT96hq5doBUfzUxZVheBRaErzOi/ffZVXXn2FV1+7oK41zna40BDkEaU6QYlhyrAm0hqYgLxo4ruxt0TiAZfjoGX0NQJ/kQ74kexn7M84XcTDd4OWc1weftrxZ7/tivd/leazP+q4+2HFr/quOcVMePNHHN/7+xvaVWBxR/iV3znn5CXhT3/rijd+tuIn/7Hjy7/BcPaa8IN/rAOB8gh+9Z8C18Lf/H2Wz/5ohzbCN/+eOR/5esM/+ssd/+/3W9p14P4nPT/rlxi+6XfPR2Rne1//6N+2fONvi0F5vuKbDH/9d9fb2pgQuZRuHf+tr+Cln2FAFP/wzz/h6//dUxYX8Vg6eblP0DFpZwBnk4Fkl0AuhLA3GurnryRQ9gzH0bNYZIQQrSHiTwxAAzGa71hDIqInTHV+VjJTuVHnGBTe1LNB4TjMjch4Hx5aPlcT+7Rg9Aup3A5kHmpd9qJKZrKn5TouelhyWc7XL0EZRE2e8NTvtqUx2nF9Z73PyOeOz5Z9bYzvUWr7jNmyfkk/ZpSmLwPyEEaDONbGjZQa6eJmI6OvcqwAIOcCVANgjO8wBHnMZT8gH8Dd0N80JjvOhbB1dmzTnk3z+/EjYz5/N8/vRnzDSHKW4VuAHpym6PqHlOeKiG4BGG8NFp/FFOJ6AHV7YryrL34Yhh11j2E+U2nJRr2bB+TTlZvfqRfUpgM4b3Q1jlgn9Ituyqvtr1+4XvoAGTDePJ+Hmmk8bXm6+mWDgGWmdByAYzTXWijLirKsYioIH7WPkhKx++Bx1uG9Q2tNWZQEETrb4oPH6MjQ1rVl3Xo6CyEonHeTmXF+LHnKwCF2wzoLIZqXHh8tmM8MRgVs1wIuavKqCm0U1vr0Y2nblH6DGIykKCuUSr6MSmHF4nEEie13LtDaqAHUJgG10kRCnCKeurGEj0Gr5QHlAsFF+9yYFzKmf9BKMEpFP0oVTWSNKdHaoLVBiFpEozWmSHnyRu30BwzJNFViQA3bttAJRgmFVrF/tkMRmJUli/kpxhjoHJeP3+Hy8jH1eknwNWenR1TlnFlxhJKCtr0khBgZ9fTsJY6O72CKI6ztQCuUaLwzVFURUwRsrKlhO420VHkT+smdg9R0pJbopcxKJQloFCRsaRrS1lVK+oi5N3kOvPsJz7f8wTkf/FrDX/mdK/7hn2/5l7+t5Hu+o+Zb/+Sc45cU//R7LN//XQ3f8gcjaKsv4d/7H2YQFN/9y1b82v+uoLzouHwQEAX/+C/Eun/r31rw8JPCn/rWJb/jfz9FED7zo47f+rdOMGXgD/38S77+15ecv674y799zc/5d0o+8JVmvMt48pbn7LV46GkjzE6F1cPA0Z2BxuhC+BV/4Ij/+hseUy6El36G4Vu+8w4gvPvjHSB89y95E+/hF/+uO3z5v7qYzpAM0zQAjuvLLQWoe2jiflq72wVh192jQ+cZjpQxg7xpSpf+ub6KZII6EYHsGcvEG07Ow617JnRkzDhmmcrg/zs+npUavUt/xqWztw96mc2nZOC3+kr2L4CbzpKeyWPvrPZt5HNls9x0dt5Oo5iJy1gbNkRXHrqUV/OLAWm3sQ57IUBRhPFY3PieGbOI7F32A0M/amZ6w+TKLlHHIe+bffv2gbVNU9W+bzs0q/2+7lmYuFKvW9aHkpSIUcLGlfH7j2+UFMxtN5Cc1JvAlnDz/ksPjEzRU8teJhOVA7HtYmgzQJtoAGPjDO4jYZsWZ0Fwvj4BiRvCfhyTEsZzJ2SyFHnJDcCohnFQSkVewLONXImgdIJYrl1qt6N7NyKiAw/IG81Qb/LB2KWOv20ZJIrb9T9FbeNaNq7fAFb7kXv20jPKo1YHe/HRCSAp100eOxkTlcwQpU0o9KtIpr8m9eeKBh725nd6GsD2uZYqThmiaw5iRsxkKkFAGR3NOkUhHiRkYK5SyogY4j0CII11ns5aSNFonYerdUPd+pR6IAb8iKaDsT/TNJoxSimpHesshRaKQrOYzyhLCN7S1l2MSqljUnLnPV1r6TpL1zmaNtrJKiXoSmPKCm0MKknhvLVYH4mqdSH+2NgRrRXaRGDpfUyx4Z2NJqtpGAMpIWMaMy2CFjBJ86dNCoyiYgCcooipMcqyoixKVEqg7qym0BpjdAyUA3200NAznLFfipiPTSM4a7HBg9YYKQjpzAheKMuSylQE71ivllw9fsDV5QO6bs1sUXJ2dsS8PKVQx3hncLbFuTqm3ji7w3x+BjIDbVFiYmYMBFPEFBveDUzhFsXcNBtBRvRB+luytLX/R6L/X3ButBan+0tG9fdbf7S/d5Wz14UPfa0hAF/1y0v+/p9r+OjP87z9Y54/++uiqi44OHlleJev+KVF//mDX635X/4Ty5f/IvjIL4gy2zd/CL7+18f5e+VLNOfvU7z3E5FT/5KfWzA/jb199aOKh592nL8u/Ko/PGPw8RztsV1bcuN1XBf4B/99zbd//wV3P2T4a//Zkh/4I5d8428/xzt47xMdv/l73sejz1j+2C99k9/x999gfqaHuvpcWnsagC1K/6xUavMcnIDDA5/bFEBuPj8BBU/Rv/FfNpjSbCqV/1ciMYjEFtrOQp2B8SNsLfkbS9TmxvqygCjXOR6PPinK5pof8355Cx4AFHebIt7QV3YcJRPuat+Xz7mMOfSN8Ri6E0b9OqzczsTz6cohZpy7vtvcHxBfbRe429nuM0hd9mn+dn2369ld77YLUI7vyxGDd1S4c1Vt7c5w/erbSX539FXYDmQzeToJLjNL7HOy5tE75Z9N4DsGimPz1JtL8gUKqlcmTvqVgesWHR61NSZW2aJnB6idCK8Zz9E2YMyuTEMZa2R73SibgHt4pXzug6ASHYvWQ3nWpb/h5lNrELjdbh/LNhW5nsztKLfSLO5TbT+fsgv/Po869xD7IFwXMjc++fTEaHeNt/sqm/MkGPIc+/LPQzlcKBCCJziLbVts0+BaiwqKUgxGDCooVPAYFVBKmBcly1UdA9oEODo9o247LlcN79x/Qt1FSVImVX6yjmTSh7HiyeMpqoLj45KiBFyXwI0jKAOicV5xuaxpli0u+xpqiSkNyoLZbIYyURO67tqYmqKLdWgUXedjFoeYxjCCQe9p25a27SbavSG4T0ALVAUUhXB0tKCalRFkKqiqimhuKVjrUCrmUqyqCq1zfkZPVZZ4G/0CV8sW5ztEIuAsU0oGrTQahQoWFUCFQFUWRAId+2kSCF3MFhRFxfryXR49us9bb38G75doDSfzYy7OLzhdnKNUSfCBRVlydRU1Zvfed8Err74KMudqZSlmCkOFCgvEFtTtwySYGXxOp6spHwNpLoNASKBlHAF1tMb6Z/fQxEEw4ae4M2sQegZ/20Qo92jUYA8wXvmo5jf95cWEhOaqywWQmOhf9l+U/NQ/sfyzH+j4c78aft1fHOrt/S1kqN+U9GOjtOCt9FLILfMa4Ow1xePPes5fVzgbqJ8EFufTsf3Mj0ZJ7UsfMqAUX/lvLPjB774EFGevGz74L83QhXD3gwUvf0nJux/veOOr9aittK/8cGVgwGQE3ocxf5ElB2U4pAgSfYL7/19A2QQaI+FiP2NaIV4hLs97pAEyioIc+mhX+9jYackA8cVomzap+v4+TYQ3h1Y+KeGgr55vuU3FL3Y937Y8y3wfpp3cwYRPYNQtBAMvShvKNtjMIK137RDBGIMPIebuHd03qmRaJ7eb7Skt3PH9CDjuM5fd9d1Y+zl+p13vEMh0Yyoc2uwHkNxh4rUcSTZaxw5B0aZATrauD2aio/cakN5WH2T0/ARs9p/DxvfE9+kfnNLEEMbjtPGiSiHE9/I+0tho/queaRtPLDSeQzm0qqcyQ30a7dN1iyZ+7j9N7r9uc2/XKRv1XCcVvPmQf55Q8boSklo8L3Q/WuSD1OL6sskkPZ+ym/G46drOmjY1K7ck2ofdn2ZsxPMiyf49eOrlkma5wq4bCgxGl4hXBOtwPvpsKVE0TYO1HaIMpamw3nG1WnO5rLEx60SyRo/ELSsWBRCVfd4En00YQgwWcuei5GhRMisL1vUlKniUCLPZjPWqY7Wq6Wyg7RyFKIoi5mwsipKyqijKqCVarlZ0rqNzXdSSBsGgcdYjLqYOjLnKBWzKu0g0OitKoZorqqKkMmU0KwWUKIyRFIFVCEkrqk3UdhpdYnSFKapea+68TUDV4pxl1a6jhjZFDpWU+kNEMBpMBhnimBVzsqA1eIu1LUopZmXFvXv3KLUhuMB7773Hk/ufoKuXiPe8dH6P46NTynIOCKurGqVqikK4unqX87sz7ty9x5d96VfEBO8Kjk5LjHkV19U42xJUi9InECzQ5gW2sc1CNDOZsKgpgk2fjDwfdpsSSkYa1d2bcno5+rCpBBgTfNt65tFnPD/5jy1vfLXhn/zNjg9+reblDyuW9z2f+iHHG19tcJ3nvU94XvlSzdCzWB58yvPGz1a8/hWGj/1gx9U78MbXwD/9m54v/wXCO5+wPHrT89JHFJ/+EZuEuXGu4xKPZtvTWodD/F/4xujr+MGvMfzI/9rxka83W/v27DXF2x9zXN33nLys+bG/W/PKlxYg8LO+6Zgf/iuXfN2vOeXqvuPdj7fc/XDRS1Il08MQfb1VRDlkk8rYVCDD6ps85w49m/aVQzQg24xU/01PpFIvbt3+rvtl9P+WaeqI4Zuakg1tKxXTp+jE1Phda1jGLW1eT4yfGuYmyyCyUKIXTOzo/yZD31/PwxXGe2c6nlkTIfv6t7O9tGKmrEEC0NNnboVBb2h701/qkOkeNKdPX54XYNoc4+v4wtvwjIfxXM/W/01t2C7gMzYpPaSO/I4D6FFYa2P0cO/7+AIQ+v/H9WSg96wWddvast19jrlUh6jI3sfo4zmCeu6PUoLRZhB4e9+/Ux6j8V8lSYiZQOWuvvRgOvlNq+Sy0X+f9t9U+7xfOLAZQA5STuQx7erBJf29wwU30JYsKg4R9E7v21P2zpkQUmDAyIdmdxQg+CgcHgmGJ1YoO7S243qfpuzbWy8MLG41dAPh2ZS4bBLJ6SLfsRBuTdwO3GwCZObv5hvZq4Uco7TJgROuW989cyqomPRUFJLMIEU5EEXo9fGk/+kTwg/NhCFw1IixGxjZA0v/CqMD4IZHDgHym/c8N+10v3TG62bYDjkIc04u7p2PEj0FWgulVrQuh0xXIAYlEbR3XoCYkB6laa1nXVua2iYJUdQ6xeijUQ8U8uEZhq4pUT0I0AqO5wVloaP0LGTwoXBOqBtH2zqsCyitER1nwhhBmwJRmkAk6l3X0dkO5xyqTI2HgfGZjnfUls4KgzYFRQllBVVRURUlWjT4mJpCa0EbDQLaRFNKJQqtC5QYlDKEEOi6Dtt11M0a23WE4AjB0XUWpWNOUBFBfPRlVKKSXjIm7VWioxFGCBA83nXMyoLZrOJ4cYRRHtetsHVNc3Uf265QSjg6OePuxcvMZ0cYbWjaddw/Wigrw3xRcn7nnIs7dynKOV0IiHi0TiYfKWhUEIUoE01vvYzJUA+E01T2B07u6+YqG7jX0d/RisxXZGOdD9sgDMCy/2IalXX5xiNWDl76mfB//u0lf/U74M6XwC/8T6FdNHzLX4Xv/fYVzRPwFr7ut8DpLwI/g/b1Nc2HY1Xf97vgwY/HDn3oG+H1b4FXvwm+9zdb/vC/9gRl4Jv/HKzfeEx9Bt0CnrzaAGArWN2xPLkH3/Mb4at/I7z+tdO19jO/HT72bfAHf37L/AJ+xV+Ay3uPAfhTXwO/4R+B3IOf+3vhj/6b76ELOHsDftmfgUenl7z6y0H/H/AH/pUrRMM3fCe0b/xEhvN9WS3ge7/lP+CL5YvlacvHft//+PnuwhfLF8sXyxfLT5vyFd/x66/9/kawuE+btOUnccOzE/+JScSkpxeV7e7b8Pl6ECJEdfeA/HtOv/9+Awhuc+KDZkGmzGKWjACDT2zIfU6RjwTw0XNDRAhqFX2rjEN0AaIjg6sEMKnmFBVVhlxooY8cNe7TnrfeNV8jkekucPespsa3kiweLBgYRMz5kd4UMH8lGkERvKfrHBhFuSiZHZfMK8XqcUNQFbqYoQKIE3wCTkorgjI4FOu6Y712NHVMeWB0RHs+mVJmnyAXAtEhOq6dQgmFjpFLjRaO5xUheFznKKRAqQJnPet1w2rZRW2JVizmBW0AlKY0ZS+F6zqH9xbX2hiAxoMuYlAbn4Dv2ChDqUBZaKrScHYy5/j4CIUH31HogkKXEKBrAj75VRIEZQyL4yMKU+AdvemktY4nl0+4urqkXq9YLa/AgzHxRwSqucIYBcpA0EjQaEokxHCtSgulLgnOQY7C6DpefuUOZ2enHJ8c8d5bn2b56AHN8gmhXjIr5ywW59w5f5WXz1+F4HC2gdBwclKhixJTzrl370OYao42Bau6RZfJjNuDCw58TgdRgriYCcNJv2BEJAUlkwS8/UjL74mayCwsSIIaklVAL0VNwhyVhBVBRQlqypXRC1FUnKUYWMim9jKg7Rf0RBslCn7pH9/eCfe+Cr7t72xf/7U/MP3/V/3P2/eYGfzrf2b7+ld+W/zJ5d/6G8Pnb/5vt+/Pdf3Kv7T7u9/wj4bPX/Pvx5/NIgLf+F3wjbur+GL5Yvli+WL5Yvli+WL5PJTPU+qMw8HHi/Y5ObQPWeq/qSF45hLGzrShZyi3NK0baqOxan4M3kOICc7j08+xn19AZdOkSZRCmxKlNUVRUJUVxiiUOHzowDcUWhPE4INCtCF0HV0QrPM0jY1J7RO+UD6AxKig3nV9MBdvY2TUQikKrQiuQxBm1YyX7l6wWj1KEUw1+MBytcLZ6GN4cX4KEgPmdF0XzTmdpWtrXGN7ACwiODcEoxFVIF0AFwjBUmhDWWnm85Lj0xlGeQSHtTVXV5doMRhV8mj9iJOjE6pyhikMRhnK+YxyPmPdrnn05AnWWpQH5wJN07Kua66uVgQfTSkKA9XCUBhNYQSkpW0UrjXMZhUXL1UURqMFxFUUWlDSEdxDFkcvcef8nLsXp9x75S5Pnjzi0aOHfPxjP4atVxjxlOU8gufz11kcnXF8dMK6baiXS0QCb7zxIc7uXFDOZuhihvUK55J5jAjBWiTEtB9CzNEovYBBgdLRVzRFIguh1+XTm4Uz7Mte5pOFXWEU5RGShjXuOs04Gb3sFDbFamW4pzel3LOuO8XiU8e5gyMd5qa93CR23chUdqAvXdcSCBRlwWw+7034Dinju8aWCGHr2zC6J9v1STIP1r3mfgDI+WdD6Df+EDzz1WO++a98B3QN3ja4tsY3V/QUTylcnr80pyIxHVE2/9oV0OJauj7SLA+XNqjs5PEcazStFfH9FOyOeRu2tduj28bC1pFccCgpyNRwX3om5WnNQsoQwK0e42yDcy1Xy4e07Zq2bVjXS+qmoW071ut2Y42lNkdzNLYe0dogukQVM5QUKG0QbdLnApFI92TUn33C5C0zQcBP4krkA3M6gkKS2bIrkEgc/I/9vijN+NLf86vjsI3PVIGQz04/1Nfv+13msdeY++3jXbaDdOwWrO+q4yY/sK1nZGNHXrPGZRR04+ZyvensLtPDG9vv+Zb9779Zvzqwv2Navu3+FLbu0coQCDjnccldRFIkcD/aA8bENU4QunbN5eMrPvvZd/j4x3+Sf/bjn6J2js4HvBfKSvH+D7yPL/+yj/Jzv+4r8fUlrq1xvkOVM0QZAoJrVpQm8nE2mH4c8o8iWkpZa+m6rhd0VrNFfwZBDqgT1613gaurFcvlisdPnvDmO5/halVT1x1N57A2EFBJSSHU6zVtW2O7Fo/EiOiiKEzBrCxYVCUvX5zz/vff4/zsmJOTOVo8tmnxzqFNQJTDWou1jllxHCOfhijE1sqluU60gJwqTka+fqr38VNp7Lfn0032xOBznYTRIzPUnl4HP4kGmyOe7tqXm59JyoBssZZWUboxn+Ep7VDUAqX309k3qH82mytDDKA4TmeSV/ewTqW/LlvtT+/ZVXbRkVx+5PfukBbvKD/t8iw+i1/ciyiRgIXdmsU998M2Udrru9QTqpzEOxHLkLUb0educ/HuG5FBK3FzX4eH2HtIXOeHcG2VGwfmIQfns5YtkCijMXUerQxHx8ecX5xxdn7CqrZ0TkBFv0HvDZ11dOsupqCwjroLNF0XgZoSxIUU8TT+NVphfUiavGRSDFjnKJVwNJ8zr0qCsxgT0xkEH+haS9vYBPwEpRxBAs57mqaL0UEFdNJQuxSwNIeSVkoi4FUKJxYRx9GiZLGYURQaYxTBNtSug+BQEiOxxhyImtJXzBYL5rM5WjTrpqNuW9a24/HVE5brGu89R0V0yo+RWTtC8CgTE7hXpaEwCqVCjDarFsxm8QA9OpqjVYEWjUbwfk3TNlSl4uL8mPe9/zVOFnNmpeHq4X0eP3xAvVozU4b5nZcodECCY3n5kPOLVyiKeTR1dQ3HZ0ccHR1xevEKLgh1K+gQKGcViCV4nxIfq0jAPQQZ9kycohgRMmgdNdDZJHYcvEYEgu+Z+wyoJk70fX1DZLQQpoGw4zpMCXoTBz5Z93Kz8ff5h+Dbv+9416rfsHbfplWp1zuY63hY3Za6Hn7/cMD1/2XAOAaPDH/DgQ1EpmLwiYM8JTE4Sx9IRqaU7bkK+mIDiGQavvv72xHjpy1ZaLA5yVPw3muws/CJtE+SeXg+d5RSeJc159cX6edx1Gb/z7O/u/RtpPmT2P+deFDyEztq2RVBOwuAty5LCtgzAovjpkZnzHaV22B677vdgre5rW/trUc+AfND+/T89xKJPA7jtkuoc1MfbhrvTd+wzZESEdA60nEXUNr0vjH9aVsAACAASURBVPcZ8ESwLHRty9XlA5bLJU8eP6FuHQ8fXfFw3fCwcdQuYFMTxoJ98zGr7pN86INvcOdEUZYat65RPu2hEF1TfBhSNmSeAh/wwfUJ1UVitPAMXkQVBK/w3tJ2HU8uH7JarVk3DW1naRpL20ah77uPr6iblq6ztC5GUUc0SkNRFLRe0QVDGxzOuuhKY8AFT9s1LFcdV6uWx+ua89MT7lyccufilHmhKHRMtyHe4V0UemO6JNDOVkx5Ah2hjxLro1CXga4Pf8d+pMPcb8UJyITNO8YRUscKmD54Vy9zGoSAA6Bksi5yM0PO3s2ghhBdl+LNQUjWRZG3VzEgQeyODGvUe08OAxDTo01Oq7wgyak5hqvb++IQevMs5ZnB4tOCiWe9/3mVQ00k81G468582Fxb197XCz2DObo0PLDJWDIaqx0gLwLJW479gfffRKyfZg6f57xvgvPh/0gwtCqYzxccn55yfHzEfH6JaiNHsFhUWFtA02Iv65g2o3M0raVrLT7VpwCbgKInECTmWgRiQnqRRNQCZWGYzyqqQhOsResC5xy262iamBYja4jbtsMTcD76LsbImAE1cquVxBxrCb1/YQSNgBaOjgzHRyVaKwKe9bLFdh34QFkKZVWgTYnoIgbvqSpMEQ+bblXTdB1N1/Ho8gl1ZyMorQyiFd5HAqi1whQxGmpRmGRt6QgBtJpTlkJVKubzkuCF4JLkztXo0DEzCy5OTrl75zQeKl3Lo0cPWD5+AgGOZwvOz08RHK6r6Zqao8UZogzr9RNC6Dg+veDi4g6z+TFX6xbvoryvmKkhPLmoPljMdIWP1puKvqrRvzIG5SGZ8yahIFkpKGRHfJfx3saaG5hOTwzAksOP90xACjO0ReizpLFvadTVfaQp876j1xnned96NB+MI0YH2Qznft1e3AQhU6HU5gF2cxkDxtuVnoHPXESuJx+WG92WfjKfb+kFiePGtm4af3g65vogGpkFiyPwvDm8m0ESgidJqCW1ozKbnhi2Ef7aaGuzX3kaBuZ7H1+QK9gPsjavhc17bjivB6HEVoe32trGj6lvuxDiDeU6geg+zd8hvMc+Lccul5Hth3dVuKcd0iq9huk8SAv/rCXv2ely3RCA3W4/7eLN+mAjO+4JefMk4aokoZq3XdQyEsHJerXivXff4sHD+zx4+JggJcvGsbQdKx9YO7AhpqMyXlE/XvOkfpuPf/otzIdf4uK4SKAipLxbARENWeAoUXuawY6zMRhL1nLG/RHBRNPGgHNN27JcLXn7nXd4/OSSq9WKtnN4F7DO03YdV11HZx3WeVyIacGQCPBKFNaDQ+OlwEsWdGqCV+A8IViWdcvlqub+8SX3H1/xWmN55eKIk0VJoQNGPMHFdF3BtoNhhsQ4Dfl0HjZhjNPRn2sDm8sA4EaLJAlt45E2svJJn2EAiJknCwHwIQHE0Nedf/fPb7WXSh/NcLw3Mv3MnyPwDSETUCEEx/DGwiTieexU6s04gNwIhDKVhW0LPMbtv5jyQjSLPx1MR5+6PM2ZLoKEQ2SwN1Ujo/D5mZHM36bFPf4uM5ZhaHnQasjWuvmCnpenLL35htKYYsZsfsx8cUxVFVSloERQWnNyfMx63dG0ntVqTYfQWkdrLW3rUhrCfEQNzJB1tjfeCc5igVIrZlXB2dGc0ghK4kFgu+ifWK9r2trGwCsiEBTrrumToxglzIoS7z3rrsMBVWniz6zE2jYG15GAKQJ3zitmleBcwNolrg0EFwPbHM0WGG0odElRFOhSoyuN99C2llV9SddZrpZLrpYNl6sGL3B8MsNoWNc1VVWijKEsCspZFf00iYelS71Wolgcn3F0Imhlsc0KfEHbWXCWRWn56Ec+xN3zOxwvTqnrxzy+uqJdr5mJ5mQ2oyzmnJycUVYV9++/zZPLK4yuKKSIB7vvqOaK2dxQlJp10zCfnyUTOGG5vmJWRrPYFAM37k3J5jsy7O9APJRVkc5qjziL8wFRMaCNBBAVCMr1aQE2D5BeqxK5rOiXSTr3hZ7pBpWEkUIQN6ExKmiyOWoMppPB7YYYZ3P/9v+G4f8cwTX3J387YYRyxMqpac/1ZR/tuD3V6+naBEjd3NIWbZZoHiV5HyXpbR73gRn4HJUbz45bIpBDz6K9TP2utx/OkLgeIljM2sShe/l5t1XDXqHoPhCSmPLp+TMAxn0auq26n3oy9w/ikPpki21Me3K3KPUL4SzdtXzGAqWfrmUsT7h2lG/5IocqBgDatkGUThFMoWsbbNcSnE9WSJ5mXfOpT36St++/yeXV42hptDilk0BDQw10AkFiRFHnHdYLy9byg//gh9Dmq/iyD9/jzskJ3bIG36HQVLMK76OUOIfCCCH0EUuzyaIxJa2z1OuG5XLNZ999wIMHD3jy5AkPHj1kvV6D1ihdYIqKtnGs64YnyyVoQxAFotCFjq43CM572nXTj5MxFfNqgXeOrutoWotRGq0NxmhW9Zon7zzhp956wMc++Wm+7Ge8j/e9eoc758fcPS5RMWAA9XrdWzUpXdA2bcTiWiFeUBLfK+gUUM6r6K6joA+bnnP7jkB+Bog5OmsEickaqAeQQ7yAwVzVp2MyMwMM4HNDYzkuSS+wLahBkU0RRKkkvJO0hqMCQVKAveHYjsKI4B2hN7lNJrF9zTHw5SC5m9L1EMZ92fy7u69PW547WDysY1MydpCE7IWXMXa/lTiRXhUxlnwdTJgy8MjahcEsKKvjsxp6F1OQzXImx3DeBHukmdPu5113QFdvUZ52Dm9jArMpZd2lgY1qfkEVBlPOqGYnHC3OOTu9YHl+RddZAgUoz3J1xeXVVQRspsQEh+rA2hbrUvBM0uwoHTVuweGdJ1tHncxNjOxZFJRFigIaotnogwdPYpAaNwTiSWgfhYpRUiWmm+i6KImamxlFFfsX8KzXS8BjCsV8rjk6KtDiozlrELQoQlpCmiK+hy4pTEVhDB2WZV1T1w2PHixp6g5dgFIaFzzawGI+S4dkzCDZeYeyARGbwEyi4QRmZfQBrcoKCTUmnFDpGfp4hrOXlLpkUZ7wvlfez/lxjHTarh+gihLtPQVQoFmcHKNEY9uOum4pTMXdi7s421CKo27WrB4/5PylI4wCrYSj+THWEidGKWZFgZJ0qCKQCXNIkWlVNnlMa0fUsHeyGbhW4BSMzICylDuuuSTJjTM4aGBCH+KWbNYy1myLIh7OIYAHJYMZiwt6JBOSiT/FYWUEQiaAcUSbiBQlpHfVxqB0kprLIHTaWW2qelJuQyJHFU1hcPqR6T2HVSr44HsGKnc3A0W1IRk+1CRw876baPggPBpdgA3ABbfPk5uB1C0e6Rsew5+b3nkDrIVN+L+F0Ps6x6aY+Zwa3zdiadgUdg7t7/Zd3Bp3ib8mNH/vW+U2w94bZTJPw4fJ2/ZB6/L7pMyrE4HtYWVTuzj043pTy71WRQeWzbuvx9yjMZuMxHgt5msHrOcd2pfblH2raVz/IZZN+8Y4uxXsfCY4grW0tolppbSimlUoUdTrNVeXlzx4cJ/Hj+4jQThanKCM4aqD1XrNg0dXNDaSc5GADTYCGtGgPD/19n1+6Ec/Tr2u+bp/8SOIbzHiEaUT+Y8BDoN4fBfjQSulqBYLAtHN5cnyis989i3ee+8+7z18yNvvPqTtbDr/fExzpaNPeOs8HYAxzOYLrlYtQaKriwu2dyUJEP0giWuvbVtc59BKKIpojhtC1FB6wCuFKgqUj+fJT3zqHd5+5yEfeO0OP/MjH+Co0hSqxLVLjFYUEjBSYG0XU/TofDilKOohJiaDkNxHYo5CejqRU09APsdzqq6cYDokQXp6CcgaR98j735ve2K7Idn2RsA51L1ZBrf1cXwBQcSTfX5DSo2SYydEE2HVtysCQaJVmgoegkYkpTfLlfaVR75uoDsynO/IFERmGpOP/B5QPx/m/rmCxUMJ2XXq0mcFiuPD5uAD/xYSp63+PetECKO8Mn0j/eErGSQKU9V4toveMY6fS6h9rc/EjrH5XAoCpn5hoE1JOTtmtjjj+PSC4ycPaeoG52HtkhbROpQy+GRIHpIPTz5TUoIThKh9KrTgQoT4ZaE5nlcUWqEV8U4vdD7grKVpOryPAEP1wCVJxwj9po/Ej/67PnehJPPW0lCWiqpUECwhqJSUIhKTaBoqaBXNVIN4OtfS+ZbGdizbmrZtWa4aus5RikZrwYcIGquipLMx8ipKksIs5GXY/1VEn82qKJhXJUYKKmMwIgTnOF3MWMwqFrNZjDvs4nsYFYP0FCKYouSkOsKYihAE33lmVYFSAbB0DdhmDbZhURWcHB1jVJH8DgAJhODwnUPpgbBmAJJpjcggfOlpawKU5H2VpYI+C2jyvAuhT7OT3zyAeHoT0hydOO9nPxbixDnI+DCMpKQZ1A3nTrRQuDtb8Ce/YQVAeyd+VT7YTCKxteKH32H0/wZDHELUOosKaD0NhtN3Y6vWnU1tY4l9pZ8HFQMYiKaXFmfmbaPa7R7FA/7l87s9zY4+MNmPdEfnGU3bdd075AzI4PuAIpO/whDI6PlK5fozLjGlO2dOAgSZdH8M0vKeHpcwYjy2oeK07XF7vdRfsuBkEK0MfNDArO8CXlvmgpsvHXbf179N7686fWzX0ZMZT4E+avlEyDPugAxMmOT33dHDW7uBfA7OxNszjOO1tAPoHtDlbUB+WNlnsrsLSF9nKnubunN9uehEh70PeN8hQcfgRyGwXC5ZLpes1qsYAMdrbFCEVrhcNlxdtazXbktYFc+fgBdP3VrefOs+lTF84N7L3LtIFhIqnvdg+n3pQ7TcUUqhjaZpWlarNfcfPeQzb73F/QcPefjoCZerVQ+sTKERowlEF5Km7Witx7noh+ldiGedAu9c72Yy9DVOsXcO5yzB57GK0b0DUWCbBQwC4CTGPWhatJYYwO5szum8QCsd3XVsh7I68TwQzTNjbIHgBVExhkMP5MOo/lHGgmHfZQDomZihMgZ9PvILI83h4LOYAGeutK9j2N2TNQKJlo6FkVPMoVTKW9ljuuT7ndO4jUSlwStEIkcpIecLlokFQOj3YmBikpqHKPegB4yjzl6zT2+rpDsYLL5ITdFN97wIYvpUNWYUf+0t+wHqTu0XiXkMjJZQCjyR88LBkEtxiyHc3f6trl3zTk8z9p8rQHgbLaQLAVNWCCcE7zi/8wqXj+6j5Yq6bVh2FuscLoApKxpP1BomSZMgaImyoy5dB8+s0ngiaDo+rjiZzyKB7SzehmTu6bi6qul8HxArmhwkbVY2HA4ZZAA6gZPOWbp1i2hQRpgtNCcnM8oiAtJmvSSoBVpVSeMZf5QSlBY8Duc62ral6VrqxrFuLN4LrY16UhGDtZGyaGUoTMHyqqbrOhZHiv7oCPRAWIlgBKrCMCsN87JkXiyYlZoQWtb1Feevvsrp8TGVKbj/2Xehm3M0n3N2csRyvaZSBlMY7lzcYb22dDZgCri4ewdvW2xbU3tLffUIYzQv373g4vxlvChc52lUgymiSVDbtpSVTpqypDHspXojDX1cOYnSRq5vbJ4pShPEDvMRIAKasb9hAs7JjyVeTbkYk+RPqUG7GA9fBSqqpnMS4uyvmlFk9nEMwO//xb+w79ff+67/CYCf8x99EyHG+ewlqqNV3q/1/Ne6Fu8drgdUDu8dzWrJ3VcuODk/5uTOCZ1YlA/oPXRg02cqe3zE98uDtCmJzSMDGgExiClR1RHF2Wvo+QVSnUBxijYFKkXJ9Dk6nsrBWBjmLHh8s8Y1Na5ZpqTOKfrtmKnYoO6H4tld5TBB4g44JZmej5DGPqK9r+3DOzmAU8kCkjGDkRNlbwaOiGOawcB4PQWipHxr8HYM5pQOJ2av/7wdte9GLuamsmdCh1rDbmS4qyrJAqSRyXL/Ie/vEeje1EaF6b7LdY3Xf77+Isuz1P+8+vY86tmnSLiJr9os1923Tae27zVKICg8MRr6ytZY62jbltVqRV3XNK1FlKFrPavGUTcN7zy84vGyo1nHle+SsNkTz06RmHIrAJ995wGutbz20gWvfO2HY6qn0OG7qCkTEbREcKFU4gkVrFZL7j94yE9++tN8+s23uFyuWDcdYgTSfaooEK1xNtB2nqvlmqZzeBfpQHAeLTHqqHcOR4xOighKK3QypfTOxTRiCXBaG/pzUavBQlQkRo73PhCc59NvPeZ48S5ddwd975yz2YyuvYqR3nEoMYDDOR/NTSHluY4xEvLcSOjjxMTgc9NZjvSrD0rne7DX07LR9xErDgHqpAeeg5Z88HncY4qaTNM3v4r/u0RHE21NfEcIjoBJ9CMGX1Oi6QVqKsU38NllKrkGjNdmRodCL2weW3ZEyyZ6wNiv99Hx86zl8xQN9VmO789TOQAo3lDBc+jCoI3KKuleEjEihJl2foGN8AsrcX8HvNJ4KkQWzOZ3mFVHdE1D0zTYziJaoYsCF8C2NW3b0XYu+hbmvHk+mmGSQNmRgZM7ZxSFAWep15cxkb2KpqSXT1qazuNCTDXhfcqL6KNphxJBK0ET7feV0ZSlwRBoW8flskUMnJzNWRzNKIzBdQ229QQlHM9PsU5FraCWmANSYtS0urU0tqO1lrpuqDuwFmwHhVEURQkidM5TrzuUQGkUXWvjYWmE1gaqQsV30orCaEodgaIRoiYRkM7SrFaoI8vRseHeB+8SOuHxe08IznN2opnPTTSFbQqOSqEwMbjMg/sPETOjmh9xfnJGNZvhmzW163j34UO0dMyPL3jl5XsEvaB14LzgW8v8xKCDB+0pdZndAkE0Sgx9OPjMqI82R95PWeqYdI94FCFEXwJCNGFFYr5OZMycpJyKWVIpibEMguQUrmFMrSVzEMPaDNm09QAKIVnrPEhN42WBlKqjf70QUN6CxByszrmkfY4h2du6pVk1HJ8ucFiQaMJ8WBn39Hoq08OYdFDGJ5IGKo9buro7pURqb0R/++FXErkVtXvkZPTzzxMtDLuw0GRd5mtTpngAvnHcRYWo8VZR0xzwSXDhJ+fIIaU3ZY493H+fCgyJhwdp/PV1HzZ/z3rCZpzyLGtl0Mg+IyD+56k8M+/0YkreC7uWX4yHEs0t33r7PT716U/zznvvUdcNr7//AyyOjjHVEY8eXPL2oyVX6+hv2FjBeRWtZMh6dYUmxjeAGOG8NAXOeZ6sGv7p//MJPvrB11EvnXC6mINqk4jHEdAx3VaU0HJ1dcWnP/MZPvPW23zqzTdpOocqCo6qGY+ulunFBO+FdW2p6471uuPyyia6ETWUdecwrkMriyOgjE4CVXC9W43ggXK2wAdP23ZoHU8RQsA5R5fOMq0ifa8WRwSBRw8u+bGffIerdUttHV/24buR1DuLdw3H82NwAds50NE/UYlBKR/bUA5RMSig8inFksquWv0MQgpMF0JI+YrjWR4trgbA5/N3DGQxWgINwHIsaB1/Hv/NZR/NyooFQWIOZxnorkppolAGF2LOZyWh11oj0QUp+jf2B3laQ5nHT76PKvdL0pxC7wrDyKpyz9p/mvJ5AYv7pEcvrr0dbV0jLd6ycR8/tut+SJM5XVQTALfx7GQRTipN7E3Y7rNA9L/rHX6lD7yxq1dPK+g71LT0OpOOm+p5mvue5pk89gDOEwl3UXF+/jLrl15N4Er47KN3WNdr6toiUpF9QaPGw+Nt8o0KUJSaalYwm5ecVCZuVNfRNjWuszgEEYvzUBQaZaLzuFKkfI0e17lozqHAGEVVVWij0YVGG4WmpayEcq5QhaEoC4w2hOAxuoiaPaUI1mNdgw0d2gvWJSdwYn7EznmsAxs0zkezyaLMuc6i/0HXtqm+uLbWV2vAIQScD0kqNkjJCPH5wmjmZcWsLJkVBboIlGWFUQrbBlbL+6ggFKpAq5eQMEOrisVRiXRgW4v1DqU0x2dnFNUCXZZYayF4lBIWsxmr9YrONljrmc2PkaAwQNCBuqn77dJ0Lmq6RFCaJNkDhSKoQePRm3jvEKooFcWlQ061QUOQjEXS+osSg2xOE6WNvb6t1x7GVE9hqCpLCMfaur6F4f+J5nGoNbH5YXguYzGZAqq40vNNCo9LcFJRqIJgHa7rkoZYQ8jmT9fvrb69IEzDsW5SxrEvWqZ1I8ltkuf2AQauKdtgL9arlCYo1f8Q/A5a+qLLuP/Psb08ztys2YzH6abv3/BXRgs9CxazuVReYyLSzz8Q17JSO6fmUPeO6TPb1w4Div1ADP/3+2n6bJIJptQCYef62+7D6PsRxsu+2dObE4PJ9Xtk0uE99z6rL+Khz4yp2DWimNina9rY7UO6vx9Ts+IbuzmUsGcXZUZ/3JdIzHfcGnZ+3m12GibrcPz3arni7bff4ZM/+VM8fPKEVd0S0NQ2EJoO6RwPr9Y8qWuWbZfyInqCBlMoVOMSrfbp7IyywphKyicBTeD+o0t+7Mc/izjF/H0v412NNtEMyfkRWBRYNw3L9Yp1vaZzFpSJgWFEpcjmcWB8ENrWsl5b6trhPGjRKNEYXXDv4s7/R96bP0mSI/t9HwcQEZl19TE7szN7vEcaL9FImkn6Tf+/yUz/gGiUqEeu3u7OztXV3XVkxgHA9YMDEZFZWUf3zL63NMG6uiojIxAIBODuXz/J2bKn3u7uivuqzUWMFp7gvPGTu/1Q5gS7R87klO3+mBeTOmFMmbjvqZlk92Pi+uM9TeP46ouO8y7TeW9yRZoI3tO0TbHCWd1dJ9WrTmbapxUUrhZJ5cjVamgeYCuPm5zKuzValvPK7ZRlLa3XyKnfp/6u62N2lV01I08mM6gU11Ktrqk1HMYAn85jybMQkKV6Hi0gU9Ea1YLVZDSdXjUYgS7rSRWRDPjDffIL8KZnwOLDDf+p2sbn+i29v7zTz2yn4xtO31fLCaeJ3Jq0ridFF+ltrpdyyjVrYTaHMXXVeUWocTwHSSDmBS5LT6tFMJ/xUoXmZ075y9yynu/jn6rNxL/WufMOR8fm8i2v3nxFzpl+HBimPzNMkTFGfAjElNCUcWouoTlbIVcJsOk8lxcdFxdnNMAw7Elxgjxx0QSC94TiDikugASc90wpFVfQkbv7nqkkurHyF56mDfjGm2sHjtAInTQFbBoBiYkS82XMY0qJKQ5MOq5q5ln6mZRgygaSs1qMmBOHk1CIn9HanHNxKbE1Nw4jwQviLaVDrR8pqGXuKsS8CQ2bpmXbNlZzsbG5c8C4HxmHHV3TEkJrbrLSEULHZtNa1rVhJMbI9uKSs/MLXLshZUdKA14E7x1t49nvlZyswK93AbMaQnaZIe4RwPtASskUd2KEOmMENCuldEXdoqs9XJnRSrkyA6/C4Ff4a/aqW7uu1s24OmIEP1fLTbFKZkWL22R1gZGq2a43eVaJVU6bpcCqdayfjVlV2mDM6TD9eijjycmyvPoSl2oKkvUdlwQ+M8U8wQceU6DNU6NaQHyBunNcSK5Uktkl5zS5LA92eMcKhA6AsrDEiixTtIz1EYCiy4s88TTWiaxMerPwMHd1iqbVuJYVuH/kDsvrPBJonyTUCxdbX78kd1jmTIp22v7JLEAsDqzHZQSWNX7gznS0ztfPXxPA2Ne6gNMXMKQngaOsR1meVk7MuMIa4a3n7uS5x2fNQJEFGK6toEfjPT3UBdyevnJ+pKOt/ik89SGAe5KnPhjr8XUrmeTBmfrs0E69u4dyz9Pts2SC+X19mjyyCOF1dMLaWp9zJo2Rm5s7/vLdj3z3w49M2cpZNW3HGA0UxZz4uO/pp4nJ/DtNKhSH81LzDGN01DJ0OyCIMGGWJVVltx/407c/8ubykl9/8ZbWK04Toq7U6zO6mVPm/v6O+909+6G311q9KkRNmYxlRZ+mTN9HximTstBuWjbtlrbt2G43vH3zmvv9jtu7W+72OwtTKKNNWalhF4IwjKPx+ybM/MbKQ9Xbm4yacmYaI2A1W6eUud8PXH9Qrj9c4d90hI2n9Z6YEyqZkN1qDRo/MJdbj3c1LrICIuPX1b3f9pDxkzxnPK0up2bXNYtjPY7thdnDZeFPHKzzCjqP/i6ygl0jK4+WtUy/Xpxu7tIUyfYskgWdPfwPZXtVmUsa1b03/y5rVPPy3kUy1QW1AsWaX2HZUwtvXLcHseHP7KN/FsviemNaW3/4eUDkxWOYt0YZQSXeK9x3wNnTUv9kYYq28IwvSl1584UPJ3/tClQH4jFd6FiutRgyK7jukVxixmRENEIqWhLnZoZvA1ix6qcsAy88Zt2c/uaB5fVngr9DLeTPef/1rSxCnAi4LPjsyC3E1qPaIHrF2Rd7+uTwt7dcf7wj5wYXWm644f7unrRTdHAEGiIgjXDxOvD2IvDFZcvVtuMPf/rAfrrDSeLVtuF//e3v+N3rN3x9dcWm87hgQeld0/Cuv+f7m2v+8vGaf3j3E9/+tOd+nxmHyDTdAQ1oIElGfcC7QOs8eUi2zpxDQmCXJnLaQ+qRKZJS8VkPgSkuFrQ0KOMYyQrtdkNoN7Z+pkjf93PtbO8sa6vmTErFuqCCqKMTz1njgUjOk3n3Z3MZuTy/4nzj6Bqha7K5oxKJMXJ3s+Pi4opXl6+4PL+k9Q3nZx2bzkCjdBBiBIE3r69ouo4oLaMKrgsEAuITmnZ0zRnBb0jTSIwfyL4li5X/8FriimKiFeEgw6mxPvs9E9iSXY1leytQMhIRs1pdKecsvbhThjRBzjSFCWZNpGxxq7ZPjeGlVIi6QCKQSGa58wIpMgwjY78nx4m2bfHe471jwpG11oKyRSvOlYRta4FXcboEyNuDrxhW0QxXsJR8Y0H1eaBtHGPfM/Q7czlygkoixqEYkMz91rkK33SWmmUVd1YZqMgqxfcKuM4goWRxAyWiJYNtiUuJIxJHXDA331wKUSu+hoTMAKPGgFB+LE6xZK1LsbgeJZbsjAp45pqBdZHPWe78LNwuFrfCxMW+nxMpBkJzUAAAIABJREFUzI8lhfnWZEi60EAVkLBeSUftyMWpQPeD/st/D8mozLRs7UGyABKZSy1VsFu1zfV/wVLTs8hccwxvSpbMS3UgxkQILc6NJS1/YBgGvA9mwV29aJ2fq7xjKcWoRXB4NFWhSnE1j5GaEK7R1tg89StA+pS1bZ4xPSn3zBOZT2Cbp3ieHrnqVtYx3+PExc+N1T6fGuBxP/WvZwCZrP9Y3OZmxfKDttqv5NNdn6yYs+Kfy0fqSjo4U5f1/qx1mBPv5FHFAPPEHHhdyaqf1fyffLervmdgWGLpfLC49pwxBS9SPkcr4yCwv93z3Z+/5aef3vPu+oYhD7ggNE1L01q8fT/tud3fcdsLDZ5z5+iHCRVPTJk4midHhUAOZ0URJOMkc962DGMkxww+8MPHa/7805a3X7T8u3/xK3Sa0JRwG0jjQMqRaej57ts/8cOPP3Jzv7PMqQVgiRqd1mJRvP6wY5zMC+rs1ZZvfvd7vvz1r3n7xVt+/esvuX33nj/+6c/kbyPXHx1a6jc652k6S0CTciJGpSuZQkUjKeaSVRwaZzyv8q3GCTl0qHjICZ0Gpimzux/5wz9eo+lL+OIV57+65Pbmmmm3I8dbxHmgJgETGu/YdC3bbceriw2hbUAcKQpMljnei8cFz6BCVIvP95pxOWMOwIt7ata8yjBe+Vr5VEXm9QKaFZlVNbWs9XlnFdEir7RCWkNeauLTwkdkDmFRxBmQFarrqYWAiHgED7HK9svedgfaTosDL+rmInsUaqXG+5jDSQrR1+P9VhXkxzzrOCb0sP1ssPj5QOGx6x6Stp9ryTp994ckbGYC668OTlsRoTrdJxbes/deM5tTlPRopE93drp/VmM7eEd6usfHXGWeAoy/RHvIZF/W79NrwiZ1rb1VVXCOGBM5JTyOpm3BOfpxZBwiKTmmCe7vJuJYgFSTGeLIdqtsLhq++PIVX11coWPi/v2OS73lf/7qS37/9kv+ze9+z9uvvyRsOnzb0GjAuWCgwwfepMzv+hvu+/f8h49/4Y8/vefbd7f8w5+v+cP3HximiUkjr66aml4CJxnvPBkxx9AMXj2SG3JSXLZEOVlhHJW+t8xmTsWEtqKlkmTTUj0lXQGIUuZmvcQzJgM6D5tNYBx6Y3IeXl1e8sXVGy6251x1Ha1MOCLkRCj+9l3TcfHVJV27YbvZsOk2XJyd4bJAzqQ4oZpoNh3NZkv2HVnNvaILwiYIOkTGaSCr4/LVa9rtGaHblCD9CXXZrJgFVJmUmCzBTS0HUbSglSRWedlc8Mw663BEqrtQXSwWo4l3EN3sSmIWSgEC3nmESCkjhc2anwXxqjWWwki1ZFgV50EyqWhBs2VUQlC8yAFgVNWD+EZ7b56qCc8FmZphrQa4V4Evl3sJ4mAce9Q1tJszdvt7Gh/s+UOYF8WBy1+R0zSlIlAv7kGm0FoC6qsBq9JOASSvBE+dyryW9zRL9Fp0r5VOGZhaU9n1eOoYnzSisIy9AruCZB6/aHU/G8MJ2rLC5D+vVcR2yLzXn07R68dCDV527PjrRWASV5I1zfhTDn7qGB6Mv8LRGfRBtfSaJ0IFheu+Ho7t4D5HTRfibXvxJU/4QrZ08DpP8OD6vawR48ol7UF/J57hpSxy1i8/0x5aIx/tcdXhw/CYGb3z8L6H5/Hoei9+Jp8sBzzF70/ydDk8r/Kr5zycHrjPSslknnNJ9mWTqVg8mxeI08DQ93z37bf89NNP3NzumeLExatXBXRbEpeYlXFS+jGTUkDEsLf4ADizwDkl3Q9IrimfKIkMLTu6x8JNQiNsupa7+zt+ev+B769f8fvf/opGW1Qz034iOEeKmd1+4Kd3H7i527MfIhIarDqDltJazrxrBC4uNjjfsj075+rVa/7Df/xPbM62DOPAH/7hv/H//rf/zsebG+53O1KKxfURNEdLdleUbCEcJmRTEpqXDNauWriqli9HkGT7vw2gif2U+enjDmk+cH0/8I/fX7Pf3bDb77nf7VeZVuv6FtrWc7Zp+M03X/GrX73l7asLfv32HOdKVnFVYprIaqEnIQRcioWnZrKkA9fUZeMsvGZeH3qS4i8KPl0S4FTwtTqLOaFN5Rx6JONTEwkuMeOaE4jMyX3QTJYaDlBjFsvvOrf1jgI5p3KuzjTXwLaVD6HsefMMKgpSDmmSvpRYlvYZ2VD1xLG//fZgrJ8EQOVoko81b2vG9mljmvP3yePpHV4wukf7/7ntWXebF7Snzn2ooX1xtzzkZpWhrFxMxKRXleLrXTVxhRgO48j7DzfsdgNjhjgJabRMps7wJRdXDdurhvOLjrevLwgRxn5E9wP/9qsv+Vdf/4bffvEVv//6G8LFGdl7svP4sAXfkMWsRxfO4V2g6xq6jedse8XV+UeEhinBx/2OfZrYT4nWA6IWZ+hYmJS4gosyaTI3jqyW7TLmTJyqpVtrrgoQRaNCycI2C3RlxozwLIKbk2wJWrygoiTNBC+0TWDbdWy6lq7xlFQwlmeEpZZhCIHz7TkhNDShwTtnyWxycRFVs/aFtsWFFvVNsZAoDZmgiWEaiOOA+EB7dk672eKalowYs88ZydXGZgT/IMXGA5xxQiJTLUkIVmAn5dlllMKUKq/JRqXnXq2sSkljIIq3QMkZzFUQXoGTlKLEqlqUf8v+n3mQHO7mg9XtBKceLVn6zNplF8/grT5tFd7LbrBwNAOrU4owwTRFc+0RnS1Uh3eVAlqroKqlcHAZ7Hz+2pJ7PNemWZVyjcWC1biSJYtpHXTdr4fvrhyqVrM61kdoha7+n+di7uSQHi2WuGcIj87//fz2CTTuNGBb6NqTdHh+3qcFg/XeXwPTWeA+fAvLXB10qQfXHEz46j4nn219rxP8xqZ+/T5fJoMsIQgP77/q4QlZ4OkX9deSf5611K3n7eQZn7ZOn1S8SgUCT4/jr9FOAcs1UHxgaV+105Zfo4U6F0gv3liqeO8Yh0jf77i9ec/9/T39MJGy0jYdYxwZp0i/7y0+fsxMk6m7LBxOK7sAsUQlIiX7uVrF4iAWWyiUchjel/wToM7KTrz/eMt+SNAEvKuxxcqUR8Yxsx+nOfeCuEDK1bIoJNXiQio0bWPJYUoZh3EcUDJ39/f88P33vH9/TT8MxGnClwQzdR6dKzzNgfeWeTwnS8qX9RBgzZReFlDsSrgBYiEwY1bCkGl3iSGPvLvd0+/3jMPIMGSmKR3sR1XwHtpm5Ha85sebyJdv9+ScOA8Nm+BpnSCaSmbZXBS6FRyuZfQKFher2bHSZfmqMoo1rVl5rAgWVIj1v+JcM49cr79KLWvfqjU7dPX+cqzdU5cZrBlVma2tM+2tcoIubsJ1zuZzs4LTqs7BePAyv/X3y5VP1l4EFg8349Oa3dPXPH7sb609p7F6uj193aFPczlmX8xC/DH8eWn73Ov+ttqnAfj5rwcY4NA+gYB6CzIOzvzbQxCGnLi5u+cv3/3Ix5sevJLUXDKqMOyC41e/vuDq9QVn5x0Xm5aPf/qJuNvRpMz/9m/+J7746kvOLy/pLi+ZxkiakjGO1pOawIQwjJkmCcF1NI3jzVnD5au3vH59y6bbEELgv//wA9++/8BPu5E3m4wTmHIiucwwRqYYGbKCa8hRSUOidY0VJy/Jr1Na1lSBNKgqaYyos+eR4AooLNOjclBuw2WLuRAPSRMqEJrA2dmGTdtaptQciVOk6zxOLA7OiVnW2qZl022sLlQBpd55fJDi4ZcRB6Hr8N05SQLqHA4lMMHUE/d3TPs9vtnQbM8J3QbxDRl/AO5SjDP4d7N2Tx8Q73l1CTMDycVFRdG5fA0llo9kRX41FxembAL3FJckICLFta4QYy8W0C4ISfMMalUtA544S1a0jhNaj03BkvJUrbfqQaZPcW5OjkC2mEwbxxosGoOzTGvGDDQpSQskEmGKkaSRMHjilMq7FlYZcWYAwZrxsoDGrEthgWWbVdfMQ2GtWkPr3qQCxZwL6FeQbIlqinD1mJy+4FN59KRldss5pb81815btF7KlY6HdQiu5fDLJ8BlBfAvbWsAt76vHH0+uEZWoK4KBg/Oyavvq1fNQ/6+xvOnpv2l/PJ4/k55rjzKfx/R/j9si4v24spc77602TlTOdg7J2bpRXf9pdopAPQkOJ7Nkg9m92S/9s2nrD2Z5/LwvbwMsP9S7SVy2VNzNl9fDjsns5u/qhK8kNPIuLvn7vYDu75nmJRMwIeGaRzZ7Uc+vE80bcOYE1ME8W6xYAlGz0oZIHEWbmgANVkBehEUSzbXNgHnhaSJrmsZU+L6ww139yPh8hwXGkJwSI7ECPshMkzZAKd34FtSnMw7Q4UpZlI25VwI5jkyjiMxfeTbP/+J0ATudzu+/+579vudJUURCI3H+6bUZTbrpKq5TfoQGBiZJKLRvJVyAWRGWmX29Ac1EOcgRrOcRYUxg5uUMCj7nOnHnn0/4pIiObAfctmPFuZhStaMErm+eUf33Ud+9eaMcbjnN1+84c3Flquzls6pZTklQVqytNYQijnWMBsBWyyFx3QI5iOqLGEI5bp5rWfWV+rRX7PMUe9DpfXOAG2pqSiilkNBoFrnRcpaqUq7GSs8pI+W36QqTC1kRnOlpQVAZofW+o6aC2+XA/py7Bnw3D7+Zyqd8VT724A9nwcaD8f+VB8vcaN4Snt+6tZW1POff+7+aVpljqcY5OF7MKFdZxAZvJUQ+OOf/pH/6//+r/yf/+X/4eOdsj1PBJ/ZNnD55ozzsysuLt5wfnVBynumfsd33/0Rbu7417//Hf/p3/xb/t3v/iN9C6Nkvh9Gwn2PT3YfzT10HQTP1jlG7+hDR25aUnhDKxPb7oz/cNbx9ReX/Od/fMV//se/8L//lz8w7Ef6pIxTpC2MZIqJMZtrSA1iLzlLLZFKcJZdrGQ11SFC8dtP2Xzjc3TmGpMS2UlRRJkVNVTXser2LhabdnHecr7dcn62xTuYhvtiQfRsmwsab+U/Gtey3W6N4YwTWQS8JzbCOI5cXZwjAtM4WUyeD7imIbkOSJAG0nDH/Ycf6PuBlOHi9Vt8uwXXGpMUN2tcRYQc0+Jq4oVYtJ/OlWdxbiU0L0HrMaXZ0odzpe4l5Mkx9qNZ3FJJv12YDZqJ02Ta01Ig2dxIas0mJU5W2zCHgKai1xPIOAiNpcZ2CVauLVXYWK/iGqb3UDMnRSu+xHEtRL4yPEMGTkDFYvya0JLTREyREDz9uGO3h/1ux+s3b1CnJNLqHraHqiW0usfmvDDMXBLUQHFFLRrndRiY/VmtkQo5ktOISwOaLQ5bc7T75VKiRFYC/yqzHJUerqxqJuibRZcCNBcm/U8t6j/fTikKnhvjL/UcM0gtyYZE3Eq1XPmRMMfKuPAEj6q090jpMQtpa+HM9o8UKW3p8zTgOOaNp4Du48/41Df/Y/DGTwdfj6+Qpyy2f4vtJc++XltPWReP+6zXuELvVVOxKimSE7HfM+xu8SjdpkWaQEgtSYRhTNzeT1x/SHTbZGHKAcBBsJhEVUGCFCudZ7vpGMeJOGUSkGOskb72tgLFG0X51Zs3eJTdfs8f/vgdf/+733F+JvTDPXcfrvn48Zr31+/46eM9/ZSJCnka2fV7ZojgQqk7q6S0o7o+ijhuP34s5xjQtCoO3mLAYzSLZAiIaxAHKcaSVG5EnKdp7BqmTMqZlE2fauBsobVZzaMppWwKSKxmpTpHFo+6BhccMUVkGvBxwnK4llwDc0Ib425OFFLm+vqO/+Pmln/997/i91+95ZsvX/HNmzMaZ2NIKZFFZ/f3lBQpPLYqzMsioKqKlj0RjnbPGixy8PecMfnhquSEOrEcWWdiLbywKLBqiIsUfl+9kjjg6SuAp1C1qSpirqtYEr2cLeO+Kb5NMrRzfQGyz+2tXwAsvjR27SUb9iXtWT/2n3ntzLxe0NeSmOD0VB67RlSe9IA1zTbfZ5jWSiN6cHAZfP2D9SJ6SpN9qqfjeToZ3/gz2z+VJfnwNa8BI8s7cUJOWqw/Shzu+e67b7m+viZG5eqypenM9aMLmYuzLduzjqYVPt68owtAGtFx5O+++TX/8ve/5/e//Q07yaTbAZ0iIY44XwV9hZuBJuzxwRO6lnGj4M5BBec3lqAlQHfxhi/U8fsehuj5/t2e775/z9040k+gXlDxuMbRilqtxaRAwtEgYnFw6kG8X9ZgMCItxc/C+eIfn0sSFLfMlHPgvRBC0YKJI3hoG4f33gjyOCFtS9M4tm3Dm4sztl2LZLPCdW3HdrNBRBj6gZQTzgeaypwpqjcviLdkJilnnIMcR/K4h/09+90OFSE0He1mi/hgwFNNS+allu4IJHEGzpLFHWZdmEN1FKlC6sEKKUJrTKm4RRrQySktmtMKx8SRUiROAzFGA6y+1jYyEFmTTqQ4WQ3Ns/PyGlZEXyrwWSXLUpm/yge+Mav7z4cqBKp7awWDKzNa9ZFztLmJcX7WcRqZcmKII2kXeffuHZdXryw9uyygcGYuYh8Wgau40KyegaqxX5ugysicyCIclfcnaULrTxxxrillGvzqSuvqkIaW+ZzBw0pZNFsNlIMsdBy8+pM06Skw9lQijeP2nHLw0c/P8TjlgRKwhi3IeownLYyrY1UYgdlyvO53ifEpJ8/PdNTnMqyDexzGBjEfO57/tVX31HiP5Q098ddj1y1j/FtTE3x6O56Lp2L6lr330lqpL7v/esoP51iYFxJrj6ijTTubok/JPaf3xCkZbqFLhzTupa7M9Xg9JyVT2ElJFTLFkXHsGYcBRwZZQjD2u8h+iIxRSRmmKRNE8I1jHCezFImt87Zt5/Kvl9sNexFGmXBjTeZlP+0mcLZpabtA1wY82fh0zvzxH/+IUzg/37Lv93y4/p7d/S273R1DzFaiQs2zJOOMvylMw4j3RpfrXm4aU1DGKVlCK+/onJUGM8WwX0o1OHN5TakqMo1yO2/CglOPc8ZHUsxMavWj62sVccQSWpAVmlVW+JSVNI04TH4hTUhOVgJLoMaEag3ZKGupQrvsbN7efbin8Q4lsQnK67OGxtcEcxF1BhgP6VB5lpWMfOD5cgAM138eJrhRXY4crSwWLrK+r1sdl3kMBzIBNb/BUttyvZbX+3mhmyXESGyhqUrxzrGcFhlTqM+PK+5F9PA5NvQkWFwzoeXvpdOXgIFPBQzHp3/69QvBOCYeD/zYX9yrzjTwlAZ0+c0Dejifr7rQ1tWda+bCyvyPB2auYwcjWTHgQ1eqqpl4ssmns9GH7+Boc81jOb7yUHB8us/1+b90M2sZqRRYz4l+f8f79z+x293jfeDivGRi1Ezwnq41FxBcot/fIK3Ha8KT+e3X3/DNV1/z+uot97cDOgxIP+HihJw3EMzSIuOESwkXgyWfk4hV/fNI2Np6dAHftWzU8faN8ptB+Ze/esfH6zvudxafMEU191EPwWdC4xGnJaunx4tlxEqSIbjF9aJxeIUazO+8KwmvjDBTLIuSIXiLT/DeiI9zgvdCEyxbak0iE5ynDYFt13JxtqUVrAalitVNClY3KTcZRgs8b5qGpmmMGRTihQ9lKAmviTgO5KFHx56YM03bEboNvjHN7gwAlblEiBNBnTGyrGoAfSWIHgjT6z1VBeV6uFjONCspGlOtcYs5Z8YYLanONFm5CedMQyjVzbSARVVjWJrRlGzeBJKa4CFFCJ93r0rZj8X98gjs2UCXWAtz/TwUlB5acJZdpJoMMKrV9ozVOp0iwzQxxsy79x/4+jcTGy+45hjELPdZ9w+lFMZ8H0xgOQFokOISPnOutGQxTROaJ7MsqkcKw1yZB+f9u9rKMx1eeP8yrhWfXxj9cwRPj6DYifOfApTra9b0/q/ZLPbzU5KMCHNSkllImXsrfTLP5wnj3+rePDMZh2tUijakulstQs9D4PgYrzYz+TNP+CmywqPnHh1/4p6n4+J+uXYa9DwCuOT4yONjMRHk5461rvP6cXb6PVRsPLaPj/t5QTsGip/a1jJhzgYWnehsSYsxktJU+IESE4wT3O17+iESkz1ZSuYy2Ii5bHpfWKlYqQfvxLJgdw2aMqKK01z4tXnHbDYt201r+Qu2DRpjyWgKHz68Z9u1dJsN/Tjx8f07xnFPnEZizkxJzbJIQkuGaM3maSQsMvpaZs+l1qDU96RGEZxIcaW1V6FFobckPTP6KSIWjV/kV9FETsVji2UvW3TBghss47cn9wM5jVZXuvV4kgF1WaRJLTx8VonqKi6yZDO/241ch3ucKG8vWrbNpSmPAU0GCrPTcq0erkWOidqKnx2uFA5hYVWYPUEUTx4/cltVELEM0nbmOs9AXoT4uVVAsQaX9bpCz1WtYoKjGAUEi2c0JYLKYUmkZQ98+j76ZMuiPfDhd4+1z7MmPuzvc4jwIcB9TOO7MMxfxk3jiHC/oM/KSKsA9Hmv8US/j83Zic5fahFe5vHUO3q0h0+6389rUn4OUwCLmNYsOGicEqfIu3ff8uH6R1JKvHr1hpwzH+/eM/QDbmq5vAxmlZnucO6OfjcSFF5vt/y7f/Xv+frtN7RyDvonJj+RukhuFN9ahknnHCm0FhcnQiQQb3vc/Q3e7+gu9qTuHLe9hPPX4F9zETf8Jjmm3/7A9z9+YBwz43jPMERc9jh1BBTvLRNW6DwQCAVo5BwtOA5bz75xBlJLSQwFi09rHJKEEkIBmCY0BCPslPOCh9ZDcIHGB9rQ8PrikrONcN4FNq2HGK0MQyF8OWeapuH8/JzRe7bbLWdnZ5xfXrLv9+SshNAgroFsrjQ+Z6b9DWnszUK7OWdzfkG3OQfnDagtmhY0CzlBFObkPojgQlMygJa6Q2W9JoCccLg5oYCIEJoGV+ozTlNkmhJjPzDtBzRGcor0ceC+34EmzlpzV5GUIYEOOgsXzjkaX13HHUM/Wv8FMApL5rjKG5wIoYBOqWUvZk3csnZrUy2J8E/QlQUoLoJ+rkDWefbjxBiVMSo3ux37YSCmiff3A2++/B1ffnXFq1ebksCm9LfCbHXsubhtLYRKl58D3VC9sj7z4nareSKnAck9GnskdJA9YBbsqmGtbpEP82ssvEjX953nYmHu1W1IqhT12a3Ox2k+AlVIOwTR8xknLWU/tz2L2pZ7C4ubk1SFyXxGsSLVgzW+6yE3WpSiynHVepHl+hofW7qfQeIhQFz+fs4q9EkA51jhYgdPdPjw8OnmyiV5Wc4nLFxrOelzPalq3099f9hWIm0VAo/e23NiyGNzX8M2Xj6Wl9/jU/t5CVB8zOJYj3vv5zlKyWLdLKbeE2Ms8esmPfTDwN1eub1X3t3uiQoxURSFxeLmLAZtu23ZdAGHEHxjr0CVtvGQzGqYvAGprus4Pz8DlK5rCcEjDnb9UBS0njRl/vL9XwAhqTAOeyjgKqMMU7IST0VRnFO2siBATiV+3vk5NKCCYOcqfzfvqpxyyTFWrGYKx6V+ZC70XnisMxFDRfBirpBmGSznzZZKU06KiJVL0tFq+oqjC9A1MCmMFm5IwrZq03ikhIRoLcuRbR16cex3kXfpnnEYuNwEtk2DXHRsA6U8Bcx8RitPPZYHl3Moz3zAuo5BZmVAxQuonvgYRa8K3XXenCq+LEu0gnErU1K/rDjAzitImiWG0WilWnkOwGlZj9mjNTyHGtZSHYQzyFIyapExjvf2yXo6c/sbjFn8p2kG0l7Itg/f8tzDQ07zGWLA56LDvxrg+qXbp4zzc859THhbM8tMilZOIk0T97cf+cM//Fc+fHxH39+TU+LjzS37YcJJw9tf/Yrt2YakI+M0sG0a+j6yaTr+9b/4l3z15a85ay9II+x/eMe4DeRNgM0ZXlusZpwwtY4cLCbOi+NCXsO4I4874t01cRogJ2Lb4beX+K7j8vKSv/v11/zbv7/HN1Z8/tuPO1K0khgaI3mMhu6cJwFtgWqJbG6phWj4khAFlBgLI5SMJ2OlMPwqxX2ptyjGBNvgaYJj0yrnmwu27YazbsPV+ZZNyLQuE+NEoLi6uKZgA8UH4Wy75Wy7IYTGQFPw+KZFFJx3qDSQIpJHGO7xU28asaajPbuk6Ur206xImjB7XNHEJXP1HHO0JxePhIBvu2Id0VleypVhSI2nyDhn4G6KCasvWFKqp1TiMVJJGpQpudYsE+2+J4QG0GKFHG2OnaPxDt+0VlJDhGkYLGnPilF554t7SC7JFTB8lCaLuSgJX5bSA24G/1AEIF20ngexGPNeWIFGcaizpEC71DMmGLPjLgl9gnFShnHgv/35J7JTNhto281cIiPnfLC9KhaoZUQsH44c4MWZM7o573C5utSt0gxqFsUUR1wa0TxBDpAb1KL8ObSYnRD0VwDEakYW8FFkZ8MzFbQ87OPQPVOep8EzMP6U9tj5n68SPAAjR1a5lwrgsyW8XFNjuMAUGMs9jtne4+D0KbfSn90K0Ld3+sy86bHyoGoKPqcduXR+pkb+l20vGcP6+/9R5ITH26l3/piS4an1ZmEDeS43MBebVEWc5+z8smQOHWkjSN8zDCMpG0gM3hO8Q5kM2Amcn29og+Il04SmhFx4vPOcbc/h8moeV3CBpJkYYylejyWqS5EQWsvW7oSr16+4u7tjnCJJPO2mBRJZE3EaazB6obmLx0rXbNiPg1kQXbJyfQWANk2DcwEnrtQHbkjJlMgxHSo5nCuxlGKgKWdLnGPaXWaLotUQLq61WZk04X2DiJUoS0nJOjIl81LybYPvWggN569e0+/39H1PKCWeVJUUc6kNbQCxEU9oPU6BaUK8J8XMfki8+7Dji8s9jTiai8ZiRV1GXJF3KgJegeDyuo+A3kpWPFaPrIEiBxceUcOHYW0y913r8y4KMtSyoi6K0TWvrGt66Umo/N/kB1fWcC4hQzjQXLKkEw34ybo3y8T6VEjhc+0z3FAPNTafwiSe0x4+N46XtJdayV5K9GcBbc0eUgjjAAAgAElEQVSUH+mharMfG8GiMVh9ftEoHutv/YGfleDmJQvoMaL9dH+nv39pbM/zbWGeh+vLjldNopS/c0qM/Z7rn35g7PfEaSJOiXEYaYKw2TRcvtqAg5wEwZMiNK7lcnvB11/9hiYEYo5M48iQBZc9IQdcCihCLMKNC96yktX02O3WylF4mPqJJBlNPVP/kW0TEBIhBM7OX/Pl2ytu+54Ptzve7QaiWuIPJ2q173K2upE5UsqZkwVcCPMKsGxnRQWVZQaFIha76UtMQbV++SI4eu/ZtC1t42ibTNu2tE1LcA05ZSRoESQTSwFYy6rWNIEQAqEJBBdmS1uMyQp817chVqdQciSPO3yxzmXfWkKb0JLFIV5pspstXTWeQkUtuYxxNgvwFtOY1udfu7Tlqr3D9mnKGUrCHPFhjssUsYyn4zgwxZH92LMfesY4EaeJbrOxrKtFY9k1Da1zeAlMisVsUArpzvxcF1pZgy/yUrYjT1PJQGfneWVODlCFeDCBhVT2eHWzOaDRth+0aBanlJiSuS3txsQwFRfUDPukjDEzJvjh/R2vX2/4dd9ZUeamZXYf1LzawjUWVDDGQ3GdOqSIC66q9C0XxVwpmKzJ6nFpQnP50cwpavgYRqsa2FlglENmO/9VAW5lnKfAVVX7rno/RZ2OodIpj5XFBfpxOvycuP+Arx5dMAt2R5/t7+ex0UOr2OFc1p+q3DaQv7q+/v8kDjsUwmzJ1ux8p+j1YXvw/HKUG+DEeXO/K825rR99Rh/wlFzwUgD+eVbFl/Zd+31KFnrMe+qp9myfHLo7n3pnfy1PoadkhPVYTp17PM7ZS6HQ7Vo7EJSkCuLYbLcgys3NDW0/4f1k9LgkY8tYOYycIUVlHBO+NQVg4x3briW4gHeBEBrappkzQRtAC8RotK45O2O/70kpIhJADLilGFGBKWdi4WXqzNU0pkRMVclD4UH2txNhmor3jLc4w5xjUf4KOduzT9lkB++Nl+biWlvrmC4WxUp2VlZHVTTl8rnKExYvV6ffrHvLd6rm0muhMx4Vzxgzod3gp4iwL7c2D6GkGe+UIKZg91pqPGbjiw5HLnUub+57bu56ztrA5cYRnAEl0qH752kGMksJD9byLMGvwFqFkVoB4yNbRtYX1nOOjFL2znSmTQ+HdsxpVp+ldldcTTOoy4hWGSmjWmM21QB/pZsUwK9zhe1PUja+0LK4HvzxgzxyxSOb96VN5mn/WXCKQyCxZl5F4FsGWI6fCChfj12PRySHL1wf+b16ORVUngKOTz/tMZMt4tgxgK8uAcfjfKR92rs5XvjPMG55eN6zd3jRuSswKjau+c08eB4jXC47Uo6Mw54P739iLHWGpskKxV9cdlxddVxcttz3g7lNuEA/CJfNljdXb/nmq98iThiGHbv+nhRazrSlnRp8dvQhk4NDG+XMO9oCxpIoU9dCcNA6optIZDITefeerg245BDxNOev+NXb19wPe64/3vLDxz1jLhawJIxTtlIOqqSoxJLxVL1Ao+BLshSl1NsxadmJN8uBsz3cNIFQYgqE4hYpjqZp2G63tMHRhIkmhBLrqYz9yCaYj3zWDN7NFru2bei6lq5rcd6zaTtSVmLKjONkzNg5pmhaLlGFnEjjnrbdoCGQQ4M0HdkZ0W6cIzStnZcSqVgDBYsP0eDB+TKOIijqwuAqWMuVAItpQbNQmLo9v6q5C+ec2Q8D+/2eYdhz39+zH3v6aaIfJs7OJotLETELqfOoV1yGcYyWOh24aENJOqmlELQxWecUSWbFFMCLJQ7KhYkLIA1kJ3gsOcC8ir2bvTkP3GtWgMliSKwu526I9FNkHIXb/Ug/9QyxZxeV+zExxoyq54cPt3z5sWO/29C2rSW7cX4WEOqWyqUMiK73mKyAWd2Bx7yWasnS+TMVMOZk4LHEfNZ+Ftq9vLe1N5G5Ux6DRbf6diEFCyZchKsqOM405FDd/Ilt6ed52vUyOrjWT8rhfysOvAbIx+2phynzWnhEnUNTGrkVHV/Nz2rcDz8d9133HbNCQUsCkHUYg+lcHktmwzy2CvpmYLNmx48oGOaZUuaJ/LzX+5gw94IrTyjYf047WK+ffvXy59HlB+Or+/uRZzz17M+7hx7d/9HzTueZOJQllrV66v6nDBjz97r0N9N8zUwpEpyw2WyN951d093tCX5AgCY4CIGcPSKJnCHGjBsdoTGguGkbzrYbvFgZiqZpEXU4FyDDEGNx+zQPn+3Zlr4fyKq0TcuURsYYGcaBIQopW+ZUzQaeUkpM40RMlvnSOTGaWsIZnIO73chm09A0AR8c/aiz14BzMMZksesxmUUw2bvx3uIRKTQ+56VikykmZeapKSUq3fE+gLN8CVmTAZdSu8sHy7qaSn1oEQOKSSFOE9vtmcUzkgklLl+dWnLZxtOGhia0pDGxG0ZL5VNAcVYhxszNXc+H23vOOs/rs4ZNm9AYgURo2+X9L4vwaFGekLhn4rGmScdr94hKVWyxwgYHK3AGfwvtMuWozeMhPT91j6NPAkt9RmzexYCiFKA4uw7Xpa+rnCoHcEYO+n2q/eJuqC8CiU8OamGA9f9HXsEj1x63tZDC/PdhCty1wLOc84CJ6eLeVtNJVpRfhVQ7Ny+b7AG4Kvqa+l2NE3GuWKYtABZX3YOMKKiOthjW2nC0pMm1FbAmsA/S2DwxdT8X2K/7eUioj7U8j7dT932UEZX07weHVtoXu9h+Tcn8/L++vOD27jvi8I7WJfr7kWmIOK90W3h1/obzzRW7O9hKQ58mprTn6lXH19tX/PbNF7zeXNGGDel+hN2ei87KNezLmtCYaZyaa6hL9BnEdbTbVwC4pkHaQNM4uL9DxhHfj6R8jWzOoe3or7b8ev81fhTy7cCGiff9npth4Ke7nrvRaheJSxAaNC3AQfcDPnhaH5imiYjivLDdbhjH0TKmtnWSLLkK2Qh411qw/dXVBTmOaE7AhpRgyiPiI+fbBs0wTYAXclNKR7jEWWjZbs/xTUtUYRddkeGdZUzFg3oExcWP5DiZy0x3yeR9KXMBPo0415nLCUoOGzQnko5kb0V/TbmSIE22LwqEFMvSYllNcwVqtiOdDzjncd6XAsaZYb9n+PCBm5sb7u7ueP/+PaqJpmno2hbfbfBZCVlwjXBzf8c4DcQ44qRkv5vjOoS26WibjvPubI7/zDmCKsEFgrekQ6KKx1xYswxsG88mWLbbVho652lCy3gAkALiJzIR0ogvSQYg0GwuGdUxpsT9MPLT+4/0CXZj5N3H99yN99wPO3b9jmna0QSHSGBKE8oHfnwP1z85/v73f8c0TeRU6le6CiKEcUzFRfZQaNeZpqYHMqkAWQIq5tYkqNE6MppGfOyRFNFkygDf5FKrktkiaCy90k3bZx7PlCx2NUWFZMzSxuLQmZJX2rjwlTlV+TzYNN/hcOQ/px3zneNeDzjN4aW6/rXEsRzJ9IvsIUvimIN7PULHvXdIFhtiSqRxIk4jvgloHEsyDEudLxIQPPNbmPeeXw1AyRoLG/NlrN4sJmUwS+zMks7/1OgOOPUM9I8TVTw8t0zDrKzQo3V4PMcvS/N2zLsfBzzPWbr++Vr1DCizUBbhydEdLNk6a0/P03OWydrWwPkp+eIQMOaSBfXw2mMLbh3Dk+6qQAOIWu0/wDKHJyFrJIQO0UyOE1M/oWq0uW2UoU/kcSRmATdxdem52Fzw+vKKN69fM+UBJdG1WwCC8wTXzInScsrEYWJIPVYROfPj7o6sESTTTzuGaJm2k0biZFZIhyPGzJhtv7h2Q4iRlBKilhzGtYty57zDXFwlQ9hwcf5FxTC0jaMTMetdSvhQLYQFMDrLmmr1GWGaRsZppO97mtbPSrdxsHHmrMWLNyKSaXxm03qGMROjWpyhWtbYEAI+g0wjQiYEz3j3DskjF+eei23gyzevOOtaHBCahu7sFc3ZFfeD8u52x82Hj9z85S8M4z2hJiUC/vzhhr1mYtvw+y86OhECSuojTWehMVETUxzmZDuCgVrBPIJqoiALTTuVTTijpeiJlcpaZS5fFQWurFpEDNAX5pVzPtpFNj9GGMt6d2EmUUfia90YCxh1Qjaf6kWKS2Uozt6LuKKsRkwrIOXZnF+BVzkgi5nMU+1JsLje0ycx3yeCigNL3aMgWo5+H0HhR+5bNZYHSHnuRx85JEcHoWbvOxXsfYI9HR4TYQXmH7//fOzU/MmDya54UETmmDJELAW/SKlF9nT7XNHnITM49TxLewgYf67Q9XA85U6rex7wwyOJw1wuu6YhFc1dP5hff4yRYRyJOeEFi6/zbQ3xJvhAKx1p7JGN0IaWy/MLpnEkxliKwJsLZJ0XAy2WHRQFCRZPh/M4DNTlolXatB0qjqS9laXwg6W2bls252fo29f04zeMEtnud5z3A81mh4Q99/3EfkxkwTRItbZjiTNImkiaTMxKwjRNTGXMLcYUavC7AF1bagDmzP3dHc5ZhOA4RM7PNisrZFiV2fC0bWfZ3mTNzF0pOisLPZoLvucyT1LAoeIQi590HnHBQF0BjxmzIIo3bWMKI3EaSSmSpkioRe5FSKnEYxZXlZTiXHfKMsFmppTY93uu379nt+/ZDwOC1YGszDE0HlVzF5qmibu7u1IyA3ToYRogTiSN9P0OzZkpRnJMOGdz67uW4MNsPYnRAKOo0fPWeUsa1Da8fnVJ7hpy61EPoaKKEBC3aEgRE3AEjyaxeBfNQMJpZoiJ/Thyt9/z4f4jt3c9u35gNw5c391Y2YwYTSHlMt472rZDxSzGHz58YJqmWXNf4yiBYm1cp/E+2GInSdosbq4zp1amtbIIyoofFOca625lWqsZ8koU4mJ5K+tulR+6wJpCr7WmL3AslsdT7Wm6tjzP4wcPXN5OdTU/jsznLXRrBTSeGseMiOzMOjcnz3sgmBuozLq21hQQOgvVMisInFsyHc7odNWqAhVZPctxe3JKZX5/dSwOlpqdz/Sz5rWz1anOXp3rx2SUA7Z9OszmuWd57NzPAYqfEuLxOe2gK6XUs3tw1ur/l43lc0OEHnNBPr7PWvZ5oDA5kjVOjXFRri9llczConNWbU2eaZoIAiEEvvnmN1z3/53qwucFmuDpXCAEKaTZQkKCE5qmK/Vsbbw5Z6KOhNDOYRPiHXEameLAGPviabLk65zSSMqZnBPia51Toe285Soo3xlEMrd+NyuJAKxsgvfm7ulqH6V0RZUZjbo04NKseEMszrLGyasqjbMYw812WxRP9tM3PeMwkqLFXKY0kdU8P7WAqaYxD52UcplzICgtDd45QvBMk9X73QTHV29f8+Xb15x1rXnaZEeSQBwH+v3E/c0t+8KDgUKfBMhMk7LfT3z8uONNB3TgQsmOqmXglOcrSk+bLndga1jox0M6LPMJcnT+4Rp9SZtF1AM6DqzCZB5rM5utGlSWMWUSqAM1jy3JZWU5RTVZBv6SKGHJ03M4hueozYssi5/i1/qL+6/r6qU9QmAevfCJtiyAE1ceuTU83l9h1nVRnmCoLxrn0QvT1Scp6vVDdytWApY8K+d8yjt5kuCW8Z6a/qfu8ZTG9bl3+ZB5nLrPalOf6NdcL60OzzRFYrTi4yklYikhsOkWIO4UK7PhPI1ruLm9xV15uqalDQ19f4/GZMLKXMNGMMtvCTgvmdWcb5DQGFjUTKrJJbK5wpATKsI4WUIUL5aYJnjHdrvl7dvXvN/d4JuGthssiYsLfLjbc32zY9JZLDYXRBGSWixCXlmiUzb3kArqnBOLm1PFixFwX2ohTtNE0wYQsSxrxTW1bVtCaPCieA/BO0v4kku8mcg8F9V9ciZnYu/JrORp3n81psMsfgHnLUOpBW27OQ+hK66fUAPu7cdRU3pLcYc1FVvWotUtTDZGi/kYxpGPNzf88NOP3O/37PuREGqiA3Ot1exJcWJwPcMwsNsZIGyDJ8fBzKpxMkZZajxOMZKnUtTegbZhjgVVIE5mPVO1eIxNaGmbQNe2dK1DcoNGj2stXrQm2FnDGxPkPZotfjWzAKqElfjYDz13+zs+3t9yc3vHvh8YNbHb7yzeRS3uJKmVSwleyKKMQ+T+fscwDMVaukpyc7zbTngQPNrk6Dcwx4pKUbTIIZM+uLiSN1nTvMM5YRYiV4TwyI1NpGbBXV17LEHXHkUe0rhZmDikLWs+Uu9VFYvzo38iT1yHTJykjsdzKut7yKyLFRYwOPuaHNPTlevpg5AC50q8Ggdj0dndSo/ex6fxPl1GtfC342esH090ravjB6e/iGd8XnuJhazuj0/ylHmin1PX/uJyFk/LRMf3XfbVc/LCAvZOffcSoP6cJfL478fOT8UFVJwrLuxASQATp0gSUyednV+w2XR0XUPbeKaUccHhvDOLDdAGj/emCAvBkokMw4TVzDOvFR9MYTnFSCYR88SURmIaqaERdS/lVdIpKLzcGZ/NmrCc3gkR8xQSLfR/HS+oQghNUbwugNMAZC1bVXjlDHDMu8jV/AJlHsU5ixv03qxwM1h3eBdIxcI5TYIymZVUi0wjviSLm9CcSRm8K7GW5Uezgle8Ey7OzzjbbNi2DU6UmIS7/cj97p4PH3tuP9yz3+1JMReFkpUnSVlJSRmGxN3dnrszTyMNnfcFJDGTpJnfzOvQRmPPegQEWa/ZSqUMqn2GGmi1pQ7vcUzj1mEl9T08aFJ5UPXYqxLCUsJrDlGxgt+gZlhSPRqPHtLv074eS3vGsvhpBOmThIiX9skhMXi+/6de57xUZyGk/v/pgeOr+83qr2du/+ho9aRq4nHB5nEh4mXuNScuffF7e9qN5CX3eWw+n3q/D5nNQiSfZSYiOCx2zurogfiWFBPjkBgGONsIWgR/5xp0SvgguNDy/v09m99uuLq4RGNRo6VsqZ2bxt6dZtBovv5qG1PBLG/Nhuw8wQkSE3FSckwoGY3mBra/38Ew4vZ7fN+zEQMaV5cXfHF1Rdc2XE4Tb4BXV6/57voD6Hd83A0kgShi/WpGUyV20DRutgp1m9bKaTRSLIpC8I5N1xlYlJoa29E0ltHNt4FXl5ecbzecdQ2tA0+mEehaRxPMYptjiWUoRNkVwuyq66GAaEQVctEQOvHLu3Me8cFiDVwohetBXEBjIqqSrdgSzjc0eMQnsqv7F8R5Uk5oGkmpWqgyOUV++OEH3l2/5+bmlpvbG4ZxMmfxcn8DwoGmCfS7nr7v2e/3jONYkv4I3ltiBFQtG+uwZ5pGQPHO0zSOFJO56cjAUCxztdqEFWt2tN0Gv1HEK9lF9v0taYTBe9zFGa+ursxlxnlinua17L2QkqVgT6XulDiHOE92ym7s+XB/ww8f3vPj9U/cxZ4hTowxMQhI4/F4hvseS6qXmfyeSeEiwN2dcnt7x9XV5Sp20bHOlrm2ND7XzOK3FB4oB0EC4hqcb/Chs3Ins+a7vE9W9FlgTjWu1l9m0czb+qr0d0kxPnubcND1DBoPydCi4GAewcvolfW1BoqHc3DQ5QmarifCFT6nHQCUQ/RUnr/MqHMFJJpi6uD96iqL4NxPkboeDFFYJvfnj73eTjjyiJzdrQ7bwVRXNszD5/+lXEKfs/49FTv3z+mWelJ2OAWsHlXaPGwHIS8ngPGxN9JTBoenjADH132uhVOBFCd8sGRmsRStFxHatkWTuWLHGNEUefP6kilO9Psevd4VJW+iaxzbbkPbtHRNZ3w/l0KLq3euqtzv79nv90yTJcoZphGKG6aqEnPJcF6uc2px4jlbcjKRhA9xTn4G4IPxBVXzpBmHSCpJZ5qmo+025iqpVV4ykJtVTWGM0W7LYFrmAEcIUu5tiXZElhqJKSrOQdN6ttszNpttyQYe6fuecRzo+77UnLSkPrWc1ThO6GSZUVNMRB8By8KdNRKimMdQjAyaLFu5b7n58IE//uUH/vz9PUPRwXbe0zaCd4HGWX6HHBN9P3L9PnHRKMFdsGnOaDt7ZktkQMlSrjMtOaQm63V17J1YYv8qUJzJ4iFdnxUtM3AvNFSrnHoYKjDHz/OwHN2a7p1ax3P/lDIdRRGqlOzuYrWMazCGiCvKhzwrMyA/upcea/8/KZ2xLIT586O05SHjPikwyAkG+lSfD/1TH1z30N3z6DRVtAigUrI54vThuUX78AvIH0fdroWbg29+2Rv90q3EMm3aLRev3vB2+Ipff/0NX7z5lhyvuZc9r64uaNsWUOK052rbsR/uef/uPd4pXdvShhZyJkcDleRM0oDkjKZImvZ0nVnHMsVls90gzYaUhawlvk4zcZpIcULjRMxK27ZmZXFC7HcMEvAlvu6s3UJSGnFcNi2bdksQYdjdM97voG3InWPXD2ZBixAjViy4ZEBNacIHbKzRwGIbmlVabdOSiig+OJxAcMJZ29n3IjNjs2oVzgL5Q2sZyiRynJ3TO4eQqPFKubqlZAPkS6A+lijGNeDaEtNmcWZOLMMrRVumlAysVi4KEKwWr1kr42gZbnPO7O7uuL254/37D1y/e2frVswl2aEMMdJPBsbux56cE2mKSMkI23pPs+mY4kRMI7tpOLC0xTQR4wQKwWe6toPWI1nQ2ONFaNp2NX/G1Lu242x7QddZllkZBwOTmAW322wNUIaGsR+XdZwTXoWcHZIsY544h+bI0E+8/3DN+5sbbm8/mguuJmMQHkJWpj4y9JFNgDdvWkIQkg4kB//i777if/n3v+Pt2zczvav7PRcLraqVSanHjtspOilSy1pUt2SHhA4XNrhmiwutWd9dKNnyCpI74Sb3AJBVGvyAXrMOJSld2Ro8QIyf1B4DdCfob3nuB+AGPRjXi+/8KFOvz34KSsmjIK66marU+MK1xbQUk5GqaHvZgOVZN99HnuAIdKyP1cf45PZXYkdPKQ5OnfvXan/Nvj9lDH8N48ChUvjl8/1sv0BTPCYQzN0+RgsZaBo2mw3Re+JkAFHwBN9w1p1xtoGsppRrug0X55c0ocGLJ6WMCx7FaKPWmyG8f3fNFCdLBFddu8VZvF1VZpawpyA1lIUSEhEtxEBNwJ/zVwDTqMVlVenaM5q2w4eWFPOSfb2SSGdV/2KMsxtnzhnxrri3Kuba6g7eZaX3lWc5daQx4UsiFS2yb2hafGjYbM9BM30/ElOiDYHNZkNKyZ5nHA205hLTmLLxcC/ElGm7LcF57u5u+fHbb/nhp1t+vN4BlhPQ9NBqWdaDs+yq2UpapZy4201cf7zj/Kzl4mLLxcYsj2aJXem8TpBxORaWl5e4PsDx0QdNOeAup+NoD/tVUgGeClrewfE1upjMBGFdKFerWk2xrOIIKrF4INXn85bfQkE1WbLC55/mQfurJbh5moh8Bsf8Wc1exoGmj8MXufZtP3aN0KNjh9hTl9+PoLNjqLrudx7P0ViOFH5UzYbWc1UfkwXmu34KHf80F9/TwtFxO4jheea+L/nuUzSSx+NQTUgQ2s2Gs4srXr/5glevXtPvelIc+f+4e7M1x5Ek3+/nG0AGIzJr62WmJZ1FF7rQpfT+L6AXkEbnG53RnO6e7qqszIzgAsAX04W5AyCDsWVldZ+R15cVJAg4HA532+1vmz4QvIZrEBPWBnKKDKcTwRm64AneKSJnzkpkRRUoctJaeWlCOoN6TizGBy0UX8syaFIzyjColjyMhp82ZRFIcdJ+RfMSet+TbKSYgnWBO+uJt3ecvvuO0/7IBEzqsiNaIVlIDnynaJ/GGOJUanFcQbLQdYFQ6/5RCs7XgvOo19N0VWEKAd8E31IUhKnZ5oxRhdZDMQZEQz5FSktLm3GIWnhEC7cxtqv5FGq4MdYtHia7hLM2l5D+X0uFtNwOoXq4TGOImeP+wPHwwOl4Yv+gf4/HkwJ4uIBznq7v2PY9SQqx1tWappGcEskpYqyrBYzV47IhkzmVqLmqNe+iC6EWPM6UkvFu8ZTG4ah5HdVC672SWoMhhI6+6zSvRAzeObZd4Kbv2d3eEupaEJGzPMGUIk4s5IIpUtFkNRz3cBi4v7/n/vMDDw974hRVKS9CENjgsL3Hbzzf7Dq8F4wtFBy/+8Pv+M//02/43T/8QLfZqCW8tNwvWwWDmr/W8nzWyuJsLX1stMKox07zqy3GBazvML7HuA3WdRgX9P232lAXUQSLNbWWTWner/qrkl9ptt+6bqjephaGuZx9LSf9udYY+DVKteZkZ16Q1fE5ZI/Vwbfcm/Yc7fPlOZcjOvv1yi+V9oicIcy2N9jC1Eu1fmPOaezjO3wZL5d6L56g44sMt0h4LylsT6n0z47jrWvhhWu/RIF6ytBy/fuXzvjL7am5eC7c9PLvJd+/FMaXezSv/PJ7iwp47r6vade8utY5De+fy0/oOYsHys5GK3AYPNYGOt+DUSNwt+npQlfTJxQgRXMbNRVhihqxUkQYxqGWbKoCO2iZjqgRLcZ6RSC3vtJ5JVTWBKxVY5+1Vdag0RqjRmBnADsriz50muqwklGN1dSMsvKitvloud/LQmrvys5Isc05lnPrw8w2v4XotHqBUvMzmctvee/nkiGqpKsEa61RAyqZIhCL4ThmpEz89ONHfv74wP40kkQUtwytAd31ivKquk5LfdFR5CyMUdG/x5TJKwRLpWGVCZxDas9zMZ83z0aZP525FJ9ZX2e789E2krO/5/RUy9MY1TAf0xjWr2mlkcr6Fy2JMYeitgTaGclWlpJCtcf1s1+O6Vp7tbL4NTbt37u9xUh1trFMY0HNArBsXv3bjj2tMF7r9+rvrx3bL3gfX6q8PXfOWy2Ar10X6/l6LEy87p5zfoAx+NCzubnl22+/57vvvuN02DOOD3TB41wjaBkjiZwi0zSyCZ4+BLzzs3KwKIsFclJkzxQpEjSc0wds6DFOmY81uQpHWkTeWke2XpeL19DPJpTamMgZEC3x0IeeyQ2kGLFYdsFhbm8xIkzDwKfhyH4cMcUxRkMOQtR+6YUAACAASURBVC7g+w3WuSogp8o8ClIy236nuZwYSk5Y45VwFGp9po7gPZvg8UbDeHWNa6VE/bpAc+MsVFAYkTJ7c5q4L6Wop6uWSGihcNbUYAnjqsJYwZsaO2vShNHcU0kouE3O2FokGaNlM6Y8cHi459PPP/Px40f2Dw9I0Z66EPAh4LuOzWZDCD0ueHCW/X7POAz6bkuqPE3AaHmRvusRZxkkM44jIQQ2fc83797XAssTx9OhzoeOezodGU5DhRqXs5IU3muYTk6ZGCc2m47b3Y672x3v37/HhwDGkko5VxbzBNkiOUERrAjFatjQ8Xjk/n7Pw8Oew/6EWIPLBi8Wby23/ZbdtufdzYbffHPLOO4pEnE9/G//+//K+29u2WwD1lpiyhQyLcfDUD2Jtr5Rw1XPH40pX35tuYk2YF2P9VuM32LDBuN6jA0VxbaZkC8URWkqoczrZ6G3633e7nvGXq/Sg6v05zlysjImXl5zzehorpz7VPezMfDs/OtqzyMr+JXzniXFddoESDmfgd0onDsL0AWsjKorAX/9rXkmr3hSX2zWzGvk8o2dfX6DR++5QVxTQl5S0L60XVP0XnqG5xSyuc3K82vG+bI8crYXnjn1NfP/fLj2td+u4x+cGTgu9pZUAfm1r+lMcTWLsRcqGIwxlZ+nhd9gEHGIeAye4HucU4Us9B3GLeGizgWyRGLOHMeB4/GoPBYYpxHjNAzUGs0TLKlQYsZ1geA93gWcD3NKhojgvRC6rOUoJDHFaQEbM46u81jrca4jdJvZCBp8YhyX6BfrHCWlOTKk5W231sBszlRRU6MOpNVILNVjJSAFE1bGbjRSQstxxDllo+W7K7KqKoY6z5EGMOScyh1FCsMklP2JcTjxpz//yOk0kgsYZ2bQIOsd/bbHmYyp+XmlNAqlMSNjKgxRo4VyVqOmrYhZjzjCrNmt16Cp/V0uyrfJtmdr7uzSth+v7LcWJbMyCCrve+wUWvQNYIaDK/PxJoPN+YqyzFOrc9swJs727NdSFv//1RqxzVd/ud7k4u/lb5cL47UjMTyK6qQSxotjKpRXb8cqx2e2EM1C1RP3+u9Icf/Sdm6tfLqt1XtrDUYsw6Q1ksQFdu+/4ze//z3H4579/mfiNGDMCet6gheOx8+kdKTrFI2z7zu6TuGwU80RsAbIiRwnSpp0szmP7W/wN+/wN3dzmQAtiKQjs8HTb2+QTa2flBKp1HDNUiALJZ+QrEqX7wKh60gpknPCW3i36bnb3XDbdfzLj3/mrx8/sDGZw5iJGVLR2lDWWcRAZ7dQQVMKGmKqAKWafzeejnTB0wXP7u49275j2/XsNhu6zmttQVuRSYvmW+YqbHpXwXGSholKDQmtLwxyIcdJFTFj8M4TrMMa9QoWzJxDNb+/ukWVuCVy1oLCDb011H1QYiKnxDRNHI9HbMncbTfcbn5P+s1vZ+HAGIvvepzziIH94YR3nu3uhn/43e/x1iIlczgciNNU8xcDm02nlCILQ9RaWTSYbaAEQTYF7r7XsFujQvf+eKhCkgIBOetmpp1zzVfVCSK4id3Nlt12y+5mh/MdRbQsxHo/OyOkaaylOKIyzaLvr5RC13fc3r3DbXZ0/Ybd5obb7Ybvv3nH+92GzhW8RB4+/Im89XTbDb//H3/P9991FCL7/TjnIjYFYAFKsIqoG6My7yvK4mVo2ix4gSqEvseGG2x/i+12WH8DYYv1W3ABajhqMzS0+ak7fqba6yPzmqlGhYUlLt7HWcF9sc0m29ec/Kr2Vq/VaxTG5XyqEP5GQ51tCM6c8Z7LMF8FWbreu6kDOHvXb+QvZ+9uHsT572tv2t8z7+9rtKcUxn/PfPmlyKC3hqo+d+qXhr22OY81PQEs3qtSU0ompglXS8HEmPjpw0fGAkLAhRusG8GoAtVaKoVhzMQ4MEx7hvHI/cPDTONLKdjga+USofNahxdBw1nDls1mo2Gw1ldlUBUXaw0bF2qEi7A/HRmnkRQTxlk221tC2NB1PaVozcE4ZZyvYZ611qGJ5Sz8VA3Huq9zrmAx1RGSmxFXZDZqWjzWGc3/q3xL5RWNWsk5Lwij1uG8lqoQVK4ZhmHx3pbFm2uM4hWEqkz+1//2J/quAxEmsQzJELrAzWbDzjqtC+kdu5sNaTyQ48iUFJcA67TGoIFY4DAlHoaRKWok2MynRbAt7/0RWb2kuU+toZXB7DVOlcveZz1RzpGc5wtk9dcsn6+qHJUfmqYqVxRUU2sY17qXOk71ChvJWjlhNfSzp3iBvH5VgJuvfT0wWzB+eX+X1z4xM03pukrUL5XvC0Z9sQgX6/gziqRpz3i9iazgnh8P81XyzWvm7WpI7gvn/C2Y91Ohuo/d8efjnrebMRhTa+slDYNz3Ybd3R3/+Id/JE9H4nDP/ekjxghCAiZKGpGipSbevbvFOEUZDV1Hlj2gtX5kStXTo14g6x221uezviOVUjeukKRgpaJ5uQ6ppSO0alkNE8i1duI0aYFZq+hn3dYjpuc0DqQ0Qp4w1nHXO377boe3iY2z/Hx/4hQzQyoMcWSKunushSIJW0NL8zQhRi2ejhp66hy999ztbhTp1BqkRMXuqaTWGluBWgzOWYKvpSIMiJlUiTAABYubrZMxJkQS1ll8CBq2UrISNxvU6ol6ao1181uUkmttJGWmhlK9dyClcDodmIaRcRiY4oQRQ3COcRgxBTrn8ZsNod/gQ4d1Wsbk7p0m8Terr0G9pO/u7tQbObupFvRapNCHjhZ+PI0TNTgTYyw5JlLSUFW/lJjDFlFgoOA1vE8qYIFeSOh3bDpF2tVEDoX69sYS4zivaWcU5Kfllo7TwJAzw5QYU2R3947NnafYQLe9oQsdwVnEZE5lJJMITGSfuHl/w7v3O77/ww8kKyBW82ZXe6iVl2lCu5vDbBe6dx6Os1j8F0HfKBJwQ7oNvXoU/abmLvaI8zX866LcCg2AyMz0bVFiDal5vRojN1ILwHNBD/XdzRaIR7zg/Pg1g9v6inPa9wTQVimP6ONruNfjECQ5+7a6AdefpT3mE8qbqXO4gpPX2oh2DldToZE5ymn9vLMX9KxT3bu/KDhy7ZG90ko9p/G8swis2q4cql0/Pvpr866nPJZ/c8Xwco6WxfpVun8q7ehrPu+1e1wqjk+FB597Fs0caSMlM8VR89RzxgavKNEpczqd+LA/cRwi45TmMiOKaGogF8YY2Z9OPOxPjPFITCMxZZx3NeRec+2lVA9O0SR7o1kW5JKY4kguCWcdOZWaXqFKnLMO7zzOBrouYCxEZxmnyOl4ZHAToevpggLaWA+nYdBogVJmujFH/1QaW7VFNWAbFsVkpQhrXUCLsaIRUA2orZQKeqOeV1t5Q2t5RRVSyZjqwRXR0lHWNUXRqMETqmxiSVlz90LXEfqEQUhpInQd33/3Hu8DMWXSdNJSHVmoOjEaGyvkIgxTYn8cmWJH8G4G2iPHSsuq7Dzvg/a58a5LKvKYjj/XzmmlWZQ9aXS3ndh0gkXxbMblmQE+GmNtK9F3cVaWKqtALdiukkkr1SZm9hY36v3WnflFnsW/KcGrytRL9/8S4v+aUKS1UHC9tVyUhYM95917NIbLnq887/pe50Sw3cs8vvbZfq70vFrgr8k7fU2e4FN9vKSMvnZ9vSactm1AzZsygMP6jn57w/ff/8Cw/8z+81+Z/nogJqPw2hIpeUIkYy10fdD8Mq07oTDUpiL2lYxkhR+11mKcryGoHVgtwSC54Ou7a8KvAnlUFDVnNAm7CJIyTBquobX+VFHzwYHpSKWWbKjlP7rQ8W7bg9lRUibGgjURTGaKA7kWNXZO6yrq7SxZFJVMPX1al0g9i4EuhHqelqtQ/W/ZB8a2PDynCefWKRgcDfGrUjBRIb3ViBJRRW/2HIkSNMsi2zZh1TaL5AwR3UIQq0dOoKRMmkbSNJCmEclZw3mq1c1bVUy7rif0G1wI+n6sr/lYeq9WNLfNhQEkl6UkRimkkkk5I0RyzMSYOR1Ps+JiraXkRM4JkcKNdfW5DFZEEWStwTszI71aazRXtPN0PuBrrkhTAtYolbqWtaSzGGX0STRHZoiRKSeM3+Jdh9Q8QIyrOSsJ8kBmJDPhg+Hu3Q3vvnlHv9mwnwYtQVLDkq7lY7Q99bwnARotWnuNBLU8G+d1/l2nXkTnazFizVWdlUXlrI/7roukjUNEw5tnBady0Tl0+ckxPjo600q99mka/lrv0LxbHtG0X0NJOYdnbwJRW9Om7U0dyHrU50p9G68s188S1vqqq5N4JdTrpVFfrjUev7uZ3z3JqlcKQzvvyhRfvrfXGEefGvP6mmvhrC/xsefkl+fGdZbr9+oRP54QpZ9v47WX7TnD8TU68WTazRPywXo+1uukeXi+5J2tRCOVsVee9BgjcUoMxxP7/YH7/ZFxypRicLZT46YU8pRJFE7jxMPxyGHQuom5JFWw2g1sS6/QudC0Q6u80QgpR4rkOTdeWeXyrGq4NkDAOUsRS85Kn1OOmJyrodLivAeMevJqPeP2XNbq7z70VVkAk4UsyqeuRWrN4aei42horMvYnPLhypvma81y/Ty/q2garedYw1tzpnH/EDpK1vBSZ5fcPa0PWOg6i/OOlEHEzs+ht2zzrOWypikzjBMpp+pkqTnzTQ6k5ck+LaXPBrGzNSvzNlqzqEbzRFbHOTe0PWXGavfRKMLWf+tYVvqizEM4b+cKpFBqzfV1jmKZ5SzBLnbVL9j2zyqLX0pQz66/RgzgFTxTrnxea/8XfZ6p2us6Wddu9IwSxMJkHymKc1drAmwuVofMVoT5+svrzt/x47E9MbxWnLVBG5uqvDzK0TFrdLvXvrt52a/6enI7PXH9E2e/ce08H2r69H0un1dqJyLqIRH6ak0PuO0Nv/ntb5B0Io2feRg+cb9P5DGS80RMJ4oUWoWAEFSYP40jXd8TcyENk+YrloQxmr9gXYfzPTb0YB0pDQpjbJmVzQZ7nasiWJxXxM9cyFnYDyN5OkGa8DgyTsNgN1uwQiqR8TgRh5Gt99z2imwpRZFQQ4h0k+b1DTFREDbbnmlCE+tF6CuqpbNaOuP2Zkvfd2w6Dbu0RsNFbzZb1NEnM8ENFdxlu93Sd50S4JK1cJ8FqudLqCE5uSrUFJCal1iplojFuDJb3eZdVQltKRDjgJQMJVNKIsWkaLQpQ04aUtsFJDvGMZFypg8dIfRad8p7aISyFLIp6uVFYQxcQwcTyClhRBS5tRTSpP1NJXGQxMOnD+zv9+z3B06ncVbynHP0m47ttmfbd6Rar9AZi7MGT8KWRRAIwdH1PdubG47Z0Hcd3jkNSU4CthZ87rp5fU9RUVmpdoZCYcwTx2liP47Y3DGVyDHuGYZIbw1bb3l323MTRmw5MZaB//SH7/n9tz9wc7djOiUsGj5b6j5puSbrMNT1/tL9r0r8+d6+olQYAxXgxlhFCDbe17DTrv5tpTOWENjHzcz92VonTUom1xBc04x263ufX/7oy3zOWgi4dueVAvNY6H2cP9WU10cC9Ppmjz5fa69VLBe696QybJjLxJSivETnzfDoPZoFpKLUiIK1Mtr+f/Yk1Rv52rZWWNrY188yC0/tHLfce9aGL2W5xjrN29SpJ8d48a6fUhTb51/DW/lUn9eilR7vm9UkvWpob1X361VyXXl7bJx4vr3GOP3SOU8ZugSZAeba2LoQKOKIMfLp472WVbp/4M8//shQNDbGGI/3kKUQU+LhcM/9cc8wRcYkhC5QUFRq50NNk9DyUTlG5T81/9x7j6AhgtM0zePtuo6u63XPVU+YqwZkocyGy1xUwTOm1QYUxulEGYSUhXGIbG82ir1Qn1/RtTd0/ZacNL8w58KUBlVYK3iN1ozUPkuBlBOQ53DVpSndFzS0s8nK1mqOYkppeQ+uXtdCUEXmMMhSZQnvLdvNhsP+gZQixRnSlHDO1PQNGI4PWNcj7JBiQCwGh5p1W31IDSkep8TxJHPobVPWdWWbOX1ijux5xjHzqM1WhiuKYbtkdXy2l84yvZnv95ieNt3AVLClFZ2VNuPrkV1+X+7fZH+NiDIYk7XO4pyyoGGrV5/vmfa3yVl8Sfe40tpjvY25Xt7s7cTvUuCYLdiz4reMjGZ1ldUqQa4wDnOxsJZxaZBpywxpFoCV9GKtytjUxU71zBgBU2of7mLcMluq1sLeo2c1awKx1JNpz3DeLp7nalszfz3vbYrixdw+c16zGAHn74fHRgor6t0ZzYliPcb0uO57ug389od/ZGcNroz88//zf/PXD5/4QGYbPIZMThlnC6f9nv1mT//tHaYz2DjhHEiOeCPY4HC3t9z84T/CdsvoHN30QFe0tIJkhx0/EYeJdEqk0bC5ew/eM0rmOB6wkiFO7P/yb5g4EIIjuF0NfREsFtyO9+835N1Emo58+vwTSZSx3W3v6H63Yxgjh9PAN1tPzJlcCikLBzEUB9JZUow463HO451l62AbPNvNhuMwstnt2G42dN2WaTyowieZ3SaQx0HDTHYbKkcjG8GWjpIKlIgYi3cBrf2TEWuwJmCMo0wZwqjAP85hjdaobCGYtPIwxmgmSYGShZwKJSaMFNUtug7XBXI1oKSUudlV+65RkKGCKpwi4J2fYaO31mv+ZkmUmEjDhCTBiuPTw56H08Dn08Cffv6Jj/cP7IeB/Rg5nvakrHWjEKF30HnDtoPv7nq+fX/LN+9ucd9+DylrfU2nBgpjXEWPDRjvEeOJxWGdIYsg1VrsnGDIGFEhobVkAhuBY5z46Tjwf/zLv/FvP37m48cTnz9mrP/jvI36JOy+6djder6/7fhmC//w2+/4w3/4z/zj//wfKAgHU/Cu4POgVkeYUVufF3wr5LfxLAzwopSGqQq6cZhug+lvob+DzTfg32N9r0ioNugamunUYkiY6WQFKMiiQobWDCsYF/C+VIRDR6kFRp8buwoyFyGcZ1qO8HSeyPnBmc63YZ79XoGg6rw04eQxVXuep61FiWr9qgftin4bRNQYM39vd5oFaB2PiJZoEaNeDmsKoCHixjic6yjZMOVMKjpXztrVowtlFmxkGaQRNC6/4dQXGiT/2iPh5jXT7Ep1pJVmt0c8m5kVWzhT0Oafq6RQEXyNuTrR5/P6Bcbvlzzrr+37pYiYl5XONZ+8xt9Xxy7XLC3ppR4vbf5q3tMLd9YuF8PM5V/9vPRv5K1Bb21frpTDlpcl0DzkMu+F6qmSUvPiDMFr2akYY82p0wtMGnFeI0tizkxDJqbCaUr8+S+f+fDxM/uHA7n0GOtxdT1+Po0choHTNHIaBjIGbMD3OkprAwjEKWtKgzHL7k+JQsJiSClinaY+hLCh2dJASCmiJTIcXbfBhU7DU4uWRzNWaxZbq4bSFIVhOJJyjdwwjk3oNQy/aPSNr/0YE0hxkZN0fVkQ3a/O+pnPqMjpSJIoOSFWEdjb+0upzEYpYzQPP6dc8+aVvpSiBnpaJJApON/WjnosrfFVThVOw6D0yAcysH1/Oz/HaYxMMWPtCO7AOB4xov11NjBOihXhnEEciNV0nzSMDMcjlkK46Ql9p/Uri2BqSoJ6eTPWdCs6qmu3/Z1XpVnzp+opnpWvJstfrGRpkTKX7ZpeotJ9o6tlRm09R+6dyX/zINL4ikOsltOTep2IjsGZqtDX3W9Fn+HxlnxcDmvd3qwsPh+GdOU3c/3zW0j12+j6pWa6DmF43eWGxwS7WZflyrG1OeHJe5j1j/p5neUhq/MeW8VXgk07+7lJucJY2/cnrYDm/O/5vF0+1MtK+Fusrtfez9WltMg/F9ddU9DrOfOFTm3ksgiKJtzQ3SqwzPtvf+D2r3/k4dDRF4MX6EQoRvDOkEsk1bj3OezQGFKOWsjeeS1/4QPFqAJlKUhJ5FiIUZDhgRgTMYH4LWw0BK8ME+PDHpcjNkU4DRQSxVuMsxhnqleSqgR5zX3wQhdvMEkJtUcLz9oa2tL1bobzPp4mTLEkCsULpXo4jTEEa9l2Pdt+w7bfAEvh4SYEt1h3U5PJmzzWrGYt55CKelpyUiWgGUKMhq5a5+oap9Z7W4XCzYSwQfbrOotTrGGsoqA4LaexvXMrNfxXcDgsFaW21ZsyDeURRDJxigy1TqbkwjCNnMaRISZOU+JPP/3Ex/2Rj4cTP34+cBwGYkwwZUoe8d7QBce273Cl4MiUlBiOmaOHzhnS7Ts6VxFejYY351JwAsF5tTg7h2CwFUJdSUTLO5BqVV6URWsMqRR+fjjwXz78yP/1Xz9yOJ2Ypkx0Dg3bEaxA5yxjGuE0ERj57ftvubvb8d23iraaSg1DtoaSZP7c2qUB5sqmetaso+tBCycb12F9j2llMlzAWq+/zRKTmT1fmrzf4iWW3621SEXMXec3Ms/dS6rX8myPaeP6hJcF/se0VC5PmBW9dv7V815oSy8rDcq0fq/whVkBPhvK2uj96IU19tIMcIvn7JwfLB1fPEP1pLbOFy+qijOt2s5a4LkyDNZ8TeTyBHN22vkvFZnxlXzm8vNr21pZfMrr+NT9XtN36+c14avPyTLNUCuPJ/FxP1xsmheGfOYtv+hv+XthfHmDrKD3WB9v82JoRh1hKX+jqQ0WZ7Tk0TRFhS105xNUcmY6DRrpIsIwTUwxM8bMcZj4608fOBwGxpjwfkOuNYGzCMdxYpgmxphIRRDTQhrr/M0AzY1vaYjmEiZfVfEaPWGdqRFOVWHhcahtQy8N3iMCuWhuvVQ084bGbmajEXO4pyla9gbrq2ew1TpeduWy12VBRa3rpSmtjebaym8XVNXz960KotT8dnf2bmZkztl8pVLvQvdlQZivBiMXlC/YRrjqvXNJxKg8TqwhuCXHbx6T07xUg6lReImUHd66x7L7vE5bJOIljVsZLObjy7jnY5c0ck17V9+v0yY5P/kV7GFed2e91MgOUzFOqiK5OLkWFPEWovrYE/8VlMVL1/6rieAXEORfv/3tx3RN0Vz9WDePuonbRlpbRw0sQA9cHuPRIlvkiUsi/HgEL1nhHx9b7vIcU/syZgxnz/hcHyvB4LoSvN74qthZqR4s0cgIGzZYZ+mc4+bdt9zsbrnZbrkpHpISOIsheEuRRMoTxtQiucZisKSc6L3HeY8LnVrdq7BvEVKMpGFiOEU47snGkn3A3W4wuw1FoIwn0jAiMeKT5iNkB1IBc6QmhjdCoIXNHY6em7v3WvYhJooYsmQ6Y3HOc3t3wxgjwzhhzB5jAlOJJIngAnFKCND7wM3mhm2/pe96vPVseg1nKVlz9pityVoewrq2TlUxEMDkWrNKUC+Zz9XjsZTYaEi+mnhuF8ZUmUcz6EnLTQSmKSLSkuvDjCoLSyjdjHtmAohB0gQIpmjNR4sqijknTqcjp+EEUSDBwzjwOY3cTyN/2T/wz3/+Ez/fH/i0HziOeicvhtsi9FZzO9/ddfzw7h15mhQNt6KUxqjIrDlG6HpaKKcKAEIRhWxXsJuWuxiq8CFAIUsF86nCRmvOwDFG/vr5M//n//tH/vlfH+g6Q9dZwl2nJVCk4AV635HKyBgTB4lsusDtTc/NtqPkaVYEjDEzLuulj+Ka8K0hPcJsaT1jsrXNIEcGjNVyGS5gnZbIUBTcc6Wvonxja57MTBNRgUiT9bVEi8kOnCN/ASm/bih7Az+7qhS0Z738ZRHQGg84o1CyPu/K7eb/vXZ4y71M+1v5hjGqjDeBbRn3cq85jNWYGcRqUTraSOXxsRVvWw/XtHsYFmX3yfa8UvFUeOHlOV/Cd56750tK4dcKPX1NP08Lm1fU7qsGXmiC8eNpejoCad3mNXZx18cK43osr+p61ddqja3Wzrqf9nylFI3WaOUeyqjK4mpNtsLw+/2R4XRkGEdO48SUC+OUOBxHPn7aa7kG43DBME4TKWViKQxxYkpJQ95XynUzaLbi9iIaIzYL4mi6SauT6L3BrhTh2etJqZFdNb+xAYthCL0jF8FbRzZ21mFUqjFKa2uN2pzyzEeLCFj1Voq0+/nF+GSWNANFhVWvVlMilSzbGdSslGW+19e3dyGiuY3OKc1vxzX3sdZWbrJuVUI1GMEQV8qitRbxdVzGqoZSQ+ZzjehRPVnIXqoMgdYlNqmWpvJz6Z95Lh1txs7o4iUte9lQs5K5H+27Syr41B58plUF9lzSv+ii0WmuKI2yrL/2eykFZ1q5kaXetill0SH4Ssriv5/2CwSBX+n+L15RF63Uz0aaZdbNimO19zxZYuM6I34L4/w6DO+Xt9eZVt72TjUQsmDwFEiT5jqJo/hbXAhY5wm7d2y3O277LWPqGMaJvg+4TkO2hnHPw/ETUzkR7BaMpfiOvu/otx1hd0O3vcO4oAacMTMcP3H8/DPDaWB/TNwEw+bb99x8+w3u+99QxJCOA3mcuA0bvPOQPMPxAb/dEG4UwTNOR6QkJcJiKbarNQkD3c0txjriOBFjwQwnqHUOb7Ybul7LP3gf+AHHaTjxsH/AGMNpnBDg7u6O9++/Va8fEKxXr6IUTimS0wQ1V8KK1qP01mmuX5VVrDV0fa/5FaWWdMhlzv0DZQxNkTAVgbEW8DjbB3Au7GiuR5NwVKtoa8CtrJ4AU1FrMAacVLCiODJEraM4xcT+ODCNkYdj5PMxcoiRAWE/jvzxxx/5t798YhozNsJvjOGm32I9jAzsOsd37+/44dtv+MP3PzDsD8RhYBqOeJ/Y7TbsdhukMqnGjPuwIYROkWDVZ1iLE3eI76rxQf0wViKgnk+zKu8TgA8fP/DHnz7wx08PiECwWzofyDaRcmTnHd92GzZ37xmHE3EYODwc+POf/4iTA3H4yO//h3/g/XffEfqOKUY1PjxBu14XFnfZdM9Y6zG2x/obrNtiXA+zd9HPHmKVfxalZsW+MBdrYg1N34SgZqW+lhX4FNP92/CF19Czt0rSTxxuMsxaaH/mGS9zFCDM1AAAIABJREFUFZcQtSYH1eiJ8nh8syCyMta1odnV/Z+6/axEnnX6zLOtHvDXyAt8bXuTofxv1po36NJQuhZczRPH66erxtbnWxO6z449KWi/XWG8vNssHIsa1NRGZfDWMhyPcxmHrutmZeHDx498/vyZ0+nE4XBgvx84no4M06Rhpt6TUuFwHBmmjPcdzgWGlHkYBsZpYkoaBil6uzpXjd+oZ6uUBUzG6CDruGvot1o/53leEKaXfdBqBmo6vyK0llzozEDoPMEH7HZLzpFxUuTVqShKt5REoZCbsbbKjNZ7co46bxi8Y6VYy5my6Cq42lqJbHtNkcyXvZ5WtRvrW5kjf9Kk9zNWlZaWEiK0cOE6NyUrwFvh7L4A05hWiOvqMTbO4c2GEo7kWEgZhmGqBmRXUdptBd5TfAfn1QitSnwFQJP6RkqZDd1r4nM96mRtVXvOqPU6+fV6kyc+t36vK6Z6x8u9X5CKiFrEUEqtmUwGk0EUP0EaNO8r2xeVzlgvnOc08UePvKjDL7bXE6410Vv26WztPeuz3v4X85vzRdGY2VsY2UygqeFXsh7vufXHCCur8Pkolv7gDMWvWuQuw8muh9JcW4xPjfvyztfb+T2f2gjnFpjr7+zpNXi+Di/uLTC7qUDRlUHho41TIptPlHFiGu4Z7z9SxgFTCgFLcoHQOza7nsN+z/54jzee4/Ge97te59pYzTdDaYgDvPUaepIiw+dPxOMRyYVNH+i++wY2G5IJ5GPEmYCLjt5tSX3ESKaIx8s3CqgTLCkVTg8POO/woaPb7LSYtakBnsbhfIfF4hwYtGZTllrrMAukgq25KZ0LvL+9ZYhTRW91vH//nr7vybkQU6wCew21yRnJUX07To975+m8x3utTWWqRdLbgLVTTVUomvNQclU0zVIegRYCY89ogqwIsW4JfXehc1BDglJaENxmT6Vo7lXOGVcRwXIayenEOBw5HR+4v7/nNEWGKXEYI1ks+B3u5pZvnMf5juNpYLpPDPbIaCaS0ZqR0zhqqNEGxFu6Tc/u5oa+6zFdUYZXskKlu0DGEXxXSxK4aq322GqYECylrh/jHGJ9Rc+rAjcWSoaSyCtlseTM8fCZ03AgZuisx05CTpFjHtn6wjZ03IaeVKwWkXZC6BLv3/X0naWUAckjkiOSLblk+q56Y1db8zkl8Rptn3dxfZ/WhgXx1HXgeoztwQSkhjhpZyqESROq6rZtyKZNuGhWYilS64Tlx6x57vKcec7ffiVBv3kYzmietFG3cxpz/yUChfbwOmGiHbHz7+fzYrj0JjWa2vK/mhD8FL2/6nlm5VjWXue/jaZca3Mv/10qZG9vv+QZHodlPrFeZgNB+3rtntfyr55WFL8sIui6nLUMc8nhu3r9xXhbtEIzQSwrqHlKZN5fxjg1bAZVkj59+sTheOJ4PPHx0ydiijWEsZCKIxVHFo9kGJPmLA6xgAuI8xRjmcbIECfGFIlJQbQUcbMqFzWscp3f1hQsar6giODconBJLTshaAF7ZVulyqxSz1fjmQLUCDknDocD790dITj6bouh4E6WcYxImcg5KQGtOadaC3LJ/TVW5S9FJbX1FzvndzZFcR2KKkbHK1VmaM/gnNWILGsfhaS2KJlSWpkpqfO1eu/GUIVZnRMRclKq75yd0yBijKrcmcVZQlUEN/2WaCNxiuSi9MRWuTFnoWRBCvgQ0CAmpXO6XBqWR6mAg1R01uur8nKfPL1qrxth1EbwFp1g4XXnH9bnLHmVVfFY9tt6PTYTbOVL6lGsIcGSaxSjQ8tstMsf151ft6/uWfxSIvn0dc/39/i6xwz6l4zr2v0uMhcr/37dorhU1C5kinrsYuG1WzzJtOESM/w1T7tm9m+dn+cY2uNcnrVl8OyqZ+9rHl9wVeNf7r0CSxCY686YjCmlklOLMQVLJo8H4vGB4eEDw/0HShyxaMH3GLS+Ud/17Ms9x+GIM55hPPL+plmlDNYrOEcxUBoFKpkSI9PxQIkRYz39dou/u0OMJ4vFjIq06vCE/kavkQmTHTZPapGTovl1xyN932vtJe+QhlJYKqF0frbcdZ0h1xIOYxw0560IzhpSFq2f6DumNCkQQAiEEFAio8RElRxRpijVw2Wlho6Cdxrq4Z1bUilXCiAmr5RFzRO11mlNw5Y7YFrO2SpfQFZrZhY4a/y9aQRwYdQtL8JIZU6SMLW+Ux5PTKd7Tsc9+/09n+8/c5y0/uRhzGTjCbeB7daxudmx2+7oupF3u4/sNh+xxTASGSctmyG5CmPO4EPQ9+E8IYQ5N8L1htB7fOcJXa//QsCHgHEVBdbWPMbqWVWO5eeamzQrdLVAmLwQ81IyKY+knChoaROyCvU5ZkJv2YSOm27LwXVYA8HCN+8dv/nNjm9vPXe3geArhDtLaBCm7aMl/2/Zo9c251oKWB0zVUKxTg0zNfRUgWy01peschXPBIm6lw2yrIl5V1elpa03cz3S4spA50+XeUGPjWZva2eM+xENv0aDlxyb5f4vGxm/xHD6+Pilonj522rvrfbWVSX0Yg4vvVpXezftFT9D85tX5Avex6+lYL7U77P865VjekpOuVTkns6LXM/5pRC7/nv5+/k9Lw3LLz3D04ZcvecjJfKpfs4uPv9BdY4LWWJlWHLWktOkUSMp8eNPP/HwcGB/OHI4HufFZzCI25AwFNG6frGij2cxOKP546mowXTKGoKaRSqIat3jLY60amOXoXtnwzdrZUUjSUrhjHfJSqFYZDHm4ylF9Voai3eWvuspuYAYSi7kogpSkYpTqpXYkZr33faeykKphptqaGrLm1zCzasCJ+rh1BDbMu9x5VdX6sea9efGuJUulpVirUbBVZpVLXskIohdoSnLIgG3yIYGSuadguoUX8hpUZCbcQupnlLrMFbliLWi2OrHPmUCW4wmPDpjzRPPm1w59joZ/NoF8/TN+3I+sDJQLCeu94dp8gMNsLI+cMPrkIyImx1Qb2n/rsNQf4liuhZGLtvTlrwzKepV93m2v/rb2qJOXdCrXp4cyxJq9HZ79S9lrm8JW3nJcrlY3c9/v8pE10oii0Jx9lu1iEvzyhRFCkyiMNZWBBsH0qc/Mnz8Mw8//pHDX/4VpoHOeW76DjFbulr/LqXEw+FASXA4HeDbGitvLV3oiRbEeQidqjMxko9HxsNelbG+Y/PNt5Sbd6RYYCqYZDAbhw2esN0gN4E0nijjETuOlHEkxZE4HTneH/DvLf7mhu12SzKeVCAnJRSKZwglJg29AEpJjMOR5r3e9B3HU1TgSW8pnyOu6/Feie8U4zzfPhiMUXCekiOWgjOG4B3OGDrv6Ws9RteAbaTJek3ZKEjMS59VuTTOLzUmTctXs4vVZCaAi6CT0kgDsFDjrTLaUpLWWqcqtiUj40geBo73H3n4/DP745794cBhnBiLZSyGwwRRLJ3bkncTm87h727YbjfsfvMtNw+fKMHpOyRRYhWiRLDO4DtPt+nrXHWo29qwe7/Dd5YQLDe1tIiv+ayKYu00dzZ0hBBw1lGKRXyYPYuSFwFE9a5lP+ScEFfAF8QBJql3EggObm423O5u2e3eIwSkHLjpO/7jP7zjf/lP3/HNreNmUz3hXi25wfoVQ15TkScYoGElqq2pUxXIMAosVOsqWt9h7AZsK5MR6u+20rD2oKgAJFIzFGXuVYVGo9bnXNeQcxWVk7MRcGHKW9OKX7u9HLK7FkTgaZGl/fb6+y7tqdwzaaLjxbXVwz8DTS2niGSMcRfXXFc2luiOi/Ujl57G82te8XQ0Y+y85p5UUpZ1/BQfeU177bV/Tw/oi46O9ZdVAfDl6Gp/fWF7WrGUR7+vkcufbWdraBmfHrHAufcjBM+HDz/x6dNnfv70iT/++S9aG1dQIC2n0S+l0u9cDAnDYdKyECIa8SIYLfqeC9M0kapxGWtnwDQRUcNp83iJ1DEtCuM6x9xYVWZtVegaPTdXrFzr8M/zCDyZ722ALvRQvZDOeYwd5nIYJqkRsVAwogB7FqWnpaY1FAwaoqhRPnNmSN34RcCKABqWmqRoL7LkJeaKVt4ie1ouXIyRzgVccNVgrbUkS6nvrAID2ho6SimUlEgpkWKugHfncwG19nUpioK+0YidUCsukbXk0zQp+KC3nk23UQOs0bJhVtQbbZus3PicgGRmi9ZaRn16nV5TFK//JvKY7j3X1rdsJpFL0fbsTnLJS/SfPaP0VVGs61S5vwblttSi5Z7Pty9WFl9DKN+qwHyNtrzov8fdv1a7NreLEPCytfPy+9tzEl7Tnurzeqjrr9Mei1ulCrM1nl8y1miC7zBNxClRpgGOPzL+5Z84ffo3Dh//QleE7TfvSQQ+Hibs6MmlEGNGQSULhYnPh3uNxXcWFwK+13qKZnNDv7kBKaTpxHR6UMCa21vC7Tvsu2+gODYuYLcOF3qkC2RnKV4wpwJxoIyR8nHPmCdymshxwBZHCFv67R2u35LEYLIoLLRYkjGVRKSK4JYpkhWcZ9MTuo7Q3eDvFXr6ND6Q84gTrfsU4whQk8MdHpiOe+I06lxJwrtOQ08tWly+5meIFBooc8HgfMAAJRZKGtXKZWo5i2YMqSEls7IIs23cnFFHJXRSkbzmIsAsSdqSIimNxGlgOh2Ihz3T6cjDwz3H05GYElKE3c0tt90NxQaGbMnGI7ZDciZ+/siHaWTImfvhE5OZyC5iXKS3ieAEGyz9u55v392yu+nxzjBOIxKVCTvnuN3tuLndsN12vAu95qCaJVfDVjAfMQ7BQc2bkeZ1FCFnR0EVagsUcau1bRhEE/u3txB8hxvVgOU7S9d3ZCs8xCMnAl05EjrHD+9vuNl0dMHivHpGo1SWUqqx/AppeJJpGrMSQC9/A2pNRes6LY8xI6CGGeDoXMGolm2jOW9rkfbxfl+rqtd++3s0M1v4FloLj6I93kR+n+dfz/dVRYUzePSmzJ+3Zqk2LGHdzuo6kdzC2p4e1VNGQANzek+z6LfjKgO9jR/9e+Xkf6s2r7lLjmhWJpT5RbTfXwdq8/dvi5Gl5WKpETHxT//ln/hv//rfuH/YM8bEmBRkpgiM46B01HpC6Djs78lzkfiC85pDHkLPOA6choExjsrLauqEIpgKBjuD2LQqP8ZAkYwxAWsU4bQZa40xdJ3WMhYRJCetWyqA8RU4xp3JZs3DNyODCnjj9Tkkk1Og6zx9v6XrN/Qb5ctTBeDxWfl/KoUpJvUilUgxqkI25NQWOWCKgC2UmOf0kAakqKjlDpMzyTEri620UlMY162ByqSiOYIK6LYKg671XTUFKNc5s3P4bZ2smmNXU6jmw0KKqdkYFSOh65imREmZFDObjeH27pbvvvuOrneVdmXEaNglxlQF2dX62Iqw6oKfd8RCk17SH55TGn+NthhvG8U2l3u9nVk9iQpc3wwP6o1WeS2hKB6OWsB2dY+n2y8qnfFSiMI63vnsurfe9I3tZQsvKyFF21Pn//IQpTdfyZMW51m4Wi3lar5ohsM5M0VdAFcVxWseu8sw0svfX3qmX9vK+kgxNUbDD6+cN8cZzIqHKhgmDchwoBwfKA9/Ie5/Jg57So4Yq0XcHYFgJ3wXyFMkDhERRxatPXZ/2JNzJLiA9Y5cICGK1G2NwlrnhKSEc5Zus8Xf3CKbHXaqSKyISugWhEwaI6fPn5g+fyY93FdCpjX3rHWE7Q3ddoff3lB8p3H5UhQmGoMjIM7QZfWulezI3mAka+y+r3maot6pNI1qUaxWN2cUoRMBciRniMNJlcU8YdDQ074LWizYVrTENsX1tWQB4z2OAllDfQBFNRNmBrgA1JhK9KpHapYwWwicfnbG1ZDDlqyuNzZUdLpqoYzToPklRmssbm5u6UBrPva3uLBBrCcWqwxb9N8IDDFhY+S9tcTdhtEb4rbjtAnEGMEUXICNBZMjcThiYiGPCYoqgse9BxmxcoP7zfu29BARFcBNRZ7DkgvYYgCHKbM4hDXVFiwNJGi1xgtsux3f7jL/SE+8DZjJQBaSK+xuNzg0LIsyQRkwpcPb6u01db6dhyzqcJdCcK7mwJ7v+yeNQTzhkTCs3mVFvbVa6sRW5FMzexTXnqwqoBhTLe9tL5vzbVxDidZh5y+3ds7XoU+XNPCcJq3olIA5E8zbWFqIbbMWP9HXKzyUl+O6pritvYUyX2v1/dB4dN3GZ++l9fEEL5qH2Z5XzuWr9vxzLbJ1d08YGp5rspjRn4tOudbewosfKb3PeBm/VprLS57Sx+etj19b37L6upr/Jjci1/fvV2qP1/VL5z+WEZd+ah9NNF65vksp/PzpZx6Oe4Y4IlhiScRUmJIwxlINVxkfVfEopaKXViNIESHmxDCOjHEkVb49D7oKVtaAWLPIF6Yq4GZJv7DGocDeZi6vtez3Fvq/ng/dW+25W8SMoqNmDBZnPTFFGk90zmi0Si0hFPvqkfMWl3R8MddSGUZU7pGKJ20Xj1NuoYpVObO19qA0D7DR/duAa1prip21dlZqRcwMRpNTWbywFvWiSkux0NaA75yt6NaN3lQPoCo1mnoioIprjXwopWi0jTSwnDqnczitrqd2XisPYkxe0UBm+Xi9/i5W5ZVjz7UryuUrttgZDVkZ5mTl8ZNH/2/XXu6tujbbnq9K4xzujEHQusRz92Xd31dSFl+rJD71+1s9Wy/H6f/t20u2hl/SL801Piux14W0pywJZ8S/yd3PMNXXvo/nzntM3K8T/a/Znuy7SjzzlpJGeHVcWVRZNMNnOH4kP/xEGh7IcSQXKNYp6AiqWFrvkCkzxQKiIW9Tzjwc9qQY1dvkLVMxZATJNVSkFMiaO2etxfcb7GZL7LZ0ea/1mxCyydgStcDu6cjpwwfiwwP5eCSQayFei3MBYzzdzQ6/uaH4QBZNuHfW4lqEgbd0AqSsyqa3eKd9CIYpViTJlMgxEqxVBiKCt6aG20amcdLcuPFEjhpG0oVA8I5NH0AKriqLmktYDRTGkAWCsxjvKZOGjxhBgXEEhRA3UkMr11btZfWqYNfyHLQQs/o6dVFnKVVwKKg/VXuyde6tc7h+w8ZazZmruXOhu8H5AMaRMxjj6MXTi+NhiNwPA72A7Xu693fEfEMsmYdjz2k4EuNIyQOdUQ/wdARXDPEUoVpcD/cFyhZnCvzOKSprpejWB7U8G61rWGphXxEDuc6TqXDiFb2oZKGkJexKCuy6d/ywcxQ/MhqLSUCCXAq2d8Q4cYoDoRQCCY9XQaDujFK9fpILUguEqQLbmMtrhOtGn8qjo7M4Moc3ujlf01hVBhdlcb2v2zowMymUFYNclMQLxaMKphfy6Vmb1Z038LC3Nr3/irbOX1fCwDLS6308Qz8vldJr7VzJW5/U3skyD6YB37QxymLYvez/bC2sjDbr39cqpVQPVnt7lZPrPdoKeev0X1EU35Jf97XaUwriL43ceU0kzhImfn1/noXh6pF6fKX7rJR5/fP6Obw0+L/2adf3f5m2rH8zzGAoejHtj1SF4uHwwBBHkhRcCFqmKiaGMTFGqcqix3no+1BJhtIgQXlUzBPDNJAqGI73NT9PTA1/bGBsiyIypw+ZSrMqJ5qNqc1AJzV3rALasAK1aTxuPa/ad0akRs8YIeVEy3Hsq7fSWIvDEDqPdQaXLNZWoJys487VMGMoYGSO2jCi3LN9llIopuUkSrXnGi1PkSaKLOU3LkNlm7LYajaLxNkrK62sBaqsNhqTa9iqAgUp/sGaPjfDwFxygyUUXkTUwwszXzMWvFd5IqXEOI7EGPA1VLWFnzZ6vATkt/s8tR7P9/r51rhc/fL42AvK19l9ZbnbmfGtMpL1Pq27fBnPWTdthQvIEm6qz1/mNThHpnK+9p5r/65zFr+srZnpl6l+i1D0y1RHY1ZelfZddBGsLWjrO38JQ7pkRF/DIvrcdb/EG/vGC17ckEZgnCaOpwf64yfMw0/Yw89w+Jk4jQyxsE+Gz/sHyAeMsYSNJ/UbUsnkVPCuA2OJKfHp0z2n04mu2+GCJ/gNU440hHlrWw6AhsBOIlBgyAbxBdsZLdhbCoePP5LuD+TPD9jTiZAjzgiysfQ2YIzVQAFn6HZ3mO0N0TronALxAD7VnICsVr8UIzknSqyQ2UWT4KepFmFHS0r4EEhSkJwI1rHtAvthYPi8x3sIqBIx5EwXPNt+w83mhpwmBbax1ZqKrZY/x2kc8dbPdX5yimpxxMyqoUW9Z6WUymhplo1K/KrhY3aHyAwuY73HegXwKSXVcBVFw+uc4bYPRONIovDezm9mMBnvgyLy5cI0jCCQgmPsOnbFEg4j34yJf4yF4+lElkKi8OH4kZ8/f+ThsOfhWOicwHRkiCd22zu8LwQXuN3d4a1w2wd2nefhcMB3veaWWEsqUnUoS+hD9ewJw2nE5qI5jM4rDcgFSZkSE+k0zWu5jJlbuUVsoOtOjBuDx0ESpv2JfRw5jJGSJn737Xu2256bXQc56dxXWPFhKhhr8cETrCMNJ30H7iuGpVmLWFeBe1aKzLU9LgujnZWus31dhZQGnOP0XzSLZ+wlOvB27eT1rTFoWNNYzqzp7bwL89pXG8OlV1HnvAq5s0mlYiEai5xZ4VcCsCzoeSo8NDTV1aifmuvVe1M5dX2eYKQ8ZmmvfT6+5mx9Wfu1Uyre0t7qLX3ae/LrK9hfImMse/opQ7X267wn5swwTXg0asJUkMchRrDQdY7t9pbD8SPGWLwNhK6H6qmaJqWxWnZBjVoWSxbln0IhGDcjfo6tdE8FCMtSyKgC660aNkUgp4RIqsJ6RXCuymvz9lzKdLIy7BljwC05gSnBGCdc9Phad7gLAdP3iAifP43Kk60hlVxrRQPUNIiV1u6twTuDbYits4xYFISnyg/jNJISCqRT1OPZQkdbSCow0wtrHX2vOYslR5qndKYiAtmWOYw1peqdXNVv7Lqu2rEKY9b6lloiRD2r8/zmqHzMBbwJjMORDz9/II/3/M7/wG4X6HuH6x2CVGAgDUkNzmoJMN8xpXi2VpeQ7re0vwWFau/zqcGt+VAFsmlG4lKwGMQKUhLW+qowfiU01GUNtRf0OiXj7Ly1z+sNc9mY1rV7PX/8pTGe+V1X47z47dqY6olri/GZzt9Mpo9qU51bCebvouFrypxT7bOhTRmM8RjjtcaeFSCDZIzpoNZhlGphaCqnegjsyib/uD22zi5euDOLBZfWlHVexOO+36JAXvV6VuVhsXCvFOZ6y9lZU/PkjBNSUe+OMQZXtD6gSAIyp/GBMk50Q6Icf0SGfyONnzgMI3/8a+Kn+0/8fPwr21swaYOzOzbd7yh0OtdSOA0HjikzpIw57Pm4v6ff7njXB6a+sB0sFMsxT2xsxuQjXRpJWSj3R+AeZ2+wHWB0bMPxyOnjR2QacV5g6zFGETZNt0Gmoz6DMRRvod9grceXgp03tSV7C2OClMkxYo3D+J5sHcPpqPq0FUIwuHAEk0h5QjKEfsd2e8f33/2WDz/9lWE8gcs4b6siBpuw4fbdHaHzxDRVj6la8kLw5FKLukvhbrOjpAFJBW8d3nlinIgx4sKWzWaHDV7DdZc3qwStpCr4V8uXadvJgK+MzOS6LKSGnATEWMQExGSK2eKcevA6AcySmF8a/XKC27hlTSaN2u+801wXG7FO81VTTuTksdsNd86S726ZxgGDYI2CF4j3WOfpgqEPG/r+lhB2uDhAjhRrERfoul49ixgFBXLoQi7KwHLS0hgWQ4kTJUYk5fN94hy2d9hcYBwwx4TpQg1VNvywu+XbvCWnxLvdDdYK3hk8sOk7vPPKCEv1xlqAoqA5nFuLV7uSR3tdDEZs9etWS+0MTFBpUA3NtS6A78Cqh9yguaqtXMZsGJtpqlrBMVTkunZ/swylLhFr1PCCMeTGZ+QxZZrt5bP1fGVNrStwftS6vp5kx9ciXdpiXU66ck4978Jzsnh8hBYbJDSlapX7vepo3jdnnsSqDIreR1aTUSryLWhescQJYmLjA/tR59E7T7AD2dT1WBLFWoyoqedyTSx8zygqr0Dz1iifNBqGXOtpirHkZjSqdF3h3M1sNLrGrdTAcN3QeT4nqxcg19/Tuj3nIbx2vH1/zvv7pZ7Otazz+usuDcdtD80LSj/PBlX9d8nP17O+2mk0ya3Jb8143f4rks+8HeeRZ4+NTo/fx1PKq96loKGSIhpSadHPOUXA4r2n6zY4sXQ+ME2Z/WGg2A5BgefubgK56L4fjwfIogBvRqNpskgtF1UoxuJ8V3P3qrIkBevsvJ8KmvdljFFwslqmwtaobmsLwlLSwRhqbqJXJwACtoArpJhpAHzq8bPz03uvAGgWR46WLri6uwvHw4lpmgjBsd30uBCgGnfaWIMx3G42pFwqUqrM76QUIScFp/F13xUK05R0mVjNVaxBPXS2J2xszfPMxBxnFOpc10ArZ6SRrCsZ2tgqr9W1xyIiO6vPbFd72xgz13pWmbii19dcO8mi/L7KCcVmRXJ3hWQgI5wmEEn8y4+f+L15x078/0fem/XIkmT5fb9jZu4ekXmX6uqunmkOSZGUNJKgBaCgB0LSJ9CXFiABAqgHAQJIcJvpmenp7qmqu+bNzFjczezo4ZiZu0dELvfWbc4MZYWsmxnhbm5uy9nP/xCzsu0yQQLBWwjvOCai83RdbzZSLYwj6wzI5QU0k1XbTyj5qatjRgXAY6ZFTW/SxTWn+10W19fzvAS8vMTJzJBh0VmV2encX/2ROd9ccrTInspe6eov6zN8dh7X7RmexYe9Wc+xbi0Z2+e0L7PizcTv1DN31l/doKt7SzthCsvwnAeHVTsqTHN14amSWJ8vYFLTqTWjKouLd2hK2izeKK7d05S4leZ6YZjPXodlDsz86XOW5TkhNQ+N6and1Pqs/5TwDKGER+SCnpUSTic0HpB4IKQD97e36H7PtD9we3fLu4+AKzrcAAAgAElEQVSf+HB3w+14C52nly3ODRA21LpzOVsOgCkPmfs8cbO752fj0YS6TvBHQbMQx0gqERPqrDB5Oh6R3T2yvUF1Y0QwRfJhD9MIOSHe4YYeugHxAxq2qBNyGkkaTRB3teyEIYNZGEzJM0gZjRFN9rcRngogY8qYD75YmxKoErpA3/d0/VCI50hOEe+leEUzIo7Ndst2syF48xAZCEYo5TVq/0sCRbP4htBb3mJSEPNAOufIciIaao2rr1DbM+IcjTAXIrrQMu17X5BEnTHl0Jv3Ser65bn2k6sCk3XgU7bQVUC8KTBZsimLMeLEcdV3uKsr4mZA1XG/uwW1ENick4XzOId3FYq8ABdoKkfV3n0m41UUm4VETVZqxJVSGppyY16GRlne15k11HvBC0gckSCGuhcc264D7SBlroYBSLhQFEOZ61gJhe0Uy8sKB+XsXF5icvN7zLkVNeX+hAaJ7QvbK1VRK+svs+9NTmikrJ4702q7TNBcyzbUnJfV1lixz9OR13dbh1KeXvFlrc1wYwELfnSmTKx/X3+72uiPP1Pm3WVPl5m/1L7qOVKaQeZE1TCh16Ap7LTVfmvuaDt/axq8FlIqYFUdt8zXFE+wsT1Zv+VKAFvM2YVXPw+XPaEn6y+/anssHecP4Xl8dsqPUs5XHcfic+bzOssRc1uPez5BS0P/yUp+1rgvz4ut2dnrVcHaOqHKdDlbzducDM1xUogpo1lwEgDHFCfUK1K8gEMfiNEia2JKM38sXqoYk/2kVABdLGw+pwW4zeIdzAM2D9itUimUrImUlmDPNVff3tcVGqikYpCyc+m9ef+NHAtOOrz0ZT1z+dfOnnniIqqe4Ge6p2p1HWveW/Ce4DLJlXqIOAO/K3WPg4cuGE8WsTJXuZ7tijieAbV94ERQ7zBEgkIhdBmSu6xZuKC+drhbnpxtvznf8DQiQlVJi3DI6kypREVr6RFsfOoM4ZVirFRgSvDh7sjVi6kNweWE9I4gJhMkNYAfl9XcDo08FsVPLAqqJMTYeGV5HuZzsvJR1aOnlcecfHh2Cub3n8/MOc81/mGcu411IQO33qpRp8lPFFovtpe08IaczTmzVO7PnFzr9qww1C8R+j+3fUm+20/NE/g70Z6YWmEhDHzOq17emw9evBJKz5jg8vPlyXii10fW5jHL7NrKOo9x9VxnylLOFubhfCB0gZgnjvFAPO7p9IDPI55bcv6R27d3uBGmA/z45re8efcjR42EAQ73gavr77gefsn2xYbdfo/GzJi1oI0KmmFMibefbvj5Nz/j2/wNru9RZ2ES3X0kDwOp2xKvXzLd3cN0xO1vcPeQ4gtSzqQY8SJsgiO7QFZl2G7x22voNuwmQcJLZDzA7hPEI04tIVz9hjEd7b3TRJeOpPHINE4IFvpSm6/Wp/LPVBL4nfO8fv0a320R77i7+0SKI04gdIE0jeQp0XWB1y9es+kHswSK4sUZEJDvQWuOmTHa/XQsJTY6ggt0m8EUsJzZDFuCN8+ShdBXxMgZtESrpw1jWCrFK1SAQhaifWEgs2emJt5r5dRlHwkLTx4zk8llPkMJCRbxJhR7iKOVIkEzL66ueXF9RVZlHBND5wtjzUxxJKZUaGwB30mJHCP0G8R7XEE8tdxTV5SIkneRk9WinCJOPFpAC6rw7JwjhOW59HTBMYTAtusZ073VlVSrK+VcQZ11FXCgwwUQSWb5VWO+VvTZJs7qaF0+k4/S/UaOLtGEOZzx+TTosUctlaalsG4hV+pmw8LqceX5Cme081EvkK5zRC7cvu5rYeFdKWDy1J3r9rlGtvW99WdWGE3glUZEaxQKTsglF0qkCmjm5agw9c55JMZyPtdr2wT9agxgIZictJq/eTbeMuilkHTKsk7nYWkMAKqz9EwJP+WVl4zaz5EbvkQmuXT/57Snn/XQGZUL81CNL6cz97iRX9aTN4vFRSqeDTwPj3Upm12+7vLzlx7rCoqFTsTj1GjVOEYOxz33uwMxC0kNQTrrhGZBnNVNDCGAZEiJNClTyqVsUyYfDhzGiVhqFfbBSmxoTsRpxAdDss7lPFSjY60C0fL3MJCcFBVyJHsIwdP3JlrHgsYNjq4znqkx4AktnNMvvGmmC5tHUaR4K3MpUl9QwC2h3UplqblKixG3awqZc47kEtkbmIxmG4sUpbYLsN14+r4nE+gC5mFVAXEcp8Q4JQ7HIyKhacCNnqih0aYKYuccXQhWWiObW1KcRbHMTruCUJ8iKRoa6vL9c85MRX6pJadEaEA69RybckyZ34xXsZJWxTIqAnf3kfcfR3IWvOuIx2T2s0GI09GUZJRxijixcmCm7JZwYQwZVpWS++noQg/pcvThcyMNHjp3KwPPpT6VFf+7JCuf3leNqZx0oxX8h9xSVIBiiHm4PaksPqWQ/b1X1lr7LO3qq7al23lN0mdmXC00/ym0L9szC2uyKtXAJ4DHQVamaeIw7ckcET8i055084b7j7/j09u/5GX/LR8+veX9hx+4uXvP9mqgkysijmmELgRCZxaYfBiZjpHjlLlNjilKQY8Uvv/4jl/+4uf8SY64fkPcHJGj0t0dkdevGa9ek7ZX+P3I9OkDen+Dm27Q179qVsAQAp13TJqNafmR4Dtjct2A86+IzjPtPpH398TdhthvcC9e0g8bchzR8Z54945pPJJSout6ktZQTaFzHgOaMIYRjyM5KS5sePniNYowpcT93UeCT3RDR98FjvceN1zT9wNX/ZYgVtZBshL6gMNDFqbJLFU+eFzn6QaHJ+M0k+LEmMzq51xHCL0RYFXIAi6iaZmkrfMP5iF2zhXBxS88G5ZQb+9YLLGLWoTqXDvFDinhjhVOp6CBQbFUl/5SKpDelsMZp4mYJnKKpmw6s8rGNBF0hmYHhxmPDZ49bHq224HtZsD5Hh8687B2A33fl5xEVxBrkzGenCFHkIRmx1RCPKHkeC0Q0vpug6RiXnWJY7wli6HCBt8RfKnrJWK/+4A4JeeJFA00QZzHi1nPazTDaWjmyWltCkX7pFyqFwX1es1ibZ/yjpSlvfzstZV1SQarFfgxmXw2M/w02mlG9wceVC3yZ+1LecpPGesFhaFqkrX3IvgltPy+8PBiBoWhGyxU7qwmnKz/veSWrkpF5WdqBp+LSuNCWbw0U01IfOBtVyU56j3/abDJz2zVYHMaAvo5+8+v53H11ypgu/z29Se6KlDHmGhxc5jy4EKgCx23dzs+3e358PETn3Yju2PiMGXGDDlOlibhBO+EaYqM08T+cGAYTAHBO6YSnumcEIKnK0Y5zeZxzyk1Xl3z67RGqGAKVa3jEFwo9QM3OFeMoCU6x4mAN6G9grUELMqHbIqbpmxgZ6V7S7NwpVxt4rA/kGNENdEHz3boDQ1VxHIIDT2H4JyV9HLeZBnnm7PBCVBDSaeJVArWi0wosHl9RVJliokPn+6RHPEor64HFAMGSiUkM2mx03hBstVp1pQZ08hsnJi3iXiQXAylkkm5hPWqokXhlFK2p+97W4dieG3diBQ02rLzXE3fMvofkGKMtqiTD4eJ3XjHx9uJmF7yn/3qO46amfYJ7xxDcKhGUjyyCVvUAZ3HZUujqOiuOVN4JdDKtvyh2tLoKie/z/NQ5+e0GeqrLs5Nva94Z3P5XBKaLDRZ3DLvNJ71uWxfhIb6n0qbZZm6MJc1/7MFOo8Z+gM0bTqi1HICy4fKw3ken9s+J7fiS/q49N1lS0z7za6p1y7/KNRCyahAJw6XQbNZumIacUT7iXuO95/Q/R4fMz98+DU3H9+wP+y4fvEL0mHLborEeEC6kd30iXSvdO4F492ew2FkHxOfjiP7YyZH6ILwfnfP+9tPfLq/5RfdHxG7hOaI7I7I8UDotsiwJbz+liOZNO5AR1NIilVuGo+E3hSoUIBpjvkWDge2Vy+QENHjAWIkjhO72zuyQoiOsLmysMcuMDpfiL5xG1nO3WLOci7hp6GjC1tC1xmRTpbw7Atz9UVx2AxbhmFrYDZVMRcpoZY1/LmEqhXEtb4wpBwnxsOe8XC0WkrBW2hLhXBWKzGy3gdLMWT2OAiu5bI2Bw4LjxGzQDnrLnYyZNkf0Oo1Vg9mDU1SC0vSnEixAOdQchJV7bOUCUBXkENrbrAUS6z4jqHv2XQ9fddB6Iqy2BnjDt1ssa+Sgc5hsMXkR0X5M56rrI+8BT4FL/TB8lhyTmhU8AYoYIKGJyk49UW/XtS7qty2UY/q4b1kCV0cudV5PaU8p3ShhocWM68RsXkdTq5udiC9JOjLgzpXtfi3sOxmbFiLvFpfYtHR4zRJzpXgYtE+14sKg29fymzb4wlFdsFO1uNovz147/nwte395fKawrZ+d0RaSDIipf6ntCc6qVipi4JyZ+NZ+15VdRWdaltX25UPKYrnL3Q+YYsjPY/iRElcyqdfW1l8TCa49NnXCkd9ytP/MCaDzPvusTIlbWJl0d96HZrCL8tPeWxrXhzv+VgfPosGHlPJhpT0CyAZGM3Hj594+/Y9P755y91+z/44cYyJmAv9zFbOKEtimqLVSo6Z65dX5j0CIOFLWkT1bBkoixV/H2MNlcS8YeiCJpQ0jVz4n7eUDF9COlWtcD2amlInYqGdQgLJqFReqM3zVrP6nKuePCmPzyQtyiqhpD24Mv4SUSKOUH73XgzApjiVHGoord6RPfROSaSCTu3ICmPMTNlylTdecH0ooGzOcjvNwmpRB8WA6LzHIaTsZjq8OJhZKxJpMVpr9dYpvigvekJXvffU8NbqUazhwDUPu4UIl+tsr1G8vtZfN2zJOXJ/SPzu+3u8eK6GwKZzvLruyWMJBRbHFBMyWY1Kb4nypSxhxmFzDSc05hln/DQy4XHH27I/OTdwntHHx6T/enargUfKvOQKjFqMsDrTeGgy2UPtUWXxsVxFG8zTE/alSuYfXDldhL583m1SpafV4q8VyefNS9tMjVifDQ84DQNadnL+wVKPfc46fe48y0oL+bqtxniv8kIWz21yLmXrq33hsJh4jZmcJ1yeEB3Jxx3T/SfifoeOke+//0tSHnFh4Jtv/yG7N4483nGcJsKg3I+37OPEoIruIofRlMX7cWIaM5KF0Hlu9jve3X7i/c0Nf/zqV0jfmTB+f4D9PW7j8dse9+I1QmYaB5j2JNcVQScxHUd87nDe0XcdaUwcjwdSzvg4EsKGHCN5PJJiZr+7Z4qRbsq8+OZn+O2G0HeMXY/EI5KtCG+zwasRBym/pzghYkhjm80VzrsSepYRcivIbexK6PsNm2HDXHKqMIiFF88WxAAxyAakkuJEHo9M+z1xHC1R31leXdZUsqHMu2aDK2GXLOrvrZTFpYJhm2BWBRdCui53pRblRNdj1Rr+maEgjmqMJkAUb18uyGhOQJw3A8Q0oTkTxMJWM0oqwoMHVDyu69h0PUPX0YeOXJVFb0n1zpU6lrUGlc4Ko6s7WiuUd31hWRHzmq/gROi8xzuxmlVq4SRZzKpeHO0kKX1XBliFkhUTs5/PFW919b+FUFj2yZxLKC0/rSqN531VRWP93YqUXuCNVUGcCz+fjubiqC/89XBe/nIwD3oWES55FuvlD4Vi1tEWdrJ41Klifvm7lVeu9aFn9xndXDykKu+y7KcgFFPPnM578EHD3qxQXHw3fezdn98euv9UhX1QDLswvod44rNzBC/0sQz/+hoK48U+Fsu7XIOTUc4XN5lzeePyuiU9n0E2Lj5W1nP8pTmbS+P82XN0Ke8Y7XfOANdSTux3e96//8Dbd+95+/4DBxEO08gYk5UqAuMtmkhYLcCq9IXQmRKTM1VZrKie01TKWEUr/D5NsaVw+YtncFbCm8KXQWVWdNAE3so3NFpALv9VGWZWeObatNrSKWoIaFWYTDkMVtOxKoxFefI1/UAK6I4orhiQPVbnFwe5E7LOIaAJgbQn54hLkU1wBCfEDDEpk5oxWIvS6psRUHDi8VkN6K6GnNY1XMmKBlijgJaazppmQ9+DOaJlfirrULCai94tANAAtecbyjpsr66J457jNLH/sAcyr643vLoeEAmEkAhB6TpfZBE7s71F9drapFLXstak/Uxl8fTap/N4V7vsYh/zuVkaeFZXlrmv+zMze0SlGU61pQHNntKfpCz+/7l9GcF/TNt/5JYHRZxqqXlcBPoa7WsxuD9kW7I2V+ILtdTqcSr0YgpQPt4x7T4yvvk99+/e8O7Hv+R3f/Pv2d13/E//4n/lT/7xP+PjfeQ//M2/5P3dj9zs3xE/Tby8/iWbTcd0GNFD5H6KFt6SsoWreI/vej7udvzmzY9cdQP/zc//S9zPerSHuL8h3/yekHf08Vuutq/xv/wV2VkdwN14RKfRFMBP7wnDQOh6Qz/bHUnvdxw+vufH3/0FQ+hxvkO6Ab+9As3Ew564v8HHG9w3P6P/9o/IV9e4NEIcGccjIXSoWn4CBZUta2IcRzabDVLCXI/HqYTXYPDbYihgCAxDz2bY0vcDmbEUt62KYskTxQBwNGcLe1cIYyQlK92R4sgQPP3QM2wH8MVyC2Y5TRVAwYifFMWoorYZClrN8Surns0SNntzqsdxVhSAhTPLXihrLoypAPzkaF6pGNHxiIojV0ubUJitKTsGlFQS/iWZ8owgeLwLVFAE13UMm00pgeHxzkKKnVhYaPUmaok1ksIoURNyDGHN0ENF/MwEFjmoZhsJpZQLbPsNjJmk0bD0coLsGxWyEiMQPDhfxlHnqyjiPCK4PdwuXy9NCal5lraeWr87u3j2aj7eToTaL2ny0/qQ2sclGtmEotPv1krs56vkD4zlgpHw/LeHWwO6Qsx6T8Y5Vlb6Kjwj/pJ+/6RSVYXGy9/Z+RW4KEg93Sw8eWkgmrfxT1VN/z60hcJ38XXnkgmP9vHo33PTZ1319ZoyIxhnVVxS4jiy2+348Ye3/Pb77/nw8Y79GBk9jBrNU+YNgdksZcWYF8B1MGxNAbKa79XAUhW7iWk6Mo6RlPJKuUMp+YLl/cu9rnjkRYQUI+M4YeimuSi49W0MPbzrAkPXkTUx6bQyhjpn4GqINB5ripKFyA4vX1p+n3E/+9c5HJ7OB8vv8w7yaJ4wspURUSBb+kHOGJCeEzxm5By85SyKd4QMvXg6jkwZxqiMMXN/HAmOkl8InQhJDfglFm3aiYHlgGvANyklK82l1UNrtFOdGaV8rb2LNG9iSianWImRmQdXT3PlX0vwFnGuAbOkouxnVfw2GC5B59hsAj+8PfD9DweCwKsX8I//0S94eT2wGRzfXLtq7y7pIjZvKY6I5lJ2Swysb5ED/rfXlgrjZb3BviuAg2RUm0kaMF6kZAPiq70uFMdL7bM9i39opeJzQWu+9lhWHr+Td33s3c+sTU/0/XB7SjF8phX8iaecPvPxjVIP6Wd1+vgTL8xDgecwz9Npwe9mRS2+KZVW6H3KI5om8rSji7ekwyfy/Xtu3vyWN9//hg/vf+TukPmf/8X/xuuff8f9PvMXv/3XTPoDWW7JOfPNt39C17/CSc+UIrs4sRsnDtNE7wPd1WDlIDrP/XHP+/sdf/XmLW9v3vPi9S8YhgFevWT/5h3x/hadJvR6JL9+DZst0m3orjvycU9ywjWv6UJAnAcJvHi9xYmyCcL73+9g2pOnI3GaLLxEEqITOn5ixwEk4a+uiP3r4hU0wc/7bp5jCiy3Cqjj+vqFQWdnAEfwjuADQ9eDJCsHIQ62jmF7RfDOahmF4iUq/aYcyUVRs6T/TE6JYTRvoQj0XY8LnjD0hK4v/FtNufKeCo4zexPnwrvgWijZbJE9seIXDxaVES0+n3dS8f5XS2dRzkgZl7Uw0UTW2J5Xz2iM0d4tWo4DqkzT0ayfYoikoevNY+g94gN9v7X8zYJi51TM8RoVrahjNV5GDZXOYnV8qx/oXFcsynV+Zmtr1/Vm3U2CJmW7vSKTGKPYfCqzh27BR5yzdXbFCh11oUyLGNT7gq7MyfNl5hdndbYCU3IWTZmXVvbhwtkW5hrANsnF09W+bhu2oqu2aAvmftcX2/hdscan4sGs3r8F1Z6VtCfJZhMJzy9+yhNVQUQW3oYvbdVocXls9e9ZaLLfa66UtLPRypk42jlLuc5vRT9ltfa1lEVSzLuhtaxTveaE/0hFpW2b7/xdHnhPAywp/akWoL7nzVsD6zmZk8Y9n+jnoRDJx0MnHx/f1/YmPigvLOJsW9zFYqhn9zTF5wEDz/qi88e1Z81c+ZLp5WuE4YqYJydmA0rJJPBhBkJxAs4ThoGNCikd8dnq6FmYZlW0jHb44BEXkGA1bEOt+6udoafmRCoKS99bDmDOmWEIpliqeZgq6qdTLZEyxZsXvMFvphLSJ87ORDGEhYJgHTorJSVuYNNCU01ZcsWgZiGZhRYXBa0PVksxlLJLUmoWehG6zoB0fOH/kj3BOYL39MEiT2r0ihesBIdI4fNWDxJVUkyEnOi1hPJm8N6xCYGrPnDIkZgMDf4YLWcxqaNzhU4wh+ymXFI0HK32O5ixtTZX8uqpETYs+Ypb7QWBVs6EBX1fFpCviiON1ijHw4EQjNeNYyQJbDY9nfPcH/b8xW9uuNoGXr/uuX8V2Aye7dDhQs+LbWc83xVUaM2G4F4cE1+jnZ/tmmZWY6lgPmHr684/r/xNzr8vNFUlgda96dGChr2srfiTw1AvEc/nKoxP5bHpYqM8556/a+3zFOeHrACX2jPm9pGrZPF/uDzOFYNc/P9EJCnXXlR9Hx7bl67hxReqIAl1lNoUgIq0lfJInvakwyf6+An2H0l3H7j78CMfP75ld7gvxdCv2R8n7o+feH/zN6R0b8RXOkQGlEBU4XBM3BVFcZwiodR18iUmU3Dsx8ibu1t++PSO4fCSob+GzTUM9+RpguOeozrEO8vj20DXFyuZJkIoxcUloL6n6waui4UuH++Z7m8Zp0hMSkojmaIsTiPjUejGkRQntGuSP8gcZiAipT6CMSXvzQqZshJjxklVzqrgbsiIdovHBRPCvessv0lq3p/WVTCipjSir8XS57zDFUACFzqrs1ZKxJiAL2jzntUcK7fcsTSFpwng846XIhWuQutO7q1KowkP8xiLBGBzpCflHoTCjmuhcttrlYEl9RbKVBTdvh9w3hR+dRbONHtGtVl1K5Guc9iUV639h1JM2oMPzeJ6euy870i+KJpJCKHDu4AQCzMuYbYpl2LO5g1eKhbzuT2VtM+F5hoWfrEt9FGp6/SYNlYZ+qOkYV6H1X1UXWzdQVV2ae/GHPJqf5gS1dTFhwxtc27hkse1b6snVuf9tqKnqy71EfJ9ifnXZ6y3shYjyGVS+gzaW/+pR0nqWq3nrwpXQDGEzJ8YKEfZw62stmvf1zwu63vOl6Z6/tvLXHzlk3ddiD5PyQOyeMxClanGC1TP3vW03+e0x7yeXzO14yHefEk+Knc0gbLayqQI7SeXXRrd5WcLzIVNllc//C4PrdPTXuflfQ+MsLI1TLlJBaVyipEpJaaciUoJx/Q4NXCPnIqGohgqqjNDnjjLr6v59sbLclFIDXDO+UzOnhQjiWDXtBBRLUDd2mgOVWn0RlcMwMx4Ti4F5Dsf6ILHhxpG2plBEDtfIpYTp1By+CyM0pVyTF0Q+s7AaoKYZ9HyER1dZ+jY1Vjk6fEiBOfpOk9YKItOlM6HYiBSNJXXcI6uyCgeRXKmw+qxZoXDNIGDKDABqsWzqKa22nW1DqEpICkbHfZLesa882rYrPGqip5qvLDmkbZQ1sJ/G4WohqVFdELlXVoiqRw2CC1lN2LM9F2H8wFFmLIw3k9MKSNeGKeJ7cZztZmsdIpu2AShcw4nFjIsSsshPT2Xp3v/pxqNmmy14nWVD5XJvHi414piu0xrfKKVUGlRYczKur3PVwhDXU7KQwrk57S/bwphbV+6CaRQ8zOD+zM2lrQxfK0gpofazLBngenBy87a11jTGYJ+/rsqirX2V3teSrhS1iLGPdPxlnj/Dnd8R7x9w+H9D3x88zs+3rwBp1y/uOI3v/8N6pRjvOXu7g3pOOKyp5eB3f1Etz2ScXy63XNzOBKniMZEyCUEs+SIeRc4xInD/R3//t1f8+133/Kyu8Jfv8K9ntD7W/Lunun2HT5FdHfP8cU1w2ZjtfHSiA+Ytcp3SOiRq2uurq948c1rrq8Gbj+84fb2lvTpjnEayTmi2WC4XRbzDibwKZry4Ry+C2uPikhR9KAbekIIDQI8+A2qYkqGKrjUBEMpxFlF6fptWYdKIIGaQ4CFi+YSHOO8mnfMB0Lf2V2lGHetJyrqcFrLWyyUkZKvt/bulFBQaMTTGIjtjmopX3s6hFZvLC9yFHUWdY0HWe0hXxSzBmawVCwQpFiBnff4TQkBVaxUSjdY0XnnUOyaqmQGLXkpAjkJ4nILqxFoVmsAF3qD8vYeQkfjCCdCt/OB7DqUiZRKwWfEYNRzAu8QSSSXcWqhp2fzw/m5rn9f8mqc37uQ1B8Q9E4VlvbrUqm7cN9nN6nK1IliwkKvLGidzfr8RLvkCauer6XB5BJfWNGn5b1UwXexxy4oALoc+2e09RrVPVPnuWX3zuMqlzhquJydEe8CytQorZ29GnWiqBqAR30TpYS5Fw+hCbqzEtPyjs5UkMVoly99SeFZvFbdkytP9+Idm6562vcjz30O33oo0ugxJe+n8MPPljNUGvjH4kNaGXS9ZHS4sP/Kxxc97AWc5LF1/Lx3PleE6zmrYGzeSanNa6im+8OB+/2ew+HI3W7P/XHi6uoK51IxHitzYhyGLu57A3ERCGLG2+bBUiVm86aFEAwVWJVxcmhJrai+JFPICmBILenhACxsVbxns9mU/EpL1fDes+kHuuARZ6HdouZVq54dJ0KohlMpdSNdqZMYHP1giqEXRxDH4D1DbwpoF0yh1BKlMoTeyiSKle+wylk1L15LrqFdf3vYsRkGhhfmTdwAACAASURBVM2Gq6uB8dhzPE7sNz1J4DhFdseR+/sdYehwvsyHUpRETxYPtX5jSbE4jsqkBp5T00Ss9MRCfkAKCFsiYSV80JKL35kinZKBzVU6ZOGo1q+2lI5lRIxiSpBaGgmBNMbG11+8fmlgR+NEdp4UE+ME9wflb97t2QxwvZUCmPSSn73c8u2rjXmz1eSf0AW0hDdfirZ5qD303WV6os3gPF9X5XKbOzunS6rOfEzLFdXAV5XMWZJQzMtyzg5T+oloqH/oPLa/63lyD7eTxbp0xQVl8Oyzxcarm99aKaS5tMg/sB//Hunez27Kck6gehTbZzGSY2SSTNQjyBHPkfHmRz7+/te8++G3vPnx90gH6uH++IkPf/5/45zlCV6/+iW/ff9b3n3cc7Pf8c2fjEx5YsqBu/uR0RvaaOc9fpyIMocJXG9fMB333E4H/u37X/On3/8J38prNv235FffIV2PDw739p7tuCNLIvdm3XM5InkiTYncQbjaMFy9ZIeHNOGysPnmW7rOc/3iBe7lDVvvrXiEKocpEdXRba7oug1xd4em0Zir96Ro+QlQisqW8I+uGzBCZIQthMA0WsiJiMFOZ7WcQ1cspHXerRAwhckKqMOS5iFIh3qPOiWGoqB6D11PTlWhKwzRlZyoCaTVD1wrRG3kC4AUtyo2TZFEL++bqlxqLjUPcyrK4gIZrAiyqYSZinegFiYbczQrsbO6Sla8OZro5U3Y0JTJUkNsZrRJC6Ut4aVSnpmZRWWhKcleKrSQZbrgPN53pWxKKdCcE/m4b+92mEY2/QYlM057umFL1++Z4kSOpa6iN9AkK7Y8M9mU84mHaDFnjxqiHvJuVcbf9KjVGjjxzeqfn6moPdoqx1w+v9U/0xnaXpVl6G7zIvzExz+7PbQv2//15NOvN7Ka59Ss0NC82NVrpEAtSl6NKBVOvwq6tSh2VcTmIOJ5/1QlUqtHR80n/7Xbo9698v95nHP73ESMv/ftovFGMXCLU2PCpd+faE3+cPPzfvLefdgwYN4nC+m/ufnIb3/717x9944f3nxgNykq0vLzRc2z6Mhk8Thv5Zyurq5woS9onxOq2WoTYoY0HwJkh6ZooZO5vqhjnI6GXlp5UAh4YQGqYvt/SiBqBtvdzmoTh2A/fegsXJ8ln80EOQKOLnj6znM1DAQfrE8SXgyMxxyDkeA8vQ/0IbDt+wJuBt6pKaqVvE5Syk1YIo9XzJPkLF+zRXiq5+qXm2Yw6gT6bc/QOTqv3B+PEAyV1YdvuD8ciBm6ztFrICZhSsruGG2eijLiSvSSd4GYDUAo5kzMCR1r7EHh3VkLO3QMw2C8uqDd1mieJTJqDTv1TlDMs2nXSXMoZErNYBFIEFyHeFCnfPx0Y/gQXWDwnhQiOUU+fjogL14QXeY+JvZvDoxT5PCLiTAERAKSE06UbTiFOvrDt0uOG/OiNtP3rASWf2f1opQ+8ktZa5UQwvIM6k8tnfGw9gun1GlJvFt4V+2n/F9aH+fPWf77JW02Up6GT10gSittezGOC9ee5+DMavySMTffhab2/rN1liYb1DC6igRFlalV5j7EN/N4ZfYWdldzU85GOc9Bq2m1tNpdvv5sekrnc85Q+VoXbm3ON+/y34ue5wfnUFv/blE8OJf3tu1tuQKiBlJCiiZIS2LyB3odyFmJ+w/cv3vP7bt33H38YOiom97CCY8J/BVXr76h7wPj4QNOEtsXHe7lFd31NfvDgSkeDdAlGjjIlIWMRwgGuuIh5gmvmT5n3n8a+d3H97y6+hn/5LtfsOkgOU8OG+TVd4w48J6OQDdN5BzJmnC9MRSHkg93hK6nKnNJPH7zgiEM+O0Ls7BW78Y4MY2TWfTjRMgjqgXxLeeC4lnR2aoUX0BGyryLS8QcyaKGai1iMe2o1U6ao9GIhUibg9LCVGpCeUbJpXagiBC6oS1trghc1ZvkFvseBQxgY06jqdTDQgfXu+WEjsgsDC697paXWATjZNDmTqGGwFJ+9yrGBBwkL6hTNBuSrK/HTxwqDryVE1GBLM6EYhGcp1hPDTynhSgVRdDlBbKpYB5KH0p+okNdALVQ2DAEU0RdSTvXeS50ofi4vjd1VJyBBGlAfIfrOrP11u5VCHRkIkouxoES/iSuhevUPWEZnmaYuhw1ckrnFdVEzTO15a0KidqcqO3zpOYlsK2gJUfT+jT5Vsv61Vw7tRzbsuzaYsosH8mAmEyQNGt/qS3F6c+Sks905dSzafzoMZ6z5hLz/Jhwrm0/n/KNC/Tugud2ccH5rc9khdWyba9mcBxOhLl+5pJhFAj97NAkJT/WoP/nOltzbU7AanEtvKel0mijEdKeZbW6zBtv89POvJrH3bnqadQyxtnbvPz/aurK8l22K19QC089rRfuMzHr89rSq7kc9/rRDy/aQ4bxS3zzsWaOlJM9J6fXmFehhqefjOTifaurmn1nsRnbr46CB73qphp2z+fAUjdyTnZmK30txgZrrl2bqwwlAIl373/khzff8/b9Rz7eHTngSOLJ3nGc9oAZMTduILkOJ66UrDDFRVRxRFI+lvdyZmDSZHUN1eizqoVS5pxaWSU7S8Uj6c0IVu1tbS8gONHiyZTGKy3mxhUHZN3zlucYxBSrznl67xk6X/IUA32QllvYSShVNEzh60ImOFOagqOBzwnmAdWu1FZ0axxtkRkgpompRf7MOROC5TpuNwMIDMVo9GJQtl3gOEWOU+IwJqIIycMweMbgmFJmjJHjeCQTyFWAcJQ0iQAqeCn1nmM0ea+cpzhNrUwGaMlRLLBCgoX5qkUwjMeI966E/GbqCjgvc7SOgi/1J3O5T0UKQq3SuZLjWp7ni9F40kgf4HaXkA97Ih/503/yR1wFh5cE8UjWkuu5oKnzni9nrdDh01DSS+307LecTaUYdxfy8yyM0y5ajKJK/bNuVn+Ktx0pe704DdA1wnd+3Nj3qLJ4atUzprS64vye9u+CQTOz6/lTVn1/SbscxnlefuGxcZ7eS5vyJ5/eenoonHSet8U9QgNrWc5VC5OSijpgLv46WAEDfyiC0RIgonW/2EMPFUG+3BarspKiTsT0k/3wUJ7Ccj7mWVq31ecLAcwEPxNeV+FdWhWVBGkyBYlEdhM+XiExEXcfOHx4y/3NB3a7e6vpUwqQ56PSf/uCF6+/pe88b29/pO89L7YbrravuddAOtyR8h5xA3KwUL+sAv2WoL4IsRY2ITnRZeVul/j9zUd+9uI9//Bwx9BtGNUx+gF91VtcfLaytiFZvoWSwXXm/SGTD3d0sgVv6JpJBdcPuGFD4BW5TZYSxhH29+TpSJ6OOExRFEzhqfH9rZyAhKIEFIG8CJUpVzAaUw7r3nLUHAh7ZCrJ8YZ1xioJ2vZk7SMQwmCKTq0h2ITJsmcXtFPJcFYMfsHMjAKvBD8RZkWiPlfmsAzVXArZm+dEchUlXWEOAioNoVSKZphrrH62HAYt9ZcoQrC4aqoRlILUVvdteVYuezMUMAYRA/Gpg3VSgBZ8Z55Mmd88FCQ5k8esVhhV+PdzQr3rO2SKBePBI8lCfl0IkA7FvlQstngyBbXWBbzvEB8KO6s1LlfszqjAmeB6QSCuSqGIiUJF6RO152ktLlJRN5vWPPOAU3YnzGFu5v2djUU2V7VId6V7Jkxloc2llv+WpH+OB3iK76z/nufhEgPV1e8neuDl6y7yh/PnXhrPqWLyLJYpdQ+5eR86E9olOCuS7cDQfA3Rt5bOgFLmJk9mVJHQ9kzjPXXlquelKoskvBTRdTHQqttUAY3VqiwhHZpEtJqLanTRuiEuzFyjBdRr1zLIWke6/KTH2qk89Fh42fL61fgeUQifLwvpxW1ziR/X0MnH2mxAKWOrosiJOth6b2swf/+YfcOMQJ6WTIgUQLa5n2bgV0E1YF4Ry7W4vb3h090dt7sd+zFzRNACDpemkRA6ggt0oUO9lNISjphmWu1FiER7izL0WtC9VhXVYozWPIe1Zs1kyTQMUa8zAFnhUV5KfmEXWtyGfWUI47UuoWB5jaHr2bhAEExZdI4+FNA0L2x6byicImw6m7fap3O51ETGchLLxhasBnBLdVidvfN9m3Mii6zKDpkSZkbr6s0zI7DncBzZ7Q7IFEnOFHoNgQlXQlaVeNibvCRA4aOI5Y1m5/BByCKmhKs2J4DGWFCZSz3Ico6zzqA3BtKnHKcJJx0uCEiYa3L6MJfiQA3lUxXNMKkS+lCijBKhdy0XVcQhKZEmk+l8EI4TfLi1sml//KvvTJl3CtOElpqfFnlVgXcWZ70RmlNN5+SsXXCeyOKa6oFdrZ3O+pxzp6aaekKXNKBaNZboyK4Q0ZqLuxzjT1AWP7ddJvN/F9rnsoXntp/eZ2W0uUmPM/Fc/RSQkT/EW1xqD+UrfYnl9NnPZLaOtGdSleP6l6DOk+MRzYlrvmN3cyDefCTe/ob8/l+x3+/5lDN3m4HrwwGOSkyOb75VNpuII/Bi84/x3x3ZE7ll4td/8WcFOTSQYmacitVRLGcia2KaEuN4YBqP1ET0MUf+/OZHJDj+6PoVf/on/wjZBFLfc5REd0y4nCAmppyIZJIz75YV6c0tDr9a4/1CkTA2VeenEA3vycmTxMIeaxHg3BLFoep0YpVx2/pVYlEtWFUfa+taiJ1zxjyDmI+8QnfjOlsPcS3MUJw0rPCmSBTBwCyshWDJmpjNY4JabqEqd5f2miz/Vw0JZhma+2qx/AVUpnxvoDHFByS+MF6P99k8YNkQwioAkV1X38m8WEGUVEte5PKWrSA8qEuzcuJ7gpSQGTFvooX1BHzX4cIiTDSNxdJdzp0D76ymI91Mon3XMR4OJM041xFCj5OAqEF/q1M0COpkbfdXy2lU9XMx9pM1+JKj+1SonwDSclHr0q00ufOm1Tj0COMqg81y0sVCKf2P3c4VgfU4THT4jLH9ARlnkXGpKtOSz7iC8mg/diYfAz5YpQYIRVgt5/dEnlnystlh/pia8fRXT73nk9d8Bk99yDj6WWN6xLD8NVNyHsqzvPTc2txP3HQP3a3QvFiKGX21CcKzV7pGw6gmNE/EOJHSyNX2ml9+98d0/Qu+f3vD7uYTh/2RmKAPlps4Iz7PHvWsoClSQ6W7bmhh6yzkm5yV8bi374oHJ3QB57SFZWfN5GjlHfB2PkIIBO8ZQqALplSVFGBEKQqdN3TSLjAMQ0N17YGglkc59B1D5zFgbeGq83g83jk2QwXDKcoizP6EMrtS3iW48KCMdslwISLFsLlGIQ0h2HuW+4aiBHsE7zpSqas4ZejEgHb6zt7h7jBymBL7lCxNKGVSNhlA1AxX3gtRFcnOSngMAy5Fm+ecSKkoWyWHNOfc5tu5iViUy9B17V1TSnTeG7/MyjTtSVpqO2bItQSVSOtPRcBDPE4GHBQcfb8FF8k5cr+L/Nmv/4rxu1f80asrfn61OWNL81wXQ4iWxf870WY5bN4xFhLdNuoK3fXxcT/pWTy3oq2TO1cbU9YChBmgLlv2av+n/XxuovRz7nvY8vt5bckYFx/+5D61WApnq+v699Wjmrdt3VYydLNSPG9szUOjp897niV1ee3Z5zzMRJbPt2sXKqGqBU9qLqiS5SDiSHiCvLaad92Rfvo9xw//nve/+X+4O+xg8LzaBHpJ+LvviEyE/p6tH2CaSDky9Dtu7j5wd4h8PGY2csUUR7IKwW9wPjUrVcLqL6WUOMYJca4xqNs08sP9DU6EX734Gb/62bds/DXb0KEefDfD+0+jpcubBTGgxfukCXJKFu4CjXmKGMMRqYhjhfmLR1wHPhNTNK9h7cfNCf62FQqQSyUWheuozrD1hphZFYalcl7/bgvFKpfQOVz1XEoxcmjNxNN2v53NEv5YDQLeNVpRx0ARXNHTBO+ZNUo9LxRgDWbOKVKU1izMISqV9pjyKA605Fctw4ikKMc5p1LasObKzlbkmjeqFRQom9fMEsoFp2rhSwjjOJY18oh3+NDju/pTwkHRYstzaBlvUsXl2fIny6K5Ctl70EAAVM2i7vF4dU3I9943WixlT6WYSpHhlekB4xppdUifElovfqtaIn21eHjnMJ8aPr98xnIdZxoqq4iIh0bxgI5ZI40XETAL3lPWqBrimtdyccXl9rihcRVFsbAIf2l/zxnRQ+N4Xp8XFBVkdaZ92UPea3WeX+AFNYdx+ZkZuoz/XBJasxnfqlV+oUDO7/EYS31q3pZ0a2GYOqnJuByz8ry5g+UcnI718XGdennqnrlkjL30vMf6e0577PpLz3wOv744tAefU+iAzN44a4swu1JrwTmh7zq6vufjx7e8e/eON2/eoQS2wzUvr+H9zcF4e1Ag0fnAEKzcQSgF33M2+SFlM+AZDSolG0RrJgU1HDEXRWXGSrA1SjmTUuWVxUhKRdxMZAwMJorSdZ3VYhYheDOmSrYIG0kCKRK8Y+OEjfcEDHFz2wW6vnoWHdebYMikMEfuSAG+EbdQFk34r95SWQn+Jyuw8CDWvecXee1LZXGpQOacISUDrutN+U1JiVk5xEzMSlQYvGMIA+iEF2UjnpdhKKGrEzky17F0zkpsqPEk069K2TTNc66o1kOrBVjHQISq1zOnVPIU7V2GviflRCLjh94ihVJGp4yUbAgVJbloNMqZETnXtIwMcUzgQYtz5s27kRfhwNYHXm9fWrQFFtJbDV4zlzmxjn1hq8bnS63SnHPd6SEDgTZZr3VAPefSUoqsfQXP4hdZ0ZrCsngNeVjpfiyR/fMee+n+NWE+JdTnuSPng/wqVr9H5IR6mEUfFzaaMHTSbfv/BaHv0pw89Nlz3/PZ4TQLz89D114OedNFiYHcDo8hTBqAh9fMdNhxeP/vGD/+Gj0cCC9+xpU4Buf51r/iJo0c3T2aPZ0zi1maRsbjB662oGEgB8/d5NmpY0pKxsA5chF+zfOUSRUkxdWcUocoHA4T79nxlzdv+f3dR74Lwgt/zSAlk6sUjlUXjOHUPCGKdQtjvppM0fO+JDA7yn4wKdjmo3iii2JgnGNWvGyIazG4ncPCqLWFmi4UNGrO09JIoY0pLRU7KaEuiF+NX1oKe1XsWRgxTgS5C1aEh2L8z7ZQ2RfaMK2FmRZKYQRYKCoz01Gt72lGBxY5AbOCrgvobtr8SHknmafG7qnEW2ofNWROrAhyCLi+JwymKLrQ47qOukw5p/n8LnKNrZ6irormWp8VnQ1k8nixHyeWHeOKQKZFWXRlgDklU3LLPlif/+cpMKu1qnkpOuemLyjq/K/mk79nqf2MPzQLx3Jk67G1ni7SjLlpRUGt3yuscgsfpUnr3/+WnJUXm1SjzIXhP2rUax+VYN0Tllf3xFk0ywVL+ty/Y1YCqoJYr1v8Kyc0qI2nHuwlP770bvOmKJefi2Wrex4IZpXLvz+3tXcqL6TFUHTWisfMXXjIqaL4OYrcU9f8FOWyztc6wmTRFrTQ+vy8c1HLbxl9tn9bVYrKDxbXHo9H7u933N7ecTyOlq8WjZwEF5jU0i76wdMXD5+IBdHYPFh+s1ZDs4DmOdTeOTHgFS0lH4SSg17AWsSBs5z3M/6i2QDUymYMzuoTe7EakV2wOodD35vhxVl9xz4ECzl1wuCdeeW8YzsEuq4qi7AJjlosImNh4q6Mz7fDtOBFaDPOmO3iwsKcLtjJWW/vBislEiColtqMQuetVmvMGT9FxmQKY1Kl8xCngJNEEmFyDi+KU0cudSKnmIlZmFKsWk/dAaaEi8PyR2Z5pBpkckGtrUpsjFOJ8DEGrMWQq6q4PqAxWZ9pkZunZpg3Y7XNq+LIhd+Ox4h0YuKddxwOiftD5H4/cYxCuMSRCp95PPd9fQ5PZW2pa/SM9vBl6y+W+fUmQ800loXxdHHHo899dhjq0oP3UFuGhJ1KeHbIaIzjKaXkOUTwoeufc+1D3lF50jL8zGdwwtAWh/Xs8wWx/HzBpFKxxbifoORfatH8rFEtjAXPXetcSyG0gZQcRV3CtZe+u4jmA4fv3/LhN/8H8eZ7hvCa61/+FxzHI6SOX179c/5V/N+Jt7d0x0CHkOLIdLjn5uZH/ul//qfQfcPduOHu3/wGJLCfEvuxlEoQUAoYTBE2Xahw0ZCmjE+O8Zj4lI78uw8/8KsPf8N/jfJPs/Di5QsOvTQkVSkhEk4EZ0EdKEIuRnotRdqd8614djkspijmCpQkLc/IcooSUnJca45YhQyZBXMtVlVKeKVbzf1iNeZfi1CzyiwsypiFnbpFCYgCDsOJcgDMoaECF46pMFuqaz7veixz3lk1llgoURG8XKlliCkx4oACUd4UlEVg5ux3l/WTZPac1mdXEA5jMvVYlRAeV6+rCpMZB3AeCR1+6PF9T+i3+O0WF3rEd9B1SC4hrEnQyeavznVFz7Ow4kWOqHNIFwxsBwCPk0Bw9tOAagAVg2Uq9lpiTKScCATWwkGxu3+O4Dez9nmlT5bW+Hwx9hRP7MJQvF5e0ba2K8VgcWlr1VCgl760u6qJo/41r8/6hnnvz9cvHnT55c+Go+vf25/C6mid8JunjW2PPf8pBWMhBK40pPK/csZOjaTN0LJQ/hr9WOyZNc3QlaIJ7RQ0UlGV0XoepXZryB+Fnj3Cv/XkjRt7K4LmRZqy3E+cTdlK8Xt2Wz/rqR3yUM9niu5PaOuV+LxxnF/XJqWKk4/0cDnc8XIryppafbc5BUIaPa0KpGB1hb//4W/48OE9n27vyQk+3NyxPyamLFZQPkWmQ+b1yyuGfiB4q4+ozXhl6OOt1q1zxEQLrxYBTVrC860mosOj6piilb0wVFVdpBqYpzIXHmvU1jNstmwHQyntvKPvOjZDz/X2ipKebmGOFcVUYOg8g3f03nO96eh6V4Bs1ABuihKF7xbn0ehLG0+JjpEyh75fR0wsnQVC4czV0FhliAuyYI1QmRFIQdVBB1Jln5w5jpFDjMRsUVdjFNh2DAEOKbFPBZAsOAgdQ+iZYmZ3nDgejyZXeLGUGQHUakSquLb/auyNqoWaWr1rC+XNORZgOftJMbYxu85qKmaF4AsqeZGfNKnloRbjgDhPToqmTIqRkATfO7x4FFMWP+4m7kflVTfTRAtnBUSanFDJkj5JHR5vp8rjw8bRyouX7YICKOvv5/7c4tP/iDmLlYD/VO/g129PMd+/vdaYe2XMC8ubWZQWOSB8xlv8hFf+21q/pYg4E8H5uyoGZpTdeEfavcX/8H/xyt2ir/4BofvnHFMibG4gZMZBmKZPxPGOmDzOfSKNO1z2/Ff/7H/hv/sf/kdudrf8+V/9Odthxz6B+g0vXr7m46eP7I474nHPcYrNc2RFdYPJ8ApOoSMxjRO/+fE9/+fwb/n4R3fs/ujAfxv+EV4NIS3VtdWi+0arZ+hKLlsqljMLvwAa0c+gNQy1hE6Ks0RrH3DdYAdvhWS1EIxr9V38mUf9qWZMveQSSvFTuVI03hUiVZ/9wF6rovqSWrUdvxACzfu3hHU+FXKXncrJ85bKzxxOW0OXLeRxSVRTu97uMcVHyMVZ0s3KjcyMMwszgwErd1EKmas0EdkKHX/zAt91SLA6muoDKRiqnvfBcIdUsaJWspodYxRagI3mb0IIRJ3MQi6C6wLDdgtkUh45TntyNAAc730BVhDImWkaybHD0aNS5+OntDrnpnSjtNAdRIrho/xghg5Lyi/Ku8xMrHqunQqxMawL41MTVswwslbwTNGpyfvzTNp/P5V1X3r3z+uxGhzkodCahx5zsa9Ln54KDMuv9EzwmPO25nMwK5jMkS4ixVtT5/5cWBGk8allaKorKM5zBEQbATUbe16jx+fhdNZEqvFBzyakYj/Xay52uezzmUuyLn926aaFsWBxdk8N7acehuV3Dz77Gcbzr2X0nU9WARqxzn+iCDWXP1DVVhahKjfeeXznmKaRt2/e8h/+7M/YHfaklBmGF+yPt3z8uOP23so4qCpDcFxtt/Rdh0AxsJoS0JSdsnctZ9KdeH8etDitwFVcF0ouXYTRwGY67xm6nuvrK14MPX0XmlLovcMheM14zLPYOUff93TBETrhuusZvNB5x9UQ8F6o5ZacM3AdEde8fG1c2QBuUCFnaYaWOtY2pyd7TXWOmMn5XClYXl+V+favAiXXUxDUgTpPADpvHtqYhD1HhustMW3Yx8i7uzu8RXUyThOd79GuY/CBq6EnxsgYJw7HkXGcLDQ1C7HkiKaSx09FCc/K/f09IfhWoqTuo5QS+/2Rvu8IXcm5zBXN2aKIjD1Yn67ybVVUCo8qczFNypQzLsMwCDd3E449330z8urntRyK7bXK+2Y7SzVA/6H0jUvK4qW23Ns16kMujOz55Y6erSx+DuG5JJS2zajPm8af6t1aE9f1hHxJ358Tonnhbr5EuKj8pjlrn/GY1aw/4UG89NlzlYlLzOv0s7WK8PQzpNYyrIpS8WCJFh+QUX0kJ+LuFr37hHcveHX9p8TjyO74G97c3LB9/R3BX/Phw79BsuNq8w3SbdEkvHzxir675mfffsvb92+4+fSR+9tPBN+x3fZ47a1uE2ool7EKPx6kolxWf01mt49WqymDjok3P37gzySgTuhCx69evuJqOxA2/VziTkAKMRIvqBcrXFu8MFKjI1vuWgn3YkkCHPiA68RyJyQiMiN7apkzVV8E6NzCWGWBpFVBBuq6LHMXWnRA8zIUb2bzqM0DUi0ZKJdl/IUhoChUZ148WVjkpNlNgBLqah9Y1KmjFUhuAm4NAdU2nmq1VhHLpWzPsjBcchWWK40QXMltNORYFuO10OdqyZQyHhXXjDpayt2Id4ZiGoKVy/C+KVJVN1VmK7AvAEeqWuDai9q5UKaBBmKkaBFiejxXeKdM0x2HaYdqwuEJUkJ6EJRsOYt5RtVbt/rJc2lUDeWlzJOWd2v+7LIvbD8vlXfRYmEpj3R1DavKUHXIlWxaR53bhqJy0QAAIABJREFUprBn6ep7EWk1Eeo5qeG468CLLwAKK4dv/VxrzwrJbzxxee1jfGFWxp/qW8q+WtPV6o0473ZRmeTiU6tgUe+fx13p/MIarXMYauujeEgq7pUsNnMDcFyc8eZpfKQtdK+yvovQwJPv5OzGh97z8Wsu3jcv52JtFnxv8X9DJpbF3w8M5KkhLNZR68Pb5w8bAOcos0d2u9SVmOnlaj7rr7oQRD5fnGmjr7VecyGkM2k3HjXFkXcfPrCPI8doOW5Rj0wKWay+X0yw2XZcX/eEEMrYC69svKr+lFiNrCUvvoDUlP0shVilPEfuCM5STkruHAXwTKQgnopYnmTX0fnCS4oy5sWAyexRGVFwOKuVGAJ97+k7YRMCnUDwxajibY5Vav6+rcQpbWnGTZFSHqQ8X+Y1fHA/LOS0JyImW3PO4bKzMlvk5lXFRkHni0fUgeZAStA56Asw23HKHKfEp9u9KYCFMXedJ4bAGBXyBAkmDHO58u4CZ9jyNr0I42jeQysgb7mKThwuCOMhoknBF6CiPIP/5GoeLfRbipE7F55hyOhAVVBLUI+4jilGdofM3X5EtW/gf8toldN5ryrHOV1er+VzdIrL1zy2gJf2zNMtL5DuL7Wv6lms7UxRpBKc09jZh+95bv8PWeYuTfDXUEBXivCCY+iCgJ/fN9P3S2N6alRaBa/CVB+cqyoQnTDfx+b2MWvn6TXLtpz3L/FEXrqnCZNQhJpZCJQGKhJxacQd7gn7HSJX9P7nZH4kjr/h4/078mZL7wc+3vw5QXr67Wu66yt8OrLdbNlsrug2wg8//jW3d/cc9nuGbssUejR6xv1ESlMRsBXxHpEOnEcxoBZNSoqJ3X6iC96Qvg6Juw87fhfeEwO8Cj0+RX6RXnEdhFRyHA0GusB0Fes+InMEZyGUbdnLNbO6KIWABqRz6DRRCv8tFK4qttTfqxIyW9vnNVjkHZ0InDPDLZ6DpkwuBUhtT2qOkxMLhzbLVvWUr8M95z4v7JW2oWdhpVpJa2mLavavIYpV8GmvUcTD5v0TAclFOS5zqovvVuMpgZdOsOz39oA2LlOiS7kAb6E0FBRUcSW3syrejSAYw6rKi+YaFmVCpqv3lGa1qEp+jRc8HXjFuUy3H2BXZlozXrTNb9Jyb7G0L8N+V1J2W7qHmdilEEltnzMreSsLt57csg6RPu+fMj9y+mUb8cpK2sqcLD5bjG1JE5cK1ukbrp998vnXMF7q43P8mFDx2HflN6AqjbS15+yMLUNElzR/8ZwFLbjEb6Ts+VNFsf5ujsT5Xpkf0MbXhtYUqc/gIZe3zvzdUkF64MIvYFkn3c3nYN421Zu53KdP9fj4OJf918vymQB6mQc/16e+YAPtvuWY2terY/w5sQmn87SgC2LhyRWJ+ng88OHTDYdpZEyRGDOkiahKdmIGSSf0feDqemiAXdqsBLO1wD4rqNgFCKV61kzu0jY+A00pxMsZaufs+axeRiF0geBcQzkVMK+llNQVbwBRzhm3qbl+wbsSpurpg+UqBihGvcWZUOMlJgDN8zWvVT1HjmbcLe+bUy6y5rksvPQ2rtf0pO9Fa38vaesCLEVECCItV55eSVMu3kCrUzylzBQTEiPjlJliSS3yEDHU72mEHAS0hMsqONVWMmyu2eqMB8sip18sdNU7i1JAlZzyzIgEKPvGtX1RTm9WMrnUgizPziYpATg1fp9yYozK/XEqeDBLOWGWtSjn7Yv0jFO+es5mz9flYru0nrLWQc7oR7nziXE/S1l8SCG4tLmWuQcPPXrJZJ7LMP9utkdW9DNaTbKuSsKKcxTG12SnZ8/P1xnbk095RLAETt/m0eYKA0mlO/ODeEBxOUKayOOOPN6zPR6QMfJxP/Lmd/+SPH4AgdTD+9tf427/ik36RDf89/jtK/qXHX/86hv29x+5vf/IX7/9f/nh7Tu827Idfs4vv/1j9jd33N/e8MNvf8t+HJlUEAJD/8IURYUpJna7O46HieMhsTtClywPwSuwh49vb9kd7tHbO6Z/cMs//PYX/PH0c66/eUnvAn2JyU9TIYTZ40MgOUzIzpkzYLMqaKnVCKqeOeccxIk0eRtjBaWQSsaqVz1QwYJMQfXLrlkTveWiFCUUCyUrZLQsrtWlmpUnmUMnK/AMakxAylqapnNhV8jJvxe+Wwgrs3Lrl3yVOQ9RC9pB9V75uShf+b+0vAwpeXUVAMEvHrYUDy0vcyloqK69XWKJJ+XdZVFg3sASLFOVEoJq8OKa8lwjKs0oracBImmKhFCmsKyD8x1OzHMdQkA1Wi0uTSCheFUx48ejlsOn6cWaNrs6y7P3bqGAmXBiddKKhYTqgaTeaZPdDER1xxghlIvDaYpHG0P5vYRmlYG2qimn47/MX76E5yyVha9b9uBrNqFMS9s0M92oCmU1pFRBtIaOeu/bJJ4ZSpnXvAqtzjmcN0NQCz+FVvaphgfa5zPYyFM8f2Wxf2SaV3rzBR3sp67QUrk9/2wOe51l7Kf31f9H3bs1SZJjd36/A8A9IjKrenqGMyRF7k1mu7q8SWZ60wfXm8z0IDN9AYnalURql+RwZthd3VWVmRHhDuDo4QBwuEdEXqqrZ1aYya7McA84HJdzzv9cbym7n2u998drXFJfZfm++Lx7Hhta9AV7vXeDNHnGaJGRSmWaTjw+PvDhx4989+MP/PDxIykDpTzTcZosE3mAX367ZxwcSCzjL1ZK74uC1dYhzsXVWZZ7l9jDaOrTrK3eoi2tA/UMg5VSsvsMKNYs5jVsTePMOc64ccRXMBksbnFwjv04MIRACJ5xDIQgDBb6R1DwWA1mp+aCbzWTpJSsyYhazUjaO10q6VJRAN7a3DVz6EWrSpz259qVtT4TaIB0vYZScLVrtGUYB9IUSTFxjpG7QdAxgIy83w0cjyeeTid++PyZx/Mj4gN+GGHvCShnnznNliTPNU4uZo1EQTKHO5NjUsrMJ0U0IkGRMJbEgGrrPqyT9ERqrojyvkpT+st7h8tiHi9zbApI8Z45KYNA1szT04kYIzlYosIKwhYvmyUc57U45iXF7CU+eq63ay6lz9HX9ecvHetnweI1grPVSPbNuYUBbEfQXnrLcP5I4PAiEQHLAXltvEBllosVkcvN8QWEVKRkuNSaBaow12o1KZuyF4oro7/6tMKxfs653c7hMze+odPCQHBEXSIUzQCT0DiRpyPp+AD5AfIfOP32f2KXP5MO75kPf03+x3/P4/cfYfbc/eU9Z/0dI4ld+Gu++/7vefz0kc+PR37/UQnDX5DTzMdP3/EPP/wDv32Cz8dEnk8Eb8WokwTLkBpzsY45y8ZGAk3c+T25uGfMAd7tHHtRdkfl6eGRf3j6SByFSOLPmXk37MlhRxgVYoKcccG3LF+CEeTUHfwKQgwI5qVyjggSSmF2Z1asClSaIO5szKoF81FjkQwkba171R2zMnUfCrwp+7HFhRU1s9Q11oy6BQRWLZ82M0B1mVnOkhZFSG/du7aTcn1WByzavNT+inbY4iqlCQ3NOpIXKc66M+uWd8Fca0rGWunHb+yw9J+Q1APj8qOu/Bpb4WAUNGXiHCFm9DwTEauxGAZ2hztTEKVMjjM6lzR/5R3rbJglfXnfcRxxTGjOJE3EacK5hKYZdYILDs2WOinF2bKvirMIzVQs2Z0WtG8iy2cvewt0UrlsAB7dI27oH3otqjaPiULLZFmDW0H9Bm+WupxSwNDKeieLexhcWsAu+NQbAGMHd7tXkuVdugtrbf5PB5TXLLvXR7f9ZHHtrzFOIgtfqc0VWuO9J/ll/13sCV0UwzVpiCUOkZXraW9xbi7H5Sdf8YXb8uPrVs3n3341/92UrIXj9ey8pi0sfp2xdW3dvVybt4DGn3LPy9bnN/ZZAYX2MtBLo7xsVXFUFQXVuicFgGjOPD595sOH7/jh02fwgYTweJo4nSd2+4Ri8d5J4O7+wOEwMI6BOPsGPL33zPNcQBScYySEHc57HI6UT4C2LL+WEMUswT6MBja1ZPuM0c6yCN65GuVASsnKe/jAbr/jbjeWYvaOYRgsXtEtyhaLrfN4KUpeFcZCvTzmWukp5bUqXcI1K26uliotnjtF0bNKqFJaTnOjP1kpniSZaolbLW1VHrM+k+s1s5+YI6q5ZBe3b7cEbFAS5Vg2bh8si3wmEaQAYHG8248cR+Hu4Li795zmyMM58vmcGO48Q8icZ2WYEm6KuJhwMaLzbDWIS/3jEIbiYaOEUNh2zpxOJ1AKHZJVURbADBBSZe0SY42ipfyG88U6OjizZivkLHz+PHG/ywxOOE0T8zwTgykOfFjLHwsWcK/CFW0tCk2/ziqfcUVuyX+uXV+3Br/qPXUlX6lUgleAxbphls3Uq+w2yHT7ezfCyre/hKA917ZakOt9SiNM7XNd3CguRZF13/Wm7RivAVBlyfpWP7+2BFWOqj06J6tSAAWVA4sPe5FF2k//fXuvLyPmF2O7IZBvr/Xt1tysxb1FFK9AoW++JGHJmhHncVmRpKATMX7CzUeGdEadoPED+fifcKfv8O/+Ne7wZ8T9L/j8MfPwaYaU+DYNqB8ZBXZu5Jjg8zny8Wni8Zg4yJ6YIk/HxI+fP3M8CTEaAcfX8hmhZU2roCWl8jsQHMQCfCqTyt6AneI4ThOfT0cexh3vz3ur1UfGB3AMuKiEsyeEoWi+BM0zuArOOvCnBeCU/SWiOI1McSLGGSnCmZYaftLPfDmASy28As6qIFUFx7Yz62arLqjL+W9azipAFrcdA5UlMdFqaReXtmv7qJZ0WG5YzmsDiIUJiiy7qIG/dtw6ybcwhWrZU1LXt6OVzWi/F0ZMnZ9SrqWeewWLByzOXarEnMiuzIEoaEJSRnIGH0odKNOMxqz4wuj18RHE4iiSZpitdpN0Z54r50P6dy5zoghZPG444McDcToS04SXDJJQETRnnBsRxFx0grT1dy4s6cfrc/pnXG3l/lKyxSyL/aJnRCwbocUh129R4o9Z4lCh6ZAvKHFjxNIzEJoEiyyu6rqM1/Vv8wxbWYPRHtjUwEdt1/o3X76/7q/uk2V862eZsNf1UXhos6z2/KkbesO/m/Ox2u/b55X7GkCUxYJotGpxZVuswot7oBNzMcvFRLtku619Ln9XwbWezQrgpd1dYodcH7O4vE/b9mXka1ZS5+SZBD6bJqv1Wvpeg/t1/8/1tsywtvGt+FrdntRtqu1D6Z+/Fie63/rz19Hri7beH9ueLt/t+vv0fXWjNq8IqrJ6fUbrbbLc/ky73PuWOdKXOTC6m3NCnCJYGYR5nkgx4n3odHKZeZoQNeXQbnTsdiP7cWQYBqulGC1LaSoKQdvfphjLGnsGYSBHq6uwo2YUjdEydyJSCrmndrzM+6dE0Cl4PzD4gf0wMJT4NZIiIVvMophc4J3inRKcMprjD4MXgrdM2l7sX+d9U5hWst9GXH8v/NNt+Gg/5Qu9rKtc6zYv2cLrHuj30DZPQQvlqOuoFD4qlftRRVQofDK3BUMcBCfNkUdECV7Jo8PJgPcwDh7vB4LPzHPi5CPnkBi94r1wnISTE4thjELEYUZUxYnNKwFIVlMzRi10SJGaJb0IxKqKl8Ij6ls5TMbyguSMipJxaBjQNKEoLhk/z0mI0fGUEnOcgUAIY9tjNqVS3IDlKv16qen2l5tgs+IxLb+//Iyt+3Hf7eoZG4XCtr3ohnox4Masn//Owrgba1gJpi+1r2UVWywnJqRvr/UCGLAQM1003MuGuJyPnuS2a8X97QLOt3u1HTiLyTYGFKX4gzs1gb8ElTtvRK2mTt4mvrChSXv0IhBcbqJLTe3XmecXtSgi1NT+ixtfZX52i2NANTPnM26AMCthSszyyGn6A2OcuEsD7HdM3/+W+PFvGMXhv/0fiHfvce4D//z7zOMR/JD5dv7E6L/hnYwc/I5H/57H+IkfT8oxzsTTmSlmHp4CT2eP5MQoIMNA8gO5lKMgK5lITJE0JdMwZUU9uDzjku13l+F0ynBntfW+GQ+kOTGdJo73M8f5jPhM8hFyZpCBIc7wlBkVS1jiSzD5uGvuW0DRgNqeDE4w3VkkTxPT8TPH0yNKKmBRCnMoCW3K7lCNds13+5xFGbG03Ak4i1aVsv+0ZWUVEIvbEC0+/oVh1DiPIpbShKItOUFaUdwqSJvgumjnatoUu6fWeLRB5dahaQu1gYaaodGGPbeSIpYYoCVwNU7cxuhKkqCkahnxyCXmEJImTEdt5+s4z6RS32uQAdKMy4rLgqhjJhM1M2tCYyLGjEuZSbG4Ri/o4PF+tJgLb/GNriYu6A8HFPdkW3nN2TLBYfWiht03DIdHYoqcz5/ZDQ7cbF5VKZmlHEdMCTf6Mm+Wut2s1dpiNZYj29PFLWBKVNfkZlnU6kLkEEmIWzLQVeVCTw/a3lahupBKgXpG42z9qoKDurdFyOQGFO3OGmtiCTRMzOjB1NLa3u3eaHVf2UdI0aSrgqSFjfQ/rL96A7tVUfUaRcbOyLUm634qnexKD1RL3sWNAiq6BOogVNfzpCbbSVm7qqSCEjNbLAiDk3IOUvtuQ0f900RM0CjnyKkrmXhhyRSxlOCpycqcD10fVyfg4t371mP91WVZlE2u3aubZVo49/M8cLmeNRfwuUgGK81/1eZWvubWO1D6vdFZVXtA+zp2vLbY3rxLt8B7uX8tMC4lEpYtZ2etYbuiDW3eKeWe/ln9+LbjXTxJyjicJ6WIy7nQqBJ04iy2z+opgozC+WRlf5xzfPNu4LDbMYYRL4FhzJxKia2Yc1P0mHVcSPm0KB0pRdtTQhWcBFQSs0bO53MhSWK1cdXOgXknOsyd1UpV7f2Bu2HgEDw5nayGrQ2eYfSM3jF6IUiyeEUHu9EzBGkZUM3yaGN0wXf7pBAW16Lr25W1ZX8tZwMtn0CVE50IWczFdatc0hYH2HnXqZak6v3qWkwiaKc8KMDaWakuVbPQtg0mViu6erII5h4avNEg55Qgyt7v+GY/cDw+8jQdmebMeRQOZ/gclM/nTCx0yokwTwJ5wkm2dAACc1RyEjQVmoeixS+rgsUcE0NRmmounMuZhdmNHkmWgzuLw43vSbMZGzRmdggSPdPseIiJKU0gO8bdwPl8bvpL5zxpNh4hTRl7RVC/1TY0oYHyzbpbv4klq/brgWLty2TBK8DwBRn+RbD4FnPqxXe/6Ftfpz3nHtk0uBdCw1d6dmXWnaZ4qwFY5lXXB7/7WT6rwtJb1uFloPifWxv8hAYliuL5jDjILrNHCbvf4HcDQe8Jv/1fOH7/O+JT4vBv/nu+/c2/4A8ffst//D/+Zx6myLs/u+P+fuTxx0j85h6RTMr/zO+//wPf/fgDj09HIBDVMedMVGG3v0MwS5CTkeOs5GSEZo4wz4kYE7EQFlcyYDJBJZ7BgRsc4xCsUHDwFryfM+fzxOl0No2i86Qxk9PEpJEnPfN0OjGOFncWgme8v0OiBahJyarpvFnuzk+PHJ8eefz0I59+/J79/XvG3aHMYieWFlCunWufYSxHTYN/3SK8KEeEUk+ocyEtl9bCl1EgKrluGsfWT+8YUoTzBi6ljdXALojkBgwUO6vmpiurM1vdFytx9d7cQlNMJtyZPw6aYsMnIlLqNGXTbrdUmYtAI86KLCuZnCOaE0EGptOEaLZMcFKyoKqQzzPnGUJhrecfvsPtBiR4dt6bdD5nSAmSkphRlCxK2o+44Ivb0oCGsWVUlV7rKxDniKaIZtOWagHAznnudwckHmDeoWmCmMHnYpG1dx6HkYQSQtESr6xrb2nS9otSYkx6pkaZl+cTrF1v1Qr3BV/9o7QCGq/R9ee/14sA/cf1HGw+++rtclZ7F7StO5oJ2W7JzigN6pVWaQhFkC7Kg9pHBTTOFFIrevOW9+sA2OXn/e9y8fHXbOLc1b6vK2Bf73R8fVf88VvbynL99C37/W1tiVOFGC0TqcctCUdSIk1n0vlMPJ+ZJkjTTJwiJRk5h8PAYb/jm3ffcNjv0azM04mUIqfzRIyRmBV8MLm7yk9lj3rnCk0yJVkNVcdJyVS91FLMajFxNnhz/z/s7xiHHV4DkhMpzZzPE7tRuL+7YzcO7IaBu8OOXeH/o2exHkpVlXdW+CuKl2Wy3cKGnzkrTY68cks7zyXEwj6za1nW7uhgCkgrz1UI3BVaURXWt4HM8q8r2pJr5945R8oOnz1eRoYBznHgFCcIAT8kwhgRHznFzByV8xmmORPVEh457wgSkBn0lMo76gK60rKm0uYDqrJFFUtw07aCWXvHYLWMXU4EfDHKWvx92yNX4kDrPl+5pv4M7WXPn5+nvSrBzZcwruaSc6W9HBPz9rYSZK/0vSj/lkFVsXgr+FonXGqHX1iclZuubha1EgbttYK98EzZ5LJ8JNXsXwd0fc5eM5W3LIpb16fnvlM/u6ZAeDbOZLmr+0y7f40A5WT1DNULjslq0o3CXh3naSTngUkd+cf/Czl+Rrgnvv+vmfIH0ul3uMeJX/8XvybmgdPZEc5npuOJx+l7/vn7H/n+4wceT0/EnNnt7vE6E6OSVPDDDp8jJub6YknMTFFJqSuEq1riA83qmKdzg0ciFAJcl8+sqaoWH5GAhGn7tNQp1CyQzaWROJuFRxLxyfzoxVnym+oiNMeZp4dPnI4PPD185vj4CR9GwrDjIsBZFavdxAXo6G5qH6jWmITSj0pJptO5yNS7O+360pXZpyrwa8C1aAcXLWmZoE5pU2yHVF/TVfbQPpFJzcvTJhxzkalMqQzQlYQn4hXNgpTYDSmPMBcSe0+LtS5xGJqMcRRJJqsQY17WXRVNZokTZzXoMsY8kqlBTTDYjfhxKNZCZ7GJxePVkiXU2BZa7JeoIjkjOWKqU+jd79zgQX3hiYJotjXLpqwYnGfnB1IY0HlCU3nHXIL7ncW3znkyUI2zGJwKuK8qDi5bdT2t96gWTXVRRNjAA0gBuyWmZSlUVxQF0vdZ/7umz3X/6OqTn7c1N8L2yA1ta/qN12uOe95wQVd/Bn64dN3H2ZeztbVIAOs4xlKn7oJPtbvbv/Xe2kc9h1TB2PUAculLZAFTL/FuWCndL0Zx0QeX+/hreNRUund1fDfW8BrOlUoG1e74uYXK5669VharwnUDDFdkgJda/T6YYC0lA2qaZ+J0JsfJ4q+TZQ9NwZliLSve0ZIm1fi5rDV7tGX6rh4vWSnXoHpnKY4YZ2Ks5YdcA4Y5VSWnSSIpJcYSFoLD6uI6V/avQk6IgA+Od/cH7vY7dsOAd8LoHcGZNTE4hxezgAURgre6vI21sdkfslkzKZ55/fLodm8vtGW1Gs5Yf0tIUxXGDbPV0DLXvm+lsSigazmnUkDYOhNqrem4drtse+LGebU5Le6xmAu+DFY713LpqXmauMI31TPMkWlWRhE+c0KjuQpnMSWU+mrJ7LwHOsyoqqbsbl4W3Z7PRR6Q8t4FBNayP4shJzfA2b9npWlyBXxbwrznz0ivrH2ORm3l9J6Gv4Z+vqa99N2fpXTGz9mumVVf+r0yymsupGvxpH75QtF77a72nNcQzTaaDZFenA0WVzgDiP3fNPn6Zs8XBSwvhZOvKZC89b3LW9tv5cOu3J+xzJyLZS/gyKbpGYSQHBFLcnOeHok//r/o9Ij4d3D/r5iP/x7iE/fuG375m2/54QM8nRI5Js7HE3N8ZDpGPj1+Jpq0jrqRkAM5mwXE+cFmvagcczYmlVLG8pp0AmMBcSKexLka1GoGfwqFKe9l/7P+IKlFz2UsrbbV9zHX00QGjeQkSJqoRXl9sCLxOWeOpxOPDx+ZTk/M5yN5nskxFgtZvz72r6qWIux94pAq+DQNSvnOEj3WmI/lsb5cWO3A4wo49kCxE/zLQ6U+riZxK0hASu2oBiJsWtaPzKCuY2T9f9ccy4TY6pIkSky9K7cWN4zFTcssmov6yAQ6gVTurTGOWoWSbOVSJDXLXc7GlNUJYRyRISzZUYuVM6uBKldAZPCC07wk8qyxH00z3q2p92ZhrrMdtcXqmWXbEbxn8APTJMb4pCSN8h7ni/Un0twTc9ZVBuu+3RIoN1GIazWCFHdHt/xUbXq93lj6VojmyscKV4JgN9/YtC0p5KaM/0yr8PQtJQJ+Wvu5GP3Ca7jG2FYAUdxiGZRS47bvp5yOi+dW4bcpcNpPB0Ibfaz75GXeDZ0664XpWdOAN9zLM4qRV67JNX7YaMvySX0YW+nj1nNu8dmvpXB/ac6kG3Id7fV33Qjrm7H2/UnxyMgCFLCY4gyaQE3p5hwE73CiRNSAVi2TUYBilesqaVkAo9HiGmNYx9+AYqHBKCVRSzW8dRYz5y3piTOrJEUhaKUwtGQ+dex3I4fdwBgCguJF8diPE3OD9mIWq8H1YFE2k7vw5mWe1kCs0+uu7rtYOllkxqpMra73izym3RiWjWpK5XVWz+a9swGyracy/HVsnNBvhn6/1iRagrY6iJbMUVG8ZT8VMVdljTiBQZRRHHPyZPUkNc8j81pQS7CeWD2z8lCUoni19128YOrAlwnUbNJZVSxroikhnNR8JNdB3oX6XC4/0w097a5sBv8M/72i7HtN+6n04s1g8U/hMvEaYPJT0fXlUtHT8mfH9VPMwuIE1FwkxDkkl8xSHdNGqvvCizywDsxWqQdjb5yT1wgf2/uvM7DNzEqFwUWAaNVLlawBIXDQHU7vEJcQyeZjLjN6+sDTH/6Oz3/4W4b9jt03v+L9r/6a89/+B+6Hv+C/+bf/jg+Pf8PT8YnzY2Tykb///jPzHHHFGlTF29McCXHCuYC4geCFKRuTmeeJOCdSrD78hcE5y4CFOLSrb9ToUXFXUM0kjaC6pJQXzxQjYYqEMHOcPYdxZ9rHIeDFjmJStSDqlJf08zKRU2SeJx4fHzk/PSA5EZzjm3fvCN6RYyxp6yvhZsWAirqkgXbtJGq3BuEtAAAgAElEQVQnvUVyAQLN+lstLSVOcLF2X2yaZuW7eha0/KfLGrp4VhuTl2K96y04K/qfoC/q3gh+g46L8OVcUbiU4sqaFNVEQkFLnImr2U4XgKtSx6ag0e5VRUtspTpTbKR5QpMDNyBhZ0wZS9AUXbB6W9WC6PdoiEhKxDkimltM09jGLw1ImzDjWxkZgCgON+xwzrK3ak7URA3mCu3xbiCEgVmc1XAkEQZh3I2EYaBa/rRzDxWrqHwNR9xsRhoLyChCiG03ZyDRB1zY4fweKm1zvXWx76tu2tc/n/q8Z+na1+RTLzCDP0Jbaa2/4Lq16+CkgsVKcypwbMJ1/c4VIN6uNWCo1Dj85fPl+VVxcLOfL2iLwFb/+7a1ugmAuqaVfr15nJ0y5ernt8f0x2z1abolurfu387ZwnjYvpsluLE4vapczCkxTWeOxyc0zozeyk48PfxITjPeOcZhxO0DYTD6NQxDl4Wz1DBUR0aZczblbrZEc1WQN6Bo4/DBF4WIJ0XLsGkeGGZ58pg1zpRoVlxeHGiaSSni/cg4BHajY78L+KCIJAuTACQ7S5aSigusdzg8QwgM3pdMnA3HtVa9GZ5dcqGb31e0UuvUgL60NYOO7+oiobVrpX4kRRG5gMxSUqohSYtlthqZqcyb0YtaZ/W5M+5EQSoANyssmhEZGYOyi4pHGMhMHuIQUA6mYJ2EU8xMmi2+05kCwPImFP32goEXhWUFcN6yuntAskBORdkQ0VgyyDqokfxO4DDCMISmtFiyuK/fq7mpViy+efev4T56Td5+TgH2NWjJz2pZlFu75Yv6ev0kX7/v0n3ypgZz/bU3tre+9MJkn2+dK95PaC/N40vj6P3SnzObL8/ZuCmwHCBzDqGoHzLRR4JmRhWORyEzoXJCUQ7zZ/ThP8Fv/1cmHbj/xX/Fu1//W9LD33FQ4SFFfvfwj/zz90f+8Lvv+fHDIymMfDxFvAjvxz0MwlxSMZ+nGfUBLw5xyTRIpdbdKSaiUgrtOiRSQC44r0Q1bWQqGd6cqxm3zIrkpHpLmtDknbmgpJSZY+Q8C/NsBXqds+xpzpsQnQtx9mEPas/IKdu/YKUXdndojggZFQMUmiy5TctDsTp8BpIsk0DdRYVBVmZRftF6rbOMtloOpbRLb39s61wEQu1La3RC0laU2zJLi7dXK9hbASOACmvDVzbXXcSsjC3+shNS6rsUgJdTYprPUNyMQzChOGNJK3JnLbRwjRqbkIwJlvnL8URM55YEJBawZjGMAm7AlWxuAQcxI8kEFD8ENHiyV2aZTbgQi1+d4pmqSXVDYBh3SAgWfzMsJNof7pGU0DijM5CjCV/ZgHZKZ2P0YYcMO3Q6g0bC4cDubsSPFosRQqBahr13SxbuTpsMy1m/oJtIscYv1bBct9ZZHU5MCSNhQH2glU6BliihKi6W3fT6jJfLWJb+lk++RitwuIHY60Lwl7b1fK4/+6mMvbf2XWvOO1SdKTquCDMNdDpLbpGbG1rFA3WcFFBYk05BnZ+el67HUTdZ93t/9ZbF7C1z8jNp3quCrT8P175zca1sG3PRlzbGzdPfPN63uZC+hucXsVqqImi9QrcE/+uAcT033vv2d87ZksXNM3GaSdOME89+PJDV8f7uxDydiTGSkjLe7diNO4bRgFqM0Sw9DmLUFr2jqpznokATZxkrs5ira0r4YaSGQyiOpLNZqIohTRQru9R4H/YuKZcatZa5dDeMHIbAfvB4MhpnsgjDMDIG8+4IzjEG4/HBe4NZOTWX/Er76iPW8tLCHS/W7Zo/dhltU850wLDJa936gpXtMOur8T3j72bxc11SMiuR6zb7tfB2qffZmHNOJa9Cua0r+2ReCVsEZzRDBVIWSwwHhMHC7XdFh+01cZ4zUwKRA7vBs5sGfjiekSkxk5EgBtCTuSGXmVw9P5f61BnFa0mg54q/rgjkbHIUJZO3sxQD3sE4CO/2jrGUOLu+BNJoj53Ntos2t105j1roC5f891a7dvZfi5NeoxzbtleDxdcQpUvitQCFrxWMeWuCXv7eciifa1bE+svGWl0x+g3zYlsJ1fWz/nC1j26g2f75qy7eJHR8LQFl9Vk3pq5eNkV3WYTEXIBBBixlcU4Tcc7gTGs0qxJOj+SnD7jjH7j/5b/i/tt/x+HuX3I8f09KHzmnj3xOjzw9Hnk6Jp6OysnPJS+WY0oKTogZcrLi6oHCDVM2l1M1V9E5ZaJ6iy0U14AU5fBLXTMtf7d3q+5c1aqlBrDU3C20BzAtmLxoN1m0m04CIkPpP1kpDXEgHhcGK3WQLRNZUsxyptW1cmEU/YbQarJSvwhx/f5qe7WMuQg2IgLZVZx54e1cibIlpylBecA21b3U1N0t62W3N1YdLudBlWWupV6rhRGEmvG1JtMRcW2Mi+vi8rMWYE2Cq+dsIdTlbq1MtJjgNJHmEzHNBi6B3IqLF0YjGS8GwHywzL7mXuOt+LBz5mWbEkJ1TQrk8yPNFScE/Gi1wfAeDQuJ3t3dQ4yk+UxCSfOp5mYlRy3ZGq0chg8jcToBmWEXcEMALwUgenIqCQGqcCRXBM/294bwrJRAzdG6zLEBScVZ3U0XFvBRFWP0wEIWpaLU7SGbTXHZbgKKr6S1Lb8VcLBc+6nd9xb9r9meU9xt7rSkTGIxiVLulWe/Y9+rZ+P6XWta0hQBsr0G0s7m63iOXPxyu2l9yM/Q6jZ9FUi7OEttcG9/7jPC42sUDK+Vvdppl2oV6vusNPmyr0slfN/b9vwsCUIqzaP868SScO3GUCsRWQ28wk+9LAp/7fhE64d6TdpnlZ4YMMKUpgo5CecYiSkRk7Ya4aiFCnjnuzIV2rmS2k/wwuBKfKI4glgW1yGYq6mX3kpfFJ6qjZWxDH+Z3+0avnqrLG6nKzor0spFWF8LT7aEVJlcvKkqSJXaW/E2qnLkVRAiC/+FAjJrTm298T6rjwzUS6H7KktGXudM/NsHRw4OyRafug9C1kAGTrOFdjgFF2BOmLyXurnTKpIv+1cLyK3jK8EpZXjVrVmoCuiavPBu5/Hheg3FRvP6a2Xub53NW8DuJfrytTwOXs8zrL1YZ/EnDeQr0ezXaMVeg6j797mIB+qfZzfXG181xt7CcvMrzwgzjQD24LHJFesEI1e7foaTbt/71rUvaS99fzWuSseApUC4abfMZe6M6sw8ZWI+4J0FJuc5MT18hMcfCPGR3/zr/5G7b/5bhvAt8+N/4mH6HY/pE0954nScOE/Cad7x8fSEvDMQ9fk4I9G1BCbj4Eh4sooVUJdEFogKU0wkKdcACzOvxFM3RLi8VAEeoSQvsQQi2VwFkxVdl2UK2lqknIhpNuLtAs55vAuIC7SyF+W7rgnbkJMz7Wws7q7VjVD9snU7L4lCKhEyqn1mU+32ZB+flw0EKhZLoIJ5+5e9WMAZqoUHlRHWunriVq4uNSC+DkxkiYuorcY1NuuiSKkR2O3/OuVVkLdNWK6JzXl5jpcKgoprEcU9rpQkqTKrdntzOX/F2lhcnnKOpPnEHCPZedQFA4AKZCsxQEk044Pgx7G4olhqdLffI6NZC70TPI7gnIHFx7ExVxGLS6yxjhqGNj+Hu/doisSz55wT6bgIkSklc6vKlognhJEoCi6zu99ZcpxS+2p0Hk3GUUXE4ni5ErvY9kWTdNsuKhy1xHAsPw0mFOWG1DIgTfByF/2VJWwgtJcqNnfxx2paNttPfeKa9t54Ftff7K20eWUVtE9WfdSzIhZ8U7+0+reCoVxqy6yNRnIhBFr/zW+6eym9mMMq4NcY2/rWz7lSvb6tCN2qvcijXiE7lDsv5d9OsLt8zlbC0G7rv10Y/FoubNu2WNIcFy/4FcZQ90F9lsk5QgiBNARcCIh4lATiGIKHkkm5lE40l8VVH0aznHN2D2DlLdaBa4rVsk0pMU/2b0oWFxlzMmgjFn8oxsJIOTMOvnj7mJvk4A0M7gdzlR2cY/CO4Dw7Hxh9YDeODMHUdxVoOiiurYucYPPYU006Xraa7e0Hq2urfVI7rKDP+bZWQl3jpT8noSgz+3TVxdOrrXGRfszU2D1vUUqrJFSXZDcWcp/bPqrPXgHOtn1MGV9+w4kBToTmabQPDh2MX53maGugDtWB82D82ZPwYmEZ7flNWLD9Z+W5tMkKrsnaFUzaiBy5lN2AOhiPlRG62w0E71dnYIEJS06IZTZL5tgrCp2fepZfApO3AOdznpVfzbLYOvvj8es/WetFpC9pV8FZVZ8Xhnt9s/TEoVgaqIfptg/4jVG86e5X9/qWTS42+uZ5s7msqgYMcgJVgjhQIblIuA+EYUdwmXD6wMfvfsf5h++ZFf7lMPLhh/+d03HiXbonu78EGZDpO3a7J+L+zOOYOH+C7/4OcMrhkJAxMZTSFn7Yc0quxJk5JAxMaeacM2dVco5k9WRCmUopFj0larKMXQVXleEDmUGd1YoaBpwTUp6JyUCqqUodmoQcZ+KkaApkn8nJEYLiUiaEQM7GOMU5QhhIAimWJEDOyLorxYa897Rco93aXFulTCGUsOFOSnuh6oZZmJ653xeAV4HZprm2dxdto4hfJOEiIJSiecakK5XWJcGAUM6HGvASpAD8ClBaECkgRVNs+8a0obW2E8UqbADMZ4/PUAvpRo1QcK552di+zqUuXCvqnGNxlTqZW6eUWLz9ATe+MxflpOQpWn3GpJzniSNHQggMYWDY75C7A+x3yG5EwgAlrkYz7Ednab6zljiaml01LSncAXK0GmBxxIlHUzZlQZzROVqcK4J3gYhnGAfG/cCf/eZbGIUolkDJaaDOtu2JyCrj7Autaq97l6f6uROPugHxI+IGkEAVCqQku3lWl/aKZ38tzeoXt0bKba9eG/NbqPXXAIrXOl0wY43X6Qix3vZ+aUrLG9e39y5CqUm8VRHb3mAlZPqr/bzmff7U7db+3AqDzRJ4oRCpCmU6xcj/P9pi3bwtA9x6mwrumtJILFxiv9+ZMjhm0jRbnGIyhaZ3sBvAeeHb998gPjThHXLJgqo4F6jeLJZ0ZiCVpDWn88w0WVmNeU7Mk9W6TUmJBc847/DBvDGcd4iH4GwMNQ7x3d2Bd/sdh3HgMIzsvGfwVu/YqbLf7TmMO64qwFh7rTi3AEk6WlbP5+W5v5xVswpeKijUJmE9z4XH50KP6vZzJXbdqbecBa3Iu4JmXDYZw3hDpWaVFzm08yASWWiJZqMDzQ1Tu3PR9Dn2S9ZiWNGWeg5ksX8qyuCA0cZ6SorPAklQgfc+4IYdR4mITEzRUdAiLq6ftcxxE0EW+uYHqwmczSrpymSqKqSMD8JuDPzy/sAQwgaMdblBNnL/n5JNvdaV9S3t582G+jPgla8mKPTdvHGM/UJc/H6NiMpmIvrNVgWu1QF3tCypUrHKc1qma2PcvuTXaVth7ZZbSj8QG38PYirVsNgvckn/rwFw5BAQ75k1M50mhs8fOf/4HT9+/MD3x0ce/uZ/Y9gLu3HPfvff4cY/Z78XfrH/yOMPnqcIJ5c5PnhyFAiZKSsuCRI8kj1PUyZNJ5w4Bh8Yw46nKXKeJ4M6BcBkUQNlxbd/nmemlIrtydxN6jzXQu/OOUJw+BDM912sRIKTCqmqBc9AlhcDmPV/lvWzEmNTswlFeSjm5mi4S6FkZjPLTbEEdkLbdj0qEHGuizJrBa/6VazColFvs6RWC+sieNbnLl/rLUiLjqSteiHCWXMr9Fyfsxg5uvE6y4IrWl2Weu13ZmEteXmeCDllNM32vGwWXKna6Do3lfdVpq4WS0NOxjhyJsbI6XwkT2dCyvjDgNsf8HfvwR1s7pIiLjKdjybEnCMjmREjsM5l0uMZTYIkYbgbCC6U2lvKLGJZcUUIYtbUlCBHNat0aaenJ8QNpHkiTpEcEyFjrqjOo96XwsOZPGfGceD+/cC7X7znGDxJpOg8zA0bB+LU5vYKDbxG5+rf3R9tPzhn7o3UrK0+FCGvoxkvkSThWUC5Hdvr2tsE80ULb181b4LuueVyc2W6xpCF9bm49VkdHs9ZqN7emkPZVggtvCfnajlfA0Kpz7+y3uv4p1vPvfF5u3Bds/2ad96ClGc9jnh73y/1Wfkx0JKsXKOxRlvL51UC7p9TJXaub52v2W55El17X0U7OiArhcOi815klwsrxY2XqaKLk2pdgiym0hNnfHIYdwgDw27Hf3nYkxI8Pp2ISfHOMadk8WSlFIT9L5OzFlfSRGrWHdvf5/PE+TxZfeSopKikpFb7VXrXVVtPUStg75xjGAKDd4xB2I2DuZeKQFbC4NmFYAlunDL4wfqp2fCcNBmgAsPcPGS6M7Zdk+7vylfdKpyj3dHd49ols5K6Im+YoaF64TjWdDyrtnGEEKCk/8s5W8IfqbKnxyWKDFItiFDLaW2HZuE3vlM4Lc+VCgxr0iwpTAhLsqfNm0lbVvoxeJwM4IR7gdNRSh4CJTjP4BLRCz4JNXQkY2VLesBW5YJa2kykuJ6qMgzB4klTbpljm9eYWDbcXQjc7XctQdMaLOpqDqAq3Oz6tbW+dOmVNp3XLH7PWQS3927bln6/5bt9exYsfi1U+iX9tG9sJulF82q9pNf6eHkc18f6hai3ArYNk638QxADgc2VUZZDKnXxOru8Vvcd7fq48g5c//y17SUGU5nmdaB4ORZKSQY7iOWASS5m+nKTJiQZsVN/wImQ5jPx+BE+/TNPn3/gx4cHfv808/t/+lt++auBX/3qW97/RQbugDscI8cn4XhWTlGZE4iYO2MmgQoxVWYSieeIc55xUIgDU8zMSQFvlqYyFzVTZlYlFYtPXVGnFf51xLO4PvpCaLyrWUTLf1W6PVkJ2GKp0YqqCjAzP3r7cYWmqKtWwsp82mw3UEZ7au1l2YHNDVswoIYx7/V+XILcm1yMdousZbzL2VvYnrYz2EbQrDBqxLmCxfodrQk3yrO77y3PW2vy7LXrs4r2uoxJS050VV3cLgF11V1SGwOjut/mjCYrRaIpWaKF6YymSAgjYXfA7w64YU9mRBDEgfMDKSdynAyYxojVqayKBwueZ54gRXABp4IkmOSxxbeEUoxZNCOa7N7SpuMjSIAU0WhJcmqMhfdCqvUiFSRndncH9t/sCftdc2W2+VqAtbJ4JG6FPe32T/usCLqLe02lDd4EFR8QP5Ysw0uh9qb1ajui30N9q7ulrmnjoFSBptsZ7Rt504VprFn6kuVcrZnvloiux7Weg5d4wPb61rakV+5h2fNVkGARvpet/lMoev+gKqysl7sJb4UOmdu2WeqvvUU38MsnrKa0og3aKy7XZXVL4ys3Rv8qMeIL2PTzAR6ldWNchK8rz26Cv1zvdwUen3/fq8PYCI6t2yty0bNC5o3J7Mnx9rZbUtDqGR2N7+UGoYKz5Sm25xx+GBh2B4TMQGa82/HrX/2S3e6J43kulYcSSTMum0KsWoVyjuZamg0gWqm8TNLMHCfmkiQnV9mjoylSrHyulFVwlV/7gXEIjN4VwBhKjUSL93cY8A3OMw4llrIpDSh91uzClxPcz2EFbP2c9xdX52gjfy2XrtGG5Sxr5aHdfbkAqbYuUiUAacRBSwkNw4WV7uZy60J1jaxW8Nmy4S0/9Tn13k7hJuUlpaRIU2ieROYlY468KsKdUDxwzONmLBnsQzZ3YCexKGDrtCxqx2ZlrdMoyzt5J7Y/KnGq5zub5Xm3G9gfdhzGsfECvSSgC13I1dTTL1H3vfUq1Q7YrPbql1tn+yUQ+RZPwJfue5Nl8apbRfdZnyVo7Zu83H/td+u7Xrh46BvG1z9se+Gyo+fYb3uTNtk1ZWD3/RaH1X0uFIGbUneNel7WDy3DqaAp5xKjpYksM7hkApcEMg4kIi6CJBTLhGkuPYuAUQlTTTXxltyCr99UFdQsh3D7atL9clYYJDFKxM8HcvIkF4nhRHJANtc0L4+IPJB0z/n0F9wfnrh/+kfyD3/LP//2/+b3n77jd59m/umHkf/wf5751Z9l/uW/eOI3f/Uj+vCOHz4m/v7DgdlFHn/MfP6o+G9mwnxvp14SJJjnyIwSdg4fIJKY48T0CCIBLwNZI8FZTEPKkcgMeHNXdB6nycow5MycTihWT84FBy6S8sQ8ZST8gt14xxBCwTPN94WcvbnCaKnLJBlIphpQj9ci5FaLWVnPpKAxUovEBrEEJ6qRlMCyThqj8m2tlhUqcAvIJa4MkhUnKeTZ2OEC5nJjqlaDadFWWtfVbVJLnGZpBaRVcl0tpBUounlajcvcZxSLELC4SpNVU0niYjQlk8jZAIh4rMYSdZpy8UIRCz7NEadVW65LkgMczo9AgmhupqoRITGSmOKJ+fTEdDoynY+Igh8PuD/7K4b9HU4su2dO2cYRPM4Fgr8nnz35fOIUH3k6myZ8GAb2aUQfLbbwfD6SYjSmooofBvaHA+P+wP7+HTKWEhe6zg8aHz6gGi2ZgjjC4Jln258ywjnOOCKBzOgy7/7yz9n/+j2fJ8uUG5yUSiFKFnPjsnqXRVBoZoUl9rCs9CVt8FIxZ7lpILkd+B0M92i4IzGg2TEwlnWVMvta/mt/5+JybJKUQLF0CsZ4GwKhZAfOVgbH23YkkktaBSnzVkWETIs1LsmfjM5tpYaqrPHdvRWQutU5tFbF4er+VuKT9eKWK9+7BMc1BrQHhtr1X92nUpkKJ7TYIlfqtvVAuPa7SPz1DNrjnQRwgRmH84Ecz8RkMdsqWMbHMHKcMhZHllf9bMfdQGZTellpAhEPuXjMWFHZMsdrALnwlNW03GjPce3r7VbMEFDTcazGcyE69M/O5V9165HUCVZKtmbtvl9loeptsX6I0bZObOwB2lUBMF/l1T1gvPXv9nvV2gcs57lTbm4f86zrcnufrQArq/cDK5WQckS8Y3//DjeMnE4nzqcnHn/8nl//2S/55pv3HE9nvv/wkeTMzT7GmVQPAnA6f0J1RJMjRZjmiVkjUSPZJ9zoQANeB0hKnGckRmJWJCR88IxjYBwHxmFgCIExDOxDxvtST9F7xmFgFwKebOclz0xp5v79O5y3WoA+eIKvyn5FNFJrSnq/0LqYbM5rCYZl3qryczlva6GqoZyyLs7OZ7+ZtCrmpPNGqz+5AUHnrc9MCeEo7uHiFfEjWWc0R1KczZpGPfEmE1RtnJbM4KUgYTnf5qaqVdFUAXpVLrpgQ6yhOYAUeSGl3BL2SU1rmiHgeD/uGPJEkISTiDqYPispO+7ljtPocRoJOvPwcGQIAw7LNm9x2trWoJEgTYR0Zs5KVEcksnNKjnBOyvtf3fPtn9/z698cuNvtDaiWd0nJ1t3wtRJTRtQ8fYLzaBeFc/W8qHYZY7vsqTUJYKWtZXdsz9m2VYNDcwm+YfT50vbzuqF+jbbQ3Z/Yx9fo6I/Xftqyvv77WybyMmBcuwy+cCs+e5TMJAARkRnRiJ8nQrIEIaqgfiInA1WBR9z5gfnpgfPDA58ev+fj4wOfHs88PhkB/f3vlc+fzvz6F/8Pf/Wrv2SOE+f8wGk6o2pB6XGGNM+FiOWWoRLsWsbyqHgf8D6Q1RXgbgm1LGN8zaKmFnKYM7ESMYDiXkqJH2zWgUXublqt3uXLdbEFdbVMu+lwztOk5WWllnt8EYgrELriQ3jLdbAlh3mh1dp75HVsWtW79OtfxO0uoU1dVGMS112UriTEIBd3V9+YCEDsLe+lBpQIZtVN2rLK5pyQEExozTVuUZbnFyEr5djApbhMnCdSnNAcIU1M08k+y4rbHxiGET/ukWHANWuZFLdit/ztrHB09p7w+QfA1srliXR+YJrOTNOZ09MTKc4GenJmIjDuDoy7PePhgAwjYRzZ7/e8+8Uvljn6/ITuAsnRgJ0K5JSJpxMe07Sf4plf/vVfsn9/jx+Gsv+2+8kvAK2s7HaJrrnyVdBfLcxS6ipKGJAwQtjBsMePe3zY48IOfCj31icVQHZjG0p9TtnDvZzZ3K+k5F99NUnvAUlnxf+JDPTldqlkfF2JkLfxKpFnhAFZn+G67+r3rP6dR9IibCRVcsptLXrlgQlAJbmRSFMIGS3/08bqvFVeaEPVhbatW0frMeXQS+3qHFRryk9uz8eRrmJIX7EQ14D07Sdfb7eA6LW/2/MwfpiLsjGWQojDMPDNN98WRe0RmArNtuQ01e3U/lbId8Q4MeeJmGfCsMPLHVkCThJnPZNyJMtMcHujeU7RaGWUVBMxgveQvalkrSTHjGYYxoDmzDRNaJw5BM84DuxD4DAMpsSVkq21ZT4tatciGzi3pqOtjmn53uX8172yoX3rSafSsQWQF1fXKlfUGM8edBbAlxu9qEqyxSJYlbYtC22Rd0z5m4vSyMKGMsWFVKxESfWfssRDhvS0O0Nb48pCz3UlH7V9ki2JUaoACJOPgg8ElxhDIGomRtgFR86OnCudS4bHsNhSy/6tRRareFeYU2oJVC3/g/0Vynw5gSCUkKO0XoxST7LWmESk8STN2uIjRWS1fo2fLm49VNn6cj9ctltKm+13/zQxixuGfeVj4OsOrj5Bbjz74nk3BeEiLL0Cnf/JW2V2dXN1TP7WrdfaVqPxkp/zzzUnrtQxys4bAXcTPkdcnnDRgXpU1JJvuIAnWMaY80emxw88fv7Aw9OJh9PM0zlxnk2Tdjor5znyH//hew7jL3De7HIZK1swhMx5momzabycq7EkZf1TJovi8aW2UvGF115oLp+j5Vo5pO0qC12n6fzKQa5uttqU704oTGXNMEzjbwBLZbFq1KZaifiiuTeXSzELnt11dY1vxRtdrxWk3Z4Di3nYArq1G18Tv+s7tPtowj6qbT8vILowpyua661wrT1YTJiGsGgu6cuPpGJBrmU6KJpTKWtINuEkp0LYDUCmNBHjRE4zmmbLMguo9/hxxO92uGGHuMDisiOXZ1NAvMMPAfZ3KEoSyDVmzzvCOHK3P5DSTNNoJNIAACAASURBVIqJGGfClM2LAGU6n9Fpxp1OTKfTEgcDuJxIyZt22gkhCJpszQZXPBkc6ODZfXuP3w1FeFjHVvcDrlumVwCpbrKAXhF8bW9LEUw8uAHxgyUL8APOjTg/4CpQ7LSkelPfWmNu62MW1+Wqda39vE5LaieyXyZZ/UG3378c4dymnYujbNv2veKl+95auL8E7vW7Iv3vC/h9VZNlLNp92PpqyrGefi3vsdC5nv/LxWflDWix04BZi3shxkaiVxVJbOZrGX4P6Najerm9GO+4oZEX93Vjvaa174GXapdduAj+VxDkm8ZcO3vJuvBFYT/anUnVK2OtD2CZ/w1Nabv3Ouq+CR575YVznnG/5+l4pMYU1tACY6ImYJuwr3g34nxGsJizlKLRIPEMQyCljMZMTDMxTaScUVGct6zlFltYSl2J8RVLRpdxWp6ragkJxHxcrERGKMlOKm+XFT8Xap+yOrfLZz1Yu3WO22FfXWs0RKoVv8gEpU5iA4s9n9JyXoSS1E/bnEovxNiICp+j5WtAtZzfErNYeKw4bwGojot+HJbYTAtQa2rJtn/6d17mpO3hDZ2v2eHNUuvxzmomh6z4nBmCELMQo+CtsGWlQqSkBbzX7K62rg5ntZbLXHjncTWfhMdyAGhewJlb5Jh+nW1t3SICbU/AtTMlW6q53gPVw+Rae+0Zv6XI+ZL26tIZN/36X6lGvAbyXsPw64K8tl3t8xnCfvX7L0zstQX4GoCrMezlAxORe55zYywvpYR4zrf5pbW45r7zuqYIEcWRdSS7EXRCNOHSGTeL6W/KoRAX8C4QEsTj95w+/Y5PP/6OHx9OfDpGHs+J82xxhonMecr8/T995C/+PHI4DMx5RBkZR9jtM5+OM9OcEIXgTYhWLLtmytq85J03H34rPadtNitIySXDlhnL+jNBsYRVqbNksczmd59zjZOz+fXe6jKZBtI35lI7M+sYVNeVBXsta7e4vFVNoL3PQohfEIhsEVdrWZl7O2dSrKWqJSmMXW/xpiznZDv+1eS0zouEoTVlNVAC0JfpzMv93fvYeIp7YDYgKblaamkM3pi7JYRRNYaZsflNDTwWUJlnUooFmFtsS4oTOUZyKu6Z4hDvcLuSxbTE4fXRCE1rWMct5sKnjORvf2ma8CJ0hxAIwbPz5paaUyTOM/PpjH96IsXEnDLH88Q0R6Y5oqcT0/m8TINmJKaiARfCbkBmEKfsxsDplMELYTcSvjnghuJaujmy6z0i3drX9a8Cae9eX+lMXVoprsPesp66AdwO8Xuct/myjKiWxVAAlbWmvOu8H52NZqNkyBv6tSg7tgKofbbQxe7fDcC6EMN/Ev3exIetrpXEUN25u/6sRWDvlZv1O9d6vjqSTghdWVPtYgNcTTgr3ZpgZNeW+d7wuu7LK77cKRiqx0M96kpzwGy8tVGSognoeZBWgbR+Xh75esHpNSCs/bb5e3XXC8+5fs2AIiybXZZ5uzHGW33f3ie3x7ESuPlS2SRfjHH97CvXOuVO66XVU1zc40SqNbqU/EmpA4uOwY9wPJX5c82bo8btew8pWZ7O4APqBpJkmGemecZlK8cRwt7Kc+SZPGfm6dTG5Qejw8E7grc6iE5AiORcnOaleE6U372Ilc0InjFYCQ1PLtbD+kOzLDqR5uZbydVa4UOvf2jgaSVjXT3L1bW7eidVOcIAnkoPGGum8LJ2aqBYtKVQ3Kxrt7pSrI4mDFEte1J/ry7ZLiPZ4VytTZyXsVeQ6mptTeM5tyxjvQfLqt55BahqYDE4j3eZITjGrExJGYOQspCCYxiEGNWcAbSAxTKm0Xujb+os6KXKG0VGc8mhLuMVy4qfU/uRzTr2ni42J9po3kvtGlBcA+ju9V/AMC9Z91+HtZ6/59WWRUHWVob/LNuNlzVJhX4Jf05r2k9rN7TmbwJpz7fnwOGtTfiFTwJ3RPSA54DPO3J6KFq+J9SBZ4/IgEt3PJ0+EqJwH++ZP/wtP/zhb/jtb/+Of/jdt3z4nHlKitvBL7/9K3bfPnLWJ07HzO9/yAyf4TQFpmkkDJm7+0h4ADdTYhnAB4tQsfqJ0rRJMpumcRF3koXL6VLeYBGkMeGmVKdXpZRbMFeHapnUzs3LOwhe8L5kRe0SegoFcKpSY6XMjaK4OwIt1gAKsXJI0XbhzB0z63qtbhOJW+tZidwKNthnORuTcCVGr+IPkRbMvQhDawGyfe5qWmuKrOmLuNDF37Q+ClCpTNR7qmUQau1DtSykoq36o4jFOWY1S7ZqsKg1sYyzruoZBTyZmCbmdGaeJ/KUrEYhDu9HJAQII4x78CPqLVNvlf/ySmlQIkdEEG8uMpJdAYp1bRM5KVNUUiylQHLAOSX8cofXTMjKqBaXN88zp+OR42kRcE7M+KgMLpj1Mp9wnIAzTGfy+YFwP7D/9h3xkPCqFrPJ5b643BPrVb8uQrjObVMRNyJuj/N7ZLiHcY8M9ruEEVxAXSh7xVXZoQOcXatbQNdAybSrur6pvUvdO3JDC9scJF/RNnv3i9oa9K5bhUs3Ic/NcbxaqdoLlLK+KIVugQmzlqF2fSZzzsWle4k3FkzgMpffji+oQ90GIIngWlyQ7b0am5PLOS1SWVMCXAM09ZbepfLatD1r0X3lUnaG+zpVq36+dE/oCmvdOnNvAYj9tevXLyx93d8/jY9vH9StY/+xPdR2TQcGLgTYXKPZ8uo+sD14nE48Pj7xdDoxzRMZJeZMTLWclO1f1cxx/hFkB7pDZCDGB3KcYD4z7EZgZAg73rHnIX5o4NVeI2JeKOYq6oOBhSEIAY93AmQGGbgbBu52gXf7kV0I5pZIMhdFB14s6i+U+ob1uK0Uwhhlre9bx+LcErtYQV+NRa5rvXgkFIRZSl/0ZTLsxlIHUISqZF2WqapoqqKnXshc7vVFwWFWRi2xidWtvlcalGjGlsNDaJJEGS4ly2xdb6vNKGYJ3rTq0rneswtwN2swBB/Z7wZUHHPKzFiZrzzAu/s9T08Tc1SiCHMEVxO54yzjuWJZxEv9xUonayEPL8IUI+fzmdPJcTo5Dve7lVtxnSapa1SmZ+VZsJnZthd0+/nbeNBzZ/o5N9UvbW+rs4is3mXNyJ8ncm9tPaHr3WHs2uV9L/R2oaldaTK34+7VPfSM7DaB/8+pLXP1EtPpvtPN43NAcvv31gXl8kvBUvOnBPmBlJ5QnVF2ZL9DVPAacdMZPR/RlPE5IfMT8XzieJp5OCeSjITRs98fuP/2L9HHf+T0+IlJle8/fWQIe5IqbhgIOeHV/OhTVmqpumku6QxES8FdSOqQDCGX4Gype664MCiloGv1RTfIUV1SXdEEGV2XhZ47loxoJZahpa3I5upiJTKKAOeNgNscVze0jZBcj1/9j9Z/1rb3a2vbtF9c2xUbqyHFAqTa/PCpqcW9WwS5ol1sbKMAwNZyXk5uTZetFLAp0LuG5zqOAhTrHKiSmKv+v0yDlusWp1itIOZeYjF0TZYpVlop74OasKLZahTO84TGEpzfFs/bvnUD4nc4PxhTudjlG3DQWVtcPEOpBWa3atFOZrSARVGz3D5EzIpZMvF57xHv8UNgd7dvT5imiVEnvAy4ccfD04/4NMP5xA/f/Z5339xZooadIw8giSXEotPY3mYklXJI97fShIH6mQjiPM7vceGA+AOye4eMeyTskOGAK2Cxuhu3WNkq0/R7mGVt6lQ2mn/JUW+0XiC7+Gi51tPxCjC/tjDdj2olKJZYT92eUb16/0967kVfy6rmJkwunEIo5SCaMFfdUetZqz+lL6dLJuHu/cjF3Uvr+SzJi0p8mqtnUxUvdZWvUaTybwWMW1T3bLvtxtvuaMqJLZ+/7GvxnrjpX3V9FM8qZrbJ8jZi48ZSub52ORfNCtsBh6u8uV67PuKNZUM7MaKCl9LvNaWyVuvN0sdV6wdakoMtdLvfX6pi5S7mRJoTuWGTqtA1UBBzLrzZoVjegbvDgSmdOceJz59PiM54NzKOd/jgLQM1xm9DcC0sJDhnWU5VDUg4UzAOzjKiDt5bia3mHWSK3yCL9XClp7kiK9m16zykupIuQLG3QG6AIr176xYsyvKzHYfS1q0mZ1yvT2OZaGcVb0aiUiZKu7EYnegV7fVfo/vS9X1NadHKiXS0ZOVJlU3Z6yovL3zIIQTvGFFSyAwBhgSzy2ZxHIQwFPqehLmGb5b+cynN4bNDaintck2LAs3EnkyMiWmKTFMk3Y3FatxNq2qnRN0oqmT96/MeBBuM8QwvuIldrnz2tXjKq8FiI5O6GejX5LGrw7F9fjd3XziJz33nuQl+ztJWD/LXRvGy+m3tLPDi4l/nv8+258Z/OadbQlY/vcLgZDCdkEY0PyL5ZPe5A0ogpwnmE5w+oecnNEVSfmB6euD4NPF4zDzOM3P2uDCaO98wkp9giok5wefTJ4ZhwrkRPw64CG72oIGskQpZ5pTa2MW7AoaUGC2TlfO6ACqlAEXMZXWpKGufV+17Mf6pVAG00upaW7EyAroSgVri5lxxrVwIdXvIxQLeFqieW8fL/XpFECtMuroGLU9fLAP1Bao1oWKvms1LoGQb61ouPbWHFiK81aAtkptp9fq/1eaqjsdJPzYDiw00q2kfzYnIrUo3CFYWI+dEniMaIzFG4hxNgJDq6uQN5JTSD04sI7GU7KQdjFmvQsNVUt4nkTVSTQyWayCBJHKKlTMZMyrFkdWDo2afBRc8oQstTfNE0kSUGfEz56eP+BzR6cTj0498++s7hp0nDJ7oFcl1793wVuinvv5RBYZGQxYBrb2oeDvXfoeEAhiHAxL2SDD3U/xg67DS7HX78dryXxtf/c8zJK+Ot+6LRVOw8Kf2fuUvaeukV/jJW2m5LH22LrYCfhvd9R66uVkPp6Ovr1TiXVxrMuZGclk9pac+JZasnn2qEN+BMK2UovumVItiEciUVWIJymdViFQoHhrX+f21v17HZl++aQXGXtl5FSa/vPVc/Pn2PFh8/vsXStwOSDZafnN4ndDa0YBt/+2YdeOpFrVt/HP7znbsutAnVXNJrU/LxT01xlQSnyyDrIAyF/5MySSOCGHwJAKSEtOUQGeCBx/GhS+L4EOphewMdIQCSJwqkjM+YGDEB0bvCc7h63cbWKwupj1gtMN2AQk7sFiVwq6m0mSZh/VP+zKLIrN+p9J0oSqwF6BfFcPrUTwnL2xl67pVlu2yjBNdQgVU9ErHxULXzrWu+qyf2RwUBpfXnbQ5cM5qcEvNAI0pm8WyeyeF4MQ8t6qF1yneZQs9Kk5Z3hfDlpjslqtH1MY7IqeMa1mBba+lZPLhnEpGdV/mxdXYzyJLlXe3/196Yr6OdnTMbgVCN3e9oq+tAeinYpTX11lswtBPet7V/qU/XD8RBX/phHwtkPnm595iIB3BaIy+Y6oX5GiNNsqfl4LGH8P1dnE/gax7vEZEzoh8YPQAe5BvSdNn5qcPpIffw8P3/H/kvVmXJLmS3/czAO4euVRX33tn4ZAU9aI3ff9HfgueowceiqJGs9ylu2vJzIhwB2B6MAAO94jIzKrbd2ZEoTsrM8I3OBYz+9sq3LOkE59O/8Tv//Ef+P0fjvzxZ+Hz+SuRe3w+kHXimX/mj3964ufPVmvnefkTkz9wGD4wTB85n4oQwh3ZPaOakLz6pgsOUYfLGGhjAfH4YNnEKgBMyTTjMdXU/qBRW1a2rEacKrFeNaWlXpNUsFi0WF5w5aeCBe1+wCxOqhiYpc+WWpJOqK4U8B1zeVVzLv0cde5C0ILfdXf/avHTlK0wMrTyGKha9jeN2/1bjlUrRinyUdZpbgJofR8tSFyhxE/VfpX6eprJHQvMRaA1AcChfkCGqSRY2bry5JhYljNxnpmPZ3KcWeLCkhLTNDGME75YEDOuuVDaLgplXPZxPCtBbMJvtr7GMbAs2dLoC1ZWxDtUPVkc56Uk0okLP0w/mCA9J2JeMEZaH7G0p8Xnr4gk5lMifY1EPZPjCU0z7iB8+OuPHD4+wmGw1PAVpF4R9jaufR0Dt+PaAPt2hfkGFPH3SHiwn/EOGe6RcVqT3JS6i+3ZPZgTDJh3y6Qfx0r7XlvfzUot0jLe9pbz1TLZvduOt/xalLD2vLc79fU+25vrul6ATWLNWzizCrjXgWTfLplzr9zbf99c4YqrdBPGkBLjk4gxUsVUe4uOh6S0yf4sUizl2VzFwZfxN1fxWmQbTavlRMv6ENjzpdbzVYq98l6vjcWVb7vrcmepvNgGN57zHg39Hhx1V199ShXGb1kIroFG1dTAX+8xUP9ucYJsx/GaZedaDzdyRPf5vaKDc6uF9rpyHZDtftmc42xdxhiZ55kYS+y32kFbYYKqw8kdWReSziz6guLJBLw/MA3OMlvHmZfjzxgPtlwBYxgYp0DwjqEsY8kJUXOXvhsGDtPI3ThyP4wMTvAokjK+i3WsoKeC0AblNrLYOjdOHL64ne4VeT14WsepBcl1skAFjp79Dq9g1cJYyjh38ljfmoVNaZ5WPdk1GislyU3xNKgum2DXUfOd1nVfab4p5nuejq5Kp33byxvXm81NLr+H4EmSGdQxBc/ZRWKpN+xJjA4r8aTCMARLZKNKTNHkBoWkEQvLNI+pHBOKWs6GUrIrZVgSxCQFaOY1CyrdvqTK3Y4d87l4t1V50L65TgN3yp1rY3dzj71x3rce/7NLZ/xLgI9/6fYr4uH3P/MN4ejygtcP/8q4/vtbyqhksjMx36eAS4JbXjj+8b9w+vzfWZ7+mcMyMN79NXF54vNP/wf/9Ief+fmr8hwfSH6BJJYk9QS/nP/IeTkyes/d9ANhXBAXiBrIS7SEJbrgp4GD3JHmmXyeLfFMNhJmNfkMbCSF8zLjcyES3tw7LFmNpeyuRDAr5JIltNrhzA3B4uaa66l3hBBWrSNaXFm8FZAtTKFqVFNMRTvZrYXGV40BiDpSScDSYiLfGP69gFTdAfeJB2iayXKuliD4DbPRdh8Bs4rWEhWYm1ljgLpq22pBYGNxq5BQxy9DA+NFUjBAWoUlZ+9bs5hazIrDBYeXwbKUhsAwTOb+KB7NkZxnC1jNkfn4zOl4ZDkvLEssWsVAGB8JhwN+GnFhQLzVgqs/rmZALUK0dm+wMuo1/ionA6an40vL2haGYFbNmC2BTlQGAgMe9QP5/EysLqqAEwPGKUZOx69tTp6//InxbrS1mxemCbJG/BT4u//lP3L4q9/gDxMpeNJ5psZn1piUjRDQWi/EXojL5Xex1hZrq5Rain54KPGJ9+DvwA1os+aa8sPYqQkb2xIvHdCWMq5qp9dqn30XV0GJK4yXq62+0YUlu91WbmhuezH7Pe1bz6d0+tZ49/e9/rT9dTYkt4DK9v1rYiaKJl3LT0qpKWlqYfO6Z+t19W5Z8+ri7FxnWalg0WpcqldccU2VTEt04cRoqBneL0FMA3BvAJztRXpjpm8LQvkVnnvNondNMLsO6Ppzt0BxC+IriLu8/pZ1sY/zqgCjARa31UBId+21Mbg5tlJWdaekln77dfd+TWl+65lSSivUTKgVvOecOD49cTodmecTS5xZFnNJjVnJTkgIKVqJq7icySwkjcwpMUcQN+L9yOPjPUv0xDgzL2eCC3jnLYkJmGyioF4sYc00FJdTx8PhjjEE49fBavWFolCpcKjSpI0VkO3cruCpWsoqb9kD/XpdpdWZDc3rQWIDIwbONqDTCdWFyRRp5dqUS18MlFWoIrZLrdSU1Mldn7jRFpTXs68KzRFTpDuUrNE8cZyzpIAY2LyV8XjfXl/79tm5CtBg9MHKpTjHOAyMIZKzR7PHnyIhmBI/JRiDYym1sVPStT6ivQotTC2rKQFEKPlxWGLmfE7M0Uq8ePHQYlrXPlZl/CX5ff3d6zyvWd/X8f/Ll3Z6f3s/WOyo8GvE59du70XN39KnN10ub6L39wgE3yM4fPsldt0r76rc1NxtbyHfOJ/fNudCBMlkcUQd0eTxc0JfPjH//F9Zvv4P8vFnxuE/EV8+83L8xJdffubleGLOAfUHJFt6Zqtpp2ipaWguJAem8REfRpw7oBIRd8J8UQV1ViKjr75QY4eai2jJQFqZX1wS3nu0ajOpBKwqenq3vljeUwqNrrFnvv244sLSWwf6sW7EsRDmBg43mseOIV9Ma0fgrzDuDdirJoTdsV6u6XDqVWGoLlfVnQVq379VvbzRkEkFXEXgMC1zt67cOs6okvPSspHZ6Q5XylpIcRnFB1wYrKYfYlbhOKPlZz49M59O5tak4HxgGCfC9IgbBmRwqPOoc6VWo8dLMLCoxkRy0k35laQrOHaUuCoF1VySH1gaJU3meppTRGtgPaA523c6m+a8rM05lQxscSbmuQ3LOR6RbNn4pmEk+ISEieF+5O7Hj6QQSOLQLIh6LGhxCyS2S6O4RJVkET2Ib8Cj0f0i6DhvYz1MuFBiFP1oQFHCVlCpz+1oZ3Fgan/XCa/rYCdXrz3tBDMu1vhrNOk2gKgCMf29+VYFaP+uXcc39PeSwLedsBMy954Atzv9ertmsaqgucqgFfT1Anvv6VDXOR3waSJttcxJSexV7u+q8qzzfqjJbqqgCjTrwLXZ+R5WCLfn7S2a+E3Pu2UVeaMP1481Snq9XzdA6Foj08Yt57xRPu7bW1bF9n2n1KPS527/r+eXLnf75ZusroXm1MzTVQFaYxeXxWorijNLoM9ANPqUckZL8jfvA+fzsQAkX7KSKuYOvaDJCqerqlnHciUxViLBO1fcFy1m0X4sy2nw3hJB5WTlibw3nuN9UdaaS2IIK/Db8/V+fNtPUy32QLGMygXgbHfY/JbdfGzmsca6SAGqUu7XyxAiuJKwzsoNr8lk9vRHKqHoerCGpGlZvkVBpLk8/ooVtPH/K/u9Kkt263S1VlZPmBoQYb+D9zgXLclQnUfvCcGXxENSylZpHZLWbfGm4AJBNJWSI8WtVFYerxlizCwlW3lKGQ1rIp+2DbQDjO+lKGUtruN9fV7LDF5efmWtvcfy+L3tz7Ys9u01onGTYXfHy03eJmrf07ftU7bH9prqXX/2V97qxUpmL+/06vJ59eBW23D7+doN8vVF9J5xvfb3LcFsK4js5rhubFlQ8WQ8MY1wTuTjEfnyj8y//DfSyz8iy4nh43/i6eknvn79mS+fnjktgrqAnw64NJDFrHs+CCEf8P6EuIz3I9P4I2G4Q2Rk0c+4+BVxpYBvnknkJiC1/okxLFcsHt5bIpSskGLq3hGq731zy3Cre6imtUiraXbteCi1mAwwuhI0vltn/XxoFeQE530HLKtLXkftBNbsvkZEV6wpm/v2wl97b0p/KGv2YlloA4XixFwwe8BJffS6tiv4aZnTkGZRrO/W87zevc05s0O0/VMYg5Y1nWNNZJOs8H3whGEkTAfwQ1EemMZWSya1GCPxPKPxhC4nTqdn4ryY63AYGIbAdHfPdP8jyVn+2yyQpViEvf14BiRT3EsrAzVGtmYIN8bsREvaCmUcFSWVRDqJFCtQtLWmyb6Ly0z25gYkYtr2ZZmJcSHHBXXrWjznM4MeOAwjD/cHUnxhPByYPtwxPj4yg7kJi2DJhtYsuhQtb79T11pa9twaP9s0z22dmYbarIoBCQNuOOCGGqM4oL5aFVdBYbUWXyyvFTQ2PNWv7e67TjlRm1AFo+7mPd3qz6/7pJ12iwZe/Zoe8l3cm+0Bc1Wu1/Rpp1ah59r9r/15/byOyr7CCzsx5mpHmxBIpQ+rNbF6W9Q7tdjs3f6sWZ/rHBtYWQFmA4h1L+/Aonl2ZLTVLesTzm2wyDeC9/27Xr++eUnslCmbq3sNWu3Yjftc+7w9pFcuXzNm74HhxefK3/fPoLgCZqslvAeOruMj/Rj3/7Z3lN336ybiYi2JXA5Zofcrq+ljJzshuvBKSdtYRedsv8e4IGJlMYZRSBpxsSjiknnxiPNFLxgRGXAEgveomCt/ymeW5YTpFx1ORjRFcBYy4b1nCN7i3aSGjZhS10uxlKuBzaxWRsmLs3CCsr5TVoYW6tAPzY53s19L0tGGy3ZJJy5lwCbQ9F+5zu5ZwWKVEWo28kIZnPMlRKLSkspzpfDx7bpp81vu2BQLVSdUFT8CIg5xWgNKt7JLWQn1PnVdGJspz+34Q89ParI9o1+mXHBioUBBLIYxe0cKHl8CHJNSknFpewXNIMOaSIhmqZfi5WRWvpxBs5KiMi+JecmkoiTwawLbTuyuksFtjLBvl9zl9bPXM6/s43coy95WRt5ub4LFzf2u0IdXX3B3SK9//ZdvN8ayKTpuNN0dlmaSuTyy0ZZrv9FKKq/9c5oQrRjLWp9qgr9gaaIdHkcuteWkMtx67ZXB3AsKby2KV0HM5dlce2j9VsDqwam5aX5FGJ3nIMLj5/+L+R//G+enf+LL6R+4C3+LTh+JPPP3f/p7fv/zL5xmB/5/5eNf/zUHlMf5zNf//vecuSMxknXkLniie+HsIsP9AXdw4BM5n9GYOR8Xnj6fePqykMeSqGQ0reDptJgr4xBarFMQC0ZOWJbUHx4+8vXrV+KykGImJUxbVZhwGAZjcjmhERIzokIYHDlZKYvJeX58HJmcojnyfMw83j82IOOcL7X3QrFWCVktm6fHt+D5dXwFcAQ/WrbP4rqa40zO0daDD4hfk4pUoSMXF07VhPOBICNkyjPqAwozrl8UAKdAzSpTs4jWZec6Yi5g7qM5bZhKBVg4Z4CwaDU3EUMFsPTrMdsDTavrjCk7N1rtrOmAhIEkwqLGnAYXzD0lndDlTPz6FV2s2L0PD3xNX5HRkhXcj48cwgNpvOPsIRPI4qBYGw9TQDUTc+SUI+PdHU68lWCZjzjJFo8azd0mIyRndbv8+QTnBXAsc9GCM5KJqItAJOczy8tXJGWLhRkSOXpy8pAHXJoI2RFVOc8vbVxyDgyMeAIRePHwN3/7NyDpkAAAIABJREFUW3747Uc0uBI/2+9Ox+Ve7fd6cf3SjJIteVF0JEJxoXWoiyTNRM048UzjD7jhAfw9GqzEiAaPekskVFO6V0ddWxnrbDchaUNyKuqGqt1VBVcyA2bqusvmLlXv5QckRVun5bjFtEjrwYoS+7HorPWbsVlrim6/2ab4WV/GhLGsNTFHT3OhaROuNhufBri0EyM3Q9RzzZX2VsB8YXEtHbV77AURDwheBjIz5/OZcRpJA7AI8jKS4xktCjHyTE5iibh0naMqlHZYkJo02TkbVSeK00wo0lnOdowMVmNVyCTLlC3mlljfrLKj3OHjCiivjuRejq4ToJnrV8CSL49c3r7Go3X3befq1b/X794j5dj9c14FuQoMle3aSawAsmbgXneX1Iz9Zaxr8hA7r/7nKYXboQMbHY/RVcUhlDjw+nzt+lcl7jpjUrNimluvk/W+tQC6IKQ8b3iOSDCrjgqDByECC3cCix+I0YqsP82RjIV0SJ55Ph2tn+K5v/8PvByfOc8nTvOTeWh6wSyNijpT6mVdOEyhWKOwePuYSjiDhYcMITAEjwtCXiIOYQwD99PA3RiYBod3Rt2cZHzLcH4J7mrymh4wVnBjCpZq7drOwVb2ukp1KKiZWhpjXaNue5ZaCbBGcl1od00OVE2x2tLNaqGzQskIWj2eCic3YcDmVzIpxxKSY3MR/AR1HeKw5IbVLb3SyCq7ZurajCmunmMoS8kinjXjMeugKs19VEsN6Pk84xWG4tL+w2EipcwcAunhnl/OM+qUyTvyLLgXkMUenZeEjEIYA+SJeLaQozBAlhERYQwZJyckwvk58YenyL/77cjdwTMMA6S5yWnZJthursnqN9ZcFq+0tssbpNDtOijfrZyr4wdV/O8esVk9jZ92e3RHt74FML4KFtdN3XXxGmG+ef2to5d6lTdw25vtlvkfrhDzt8an16bs73+VYTWJu3sJe6Mt49+wm803HblYV0DVAF/Ie9e0Ebr9ZreKvscqe1uj+4rKoKiFK0M5uAMSF+LyldMvf48e/0Scn8hJwR0suNgd+eXpj/zh0zNRDzz+8BtC8JxOM0+lVs6cIuqsDlIWxzDe4Z3n7v6hWJ0i0pZzJ0B1G9DcQ02bVN1JKj22mjhGGGtMSCX0VdNuxN3AWEypxL6ppeQODucp7oamqfdiLoODCE7dZSmNTnvnncd1sYzX561bG85cbrKTVtenl9j2FuIaAwhrAoT+HfeKYmnaxjqnlZoV5tjVLW20Qdf1v2qU188toew+g9p+iTdFSrlBUeOJD+ZaLALVxQRLGOC8g5w5H19YTs84MuoyS4w8HWe+nKKl3QjCLMK9cww5EtILw3iPutHi5UQJCOIDgzdA6oeDuaOOBkotEZHiB1hiMm2jKlFTqevo0ahNcRB8QCmxqRkQTxjvkJxxwNfzC84FhnDg/vCBGM+czy+klxOHcWrD4lSZpoEwWN3Jxw8fGKeplDORNnQbWtLPQc+6LgiwgXgL3JcS+lInyePw5uodJpyfUDesbqni0FIcehVwOiGqaqHfJLzr6ex0rms3r1i4ukRLW2+H7ftf0MB3k8Qr3EkqgLn8zvbHt3Oziz3wza0HlvU2+9Wwfl8FiJxzcwm0v02hlVJGswHM6oa/DoWuv0XM5bomU5KaUVpRNZf+UgK1CPy1J12Mc+thx7OlrqLLlaM9fdgf7ejHTYDZHb8F/HpBH5qzdH+XV6a5P/b2WujdfhvtLP7qpZDQSr8bPa4gBFSkKO9q32E/Ln2W0r5fW2C7H4v9Pd63rreuv1UpUpSFToolVJprJ2TO5zPL6YXz+UTMlohkWWaWaG76NX+Aai61kiEtJ7Oges80TSRSUx64QRhLlmvnvMXOdlayqrAdx8EUY1iZhBSVabpr4HEYLG7Re2dJ6sgtRre+6/bHxv66hbH+9Ht0/3mdxIuYROrSXs9fXSKr5W093rarbOUK61+xQotA9UIRMb2xaMs62tbEqlkuSgePBSK3h5St1/H+BoYtNWk1Ml7E5/V7vdADV/JG2HeOECy8pIURYZmXA1YzOxXM673j7nDgOWXOOUKpnxwC6Cim0O7kr2EYTPmRElkiSyr5IxRCgBzNnHM+z6R0aN4Wm/mkvliVjawzPXbazO0r7RbNbsO8o4dbvvH2vb/XU+NXdUN9bxOudLoyjLZPvodZbq+77RLyb631GxKLkerG4ypg/DWf/iuMNRhYqPBBCnMb8OR4JB6fOD79RJifyXnpiI3FH349PvHp+UwWT7iPEGe+Hk98eT5ZJqqcCuEJZBVcyXgZwsjz+QuqgvcWIG9ZTIswU10hCrENwRdG5Ug5dcfW98hptY6twrcRtwq6UikS7MCYyljcYrJl+wvOm/+8cxYbweqiVwFj3ypQfHUudhRCGqUqTORiHvo5Eqql6ZpLws15beYD+iVKFRa1nlM70IHFyixavEF10+tAZfegC8Ja+1LjCfDerBJOmlxpx02wSpqI85l4PjN4z6ILx/ORz0/PPC2J7DwuO1JQTizc54VHlRKHZ/1KyRJ7OG/JbZwPSCpFep0j4FYrV6nhaJl3MynmVegjYEEyNtehfQZxAaVahy35k5WbGHHDiJeMTwHxjsEPbSwGcQxjwAVHJvPw+Mgwjqwumf0iuUXwrgCf+r1IyZ3QCXmi5T0Dzo+Is9IY4ktiIReKC3AVOlZr13cR3aqU0A4urmhv7W2VLm4+oi2Q8ul1GndLy7oRlm485fuA3V+oXXRF2bKP7Riat8AaB0fR6KeUSEnbHGhTAApV69MLTNlZIpsslMzTtLkUtHma1PNt3FZlk+R1za09r5RG2Yu6jYZde+Ur5936/sJN/5VmKdp6WnuNjrEef+fyrzQxX6HL1UVvQ7NzjaVfaXvRGZplV2Sdr7o2rw6U3hzAfny/pV2bi/p+W/BtdMU7R/ZWiyDGhfN8ZokzSijrMJLSUspkWMxYVUYbgIwglFCPUKyI5k7tqEpYA4tCLkpLbQpayylQXHRL3LYTi2EcvC9ZTy2ZiW8gRja8uoK9PWDcKxtWL4DedXU9t/+8/r39KSN3ZYyr63vHk03QptqKd9oi2CgPSgVDV9ehgpR0bp17/SoL3Xq/bkGVj5VWb2JgdXvdelWvPGIzls65kqDQ+HFVPCgOr+CduY46MZks+EAQtfwBZV69d2igeWBottqvLni8mP0zk0FNNTR4sdIZWTmdFmJaY7tFFdVtnUst2cOqS+67W5XzN2NZ5nanwOrJzoY7dc/rFQb7Tf698v6/GFh8zfIH7ydKr7lM3hqEFi/xDX17z7HN8U5Af6ttxY/CfOvGvSXH1Q1/854rE7/Zx9f69GsKPLrSqlETy3xieflK+vqJIS1GrC0dGRUHfHk58/klkWRG777iFs/Pn858+nrinB0RC1RPyQETWT1OIanj6emFlBNDOACR4/nMPC+Yd6Ya9eiSzaiC9wGNNmeVwYKdX+PLtBT9DQK+1OCz1MuJmBK1VvBwmDgcRkJQWDL3hwMP9/ccxolSiAHngQ4obtybZE3p/b75MSFYi6Uy1+yT7toeq/9YuZBqIXi3S0LLutoRcKVlO+1jGAveqjc0ElUJac4tHqBEiq79W5fNtt/1id4yrDk/gFgJigpqxFlx56yZOJ/Iy4ykiB+Ur+cv/Pz5E//0p0/I/e9w0wMiE09HJX35hQ9D5jcH4e4x4cMBkYBkGJ1ZA4MfkGHEh9HiHKcD+XgkpQXNCYK32MZa0DnOxDiDJvL4A5LOJoiLww8BN07GpDycj2eW05njfOTDjx/JhQm9LGckJ1SUYfSMfh2g++nAMAUIQtbMx9/8gJu8JQRqI1gZ/TqouhnUG0Jg2bMIpqFGSRjzs1jFEe/v8P6A+AMSLF5U3AAuFNBcssaWufsOqGhdKZL2TYq02wr7E+XWonrzud/b4+9rveB8pTP1pO+4c+8+WSb1ym2q10TKiVS8DRQTypdlMQ+LsmZqbbJtQfiaTKNkQyyAsZIiLaBRXakdWhQtfXmi6iK54dFVeKzhHNRAjZ0lT7q10tGLVuaonXs5vhUcN4vpjXHcHtue+Nox69x1ge/qk7q+bpXokCV356kVRi+01wB/4QXUjIraXFBXgF/du3f9aCRhb3XcvpGy5RFbPX8PIa69XD3PNd1mjaf0IZiyISpxicznMyknq4voIGkqSWqEVJR5FIE561ryQQEtdfBSKrG35GaZAquZWIHjOI4MIeBESNFc7adgnkD393ccRs8USpbUYGWvSqJ0fPEM8t5WplkuS6ZOtwUP5kG08nznjGdspqCBzktZdgMUC9h0sjW0aDvWrbOG12p4gP0t0ufyLjGNsmYt12yeAFZSo/J2uWDONQmaeVoVKxoUz/tOSSFi+9hnJNf856nRmj6JDeUuFSy29VbfX117bnkz1DlUMq480onJIcF5DmFgGeCUYF6KkkCFEGz8U87EOZIm8+oSZzGsKUnbE4gjZaux+OXpXOjiuIkwaJwqVwBpYTS9fLdvspsvEWnxxW8p8yt9pI7Enh92369kdTvO39P+VSyLf4n2q4KdX6lVDd/NY3VBqSDNNW/dLHvNzb/5JrImNaES9K+IvjASuQ/3jC6QMsz5CeErGhNpiTj5kexmXpbM6aefWdILp3lgjgEZBuZ4ImlCzycG/1tEHDhPysoSFwNv6siaiFHt75RN44g0HB2Gobhe1OxXuWmuck7kkiDE3LEUEgxDwHmraTQvC0thWMMw8ru/+g2PHx7xDo4vXyyJCRBcsAxd4hjEMYYRv8tYt8qD71NIrIxAOiJqmUG1uFVcDZXp1FCuMNrra2tFDNoJapcd0u50u8b0Ha4c7hZ9sSKqZWEAWYPI6/7YE7vChtZ3LaVInA+NoLaShzlBERCOnz+XgsqemM4clyeizIS7wPjhI4QPZAmc05nFJXj8yPRXf8Mw3Vm20xg5Pz/z/PQFyRFP5jAdCOOEAqfTiUNW0GyuUN6heLw4RvG4WrPJC88x4HMiYNYWnMV2ZHHmOpyUEWW8c2jKjN6SKCzLMzEdSfFETpHPT09taH7zu9+Rg+IGmIaJu/t7IpFY6oe2mBXtfq26rFtLYvPZ/jINu8WMjYibcMMDMj6iJQMqYTKhx/k275tJZBUKv7VVmnjRqnKi3NI5hxYpLZc9LbKP9vpXam+9903N4Pe1al1+XWWZsVhDEwSDF+YlW5mZtNbzVMVcq6kx9wsW2tQBunY/A3s5VytEsoyUThE8ToWkrmQUzogrMZ7ZFUCzgh771AmmXYKklnyp9rH9Uz7L+tvtFsC1qcjp8ruLa/bg6ZWhvTyml3S7nXt5o+pp1btursl36jXFnbPW2wVLUuJsXkHwob+/tO9fb6sA/va53a2vjMd1frGeqyWmsroZO+fwLoA33izOEtqEAs6UTMwJxaxGMWcobv2qpZxSsTJWi099pEjl+4qQGIY7fBHKvRi4884x+MDkrbzC6D3TEApQFMZRmMJ6visZN2tIC7BRAFfF8+o+anknWvhJS8Z2DRjuR7AoHJrXRnekZOWWDpzuafr2mr5mswNJ5US52Ay6ucmV2S23kWzxn1oT4Ekup2iRMVyZB3NbxWVEsyn8HbSY4saEVs8rLSDfPJQMnLb3q9hY1xUrYjrk7MAFIUTP6AcOQbgfhDlGUowsmpiXhZp/RFDm86kohD1hDJZQMWEKXNbEPZYUvdhwxSrJNmALbQ5s3b1n3/1/q/2qYPHdwEavM7WWuK7TnNwyx/bHrgm+/9Ja4leb0NllKqPbag8vFZO7sfwO2eI9Go1vbf3c3DjBfhXrV8KSekDEiQn1sdTw0jyznGZOz0fQgUxJT7wsJHVkRpwbWKKaRidHVAQv2VJWe2c+7GqMI6ll2MtSNEKaCdUtQE2bHJzDh4BiKd/NjcCIhgkt1b3Bk11qQkoVnmuclHeOIQR++PFHpnEkpbnUDxMG75mGwlDQwhD37graCGMvKPRa2gpim2KhSf7StIlNY78HAxvXhUtNcL93eutgT5C7K6jaQiPOusoWVWgpgqrJ+eV4lbia5bxYFDUj4sv71kfXt5P6v/FJVu1sdcEwq2WJf1A1FXNMZlVUA3NLOqFkDoeJ342PRD9xjIllXpiXF5ybASW5ARkOeOdaZttFFpwmgoPxcIcvCY0YwD2fiHMkxgjDZD1Xc0E9n17AK+oxhqiJnCNzmqsaHMRZUh6E4B3jGMgyISHgnJLmF87HZ1KcSTmydJl5x7t7TvKMDwN3DwezKObqKljHZ2+ZqIx8N597y1WdqjVXvn3nh+J2OpV4RSuTgRQX8rXqWLuu3VK/gSfQCSmlv6vL3x4orMKmtP/Ka4l0QPM2/fue1u76Cg3dxky+9uzX6e+3UOfe/Ws1MvR3KGCgn+vuukrT6nnarIgl+VEpIbQBi0XwrFYbyFayRSI1kY7zFWyuteNytnjf6o9WrU0dCereZa1dVj0V3jNWebfc35qn7fddL/aI9KL1ssntnr2H16qu52kVSNc7UN3b0c7ifoXm617SvwJ6X2u39oftr+19G6zd0RKB3T6QBiJ6QKxoc0usnjUi1ftlzcxb12PM2moep2yhIGgyvlzWd71PtYx5qhXQWdZTbyUyhsFqKA7OMXhhCr5YFh2TEwOOwZUyGpY8zImVZ/B+LY+l0AFFV9aza7GAVqtXujCTEufdjWkP7naQcDsnvSxcz++AqbakQx396+esYb39964Bt+rIug992q+LQjmap5ZZ6s3K14BYu4UgVVFFAY893ejkin4pCVUpXtn+iglESvhJUVLVGFJf+jMMjnBezBIswug9Z2/yXcyWgNGJwzshqmUpd3qx60z55C2Wf5x8C4mpHlJbpXcBjs7cYnMH4L+1vUYztDHrOr7aH1znSrvv6qR1vPLKjV9tfzHL4jXTem3X6JfeOHDTPW73nP78a+dc8/vtnvzrtV7I0etxWJt+vBMFVsP/e57/nhO/RWjaa8F6cLMJZobCzIpLi1jBVyShLKAL5+XEnM4skohx4fRy5OXrM1mFnIUYlXNMIEoYPMGPvLy8mLuARlPvBW3xUjEmtGTc0pxIZHNNcJ6kEd/SRWtzSXE+2FLTNX7BsdYYI6u5qSrmbgglrXxdX3bNEAY+fPzB6ugdF+KycCfCGAKHYSQ4j9cSLN25qNRxdJ3GsQrAPYCsxPLqGtIiE4tZ3hp+68HC9tfVtndF3c38SuI7gXSNWzKw192hU4R0lIoKYihzYZq39l6dHNsttMawjK0Ut5MEFowP6mo3FMklQB0l58TpNCPieHy4Yzj8wKeXkfOXE+l8JJ6euL/LSFxY5og+OPw44VRxJEQWghfGceDwcGclIVR5SDPH3/+RmCMpRYb7e7wbcEmQ08L89GSue14JOEQX0nLk9PLVrOc+IBKYY8ILTOOAv59YuCMHG9PTfOJ4fCl1F4XeGdMdRjQ/4UfH/eMDKtVhdCccN9vauob283ux/8taooL7Ksj7ERcO5afUVPTBalJ2cYorE9qCxm9RStUeXRbLuNHqKR047fjoRlfx6zS5fKe9JubWld8DUr/5mtfgVD1W4n36o0oBhMWiXGhlFQJ7i02jkcU64kpG2AZS1IAikmxfq4OS9dSy7iacKhY/Flb+fgUBaUcXesvC/sxVyUxLL7g5Wy9HJuu6R7bgqrtyB1D7MatA+6p8ox3IfUfbkOtCJ1te3s3tdS2yvqPb6zP7TXE7rGHXg/JONZau0ovtWRvF/Q4Iv67Ut38UbcmoqgymqNHvUHmdXZNKHG0uydtSKaaeUkKcLzkDSt7jVatIkNASuOmSDBwGzzAEy5zpDShOw2jgUSCIGjgcDDCO3nVg0eouOrG4UO9WQOq9NzDBahGrQLF6L0lLsFOApFvB4naArvytJbKk0u/6m0quK2gq7v+N+ElLVAb1qxVwCpSEfoUviyt7v2PtjbFr+7tXLmkDnFKH3ua1da5KDwX4lRAY1BK1mRd4sSy6XoiQ7vdWtlyxQAVrJaFPUaBY6RUbiwEpIN+y3QfvCT4j3sppuGzAEV9kp6KQMFqXbE3V+3vB4ZnGyeaw8dSt9XBV9BcFPlzQnX3rgd038cprW7vS4L5PnXKpV0Xs1RLwNrX4n8YN9e32TgGkni1vWND+gs/+S7XvEVjee80KEsqnskgz92j6RJqf+OXL/+DL5xNzTKRBmOfI86cnfvn8Ez+dnjilUEKRJ1QnYoKczzy/PCFOCOHAMB0YBtPoLWnhdJqZzy8kTYjPJOctSLlYsdKSmwyjsjAdQPCoebFSA5WtVIARgByFw93EsiyInJnPkZzNTcuJY3Ql4N0ZcTm9vPDy9JXz85Hf/XjHh7t7PtzfMwaHy1pCCc09shKaymzWWMU+zqEF9GwI0CaLqKxMQbMFeVf3st5Vb52gQujL/Fxj8rfmVXffVN6MYoS+ljPoNVpJV5mmEPnMWoJAa+ZWkZIBXLa0rnt3X7WnCjlHUrF6EMCJNzuGc4zDYDEuWRnGA4fxgcPDB+4ff8P0lHk4nHl+OfDlU2Y+fSZ/+pmn08J4fiJO9yDCy/lEzAt3j488PtwRPvwVUU0DeT9kPv105DRA8g/87f/2v/Pww48M6nFfznz60++JIcPkuJeRFF84Hb/y5dMfSHMk+AkngdPLkfjylZxnjpLIL5/4/OUXnl+eyCQeP/7I4e6Bu4cPHB4+8P/wXwB4iUfCQ+D+hzsefvNggfhiQl6dy5VkfVtabKCzQFbBZkT8Q/tRN5KLRR9x5l7b5Pw9ZN325VuaySRv912rJ0EDM1UzvGOKncD1P3fboedbZ3V7sgroLdYm1x9I0eIZs+ZVQVhpSI5t3TV6pRY/nDRaV3JRkqnF3dWCOVkVUV/KC7zyJk2GvFG6hOsr6z1C2lr4Ydd6Wb3KAHr18KutB7rvucrinKDGHF7IDFVIrhqRXYKQHmhtBcZvAYyXe+fmOO6695ZSv79QxCyJZMhJyTnixFkG3pwZxjtOWS2RnfOEYSLmhcxiiowYWZISYyb4QIxLcZsuFkpZw05Ukz3DCYGMxzM6YfSgyXITJM0QlHE6cD8GHg8HgrdaekOxRK7upas1j87VtCa9cbXWbLEi9sm/pEtW9q5mqK4tJKECiqJwFeP71S4nUu7fFNKuos3N90iJNTRtDpal1Kx8olX5XBW/VCTYgZGOzpQ+WoZjLcmCap6DakGt2der6rnzoJI++dXl+pEqI5QkcrW/q1ao0CRVXPG4EtNPFTdU5TQn4nIixohq4nAn6AIpZk7HjJ8cmgrd8rn1s7ox52hr5HyGlIei9LL/cgHIWTHFQBmzfx1p/y/L4/5tgcUr73rNt/ta2weFXpjN5foDXgOFt499I/D8prOvt0u96iX7XN22rvThG4WlW+e/CaCrxZGM5ExOoEsmzTPPT1/48nTmuCRmr7wcI8evX/ny/MxP85lTUhKeLIGsnnmZWbJZIgc/4b2l7o8sJsgkJc9YwhExbXVUYV4i85IIPiDZasjlDKQCV4qQozmVrKlWKN3iCRx58qXcgbAskZznxgy9s0B7J5ZQYD6deH5+5vj8wnyOjXSjIFkZhoFQ3FaE1Zro/S5ugZUR2WeatmkzF20dF01yKR/R1NEtw2DuLCpSfO9tfqS7536/XD6r3na199Sspo33VKHPdf3wDlJu96guR6s6odeM13/qAzq9V818SrMfo1IBq6DOREnBmFxajizxbDFSKZBmOB0XpunANE18/PDAx7uJT38aTciICy8//USWX4gp83I6oV54/PgRycp0eMQNB0D5/PzMfFwQDUzTyOHjb0njRFoUlUh++IHhcSQ8HshxwOnMFE98/N3f2phkh0YIX74yP/3EcvzC+fln/vCn/8bT0xNLXHj84cD9hx94/PCRu/sPhOmujdOSTzw+PjDdT+CFXGJnty5D/Xxe28O3qFE9P2GMMiDugPMPiLtD3ATOapbiHOplBYrrwrgQkN8HX653pzkmd5ru3uJ+47KNPqV+2CgzfuX257r2X73nevPvuLrvRwb8rRMbjl55nc1hdb1aU8EX4bIoAql0VJ3Vh0VBHI4iJFvKp0JzxDT+WtYV1SW9uplVYXd912ZBaxqnG5Go++GpNIluTl6VK/byRY8Wt3RSy6v3IKrX0Heq0nLOFXnjyitYttMqTPdCs92l4cKKQBMbo089ZH1bLSXru7+2htbx2d+z34OXbd1ce9frqx4Mdcl0fKZij2ZNTIkYM6Ke83lmWRKo4H3A+YzLGedyURZaPFnKkTlanoKYIITcXEfHMFguNDHYcjeOhFJiKS4zgxNLaDNM/Obxjvtp5G4ITF4IYS1v5ZwpiZ2rIHD1qHDOYtZrWazqhlrBYisp1NV5zTuapN3nfucKrIrZcq6I606qgLG4YIp5TGkdZ1l556ozsIsLHLK7ODF+WcGWCmySKgktq11V1HZzK9j2JlUFVKEVbR3Usl1lNVUFs5SayzUTc+HkqwK6i1kUU+7HWjpDV1d5tOcVYkqIkpXee493Hk2RrCVx3DSWeODEsiQkWiy1YGVDRGi0EGy95WTZUK0sGmSVRlUV88BwLje5T8U83K56NV5tW97xqsek3JLx7aDuvrwlCVxe//pZ/2bA4p45XgOJe8F2GxC+ba9puhoR/R7eLtJtgiuH95N19Zz+0e9UQ2yUjHJzwdQuXjLB97cNQd+5u7x1P61cq/xojOUns5wT85w4LjNPeuL4dWY5HXlZzjzNmTlHogoqI4gnpoU5zmSyuQ6okFRQnVmWTIqKJDFX0eIGEXPiNCfOczJNj+SmrW0Jvorgaem4zToYpII5y4TpnEOWSBNidNVui1oqdxE4vZw4vRw5n85oUgYfzP20bFK/A4a9+2m/jnvNZf2ujf+e4RcuIpWZF1mt/ZFzO3tlRFKdPhpD37sOXTx7v8K29KrFGrRWiPyKImV/WXn2G2CxR6LlOZsb1M+zOaO/AAAgAElEQVSl5qJWMCxgmdYy4gLejZA9KWaG0eF9YAwDgzrcAsfTC6f5yBwTS5xN8zjPqIPkPfMQON894Kd7FGU+feX05WsRHAIqlnBBa5DUNOEf7vCPd+TzADrg8sA4BTweTUKekwl06Uicnziejnx5eea8LCY4hYAbRlwY8cNE6Oss+szhfmKYBtNqlvGoTLWOaRX+23Du0NMt8rW6+FgaeudGvJ/ATxan2FL+yUbwu86J1uiP99o2brYiqyBFmKn7pAJHVrBR1+SvB9v+9dtGidT9/Wc31bZWVlf31bXNLIfV68EEwN4NX5obVrEWUK0t1Wncga7nNIu1lGt0ZaeXrySsKGknOO1+g2yuf8/4rLRuf3+5+KuxjI5EVcVFPWu/3nS9+ZbOXutfxYe7Ooh6cRJrnztZ3Mav3OSmOLF95gYrb/hLL1NtecC3iCkbflI6KW7vmruOjyslqXLOaEwcj2fOcy5ZeteyU1LNRtK/wwqKcs6WQAyzeJui1speDMFb7gBnpTGmceAwBB4PIw93E3chmOupmFJYXHGxFKGvkazdOnYlJnG1MBqNrHun7RGpBdq78d3Lklc+XypzG7PfKFpMCe6Rflxq7eh6724Gs2qhleu+pwFFaJ5IWrMJrOUz6txVxcn23usa7r5BSd1+rt9tFeT9RVX2qbKulDmQCsZWQWH9r4FXLcp5OhdVh/Mla7OYzCTO4Z3xb637jw5XqIJfVT7aLIr9e64b6YZe6io9ekvBeEs22w3TxXcXj/oGRvirgMXetWf96+qJlwevdPYtWn5Ta/wWSHnjnO5OcFXv9762dffaf/9tYsqfL9TcukM3Z+92EbkELFfvXLllvWZ3MJfAc9PgPeOWGYmCzgM5ZeblzOf5C3xWJMOS4Tl5jksEHEMY8G5C00JigaCW+GZOJBayvrDMiRxhkqHEIgIaOc2Zr88Lz88Znz2SS09rVWhcI4S1yG9OmVRqPjnxDONQEtvYPFdG1saksyx+/vSJl+cn0rIwCDzc3XE/HRjDULKfFfdJzfZ3Bxbr/ZrWrQpturpYFFy7qiDaOi+CuFTfeIWkzdWzZnnIvbK6At73CpvKBmBuRaMqpJs82DR7xe9MUycJdmukdiWrxZtIfSXVlfhqjYkwdpvK+3pAvF/BRzk/F0t21EwYbP3AAe8eyOJJ2fZljJYF7XB44OHvfuTl9MyXp898+vKVMC/kEHHTgXQ+wflM/NMf+Xw8IWEgA6d0Jv3+Ez4MHH74geeffyJNdzgJ3DlnZSwGhwZhSMpyPpPjiZxPjMOdMROXOAxK0hPx6Sd+/sf/k5d5YTgMTHcjw8MjpyXhzgsyRMb71Sp0/zBy//hAGAMxLdiIuDay2jFGEaHmI7G1UpQ3/WS0GaEJP4oBYecGwjDhwwH1E/gBvEeCCQe50Qm50GVs713X9u7IVQJ6ec7W0i2rHFPeE+dKCRlzx75l0VkFnSpQ7I9+Jze4KZxftkuGfx0OyO7vt7vQJb96Tz/Ufpp2v4DDVShzxT2+uIpqBYKKk1XZ4JrFpM6Vx7uhCG4eJ74Iy/ZbSgyXK1YWxZR1FbBuQQqd4Lwm3Ki8RxtAKGf0yrNuFLdWwM0o0B5RcdaFsNd/cgh5Qw/re7c+dGf3AHhvWdiv6xUIeLRLKIRUb5B1RWwE2StvtWn7Zb0rhN73td3pgjbs1my1Kr+y6LWbt3XS6jtS9MgFbIitlT4xzcvzkS+fnzhlWKR6GnXgopYqQnESOHhayYxUC6qXc4cwMATXEtwE7wgh8PB44MPdPYdx4H4M3HthcsLghNEJeY0EQQSzIPoKFgWrn+vN6lnwkjiH0FnVG33cznmLKW98eTeA6yCZn4ezWEe3d/s2am90sZSUWr1Man3pcj+BdQ1V4HMr8E2uf1JZl5Bur1i7Lm3hG+em8PZO8VDBWpEoavbTmqTomhwtYrGiSbOV6Ck0zLuSuV3E1kjJDD46x8vzmZQS5MTd3R2LT6Ql8XSc0WxKgPtp4Ok4VyHRulush6oKg+C94gXGUUrsagGuuLXcRXkPUS00s23+y7m99v2Vdk1O2+ej2F5w4/sr7Rr/fQu7vAkWrzGwvu1py8ZF6JULbnXrzwFwrwvBe0mkMtlvfE57Xg3sv3yT4jyygkrv1qyNrEKQee8YgyAnJMfCKNSIjhsRSYjMeJRMQmUGPGiAwsCFiBBYhcfErwFDb42AMKCcyLqAZiY5oOcj8fwFnf9AOh9JSyanwF1Y+PLTP/Dpn/8HX5Yjx+UTkiO/G3/g8/3C+ZxYFuU/DMqn4a94iQOneeHT6TNznIkpscwzqmdkEU4ncwOdhnuGMDHnM1E8KSpxWTidHD46JiDmuK7fbGw+nk7M3gjrcj5zOp04H4/k+zs+PDzgBseJzOgsm58XS7vsvGXCEufwWLr50/MTWoq4ZyAHLNsq4DTB4FgkkvGMbiQEV9xiFEs04Zrbqmq0dNEt1qGKTBFRb7XLytqpLlomwAUjkDlbDBverG3iUE0NS0hWBrHix32ttFuW49xiCtelVOWqlVVpZ8kxtpJrWvfKM6QTTqFW67aYFYGWTKX+qZXpmpZTKESqCHLiarY8UzS4AhTRRBgH8jKCWnxp4gTi8S6gM+bH4jzJCxoSw+PIb+7/Bh8OzM9H8rzgYkJCJsaFGBfylwXxmXOc+fr8s+Vvm498fvnKl//8nxnvH8gIL6czh8dH/t1//Pf8zd/9e8a73zGRCFFZ5sxy/tlqTc4LX37/j/zT//1f+fLLHzh9PfPj8BurAyqewX/A+4ExCI9TRuef2/z89u/+BnGDpctfZ63MRS8or0JwJ5J2M1jAIWu8h0jC+UzMjsUNOH9A/QM6HpDBMqHirL7pha3whjpzFdNfB2M9A1zdri7hXK35iZrLmgkGJcGVpUQkt5OlW19Y4Fwn5G5F/Le4QBndK5lyev4oG0GnWACuCD1rQFU9V9o+uAaY63XrDxdJaNXRAL80Tb8AfnOdJafJWJp7i/syZwCHHzwSBaKAcyzJrAFmVSxvqblliM6iViaje++YzgQ/UNPp294XS2jVMlOXhRlW74qa+bI+RnCIL0KXluLt2RzRU7LkZ1VZsZyjleEoMVoXZTaqdaJbtpYPayk0vSi+iqLOLFzbOXPii/BfEtAobW5dHxeGKa/qNzWe1rxH1mLs9Tl1EaUsJjBrXVVi4WrOALoliTNal6F5rqhm4hLxw2A8LUcOTJZYKFVe016kCbF7PNeOb/b2FjRs9qm+5qGwGX3rs2ZcguA9IjVBTbJyBSHw9PSJ+fQMaWGaBqb7A6fTmePphB8ODF7wBE4xGb8HTjkh8dRonaowjgdyTsRcZCBJiEBwwvgw8jBN3A8DD06484lRYBRlcB4fAi6YbBBEGj9qiei8a4CNMpRZF5yfcC6QlQqPUHLh7oUGJCXqUhL0lVg+WUM7ck5QFTXiSVoAsGY+3N8X5Z+F3hzGERDO55khDNTYxDgoJHtvwbKya2ed934gZSsdMbjB3GcF0GzxoCVeGRGyQXEUCC5CziRNUEqLVV5jiaLsGj9UUF/l41DoRUJT9fxRqqbbLjVZOAmoOHwYDBiq4jQzH094LWVTyIi65kg1irDkTE6JvCS8lNjDaDRuHEbOUdFTBE32wBzRFIFAymr5KIAlR1JKTOkeJSIuEXwizQfyUrLupmglhJIpw32oANjKENHwhJiyfLcZNttMu613jUd8Q5MqG3XftXBw/fWQwLvdUDf5BprmgJsIuQKmyxuxjtaf2b7dvNuN4Bv3uQoCN1qBW5Sy/lq1SdcE8nq/HVurByyZCXSSdvej9Ql0gkd5+Htkn2vd7sbgdQ2D2uaXVTjNcSbOR+LpBV3O5FgCnJ2QUjTLnULCsucF53FuYBg8qRD2kDPBTXgVUp6Z54WYk5XGaBKeCWGC1cBZ8kLSaMV6c2ZJMM/ZXFSTXVWteZCIGUtacz7jp9EYuFhhYC0gKqeEOvNJzyUAvkzJGsJTs2ZlxefSO1ddTkOxULpVC9qslrJZQysZp4C4qm2tk1g06rru+H7nbLToUsCVVE1b+b67dj/X73LhfmUpVGVLO6VZrsq3wurWUudvQygvF2v71D+3gIjKWPb7sInGVWg1pE2NoXM17rG7uZJBAs4H7h8fmMJAmiN6XtAlMiQrBh2XuQS0ww/jA7lYo1NW5PnMcorEnJnPJ/T5mZ+XmfTLJw4PP1hIlyZSmtGY8AjkzPHzL6R4JgTH44dHQj6QnIK3/TF4b+5TAstybsMwTuPWmrcZuGubvqM1dYzKJ6nXaH9uAQYl07D4AH6NU6SLRYOaLrzvwuW6+hZSpKyuTRt2w0orLznHdg3UVXV7JLZ9vdX27/It/LvR9fWfm73Z8Ie3t1y9av1VwSLrOK3vthchZPOxjZcWIU5pAqMWYa4nEVoE8grqbEuqJSduCqJc6gBmS2JFBhLVj8BpbMBMKKnoaz/WQTFa29FESlmb+p3Vw7UY6Zq2XySXvqxv19cT7+fQYtET4vIKwFXa89b3rkB7jatqVofSchePBqu11InV+s1aYplclwW0vlsjbrLWH2x7sQAKpyhFkVzBagGLFoePAVknLZOtk3Vx9IqGdSAuhdmL3VrGpF8tu4PlFq/TnnpOA8h9/Uy1GokpFWUpEMKA8yVBXc7kZUGykqOVKFJvJYicK9C5ykOF53pxsHrLV1bAUDKejoNngFI2wzEG3zKmhmAxiJSkTk5WLyC0eMTU/AMtdtHq7dqyliapxRJbSabsBdZIEc0tKU4IAcKq/MjiwSniwIt5XtXyG5oTubjlujCQkeJa68iaDWwBOVkcZwt5oXrDOUIYyj7JRemRyDkVJbJtfCclvEMqXS77LFvOgI3yid4NVCp2bGtnpRaFL9cSH1LWvxRaU+z2SYvcgHmOOASVRI5pFWfKenfq7B18MbDUWo9qWdFBTQmQcstoG4InLoVelXjNmtciJ3OXXhVLsipeG/lsflRQsujbvs4boHRtV0i3NRr9/I521ZOk58e/Is6q7U2waPO/ZcDV3ekqHHtDEP3XaL9qn64Av1Xj1h1je0y74zs5eMOQbdGVtL4NHHZ/vyW0dAyhasF+zbkwJhfLxvE4gbgcWZYjy3yCBF7GYokbiMczKgMuTKh6vBsREgnPOPoS1G6A0nkPyRhEjMniwRQTM6RGHhvhi8ncXM3amolZiUlZFmWJEAvNEO+K65RpnJcUYZkZi3bPec84DEZckmmPVCwTW46RnKKdJ+Z6kEWJVRDKRszBiI4PgRCCuaZ0INFLp5F8e4TrQHcisFb6t7aN9aB+ZQTb3HlSt2x0t0a3wmrfLhj/G/TmMqZCWkfbd6WbjVBK3R8rydPtTdc9W3dSEVT77t1MmCnrH01Qcq7Vpqz3LRIcd/f36HggL5HleCbNi7mi5EyczyzzbNY+P3A+m2tLzomcEufTTI4LQ1yQmHg6Hjn+/ve4+8Gy6wpkMt4Fgg948ZAi3jvu7++Ruwk9Oea8kEXxSEvQABDj3F5rGAbSr0j8m4KpQXcp7k4BcUMpT1MS2uySNLxHwfbNGlKkzffmykYTC8ioSoGqnHjXuzbI0Pr65tpfL+50Lt82/heup51JZzte1y01fWzztz339c/l28rgDYCkbJkjU5cVtQDJNt5aSUrZ43ntuwEv+1EyWRJa4rZEwXtwWhN0OCQrzvkmhVk2QetTlpLMShXNStLUatU2ayzGH1IBkki1zpX7oSbs7vk0sMSlgKp1bDTv3d9qvOY6XlVA3ip9fbm/jYWVbrCQBqsDXEsIrJOwAmF7F9d5TFwoKCSjGptCU8Xc7wRFY7ZYQNOKgTP+6Qr/X8WBdd/Kri83NSG79biG3xjNeI+Cue4zESFFSyjnxMBCUzYni00EDIhpWQdalBdpgVhqLabUwHlVxK7JkGwMvRM8vvBgU1J4MRfUwdmPB3NJ9Z4hWOjJWPi3A2IsNZNDQMQ1JWFVMEtXHsPiEV2jTwaAYV5S4RWmWDYwq4hLRE145/HBM7nBLJolREYkFAwqOO84zQvD6BmDxY1nimwxmPyEOMR7UGEYRkRh0YW0LFQ3XxGxMRZhGAbiPJdQkCrLmJalQl3REvMnZmXP5Z0ab2eNZSwZdWj8vComtOPyNWN3FUNE0RLPrOWw5mI9VXMEkcKPxIEmQeO8UShlqnwnSFFHkVerXkwLOSdCyZBrpU8cwyDEGBEssWHMWvY+pJgIY1Ux9Gtbcb6+W3e4dMgUVmIOLOuOubon1r30Oi959fiNQ1o1uO9gGd/KV747wU1j6Hug8/+z9tqE7uPcrp+0/rmJZ2iawKvi9L9uk4hIwOHwCEt8IacjEHHugeHuHhcCyQmimXB3Yrh7Zk4eZEQk43GMPhAH0ySpd7joUT2zLJalCgfOB4IbSMkyUcVsNZikZDFNGllUiWoAEQc+ACIktXimWAQONzj8GAjjyOFw4OXlhZwSojCfTgwFkYmfyDGR40xOEe8gDAHnzTWrd8GpIYHOOYZpZJgOhGGwFNpA8IO5uFQBZqP5v9167ThUoau/TtsGtOXiSkYu14QVX2Js/tyV834F1U7Mv6lRuvUgmhtilUl6kCzouj9Kyz0IpVgbnJVWEW+uQ94Xy1iLIwFSwgfFV1e4IaCHAXcYWY4zeY6kJRKcZ5gOpsGfF5ZpqTpSJCeWeCJn04ovaeF8PjHPMzIrWaNp+sXhSixlCAPePyJ3j6AJJZL9MyHOLHkha7b6i144xyPJdf5wHuRCoP1zm1l40CKkuQM+3OGGe9z4gIQDuBF1Q9G+dNL1X6DtrYqXx1mf/1o/5Fvo5nvex2DstTO/eTRUd7vyL0fb5YKPlCfueIwJSkpaEmnJpDmTo7LkEge9U7hacqU1+625nApOrEi6L7mQUi4WnpLFsrd6unhoib0MFCdqPNgKTg18xXRkGEa8LyJLUeJVK6h5w0qXWXGVR8wVtLrpW1uWYqlsyoNsLnilmTUplXF7fc9ZGMBKp/pzU7rsz34sG/6i6vLKvHTjm3NdgWZNCyU+Ks0zYRzJkkiiDENACyhT78jZrzH31/bLq3t5pecbUi4NFrybFjnniNXaU+oNVmCViiuhGWeU56fnooTLRdEaIGRSyizJFMlzypxTZmyJl2wO53lmDMGshCLcDQOHaeDuMDIFK5kxeuEgjsMYLMnNNBIGy5pZc8K0pHSiKNVF1JQCPgytODtgCnA3EFPk5bRwXhbO54WX85klJvNy0jrvBsimw8R4mPDBk76eeX55QcQzjAc+fvwR54fCd2dE4MHfMfp7nGSWnIryxRPGycJbgieIZV4XwIVM9DM5JxJq4xhCsdxlwjii2TynLPylMF8tFuAcm1JBRcyai4BLLW0PVYEm1bJWYsf75VVcWcVhFjx1aKolvhJZbWwtoZpJU5ZVtMYwljhe5/DDBM6MBJYPw67VYqEUsb2RxJLIxeVMWhKCN6WrKCE4DkF4eVlIKSMZgjgWsRCaGCPDODRlRQ0ZQnLJmP8Khyrg2FEUN/KXoexv7dj63KpD+bXqDL8KFi/dJK+19/fke8Hk3nrxnnNvfbfR3F05/r4+vvbO7xuPtQ+FGVWtUrnHt4yU7H5Xi0stTvurtsL4LZ7Mko1ojjin+CkQ3Ef84QH1nqhnhvsPDOcXyygZDngSzpkVcVYYBkfCk5xHUgItRXYpgmNNhpAEi1VOQGgChbknJYoiDl9KXljH7D4OQXwo5aiLlgxlHEe8c0SE+fmF0/FETInD4NGY0JQR1VIPsfiEdG6nKC1OQRBcKNajVjuRZlUUtcQv1VLw2ryscYk9U66VwWoCD70QPipQrBrl3D1H6n1fm9quT1tXtq1MoSXu8FJTDnX9C5VIlWfm9dnSMU5tAGTVWCLFhb0IOLXkhgLSJdioJLHFOnlLMCC5uCw6i49BxGoD1mxntd6TJjTPXYynkD0wVMYJLgtOPXiHBocubrU4C4RwgKKdHcjcf/gAQD6eiSmSNFuSgmHC+RHnBpx4cl5IurDEGl9iCROi5BLSkljSzONvP2zGeD9P3wYc++ukKSAbU5YJ5w/IcIeEA+JGkAHcwJoGvgcZl334PitYpXpthZQbXz25XfOKzmH/umX93Kar30cnr8cxbjrSHV7dTffXXAe21/fjt/TtxpGasbQm/VIopjzL2GuhScREW8N2P+nuLcXtsQc/oEtGvLOkU9VDpvALNLUC4nab1eJWQV5LCtJ5xaharJZIKrGERShVGpg05ZzdZwVf/y9779okO46k6T0OgGREZp5L1VT37OzMyGxXMtP//zn6sDKZNLvdM119rplxIQG4PjgAghGRefKcqh7NmonddTIzyCBBwOF3f33lnapK7uY9JlMwqwsuN2PReIpThdoSpI2Ddn41ku2fXEKuWj8UA8LIlY/VeaPdknq7rLnU2GF7q5trC9DUVNsyF2SSB8lKXBKTT2Qxp5QfrB7Qd4byuu6s+7eNiLan1jKI51wiujoOO8f2rXKby2ONBnPtPC8ywPtgTtkQGcLANEDEkbF3cimTxZEiBNKagqprXWjOGTcMDCEwBM84BnbjwP04Mklkco5d8NyFwN00MY7BMotqbagqmhJ+CJv5EyqC+VosLAX59DTPLMuJp+ORL09PnOaF02wtPVJxbqdUo4vgnefh4YH5r5+Zl5nj+cxuf0cYJkKY+cvHJ8ZpxzAMTMWZ+eVp5uHpxN//8Y/s7u4AZZnPqFhkzAwnX4wuBy6hLrSU3qzKssyGBDtMSIrk6FBi6azjixFmTvIqf72Y7uQU1GVQj29aK4aVoGstbQWAWXWYaki60t5MUSdoTG35Lc20pL2qFueG1XFqWRMRGMNARIgltR2NxclTgI0GV8uWqfZaCbYTvJRopY3BCeRi72vuYOJUm8NSKaVFxQA2nmNp05rVendf7RLbX15kw29+r2OTrVXHfHFN249VF+ucO7/l+E2tM76lqPx7RhovmdUtBeYy7efWcRm5+Ju/g9A8iR1I75VC9vyXy3+yujH6etHXp1u9wOif+USrcCQbE/S+9ULMTshxMUYzlDYA0x0iCa+RYQiMKZPEk53nlI3hbEnK3ilTeysBWF2g9e1SS5tTMwAtu0Wa8HGrZLN3zuumyTnjQzBDxJkXLeWMxEhaFoskpYSI4IPHeUOArGh4RV4Wj68pOa0Q3tUeTR3aIGwU3WfnujOw+nVc2dc6N723WMp9pby/Ofq237qlkj43lnpvufysv0+/x1jnuj6k6Vab6+ov2rXeuFTjmzm8vSeVnmnfaoqXUJoJu6YoivjmAV4Nku6fnNB4RoYCDiUFzt+DHwQnpZY1WjRZnFjz4ZKiJx4obQK0eDN9CHgRUjRUtFQcE3gTZFIUHCEhmnCayUKhkVofU/uBKg9vHy7m//Zefr3ReLneVfEPZhT6EfETUhFQxealaJrf5Esv8c9LnnyVtkqhXSi1rpUvXtDPC883dvrbePbtORWq63R9J1uPW3MvjR8/vy79fX7XYPH6hGc/bhFFe3zZr1VhKwpuLlGfAr6xjrkiGMr1WqilfoIaMqCUxtWuph5SfgpJCjhRv7+7vbve0q5KOZNUQcXKHMq5mJJh9pS1yBdzXmsDe7pYSnqoq+6jVi9I9555ZfS6poj2zr6Wmts5oStbrv1nb+7N6rgrhubWWGQzrzUVt76H9RdUyEqcIy4Es/VFGbKSJRdkyC61NSvqyvhXa3o1blk/649+ede6t8trisFINSlvHxa9Wt+pZ+1SaMqXpvZOrBYvOM9Sca1sUlFNjWZ7W9wi1OV73uO9tcAITggijM4xescUPNMQmMYSgQyO3PoS1zUu8yGU1kg9P1rXBOB4OPB0PPH4dODL04FzjMwxkzCEzpyFJaYSPbV3UoTD6cR5njnNZ/aL4v0M7kDOsNvtm7E4TRPD4cjj0wGRwJs3DwzBgybcvjaCV3BwjgnvDHDFhQBS/EGmoBkAlHOQfetXrF5NLkmpf8UXh4uC8xYFBiz7JDdAlbZyBb130xu1fH/FT7gmDFtnV7dXu6amO1v5iGEwmIPZ4STjXKkLbvyr0p4Zad45MsoQPDFDzlbW4VNGxOqdncOyitSRFt0MruZ9qBrNitTn99ds36elaDfeurny2eO7SzWqXFnVLG5tyq2uJtzY2t99vGgsmsJYxvLcS11M2OX3byoLz8mwHxDyv8WYe+mbLythL7LEZ8/1CtLGm16+UqMtIDduUV3Al/csPy/W6CWl6mYk4KXJ6NetelCLtzmVLqZS0h8o0NJZLQXH8soDftpz9/bvSE+K04X9OJAk4qJHFuHj4akhx5kwtkiPAdVEYk4IQggD43RHWhIxJQbvEI0mdGMmzeaFNv7u8UPXv6mMs0bgag0AYJHDkrR5Ph2tl08pdh7GAfHevLqZVjdW89MrMxYfmkCpkcWqXFVF+NuRxVVx7EGE+vOXgn5dwzV9aWN8qTbwgAvb60Uj41uK+XPj7/dArQ1UAafrODdXNQVpHVuF6C7qeBtRP95cIhe1vtdqSAKqtc+kCfjNWrS6RyXnmZQyu+Ee8azgEEEIIRDUE51weHwkL5aOnPMZ1QhiQAc5m9IQiwfap2zCShLqFPNQKDCT07kTihHIOBdbuxMvwrCfyHkBFYZd4KdffrpalVs89Ra/ujTIbtFc+8wF8JMh+/kJ8SP4EVwo9YprrdNGuH/jeCkr5EpeUEigEsMtHXt7gxv7o3929/sPiIlrob+t9zIedVl7ePse23m4Ft7tnV81rldd9uKY2rtVYwKoveAyQspqSIPZ6g8rAu+atppXumj3WxFP8Vablshkn3EZspMVnVMEdYrkLnuk6Bt097MhmqFn9X9KSolhnNraz/OCc6m9U87rO13Sf40gnOaFlFLjid9yNLdxwIYGoAE8b+lgAwFNk0Gbe3Vz/xx9NtmltKipiBC8IVsv8xkZPYN4BnHElIji8LJGXmpMUKoAACAASURBVG3+LhTdv8VR98UNOtZsfLFq4UnXKGYz8krZQB89cdmwBGJKLEmZY2KeI/OiLEmtLrwc1VE7jIFxDATJeBTJpX3CELgfB+6mkbtxYjcOZjB4MUdz3aO1TljWVhRaxp2LE896NFvbrQ+fPvDp4yeeTmeO82J1vi5AMCdkVmu6EjVbhE7h8PETSzRwPsTx8dNXlmjvae27Jrw34+wPf/iDRd9y5l/+nz/xy9/9xLt3b/nll5/44xjsHZwgQ+Cx9AF+++YNu92O0/nE+XwmDIFhmsiqnFNkUEHx5tjxxSHnrNwlOwX1Jne9t5ZJUDzjBsRUDca63TfOWKC5DqTui63Ookgx/igRYpOjOfX1vYJzAznPZnTisPKnVLLIBisnESWIRTzVebJX5jyzm0bLgpsz0zByyhmXtKSaeobg0Ow4HY5U1kORmbX3YovyixSD+hbJr056WOnoW+z8ymHaGdUbNe2S4fd/d/rf6qzS29denrs4vuVw/nbrjAvl8ur4HSxW+G1G3/+Xx0vpF72HBLipYVVEt9ZT6eoCWJsF/v7HqsR8z5cKHLtteVzYo4sURLMzYFE4svW2wwd2D+/46R/+mS//lsnnJ8Qpb97sGZPDnRL820cen554fDozL8sWGj4J3gVDUg0Dw2BF50RHzAspQqpIaWXT11QJlzMxZeaYGKaJcRyZph1SatnSEokpkdRSd+p6qmZ88Axh5O7+nnPOLMuCYnWUFQDFtbkzoRxzLGPwiKQNs1mb9752slcjaXuU4kw6JiFi7Vm2i2spIqXAvlfG/mbHJc/sGGA3Wc0x3OzDHmnCbce3bp/y3tWOaHpnn25r6qClpnZCX7qBFM3Me0ulRqO1eimjCW7Ai+I04UcY954cFB8zMUeCMyQ67wLz6UxWZXCW7nOeZ87LmcHvwEVquoxF360mJmupe80R1YgMrnivlWkaOMYD427Hw09vGe/23Uy8FiTpe45iTPsBwg7GPYTJDEUCuYA4iIVFfy92/9JwVgWN1WHZjs44q6QsIlfRxEtuao6J3zL6NQp+c9Dfw6Dl8vp+k1xe2qckfg/veOn59qxap5eLQZJzJhaldlHlVIyp0izI/le8+AacWGoMK1+j1C16sfRtESDhksk5kVJjZE8nCQ2EpKXFdu+q2nyT+DBa/VUy5Mwh1RILYZ7n1QlHMbDKM2pNI9h4alL318OxKOY9H10dsrci5FeOgcaY1ghHPZ/JZI0989qgyFaaqXysBgyKVbLSfmeEKtIiOL70v8zLjDt7Jh3JMuDPS+lBpzh1hDE0umn/vUwYL/z940ejXcV4XU0XLrIWwDlv0bTdjukcDUFdlXNOJSsDgvP4BKFQUc6xoVWrKt45NEdSnJHBESQzepgCvNnvuL/bcz9N7EIgeGlbUdUyQVxpR5VKNNGJx+rhbD7EeVRgnme+Ph349de/8vnLVw7HEzEnslrNvEWjjLYclvrqxoEUlXnJxHmxFEnvTJ/IZ8LgYAo4PzEvC2kxcLNf//XfGIaBcRy539/x8a8f+PLxI//3//XfGILwhz/8wh/++Ad+/sMfrdWICE4T82loc+9E0GR1d2GcyOdIdjSEdkHRnEjqIGQkl6IdV2pebbbRtDTe6gBLffUFuNQZ1kNZTwOXKgamlhTU4jhWKUi3pc0VzkpBkmScC4b6mhNZI0ukpKeW3tglw2CYJmReAGn1xkIBFHSOcRhY4sxynqHoar60Q5MhEBflfLKei/VwaoBLZoRBlogh49r9LXuu9J99huevcmvVJ7919PpQc5hvNtBWyrw2w7XPPvutx+vTUJu1vGWgr3YxXxzPTeKPpjj9wAjK7F+P4VbqZvfQ1QMlHSBNWZQ+bfC5XP4tmVVPfa+KWAqPqvIcQT7/WtK93u13eH3K2o3bgzGIqnCg+LAnZcj5RGYp8MoenwULPAb8uOPuzc/Mh68szqHL0VpoqCIkNCdOxwOHoxWF27OKR8dZ7UhVJpZktSuWmqTEZK0yLDWhNEqtRklReIbgCc6SzFNBwVMoKKbeoA+yRRKnaUeOBm4yjhPDOHE+nymZPzjny/MLuAzmacspEZdEyrlt/hZ1LD22tnT1vNdnS+fcIAMFzT3bvkmza8pRZ3h2nqgXHR3Yu1VP13PHs6msVHS1qy9sv1eNEDHFUy/O9WO9BJVtjzabEJACtFF+bwr2mirVejsWRdUi4MXb6Sz1tPbORBQ/DjjvcUkJi4HZUCIcMUU0ZYLPOAJOEy4nohqCr6oJNxETVFa/KsS8YIavNbqXZDwk5QUfHNNu4P5hT+pAOTQLzrM5Xooe3uI/qxdyNbREBHUB9YaAig8WUfS+KAOuKBy09fwRw+t7BOezwvCS/4tFFxv9yCWxrnT/gmTZOPVup+5f3+UyLft6rNzcOM+pGf9eDlOr4UvQTKqS3lgUMTMWDUgDNYdgqwXsDPlmyBhmiXneNeJVSuZySWx1WtLNVmNQ1TpkWiSpoF1Xfl/3azFOUfBpNWpTjA0sR4FljqVxeU0qrfkMxutXMboai8d5tsiiCxsH4UYy9w4mVlXhkm9KSV/vzynGQ0wWlXMVQEeE+nFNpdc2v4WvNwOxfKV1lxMisQCxmILvY0SCx6k3p6j3eLHaxj79tE+jvXVUg2j94JJu9PaJb92nTJ75fXS9RmnzrmrYAMMwsN/DeDhxnhfImWU+MafMgkWOKIa/99UZSqNfELImUlrw08gYPLshcLcbmIaBKQSG0t5qk90FhY+4tkEVVgO/XJtz5rTMPB0OfP7yhY+fP3A+l1ZK2PidD3g/IGHAHJbO0LSHgZQtBfqf//E/o2SWGDkcj8zzTKzgPTEzhRFVe/4yGxBNXhZSWFg0kRyIZNKcODx+5Wk3sd+NHA9HvPOEnNFlRMThvGc/Wl9FcKWMIiGqpd1WefsCDpdrn+fqrSk66iba34xn06GoOpdTqOVAzXFS6vzUgGmqAzumxBJj08OyKktccC4XZOaEpsQ8WwuMENRQ8kvbm/1uWjuKuyLHyzPNYKRlFVFkvyvOUS0G5rLYHt2ss1l7IJTWbSa/a4qza3XXW17ROyj16orn9sqFLnapG/Vb6OLu6/O2Ms/R8436+q+Qu78lsrh6dV9iDt9iHOtkvPZ4rVLx3LNed/5197+6Z2O2F8Zg2RwlUal5oy5fY1XC6weVLrfuhB8x5xphdAr2rXf5nvm9vq5434qikVFc2KFJyTGBPpXehA5hBAURjws79vc/cX7ziKiyxFhqzGIBk4mcTkfO5zNRBfVD0UuKQVYYkmJpBIXvFE+zKTla6lbqhq/KhThrj+FK6k6KEfMeWkKpeN+UC8Sz2+9ZzjPBe8ZhIowjzHMxFrUImup9Whvv5phYlsXgvelSjKB431+vEBbTpVu7lUZWFlHSkor2dmtFLc2j3EDrjZ6v792u9GoUfJ8a29+bbhNcM8Kq8FcFauMFuxDm/efS30fKNW2OpNFBM4ZqA/TN7cWgyGMq6UBCKPNRFVUnIEPADUAEf5cM4CZa/8RMBqmRQsWR8GLIqOIViyw2CCSrt1BpUPciIKG8Q1JinBn3I/u7Hfv7PSnHixWprOZCUN10vFWjsF+99R71u3UeNATEV0+xL+Or/5W92AjtYg1feVwas9ujKpSdvK50e3GPNZK8KuM9vULPe1ch/NKY+1TR16brvJS+KK9SF7h5zd/EcKwGiuZVeSsp3Kq0RulLSszZWhdZrbiUPnFFkXas+0ntvCvwiKqRgGvtznCKy4rB918gGas20AkKnzJl3eZuNRYV52wP1TTUmGutoxIXA0xzRbauKZ2W7ljTOPsIwmleimywFFfN1UArNOA6mUztD+iaXKnjgpUWtRo/2E9zLPbnaxprz5eK7EjVUF2Np6oUVhZZLaxFl6JrmFPZLwt+CAwKSzJQFQveFfmXy3xKlUmdk/uCQDb78wYJrVO0TX+rDvPnqNa+smZI1QhnjWhXYJNhHMl4hlAMOs3EeWZOmSQOxlo36co8Vror46gRV014L0yDZzcG9qMZa0MYGHxYE1mE0vmh6m11sHYia24Gh6q1XPn6+JWvj498/vyZp8MT6GDAZT4w7XaEYWQIE+IDIoayGsLIfjLjJonwz//8T+SsnM8nfv3wK/N5YZ5nTqeZx6fHUicoxAyHp6MB+2XTk6KC88IQbJfE85nj41fOdxPnoxmLk3MQF6RkY8n9Pc6V6GFKdq7IypaBA61WVLOCJgPlqesOxaBsggXx1UgsK19SjUUEyb6kqWZSaTdm6KtGl+cYOc2xTLc5pM7zGRFv7VSKo3+ZEyLKhDIv0dp+JMsUS1mLfuMa+rgKBS221q56ZMlFAncRbrU2Qd75BtTTR95FLABg9G33W8uICqF0ynz97ram83VH43Ws8ud5GSXb6+t42+9bx+ite/2IffWbAG7+ZzluGayvF+Svu//tye8ERffv9TW9YiMYClv1/Ob6EF5feHP73XqiuSbE18+FI5D1TCaSVQn+DoKiKSL6RFrOVuOiQNJSmB6Y7t/zPi8cvefT6YymM+fTgcevj8zHE8sSiTGTRMga0dJV12EIYlIE6RIz8xxJ0WCslLpRSzpV0tWLixpjHQbCMBX4bmv0ez6fLQqaM84J+2lif7fn4e1bjk9PJe11LLVpBqucs7Zd0xv9OZsBvMxz6RuZmhHrnRbEse87NgbRC+zH+iW5hoBX6a6iigmWgoK1YmpQ+N9iGBeVj68+qoGoVUMrwiOjr0+kfO61e0OhCvvuMosO2lPcJv30cp9qU4ZDGBkMraYMV1p6HKos2SIZ0XnG92/xybz5w3lmn/bk+cx8eOR0fMJ7GAP485Fh50GUnBfmuIBY/V9KGRkiYfAM08AxJcR5skQO5wN/948/8+6nt+zvdhx7DfcHeNYth9X1NVLSjQaLKvpQwBC6mjSKKlXH8+q+od9/WLSlU7BfQYRV2dvOj27/vmF43nz+C9GXy+v+Zzy08LxqvIDNedTIkhNLisbLNHNeEstSNUXf+svVIoTGIRJQIpZeBVfRJbNvYF+maPlWP+fVkaKtUTXA6pw6F1o9lIVY5tbOQLX02yv1wgq4nNo5y+ZY1yelfAVgc5ot/S2TilGVVuRLEXzo1l8t/a3WxFUDh2q0CFRDVqt8UTOomwHbjNYtzdQ2R9N0V4zEXNLUt+OpxhECsx5wmptcxFtdfcqZ2OpIrT1Fysn8VcWQa4qu+y37t+e4t47tPmxRzVzBvSj9XCHnkkKo2tL7srpSLrKwi4ndeSQtiRmIDuZlJs5KijDsPM4XMCUP+92OwSmDxwzEaSiIp4FpHBmHwXoho61trLEFt66NYn15u7XKCssS+fDhA//y5z9xOB6Yl4Xpbo93d3g3sdvtePP2Hfu7e+7u79lPd+YoF1fQWScrOQgmX+7u9gxDIOf/wocPH4gxklLicJr513/9C0+HA0mV5e0Dh6cDh6cj3jnm09FQSwfH23f3xHnm6ctn5Ke33IVgLUCWmcPTE34YGceJ8zTx5Ty3LJqH+8kMP3FQ+kJXPu9LaErForS13YktuznHG/mIlL1W//TmlKf6NtRQk6Ou/YkLaNY5Jo6x6HNx4TzPPD4+Yu07bAz7abJbOGXWzOl8Zj6f0BgJu4kUzXESnCNJaRsijhQXhmHkTgZURpYvT5yfnsjLUrIk7B3G0SEpkJdYkPaL7evMARYXc1I5Jwyj3zh/amptpXmRNVIrIps64VfvrM5gfOGijUy/8IFf78zfyfH4srF46xl67aWtRy7pVtUAMgZ6zSCb/fvMfXph/S0P7/MpFc9P0Jo+WzjFJnWpePf6eMa3FqN+JjU0XL2OnQDslNTtWCzHO2s0q6hVy9deRL6xZhEtBFiaOrW+DSW94EYE4bVz0mkNRVmrilZVB1YidjLb3GdBspBcRLxj2O3J8R2aD2RdyHkmoogbcH4gyETMH1iiKXbL+VRSTw+cU8IHGAKQlN3+jpghZmsK66oHURKqswlhXwVjIDtAlEhCXBWM9h03TGiYOJXUUo8Ql4SQW+oVg+f+5/c83N/jsVqFqnycTifiPEOMOCAtizGw4MnZE1wGr8z5xIGZY06cM9wz4kpfvFkzO2oIqfowy6TnjHhffaWmkNQpF1p/pxrxMuFaSJdOASi+efOW11ojKfUArWKgKWDiLGUzW9fddq7RiZqiVT24rjJJ1pSOlSZLynH5np2HmhQhba9J8f5ZSiZOSlPp1aHSPLkljapBltdhlXQxcf3GvNxXnbezzHmtlahHbdZc06CN5KUIRksRBUWS4rMSNCGlL1UuDY6zeHIYYf+GIeyN3wHDQ0F5Q5GcCa3WIyO59JfClNiJyDnNpHxGB8fu/TuGuzfEbN71evjSc/G1NkoFE0n4Tr8rDb4xwZ79hBsf0OEBwh7kDmUCBlAzdrU0h7Hp+QGvB7f5+FXKLDUjo0ZCsPQkMMS9G7ZyTVO02rsSLdPOiKnPMqJn9bq25FW2RmWl7ktPbJ135bK+vF3Zop3bk6rdh7JKFpuTS2dAdWrUcW3nSvr/dP29kq6qFoWmEwcVWRajbc8ILDhfkKZVSBpYUrA+dmpgYKcUmJOSckQKhH0drnajkdIA3ZQ8T0ogkouBmMvv18BewXdonWXm14hRbEYWmPG45Lheryu/UjLEIrULynUuiMWpOKsuE+I/Hx7tl5L2XltTmO7iIK7jqguYu6jhSkuX0Tj7XspKVC01kfWz1XHWkFKLvPf5tIlWaonQrNHKiiaraDzjfDCDRhJxUiRFXDzjXGJOnuCU0QuJASc1YmQ8oc2EW/UVU7PL3qm6W+98VC2GAm0Orva01HvQ0bfRn2itH9fm9NWUIEfQBVPTnWGoaGQ5PyJpYe8cQ94RiCRNLGlhGoW8KPOiJBIOa64++ZE8Z/zdjrv9jv39PR6LXk/eMwBSDBUJqyMxZy1gdUVAiDLHBSfmZFZNHI9Hnp6e+PLlI5oTYxiZxjvu7h+4e3jLfn/Hbpy42+8Yh2KUetukIhlcQtwZSyPxOMnE+UCMNme7UWAMqDr2k3I//MTxuOfr56+4IQDvSCnx668fSHFgmSOHwwGNZ/ywZxwGjvORcTDgpyUtxgvTgs6Z0+e/FkPN5NcSfsKFgHMeh1pT+krBdS9oKa9ZrE2UlDVqHLTs+cqEkhZnsGZiXJjnMzFG4rLw6fMXcIElJj58+sJpjixxZo5nnp6eOM9nUnXYqBbD2dLLhxAMhMhF3jz8bBAeWTj+67/xn375hckPxFOEmPHe9ILFTQVDIzG4yJ1XnlCm7BgZyc6jPkLI5LO1yBAHMWZ0UQZg8B7NnlyoU7ywGz3BGbhRtaoFhZyoGTh1z7Z2YJ3jqu6nHuyqco6Net6bDM0Aqd8pPKrdrjipdK2t3TjK88U+feb4loP0G8biM4bYs39Uqbj+vKXY3DS2XhkmfS796rvTdvrre2Fe/tg8X7bW+1VaHJc6zGoobp+5/tgQQlUiqzJbDfK24Lq9hbABM1nTCS4UpO+YkzXFUbvHVZVAu9+LcK5KXTWQBav/cCPiZpBYGrv6YtSUwuRkqZ8hTJyzcFoSh/PMsTVNFcR59tPIkmCOmZiUpAazrmSDY3er0lfnyQHEYkTAqjT5kjqRSsQNQQrKX9UCnfeEccSHQDyeyQVAQTAAhRSjOUNgQ3PivGVeiKV3HJaZ4zJzWhK6G2mgBBuqaWzZ/BSFmVgfIkdVClrojMv9UH/fcpfej1OdF5aWU5BqVYsyXS7cKKR6dVulKDPSRtSNvVHLxShoz1rvd723zXDTRl3rGPrPOiVeOtVeCwKqcLE/1vnqI7JVkb6eszrW3D1KujrPYkAWY9q1hsVF2cmpGYfV2G/OMe9L77Wi1IqAJtBsKW4l0pFTNrCGYuj4aWDY7fDDWJSz1TgTV2K9r+P926PM02b1BHNI+dHQT91gqKjiMSP/QiCVL/3I4789vGIo1jWsDpCSMWCTLE0At/3Q+QOeufN2T3SXb4xFKT/XTzbHTXnUnI5bmbQ+SztDsanZV+P73gWVG/9td+J2V9ZtLnL5bYqj0lKjcwGiqIbOHJUlma6xGtuFl+XyDLEIvCt0YQ4jpYLZODFgimpo9ClWSd0m2qZ1Tqkpmuu8u67uLuvaYsnkZU2rNYUpJDufUm7p5QDaeYoO5xJZrGm41LWz/yr4T037cm7tHWlTcc2X1rm29NdaV2kfFWOxyE3X9ZEERTS1Xo0glgZeZIcheedGr26OyIBlvIgQpsi4RHYxsnPCEiPRWW/CmDO+yqstxV/R1E25sjEYTTW+Vn4v7iXr9Nx+Sl3LbPyQigMg4KpzChwOLxCqbFe1nngu4H3C+0hmbbExuAHB6tWCtwgbarV5XmrNtT1zk+PSzU99gR74ZVkW5vOJ+XwixcWeFQJh3PHw5h33Dw/sdnumcWA/jgTnDa0WxXq6ONNJWhciMzIstdTmayjXqwoue8J+x+Q9oTjJvA+mz2gixcz5PDMEkwX7/Y79bjIDphjitQRHi9YUlzMOxamiWtt4lPd1XZnGOikrFeTE9kyZJl31FfMJV2PFejqeDlaLeZ5nvnx5JOM5LYm/fPjM4bSwxDNLPHE8HpkXMxadlIhejMRoUcBxHK1XJImYgqWWinA6Rd7czbDzDMGTU1xVGvGoRkDxAoM3OvJYWaVSHCeu7v6Vt1lN5cV8qJJJeGftWC55bOWvQtXntnuq+d+f2zZyoSZdXafba3t9/eKqptpBF0ioz19116sh/CZj8cbxW2opfvS7lwZi//llBPKbEcWL+13f0whBtjO8HQ83dJMbMv/KAH7Rwr++wXOv0pSoSp1N2flbHoXo1FJ2KuJX9cxWg6jl/qul3w3B6hY1z5xPj6R0wHvl/uEtXz995rjA5+PM5+MTKUeGENgPe3Z3O0JU/JI5x8ThOBPTApIIwSJmufRXWHtzXc6Tw3tBxZW+it6idI03lPQVgcEFQ29dIsfjkWVZWsrRPM8sSyqR8y39heAKgqA1s358OvL58cjXuzN/uN+TVfAbQzy3zawYaqwT1wqsVcwU9+La+1w2VnYXKTI9RW6i7SLt2uZYyTR4auii3h0JGWx0d096ylwFa99CqV3RDK2V/bYR9ry31BpYz6SVlsWZbXbLebT9qDMCNhELoa/BqKNtXTu6+1Wa7e+5/qzGXAFOyLl4vVfkSKvRTVSHQwX0UDKxINlBhbxPqyGpC0osinLEFYGOE3Z3e8Iw4IMvtbRXM/zqwwTWqvBS16spxb5E0EvkthbvF0cV3ZzJ34DBPKtwboTmLdfcuuZOHOpKup+40uPP/N8t0tHdtI+a1zvf4rPPy5Vb46n3psmKXlj39+llx2qc5M21l2O4jMj172L7Rq6+862j0rGlyhdQLrXWQDErc0qc54WY1BAeyZt3yc0Qcjhxa8PqFKFFkaQof2sdYj83LsnqUKnz4yq1rcqa/ZybIZaLUt1YTjMi7ZzvPO2qNaNiS2/HkxmLpxQLHoehY9f7WcpcieaJKxEmG319//p7f981k6jsP1mjxLV2sudbWixsrVHTmjQk0MBEVFvikBNBzhkXLN0mixCCY/SenQ/s1bG4TBQleYjLQhAhFxCeVYnd0vY6zt9y9Ou1pX1dF6v9bbLMFzklhR6VuCwMw53VhccFPyQkL4UHDyATIZzZ7Q2gyInHu8A4jDTdrRhE6irSqqtuQyBfcDO5+AnTOKIlQnY4HDidzixLxPuBu70jjDt2dw+8e/93BSHTMQ5myLi+pY46cErwHvED3g94Nxp9aSp+AY9npTtJHq+CHwK7XyY+ffpkBvE48k//8J8Ncfs88+bhgZyztXkKgSWdqI5PVZPzSV3JMAmlrhcDL8vJRBdqyPXIhmfVpBwVZ4iljTYLeJ+A4HCDN2d8UQacd2iG+Xzi8esXDocDT8cDX74eOM6J4zny6fGJx8PZ0omTBQnmeW7G7ljmPqVkulfMLbtqnv/ENA7sxonJPfCnP3/i53cL//xPf0dkJs6QFqyvsRhvEm96mg+WHk9e1iwMAaXwQa0BApuXmKqpbT9rAMF1vMzYnJTIPNQsxRd1d4zfXAWkvkPCr87Syn8ubZTieK0M5xX20beO//A1iy95sP7djuddZc8cFY/oehFvWpX95yrGYKoCUZS6Po0PeiVhReSkRWqqKfJbFbw61l5hNY+pI5faMCGttgzBOcQ7QjEiWRw+gPjEnB7xekIk49zIh68Lf/1y4sPTiSNWzDw6z3432SYPpoT4UTkvJ2JaiDGVlMWi0GqJIDaPsCFmVcYbQkAdqFN2086UopRK/aEBPIhAGAYrnI6W3pFrjYr3nE4nS2lQWh+oWpSvrLU/KsLjMfH5sPDpOHPMDhczSTJBhCArM/INst1gqWsqJmIkUNtHXUfSVwb1rb1RDYP+WkUrpvXVdZdKzyp4KyPra3CVC2txq4h05LM10CqKYW8GrUh/ptAUpnyzrkY7J8lWkRZZ73FzPjrlpdU3bdJBOoNAC5hFzuTYECPMy1rrLkqay2p05/b7PJ/X50nxojfD2dDcVE1hEBGSAN7z7qf3DLsRGUIBEvjxPVyT1+pf61YuXnNXYN5LnaJ4j9WchIKK98OP/psdtW4L7P2q0f/ab7/m/LVZVp936y6V3946vpP33zqzoe9Lo7G/7mLcL1xbeZ5TBYwGs1r7oJgTc4oc58jj+cx5hpgujeWSxVB4rnMGd28pzksbkNRx4Nvf66wUr341HrSbXdlGfarhV90W9vn6blbytt5nOZ/bbKpKaWmgG4CbXz8eUWDueheuyIk0GWKv4hiGuCI0VkdT84/pxdy3N6Gyl15n679bxfjgoYDPNtTtFa/AMt5qXZmeAZdRZ1cMQ2TnI3dDZPGBGJToIHrFD6Z057A1DNtCVFEgPYbi73ysAoBcsoOAVrfoUEQHk91JOC+O6W5HikdOp4S4hEWqbXyu9BR0MhEjaVFC1AAAIABJREFUpi91PXyBYnguSPD4IIRSN2tdRKvhuKk46wcKORGXhdPpxPHwRMqZEAZ+3t/jfAGx2d3x5s2bVp5ReWxtBSIuWEQwDLhhxIUBxZOyGWFWZoQBlNqoDdtAx4JUmnEsPNzdW1rmYqCAu+CZwp77/cTxeGy1np+/PuFJ+KIfSLBU71B6SVo/RXvrlBZUE6oer9p6plYHc26ODiXHktKKFBotxOw8TpKVI5VygfN84nw88uHDBz5//sTh6cjTk5UZff565DQvRHUs88wwDtw/3DPPJ8ZhMuCquLDEwkMIDIMwzwsimWkaiTFxOkY+55mf3xmo1YcvmdP/+YVf3r8H9ZAFV8oRwCMept3I3W7m7jTw8XBGU0YUgh/ITksZAwRXTUVbE0MwF6bBcTfCNJnRubqgZNW/NzT/kqxZ+Xl/fI+x2Oht88gqCzsdDbke2w8erzIWXxOt+63HD6eT/sBx6xnr8+FSHbillGu9tj91JfO34nGr4Dcu3V1XUjzafYph2D+1C89UJb/XyJWqbF8N+RtHE69tDtbX7g0WV8ALbPxOE7kjR5XVq+ydsERLtfSI1cWlSFzOpPPC18dPHE5PzHG2ZvcJS6/NasYZAUrhuWDKragvgrQKd48Ej+KRLMUDlZsRkHPxClEMvBhJ0YzF9oIOwgBxiQiQkqWUOudK2kZd7wq7TDPCco70abhLhuOS+XJa+HKeURF26ti7QK6gD87SnNoiZYrhK89ppDa3qjfp87YSLPX/zTgCK/4OJWKqUlP9XMeoMttU5EJfxe9hqbKFTm1Qm+fr5SaQ8vymHJU9IL3xqJtnqrryXx/h3xqywmo41/uuxmyFstc2hnWv2Acbb1xbYxMwpuBanV5N5bGQbKS1HSjRgFw+q/UgVblNKbZ2KW1Dy+Yt2v9SNhVKvGN3f4cPBc4f2diKmTr33Xy/wDe3KatFWWoTVsANXGnfIbVNhjSlwcbAlrwq1PrvwKYv+errRVrH7Mova/TCVPeVNu249jts6RZ6+S5XHxrNcfWdGiGp11zeYbM+qhta6N/nW/y6X9/v4e3S1rJ/WrlH1/e18omczRm4pMw5whyVlKqiXZWQ7ViyGuKpGZErIJs0mlv3Z68SSYW67w1+WR2ldQ0V1rRXVsW+cazip6k0EJMZiSIV4bVkAnTGYiytOFKtRNhIMUoWQRmEWLuOauXlLkOoRg/Xd+wpS0r9VzdZymoRsq5BRSit73G5b1WkOLBqqjtosjTaS+O1X+nmZKZfgzKWV9BRy0q4vPMrnJXb6yuP72WDjcHhiqKrBBm5u3sHbx/RNHM6RZx6UI+mRM6LRZCjWm/lpDjJqM+46AwhVC2Xx/ogW+P3mijRVqh5DqT9kG7OY4zEtJR6XSF4Qzvd7/Y4P+H8gAsDkgVkdQRKibI75/E+FIPQ6vlzSmRRsjjj8cWhnkodYVt0XyL3yRzbQwhGdymSlhkJlg0SHAxBrF+wc0zBM4YVgCoLhGCIoL3j1VY0FSBkac5ZrRNR95zmprPZNb0Tp9ByKvtKDDn2dHjidHximU/EZSbGMzEt5JjJOSIo+/3Yam59COzGhwIMuDDPwv1+R+Xp83xmNww2apdQ3REwHIvT6QnvIimNaJqYxoXdaAGLuKTmiBGBEDy7ceBuNzB6x5LqHhNw2raD4BpwjalGluY8DcK7h4kheLxjBWsqrbCaSLrhcO/3zK3fbU06/lrvd8OWaDZH9cxrvZc2XmRXdzxEOn3txePlK140Fr9luP1wWinARhHszj3z+a3nfevvV4/nljH4jCKz0ZsKI781xyszXYVkd7ZTsnvNq1vo9vclc39mQXvD7gdQmG4dK+FtP7P0+tz+c/gCoCIdDzb/XZbitcJBFnJMxPnE6fjI8fSZ83wgpWgeq+K10pzJYnUaUHrdFLrwIZA0IaV/kZb6BBVPymIMWqzdgAlQLSmPptDHJZKWhRTjakCUfP20mOFX07MqtHsuDXovGYKIWDqHSBlPYElwmCNfjmc+Ph1RdSQGQ6tLgC8e/UYSJW3EZWM62dJWnpPDt1Koe0WluxJukKatX023wua4kd9qFPaG1OVtNzZIs6QLkzPudaVe9CpHS/+rClJjqtfv7b1va7+Z9/qKvYJeDMUage39Mk1xan9vlTttsO7amLV2c2G1Lqmje4sMmsGYSClaz8UO0MvjmzK4aus2EyprNDqWmhDvrW2L80XB6BTr546XlLbLtL8y4/Z8qhFRPdxrKmr7nnR3EFgt1ytJdnU8Vzrw+qPQwqWAFe1+3/LNzjew5bZSP33NOL4le1ZK/rGsl3V0l/T40py+JBe7Qb743G2qdll/txr/NYKXshKz1SvWTOtqc/SR3XYfhVRq/1Y7Stv1a8/Fde/XzZUbAE29X24TUiPHG54klGbn2j7WLF10cbUDVGsygLZ2EvWwzHIFdeW61dC1ddn2TswldfEyXbMqmCaa+/pYaR0G6tGQUckt4u8KYIh2kJItXVKrglhllLR7a+0P0EKUdU+sCjJCWd++WnF9Q1gprk+Trl64Tu1to+qPyxTrjdzYXFefsX1mmzvBImkiiAR2u7eEN4l4fuTxq1rPvOwNZyAvZI3ERYiL0YuWqGhygSGUWsFCCKuGdQlxlNnys+3RwFao9YKBMAzsirGIGM/M2YxVo3dbE2uRZCmQdR61Oq2dol4LjzcqTjk2o9TSHHOhEOszOHhvtXIi1oIiYb1LvSN4M07FwTQMDME34Bl1BvzjvSuASqtOKmRaH1S0zX9b/yqPS7uLapysGqF2zg1zGGWNzKcD59ORnGY014b2Nj/BC85bNDGmlW6maWKZzyxxYVkWdjszFnPOHI8HQMi6cI6P5DiRs63P6fSV09kyfYKMHA7R2mUMkM+GXSFS0fQd4xjYT4FpcBxTbu8irYyh4zUdbXhnLVjeP9wzBGt/tfKllc9dWwwv8/Obe4R1jq/ldj//3XdvXN9uBvSAbC/KkG+Il//waaj/EY4aCbm19lcfNaVKLz6s7TCuv3Bz/arHtwgBsWQNUxo2cPqN3b9Ctfx9jhACeT6hyRLEgxtQP5BdIKVSuJ0SDgh3A0485IwuA+msLKcT58NfQT/j5Ygnkg4GfzwMAZGAd8FQ+lLi8fGJc0nBGKfJ+ulkiz4hgTBMKA6SwW+HENr8DcEZqrsqcZmZzzNpidZmonn7FbIYCmAxFKPlXuEbvohxylR7V4nVSzlfq9QMye08L3zUJ3K0fnt/fHfHz+/uceMdg8AowlAjOs2iUViS5Z46AzLIRfG4lYp5HU26vcv1xpnK2Lw4ckl/0Wx9jOq9PIZstqoInSJBlRtF+KROoeEFhfbi42rAr9fnRsEppZJa49qYt8puHYSU2qkVQVXaS3YM8tZw5Fr5WYdakQfL31UiFgG5RhETOcdS8xVXtDnNOBnWIFJdw2a0JCgKby5WqQTPsJvY39+Bd32y1sUU3nybZ97EFWfWjfPFUMR5VKy3ooolaV2tYR23UFJjbz/t37tkoCrvlUda3ZMp0k6qb/gSde7Wjb5t/D7/1e+LsJRvsaZwb1VnO15WNJ4bh83Ht6+tLRqgMyyoxpZuH91lO1zef/OsZujUfbgaKK5V9FyURig49YXW60Mvohft89WIbM9XMxTbaTXDy1ekUVU8a0GHIQubDPYFnr/1XWOrUNUoSp+qHsSVBMbnNkBnuxUArsrmmxwXxfbldv4vW3vUVP12ZG04XENpmp4LKJ7zFl3yviAgS6a23nIyNETWVnPv1jr6Or+5Rs5/0OHeTcFtblTF7cb547YXlzGMbmB3d0e8v+N0t+PDcGQspS0BiFJ1pox3xRDUjNWCg6ozPtAcFZRygQFBrfBDKYYdN0fsxBH8gHcBHwZAcC4gYSCEEZqBX0BZynoZcJn17Y1ES/N3gRDA+5HgQFyCeCqOEkMs9Z1MFwRfIlfOe47HJ0uFHK1X4zyficnSZHe7obWkuNtNTa7Frm8naMsIqkBTtTm91Hpif7kUZiTW/o52nyoXpfmIzUhMxWGaWM4n0jKb7ueEcfDAxDAoD/f3hHHizfufASE4Ryi1e9NuZBgC4zhusCFyzpxOJw6nJz4+/pXTQTidI6fzTMwP/Prrr6SYWHLmeD4x7WHSqWTImFaRs6WTjiFwt5u4n0ae5hPnVPoseo8GMx5zhFT0bKdCTgv74NkNI7+8eSD4Guln9UkUXl5VqOYMl62z6MVdUnnEuhUu3Dv136KLSffFes3F3v29pfFvMhZvRTl+9Pu3Uqueu+dL4dy/9bExAXtiqMpypYObK1VTbLqTVaFsUY6XVNx+DJm1UFuvxvVNN8Ezx7Xysyoxgr3vMh9Jp6/ofIR4JEx3yLDHhT2JXBThgOJZ0kLSiIuJ8+HI+ekrhy8f+fjxzzwdP3E8nTmdMinBP/zTP7Cb9sQMjycDV0ilf2GNgIj4UmvocS5YM1wXShqr9SlKBYDEecyjXCYt5cVqTnJFKKumkBIL0EFWq0uJySJuufbtKOkGKtrqGXHWBgI1z48Uhnk6nS3lQiPH84mv54WZgP95z900shudeSsrjHn1qlKMs5wb0EN7Vl1nXev++vW6lY7Ym5m9YVlTkyriW/ZF6cq5KZJrGoNpO70roj7TPN5rrcvavHh9n+6fAk9ezLBucLXlToWHsX1VDbO8MZh7+tTcIfKqKR/a9tGFMd1pxauaVA2/MqfQlESyoZ6mlEqDYi2Ab3UNsqWw4UDU6vzE4QnFrrRUJJHak64YwzWFLNtIHBBRhhCYpsmQ38RQDi8ljZMa7bhQmp/b6lJTU8qsN+bkqJF5g+jzRYVy+Na4tNDixXHj8b/bIXQ21LPXbFNze+OmjwRvR24vdMWvezYs0l37yvH+kKEIV2pA9dq3SE295uV7b/Z8H066Mc7+dVOmpF926Yu5U1ZFkKI9Ws1SMWhqupasa2UDEZSa9lX5kslCa8+jJVVr1bDKMjUDwdU+d12EaztL0v4F2ZY+JPrFt/trSalNuZYSo7o6a2NMpKLY2x21gHqUiSp1jmA1dc45cyTqy06Rds6JoS5udJl8dd2qFCt9mt82nY3NnGVn/KNmJ9i5anKbs6qiw65rbPVm1pj9Omr/tz6KdoQvfL7Vqdd1y6mga5pOM+jIQ3hLul/4sP/E05yZs3COe3PSykIICyQz2ux/iZwgxUz2GbKhkoZgfQRra6pL55n0vxQS9X4wrAXnCClaWrJUsKbV6VHTFAVItSQFiyo7P5Q5zqRoOoEXCOQC7lJKHJwQSumBk7XtQQbmHEtaaQVKKzRplndxmFgP6DEEGkAjJWJWmtJ7caxxVgqafn3zXBKczCCUaijmRI6R0qjTaEilIChX50XZz60VirUyGYMn73bsxh0gRFXGaWIYJ6Zpb2U+WInmVIxcMOfKdLcv2V2J02lh2g282b3n57dvOS1HPnz8zOfPX8n5jwzseDp85fHpA+RA8O9wwJtxZ4jkCDEpkk1+Tj5wPwwM7kwJI4APBKyNyDmuhTSJjFMI3rMf4C5YWrPoqr4IFIux17Zetl+ePS7Mgl5TaT+rDnVDXl3Kj1WPWs//lnK/v2lk8benIq2K57eecSm4f08jst17w1WuVratZYXet6suDepb3gbZnhfp4PuLkJTLa4uZUx5Y0wlUeqH6+xz93QS1XP75SJ4fkfkRpxGnFhGziIpHJWA9hdSkeVxI84F4fmI+P3E8PDEvC0s0AXz/8MD79z8zjBOPT0fScWaJiSWV9gUFTGeJiZgtrcBVtKtSc1eNC0PsqjUqlckBKXc1JLXOyWRHyoaGlXNGSwpqXWVb+rr+sn6Pjj5VCpqBjWFZlM9PB/BCRFA/8GaAt0m5z1Z4Lt6gwbed67p17T+9+OC6nk+uPr/tVCmC1RV0PDFrwsTQZbKSWTXtfauA6XXSjVJzMej++dSvSneuv/6aYlfd0Z57lYbaXVeV3Hb1paF4ax7aGFYFtrkPasPvghIpail2draoNCKWtqmW1lOBdm3a1CLqsq7LCoDTtFekKHQ+eIZhKMrIhiN0v9Vo2Xcc3bz0BmNNGxdK7WIDXHrJWuuUjYtrXpUmeTW07fWNir9hJwmy+e7qyFj35XqzVdCqdt/Tni5uPOw7bMBeGF9u3MtUPen3wDMP6w2uy89uHS+duZme3oxKWcm/nmI1LrfJi9p+NNHURGI9d7mexUisv9ff6hw1J1c1IuvHnawtLTma86mMezUNuzXvRlodOm2sV7Og7Vlr5K9Tn2t7Du3IBG0G5OVxLZ611Uje2iu3fu/5ePuzLQpr5KLw7VW30DaXjWdWtDQuSLKb42qA8/1c5epo9P3sBfVcjSaW5ypdv1Az2D2CV8cURh52d9xNgd3gGOfcxmzqgF5OEWiy+sAC4uadELwrBt1K0du0Qb3iJ1LAhBqSb5lXV1uaVElQndeFr9fvuFKvbg7sXNDU1QyqGFlitJRSsNo9Xxu+O+v9KwLeoaMnOG8Pz1rafxRUXO9p+iFCzrU2u6CZOumayF8YGhu5VGWSrDI/WwqstT8rTpYSjc8XgFFVtmlOFr0P1ht8z0RF2k7FWAw+IM7i3g4DHhpDBZZSzFhNBfYvM/iKTSGEDMFH0v0EKfL1a+Zhf4+QmM+fiMuZ0+nI4AN3wRHCDimOURS8eIJXphDwJX3XrEijf1/oyiGlhQv4APud537vGV1C1K8ytYoSuj32jMPuW8e2vvGGhGhCrS7dtZA0GdzLnOtnvMaWeu74prH4o6lF3/u9lyzeq/SMG9e+rEy/fGzvU5jYM/feRDYux2lXNJakBX1rO7Yb0cXN5wWpS3JbeCmK3DZa0z9VG43WqFEdyesOvR7OC0dKC2k5oudHOHzELeeSduoI0zuyt+iK5kzgjNOE5BN6/kQ6f2E5PXI8nphnq4vBB/7+7/+Rn3/5BVXh6Rw5zwun88J5SeXdPSkr5/NsDGgoDY+lbl57AUuLMBASVbU6wdqNPZfc/PLOBvJiolJjJGbzyNYyPptrsQiWM0EublXAFEtLtdQEIOeS3mrj+HJciBx5mhNfj5G9U356e8f7hzt88DB5Ri/WLLiso2u/04ygy9YZPW1aVG5ts7Fe9wwNSKmwcTWVRBF8idKtz6xpobXNxhq9tFYF26qXQu8NNEcuHtlx1TKG64hoqV3p0mEr3VdGuVG8LwzAS8N4O4auCrh97nDOo84ZrRSFy5B+MWeraR3tTY2UBHUFbMJLAVPQYmuVeVClhwiu0RmT91pSoixNjMIfQoksbuZNr413+Q5hdAU21N3JJtuMRBFvdT9VE2nU331f6o/qQd2m1F8aRZtx/AZv5quPnkdzgzfr1vhqvNLObn9upP/Nh938e907vc2wTYN9LU+uCsHlfu/PX9P56w5rN1LSReu7ao33GH/wxTgREVyoM1rSr4p2LtJgIOrLtmfULZq17CfpaEPXSH5v8NXvbY0/4y/aHERS7mXfyqsV0t1LGsunkLWqkNT4Wrtrh0DavVYbTzfcknXB7Yzu+o90q7uheXvTaz7G+vm1YKfu4N7vZX0su7pJ6XnhWkNmV23h+Sua6jrElZ9I0T9eqwbcjqo/8+1ivNoruu5Sad1cXTFgPI7JTfi0WPbNfuJ+mrgbZx5PiuRIJpKltJ1wtRH8+rCskLLNufeOEKwPX9XMjMZdGVYvN3TlE7WGW0z38Ky/W61esR7xxDSTCyBedfh570kpcT6eOJ3OHErPwdPxzOHpTBiCyREwo7GshSvyWVUZpoF3f3jPm4cHc3THxDiOVsPorWVFxpyS3kvpneiKD1OasYisqdTWTiLQy0RtmTWWX6JoMxSt7jDWGSoAWHkFeao0nC2ldgwBDfbuMvhmOKeYrB2UCHGZkZzxIRDCYAZpJz9Ox6dmdFsaK6SY0HnGS+TtbscogU+//pndNOLdHZrf8Je//pXT8YCo8mYn+GG01ipuMGMRRZwwDlbbGnzEZYi5IMgihFBamTnILjGN8P7dyE/vJgZ/RjRQuxOIEwM4KjxrNeJWkK7vOXqHYi+ftNPPW81pYVjrHiwgRWu6B42bbXhR/fw6IPEtI+D/r1l8xfHj6Ua/91HFaK8wrgpDNW6k1El8jwHYafKbT2+pIuMUSGdPnpWYT6Rz6bs4TPj9e2so7gJJYXl6Ip0eWR5/5dd//T/49G9/4vOXz3z89IUvXzOPR2XG8f7vf+GcEqfjmcfDI1+fnjjNiSUpEYemhfMSOZzOvH//Bi2MCyylEzIhWANXEYjJkXM0CPSskEzwhgo/XlKK6ksmDNRB1TaFFYWbppHmWDyAq9cQKZvYCc47XC51H0W6ZxEiymFJnNPM4ykxyswv79/wy/s3+CDo/Y770bMbTHkLKrjSc7Dv+dXW4jISU5Qu1xmwLY3smVW24XXeXRES2jySVofR1xLWaG2nUFf7oTda0ZZmWs+96LDRpqO2Z/SGeP/uzesp/uat+vfeIjW6+qiL+aie30CQiXmeiRqtPgOaImA6g2u9KmNMRYhZemmvWl1lNoTaV9HSaUglRSyvRiLFe1oN/rrmaK8+dyO/vUVffaxcotavmEGu4luPRSl9FxG5yT6qQt4P4Tne+L088znT9tnrxZQhLcaPqMNR0g5bK4BXtASQ/snfOcm/i1yQW0R6fdXGONTt3y/s+cvD+4D4keDHwissclLbMzipmS11/qzyT3snZ6cgNaVGSmSiGOUVICnLBb0UHlmhlIoZulkC6a9dJ6Cetp+dYZm7LLAYS4/F+oHzqAqa1rWqDRT8UGDzM6Rid7UIj1ofyJwSSy7GljPZoXUA6+DYRmKxSJCr6WBCTUGvqMQWpbF3dN361RRau+s288QiH84CdJLJkqxXqvMIASnlGb62bRAt6JwFdMX5tYb63+mw6KF2gFnlc8TGV2SH2TUOTgOn47/hOEOeGdix97AfPNP4yVqhiEMZyXluvQ1RKYAzxlfFFQyDUv/uCbSesnQOLqojSZrB6EuP21QciIgWIJRSmlCcHYMDvMe7yr8zx+MTx+ORv/zlLzw+HliWxaJd+wfGh3f88T/9L/zyxz/gh4GUM5++fObLl89m0CnklDmdjjzNJ57+x/+wesUwcLfb87/+1//Kcp5ZlgWStfYyeSZ48YUflpTVvPaGFgyd1XvLYIkpmVOlkfDq/HPlH1f2YSptwpCSrV55Q7cRpYtOKsqyLIyjRURTtNpHVwwaL7Df7yiwcUzTRM0KizFunBp1/MHD7k5YlntmFDcm/vf/7R/58vTI58fE6fDA2/vEvBw4n7/y9OQJ0z1+9OA8PlsUU8UxjSO7ITDGSMiJc7JWHd45wjThQiCxEEm8fTPxh1/e8ve/7LkbvjSZ31BQNzrAWoP7vFjodfcfO2oEsfuk+3yrP9k4euRfufre839vjxeNxdUbcfFy/ST15zbesdtKJRgRan/p5XhfLae/L/XpNTWWsnmH7nsl7LKmW1QhzSq17Ory78XEixSHwzaqWJU2K4Q3L5DWS0td3aofVGVOy3Wymf8KidGc2a/26EsDrqiv0vsnemgB82q+RaZo4tYlNM4wOMRH9nqEOZJOJ5ZPn0hf/jvnx48cvn7g/OWvfP7ygc+PTxyXSBTY399xP70hSCYuC/P5kfnxE3k+WYpf8KQZluNCTpnJeZYcyeJRJ9yNIz4EFEPe0hTJMaKxeL9y2SDBmLmUeWkNEYowMEOvpI7k1LaVQOmtuK3HU1W0GKB5SZai2CJoRh2jeJwKYjmw/OnrkZMIZ4Rpt0Oz8n4/8n4/4kbz6XnJTVkTKeviaqotCKGAMtjKqCZjWiodK1gVXqXzHtd0XXIxFLR43oN53XIyJTtpiYLltSSxNZSvgt8UGlcialb/2JHUBR5FGW3xZ3YeMKGNr85vf6SUCkiBKW6+zEU1emtKTa7RinItIi0luzYQXgdTAITAlK5gyKXiEjkmWjaAFsWtprN5tyqKAk5l3XP00UUBcQZ2kO2NvV/x+DTZ5DjTTIED3oMfAwRPkhqBVAbf1TFl1gacF8ftzIpsa1W9nc0Yd2QXwIXiECkjy5TC0kofUpRcW0AzDF7nMe0NmW0vy2+M3disRVXLXDajXM1xUFPJtdGRrMbGZhq25nGd//Wz9b79d4ot89yb3XiBl/jr1ljdyoV1NGv0qHDfQl/tqb2hVAaYqZEno+7qJKqRk9uCVFCNhW94RAbQM6oJJBV6h6yOlIrSWYck6z3ar2pj7qNf/XMVWh+65lAp+kN9Pa1zKLT32dBEM1y7vyvwjtIcO/VPL6tRl6h1whcyndI2wwbWlJL6efUfGL8s4zWmuI5Nep7LqiHW09UJwEqDTUTUzysYT9Znyaj2vKvUY+Xs2k3Bhf6huYCORJwEasplRXS1voY1xibt/CXRu7pU3b5pE91+1/X37t03c725R62MK/wSAXWwJCspyZk8f0HnSCKTkwHTBZe4G4V3u4DMELOQ1JHdwIpODQMDuxB42I283++5GwKTDwwyNZ6GdFt2Y8BWfcn4TJWpQUy30pzJUds6CsISZ7wGRB3zeeFwOvB0OPD161cOp5lx98DuzUQYRpaYOeGZzye+/Mt/5zjPnOaFx9ORx8MR5wo4X+6A7XRi54UpCfMc+Zc//5mH3Y5xGBi8kJYjLlikMUVFS8qlE4ukVwp1zuFLr0ktaS6VR29awaCm/xS5kcGyTkqJTk0VFtRQvDsd04mh34uqldlIVQJsxcUNpWVGaKZplTHVYZMVxmEoKKzZxGN5xqK+ZPdkxGWG4Ljb7XAiDC4wBOXz18TpuDCfn1jOBzOSw1h4kGWShdETJo9fBA5KKCIvZ0WXkk3llCHAL+89b+490zTg/Fty2u7rxt5lK8cMkPIZ+6mnuCazaiZV/dz0tC07XZns+qz+3te/r06QW9fVtalr8bIT6dWRxT6VrJpL9q/0F10P9ta9yvdu2bEv27bXBuJr0lefM5a+y9izo0rBAAAgAElEQVTczivrm+t6smei9oD2/E1k5uK+16RkFCSynXcpjFXI7RmmMHmk9fpJTYHarMaNOVvP2X3sC9pepafRohMUwXmHDMkiakMmn75ggDOOIZ/I50fi4xfOH//E+a//jaevH3l6/Mx8+MDp9MgcFwgD093A/fiGaf+WkCNzmlnmI/FoPZbwoynPMyxn6ws0jp5oiAaWshFC85RqTmiM5CWZN0tB8EhwyODNqEwlH7/ULGnOJa0CDM1aWtynprfIhaerm0hMx74uThGE0CsTWfl8jGR3IuPYjSNehPz/svdmP5IkZ4Lf7zMzd48jr67qKnbzGM5wOaPVYrGDFaQHYQVBf7EAQYKOFwGCBOlloZVWuxpwOEty2CSbfdSVRxzudujhMzN3j4jMyqyu5o6AtUJWRnq4m9vx2XcfIeGMw5lEYxNRIo2xRKK6kBQurQTVJ62Fpy6JaSR8U/eDrNwYBUWqRjVlFrP63CdlKk19JpCiZigUlXnU0qZAkkFkZKwSxTV3EvKdv6snJAtxpc96rRLv6UlKdWln9xV2vwiolR3O+5KUSXLkmJKk+1EExnmh73IeBUSL9pqS8KXyPtkVLYQaq4jJlsuEJhzMa12jprLwWoTG8mMQkjWagTBJLXJeLGNCwFjUTcfq3qeyhpNDfF9k0SlBUT8UnzRTswulPOf6kxM26JyEUjNMoSdrSsfNKGBwbzt0Bz689qiW526N2lSkaFIT1WUqD4eiHS9Mc6W9RcGnPeR5H/z9iDncc8fkc2SOadPsvqnyMVVY0fvG15SzV94/5UROvfP0HkgqFqqRSTx8XmmRJyWfaYnL/cUcp5OygsBmy39SwXIi6Byvz/10dlRUTWFB74/pUIlwzKxUeaTCoczlFYqiYMR/RjSUI4pahooHxuGex5hqXVHtPs3wTqWCo7Z2ZjGYslwyYeCK1Unx9UhJT3oolfWYKNdERgtXKv0UnAY1XjExxiiOLv3ZOTcFYvIYmryGqvQq+Nsko4rMCnsp7/F8jQpsZ5+LyYwLzsvXH7CwJybbU/aeHD5BFjIKwxwjyW80mVwyhCCE4LEmsmjgrNMs6UPQBOIBIaRehWPAScfCtZy1S866joWzNCa7XkpJVjel0/Nxjn+MrtJl32K2kpFrJ2JEvU0wSDBs7ra8u73l7m7Dzd0GbMuiXeNWa6Kx3Pa3DNs9cbNns+95e3vLbvAk1+ITuMbQJCEOAat+kQxeOGuFdaMJV/xX3/D5p8+5PFvTNk4Fv5jAqJJHstKbCQ4o+1qUSTGW0J5s9c70PUMZIY4nJZb5i9KuMVo4QvRZya70VUt26LfWlXy7yqeIEcRaxDVY29D7qPGpIjnGdKqwz29JMcOBwrmPlpgCmkzLA5HONTixtK5hGDYM/YbQb4hes7Im6zFWFSNJ1DvCNhbXZlfeBC7lRIiBLHCrl1rTwtW5Y9UZGmszrtwraamwT2Z59AyU81Lw3pHR6B66U4xGCnojjRjPP3XP5n29LzTlQIl/dH1Krz+SsPgfGiOO/IhtDDBO878ZiRyVCJRWko6cHoy8j6N7QpsBp2TiLR4jDWLOaaQj8hJSRKLnbrhme/cVtze/59t3f8vt6/+LfndHv/NsB1iuDMvzNc36JbRXhGAYhsR2u2PrPcEPhODVsjoE9h62G9HaQgh9EASHdR1N02nRZe/p93uGYWAIWsogpoiIpek6XNvgOk0x7ZMW9XXOAQabIhIC/aCZVPM06168j3F8DBtcLNPLZAh3Pa+3Pfu7LdvdjnfPLulFGFizdo6lMYjTdOgIKsQFZeySGLDZumxQBG6Nuq4WbfgDMFG0oWmK5URAglqdMJiUSM5CdlMhqXCWKAR9fEUiW/7SmLW1ICBl2MfMbkx59wOmq4zv/rGP7w0TV66UEsZZJdZVEztuymgBmApQZN5Gkb0gamErxDVnz9W4lKjrncqKZWRe05KjjHWdU6oxOKXfRFQrcSuINyripkSMGgcSY64jJqP7nxUtqCxm7nZbXNceBXTAgdrzAF80uSMDyZLD++/tSbf1iUIfx4Lsg+1eeqeMSrEMVKP004fzD6g9TEwyO3Yk8t17f0rVgnPvGwszEtW1ssBgWdeSSl+tEBbnDN5rhkmyEPnx1nzsaBp3AwcCVTo1p2xBzefElGRdWeYq1lDFE6fV0sbkOojZtV0zTR7viep7xgQcJQb1fXB9eEzTA88I1BCHcXxjvOFYQigLLTkZW7EsxuxuqL+tWlKLIJmZ8JKo60gglgch5vTEHpr0e1oRBEjMwy1FsrCREOs4u1wRQ89ue4ezDQ5wMdE2LZeNZq3cDwEfB0IKhIQqXjF0ztA6oXHqvmhMAjyPP01QY1vreuXFThG8xuYXT6LNsGe3G3jz+i19SJim5eqzzwkYXl3f8PrLr/nym28ZUmQXhH1q+Ud/+Vek9YrLy0v+43/6z/jB5z9CjKHvB7796mv+7pe/5Pdf/Jbf/O3fsWrhJz/4lJ+8fMbt23dEb9heBX78+ZLl8hLv9+z3+5y0TmE44YsKR3mHvPe1LIVtMNZmQW9U2sQYEZuVjBnRatjFKLSlDH9horSDxDCEGtrjsieNyXilaRtAx+cjLBYrWqcJ/rbbrQqGQNu2bG5vtJwXiSAax1rzMkSv3mPB4/1Aioaiy+66jtV6TWQghrc4B8YmYCAmSwkcMcZiTYtznrbtibGvCpeYcwm4JnF+JqwXasEleoZ9UMupUHmoqQIoZWG9nt2ToDZVuPBe5es/pPYnFRan7hsfo5+HrGXT7w/v//CEC5mYTDR8H4N2Hg69ahOKEmfyRX2npPFOKZqhERCPSj3e004y6VIQ+VyTUVGt8Vnr1iC0mAYNiJZek9+0C1guaS7OeN79lxAFCTDsIARHkpZkFvgIm80tt7fXmPCKV7dbiAPWGhZdR98n4h72dz3Jq9BhgS5ZQoB+GIhR6w0Nfc9+vyfkJCvGObpuydn5ObZxYITdbodBKqOkjFCqQuK4Jqf26Bhm7udtT8BlSrSoxS5I4M3NliBveLcbuAsRHw2fLpdcdS0WzWxmY8LaRNMIhphD8n0GC6l18RrJ2c8mVou5Tkr3uJa2qNKUjkuJhwMJtTyEwlDAZkt11ctnJiyV1PtkzSRFuC7xhSoApeKKUohYXY4xpnFaGuT0GmYdXX44Zhm3MMiSEiYlJBm1yGYhuIpx9XM5/zEnERDViApZ2LTZpVdrR0mZE1LdttRdj1zAd35ubBH4Jho6yUypRLUwBnLCopLePqrbsbMWZ13eLS3ALAdVvcXZmWJpBl+TVq04ow/x5KfAQ7mvaN1tXieN/ZnWsJjtBcdizkOeG4+5dtj/EcNeNKqJmWDzcdvHEoTu85kp85xoPo7aMR5+SlMBM01q6J3oXQp2KPisaP4Lvjf1x1ibz12s5+30nI7b4fXD2OuH/j7oaLYsAqTpEs7NjAiiNGBEuxRX6hSn78j4MRWbmnrsTMdSvB5mM5GDWOzyniOYPZj7vcBVaPg9Xx/2Mz5x9NYq8Ncs4fNOiyfDGL84uvGfXP8HxvQhDK7kcWsilbGfmLJroxEtPdQuiZLofWS797TtAh8tPXtiuAMjNNZgjaP3gYghpsTgAzZB57SI+qJzNE7rM5IiYtxsLA9NN0kWmOLE5Fv+LgdJDwW7/Yat7+nOOvrdwNu7DW+//pY3dz19EqJxdM9f8pPPP+fy+WdcvvgxP/zxn9GuVrSLJcuLcxaLNU3TkGLimzf/O1++uuZ3X71mFw3ffPWKV2+u+f3vv+Sf/9XPud4GYrrDuXc8u1zStoK1johak8eySHnPZYRlihXQGsRarLHZg6okwfGT8lNS3blVEeFrTceY3VJreSgxpOSxttF3p1SFTARSlFqazIcd797dYkhYgRg9LmcoHfoBkoabGEBSJAx9FggdiaDZUlPEQo33NeJYdguG1ZKYenaba01KKDmZXFGUkJPWRaWPxjQ0TcIYFRITHidwtrS8fNZxdbZg2Tqs0dJrJpc4mWKFSm8nnw+/e/BcKEP/oFxyKLuc7mfunlp5pANcW/p56lgfFBafLkw9rj2IO79Tv6cJ0Ids4IPtHkGsav6fgEpl9t9k/DOVX2YyKs7K4oKcelaqsPehbf7uyXoVYiXZKSVJTY4BKZfLWGK6K9rkWceAic8wWI1/2Ht80IKxwxDY7G5xcaALDYvB4d4lnIFu0RKMZZcCtvcq0JVafFFoAngfScnjB41p8IOn74caiC3G4BpH07bYRt1G+r7XLIA5hiVWF9RRiJm6W41rfc9hlTkzP1urE83kZyKWkAK3255oNpjGcdYtsy+EulEtrKEBGtEEByVOUFLQtOAlJilLcOP4ysA5oIhp1CQf7GdliIoGO5aKTOqulIwyVCoY5s4lzfg00JqFUwXD6B6b4WN2NsxEWzln4g4RWnUJS+M9mhbQEEPEpOzCkhKaBCePwUDN9lSPSLaw5vWJEwEEEZLJ/sg5fFOyiUJEIAt8STSBUXmP5D6qC+B4qPPylnTr2l90jhQHiGM2RyMml4MpZUx0n94X7/dQk7zuRpJmDxy/yATPaHIM0RqRJZNtygS+wMXh/lQ35qPv7hnHY+99SI7SjvKY5OCB794+nCQcugZNlTTz9jgra6oWsYffOv05ELZHuboyawVVpIlycOQfZbx38oIpHSg0+320exzPiEfn517fL2UATM95ZrpmCFjvq6WMFCAnqo/iinmwBqT5tQPdziztP/Pv5u8fFW/T79/HtE2VOo/lN96nBNIvGNdOKlahMAPVtf0gWVg98wc/ZQ+meLue19Ovn2/lE9p4cufMNlDzL4i1NIsWhh0hCSEmmqahS4Z9zjYekv62RjNzR0SznxrBooJkaw1tSW5zKPCXOcjkdxnjFFelUne4wFiOZyuHDPWs2e423O539B7e3Oy5vuu5vuuJzYrl+SXd2TnrTz7h5Wefc/XpD3j26Q+5fP6cbr2m6Tps2+Fcy9D3XF9f84c//IE3b96w2WxJ4ghYbrY9se/5/Tdv+PRshYjl1dtrGhe5NEvapsUnn09enCj7lVaXOZZ91imI5kPI8y1x6xV3ZLhKOQlbqX0Yp2vC9LznWpY5N4LJeRZiiHivZdJ8jPiY2O/2KsBnZZS1JteOjHSNrRlLJYYcJ6ybpvNRxblFFccJVIHgLG3T0rUtw169hUYgzsFFKeR4Xk26E0PEWc1wa7KF1TlYdo6r8wWr1tG6nB2aVHmFI2FxghfH8zM/QafCv+Z/n6aTD8kyIzBz9P0UZx/ff9zP++jTB1kWvy8h8mO2J8Ujvq+Vg1NXv1yDKeF7isvVXDN5gKhzJr/qx1w1FyOJnA1upo+XSZ9Pnums19IqoJIPgFG3FvUxH8A6UuHJ0xmt/RFN94xu8SO8eakJF1IEf0e/u2O/v2O4fUvfvyW1EZcMa2npXsGiM3CxxvWWPT13/Q5Bs5VqLIZotjs8PheBHYaBEAJh8Fkgyq5UzmGcqe4WU4FKM28Ffa7iUqlE9VR7jObn8POMARDVtjljcBh67/F3O3xMtBiGfc/+0hOt4bJp6ZKhE/WpR1LGd9ll1KTsNqawqUlr8nsKKksjZChyr76qk7novFXoUcJrbK7/hJkIiyVBQq4fVgLPJ0xYCMOo2TZj36OgeLxeRSAqLqwnFT6xRkfq9XwOdT4QszVQclZRfdZUZjqbXXWeaWqZPxA6hKz8yLaZmEP9tPowiVLYJhMLKWVuyKs1OXMyeacIItniLUJKgRgHxMdcVJqabl2z+oV7YfApQlplHiW72GWgmFmPjEOkAVRgrPAxWZ3jbsdvH/LueIolahxxEQgm/UyBrNx0ot+pIPSUdtK74ntoh0qEk+3BhZ/0labxifMWGUF+xpwXpllQpisrZmbW8CLkTPDD1Ig7kz9kTmPKmGD8rVOanv80znHCXB0yNiPNkaPH6oVZU+FQ49Tntt1RJzahlZn5jPEY5xzC9DTR35GgWNf5/nNwerwHHdzz7NF5KbxI1hWarDQWCqsgtf6wqXjveH7jPO+zgz/UTvEh97cpc10ElSqwTM+5aBH5ZXvG9jpr6zC0bQtEhhRZNA1+7zMNFJyMWWxFDE5USGyto3UNjXXZenaCZme6miZeFON3hd+YCEk5wQ05lCDFxG6343pzzeu7G759fcs3bzYM0YFb89O/+is+++nPuPr0BaurS9rliuVyxXK5JMQeHxwSBEuDMZFvv/0jf/v//g3/+l/9S15/8yVh2GNMw2p1Tr+95Xp7x7/6m7/lP/kn/xHGOfavXtM2gcXCcn62IPmcFyCq4GOl1GFU6k1RpBpDTIdx3IwK4QnuEJFsRcy8UghVmQlkg4HCkbFOPXPiSBNjCPTDwGbTs9nt6b0nYfDDUD1rUlJhMgZPDANn6wVnyyWrRYdLia7tMMYQg8c6DYsRU7IEp5pfwjnNdOrDgt1dpwm8ksmeRhGSlgFJcWAYeoZhjx96FosFwYTKaretsF43fHK5YtVZWsAVJbaMq1UlgANcVc+wuY+ulPMz5xlHgfj4/mPFWzlPcAS8R31+nPYfYhaf0h7NUzxw40lRf8q0Tp+VnJ538v0Mku7jKo7d+h7bKkE9eLRokgRyraeUcysLIgESxCiEYBEuIV0gTSB1ER97CHuQO7b9O7zd4laetV9h0xIbX3L39g2///INfT+wXLXEG8/KJ872nlUH+50KjGI8u92ekN34nBhi8rncAbmukqNpWkUwMUF2M93tdgz7vdbsSXrNGgMStTZT0iDx+9y4pmvxIYqIwSRS8prCXYSFsRBhuNnxq9svePX6FVdXZ/x0/0N+ePYJF4uO85XDW8fSGTojirjiyMRZC8kkgqEWwJ4Ov9QeT+R4BWQiPE32XTdf/e0LcZVR0BsT7IYZYit8ZdG8hhBUMMpa2VLWo5S9qAHsBwxaiaXQsJUj4KtzEEpijJz4JnOZJaugJEOySWM5jc0CdSGUIXMVNuPbVAXUkN8DonWZjCWlQAq9MpThwMInApJyEsUSYxz0FUmQpmPqDqRHW+NmrB1orCFEg9iEaxyua3Btq0l0AjkTnJmf94w7TlteTzSZkCUx6jorgFjEtBjbIaatNRa130yJDwXpP4EwNdLA05a5GbD9qcb0p27fk+A6JSOHAtHsvqzp17i/UBnG8u2D7yh2hifixqnr1P3fzQUnFX6nsf5j0qoSM6SCXhGMKytX+zqM4Tt8x0NjGcdxL7QePHxyepxa2kML36mxTR8b51Fc7dTTQmviBWwQoi3rodaZMX6Nou4++c6TrSjMnwKnE7AW5uuW0oQZNgLG0nZLpdshcHP9mpDUxfTTq0t4d8N+CAzeY9HSG0q3DY1pWLqOVbugazoa0+KkQeOy562GGBSWbDL1mubLCNFHhmHQsBUfMcYRo167vb7hqzff8u3NDbd3A0jHYnlGu/6E1dkF67Nzlqs1xrRcv7uj7wcSnk7OaFmASfjU81c/+zn7/ZZfSCQmz2q5gBB58/qa9VmHtWvECe9ubvmbX/+Gd88v+Sc/+zGv3nzLeimcrS3JOU3el+myxBISojNKEpRnyGElU5F/Cj8q3I9QUa2qMZBKYqJ6fiIxmrHUWPBISjRNx9t319xutmx2PVfPX9LYhuQ9d5ue1Fhc19F0HX7oMfsdMQachXevX/H27h2SIiYFnl9dsV4uWTQtTQJrE8bkUhshkTCIczhnWCxakDXbmytEOrSKtUGSJoUUE4FA8Bv1SAuBlEtbgfJTVxcLnl0u+eR8QSsem117jTE5+dyxgkWF6vkRl2ROnvn722OUMI/UJk7G9bEExkcJi09xo/hTWB0f847vZxynCHnWNsysTkUNelprOGPwMnzMNnTKiNdrUl9VmECmr5hqbt8z9YcsY4Xg1ndNxl3nlSClHOuVmcvqrqFOIWp9tJE4JIgeYiANntDvicOAxbBwK5pkEJ+42dyQvL7TOINYoW0Mq6VjvbLchkAKisSH3quwiDICae4PmbdDBZf9fg+i7iJ93+d4xTFBiQjZmkNNX/4hsDOF/fuYdz/JkmsS2PxnFMH7yPVmR58i3lp2ZwNXqyUX5x1DOuNi2XHWNqytxpc5ssYsW91KsoOqxZ1YtvIrSURMMqNQmb+fKctQwcJMBDBVrAuQLbeUJDPTB0eBLlEK9xa3VIO1MVuxVDM7MnmTrKhZ0z9l9oAsQI7rXCY7daUqpRYUDjUFexKTBeQ5A1b13IIynFIqvk2FbamwLTl7UK0zp3yqKhly5sGSVEK/M7imnRQwl2qtKSRa46MCSKRbL9UdqXGTlO66adOd0gLMVNxS4Py0Ampk3lOp/1TmZTqN37FqRS2lWUTmwmk6WI8ZkJxo73PPK/ccjXPOrXNEitOoyZbJ//e+YzbK70f4+n6ajnXqBigTsJzeNWuF3JzosfShJKUw5SO7Xs9ZKoxK/pEpjny8wuC+/T9lIUsH/R8m0JkLimb8LmcKpeKg0fX70PVUhd4CA5NY4gkTNQXvKcNcmuKj48Q2MzdOpsJnegwZ1jHksdezzJyWHCnW4N5tGHGk/pdiRHB1jNWd/z2tvu8kn6BdnCzzUfDi0TMZT8/mIbWzVNYuKzT3fa9ZzWPMcWuQQkBSZNG2LLsOYzw2eIYhqDeMUZfErmm0rIRrNJuySI5rZ/b+QivLgh1aaCRrY60Yksu0WjxBEsZaTEwgBtfueXb1nGZ5xuu3twRpSbYlWcu3f/wdd3e3rC6uePbic559+oJmuUCSZblYYYzD+8i23/H//Jtf0DrHv/gv/ivEG/67/+a/5e3bP7Jwhn67RQwsFwsaMfzox5/x4nJFFGgaLRu273d0q0+JflCBsSSyyec5xojJvFIqG1nodUqoX7YqDwo8Si5JEoMn5MSB07VRZyeZ0A0BMfgQuHl3TYiCNAsMDV+9ueHVu2u2+z0BVeQmMUSg73e0jaNrLKvlAre6IA4DceiRFPnmZsv1tufZ+YpFa7ObarEVZ34k8xpG1GCwXKwISeuP5tzIKgBPFMSgsbPRhxz+A8uFcHG+4ny9YNkIttBgyXSU+8/14fWpN9ThN/PfTxXoSsbb/JZ7FGr3X3s6fwsfUDrjfQqlp/rpP+XdT73vQ9wJ7+m5AuZDe/oYZul0Syc/nrp4oA+q4xsB4DHAcnTH/MUHSH86rwTZzJQTYZR4rIQyzSgDLBI1/msPpKDMewhqockCQetammghRPx+vC6uoVsI66Bplc/PWt71e0IfGSIq8OnACrtBEa6Bmu1vYNACvinhvQZnj0kOJhrFLOicSrRyuH4PxcU+6EIk5LibsRh1sRKZzKgPQ2BIe/pv38I2cbNacrVfYazQ+8SwgrRQl9+uGqzSxG1vtA5VJDXbel0jk+ZrYCbQra5khijq3GFNgxSpNo2WRGO03MgIOamW2ZhpKafWtew7ZcyEqcrrNE1YcnyGRmYnxZiT0GT2L1vfUpJsSVbYI6fKlixUjUylTKymmfilXEaCwqjN3y3IaJmpiW0mP1nrmk3u2l/+rmSojGXhsttNIXIQWazPaRYdxll9asLQl5qC49pMhzYyO6cYuywqIjl5jd5jEWnBNJqt1RSBuOzT9EzJBH7Sk2Wux+LDR9938MxJXAdjuZSTdxz28adrBdeM7z8cz8HfkzNchMGjWU+lRJm6F85vmd4oRRGCmSkklUkscFmksWMx9H1K4VP09V53ysOLB/2PS1bWovRd3lWURPP3V/k39zIKjNP7itAyH3d5po5ZdPwxHsNoUa4+zBmQ9+bwUnl3oUUTOp/mXgP17zLw97CsaTIiye+678wczmcUoua3j+ssRzOWopGQ+98wWq2m/OSoHEpQaXUcBpLXOn7WCDaoYIKzLLsWYw12MKTQE5LCgUFoXY53axzWHKzFVIA/2PMRFgt8mcoHWZfHaRzG5myXMWGMo10OPFudcRYjbXvNkAw+GfZRePXuhje7Dbfv3hL7gaW1Go4jwmp9TsSAcwQx/PrXv+HFs0/57MVLPvvBDwkhsbnbsDpf0+97bGsxtmG9WvKjH/+Eq3XL9vUfkE6I0TMMe86aDo+oO2caKmxVWjTds8kmVQVwFaiosfqa1MZXN9yamRfJMe6GkkU7xkQKicFH7rY9plkwJEsPXPcD7/aB3QDNoqVpF/TDwHa/Z78PtAEaH7ntA1fna/VS87DqFmxur9n2HmuEkBqQFmMdzoyuzNXzLWk28a5dMHhUESwj514VxUl5SxIkrzyrNdA6y9l6wWrR4AQkjsrs0Vt5TgurW/cBrB+2UXg/OhmzTXkoZvHoyXT492MT1zyd9v2Dd0P9Pgn6n8oS+mCbMLFqJSgXzQjYlbmFwpweaS+VS8qfM1B+iNzKAY4p1ybvF4SUi90nROOuAJX2IkYiYlSLE/deM3lawRtL1y6IGWkaE7Eh4NOWQd7RNS3BXmLOz1k/W9Jve25vt0Qj3PI14bpnfw0WhzNaXsIZzVCpqc8TySf60OfC0ts8KkUVXddpUXfmGVDLNK21CEIIw3vX6KH4rEM3wfISE1TrZZ2FpHEQEgXrHIvlGh8jQwjcvun53fVrFp3j7KzjerPh2cUZn5yteHl+yfOzJWeN46x1LAy0xuFK2YqUizdIcbtRQqEWPTtzoz/0Ri1fFeEtZclFjO55xIAZqlAGELO5N0YDk2yCsRbs1ZpOFZmL7vshU5tSypn6RpfU0gqTVq1zcdTYqdur9hWiJr1JiZyGXV1mxtTzmbDZhMVq3SXRLHlCotSc1HmrVpWYMlEZGUdTkgYAKRPZopklketGxbGcB+P4R6WLUiprEp+8eM7y4gzTOnyMuYxJhqFH5Le5H4dlIdIYRBqqpdQssXYJtlPXJTPGnVBhSA5RwBFOeEx7kgJNTrwzv7gkF+AAbqaM5+OH+vFw/oHB5Antnocy7j6p7Dkc9kRHMBOuHnxrypkwSzzT1OUYhWspzOOxcFWH+OGrG7EAACAASURBVL73vEfbfdyO8cHRyAu9M1KzmMKxVWguLBZF5qT0DxCy21n1Kklj4QxlJgtsTUcwX9/ixliKbjylHSoSH9q4qcBY7pvoB2Z9nhJIp4zsqa24/4xOFQzjXyVxWRFw33fGZ/uas5WXwRRoH+9Vd9L9fkfcbYj7vdYU3Ft2YWAbPGerJYuY6AfPMNxgQsxw7Vh2lmVnWbS2ZsPUkRVcnN8VUwb9Ca1mFBrFNrrfKdHYhqYtAlHM5VnUWmeXC1q3wBjLZy/3+BTZh8Bu8Nz1id0ustn2fPPH3/B//OLfsrz4hKvPfsSnn33Gyx//hBef/5Cf/uVf8vXff8F//T/8T/xv/8v/ynqx5PrNW9oEd69f063X9Nueu9sNV1dX/OTP/pyzzvJ//voXtINn6Tznq5amXQJCwGjcYt3DOSzonDN9y7QupazsRN16U9S4eu8H+r4/yBhf8h9YjFhSEkKIbHY9u11PTIbV+TO+fHvN129ueH2z4ef/7K/5yV9/xvrikvXVFeuzc66vb3j16hVDv+Pvf/1rfvfFb/k3f/NvWTgBP2BJ/OOf/5z16ooUB75+9xrPCizY1mBtq/sZ88kMZR6J5bIl7T2aj0jnVHgYg4VgSd4SBsBGbKMebYvFgsuzFctWSH6PoMmUEEePx2WQmaHlcr4m57gqdh7dHlIA/cNo35uwWBDpx2hHmtJHIqbDax9m9XtcKwjzqT7CRbM5ajENmJza18hYED6NWsXD7iUj71RjM0rK/MOSEI90EzvBFMz2U9RkP2akCpgUIAUtUJ8sKQrBR6TrSSHiQ2TjQeyZ+unHiIkDnh2DGegby8UnLzg3jvbZFRefvGC/2fLuzTv6GPh6v2fjb3h3vdPajmkgeo83MVtrsubIjoIJiZr+vdQEilGDqjUZi6ZBtmJyuvWZ7u3k2jwkJM7WqmijqjZVcKnBZGucJxEy3k4kTASixSWrBXnTwK73DO88m+2GL7uW9bLls6srfvLpM56fr3lxvuTyrOUiLrBZSJxmqgSygJDFepMzhqbR4sbklBZBcTb+mJOgIDlbGQfComrcQ4iE6CuDVe4pDI5qJkFEhceu6+Ywl8cCgs3ZyUoLYWTThJHBG716Y7WFhLznxuT04GJUWDJa41BTfCf1K4oq6BlHDUavgl7mNmVCRFWemktvhfaOjBPKpOT1JguoRXhM6Ngbl4uhRMvZ5SXdcgHWMvheEzJkV+Do52f4Qev1YSsxisbktPGOhMO6FnENohSSYO0xBZzsCIcCUWLU1J7QYj40xvuEiIfmUYSBEp+KPK50xqHr231j+pDvS/suNOU+D5eT734kKR2FgsIUwqHl2RirccmzNVQBsYhEOU9vXb6KU2v/97z/Pfs/9pWUVszuMfPvSwmMBJo9Od9bZaYy1pSfzYnh8o3GSs3eHGM6CQuxlkKYz2sUvFIVJlWgne958cb4UCgo++SsxXtf517LWsCIR0HPYohZoaN8ckrjmk0/l+cKXdNrWYmbrUSqoJ7vw2m4zJyw5PWX4/vLd7O5jQs1seKV78c6sGrTQtfCWSQlgh/w/Y5V64g0xCGxDQMCxOAZfJ9pWnahNAbXCNYJ1iZkMq8kRuPZp8z8PedPWzkbEbEOm3kFHwNxCGj8m6FZWCQIxMiqawkE2mhYdJZn7QJweA83n73ED4ldH9nuPNdf/Jo//uqXSNvy6ec/JIiFmzf86OqMN998yzp5FlYYvNBg8Ekzvb54/oLXr97yLvXc3NxxLgnnrri4uEJyiIryfYZEmKpQKvxPZ1sVmHECxKnwSBE/aCkLzbCriQJDUg8fPXWOEAP7vufduxtsuyZi+fsvv2YvlvNPX/LZX77kr//zf8Hi/Aq3WCJNQx8i7See5z/8M4TIb//4NW93Pdf9wO3WI9FjYuRf/utf8NnLZ1yuWq6awD5E+hDpY6LJ3moUfsVqPCZiiOIxfahZy2u8fjLEYBkGYeiFYW9YL9WqaJ3QNMp/pRTp93ucBdsqHx4i2FKyLs3X0GS33Ok1CnSfOkd1VwrePZWC6f424qDT/GfBVZAehPPH0mB4r7A4YSTT+OEp9PHkrXLP9ZMPHbs7PJaQP8r9Mo0fxw9ljml2K/NbxmsFdipvcpo5qoh2/HZCneqbT45zwmKNz5YXZ6CQUfd3/5RPtXuXqQ5qZA4OfsfMVJDjvkzKLoCFhEtDFLVAxTQWeDVJMLElJQHb45qOdpEwTcNqdcn52TkmCdvNDiOGzjiW1rHqLLGPEHSPosrRlO0yeSy5tFIFXJNUW1ZqBqZJqQCZCOsFcUq17kysvqO6mpkNZAY7Y6uIYtziSaxHEer1xhRHIJLM4INqMHf7kAvveqLXWOzr3Z47f8aztObz6Hi2aGhdwtks3CQZawcWixIAGl83d0nSuYzasCmCKWNJkOy4NqIJB5pUspkG8E7dMZEZwkqgloAUSPl7H3LsoCgRIqkracqawCJ06tpPEtrkv2crXc5YFmAV8qzGTBqtJ2WwOZurIJIIjAKhjxr4Xtww6+alrEFNcdROiwFRZoGSlIdstUgxZ5YEb4xae4HkByQFhAji2fsdKXmazrFcndEsOsTaTHwnLu/VlDJCzJjUY9y7spclRrEIVCkXORfTgFHXU5GG5JZgF2A6RBxGLIgqGubnO/dX6Gz54gNQzKl2RMQqTEaKEDCi2pE4pnpt1JQno+Oq3ob34P4PFQKf4oFSl46Hlmk8cyeIUO7j+LriuowjROpUR7RyStCUSS8FusYf3VOTvahNVVSMcFi6mdK10ouMQkKdy5QOFeXTdED3rcoklGDC2NbY3wzjMwG29CaF6Rq5lmlJpEOglZLRkhFmVCc7WgnGd5X3FJw2Y8H1+gEpMNM9qc9O/p4I8EJO2mV0MCqMFddJfcMIJqpktJVGoXsnhij6rCEr9my2D8tkX8l0rSoTiuXxEG4yTqkgWBb9wOW3rHhG9DLhmE8qUqTEaY60tLwuoEpdKxbJHhtJItItNXGdGLphYPB7JYIBOrtmHwYiicZYGtvQOkvjSikGA8lkXDIeyhpPVkC17mmOByuKf8YY/wSIsRrqbTSJkO590mSjokXmNRt7xLoGI47ohEYaUhL6fWC78yw3llc3N+zDnuHdt6zPL/jsoqP7sx/wakGNpdtut7i2Zdvv2A09n10YGv8OCQOX65b12rE6v2Jx/onyNKiXSCpK0YxDY0wlyT7FpbLQmEQ6gd+S8hHBQwpayN629IPP5Z4SbWvZ7wb2vWe37/HDnt02EmlpFmd0z16w+OQ55y9+wPLZM5quw1iXY0FF3UgF/t0vf8nXf/yKm+sbXNOqd00ymnBwCHz99oZd3yIXDesBdvvEwgbOm46QOdCUIo04nV9KWnvRaq3GEFUVUcpS7YInZI8hG3X7GuvomoZVa3AMmITWH85jJNNvKedniksy7M+4b5ng6KlgV3DZDKfmfUuRY2b8kPEecZD2WxQuh8fscfQqTp49GYc8aQ/XWZwyTqXD9zAJDw1ylLbn7hIPaqInL33IQviYxTnUdOWrzBdbJtceeM+0K4FRiC5sTBYAZmyWEgi9UtnySe+p/tN55h9yvJtoSvIkxVUu5TM9Bu5WJvPEmjzsdisnP45/Z2YsI6AkE2SJQMpp/4GQvNZidAkTFtmjr8ekWJl3axZIUMLRDJ51d473DuMa1t0ZLhmCj2z3PdvNHjck1tZwtW55nXplmqLUOktFoyqAq8yOxj8IYA0k73PmR4NxLjMEetBLmvEUdV621AGshezTuLNJCY+eValrfRI+J0xdNHM4q8UdIqTswklG5I0VBEepB+mHgB8i2/0d17ue85sVf9xu+XTw+L4hnTVcLmHVRaxRV03j2mw9EBIWkzTONBHGYO2SRbCA/QQSSUkFiSIsxkQyLjM0BtdajFGhLERP2kPwAfDZlbSsWIbn7JqaUsL7klXNqmpB1HUmIJigrh+jW2rIiNcQRde+eMvZMuYSCxiUaRQDwXsl7qlBjBBiyMxhIESLTUoshqiMWilfYZ0bGcZqcRaiWAwm1xmNSIpYJGutBWLEGiVSG2k0uD540rDFxQHnAPFc72/AJRbrS17+2Y9g0Sk8h4ATk1OPa4a/cqYKxCBxhlEU7gxJ7HgWxSDOZi8jwdqGZBeIbbPr6YpkFohpsdJgcFV5orA84SUngoyULwt8nGjfyXsjFZxVOO0Jw1wL4+k7QkLLuqCZXLGGFExl3CZd5v7eRx8O6cCHzuHgPYe0rbiLUwh9/nxyiKmyJnPBQ8cb8/4bqYmpZ/co6hmZDZNxXUyRkAKBpCn0RWEmBdRJy6glxR4IPCOOO6CNiSxpTT0zprRP8bNM4KvMbb5Usd5b3jeRgsflzN9rqEGho1Sm1xiHD0EZwpRx/MHa2sxslZJPVW6QcXaFphztSVkHGa3d07AQZf9UcEppclbSZNUq06hPhFLWyJR3pxyfPYWBTO8L0x/U4pOMJRqrdqQkOERd5xwELbinuE2Kx0JWepms4BXB5Nq/ZX6HC1b4kDqVxNE9B1zbdMl0/GaikJooJsmWmZAyXsZiCBgJSCOk5RLxHY1tOPOe3d0WEwIWw1n7KXHYaj1GaelMR+dausbhRDCpySObeIeUjUgjbVelpZnAeFYeitEwC3J4gHHZJVWttD54XRsps7a5BiSqyUYLzy+zG+vZcomRloThzc0Nd/sdez9wcbVAni2JP7ri7uYZzmos4mZzDTGx22zYbjekFFiat2Bg+fklZxfnXL78nO7qJX0QAvqjCgQ0V0SKyisp0sz8y5j4KZFQi2ScbbKkpMkJk8eIo3FLbrd3IAHXwHLZcfv2Ldu7Pbv9AHiuv74mmTN+9p/9U1Y//8c0V5/QXJ4TuoYUd0iIGBzGtJgY2d3d8D//j/89f/uLX3B7e8PF+oy7CAM9MXjcYsG317fcbLeIveB8lWiJdCFgzxr10CIRUsQZrY9MiIgRrGuIEgn9gCGXT05wM2wZCAiJTlNl0LqWi8WCy5WlTXtcanB2gWmEKAnosaIJo6Z0UD9Oeeepy/eUHyzhKuVsFLVw8RyMxBQQsQf96k95xZS3f7zRzBzgsVEOO1b83N/+vdRZLGTk49/8/892H4M1AsQxsChzIePvGbNzf38foxUmpAB53aAytFQiYYSFcWzTnjC8IcU7WvsS41bE1LLzb5DoEed49vIv8N/+PT56PD1f/Lvf8Zvf/pbf/f4PfP3NK3a9CglNa1mfLdltPcNeGZ7pvIprVbEEFuYmTsY9anRHxnQ8hOaki1s9+KSDGmKcvH8aZzIySTL7XBjhU/uyG3okiRJ4Y1QjB6Tk2Wx29P2em9sbvvr6a96+eMsPPnnOj59d8uefXHC17LjoFjQ0Gf8HYurxLqmg3mRf/8JspUDwYWQcjFXEK5BCnrsxaljLDKVueSQaT4wBGxyuWeZaTJ4wDGy3Wwbf4/2A955p0JDf7rLiwODcAhs0EYuIKL4XFZSctWBtRqupyg1Fvi2WPMlJ1DXG0NMPOe5UDOI9bSqlKMD3PdZaiIYYjNJ09dzJ5ZiKMJgmsAyYHrwnxkHnLAYxDVEMwSS8iKYEd451HGi8WnmjJHq/Zz+oEsUsWz55/oxPPn3Os88+581mmyH0RDsADTE5eU5CCbwprkeZ+JRSJcZoplP0t2mWKizmxDZiHWJzYp/8zEcQlb5jOxBCnvJkOozjPiAcE0vO/e/+U7dRmHoKnTvGF0/D66PL4rhm9bvZ96PAdPqdH2/NpvjykByO6iYmGvUqc0y2VpmfGMMsGc30+cP3SfZCKW7172vvdZdOma5IZcMP5nKw1UUqLc+LuszV+Oyjl1A9dKyBIIHgfU3gZo2pCsKhD9Ckg/3OicmM1PeqItp85x1VBeP71rHu5MlvQ4xstlu6xRIhYnuLcR3rZQfRszeG2+0eOmFpWtarC/jjO243odKZEEIWAE1RkTx5YpoZPeRQAkDGWs3WKENvSmZNyR4xKUGxCFOsd6PVtkQRSoq4ruHZswsu07k6xFhDiJ7gPQt7obkYgmdnBQv4swt8iBhrWKxW2MZpuEXbsFyvEGOJ2x0mJ2RJRpA4KooK26M1DT3OuCygSB23rlOCmIhBcypoDWsQk0jS03QgptNQkWjYDXfshi17HzCm5R/987/m0x//jJ/+s/+U2+6SsxcveP7Dz3h+seKLX/073r56TewjbbPi1Vd/5De//Ft+9cu/o9/c0RrD0rV4a5BgCMlysVoR+p79dsevfvua513H2iRCZ9jtNkibXUNFCN6TfCSFNK8NW85EElKMI4wkVe6erTuWraO1lkXT0DWtJtMJWhakaSxiwNdwmMfh2zlfLxkPpfrXqAAbcdFj2sfi45/aniwsPsXH9VT8QmkPaaDnlplDDdfjT/3DPun1rnuuHWvHjt+fTpChD2uHcv90xLqOhaEYCWX5/RjY+ZgAVtFfeXksKxYnGlCtZ9Nv7xh2t/j+lhh7FY6Sxg9YmztJlmiWbHZbrm9esdn1/OrXX/D6zTvuNlvW6zPcymB3nt3NBvb7icVnLJpcGJ1YmOkS0CGFgI8/U0G8rE912zCmRu8Q48xYMIP/bMm8z2J7KDCKnIDfE88JY7IdwdaMn4JUQcmHSNwNDN7zhbzhzc7z7u6Ou7sNL87P+MH5BS8uzmidwRmwEjBZkz3EhMsasFImw9h5vE8df477UIHMVNjUu7JTk1hENH7VWd2P4NSq1/d7hn7Pnj0h+BxHM6b1TjFpgV7RIszFtdBard1kJJKSzXt2wDiihFqKlluSEvDMFDnnKLE7fug1Rgfw3mvMpGmgZL3LRawjiVypG7XHqhWClEiDV2unqCCtTGmv70hxJFAp4oat1gBOkRB6hrDHNIama3n+/AVnVxe0i453mzvuS49xxJ6XNSNnojMOxJFEf0u2EKlgr5ZpRK2/xi3ANiAObAe20cQ+1uU1mGTQ/R5aOV8PeYfodXSO2dowXj9mZWeWtOLxUIUfOYkX5/Ec30+b4u/ZfGU6h/s+398KDpn+PT7/xCZUHChGstKl/M4WFjOu8RzH6Xif5Jp7Qtg8UoBS5ZcTz53gA0QwqeY0rgJjCGnE5VJSWzy8vg/h7/u+r8LcxLpZ5zRO82j0M0Exs48qAObvswBZXy9pksEZnBUIkRBSVZZKTlpU4sdjjDhxldZVfW4RTlPBOgqtxbvkQ0J8qtJhshaH9xxP/rgVK2wQFavEORqzpF2sshJA4we7xYroYcDhnMthEeqFYq2dK4wlC40yupPWMxnL/A951TSql8szWV2pYTSTOoOlB6M0Z+YmXZYjlakXD7BEigNWDMYKOENIUb1lstAW/UAcBqT3uQxVVh4kR/Qe5xyLxRK36BBj6AeNT5EYkRzSkrJARCpW/FTpYRngqOAY16J+mdRV04jS0cFvwQhtu6RxC4zAdrfh9u6a7X5guXxBEMPWe379299y9qO/IL3VpG136w7vI65dcL29ZbvZ8e3r13z1hy/Z320Y9ppEZ7fZ4BoVzJ3T3AXLxQJBuL2942a75boRVhK4bjxnF0usU94lhJi9Ihpi8nlfy09W4KSSGV/DS6w1dE5onOCcliLRuMUJbCAIBmKYMj8TuJ3TtUO4H/+c0thT+PDU4ZgrVz4OHy8nP76vfa/ZUB/DHDyiF6YS+EMCKNyP9I+u37tI6eD3A7dM+vnQ+Y3a3cnzaWQfpsA+RTyHA6jff48M33TMR67C5dXZ5F4ybPW7HUO/I4ZerwWNQ0ASTkPgCMB+iNzc3fDtq2/49tVbvvj9H/BeM5yt1+fqLph22LstMfjMoKtLVazVUFVzEzMRrjXIy+CkJA04tNgeMCJFOJgxAaOneoVIGT8fWhBPwcNDSKU+m/svsZ3qeqiESu+zVWPtYyAMkeF2y+0Q6Xc7fN/z7m7HZh8IxnCxaFk2hlUTaVAtcgyJaFUIEtSCV2oqUu5JsY6H6ciqkDmKi+qyMz+n1joku3W6LJAM/R6fazaRA+SVIHlCtVZKdgm2kCxCIOLyWmSLGTKeiXgQD5UmLsKFQMaA9xpPmBL0Q68xRQ5Sdj0yBmIUrFCD5k0Fm1xTKkZEShZJyRlfxzIYJokmWwgCodQCTUQCtjU0y5bFesnl82cszlZEYN/vsa4dAXUmacCBpkK12GgsDeI0HlHcRPDVZD5iDEijygar2nmMA2NJptV88LnGItNYze/YTsH+qXNxykU+T/FIYChLAcfoby4wfvCwv0N7CnP9lAHKPV0fMiLfbd/KORoFR1WaSMWVx2P+96HYLtixauYLjp4JnSP+mQl6TBj3w34rIi8xwlLxuXZG3YoZKz2hDdUyOPl/ImdQRI3JtxOlRrmQaQL37OmETllrchmqkiRtLL8UY6zJ2maeLLN3TiTHezeznNn5GB9s9x7A0UJalbaTvxNzWhvz32KUdrh2Qb/fq1sxgmsXOCkZuMdmxIzJzcilTkavvpO86CjjzhU3qSjlZ3BUeIaRBhmBZIqiaoQ9TZw0QWap/CcgIWfxtqo4t0bj32NAYlDaMfTEfgCvluOU31s8tkQMzjoa1+BjJASPZAGImPmsKiyi76hzTuNQJgdDOPA2SGXWuiYxDiAuxy+qm7omvslCfoTtbk969w6/DbxsV7S7He3NLduLFavlEkSIIuxDYLPbcXt9g+8HUoiEYWCz3XB2foZYU0ODFosFiHC3u2Pb77nbGe5cYruNrFYWaxvIa26Nw1hD9JUbAbIFOM+9JDkUwNnJjxOclWydB5FYlQSQcypkHvchvHtM46ZnacI3fwC9+nhGnxm2yp8f7vvhmMVDK8OkFaB6n6XxtHYu3atNPzmOR9/5XdtJaezedjSuj8msSFmvUaiZKtcnrLn+P8H7fwqmqexgmjC3NbY9Z6mKYWDwO016IhbBMgw9MW5pLHSdZd8HNttbvvrmG37/5R/46qvf8/XXbwjBcHH5jPPzS9puRf/2hhASfoj0Q8B7NONqTBUPmxzuVWopVhFLBKzk7LKqGZwpVw4F3wnHWss4CDMiV5SShdAd+pAfa5cePif1ehHC8ufq3jJ1UxQtNmuzHOkj7O96/ni35dXbd5ytljy/vOTn2zt+eHXBi7MVP75csHBtTnJgIBRGMVFrqeV5xpgIWZNZalUVQlLmXmdQhLeUoFge83PWObp2QYiBRb9jt9kwDD1933N3d8Oo/Rj3UFAFXgyeAdBYTiVQmvLf5d9mtubF60xiyNnxYBj2MzxVhJUQArvgsW7ANmqXKIktYiaUJo/NWKvJU6wlNZ0G+AcPMSB4rPUInhR7DYjwOWzCWPbBI87QnS35wec/oF2vaBYttmnAOowIC+sYgmfGlc6AYvLZoOVLMFnwa8G0GkdqO4p1UYxBsIhplbhbqxZEk91WjZkIlzYLi0/Dsw8pAR921bv/uYeuT5nl+/otDMHHaB9iNXufwnDE5+UsH/w9VRQ8OJ6PISBCiXMXobpqVaXMrHTTo3uejO1+waF+ukd4m+lNi1WkMGlHPZdrp0c6szifEnwLzqmoaEI7Ck5B6t4kxn2e9lbGVSxLiVFYLGx63cM0jrYkvAuMqydoWrJYLJeScW4RDM2Yt5Y07p0xRrNOB80i65w7okt1vJXWPLDDj2CI5/fX1Tr1xOxdJwW37KEUrMZOOjFY50Ba+rBX3Os9xrY04kjRMgx3tayDdXa0LNalLqrVdDTV4mUA1OywUj230shU5Q3VHEpJXTzJcbg4RHIyngSaQG50+VUBUiowiCQkBbVuxVTrRecBEUNgv9/T7/ckHzXEEHBNQ7tYsFivcG2HbRqcdRqX7iP4iM1CY/CeMOw13pCiTG0qIGqdyDg/S2Wdoma11+fUUhuDh2QQcYBoWZMAlxfn/PTPf8bd5o6bmzu+fbPnmy9+S/jij6yfv+TNN685e/6C5z/8Id1f/JSb3Qbbtawu1jgxLM4WuMYgJtG2DSJwt9twc3uLayzdoqNddCwWC9r9jtvNW3b9nl0v7D30PYQw4DRqBB8FkZjJqNUSbgWwKLG/op5DUd2InUs4E2kddBaNS5SIMZamacbtD9V97giOHkfv7sN382dTPtRHHozZYKC8DMeDeE+735j0eLryKMviKUHxQ9uIMD+4i++pPU1QPGzVdeQ7DaFoJE4PRZCxRhGjhkh5/dNC+ffRpr0rcRytTZISIQz4YcuwvwPpVUgLC3wY8MMtwpZBHOntjjevv+Hrb77i7/7uV/z9b3/D9c01+32k6ZakaOj3nn1/x27XE0LC2oauaQhDJHBo/ZrPWlDEKNmN02QGXZBZFqjZxLI1TxF9EcRPWFKL8DipAXifO2ppR7GN9xByRMtFSHahAXMwyZwwJ2suHWrhiySCj1zf7dn0b7jZD/zufM2L8xXf/uAT/vzlc66WKy5aS9PYnDVN0DqVgUrTcoIUISETl5WU1wUKk1WEGwFJGNPUdSuhK6Wmm7WW1nWEqITSWosfBkLw7Pd7gu9znFFxGxoZs0a0NlcwZmIRk+pWOl9ji7G6rn3f52WW6pJaxjQMgSFswe9nq1pjFEUtnC6UpBBgtolh8JlBg7aB3u+IsSfGgWW3ZNEt6ZYr2sszFlk4bJcLYskWktXRffCaTCkkjHusW6QqO9Si6BC7ANshpkFMp6UwiguhWJK0KgyW+MXqojoVEr+b4PGnaEroskggEwLMSIB1zgZMyp7TB3jyT2UOuwd3H9/EwY0jwzgO/X5m/kkaZpkz8DWNWhp/imWtuLkXz43vQBFPXJsz7CnOvTFmd06FCFJ1ISw9z1ipzMTrH+pKG4UKHNX7ZDo6keyOd7AO981G5hawk/fk/4soWfjKSYnW2e/pcyLMymVIZQo52jvvA85oySd10481Vtx2C5qmwVpHrBLl99+KIsRkmvx4HnHORccU2fsdq8YhCQJaRsM1DaSOftjAAMvVmnVzxvWbPW3b4kNDisIwDHjff99qaQAAIABJREFUkKLFdQ4rFqKWbrLOPjAO6rilwI7MYa7g1bE6ez6fkgWRzNDrYxMF0EQoDcETg7o/SvbACj5gMNnrRwWc1XIFIvgU1TunaWibjsVygbUqtIV+YBg2Wl84RpwTfL/HDz1h2Kta0QgYo1llY1AldEzEwSPWatKheg6Cem35AdJond7t3uGaBWfLFyyWZwzDnhh33G08RlrOzxacX7zg6tMtd+8GdrtEn8D7LXd/+A2vvvgVX/zN/835p89ZnJ9hVysunz3H37xhvV7gnOH6+pr9Xmlx0wpta3EO3rz9VsNRSFwuW84bOFt3rFYdAc/d5hYfOrpuQdsu1YIqCUsJW0lAtiTa7EKMWoSdUQFxtbCcLbU0mTVk4VhwrsVIyhneS1jE42KbD2Hqcfe9j3hM1fRPoWf30JCKqx7XHhQW5+b67451ZgThT8yjPMzIv0cLOvlaDm89+PvjTOueXmRCKKfa19kT80BaeCJj8b6RZWZNQyiLzm46AnX7i37A73ekYZu/1VgvH3ti2BEj7DZ3vPrmK776wxd8+eVv2G53xGTV8oLBh0A/DDTNqPGOIeIHjXWrxLi8+RBGVVpUzGBy3MKEGMdDmChMVZ1jYVBPw+1JN1IZXe2m7gj3MUVH39dVVEJU4i2o88zznigEUmbCbE6llwL44Hkb7wh7z2a7JxDYCfxgteMHyzXnqyWrZUfXODrrqjZRGbpJPGdlzDPnkSZjKCPOhbfKVRE0eYouApDURbMx2JRwLhLPA8PQM/Q9OUKFGH2uAzZZwwJPKkFDCCSj1r40cUnVsyF48Vpvyzm8H+r6xpSy26jGg4YQRh/oMs48NyPFCm0YshXakGgZCDmDLwK7EEimxzqhWy1Yf/KS1eqcxXKFrAzdcoFtLMbZuq6lpZD3zNoJUjmFhw7hRTPIinEag2gaxLQ502k7yehngCYLhUISixjN3DoLRvuOuOEh75P3PXfa6+TYjXX+93iOTo1cGAXv78PD4niOB3O456Vzl85DpuCh78q1k70efHxgL+t2F3vhGMt2vJJlAQ/Hny9PCNCDXhJzkW7yXe3kyCtjNOYc4tDDroqAO72eladZ2VStAvfAwajFL8q+yfhOz2o2tjLDIkgA1VJ5uLun13gUnkvc3bhGUmPiRwGUEQUDIrn+ncjYT5nAeGk2tzmv8LR2tKNH9C33ng7ChSZMS+LgjKRC68YLYzkuW3GdMcO4xiVztVNLqhENd4iigk+MsYZRlPffB6fTORRL4+iOrNYYU+lwcdfWTk0WDktSGyNCTNk91VhiiHUfKj3PdNTaHGYSdT1MzgauLIulbTvEWbyUezW3QNDU8kpyY9SyTKXmcRCiV+trDB5jc4IfQZW4MZFEBadkcgx5LNqhfN0HYlBeoJxNZzXjchgC0mRXV9HallqiS5Oltd2AudQSaNe3O5atYRGFvRd8v2F4nfA3b/HA7uycu82Wd6++ZdUKfZMgJqyFrjO0raVpHJFI2zo6Z1jaJSsJnK9bFosGK+PZBU3Mp7WVBRMNhqhHoSjy8z8jRr2yrCp8l41j2TUs2gbE13wYMx4r6T4cJnD6WLz1eCSOEN3hnWqcefRr7+vvWOh831weLSzOXv8BC/Shi/oY973Htrkv8UNS3ynmTTJ9SrNLxRpxePcHtZPjOrrpEf18jMHc33lhzittKKNKANkFdRjw/Z5he411jqbpcMbg40Ac9qRh4ObtW159/SVf/uELvvzqC5r2CtcsEWnY9z2D70kk1ablIOZh37PfD/ggmTFQZFsUeFNiOGOcJWuVSvF1n38XpFCIgGL9ShiKy8nUmgEjLE6thYcC4/viFo9WtnA4ArN6Z5OA/cpM1f6EIEoEWiwOq+WRQqIfel7vPdfbHbdhz2vf8/l6zfXqjJfPPuHTqysu1ktc0ymxmtYULHUZ61AFMvKt8yoJGTIzE6orj8EWATfFrMFXZA6awvrysskuqXvEGHbW4v2gblRZkE8xqnAYfK7PmHVrpmRtLftLLrNh6EMkISwWC7wfKuGPw1Ddldq2VTiJCVusCpkLSylR/XuN9h1SwhBYmD1Iq96mMbEZNtiFcHa+4uLZM5792c9Yra5o2o59eqvlOlJiSB5jNLOrMYL3AZGIEUPjGno/MIXchy0cOS6xZELNwiJWBcaa+Q2gWBbL/ok8KCg+Br8eCnnve356Dh5yzX6/oHlakD7Q9eSSOidYYpH3vP++dzy1zRn1B++jvPPg7lS7mQlS9cnZ33IkOL93H2UCAuOLRgXRwc3T7uYC/j1Tuve9U4H4nlsOZInpe2fzynqt8fuJvqcy9A+dIxn7eWQrQkLF7xRBsNCh+ZpIEYMKbM3OnT5dPx16naS51bXStyIghhFIRMYERdOYMy1VMbpExhjrtcP2tMCg4/Na4i1PN6G4d6b74L3Ui8thESFpduzGWKxr8H6XFZaZBpG0GPx+T1G62VyrNhaBMUaSUSHBmLF8wDw+cTJ+mfAEefeqW3ZVwE3ctOua26xATPNza0KFSQUBISWDSal6upgYsqLAZMu+zrv7/9h715jrtv2g6/cfY8651vO89733ufT09LS0/UBrCEVISyMCoUajKIpiDCU1KpIiftCYyCcjmmCCF2LSiHL5BEJCglGRIE1TUw1UmpQKJJRCy7mffc7e797v5bmuteacY/z98B9jzDHnWut5nne/e5+zq4y91/OuNS/jPv73y+oE1zaE1vwwwzgwDgO7YUcbvK13VCSMJW1OCJEYjNnTGJOFTd52CQ/bg4DHiabUMVq5DqVcyJp8+1RZr1qiCv22J8gO14TkzeAIUYjBmM3IyOreKc1Jwy70nJ52tG2H9w3nFxsur665PttweXHBeYSLseflbsOjew0utOy6yBgDbevpupbVqkPEce/+Kaddy4PGwbjj/spzr/OscHif8immyOriMt3kccTk92jAQRK9aCmywKuwaoWTruWka1l1LeOY81RPPMDMauxgoLX5fj6sZMvv1i/qwb24hLn75YPhqQyjplpezc3gIw1w8/EvN036HRbkoxBd39geE6CXTEhMSOwj5BCX3Sh92G9SQSzgiRAJly9xrYOTFdK2NMlePEbl8vxdnp+9w7Pz9xnwjNuA6g5ly5A0it2qwV/B2fk1Z2cbrq6u7NypEnXep/wREbwz00MDyslKKRNDaoyP5bMrVNPs3yJFXCCUaf6T9imyhziPzlslcb2NoHNgErEIGiwRbs2oZu0uWH7iMZmqNkqS9ollq1Kl30WevnfG+eUV32gb/tGq49veepPveOtNPvn4IZ954xFP7p2ybhpW3uNTQJfSETKiVFTGFDJ8Qa2RtL2F+U5zpN5yeIWQ5MVaprlp1zRtx8nJKTGFsw5hYNvv2PU7dn3PdtMTdhubg2BBk4hKIOJCQDWkpjQxiwELABPJ2uGyagnZD0l7uYqedbC5jOS8bZFhtCiDI0oflSGMbELPy+Gc683IZrNjs90y6obPfscbfG71bXzmyRNWbzwhascmQKShazoaBxIDu801fb8DlCaZQ0UNbHbX5qA/O0yVJGZvE5k/ooFui4SqziPZN7GYl8ZkkuMnJJXXBUzbjnyzQMYdy6ugrv2imaK2XzfU93rtfPRlAYzS90mrka4cYCTvcs8J6EzYUls+5Lb8Xns39rgwrHMBq+yZ4txcJk3BrJbj7eqhLTwJJ5LMx9KvVk9OWq/EsKneeazzvjGfuzlInL4cqrxi2GfBzhOHkf3tZzs5gmslpQhSYqDkh3XOJ4Zj7kKx36wU4YDAzMT3zuM+gMeynVGez6lke9ib2zETQUW8MmwGczWQFh8jm+01u+sLQn/J0Av9ZmQXzrm6ukrBYtKeVSlEcQgWLKZxnqZxr2RBqJrmSV36TIIUE0DmPIyZv3UogUa8WcEk+KppXnKGMee6hKStOOdoU/7JzIyqZC0pMEbzSYwBCZEGwcXsiwcu+UjGqCmnZjQGSppJ61yWIecZNkbY4i5IYo5C5a+YBB3JFHXcBZSI8zvW7X1CEkjHERqnFuDGwW4Lm+EapOHJGw85P3vBxXlPGCIPHzzhzftr3jztGO6v0XHgMuw4C2t2nzhlu32LMFoE08vLM5qmYbVa8ejhAzbbLV7g0XpN1NFMSL1wv/M0mVHEsRmsU04cnViKE68+KQhiEohYDtI2MdLrVWOpN0zCXs6zqkVNdS5Hg0+H+5tGZuf9tqSzvnXlRmaxlsbcpRwzu7vJLK++nsvNktTp9wc1jb0bYrhb3d9csmNObOceLKWoH4bJ8PEuJE2qy8mcJ4JTU8hrs/oUGufpohK2F1z2z4jS4PQBaEMcAy/O3uPF+XPONxva0yc8PnkCKlxvrrjeXSIEQhw4O3ufy6uRfoj4BpoojMEA8ITwsnkmKe2Cp+u6JP3SlCx+NoxZmZscUIB8nujMKBqisOeyxPE2X5f8WfrNZDH63v4uf6V0VKqbOUoYWLAW55rEJBiToy6hZuet/hhwAeR65KoJXAwj11G52Gx4+uKUly+f8B1vPuGNe/d4fHqfh6enKXUHjHEsfIWIpIA2S19R66NPpqeqyhiCMa2J4XYu+QwmKV2IMfmPeiPoknjUeYdrWrrVmtMQGR4EdleXhZnUMBKTyUwcB8I4oGqSVEVpW/PbizGYtBYjFL1vkaTVu7y8tPxRKkQ1hipKYhRDZBMCQ4z0MbAZB3bjwC4olz1cX20IvSHW+/eUe7uRR5stL89fcnn5gnVzgpeO7uSEOI6oRhyRzreYz6dJm40OmYi2PG95W4Ds7VHbK6ZVdGL5JzX5MOK87YOcZkUl3XNMvhAT8Z81Sjlg3zcDjtXE5RL+T78TkXWHM1V3uvY7K6lU7qJZKr/zO685F4l4XJbaJO9u9X/YKzI/rZPoaa55ynMYaw3VHrJMNRR+a87Ulm+L12oYu2QebtNWuwOs6MGiKUhVgs3OmbDoGM8qqaMHmZ8D2jM98G7p54zOuYXGkPl65H+XGr5CvIJZWqgSI7TizGhADAeMY7B0GU1XfNqGoYd2VdqrNZBOzByv0BO3+EsJpCjhubo57itzpVM0gPmZXggWy6D353gcB9aJ9ux3Pb1e0vc7066NPReXW4awYsT8MwOOGMwfkJSeqcCItLfBH2acDyySao4VkMebCIIIuGmsJShOuqd5bGnMs2ToDsOH6a757ZsWTLxj1w8GG5ynaVoL3KfQRXsWIh5Jvqim/YshpqidVvcY1ax3RDCn3Rw/IGK2u9P4QjY1jRazwCW/Ps0pOhJciDHStRakro8bdv0V4tbG9OIZtUd0ADzOdbTBW9v9yNq3+A4GF+jDDqej4R1v/T5Vh48NctJweRkJwbNarRgerlJ+x8D9Dh52axzQIJzce0jUSIgWUd3ilQq+aWkxv0TnHLIdS9An56XICbLW2Im58ftGCOPA0O/wzugQlyLHhhCMaU4WRlFjiWdQn4F6H9UwZOk+Mccu+Qwc5omq3cgcH94udLlbOVTHzfXeHA0VTLJVAMEkjTtUlv4Hh5i8ux7YZb3H6vsoym28VgGGsAdeszlbYaBqpIxJbMoz5d9UWaw2RFWHiEw5gTJlV8Ph+Zfy+9Wm56ZBVxVVSFGEJMmrXhcBSaYAztM2HePugt3uijFC60C0JcbI5vqKzXbLMAZOHz3k0aM3TGKKshu2kEwjd+PWnLiJtK1jhVlSZOYrJoLGqSJe8I2jKZHRErHgci7Gqe96cI4SNeckSQtjtVZSash28PW01ZpDa2NuvjLtgXo6M/V+ZLHS3Erua2VFSNkKJlmD5JOQcZxMxIZTM10aUDYSiBdXDH3P5dU1/WZHGEauH/X0D80MZt2taBLQdE0mKjJXMTEyDiGH5/bOpbDUhqAVM6PFWYCY5R7Noe5Nsp6iLzqHa4RGO6IqnSodruRoDONIjGNKYGymOTGMhGgS1pyTctCQ0yUiCo20XA8jF9uBr784ZzuM7BR6dUTMNCuqMsTAJgT6EOjDyGYYGMLIGIRh6Li+3lrABQexg8sBLjYDz1+ecXV5hj8Z8d0pTlbEaIg6EvHNlPTagglJYdjmi5126bHjKNMnp8hQl/1aczCkak9lpkoP7DM1zmYPhHyEsqbS9DHmgDuch9n3xXN64OsBZuYmc8q7D/8mDoQExudE8j5jdQM2keWC3ADQU2Lq/b7JtGXyfshPTNFsJlhWYF0KesHxuZprI62RAgNLHypjp9nwjGE5NPp9YsvOis4qkdk85z5kAkwTAJysbw6vlR2LBV1T4bgyioVEpfi1qc4mIJHZMxRdvVSePUwX5jXIsHYiL2uLojK23KJO0QOk0miF5DNXSoEH8z146BhNI58TGoupuVVYWrdzbP/OzPYwH3V1jeXLDCNxtymBW3bbHf32mlED6pTGe7zzxOgJapoxm49Kq4eWSKtzgv0wwSzkHZdgdFoOE0RptVmlogGmIFwTCEv7YwbnJdEek5+jVJs3kR7FCsdcA6MxLWLprrI7iuH7zPRX4DAm5ibnmc70SA7Mk98NMZmhGo5iBg8m4ZF3rb0SB2IcjbFURUWJjIk2URyr5McpSaMrqDcmfYgDJGsf52x1GoQGi27O2BKD42S9gpOW7WbLbrdjnaKqC6Bh5KRriRoZgzAOQ4JrLrl5YCk3Es5zTEKRUO8/VWMMEVJ6aWIy4fXelyCIqvX+n2CAkmHUoX10AI5z4DH2H1vyObXQWOQwzpwzkfOG5rhmeX9JiZJoyOPldjPUarPNu7LszCKa1wEgcpNpzPK5qXmdff+gWsbD0tEbFnbxZAbeund98TsRp0U6k+7M/51eyFElFdPimP03KC7xjim6mwaIeRzBXnSK2aJnHJCpyBRQ41WovpvokAr4gQEh5wyoVrlLUYURT3Qt6jukWdE8fgs5A92B788Z+29YXr2o0CvN2LGWe3zq8Zvcu/+EYQi0m5Ht1TPu37/P/Qf3CASCe4Zst7hxpA2j2ZxvoN8p/Wh9bL2jW3eW1NW5lHLIApas2y6FFU+RrbzDi5/WJSeKF4sc2YgnOgujHIaxIHCXOGNVJY45KEytPcwhtM0spj4TbqFJmjQkBty0uqfEauKXZycDKrWcW6poHIuPpiOdhzBpU6Vpic7RAA8U+t2OF7stZ5c7nl1s+MbFhjcevOATjx7x3Z/+NG88fMjjkxM+fbKm61qUwBiHtE8SQonQSZMCxQRTcMVMeCq4gIpDk8YzI2IH+OyjoWpRXecJsWzMqkgI3FvdTxF/HUPo6cNA0BF1kaBmgjOOSowedltiHGEFF1fXNINyEj2n7j5fPXuXX352zs9/4ynDyQkaBHYw7PopUXGauxACYTQKwyWhbKsbAuAaIXjhKghXu4YX54GvfPkpn338mO6tR6ybnuGqoe0aaCyiXa9hMgtSj8umTQq4aq0hzYWyPMPOC6MbEpNoPidiya5Q15iWNDocPmmXK6QhE5xBJ+iXTdBSuIIpt2Teo68AQpblVYV5kynjHNnNiUkIibEX78E7dDBCTSQJG6IFmsjEoo3nUOTXY4Mr3mbVczoxXNX1gwg8/5XZk2Vkc9xo53gSKuW5yMyBGk+fTKnmRLc9k5QW5FQYqgFRExyITIRvOVfJxDRqQIj2KRJ3ZwIgRpy3ceejUVxhU19nZqrJX0tdZYFBIsjSOIuhaiKKJ8J3bmJvxFEFGzELOXvX3jFievKPNppaUabcp5rdDTT1QyarCFXDAWNOvTQRNdW/Vf805fFztV9gzShSCMns555z0DJ/JL0yEYaiar4EefyiRJn2btk7Lu8hj4bIqEoUS1PUeMF5kgZoMH8sv7aomy7FhHQQE94mWv7XKc1ETPM57a19L0Qt+Cu7HJRxSd7Hbv8tXcCiqrrcEtSCg8iOaOP1gosbxu0Vm4sLLp6/BCJtM+KlJ8THNNLhfMTpjijgxBO1YYgja5+00qM3OJt82wWKFs2YNG/PpU74HFguCR8tQEzABUmRwknrpgnH5bEkAXM+m26xP8TWwSX3gKggQWm9MUTOgYQtXQxEhSFaChSNxtzFISbmERq/YtCAJg1a16jlZySYRalk5o90BihiZfNaiRDyyhizaOKOSAwpSI4o/aiItKy7lWkURVHZMgZw0thOj+DjNc6vEfGMYzC8Oo4QAi0WfTQLSEMIFp3Ud8RhYNWdWkoLDXgc909OuXdywhAs0q9qpPGOYbfFe8/K58B8CdpqpHMQw2DXPNanIDShY4daX8VybqySP6N3kW51mvJCe9anXTmzqoJ3HSEOKIG284W2y3vVlXNeM3iUPu3teZZn5niE3txW3jyZYZzEfwnDacbe+bksOM7YtHafyn3ItVQ452hPrPz/3Gfxm1yWYjm7SA697JzDEtdTEHesonAZQHo1Auxu5e4UYRZ6HmTOE/HgnANvUU23zSn+/pvc71Zof4+Ll+9wffmS88szrvpr8JGT0471quHZ83e53my5urhktW54+Og+jx49YjuOXO56VFpkGFl7R9MGVuvA5cWOpjeTw6Zt8a0nxEAISgxj5Q9m43RJ8momlUY+62w8GfjowWnJ/iUZXMQlnb83X7Uf37T+mWDM8GAipW4rh5+6iTCfBJdaJGiWe89MQHdj4J3nz3h5dsY7773P85cveOPRY956+JDv/uRbfDK+wemqZd0akHaqhXlUL/ZphCElb9QcZVTV9rMmcjUm5iPRWHk6VCctsVE1mEZO1ZzuvWksh2GHbxqaRnDquN5cJiTo6Jzn6rpnZCDKSHMNb7FmaITroPzd97/Brzx9ytefnXF5NjK8vCrTGUJC7AJNYugapESsMx/OCGHEp72iARwJKQ4jISiX1xvW5x4Qnjx5kxiS9FXNNHraEynvU2LKJjZiWQ5swEQQRwk4S0iJiCWaEkmDSNJUrWCGVGfg0AZZskfHHv04lTrq4TSPYKRpDmEvRjR9DMpxM6MbrtUM2YdWtBD7vvEFFlm0P2vbe0tB49y0T2ul1GwsEz0zY4QL678QEh+zFDrc1SzWyO+kppREAhlBrDpFPK47leFLYfCWZar6aN8mRojZtaUge9btIo45NKQkfJgxppWvd3Val3Ok+ZpIEuTU+ErLfZcjfx8cu1ZE56sWBb2rNvED1K4QxkjTZJoIfBgRtY9qtPRLMcKoNF3KWRgGhnHAuY6oo5mkApNwxbSuxU83LU+mZ8iEeC2gyvKeBW2QA8rUnZ7mMsGamWC3ZhCySbQvjLcTSQKZ6azFRNQ7pyl2gaVIaZouCXps72sylTSDErM0keSSUZuVWk+MgVim8FLVJI1JsQg0MyH2XkhMJFFpNRZBURleVWzebQ6aJrGmGun7nmG3LXUq0LQNTdcZ85sYnprEdSK0jadJzL04Cwxk5qWS5EBZOG/QwKf5jjnMuXH1mEluSPAh0jZmgrpaNbRtQ7dq0/eWjEuLafpsPb/1xcQ4c/h0+Dhq/j89eEvFt9z/2DGLNxO9B6RTd3jvwymvV/8CJ81uTCY2+YJW9+pHM0mXRFR7FWYodhyQHzYDvqHfB5B8BsAik9Q5M2AClqYimca57gQvAt4RJOJPdqy05b6c8MaupecFw4sLXrx4n/Prnu1uYLfb4cUxhoHtbsv1rmccE9MhDZYDx8Irdyszd0Rc8kuzqJwl319B/nNefWmSdWyOiqlg4eoyID3A999SV273LsTSTXsdlsi6Jsa0SOarXpS+COBTGgURQZ35+AxjZBh7tuMITrjYDZxdb+jHgcsQeHLvlMena944WdP5LE1zxhOm7Wh+k2merMHCCGU5dWYM1VVJwEq8+UnihZhZMQlxRgF1QqzMJg3JZgd/Q5zqE3QcIwOOl8PIO5sdf+/dd3nn2QUXlz0Eb46MzhDQFC9USlfKKKzDiSAwQUhEk5WepXIJYyRE2GwHLq+3OOc5Pd2xWmHhyyWf2WIUlXk6mwOdfIf2/61LoXyNCY/BQp+7HL0ta7+mJZikkNXvg9tuDoUmqX9emlcnDl+JKajb1ExsL+/Nid6JoJOJWdTJhDeP9ePA8x6GowsGo4JVH32HrL1i+aCaTPZt7l0yHZ9pD/OrRztYM3WTOV8ueX3K7yUTU1Vbri/x2YxHzXBtYpam95m9p4f2DnnXH2EkbxzrdK/e55PLTiLq3KG1XzC+6UoRBi+PaJH2MT+jBczqNJcVcZtdMKZzlVf32JgO4Y6qIXLXbz5Rd4IV9TBmjPek+SO7NIw9Lo54UVZdRxRJrgOmxYsxMAZjEMXZ7xAGVFumnIhK1qJMOH1qc2m1VliavLZFQ6f7z6oCIe31irk4iLqz207WwqaUGGhF98k0fiyCravqnLBITptrQVuK2SmJOYqZycym4aY9VpIFiea9k/FHYrwqGGrv5l2T98e0R7L+yqgBw41ITNHKPd6BFyCOyTXE5s+0uIE4plzIWYDKFLVU1NE6E0ab1YgW1yIbj05Mdt7mCd5rnEzBi7JFbT69U5qUecq3UsaThQnZ/BaUEEdUAyLZUuFbwzTun6k5zMkBCOv+FbiklCCuNx1txHFTuROz+EEYsQ9L8nTM7PRDqLn6dwLgS/Mga5N073j/Do9XqlqYgMiCGFq+uSTwcjuaDhDqJqZxr5YEdJa01iusx540c8E8GSNYjYl8KDMgzrngPH61tpw+AsMw0pwITfuYBw8jfv2c6N9mO3yNL335K2wCjCEyDoH1esX1dkM/Bq43W3a9EeSqYhY74vCN0HRmfqcqs+Ar1m9S3r4Kme6NLzNl1SxO1CYIScM7+fBAJj7qJKlLouDAvHJgXtOcaX2QDzCKt2oO8z7MTBkV48W0HbxzeGemoepSjij1BPEMMbDtR4bzS862Pe9fXvHi+orzfuBTDx/yqUcPkTce8XC9omvM1MH8FszHovENObh4JkZnO7QgosToVMROOhaFWTNG1gjZQUeiKM57NEkINUa8E+IYGcfI0GdzbBtpCJHzceTrV9f88sstD5imAAAgAElEQVQzfvHtd9leBhgcp75LyaOjObQfmltNCEiVqDEx2WbuE/MY1LSSISohwnbbc5k4z/v3r/CNo/Vt0SpmpKyQTMjTyiRmsZ6PgwSZZoRt5joaB1TN0R8XE0ETE8pNK5GJuyWcmp3fCtbt/T1cXtX8v0iUb4VDR8Z+6MnEfGcJvb2tS5xZSYfvVO23pBxysbipzB9dMFSz5w5SrGTY4JKvsIIRHJkBl2xav1/vjDmCaXtV8Ky0UtaFAhR1qoj6Si2umJg5yhPTUOqzMl1bChgmgncfHhdLhipiZDY3FZmvx0RsznHIck8fXsPjazo9P9eKLxmpeVVzhjTDWYNTk0mvzb2ryIKaoTzapf2e1+3nVw+CpuMs6N44bnwOnG+QqBCDJY8fthAGGoHTkzXSnRBwjAGur7eJOTQNY9NEYhwZxx4wqyLFTHsLk1NPqcjETyYBcvalndFtkLN6pPHO96POLyzmbjoDIsaQWA5Ab8yi84ikSKVVq5EAYcD5xlKAqFnbZEpExALC+RQRNIyD+XvGkKLlxpJQXtXhnFm6ZHCRhSQx1uki7LDEqJPPf2Zeq3Na4AOCaMo5mS21MMGTT24C0TvQgBMlhJEQYjIdV0LoU31p+jVplNO1xhkdaWSlprmyXqiLM9g+be3E0GvqGxbQJtNshVlsoGny+V6up+H3MWs8HTSacOpBcuEQbfnhlLvh2KUCIW/UDKNl2rzTi7Oj7OS4SSx8DDWL37qyRLivv+hLEuxQ0fJUBvQGLny5bx9LCJB39JKRnNc4+bZ8+EUrRJ1L9pnJJSJJ+ieM/Rk6BiQoTlc00oIzydJbT57QNm/y5PG38+jhJ/jFz/9Dnr98ST/uaEZHiJcgwmY30rRrnBcIkX4Y2Aboo0kYcUIMpOiThiq9a5BGLVGt5jmZSpamLwH6TL3vDNFIlshmTJkRrySb9covsdTNRAzkwyxufhhrE8HJp+rYusni3/r6ggkt/aifyWDUng8hEsJICgZK26wLMdGHkd31wPn1jqcvznj6/Iwn905588F9vvfTn+Szn3iTNx7e5/GDU1bSlNyKGhRU+MN/8S/x/tX53ghqKXeNeBa9vvE9ZaL8MrLLTCgZVamNc4zRPiESvCKPDAVfsZu3eWzKB+HedZsYx4xIHUIE5wyZiiPiCdGxC4rfBSIb3LtfQtxneHD/ISfNfdNGZmIth0hHK7+xu51XJwlCxIiGgSg7Q67Op6A57TQe11CkhQWRLBHPXaDUR1MOWjm8Yh029iQRFkmMwZzxtrP6Qc3ufnWUbCp5p2cTOYZM5kuF+RFANOWp0xJZFBZMolbnN8811EYxExzMxGbVPS2f6eKh1ZlrA48QY2Lb3FvnKBaI80eOln2T0rqXxwnA5Xv19eV4byrJmNYI5VrgmO7NvAArIn/ZwDFT2302+q7l2Kwdrk1Tjz/IKZvG7RD1hNAz7naE7QY2V8jY4xTW6zXr+08I4tkFZYzvMQweF7LWMBJjzxgEjffQxmimwzKT7IQbyW5A1o+cY1gWa5/GHXVui6pTtN6J67F6qHwW7bJpEi11TUPOm+tcTGfNOFKJERcDzre0nQUEDHFk7HukafFO8Mk9I0bz6+t325KTOMZAjGN1ZvO+tD0b1A7JJHjIdI1pJGNKzUK0qKE5araq5WictFBJO5rwSMbMhJjyLgvOCyfrFU3jLUDdYG2PYaRP6Sq8lGCtVquY7N+L5ZmUpHCoTWg1+zGjRCKq45Rfswi9FO+FrvX0YSBqj4jifDLxdZGmdbRtSq+SGF3VvJ+SlYXP2SEO7d5vRdk//3N4NMFtyrdq7g6Rk7cc3A/ELB42qbn92Q/y3KuYnH5wbeYxG/xlO4tolzfVKFKOTkHjtcTQHkqbL2G7JPUyFbxUbtJCzvOTpbkLBUHRzNTiv9umY87gHBnD0Uoy0W4EhiCzS6oGEMP1C+I4oEHRfkCCEoOyHQIhhXc+Wd/jjcef5rPfvmF1csK77z4lhsAw9owxstmNyNATEXIWoCEK/SioNsToKKaIZEmRAVNBLNWCzpnFLIFlIUGucXCBo0IKUabT9B6Yw7ruvFblkxmq2QRXXzLPtzjEMjMNOMYwVntfFkxY6d/EYI0ak0/EZCommgjtCEKTzBZs3i6vB/rhgvPrDdf9juebKz7x6CGfeeMNPvHoIffWK9ZdZ4ZBIrx/dc6/9zOnMxJl9k0NCJfre3tsgaATIsvINDPtIaehSFXE9AmG49j1A8MIQ1hY+Wtm1XJzh9mIv/A7FRUTNgjJpAexoAviknbCGL8xBKIa0zgMkfPLl5ycr4npv25ljv8uCQzyuKNifpBkgqYmUBfEYHpHsLxbxAGNPQSHuh4Rb6MSQ/pOFxi4ntqES0qQ1OWc52d18d5idW6GEa8Dk+9QjCM51vIHJJB/9ZRi6inT73L9GIGc7luUQJ/ykpqGUVVTcnNHNuNHayYxM2zL+qofE/c507RlPrS8Q474eLwspfU1M6TVM1qFf67PUD1eHBZUamF54iQzE8f38SGN4aHna3jvBItkWXyqZk9SktTfdD6W4L7AupoBqNYdwzP50dc+e6/M9d1dYHG0BjGhqvOexjdI06LeE0NyZRCxwFZ4iMp6vSKMp6CROAZLwZTSQCRSP40jmvCsQrLi0obGFfoq4+1Y7dc68E0RHGaEkxgYSe1IWhRLi5QjUxstlMdn6YxAE6OoUtN6GLMoEfENTd77GK7zrdB4b7yaKsNmQ98PDH1P3PYopiXUlFoiA3pxWeeXhGcx+3pndUVaO2Ue0Vw1RaI3vOsanwQY01izpg8EnwJchRAMv4WUrkVJbiVp3m0BcK5JTF1eJvvhJAVxc8aIZqsDh1lDkeZPk4+lVHSCaky+/XPSwjTOA2YmC96DEFMQKJvlGEdMeFDRdml8RkMuEKpS9uXrlON05KEy0fbTa4m5lWzxljpH9t+XapLT3WWTt4zhQ9cszkwWb2n8VRjE2+69KmC8mTk8XNdkH3yAsLpLydg2N1UzjwmwiJAAS/pUmikK4Jj+1kRBtim/DcjXRMVNY7gJeR68PjVgEjTnIQzE3RXDsGO3vSSOA+MwstmNRF0RWTEGD7S07So5cDuTooXAEAJjNH8ERQiYFiVER4jmPB31sINvsUOPSXeTCPBJ+HKA8kn3M/rN45mkhRUGn0mja0HCtE/qTwY6pdqqn/M28mzOJf+L0e3P+5EyAXN7OLnbTcRmlqJlZj8jWPGoRsZgwWw2Q88QR4YYuNhu6cdIHJUnDx7w6J5wr22okxHnTb4gqQ5cq4qmjqTv9jNr5WIBzkqOfjiNLaJkPd0QgkVSS9LReumyqe6x5usS1YKoiGpOTkKOGqhJtKlqfrIxWlDDIShRt1xeX5b0Fg+9p21dSpxdjQ1Jva7X65jDej57alx9DEgYMEq4T8RQGoPLjCwH9rjM4c8BxnS5SWc1vAY9OBO2HYPzR0GzlD0769VEJ8zreD38/U0o07zPYfIxgcGBAd2IY49yiwWvxGR+lgm4nJvsptfr/s6/H4OHC8yax3ULn1RuV8/tM4v5M4c5y+Gix5nnu5Sb6IvlXJjVCgWOLfd7zeAtNT/lh94cWCOxNYXpnJjUxRmpXi90xN648pwt5ujoGTo0x8JRoLV47thcTuN3ZoraKi4qod2hYbBAKDkeAh7nI6tVx9CvCGNg7HsQi+qpKbBaZgJVgjF9aQ72zHuVJFCc4/yJvsqwJs13NTeSUoXVOFxEkpvHxDACKdypM8uQxChOzH6uL2maEZz3xniJWg5G71NKK2XodwxDb//2PQxDGT+atIqLJdcKl5ZzkRqfwVCdzqdGi0aqhWHKJ62mbaTs11StRfBPbToqwUyK4C541EsSwie6y+VAT24B6ymrk41d836d0t9kM+vJHHuyPsoRzgdbBj/5e05rbCa5ZviTxlWlszOYlpmyCffU5VXdCT54Kci7XMl0wwy2lL07rY8eef+203sjs3jUxGIB6O5SlkDigzCKd+3j3V+uG15++aD1po23lDrWNebTNJNI2EbMZp4WLt2Sb4skE4kSn3meYB4yfsmQITu7Hl6/5b/zzXNgRNWaTAAlSXOQejhGhzqHazxox6o7pb864/L8Ke89/WWurp6x66/ZbkeQJ4h/QnSPuLzyfO3tt3n28n1evjxDvMfckdXC4ydfxTFExnFgjCuUxkwBY+qH8whaTBEgWtAbLzimhPGmhdzXLObxESKFcZ9j2/SPRcfU6EqdIjJLvwAHkKLI/v4uTOSyHHM2zsDq2N7P9vfzMZWfzuR0xehVSQCxeBum+qe+DoyM6hg08N7lhstdz7svznn/+QUv37rmU4+f8KknT/jcp99g3bVJdm8bovagrHpY/ZqemSjA6p5OCACl8stJ5qYy7XRLl2DeiH0I9CUwjeDSuzXyzNLKiRjIfdDCgIRgya4FC1ZTnhdJzvqGm8fBfG1HsWiw2jnOL68ZhkjfD7Rta4i+bejHiKUYFpw0qG7ScBOxoVSzNt9TWVMhAHG0dVNQSdhPA6IBYmu2PXmP5LQtdkAnQiANqPaBPqTVrKlILS9SPV+t6BG88YGYxEOlfl+1shywjZ4jHucqS2TIb0E5aBlTvs2p8WMMYz7PE4NwfCx3HWchT3X6na0xnPPJtFcm4i31t67e1b7rN9AExYpjv7MHGYxM+xW33nQ+M57KdGwBC3G6dgSY7l3OTe/TJIf7X4+xvjavc1o/O5/HN/Ty/YlBlzLeut7sE6do0tQIkiMgV2tQM4xWS0XQH+/NkavKUv0g1Z9Xpf9uu1cErTh805n5YdsQnJ3vOI5I09C0HSIeQiTKijDcgyiEvmcM12SMEEMipFRBRsPbFRMiIhaoTHSKSaCLM1eYy9TP5ZDz884C7pgPrDOtocO4kiptj2QupbaCQvBFUptzKtrvOFq6LxFomwbvbd37Xc/l2UuuLi8tHViMMA4THEw0ojgTmONj7m7SKmryNUxrUDGKBTakb2HoJ0YpRS51ScBk0ZTdtEcT8+V8g8YxmbLm+ABGy4pPJ1mTT6UnjaGitpLW1R6MmM9lomsr+kCoIIOmeAZJsxY1WAC6YAGPxn5g6I1Z9N7hG7OikBy0UCygjRex/ZVbSXAihEjTNAf38iET/Vct+wKkw2cm09/pLfZhnllQZGEASmGAM8gvvEJtueaOn1H4xz6LN5TDiOOjrnaS9sjBxyR5WWvKj2XXFsxhJjoJi3dfn2ASMTM/nxGi6p46W1Ji0wZBHn87tGva0/u0J8Kzd7/I8/ff4dl7X+P5xRnb4WvsxoarreNqG9j1Zs8eVdkNkd0YGcWh0tgHzy4MoHmTHzosmch2xDjOmKebtalZdmU5F2eJ09NrRpTcSJbMSowpES2A80ff+bCI2VrTDDXgSb+zWVQ0LZ1tp5woV5JJjDHpEid/VO88XjzbPtL3gbN+S389cn625fGD57z5+CEv+k/z+N49QggMMaTktrA5i/ydv7zlh//NUwDO3hn5K3/kkt/3Jx9WHZ2PI/smZvPiNDqiKs++Evmf/qMt2zPl09/v+V3/9QppzHQoxMgQAl/+mwM/+8endXr5ZfiRPwq/5rfB2z8PP/cTEAflrV8Lv/0/KUq5WV8Ec7AnO9VLJkrNzKntBI2xaBX7fkBQmkYQt+J6C8PQs9sF2ral3+24d2I5nZqmxbsW8e20lzNwn3HN9b7IEtW0v+MwzdVoyFVcABcg+8C4Ngk3jIghEzWZyiwEu5B9bGb+aHC3jf5hFCEljl4QqCJY+pVJ6iGJKYwJOcdiVjW9p9Xff1yqokmwkjWKkoUmWQCiJYjZTWBpMrc/Jri6oUhGhYcZRlgQXiJJUZfM0Ko+aKZHAVIgk1oYkoU6y7qXgc+W928rN1re6HRsbqur3D9CrKmmoCalvSyQlmp8++PImoWZLv6GNT18fQmDbi4fBqgIGi1YtQqOBm1WaLdK5qkNvnUQLbjYCIjraHykbdbsdhd4SRE4mfbnMTiQBX9ZMzrlS6yfmdMYc61iEr3m3HaS4bBDLEt8+p1SZXiPaxqGYTDmSHNqjDF9j+Z3OA7EMBKGEXUZ1sFm2BFCT7/dcPnyJSEM5tcnzvBQCv4Wo2kjfZkzyplDoJE5LZKZZOcctTYOpOQ/VDGfw0EGogpejSmUxiG+KaatWZjpXIdlWDazWOddMeG1PZ2C3KmaL77LsQEgCzCL1rJGRYlZMsZwtHZjMAa5jD+5jUTLS2nmtIEwGk3cSJPyrgq+cZbGozH82iQm0jlvqUkyuiR8y4SO85JpgDtRoICbKww49uqHEA3141pezyZ/dlQO3PswiAyZ1STVX62wWY7GpWkPLDys0taopboVY7jX7+rXkY29JyG94/6fpJUmjanHkx6Y7jvwTUs8fUTnHNJ0tI2jc/e4t/4kq+4N7r8858XlNS8vr7gOF4RrQwBZ82cKQ4dzHUNsiNqAtKg2BhQ0IilfkSHNFLlKsu9GIn5SlExzUD7sy5l1bTOJYkVQ1zNu6zRdyWt1k1TJzC4myWWZT6nmbc7lFQKu7mXdziFJ1DJ6YTHbyu2mvhf0J3mPJkRZopvad1JUNIdJ9lrJ3u7QB+X51YZtVK7GEekGPvn4cQkq0ySf0c258nN/bsMP/9gpoDz8lOf3/clHZEluvZdzXwpC0TjNvZqI5Kf/m54f+rda/onf2fJX/8iOv/2XRn7D7+2I2WQ2BD7zT8Lv+fNW4e4c/uK/Cp/9zYb3/s//HH7nn4DHn4O/9afgl/8q/Np/uW5/NoHFfCbTqeZMrxViNc2jBQ2KCI5eHK0mLWMYODs7R8PI2G85OTlhvb5H9BGvsVgP7MOkfUHIXsprVXJkVBkt76WNQ4jJN8Zls62S5BIm8yyZarbB7fsyLGellkJX+/PYvszfbzU/WzRV1yOZysl7V+YmYlPVdi0mabAmibHsYcuPuhw2e7xrDz56osTWwyXJcib0YiY0NUvUa61UhiV7kh2yVq70eoljqpLh0BRkQY7Oy9T2xNCiBuMjyZU8C/cm9qwQoaXpas/mes3cT/euz9ud9m6toYuFMNa95605a7BOnTHB4greHRm4zjs1Oz85JYaQ6PickzZ/KmK/1izuw5hlOaaBrLkj2LeKynREqv8VNY4zrQw6MT5p7L7taLo1+NH89UQIYWQYesYx+60bsxZixGcfLSYY4dx+XyULy6qUFcj+fs+35jOV8bekVGGWXzdrDsV5SIneRSynMS5ZP4kjiqJi/oVi0puUKsRMJUO/I4aRGCyV1agWkO7i8hziSBxHYr9NgWECBss9GsxtwuI3hNSntBcF0zTi8J4Jx8bJr7ZoSYsALhl9qkLS7g4MpjCIgjQtrfOIp8xd1pamAAg2Ty5pc9XyX5tPY7ZxSkINicXlpKyDmJCz0Ep5XUrfDf/GKlVaxslZaGPVS0Vbl42Qxp5MlxOzlAOmOSeElPNcyrZenJEDAprXhd23aSdrmJh6tOjKEs7U/MScJ6k39m39/kDM4gdh0mpfg5u6dJuU74MyiK/+1h7ZeLjeG/tz7F4+mXMGMZHsGPEzzRcTjQ9yQ3sHUmaUWzeKiCvm9bZnKwCcmQ07lLJ4xhLsyMkDWt/RtPdpTx7z4ORTvPnkJW+99ZTnF0955/k7fOPZO4zNlxhGmwPnI5s+Is6ilHl/Qh+EqA6kRWgIcQsaUx47RwhTbhznJ7+bnIfvAH1T+pqokIIEp6hok3Y3IzJNRAiqaNRFgtuU2yot2iGiasK5GVFRHeTUn9zGbD0mRL8kwutXZ/u2bj63nfpu+Z1S2878/YovoEhRcAVRNGTmUmhpzPIxMXLXfc8uKlfjQK9nXG6uTbMYRpAGJ8JP/rFLnn858BP//DO+97d0/OYfO+HP/v4z/sOfekIMyk/+l1d88ecGQg8/9GMrfvBHVxPgjzqLcqkKX/y5wO/+42tU4df9Ky1//b/b8QO/tyNEZYjGLJqU1ob9hf8DPvvD4E+EzXPFd/DkczaXn/1B5W//Wfi1v2sxjbnE7M+lpngjRd5NyYlz1EgQS6MRIg6hj8kcSSNRRs7PLwhjT99vCfEhIDRtR+MHuu5+kenVAY2WJLSUv9PeFJIfZxxRGcrqK1hKGaeIGvLHOfNPdbb+U4oNkjVKAki1hiMxAQte8dBM3QgLb4STWTBy/Alqmdbc3E9myHNG6NVw7UPive6ORw4zIfn7QQaqflszgXuoxf2omR9oeJoFCWbJISKEpCk365Xcl30CaLo2jTPDiGL5ly8um82MFxR4WgvRMs6rgC/T2mZ3DSMzo9T0zj58tN+2Dw5ahebDIvv767Zyk3nqxH9MTJYg1LjIZUZSUkeOgO0lvM+t5YBeUe1LNvfNjGN9aJZs4uE9s8CTN8xD3sMHz/VEWc/6nd8rHdL95zOzEtNYVATnV7TriISRJlnQhzBaUBdVY5LEg/opJ64IpByG5iboypxMQu8MR+dB7g6Vab6mdzMOt3gTKXex8yaoThYpzrdmTuubYqKpKngJJnREbBHH0TSKYSAM28QsWgJ5FWUcena7LefP37dIoQKOSNO0EKMFe3PrklsxxoBKxIkxQ3mbGd+WIqmGsBBcZA3rZBFlg58YrTAG0B6C0kRB2sbiQvgGnEUuzel4YgzJUsQlTCNlfcYxMbLi0vJn+itMgh+Rkg8apJwpo1ViMXHVmP1UM3OYaOmU/oIarpQlVDSKKSOjMZs+w4GZcIXZQZntjjvzIsvnXg2+zN7c26dTnIwZID7ax/rkL6DCh5Fn8a5lSfQup6QmvI+V25DozR14RZR56+PZvDOXu22OkrcnHrgZF0ihTIqZTkShCleeculIAznhad7QOiGkmDUG6ebiaHyoxfROFkEvJoSdD1bGT1FhVAiqiB9o1y3N6T0InyCuPol/sOPBW1veaHs+N16w3b3k/edvs7tw9D1c70Z+6mf+b77wpa/z7nsvcSndhsRICBs09njXApmpsFxCzqfoYsCYNJQhmVuaMCpJyhIwyxMfp5CQCBZtbAyBoIGQGETXOrw6CI44iNnDxwCNpBRFGcBkRlUIGjNFYGYpwZiBGgDOVqkywZukgXMUb4DV3lLN1xJgPUDRZwIOyOrC8nsy7kx/U32uqibioLFnRyrttlh0wXurE/sd4Oylcn35gp7A5WbHqou0jed3/OET3v2HI//+X3sCCi+/aqYgQSM//xe3rO4Lf/AvP2LcKX/m95zz3f9Uw+PPCv/9v3TBj/9v94sYBWDzIrJ+aOsRo/Lw2zwX7yp9iGz6vvg+aMaMwOd/Svl1P2rn5eSxufo9/SXlE98vfOFn4Oop+6bU+U9r5j+qEHs4WXV46U2DuR3ZnUY2I1xGx05bmujwCLEZcLFBxdG1HdtRGS5HLjdXXFyP3DvZsuo6uq7l3sMNjW9pfMO6XdO2K9M2guXaykuqgkafFteIgSzFFmnQOICOoFsIEeE+TlZGvIifvPqbBnEt4hojsqJpQBHsmZjOkfe2r8lm1BkiSgrJo3MYVkr2q82RGcM+aC5IvQxuYhJmTN8cJ5iEeIrcS8pT1jYdIUXxm3UoM7sHy13xRT6rS4CeT9chQH/3eg/3z4jd6bRmwr8emyamTpL1hGRwc2PRtKe8nDDopY1LAtBZmw7aVYKnhIm5S+4Ocw3ZpEFVYExEnVTcl5cKBmXpaOpF9pU6yHik6TFcOhYNvwpoSH5saiaz+QBrTLnRSvTwxIvAbP3Gcfo+OTRkOFmPb1qlelqzlcqyTCalSrI8XAzpWPAqXRB2GaZXO0RSFFsCNM4cUUYz12zE07kWvKXQwQkr3xhRTUCjpIBYAN7yjDip9pfM8OOy16WXarAnn8HlGPIZ3qPbjm3xMmfV81HxkvPppVTyq1OjgGJkM4xos2J9r+Ukrrh+/JDLq2v6l1c8HEfC4BkHQDpOvOJxXI8P6SSAWOAbcY6gYxr95B9nexi89+S0FlGc5aAT0w7iG3NNMI7NdlW0lAu2PyUvH9EJ6j3incVewExFpXO4oYG+Z+yv2V0+JYw7yz+MRXgPCj1KqyP97prd1QUnTRboKH1U2ta0lDGa288wAUYa15pJZWMWMEhEfMQ3xmDHaOxq22ZXCFsk51qjfcZAIKDqTVvpRgNDo+BFaHzD+dOvcnr/Ad1bn6FtP4Fqj2q0aLZtQ9FQJmsFcUrjHa7zJbZEjGOB/9nSxZFpOUHVmE3JUW7VmMRkRFqESD59l2QGPIwXZnXgW3bXFhTRuGVjDh0rGr3HauXw3jS8PkW9VzVXjqacEQHpCOMITAqFGVO5V5ZKivlzSxxXM+jTvf0o/vPzssB38xbACYFIkIgTV2J3ZNNpmbGANyOO12YWZxLTvcYqRHKACXw9M9IjjGSWItxW90xosF9P7R/wuoxXqeEgcoFKqFj15hjTLCWC1pKR0FJRBvp37eHx8e3PsSQJkbVn/oul0+an5o3M8eJxfkUcA0PfI6q0K6FrV8TREcaWrjmhcW+y/tR30T95ycuzF1x85W2urjds+55RIxJSzq+YpWTTGt9k3mb9T4AyPVcHEqiZpGgVAplZn9iqTKPldSzHUzCkWSH6rN3MVMpMKl+kyGn/i8yOfBlXkrTOtRGHRqe33J/OpBzd6fNtWZ/hnM5BpguTIGQWXdBmxjRrgdgqQwKqIXh2O5uXIUScWLTSXP8/+usj7/6DkV/8az0A2wvl/S8GHn225Q/+lQcTU1FHUMrfGs8QzPm+7/uESPIj9tz1+8rzz8N3/HCeJ+FH/qjyN/9bCIPy2R8yGuBYmflukEkXLf2PURiDMvQj/dCzdh3qPMMwYEEKjOD3znwyNMI2MZ/bXU/jPbuxp20aGt9y0q1Zrdc0vkn+JpWm0UPTtEmrawILJYU618GkzT4lekYIOlokcjWJt6qDmBCEG8GZD7AqiekU0MRU4lKgJ/NxjCI4oxETHX4TVxKYIrHWe4RpszxFNesAACAASURBVAnT+/HwXi8QuD5HmanMDyRNzVz7MjEKtt/2A4Llem8rh0xqq7tQ5W98XXw2qzeVwpDZr8MHOBHnt5sZWolJY0+SvgMpFcxQ2hyGgXGMBRa+es+t1GGz7FhW2O2mumeMxO1tzl19JyItCzCXbXk/t1aYmNn83jH8e/O1UhSyj/NNllEZsiz5xEPVzZ6vhINCHkfKuZdzzc0ChswbyVq2nOu35IqoLJfq9Zp14g6lxmfLuT82b0ttZbG2Uqi9tbNZI7S4h9/F9/3W38RI5Ffu/Q3e/9n3zUzSwXXcctnD2jd0zs3WI8OTPJ+S5uGgAKAaVdFGqiZBWhqfmICinMAsIPaS3BjtJCgmTAnDQNgN6NATh8EijqbciNaUBVJpgDgMhKEnjL3RVSkirBPBdysYR6L29DIQXdIWakjL6fAKnWtZ+RXedTS+I6rDtw20Sus8YdiRzTEdsPIdvhNWruG6HxgyDBXbK1Ejw25LGHqG3Y7d5pqmS21LXqc0bU5mzOgkVE+R7YMRFaouRVBNecKzIAkzZ82R1q0aBxonN4pET9lHiSEk9w5PdJ4xbBjDhqg9q5Xj5OQE71Y4WeH9ZHY6RUdd7tHc9/mOOLyP651zjEY7XkfNMO7Jz7KSYYYED1eZ97fdWuAGyfu+xrsfQ5/FmxDF69j73oqAPqQySRxfoy2xBXylGmQyfSjrPkO+9kdfoW8FOMr+3B9EkBgjqOUgT2jMkFgO+U1FrDEBIt/inDNC2HVodMQotA1E7RnjC16cX3B+ec2uH0xynAKIlK6KSwQhHGQWZwdgIjBnUptCBJaJKPOYfT6AlEB3b9YKhimC8nouS03VdZ0Iumx6lJHKxIrAxMR+64shwuP3y60cIj6ZZSrmSzAkM5feBIcMY8A7T6jmGuBf+M/u8b2/tYWylpPgw7a0nRRV4fRNx/YChlFxrfLi7ZHTT1jUUi12ZtMMfv6n4bt+O7gmX1M+9evgd/1pe+xrPwdnX7lhjNMGIYcOn4gZ00qHoOyGkX4YGVtPxBFjIARBRA25V2B7HCMiI6OLeOeImC9O0zSM3cAwDjRNQ+sbmm4C0WMYENdNc5fx5NRZY5jFLBSUAXI2u9gUhOpCY0g5mrQ8qiCacpdJQNRMilQiiE/nzaS8ed+Ly/lI5ghmGuWS+p2vzXG8eZyQXN7PZtPThQqW5V7IROD9aiu1qWcNaTNzIEVy82ql0DuFaM6aMorVQ0nKvWB24DBeqP3j7JmMpipiroaJ5c/xOo+VIpBbgtvMJC6lDWSBwmIeFoTfMQF2sZy5cw/rfjJxeHbxUCf2yzGGavbvXCBcC081zn2/8tpMZq91R+86omUXjzPB9bUPevIOYtPEhKGKuJbmje/g9Nu+E9cJn/re93nxC/8Xff/SmC4Po1rC9rVEhrQ39vtqCyQHaCDrf4Z7eT8Xlj3tt2gCObUALoVHSrmVM05XFIkKIRB3O2JiFhlNG5d9Dcl2G2p+5MNux9jvCMOAb80ixHIQeny7QsWlQHQDqAV6c2pBYxonNK6h9S3er/C+w0lXguY4EXweRwyIWuDE1ud0F7BzjpDSj5WDrVlIqYRxZLvZsDrdmVuQy88Zgy5Rk0mKmhlqCgY0VWX/iYbJ0qAShUzyi6ntEmVIjC7YPy8WfTXjyRC3BN2hjLStZ7Va490KocF52WMU7XPTjjxelqa9dy01k5rI1hvenzOih+6XV9X27VxxUK1laf9jyCymWbjxkddhGr9ZZUbkfxPKHLflhVaYEQ1369ExyekhwmD5rMcle/sJ6VtPzMQiJ0+3SMsBwdG2TYpgZr5UrV/x4NEpIQR2ux3Pnj3j60/f40tf/hq/9Ctf4On7z7ne7gwQqE5JbbNkj2W/KtfljKQyQyjVwVockEyIuWpOZskKEtDQfD8RRU7E8ihRaSJv2rOFZpLCIObLM6Rbt3u8tnl7cmA9F0TQofduc6Ku/WP2H2Ba//S8862FDE+APgTLW0QHu6vIth/wLrIbrO0QI9/9T7f8/F/Y8mt+uME18P4XAvc/JXSnWXqmuOJfZ3m2vvOHPH//Jwe+55+Fv/e/Dnznb50IpcyA5/L5n4If/EPzrm9ewMkTCDv4O38OfsO/DYVgODDUSVsMMSZNHA7UEYLSD4HrXc/Vdse687SdI4SQkA8ERwksoAhBHRIVp5EYlGHY4LzDe8+27Vlvt7SNp2m8nZtULi/P8ZJMfBpoOof3DSINaINGI/LHMKAacH5EvE/719uaiRBiYz40khhEBHENaAs41Nk9+7eBFHJeUzCpScKbkPVCYjnt7/TMwTmtf7nyarp78J28tPXZ2DvOGR4CSx/u2jdpv96bCd9vdvko8Z9zDrzHN7bnnbMw8s45Gt/QNE1KmzERMFLB0MkstZbAJ+HaROJVjKLdz/nQMs54nXnWQ7xiwgHemTAxxmw2X0Oq/H7+7ZKf+QTDa2uQpe+S3rA3j3XQ9t3hx6T0fu/ibA9UgfxrmUhFEBr8ywT8spdS1emSmd7ESFptdx5bbvwVpmLq5vEzeAh+VxLi9NtMrQGcX3Pvc9/Pu9tAp/DJ7/k+funkEdvtC4bhmjfvn7LSQCvgfaQfpdQ3+c1KmQdrZq5VKtdrQQhKjjJJJMVWsL6hZhItOeVZ4YjU6IRhgH7HcH1N2G3RsccF0xrGMBLGgBloJ0YnBDaXF/TbK8ZhR9c2OO+h6aBpaVcniG+RpuGeC2w2V4x9JARYeW+uDusT2vUptCdE1xJdi7YtvmvxXoj9DpEGj9KImjtDv0UHSdFAk0luYl5c0yA0SAx47xnDyNXlOd3qnJMH92m7dfHTFEhCR0WSD6OZ6cYy116SIb9KovfM5cqYXirrBrE5Pxjlf24WKgJeWtMyMhD0EmWLuEDb3qNrT2ma1p5NmkURwft6H+QW4j59dURgdtszx8ryWatqHkRr/mz+3FyXPbXvJiEZeFTxCdxNJlb8Ko+G+v/9MkfIxWk9RbIqCMkxSb9qJP1BRYY3FYXRPPnIkjbx2Q5aIeSoiySEMiFNEYdrbRyDXnJ59pSXZ8948eIZX3v7q/zC3/pFvvq1b/D219/h4mprGo9Ut8t0Z0xS8DhJX24mLpNU+MDZmpm8HJQoz2s28xcHKU8QKVrYvGTDK8OmtW07yCwgw1FQUsPG1yiHXv+oiFBDvtGIzNSOAm/9ejOr+dxvg//x37jme/45+E1/COggfucLfv1/DM/P4X/4116Awulb8K//z9A8gj/zG+EP/MIcNSjwIz8B/8uPjvyNPwGf/gH4Lf8pNCv4+t+C/+dPw7/4p20CX34JNs/h1/+7mA9oKj/9h+FX/nfQCL/xx+E3/Hhd+1QefA5+/zeWgLavvpsn51SelVp8utsv3nid8u6777Fa7UqY79WqpW07vG/xrsO5BhGHF2Mig0bL0ZWC1yg5+mmPxBzW3VCAOg+hSfnBGiTfc11KW+Nxzu6LOiRpKpODGsUsVRNxnAM9iQGou+y624RvUh9ISWHeZX6+Midiwh3TLGYDto+Pzv6jK/vM8+FijEVIUSUH+n5gHEfGFKlwHiBywicH/QqpCP1aoj29td/+R7EUtuhkbiIzuJM27dXw4b452j7Tebwr2eTxro3V/954ClANoG4RU26iFcykzj7FL8xNeG4Sen7Y5RU4yNuqKbVJEdAqoCVvhcOvOr7vN/4AX3v2D9i89x7bZ9do53GnniaCnF3Rrk7QBs50S8vJTJCcmWqXmPmZZof5KgjMUmaU6yIZskLO8xcFGR3iR5uNRCdEjehuB5sNcXNF7LdoGIDRgs0k0/CIlujEDWKBbLzgaTk5OUFWJ+CN6fOrFa7raMKKZtujArHpoAmcnJ7SrFe4dkVoVnByil+fsjp9wMmbb9I2DaKBl+89ZXd5DmGgIaJjQKUlNqA+sh5OkF0k9gF13vCNtIgGnF/T9z277TXDdkN3uqaZi5FNE5oJVSJCqOIipL3oGmMUIxYoBwtQF5NJ2ZJOU80+tnXJ5948KcbR0mWMsUfcQNtFGhW864zZxeFcDpI4F6gcpqGze9ftjOLrlWlcr1vvKwuAbigfS2bxrgTtIfPDV1rIAxK4Iz3ikHThoy6HpqH2j5sB/AJgTYNhiD1WFR1A8pnREmPkpnZvmH/JRgNWiQLTmXVVK+bb6NTbUxKJ9OyGa/p+w9X1Be+/9x5f/8bXefvtr/PLv/J5vvKV9zk7u+L6+ppJmzGXkhiR6FP0PvsYAi1i3LlkVq0nU3Q/LR0uV+p1FZImq0KsriKA8h5zOeT89KrqXHJ6SFpZJN2ZgFlEtz0286+896r9UPflwygHJV0Kqolx8rMuAPC7//y8jh//u+kZB7/jv7DPsvyBXzjc/pPvhn/n5/avf+Y32SeXx98F/8EBE9N/5r+yz6+2cnW9ZRgcTeNpWsc4trTtirZpaZtA06zxjafxyecwJ2iOmWjGpLfkfapGfKmC86iMKcDNiJmfNqiLhXlUbW3fq09MYsKwKQG1kP2pQVKy6wJo9rbfIUnqKxDXh0pmXF6jim9GuetZ3tdyVMkhCgO099Z0/1j76ROjWWwYDDd/4pmP7i28Ua3hncm3CijOfmE6e2jmX3iof4esJMpwbp67CW5PeyrXYSB7zixQaepq7WLdl/L7JkuM8ufAvVv3tCzwQMZL+f0DZ0WzQOR4m1Kt554vYL6W2p/6X4297sTBNiT1Z7HOe0VnYzm2/4upbxEy5RspWm/aB2J+LQzDwNMv/iIvn/0yVy/eY/zGOXF3CWMPsUfGiFs3FsxGRmMgyxzmkc/pgNlca6IVisZlMumtz5nk2dIUgIVo9E5IET/TPMcQYBiQYcDFkagjqiOqQ2EOnTPYGiQialZc3ns0egu0l9Ny5E+KySBO6E7WiGsJcQANtOsVvmuhaYgpyI4Tc41QJ0jjcerwbWd5EjVYkLAUF8KC1KygW6E6MujImPzfRTwSwTcNPgRkiDRicCSMY9KqmkYyW1MVv00F8UJJf1byhJMidWcbAcWCd2fT6pQiJ8VL0JsASUpbZZZuI0gwraE42rbF+8ai5vsJjdX78NAetnu3PTcvd7dYmd87/qztvZvO0RKOFW1rrUgqpruzAd3Qv48ps1iXV2X+Dg34LmZ3N7U/D55wSx3CKzChH6QcR1wFmLK39fbmJeOFYwipvKl7NZltgGbmKEVSLBvRTwBUBR9XIAGlZxg3XFy+z/nFC56+/y5f+MKX+eIXv8oXv/hV/v4v/iOitoiYLX7TdiZkym1U7RsAMkI4S0/znMQy3Lxu2cTNlRp0yfhLTZBIyfNU5jmqBQARSRoTJUpKdpqkhjlMs3PZVyStSE3suepoZsJlZu6wnGjutvcOETeZ4JPja3sTwLnL/VmbAHE05v6ANcPTv+PLZjPTk8wvT87lWRiQz3ERDngz/YwxEkJgHMcS5Xa+jgtEv7x252LjufgK/KlTn+YhEol0TYuqabZDDKxPW07WDQ/ut7zxoOHRvRMenK54cuLwYiZxTduwahtSQDxELCKcT6anrW9MGuqExjnzcUxU9z/8Yz9TerXdjvS7S7x3tK1jHDu6bqBrO1ad0nVCGxukM2Yx0cJoTgWjUAeKsOAsKWlKDGZWrS4JVzwqDfiAxAZ1RkxIdJhpqglRsk+j5TH0FWGQGY7EkM7WZslALlmO1ys1/CtmZjWi/FVWJmJmgu/ZTEpuPN+H68vrrxoTAWfnyDmXbxyUL8IBxuVA3VLdmYGPiVI/zlYcsfSo127mE4Sd1iQHMbGuWiCpuZ97MglMdgp5HAbmZ44Hs1Es23NyrOfL3WUMYK2tOFbS0azay3B8an9uYURi9tKzcGCt5v2v5zUPwZjFyqR7xpQf6+tEbB7FTa9xzGb+qLkp8k+1ODJpfmK/5Yt/92e5vHybzcvnXL39kri9gCFp7CKW0qHxoN2RvkrBI7UJcoGSVSC3It8l09lSDdeE80YLRXAWsMa8aMzHUsOIjD2EMfnnBURHYhjI/qWW9kvQYI7+Ho9vPDH6BKmTnUYWphsgR5yjWT2AtsWHEY0DvmksCmvGr6q4GJBhR7/Z4IHGOZwYrgqI5dktkUbNLF3ajhhHmjiYy6FkFwbw0uDciJOR1puAMoQx4QGP82n+LCFqEipaEDbjxdMck307Fck5E8Ui/Zb82YnWy0IFG39apyWPrwbfzA/Ugu1573C+pes6mrbBO8NTOXL6/ATXgjBNf/etU5aKgdvpqWnH7Jfb8N8Ut7lucxr3AYZTatEGcyaxRKu7W+sfe2bxIysfgHG8e90cnflCx99UltgDpgOSq67FIVlCmojvw8jjpuZeEbrnthU0kLIFJWdp780MWmOywb/m8vKcs4uXPH32Dm+/8w2+/o3/l713aZIlye77fsfdIzKzqu6jHzNoAMSA0ICUgUYtZOKCBtNClEwbmWmhzyB9Hn0ELfU9uJSWkgmAQBLEcDDTj/usZ2ZEuPvR4rh7RGRm1a3baECgTNFWfasyIzz8ed7nf77jL/7vv+T/+D//jI/XB/aHhHdwcdERuq5BLgtYDR/nSDGTCthl0owhZOmj46wK7HMmYrYVLkJ5RB5FAnTeIypkp2iyd1TAnVy0VQFqPcLVvC3+PQ1z+pHXWrZZE4mfov3ndKEqjKWMyfEmt0jIWYysuTX1kva/oivWz5208iMoVoy4POZEGgE2YbeuxapnrCaHxZ45funRU+urvqusXSltkjQTNTNl5W4/IXhQ4eVmg5ZQTFEMkKAIAmg05TcpFFh755wp0F6RoC3Zfnml7Hg43BlwQRCGoafve7rQsdkc6Ps9IQTzPAZH328Jocd7j/fSFLlSBavRDROwTRSRXKIDxCHSWWJngYq3kFRTFsVtIUmzblNzIKvFO9WyMWXtqlVfpLxxycJ+XEjciddksXGqkthqfvwdkvt/CNfn0JJK55zzdF2huSHQ95gRo4QwCkvFpa7XWkFoBsqlwar8f1ZClp+3RuGZq35OSKvtLhGl5YynQRZnfHnELQz3zCmXqpgt720veLKXx51r/XpSUaw3zsp1fd/KQ1C0wmUEjdb7CzplzvNZqOGnIsHOv7OcVO/9mXzFn+r6CQ/ZPHkzmVZt20ZFyDHy8c/+d97dfU+MExfugt5NpBhJQ0b7DUMwtPYQA+uUgdJjLREWC4W6zncLftW5VEiLwNK6HWa5q7ZXLJvkmEBzk4dcjGicyHFA80DWgZhHUjZUa1fKGUkf8NmjORPHTBYrkxJTZj8M7LodnXP0/Qaq8Rr4kPZ4TynT1THECYmKQ9mEnm5SnBvgzvPxwy37zZZN3+Fyop8GyBHJiZwgpYmcI3maiFMq6KlbNi4g9Dh1kCc0DRZY4gxhuCp7aAGswZlyWdYSKJk6YsjcLX3BlNkKhGpRMRnJtXZ1OdtV9swFqbmUSlNS030qWrfvDOgppoSIx/tA123Z7XYE3wFqSNlN3NYjA8DxZdruTya3PXGtDfWOY6X02e1Q9qZWnlg/Pb3+YSqLnzHgpxKiH7v/c+75KZd89ug8eke576l+PsFYPvH9j1EQnwxXesTKm6IWQd3hnRhEhmDgGxKZhj3jcGD/cMfHd7/izZu3fPf9W/78L/+aX/3N97x9f8279zfsD4mu6+l6E15DsPAA7zwxTia0eGNyOZV3OiGnI9TMk37Pc2E6xgIgR05nsImuC/27KY2nE1es7g6nSpbZ6ruar1wI2dJiWbu12NN69Hv9d4mf+dhafOpcLNf43HNPnZX2XVPwqrmu3nA6jyaszELMqr36/8pgj4Se49+bfFYttYvvq9dD1Wqs1b9XhYQfHdjx708cmqXQJoLVv8qzgCfGhLJmhikiCRwR7wKHKQEJ74Q+5eI9tPPixFNDcDKKBClFlAHxJR/Q4Y8TzhX6rivPJg6HPcMwFGCSPZvNjq7r6LqOfuPpu4EQevu7D2ZZdd7OVQsRWgjtGSvkrJZ/Sjk3qhERDy5RJYPsRlOMnUedR7SDWhzbeavjWOs1urCwBgswC6vL2qJNqK/jPbuWnyByZ76uSqrJAo8wyr9L4+HyPZyem3o9HkXzSPTBE889dVVFQtGWEwSQUl4pG/XMqq6V0dMwdNqoMtoM1/bpQtFbGCdUIOWFcH5mTM+J4rG2jVrWrSQ6/77yvi0uG2MRcB/hx8vUgRaa+6TCuOzaOnVhHv9RP2T9bxkWq13SSOV5XrdKTWFWWNY0v6JzytFZrG/7PICbNh/PuIrf99NKc/n3USCqyqBTCZMMjpdfbHAbGIaBtJ+4SxPJGXjL3cMD4cKxkc5q8D0mJB/xVgt5LJBqUqKFqMp6Lc9UZb3ZI1XrKwKF/9d61BlSNEPnOJHjxDjuiWkwug+ImKKI68CFueSPV/rdpQGkOVOMXMlL77w3RVOLQsjeZCjn8W5Dih1xnEhTZBwGiJHOe7oQuLrocXnCDRFJkTQN5BRNYdREjlPJX47EGMmoeWl9Z8oiHq+BODzgxGQ0UkEwjAmRaAbEXGq4LpBJRZm9eVXBa+KGa/PalKRymK2e9pK4zOtp3sqyL1oK0wQSQSLB7Qi+pwsb0zV1Kg+6GaCIorS2lKwiSC4FlMf27NLQcGZv1e+eIAUn1/J8zs/bWTrN13yypWYgbKMoe3UV+fYPEQ3170onr4L4/9euc3SzKR1nH+B4Xy/akif/tmY/oURkWcS/F6KWDaJ6mvbcXb/n/vaaDx/e8utf/zlvfnjL92/e8+/+6jd89+aa2/uBh30EX4rGeiMM3pXQPOfIzhlCpJvzIGscfYzTrCzqjMbYcjBaweCmojRG6M7NwSMGiaXltfVh/hIQnNNWoLn+yIIirHNFmD/nuOjAEdM6I5idDTM4M55PXY8pnGdDjo8nYHEt5SaFkv+0JnCrOxb3e2/F5avnoimCrD2DqlVhPOpCtYw7WSig5St4PC+qfv7EGVn1WrWEr2GKTzbPaTUugKHcTSkhUQk+sekzMRlBTyKICjErvVobzQxQtGotXj2KldtqI/pTWBgRvLNw3qyZmFJjoNEpKWVC19GFwDg5+j7SBfM+5mzeo+ADhADOoMVxvihTBc68WlravwKaUZdMCK8F0NXyGlEPaiGqFCAcNJSxOFMymxRvC9AAd7QK+ov5PsNs2w/rnbXMxVg9c/RHLZ/x9+Vl/9tep4akqrDN5wRopTM+16Da3uPWtc9yXgM4WDj084SS1fsbYTiis5/bzvI6e1Znr5PoHJa71A4bH1jrU+dfobNiuAxJPDeAZ8338T1naHrTs1eC79FOf8Ro274qhFpkrdTXZ+xn/p2Tk/Tjrk8p83M/ZoPBpxTGs2NkqdJiikNpJooQwpY8OaImRidE36EVqVSjyQOfGO+Sl86G6KLmFjpdPZDLQ1jU4Fl/YTn3CZIa/UymJOZkoFIxTaQUUQzd2n6CKYxiqQBS0sO77bYY9ZRpHJsxJ6WJcSjwaZpJ6YZYDHW+2xL6HSIW7ZVyImk2FO6cEY0Wqq2KR8lpJMWJnCJCJqZITtFCugHE4RzkqsCI1fIVMU+1czXUNlkJDwTxsdB91xSRun6VR9eZPqbZRtjq/DrWh3d9HmSefKr3TBHzjOYJ1UzwG7qwJfje+K0mRBxOOkqC/dHPUvSZZc3TI/34vj4nrz12/1JOPHpDuf/MV8d3nr1HT2+qfTjiiX8rZfG463ZwFp+e06JlzbrPrPEn6dQxkf4cb8pRQ+u/fwRD/RyL87x5jz5v7+dYZn68rcUjyxa1nqBHTOhVdDovLM+bpH61ErCPenBu6IJY0jVVmDU3f4oDcXzg5v33fPubv+btm+/4zd/8ij//iz/j5vaW/X7PQ0x0veNlgG4L94eJnCdyAud7gmzMahYM5t97sywNoyWAiwt0XcfhMC6YHkXgXvRc59mrse/zANaH9ZgxL5XMlbJ4vKhF+HUu4CSTZfZqLZW9JcHRZq2nSSbHDLIpjMLROToiJpUwUvsr57fEZ+z5c8z6SS/8YtMIYpbENvUnE1YYnv2+225a+ykbGICqtoLhs4Bz2k8tzfebfvaS5BlSfdZyP3HSnqkw2nEz8BYtibS1fiJiSfTTFMkZutAzRUWxvNdsv5k3vDBZ70BTbsh+GQtXAiXGTHDm2dMjx6KI2U9NwXKI9wZIAEBmmkZinDg44F7Zbg6Wz7jZENOWvuvYdD3a94QQLMlfS06m64x5FqlaAdFkgpmaIqlSk07qPPhScsOj2tPQVXMHrkKu+waXLmX8dj4cFfygnZclfWyW+9O1t18W5RtqyO7izGk1RJQ2m77/DCOMFAleynsevZZEWtcfrdp75JvZmj73Y1ZSWJ2hpYx/cg4X9OZYETinFoiTli8L5rFw3qGa8d4Vo4Kn7zuctzIs5wSls1ebO128eMlxZEGvT3tXw8rrvLRQ1+WAqBZ6M6y0eSnP5dJ+dZraz+l7vLeHl/fV99ZohrUwtXx36Y6uvzvq6PMuXQqdVWhb7FPHooZs7cz8bl08tz4TBqqSnCO5VMr5VORHMw64egabAP6jxKST6yT/a/Hn0wojLZz2mC+b97iOz8L4v72/Y7P36KAMQ2bY9kwKMjiuugsuQkZ85JBNbnlM+FyePY7uUlUzlK0MaYvvnBkEW/4vRa4oACvkXMJPR3LMDYU4awQHvuvxobdoDClYolLqFQah9x2hpDDEyXL2sx4Yx4n9w4N1JEemH/4dNw8DEw42F/z8F7/kxesvuLi6wvWeNA1MOZE0IsO90VCE7aYjEYl5YhwHVJSUI1lzSWEITXHNufIHpQsWZSI+lLBOIU4TOSZ8Z/UUXQavgsOVKKCyN7FznjUXvSKbN7bQBVkqjFIwA9Jci7LhVKz2jrR9k1WYpoFRDySNdN2WvrvAdx1DvCXnieA7QrdFSTQj96x3trU0bvI5nryzO8x2RaMX83mbv18qrevn7N6lXnT8/HzN95z3pRupKufIzwqicz+hZ3HZr3OdsyCfuwAAIABJREFUaMNaUdPjZ34CSvQTXZ/bk7OhOOc1qnYdfz1bU6RSwPoXYMih1ZKRpQqUELQjaSqW95pjp+XA+9PRqDAjjei8OEstRC0vT1QIsiXmqcRwZ8QnC58oD3oJ1oAI/eaCNO4ZD3uGwzW31z9w8+Et79/9wH/49/+W77//jpubG+7u7olT5uriNS9efM0hCjd3Bx4OE6NM9H4iSbJwJKV4RUxoDZ15J7IqXjybzhFVGYY9FTzrnCfeZKzZCyHF25WYMWUW+iBrRlbnZokKSFuZetg1KaqJnAvMtS9ho2pw9MZTBO+6psOlUix96QnJZYMsw10rwdOKpCYzeuWJ0aQJmRSAEfCLIsBwKgg/fq00rfa7rJhnUZCXbVcBv9A4rwmJjv/1vzPAnxe/sHtvfp0RtSTzbR/ofZlnzMOkWuc8W8mHbGuf1MAqmtAHLTy5C0JuYDOLHKQmaMxABbIYWhWuToZ7dFVwVzsFmYwgoaLwFgFtUiTa376DcXrgfh8hvyZnR8yR+8OICwOqxjwvrjZMMlpZBw8aJ1P+indvSoFMIB9pi14gug6la8KLaIac0DhZh40DA5kDjiFm9uPEfhzpQijIqSVXLQQ2mw27zQZhRHC8eHHFGCNkRZzHe9f2Y7cNDIeBpIp0BrtOjjbPukcllILRHS70piiWemGtQLVzaCjhqTjzvLYcKkDDvH8LIlRVkq0fEU0JjxbkvtmbLyLWfsosraZJTnw151Z7sRkannTbdA2AoVj9waBShIwnlj3izKDgKqy7rY0TxUsLlly8sqi1dQxuQacB9Z3B8KvgssNTASsEpNBpzQQyuZ5KsyWUHb9AlC4WfsN6DqQ8cRjuqARRs4IMbVQiG6b4AVXFuQDU+rm0FIRZqSmWeigevkUeYSNTVQjS0r6CphVPPb7mCNnm4zlaxZkXa85Noahr5ZzVei0EdHXUXaE/OdW1X7RaBcZjY3jJu61Cr9b/sjaaoksyuhBobWvOJT2WniwngrQQ/vJfeVnLM2rGFAN5ySkjAtsNdB68B+cVxdAfY/KMU+RqtyW4zmrgOk9SxauFLfqlgFrBk4+l5TpfJm1QTVN17Wej7UxzFzM2z+dn6M7O+RW/U5nLwdmbinxEIl7/wG++/xUPh2uQg4GW5J7gdozdyJQvCVEIeSQ7X/Jaax9nIDFXGYQqqEN8h2v7uwj5ueAkLMPoq8DtMNmp7lV1oAlSIqdEjqWW4jiQx4OdTtmagTVc4PrNnJufEg3B3QuTAr7HbRy7lx3TMDDFRCayfXHJZrul63sevvkDLu9uGW9vuHv/lh/+zV/wbtPRX13ys9/7fXa7VyaTJIxvAJA5TIlpPBDjREoT296RSUxx4PrdNTkbGrb3jt3ugr43JVJHJU+K047QeUYdERfMaKuRPB1KWRIhdLUckzO+njMOwYcOjakYerOFsppU0EpniGYzYroeydHSkjAgHXuqhJFWZVMTymC1hOOGaYr4jZD9ZOioQOgvrMYkE3NOe6Vv1q4ZsicKA7AUjoXBYSlTnGMu9bybYqtHN88K3RxSenx+6jWfL9Xjth55+UL5XeiO5bNaFivgFvFt4RMc8keHoX6K+Z56KX46JfFRr+PpjT+q7VMBuzI4VkT+mAEtWqGStCXtPWm2UlHhNBViySCgSePHI1rtg/lmY8LqCuOZY+6pkUdiL3WlY5mD4VNgQo8BkNjB6LrOCqfmTIyJ/fCOh7sb9vc3XH/4nrdvf8PNh3dcf3jHmx9+4LDf43C8uHyJOxwAy2Wacsa7gHdK8JngTKhzYkpEKPmJvoArGG22icmFgdZcm6ar5/W82oxKUxTrh9KSQ9YTrcezWhn2WSWrakWUfpsV21EExEU4KpXQOZtnqVrjapmWHT9a2eNBnbuaS2I1GJbm4aeUxU95HU/22up9C0tsoZqawbvA6/ya6SFC1/E//m9vAPifrzp+8fVL/tkvf49/9af/nJ9td+SUmMaJ/d09w/6BOB2I48D9cODmMHB3GPm4P/D+7sDN/cD1zcB+VL755vf5nZ9/wx/+4T/i+vaadx8+8O0P3/Pm4wfypGgWFE+cqtfRBOrqvcsqJl3l2eIwe5phiY4oK0q7OPtSaQBNYFLFoMNTZJgOJFWmFBnGgYd9x8YJWy+kbIqUcw51BVm3tBNzwoAYlHXWagEFata/4iHAJKnsFU02xrbmOaMk64cIOWVSysQoTNNECMGQZWO0PBdxINk8js6Rs9WparRotLkRlDyNVhx6GWIk2r6XZMRGxZsio8UKTYBkoVYqJrKivihAJbeCCnpQAAUWp7SZLlwJLTs5+6zO0syn1rv5Kf7kxONEitdWqaiWriivZijKBc5fF7Uc7YWiYvRcjV44NcTBSgNmI1wuwmb1lriG5qwoTmMBIxJMR1zzvdz2oqcq2+0OqcLCeUGiiMCzstYk+nXY4tF0PiLPFKG+KGvtoWq0WZLXcwabM9cx2arh5svP11b5+V9ZvFMKnzvZK82T14jm452BI6v+gq7qks8sBtS6MNOMtZdSVv9Wz6GtaxVaqwFA5uURsVICizlvPH5hNHHOkDUX3Zn3RPn12EtxsrCVvnBGdlmN45w0uE7HeP61prNVhjIPc5Gqar9E0JRaeQTVaIqeRkQjUxxJeYevofbr5lu/52koAnkxAMzRQuuf5vWSKqeUc+wckEt4ZyqGvIzmSIwT48FQWqUYYKTrka7HhRKVAc1T6QpwS86zkQZxuBCQZPyBZHQoxYTzme32JTl0bHY7uosN7l0gTiOkzP37j+QXSr/ZETZbGFLjWyklnBh98V3H/vDAfn/LcNgzDHs2m1clysvkwmmymqzKDDLjgmtyFxgfzIUXEidcDFZb0fnG2Zo3z0kp71TOiNaTY3x4UXWw0O0jIqTzWWj6vual/leerkqWW6xrMZYc0bj5uM3838kMlFZp+bEIVtewNXVGDpPzm7GNaf3Mgra25z7nPJX7q8FU2v/Kz9Kb+LQ8+NnK4nPD2p70aHxC0/yHmlvyrBj9zyKMT1+2lX78XDgR0olrs4ZlapXPUJSkE056BCu6naJfoDT2CBbDPg177j9+x8cPb7m5/sAP3/2GN9//Dfd3Nzzc3zHsJ7z3bLst/WYHXDNlZUqAxoKYaoqh96m8X+i6itomeLdgUMWCm4vnaJnDtBQeTg/jkpjYGB/DJjhe10qcTz3J68Nc2zZLugNPC49Y91PnvbFSSsp6qC6UgPpsaRxO8rieuo7Daer16Zh6Pfv5Y1b2ZU6PFqE4q5oC4UB1ou+2c5t54he/+Jp/+sd/yB/9wT/h9vAd+WAl653b0/mRDoGw42p7wZfbkWkcOBz2fPfiwIe7B972t9wfMt980fOz1x0/v1B4GJncyK2b2LvEGDwpexKuACFJE6ZWM5+L8SGlIlzVelB2z/FsVcVsKRdKlT/V9E5f1i2rsh8fUOeIMTKMBx4Onm0Qdp0nxh2h84aM6iBKAbvRWpsLqtK1vFIqOWUF9bVCqAPgPJmAZvMKVkOLqBYjT5xLj3jBu0jwnhgj0wL4YD/uefHiBX1nUPMp2pq64MhjMjRFgFgU2uIx1LK/pbF2LUKBkCWh6hH1iBqanoqnWjiVYIYt59rYUFdGWErTLNuUWVF8itrOrLb+tfbonJ6JorSVXEslgRRQhcJXTUCyqIvqz8viUE2ld1VZLEJPUxZ9eb9Aid6oSqjUcYsvY7J+hjxQfYG11IzKMt6jeOZlnfcpbbja7jzeyyb8LLwjdZbKhl6G8jchWfRURit5lCuSuJjjR3nmZ7LJWbhb9k05DS9tt7W/G6rl8vVn6ePT99T7jkOY1wp33aVinoujcLl677qN0uWFEnhOAa0eWwvjqwBFRcGskRUlrNQ5wYcFT1nNz+nen5VhqcTu5DpvRD23kLPiC58SQR+f5yffI/Ueh/c93vfENBWDHWTJxDSV+XeL9o75+YKyyOz5r0BmFkXi5siIVV/KvZohWeQH6sp65IIKWlDhp5FxOCCqZhT3Ht/1uK7HhVBoiBn6KlZDRs3TVpUhoYR9ejMYFMTVqAMo7LYev7sg7Db0L3b4bcfh+prh7o7h9h4Qsia2G0cax5bukXNms+kJzuM83D88cHtzyzjsCcFZxFe3MeOmwBRjMRLrnG9Z939jikUWSgncRBoDuQPxauBqFW250Zbl80XpRswQt1Lu13O/NmzJ6l+tjoW6vmX9pXkHdUEn67470huXBpZTuMP5oTO0o0WJPUNveE4E2ONy2dMnrBn06zPMvy/py6d0jb8TgJtjK9z/f/1U12JDiXJCQJd3ZiVqbKRQpLjFZSHwNK8KQGaYBoQOJz27/oWd25yYDndcX3/Pw/01d7cf+M1f/1+8efMD19cf+fDuDRojXejo+w0XL18yjYlpStx+vKPb9mi0fAkUghc2waMbE35TAVXY9NtSLmCmN6kwQcUIclIlKc363kAyTxj/keKFKTOfsFHM9z+6f9ctNCtuZeIiTSDPhVhJslIF5rI14b16CBoSoVY9UmonZgL5IwwQz1EUHxvbc4jWMW2sSlYQzzBFvGQuXvQMNfke+EffvOC//Vf/Bf/sj/6YL7qvGYc3phx0jlevNvgvXqCuR/2OaVLi/pZ0uCPef+B13PEwXHL3sxdMGnj56jW7ix3Innu5Z+on9NWWV9vAtx8PfHyIttdCjVcWSMyKO44WYvjMy4nQuVBFNFTr/qyiewlXdQ518OH+mt3Fjowy5IHb+0SQjBfhxcWWq65YvJ2FMUVGC1VKI1mLcnUELhKnbAJJEeiqdxJc8QQ6cvIkIuhkQy8gBWkqzxQwgqocW06Kp+8CXec4HA48HB7Y7Xb0fY93HVu3IdCV/BKrBbnZ9GXXKFmj5ZOUMDZxnuRD8cQJ2QPZ4STgXI/mDYjl5+A2BdTBW7Fpb4irKmIKsHpoytZ8Puu5MWdmXUdXfhInVzUYPXEWpJ1LioeXInwXhTsNzdobOse270jqeIggBMvlFgv+d0qBgo8oE2QLO44bxYmzHB48acrEhwM5RjRFvDME3eAEt+vMoFfG5sRb6RJXPLKYQh3VMdvrOSJT82fViWbemRLuVXWcpkCUsMqcF89XzavN1Pz5E0T1JA/sGXRoqaSe88Q1QfApGieLeViO4jnG3rN9Ob2Oyyo1JRCLsHiu+NPmxrvGH1Z0aWGkRGbFcvb4qRlalJKDWBXWWQhdjWNhGKj3mTETThfyqUGU/OXzo3riuc+7TsXw5XdC11+w3V4S04FxuicDvff0oafrPF3v8cGRY7P2HBkb6mjyKoRaXG5ragpjFTjMMAQLQ0ARxKcxIli4Zu+ElJThcGAaD0zDAdGMDx2ht/BT8Z3RvBLiaW3PSQ+q4NWVskbFQBYcjt74DArRSlukmBj8Dckp4o33bV9/yWZ3iR4O7K8/kp0iPpOme2K0/FUfPLt+Q86Zh8Mdt7e33N/fsd1sePnqFa9evSL0F2280zSZx7aEgIaumw2tWoDElguWM3mKjDrgsRBoH4Su0HMj3RZy2yw9ZoGjxkZXGc5VhO6CJF4vUwxpP1lt/kzGrSjjcy7vsnbmLHzVtmRVCqXu8U9GYS3o3PG/P+V50HZWn+wNT57dahD9RI7i8fWksvicCfqc+/++r88Rmo8Z0/MsaPNz7f7PEO6fZXmTyogoRtynlcS5X7Q6qJXxuooseoTXrSqQezahw4tFZQ/7G8bhnnF4YH//ju+++yvev/uBt2+/4+3335NiJKfEtu9w2w01GfNhOJCTbdbQdZbgrUbqvMAm+AK17JmmxBQTqShK5uk0qUYLoqmFnlKIZWWcQs0kWzLD6hVYzq+FrVYCcH62V1beJ+b01Oo+o6ua0c+E8JqfOHsXMzmXXEXRJrRR6mNprl6isn3yYi+d6ePJWtd/P3H/p87np545F4Zan2urolpWxoPMda3+qz/9U/7x7/0Bl/2G+5sP8KBI6vDq6LcXhM0OQkd0gWnYoyGhG0W2ma+y53Wy8hSTSgl/FB72A31w7LZbpuR5GO/xciC4RJoAMXRdy9HSkiBv3i/xvp2Jc16mk1AStTyfKiQuPQB1X9jfpiQMMXEZerwIm5iJw8BhGngYAw9x5EK2Vp7QCeJ72+tOiSVvzKzMx0m5YmisBd5b/VyaxTlfxuGbACKlxEZsNS3FPKq+WL7FkTL4rEYsvIVS3949sN8P9Juebb9lOBws37HrSh1VK+vhgymr4kyBNCVm9gLSwHdiUQAjOZc8RwlYvcaI8531P/uSH2M5jUhAy1iys0LOuaxjylbQWnJsdb3aeSuvV9G5L7rex+dDUKugrbMcLNCQmqkeRAv/OuwnnHNcBlPVyECyOYjY+7NXkigqlofUpy0pPTDpPTnvcWFic+Hpu46r3RXbzQWd6/Gu5+agxMmMCHHcmwIrGcGs+dZZQXMVqZdj1FnSLjS1eWnzLGyJqqEN53lfVw+SdzSPVwVkqOxtvefn744J6DkvYwvj5nn0bb7nE3RQZgpfwxWPWli9z/R+WT37VH9q6O/5vunp34/MxfG/Qo0WeLTxVfdzyqiX9pUJfdJytmtoYowRuv5MW+d4ILPh4FnXLHCf9fw80s65sLy5D2ujwjJMVqqmXF5ovN0wHEK3IXQ7oAMKyqV3s1E8Wwh+k39KB5f83BDRZ17gpOYGU7z+ZUyFea9KnZimbiU9HEiROabhwDjsmaYRNLPpe1y3QcLWIomcpee4Ff8RUirnUwVfDERZU5ldE+ycdxA8WhBOEWGSycrdZ0cXAXVk15E2Sn5xBePBjId3B3zfFxTviXQwx0HKmW7T8/MX39B1Zuw7jCOM980IXpUVEePDKZlhqdbwNHmoDKWJYhk0QYyl/x6X/dFZKiaQQmBqpErNt66Bq8de/bP0oOyNXEy7s9IvxUBqnsu6V1uKFpW+LfMIF3vzyNBy8j3n9/U5k8es9J2nP/WzYzlkjoB4jnxX86qlGUKWwHKncs/Th/9pNNRPCI+fK5AuD/+PvZ7DVJbve56n5PxCze97yr511EYTJp++njsOWf62tIbwid8rcStMy+iZYtZoEPWAt4OPWAx9UrKOxDRyf/Oeu9t33N9/5PrD93z//V/z8cM7Pn78wMP9YLk0TgilyK+WMJiYEpqLt0Nm75mA3VsZkji6EIwYpLzevELJRZzD+vTkfHx6TdoBfsr8feb+x/b40g6wZPSN05ZuVetVE2Cz5TXVc67FAtcECrV1MkI597QysWoVOyuQlD586lx+asyfnp/190slqf5eQRkQIWdPzrNn8U/++I+52lxBzEzjLSkq3nVI2OI2HdKFgvdhSgC1WG4IuORxDlzo6LEArJQS3ilXF1t82NJtlCF5boeRwzQxTbFYOC1sR30JOV1D4zbGtz6/5+dPqxexCsel9IC1mfHOQpFM7vME3xtATJd4OByYYmScBsY0FjAEb8n7rse7gPqE98E8eI9FDiz29FxXcg6fdM7+9t4hOlFB5iyElcJIq+CUzYIrMMVU9plnGCdGRsZpIm0Sg/eEAm7QdVYH1RMIXcAHExJ8CIhbhPpqDcajlD5RRDJILGAqyYwJTlEimk0p1KIgGhhOB9qBM7AYpeSZljwgcjQhZGlW1lkIqGdJOT4354TiGamuKkyNqdYxNUAMweUSmZFrfmLZ/2oegUy2kFFJZBdRDADG54zIgHqLW9u+uGJ3eclud8nl5Zdsupd46YEOvbtn2j8wHR7Y38M0PhR6kvA+U0EwZMkaZupB05rb1q7+CS30hkKj6rxRNTKgANmwCIlfKAWzbVTKfFah53TLPi4TfJomL/nwWTFsQZMfbwSbhsXrlmu9FAE/JTM85iU9F5FyYnA6+uxcu8+5GolqLLAw+5LLVftSS6Gsnl30db6k0Rs9guE+FiXXBsPjls88VD/6kfzpXBs1D70CXIXQ0fdbNpsdOY14ZwqYGWIzWrARZimgCUeLri/p7REwGjMPXoX9Lc4VBdVTsKL2MWbG4VBCY2dUUbxHfalxWwx885wU47aaLLU+07IWeaREiXhPzbuddDKcegVX8CqyOLLvcNsL6/80IeNksReCGR3LEJ1z9L2hZ4sImpWU1BDr85yy4UMo9Xp9WxfjPb6VXpLSRyjbsqwFORWD55yuU2nO4yVM6yromb077+elwpaL91FZ7tmZVzYFUTg5t0/KlUuFUUoTqqu1eY5Rfpafjke5/G0htxY53V6zln1PHV1HrS47XKJ9aHKDO9vOuesnDUM9pwk/tyPH9527/zlWxed+DvN0r8nmsU7yHG50vm+PE9ZPX7ahP3UTTXCd3fjUHQwFOMNwPMo2KwTCiRXKds7QJXfS8fHjGx4ertk/fODm5jvevfkt79/9wLe//TW3Nx+LZQm2m9dWw0YzMVUEq3LmRSwEIGco9RcVxTlh03ekhEGWx8ymL8iHTkt4nLTNXpWsnJSYtAFKzAafs6LDiXLfcloe2wZPrO2yyPtSKF8SpfqmRrAqET+2gBVwkpmJz4Ty84IBaqPzmJ6nCp9pYjX2863owvLeBESW07acjwnnHSKBlAPTdNva+U//+Jfofs/DcEeON0TJuO0lbnsJ20um8YE83hP3N7C/xk0W6hKnRJwOtme7gARfGHOmD46LL78gu55JO/qLG8YUGaeRwzAxTObBcq6DEEqOR5xHK9IQy2bDwjzGOu76fUrRzpWnhY/6Img5ETZB6b3QO8cmXLAJO7rg8Fvl/uaaGCeGCcY0kDSSVJAkeLfF+YAn03UdMSXkDOesSkENVcvUfEtBM7iS2CYihhib7dyrOFSnxXov6bRZ3qfR5vri4oIYMylOqA6Mw2ihlU44HPZcXlzQB1NufbI841C9jsG8mpa/G0pInGBxqCWMioySUSllOWSC3FlIsjhUNuYZLfXC8BtEA2QDxSGrAfnECGlE02igEUvlsRjFpDJzWjbh0T5ffFbpRs0dIuF9Ty0SnWL16FqYbXA1jEoZY7Gc51jANUZEJyDhsb1qOagJ7w9c7K7oL1+we/01r775x2xe/gy/+wI2X0PekrIjRvhy/1vGu48Mt9eIOO5uEjENpGRFr4M34BzvlmHrVQCWIswUwa1oyKrJgnUL78hnvNhrxUfn7xbK4imtWJ+cY7a7/vvTDPFYuZg9dceGsVmwavctBLpmwxOq1HrSbWV+ZuGLbg+3NxzximWY5yrapKR7VOXq3FiO5ZyUawzQ4/PR7uV4PdpdbY7m/MJ1BIhN4/x38/LWw1KVpipDLNZzBWBylv0e85NFv55xfSq6Q5jnr3pPVZW+3yByhTIxHO4aKF7KJZJBA8770md3sh5z96ohoADU5GwIpar4hRI9GxgLKnKRi0IIqGamcWIcBoZhsPzD4On63nKtxbyS3nnLPVwgZuaqSDV6ZOk3J8pRmVJxHuelIPtCyAOeDl8A9SaF7B3qO7pNT9ftcCnipom3t2/p+o6+6+xVLXffMwwD0xitbm8IUJCOTeF1hNC19IW6NtWzmArojvPzZBUVv9BIQWMkOwuhL4tgBkDNs/5+JJvUCK0mGz5hdFGs9EcqERTOSdv7sjKGmJI/r6u0c/Ck0Wul59R2y1eL++wkzbnAp31eCnFLmrrY9+3fWdhrR/WR8R+fN2kKo+VrtvIzZb1PxvfI9XeSs/gfw/Uj9Ld/wNfpBqlIVK4Ib84Z5Hso4XeCktJIGiKHcc93737Dhw8/cHP9lvfvv+Pbb3/F3c2tFX2NgsgGlx05C9FDxjyThjRXEMlyYorRQhPKwfBac6QEXyw61frkveBrOIJ4nKueRPOExJSJ2cJQcyrnqRCW9VWFmiVjPC+0fPJaMVb7+VT9GVuBGZ1wqYCsrbwzg14dzEYv1hau5xpY/j6uU+vb6bXteqZk4TLiOqZpat+FHMlRre6X7nn98hWbi0u67QVZhLv7e+L9R/LdW/o8ErCCMEmxMGcMQCcNIzlNpDgRxwG3SbiwYRO2vHAjX7/cMk4vuN8f2A9jy8t1wdPRod6V8JvTgLJzwmD7oRDpkruSc0ZjxgdP7z0X2y2vLz2bTuiCY7O5YusCAaELGz4KpDTxMCRu7++5uduQNht2IbDdGhCQd4L6nsbEzlEpaeYJKgPKOSEeC3WWkoYv4EJA1VvNQ/HF4ppJOa4sukqk2nxcERJFsALLamuQUuLh4ZqHhy3bTc9uu23W8lqCw4cN3ge87+i6LeKD5SkWVOWitZS5LiVmnIUn4aQAOY2oC0VZ3ECeQGqx6mBFpVMBjYj3aBzQNJLjg0HUJzWBZFknzy2Z+BIMxpTKxeRaSZLiFUStvqs5M0u4ppjAId5yGdFEjgPIAHIAN+HcxKbr2HQ7LjcveHHxO/Rhh+t7pldKv/s5bvMVsvs5rv8G86jCwIBs9haaS4T8gj4JHg/TBDly2N8yDvemMDOZ19UFG4eKeYr9bMgyg2HJAwWkouiKxZgsT3TNvYaZXlUh4zHj3Hx2ytZcSk1nhJ+/3bWmjfWd1ViXlwpXM+6Bc0JWFuUCaAJkXhgUVkFmi1+rYQllkR+7vpohzTQaY1MoFjE/85QlH3DFeHjyzjOvaErmPMDyPiVFM6rW+7x4gp9Dxs919knv3iPWx8d2wafwEx5t8BnXcauzd7GGoaZG6zbbnRVhTxEvSt87nLcIKMl1/8+8d6nsm6196Wk5VtCKl4qwMI7m2VinyjQNTONAjNFCgJ3xHRcC+M7omw+lVJCawT2vx9UijjIkLWe3jr2QbFHBkOoVLeiiTuAL5xlQkhNGL3Sd5Zx7PJoiUWESJXXw8suvSoSGEuNoQIjJjGQ1rNQ5U2aDk4ZSD8YLcpzIcSKE3iLLUKY4GgCPszQC78XkQ52jE7SkRmhKRmNNM6fWyZmjrXIzYhlGQG7RZjb3evJTFdWUE1OejM+JFkA0be0E8cVLWkLtFzJbiyRRXa3L8f77/EuK3+nxc/KYo61+99i7z3+zcK3lAAAgAElEQVS32OMISInWEUEo9Y+d5b3P7zwq7Hx0/Z0qi88VtH/K9332dc4EetxOJc5n2j9552KT/dhwi0f7tn4RjxJoAdSsCN6FoijaodQ8knIixZH7u4/s9/c83N/w9tt/z/t3b7i7/cjNzXtubz4SJxO+nFguYyUEKU2zBVbsELbi6KVbQs3Rm8M/KtqXPVtg6eu3TtpfqlaHJ7UwCK1ybRNyZzFH5jZYrofM3xVJ//Ewhzrds0Vo9Xdb07kPs6V7XitD1pdWMqPtgaLkqpsJp4X+Wm6EFJSxpYVrGe7UkCbPKJiUHj/J+5+wwq0bPFWWzj1bxaoT5QrMO6QQ00i36QFTGPf7G2QcIe4R9VztrswymSbiOMKwhxxx3Ya+v0S6nq3r2Kij680rOI4j97d3pGkgx8h2M9J1PRnPlBWNB4IkNsGxDYEuJKYiJDSLuiulGBpzenzejibDQGQkkbWGONme6ILnctvz+mrDrjdlUXzPxgtd8ITNBTe7HQ+jEnPk9n7P7d0ByY5u15E1ttxJ5zxeA6vQwHIZHLtNdLVut+8Kg69nwb4yxcB5IRSPmSHUmdKeSz1GUYPpd17QHC1EVjNOLPRINaLZfoZxJCUhDkIInSHl9T2aL+j7Hdl3ZN9BGg3kxgWcuyhK26zM5iYYl32XZFaENYF6NCuSk+UtugAEC+k27RXiAU2mLGoezaKUQXOxWlfPZipahWDKk7hFOHITIe07DI3ZuUCuHkOE4B0+CJBRjaQ0kXPEaeSCkW7XE3YvCbsNm8srwsULQn9F379i032Jd+Yx9RcjLlwifof6HfiEYBb1kCMy2rpLTqSHfTkzmU4CG99Z7cUQiKWeq+Zs6yW1lIoWHI61ttMopMzCFcw0GWr1kjIXjb0I51j4yjPWCOuanjzNvpZ0+pmXLIRpTlm1iBmUKg+Z2z//LlMOFl2qE7X4fv6u0ENXBHZmIc3+ZWnDaUNcznXjj63vC4F0cZ7rW1cGxsU3a8+CLNot0R8LI9fZ4N2jcVUW+dg99T3rydFZ1ll/c/LXc69lmOk893UEa0NBM7gW8KkacpsLyrWUNVG1HGfN0Oq2wmLd5pmd94MWvrw0FgoUZO05ymamtarKOI6M42i82jlCCJYC4TxJpITqGwq2klt9ToqcXOUlUsm5q+krhd8K4LKavUK1eSqrWXFISgqe7AO+7/GdYQK4bCWZFG0ynCRTVpNGzFBv/CXHqdUxFhGLqKgv9zNdMN4nBmjtTJbJpT+Wj1nzOg3RlGqE0+JFTXk2EOZc0MlLwzrfn3NuNKrm5M57fWmMN2dFKsqikm2Pinn6U91Pqo1GzPvJlXUsPw2hyga73IufRa/anp77/biy+agppl1tv+rpgV3RkrYvZTZ0lZ+2z2chYtnZJ9//LGXxx4R4nrv3ucrT/xselWOPzmNhpc+xDPxUvbdlP0qqXTHmx/tiFjSz8ruywVIemcYHpmnPcLjj7ZvfcH39gZub9/zw27/m+uNHDg8PHPYHQ/IUs0CoOEttEuzApxoPXsBMNLXDbF59S6i1+oPz3NQkbYCKLrbkr9ruY60o5vlwtyOlp2xwvTRLSHPmg7CwTNX2TsJSOL8HWxhPbWMthc2Mp9QNOm4jL4ib9c03IeFI75wtoO1gnyp38xhmJnY8jjqWTyuMTyuKa+a6nofaZy0GCgsDGen6rn1/e/uOkCYCytb3bDaX5ByJ40i8v4U0GhhN/5L+4gV+u8N1Wy59oN94q124P6DhPWkY0DjiU8Q5GKdEPIxm2dREEGXjLSc2JyHmJYR93Q+nNLcR4scuZ+Or5g/NihdH33kudxteXe7Y9Y4+CEk6OidsOs/FbsvN1RXxLjIdEvf7A3d3B3rpueo9OZeixCXvQzXMYdyrtcrM4ZSndMbCBefsHF0ksgfni7IYyerMeizVcGHgU+LE1mQagEzfuVKoeSTnyG4XUAw4Q8c9wXeErifGHvIlKe4Ivif4nhSG4mXsCX0RUJwBDkkVjIBZ+q4ScLIf9SZk5AQuoC4ihJKiWGhQOrQwVE1TyYkxZREJZZGLgucWuXUrejCfM4q13sL0pVj2DWEyOIf3RcBKE6oHIBGCctULu9cv2b76is3LL9l+8Q1y+SV0lxAugR01h9m7g9E4FNURlz82gT1EhTiZi3eKjA/3SByQOOJUCXg6F0guzEBLha66Mt62p9VeKcU4JyhIVaTyQtCaPdhmvKoCkwlsM32chZlmfW80r1ruz19LWvIYHVrTrkcaOrp3qXg1+tS+mEPPoHV9delq352n/Ss6uFRgdObMa2Hy+B2Pj3nZj9X4F3JjezaX9hvtmgXCmufWlMVyUzVUtigCZpqx5k2zAXPJx9YU5lgJP/n6R19Py3uV36xDd13xdjknpJLq0jyFOTeMgGogkyxzTvWinVkRP+3TEgikGZ44VhmkvCMxTSMxRpyTQhs7K4khpkg5X8G7rBHF+oqabFDfZ/TNlKTs5liI6sCVuq6lX1rkhyFj4f+hw4fOlNNUDPlkowfOEYJADq34T0v/KUY7771FoCFmLCykURto1oKGOjH450ZOS59oKlKT1ygVZiVbLnerp1s8nHPOtymNdX5mWrWUPWif51p2SmfPYn1v9RpW7t+OB0vZb15r6v4otKMaD+pIjs/PWWN6oxcs2jh//RhFdPnG2WhxLKPNY2yKYjN80OTKtQPiJ1AW/2O5HhOWH7vvb0Hfnu7HT9lWOZQtDAZoNSOefNDjQ1+sQ5FpGri7fc/tx++5u3vP9fUbfvWrv+Ttm2+5vblm3E/0YUvwHV33ArQwIRT1SpQDMU9MqSA5VoaWQasVLCtkq9PoKK5950iaSctwCtFWHs6ISsn9ywVULJmimLISizVpiYZu1dceF07W8ydPLshjR/RE0ctn4uUXuqIIc2HxfB7AX7OSimItGFE+KhNGFe1Wr5fKyB8hTsyAOU8x3qe/fx6xMs+wnNyZszLGaCGEHsJGyeOMhvqr//Bv2PmB11df8Op3/oT7/pLh7prx/h72d1xdvaC/eEF3+SUxXCLS4cTTdZ6D3oHA9kXg5y9/j7i/Jw0PxHurBTXs9wyHWx4SjGMkTxNOhF3foxa9x/4wIZgA4Wux6oVQtr7mL2bl3mC8xdJsrbxBEHbbnqvdjleXl7y42LL1mc4p9AGPcHmx4cuvvmTMe+L3hui6fxi47ycuO3CvNiij1WmkCikWPqZ67NKxM1GLNlfkueWSWmiUjSGX8E/npIQQWRg5mpk0k4qlNzjLZctxIqXI7fV7lMjVix37wy0xDngH/8kv/8R4+7RnvNszTXvidMewz9x9dEBH8D19f8HV1Ss2/QVdv6O7sHwX5z2h6wkVMr7Cv+PmQtdMoKboWnZWRU31CJZ3pGZNQtNAThM5TWgFYciAhoUSWOalhQ9a6HxFhTPhozJT60uaUsX9KaF8gmrk9vaalAaci3z15RU//51v2H3xDeGrf0q3+wrXv4buBepeEosySN6DfoB8D2nCHzakPJDzQNI96IBowmmmS86AY5NAFCMgcUSnCT3s0XFEYsKrI4gj1xrRzTt4ZAVvc2pmvQr4ZFb4WIBCaEqhLzlUTUBu+3GG9F+ekaZECkV642lau6BdPyXvrcpiDevUmBsomlJrEQrLmozVS2Hr/mmFbn7XIv9JWM0TC94gWLrbMbmtzxzLKi2EVqSFjrZ7tPDLo/nVds/8Uz0xcwmnI1lhITSuLp3n4icVYD7jOseb2m4uHqHad+c8ISjbbY9LgmqHY0OcHhj20ULTtYTbO+O1qaAzP2YQXn6ei1JmQDmlJrX9r52JWs7ncBgYxwNZY8NfwJWKs84jLqDeWwZzzogmq7VY2otTIo3T4v2Luo5qmJ5OKd635eR48MWL5xz68pIOR1Cr+ZvGiUQmu4zswGexqPWkTL6jdzXHcg9YSbOL7ZY0TaTJ5m6z6YkSDVSueG+l8/gydzErWnAABBZexqKuaS7yYUbUUqHwxZngg6G6Kg2h2ZTnEvXD0rsINWRyHRkxp/mkFEso6jQj2FajAnBck5VK25pRkYWiuJzoWdo03Ho5buYRYxSfOEtrRe341kcNaywjBuaXPC7fufacOShO32Vd+Fsoi48e3qcEzhMaVEMp5g5Wj8xP5kE8p/w9QgiOfz/bh+NF0uU/wjrhv1jGz+yWebz2m6tNq1XJUsUsT0Am4fDgFFGzLJnu70B8QccStCWoFsYlpfxCAsERXEfveyCS4w331zfc3d5wd3fN+3ff88N3v+Xj9Qc+fnjP/e0tKUUkb+i9t1BThZysTl0taSqpKCTqCLlnXNSpUWqR6GJbbsAVgtYwDkrdMXGoWKsuQ+c9qYSIpJSJWKL/GBOHaSKWXIxl+zPNcEWIq57HOv9uYTmp6yBNZKp3rZj1atHkZP0TWvKpbNFmC1S5f2kcUq1I9ZbXVBl3KVUwv9Ng8TVaMfKu1CtyruRjVKZkm6QpAGurURFUXOXwWoSD4kkod2kptWDd1zY3riRzaa4lIaoAVfbYYnaWZya3sS+Ou5TEfbUwxxgjo5tzFn/919/yy9//PTZffc3FV18RyEhw+N0FbHvUOyYHKT0Uj2QmSSAnb3lvhWEKioaA6g5N4HzH1gdeO+Wrd55UPIz9yx0P+4GH4cD0cMDHTMQsvGMIhKI4Viu95kKTqiVQap6djTCLMvmJKzZAIGd4YGJ0nuQdITh2IXB1tWW37XBMrfZoHxxfvX7Fw8M9w/097x8OTPHAPj5wlx7Y6YXloUBBipvMaHtEnZMlo1kammLlGLJi4eadleGQGu4zESi1DhO4zW0JgeqJMdBfKEk99/vM5rJnerhhvPtA2kz85//1v+BnX/0BL+UL3lz/L6Sr38V/8Sf87u//T/SH98hwT3rYk9I1w/iew+EtHz/8FXcfv2Pc3xMP79gf3jM8OJx09Jsv2F19g9/skE1HJ6/pw5YuBPo+8XDIEBz9tkNjB61ockaoiKcC4s3SXEJR03hrimK0vEFNJZwpC0oojNFh0RFaltOjBFQ8cy6klLObLKSz5HkHl8jjQM4R5MCL13Bx9Q0XV7/Dqy//mM1Lj99eIP2XSLexszLdk+MtmiLkCUkHZLhGpweYBnSvRTmMSB5RHZEccTmhMaLTWAB8Et3+LZpHg/7XC6Tbgc9osNxwl8CT6d3EKAbDXw9l8xJRzgxSFOaEI+HIOIpQXUJqx/HAFK3OpwRn0R3ZLPb1jFe5SKoCWghABUpQqfSi3VipFE2oaYpsnmlYpTQLQ1wh5Kss0/K0xaQUepu18NLy48QhanwjLWjmKpzW2XxI9dAB+YwSVXmGFjHRYaBWq3HW/mpNp1eTPX3lPfafyhrYTJzlvapYRI5rb0ytydXcFKdU1gW/VQhhY/lhBTyqhuH5YIa7UnWufF/WIIPrKq9cGAPKuiDLyapjbASTpax37DWWlXxVZnclF5+X+x4TjpuoW/aDFn6szkHo8UjJYZ+4uviCTvqiAG1xrjO5K442JpnLDdkwXNtRs1FF6AvKaEojne+LiuDAd8RSz9IFZX9/w/7hhmka6boNob/Ehy2+25LUDHviIEgkeDXMh4jl8xctI5KKGCnNcIM41HmiF/wwmcGvE+7iiIiV1NjQETYXTM6RHPQ+olM0Oc31xDiHSPebjomJSCQT2dCZgpaVXjqTPUs+IQguFKAviVhVWGp1tLIHikxR928zqhZ+GWd5QlRAPZXBak6oFOOeBJOFXQkjLWA69Yxo4W9KJuYDznlSLtEtWUt+6MQ4jSUCzuTI/TThCnK3Om81AIqs5kXxLlDPqdQDYQSonfh5X1Y5IJeZoCizlXIoFZBuScOkuFyl3quzPmRRe2L7T3Xx3k9fWvtEXZBCIaRJ7OU7R01FU8HmBzMciy85i251MJ9879PK4md+fkQTji6dO/O8OTltXo7C6Y5dqM+0Dj7rXYvfdfHJSZ5XMx8s4onPXjNze5wdVaHFQDikbN6mfbBA38wlJjwJEkJ1akGOjMNEmvaMh2s+vH/D+/dvub5+zw8/fMv7t294eLhn/7AnR1NgRFwhFlXhKKyovb8oZVjfUgnpng/I8oDJQomqgkB1eRuIQipEsulYxWqYVIk5MyWLPc8t/FRqFFcTIKriZMrP/Oq6Lj/ew7a+px7kBaVc37faKMu9aftVCpraqnurcWcjP6v32ATrqt2ZWZ7ra7N8NQ9A3Y9nnlkoty2ElaO9rVLyJeZ3rJ6fte75EWapTbUk6JdrGiN9f8lue0noO3QcIJeQv7ApAo2NXSrACNlCKUt/RCmoax2qguvqWBPollcvLnl46Lk77EFgiJFxjKQp4rWoHiKQrcCvFzGCWRlF3e8LAa9qlColD6J+XpTwlCGV+Zei9G+3G3wWur43uHTNXF3suNxt2W06vIOcI1McOEwHYtqCWKmZCmyz9FosJ74hwokW0a9aoKUgHM8gGM26y2j3qc2ld+Bcj1NlE6YCbJIIIfHNH/0hv/iTf8nXP/8l27xhe/Nr9OoL3Ot/wotX/xz/8QdkeEBjAu6Z4jXj8I6LL37O3cffMNx/ZLj/yHR/Ty5e3ni45e7O4cYLumjCTe4y9JtSXkdx2aHZl31WlAip9bBsH8/hk+XfXMNPkylnKbW9p3XvSAAxYVlEkCBYnUQTDF0R2qlz5QwswomSR1OsfAf9dsvLL7/k4tXvsLv6OdurL/C7LeqDKRmaDIwnJ/SwR8YDxBE3HeBwb0pgHJHhYMiDaYI0mjKZJns2TQbQUVARJd0YmFOGiS2J12TdoqFDpKfWkUs5FzqU235d0g3aOS77VxXLk5xpBarNKwXaLPMrAxslwLkVrl5StYUBcUVHKpmQFd1Z0v/lv7p4psl31RjcFMnKL+vvy9aqclJETF3W1js5TkUYPerI0TXT1lndalxf50e1zHUDVwOagnWu7cpTRWjleM70cd2X9VdWYm+eWFncVedcjwBoVm9qc7tgrXq0AOX+wnVPWmr9Wchnx0899zrHm4+VzVk4FlywOpKioD7ShdBkrOpFsYbzqt0WLVLHtGi/yWOrzbh4dwklzSjTeGCKE0kzm9Aj3sC5cq0V6xQVQ2513oR8za54wSsdy/jSl6wz96nv66QoO8nkBS8ewbCt0mFC+h7fB1zKuG5jHjvX4XBM48Q0jUxjxBVYQjsZrsiVHnFKBdJRVcSbzCKF5soRXntTbhp/11murbJIVR6r3Mvic7FIlirrNACaxbnW2r7O70zJjM/mQYzFyVDzFHPx5hpfTMUrXEtFLMRGmmyE5Y7K8hAvqd0C5EKO/n8iz82C0uqL5TmYpdm1fHF+ny3aOOe0q8Z/zsilZbBSDKz1w5r92tKbFjL6qrOPXP/gw1CfFOxV14N94vqpvJjH+uBpSKs0gqvtGy3n6ZS4So5NWBW10DMLx5TGDJVECsVFj222FAVNDrznot8SekEksr9/z8frt9zf3nD38YY3b77jzQ/f8v7dG77/4TvSNOKdow8dXRdKiI6F6iwPR171Vctnxf6m88Gu1kyqZ4Y5zGVGe6uerSLcgtUgK7UZTeBOFnaaMrGEteamxpy/nhs69NxnliFFK++zUojfUVvoHN62eBYbscXK57mG5DJ8otiaVwKWFro6z+167Lbd589rW7XeVO2VE21Fnucwpfptk0vOzsdMKsuePUPEHs9/xBLXFcARp1lZ3G4veP36NS+uLnE6sR8OTNNoSJ7SFaLmQEuBcy1Cu5PZaKCU0OqEOG+eD0l46Qls+frrr7h/uOH6biQOtwwPe8ZpLpURUStXkTORhIhZHlFXktp1Rjs0y0b5vYQNZyF5bWTfpYxOhnw35kS2IABCcHT0ZtkXQ0G9vHrB5cWO7XZDCKYsjtPA/eGB/bhjq8FKIbiZEZxsfQc5lvOGFmG/5gZHnNu0ECgnjsE7kmTgmm3+XZwqTkc6lyFeEXBstvfsDwd8nthedvyX/81/z+Uv/gfc1TdMvOPr8V+aS8YrSCJlK+bMJQT3Gi//iK1kXn79L2C6IY13TPv33N18y2F/w/72Lb/9t/+a73/4Duh5efUzvI/E7UTcvmBMW7ptQOjJwxVZPpbSA0WIKV5GLbmHuXjB07JeV/OKlDnJdkZMTo+Yt0UNPKizXERNkZgzwZVyLMXa1vuOIBFR5e7WcfVaePH6gi+/+RkvvvjP8NsN9JD5iKY/IKtjkFtcEiRFXJyQ+4/4+xtk2MNwQIdontCU0HyLjANMAwwPcLhF0wA6oS6hXi0/yMPh6oJpSKRpIuZ35PEazT+D/LuE8ILoBiaNHNKWjUtUH4nmOVxP2v5d0IIFL3JSQbZmum2hkFIj3BZ0r4gbsqASJ7SgKlYLhYVP8PHPuKphbOaNtSeY8lCMbKoVHXghIpyjW8rcHjV3bEE7F48s6xZK+5m9rSb7VT/ognPVua5/L+ehPNieO/LKLf+uXiLnKh8u/W9C+8x3l3zI9sH5uT8XcdWM3gtFsf3TlFNdf868xufUw6eiuT6Xjy/3aeh78A71geDN6NUkhwJiZuuyxgVYtqXUNI7585Rzm0sWCnI9G5DJU2QaJxIOCR395QvGUZlyRqeRfnthSmVWDodo85mFnDLby0um/4e8N+uxZcnu+34rIjJzDzWe4fa9ffv2xO6GSBokYYGwDQGyIfjBgm29GH7RF7Dhj+AP5VcbMKA3m34wBNOCYZEC2OzhDmeqcQ85RMTSQ0Rk5t5Vdc65PUgklAd1alfuHCIjV6x5/VffE8KADYG6slmbyvfJNXzWB5a2wg89Xd8hJmJc4vlh6Nlu7mjOTmnOTulCzeWnL3HLhp7IYr1ke39Ld3PN5tVbnleOtXMsbcU3VlFrMDk9u6ihI93qZMyOofsZPSadMUx8JNNcceZlFB6gZH7FyVwRiEZSj+GoqZ48Jpl/TApBFUMcwWsSuFjIvJQMNJczqmIBuomzdHp42hDT0bgtj1Yc8gcZXOPHie4fZqYd8rvZrkN6S2b+TCcs+qY8fgKP2A1GxmyyVPL68LySzj7WyB4bioV7/fvqs/i73n4TY+D3vx1Z4vroH2mPTCmrRSCNjDQzXCMWUYugGGsIaPrxWfcJQowVXlwqnFZQtVTOIdYhlSX4HTf3t2y311xffcX9/TvevXnHl7/8muurd+z3G/zQYZ2hqRL0cz+kuhlnHUZsztGfCH+s6YAMDqFHgiVHfjK0sWSldYxUzsPbc1O6wFir4GPqoeij4tXQDyFFFTME8ryH1sPtofH2oe3b0NOxcTcJ5JmXrWgl5AU7M9BMluix1NHkH8MEl65k0BsitjRKF2FKw3vwBOgsBXgcK3MjjwNlsEQKTEl3ECHjRc88d8dK36QUfWg7pgkfSQIRZWgnY7HtA223Y7u9QaXDD+n6xpgEvy0GIa2F0PsMUJD61FlbJ6GrBTUuzbFragwDQQfUG87Oznl+8Zz7+wHxd/S9pxvCqDAOCimalJisGMFpefa54jNqYTlQk3yrLhpCPlSI2BAIbUdXKXdtRRtXRF1g0ISEJ6neJfpA01Scn5/xbH/JN6+/ZgiezW4H11dcLlboYkFTVyzq7A1/DLpXMp0Vw1b89AVCjAHvIzEKRgIuehpbU9nvMQRBbI80gRiXqLcIEWcjgmV18jnnL55x9uK/oatOGbQnyApXn8GgxH1HrN9iL7pkIO8CQzCgNaILjJ5j3adI5Vmc7LAXV6z9Ft/ecHr2CfL//wtu375lc3PHycpy7z33+1tsfUq9UCq7opYti7WOLTmqqkYkQk69T7ZgSUMN+bMnRp9BbvxUW5xpWCWn8XvSb5fSmGLpwWWbRK8xOTqG6OiDRaJhte744tMfc3b+KdXJF6hdIlWD1JbY1sSuhdjR8A7b7tBui/Z7dLen6wa0H6BvcfsbbL/DDR1DMKh4MAE1Hm0cLE+RxRnm8rtUl99DFhfQnDEgNO0OaW/h7hcMd28ZWqXrIl28wboetRF1BmKVqXaKxCZCNZlnTLw0qs/tUzIdmcTL0QnVekTiPFjrUCJniefMDKvi6TLvMUAOaPkRj/i33WQusw43zTxQswL6Mby/sIF5VslhcthcgZTxnKwSg07S4YHepWXnYwarPnLC02NMAUMZjcnkdE18fl53Ohlvh+Muf/92BnwpooTf/kX+hiMwAqQG8biKqrIE39OQRLHf7YjBFxiXB+dPpnA2Y0bHiDIExTmT+wySUtNtBSYZpcH3DN7T9x1ucYptVgRcMuSMQYxlGLrR2Kyak5z6GBAdaKyj7zb4tsMgdNt7uran6/rc6zbVDFrruPERP+S2ZFVKX7QITi3tdsewvae9WqDtgpuff011uuDss+fw6fOURts4vv/TH7O7umbTdmz6Ds7WVM4lo7PvaIc+gZ4BJneH1RyoSD16ZynU4wvItKQF0yHxEhlLs9Jcjk680ShLuoixGf3b6nh+Oa34AEMIePWUjJqocaYf5lrFVChEwCdHoMRU028e6krTduAimvYe8MpvszZKFszhPQ63x683BQw+7k6T3a4cpbbN7pNrfFPiKaMSZCTpWdlB+PAZnt7+zhqLjzH3DzH839Zj9THXPWCweihG9OADHBKLZAU9eyaKh0JdPjLla0cSshPqU+2iktLHtEqZAhqxVgjaMQwD/f6abbtls7nl7vaaL7/6JW9evWJzv2G32TD0HRpDLvJ9xEOmxWCZvlNNgHwH4y9CUQvK2GQA5Uc78mqmOSo1dOlzFtzZ0PMhpQuUPmY+RkKIGd3s4QxOUz4p98dG7MdsT3k5x3x7iROUM8d0lJVQSirW7PuoYM24+I0RTJTsnje5SWzxuM1EreqYPjE5Eqbv5oL/sS0xxjwXGSK7RDxT+qFMHstCgyNXTkeNc1B2jsrN0/N3OB6FjKAbBYLX3F8vpbfcbLa8fvsWK4FnespieZEQ41xF0zSkgpyCjgZISIWu4yRngWRMppkUKRJXod6O0f6dXC8AACAASURBVMemWnCyXHO6aGiM0Ap4BbEFVp1kBJIQd72PM0/4tHjLaiiMGQUTLYPErKwl728cAn3n2bUt275j33d0Q0Vl6nF+rDNo8CyamouzU5qmod91DENgv2/ph4GqcrhoiGowY0Oth3NvxY3gLyoxo4NPvEV1ygowXY8xA3ZlidbjEXxvcY0n6h5Rg9Uz0Fv23S3D7S23b/93FvYf0Zx8j1ifMvQRi8e6gJUzgjaothjuMRJBQlJctTiKAKlx9gIT1jh3inmpPL/5G8IwsHn7JV23BA2o8wxecD00bmDpeoa4SHPhHHWdPotJCqFoUetSXfeEnKe5H2JpbJ092SUVTBK4Aih+aEcvtxNIvRRl9A9IyMakBi6XDU2zoKoaJAq+bdN9B4v6gMQeCT3SBegCtAPa7pDNW9zuFg09aEoN0/Up2GfYqkk06yqoa1idoM0JNGt0fU5YnKKuBtsQWOEWW0x3iZgVDL8mhCvor4jDHjQ5V2ydoICSLacjPYxpZMXQ1mIsHKYrFmVunMtsAenskFF9KgYV2aU1Y43HkbAH5xXnCw+POzhH5mc+lONTLO9x/hTjJJtinJ790Vs+ab9NPHqugh2Dw8xT7mBSFwsMxoOylRJ5G1WIEg2Oo6p2zF8ffcoDf9Ljc/n7dLYfOgQYB1lop2yPiZC5LPtQps9T3480jZnKJayD4FNGBw2xbUeDf4qGlzeauP7cMJjb7AXVszjSjTEYZxFrsTalkpax2arB1UtCSCicBrAidKEn+ixd1NJ7Um3l0LK5uWPYpxZQFoh9n7NylE2XWpMJCcVafOqTa4wltD5jBgiGyMJYdAho2FOFgI0Cd3vaYctw/SYBrTUV+vI52BpdOmQlSLtFfGpYH9seuj5F+jJAjWBQA9Y4gpjsXAuE0SE36X7lRU/vJGb9Y5pzmRmbRce1mtuLiMloqLP+rpoilDGW9NjJWJw7tKJGVFOIJWrqEwkxIavLFGlPo8jrakzcmbL3xj0y0cChfvMew1Hnxzwutx+7zjFpf3Qt7zhPUxp1uqwZn7HoOaDZEV8A3SRnkZiEZzAr5P57HVn8Ntujue7vefjflJFO3id4UtIUX+MREllCXgqHRJJzigsSVPo+KUKiCYREMYja1OtMlSieIQzs+5677Yar2ytub264vb7mV7/6kldfv8EPA84Jzs0ifQdtKDKxFGCNg7k5TEMdkUjHKMzMUKQEtA0T1PS04HIlGkIBIDC5Tx34bBiWvwsC6pjt855X9KH3d0wPjxt+j2xSmIqORu3xqh7ViJmxeKA+zISOKZpBhvg+fqjy19gfjJlC9YHtIF2KnJKRLzoyxjJ2KcfpKC9n4p65n3X8c3yQp+ZsrjAcKgkaFSfJkwpwu9nx5uqK2imrBSyXFzhnqapkMEquLYqaU1mNJiUfyYpsghSfBIVmAV4RTE7hiYqzFatmycVqxbI2bHvoA8mYKjZBnuuoKbJti+NEsid+/r5lXpllUuqjLUp3KuQfhsCu7dl0Hduu47StWLqMaGdMQuLzA3XlOD1Zs1qt2OwHhuDp+55h8AQfiS57SzUpN+aBjFCMcYxRs1Isz7TgknMp29gx1/DFHWoHNC4IcYHRgNctEsHpGuM6fLyn67dcvf7f+M7ijNpUmOqCnQ9Yl4xFdEmIFqJg2WfPba5/Y6AoYIhBzBpjFWPXyJlw/vILtndvEfe3dP0OI0sUYRc6rBgG59G6ZfAnuMpRuYrFItA0Tern6KpUk0kx5LMgpFgC8TDqmIEXRAodGdCEdJo82lmZD2RAnIRuKFESn5XIcnlOVS0TCE4MqE9pUDJYIGJ0SH0QNzu026PdFtotsrvH9fcgilYVenpJXF2gy1Pcag1uCdUSbU5heZ4+u4roDEGSMpWMkEVaB8Ygg8UsAnbwyHCFDh0al0iQbIjFAx0l2VvFsstRIImophjLWOOe5+94To/7rB+zJHly/yMJjzN+eKhLPWR0I/DIE9uBAaV60Gai8L3JkZl2TtHFx6/1WBrXEzf/oEKl5RmYG6gzh99jmmThRxzOyPz4R40zySnBjwx/rPmS+d/vN8w+8FTvkccyPsODM+fv/jfY3mcwUpzS5SZiURFMxnAYrE0tKA5k6kMZnJ4gOZXGMSOjTqOkumaTEZ2NmdL3RFINvbUVQ/CohmyERELfptavUYjBgDi87+nbHdu7WyQqRnU0Fitrcc4RfJtkmxgUi6hSNymbbNh1lPIDNUpVVSlFs+8xMmAxSSbde3avwa5W1KdrWuMIVUV0Fqwj3G0QmxCph7YjdPv0PM6By0aHCFLVY1R2rJHXUg4wA74a0aUZDb/iOkkZVbPUcQ2kahWDSEVJey7GYvp7qp+eBwRiKO0xirGYjURN/WZLf0VjZURmfeDcmdHVyAMPONeUxl/oYVJIp5KYRwhyfN7ZX4/ws5J2+uSF3ruVeZSMxifZAJyyGA8PLkZicY6IlPZVh3DN/8EYi39ntuwReSBEZ9EhRcfSKFw2SoYIwSIxFS9XRKxRkCGj8QW8GRjCnnfXb7i+3bDZbrm5u+OXv/4Vb16/5ebmjr4daJoTmnqREdIADWiIeB/GMRjjSOHotBjCrNHDU3Vso9di9n8hPlM8FXN44xHtTlO0KaQU25R+mpT4PqbIz6AZeS8Wh0jxluR7x/cLuzzLR6/i26XZTN7kkqIwFyxy8Kt8nNdmjvn9hnERzj1b43kyLcy8hGfer/RjjgzBEq19ylN78DO6A8jetcmQT9FHHZWa2VUOnzNmre6xdMhHt3RcyB5AY4WVWwEdANf3Le/u7jldV4TuFImpxsoKqTVAdhjEqAyaoK+ts2AioRQDwuRUURBxuKom1DXiLHEfscawWjR88ckln371ii4GtvchKWLGJAMshPyIkqhe0zsz43tJaeGSozUH8yKKSMSQmrf7oPR95G7Xc3W3Y2kMlSq1EZarhsomY7EfelzTsF6f8Mknn3B1u6P3nqiRznsa73HBMcSA1Zgcfg/SREgoZmpymrgbKTU30sj0luaf5QqPsO8sfnPCerXm+ckJ+22gb7f0+hXb5v/k+z845+XyC6z7Id989b9C/Gsuu/+cZ6f/M836M4iR4PfYLlAbgxolsE60ZQuNaEaoFKJYoAFjURPxyy3Lyx9y8d13vLz/N/zqr95S+c9xZo2qQ2PDEAbu+x2RK6xNkcXFYsFysaKum/S5Xs7WUkwB+xkdJxywIszj1FxZSDD3eXGJq7LxKPT7HmNyy4+qgihUYY+4nucXf0hVnYEuiDFgnWBiQEIEv4P917C5gXfXsLuB6JPX9uIl/OA/hYvP4PJz4uqMkL24bllDhBAFH4oBoViJuNjj6Ejw056w+waJAyYqEivMSU1dnaPLTxgaQ9fDEJVeAzZmmVPIVISCpD3GuzSlSkmmjwRmOOWUiOSWMMZibcxAP4fJScUZ+P6Epd//Vrzppfl6qaWP2W54Xw3Qt7vPoVPtfTJlzqsFcnRFHjnv2ymKx4biGNApzi0zk7lFDumRkqoP5efxsxR59pgR/3Gj/d3M+XvvMM+yybeaXrUQxeBM6ldbL5ZI2yXE6BEsyz59bXL9okhq1ZORU1N/QotxFcZVaZ4ymmRdNyAQCVS1Y3u3YT/0xODxnadrA13nubvvgBofBgbfY0UIfYrmLZqa2mYE8hgRY1KqpShqK9ZnJzTNktpV9P1N6n2oikfpYgZqc4Z3wzVmiDgVGnVUXcTf3rL5EjY//5KT77wkVJZt1yF31xngTRj8gPc+G4cu94VMfKJqGhYnp7iqwjpLVSVjMmrAe2HIMizNAEmvHLNcpmBJyEaZaiR6P9YcGgw2Z+HMU13nesyYJaAxpeLOSpVSA6iUihqyoShmatU0l6FlXR4qUd/Ok6HMdfsn1koxBMdUgUMqOzYqy0EfHyQY/xujp8lfnFBjS3hGMhJ4ums6tqRIS25rJwfr4e9wGurHpCJ8m+3bpqn+Zvc4+OuRTzz0ss28Y9lvSzFJhrjNyHeC00VuE2DTS/db/LBlv3vF/dWvue9uudtvePv6nq++uuH2dsf17YZ916Ix4mxDfVLl0XhidAyDH6WLswk5rLSnSCmtNnsl5uifs+eRR5ZD9igV74vJjHVqzzB7ryZfJMMcqzhiAK/K4D1DAK+GIegEoDOqL2kkSfYdCrtkivJg8RdPbrrrlO6bh4AWxIZsGMyzbSXfK6K5388csU+m+8ixGXk0Q6XB7FENozV2VHZLTVu+HNZWY9FyKH2LHtCrMjWmnSsQc2qTMQXKGMOIxkcBaNAZUz7sqZb2TTVPIozP8PjaOjLOA/S+RwEnDmcmRnTX9nQBeg9t59lvdxCUUPXEkK+fGaDXgHUWV1UYXRBsQGyKNhmx+R0yop4hgnM1g7EYa2hqx8tnaz65WHK9G3hznwCTUhSsPEeKZCYUNZBocj5/pgMKHU6IbEHSd0Y1OUasUBisb+Hurk3GohHO6iqlLYlBZMA4Q/AeRXh++YzV4svUmysou32b6kesoaqFmPFk3NH8xhiJGREOzd5uk9JtbAaQiiTwFtGBfVQQy9KtObceE+9pb254t/9Lvv9Hl3zygz/gsx/+jzQnf4ipzoEK/eZf0rb/C377K+5/8S9YfP+fIu4ccc+BLWqT99zY0lhes/MrGWYiBqzB2GRUC0K9egn9P0R0gbM7bu7+D+6vYLfpWJ3VqHZoGBJPEjcC2ITQMfRKXfd0bU+/HLAutwMRktEWSWmkyT+fvK2jQM/ebWXOLVAPmo1FQsCKxahH/Y7tds9qMXCxqlmfvsAsXxLNkgGllhbZb9F2g+7e0m1/CdpTXyyIn/8DdP0JunyGrp8jrkmebStYv0mpa+oYtmDigKinpgft0jhVIRqCF0IUYlCauEFj6mUW4z0m9IQgqL9Ehg7xN0jYoxpSf9PsZU6RgfSsZoR9n7n8cu8zYkz1nrNSgUnxeKi8jPz+kdV/DCbxYVkrPFVwKDOr90EKqkyogsVAmP2RHXGTlpYQlLPvKx5ea8o2yX/naRrZfHE0jCM+qiV/xPgyZPmiD78/TBWYS5ZJDsjBd4/PT9EdxqNHJ1eKoEYtxulj5z7cHtaTHo7m+BmfuErWakqxy8fSwUeO6ei7sRxGOCwVK0B6xmCrBh0Sv4ojyUxO4FLLKNMLz+9YSUVzkvrSlvII0v2iKioGW9VUdUNMMNY4a2jqCh162t2eN2/e4ocERtj2QtCcRRIC3/38c6oq9XwN0eNEqCpHXVm6zYZmtWS5PuXi0x+gloTaHCPndcV+s0kAPJVLIG+51Q7DAlMngLjWK9ZB4xwLEe6ubxiuX4MqdugQqrH+34bEC5L3LVUAppww6PtIt/GINRhnqBeOqrbYyuJqR2VSmm6IER8Cc5DEFNHPGp1MiKeBxNMYBtA9xmg2zMmpvPlNZTlANhTH3qElDbZEEikyXEndkgpQ3KSvFVKex/ZLppXopKekfZPzZdrKWpzr9nqgXz1Oq/MlPI9WznU4PeB5D69xpGfNPxenkKSILXn4xkyppyIu6TZiSenMZb8djckyN+/b/oOKLP4+cvjnL3wMcT9xzPTtdOSYdSxgUQwB0cjge7r2lnZ3xd3ta67efMXb23dc3d1y9W7P27c7ttuB3T6h/ZnC02weS4zEMKUJADkNssiwpEQoOdKkcSp41dmSKOvhaEvOjeK9mIfwpzSiKWWVUaFUVYIm3uRDQUJN9YopS3MCFng4x+VxZEyT1enxZoZiURUnz+5s6ot0natP09jnhlg2UlOPyMQs9CD/PU/OqHTM2QLJszyPMNrCWGQEIhi/y031itGk+YEeOlQ+4BAhqx8H7yznuOskKNPBj1GsjsrOHJb5UaVtvk8LjHUSNUlBm667HzzbfmDXDez3Pd2+TSXhweOHAKK59tLgNUJ0iEa8NagDU4zvGEYmGLX0DxOsq8CYZHBVhvXCcrpwrGtDbVMEZpp9xohiJKV7R4CYU1fQ2ZQkoomkV2lUcy/GSDBJOVIRxEO392wXnk2XUsSbwaeoM9CYKqXXirBerVguFuz2LW0/0HUdXdNQ1xUhVKMX8JhdzYFHUjQqGTySlZk0So/SQ+zwXlPqpqkZhh5oEbfn85+84POf/Tkvv/gTXnz+jxmqH4KpEI1UnGHe/JKh/zVh/3Pwd4g5AbNErTJYQSNYp0xtKhgdDymsSUL2zMailRXV8jOWYY/GP+byO7+kbTe07Z4YXBaoBfvY5iizMARFdUiKiI/4GKmcSw4uESoSTWtOSx6pf+wbd7Qmc35uDCXSJrk3ZXKceR8JcUdTLzk7PcfaM6I0ROMwMiB9ILQbwuYdcbhCbQ2Lc/yzl9jT7yDLZ2hzTjTrxHtDAt6xYUACIH3iW2FAdMDEHok5rUw1/QoFDRsiW0K0xAhB94jv0S4SO7CDpQoGEy1RLUFSvRRS0lJnSu/Y0T3zlqx4UTz/D/SdmSwbDZH52j/kA+US32ZL7/yhQfgxRsI0xvw7L9d5hCmz+HQfLfLq8HojOyy/MgmNfqtHxjSmhZZ1OEbyprFMxx59ygMpiuKUBjs/+DD9TY8MxrGUgHyd8fozY322/9G014M5eGTux9DlJEsfbg+zXMa0WXk/PRzjBLy/LvE933HkVi4Ob8nwAdbhS7RlfKnzFEkzo3MZX0SKLqa1oypYm6Nl+bkjpCyBqmawFZipRUdV1YTa41zH0Ee8F2K0GFsRQuJzMUY6Hzh78Zxm2bDZbyEGlqslZ6sFr/qe5dkJp5cvOf/8C9rYpprGrsUFj40Jrdmtlgwhon0gdgONb6kWCzAGH2G5XlE7CyEQ2xZTO8R7pEvtKkp5YAL3AmKuLRTGtm0JIKiUcES6neKaZCguVg2uqccobEn6KNHv+Xs5LF9KUx1iYPAtVbAJlZxHootju6TDdNTpfU3am46R9scNxcQbDw1AoUSd57RVTpzTVjn+se3xdXKkQhztna+7aZ4Ox/GE8Tg7u+iJE11PX46BgKKfF30dOfju4YAf3/5eG4vTRMFDpXrafhcRxfm1H7uHTgfll6MPFsxjY6ppMCk3DqsDMQRC7Nnt77m9fc3d7Vvevv41r77+BV9+8w2v3l6z20d8X4E4rK0RDDF6YvAMPlBZh6rgh5jBQ9L9+74ba71clTz0MU4Fy8eejzzQBx6Ww7Sk7G2VRxgECjGl8sUIIUTUzGoUtRiLkSFHCYqBdjzfxwK2pIy87z0dpP4+Mf+PRejm153q4jU/5ow5qU6tM47uP17XTp5L53LTbHKkMSu90zxOqGI6Ki5z+s41Ku/x+M5BEtK+jEwWp3rTiTcmZV5HLl90hDnjsQfXP57X8f4o/dCPqSDeB3yRRsC277nZ7rm533K/WnG63iUFvXL4ocfaZEA753Jz3hqjEW/SmzZEMAa1Pdh6HEPMAB5V5RBrsJWlqi3LCk4XlpPGsKhg25JrgFMMKpXBZ2Ujpr56xbNcoiSTtz49exDF5VpiIqlno61T37mgdPvIdum5awf2XU/T9Zn2I3VdJVoxsFouOTs5Y7fr2e1v2O33NE1D09TZoWKywD18z94n5M+RHqTGiM6U3tTsWKVD2GEGwahDrOX6tsWurzn9ZM8//m//JxbP/jlm+TNC1bHFoHRYPOcvf8aq/2f4zb9i7/8C6W8R8xyp1gTZ0+JAlJqQlANNgsilDuSZgJJClOpHLM4+wy4W1ADS89mPvuL+/v9hs/mSvvXU9ZLsEgapEskmMmTwAe8DnRnoho7KuoyWalk4l+IAqkgI6V1qcq2K6IGiXSLmghB8MqxETPLua4+PnhBaXBU4PXvO8+dfoPGMIRrEeGrbw7ZjuL2i3XyNNntWz/4BPP8C//0f0bjU5JmosOtoB08ckrfd4rH4THFbog/gI3EIyOARDYh6FI+KRyT1f+wiRK0ICiG2qXdjB7Tg+oilRrGoOjZc5/mGEhUZFQgtSlHiHSndP4H45ODZ+PtQMTvk6eX1zkQDD1jwI0bWo7x3fqGP2A6zH0qq8dw7n6Oexcmik7E4nqqH1zge9oGUm1uP+RuT21tMvDG974lnHsmOI6MIOEAZH6Mw2bgpEfPxGctP1JEfJX+MEJTxHSVanmRIno1JGRyV38Pt2CguRmapIXtgDTJ/p3Nn1lGKqxa1eupt+CEnwDSEx/W3R41GLfI4yzUpJSGRoMmxhLGohAmDQZOupZqck1F4UCaSBG8c15F1LmVfldNJzl1TGzpXg7OoTe+kaha59tlQVe8yBTnqeo0dAmJ6VDveXt/xvZ/9lGefvCDeXtF3LWcvnvPZi0vevHvDyfPnXH76Gesvvk/sb+m398T7e2K3x8QF1lgWzy5wEcLeE3YtTehozi7Quqazjuff+5wYA+1uS9ztadZLpG3pInifDWWNxGBTWwoUozHVfGbaCyFgnUnZaENPO2zBKqYyLE9XrM/PaJoFdbOgrmp8bnExI6lcWjRlLxTdIYZUt++9Q6qaKTPtkP7ngDoH+lBe6zr2+84QgbnhvWZ+N+oqoxNl7mQoxtRD4pp4wNw0O6pbnjmoHhLu8flycNLk+HmMkR5d6kjXmhuvczvo2HAVpABnZEO6yEfzyPJ+v530781Y/F0ZcP/uN33047hlg+LgsEcMkvHwfkkcAmG44a79JZv9Wza7d7x68zWvXt9wfXXHm2+uefX1a3yoQFYYa2kWktPwPKoekVxpFRcMPjX4rhql99242EQMtkpe5hB7htmiTk3cDgt7S7nsYZH9U0Q9d+FMWywoVtlYTIswEawWcJ3s/XtsTuceqW+7HRs040jf49mcIqpFyZqdI/MEm0OD9j2DGAXwdK80ByGEcSzmKN2zoIDN30fid0/XLZbz0h1ngrr8KyeWlJMH88I0/zOF7GM2VcXHAVMlg9gPgSFOdbB9VN5ebzg1lrv1GWd3OzQE6sYRfUtVWbRyGFMTh5CcJkNgGAJrkwSC71NU2i0EW5lRebO2wtgVtWuITZ8AWCSwdLCqDScLw21bYMFT55CUupjX6kR9qWmxMOs9l/YHjfTqsTkrNQDeaYpEqsGGSN979kNglxsFt12LoLg816lmwBLFcXH5jN2+5+r6hrZt6fs+pWmnQeU1cwiQlepKBiBFobz3eFthjU29HauAtZ6qVurKsjj1GNnSmnesv2P52Z/+d/zZf/Y/UNk/gMolb3G74qIBpEEV2jhgz06h+Rzp/ohYr1MdigrOLziRXaaos9wuIStVub8VuRGwcyuwDjWC7++wC8FWS5buz/jRT95AvKOprvj//uIdLy7/CFsviPT4EEcAGisp+yC151GGfsA6k5DujCFUDTZ7mJ0pNbql3tdSktCT8Zo+VXZKKkzv1rPvbtDYUdeRH/3B51w++0Oqsz+jq3fEYJG9MtxvqG7/bxq9p64NfPfPMd//U8Lpc9Q1RFGMH1L/xLZlsdvA0EPwEBLSocbAYuggOzmGoHRhIPiBGDz4Dok+KWwaCVRESVUyfnDEYQvcYuQGKx7PkkEdLZFKiuOpWBsFHVVS2MBMi7sYjsYYrDM4Z3HGZuM/t0N6hNd/UGKrfvCgOT97mrN8WDcoGSDjNYr3nJTCm5TMyah5io2ZbEypzhSv2eNMfB40ddQ7QMoer4NMUz+dPD7z/HkfjEWTrI0SDwyXY2dkyeSxFjQkmg5hbrxP9UuzaUGQJ6f00Bn5/u0plfYx/UZm8vH3peuNTksY6zZFKnwY0ruyCUVZx7rdubEBUXNvUn3EoM26kEGoXEagHp3JydFbGUWMRa1BrSARVA1VXdE8W/OTnzXc3rVsdx232xa3WIBpgJqvrt/y6uoGOVlz9umn7Hcbls8uWDx7xhc//Sk2BFoRpK44//QH+N097dUbvnnzivOXl6zWJzSXz1DXUFEjQ+Drv/oL7PqM5uyS0+98j6FeM/QB2/b8+OxThrfvkH3Ldy+/T9vfJ4eRD3S7lv39Pb7viYOnqhKoTgwRH/ZUVDgLzlgqC23oGLzn7uaOfdvTLBcs12vWp6cp3XEElUmGe8mIKc6sxKYyoF1MTrTiBJHcWmxqB8PYr7r8zPuIpqhxqlgchgGbkN2o3BQkGQMeo4JzzNfmzoK5zD02FA8NsQ9Q54P7TPsP9c7im/n4TShwWGXNj6QrWQQfRA7nx+Wf0W3+8dt7jcXC9A7s4vcufCknPZjTaSG+v0D8se+etFGyx6xM1oHH8+CgD7+J9yv9CjYkIRRTr7yxMmx83pQGphqIuMQsjUJeDKhgxYJENA4E39G2d4S+w/ct+/097959xdXNW66v3/HVV19zdb1ht+tp9x6vDSo2O4w1twpIyIlF8UWzcRZjOi4UOOicxy+TN7AYbPm00SQsPbTSvCYpO6XZpKMVzcx5JthGE2o6Pmokih0Lkk1liUDoA/t9RxgCMZoEjBFAgyZBPBM0KXr0yLuZyb+DdyfT+A8OF5l6h+lkFD+MYkak1KnNCClmJ8DcozPO6TSkA+E4zpsqSOqBpeVfGQOApmhHicaqZu1hdpzJHbKNyXMt03ORPc9FecqmycTbNJtD87WZNSgVAR0SAEhxC4ggZawaM4z4I+szewGSUpPTskKhJcHnOQLQThnawH0beLX3vOj7hHQePWggkpqlFzQ0K0rUnqHfUu0FiYpdGNTl9GoJqZk6QlRLpMIuLgnBgCgre8PZsmK9MFirWCwhTTVqFRvHuCKQamgl01pQg0OxGGzqSYKR1LCdWNKfwBFBfaIBJ3gjtL2y2QSuz3uquqZxEbxnCB5y3WothpWrWDYV1cLStoF927HY74n+PAlbW3puzrYoGfAHgjfUtRBCSjfd7ZXTc8fFec3lizXWGCoBY/Ysmy9ZnH/Oy8sLqrZDh38Fbkdgw3Z4g7hLGvmExryksmcQlChnSP0TVE5SA2XTE00AdRM9xRLNyyAjRVE1kgLSJnEWIz0Rl6DtF0vs8kc8f/FHhM09Xz77v2jjazQsoWmobyffDwAAIABJREFUNKDREdQSRVCGTGeANFmxjwyyozXZGPBK5RyLqsaJQPCYYgxZSwh+ijCJh5jh7TGE/RrcLctzw+ff+xOefee/pDIO798R3+1xQZC2I9xdIWwwF5fI5Sfos+/j1xdQLagkIr5F+x10e+g3xG6P9h069Kn/ok+GY/R+RPPzMTAMfVLSgkcAHxO/FmMxRHrfpdRusRA6iC0SI84K1gWchZVVtlGxRlgIGCwSkjMuWtAFiKT06ag12awmRkeUzJNVCd6i0VKAcIoTb+THWdnSfAXN/EWQlIp9JGvnytDBfqb9kzyaZY08ojwVvlvkwSQljq96eLwUySYcYHWZ0VFZzubow6Hta2bGaFmWh07G6dhjPelQPk1fzZd3Ar2dlOAx2+eI76barSzHRXLt8KSEhxCz/ybLUi9jZCEt3JA/26m6UOfZJlm6jXC4KV1zrgc+0KmyPCkRvvn2bezEYx3sOJvl8S1SnLjM7l5S0Y01RAN932PFMlJpQUrOzygZaXnUeSWX7QQlDAErEZN5WszU5wM0y1OMdgQNyVBVIRqDM5bl8zM6EQYiZt/hpAIb6V1gvagwPhL3A9IrTb1CTcU+Ku7sDO06QuUIOuB8RIwjLk9YnT6nOj/FrU9Yn1xwp9CrQRiolyeYF59QnT2nWj+nNjV9M9Cv9lTxDt8qoYJgKk7OfoaJgdh37N++wryDMAyYmKLfVlI7qnh/h5FUo2gbR3dn2Vy9YdN11HUN+4EYIp3v6fc7bH2CqxY0i4rVukk8zQ9Ya/EhGaCK5tYWFpEG5xYJywKDOEf0HiS39YiaQPNyHbpzLlPZWK1Y3AC4yiIZBVXxoxOAWAykiSDHWGLhTTP+Mh02p7lMHQVob6LSmS46j0bKxLPGO44IGtmLk2Rn6od4qI/O6f/QsJQsYh8aeiIugzHlOkWxuVYxOakT+JDLhnoJIEzXeRhhP9w+GFnUo8/vXfvjwRMzOYziHDzabP97rnrAP44MgIOLHkZcjq/5m0SmDoYgmgXneLckaaIgJhkDgoyVN9NxZmRQEpMC7IctfXfH/e03bHdX7Pdb7jYbvv7qNVfvbri6uuX1qyt2uz4DN06oW6p58czqD+eAMmOON1IgqB4xjB7OZ2GbRVAXJ4wcnsAB8R8ZD3GMRaZ/QRP6WMj1iWINhFQM3XU9wUeCZszJSAaVmd1JD1N551uJss3e0Ph5ggp+uD1FBwf53jrdY964NAnWCQ1L8oTJ7PwnaVmZCWcyciQjnwoZVSytsZRbXxBgk4fI5GDgbJxzpeOptZXX4gGzkYJWVhT9DLqUNepD73bM15cH8zEa9tloNHlNFGM1xRVzn6QBhkHZdoG3e0/XDzgLIZrxeI3J6LROwASMRAa/xXcrKlOhTZMU3lxkYTOdp/6dFtucIm1EzMDCLjhdViwbS+XSOlQy+qlEDD6v1bT/QY1bVtLMWOsoODEEkx0FolhN85OkmCEI9IOy2wfu+p7LEFN9XIj46BF1GSpdWFjHonbUC8d2F+i6nnbfEnwgFnj2Y3SyvNY1QPQWaWAIHT70+EE4r05oVo6TixVGllRYTNUhpz3PXv6E89MLtLtD+zdgbvD6mv3w/+LjJSvzBdgfY5ufJWErNdiXQEUyHHrURAhZuGhA1Y9zo2hK+xEptgjJ1Z56jg2aahhNZZHmU04v/oD4yRWXL/6Sr1/fMIQeyyVVHHIUJzkswJO6MxswLjmV1OMZUNsnWHoPdU67rGyiPyepJUryVBvGfosECvCOqBL9QH0inD6/4Ds/+lMWzZ8T978ibP41eneD6XZotyNsbjHnz5HVM+Tie8T1BdE1GAGrHoYd2m3QdkvsNsS2JfYdsW0Ju1vo9xAGCMlQTMAUgeB7fNcRQ4qEtNGgtsK4hkqVtt+niL0TJHo0ePBC5YS6jlS1srCWuxgyz040a0ormvG9ZKUjTjXmMab60EBGMY4WyRFZiktk7hti5uids9GZlTSlVh0Rrsw+PzixyKVDhyaQnXwTUx4NPJ1dorDS0as8T8dMhvJxRkaRySUPYzIy8oh0+i2UzI9pbA9TbD+oHc2e6aGcMPO5PbjukfxWJQSdlD0zvmWAsc8oSor8ZwAoGfWjg6elODKnJ5i9E3ns2R7KTyk0ViZrJj/nv7/N9jERydFpOg4zy0tk1MGMMagRQvQpW0RIvGDG59E5kB0z53Sq64s+YKuc6pu9JJrYOlW9RIchZRCI4EWIIgRrqJsFTd/TDwPNvcMER7ADphYWtYPB43ct/aalOl0QFboQcOs1wRioHCHkHoiiiK1YnJxjz88xyzW2WoMkeogKdnmCuXyBOX0O1SlOBa1TgMJsFdtEBgtxWbH6/HOMKnQttgG1Q+ojGyFSY41Do9LbZKhVTU1zssCaAJtrfCfUriHsOzrf4/uWwWxxjVAtUnR/sahz9DshvI6ppJRVmpBQnW0IxoxtTwgJibUgsuusTMoYmxwmOdskjnSQa0tzNUMpTykUXT5Nf41ExJhDd6AblvUyX+dCQtIp580Z1cEFx9/pkkmvyiZkdqyR/yI/xVRL+HAsx5uktiqjAyePrYBMFvASMaik0FZCQLXJyJQCgHaov39ovf3+0lA/nnf+7m75WxiE77+woPsFRhQxipiAxoGoyXy0YnPdYYp6VG4geEPwFZU8BydE37Lffc3t/c/Z7d+w3b7l5vo1v/j5O969veXq6oo3r68YhoCq0NQrlstTwOCHlOKmEsc5fepZp9TDx4+Z530f7H/kOPNo2wQZ08A+mF4yWkal9iKmesUYkye7tEvQhGt1oFOUp8hG+Dwa+Jtsj3kpj/Pgv/U1gdLz6LHtMIVUDu4nQBz8WLs51Y0yRQsZWU5CL5TZNQ+ilx9+hmOv1eFcSr7GNCcH6UwlFWqG7gqghqRc5sLyqqpQTPL8B/9gDP0Q2O17rm833L9YJyE0mKTAa4r2GGfx/YD3EbFgqwTTHaJPqMEaKUiNSkZLI6mHdVOjiwY7LGG1Zrlac7LacrpYgEnpqaKSo59FgJQ5nj5FMjJvsVEksXUpaaFm5qlMk4BKSi303tN1yv1e2C0GFtaxrCNV0Mkbk8e6Wi5ZL9fcSI8PnrbvuN/tMEZoBKojWg8aCZ1DpKKuKsTc0fprfGg5v3jOZz+4oFkYdu0W5yoWC8t6+YKzF/8xJ59/Qb36Dr5ZocMfIvEN0UPc7Hl39Re8o6dya561/5xV9R/h3HPcwlGHG8R6kOXYb0tJNFtE77hl+jLZBB+FKy/Q+BrMBmMiZv0ME37Cqm958aO/5O3VXxO3hqpbM8RrxKa2KbWr8HGf0m2HgHGnYBYQl/TewLDDWIOzFd57bvY3OGN4dnFGBIbe431LbWtM0+EI1N5jTg3B1wydwVX/ks+/+K84/95/gn3xT9i++Te47h4bTrDDV7S3X6FDwLgzzPMfEk+f4SuD6pa63yKDJQw7pN9Cu0H3W/zdDf5+R2g7wm7PcHeF77aEvsV7JZL6wZUVHvyAxkhV1ewGTxSHsR0Nia7EJP5QWh+hKRLexo5KhYuTE04IDCjbGLF3O9zlKSwbBnHQGuyywS4buLlPLZmcQ4zPCLvpus4ZqtpRDRYxh5GiQ0Mr/TdXbqbvD/nQxEce47/lvMPa8odK2sOtGKWjMja7fQKpkpylMI35KRb5eJ1c+S79TvxZRhk1cs4y5o82FA+N1vn953Pw1Bjz62f05ubPpb4M3HistXb2LPObFsMyjgZhwjJ47BmO48V/P7ZUsyYpymJs6pVKcl7PtwOZPJ97yXQ0b0uSQeI0I2Fbk/Fxg4WY5EBtHGrs6FQ9Wa+pTI2JFTdvd9S24aQx3F7fs9neE0S53tzx7LsvEfOM5bLm2ekZvXX0Cu1uR+cqhujphhazbGjOThBXcb3dsfz8M6IKvu3o25fId14QVhd0cUG322PrCutOiItTWr1BXMPls+fUpwuCbYgYnr98hms8N6++5t2bKz772R8jYvHtjoW/RqsKU9eYZc0Cz0X8BLk7wWjFze6K2+2Ou67nvGqoFjuqemC5dWzae1xtEhhap7gMTtbUjsH3OdPGYeoGY01CXM3QxUV/SM6rlBofQsG/iLM1UjKvLAlrKAOshZ6Jd71vbX5byi763vF5c3fDocH48LBD4+hjddqPOi55x9LPLB143gd9NBLl2z39B43FD3p3flNF+6NSDD60/buxRgWwEkhUaAGXMnUkQZ+rMYTo0GAJ/RLnq2RYEti3v+B++w279orN5hu++eZL3nzzjtevrvnmyzs293cMw5CEkCyoqwznocJ+14+Rw+JxnaNDjeN7ZP7mxzzlsZxd4MH3IsLU63DaJ0zpMlKUQc19I7Vco3hgJffgSWpRiEo/RHqvhJia1IeYoJQT9sfhIjxWJEYl41sQ+YPakhnzf3Q+fkeScW4kzi9dhFjJvw8hoTxOtR4pna9EIedGYVIGSq+cKa1hPt6Y7OvJDzzz0Eq+3jx3HQrznWhmjtJqTYYNFyaPmCZDLaWEZd+eKDbXdogqaoqHttRewuAjm12Hubrjq2cLLoYFq2XFwgYqB84qGgx+GFAJYKExDTEkhTb4AQkDEirEJlCQlIWUnsUZizYLjJ7gOWN1ds7FacuL0z3GtJlwDDaWFNlsPEry9pWIr2QDHk0Ks9X0Puw4i5kZjwZ9VjRCMl57ItutsFl6Fi7QVIGq91jrscYyWEvdNJycnPDs/JxXb28YQmTbDdxutliXUjDFHbLnGCNiEwAKRG7uNth6wenJCc8//QS3dASzoRuuQd9h159SrZYsXlywOvtHWPsCZAULA/J9bPxjXi7+CReXd+jwDhluqOMl6ns0bPG7lm5QXNOlqG3lUgocAuLmRDZGZiX/TRgy7QqIT+8sOgwrQInNArm44LOf/piv/+bXbDvF7RVOzonqCBE213uMC7jasj6p8cOedtiDWJplQxgcMQS6oUt0SjKobzfbWZ9Sw3K1pjYDxnu6+4r6xNDqnj7u+dnLP+HFJ/+UZv1D2pu/Zg2ocWjVUF98H+kGgt+jJ0v44jM4/wJZvaAWg+xe5/RSA+2OuN8Qdhv89XU2Fvf43Y7u7oZhvyX4AVMt8BiiGFRSv6vS0iYmwsNIwOjAbrNLCIZVqovCOozLCpV2bPothsBSVpz/+L9ATEUY9uzufknXvyGGLq2r5hLxFrntMfSE6FPfSGvHfoujWyrG1LYkepwzCdY+l1E8LqeP+XX5LEf7H54rMhljH5Jh5XyRYr6kfQ+A5B4ZYfpidrODeyR5dSDjCt2O9UtzR1oyN3Q25tKCYH7zx+RvuvbTEcSyfYw+ZLIcCRpnwDtpLOUnlT1M1ywI3AVIxJiUsq+is57MR2P54Egebod27Le/wkefU8Za+PBkwSc5pzZlI1iHVBXaDwn9GiWZeUmnixGMCYyIzuki4/+qmhwqISDeY6rU1DzJgGyoxNRCQmxBpk4tsIwRmqbm7OyE7d2OOEBNzfc//x5fffM1P/+bn/P6+p5/9t//16y++ynnyzVff/kV3W6HWyx5/uPn3N1eI9akTAsj7No92AHUIKGn9wm8sLKnMDhMMDSLBh8iwXoGCcRmiTx/iasbFp99hyEGuih4BDUOv1xTPX/O5eqExcvnLJol2rfsbn7JjoqTy3NefvYJu6++oVssWexaGrtmc/+vkWCxsgRXIa4iirBte7b9NctVxXq9IKrn7OyExaJmvV6x2dxjTUVVL3DLZXo+0oqO1meQu8yTxCR9e3y9SdkcTTJNfMtEIZqY2gXlt3dISymgk3TKp4jp8e0pJ87RURwbgoffPXJo+UPnT/RwDTy1JiTrZblJNEWnyTnTic7zd4n/mNlxBmZZZI+We8229xqLH5qgjzEUD/Nupwc8PuY3Nxj/XWwpmphqBVIqj0qcUk5VUp2I5Loc9Umx6e+4u/8F765/zc3ta169+pKvfv2am+sd9zcdd7dD6qmnhZnPwshJHU+9AbPiipSatqPRzXbo3Hoocz+j3+N3loxCHtCy6mG4XOaMmOIVhxKRQqd6udFuzAK6CNmo4ENCPvUxIaGm6OykCOTpPoj2lLrAuYD+TSy6A4Nz5lGcexalGAIff9VH7/PeMcBYj1ZSh9OVZkZdTq0o0cSSYhVL/v2YehwfeLXHfmGzsZQ5fILllDPf8ywy0kqUbChmI7f09TImMaMUWcpN0OkBMNYSiPQ+st13vLnbEkUJRMzS4EPA+wE/pJS8YrT5IRCrpLwG78H3iHWpTUbpJZS9ZkoyWKVuiMsVy+UJp6t7LlYLqkoZMr1JbjehhbHOOLfC6PgoNYxTFLHoITmNT0f8tfQOyrKLStcH2j6wHwIrHxgGT1V5nLX00eR+kA0nyzXOOVo/0PnAtmtZDktcXdMcI+2KJB4DBPVgIst1xcl5Q7NWunBHDFv6sEOjsInKQiyxGjD2GcZeoliwJbq1wJgXVGwR/11sv0WGDSF8g489sduhwy0SUy9HMecQ68TzTEjZXIkIx1pTIEVgc5oQIqnnYKbliMfgEHtGVX/G2dkPcPWSyC27/Tt8FbCmQaiyAZ96ncU41dbFGNC2xwpolKTIxYh1lqCwbzuquslvJXK/27MyhooEDuLbFNWXMHC6fknlW8z2NZZfY6svULsgikHEY07OQdbw7Bnm5fcIy5eoPYGhTX3C+hYGJe42hO09Ybcl3N/jN1v8vmXYbRk2W3zX5rpEQ8SkWsHcBLCAUglCGJKRHW2qZ3Q2e8utwdoaJNV4RwQfwFrBuJrm5U/xfaS7/ppQL5DBYDViB49xqf2PCUBdE3wPWuh24jea+YnG1LtjpOvZUU9xNimpruUIeRhtOzaSCk/PfsUx0lhWojLjZeOpkyxKKfA5Pb7IjJlRl3hUkdHKHF24pJVN4rDw03GpUfhC2Tf+ns3Dh/SWQ0Nxus/RQQe8uhz/vojnwXGjoTvtO5Zz8zGMPGyUL7P7PTXGj9jmKcrlPmX7YJnGB7577HyZ2/PMqDTzDQTEWsQ6jKugHxj7CI/vu9TGlSj0Yf+HMn8xxoS4HCOiJclVRkehEUOImptxpLGm1mWpJMY5S71wiR77yKJZsKwbKiP0uw2//sXfYozS7jZ88+oV2/sNJ+fnXHz+OYu6wQdP33VE73ElTRNQn8o/nLFIsEgAG1KPXjWS+KWPRHGwWCH1Aq2XaJt5gEaieqgX1KeXLM5MBhET1Bmq5Qkvnn+Xar1GmwpZrlmcpeOd1oizmMpRmZRSWjdLrDX4sKUPXWqfJQZjLFXdUDcLXF1jqwpna6rFElvX00vMfGd0zowvWlJEN6/5zGzGRa+astZMlFG3Os7seoKyykWe3KaMh2M96dCRNX2e9j912yll/vj8x+//5LjGsydjsfwIxZaYIoyU6OLxAv2I7aMii7+79M4sBn7Ly42M8LcdzkffEJCQ0+GUGCRDKgpKjY0WYyqMtWANsb1is/2Gq+svefX2b3j9+mteffOGv/qrv+WbL29AHc411HVDXa8RGJuNpufLCqpJEPAxpIb2JqMzlqjd4XaYUnkYeeSB13MebUqOiXnEbT6zE8EXoZJTyUflYn7NGfTLWJeXDMVUEN6HSO8DQ4gEMgR4LtAvhB+P3uyBQvFbvPXjRfdUGuqBkqPHH/OTv2cY8/k9doTMGVgownsyycfv4tGx5VohHMKRFwE/93JrjojJ0T1lIp5HnAZ5BHMmotP4i7GU7P+HxmJEEWtzRCcbFzPlzFQVIQz0QYn7nq+u7/Akh8uqWTHEQO8HbJvpKLnM0K7HNx7nPd4PxL5NCrMIlU3pRQZJhqVGKuswzYJBTliuTzlfb3i+vmXZCL3Xqd+isel3noY4RhdyS+IstILIYZnCpF0RRidDqsubK0v7LrLrPct+YOUt637AOZeQ3URZrdc0dcPp6oS6ati3aV1supZV11PXDcsjNFSxDqOOED0+tizXlosXDesLh6nvud3fEBnAJBNW+jdUfsPAP0TVZUMxEiUwaJfWklEG7qirJc5+huqvUgruEAj7DuQGAawTTH0JYZ0f8YZSU5lStDSBCyQ374hyhxioloiNqAwEM0C8wJoXiGtY1T9G3JK9fs1t+5q9aTldnbNuzlg1z/HeEqOw34M4l4KWPrDdbDlbLxM/jDCop3HJO912HWu3SGvMe+7u3nFan3KycFycDXS3imrPooLT5SVc/yXxzrFYO+T8C6ReI24N/Q599oJ/S92bNMmyXPl9Px8iIjOr6k5vBBroboCNZpNqihJJyUSZkUYatZCZtBO11EZ77fRl9DmkHc20kWlDSiTYAxozHt58x5pyiAgfjhbHPSIyq+7w0ACbcrO6dSszBg8P9+Pnf4b/sauO5tvfg49+QKTR/OJhxEWDGTP0O9LtNfH2lrjbEm9uCNst4dAz7PeEfY9EJerJbkCMIxunWbPWklLUMUyRcRzVSOecMv9Joyy6vsX6tbKoxrGUH7J441h1a5rHf0D/6pKb3ackGVlJxqWMjVp304jB2gZZncF2r94YtT9qsfpcLO5ZWVtF0lQDeJkDOE3wo99MMuhYxJ7I8ROZU2vfzetqceVJCzLzJsXyy7tdmtfyzKao9SqlGB3uCPM7fTuV1ff1ffmIc0TI8d5yKrtrt+/TzyrAOT3/9a2yApQxq4baEyV5KaOPFNhlX6e9YQbQ97UJxL9m37urJ54atd9dMV3unW85kkK1dHyuQM1RxippinWN5rdJ0UkKW7gxdjJ02cIYXJ9l1qVKXdLiWTS+KQR/xdArRTEn6d91D691cbMBK5yddUjIhF2gaRo+fPwEb2B3e8mPfvhv+eLzX/Pehx/Sx8Tl5RXvf/ABf/DHP+Djv/VHXF1fc3l1QwqRR5szvLOkDIyRrmnpfMNhFFwUfMq4UvPYiJZbEjGYZoU0HWO2CC1eRlwa1Xrm17Srcy7Oz9le3ZCGHRIi3dkj/vBP/gF9Tnz17DMwDc3ZGaZpiPtAthnTQNt6OtNwdv6ApmnoB4sZI22nUTTOG9abM1brNc4bmrahaVZ06zNc05ElFYbfOOmVuZRd0/dV9cpqZKompfJOTS4iTIGS93N01N219G465F1ZsFxHrwOKi9+y3L9P73kiNyZr1/33f3skZgXQ+mPEaBi1qQQCdgEeq1PqmwHGv6HSGa8XSt+o/RYu8S5NxBBlQ7Y91geaBqztIDUQGuQwEsdXDOM1ff+Mz776K16+esmz5y/4sx/+mK+/uuKwzzhzztnmuxib0ALNO2JaYcQpYLOWJMqSF2OcFFFrtdC4hszfP9Fr6Ocx5fBfE+xPm9BMN68fHwOseZOZwWwVyoWUjZRRT0ufOQyJIUoJaZMSPnI/DFwCxd92uw8oanudOaj+YxZ/f7NWhdcUKmS16Hb1LJz2bxkqqhvZHLNfgeFp/ui02aHEDNbMyt4kXBe/J2/qyWNnMimkEvZawt+q0KzXKOdN1PFWE7WdOVHOjJK2iAgR4ctXO4aY6cfI+VmrCf+SGPuAs4amcVjvkBTZey3XYL3Fm1r6JWAA3601MtwYYsw432AbD3lFt97w4HzDRw83vHdhCTGxywJJWWVVWS7p5dVLlk0lokWyUQ4rtMaircdJeW6qRVom0F+wJeMAN32kaQKbzhOCWnhTyESbaLJgrOe8O+PB+Tm7PnIIkW0/cNaPNM3Iuo1HAtpYB8ngHLjO8P2/+z1o9wS54XL/JTEdJmbErutIV4ZsE2b4FNgh9iHJOHZs8cbSGE9Ly0reI5uR6HYYuwb7IQaHyI5h/IohX2HDFW3KuPYC59d4e4bJZc0W0ieLWqrJkTT2ypZqLW7zANwBMYLgMaGFYUfcfcmzV/8K8+FPOG9f0n2/47/8R/8LT84e45Lh8198wY/+7Gfsbg+knPFZw3ythccPLuj7AYyC1DEGCAbnG1y7ZrfXsiXWCq6DQ3vNkEZuPruG+BXvf3jBk49/j647J+x+Dqzpzv4Jh4sEJmJyw+gf0Hz7Q/yDh/Dhd0j2TMNOY9CyGAGkT8juhuHVK8abW8Ltjri9od9tGQ4HDvs9aUjKKGgt1vZk05CtI9tExpLigORECoaheBZt09CdP4GuI7cttvEY75UVWAxnTQsykHPPi68v6f7q/wQ3sume4S6fsu93pCysu4d4oG8Th8aQR1hDIUjQfSYWhlZvmimvCCCmWAp3v5klT2UJVEX7zcfNSt5fp9X9ZW71vhUoylR0XPKcdn3aSiDrnf7dOa7IvWo0u9Mf7u4a9+29b4vUOgUqy3MqEBLUayWAOAghkUuph5TmEgMxRrKbyw5I8crrtXwxiJmaSXI6MPc80WvaqTX6P1iTpRVPuwJzRJRxGFcUEN8tPMPFKCiaMmGt6iKAhl0bT02z0BOEWh5IfyI5FXmccymLI5o6klPpl6N1LYmkJlErnD9c0WTLqrdst1vWjeXDh49ofvDHfPL1F8Qh8urr57BeY5uGm+2Of/W//x988oMfcPnykqdffU0U+P4ffJ9Hj5+wOj/nyaP3WZ9taFYrbhn5cO2RVni1f8G43eGdMnqbUcMzbTb4EOmHkaYx+FWLScKrl8/Yxshud+Di7Iz9bksaBi7ee8xtf2DIETHCq1cvOVs3NNZyu91yuL2BDGcPHrGhwzuPd57z83PeW61pOkO3MqzXK7pVi7UwjgPOdzSrDX6zwTQOoiCpGqk0MkXnsuZnSyHTS1JKZeRUQHAElNzLOY3YqWRUs/Hq7txc2M1/h22WSXN7k75512B1X6u4YDKyTYBT9ThZeg9rXUWWHkWnXlpzqnG+ub2dDfW3PqJvB4pHglI/AO4O4n0Wud9Vy0aABskNedQNxsoIaUeI19zcfMXt9QtePP+MP/+rv+TFi0tevbrhxbMtKTotGm4TmL1uOQIptkXJTJNvqVoInbMTRXjKmVBCmFjYe1k+/0lYT83leFOI7/Lz05puwKJMR56ASb3z4rbUhal/V7SowDXq/h2jAAAgAElEQVREISQhJmEIGpo3RKX/L5JdvRH3dPFtQPE3XfCv8ygurvy6M0++u/8a7xJOo8ZPi7G6WaWUjqxmdcNbhvct+079TihKuOj1Tt75HDBz3L/jNaZH3On3ZKGt7LJmwokaekoxZtn59zQ/jndxfY/zPYLAto80buBqP3LWtiRncCnQWEOXhSYLzluGvsdZS9e1OB/IAcAQXA/W4dFEeWMKG3EWJGl/msay7gxPVp6rRtgPmZASNldwN2V+AiX/aKEkiFpgpvwg0DwuRFl3bSkPUePl6jVDzBz6wL519LEpc0XfTRJhjFqzzbqGs9WG1m8xQAiZwxhYDSPDMB4JaE1FCDRtpjtvaDrHKEJMGkJVN1JQltQhOnb7Pc8u/zUXD/81K/mH2PZ7rOwKzbeOhKDEL7hG6dnNK6LcEOVWSzbICskrTOqQaLENWFGyH+PcpLQb1JCPZHIYSeNewaNz9LsDbu3BOQwNhgH8DrceefTku/yn/9n/REgXYH6fjz74U5pwy3jzDN9c4XyD2D1jGEkmKAAUGIdIFlWEJUeMLdTskml8o8/loHEGZGB/dY2XPY83e779n/9t3v/OP+S9j/8BHM5wa8A6+vYxzj4CiYjpMe0F/uJ93Nk5Yh1xuMHETDtGbB+Jhy35cINsb4jbW8LtLeN2x7jdcdjt6IeeQ98To+aPWQx5UKUrT3XGMikoWGxbrxQcTat1D9sW27aYxpOsQSRNYME4h3ctYxi5fHmD/OT/IdiRIDt+74P36DYPyOJU/uYDOQcaUZIJG4tBBDUkWav16OpKrQbK2fD8OhKv+z6rkSZvO+7N7X7v0gnwqt6FWjpqUpzSySlFli5PN+oNErln35Pj3O3TPt33NKeW/9NQ0LkzUjyMC5muBx0d+05eNXN8bRHmGndT1MPclxqKe6wXyGRkniJIFrd4HQY83itmz+Y31Rf/2pFrxigJlJS3bFWfqHqJskJqGtHpfm0QPX+hD1SjR51LU4pKVqKpMliAss5q+pxe03tHEo1Ay1nwrsNiSSYTkkZyNN7CqmW3U3BpnOdifca3nnzEtj+wjwG/WuE3a1LOXL54xS/ML/BiWLmGfQhcfvWU22eviNawdh3Oe5r1mg//7t+iPVtx9uAc57R0khPBpERMAZwj20gIO5yMHHrNWfQm4Yi0XlivPb1x9KWkjhtvGW6+IiKkccfF2tM1nvEw8OWvP8Pj8U1L6ze0uSHnSEiJdWs5v1jjG3Be6FYtxtjCBG1Yrc5o2hXWeuaJlst6lDJ/81QKLkthJE4yEd6FHFQmWjV6qPFdAePxnDrWWWEGXNNMeMscnL9fhpOfniMnv5eJRW/SNc383/rpa7yKp3fS09VDbmaTbYlKdLM3ccGMenx7s/jvm+X0m+ssvmUAf7shqq/rxDse9rvshwFjMohX1qtkyWlPzltSvOHm+gu+/voznj97yme//owf//hXXF1t2W9HJDeq5DaGbCKZA0Y84LXgs1XPxPI5p6lmZlKbVBRCs/iudO3o+Y8st2+wkp6GSt7XZFoYx5vL8bVqL47BRN2QYsrEpIBxjJkhJkKslrxZUa/05veP/QlYoir693b72NK4mKP3WWuXx9UbngqV+45/Xbtj0DhRCo7AYgl9mYHdDPjv16/q5j7blJbXrsaT0w1fDCXK4ViheZf1XemYjZk3z5xL6GnOyvpW63i9JdzDLJSvjKGPmds+cL0buegC0Rt8DqztNOkwxmnyvnfEMOKbZrpXiiMudmSXFMAYnU26wVSji6HrDI9XDSsfsRYGMk0NWamEPEX5mpS8mrgoBW6L5lea4jG1toD9CbxX8KwDnhL0Y6QfA2NK03jlLCQLQ0x4o2GEm25D6xusgZBgCFpaZBgCZ4vxyyJ4m2k7y9mFx7hUGHU1L01CLtEHYEJiMI5tP/L0+S/58L3/G2s61vYhrX9AtpYsWsZBuS20ZEJmR5IbouzJ4jB2A3QgFolJwymNR4zSobNQljSUMpFCIIWh5NV44jjimkYJJ4xDJGBcxK4aLp78bR599CHGfRvjvo9EId38irjtdVxNQkjEHJHslFxEIIdAtq0yKadMt3aEpKFivkamlQLzMdxi4o51l/noo/f5w7/3X/PwO/+UzcN/xPDLX+BWEUEIzYZVXIHZISZi7RnWrbG2I0dB+i02ZNwY4bAl9TvS/pa0vSbstoTdlnG3Z9huORx29GGkHwPJdHjjsMYTJKLpCwpscxyJwwFyQuhwTYMzFutajCveROdIiOYWFWNcElPG0jMMO5598QuSiYg3fOc7fwtnLsjJcIg7shlwOdHESNdCrOZJQetvOYez7khhrmt+MqQsE9+LPKl/6P6lH35zA9yJxJgMkvcpSDKB5cWHb7j2XSVs/qbKogIGmGVwvcEyYqZ++C5PcV9I61F/j0Be7dDbr1wV3Crn62ezuJSJ2Gm+7DFwnTtR+1fX7jt1ATn+Z9ZDvqEu+Lpw37cdf3fcSr8mPeFk/0ZlvArsud/zY9TnL2y3dQeu6kyV7zIDQ0kaeooVJQkp16h1AUk1LB/1PmKIRiN1jBV8Y7HOlKgfQ+c73rt4jLcNHHa03Yr1gweMIXDz9DmXLy95sN5w3m0YbWLcHejjjm0Y8WNSINW2mPMOb4SLRw9Yna3ZrNYapJuFOAa68zXGJHIYOZdIDJZDUrCY+j3OGbysuA2JIIaM4bC7wrhW94s0IGEgpkR/u+fV0xd4cVjb4nB46wmi4fa+6VitW2VCJeG8JSYlNMQ4utUG51tqDXCKvkglzJMaDl/rqqJ6RlIAmSRqjWbSooTZ3bk+r8X7db7lWn33+Vvnyb1mozvHLnXoSQeT+t19YbLHfX99H8pvQxnHkp845SYuw00XBv9yFGYBVOGtAuCvHYb6Lgv9d9f+w9zboCmKJlcvC4Sw5fb2M169+iU//ukP+clPPuGzz57zq18+xxph1W1YrS5o/bnGY0ssISAZkREkgPVHoXoi6kXME+GJLd4LT+P9HAPPmyf+aTvdvJbhLm99fyX2+fUjU34vbl1r66SUGUOa8hT7MdGPkTFCFq95Y6JWuukysngW84b5VfWAAlaPnt2Yu2t2+UgiR57U5YanB7z+3DvdOBE4b2tagHU+11iH8ahiW3NWWQCr0pfj2ocFjU/MVgslbbIeHN83TUoRd61L5YSlxdsYBYHG2lnE1DygGNVCKBnsHFIrJ+N4apmf/jYGjCflkf2YeHa5wybhvHVsPDzqnDKgthY1qiSctaz6Hu89vl4iJw37kQRGsMYjtmzmQVkC28ax6TwfPVjz6eXIS5fY6T6P1jxazAOYlS1rNNdEmD2NaNFra21Zt6YAJtE+VJpeY7Di6ENgP0A/tKSYiTFjbSJZRxwGOtPQOGUz3aw6vHXsQ6LvI3sX2DcDTxbjF5PQmDVN6zk/d8R0Q7Y3mO6Wxm4xQ0aiQ5InJMgrxzgIVz+Cswf/G99NP+FbPMdv/kdcs8Fah7SCWIMlYdIO8nNCvCHFhOExXZfI9kDihr7vSfEBbfeY1cVGx3mpmOVIiiNDvyOPB3zj8M5gfMCxh9iQU0tmje0eYdv3aNc/0HHNgXF8Sb6EPFwS4kvG8Qv6/injGEE6MBfElDBJcFhi7slEshFc03DoD8SYsBI5W2/I8ZZ+d8nV9a/5h3//Y/74j/4ef/J3/2f43n9D3qyIZuBgf8lZ+3fwXvDNNXxxg+0yZm3J4QVcCzI+wHYPaYcB6V+SDq9IVy/JOyHeXLF7/iXD9YHhZs9wu2d3c81uPDAiROtwqwvo1phmhbfnahSSiIkBDuq1y6XGrHErfLuhWZ1BBJNrPm5EyOQkSMwMY8aZjPEtq+YxTy9/TetXPOo+4vxbf4/D5S1pu8WZHc16g+177HbEPzZEjfJCxOCblqZp8b5BZFQCDqGEzdZomEJBVupoFpE7KWdV6UEWdYjfIgqXcPC+fLflxJKiPB7hNjPnRFuDGh9FFeMafmbMkXlsce3lnK2idCn7Zfquelcn3uMTMTtd/QTfvjZy5R6D633tbcqrc+pBiCnjGy0on1LEez+ByZojPXsd7t5DjYnznnTPf+5p8/s59tCUa/6WDPfvpMAb5sm2mB8ToJb64xam6doqM6aSTKkh0MxpHdXAmkqJkSyYJIgtYafWlmuUHxE1+oiCH90rXNnnQUwkmkQ0ifZBh2RLihmTEw9X5zQ4Vq6BtmPTrQltx/jkfQIgIbHtb5F1w+OHj/Cu4UEONH1iCCOHceBX/9e/4df/5t/Rrjs2jx7w+L33sCX8sL0449t/9F02Ty5oz1d4B2d2RYOjv93z9Jef4MmMH3zIcPYBTdtgc+Tpl5/xrfMPWLUtY4r8ux/+CG8cOWTyIeKiIRNIZs/Z2tK10HSWi7OWtjUYq3RcMUdizIhYutWGs/MHZNEIHJFYcqUzOQaIgRgDIY4krHI7AJBIRLIEcg6aF2/zZPbJkvU1cLfMmizWdZ1bp3PsnXXi37SZCobhr4NdzPGCm3W1CgCNKdihlIwxftLRMLWOrkHLfr17P75xGOrfLDi8e//fuWcTVPjEDXF8RRguOey/4umXv+Kzz77gl7/4lD/7y59zsx0YU2b96AlntgNJJIkM8YVakgVStFi7KmUPBJFASjW/UIW6cxYrc7gIQIwKIu1kQZDjfLDaSaoFpQjyI9E4bxd1UplSomP2WB4vpqmI7dS/eoUlpXiRzuVUzQPPpKT5MCEo+2lIiTFG/S5r4VqHRaqQ1YqVUy9k7tQd7xwT4JoVgKN5UZQJPfTd5sdvMq/vgMx3bKLamBoCjOCNmbx0WWRe2MxhqIY6Z0BSDUereYvc2aDvDV0om1heCNP7cmqm+1tDtrpp5uqlWeQ45ZyV1h8NBZrCt4zBO3dkZPDNPJfUwqYlaGIWrm4PyNBz0XmebDpWj85AEjmDMZ7NZkNKiWEccL2jswbrNQeyMggbSl0tZzA4OhqM87SNZ7X2PD5bcbY+0LYJQsZp2crCaFxrBpaS5KbkMVkNZy0vGVUsUil5YgrrdLFEl2aNxZXQpxgjY0gMQccsjMoMmxunYMxb8Jazbs2qafHOIWMqzLCRGI5D5FJKJHdLwoNb8eT9D9iOnm0vbLfP8d6TI/RDYr02XL/MhFFYnxnOH3zM2cM/wW/+EbgNwe7IJuFYKztpGJDhQNp7Yu+JIUE+YEzUdJ28xstDNqs1zrfEGPHGHpexyZEwBsZhwIYRXAviSP2HEL7C2Gs1cLQfM9pAso6MxUsLMUNIrNrIixef8eyLv+SLT/+CfnuNxBVGNowhgPQYCRibybktS91wGEaMVXCak9Af9ozDFSlc88//2T/mj//+v+Thx3+Hy80azzParaftMw+lweZbUn/L9vJzzpKBfQP7FW1zRh5eEdwNyX6JdQmXAyb0yO0th8sX9Dev2L16SrgNDLc9/e2em+trDhKQxmPOzlmfbWi7M2yzYcDgrcFIxMSBEbX0h5QYx0CfD/TJ0qeGB+eeEHdEm9lL4Mn7H3BxccGqW3F9+YpxPDDGSEiB1u4RidwOa24/+QWjbIl5D+xYxw25XRFWj9hFR2cOWKPEFzFFzbkSMMbhbUPjPMZaYoglPLEugYVx8KgV5eOOcjafd+pJEphIdabPJi9PXVdzyxQwbRYELRXIleNfB+Tua5PB9PRJzH20+jWMVeWb0wPv7jmTl05/3zVI6l5591l5TY3Dua/1GhWUW6tlMdJIKVQujGNQQ1aN+iiDUz0aNSrEYBB7IvdZ5sy/fQSPFOyTMxQPvxsoft11j56X+/ez17Xpvcrdz99mVF9GEgkFFIoab022mqcdAxhLtg7n/TTGYynNoakKruSJ6gbivcfYDi+ZIIldCoQ+IgJdt6bF0aw8m2bFddyzf3lJdpb3nrzPTb/nzHectSsu88jtyxvt10XH4bADY3CN48nmgu3uhv52z/bZK/abF7TG48QRJfHFv/9LuvOO9aMNzVmrekTKbLzn6edfkHOiWf+Sm37g0O+IqWfdGr5zvcF3K/p+y5//vz8ih4C3jifnj3jv0QNoPL1LWL/n7PyC9fmas4sOZ6N6UF1DRMt9OeNZrzdgGiaQXQi2JAViGCGMxDBqCS3fgtH0knEcCHEkxpGUlEDNWLT8T9mz1eimdXrvN9gs11/x1C/W/H263PE1lvwdy71fTv6G05qed9tyvc3n3Tc/73jiFyCRqZSdgkFln7UzIaYxzCQ3wLQ+Tngy/jqexfuA4jcCa6dS5B3bO3vJivcJmfOnKjmWSJ4GhuKIqefOgjkWsFOrqBlqzLSGhxq1VGQhhC/Yb1+wvX3BV1/9gp/95Cd88fkzvvjiBddXexJKVuJKroduhkVACxP4ywKmWCyVs6QyCtoZ5NX+wtT3CY+ZUhNvcmffBwmlWNd0g6ret2Ibnd7NsoyiLI6pC4jFZyzuWTfneS6U8MlSDiOV38p+CiEZQjLEZIhZGVAzorX0irpu0Tyayra5fJqjuVHevSmDMk0xOV6qc8+O/7ojQGZjjF5rGtbFpvGGOW7sQuGQxZ0W55+Cyun4avk2ZU7WJPvl9ZdW01Lyoc7xMvUnT2POaSKzqdEdmDJKNQSiCA9X5+iE4KoyU+LfF8qNLMZNFn9DyeWobLbFOls7uJQVtuRo1TA3WxP/EQ5D1DyqJFjr6cbEuRGSE9qYiLFTABVGRNYaCi4ea3wRiIJIwpp1mReZ0UkhoTOsxPNwteLxeceDQ+TlYcAmR51BWZKWIDC1RpYqBxYzeWQXL60oXJm6tlRoO+2HVaZWtQdoXcJDn7k+jErj3mRcCpgE2VjGHMBaZT/tVtjdiMREGCOHMRzNNcmGKDucf8zDB9/h/ce/j939jMgebrTotLEZ2wjjqGD20eMVf/Knv8/77/23dKt/QuRbGiWB1aAVEQWE8Zp0eErY7ckhI1nDpLI4lV04cJoYLyKQDmSrJD3YwqIZBog9JitFfYnI0jzKLNgsOAOZAWODWr1tSx6z1i+LAzK8oN8+5/b6ipvbkSF6UnZotFePSNTZZbpixCgEWiYiucJ9GA57Gpd5+N453//+P+bxxfdo7GNyjLjdFhsidhiw6Yqx3xLGG9hekfseEYfYFrHnSHuOuIbkHE0LMY3IeKC/fE5//ZL+9pZ+3zMMkZgCweq8TaOC7CYLznmNIjEOXPHWZxQwugbrW/CREAM5jaRRlSOLIchA9obm4RMe/N4f06zX6gUZIyZnbAzYFGhsRzYekxKvvvyM7EdcI2zOXQE5qrg67CT4rUuY6FBjZkYIxRFTrdD3wMIKQJYybxZ6ixOqzKtg83i/MBiscdM1jncxZnk1WwyLQkQVakcyf17Li35S8/Zm2TO3PDMgn2AkM20GJ88+/dyj1JSNc5kmcfREIpPxbLm3L59tutQRmLzr6TBG6xcLphBu6Xi6wqBba6dVQzTI5DE21dN4tCfVn3lspjFm7vNiiI5I6aoRc3rU6bj7lL93B33f1BFQFeDlnXXb1OgoKeWVkqRJj5DC7mMp4CIXEiBTw1Z1LaasBDcmRTCu7K+GnELppwLL2WZiKNRo1LE0RlMHbJNoGkMOkKOg4fLKIN76hpVpMVmIWYghsbKO9aMLzj54j7Zref7nPyNuD2xWZ+RHDbkPyBiQLrNqzjDjSNzvkVKCCgkMYSRyIB4caXtLPu8wknEi7MmkITCGwNX1Ddt+jzjBNZbUbbi+vSbf3rC7uWGMBpO85irale5pFlojrFaObuNp1g7rS4oNqheKiOrHvtEoBmPUc0+JGpBEzaEYhkBKZW/BFCK1hBBJOWhuPmBdg1VspER0knF1D89yNP3uN3Qdz9tvNtF4h6m8zPWewems3kpROEvobdWv71zclHMLVijL1VhDDTfFlLqKxhZHxHyucmOwFGCTvvtN1tg7haEuQeJ98cCvOYu7ozkLpd/Ek3OaZ6dgbgZN9RZZMnMKv5vuOQtgg7Hq2ZNswTQ62OKRHMCkkiZawF4I7G7/jFcvL3n69CV//hc/5t/927/k8vKWwz7w4OIRq67DWEMIgSD9AjQ0hY2t7qoF7BW2NlvcwpJnYHIfQNEi7XOIKgVUzQBuBoGTJ6oUma1KsJ6WFht9OXe5CU/gaZJ686Q6sYYaU3K36jhJBYsKDMcIQ7aEXHMWrQpAEV34CyXBFSW9inpT71c2zuVsWTp0TsHaQqeH6rk0FOKXmRXuqE01wsrYZTMdt3wX91k6heP5WIHr8XyTqXDzJGeyLIoIy8zglZnKBUu1IE3vCVWwSwFbyaKhGzmpMoLM9QfrBrkAeSB6TTdBnVkxkjLLTmLbdSMryia5hCyJKoEo2YktQl5KHp/OTQ3vmYbYOK2fWBzJzgRMKUdzCBGiJWZLtIm0GXnPqwg9z4kxbHBjYOycKjo0GGlxtDgLkMkp4m2Lz5rD1zdazoNs2aSGJ6sVHz5a8zIEvnjVY0ZfxlcZ1jTkThWHLII3Due8rrkSIqN6pUWy1vsTBFsLXVvAGHIRSUYM3rSQYLtPPL/t8W1Dt25owgBikWQ4hANiLd16zfnmjObFDTkkRjuy6/ujaSrJMeYtzerbfPj+n/Lx4/8EcXuG9DXedoxhBzbTrOD6pfDoYcMffv99/rv/4V9g+V+J4UNCdFg34lgp2MqBbAby+Iy4/znD9kAewYjFNY0auuq8aYSAkHPA5UQyGedXWNMQ4wjjHsYDLo9EIBa3Y3Y7HTtpMakhDz02ZXw0mPacfjtAjhhzIFz/nP3VV9xe33K76xhii+BwRjD5oEY1WoRHiNxoWaFkwQxlKxDEt1zv9nz8oeP3/uBDvvvdfwHBIFfXnHVrrLmFeIOEawhXHK5uiLs9bn8gXr4El8gN7FNHs3lfS2k0Ha6zhGHLeFCv4rjfM/QDh0NgP0awkFcek1okHSBnbMpYHKmUbhDPZOxRolEHTYtJkTGW9IQQGOOeIQhDuMJ1Dd/++A95/4//C0ZreX75FA4HXD9i+j02j4zuoa7nDE8//SV+1bC52PDg7GOyGCQGTE6suwtG9N6+TYSx0bmYM4lecyNNYRU0FmNmwLGUafWzqd6c1H3jlBRmIRCPv9FarMVgpGur7gFFXi1kr3WOJUxTW5Uq92CmaMM89UcWdypK65LMppSkmva6uvPUfdIu5XzZo45AlXCkj0zYyszjIct9Yqamk8myfVe3Wu4vr4sOsdYqU6QRvDekqJ7GrlOPv2kajDGEEGHTlr5W77GSGU1EOMy/1Xi+DMs/VqwnoGyOVds7uPqe1/0bqHv3tmO9sWz4xhyNV9VlKmYzFo3isJYkQswB53QGmhKiinFq3CeRTQbbgNG6rMqOnZEUwRh80XlAc/Am3R+KYcIW3aSS1tlicNNcb3xm1VkYDSFk8hBIIrrmnOHcr1iLZ4gjl9s9Z+uO1cMzuj/8iG99+zuML28Ynl3x5MFjzEcd47NLDs9fcb3quXj8AZuUsS9fsQoWW0rhuJhoncMJsB0IOdM0nmzg+vaax08eIQgvr18ScuDJex9w8fgRpmsY5cDu9sD180tW5w9ZScPKKjGbiMXkTGvg4myDP2twa4s4NVpITqSYyGJoVi1N22K9J1VjM6VcRoqFSRYO/QhicK5VGJUChojYRMyBKEo41zUtxhuteZ4DSMYZJQysPDnGmsk5ZMyS+OYuadebHGHTd5P6PcuFOhWnWVc9DqamV82mkyonZTp/YSY7wlZHPamzi+o1r4DRllQh9SgqctYUJjNd0rhi+JhqJTHp+ceL9c3A8W+odMY3aPdhzvsOM6oA51j5NurLMEVAaqFRY9X1LQgxtthmVcBbAtPjmhYrDXlwXN/8mn3/Fbv9F3zys0/58U9+xq8//Zxff/IFjd+w6s55cL6iH4LSuGPouo4YBmpwm4h62urD6D4hxTKoQrwK5UngFevk6YZhrNwrdO8LJcSYaUJNHsTFUKpeNQt6M43ZvCHWvEEpSth8jdNtpAJK/Z0klx9hGEbGJIxJCCEQo3ocZrKTCfUBJWdsoXQsAVdtxVY3CYFp8Uwgdn4GZ+a6g/N3nGwsy2eRwhCo5821L+/xqi/H+6SdxsJXIHpklc91fJdCSS/snbu7CS6Eju6TNeQFjJnHqbLX3tcnqiGh3MvMX5ZfOgfy4lFzLhbXVNaT9bgSdjr3BVKIynjpUea1RRhWCmEKXjYGJAl9GAkpsF5Z+iEQhsgQAqZLePH4YNg0GWLASEPrM2RHZV+NqSeNh0ICssa1G7LvyOJVMfCW3BriyuJXlovO8Ki1PGxh6HsyDnB457UuZBldb8yUu1iBt1ijYTvUDacW/C5KqFfGy8kjn4UchSCZgcQQAiFGYkpk51WRi0KIcH5xwbpbc352ji8gOSchxHj0/vb9AUZHHA1N2/Plsz9jl64ADdXtw15JYIznvQ8c/+yf//f80Q/+OXb4l9A+xjUCPtAPnq4JOAvOdNxc/gz2LzBBFIyZUpNpQQJSk+WrTBMyEiOJoDnKcUSihjTmTCG6iRgXMSsl9kG0tEYuc0WyYMYOCQbJe2J+yfWLz/n668/5+uuvubraklKj9QHFYEwH4sjZcjvsMDJijNMaampaRkiEcaDzLQ/Pz/joyfuwvyUzkq0FecgQRly4xg4v2T39CcPNLeP2wHC1w+wOCJlkhZEV/nwH7ZpoPbaxiEQkBXI/EPeBGDIhW6zvFKzmTLNxPPBr9XqaRveG7DENWN+ScoIYySFCNjjraZqWNrWkPJdOcu2hPJvn6def8vyTH+LPHuITPHhwwe32GX1vcPEcx1AMGkIKAexIGC39YU93ttF5aw1jioQYySkVBuZCO2+dlswwmnOVCrOsrn0Vz6deLjU2LWVLEQZTk0k5utOk7MOvAUXTNTlWxqfTj4xglD1D+7NM0dBABw0fXLaU1Otd+7m87t0+1O9mAPUOKsk3bu8azSIipXakaNmLXMtlzDLZGDMZKE9OngYZs/8AACAASURBVIBjzrZ4GmHa6Kd3uNQY6v+X7/53Mwa/9WZm/UDJnCxWFrmGZuFMQBAjOBwp54UhYW4pRUw0ZOdUOk7Kk7aca8TUpIww6aFofcGusYQhYfqIDRnxQg6RFAUi+LZhtVqz6TY8aTb0lzvkZ8/hyy03v/+c737nW9jvfYcYE9/63u+zz4Htfof75AUPP/4A2zYM/cjLL59q/51hR2AMPeP+QH99w/r2snj8MrgN0joePHiPD//w93HdhkcffECzXvPV02c8//IT/GHPOiWcgZW3bFrP4wdrbCNkEmKE7sxh22I4FeWtqHnMc1pT1b9qGZJEHgfCMBDGgXEYVD5KqeftFOTnJJozX8vCLew2k1HAmFn/MX6SB6+bGMvv3tnD9qaJf+depwefas1vushShlUj/vQBxlTDuUOt9HWG6Wfz91WvK3oTlns6+k7tbwws3ova72k6Ed7w/dLTSA3hVSWwfKHWIgp1cipoXiwiK3KKk4eMZIjDjhx7wvCKZ89+zrOvP+Pzz37Nv/+zn3G73dEfBrrmHFvycULIBUxV4pswK8lCyR+ovc2TTJ4dZ9U6WzaJOj4L213dMCtL/8nonIzna0KFzTQc0zVZ+MSrOJMKQU69iFSrrWBMS8011FDawvKYhZgh5kzImZDGKUxs2tBSKoxYyw4VsFgtnlbj26e+nXoDzRRsy2SNluNxmC9fBxtNUC/PMpGx1D6cALL5VubO70lpKl6o03Z0zKLPizcy933xTidvriz+f08f5ue0aL2CWSjV56+AsYLcZZ/mvJ8aww4TMDDFGFCBbV78FIu4dXZ6pOlzyYuoCiGnfMfaPAl1jNZ/SlbJNkSFWRYNSX35ck+bO9Y0BFfCKwmo539AsrIMh9FQoiCxVpXelA1JHM52iF8T2g2s1nSrDY83gQ/PMu+vd3yxDUhS8OKsmzzPOuwOBYMKDqsyZUo5G2oUQM7FA26Lwq3xMNZo6FIuLMbR5pK7qD/eOk32RzDJ0I5BQ5CaFu89/RCJZMZwDBZDFuLQ8Pz5DT/75Y/46DsfcLt7zvXuitvbPc4L40Hod4k/+tuPefj4v2K1/qfEvCGkvXpBTauh8rnB5BEZn2HjJTEeyKGyFKulUnC6zou10tiSHF/AYs4RkwzkRIoBckSkMNiVOZBjpMmxmidIIiSTSJKQaPBJsDmSwi19/zVfP/uEp8++4uXLS4Yx4V2LCMSYMabDWq2BFtOAJWnOKoYUk4Y2iSGlAAm8bVg1a/rbK4yP0Dpy02of4oA5bBmuXjLe3DLuBvqbEROElEYSEds5GpsxTkkY+r7Idsk4HNl15KR5m8Z5JGYNrXYWt+4wMRFDpN/f4mLEdSOtOydjyDmRkxa+t87hxON9Sw6DshfGSIw7xG7IOHa3l7z47C+4ePwxq817NOtGF5szWNfijUPKNWHQNRgi4XBgvdmAs2TjCCL4pkFMgxYTn5WmXGrG1agKNRhUdsJ7tuF7tuVTw9Z9381/pyIainxmKeeqt1K/kxPZd8eQWhhmj72EdjJ+nXanBBXM0R3v0GTx791nmi1vIoU5861KmZz8Nkceh0kZXho461Y1gZTlNZY9NIs9RH/mOrm1X3n67m3Q704Y33Ls3/KU/yHandSlCUiYolzrCxeqkSFP0VqaRiHTXpxkjr5aRsdUIKJgRHkXpiif+j3L0Ma690I1hueselTTNuSV1j4cozKM6nq0WCwShewge4t5uEaSIGOg//RrDi9f4c43bN5/xOXLZ+xzoB8D55uOvnW41pMaR/fhE7x3+MbzoPWMhz2EgBkj/fVzau1mBXNWQ0Sbhucvrgg5Y0LCGYfZH2j6kQtrabqGzjes2ob1qiHZQEIzaPyqwTaaJpNjmso46bU91qk+krNqkraAxRBGwljAYj/oWKO6s6YtCFEyh2EonkJfInpMCUE1OFFDV43cqxHuFUTW91fe5JGR6zRV6HUe/ap1zrLkHvBnTj9/c6t6nDk5782YqIBF5rXNokSGEtu4xd/m6OxpPeiN3ume8BuAxW8aR/6u13xtR4ti+7b71k3CmIzW8qqBpBFBi31KKc8gJWbFGAcSqWyKKQz0h0v6/SXX15/yq1/+lC8+/ZJf//JzfvGLT3FO462bZo0Uy4fkjDKW6mYbQsDMBnkVDpMc1x23gsAlM2YZiPm/9ZQiiZaXOD1F7tuYZA7PVL3/GPzVu8y5Hctj724deosCFqf7ajiiiALFnDNJFCzGnAgpkXFqxayCNqXikSnvS2o/BJxSUdul921SDE5feAWLi/7d1+uqVOT54XWfnc+sIHmxZx8JjdfPzfs/fp2wEbNMvD+xmB8By+mk6SFPQZ9ACWcrdQHlPmXsLiuYMaZARDv9PR1fFJ6l3JKkk3g5FhPZkTGTEUAyuFw9jaIFdo+GqqL58o9RYa9040DxAMeY2G4D+5Xj0DnGzpDyQM5CTIYQ9rRxTYoNYgWfVElXMhpDdmo5a+0K/IrUrJCmw7crHqwi760T721u+cppnSxKCKpuYDXGpCbHZ6w1ZVxKLmfORY7URymWzJLbXOflBNqp+btaNmYIidYlUipU7Tapl1HUm+y9R/pESjoWy5YEYvRcXe355NNfsXo8cLN9zs3uiv1hYH2uoD4G4ezc0zQfgvk2Yj2JPSJtAYuCyaiHbHiBiXskBmIQJNf8bYegOT7WFKBoXdGyy3uUhOQSHp/CzARYpm4uYdJWam44ZCNkk8qcKeExaSQNW/Y3z3j6/EteXV5yuz2QksH7YgxKOmcqwZdIqFUkyFJqTVoHIsSUsElliTeOcLjFrwzGtqQQNHcpJs3zGbOC5Agpq5U2JiXiahsln7LWKPtvGEnFHWWcV8BlwZhYwLUpofVKVAYRCYlxOOCzejJy5zHGqzyUwqgoThWgRTSFkigNGLtGDKRwYPv8U1pJnFkHzQOVx9ZiXYOzXvciooYZSoSYCX0PKWGdhtVlKcYeccRJ9p8EFZb9RPs0F72+04QFQCsv/R31JJ0m+a5cL8rPcl86vfdxiOlSbFcdwBx/ew8WUuNOCfd/ty7fufd8rZP9Y9687h2348+qgNf/T9efsefR8csnN0WfWMqc13tp59/T66IaqpeK7p3/zvc+UUDe9KqPZf/vqr0d5OphZtK7Zttx1QWEahCBGaTowq7jKQu5VgzEIlquqXymV6mRSAWETsQBc7h2RuvsWu/xXdLw734kB/Xgax45Wn4DEG+wXYOJmRwS3O5Jux1mP2C6lpvYE3LSaI31Y0JKqLfQ4dYdTeNpupZ2s2ZoHCYk2gyHs1YNViVeMydlD3fWwOUVMQwqz4ceMwSalPGuYdV2NK6hbRp8Y6cxwxls67Bah4lUCPFMJVtx1dPFZGiVnCBFUlDSmhACMUQdP1MdF5omEnMkxJGmaTFW2YBrxowpe/Np6HpdW6eh8/XzpQ7IZFBarIf56e6Zd7zlmDr1lkau1x7GvWXjpvNPvyvcFZMeV8lr7DTec9mMk7SAt1779e0/+tIZs8B8M2DUfiTEDiAtIg1Kl2zBjMXCmMCsQFowHucz0JFDT+ivud7+kpcvf82zZ5/zFz/8EX/5w19y+WLLbjvy4MkTnPcYqzXUQghQrHVd15FyJInSGLdNi8FMSeWpgp0jdDCppov+39/qaerVeNMY3B29CuqOr7cAfAWwWVPBhYbeLXjqWC4gQwV+9ZkUFCTRsIMoMKREiJEhJrJxk7UtZ8hxLv8xKRtAtgowMKZYjQpZSt0ItYTtBFJqRurxdF/ssPWZy5jlVIiLFCkezaslYNTN4JiF8mjsFpuG3m4G/687rs7dlGblv6hCk5XnTi5kzEpMUYWhm/NOKfX9tOyI0ZgqOb73KUCsv42YEobDImdyVtCmflDCleIiH7J8v2RLrTkLNmesaF6iiNZ1Oh6QPPVNcmZIAayhcQ39oGvGWoPJliGNHEbYD8L2EDlvb3UMzYrrGyWrWOVEIxeYtmS3iyU4Q7v2ukF6w96dkeyWZBqsXfFk5cnnHV8/Svz85YEggRQE6yBlBTA1lHQuU6P5Eaa862opNhUwls0ppbmI9+SVNWCMksKMSb2mu8NYYFgJFQEOhx7QMJ2z1Rm326Cb/glYjFisX3N1u+X2J08xZ89I5pYoPSkZxkGvu1639ONL9rtPGA6fsTn/01IiJAAD3gmkgTResb/9DEIiDRACaGaW5nBPochWKbid82pgK94eiyCimzsSF3KmbGAiGmoURzBacD6ZVKjnDeBwGWTc0d885cVXP+OTX33Cqxc9h33G2zOMc2ooKGWHjLFKPuYDSFNCdiNhzDivsiGmgBmFOCTyISLdFa55jEkNcRDa1hGjI4aG7vw7CAPSJNomEfcj5nCFGW8Q02FMgzVOQVNKyo4rFvAl7DNjjNe89CjEUNaVsUhWg2IOPVlGEgOxtdjmDKwH30zKe5bluzZgLCEM+DZhvbA2lvHll2Qr+HXHIQ8qT/wK12lgvkjGuUgcD5h8wORE2B1Iw4hxjbLTWpCoa1BBcaB61K21JQTf4V1D13V4D9bOefLLfXjeR6ohiXvkzmxkOlXalh6Y+9rkYTyRz9Ubqop9PXu+trVm2m9U9Mz1R2tzRamVvEwTue/+b2+z12H6oF7gTWe90z3u/V6g5kXNQH02MtQca5W1x8qvmcI/loryYn9fAG0d82+u372mXPJvpd2NrnnNd4vPjP6ngI9MlDk80hrlAcgLBU2mwsSZLLEQr6mnJoPmAVrVGvIiXyMt9jiM1ZIb1pTlrGaJLIkoGWcNrtOomRw0KkATvVUzzBFcMmyy08FrV7DxnNHQ7QLmSgjDc17lLWdtx/nqjPQIWtPSXhjcquVmvye3nigJvGE/7ImHHjmMnH/wLWIY6Yc925tLkEDrDBvf0LpEPlxxGEZ2L17ic2bVrFh1HRer83ldSkSsyt2m7XDeTo6JGjWgjOUqT3RvBXJUnTCMMA7kcSSFSAyRMSW8a6b1nnJiCD3D2JNSpGk9xhmsN4U/QWWBglRX5HOe2YBZyqF5vtR9e54yC43X1Ln1DYCikbufUUWBufOdOQkHPb3TPJdPPYN1Tpd5sdCAZ4NuAeYneu4yWk2dSfYbLcz/+HMWv1FT8gtVYBYJrNKAKMUxRUFDArLfs9u/4tBfcrv9mp/+/N/yV3/1Uz779Vd8+fk1hjW2u+DhxuJtQ0qROBZKf6shWilHbrYDxijb2WazIgZRC7NAStVyq8F0FKrgut0qo5GZNphJsMnxxIZ5Pi4NIkf4sywcM5XD0MWUp71hcc15dMreU5maatHxU0rsCd4s8FgBw1l/YqbUVFRCmyEnDsNIjOolCUmFxJwdNl96Ck/IlfbbzsDOOBUMk3m05JJZOzG/3duE2dJUNtjl/nK68Sytum/LG5mubwtgfI03sf6+z1NZKxienikwjYUaj0pMuuGY0Kc+x7LA9DS+RjsnljvY9x6jwqlio33QcLg515EFMcLcao1FV8B+krthYjmmSmWhnyfBe4/znn4Y1TNUQEbjHLvdyLNhZDMazlpT6lEqQ+gqZlqN6C75hRkk4k1GhkvGQ2A87Li+/Irb2xdc3b5Atjtc9Jx54dvvXfDd/jFfPr/l1ctDAd7LXB+NPphDiKanKO+PCRjWMGcRppIi1hhap+AoixI6DTHTj4nDkFh5T1PCZ01hvDNWiRE25w+wV7fIkAjh+E2PKbFuLSm19IcNn37+gscfRlZnFms3jH3GuZbNZs3u9op4+BWEn4L8AU0egE6VxXRAxmuIl3i753obSBFyLmvNKiiU+szWYb3H+UbBYiljMGngkjRZHDXqiPFoxAZIyuRwALciGwiioM/SKmFI3nNz9TlPv/wFv/rpT/ni80tibDF0eLcmpzBFIuSckBgxNiKMpGxLPxSYxVgUYSMY05CCod8NNI9GJXYQg48DVgIewW4e0Dz4CBc9bshwe+Dm6Re47QV2f8Pt7prwYgtuSyBoTpFxWOMJbiSMWn5CJBJiJqYqkEu+rtH8o7OzVgFz6onDga7b4NoW227w1pB6SGkki64133haY9jttyR3iyew6lakw0h/84qblaNv3iebTXlfEcmFOceCa1cQE5IHhv1Av93T4rRESrtWr3ZKxWtnSz6/05x+A7VEzjCU8LjfoB1FbtwDeGbP4eu1lSNDZwVH1J2oKk1SQtllAQh1D8s1XJz5+9M2sYS+pht3AMnrH/mN7diL8ebj7gNBR7I0K9OzZiHUaKmF10xqvqkaBHyypDSXEqjKfLU9Kzv7m/K7/v/ZjDHUSGprDRqbqA6ECgVqas2RvlUtEaKpCMFofVxb2DxTimQcRgTnctFPTo3GyidQN1+VrUpi01nHeOg1zcHC6myDM5awD4QcySO0vsN4z7jy+CjkxiFdg/v+t7h8+gr2A6sofKt7gojWPPThmv2uZ995aB1933Px+CHrRw8xh572cCBvd+xe3eJuAsPY0w89IfU8fHhO6y3kgevPPmfc7cjjSGs9Dy4eaFSddTRNp0amUgqqWXvarmN1vlYrQa4eRTV4Wd/gGo/xTsen1JPOOSF9TzociCGQY0ZS8cwqCSoiwhAO7PtbQhw05NcXJtoS5TZrO0YdHrWU2FF7/ZrTtf8WPe+N7XXnHmvPczOv+fy+dp9uaxbWmJqTWEJPKdFPhR11Ikhc8CxM0QjAGwXfPe2NYPE+K87v2pO4vBfMQ/42xX2y5kiHWtCDKg3iMXQoMQWQeyU7iAPj7SVPn/+aFy+/5MuvPuEnP/4pX3z1gqvLPSGAbwsoNI5YCpFrPgdzoW4Dxs1EJGMY0dwqCnV8USZh2rROJ5g+3/J5l2EP+qlU3GDMwlqxOK78U40HZpoHZTkt/q5zdfocDYGY53HdQAswWb5zM8NGfR5TGMaYf5KCxZCEMURSkjl8q1zAKGOCeq+m56jKSvl8sgxlBdDlXBFBnGBdVfLnjdiKmdfSCQBk8SzTG5AqdOoTzcD9XdpScTltd+bsZAk6Pn4mTZDF7xLiC7rhTMWFy/ypAGd64XOI6nRNKU8mx/fLZgkozWL8jinbq1DXMMQilNDPseqlrHN38jxaLcngTgluah5IMQxMZDAIjbdzvmN5DyFmonU8ePCQjz5+jwcXLavOcbY5p1tf4JtOPZT9DhkPiNnT2A0pHUjjnnBzzc3l1+wPN+z6a2R/wEXPGC2WxKaNdL56RorXmeU0qZa4+UOZ5L+ZgGV9/yCldExCjAWnIbpiRXN4ozBGDUWNWRS8lHzf+gYE6LoVzmrCRUrH8yemTPJaHiDlluFgiakaXizWtkg2hDCoQ6+/Ju2fweqSnKOGAvkEoxCHkTT25DQQ40jOHkNLias8/ikWS81ZrMpWfWFyJLvElBAiU4F0UhZBW9WyrMobBitCHG+5vv6KFy++4vmzVxwOGWct3vn/j7o3a7IkufL7fsfdI+7Npap6xToENBxSlJFGo15kMtFoepXe9VH1KJNJDzKZidSMcUgMBgMO0MA0Gt3V3VWV210iwt2PHo57hMfNm9VVGHBRtGVn5b2xeLgfP/v5H1DL4lj4XSrgB7E47jOUtHUnwfgzCXwufc5gGiOkA9O4N/rdWgmBC4IPF9C9QLjETYq4O9z+BosoOKbdnjhOKImko727qCklfmSKyZQeTcRkBrRzDi21YYLHBZDcEXPpDZYjzjlC3+EvLq0mJx4NORBz0gXx4Dz7naBpQpOgqQMXmGJiv7sjbS+R0OOCI7WOPXG40KM6gSZynJgOIxJGQjfhN5c4cVaxJR6R6piTZd9rno2NCoZC4RmnKaCP9koj20Tas87pE5Xfc3LoyWeL4jU7Git9zUZnOU8Xpb1l+afG0NnShpMx1r9Pa+FO/nzyOC0DWN/6/fSox3VXNFMty3Z1S4bIcs0ynvaVl/EsTuBZVhTZ0Q66rqfqkpm0HuR7vdJ7H0/J2EflGc1Q1GwW4xPOF5AbT1arS0drudLyEqq2x+v9geL8EZzW9HkziLLk4uhb5Pf8/Jk/Lsj6xePa6CWCCw7fBXKvpCmTo5I1WiLcoIxq9fAhgCTh6gffQ5ISDiP9bmIYjkxxpBfPGK0ePI/Qp0x+c89xP6AXHdMwkI4T/X5Ahq9xcSTECTQSD0eSt+wEdhN+EoL29PRst5dLir+aAyKmSMyRjd/QdR1931tLKbektItz84/NZV4Q3FMijiNxGEgFcMtaaCzOjpQT0zRYuyKNhNJb2VQbixNXPWbWAmcaPaWdliqqzK///m6bqY3gPzIQ5cxnzZfLnm3yD87t53rOyVjXV8qsd9T7rKKGQiO7l+esc/BWjPDcP88e/+VHFnW9CZ88TRXUAz24EWQEIsIG4QLUQtsx3jDGG4bjLTdff8Gvf/VzPvvNZ/z1L37J55/doK7Hd4HLqw2peCPThPUQa/skRS01V46u7+dm5cfjgW13DcoM+lKvqehvs8Em4NWtDBet918t4mKon3piq1dxnixApDLQ5boqAOY0+tl8Nf+Fr0aWq0KjEXDVhgJQWSJEpvqRVYhZS09F6684lf6K4zStUoDEGVy1cx7VAnaTLeVSSlVyjTLa2teNXWuVdGYomnXphzkfMhu5ytxR3dK+VrNU5ltgHXFcEm/elvq8POM9jrIOFaOuCt15HPOw1Nap1FnaO5ux2KYVrQzlNtJFVYZqqkVTxC32htYupfw3G9CLYNTiVdUcUWe1XCJlTKX2t+RZrtharWd0zhEbNM+kllZsaW4WeYuSSTnTdwGJ9m7VGFWB0HX8yZ/8mH/0T/4Zz6+3OBchRTbdluACUzyw290T00RM0EnHOO0Yj/fsvvmGh5tvmOKBKQ/k4wEmx5TNy34hezZuwomlMVbltdJWfYfyijaX5UXrGztnLQfKEs5gPypWw5kBTbZbxjEzTIkxJqashBoNqE3P1dal6zdmSONm5Ld6TCkxpXJv7YjTlhQzKSteHF23YTwO7A57XnwUmPa3DHcvedZ/S+YK+g7HZMbicWQajxbRykdULwoEd2FMxfC3dijVWAzW7kAVFTMERRdnQ/VlLMqXpZvmnBAtRjSKZG8+0Zw4Hl/x6tXf8fXXv+ebr++IU8D1FiXLGeIMOuTAmfGjmhAPMStm9jiC64nxSNICSCOelGEaJ+K0I+otkpWLbSABXdcTugsOsiWHZ2hUJCX89RaSItGRXEeKI7mka3pvDhwBoi+Y2jmbIySbgeqdg2CtMkRMyRPtiePe+oCR8cETNhu6yyuETBwfkIOAqKWnOU9whtIrKK72qewuSBkOh4E+DIhEcB1ZLC297l8XejRPltqmI+NhsPYcmy29AOLBBWvbVODdZwddcd61im4rX1a89mTvn9e3FgdgPea9NrtI3sZFG0WrOF6X+7aW2xIhbE6ZlSiRdRLKSibV83hskLT8cx7pbIm8u300O2rnv9dGrmprzJaXmA2W9e+qB7aGUa3bcoVvVUTvpyKGrQFrZU2NU3HWD9bKZU0/rPK50VyeXMX2Ln+f47uCFLYuNWXZeLQ211mdW8D5gCRvfKxkLOjsYKjZTKslXmRqqbNT55AsqDMmr5LrJK7HU3Q9K1lYDKGCCmhrUxBrfRfISQnRkKVTnNAp0h8D+064EEcviaQDL/7pn9E/uyIfRtLffkl6eLCMhQ7UZUQTcZq4dh3H2wfuxyNysSEeJ4IKFxLg9g09GV9Q6++HPRGQ0NFFx0W4xncB5wL95tLSd6eJYRyJ00jKESXjO0/X93Rdx5QTroAFQdUFaisRkxeaEznWyOTRDFiNpIJlAWLZODkRkyG45myBn9B38z7KpNUa1bTiQi0rB9HSV321OstfhR89Vb6z+nvedE9R+3cdp9HCRs+ejcTT8S77rv41G7gi5rh3rhS8ytz9oOp7dl2NQi562/Lg9VieOv7LNxbfg91kTeQ84sVQ/6QoNuR7ckxM454vv/pbXr36nK9e/pZ/8xf/F5/9zR13N4njAT588QzfA6JMRzUil4S4Edf1jQJuABVTKUL2c7qYp++urRF1LoiAuUSFyjtUkq7rnHNq/Q1PGifUq1ZGxZJ+spoxNYOxCseVhzOfptbRjIhZaTUuWQ1IXfaBmomYCkR+UpgmZZwjJ8oQ1YzF2Ao4S3FzJeQpJQKB1uS+gkpZnu1Kr5hqOC9onDZWnQwowzbEUotoDXhL/5lq7NXIWBUKVfhWQ6B5fVNK3rIEf+hRxicntNwyqDLloJTmsmr1BqqGcqjatBwpQ/ZnGBqLsVj/PbfSECmtEVZkSR1A9foZWmPElAh7tuZc9kT1ZJV6wYYhzeA3MAMSA3MksaZ55mQp3JNGOh9WCs8xwg8/3vJPfvIp//J/+O/4/o/+DOeE8XjH/c23uNCbMpQnpuPAcdgzjhPu44mL6yv6yy0uCdsQyGkg68DdzSuGYYApc5kcHz3Am86x2cAwpBUUd0oLkuxMcS1TbZw30rRYmaPTigk/kpW3qWPMmeMY2R+F4eKC4CyCRlYzVNystRF8h/PBajqaY0pCjMHSMN3Iy68yfis4L3z4kbNU0GKo3r3KvP70Zzy/2vJi87/gLq+s7s59C3LNFF9xOH7N4f6I5NJ7rW5750qzZVdAik1pWJr/Mgt/NM4GFJhxnZ05kHLhFWgEJhweL2Y8eXUwHbm/+Yzff/FzvvrqS+7uEsFfIQJJR1QHcrKIgPceZSBjzdQlXqIul+yNXGDZPZCYNCHJ+NJwjNzffYu77Oj6LbLZkHwPXQ+hs1rN44GclF4yg4PkQJ3gNx25ZKTkaDWJKRvKn3STAcWIQ/F03ubM+VI3giMLJIEcNrC5LO0pBN953KZHtltEE67vkD7gvTmSxHtc6Pnxj35kvNc5QndFf3VN6BzBw7PLS6QLqPdMYYuTgZwTiYz4HkN4FHxWiyz6Ad8PuBRJWUu2RyYla9MxTRMpR7wX+s5zse25vLxktz8Cazr8YxyzA6wqL48ULW1+IqynfAAAIABJREFUWJTxM7IOzDhwYrLLSTUGF+tqMQjr3q1y8t10i7ORvafObd7g3KCXKGz5rrzmnPqOqcPFvpj1OS2Cqiq/WZr5ofJWMxil8K/gQ4moLfeuczGXcvwxrLkzh578/mMfJt/bDyj6Q20qVfVvKWTmiw5SIosVaZdadlDm+MSwr8+qNGBGTcZlQfw55Z7ZUKQ6uItSkaIZRn3fQ3AGSJYjOE+39XRdj/NwuN/DoDyTwNQ7chwZDiMuB755ccEH/80/5J//T/+KV//4C25v7+jevMH/679C0ojDsQkbAkLoei76nh/+13/Km9s7hv2ReDiyuR/NOQZ02w3d9qL0dvYcxhHne3zo6TcbDtOOmEbGcWAYDohTvBe2lxs2Fx2udySXiXHEZzc7HTO1TCAX/WFCUyTHkel4YDpEpiGBq616FPGOIU5McWSajkzxSBfMcbzZbkt/xoLW7At6fpnpBTCyrscqXa4uzKO1teU6caqfoTX7h74HQb/PxnoPPlT5WO1z7tq9XPR7p4UHtMZpYyTazd5jfP8/MBYXD40d5zx/y++M8xHvLxHdkmNkON4wDi85HF5zd/uSv/r3f8lvfvMbfv/lS3735T1xzISt4/nWmmunWJi0ZitKnj0Z2kRciiFZvHHTVAy+4s2rPY9yKaxnZhYn9WZFOT8ngM55ONqUwvV7r4XYuwg2Odk/s8FUI4ptOmdu9kc1lrOhPOZsHv6UMjFmSx+MmZgyMVGMtNmZVt6i8u+StiiVYds51aBAK1CBzZ/MTL2kS7Re5TI289StW0YYhHCDRHqyRxZGIGVNzjOTs5Oo89PPeqJmQ73ZqEohh7p25V72dR03s+GhViRLZmlHIQDO4Vkive0z2zHXcRl0+uIPrr0FFz+ARRbIycCGmiJx5qh3i35oTok5pCQVSa5Jjy1HCIGabpxVcVkJnSkycZxI2SCMnLOa4mfPrvn44w8QEmETEAd5VKac2TpH1/V04Zph2DDkkTRMaHIgV9B5ukuHnzp02pPinkM/ou4Ct1G67PnwLvJsc6TfTEzTwQwNqV5mmzPvvc1H9R7UKH5VSljIaY5gFGdHjBG8Gb/Wv86yDKYpMU4j276zKIBIEXIF6CmbwJRH3lC7p3YXQCSzR7gijp7hYArINB7naO40eB7uem6ePfDi4/+VZ/o/0+UtpEic3hi6aPJoPiL52Zy+ptUrW+hFvCtNvAvCWokniAQsslVoRqxgvqhHq70xI9/VfZ0sEpbiyG7/DTd3X/OweyCmDh8CykjOE1kzwgWqtSbaUtrNAu9ROVornhjNSPUCzmotxxgZYyLmxDDu+eijDRfPPqC7+pAjG1vnDL0IOiZctCjp3aBoTohPOJdQtajiFEec25Dx5MJPsqt7Kyxe3YLCjTfjOosiuiFsM9qVuvkClmE1JZZyWkGjTNEXnIOr62eIGhJtuNgS+0tC6OlDT5AB7zPJJ47ZE1xxvmUxT3MOkHtcmBj2B9wUSeOIFgQeJx7vAs7F2ZgASp1bYhwHjscDKbUOuROaVJ33SuU3b9M/1nzJwLGqq/CUKbfG3Mx7dblPy7lqn+mqDNV+g6oml0TNqbCWkY91pXUUtR3LeyhViyBdPevRPdvTqe/ajmU9X4/0Huo7MpfHzD+6AN3MsrRETrIaiuf8rrW+rIlc2AMeD/pcttNbp+E/8TE/84kJ18qPwPZmTrNOlUVwNbpbaa7Mr8PN8tqc/xOKN8d7lXecpGiLUNF+Fx+F4J3DV2f5DBJoa2R737O52ACZqYt8szvico/LDoc5lIYvX3E/JH51H9G+g+stm2fXpB98yPHuBucdH3/wgocvvyYmR9bMt9++JivW03VzxYGKDaG4rsdFQz9NObPtPFOMjGnPcbcrvDghOeFzwneefhO4vr6k2wTEW9qsOmYwuIpAUPegIUlZplKKI3E6FjyPYtzXuXaBHCdzYEWrCe/6Df3GopcaxxnjsfJMEZ17zC561HK05TDlk7fu6bfR9ikvar559OHioOLsflruWc8/d46c1Vnr+dXBLlUWlXss96pOokWuq8jq+/Z+bzveaiyeKpt/6PGUgdd+3lr2JyfPG60qUFWhWQwYiiKTQaxpcoqZOA7c333D69e/4s3Nl7z86nN+/vNf8PnnL3n17QP7YcP2wtEFTx8cabJ6oEpbtS5RMySWpreade7pRTEeq+IsRdlcImLtRLTCQeeedOdIU4pAbew3pBHYWg2v1e+3OwvmOS5zNp9fGCm6GCzrZVjnXRvksl2TkhKTQdfPvRZTjTzqfF5VIlvhSCX0qnwbqF/5cXXKinew7plK6HVTVBtUi/I1f0Vt3n5Gfpfv7cNVZPec12n+dNm18xUrQly+MWVHV2NduYmrQn1yCKUuFV0if9UgLVyybnhT1pb0KKHdLs1zH3nXVpNATd2xYZXnaKXphfmcUxbrAJdXW2bKNec7H6ygn4rUZ1GUUAyUqBXGPvHswvPp8y2fPr9AdLLoig/4rkOztboRUSRsceESkSOad8TjA25jrTIQXxqlJ5wmfLelk2hGanZ8uL3iwwvH84sDh8Nxpn+PIxXAnmw6MjVzO5d5aDeQ/VnmpqC5KsVLqmLNwLNa2lIWUhamEtXxRbAlpPQ1tbwDHzzeeU5ZYU6W8mjKngM6xmPkuMulr6U3o1OUGB3j4Dgej+yOP+Nq+y8td9JDSjvrJZgSWQ94PgB8ESLFO+nq3qy1bQUJtfKkYsSguYBPWeqs2dVp4VMoqhOaNqbLe8GJFh6957C/Yfew43icUDZIMZ5zdVxYLBFyabHStD7KUgBKUgImrOWHoHgSiTFHjjGTnSdcXtFdPUf650jyaBxJccBPIzokdCpOwiEhyYz3nC1NOlVlpkTrlj3ji32y8JmMLtZLdeqGgHMbyI40Ho2S1Pq7qRTDMvRzg/Taa3Z7cQXZF2Nxg4QNLmzwYUPR/Izmks20XVtrTkvqsO9QrKl1Kgajlw1IALG0ZFfAb6z9h/XP1JSJaSosZ81L6o5vec7Mck7YQzX6VixjzTrmvVTvf3rMER2qAr/sFW2vOWv8wVx3+ejGLH6g1nH31tGcfPkdVtHaAGx1HGmFSHPO2++3HuNsAc3Gn6kUtndySeevazZPWKs48RjIrsrb+mnjilwbjGfHtLzRgh3wWOd7u1G+pod3VT9bWmwdevPhl/pEjzlfK/3MGVpCifgt49ba4iWXfe8bsKCsTWnPMgBVSvl3mfBmjyw1jqxkLMV56ztPrxsQ4TBFtjnOvA3xuFJL/eow0X/6If0nLwjXF6RSv+yCp7+4JIlDnUezsN8frO2bM7TwXSq9soHkrSTInAnWJifnZO0s4lRkk6KS8A5CcIQ+mKEYwPpXZkoylOmRNPqAlvTdbOjqaYqkKZKzOddqCw+TFbnIpZoOb61+ao9GcSDZ9o6TuTLs0V5c9to5Neu7CerUFnnssGnWmbrO7/KMZbe1W2Clf51ev+ITKwW36NCnlG7nVAMROT2/ve+Km7z1+HtFFs9NaPvdqZV/miI3p8ax1EnV82YlVTHh7YuQLsX5FnWx9DiPw7ktkCBGDve/4TC+Ynd4xVdff8a/+3c/4zef/Z6//duvuH3t6PwLuvCcZ5f39vAEQ1Ks9cbSEiAVSOWUCoR+45Frm5RL5VI5EVNCXVF4clWWKlPW1ftrVIILjQG0zOM67dIO52uPLNbntsxfrTbDQSNDl3vnaqTWOa52jNQUyZr6uazhfE71rAEVgXOKkWFMxAyp5KanlAzMQRdEx2rEiKv3X5rQ+hIJVNfMbyvEKzOuTIsSFSuF4tYWY15KqqaWm3cXCox14dIr1SdXQVOgmJuoTs65dGFajIP2H1Z7qStD3BUNyZUUxZnuC7rp7A2a59VaXyz8Rhgpgt6XeqTSy1BQ1BUvcU7ECuu9oqFlbDNZZOt/6ZwagIqUd3LLPlal1KAZaAgiqzTXc4bjas+naFExkab+zY7gQslGcWWvB9IYcS5yRWAvnqNGjnngX/30A/7FDy75xy86ujBy0Imt3/L86iNu9ZdoyowxQfcpbD7BbQace8nDN/+e/vh9pH9WotsWBVcX6S565Jhxw0QaIz9+9gExbzhk4dX+lt1DQiK86C4Ye88gkSFPXAFdtmjVvqRbSpOzasA8ReyKYH1eQdShKZJihmEAuYSuQ9kwpcCUrCdeJpLcNZomRMAFz+XFluNhJMc97RFj4pjf0HGB1x8B33L7ZiLnyI9/0vPs4gccZc80viZGyIyk9MD9t7f8cHPEo5A7SPccjjfsh9ckvWPrf4r6DbGmm/pgNb5iIDNOOrzrLTVWdTbinAQ0C2ZiO7yCaKbWFGq2VhnIPWl6Adrjg+BdJMVbDvtvuL95xe3rxPEghN6hJFAPugHVYiBMiESEMNOU6mDopwjqhXE64IceIZDkEjaZB4m8PExsPvwB+eMfMb34AfABLg0Qb+H4FTdvviBN18ShY7xT3H4AhRwDu11iSp4sHdorKY94n/DOkSL0bmO1T07IKZpzwYHzSpCaQ4gx5LBBc2dK0rTHxXs2XLLnAnd5gddn5G+9tVVxAee3qH+Bds54QAh0XQ/OkSQzbK7nmqBeTPkSMSRh1cIjvCf5gN9egmTiMDHe3PHs2Q9Q6dmlI5IHfO7wusVvLlG5RXSip8MFA/LQmXnXFKeiiDR8b+Goi4xreVGVKe1nEGd+WI852nJ61Kye1j2moGoRVUvgsUwe5w28JGfF+wIyJ7Vdht08ixkzEpWaSn/WTnuC183Dqm9zqvsg+KYMZH6/leUMS7LkothqsTREcnO/8jy1yKGhuts8+JJymkWhoDCnioYq0JXLffmpd8tiNeQzmvbilW7evwz0FCvhRC9YT5ksly4vuvr+qejNqXNBTob0pAJfZfc87GroNrroxRY5HqxEoevY58JfvMCk5FzocSN4LAsgqzmrJEfECR5vOlvRJdKYja/OJRdt+YeVCLTzYJkrix5C4RlQImA5I97Rbzd0IdCrMOwG8jRxZKTXyLa3XoN5/4rDb1+z/xxwjr6/wg0Dvu+J7s4QxztzQiWNpGkihUTuNnTHcaGDfCTGgRgnpsmAuHKJ1DkSFH07kwnXHX4bkK0j9xZRdOrppDP4u2y0bKB1tulVFXIkT5EUE+MxMg7FRe3gOA44b7R9OB4ZojmIw0XAywU5OCaUnAbbx6HoGKpITgv/mc2JorFpLYl5CjG/1KC/ozfCMs5mZbT5MYqbKU8cFYZ3cUKtMyhmQ46GtnPLQ2ZO2lwn5rAVb47CpkVGRb5HxeRNdvZbSzZZ3QPOeODZENX5LTkf/3HTUBcjenWs+pHRegF09Zn1PXO4zlnD7WygB+b9SKZ4BIE8cdi/YRofmIYbvn75kt99/jmf/+5zfvZXP+PL379kGCYQz/PnG7Ie0XycI4iNCULtDwPMoXGzU6qx2Bh7Ld+v9zKbsQgundNCqqeuRrNUK1ZIniMw59IY6+9q2K3n6HRmH7NnoeHzrVDG0v5UayRrqaec16RGGovUq3Gs+k4pwZTUFPOChDqWnHxLQ21DhW8/nkoBaudilZrbfNfW40lF2XzkbWFReh7dHFoP31NR7lU6J2WtmxSHp/LdTz8/fddzvMr7ku6npQ+YQquINbJmvX+emOu6CtY+KoNv0mHqrZtxmfezoJ62836yDq0nzDu/Ol/bokWMQWq11H22tFMCCc+oA5uN5wcff8S/+Gf/lJ9++oKPPnrGi08+ZbO5JrgOmQ4cHx7wbOn6jsut53iYyPHIcHjg5c098voW113Q99dcXn1E11kLhillsstkr7gQcd5xrYEfccFP7y75Ig/sDsqOkW4UOrFi/UmC9d0UwbcodmXeWTF4S101P1a1/k1MRE1McWIchWEUho1pRV4TUYYZLMsFq3tzwT+SccM0sslWp6YukSOMKSK7gfsbx9UPlX4TuIwX3N0M7A/CwyHz7IOvOYx/g3jo9EeMR0dODrQnxudEOiR0OGfN3b0vLTJEEBfm+qeqwEpt3hwnoiZiHonJ0oMsDdnapNRelPt9IodvCe4ZHR/Td9fcpS+5e/iCr17+joeHA9Mk9FvmlPenFMrq0EKUgJvbtCC+BMQziGcYBqatAhdcXFyi4hmTIi6RyaRhIN3fM7y5YdjvSVMHcUNIew6HHbvdA3l4wOotrRzBjNVgtU8BMyJxhoBW66SLoynmaBtbCoKwJjOEyYzD0ZTWw5Hcb/BikPSbiytkPM7ao+TSw1IMnMBhYD9a2z9VXqAQNheLcw+F4NEpknIiIebAO47cvpnou+f0l9dcXb7gMBwYEDQlYpxwEnCuJ+eR0Hm857HXvDCmmpHQOn5n2PxmfK0cW+2d9zlKb1mnSzlI5dtaGFjrYKwtMep3b0sD+899SClRaefpNHVuJTNkWZNH0ziD27W6xhPK4Tsc+oQOt5jd/2Uep7okYCn1wSP+MXqpnQcU/cZpybYRofaSpuh+OZW2QCVdXLXFnWhKSGY5uAbNE6lZKvWei4VstZYCTnC94+KjDtcfmA4T8Tihk+EYOLWeutu+w4VQMndgyFYHeH/zhv39Hc7Xem/LFIgCcX9gvNuZMSeWwaRYZNGJ2RmaEzFFxvGI32xxvafvN3SXPWHr8Z0nqTkqwPQg78KsTyz0as7FOE2kaSJOkRgNxXqKmSlFc0JihnlMidvbW0IXuLja8sn3P+E4Hchp4pTiZlPtkd5lE1vn+gkKeXS/dz+qNvVu16953RMb6m2Pqv+sRvHZy4vTSapR2Rqtb7n9OxrK8EcwFp96mG3WhZm1wv8poXEuYhFTJmah95uSEpYhWT8qyRbFOh7fsD98y+3tt3zz5Rf8h//wGZ9//iUvv/qWr1/eMo4B8HhXat2Itkl0swgae2pRduzIJ0KojHgWQo3+zlJzV7yfmaI8lftUL9KJv0BZ9E1hbcy0nrJ5Th55Qk4NjyaFtGDr1LKy9tkCpechSx9Gk/zl3bUYXFKavy8MIGerk0ip1C0Wg8bWSsltrWHjsj31GrIaTfOOzfFWYtY1NDnVSGwMxZXhp8v7zQppmee6Bxev4HrQK4VnvSgrGn/b8VgBXq9be7gmDbemRFZHBc14Zb6Nria4fRfqOzZzcspCqnNGl+JSYzYn9HZqLGrz+XfyQJHSWkOsCbk6VD1RhITy4rLnz/7k+/zZT3/Kpy+uuL7a0l+9oPc9kiAOE7uHe5AJFzxXzyIiCectdScPDqcTZIdwQRBrQ+ClI0lXFP0I3hJet1vPR9rz4+stu0Mi5shuinRJ8KJ4B4OzPomipY2uyLwP6naV0/Urm0qcK1DhVqsoMgLKZuO4ih4vBXG17NNKnqELdF1H1wWsU7Md0xSJscM7xYWEOE+eDMhlvzcuFoKn32yJac/DQ+Ti8shH3xvZj7/FuxeIvmA87snpAIwgPYSSslg8lQYIVWp/Z+PMflUgCOchTpmkEzGNJJ0oWLaz4gElcuE3qB8RN+GkK83rHziOb3h4eCgeYEtHktwAODX7RSt5V5oTmZFYDXRpUYpVIMaJlCyOEoIZZJViHdkQ+fYD+W7P8X7HNHoyPaIH9g93PDzcMU57e+8KDuIDznUWeRUhi7fIcs5FAbR041wQWsV7S5XyhfNmMQ96mkjTaC1LfCptVD3e90SOZnCRSdPR2paoR6MDH4o+UIxHazhmtZNuQWeWgjiMp4zZ0Fk1K8Nw5DjscF1Pd3nF6PtyHwMrci7YGqXJkKbd6ToskuupzKtzTrNzBmR7z+9UWkRmnrZylp7R2fJJVs6iFj6l4DVy949mU76bXFhE16lTbpGV72dYL2igVRfQE73ibcfZsbY6iTz66D/a8V3Ohbfpnmfv17RyOE1NlvK/2dCpTs1ZeVnubYZ8xpGM55WeyJa6X28krInJiHV2cjR6ZF3rFu+p6id4oPe4nK1thyZrM5EzSsZF7F2yZXMIyeTNeCCniDe708oximzPBeK/jsU4dpqjqBa9TqhYlJMguM4RtoHQe0NJDVYLWelWlRIw0fKM5b1VTU8fp0icLJhg62GyGSaG8cA4HRnGI+M0kCUTYsD7gIxlQlbJSsopAu1iGLWGYrMm8zr84UdNwkcWUKTVtyc0+YgWZ3vhbTzS5rBonLMBaOfUzyoAZBlH/W7Ww1ZW5iPDWZabvfPxzn0W/5hHKyROU09bpVxVmaZMzJn+ylnzbcmITjjpSTEyDEdev/mSu8Pv+Or3v+Pn//6X/OW//Wu+fnnD7mHkcvuC6+vnFplNA1PcIc7SDfLMjOuYtHYreGK8sCCQVg/KWnFWZDYQVZVUJNVaFsn8V+0UU2/QAp/MjgSt61q8ubKObrUex2piKMw1l/N95sbGBV5X8kxE5v2qQrikZxRzVfLyuaoWND1L80sFETXOtYql7lOtxshoV5o92jLfyiFPFZHleGpDtZ7XOZI4e9Yb47DymdnLtxyz4iHt+qxBiNp5aZ+v9R3OIvk9Pf7lPRsVphqGs4KgRSFcDJHWGFtse6m4SYV2mnGs6KhlcOWzmdbsvAqIUFtBuJom69xsTNf5WfOhhaJXultVUprzcj3XOSAW2MnAJIp6eP78gn/6pz/mH/30v2J7scF3gXDZ0btAKj2Z7u/vyHrEB8eHeUScNT7fXl2TMgSXCd6z6Xv6rggbqT8dSER9RFG23vFJ1/Mnzy95vY/sk3Jb+tp16nA4Bm99RItJsrxP+65n1tl5QzrNWJ/FYYgGB54Tm41jvOrpQ7C2JKUWrwI6hRDo+57NpmdlLMbENAreQwjResCqME3w8GDXeu/Z9FummLi9PxI28P0x8TD8iiAf4fP3GfZ3JHeDyoi4Hulqs+MaRbT6Qze3sll421ypJpbqllIkZTMWTVuxdKXK9ESstRDuDu+V4LbEw4FhvOU4vObhYY9z3QwMJupa8loUkfpTJ7+uQhGWKhYJ11JDGZNF1VTBSY9TY/iqEaeJOEX0MJqx+PrIblBGF4js2d/fsH8wr3wIPY4OcT3e97jQmdFWgHS0gYuf+aMmvHQGZuHESihKvqIPkOJEjiNpGkk+4YIzcA1Xe0WKwd+PRzP2NKDeoV1nhuuspDVod2IKcFQte1cQp3Z9CKh6cp6I48Rh/4DvNvTXLwh+U4zFXLJcAkImp5JSfap4VOayMiCeNgzfpvC3sv80bfXkhif0sDYEje0vytA6qsiioK0Z+wmff/p4bCi/z3F+Ls4947uyUuYskO9SeOf5KBzqPYzOU8fz/Arn5vC91cOqRzz93eq5q3GduUJOzzlPX/UwxEhL48spLc6VWabZi1rpSQGTq+jtsxGUEcml/h5QQXxGCghd1Xek1AFV/bDmAolIaavUSPFqJCqoCKn2QRZIJEtFzx6vWkorSt1/sh6vBojl6S8E0WjtfCY1pGW1SnZymsF4co64nEr7o6Kn5pGkJp+0Bqk8dKGDrSdsAt22s8yX4K23eEpzKjxZSjaJzdkq6JJzQVy2nxwTXhzOdzjfMU6J/eHAYXhgSgNTimhUphioqpLNaTWgTrMVFn266sktHc0OjlMd9DuO08BVqwNp0dEWgK56wh9qM1V6aMa7Gsv6DzkxlLXO0cq4fCrP7PSG9aO3j/0/CxrqY3QiOx4pXM7Rb64I0jHkb+mdKbFONkyHWx52X/H69gv+3c/+gr/4i7/mt7/9kt99/pKLiyu22yu+d/0BXhzjeGCacomodGgKs9JRUypVH5NQPacqvxVw6VR5qXp5pamaNVjBAWYG/0jZsYhcNQjstCatsdYHStObrwgCcpqFZCsUEwqScVLaL5Qv2k1UN1v9TETwYVmDWTiKzshJS1TRIodjVKaoxCSWgppgnGqk0Wo+M84g8s8YF6s5Lv94KvXsqaMK0iVN7uSe9b7vcB9gZnArw/J0OO3NKg95j3E/So1ZeZSbwWpJXpkNWpkdZ7NhNhvHj8c5j6cSZ7FEjV518e5VR0BMMzLvbJgKsOqmteJYj6Yil1B2dW6orBlpraG0fVjAoLJn1MizF4E/+8nH/I//7T/jhx99StpumLwjpRGHkvPINOxJcWS/n/BdR86Zq+sXXFxu+OjjDwmTI7iEYFDccVJygpTAa6DLHUJiHCIxjQTveBE2/OmnLzhkxXfCIU+k7FHtca5jI5mjmyzakxejvhpMT6ZLeodziiRL104KaTJD4jhmYnYkCYj3ME2WJliMSSkRJN91q3vudgOb/hoflH4TwQUUxzjBq6/h7m7g+YsNXjpygm9e37CfAp/84Irr8Le4dAmbLYchEftXqFfc5vu4iwknilRxUF3cs3B0pb+iUHqBkJOQ8uJkqPOilfFluw5VhnGHdBD6LdvuA97c/Ibb29/x9Tdf8He/vcG7jy2atXKpCZQIpRbeW43QaiRpdUxhMO0rMA8x8K39ceLV7YFrfU24UHR7xOdEur1B7w8cbwZuX93y+nDkVRy5yzvG4wNpPPD86hkX/RWbDVx2F4TQl1oRsZpMsf0jWL1N0jwrTC5YDabvLFo716x4rHYnjeTpSHRHyB2SIpPCcbKU1+C74vBKReG0umVySRtLSlp6AxDE2zxoAjzZFdNeHL7rERIqiawDu/0NCQibj3C5wxFmJ6Vkj2gA9cREQSx8RN5nD1k2R6GHtxtH73PUSNAsmzhVpiwlMBck80cje5SG2lhAf8/j1Llhv09dSzz5PHunNKOX1nPPp2GfuYtYpOt0odrI4h9m6DI7ih6N+f3v9B1/P/X5H2eNwBwn9uPJcVHOTTYVvQUz5FLp4ye08arClVI0fqlqdaLRjIeAOSUXw5Oi80kjpivyZxMBLi13nDMnfBXZZoiYM8m7Duk6+r4jjYk8JfJoWR05ZzQqh/0RTWZoOgxBPJHRFJmGobQmwwxlmWZdIJKZ8kBUa73jQqDb9AZi0/doZzVy4jF0Z5JJBO9xhnAzZ9NZ1p7RcVbm9jzjYIaiyblMAqZxT4yzQrmbAAAgAElEQVSJ7YUn5oFhOrAfdtYuLAeG8chud0/fd4g4Yjo8WtWlOUabh3dul5xyjGaN3oPG5pT8+ZIW3eh0ZGdv8JbHPT2OJVMzz5l+JzdugiZ+MaL/iOn372wsPuUtfOv5jS577l6ninPO+VE9IzIgRLxcoVNkigeGwze8fPnXfPbb/8Bnv/k1f/lvf8FXL3cMg3J99SmINfgcpwnvlFRTDlTIat74rJBlmpWROb/aHspp0bvmJb0lKZZeBmZEit27RoXmWkhlZgzlk+JB0vZJM5kvuBmy4jfQ1BPOBgor4bkitDqmVuerVmrtSajVjDUwfEnmkV7l8Vd6o3iz1FLqxiSMMROjFoVCLKKYC1BRfdXaHbRlltrYN/MGYKaVuY3NufeqA2/+roZia3Rl1vUr545z6QLzuUuDyvVctARtrhybs9bTXaKyoqyEvwnuNM/F2iNWFaB2DStzW+8VY8I6RxHP+bZWnvBTI7I8JzeOCCo9N3OgWmNIrTFarcDm36ubL3Q7p8u2Y6vnO0E04LxFZ6bxwD/44af82U9+yI+/9wnMESKLak7jA8PxnuPwgN8EVBJRlSk7Lq+eIe4Zmp8T6PEomiPHw564v0dlBJnoRBDpmZyWeoyEZotIPfvgip/kjPOO3RD5TcyMoxCz0EVHF5ztv4qS3BhST3mzs2bz+HpH33fE0jTNVaCussSawfpVFjS6lGZnRRfWNZ+2x8SQLRN4EXKJLL55M/DNt8Zvri4uccFz3CfSg/LmjePTD75l2/2Wzj/D8VMkb8B5QrhC8abQtMzOXqYovUs2g9Z0gWJC1r5ltT5x7mij1TuuDNOOC/8JLl9BiqT0kof7b7l5dcf+3nNxKbggc3RxmVGLluVihBlgmKWcOhSSok4R78gpzrSac8Q5xxgTr+/2fPbF1/x4H7i+HpGrI5Iy6f6W8eHIzf3A68PAN/sDXw47bvKOPA24HJm6xDOXuQpKB3SuMqtotO4EnEXFyZb66d2SRiyu9J1sHJIgxBTR6Yg/7lE/FNh+QwwW52c+MEzWV80j+JQtQlDbAhXYeItwCsG7UmMuhq5ad7r4MmcFCVJhGicye9ybN1w7YTyOjIepKHSenJUQwuz0PKXzVcr5ivyr3JRG5px+3374jkpacZxVnvR4zz2hCkqVrmdUx3JNpfl3MR3PpphVNeWM8XOaVvroWvtXPeOJ79/h0EUXWPP8paTgnW7TODDrmCqvm0FZ/qDj6dqxc7rkWi98WqFffKDvMjBZ9AXnMEw8me9c03ZRIWVz2LjKE5ssn8oTKx2KUHoTRysXqf3udOHzxj9bw7TUpFbI1aSWbo4QnCNRr3O4gmkhTtBQ6FwE6Rx+45BUWrWlzDhOszxPJANqFCVq5JiOdGrATyklchqpqbYZyMH4T+g8Ydtbqqk3kBTXe7RECy3d3eap6/tZb16cyjrv8ZyUVHq4TlM0HlgU3ZwVlYxK5PXNG24fbhniETxsNxd2vSq3t7e8eGH9ZRcSXPb1TAuFTqsuXeUrxfx/fLQBhvcn7PM0+vR5zUDXzoRHX65ZpDY9jJ86tOjylR7tfW2tWwdqq3v/IccfNbL4KB3lu75vo0GNkrpisiSEjKSecRg47N7w5vXf8td/8+f88pe/4te//h2f/fprYvKEcMnFxQVT3Jci+LwUw6vMbS1yqd/IcqIcl4Wcc/wb+8xqEM1YsvYaTTSyMixdzq3XLV0IlpvN3j6gdi6bjevZwKozuGy+KoRXvPGpxVcK9L+snAvt9VKYeFZwZT7kESGX+ck6A/bE7EoKaiYVSPs28lgfMm/FhkjPCdz2o7qXzm/f5UZmcK0NxdmgaoRIZfCrKTvj+GgF/yPhMxuK52n27N/6+PuclRbMoKYJFdY6v7SsLGhmITf3PSwTWmlOYM6GPafcafP/dqw554W56vr5c/rto4V4G2NdBOSpsjjTwDx9vqAOK8LEDz/9kB9++jHXl1uOx4mYvAWxcmIcdwzDA8O4x3lXWisIKYMLW3xwZO3xcmG4bTGaPu8PqFphvAEhWtpr9MGQPAt64vai55PnV2iGb+4Hfr/bs08wxkSXwXsDL9HGUXBuntezpJVIZ6RQm9tlPlo+0FK9Zpv74NfsWQrfydlAtJwXRAJKYH+I3N5A1wVELAIWcyINcH+nHMYHDvEbtukLOvcPcFwAWzr3DLTDhH2e182EbXFskBEK+EHdY1gqzIymOKfl68z0DBk2o5Lp/DOCbEnTjuPwkrvb19y82aF5g1YUtxW9rPnljC4tBo5gQrTgHTtnDu0yhSlnnDimlLk/DHz+8hV97InHiD+Olqa12zHd73n1cODVceTVOPLqeORBJ1DFI7ikhAwdQqpyAZ33iqe0rsDgp50YnYS+mx0hs5FY9nAWq/UhReI4wGbEe0svdSXqUSP8Y5qMbsRonqIUiNiz7N/FqaMJB7i56aA5Qiw12FmabgE8yHlCp5Hd7oGu6xkOI8N+YpgmpqmgiAY/T+hjGpfZsbfi3XpKyZXmG6J/i2JFc93qmW30frEQ5rPNmVn3U3t/aXjpY+yB9rzHBZjnDZlH3+vJ32+/4uS5p/9u5cHj8SzOzPX35e2oEcRKp8szMfprHI4ijbL9BEuXKnveftof7Xj/6Oe7Rb1bQ425ZpGFYZzcI6vVNdfYn84e7ErHi8w1B3oyoHX1JRtMyr5cdLmVXis1WwszNIv+VZEu3WyQGdL/vAIO1Jccs2y1hD5jNdM5l2wdG5gmnelEs6JeyWKevOwSyRWnnCsyqqSX+j4Qtj3ibYwZBVfoSXOpabbMDu986etr77uQt413ST+dCtjhsgyG1huJeeB+d8cQRzJK13U4F0rrtcwwDOR8iYgFeezyVpGQVrlk0Znh7RT73bxoHm7Lf06/Q87s12XvPdIXZ2Vtuff83ZkRUnSEWZ9teXKRAbT7XVujsd6gyAhpQET/AMvxP2ka6rtEeeSEqblSI3jc33Jz+zkvv/4Vf/2L/5v//X/7P/n97+65u0lcX3/A8w82OB+Y0hElF6fNgga0RHMgqTV8rgp69VjCkmMODRNWU5xqGmpKBcRGlSUnvS46i3e9sO3qoV0M0+U7kVI/6Mo9KvGQ55qyTK0jW4CvZ7l76vGtIy8bx05rCbaeW+ilfJsyljZXGWi7bjAbijnrDMuds6X5xWzptPP7lRduI5Xtc0/H+1St4tuEh/MFgKOhlfk7qR5BmQVorpHgJ4xW59xJH6/67nWdWHnUqyE1C+j2muJUePxu5xlUi8A7b+jmPO996ZlVjeHledmw4u1dW3qov04eJ3VujCAbY+VkXmZD53Swq4Gvr/OtoXjmPVvhngJJFJXIJmT+8Z/8iH/wve+RM+yHAzlPED0BOOxes9/ds9/fs8BFB0stx5PFkNmSBry5Lkl4kjPvJZIQVxBmvaF9Br9hiiMxTvjnl3ziO7bdht1R+NX97xnGA/vdRK9W0I/zs6GUq2ZKoyCX75yrNN/wBVki0CIl0pQjmst+LoRZm+uCpZBvus1q/rz4InwdKXUEJ/Thkpwy98cbXn2bUEaS7sk4sgg5ws2bxP3uwHb7Ldt+w2bz3xN4gXMv2LhP0NQZm3SxvI95ucmC0BnyXvWCi9G+EwgFGVSdY4qQSy8tStucuupd33P97PsEAsP+C169+iW//+JzXn55y+XVR/jOaCPnSE25hKJQ1J9c6skzGEfMdGDKldiaV+YrOSHOMcaJ1+OeX/zdF+SHiY+f3dJdXxsvH0aGhwO/eX3Ly/HIbRx4nSLgUWdpPC45LiUwiSc5T8rmuERKoXYXcL4jlHWSgojqXHFoFAebiDMlSGDSiPgdOSemYY+7OKJ9D4SisHXkaSLGRI4TfQARR44R8oRkwWXB5cl6eKo1Fp+SRXy19F6c5Z7zqA+QPCoeJODFePl+d0sXNjzcPXB3u+NhPDKmDs2ervOWcftoF58/lghDVVZkxd/X6fbl1HPKiipPsX3bJrLiO9XhMjtl8+MoTqqO3LcaFo+zed73OI2+nsra1Zs84svQ5A+x2BlLGUjzFStGXHl56a9Yf+p9W8NwtQatIstTr946s/6w44xK8dbjXN3k23SFtz+7uV7MIeNCKDqXycLZaTc7vPPM651ASglfUvuqZLYpl6JHalHozYhyCFpaFKyMba2ZGqWRvCqaEmm0unTnO3zorfyg9G51ubTwoFCH9zNBVZpHDb31qu/JyVqJxSnOZOYB6bEU9pyRJOiERVmDI3Sd+W6dgXIRCmBYMbpyTjMVhK5mkhh/SQXx3tcWW+Kg8OtqKI6jpcoaiJpFIKc0MUwHjsMDt7sbNhcbtptLum7DbnewllOq5I0QQqALHTGdrr2Yroec0ImUHmqL0bYmwHkFeR+D0XhbjVLW61xLEY029RRol6yGc56eH7+nrUUq613yyUq5iAUgGjoE2gTdVhsxG0dnGnqXLNF6/GepWXwqighrppBzxkeHjiOv3/w5//rP/w9+/vNf8m/+n1/x+pvExcVzPv1+z2YjDAfIJHyXykZxCCbMLQ2ohv0NwlxRHMXD1BpTy0gqDy5jWWoW58hic3777zb5Y/Z46ikJyOrc6nQQVWta3aSCLVFJaYBtFiX1ESgUlYm0gmotoFoHbW0/mJtr0sn9KmhPUutbpSyRBE26EF4FShHFiZgSw6IsnFvzdzkeOREKw3qbA6J9liXT6WwErU+uv+w7bfo2njsMBMlS44KetIcozAu3NiDtsScp1qVr2NveeQb+eEJYVmdDe1SSrg6F6hBYe/gfs8k5uu0s/cT+XBvBTx3Vo12Fr2NxpEAxastYFUfIG475nuz3/PSHG/70e5/wwcU1b+733B/3yDHiSXQKx8Mtw+FAmiKd7wibjovLa2vMESPitaBMJjQP6HSE9IDLI5qjEW0GTTb/rgt0W0ceImnccxw7rrYvuOwu+Yf+gn8+7Lhwid/mgeM+08VihPpGdSr01da3rgSW98VLtNSBavEi5QQ5JjRbbUZKRbkrgCLWKsWzCeuaxekwEsKRyTtityG4jPcb+k5Bbrm5ERIjkYmr53Gm89u7HTd3Stftce4lIn+Jcz+k43sEVYJ8r9QZpwLKY0LG4dBg9YnZO3x1gJDJOgEjYAZijga2oDmhOpLjEcWQPrO/IseBw/g133775/zdr3/BV7/7mtvXB/r+A2rNleYM6mflbaa5maEuftSF1pWUDTBByvgFSCIkdUxJ+f3Njrv737HtXhIuejrxhq80JF7t99xLZJRE8o5LtTSwrEKcQMTjnEdUieNg0VwnZpuKOREoBmJlLSa6xdrTBKELPSFY3Q0uoHEgjgMxjqTpgBsDOXRonMzJlM3o6ZzgJSMaydORaa/EmuYWOqTzMPdy9biuR/qt8UWxOkQfPIQeTdFafARDFkYzOR3ZDwMP9zvubwd2eUI3HeK0GPuWdua9m2uc5zVpFmLhtWt+MO+Fv+eh2nQpa/aYgkU9ToVVod/Z63/GUDxNTm0NxfczR777WM/FmoJXQRHW45yxi1bOXpPjbo6O5fq6Z48qjx4Z6+86boWl83lzX/748/Qf+1AR26uNHHZScSNM9tXVqYk2CbW00fKylmFakCgLl9KUkWw9CbM3lFJRh7NMwJVfJJfARO+7ks2VSTmSpozz5oSy9PJiWLquZrTincOJkLP1sdY4wVQjmeAwRGkEJLiVyteHjSGc5kxQT9CNtaVzHuedAWtpLveuwDXWDitiPVy993S+o941TtNczqKard1TAi0RxeNhJMa4nJOzpcTGkd1+z/G44zA8IL4jdBc41zGOwmbzAVcfXnJ1eYHTI8NhIk5HLq+7t+ggVbdbG4WN36g59d2NxNNHrDX+Wq8oJydV2fVY1TSC+K5nnxq2rUFcDMcckSDNGEwuG89LVITx2Uws73w6nvdxvry3sfg+DEebyX3qusfeOPvbGrsnxuNrjndf8Yuf/Zyf/+Xf8dlvX7HfR7aXPf2mQ7xnmkohfkl5MqUDlKmkrJUxOLA0nGKMOW3xZKjpd0r1IiwKy2I0Fu9T/YzFcGrfu54PS93iOQFq8MOgWhk6TZ7yeiHN+143Z2Ms6nmD0d6hEqw+psHynrmOqUIB6+KnqGcVHabUDrXzkUtfyebvwrDwft4xp+/+thTOcwbRuZ8qRk8Bk1qFon7nilK1GPE6KxxVUMx8pfYOquNox1PW3FKSM8raAHTOzWARp+Nybv3u9a7vlO7UjPlRGu0jg/FxrUQ9b0ZPXX6dPq04IOy3a/bAzKhWTHOellKHUfn1Wp1Y9pKl9XjZoLoDlO9/8owXF1t6FzhOmTGN+DSgaSqIxzumwVDenDi23YaLzRaPkNIAySMlgqDjPUx7mHa4NBZQEBDtzIAVa5TsAriUcSkyjRPTRgj9hhcfXfCTT67ZDw/cHeH3CZgETTID9sxG9Ylnvn3P0/XzpY0Cc8ZARlOBPJeakqRmhGRL99n068hinqw2JqdMjs764jkpyMPWPsN1mf5S2VxnaqH7MCWOB8/+oPT9Duf/ii58w0Z/SBg9F/4C/Mb43uwEM9AYlxyaAuRi3CJkEppHyJMZ4zWakbMZGWpGe9KJnB3h6vvsdrfsHj7n5dd/w+3NDZqF7faKfiOMk4EQrWiqcZLV8cy0Xbcl1psrJYtyzrTnSj9I58ELQ1ZGzTgd8XliIw4mSFHZo+xFSWJ1iTJFhICKK3Dz4BXrQ5gnvHprVq+upEILkApEvUUVRIQQvP3tfdN/THBhQ+g2aEpMcUTzyDgdSTnCOMx73IknxaPlG+fEJIrkqdRcCb7vcdnqfkXsvo5gjkaqs7GkyZamzKoC4ue5FMnEaM7VFCFnwW0L2McUbU104betPDy12t/m9D2XJdI6yc5+/+j88+fNcqCwmyqxquNvxYMantSmYllrqYUprt7kLXJpHsOpaH00ztMxt0aiPDpHT+a1ZiVYPW/L08vP2VG1D6ThV08bjqeftang1VkjRW94m5Pzbcd3ORHORRXPjfG7lNxTGWkia3Hwr4MEOs/PfJUuEe6cTQVXUWqjd/NhtfrBEpVc0JHLrWXRD6vodM4hwXr4RhGSGu9UnZUpVMzpVUENRZwBzUDpAzkVOi+gY3nJoJqzoOpLiPH2pRWOXadiaftz9FAsq2XWs7CMFucdPoS5rElVSwpq1Y9L0CBZTb21eYqkVHQCZ1gLKSdr33M8EJPJr1B7/Potm80lV1fP6ILxsofbOzQP9FvP5XU/z2KrQ5WkXTOUlJVjfAakOeOMeWzorennHA86NRgLZZwxCpvrTvTHtz23PJyFW5U91ziVtNxzcVfU72s0WMEVJ0J9viw2Tcv7nhznmeO9jcX3SwN4grmebvgyd1KIO+XENI4M45797a949dUv+Lf/71/xN3/1NW9uB7qw5fJZhyZPijAcxVLzUPKUCviMheGzGkGL8wUW3M8pQq1CAtg9pImYlYVVpUQWtVyb59YYi9ycVf9FmdHWsGzOaJT+XMJ5MjME65vlGyJpw+zLmFohONNGQwALYTxaszLPrdBIjcCt92xmZq4ZypkSCbH3tNzyJfJo71qM9YZJrxi/LnxM53c5n350aiDWyCoi88b4TsFBwzyYtxQzZ6Fuq/mhVE+56olR0Bj+2tJtmb9q8EtFMGyG5typwrUIqWVszP+nWf92LVvhs3ib1i+8mNIUjcItpDErGTIL0HagqznXalAvefOzR7USfzkSyeqYEGZ36DJxtt5SFUhD8hTn+eGnH/BssyWIYxcTYxzopgGmgTQdOB4HUlRIlvTRdxu2mwu8gxQHCB4fnLVKmHbI8ECejkiKSM5oFhyl1YFEnHe4IPgEPinjcWLKEELH1cUVP/n4OfeHW77ZCS8PikYhJ2ZhO8/7CU0v/GxJIxasVs17h1p2jwmw0qZEc8ZaeuTZYKwRy/4EDTVNaTYWU4IYE94HcnLkLEyD4oLSX2aeLVkqTBGGg+ewV7r+SORv6PuXXMRXBHdF6L+H1xdI6M1qm5v5WpqvQcoWqHYRVCdSPiIpoSmiKRqf1VJMmaLVxaUBcY6t67i9+YrbN5/x7atfs98d6cKWZ896VDwx1frZhhuXzafNVmjr0VQNmS/XVhOhLkJRxDAFxYkjjjBhNa4yTWxV0FgAGDY9Y8nL7hBDBS4bJGERAzGmZ2moRTfT5NAspe49l76UGPpoCIQQ8MVQBHNaaVa8DxB6kh8RGUlpgulIjh7GI5LTvKfidESdQ5M3+IgcDTmxQNe7bGPxzs81R85b31KZ+UiN5lsNu+KobZ/ECSlNBfAio2qgOc4pKU9UvbXyqFW6vS4c85HqI+vfK8Oi8Ju6PkDDEzl7aHPOWg6WHVaU92Wcp3eQ5v9nvpkVLSoJNd/J0wNrzm/vXR1r9U4Lm2hk9omuNj+iCt5GH6jKnYihos/GQL33Kb9nuf5EkD+h1K7LHh59W95n5miLxvpoLs7/8RbF+PzF73g0c/DWWzdStcytwgJuJFUXqbMoDT9fdpJSneTtbYvupo2jnOqsWpz+om5BBy8ZYk4sxd/7QHKJmWZUZwdEKi04ap2g9V2l1Cg61DnjDZqZUu1vq7OuUfeOq4QgpeQmF1MjVyfEgq7vSxo+RVZ77/HeE3wo72/XpBRxfkE4zymjScgxMxWE76y1OZwhNcc4lV6KRxDFhx5HIHRbNpsrrq4/4oNnHxCnkcP+gYf7Pc5F5P9j7k2aLFmyPK/fUTWzO/gQEW9+ORbUKC10gRSbXrIABIEPwxfhE7AHhGUv2CANLQiF9ADVRWZWZVflSFZmvnwv3hCT+x3MVPWwOKpqavdej4hXmT1YiIdfvzbpeObzP67PsnI7ranuo7ngks2RL+tfmkkvHGS5Walr70xGLdJiw9tbqVgWf+bvpK6Lr3ss1vGlRX36VUkNASwcpXgZT3/ae0772vDUN7T5rZTFt/YmvuVlhcnHKbLur7Acw4hfKfE4crx7yedPf8EXz/6Sv/qrX/KDv/o1f/VXP8SJZxhW3F49YjxMaIYW7lcwjgdCiExhLhRqGVfOolRiMuFRyqb0ObSlkIE0e4u0dEawwuEwjmGpHJ4QjHoLNPUb7UOCRTm+khu3mBs1guN8LlpuonRhDQhWL8eV1X6ysOr6LA0poawnytSZ0kXTFK29ztM5PzdMyhRznR+85SlGiNoxZeU7RUXFk5y9P4kRmnYs2v6WQSxYY/EEteqSkljHNBpwiROP72ahQ6N5Ok9fJe0zkbkgRMqqVksnhGo1ExHLWWMmkqJKJw7XuxqyWpQvKWM+T01txTROWRhzs6czrznAEA7z/JrVMq/l7B0oeQAhxSowRMQSTk/muH4uP5mgqssMSC2CS6DxxjQKUDKVMDbPLJZGyVMXo4WuFI87kwmvBTFNG8+qxrGGbCZVdvIFU9xz0w386R/+MdvhhjQpIbxAXn2CC9eIDox+x+E4IikySFYo+i1p/Qiu14iLePV0ceAoHSIrhCOkI50biBqYGIm6NwARAcGxclurhcc13P2SIe7o0g2Oa7710e+xmyIv7nZ88nzHizESxsQKy+MyhhRJzkDEC8qkFwMqMKXJkaIxYC8YxLkGhETXWT1CJ47erThEsMwS0DThnUeJ7MdXi3W8n5R+nJiGPVMYWMk1nevpJHKz+pCnd5/zMkWOCsPtwHodcS4S72G/g+utI+47fvPZRNLnrDeJ/cc36Hvvcuu/yRXvonLPdvUE321BVnif6Ej4GAmvJlx/BLcn6jNW+3fYH+6Ypi/Z9TtW0wo5gN4dGa884nqcHvjqp/8HL+9+xRTvuVltub79mMOU2AV48aVAHBEingNRO0qNUcvRjlmxzj78aoBLTHXJK+N4NP12sOE3rxg4dQbWkBEDbVdletwJLgU2KqjaHr8bOiROkA48Az6a7ngyCpvVFftBCG4iSgA6tmmk9x3aDwyrFX2/oesH/LCyPZVzhNBoQGYOIBC6FTKATx0SE33a41DCuOewv7Pw1DAR93dc3z5itbmhv97i1jd06y395opuc21FG30H/QC+t5BUEYghj1UkhSOjjqhTXNeR4oQOHqLA3pHknoPecRee0/tbJDliGjmEe9Z+4E4nxmnK9M9Gu+KruJLUWBQt86hUJevsyHxLzdjaiZ/peYVeLQpAw4XEirosDHXleSqZrhiviigpxBkIqrRZxAqM5yNkcKsakaEnotKF9rtWAaxqwJuFwkvew/xKqgCLy3nuxq185ieoEuNYAR0lk3tLV3F00uFRowO+t1zXAurnYQoTvXcUUa8I+4t2cEl0K3gAsjg7GwyENgRuHpcL/W/ecD6sy7a8raz50Ji2bThVVx2GCxO9mMw5Rpx3rIYVhzBZZEqCTmecCClGs8zTImZYqaqzODoPOCUyksaIc5MZhVhZOQ314DwOzMjjrZyFOo92A93NE+JwNJlYlSjQdw7nzfPX+95q4PoewSI7nPSWwz7umMKRFCNdlw1BSUkpmsLajIHLpTMQCF1ZYzZQJvfm0HOSlblyFsYYZYXiM2DWRIyjRUJIXmcFpjEI03RkmiaOh2BGUUkkjYwH5TDuOE47doeX4DrG1DOFNd/48H3eefKE1dATw5GnT3/ONB5IYeRquwLtIMGzr+65vd0yDD3eC+OYsQ0QfN/jM8pq0pQV3eUiuLy2MnZJMRLYSDXni6xe5LFl2tGsjJ5++ZbKUG3XBcWuqMCNU8ckMs0G0ZRTL3IurRjgmTiQQE6VMEEv4xiZga6qHrrYkG+iZF+7dMbCushyAtr6RpdCGsp3XhUvHj9sGNPBLLF+YHr1ks+f/ozPnv6Kv/3Jj/jzf/lP+fLzHa9eTByOkaurDc4NxADTNCfdikDnByBacdGcJ2d5QD6HFWalUIvg2yh8+WdG9cyKQT5Rz9W+VNo9T3FZT9USMfd74YmZR6S2ZR60ElI5e/lMfrexS9oqIXPWRbvUWmG+enN0fn4Nz7gsaXoAACAASURBVDlVdnOOYVE8Ww/YzHTt/BRS9jBqrsPVetB0JkDlNWfMqQ0qa7rfeEFbr2f7u7XwJIMRw6lbPMO5+cnVIs7yOLOkNi4MVZYlXKomfrreT7y3QrVWXvJ2ljyA9pXtM9oRKVa+SyGrBUCj6cx5f5rr56fO7SjGCal1Edt1KGfPaJlzUZrb8y7ji1yyokNmRrUkCYxhpOsiN1c9jx49tjCVFEhxwhXQEk2Mx2NdyynDiHfeEt6d91Dqr6EZr6qs2/mzc57iKZ6HzNZyApzrmQ5HXL/j5l0hdde8886H/N79yM8+/wXHwz27BNCVijpGwBt7pnlh27HTxS9xgsdCE/vevE4WWZAqeJSqVjAOlxTxF9ZQDkMKYbQ8suyJFHqur7ZMckDTyPNnidUWfCe4oPzd08A+OnbR0fUbjmHi/m7k8Otfo/oT3r96Rlo/Yeu+RZSAhBEYcZMjeiU5JXCHSwdD1gzvojynu0ls+yv8Ycfx8CljCuydx90fOIRfMU3PGaaP8F1il0Y+f/kpT5+/4P7lwPiqJ94nugog9BjX5Ppav8xQ4lweG2bDTFmLhUZbDrPNu2qh56mOc1kYrT22ZQKaaZatdcc0Tez3e3a+J2wjft1ZPp+Y93EaRyDRDUM26lC9ZYhDnBn8qvEq583bfvH0XU/Eao+N08Thfsd4OCIkvOu4/fD3uL65Zb25Yr29wfVrXD/ghhWuX1lImnN0nSfl0DHzGphnAzXh2CIRpBKBEiFi3898qO871Hucmic8pSMmmJxEpyxoXFEAS3TMknZekhWsfa0cIZX3zM+dp0eT5U4uBJvCj2p7lJIj7bw9H8yAaVOvVQEobVlEepxutEzMFoqvvt4Dd9rP8nmmn23OS4nsyWOYZBZwaxNmWkbT3fZ8QSmvkSoX2sDilL1PtXivCoF6oF912Sw9Js2bOA1KvagwyuvOvv0187UPhSTnQ/XyU8TNdZkbvinNXIt60LDsb0GLb9on+b6kuZBuEa3y2pQYZ5nX4j9RTYRKEMxoPAwDfa4bPNfWtrYO3oxn5cFa2uocru/xbk2KnhQDTG3Uk23ysi70xCs3VCHRLCbGYnM9WCNkVLT5zltkXk55sAAS8yTaPERSCrWWYogTUQ90bosmzxRhf/yKcZoYowJX9KvI7c07XN98yGa1IoaJu1c7jod70ETnHMl5wnjMSo4SSYzHPiNwe4ozKGlinMxwV2vwZoC1pR7yunUlJ58eDrV+vUFDHtxKb3zW2X15jVb5dz6jRISOErkokrLnutAZpS3LoNkYTUo1zeqM4LzheCtl8XVhfkvCfn7dpYGVXEJAOscxYbaSNHG4f8av/+6n/OTnP+Evvv9Dvv/Dv2M6KC52BjgQBSdKioGQQLCEXxMIPCKGHBmjhbJqFt4chSi3qlVhlkWwLGE2NCGXM7GOJ0mp2vyuQn8dh1lgTEU4uTA2S147n0/JjDoJUz5MEM9MPV/zUNWVQro1a2vaEPdalkOrSrfoT2l2aU87HnOfJCdCL5WdLLPN9z/QviIAXjI6tIz5VFEs9y76KvP3MlNpZovofP/pux5c02VOWgWpUfgvtWd+/7zCLh3tM1sr+Wk/aZ7Rhn2V61zWzKqiWYjKSTfmB83hwCYA2cUNyTjfpycCT9vnh4xFkj3KNhUnyuLJfSEGtmu43vZcX10hkvOUw1QVgZQyqlvuTcrhfiXMT6SUbJiVhjJUxUgD5LpWVIZblAEy0/XdmjhNhHGHyoQMa65unvDhOxMf3X7OF3d7phAM2TI/37zIM2OQzCTMQHKytzRjpjlP56DrOrPcSgnvbndpbvtpIlQ+m5ISYsSHqV4v4hj6NVNcE0LkMI7s9w710KuxiWcvE64DPwiPnlhIpsbA3YvnPFv9nCtGngweoTOhw43AAU09yUWQCe0S+ITICh870mbAbW8Y1h2+W6PjkcBLNO7wxyPsnzHtP+WgcNADr/Yvef7sGfcvduzveo6HHrBwZOhI6hGZ5jFo1ph5WWJd58IMONaO87zWzvdYkafThYGd+UAe1WxISGXnOwN4MDAeNcOHhnndZUGxGHmsjaYwShHWcjucWA4rXW8gYApRAlExD4Tr6YeBzaMPWF1dM6w3DOuteRY6y1OkKmQzQFkrVMzUuuzvhmdlY7qIVCHSOYfvPdE588aKnz1UzbOLAXO5KudP9b0X6Df13Mw7li1d0usT/Wf5XE7ne6YDTlwuAzWbBVrjUXlfNSS+QWCqY9B+fm3/5M1/LxSj2fA7v7MZ5xN5t+V75WemIa/vR7svjFJ9Dcn2wvPO2tc29IKB9d/tYYMnWWEsCno9K2I1DBeG0fqJOkOy7FeqSleZW0EkkWIkZllEJOG9p0QSJQSRWI0WLtMXi26bwzerkjm/PSuLORy1wJGJNGu8KIgWkVHSHeb5ErqsUJZ9g+tmwpB5I7iaI23NmI0vxVEg2bsYguUihgzWJs4RQyAmmGIkxMQUEzEpXT+w3nhurm949OiGaRw5TAfGw4Hj8ZA9nua8cMXRoxY1FqdI9BHvijJrslBMCS+K98VgdoZ69eCS4GQXtEaCeW3Ui3+nxzwnM7G7ZOBfOExkuYeRJoIwP2fe38UYUBRJV9+jpy95AwF5rbLYEsY3EdSvc6QJRCJ0e8StmY47DscXvHr+I/7yL/4l/+L/+Wv+6T/7a9Yf3dCrp4+Ccz33dxM7rPDodrtlNQx0zjGNhzwYDu87VFIGPrCQ065YGjNymFBCEXPoF2X8ZrAI85jNBDbW/s8UvCqYzJMXyUpZvjzlDbxgjI1A6Zr6ZCWfyayuRmzNUF08MjOUjkqGDa5Kkj0vns240AqvpbKeaKV5tVmaB6K0N5V8RCwssgRmzApk6fdp+KguN9dbrh9p8+rqd6eC9yzcLBpPs9abzf7Qey8pkeUuyzNrxiylxcaq+8EktKWy9bpuNuNQxk0bhr0QIk6UygLRbKUZZEadLVMvJZdlORizGpLHDUGatdzo1cvmZ6VqGa58SkDnG11maimHspyeByqqq3l6Ipv1wDu319ze3MLOvGXpOBryZIwGKjJZmIlg4Sy+G+iHnmEY8K5D40ixsNdxy0pbUs3ygTNw0rxfJe9773qGAeLqhvv7lxyPrziMLxiuPubm5l0GXfFHH/6GL3Z3TCnw/C6QlOohFJEZjLBMf2HsjXJQGuTE4b3Q90MOU3KEGCmB8UUYTUgOj14eqnC/t3ApvAkZwzDQuQ6HcBiPjMcjL3ZCf7Wm3wodCdWRV69GvCiDT6zWOzadUZV4d8er8D2CH1g//ges9QkuJOAe/BektEZYgazxsqEPj3G+h27P9OT38cP7uP4R/a3Co3+OPP8b4q/+Grnfsn5xxXTv+LF+n89/8RnhZcIdt8S7NfvjKw5J6a8+ZgyG3Ok4mhJd56kYvTLjE2HpkTo96mbgdCPOiuK8lpcRETZ3KBWSXnrPsB5Yb1est2tiRw67NgCi3qnxFtVs45a5KpqUsG0LeY+qqCTzmruEdFkQZKDzE503VFxRpe871psN3e3H+NUa6Xu0HwzMxrB1MtiQlTRJXgyVdTEOzccqaRZhQUAdXhwhWMKD97anRu+QZPn9hQeW8apreXGUKJhGabwwPxcVhvrspQL0wGWL51Qy1yqVOl9Tlfa/h3z3kHJja3J53Wu9W819di7/TTuKMwE+4XTVaLE4KTmktpTsqoZbXYT9Lxt1Pl6nbX6TQnc2L2ea7ekzz3v09sebZIXz/f22Ty08zXXe8qxz2YEyBi4rk+A4R6Sfebdkoi8F3IviZUu58xGRMLc48wtyVE+MFp0Q1SLtOt/NcyBNeG+RZcop76oxCnUGPGaYrcjQ5cu0RpykaPnmpFCVCKMCGZVbQTUrhUXuK4KE84jvUZdAoqHhx0gIkRiVEEy5TCkyTSP7w87KB/mO3j/hxf1TYhpJJFSvmMI96iaur4VHjz5is7nCaeT5V0+ZxpGUIk6VMI14ETrxXF1dMY0TMU5WMGlKRB9JztOtejqPRVWkZGGyzlu4+QNb4WuslDoHv62x4yFZ8+IrKXRGFs6bxfMoOkvhkdmLLAmSIN7mxJaasxQ8bzqHqQsLi9Piua87/o2UznjT4PrB3KfjcWQzvMN9eMrnX3yf/+l/+O/553/+KZ9+vmf7+AlRHOJ7E6yScgwG/etIOG+1qLwzZ/RqlWuFqWcYHCITIoEwRaYQQAwm2PsZJCQVtAqdFcaUhOKOj5UJKUsvvs5KWVWcskbPnC9TbmmZRcldLMR0YfmmsvN6JMzt72zaF6ylpg6LzIpfQ2PqYlPmxae5EbM+y+zJKc/XnI82o6DGzJBS0pxXW9XW1xoTqjVNT4S85qOcMsS3OCw0TU4spfPDT4Ucce78IZeeW55wqT9LLm9MWJfr/U1dKJu89XyZEU9mrePiWM4vNy9W+WmlwVmisMcsJEVsvZlRpYYg5edcfOMbFO3yuf6dpFowH7K4F2btHdxsN7zz6JphWKM7Q9YUtbpTIURSzHlNAhotF8evvIXtrAY05yigBjTiOtvj6jvwHo3RhnR2CFWVGYHBe9au59VWcOlA0on7L39Dt/rQQLSuHX/43Y/4bP+MkCJ3+yNhykqFeIQeIWTFugR/iNWz01Dnw+iKCfZawmeyhTDl863GaQqjIvHcOupK6E0UYoxM456IoFEZOsf1ekWIK158/or9Dvo1DJ1y3Hs+f+r41a8djz+JfPCOcLN2bKXnyeN32cq3uLn/gFUfzSvTDXSrb4D3GSkv0rmJeHhF0CMqnyEfBsLQkVZXHNIet/1PWG/+Ibfv/Vc8+7//O+IQkL5j9eUn9Ad4+VJ5+vSOflCcu2YlGyQIgecEHImeTWqNL4VIKWdL+YGjGP3KWitGOmOps7BnQtGSrpf3Ggt2JAJ+6OhXPX1v6IXiPNBzHIUwTqQoeNdTchZEikEvE/mSf4nJayUmtUYFiNCvVnTDynIdxdF3Pf1qxdStUGdIiWOY6CRlhdSMglm3RTTWXGrnJIdya443LeVM4vxOTOl0CMdxRHCsN1v8qiM4IApTbGnV+TjP9Cevy5ILkyeq9K0VlM49eYUma+PFPLFePXC0ZHJWGDPoWo4qmg2L5VrLP2vH/+sc8hY6ymXaVyTXRkBrlWNVTivaLlTzhj/ax4xmcEFRLQYK49WpUYCWP2f3fG2HwCkz/Ld5LIX5t72jesp8E4rKXJaFOjazkdQMxYa0LSR82X1aFz7FJJQ5M2U9hzCdrTPXWb6dzYvL69gcG+bBs1zFTqzWrQbNkQQd4jormZNzfVOaEB0sGSK6Rajp7KDQzPxYnosTKUaj7aqmYFVPXa6J6DzOOaIGQrQ84PE4EYISig6ay3iEGAzlvBsQcdwfPucYJ6DD+Y4x7lldDazXj3nv/Q8Y44G7++eMX+4M90GTybgi+N5K/YQ4EXeT1ajte2JUxtGAc8ZxZBPWdIONi3PGfUOMhBjovo4s2fz/tlf/Wzka3nUuZwsW91IixQz3xdDUsfz1fPf8LMtplboe5tIab3O8dRjq22jXpY5c6YrdXE/Wz4EA4uncE6bd5zz9zd/ytz/6V/zl93/F0xeJI55+BdOoBEmIywintR6Oy9C85nkbhp5OO1y2mHbdkFUrT4xH8zBqyQWUpi2xKonajKkRB2m8Z5ncFwFbtbFQZ8ZTz1MJSRv+VP+uCkG+5tQiB9XCXUIL6nsWNWTK4Jb8g4Z4lnZwshS0kNj2zFLJguINLT+zJ7HmVzUhP2lBDC8rWMKCP87CcTWXFeHQXeQBZ6EyedLq3DTlRErZhq9tKV2eXJ6XuQXVeisFWKH8+ZCSd37MbSv9bxQ2NY/jqfCwfMBSYdRay68886H5qAu0vrcNTWlatBDuLrX9fHzFpi9DcNpab8an1qEzr60gbFYDt1dbvPOMekQ14cnefbXC651zRNGM3kauC2W17yI5VFwiKUZcTy6X0CO+t7pyuWsi1IVdQoYd4FVIQ29W2RBIh3skTEg/4Iaex08e88GjG756uePXw8R9LIiYWUBINt6SaYAWI5Cx+rrOi6ElxVJonqqUqM65LbZPSsTCiXnUwTQp3WBAXzFGnEZwQt91HI5H0vFIOgSGTvnOzRXvv7vi8buOkMOBxjgR5EjaK3f3icMY6L71mGFc4V8eSaunxL6HYYD+iqSSmXEPKhz2zzlOX3DQn/H+4Q/w6xHhSO8gyQpJEc+OVf8Y3tkyrH6ftX/ErfyMVfcFr47PeLU7wjTgZMXa9XjvEBdIeiRGsvfNUYwbc/mjMpEzeNIyRLpI4M2aZDYolXVdBbiHQvdSsa7DarVis1nR9R1RDCnQiXDUzJNESWFCY5zjYlUrrXaIhZaqIN6YussRASmDSDmx/TGs1oDD+Q58j5cIGky/VCuGjXeoOiv67czgaVEvxt+sBnDO50+GVpuyocVQvItiktA0MU0TIo5hWKEZ8UrFjKbOLbZwHv9TetzSwPnPS6GXF72GlwyJF45TevTw5cvw1UqWG577tsclGtd+1a6py/c/+ODa1vzYKugbH2iF/vmeOr4P9b0oO3La9vOGvI4//vsTNvq7PWwZGAK3955U11PjxZUCt1f4q5vX2omBt4Rxli/KvtAsDJqyHiFkBFIJKCZLdV2XZVmflflWcXeVRxVwO5x5zSyCwGC1RT2SPZLOeVI4VoBGJedHN+1NqpS6vylOxBhq+LL3VNlYyLzaKVZeTqtCa+j3M6hdCKacxZQQccRciSCkwGq9JkQIURnWKyuJMawYx0BIEykESGmBlVEiNLRYeEqYvIgZgIMBlU2qeD8h3iIkxJkn2PiC5hqEZWouf26j/d4svs17/2vamE4f81Y2jpYCVHmg1cNqmorxGtHsWVQxhZAm4q/MaSPVV4VlQc9e7479nXoWXxv/rvMABBcQPGse8+rlD/jl//cDfvD9v+THP31FkBvc0EE3ke6VSRLRGxP24vC5YPgYAmjEZY/CFAM+18BxvqfLy26cQoZDB9SEOhoin5ow0GLpVKigLra/lNRYSKu1tVUk8wjU7jYMq1UoizW2MoRGATR+1oSYFOtxUYzqK8qKM0Fokahe77T7XBawrHZjZkTKcuFVexhZCTTBq3pKgKgWb55SzAW8W0VxVk7O9kK5phUIpO2Lddw2e+aGuUbRUn2ZH1wIrhTCqPOJsv0XMd7N2Jc5fOOR5s1pVrc8D4WpO8mgLImlIDSP7+lxHu5zrngVi7BrwmCLtfh0HOpa0vnetzqSzl7noqQ2BoRWYWxDR2dl9NKRhRQVNJ33q4T1iis5GFqVRQP/Nu+VBdk6rHK4eVKSlLBgqYqiiM+EMeX6TcHq5PmOlHq874lSPAnN3GCMW1PCJbWSM52HvjMD7PGAjAek3yD9wNWjW1MWn99xs94xHkMNx6YWvRVmKuDmc5LVxmLBTuaxjxn1Li02QRnz5vMJVxEHU1DW6uj7FSHaeHnnWPU9d9MeppEhweObK/7jb3zI73/nhg+/PcCg3B2PvLjf8fS55+VXgf2LwOGrkXXY0B8VeEmMzwirG+CK1Fux+K5f4/yAJmW/f8arw6+501/yzi7g+pcIA6v1NSMdTAd09zlD/wH9O4+5fXLFt/rfY3P1v9NvfsyrMPKzXx7Y7Y/E0OO7RwzS4ZyS2DFG6JzlMhYLugkBWgXmOWx7Hr/UWO+W20Cy8lRoW6GNxW7SsGXNqYAmUyGdsF4PrNdr+s5zjCbYeOdRDfZ+LbUvw5wXVIm1oq6guua9nxI+gzKZ4BUqvfJdh2IWfXUez0RMMecxGdS+qhlLzF1uscSpUmnrRNJo5T7USq1ojLmmp+0VX66LI2GytI5Vv2L0se4STZI9ICdr8HS9MhccOCUNlwxLrWW8HfvXKZNlsk/Ptzz29J46DdoKgl9PynsbI/lDbT5TspvnSWGA5yS9juVi77f0VzTnTktzhzY02l1o8wNtfG3Pzo/fSkj+9+BImOeqeMyKz8AMmy5jOmgRIGg4Yf2/Gtq1pAsZ+mQ555u5rlENCi7kfZ7UwgLzk71g7848bjaSZYXVMSuK3pRDkCzHWqsMw8AT0mhyW67dXdo9i4ym7FqK1mRewdxGVxXEgrg/K4sslMVYQ/FV1Upk5BxL5yytwoyhwmazQaZAOIxst1fc3N4izvPs2QtETFH0RSZqWLQT0Oz51Qyig0Dnu1qeJMXENEX6PuXcRm8zUHE6ZuXuoT08f//mhd0+4k1e+IfkzNn58xY7rzViXGjfTCFSLm+W10RWElVjlqOgoBYrmtH65zDnE4r62ib9GwlDfdMhbo2oI+y/5Cc//af8X3/+f/K//pO/5hg+xD06EOTI7lXkStaENHEM5iEwRu3ofS6YLJaPmBRe3e9wzrEe1gyDhXp53+O7HhdTdbfXQqKA0udNLXXgZ+HP8hRnr6FStPZZeWvDmBrBmDYMsAlT5fICqovW1dfQNBJx2YOSPTIeU+bKK9snLpa/FEFiVgcLmXLMzMt+F9CUOXSLIlypee9iSoSMhJoStSbcjIx5ot5pyfE5KVAvc9tbhNDiHC1tn1sxH/NeK5LCmzfe38dS2s6Xp07F/ExmwWkhcC5y1ZZtOLO247JB4DSXcamknbWtES0sFDct7n9tf1u9SU761BJE5GzN1tDA1xKVy21eoMsCUSeuNgPvPb6BpIQ4EuOIj4Gu64iahe+QKOEx3nd0fY94b1DmUYgakRSxhPiULa1r0nTMtRYnyMhoZpQwT05E0WSABl3nEO9NNQ0T08unuL7DX7/P0D/mmx98g+Mh8YvPX7F7dWAXAiG5Gt/mdFa+yZbrEiQ+ZwybBhKTMuXQ+N47oncLBOQEdb3Fk2Hue4gBE/RTYpyiFTUG0MDWRT788IqP33+H/+I//8/4gw/f473bx2xX7+G6b+RFeyB1P+bVix/x5Wc/4cff+xc8OfyIrd8z6h3iVoh/B8I1enwBco3zH+PTI6Ywcbf7imM8sr3+Q57/5jnjT/5fiE/59p/+12w6uyd++WOG63/E5M0rzM27fPPpN/jwg0/4sz/+13zvx/8L3/ubz/nZL7/g+SsP2tF5GFaemI6gEac9Tvoa3THv89kKb2tzVtaNJrFQCItHbRYA814WqYjC8/p29oxg9/gONkPHdt2xGjx39yMxGK/tnGPlO1QDhxCIUyCECQmdGTRzSQdrSQbUcAoh0Q0msIoIYYKKPug7XDfgvIVu6fjS6h0adCnqEgmPSodnk73snfGFJppFNYeexkAKIyFNBppRAS9AY+A43qEE+mFg2KyI7HAh5fH1GbU38FACkBaB1TV8RppztPO09B4urfo5/O3k2XPEyKV359UgJ7RVyztno0HJ6TvtxdcPvfz7He1YLN536dWntLNou82zCvCe1L0wj0MBSyl8tTXqLgzdi7Zpw1NqQ97Qq6/PU/9dHwmj9847fN8hRwexQH80OWKCKWcJ4AJQSmOkKnTH7hNCofl17cWFnOWc4h1MOlbwGbqs8IirRtWYrE2+73G9oR/7fgVdn+lazuefEpKNs703dGUnEEPO4cPQEq3cRzG8BQpaqHn15vDcuW5iNrLGUPMUp2lkCuZFjDFaiYzpWNe0c71hFjjP7e3H3O+e4Xrlyc0Vt1cfc797yXF8ieodcRronNB5z363r+vVOUeYJrz3FSX2eDxaaT1vyLFFYQWrNUyeP+fJyqfnLPT736fjTSJUPop9q8iIcGqIylKp5trIOtNLTRPqPCRvsk2KuFIrTSOIUqIv3/b4nSqLp5bCB1+aHCkeOMSf8xff+yHf/+FT/u6TyPox3O/uSSQGvWGKe2IyK0VnmazEDNkbU8KJ0jlTClXBO8UxmSUnQ9P3fV+VxBgjUwyzAognNblMgquFrIXZm1fCPGchpDCmbANMc9hR8eaVsYjZ2nzGLCUv8HacUlZAKfwhM+BYlAL7rth/Jb+/HfNZF9C6yOblIFUBy5hXczsp+VCa36E5Z9F+xxyapUhWiM7nfFbvltbRM0WmYYCnys0Z05KTz7o8eZoXU7T3U2FlMUYnc9Geu/TZnsfJ3ycK8ENNvPCOyjzO7PSXj+JdWShiMssQbrEKSgO0GeaSy/JQo5a3llm8NAanACOtdc7i4WdjS3uUupL1OQhXmzWPb6/K3dSi7vi8elO2Cdh6c67Dua4Kloop56mEAJLBBcTj/UDIQrhN3owa572zEBwv4BxrUYKsGGVk1CO7+y9gu6GbbpFhy83jd/lwd+Q773/J0y9eEXbKOAWS9rhkhNdl+GIRyYh6uUYgkAtZUuDMp2liHCc6Ebo2V7XMdR6r0/XlO2HdCRoCL1+85MNvvkPXCaTIyy+f8c3Hj/nOB+/y+9/6mO3hyMv7iUmObMJzbm+Uod/Qd2tc+kOutx8wfPjHbP/0u4TdJ8TpnpfxKd3uMV3o8fuADDtkHTh4YS/3vByf83L8FOk2bPXPmD79DYER+msOv/iUVb8CcST5mC6sDIJeEkFHundvcNN38HeP+Id/+DHfeu8nfPHlz/nXP/shv/h05MtXPc/u1lxvAkogxkTQCGJhVyK+0mJFM+IdjdfIFtZM2+d1V8IvVdVC/OvqKXvLvinWcRGHF9hPe148/4rnHh49GXKxaqPJ3jvCOJoF1w2kFIghmAeh67O3Qaiou3nfx/xqg8TIGzSDr0WNuJSsLqTzyGqL8xbi6tAchmbZ6yIul5jpEByxAEtpIk4BqSGooaIiznntiRQnpmnPatXRrwa6oadD8pI1QDlO6IoUY94ZMZzX7+uOdqwLXTo1Lp3n5VD3VzW+piX9KYpSbUalebOJz0hie19p0+V2lmf/tsfy+a1x9kRxLOGGpV1FAWl+UC0OojMSqzor5GfyxsyuLxogy566yCsf6ljL6KT9o+33724cfzeH0eVaQ9DJ7B8gK9+UKCwLq8QrhFlhrEMv2VOp0E5G9VaWb4vMFk1p7LyjE+hwdm9Ut/53bAAAIABJREFUkkRCCKgIvXP4bpVLHHpkGKqi6IcVvh9MJsv5+DHleuORjJBqqQ3iMaVADedDxFO8puLEsEAwGiXOZSNVCefUamRLMXEcJ6YwMYXAOB5z2GmsJUAsxcQjfuB6e0NC+fLFr3ny+D36YY1znucvfzMbteOKoQ9mJA6J9XpjCmBWQvthABFiSkz7Pd6ZEpuShfGKy2OHMk2BGAMxTAyDw3eu1lOd1+DDcl3LBy4qlmdffb21fOYcqovtZA8+tNMeeN0pDVE1LJdTDyOAxoA4Z6kFpBriK6dGojcYzt5KWTwTyE/OXbr+dc9yqozjPU+/+hH/+ke/5tef3nOYOlZMaMht9iErdkLBmisbrjwnZs/WcUpZiAWPJbf7TvEZ8KLrOrPUp5wvlDJksJZEeKgkWTC4c2kIMFneK4yOhjTO2hklhDM1Qu7SQrrglLOQmF9WvJzn66b9vvUrNT/Vxd0ywryQTiyvpQPNx+adJSyg8SqqLsai3FXWxfmaWK6T38aC+3rGfU4I2sX/EGN8m3eehU7VPS4PXmfnH36P1nsWd3D6l7iKqbh8TvnoTsZCqJ6FuW0zsxKZ39KqjEWMMiXwJCysPON0HLisaNf7qhDIQtlZ0g/F+471esV2s6nvsXZqDQFWsdDzkFtULeaNkKmZKKa6N7KC6DwZ77sRKPPwOVu/CUgOepSV61E/sAem6Y4w3hOmI76/YVhdcXNzy0dPHnGzWXE3jkgoxX/LfM57pNFe6udiHFAtiHKB4B0xWv7MgqpUg8ZybJ0z67emmD1SUl/hEd69fcwHj97h/atbunFkvH9FElOiu24i6pbINZ17H+ke468GnnxT2L/4iGn3G6b9U/S4himi4R6me1yA4EZGXrCP93TrFX3/hC5ds99/SRoEP2wZ9xNDEKRbkforC4nKcBDqIto5hC3ddsVjt+X6+pp3331CPySub57z6RdHPv1i5MVecvSC5dM4LxWMwvJrUlYKlvujVRKlrPR2z54okgvDXZmqvLZL1pKmxOGw53jYoSnipKvrresG0mSbxIGFeEbLndWSK1Tpe2mPKYEJ82ojkqNF7EjZmCBZuXXD2oQwF+ecWGMwpJyGr6mYVUq+pIFWSAwZ3KbkKc58AjUwhBhH+r6j6zze5dwfKR4HX9dyMToZTTnf+8VAVEKuW7p4WT5Y/FVn7HRe5iuW8sdsb8z5OXko53z1QrObc3Wiy3uW7X89TXtYszxdh8v+viXPK+ukpeutFeQSPSn0r2IVnCuKpzSknZMaDvtbHAtD4dnZZn9d4JP/bo7SfzfX7TwxVMy0w8JCRbPxr7kGGrrTXL/g5XU9zpFZ5nQIBIzma8rRJBGQAsIYs03IIldULDGjxrxlBV6zUXKmXUDr7DCR2fYH0QyZLiPuO8G5zoxZxauYjbC2i3NOdVTCFC3HMEaLLCvAMzk83vlswHWW+iGuQ0hWHirnUyZVQhhzQ81B4rOyjTbrsdCRElKax7cgtc6+QjOsWDsNRyOovdOrWzhB2r390D6fXSgPrZd5pr/OceqU+Lp7oF59SkuNETTye6bpZZWooNrGwxlKKi7n2OqMsfB1+vXWnsW3sba1guL5dbMF0KWJ+/vP+f4P/xn/4i9+xRdfBdbXV4zhnkG2KIEQnqG6RnJif4rCcQwWHuQ969XKYq5T4nCc8F5IXiwmPAT6FOm1Z7PZ0Pc2JGOYqsKpCiEWISIHi4lZk5yW0MjUCBi20KsQ3/xfP1bvY2GypwAwzTg1Qmz7JKszXzyVdt4X5tfIocWCJWQeoy3dO0+Sz0+jKgevm0Qtlpls7UlzHwRBvNQQ1BI6sBC+Co+D6jmtimVjyVkKALOye9ak9qH1HdarViBceuyW63DZvssvOm3PYg2faOKFELThPkWqOlv5+Z5ayuH0ilaoRQyoKc0Mf75MTuZ4vr0wtAeFntw2pUKvzExGqCF5rlnf52vkfC2fegHKmj5vx/x9SspmveZ6u+VquwEMNdeiASyfULFckL7rGDXm/kkd7yKeoqmW65CUUJ89Lz7nNWb0urpW6p5LRCxYdJsSWz9At+Hee0LaM413jLs7huF9+n7F1c0N3/nofd65+YSXx3tejROT1m0PFOS8hKpZj8v8SW6FqDHIGJUQA1PwhMnomUh5UE7xFzgNgXLOEVJBWXWG8qyw9o53n7zLtz/8Bu9dXzFEwe8nonxCnHokfZv7EY7bgf5qy+rWQpTcyrO5/S7rR3/K9eELut2vuXv6FdOrvyONX6HjK7p4IEhHwCPDFR+8+6d03SOOL7/gFb9h3X3AanVL6LcwrEA6YhQO7jO2sWOdOsJqzXgfcc6xWneMfoW7+iNun/wB/+kHf8Yff/WvePXsb/j80x/wP/6559VdJAYDUxDXN4JxyutUkW6Ol5g9KPNaFGeFkQq/iCW/ucjWJ1ujrO+UUhU4HBCmkRgmshPaUHo1sd4OpNiTIsRUrPGGDNil5XpLGI12CP1qTZgOqEYL+xJXS2ylEIlpsvx47+j7d4CAc8EADKbJlOgYSBpQmfDBdjR9pvIpZk97yJ8z6EPRXZ3RgKSRlCZWqy2u61Dn6LsO3GS2Fmfoimmxj3P0QLur617MvN0thbNTr2FLvwrNKLS8fD+T2vle13g8WoXRrsvPk8L5dH6Ds9ImUq9b9uf0KIrx30e5WSpjc9teNx61ob6J/sgCdMvzCh1RNaNRUfYK31Q1w0ENNa68I/McWb5TsgbdKjmXjaSXx6FsI33DeP62x0Xh/iHl/qHXZ2amYApUw0dATKlr5ybz6GqkyEi/ZyOhJQ/yfL1UUVipRihJMAZlOpr5c6BH8aB+gZHh3IB05l1LMRGZ6m5xKtk4FWvUQFkAqmJI3M7oSkIyNL9DvQHiOMS0U2+opZINq+qY51oVjRbKOo4WBROT0ZyYQgbGmYHVun6F82sEz+64Q53wjY9+n5f3zxj3r1CNdH7DeNyhOrEZHJokA3Yp4zhWOdKiBG3CnBO6rstNijgs5cwcpAq4HOZrBtHKa8URWTpobH6K7FnW0WJ5tAvsZJpbGexkCbyFXrR8Vr3xa91X92293WIDFYugML1jTqOz2vMu04GUvbFm4JYckiPSRJs0bXro+B3nLJ7MAjNAnBE4j/MD0+Gv+eST7/GP/8kv+PmnOwanPLpS7o4TwgDqkLCCroOECQ4SLK47C1bFUiFiBUIN5MKRuo6h68wiFBJxtze0PXGs1teE5NgfjiZokSObBQSXQ2/mMhEuW12Mcca66dOCWUkTFpMTlLO11wprtwAohfgKJRE9FUJSiLtCzBvFFyUjw7FLmhWGuuCzt+FUASmA7S7DbIsWZSIrjGCEoihxqrVGrSKZcAmqDjTa/QpO57Ias+XyFPa7KMyJMRoQhJM2NCC3UUw5ADLc7+kyKlK4LjaXxdn7amtabDixjVReoxmly2FeAckFJqsRICsORtQjiOBXfhEX76QklednV2LmF3SlPu8hpTfP76zh58Tjpp5TW6fNjECt8GXrZ1bosjfr5JVFcFvOyTwWVoeoEaiY189S9bvYi7a38/MLs8q1q5xTur4NgPYm7KfINB34+AN45/EN19cfwRTowkTUSPSg6UgfEy45jumYBb6AcjTFijWkLY5IGF+Rpp0h3DGgeNQl1K/oN9eE0RGPmvtuzCQl6LoVPgtWR9ezJ3DAwh5FBxgPsPsMd31DWD1CXc877x757oc/4H4MPN+PvLzfcNuv8aIEHWG9pg+RLgbCMJjimiJRMyqry7VdNTJOgvNCT8cqJKMVWegoKKniluR5s95y2N9BVPQgxIOyGgKPhhV/9p1v8P5qQ+ccdxrZxx3DcUUXPXF8ymbtWK17ZLNm2B3xq2vccEVaBfqVoNtHjNcf0H1wJO0+I+2+ILz6Jbr7HB0n+gk29ByfP+fASw7751zJNaspsto/pZcjh3ELGAjLevL4TkjewXFL7zvE96RxyGGaPYgnrh8xbD/m8Uf/Jde/f89/++3/mZ/+zU/5yc8/589/smd/nBhEuOoc6lZEGUkugE+4GGvuNDFZDmpen6mJQgFwnYUBG23PIBII5hkuOTwJ54WYBqbkGcOOP/m97/LHH32X66s/YtCvmOKeEI6E3Z4kK5LvUJcIYbRIluRxSW2OHOAbeHLBxD4/4HFWy3Dck8KIpmAZzH5CiKRpJN2ZB6KAaU2Y4Gp5TUfi8Yh9JTjtTFmdMjKrulxLt6uAPFEnQhrp4g6JB0Sh3zxCvJWhOegu5/QmnJjr0ovQd9R0jULwWiWx0APzRpRvZBbQT6D7C72oFqsz2pL/Eip/ED1RHDI8eTV8MdOyUMt+2GWJGeH7UjseNFKeGgwdlW6e9YVZ2TLe0niknKtKYIs4WJ9fNa+YDbm5TFbOHxNNczsVht5VI25UpXMQUMaUcL639JEILnkQC+cbQyD0ffb1z4Lnw8LvmQi9kDuKP/vfxPFQFFvbxkvOiCJAzLLQDOQhCj7scIPVuJXNLccXd8QY6EXpsmcviTDmsjIkqcYGssFl0UYhIwdbapRzJSFkKaOV1pk3U4HA892X9MeOoR+43l7TD1uYAmmKjFOE9Qbf99B5S8EaM5d2ZvgCk6kt+s666VXonM8ykBLDhMZgygIJ0kQME2M4klYJ53qcDFSJQhQRC1E/jkf2u5G7lwe0f0VMI1OI7PYjvl/RD1c8evwEfE+IkcM0keLEsF7jvbDbvzCk0wIaqUd8Z7R3UszzmZ0ivvdViEkpzqA3SA43tRFUcXTemzEkKolA57vZUDdFJrGqxf16IKZAyb00yIQs+zYpPYbV0bGUotqJW65xzeBkrzsueRPbNa1qqKWlDdayVoZu1FMT3LKG3BiXTGBl9jm7HOlkSnXMRmsDFOwhlbJd3nhIMvl8UWHhQqmu9nitsvgmrffsfO1LIYCXLYmvXj7j6dNP+dWvnuYcEiVGSw1OySi9l44pC+VZ+m2sA0Vhmy0FkkBJSIx455Cm3y4jMDrn8F1H39uEj1OoypFi4WGlreUeRW1z6jK8o/SlKIxlPEwBnJWVpRVMCgesbSuF1U+LjlQPJTRMdSZCs/XynKhXrxu27GZ01ZN3zDcsGJ7RxrRsd7mObL3MfW/HogoS9TUy1yFsdIzy3JSMONUxEpe7+nDYSrucLobRyNLDplV8LD3WxXV1Y84mmxo+eWl9C6dgNNTPcxOWYVOnba8kqbH81rEpAtCDW08b4YK8GJgt0VUGm5Vrmr/PGsNyHKuod3H8y3evAbxor15Yqcv9Zgm/vd6y3W4Y+gE/RkKZp+ydIOPKRWdGDNAKVJcvyyUHZoGrWNso+8PlqATn63wX0bLkB4lkL5v3dL0B6DAaYMm43+GPO3x/jfeezfU1j29uubk6sFlFuLfwPyl7tRBgZk+G1YJ0ldiLNp4AnaeQ3A/v5cQQMx+1YH02RsVo4ZCbzYbtes3QmWKQJJcgSYa4GabAJGIelgTO7+iip4uCqpUZcYyAB3fDsPmYfniHtHlMevG3HO+/JOzvcJogBTPsHHcM/UAf1/RxjQRHYgQJVt4hrYjRk7RDMi9WTUiKM3MWcN6BrBE3IG7g5sk/4j/87jtcDz/nIN/ne7++53B/ZH+ckPWag/ck6bjZR8ay5iqfqNoJZZedrkmH5OzVBg2xWRnFoJEibDYD777zhPfee5e+f8Sr/R1pGonJ4T34bk3SSIgTIUxGH5N58golnPdAFg7UWlHCv1TsR0oIaH5GAuJ4gK7HdT4rHIbmmJwzVDuypzWBTpA0EotXs7yzeB0yimCME5ImVGMG0jEAhEhRRoowk7GwL5LYky/PWJCc/H7bo/DR5foXkRptcPZeNOf3NUJZhpWXLIPY0jiV8JbUuPU2qM5tWNyhnNC0y5EWRU6xZSl1NV5SzGY+MRsMF++8MAEFEMuJAw++KwBi8xg45+h8l+WN+X1VpFBtZun8HWUM6hWy/K5gOpw0diFLvK4Pb6MQvv1ROHkZw3Zu5z5L5hFRzenguw4NHpLhWRj2RK4XU4GzZFkOiiLTlVFgZslVFjofGyPxZSWkfI1mVM8JkbEaz5NzxGD50CkI2nW1j851Jo+KReNUo5hitMRbfca657Oiq7mRFoLqUdYUjpj0wMxfhcPhwOG4Z5xGXB+5O+wNSM451tst/bChH9aGPJ6H3xwyM18qUTZl31nOue1VbSZkXhqX5aelZDJHFKkThI4ZQ8F4b4pKkAiTKdPm8Fm+o4DtFVnk/NAHPi9b9LbH149SmPnX4v5KmJq2VauE0ubKqRZnlf2IK6l3AjlVz45ZlnvTnvutlMWz61vtuNmg9rsod4kXL17w9OnnfPbZF3Q+lzkNhgOYUvZiOY+mnK0ks4XIHn3aqbxJkxI1EJ3L77M+pKS15rn3lsOYkhX4NGKePZMhUDx+ZUGZJzHVOOhTBnFpfDW3sb12KTSUe3ORey1hj0vY6zm8ah7DWX+uVJs5VHbZihImedqGav1c9GP2bM7KYivkZ0VRlVgtI7PCcxo2Uyy+M1M4H6SkJ4ifjRI2P+fktsJgG+77NsxpdtPX11PsEIvvIHuhmrE6A1SQOm+n35c2X2r34h3t32V+8v+aGZw215XnX2LsdYzJe2OeuPairMBcHps37fUS+vU218yMsz2XowtyQx/d3LDdbOg6j4z1qsXeA9CkuDJzmgUCKZY2U6A0I0uqRlBP0dRKTS2rcdV6QmbLZQEgMZrQM/QD03iwgsqHA/6wY7Ue6foV/dWW25vH3G53XK1HxFkIrBSVI+boA1c89/kNNS9N6nwXU5C20kZGOyaelITJR6VJeXxDTPTDwGZ7Rd8NVrvLW3aHeXLJ5TqUaVIMA3ZC9iO9Hix8UgZDftVknlbX06/fx6+e4La3jHJP8kJwio4ecQEJERcOdG6gSx6XegiCugCejPzZE+kQ9XQ576aG6auVjzAQiZi5Rlayh3/A+x9e8XhzRdRf8PTwit+kkftDxCdllCugoztEjgPNGDYe+SZUstLiuvNmULECVNaaETQpKQSSKlfbFY8e3/Lo0WNErjmEnjF6C3H1Ht97C4GehJgt/K2Rraz1+Y9GOMp7OVVF0ZnhIs+tpkTQY259ZwpjFq6cFF9AA5qT63daLeKiKNVNVNFRYwgGqatK1/eWO+WEGUlP6xydCi1VFH4LerEIt8w0bRHmT2nk8jhd93OIqtS5XF5fEMlbdexE2CIb314jDFVbW5W/NNP5mWe4BcNo+e/yOaU1p3xs/vNUJiDThPw7t6HwVM0PLoaulNRoipMM8Ff4Q3lnzgvLIH/G6AqPOFHmmmFr50Ta78pli77K+fS9RvE7i3S5cG3rma1veRsZVAq/XGy2Mzm/1EwsNQG7rkO9h4y8nRRzXohrnpN/Guutzc8s1yxkiNessXktz+ORNDGFCTC0b+/MgBOmEYlWQzX1pSaj0Pk+K4uCdJ4U4iz/OY9qNCOCnsqrtqiMdnVo2iASEbH6tpYvLZAch8OR43HPGI6IRI7TiIow+J6rmxv6YYPzXS2lBop3gjglhozErFTsj2L8LdFrs4LS7IN2+9b5OpF36nWFhhvaaypgRFj5tRiVNE4MQ59xS5by7sz7G2ThM2NSbl/brgem9kHHxgMGkfn9D+RQtjLxaYvygmvp1OlGrGuyWW+ajRSWs5gqVrv8rpTF39VRUMmKJeXzp5/xy1/+ik8++ZLr7Qf4NJHiMXerxCNa7TXS6YBqYyk4H9CkypStLSkqvrNwQp88nVr1xT5basZxrCEEMVj9QFvcbt5oLPM2Wq/Sg21YeOWaw7UEx87HZNbk05DG0hfbZoXQmzDhcFlgnsXfAqrTkrnynnOFddnWck5TQT/NSFhItkaUOouGVpW52oI3XCD91mXnF22YzyqqwQgUTQ7BqQJ4okgWZnKKyvlQ/8q72vwvvfCpjge2HmZGe37MlmOtiIzl+8K0W9pzyfpclcKiKHBOly5vXnf+TfaChxCysLFUFh+y7J4KZW9nHHqIoBQmWJ63BLgpAr2qEBU++uhDHt1cW+kbzONRciHKGDoh1zedPfu2t6wmo2K16YgWJzfGoxmfcl077z10Ho0d6jtEUw33duKtfEL25jgRet+h/YrohBAD4/4OefkM6Te461tW2zUfvv8Rn78IPH0e+fGXz3KdKsegHYpDPSRnuSauavx5vac5Ib8LBnIzhUDw4LDizEXBs3zsk7AQJ/gOJAminmlKDKsN2+trfJ8LtWORECOJzoJecQ6mmPMlNYEfCerpS71Nl7gatgz9hp17RuyOOL+m729wN/8Rt5s/4NE79xx2v+DZy58T4pf07itIr0jTNcFd47pHuL63MK/VCr+6AQZEzHMJQpK8F2PI4fcBSY4QcuH4MOHlntC/B9eP+JNve3T8x/zg9in/8ldHPnv5LrchsZEDYaPEKTW0uXhWWoWhrEvJJTXq4q/CVNkLIJbyEJPtI0lstgPXN1uurrekuGZ13BDFkOVCMmu6knDeM40HU8xDIoVAp9SQ8nbH2JuKkSKXvsAEWaYMcqMlzOpISBGXPF4H8HO+bvtgzTSrhuXXk6b0aZwgTZBGiKN5F0VZrbcM6xVRLfyLWBSmRNKpUarnoSxK39vTiweOhYW8na/5mHltFvbk/LLStioX0QjJzTWnnvrLQtry9+k7krTZ8OQ0Aea5kPn78z4Uyr00uhXFuRrZyk9Zn7LssogFMKSkJozX7+W84blJdc2cHA8ZAMt+mBVNHib7v+Pj6yiKZv5tlfly41yKpUWbj8UNpkKfkUXjdCRFYRgGEo6kjkldrlF0+VgaQmzvnuvN57JJLeFDlosQoiqH45FpjHRdR9/3WJ3l7LQQgamrBiXX2yYVEYgebZFaeyv/pAhOc5H6Qviyd7E2K+1sP4uCOo77yDQGpikgPhB0x276is8+/zve++BPGFbXdL7n+uYJ4h1JlePdnqBTlXvCNGOCiFgIqWZjLHmcnDNk/XYWy0CWvVWe55pxLREDmvJ4NwY/VxZopkspJGI4ZoWpy2lEZbbmo5TU+a3o2N/3OKN/b38UmnOx7YoJnylk5GwFvNXhckpyirM0Vgobmo/Xh5X/Tj2LaGlcaXUTkoExIdHE/nDgsD/aO1zOXdOOMEac6xFxxIgtyixkLdqlLBRGqdyzFBR1xgBjNDCJYDVaus4sNyB4hOvNlt1+zxhSrkPSFQDFDGU8e/wW3WwYwNzHC8PRKDw1XK45l3K4Ugvn3lqtqv2jWtwsKdVCClzzjiaMlAwywKywFKUTXVruWiXOScmRy6pVZbBWuqRAKc+hFq0lc0kcZ0vWJbTQ+e80J8LMzy3W/vY+MZ1SMhc1Yb8OTmWqkMc5/5sVrmJduTBHp0w2nfenNmLRv9Kfc0tQKyJeUpRZGCAaKaeOhpy11rohnDjZayNKQd8kWdi80Nf2/W3uTFlzBVnQvmu9b6Vl589pib01JVv7zEy7uDqlOQ/0/XeecLVZ40kZNjs2NfHmpH1Lws7eu7p2E+T8wq5bI0kz6EesljYL0erQaKhsMdfNavuNYDm/qpARLC3yoEfVwi3jcU+4f8HoFN8Lt1e3vP/oMR8+uWP76TMOo0KEPnvyRrDaghlRrlD2qqzk4QqaCNFqZaVVb5Y+lSXi8yURLwuKYwzo/sg4hjnsR8zj0LkOF7tiS8wMuwD+eDR5i+SQ0fYoETdGUq/EjTelhUCIAZ/WDJ1n6G9YDd/kuvOMww1JHfvxyOiOOISuv8IPj5D+GvwVuA14D84j2gMZIVSVFCeSQYmaESrDn6cY6NOO4/0XTKOShv+Ab3/7v6Ff/5SN/yH/24+fc9jBq+AYuoGkZklGpK5ELfq5zt5E+9wokXkMq0Be17arypLtESEECzG1Ol8dXTcQUiK5lIEkFOmycTMb00KIDBV0ISLiLe9JEtIotSoGxOTauQ4hz2WBOw1ojFnJzx5I56y4eNMns87PmIFWw832BRohRZwmvEYmLFVj2GzoBm/npmykzWsXSXjfYXaoNmzp8nGuYDWexEs36JLXtdrWqSFrpqWvb8PZ6bIW8pmHFKPXiTlFfjl/z8nbZD738OPmfpy+c6mAnwKszXIEZLwVNf4ZYmJwOZxcpIJlGQJloJNh+axGoX6onUWJnH9fVuQvcZki7J/27fTzubzw+uOyl0bM2FL5/yzzVGN800+X6w0mTUQh5zEYzU1ZLtQsi0gzB2IehFyS4ESGISs5TbNe5zVNOYVAKGighmwTiQYiEwOxDziMh/W+g9RXBcmVvFYR8J44hVn+0S7Tect6rUaTpObty8ZKVSW5ezQ6UnQcRzLS6cQY7vjs018whgO4xEcffpvbdz+m6zfW064jpmBo3mmq4HIA03RsanzWni+qAVhTizydKl1uDRpt7W1pznvvCTor8c5ZhQRB8NnoZmWSAqLevJx5DPqhq/KMVsNajmIqjOPBDTF/lGw8echRcdkxcH5dednrnDkXowxzg5a0s14EZKQk8RWtHTeZ2Thjf2jXyNnt3k7TAwNgx2uVxa8dDqBQB2Eu6jT/zspHmEzA6Vxfv5esKEjmV5pAfNEBLhOrU+LrxMJXC+SdYgngWpNU42ydFavB6I8jzsWLipxKWbhle+eApqqYzV2zDaqXOeMFRpq0KAyNpVIXT13cdonBFMbUrqNCihp1pVw1K43N1UVpWQII2GIsSK6lrVWEbS3ODROax2V+jrDcRIUQlKLzbYhE25HyaTEvZ32vvjlrvzRjVpTL03vbASjm3FlDemCDtnPUKNhOqrLYHnW1NESghgu8BWM8Y8I6f7/0aLfvbxjbibC1FGAeZtKz0SW/TfXMUHLWqHKL0jCJJUG0ZwsFtazzjtuba1Z9n6X7VHpnDyoFgZt2SZ4n+1WQJg2oRjQRs+WxTLqNQymGXizNqc6BNu2bl4HkQuc9LipO1YoSj3vCoWPcrFmt1txebXlyveV6LWaw9E8iAAAgAElEQVRoinn8s4Ibk3n1Cu1qAbBM28/e+pQIKaIyVKE26WygcqdDL9lYkBnwFCLjNP3/vL15jyxJcif2M3OPyKOOd3X33Be5XHIJYUHuRUpaLARI+kPQd5W+gSDsQgS0gAByRVJDckjOcDgHZ6a731GvMjPC3U1/mJm7R2RWverpkXzmdVVlxuGnmf3sxDRPSCWhlGTpyt31XJ1MVBmlWWIFjCJkVZ91vpgEyKRJ8oYdeA42T2Q1HwcF2+EKw/6rYN5BZES5f63sPkQMuxeIu5fgeAWELWiIWuuLCJgtmYw4D8jwwvElJwXMOWvYQZ6R5/fIuSDHDa5vvoWPiuB3T3f4wc9f44dTwtuZwLNmzfMsufZouPa8/bR9XnmTuyQ14cU/93UpxqdK6bxECFrHzGuKsQkoXBGJrjNlA2ga96dgUTU8S9ihm5oomHaX1BJdloKk1holC8nQvQyEFltVn8Z2Dv1usyparTWC9oc9FjEQhnGLEBklZ9U2L852wTos4qHmZ75XHvaAr+UWWNKkSwq5S1bLni8uFbV2zhffd2TWJtznvQd+9T39enQ/Fi/v+MNjXjrn87K+ZrkDHruvCsvdI3oeWlwZUFwGlErDfBClZj3snoHeNbHxKnjPZGk59rnv6eVSwdK1bj6/rLXm7O4LfNNln7oXnMYs7utkCVVXmSwjCIHNK6cbkzRe4HPwKPgFzoDiZQVxG4fADQXGiwxMqRt5qeE5gRjipXiMJ8A8Uyp4SqkNuWQLVbCkhuQJ9EyerZUACmZKkELImTBNBVO6x2m+x2F6i+N8B+YBm80tbm++gXF7hRBV6aAlgkRLZ8CUuyh1/pSHtj3oc9LPTS8frJUYzud9nnuw2OgRtYzA9Vr/LlewJCKQDCTKiCFo/VqiJpV2c3r5bD58Xh/a3+eKrsvtKZTgEv5q8/fw3U2h7nJJaW74BN1v7AC+C/npFekX2m+0dMbZALo902Iti/k5E8ZRi3GyaHCtW/a0bIAKd6pFDbUP1b3EntVn86Far8xjJKDCms0dQZAkWYpejV2MMapgwuazXtphVvzq2c26Db9gTNQIbse0bLIuzqHH/Qks9gBUhY3FLQ4CKpH2pAPNEtcDi/5WASxNujMEglpPVutn+86T+/g28/Gpy4snF7AFtRgBrA768n77sLRkP+gOtxfL7scqnvWUyELJVmCjh6ErPOLdcdmPHAHUG+ovfoFzhcU7AAscrynazUpFPpzmtrvWOi+IRCfMVOFH+tV6oPVC0Kr7RKgguwkFxtA9Uyqzpeq/8D4yYeGRjH5rDRnR8vNlJ3tiBivqa5ZfWQqaIUCzvKFg3DCe3z7DdhzghYOJVA4u3Bg3sYCLKYHAUGWSZQqOQBbCOOyQiZBZkz100opqjjloVlFiLUZbBCBuQf/QExaYAWEUjuAwgiMQSEsQlNM9ZibIdoOXwx63V1f45PYaL/cBb+9POIlmYIykADCjYJTVnNU1Y3hgfhHBZMWYhcxeKgWRghrl1miRgBAIOZhXoQCH6YS7wz2O8wnTMIBYEOKAnDIoEAIrYCzdfkki4KyxXpoxbsacE07lhKvNK4whgoURxoA4niBlxikzCrYYtl/HsPsG4vVvY7j7FLlMECrYXd0gjNcARwMyAnCCSEKai9FrLdkAK6Jc8ox5OmrWvpIhuSBNA4iAQCfk8hMcxm9hd/tN/A4J/vU//R3eTXd4M2VM96LlIqhS4wr+cpHq8r8UUAwAe19Kf9b0OyJGKRNyTkiJ6sFToEi1vhnxgDhuQFS0LqQJZBC0LIQla5pyLkZmWpkM9Q4hgCMImtxG9R0CykZzSrHawALNlFkgopbIQg7mPAPkQjwzQG6JatwdzQAjWIAYMGx2llIfIG5wQJUzpaMxDzff4pdo4UKpeEb5GmDvhb4GUi54pfg9vfLFQKq7lCkP1Tgl99wBqS0jL1izE3QHOF0s/Oqt3vID41u3S2MCLWdyTWd9TJfAybppmEyL+/JSGatO1O8fam45fOx7m8BFXx9sF0B1++rhZ6y/40c6tf5mNjdMp6zeX+r6ctZs3MM4oIwREwFSsj1BMCCgkKCQoOfdTR7rAWh96EIWq7+vgKTfUzrBvBjiJRFkyphzqnVPEyakPNh7ubqpNrDoLisERDeEMMhiIPt3a5iHArwpi2YNR0bK7/H525/g7vAWd8f3uL5+jpcvvoGbq69iu/0EEx1QiDDGiJRms0Jmo72lWixjHCzRTTv30nnzNNDYhLf1erpLb3XDXZ4aEAWTFajJOCKLHCNAQAwbA9JZ3VJDBpHG9AfLoOo9EE8Mc7bvemC76OVFIHepPRk8PuHct3ct++XYo2IhAURykzmcQJoVVQoDMDfVTgT/jYHFp7TqKnb2uf6XDGcQbMNIRMqzuYcxNpst5nwwgr9BkUP/gIYGKvN3IV4vKEJIWdP2c9CNxSZcsr0/sMYGsWlJNuNopvOAu/ujuoHBNmuw1At90oI1kV8Lhd4dJzDWnOjkFVGphE0lCP8BDm1cSrN14jyG0GPl1kxa++vMqn3mXXlIW+EESJVrhCxlYVEkK/gqQSDJnS/OWw8MAYHnBVSBy0IU/RKbXyfEkqSuL3lZCWqMd6mt7rfFOeBb/u0WhCpWou3K83ZmXaT2e78P1IKzjCtTDe+lPqC9rxeerH9ES1eWJv41pt8EKWq3eh/9smAB3eaaSGhrfs7gln1cj/tB4nXhY7P5dXWPzgWDlCeEQHj+/Aovn11hEwOKEXTP7lh72c01A+qyx4RIocVSAYjDHkwRRAEllO5MEGA1p8AMClH7RQKPXxXT6rJZHgMHlDAAcaM0KU8oeQaOBVwSEgHzVcAYgBc3G3z9+YhfvDliOmbMAkRTcBg1gqJXH44zcZgyKqvHQ5oxz8kSUvRz34CAtyxQEBsJ2RKe3N/f480bwvtX17gigWCHkbaQnBHDUJ+RyeJxJYOy6Z4FYBMeuBACGOP0OUjeQaYNEG+wvfkmEPcoPGLCCXN5h8wAAoFvnoNFa1kW1uRikJPNQUSeGCUPCHQyAlQUAKUZaTohz0ecjgekeVLXoFKQ02tIeIGAW9xMb4DtjzBttrj76Gv4nX/2H0D5r/B1+Rn+t/keA0ZwxYXBxtfmcKnlt+LWoq577hbc6KQJ9BwBaNHpeZYaNxpjBMeIkAeElFECIKaMy2YN8JjynI5IeQIlLeHEzKa8g2NSoF9bLiBhUGZTmmpCmnyaK4AUmOs9TAKDWRlQAFIhtzrjkpiV2xUiBSgZkjR1Pg8Bw3ZEGDeY5QjhDOFksbBkdQlzLXv1WKsy9JdoS8XUmfhorPTxjhABl2QdgVuKceHZgCvUHgKo6758CGA9fGf7bX1/Bb8EpU8rRem6efI5V7CRKdhSUvfAEhiCwUqsfPHO6hgfEpQfbl9yG+gzvuDkbuKwuLeXPkUqcQAJcH9/QBwixjFisLrcalgUBA4IHACKmGaLTSV2fFgtM7V3Lqr4FJMqu0sn3+lplLrHRKw0FrHFulu/AVVCFYHkDKKCyAGEDCqCkHJ97zAPKt/Bk7KV+gwkMsWTKVepSt4QaCmNXDJyzrifChIOmPId3rz9mSr89jf45re+g2fP1HuEwwY8AmwJw0rJOJ0OOE0HzPNk/NPPFmMcx07OMtmFBZ7YrMlv0iYQLbbUcQ27yy0tpUwRlcsDu2VRak4MAKr4IUJhzfJBgSElIZcZx+OEmDLiELDZbmpekpxzfe/T2m9il6+e+IUJyrnMD/hH3b4SE3dY5XUpmu9FACgDCyihv/9LlM641D6sXWoCeYN0LkoCIC1fEULQuEQ2wajWvnLE39wDFu4r/nsHEttkE7JnEjT2qTyZDaxY+YzqE100GyMpABtOmlLcwZa3dSmFx+aggq4Lc7ZO/t1bj9YAQ8Gg2EYWBY82oUWcr0i30Vuc4lKjW3tx1vc1OHCG6nPuTLaJISuN4WrPusKo6t6I6jObEN0BF/+sUwbU51sfqAgQlmDQ1+7SKrgVtVpTax9XV19ghpfWpp+fy3N24XOcA8blu/v11nnqGZ3iU6pfL/tx2d1LiltBO3DezWfxPl7or/99iWgtgbj3txtIG7T+KKjC16LzpOcyDgHPnl9hv9uBWbNIemKbhXtT7avTg84NxYQqZZrqCkicAJ50D9VFJ78TBLakNmqx9PlacAlqbqjEGcKqlSSZIZOADhEHPqKUjHEgfHy9wdU44C4U5CQonWuM1t2y99d1sH6JCREFKLlgSjNiDLU0RrZEPMvaSzAlkVgWuoKSMw7HI969F9y9f4vbgdW1KkZsombVA7nV0hUHhOzlRaoUBGQrvDwPDM4MxIwST6DwGmEzI4xbhACIBoNjxgz2khcUoedxVvmAGITm5cFk5YRKgReVz2nWcIRpRp5ms8qJxZq/Q5ETprLHMGUkERzzPYarF/j45Svc37/Hyzef4+7AKGIJYmpNtc5lznhRtmRdGseVG48QEzqKbmCRnkYTctL4w1wyoq0fMYNiAEcDIlaSotFFUwRYDCaIEWTUnAONQNd9oVKYrYNKQ6ZQEniAchP5Oxraacb1pyM7VYiIKTillFofVjPjJsSrrYLFYcA8Wdp89yCA8RSWGuOi3XH+4EeFVrTvEde7JzYHQMvnLOk0kVkCuvIIvpZiz9B/7n4nFfQuLD897YYDpGU8fxsbqjKvlu+h9vsl9rJ8W+09ek+NdR+WQGQpXAvaBV46A0bve75RFduutFytWz+PHwLGj7dz0PuYZuEpnmn9XPf3XHoOYHNU92g7fxWH9DUtAQxR65YyEabpBEgBkyWqKmp1JxRIKpBeiEZ3zqjtOz+6/lkBQF14jbuXCrr9CIDFXMT1gajusfZUEqpZjVEKghkwIIIEoGStAR6JauZ23cPFvKDUCyf3iRbJk6apQuF+PiDlE7JMiJsr7K+eY3/1HDc3H2EYr21zF2S814zJIpjTjGk61UQ2EN9HDlAjlJh6fGbLn7BUxojJOI1u+35U8G77mrua0iKQol5fmnlVZ5y6A1jEPPWctkPjwguxegjljExat50Df1AR9li7bJRAN8bH97zLA2eGiQeev7r7wrPOPUGqbC1FvWFEy2k1JRItrDdlnVBv1b6UZXF9mFWLosTcwaJvitp5MIY4aBKJAnAwAIdgsT1NyLv0nocm1AEfpED3sQqNHFgPZ0eI1JKoMVQaEK4bZ4jRijZbRic5TzTS3nVpwS4TOJ+bqkBcE+q6qVqZCymWuageFqrgi6AEp+0GFxhWjGu1WZea9vN+VCYLK+nRP8r/J8u4R2XutuZnQ+8YbQUveQE6O/xShSfvo2euPAM41Pp66bA5AaEFKPNxtGsvrqNNxIcOsb//oXbR3Qa+RmuQbM8VVMbv5+AxotEshlKFCxViGggS8XWUCpt8Fj4EDs8/7w7zpcH5UlFnran3ax9jDLi9vcZ2u1EXydkyYRZ3lfO5OFes1BIDbqERQAP6BcwDMs/GgPt7NYbD4xfJLDIOputm8b3DARwHUM6glAGoiySkQE4HHOMRJBljJLy62uJqjBhCxr3jLhPgimiEoCtyKpP0tdPFQSnAlGZsyojB7ncmeyla1I9DkYJcMo6njPv7jHfv3+Kw3SBa/bDddqtj4ypKwuMYPKujefyb2VETqUz3W3AZIUMB5QklfI4BJ4y0w8A7IAUIZSQ6WQyIWqGcYek+8M/N0gsVjopk5GQuqGlGSVrPUtOtO9hh5HJAkglHfgaeAlI6Yp7uEccdrm+f4dWLW3zl5zPeH0bkonueu+LJ0v1XhYiCDEIuQPJsp34aKVj/pJ4Vb9msriWX9h0ZTwmW3VXEwKcnxWgAspQEyUrziui5ZN9zpJ4vFTwWpaNEXL0pwKzC8CpLHflce7IcJrAnr0BBT+d7sCEmpMYxYNiMCHEAzXo2W6yv/q3kqH9OvweX9HD9/bqRPXhJE5dg42GA0OhVpZ4mFDVQuMYpy367AuupsuFa3lgDBCeD9WyjP9l+3+qzShMvgCzULbEY8aIf/XfddCw8iHqRYvGzB6XOA1D/Pu/LGhgZN6J+ns/X/DHxtt614q1n/GYln6zvXf/UwjHmkdLPi/WRnScSYTNqkpZSMu5PR2xY+dE4RqTDsWXirnxsOTjq+HFT9J/HNa4VubWvC37d9ggpRK0yKwBzkdddm30vl4JEBMkaZ17MOuZ7oKRkdWtVGTjPs94L9UooUD6b0oxjegsRAYeAq/3HeP78a9hub7DZ3EAYEEwQTMg0IdJOY+SnCfM8IRen18YvOSAE9e5xRX4dfwf22pp3csKZjAi4RZeIVvtTNPaQoDzeSKcO3ngtK50tWe8vpiRmENySOE8z4tAs71XmegqBoMvy/1Ob9IdX2t655L34MMhc0pYGwBstWMjKkJbTwwiiJ/hZgMXftGXxsSYla1wQ2oHQ35cD3263ZlkIiFEw0oChRLw9noBQoJpq1ZLXSg2X3lcPor8FTYtqv4MCJAiiaYQpoFoXGZ78QgCJ2G53KDhAJlFfeCmaXZNNkH9AkO4JQp/2+LFWtVEW0xe6Q7MAjKSB2JAm9ImKBObi5Pct+yNwOWRJ8EtHtPrNSvX7UjMFeit2n/u7hxUVJQcol4C1ZyfthIHSg4JuzMzqathnhISoFQjdIejHsSAl3T2AuRIDRoJL/a2/3p+3eIb3xfrVavGsxlGKZQt8HNB5v4KVuCCRLuZyxeyXWHE9m5ef3502t6aeMa9H+vgYcVpd2HXuQs/I9iMRYlzGpLJ5hG42A168fIar7RaxZEyeydMlPhP6idUjIRdfRwYjWobG0PWZQRwhiGbRWvZRYPSQHR4xpDCEizKRwEiz1ZkCgThi2OwhZn07pROQoLRgPuF4PGAzAGMEPrrd42Y3YjNMeHcEZrFYZGnJJmrCAQrwhCNuK3KGOKdZAVxgqzmbAFnGtXjbbDQtOhXGPYBpBu4OCZ+9/gy3Q0BOE07zhC1/hMijeWzAUsxrLFypwgOAohkDBwqIJeDdZwdMe2Dcz9jdbpDye+T5HTK2COUjROzBYYdhfIGSD+bCOAEUwDTo3BZGZhU2QBk5jUhzQponTNMJZToizxNysuxrQoBotsHtHeM4XuEQCZl/ieMB4DkjlAx+HjHdvEQsB/zrXwX84+uMKet8FMq6Zk1S1Efb2SvZ603OFSyqJVfBUc/8i4f6dXw9S7ESH7omYYggEZQM5DJDk1A0YFZE3Z8U/GvGQK40TOMfawYjT+iUu9hokKZ8J1gJo+QDQg+aiD0DuLnEmlKglIySNQuq1sRoe2kYR4ybDThEK52isbCEYJZ1jZnVslVtHvwnUUc7rT8fIDFnrVpVP9gu0JpOYVevEhWW/Pun9KX2YQVgHrnDRPpftzXLor9f51GtW978HedioT6D2fuitJYD1fwLIYQuIyUZ+Frc/sR57264zNofv+sBoPdl2pnlVwTAVOlsCAHDGDAMA4Y4YLfZYBxjzU+xHV/is9ef49NPf4Xj4YDnHz3DsB9xHQk//dGPkcoJTILN5grHPNcyNiDLYUz9/rLf639aH11O8ji6RW4GtBV1wJhRzJBg+1ZaEh4hgWcxklLARWMGvXZwm2vBaTogRDd+EE6nk+XGAGLUOPIiWWuRI+P5i0/w/PkneH77NQgiBAWFZgCeFTOA6Aan0z3m6YjD4V7HBYACIyftxzCM2Ixb6J702GqByFzXaqHIh+geFsC9Z5oOjdX9lN1q7vOqtD3GwRRimkG9Vwyofk33fQYsU6qVxYobZGg29nmeIQTdJ8MAKfOTt/fT6MQT2pk24lyR8uCtH+jtuUKjQKSanWwtLNxuoZL+EjGLl7R9j1pTPA5DmpDuB6KYBiAGBjBCZACooOSITAUsJ8QByBL1fk4oJSghN61RAwOAq/aaZtNAhVlVyDS1s2jQ8MQCCoJTEoRJk9wMzBjGjWqKY8TmJmjyCCYc796BTQANISLlBDvPlXBS7Qyqvu5cw7TUqKwbm1CqeLcXWkpN7VyfYr+wJVtYvJ96LiD1QLG5JDhD95hHcSApbONq7jy9i4995d4FAFRb0+lj0ESk1qr2FyYL1klTkE60HHO1Kntq5871ly2xiTM6EiBQrMWkvaQGRImrAxe1DBOkisreubpCZ/u5rqMLP9SKuiplVwVCIEYMhOYO22m6Vty1ZoD12eqJYF387haqM9d6xaYmsEdLJxSzQGONikDY5gGweA02l0Zz2alD77LxrjSjKto6wWnT5ak0euGxEiAQOGdg1Pi1IzLGjhjmzJgTIfCAj549A5cASbPWiUoJkQGxwr3JBVsqmlHTwHAiAo9bkARwBkbSWnRgAQUglAFMDCauJVFIBFwySjkAOQPuJsRsbpECGjagZKU7svYFAcDAmIgwFQIkY4MJaTqCEwCacc0ZH98GfHYQ/OrwDoIRLAEsI0pIllhLhXdfYJ1Phkis++/dqWB/Elxbjh6OA5LIqh6VhlK+vgtIRcBjxscbwqv9Fi/3I67GDTAT0vGIJDNe4z32z26x2e1Q8g7jeAPmEYwBlAb1BKACcAZzRipAKQQOQWNSyoRpOmJ/vQU2BBmB95tfYdxsEeIAxsbSqUcUCRpPGcwBPJ1QygGMDEbBfJpUa18yBhQksug+EeSSkPOs1rtSIKPGh24nwVAYkIyEGTnPCEdgIxm38Rqnj/8AH/38+8jvTrg/zRjGDYARACHPGQOeQfgA8D0o3wBIKshgRCITZMoJEQzGBoRoZ2bCyfq4I2BDygMmnrWINwhICe/TWwTaoqSC4/09OKorbiF1lcpJAMqIkoHTBI4RLAEytFgcEk9uobGcTNA4yKI7nlWaMjzTkpq4NQJQATKLIHpJpUIQi+tlJggXYJ5RygkiJxAXbLfPMG5vkHFACBq/mUQw5Tuc0gnznDGfCNuNIARpIgQv+ZzTWXA7o0o5GEvB+txG3siugxl54Pvusz70oAOG4ooeoJbCKWblVhBmtK57JmOpBGzvvSzf+OdMS7DqYK8phppwvOCJIlVzf6b9B5DzCm137qqt3qU+N7vFxZhotjrRknKLUzKXY8oMji0HQ+Mq3ATFTkitHKcxKLhioq0TIRe16Q0hQqdYQY30rmwmuzACIgbMeVY5g8QsYKIZkS0zaAiqvBdhfU4pYBSNRhaPbZ8xjhHjOGDcDNhtb7EbtZRODLeIPCBiRKQNaL/FEYxSGJQIb//+/8DPf/yX+MXrX+Kb3/kjfOur/xwl3+NX03/BFieAblB4hzvMGIgwgCGBLJmL7j8dV2jyp88hCQKzZjItrBkoRdQt1TLrp9nCLTzJmhfNIa1JWPm2uxSKaB4HSvaZQBgIloF5TpPpmZw/Ftwf1Do6jBtsbvYABQiAaVaFVghb7HYb3O5/G8MwKlgKBcBsslRC4IiUFGhttwN++uk9RAS7/S3u79/jeDxApODq6grjMEIKME0TNpsNbKKUnmeVx5ljt6V9B66whdErVXZQ1WmoQgzVMpbFs2AwQhj9cAFB6t7T7AcqO5AEMBilJLU4iqAgQTIwS0LOgnGj4LqY0m4IXmZDkHKCS0McAkp5nD5cUpL0OKq3+NW+w9xnaeX7fKE9hslaPXuni848mhCn2bWrKN13ROWjR9qTS2d8qPPtvT2qJaOo7mNvP0gLZ1cNmZlFNXaR6oGp+6jCTqBqyhZaB6rgovEd/b4UnysV2gQAZ9WIJFZ/5iihplEOMei/mlkVdrj7TXBJu9g2/VPUmnWBheqty4ldPtmBVZPUsZjvXrPb8eGq+e0PaH8PTHARZ6bmeit+nYOwjtkuHvng+JyXLZl0U6xSXUuR1YBXz1GX1PX33VhEHJE6Db/wvA+vS3MFpTpIWq2D/9KWuY2Duu+kf2a9rRGUvidev2kJD5fuTz04XP/02JkK4F09aYQWAlCvNJImxjTmZFYZdPd2+2k9p2uXMkAtgYUJYE+M1GvLtS/DGHFzdaWfef0nKZpwiglF06GaEOqiaedKaqUh4ATRXR2ZlEnXpAQEgdek48VcOjgWsrhmImi9QbGf/nrPhKsCfMkZmScFRsgYiHE1MPYjIXBClohQzOWlP2NrbYALe7ayRQhpzphjUmY5qLDhVixvJU8YiLDdjrjeRnz9+R4fX+3xbLfBi92A60gYOCOGjJQnTKd7AAUyCAINoGib1hKuOGMR37BFM7rCBJycC2IIapWbE0qakcukFow5AvvnoLCF8KgeGlZzS8qEMh0AqMAhOcCzcpJn6CyNplTLOJm+02M2i7pnFVg9xjQjsGAII65uPsarqx/gbjrh3VwQa7ZP3z5J74PVMbT9WgQKjCUDMkOEEVUsNEuf7otChEA1Cb1q+MnPrie2arSRg4JFAKAQjO1JFaJrjSv7Vy1MBhRr+Zh6Nu19KxrrpLdX1tUZlHa/0yKd92znLCEERogbcBghMtXyP6po62KsCtfx+AOry1glPJcteA5ml4LT+YVq0f0AI+loZqcpu9wa6ao0WIVNqaVb22OlXvv0tn6x1Ef1ANAB5EP9rLxxDdLq38Z/umf6jc6XBY3J1GyolaH7y2UlGDYe097TfbngS+deN4txu4LRu9rJB05/HfA4ceEAF81UqWuMhTkYz/UxJaC4VUgQg9WO5YgQRuz3G4ybEZtxxH5Q5VUMA8a4A2NEgWa+5nGL4fgex/t7vP/8c/z077+P4/0vsY8ZL26vsNvukZNgt98isqBkU3ew8kvvv85D48yVQVSw2CaZhc0auOSRnmFdvf5cdd3xiEobLByjW7CamI2K0ZTO1Ty7bEugjcqxxBHDOCIMI1QtAkTrbxwidvs9drvbevbFib9luZeiwFcEONzfI6VSS1W0fmtWUQ5BeZi58C4hw9ItkkxOk25Om1IJ0CzG3I29O/u0mBK7L6Bm05CyOCdVAe5zS640L4BwTcxTSkYc/D6qe7fJ1nqW9DH9YTlvZxa9Hhx2n/t3lX7oTKaadCYAACAASURBVJ0BzYfbQ54TrX89DRI7120/2noDcBOG3fToW3+jdRYbA5P6e3M3aQOpGUqZG5gwocppntgGWGoQq4hThcW+fz7piz61/QOIJjhw10E346ekLq/jqJqKGCM2m42mRM+aZQyhX0wbk4OoxeiaS+dj8+l90gDt9UZr3Ke6UVlMD9nvbIfZeSjz+vl2IJs/7oUekW0mLL/v5tmtfktt6WWGvdZ6NK1R/0w0cHrem8ZkLszX4tloxWkVTKLbfWg/xYU8d3d4fB9T31dXTFxsyy++iHtCr4VyInF5rP7wB95fA1nOYymAVp6kX94zjXcdixFG8tTlnjBkeZW3xdmznyF6ynG6qAQZBmC3G3B7cwMiFeWVaGXbI9oH39sALDulEnuhqBl0qbOGrgS1tofsjBeqLi0OlPo5I+7GSQAx10BvMkGGiZFBSCkj8UGthwSwROw5YM+EIRCmpO8Nj+6ZtvYuVDMT5jnhQAdsr/cIHNX9vqTF3dPhHi83AS9urvDVT17in3/763ix3+FqHLDlgCgzSj5imu5xOLzFfJyRpwzZZnNVnMBhC6EdhKyciDCQoyUCKZYMwAS1nMCHE+I8IURgOAXM01iVaVIIcZPAwx5sFjONGT+inN6jlFnBYthXYdbrdHmdONV+BnBQwazMqeZVccu3GIDLJWt8TBxwfX2Lbz7b4u004aenjJK6uEUCEN4iY8BcrtVqIBofmnNGmjOyKHgSYoALAqtgyp6FlnorjC+fgzpLJGEAj5kRKcBrVjGH8xNGqqqkki2RqW1cj9UtUn9WcLlq51rpyjYrfS7iyXsEEK35yNBC1TknDNsIjupqKjlYWSrVrHtWcGZ19c6pYO1C50LHEuTgARplfVwRsnX8kn62Huv55xV71GlogqeDyQWNspvWrunL567lhQ/T8WX4y/Lz/ruHxvbBturCYr7QZB09I6VL8mLvdIF39chz+eOy29vjc6DfhaChPChaMxtiKj0rbdCDgIKCGUe1zNsa5lJAQggcEeIAFPUIKGUC0Xut7sKMyIz9dour3Q7bzRb7/Q5X13t1IQwRwyHiruxQmBCHE3Le4DAccByOGGcAb36E9z//IX74N3+Kv/rrH+Nbv/Ut/NZv/Q5evnoGUAIz4fntR/hJDX/JiFWBcnn8zrPJlUs9P6dWQ9o/c88iIk18VjhDLNmI1r72REyqOC3FshxDPahgay0CJNFsplJphCpDAxO2wwbb3YAYR4ybPeaUkbPy++1mjzgOGMYB2+3GZFfU/tdajhwwnybsdjuIAD/72c/AcQAzY56VHw1DXOwTdUX1JDdNAXsmkwhWe6PJPv31vdjY7jPvsrpHO5ri1/uzACsb0ngOU2igWEgVA2aGzynXjOjsdETUO69a6KDxjszx0fNxCRw+xeh25uG2koMX39OHzmj3zJVsqXSyeWj0oS4f6ueTwOIXEYQvNlq6aPYHSF9kwKTCrMvvq5NWgeXTfHwbcTU3Diu4FKDZU11rsttlhDAghID9fo/plDBNE06nSTMLfqC1npvGg8oDC2BCklQss+4wzgR1OY/Pc02OE5v+8Llg6te0zzrtT51KsT45mGhA8deNNVgARbR1RvcngFZHZ3U4lut63g+xe1yDosG7+uzeCNm/8sNA8VyoaAL+8t5f52w8ds8aMD4uf62FLzQtXS+lXHy/LMD7QpFgvreXbn8Ut7pAJtDU3OYq0lvGUpkxBOB6N+LV82dAVkHW47l8rxIxWNSVDgS1VrHo3zwihAHEbLSCofXgnAlxjZFt/W2Mq1rQbL71JpsXDZQA5WWgOQ8RPAeUxOp6Nb/DFEYIDdhIxIsQ8GoI2A2Mu8wYwBiJkPpJe7BpX1kE8zzhWArkeg+xIuoDL2d7JOBffecr+PpHL/HJRy/x1Y9fIRI0BjYVxLiD0BZFrrE9XYGnCZImzOmAu3e/AB8Iwzji+tkLbLbPEeIewA6lRFAQhGAJcAAFGqXgeDgZiBLEkbA9DQiRwYNuoTgcEcZ78LAzbXRBSSeU4ztA1IVHxgnk8YTCSEmzx5pXcBNaIMhgTbAgYvUaoZYhLjjlBBBhiAH7mxv83te+jkMB/vH+l/jlawPtpLHBp/Ae87xHmbYoXBRwFqAUQZozktXZJC4gLhAuGIiRC1CEIVb2RMULgiCiQJP0uNtcyTNymhRQMVWBg4gBDurqTKzW0pxBNCHISS2tpPvNlYAwoVG83AWVB/I9980tFGxCUVPoUSla6zGr+23OM+Y84fb6BUIYYA7PqskXVRREZk2QZEmSvC5hxcVdq2fEFad44PsvKzssmllC1oLVQ1cbaCLLkPiEA/n42zsaXcln9/IeWC+FxqcBxifPVUfHXIY4G9qKD6Je/uX4enu8nox+HgxGAYKqYFa3U6AwqxxFCjS3w6jxvvOE0/0BLIIxDNgNwG7PuL26xX53hf3+ClfbawzDqEoMiupmWArmLDhcb7CbMzgHpHyDtM/Y4Rq7I+GXf/2/4O9/8EP8/Y8/w5/99ef44z/8Lr793d/HN7/x2zjyCfN0h0gRt1cfY7+PwD3hlAtkFkiXmWEd07ycB3OzpiazOL/JOZuHmrZhGNQ7JSVk0XhnD7kJQWVCEUGy7MqqUEOnAdCqAZrkWsOjrnY7dScNg8pDVVHAKPMECsAQAq6vrzWLc+Up2WKTWZVIgxL0nDKubm5wuD/ieDhiu7tCkoSUZxxP6pkQ41CrCBBgWUsZtR63vcLLU1zab73838Diw7utP+VUZcqH9vBajjO5wrKNgyzrrZ2F0zEhDgExMphjBYpNLvHz++XOzGPtkgHs4nVfkK72gLEH5qhguAeLX9INdS3EPmQF0S8dfehCLjAPAQ2sKNNV87olq1gIcS7c++S0Q1gX7QOovbcCdr92RNvHZtlTRRACYRypBooPA2mSmazZ7JYUn+zZ5kbbjbN3WvA+1mlBv/GoHbgOLNkALs/xBdboESzL+XDX3B52tHsVdC+tR0uw0qxqbYOiMoPl57T42VsWW2HxpVBR9b0LLUkDmOdup8U0PLbhg2fM8nH5OPX3tXfTQ31cN7KBnn3vzECWc/iFDu1DL+z3fr1hSZr8q36kXTSRZlt0plKFb3MtAVrhWSguck2lP7S52XmWxUv9lcVuWrdsSgtYspb+GSklbEfGGCN24wC1DGvhcrF9Wl1vPRsabB8wNENOGCzrGlcQ2Ar8di5crowxFRQWyhK/vO21WkYDqi0u9Wwr8yBmzSpKAOSksYQEjGWLPTOuI+FqEPzyZMwFD0zfUt0D90GQLCgElKAulyVrD8a4VFB95eULfPuTj/HJsxvc7HbYVFoj6mpimWKJCZuwRxxGIM9IacCUDihW5fV4uEfOAXHIiAMQw06r01gyBRaNHyRLvlVgQl8OKEkqo52OE1JmcBJQyCqISIHkCTLdA0XjYMpctBYmR0uCE8y6iMaSqyJDtduEbhsygzig5ITkCWaYcXPzCb56e4/v7n+Fn71NmC1d+oYDXmOACCGUGTJYEea6tztLlKgVu4gg5QJiK61Ra1KZO7MJGS6dszCmdEJKJ+SscT7EmjCJbM8wB0VapHPI6stsAhUpGDbPkirxV2XoeuuQAcq2jxqNK3X+qAo6ntgmK/C0UI/tfquZACnAEy2JnQcmbq/2s0QEqgHc6yPU+MJDbWGF/LIAxeiWywt9X10h3Gip/3RLUDtvACwO/TKIW9P0h+QfIiziFPtrqONr1SXs0bEt+f9F6tvzs9VYF6kGFs9dP+Txfjy5idItwGrk2f/EsmbV+fBChCVgEwYwK0VJ04Q8n8AAtpFwc3WFq90Ou+2A/T5gt9lbTN2IwKrcKEKa+ImD1dEG5vEes+x1XfIRm9OM4+c/xttf/C3+8vs/wJ//zWvcHQq++rWP8Tv/4nfx6tXXwXQF5gOKzIAwSg5W1zpByow4bLr4fmlM14dUz6m5k9taX9oL6+YedVwKSjAgVTx/gP4dPQtzEXUBDQEUrLRS9axR3jQOA6IlfRMpmJMmwJGSwEFjAOMwIA6m7DJeO1QlUVagCABECHHA4XjC4XBESglXVzd48+4zZMtYHmPowKKfLwCkcrLOlbnqG/Wsk2f4QI0z3J3RJkf6s8w+eS4XP6URanZp+LKRWEiKHhTqrIdz1kSSBdBEc560kNbnx2WLJY1YnNsLa/8U+ucK7qfRy+V8fNAIIiofLPAc2XJ0YPFLl864JBA/1Dm3cAAV3mFNncQ2qJvciUIDSx0Ao064XRDJhjAu9uFsEU1w9l/XAFTPfLGUwhozFAIjhAFDIEiMKHnAlObl4jmDqs+SysCs100GuDhZbTy9v7IyvQeATJ2jy8/y8dWPKzN8oBMdqHuoNc1h749+zkwfUiLU/i7k5DZL/Xh0jaTuh/759lv/kHqv74l6yPwdi7l4uI9nfbbnXdRgu8wkqw9NIVAVJGdKFjy6du269gLp3tf/6p/Xr2riCyOE1L6s3QMWcYtniglyINgI4vq61Uk22d7n3KCrCbR9/S8ApmVlbMaIXYwQi6OCKY2q7zxZeQtnREJaooEjKA4gK3XTMLEjCoG7Gi/6aUCxHgPf890c+gmu1ka0f+xVr+t5T5Cigr6ULbaBcT0wrkaA2dwJF5JsozU9VezfrGVyCFk0gB/mZh5W3gxf/egVPnnxAi/2O4xj1PI5tmYOFkEAMSGGUYWIMiKWETENSHlGKjNSKpByQk6AZAaPmnCCSFCSuUXaBHm4uWdONbwDIsE8JVCZQZmsXq5yaSozyjQBeYJIRkmCEAYwj4hmVKsZlxc0U/eiljgxZUeNd1dXyWTWm5QLtrtX+Pj6Nb53vcF/Hu6RZkYQxp6AVDZgIURKKDSAKDfBgwgamKSxsDURESlAdo0+x+ZqpsKN7TPdGRrDmWYUyQgwJQZHsAlvbCBXgaHTpVx5Bol0uY+WXjOLZozdiUvlD64QcUJfCX4fH6pg0UtqbDYbLZnB0RLSNZ5SNc6dErBai8iFry+ONhpYeliouiRT9ErHBX98sAur/q0e2fNVB3Q5y4pOP8wj1uBv7Sr2YK++gLDr/J86/nPmVSMaw9/kJh/f+bO61e0E4IdR5Ye9b/RnqfzOa+HpP1mZoPV5DJaAIRCIVDk4pwksCZsx4Gq7wauXV7jem6vp7ko9SIzulqL/vJamnsWgGbO5IHsFmnRCefNLvPnpX+Iff/Rn+L//5mf44T8V3Fzd4F/+1jfxjW9/G1t+CZQRgQoyEoAIKREhqpeKlBmBd6rEXFKmJlf4TxEIFVTrYjfmpiTv5wEQYTAXBYvFw3y6WGERBPtOw40EHNVVNwwRPAyoJaT8n8vDeW5Z60XLYsQhYhgjKABSs8ybYkiMznGotTuJCff3d1qHEqQJcKR58Xlm2WgJvdphNEuVtNwHTRRq+0LPDVerY/us7lKlwzg7vp0MV2fLpfjFPC/PiwtCriAUsMYEaI8FgBCkaLmNzOZT4qEraP2+RL8u0YvH6MdDlsEmez3e1vTmg+e19sn+WGmclud15T6yar/R0hmPMhJBrcWX8oSUTxBkMOnm5yIgT++qVBAAnRF4+Pfwa+zxHQA8f7ff1/tGW6WRqk0tyFn9wVNKCBQRh1Cvn+7my8/2VxTtGHV9foR91L7qYX9qa0JnE+b7ThhDJzf928crwbXtmcs9fLzfl9sXUSoAaIkb+kvI+ybg0PI+LA+kHZIqGFHbL3V7XGbgH7IEusm+bj8sz9YZVybTBlH7yGW6ymbqtlwKMj4mgWU9XDc3/z2pdWM3YXihkbNxqztZWWqQiGrW3SdbSdtbl4JWJ3SGlXUy5Rn73TPcXu1xvd2YC2pqGQIXo3HhnKDxbFEZ5rABxwEIXC1S9R6PbXahpfZVWgr0C0Jh1bJ1TKUuPnlK9ogcorrCmlcESkKRgm2MuN2O+Pgq4kdvM5AEcwmrg0ndb/67zY8UAAG5ZEylYJKCbQAiQ619Xfvd734Ht7e3GENAYKUynpiLKiBRZ84AdeUtcUAMe2z5eRVMptMB83RCSgmn969xvPsc0eIucxarnRUxjluUMFipkoCCgFRMO5uBNKszYzCQRCDNAlgyciLkSa2kHI8IoSBEgUQGsWs6O1LvNNGVAQAkC2b3VSUAIaCUhDknyEmw232ET15MuJ7f4k/e/Cl+9inj/hSwk4IoOwQUxDHh3mY+1HNh7xDdR1SUNxXKCK4oEcZ2M2AYImIcMPNoGSWLZQWNlvQntVi/oHs1xE0tX6D3dG5XlrynBm+51qNuTXWr9my+SgcMLVaw5nRcKrgrlhhDpIAkg8VroWUVEosATNjsdoibLYRGlHxq/QzK63JRPlikqPeGZ6G+ZLb6DbZL1rynukv2wmY9966IEDEBWh4gp18c/P7/2S7yrJKhZQ20MDu4xcjl6uVEFcgxNe+qnkZXxckXALPe/Mi6Qr6YBxYAxOCx3oACE7UzTacDcjqCJGG/jfjqV7+G589u8Oz2GtsxouQEAYPCjWbEFoDA4DggjhqWUDIwl4ySZ0gCtukVSjiCy4ThLeEv/ux/xV/84kf4859/hv/9/yL8hz/c4Y/+xSf4n/7dH+Nut0GZBkAChhgwzzOoRAy8we3tc9y/f418f6rjWC6EKvVcOWOR1NAMo/HiOvnZ8nXUeQeIIoqdM3c31ZlCpdHF4hE3e/VYINZkbWEYzGvH3ertvOaM6XTUDLhEGMdBa6kGpbelqOKOAyOGWJUIQoTTPGMcNyhFcJhOeHP3DmMcMMSAz998hpQTYtSSJOM41vIsRAEoYq752eLYL4stDQy2vec8uNZVhG9FNtoG9C7Avbzh1shLUj9BFczt/J97S4mzXgFC2EBQLDzNMvPCaS+qsPq4osqf++vRk6c8+8s0gsnM1M8Crcjf4x34IFh8TON3/n2Frw3M+OfUrtF06cnM2k54fHELUMh447LzbYO1ggVP6W8xYaN5rDEE6poTLLOi2Cb1w5co1bp/rklxU/zapa2gaY4JtVTyumerPi61DP570zI1lN+0VPoGD6BuBGq5HqpA6V30lu3SzFVtN7VrHHC68qFhpDVIP/99IYx3f3vsSAOysiIc3YzZZF4oN2fZ/bKBO64FVtGlH67zasxT39w5Iy20LMZGF9SHcL6dGtHX38M5gaAO6HWCzBfSHJX++tU5AMyC5d82q6AysuWz6tggy3hOnzIAOtFUv+8TD1aLfx2QxVdA8526cKKA00FQc1MCgJQFN9fXeH57g/1mAKV7C9I360cdGJoAYyBWBfARYdhovBWFVqYHS1m7CjHQ/U+kGU2zg2h/iXQR0tQGXarywS1JrEkYeNB4uuq6XZCQQGPAfrfB1653+Gi8w5upYEoCDMM5E6v7ojuzVuoj5YySEk454WqrbqFlleDm5c2tZrEMhBIABBUMyQoScwiqibaxukiTiUHQWOxxCNjvniHnCTmdcDy+w/F0hzydcDxMyFkQhg2GcYOCAYGj12ZBEcGcEqgwWDTQX4LOSUC0PWIpywcBgYF5gpRU4yAlHwHW2EMxZQuqvNrHVwPJlHcQre2lllYVIrMUnIrgav8Sn3zt9/Cvfv59/J/3hJ9PCW8nwVAG0CZgHkaUwwFMgyWvMfrqGn0RiCSNpeJg5WZ0X19fj9hu1BWuhIgyEDiboANCkoIslmyMAI+j1XhFQiGNra3bmRtvbDS0P9tSAT8x1Iu0bejuMnM9lubHI54gRyxWUaS6uHrq/zCMiJuNxfy2txO5YqJlFmZmxCGC2VxZL4plq/3t/3kysDRrRkd4G+n0jLHnII8Ij4C/xreKmcOdZ/fX91YK0xF+sF1SPvbJTJbXXeIdT3z2A/f53JSiebrIL3We4YoD+L8Pt/qqGtf5tKZeHzp5HqpZa34yTPieUbJ5H8iM3bjB9bMrXF/t8fzZC1ztdogcQRKQUkAIalEU3oFLqrWUC0UD/1ZfGl4XVJWS/PYN7j77Mf7hh3+K//j9T/H//Ljgp59t8N/98YT/+b/9t/j2V7+D93GHuUQEYgQGyqTlEwQRQhn7q2tsdxPi/T3uTicMsZVP6Fu19lpSIY8BLKWrbenzs/p9CSjda0HAbAC0JnMM4CDKG3isfBC1NJ3Uf807J6FIQgiEEAM2YwCxANBkOkyMyEaHAOSUMYwbhBhwnBLmlDQmPwtevHqJ0+GI0+mE0+GIcaOlSjabjbm7KsANgRbnillr+KKrjd6P263gC0U2miJNyUC/a6XjB1JLyDQa2lOxdZMG8mCURlp/tLxWgYARgiZPK6ZIL8XKumQ7WmSejhdKAPV74tLfTzagdOUtLrWlh5f4iNDosu+dS/3wrLH2LPtOUJav/DIxi+sNv+zAE9vqwAkAL1rqWn3HklWuh9QN0iahHTLU+IPVwjzQBSfefc97J7m2pZwYlwoMyersRdMeNQAkVRhtz8BytVY964VSzxi1HoON/oFx2Ldna7D+25ngui9LkLsGfQ4yvQ8OtGQ5ccs3dUB3/dnZd4+ebZvTs5Gcf1rdGjyjoEsp3KV7B3Ubqj9B6MDc+edLS3bfvaWwcbbuF1o/vw8B7HVr3zUC0DpYL1r+tMsvugGfoW9lOr6XGiB0etV85+tryV/RlDWm21kohRbnqCz3aQGw226x324xBEaZUdeH7EwDtLSoOIPhYO596j5XXX6oA8diNOFsuJ2V1Tu9mkZmS6WNskgUBasXx5b0gw10kakks8zgwBg3A17uN3gx3uEYgCN50RAXGru1tKHWs0kAQetCZhGcpgmy37b4iq4FUtfMAv2OuB+PJ1ZB88xtqwZ1kVSLIUUgBgYPARQJcTvgdLjDdP8elArCuEEYNojjaG6UCi6K1TQlQGM+iv5kB9lF54wpguMIKgIuDJSjuvkYMJNiXNgFoJoYZul655b3SvnJBCwTUBMSShwQ4it859lH+NGn7/D+kPA2Fc0MW8jq9iYQxbYX6vq7sCsAL+saEmCWxaGWUdIuN3e+fo8Xkaa7tjFVAmL7sO1NXzfnY0blOi26uBdMl/HYa2St8KX9x5JLOIispUoc0ATEIYDjgEKk7lcEu65ZSZhbwuCqV3kCUOx3W0ONbd36n43XeN+XQmA3sDbMBxDdB8WRBy7olRJftK33af9594aL/OJyX2R5jTj/bc86u99lARhoW3HJ9Sdn3ETat09b2b6RxcY22QpwoV8AL/8gWRNjDYRNiHhxc43bZ89wtb/C1f4GMQzQTLwB4EGVLBSUg3Oo49LjIr5o1VJKEOT3v8Ld65/i57/4If78x3+NP/+7O9zfCz7Z7/Df/Mvv4Wtf+y52N19Blg08fhiUQGI0VApSPoFoMM8AtjO3lD8XokJdGJUBS3ElhywTN8L3erf/F1uu7fueR3BwZY57Jjhtt/hnUWteTjNSmlFKQi4Fgdksh6FVGrDGLtsJzELa5GnmgONpAkjLYRALjoejFrUnWGhWWIytWkQduPo4QJV2rfd1JSsr8Lz0glrOS5MszmXZJUm4sPtleQ7EFByqQCYIe5kuWFZsmIeGuwYTOHgPdH0cNTwFDz3VU+vXb0va+XifOnkObeL6PfIhevgoWFz7XT+t2QB6xtxpBAiornCV+cG04OKaXieD1rrNVDEk7JoFI1prb7pedTurCbz+t/bBryulIMmEYdCCs0yEsfPdzpYxkaprUHt/05Csufqy1XeKnPV5OWd+vR30DrCeW3UbwapjBpZzh+W9/rMUj8NYPe9C312bSov5fHjT+d8eIdN/6ySSyIuiLsdctezu5utjsXpDgAfVW30jyai1jwSLPfTUdsa8sRQueotdP+/rez7UGvM4nzuve2gzDI05Wqc57tfIie0FwE1NY09esL7XAkgTCHvxYm3pbXUPOyZYX2vuHs6PL2j+97st9rstAlHVi+mbGIRSlWtiQnnVOFocmDIydZeTBYORuo9WI7f7W+kMWe1VQOmcllJoe5uZUETBSQwRiBE5RnDeADJDSkbChDjsMPCAj663+GTHeHsQvJ66WGZa9kUXQemGAFXoAgUULnh/OiHljI25C/Utp4RCBRIUEdZixyAQubsS6qGionk8tUA7QCQoVFBEBQAOEdv9DleBcHz/Fod3rzGnGRw3iHHAOGyQs1TlnqqMC4IIUDZVTlDaTeYtSgAHBB4RBgYhQuaCAnVtlJQ0LTyTZa4NoBihsesBvhOrNhla9MxZGzGDRMtkTHLCFHaYhht878X38A/Pf4D3p8/xesrIcoIIIScCkcbt1TO1Aozuwhlqbmbd99vtiHGIiLVMkZ0RUvfV4nsexXiaqBGWWWNr6/qK5hIjUxJKv1t9sfwcO+jT65WWlUa7K/NrAlrbU403aIIiNU1KAXiI2IxbhDgiwYA/K0AUe2cpyRIkeT881hEdOOl63p/B2ufu1wdoYeMbLW7pcaFr+XcvrC+l+AvPIeU4RB0ItotbJt7L/bvUr0vfrYXe6h3UlvHsGevnluL768M8xIGS8yQSV+yuBebVn3qwzvrdHtw4zuX3LvmhK1qIQnW5FMk1wUqkgnETcb3d4uXVBh+/+gRXe81smgshFwI4gsMI4o1WjREBJKk7epVjch0fk1TXWuSE95/+Df7x53+Lv/7JD/Enf/8T/MX3gf/q21f497/3Cv/Dv/0f8bq8xJE2iAOBC0BlhmAGYUAMjJIL5ukeIkqDOBAij4CkKjM6THBAWCeAXC5Q5WEISy+jy4oEqiBmMfF+jdEIRqvzHThWsFZIMM8zcs6Y5yPm0wE5qwfK1fVLgCyBDLwsh/ffzproyQ6sBeYlFYQ44P7dO8QY8ezZFU6nA7KFiGx3GwxDrDGG/XaR7gCtwWEnvbezgSbr4cJPl02xuq65kF44rGfyTkdPZHnXQnnCrDH/IsgwkC8EKkoH1aWfjM+6NxpV75DH2kNGgsdaT1m/kGLpge/b7z3G0Te1/hP6OMWHjFTefqMxi/00LsfiU60tl4yc/5S6VwAAIABJREFUE8Sy7blw0ARyagIbyDTW7bkOJhdvcDCFcyJIJhwLmhAKoCtWmeu7a6AvASUVkPnfD8Og1tBSMGtifFTL6FPmhi5vsWoZ6ftKbRGXB+px15v++h5QLjfQ+fU+9p7pCeFB//PluB5mrA99tiYsVSlR+3CupPB+emMjuj2DawoBFcb1Q3/A4+Oo73ngwktM4KmE4LHrqD80/fscZ3xg/gFzb/M5JbTMeOSChT6HCJosxlL2q3Xfx/TEl6ER/0uCHvvZRbHYijbO/W6D3WZU65RUFtwtUQcCqZsDVtc+svp+pbPa6LnvnuXMm5fuyL6nvTV3citYjHYG2KJIyTSkcVBrYh4GUNqARSBImOSEEnaIMeI57fDJVcTPD0CYGDI/IGQ6AdM3oogqn2ijSRbuju9wOJywixE3N1eLZxze3+Pl81EteRMwZYCjppSPIahwYC5HIW4QcgKVhCwah+1mo2HcABxRLDvpLAHb5zs8++grOBwPqFpuERze36GcTubTJ4AUSCFool1GpIiBBxAPSFWoA9QXVSzGbwOSBJEZAi3lAIGSOC5AorpfwS2LMxFhGKIy7mzZPfs9ykecBJDC+Pj5H+D3P/kMIq/xj1nw9h0jTDPGwwRcj0AxkMlqKWYJCAjIDuakxbVJUYvcJgZEi9uTZJlbO7KSK7/IEDAk6iEbhsEKYgO5JDBytQRLWe73deuojJ7r0nNOLADRggeSWz7FEts4jVKgG0PEsN1iiCPmom6yFAek4FtSk4548rk5TTgeDkipV1DhcRJB9p+HmN2lWy4Ap/Pvzz+v8sIaMNb7jEQ4f6kPedg584vQcweFVRHaWV3YSsh8Uctlvf4D3aiitSj9oFqCZiU2mzDs3nrnIOXXb0qj2eInAT/QKWk5GaaC/c0OH330Ai+vn+Gj65dNKZw1u3QYNZwgE6NQVg8DEYQCaB1eqTG0TKQupMSQOWGaE07v3+JH3//P+E9/9U/4y394jb/4O+CP/j3wX//B7+Df/P6/QZ7/GW54woyE96VAJoDSBM73iKLlnIgCNrsBI73CLz99jWmeVSr+AmvnHmh965X6WhojrIwv5hLve1iUiigLVxrBrJY+iNb6LqXgeDrgeLxHShNymbEZGdsxYIhRabrJsgAhssd/M5A9LIMRw4AYI1IuOJ1m3L1+g93VFcDAm7dv8Plnn4IhGEPA1dVecwuUgnkuGAaqiddy0nACpW1AzrMp/QgFpVMGNf7cILPL5JfBdd1j6GhEdZNs4PLizwVI7/a8dJ4qRj80AXj2HHZgZqSsPaMiCFHnUAFwMbHjcZq17v//l+3DoPFBwKDzyX0Svd8QWHwS4eMB6uI2gzJUqz0AswgIIwIiuHxmtdgITCMCBKw5azWWRQJQNDl7izN2oVT/avGKLiiiMVEpsJzndWsWYyh1s2pAmB1ymCDdrHHFiFUqM1QjLQis6YKLDBhKxmma1WJh2imq/9N4yNbrZuWqcHoRHNBpCKtkT3ATTb0NqC5gl5sLvG4lJC103a2du3UBDZQu9AzV+tLPOto11F3n310ADIte9dd2z3A1kwAo5BkP28mulloQQGuXA4Z4KQO4375q7BktA6G/x4XBHkhfSivUlqXNpf9O1bHQUZf1T4vCGYE3xmwKgGZAMAtoD9Srq2I/R4IlIaKaFEq/Ze9B+97f2X/qffCtV0va2B4ovgf0p2fvd59+fZoJPqA2V0UWrvX1etu3JRdLUqUWi9LXmAKwHwN244gQrpD4XoX2GFV4kLLcd3ZMNNV10rg3i3OGuaJq6YFyGVVLtn4IAAbCAMlZU2SXyRJ763yXWlTaGCxaWQcVCrPSI2iykyQzpDAGAHw6QRPUMG5uXuHl+7d4efcePzsN2HNANNY5QQBjpNHomxBQBoCnCSkBJWutMSkZOU+Y51Vt1zIhS0FBQKAIKQNYBgQaQQgoOSsFYs2EWVy7StzWUICStKQFhwwMGSEOkBKRUgBj7OC7Wg3cIie5YIBZNE3zLyJa+D3PJgwpTc6iAAoUEXaiVTSyQHJprpUiCjwhABVoXKS5pHKAyviiBk320jntRMbCCEXAZcabFxFfmb6CVI74y3/6J/yX9B4iAdswIKWIkk8owthud3h30GQG06wgSi2wsxZqzjsdEzK2cYMijJQFIiewbECYIEiIhWHGQhRxeqAtlWzAVJWMGk4tqpTEBM88LHa++jJBhIBGo0VTm4tr6jsFCVCtloAYcFErZyU5oudAcETcROyuNhDe6HNSgUwTguHKDEIY96D378GJEUTdhlW4JORU2sHv2G9NpubjN28PV9wshWh19e6B7Lo1KEetCLfxNPS8ppL3DkwSKiBXi7oL340m1p5UPnPWBfS0pLcm+ZpVPsFUqaPHmjqrV4UZLjPsCwpislIQACp9BrkLeZsDnwatoGAiNwmINVYtl4QsCUWinienckYDAqk7vY6n1O8gxeSePikLUGPIrO6tD6mQ8o2UgXFQmk9lAtIb3O42uL26wjc++QY2wxXGzYjilnZW8ELNhG1noECyC/LAFDaAJBCfEKcE4QgEBU/Tm0/x5rMf4me//Fv8yU8+xZ/94HO8/vyI777c4b//d3+I73z7e9hdv8J7JGy2GkvN01HpnRAgI0qeQZIU1pSAGQQZAngMoGlSGQKWjdW1JFQ3RF3HKlmKJviRLozBFTUg0cRD7PzSeK44b9d95NxdFQ0aaxi44Hg6YU4T5jRjnidkE4biOCButlpWiAOEIjifEJARCZgQITyCQkBgBrK6mceBIRxxf3+HlBK+993v4s27N3j//j0Od++wG2Kth6lbIVSQxBZnWTGgUyBRmaEq0gObG3F/ftp86f+rmr+dBwNlgCrj3GpepcEFcatEDuhlHOg1Tj8qlal0tFlIiQiBYpcgjBB5MDlPkJMaiFzJmD3ZmA+/k4dEKuWGg+GnNlrIMA8Qp0q0GoZob2xeGnrrY16hnZqyl9vLw4o04Ilg8SHr0Nl1JhwACSgWiMyEYwEYAUFGECat9wJ1nWKyNNCFgJgBidDkGdlqtnUuQxf60v70xVkYwJfL5VJoL7RLI7p+CNSVUxNMFNaDHWhAsKLFMUYc57m9FmibGeQek/XLywpDsfe1PlRXwB7Y1P+gwpX+QfLAxnIX3R4gSn9vBxZB5+u5MGEDLaHsxeuWbW3VXVjlvKtVDhBUbmjXL9/RAOPivWQH37gnmbwJkpr1SZlaJ5g6ITvr8fqzbu67PvVzInAXsXb0zPljRSLaAW+a+fqL8R/fJ07IbIKcL5F953uqR85VW9bIVB1FfVf7TGucmia0UbnFJDRtPtW4uYX7qT22upZ4/73shRUuF27kJRKwHRibYQDTqGtH6uYJX8vaB0EF/1a7D1ZqQ8tsAM3fUq9XQc3ohe0nKi68qSurcICUzmoI1baKXUcghKCuVP20+Qkq5EWMFahGAJRmFCko2GK/v8Gz7QHPY8ZPJGpSlq6HsIQ5NbaNAQnQovBZWeT/y92bNUuSXHd+v+MeEZl5t9q6egPQ2JogQRJDakYaUWPSmGZGLzI9yGy+qh5ketGTTDbSmIYiBW5gAyCWRu+13DUzItyPHo5vkZm3qhrEjMkU3VV1b2YsHu7Hz/mf3TnPPM+M08gclsriNN8xzSu865HOp01Z1XkL48/hriEV3pKUa9lItZDD/xV8KiUehKDpXppy2MBCW7035S1oqXyqqXqmhS9adViXjIVgIbw27z7VnMoCWo3X5/XSDLKTAU8sZ6d64mLNY00qvpmDzQDhVHAa2Z54Hj96iu4mvrW+5q/5gojlQOls0SyI0vWAmrIYgjD0HmQk51lpcMQI3kPvB1MWYwSdcNqhOhIJJcR3UQo57Y8Q1ZRY5/DeqqhGDWicQcbCjdG05ti7VZCRQpSx3E4tIFXIobB5q+RwXfNw1hY0QsL5GkBGfAfDqkclr1FA54BLrCiK4Ps1jq3lczXta5w4QlMMofDFljgXvzSgkLofszJ7H8CpVyd+C+XaAo6yvITKNw5ukaIbxJSrkme7d2LF/VVRO/x+H29okVmOHJaWPi/Kg/3lpH537HiVnCxoIs1/zqUqXW2oMkmTUBVndG49Ne2lY5IOxZQtTUh+5mxicxPLXFbZwv78ZHlECvgqBt4AcWTlAw9PB956dM47jx5DWBE8zE5p2z1UzkhaTyWVR0GBkHr1dZo8cKn3HnPk9uXnfP7pR/zsV3/Fn//qjk+/uuVUhD/67lN+9OGPOLl4Av6UnQZ8J4ha9IgwgRPUdYRZycWuQoxEEaTv8EMHdynH2aUCVWiSF5mYGrzS0kZqSm+RPn5Rj8YMYbFUP7QChFX0Jg6ebp0MP1EJU2Dc3rCbtkzTaAV+ug7vB/qhpxvWGF905DQuSPUcEEgeWhVnVazE0r3mEJlS1ePz83MuL19aK6Bp5HSzTv0g6/7NkX4trdflywboWvNBvMlvTYb0GBcunoJPW6Uq/1T2nSptapo5AtKJkievYqmWZHMorJ1avy/PQMo6OrGaBdaeRVN/XExPCSEZXcVCd7W9S75PSwRQOE0D0/aPozh6n99oE+lXDGSH75zXoODQArBb3NfOwP548zfH+VQ+3khZ3Gdk97pXW0Ce+icehH20SlAaoikumhYsoNEVq2kWm8ef1z7afinWbSvJdXCB7aXqxWhvrZoCANJnMapV4wOct5DUThy99nTjaNWj5lT6P7XAiBoS/6wE9SbH/pl5k7VjfGW4zt67RFXiNB+cta+M7ceN695zsiVsUTOjveOBkHv1IfKKeWmtdhye1sb9Wx8/XzZQFph5G+VGpPmWh6G4urhnZjD3UFo5903ftZzVxpNq8x6SaG2P8R7ba/th1ftjasHU8vOWWeXfXbYTLBhI3mcllKowpsPnNob9w/lorPD7xzAM1hw4agpXspLfqlkQ53nJIXWZ/huGXCok7oHHYtVr3lYqvZc/eVfl+VFMGdm/XnLbDKvAGYNVk6tVapNl3CmiHodnPcCDk4HH5ytWNzYLORxHfEfye6fB2Y4SjQiOk95A/Li749nLG1Qim4uTxfx9dvmMjX+HsHGsNkLXzTi2qEx48dCBup4og+WpiVXaM6UkplEL4juzGnuHE18EbPaU+WRIiFg+Sw4Ndz7i1RTvNhS4hO/HmGpIeIQclmcgwXV9aVSvcUzRAJE4z1V5QpIxI5ix0XWNgUdAOpxEC3F2js4FongmGXg4A5tv0j055Y+/8yV/dfWcL64CN+PIyp/ReyvqstuOtXBDZ2jO53Bp6RjHiRAiQ2fCNvc7M29vZJ4C8xRgghBys3ssXFRzGGsFg5UeDdCJ66CEiqUt0+y/FoTs8+JiZTuiwBSqT3Oe75zzmZzz+K4npjBldR51jlkrrTvn6LqOvuvwzqoEmpGrzWtZbJKjClUe/wHPEgxA0uzd/Xe8hwN/XTmzN0xLW2gKoNUqlgfTefT6BVazQe99kN65qGb1u2Nj35+beMSqf2g4TfvTJ5pVyz0NwWgxzKHcJ69p4pZVmc0KbQIM0vBby5FuvEOpeXrxzajhClOuACecn67Z3l4TwohI4INvfpvHDx9wujlhmgN9p6lKc/ve++i6TCpKZHIj69uAcEL0D7hd33HqIn63Zfzshr/56M/5m1/+kr/+h0t+/O9e8PvfhT/9o/f4t//Df8PJ6m08F4g7oV/tuLt5iSicDqdst9doEItwUE3hwkKYA8N6xcnmlJPNGbvru7TEWlKVnDPlR0SIzrx+pb/xYmlzFJRFErRexrzOuZVDnouYcG9WFn0n9F3HPE989eIZcxjT5DlTEPsB3/V0/RrfJf4dZtzuJXN/wejXjOI4lR2dj4ibuGONX58Qph03z79ipGOz2dD3a3784x8zz/aMk80GBLrOQlXvSy1a8JyyjizeNX+b8UsxNLdXtHhBoeKQrHcJBKORyIwVUEt7SqqXM7cRsQgEYRhWZawx92Cr1vqiSuW3cJLSDVRTNJdd49K4VElyo9YFkMLHljj69fzkOI/b54fHjEmSJmYf7bwKt/6ujjcOQz32gke142QhFrd0dWaGZdy5Tn4uKyBIsZ5lVUuojOXoAuTqcdmC0QBMq264P2YTpCU0IxVUgENYHGmapaoBM+97fNcxiDDMA+M4Mo0Tfb9Ki6homMF3CzC+nKfjQqNYj/ePYjnM1oPl+0u7sdItql/g2O0qQRYCB7O47Ssu+YaNztoS8rGfjx2vi90uin5rRcHYg71Gm/uWrc4ugVw9yH+OqcG2S8Uw5GC87C/DUjAfAz+tdWdx7t73mQUtF4pMe/V+dYvvz52VoF4+uz3vGAi7/9gHG23D4LrXtBnLMZDSHvcrt4V9mrBsFFjnYHOyZr0arHrbPBGCFYoxj4hg7Sp8ijpI648vCnUube1iwAoatewrhX9nHpDXyqXyOY3CiCSrJw0ZiDTzsFQwTWl0dN4xhwqgVCHkGF43s/Keh5uep+cbTr4amXcTUyriQDeQi43EWcEbsNQI8xzxXuhcR6QjdjOjE3ZtP0zg5faKy+sTNARC3LA+7a1xvE95eN5yB9V7G5eEEgonau0dIorH/E+aLNcyR7pekN5ZuFIpZS7WaqHr8PNMcBPzNFOszLkVBJbjp9lj6bG1TGb0GZc8yAEnHqIjhtEs2bSLkGq9RkXxqe9VXR8nFqEiOSzKmQocVOh3wrh+iH9wwg8+/C5//Nmv+HG846djZJgn88RigrzvV6h4JIzEeWdeQmf5sCEYDZpeYV7eaRyZGHFzIM5mbdY5pmqokowNhmlyrEEG5QYLE4WKFfyJOAu7U6P9uq9jmjeb1RCzN6+C+mw+Lby64QnJjmKVEangVB24ztMNiQadeVXEQ4jmGReEeZ4L2Ct7WlNIdsye4Vcxm4axVuHffCu14nK5/XFe+6ojA8sj5qHyzlnJDynMZ7HXqYp9BqaL+2tVEOuY8rltAZvaOqPlzRn7VHHyamNfXstjRtx8/eKImTfWN7eiL6nQTBJw8zxD39ubl8TFfE2hrDLOnD4QQjJwOb+oyKz5YUp5xnb7Eu9mTjcDjy6e8O5b77Jebeh8jyLEDizlolU6FctbbidYS1qJqNIRiOyIKN3wlHD9KbfPfsNnv/hrfvyLX/P//OxL/v4XV3zrsfCv/8Wf8KM//A6Pz9/BubWJDD+y3QZ6d4pngvASdMJCxUy5ErEogO040a1Tb1TvmOeJfuhxPoWh4gv9OLX0qJibuIfJ3qvBTkYj5mHMCqGIhTJWtBmW9OezoSwyjVbPYw4zu7A1Q4/v6LqBYb3Bp0gPcT5rSaCR1dAz7m7RbmB19pAxOjP4hYiPl2xvb5DhhNOn3+Y83jKNI+NuyzxPiDj63rNaDdzd3qY0AM9ut7PnSbtnD6gYEV8U8EK7KTKw3SfZMikiqb5B5jVa28iSQ3FzXYWk6InicrstjPead99SI/q+L88O87YQeyp0SsY72oSvigphqnJe1RxEGk02k0OH1Vr+mZEmtYhpdoZhj4qnj+WxZtqwOXy1RnmfvpX1nIq4MraUI9c1Z92D0V/Ha9vjlcriggG+Rhu285LSlYFWM2Sn2cXeWAL0GOEBmOcoZld9+80eE7V1zFvZvouF4MpHe4rYESW3jLRaBa3gZmagwRrNOgtFG7qOMAdGprRWynIUxxficJ81ytirFq7l1OUzSUrkkXdLYRzI/YRZNinCfpn+dmzHrv66xP4mVuEFmS/O31flE88p8i/DK2j+SsYJiiLQKniyN+ctjdctthzBPqrIoY9VkazXLxTpg9G3O+Oe4wAMvfr4Opt+uYeaceR9lDbyIYhK77T3ezmcq/qwLJ/jPaxXA8PQF6udPS9bwtM9mzlsVjXlLlj+gMZowDrv1wRwUwbnYi0kM4EEttt/i0KZ/8kKvMoezdj+6LxLvfqykINoZQkQjXROOBmEi3XHZpi43kWCQoiOLnuaYipKAaDmHXA+tadIwHZWGOeZ2+12Mb03t1e8VEecTpnnE1TO7f0ioJ5uSALQxRoCBVadM4GSJU0nBbnhc0JqEeJSFTg3lIiPyY1M7CqaLgYBAwMuFWywcMlMKC6FZ5lFmOStMtdnTDSTCtqA0YNKWmsb8MHeyVikeGdn5riy/nO+Z/3oKd95dM6XN5GPb2fC3Q7iCsS8u13XpcIZwhSilTMqgqZ6n0JQpnG26oMyoXNMRXAiUed0ib2opnlsq8mXeW0xQzZUiBiK0RpCXleM/ZeuoPOIPJT29Cxc0wzFGBBvRSl81zXGkQRqy57PRZ/qbaq8OQ4y8v5YKDlF/iTJss+WEn2YfH49fzt+jpa5NyN0Q+yaoxLy2Oqo2koCLfCCQyBVWUgrc6sBaRmpsn9tZii6+P6Y0e/AQHuP3NyPjNFY5Z0Ui1C7Hstczgoyjsym1pz7iqXqsyxtIVGZk7J+xJk477g4W/Ho/JSnjx+xHjYpzcAjXSpc07Q6K7dunpP/zuf46JDevFqRkW7nuXv2BV99+iv+7tc/5Se//JIvnt3gBP7pj77FD777Pd5965uIXhgfdTMqAZEepy7lb09WjCc9tnhZcxRAboOjZqTps/yS5IlPc2f73yf6zvm5S5lvdKVU7yGIRKPTBRPW5nopze2nacc8B4tS61zpM9ylPzTrq+kaYiQ6R+eD5TnHicCAGaNmCDsEwTtHvz7FjTtub3bc3d0WJSsXrhHnyh9egf3tveTg9/KZ5Lm45x4iZb8qScaTUg8WyqLNZ1HQ2jolGd+qppSFeusWC5bjgJ0cw5Za9o5kQwAmZ2OIlvOrkjyRKbJE93mdHmCgfO/7joX3kOOYruLJhuftKYpH9Y6D8bXvn8/5HeQs1oe9GpA6kdJEuFUW88ybSzf1MSkCNRN9YrAJzIkDCSV2oYyhPSpIbxhPYQStYpB+dvmvnG9Sx5aVvRpCknpRqRVgCSHgulRIRRxD3zNNcxqaMQLVDDjzbZdCggRGF++R2xG8Qvjk7wrD3v8qv0Jj/TFwmCoSNgViDoWc/TnoybinOB0b16sI/+uEDO176ZZf5i+WNFDCC9pnNrfI/cWccxzO2qs31tExZNpsxlg86WRmqEVoaD0pKSL1eVLeae/96wuTqfG+MJD2yIWMXnVO+6wWtGRQRQEt0ZJRMsCQY/dT9m+fBWvOJbDL67j63nGyXrMahsTUFWuJoFUgSQObEybR9vlRU7nupFxInnuHy17IJjeijjbfKy2klHjSBXAr6WBO0hxIGpv92HfmebMiEV3KvU5ZQTrTAZtOuNh0nA6OOxfZzZFZHV7z1FixA69myHHqcasBJmcFVlSZYuRuF7i+XHoWb2+ueTHeMm9X7HbnqL5NnJSwETR0qHq0t/H6LlnQVfCuo2toRHOoGg24B3I+qEvAQbrOwnkSn926Lao3hHlqGE8K2Ykzmvs+as13s/lP4UKSvbJWpAhnRXYic1nTLJjN6xpzPHTKf4HoNBWygqgORPFM7PQECTsL0Tt/m++//RZf3Ab+4fqSL25ukkyxHpCd80ypCFrh2ZoiEhLdKso0KuN2YtzumLsRH5uKqSmLT9UtPOhtOGrM5+caISRCLDMvmOm6bY68byJ6Pbhwme9nfpQKtymxWMN9Z5b3vTbM5GgIETGLeukz1noS7xnDUVAiB18veUeuunXvax3nXQu+W39QKn7IHzvXkYt3pd3d3KgN07Tv7hNVjc2pvE/rgTg25uqRBW2edd977hvkW968r0hqMmgoNSVtjy1Xw1kC4mUf3iPmMkyxZvdmLJA8HjK/Mn6ePWXiBA0zGieEiYcXj3j6+CFvP3lC2FmxL1VHt+oIOlkRuPQ0OXx6M1+2t7vQEzcDQQNhGule3vD8N//AL3719/yHn/2Sv/7ZFQ5499GG/+5f/RO+883vc7J+zG7s6TorQKUo3m+QIFaBWHNoYUV4IUWfOees6GJsPFlJTKQJTMVSMs0kPuWc5XvnwlsiC0yyj09co4S10QSqkiLZZstXH3fm5ffCcLJJ1a4HvF8hvkuh05EYZsCUSjQySscwdCjCNN6hw8CsjqAer2JpIKuhvO/t7Q1X11e89+57hZeEEGrlVrGIlddFNu0b3GtkT72u7hmpOLQoOtlYkcrONR7FglGVWsOgxS8F98+EUEPm10OKJCGLqoRxFWhzpSUe7Ln6TuZw0YyJUCviJ0Ap/FZDu7PCqDbYe5Sz5XHf/m+/O+4RzLrR/ufHHto61V41lt9RgZt9rffYIcdYgSpehI7kutWZeQ7MwYBePk8TwfisLGqjDL7i2B/X0bMbAsvjbKD6wblKqxQYeJnCjI7QdZGuG/C+Y+h7Vl1PJDOGqjT8ro6vo3TtC5YWw2Trjf28ryjVMIEyj2m/v9or+bs9sqfu/m8N2Vncf47xz+8gqehNfe/M/PY34pt4yetT63FwVTo/qyf79A8VGwrsNVHPzK4B1Yv5fgNO097nTThTvnPZMy4BjLjHmEJ6voXkHT6vjm7/2TF5DN3ecDbrgc1mTd93lkeVGX2em1S7ugCVxXo1c2soHIkRnJbKfmVEWVDVt8Wutgq5xfJYqhY3L5PQV2t0KEq0iIXyOU/nOoKPzDojTpICoaAzq064WA28ez5xcyvsgjKGYB7AAMxJIXfeqimjXN5tOetP2WxWeIF5tyXuZuawVBZ/9OEPkJsvmHdb7q6fcXt5ydnJBWenD3jy1js8fPwYH9dE7RHtqcUkcqGz+mbFH5VeP0yBMM+4IZV6j5FehMF7un7AeY/iCRGm7Zawu6vrQbak51we28e5QBmuwxdmlIo8eEmrkmRLygt0qf2G8SOFaMA3h3fSbA+NHucDrosEJjq9hiDs9JxvffAjbuSEm/gT/pcXd8zTnc19J0yTWe+naUo5emYpnuZI1NGa1uO4uZ24vLnhZHWDrE8s9AzM6OBSXng2BqkZF3OKQ9SAqCNEhwuZhpV9u44ZKY7IjLIfqQUa9B5bukCDAAAgAElEQVQjDdUQYXOfQvzijGqgGwb6YYXvBqZk5DDwn4wf3uFiqkyZqmFa/uKA9zMiS177H4H1v/rIr9/kF2asWaJj9H6lL6OL+75bAqlj58nR717tNdB7z30drtlXFBdyS8A7lyKzNC8z8xyYpgkNGxzGo3IubrlfNqi177Ko5KtJGU6RDpk/SFIU0VS1dEbnHb2Db33rm7z79iM2wwadA4I1t1dxzPNMcIpTtd6s+4Dk6LsLGj2X6vE4ujjx6Uf/M3/99z/lr3/xnP/wtx27O+G//OOn/Ks/+y5/8OEPCWFDFOHirVOudp5aBeWO4LbG/KZTdL5LtoLEE0NA/MDp6Tl321sL2yWyHnpQNYzqUmEVTQ4McfT9gHMB5x1+9oVfhRCSweW4ISGEgIaQFNnUU1ajKYjzRO7X2Pc96/Ua8Y7YOSzsPrWrCFaLIqboHHFNZEIMTH6NRVAIm3jLblaC9Dz69p8gMbK7fsHzn/0FtzrT9T1PnjxGtfaIDCGwWq1KqkoJyYfi5Wvpp5XR92GWJUZPip9IchjlIN9Kp1Z9mrLZs8GfqI0cS+TUvH/nMi+AeWJhGLAHJCwgHu8qvghy07QSq33KwSdFPMlKhDCm4p3JaZTTBmLDYQ6iPf5/cvxO+ywq5jF02bBAjcUvnsYQmMaJaZxBXSOAFKQqkGQAhlRr6NHZzw9MvyVrRfayFUNnQ6xLOJgJWKqlTlicgZIK3WQSmOlcjxNH1/VMUyjhPOJyOFm1LBSmv7fB8nex2Rj5swMvqpJqarjFeYuZaH9fvEAzfQsmXQHJ4mhKlpfxtJfuKTz7x9dVXI5/vhh1HYdqybHJCkZeL0euuqUHynJ5tWb+9hXj/LT2NfchRA4DUI05wvXI4NsfKsDKASf2rCVzye935CZvcEgh9H1mfkBHKYyoMFFJzDGFRxYPf7agHnvaMWwLyetXf29NMqvViq6z4joxWtXGMtJG4befc9iktaax/DjI4Yt5fZ2SeIYdr7aL5TGnwjRphJnWF2tyD44zy6eNt1QVTN9ENFXws4qqD9cdJ4PjZhRuglkkXQDRSCAVaVF7z2FYEVW5m7ZMu2tO14G3H2z48J0nwK/L87/3/rdw0xPurq+4fPGcly+fMU9XXF9tgTvCfMNmc8Hm5JzT84cMqx7XYyFK6cWK0C5KClYdVQx4zGMquBCC5T12PapYcZRcup+0Fpmf5Z2i9RlFiUTwfp/2JSNQK/yjBqCKYTOBYBUr0mP0mPKw02Mj4DQmpcHjZYuKtWTyuzv8+fu89eSW37/8gv9w8YKvns/sRgvr1ZibZ1ueF0nRsqb0ve0R5xhnZZoDcwz0DmKw3FecIB5UrGiNdUhr6SQpkTEQguQihOYNlUYJyBdIhTTVeyRk67SR+d4+bmhaMwHHmgdpiqwpef3Q43tfQl81eSKqAtg8PwMxJ8kTkg039cmV7GskxSG/qsa9bBCycR6Xge11cESZaiNfFq1GltvVSC8YqC45i4fiMMuSFuxmHrB8l/a5mc5z8HGVB+1Y7rMXv0lI2n3ehKMhaRgPUpf5VlUybQ8nXmkUWfhmHpttK0lhdZqFVALyWcEUOu8TlgvEMBFD4HTdc3Gy5snDx6z7EwTPFKD3Hp+un+YZ16fQ6Rhq8m5SLAp9ADluXsQj3QmEmXl6wXj1a37yy4/48c+f8bNP7xinyJ/9yXv88x99jx9++HvEeILrVuBhG17SDRs0rojBM+6uGfwMEs3biRUTy0sZFYv4EGEcd4TZCm95Z/u0UE0SGSV6howjkuIdzfCqWulqfx3Lv2kNQiPH5jBZuHhS1H0/0PXW8mK2Cmw2bhWspUaOronV6IcwqqPHehxrUEZVZDhlvT7Hdz3PPv8N8+1LnIv0dKxXa2tromYkUlWGwfrD1kJJysLT0NBiK7czPS4KYjU0XKMApdCpfU7hIUpslLbk5U6VrwWL1MjFbUQE8Y6uczhvMjfLIbu3rfUiciblMmuYCTGiwZTDVNepYSZVfyjlh1VAUuRSMPoIPpisaOgiv9PXVRePYf5jx+uwdb2HLnHo62/92uf/o5XFY0x/31NiE5rmfJ4YdzvGcUrEIAYAc9hL1t1yEnkD5BcSEuqCSpZGWjBM+3nrGc2TmH+sArPeV1VTy4WKfENTmtylcsQiYs1NJzN5qpgFTuPxSS9AvFUM98TdAdE0jL1M6uKme3dafL3/Xnmv6v7F5fT9aNRyVgYtR9/s6x+/jSfMfknCuvGaZGCFNrQHZTL2vV8Ld3/yRuYXq4DB7psBaj2fCpJYFn2oY8yAaqnYV1ixnPejCjcZeBzfX/s0oosr7z8Kjt+7d1aAYjpBtAWIh6M79l1WEkSaPZaOYehTonweRE0yz7qDZkHQlO2XXGyl8N50reYkdwo6K/R578ATMM6hkC1DL8K8Cq/2Os3DNjXWqpq216hZ+h0GwC5Wnk3v6FPbCM2NG2NEJffEA9Qz9D1hDkzzxDztePh44IO3HvCHH7zH3CiL7zx+io/K7eaSVbdGCNzdXjNPW26uRoiR3WbLtJvo/IBzG3rXWxXIdl+0/6qiISBO8VjIPfNsKYUI8ziCeKJKCtOs65WnWsq6aCFc43X2lGznz/RsrZFSwYtUUAcNJYWh5buZzy6PHKiaejZGQZhSZAG4aYeePeX87AnffPwW7z74hNubLeM0EaIAqwT0bWSqtj5RQ21kLcI0K3MqLy8e4ihpbzuks+s10cHiP1Vyzy5rcp/2Vin3Hut85D9ZljWqRxs+mENlodm3ed/nTa1KbpJuuTSGsqxYR+o9W8JvtXnWQoykcUkBPcvwKK1y+5VHBcdSNvgrzi57KfHcVxyF56a9X14lk00D2LWS0oGy+LqxH/J1bK11yWLKzpLlz3me3kTWff0IohTELM7y86C0Ksj0l71cRV3Udmbz+lao3x611YHD5xY2MaBhxotyvlnx6OKc080p3vVkz674TMfG45zmKK1U2DDRQeXYULybantKfAe7a3bXn3H11Ud89PHn/PzTHV9eBk438Kc/fJ8ffO8D3nr8DbbjgHMd6pRxvmO1WpGXgKAg0XhLiiLJ0UuN3k+MyjiNhHlGYyC31MgyRxoFpSy8s9rW2ZDusMrTOYTy3rXNz00GnexNtFYVPuUndojrEPF40eSIyHvecGilt0xxQnR9wp5WJCi4Fb5bI92KaXvL7vaSON6x9p7B9/SdheSr5AJWZpidpnkx5iVCTZ/l+cjgcE+OHuDUvfloDUwK1TjR7NuCVZyp+C5V5zVM4Kylkzf5oZILZKY/EqwauGRsY3QmUc0bOQfr3Zv6Npc6BYm3HMXRKrbSUS1lZI64znpR3hea+7ptfSwEtv38vmuqq2H/AXsSvqzP4fFKZ9OR45XK4pswucU5GiFVKDSbRwW3AhAj07jj+uqa6+sb5rYkdylDnCYtWVparpzSw8pHpgQ0jy+CDlv4Qox5IfJ4OBBe2cLajqM9wWSwFdboAkxxBoTOD4hM1L51rjCbIjD3hA3NvNQBaXncvqepGOQq/iq3K+9+8Fk7d0kcNJ6ZfSKTrpLCwjsl+2u8d90b0sh9hPm6kNC8eds52Q9TzApdxAwTEjMNLM9fvlt+9t4GkVwgicV3rSKo7fhyCs4eLeUch2wwySCLhYK5Rx977/+qrft1lO1j987X51wCcUmcfg3QshxLW8jnECCt1ysLdxPjC6rWOD7vh6z8x9Rx6hjIciZVCuC20uSZ36R3kz2bXku/RRhADh+p9el0Cbybd5MEsicg5z1YYZkqtBVljEqXvn+87jhbeda9x7tcsS6PNDLHYNU9VegDCahMPLzw/On3v8EPv/Uuf/ztb/Hv+fdlLA/OHqBhYL16xPnFW7z99lOeffUJL55/wedffMqXX31K371gs3mOMnExP2FzcspqvaIfhpSzl4o1aOWLWZh6n9IAsoVujoSdVfsLCQA5sSIJ8YiH3m5aK3gWNTFqqipXp7ZsAaxnpYpHxKqSLsOd2qP9zACBRgezs6qLmFVc4x27GOlPHvLuOx/yn33rS+52nzByy+X1DpGOzneodszzaP101UI2xdmaRlWmKaS8JnCds5+TAcMPHXQdzBZEFQmERNPmufMFQMdkgXNai6yIaDUlSQUnFm6W+XPSELWeJ8255kFK4DTl81qhIQsHj9HC6NbrFV1qm5H/gxpWlnODipcs8axw7zpk/rQfeH8fgFmuec1rPHLeniZWAGklmOYUMzwUQ1ICRjmvLH+ewWdo3sUdidBp6XP/u/xgrT8ejH9fpu3LrPZexwx/x85r71PGEJXcmka8w0nAO6FUtUJL26/Wo1g9/oubN7e2CROSZyndUlBinNA44TTw4GzD248f8tbDRzjtiKGzasKdI2TlLIUX+tQrViUu5i9qQYf2kJhpX4Ad4dnP+OyTv+Dv/+HP+T9+csenXynrleNP/3DNn/3TP+bi5B2mccNqvWKOZtSZ1OP9jjhvYYbT1cD29sbG7acSFaGaZkWEOSjT7Z1VBZ0m64UaA+JzqoArVVLz+KwVgwF2733Jrc8VeJ2ra2i/UwxtIpnvivE7BC89zve4XOEUIQRT+Pp+RZQ5YZzcps3mMhtybD84+vUZ8eYFoAyrDSdvfcDNbuLy+obnH/+UB2cbWA/cRThbrxjHkd1u5OLiwvLGRVNRGy1buRqmjnm+ZO9figGgQqjDPVIVo0rvMVobLWulleiw0T9d7zk5GUg5DIBjjjBGCGNknGa22y3TNDGHCZUdXWcex77zrFcdQ+8ZOke/7lj7vmSnXb/cIuLo1Cqvz1NSOGPE8Hx9o873RLU2SowRr6Cd4H3jWFCOOl3a+XwVzpLC51+JAMuML+YXKGgo8cNjJRZ/G5z3Ow1DzQucJ3fBnNTcv7vdltvbG25vU4z4ngZeFLuouN7VKWnvw6tytLRo3UdlUhIgR9QE6kW6vJ7kFTIsVNzkuaSxxXXH3MGJ2jD0YGgLbc9AerJu1xPKtU6WwvhVru2j+XJ7v2UhK0vpamDRL0Faa/n53R/3zn7z7CNXHVEgCuNPt60GhKX3S5sS59oqm0IpPvN1D3uWKwwyxc0VYNMmQBcUVt4lrdlivtNL/Cc4WoVRRCwksAErIsco6vWHhdLsWWGh5EHI3rqISMlPpnlmVrKr8Si1VdCAxkCMHYfZlHleaQB2/cK+S4oJIKLWUiIBo7KMe/TnnOWw4bpSoMBlZTM1a9aUu2jBL46zQThZdayGGe/Bxdz6QQguKQHJyiC7gNNIN3R8+5tP+aMPv8f3nz7k6emyz6L4DnED4nt813N+es7Z6RPefuuSd55+ycurr7i6vuTy+iU/+8Vf8vD5Nzg/e8KDRw95+PgR/TDgUyVQ0v52ztE5A0DjaFVUvbf5UYmmxDqfSvMbjTiB6KRhZbpHtnEJ+Em5pQLinNWPFYeqhxDwziHq0U6JU+4Hafv6IOoj/edUoHfIqLjdxOg3rNTya+YO/O4Zvjulf/h7/JP3f85vbieuec7N3RXzbiJqBX/tMc0jQRSdhe1uYp7nlD8JcwxEZ6GdHsgeSPPiOdr93QJ0s3Q3Ok+m7yIn0z4g5cuXk8wgqSkUTAqBZw9SVRhd2iOtIUVTFcuuszYAxQviHagvBTdM6WpzEg3MhlL9dQkU83iP8+m0ke4xxFmBuOpFbe+dFdD7bmmvL+m6yi+K8nhE2Stzrbr4rpTyv/c4No5s6Dr2jD25fkROvc5z0PLj+5RJVehL6DTGFyX1WcwNxDGQ3HVdCSPOLQ2y993ul4yZaEn7yXLR5doNab5jmBGNDIPj7bcec3ayoXMO360IOhCBWSNOrehKofYgiNM9LJZ2cVo0yVUBUcK8ZXz+Bb/56H/jJz//NX/xsxs++nzkvbd6/ujDd/i3//1/y+bkHZw/pZMOCMxxRFzH+eZtpt0NEq8QbkGhd0KMjnkmhR4qGiz3TZwQNLLd3hFSKw2fcqhCtNB8L42xOe3RUvzFuTQ3WIuKlIdYIjDQgqlqaKV5FK2HqfWJzsbIbFxT47Y4PKizFORkZFRqTqQkCVjaT1x+Tn/xNsPZQzYXT3j22SfotGUdJsJ6zWTZl2x6j6KWF5noq+/71LMzMAyDVYuOgRhnHL6B8cs6EUc2CWWz3qMo1p8t+iHnekZL+sa7mjdtJwvTPPLJl8+5u91xc7Pl+mbLs+e33N1GxgnmWZkLrwKhJ5LbcilDB5uVY73yPLhYc3GxYbXqWa8HvvPeQ/quL4ZzZYI5WGEnqXtAo+LF8tBjmJjCDF5TOodFK9laq6VPuEO8et+x7wDJn+0bkip2f9PjmFHvtzveuHXGsePQ9Zqt/zPQg1iicwzBQjfFcT0+49lV4OrWse4USeEO6gVVcwcLCt4qNkWRImjLc9oHJgmRBdzeGXsCrQqaZT7b/vvJ3qeVeYYYmcKMd74onq5zViUpqlmm8rMbJSaD2MKc9/FV++QsNBK/bXTW/NcRoSqLf/JmrALIPs/5wRmc5IFp0MzfFs9qgyczsPGyb5U9LgjNUl1DdttDuYeuFiAz/+caRbD2xixKdfmk9ROluUjmYo05nCMrNG7xrKP0tXcoWjC+QFOFsAFyeWMm0FbWWYSalCWLOdib8leO434V+/iID6dYC/vQ1KYgK4Z5XlQzde3vb2nuQcGEhcajgE+l0tXXwhxA1ym96/HSEZLCoRn4Sqo8nMLmJHsXSTcvRRikKAuCKY0mwF2hlLpf9iZSlszWPqpveTivia4l54Ep3kHwIF6gc8gsMNsYXdo+MfXKcl446TtOe8/GRcaU85wNFTZ35mGaNBKdsll1fPfJQ94/O+fh5gztNosRzd7hk+KSDVVr94B+WNOvNwwnp6zWz/DdisvLl4zbK67CiOodfS9sTs5Sn66BkMN40VTOKGXfJcOGGZcrYEHN65tmBSc9iwiFxEeyJ4I0Z2gkegHN1eMyHSVVXzqsIp0pp6UplmoyItTm1a2CHVH8bHQTHEjeazHnYEWLVnbCw8cf8J0HL7m8vOLXG5CbVADGeYJgLTyCQhDoLQ9RyZA3hfvFyOzMU+Oi4lwPnSc6IY4GDIonMYKEZERIzbljiYoppXqK8pZ5VGIUC36b6RtHMmpomuQmby7zGkDVQar+aF5etf57dFg5IU1/p+bgia8SI33niUTzDvkEUmPl7Qv+JHt7LOdMF97c8guhVuak6BG5+mwLipy0719loDbnFXrIIqsogoKI9cGrgDrvbzkAr3ko+drFUhwwzqLKU4zB2rxvPusesPfKQ1oDWh7tfZiriaAxqrfCSpEEZr1dG6VUEFY1r3Pem+VPkkkqkgpAp56ceFz0ZqRQsMq/qXjXyYZHJ+eshw24gdwY3Q5tw3LSEgXj7zhkCqiP4I0KnWI9d5lx/SkadozbF7x88RM++vhTPvr4il99NrLu4IfffYc/+cG3ee/hu6CnRHqCt8UqeCOMECbbD0oKS0w8K4KPvdE3M3OY6WSwfO5wB2HEIXhnkWLmFQioZNmSlO0sYDLri85aFSVuqeJqvQ1NvfYyDkutknwzP1lR3MdzJhoVdCJXd61xCfZXxcXGJ7rVGb5bgQrTuCVOuzQfIRkLLOLfp6inVt5rZa0NDpSyr8s+yudmvlkGlAceC94qoiHj7tx2KNaqy9kp4aRL0U2ROc6EKTDPM3d3O3bjzN124uXNHdPWvKHjbuTudkcMNn/OeXpfcWfvHHOMhGB9jHd3M+NWuXZwdTWyfraj6zv6vuPydsvJumO98lycDWyGFV3v6foVOplX3QoKBaLTVOy7x6U0g2kKRIn0XYcXh0HUucza0RixvOE1o+zmsyPHkh/dz1MKr1t85o6ffPTq+4/frWdRBBeVOI84GcB5onjCdIfresQLz7ef8tmLyMvrgdNBkZBKkHuPzk3oau8Yt6M1K3XLl81FXkrOSeoPZXy5OfeoJU9qj6Lm8yVPbxL/s0fCp9LiMRJUOVl1iRlGfC8JZIUUdtCZOE4b2oy3BmlDqDuy5FBXDL4ULtmaXORvAyNy4nF6p+Y0G1fpm5YYQvoqh9MX5SDNYZxr5cXMFA3MmHK9IPiFBUQTmF6O/ZhHoP3cySEB1/HnjZRDphK4LmtrjNOAR2Y2do0VGkkwODFjMRS/zCVIArLdhHmMbgFqqe/WrI9LHkVtAI+0DCD33ynfUUu6ZNwiUt81K7UYA3X5nY8otCXU4zXGnKMVftp7JCVMtVZBzPc9FgrVhnNqArctdnQqRG/FPmTu8VSa6rrIyq3w9Ixxa0UE1BqqI86seKqWwiYg+FSWnGTccc3651C/UHrxuaaUdTPT9j6Sp7p6k4l58BlxNjAtGwFQlJmgM2BVnZ0XQpeE6OxIbcRMWRQrXBBjRLqe06HjQd9z1s18MY4EsXCtzmBF8uQGtqJIB6t1x++99ZB31yec+A07d7pYg9E5Bg1WMAXzULrVGr9aM5yds9pccLJ5zMn6Mevuc16++CV3t8+ZpyuG3hHnJ6DCyfkJIiGFYilzjHgBj1naVUHUWoSo9Kj0oH3K2E7g0ilBM4ipRXOqQmAFzBTTwUjKSg6zKrzbkbQrU2A0IZqsrGbaq7Rp1mjVYD22RWBQOiY0mMLWeY9IbzlWuuXk8ff58MEv2b78gv/rgcN9NSPpWbOzyrqCQnCI6wGPKYxCLpHuw8zUBSQqLijeDdB7YidMd4pHiFHQCGHOgNx4lCmKiR/5vqkd1dTQywC0EmL9XITcmqnMLyHtuczrEiGqtS0wvmRGWsHbfsKbvEq92cY4p5oAVuxh3fcEiUxEpPMQTLbGVMFWQ9rnCXhmAeacT6qUrSFQ+Fd+CRt6lQlZ/uzzGFjmC5UIl8TrW0NkiJTQ26osugRG8+85omBpOHOJF5iTfT+nfTmmytelKIkFBCbDmrilTNz3ABzzNrZH6S+b7uea31s+LyQvVvIIZ/3MChqB90OKlgCiK16tkIqK5ZJMrmgF9gznPJPTpH5ar8OYipXEPqAy0w9rHl1c8Hh9QewGZucJCkaLVvW0FNIGECXKhEpHZMBNEVxARYnS082BGCdr7zKcM41X3Fx/zG++/Ev+8pcv+Nmv7/jkq5lvvrfiz/74Q/7J733ImZxyM58QvBK9FQ1z0gHKtLs0R0VU0KF4xqwgjGOIPRM3zHLHHGa8PzVlLNzBvKVTR3Qb1G2teFZSFkmVL8X5suaaNqLJH0V8qlIrLhWaghiFDAKl9FQVaFs3ACKehuRtLp2CBCITmuSoZr6ZsIX9ybThGC7eIcbIvL1jd3uFixOKFTfzYqGS1ju30mSmyxxyLgghFUayB5STC+3XOTikaSktkKComNloETWtyQTJUG3huOYBt7zFidvtlpvbW66ur/nyy6+4vNpxfRt5+VLoBDon9A7Wg+Ns07Ne9WxOBvq1N1ujE06HFeMcGMdgiubllrvdzG4MvLgcmV9MBDUO/JNPP+PiTHh43vHtbz3g2++8zcXJGat+hWpkGmcrFqWB2QVIYcNeHeN8RwwzTpXedbjO+rCHkKJCGmZe4yZaTFcVypbt38snioexUsvyyOBy+dl++OvxyIZXK5W/4zDU9NCF6SUDOYhx4uWLK25u7tjtRjsjWSoqjq8v6pxVn7tP686x44U3NQz6VSEfr3MNH4aQ0IT42BH2wljan/cTnCWFvZlgrdVSneT+OlkbXC6yAfL998u/5Jmq77xPbPeFuhzmTjS/H1yRMWC1+NZKWVkYO0SOjP0ffWQvUsp7qOUSi7AvSfzZ+i3NbGQFAUklsOu4lMON4w423quP+yzHx989e/NeocC171EEy297JJD1WvZTn92e2no8X3dUzw9tkczF+LvOpzXDQERIOVWNR6EqHHvh11IW9bXvIMVDc2yMB1ccYayH1+W5MKXFPHoaLezISo4DWBN5Tcnu3gmn6xWnJ7DZRPrdxFx4YushFTrt6HrP6uQEOT1BVx2zKOM4LsayCh0u7mzk4tI+NOHhPWzOzhlWK84fnPPo6VNePnvEi+ef88mnH/Pzn/+Ek9MzHj56zDe/+V1WmzO6boUwpDzRmDx7krwQsc67avJCWQ6PJEOD0xy2U99rOflpbiPUBtZJIBlTt7FLR3RJcMaxFKBrFuHo2hRrOFY8RqhFhkQgF0tG4Bvf/QM42fBfX/+f/E+fXjPe7QjjTLjdsZ47xHfM54pnZgqREJW7u4nr7ZabuztOTke89IhTXOLXuUDEqAbGXbRclgzQEZKh3TxemedEYpMWFJPyKIjrOCi81E7DHqm2YFEPSNn2c61mmnvvaVFASaGJLn0XkzfXIfjUS9h3AecM/LpcSVlIOdllIcteP4Ap+7KUr8OV0jXaMJX23jT7c/Hye0/YM1y2Y/k6ckoPJ5kczXB47uHz3vj+tr3qZ+1NC+ijMFsr3ltDTcm030kJ5yv89RWz30tPiMpu3LHqTui8da+9vnrB208e8PjiggcPHzEX2dDiiFh+38cUMc6m4G5u8Loh7jru5jt2m0jnB3rOObmb+dUnP+OXn37En//tC37yN8+42U08uhj4t//jv+TDD77L6clbqFvTrWZmEcIkOMnKSfoTm59JecJpLaZpy8RIYDJOJE2kRxp3aZ+QCqfkIipWlTsZI1M6BQpBsmFdSo9CM0K09ThSK6A099mgskgFYUmPIVQDfN8PFmY8W7Gt1WpAnGeOSoiW4jEMK+ZxW8JdYyp0lSsaG33cj31zybeyalr5TWjpXvI7NDaBxoBjWD5fbJ7UqJY/a4piTDTrUXXMs3J98xVXVy+4ubnhxfMbvvxsy+2dshuVoVc2px2PTju++b7w4PyCs5MTTjdrztYDXVGANVVNt0jEsBtTv0gzUAZ1jNPMOM1c395xeXXNdrvj9nbHxz+9ZXctfPybyE9/8iWr4SuevOX41gc9P/r9b/Pg/BGn8oT5ZmCc75jjDUEvUdmx6laIrBHpCZNV1EUi3nfkmhEZlGUAACAASURBVGL1qDK/8vjX8IjMs/8/cPxulcXCIFPeHlYB0LkOhxLmO549e8bNzQ3jaIUTjKAyc9FyI1VjeEk+UUImNYec5rDTNP1JKag0/WoF8VBhyoLn8Pzs7WmPGGOqmFoFdt34Vdi7NC5p6WIvFCmPQRsG01o0j4drHv7SKiJ54x6bh1a45lAoUW2qEe7fOY/D/tKwZHbSAL/WWvUqxejVx1LwF+ZKXXtn5QgLuC0DlDr7ReCSwY00a5AfZYzQJUDVnvJGI83veoSebEjVC0em473rj97zqHZUAWe+9333OUbH9z5zKdvLmLNAzLS7UODa33TJ9vLW18ZQ5buuyZepQrlY1IqCWYdkW761dh1WmTPlMD3wgAm35ydQ55a8xlhWDhtqHkwFV9mau3RMm+Io4pOhJBtQsgUZVn3HyUo5Gya8TFhBVLV5SJPlBPwMqCOKY0pA3Ivg95rkys6qctYl1fKGGsUEZz8wdB1+WNP3ntOzB5yeP+Tzz37NdnvDi68+Rectb7/7LS4unrA5ecR2VEQizidlsWlHUqFB+iNiCojmUvG1cXLxjmRKKCA/od9Uvr72QSMxeYd5HrGiEiR+1OIT2p8rf7WZt/tnQ0XQiNME7CTiROhPH/PWw4l//vQt/t3TO+ZngbuXykkQq4bnoIsTuzESBFxvBYtud4Gb7czFbkJXXQrtM69Wbn0SQrBQrxAQH2o+nJgRNMYUKO2wNIW8fwErNW/vo6SGjCqLfZuosKGbKidpeOISvNe9ZQpDNXrknCrnXNHeRIR5nutaqhU8yh4ukWZrHBgEKq9fjvuQ1wmUdID7jAD53PYZccETK7ivpzXPlUob7TBNBiz3/fHn1fss5JlqrdpOI5/z32lt8hPeNAy1zEljsDvg5yznluZ0SSDZ2sskz7toafcgIrWqdL08P6jgEKce1cgUFV1Zni1xZuWEx6fnPDp7wMn6hNB6m2BhxFUOlcaSm+sCYWvRIMPg2DrQ4JEZbr76BZ/++pf8/Fef8Ld/f8uLF5Gn75zzBz98hz/48Ds83DzB+xMmHMqcsvsEWv6jMfU3TUbIHAqfxjPPM0GmVDCms5nSTEfRiu5kzNQYKPO0l0ilhUFTUPVJNgiB6hXOR+EHukREbfTaQg41a+2cZ56zscZ45DSD89D3K/phhSrMIRJ0V7Fx2t+S9r73bm+7HWKHwneh3AdV4tzgq4YA950idg+jjRDNSyhpPpxP3u8Y2G63jLsd15e3vHx+zdXVLXd3Y+pzOXN65nn4qGfoe05PTlmvN/QroV/vWA8Dg+/ofUcnUmKwFYjFSmiecVSJknJoReiBbhA2/QmPznpCsB6XHzyauboZubqb+OLljqsb5eoy8Dd/F/jk09/w3uMXvP3ohPfef8i68zhVRNeEeagtbd2E7xXXCa7r8F3dIwv5SStPBUr0zD5dUPfXAc38bo6v69B542qo9/28eHiaACnWB9u0znnQQJh3XL685O5uyzznnjfSKAFNjKRqsQq3KksRk4WxCim5peqqrznaDdkqTfbZcRCe750BdIwWya9UoFsFhhQBnFWXHPaXZXpbHOJY2N/rwlby+Ov5jXCW5fULC1ZWBJrvyjgKsLvneQ1Aa0a6GMvivkV7WLrN5fAm+bRyTjuuDF7auVI0Acp6I2lukhldgautAMgCITPvBCQyCIgaD+bplSFERxTG/e+KYMnzW5T5NPIEfPYw397NGiBe5uwNAckRWijzlM85Brg072kW4Ko9Z3G92ltm31k+fJfCtpsk/wKai2ZL3e9id8leD7B91qqOhbwSIJGy2i2oLNCtfpXBy8FE1zsWY0v6T3GU3k9k0JDbejQGITAFICpD51j3qSKqaKr+nFsoZBqUkuMSVNkmT7lTpYthObw5gERLnM9vnvZ6jEJwFgol4ul8x1qgH1asTzfAxPNnX3D54iturl8w3j1iXp/CJqaIIAtJhYi6VvnQwp9FIyK+mcNs9MqKejP1zdxKVuqT9zVNIJnBa64kLan5tEu00UabFJQreTXrXifNgRqPFTXvXZbJIoLrTjg9ecT333qHbzz5hNsxMF5HfOiYBlCveI3EIMXIMUfhbgzc7Wa2uxHt16hanuScQIJGJYRYlEUXQumZJlKVRcSZlzFVpM48qew/SREnhd6XHlhTPqgipqXZhmkUpW5vL2daLXwxKyXN2Vqqo4KF+S/lS3lckRFL2bGILtnjVfeB5a/n2ctLro1etS83adB9A9HKu+T5pqQQFAWh3OP4mCpWqLdrDcStlzcjoFeFfZUjy4dXzUUjh0r9PDV6yvxoydcstLvypxaEpmdldpkOl8MCHahL3nICZ+sV55sTTlcb+m5gTOlCroIx6mrXFADNe55obQrUajsQA76zPDUNStjd8fLZL/nks8/41SfP+dVv7hDvefftx/zRDz7g6cMneD0B7ZhjzdV1ahmI9viUmhBzWyLbZ1mZVE0hkDITJaD4FLqbevsVutfUjmTBwZb4Ic+pSPJcOitoAqY4YmG+1ZiefIoZXrUyt2GbSt0Tdq3t2RBifWaSriIO3/V03cA8z8whEuNc1yHxn+xxXqSY0ETycGQfZh5RivNU3tIaYlqMlRVdU2gluXMtnDV7Frd3W7bbHVdXN9ze3HH18orLF1fsdhG0w3vH5mTDw0crTjYrNpsVJ5szum6N94r4naWCZMNgsUtkuq7v40QoPZnT2HMYrhWl7MvYnpzC9d2W69sd5892fPE88OJ65Pn1ll/96orbl3e8fHnN2I28fXJhCmvf0XUDYZoJMRCmaHOce54eRIhk+liuvcjeJjxyHPCO31Jh/LrK4f7xW3kWX/VQe/UcTmME5MVDnJinG7784iturrfMU6Trak+caqXQ9H9IFpe8a2uBkvu9MfCqiT+mkLWKWuutPBAemSjT53OIliOQgWVMwK/k9zXgUUkgI4HEBgvdV2K3ndCjHrqywfcJqfn3nmWqSc3Nu9uLHjlbFrQpSKr6ledTG+Z27GWa4iOvOaQkcaYNsgj9XRoUYozFYumy17BhZOT3UVK5exCfc6HSESuzszCRKnTfRFkv43yj77NXoBHYNL8belkyv3/ks193TdkPevx7O4ej67svYDJbrCu4JKdhGAw8p8bOLLxmVVHXYmlzKYQkhQPZAhYFA62qYf03kkNf8og0z3sR8jld8bjfOyshmiqcFaBNLCE05Gp1xVov1Bkw8DLHic6tWfeOzeDoCYxq+dJIX8lVIOpMmGE7jry8uWLejjjtGFrXLBDDhEhEvFgSffauI5b3HZTQFJiIeGR1wsX5GetVx9MnT7l88RVffvE5XjzzNLLb3dF1p0VZiKlHFS7Qp7vYbFnBGCdCbfhn61QKi+3zD7tp+s5+znvWYqJcUYaSD8yqdsYKNOtatpSVPsthYQQUq0arScmZRXHpPzTi2NCtHvDO9/+Af3H5d8S7iedfRG7nFfNmi3QBH6wVUlRFQ2QKcL2dubzZcbG+YzVsLEpGPQSzuMc5Ms3JgyEOXEcfplSDxs5zqcKiRcrU3JQcmkpSpCLRQlFFSteRktutJPCf9t6C9hueKZUuSbKp9SySZVyTR1RkQAqhJeVrSSpSUdhEVnwKL6vr0UZ/lH30Gj62b6hdkM6BMTPdvaWHBnhLQuMZGBq/tQrlVXzX8USaYm+vGd8i0uKek5dgO2MAXXx/H782ymdpPEjPba8oikcD4JPWRK7KbMpT6isoodBLBfkN58vgPyssETzeqmHqRJx39ALvv/seD07PWHc9EoXoJClD1ZhV9qv9kmRGCqX0AWUmjA+M98tEJ8IQHzBvr7h+/hs++vSv+KtffcHf/PKW33x5w3/1zx7wz//z7/Ev/tk/w42nRC+pNE1gYIUwg44WblmUG8tjr7jB0h005pYMgaCBQCASCGFmnmamaUrfWz710HWMqZVEVQyT/HEpv0xqSL2kolOuWb+gVv/FlHmp7OsIBq0GnrrOeX1UFe998crhPKv1CZ3vEefZjjtyZWBy6HtSlnz6t+Aj6jAc1UPajsWUw1gjf0o+8D6N23onsVrxdwyIOCs2I0KYJ8bdli+//IJnX73g8vKGly9vub2BfoCTE+GD9y948uQRZyenbNanqagaqfPATAgjqoILa8PNkYIoO+eT57IJuUlzmltj5L7P2ZilcyCEiZBbDZ0OPNyc8NbTDR9+L3JzN/LixR2ffu75u492fHU58zdfzfzF39/wJ9+Db7x7yvvfWPPeu8K8FcatZ7z0hutDIOqIjtcMqzOcGwovrIijwe1tBa/y7ZJGlglBLeJ58+MfqyjC7zgMdQkdcwiAhRhpjMzjDVcvrxh3M6qU/L38HrlEeTsPRd/KYEOr7WqfeX/9KXzN+zTKFBwKME0WE8tbygzSRmIbB/CyUHKzm7++W+uRqM99nSJQK3vWC4v8PqIotlau/C5vRkD3C/J834MrGkX06yg0mXHW54AJ/cM1yFarrABo818dtdbNmPIeFyEisjdWsJCe1yT6vunxJtbqY+ffO6f3aP8Hiltrpfgtj+xZe1PAU59n50eWeaybzYmFSbYGAdIebpmoMQZy6BTOV7pNYFzSH1Mea0hjjmgo+2HPIGJs13o07bc6ODIDVA+Ppt89IsFyQKLlXXjXEZ1aXldUNBUrmKaA9ErnYNPB4CJbYNp7ihOYB5iZ2G7h2VcveP7oJetNYOX65Yg8xDBbbqQqrvcIDvEO77rKP8jAwhGJ3EwzTk44uVhzevoOp+fvG7gSU7OcTGUqsodONBLihNcBsdrtIM4qvRbDXJ2rxkJzOJUaUWZSSU/MS2sexNzSAUhhXt5Qa75TWtL7qc7WSLNUUPPQSjT6U1WCBGR3R+h6bp9+m3/53o+Q219wc/cp/+uXO1ZzxAfYeqVXzzRPTCFwvVOe385cXG856y85X68YhhP6zuYdsZzzaRqxqov2Z1itmz5+EY0dUSISxby26YVKj8Bcat/5BLCdOYactXWRKhjqH8xrsg8+MwB0kopHkfdBna+isKsWA2a+1icYZn36rDhIwa5iSqb9nO7VKJBL5fHNZPHr+KIUJK3Q/JxaSy7Oy6cVA1czZWmQe89eRiq89pCsKN/HE9M6tr0x/6Mcrsi8Mo70b4xJIUr5YYc88PCocgcQq/o8jnesvON8vebtR49Z+R5VsQqTzoxnpTrnYj7CHr0ZmQZ1yN0AQyS4wO4mcBHuuHv2MZ98+n/z5x9/zF9+vOOzq4n33nf8m3/zX/AH3/k2J6tTdHfCLFYcR7qd7b0pEKdATKGO9gaJKNK+0NJmyQrdkHPkxQpLhWjFveYYE1o1/OE74+8qJn+873D9gHRdUxOBpCyGFL6bWmh1IDGm/ZfoMClwba2H+xwX+4d5v2ZDlN6ZHO2tgOK42zLNM77LLdwktXUSy7NMsrMddMY/tS1FXiO1CJeohHkuNQVUFSSlCBRaMuzlhabYJOalHSemaWS7vePly2fc3F5zc3PDbhvoO8fZesX7b3/A+dkjusHjB8u3t+rm1joFGZJstVBSJaRIPqwLQdILBSXE0YqyTZEczSFO6LqOHLiuakYD0vp23tMNjl5Mvl7Nl8TQE+iZQo8oPDrxPPz+KR98+wmff7Xly2dbfv2bF/z0k8/55Wfw4CPP7//gEd94f8ODizUP3llx+1IIs0fjhrMHQ+OdzhmhecKPccaKixqt58h57J3zn+54Y2XxvnCK45Y/ZyXnUcAjKtbIMu6sslApTGMhf1DD+LJwWOrSmg1FlfMnDiFJ7y5gX9wrGePBe6V7aZFFWr5owcr+Omoak5Ari9WxWnEDMct3vV21TrbPtEld3Ns+OiSGAwbT/PTbeJnyc143X+26tCKq9Wy2j1/cr2yYPRX5iEKThXy9Vw6fWY63nN8aCzSvyfLZxevT7NEa1pgXPSk4qoZT5TBM916r8BEF777Q1a+jMLbg/ZXn3fs7vzU/qeM//C7Twr7iaIFouYyJDd81169XA513lqUsVsVSyj0yhSRBJtnrlDNT7OcaTpc9jfnnQxRYabRizVLxJN97LydwMQdpPFVRbXIYU4n0YunPlmcUcgXYJLiscpvQe8E7TRGWyUMEQMSK+SnzOPH85TVfvLxio45H6/O91wp1SRXL1XWNt7yhHZfGHBGIHpXB6N0p/SpV+iOYrT6OCL70QixzmNuAaA0jzRVOq7pP4WXNSOu/QqnMXDZhfvcGVC49MVlDlHQLrZ+xPF+anzVTUNk7af8oRDE1fZ5OefTwO3zv6ciPrm743x8+Q1864gQSZmaCeSNEmQPsJmU7BrbbkdVuRNwKcYpPlV1NhmHV7+YJ8Z55nuk6n6zaSR5FSen5ZbHKGOsrt++pqbJgY5FuNJ8MyMs7Fr5q8yYuhysuPQUllC0rVy30TcUwhFQrQNs1ade27revJXYyXynjfz1vq2OmgN7YaIlFbpeP6vzUzV+eSvtbXoY3iXopw9c8vjo3ixmR/Q9ef2h6iUWkR6KHdsR1pfL3OYWHIv/yPij/LbTlxbA5MLYnQ55G6/t6slrz4PSUzneFFytK6qlS76t1HjJR5jW2w2GVv2Ly6oFnzXzzgqvLT/n02cd89Mklz2+Efuj40Q8f8+1vvM/F2QVxzkbuHhGHk9Gql0axPwuPtlIVxfqvxvSntBJJ2Iwa8p1xZJ5ahyOmgl6uFErpzVYi2lSyz5Np4a/WQMN0VnHRckVjLHJCyfTa0vDhzyUcVVI6hvd0XY/vfOpJmLxi3uRODLOlILhWTjYxXZEixxZrxR6PCIE450JdlWdo3oMNb1K10F4rqGMe2unujnkcmeYd8zTinePs5IQH5z2rYWA1DGw2pwzDGuc94n1q+2KdBtCZqMkTjdp4QsonlWgh/0LKDdUUqaHF8GgRFIoyWeVtSYUL2+o9LRwUYcUZ5Lzx5CUW7/CdcN6tkEc9Z8PAg5Vj8+CO6+sdu5uRj35xyc3dyNPHO95754K+X1lbrShsb8GvtQb/YPRfcUKzH8uPS458/PiazOUV17wOQ+4fb9Rnsb3RqwGvDcqYVwSJOAYT1nEmxB3zHBJGs8VpG8GTFTD5f5l7syZJsiu/73fudfeI3Kqql+pu9IalAcwAQ5CcGYqYEW3IR5qe9CJ9Uz3wgTKThkYTFzNpRiRnAzDYuqu7q2uvyswId7/36OHczT0iq6p7QDM5UJ2ZEe7X73rO/+wGyGJsBAet7250/alzLCb9tQSgcnPDo6VhzAvqTwJLLbip/y0utGolD2IMycedEhdRpZ4as5c1zOUtx4SMZtwLorIi9K+6Xrp+GbnqsskDDWr6va1XmDXMCybd/qRgvuW45OCXNFfmJrV0wanzUvBw4UO21jn2oB1v6wJaiEWrShahxLsmJqcAMRbNWztvxw5TKzi9TGA8ds/L2qpgerGxq16haWs51nWbN77uxj4s2m8mvOKxnMCouTTbeg2y+wYQQxIWncNLAqIHnUvwLQteuQ5mKb6dXOrEYvIkMXITGNNSiph2FG0AZAZM6exJZqjOzujR5Uh9KcV2jSEV1yNR2sQ72WWWEMqzkrS6XpTBC4N3dC4iFiKYrHMGZp0HgjKPkQdPXvDZ46dsXMemP130KsRA76TUolO12EZJ2eeqgsAImktAWJ0jipX30RhR2SBdQDAXrnHapen2yXcnz1sCWWLuvWJ+VYXZktZElZR2sNkMrEFRs5cVxGmKZcz7qKCv8jMnCzJSp4lmtq/IHgHVp8DOL6QNmICrELvJgOJVZHPr23z87jV/ND7i7bcf8PiqZ9qBDzN7P1mCHBETFmcTGPf7mXE/4roZ8WrWRZcFRsccZ6tpNjvmeWSe675MMl8jD1ai39K4ytNaWt0A8ibTY/U0yGA6taJSAKPx4gYIRlNMtO8oCdjAsgcmdzrLDL3Ij1iE0jyO6jnQijGHB+qbKjLzs5n35JivpXDYvp8iRGdFRInvW2weUtbXwz6+0nsij1nr3znuqNLmskyLttdjaq+FoJh/LsaZKatLeq6GTpdv61zknZMtrDTNttinxSIxBYLFMDMI3Do54c7FLUxB1OzUEhu4Wus1vypj8qAduNHK7ahw6k+5ev5zHjz6jN8++Jyf/faScTzh/Xdu8af/7Ae89/Y7bNzAOM70XUQYUlb9K0J4gYsDjpOUzCbPTyx5DFphMWry+oiFklvtUXGYLd14SqUniaZLThDT4VwHvktrnBY3w75ctzDtt5jPY8lE/PL9L4cbOq2bEBCcd/hhoB8GQBinPSFEnHj6obdMo3Og7zfNO13TVl7uGg6kK6uzWRJNMJunueJytYMikjPqNvQ2BmKYmeeJcRzZ7a7YXV0xTyPOCcMwcH52yvZkw9nZOb03gT/Mkf04Wnx4cITQQbTyJ+JmND5n1r2V2AiC0BtGk1gshKA4b0pY5y00quuysAjjNBpeyAl+1DeKE9vP2Q39RN4kMhEYCX5PlOQlEjwOuLXx3Nls+PitE94cr7n3xQt+/cun/PLeFU8e7bh/e0OMng8/cAydhxkunytbp/QuhwIA6pAmeZxdL/FtOE5Ov8F1Ezb8HQqLX/tKhy+P0vBiqlkVAxr2iQmpxS7FQIhzmsyW4WTCHZvPqCCJQ4KetSjfqNtNW62lo35G6g8sSG/5fCkkiNOkoWhuyuMqioXM9L8ZM70R57Z9WzGrV7lFZq1y+1xDL9Jz3LT3DtuU4+++6Tlj8tWC09yxGhjtNjm4aswOtY53/q4RMtPNaIqNaod23K3z+PU6yol1W1/H+n3s+Vff+I2aX7+sLHwGYEAJ9i9bLE2cJIGxzGHTh81mSMJchPnAGTO9zhVNbq7DF8WStjhnQekiA871qV5fRxagC3B12niBNWDXCai3FNsS0iuTtlkq6LrpVBmN6hCZi+LDhMQuCVqmYMhpw32/waLmIr1TTgbPMIEPOTFWgnZJBnDRnr337Jr/fO9zHk0TVzIsOzHOyMnGBKEEMIpbUJxNPydUABBnU6IE6PoBGTyiHbjItJ+JISAIG39iGuwEbHznk8YawjSiUXFe8b1L9Ls9002WvZS8ZSn8Uc9aiSWaUfVJAQcZFZd45LKBsPUtt7VEL7elSSBMvwrm6jkH1AnqhKAOf+rpFPonL3h66xbbN9/lR/IJ/9N3f8F/uJ64p7B/6pg6cMGmeJotfftutLjE3X6H+hOizGw8qHP4vmOz2TAFc5Wapon9fm/7KUb6rmd2HicdURzOp3gmyS5hhzS31vyIeXbKZYAnlPNHozio91aAGkIwjf804cMMXV6/JIS5Ch69mLuUiJYSACUp2ysuSQRA27/LHvmHX+suSBJ0irKCLKBVYp/p002YSwp/XvL/m2izphitY9c6UcUR/P/K62XY0JHlVHtPxkKRpYVZU2xdFhYOLIsvuYKzmD+JE+9c3OLuxR3unN0mqjBr3pNY/dwslKfrRuEXU4w5VeZhhElxoyLxCX9772/5q1//mr/45SVPv4Kf/vgu/+wn3+XP/vGfEuceFMTDzGi0O4CLQpws+zAyUyyc6Z9ZujRlSI8WixhMWDSrX85gbfwEiWgSKJR1eI/hWZvTLp3hrLGwupXq67qoVnfD4/utKm+OfbeeN0XA9dy6/QaqRlueP39O3/V0vqfrOsJkuT2GfoDkVpkZb8Zqay8uVauRm5VIMdo8ZdfTaZoW3iohzKZDTEWQzQoYLNZ+GpmniWnaM+13nJxtGYZbDMOW7bDBu1xKRBnniOpsgiqKMhOZwO2M6Kqg6olhg4YNGgRkQnyg64RN3y9ceYdNT993JR47xrnUXfXSmXIBYZkUbTnfAIEniHN4EZQ+KWVy3KeFBBBgmhxvb+/y1vdu8aNPzvn5Lx/zd389cv/LwL0vvuLHP3rEhx+c8sG3bnH7rXeZ4iXTOOG9QJeVh61Laqvw0ZsP//9Prn+QG+qNRDUm4ik5ZTBpc5g2JD+b/epbcG9X1lgb2HMuM58qLOa0CwVQFMZWD0RpTZafF1egRutT79HFZ6k3WNB42nKJv9QDnu8yDYJTV4XFfE/6tQijaU7WMRCHzKj2e+n2d3wtsvZ10f8Vw17PUSYKxaK14HRqxdFvfC8Y6NaDOTfB2S8Yem6laIBpmU4WSY+MazUP6zIfIjXxTtaWG2EOjQBK1RxqXkSa9ppBrubrGIho27zJlWQ5H65quQ+uBjgv9b+1DWto8Z5iiTwGytaF2V5yHVO0mCVPSurvdWvl7yMop4WuuS0tTCksPm860YzF/sUYDfTTuHxmTXCq31rRdrLWyXHaZPem4souFqnkAFQeo2ti6cej96CWYMI5nzSXHucU52b7qQZMphwngdA5s7YKVPqjJlwRhd71RO/ZaeTvnzxnHwXo+aDpwpDrGqbasuKTFShlu8uUJrufefGAJzjLjBjjyBRmgk5YwXahlwGdI7NEolMraJ9qi0HympCYrIoNQJdq7c2CR+HGzcYweVKSRIx5smYhDxN8NI0rakxJCdpEJUpRAxY8nn+prnA1A6IB6JDmSdX2nV6ZS5cbwMcr/MkZJ8Mn/KuPv8eLx/cI0zV/fdXhJyuwjINxnNmPM9MUmMPMPM/IPCHzxByxEiddR7/Z4Pb74h42z3avE7OEhxAIKZYoOvBFsKj8hQROs/IjC4OVB2HJMgSzusdArivlXDJqazNF6Yox1WdLwqzL/Fghh4K07vuVpiiebE1I5zK5tgqS5NlMr13hz9W59Zuqbm/GFfnK/ETEsj3GZk9l62dtrDS6aKNa5/Nea/jDitYXGqWVD9nn9WfZq1Jll0Ml9Kuv2mZd90N6pJRMp2m4+UQV+imS048ceUtaY02jSX22+GWld44757c46TeICs4NTOkmFyNespCa90zqU+1xmUsAiTPozOScFTqfdnz12//Kr+9/zt/ff85vvgq8dwF//Mk7/NF3PsTvz3F+IogJv93mhHncE8OMENn428QwEsJVkv0EAwAAIABJREFUIgEmDJr13NwiNVkcswAUNdBLj1kSzZpYMCRpM6V97rwgsYY5uIUXS/IsSRZ8JBLFlI6QEicVZV115WznZF2nern+de8Nw8DJrXfZjzvmaSLMM123wWFJxUIgWVuTx43zy/U1okGmw+27M/YOIRjdCilmMLmhZtrjnCulKeZU1zeGGdUAOtM5R7cZ2G56zk9P0d5qU/auR6Q399GUMbqkmRZS+PqIhsn2anBmPAoTTia6oWPTdfR9B9LjRei9uQ5nfud9V46Dakz1Fk2BXN1mwZKzxbovCv40o5X2yWKPo1NPn/kc0eJ/JRB8JHqlDztQR9fd4TsfnLHdPuOrh8/51W8e8pvP4dlzePLQ8ePfP0dkQsQS/rgo5qKKYPkzWoyY6OaaXhzFMFUOet3rd6Ww+/qWRV0O6uhlPCyxixoIbW5OSyhcQGgi0m3mpmLpuvE1zeRmgfQIcziY2DVBPiDqWhZl+VC2muQFPvY5haBQFlaXfW371DC3xdtaAbcZxysXPjWXmTpNT405LoWvDPCKoHhsxo+A77bNpSsxiYhKAj41ALreIytGc/SV6bns1rySSNpuavNnEnCE5HbHarsmxprrSmaQW9YnaaYXOvIG/7ar2MKSDLoWfacZcwHXS+ZaBZSl4NISk7UyYXF2XjqBsnwgtbvQCC/mRw7niyOES+oY275aHGJS9DhnWsNyn0uuQOa+kqlAnZ7sJNPMg9buZ2VTBkr2TGby+ayau2Tr+pgFmqzQSQ/aejiHRFeK0ecFtffqYu4yoBeXQHPa4xbnpU2sSNJyYnvMRegR04B6ixPMgNYSzKT4ljICx7PdRC/XnPrHC2Hxcj+x7RRHh/QDiLnTaBbEJAM4i43MfY7SumpbvFGetiL4iRRBbUndmsUugTpahMVmk1CRq4Go8nl61rBLXsN0xrQKekKbdqhtO2/nBFxWyqtEheqeTOe+kcWR0bo1bwI9e7Q7xW/e4vfe+YCf333Gg+cz//UBuCtsD6swjWMS/AJhEuYYcDoyMxLUFGHOd3TDpvZXDUzFJCDObiaE2bI5RkWT501SLTb0XOoPsf23ABJkHkeW9BbzkwmL0iTxShMQwmgJPlJiCqv1ac+sNdqSrJqZDoiQFEbl2JW9ekj11omPjl83KpnXgl7+/Bg0OqBrS163/rQS3mVbWel4qMRbjkfyvauuiNR7F88Vgfb4jGT61n5wXOG3avqGCa7nmbJvMjjPoL/lv0VxWc4WECecE042Ayenp/huAFJIQC72TjBlh+bpbDaFrtZK84+YaM4WQmTaXfPF/c/49OFjvnx8zeUl/OH7Z3z3/bf51ttvQ/TQzYWWOicIgchkNUulA51QDab0LeUxkqDY4JHWlbv4mQiI25h7qs54jEZaRlpXzt/CtT+fy3I+heXSr+5Nk1JplaS50MVylrXHYp+jgnR9SmSzxfuOeQ7Ms1n+Op+TzYgZZXzqiUqi/xRFgHn6pfcm2l9KV4VYsoHGMCWhOgmTJdN8HlqwfqVNG5Nl0CGI7/DOpTqOkgR8MUWl5sSPiSanUiaWMTyWxEPe92ZEEgGn+A6GXhkGGAZTeDrAl/1gsdUmNCfhPDY0NX1v82/8IkqBdqAx5UFK+7hzkGi+iykVouZ4+GhRtsklTcKMxB7ihlsnA+495ewclJFf/PyKZ89mwv6KN956wZ07wnZjigdRwanH4QjsKXkxtLPQtQI8smJU0zk9ft5ffq2JxmKbrjbf618vr7N45LPKrDjQjJh3jCKdAl3aEDu8hKQBuSD4PUEsyBnv6KRnnifmaaTvexDbYHMM+K6WeLDXVkLksjZTaGLdGloetTGl2wbO8ThrQXAZ6+ZY+ntX641vZySBsazFq5oKheT/vgSaCYyGWIQ+730pcF/fL4vfK8bNxObYZUExluK/XuUvzXdl2I1tyuzfnkhK68PeXtlKml18pInDjKv7nXPFKpHnb9FWs3fWV617pXZ4Xct4bf5yf6GWUimq3DRYda6AIeuLkK2W+f1htT4VaKYECon+uhw25aWsx8KiSALe1P1RXKGytJPujyW+Ii1KtNUowLwBjnmNDuZqddgz4TxegkUONsxyOer7cvm7/Ap7pe2X8ns6Jz4FaSuk2oHWRiAwzAaiw9AR5uf1vTKg2hlgjiNO5vSuDGx8KjcgKRmIgQQrHRCKABB0QnFWzN5BE0EOqXaWFkFvRiTaORBzN46o5UbwgiWK35j7ypxTzgejF2gCOAlYYdlBS7CTB/Vi2Vqdoi4xpLRfZoVugu0EF9FzfnKCXM9MsjfBmYGAMAvQzcAeojDMHb474Xqv/OLBE/5Fs1p//fA+fxAvOD8/x21PmXzPNE4QI/0m4DZpv0TY4JlktiTxIoRoc+yLAmtEJTIzw+DwePoMmoPtXzd4XNebW7CzdYiIlYSgP6gkVQ+LzW2rKCEL+ZKFugzwkqCoSiem31U1wSqmZ0Xye3wqzp6KMBfFQT6DWph83fvpydgjCGNvayxR8Gz54O7H/PTDJ+z28Of3H7IfHS4YNri+2hH214T9KeP1llEDvr+CrWOOnq7bIP4E158zzV9BVDpRdNpB71GnzBKZp5hconp8d4K6HsEy2EpK7ZfrXIrGxLsUOl/l85hKAqwsKJCAnTMFhUbw0hlo0gjzSNhdQtjh3Exgsr3tBD949i9CmjPL3ijdgHQzQXeoM5dUiUoYE29P70qesIn/hiSXVGBuZ1DStljG5WSeccz1zujNklaTjpyKFouWeTQLGnPpFqMVzntCHMu+Mx5iSfaCANh3QXNJgAZMFXai1G/qT5fwQwXANIqo3Gd7wvh7xQWLMabxZJ5rW1VKZsmCOcq5qvHj4hxm1bExRxXEmVWl8ymeUQWix2mPiNJ1jr7vmPYzznV0vsP3A1MYceoSDQN3dcnpduCdN+/Sn52jrmMSh5eAdzmpSmAGm/fgQIO52SUkqrHyg7reEFQ4c6c8e/ol9z//jL/69Al/8+ljHjzacaqef/XT7/H+xx/R3XqTMIxFTPfi0PHaZlc8c9gRYrB4Z3o07siuttrUpS1rZxsWEdjHgMqIuhmGN4jXX+HiFacerhNt9KpcsSfqbBhEAtHPiAvmXUFMfbE9Hp1Z4rICzmUa6MzzRJ0mXDMb71OKW37ut6hZ4+YQ2Qc4uXiTb/3w93Cq/N1f/j9lPJ2zpGymmKze/cYbA4Q5sWhBxNNJl7ZbJMx7wrxPguEMoTOIqoqmcIXWZVlTOEGcJwP25HkUfG9uvFZT0ZK9xeQx6KJm9JLOSwQXCTEwzjvCPFmbJGqRzuyw7ek6X73DUuyhWRB9MgCsPLgSY/DiEOnSWNL4fT5nRh+sYkGsQmBzJrPS3SyvMyF5PqUCWQxqISJhjmg3oRIRRsIVnPkNFxenfPzHH3Dn5Gf84ldP+eWvn/P0P8L/8KcXfPitE/zU0ceewW9x0vM4PMAPFsLiQ0cXO4JattcK0FpBcY2npViRj3m0tSdAWgzY0NxjgsRSeji8frcxixmkoelgGOhX3+F8T99vOT29RecfojomLYaWQRy6ux0XjRZvbImxmLDnlJR5zu7JGre4aC/ddKQ9e+ZV7qEsGF65T4RIPHL3Df1vhRaRo21+0yv3v0ZI5fcc6YUuD9DrXsfG/02vtnDsWkNcgUMjUP5upml5NWcrE5XsQqlJqwVVUXIs/uDmq4IpSEK4FtGwgI+b+yZHx1zw+X+HK+/JnCAjE9s1ANQk9laGs+xUrlGYYxEPxsDS4imNkF0O8LJnzb9lfyHvj4xmMTDRzH3OpkoGExl0l2eygiHVCjtyLLKW0zmP97GU0PEAc7CMan3Hdiuc4zi/HjkbAy+uMaWRmlXPuyx2pTwxwSw507zcW//+v/2Cx5+8x0dv3OHjMfDuxQWTUybvGL3H62AWRY2MOlNdM6UygqxskTzGNA4TL0xpUDSzKU+M5KkSci7Ul1GJlo6Vs1SWKYcXHOg9qrItfVhXNlkKM6i54b0v69U8BJzA8EJRP6Kba8LGs7v1Pd759sQ/cQP/89VD/rd9YHrRoVPPCTue7h7z5Qin7jYn15a2fqMQzi6JG0cchO3pCSenp4TxGuIMTlLlx1Rjsbgql8jv1YSlOWOdrAaWirBjk22KG+cnk9WjME97kIjvHMMwMM+RaYqESZl8MHClAjHF3Hpb7xjn9C8QErAVnKW2l9DkFWjmvJDl7D10ZF1WgOblPGYpQN50b9Y/lG/zXCF450uR9aDZ82XJ/xeY6egr6u4sPFnhGP09qvh8Sf9z39sru9YtFK9ZydjwmCyo5nPdflbmtsETIkJIcWiOGpoR4kQOMxAi8zhzut1ydnbCdtjQuZR7wopJGzlXU1ZAQk4OzIU8WatyP0Uwt/eMyzwiA3r1mMsXD3jw9Ct++eBzvrw3cb7t+P4PL/hHP/hnXNy+RfAzLsHShVI2hFRHkaS0NCtVjrlbz/tyvtK+6EzUU+eRvifsXFJMYUpJB+oSvXQ+CdEOJ13Dt6SWhwWiWngCGpjHKbl0xhI7F8JMCBPzbEJIRME5uq4zI0mIxHnC9Z5+s+X01gmb0zPu/ebXzON4I+6k2UJlb05zEpwsVp5pZ2EHwWodahiRVIc2wmLPiKQEV4lGhWDlV+YQLDShseq5FBNbhGObiXSPrVMIE/PeaEnOcgrm3j5sTDAkhZL0fZ+S0zS1ixOLaj9zSxRb9kfZJyUqQVkkomr2gI05Uhx2F4orRZJbr5b4+kRfnVoZPJfV+46+65ijlQpBd/zkD37ARx9N/OD7z/k//s+/5j//u0t+9fbAP//nb+DlA0a9woUdFxfvWh3ThKeuxmcW0uBXmKrp14Lw/AOw3kKm+Zqg8bWzodY3lDexZs8F02mFxcWpyZmWers9xSVf4xBMy5zEs1TzKZZ3LJRxC8GtobbFJaIy2kZXmPpV3WrWsnclrisis/hI8s0vnaMy+XE5M9mNrz3cx+a2AKwbFvTrCnIZHuvi3XlEdZJvYpjHNb+LOw7AQXlm3Zcbmb40v7Oc8yJEHXu23Tk38PtXvO/G/snN894K8+umWsH/663UYT/WFth2Xl/mfvo6e+RgDo48cqC00HxWWuVMu6+zQ1oSJnTpkmaE0e477H/j0rP4tHSYbMGv7tLLB9q92mrPlkOT5v1Ne4t/Lo1JDjbWgcWhCIvaxFFYnUUvMVXoEFwnDF7YdI7BmzCXHAaTiGYdLRZmNRBSWZpdv7z/DN12vLge0d3EuUS6kw1OBiRYHTSbfYuNk6jF62IZ5ZBBnb1TkrtSpp1lLoonxnpplKxttnmqlD4T2QJgWsbdzF1mf5k+5cWqio9MW/J+ixCT9TfziNW+rSCaUhoivyckSzYTiBuQCBJGrv0Fm9vv8P54yZ9+eIf/+94jPg+Rq/3EGcp+HLkc97xgzzzdgn2HdI54cg3aA5Gu6+j7Hg0jIc1LCBHxER9rNtKqQE20OYG0I3Ag6VwLBS+ztuAr5cyBEy3eBSHOllI+JYYKUyRMFpdkIoDt8RgxDXVyqc6adzS5izfuxFVv067gcu5bctF6Ha35yKsUjK8UFFe7Oc9Mu+BCS2Nye+077V8oyTRfg56uzsEBGV3x7bX1ommmYo/06rze7T3L8dXvq540ZfpNH6pqkwTHWhFM0RlCwLm+dFrVSg2IJCt2DJxuTzg9OWMYNqnAfMIOTRZeuxcs2Y89X/Z2UnYUaJF66MXjnWf37BEPvrrHvfv3+PLpJfMYeevubX78vQ+4c+subujMM4PlnsmCl8aQsp8mi7o2xePbPaPL+c29sbAD65NzFioUsb67zoFTYso5Qa63LKmcTCnRJIVWWkfVBM0IMBd61sYDhpBDD7TsGVOMuZQ7RTnZntD1G3w3cPXsGXOwBJBL/cyCGVG8cjLKVswDQUJyu9SUWHI2JVbMXmWUGoCSvHeM7tfmTZHg8C5b+apLsF/MRSgYQKMS4kSME3Nyxc/99q7G1vedp+ssAQ0u/Z6+X9INisBofL/d1yT+3QhYDUZ3hT80eKXsEVfaymuVL/O8CRYuoUYDc4ZdAVxn5yLMNoFeTNE8zTPEkbMTz/vvnfPD77/F55895emjkZ/97SW///tXnJ4KvcA8BqADnZnjC/wwVF5ZBlKWucxFXpfc73rPzZhPaRP+veLeV2DHV1gWb3i4ERTXRC1rSDPhluRwkd1uTk7PS2BqCKG4RSEuLVrMOySP4IDoFnh6RIDL2rgMevIoMhgVVhZGzW20C7WKvXhN5F8YxAEjXXHS5VMc2yT12dd792E/0vNUbf0BU87BUrAY48utW6zmYy0wLhv8OpbS7FbcdqfEySwpGZlR5ldm5nAQs5JAa7t/joGTVoBZgxywuRKBWDRoVfDIG0yRxYLdvKrtmKpF7ZDBrcZ+KJmXB7+OIuGQ4BwDU0es3C1Tzn+v2s5HKUZduG3P81ytRuX5+lcj3y3nqxHknKxX9/jYihy7/i79p4KRZg0lAwIl0yA9Mr62T845tBEUs2XAq1rNq5QYxjnoHQweBgcSZ6KmGlCWU7vu2wTGwB24Fn/66IorCbx4cYVe73hr43iD22xFcDIQXSQ6MQ15pzgzq6TxaT0Hhd4lVx+qNtdCPZImV9J5Sf8rNSBQcvH4uj8s4nABiTODl+SzqJlntPxDmn1h+8uVdchzkuNtQrUqSHtmpWThlXaMFdFZ/KwCocOxxcWITCNXW+Xs4g3usuOnH7/Hv/nNU56/mHj8JHAeYNzNXI8j17pnnIR59GgvaNzBbAljvO/oh4F52hPmCdSsOZKyMIYQmIPD+6bQdQK1NPt0AW2LQiat1YJHpX2ehle04gjqIGowrise53rmKTCPM2Ga2Tpbp4imRHRmJbD4bcvwKOWcu+Z8rOhhXZ3mcC3pa/t7Vea+Htg5pjQzIanAvKYHmv+/DGVY9HbZf5dAZnb9WvYzDaghUq3Fztqq4z12vZSOL9pNH0XLyrmwvLZ0PwPyLAzlepppD6wBcV43lzBSjBHXuWac0dx2k4XOETk9OeXs9Jxh2ODFWYwzmhKB5Y5WfJPnKsewKSZ8tHI7Yq6znRMeP3rIvS9+y6+/+JQvnlzRC7z/1h3+0fe/y+npLaZ+IjhFY2OBV03JV+zsOw20CUvWwmKz3Id7LFneNVa6a0IbdM6jPliCwpitjKZIKTULc/6FlsqJkK1PSsUaOcNoSR6z4qUhqCkE0/nbnp7jXUeYA8+fPDaXzM6B1KQ19Yc0eyLzMfA52Y8GC7jQiGLeey4lCyptZE+RpOBMhyfRWXvXInGaZGGPhg+bC2sr0E9xZzHSSXFRBcQO730qcdHRpdqVzncLIXFpPBBTZhzBbPWzuqezpQ7Sepa9uqK5i72h6BxSmyCavduyskfKcyogfWfuqNh4u974+Dxec335jH444Y1bZ/zhP/4ApsBnnz3jr/7LNW9/8Iy3hxPO+oFxP9K7ExAhhGs2JxdosjDfdN2kaHvl9RJY+HWNT98gwQ03ot/lIUqBpupTcLzDuYGL8zt0w2D+xu2zKyaSydNSI1BNxkvhAdzqTK06duNgJBeiLe8wzfBCY/HyRg5fJ/LaC3H4nq+3gE1LB39mMLZ2b4GGGcevtwnrGsvi0+N/f72xZAEkXzFrM3OrCyGu1TPlpzMlSO/PQmT73SuvQ2tp6Z8qEiGkGDp3LAFTji+56XXraSnc/uW90mPT/ru8XjU9QgL/+X49EGbslgpGWlHrejcyxxRYvhKql6AvK4dodlq2fqUg+IM5yAw7/SV2jouiIH94ZO5VslCXzkhKdmP1FEElJyTJj0gZZ9a+qquxFWlqcBIIoua24gK9U04dnDpLJT/nbJaYdS7LBZK9EkRx3dKyuFfHw89ecPXois+fPOWBXvHjd97h27ff5KOLu/RnEe09YQANEYkRFyN4V+loTmCQFEUiHuf7IiSbrChNrb58srS4sRlaBWPCaYVk2deDpc1/ZJCr2YJr61RPqKZwBJtTKzRSXaDzWc4AxoJHsxY4d7bRFjsHRPwUEIF939P3J2zjnmH/ghfyKVebtzg5fYfvfvA/8q9/8Bvm65lHz5XpKfg9zJcTu2dPeSx36AZAO27pzLB3uM6jnWd7ekYIFt+ThQ1J0ndQo2UZ2MYYkztTtQZlDKiF5mUhkdVZyVdKzOQkZe5I8UkCru8gaDqDQphnxt0V+6un3Lr7FjH2zCpMKiieiLeshaoWt+WzIiTV5ySlliq81zpbqilkobPsFim63puur8MjyVOwYPlZgK0YMP9sDGGUbZIVHk0LpDHdSKrzOG+442sDt7bdpm8Z5+Q9WzCQZoFw5Y0hgE+F5BsZogqMzVQlRVjur8XGRlsvnUEDDuXsZODO+S0uzs4ZupSwKQNlqoUo1/pRTZZ674jp+5z0K6TspLYPBIk75v2Ozz77kp//5gt+/tsHPLyv/Ks/eIs//vHHfPKd3+PpdMW2G+iks4Lr6X0xlwUKlqDJUoGkvR3mMuZjwmKey/pdtHOYM5dmOoin6zzRR0JOnpbcx6W4kHtIrqja/k+FKcxonMtzkvhbnKfSRwDnvLkEhwCplt8wbLnzxtuEEHj29AWXL56x7b3VcRVh0pvH5DNDy4pPNVIY1LJ8giJecJ2n6waEzmY2CsHHxXky4bbOpUvKWedcyoKatpNCziEQY7AYxDCXpF6zWMy/d55hM9D3PX1vPy1Gu7606zt8d1wEWWD8omSJZR5r4sTannO+kkqfra2KqLczrGqKBrVEalVwzGnVNClR+sRTajI1VYtZjPOMAH3vmdWKYzlxnG3OefL8MeN4iQ6Bb3/rLrf+7IRf/+Yx/+bf/po//3ef8d1Pzvj933uTb7/5IU6fIRI47e4yzZpicF9XFvjvBQJffv2OYxYxJkVMSkkBtSyI4hy+6zk9PaXzfQX+SXPRWiwakfOlmsiWedlHWgKsM/NlJYy1wqe4Q3eWmxhAZk43CV2vc+/R9ygGWhuN4M3Xy5jrzVL8UrheZS49Mt6b+l3WrKnj06xK0f7aTeU/r7xKH45qhe0dWcO1cE9Zaet+Z1fWpKeXry2PGZFYv6rwYpr+tA7HylYUENkMrPzILiJS5oFsPUiCGu1j/4Bhvy5IU9XkvpQKFHsMyDZ7tz2Dklwycuek8aHZ762QsH3uiaHdgyTGm9orhLsqhpZKipsHLwdnKbucZH8CQfBYOLm1HTF3O3NT8uCMjljCHbUknEQkSipfsLae1DMmIrV2naVww9NxEgLnm56LzYah2zONaR1iZMbhVHDqkiEpJRYJy3VyRDq/ZTdHnj8Z2f/qK569mHnwxhXhvZn33TtsZEvnO+bZkqVUXUQGTRZRXZJb+R7ne1wSFjWvo3Op7E0CSUmgK1tXK6TLm8HiPo8p2upySNbCZ4yThT2SlcJVPhBjTX6Ty27kmciWkSzGmltspe8BarIN5+jFgMreOwhX+DjhQmQIe0IYmThhOvmQf/TOd/jio3s8vnzC//tsZjc6Ll9ELh8+4Ul3zjBAv/Gcj6b1VzErnffmameloaIliwmWMt47V4SXYglJ7qnitBhs1WnZ/5mftcqZModSM20qAs7jNGV3jJF+OEEni/AR1yFxZHd9iT76kuF8YNi8C6mGZ8SSpEStrnaZdbcCFWmmC/EpZE9Kn2hosurajbgC9qp0ej0iZoq5LD40jy2OR4uq1+2mzi4wRN4rtY+VNufe6bFHly23Vo1XjCHfv1CEFQvRYbtZYbNWkMeSzTidybhsr1DLVIheSJa0RS1rCGGmQ+m8487FGZvN1jJTlpT1S/f1THm1HMRKs3MHcukYjVaGx+EYdy948fhzfv3gK754Enh+1XPqR/7p73/Itz+4i0pPHCwWzkdPyLxQo53rmOoqZvfTVOfP6GfFc9WjgOKam5MpmYCQJfPMI2wvetfjvCPISJRQE9E0/nuW7C4J0Hkects5blIVSe6yYU7xi/keYA4WCxxV8H3H2ckZruu5vLxkt9sRQ6DvTFBxLdYom2i1szMbTvfOARBnND3RoeQcjNLh/WBJVcQzsbcszXFmnnLtwwZnJR4c45yEX1uPoDWxVowBQvL40IA4tdqKnTdvi35I8fxGG4WUqCYJtyVs4xiGbvhp3WsJh0ilVZI1RmCu83mfZsZXfqT10QabJ/rkfGaSJvybO75AVk5nN2ivhgEAVWEYupTR1Qj4xemdlHFcef74OUPf8957F/z0X9zhP/3FfT79dEeYHnP3T25zvjUlxDgpU5jxTuizYkezF8FqTuo2eP3rFQ99Hfz8OxUWywHKTEVYLJ4JjF3ZLFK5Ur2H/Fl5Ms3f8tQUZqlNtkZW2rd04Fu3p7TreRXgPLx0tXiZQOVnqpyQ1YVtM0uSu94I+po7QV51Q2o7699t7Av3oebxetgOn29/lnuLpid3o3GhXMxZYryFmq163g7hGCdugEe9WRYTWsEvxfVs0V9unildrc3i7iNL3zLs2uUcH5JY6JIPNy+zD8vHx75ff5ZcedLLV+OuO/l3ISiv5+ym7/P51ZyEajXfWQPuMoBlKTSM05TclajCVCOE27mvZ6oFVO0lBbIcH/tSUDwCGgsQlHpWi4CT+pPdIHMZkAXjkjJWA2sZZC7dZV2KdbHkMuaGuvWe087TuYZeqIkEpt1MTHRBq5rea0T9hpnI1X7m3oNr+lmY9zMXnWdzOnBHLjiT0yTg542uyzMlYPXDLKZNfGfCqSSBOjPiXG8xJwLK83XTvEvGV3lOqsuaNP8t80y+31UanrMJ5o2QV0sknYvsJZHDG/ItJqCU8gaJBuakaWYGc0mwvCaqMgMdzpK6SGTfnfP+7Y/44d2Zzx6P/NXfPWOc4HofuHpxzdWd51zvT9jtt0z7ji6BMqVaHySFU2T3thg01cpOEKwBr+szlIUXbYC6NqNc0JAskCGpTFWH1axUXNdbLTTxSVicGXc79mHEbRy33ugZNhdO0eW4AAAgAElEQVTgXEqwmlyIUxHryjNa+rtY7aYjzZYomOsmJZ6Wn4tdcQN/OrjSHrbXHKHw2SqEa35P71srILUK5Mv+VWVe7dXN3OTrWUfbPlW+koXnjFOOnbEFVRMomWl10SAtL6pjZKG4y+saoyXhGjrP2cnGyjJISiNSMIDdX/fDMSyWO5GS2qT976UDjez31zx6/IB7jx/x8OnIbud4986G77x/lzfvXBCE5EXhjOZaUGQqs2TulJL+UVxQj5yh8rd1Z22tLbMvmYbYuJwz+mfCVSArLjOBLmXgWvijeb61TLmiVqw+pHI5uZ+YZ0EIEcThfMew2eK7DlXY73ZM4x4nKaNtpPDE6nZd372+qgeIZcPFYbHI2tYz7pLLZ8piOu9Ao7k/hjmF2UiKYWyzgwZTGKoZgazGYnbrNKt04RWi9MOGru+Ty2nfxBu6dC4bQa8oXJcjWytjm1lvSlQ1wmJ+tiQeyivduqxn/l7XNZ81V7CsJkV9xVyZT7m0hs75VGLEsgxPU00G1vcbCzmIM+M40zvP6dbzyfcv+PlvnvH82cgXn+/48sFjhvfeYrvpLes0hjVKOaoFy274w2LV13TnpYTzAMN+k+vrC4vNyw6c8LImp3A8EGIKogecpazOmhvxxpzyIa8ArBpXsn+0c5UJp5cVQTHxWAqVgCazYUr7m2/MoCQtUO17GVTzd12A4hJ5MNmVqBYhOL1vIXQ1B6LeW9lmM6k3L2gZ6E1fLzfWWg4pYLe58vyG1xBCv/6l5UdRBLAcc9YGpc4cPFr+LA8fMqyDY5MZg0jzSBZcZPUzt1CZYT6kCyK90HJVRhwjmQ7VdoskQLPuxozWfS88aLXkOQu4W+2F9X5Zu3O9ihgcBTfHPtLD94jUfW28dKlNN91PjnMyt5B8Xe9HI6oNaH5ZHwsIaOYxv7+uhctvPQIGS8/LvwwiK2TLfU0LKIqTiKa4LjunMaXotgLl6pzFYzT9WFoZTWM6dAOqgSAzYQ54jWwETryj9y7JRNZ/O9bWR8uIZvQi1zAu8xsj09ah0bMZYffkkl9dP+PR80uu4x7t4Tvj23z01lucX1yUxS2WgASgncM0zL6zWmp+QJxiKCVtSGculpkxq0hDUwWXD2T5bH3FxZGov2TW2/Yns3RzrdKYrQj1HZJQUNHgQyrhk2MYfarhKAkoZrprGYsn8bjo6XD08gJcz9xtGdjSzzPRXfPCnfDemz/mD3ae3W7if7/9jHtPIi9C5Oll4K3rS3bb5+yHnt2lEPuOXqCLVsDeO493jjinIkUpbsnJBp9id/I4KxiLle5pBanZ2S0LEK5OBKoCTpKWWyw2SCz9egyC6y0WSsXj3IAys7t6yrPrZ3z1+As++A7cfuNdzi7umKUDhxW+ttglpcZnK5WmLPh9c9yy8s3omBx8nj9e0P0CxpfXumzV4tIK3oTM49d0yoCxCes5EYoW4b19v6axVnqwetmi3cxLXk63DkHuilcljLLgy6lDWdEWc7bglIFbVatfhDRHLim0MomT5vs1fsnv1vQzhIAjMHjP2bbn1smWznXkeNt2DrLqOccKtx1vrXllDjB35sE7xmnixfPnfH7/Pj/7/HM+ux/xseeP//Btvv2t9zk5v+BaR7ruFkxmcXfefhKtHASJHuR4vMXZyeNq/m7P/0KYFDVvCToTCcVwZecHou6IOhPjiNKVcYnauItwnoE8kmo1p4zH6pjmkWmamMaJeZys4HuauYAwR+iGnu3JKRcXt3j2/BnXux3TGNgMvYk2Sbk1h+SK7/1ivtt9tcQGgvYpdCCzNlyx5DnXmcWYlB13tysCrc1vOlXJyyDPd65JSBKELVmPeXw4wTJ+O0fnPM4L3bDFdyYsFjy/wkbis8BXMVEWaNa8NGOJVj7I2VizkqVA9yRsFasx+Uysz2JEohah3/u8VyJRXGkwR+CrSKnD2fnO3PrHEXwuZ5SiOwIWb6uewffsr3e4PvDRe7f56R+N/Le/ecrPfv6Mv/jLTznZvME77/TMPGXoz0piKqOZLo25CvvttRYiXyoUlFn4htiwuV4hLN4ktEA9OUeeEimgTLNWKqZirF98xuXVC0II9PSAuVXExFmECsQrYVxKxYeDqqJR1rS+dFQtvWsBKeTam7aRi2ymxBCPMoKXvmchMFo77RiOtfO7sBZBI/pIIwq1QgXNYbhBAFn2P7PUw/6tyygsrq8jgzbo4lgB5Px5PBDkrGc3bfYlwbr5ygJtKUj7iocKc0oM22KsmvaWrb+6A4u+HD5z6Kz0eiDmm14va7Nq9TTfTIhTEqyMwUmzL/b7vWVIi1qg7+H70rn4B46l1TQ3rOQ1nrS+l6RKzqwuzpmroeQ6VyvFAVCExPzuwXeMOmGcZKaLkY0IJ75j23X0HohWr8qHsOydNxoWD7o8cBVGOhwn3jH4nusp8uTZxF/+5hHTdeT77zzlR+8/4yeffMzpZkvXdZbyO7ufO0sg4703INJ5y1SdDIihFYSdy8UsG1C6pgDGB5YrFhspAZbuqlLpbTnkCRQgKFOjazl07cvCq7UTy7MqprW3B2vcoIppyqMGEOilo+MkCb+KRht71MCeh0ynb/LW2x/yk/mKf/nDX/Lvfz7z1XN4OCm3n+7YuktO8DzZjmydsjk553RzxsbB4Hu03xDmuboU4ej7nqHf0HeeGv+VL10Q6qxOKVO3+IWb6akEcAEIBIWQygxY9cwenR3jVeDxV48Zw9/w5jtP+eg7P8R1J5h7V4eT3hSyYcZJRFxYCWN5rdJfWs9WC+ZqJ6sHUHvfN7uWLs+rwdO8opTKyPcajljaaBZWt1VrRQl95LubrpZPvpQf3vBsEW6aF2YFtY0i44UaMycJ4JdxZBd5a9SyfOITgM732AvmeeZ847k4P+XN2xdsBo+6pHzLvqtZ6Cjzaf0xWUIhaq2pnIqaiwY636Waqcqzh/e598VX/O1nz/jlvZnOKd/+1gX/8qf/hM3Jm4jb0jtHHAMzShRLEKZhtMQwYQad7b3JEjbH6ipaMqU2AmM+TnVubfBRAo4O73oTiCVa9QY6pnlmDrOdGzqLuXViMX8l+2dZMWxfJcukmmAbxj3Tbsc87pN1MZjVXhzS9ZycnLHdnrLZnPD5F/csYY9znJ/0hHku65OdfwWhy3q19H5/0Jd8Gb2OuXdKcgFNpZ1QpmkkTDPzOLHfvTBhVARvsq7NX8hulVk54YC5wa85ZtBim3Pims77FH+Y6V7NYpr7n8svieS2Gtyd458Xgk1S8JLFjaqwrgc+77+KHc2TxNfnGtxt+8jCTopRqwA+wS1oR5pZlZSI01yJEc9wsiWECXUB6ZXNxuJBdUr1SHWm84KjZ/90w4dv3yZ+L9Cx5+9+ETj/u8/47vQGP/rk21w//zzNQbeYL5rSXd/0OobXv+n1UmHx2KbU9hdZdsa0SrlIeBIVVUGUME/s9tc8fPiQ/X5v7kGpoXzISw27wnzS+1ard5N1TyAFGBvQWifRqQ1QalgtgSUVDBV+txSW1v04AI15amTNGNdurMfHc0wj2bqv3KSxPDbGnPENXbkzidQyNFk7J4fjebXAKOncvmafmjEealsho8QbBWZpt0Jj2aE+3rxk9cHy/S/929X6iccEtKJN1WoZEKQoPNoxHAMiizHf2LdXH/Kj5zOv0WuMvc47CQfcvHbFtXy9FwuYSSDNuAnZjSZflkI8VsXQS64Kj5pZyIJkGcjhmBdttP1MvxxVQEj7a5M0qWg1s4CYGTkLppSZ31ojmhUamoQu7xy9FzYd9F2H8xY/oZrqMqpBhIBCNE1mWGNO1+PDhEtV412n9LNjCh1XL5Rf8sKy0LrIe2+d8c6dNzmVM2OMkp1btcYrpppcSHa1TWJfYcg5oUP+myLKuPU+LUQz76m6eosYxqzBbhdCqAyb5E5a0N560arGOfcnu+5I0++y7mlNnETzYvVK0FMkTkicULdH/DYJyjuuZaI/2fLWm3f5yUe3+NX9Z1ztZr68hMcvRs6HawPZ+4jfneG0Yxc8buOtvloCsKQMo0FnYjALYxRwHaW/eTqMzx3bmHlNlp8fKr8UJCBeTfC1iM30lUOkx7sNvd8QAzx5/AS6gbvfumSQIfXB3NNy9QybxkYIowpPtoTZ6pnfv+x9dfNrlrz9rkX0r3EtXcqaz1vsmBQarbAo6SZB055dCrKFODR9E0lC7sHbDunqNxV+13ygbaYoa1PfMx/O4DukRGE50Ut5Lk9Is7msREQabzr7eY68H9huBk5Pt+kIGh2oyylkfFZoB40ApmkPFCAOopZ5U4AwjTx59Ij7D59w79EVL66U779/wve/+wbvvvUu6gcivQm0cSY4IQj4FHubYxOlgPrkuZYFxaYvRVDU5Ulq5znGGXEm0OQ9kvzWmqylMc21WBIh56oXvtR93bwB1ZT5dM7up6H0J6q103c9Z+cXqMLl7ro8iwY0aHKxNcESMc+WIhxR+cqh4FrXXiUmS6IJ/aW6boiEODPvd8zTaC6vWBhNu84tjirKC61CLFCET4s3dKnshcN537iIrnkiSLLA5t8zNWm9caqAlMdU97KYZNu0L2ldq8r6GOZa9CN9UBRFaS3NO0ON3zlvpWFUqdNs95gy2CXaGJnD3miuKBAIMaKi+F5gNv4uOOYrODm54O4bsP8Ifv6bz7n35SVdP/DJx1imWrUM8q+rZzpmdLqRFilF2fQyrP4Psiy2IH4BDV7yQsOKPoXWBrJ2eA4ju+vnPHj4mP1uT3bHaA97I/wnQkQSdKpQJw1xXzAPzf3MwGF1BBqiUVlcdpldbrYVTF1op9r5WEKY5bwcv7Q+lBposw4ub22E2LLYzYP5fQcLXF9gTCeWecpHJkOxMvfp22U3qvl/IcvZsSnvuXkDrhBCBqHNV7qai4xS1kLMYdv5vdlvPc+Pq2/N7xJhefAPr4P5lzx3h4enfK6Gh2Ozf7KmsO6jDPmW03FwSJtpaLqw+GTNohYvOHYda7T9uhUqG4FvvadvEjoP+5KzPKb4hoXLOIQ5VEGxFRiabZFbLsS/EPO6FaT5t3r9smdrwXIxMCErUBafJcaiGXBlQCsY4U+ZUxeX1DNQlRdCzqpMFha9Z+hg00PXexP4hJTWPE2FqmUSJGWhXM19lI4uTohaNk3XQacdOivjbuaLaU+Mgc5PfPfdW2yHE/puY3Coy4Wuk0IvC1nYHnZUodCGn0yNjZtbvZKQ2VBgKZu8neq8uJmWtGskh+uih3swT3K7X6ucURvIwMKEX0vuIOVzY8jmYhyYwzk+KB17kIC4c8Q7dLpip9d0m57zN97iJx/e5b/8/Z4HzwKfPlMeX45cbK453zpuj7C9vsYFj0ahkw0aZqJGq7HoqgUozjNzShyxydp3GnfKxQaXhmA0M9DSWLIHTbaXSQK5BsgsNqqeFpGertsw9Cc4ep4/u4L+KfvdNX64nebIp3kmCSKv0Ekv6HJVHizpf+YXK05QyPvKQ6Ss8/LNLegsY9e2RnNpALQKiyIUHURVKmYc0Mz7amArVr/8dsWDXnYdYqMVFqH+eUB7hQVNcul554SQDD+mR4nlKHFkzaoHiH1vbdrgh96z3QxsNxskWZMUTe1VvKUshVLrs+EKXxKIQaHV6bDvdzsePX7Ilw8e8fmjS+ZJ+ej9W/z+J3e5ffEmk+sIODwdoiNBvIUAzKHUVSxxd2nBNMaUNKbBL43wWvCOlkkp34cQEh1wNm05izKYoifVArZyD1LMXS1dj9oYOfJ/o8XyzXMVFPNZUkzA64cN2+2Wy6trXjx/jveWpEs0EOfZMnmmcVZesiwpkYXFTE/LGqfpDzKbu7tY/LEqxNmE4DDtmcYd87xnnka2/abuwXwYCqmXgrlVQzLipBqL3pLXlMQ13nhBxj1WTxHWHcxWxfpdJFMZyVlnV8IiZR1bgZLyN6QwoLzn0oYVMKv3QtBuzq1qeQ7RFKmWG/LpfFbram7TPIu8jUdmIOKdoM5qxsekJPRdCmGJxhvCOLPZXnDn3KO94+LOZzx6FPCy4/GTK948N7o3zxFVX967JBfJ3bn5G5Ys9Lgckf6z+u64XHj0w3K9XFjMnWg/fAmBdC7idWY/XzB6h8jEOZfgz5HxMdOjv+G//XrH1Q4G5+nFEdVAJDqXg4BYPR2PI8SQsn/Vha99gRzR6zIaCQmAru6NavGSqpoz8NahpIOZt4g1nfNBpS41aeyVsofJ2pCc9Sq3W5uW+lARy3Lnk7azFUyawAq3WLukbcotu0rQs6DVar00pZwWUq0ljHNmt9u6wSwBcyBaiZNmegtDrZNdwNpaQMx+7LU/aSJcCxVqhIjSTFLe8keEtowgc6KKXLcnvxeUsBDmq5Ukt/x1LlWFVEzWLRqoRMwyy9m9oik2pgGzOe10bi9qu+6HV/t5zarnDu6vY6o7iHi83ZveZQzsCFHI4ETrGi6wVF5LVdOgaYr5aBhax4y6rfU+XhMa05heRaKMqJ9xYwfiUka7BHLFjrJLhF1IbipCif2wwPuAhiTE+NnciCTF+piYVYFOGRdpeyXNbcr6af5UTfIWV2P2VHOcUAUnUV2y0OVEPSA+ueYAEupe711gg0O0Zw7C0An7bo/vJzbDDpghOkS3iO+LJwZiTMlj8H25RhN+41F1hKCWRdBN4Gc2aprJy8uZv/l8x377nH8dn/Kjd4Rb5wNnZ5aZzkmH6IDEDtQRvTLJHo+nS6nVpbzdIXRl42WQJGWYrvkcwKM5hjB3WaWimUwYSvIRrWCliFZZwRiLALr2QjAspjitsUyiUtbT+mAuqYanlSAdGgU3BvBP0c4R3RZEiNMemYUL2eJD5HnfEbcX/Ml3/ym/vj8R+ZJHTy/5coIvnl+C7rl155wYn3KxHXlLIle6N4FTBN0M7MYRBwydZw4BN1nK9c22T3Pr03yl6Qj2kQJBYBbFJyHMZSClmHAQQaRLSgYhRqv/GHQmMtH1faq5OaHM4GzfRxmgO2XaBcbryHi1543bPSEqUxi5js8Z3UjwIH7LeP0VOmuyIoDmiul5tRqaG0vN3qwwy14todyTKZcTq1O2EKYKXaqW47WXxUKDnsozLGUYTUkouiJMEGvZj5bq+Wxwk5aXvP6V288YYIE1jmRGXQr7jaAo9e857dd8vqQ9RyThJsKQLf72ZxLzMWAajDqpGG0K+xE6K1uGCrqLeAe3N8L7bzrOt8mN030LkWscU+1lVuJDTSKHWaQmsazKm+DZBs/EyLVeId0GYQuz8vjRff7+y9/yi3v3+fSzF3zvbfijH3yPn/zgB4nkRgIjs4wMwyl+6tDJCpXb0iS6EKzAfc4gTK6np4qGfZ3AjLEachPzPlXFx4C4jtid4vSUbpqYdWS32XJy5biKAyMK4nFdzxyF3fXIrXOPlw5xHWEeEeeTEsJi3LoY8PNI3O0Y94EQBaUHZ9n/N9sN2+2GB59/wTReI3G0mPBcx1B6asIu+5lL2GTLXRYey/nTbNVtXD21M+Et7cHx+ppp3BGmPTn+zQlshyFhyXYnVsNNxio+KQz7YZvCFrCyOt4ER6NLHdmSqSqID0nwqsaNNaa0+r192v9GNzRR7YqbKw3JGFXS2tbzZnSpFRRJQr2sz2A+Z0UwdmUPCQEtB1HMuqg5pGEJU0UnNCkEe39WsHd0kb63GNAQLCnQ6HqCC+AecvVipN8OvHV2wp/9yV3+w/818/jxyL/98//I//q//AGdBObrawbeZtxfApHNyYb9OGDW3cnq9E4b66tbCzHHL6nm4zqIxQcN3VsrwlfXaye4OSo4ru9RAYyJuQwItAeU690VDx8/5smjS+bJ3GRy2lkDY9n1TwoDKO4X4hbEvLXctFY/0SXEbiXw/DObs40v5ZzlTYxe2pBLZpg36M1jf6UpeD136b7YWkBWjybW2Yha+Za4vDdWatkeeBUtadsz8LLKWw1BzUe00V7lcdTfjw54MZ6bLHG552UVdLWTsoByTBlAIluvy8iLdLDu6s0Ld2A1XgsatOu6bEeSMCuLPVddYupz+d646M/aVXM5lGPvesnfN7RUtfWlgwthsbjupe/KOsrxs96mIl+DIvFp/xxZrxCqkFmsQ22fUrB7jIKTYKBfHU4rMCBGcEl7nNOLH7xraUE4OFQ2aCTXqasf1aaknofDndG+qW2y1QA78BaI7xG0A99B30f6aab3Pb2HyTmC+pVC6eZLtbHYlu1oWmTLgxCYQ+Tycubzz+/zl/3Mbv+cf/Lxh5wPA+oje9njNyaGuuDRncOdd6XCUI4dMdnEBD3Jc0LLmPM8LvtHslouZ6lx+ynS0ZFZTcCblLjlprjlrF1ewW4Ob0/vznN3bE6p61hcHVVxKkxn7/CDd9/lwfMd/+mrS55+CjrCixeRn997xPc/uG0xRPEZJ6enDJsB33U4MXsLMTJPM9M40jmH0hFCxLmAQwgI3iVNNVLSuuex5OQUZVxZUM7TT3XXdc4yr0aNxCm7tjmcH5inyH6OXO53PL28ZJys7MkwDIQxEFKj282WzWZLN0Xi1cRm6HA+JxQ5MnlpBjNplHYy28XSw48W+6L8uRQU1zRXy95Zg5rmvpXgBpR6hetB2EfH98XLIdgrMVq654Zwi+YFksB0ds2vSvF1X+t8acmqlvqfcS+H7Udn+vMYzIVQdKZzcLr1bDen9P0W53oomYuLNHKEN5JkSMW7Docw7Xd48aiHruvQeSAS2O+e8+lXP+PT+5c8ejIjM/zBj77Du+++xXZ7YglcNoOFRDtlnva4qOQMnYU3Jj6TBcX8z75qxYsW/6zWIX1bYp2JaAh59tE4JxwaiBpwIszThPies9Mzuq5LGS+jJW9xMM8T07RD58Du+pLx8jnXu115YdTIsNnQdw4NM48fPmMOIyZEmSAkyUMjWy0lJW7xyc0zZybNAolKoHpQ5HFnLGixh2Gykh3TNDLtd8k6a3UP7S6b10ljwbllvVPfi7srgjixRGhFSMz8IfO61ZZTNXq2wpN5D+fzTXlXmy31UFFkcyK1bZfxypIfZW+gwnuOHlCt3zX4tuVtMWYEEcmJ4QqJKs9k+iS2X48QR3uFKcO92+IGC00JO+Vbd+/y/nv3CPPIV1/2/M3PHvOtd0+4c37K/mpnlltRpilYfCiCqmMaZ7yYoN5SwJeTopXSTfNna/kon4+br68fs/gq4K7ZxzuZ+NXSJ+/2Ox4/e8qLZ3tLJy5Cdm3ILlEtcyjxi61GLr27dY/Nf6umOjoLAach1Iu22p+NE8WSc63m4tVz87LP11d5lxrhLz1qGUzD35pZWPWVdFMllvWupdBXWxBkNTfHxvGytc7tHhMuF+2u2shrvCAyNwhChWE0hzn/u9HF54Z+Hvv8+P2l54fjOaKwuKnt6lrdzlFte9HGkb4uv1ne/zrXWnlR98XNa5rndS28HAM8B2eR5IqWgOC6r9lNo7oEZ4LfCHUtQNEEHFJhaIkmUObvRI15SxJsM4lfvHVxFpZMK5cdqPRCquCcx72YHIrw2N6WXVwWwqJL1m0HTh3OWSII8S4lA+joXDSiH5duy8gRgNbMvcY6muJJoBTgQbTiwS9eXPOr+49xKO/feZO3Tk/pBog+gk5MgFOPREen3gTvrOCTPF7rlSYmU3m0lPlYzvgx5UfdJ2U1XkJXWuXFTTHnZd0awJ0Ni0UgJff9ODO98SSJkI284+aCd998k4/fecp7d7/gqy8icYKrPYQn17xzZ2NCYHDQ9ahzDEhKGpGsDzEwzzPzHOi6wBwDLkQcEefMEk6qSbjkTlJAWZ74cnYl88sMkOwhcaZwjhETuJMlfNbJhMVx4nI/0fcd2+2Wk5OTpIexdp13uFTs3VxZG0Wl1v61NCQ/L2jr+dd8r0mIbOhghXQsDtsryZsu+ntk8W74ODPSSm/y1speA/aZlO+OQs0GdhzDJfV1h7zh2D0LIH3w7HoI69nXo6etoqnEJ8WAZUw5a5zOdM5xstmy6bd4v0Fcb8BYl+v6st99sopH3RvdEMFJBzowTS94cfmY+08+48uH11xdzZwO8Ml3PuCNO7fp+4E4O8u+6wQhEMKI09nKA2nmBSx4Qiu8ZqFw2bf8/Q3YRbMxIKAErISGoMG817ISUiQJBnnexVwls0O1aqrzOE/EaWSep1RDMRCT0Nd3PcPQoRqY58A4JsENTaFHrrHAm4LRSXb1dCWJzIJfpy184NXVnKF5mpjniXEciWGm+KPl0lBrUFkgb+KzQmPxzLUQXbIkivGydts1Z0Wbc56Vpq1AmbN8Zt6f6XgRFsuZyDxRmmeMx1U60gieNxL4Q0WHDbPGUlsTS2xgVxNm0WIMJxCbs5saajFGPnemDlScbFBnFscQlbPTM955u+fy0vHggfDbT6842QzcOe8JOtL5HlQIYcb3KaFedIxB8J0W+n/Y55svqYClrFVdi9dr52uVzjguQS/JfqTD4nrsYKj2SAxcXj7n/oMHPHl8jca+KcYpZVPGoElzUTMLlho3VGLQEs58FX/hJg35omPlYDjzshdFtcm0tBhj+452Mg/H/lLr2w3XAnxHRSWayX/5uoVQXODkeuilrZUltOlw1lzlg1YsE4ZOD0TjV1nijt1zo3CZ5v6Y9W79vmMCSAGmN/eoYoH2hTeij3Ufv8bC3XCtwUG2uqnqgvDmNXo9RcOSIKzbb3+un32ZkMtqahfTpM1ZK8oHFn1uf5omLq72nS3WOiPgmBiqlZ3IiVPsCpCEPmPH5nIcEXFEifhGUIwxUhzGXUBxSI4jKANsgFXZ53nANq85WN3qyxkwboPlm8kszzqxxDNFM7ygEZratE+idymBgJp1JgmLzjs2XU/nA94JsaRGry5tx89BdW9rwaplBUxn0nWWvDBE9rvI33/xjOfXM+/eeZM3zrbcORvYboQ4X7N3E4Knk46TaQMowWd38qqFNkEx+6cniSQx8bIf8p5QPTxNaq7Hjz0AACAASURBVHEv5c92aptfMrPNtJlc5mRF7xYgOwtRquZqmfaQJelIbvGZdjSMsvRZZCW42OUCEIXd2SnvvPs+PwxX/OGDX/Grv7/i8TPH1egYHu/54vYLZlX0YoBxJqayKtu+p/e9uX4qjGPA+8nWf+pwmEuq8w4XzZU7nTazLtJsu9T1Uv6r9LfOu8Wbz+ZaKZ7A/0fcu/VYkiR3fj9z94hzTp681LW7erp7Zjgc7pDcXS4JgUtBK0gQsE+SAElP+o560KNeBAh6EiQuIIC7EsjhkD09t75VVVbezyXC3fTgl/CIE5mV1ZyFvFGdmedE+N3N7G9mbgadRve9Xg27Xrnteq52e672gT94fsJHL55zevqU7dYQegATA/GEmNqq76KVunbxf4h2RcAoM7SeojSsFWGDjDrPN4bPdBDyHwRf43cz3Xq/cnsyhvfLXfPVVPXU53N8ng/7OlUYygipzisbRwK3CEF8abP8TMJ9cJLSNihGA430rJzjdN2yao9x9gikpVdflCSpJwWIRHlBRt+ZFISqN9CbPQaH0wbDgsvbr3l7/hW/ff0rvvyqI3SBT545/sXPfsqLZ2e4ZkEXHCp2ALzBR4BWI0CNnhQEPeAz47mfAsp71ii1Q+hQ0+HFEhBCv6cLXUw4n1wo26bBq7DdbnAnim0brGnYbzf0fkfod4jf099dRxBoYgL3fdezXLWcnp7gvefm5or9fkfjLLu+I3qBNEXGjbJZii6aAqEZiT8BwoGcNZYDIk+MFizfdfRdF+MD9P0Y7KV9mD35TAp4dijHke4i5iA2tuyzGDF7OCP5DmEEIgJmAJqD6+yghJVqvw97PfOS2hI5vDtcTSsrODoTxdw0OlT5fwOIHuTEvMnTOBQwJimfNeKSlNszhASw8xmWqGAdlAY6BPUr/Yg5mo0xGB8je1uzZOtv8SHms3T+CT/69AQNyhe/2PDFFzvOTgKffuywridlLCEEwUofc/kaSwhNUr75QiMea0AohrixQDTGIu+hlY93Q30EGoo+1Y4YajcOOugJNlxzfXvF7968ZnsnLJcmXfAd+/yHyk1tADWDG1Hdl+kkGTN1fxr1rOCsImfofFDa8WYeE/b/KCUBNzVjgXyW4YqUDT+yRiRXhPGBEeK9n8MBZAtJgQSFNs8DwceVeYvfAyjvoHxQ+5mz5UMwrmnSAZ18NvfcQ589ojuP6PNjztBj6r8XmH9IfZOfuRQhruLZMN5z4zujVNrNLPLnuobau66j7/sYsty4En5k1GoCFiV4SrK6RyFa06X16I6jAWywUYo2URs8bn3cE0bjSaDQJCYX8rMRDEmyCsUTFDXQhgDWFSgqpAtDMrYsxuiDgaAdNkTviWAMXnoQxRphaRxL07C1sA8GJvmU8vrO7qmKPhoMal0Ucnzqp2loTUPjhM1ux+vLLf/7P/6S4AJ//OKMP3pyykkIbBY93lmCXSG3G8Kip180ONdEQGIVETesY16iEMr6DHQknbKR1qYCdPfki5orozx7xL0STWX+kCBnoSBeQyVrdMf+kHFnBhkUAVrqqa1duTrBqEHU4PWG25MXPHnR8T98/jv+/ef/yP/z65bLty0vzRVfv7njdg8iR2izioKmKg7FNjbedpAY9j/4mJS783268ywY77ESvTyiwFHdi1eN+3OEHer9UN85ii5TIeWgEwzOLfCidHvl3e0F7243XO12yEI4PTvj9PgU7XvwMfuaE+i6PepjRMXV+gguzyvQVdOMaWiaDyx5LWbAXG0din/H1RFShNNZOjvm2VGIq2nT96Xqs12/93PVof34WS3Uf0AjSekx80WlNMmcTYqCHRU0xPujwXu871HTgjhELWG74eg0cLq2nB0vcWaFyBKlIbDFlOAtFeAeKQ8Z5M0QXSKbdsVOb2K6ud7S0vHm/Cu+/M0X/ParLZd3yg9fnvCf/cUnvHx6jDMO7y1uscKHpKBQT2sd2m2TNazaBzNzWeiOQPBCUEpf75/nGNREfI/4HcZ4eiy9GvA7vPZRBkv8Rr1HTHTV3u33WLbYJtAuHNuba7ptdD214tnsOu42e+62O46Pz2jbltB7bq6v6X0fHSwVjpbLuJNVChgzYnA5ZUkBVBDjYkfgVI8//ggFqHT9LkVyDei+L2kvGhcjleb3YjTynE07er0UtZPU1r+qbyPgF+ew2DRqfsfwmTHRXbUGw/XzmcbGkqK2FlCZ+sZgkazvLuqIB0jejlUxVd2+mrsxSMz9yQBQ1JDd21U1BbIRrBhC1KRVY0xzYVKMhNR37z1qYuCk6AwVcFbRAD6A4sDsEXZs3q55+uQl8umKf/nnX/LXf+v5zVfXPD+z/MnPXnF3cUPoPM41BN2lITe0zRq4SzFcDiIazJZCX6da1+9R3uuG+iFCaWEshBQK2KCmAb9js73l3c0dIVjyjovpMgb302lTEbXf19bABEYbcbbv1XeJ+Uzvbc1Zae4DbyNrasXYHgIMIznqA0se65wFS2ruMbxRxndg0ZPyWyH8cUp0VO+47+Pxzs/FvIaizrU3fDcGPt+/pPEULj3zPYPA8ZgyFdSnWt36s6j5mneJNcYcJA1WzfWPheJa4r7Pmjjuy/z6PGYus5Ax0l7n34SS43CQy8btz7VRxieBYEJyqh6ve59cMOIl+EzosvheWqz6pgkHmBK7szyXiHx2G6KWrQ6IqJb9XbdVu/SRwalIvBORExwmzp21nRWkGN6tBMF8plBi7kLAKniTrIouRkpbWEsrBkO8Y2aqu58yanOmZPmpyu2Jk3gvKXSoxiF4r9FVrA98fX7H33/zHYvgORXDUXOGaQxGBaOBvu8IRmNgE+LejNe68/pICuwT3Wqr003Og1W0qxWAHCZjnvjVs3m4z2OEPEICTVrfRs/1RWAe90xi+AJarMxZ0M3CRRLK6snOAoowhH43ktLL9WztGnP0lB89/4w/+fhrvrvqeXvb4TvDdueR2443l9c0ixXWxHxjjY98LWXnjONJiSy99wQbqjtSyUqtOZ2BPZiqvK9qu3e+01kEeomQMSZbN2AsIQQ2/Z53N1dc3d2x73rW6zWNa9CgbO82RBEgKmOsGbT/9X3JerqmZRDwBGa+nyt5FA/JFlPvkuxQPKeMjCyg4lH31vlAZ2aeqwXoac01IJz7/nAM9/UpPpMDuNWfx7/HSiMdHih7Vxn4uKrGfZXiQeS9IQS037FqV6xXSxbtAsWAmiRjJZqoQ/s61rANx06UIhUTA2dJsIhaNvtLLq7e8N3bd3z3rbJawSevjvnDH39CY2J0SEykj6EPsZ8+YBeGXgOqUelFNhQkmXKK+AeSUp0JfXjOVRUNHcZbTBvwWLwKBB8t98ZgRPFe6TUGSjPG4FVjTj00WpZ8H98JHvV79rsO3wfW6xNWq2U8W5sN3X5fsE3wPgUYi9YyY6IlURJgHDi/IKN9lvZFpZjNa+u9p/ddsYQNopaUvZPljhAGt3JjJMroaV/VFsIsu+Q0F3niRxbC6lxEGjGANElAbrgfWp+P/H6uwAB2EEhkeF/zs2awLObgPwNghPr/w9jjswdyX5K7ZO6qR4l2Huc8F2NsOov5YKQo5xr3RlAt6bFqRa6KYLAEAr3fY50g3pU7pNo1tLbl8x82/M0/bLi6vOXXv4U//MkrEBfvh+ZgfCFG47LWxthOtcw2kcVnvTTKcAar8HDWq7l7T4L6x6XO+IASfd8DxcHHOnR3x2Zzy8X1HRrihc28EUOYEMMMOGtQcp+AWn0XN+0EcFbMbkpICviaMIS63ZoR3Gf1ug+IHFqChsUcLWqSmA4+H83pIOSOhOYRUDzkeKM688GvQuFHGjyAg4FLlp4PdQ98ZCTkadUnHfV0XNXDQPqRUgaHh6P0QbP72cEbD4Lf6d9zQHHuufcBtMN9koWd8b4aOT4OCO1R5TFAMn83BvD3VFj2Se5MJtD3l9FZVY2BCGaG4H0g+Mi4THLZme6RJAJTmFNmNpQtm4QUO0T1TWBxOAq1i2v6YgQU854fC6NkJpU3d7W+BQhp7QJGORPRVYtBmErAJPGPyIydwQZD4yxLY1PS6oBXD1lQrBngvftAiBEwNUaCNQYrJKErnwODDwGThKGLqy2//OYta4TnTcsnpye0yxhtDx/Y+w71iu8TVjbZ9cgMbVLt33LOc38nAGyu1xMaXz8/OWXl5zAnJiOC8VqKgBazYtzYhpKzLDY2/FQZAsLkdQNJMRPGwpBBER/omobl8pQXzz7jn3/0c/7h7QVfXmzZXUDXCXrX88bdsD4+oW0cjbM4Y7CiOJNiHKZQv0r0nvHBE4KJ/9QgIT4T827mgGPVWa6EqTweKbt4EKxyxG+RKODuvedqc8v59RU3mzu8Dzw9fhKF9t6z22xZtEeprYAzUUkwptn5HAxrkmn+GExJNbMPl9knytgGPvuQ22Fd2aAMIJ7RocMP1FGxu9Gevb//dZ+KfnJWsaij56ru3DuOWTkiWchrYbvUS7wLqjJmzCEBhxxtVpOSxUjAaMdqecbRaknjYkTMIkeW6dPqZ6C4oWYaV+Yo/gtKVIyJRdRws3nL+dU5r8+veP0dPP2B49MfnPDDT19hMHii+39sL+dTDCknXW4nXx/IND7+lKpv791lk3XXPKbgCWGPSASLqhYTPL0AScFHP+S8i9wkEEJMi9MHIfRdBIzq6XY7fB9d94+PT3DGsN1u2W03qPfR1ZxBOI+xz6Sy2OWUEXVPR0sycu+PILErlsIQ+rgHSXy14n0Z9AzGhsgfjYn8AaBYAyduo1L5JA/nPAKtWmauAWM8C6aiG8O/eg/nZ2IuyUlskhGwNElOyLRmbKksEc1nwCJlJsaycaRSQ86DLMEO3+U1EJB4LSBba/MZKLUlkJgkB8RPpAqxibZ2WOMQdekaC3Q7MI3h1SdLzo4u2dxt+e1XntubPUvn0vMpXyeK0RwTYk7Gpazz4d/T+YHiNjaemsPnJuXRbqiPsTJ6BSN91KhjUXFghd27N1xevOX1+U1ceMMk+eR4wxahbTKAqUCcCewAGsZ1jsWQiXBYCSVDGUdZm2r77i81fHq4HAju1eu5vTmL5gDmpoJu3YeHQdFcX+q6p+duNHtpY2XZK+ksU5alwQZB3ssPTsnj5io/OvXIGWl6xt88eJj+KeVDAG2tsRsEh0EI+qdZU79fGZQGBxTivaVWlEzdIwchO27PQMAUt46h9H1KWksGi7a47VUhpqgQWN0DIKdHgLz7BBJoHJJwx2h2peORSUuK/JaeHbUFKTpyBdsl3U80Jgrwac5ycJn0UvmnSgqQMFRZgsIkRmmc4IJl0ShHjaMVRUJH13sEF+2njzivNu0pn6ICOueiFSi5ouUaQgBxgoil7YTX3+35ub8gqPD8xXN+3Cw4VUFN4K41SOiRXbwfJGqIHqgCpqmIlEFT4JOY18emKYjuW/dqITJjjzkMqHM0HgLFmi6bFD4/BTpK7xdLQ6bxGewR3fC80fJs6bsMQXB82kclul2OsJf3MR6Pgh6xVKFpFmxf/Jj//LOf8t31L3hzd8tfv4UzDNLD+dWO1dE1IcC+94STJciCVeNYNQ4hWnrpejAx52gvBmdNFFJtCnJmhvkRjdbirHS1Ysr+Gk5wEkOFGCjJtrS2QTXw7vyCN+fv+NVXX/Pm4h2NFU6Pjvjs+UesLTHKcO8RFwNz9H6LtYoJgdB1bO66EtRCZmlGFigjrzY1L3lfyeeybI9DfpyVavUOeT9AoChnsnI4a/9jnYc1jO04h2VOYTgFjDPD+6By2K/5CiY6r0kZhPIIRGy6f6Uxsb3xLBdwul5zfHSKtWu6ZI1XQrRGax+BZmLgJe3EQfRZogJEhd1ux2JpsRjU7/jyq7/n19++5uu3O64u4N/8Fx/zpz95xbMnzxCzxOAIGDof3eusCZig9Pt8lQbUawGR6kNJJzaGiLlvpvwNeX2ScF/YStwYGgSVHgkBDXvULsF0uKDsrasASUPbWAKG/W6HcStaF8/azdUV3d0N6ntEPXebLavVKW17hDOG8/M30Z07KK2L+V6NMSyP1uz3e6wIiyamJYpdHxZ1DDQyf0tDSPS+73t631X5HIkWSpHh7nNaw6LSMxKjzpaZ8lE5ldNfpDuK2aNgoPdVX4rcIoWnAVFJUMmrxpriTTZ+D2q3VJM8LXTiZjtuM/ZDEn3PNDpbGAUKy9AMLnMZBcqN8qIkAjEAZ+J9WJnSI1sC6JHWISsssghQe9IUzJL4iwopcJPDimEhgX1/g9ETWvsMv7hgs7sD8RwvnvGv/viGv/1iw+9ee37+i2/4sz/+EUfrhrvbd6ApzZgGvG7jON4TtXRcKkG82lDzmOnh8kEBbt4r5Iqi9Ay+yAascnd7zvXNFZe3O0y53wPGSoqdkImcYywpzrc3bMDKklUoaYYw6S8dv5fzqQjR20yqcWUGNeu6mZFQ/Y2+v5/5uQEET+9kpoeDjqzAI8CYOpeJQL0MU738dI6mdzbKwYOcLa7SJE0ryePMM3FIQEbPjqhdfvc+AHvY7zlL2aM5bwGV91kY7y9TS/JYIKgPV/wujNwGZea5uTby81WXyxjn+1L/PS2P1bwfzunhekzB4FAR+OAP6phq03Owql594tEV6EslhEhoVbIbarpjnNaqnu+oftAyaaoao6GageDH8+Apud+GLLuVZbPe+UrO/1RtaPKFt0IvKiI63g+Ve4kx0Z0qPRNd6VN6n2TogrgfJaW1URRjoXHCcWM5agyLxmB3vjwfz+pwV3uOgRqxeXboU8j3qHkLMeF0CpLQd4GQUoMsTIvvO85ven7x+pr/+7ff0O07Pjk75unxClpBgiApml+PTWBLMI7I/JOavdh5g4mhN1WJ1r2MBmsBf7I/TdIqj0LeMz7jmgMvkJQJ+f4qM8VEl1MtF2lSBNoUiTRbXVJ7cR1zoKAkcJiKnZbjmCidW9GEmAf0uml5+cmP+PO7a672V3z5uxt2N9B7ATVc32wxQO87jOlxThArOBytSFSUdAHrBG883gh9n6yaCYhLyPeWEo+o5qnO5RqUlJoqMgMjFq+O4Ht88FzfXPDVd1/z+t05764vOFovebI+5tnJCS/Wp9iwpzGC9h1NskwLltu+wwjJHTUpIoxn/nZ/dqsfeEqxnlS8IeP1ei9HgfZhAj3e+wkA5EWaebUWjotlaqjsXj4yT691hjtN35v//Pt4Y0nq35g31rw501wqx6Ao5+Tdk0u2WFkbXd6tN4j0GPE8e3rM0dGaplmDWaImKezwJV9wpKmZFqX/tOZ3uWcOVSFwh+gJfdexub3gN199ze++u+Hy1vPRK8s///GnfPbyBYrD2CUhCGgghCT4EmlC33eIUXL06wgUk4KuKMy17J3iRpf33n3zXpS1+U+P+p6+22KaMwhdVBrZNo4/KI1ZokZjYBjb0PmO0MU6GunZdFt83yNiOH3yAmctwfd8993XaOgxIrjGsVg4FosF1llUhOPjRaThgKgpad9DUHxIaW+STJi5hjBOGeJDBPQ1b8r3BrMytt6cJsnaIllxHS3OrhnyN+ZANvVZrktWZGY3zUEWSsAqtRHpgamey/UPslN+P4K/BxSM1X4uSiOp60n0RQb7YQm6Vs5GmsWsJE4WtSzqxjhqWuYzTp2kx0LhFSOZILsLEeUPSivxu6K6yDRIDEtr6babqGC1SucFaT0Ypb9t+aMffMbl5Wu+e/OGL/7xOz5/9ZxFu8bYQO9tnH9jCGFHUYo+msxEhXEkzIM8VNOU8uR77kE+yg11Voif65YIMbhNhvtRc93tb9juNuw6nzSVtfNjtbGNGRGr+vs511CDJMAzLE4tpgw3HQZBoYBMrUHccABq100Z9ue9izN8fijkj+vWqv3x91P32HqceQaGZ8b1FMaW/jdLNCttSmkvg9AEst6rCChVHYKNcc8ngsEEuMxZpqZlBNgeYPTTjV8UKBPZ8kPGNhZ0RrVMwMPhPMy5ATwE9mKtj8e107mcm+e5PozGxNCn6XqM976M9sx0Dg/Hn4h0nnsdL0LIDB6S64YUa/XhOBm5HBUAmn6PNC8LEQNzjS9Ugs0w4qohrf5Ny4hyxrayFjX9y4BRJGpmJWQmmu5fByUYAV/ZLFI/RWJS44WzLBrLwllc42E3ntf79kNRHDG48gyMOnPAvGZKUQepQbFsO+X8esc/fPOGUxetdstVwyo4NAUQCeIJ0uMxiIn3y4seN7sgpfUQjRGo04LN7GUZ+sRwnqcKrgkJTfVI9ZGUT2fXTKrfya5StUXfULTPWRAuwvB47nM9IoI4hwlbVBUvjsXTl/zwo5f8y+s3fP78ji92wsaDC7Dd7nEWjFGO1w2bvqPpLYvG0VhXuh4tPVn484QgBIl7IyRFiUlDqbnj4OqdZ6OamXT3Z7ffcXt3w+t3r3l7ec7N5hZphCdPT3l+fMqz9SnrZomoYGwUoNomBsFwQbm57FOOZIrAPqW9o3P/CLI6zwvy2abs3fhz4CWDcm2OPzzAEgpvr2jitN9UvBAO9uNDQ5uTie6r+74yr3yb1MnwWQ28h/rTBmF6Z3GgWcakYE2hQ+g5Wa9omyXGtKg0qYrotmqTC/TobJSfWfs1tOeTCUWMR4Lgu47b23POL654d7Xnbi988smST18+48n6BMUCrgAiwRPD8FqEJvKH4vRRmAgjsDeZ1+EETBTwM6XwOY2W1r7vMMsGcU0ka8aCj/KnNQ5vPCpRSLeQXAIDvt9B8Fhradsli9Uxfr/B93ucVWzjcNbSNg3L1Yq2bREbrduubVMcFY2yMfHM+6DsO48PAiFd10jzLyk6caYXY+AuQ2BHSao6A4IplrGpy3iexBzEppZpBr5RySci0UVYxs+W70afVRQrP58SM0aQQ+Gjynhv31eKDJ7qLH0bBJNyfgeZavAGItHUKMMPqfryVEj996iO3FYlm2vtFaOIhCFYmsQ5yjkmAUJRVlosi8hfdYOmazhowO/g6eoJT9Y7Vssb3r674+r6jidnhtVC0U4g5682HrDU97MfkstEMo0ow63O0ORKzUxd0/JBbqjT36cH04gB8RAs6jOz9+z3N+x3W7ou4FxEuUUILILUQBBrDci0jIRfSYBxFFa5SDNkVzUtm7jasKl34zEOZoFY/zChtVjxWFQ/tUpVrH8Yb41sgiZloeQJjf0P8/cZM5EYDqmONn5+vAigqrE9kborUZyaA64zA32/sqAef3VAJYP1QUiYtjF9/yHAqOV/o18m7RfResxo6senDOhecDcmoKP6Z0DXFChmRjWSAO/p+WPB7bR8mFZb6m2TPkkuxdVaiTnsyywwpia6OvoBFCFhYBJ5XaQAw/KKxvspEpLQH1Wxg9IkfY8OriJlUnV8VjPDGId31epfNR81MMx0Pmko8+fZ/YrkvhNdUwM5DU/WeBsTLWhSPo2R05w1LBrLsmlYtIG2D+z3Vb90fk/kPgY/CG7OukojXN3TlDQvIUa/88GhpqHrPfubnp//6muW1uOt5+mzE5ZdE8EKiqdHoniUGH6EiiadocwcJaUeEs1CRogCYRb8J7RuOB8jCJSGMnG3H61JnhAp30/knmHt8p9Gi6VZifun5gUx1sOgMEybsrQX06k4bGPQXQxn14rgX7zg0+5zFtsNf/H5t/z6Xc9up0iA7TZaRsQot7sFN9st1kBrhdXSRrdAgeC7iC6DR70QLHjjIqAPqU8pXkSxK2reV8PmyGAiDl8IWK5vN3zz7df8+utfsvE7xBmevnzGp5/9gKeLNSduwWIfsM6A8QTtWK9WNG1DHxZ8e+4RjRZqIbDb7Oj7OjF1FHKz8JXLwHnnXDprvjx8kpW7hRcU5dCY1Gsi9OP9fdBI2SeqQzqZ0Z4qwvBQCumrUNhIPrhHATfb+lDFBxeRKqBQzepqmYvhe6mOhWqk1VkJUQCCRHnMYNKa9pyeriNYlBalQUyfFBcdom7Ct6r7iiP6HH/3HlDBNYoJhm674/LyO95e3HJ+0bPvLT/56RM+ffGMs6MTdurovdD7aEFrraLZqpdvBiYvjNkbJmUWSIJ/7A3IKKtH5l2ltxX4TQwkRhHtdrSuxfgWVSJA9NGDxFqXEr8BIdA0DhGl7z3b2xusEVZHxzx58pwglndvrvD9hh+8eo6qYo2ldY7l+gif5VhjcE0bD7XP+zImau+9YnYdXd9HGk2H+ig79V2H6jh1SJZ/TY6imumYkeEOnULv4zteNdHpbOXT4nZ6KMswaSdNeNVulmdHqTPS2QlpY1oorpr5++myCqT+xL+mPGB0Fqc/IcnHFd+ua67kmvh7juiaU0MNkX/N1LqZZdQQlcD13GQLLSGUa0Z5XlUFLZHioQ97glfwhqV9wl5v2IZ3YD4Cu0N9j9/0LJtTnhz1PHu654tf/po3by95chpYv1oRfAw8FtsKMaevSjHIZmVA6XrZ//ccoul3o3l7mM49CBanudLeV3wIWLsG2aA4ILCQPfu+4+4W7i4asDtEXELhYZSDLmS3qjiKAiTrzQqZGYz96G0ObDGSuyqxseC1ATiYMIwva/fyJeFpUe0PPqsTht5XaqaVD17tc2ysgqEQAyUJyZnIpP7GsRtyAIT839AQA6dVIrVIShDBDmz8QJuTtVgxUl/p12TthxxvY8IxmZHZOTpk/vcx1eFg5tDnkBwWD4BoduIY741pyYc5JhGumV44PBqpijqKaelZ8MTcf/XBnBckCgwpnD1/kQTClFuzhDyvuzCZ14c0pfnnVNt9nzInDjHeZwkaYmCNybtRTMyCVxnJ6Jlpf1UVg9CGlt5oys0GS23Lc3vtuO2Uu72y6/bES3E70D3QY1gClhAEsYHozh7TU4TQpGMQ02rE+xYAPrkpWUxifiMlk0ZQkIWEGh/GJY5CUXzQk1PQ5HlQDIpn8ITKc2Uw1sV9YgHtY1/yWoQoAPXswfQsjdD4I7bq2YY9O9nhzBanW3S3R9pFHqNKQQAAIABJREFUObsSFFOCsszQ3wRkcz99co8SGtom3WHTgGkc+xA12taQdr8QcFxtAn/z5Ru+ubjl4nbDX/7pj/h0dcILt2LfOrZ4xMNKDI21dHh6EVzb0Gh0S1La2BWJSb8JtavSwMSjMJfBZRZCh71VYqsma2AKLZOWRiKI0hRBLkrF6Q6aYpJ7ZBSYdUzim0grQwCNl+njlyFbNeJ7mCa6LWfaLw51O7y9Q3uD61cYNRir9Jsrlqs1H3/+Y/67/2TDl3d/x9/86pZvvm15qVt2+56dgXav6FvPrhPCYknrLfQdLQHbrnDLJc4IRkF3gFoElyyZFpPnUF0UshT6LvIf5xyNi3mK7+7uuLm54fXr1/zq2/+XzeaGft/RNgv+4OPPODs949npE1rnItj3HpYtrosJu7fOcmFaPlo84WNrODp9yX/Yf8Gt2cO6Rd4c4djQyJ5rbRCxWALG72lbRyeBPilX234Zz5DZIfl+cSEXNeXNgMdM7gAP349Lfma45zph/WO2J9C0NqWPSNFha2VSPsPJaFpCvBQtJpWiY9KzB5j9o0HilCdIPika7/4WoTu6hAVVtO+TTBCBlHHQefBqCdoibYcn0PcBRwvhCt/v6bsz7mTD6Vng5bMFp8dHyGJF3zZgO1znsWoJKlyHS1zIqCu62I35R5ZOBcHQ6h4fet70Gz7v7tjfvOM33/2Of/frG5ba86cvjvm3P/sZi6NTereAYAnc4kwKfugthEW8M6Z74p30yDd8cb/OgneMQClJgTUQwIAjWjlD0AjwNOX3jm8SJINeT0BxekwTLDf7c9ZnENwZt89+DHc/58g8w9nn7PUrnFnjZUEvFuNivrulg/UPPse1LxEMGnZcv/sFT5Zgjs4QsYMCVATRgBNKJGntu+hNYyF4h0iDiKO1DmN37PdbZLuh393huz3eB7wfeIBU+3jYi8NhcJlupnWzYsu2L1bICmhO5cBsRYvfp79FiIraeKfa2Ci7x3vyyULGsKedqS3iFF4wtUgeAjwQUwHKxEuwdjgvqsSoboNSp8gtQQqPUOJjeZtoYesCYpEQ02qEVKeIDt5KaS6iTKBjeTnJ7xoG5YNxMUBZ6OI9UEKMJNv3PY1pUAdeAh0dIVicnhB0Q9gbVBdoo5z3b3n5rOc/NWu++CX87e+u6ZaGVz98gtVLpBeCNKg7IrAHfIkRf0gvx7igprtz8vn47tvh3eS6fK9oqA9q2rJvWVnfQNfHHGt9F8piAhxYfKgF3qyp5+CZ+yyO8dFBw38wNTJG4lkzkN8v2Kw6YIdlfFgfMgMf9nOsASjtUk9bJejHXAYkVjJs+FGD0/HHirK28aDfk/fqz6YWo/tAx2OBYgZzjwHUsd7DPkzbHVuQHy61W0L98wFHvwfaO+j18GNK9OLLh5q0g70SK5jupfvm/aF5ed/nB3WFDJ6ysD4MRycgeG6v133M7g4aQuEbWu3l/Fy8txg1r71k10Ctdma9PimEUgasBSxkRVE6MAkQ5n5kIaFYKyf7fMQTpg/cU8r4yuODQGAkahMl3YfMbQjJil9GZpKywWCsSUK/w7merh+f08lJreYwiU9pXw4AVkcP5bXLNwmjG5Wm/inew+0m8EZ2/Orbd5wdH+Gf9chZYNEI4izi4p1Erz3qkyuSc/QS79m5nIw4ZKaqpS+D83zNi7LVJLnqEEPvx+nUmTXR8dKUY58oXEUHBtGwWi+EEg7dZBBQP52ObQKwaFJqCRjvImC3PcFsooDqHCotXXuKrB2fvLzkrz79Hew6rq+V3V00GLq98u7NLcsXC1Z9x/72jlsarIuuX85atl1Hr8KiNazaBWoi7DUpwm3QaK20KWiQGLBtE+8phsBufxdjAFxccHV9xfn5Obd31xgjrI/WPHv6gudPnnK8WrNerbDJLU2IPK83DajQSI/rb5FwjDYnuNMfcbq55FnveXp3yW/NDi8Bn/KMWkMC94KqI95ujWc+SAAJw5xKTW+nayvp3N5Pn+4tOqVNeQ3zyZt5Za7uJKIUFqm1RXz8fC0nzJXv4wkyGjswpKIoDxRCVazfVZ/FmJjGJsebMgZnbYn4mwN+GN2wcJb1aknTLDG2IQYWCQRCkZckz0ERuKeeMaWjqCo+dAQCR+4pd1cXvLt8w7fn12w2no+OWn7w0QkfvXgZU2SU5fEDME5jqq2Zhb6XKCJafpTpkIHijSifTOWdMZ/XQglB8Vjr8f4GsUe0q2Purh3WK2iPWvBYxAgL6wlewB6hbslyeQTdhq67Y7+7wbZLjPoEPQZQMXhRDMFYiqggKRBMptA6uJnGf5FXFu/fGZA42nNJjJ6yvMfvy8FLIf7UoVK0KK/yuPIYBmG5dkeNvKAoDhnuRd43loGfxs/C6LMKENY8cTQ2qXg/5SwXFlLxIIhnJysXa4G49nCJn9TUYDiLNYbJv9RNjDBnqamSW6sI7lEu8jSNcHrccrw23NzsOT/fcXvXs2xsDLIXAn3vcTYafgoorpqp5fjc1/EW0Oqp/Pcck50vHxTg5jHlUMBNEZy6fmS5Kl0b/gcMA82aj/qu09SCUn82XfwDwXzSx/rQTV0G63KfNeV939VtzJXa5K7oQYqTfGg1aWgfRQAyU5m0cciYxmO9DwzUYOkhwDBtb1r3HNicn+9h67+P0MW1HuZ6XN/Q1yzoP6bMH7b7x6ijt6p6EmebjDrlrhvVdlDn1KI7Bxzn1lXumYv73h8EkMrFORPcqpMPWZLH86MoOXBIPbrhWe+jttranGt1zm0tvyn1y4WhGlNZ7xIIyOMYKxIqEq+HqzS4a8zP7fi5ODeSOI9We3QMGCNArKepFmYyU7PW4pzDNREw3nVxLUQz4x29NOl4NT1ar3e20o3BIsRcj2gomlQVYdcp13eer97esmpeI12gMcKrRcNqtcBag4qn1y5a1tQiveCtQY1gNQkFJkVPNNk9MQN3Elg+ZOrRrBODAmXwr5M1n1PoxHM13HcprLyWJAuzlvKv7FElWjnrnHxFUA0FUNngaHxDLx3e7OPa2iXKkk4WmOWCZ88+5l9/+gy/2fH3r6/4ZgeNGlwP1+/u2J6t2XWO7kbY2IbFso1pNYBu39EEQWzD0hpCplFawj7F362NqbnzfGrPfr/l7vaab775HZeX77i7veVuc4dzlqPVEaenp7z66BXHyzWLpqWxNtapCcQHxZsWUcFJj9vfQH9GvzgjHH/G6e03vNjf8tJ9R+N2qBE8glGPS5p2jxBCDO1uIQJc6UEC9hECqupkrUfn7/53dH5XMDrvRblUywaU7w8rroT4/EHVt6mc8P5xjd+baa4oO0a0U5kffAZVg+w+gMXcJ40RMZ1zRNKY0lNgcOxYNWuOV0c0bgnGEd0fA0OIFWIEZHLAquHzOVKMKn2y6p/YZ1ze/Zo3l6/59vyGsA88fXXED1495fTJMzqxUflRQEj+f6iUf5G2Zzo+BsnV7wURaZmXFIdroAn3yL5C9KpQCYjxWKP0/TXOGZbtihtd0isgHWocXmIkS2d8dE81a7CnGOfot9/i9xd0+xuao1dIv42Z16t2a8P62DIFSI5cGomVDz1939H3Hd73eK+EUMfYGPPfqWxWNzy8M1bAvc8qXu/FDAyHtqZ3G4frGrWVcACU1XtMnq8mYmg3tTd5Zhz1c8YSmdseL/VoLAefHch0QlRiTGuZ7r95nlTekcP363qKUWhGDguqOOdYLh1Pzxq+vdhzdbnn6mrH+thBMHQ+gkpJ0c/jdZQ4/hHdYejn+Dwc9i2fw9F4Hyj/UcBivQm8D+x2e/bdnr7vq4u1dZenG786FJO6p6U+NFPRZPzc/FJOhetaEB8B0QcA4nx772cuMBC6wj/rQUTZaKjzUS2neu8RtvShSaqem3/3/eO5r77v++4DtVKvaAE/6fPc5n2A8ffRm9HefMTDJvm719FUp6VYyD5gvj5Us13v69S1f3JJLHwyKcMYfK/cbbZs93uMjakzEBsZgvoKaE6RlqZIwUmw6H1isoKIrYQHkmVTasnvnjIcsDLPBUDrqN8Dk563FItJVpvkVpwNtlNmmls1JrsSWtoU6IZNXwTaQmcw8+NIDDlr0YtwDPgk7GXXTikEJEY7tIkBezHsQ8/tzvPbNzuub95ysd3zTjf8FYYfPj1juVbUeXrb0pgWZxqcCr5Ld4RsiODZarojGAOkSoh3M1Wiq49kTddIIEnKAonh8XNfR/tSlUGgzIM3Sa7I4f2Huc2pGClMPX6u6cs4S5oi++VXBwECskXUY7XBqgU6gumjcEdDwLFzDtoFZ68+4d9u/5yP3Jpv7/4v/qdbYXdrCb3hmI6Ly28Qf8LJ+hVPm47bxrIPyubmluXCoa7B4bjpIsCyVlg0gnMtTWtpnEG0YXt3x2Zzx+XlOZfn33F1dc7V1Vvubt6xWjQcrRa8+uQJL59/xvH6hPVqzWq1isJrusdW0lIBnh5tHCBY8YSbc7ayAFa408959uwPaY0n7L7ll1cbLrbCd9cG7X1M8WGFIJYOofUGRwyWc+f2KBoVE48p9zKihz6PZaDtJOE4V5mfkXh/VDUpBqaWa0oOVDHj1kYWCjig1Y+ltVNF40g5rGP+VKwENQ2oBzYp+wCtiRRJ6MErTgytcxF0BKFXQxd6jswtT1dPeHH2nKY9oZMGj9KHDqHDqIVgsOog7Gf50wA+JBpFNNCjGGM5Caf86uIrfvvN7/jiN5csgZ98/pI/+dmPWB0/Zb/boJqj99ZnewIUifWO6JoOczVcGjmUbKKMJFFhpZboth4VUoOdKtrB1ShIwBqh799ivHDSfs7q6BNCfxNzMLpTjlLk1rsOnjz5lMa1BN/z9vUvCFzQNMLJ0VO66y0pE17dozK2ghMluu+O+q49vo/y8XZzw37f0XV9jIwazOj9h0rNA8brNmwjEUoanLGSeeBx8V/VX4nnw6S768ak9BopaI1Sv5vGb4b6xdRWxRlvtIpXZ36ZwvEUPjdXRsC5Sp1yABJl6oUyrqP6a8Tzp1b10fuj/HIyTHLVXpzrOm3agGWmQD+CxZgX1TaGn/70ORf/4S1Xlzv+4Rev+eQvP4UgMWen0bStH389MHbv9yN7/57B4nBARISc8CxqSyLjt9alTTueZxiAm4jEuyZlp8fvp0J0TXBT8w+U8c7L2uS6rjlGMCfY32fReei5+8romOd9mAXOwwqHz4qMO9GG5PeS0HQwrpkuZUF12ue5A1PP9/T36Ttz8/RQkUz0Z8Y1bS+Hkh+B/SqaXt1mtDoPwuOhFfewbx92wAYikYWBYSQzT98DBkdzmOZiIs8mf/mhcskMgGmgp8N2poqQqTImVxu1onnuhvYfXMIS0z1u4BBCBC+p7Pue27s7NptNSgg85FnKZ6DaeXFd010CReMlQwW1ycI4Ih7xTgrpbu5BgITS8XzADs/0lEGMX89g0VDSCFRzacQky+JA14yNbEyVIZ1GXjNAJI7caLwPMnLXHBGEugz5JHOfB3qh1VPxXRUZQFToyOfCSQPW4DWu0W0HX57fcCV7npsTjrTBBFgahzeBvgl0AuuwwOXhp6A+ARu9UNMdkejCHIFi3DSKyMBmhjNJfCYz9BzW3FfnmgQYy+6oXUinYb6rkOZZwTAVotL+jOHedTy9CZwaFXq7JxhoTIMLMeH4QhdAz0Y6dkbpFg2rZ5/xWQj89+YNV3rJ33zh+e13PSvZo1ewCxvOF19zsvkcYzrsXjm1DX1Q7nYd51e3LBctpydnrFYNW9/z7duvUPWIUe6uN+w2W/b7Ld1+g6GnccKTZx/x+WefcrRcsFo2rI+WrBdPcbbBmgaLRSwYmwBFCnikwaMBnMS90OsRd/0WNteI/Aa3cJjFCYuzH/Fsd80/e/fXXFz1nF8p58Q0kQQF6zHsIrjWHLDu4TvkBxb7GX487IvquQdoc02b5o5uBjllz2XGSNoHyIEKqP4r8pahDanenyqP76MdU6tpLZK+Tyk4x/9VEg7SSEOsCdHNU5WgnqAxb6uq0HUbnj9Vnh8vOT0+Axbk+y4CBPVoCDGQh89WysP7+uUOcSoBENsiGDbvvuPtuwu+fXfHm3fKDz8+4sc/eMnHL16y2XmwNgUjK4SjLNjgUUABzEjpQslXly3R+Y5WlmsiWR0Iq0idNilTDJNZaUoR4bAGfBfQfo/f3bG9veXo6Iztbs+u24I/wSk07RGrk2cEVW7vvsbv39E2t/SyQtWx2xqOnGfv+5g2Ko8varRGCkORfPcuppASiXJx73u6fkvX7xL/DvHutI33MJVudm8MHhE1IMnbZAA0WRbPKVUKWBGtvhvAYnZsqsGjSJbZU8CzytJYA8EY+bTii1XaC2MqFaYMAA8S86gA61g+M2UcY9oiSaGaqjjABgxydP1dlqsm85jPxINF87tZpk4MT+LckniWMVFGERt3qDEm/g3D72l+QggYBO89oj0/+PiUF1/uePfuli9/ecm//osf0hiD0kXpI8Qoq/bBzoZhAoYZmQwlTL5/v8z7TwKLDwGAQcAa3HyAsrkKsZx5Ny/eoFmZBx0HgvEDfZkygerbUb331T/9bu7vh8q9C1EE7PTnLEqcafM+wfZ97zEWLEnNT6sbaT1/T5qJuf48LKAz3c8H4GdsUZwKIKkuhjEPtLx6dtrGPcDhvvUun04FnVGdc3WNAfZovqW6G1DVpTUSygzpnlWfA/N1+/nNUnfdb5HZPTHu/7huyUFElNGZh3gPa7/fs993MXiRDK1rVc8onUaqp0hqCtFd0BSBo9xNLJtYRvs7a+l1QkMOPAhKm/NjHHEw1dFcqdR7YwCjmfHFn1JFpKOkKBDGoF0e3DX1ZzLex5rYXUVAypBSjsTY74DRBLYlJn7vQ3RJ7Qn85uSaF8s1xsGLdolpIYgQxODYsggLhpxdmiIFSYoSG4VN1QR4Jd9ezOs9sfAoSVxPEWdJQmVej3tp5hzBKqtxCBKHF4cNL3muDuc3GE8wSssCoxajDozD0dMQAba3Fn90wvrZx/yx/BH/5u3fs9lecbPfsbkwtL2n3/fc7DdcdntWW8NCLbs24MOOEHq6bs/R0REqC7pg8d5zdfUWpcdaYbfZ0u87NHisgdVixXLZcLxe8OxszaptWDSO5aKhlSWD25fBion7S4jgPRBd8KzF6C6BC0dPS+c7uv0lfvstsnqOaU9ZnXzOq9Xf8vHRHS/WPdcOupTT1KhixYMIgehOLKP0Cmkmf698Yyr8DOsFeZz5mWr9hUJPx3XIjMpoplWpgeL0u4f5/xhwDaPI23CoQ8t3GcIOLx22Ub9jJOWv1eimphIQibnZ0B1PjlpOVisWzQofUl5SQiIHKW9zCCka6uAaSqWwLL9ruhZDzO0pqtxdf8v55Q2X13t2nfDpx2tePD1lfXRM3yvS2Ij++hyMKp5teWBvxDtZFQ2T4fdDRSCH2yLRtqkoZfLcGQssopoyBLrdlna5xKrD4hA9QWwPJrpa990NXXeFD7dYozgcqIMghJyeqOaXMqxkWdWsRdREDzOtTPcU06SkdCeChnStQcf77OE9l0c88LYCrBIfysAwkMFi/nyIbJp/5jrid/neoiljGYPhxAMmIHU09rxgozGUTpR/w9dj2abmsaPfZCrr1PMxvDvw+bEErJqU0vfIuhE/jDGDJJCYg+LlfuRmJSXwlXp+ktww+kySyko9GjwnRy2nqwU3lzveXW652ylHrVZ07HDVy1qNPh1JQaPPp3Nz+N18+V4Bbu4X9IdOaXWy68fGe10mfx+WmJNn3PZ9Cxon/bCfqUczssfDjc8dzIc0pocC+fTt+tnJQ3njhPGGlfRwJpoPW62ysK6VIDk5mNNNnxnCA2OcrvecYFtbqz6kHD4/A3AqWX7AytM7anOW4fj5VHQcPaX1k/GIzQbpu7e/hy2OOlp9XjSB5bO0HkkiCRoQJEXwm0+QOsc47mtzcnDqTVc+GphvnOToFi3voxszJTK6IMO61AEHVGG379jtO3pVsivi9IzmhotlKZ3/HJgtqtVzQBIfgWPOrM705lstho2npyiz5gSNep/nvVifExnPz1jwm7Ysw0MSBQFjBCtRM54FGFPVOeyQw0UYPDfymSPJGVkxV9FgIkg1omgwEHwEd74rd2OVGHSi2yj7TeDnywuWy4ad9Jj2Cc8WFgkdvg/cGcU5xUmDhhTSIe+hkBliIj8VeIu5ofLfExeaympw6GA2R38HLFm/XxYyC7qHM5eAFMVVqmQpEkabQyWAiRFhRVsQhxehlZ5WAiLKzlh2y4bW/YAfro/5r+9es/dX3IUN/9ubBS800PfK1Z3n2/Uln+wc67BiR+Bqt2W327LbbTg783htWW16bm/vuLl+i7WwXDUsbEzP0iwWnBwfc7xasVq0rJctp8crGoHGCK1zSPAVHYguYzlMvvYZ0BucMYQ+mqYsEMyCTm/Z99fsbzvUHSHuhOXxj/nB6hN+dPaa8+6K19/tudi4aFgMexrn8Qi9WpAFJvTU1trvCxQfUn7N6gjK39ltTooXk44EwzFlUCUlYZ+0VqWuGnjafF8f4ndzo89piKSMc+j7IOWMacvBPEoMjpKtgNbGTAxBA13wYALWOJwIjg0vnjzjZH2Ccyu2MWwxQsCK0qMlEb3ztWK/4phS0ZZqpqxx0PdcXn7JV6+vOL/sEISf/egpL5+d0TZrtruY3keCJ2g/yDEzZ3Qk1wUtYkzxniDRM6pzPjPnUbBPdMbEOapnWVE0CMIJjelRtXS7LYv1AtdaMEta8wxv9wR/y+byd3i9pDdKsA0hWNZqsEFAhas+ppopFyjy/yRS9wIiavClKdp70MTXNJ3VHKdDCCLx8xog3SOPDsqDYd3yZwP4i+1M38sWwcFSWMkG6UVj8rWBCcipAV4VwGboU6rImJizMi9kTpehw5xkzdZDieFriHhII2q5COa8h3LJe/BAdp/uyVRZ8UxLPHrgZblNnzdf3LeSvYX0cC7mlPZiCL5H1XPUtpydLHh3seDN1Q3vLveYJy3LRgh9wLjxWRmTETkY1zBrI3j8iN8Py+/VDTWHjgWiVUHjBrHWJL9n8D7gXB0OmKI9GU1sGaLOEuVZZpTPzEyZJd4zoHfaVhaqHrpndliG9B8P90Cp72kVYlPJigfahEeCMUkM6JD5zv0dG6vnv7a8cPC2jN6s25yWmQQV95apFm2YjDHIyaMrn8nce4+bp7rW32eZ24oKI8tZfQleGZjj3DyO6p4oTEZznC088cHpi1Wnqu+SxrgIBB84IVlRA6G49Eu6U1O31vfR7UZVk49c+sdYyx8BzMA04hlIkRbz5zrcdxEEsdWhKS/KcMSmg5poEAp4rJUVo+qSACLR7dIIBPyowsj0ATV4348aieDEYK1l4RoWrWO5cKxai9ma4kpGOIRMpZh632fwI5TUEZr6WNGfuOcEGhNBQ8iBTjyCxpx6AY60wYaGX3zzjsuw5Vc3F2xCz181S9ZHDc3C0NmOO7ejNUqjTXRhw8aZMSGlo4h0P2R6YpLrrqQeS7X56zUpRzuNUTR6/I4Ybc5nqbHOElRCi3a4Vv7UyxfltThnRYsOKQ1LrVUXWm0xPgFf6+kt9M4CLU5aWgXtYWs9HYa1POezT/8F/60EPl/vOf/uil+8huudsH5jWdu3+KcLtF3gg6UPHtM41oszVutT+gB3mz0iwpNnT3FOaBth0Vhub2/Z7rfsz/dsV8c8PTtjtTxhvX6B1YAlpTtv92Vuvff03qM+Bu3JKXqEeJ8rmBajPa1u6WjZB9h3Sn/5hhP5lsUqsFi+4MVH/4qfmL9nyy/5+smWzhs2uwA9iAPNwaaIyo9HsqZhyWWsYHzQJVPyHanZ2/il7aliOq+zjn3bUCPFM/L/75K3bb1nY5/vURYhKYdqJEQaLD4IvcaAUyZ4WoFna88nL19xvH5GkGWMuKt7hBiYqPP56oJPrq2RZo14l8brAEHHd8qtBvp+y+vr3/LLr2+52Xg+fdHwJz95xfpoTRdMTK/SeyR4rMZAHkO01aH+PK7iqZCAfpHJ8xzlD3WEvw6LEGll9JctbTix9H5PR6CxKxobCBrY+w3n724xZoMTcH7LbntBrzf4cImVQCunGI4QWoLfEHSHhi2GnkHtFxuPHja1Ja5SkI2uz6SrWUlGhpAioQa87wnp7OYZOPTsyb/Hdms5Oj8zlqmrbuQJTN5AmsCa5ueLlTCAGcaQrYx5AR5sL7ve1v9q2Swrl8TO9PN+OfX3K7F9P6VWebc+o5ruFAZJfHACznXsrTcYX2IgTx+UY1pePHFcXBu++BZ+/g9v+NN/9pw/+PyUzfUeVSmZIsdzdN84skR5//ePLb9fsFgJmhmpG4lJTp2LCaTzYr+PsZQNqGPA+NDdgLh/x7kTJx0c93bCrObav+/vaf3D74+d/EGMyRp5iRXFb4eY3oMr27Q/FbgqoLISbqVaiwLEDoDV4RjvY965zdz9GtjkukcjfKR2eQxM60qGORq0nbU1dNzf+6xFs0S2EionK50UGDNjnysBBrNXqYFapBm9W9G6Mo5JW7Ub7BS0zwlYA3HmkCzMSFGaunu4Zau5Ke3ND/tgXGQxI1ZjrcHWeUwhhQdP0DaF1dYR8xifnmxZNKqQAJGRCkqXwDcBCZKiVtSCjkACQ/FKW96v4/0yPBoZWnYXGY2VLHALagwhDG70OgKFpNgtFdM1JMtbumtjBWdN+Rcto5Ub333HJjPo/KfmvT70Iu8BKBkLUzCP2DFNYDYKXIoky6KV2JeuV86vd1gj/P3iDZ8cnfLxU3hyvIKFofceEZ9yeGVvCAjBlDkin9WInKMQWgSGfADSRA3dT59mV2RJIc5JIChZTfN9pnx/tFgjkjtYoaOBkkOTUH2RNP5Jo2uMGe79JuBojMWJibmzrSI23kPpiekKjBfa4OkkgIkBX/TsU176wJ/JKf/NX/6f/C//vuHbNx5/tcPLWgKYAAAgAElEQVRfKneLa24WwnrxjLaNQd5c07JYtBjjMMbQWIfqDu93XG82vOu2BB/TrRwdrVEJBPX40MfVTncRA0qvnhweQtO+M9gYPMdEEB+Cx3c9ok0UcMWjYZ8CLBi2uqC53SDhGictcnzK2e4pn96d88nZORebHg3K3c7Qa74ZG0A9FOP+mF7NbuOKBh/Ss4feo/Cxmi6WE5F5kkj1jAxBU6aViUkKhIo2Vo8MNLh6ZUrzHuBx9+nspu8pDNaW6jOZAKbS9YKkFA2K1yY6loogEgj9noaGFycN6/UZ1q3ogyUYQUIX822qISUmRDXgU3CbgRVUaikNaLb4pPkO+w3723e8vrjmYtPTLBp+8tkJL06f4lxDr4q1SgjRwJeHESq+NuL0Wq1RBouFzw+zoppJSKJxkiPmV/NT6HS+0hE/d9KieIJ4kD0abFRwhZ6b2wuEHQ6FXugbDw7sYoUViwsNpg8QOnbRER3F09ATaDL1HwCTif9U6r2ZfqpPOUBDsoLHvRKBoo9Ao1JsjWWB2kOucIJhb2Yym+UkKWwjGwcHJZkkxdnkPuMY9EU6mXOKl3uI6d8UKI54a36GofHI3iT3OrGBfK+0NkPMwJu5wzBTCh2aNShN5K1BxIx7RusPqmcTTxq1P62m2ocZ/2TaVjx5qhze5Z9EuqdB0M5ycmw4OzU4C998d8NnnxwTgmJNS5c30QFRUe6ZsOFn9cp4rHlqHp7bDwKL76vs4JlE2J2zWOew1jFd7Hpy56xZ9e8PE2YdCVLv7+dQ/30avA8tY1AybW88jrH1Ih2fvKZa1xU3QXGRnjDaSQdGbdWXx8s40wGYAsLp3N8Lymc25UMg/qHvHmpnaG8Y1/SdecY93//hm6pvM5/N1Vt/fgD8Sh+nlaW9+OCGnEcG75uzWjv1YP8m30GmoZm1kTny9OHRO+8rETQNzF4khv03WituKrBY1ukh4puIbdpvkqSHck4yM1BNoLGqSatf8hd57zMwqXr6opCthckNp3NOMB2YqRYgM0iGBRQaIahJybbTdxqFCJv+DalSpPy4b9plNF2ZDuT2C4oqX+WsYiIQvaZM0rhnq20GU4qa+Ix0sNt6LsyOX71+xy9PLxCxOOM4Mi2+81gJBJtpVgo8VJhznHOVZIdQCMYXcEYRahKQrMahJJm58Oss9MfxZoAUnx/WdaCXSZjMY1MlBgUKKTpmei9NUrZ8DmAxC9wOMY6eDmtjpNIolKb1VMFpwNk4ziDA8jnrZy2fNcf8V3/2BV9f9fwdG77ebgkb2G433HVwpKc4m3NtmqQYCoWe+75jt73j7vaK7eaGtl2wXK5oGgcove/Y7zf0fh+twsnS5nMOO4kW7JxaIbs8h9AnQRSMOgyGYAQNm7iGWPpwxG7bY/QGZy1mteJodcJH6zNenRi+uerZdHCztzEaJkmRQ1fSpOS7aO+/kjDm8ePn53l+3gfjahMwUMreMKZWGFbvz/RBCiL7p5c5WeVADpi8k8GMFFf64Zn8s+6eiKSQy/HTaIgTogLEgPGo32MxPDtdsVwcg13Qq4nSnu8h9OCbdHS1KBJiDlQ5aFurfiIx757f3bK9fcfri1tu98qTs5YffXrK6eqU3jb0KFY0WVlmZI2JYF34mU4sm3kSZ/hhLe1FWjRWnObO57usFoc3EVArOzSsEv3QGLXVb7Ghp+nvMMcnWHuEM8cY0yC+R3yPaodKR9Ae1YAhA9saLMmI3lWcsZpvJXifeGIiowm4K6GAP2ulAMk0RAqdk/EZEzPswVqxkX+v8NskqM0YIA6BaaiA4jCmImdUkU/L3szpnxgaG+g9hbdq9c7USFHmsF7sCh8dykaTHaOD7Jtp4vDdzP4qrWUF8OAGfViyMUHgkbTjEICPulpov2DxOzhaGU6OhdbBu4sdN7c7ur6LClqNNFwq5dLIbfygKKPJqz6XiYD6ewGL7xNA738RjLG0TUvbNjSNIyamrgi+TogFcZFMpY6aQ8HTkifskfJt9c54LDVYqv/VB+g9tb73iZFmdIoy6j0/0oDMLfhBxfdeHC/MeKaeKWCcfj4CkDq++3kfsJkSke8Dvj+0xCaqsJP587mHZZA7Z7+egOYHNeVpCR8aYS0QvW++Sr8fqfmp650SpIcs8SoTgvyItt5XJAk+DsHUqacUfAj4EJL7YnLdOQCrOvxMxDhbsKcBozUBRczg3mQyzBtR+4fHEkFfEjrHotnod8kDzMR9MkeFhhiDc4L3FjRH7Ju0WeOeQuuzoJEJ/Fxf8/v37ZdBY99IdpeFPQPjxzjwSgz5HgHvLT2BHceN0BiQnee331zz78yvuN3t6bzyE4kRN0UDepTWRSNgCKGPd1uy4OoTiDSg9IjY5A4JVC7G+YZR0rdyCAZyoIcopAZI+0dJ13wIoeDGajIVVY+m3J7ikiAESBjzCVNbGAG10Btli3BiGpY0tOq4xpNtyQ7Dwrb0IuyDYcGa/ZGBo4b/sv0fOeN/5f94/jv+59Dwm28CnSrdds/d7RVN2wJRebLvFSsWawxiAr67RXWPiOfF8+ecnJywWh2xPjrm7du3XF5v2G+veHLacrpesGyi1052tc6nxEg8CSEo+y4KthoUYy1t50Edu2ZFCDucKhaDmjO2uzv2+1u67prm1cccLZa8On3FH7z4O76589x64fW2ZQcswp4m9CAd20QD28Mt+0FlUA6MS20hys+l32aURMM7qtH6FnTsrp/pYsi5bnJtg6flSNj+4HEwCHQjXjhpf/RpOdsUWiMwivCZT3e+ARbnxWGcw7UmehH0Pa0JfPz0iLY9Yk/L1kOzAKUjhB72Qp/qVjzB7xDaSCNy2P+y27UoajKU3G8uuDz/ml99dcPOG548PeaPf/qC48UTbljQK3jfYd0q8oGwH8at43XICsQQ8l3ayisqz1AtME7R9D0rMCgxFVTod4ouAqbt6fw1zrQ463Cy4FRP6LcG2d3S+LfYo48w7gS3jQaOHs9etvR6g/M9jQqo48ZbnJUSnbIGV3UnC+D+/2h7jyZLkiTP76dm7o8EyUhSmUWyqrqaTg8BIIDsLphABBCccMEBN3w5fA3MYQDBAUTADgPITO/09nTP9HRXZRZJEuwRNzPdg1H35y8ysqbWqyLjxXN3o2qqfyWmhiIpW6Z3Hu8Dzge8asx+qmBtdLDk4yry2HjvyzMVxtWspnNKSYtbi/cwZ1grz9Z72Xg5UhgZK5HZwDYa7RF+brTSpFSmm+N5k5hJfPTesUmd0/C+x5XrGa/DLHPr/sTZYHeBss0jK1o5kQ1UPCWHmLfmCJjHVtZ2CJbN9cD6A3jw0PLgouf1K3h7ecOrN694vH6EWFPmfXpVTWLMW+b51/sP5p3K4hyTG9c3rdCjVlHfR+tl6MAJ0p0g/QK6pGz4kJh0YhRBR+EJEMMXxMx7UDQtrLad7QKZKp/twmhKIW6+yN6CNp1v7XFZaOVWXKzH9+JlwjtURue8edEhoGMiktTmqi/H3zPn5GTLRDaYh7oKwIeRoEkNqUKmaVspL3+vFOBtEnMaT0P28kRhnJV6UxEhME7QO2dtbhdVZqgCae+WpnZkLH1cOoxpZDyHpjAiJR8/ICKoyYu70kuEWzk8rno+NCuEI6OGErySQzRa5luCKFqFoBxq0DLH+N5hyJOkMQ/JeELZe1TbUBXj3KfplflKHhGDpglN4yGaGJ5mjF32a0c6nGFKc0YEhK47Qf0WCIgVBqmbguwAu8tbdrcb6CxWFO8MXjuMLFNfkiGJHnUBp8qy03Qn0kMMrYzhh3FNRmVAPRg1hDRQ2XtYp6DdC5oBh0HVNrQTQ0wleaPQELNHCCABTEjW+LRPEAvSJ4AlqO5SwgjP4IjPqInbuG3cS6TB47DIcslyOfDIOHqJypyqIHYRtZ/80457sIiGsQrbAIEpnwwmcpbgPWg8LkKsgjrURGBmgoeg2BS14H0EQSLg8Pzu5RWDh8v9BrtwPOeM87DCL9bY7pROV1G78jbuhzSKsQE1HU7SnhzvEZP2sIckYNP+J82fRVLoVihrLXooM2AB0kHiQgAJ+L1DjMVaYR92cT9siB4/Y4jHzBhFNKTQ3/hs13dYYzHWpqOcLMaakughg5wVFlVhj2fIYMIKA1LURhvgROEazyALxCxYfbDmF3/+L3nw+CmfPf01/+P/+yW/eRn49spx416zVE+P0BuDt8pidcJisWCpHRcXD1mslyxO13xyfsHpyRl9t8C5HS+u/o7t5pJbA5unF5zZZ1izwto+eobQEinlEy8TQKyNY28sVpUhbAjBoX5ATIcPgg+B4F6DeozCdt8Rvr0irM4xJx/xy4sf8d2D3+P2t7zZbnl9Gfsqix7CpsihUGotqn/NQllWWaLPGcNMET+Fx7VPS2aetEZm7+PaKQqC5pA+8L7yKtscfRMNTbH4GAaWik3rwBhTEUFrJM2MMQrR1IYswXPzMtCu35ENtbk8KMA/JjKpMtBn8tek6gRNxoToLVYcnV+hwGax4XQ70A8Dfqds/QnLlfLkfMlPHv6YnXmMmgVLdbDdEYYos4zs6RRC8AQFl1Lyq0RuuwqGtCuSpfQMVtgJbEzgs73l+uqSb1695N98qzx+pPzk43N++tGPuR6W7PsOtQajsHC7yG/wqWd1r145FkkVNJTwf99k1Wyv7M0ij4sm+dXcr0bx+J1J9KKqGLvDO1C/ZH3aM+xu+fq7K37/j19xdnbG2arnZHFCd7JGTA84nHFocGiIWYmN2qJEI8LSWoKNXnorNUohT2aW9YkM8R6ck7inOKaIwuJwbod4jwlK1y3pF4uoKAbF+ZhMSkhzopkmSfsJ5yOKKp5Myp7tohHJ5HwWrfKXPjNROo2ULN6ZjGuxY6+gQso0O8Y2+bdJWxeMic8aJG39GKsuU0Utz2eYPBWxnNQ1WUwZIHNH3iW6KSSX9/iH4bB+hbhNJu9hycdW+URXJtFxkqNYlBBDosuWEk3fxYgqH5IHHx91hBQZAopXz2BCNNrtYBEMT58sePV6w5tL5eXXlmd/eoEPb+KaDf0oj4qxNmUPyHwxVHyW+VChy4ikOBjn48mF4F3K4p2vzj2vyYoe9yNlZUJMh1iL2Bbo5hmbNnnU+qmGcrzupATd5cWaKmvjqwGMI8BeFZwkHwpZTkupAmLu7rGrFYj547GRH3+v7deZ8Qp1fCfFF6tJ06cW+I/CE9On4p6ftGGssOqonlZf1RkF65hHpvSnUVjblky+eufVVpPnZjr1OufFaR+qxDB+r/1eavdbkDCp6eD7aMEaPx9JvlJYbUoGFlPaqAM/67Gc/q44p7ZCpBn7mabf8xJM3ffHmLkbBT8MuMHh1WOlHVeD5vThKPFcPhNHJ2m7ihRwFsNR85zlcY3IL9vD2zVcO6YH8zgaoRQaOXIVS0KTktbI6Hy+rOhkg0HyTorE78oB8IoYKTq6iMV2lt4alkawRjEh53PJcy8zc3EcRB0L+yvZbWmMGMljmzOWaso+aDSh5YiYMSJsh4FXNxuWb4Q/vj5nbQ1i4MHSoMse7W06ViOWZ/IMmEDQuEfSRLcOKhqVwzJv6bOBapqi8rMJP5Es4CSHHdZEC3G4sgekCkzV5IU0Nu6j7WwMsTQWMRYxXVQUk0elDrNgUwMyZUnadxO3TkqhAEvAWIOROBZ76Vidf85HLLBieHGt2OVr+hcbvr7cocHhRaDr6IzQ28CiNyy6NQ/OHnJ60nF6ark4O2O9Osfajv1OWPQGt0/GkqTkV3nUgi4ZjVrWbTKo0tSHOIgREEXw7chKmQ8Bt9tjuoAsVqzPnvH0/BXPNo5Hqy2XV3HNBSXuj2zCg6sknXKfCW0eo9mJgbjKpipbW6Uy16Hl/Zkypmun5ZWjZsqsgM9KIZos9dq+WEFMYRkjmTmpr2n3Mftn7m1rSK08vCze1LOYuEoDDH7gfL3m8YMVZycXeFmkZxzBDaiPxvmSgCMZ6zUo2LjoWvGreey0clkGx831La/e3nCzdXz26RlPH55xsjhjF0zJJq4qGPWgvmKEBvvFerRWlMfJHKObNPAFF1bs0v5uvdAt3tFeYbBIELwuuDXCbmXoHnXcXH7NuhPsukOWF8TEayGB/YF4pE+OiGlaZBoRUZwSUMPds3IXj6vwIe5VjFfcg+zcnuBiNtnOdtiuK5EBSFV4SYpdKEYKpRqoZURMxUuYFUVjC4/Lcqqel5iO3GGqKOZnGzma29HWm7/Pz4k5kL8iVYZWzlCxhzS0ftfUH3zOqtBoeekoy3tbbhy3WkBWmw6vTGPNs5OKEgoZkW75kBXTUSvH/cvYBo0cOGigk4AGwZqO89MFyC2bjeftpUNMR+5sW5pMxrUa2Vrs07alacSoy0eYUbp+0AQ3pSXSNjNEIW2igA7eoV1qV1oEc008ZimpbuP6fd2cm1zCU/CUCHxENJMPVelu2fL4GW3Apkza0AqtY4j7ePjhxEIzIe5pGceE7EF9zSOtVWE6FvWFaeNIayYDzfxYO2g10Ue5p4ef79PeccVN8pzm+7nwgHeVP7Jqt0quamHI5d4EINxVnmrK4cGEcb7jussKOK8QlmmbtKnS2p2GEJ0Zg6bjmdkk7DB6RgvZjMHbYftTxuAyDuMN6iLgNeDCwN7t00GzDfzLZ3xJ9qI2lv00AGVdaxNum4XQiOO3azG3pGWc4/YfjL3IwXaEqAQaRAIqcuCxz2Mo6Xy7zoIPybPqNSaGw4LEJA+dtcnTZbDJs1DEViOQ28uYLNLH1/HwZk3vZU95zdDWeiQDYFQRn0IiidmrsZZgle3e882bG3734jtWdonScWJ6wtkWt46ZUBd2gWg63DuYdFYhFMUuKST5iM2oeFWuIckn1aYLzrJ0groLcM9p3nMppnldNe/RCzHM1Fpsv6DreqztK3iy3RhAZe92pisof2dLe5RZaUxDtByv+g7BMATLZm/o7OesLp7y6dmn/Cfa8/jRr/joH/7IX/5fOwai98R3cLawnKw61qcrFusnPDp/xMPVjkfLK3TVs1z0MUGcXfHo4QXLhaJ+KKGn8ZiPxCsTUM18rB43M6aLEt4WhOKxS/3MXpOgMeyNYU9ne4bzj3j6+Gsu93t+/2bHlx0MwxAPk15aOhvDEUYZRqu4LHQ6pdumVZM2Hv6tB+/E94rukO6H0ESKSOUfI7katdwC2op4bPhdxoY5PLI5hWFEEyWEMl3x0G04gkKb94/fn15tf4wYgt2jQVh4y4DDqEGCwQ07nl485MPH53Trc7xI5K3Bp32rAfUhKYnx++g5cxjTR54fUoRSCqkMmMJ3exH2u1u+fXvLi1db1O357MMPePb4CUIXbU2qBB/wXhATDThxeJJcmBhDM+aqvyuvvlumTnCgmIOQ/8IbgbAwkUfthZu94XLxBPvxE37+84/467/8HwjG0y8VVg+AHaop2QyH0Chx1tqSgnNSHHOSryXFlqaUOCHuU7TGxFBd59lsNgAsFytWqzXS9QwpRNWW8NBYthoTPVQjek7YN+NpafYdlr+7sYJX2jlW/EwKUR3xPMl4d8xjWhmspAguMYlumllK389hlNA+Q4MtZ2D4MYN/KnT0UjUut/Xp6HOtp2EgkxkeFV8+67Rptdw5RwMTGTKR7XltB1UwAcRgbc/52QmGt2xud7x9c5MezmunkevUoRrrBnfx28PrXfd/UGUxT0w+lydb+Dvb0fd9zJLlb+hD18Tzw0gdaBSPyIinypccEmLzO3+eB09tY0dFztyUo9/o3DvSgpzDRTFV8N41MQctUo17dUzt252MVLIQndQzxtHVwjmrsk9ek8gUy/lq+V4JDang7ZhSd+clkwCmmUV52JF3X3eNVbZYj+joezT9ftfdAKHS7fz9+X5U5jH/zuHdw/IPlanqOT3e3mkJXh2SlXw1oA17EcEHx97t2A0bztfn2M6C7zDeoGoieFHImTBzW1V9EsImKRXmsHKFenaCjH8XHjNRIls+Ia1VjjGCbK6RUSf/nYShMR3gI9DK4HHCZ0wRtvWnnIencS9Zzngwm3voDmPU9MqhXpDCVH0N96+jkD6rIGpZ2j4l0AAVobNL9sOOb3d7/r/9N2yGJW9uYDH0nAdhjWdpdrDocSxRWdDZFWBizFVQlG5s7Ze4J12KNhGRdbHcFuSeWlnke4i0kbxXXiOy1QTAIDslQjpSJWZ5Xa2XLJZrur6n6zq6LmUDxYCxo8QQU4RfBXsr6E35W41lS89CLEuU3nj2xuP7c8Se0psn/MWfOH784Qf8y5/+hp8/+j/4q/97yR/fKq/3jrNHGxSD7Becr9ZcXJywWp4yyANO+j7uh+osq9Upn376I4bhAwgDTx49YblYxwzjBbw1FN7KyDKGCeJamyKsfQlHFlHUhHRmZlSAh2FHp1cY59lfXPD48ad4B1dvbvluF3hxDZdbi7KEYYspe3nyjDIL+uYjTbLFf3wVw9OBojnmYxVsNjKtyOSkBL8nX89bZXJ9IY3hQVit1KyV7yPXR3jgjvu53KwIC8qQohlO/IKr3qPG0DnLShw/f/aYn370YVJ6sgIdlX8N2Ssd8MM+/q0xqkM0HX8DBNujxqLG4LwQ8HSidCbw5uprfvvyLX//csPFGv6Dn33BF598zKALfJcUNg0QDF7S+Yqat1Vkymj5tEIO9zs+WrODVKINokqKSN3jPDWiuW6B7rbsh4Gv3p7w/L/6b/jgR3/C0w8e8u2/+V85D9/S94GdGDofx0Pzudc6aUtRCNPay+cMZuUjrYCsh8RwaQcaz2W8vd2w393i3ICIsFgs6Po+hoynMvMZiyYZ1rK86bTOaQlVJhpjDxS/OSVFJEZVNLKs3bMY98VV2oxKyVhmZuGl+diLTK/Ns5WGK0aZrnv7jtDH9tl29JkYo+OD5R/ApJBqyIJ0vDYz7n2/650KF8zygTllcYTlFCSAmgHvDdYs+OChZWlfcnu955uvr9ntdpHe09aZegTUIU7Oa+CH7NsPrCxGMGKK1SiBfpMPCbZ1f1ukrvwm2ZIb8sIshAx1SufBdtoVgTBWNEu7ZtqZ35x+V98bn/ympdH1tVaxHTO/mUpn67/fVUMOarlzCuPoO21A12GBpKmpVpJx18ZXmaYYhldTkU+8t+3v76MrHqu/NHtG85nen/k7C5BMP+PFnFltYoqN5aYKGjkoNxsx8jAfMqIGlGcleAY0AZPMVrneaJOMw1npdd47fXRI5u0gZAw01mRqqFft812kOjV+BHz0kGn25TWJTExMcT74wM4PiNgStgdxP5Uh7eMhr7gYDldSa89YyjSHBqUsJyJSs6NKG476jn5o2+u5NRqVhHje2FhhhCyPGsGYz9MiA874u1qEIxiIWVFJYXwpdDLXMG2DZAE3HvejhrFUUAGyQvG8VSAiZV2JEWxnCN6jKbRNpEck7se43Ab++OoaVcvCWn62eMCzbsWpVXoCTgRvBW8WLFSxLu4v1M4k3hyPeYjzLFFJ05CS9UTP6thYIzO/k+LWAAANNYMgUD2KxtB1HavVmm6xxHQ9xlrE9hRLeVECIa/nltWniRgpHu2iCkbxXTQIdwo9YPqBIDe40ONcR2+esHogPO0f8h+7Mwb5G/7un97yqz84ri47+vXAYv0WGX7P7sqAPqA7OeVMcqigYtRyuj5DVwuMKCfrc6zpo6GhOY7kgJdrPqomzm9kK1HBjMmP8rEiChLnXZGkRCi7YYuGgD1ZIfYRZ+uBH1284vPNt9woXKrAzh0Y9qb8rgWJ6KEpMfOjul7HCzby0Oop0NypmUsOKs/wsnnG1DXftmfMEcdtb4H/IV6Ya8cUNM8/MwWXdxs2BefjWjYmqVcdeAGnwodnwocPH3Jx/ghHPGNQgyP4geD3KRuqR13AO5fC/30csxQZkpUAlQ5FGDR6uAxgQuDl22/57nLD9R6eP1vx7OKUs9UaFwxqUnxESHhMs29NRn2bU/7bPpbvs+H4yLi1f2fck40OU7ks0jPoFbe7S1586Tj52jOYV7z88jcgAWtWCIrXHVZ93PemYZR9NrZJknxJnun0nynZkQSkRs4omvatpYRbzjHstrhhQDWwXC5ZLpeQ5Es+LsdYaWgzzkuWOcVrrsktozG8tepxbTTENKOplL2O7di1x2i0Y1xyMjSMsfUWjjyHU9odQe2MmQ7l2FR5y+uSbDxsIVVDOlmR17zxeEwl8VEjSZal4nSM7RnR3qTsXFJq//tg9zxPc2XHMpuEQihWAbPD+wWIYb3oOFnCtYPtPnB9s+V0Fd/xwTWRRlLHqva6tGGu/gNl9Ugb2+vfiWdxekWClRI2lL4c3U+wKpaTC2vuNy82ClH9rt0rMX3vffSWQ++NFkLXcbMrIYzGPIOKu6/KNA+/O8ZQM8+dE1StolgYbpV2cz2ti4RjYnf6RkOEM4rqtH+FT8jxhXhoMarzL0zey8Kg7UNTXytA5oRRqzyUZ2Le/WbskxCY9HG86DLTmx+L+16lKaO2tqOQBcKkzRwKy/Y6mItRnbk/lTlr+SavQinK9Z3tP6i/AsHowWosxcbggjI4x24YUh0pyYmmHWspzDPC1SxsU3a8WGEzNqkP2tJlQMqh7ZPO12mjCKC5Pk37N+JDdc+cUM1JZY89GdS2bZAi7HLVUVmLHsWcjMUYQXJSp1TeYbbeTP/zPPZYX0YGHYke+9wHKX+nh20apAyU6BJY6Ng5z6urLYrB9IazU+FkoVx0UakM1hLUEqyjC5ZOA5aAIya3iTMVj6CIhpmU1CjtdIxAr6POb7MmJ3OTVSNtnq7zlgwtxtD1PcvlCroFUvYqdtWAk8uSCsDqim9Wh9ZkBPm5OLdKsDnMzmAkICaw1x0+eLxfYjjBLnvWiwd89sUD/kO9Zn36B7z7lv//dwO69wzmlmH/gu31GWoMi8UqKtIhKXMqLPsVYnqsERaLNfkoGVWX5GFGQ6kHQlHERwOHIGrSUTGWrCwmnxEKpVoAACAASURBVFkzmsrgo/fpZNgg5pzV0vPhgyd8cvMNXw7Ky0HYbz1Wo+HhMK3EIWC6jzxu+VwZ61JOeSr25QAnTrFF6vMBjohlzHnwixG1LfIeDS98Wcbftb/b/r0X+EzPBlIGX0zcDG5I2V7h+YOeJ+cXnKwv2GlcYyE4vB8I3iEpyZZ6T3AeVUfeKqQhhtiLscQ9eymdmHqsxFVqXOD11Wve3u4YvOX5h2dcnKxY2J7bwZQjc4wIRsCV4csxEc3a1rHyX5WI1N/yT+IcjbJUZfY0gkpy6XNcMu4RDHu2NwvevnjN9e2Gm+3f8UwdRhaRp4RNDNMdGfuaeSj1VAUuqYv1+9QKTfwipEQnGjzBDfhhKJFifYp48AohJX+0tvHgJcyRDVwKJfFXpSOJocitktgoiuNzFE3ePxN7kp4j4fTqDcxdbMZd2n6nDZt5L2TCnGUutBmnpq7R54lKUIxFY7SZ5qFSxggK6OhDmevDpdW4k+5QDI+gqu+B8SZ8T6vHu5SaFXUx0dAugeAUNcKiF05WwmYLe6dcXm5YL1Z01uCzjGt6VeRSwy/n1sH7I9V4/fB7FtNVBXyyjibCkZQRKT01C+BbEN7G5dayW4/P9+36+1zjOkZCr8hnOXjyLkBfn5nPZtUqjHEPxGT5vMuyOdYQDq8ZPH2f6329oqWOe4xFqiDH+xwKbMbKzbF6alEj6J8URsYLNpHRyFp8j/7kut5rPKb6V+GM08maUbzvqOeY8eCgHiiKSFG8G9DcakD6vowxAdMsXIOGBDhyrwz7/cDN7ZY3b28IDykAwXuHleQZkpRNLWdgaw5uj5bBxB807nNDYyIcpFroRZKipT6lkLUoPimS1Ro8O6Iz41zpIiqzksaneOrSGVmkg3WzYBETlWCbMsrmLP2CxwosjGHVdyw6z3ZIXr4yERITy7VDLMJo49R0CiZ0YpJFuPIXGxUpE8Mzs3dRROIx00bZMyCNl0680olgbcdAx3breTFc8XJzQ292ePcQcQ/47MkFLHvwHtUhJbeJQBYfyjl8uXd5vPAQSCFRJp4HWPb94Ec0lO2DGXRG2WCJiScsBIf6DO4MXdezXK1ZrE8I0hH3gtSwqSYTB5WftJ8z6GsMV9oqjJEGVzgwS4J27LPHUxRjO6x0EcirZ2eW7B9+yi/+9L/n42e/4qcf/k+c/tXf87sXlrdv4VtzRWf+NeK+Ybn7BLf8GLEdRju0A0NHOosE71I/RNN5pk3UTWV0ZbTKAKKp2wns2S5D2pjJ0PgRjTkd8LrlZLtCls9YLRacPdvy4+2v+XI/8M028ALDsusQVXYT+nyXjvV9jGzve2V+8b5Yob5XrzrEx3uV6eu+3sL3kagx2BKWssaKsJVrcBCsxxrDv/jsA54+/Jh++YRbNeB2+GGHdzuCG8APEHw6tmGgZOgWcAzErco9aioADRATOAVP2G7543dfc7XZsFgs+Pd+8Tnrvoti26S1mHlLSlwVDU9p9LJlLWNCTeQWNaD4YaQtTga+KDFZaaHdit3gpszj6ybasL2lsz0PHjzhT754ysvf/D/cDFcM+ju++Okjlt06Kny7b0F6MuBmYgIRMVE+mszrTdnLXOcofg7JMZlDRof9jv3tDcZA1y/juBqDC4EsN6zN74bJmYex9Kx2T3Fjb/oyBpE3mhRuGuso+xZTqOhoeE1+ZhyCGlmpKSOveYzFUASUGGoU0aGBu45bHq+5eeWAUUhryNFM+eMn6h53XxqoUKLfQJvj5CYVHF3DOnp0RFPvi/lKVfOKYv5t0lwGAZ/a3GG4ODNc3wq3u8Afv3rN0w+e03UWt98iQcG0ekFaZyU5ksxiaPh+mtMPqiwWC0uyOpjU+cEPDG6Pc64I63gdTn9VxDIxpyx09YnE983I8pQXUQ5Yi5M6eqD5uyqrk9pn+zT37PTJ4tWrb+YCDt+ZCA5tHs1N1LRQFEq66Lnpbb1axwi5ZL6bMNTcSoF8eszsNVWOp0EhUwVt5P1qlOm59o28dwWM0QC52s7cl+ijqIukZZptWWNr4xHYMtKp4hjPWn0nY5x/Wzsfcz+yVGWLz8G9aiUdNSmPmTb9kbb9KZFTaauOxqKWM56X2fZlYJkAcNkB0VjxDq+5cHBBpEv7DhMCaAw9xhi2g+f15Q1/+PIlf/78x/RisP2CsLcVMRRSj4A/kn6izBBQMTHDXqKPaBHNAD/3w0MJadT4rKn8IEHmI32b6e2BdMsptcdlhIbMhEyXqY0Bqt8lRK9iJyy6js6EqLzhcQXIExWD5jLUPYfH5vZgbUt9ZhR5IHWKI/AxGKN47+NB7sZgpYvZE1N5HXE9e1W2G8evv/qO3X7L69sbBrV8/GjN6dqwMIDZs++FvRGMT0nISKn/xUerugqS9i6WFO2mS31MICwfJCCStO2QAGAKP/U1M2g0zUfaXSyXLNenrNbnLJan5agLY0wiFwUTQ8NiCvYECtVXIDpSGuOeqkyLWSZZ17NwJzjTsbfgbCAYQ0dHh8WqRf2GoBtUB4w/ZW92rB58wi9+9t+xNH/F//nXv+VXv3vFP3yz5BuzZzN8w35/S7f2nJ48Y71+GL0PfQcpYYjzijHRK42mROh5KRelXJKSngmlIQhJfQigJoYrCrH8LHhCcLE+9dxuA6f+km65onvwMc8//DF/6l/g3SVv33ToziWFc8yH77pmveETWq5/tt9nOVlB3LQMTetoFKY2fooQNNqSGHOC1pAoTdUZgE2fm4+qaQFnXXvHol+mnOi4ckk09oQOIR5nsXfw4Fz55AL+4tOPWa4fspd1pGU/QNiD36NuFxMMeo/6uIexys4k17LhJGcqUvAERDr84Lh5dcWX371GdODZg1N+/PxjkJ4hSMzqFYYK2CXEo3KSUlcMLYlvajoQifyTabcZ7wOoOxKkJKbbyMXyOc1NU/fC7MGcEOyap48Mf/j7/x3rNjz/5CGnxhD8LTt1rM0yHXFwBBHlMRNDcX6IKccAZfaiGhW+EEI0mDmHekfwjn6xwHZdOdMylLmw8WiJnFRQqPyaGHFTZIxkVhWV1+4A39U9i/N9yCxBxkriBEOMMUUqs/CY2ufy3Ew0Q0kiNkl0U2Q7Qs0ql+mCuuVJq1wvxaotNJWv7Jxqo3tGElGIRmMJs9jrPldZwxMFcE4hLO1q7uWfvM9eI6FErz/Z0yhYhLPTNYuF8vZ24J++uuaXv/ScnXWjMZQWI6U+zfGTcbTGIZ9+F8e+9zmL97tkRGjxUpwbGPYDwzCUg4/b1hXCmA5y4Rt3TGgDhuKT0/pldH86JK3ierSKRgDXJ2cI4uDDtI7DqyhIqY4p4Y0aMVXEjgir2XpyMcyMc3qgLPFjxcnhzYo/MlCfdF/Hr9zLMpP71Qrp0oQ0n3cq9jNNHylbzbMy+fseCkSrMM7V+329r6P3p3N7YCyoQAjhnbQwBSnvpp27+jBtSyaNmAktn6eFVAZmuw7nHTe3O15+85rbzZazZVcORC9GMYmCMhuLyqwUmsjnHUFKvUdMehKl59jKlo+uDqjmfavkAZvvoUiSWTUMaGp0mIqgyPYyXUoR0LG6yi3atZUFtClhPwlIaY4imJmXO+hqjuamiuKId4webMaZGh5cjhLJiqaJAMMgdCpcXg98JbeowsPTS6w95YkaHpCSMhgLErO9qlqMiUjXEOcte7UlCfB4dlUNhW7HvMxZypqbFcWYzTEdHaA5esDQ90sW/YpusQSxzWg267ysMwXCaHwP1oW0VN9Y9YNB/BLtXQHBcdgi3cS0+wMAFoMNjiAB6Tu6kzM+ff5nvLkUVHtuhu+4cnC783T2ltXbb9AQz3pcLtcxpX4ygmjTZiWgmoyw82KOhrtXY1/h23GujTEo6RBw9RGIi0FV2DnHgiu6PuC7cy7On/P8wnFzG/j1yY4bpzjflK0THi1SWjBn2Iu/xy2uQCgWWLqW+jl+XJmNJ226PsuXpbaNMkJH1lkDkucUvml/aj+y+D6Cc448d6wro/qJ3b44ET5/0vHs0SOkWzKoQdRF5S3tUwze4d0+nnPtQ9qimJLzIGXORBUfXFrr6QgjhGHvub685fXtnmVveXax5sHpCWp6ghjUCsZnhVMIxifDTOLB+T9tfuf13vCgcUKSjI2a7J35npCc4O3sxclujWIVM6Rj3cRizTVr+wpjlKenz+iBfdjj/Y6FXZX2jQc+ywQomppIjcIpSnfiKKrpvE8f94H7fKZt9iTlYiUlAqO03ZR6Zia/tIUio6ShzfyQaovHJxxQJJ8INQlRbftSWUSJxCnPGErSucyeyWOtVUkf1XoHTs3rXMb45BCzNNJXJ6u14eft0RnT4SsNLgpqxVv1Or5Wx22iyMcWt717rU/6lYhGsWk9BAwdy2WP7Qxe4fXlju1+IIS+ibiskZh1dKf8Z+yFvo+hee76d3B0hlCt9nHB7na7+LNP2XyA6gsZNzoDmbl78ZLCTI55qvK9H+KKdFWFbImdZ1x3aNupKZb4PdtwjMDmhFCrrEzfPToGaUGOvm0WaO6v6mShFyKrTHpUZwNEZpnbP+MqrG5q9dLJ9xyOT/7JWaMyPR5436Qdu/dv4/sqh21Yw2E5aSylzS079crK4XtyOPfa0OHIq/Se7bzfc60AUUSyByheXb/AO8fV9ZYvv/qWq6srFnLKepE2bCdvhpATBaTzulTjQfJZaoWU6t9EhcFISpCSD/etmmRqU0xFHQl/sr5m+pcFadHfGiZ759AlwZ0T3ZiUDBQaC2IzXib/mApAtHivqIDkPa9DI0aTNW+GL5Q2aUzSEjPvpV2iCoIlZmlV0JhsqMPQ07Hb3PK133G79yyX32GkZzPs+TiccWbWMQELHSoGa5V8MHw5dkQgZgckJUYihS/Hm4pGxTIBsNwGkrXe+5jyn5SMJQNHYzoWixX9YkXXL/FN3EQxsIwU6OTdlBqSd9dEZ49xvAw+dHjdIrh4DArL2FbvcG6PqMcai8XS6cBewJs9u27D2cP/iD/5+Tnn5w+41f+Fv/51x25QLr2ne/2C4AXvldVyTb88pzc91th8MiIRhDuEjnoOJZX8SRoIOZg2Y9x2b12KCDIRDgRAg0fEE49DUPa7gR1vMM5jdcX5+Rd8ulV0q/z64vf86z3sd5GGchkTwixA//tccU20CdXy9wlkaTXiZD5aPHkpIcx0/RYjjTZYZK6BrTic4QFzvFWgJC4b4YQwLmBKa63COO8Ryk12kNFUD88edfz58xVPHj7m2vYMQTHBg99DGFA/4N0eN+zisRZOgXikjEo8AzayIQX1+DDQG7B0KWENDLuBy1eXvLrxPH90wmcfnLFerLgNC5x0qCg2BIzGvYsORxd6qkGj8qJyHMmEL1XFbq7jzXi0hpHJpGUDQ+sxzWMb6x5w7jsePfSsugVPH54ySEB9VBYxy1R2O5+TustPOnymjF/NdxA0HcTuPc45gnMIsOi60khN8imHhuYrhyX6xuBaFFWkJsWTzLOj/G0xQja6xrUw2c6VeEA2FtTyx9hImr5WTJvk/GiLQN4ucohhpxhtLKMZPa8Nn54+W3k1Sc9o3k9GjnJsdva0SVNm03fSMVaCRvkxafOoTQdtGX8XVEtEVftcTmbXHqszvaY8A+1RBqJv1LBcLLC9xaO8vtxxs9kxuJ5F16W1FLeMmMkYZ5nW0tTUS3xMzzh2/eDZULMSGDSG93gf2O12bLZbdtsdqutJFyZlNEx9tvF67O270i5/z6scwD3f2mOWxFb4vE84znQiZ8NbZhTGqbA6Kmjm6gakHdLMJNv3Z6fhuOKa2/q+ysmBleCgsRMl78iVQz/yQrW2S8caHC6OYhWbaeex9k8ZR9ue1vr1zkuqtb0pnYwIsnBoBdUsQxMO7h+jgamiLNN5bowGwF1b5MblJdltUpKa2JPa1tVqxeZ6x3Yz8PLlK158+ZJOn2AerOmA4HNyEWF0JlPI2ZVHvU79y+ArlNVfNt2PB6lYIqd2kDs6VsqZrq3modjOdMCflL7HfSGimsKwapFI9ijG1zqBzghWBJsErpiplbht1rvXVJn7hnZGgGwCuJEUKuoUu1jhiaGmO+dYSJe2DsQzMr3GM90Waul1SdgHrnzgb//hG65urnj++JSfffyYX/IJj8I5J6s1+77uE4yJber+ErBRQQw5RbunhN9KVB6lHISehHKIhogMDopRIQtJY+j6BabrUTq2O4c1SSlNYajlyABNe18lw6qpfKlhepJAWklZLgZnB26X37Iwjl47OrfAbFZxzEUIxuEEgu9xwfKGwGl/gw6K23puzY6zZz/hZw8/4uzBKeeL/5nf/eGSf3oJ2zOw8gYNYM0C7MD6ZM1yuYpO/M6kdjeLtFg5jl8RmGoM2y2EEEOzjI3hwiHRmUqP0LFgw2AF4Rq76Tk7/znn68AnF55/9cHv+K474+VbZf/dtpQozG9tOCo351ubaH66b6ziBJ1839aTvbDq53l/NRzNtbOun/hvVQTedRljsF09TiPKpPvJhawwzt9MW0ZkjxVYG9AHS370ySn/4idPWDx4gt/D3u1Z+AF1Q9yzOGxx+y273Q7vAt4r1iwwHTGBmPXx7E4ADQTnoDeF1oMGdts9b19fc7lV/v2HJ/z04wsEQbsVwVicOtYKVqJBSHEE3yfBMA6/07SWj10jOHJ8KEbPjt/OpgNJ8h2UNWIDxtwi/Z7nP/0ME4Stv2HYLej6BYvlgmHYUvFkU0s2dhQFyhRDeTn4Qyjfxb56go9hqN75mCTIRAU9sq2Uf1jqnsH8HgCdKa2I8rU1VCXZI0kZ1Mqr4pX3Jk6yoWJSIqNDj6Km/h14GqGUPVYq2zoF1M+vj4SJp/ikTXo5lbHV61YVv8hR2j5mnJFCWpPxqMTO5DDWEUE1eFuEGHHUGBMPmn7o6cyfS5hxoyiO13ycx0zzxy5JeQR0iEeMiQYMMfmR7S1q4WYPV7e33O46VusTsnNDDxhGxaDT86L/OdedyuJ7e0yIhzGLF0hnjnXuNddXN1zfeG73PdY4VCXuedapf7EUNAZL0/CSjI8baVGE/IzOWOVn6zmKzx9a4pt3qHsmciBT9i7W6chMqRGCphEyUhuspcnjBVhsJy0hyphATU7TnIV4tl6EUPbNZUaTgVlpcQKpI6IvDUgjIePsUVOQWV/S8WclZVCs/aFhhEYmc9eO02QBtuu55T/xuzTimYnp8TDc1lpWYvFDOkuqmZdRQKEkK1yynJXFnRXxolFrYahNQWk4jhsXNEEnGY1xbtFhP/IB7plGs7W83aubaXCsTMbfIeQEHIkZFu2PQkf5z3bgaxvyOGVrZa4wNOuFxCTTyybtW5LY/rZd3g2IMQRVbjaOv/3qHzk5tTw5XWIIqE0jqxozQFpJmf58TIBSJ6q2rZmGPFck5TGChHQMgEZPn4a8hyP1Mx+TMuJzWn+EBHqy0MpTnhVDW3CJEcXjo95ITHAgkjKeGomgQRRsDO2ynaXrexaLJSu5xWjAByHogi6VZ0YnnBNDcCd0Ml6fdQ9lTCVe96xk3pBBTKUzqXJehJyawcZlQNxur4WvmLRPZO93SN+BgEe42nq+/HbHdqvsNgFRy/OnAx9cnHPa9ZjTU+gNgzqMNViJiRfUeUR7xEZjTj7yJI9rbHFICTtrJkcNrjHMRK+iJIW9Mz3BBfx+jyPhqTyfPu+woXDyXI5XMDavu/pMtTDEha6B0d68hVqMj6DMKRi7i89KyIGpIB7Es5CUhIeOrj9FQ8wEa/qeZx/9jD//5RvOTv6Jdf9H/uGPAzuzwYhH2LPoOsRZ+gcrxHoCAdODLefc1vkve/eLDGvWtcTwQDFpr5Emr2OSywFBTYfplsig4D2u29PJBvEedgt26x12vebBBx/x6e1z/mz/mm4z8KuFcnpjcV3AdXFv5UoXaXwdnSxwxLa3hpTDa0rj0kxL9jTnHmbhGum+62wJ/9PkqY/KSaX7EGKin7ItRhKAncCRHElU2nEPSBSBoqKOtP8MshW8gPCiFCSAa0aogFGK5dSS/IAT6MXggZ2DZxeeL56d8ZOPnrPdfICxPZ3x6DAQfNz+s9s5nBOctzinDM6jYctytWJlLW5w9El271G6fk1Q2LmALju63Y7b2zf89vYrTheBxxcPuXj0jK3rMP1ApwETFC+CEtem9QLsyDwn/oTy9+zYoZRd0nkI0jm0owzdee5zGGH9MskgKZ9rpFSSLxpYdicQFiDpuLegMVRXsxiPTDG7P+KcZTle5ZRNxz+pSMGIMetpwA17/H5P8AMaHJ2N9Fm5epVjhtguCg3GPoQk8yvLzwpqDT3N/00VuMzBspyst6PCOkYOSQgIRYmMX2dBkIGiKbSZMVqbTVtzZWUKpBSfJfdIho3W1Diyq7Yh5mhIVsF0d7xtoPQ047FQR7nA1godaGkyGngrFm31Eint0GTsqdiAcp5ozDgc17mm46BCyvBuo1Ekr+eQImBUIj9Kv716PA6rZxhWCLAfBlZrw7oXViZK4utN4HYf+PAChuuBqPrbeFSNjXOLGNwwxDwIVjDFiEDp49z1Ln3vn+1ZnAKPvDjjZl+H8dfc3Nxys3HsB8up7IghZm1yjvh2KUXa8psZbplCZhY5vh2FBhRPldBqiaxEMbVCtr8PPUe1v9KUH62v82WUto5LGo+ZmbNW1n5qtsg0CkWr9LWexVFfGprOgF9ECJI2D2tTk0QmOK6jGbcms1T8SSdp5jKathQmpbNmgNk2z1pzUrsY0cI4vPcu74uMiWhEO1mZzlVExpbpTsr2+/xfUXgL86v9nVTc/nHYsLlDpyfPTpW1sYJfhWXx4Wfm3FaT6Fw155hpRqph4CMlsIzFhIbLHCXglP4oNFYrjGA+V2PsaASC91FZDMrOeX7/zUt+/PQJnz9+SLfUZGBhfKaVEC3SbR9lPGKtUUPyOWElRCWdwSgSQVnKzpcPrJUshMajR45lyWs7JGFosiEk8aQa9he9O5IBZ56pYp0lKu65XBPXvbEGazsW4rEJCMWDQgJGPUbdqGV5L9CUtIqinOcn9aMYjg7oo1n80oyhSZ48EUSVeMxXTTYAMYFYTAM/YFM2PAX2Tri89bhhh995Tlc9AXDB88n6BNtZrHYEC530cTtjoou4hzElDYruv2Lgavc6mZCVRI96V0FAuUyaFYN6jx+GqHR3pj6mWSGlFQpRcZAot4RKg4W3U32OCinfjca9lsSsrJk7BhnG61gV0pEanQ6pbIvtOvx+IGjAinBy9gGfPf85nVjUbXn5zbeo8+xuN+C33K4+oDcdC7tkuTbQxf2EWui9rmdNBjVKF7N3NoXkJpOziKBGyj7dqtzaknwIBTqLISDBEdyewd2wXvWs+gc8efQRX3x3xeXNjt8sFbm2qChBtBzfkTlYSo9LNErYOkZ5uiu1j2j2IHKj5aWjz1lBqyFiperRpVUpaOR3ke+aQW1pQNoX28i5A4zQ8mxQn/vY8vRo0DD5zNZEatkrdSj4xruXI32REnYJe4Xnj4RPH5/y9OIpw3CO2ICVfTpb0eEGx37vcQ6GQRmcsh9CXB/W0vcdqhbp49g6UZZmQXAuRoiJRbc33N5e8mL7ivO18ODslNPTC4ZgsOqxGg2TXuLxFELABEHxyfDd9iCLocNIqfI7463C97XgiiL900Ks/EnLuy0qrXWmjfEavapBY5bsaMhxKWIhr/L4k1dVlrMjz12in+K1S9hOQ4j7Q4cB76KiKPksS8bHy4hI4y1sZLFo7HuONmmwpTbtq+GlMuY5GeNIfq4ZDqH0o30m9y9jUhKWMw0NH2CuuCAqKsnypFlT7dprsVc2vtzpccv91boXtqm8dGk8Bil10qTYihwqos7yOic9y4pidWA0ErUokQ2dqiYFMFRjU8ap6e1ksi98oaUviFg7EBVGi8GwQNXjvKNfGBa9YSGwATY7z3YfMFZQjdsEIr5PjWz0eqSlj2bMJ+N73+ufrSyONdaAhAxkiYtm2PPq7RXXtxucc3HRa52o2fJa3l/5QFno+c9WhBtkNMmHbTt0JU+VrPbe9KqHcSt+Uk7mL0W4aCbFtmCYCsDiuWo6mpkOkGz8dTwyDJ0CwNb1Pa6wFbDNmDQoK38MjcdoLFnnxjCMmNfh/bokc7z29Pn3C0UaP3csBvx4mWMDRHyGBnO0YVw5Scu4zOIxndDMMXo7aNc9+/nOKzHnd9V5+Nrx0OQDT1P5Ls5inVetTpbmar3juYmtYSZfMeQkZpT86svX/Ob8K86WS375xYcxfBVQMaiFmP5ZxpByoii2bS/gLa+pYjQ6bO/9rixkW4arhdNU70AoYLWsw3AYrVDAa4iJJbyP6euD93RdT2cdNuF4VS0q0myz7tuDWeMVVG9xcy8J8REv0eSdnhhejAjSdfGYjASiuq5HUTaD5+XrW0Q9r652vHhyjXv+kA+C52S14mS1ZGl7xEIQxRmiJdY5jAPXu3hchLEVMKGQ9v+gjbjOwrfw1jjbqjGrq3hBHBgVbJciM1rF6WA/UEGoZaCFxhPd8lTSvAdGWX/LFI3WaJOlUUB9NhyAiuJ8nO0Oy+MnH7Ncrnjw4CG33V/ym79Z8uZbMGeXXK//Bjd8ze3153z2o5/RL07QwbDdeRYnMcNubknQOGY5hMvkg7mNVuv2GMWlvo5Bo3YxZHilApzETLjBsdh/i3YXdP2C9cWP+PCDV3wRAt/sr/nN1jA4izo47RSnu+gUEHBdiAEDwTD2mzfzUEcxkdx4HWjGASqFz5Slf9gtsgwtgJwc8lxzK7T1t4bkkawVeW9e0hpsTGMY9nFDc0NX978WgMTcUSwXlv/8Rw/4xYdPWK6fsDMLVB3itsj2mv0wsNvnnx3bzQ7nHM45vPdY22Ftx2plMd0C2xmCeoY9iFWMhS6suLr5Pa+vXnF1fcuHj054+OCE1XqNio20FgKhUaKzIiAmJyG7ez/DWAal7/LnI3iqpI9RhAAAIABJREFUgPcJ9sn4clp2JJtQQxNbxeC+8jllP5WUqEuRnKQZJXqz3TCw3+/x+02Vm1oh7DEsNOKz5figetW9hfFe+56IRD5UeFhCxwnP5HojBee/KWs9HoVRFcUWrmaF+GAoZvBEqyiOL83/j94dzVtEjDOvtkrA3NXiOy08IWOX9rlxsZVpaKanhiaEqMQxulfDSafPlz6kzyGElOSobouaw4vGRFoyalONcS9iUIe1hr4Xuh7YwM3NnttbF42aYouzLBqyK93bkjzvh4OeP/jRGdZEa6cxIMGz3V3z8ps3vL28RYPH9gZHs4DfsSfKJC3sgFw0E1a27n8/SEjTlncB75bQsxAYEWNpZAUG0xKyKnVUcW1kV7ZLtPrBtA353XwW47S2w/1ed/SvEZJHOkALyKbep+klRxbHP+e6S+m5+zoilFWn2sdBt1sgOR33+1efAOg937mPMj1n3b7repdxJDPZ7ztPSkvPY7KIZdp0dAK8fXPN33/1Hd16xfNPP+TRYkEnSdhK3rBtkm/QFyFHmYvcd09O352BVwx1SoI1KV337pNIPLA8GURiP2S0psWYeMKAJk8YEsNAJCq3mrwn1bM4/kmSPIbAGUPfCZ0V7Gi7pTD1RBcF/mBcM0g+pPFDA9L8/bamYowpfLEtIQrDnPM2RdbGfTgqOG/Y7pX9d3teba/48u2O19tv+eXNp3zy8CGfPnzISgyuN4TOEGxH39uogAdPcNlfq4h2lferpv2LCRyKELwvoKj0Lh18Lc6lyB/FaksfkMO6ZnI+JIGUgVr7k4ckJxXI38d9qdmjEQGaQNAZpVFQNWhOpGME2xt8CDivbPaBpVlzembpFyf8K/5rLpa/4g//9CV//D1s3wbC+jtUb/jumyUXw4esTs7p+o7gAmINWBNDzMo+HGm2AqQsl2qK5bvITiPg43lpcemltBBdTDjUD4aBNZ7AoAN++y2+E2z3mNXpx3z09BUAfnvN73d7dq97dNuxXOzZS8ATjQxeBnpnsaHDy5y6eL+rCRyjePJSoqsW0JV5myljauS665IMxpQRL7kP/z1mUG0eaFo4x6fqfQF6YAge2wtPH3r+y58+4WdPP4T+Gc5YxA/IMMD+kmGvDENgv/dstgO7vSO4QFBwPrDd7zHWslysCKbDGkOnno1KTNZklZX2vHj7Ld+9ec12K/z4l5/y+OIR/WLJ3iUgLIJY2wDwGib4Lnk5xVCltyO53HzOyh4UADlWOuaHsYT8qqLqiTHX+QikdqwlRQuk+UqyqPKFDkVS4iyDGlPO3Q1+j3c7/P6W4IZoBDUGsRbnQzFayIQvtL+n32dDD1K9mPWZJnlfk3AmH6cRlbe6HaH0sSiWAsam0FMg9UPIa2k+H8XR6w5FcfTNHetm6tjJexEPV2vla9P65spv8c9oHYZxfSErJVoxVt5vnENRi+E3Gyzf0Zepg8MYU89PV0WwmIRdFE/A4b1jsexYLoTlEhTh9Zstb95u8SEe1RIUhBATVaExaCRjje9pJj92vfeexXcRikHwCc+oenb7W169ueb2dhsFaBP6Vcs/xiDHf40VxZm23tW0e4DvAy/FXHMScGwVxsNyiMK6BXsjPUFrfwqx5dC1Cn6KOYpcllbLTQaODTjPYbj1cO9S6tGhacQYdw7g9A1J7bgHCJdcfKmj1tUCKjlowrsXfanjAJRNQfGkTaPXx0xnzniQ2zlVft8FFn4IBbmUoZSwnDn6e5cwnntnfqzuESKcaXH8YmNEOdaPFAbqDW9vtnz1+i2vrzc8fHCC7eK5rAGtOzOKB0AOaK22LXvATFlLGQRHpSOWmBOgHFu3EbNlupQiYLXQZUu/aeykPpe9B1mAtGMwVhiTNdFYrLVxe6bEfYp5/Qs1xH7UX6nltWMg43/Kvbs8F21IjbTetLvoOiGxvNc2Aww0hmTGLHMdOy/oRtnrQFjsWHZvCN6wpqcXi11apDfISlHT4UXTUQ0dhDiu6kPa6lUERgGjOQNdbI9hrDAmQe49wURclI8JEIRgQjFCtmPZqB9IMTaQJrIBqOmDChixKb1SQ2/ZoFHAWubAqX8oOXmaWIPYSDPeKzHHZYfYNR88/Jz951csesf29h+4ulTC3rG7veWt+UPk88FzenaBWUQvgmbjhQISvbOS9nxp8ITgkwGxejtr2/JPSpwjSjzlpOxkTYvE4dyOwW0xbke3POH05DFPzq74/MHXPLna4G6VzT4qcJmmlRx6qWgQ1NxXVWsHPvWl/Dt+KM//nBFslqYPcSzjNZS+KWtrzP9HRU3Kb9foyEPJODpmfonmtVuC2stDRoRBobfK54/h08ePOD95iDNnICGGars9IexxzuK84kPMzuyDlLnUMOBcYNgPMbtwCFi1dGm/fEDwCtY7Lq+uud5sUBGePXzMarkiw/djs9iO+yhiYfbZho/lMS99n8KCMW48UEZl/l7d3pgVxrG3ZyIFax2pPC3rpv2dvXcx/DaEGCKPd+REXlKwkknzSmOoaORa0+4oimpimlZRHCl9LQ4bWb/y3zLiR1m6kLOvyrQMKS2oyFEOaP0YrjnASXct8YavFhyLpm1PNZqpCNPxYowtLNioraji5jbBS5UQ8ZeQeEVpzmGbK31U2ZPbmL3nubC4B7Ht28w4SY3gaeuIZBb3r6uERJuezvT0XQxFBbjdOG5uHUPKZhzzMgTiek5s3+Sy8vAdacvketf9H/joDC2bXUUUHzyb7RXfvrri+mZHtALVtOzHCKkCPg6ey8QY703BavPcEUB8H/A+x9BK8l09/mzxDKbnGozfMEAt/5abDRiiyQ5V7iVizSECOTwvEnB+NSSGQgwngGaPfBY2d/Z68tyY2ZbvMmOJHU7A6njZrWdTinI7BtxSH5gA+butNu9ztSKniqAGKAHJLHP8/QkN3cfLOfXc3NcbOEuvEyE4x8BbBaotJ382TcjcrPI4bkVUhqY0n34MM7QxAgQt6BqHZlpZcL0ZePH6kpevXvPZahlT9xsl7iOJlk4jeT9bXAcFQDWLKu8FBOq+Bg3lHL/SDFXimYvSrNXRCI7GLn9XwJw0lJNZQaMslgRTRkqYX/bWy+QZa6DrAn3XYYSxwpj/m4Q3FqHyXgaIlh7m6G7MIfL4Vj5bQW2VpUIgnp9YMqb7eNafxSB2waCBfVD2G8/ldzsWconbG5ahZ4Hl9GTBctXRC3ixqDU4YmQKcZoIXgqL1zR3JM9eyF4BlWh8oNJXDvvxPmbbC/l8yCbEKph0zEM7nprO48wdLvOe+GszEJp4RUyhlAbB1DA806TCL/BLQKSPiY5S4iBjBOlszOrqB3Y+e08N5+un/OjTn3J+Zrm5+ZLf/nrPdqPsrwNvhn9EiO/0XY9Z2linNymZbA4rzXv4QgQWWo2SmoGwNjw8G0ASQMyhYZ4YzhbFk2EInt2wwwy3rJcPOFk+wpxt0Edf89nlH9hdB9xOcI3z3ccNwGRvwXE+WOVD/VvK920i/IzXsqzT4mmq97IcabOR1gOxG/4/4hO56lhwSK7Mloe9Dx/P7xyNSkoN0BH+zSCy9j3ujza4ICw6+LMPDU8ffUC/esQtJ8AGdVuC2+GDY3CCc1FZdN4QkhkusmqDc4G9DHjvo7cydCylx5h48JF3YNyWN5fXXN1u6Trh2cVjlv0S50NKRtMAdsllp7XYKGRt1MkI2k+UvWhHyfgm97upowVUM+Osk/u5bkk3VatCMpcoJfYnUPemZzUj7hOthsRxBEI0UA1RWQwx82nmTUDj6UtjltZZ/V3pJLejhpy2h9rTvJerl/F3+UbODl6eNTBSQBsZ3byXecd0fN8te6T8WyTLFM8fXDWcOP9oE0KfGlAxRItZdJ4OTHtLxz0bfTfTLEnl1Nez8TfT0JhmW3quBthq+M1exGOOj9qASBsaswIUnLDoDIveAsrtrePmZmC/DxFL+OwJDVGBJfF1sqklj+H7YIb56wdVFkNIVnwraHAM+xu+ff0VX357zdVN3PTvghLuILiiS5Qv7qhwAvh+IL1i9jo20fcRGMeuIqYaAVKE0TvKn3Wnt219D0A5frQhe52GPEyEalPf1HL6Psr5HS3jh5jVUQmt9jDm0VRr4RgMqGrOgHHUCPFDX7PeTSkUM/vMcRAyLnd2TklFN4BK2+/zWmvKbtnQfWa5DW/sbcdmt+Ob797wt3/3W356csLyyTl2bbDqsAQ6Ah57d6HjGiKjzKBO099lR3NuZwICcpehQyhHOJDDhyzgR/KpXX8x/Xlk19mYU5SvAhQntQjxPDMpifnLGB1t1z2vQ6NmO+/ZC1MQcqINk/aWZmCfw7HyM8mSbhZRhVCfsvjF9PBgsMaWrLAecG7JP359w5vLgZdvNrza7/j00QOenp/wJATcbkfXGWzXoSuD2pgpVaxjtHdH2r0fKaNno5Dn+QBwLmdLDQkvJchdt59WpamAEpvWeRb4gkooUJHQAMuRyTonVqogsCi3yawSx94irBAMqo6gQzKMWGxv6ayF4FF1qHf4/TWL/mOePn7Mf/GfnbFe/G/8/h/f8NUfBzzK1eVXeH8NuuWx+THL9SksVvT5nFLAC3iflFI6OruMbcxdbIwFY6UM4imX8fy8W3EscHQoS+3ZcoY6h25fs+4NpvuQ1dlzngbHf3rzFXYYCOr56jtYd1HBCSr0asEqwQRmNy2W1rQgtv49uyomYmLeU3SPSye/Y2HN3DJaVHfx2qksbA1189Eg7XdhJKJIPDDvG9sMgl13fPK447/9izXLi58xLD5kFzpW+pb99i373TWDCJudY7v37IZovPEhKaSAQ8A5VAODj/sYnVkwSEdYbQnOwtAx7L7hy1dvudze8ugBfPDgCdYuGHxIBjBbhorCC+M/IciIR2ZwHWlwDrtQ6FJbxep7XqXuUm6+cvhpe6Mqab4c12DIXvFKg1mZimvFh7j/0+02+N0G/ABo5IGaQxAD0DUG/CoXcj1Z0R5hkDqYtMlsKEb7HFUhkzUMrVcyb+Eo0S0TQ2TqGBPCS19XOfluA3njMc9qcgSzbSXNM3m6G4OCd4fyr6GfY1F9bQTK+153Rh5m/FeUkwYX5uFtXstJtdqSssKIHkY/VPrM8iN5FkM0nHZWWC0tBsdmp1zdeq5uBx6e9o3cPVB3qwL+AyiK8EPvWSRluzcGCQG33/H6zXdcXm/Zu3rEQ1aQoGUe8dKZg0GyJYz03kF666Kc6yi5RHz8kFl9787FSkZlT8ucU2/ydwk+jorLXkC02VsysZ6oagotldG4tf3LV1lMqcYGCuYH6rtZ/sHskSOFrUmN34+Aq54fNfUYCRR3vCr18Ngj113Ky92MSY58br9rlKm7mjG9V3BBqzDGG1PL8r0tzG2LZDIrmr+a30NzwBTveGbclnnPbE4aSlpX1UpHIYo5ZVUPPoz/bBPBHLxbMFcVIBKUsPO8ePkdL95esTpd8vjkJIYpJotyzPhVBSDMhLhq80PzaPN3gh6xHUGR5FYq66IRaO2qEaQqVEbiu6KRTxXlPQpjbbLBGhOPIWgHK6+XsuE9eVm6TugsMcGNRqtqSLsf28sYU7K83dcIUx/LQCcO1F00W9ZxwsjjNZDGxxiC2xM0YCSko30UQkCdIjYqcAZYuBVeHFcov5db/Jdf883thk8uzvipe8iT0wWni47VUglmR7A2JrgJFklHbJCAY/FKBY3bbpo+tn2K+0EgeMUP8QxLlegRraG5VQkQiZ4BK9GbmWwJyRuQAu5Um0FoiMs4WtBWEIRGeSaFZqM31EiODDGRV2bsJ6nSYFECwXQRDEjP2frP+MkXG/rut3TdP/DixYDfD2y4pjMv6Bdr3P6CcHJO31uMXcY5QtCQzoEzgphFOt8uZQcOJQ0xSOlpNAiojwYSUbRTNMRMrjGyZYkPW5zb43bXWPsB0q3ozz7ki/MnvLy95M1ux9dvlJKIJgSsQrBKMJoSOhzOXUtrmXI1hWjlZ0dKR0vnB/xYD5+B4uHPCs4cn7uPobb93cqGcV/i/RDCSGFs19U0FHqsL9c92Aps1fPxg45ffHjCn372OW7xAYNZgu4xwwZ1m3hkBh2D3zM4j3Me5wM+2TtE47EuqOJ9wHtf1CGnoAxYeowKNzdveHO7xWP5+NE5q+WaYKOHXIwtx4PkjJCtPG0NZFPv4pyy2Orl02uKs+J4zD88nZup56ruqUz8XBuekNtXWHvGXVlpg3o2nxCGLW7Y4/Y7go9n5GUvYMRsce7aMwWr4XkSJip5PUr6v3oV83iWdozk4vgaRws1PGnmfukvCYFM8Gc0rB1ueZk3euikRS24P8Tg2VOoeV6aI8tq+8fX/TC8Ug16jQyeKqszuP4A52ilXWmVj4xzm3YdeBxbPnZEIY2yJ8q1ul7SavQx2qbvYsSL87AdAjc3Ox6dn4C66IAtieian1LN/bDCu673VhbfZVnIygTe44Y9V1evudkOOA/WxkOr75xqHf0q/dQMbkeAljImbYvuUqQO2ntP0JWFf/v4gaIDKbX8oXIyxmyHYbFFT2yg6kEb5fC7OWWreBbHjU11VmLOLAeaRTQi7trP+1yqY0/NfUn0gHnM3GtDeOqzzSb0mSbOZfCaqX3Sv3H9R5Xx72N8OBiQJBkzDY+I+Fhrx21rf9/nykpvFnpTUMZk/sb1JVEwP9hJqGlTx+iBOlYat6cZNagPvLm84eXlNQ8envHg4QkLa4vuFlCsNKFATdkyoe88lqX1aR1Eukz7FnOn01pogk0aC2ELHBqwCZD6WPZRFkE8lkuHa3K8nrSpu7eGzkgJQYW8Hg+FStVx7icw5x4rgXyNcJsa4A5n//CqFvMKhDStJ5tAgxHBBEsQZXCB/b8l7s2aZFmS+76fR2RV9Xq2uy+z3JkBOCRBgqSMEEi96E0mkxmf9E31QSSTKIGGfYg7d+56tt6qKjPC9eCxZmV195m5APJYn66uzIyMjPBw//sS7tuJ8Ye37MbAzX5k7R2Ec8LJGgI4t8UPg/2ohcNJKiptfU5W1IJuJD/1EMRHC5MLQlJApSoTDR3kj0LxTad3kTIKLoMFO0HNZhpBQ9p+4RKwdBSvdkq4UkBonIoiDXkfVDonClgCHEWIzvbZijo853zw/i+IcSLEK67efsvt1mpJ3t68ZrP5wRL7EDg9O2V1YknY28y39tpNQrgiPyXVqJRapkayV8Oy7jkXbV+rWlIHEYdGIYbIOO6QuMf5E9z6kvfPP+Dji8DXtxOn65Gwr8qiSx5PhWIcPQSec9nTnyufDyhUOjB3yL/qN/MwtiXj2NJxn4HwIWzURyEcyrPS6fl9jaHL8GPks2eOX314ygcvPuPKX2AFaLa4OKJxtERhUQhRy0/B44pFDWAANWjKHpzWwoSFjw6AROXq6g03uxEZVrz/9BnDsGYstQ+zgaEPNZ2/ylxRbLFIub5diNKfrQA+tZEuaMF/efYMt/QenPxTk93Ys1PUhOYRT09NUK5dF5kJ5HcK044w7ohhT45SEHGpfFzCWGn/oc7oz/B9TV5TMysLVVmsPxSlr/6UpTzDiUKms2Yt5LbKFb3RxV655Q8PY4tDQ8+MprU/N8fnvUIfF+7VeTMP9ai8cCtnjzXS5gZosaSS97kmrND81tjSUkODzTvW04fjM18roMkAWkNJRTzZibRK2byjwjhFbu92lpgoZpqyOau5BzKt5Ge8+zzOjx93z2IiQjd4mEb2+zt+ePk1V3eBEMWAgSr9XsMjoKQWL+y8XtoAoK6myyJAnXevBxOPAdklFCB3dabMZQGR60hD3ae3tKXS7NRNX6S2l8FIXrstbp2/WevVW1awmu87ZSf9N6MhLQXABTlwMzZMPn3IT+zGVKE1BbTCcK7Y3Kds3RsSMLvmvqMK7/xzKKCW7snt3wcK+vbvPzpPxpKAXL6pMPv63F44LoU6zRo54PWZeR2jnVbZObTaNoCyeZZzc8sn1L0V/f1goX3BCStZ43Tg6mbPX33zPcPZhhcvnvL++WAgH0VxqS6e9HSbW8zrXswzJH5Gu63CKO3XmcH239XVWFczqT7XwdhnGpFaO8uWVz5Xx8M8GWYsExFcqrUmzrEePKvBMXjFebHMquoOxl81gAwd3VVB2/e6efX2m05R7M/Q8aEcpZHftYDkBDAJY/KUJPDiPDGVwxCnVktSAlEjQXe4YUDcwBSU715ec3sz8cObO3b7iTfPn/Dh5TkfPb3gWdyzXm9YrzacbE4YhpXNQU48lLfg0IiSlNmvpUPI2Q8xj5b3iAgDYin+Sfstkx7nklwxnmvvUOa6GeA8TuZYNppUncoYoBZVE3PmXhVi8QwIwoinRthIqjEJtq8whpGoyWg9CD6eI0G42v/AxfknfPbpGRfn7/H6zf/Bd9/uuL6O7G63vJXfMu2viOMVq/XAuSqrk3Pc6iSB1DT/GYw34celM2rZUE32RHBWUNo54USUGAdTvDXgGS24O664GQUZX7KWS/xwydmTX/H5XrgdI7958ZL//oNj2iUDgoSexywqX7NoowXqbrufFe/8NtlryGy92hzMY1+Pe+qPGS4X11/zHnNDUe6P7aMNi/vGi56TRVXfRWIu1SIwrODPfr7iP/3qGcPTPyboBmHHmmszuETQSdntUsJPLFmN+AEIluhILdFRTIk0xmmPhIhEZVpFdIq4OME+8PU333EzjTy7vORnH3xuiZQyHycj4tr/ORg+6nFJWKQfZ+mwT6mziHbJnucG3E7+LUQzaVIQYwzUfa0xfW55fjJKSWpHMv2l0FMHuU5vCCF51u+I4854iuQkUKkURcng7RPfqhNc3ts5qsKYQf6hPF0q6ZW5SK8o1n3UFUNoKk+VDK+JkeU9mDMx0Sc8c8wFydG1gZqMKf2+R0k52Mentb8ZZ9r3sWLh5nl1zfTrrWMe9LSydGhDv9an1K+8B7ChL6eYBz2ETikECi7Kz4tNltW+31revW7NsfdEcoI8YfAbNE54Z7VQnQV7sB8n3l7dkkOLVVIkDZbVVlN5sqyv/FjHj6os5ho24oUQA7vdHW/evma7G5mCsvIumbVaaPLAIb3ScXTaXQJYWlPWlyZ+DyXx2KF1lVVCiH3fMpgRDpMyL6kMrQJWLNtamePv19sjI5UWxvE2FYhY+FfDqHXmYUu/5wAzK8r53rakx6IHtLm/PfdPe9QZEUl7bx/ow9xC9i7PeMzhFpixlnaa62abp9/F07moqD+G2jqgNleumsvuGZe9wNqt2ETh7Tjy99++4vT8jF9++jEvTp6Azxg6FQOHXoAsvIuU/S0LaKusLhB8Ugy1JeAHF1ph7g0QzZZf51ytMyZVmcjn7LBN6qoWGhhWsF5bgXrnXPkt9YEHz9eKjrvvl45sVS7XJLByaOToN+4X4amK7bdrQG0Gh2Fk8Fg2T+eZcIxqHqdhcOBgnLYEjbgzwe1H/Og5Y+DUP0WB/V75b1/9wHcvX/LR0wu++Oh9/nU85/zslJPNifU1ZOBjAMc5s7Q6J0SvBuii4gbXGUBiykiS94/EKRCS0mb797IxRi0zpyRhH7XdulzmIgIS85eSRYCp3xrwboAYjG87l7ZTJFp00YwngLi0FwUhqkNjMhrIYPTowTGBDuxZ2TwMkVP3lDBuWa3XvPfiJ/zHP/3f+Mu/+a989buv+Prbt8Txlu1tJMY9+BW7ceL04jmnl89YrU+LUaOjnKzAag7zDYVGMl8JIgRVzhC2bs2oEJi4ZAe6Juqa2yBs9q8Y3IhfnzCe/ZwXF7f8fH/LLz645ZsbK/UwSEwJ/MzrecwQ1+HHgggXSXyJ6BO9Vo/x0mFgPx49f9hsjyHmbR17Rt56k/9WbE+TfwcZZzgyyVcnfPzZhj//9QX//pfPuRl+gt+POG7w3BKjh+iJk7C/3qdQ94RDRMB7UE0qc+JnYWK/3zNud/hhha4HwihMYc90d8dXv3vNLgbWJye8//RDxnFkwhO9wGSGFUdWimMJs29LA5T3L/O7PDmSeCd5PbZjsAi8FxKHHFrJgGQ8illpbPd5HeJRSXWMDA1BUretwIEqIUxM+z3b3S2y3yJxstIhbsC2JNj6dm2pixiMPtMez7wfEkwpnsvLimNrG/2bNnsSm1uL31CqYijOvO6Pku/zY4bb7pPrUeu4PuRlz7hFsvEuP6ubz3ikhb6tQ6P3kvfuyP1N3U1IibC0iTBpeFKbsKlmNG7oGxqod5wvtO+f2+ixtCCsQNPOcSdmhI3KFCM32+1sXQVEsjqXeWtMmOjHUfN+r1buA/bqFIkejZOFoV4HYpAUTmOqUKut1xtTe11jlIQDVdFqLExJWEuzWB6zGB4D8jvFhqwktl21fhXdkWqdMO2etMi0I4jaft+Xg+e2rvGZWbvt/5LCpaoWVsQCuTYLsx0rp35ZMM8YEZjVqSovjYcqD4GmxSZyL3M5JoD79ytXVyFD5ifLCtKjvI6JgKp1qo5x9QTWIWg6V657DIKZg/KDfhwDGlLIZ3Z7/iKNQ9l4vdx+0xPm43Wwdtv/NRHbDDTbt4c0YcpXtGQnGP21ESUlSyngVBgSfQcB9Z63t3d8//o1X33/PT97fsHgPd4JOwdDdAUAZA94UWDIa09x3uoflt09ZS21Y5nEv5iXTPQwy0bPhGN6QjvOWYADEksYS+lLvkZN0XG5cHX6PtOXpDlwKbPoQMBy1a8M4M1qM8WSDrvOX7ZEVwu5zmZyhrhmhyuujA6ht6PRf26Uxs5KrpoCDBMfUCApyi5nGJW8+T/tcQowReF1hKgjo15zIoH3LgNPzyOOAdaT1ZBypmC46PHiUubPYBs9BzFrb5ozK3AcySFIwQlTyEBNTMEVl/LY2BxHkbJ/XGIWvo3hQUA1kvcfxuYUCDEmI2Uqeo9LQFDMK6rJMGEgoQUIGY5OiaXkdecZ1FkSHAW8R6MjyoAT4fl7n/Lp3Q3OrQjTl7x69YZxv0eA/dUrBrdBYjbvrMzeAAAgAElEQVRUKH5Y4dyAMJDyJhQDQaJKGxOnFqEnlfYRZUr83q7xhMaX7lCmCcI4wf6KsH7C+vwFz6a3/NHTb/ny6Z6vUa6vPQRnGY8l4qYs0a0Hxi9qiFxRaTTJWiAnJZHMiQRK+GDJHmL8SSTSuyBbEs9riErDjVFzHrUxV3rmx5JBlGP3aI3saK8rAYjJ5b1KjvE7YBDHhBIH5T99Dp998Bmnlz8jsAK5Q2NMGU9h1FTORaa0tzpzpiZMLdFkiFZqIxCI3hMQxt0Oz4oYdtyN1/zu+o6LIfJiI5ysHDtHTt2cQldnSk7zU6CLtmcrVqrz384D3Vw1Z0pOi5nE7/BZ/agFi6C2B9z2O+ekIEZtNjpVlmSqzH22deMRPAQhhJEw7YnjDsLeniMenMel8NOipLXyU8iCy86XjMkzHNQYdRoSIfNWu9h4WS2TltpJeE1oohmyjGjGSbo89c1INg6CVulepO9m/LOOl42RVRI20XJaUFdRKiVF7WTZXFFCI8dSA/MyGC0GnGPjNlGfvcp8zWYPtxbWknWSTAm5T4VCyvM0T6O1m35c/og0z8ujUP9lXiR5gWjmZY4QJkMXIiATIQacd6zWa8RHJDjGCV7dBBC1jOSoyYbBDOaOmKYuYZyFGSuj8FhrGT96GCpEF3DRaviEac/VNRDTTj5Vstbbd7J+dkkYF5JtLEfipBBT3ZBMZ4EqLc6Y2H3W9/vOL/WxCB6lEWKUTmsTZqIZtDTCqRBJ+VW9D8WNLi7d2/K+PvyzFWItsLQFoEisA6m5bUcdsHxaIXtbVKMBBRS8VMsVsTAuJ7YXAlVL4JCYX148GRiLkoDZ/fOQhfPhufutWI+yGmle2Mk1X07QLN4eHw9l/mroYgaJZR6psCa/w2P68thrMzOzj5WBVyZZ29RmbqoRovQMCvNqBEFzHITule/BdyHJmoRrBrTNe2VlsXl4q4e1YdoKrNUUnxGF1cDt9obvXr3k77/+iv/w888s7EI8k1NWsXqs8wowuZss2Zo9bh5XspPQrJe0pnKZh6Qstn3NCUpqiFKmi956WMNrrLGQYxmz0MjiUDOPSuCv2Q/TWokFZcCxUhhisOyEfkNEmOLYzVPEvAI9+bjKT4p8r4KqCNSW3RTAIDMPdnuWQkwdDxZBS2kQSbXfbe6HInUDGnJ01YALvvCUUVJQnAoSBZE1u8nx3RW8vLkB3fH5s4lPngQ2KnC+YVitkPUa51dFYK3SvkBWiQ4kmhImVkxcUpKgIIC3Ug9qRQybRGsOS1Oe96s6vPdmgInR9t5L3jZgM5DHJkjdmyQMRAnps6EaY7O2v7XMtkJMirMUrKiITNUGVfiNY0AYY7D9ZE7Bp2LgCqdPnvLpZ7/g5OQCnZS3V3eWYGO3Y89rnK7RKdrCc7Ben7Hyp+AGdABNVupMzUIGmJbzxrJguWRMieyzgUCEwa0YIziJiEysgCmsGPeRKK+YTj/Fnz/jqXzCv7r5G766ukOi8td3A7ob0M0OdZlGqmqh0QBTGaAiOzN4z3K0GVOx9S4YOcSApRYmJwqpNB2ZyciK4Mv394Piem/rxV68VqyN2PR7KYyyROAk0JzDDTVG1omdXDlYywp1Ab+e+F+/cHz43i/h7FfGc12wRL1B2AdlxDGJQ4YAU+bXWvkR2fsOkwZUA1EiutoQZWB/e8vF4Jnilpv9Nb+92fLxU/jwRFgPkd1g0QODk5QoOgPWSN2zJ8WYZ+Vt2tDgmbAq45oGzqcZ68BPhVz1a8OTZW01PDobgmqpnYBXCBrRGNBohp8GkBmNFJlmhi8Rj2NlhiuEMAWm3Z4YdsSwxetEdJ6Ix5fi9hUd1O4bpiNlKsa5WlMGSUmn8rBk2jI6qXCyGlIgSyypmMD5sna68NW0laPSneIL3R/DxVVgL6+EudxI7Wmoyy7xjAo3m7WAYVSX666SDIlaxXd9jPUzd6nFYIVvHux1TEmG8p8HOgclyVz3JskwJakoZ6sMWi+Mp4qz8Q9Tovlg2EeSwSomDJ7fufABNJWxTXJC0rUiqPNM+y2SQpZVR6YpIM6zOTnBeTM+70fh+7cBTRnjoyp7zHPsXBqHVKs475N9jBOtDY9fOn7kOot25DCmGnagx2iS1sVbFaF8tgW6ZAU8XVMpWZtntspUd93seJdQx4y3Fsd74b20pps88tyHlZzj9y7/XbO7VQUyhNBs/WzGQ0hZHak8OSWraHtmIXcRKbk8svKY9vSUddQLgbw/6J/rWDIUqE6Puvfd+p1H6xBsLCmG72DEqQt8yRIyP96BppY80e3fub+FcTzQ7DGv8EOHhfUZll35gWny3FyP/MPvfuDL717x2YeOp8M5G0gKIZboxrsuxJPkldNE08s88djifbd36w7J/KYaVAykSLPPprlcpGMJzpli4oeBzWbDajXi/QRMNjBki2Y9AtoVErH5qhbSqqw+fDSRlrmDjyJQe878/R6+b24QaoX3NOW1qfy3r3Z8f3XDby/e8ur6hp+/94zn5xc8P/ecnHiiH9n7kdE7fLCMmr4o4c5CVKnKBaowQZAJdTauNvb2I6nUiSRwP02ThdRRDSem2OUNjvV9TNhrrrWNEtGYrP255IYmD1mu2ZYVIdofihzLw6lYmGQXqiQeMw3Ze15ePmGz9pyeDJystnz19Ru+/nbHt9dvOdVrTvennN18BtcgzwOr58J44gzQTPZQcealdSJoGNlPIxoDHuH09NTCEUdLggJpG0lINJ/KIkQHEiP7SbkmMIxvGIYBzl7w9MWv+eLtX3C3fct3b3d8uR9xESQ4Jo0MGa8XejcZZGGMNi/eu5lkqocBPisPYqU3E6RTTXuGHiLRucKi3e8fAz8sGaTb5zgnbDaeuA3EKEQ8qhN3CivneG+z5rv9msuTPb/4QPiTf/NnvPfBJ6zWp+wCiV9YQXhJNB5jZL8fmaJPxjQzUmSHi4jDeY/3A1MY2d6O7HYB5wXnN4QIt9s9Vzd33O12nJyfc35xyWq9Ia4GG7XYr+VcQseMSxy8c+u1WmI1naxM97a1MbMu2SmbjfIxH1u0KrDmeTXDS0xRCI2eeNCfGNMWArGtTSG9UwiBqBOxUKRxi1yKQov6Nufe+Zq05mfkU/bZLtDVHM+kl6dtpCjmD9DlQ2GkbX+Xmqt96WVqwYD3QJFckSjpScWhoSTlqTRWGu1/P3bNzWTM3JlyEJGX7ql0E5MyS7l3Cee0imQZA9WS5fzho58/7xzeDckU5mxXA4pZZgODmH1hGidevR65uxtxPiallLIGVSUZah3iYuKJR3rwDnzsH0VZhKogLjKFbBdMexzzt5kZzBdxuT5bGRcIPmquh3UI3PPno+F3C508II6lRXAEm2biq2FMh5veKWOw0MAjjvuVkkZJd62VqRkhEXKB5KzYz18mK/Iimixm9v184eWNwNma2j5vyaJz7F3a59537bIX8rDvDz4rewKaiT0CDZaf0ZxtlfTjxzsYClJ0xmPWcpnPI2fv69KckVpT85WUr4Xc/6WwjtzKUk/mlq0ydip4HXC6YrcNfPP9Fb/5+gfOTs84Oz3lxHnGpAySFAGSoDEgUfseY7RSLU6KQtl69KvMychcqZaQWoS59rAizVIug8SpZq/fKYz5gTMAo2mRmPIheKd459ms1qxXKwa/x8lkXnt0oRZWrSOZnxnTtXNlUfKeOUljL3OwSnPtXFE8Qu/aj6GRiXbfVcVGyz2x8Ta04zUH5qrK3c7zvQTuxjtu9xNv70Y+erLls2cTn754yvrEmVXcg4WGueQxcikEWgiAi5UHalTLPYPtXZxkRAePqisG/mzNFpESzdh6jlo6AklZWuv7CdSEGMnrWOKSmnpnVd03+nVOmoiplmaEYfCIqAl7CRACKrae96OVOvDDmsunz/nlL/6Us4vfsT7/B/72N1cwKVPcE/U7bt56pnjHbho5+wBOVhtcUjwVK2NhDnlB057ZEoYntsfKkeZR0nuFlIAp0XVUmFTZRWW9f00cLlFZsTn/CT999pK7HXxz+z1f7SPhTpBUQlNd9j7FzqNQZY80ZWj6dZwPA3OJPlFUqxcrr7njLLCC3rmsaqN32u+WPrd0nOdvzpILyNZ6vYiYZyEkz4kTVIxYQ1r+fvQEHfn0ReA//4sVn37+x2xOnqDqiNEKwGuYiGEi71MyZc72zqlIcrSKAU8RvDeP2SgD4NnuRm7uduA2+MGzHyNvr+94+fqKu23g9PSC09ML25ubA/3zutZKB9oAa1XtuOl9Y2PX198tr+mB/eGYawbLLb8FShmGmAB8NC955e2VLrrniSTeYqAdjYSsbI4jOTxbnCcGpZT3KVirlSNZLrgUojo7145KI0OO8eB2DDu20WLMo8bK9vskY8pX9ZnZ3JaaLYlbDo0eaQy7NWPjV2SRNrJStW5H6yf4KG56DH6cy5HcZnt/207nQRMqDk780OLw23tj+V1r8Nb7TMY0GcZJfz9eDwMR82p72yOQHaXFCaa23XgAxijc7pR9UE6dMIiVmDLelww16qlxmO1j3qVT/fHjKos6//MIYG8+KU1Mc7lnmcXMWzNrinYnjw3GMS/KIqEdO4oGe+R0I3QogDQtwk4ZO1QqDpSNmdBqH2vjpfWP3D6Z3FtmvUAsc5DWAuOD8WsYQ1r3uR5M7cvx4zGW2vvGfi68jwHOxxwHgj5PZwOc+2fKjJn2c5TBYg7PeuidMtBs21sewRbcNLM+A0rt+pqPamXsdEx+ycrdJiHK99r5x2+H72nTji7EsQVKSqqzBqjgxTMwEKbI2+sdX718zccfvOC9Z5ecrQaCpPqCqZ3caowByWOvoEHTXivtnivt+2YAmDprU3+MiluhqEeuoaxBKU3dT5dZ0ZLk4Rr8wJA9XZmo5uPX9amfQ1U6mjzo2uzvec8qqEv/S/0+31XZRgYZy30rXzdrS5tEF0vGpHZNxTiw3StjDOymkWlSbvZWBmCzWfOEFSd4Bpd8USmUKBWbSo6vpCSoJqOLmiIkQpRIDMHGn4h4KaUGc5IJR8rqKlIAnhkBJGO/ooQkwjPNJyfGcimsTCUnrDMAZVaCNEAZXMhBYtI8diLm+Us9osywOKYYGLAwufX6hKcvPiV6Qf3I9ds3XL2+I4yBcX+N8j0jygj4kxWr8ye41dr6qSn0WhO0SEZBySCJpCxqtCyYptGknwyqqAojwHhD1BU6DKw2z/ng8j3ebm/5+Oolp28it7u0NTeXGUmhVKppeA6WTqaXqkAu8leW6bvIroUlqZlIOY4Rjh33yh499J4VPpVnsi40YqDkyC28yVlalXEU1uuJz97z/OkXT3jy9CPEnZhRydypaR2EtA5sHToZynxJLn1CpmPbS+3cgIhnnCLb7YQfJjZ4whi5vtny+uqW3aisNqesN5ZZt7IgyQKwEkE3dnbhQyK65TNAooUe4Jfzzfh1SkYB+/M5aAi0jPvBVNHsVMP2A9Zw0hgDIUzpZyRn+s77d82D02cz1YL5JI1/VQR7hbcqeFI61/JIus/FoJllF9bpHqfkJmX2zcPKQu5/s2sSFlZUHrd8rsrX0lCVSTMrgJSyJXRzvIRP2vmdUcKsL9pfM1dE57TZtJM3e9mzqgOrGtJjVQhdPdfJ31lfOrQgM92AxMOkysNiwpA6sS1WdyIMOXI5wH60/cm6ysY8R0j541VjSvZZ92Mejti7Hz+yZ7EFttkqu3RdttZalrglJr0sDLKwlkJo/XObaxcEyrsoFovHnPkzW3xKnRzVWpBeM/hfFkpt/w6t/LNDFt5WGjibCVewQtn0StaBMpp/z9NNS32/KtTs+hAnC13KQGZ2a8wLd0HhPfbeD11z8MoLQHPpWfmatiBuy9da22ejTzTX1vMt087tHDOIzJ9vx9xTdGx9QCxhs62goCKiuSFF+/fux2B5TOYKYwXssYSmedcGPj58zMOea4fa8UoGjYSfPbD2G3Yhcr274++++ZYPXzzlxeU5H52dMg4eVUs7D8Y4S6hPu0cmv2zJKZzrNRaYbeAqJ6BqAL+0HX3oHWfCJ6fStLXbj/OhtyL9dhZ2MgwDgxcG54rCOKZEMcOsTmj1iNbxteSsvRjNIG0+B/n++W6aAsCWwG0j5KRRxBfpVnrQ0np3lhTF9jnZgrrWNYoSQ+BluOPN3Vu+ud3xzd2e0Xl+9uKSDy9OeC+uiC5YEhcRkJiSzphC5jSFK+c5jmrKjWD1Fye1LKAxbfWRtG9ckgFS0souiWo8SrJKC+QEE/aGAdByzmopZi1RUVKynOR90AQcnUs8p+xdMtSXZcg+TqiaAlD2UHmPF0EnIYQ9xIDgGFcbnr3/E95/8QFPxPNXf/nXfPPdK97cTmj8npXesAmvcSMMHwa4uGA4PbVkNRoJwR669oM5SENg2m0TdvXgbOuBraesOFopmICNc8ARnRC3t4SVJ6ownH7M88tP+Hy644+33/D/vrnlqy1cT5KUFZf0nVgSpTtJVUjS3MWQyVB7wNyAf+fSHh1nNJ69jXZ9DtNaoNnEVJeNezOZ+Q6HlrYbGZo6dCizBA1KFMHiM0a8OPzaEdVxNSofPZ34N1+8z//0p3+MWz1l2jtCVIQAOqE6ETUAVhYDETarUxw7RAOizqYxCkpKGIYibkDcihAmbrcjeMt0yi7yw5sbvnv5hl2A1eaE9WZjfY9aqzh0Cllo3j5HbDSyqxmdRcU9MeUQpn7cgOLNTNmoK5DP93ZwvSoiOXv1AkaYYyYt/NsxyDqxjUAII9M0EoKtRydDUhgd3uXSGMYj2sPl/YmSAuOllxGZP7YewVJPlhTQ2mA4A3XQgIBC4927M+ez9frFo8jTbJhKz5grm7M57D8uLq76vVI8ihIqPsz5LfL7dt7hTmHUosTluWsu7PBsbyCgeP2kub7vbTZFN3RT5HYs3nItfaiysngSpcH+3cOWxi5fkvfD2wKJ2lzaTKoT24KzHmAQ2AH7ANspEBGcH1BNWFKx9akBYiT+c2dDfcyRLSJlwXcA/GHXcr6ua3NWQ60QU277EQrJYxWYh472Tjc74dokbF0npFxT+/L79+Gh/uWQqsN+PEL4ZWWz62tyxScQlo3MS01qlo1/wDssHa3ydZ/CWF6jzHE+3ytROvteZ9cs9KBpG4RDUN727Z/yWLaE143y9ymMLTAqgtg53k1VnPXnyPpSTHCIiFnP4948bDLgZcPXr1/zm2++5unZii/efw6rE7MARguzwhvILPGD5Bp7veEiF0OXEjaljUKZBe2cLuapuo+k7i7os+53s31BluyliMBjdIkBW+fUEnoOwnpwrAbHbkr8Uub3tglTUjsNEMu6UgbS8zlv79P5h0eS6nztPXh9es/7IgqqcIZxv2W9GhgGxxlrdlF4exvYjm+JQXn99hk/efaEX773nCennpMTAfUMKrb/0CnqhSgDee490uz/q3txUoLUWrokKe9575xIqt2ZFPDyt9TaeTbmSZHOe9XFo1NfhsKAYgbQrho8PRDS3y4bA1IobIjJiWclNnAGqLwXcAPTCHGy8NAogsoGJ5f8/Of/gdOTc77+7kv+8u/+O9++2hJ2e6b4lp38Na++u+Hk9hkXz55x+vw9/GDg1xy0IdWhJKX4D4lHOhsomzAsVMuh4hE10IIKGoTgFBe3+CggT9CTZ1ycf8IvLl/xp0//BrcXvnTC7VUo8sM5U5jKbloRxCuqKay40HVLN5luXeHFlhxG03hnQ8Uyfbeg8w/BAktHVWUfc62wkRW3MqIS8BpxrNEQCUR2TPwvf+L4z7/+gE8//jXjtELFCngPRLa7gAQrxzHGiSmMKYviGhcjLkrxpptSbTI8BMX5Dau1MI47JvXspkjYTYTtyMvrG15eXaNO8MMGP6zNkyaCeVtsLxVpryKqKcNQMwi0OL6u8/mxhM+qbOqTImbDpq0/Sd6U+X0J2HfZwlO3pFFKlBIN4jADCDnxVaqjOE67GsXinJXeSQqiAfWsNEDNki2kYrOJKR9X2JJ6153X5n8zZuR2ZgZnafbIz7BtGw1xgAOl+TAzSj4Ktc3mUNrHN5CrTTREVvSpCn8fOqx1HGqK0oPFNPdAzukCSJERj9EztGBZrSRBp+h276yLtApVFh/IxoQz7+uLDVNs/rBxEMszhvOwGgQntuliD7y9uuP5es3pqcm3Nl2s8wMqOez6x+Ft/2jK4vwo60elMBYbIO0vSkfW1tGq+Ng1M4GR/ssLow2/q6DJPh9Y8x5QNJbeof+7WoGzQlyBm9TOtYysEH4mnuPepYPnywH5LnsPFo5OSW5/N9fnjGxde2RFvy5u5yQbyw7aTlLb7rONLl3f5v17jFfwvqNVGI+1UWmgfV62LM6e3/x/ePSK4vzKY5box7xH39+25Txmj6PVQ5qu4L5tf2ncjvW9Px7uy/K79tcaLjbBMYWIc+bRGPyK2+0t37+54uuXr3h1c8flyUktYq+9JRbt9x+0QrYKsJzZLr1zBhPl3iqmDl511v0CRGbr+vCG5tYy5lTwmmS/c47BYz+DMHiHBC3XHBvBJVrLkRwi/dWlmQUBv9TPOlZLb5MV2fy5F/YV+FSAspSkfUmQi0DwSiTgY2SlAJ4YlWlUvnt7x1q8gVwZ+OmLcy7FoW7gzHvEJ8+XaBKUNaYxhytLzGHXWbBrqnQRS2KuHCgmDdZzif/l/S6WYVEzuzNZUN40AeZs7U3hqeb58jg1pSiTZlHwM7gswyvJc5HCq4Ptq9U87ildPzqw1g2iykhgODnnyYc/gc2GvUKMv+Pmdsc4jtxs3xJ0wxQmkBEGx+r0DL8+YXAGB3JNP0lhquR9b+lHnLO0kSkLreZsiwnMBh2QGJBph8Y7gj9ntbnkxcUH/PTyG76/23GzD9xeKZpKjnipynBj/e1oo5XhmgBV9zeHSaHmZJuPmn2854n30ekxGbN0ZD50n8xr2xVx5ESug1OYHNMUUB95diH8+y9e8PMPP8St32efgs6EiMaROE4W16u2/zFqDVku/8RMZuowg4layLYf7LoQIaiymyYLWd6O3Nxtud3tE91mD1k1uGlREtufufzqx7Gfr8MxybdWeQ3MPIiVBVtkSR5rbdvSuVexjkiibjuVntd54BQrjxEmpmlv2YgFUxS9zzdYaHvGEY0RjTznZY9iHY+cxf8Ya+0Vo7odpLDdpr2u7wUczugtYzHrXKW5JmKojSA5/E3B4O0cND0gR6W0b1bmIMvbPPfld6MY9R8O/paF8ZobGtvvskLaKqNZPyg97jXDrt3i8Z2r7CIpadbh7EkzH+liu/M+uCbNfB4uiFKqI8+79yn0P1k47u62TGHAuTW5pJgrdOLS3vnH4c78fvcd/2TKoh3ZDU9DXPlM/WCD3nKMZkF0ICaDg3qzNiaU1nNXP/cI8CHwfcxrVPrVPSufd+VFqsUp/c4A4sjREvzB8++5L1+XiylXy83yu7SMp1vg5YXy+QqO80bfsreKeXKUDBbr4ow0lsZ7+p4Vl4eUl2PfLbXZXj9nKMU/0zL5Rx09xRaQMlOelsHwuyzceQhxLWBb2+1mt3t2bSfB94VxXerPPH1yu59xroQcPE/Kfwtt19WehZOKFS6IGlkHwXlh7QeuR+WHtzd89cNrvnlzxdnTp+Ztcr5/Nycp17mFs9SaUzTrp5dHZfx0/j6HICfD9ipwqhCcM/eqpNk9PbDMl1f+UwJpxfa0r7yw8sLg22CchTFUnXnq5vMh/Xfaq8H1LXvlePY2C8+uoEPT3M1xRWXXdbzmjd8HvhVgLcQQiUFZR8EPnoCyj8rb2z3CDXdTYBLHydoxIUTxrFYDqRy2PcfFYgJQctHwXlm0dZvrY1W6zW/v1LwICERJnkaNOAxoZyCOkkLyY/m7vJNSlCBBkJiUWFHLmCo2cKU2m09jk/dNlWLMjhCsaSsRJ+A8VrgZ1vGUKW7Z6y3T4Nk8+4T3z56wXnl21yPffPeSH15fcb27JYZXhGlHDHfg4Sw85/TiKcPJOTFmv2o0RbXUOE2KbMkGlIFLLVGRZfSoHgkBYUSnW8LmAr854+nlB/z0yXO+uXvFm+0tvxMtxh8nHud9yoKaooZTu5qU60pDLVnN+DwBnXlfcphXJ0ozT3OUOqnzY25YW6LZ3/foPQ9aytGImAdhP8I0KSsf+ex9x59+8Smfvv8JKs+JKqmm6YSGPWE/mqFXhKCxSeGS5orqZVIJSYHxtv1qMLeFTMoYIiN7K8Fxt+Nmu2O7n1DnrRxYWqOipOLkAas9mr2KM3CcwIDO3veYolghWtqjm/FTiLPr83s1yfZmz9GkLApJMcklkaC8Rw4+lBwGrsbtY1TGaUdIoadR1RICice7oQYtSt7vVsc4e8ZtrGvZMG2GpoqJBcUsWZ/6oJJWnkt5h8yPJWsIjW5Q6DtrmQeH9NcsYON+zGd/pxHs/663Ss5ErCkRXapzCdqFchaZUmBvxpuzIxsJFvqzqDBSFUYbD9fj3Oa3zNrKWOuAUGf3Ljm6ClpuxPD8nkVlUwRR21KRS4g0WmpRFiWXbEK4ud0SwrnRZNzWHAdSMdaPefzIdRYbBSlqYvxZw28ucz5lEgpFmC80UwX3ksLmpCkO3wK+H3eAfq+j5KdOv/L7N2DyANS1x1FlqIYULp6dKyzpP22UmQJg+i5219Ru9EC67BUr1+XzOdvfPJzBpX05xz1rbVjbsXOP9fweO5a9YJVW2j4c0YfIwutQCV3u7x/a59KfRqAsz/39NH9s7B/yUjpniQxq+YAEtv+A5dUaWZyuCS4SXAQdCSHio2ftV6ADL9/uEP2e//tvfsPzp094/vRJCpdTggailZ1O2cNsX0Esxg7p3q/tcz+Hc2Rj99ZfDSpNy9WEdcfNCmPO8yVCTYoiBm5qopRmeSemvl55VivPMLh0PmB7EObs2XUCcGl8O0Bch+PBo3oSj1288P1jaOEefrXUh/XmFBn3xHFiHwM+KQavy9sAACAASURBVCZrNxBC5Gq75y5MvJ0m9nHPR08u+PjpE34ennB54tmshfXaGQgmCWAc6hwxhYiFEDpajqpWdoW0XzftRcpg1WjfpTJmLqmguW6reYXmHt7MA8waHRvaGAnRQqadT/c5X4xDkPYD4kqtLkkZ+CJktIvD4YYVwoCwYn9zY/W4Ns+4C68ZdxEfNjx99u/4t//2jN9+/Vf85rd/w1/99RuiXjHGW8bda3bjHRdPrrh4+h5PXnzMsNogzqNeGJN8duKw+mkGuFQiiDdlMYU0RkzP9arcaWSKjpUKJ7sRN1wxDJ7Vk+f89INfcLv/O/wY+Op6y811ZAqKxgnvNsmIl7NN2qIr9Ya1YP4yzgeGihnvbQ04LbPuPQvHCflYBMbDx+P5f0C5jXd4hSEKLjomRiDywaXnv/zZJb/8+Z9w+fQL9nphgalxh5t2sN+hIRh0F0eIlrRJBiGgiFq2ROdd2hqS94kJfrU2eR4i0+2Ou6s3BCLiPdvrLTe7LaOCOvDrAT+kLK0asFJUaV99DPQGtGasjkTxHxszTSlxNWG71vBtQ5rr1Gg9Tz+NhQZUkzJblZPSLYF5/vzcXpwC43SDxmC8QLxFtuBAmzDTIpoznmv3+zWfaw9nR6OwdeA+ZyTOA9jjYFN8mualUQpdlUNlVGcQwXBOzvbKvVB06dBijsjtFxWJkkpaSWGnjaJeaKSVYTJrZ+F5s2sfoyjOr8s8+EBRbNqwn0rL9f7+fZf7dvhd17cFRbXjU0D2ThZab/CL98J6M+BcCicfBq6vbwjTM4bVqhmdrCZLkSGmRP7hePRHVRabaTfLU5NalgJcrAZIDgMIKe343PKUk8PkQbRW03MkC201rVurQnoU6hwoJfcD+vuEg2rNMnQEtjUnc7iDdqj1D7FK5j7M2zpUFO9Di9rzT1fHuV7R7E8UA0UiVCNAeraFb7kUttQoURrxTpYX6Ww+jllv5++7BMraY35vx2Dba1XrhnMyA00AU6BmK+zbP/TuHX/mQ9/Nz91Pj1XR6Zhzuf94G0tjtPReLcBN35ZkN3YNzCm+Y3pJ2dZ6cb1OKh0pllxEEDP6rEF25rHxeLzbsBt3vLoe+c23L3lzdc3ZZs3p6SluZXuSoqqBGBHL/CX5mflnPt411PQQ/FWhKR3LrWPfrZU83Fp/i+QEBqYIZF4nkt85L/+sTNqzRBQ/WBZIuxbbUH+QDAkD6I+sF1rBVXO7zFd4f7gcdnjQFhmfHXZpRruZNlsFutLPAwJXFW735u0ZPOMg7NX2gDq0JOwKUbnebfmrb3a8ub3hbr/j1CthOuHidAAGBlISiiQnoqhljUzzmj2NTqRYlkMwoDA424vnnUO9S4aTNNl5/cdgnuzk/ctW3RZ82JG8b4loYlDjM1l5dUOiDbveqSWTQRTnBpRQas2JOItTjDZWMfHYGCc4jelz5IQLoo+oBHY6sn7xER/6gc3JC9b6F/zuux+42+4QiUzbG+5kSF6tFSfnTxg2J/jNOiX3SSsqK7spYUcpAZCMDALEEGCa0MEhbo13ayR4wu4t42qF+lNOzt/j08sf2G1veP/FwLi/JtxFpgncOoGytODENWArlz9QEo2agbKEyhJLsqdqgG5lTI4lsfZyApylTMhz2dTS75IxdZHnkodnWdmcfz865UQdToX9XpmIXD7Z8NPPTvmf//ULNmefgX+BsELcDiZT2JwGBu+ZYiRoZIoR8Q7nBaTurxU15XuaJsMuYsYoh0WwjtPE1e01QQN+vWK33ad9j4KoZ7VaMawGG+/RwqKlqFsV29XkQ4nJAUiak3vkWzOohIW6dmVMtcWUsfMskp+h9bpcGF2g9qcw7Tx/YPRjtU2ncUI0prI6DicDaCpDYml8i7KoYgq5NCHkVTK3AL7V1gplFlpotMPynSmIOUmOXeCcK23l5DB5AXrnl3NUNMdcOZVuAg8VMaBi3U7xaeen+TsN6yG+MKW/FKpPDy3jc2Qt9QqVlP7k0FfuWYP5+zlm6z2C0tGUOboWEielZzXbAhf7mX/Py5EdO9r2XX6dhJ/z2DixMH3vvdVBdUoMkdvbW8ZpMt4bI05TgrWEbS2Q9hBf/77Hvcpi23TLUlt6PFBQxOEQJHkW94mR2/S6MiB9aFcGW9ZKi8MqEK6TkZk/gjHBfLbBiI8fmPl1hyF7B9e1oa79nQ2Q1HKFJGDY57fR8u6pw017/VKqYNz+e5BYM6ElkEoabykPbMVm7X26ZUas6fo0N0r25nbDfYjNZ4D9UQpRnklNgKF5jwrC+vZ6yqxvVR9Tw4/mtFRGWJqQDuoI9x7r9glzIMIBzdxvDJgzxP6+JXChGX3QeIfb5g4xz8HzqtEljfEDDDZrOIUxlz72/e5UkDyFzPhEc1+5S5INNaXkz/kIvFgWwP1e+eaHa759/YaL81POzs5KdkujP9slJpBCUGf9LMyg6UX7lWraT0aht3pNy0zaJpr1kNdK91oGZOt+OW3mpnoWCz8QAWelIDYOVgngGTjpFcbs0+rYS+566nteOsePugZ6Oqvrv5WPzcgdGh3S/4fcUOq/Bdo+6JHUcY7ThA7ejIXepUx0ic9LxQfjGHi5G02RcsLlyQrzyJ6y9laf0HnzgjmXAF20MTdDl4FZL7YHyTwuKUlAyGNYaUGcFUnOWW9tml0Zg4gpszHxkkIVqiAxZWhxiXxqiFxuQVPiIitwb/v3HL5bh2V7g1Pb10pdxs67VE8u4lmDC0Qx4L3yp5xdvs8gK8L2hn1QXr15zXZ7R9hv2aeQUj94lMAmXrBxF/jVpsqQjnY8QrBkIFIBCmgJoTJVAkKY8GEkOoh+w7A55cnFcz7Y7fj87ddcbRzjqGwnxYfcZipdoiDq8CoEnRbk1RxhN3TYimsyqmhodEaG3Z+NvM0yKfPconjMZGi3VubrpKN77b6332YfMGNNMoSp8N4Lx88+PeGPPvsIv3pBlFNTClIkRa7zJglUWQkZwepM2pOcM8dfVMFrSk7jNBk4PFMITNPE7e6G/bgH51i5AWWP4sANrNYDa+/xYmHfkPdzCTW8ML1IKq1Rg99nE0FlhzpnNE2W0IpnqvRSMqDPpQxqCjMyT1U6j1aer9xGz/8bzqWRGAMxTMQ4pfWfDRKJF+fyMnO6S033oZgtTs0+o7znM/fD2inyp+Oodk3GLJrCvTPuasdx1o3uKOezJbK79lBQJ8nQzElrIGkuPGDjaZVp4n8aS5KZzKS6Mg6ih0rozBhTWtZMTY0XucUvqnShpGDXlmfPOqzNeyvJCBUrLlo6usHu+zv3bmrWSRaaKviuflF4J6o4lTIHUWLi+4ZzvK/KvVflZqeMIZNxoBbfsXIfzJLhNQOw/K3er+A+2rN4ZAgProl+zcYJGgJxilzJGqcBUSGow6va5mGtyQLMWlKZQx6crEAq2aJYf+dsdb3145j23FoKKItYmpop+TjwruX2XXrDJLgPFql4slLjkps9F2t2rsauB4wwM7EWsNAQvrV36FmIUUttlkw1HSBvF48IzjtCCDWUsNQCKti1ubm+f1bA836HSAr3KLgyW5mxt1VFulp9OSxVDzNi5vsWGIVrR7+bE/vfltRMMBnVlQWXaaQKYiVqCrvI764VPmRQWwahCZuwMevBdMvv8nh1Y08Dfsur5DnVg+/aSei8nLIQSpKfWJhRA0DyM5gfrZEgjfUslXQRgI1Cb5v6pYTKZdDaj21dpwgEWivvHEBZlkWwMc21jVwEVbFaiqKEuGWNMPg1qsqXX1/xF1/+lpPzEz7/+FNkHBGxPTSTc7AbWSEMzrNn6uaz0lke/0ZGO1BiyfbuXFq/ZdnVlyhJPmLEqsEnZuzI9XttjUgKbxIhqrekJMkKmPfuWgHnJlJdlEnO2Lg7njp4NkS+Xw3cjQPTtOpmcmAkhWWkzJGVKm2Kszc80YnL0rC2kb2c2tSSKvRRK9PTNEQb6F8Jse7NsaeFAtikvb/DHVWoCpWOWv44hb09Lzo8zsqHpP192ZuQ63PejSu+vQ28im+40pGb/fvs98qFP7N9aENAh8jqVFhNFnjlnGWGtOlwnLBGE+1OOsEK0ICo4kUt2lJsryJKKTHh3MAwCBIjzqVxT+/hXBWreQS99+AgkL3NJrM0RksymryXNnUGgV200lKSlDJpaDkDAcuoO+AmG99IZJI9OPOSrnAQAjJ4VpdP+OxX/wF/dsG333zJ3//mb3nzeouyBX0N01vC7hXjxXOcfsJw8Qz1ttYcKVRWa4SGE4y+xRHDaN0a1okyJlRHbvYTl6sLXHS4aUKGE9YvfsYLf86ff/2XvLk8ZYvjZdwz3EUYPNELo5vQPaziijVn3MnLAqpFrSyH2XoyNNTyoyGlI0+0F5Ly1XrNS9CvywbVzBubiIJkSHJIzeqYiLdkWE7KQAXV0mWntPWV9uMvgUfARWUNRB+I3gwG/u6UX/9U+R/+5cDnn/xL7njBxEB0O9a7O6YxEiYYAwRGJg3EGPB6wrQPTGMgEHGDY9oHtltlfeJR502/9w7HmtvdNW+v3/L9qy9Zr55yfnLJi2cf8k34LfL2FNXI+RO4dKa0XwVhRTA6yPIyK9MiIN7GO6YQaoKxgdjL0SqLEt8pZRu0JLRRBI1CDSQ1+i6maoExxaOIgg9pjrKymHhSxgo6ZDEoNshkA0CEuEfDHo17VHcgZ4C3mAZJHuxkCMzJnoxuPF0qzSRNHYmn5qRAiT9L2sfYcEFKWKhUh0LpZ7F0g+IIqkWJlGSsqjAha0CHOKUYm4rFLcx1nyrXM10Xmq5ZnA1/uNpJ1bLysFgJRMEVzGBz0XobM+5SqgduSVHsvZz5GeWLus1ipqwBlkk6X8fsaBS84p2l4tsWd3WizJESSKX7j2hFGfNPoXrIXaFhazSPftF7xJRDrwNOAuoDk1j2bgcMETYOgsVPcyaBl/sLruOKIIL3E+LO8cDgIoF9qmaQsV/Ve44fP5Ky+JgjqoGvOERiGJmmPfvdZBOdhEyMIa3fZZ0XGgBjfxydlO4oGtBDl7VM6xE35Esf+Rwlb/5uQ2jqnpX5uxy3tB+Oj/ScoTyvU6xEkMGKVOVw0Xc5SrhA2z4s9r19h95zaFn7jnnbVJfermEmC7SxzEjmyXPyuGn/nfZ9X2JMIpLGSv+gchGPOfpnNwy+pfv7jgPS7d+tXNbNybsdvaJaLbq+q/vUPPnYpC4cGUC1fZN2XUlVwgG++vp7Xpyf8+mzD/nJh+/hdEI0sJJUF04jUScmVbxYaKoBxUOaEWfFFBZ61X+U/rvFEWyETnmXZu00fLq0sjQV4hzeeQbnUyKFdG98eN50RusFW8wEQ2uA0Px+ml+jsXZLDSXuvdxa+bZbGI+jNNYK3soTWlJpAUOrOOb1mGGitVHbOjs7sRpyuz2vf/ea/3p9yzdPXvJ6v+XXH77P5ema0xPHNALRShbvdpHV2rPyA847dlZ7wt7OAWOwqokaCMGUfu8tBMi7rBzbuExTTNbe2l/73IcKG2+x0Otct9GSGRhwN4emWnhbmMo1MRWBLB4A/Gwu8rrxac1Y4XUbqwRivZRxs7Qh8PFnP+Pps2c8efqcv/2bv+Xt2zfc3d0xTddsdxP++pqrt1c8f+9DTs4+YHXyFOcnJKViVx1RHRHUaFVX5gUlEuOIiBKCKW1OYDdO2NM9m7WyWa94evmEn/3sj/kj+S1BArtpw6u7HWcONgjcelgHkB1THOfElnBqT1sOwAnRuYr9ipGr8tl3PZpAxg6YF/VgJk/aMP78dzaOLHrnk2wN0RQCh+PJizv+x1/9gj//5a+I61+yCoqTiSBqGY4ajGF1KjVlaqztOifECU7OTjg9G9jtRjSY19HhiASurl7z7XffEKJwu7tDZWB9d20GDLH5HMdgCV/ihHekZwvKkN4tmEKMMDXjkem2D93T8q/0V/NYVXCtuR1AkYM6wFlRabNDWjMBW38TyogxK8EJhJC8NGJGoxAiUQPTNKLTHk14YvAbKwkj3tZiUg6zgtMay7Uz4hiN1euyQa2yRzVr6z3UlhVIinHTyDx/0RuSe346b9fV+7orMifoj8zr596yqiyq8Zo6QVhCqerJzYm/7JLDvX5aJ7wTGe+CUUq0xVxBrIN8/73p6PDRUUVqJuMf6Feh/ajd1Qc44ch9eeuelUOytZ33HDpX64VrhBAiYcr1p6UOSawyWt5hXB86ftwEN1qXS9SJEEbG0fZsuGRRiY/sfJ2cFg61nqGWOChgZw7O2qMD4u8iN5KcKUzg4EgCfHaytaTo/PLSdGKo88U/A/qZoA8UgEUhlXnpPIuYHrTftdW+S9PNedhEPlEE0xGl5D4GUDwS7ZwsCN35XFclpVpyM2NdmtTHMqTFc4+ikYdByMMWnYf71AONBYW4ASbtmPVWspmh4aihot7b/m2eC6vnVdrobn78+yzcXYRj/i9f/8ObG7767hW//fYHPv7gBSp1F5h3Ail7YgmJs7sP1mMJJVNtMiDaumoFZfG0CR336T25uf9JmckC7OC90pppC4nP+5X65pzDO0npr48YyWb0XOBUwRI1TNL6JN33eRzyE+bjDxQHo2pPT8cNGW3Ex+GR36+/pdKoLnzOz+sMZ5rH2v50MYXvRRinyKvbPSM3rE5fcbpa89F4xntxw7lfQyrJMU0TblC8F1S8FQBPWEiAnEVGMQAeppaPZ0U+j0kkBOn6ujRGbZQDmrclpP3fqlZz1DmcaEqUap7VKGL5Y1ym14aGKopMD0lJLxwQvV2TFeyc4VjN4o9bc3L6hI8/9mzv9ng/oPo9292OMO1QVXYI25MB0TUSB1YnA36dvbxW+1Bz1lIExKc1Z32KZcxgmgJOJrzzxBhwzrHebHjx4nN+8vZ7rseRl3eRV4OtE4nCKqRniBKaDIAgaa/mMX6aMgpKHa0KTpfBYMu4CqsuMqW5boH8lwyPta32hiNRT9nQAElhtOy+v/p84leffsAn7/2EPc/xap4biZMl80qhc1mJiqrJg5pkPzniQwhhIoQ9MURL1uIGxDm+e/WS65s33O1uud2OjOOeu+3EGBTxe3b7LSGOrByI0/QT0SmisjKFihIYb2+Q6hpm42LLZbTMQe+ZKbJcK+Atv4vCmFluw2s003gFy+iExgnznMXE+1ya0mSoKRgioHEihpEQJ1MixeHEPLCIa6KxkhLXYKGqRNrfHRYjeyKl8uwsU2b8tPC4GY6RTB7lvHQYsPKbFhdI4WXa9rn0McvzY06EhZBpzRTayrGMXW0ONNEnifbKjWni6jppM432fP3oms600pxv/15SwpawY/eWnSG0dqV/7CGePVjvkuZ6LsN02Zh0n7zL71Vovh1+hcG5IudVk7IYAjEkxNOslTJuC8bZQ/z4uONHLp1RibEoi/u0s8i1iQLS1fdYWJaUxV6xmD03/T5UXA7BXrvY5oA6E/Zhhw4VxcPLqoBMD5gpjO2i7omse5v7LE9Ne5KeUU/dTwDHFcR+cZnTvAlVzEynWVh5drKiW8MxyxOYA9KigKTvjwHIeV8X3yMzJ1KChSZst/3c00FLG3nBzkFB/+z4yD4t9rHrw7st0APl+MjcagafD43X7O9HMdDmGZWx6eE1hSyElis9pJwfdrlBaok+nHO8envH19+/4ctvvuNf/fEXrFYWAueygldk2Dy9fgUukMsbpGcfapIdXRTZr3Q0XAVgtZ63NKaq9dnNuPaCOp+vz8rWbksIlYDpUtxap5gtj29rPDk6BzNyrKUw8oKQXsg3JNwKwaaBZmj6citHjRQzwdn+znNfFFgE25NIeX9nmwixmnHC7V7ZyQiv3nLm17b5Xy8526zQDahTA85RiepQTclj1GCkU5ebM1WrgBt7D9s2kVLmqM1TzlSagZtzrlsfqnm7RfbepqQjYoYXp3l/aySKx4kpiioKLuVerXUkmJf40LzmxKWOu5REos2jb55HK+ExEMaA957nLy7Y7XamaISJ6YfvCSGgYUfcw/7W43SNBMHLGTKcIoMnikd0IKbQYIcpE8QWiBt3HkQIU2DCMbnA5APr9cAwrHjy7DM+f/qXXG3v+PZ6y9+tPTo6YhCGaOtlckpwik+mci2lpzIh1CQOmVJIxhJJNLZI/mU85+u7WX+Jflux3d73bnjrOA4hKxYSidHCBf/kF54vPvmQ955+xg0XrPUK4giMJWKo/zFPXa5eoaXzwjjtGfd3OByb1TnerUGEH374lqvrN4zjnt0+st3tYTtyu91zdu7Y7rdEJpxf4Qexkp5iioE6q29aPK5aQxGNX+S/Mw7o5UiH7zRXUzB8aHUiXaGh7r7kjbRghCb0MQ1x1AAa0GjKovfZy4d58hNjVwnEOBF1IupoW4ZkAPGIqxnHTCHMHrq6R9mUxD7jaS8T50pannvraN5/LJVZF6WgkkVW/KQy9VbBlP652ZjS4uHCy7P8KfTbJxHq6Prg0I7gcxKjPM+tstiJUJFOVmbayJ7hzjBdaOHIoporVguyo+3uuxxttEZtvuLDOd12xvh3eM6xNoBixCi/Ex20ffLO1fIYQJgmphAtA7JkZVE6G+LC2+beLIzDQlK95vhxs6GmtxMRpumO7e6W25uApFTk4qrC9Rjgraq1Fs7MSvdwX3IbXYsUokgKxjHg3Pbh/v4eft+JnoYRNDLnQGF96MhekSIMZ31asmwAB+DloWeISHKhJ+t0w7i69ypAGmpRrBxyUUFwo6PVfiYGeKAQ2QVdX+fj01rpqxKW71baelyVcSrtDNi9lM/M7vjHO6oSVN+pf9d3OR5DN93TW+b8gBLaeklyaGCZL3c/U5k/7/HH0jwLu73w3as7/tvf/5Y/+qNv+eyDpzw931ho4WRh7erS/raMJLR63RafVBh9mpOYaN0bbchRSkg8pBEm9neoggAlx15lpc2UWoGD8Y5pb48WarX9aIp/UOrp7LMsfK7vW16X3Kd5a01airZcQdfnhXEpY5HWmlQay+s996EVlG1Lef96jpo/MGbZ5CRQYnMQtjsLOVx7/OkFJ0lBePN24v/c/Y5vr97y5vY5l6sNT54Kw0pwEdgHgu4YYwRZWdZRaTK2ZiCmwRTG5GEUYsKQYuF4UHQ00+2aEG2pxpCoEYk5vDZtESAaIA22B8hKQdl2DRFJHo01MSdBj5IU+rQu1aX9j/aQlVsDts0DQGOghAuKUnMlCcPJBXGaeHtzw7P3Puby6TN+9rOf8//9P/8X3/zuK+7u7tDxluuXt2zXr1lvztht3+d0+wHDySV+/QRkY9kiiTi3B51ANIH8jOYdMgzEaCHiY4i4/db6vDrBbd7nZ89/jk7Cdv8lX91c8vXLwO04cbYekWDzoF6Tk7SG9GXvf1Y5rHqDKUzJFPnO/NHmLlNmf+9BSwmY5fnOsmgO8JrLe9mYPmdsM8iKW9khq8DzC+F//4+f8PmLTxGe4+OWXRB8DAzxtikYb16FMCkx1LDOwpOA3aSsT9acX64Yb/fEURjHSByFf/jyH5iIuPWG9z78lNVmzW675+UPr9mONyCO9fqE9dqzWq0R8Uz7iI/gBo/zayTuiRrs3XKG2W7cYpqLvA0pzsYg/WA8pypVRvmxeBtrVIg2/EZUU/FxZ1ugQlIUNSSc4XEy4GTFICtTEMPEPm4JcY9qRJywciucDKYw4hsdS6zt0mNXFUHJNNPK0oxlMhZuCavFIq2i2GPb43gtP9Cn6I+KIWxlNMprY4goimKhisPjXozYeSEto4pNQTIcFGUxvVrMb9oqRDHRxwynzvpwrG8Hf2cF8/dY4489Fg2yMyVPtX6XjYUlv8cDesUc1zqXsp2mGqgmbyziRBWGYWjmFfb7if1+ZJwCzg0mKYqY90fnOl/xuO/q8QcriwdWY4wh7Pa33N1dc3szNWNWvRKPnmLtCfw+pbFYHPOtOl/Ix4HxY4juPtDUnnOpM1XbP3xy8bI11/VtHfZH6gUd0bT3dZ4AMnih+63NuapANSeTZaMuee08bG1yDLOc+9JOBwZFrO7PO6hgfWgGBwuq/s5MkNl1/Rz1YRo0fVt6dj+r88XWA+53fafK2A8Z86HCuORpaTryaMZ67LuFTh4+hyacrKHV1IWaKCefu0eHnBs25vNS2qSl1+xdWnO3j3z18hV//Q9fcnG24sn5KSuBnU4U62vbVgLUWXr145eyYUq2SDsy9NNgmSsP9tzmNdmO/Uz5aUYt39SOANnzky2s+T4v5lH0LteyVEQWymdoazBqFa4WhNRQQPJYNmtEo4LElIW2mZMCu1sQ0r5+BcMt/Vde0w9TpgVprpsri7WPtR+uMURMU9771/MA+/Gw9ok7WaIk8xzAqMrbacegVvvvxeacn4YnPDtfc7JOZQVGiDEg68FCHVPpBRPSlmEyxqQzSgI7Cs5F2wvmrLRGHl6XkwnlfYuZl4jixaESLaxU6rjHEBINRkRdUrOSsqgOZCjXG/ityc3MSeCKshGFwrOr2SH/pIyvIuBSwi/vOT0fiOEWD5ydC//i1/+Ks7NTvv/+W779+lvGPYjsCC5wexMYY2C1vWV9smdz9hQZVqnOqS/ZOW22Up1QrN4XOZOkKlEDGkeiDkwCZ5c/4ZMQ2U1b/u76ltv9yF2c2E6wCoKLHvEeyfsWMwtOirMjhaUmbBEjyctVlYulo/McdDQoZd7uP7Kx5ZCfH5MxS3RvXmYDYrsIn7/v+bM/OudffP7vWG9esAvCZtiisk6K6EQIoSSui2WPUw1FzTE3USODX6E6Mu5HphhZrdfEvfL69Rtu7u5w64HLkw1f/OrXnJyccX19yz+sf8v3L3/D3e2dhabe7tnvJ0JQ3MnAxekFE2smjE9qiJZyVWuG1hwmWJTBRlEsPCBp1lVy5/1yeV4y9mjC/IBcgxEFjWJeTrNQEaOkZDrJ4IIH9aCOqOZNDHEijJMZbNKacjIgbkAYQAashmhDctm7WChEKq2kbxcxWbcOpUHOwAAAIABJREFU+7kvSmdzrkUxTvvb7GNWXBMfaNVYqXvx9eA+Lby5fHcISmfyP90T+4szPi1Km9bP2cJYdaj8XDM+LilQD6/RI+cXv7WXy3v/jh2Lclvux0+2zjOmoL7z/PGSjUa6dPreI/MiIYfTO+N1LjKsTHE0Di9MU2SaAlOIbAZPNpOlTnQK++Hxz6AsHjxOBNXIOO3Y7e/Yb+uGkO5FFpjrI1q/h0Lua8fChQ7XxsPPvd8Dszy4LeAlTWBmbsc8ZUdamfWlf2Zviatg8dhRdJ0Z6O/OFfhTv9cFkustfG2fS28X+7D0vnNPw/yapXvKXgmZr9e8QOu+LZkxgePC/fEKYNuTh+5dUmR7z2J9/u9rKXvMXa3nqD0qqR4qilF1cV4yTfcq76HSO//7Xgtmanl+n3MDUwi8ubnjq+++44vPPuKjF8/ZrIb/n7g3a7IsSfK8fmp2zr3X3SPcY8vIvZasqq6u7p5eBgZGQARm3kbgA/CGCHwEPh0PCAI8IYhAw0i3THU3UtVVuUbG6tvdzjFTHmw9y73ukV0zHEnPcD+LrWqqf1VTU0WkCzn0Bg1JRBEA65DfJHQSgHkJLx2t/GkJTegqfZtAUBIURUBGuBNvjdd4+tHJWg0H10OS9pwsXlJjqtqV/F3hBceFr4zuZUEvQ++EYgiJ45aBUo0wIiAa8aFpG+LgZUVnRqAOxqbQRTawDYR5WR9lHk2MtRCjLjoFE/qlKrge1pue17Llt2/fsWwF9IzH5ycsGkviaqLFEKbe0wgYlezullrq01nGjA+iO6lKDJAjQSfKDJmiMKZRVDCmGgsFje6bSMgFmZQgRRHvUZGYFqYoSGqquNGSojqWsPKl3fEnB9ooJ2FDahFBtQnKqsD5xRM+/GhH07S43vPm9SXgcP0ev1W8NnjXA4ptBNETRFvAImoj3fRRWQhyvxjZU8A1AmB3PY6e0+Ujzs92fHp+y2fnf8dXNz2XnWd7LTQK2cBSKQuSzBmSlkm+E5doGe8hnx1ec6y2GAyTbBnNF9PyprLUT2R1KO4Af1eCMcAoHz1e8B//4iGPz79gbx7EpNoOi8NryKUYlK4qwE2lYPnB3yEohvMhKIyxDZ1zrHcd17c3LFanSGsxto3rz9LYluVixaJZ0jY9fa8E+42QUgKJacLvPsyzalAWNQYvTCxDlRD3ZKQ0ljWU5jSs2TRQaf6yS61qfj//ntm4BNfdWJz3ufASxVYIPMF30fXUFd6dajXB/Tf8xHyFA/5b857EHGu+OKKJuvQJq6zpYihB63/HaK6gpCEta/X/AJGl4j0j7FPVIKNnkuVmXXhR/Mf3y0RWz7NSOJI5FT+Xqn9FHs5fPxwPldGbgxtj2VL3cbpxU/6t1/X42bSt8/J5vr3p+6jwxXqC4hjkizW2EsEG7xzOBb4qJrq4oNQ5+o4i2nHT7mjqH9wNVaLg2ndrtttbtttw+DhNmDEmx7CcI+JpoYm4hLlzg6Gc+OJoedVrO7nIlm9GO2AH2jGvLM5toRQwGPctsoU5x8mngKLx78eusqNG3inwMWppjiRY9VMkMGnvh72p66tdDOvnZWGTGUWQ2UVlHDLNGeWj8sfPSkXVz0QnMx8eJO6pclfXnfo53C1VdRF8Mvp2/srWzkPPYhvjjXvN3XFFMd2/mx5mAXd6t1aW7mhTmte6jPk1VRi8VnUlARNASqA9E/Onej8E/LNtzdUfm4d6mJXGNHTec7vr+Mdvv+fnn7/j46fPuHh6imk8qg4VHwKFjEmi4j0SEUWSbxK2kdAYICFEkjQpc0HcUUq9puycqAaAlABbBjHDSMKTfh0QjMZAYw2ttTSNxZoOI4objVHKQxuEdCm1FoqJhgotFYGV25i+q+cpYUEiv03CPoUyTLzMjHuX6GK8dsKZnrG7+XS3tha2Qze2MTirlW5VpW8brFcWzmN8SGTuYh8WvkV3ypXf8zfmFRbPvusR23DSNEgjISauDwFUvIB4xTQGxQcaqMCbisTIdCFNg8lpl+rllJTwoMwbibnzKh7o1ISztvEL54gGgjBPIQBNcK9D++DWJIKKx1qLmlJ+TuWJFPfTDMhqYGaCu6yGAO7OB2t033e0ts2pkRyWjz7+Ec+ePuf58w/5v/+v/5Pr6yv2ux24Dq/vUN1gzJbG7tH+Ac6e0tpz2uY0jIlRcEHxUITehejSDsU4h0dx0oPs8HoD7TNOTxcs/JKfX/6ab3bKrRe+umnReD6PrsjUWvkTCMq0SQpDpQ7X+JXp9UMw6Gg1BgVnDoiO/k7YQ4RZ/u5Rtr5jsYA/+vSUf/PPP8G0v0C0B+lx3tD4HXvfsVNFcWGHNvKf4K5ZMkaoLwqjER/O6HrD2ekDvv72Fe+ubri6veHTz79g13ds9zv+9m/+lovzJwiW/XbPyXKJfyAsl47luWO1PAlGOy9sNl1IMWMA51DXoa6PvCXgtDT+XglxT3yZt7zus61b4unGeP5c01nFIFMShys7kqAqMa2GxUYWpa46D4em6EvgQ1oCt9+GNqbdxGqXziPYmIbDWBsxanpaT6bNc1p2O3WCXca0IgMhFI0/kZdJvjdSRuPvlSjLP0PeGBQ0RzIG6wzRV7x8Rks4JJLrHeIBUsiMb+hWHKr3+c1gMBgFWiTEMTmoiJYWx3fe79LYLuQI3huco5pi/PHv6WeM3VUSr6lkWdXmea/B+TZ79eClMpIkwA+gNNZiJHnWmLCr2IcoysZYcMnoksBTntncllJhvlu14j/gmcUUAEBV2e9v2Wxv2W19YeHeh87Wbb3XJbnjx8H0TNCMA8jt/XdxDqoxjBd3AqTvp0xMyx0rSEYkhkIoQL6utlYAfULE1ffHdtfKg8QDEhAmDT9ICDhhjM3jneori2iojA5y43BEUeTwCM9dseZY5ni7v7StBES4+zrWtknlmfdPGc3/n9exnds7PrzzlaPKdMU0xy6rc1WlnRoZjONQyKV2WxUwDb5Z8OLtO/7hd19x1i549vAR2Aa80ruelYCfGBAqJh+BRqmAPJcJhGRAKjAwRgwUm/S3JnQGpFxKhwXFoctggrLYWFaLhrZpMOLp7zFthe8lBTFVXhHpHZf3fiongrQahb0/Ru8GkZICo7gQC+P0PXMuycUAFMfSDFO0zHqidMEYJMaQktCrgPFCIyGVw7533Kz3/N2bSy67jhv1eJ7w6GTB2cpiu7ATJsZg6/nKpJ60sgLy8AnI+swbG0AxMZJt5EkAPgQGCeWFnUOXSyPnH0vWYlUNLqiqISWMJ46l4DS4wIoxwbsuNTSlMlGikskwAXZUo0TCJmazENQp3S647BqxmHYJJoyZkZaHjxr+7C/+JV9/+Ru++/YrNpsb+r3D92u02+D2G6w9o2kecHK6g5PHNG0bci8iiLGIBiXWCHjn6bynkSacmcPR7pRudQrtAvPwA7746Gfc6FecyTWslRdXit/30LvkSVtoKO7mJtBXK2IpUIMQaZj3xRujSwo93KectBswvHe4EQ64Av7rP4Z/9cvH/OKTn3PtT2ibDRbHbtvR9Ht63dN5lxP/JAXK+xDkIiiFlJ1FCedgG9uCtLx+t+bF21eItfz0Vz/n5PSC12/f8vLVS/bdN2zWt4RgTwZrFSMeK57z84chwI1J56YaFBcsHdqB9vEnnLkNwaMiP8rYbQhckyIZFMPEhCsFLD2n3i0tBoNkpPPJwKQe9Q7nOkQdRsJZurBELaod6vZpcYZAIdIGTwQEkTbQTTaY1dOVNbSRTJtR7sbip/Q4Pk5eAiPebGzmCVORIcnSMEc+VWuLsW3aznGhvjAJHc/OqOU1lBw3QSVGah4bQuf80YYtSvJz1rBcydsQsEvgnrES7nulzYzDzSxKYo2fR63NRtr8VeLDkzFJz0fllUlL1Yb1G48n+FiOyZ7QgmBx2oV17xxIEyNrD1p/rPejf+++jiqLd4GdMcEHeR/AQdeFUMx9lwI/hEHJjO5AudM6h50a745l2V7vKgzaNqNAxsvMEF9qZ/k7gZgp+J24JcTLJ0UxTezB74ZKXA2wwxmYUZ+T8la17z4um+O6UtCbuux8TyL2rYlZCqMc7xDWZR8GgaP3hayUDRXeoqodWmSDdzNw9dWCHX4X7K7BEjO3szoudyzU76sEHlsrZX7n3p0fz/e5jqkFE4ak03fz3zN9SHSR7qcYi4lm6lJCnrnqzgw9FDfDGVetIi5Lfd5jE5hvWta7Hd+/fsM3Dx+w3u5YnjXhfI5zSGujchPLqc9JKNWZSi3/jhl1HM2BkpRAYhqHzHMKvR3CCPedUyGmzsjWQxjnwjLGhCABVd2lDcU1VSIgkqrs8bzWfCRbTYkKS9Kis1CjMhrNUVvSsqf9HvCWUV3j94BBzsX07yEet3IGNdAbpY8JuI2CVRtoQgQnFuOFd7s9ajyL1vD0dIHhFGuWtNVZUSNSgnRIcEcN7a92kWK7nKuMEEZI8Rs1jlG4HcBIcsWshhzRHAomqXKI9xgbzmFKTCKfQJXGBPHqw86nlxjAI+12Gxkmjq8UxDzayVAb0wrY1uK6HqcRftgF6rpgaJQFF0+eA47T0wUvvvuGt2/f0e33dBsPusE24FqPikHpaP0ZrZ6FMZO0cxMPfmalNdKQ77H9HvVbeqvQwrPzn/L51Z7dA89Xj9e82oWk89aVxRsMTYkmizxMFv1MHyKIjz2fYcuD5X7kSnI3tLsYHlP6jjFwrP8/2ImgpoGhGuJFcG3Dv/hixR999JimeYbH443BqIXdFt/0qIY8l4n/prJS1zUpVdRjE4K/eCe8ePmay5trxBrs61ecbDw317dst13IBZ0tRh4RjxGlaQwX5w9oGpuP7Tkf2gEOvAvAWAKod5r4RgTNqdcjcZd4WPEaLeNU2HLttZHGPEfAioqmj3QflEXve0LSFR/seCbKGy/UUW6JmMCIAWNBmrCjL/F8sElecpkQCj2M5nA0/fl3GT2oPSPKzxArpivzyPobDbxmojiOZXzdjAxoagxSsEA9xgevSuYFQq5lXlG4BuOV3h1j+XoKIpFMJGQB9ZVYmbZRBp+M2j9SOMOtIdYqGDWu7oxN0ndFXhUDxRCzj8tLHR8j0VnlsP5dKvrITEbiGopeAvXxg1i+17GMTHIpvFB7A05l6UEkOHsdVRZTRWPmFlxtZDgaJJI0qN+x7/Zs9x37rsqr4snRTdP7M5XON38GyCYmU+9eDQZDyntJVCWLVHh37LaoBxs1TM0wP6jTeZBqwdfv1Yz+0AIffpMINc+KyHRqpbx77ErWyLGynAl+NLWHSagsqrQ2K9o/MJRafXmo1Dg/WkrJNFMrWRXjP1xihGNH5mBWgTzQyEFNc7h50s6DXw/bVI1b+jMzucGT8m0CSjVTONSWeQPMuHVThiujvtRdnq6D4Q7vuM56TGsdbbArNvi+/CsIViybDl6/ueKbk5dc3V7z+OQiKHY+VwOM5oiC8/N6HFhV693n0sMQaY8sa2cNGBn+HiSEagTmSCqhKkGiwmKqlAyDa8xftH5nMDOhiwlgUC1QCmDIpzWz4plKKApb2qUI30mu5aBxJNUruaK8VJMSlkB2ek/y+AtgDiqMY37VquBU2eLZimPhg4Jn1LCXsIumxtCoYb3f0mtHg/LRg1Naa1i0llMLi7hrgjF450u70RJARcPOcbqfFBYRQTQEyVFNJ/XCmvQCIhqdtLW48MYCk7NW6HV4pViHC32qhheCl5/Hq0HEZZAZ5EEln6r/T0Ao5HPItmlxvYvxK4TWWnrncBhULKcPzlitDI8enWFEcL3n+uqa3XZPt+1wDVjnItjcsHDnoBbbNIgN6QdSOIbyQ4KniOtRv6E3DrUt56c/4uMHl+zXGz57fMv/+w66PWgXXJqz5JYCxjwwXirJ7bPQfJFT9aWjPzLAkvEL+SBMwb8zUGGOAwyAqtYBScJvLkbXPDu1/OVPn/LjD56hXGDERXoU1O1xTVDwTeT19S5Hcm5QLbuKaYAkJqHtOs+Ll6+52t3gRVn3HavVhn7f0+13qA9uzkLYdRaJ56eN8PDshLZpY8AYj3M9IorgKCm2Ii/xSfmAfGwosrjsfUIZ6KQwCmki47/pm9jfBIrLTlOYiEDLSk6XoQ5yongTXSBDkJym0ruCsTmcvxTbkM/+SgIx1RZjTVeptxJnsHb7G30wayjP3xdvhaQQHsSV04YwkCbpu1p2Mk+PhXCr3a1a0M5+ovmzypw/I8w0zzc6QTtVyxIPqJ9r1Z0K9020T8oCjW0vsn7m3VBg5KMH+oeO2lpkYv13ouupnjBiGJWsrfswVhin7ZEKmkgewFr+lknVyMvB+cKfUj+kav9hg/Ww/jvUhvd3Qy1EOG2AekHFstp+x5vrHV9fGd5uhUfGhdDfaliLJxyPnipE5HLL/WwdrISei73yNaNKPZmlF6EGAD4KuBRpPxPAoRbJvFtdmXCXFTyR4Ps+V8acZeGQ2+Bc0tSS+TBDtlJO7G8dmjqlhUhA3NrwTeqvcyFBshKshZFdBuBjJYdAzr5VOeeYieshAUkfLN9jZiWCXSzyOHnvs2Cw1k7G1GmJrjndBEpAIXV4ONHDhVfcYo00k+dzFqY87gR6SoCmjKUtSmXVLi2m0QG51eUXZXTKJJLj68C6J3Lnws31jIwGY5e/+195zzC3G9VocS4KwvErgOK0puq2aP2vBtlsKgUgW5mjglMYo7JtLMb3NLdbHuoZ764c/2Df8H/85q/5L07/kkerC07aJ1zrDUZ7jGrA5TZGq/ThnHQ4ohhoS/LijygrjWPFjwdCoZ6P+GJwb0rFuKxU4INrqfcuAHzng9ucljEM4xN2jAxph8og9LR+TYuybxeD0d36NY02pJ3ykPdLAzDKlaf2Rp4n4ZFHh66mFZowjR3Ys7wL7fIurleJOXJnDC7JuBRulEhxkAyDKWMaEQTqYH2EpsQgM8pAYtVGnDlPgLXZh/Y74VTaTFy7aposYcftYrfEbXv+fn1D177jj73gsPxIG6zbYdsWXZ6ya5Y0VmgQFIcaBxLyOzoNEQdNdBlzbg8iNChdF4MUGRPOlhB4aRYycU37bk+OF1JdDhBrIu2bkJbCb/FpF0EF720EuAEg20jnYgL9qZD5uYrPwM5lFTaMmzWnoOC0w7SA7cH39ApqGqQF2yh7NjTNCWcPH/LLf/YRT55/zcuX3/LVV7/hzfff4/s9aEdLT7+9xpsr9otLLp48QxanaHuCaVZsXThC0Vrhpt9xsrBgGnZ+wYPtW2hPce1T1osnPHn+U1ZLoe/f8O7dln/nLL/dtzzZb+iaJc5aVHY4cfQq9DTYfcvC7bE4aA2qNkQM9dHhN9JWTb59BXvzabG0JmZ4bw4IWWPQ8UuRLlP+VxHDznsWJkTEdXqOcoUVT2vhVmDjTniyMvw3v7jms5/9JScf/Bjsigf+hN1uS0ePe7ih3+4w+xPa/QNu9AWqBqewddB7oVdD79PJzuAG2m17zlbKvl9zu97w5vo1t90GR4/dvsM239J3HrzhyZNPkdUKwSB7j8op3eIKZUfjYLF8zMKuMNuO7dLTqMF6g6cNbqJeUJd4pmb36qTspd2n4LQkqCfQmyYOUA2+Kevce8UpuCo1UYq4muc1BGhAXY+4oMAm3CKNyTksnUiImByED2ptVBpjfWlhyjAK+HiKU05fMQkPGGpjYcY7SdglWtGal0WMIpH6Mt8b1VfRaGiaB5VRLr2YziPtoiYlKtY/4J+a8EY/GMMCaKp/NQizYIwN6VnadhHkQ3zPWoNXH3Z0bUQAMQp5UQfLoil/RWwQZYaPeRqlakIBfCb+v+x+p+Y5V+FdU2He8eqsNgfqOQpj0MdXalyY+lh+Cr9I0Xdr3UFJB1EQDyYGfarrqeqfXAqKj7IlnF03KuAahOSq7WN9Hq9Byt36hneu5ROFpe7w8ciOxeMSnh31vRrcURO6+bbF67iyeIBxlsqGoDbQvkd9z2a7Y73ZohoEmIlLOEUYr3dCBp2oLDVzACHTD8nNZ9iisrVcg45yP5ebGRXlHuOlWogqlTH3rP67VgySgnNMSTyu9R96Nm/VP741nt4p72UmMhrH8n1UZmR4FusuhWSgXNeAu3qe2xO6M+jb4XKJzF1y4uyZt4627T5XcX2Z0uhkvu7Q6mqaqCPYqZZk3Wk+s7IqEQGWBjHurQ4Y253NqN49Pj5zzyVVUr1z2Eo3X/6gCyLR8jUcn9k2SFDdw9y3IWS89Kx3ypdfv+L1p1csn664OF3RuBAqXZJrUnKXGeowsS2a20C1tkNfy27a3JqdeFqM+z+QeNN+1etDRfMSEWNYWEvTNFjrwc0rZ4Mxi9sqadNqzFdqT4qyY3+Au9RjlOk09DADkPjdmAYq7jzi28Nn46Gq63qfa7Ie8+cyS4JdK6CGB53l+vUVX6nH+o7z9gOsaREDru9oxYYgAyKouGAwkwTOYpREA2KDKooGo1saD+9DPjEv5GAENp7dFJEQwVUkJl3WBC/KeEaDmfcRvCZ5qJZsvYt4JLiiBpfVYDgIESolEwMUV1Yi6BhNgaQjD+VbUYNXC+rxTul9CKby+PETTk4WXJyf8ZvF3/P27WvWt7e4bs9q0WKbHtvf8u6t5+T0nOXJQ5YnETsZMGJYrR6g3tF1CsstC7/A9haDg0WHLk5pzp7zyeMf8csn37D3W9Z+z7vLFa13tH2HM0pnGixKE0GqFxNlW5Vi45gITSRT8YCaroZjNFdI4he1LJvK39a0qPZ03uNZs7LhbFwvHT0rlqbj+YOG/+wvfsyHTz5iubygx+LcFZ49RncYZ9G+CWfyZI2o0PU9ITCtxCizKehNANDeaXBpbwQ1ihNhsVzRPjxh1++4vHoFe0e3d6CWiwvP2eqExli86bnZrFm1DaYR+r7ndrtmYYXGCI1tkD4YEv2Av6S1XMZfU55ECp8L6yTA7zAH9dmxYCh3KvGsYjKAx7JUq4ApYb2oapYRYmKeOokG6Wg8IRpyUsRTbFTWsiE8M9DRrNbzL/lIznCiwxdjnjT4f6UkllgLkuu7k+bmSDDfq4ldq3vluSqVM038o8ZmAwyewHGUNVV9Hh/P0EUfQR+CLToXcm1K5FdjJam+pvdS++eeFe8m9S5i0pLGJOU1TBssxeB+v/ONxQ113Mb63+oYU2lppGnJ72k8zK6UthzC5BPvwiSUtdwLwZpsMLZK6GvTgLUEwwzgnKPre0QasnE7tqVCNLnualjf+7rHzqIeUBp1pjFBADrfs17vWK93AZTlRlbRmu57pR2OgbJYFIZBn0dK2dEdvAEerf7QolwOiy6M4NACGLjTzbRjXEZt8Zm2OYzTHPibu+4CW6X8Yb8Lwxp9r6kN4XeVaR/udSUDUvq/jL/VbLPJfZ36AVXguCiv4/YcY0yDKb7nWN33ncHu5GgojylWgUnMa3oDBW3EdIqbxt1zMKv8TaylNW1Mmdtd111zkN45VNa4b2MjkcSdEZEGj8Opsut6vnv5jpdvrjg/fcjFg4ch4XoEzuEqxBdFWCp1ysRH7RjT14GeB/6WeOQRG0q9fkMfS19TpEABGmvDzpSZOramHe/hGcRUv0x4RT2GY8XuzlmtjF7Ja6Lu9/11u8P0NMcfZea9SYljUDZT5vjv3gZ5vFRLt+l5d72hbYXvzx/Q2pDPamEMiyamfFBAXDRwpl3VABY9MdaClJyZQDyzG9ezSFQYAy0mxTGAzaLcK7WiSAZp4EOET4lnD6OwG4AYT0wbI1gvIXUIiX/GOYqGmSxVJNVa80UJLqMa3J9DGYrG+Ioa6btZtJzaM5oG1usbrLW8NW9Y36xxHrTvCJFkHTZGdHW9Y9GeYJs29EUtGnPe9ezo/QmG4FYLe7Rd0Zw85tn5J/zk0TVXveNlt+btZgW7HvEecUEpCBZ4D/Q4afGYoXwb0U3hm4dpanwd8kI5xFeHBsaw8+KcIZwT7TCcogI9Hb1ani17Pnts+OVPPuHB6gJrT3De0rPBaIfRPuwuuKAMOjrQ4B3VO0BtBpY+RiPVeFbbWBujSO+5Xq9pFkua0yXsDf4dqIemXdLYJcY2mZdZY8KZWhGsCNvtll3X47zSNBbvHMZXPDKN6gBGVcrhQFEkK4FpljSPv8bnYSeluJ5GLqelnFrJSYYsQUOgGNEYwEYyXzSqGJvSu6T7UemolcED8x6qHM15XF9pm6+cME7flUEpck1KG4bUw5Ri6/rr7+NAZgU33YrjkBWmcUmalZH0e8HMpeUZfeV3C/aqjdpADDAUjAbBC9AU5W4Gh89dqQ6tR7j+ZICnw8/8/NR1Ha5zDofX92s8NMYmw42Siv41eviQlORp4J5BWwd8onjN1Wsqt0HKtyEfMzlImo8BbsQsyneSzjoOR+GoPnSP625lMci2A3RchE58FSNK1+24vLrl3dWG4KIZ8pk5DRb/OiH0ZEBF8qKra0nvhqbMgKIDIGG2jtjaLNyrssbypFZ04TAYHl5TMDVuz/tM1n1A9rGFOQGLOlNmXrCxzvJiKTsDjFrJDU/m2hU+T4C9uBYmi56WD/CE5OQ1ux0um8NKztzz4cLg3+s1MGQcXCvDK+8uVUt6wgCPGSaSBsSQ9O+jHB7pyaTxx4D43HWX0p7fm7l/qJ1CH9yHzAKVHR7Ydj2//+o1v/vme87Pznj+7CLs0tTnkOOEZJkdpBg64FlzzHuk9YnE4pIw1QJS8uVzJoMhVxwXlXhfmfdkAzQitI2lbUx0GR+P2VSolVzR82tjsPa14uWToS7uWCHwg6aNs8i/D6+9HyJ4xldWlmauOaPaobrn2qKq7HBYlJW09J1yddOx87f8w+odqPLceZ4agWUQw2Gnw4OkgDPpXJNBveCcIja2jQIskrLlJSiZjdHAA5O7tdOYoz4I/QxwRMCH840a3/e+zxHGieA8JGhWnPeIj7skBNpBFYzB6dAQGQaGqDiCxjxzQtyZDCXErAAS3Kcer5ntAAAgAElEQVTwKME9Wa2CGjrXI8BiueKLL37Oo4vHvHr1it/95rfcXt/Qdx3GbTk7PcVtrrldr9n38MHzz2hWZ3hd0RlP0y5CGgbZ0KulcYLgUN2hbUjD8fQZ/MnmLb3peKdrfnsN4oAefBVhFh93nkwYcyV4gIlI2FXSuOPEBCK893U/2V94oFdHs1wi3sUlGsbUaXD46nr47EP4889X/NkXX3CyuKDnhF4FJ1cYXHBF6xroehw7OtaotvS9w3VhJ9jHs3rqI71GJcZYy9Vuy3dv3vLVi1c0q4esTk/o0ZCOwzY8fvyUi/PHqG/Ybdb0YjhplogE8O86x9XbDV2veGMR27DfbLCmwcY0EuUsKim3TOCPUjCbpwLVnpIWSKv7cQ25pBgS5lrTOeYE3jUoxIIi6iM9x7yn0mBN3C23BW+EiMk287Hkxl+MQJH2K8ZY1o/JODi0NbFcSeh8qkgmbp3qH+BMk7pOqrWqNN+cIOFcl074ccBrUwUlS8Ok5EU+O9hlrFszIzdqeVYrbEkx8r4oSRm1HcCjh3B5+FSqRVrmosaYGuW3zBzTqmrJ2PWuNoSqZNLvw8puodPwrUYaDm60aTzKzuJxvlFkc8IWRaYIko9yiMZz5jGuQeBpwatl3zlM00SMnWRB6FcyVs6NwfvK7T9o6gwErDjerS/5/vUlr9/cxBj5NuRXmllSR4urLBlA9MgpBBDyoR0AmBMr3/zgjO9nRvAebfxDXiL3PK9WXWNl8NizbMUZMI/wE3JDx4xH1fMcETMrNXamphrcDhWMQvwEBajW8auvaitW4A9DetH4d2RN9xiZ9N37ztM/AVUcqeagMjSnkI2A3pxSc6/m/PvWlO95JVrKSvI92lX6GngI0mAWCxoT8tW9u9rx6998zWppefb0hI8efRxCG2jhNilYyAQLHB3GqdI8/0FZIwVIaAAvEgOsCCFaZp0vDEKUPsJadzEgg6A0BIxjJFkqy1VSHs6cf67X1Jjvpebr6MXqL8n/L+VJAkkRbevsuBy/7uNJMuRRUxewOYXwvddBF07ubRaGk/Y87Gxte/7629dsXM8X+3PObMPabmhawdoYxdUR1qIJOy5J8wjRTx3JTT/3IwVrFAUT059oyHMhxJ1AH0EsikZlTWKkw2TAzABbU3AfRTSev/JmsI5EBNebcN5FfDj7GI0SIjHQR1IWRSCeD0oAJ4NHlUiFEUjTBM1LPfuuC8bglMNC4PHT55xfPOXJow/46quvePvme96+/o717ZrVomfRtJzYlu3lC7rbJe3ihIdPPsC5BcZZ2iZYI9T0KB7PBmGF2lPM2cc8f/5Tft50bM0bvrte8yUtb+WU3Vo4YYMXT2fB9Q3WhZbvhLyzUiuIUyj/flz+PjQ3WHdx/jq3oxWlsUJnlX23xolF7RmYNX/18yX/5Z9fcPrwI7qdwVvB2gYf1OcQGr839L6A5nROS9EYvbfiQwK2afBe6DrP3/3j13z76jXvrtc8eHLCt199y83NNe+udvyzP/kVn3/2Oefnj/jbv/01fr8H79mZXeRh4QzZtnNcb3Y83O5p2oaT1UnI4+wiSJa0S2eD67ZoUBrdUNnwmtJhJD5isvLlfQTZSDSsFMyReFhSdJKxI/y4SM+hrqaxMW8pxSidXE8zsysKWfkl5k+cVfyGOCUpuKA59+14g0MgHhsfKYrFule9Of0zYabCcovwyopeenes+4zbnhWSIkMOXXPcPUQ7VoYYsPomD62QFXq4B48uCufxFkRMmvhszCM6briQYmn4g328j9w4rCgmPJWepZ/ybq0o3qf+LNtiYTbxXgkGFXWmKMZaIkEnL6N917HdbkMOXuKpT7Gg+2zkfV9Zeei6n7I4QOzDR0MrvYL2rDc3XN1suF13QcuN2nGwq1VfzhBWcjAcWkUTKcpBUJRaUMZ+enaxFBcsCXXb6wVVdhAkL1TNJ9yHbZtXQP3B9w4psEM3tVDn4X4y+2zOenBslyf5eme3jMrKoZP3M3vMFpP6yjM06k+9bV/Go+pbXU/+v2QLS12RVvUPy7vPdXg8h+Xo4P4xGpqUUx4eaN+cNewAAA8abqRBiUywommp1oxM23PIfer4dXw877u7M/dOir47qwzPXAO+IGGtOvVggsVcFDqrvLy85ptXb3jx5g0fPfok8pswqk4dtfIz6eokkl1+MLozdLnP60GhnP3QuO7LTnr6ZDLyQ20o0hmIKFayQXxiEKmFxNyVAVKuRqr3KwGqBYwMKD8qO0kIDpqqQQGqOOOd18Ar4z7kF8Fw4v+HFMX075xQPsQTTHTj7IywQFBnUGdY7zq+v92yaizPVgswp5yeNCxXTRCORoIroBKVsRR9I+yNhDOnlbIYAa0R8DHQgzcK2YslnlMlptSQBAMD4BRjYn48De7JElxXg9Eu8YSw8yg58ZaJ58fI7pkDZTJMeIioqokikqIYg0qQzu4E4O9NE88jBejcLpeo6/He0TtPY5rgqmgNJw8e8slnn/PgwQnLhefm8grfOXa7Ha1xdL7H+z3Qs1kb2sWS1i9ZLB6A2eHF0olF1GDdLSjs5BGcfci5u+ZH3Vv+5PE37Pew83DVBYU2QXxvSDHkEW8y8dbArtBXpBN+GIg69M3Y4CcIjYSgMyGoSHCFdMahalFt+eiJ8vNPH/GTTz6E5SP8JrS9Eei8pfchSE9PRwi4YcC19H0fgbHS9WHvIeUiRD3GNHj1MajNhutNz83ecf3yFbfrNbvdjm6v7Dt4d7Vms1dudx2PVqcsFy1N27Dbbem7LX23o3fC66sbVicrTk5XnDZN4BEkHBANX3m4S4yD/BON4AVJ1FhAsyIZBnBkMNfk1udLqo6oIIYMY2F8rQTX2xRVOhcvEs/xSuTLUiL6R0AtsY2Ja1KaUrU1NVlznxNN1Zg1GXsKSdS8THK8gZpTZ0ZAVHoSohrIjwH4RXyQGXV5heSrho2x9QHMMcs5KzwcvC0GoXyC67Nqkbtpjo+sk2OY9RgGObaRkqZJNb13GJNM6qzw7dz78+28z1Vw26FyM80gIQBfosskU0jzFb+LbU3963tH14Vz2uF8b+ADJtHAH0hRhDuVxZmKan1t5rH6npv1Ndc3W9abHhuy9OIl/LQat1Yr/DC2yBUWXyl0IyCULWlVu2plZVzu5O/EN0Yd0XqA08ShEM9D1PpLIvy7lJahIjh8d3xvvMs5bvd9FaTBzuGR5yl6nhmUO4WkNXidb0/txna/naNS7szNESDNC/1QOUfm/dC9Q8/mAeqcYjFpRGH4M0aAury6P3OlhrVe78rK9PlYqZmMuVT0Gkd6dkkP577UcRjkT+qqhEp6Pma2Y2U33U/vTzwJKgOOJ7gbiYn5UVVoW+HdzYYXby/59tUb/vTHirVFKOd5U8kCPpSXJ4k6RGjdcxifZSijlFwUy5rQ8iQrDKkP0/GY0FcKgAJZWbQSgMB4jAP/HRkG8viNeM2oR2NFMiu7UcomXJF+Butv3IbZ9T1sQz2m9zJYCDGf4Nz6m153Fle3I+6ueYFOPUaDwPW98G69Z2GEJ23DqTWIrLCNwZoY0VaCUmp9E6MpCorPoCSMVz3fKR2Agg9nD1VMoF1Nu4ZhbQWWkWJYmrDTWNF/0N/q8/DxDFaSjTEqo/cOicFu0nkzlaD45Ywj8QxkoIXQipCLtOZtae0QzkBqOLe5aBc4keAG6lzYbVCPSnBLPT094+x0SdvseSHC1dsbtpstYnaIdCgdYhzbdY/zK9BTWJygzQZnGpAF1hua/hYMbNsLOHnCif+YT/pLfvXkNa+2ymXv+O5WcJ3FqGC90tuIFByY3iSvwQxaazwxIrcaBOQxv881XstTw2GIit5piJJsEMQLGB8jaAs/eW746UeP+fjZh7jmIU72NKJY9eAMvTd03rOXjoUBnKCuoXcdafehd1323vNx4YoIvfNc39xytd5zvetZ73uuNzfst/uwew1cXm/Yu9cYa1nvO55fXPDwwSmrs1Ourt6yvtGYh1N4fXnNyemKp08esWoMXovyl8ck/1spFwIhgE0wkpDHazyeRVnMkVQTP03RT/FhlyUb5WI04Bid3UhRFgfYLGpRQvEMKIFmEhAc/QzIYswJ62+gGB0rLJQ/TTjA5L9lPAaDNpayiiJxiC6j7Mm0WI1/AdeV3Ir/H4MOzdWPexmLKHvBXkOU5SBCQ2ClOXxS1zi+cjuTQnMAVw0xU13A4fqSQnloXc4qjFpR7uB1GdwbP5vLWBDw1hDVznoCVc+AGAC08gKK7SmLLM4xEnLwRhXSOU/XhcBWQW/XOEeJLg7NwR1Ydua6W1kcmjaOXiIe32958epbXl/ecrt1LJoKjKXEwYlxBKlFAivxLeowOD7covpn2MLEEHREUNwPoEyIagRWRZKLhU+P668nxPkf8jpGhON7h5SpfG4zIoq0F5Gsbdn9MbDaQgpH+lsD/rreDJBG32fBHu8nu1p4pTD997HuvO/7VesPlfgDyjp8yZBjTudHZwi6+nbYtxEnnWXAA/Z/vzbq/JuHRmL87nhNJFoTGZ4Xni1r0D+DV8XplhYBF6h0tVpxvd7w7etbfv27F/zVLy55dP6AxaIF77ExQmJoWPLjCrD8jp7P9GZeqEn0gPK1kjhYk8eNNgiYxmCtoTEGa4TWNljrJspiECRDj4w5wBtujfl2faKy4pu5TzEwAfMuNJVN6OBY/NDrkGC/6/33eUcl5JBbONj4DaJCI8I5KzbXG77c7Lhd33LGEkxLsxRs22CNR/B432GcCZEWE+h0Jit7of259gouC86HXUGJO4kuidWoGNaB91XC2Vcjko9tJM8Pjb+LCGqT8SXsuBgNiiMYNBzayt95tfn3DFal3vspLS5gWhAabGNAHbvtLqS6sQusaen2W4wYbGNp2yX7/Z6TBxd8cfFnPHnyMV9/+SXff/ctV29eAY5GPGIc+5tLTtwJjX+AkxP6E8WzpG/OWO0VZI+ajq05R04fsTCf8UHT8lddx9r8FrGXvFrvePNqhd0LS9fDUumtRbCc7i0b7SfB7wwhKERNH+8jH46u4fkvUPVYCbqEUzCOcC5UdjTS8a//7IRffP4p5xc/Yu1PUNOh2oHvoQ+7pwF4upAWo/f4beiHsSEyr/NdAI1KPOsHzntutju+/f4Vb2873t7suLq5pVOPYEEM2jv+9u9+Q9NYlqsFzz/5kJvNntXpQx6fP+Ly9gZPg9OgyH/75hK7aHn+/Bkn2mPsAqSJrLXicT65yhU+E1S76BInmqk94WCvmfqigthXwDe5nPYEA51DxJHgcmNsTsNlbMwNGWl4ICFFEGOpzwtqjqpZu4ZGAyuSvxvOaoVbBkxx9H712VF+NVFK7xfFM/VAI4YOCuXg0bQqlSjT43eqzLZMyQ4z4c+KR3iNwQ7D764L55ibNLaDpKd3Ye855azGKOlhOf8XzS7RqyK+OTEwv4d8ypgg7dYpQ1lZK4zH+lP0l8BmTdXm+WtgAIxKYOmPz+sorZhgEAk8PAW40RTgpkoXB4Atu7B/KEl9j9QZWv0xvMrExL+9x+3WvHr1guvrW3Y7h5iYiwzFiyJe4s5/FICJYDN4lkFdkus5fNXKRL1T90OUi/EuYLL41/H332eX6lh9x78//rxu7yFlatynBA6N0YELav08qeohQuOI8SVFr1qouV6dF6hiLckWkMAuRMYVy859MmbQ62S3maOBQ7uxc2MzvuZ2d8d/j3dH0+7Sod2h1M74cFJ2KHNGKTwolKp34voZ0rXOljNqCVPl8fC54TFDzGtzcs3wgpElrbTrUF2FVupci+Pvwk5Ii4gD3WNYIn0YE7NwyMJws+/4x69f85svv+RnP/6MJxfnsR9VcCVNBp8jgiTSf+pjbUAKSezSuCdVICUkTy59pd2+Oks0X1XaITL0EhaHiLBoGtrG0BiZKIsGE51J6x3amp5Cq3Ly+nHVtfyT+pv0d9wtikJTooTK8ymU3GJ6eI4H90QOwp+5deu9m7x3aA2P1/eAj41oMGTokpDjV/tAHcYipkV3sO88r3rH359e0cdzTkjDahnc20QdvemwoiiWlFRMRMgbJiKjduSBDcYRY0CDMoiG84u2Sp0CIZeYV0WNibuHpT9DcBHAmoigRgNtStqhtuVcoxFC+NBIbxLSCQyMdQI5zUz8XzLX9jHnZrs8RdThncN1e2yzQDRE4Oz7jqx6OsPy7BGf/XTFsw8/5e2r73jx7dfstzf4fkfbGny3Z+uv2Oo3IA9pRGlME85sNg3SGGx3iemXYBvc6XMeP/1Tftk5RL7ievuW/2e75+Za2bngzouJwYVsBSwH9JE8XwrPmUsBNebPP8zgGPEOIXexStjlXTph33sWC3h0Dv/5Tz/j+cVHePOY3X5Pi9LT412POkfjPaIOXI/rw1nFPSGthHMe50nOxOGsqRjEWvZ7x816y5urG15d3nCz3eEwnD085+b6lv1+T7/rWDYLxC6gWfDm6gbZwrvrDS9vrrl8+5IWWBrL2cUTbtZveXt9yzcvvufTn/0YxMadwBD1N9qBo8E30vfAHJHG1+TxqTGDpg815sHW5HoaRlI0GG2sqVW8qCBak3Oc1pdJ+aDTXKYt58gApWSADW0by4VMCxH7DeBQrSAO02GkdZ8d/8ckNFYoI+/N+RMlsWmdnEcMVznDBpRox3N8sr41oOdKtsUXD5K6r9panZ9T1+O7PvCgRrKXWuriofIO7hgStyoGH47O7YtM52muXKbDPnvlhtY4aYytxvUk2UI5tpEVzOTNleTYSIbXR3Hq8jM+Ll9NPGnr9UIwfoTzpCFvaCg7pFeycX3m3fofYGAdX+8R4CYNhFT9HxKYek/f7bm6uWSz3dP3nkZsti5pVj6nQP+YknTQ1WMGlL/PNQb+2UWnKr+4AkzByVw75gb8WNvm+jZWBo6B72MW0nG76p2EsZLICHgmBS3OetW2g1B7/qrTBdaKa1XPZIEmyVNVWhySj4/1oWfHlLzpO8efj38fl3sIQIuUMRjsvjKcX9V4DqFmJNU85/JlWP6h9txlRa/X3j9pHQWUeY8PKC4XDOlivh8h9KGY4HYUdDMFHKa17J3n1bsN3758yUcfPObi4WlUxGqKkcFvqSGH6KJWFMfzVFtds+JYz93gJ60jHQCppBwmVSa0IQAca0wO0nDoKuuoBH9IIGXc3umljOc6OZ6n9ua3Zo0ih+hkKA+GfOU4Xd2Xbw5peTpGYyNPurL7qISoqD4sKnpRjBjUWfyu58urW06ahodNw+nJEhHLwioGj7WeEN05uJTqQGFOxq+67tpFVcD7GNiIxGArrhb65b0PO5doBRaGMhMAr3iJO/UanZLS3yjJPVXU5PsYE3d2mvB32hbPLSjV5JEXAbFhV8YTDL2mweDisbFE12EnzKmCbVmetrTLE4wxOOe5vX7L5voN+B3qHV47uv0Vtl8hXY+1Pdp2eDEY42ncGuvWeHPGvjnlbPUBH5x/yL5b8ydXV7x44/jGCRsfjNHWB+TWWUX7Mh8jsVbNTKGlmv+U+WTy930MlJN6NAY1QmgQ1LcsV46PPoSfPXvC2fICzyqkBDEBQ3V+H5KcO8U4h+1Tgu1w/lWdxPyXATQGYCkgJkSZdXt2+57tbs+uczgVVCyqYZfbecWrYbk6xTSGXmG32dHuDX3v2WjPbn3NiW1hueTBxQK1DZt9x8vXb+g+/4SmtSXyaWpDJNOkqGdKqnYOE6UlvlfkYFlL6XxieRYURYNi4rnuOgi0MZJ/vI7mK/KeGpSP11Ot4Azup3Wd748wavXh0CBPNiLVvR6WGyucoc3MfbU+BjXzVt0lpnQbai1SIAWFmafvSlbq+BkRgzB4L6XNSOkyTJIhM60dl5fqLHK/anM2hA6/CWu2dD89Gxh1qqn5IXitLms6nmUuAl9P/KM8j9Q2yw+Ob1Jo/K8eCIpyrAH4qNe4kVOtGQZTFnieFSREkzqIeed42LHruLKo41+OC33vHfv9lsurKzbbLV3vWLQxlHPskqZkw3NlJaKt1vIxC8UYYI4tFqXeUN+AiWgg9mSNMukAdJQuw9224Ip6l6I4VnjrsZ+zgM9xivuA9YFyq1PCPGRtL22aMrfB4hpPy5AUY4juBL4HqzyWVwGgXH5F0gOGnUSHZOW0qiqCdTLAyiN3BFzepSiNwcG4t3VZs9x8cI2Y3ej1um7vNePmPN5BJmQrd2FWQ2YwXgQD0r5PM+tXZw00wzoPv1tXW/+mQ4JnOg9169WXXZNjxg6JYNWIQ2MSc6+Kd4rzjmaxYLfd8+Zqx++/+Y4vPv+ID55c0DSjnFqpn+mAjwTmO5KMI6arZVgq+i3CedDaQdt9SlitKfh1HqWydrLCUMo0JqSQMZOoeeH7pJAkGq7sPyN+l+H/AVarZbo00p1AHTRGU26/EaHdzaFKHUc13lRiZNZTCj9unBvT5iFFEZTGtCAhv51F466dZ2cci6ZlgcXvhd++vWThPA+dcnp2gpEWXQqtcSHSohAjkkoQZApeXTBOmOTKW3t8EPMlhsTi4dxgcvlPxrjwjWqY/3SmrPDTKcgQGXu+RNAmBvFhZ1JUcruQkDvPR2U3zItHorKcjnBVToKgIbE51uCTq5OBZiFotyWddbRNyNHn1eM9dH0fcvTZBQ8fPeP05JTrty/5/hvLu9ffYvAY9fT9mr7vsF0P0qGtwdsFaqHpNrTdNVvTsLGnrOxDHp1/SisdbvuCL9/dspWG17TINTRuh1fHTQO2N2QflSlLi2OfxnzI7+9jga8LlWoRlU+lgGfngzuxeBppQVdcXHT84mc9P332AbI4p/crFtZjGkvfQ6c96jfYzmN6RfYebADP0gYa6lyPczEXYSXTTdPQuS3bfcd23wEGY1tUPde3t3Rdj6rQNEsunjxlu99wu71l2+9YNg3ew5oduD1OerT3PHoKpl2xcxu+ffE9l+8uOX9kaFcneI08NSDbODSRsiugms4i5/NuvrjJJb6V5F5RFOO5xKgsioQz6Q3hTG5QWGR+3SvZC6IoFjEPJZDcJdNhm0wVA14a7iU+NmSv5ZuJ4T09qbEhc2SoDNW5mWsOVwzGbUrLw7pHGzqqU546w2OHStOQjYcRS42IKUuiyphO8t/7yn2o6OfAVQJ6hcZ41RwNODXMRH5ZaOuY8hc/qzDI3LtZZmu5E0h1LJ+CkU9mZjvUEb4d0Gql4KjGIGcUvi6Rjye8mIL/5rgvSXYn/JjLGSKBDDozJDg+1nPXPZXFGkym/8sA5ADgb9lf/5bfv4CbW1DnofVw0tI6wW49GxwLbbDJCuHHtgiXBWSqp1aKjl3hs6qs/Hoc1TqYhYRXk2U+M3gb4rX6GMVMU0Q4cfG7igHMLLzwfOwDH11kZiwVc4dkDyH/9H3ttle7k6YtbudcUa4GGmtqM4PvSf3OljjCeMUwwPlzHwls5O4hlYUsRPAreBhfxk2hTm2UmjTcbo+gMVnBQr9k0o+xC9H9hPzxKzD9EBCiZpRpQZZ6in/4eP6iPCrMtWpXo0LKl5ZpOyubcQzTWM6RcbzGbn06+1a8/Ig+B+/VFSVhl5o9BOKHrijeQ7uOGG/qMufqcc4xFrQFaPSAYOWUThVtFGxwaW92jkYscn7Gv/3dO86ffoeaE/7Fz/4I6zp2vudWeprTE9h1SNfTeI9dWrxKIs+cx6iMxHCYxjZen3ttYyARRQnRVzWerTH53A1FGYqF1HU1qjjb4hcG3fQsGs9J03PWdMNmWI/viyAM42RjkAdilEAySBt49Kf4CinS4IhPeu1j6HrN/Q0fJYIOr6o7BqrLCA0UGU1SqgLWSXilL+L/jBmWW/9dwKRmhesQeWaDS4pcqPug4GHAnoUjE96zUEvndqhziHoe7oXf33R8p2tuz6/4037Bs5XhfAG9NrjWQ+NoTEfLFmMsTtrs1igiiEltTHNU8YtOceJJ+mZj4ggLgYYS/9S0SxhnIh/dCO/ZVGbkGb4zUc7EqMNR4Qx0EBXG5KqXUhvkmQhufgbNUSOD4S4G5yHRQ3KsU7A2nsyQKBdCBD6jipEO5zqc7+nZ064MFx8+4+Hjh7x9+QGX796xvb2k6b6H7ls8L3Gs0P2PMDaoeVvt6LeCcXsu+g27s1+wWgnnixV/3HX8q6t/x7PlLU9O1vz1r6HvwIuwXC5wyz3iDKZrkN7hT4LD+H5f6GPpG9a2C967Ixo6DPgL4pExE07EGIe204YtSz7hloW17KzhW7+nfdjxn/7kEf/Dv/gU8/jPWZsn9GI5ZYNuHcZ5GtfQm5au6enFsQd2XXBDdS7IG2vCOW7vXZhK1+Fdjyxavnv1gi9fveadKn73ks3Wc7sTXl72GAOrZcPT85b97i3qexo6jFd609E2hlVzyuX1NWvvuDI3dLLjyaNTrDou91v+999/xV+w4/Mn5+z2CxanjwMN9nus3kK3Qf0erx7nV6h6DB1GWsDGKMECMY+nsYpzHR4X302A1wM9Fh+DfsU9LJsSkIcjNUrYeU3ntkwKGCYpFQwxerCQOHmY8+rc24C6JSsdiWfNy9iyVnJMi8grB873GesEdcpoCBCVPSyNENzaR4qvKkZ9RXWUOkZ0lzxDxrSo+c+h6pD4aD0A2fiYexywYj6iCBhZ5PbZRlmdnaAKTpWe4APUJN2gEpiu4v0QeaIqaJGkQ2UiuMxDQ9JrAmvM2k74MVUlGiQw1XzcjWMin6N4/xSMPDXY9t02gDwVhAaLzaUUKoqu01G7KC6pZHyXjOUIaJx/Q4NhgfYO9S5E0DYuBmNTEKFZLFm0nt51bNTTO0fnPI0TXBRvSxE678DbQIcJlKYxPoiVj5+XvcMNtRLukwoSACiT0Pd7tts1VzdbeldAtPcKLmyhjgHlpMZkoaFSIhL4qZSzg1uo+YCtDDT29HexIpTFEBoZBOVwh24IfA/VObVs18Bopo3Du9RjOHyn9HluvGrYeqsAACAASURBVMb3x39PrV1aV1UJyVoRqxZMhBLJ+iZJmRmN06BNybY0fqyao5SVKtP4pfYM217eHfUj4Jaj1312aOu60jeJUSSayW07ACDmlbQhY9aRVao8G6snSdAwGcCxsixUfRw1YdYFYvavCAMP8Y5DZRZZVpo0qu+Qonhop3fu3fSs0IJBqbTx5JoRge160/Pq7TtevH7D+rM9DxchvL94l3mPMRbBRxcanfSlXo2ZREeHB7R+I0agpFr3E30/WRyGS70uMH4Xz95IcKGVyTilsuK4ZKNNcZXKLa34Ye5nPosYG1J3q+YLNalJGm6ZvBfeHc7VbNcyBylCdTA26c0Bfw73VA/xzbsvzWUSjDpaGSDS/zQpTJAS1Kvz7PZ7vnr5mkfmASonLE7OoFcMPVYVWRr2rseoj4EzCCH746AlS7Iq8Yx4GAXNQZ6CAui0wMrw7nxffAyTn2yRPq4DQzKkRqt2MqwynKqBHImG0KRoalZ0XQRBFchECW6ENb0ouSHEf1RD8AvvENtkd3HtffAIMJbWNJw/eU67PGO/Ocddt3T7G0Q6nHb0eo11DfQgnIJxNOww9hbcm1BO+4DVw8/5/Nk7tvKKLVf845Mtr6+g24NuHbaNeSmtC+vIxwiptoA273vCNl0/GqlyTeRnMsYMyLHGGNWyQ7H07I1gvNKosrNL/vyTnl99fs7HH/+E3q4wYmii0uddh3MO5xzee/po0AhKYfhxPuzeunjGzYjB9R0iluWioYvnFS+vb3h7ec1uHyD8yckpf/b5jzk9PUV9x+bmDeiGtPPYWA+mxdGw74WT08f4vouunysePfwQg2N99YY3rza8PH3HAwvnjz6n7/eR9hQXEauaBiseaKKHheA1RlH14HxSzKI2Eg3qSDj9VROhEYkGseIpkjSIwpaGMhQRaqUq47IkN5KcrWR8NZvUPLWiiEwG83I/3R7jLvLubwokFu4NsWL+TZPHwTEMUwZIiUOYBc8Q590XCxVcPLyXeOW84lW4el1GlpBSjE0ZQ+cCw/18rEGGWHrYkOKZVUhACr9SLTKdYLQajNZM2zO2H6njw42CsuBDHWVsw5Qm/lhKCjKlZhRFFk/IpnolwJnUlrgu6jmR5OY7NBfogC8NwUcl7QZjOZNZ5A56e68zi3dffdex2W65ud3gnA8HjAHvNOdBMjGVRk0YY8Bau47VQmuiNBW+EN8p1+y28mAsxkx+rHiNSyzlzoHZ1O5aWawt4QWk1eUeB0F12+tFNFYIx1vtyQoxWXBV/Wl0M7xMyCa2LuzcBdeptHNRvg87KfPtLQBv3E6pfh80K7WbNJ/zbh3DrrwfgDys7I2ZXxDK5d3j1pbDriZVGYwpaeaOjJbq0f4NXUsmT+8QDseeH3s2trKP53i8Ft6n/KO7kClei1Zla9gh8Wn3zocw3m8vr/j+zWsub285W1wENw4POJ8DIoCJgVTSjCVBdceKHPGEJPg0BQdJWCQrJYVnJfoeW4Ul1xu+scZmC/pccIPaM6AooQlEHWv8cFznZmE6Z0M+V9+bn9+pwM0cZyKvBmhm2r4R/z5+RQW94hsTUKAVrFHy2BXFSrLSaFTxXcfLd1u+PhXMwvLg/BzpPQslWPvbhi4GMGklnjUUGRiGJAqofLaR4C6UPEO8F9LOZwB7aW6n/KEayWAoNqH8nPgis/H58zJpjYhI0jzD78ntdcwfa1mmqeYa1qZ/k6uIouLx+JiPMoD8oEOG6JVYWJ2d0y5PcLsH7K1hffuavr/B+TW93mJ9C85gdImxHm96fLeB7jXaPACzxD74kA+evAo7bt7xb5/uWIuyu1L8ux7TBL8lI0FZVA1RkRtT3M4dDnQB0RvgmDzJtFyNQy0rJ+9LmJmGnr0VWqeIenS54s8/N/zRZxc8ePIZ3rQYVQQXlEXvcDGXZVIYg3LoM1D1Cn30dgrzYfAO2tbS2IbLmzU3t1tu1lvW2x3GtKwWp5w8eMp/9J/8Sy4eP+L25pJ/+PXf8PbVl7heEHU0DYht8WrYd54Hp2doH3bbF+2K8/NnGO1x24719S1vLzc8Olvy+Iml2+0Aj7ESI5s2IEFhNz7E+nXYkEy9ivBYALEneJR5gjt1Lf4k89WBATkQauCfyRiVeWDlMir1WpIBSp7lLAM2V9cn9QKof5lpV+HnubikLyAkl/Dkxp09BrL88WVXLgulYX3jXcGyOzfmu9Ne1krwEFtO+WbBzeOdy/TPEDtp1ZZkMMuKuRSlMJeR8EIua34jItPLEGSFViX5mjxj0msHsMgEL1cyQathLLJ7OlbZgJZ5deEHufVS6DIpnZkOslGvGlcJXklJQaxESa4n5VGcvRLRj8YoC7/hizOfH5e1fwBlsbSi2++4vL7l5dt39L3H2gZrBJdcJRFsIzkoYR6walDmdjA1b/GXLeugxNRR3eKwDzBIBTgSwReklSqMfZi6uk4Ajh4WKod3FQfkc4/70zrHi2cuittkV9FISYdRjYMYCfme1Odkz6HQyLQr5poUZs3Wofg/daNxmo7L7FhVoDiPUQRtkvoAAzeSurw/xPVDdymqEphZjXdehopJV0xiImjucWXvlff66g93pX784DmpeWx9uwK6QwtjWCsDl19J7nk2gO54fffyLY1RfvXjFzx6eMaiNbRi6LseY5uYO09ysvFaVMlMm+omZ5H1nv2uLZWDfI+pbiMYa2nU0rYtbdPSWBvPLc61ox6G++0M33UVXlwE2z/1SkarVNpETR10puJdMwpf/Sz9JP5UC+AjrZmvNwEELfzeOI+ocm2Uv3tzzevec4vlLz94wkXrsV7Z6Y7m4TJE8NQ+gEAfDBHh7KKNNFopW4nVRuXMGHA9YcdM0g5oPLZgILi7h/uWkudXJHqXm/CeRaoyTXbpHs9piRapEcyH8zCYoOQmuSIi4ayiSOjHAN3lmUBj4Ckg5rB04RinAWGBNYp6Q9/vca5H1IXEI7KiWS5YPrYsTp6w212x2b5m777B9a9pdcvpYgVuhd+HXIJivoPFc3RxDg8+4Nmnv+Ls7JxnJ0u+36+xJzt+03q+voRup6zEcyJK00BH2F1sWQA7AHbW0zg/6VVNZ5N7Q7KZtc6nyxCOrngLOxfQ8sXZjv/qrz7mn//yR9gHP8b5Bbr3iOtxvg+umL7HuR5Vl889O41xl6PChBHcvg9RYLHhLKQ37Hae3335Hd+/umSz8zx6+oyHZ+ecnT/lg49/zH/73/33nD96zIsX3/K//a//E//L//w/8ubtK/b9hrPTMzrd0WtH55Sm8zTGsGxbHj46Y7lq8b2PvMqw0wWXe8vLdy94evYAo0K/71k+OGWzN+z7HumVvtvg1OJ0BTiMhEA+jREg9rvvUO3Be4wGd1NRDfRNjHqaXDRjJN90ugtjsttqwXIzM1crfaNr4taZjCC1gpY1njL/g9dz8eXM2bC6+NLovaKQpgIDOE7BSfR9pfw/ASbVO4sDPDmM6Bar0QO/B2Wn5j0HFV0ZseKkOEULqpYHQUymt3Kz4k6ianDZ1Kqd9xCKxYgbjc6+7jt50yAbOJLCl1uWxmuurkA/tZFjvIM58dYywePBa+LDJmPiRCfehXgNs/0hBoYahsDlTje8fE0jkdfXvZXF4RyUXbOaqfb7Pbe3W95db/AqIW8YjuR3HPLIVoeM4bBFXLWEHmYeOEwBZWnnfSzTMqOUDF8ggogjZcwotylh8kyLgbIIfUIoyqAdaYHJgDmVsa6VxRpY5S14EwId1OwnvZvy7KRvkkXFe4/YEm49hfxOjQgk58HH6IHV2AeiHwYLOTimqb/5LFJpf92XKXgdj6TW1U3qO6a83lcJHVvby85pOWtqkvA6Vs6BG8K4zVWXRvgs4OKR0aD+Y/Ts+O7p/HuT3RhguoM8NoQM5/1YPcNnU2+CufpzNTXNlhKAeL7EGkQ8t9sdL97c8ve//5JPP3jG04uHrBYL3G6D4kNABGvQvlIQU1mq2aI7GL1gyagOltdtG+/qM5kLiKk0IAK+EQDQst4ba7HG0BhLM/JJVJUanofdxyyI0lDV43N/lW/qrVBmdTzj4/fvVT7z5XHk/jFvgLvuT18ctWVgSIz8WpOtOOwS2uUDrrc9u37Dfvc9zxYr3FnLo4Vgux1nyxaDp6cPylWuwIDxmQ8HeRlrFhutzakNIQBKTtyeI5wK1iTSF1xUGgUQleLaGsPtW1IwnX6gUEMxvgX6DLn2xNi4C2jCEYw0QDFaq887oD6uERPBa5IJyXU3jamSjoDUpGGahlZAjcX3Per7uBsqyLKhsY+RxQPs4oLNVoAbEIe3b1BacKeoLmn2gugVXjv6RulXT2kuGp6z4F9vrliYVzxubtmse75/E84wOg++gd541IPZlfXkG1j0XdhXTHKhENUBItLCGxI2kMkbYddIAmc8UbgRy8mJ4d/8cccf/+gnXJx/xmb/gDPr6H1P7/f/H29v/itJcuT5fcw98nhnnV1VfTe7ySY5nEszmpU0EjCQIAGCsICg3/WL/k1BwEI/rTCChJ3VDoFZDodkk91d3XW+K4+IcDf94GdERuZ7xeFONKpfZmSEn+ZmXzM3NwPt8+6iek/vgsup+hQZNNCLR2O4F3De4V3PyfE5F9c3vHjzht9++4KLmxU0lqcfvM/J/JTF8ox7Z6fcu3eK4EB7ZvMmGimEuW04OV5yvQ5BCdUrb96+ZjGbcbw84mZzxC+/+oq+3bK6ughpfV41bDrPzfV3/NGHn3F+dE7TLLm4eo2Zn2GbY9pNz3LR47xh6wQrJh6Vdajfst2s6LsW1/dY0zBvZgFbtH3esJaKx4UbwSCTdJDk3VHPWVjf8Z2ccHOg0TFgCDUerUopmDeWUU121Geq3wu2SGtJ00LP5cqItup2BF6QFbbMgJOCkhZ/Mr6lZ+Kay2Vk0sz/HxLo2GW0/ly49Bg/F36150p8QMuQ1xj01qse0Ph9oGdr8HDLG0bRJbvgIh9pZdzdYR/TvzqgoEt5QbWkvAq/1cfAqMan0MMQoyc8bEjnFNO9qU2xgneT0uujAage8zKXwbE9nA+tx33KYJz2rbXcyGXuvw7L0lsD3NRbyoOKsqQoN13Xst62rDYd3s+DZdz3sR2BcEKwimECyXqt54maAIepHdOgVjIj1/x34LU+6lzylk6fx88V+JVG/TZgUtruc0lK/V7V7ghOpvPo1AQ2pbBMA/v0TFZgKAsktycFuEj3IzWmz1JRtJiyRV67AVfZdBjCwGq8B4tj2G5JESnT6E+M661g9N2w6qSieNuzU+0Zt6swq1vKErJ2N8XU9hdQVVSv/ru+/47XsH9T/RraESH1UXfo9dCV193IQDBsS7hvo5F3d+1Lfi5wIkPvlPWm5ZsXL3l5ccHRcs7x8jTuzARl0WYDlYyl/mAutW7I3vFIj9QrZdDJInBy8cNyfF5TcbdUggJsZawsJnu65rEbgJvquUEDRmXkawQAch8qkFNKrui4KufdlbWEsieaN8AKU+XKQE6UIDcRMOkujeSyqluTfc73K6jlBecMWw8XdDx/e03jF3DShIA3bYgQ2lgTwZsPrxqfy5EdEgu0p9RHAMJrXjQHXTPVscLMvSUjhx2W4wlnXAM+Lh4Lw/GILlXepDcGbQJy/kx89OjJILl4nQQKHM1PBEnGSHQHK40UMWDizqaGsRIBNRYNmS+xGBbyFO9noGu8tDhdIzRYXYQk9dKCUbRf4pZnmPk5sxPPRw8/4qetp3Pw28sL1htwN9BuoY+RYBFBpVjOowpfQHxNK3uuPIc6BF1TXCHFEPLOoo1wcib89Rcn3D97H9s8pvdzjKzCuGoIaFH+pUjKweUspLpIrqchCrSPcxPmW7heb/ju1RteX1yx2m5hsQQBYw3O96xXV7x++ZzeKy9ePOfq8i1d18ZASAq+R5xBeoM6R9+GiLVb6Xl7teHyaoXve7ptizVgZgvEGmay4c3FBVYN985muF5RqyHIU1RojHhmJiip3nX4vqVrV3TdFlHFIswQjCeowYUcR4pirWwN/9aiMc2qVvMU6HEXAxYIOzbdjue+KBD57SRDKjlWmjRNUwqVcSJVrtWPEU/l+kaIdMATynP5PSbocYxZ9mCZfX2+jcMP+ichiA+VAj6Nj6Zl1P5NhvQ/Ldg1l13NfMITDLHv0KCrg9/SETnV6Mqa2GyuI/SmHo16pznx90wPAlSeIHUXxt3LuJQReU7IdiXwgDrtZRHVAwFXjZWUp8eV7LTlnxvgpqbWHeRaNQToui2r9YZV2+P8PJ67UWrB4l0fk3fWjR4urB2hXQGTaVCpWTFMft81DSVmk0IJDMGUZGGdu5berxhXshDf5co7drWCXQGzAhqJ5Q/7P6XYjPu+o7TE7yk5bTgs62NU13Iup14UvhLqUpUzqEOGdeQd5QjcJL4/VlhDhfFwzbj/qiGEfDx3o0zP6aC86u9dmVx93fXdKbqbfOpAebV+GP6GMjM+ToxAhu9X+vOeZqVxva0Pw3Ye2qHd14fccinPDNpalV8aeLe2JGZau+sky2Wqw+eD3unJcOWktiM5qVmSCm3f89Xz7/ndyxecnx7x3r0zZtbSeRcOyacUAxG0IrITNTZMhQ5u1LQ6OWap/VlKTKzRCWNX9jCI5y8NwRVrSlksUfqmryllf0roD4Rhakeem8wtypUFo4zk0l1c8wctHLRk59eaZ0+UN+jP6JExjSaBnndKU1vjHBnIUUOTq31qlAL9usXYBcYKXef51fdv6LslvT9m8eiMZtUHW+hR2j0MtOl9T9MkEOkrIay5LeWKEWejIqiS4sVopun8jk/9SSQmsV6KW3Ukj7QpXeRCdGPyGtqUsrknJS5Fi0yyQsNOuqnFnthCvxVPTqsz5Qjt8zm7MuXJZVCwmHjcwcmc3nuwgpElx/OPcP0Rzr2la1/S+xvENlhzjO8FTIvpe5r2in7+mN4ewfGch4+/5GdeWRp42V1wc61855WLFpyfMbNhp7etogs3rri83dngUdFH6nv6nGky02+IDLntZsyOO56+Z/gf/uQZJ8vPUJ4gOkf7K1AH4lEfd11dfV5RcZ6wy+jimUWUrndhnoyhMQ2td7y+uuJ3z7/nxcUFN12PFeHq6pK5zGnbay4vL/i7f/e3OOD1mzf89qt/Yr26xvUteEe3voHOQjejbxXDEt8Law9tf02ImBtos+02MF9gFw0nzYznL18jqhyfLDFmiesUZYsxPV3fYQ3MTE/bbtmsrthuVmzWK2ZNw3K+5HhxjGFO3/bhTO/MDMZXEl6MxD2Qq1MIPLuQVmcXq7eGHLKA9Rqg78qWJMFjzbIfXA+qS99r2qnxdHq4ZgoJeyqALTwtyimtH8uNTZgz/bBHpud+DX+/Cz46jHkiDzCGckY7tK2M2rjlw3nbtxmy++RtV+H3U8rhoXs+uf/W8iK3r7QkqW9593QAgwQRG7MJjORjxTtUy7GwSl0h0bigg1MrimYjkgjFaDVyO02bVeRSbfla92c8/reog3dwQ02Sac+vVeXddsvVakPrTa7aoFhrw/ZqJOIgsGplINYzrDWDs331HSLsXWIbdeCgBXFqMZjB7wddGtPaTverPtSutfss3mMwOXi++jx+ftim4u0+WJrRypsilCWBmVzagCyUiEQZzrbEOF4RHExH7dPS23oMEgOTuq0Vcxv17xAzyn2/o9L0zjsgd7jGtHDw2VEf/zANYK8smHz8Dgrj9HvT96eU2gRg/znXvvnvOxc3B5LbuIn1l8TN6Z3GzEEd372+4he/+S0nizmPz894cHxE7zwuRusVTQr7cLGmvlWbOPXPu3SUCFxK6hodv1xd43nIZzTiNwHm1rBoDPNmdwJ8eRRhnKRnmmeWuutpGz6jkI2OFXyaoN0IkG+j+9tAeD3e+UZZq4eUxaD01E7YdwE4AXyJ2GFAlwGfikjOGsQYfOc4agzWNIiB3756w812y8WmY7E45r2l4QRFbMpdlwATOOezQhdS8aT2VJ3PkbvHoEDwcUGZSB71e9myHDf7xql+RFI6jnROUTPoFRHU9QFOmKDgehWMGmxwZh3MufcurjtLCD4Szo9VSAUkRXh0pB1fa+Na0FifxjkgnL9DBZVTaC7BduHZ/gQjTxBzDhyhuqbH47mgQWmkYSaWk75H+ku2s1PaxTHH8y95bBoWyyUz+xq7vuJvG+Xfe2HzZsYiBOXEn5R+HXVw2cwx3o3Uh/3XQI5WKV0k0VmlMCad4ArLf/up57//s2M+/fRnuOUnODllpj1OCTt6votzF9yEwxkpUJUY0CK61BJtWj6sFbFCs1jwzasLvn79mq9evea7ixuao2NsD8+ff8/3z19wfblivW751a9+wdn9B9imoet7tjdXaNcxF3h0/5w36nB9j+832MWSzXZL63pmizlNEzOTOocxhu/evma1vWHx7HMe3YPX3Rb34is+evZXHB0tENNyef1PzNwJ2/UVl5fP+f75c7xT5vMFz56+z9nJGa73bNctru84PjqhWTRs3TankcgWkET/EZnXrp9DrpZOtqUbtRfPiPvVCt2Q7PfOfbl2FYApeXGHgvIPO8b4USmHNgvepa53hA+3XmNslg1KOpZE71Zr3UefYmqEWsI/8YPxyOMX600upUEJ9INya3dTIRSddJR0RnGqj+M5Hm6Fja7K+CAiIVrrCP+nXLghqmsgQpNkeAUNVJVeHV7CmcSMX1I5f0B8u++645nF3YYUwi2/9X1wQ3Vqcx4oC9WiZ9LtUmvtYqruSiPOx0t1CpClIAF7ujBQwBXEjh4avZhkejUZ+xTF/D2boqTgKipizoCokuqTCqPfuXco8Et9LwcqiF1KI2eimdjHxF51HhytGXJuY5y2elEpWQMK3R1t6WcsOSwj/VjvJpX2V2K45sF7FsA+BXCfkr3vmel6akZxGLAGxYBqjAfFlCIqM2XGhBX4K4rD7utTrZCKtnaqHRkXbjOu7GOK0y0ZNmhY9uFy07rJ73iqtXCY0XkfmaPEaMqJl0zMv8GCwtZ7vn35kif3T/no0X1OP/wwK0MOT0MNIuJarOlnxKvG3zM/GKXOyBhm33hUaybfz/0Ba4RZY5lZQ2OH/bPWhKS8qRyKgpBTElHcG2t+k/o5tGdNr4WyWzQ8lxZ+C69p9Xz1NoEHj+al+rWqqIDrSnkee1bso89DNFPGWkPKFGNqnT43KpRf8qMlJUyiAjSbhXOwqj3eC73OuNoo9mLLb15eoI/PeGg8Vtyofks465eU2po3x9okrYkk0zRbmkl8JTBfgoW5KJ2Zxkz4DS8xBoXm8c+75nHkjRG8TzRfZGlQGAuwGoyvFO+RXKcITgUxWgB7fEi9C4adGJxJjCBqgmuaOryaqBgFOnQOrJ0DgmpP71yQD2aBXTzC+yu8a+lcB7JBdQle2HQtR911GjXW8wfMjh6wcB/y6eZL/uTZL7hxN9z4jl+6FrdS1HnqtKU9oMYGlHhXK1cCbslZpgKDmZarrw549GDLn392n7/6wfvQfAjNDPCo25YzinEnMaTHSGA27Y4Eee21KIsxsQ6qhs4p37+55O3Nho1aluePuPfgAUbg+uqCt69f027D7uHFq1dcX92wWC45PT/laD7n7N45D8/O+NHHn/D//PLX3Lgt/apHdUvrW9q+Q01P72MOQxEMlq6H1cbx8vqGzS9e86NPH/HRJz/m2bMnXL59ydtXz/nm23+i3xhct8F11zSm4ejkhOXymPlsQd8r3oGYhtnCIFaCK7YxA7oagYgBhhic2x8ZgOqpCc+bPEd5tioZMMQPtTW8MozsIQw/+LbvS+TZ6hEMOVVPdg1MdWg22ogfyqaiBFNhzapsv7+V9bhM8c/9CqgO/k6x3jL0slOPqjJpkKl4UWxArmVQo+Z9PBK3xKQ5KjLNk7wZFLzeSVkMbZNhpN50X4qRfRoHJcE4NWZDWRYMlGW6BrJNi3HImvq8o4Kks+LBkCTRqz7Nc5bXkVfnVsaxlVrp0jBKie7HqrzXP1CAm9EwMDV4fd+zaVs8BhsXtNGyAIKBb5/dO1wDgs3VSPmbR3x6hpIQniiYIJQKQSaRSb6TysjoaPi9auPBxaZwKLVErtLIjvvboasGVIeUoYHCkBSUCjhkqDhmNDvzmsCCZIImAtAhMy2l7MNweeFUwDOhztyOeNZnSiEfK4KByU7XNXUd2q19l93HBPCGCuXgVBfFwxzGxL6H7ezWw5DOdgTQHQo5tDuT63mHQZxyp6jLCGN5t7KSUjOlVO62qZRbci1VIr9ql4mH0r0Kry4u+e7lK75/9ZJPnj1FG3IE4MKV7nBFYpu0T1XMuADxiTkjMfyJviaFALAmKIXWmnrzIvdzvKNe6LGuOdWXHi1Atoyt7jRwIHhyi8ZjLJkN1++VGseFlp/2ce27yoO7Wk+zISf2PSnktet8+usrMJCe0wjIbQMqjhAYyaJmwbbveHvT8/XrS5bHDcZ4jr3NhjgQYiBRoIxnurw3BWMIo/USwF7Y5VAUG0S7golpYtI7xoS1YCRsNJk8z2mhaM6Hm5SPrOyndqXzEB5U4lmY2LhimCSOSQCtKWiHSQBaEj2ESH29V6wNO5ESXdIS9QlR3mlwo1SniJlFpRqc9IixYZfTnEXDyA1eHSodThu0DyGBZt0NSrDCt4t7MD+hOX7Cw7Mf8aPHL3jbO946x4t1x+tWcVtYdhFlAW0FVO/scZHGgsI7ci5UJVv7RaDT8O/jxz0//eg+P/nwI9Q8wRvB06HahoA/zqHOV8pirTBqOk6V02YEdmFiPAGh7R2v3l5xue5wds6DR0948t57qOvpNx1d+z3zWcPy9JhGDFc3a7xzHB8vWczmPHn4iI+fPeMHH33Mz59/h14YOjyqDofHqUe7HusMs9mc+XIZgLgTtiivri/47uoFp2fHeHuKSsfF2+/59ne/4evffY33nsYIRzPL2cNzzs/us1we0nl4NwAAIABJREFUYWQWIgFjMI0NhjCJQfREAoGnwRys7TJviZwkGaj2TmFSMsLfhIfyaqkU/ZpfFsPMEA+OL93L2WKpNXscYMBpzFWZ+wbtS1whj8AOzd5Ow5luD+CAMR5K6Rz289/p/tfKllSyr5S7q7DosACKophaX56p5Vt6Ju3IUSl99S5i6l99X9QM7o2bMNW6MV/fNzZS/V5SalUl6tATzxiL8wZiUCsh7SeFPJKkXLtxbEalZTmX/y/lvpZRi3UP2zqINj9x/X7KYlVJ3feubVmvN/TeY2u55TxOg3BrGEYFOlTFNDjbfyWhnyZyaL0vknlXYcwl5PeDAKxiD462pvcqGDsTEARxALAFVIpIsKBZgh/6YOakbu5B0D8l5LxPrnYEQRS7lsbHx0XhKoUmLeqQuDxaESneNml7H68hPPoUo6p8qfYyltEiG7oPhN9TiPexi8Hg3kjJPgQk322Lfkg7U1dYVNWuSy0M0t9dTeGdrndR4qau/5RuCXdZv7deUVCMx3qq300T2NTAGighWuSwXYI4AbUY2/D6Yss337/ht/e/5mdffE5zvECaYKkzEXRMG0n2Nnm/xjO+Do5/siRGwwsxyI0WnGSEHWVxUHbiaYPGxZ+rv3WvkvDZV2RK1SFSiHpKof9DXQUC1W0c8sKxRfguAnpcg/cea2zmbTYYpIegRUtKCwTowVhw0qFiMGKZmSP61nCz3fDrFxf4haPdHnPv7AQ0hjX3ntlshqrSNMV4luqymWgL08hQp+ZzBpKbVVpvJgEvAe9jRFSColg4UtqhJOxKsAt6rbU7YAc/jD6ensugVtJKCY3xVXqOAqYtZrYEsXgkuE6mQDloDG0v0aXMYSzAAnSGMMfOL1HfgTc4t0A5QozBzi3SX+L7Fa0XNnjcXFg6x7x1uPkRrT3FHz3h5N5Tftj9FpkJiyPDr/WCV9ew3Voebo+AawAu5spRtyKF3byLwigyfb4+ib60aoJKatgYy3/905afff4hHzz7MTTPuHEr1HrMzNGvbxDfo05xfR//eVwfAnE5F88t9vHMYqRo7WG+nONQrm+u+fr7F1xtOhYn9/iTv/gveO/BA1aXF1y9ueDevft8/OH7fP7pxzx9/Ij/6//+W16+foN6jxXLk4fv8YOPP8N4j9M5rZ+z7gzHsyWz+RwxPTeXVywXc87PH/Hxhx/y9W+/plXB9T3fvv4Np7MlX3+/4t/8n/+Bv5v971y/eM36coXr4Yc/vc/T997j2cOPCGDHEg4nmZDzNhogPB4XdzYaMy+K4pA5BDqKP+2ybZn4W3iZydE56/+Xd5MRMVQ1YvSDOZ/AfIN1LhOPSqCzvMZdGIusNI6KlPC/nR25WFfd1uGPt1+hibvn4eu/ox/vVG5qgWb8Wp0Rr+4dbtvwyMyUgVo14XFQakUwjr2EqNADbFn1MymFyUBDFRm1bkcqUhKuTQY2KeSww0frdlC8Fkx0C3ET+lhSGFWDTiBqAgEkjyWl6kdsx2jM4geS19mohjt8Bv3n7Cw69Xm9JoAMJnYoLfriynmzveTF+gK7hrlpEAsX0oPpsc6HpK6cZIPkNHQxRXorWBPqywOWD6AO0ZGRoI37KDaDO8tIoYontCVPZhiw4VwnikzzLOnrjlIwUGIGul6yFkiOfAUxSXG0fDiniI8CNxapO/kTk9KW2pB2CaV8NvEMV4IcPiFCiQeabHC+yAA/JL41VrHqc04XI01qRQZNKpI3PlP/NXqIuCj8U/oRYlD/rBDH8S8Kf2TyPgR8KFbuCrSl4dWxEpHyzlD+mvFB9WpeGKLi2jUvNm4wh4GRlQi9frzbW0iiMOkIviTVp4DUzE0CABul2KivMeOsfzV7FJjBDm00QARqTm8HSBESYSdrqhn0b3f3blxP2ZUZr9HMlqv5GX7WHT1m3N/k+jGuO623XcNAlSoGYl/KDk2Ybw/q6eZhLk/8KX51w8s3a/72q2/4o4s3/MA+5MQcsZpbXNcg4hDpQB3JFSjRpUCwOKZzkRDqGI+XJmHj89oMue40GIkMYG2mfVXFuRFT7oLboW9AdUZjFsybNYvFCLyLFN4iqb0F+BSRKVHptBiUvvfFgEQSbsX1EYgRF33Or5foK415rjLyLNNYehcEMp6siI3nGQWVmq/FFVPltDITy63e4RqXORbOKR9VamOxZtfHDCQq5YDY/Nlai+99bo9Xxbs+TLVtsM08R/j0eoOg2EZwHPHNC9isNnRdxx/ZIx4ZoTHChhZreubOIjQ0akKiepPAclxfUsDvzgqMWkGaq+B+LTlqLiQ+JXg05q2rLk92kQ9KWaIXcNFQ6FRpjKnGU8vYu3D+0MWxk5TnLoJbTetEhLSLKDG9hhgf3cZBcNFYKYixqApGLKhiottYYJEGOAlUKRpjMjQBODEjRZS3CkeqtJstHRuEt9j+muPjJ5jFPTh7hDZ/w7OTf2Jx8h+5af+OJ23PL79x/ParVR6ex3Nh1WtQTD100iMNWGzwi+psHBFFxeGaLruiL7swW11jWM3nPOg3OG9wCuI8W07xS8+9hxv+l794nx88eR9vn3I9f4DtX9B0MHOGN67H2JBTsd/0AbySgth4uhjkRilzqQp9o8yxbLY9v/z2Dd9cdWy2nvlcaBrL2juu245+q9x//Iif/vBL/rMvf8Lb757T9B7Xben8hk3v+Ydf/wOvLl8i1vL81deoW/Po/Ih+q9nldbFY0Mwts+OGk3vHuN+2waXYNtw/+ZSF6blsN/y7X/49nz5oee94zocP3uPjhx/w7MF7mHlDV/POlGaroksAIzbQTD7jG90KVSOOkgHvAxATouuHAUp4NKaKSfURpWLe2dEKcEckpUqK4ZCkU2CBBYMUuVPqj+gh2sknQrhkWackjBZBaJQtpR7ViovHeS/u5Um2BCUijUta1OE/W52XH2GLfM4/Fu/dSEYHXJgSwyf5rxrkYMY5gzJjX2ulTJKL9AR2SSlPqlEKO46V+2gqONUfA2WJgnE2GhR8nI+wAx5SzYRgimmOwOIiDwOD613QYdSj3tH128rob7M+IpFPZSUlEWTCXb7grRrDjlWZdLQASYbh0H8rwd3T+9C3kFs0RD9OD0o8QOm8w2gKBBj1Gy94B9Z7eo44Wpxy/+iIla6C16aCtCDLU5QNSoswT+AVJY5DvorRwJr5zpzV1zvtLAYhHAWcJDelMkpt37HqOnDJiyDkhwoJh8M/TwPiRtrV+Br68w7Ba02k8Z6GhZe4aeArFUMZKSNF+d4Fw5Nuj9UySUBs/AxVScO7wzoyEVEBn8zAhi9n0DpRro4fQhJF5sYoDBTm0gsdFVSYVAD6Q2Y4+Fw3aMKiMuxT6mtxOazdB/dZjoa/Ded8oCDsrtCdRk/uPuhooOtBm2pMqjgBVkZWvT3WsrFFq4zL8L3pneP9tJlfn6y1/JoYZRUSY7J94+oHjHtPfdMWwunyJi8ZKfAHyh1aKEtV2WOAuHSEoKAB4oMVcNs6Xl+t+PblG95bHnM0X9DInHy2QiSA3Co1QCmfPGxC+TwQ1Jk/jelJsoDJ817TUD33SkgJgISk12JiZMmpgRyPzx4L7D4pNlXi2DI7UU0t4zMfuEuZMurrGHAwnPMEuvL3HcVQJu+Xeg+1KRdSf8nywESwpxKVI0L0zlBTyHeXZYsYti1cieO7uePRco2RBjHCwih0Pb1aepSZXYQ58hqNZXF9a/hby6XS2BqcBbd/JQYwrfqTyKe2EYZxDOvLR/kocWyDoS3gQm98fC8ZlRjMl6bzlqIxenUB4AEQJqNEWiwxA2A0kkrkI7VZL6TRiDSr0d1KlGCFbMI5TI1AygAarflmHtqvoW/erXHao+qxG8HKLBht1GCbRyyPPfcRfvbhS26233Mka1bX1fD20JhZAF8x0qfVtOflqxx5oe1eJUcDNRKVaIXGK96Xs3BioPOO+6fKjz9t+MHTzzk9fobaM3rxLHSL8T04E12SoxHDB8Nt8kDy0ZAbUmakOQ4KHMbg1LHdbnkTU2W0raK65fLigqv1DTdvL9huN7iFZ7XZ8ObNW7775jmbzQYI53g9nouLC1arFd5aNlc3iPNYmeHnIaCNeMG6kHbIOUfX9ZjZAu07VDq0B9hiZcvSdrx37wEf3D/h0ekJD84esFie4Y2n020ZfAnrdxjFf7yua/5KBaMqaor3omPpkLOMggmUd7TCf1TQRzJdp2/llfR2Hdm46gsJ10nVzumrQlq5Hk2ybCxH9ohYGfVJRr+nbsJ+PknG1PnbSO4XWT4lp+u2Do3AhScNrwpTVgyvNi7n+zrqBMkDx5UHFbwTvAblNOT+DlGFvRJdS12W8aoe7/p4Rrin78PZ6USHknKASnLfTLI7nZ9NXjdUiqIwddxsaqxqjCkDLSDRT/S49EMMVY9VyvtIHGcVQ2Mti1kTeFieKyFFQNWYf7LM0aF2HhbqtyiL05S/r8Jt17FtHXlJxEnIDZHdczhThdfle59ifKdzFLE0KedS0rZyFpaZIVQEeqee7QPB73YNfNwn+zvcVSsAyFQkRG7heBf1YBtTx3RsB2JAMFojPgWvvloAI/eiQRt2dwTrZ6Ys/7dd2W24blIu61AfdFDGsLz8LT7vc1+nJuV2spwe8/H93V3Ru5c1bM/+qJapjCHIj59k+F4ZL59/H5W0W/fE/GltiJiiy1vez5FCb+n7XiWg/uyVEG5eR3Mdn/RK1znEBJe37arlN19/y/tnZ5wcH3N+fEKrXWCkUSPMcyYhKIlkS18JFjU0IJGZ9r5+7HOZrOmj0HglTCTs0pkRMEn8bnwvu8dRKabV7ztjWc3lvjV0+CreB7HJUVhHYJ15sWSlp5BONS5R6Ou4HTvAcXjt3yEPbdt37e2fSFDSk/u7acA2mOiueej9bae8euv5lb3CiaBW+WA2A9fhG0O3hNnimJSlfWaKspj1zp1iy14EcX6996iEYwLJg6FuTz57mUFihM+qhEwVkn/PKVk0JHgOe4KFr0qUMRLPjSWwkT0oSDSUAqbFPKGiqPQQreFpXqPdMM+rxrGUlHkdjUoiEBWmpOiKAt6AmcUzlkQQmELTe7p+g67esN1uaFbXPLn3ED/7EHv+kB8118zM/8vD5Quutx5oAbheC2fzY9ayQRVmGOYhPCkeTy8gTWyzGuhCKptGBGk6Og0uhSfbnh6LEY81wf23kzUfPG741392xpNHf8Hi6BPUnADX4C9R7XFY1EVLfnavT5FQg7Ko0Y239+R8i4rQzAzdtuVmc8XF1Ru6dk3bKq73fPP1b2jVsb1Zc7O6onM9//ibX3H18hWvv/mWi/YGrGWxWOB8y+r6hvVqTafCkV2GSKkLjzlZhHOsrsf04DY929WGi4trmqMz2Lyla69Z31yy8B33Tmd88ficf/XFl9w/P2Yxn9H2jk0TXPGMHwYTzJsNA81iSq4UhT2vwSz2lBRtqObERRmrDOQagHNSBgaKyYD3VPWkUqpnEt/bMfzuuyL/27ldK323APm78uXxebthfXvkQKklYu+krBQeLKR1N9XeXR68t717ePUUzhzsVhLmzpktRhaoM3hn6FoFGowVZo3g/Jq2b+n7FsMsy0YrhhBAqwuu3l2L8z0iydU+pA5SBJN5UsHAhbbivdhmM1JmxsZ39TqhhEO0gk3oANX4E6OrV0F3KHAEGzeKmyYEYjMA6Xx49ugbrgFljDXGnw9ft+4s7kDLDG4CY5XKPLRZb1ldd0F7V0cIgpK04QjA7qSJD+tT1Qw2p4R3Iaikce9RBAd92nFO/Be7an53GEBHQos/uzjtRkwOjCPUkRCTeyiUsOyB8GsgV5/9qkfqkKK3Y/Fjd2Gnzy6eZ7F2HG02l5bLHMzn2G2Ymt4Y3NsdM6n+ln6LjNw7JhXFCLSzeX76upOSVzHZfzniGs7jwSd/D2X+tmomXU72KJyHxjAoUZM/DOvSBGYLfSRAmj2bRGC5RLTDb7b8f//xVzw6v8fx8QlP7z2gN+GMjPM+7uRJBslocqdWzERzavCgMVjHoT7tM8DASLWJPxljaaxlvrN+fDjIOFYY89/a16Pw3elrbBmWIe1S5nVnLrX8ZnLahKGAF8jpeMYt+H0McknB/n1pNyng8QvJBVepeCKJdASJ5/Xq55LCk1ugStsLL7dwpVdcecdVv2Wh5zycCTKHrXT4pqNhRiMGY1wGGgZKGtoJhTHNUT0PCkFpNEOacn1UQMUQT23ktZEC44gUxTOlQ1IvMbjNEJCLCC4HkwrvOZe+xzmNO63GBNcoEYcYh49nbcJcBQwgXvIh3Px/aRCTXMOKlhuCsoWUHeG+Bz+vYsEZjFnG4zBC37e0/RXaXqP6ir67xszuY2aPeLz81/zx+1/y/tnf8+Tx/8G/jSW4ZsG6vWCOjdANOpRew2kyI7CIbsWNCrPOoWoDRzDQt4pVpQE6GuYxb+tz1/PJR56/+ekZ/+uf/4CT879k3RhaaZlzQUMPbOlNB+4+vVN8HxXEeIbKOaX3nt5D78EpdK7Q4LyxfPv9C56/eMHl9SUnJwswHZvNhl//5h9ZtxtE4aRZ8OLikpvLa75v5jy9f87J0T28hPQlL19esF11dFuQxvD4kw+Q+ZzL9YqbbkO3WaNdy72moT9aoOr45uX33DhFby458hu+/PSUv/rhl3z2+D6fPbzH0hicKl3r6ETp3IqZNCxklmmr0FlR6QZXpTwWnjRQGeNzEnFOxJkV96tVxvJWH+GnZM6uWpVXPzvigYGfVoprZfw4dO2ITN3zedDO4d8/9DXGa+XvLg8IyvmuMlda+O54fqq+qfYN67IgJ2zaLep6UGW2sOBDmqLVTdjlNjJnJnMc13Rti3MO13vatsV5H9xaTdhpNCZE353ZZTa0ijVY21C7G+feCznLQxijYZuLob7QyJ2GR4vymMel4sFJZ3K+pNUBQX3L3MLxYoYQg/8RZIOjCpted2CwRt7tOqgsDnM/xXtRUczacqX8tX3HZpOgQYpsGR3Qc4oIz/5Ioex0ZEch3AMYipV79/dpfvAOimLW0lNpu4vnkDW8jF1R6nYeiyB4fCtK/bB4pDq/QO3eUxhkDgCfLMEkoBCrGDGJ9ECydAXRrFmA7qqIqWG7fZ3aZcNEeJUAfFSiBi4oBxSL2vpS30/9qt6o/taHpNMYlufqNZyXjmoctncHsnU/xsrvP6u8AquG9FsfJNViPwptqBhVuIGMGMQu8N6lib2Kwh2vSVoYP5MEbiSPgeBWHVK3VqAdBQ3nyGq6kBQpLNG+seAt0ltevlnz1XeveHh2xpcP3kOXyQMijF066ZzoJ68XMmwn0VXuimo+UzIWbgcVxLEgjIA9jQkxPLYdpc4IlsHh2dd9FuO8m6f1M4VHpVVwm/Je/x3Up3kpjysvIiGSXZ3Dtbxf+F09Tr53mZazcseQ7x/eud8voQtPiDWoxnQEBawbkRBsyPtgQsr8SnPp4/qUhk3f8fJ6A9rzwAhy75RTscwNeFnDzGOaOc6ZaJEO/2w2kJXyBsC4+pB5d1TC0vAk44WIhM2+dP6WQr8pYmQ+/64h6qYx8WxafDgZ15JyXXskZI+sZJlJdJE8uEk7ztG9UkK9pEixOU1akYPhbwL9aVw0y6SwHoQQR53gTQCIzAlJHCyqBpEONUHpbLtLrFvRdG946y10YMwTPjv9Cf+Wfw/An37e8s1zuF55XB9Drwg0MeacU+h7La7tEqKwqnjEG2x0Vd0YoaFHaPDa0MuMv/6y5y8/f8D5vc/pTEPLDY4Vx96jbolznl63GN2G3Q4fzium8P3Oe5z39F5CYMBBap4QafZ6veZqvUaMjTkQO7Zty9Z7ur4LSrzvUeeZnx5z7/4DPvvBD3hz+YbLmyvevL3ANDPOH5wws3P63tFZQXAsmhmm91jfsvUGMw/A1PsO1lvuzRZ88uweHz94n5988R4fPj7ifNGgtmfTQzgTLFiFxXwGmBB4LNH3YIXWMidx4eKNNsBMafWN+JFP9FiZ9uIm9AC3iSazcOL7tfxL9cZaKkWhlkt5KnaAMXe+6hEYK09llKBWSO9qkM1XJaNSgcMSpvhkdLukeC6kndyJ2uM4mIw5tMJQA1mYmxLueZ8CvwQj1Vi+TCuLBtUZRjxeOrx2bLerEkNGBQj53BWP8x1d2wVl0Xn6PuaaMJamsaQNKNtYbDMLBmNjsNaG8+UTchsS/ysYYaALxBzO1QjF8Unnyw/I2ow5ytnexFPTaxoNmqrBoOVx2AYWs7B5FOK5SPCoSnqWxjISbR2gGd0x6w6vw8piqqcqfwQBB3e2Xc92m7QOJewmVm5xGjT6LGxSKXsEfxJaWcDvURgHkxoncACDpQDS9FAFw6fB0ERbSgW7QFgZghgZCcT6Ct0fMYE0Zrs173xWHRJlLXaT0jOoa6q9tbU6LfJcRjnltstOdkhion+VRTD9TwrwKnx2zL7KmJS5Hvex9Gs/3Y+Vn8F+AIkZguQodoMxrPpRObIcNlKMP1dK0KBld1Qex+/VfuexoDw4w7msAV16c7je6rZmo8+e6/adQK3Kun3npwbrA14rmSjK97FhY7BGxnMcGWJlmfMS3EoMlqv1lm9fv+W9F6+4/uAaO1/knY60swaEs17VOIaFkaKlpQanHX/d2467XEVximMicU1I8BawIzfUpBAcYvipXFUd7Ppl95k9K3eq3L08NldEWcs1Txk9vxOkJuYAyE8cUKr3GZL2t2uaO41352pjRM13Q3RRn/Mjlt3IVHoR3kn4igk7QFfrFnUtXzUNJ/MlahrORWm0xYngDXg/JwHbQs71OINqkU81T04VhzZqPqcoaazyfSlrqxqO7BpaDVVRnKNzlBZXpeLWlhRNSmCbBJZCV8rY5BjbgbfmzRhNZ4OSoBE0u57GZsZnc87fdAMQicE7kqeINEh0oLUxPoLXPjzjWrTf0PcrOv9rhBOMF85nH0BUFv/sY6Ft4cYr3Tos8UbCP4CthjyQXoKR1pgGjyMc9pxhVHEGWiOciKN3IQLsyXLOX/3ghJ9+9JT58cesjMezRfyGxlm2fYPzFqdgdIvS4zQGE/Ih0JRLSqMGpdXniK0heEffe1bbLeu2Q5oGehfSlrg+DFucw851NMDx8ojzB/d5+OQ9Nn3L9WrFdrtlfnTEvdP7HB+dcH1xzZVbY7CcL09QmSFtj/Z92JGhZyZwYpX3z+/xJx895otnD/nwkwfM5y2i4RyYU2FmLFYsjXcsCOfK+lq5koqHDvhppFNTdv2KbWqaF6X7ukfOVYSel8Kuubj8TTtMpa4xvgx8UtnPSw9dRcHIK7v8Nmr9uC3Dcg7wypGilVmH1PVN4aF03x8Yy3HdeYEjIjG9SzVx4YVBO5OhMPCe7PZQ2u53A96oloBegV48fdeRdAwxBq9hFzHsIPb0fY938Vy2icFvjMnR1Y21NE2DSFMyABi7k898uLFSulQw/vg4iuz8lRTgSWvcW3QbJHDn9F96uN4wSd5OGj8rSmNhPjOo81FuSAz+qPGMepjP2zBDbtyB685uqBkG1D6eI6C5XresVhp2VCQFnKkGTgyefge6TzZ7AhDcvvNRw6Hx/fE3mXj/9qt2Xh0C6bLjMFAUp7HLziUw4WIWF5GrFezdCVXVfPBfIohNQRpSew5t+0/2c2wd2mtpmR7HDD5l/7uH6t5XTzEg3L0ve2oJVvY4pL/vDtq/xHXbDm59f9yN3bXwh72mFIp97bvbztDw+SllVPO8hViN5VxzBMwiaGPxaDhnZBZ4t+br71+xtMJXzz7kk4cf0DRz8JGZEtd2BDLZoqrRXqgV26uW0kAwZkvedF/27dBF7p9bIRKS884mlEWyVXOirJ2rPBuUiXr897fzkDFu3y6pqpZIcSPlL4nB8Hm6TonKxU4P9iiMd6WhdCXX+xTCXKu+SHL3jeU5AO/C+ZUYbTrtzA0MHYAYpTGOBqHrlLet5+/dNZgln7Tw2dkxD09Am3VwPURomiYaI2yI9WaKe2fpb2JMI9wVx6T3PhhCojtrJqcE1vJcB0UoiO6obGqyeScX1dLvoGyEzcDQxghQVEkKblgO5eylKkHxS/1QF5RDDIiLfariO4uB6DJbhGQFkXKH4zviU4aLaFCxKDYARR+jX9JgpEfEsdA1nTtl647o+t+gzTUww/RP8zj+T58+ojPfcTm3dK9BLhy2gwbBSFB5Ww1j5azhaPYQ5Rqva7RtmOFQUbZN6P+l65FG+K8+nfM//vSP+eGnP4HjH9PONsy6nqYH00LbKZ0H9ZaZbMGGnvst9M7TpX+adg+SDG1yLs+XLy54e7Nl7cDOjlm9eknbOkQajpfHzOczENh2G4493Ds54fTkhMubS25WN9ysVtzc3PD5lz/m0aPHLJdHrP/x17hvvuX09JQffvYlmAW//uYr1t/9jpdvXnBs4YMHJ/znnz7hv/vZn3L/5Ij5TLjp37DZrJBGsPMFTixNs2BuZkhnaW8u8cbC/HhyXdaeGlPLuYQa0IwltJLXBYIWvJHXSf5Ur55aCRp+TwpFWDdF5hhTPR7pcnC9E3ao605ypj4QVXCtVNrdFF/ebUKMiq8wdfwgy83BezlcVq47RWweWJWo8eAY81WFxoijk22M4msQbD7i1aIrxgdG2Nr7jm17GWSJA7xgOQIcXhx9v2W1esO6XdH1PXN5iIjQNDOO5ssYEjrKmZi+yDaW2azJ0clruTVl7EwUl2Rc7hdB3xkb9HOWAq3wBAm7FtoTkZKvdXQVo4QJx7uCXhnS6ALzxrCcW7TvCWfALSl/ezSl4d6FPA9cB5VFk5l4vcCqboyk+9XVFTdXbbSAJQlFXMchYIOjJQ3SXheqwW3N/+rIcQMLjSa3qxi+m6SjDic0fsgMpl53dwYelWWgfmeQHDb9JjIIvHmoDk2FUBPiEHxK7HhiMKk8Q/meLMxS/jcEdJRFoSkpMwUwp3butd6LgPfZ+jfdN6DvAAAgAElEQVRWEIaLqGrv4NnQt8md2AmGGLJODBWNgbmh3iWYuHZMExn4D3dqspV9YnGN27lvx6N+rnb5OvRObucBZfzQVbvrlc6NOfJdlIvdem9T/A6VuU/pfxeQL1LOvGXRVAHo4NLiS/oKa1ATEqN75xAMxlqOzTHrdcvzV5f8/JtvePDxA87OLE0zI5wZCLX4CBbLmq3TTpTnAglr+ZcbzITQ2O+SmvpV1mikHRMinQ2v4r6TDVaVYK3P5Hn1A7qvFbfYsVvn7JCBaGeXe6Qo5rI0hAwxVWsGu5iaeNz+NXyonbu/Ta+nevwV4rm4EngppDuJodarADLpn6lcypPVNvTBgbY0ahGZ0RvholN+8fKSzbZnpsLJ0Sl922N8y9GiR71im5TD14TIvRJ26kyyCguIGc9RCmRUxiAFvkljmrl44jmxxYJgHIgRbDxr6COd1ZlNUuAdT0jVkugxrLlEnxoBricErVNUTMAptgaUYXcb8QQJnYKDKGIsIn24n2l6mJomwmlQQ7a4mzAKYMHHsDzOomIRHOBY9wu8OpA1DTOEpygNrloP7z/4gP/mYsb88Ut+ZTZ85eB3bwWVJdbMOZ71nPdrvPd0rmflLzBNjzXQ06HRXXXZKVce2sbz7IHjf/tXMx49+JJu/gkrY1HtmbklCzcDf42Xazx9SD3hXIgfq9Cr4HzITekqvJxGQiDHh9i2jjdXK7599YaXFyuublpO7z/gw48fczyfs7655np1zdXminlvefPyJVc3l1jr0dbh+56jxYz1+oqb9TKk63AtS0uI5OvWXFy8or9+xT2/5YtPn/CnX3zIp0/u89njeyx9R+8uaDeKmSlzGtQLdDBXg2u3rPwW9Z7jk2M8hi5nCxoqSwEsJ7mvhOMFqe9KMthptBQkA0VeD1Fg72CUuAbSDlmKuFuOPiSXy/RePIsm9fuR10nNP4eu8Z50Tv6wnK7XcQmMUhTFzP1GRsAxdqkxxlDug0jMG6jReOqqk8imDtRS9ZfUtzAfOvCiCX935e4QTwzaEB8cyofytFJhuFzvsG+Zr1V99d7HwHVdVkgNStdv2bYbbjbXbLab6H1gaSTwDbxgYmqnML9JRwhu3y66pya6SsbihA0zv4rz5n1SIJIci/qJ7irzqQ8Qm5zz30juex4DTWMfXP99SheXBx66ro8jH6TpYuY4WgpHCwH1CDMEm7U2nZyiovjeHYWF61Y3VB18m/qxPLHabNhsXTx8H+4lhiepoensRxiFCaE/Aair/8K7I8t6+l+ODV7eCiXGe7USlttX2n8nEDsa5dr1qu6PlJW1s3h0NG6jH6qvkpuqqtHKHRfbsBHDz5kJHOqfVMI4Ktu3APk07umMz6Hn76Lk1ItrXNYhkJqsNAMGdFtlYRDjxwy1q8ZUX2u5w2isb+nPjvvH6Pe77Qjt/nZIkRz+NqahNDrVzsgB5bUu+12UunG7x+/eRi9JsdhZQ8NGxYfD/7JwyYl1fQwCpag3aO/wYnEmuKN2vXKzavnVyxf85NUFjWk4PW+qMg/L/EM7clM0srPDVv3NY1F1yVfrMKTOGIOBVFkSOsRoaT4/kC3SskPhDAxde/t3+5zvAoFpSaGxP4zXdc2X0lzeWust7djzewF55PFJhrz8gxT3TK8x9EVqJ6l96RlNQ59ZSnSmAmNzvt+bjeO12fLtYs3D8wVLpyxmQmP63O2kM9fBavLuHQz5+oD2d8egpk0f/VOTG2hW9CT0LdBXIiMd8MIkX8Rr2ABMgyCprLJzIamSlBorFVDxnLAjWFx5M/XFoDb5nExF+6C7u8wawVUsM4x6DNIT86rl6huLeAmuoiwRs0B8wR4Ay9N7fPEgKJdPljecSMuNb7nYOlrXY51jHrpGI+CkQ1QxXulwIZufglXhxiv3z4TP35/xZ188Zrl8iOM45EnDheA+XlHfIfggUVTovAuh/11QEntNbqcUestYwUdZDavVhtW2Zd22bLoWYwyz2Yz5fIbve7rNhq7dooSIqtvthrXfgjjmPuyezqxldX3FbBbe0b6l846rzYrvnn+D9T3vHzecPnjGp+8/4MP3Trh3umAxCwF5XM7RbLBmkRZSbqkaUGPoY4TGggdr99PCbDMWSWsqy5HdZ/dJe6UoPuVzjQ9NYgRZcShFJfCeiKhUk5WlhPJGvHu6MZrr2pWF5N5mFCbJPd7vFjPCDNOyNKwljUqHjI2BaQ3Hv+Om1+WN/w69uMY4tm7rLn5LMqDOFzl11UpiUrJqhVG9BycxbU6Hcy19t6HrW3ofXN/ni1OwFmMaZixjgC5TjnfE+RUTDDQh2rKPOWyJ8oFKaYz8WSpeLRVtSTWwgzHYxT5a9XHikfy7SXNU8cN0GKHv+xyITRGaWYgCO7MSvA+j+4VXJeSdHo/y0KdzStM6dL2Dsnj7dbPasN5EZTExdAda5RArOKaU/q6gNC2WXbArg6huO++NlYOqvLu2YQyMShmh0MEizgxg1M+BHjlSktg/HgPAU1Ws+WOlCFSqVCLQojikX+r2F9Bx12ufAjClENWK3iGlcKxAUmlxw3GqBchhOko5PhGC+/ao3nGPD1HCwZ3UMcPdM5a/jxJ216vgtCEYv8u4j6/xO+nTFI3exeiyO7fj9w8oK1Lk745g8WVn0XtCrjAD0juceLomgk8H603HL757zp9/+z1H8znHp8ex+OgKoxWgpfCZLBfKCAzaJlUjC+glv1/vYA14V1nIGWghMnlmMRhJSluSkqzxbJkYm2QeaZ8lrf8y0GW8h4aDiSG/xbCRdpwGaLDq0gAoTNBgMBAM15GpPBbGa21c97uso10Doxb+HMGEEqLgCgEUpLOBaDovkgpL1BEpRQydhvkypmHula7b8Hbd8puLK05OFjw6nnNv2XDUdLlPSTFTLdFNQ1tjEJyMcqu5yAC4jF0oy1afqzmVap4guDKlpNNocJ+SBK/Ls+n5sPdiIsgqlvJQd9gpDC5YBpMSo2dEGhTYbDxOPNEQQF8M+jDUiRN913Mb6D4kDYdkzU9Kl6rkxOGIwhysm2F6i5omnL9XYV5x+ub0nE+fKs/uz/ni0TX3Tt5woa/41euO7y5bVtuwuzeT8O+oCeeonIeNUZYejAoNBofj08eWv/j8mC9/9Bkszum0wfQdxoZoyV478BsawEWVsXMO78E7U84rajirqFn515xAXQS8g6ubG1btlq13qBEWiwXWGvq+4+b1G9ZXF2xdC7PwrjMhUI4x4FyPFcPMWt5cvAHvcJs1frPlpm+52tywubriy4en/OyHn/Pjzz7ikw8ecHnzim2/4eJ6xeLoOAwKht4LS7MM56NV6WmD26YxSDPjZrNFVGhM8ZLIU5uUKZ8oLVJ29cBwx7CWv2MFsnytd6ySgh1eK7x3vIu4l5NI/aE8GxSQHZ+liWsKK4Z7SUepREBZ8rXBpXpvX3oMVQ27UTExZ5IJJJmbMKBA7e62j8fWsiH9/xBOzsbezNMGALvAkbrcSgaNZXpSFLO3h1ekF4x6+r6la6+5un4bjpo0c5Yn95gvHyJ2DmIRv6Vru9iuGLjIxH9WggGHcCbZVNqgyQF+knKoA/5Z6AfC+ekhrh3K0WnlcKw8JtyjGgx0pHQZRPd9CbK+a7uiQAOzqCxaAe9SlBHBawoSF8pO6lbRAaav26D/nc4sRoy9+5vmGBEArNYbulZDRCFJOcxSbproipKSZt9WcdWA8Y4I7ALPoEDtt/zXV61Q3cmSfte2TtQxNQMjnW1IaIPKouBOX01V3gDYkiih1K1DVjZcoFH41gu1KmysAO3eS4eBpxILjIBexfz3KaKHQOG4/Yd2HPe+yzvQ26hNd3kuPZtyMP2nVAZvv7RoVfW96hrPac3I0/3bBMMhReLQLujBlo8Xxi3PakJvmkBsDPphAsifU0CB8XA0W9KZnl+9vuZ3X7/gwfkZj58+CjkN0y4KUbEpLQ8pYJQQ8QJDPNU2fUniK+zwp6ldxqJMUSJuSgpws1u8FUPyL3Hqw8H2CAzURPfwFMqY4l2xd/zqpv8etCsiMZ9lcl8qysQ+g0IS/un9yTIP0Mu7GLTSVYOs3oXTeSIlvU9R6otxwEewIhoPOKSonoMxNXgW9KJYp8z6nrOmoZvP2fqWf3zzlk3f8eXjp3z28D4PlkmF9zG9l2SFJ5SfogumHc7DQjyNacl7WQCliGAyERXA42MujdqAlxTG9N1ai2oMdBbdVomKaPhcxjPU69EYvTPzkXgGrM5NF1SMoCw6TWCuctkPBVadjmAfS3BnTWHVQ2RSNTYoYy7sElocximdgFvCXI6Q7Ro1a9rjTWnzpuHm4TlLPuPjJ55nH33Pn33yS37+zUv+wzcX/Jt/Ur65bFh1wkzhpO1oJCpc1mC8x9IgcsycS/76kzP+5z/9CJ79l/TdnMYrS7+k0yt6XtFyjbY96GO8Onp/w8pvWXRHGGdw6qLrqSEnMpFCaepD9FWNofSdKD0epz1We1brG7auR7abeKJTabs1Z8tzHj97wvmTB7TdhuvffcP28prry7ccnxwhXc/m7SXrV2/h1PD+ew/4y48/4W8+/4T7x4Z50/Py7S/xc4NZLji192i2czq7opcWWNJpg3pwvqNpQHHgHY23zM0i0kNYc7UiuKv31GhzyCclKmfvKsmTl0UQLabQ1mBR6c6nQ7WUp+/Qlh12eoi/6ujnokjArqI1jhbtNSiLdeyKqapVdKflU0pcunzyC94prC5Fqv+XMhMuTYrKsA4f/w13FMdKo/ce7be4zRtWqzV9F9LznJ485d79hyyOTpgfn+DE0GswuBjdxuMjgpEQJdW5HvUult8jEs6Pd10XeVOMhxt3nMeOu7XBIdwoeG8a+xUX68GYVGNc99d5R1OrZAlDRHnQ9X0MfKUYPLYRjFEQF3YW0/lndUM6fndxOXkdVBZ9zMWEV8S48LhXxPe4WYMxs3A2IF6rrcc6F/LlEg6UIp7GBuIV75nrMoahjkJu3Jn42WAikArEZkQCEEpcNFkbIQi+aN43o8kJP+dwbUVT02BVKD8MiTlnIJACIlMdJTS5ZAuvVIvFxxmS9GzuXxDmNRANQC+eKTHFLaIsptyI2E9y4t6pK+9iiIQcWtHAkBTjbOkYvBTaqaNbO9b4CPJydMNs6JWK98YzB1LmtwDltGuQxmdYvsSpyLe0Zp5DxSZZf/JYMVaQ6jGh0Er8mFldJZDLcYS0QFN9qa4i9Moh5TDA6bla0KWpK6XeVWGi5JzM9/3ge923oX97/l/pCwzatTtQJfz1bg0j0Vh3e0e4led0XNbYvaZug04ZeQowCGeVlRKpwyPe47ttHi8jUvIMiWFuF6AuN2az3dLMLbYRTuyMf3xzzfn3b3n68C3nHzzCSTgDsUAwTvASznSpCcCrBDjxUQCMdptgoJhJXK/jjtVGluxuYz1GoVHBeUfrHT2KN0P2rCxj8vW0SMKakmRlj+s+1xv5oojEndfIDFQjfy2KUsEWZdxTfr4yHxV9xiWSKUqEHDpcI0+rp3hkyAol1uc80tmdwocP7ULv321MdRWgVd8XiNbj0AJNVniNAa/ieKWzTcnYUI4ypHlN61uYGaDvgzQQoY+GUcHQyIybDr66vGHjlePZnPPzY46tYeY9ZttiZgaxll7AeMcMg/XAzBYWmM5tp+lRzYpVmO4QDa+MRRwnn7x8ynwm+SuE8+5JJhgJO7uCVOwiTHIa00BWcQ6r1B25aVp4oQSEhjG1J1AAagHD+0yjfnDARvIOfEG4LUm7ULFxbqkwQMAGPjJdk4xmaAhg5BfUWVOl8Rgn9FwHjy2z5NmjLzhaPuWTx1d8eP47fv7tNc8ve769hm8vwfoZjVrOzJYZQouyNi1ffLbgZ1+8z48++BT/tkFOlqgIzm/xrse7Gd4d4W2H77d47zC9Z+aP8D6cle37LkBV9agTxMyCK7APirC1DYrSu463m2u065h7ZYZBmob54ojF0TEbL3SqmNmMp8v7PHjwPh988D4P7t/jV//wcxo3x8kc3ziurzuWC8fp0YzPv/iIn3x8zpPzYx6fnrI89jjr2ahD7BGNGCQAO3rpAIslBA4RHIhiDSA29gN8FVmjjt8eyEMZpLrQIDszZ4hyTCNAnzR6CUgKxhIFucZziENjXKThsdyLeEplQjLX/Co/n3BeamUShgX7VRS7Vy2UXDYFt2ih1yRbB1VHGWSyEIa0SNN6M14qzORJEinx9ZQaBIrnX6hHCtaMuLMaYiZ3cRnhmdRY14MoprH0vpq1xJejcug00IxYD32L8QpOcP2M3jeoOKCHfk2/uqTdrlmtb5gfnXB0cp/Z4pj5yX3sfInahl4s4LDqMepRsRhbDKsh7kVMswM4ZzPfmzfzwTjnjtffSUUVxUAm6bLMR8GD+yiBrCgmXtb6LhiBCbhj67dgLJ1aVm08346wYs4P5p4Hi4bj2YwVixCUTDyow/oT1LY404NvCl47gO9uuw4qixqQaA5HH84vKDiHnzUgTXDTidemdRDdXFQMyfXUGhe5uNLQ0JWTRaQi81BXeFaQ4MSf50/iVuY4SiCQo635HXCRZz4LsqyNlMkeWT3w9QFcJSt9OgQvUpc/1AwGC2W3LQncpO3n2wFRAjPqXV58ktqbSk9CWYK1OtNH6vfISiQR+JCZa6xrtBMyHL8qFL7GPGrIoIxcxQBs1mBGBi5ng8prHWPc1nRPJl7Y5We7ZdfdqT8Jeb4TSEn1jGammuYCSuuFmAVd/m2iHVNt3P1hly5H79R9UOp6JBex2+Mh8E/3ko5RW38P72rUpY2aXv1eP1wL8UrV2FND6kMQpNn1zvtgIfRBGTTRbS8JNSG4BLpoQRWNpxk1uMrN1fDt5Yrnby65eHvB2QePSiRSDYYqr9HoI0F4CmltDfuVsGrWTwbrjbAO88ehS2r67mOEEeMl51rzKhEUV3UxQ2kLz4rnwUKYD0PWCvLQlfFNu0HJkoumkDPpHING5Xc4J6r76FPTj7v3GfOuEb1VZFiMMFL9Zfg8wzaMlcn6Kjy1VJSUxcTnpH4u5rcrGKDw8mr0ItCqaDiDiRAIJhk9BcVVIZkaaWgdvF5vcXieXx0jixnGCEsjOPEgMxATopSqBrBFisIbZ9trPrNeDWn4aCQndq/7kBXGTKQQcLwmaT6Y7eCyFyclGXCy1TSNUapHC/GndZYei8pjkKMhn2nalc30JyGPqMhYYUhzM+K6vstyLQS8KQsv7VemeG1iwjjaqICELdwG0UpZjAZszyawFGbMl/d4ujjh8fk5582GR0fCr99s+flLx2W/pV8bpDc0qjgRejxeev7401M+/+AR791/D20NemwBj2qLOof2gvoZDo/TFufDzpvRhl49vfY4F7wCVIORV5BoBArrzIjB+Z6277natPg+KAeiElMAhMiOGyOYWUMjwsnimLPz+5wsT1maBX7dh7PcYvFiMOI4WzY8vX/Mj3/wPn/50TkPjmeRZ3n6qDQYu4hrIBpXxCPYEC1YiPwxzjlhfiDp9olbVfJqgPck05NWBpDyR7IpNHtfpeISRqzLTrSc+EPmOZo0hgqK6GCdD+hNYMjDAm8qK4fc7mGgnLJkBhxQanod1ERR8OqXBr2J9Q4N5IE3lI2QYb06IYR3eVnik7m8nefDnI5tcztjln73nhAxKwWlirUO3Ct92P2SEqhGwiJEvcf7xCccfbum3VzRtS1eYb48Znl2j8XJOXZ5ltvm8FivCB6Dx0uTGzqcJzL/997jnaOxTdXv8Xa3z6KpnqIkrQrOG1+1d5bGdoyGTIssS7Kpz/I58dIOj+CwtG2qVOiw3JsbTmaWubXc0MSzlUHGizYgPd5oVDCnwFoNVA7g0Hgd3ln0weJdyku+uokrMxiB66sbttstM7vEShAEE/H8Dl8TAGQfMBg8E2dzIGPy+BQf4XDfF2aR7sffQnTFwnDquieBUwUcYmVx/U8RUP1aYpIyZADV38k+66jNypBU4/ykbfVSng7aXyzuWjHd0rZxW1PhGQRAGafYCBOFuSQfcMhJV2uXiSl3vKlrsNNbPZ9A+wAM7luyIoNyDtVZlFChnpf91wgE5/qmCr+trOHl9zDvvS2RYVtS07NCd6jPB75PvXeoTWP6mi6nuh+IDxEzKrdaF9XdxODVe6y1WFsS6Bpr6boO73vados1BjEWawxHx8fo/8/bmzVJkiT5fT81c4+IvOruo3q659zFHiQIcCFCCikkXyjCz8DPSrzxDSBBggAE187MzvRMV3V33ZWZcbmbKR/s9vCIzO4Z0maqMyLc3E411b+qqanFoAzjfuTNm7d8e7Xgm7dXfD78jK4HK9HFw3bkEOAazgOoKkY6mCoNic837WwdWY+NUZ27BVCJzlujmBHJRreSMQIAMdmVLysYetzlP12AHS7QDnR/GF3vcP4yz1B/APw0GqLUT2iIyvCkms8u1HxP07bX3Yuuqu9+a6PsNJ7Ok/l93faG38jBYHpVxtHVL0xLxjnHXuDj1vNvvtsHRehqyfnVgnEVjB1Wes6lp+/AGI+zEdhrQoHSgsq4PrJhqpJVU35Uu4GqA2xRmJNjdXK30Ggwa2i5IjdEskeOxLHyviiDRY4GYJuu5qjdgPMukgrWtLw8JedcoTnmcG/h9wLxHGRaM4kHBdAaOm3ClR55XGyg+c4xes92t2M97Fh1luWq4xe/+As++cnP+NuPW/7yxXse2d/w9TcD375zvNjD1irnKF9Z5X/9p8/4m+dP6c8ewtJw4waMd1gdwA0xIMfAOAyMbsC5EecdTj2OERd9QzSfR/Ko34cIrwK2AzHKuB+4XW/4cNOxHVcM3rFzI1cLC2ZkHG5w2w88PjtjaTpkv8XevObV+i0vnef9+iNbM7I1npvdjn/6i2f817/4kr/98jk/e3DBbtzg1TVrvaajhPvKejicC83nUAtm0DRJzfxVBmcKX5FMaAnKHsrYLJ9zoXMxHFoltKKUtk8/Ik1l2ywfEgoYrTDTIXdoCp60rypsggUSdqxlzRyvP8ByqVlaz1qpe7o5kLDsdAQPeX/EpbGvfj8yRL5graUzFu+Dq7WLd60Pgwt3gZqHgbTsntG9o7fKuPfsNo5Xb15j+oGz8xVfPHnO8vwKuzzD9EtUiiuzQNhJjHcxhmvR5mhnAteleN+EfMHQU1I8C05Nm4fBgE6lSr2YjFf50ZigKwV37uhxpCWYjVfYD2HXMdy76rm8uqDvu/Ycazy/jYQ2T+XZYbr/Gji9s6j1oi+FZ9ccCaAhpc0uaMHGmOgVEheyasRePryT/kZClIoYkSIbYyNyW04ubjmm4ROUmrocBUSDAayaybmJ/8EMZboI/4xJYwh/UvTHBFQluWsEJu6lLIJC1G1Zc6DibgU3sOi0MwIEV5mkOybmEg66ZDo56McMsz3GTP8s6YdMR1YY/7xzWFsk79eMP63+SOIz6X5K45+ajtHTqZ3eml7rTJpdKGF0Yzif5JXOhrNVgd+Es1HL5QIRQiRCSdZvobMLVB0+7kbuhh2vP3zg719+w199/CuePrhg2Vv2Gu5L8z4A64UILjjrpQ6QjDGhqdF1bKLcp/NfuT9SKUzUSkhye4xrJ96VJMYF4VenbEhLSkOyNFeUlWSQHudCZecNEEdxT7pvSspoasMPOOsoIXhPakcGc3GswpUSh/Q4BUrHdtuPGjdONK9WFJ33GO8xd8mb2a5JY2Ssx3kcPc7Deuh5uNyDKF3veNAt6YzSoZhxRPsB2ztM7+jz/Y+xAh+VHyHIr4okD8crvVLO0khDt+VZfe2TpPz5HfKGdfFUr8oRwr3KPhkupm1oz1DWtKJOISonU2NS/ZtqdHGMhWbFJYPkWpvV0oi81WjjeqzWk+3irl9YPctFh+sC+Nw6ZXRwZld89XDJJ5eXfPlgwW//8J7fvvzI//HqLf/hlePpEv6Hnwj/3d/+kodPvsLzCe52iTPf4dVhxw43Dug4oH4MLnrOoS6cwxrGgcE5RgWlx/mgNBor7N2IiA/KrxqMNQzjyPXNmq1XNsPIdj/C6Fiox+z3ePW47Za97XAyslvvGN6/wi4tsuwYdODZxTmfffqYv/y7v+C/+YufctYpRga27n04OpSv3zEtR4jjnYx6SSmvDRR3cwApmsrMsxykKfpKnCqmNC65oValVsdiavfmPxVbHMOgc0oaGvDxXVD9x7YjVTJFTRq/SryHtLSu4PaZAk/XV1+r1qCYGQVWBSHcCWrVhesp/Ii6PW7Y52BNDqVnyUqu2Iy3bHYb1I0sxHL78SWbmw/sdmseP/2Myyd/wfL8iuWZQUyXGZI6l80G4TqScOdqOiqS0lQ+JfmTDGlWyHrOvM4zrx9khW9m/OoNmmwpSYp3g8nrtZMU0RiPoApS5LxnvXU4l+Zjz7Nnz1kte8YxnFHUFMjRB8VunAuI+iekOwPcUHWiTYegenSRMUthCCkaVS1A8wBrAlWVbSjQW6WAHG9CfiRVnunDuhBNZyDT1wJUyvOq1xWYOxKEqgi0uuIfMEPZYk1hRgdWK63GJvVHK+JNZQjRVUkKfc4AlwOGp1GZuRMcVYxXyt+GVUUtJd8pI60Fse5XAxyyBeR4G9qxKSw6W9mSHpKtZHmo8hjWwGmaNIHxidVnkqsZgzk+KzJDrLTtKPkm9TOd1/nyW5B8CKbzs5lCpruQP1RRvEs5mBvj07QVRdBkLZRlGd3cRPLB/UCvJganCQqhtZZ+0WEM7HZh4n3cHTQxSmPgNQajhvV24OX7D7x7+56HiwUr24EITjSfuTVI3G2ZUERu65RRxZ8mw1NDpKmiGJ5XFvjE7GboozjSRPunpjVYrYu03vOYFnCRxza3S4riV62RaWrpq12vB5bbmj4mikrNe6flTsvIbb0LzMzU/2NSGhetymz5+yFvzyZKU9Z8ulpoyhy8h2GEV+sdXTfSLUa6RccFnq7zjHaPMSNqPSxNDcAAACAASURBVD2KcyMpmFhqQ1Lmkusn2brajkXr4TDlvdOOV22knOwrc3TKzFWOO0iUP2XtBr7s/SG/LQprUEjnYqW1NFdjiqImkj+n5rRrtYD1djdMxaDiMUMXFOWuAzQvg3H0GA+dFc4XHc+fXbEQy5OLBYsHay76PY9WPf/4V4+4evRzdPGYLR06erqFIn7ADTv86PBuzIGofFQUnVMGB4NTnBdUDc67cO0E8QoX1QgAQaxFMTjnGdwG1YHeQn92hu4cex1w3tN1SwaEnVfW6nB+yyULHnWWL58+5asnD3l2ecZnV2c8OCNEQ3UOiylHh2aU9xqAJfkWFEZfua/XYI2Zz+W3wxUdvZaqOZw+r+ez0H49x4f5k+NoKnaKr47JsmMQQJmsrbk1VhlEM0aYaWJeX+gRw27qR7Vze8APC+4JHlbBsCl5rdTguMYlFf+teEbDd5uaSz9Ll+eUxdIuiaOv3oeopj6dGZdw3YWOYcdsu8PHHfjNuGO3WaNGWF1ecfHoE84ePMIuzlAzRn0iyjhfdrmz8cJ48HUMhuOp9hopWO5QmUhGs9z/vEE20WfSuKmveGApo3CvQlxp+DX+LxxB0XglVsTICM4r+yHsE4U3PVdXK7rO4pyGdZCjRFNuhZm/bLHq4/2x3z2VRaJFibxDF36D+kbfYQTBYky8a0cjGEln54BwF8xEwE8Xa3ixrjwyhTjBNbORurszDCtOBKrFhSsOuPrkSqVNsAaoCal2Qzo2OEcAxh1AKPetbfG8EpGIL1NXtUjr9ia//GpgamVxllFKW5dUZbYp1VkCqmQjb84R21m5Th0jx8YqqUVhmAN7h7/VTF5KvbllVHTWjlctIA4V59qhtX1nurC8v8f8NkVHF+cT9HFyN+5I3iybpgoLHAipH4Kj005JXWhdRR6RiTA81a+jQL52JzhQJMIzE//5WHNSFJOyKCJ0ncUYYRhGXDzHpd5HV8HkEh0ipK33jpfvbvj2u9c8f/CQy7MVZmEYJFgsLeEKigCiKhqaWNnn0ikWPLe7qHExZVEyXVgEfiW2op1k3KjHKva3rOsWHJT2td9FJnN7lyHjjpTfr/hzaWP5fozej+0eTr+rlp2rHHhrjtakuF5O66rn41CTqivmYD0p5PPmEvmdz7ImyM10HF096Kh8f7thEIPreh4tz1iqY6UDnpGx84hCr+GMmogt161U/ZNIK5LnuIXMhbe2rc27QiaRTzrXK+GzjTuNGchKFvG5vlhuqtt7g0XDbiRlCBNPNubImqfMVW2MnRq/Sj8KrddgUPLckuleU/0RIJf/praFM77GLZLwxprgGqsIg1N248holaUIZ+cLft4v+OnjMz5/9pbny1tWZw/4R3/xK8z5r9gay9YpnY5cSdjd2O6v8U7xzuNcOIvlfQB+46iMIwzxjkXvhXGMRqroleW1BGcxpg+xIBBGf40xe1YL4WJ1xfu3H9nuBkb1PPrkGTsGtm7gRjyrM8vlxYKvHlzyP//qF/z884cse2U93HA7vAMnGG+56C7w4rJXEo1ybao1HH+Jl5unMdZqcSSFsxrsCrTWnKfOJ/X1sZMkrZ4TkHF2ma5+LR9m13SD8Jr+HNSr0/z17wc1Hk0zrWsK0QqPthhl8k7GcDrP3yBsFORzzykYXN3gFhcmXKS+YMADvn+sYxMenHl1PLxtqsP8QVa5eKbOYqyg48Dgt6h37LZ7xChu3HN78xY/7rm8esSDx59w9vgLzNlFCBw2hDOJkiO++shfUzRlwYkJUcEPmnuIl4sRs8075TdpgsLYuHBTasKVzQhFrqM+yqTQpka5jOagdi5DeV5T9FeNkZEVsSa4pjplGMpOuQhcXa7o+2BACn1IGEUQ8fEK3CKH5zYZfki6++qMrJwp+WLcCJxFYrjemG5vtjjvcepQfMzfBVuHmYqzH5AqQp6HPnWqzsZl7T0NYvWvsYLcowlzAD+BvCN5D/Izs8BPvBsKoCxor20+1QwqAwguoFm1RFusiXK2vsk4pJyHym94Gogz1GORJg+ANUWZvw9ovs/zqUVwet/QMd4OxAAW952HuynsR6c7imxpK/65x4pO8zJXXQ2Qj+141qkZ82nuunnaYuc58vrhilRar/PrxloLfR/oO55ZTC6oYgxiDV4VH8+QWVsi4202u9jIANpQ2O5hd+3497/+B54/fsLZxTmrs7MQgt4rRoO3RA2UsvVUg1V9Mnq1GWu2n+1cHJvfBG2nbqguP1XSHBSLZR0ufQrNEg/0EeWnMhCYHI08WGuH6f5rI9FF3mmugNFUIThV532U1FMGiRlbzwQwzNfdPJsppMjCJJvif008C0NRUozASjzXu4GNKjfjyANZo1eKXCx4cGHQrmdwFjcYej9iTTn3k9by4V2U5Y669m8alxYY+Hh0IASFyrkKSJKqFNWWhxAuow+PouwxUfmivUg7tFFxKcZMFRV1anxrd0QP6UIn+aZ9Ukm7M4XyvVa7SshB/AQAWZ6FoFLjGjfc0tmOznaszjt2o+DUs/aOnR9ZjjtW7PnZo8/52d9+hP4p+uhXuAX0WDojyOWe/ds14/6a0d0wDgPD6HGjZxiE0XeMahm0w3sL3uQrR/aDR4xgOgMadhLxFjEWYxZ0ZkXfnXG+hGHvcd6i/RKWF6xWQr/o+ezzR3z/6o/4/TWXbPlf/uof8TdffskvP/+Ep71nvXnLzXbPsBAWqwv8XmAnMFjMsppczGSAW2OSq3Df8bU5XVNJokzzV9GJhRkFh6iYTtKUCGbrrZSBHNUzKp9T8PYjRf5dEvpHol6oeLdyPx5YrCaQQiIeGN3iGKebBoD26NePaWmWO2GtDsOA80M0RJFht9fgjr/Z7NixZZQt/dLy4c1b9rs9Xb/gk1/+E5aXT+jOHuAXluvNB8R5zu2K5HIaguJIiEsgZYMkSE0DOjSYfcpX7mv0BAr/iUJXSMaqaZlVADmSEk31ua1/6q2Tz18m/mhCpGO3U7a7kf0YbpmwBi56x8Orjt4qOoa2ZKOphmuGwtj/CZM6SSeVRZFoqSBubEeizVosilaHxvejAwmCzdXnFDB4l7a1gzVApLWSHk+pziRg5lwYYnsqd5nc1oYoqsUSrS7Hap5OrJVuXiFJbU8WTWVGEKasUurOEK8COLms+KJXUpCNYsmoq66IKpd9SKT3SafyTXcEErCo29HmZ5bxHAPIGQDNNOE+ylLIdwKcH1jY67Zq0640K/NtaOe1WMCn/Z8BO/cZ39k658Z3yvzmy5ZJ/pK3XRNt8YkeZ7LWZVJAcO1gwQxjnra9LiHUVWsrdaWxNg9qqh0kMaipgKVqvB8pWvGUCK4tyT3F2jHwIA07byYawdzoefHmAy/efeDB00d88ficPgJfI2FXIN/tpvVwVP1IjGHGV72e/6ly0sxj7HaxYQnTADcS6/LNOOaBLewt9s1nbKYR7HlySPVkOEjGpkl70+f5uZtW3c7/NMBNco1PXguFnzUD1Qj3VP9d/Os+68uYGPjgDp5UGyPTe0VJCgtCq/fKrkXVf6Hc3QgFkEa0YXtP7ww6wmYrfH29pcPjdWBpV5z1Pd7ADqUTicfu0kTSjE/6nHYHy6KNbZ3IVs0CLPzLV2mkN+IZl1oUhReDcTCd9fHVyie9F3mhim8UUDQojOKDR0CIsh14jjUmtjON6SHvTH3UtBVarbtET2rS7ISGm1RmfW1VmqrSKcCz7cbwuQf2Hs+OUfcYDbt4IgGQLmWBMcroDfvhESvT4wfYvP0HXv16zfnZA5aLB9iLTzEyYgjno70bcPs9wzCw2zoGb3HaM2qPM+cgHYJF1WNFwKSYAF2oHwNYvAuBlIZhZNx5+m5FJz2+twydY9xt2Q0DT643/OKh5fEXn/Plp0/4q6sHXF2dsepH3vsBXawQlqxEMHuD9+A7YbvQuFs4v84rFlX9EPidnwm6FfJEvJaRdpqK1rX/UILW1CXNe/XsKdK6bzbKbfvTrBG+gm6lW3fzm/R3jlZn21L14ofhsRZv3N2uWmgnQNTK+iAK0hppRzhdk5fX8kShmWvj1APEGIsgjOM+3nMYPHTGYcCNLuDjzqKmQ8YOBsPtzSt6B+erSy4un3N59hMwC9wIu/VHLjqLMT0QTrNmDpbcplM/JRnnjhznOpFO0UCjZM/NR+RLh8qgxPGux6ncCV3yxeKTwhvxcIq7MIx7Nrt95FhCZ+HBpWG1kODR4YJHSN7dF4PqGMtsVbyWTo/080i6U1ks9FoTVmHi3hdlcRwViW5hXitv8aYN6ZB+Yu/HlL+qHZPvWVwcWKCaGc958uRI1f6pongEcDQCt66ilt8108m/V8CnziftSw0dTuqlttIeY0wVgdV1hsCE2mY7otTohNDvu6sgM3kDYKiypUuuJ4t3mgrwmtR2Aji2OwknXIUP0M/xOmbblf8WCVPacpwhzYHfY8/m3jvW5lrRqHoxydR+PcYIGvnaMLuiZ9w7HUr9k6melmb6i2StG5cPfCcDlKqWsz2R1+SlLkHZSoYuYwIw0hQcysYLX7zw7mbDdx8+8OzjNZ+NT+mMRJyb1MSWudfnnqd/M6DJPOE4/Z5UckQOrtNJ57vb3yRz5trpzpjomp3bTfku1dsVv6rX832NNG064nKuxeA3zV9aQqPszNV/nIZD3oOreCaf7w0E58qQI72LTQ58voxh2kUN9VLGXRQ7Cs7BiPB6M3BmlU48T1Y9/VlQfkYheONkGZxoEhpajAYSa+wMfdV5jo1FAeYSG5toiPwk7S5WhafyKkNBcp1sUwXuPGDKd8scf5mfo4wH86CGIHnh91hi6m+ioUpIHx5hCu5gIwNqwArgDOpDbNLgDhod302YDJWe0XQM5oy+G/HjBjd+5Ob7Ec7fo+cP6LSjd+F6DDd63Ohw445xv2Pc7dmPwqgWxxJvPZglXnrUGCReOQDhXmmfHe+FcRzZD3v2uy06BkXbC4zDBsOeRTewFMcn58LPn13yxZMH/OqLz3jgQK1hYGRQR2d7BIPxio4OsYJYYTQe4225ISWnQgeN2hEnpMVXienVmaTJX4ziLe4rdx22IKs2JOTfMiie4VEHcu+k6K/yzcvhOVx0Lx5ZG9Duqqvqcltf4d3H8V9VLvWanODhSduOcsITGGyahIKvW5yqpGuaICB+5x2j88FmZ4TRK5vNyOZmw/52y8PzK5b9JZfnj+lkiXPAOGL2AwtZYFAG8RlfpxWeeGv4OZmx7gYtc7ywVuzik5n+Hx6P0Nzf6VgI4QqihB/Ss1ZhDI/KOskeHpHGx9Gx3e0yCuk6y8OrjkWnmGjHFpF4ZjG84zXeYZuPyvwQIDef7oyGOlVqyBbG0GnnhpzfeYM1PbYDlyLP+2CZz51H80FMyMXfKcihsKupFSB89UUg1eVpAky10jc9i0VmYjppS7MwtfnTPpeybk8pAnW7gcYTIlsZNLrzOJ8o+KAt9U6k1O+nu2zieNc7soeKzv3GfZpymTOKIpB94GsFds4id6jwtGlq2ToN/Aqt1nlDHeTzPqdSoveK1Gfqq8duouTMlle1R2oQRvts8v0+Cny7W9jOrRyZ67uU9oNxrb4eey8p0vemJEmhrdPXubkrio4YgRgcom5/4D8uAkaDOhcmI4bPxmq07rtwh1m84Drd7WSNxdqO95sNv/vue84vV/ziy+c8PluhAqMqmu5vrJXVtjPM+qIf7frh+AdGT0VwEhjZNB9RAKWhq9e2SAbqRWEhRJp2LguoMqZx18xUVZ4wfLRKLxUYmoGW9To9HIGEMpr+zyG66Xqvecf0c7LGHm1/A2zn5yG3f66MzPvbHWKmY5YBc/KcKQYOVWXvfLzLM+zsvVuP4B075zlfnWEuhHNj6MXirMvz6FyIWpt25UofAFGMTnahs4J4uMOYoqDWfZwaoIo1XcnnWdUE16/JnJD+tsORRzTRnjHhAnpjwjkjX8U7KO0tfD8bGaPXSdQ3CDfvueg6J+FO5GwoCG1NklG00FFt2PbqgBDcRVXobAdyASacbaYHcWPkJx7dO0bfM2Kh3zBcntOz4IG/ZffRc735htuPv0M+vOXy6nMEYdh5/DAw7Ha4/YZxd81+P7B3wuB7Ri7xZgndElldIF0fXMh8D6bP69hay2635ub6HR8+vMZg8cMON+xY317z8Lzj+bOH/Ozzp/z3//iveLrqWYmH/Zb3C0U8mNFwZRYYOkavrPcD3sKis/S9hWGfQXgt6hLZlJkqLs8HMnGGDWqxcFAymfm8El23xWbFo74gPrye7kosymXmW2YGdyXeckR21TzhlGI4/X3SydK1I+mUwjUtpuRPis+RdyveD2GOkied1K8XZFqK0toboWQJ457akzL7Q6yWlaJ4zUOUjcMYsP7oRlIUVQ84VTTO3eDher3mmz++4MUfXvDs4ZeY7hndxQPG3jBsXqHeYrTn8eUlbvceJyMsV6FFJgRj8pVZy1QB6ZJRbjZN5iEMkVT9UcruXxmT498VpMbdFT21FTNdMyV/KibRb3nFA9v9jpv1LQo4YLHsef7skkWn2EHxSdZEF1kjgmOMV30dTz/UIHznmUVNHLqy+wTYMqI4nB9z3nF0OEIgHOdG3OgQb1GSoBNsZ0NY+ns0brp4D9SDNNiphQrW1wdKc87DhVyh/Bo4CGQXiVynEFzhjrW6AloJsE0J7FiaWkI0glLnXL4eQ2rlNjHKSTCHsMZDnc45QIJLgJSrLrzKfJtmfjq2Gxh4eLp3LlguzCRPOEcW3nVHlI1ZRWgGsM7txtTPM8iptfXD3mQQclfKVkum7gHh6bTtYE6WXTPZY4ridCykAv73Sy0NHUs1MLx33lMS8E9JFeC9K3XWoiKZ16T7PJ13DZNXLVHlvFckuq4677k8O8eP4Q5GdfEOWekQ7Vn7DX98846LyyXv3r7j4bNnYMDhkGUH7lBYSKLNe0xT4iPHdhKtGIrekZ1ej45bpqfsJilHgy2Rx6O40x6saQ6Xzqm1EvB5sOdK87sJTHgS/TLdq5XbHUF+kS3T8g9dYWtlZo4v5EBH1DzxeB+OrYXWyNTeUegj+EmKTzZEWUFdRYMUIJuYSFCQOqxa9r0LCp4IOno+3Dq2wx5v19D1/ORsyfNlz+7M4noXovz2PUZN5OfRzTofK0u7ylPeeLzvqQ/T/h4q4+FfGf+itFWDVimXczVOAvMkme2FcCxlHpjnMr0H0+5cNCFVDug58a5C2YfGDwd+5IIVxi+xrNh7gzfBmO3sjkHXiHdYo3SLnh4Tgmrsdqy7LXsJLemvetz+CbofWAwv+Ha/ReScpV8hfoe6PX7c4f0t47Bmt/dsdrAeFgzaQ7eie/CU1dkVxi4wdknXnyOmw1qhWwjrYct6fcPH63eMwzWdH3m0tPzdF8/5Z3/9S55cnnO5Cvd07tdrdgi2X7JH6DqDNQLq2botapXFlQ08YxwYNyMrsyDA+2NrpozxoTE8h15s8jWqpAb+IFIUxdmaJAB+d6DEJcWo4glE75HUHjmk4x+byn2dRRNMa61NaSf7z59OreF646O0JK6NO5ojRz43yuoEk07blZTNmhenO5C9DxFyBx/uQ8aH84WIsN8PfPf2Hf/63/+GF683vL72PNq94ZH3PFhf8+z2Az/79IJH5x2XS8s7b3DG0onlAhfuGIwtDzjdRAOHj1fwhas5dOJl0hgKT47ORFHEVWZrpbI35XGq6bTmmehdBvR6jH3wRnDBWOWjDmCcY78f2G72+UhC3/c8e/KQzoIMYR1UCBI1NhjOaW+m+FPTSWXRamicB1RGjAoqnlEcsMAqUO0sjs5jOxj2ivpwpDzcp5i0deDEnV7zCzxOdmUdOdD7iMQ9qwyliZsZsmgN1UrRaPIk5iDkUPrBelzejabLnD9ZB+7awSn9jQstKrg5GMsEiOZLj4MZpbUI5TuRypmtxFtLVw1Su6bW5ot6dA/aPOlfGIz8ptMQQS49S5ZmPOGwfm5KBWak7V5q0zRke2n7zFhW8xUAjFZ9miwQSd04LURyHfUiT5Yfar48r/QVIHu0gkO1rs6caIoZKp8wnukO7ZS6tZrT0uRIy0cU8ClwRCsGO2OsycUyuWIiCvemxZM5bHaoosKTnqrWQTUkG4OwAR37hFjjvVzEQB1+jFHBEilUO/PDfo9zLhwrjDwNVaw6sIabzZ7X76755rvX/PSTT0JUSD8i2X5ZzYEWi2oxVcW2S+lJEjAJLRWRM5krMTlkfr1zNI3p5gnnNRMdhfWealKSD1lQCUv7NBnLpneOZd7Vwuuc4UAriHOiiYvXwrfw52PSWFVRCcq+xnLyrGucdxPpLtWrFR2ldZhnpBp3r3G3KPYnjXmkLxGDsUWgz1mKU3AWIyH4SzK0FXBaB5KpxqXif6G8auwqICUiqDVhdzuCOmu6ECVzgHfv97xcrbGqdL3hUm24ckEVK4pRi1gLdDgRfFQWjanikhxJqjRruQiIFjrOiU/VIP/CbmDFBxNPSPMW81esJo9vehjop/CJEjMw0kUaslpOCfGyeCq6D1cEqBJpZnoUg0z34pOiWV9ebYAOlWCI8vhI1GEdiYLVdIefj032IIraBUY0H7cQA2ID/vC6wI8jhg1eR0Q36LjFjVuG/Y7dZst251hvYT3scHSo2YJz+P2GfnFG16/w/Q7brdBuwcDI/vYDZtxw1Sv/6JNzLldLHpyf8cUnT3j+7DHLzmIlBvWxFhC8MXQEd9/Q1KRcQbqHL8kJr+BN3AsyZaiSYt/wBgIuTBK7JqfMETQRQeGFweBCBLdJdlXEUrkTp/nXVEGIkBRcgxsvoUQUkumr2QWTSq4wTZrvp058Iu2Elma1sinXmuSvJhKNkmBihJqVmTPGunnQIGUoUoMOytGMfQSp7hPPo1PqyZMa+0wlfrXOnBa9olE9S33L1zUp4MKudZKHLiqH6sO1P15dxkOjCh9vt7z5sObv//Adv/s48n6EWwu77cD6es/b/S0v3275eL3j88fnfPronMtFz+XFOb21wVic+YyyHwes7QLfqOVPwh8NzytG/RwtPBAl4n2FHwu1ePV49ZlWy1xV46+Q9I5kwirSQZHkcuojb/UmjpGEu2m9Btf3GAG178HtQb0B3zOqsnOe7ah4Ap9a9spnDyyMIXK1M6FOq1E51CGuMY/qiDmg3jyER40Rc+mkstipMGgQEIqjV4PHsWcALrF+C+Mu5x9HxXaOYa8INgadqHe0HOptGejc6MOFUhZbFQUrCqJkOckadWYsExgm8aUsqwrYExHoSny0eqG37YhtsYRJLsgxMkkJAqTKn7FbpUA0farBSgI1NQFrEFb1e1ZMdIGWAI5L49B4rkE0Wro1AewUXilFhZwwsciF0tb1dOyp4K1IYfyCadxd072Y2QyQAVp0WcpKmC+gQvIwFcacgEbVjqmCUU9My3RrADfZFcy4Yx5R1cpSnj6t8+fZDUynGp0kmOoyvD9UGJObViHFws1r2tFYrjTgswK/k3ForVltSnlL28qSuGscGqt+AoVTxpLWo1SuQFXdzQtlGyQ+qUD9DNPSav04DWcVTBeBXTYudLky9Rrdnytw4IKwEoXNesM4jnEHLvZTFWWg6wzr3cjr97f8w4uX/LN//DcsOoMfQb2jI/GdZE2to55FYVKtj9J3LX8TmJKkvCXhBA7JZyNTPajgJmPqJK3TxPfKaCuFN2WDUUwJoDUp8bE4tmAn3rSp/eVbqktEK5ld1kgxBlWGjMhb8kglfiHVWspgXuM1C1rumUoKWtYiQsNNvtewisBZt37Shr63eefRRbrIPYqKYn15fFAWzaGyKGXeA/0m98noTZHmxVUW6qSgSvAw9M4h3iEone1RDbvXtx+2vFwK3gr+asGvXB9mWpWOkc53iF8iCENkmCJKJ9DVjKSatZoPpfZYayseUtZ8+V6dmannOOL1cr1CSIG+YjgWram+0HhqXDwuDEgEYoE2jEgM9p1AVXjHRLTs0RAQJ60zNQWWeckKY1AsS7tzxEet2wLQgXQ4Y3GiiAzpuGBY5z649qrasLoknqtBYXGGVbCqBAusQ6xDxeL9Azp1iI7gd4gOeL/HuYFxGNnvRnYbx3ajAQCqwcuWYX2L7m5YLs9Yrs6x/QXd6oquX8GwwK0/sGLP51dLvvjknCdPnnD14IqrBw9xow9nGsfgtmxSxGiFBZGf+IAGrARupmO4exZR1CiD+mywChaIWu7UNFEP5eEZ4fA80lRyC41FZMWsorvyUjnnG+gi5BEkBDASG9eYnWCRkoSJoph+j9/95AWN72SjWWTTKhQjhgnYako/xVBLVhFmvTukXUMiLSeuRXfNk1Jws5TXa/Wt3rhIiEGDMSn9XsqKba+8IkKboyEkPaaoW9mwoh5VRycWDwyqjMZgItmb0Vfn95XBDVgXsOE4jqgoXsChfNiN/P71B77+7j3/92++Y9dd4i3omWczKvubEblWtjdbXr/a8dUnj/jqU8tPnlh+2vcsrWXwDiMmXMshyn63Z7HQYEAzpuqLCW7+1caJtTY+8zglHPEies9lxTjiB4njRLjGIu23G1Pz2LIxUEgjyeY0ktGlPVhigsLoQb2Jf2MAPXV4DUbw84Wy25PdcHd+y3ZU1iNBbRfPauH5yUODDganDm9DjR0dqMf7AYnX96h6sP0BfSVa1Eroq07W5CSddkNNJgUEsKi3qPhg2RcP+zXjzfuc3XuHFRtXnJbFmBojyT3sdKPaVMBd6JAyt7hoGNt8anZQpLiGnco/VVYq3aM8i4slgVg7G6T7sGxVzVq/i4A3K0wiYRFE5ufinTLTvszhfmNMBKWxeSlcXXQFTu5VSiT0I9pD2uGpZ3HChrMCagqsOxi3u5KZYfx3pRbK3pVO7PbVuSrFb+ruNtunFrHnMk6V/0O+3zcdugX9/5eUqHRFIHAybyXI/QF4O54/uxhXynyTqh+dDxHXDEVoqgYrYSuMgepODAAAIABJREFUA1P3XrARoGy3e37/7Ut+++IFnzx9yMXZAoaB0Ydoq/3seZ37peluVsLRZUwK/3LqGX0It39sTH5oamk5NYCo2JEByH3Lmpu76XU2OUn5c7QWKWAv1wFRgW7gVfxXeOzUWDNta71rOOddEIIf+eb9+lxfLv/EsNe88qDrtXFn76NpLwQ0Gf2Ijw6uKsrr9Zr92z0bt+GLJ58jj8/Q8w7XjQyjYyUDZ96y6joG79ExmgrvuNT+GE+eo6f6t5pu6rvDDox4Pp2frAtqZ1zjd+cDhuiE1mMnAY5KxvsIvZR2TtKdydF2GuCcBjCWdhEqAXg4OFnRMQ19Zp1bg7IjKniN5+h8bYBIpVgQgzEWFQdqMDFQjdgOa5Uex8qPLM822NU13c0a/XDLzdsb1puBwY3YfuTNzS7saneGy4dPuHz4jPPLByyvHvLFZw/pv3hML2BNNLqKsL7d5Pmy1mL6DmLwL1WXlZ7Uv9ppsvI7ODJM8/Ry7NmxBXJaNMyVV9GXQMAt5oBOZ1sws75TSvvEp1qen0cjkUkyRzngXYkP5qvsTtQ9l04Zeg/qqdsq03WlcSf40Gui9k8p8hCCu2blMJ9lUFAwvC87akNyK1UfjCcaduOcDsH7MBpTRjfgBw/OM3pHf/6A0Xk+rNf8b//7v+Dd1nMzGAbp2PmwtnosVxePGEYYvSKLjtfXH3n99jX/9j86fvn8AX/5iy95/tkjvvz8IVerFUtrWRjh4fIc9Q5ciFwulqjsKaIDvbWIBL6x222iZ1HkvzUt6aLcPJDHWLEqiBNqw5QXGqwzpZuil0tkZYFwnAuelWkjIcijcuAk8eftZkTosF2oZ7Pdc7N23K7BqePR1YqnD885vziLymwoN/PerBu1PP/PgQ1PKoteoluPj/8QFAs4emPBD+z365xfI0oz8dxiIt5DQXu4XKe7cHWZzS9Jw6EdgHkmVr2ZBL8xlQBvAcapxZ6BFhLdqCb1arEnUF1wfWqSgpANFpy0M9c8j+1M7lCkcUxjVfWx3k0oBJJ2KwtJp2fGGMYIrKcMtAWV1bNMlWSLnBBdtdJvlcIVbDKE/vk5ddNMzhm07T+dhGa9zyhuzbNK6WtKqYFclWe6G3xYZktv8wx9Lv+pssp3Iy1thgdNlUfruivd1acscLScDzxldApDnydvrokHdUx3zo+Wrckts1qjdX0zdSkaz8qWHau0sxPKMBgbeNSosPAdgmMYHS/efuAfXn5H11uuzp5hMYw6xPfn+cMPAQkt2Ew8pQJ0EsCp88owupkCmDHu1HyuHk8lX5eRgoppVLS0toDOzUGdn6M8uNnBq5TzucikSdkv46DMqViNYjutO/4a8rQBUo6tudrwM13bBwphqt8rxtTASyatnQPS7Ugd8BpV8Om8YXKT8gGAGMEZw60bGNZ7dm7ga3PO5wvLQ3vGSiw7twcRDCMrP2LUgYTdIn/EiFADibSbiwYV4ZjyWP8t8iX8LXeBte8nfl+Jw/IsQVKhmQdn0tNoRK4C3gTl2+e7E9WEIBnlbrjkfRFK8JFfKeE+x/BrOb8lpRW5VaV/Fe0kOZ6NKEGxV/UgE4cuieOr6TowG64FUI9HGDUet0QQNZjFgqtHV5xdOh49c3zyk4Hd6BiGPfvtW7abbTAYG8Ojp59x+egpq7NL+sUS4134h6dbrILCHYF9wgdiEu5KADJb+3NP8/zWHolJgchYSyk7Wwn31bRQYYOM7SZrj2AQLFgr5W9po6R0nCWtrWQACeNPlENll7+U2/KUI/xYEqXMyNWcR6estKKZQ8w5x5vuK4trRfFwzcXm6mGcieaccqP8aQ7AlssKxNmUXdaxUjwo6rI83kf30TCLKCaeUScoZ3FtGUPYsfaOwQ2oG7PRrVusePHqHS9fv+frb1/z6sZxMwhbBO3P6O0KHYIy9uzZp3gsm+2e71+/YrsdePTwikdXF7x4+5KbX/+e3377ki9enPGz5895enHF4/NzPru6QscR8OAc9IqX6IWARSTENPBeccMYeKdYOtsFbJpig9ioBPrQH8nTHQx6yfW2lb2+mYMwtpAioPqIuwMXC23y8X0fIbki4WxlXMNWhf0QImOLAazn4+2O283IfghNePxowdPHS1arBev1Jiuc5eo5ye1KnjF/Bj0xzOmph9nNjtgISYzDYLOyuCn5lWKtyMyW8n4joOpFULHxyE1qxlanoCudAGdza7VwtvJXElQ5VB6mSmj6Tar3hUI4NbCpv9dKClSMRTPlhQWehGAZrDwGqb/Z9aJSFkMBUnZplKqd0ZU18Q+p+x//k8psGnckJQmhlLqjkG2Yai0YSGcAqsJrU+dspRPmOKPMAcV3Pec7JoTm030Upmn+OaVuNgLbSRA+35YDeo6T3wDxo/3Q6vPpNAW083kqoFgZB46Nr9a0e8ccFOPK4W8HuxU5AxnshraQz0fGAgK/QTM9ZuBatLC8hlIwFKeBcRs1wYXMjbxf73n59i2fPnmIf/aUlbU4t0fj2YVjluBaoVUFZhlRMxJkeV7/Gnms8/He2numPGMNStckO3IE6jQkWik8WTjW6/KATo59rn49sQCLJ0TNWyMPLmKgAUDH6pPY4Lv4xF0GnLtSAQJV2U155dmxkqdKbzA2Ru8bPC4BRhPA/aiC2zucU/5wc8vi4oy+61mKxYsyqmePo/MjJt0XGoOvqRz2sW5/mYPYnqMK5nSuj8/3dJ1OnIFJkkEzgy68xWvatYm7AaaYL7zWxtOWHtIhi4Q3Em/MJSfXeT00wJYSpfIEr+ao4n35TGITwKXqmxLBePE4CK7IhU94r6gPO2PWGPre0K8MKxHOYvAt5/YMmwWb9Tq7yV8+eMzZ5RXdYoWIwQ+V8lzJ7Kwoxp03nzAASQnIWdOkHayvtOPbzLo2qGyS4rxWimIlMSacIhkKCu2lYlvDWSlFKbxaJIDvjH3qNJmOfGyDw6x53I7JmNTnGg5VtFEMqAn3kMe/KFaTOqegpOpvURTn1luFB1rCP+hdbaBrsmeMOcHS+Xvb56Qopl3FahTK/EzqUR8Uy9GNjG6Ixz7AeWGzHfjDt2/54/fv+Ob1B8zyIeO4Ze+gBEQSRC1Xlw9Znp9zfbvm5fffYvqOJ58+46ufPOe3/3nH++uPXG/X3G4/4LXj+mrH7cUlS+lYWKEziiEoWB6PFyVsasXjCVE7EyRHUVUN7urBZT25YMcAcHGwk0jPKnjibxPskv9VlxdoxLkRlieOVZRuCs1oZcRQL0F5xeFRbrZ7tnuP84HgHl51PLjqolttClg3xYHRuJVl/B2g7J7ppLLo8ggJQoeXFO7B0mHYjxs2u+t65ALzElNFc5T4f43KAwSH+EkfaiCYFIyIdZpom3JKyNWMh8JwJnWkbtXgZM6NqVhhfFvfRJnMvyWgmimmnaT6suq86MYRvGZrc3qWF3jqgzH5zq0CmiUQha+BTeynCkT3uUTs+eyQVlHP0oqYBV4TsJWaE+uod4mmQ5uLnqY0SfFsUmK4Dadush9xuzuiPM2lGsjX5ZbnZe6bcTzRjrt2kk7tLM7R2sFuptfjfZ9p28Fc/UBgPG1nMhI1bTySN34LZ2WT0J6rvkIUtcibukpMx6IWrNPiaq6BCbwnuaDms2wadonwpjG+pLukxVuM7cMh/N2O3333is8eP+bnn37Go8cX7IdNPuxeaq7mc9LNDDjuRaBRaISGhZ0bY3EKm93Q5OzmfA0PRqQex6p9Us6dBie5udcnkC+3v/wexE9Zqw29TOg6RydN/5mwUKEdowLeCz+a7oBNdzKP/XZKUWwt6XOuW3EHLn7OMDaC6vr+MxENZ79yvzS/NYWAqqDGRqykEaQ7kOjuZi1+7FFn2A0j/+7mI6bvMQM8Hq6QS4PrhI06jNuw8OGKDUaHiy5Y9RnLuk3tb0XROpZaGjqg8DhG83yy5AmT7gVEC5TXqv6AvSNd5dtioquWRtwgEUQlsBwJJYmNLCfj4+RlIxIDWZEMmiUlpUxU49nl2UEAJWOe4F6aQJ6GUPUaAGiCfGllGXF0ZgQnIYKihrNbIgriw92OJpx3XCw7Pn/2c/wYoiE65xkdjN7g9gMeCe6n1mLFsBkKX7DWYm2PEoLNhWiKIRBWouHW+N1Ck3JOKWk/VfeTQlzNZVaURIqhNI/7hDNmBXFGHqS8M7ghRT+QtA6F2fkpvD8qAgksx1kq+Q7p/C75KLFTmfNp6WCFy3PLyxC3GG+Kpep8Ld+Z8N7ZNFXyK17XMJs0wWmtxYe+0G5IBtVw52t4rdyNWPBVVGQUxCtWg8LjnWMcB9w4BIOHdyHSuF1yM4z8h9/+gf/rP71g6wz27CG/+Ov/kvXf/5rrd+/AOUa3gcFjxHBxccmXP/8p796/41/+q3/B8+ef8df/xd/wd//0n/DTn37J//kv/yXfffuCF+9v2LtXXHRvebhcsN4NfPXZJ1yeLegVesBag1gJgaPiuXGBHNxsdMputy+80vYMbpexQiLzZtYkUoIF41q5mOYwBGaPn6Mbqvflmc+KZJmz8j3uCqvBSI/TAa+OvR95f71hswNlgWXH08c9jx/2iGgIwCfh1oOaHuZo+4d4Px1Ld16dkeIIhCAMwXdZnWKMZ7u55sP1u9IgwuHTaVuTO8ThlRZ/WjoYgFrnSFakWpOJE5QVpRMC8xjoqJ9PrT9Zrk6VxCrv7O5UBLbFghnanw/0GymBwo4oVAeAp/oc3GbvvmdwmsyEHc8l1WKBTanegZ1eq9Gke7ZpTmnSCfg8zmAhCbj7LJap4nIq3/3V1ful+9b9/2VqAP+PaMcEehz8DjT0cmz9HSjmSjynM1NuzdnT2tfAd0z83XuP1m6FJhyC79TE80+GYJ+EF6/e8bsH3/H5g4d89uBX+TD60W2KY2MhKfhJAj61G5Vki6D6st0+enBq2I+em/V2Ut6ps9CH1Jg2FidqEMfP/+jROW/CUkxo45QhpHorzk9C+KHFyc2wCI3D3dRjRpM0nvW4zuU/aNOEV2agADPvnQKVx5/XKlOdXSVeJRLlKFp21IwD8SZG1La822/4zYcb9jtP7+HL7oozY+gMDH1ZD4whaENwbVW6rjvoy49NtR4233+yYSYrUioYqvPGJMBfM+0W6KoI8Yh+U27K6TQGw0xruwZqQrxWJNbjUyCqWodUdDpXGvKqHDxp2lhWh4AJiqgPd2mFKLGJrqtSNLbfiMHG6KSShXjYJTQC1hi8h9dvdywXwWPLSl+Oy0SNStHoCeHpe1P6ruGKggTqrSmQzmkbT1m1gNb5lIJJ1X1PKa2h5iuJM6SZ0kl+Gj7QJj/NG9sQWHjFE2oj/J8p3dcQe5930z28OdUKcLpnNZNSocNWUZzp2wnsWb4IKViNABoNGj4pIfEvKbJnnFsjXaQhh3IEl8d6vBsZx5Fxv8Oo0HVdoFu6EHwuum/iLP/5j9/x9asP/P7bd7zdKs9/9nP++r/6O7766U+5HRwO5WZ9g3WOvXj2qrz58Ibdb3d8/HiNH0fG3YY3373k63+44umjJ1wsz3l4+Yjzz3/Cl19+web2huv37/jn/+Y/8dXnb/js8QO+/OQJXz17ROfBDp5FFwJKqfOo93TWYCM/stHQhMbQcsOYzRNEOJB2GvNxszgkXoshISiI6Z7JpCQWJdDlnVrNO/4xRy7fawqiE3iKkZ5RB0bv2OH4uPFsB4NiuejhJ59c8MnjJbv9FvAYa7GdRIyTXIvNnfT9Y2j/DjfU8N9kSdF49kUw4GG/23K7XjcvaPNv2uADk0x5dU6JOvKsVFcxp7qerCgWQFb3575ANbVfNbmXtGBjugvTgCHILvCJUdTWqaauuNHqtbiZmM5mK3F4Vlzs0nt590fD8wbwSGpOGYe2DS1gKji7BlZpJyF7+tfR9mN5ZS5mAV2cjzlAeZAOFMDq0azCWNNFYbgH5QuBZmuA0gCBQzDZ1hvyJeD/p6aaruba+8MV0fvvQs6lo65oyfKf8s3W3D6voHaTP1l+p2dA7tOuXE41XgdvR6LUKl+qRSQC64lMNNGYESIRC0i4C2+9Hnnz/oaXr9+y3v8U1GCjcA1VHW97u7OS9daDfoV/ZU2nPnpVBufYD47dfjx477CeUym5TuUC8ngkADZBNgfvhxzzYHrKB+eUMlIdlcGuyIG67rbsWUtoYrJS1tBUUZy+WwxXhUeVISn/TbKkLe/0ejo5H3LwIXwyiUYDyEyhwQQB7xEXz4Fj6Z3l427kG7ZcbtZcrFcIHZcYsBbXx36NLtwsoCYrbtMzo3fxhlP0pBX9JK8Bzb8nMJo+eySoQlFNrIRF/pjmsJ5jzWBHmHgR5OLL7niWY4T1qBA3pAyFOxw/B19h9/i9lk9VRhGqw86QzwEWHp03PRt6tnE3NV4yo9Ery8frfeIZRyNgrKCLHhUf7xeMo2gMNkc6D7uQaT6aQDUaVTaR7J3kVeMRlMgXcz8TFppy7rbjOn2GtN2bPqPesyq7j4VXz8nk1K5qjeS7GGUqUGbmMMyDTJ6flIU1e57SvE6+1HWTvLHSQBZ+VvoQeZomo8lBoaHY+gaeST0HqcFt07ZW8jlN4YS3FRkw+R535329m8gh71YNAanUh3Xd2w4/enZuz3qzxS4WOAe7veMPv3/Br7+/5sXHDe83Aztv2DllOwzB6ydGi9ZxxBqh7yyjGr7+5huef/4pAJ9+8hQ3DLx785Y//P5rXvJH3r17yzi6sINuegbpWKvw8uMte+DN9Q3fv/nA9Ref8OjiggfnS55dRv4jIYqpQaPxNKwcjbusznmsS4Ef40BGw1c+IpBWiwDe5Gu3fOXRF5TFmF/T73GdTkFU9TW/384Yoyr7MURGHaKh+9FDy5OrJRfLjmHYR7Haupsfm8f6t/t+n6bTAW5UsDXoiwfQTTwkv99tWd/eNuMAxAjTLeCGonrMCaZTO3jHkkLjxpDblgBY/k9qoDTtuo/mnRlPMVHOK7IFAUQ+VJ+fio98edbUI+HcYX0BtLE2WiSj2+g4RoEQAxRE5lEdSyrElr6Y5BYIMAXYNQsPERhtbVWHoiRmfhb7VKi66eux1CjVScmtUHQGdkbuLOvHpEMnJCbfW3CoEdAWVwGy0WEKPrLlsAGOh3M8Bb91P++lSM81u6rv3klq8TpfZz1PvqaTRAcVAE3s9IAWJo2SCW1l40c1BtNxyHSRBGBk5pnPlMxlkjSx91IXuR6f70HNbRLB5d8NHT3Dbsv7D7e8fPWGj5stVwuDNR3OF7A2naZjc3CMiZfWhesBUjbvYT+O7IaRYZjeAJyJ74DeKk5Txi4bRQ5XvuSxPHJ3YCorC8y61YdEeExx0ubZhM7rcdTWNXJqUCnlJV7iMXEXpV5LDX+p34s4Lnag/Ba/Z/qS9nnT9CIIqT+pP7zKPNP2BMSJIR9HiHbuPAcuuk8aDFYs565jrY4de7rNhk9vd3SqrOjoz22+bsU7R28C2MlncDUtyGr8J305JlvrdenrPBrj3CkUV9xkqIoZNHjIiNQncRKPSJAoykFfjbuSy9H4LKoTgQZNOsiSyDrQt8axRcF4ASOImpZeMzua0GVsf1lXxZiQnbUrw0HZJa3XSiCSsLuU6C8QkWkCtqQAri4okXFXOOwEWEy/ZBg2eDfinENsCHQTzrdK8FaObfXe5SMpYSvEl3ZOcYqUcczy9og8bBXJsp7mU7rqpBrXKdZqDBVzbhkNlw5jLHJ4jyLM8oKmpPvghgl7Oyk2i4W/eqF4IOR3o1dKPc81BmwN04R8vv0635KofM9hzfyKTL5PrKGJtrUcx8j/SGfw/dE6Ul4X/ag7Y+lMx2a3YbPZ8vHmltWlZXSe25sdv/2H7/jm2vNm79mjjEa43Wx49eoVnz//jN1uixvDjt9yuaTrQ2TVP774lgdXlzx+9ICffvUlv//t73j//gPjMPDu1Ru8OpbLFbv9yPV6y812z+3geL9zbN594Pt3H/jaw+31LT/59BO+ePaYJZbVckEfXbch8ul4VZSP/XJ+ZMV5MFAkQVwi0JAV/4iEvBQcXR9zqT9PsUyLzidTVo11UEKD67zzsB2V7QCDc2Dh2dMljy6XrPqO9XrbHDkIG3ntHB7bjPix6fSZRYVeJLqmezAuH6Zm67m9+cjbd8UNNUXkUSqQffctEk26S5FsQMk0Y63UQVaUisIEDTL7oe3Sw/bVbPeUwjudwPzMFEZp7GEEwaCcBWGZrW0TJm2MhLtbGi5U1ZH/W4Oc4ryQoE5DXFX2mtTmQNycdT/V6Kf9bZh67bd9T4Zf9U8aw8P8gkztuI9GdZcwUi1RHn9MukvgTTLP6YVHyz31/Yeko3SqVCI9/jZ9N8O5u9OcgnqUuSWjiwjT4utj3ESwfADcq3LS0+COqcCINxpAmQoLD+o6Pl5v+d13r/n996/5i0+fcbXscTMukm06pPVA48dAeeirtZbRhaAmYLhdb7ldb9ju2zOLkyV8WF4ChcQxnBjtfniadd6r2j//5Ngu28G8VEs2KQDh/EUUznfw04Oz5DNtmoK7o7voR1KmySn152L0BOepypG0PjSdaovGRInKquIlXjotgChLOrYKu1H5+nrLmb7h3W7Fz90ZX51dcuZ7bGcYvceooC7eQYbHqMFocYEMlVTyMSs2xSvhmGdIhsuqRO/LaKSdgsykeBWe7ETDWcRkjJBy5tNL2fWQFOdAa7NHWMyCYKSP7ykQ7iVLe1nGB97ghXTtYW58bbeqTz1ovMuvVpHC//2BIagoYl1smxbpKZEDCXFXL+4SO6LPmiBdCKhlJV2aTQCh6oP3nle87kBdmP4uhPwfdWAY9wwuRkEVwRphP/oMFI0pbmcK0RCRFN4w5/dlAfeRTSlPOgsaR67523yWZJBqsY3qoawoBpZ5vvKng977vz+VRQdjE+ewfJkoyjo3KvEKs3uB4hNzcSI0eZajFV6tZXr6nM62zimHU4Vn50Z6a1n2Pa9evELF0C2WfPnLL/h3//E/8f33b/n4cc1/+z/+T3x1O/D1q7f8i3/9/6DqePfuNZv9Bu93fP3173j37j3h7tJlOJvrBy4vznj69BlffvElTx4/wbDg5ctv+PoPL1mtLKazbMYd77/+Da8/vMGpsB9H+m6BNaCi7MTxu3cf+eCUbz5e8+vfrXny+AkPLi959OCKhRi8c3jvEFGWqyXdoqfvz7jZeqyA0XRdoyXc62nDjmScDvUj+/1+QgvFNK3qmnHzlEikiXPl8Y8xUj1KcgT2Hvb7AayyHZQ3H3bcbByj85ytOv7mr77gamExowMVOrsA0hGAJE9LgKJCw3eeNrxXOlmKYOM9MxI75iJz7dBxYLO+5ePHEuDGNBdjFtfH7IqgGm7kdUmotLAz7eSkdwJjLfe9HLRvovcJhdEk5S5d7zAPFg594Wet0mjeFWyNRJLP9WnVh/smEcEFqY01Nl40naESwUobxjFFcGzaSRL4pZ95YEgwpoxrdgjJgGHqotCmZJk0dzDZOaARYfLJvBJdhkL1U+AxD/zyu7GfRQE7gaQrupp/3D601jZ3xk1pIrt4Ee8GOgFA6x2PWlm8i07S3E77MZt3DuRNhFwBvYdiaGoAOKm4lQpKSVM5esLgc0xhntZ5dK4zy6jcBqtyTNyByOVF3pPXStX+7JJiCGcY1SBDCBW+3zveXYfdxc8vLllZc/TM4rxlVrMCVP8+p0gJKTqbx2PY7fbs9gNucsmz9x6xh6uxte1M5p3amlzy56wnyHDG2Ze0qqdXuxyzqrZ0WLdBytyp5nYWejOoHlfOVfWAv6R1mQPrzIz5tG1Tmk8gNpyzT7wqjUQCYCAm9CcoMiaCs8oVT1q+kfpv8BjCBdHqowoVL0Z3sevhLi8F51moxTrYbxx/kBsGMzAuRp7cdixV6fsO15sQmVCU5NoZouVpHo+W784rhvWYlN3IORkJInPzXM+h5LHKMkZ8vNYiDFChlaD4pcBUEpVnVOOObDyLJw7wMepgrEOEcJbXxL5Twt/HsU1GVjkIMNeE5ia75pFoIMx3oYF0m3C8RkNKqKiabgUB6xEJc+JwsT5TyXGJZ71A1ePciPHxGgBiFNVIf30XldroxbJcnuWdjCynkuFBy5pPc5XG+67U8qbKLQ9lbg01EaknvKSRxpKQlmmbIfVXKXzepOtdqqzHZGzs7/0MV/dXFn1e6DNu7qns/ENQhuvjCVlJ0FBa5qUVz4kspim/0GWoIXguzQWtalpAWmwtry/OjbX8R+NuodRzXOr3vlU4xAqjd9zsB6QPStRuHPnjr3/Dv/q3f2S33/HgaslPf/mXLK43+H7Fv//7v0fcyF4d65trvv79b9ntd5iuY7v1WB8iQosaDJ7Nes+Hj7eI9Lx59571bo8zhq33mGQk6mC9vglrX4WLbon3IyGClOHjMOC2WzYGbgy83L6nM9csu1csux6b6E3isTIbPPguFobeGjpj6DvLwhgW1rCwllVn6BIP9J7eljgcga9GeSoFa2hU2kK02CRb2p1Hr44UedY5hydEZh3HEWtgGD3v36/ZjB61sLow/OT5Y8SPDNuBZGR2bsSNHhPbpRoMAdYegpVjsm/u+Vy6Q1k0UW+u7jtSi4oF/5GP6xveXpcgDHngVI9EuQrPAl8pS65YQ0IdMVsLFlMFk8/1TzWQbOqegP1iUS1ty4AyLes5JjsdzPy+Nv9rm3GoDNVJ4v/C+amibNeXiIu0gWKyVZ1JEBopz2vlNTOueJ4kg5n8PP6rxvvUjkLb/jIWU4tgAgLkR5L/laxS9I5qnOrdzTlMmy2QaYyZzZQBC9VY3pUOAX0CTuFPfVF06VN6tynpWA3Vs7kxIwO0ZlHX60FTHmYEDg3ttOXcR6jOtDfSZd69avKnNk9narJ2TijLJxXuwwfl95lmHwCQ/FcbGlWEcE5RQ3gbDbsKaqJrzWbgzbuP3D7f8sAtWZjSP9W4y+wlt6F245LGa2YQAAAgAElEQVTEXBo+cmjQSfMc3GKC6/9+H84sDm4aeKDUXdl7SiU1+IqAuz7LXNpRuVNX5U0dfOudyrLOUiCFBO6o1v4hWkyqQHo3lZtAS2mx5DbD4bRO+VHt4pm/Q1YMKrFYGiRz62HyfixD8r1Vx5NqkTkVKzqJSUWlxnCVV0dqe+K+yihgVeh8CDC33o+82exYdPDq4iIAIKMY6xnUYTB0dOEiaQ9qNViwJchyAxi1YON8VGylnoo8k0ErboyLGcTXhoz4QtIJ8ww2rnwhskruJ2SqyMOm7dxHU06UcykySzLC1NKvvBTaUHb7Cp86wWfr1qSQvHFCG7rQ8Dw9zmVOsULqtwkGD8275JoxQzZcSYrCWC7pTvlVbFitRggWrVC3ifETNALRZCSfI9eaPTQyUqqhIRk5CrfMHLN+N7dfSgFpHDTxj2TQq3cJW3feusTWKDFdu/W41vNXcmTvMVoeoZO/qezQ/kPucJAmGDJNX5q/lMJdkmm3XJt3taI9pYxPwqOH8msiV7W0sBjEQSdjkddqzetrTK11++NcVcaWJM9VFfUO71zusxrAgY4eP4RASrfbLR82O37z7WteXN+GFq161qOyH0f2zrENFliMG3FuZO+U51/9HGt7vn/xPe+ut4BirMWIcn19g4hls9my2+/x6jHWsFx0DG4fj60YXIzwLypYCRFHfZTr4zjSjSN2HMF0XJ6f41S5We/Ybj7Sd5bOBo+A0Q+BXozhfGFZLXv6vkMUVp2lN4beWC6Wfd51RJWzDhZdx6LvWS77HDgHfNyVTFMueB9c0gNeL2vfO5/H17t4DyQe5wHpGN2O/X5kvR5wHs4ueh49uuDBw4fo+g2jc4hJAYoSjaT1kzymCq6+D9a6Tzq9P+nBmwERj/FLGJf4bok3C0T+HV9/eM1v32z5RcxuEpiKl3WS6LPapcFp1sh9iSebF4lotAoL1Rm+FII9WvxMhB/1IEQmkywibQjxotXXL7QnTeLJkQYEFYAXfqsZvmYwlqV/4mk+ySmf210EHGVcUKyE3VuDxAMnIU/ys540MfykinMuXBwd+0o8POy9D2df6tck7QwTV3+cChyjuhBYgMD40hhk5qZlN6dA7wK6IM5vMpNVHfSS8E8kZin/pvOGSLD8RgEd6qhgfvyhto5DVKr9oZU7K5thwJimOeUol+mreZvgAY82V6B0k7DFhalXwkYTwJADOgwXp9oqXy3IJoC2+j11K83IMSU1AeNmN9kf9n1uHMLnVGIQSklRzsI+tStJPs2/0BJvLCUyr+I6UWgiuVNNx0KJS8/nUqrxCIMgKRiU13gYv2KhhYPHdRmte8aC6eh1hxn2Aaz2FtctGbbK7mbHi+/f8OYXz3ngz1nJKq55h6J0xuAHwhU11oB4HGMGLUHZCgY3E5c3Ej5jyzh4F84ojA6GwbDZeda7ke2wb+fFpPls6bcABJ8VIgEGXHCdFVMBynBAP26MJa5AMFiVcWpoQdPOH+GzhH404DMSS8pft8vHHUJJ8xh+zOs+8CQJ92R5F/FU4qe1gSH2zaR7fmNhpgbLlRFQyIHJ8rUnIgEoVfSVQK3YcLG5sZLHurJA5rySmFOkRJcGISqqiT8eJBXEmRxSXdMl9D4aC7GZNhWHWoMnXH69sh37EdYfHV+v1zxa7eHsgp9geDqMfFxsWMiSTjuW4zIAEaO4M4ez0f1VO5baI2aISkqSEwnY19cUhDmP4VVa/hYVxsZAReJxJgC9GIZYREIAt6iNOk2RSyXMdRk2vDqEFA0W8k4h4MYNVkIE48Bei5k0iJ/Uao+YMb4X6Urj8ZhmTiJtZi7iSBelBRqO45HzKsoYFdp4ryFCe21V4UVgcD4AU5PpIsx/SSP+/yXuzXosSa48v5+Zu98lloyIzKyslcW1SPbC6W4NR5rRMgMtM4CAeRAECXqS3vWdBAjQq9SNRmuBeh6kUUvdHPRomuzuYZGsKtaSlXvGdvfri5npwXa/fiOiSEoyIDMi3M1tPXbO/xw7dsx0YAyS0u0ugBClIyIJxl29ge2PQKK6NtCiDG7GUc74NWAzFT2DkV8HMUKt58m+/GA0CnqHU5IJVbmwqn5Mc8VQpOPjJljE4nZlr4wywGM4W6q//iOeVw1BfrxEku56FL8EiXgjdCJpuFf248z79UzAoTEyfdw4MJoQwCSOt+dJ2l6rksKf5HyunfzSrSaNQDlemI5zjlEtD/fhobQ1OoRrLUqCm4vwUllHhdCXafz1Da6dju8JJKUqobAYuKGxdKE7UB0oeybWCImSEnOtkMpQCmhqxadPX/DZ5SWfbxrqsxGq0azXDX/243/NajXn2eUVH19teWtcMlaCQwruv/0t/ul/9l/w6MFDfvy//Sn/w5/8Ca2Bg8kxBsnzly949uIZZVlwcnrCaFwiRMfbbz7i4vVr1tstrSiYlBVVYcM+bdcb6q7FoClKgWoNUkFlBMZIvvv936YoJE+fP+XHP/5rRqOC8XiEEIL1eu34j6BtDPdOTxhPJiyXS8rSXruhuo7DgwNQ9u4LAYzMhnsHBzw4O+XhyTFH0zGjQmK6mmlVUUh7n2pRlkAR1kanG8fnDHW3pZD2vGbX2V3RptvSqY6j0dss1s9Zrjc0taXdh/dP+NY33uHw8BHbzTWYhkpKus5enVEURUbLZZmc0UyW2aAH4AAO3pduVhaNSSwnTnEyBqk13WbLarlmuUwC3PSstf3Ud41zDzMwH62COWDxW+saF9WoZ0mW0jKn/LqHFMTjFlBcTfn5s3SVRcbimU16lxahBggY1jjoYPL3+8fCMtqdCYzV7yZfBx40gb+PzzjwtddaPlCB3bGUBOumz+EEZnRmEEnvfdSnWL51P47KYrpTLMp83DKARp8WPJzP8wchn3zbP1Cc9vlXtZzcJUU8nbe07741tIO2r21fZcH+/5mESMD+jkKYrMfB7txE2EN1JWN1i3ILCV1hwdq+Md3neiEK6/rUKXuuxBpg4OJyxuvLOfePjngwnpIG9gAw0oRuhbV5l+lMwq0bp4AZIWiNpuk0qjOkhh1bvqvFZOwxoSnhwF/C83IqdXQro5L/q5DeHem1vxbCbqCREZzhG2HpRhSJAjKgEKdrzMHUO7Ulc941eUAC7aL9BX6nNaCiu+CN/TNfeQz9LkTs3g7Kc2BS4iK9oJTttxaSxsDj83NGNGzPjuDhCdNthZSCRnR0rAJvL01BqaVTRg1WQdEu4t+ujEjH17dnnzfA7rP9a67v6ZBaGvwuvfd6iaJ9QEb0RixVC3yKG/LeTTReLRHyuDWURWvttT/3jMn5nJe39vdEfoq8r/6Zzdhbnw7kY/I+ZHIkbR5eSbLtMOlTN6a3L810l6+XOazJdN25lhpHlYH39Bo2OBNfLcXx9p5U6b+kHhFmJQvpMlR7wDGOafYVYVsvWPdmm88ba2I7HG8XOZ0IQTyelNQ+hEsIpdjr56QQ2U563H127TZ2Jy1el+TdQl05YU16JdIgvby4QfYJ1wopW5SAVmlWdc1oXFKKEiklql45A4eiW21plaFRglUj+PHHT3l8fs113TG6d593336Hzbbh4vyKP/rzv6SsFEeHE/7xD7/H5ctXvJ4tebVV/O57jziZjhlh6JCYUqDbjrataduWsqyQssRozaQqefTgbU5P7vHBd77Ji+dPefr8JT/95HNEWbGtW7qmpapKJlWFxp59/P73vsnRwQGFEDx5/CXXswXT6ZSD6T0m4wlFIZCypG1bJpOpHRMJ799/m8V8wXq5xkYorhAVlMWI5WLt7m6283UpS57PauT8JWf3VhTY846TUUUpQHUK1dny71UVY2mxalUUjEYVo9HIrVxtebu2xsAOiWLEUnV0ZsLCHHC+WVIWY+pNy/n5JavlFdNCIER1KySKPGi/ePqquPMWN1RXqPC7bpZpChTbdst6vWWzidbvoZ2TfqOklOG+lxR4x0WaMINwr1rPii384s3ZQ/aX/yBqiVHZuKmzvvxkIae/pEpU0sFcINLLY5KGJ5Xs+KoHxpbkElGAZu4TQRDFKvrvU2ErHLH3ySNY9EzPuSEFDV7WEZlN+EZaCDJYdq+8tN37dvZ2lEVX3+6QJ+c1Bvq8r96b0g5Q6stCW1Dya4/+0vG+pZ9Dbcze3ZEZ2N/ZQ9QD+c3As6Tu3bUbXrqfmVjcrdgr94PEkIKvYaV5v4EjlrNLI32L7LDCvlt2BEZC2guWtOmCwimLgtmy5vx6yZtnazi7jyxdFEDjdrUdcNJJkfumYrd+C4S8Vd8ITdspmq6jU+pGgZD1NwAaHJvz/MjXAcGdsDd+8Uu/uok8sweOQpmZoneXfsbn4S7ZZElb3jXgDTGgLGZ5cF4PQ7wlANrd1N+9jrt5/jmBp4shejPeDdjT2m7bBmnZr4EgS3bblCXP3zytyQIjLL+9WjU8r1YICYdHB3yjKhFlgS4EXdGBwMZZ1SNEF3dPlGgQWmTBXvxOjLfTxmXqd/aGgO/Q+hruz+A6TOSFnetAZdlo+rmRTmsaiu1h5Y//zX+Xvh34JuPtgtQjIoX/kUb9WUqrppmeFmd8oZ6OhDM4CeOuw7LXFGASGvX9MTiFkzjeeHey0EgicwkSKCxV4/uUdfc2mRf5dOqCng5dnEdffz/+g6MdX4ZIlFFvHLLAMY6uEL1ZEREPiriOd+RMyJTTVhyNhK95XpCcX80Hq9dbP3c9/BocEgbpyHmJ9ORNliPQZR6My+O9rA1ZybG9wS3ZpHO8+1W8r9fseg8F2rRJ0YbQIUUhUZ2to1AgjLDBYIyiQDOv51ysGp7NWj45n3O9MTS6YrrRdLWiaxXbTnHVtfzwO1/nB++/ww/ffZ/z+YJ/8Ytf8mcffoxoGhavnrOg4MNPPqYYjxkVFdLJJaU6tLbXaSwWM8oCTo4O+Nq779DWG66u53SdxoxsTAkqOwxHx/coRyVCwsHRCUVZWiVUaZ4+f0FVVSil7Pl/KZFaUJQjyrJEuOs8To5P2G5qtFmhlaY1LePxhIOjKcLYHTwbHMegKdHG0GnN5WzLZFQxnYyYju5xcXVJ17XWjXc553Bqo7EqZTFF4T1isIhBSmEDB41HLrilpF2+opAdm6ZDTCaoFlbrhuurhVUWK0Ph3HFv3yVM1tEOTNvPz/elG5VFKQBhgVCRMEqJYtFsWW5q1j1l0Ve6szCS5C+olDFDfBn4jGUwgZmmutFNwN+vKONBZHKHTPIzsi5yZWQAMCMc0xG7gm8HcBgT3ApDk8J/vW6mIG9fd/CKoh+InlthaFMsJbiL9uagD2v6bqFRXA4oNOTC07djR6nufd+3KPd34LJv+gq0+99PR1bfgKIztHj2KyB3TE5AWd6+qyjuUwb3LcZ+O29Zn7+R9GuPQSqoA5Ak+SUBFAJrMd0x5MTohZDT1xCvyJSgFCfZl7t0cIfu9enPrkvnelbITOmUhcRQMl9vOJ8tuZqv0J2hLK0LjL0g24Q+a2GC+3l/VPqpb5AwfpEjadqGpu1oO3Wru/BOucSdC39JeqzPu3Llaz1vSu/MT2pgCEDD9EDk/r7lNOfrjnwr1CV0shBun8ghet7Xnpue7yqL7l2YlLw1sSzjcPPQ+V3XiyH+YPJ3fePqkJE17Gz426CNdQ9b1opXiw1GwuHJhncPTimNDRrRlR0I6zCulMT4nVxh0NIgpL2uIxoK00pJ9IJdMHsboNg3L7v93J1ngzc07crYKKJTOefnSvR24HYY1WDbjcF69xj7TTSWhM4k99bFaY6KaYIokjYao929riYEQsJhEeNdYo2fz1i4MWnvYjt6raavMUclczdlik/2oseDkhwGwq3Efl0YSNx4E7WspzCGdZ4oijlPuDmauJezvp50zaV64g7eCP+5JvXWqsU//uNEIRSRF+4MYQ8/9CnWisTb+JWjE+PDJu2ukbTiXRr151gdlk0AccCQ3vgS3GQH1ps2WfnatC6isKCUkqbp0EqjlaHABknpdIcxinW94HK54snFlieLDs0BUoxg2bCZL9mqjrptqaXkO9/4Ov/w7/wW/8Hb7/FivWW+rvmLDz+inl3z/JefsGlafv7xx1SHY6rCYFqFEIK2bRECRqVkMZ8h0RwfTjg4mFIVlhq1UmAMhSwoKknddBzfu8fh8RFFVWIQNK2mrTuaTvP85eswDtZZxCqHB4dTyrLC35YxHo0pC3tJoOoUSsF4LDg4OMJowXq9QekaIzSFsDuDynSsVxtKOUbKKdODU56/vKBtrOvnerVhqQxFVaA6Rdc21oPFuTRIoCgEo1HF0dEh42pMKQrOn71kMhpRVgXlwQS12LDZtizmHdvNHIqJu2JuNxJ4n36GaPM2/n1TulFZLKWkE4U91+LqkBgKY7hazrmeb1it4sXRfavMV22gcIDJK4rhe2/S60V1S3eXlLIussIDGxPBUig75TYYMEMhjHtAVxCYJYni2bdI7+u7LSIXZkKIcJeQ8czTM9Z8QBJmHNvTlwypEhOs3n2w7v4unDOSzohqGKLFMwdBFgLW8z79QDurqBcM6YXQ/RHpA72blJjI+vJvgyPODeWk83NbPbemIKC+utJ1176GqjKQ+usoeL/pJIaRjH+3k33fms+Vgn1jkq8lsbMM0jx9Grkrv7HRF717j11roqzcywIhRzTrDS8v5rw4vmb79Zrx5AgbUtvyRC3y8iLwiCBxKOWGDyu0ldEstg2r7ZZt07qrNPrf+UAXA3w2URS11vnxUft1/0HWvn5ro+IYd92+cjKwN4zsQNIDRrkhw9BgVTcYRfJ1FY0RfUXRXtWX8Gc8y+3136Rnq369tI9mtTEU7jyX1mA6jSgKCkqUrFg1CjXf0jx5zZsPxjy4N+ZQSqZjG6xJGlC6o6GgKAyyACm1NWoYE+7x9f1M5cpNRr19aYgH7/M2cl/s5Pdjmo+LSeRKPINs4ocYk55NtpEpb2ID3p4VT/XsUn40rriIlCEGQcwuk2/8LrcBezxEaozSIOPZUIyXlU6gBrfV1BspAR2Dy7Uv2139acNwPC0pJB2v1BvBK+hhd98IFCk5+GA8AvzOSKpdSb8KEixzC9kMKmc7OfJklbOkX8LEY0epnHU985gt8hICXouXfyQGtD0G4NuNU33e4LAofhod7/FEx3A9u/31EXBD2NxQn9/Lxa0PDKjelQkmwcOQ3AuIoTNgtLIROzvFtKzoTMd6u0YLSTGesO0kH370BcdHkqN7D/jg7JgPX/8UpTVGNWyXS149WSNGJUUp0U3L5x8/5tPJIf/pb/0W/+zP/i+++OgTdN3x13/xl/yi/FdQlIxGU9bXs9De6XRKWU0wRtM6pWq1XPLk8Zf88R/9IRevXzFbrplUJXTKBqfRmrIsefPRIw6Pj1msl/zkJz9BCkFVVja4jLveBgllWaE7hdKSs/tvMJ1OaZqa+WzGi5cv2dZ14IeysOepV+uVvfO4aWk7zXg85kgYmrphvV5RaYVoC2hKKt1SoelUS9e2jAvBmIrSjChGBbPNjLZpMVoxnUyQwiqm62WNmmtGx4pyOmHRdTSMmMiSo+MxihUlNjbGwbRCa0PX49Mpv0xTeP4bgpE3u6EajRLWe7vSLlCCMdC1XC6umM03rNdRWVRG+6O2FKkwFn6hm8yyop3PLskz76tuBJnlPlV++os6AgGBFN7inysKcYfRA0x3hsNxoB0cvDPAJjDjfdbglAGnnwfhZiJIEeDOLNLPHX/cAHyMMydG8BODBvlznbFEO4Z2HNw4mx7RkbRNuGPufaXZ91nEPgoThV3WtqS8dHyGdgBTlxEwvUAE+bCY5Jt9a+A2g8XgrubA7tYuyLkbgNoHbjNwGvLkktW/K4QcoME99XxlJTRv11Bbh5UR971bM3u9B+7AnG6bjzRPCsj2tS1r5C31xrGIUUV9MK2qqmicBVMITTESzFdbXl8vuFwsmJ4c7tBw5G8+stX+Ru18C4TTZAZWTcO6tRHldjYW/RWEyXPfH29E6Y+rg9pEfhhV2Z7NJ2lThDh9XTPg0QEjTH8etXOLyrw4THpDG9m3XjHwXbjJ2HNXJcbEwmwDZFyLPqCS3wXSBkpyHmXPMvb7GKN0ftUU+KYQN9MxoKUNniMFiEIgOtseYQTjckKBQreKq8sNH5pL3u4OedtM+FpVUuHWjVB0ZZTJle0UYM/S5IHghtflTTzBv49l7MrFnTEYmFOPo/ty1dOE/90Ye74x0K+IynyQrwNKaH9R+nvsZYjqlC4GQ7gCQ4CL2Ie2kXocx/bGhHzBm+Snvf7CnU1ySbo7z4y7DzOQpx7COramuH7ixd0QsYN1e/XryzKj0I6wYPNkx0Qm7fcYqZfXwxFR4I3XQhYDtsAYBTVvvy+y97wnv82gcu/blhrpRfqRu9vSt9HTaZRTqbwV3uiV4pOkmf5ZuLdyDw3fzYBlx9N4vmNMuMZleHfVK+opBdm8xohAi56UtMN/BuXq0SiVb2aEjeveOBhjWLdQGEOJYYShXc3olI2W35UTnpzPeXo+5ycfX/PD3/mA44MTimoEraBparQWlJWkmE6tjqBaHhwXfHL+ktVfrVnVL3nr0fv8vX/87/P9f/If86f/yx+zOL9AUvD1d97lYn7N9XbDvK6tWHNXTShl+9N2mvVG8/jxY9brDZPpAT/4nQ84nh7y/OlTnj99hmoV15evWK1mXC+W1JsNVVEijQs5aSx/q8oKpVp7FyuCxWKFEAX1tub6eoHQDV3X2SssdEshC9p2y/W1vePUaAFS0hoNdCipMJVAdWBKgSpgqVtqFLVQdMIwGle0qgEM08k9xqOKqrTBLA8PDtBa09QNXd1yfHxMdThGjgq6wylVeYCQgvV6xenJMXqzoWutcixFiTQGdBL8LlUwchLEkvvtWOu2d3BrgJsUm7hDuRhQLbPVguW6pq4jgWpjwo5VSvKeVwQIksuVrLEW4ORn/vqCNQKAyE7Cwg9Cp9cRq9lk9cZdQaKba8RTsX5AGBEWni98ULCGCnIF0DKlCET87qkHH/lAEAgg7XukiV0mljXZWOYrk9bENubCJCvYV50oirugJpuZ7EeoO7FkySKS2O1Wf+NilKXMPOnDDbS8D3z1QUw+Up4h+7wktDFQh3/RA8i7hoO4ava5CqRzGqL93gIeb0r7VGfjF3Gadw/4y2ltYDz92PSJrZ9hqC0+JL1vldmtb28Stn9ZTT1DB+k8m9gfet/0Bb0kjawsbKAb1WHdhjRlVbBtWuarNReLBQ/VQ0alWx/G2ICFvt6MfoYBRW7l9vntrkCnDdu2pVWaTu/SoJDCxuoYGAMgW+deURza3f9VUkYPfXa1Zz2krRoyruXJpMvqxrXg+UKPTe+WmNYZACTJl5H/Bv6S8F4TBENOo5Z3m0AD/TYENkssyxK86Ysg3yCn8CRvXB+t0VR7nO5Yi6I0lZVzGuq25ulyhSmhGgkeHUjK0t05WliF0/OBEuwmhdCZ8SrjiqmsvcEoF/ubK4t9Wd1XRiONCCer7fm8tP9DuzvZ7z2lPTdW+cHf7/ETlTSfPZWBIqGBXSXAlpzK7bRt6TxGryM7z/5+3qjURI7oJG96djJoMl5ZTcq3JBja7qnQkPRlcA0N8QPfDxnGM08yKjnCRTrtLT5/hUVcU8N1GHYNxnGdJDw9LoPYjWydJGsxdjyUaMfWxBfGQEAXN8gp/7gv+nbwZ1RuB/ubjo0xltCMtmMo+8pixD9BfuSVx/n1tGScMcLJqTTIUsrv0md5UEB3N6sxdMru1GkMrRG8uJ7z2csZj1/NeT5veTYT3MPAqEUWFYbWGrGqkunZGW3XUS/nTIRhvt6ybWp+9MmW/+oP/j7vvf8Bo4Mz/uW/+OfQ1EzLCX/wve/y+PkTPnv9muX5OZ2yClpVlkwnEzbrJapr6LRms62p65bpQcGjhw94cHrGdrXg4uVLNnXN7OoSWZWst7ULcWKsJUhKd12FQQvtgjJavrPdbCmLkrquaZoW09UUZUFZlSAMRis6rLFWKUNRVAghULpD02EAWVV2zGWBFpJN09FojTICU0iMEHTC3rVqSqAUCGzk+2JcodsWlIBSMDqcUI0kRiiksO6pCOi6juloSttIBMqd77S84DbFLry/TUgOfbMn3agsFo4rGSkQylCUJYXuUN2W19cXzJdbttvdwAQ+DQHP1Jq5K2QTq0tPQbLPPPiNgAtjD/J7ODm0wyFcoBy/SP2unF1oKfNgh2kFzkyRHTHIhzX3Rd9vDU8u8A2K0O4OHn1GGpoSOWIGgFwfog5trNDJdLloRbPdN/FcAgkoMPmY37jDFNrqwbM745GA8gLRH6wMQKS/eyefDJ5E0/FOK1JmfZNF3OZNd5ZTlyWTPUeAj4I9YGd1csfRoLNCDiuMu/0dUlZ6umfe7zsm4Qoa3ClMgMRXTx64+IBU3sXKj7l9vVttoJDkSQzg4HcBYEi5iM+z743ZoaPhFrs5HOBD6dhb+rfXRSh8dEQbHlygXVhtTVmOqJuaq+WKxxevead+h3tixEh69dW7TeqgPMQxYGe+bfIXOPtxkiitaDplQ4Rrg/bb9/00QEOxj/GZDSSW7g6KqMBAQGPp/3mG+KdwTCM3bN2dPuOc522Oc9SLBOiV3Uyx6KXA23L+EviK+z8qQ7nwFI4HaMdfIivLeXiflm3bcKC5P35kf2V8NHkW5E9QFE1oQ8rDpZCWDo22njoSUMbeHiCKEGna6IIn6yVdYS+Nfms8Qk5LGNsw7kZoJx8khRIIocMYhytsksivmVFyQBnOpkGk4H93d2iXF6f8MPK/CPqjghWNeJ532rzKxLOcGLt+pZMbKW/JlO9esk4sAmRCG96V1fO2VFF0Ai/iFhnq80LVmOQqrSSSsfd0EvazbB35HSIoXH8FxsiszugZ4HcrTViPYYfTRJqNa9yt27wTLsnkWdKvZNxjdne4S0i7q5jhF9LBdtX2ecOgkIhtjF3NAZYfN/XWxGsAACAASURBVJH3oG9gD7028UkICoNXtKJ7s8/qKbtPmxof2CrhAzvKYmxPbHhOL8LdsYexCojxd/H1+WAyDmk/bFusHApKoXFfGIFRvp9eYTRhDtEmtSuGa+qs0mioijEY6wq5nK85Pj3CAItNw4/+9uc8uWy5Whu2wE8+v2Y0WlNWmtHBPSqWdG1LW45445vfZrvZsP7yCe1ihukUjTa8riW/8wf/Ft/5xrfRneH+vWPGxvD2wzf5T/7Jf8SPP/wbzN/8DZ9fvma9XnN0eMzR0RHvvfceL14+Yz6bsVmvqMZTNtsOhGQyHvHg/hkXp6ccHh2w2a55/eoFoiioJmOODsbx7lHH2zrd0bQN45E9XqKB7XZLXdfhSj8NHB8dMZ1OqOsNFxcXGGMYjcaAQZb2CoyubuhaRVlVjMZTNrXBiDHKVKzXLU1t0KagLEaozu4+MhJsCkVd2roKqWlKw7braESHGgvKexNk19Ct19SbLVU5oigkhYRCGEQB09KvdOuSnK2xffpGoh0Mvr/l7366eWcRMFI642prD1a2Hc1mybPXz7lerGnam6PYDTXC0ztCJG7uTkgnACXAn3Rx+jVp3HMPOvcsZnuSdNcd0gBG+fu/9gyS9ozcYLTV6HMLj+/NkAtF0n/v029yq5rugVo/JrvMyynZAuew5q6rcEzBD1FgfpkyFAoKQnBnfnojcNO2tREiMYxFICBcFDSRHKT2zPp22/Ruiruvjh56dOWtRsGV7I7K1b58ob5sHK0hItyj5pOnOf9nb7xuUhh36x1u31cZsRRUD9eR09NXTw6sQNwZ8XUl50duLyYV6HdPQU/syeNY7lefe++JYGmrQEi7tlXbUDqAoTFu51Gw2Nb8/OmXfPd736Yqj6lGJYVrkz9VYtvqecY+RTHJ5352naJuO7ZNw7pu6HqC3ielNSLcLzdQJrkynKiOjq8kCoH7wu6gGgsEbx1BiGcm75A5qcnvjsTFkwsy3+a7WEzjGon8wb/rp6As9viqfxfy4OlsF+gOKTyxPdx5LDzF3WZUtC9BGGmpUDgnSOd+abB35Bpt7LBWkk7ArG54fL1kbATvnUy5fzTmwcmYUdcghcQgaYsRUtpw7VaRMFDYezdtlH7fNtsuW8V+vnJXvnuX0QmcN8xLSiaeYt0oioQVBLYSldCe1rGnvliuV2iCUupas6PwuyH3+oqlG2HdA4OiGpUpE3YK7T9t7O5hpJt0l6kM7TKubVGJKoJSkJY3NIbDKV2HZL/7OSxEGY6AhJutTfJ90N7T8vzrm4Cnpb30eZSwQ200yb99ffHtMRkODLt+/kHAcKn4iAqgIeIHj1di/707Yx74S8YSkMF40G+hk8fGuDnTGOXv/yxzpiFEkJ9eQfXHe+yxdY1xSiNIt4sYsUqQM8nVH3EsfMPd3dzG7TB2ykb51Jrq5CGfXFzx+PUFHz5+wfm6RTOhGhesZyvqw5Z7Z/f52nvvst2s+eSzj1kvXlF3Kx69+ZDjo2O+9t57/M//4//EcSkZAcsnC376F/+S859/xHo542//75/wtffeoyoKnr58zBdPP+d6fmmvnZhMODicMj2cUIwqHr31DienZ2zWK85fvoJCsmlqPvr0U169es3F69esNmuq6YTpaMRoOuXw6Jgvv3yKu6iU1rRMp1OktApx09idx3FVcf/+Q148f0bbtVRliRYj7j94izcfvUHXbpjPlzRNjRA2EiqqBSGRsuRgfGA5UCe4f+8BdV0zW8+RAiblBKMUpu0Yjye0XYNuWzbLS1TTYgwoIZFmRLFtKOoWsel49osvKEpDUQmK4oiiKihK0G3F7PySb713wu98+11Oj09prl/Rqg5RjbO1NMSFb5KLv0q6UVm0RFlYYaUUQmtM11JvVswXC+ptg0pQTSpUw8XmPYEYt9ETV0yTsomk65kG43Wp6AIW9gWdRUUIQVFIW7dnxum9aO67wDqk3LHyBInQW3T5Jat90J0/ywCNSBlbIlyFcBbV2FHTVx596VldNqJTsGiGOxJT5tMfvKSZA4p8X6FLAZaXfSQ/bbRXE+bEf+Pn01s907LS+vb93Bk/pyx6BtoblKydQ+PVVw7SnzcpxOE5sf6hvMaYYJ1iT57b2gW7u6LRyj5YzI3JW+RvYhC3KTDxd7/DEx4OGoIiNkv7AX0ajApMHgSpX/dO2/13A/OJryYtZ5+lrb8utQajQnRIK1BbRpUFecJdoCqkoNOG14s169adY7Cn25wSm4MJy2sMAz6HO8kASluFsWk7mk7FS7R7LnBaawoHY2TiJZEaZrLda2ekCm51QWHEBU5Id95MdlY4Y72C2Ne9oonQnj59az1Mcz5buKQ+AW23pVhHbhiLAjQHkH5N9Ftu71bzsgInNyw/jef5xA6dDtF3Wv+w1Tbufu3LE68DMqCtsUoL66Kk3Zz6NefdSxWGUki6TnPdbfnSQFEYTGE4OLAWaoREUriATFFeyDRoXAgS4/saRhJjzM75xn6yS8/s9G9oje8fqyGgG5oUwXT4I1a+XwEZlgd+bnPDb9ajqHgKf3ZVuLGMbYxrzpcNGM83E28ppDtz5vlZkp94+Xxf8fKkHFxVB8+8+X46g7Q3pKguYhA8BabfpHhEJm+9y3SieLl5CNORtCORivFZskbTHMFYn2ePJSQYLNCqG9O8rkCd7jsT1m4yHHHNmUjLvs+eB8YCE0Jzbci5WQwOGLFc3vVgFMIrkia4iVp3TzUg8/uyF6eYyghJ/eA4xdDyTbtj6SOlZvy/N6heUdRao1SDQdIZeHl+xc+fvuLZ9YLX646tLpFGYJSmArp6SVNPaZtTNtuGtu3sO2FoltesVc1qtrAUPBFoYWivNH/6v/+fPDgdUZVbRKm5vLxEaJhUkp/94hOeX13RNC3jyYS2bdmsN2y3W3c34pT7Z/c5ODjk8eMvEEJQjScooNWaVik6pTg+O+Xe6RlnDx7y+vySrukC1o+BFw1aK87Ozrh//4w3Hz3i+uoCvbbKi1KGbd2y3tQU0t1taSRaGfyZUYxAViVKKWRRUFbWs0M3BoXlzcJIhNAYoVlvts47yVAUkoPpEV1ng9+0bYfqFBiYjsds69pt3hdMJyfIokGblra1c3VyfMDbb91HaINAI4Xe4RFBfO1Yt3JsndLcV003K4sZrVmlTHU19WbBfL6mbhQpVk6Fwk1C387lHiuy8ewpOUcxUIxnP8YzUuMCAYgoTIP1L22PB1UYpD+0nS5cEvBALhBSIdsfpb1gN+WTUTvMXqYyL32TEkBkcPY/KYQLpy7RRoVx8PX39Y0wVsYDaj8Pu2MbehaEcs7opbSW1BSQpZORuj72wWO2C5YEm9gZt147+kpu8hYydp4y/iAt7rQ4hkDc0M6oyT/a0/ah+szOOw/OfpUdPz/k2S9+3geU6LSdQ6BuXyWeQg1iZx5S4NaTwdkQ9LsX1ukNimtcyz2BPcAoE402fD/YHfet3ZG2ZxnsGrN/W7qUCC3QQtjdRXc37NWqZbmpaY46zHgERQJsPPDwsK6HdVOY1lfstLGXI/srM5R2uxs7At+xkAEAnCmNwVXNg1sXOKzPl3pr1fdgeOBg+FW+y+gNeSQKyO4cDK8O34++IiZE2t98PHBn3QYNDCb2KyiKCV+3Y6/30kqoW4ggl/y3URDvW/s9b40w/zko9Pw1NSImwsfeBSZcdErs39YtWISAcsoYxki0Uiy7lhdaMxkXFJXg5HDEWEobJt7dJWqEDm6YdncyCIasC254Q4tTntLn6aGXxs8HO/ny8YnddV0lIOJQp5NTwgZk87wAk85HZDaRD/WAkeeLQ3J5H02nChIpbhBWYU8+1Np7HHk+5e4adFGOvQNZfsdiYsTxDTL+hwjrIJznzBqdyo2h0RVJ+d51K2XG6Th4HuGUxUyx9wpPAvIs2MoByk7d/rnbQe2pW3s4fvJjQN4HINg3bpuwHvsYTYT6PDWZjG5sxFIRhn44CaIhYqDJbhwCVnPPBSL6oRnvSmznKz07CB5TJcWGvrvniWjzCqc9Aqkd/1LuZSwk4TIR97ogMkZruq5GiZJVY/jl09d8+vycy23LWgu0KRHKIDpDCWybNdvVjPnsnMXKoDvNuKqoCsPl+QsKWbCY26idpoJOGBpj+NFf/TVv3C95680RDx7c4/zFksVsRdOsuLha0rQtI2GQhaRpWoTYUG82HE4PODw4ZHpwQDWd8PLVK7TWHB2f2CjPRYEGmrZlenDA6dkp9x8+4ODwkA0bVGcVuq5tsTjfRjc9vnfMO2+/w6M33+CXv/yEuq7B2Cs5VssVo6piXFVgBLIoKYoKg0YpgzE26ONWN5SFoSpLOjq0VOHqp84pcwJFq6CsKhfNGqYHhzS1VSCV0mgEsiwZVyO2TYNw4zCaTNGipVOGptWMSjg9HvPG2RGqbZDCYKTYCQI5iI8Suu1jrX348KZ0o7LYACWWYCoKWjmiVUvWq4959plh0Ri6Sf5Nf3dov6Uj6WGyWNN7Ee0r7zpl3EIz+CgPWecFaK1om9ZmlzJEvgtleWVG25JNEYV/aKOO14T4PgghUKaL5zuESO5S9OcbPKNMV7frpjsYnjElz7B7IQ+NV6KFCABPCANShmihIinbOqaIxNrlxyyGBc/PFmDdm4z1cVfhYHQSSnqPkuH/dU3cTi4S4RVoNGGGciQs+HYvtQsdbh1AhHVtDiNZhPnwVjPIAUqIfibTHYUoIHy+OB9ktDYEDHODABTkV6oIwCS0ZNK8A2O1TzHK68vES09I4+Y9qbCXolAi3MdnPQQFOPCiwYJLXzYR3ObjEK3V/rmUXojmNEdhreppmyJ4FuGfjxCajhkinstJ19jQGGXJ76SnOKSfTO9n0pchYKuUcy4uJMHpUxiKStIpPzclGCgp6DBc1povPr3iTI94o6zQx5JGWZegipKRlNR0tEYx0SVGSLQALawxJ/AWba3THYbOCLrygHVTs1h1tK1GtcredyVyOhwXo0QhzKx0lleYAj/zlmP6aIcCtKMnf1bSz5kRFKZw49JFlpzMhwmBFNw7Ke15OW127oI0HoCZ6O0Rd0F9ZEiTGQuLQoJT3KMCMJz0zk6+yHhTUAJdPimljeLn2qaNRiKcdV3RNk1w7CukoCpLjLHugoAby965XxH+Sx9kv4udn7a0VnWILAy+GzeMczc1aGH5X1nYqLx291OE1WXnUFFglagCqDrQsqQdCWbAx7OO19st8+2Y33/njDcOC07HINWCrqhAlIxEAUpRCGmjpCrn5lgKxKigRSFliaTIZKSUQztb9PRNH4xBhPnwofLL0rpbGt1lfCjQSqIwp7A/XEBhsFZ/6eSBiIDf/uuysY83Osd50sIuRHtu2Y9sRXSVTunMXpgdlQGDNrsYBKzxOV6LZcndy+bCGywSDVyEexe1/RwB2gbX8CzVjknhdLoCaP2IExxGPZ0EWvXvioz/x4MsUer6YzIpXLIYRGIMSAr8uWKDsUMjtIM6+W50oH/nJyycU7+KnIhIydajIZmVODYR7yZ9SvLheYV2siZ6JqQ74MZF19Smy2I0CDuwlnZSRc1pfiqDFLkwi8q/AeWgXDAo+bETrouFVfiR1oaAVShSTGx/9zwsxSLG3n3oeZ60rvxd16C0cmcr3fwZgWkaZDkCUaDs/iXGdEAHWkHTgVLoTtOM4LPn13z6dM5f/uwFBydjhKgYN3aHzcgSLSVNZSNEL67nXM6WGC351je+wf3732HZrvizv/oFuq05rgSnqqKeaxphaMclZw/P+Lvf/Tb/8He/j9SGP/k/fsSHn37Ozz55zn/9n/9TqJd8+fRL/puPnnI0OmBcjjk0HaxbWlNjNoaPXn/OVpc8OD7mm++8yXq9YTW75mo8Zr3ecHx0wvHBPWQHZ0en6Fqx2C4RsqSUhVPeDKbtKIuS6dExb779HmU1BqCQMNI1q6uXbObnNG2DAe4/fMC7773HkyfP2K43tG0HNNA0VkmXMFvMKKS0keuRFLqkbjW11vz2D/4OX/vW15ESfvHTf009v0aJDlkKRodTDqsxCGi7hnY+pygqRsUEoy+ZrTe0LZRqzG9/veabDzSnxZZNPWNqDiiEoMUfobshpbD/BoPoXdPNO4sSMBqhBIYRRtfU9YLr+TVXiy1NbYnPp74g3+t+sq++Hmi3vzs/7Z7VKCvfCV8hsGczBDsG7dzK7NprdstyiDs867uueOYV/04Bqbf6OpeVqAs4IZFYtwXhAHTAuSLrXjZggbmk+Xvt9xbL7EMin/NMaXcXNN8dSHmk70bWHFfXvnlMgZtSCpEAjGT4MkUhKAMD/fcAJbjXAAgzOFT9vgtclF6ld+ZzsN3EOlLg6ufvN7Ho0vb5emF3nZjB3DckE2RWfJQon6HQXmFDQ+IVQG3UQN3OYtyjff+37teJo/UAADTG62c9oL+zazhQ1q8zB9m3Ppyg/zOjP5HQqVt3WnFxdcXswSHr5gjZVgmfsTs8AkEhiwxr9unbgzYwGJG4oLYtXav29m9XUQqdCn1LlUiRANfQd4MzwrjlnQ1vL1CTjvwhLTNP+5hWUqfwfNxktBd4emJJ9z/71fiolIkecXOd5PzbKyxh5zihO+F4qtbu4mdRuDbE77M5JKWjYZ4SpztvbDhrTpwPmyvf4S2kcIg1H5mhJBA0KAQFZVEgdYFuO5bdhme643SiaNUUfTzmdCIRjUYUClVKNtJG3q2EpnJXY8lOIAuBLJwiw34vhL61Ol2ufj2nMi60WXjD775O5fX0g5+FsfN1kMvj2DYRv8t4iPsJyZl0d4YzUwz6fiXu4wGDW14vTnk22d++njBO7p8GpDaD2MWPgHFzkW02peXn/yGEw06hJu/679oSDImO/waW51qVsEdD4RQZr0yL5P+ixwb8OxtdFa+PJS6extN9GBtnGGb3TK/9pEd3bp6MUy53uFA6vm4d23O7frdP5nn7sMlkxfRkQ95Pz8PCrrqr03g3UWMNeNJjQxdsJujFASrm692vG+3ueRHKB7xxAZ58v527pajGlka0QuiWCkXT1XSqo6zGbI2gU5K6g7/+9DO+fLXh5VWLquDlqqEaj7h3cspbX3uD1xeXrJYLismUZlXbFVQVlJR86xvv88G3v0nT1VxcvGI2m1EYqJuOw7ND3rp/wjtvv8+9tuPdB6ccjErMdMzMKNrxmH/0b/4+/+D3f8CkgpdXH/CHj/8Iowu2reb5Ysb6esZIllRCcDG/RG4qNq3hk19+yrbecn5+zrZpODk74/Xr18xmM6Qsub6eobuOUVmwbbZMqgKtOrabNUfTCfPraz756BdcXV2xXq0d3jOMJyOU1rRNQ9u1jMZjQNA0LXW9ZbPd0DYtUko6rTFaINoWKYvA460MUdYYKSXf+fY3+Tf+3g9p24Zf/M1fs11vQGvKsrJXdJg61H8wqZhOJkymUxbza5S0OL1tW955+21OT08oC0m36awXSG817OPJwcvnN5RuDnBjKRYQGDkGs6KpV8wWC2bLFtXpr3Dd8s2pv/uYM9z8vGAU4P3mpu6XA7uZRHDkGW9fGexLhj6A9TszaRv9TlZgug5ophDIJHUHSGRinsDj+2BERKHDQJ92Fb/Yvz4w88xsaKe3zy/3JrNbjwi/p/NjBbRyW/PhuQOlfQKPY5i2aLdfX6GlebN7AHJoDIZ297zOYBge61+lNTcBrqFdsChUBsas931SKilbyUZwT307JXjlIwHMoeSBKoUQLgKnyejCvzPh3YDr4p76b/q7X/dt/blbGkIFFjIWQjBfLlhs1myblqku7E6rEO6ePm2vrBFiB/B5+vbgya5DCw/aTtN2HU3X0Sk9NLSA6/8NY+Wjn4ZueGXH5Pni78O0uzvu/b44vrinoXn+FGD6H6nykILzPmLL6wxtvmWK70ILQ8qiMdbQ4Xl8X1G8K5361g8NjzdIeZCYc5DINwfUq7398HvJUgiEERTGnhNtjeZ6s+H5TFDIjrLQTKpDxhgKozFS0wnhAK1zxnFiViiNvVvPuDvwTDZm/f6nxtjdXRPjCT4zXtw1xfp6bpcREpAacrP5MH6M6K0DW2a8RdPJ114+IbKNpx1ZZ3p5+7wtHYvM1JPQvA/qpxMlLVshxrUxKIU9OX8jHvTq6MB6SBTFfPcxvs8p08sTr9aIpPg+dhIgovoj0v+8kuN5QRgjy/vS8b7NMJgZdDMmETvjlTcppK3BfRKKTpXtXvLri7BTGtsV5ihgSp14Wvjv4k5i3tekbWHO48gOrR9LJ/Fb6Tph/LGFUqK7FqNsUBZBB22DUQpVjFjWLfNVw9V8wy+fztl2ktFkzFunx3z5ek41mnD6xlu89c7XaYRg3bV0qgEksigoRiNU21FIqAToruVAQl0IlDIoAQeHBzy4f8qbbz6kfvGKddPwejZnM9cstluUNIhKsNUtRVHBdMK4qOiMRBhJqw3z1YLSGCojUG2NULDdrHn67DnGGJbLNV2nmEwKNht7zlEg2W621iQiJYfTMQ/PTlFdw8W5dbtv6y2z6yu2dU3btYDFKwKsa6jWTCYTRCFp25bZbE7bdnSdPR8ptYuQKiXK3csr/RlybfmkwCCRTCdjhDa025rNcoXqOitnhKTdbCmKgsl4zMnpCavFzM61tpsiR4dTmtawWK04OjhgVFUR//l/d0hf1ah+W/6blcUCpD84W01BXbDZzHl9dcnFvEW3UN3S8Jt2c3atknGBRCCs4522QVFLBWz0O8+lQcySCbIkW6ZA4JQ5x+DSXbzUitxvd2BUnmu6NnrXhGCxE2RnkMS+0Pg7YxQZxG3gORs/H4F1t8Thb5Pu7HyVtKEPoGzESEvoQRHzSriwrsHCRlXI3EMGlaJcpXFroq8o+p93Xwh92tqX4g7ZfgUwCO5bgOhNaajv/XfhucmVPvdwf3ng7ma7sQmJ0UOENRWb4n/P12PaNmtN69WfyOrBvrkiTfJdH5T/umkQuPcNQj5v8n/SQoZoSwrBqCi5Wiy4Wi5Z1FuO9ZhRKYLFuFMtorS7MkA4Mpi3xQWtwztRCequY9u01LW1bBpb4Z7Vm69Dz6d0cCePrffAPeQfoImUNwbe1QcqRHK/2UDRp1PPbxNjUa/etPxoq7sbHdzV6NJ/1t+BysrQxp4YuGGN3iUZL5d6T22ygRBcY3a+CTuuWdvDbwO1CSgLjJFoBYXWCCwwnnctn19e0+gGZRRHk0POCsPYldQ5gGukoXKujmBAuZ2QQtrdG/wF9pGo/RnfwCsM7hwY1kVZWndvm7cvq9Lf73J+Jq3XPXJXHPXXWTh7HNQOyc64eR7ll0USWCisn0CPrv+Jy2f4GVifcLLaNiyde59fZepW2hCBkUWPzwvbQePWYRIsy3j39GAcSvqWjkN4IEKtcR27HcdEDoSeJ+y8fzYq7E7Gj+NgmThafZSWDIb7qQN/spsBkX/pr7De+m7wXn4TyrXP/B11wkSDJeRydp9MD0buAD96dXpFUCmnuPWwizH2IvXet0O81NNuXnyqYLpdyaRqo61RVxUa1TaYrkWoFrCKo9GGTdvxcrbiyatrPnn8gqcXhm++/4j333uDs0f3+fN/9VPk+B7f/MYHfOOD79s7fzc1Tx4/5mA8ohqPKCYTZttzLi5e8lRqZq9eIDcbKqXolMFUkntHx9y/d4ocVTy5vuR6MediNufFq5dcz69RquFvPvoF7z885vBwwqprkUIyoqQUJeNSQHtJp+yFOOPJGAWsmhUXX55zeHiIUgqlNdvtltFoRCELjFborkMpRVkWvP/eW3z/e9+ja2s+/eQTPnv8JVp1tA3M5wvrCi+skqicR09RlDx69Aaz+YL1as3V9YyyLN2RKIHSmgcPT+m0Yrla0amO0WhKKQu2zdq6tANSGLabFR/+67/l6uKSy1fnHIxKtLJRWdcKJuOKyXjC1772NZ4//ZLNdoPWmuPjY87eepPVZsvlq0uqsrDXeylFWZYJT/v/Pt1ydYZBaGX96kcHmO2CxfyCxy/PmS07SlMwKYYbvw+ghZJvUBSzckz+e7BppYsXEJ6xkgiAnd5ghViU2QFseWtvxjw802G3PJvPn0FIQTdQJGHoPSDOGuHrJWPM/TOWu6nX6T3JGGMFaRGZ1c2Axx/Edww/cCIn1voSWeRzphzzkn3lASikDGOw00ZyoCDIXejyNvv8yV931S3uNmx5TQMAJI2CJgbb+JtMjuqEXwOeCvcBUJF+dXO5VkrvLasv1/pRENO5D+cXE9DgQcC+nVBhTHaOdbCV/6+N611SerrFPRGSSsB8veHV9YLnVzPefOsM4SMjYgMNCGNdGPepUh6U2fOE1m1lW7estzXruqbz508DwMuTt4SGd2bXWm0LEGhn6JPSRjn0532NB6COYXrQG2DqLXQdQLHjj/m4DaewnITAOH/7X3eOb1VcE75TFBZgax2BvB+3VDmQMr77TRgv0mTHXQfeEec47rymwS/KxIp821hJUWC0tsYGUSHLEikKlNLMmhozq6m7azpR8d2zQx4eTjg2BWXbIjqNaRUtoERhaV3bs9vGYL0MpbDuV5kPpPRoFXsuK9MAMcoEmZYZvxJvhbvTwLD88Pc2p7vuXkG1GN+e8xI7CmM8dxaMsTur1pVH5K6OchMji4ji0WYJOMLzwZ0yUwXL/3MxEOya1I5NZwIoMRTFM5E7iktw2CXMU48LBy1YhLe+dyZEPva9DTQagJgfgaiE7sVa/qe258Y8ThpoUVQwTT4LN2NHExTDgMMSOZ31TrjowTdhoWjFvDNeMMZi5OBeGm4BSNruJ8PEMezzrqg07+7Kx1gZDod0KuNPRmu0UrTtBYUoncG+oDaCVo5Z645PPnvOk8s1r2cbLtaGw8kZb77xDt/94Bv82//uD3n73e/w+OWMp1dbmrZGqRYp4dHJA+RYsmprzq8uqKTms08/obs85x/84HcZVQWzpmHWdXz0xTNevF4wp3kLvwAAIABJREFUXxnkyxmzZUPR1Tx+vaaSY1bmgFVnuHh1zX/3z/451bhAViXaHNBslhit2bSCe0cndI2mrTtW6y3VSFBWJQfqhLKqEIWm0JqqKnnnnXeYTqdgNJ9/+imr1QqtOkoMb71xn1FZMBaGzz//jEKMKMuKDQ3r9ZqqLJhOxyw2W46ODnnjjYf8/X/v3+GnH/6Mly9ecn5xyTe/8S0uLi65vp6xXK5477330MZwcWUV2jcfvQFG8zc//gmqazg8OuTe6Smf/PxnvHx5wWa5ZlJUFMbY3VcFh1VJWVboTvPq+Su6VlE3LXWjODqcUjdburbloBzx1qOHHByA7mqU6uhMhxTyDpce/ubTjVVqtxCls4F32wWLxZxXV0ua1oaETdfyPuE6tFuSuTClnCWx3sTiegpk+sx4Jm8ccMJdICt22uQZkY94GqxjmB1rVqak7rQgb41IFn88U+dAVyjBltIfoahs+gf7lIHdvtz0PFMFnADwCi7k0Wp9G9NpyFl6Wj6kQYjSXVcrMBPruBCZUiCE6JW1C3D7fU7/juRj3M7L3cCcIA2ycbP7qW2id1uKTNsH5vHzmrqzDpUzVP6+lO3+ZN8RJiMZNVKKtDQdaW7vGPixc3OUlrmrlEeqlSKe74qgOgHbA/Xe5E0APhJpUuMeQ1GaP0237Q5/NSXEgR7naheAQuhsojkbaJVhttny6npOqwiBY7ROlIvImvYYmqzSp4yNoFa3irpVNJ1GaYvOo1tdOhDCXspOvG3NA9M+HQopY5AM34aeApSB2Yxh5OOYTmU2tv3lG0vtPcs/SK3uuRV+P80M0cg+he4mN8lUqch2NSGTG/muajJmtxhBb0p+Tvuj44NBGS8XB8h3kB7SUlrrwiekRAnh3O2MvdOPglbBbKv49OKacanphIFyxBGCAo2QBlV0qMJQyMKGkHeFe+OjjZoqst2cdM79MZCMHrXZ2Z3KwX5Ot3uVdCF2FKNUYRTJ+5jND6Zf42m5HkX4YCmpriCSPFFximstyYtV3gIvDeRvwf/OSAUFcci51bc6VcjcE2+QNhCNMoks8Hw9Db7i5H4mdz1vTnhVIDkhw1qMOxhJ3sRCb2Vvzzh023LY4R1p5ZHww3z6YgcUq5B0mDTCxKT0F7CHZJ9c2JGDqUyFHXf7YGTy3hzGuOBlPZ7hAIPw+NL/PagoesNVjq383Yj+G62UPfOmYwwGW45Gms7FUKvQ5YTFpuPF5SUvr644X66ZntznpJxytW65mDdcbte8Xs55evGST778nKevF1xuDPMP17x+/ZJNu4XSbiSU1YjD4ojNcsYbb7zBd95/n+9+8AFmPOKzFy948ew548mE5bZmtW0Z1RuauqESJbIYs6ZhbTRdKSnLCV3b2TtHVYFuWkxpd89bqdkulwhTUZiSkhFSbwGNKKZstjVg3TXH0ykIf92QoW5bRuMRh9Mpp6cnXJyf0zY1T59+idaG6XTK8ekZJ/cf8PTpE7q2oW0aRqMKpRXbpgZgPB5TlPaajMOjQ8AGtJwvVizmC6YHU05PT9nWW8aTMUYpDg4O2K6tu2mz2YKw59+llFSFpKs3GANVVVBWI46O7zEajbi8vkIrzagaM5pOmUymrFcr6rplOhkznYwoZItWLmiXzLHYbek3aXS/WT/160AYShTNZsViseB8trKH0wsyJNF3mBtqaBSIPaEw1CeTFU+OaEyo09ZjCNY4/90gqI/SOlqYe1UkKSqBQykqijlzIzIp/59JnhkTXuxaMwfGLeXVDCsoN36fKIj+78G5gbCxONjfnnIg+vU7oO2Zm3DP9o1N1sKecIggck/feuD2piSEO9w+oCjulr9bV+rityPY9yh6v25KZM0OTfat1tmceOyws7a8kCe7hzrNM0R3bk8KhzwGFXxP2gGW3UKTQ9borzKO+5T0fX8PtcG3PeY1OeB0LfX/GwxCGzoEi23N+XxJ0xnMKIGTDpR5W4o/Y5I6i3lI5K88UNpQN4qmVTYSagLE++01Gb8wYc4y/UKIYQ8FpySlwKQ/lv1nO+s21rz7x8D6jRlTRp73ybt4CQdKM0Uk68bAQoCsnWk/+s/Se3/TnSFbsmd6IlPA++mrrfFEORh4DgTK8PLLiwXh25TUG+wY+/iXiw5qpEBJS8fCaAoDBRJtDKtWs5wvOZrY6Nzj6oBpUVJIgZQ2JL4Lwk8pSrsUjHGuudL9rnd5euhnj149DQS9I9JVkNlJ3vxd0nc/av13aT07Y2xulBGZworfoRJBLvedRcEbz8GY9HmeL4qnRDnYKUvglcUMeiR0EGW2z+8ZbPK78ZjLl+rfJYLDK5lBSfU5ff1xHFIlMm1zVDaT2oTYUaKiAury7QArEWVR+GnCmgzPXb88P85Qn0m+7VfvexSURpwHsm1riK/Tlxee9sIc9JLJf/Xle5dTuxNs8v6a3i+e54qcEjLFM+fkGBMD8/mStDZBWQTrMeHHWmIjcbZGUyt4tVZ88mLG4+cvYVTywdv3OCxbRqMLmsKwaGtez+f87JNP+NkvP+J8XtOKKevzp2jVIpShLGwkZFlIJqMpq/mce/dOefvtd3j73Xd5MZ8hX71ivlgwqqYsNhvapqNta6TWlNUUMxmx7lpaozCFoCoqilpgTIVWI1SzxYxAFwYjbIRqiQBZMRYj0Gv8rnfbdUghKIoCWZQ0TRuVxabh3vExJ6dn3Ds54fX5OdfXlzx7+hSDYTKdcHJyj2pyyOXFOcu2oWsaRlVF23Ws12vm8zlt26K0QmlFURYcHExpWxvgZnZ9DQLunZ7Qdg1aK4zWTKdTVFNjtGG72aCEopCScjJlXEnm202Yr2o04uDgAKTg4uLanZUccXRwxHQ6YXb1mnrbMBmPnNHORl+W0q7bXxVr3qY33JZuVBbtmYXCHpxnw3pxzfnlnCevN5QCKKS75Nc1hhQQRZDUb6w0d8b5vWRwBwtDeTtAJxX8QwBGCHzEkL07dQM1+3L7FrV0lykIDh9We7ggx7wiOEqt3QM9Hn7eY2q+DcEtZ893e1Oveo0L9b3TLpPkH9jbc2OUWS9vqjYbv6R4MazQ/kpJxLm+fdcvRxg7+SEYO37V1vV3R/q/32Uhm2wNOaAZrKjJrhC9gAG7atqd2hvhwt2Vs31pX2CUfpm/aQV8N6VzPazMBMBk7MUualSybDtezBYs1jWnVUlVOhc3acOk27lxOws+OpHHL+5Pu6uoaZVmVdes64a6bXMDQe8aoaHW7+yAJbtjng/E4vJrcsCexfRAPwOeKQ3tmwYBwT3dAVmRfe8zxgiK2ee+YJFWIgbz5u9swXY3d5ju+8pu13WxFBnXmh2jCNN0UGJyHvBVaF44cDqcJ7o49xX32Mt4tuwuXMZ6Tgi7gycFykXvFcY4ZbFAK02HpjaCn7+ccbFoaJuC0dkZZ9OSo8peayO0RqNp6WhUYeVUkfOmdLzT3/cm7eWu65Mb41T5TflzXy731JS9KR9Lvw5kIosG3KQDyPeNc/lE6rnirT9eUfRaiK0nKncuE4JhixyhbON/Bwwa3DUiviwh4jUiwimXIjEChdWa1pOuJxI8FM6aSmIABf+Z9IwkjlOIPJy67iaBI/AXiURumffSKlBeicmWd1CGIZx51d79MqnDtSkov+6nH/1Ea42zGtauDnMqjJ9FkenbcZgSdTldh95oZXa5kY9mGncTkwBe+ShkSq7dDZS4u9syl/O+8cS3IUGVCARK+OvSHJ9LgucIShpR8mq+4cMvvuSL8wWvrtcst5qHD0ecz7bU2y2LxYYffO/3Obk3Zrut+aM//l9Z14ZWSzoqtp1icjClGo3AGLquYbttWTVbJIZPP/uCkYLf+53f5RdffMGnT55xPV9y73TM2WSCLjquF1dMp6WNsNxJRo2yO2SmpdtuUWJErWBbGya6pq5bDJophr/77ntczGueX60xk2N0UdLplnq14uzsjMl4jBSSy8tL1qOR2wiwrpyjyZST+w84uHefJ89f8Or1JZfzJWU1RpYVRkg2mw1CQFnaAF7r9QZRSNbrDX/x5z/iej5DaYUsC56/eGGjpDYN9+8fsZxfslrNePlqjJGCw4MDG4FaSh49epO63rJcLrm8vGI6Oebk3inf+vrX+PijXzBfLNjUHUenU7ZNQ9d11HVtg2wVknJUcnBwgLgWGK2RwrBazqkmikoYRqPK3oLyG4LFXzXdrCzqEl2CkYZSr1nNl1xernl1VTMqleUzfSu257m6B2Jcigyx99mO1TF8Qd83x6SWqeR7SK7OIC7+QctjIrhyK3heXqgPyzz7B0w9U4/31MVm+6qi/IpR2exFw3eB6nm7vYDtWwn6uwHC12eidXKftVyk7XYsLp3VlOH5ByJW4l+Gr334b9lrq3Un3HXDGOqfBxO9FrjxNHndtyWTzuH+b7zSPmRl3PnOC7OBdDdlb//MDwqOnTpuzpIKmLRcv3Zy104PPdwXIp/T0KYb1kjIJyLA20na04ghd8PKAX9fUbwNUP7qaYjK3RmnvnIAlELSFiMa3bHY1FxdL3hrOmYqKyTQecI3EN1XPb9yLojG3qGntKbTmk4rtnVL08ZIqHFnLlcWtQfdKeBKM4Q75/Kx7O/yZQYK8nnc/7vLn4LxIWuYR2TZWnbjkFg4UkUx4/YZA00VkZQGhBuPeG3TkHHpNjoJvCmVBVrbXbTks32K4pB8yxTg3jfGmCyImsfl9k5nz3etS3TaX8/DvUFoh3cI7D28BlCaQtjdRCns9RdKK7QAg2RcVDTbmouu5ZfyGoniLT3lkZxyvywphEFqA0aykS1FZ6OrFkWRrc1BQyxJcJu+bPZyZmj875QiPI5HPTII7x4Z4t2CwsnsYmdCvNFEBGXRD6SdFFE4RcnNi11Dnli9ApqUF/SclOPKaDgFjHD3+gmJcEFqQgTjXhAoWRQ2NL/rR9RnBZh0t8kgRD43lueIvF+C0BbhFWdPVH7s0vVsRG/EPK7oqe3uey9Xsl1jd3eqED5yZ88VNPA4zVBgl3R++8Z8j6NEzADCeRBkdbg5FSYB2W6nkZ6yZryzMaDFTh0mtNnl1+mOoDO8+SuRdug6xYdmQFGEfWcW07KUVvhdNnuPp6ZTVnZskXz+9CUvLpc8uVyhxsecvnnEoYaLy3Pqz5/Sth3LLfze/QMePniILCTPX16yfvIc2o5pBYeTY7rOoNoOKkG93aINjMsKaSqul1t++svP+W//+z/k81fPmK1WdEKg646ynCKqkunhiFXXIuoNhWkoGhhVUJVQFCPqokIZKE3LQTlmtVS8df8B/+V/+I/4vffu8/Hrc/7q82f86MNn1BxSasW4lHzn29+hqkqauuHZs6eMqhGyEHQdVJMJjVJczuaU/w9tb9JkS5Ld9/3cI+IOOb6ppq5CVXd1N4gGmoBIETTKKJqmhcy0o3ZaaaUFN1poqQ+gtbTSiltJXFCDySCJpEQTjYKBBEA00ADJnqur69V79abMvJl3iAgfjhbuHuERN25mvgboZfXuzbgePvs553/8+DnPX3K9NVgpqebH0WHNNa2Duq65uV6Fu41FMLM9Xh5zdHTM8uSYXV1jnEWXBXW9ZbPZ0LYtpS7iunZ41+C95uqqoSxKHj94yAfvvsfq+opdU6NtQd22VPUOK4LxnqKacTo/4uj0hJevXuGd451330VcgzGe65s1ZnfNrt2iBMpSs1xUzGca7R2tszhjUGiKKt9Gb4ciftn3bo+z6APREeURX1Nvd2w2DTdbQ6F8CB58i8B+39OhMVDcFxSnmUomF3WMNCeiSTjL3+2csAzKj0RX+oInGfJAeOnbngswPTPLGdAwSaBdWTDXCE4yIS8/GUoCnRowgFGZI8F+eFqX/5Z1KQeTebFvIYfn49bNYdbu/Xb1dY/bmwTEfZA4rPFtG5mbnQ3WyC3CykBknQJFg4G8d1Mm6506GclbobJ/u/zZfknsftCMTmifaO9IEB2cTg2l5K6Mqf6OQUe+7DMZPK8yMNpYNBPjOqVIuBtYTz+78zToLQCnQoEHXyi8F2rjuFlvMO0DZFZ13ofHIlbYA0QBI3pCjYBRJNxlsc4F192pLyNBtC8rDWqiMPtrKMsZ2z0SdiaFZjpwOzX+gc6Onse5nlKi5PWlbZ1AmeTvqCTE9m2599z1Ney1Oy8jV1QN2j7ov+q8TaYSp+o/BDzfRjkk3odI0LG87lwzAtUpOpxOaRP4nqIdJgI1JVAJ6HQSpCQodFWgq4VXCDOsFV5td5TXQltafOVYlEcstWKmC9AhkDoi4G7n5R0f6UYQxgq6tDtkb+z774eUmf3a6eevp5l7wxXBWKxR9adzAwooEpmwpMZmA05c21H+ybKRwN8e+JVOR5THK+zWjQpCKaqf+4FcovsTyqSATkpoic1L+0kx3Eepjk5pnbySSgIgDPIN6NSYD6deJQuJsRlI+rmb5+GpWnreA7Bw19+roIRDsmKkl9EOpUP0INXWTR1D0NfNZ7JEy2hQ+j1xzs6BjORKDpURbzrg2Clc/T6Qk05RMPQHMW55znP3yoh/dzF1I49Iz504nPiui845WmvYNYanK8MXr1ZsWsfi9Jzy7CG6WtA6z/MXX9HWDu/A+JJdu2FrztAyp5YKowu8doFeeEEkHLpY1YN4Ff0Bew+bXc0PPvs5O+WoFgvef/CQ9nJL61XwJ1GWaPFY47HGcjo/Yb4sKUpFq4Rt61FYZliUA+8ErUoeHh3x7Q8f0+qGX6wqZgXAHKcciIveQRMtD6EvnPfBXFcXNI3hanWN9Zr1zQbTWkQVeBR106KKXdgT/YYGFFU15/j4mEdPnrC6XuGaHSLB/DYoGkJ4Iec8pS6ZVxVUM25uNjSuxVgbdUlhnxdFgS5nzJdL5ssFxnlQwbtrNZ8hIlhn8d6znM8RLK1t2Ww2FIsQL1d1ljP9+tYqeF/vRfvDe+cvOt0OFp3HISjlEbtjt92y3uy42RpKPE48zk9t4hyI7AsTg+85E8g73gnBB5hIVk/67Gz26QWxfSaUdD898JKOeOSEOGuHEE050g9jdJUFviYGTE3MJAp347OWwVLNhKbBs/i3joJ1zoAGgjm9tlVSf1Qv9AzHoD+VCE3roUjXo1zSnEjZ0HTl9QLiIZfxfT2DNREHOzGqoQA8xSQ0KtMSThjCDjrREXl6AD0uc1oxkM+w6scya/dt23Rc5l0nHPdVrAwbmd/rGN5J3bsV2GmR83qHn12+9DUN3l57iesrefZM55JDQDGBL/v1OcpwG0jshcCp0oZt9KM7f1OnIGndh7b4QZ8PJRHBWcFqh+CpW8/Vak3TWrwXCt2XG9aJ60BAauNA4IiA0XvBWIfzgng62jE17qH8cIch0axhhmzhqtH4qX5+umDZOf0jD40gfTmjluRr7OBYjYTuXIDs9vpde3Ai7b+zP3VKxXuPe881WkfT1WyddsJfhloHJ7J3tOFQ23takfO0xGukAzE6i2MoAK43K9tjM13h+88bsZSimKOZSzh19YApFKoqoi9QQbWOZbHEIrypr1lfNWx1jVE1Z1p4p5xTVgpVgK8I2o14tSFdcUAkBGVM/ewEY+n5ZYcKhmiua7r09CMfx3Qy1g9ZnOSJOR0OSQAG4XqH7vma0qhsbvO6gjbcDxzdkS9vYdjC/LfIkwdgIvtUKgvXkPKiSKeNnRToPRpNoYJQmgBlEU8WQeE8nTm7xKKGskA8RdYaRdn1XaTn9aPBmowDm067wv7w7Jvt5vSMTuDuAV02AiKZ2XuksxGADZdvnz+93s153OD9Ehr2R7o29GuPTNbp5y7868X32zxeQE0noqnEXO5TiVanIrKyE6DrAGhsvGIsb43aOZDDcvk0k1t9UB4igkZhfbij6L3HKYdHoiMlRWssu6bhcr3jez98waZpODl/yKff+lXK42NUUbHe1Xzvj/8E7zT4Aq0rfvHqC66sQ5VnPLuuMWVYc04pdpst5fIUNZ/RqIZ5WaCdx9jg9XimK7QSXt+sWb5zzrsffsinH33C9//p73PphNbDQlccLQpqLFvjWD55h9OzJbpUrLc7/KsbZs5wJA1N3eC8Zts0fPb55/DdcxTXOHtJiaVkgcWx9tdc31wjAvWuZj6fI16wcbxEYLvbsdnueH21AW/QCJVW6KrC+wD2Hjw4o92tsW1/vb+sZhyfnPLRRx/x/Kvn7NoGYxqWyyNM2+JsCM3RtI7ZbM7Z6Smzk1OMsWzWG66v11ydrNjttnjvqaqK04cPefT4MecPH9CacNeyrCqKsqScVbSm4fLyksV7jyiriplXbHcrzk8fUOkCs9rFeXdo71E6vB/oZn+t4jbeeVju7GXy0Y46mG53cFO2KDtHGYVuXvDjy8/44vqCtl2wLGqUaXEp5g90DCVJ8qr7hxDKIRKvYEeeOEdmfqB60V8QJJoZJUF97BUx5ctNPUJ+FVyJR8o0JAij91XUbnWELez8ZFaKkngckNn7azqGJCq6ZM6YitLl3jREUtBzyq7+juYiE3eU+lPL/gQJFcxUEqEZLAgXYx8K3YmfUhqK5GVMyM0d0v/DW44SIHUklCmQcj7+vZC1L/h5XCcMdHcbJBA75QTl41ymzoiEuzY+eP4ahmoYe3AMDLdQBzZJxtDzX7WEtvduqFX3ORR4hr/9MumQ9v+udw6dXkzd8Ut7AsLd0n7+MtfpELWdsUyd1pHgfF5SkRqaVRC/x4xa6TimPuVGyCwLssWp497J79jQmXBkUG/EfGHf82n4MYUb0BNCTpQR0t+3eMlVZGMZhcXc+1w6AZh+2aMqw5laYJxGGsfPVjd86msWesYjcWhf0OoZRmvmIgiRBokH7yiURjRsG4fzM6yt2O4KXt4YrnfBG6r2UBBOGf1eWxyFlCAERzje98BXguODtIbKouzGtfPElwQ1kS4QfT82adwi/SOjOAMZcZgn32X93/1pQ65MSOOeBNPOHC5Nx2g9pHAXHY3SvZMqa20EzSrgiKLf22ku8/1knY9BjxUB7ktnthtIskbrAq0qBsq/W5Q+Pd0Y021FrjLrh05CNGsEERdiMkSvowqFRJoYLOl8LDYj5HGQtaJ3ohTHYxF5qiioIZYV585EQV0pVFGx0xZwnIrCrQteNrBaNWza13znwQPeW8ATqSjVFooZ6BnKe7QNJw9Bs2/jdleU85JiNgtrytpoLq3DCYNS+LgelARalU5l0l7tRkro41Qk4N7x3OG+LiR7p5uPNG8BZHUgrUchWbJhLeqS4OHVRlkiAnlSCJyArKZNX/O6M+WCgCiN1xHwJfDme9qs4ztlWSJ4nLMoSpSO61DHdSiAODRJBaOAKqwblWSVfOfpbueBolR6sAO73ztZB1IEyVKrSC9iLD+V5+k/AyDK7zDmNHxIz5Ua8cPBHOTPh+p0lfHDVENPuoPppwiU3aiEsUjLRSQ5Uoz3CvP5z+h8XmdPg0BhMyWCjjSwB3OJrou3KFUG/iaCm5DhctnC+x3eb9B6gfIVOI1poKxKvLhgWl9anK8DSHAFVuZYp7EOdGGw/hqvBKol3/9izZevWp5fNvy4cSz9nDMU/icvefDkIa+v3vDqzStUlP1UpdAlPHt+xc++uMY4TWEU3/j2N3nvgye8/94Zv/t//yM2boNrDQ/UKWZu8FZQDRSuwFpH7R0Njn/723+JD772Iefnjzj76OtcfP4Z0tZ8+K1v8vWvf8J2u+Hli5e8evmK8/KUo+NjZvMjLi9XiK9o5JzSCOWR5ivr+Lv/4nt8dnHDzW7Ns9UFz7YbZsUc5Tx+t+b5Fz9nvlhSFBVlVWCsQaGoqgplTTiRU5qtNxSlQku4/9dua37r17/Ld3/jN3jy5BH/x+/877x89RLnHLVpMc7SmIanXz7j9etLrLWcHJ9xs7rGNgYdo6KUZ0f42Zyt8fjVhsJ6ShE26xXPnhu0VuhC2FxtOX/8DoujIxbHJ0ihsM5Smy3mxRZbb8Aado3n9WWB1OBbz/nXluiTY0qpeGQWPDxxKIGdqTjSijaoCn6pyBm5TJ0+h+TszwEWlYKy0MELoGm5vtmw2dQ44yjmGik0kjHWsSCevodNFpi1c46yKBjfWeokklGHxkx/rPHdM/vKNToHvu+lWzTIuZCUt6wjz9HmRHXMKcvTafrHhHIs8d7evnSKoKKWrTsV7TRpadjCOBXxbuAYSI7HcgDS76j/LsAz4gHdNI7r78vcq2SQR2WnK/vg63A7e7Lcp8PwIcuTTjwOVNCXfcdaOpCmhE4Z9XmyXaT1NSpvwPz6p6OXu6fDOvbXX9awQR17Am8mHKQ8fd/GYVImenPLWh/v8fxztMsPtj/JhZOge5h1EFOsf3hgbpPgmQQGEW42W7ZNi7EOqh4kC/trlggqkmLKO4WxnrppsdYHUxqfgNmh8QmliwStfe4+fX+Mhn3qhKfYlYHJa0zpflH/2jRd7B7vmahFunQH05miJ4f+3qP38bmOXuKSg55cIMvr6bX/ugvjk5vWJaGzN79KdPXutu8zX4Z/q+nllOh5UNKxR29CfxKd9oNyVNyV433UWdbEeuOm7/uThHYVw2oElSLioTUOu3Vc3RiuygVLUSwRKlVTVUdUJYguUOIRVcS7O6qzmnHOg3XhdEtplMo8pnbmvxmQ6tZj4qLZiWIS9Ml+6zrFoIy87z2WUz0YUEM+MqRb5IMa5Zhc0M/uuPVuNPuxzv7f4086/daHHYLeFDo96xRjolBFQUI6yfSVtDaBdEKplMK5dKd+n1Ul2tP/PQJ7KutPNqaDXZuPb7/Z+0oGY7rfgIxTduBrvEXyNTGWPQY0Onrf7VTTklkDBLw2qr7fv4MT70xW64By+jO2e8xj0vMU9zJspf7kf6Buk759ZJ/pe9/uAlFLmsajMIBGVeBV8L7pxKFFI1Lh0JhKMJsd2msqCpQUXO2EVb3j5W7FT18aLtfCyggoi8LT1muevTC8smuur9dsrjcsbIEuKxr2xEQFAAAgAElEQVSBVdMwx6O1Yq4Epx2F8syLgpOjc5587WPcqzdstg2ustjW4l2It+6VYMWB9pydHPH6xVeItdQPN5R4tHiUeEqteHh+hhbPK/HUuw031ytMW2OMAWdD3EDjcDjePz1FSnh+seIHXz5DO4NtairTUMzKIMMVJdZZ2vU60sCSdJdZJFznQKAoQnxvHZUa4hxFWSFAa1rW602w5nGC97BczmiahjdvLjDWd/tyu90y9xXOBI+rZVkyPzpCKY0xBu9arDUdz2tNGyyDBNDC9eVVoCEumNB679htt53jyLIq8Rhm1RxxgrMWcZbddgfaM5/P4iFWWG3eCVLovS33Nuk2Mf4OEf8OM1SIrls9xrSsNzW7XYOzFr0sUKKHl6IHFe9vvXSULlpnDDttLgiOJfY9jd4WI29Qh8iedjk9n8p775QLlR3+iwwtat8Gwlqk4m9TxyHAkBMfrXUUSDOBpqNoqmMmjMJETAHGwW97xPpwW+5jhpUDxcPgIRLsURnDd/aJ7q3tyIq979H8fr7Ruj1Q/6Hybnt26L3pue8Z3VhYSqB2ICDfBeazvDmTO3SamcCFDIoeMcADdU2VOZ7ftwGMCeSN6+zrGAkvSg1WV6+0Ga66g+ZpE9+DQNnfEfXAbrejrhtaY5Fq3jGB/tROhnMkCZAExZq1hqZpggOS5PCAJPBMrJdOfuuFj8EJedbfqT0yEJBH4zhV3u0pV1J1Azboc17+3nhO1D9eN1OAMV8/uXF/PnZ5fd77oKAsZ+ii9+G4t0YjoErAusN7E+MxHqfbyPzhvg9pyRRYTidHQTDKPUVOzCGH91z+PYyTj/NWgoSA3g7HZgubZcum1NQzgit4CpACKYpwuqWD2WbvcVtF9/4OCh1ODgftz3QIDGlP3vcx+Bv8lvjdoG+j/mfjPNjf5IAgF+67lZCN3b4iNSyLuOayug7xkB5E7ru4H4PM/ocABntnLPQWG6rL0PN3HFPpFo43/F3BwKN7ej+LFdjtgQnaPyWt9ornbJ1NbYwx37hDnstrT6CgB7L7+0qQdDF89Fs0q+22tgzmNE9p1XSK0NEpft826fIxet5j7Xium+44ohEWGLdDKY/WjqJUWOti7F3AVXhX4lGYoqV1DZUPVg+th4u14/l1zU/fXPFqo6htQesUhQrmisYZNpsthi1tC2KFE2ZoSlrlsNpSGWGhA7DaisfbGmdavBVmxw8oLzcoX2OVxdtk5aDwWigXFdVM8+DRCas3rzG7He16i2tBiUPjsc0uAELb0tQ72qZmu7nBmgAWk4WbcZazJ0d858MHKBG2qzWv1iuW3rP0joVzqEIQrRFdsDw6xlgfeK4XyioASSSEoVL4YIWg+9PgYHlSsKtrLi6vWK83bHc1NmKF+bzCmOCddDZfdM68mqZBF4QYhyKUZUlVFnjvMdbQ1CYAPKCsKkAFpa/16EKxWa+pmwbb1iTrora2lEVBNasoqxJBmM3meOfRLXjbstvuKCqYnSzitZq0dqb3xl9cup3n3wEWVfRo6bjeXPP64oabTU3S1DJilLnQMSWE606zC2MtXs88k3lSeHYbA7ztt7dJe5rBCSJflP1Q5YAUIZjqBUoe/5+u5zamOFV3+m0QI+wefUzl5ie9ORMcE73DYn/WzQMA7bY2BO3/PmPt+9BryBMYvq3+/DPVcZ8UdfH3bPj963+b9Be9uQMzzwHSvd+8fx1EL4xMFN89T+uKTph5m3XSFTfxXg8KVGxNz4TT72+TstHqvtwFZLp3RYJiWis0JaBYXW+4Wq25OTvGLReUWlMAxWDfJtoWYih6F0CJE0/dNlzf3AQtpZc+5y2+sTt389l6TGNXJJD8S4x/3s+73p/QLx0s621TfvoyLifva6AVnimaOEVvhvmGYDvkjg5F7vCEOkV/puj6dArrOAmpU7mU1l3ct1BfCrUxkXegLJn+bYpuaQ2FKihkCTODcw1eHLttwfZcqPHYmaGqNB6LdTXeFyjvkKJElQD9nTqcxyuHFgnSZ6ixa9d99ta4vUPwpwYgQzEcv3xuB6Cul+f3xkgRYk0O+cI0ALyr7eP8Y6/feRpesYjhE1CgylC9UqB01j8VZa2EJUNMzAT2BsqVDmAm5Vgwsu+kqQPgaNAXkc7RUjfi4w2vVLZP/GBfHVzY+7XdJ1Pfrtif8VuDdUDfjuH8Jb7hmZrjaYUQmVjaOyQbtgdABbNd/OC3XHbL6Y+x0DrNfDYnnCwaWlNj2hYkeMk1jcNLgeDBGBDPFs/OtPzs1TWfX215uW54sfLocoEzDm9aqkbwOvApCrCblvPzJxy/cx48IL95wWJZ8BsfvcuXP/4Kbyy+BTuD1dUrlHfU24Yf/OIXFK2lKioaWhblDCVglUIKxdc//Zh333lEpTz/6k/+hJs3r7l69ZrkYbfA8+Mf/oC2XlPXNW8uL4NVoW8RFItlxfJoxoV4UMJ//V/+bX7r7AE3b274H//xH/A7P/mctq2pnOdEa4yH2jpqZ/hP/ta/x9HxCZvdjr//P/8vfPLJNyjLkouLC+rWBOdhuqCtW7QO12eKqmK32fD0y2dcXF6x3W7Z7taUZQhVsV5fo5RmPp/z4MEDtttt4KeRloVLPh5jDNvLCxTh5nG7aRCB+WLOBx++z2a3Y7Pe0NQbjo+W+KbFNTWr14ayLEFpjLdQBOVQOas4OjkL9ymbNpwuG8uu9swWitmjs3AVL4JeXRT3F/NuTZ367K3SHaavGsTjbcNqfcXqxtC2UFUl4sF6P9JxJcbm4+bsybtWClVE995iR43NweKwBWGT+T2GcNvJxX0E+0OnG5PabRXNRCLR0ewThUFbpjpyoN1vk4J2KlzqUEJ/8hPPXtLfeNmzEBsTr6m2DTswfPcwsL2dwaaxGANYgKIY3g3Kzep6oXG6nWMATGxJHnh3SrN+Gzj48wrZv0x6a8AzOcayN2e3ve+nTlam2pYRldwkNSlF0uz1ayt79x79Gu+zqXc6xZGkD9l/N7ZyPMf9r8OM/RlN379D9CB/2XphVmjKUuFQNMbx5uqGi/MTmocPQ+xZFb1Sptck3DFz0XFJDI6B857G2BDE2NnwXI0tNUY0LtNw741bty9u6UJe8gQwH5THbWs65b0N1Pb0Wnd3V6do9n4ZSWmUKx+7+LGpTRkAUAznfgA0VLw3nZO3PQCpBuPW0fwDYHDc/v7EZ1TG3t+hLpHoBG2UNyjWevHX+yTk9ifVw7L7dgeZYmJvJIXLQBB2eFHBOioiKgGatmDdCmvn2GnFUTVHSRGFFYf1EE61PJXMKIsSXZTh/lycIyvBtZMuClRUACba0SkOJ9bo3YCSjo/003mA98Rl5eMJaieLZPVqVUZekeYw7dqhQiqMYRzrRIe80F+ZHAOTfvfnazatyzFPCop3AiAknUjqwVoXH8Gy9HQ4tSm0LxuHDP4mWcAT+WJaWgd4vUrj3I1nJmQMhrAHjyGfHxWStSEVMcVv957spz2ZI/8+lg1yDDd4P/0/XeOkLCfJ1DWd6qj+e+YBNinbZfw+/fwm+hUU4opZ4XG2Be9CLFQ1w7q47pTCOoPSASToFtZW88XVip+/ueLHL7eoaolxBd5VWGMpqoLZ8gSZzdAYnG3xzY7f/it/lYcffMjy4TmX20sezxzffv8Rf+PXP+W/+m/+LhevL2ibhlkZlJdvLi94/vKCxekSVXhwngrPw4ePKYoSi7BuNsFs2HpOTk6Y6QU71WLEU50co9oG2zi8hVdfvcaLR6wwK0uOF0ecPTjn0ePHPH36BS6O66eLd/jw8btsFzW/+ekV/+AHP+XStKwL+EAXtNahyxmPHzzGOc/x8Qkn5+dUVYXWcHx8xKNHj9hsNrx+85rV1YrZbIYxJngp9Z5qNsN4z7ZtKedztG0xzrFab/DGUZbhHn3TNFgbZOyqqmibtmO8WodD66TwqaoS7x2zWcnDhw9xAvWujXKQZlZWiHeIeFxrAE8Z/FhhjEXQVDNF0xqsaXCuZVHNqEQxKxSzskXrk7B2lFCWM4wPiuXcHcR9Fd4x93j13+OdkG4Hi0qhxOOdYbdbs9kaWuODqYmoEFIjE27GJ0ZDDv32jXubQTgEBu4LCqa0S913pZAOACd6u286lb479uu+7ynoFDDr/xaS88ZOzI00MBfHJHvvNlDcCREZHe2Y1y2AsT8BlE6oGo93p7nPihqfEEyNzTDPIQBwB/BWozpSW+4pSd85XqO89wWKU/VPA/BxpkxczIDx26RuXO+Rp692ahxC5dN7aHoux3Xk6/K2OenbLL0Uc0f7p/Zxtrj3+qSyd/f7M+yLz4QtJQrv4WZTc7OtsaLwRI97JCcZUZXWYd3QD4/CiWCcozEWl2J1qQRgD3V33xzzdpA9fnufPo7n4tC+3H92AJzu0bx9AWr0wiD/mJZOKXy62nWYBxEZaCrGdSQLh6l2SLe3stPG0anQYaCY2r33c9eH28rYK7NbKD0f7VrXzdf+Ou94g0zzpYmKAHBOumC/CoV1io1xrA3snCB6EQR/UeA8TizidBAA414qgFIXiI93IYNoEMJAKT3qt3SDlQOT4Zil9vVjIBN9yyngECzFasZAJ1NIp4ry5TnAT4N1ti9cCX3Rg/POSP9CG4an14MS9nhGhNIH9/PIooK3SePcav+vARiUftUN0FccPwlviZcY6ms4rrkCLoHL/MQv61KWf5jGNPo22rzHD6Wfc/F524TpkZNuvgZdZT/mYfjM7ixKAnhMKA36eR6ARgngQYzrgLcohWldWJNaY1wwDTfWsd5seXrT8HS14ctVTeNmVGWFAkptYtgGMKKwWrPUCk1B4Stmy2NOzs84fvgA4zZ8/GjJt95/l2+99x4PHp6z3tW0XihFqFtHqeHoeM5v/7Xf5NnTZ7x88RKzbpATQbSAeKxp2d6sWaFgZzDGh1NQrWhFKF0wUy+1DkArTFYHoApdcXR0QlXNqYoC3xp+8pMvUY3Qti2vX79h5i0PTpZUJ0uKqx3eBr5aes/FmwtQIX4sEu75FYXm0aOHtG0bZFMVTgUTQPfeM1ssgFDO6flDWmdo6gYT7xl672mN4epqhbUumzPiPWxQSoL1joR4lwqJJ+yKpmk7eVdrHdZe9NPSnUqrsCG8CyfcTjna1jCbzwGPKEdVHQWHP0ozn3m0UohWPTiUw/v/sCylsn/zZ3fvszzdebKo8Ihr2WxuWG0a6tbHe3NhkeeK8O5kiAnPmd3AebTaPzG6T5oWBA+n+wry+wLS6K6dUjib3LRx4F5GRuTvqHMKWE39njOPXCDKxf7BuxlA11qR7n/mphA5kR1oL+nrvA/26fqt+/73p4Y9s4hGNnf2bXBqMMi3/944z23tm8p3X3A3xkrjO263zdttbTo077lwrDph5tAaoTuduGdvBvUcGp897Wom3CWmmMzC9svNX73vvpvKF7XoI7CYFBljoSqFyBmXQdfy2+fpNsVS1tqB0iP4otHcbHZcb2qMVzgJzMjjKYqqm08JnQl9iO013mNcOF203kUtaxKWp4FYvsf2BMs4NkmoPtCFTDgesY47aOok+GYMmoa0c5hnQigcgIL7tSNvQzqxFJEQS3AU+6wDfvEOSz/fw7ZLyhsFC6X1Hs2a4j054Jxq/xgo5P2VEdPvxjE0JubN+NIANJF97rdhb6RG61wTLHysRJfsSqFF40Szbi3XtWPTeNyJiq5XQ7ucczixWB94ihNPJQKqoCiitJAFjO9dxsS1mdqQZPjJRqdFmklH6VQn64sajfVg3QyWW9x7HdAZ1zWah8HvQ3PSHqNKAEvxYb8XdQcWc1pxG53p261Tr/byxp536yedEo55Y6g3M7WMBKUXC/YlzSC/ZvQ/PlQD6+cg+PYbRwXn8PlgKTWauaGiuJcJIu2N/w73QepY36/xfh6OGUgMfZLX4+Pdy6GioP+uxk8nQF3fyJESKmtL55BMh9LGfHQAEhNwsQZnWpSocPquNM5ZmrYFXaDLkl3raKxjVe/4/OI1P356w3UNja94/O57eLEY2yClprWeurXUvsEcN+hiyaLUVMWClak585Yj7/EX1xwdz5nXnvZ6y8n5KdX1BoxQboXL3TWPHi349q9+zH/+n/1t/tE//n/53d/bsHp5wfZoi67C/eZ6s+aitWwvr3lJyaZusWikKNg2DUtjqbxnURW0zkdpQWONYFqPswJSMJ8tOJ5V+M01f///+V2++cnHKO/44b/6lywxfPT+ezz68AM+/9PPWNstrTHYG8Pnn/+ML774HOscYgxtUyPecXJyzG67xpjgkbSM18bSWjk6PqKua1CKx0+esKtrvBOcsRSFwjlLvatZr7ccHR0hkryLa8pSo7XCe0dRaIxxtI2hKjRFWeIEXr25iFgByrJAnMNZG+In+3AqqeOess5HaxdLXdcsj47wpYJCmFdzdspQKcVy0TvN00W4e9/HguctkuqVOIO13dOb+6R7mKFanGtY3ax4c1GzvjHgFL4qY+DNrEnZJs7NHdPmPWy1tLd9B79pffcpRKp/WlC5XxprLPPWqez7oZRrufZE1z3B4e1EfKVU7w6dLLh3XACKsLC0Ithtp3bkTEf2CdpfRMo1vr1W+3DeQycYd5283V+Q3Kv1/sqJ24Su/VK7U+S3ao1Sf+6xH4vu9y0tEbSpNKVcyfQPg3z5956Axbs1d/YtF6fywof3PnLBeihk3FV2fjdFRmJL/+m9ykwkb08qaivxUasuHlVWrHeW601L4ySEzPE+eDADhAJUaI0TjxewAq0XGuOoTRAK2tbiXArA0/kS2NO6p9BEh2jhGJPdV1mW58/7e483Dv6Sn0AG0/lpwJjqnaLb49PT/s676mjfYBUlYON6q4YU3DwA+aFjqNBOMhf5fb8OnWbkgv+hk9PhCdgvl1TceKEsHcMM5j3OgNd9dkXe58T2lY3a8gKlSwxQO89Nq1nVBeI1qijRRYHXFlQIfo0LCuRkgBf4cxX4TwqFosL/hU7zn05494Zsr533VTZMJQUh6oWkigS69ZeVGSW4PaCSJa2SwlX1fxNCZXUxHcnu0Kqe73alTijm9hSmWocQR93a8vQnWIlmx7UPt8hRh8dEMQ6q1AWt6f9XGSAkgsg9ZUSc9USk+p7FAlXqePjI+9vnTINBf28kA5DIQH4MivJs3SdT7ZyNdEUmUDoxEJ2g3KHRCMbDeuiUjjI821RKuryQZNtYR2xXZ5Y8Aoj56Zb3PtzAshXVrKQ1W4xtab1l+fABjddcby1/+vkbrBS4qsQ9+IBz9w5q1bLdOObLE1pV07aWzW5H3Tg+PH/EN95/l9/+63+JP/jBD/js+Us+e7Fi9aff5/rNJY/OHvCnf/JH/MsnD/jm1z/ir/zWb/DTz37OdePQ1ZwnD8/Zvtwxn1WcPzhlphyzmWaxnHO6PGJrdjx++A5f/+QTXnz+jJvrDbttw9Y0EQwZxBi+8e4jrq5u2G5DsPmj45Ngpo7mZrvhzcUVF1crfvKznyHimVlL6Tz/6Okv+Oe/eMrcQ+U93/nV9/ntT7/Dr3/r1/je4j1+7wc/4Nmrl+xWN7z86lnwG6AUD8+P2Fxf8tPrK37+s5+y2dWUVUVVzZhXJeIdxbzi5CQAxeTRtG3bKCsrvAiFIjhA00JrtpRlyWKxoKoqLi/fxLkLdG63bSiKkpPjE7y1gTaKcHFxwccff0ypNaZu8I1htlhQVCWV1my3W6y10RkYJGee87IIEZw0qAKs8ezWNQ+qkscPzxFrUIWmLAuaTUO5qODPJT/eJi3eTmNvB4uFxjuLaWpuNmu2O4OxgtYFU3yqi4M1utQrIl28vRyQ9UQ07DzJtJJd8zMgcV8gmOcbn1iN84wJd3g2Zlp9vMBxEomavoyYqWKsdptu730nfMBsuhbRBeodZe4EolyjRfZs73sqcNCm2xdO967vXQ13TDOj4mqUfwwWbxdQpwWxcfsH4zPaCx04ug0EDuq9wxnOPffoVP/eLsnUEsoq6MHElLloPo9Kjfr4NgoV1X+5jzlovucPCcvSCXJ9U9KJ9pT2/VCdA0dTqQyVYEl/T6oDnRlQDO27sztZ4VCqElzwwqlRaFXSGMu2bllvG945nXdOBn3cVBIvx3vp4ptjrKNuDXVraIyP8UXDykuNEmEYp7IbigMAcKQEGAstaXy609jR2N2VhnvtgPDeSVBT7b1dgTRV16F12dG10VWpjlonZprxjiQM5rQxpRBDNHNws9ff6Tb3IGaKTg37sv/+vjIg9aMfqAAUlRKUkknKlLbSmI7ephRM9xs9Jng2pUBRgHIhnEsL2x3hJEALRRF4mqZEaYVXwROhx+O8xbhwjyY4zSlAq2iGqkC5yNfpFEupPVMOzfLT+NtOs2X0Tv7ZDaGH4D9haFLYjUlXxxDGdMoJpUnhgEKbool5yqmGb+bAU/UNuBcPUBJBSXgh1JVhm8xtz+F91LUuexAVV92YSF9H9ynS0XZJ7c2dbAU0FeakA5b7LvxFst0wsYcH34E+yHTcCypC0fE7fvgsnbInB0Z7ozsx3KlcxfDKTA4AUyfy9RWGLF9D6b0EVgXxke9E6zmREFop0Jzeos77oGzxThALBoXVJbUotrXn1WrNF6+u+NGLSx69+zVOTx5y/PCMN1fPafyOjd2i2hmNNNTNjrZ1nC/mfOfTr/M3vvsb/Pu/+THOGYzAz15eMkdz8/o1u8sLjLa8bLdsnz7jy6s1N6tr0DPKQtP4NctFhbeWX3z+Jf/kd3+fH/7oMy4vVhgV5lqJQnnFe++9j/Ev2FkHZYFd3/Ar7z7kL3/6Mb/5jY/4vR/+jB89/YrXby548PABgqY1hvVuS1GW4YSO6J0aKBT8zX/rL7F+/pLdak29a6l3ni+fvkC2js/fvGC9usC1NVoJdW1QBOs+a0L4D0Fo6ppyNkOLx5mWm7ZFFwVHR+E+41cvvkK5QD9fvXxFW9fgPbOiJMVcFYkRB3TBbDbj+PiI169fhZi+ChbziuXRMYvFgqPlEbvNFi8O5z0OoapKTK3wNjglKmdzFssli1nFfLHgZr3m5mZNEUPrFEqF8d/ucMGVLE1jQKAqS86SN1SdqEvGzw5gmttpTca702bd+/1wuj3OotZ44zCmYbvb0LQO76EqdBR+BH+g/PFJ1piYhn8TwRH604C7T4H2TjYmwMckkLiFgR6qIwlHOZv2+btx3PPSCu4zcYcFkltBccad8n4PwQADAWIsHE1+z9+/J7DKzQOH7YizrWJjsvp7b3DTHgTzcZNM+ByfRObCbqfNP9TmrH/jMT8EXMfpLsXEITCc/zYuY0oQHZaXHLvD3qYYFNXvmX0wMdx5OSM/1J+pvqbzuYPvQRAQ7+hr377hCcytYw97YzDeE1359GZbU+0dmLSyv67y8scCitI6BtaOc4ymNS3buuVmW+M5AxXmwkewEuSsKDyEXmNdcP3dGEtrXbyzmJjB/bSGU+Obxmi877v9KQwUC4cUNYfoTw6Qxnu4L6vfs/n749O2HlDt78NDfcyficTTjR4hdiPYvZUt/QQOxvso0I3p+2JT9PW2NuX57pOmQX9audFELypR8pOXg+/e8nyYKebTFrwi2tEhykXTaEVdK9rGY6sQdLrQCl0WPQCzYZ85cThnEBXgJxBO3LQKV3azk0WlVIx9dveeH47JxOncXpaMf3SKNoHoqbKb/3um4XpQnQv7nh91//RjSrir3LdFD5S1B1Nsq8oWblwBoZyclnVr+J7rTPrzxFBKBmAl/Z5O1FQHFlUEkKkNQ7rpg5Q/sdbHfb1V5pIExsaP7xqvzEPuXtYhfc8rCqbD++0ZyKnpPelbItkaSuOUk7mgOBkq59P38cmi9x6LpWkMTilaDzeN5/pmw5dvVvz8qwuerWt4olCqYubnbIxl6xpq2VKYitaacB/QKGbzgvOzU957/x0+fHDOo+MTjmYLSlUwUwXtdsvWNZRz2HnL+vKSL5++4vRIMa8UhSha1VKV4IzlxfPX/LM/+jNevXzN9fUWr8Pqc9bTbGtOj09RZYEtFL7UWLE8eXDK3/jOt/mb3/qELZqNKrhcrZgv5kGpEK8B6EJ34E5pTTGbcVwt+Q+++2s8O1ny/PlLfvL0Jdut5dmLN6xv1rxsrmi2N2ACSHxw/oB5VVEoxfXNdVS0OvCeUs8QCeaatXXM5wu01sxms6jcCat5fXMdlFZeKLXGSThhRCQ6XUxrJFgTuSwUy8npGcvFknlVYVuLdRZRlsIXse4Qk7JUiqIsKGYV5XzO6fkZHrhZr9FFKLcsChSCaWuEAEiNsWhdMJ/NODmake49hhCsvZXDoXQ/wNgt8LdKt4JFrUusNex2G9aba6wLC7gsS7wxGO0GdxaDjW9EzUUxBIyROCXtDvTEJsiYCqU6+5Hu8y7mnFIaJOd6xjR+5z7C+vQ7aqCh64CHyoY8BeJNXP1Oenc7+JhKPi80buKUXWVt4kD1U4As5L174UyOZ6SY6a5qrykO7eru1MnwvUOng0Xndv1wG/L/9+aTYb9VPziTgsKUgPrLpttOIOB+Qtz4hDM8zL6Of++ev93Wv2sfHATQnXAvo4EO/yiG9wcP97n/fQwippK6az9loOA+6d5C6ugd7xxYHzSk0dS7bizXNzsuL68wHz+hjEvY4YMyDIUnGRCGO13WeXbGUBuDcW4PgIW0LxBOjWsaOw3d/dKuvWOrgg6I7PdtuH+nx2lfKTRcI71yZ1ogGwMxydb1bfM/7ncfO7EaDVG/UDreE/MrXWR17NOR7n/nUIUe9XN6TH4Z2tH3Jf2TtT6NqRrmDzwzQYieXnZBxrNy77OfQtgL0CXgFNonL7wW56G1sNsJza6lnWvKWdC2F0UQ/FCCSDxd9A5jDQpHoUJIGbSiUIRQGoCo5E0wCJepbVMni/sKhZ52d32SeBd+qp9KxUDuYeeJCMon8HNbmuYP+X4MY+xIIQLyV/PSO8UN/bMuKpkAACAASURBVHrN2z+lOEvyhYrKpiLS9JBXd6gqgDbN4G5i1oPhnUWJyq0Ilkg/BRAdsKKPd1pA6aJTJg5JahjD/oSNCNhuGc1beEACqpPKj6lCVW8tFWakzzQMYybd5z5YlOxnmfxk+MagTO+l63sXkiW2w/mo8MvoSA4S0yeAaIfXLU+fvcbIgk0NX7xY8YvLDRtR7IoCf37O5+tLvljfMGvnrOoXaFqquaeQmkUNs1ph2gWv2h1/+PmPuJnt2K4/5p/88+/x0+eXnBZnWCXMlhXLQgEt622LaRVCQQWwq7HsUI9m2J3BW0VLxe9//ydU3lMpxfzREXbbsl2t+bJ5yvzkiK9WV6yaHWoRvLgutOZXjiu+IYa/8mvf4vromD/83h+xWl+zWB5RzSuqWUFrW7wNJuHbxvLRR+/za7/+Tf7OX/1rXP3Wd/jjn3/Of/v3/k9evqxpCs3mXFPMCo62Ba5xXDSOv/Nf/Kd8/PGvUFUVv/M7v8Mf/OGfsd5uePDwhF1tiFFfqMoSEc96fUNjGtbrmxDfsCipqgrXtCHknaQrXCqc4DnY7WratmW1WvHOO+/inKVtalarSz744AO881xdXMY7kOGKiXOO169f0+4anBVOj+d4EXZtixf4jb/8Xcqq5PXrV5SF4vjoGK0L6roOa7oAXSgwwunxKQ/PTzk9WaB2O6w4rCiW1RzvQzzOuw6Y/k2kW8Gi9ZrSNyi74YvrFhqDcgYHqMIy9/MBjRUfmJfqMEMET86PVEiBGDkJhGq8VXuNs4o7M2w0T05kYkkdGKXbwPm49YChz58eiOrBSW/RGc32tM6IPoieMslXiNJ0Gq5EKHRP6HNTsoGgEQNEi/UoL6DCgpUoLEwCYvrhzhnupPZShTrEB6E1mUJINP2IN3pi36U7LQ0fiTlnfU3BdglmF8NWqV4oywBiuk+Z1oHq4pgNgW4+NomwBqaZxaTykTl50EVwxy5dO7MTgGyg+uV2NzjKP/tAqP1YJHOkcVs71tUts55R5wtbJW69J9tMC6P9heT937q/+xEYKnmTgNVl7xlqIIzp57RvMhe76Q1PBBC50ieVobM9KiQl0Hg+DoOPKSCksjKHspiXJPyNfsjf7wSeIbgcUxelFBS6m7vBc/bHOE8Oh56F0xXdBnfgN1qxFseb9Q7ZevRxCaWmdY4iyCho0Whf4IhLsYC69dSNw3ihpAzj54MQniy8dG5nCXhrB8KRUkVPhyKZVB0QClYfaQ9KGMgubErqc7f+tMLlpDIOj+A7c3cV10Cn4ZR8k6WXRkJzFHZzIWqo9ImzFIVmTQWRHjkf4nApFedHqU5DrLQOjjy9dOCARFsSCExt0bn5rcVaO1RUEczIQqiFFMsqit4+t3jZX3uhrmIUG3N6jSaa5nPvt0oN7qC5CILIeEcwnSvonIx06yKOjVZg+zJ0NgYAuRArIhSFBaXwdklRaLxygGGuFohV6K3nkjVfqoqZMpwrzbwqQZUgwfup020ISO084iymdWhdQVWicXjXon2B2DlFsUDpAnSBKyxCcCPvLJRVAK5KS+xP5IGi4zrT6CKat4oH5RFcBMphHWpVRl4xXIoiCkUZJLExHdCEtdWBlUD3wzLTKGIMyW5thnUgSWTqwkP0AklYJfGkDoLpXpz3DvRnYD7xwk7UyUygnYtlqBi6UsjWbFq3A+YQPvd4V2+zgFK9SWc6Kc0wmjgzkKVE6a7owbKDINP5EQ2Brn39yu0GJrKavM1hpAb7SnIeGvNEN9Q6jVWkQ93+FjdY3yrtrXzCu/Ejm9N8+PLfgCJaPojCGdOTtqggSXTWOYeYoGzRs5J1u8ErQQqF9Q1Yi/aw1CXSGFZWeOML7MkHvPvxp9RS8Nkffp/5bIu0nsIKG+8w2xbrDdo3lE7jpcJ5TfXoCRuzwrgaJy2zWvDXa66+eMYf1zuu1mtEC7PjGWePnlBphfKW66vXVFgef+0hv/L1b/BH3/tntOsarHBy5VBGqLRGVwqNo5xVqEKzW21orWWL4npXo69XFLrgnAJ/uQWEn3z5lP/uH/xjfu+v/Rbf/8UzPn/5muOH5zjl2NZrcALisNYCipOTU7btClNv2Vxd8ENXcLNyPH2zo16vKCvPe+eP+fSDT3j3/Xf5sx//mJ8/f8ObVzv+w29/xCcfn+O14dknj1i/+YDWKz7+5EN++Mc/4Nm24dJ6TgpFXdcUuuT86ASxjqZpMMawWCygLDHe0DQtIMyqGWWl8QjGGFojFFXJd3/zL9M0DW/evOarP3rN1cUFeMf2eoXb7RDxlFXFB48f44Gr1mOV5uSd99nerDA315jZnNdfveD66gbvFFCiKdFxDc0Wc1BB0X5tar77pOEbTypOpeVaNI4ZojVWthQxHKv3iSfl238oV6nBj5Ipgjrh6K1A5q1gUUQhzmDbmvWuDZp1kZ64eTWICxYY+kg8k1x2TYAjWp0fFMxGgmSkNHknQ31JcOmFd/FRQhsBNbVHPdTQ02Peh/iZE/qhMN5l7ohw0mJ3tR2Yg32tb685DuUJeTiSXyblzCnU0DWYfEIyvjPGU1Mtz2sYfR9qUrs3OmGMToibwEt7+aefCelCondB2JrUQufNmALcE9rdiZaMPocYZXCqKWk8049kYzpa43pgUHRrv0NRB4DRXn7p5jhfg3tLPutHAlQy6OtI2hq8l9/RYvTZ7788/6F0+LfD+2bcwj0Bpav60Kjt13vbLptUviQhPJJAjUZQIX5T3WCMo3QaKQjSaKdMiPQrCqTOhQC/rbVYFxUsUVBJcRh7xJa1ycf4fN0aHp3MpPkMkipAd4lfjUrb2wd7g9WP0L5DjRFI7MqfAorh+9QdyeF0SJc3zXPiJ4Nc0ucj71cSLPPfR22Wid9z+pJ/04P3Q4s6IX+v7HwPjPs1asXUXlf9yUk3ElldAyVLJtSGJ6EyfVuljMZDReAjEfSrsPIUBYhC4r3arXO0ycwrCuE9ENeI6N7btRY8DiNNuAHpo3MnJShtUOJBXA9mUIR7cNF5j/ekGJOJp4skPqz6zd8NX74GVf+jCGT7IldqjaWK9Jmvi5wqDE7lJ9dVfpMw8aBQXnKGE0DOIBJhElxGMzS0yMivuuy3I5NH8uWUGHqnxEmCUi+2If2W6p7l7+e0VNI8qUxsSL1S00LDYKyysSEnaUM5rsucywvp96456UtcC7GtvdOndPIpPTccNa9n2beNbXyeTnpRyVI3CumCswEsaq2C47K0xryAC3FIldcUSmE8WBfmc7Nr2KoZbn7KN3/tO3zwzW9zsdnR/vEPaPwOm7roHNqnNlkUiqqcU81mzBdH2LbFe0fbbjg5mfPk8SO+9sF7nJ0d83DnqfWa1dWWsgzKROehaS2Pnjzh/a99yDe+9SlfvXnG62cv2Vxdd1GHgmIxnJIFo4WCoij49Y8/DHELnfDDn/4UKFEUiA3+Kta15acvLqj/5U94c3XDZlujpAgWiNZjnME51znDFGM5Kkp8Y3n18oLf/ZM/ZXu94tnz57TWoooCJ566NtS1Y7Mz1E2L85bX6xVnK1AYVs/fcFoeoRZHnJ8/ZvnwAdpe4uptf6lNBSVDWZYYY7qDlbKqEBFa02Jby/J8yXK55Gq1CsrEaDJcVhW7usa64NSoNS1iLU3bIM5SaE1RFCxmM7YxdEc1rzg6PqHZ3GC8xzvLarWiqRuU0ljrcNYhhcIYQzWfURQlCoWTLWcnJecnJVrC4U7AKdG8vt8w+a66NeVvjZXntynHx+l2M1TAGkNd12x3decWOziNUd3e7fLrdF8g61JHtPIN6gd0ZmyeNExJ0OoHpv+WMW4VyvXegI53vXymYY0DrlQ2yKovv9Nej9KAgfdPGU9Wd1dbEVy1JyYfQeSYQA0IYvrqped7ZIJf38z+t4zIRYi51/ZkkptsUzsHRDmBZLxgJPtU+4+zNDyhYO8UdfIEg0S09wtM7+hMw5prZNPUeW+H43TLgk+/TZk85XVMpaFAvR9S5Nb1MvqEfRhz2/s9qBsLtft5p37PdtTe/hqDuqne5yZYe+0cM+H9R0PwPln2L5cOlds/2+/NbSYbh6HlftJKRwYE3fUBUXjr2TU1rbOUTqEcqKJEqSQAp7Z7nPO0bUvbmhg02PcycCo8pjG8EgU6mmr38zM0o0yzkQTtlHdq3KYAVTcqKt4t6TdZ1rb7AZN83+e0Z0C7JtqUQi4URTGgT1OfPT8a0oq8HelEM30vdNHxKd95QVRJ4r+zf90YpVE70J8p5clB0Cz7e3NcRqp3hJoQkYMmncN6Ei8MTmegWy2hbfGJR7AeGuNorcM4x9x7Ch3v6+rI6wtFsjJwTsfYcBtELUCXweeBAqhjWBKFljmoEkWwDvE+uICSuFeSg7RwQhcVwV5CnLcO6fQ8KhvtiB88qghAtVP4+mE/u7ER6QSxAbgiKDdyPrQ/Z0PemE7I+vd62cOLoNVILhrNUw5Gx3R9DGhUXKeDpSp9n/ZS3LsikvxvBe6eKzkHo9q3sZO4IlDM5aQ9gDXRj/AJ3bHkgFmEDnT7ZorXiWQyZOp3RkdkaP6Zj8U+f9QDmpR+n7LM8vFOrlIKcT2f9ALGBfSoRSFaIWU8RLGewlmKGGNPzee0DnbOsnPCl+sNs+MFjx+8x1/9W/8Rjz/8iM+++JLawc227sKzOWsoqwIoEG/RSrNYLDk5PWG5XIK3iHOsry45e3LM1z/9hO9+59d4sFxQl5+xU0/5/PUKZ1qsd7T1jvXNDb/+3e/yjU8/5ZOvf5319pp/LX/GF3WNaxpUGdasw9N4h28sZVny6NFD/uN/56/z8PyMVV3z9Iuf0ViLEYfTCq0rrCjqreNf/It/zaPzR8xnC5qm5nR5jMV0ITMKpVEC7WbH2WKBaQy/+PIV/9v/9Q8xzS7wRa8oqorVrkVevuKqbvnyy6+4WF3jjOef/uhHPL96yJEXvv9HP+bsvW9wfHaGp4LHD2B1g7QNbSf7g7UWHfmE1hrnHIvlEVopmqZh53ecnp3x6NEjrHPsdrsYRxG2mw2Xl5dcXl6ilQomoS74G9AilGVFWc1AKVpjQMHyaMFyueC6LLv1vVqtqJuaQmuMaWhNi7KKum6oFhVFWVIWJco7Tk+OOTk5jjGbVaCFEvmc70P4pdSv58HjaRn0zyF73Q4WFeyaHTc311xc3GBcJK7RLEmC0UzWaunMDDqiMVFuynPfhidTy7zcrqycICDZfZPMI136d0CkAvFIFPGgp7mJZ6m8wTlREvQkbIqAh9Lp3YiIZ/1OR9Hhj9EimGjHeHwHeZMMIdIJA10JQ/lirzcj9jXOyPRM3p1yT6l96VOj3UeaYoIZ5e87CZr/XJv+y51k0dVzKP8vu7mGzDIw67cp621qnZJv7yvyvk3SSbhQ02N2t6DbC6xvo9F6q6QmF/qg/vQZhI17lisMtks6/C/ReAfXN1tqa5n5glIU4sLdROU9ynmcKKwXWudY1w3btqE2dmAN1jUl0YFJue92EH5IEXOvMZ8iBWmnTsz5bWkslO0pKCYAH2QKrm6egjfQThDO8pI5ThmfXub3n51zOOcjqEokPwp/qX0IigJdFKNwKod2US5w7gPg6Xna3zNa6xhzqzfj78tSfd8hxUs63Jw7pmevPQp6L48K0TEshAhi4WptWC819aJguRAKXASHmkJrtK7wRTCNnWkwTUtdNzivMMpT6oL5rKT0Qbmio5Y8/Rdih5l4Yk6QH7QEk1RVQLoXqYWCku5oYm9KfDTLEtKdQpVrE2PZQ8Vs/FSe3pEM4R5kAjHRB0NfZVbmREpz7r0HTRcjrZcRJtbFgfk8vIYAcdlWzdFi/CT/pJMJRk8n60z9CMWF6wlqlOcuQJs+e0/0mdSUZKKRdDMchiGNzsOI9GWE+5MHT9Qlz5tkiANZJ+hToUvEC9ZYTNNQFEXYqwWoQuG8p3WWZtuiCxdihzuYMUdUgRNF62a82ra8rg0vjOUHTy/45re/xnvvf53//n/6X3n+6hWv3rzhiy++opCojIwHHna7BRRVucAYQxmvIIhI9KJtQClevrnii+cvWR6dUQD/3+//AS8vr/DFjOdffoESH3hR6/jsZz/n9MEj/vrf/Hd59uwLyrKkMQbbOn7lk484PT/j+HjJq4s33FyvcMZwfnrMw+UR5/N5CGAfFTuUFcvjJW1twj1EB6eLIypfUdqSWXWC1FDoiuPFGUiJcQZjW5pmR91uUV6otKKdzzl68IAjgd16w5urFddXa55erVmUr3F1y4yKk2XF//D3/iFHwEIVXFea2bPPOL96zYcvH/Ojrz5nu9tR4tG6Cman1tJa01kRJgeLzlnatqWua3RZMj9acnJ+xjvGcH193YXZmJUV6+sbri+vePzwESLBB0Exm1N6j3GOdn3DTb2lNi2FLpnP5rx8+RVXq2ussZwul2x3O3a7Ha1tePDgDIVgrUFpaExLUcxQlJTW8M6DMx6en1C3V4EHRCVNUVR4l+TJ6bX8bzLdChZLpfDW0jYN211/eVQQlIyPRYeaGsgADBmj8tFn2ggETGlkc43pnvCd5eu+qxjodNALiXF5xmkfEAQWoQaUq6tj7MZe9QJj6mgCOgkopvcPn/rQMfm+/0mjP/6eetOXuadFl8D8U21a6fh3IP6+A69Z9VG4zjXNPaUdtnjMuPbAgT+sWd+bu0H9ww6qTNEwPqVI5Uytm6lTuNueHfp9KnVKywlANHU6MnXCkf+b+toz+eF3Ieke7hbQD50O9gLtoMUHCpl6GO5nBOG5F7xkcC9m1I4D7f3zgMO83NtPFekFPcloUwfWGa594dZyx8lHRxlB5xgUQkoUYoOJ0cYYlq6ijPed0n06Fb2dOgHjoyfUNoQpsN5HWhpaHxqphvuw65se3OcN7Y7v0fejN80f7sWpdd/TvgmAmZUg3AdwTiOWsYOPMf3q94u+fZ+OaMFd4T+G64ZeZlV9G3xiarFMnd+TnkDPiX6GaUr92RdmD4/VmG5peh6g41LNhe+ebzLgJZlCoYsDN+x76ndOu9I4BjO6oaDuJZiSIh4jsNk6to2ncT6YqCnQWtD4EFZLCPfsJJyyFL5CmwrrG6zbYrzg1Zw5SwpdUaoKURqFQ6uAIJXS0b+KD0GrI4QP/Kw3Sy+KkmivSmcHnoZAoL8rKNFHQr9e2JvPDGTFCR1AIpFQBwpJ9xoVAwdSeymn4XHvO7H7WTqantsDZW2V7NKIGj4n3zfde0NeLSLd8CQaPZBHYrm6zxHlBullhWyMRuQl1p3aMSGDZan3YTBWXud5h2bVaWKV6ie426dJ+kxyjgj9HszGQfb5da7UyU/5czoQc6CAYLwUTIiL6LVSvMW4cOfZR5pRlkXwDOw9TmmM1myM42rb8OXVK55dbrhqDG1VcrOF2mq2Hn76i6c8e/GCzWaLLkqcMVjvwDuKskBsG06pVVCIbbdbmral0IrNev3/s/cmP74l2X3fJyLuvb8hhzdVVVd3VQ/sbjZJNdmkKEsiQMuCAdsL7bzywjsDXnhnGPA/4YW8N+CNF4QNi5YswJIpCqJEyyJNUk1aJtVkTzXXqzdl5m++Q0QcLyLiTr/7y8xX3YQ3DuC9zPz97o05zjnfc06cQ1mWNC5Y5j/85DN2uwPzxRnbqkGUCSDRNq0CRIDNdsP7H7zP7/7u7/KD7/0pz589BxQmD4nlnYAYw/L8HGcbDtstr1685Lvf+z7nZ0sOtuErX/06N/s9u0PJbrdDiydkm/bM85ytbGiaHbMsw3gdjqsXjFK8+fAhWitevXrFdr8jKzSLxYKLN97kweUlrrHs9h8Fd1yjwRgOjWOmDHjPrjpQmBmiNBWKjdtyIYrD3vJ8tUM1DQaFFDl5ngcgCBR5gRU/MDjVdXBJLYqCfVVxdXWFc479bod1liLPOTs7o8hyxAdvIGstX3nni1RlyauypqlqkmjkYrAc7y11JWxuPNY5srzg4uIB690GIbjDPnz0gHJ/ACXkPmdxtsQoA97xcJlxsSyYFRl1GbwrlHiUeDQGYiqun/CmWjhpr2G8gHu4oXpvaWxNWXXaLCEwhyjZt893rgHhqdijltZEstF9d0sZuBao4RuqT0CHL7WXxHtPM05mPBSDeq/3Pj2yWKbL3gPhvvdC2ycGRP0uE3AfELWMf9T+UedG398mhCXBuZVyWiKaQEYnXHejHQqJaXjHotO4L8fr2ifOreCWQPAY8KW++eHY+uBw8PzJfkz/3X+336f7WB7HzOcUyLxVoO54W6/u/p4biKXtGk2NYTCvqOPnTnVhrC2g1+aExjj0Y5xlVAZgTMV3u2ARd5/v1y23KQeOSyuC9T7qKFD3UXdWptbx6PUo9IhSIeOABBuGOM++qtnWDZfOMReD1gaH7YQ14pUWD7W1NDaARecFE5N7jw/WxO5lSH5GRKH/Vj9x9cR4Tn3Wn5vJcz7VZFsfgy8nFSZqdJ9a+gLcuPLT5/fUWR9/PwBXip6gO+0W2HKGPu087sVk26f6Mux//z5d6qsanPsWUNJjpUfd6FFoUa0wPjXn6eUEUlKgEKW6d7ohSBBGBA6VcGg8lYsxNlXQmeqQnLHrtwedKbTPyLKcxtU43yDORrXKLLis6izGIAquVMqrcKeRTqBFSQycEgQlnc5cS7dSAJPePflWToiA0bsIFlPAo+M1a/+a4F3tnKserxqdz5bHjpcl0XgZ3jscrkea5259FDpFFRsyiQQS0/qlqOzpPzXeK9JvgkQwBntUpA1ek+YupPaJgCzRo3F9Ld1PgI22byPC1DU/2Hv9LkzIje1IovdABIPdee3ny0xAuAObIgNxtCfyyOinb+ez/8+LRNc/cNajlSbPgktzuMPmsLbBpf2lQ2Al7zW2gYP37Ki4PtQ8W+/40bNXvLgp2TdCvljQOFhtSj59/pyX11esN1vqqmY+n2HFhX3rordeXFfbNMF10gfwsdtucS5YFbXJcM5yfbNmu9uxPH9I1bgQ6Mt78C5u4wBS6sby/Plz/viP/5hnH32IretwwozCWoeNbc8Xc+rDjGZ/YL1d8xcffBiCwhjF2196h9l6zdX1DdvVTeB/ShAdLL1ZpsgLw6PLczY323gnsGE5W3J5ccZsPse5cOcvzzPmizkYgypyELA+8FeMDnkca8eMEOHJeheAn9JkRvHOkye8cTFH9g2vPrxCzAyVK3TWwwAqpr9wQ35jXfBaMMagjeZQlogIh8MB7zx5lpOZjP1+j22adn+eLc+iMiak0+kslT4aZySMzzmUysiKgtligdusAcjynFlRUFclSoX0GvPFHKyCxvL4Ysb5PCPPNFak83KRtJKRLyUZ5x6y69Tfdyt+j8utYBFrcbambmoOlSXeLojE2KCVDO/ViHRRK1vJP/zotPi+Ey4ngMCYkduQQRhIziX9e4oTrm+jIXRYLhHAjijF4K0DESVEC+x1fwzKEi0dlT6rcUdaYCbHmaasT/SH30UmkYbbG/upn0lLpuIhaTX3ieHpoXVRJIxZRrxB6PEt1f3dzumYMYhELfapIBD9uYr3LCeAWn/tk6a/PyfdXE4zoc9bpoTQY6F2GqyMD+ApC+zrHNDIJ9ufp/qbnr0P6L1POZqHFDJ8LMT0+xq/us/9v9dZr1NC923A57b6T313n7lLlg7EIiroUp0APlgMV/uSF7stFxcZ5wtDUeQheXnMPycq5HNqrFBWlrIM9xZtI2SqR1N66z5IjN32o7uPNRxXoK1JaAIJd6dPrMmt4000O/4h9GhZBIyib1/H/rmZWr++ZdA5194n0bq7p9jSxh597O4XdUF1puhs684aiw4QYwCqRCQKO+1gQ109i9bwzOoBDZ5SvNxVphR7qW/juUsWosBWBdrbnPH7+P9Y4TH+O81ZS5903EP6mN6R7tkqKCvNoYaD81hAqXD3LmjTDaKC27MyUZDJM5jPsXJAJFhK6saDWDJtccZRZDHXmgbxDtMKPRKSZqu0b9OEhR/hqk4IIIMOymqlEmhwScCIf4e7Pl1OX9NVNJ7jW9Zqiv70vX4Gax8ZZOCNPXBHtydbZUs7tJ7CTcd4qxNyQP/vwWdRHhn15HhHtsgu9k2FFD4K2iTy4b2Y4iTWODi33keZJiQgZ3TuJmmrTPTlqGtDHhuEDZVk43ZdxbtRez72hYEg7YVeXfSPC8FdOZwFhwzbJqTAaHMhWhvcaMkR1+Cdwzsf5VsVIumLxtqGssnZlp6Prl7x4+tXvCpLruuG68pjLQiaeQ04+MGff5/v/+gHvPnmm5zPchoNm826lUWVgpc3Gx49uKDIFdubNYv5nAfnZ8wXCw6HHZeXl6hzxW424/r6GgEaUaz2Jc4Hl9hcK7x1WA8ozZPHj6nFs9ls+OTZZ5zr4GJZaEPV1Bz2B4r5HKUMiyKnyWfYvMDmOe+9+BSlNYtixi//6q/y8PIBZ8WMTz54P9zZNBpnFC9XFf/+N97hr37jq/zSX/8b/P3f+i3ee/oZn61KXO7IHi05f/QIuZxz1ezRNuy3999/j+WLJVqgOuzI8xxRgpWQpspVFo2wXJ6xEoVtSh7Pcv6b/+Q/5atvPuZ777/P3/2ffpNXewfaoAiRUL33GDrLcfqnlEL5kGbPWsvFxQWz2QylFOVuj0bhnWOz2fDd736Xqq4pioKLiwu8tdgqBLkpdBbv1QuNbUI+R+9xBAtnvlgwP1uCVuz3W7RSnM3mHPZ7ysOBuqlBK5bLM3xVA5ZvvfsGlwuDUR6rMzJjAu4Xj3XCmO3eJbv0DTEttWl/H7mY3yG/3QoWvTisa6htzaH2iDEkk7OhiCG3+wRzyDw7UOGTyBEXy9xLsAyD7QYpsULVal4SkfEx90i6qzCcUUWMaIVAcvFRKjK8Y4YhqfMtJb/7vln/27F71K3gSSckRjfGpE1LbKknuLSvxfsApwRnhYCzbaSuBLp8HL8owTraZLKTYxr0u6cRj/+NmeFE2MTX0nyYA6L40gAAIABJREFU2EayYSsVIo7RSw8iEAPpqNeQ06Jw+TnBVCe4ngYp499P1XP/PvSFhk54PVHzcf3Ty/G5y0mlzE+OT3/q5T6A9HMpGVR0L410BNEUOkdE4cRyvd9SNkuEs6jk0VHBpnExKl7TOKq6obEuajs70bOlAwkoToLFIwo7NbrRO/dTUvQwU68m6QTS15yyKcDY/5loWBLqW2Vc/73U+NF4psd58ny1yoyhK7v3KcCQgPNYaTB5htHZ8OVWqztR9cT83vecJ4sGnM47OADD7Sr1U6goUo7ivmtdW78fPpsMWB0N14RUFfHzmNHBN4p95VlXNmbmiAFOkFFOT8g1SOZRqkHUEqMLau2o64bKBeBofYVwRmZmGG/QykZ6HurODLgUEn6QyjDNbwArii6CsOpvzl7wm4GtViLI7PGw9mxNbfpTJSrNhCE9TkqVgUaVCcGi15/B5NEBxTGPuBWQ9YBO25c70RkDMDsEailFmUfrlG4knckE0IZKmOH7p8HusF8d2JTeOGj/VpFuhhL2dIf6jt6LdaaVb8fVGi66etrz4VMU0/hdD1Q4F5QPXhx1Y7G1JblMZ/mMxinK2rIpDzx/dcXLvXBTOlb7HS92ew7eUysd9rmJwSCdoDJFMc+YLQqUWJrDnrqqyRG++o1v0jjLarPBK7BR2fX44UN+8dt/hYcPH5AXGf/2z/4ts+UcAJMpXl5dYUxGMZsj2Qxt6+BDiyOfz8lFoU3O5eUjNuUOJ555lsU0SD7QAhTrzRadZbzx5AnnD99kb9aIFeqqQedweX7B20/eYP3iGVXZ0OwOzGdnVASwiDLUuyv+9q/+Kv/x3/xV3vyZr3N2NuMf/5+/zz/8nd8lyxWH7QZjHc16j77e4LRiv5iBUWyvVyggVyFHXVNVHOqai+U5KlcoD9pC40suHi352tfe5td+5Re5yA2VEX7+3/klrv/wL0IUWhQ3ds98PifLs5D/HciyDK11uItoMsqy5Pr6moXW1HWNayxlWVFkIRej1prr62sa70MaOq0o33+Ppqw57PeczRY01uK8o7EOkwXli3XRnb+uQWtWq3AvXXuhqSuuywNlFSzGlw8vKHclRhrOC8/PfPGSQtXYWuEIAXI04V61J9znfj2RKxG47iz3tThD1/qfACyKCM6HC6J142kddEk5dvwRdWqBbKKdEZgMLEaok0Slq6cTevtjSOxg7E6UrB9j15swL6040BK+MXhoceGgE/G/W2WyCDz7RL33uhrd90pzQ7+fiqNnwu8R/aven+1D8bt2mNKax8da9ASslercCUMXeo4wLbE/moXePA2B+EAAVKeZ3GuVCHKEBHr7bQwfvI88Fhjw8d2m2wBy/5nuuePGxoz9p2FRHPXmxO9T5bgv/Tdubf9oblOL8V7yyFIxPhf3sfyd+v6+83Lfd8bCy1R/7iPYH7fRWQcknXnivWAMDYptWYaIaBKCMAXAGECjB1y8EG9tDLjio/tZFOACwVBJMjtCZ8mu1HlJjGhd6GZ3Lu8YY3+cQfbu3msFsvbB4emfml+R/hPDNm5TbB31p9d2C6dHwqhSCvH25NiOLG292VAjeh2pY29sw7PbD5YybKvXl4n5uDdghBOn+5iXpVOZzt/r0hgVwY4wvIavUGgRRHetOquoGs++cVEA6vGjntZCxXqVBqMcuWSID3kRnSPcF8LjxGK9BWXwCrQKd290rNO5SPyjMKN1AIDhvpgPgTWUoGLE0RQlMwRiCftGt2SpC1QTgMnx3kz9pt0OU3Qh/EtyR9jHg1UZ3H2mt89Fqc4b/BTQS4rr1+EP4nsjS5+dengkPI3blk4uCj/69DNSBEnfTDdyZPE8fqA3vA4o9ttp245Wxb6Cw/uhUaKlwTI8OUolYEl3xxcGbSVA2CqA49r4nqLFR3lSqUDHnQdR4Zm9bVgfLNtDw83+wPPrHTe1YmeF0gqVVzROYQVUEUL2iQ+uiaIUBoMyhv3ugDiPRlHXDcvFAjLDfLngweUlr56/wFY15/MF7777JebzGU1dkWca7yzWOeqqIssLlA7A2kW37yDuhRRNWT6jmC2YLc+ofAgwk2UarMN6h0IwWqOcxztHeSi5uV6xWm/Y7vd4hJnJuDg/4wtf+AJVWXF1teJ6tQ76Fh0UTUgIYLVdrVnfrPjqbM7N1Q37zTbcG8xy1qsVm5sNbl/TOIdogyhhbnLqugpA3YBTYLRhOZszL2ZUtsJZT4ah8DWqqTlstvzJ+z/m7SeP+WS9YbXeMTN52EUxp7gxBqNNVJCF/ZDWuDDZQGForcU2DVmMedIq2RRkeYbJcxbLJdU+uNY673ES6VeWcbZcIAjWEl2JhcY5aBpmzrJYzLFVja1rDIGGmSxjXiyoG0eWOeaF8OSyIMPiLXgySBFRVZI7RljqnkasxAGTRbE7TINjemu53Q0VsN5Su4a6caByFIISF0HXyLI4IDShdd8KPZ02NxHp+wjsjJSt6WBrusM/JdgN3k/RVznWSKsx5e++GFY10JINhZkjDV+LrdTgDmXn8jBsX0ZdjjSTJKAOqk0R8aKAOR67hugeFLeFQIpqlhhdm19SCypFhRvUM96AvUUQ2hQqw74dM+N++PF+OSk0SqhH9YBgy5C1JrntJGvAVJkGb53L27333cR3p74/ad2daOs2EPM6ForBc4ojBUx7x2a0R5JsMmija2xEhMId4Mn5UqO+yVjQuJ+w3HfLu6vcpmXvg5G76lJH45zux9CiIy2IkFbB4zFaBzcRr1kfDpR1gziP8z66dyuIKYWcdzTO0jQOZ30wVMT7Zq2SpvOjCsnme0WjSKHDVM89u2+BQSnaI5fcue5TpBeEtX1pGgAlYW68x6dk3jsFyYln2zOvkqCfUEnHO4DoTXKcage6qHfJmqD7iqep9uTUftUnPo8umHEOdO+c3Hff9+dtWoHao6lpCqYqG53pbq1AZLjXtVY0MXKoUSq+qLq5pfvPOQJYrBpq5/AE91Wt6aKaiqCUbwOmeBx5noPXgKa2WUh1JMHd14lFPGhc8HZRIVVKIP/xLpkRvFLhppIKd6Iy8cRoGYjqW08FwXXjBYYqUTl5BkIUWt16LI1nV2KliYcnN83xfvaRF6fvVJxXSYqgUengJ4P62ncjke5kE2nfC3vVD85Ju2QyJcaYdtensFcJQEmUI/qz1Y7JSwyAJFHWm6i81/+jMdCnqfRoWVqTjsYMLzMpRPSgPulFPW7fER/nZShfeR8MGcm9doqet4AxTrWIhHyJCSx63845ihDJ2gm1t6wPlqc3O272NTf7iuvtgcZkOGXAZKi8AGlwlSUzQUb23od7bwqcL3DKsF7fcL5YYrSiKmtE4MHlJfPlAo3iB17Y3Kw4ywvefOMJ1jbsdxu8t1RVTVXVbHYHZrNZyP0ogm1q8qyjhXVjMfmCrJhj8hlZXpDn8T6cd9jGgffkiwWFCMoLu92OzWbN6vqKcrdlnmlyU3Bx9oAvfOFtnn74GZ+9fMmLqyu8yUGZeBnfMnfwvR/8kLdmhre//Yv8X3/wXd7/8QcUGJbZjJevrtkdSrwLAFRnATgXpsBLg3Uep4TaO+bzkPfQmJx91eCcp1AZC1XjtjuefXTgN/75P+fbP/8LXF2teP+HHzNTC7x2NNK0+6XPB5xz7f4sspBnMdxnDMDbWctiNsPHPIvWWvKiiPcOZzx49JBX9T5sOR0ioagsI58VPHj8mNV6hY/urwqPdRZlFZnWzC7O2HpPuduRZYZMKwoTIqeW+x0mF87misdnBnyFdSB6gRePSbJcUqQpnwDCYF+P6VfnqTP67ES5K2DcrWAxaGrCpd66cYgqAmNT0QcYhxtlA2s7nmLCj9xlpgZ13G5vIhJhONG/ziUpCFJOPK0uOFajtRpMLuh4l+juovpMNAG09ktGBDQCtASKJxbmSMidZFLhmRQ1ts80UqTQqdxA436neoWOscYv22eMMSPQfYego1RLiPuCWr+Mo4yd0rSP58m5kK8o1RkIv0dlIaR9kkZ99KPS6rjtMWjo9kf3/fE83V3G6zlmkP267lvnXe3dt/QTtXcdHP05AQDu0QsMQdM3BKengfN9gNpfVglt307w7tOPKYCTTkYXgT9+4oMms7Ge6/WG1XbLrjpwtrxE6ZBrERXUW9YJTd2EkN6Ni66oKqQkGNOMCeFM63CxX5K42e6/ew35c5c+QEuzcZvSY1y6u2NDgW38D6DIFgOaIlFTnJ7pg7NEW/r0og8WU3HOxZRKsc6eUBgCe6gWFJg8Pz5Lt5TussBwLl5HUZLSJw2tpgkkKoJ00nf/S7S9E8C965KTA+199VDf+Fwmfpj2XbQOxDi/oUrBNo6ycuxrRZUELaLnitZoiREIfAhFk5RWKIsuBK08WSOILBCvo8fLgdqtQWBuHuN8iIaqtYoBRsKZ0BqMcxgTknuHVChCQJrJtVb1IjV3vHe8QsN5S7+ptAgT89Otz53rKBGM9vmBlwBEdCeLtPV1mpCuf0IrnwwA6rhPSg0U1ZNDHI8hrplqh6vaPt7JCibkgWOFxjS9nKYXY7Dtj8SNIV/19CMNt0qZeBHRi8S8c12dzrkw/05Gwm9QtfV72b+36CQq+CJtOJ8tcN6zP5RcXa3YNZZd7XhxqPn4es+6cmwbYefgvBDOZprzhw94WMxY73a8eHWFCNSlxVlHYQzLxZzF5SOKR29w/XLDoXQhymWW8fTpp3zxy1/iO7/yHf7X3/xfKA9bnC15+vIF//s/+kc8fPSA+XzGhx98ACrIutaD6JxsNqMoCrLc45sakaCImc0XlLVj+/wVnz1/xRtvXJBlsJgXbLUnzzUq+uLWTVAIlY2lthVFZpgtl4DHqQvWO82HH69orGFbO3Z1w+KyAFuhqwZd1nwJzR9eP+WP/uQF/8OPv8f2xRrjDQ8vHqP2ikuZk2nYuIrHb72J5Bm1eJ599BkFmjzPyZYzVpsbHj16wpfffofVruTjl1dsywO7zJLVJWfiyRr47X/5r/nH/+K7LMyct+YPWKkKyQSdK7509iUOh0O7L3x069U6tGObLhoqRBkqKh7yPMc6R1XX5LOCs7MlxWLOzc0Nu7IkKzLeePCQy/NLDmUJWvPg8UN2dYmZ5eRa461jfXON0ZrLy0uqcg8S7l6LFjKdoYD1ek0+m3OxzHj0QPFgaTgcAKfwOkesI9wjTycm5vSkSw11aznCKJ+/3JFnsUGi1lwpjbZVYAiZQXKLkywqwpvjPga1YEsEjwUh6QhsJNhGR0AQBQSfAmsYEzRTUYCK4kCPznSfBIYm3cdKRS3oGKxKYHTpPljKHdkXguK9Ca0ULvAmkjfLeP7H1sIxkzlFUL3zID5c6o8AL7mRHm8H1VoctUmgrQteQCSHnRWtC6Efuq1ISoo2VEJvHUL3JApA3Vwd8cvEoBUhLYnqhOnE99J8DK1P0jHMxLzi1PfrVUohMchB0vxJGykuCp8dhG/nd+pUBA1ssPKEqevsC0digMQxDNX06aswLx3XRYlqXRVUO5hubtJ7ScGgYMD4+sC2a65zjUj9P2WlHIxdWizdrufYypqUAdP1JEFmyOT9xJym9Wrba/sxiCaASL992rZFZHh6J+SxfldSRDARun2QPuifO7q1GtQlnfLkWNg5thZMCkTK40wFVpGJwYjB+prGeLyBjBy7dVQN1GRcOoNVLtwRxoU7Mg6sNxwkw2oDSshEQv64uG1EDfdIvzTeobTp3d2OPxW0CcyJgmDai7G+8b011d/XkmhESJU+oJNxjqdA3ikr/ngFvJ8Aw7357WuA0el+Em2gE6VJ18XikIK1QRtzUtAXnyB15CviY4qGDtwlzWtbsYB34X6KaqOfJUtyR7DCPbmQ/7GdRI7vHA52ZwKxbX87epsgRT+YV3DP1EgMSCbxbns632HcquOX+B5fCvwqOU8mdpt6ZaKG2jWC0SpY6pQLkFQUyoUIgXkW6qsaKKuQjNpnYZ95n4PK0EpFN2tLAk7amBDgAUMxDyDTWYdYhVCgdQ4iVD5o840O5ykzGRJ5WODjGUoFob6WJgjWCoxoxCVa4oP3Q5x654NbWFrabupH/EFJFLo7y6OOIKRzX41WLmVaeo8Pc98tvWppv7S0NS6E8z1eRc+61uMPif8mrhQYEIkPd8dpZAFPfwgtPx1dPIjiko/HOFm/Y5u9eqNo0yO6HnDtXdrgBtzxMrqmI8/sjZnAByRecWmno+UZocOdZTOtS6JHgqNBo2MuZRAXvJnEC41PMkeUBcR3XZKQwsBHINyTetAIpQp0QyTk9/SuQStFbnJc4xGfVCEZH17tuN7ueX614tWmpJYgvM/OLsmWc4zbUa9XFDloVaBnZzz40jvUZcOh9miVcTCCmhdkjUc3Dqc0xfmCN77wiPVnS8rVBlfVFN6zW2/58z//Pq9ubth+ckVVltS2ptSKv/WtX+adt94kKwzPPvmEl6tVSKOhYH4+R5twJp1onDLB0Ifn4Cq0KGbAzAnVjaOaG9QyQ0u4y+e8R2lBGx0MZs4y0wYkpNIo5nOapuLFq+fc7FZkSqirAwudo/ZwaCygMPkMjcJZh94qSqn4xje+CSKU+z1Xn77ENyU0NrilPn4YaPN2z1YHN3KPwpcls2JJWVs+ff6C9fUrvnp5xhe//g6/+M2v8L/9/u+xutmyOVjOSiHzHmNKDiiUbXjw9ps8eOsNLpcXfPjBB2y2W6ryENJPpJgYjUXlOc47yromy4N10YvHigelg9yjFfP5HAXYqmJzc40xeXD9zTJK21A2IU/s+uqaw3pDURSYszMqV5MXGefLJV945x1++P338GKYz3MuHgiNV3g0TucUKB7NNe9eGkopaLB45SmURWed54JWgPTuEh9LsMelpX1D2jD1qr4Df96ROiMJUjEAgQR3EoVBjEfc8et9NwylhP4t4qEyLRGJxNRVx7Pj9+I9ogNQlSgxtK5uoUaQIWxsm5jQynW/dhPdutup6OQo3bv9WpPQ3D53NPB+U8cC0dTn4/cHwtdE3Wm2tNaBaWnB+94DERC4KEzocU3j5vuAfTSMDjAeid5RUEq/d/LW4Ek19S6T+7b/XNo7g83CcD0Ds5w6LN2zQ4F/1PRgnvvg6ZZDOPpIqSRMth/06h+OXHrvp/amgOK43OeZrgHpMc2OGfetOum74/GpPq8/rprjvdtb/l69p96e7u+wwqk5V72fUbBIQKkVtvp9iru2L4i1Ql88u3ExwniGwRqGTQ+jTAqC19GShSETgxPwJrRpfIatHHXtqbygvEJMCsbn4z0KaCyUDixB8aNbKYqexJY+G4IPL0KbwKcn/PdnoJ0TAWVUBxZ7E9VPZN0XoQcgKs6f9Crs9tXxXHU1jL8/vs93SkESwFaYaxFBJ76juqloNazex/vgDGj2oP/xP62Cq68cj7Sl/4m2ini0V2DSmZCOKaX2FXS5ANuaBmNKStD+PKf3x9bUFji0vC3+TNUrAoxPwrUM79C1QKZXWeKhwzir4XMdAagPJj0EF+8DasQR6XuG1iEARtNAVVusy2gNUu0m0y3xbxWEBAWPQZEX0dpDuPuFz9A6AwTr9lgfQIn3ElyFdYp5HlR8KS2IuAajwCiFUVlrVG0VPv2zMlJQThUVEEQ7j2nHKHzrvSNtDsxujCoq5jp63tGVAceKa9WyiRYUdu+m/h3LKgRlh+6+b58RgsdC20SUn6STY7rlkVamaWnfSDM35FMdQ2sVfxIUESJq+DA9jx1pT367Hol2tDRYRne+6WhKnwql7wSPF4WOY2y9AZRE1/44ppQnNfIwHz09BIWJ36duWnERLDrEWZxtQBu8zqiso26ExoF1ivevtzxf7Xh2veKmdFgxZAV88XyGXsxQpcP6a+ZaY0yOzucwm2N3Nc4JShQWITMm3FNsQgRWbQyLWc58XtCsgyJNI1RlydNPPuXly5eY1R7nHI3y2EL4+pfe4StvvQVGOL845/qwCzkUHZgs3smLvMqYkLZJa/BNjcKhBArx7EuHI0PNwt1JnZtIBxzG6KA/kSD3uUjHs9kcuzuwPxxo9mtyBYXXGKWpS4suCkSFwIlOezKlMGiUGB6/8SaIsFpd8+zTZzglQanjocgzcB7XJyHaI85hZgXWeTa7LevVNb/8tS/z1771df6973yLp/tr/p+/eI+PPnrOWbGk9uH+4KHZY5yQa8NivuThg0ue5hngsbYJ9DlqeEIAoxBDwItneXZBnYXo5EFRp1DGkMcL0E1TI97TVBWL81nI+ao0ZV1TNw3iHJuV0JQVBoWfhcBemVIUs4Lzy0uEDKUNRW7ICosVHVz1JUMJnOWaR8ucRjQumok0DqWI3i8ps/PpwJbtyZzgO8MTf8wrw+8n5LVY7ryzeLJERn6CFk+/knij6oTmfmeHl5qj+4EPkcwMPQezPs9vXx+y67E70JHArIbuIYnQSudnFgiPkh7eHfd5Gljc5YrXL0an5NpjgX5CAFKqFfTGlqaOGXVMZQBqO3lnyHx69Xca2H4/ju93DSo9Rn50aGn63eH41FB4lXBPDn8MyQfYLPHsdu2gf48r9adl4gMBov+rDD6WBEruWVoG2AcW9zzMY4thv47+93eVqTm+TWExdgmcei7+NYnhfholyVvtSt0yZ/10B13pndn4eQj+0hPe4s9ufl0LFonPJmPQXQodBRgCEwn7LLpwKx0tQ0JVHdjtd2x3O7iku3/oQ0j3unGUVR0SKjfhHoahp2QYNzhRkgKorzRrxxcG0nkWoFBaHbmsj8fagasOHPZphPjO2tf2Q5uj/XuqnPKyGNO55Fba5wMtYB31vf9+UhbqES0d3FtKtLOlcaq3r1JHuz8GczQCfsclvTMab++9qbN56rxO/d4/H0fznWjOLT08fbY6fheEzbC3IQgp1gpVJVSVpbbQOMWsn8csgZV07mKusUSbZ3mBdyGQRiOCdwFEKmXQ+TlNWdJYS+UsrnEURQgXH5ZSUDGtSgPkWpObIKiazLSAGOtDzGFjMHk2AAi9mRycqS5VTQRTaff3eWO6s6foAqZEcBOM96d5f39Pp9K/Nz9wtY519pXY/c/HdQ5+tux+SAsHlrtOw9LNRfIAHR6uIZBrg8R0MkW/b902HPezDxy7R9pzTxpv+lJ176tg6bN1yPvnrEUkBmFRYd8oCJZOL7gqzVsAYyp5VSA4PI23gf5BCAijNJkyGGZ4NcNLuFf70pZ8cnPDZ6sVT9drditLVUMtUAONdWQOLpxjuZjj5hlNocgWM/Lzc7JixqefPGX1/BW2rkGgOVTkxZxcG1SWcagt9eZAfbXD5jm6KNDW4pRFXIW9ObCzgiugyDXagMHjl55DXlE1DZV2NJmmMQZfe9TO4nODN4oCochz5rOCs4sLms88++2efV2TA5nReOfZ3mx4uLzkyZMnzBcLnj59ilU6mOWdpyxLyDRFZrh4cMmmUeimIhdPtTngsgIL3LiSb3zl56irhpuXryiKmsViTjGbky/PacjITcHZIufAJ9iLRbi/vFpxfr1mL8K+LAMtMDFtks5pnMVkWfgH/NIv/xK//le+zd988Ig3/su/zn//G/8jf+83/yFPfv6rPNvdUK43NC/W5Gc5N9UGefmMs9mMuq7buBm2CRZUlNA0DfvyEID7fMm3f+k7bNYbbq6vefr0M3SWURQ5RZ7z8uVznAuB1IpZHs9tOGe73Q5vHWI99XaP0pqmrlnf3LCvK+a5xjmPdTWzeYGrChpn2G5K9CIPAXhEo2koipyzsxn4JhwWleTI4ZlrT8yEPD399zRGOfXubeVeYDFpz0In6X4eJevuSpjSsZd4YmodU58SYgaTAm20MeWHn4caW1wStf73CxIy1PymmwXRIUN1QCZhh9b164iRDy0Q/f7fyyqkhi6yU8JQV090zRVpc3Cptq8dUc+MGhHz4bhPzU9Y07HldAqyTQ6Eofgf3j0FAsafj62qyXV48L06vl+SDlS/iW4tWvj3Uyv9te4Lffc5dIrx3A7r7dd/G/C7s5179ue20u29n6ia+7U18Vkr13O8Z+/u0pQCo//3JDyb6ENvnZXgnSNTGYjExMyhFg2INlSNY3OouNntw6c+BgFRGV4ZKuvYlxWHfRkFaFBGR1fV+/QoCZwBwBy570aCoLSJ9O00Mzjeu2ry+6S86Ud8THTvlEJiWMZW/rvpwSmwNP6uP+4pwT0aNEa9kVaBkGTp4TtDcHbcrxPnd2Is01WrVqn1+UpHA8cW1HvX0BtH4McKrUwPwES+hqduhP1BsT04DpWjKgzzHJT3eGXxaLRYUD7Wo3AixNuM6CxjNsvRyoNYbN2jKaIo5ssA6q3D1TVVZWm0pcgNwbqZ/AVMcBPzgrE2uCj2XDxbwCcSQZFq+cgUa2rnL/LS8KHvnpH4t1bxZzCJtInrp6Y8gdfeHKa2+u1CpxgZvH6kBOiqGihXeuBtQOnS+0nBMsHru6IY09U+kGsDyEgUXH3/TQYH56gOgWSl74+jr7RSSrUpWsJ3KVIl+CqELApkKbjrWwnWxZDvK1kPBYh7xHtsU+NsgzIKrYPnR+NcUPqjmEtOgF+atfW8KituDhUvdwdelQ2v1ltW+z2NBy85UmjQmmpf4iP9//Sz52itcN5DvmRfCbPC0ciel5sbciutjuGyWFBXFaUXzooZdXng2bNnbDYH8kdneNuAbZjnOVdUGCM8WBT8R3/718mBz15e8dt/9H/zD/7ZP+XR5TnGGD745GMqASWKMzS/8rVvclPv+GxzzdObG9568Ijziwu+9PYXqZ3lJrtht9liq5oizzEIufUsF2c8ePCQ2XzOe++9j6sbjNLMi4JchNpZrPPkeYGZZfi6hq1wvjxjay2ihW999Qn/7X/1d5B6y3f/5I/5n//pD3A6w3lhdX3Nq+Ur8myGrYV9Y4OfozHkyyXPX15TKziooIiaX56HYD1aMy8WzBdzMmNYPf+E7/2MnvpVAAAgAElEQVTFnzPPIPu1X+HpH31E8/FzfmF+wX/26/8B+skZ7z9/ym/9y3/B97/3AbXbsas9P9g3nJ1dYLKcZ8+fc36+pKxCtPI8zynmc7wXrLNcXl7SNA1mk2HyjLOzM4q8iGlPgqLCaEWRG+azAqUN3jlc00SWG6LdFrrANw1VWWLxVE6xWq14/8fvsbpZoZqGzBQc6h1zXZCZAmrPw4sZjy7PuLg8w7oaiS793ktwqT+Sq1+n3Fey4M7n7mdZVP37JvcV1Y4ZUsuk1bRgMC4tM2i1eqPW1fj9xIiPJzYpiPta+DbHYgKOvfDaU/16XaH9fqCxW8y7BfxO+xl71AKlToMOxxa20+V1xtRq8uNcJXGovQWoQKS7xN9pmBk8N+wARxaKBAyn+in9Po+E3E6wHN6d6x811dud43G1TwyaTox3JECPBMmpvh49cwK831ZuE5yn6jppSb9nu8M+3w407qrrdJvSCTQJFY4Pdnqu/1l7drtVTEDn1Fk7DTaCm/wprdzxPIZ9raMCKUQEDkKVEKxs1kPVWPZ1g4vEXgClFU4UjRcqG1JnIBLOqYkpAFR7unv7ekKpEzdjCxDa7nVCcaBp3fkM5K2XJzVaRvtKKJlAHMe0dfj31LxNldus3ONnpixpd9bZ8iUhWTAGZzDu5bEirhW649yFaqaBbftzNI5TPRwqI6fm8vj54ym8fU7beTz51N1F0dHfcT8DUFNYB1UtlI1Q25CfN6W9CJFJHR6PUuHuYFBo6PZ8aKVDwBqj8CbQ5wAoogufATKhAVxTB1Boo2tcu1e7gaZgJAItaEQi1nMdWEQRI5ke05PO8kZ7ppIrZ/dYOm8p+mC8Udl+3weG6bf+Ot6tDA9PdfxTTZzD9rCnsz/ady1PHNXfKUyP+5KE0eP+jCysg7b7r3ewuP9+/659N02dhX/QVjutEsFiBIHx8xT7wBMDUUkwGGhJR1ZT+gbjA1hsbIU4i8YgEIInuUB7PRonnkNVs60anu8OvNhVrMqam0NNLZrdvqGqIMtyGgEf5RyjM5QPILU5HNAxFZIoUJnhUAWrn20sSiBDB0tojLPhxQerZ5Jnncc1DdpkmLwgR9F4yHLD2fmC77z5LllhuMjP+IOzD/n41Q0vVxsyHVNvOMvS5Hz1rcf82re+ycvDih+9KPjo6lVIz9Q07Hd7fOOYFQX68oJ6f8A7hzhHrsIdvcOhxMUUEyoPe69x4S44PtzhO+wP5GZGca5QRQD1ynq00bz1zlu8++1vs8w16uIJ/+T3P2F18NS1p96U3Lx8gTYZtXWILTE6RxuDmJydBussrq6DUknpjr+JQ0m4o1dkGZ8+fYoXy4tqTf1yzSdPP8UuMvZScdHMMNahvCfPwro31qJssAYakzGfL4LracQH3gtFkaG14Jzj+bPn3NzcsN5s8M7jrcPS4GzYmymStq0srrCQIqvGe+JKgrsxUe4M98ANCo+zjs1mja0rMhUCjwnE1FkN/lBRPLxgXgQwWh5KOooVzm+f80yduam/+0XFM3ZXueuRe4DFeOm3pdY94Wuqcuk/1e+I9IBZBH49wWBgOeiDU0nuEBN1di8MyPVJS2Lv9ySUtex2BMCGUzAU3E5ZEu8qU8L+VB33AZktCOsDs1sE5lMWrXaOe8BrEtTRjbvP0Abgq8/EhCCwHuXhPO7bGCym+o56POpWqGqaGSYtfnritJg7LvcHPn0B6xRISc/2ax7v9fF7r6uUGJfb9uZtVsdpS+npZz+P9bJfbzvKgdwfBft+u/1IgSKjvTG0jE116bY5vTfIEYUWHQUFH7TcpovKCDneE6yHVUPjY6AFFd61oqicUFofwWKsV3f3zVqBqJ2fib3B8X4O6QVif1WfNoSzHQIrduOcimA8EEZHYw9HaXiChnLnMf3uP9vpdobPiMigL2Pw2Lf+TIHHAZ+AVvhVo7a00YgPLshDOjvkIbSubvc/f0LnBjtFYweKJRjM7W3Kn6m5SmMbf5/qPOq1wHQk8XinXXUePn3lUPgbtAmc3ItQNZ6y8QEwOiHXgqh451dCVHSlBUl3K5NPkbeAQSuFMQqne5FbozVTa4NRCiUBMNqmwfkG5yxaZ+EOlE68JlgurXMYETAm+CmJQjy4Jri8qni3TTGdvgmidS/exWudwQcbW3UcRNL9T5lYAzlaoz5M66/jYBXaPS3tGFCC6pnDh+ueNmwvyNd4D40UIlNnDxJwoz0TLW9P7bTDFkjBQdKzvfGN5ZahC3nX4pQrfH//pxQ3eALI0nR34WL6CURCcnat0coAiqrZkUsIgFjbCryQEazijYfaBtprvWJnHS/XW16sNnz0asWrbc3eCrWHeT5HGg9eM9M5pXhCjCtFoQusqhGxqDrccwxLIRR5QVVXuEjLrLOgQSsTAqkQFBZOCVmRM88K5kUeAqsUBZnSmH2JONDzjOVyyTcWj9EXc5zLeOPBW3z66lN8vcV4x5O3HtJUG86KnJ9/90v82s/9LC/3V5yfKX77T/8M5xz7/YEX9jmH3Y5iMWe+WLDLMnarFWIhV4aqqlivV+RFESKC5oKtG8pDyWw2Q2uN88J6vebNy7eZnc0xJmP16oDZ1WTK8OjtN9Bf/BoXj57w1fm7XJ79PbblAVvX2F3FjTzDKU/tHdo5snqGNgW+mHFYzPD7HbK3MbehCsoD8diqwmqNoaDIMz579hkff/Yp/8ef/RseVpBdFJy9ccmfvvyYN67mvLy6Yr/ekhcZzoMF5lrTNA0CLJdLrq6uEAmpMuq6bmM5KKV4/8fvs9/vqeoKrRRVWVGrOpwzL+Huvw8WUFNUoIJlOTgdeJRAnhls9HgwmYnBaMLZLvd7vBN0ZmJUZ7BNcI9utiWFmjPLhCLT7FzT5oZEpIt+3PL1+/GMfgkR2Se/eq1yJ1jsGEkMNJN6HgW6fsRDXLwcPmbqozFMPHKyXekBk4mnkoqp+/uWcixAq4GA1G8bJAhyLbWdqiOICvcpU4IQRE2cHN+3mey7Dm4+Prr4HAHFKP3clVZjsu5b+jp+VtRpQDnoD7RLMvX8lKWu7Y9MrXoHeqfbP2bRrYA9Amyjak/9cWs5Zf04qawI3HWyrs8Lvv5yyyRk/ymUu+scPNFK9XF/p2iZfYHpL6ursSgURhmMziBG1EP5eLc2CFROYFfWXG937KuaLOAPlGi21rKtm2B1dBI93gXfT1cwGvvRLtKqy2fX7uehACbC4IykOsbAKj2ffvrRvcTBcwwDpQwUMSOgeKrc9cy4X/2zFS74y9EYxuNplWITTd13a/ykippBm5HRtfSNDsh+3nakR0MGCsLXOABdUJBhSfd7lFYooyhMDqLJjKexsK89+9pxbg1aO7TulIFOJIRPbNfZx7uuliBmaEymyTw0OJRXZNrQNOF+l1KG+WxOlhd411Dut9S2xnpH4xqKPCc34T6jUSYEK3EgEu6xSSAMAOQhxSMoFWWWoHgZ6H4Gis+7Sz+C90+zhD3S/hUbmWpIMRk2elhZW+cxOOzu53a4MlrzRAgWNB3xspAAZVdnGzO17amM2pu0HrbtHCstnDt+L0ia4L0NuQ/x7bBTf6qDa62QeSZoHy3NIqiswJoCqwwvdzXPbjbcbHZc3Wx4b7dnfxCaWshUNEALZKhwhzzExsUeGlhe8OTJE9798jt88KMfst+scd5xNl+w3R9AEdw6TXBVNQoypbne7+M5UhTaMFsumM3nLC/OAah3B6rNGpnnyNmc2ip2qxseZxl6b1l/csOfv3rF86dbPnj+gtWzF+hcgQmium1ikLTacbXf86NPPmBdrbm6vuI8zzEa6qpke7OirhvO/SVLc0E+n6F2GUZghublas3Z8oyL8wuWyyUvnj8PVkOlsNbivEPFNBOPHy0Ax3pXsqWhzjTOCh/98Q/Y/Jt/wmfrZ/zOP/tdti9CICwnNVmuqA8lGMgKRbGcY/cN9lBR+jVf+rlvUuFY7zd4D+Vuj80Lzs/PWW3XuLKkyg1VWWKAmTK86ZZUDxSlrXj+7CV//1/9Du6mwlSeeQOrQlPkMwpjWK1WbLfb4FmgFLvdDm00JstYLBbMZjOapuFwOODqGu88WgSVGTarFRJz8xoFWgUr5yJXVPsDOs8oZjNmRcFht8e5BoWnsQ5tNJlWHMqGs/mMeV4wLzJmJiOTEL3XC1SHCu8UWMeTC8XZTBCxIcWHydq8vSlPboJdt4HFv+xyR57FvgtHKh1A7Asm4e8ur16ggR3j7rtz9Z8f/0xC88CnPwonKrYXAmEGAbHDidOgbnpcgXFrZXpgtD+OUF+fsfc13R3hGzLoTojp5qo/Z/0UAKnNNH+enpa9p00fjCK5taXx9bo9EKBQMQFyD5DS8Zo0lvQvWTR6kz2o86i0jFP6f0wUj1IxvD3JFXnMSGhDpf8k5cj19ETfpwVzNfxi0BWVtt+Jdo/BaX8ft3Ps/dF92tuskUp1roHdfun2V1dN//NphUR/D4+/u308Pz2C9J+/uPqp1fX/bVnf4/s1L/jh4FMFfDP++7xF0QOJPQbSgunRHlXq9DkY783UgkTLyWDv9OjUFB0/2d/W4uc6UNOjpeP+nLIA9fd7fzxOwplqXZjo7W3pxtCOr+Unw/kKxysIoqeAenem2zfic6rVF07Rt6P36ej3KdCY6kgCw9F3PXp9ip70ecf4Ge9Ggnu8j+F9cC9T0WXUGAOiyHUQcGobrIrWp3QfcfztegZ3wG4ZfRA6EcLds3C/TJt4+8/Voc86hO133mOUQmc5i7Nz6mqPtXUQQK3FFQVFljPLw500jyDeoayK1qawt1pY07eYqp41jgiYgw2yfTb8OKX8TXMWI/bK8MBJPIyD9ZIhf9QqbTPpb+gA0HT3TjiD434MZY2xgrV9d0y/fUp5L13b0AoDKgHDgVwX+932M33X23fxnrVIdBu9Cyw6NxhTp6Dqu8OG71xMceGJeRbT8/HZxnUuq8p6yAscmsoJq33Dqtxycyh5erNnaz0H6zjUDagMYxw+c3hR2Oj5oaOlSMVAEKWHBxdLLh4/4MGbj3lXfY3PPvmE65evWFclzqSxWwos1aFBnGehgwOsyQ1ZkfFgcY7KMnSWQaapdwd21YFtvSe3mlm88+aMQqwjU1CJ4zf+9PewdUW1K3F+i0GT56CLjH1d4fOMlff84QcfsqlLyrpitd+hyhorwe3eeo9zlt16TXk4IEVGXVWItTROyI1hMZ+xmM9YrdeUhxJrG4pZgW9siCQL2Kam2h2ofcXL/UteXe3J65Bj9YNnFf/13/0HKCXs1g1zNefBk0sKP+PjaktmimgB1uzKcAdyuZzzV7/8Lv/h3/g1PnjxnH/9w7/gx+99GFP0RSWweLzzODzL5RJvPc4LN76mqTy5cyyd4J+XuMYholGSc9kosuUcvZxRrXfMZkXwiqgr8txgXbBeP3r0EJPnbHc7mqbhLM+prcU5R2Y0FxcX8Q5sE+6VEu/UOsErR1YUzGYzsiyLzzjqxrGYz0JAOQWqaUJKH1FUVYlYjVeGQisW8yWubFDiOF/CO1+45OKswLmOn2kMqJHRR5KcO10+j/fU0Nh1u+HrVrA4bqPHfiBZ5Qa0qsfAhNYffVymXCOmAGP7sOoTSnWsfEuE/kSd4ZGRYJ5YXSuIjPoZPx8K5q9Thsz8uJ4e4e0PR3UNjxe5HyxISQQRrdCRGHdX1wAwjHo3ADMjrd9wDcLcD8DGqMZjcNwNqL/W/T6MNSSpzeQeMBXgRgZjisJJO7/jEQ7Fvls1Mn2hemqt75CL+0LfFFDs1uD+G6kDin3m2wmsA7enW9DsFJi9j1Wj3VM/RUvL/19+stLuorQ34oet9ZzpXdAHalMKulSCpeVYCO3Xm2hCIFPTSp7hnjl+Znw+xu+M3TSJ7Y8BoUjKEXcMupKz3BD+Tf3O0Xtjr4UWTEIEmv0+J0bH3fhZJn8d9imCDk6u2TRQTPtiau6P1j/WE/4eAR7VKRlMzL2W6QDAnAjOx+AjiQdH2tMldemPUAhcKwZzQod7Wxq0h8ZbMpPHfJoq5OPUwTU1m80I8S3DvSJrm5Y3GG2Cq6EK932V2DYysdE65tRVIT+nSDAh6VEsgzZqJgMQmZTE4zUKSpP47NTWSUsnva97dDtW3gKwdk3Gj46fn2qqd0bV6PPjemXwXbdn+hFtO57eAUoZgcWJ+lRSNhPHxKQFUXxIHUTvvmcfLIZ/bQ9CwK/ePIl4XPzdSbiD6FCIEg51uBdWOsfNvuT5tuLV/sDVfs/LXYnkBVYpag8LDHkWLdHakMVkBM5LsBhFuuZTPwjtzs/OmJ2fke33lHVN9IkOwW9cwyzPmM9yHi8WXB22NAiS6RAghaDU8nWNr4OL4fL8DHc4IGUVwnHEc+SVohbhRzfPULsSXTtmCpQ3IcWNMjTeI8ZQO896s6VxFbnOyJTm8XLJwTtq76IiDVzVYKsGmedRvjIocSzzAiVCXZZU5SFG/AwWNFFRUaWgLCtubtZYasqmpNAZhQHlPJt9xb/6g++zPD/n0YPHfLkoOH8wo5CCTz81XMwfYsjwDjarK2oU57Ocd99+i++88w5Zpnjv6hnvffBhUFFG0C4iiAtuwE+ePKEsa8qqZrvfBddzpVBaY/cuaGCUxgo8XlyQP3qAerBgG1O1ePEoA2VVhjytWlHEdB9KBVd7rQQkKCa0Ujx8+BCA8nBgv9uC94jz2MaFNIfxfGVZhon0ymJZLBagoXaOGUIWrcF1VSMNYDJMkTObz9jXDsRxPjc8eThjXhicdRit0cS7rUpHo1nkDgMZ95g2nDIC3M2jU423M7A7wOKokY52DJo41YFeFopRXdMDnWpfpZnqE+kkHLdAMr4vw3fv1Ub7W2QmIyCaAONRn06MJQjjp/swVfoC/O3vBOFHt4JFL0x+bDe8fUywW0bXG0f62Y0pBiEiuYSoER/t7jT0AWlbdZ/zyRDMBUIvrdB3q/tmT/gdfk8HGH1gIq3AdjRT3Tyonup2qIg4FlKle7mbt9j4qbU5ElRfU7swrdQYAc2+gHBPsDfVz/tYF7s6hnv/85T/7o2HqfWeQCTdJe7++e71u29tVugBIWv7rY/3kXcd0UkKhLHFpX8+brPuHlkJPDQxpZs2glbhzpOSDC0zarcjn1sePprzd/7Wv8sXHz5inocIb3/83o/44Yef8vHTF+xe7kDAa4UzChxRmEpnLrjPKcI+/y9WwZo5JYj1+63oCbXAiDQdvT8GamEZNBzttSGAum1PHJ+FYTv3VT4kxREksHq8lr4V4KVNCzAFYI/2uiIIGdEZoRt9N74pxpmE6CF9jxG/e2RosIfG42JoLUwAr6X/LZO9e57GezWt/10lAek+lQ20r9t7yR3VaE2mCaKz+Oio14ukmfgGpgXuLaglcdUUwTfcazRZ6HdThciEIQiNpiot4gmBILIZRi/RxgTB8LAJQSVE8A4WM6JgpWhwiJdw1ydXwdoooCPNN8a0eYlT0ZImv+Mp7fx0CzxSlKR9cbw7But2Yg2mFNmd9X3oWh8A9jBL9pG3CMP91Vlm+p9Pu4hOncNk4SMB/RawxZWV/lwEy0/XH9qIqSIJdMa/vYTAQ0d96dOHzpPKaYW4qMR2LiSPj/vOKYPkOaINThTP9wde3qx4ebPmw89ecVNBJdAoyGYF52cX5FrhyhIqT5HPmC8LioszFg8usSKsNxt2738cLOuiyIzi5uoV1jV4CXcNMTkXjx7TNJ7yUGIyTTEreHF9wy9862f5ha98lW+8+xV+78/+Dc/XN1wddqw/e4XKMpxW7G3DG7Mz3n37Lb74zhf4/vd/yPbFFeW+RAHmfIGzIV3IVx49Yr1/SeksVaEwlcU6cKKYX5wR0taBXuRsFXzj7Tf5+he+wJn3/NnHH/Fis+ZgLcu8ADzihNo6Lh49JMsztHjO8hnrzYrnzz8Do8kzjXiFa2oAiszggJubDdubDfM853K54Od+9l1urjesV1vsdclbheKNhzlvfXHJzl5ycbnAuZoHiwd862e+hVYZ+33Fi3JPU1t0bji7vAAFea5ZnhcUsxzrDSjDoWlovA2yXab42je+yWq15dXNFatqw5uLc6rcs8Vx/fTAg6xAIxyamr/29a9z+TNfwDxe8uJHH/Ppp5+itOLy4UNublZkxpAXOc41HKoK7y0PHlxgd7sAFLXC5BnvfuXLmDxju93x2dNPcXVDU1Ycqgqjw/3Y8lCSF0XLp3KjefzkMY33bMs954uH+H1DXZbs9wekBpkV5FqzfHiG2h0wSvHocsGjy4wiC3dGM5MTqKaOCtkg4yqdzmVHC8a0ZFqJCHS+FtyHr5wqd95ZDIe538BpRqa1HrqPtnUkoS8OXncgr18mBYnI2JMW+YRC+LVKS5BTLr/T2C88J53gedy5qfqP+cWUdj/VDdNEfGg9ChpVVMj3FoIEuBiAKRLa+Lxzwd9cZ3nnghrrbAWwCaHqaNxRa540zemf9q4dfhcRtT8r0ur0+8Ji0OZ2gpGOIfmRISMTH0OWHx0IFXlxx4mSBeyOgdxiS4h97gnMr7PF+vN5WwlWG7r+v0a5+/npCbhNOLhPH35SoPjTKiEvmx7cXUmCRSpJUx2CUqSO6ziGNAfpbL7ewEQErTTFLMOWDemik5cG7bOeUKlprGdfVmwOJU8uPFkWXLAOdU1ZN9SNDfkVIxhUSoU0HLEo0p6K2pdxgKiYB0+QQSqhqT7fFqhq8nOkTUg+aHMEKj4Pw+kHFOjuY0RaNVKWTSlPphhhq7oSwSKDXHj9O+CJ75zc80lh8XnH16NNqT93geJT53IAGjkNfsfvinVHoOdUSbk6u2VVMOLxKRG7QoLmXfn0aXT/jDfnRaGMtDdv01wnwNGtn8dLg1chV5nONfm5oW5qnLV4bzDZHKMztDY0Nmj5i9mc+Wz2/zL3Zr2WJPeB3y8icjnL3erW0lXdJJuURIojaURJnhHsMSAbHsOGHw0DNuwP4Td/FL/6YV4M2AYM+EEYwIAFjCWPNaONoihKbJLN6qW2W3c7Wy6x+SEyMiPznHurmqINR+HWOSeX2OO/LzTKd/lJDboNhFaeBT9GPFgfgkaFgDkBf6S0iJT3M+De+x7n9Pi754zG836oTPdp3NOHBDT7+3DC9Cd7YP8Md1nNGSixqVAx1JgSh4f2kqXfCWIy0PBwf5b6ehMGMPoTDs8P40gZwRiYBj8EsRkE1EPOuh4eeE9jPBgH3iGdC37iIkSTrlvDm4vXrKuG27rhBzcVdWtpjac2ktnxCSDJPRQCCquwVYu53VKfzrG2gU3FvK357sOHLOZLHpbH2LWm0gZjw16e7W4xt1s+W3+CzAuOjk+YzRY8fvABa3VN09TUqx3KwvniiG8++YDf+c6v88Xb19xu11xfvkVqg3UO27kfPTp5wD9++k1+95vfppwt+LPv/xXXL19TaM9tVfM7v/5t/vnv/Q7/1W/9U/7kk+/zxz/+Ef/jv/5znmVHlF2UYd1AgUN6h0VzvCz47a894w9+63tkxYzdn/4J9efPua53eFxILO9hp1senJ/x7MOnfPj0KV/+7DO2P2/YVTdkRRd4paPFBNDqFpll/OqvfJ3NzZbzoxN+9aMP+fqHT7lc3fDy7QV/cX3D2+2M2y8cn12+RRxfkP0EVAu5cRQfOtQC3EKSUVM4S73a8q//8vusrOX1m5d88rNPsHgao8lyxYOH5yz1jGq3wVhNbTWrugIP3/7oI/67//S/oDyac6m3/A9/8ke8/smX7NYVIlP82fZLvvX5joevS/7+55/iLBwdh5QjQnRRaZ2hrmuatqHVmrZpUM5QLucIlXF5u+bt9RXzxQLrHdoG7aWal5zmDyllRt00bKsdy+MO5SAQKschaLVhu6t5eHJC3e6oqxrnoMiCWNFYHdwAvCfPFecPjykLj/BBc1kUs55mFlL15zNYTEQ8xp3lkEAq1BG//7/FLIoAsLwIRH5orgtn7d2+dM0n5op+YBZ6IAIBKfU+JulgxgPpAVvyvuiJp8hIJKA0Ptc5tBPrTxF3/9kBss4eHk/fn7EjezT1ioBtgqDpm+irF9BpCSChbtPaRkXJsTlIyoyLSXvx9aD52yd+RkR0f/DFQBeIeHkw4Qphm+SQQDwpY4Oc5H6KXMTwRJqLLb4dJdahXwmD58PzgYAfEjnHPqbzFtschSXvmYCOgZzOVTKPvlNJ9vPSI7VYdUIg9l/3D9eUeQ9PDZL0u7hM2e3tVFszzNP0M67PRIvUE7TDeH1H2PT7oqdwfL9GIoTCHNU9tLbf557EmBA/w/tuNI5puUujOR0jYiqo2T/rqdBlLONP+jo8kPweIvtFhuxQuc8seG/chKh8IbFvbD0E7kB4vDAgPM6BbqFpLY0LkeeEUrSNwbY65AkTHt9F+6Pz1ejPuozm1p79ISfwkmReJ8czTKMYwCQRNtPv1X53x7FMiMN9LaAYz1i676aXJoTr1BfxfYUYY+J2QmT7LoVP156PyMZ3a54Aph6P+O68dlLHcdP9bomtdcuc4BymO7B7U8gwM8mkjo6vSPah6Po5Vv8kw/IDvE6HG2EMCfhNKpBSdTg33SPBVNN729fdM+3eh2iTvguI1o3XWxfMCyWoPAupKQCEpDZQtY5GO3wWUmsoEaImIlQ3/50RaAKr0qB3UoT9LwhpNoRwHTMazEl7ibAIdEYwJxXk81O8LJFtQ1NV1HWFywwUeWdWJoOmy2oyIRA2zKMVjkwopA+mq8lEd/OThqaPeCJ9brpP74AlHewd6JjhvQHmxjUcYBSja2IM00YbRKSgrgdBKa5I8VB0WYl+tEGYNuDP0E836kPgawe6KdIYkfLz3vcWPWHHJNdH523wRbTO4YLFXTAV9oPvofddhGI8SIkxukuJ0pm2IvFKUTWGba3Z1C1X6x1vtxW7VrM1hpX1CB+EzqV1ZEbjZLeNNBht0cZRO8Xj0zPmsxKJ4Priggy1nzQAACAASURBVPX1Ne22RoiMpgpJ2ssiwwqPayTaGnSj8cYihcQ7z/FyiTMGqzXeGGZS8ur6mr9+/hwxm/Py4jWrzQpjDFkhUUIivcC1mlW14vPbS2aXZ6w2Fc6LkD5Da2bOcz6f8Y3H53xwdszRPKPMJbnIcCoElnSdtDPC8oIMazzX25rPbm7xckOlLUrmLPIZGILZqvSU5QycwzUa17Rcr29wTc3CeZyxwW8S8DYI3ooi5/TomH/68bd582iNtwbb7DC6omm2tPWWQoDAY53BNRZhNZX2CCdYoFC5YlYUCCvJhcSqDIvnzfoG8fOfsdms2TSWQpZIDLnKODo+Zrvx1HWDbTTXl9esN1uUt5wflzw4O+bxk0c8wjD/M4XNPS7zFDbD3ex4WWmupKKpGowNgY/iti5nwc+w2m3DXjUWZywPzs+ZzQOTttlu2d1e02zXaONwre59uc/OzijLgpvVDet6Q1HkVNsA88oip60bdNuAttSrTUgL4iyFAOmCgqfRhoURZKJgkXsenAgUGXjTQQg7opkDneQ6GAt9ZPg7fRf9Hd+Ha6M0WnfUcqjcb4YqAqPoGPwbhBBdYJgg+Rt1LZHoDkBpzAwFQHeIWRSjeqJ0Ci+6UNJigtyHOsP7AKI/UD2jFKVfgn4ciDDn3k0nNrYZ6xuA9tQkpKsyBJxIKCghBNa6QRMXjtMY7CcDCQ7AJBK3gRjYVzWHWmxnQ51C/lQ61+8AN5h9Rrt4mzwXGLOAjOkloIdMzgZTlISbGgkC4jOpwCD+RbTiEuIu/gkxaBziLB30dU0YLucGyXWPZBPtwPBCgsD6PkfEvV96ArmTQt/H+MTPaCBDxwCPezAwzGn9U81yqrUeI/6uyH5D9J8BhNAzRQOt2p2wzg8o+Isw1JnM00CTRMIi6bcQDDtueH+QCt9P5E/nKxLn/fwPmbD7D5GsWc8yim6V455J2zgw35HQiQTxlGHs9+xeP/b7Pr7u0M51pmwiwDByuojyIHUgwLXAtIK2MdQWciR5ltPUGluHUHaBGBc9DPLWdaZ49GvbUdmjMcvu+UTm1cGXZE8n6xvPbsow9nCun3fREe+MtIpjZm7YGRG+eHowO7xDZHL8qI4Y2Cte2xeYHJ73tJ5D2rU+MqybzJMcAt4MkaG73RG1j/0E+h4Biw7fBIYtEMBB2TSCiMNsd5MQTXdTrc6UIe7kAGHu47om4HQkSBPT/ZrO8DD+tA0lMsDhvE3OeYfo4hkSBFgf6Y6OMXPeIWyn8bUWR9ibSghU50EDUGvHrnFUjcWVGQpFLiTGOMhCXkXhTdfvlLkKfQhb0xG1WtZ5lAwpPMJZaME7vFOggo8VXuK9RM1OmeULsqbCGUe9u8Vbg8CSFarf68Y5cDkRkYuOhlEy0B19cZFZdF3fRL8PAv4f5t936TfG+C5ZFe+T61HINU5A3589EfsVGwprn8S3Ga13suIRg+EZYhTEveh9xHCd7rfbG1LkHePmerQbGU8hfP8uwuFcitu7VBY+CrJ8X0+wBojj6miKBI5HYXZ41mENGC2Zz/PgB+jAmnAvvinyjMYYnDUh0AsCKzO0V7xYVby92XK93vH6asVagxECJwXiKGdOTuY8wrSYuqZRDis9toHWZjQoKpHz7OycD548ZlYW/NV6xdXFG4RQFOWSzeqW+dGSWSFR0lF3+M95j7eWtqkQwjMrM9qmDnkSvafIMn7++jVfrle8WN1y8/Yl26oiz3KyRYHSQGNxxnG5uqR5o3iBQ24rtLbkWYYUmqWHBZAJz02z4np3y67esVA5Vgb6xUuBEsG3FySFKGjblucX1+j852hrWa+2eCdZFgsqV9MKi5WOk+URuq5ZX93w1glevHmFrCqOREjptPMO5wXOQy08i3LGo7MH/Dsf/Sqf2Vtevn7Ji5/+lMVRxtvLt9ze3FDi8crgZRAQuXWDzsCrcJZUmVEWJVJLMq9Qmcc6y6quqD5/jkfiRcZM5OTCUyjFfD5jtw1jsI3n7au37FzLrMgQvmBrKx4pT5nnmLZCFx5XCopKIG4qLlixlY5n5ZymbthVFTerW8r5jOVySZ5lvH71mlleIKxDWHj0+BmZEmjdsCwydrdXGG1pasNseYS2lrzIOTs5Jj+eU/sWLj1FocIJ9I7ZrEC3DbZtwVh2NyuEtUgC7PEuBFTSxuJdRsHALEoU4Dofaxt8sYXAdcLpwGMIIAgfBrp3v6Q01iF+Kb025cHuon1ieafPYk+ked87hcdrPUM3anzU6/F10f/37jZJmJz3KOGdzqEoudaTqh08TzVfgbG9yzyp893YY9iSJ8TAwI5o+zui+qX1DEzLOCT14XENhJ6P6zAhkPoahEB1CDq+6yJhIgO69GKIGJdq/N6r+HH01MF8cyrhHBNthxiIaYoPoVQgZtLSEb/7c/oV+jyq7t2+el+pvlGWtZQBSveNGB3icfuH+zIarxieGjSase6BQP3qfR+3HkGQ7AjhSBuNGcMArNJrcR3fte/TllKhyFct966fHAie3ljLDwKQnvA/dHDvKx1g7ZOEd1VP+xUJqm1Vs6kbnJC49Yb1ZkfVtsGsxQ8EpkR0ZjJdcKfpmUnhT/e/99M1OVycGzOK6bzJhMmMzMOhszEVDEgpOyLKTYjq/XlM4eMvel7vK1PB1KEiknWe9iDRjRAFDN7FqJldEAvfmQTvVZ8wE4fg4UQwJCLzNmH4puNJPw+MJpUFjM+g6ZJEs19H36cOtjobYHhMNk0vTAnj9s5jraNtDLLIggmUB2Mc2ggaY2l0MPMTvrPkcXYyR9OIq+k4AzMiQtI8eg0oJDhE4rzsmDrAtCgBRVlSPHxEs5xjdYtpG95eXpPnObPZjJOTE1wTGeEgaHY+CwRZAp+sN1gf5kQOoUg7cOARQiXrGqOz3xWt9+4zMHmSw+fgfQDhQCfc9fSg3+upnv6cxq6NxzCkzPHeB/9r6Iwlgmlc0DrHPR4YvHDNAA4psk5DHfaM0YNwRqmMTORBe6tcSIXSGKw26LYlUzlSKKQX6NpSqhLtSy5rzcWu4s32hpe3az55uQXpgw9tZ+5X5CWzskDnG+r1DhrIXEYjctbaUBvDY0Bi8d7iBDxt4FvZguPTUzYfPuOvf/xTrjYbWlY4IdhutlSbHaKflzCfDx48IMtzEHB5eYmzlixT5GXBartDaEO7q/m3N1ecFZJvffghv/GdX2dbZPzwhz/i9RcvAZBWsLm4Yn254kgV6JnClgWbTUUO/N+ffMLfX7/iX379a3z26gWXt2uUAGcMeVGQF4E5VJ15Is5inePT55/x6fPnqCKj7FLM5F2kTrwnExJdN7y8vuWVf0mmFK+85rgsOS4WzFc7xM7iyhx3Nuc4z/hgccSDecHfX37Ki+tr3rx6w6vPXvJqdU1lDI22tB7y3jcsBNSZqzxEg5UeW7bUaseurqlqDU6Se4k3cIJDZ5JGCZyp8dbQVJ4XX37Obrej3VV409JstzSuYbdxbG6u+KO/+gs2/+qP+OLVK75/8YLTx0+YnS5w7YZ1U5PNFGdFTtu0ZJkCJ2iN5bvf/S6ZChFhb95e0TQNEjhezDg7O+P25pr1eg3AZtMgEGR5zs16jQdmfkata8TWI7VlpnJuLq/QdYMSknI+ZzGfc3Vzy2a15smDxzhjMG3LbrumyCV5AcUs4+jshGa3QmA5OXnYGWUIokLqMCrr6P9fCh4d06fvW+43Q02YkkEqnQLGcaMp0k4Jsqk5k2cfsE6JmX2t2vuUjqALbxGhpB9+QZRkxe69Z9V39y+OMfyKfhLvw5R4H7S2dxGs4wS3vstbFXJZDqauEwa270zKMHZI0EWiJTbQMfxuPK5DTPGo35N+jsx8Y2LsCQI9rKlI0np4T6bUvkBBTDQFfmCv017dN9djzdLdzx0a97vm4vD+EQe+3zUf07mZtJ+87Un3oO/bnmo7R2O5i7HoD8X+AEIKwE7bdDBp+vsDmkPnPNR16NnYsUNlP5Ln6O5kDu5qN238EJF/sOXuzOydNMFo/kKwm3C50iFEea0N2+2OutEYE6S3Pmox/D7DIxPoJab9jkxmPG69xiZh/ET6eDj3PoEx/VnwdJrwOAeBmbkLbo3mJwqDkjkfCRb33tmv712w8dBZOFSmzGy8NoXVPoH1Pcr1EPZVmEeL7+c/CgP86AQmwgaGe9PgJH2bSd/C3DCs3XswiuP6hl6ICSwZ+uD7IJej+kTSbz9Yw6TnOZ69yG4K52lbjZKgVIZ2Au0crQ251LSRmMyT+07wIIIWj1SomZSDsEPYbg+54G9PsBoJ/I0Jmi4pka7TvHXCFJmXlFJi2gZEhm9brHNo3dI2NdKWQxs2hLK3HnRiumWsQQiB8hkhl9mot7yLMLgPXsR135sDYhCh8bNh5tWkzXQew8bpd2Li69fX0a1pjFDaC/JHZyHMdXiHjkkcmEXZtSFSS5Tus9dMumCE5LqzITE9vSGRZFL2uRtNa9HO4DBYWrQ2HdwTiCJDlTnaeKq65eL6mrKcsdOeHz2/ZuUMq1Zz02q0EszmS4SQNFUDzvPs8RM++tqHPH/9I7btFm0t1oCViuPjJQ/mBSdVg75ZY61mWQj+fv2SVz/fUL4qeXt9iRGOLJPoxqK8CntRgLGWLj0fSkg+/PApD87PkUrx6c9+yutXF7Ta4Kyn6PLnOQlNaTk9OeH85Izz2RFaBWGIk5JSZrTOIXFIYbGmRdsMC2R5Rmmgqg3rt7fcWnBVg21AEfwHhXd4Z2m0Seghz2w+77W9Tjq0Dbn6bKtx2vRCqso0lEVBrhR5nvOffO/38N6y26749Ic/pK01wlnKtuV3vvvrPDo5Jhfw/ItP+ezlNa61nJ2dct3u0F7gRE5RCIqypDWaRjf87q//Kv/ub/wmZ8sFf/V3P+TTH/+U2lq08+x0S+YhE4Iyy0FmISehAlcH6Y61mvXqFrxHdu4uVjcIHCqTyEXBv/rBDxAu7KuTszOqXY0wMJOSoiig8+nX1iAJOVkXs4LjoxOqqqKqaoSQWBu2onOOm6trrm8uWa9uMVpzenpMUZRkKkdfvMU4A95yc3PDxgbfad8YqnaLtRaVZTjnqJqG1mhkpvj13/wub1694fb6BuctRmtEnpPPZ6y3a5QyHC0UJ0ezzt96MA8N6HgcRLKn47H8IozeoXIvjXSg3J9nMf5NCM4BlI5J9pGE9z0YpUPEbUq8pcTyu0pAir6Xl0cjuoG0Tons7hkRZXEpcpgi8QPtkC7g4Fu1f+89++0nc3egvfh9ZDob8UhaorRYpMziMBgvhjFFJNMjlnv6mGq0IkMqmPZb7O3jKfEjuv6lxP2IATooxWdE4PdtxZX2h5mPbsiH73VzIZI5el8Gf1Smvp4TomNoY7h5VxvvPLxiMp93vL83jpQhinvf392P/rWOGZoSwdM279u3d2t8DrbIlKnunr5zffdrGPx0989GvwIc3mRp/ybjHDiNQdDEUF+vuewaabTBdHnAdlWNNpbeclxERjFo/7pc2ElbDGd7NA8dvLpjzvcH0TFGbug7RI1SdynS9z3YPkzkj+DQIKU4gNDev9ynQRs+I+HdD+BgPe/egwljNGo7wjXR8/4i7cKkjfcRNqXPTa8Jsf9s/JwKB9/VTvp5CJNFpkGONqufoLphL8aVFYB1IKzD2M782oUAI631NMZhnMd6cIgu3H4cz7sYxYHVFiL6w3mECIIU4WVwA/DBnNJ1RJLsmAzvPV4opCpQuSBDkLc1WI1znrquKIVACAUiMDDedWkQkj4Z61BSdEGiQl+iuXS6lSJuP7S/pvTLfQLuSNwPQCjBuQNSTS5M1znFo2lE3dT6K/k9dKSH+ZHW8N31SLP47qLzIUxRn7Yqvtv5Og6f3cR0fny9EAs6ZtLjur3jHGEdZUi74glmxcbBptbsas3NtuLV5Ypi1lJrz+dXt9RA7aEhMFNKdPb+XY7Qoiw4Pjni6HZBpRqssDg8R7M5i7MT5icL1O2Kq82WTGY8PlvQZJ6X62vclcE7CwQBdS5jtd08yTTOBcznJUdHS7JOey2lwHYMdHBI8GRK8vDBEY9Oz5kVJdvNlhtT09RtWGepujZByGABJwgCN6EypHU446gqjZFbZlaQOcDZLu+g6Zj2cQwOqTIQQdjihAkuW85jjQ1Mv/DBokxIjo9PyPMMBHzw4CGbakPT7PCzjFlZ4I0BoznOc5ZlgbOGi6u3KJlxcnrC+dER1asvaRqNM55M5gHqSEFeZHz47DG/8fFHPD46YnV7zQ9/8jNumwafZZw9WCK0xhlH2zoMBQiBylzvX+u9x5iWTGbd3IC1FplJRJaRFzPerNfMy5LZYs5yXlJf3mC0xco8WKb1mvOBLpRCUO0qNpsNm822P0lKZczmC7TWGBOCETnnOTpaMivnIBT59Q1KKISEzWaDbG3I+WqCxjqa9WutadsWrTVKSeazkqwsyMqCUs8x1obzIiSbzZrTzHO8yFnOCpwzga4QnbgmwXU9LomSvnjvznyw719+qcxiL8FIGJCUeRwHgznQYALsUimzP/DetIw0BXcQMnvFd9LNviWGSSb57CbcdYl59xi1zvbVJeFX5dh64yByiMDY4fbrTJ6L4xJChFD/k3HfzUwEokaSzuXY3CcGBYg9jxLlPQIj+kj25qzJWHpRwD6h2Evp4xNiTAx4GTp6l1lkyjDujbu7JBOGMSVWJzPFeBONf4+Z7H1mY6CbDvtPHdTyHThc0dxp6EPyPB2j2N8dE4hDP/f3QG8GM6Vc0uEeGOt9pX/OT1sct53WP9a+9TWNzyfD/Ey1Onv1jq69f9/ft3jPELTiENVPDJ4Q9r08sM6hngNjGO2vcMX7rq2EEnXes6012guwsK1adJdYOPjBSUKEGz8IG7qccKPoiX5/ocRkTAfnT4weTua525E+uR/7Pzlfd8Eu15lpqkyRbAfGHY2wZl8ocNdyD/uoT6oyWYtDSGPMXB0WQI2J5BRa9lghwTF9Aq703QNt9P0ODU7GuI/3fAcT7zofd/V7zGgN2qJ4v3++G0PIWUifZiK+OtL+Euc2SClcTEMU10sQoptaaIzDtyYkcpBQa8+udbRGYGzY67mM+MYPKSd7MJKmLErmIhISBDNJvECqYMrqHeAE8VA5L/A2+u5knfmoRGQFRZ5zlmU0u1t0s2O7XeNyG6Kqqow8Lzo8HvyCYjHGgRKAwyuBEGNT+gF/DzjuUBTluxjEIDTq3FzS50n3A3ukyd6B98mu9QF+xAjC4ZLtLYSIkqx4/iJuj3vGh8TiYxJt+OG6XHswNoUPQq7BxB5AypAf03iDNzb4JtpAdBuXUBAyA5/jTEmW52gnqFrLq+tbXlxfc7XZcbXZcbnVyHwXkprbMGcqUxwVOZnIaHYVxhgK76EQtHrN7eaKo/KYV+Kaymk8nu998JDjR2dky5IrNBevFWVW8hvf+hbbXPD55y+4vL7leJkjUZRZTrEoWVUVjQsRCNQchKZL3wH1bsf69haZZSFxe67wLsM7j9YhaftxseQff/u7PFocsbm84a9+8Df8/PaK1gFeYEVHT4bNTbGYschLHIJGOJyvUF5wRIGsBTMhEd5SmZZcZSG/qdaoPCfPMoSUQZtuYvAqicwL5nmJtI52s8OLkO5GeMHp6Qnf+PhjpJTc3Nzw+rPnvL58w/XqmuVyxteePaNab/jip5/x4vMvqNYnIDxvr275j/7gD/jg/DEzNaP+vqD+/AXbaoNSGbvtmvki54NHpzx+9ABhbnFVzUdPnoAr8NYxXyz4/X/ybda3V1xcXPM3P72gzArmSjErLS5rsVbjPUilkDJD2KBFcx7yvCAvZ5TFAjE74vz8AScnx6xub9llDY2pMXi8CMKjDEGWZX0gJdM0/OhHP+qZwizLERKWyyUfffQR2sFyeYQQnu1qxfHJKXle0raGLM+ZL2Yg4fXFazIdULYFchlcSBCwWq0w3bkssowvPvucSltQGbPFEU1b4bynqlpW1yu+9o1jPniw4GxeUN+ukF6hVD4+9ntU2mDi/U4G6kB5LwHzPeWdqTN6oCkCoOt/90zuBCmnZcKgQIcf5D6zMG3zFyn3v3aQ6jrwziECpfP1S2BvHxSRzpUzDZwQuLRkHCF6rBsh6vvGcZhhjCHn05gcIglDP0ZcY6avJxidT67TBymy+831Ese7CMdBnu0iKZMQJENEyneNuR9vJ+VF3U+0f/US1vEuZuaQ1uA+zVjKdL2z5QME5vu884uO+y5i9pcxj4H4P7wvIRCo7+rTL6KBOlTfVIDRf2fCkOzzinfe+go9GN7utqwXftj/1nO73rLb1eR5zraqg6bRWJz15CrYODkRhRidytHREbDJ/pu0PKTVGMbTMydxeN18BPNAMdKp+JSDS/b4XWci7csgwIARQIyzEgVqfewt1+0ZlfS572Vy7RdDfEJkIwI2JfBjEsWUYRqY2LHFShSI9t8n5ZDGcM/SYvLsfl8Hhupd43qf87H3jNg/Z3eta9y/AScIppFZoxBRCEnb6hCQxIfIqEp41hnsWse89JQOlKLzWRz71KR+wjD0JwrSQnFd+w7IQ4oL4fHS411IDeU9GGdRwiO8RyJ7SYQQkqKcoYRDZxlCQF2vQ8Aek1HaGUUxJ8tyMjEQY9Y6gl+kRYVDE5Ko+xCQaZoS6aum2xktTCQKRscu4qNwb7ztxucqeYmwpy0++hf6wb8uzDX0ocm6aU3xnvNBezIKekY4o8bY4LNLPBODuavrtC7eh7QZwuVASBWg2wY6uCBzFQxqvac1DuNqWi1oWsHV9Yqr9Y5N3bJpLZc7zUY7NtZjhEB3/o7RiPjR8SlPnz6mzHKef/qc1WqNIERVvbx4zdXVBaVbcFXXzBczfvu7T/lnH31IY1rebq/59OoluAZdaT7/8XM++sY3+bA8Y34ueH31hicfPOTpk6d88+sf83/+H3/EIlc8PD3ht/7Rd/j+ly/48uItr1695ssXn/PFF59jrGdbhyBMRVGwXCxpmoa6bamdo1w13G5qXl1f8enqgt3OUmY5Sghqb8mVwnmH8R6X55QOjDZs6i0ZkAsonSVrWlolMHisBaXC3hRKYLynbduw96UMeUqFQCpJflSyzEp8q7FVQ+vrkIu22zovXrygblour6/xmaQoBc/OH/Df/mf/OY+OTvnpxUv+cPnn/PXf/pjy85fkQCXh1evX+EZzMl9SVzvKsmB5vGBzs+a/+a//S/6D//gP+Pf/w3+P7//LP+RHf/HH/MkPf8ZPvtzyttpwdnbOt3/lW/yz3/0nXL99xafPP+fLL645/eAxaiZANohG4tnipeToyTneOJr1hlpbnLWUs0UwMW0sNvMoWTArj7jYvEHvKnTbInOJ9Y5MZSwWS771m9/iyxdfsqsqnHdBA+t3BOWuQGUlFrheb9DWsttuaeoK7SyvLt6SqWCeXhQlT58+pZgV1M2WzWrHg9MHPHv6lFevX7Febaia4E8d+CKHNZZP/+4TspNjsiwn15ALEaLyassiVzw9m/HsQclcCirj8DIGrvn/b3kns9hLpdLfMHBNd5SDRKrfR657772DqRh1bY9gFIzokDsIxV6bIPcjnHY2FnT88ER6PlSdVipgj/w5VKaIu9ewif2xjRDrVGIpQj8jsz6VZEfScYqYh7oEeN8Hu/GA7cOBvM+GHUtTPR3BcejJQ+vp/ahP0+fi0nkfPztGPBLBnUbkfYvnwNzDKHhSTxwfqjZ2JiL9vWf2CbfRPMZoi4K99byrTDVee9qLSYPTeUw1DlM65L5VHvUt6e9w3Y/25vTdQ3s8/Uw7ct883Gf2dZfmt7837tR+Pck7X10ulTKKPhG+DJ8hGIihadoQLrtu0K3uCFQ/ogWlGOqLJqypRjTtnhRy4Mj6egZGcdRLMRCTvam1j3zBPiMaGaZ0De9nfPZ9FPs6RWqaP7w31Dtpt3tzusfu6kO8nmqBxkzQAS1QIkWYauPiA0LIvu8DY7nfdqj/bpid/k7zS/qoGXxHuXtv39WXw5Yco3p8Pztjhk50kTVVYoHiCaabYmDsTebRVtAaqNvgu2gsvWl1ND+dwvVRB9K+Jf8H2A4CF8xQo+BFdApGH8fpEN4GxrRLN+h9sGaRKiMvZ107JmhWHbS2xbWezOYUrujbHzT4wZDQyWiKGvbRWHAYPyNjdRcTnsBAP7zbC577s+qTe3EWhmjk6TnoYYufvBNTD/kp3I1zGq47m/ooDpZEPsYr6LuV/u7625mOecA6G8xLXciFiA1zr7Xuor+HXLTeBxNlYy1V09KYNvi5WoEtHMvzBXNxzAf5nJPVjtWu4XbXYBDs2hajHVjFut6xaxre3q6ZLxZUQqCVAmfx1gfhvPA402BxzGYlH3/0lG9//SnXtze0esdmXQcNsnWsthVnVjN/cEL54JibeoMxBq01AiiV4tHpKd949gG/9tFHvNaadV3z+tUrmrohalitdUgRhHZ5USCVgkIxK3KOixm1cCyOlhw/eojyWzK6oH3KI6qQSkHg0d7h6pBzrygLTh6eorRFbGs22y3MS/JMMWs9um0RUpEpRbRUCqjHd9FRHdZbSjEL6Ue0xtgQW74oS2bzOadnp2y2W4xuKbKM1jcILRCtBu/YNRXbuqZpGlAyBCxCkGWSVhuMswil2G43NE2Lt5bFrOR73/ttfvM3/hHPnn3A66dP+eNNy0++vOB6Y5HSIrym3W25fHPDzW3FZmtC/VkLXuB1MH0WQpLlOcvlMabVuMagVYMxphcK5UKwbTX1rmKTb6h2NXhPJgMzrRuNyjLmR0d88OwZDri+uebq6iowzVKiMtWNzdMaw64OLiKNbtHOIqWiqmpA4JxnuVii2xZnDbrWIASL4yVPPnzK7WYdNLsCrNEoAl7wrstv6SzOCkxt8UIjVUahCnIPJ8uCZamwTYNSRYd/D9GWv3j5ZQjm03I/s+gTSWEEMmJAKAn+Sfs1ZQAAIABJREFU7TvXf08620u+7uYp7mESe+rp3e94+vxRPe3Qd3QgAmIQChLp4SGCOI5BwJCBY49AHhNEQgSH+lhvT1gdGll/Xxy4NiWwhr5FfuVuLdn4d3pBdFRcIF7CnDjvEb108v7NFfubtusIjKcYPXPovTiOKcGyv46j/dWfocEfLe3lOzV3nsPt3fGamH73w/cBuce69ruOYG9+gOA/499NCAshSGJu9nmCxg0lhJlkb8/0v5N6+h4mhPShnTma2wP9mwon7ip3EtMjYjxZlzsWJBIzdzOeh/vr47ondFQU0AxVvD8w7f0humgpPjH/Goi68EiIJtlgtaGuG4w2PRwMEQqDMbmQIvhqdcxarD/hYfoihYpH4717LZK/+PvgvuuZwMNwJdWO9es4YRYHDRJ9Pen3O/t4x3rex7Te9d4h2JncHeruP0UyPwNsGdIsjJmGVEsWa4y5R6d9Sq9FPOL5xRF4ZDjx++30BH83onF/urA1Pggn7GRNAhqUARdY10e7jsvrHFgLxgpa7akVtGZgFkO/JjmLPf2eGjE/CeyRUThBwAiC4LsoOkJhsFcBRWBEvDM4VC8w9AQz1UwqVC5DLj8Rom1q3WKaBmtsSIbdpfUAsNbgvQIvsDikDIziPi0wPg/x+10wfISnk+cHAYUf3QufwV9wv7gRYxnhi3cDTp/WL7o5idesHfJhhzPr+lyJ1sb6ur3dbXnngslvHKMTgbm2zgWm0XbMo/fBdFVEgXnwuwvRcjW7pqGxJqS5yDLmx0csj06YL444OnrAxeUtN6sN17cbtBOs1huq2lC3Gf5WovFcbbbMPDRS4ooC2zRY48J6C0ltLOQwn+U8Oj/l2eMH4DUv3mZU2zZokrygNoaVbVken3OyXDB/saCpWtbrFaubGwSe+XzGyekRy5MFR8dLZrMyrI0JvmlCQKYEUggypcjyHJkpfClYzGecLI/IFeh5TjXLud6+RjiPUxI5U7T6BmvCXBlnaesaieDkwSlPvvER7Grqiyuuqh2L0wXzWcmiEbx58zb4kSpF1vmrOueDj2Hnz2idxVtL01psF/DJC0E5n3F8esLx6SnrzQbvPYuyJNMGaS1u1/DZxSukyvji7QXr2zXzsoAs0CuzTCGLApEXqLwIwdpajUOymM356KMPOT05oa1qZJ5xtWp5ebENPobK43XF7fVbPvnkOZuq5mq9xipJZTcII0B7hAkBXqRQlMUMQWAcpcoQQna+hI5c5bhas12tsdpRVRUCyJUMglRnEVKSlSVHJ8ecdwzg28vLkFJHCGSWYYzG4dHOsmtqnAVtg89rluU0WmO1xVjL0WLJdrPFO0NTNfgio1zMOXlwRjmfceQcea5Y3a6Cq3WnxCnzDCvDObFti0OTLwry2RzVWI7nOYtCYqqaLFsSQouZnlfpgEV/5n8Z5V302rvKO5jFEWwD6BFRMIncJwZjkXLwrOu1E9HE4T1C7A8Sc3EnUX9HlztGcUrsxHGk1P5h08Qxkg/vvGvBUmJKJsxMf7AjA5rM0V0S4Wm9qfagz0E4TTvRDfLQXojEUC9LTQkdQhS0vl8Txmo6vkgsyan5613811fY6BLRM/KiDxwTiYlxnXE5f5HNP6zvwHT/IuWQZk2Iw0P2HD6sHc2z37dkxPdn1oEo1HnXXKRCnv44fIUSqh+/eejsTAUeh4QB76fBTl54XyCQzuWU4YlHX9D7W/+icDgKAXuCWwgEChW1Isazvl0BsF6tggTbQ65C1MOQKD3krE3PYzqEQyOOpuzTjkccM2I6nethbqeDG837oVm9iwEbMR8ipM5414rcpxH7ZZQp7E7h0TQtz1hAMrwf2ZSeUXTuK6SAeXf/xpp53wss7tLaHrqe1jOdzH6O5bA3ZDfC+97xvYAj4vSurXhddNfpUls4gTGCBs8Wy66x1DpDW0AqohVVzMU84M0pw5+6Jwxa6gE3Jxq/GHSmc1txOphJSjwSF0bqwUuFzXKkUgiZsTz+EKMbdFtRqxW6rbDWUDW7fg6qekdezFAClI34tWM2fcgZGfsBg5/gVKBy6Lz0msVk7L0mUxwQ5nqHT0zFR4yoD30YZDMJYxiZOefiTWzSN+99yMfcz78bBFZdVNPB575j130QADhnu8Cl4VxYa3HOYbpP2xHFMg9rba2laVpu1jtqY7FI8vmS5YMnHD18wtnTr3N+dk5ZzpBCUu8aTh8YlFLkeYH1gqvrG7a7ikobfK642e14e3vDZ69fU21rdpsNF69eUzdNMB8WlgrP8XKOtIYf/uCHHG8b3t7e8vz1a2YZzFRGVpTMj5e4dsvL5z8D7xC6wbUtby8uuL6+4XK95nl1zb958zP+7foL6qua26s1QoBSEmvDWhzNZ5w+OEcohTGO1xcXLE8WlGennH70jEcnC4rrK1bPNS/bmqwsyecFp2dHXN7c4oxH4VFFhmtzlvMF3/mt3+T88SO2Vze8NfBSb/jah1/jg4ePeLQ84c/+/C+5urlhu63wPpjhShEC69SbbWDi8XB9iyTQUSrPgqhBSgyeum0C42IMWhtKK8mAar3jv//D/w11VDAXimOdcaLmvDVrrIBf/fq3+d3f/30y4PLFS2pryMsSJyTXVzf8T//z/8Inn/6E3/it7/C//ot/wRdfXLKcPWJXrRA1VHVNvX3N8y9f03iPKBRH50vevH6DMI7cQekVxof84TdXbwGCaXMn5NrutrS6wc9KmrZh/abCuJDnMBcO6Sx6q5nlJevVik1VIYWgrmt2ux2b3Y6sKHoz6rwomS0W6E6zuJwfIbMuf6ULPqVCBAGUAG6urmjbikyCyAo2qy0/+8mn1HXNs48+BA8/+P73QwAjBQjBaldRlnTwJJgTz/OSo+MTts2aWSmYFQKtLX6eASaheXtIwJgqEJNr/9+Wd5uhJmXEMAjRmR0M9yOAknLwKUivB+J+YGymQC8t6TsjAvBdzIH3QxRH6KnD2DZdfd57rLaBwUqQ+NBOeLBHcj69ty9VjMnlpZSYTlTnUm2dCD4gKSGS+ni9i3jw3vdRrRwOvAiRr3wX3bBbEyHEECY+6YNP6hy16cdMzF39GBH9Cb8wei/O4UQqO60rlmkwgTiOgc+PxAwJgRFByJgxPqTFuq/9OE/9luglv2NG7dBcjIsb3Qt1JuOPzH0/knFddwkpesYuYeLj6/25SfruvRv52aRMTLwWorcxqleEh/ruHWLMUwl4aCIhUpK+TxnF+8qhdenPymQ+puUQk97X1xFOvVArYZ76bdsBZS88Xh6ud++cQJAaetGRVQPgFvFsCwh+UA7dtNzergDPbrvFGROmufOLsrZLBi5hFA27XwCfTkU62O6RyV5Jx0ecisAsHhpXKoCK9d43D6P56OCiRPSCvwFe+0n07DuI6QNtpdy7H+39qFEbv7fHEDLs8xS2yi4OvujHPGaYiftuIuQ4LNyZzs3knE7GF1Mpxb2tcnXwuUO/XbJ2PunjFPaGsxe1dvs41SY5eUMuz8B8ee/BeZyguyZHzKVSQyh35wTWerT3NN7Saoc2XfATJDImt/cRx/luDLbLyxf6L4QY2u/8hwKKToghQeBiOpyKB2M1UbgqUQhvcS5EGJYKhFJYF6JUKj9DiIyiKMhUhm42aF3R1gOz2OgKoWR4XwTfWuclWWZxTnVnOs59wOvxb7pm98G7qTAjrlBAk76fb99rFifCtYRJjHWkAW76NiLDyOBb7P3gr+a7NlLfwwDLgg2LlBLb3bfWYrr8ihFGWWs7zWIwSbReY53GNjY0KyRCKM7OHyCLBapcMD8+Z3F0RrY4Ri6PMV7iTdAeGykQyxKnFFpJWm0pHx9TuCXnuqGYzWm1ZVd9wK99+JS2btlud7x+e8GqqthUO9a7LTerirKAQnpWN1v+9Mef4LKcWuZoI/naB084enBC/uCIm8+/pG0bGm24vNry8PEDpFJUdUuZF0jhUTvPq7/9HO09QiqePDlHCMn1zYbdrunn3lnHbrdDa0u93nFhXvO//5s/YXl8xG674+rtFW3T0goQwlFcG4osA2OomxbaBuc0m92Gn/z4xzz5/DXVbsP16gaXS9zbHbvqiufLNdY7pFJkWRZcGVxIyVHmBZu2pcgzyrIkW4aE9s46lMo4OTvFC9hWOy4ur8g8IRiR1qxlEfJxe7DGM9OBbqmaFitMn9fy+eULxA/+Gqkdm7dXaCdQQqJUxtHRMf/Xn/4Z3/+7H3F8tkRfXtA0XdRbVTI7KWiaml29w3o4Pz/l+GTJ+ekJxaZmZ1pafGeaC6apubx4TZbnKOuRwlMWOY03GNuwbjUexfnDc5bHJ1yvr9GbW3CeRVkg8wLpPA3w4tWrgAO8J8vzEFVVSYSQGGsxJuCqrMjRRhNo/TC32hhmRcnx8pi6rmnbFu88s1nBum7Zbbasy1t00+CsI8szitkM01aY1mIsHB3PccJhjCXzUM49Khd4IVFZhswlqpAUMufWOhSWQgQBWM+zTFLVMhLq/cPLfbjtULmXWfRdZDgh6ZBBB1gIKVlD6OuRmGxE1EcEF4nZAeBFU7D3IMrFOBjB3YRGd//gQCZffWKr3zM5EAmbPQZiRMSKEVFxyPE9lSQPXTwwXtEhR7/POEw4oY7YCSMQB+/LSf0D89N3XQ5EZoqoBJ4Yt20k6B13tv/nvN9bk71ZSJDU0M1I3HQd6z8TwjIShsB0alNGph9Wwsj0VSZDfuepSgmv9ziBe8Tb6GY63em4D/djmJvIeqQEwLThe3s1rm8kwRmI48jI96aZYng8rsm0meEMT9s61LnUn208xrGGJb4zfE949Unb47amRHzar4FpEiMtW0xGHgUokQjiHvgzGp0QA6yIBJkf7wGfzDMEH4bdZoPH98gm+sTRCadCqkXfCxmGJTm8EW167lKkMdpgPlZ/cN7u06LfJbiYnivR3x8zTun7A0ubrncPysaDSNqOkGR8ZKbnbHwGh/pSTeMIQg34pxMgDIJIT5/CIeKFNKJ2sn8PMc53l3EdwxlLh3GYwezvT6rzsdpDS+hBTG5Mz0N8fWDCfb93wpnqOxZuC/rUCNIJnAEjoRFQGY+2QWKOcyCCmdehMY4ZbJnsHd8PcjD7HQbfnwUBwoa6w5tBaDPgXk8wr+zmGtehREkh50gJKstG82aMxpgW4QVKerT2gAxRLnNQUiHkgNccDkFG2CnJOUkPh0iu4XuhSlwLH5HU0GvoRE+JhLfHZelh90mMAvq8kBEWOQbz0hg1NtSjnOyD2iAFpo8qG94PuD8In53pzJBt0HQ6EQPihEjO4bsNWkZv8B1DnxUzVDEjny2ZH52hyiVZuWC2OKaYLfFZiVFFqFfIEHRLSlAKoRSoIGjLVIHEkxuFygpmhWNe5ByVBd56mqbh8cMT1nXFardltdlweXmLxCBsC9UO0+1foSS5kpRlTpFnKAm5CL6Uvg1MLp4uIK8PDBCEvKFakBWK2WLO6ekpAoHRPqRosI6mbXHeY3SLxOG0Z+d2fPHyBeXVDKctumqw1pGLkiLLOZov0a3FtBrvHbJj+rSz3F5fw22NNg21aShmxzR1zcoY6m1QvuR5Tpvp0K6xCCFRZY7bgSwyysWM2dERumkxTof7RUGrNW1rqLcVsyyjyBSz42MWp8foqqKudrRtjWg9dBGBa2PwSiK8ZL3d8MUXL5DWYzc7Mi+RNtD+MlNc3V7zdnWNeiE4VoqsKCiLkocn58yKgpvrG9rXDd55zs7Pefz4IQ+XSy6+fEFrDLrTYPckSXeGAy3qUblEao/1DuvgaHnMkycPOX/4GPEaLuot3jlUMUPlM3LrsS5ouSOdHpRX3ckUYsgzCwihBmMGBMZaitmMo6Njzs8fcvHqFTSBcZNIsLq31jHO0bQNznuKsqBtqpCjWiqyskQT8keKTCKzDC88rdNkCEolyZVCdxGTRcSs/dlPgcAYbiTAY78kuPUQDda/fpAOuJ8AfocZqsJLicigkA2VnCM95C6o/3PMiLyMCxM6Fc0dhqSvfeJg6JKeyhERE5F5kD7KfqrciAg4POhek6JGaZVHz0V6L2p7xxK8IWiBp0OSIwI0sf3vFkIkIaZTkxDnTDfGFDHS+4L0mlklEW4gfHqtYETWdN+dRyqJtw5hE3IqfdYzmaPuVRjCmcf+eI+3cVwgfPQ5maLCtPTUbUBOccw94kkaJZodW6b+PHHsCEFM1xTPSL9qPvZZDBdEFEQMO04QTBf6tY+ZdOOEJOXgmCYMSrqGh7XH433nvUeo8fVpYyJpY8qK7TGLMbS864ClTBidbkxxn6RtOtcJbeIGZxwgJ51/51zvHzMIbDpi9iBH6pO/oGEQnUVBJNamjEMAyjAkgN5nUiJxOD3X6XhHcAFBb0wZmbeEce0J8iRpoU/2WqzPuY74jHAmHek9jFScCtH3KUreI4E2xBwNWpOG1XUT+thJ3V0/T4Lo5OsEiEz2a5v2QKgxAW1wIQpzFKB1JnpAl48r9K9LbhYQkOjCexNhkxvtoXSfx+FLORFsiUjE9oBzVCd+ok2M8+9iNNSwx+L9GHUyhVkR9sfnfJzwpL6eGO+H7LrIlcO5jXVFBVBYcxOSMBP6oqQaWX3EZXG4LlreuEzP2wgmEPfjdO+M4YaUYR/etcfSOnp4luTS8vhJmp7w3cU8gZ1ZcArD+nMl1fgtH/FwOG/OBQZBJtSAlLJPvyEQlAasAa0ERiquWs8j7XHaI1qDz5ue8PcT/7u4V6bFy4QQSogceijf3feCMs9CthkX/PCcC1Y2WRe6HoKZt/LBEqzj/UEVzOdnuNKi1BL4WwC0MchmR16Ad0EbYExOnnsKFxgHlYEUHjDBnFOVXcabyFgnridSjva/98FfabS+zoXI6SKeWzEIAKxESPAdcxbdPAKdIHpGzTuPYha+d3AoBAQKJrrBRDR0QgqJaBXWBP+sbFbSmGiFAt63SO9QhCAwtlrgnAhaJWVwvqVFszM61Ok7WqG1ZEKh1IzF8RnHH3zE7PQh87NHZMvjQPo6Dz7ApNYJtBOU83k/LhcyTpCpwAip2SyYejqHkhm7qur33/JkRlkUKCn5mn+Mjn6oWnN58QZjDXVdcXV1hRCC9WbD9fUtm+Oc1m6xqxZWkOED/DSOhYL2Zg0ywCJlbDCJLUo+/OgjZJkxW8w4OzkJWMcKnLG8vV1ze3Pb+Xd6lgUY7YPGbtdyc1ORZRmzWY7WLaezOY8ePuHjj7/J3/zN31JVLbCjsBLvRGDCdcNLXZPnivk852RRsGm33Gw0eqf5+jc/Bg9at7S2pcHiZIY6mmG3Ej/LkUdzjs/PaHY1LTUIQes8jbFoYznOC7RumR0t+fhXvsXv/daHvHr+gs9+/oIffPEKu9NkmSIvFG1jyFpC8Jwi57J5Q6EyjlTBsS+wrcW2hkZ5To7nSFUgyFlf75jnggdHJb/z3e9wfH7GZz/5OeZmxW2refq1b/DRx1/nWOX85c8/weoWoS1WgvGCvCg4O3+ExVI1FW1Ts1CSzID0AiFzvv71D/n442/w5MkTylnG6uqKrRW45SlZviA3FmEM1lRIwGpDUzcUZQnIPhJw3gW39NYxlxmWIEjYacPjZ894/PgRTx4+ojUNRrdUrcbUYU7ms4LjsxOuqzXX6zW5yliUC26baxDBT1QWMwov8NLBkULYnNZa6vqGR8ZyIhWlyrioLaezIIzDRqRFj5v2YGYPJcfRmnvQySGc7hjjjbTuhE58h/fFO81QZUKwTvufmqzE3wOhvW8i1JtwiJ6P3pe8eR+ceROG6b6o1V9N2vvuMkXYsajE/KS/1RPvcu/5WMdo4fDj65FASPituFGklEP+pDivd9CyU6ll3CRSTojxeM/5ZJxdo90TEYV1pETPCOwRsgfmOx1veEaSZWp0L/2TozkdB2aQYtC29BMU5/BA21PzsX9omY7lcHtfoR1PJ/G+/0QOGhbfJ1OfMq7/sPGN63yfvsTyyzpjaf3vM5YpMzoQa350XfSajcN1/oP3RRTORLDXnbloahyrD/DZ9cS9EIAcM7hOdAzd5By8qwzMUOcCYH082L0UrGP/A6E5WbNDTAlExg2EGBI/x7+IuMaw2nWMIr15594Z9AMztT+OA/u5I45TWHHfmonO3HGUmzKpP/YlzFWX53KCs4b2PQi5zyjfUwIxP0bD9z77ns/189IJM+6dgzhfd9QRf6cw5NDw0j14iDG2IkRH9HiE9TRNS90oGqPwogyh6eU/BD70FEHyu+8R4DtiRoTUDN2jgVkCb5OFcF0CbESfW01IQVYMqTNOHz6i2W5p2gZokCJDFUHP5r3EOoU3shNGKKTIscZjRYuUwbcxhTXWmn7uAoz3nTWBGHIad6FjvRD4RHgQhOkG6bqAgN2cR7cBKQRY37udtOZNslbgffBUC/ZBCuk7U3egkddYFdKalNIwlzEdiaRqNY0N/odCKVpuQQSf0Gq1CeamCLLZMXk+Q+UlRTHj4YMH5MePUIsTstmc2ckpWTlHzRaIzkfLe4/wHiUl1li0NuR51rkFBAFOqgF1zuIIGkcvJCfzRRdURmC8Q7dt0ES1Bu8EQmbIWc4H3/xWmF9r+ZptyWROVVVs1ht+5dUFQqowz87z9uIF1ze3ZNe33DYvQ6Rc0+XNsx5agomo+Iy6M2PPlOTRw4fcbnY0xqDKGXlZ4nEYo/FYcgtoT9NY8iz4uzZti88k+fEMP8/4+eVLXu+u0bomQ6Drml/55jd59PCcxXLB3/zoR2y3G6w25BZMaxHGUaiMV599gcoyMimh0jxeHqGUQr+9Ja8twla0tedm01C3DcaHIFH+8hoBlFKQn8wwG8tiOeNbz57y9Q9+jYxjdn7G7fNXPJjPgs+vExTSoTKJl4JaWCrtKTwYlYXxEQTOrauZk2G0QdcV3mhkU1BoxenshJvVhpvdhh0tlPCjv/9rPvviEz5cLCnqFaUztJ085eRoyaMnT/jN732Pt7c3/Pz5p3xxfUNeqN4HW2vHYrHAOs/F5TU/+clPMMYwm81YzBdkKqchWPW0RqN8YKnKsqTVGqc9Ms94/Pgxl2/f4pyjzAu01TRtizYabx3b2xXLcoY+OsY2GiVDwB1tbUgfhEC4gIPV/8Pcm/RokqT5fT9b3P1dIiKXysxauqp6erpn6Z6FFCkNZsT5BDwIAggCgr6MzvoEuvDAg24CRAEUIF0IiJB0oagLyRaaM9P7dK2ZGdu7uLttOpiZu7m//kZG1QwlWiErInwxt/Wx5/+sOmrF98d9FCwJgSQGvZFijekNN7fXvHrxHkfn6A89z64k63VDJWuC3WHTmpCPOkn+/ysPgsWBqS987QbIk8HDGTPM9AglczoeWGL5+fzd8t4DbSt/zg/Uc+BtqY5zz4/PSQYrmcQghAzWw7yNy+0oTVKGeiHp8pgwMPmAGQCS9ymZ40nLijrnfZv1STwAgIY+iOH/MxYzHmIkQDdnCtJaKE0Ez4H4iRaweKdsy6jxGX9msB3g7DeW1sRcM/guEPjNyrvA5HRtB8bgE/NSroFRg1Pcf3A9nwKC5efis3Nw8tB4lFq/pZ/nnlvaufN5eSwDPYLF03nN4Puh75btO1fOAfGyXxNBSPGl8fcCLZbZycUIxErBTVQwLgsCluakvOLTph21+2kPFkKdYUQeRfdGgWC+XdKuE/rCaXqXYW0MmuXU1pnf5IOlbADL62wyhozAM8rfxPDN3NKs1ROiCAayUOL7cvL98runz0/n7lwfB5oTplEm37XvIhBaPt/m6zEDc4qxOaEOxXxmEF/Sw6V5yu0OIaTIbTEdQ9sZjn3F0ThMSMHJivNIPDCHw3U5bX/+5VTg40FEx95oHSOHcyDi/HgY5yFywSKUQiag4H0YmLtc1psLggfbdzGwRQgY1w/5UqWUVKoGFAJFEIoQM98R4wWk9Zb3zTDE0deqFH6TBTkl3Rsc5uPfzjuCTEArrV2X1OHBE3MgpjNQhO0g4HAh+hIGAtEJNOZgjJ/02OHEcXR9h+lbsn+79QbjHX0yU7UDr+Ex1qD0ima14cl7H9Nsn6LqFbpuuLy8RF48R64v0VWFbuqoVRYSZxzOGrxzeGsBjxJRm29MR8wR6QljuD2EiJYKtdQIrfAplUAOrkMyVZRaoVSKZumipjW74wqpqPWGumpQ1Yq62VA326hVlwqB5MWr59ze3XF7e8+zl6/oe4MxlraP/pAmpTparxuqBP6VlJi+xdmYPqHrHb33MdfgxZb2CMb32OAIUvLs5Qucc+wPB3CO/f19TAXhwe4OeGNAwNXlJUorjLPsj8chFoC1USkgEw/U9obVuhn26ma14dnVEwgx8EoVBMI6XOiif6SMqXpDXjg+gAfvY1TRw/7A53/9K7ZS8tXtW968+Zr3r9aZYcR4qHSN9RbvLZuV4NXzZ/TGc3e7xyUFgBASITXORhNoJUA2CuM8b+93/D+/+Dk7Wm7vb/CVou86VHfk8mrDn/7w9+nb7/CTX37Ov/3pX3N/v6eWCo3Adj04R60069WK4AzBJhulSvL16zcc2g6lNNfX13gPWsV9LDR0xwOHwwEbLEJphh0qBFVdIbVmf9wjJGgRI0Afujatpbj2u8OR27dvUSFwuL/HJBoR6SOY3nDYHwjO43qDD9Afj8kCUCSZWfTrttZS1ZqLqy32/sD97sDzT1bUVVyXSmoEhrjQly0w/mMp79QsZhOaaBqUUcXIPpR+ElMmhMXr4/1HahUoDr2FQ3bpEH2XBmYJVCxJsSfPZQYq902MP6f9E5NzbuB9FpoSv5luZqYvfWRg/EI08RoB0ljvaaWxQXOt1yLjOevvFE88bJ6XNYAPMVB5g55+ZxzrU6A4MlXjJp82rvziHAj+bZWxqjCZlniwj98OCTyH2fSdL5lNY8KsxTv5kXNmwEvtfMeaHao8Bc1L7+RnH/re+N1HNnLhe9+2LAPmMS/qHDTP191SW5aeWfrW4nq2VqLZAAAgAElEQVTN+yyM9Y7zGWnGsA/GmoYfUsiYyuAd9Gr+vYxDT3JxLjwvxGkgmPN797SKrD2bPDfv0xJ9KaJHLWn+ykon62+5J7kxk58ia1cLUcy5IiYnSXynpKWJlCdaPzXGf5eAKb8b5kA335u9+liB1aOFKYyjOdDPgiCN3xrXaz63pmAxFCa92ew/n/Kji4L3nq71HHvL0UawWAURk9sX3ToHGMe9OOtEGEYScWJG48c1J9IZOySWH1cAAWwwaAFIiUxRYgPTNd80a7wPGCVjXjobNZDeRpNyJSNI1AkGIxRINwh3fYgmjUMnimO/1JhBGCyEBq1h3u8y7ees9SZpHrNPlE1+iDJgjCVPXCUvIPhkmtpjXR9BGI4c/i0Kpx1OrGMdHqxr6bs9ITi0lngRsMJhg8cGjycmjffGImRNvb3k4uoFLz78LVZPXqKaNaKq0FUFzQVUa7SSIBzBO5xpY5J00+FMj+16nLc0dc1mtabtWozpIzgXEZBLEbW0q9WaqlmhZE1QsuhFlFFUWkdUUAW6VkRNUR9NB32IQf4qqZGqopYaXTVs1pdIrZFKo1WF9S/Y7/fsdntevf8+fW9ou5b9fs+bN29oD8eYh7CuMUmzKKXk/v5+aEvrDSYEqkpzeXmJ95beebwIVFry5MUz+s7QO4s/tOxu79j52xivyTm0lMim5uLpFcZbbnZ3hBAw1uJCTBejKo1yGoylNYYX77/Ee0ff9+iqjt91jvvbW5RMlM07jOmh1pEn8SThZBwf5WJAHO8sn3/2a8ztgYNv6en53Y/e48vbe/atpbeeta4wvUFK+P777/HxRx/y+vqOH9/dRP9SFcGrtwJnXYworBSykrS942Z/5N/97K+wdQSSolaYvePSK15u1vz5H/8RynZU6sf88su3HO73yWTU8Pb1G462J3jPum5oDzamciE6gr15e81uf0BKxX6/Z7VaQwh07RGvPYf9jsPhQH2xRmkFPmoa61VDs14hpODr69esqwYtFVJAZ3qEFINhhGlb7p2j3x/iOrYp7ZUICC/oO8P+fkdwDpNyTvZdFMIIUqA7b2nbmIN0s2nYbNfc7ztCb3nxvKLSMZuEVhpJz4RDeBfdf9ftb8KcfYP3HgUWx/xiAxyJ18Pps9OPD789qrGl6dN4cfrMtx2Ix36/PDyn2tB8MsX+j+fE6aEvpV5o5+jCP/QzcZNeZPGYGB0q87fSmMsUbXHUEJ4D5FPGS2Y4X7R10s98yC0O6+l8zoMopApHRmt6efCpmdYT/16SZE+Y2vzRoo9KFIzBQnmsoOB8OcdEh+H+RDMm9DvqXJYUxDGfjUs5F0kwMAVop4DnmwK3/2/LGSkJCwKI2b6fAtzTnHez2h68/5BQ46Fnpi9kpvOE6A3bRCQJUgh+TI6Z9znzvTH1LXh0UfJUo7dAg3IJIUzA4tz0O7cFxDej1ydhvtNrM+HHuwQV5bUQRnPKyVMzgdLpewIhVHF7CvRi5NlyfY1ajfj0SFGiUPSbl/xO2e4UH66kHN+83gVguTiGOQL5ufuT38ZRDqFci6VvS64rrpfoQ51ueTi2jt3Rct86DhZql4JJLCzFZfq4dI6Ut4o5JKSgQzFKqfQgkhloinSfup7BcDRzlB6QEq2ids0Va8cGRbO9ZLXa4oyhbQ8cDzu8NfSmTWkiLLVesaq3aC1QQiCVigobRwx6IQEli7UYA3GMeyEDx2xumX6HZC2UNIsu8gFxvwak8Mk3MzKpESzG9dD763HMZPonBBBTPLgUKyB4jzWvcVgcFovHSBeDv1QVSq7QaBoqGr3BBoN1lt44nrx4n8v3PmTz9AXy4j3qy6fopkE3NcfjHtF76HcY09Ee7uiPO467W+xhj3cp+E0Q0axPaq5lRZdSmGSfTKkyHySp65qqqqhWa9bPX1LXdQRNdUqJkvoegCZArYC1Br3FFUFHCJbgoiYZqdBaobRCaUEVGrQQbJqGZ1eXKa2Bx5o+AkLvUEJwcXERo7+amK8TKbjbHbjft9wcWm6OHbvDgdu7W0S340LImBZpVdPf3mGspQ6Bm303oTTPnm548eolL1695LPPPuPr11/Qti1CQNfBel3z7NUTvvuD7/GrX/2KXd/RS/hP//xPOR4P/OY3n/GLX/ySvgroVc3m1VPatx4lFEoqDn0Hh5bgUpwQHfeDEoKnDv7zP/sTlJb84rNf88Vf/Jw/+MPf5Q9++AP+6JOP+R//j/+dn/zmM37x9Q0uGKrK8f1PPuS//2//G8zNZ/z7v/wL/uX/pXhrNV/ctnz19sBPf/kl1foSpTVCS4wzrC4v8QG+unkD2rNqKjZ1RQgxdcTl6oJmtYEu8cmAUoLDccf+uOfXn/0GKwJBRisCRdxf3geObctHH33IxcUFUkpev/4abx29jRo8PBgT07F8/OknaCHZ3d3z+Wef8Sd//Ic4PLv9ni++/Jx6c8GqaaiVZtftIFkfGO+opSRYy67raCo9mJ0jBb419G3LzbWjudxwOOxxph8kVlJJqlrjjUmgVvLpRx9gvME7w0rB737vGUpB11kqIaLAJbAQ/fRvXv42+cMHwWKUCIvBdnw47EQCjMwP9WSrz7zXU7+XGNhmHv2sABwZxIThVqz+kRLZc+VE+r8wimd9N/zYRgZNxqT2SZ1LwGmp3nIsh0NkBpgyqJwwNCfS2XmDxGT8ZrBk+vt8HMLy8xJB5hiytkAwMghLGtucswampqfzkhd1IIbkz0ymCBBypD2I3xcM4/UYrdi8Xec0K7mvyxqW8RthvjCZD+GEZeQcaBpMCedtY2pS91DfwiCNL77+wB6Z1/tQWQJw3+T+Q22Za/XndUzrOu3jXGSQmcVxapa1349p87n2p5A249pMEpuTLs6rFOnttL4jkynx3i8G/zgRmD1wXSSmdOjGO8fyfBktEs4DulzfouAifX/pu6Ug8DyNnH03TMd7XlxOBTOhN6lumc+iLJSK+SyFhODFfMOObZCp/+F8O8v+nAXW83viPKif74FhnJyfPPNQCbmdYYSkE8uFTGdIUPmRZ2luiw+DwwSCaNLWOti7wMF6ti6gpEiB65ZdBB4jOBiX3wx+ywDBJQQezywhJUpIvJBD1FYfQCcm2TlLCCBVhRByone2PgZpkUGjlGa9jtonY1ps32F6Q9sfUwqWQCPWBKGRoTzDBCFI8KNzgQ85/UimUGLAjAQ5aKh8Dvo3CJdcApM5AbnCJZNpJ6dm+1IFjDM47/DO4JXFB4v3ht4cQTgEMfiT1u8hRI1WNVUl2dY1SIUNAtsLVLVls7rkxfMPObYG6zxOwJP332f99DnV9pJexXdccLj9Hfu3X0d00xu8aWmP95j2QH884PuOURAuI5jP0e+9Qycf0wgR89gEbH/ACUErJLevv6RuaqqmoWpqdFVjfY7E6tG6QuuKqqrRq8thH/oQ0JVOZ6gAoaiURilBwOGPHaHvwRqU92gfgyNVElRT41NAndB36BAIpiUcdqzXa6qV5tn6Cb+9/g49gsOx5fbuDvOj34kpZFzAesfN3R2Hw5H94UD/fc/xeKDvDULEwF6biy3r1Yr7VQOXF3R1FYHOWtLUFU1V8cWvf81FXfPp3/kj/vg/+fv0fcdXXzu2q4a+O/D27dcIITgcD3SuG9aY9bDWKgZ9Av70z/+M/f0tx/t7fvD+h/zZ3/v7IOHpk0v+5S8/RyuJd4bf/OqX7G5vwDmuthtuvz6w3cB2JRHB83Jzwe7qCZ8+fcrWSV48e8VXzzs+/+w1UiuM93THjnpdQ9sjjaN28OzqkmZVo5Wilffc7Vt+/Mtf89/9z/8cXM+Xr6859EdEpWLk2Lrm/VevkKuG65ubGLBIxwjE4FEEpFDUdUNdV6ybNe2xjcG50n6s64rVes2LFy+4fXuN9w6loutN35loDqsU7fFIcA65WnGxvYhpMKzn4smKYD3eRk1tb10yX01gUSRNp7VstaZtjxhrUYnAisRP2xDQWse5CI4vvv6K0FleXq748L0LRCcwNka3jbTt2+Gah6xy5sqvv2l5nBlqke8oXV08+AZAGP8ank13i/N5QBfFexRvxRNjOPb+lpDx8PXZwfW4wRSDqLh8PAxY6x2NnOGLXMUUbI+SyPxOKN6Jj8yZ6JNaRiYhhDEid56+gscuD7VxmrLelJM687xPmMHIrU0YhFJDUI7xOSZ4/AjTYUxMcDbejAEfwoB+z4H/Rab6DFA8BRPnQdEJs3O+J6dde6DfIfV1ymCdMtxLwGoqNIjvhTBdM9MvnY7NQ4zoHNRlCXl5bxl8P8BID++UdZw8wTgGU5C71N4RKIz1Ls1j+XPZPHL67NBWGMzB86afUam0dfOcLLmrj5uvHM+xv+eB4tCmvN/OjsH0+Xcy548pgbKXk/pKsCaY9qv8uQQWl9o/f+ahtRl8IIgxGmpem0JQaNqy6DId5gPhFQXtTvd591idXl9e5+W4PPz+8v13zWVZMr7K4GTY5/l+osezpfZoIQIw+PIRiBExg8D4mEKjtTGaaNCnoHep7fncKDXkowCu6NRQD5OLoYhMLsToPzicwyKHyg94n3ISSjUd+5ACOcXw40hVUzckczRRpKFwWNcjbQySpFSFUtHXafBX9NmXfmjxIDIf1piPV3PKnRACzvsBNArn8SHgnRvyw/kUTVUisM4kQhgI4YBxNoK34GLwLDxBeELy1ZRSUGuNENFvDxm1Hrqp8UiCdYRVRb19wuriGauXLxBHEbWiSrJ69gS93SKaBoXE2x7ftbjDjv7ta1zX4q3B2R7T7XF9jzUduJjWAaKZnfNR4CtHxIwQkS/xeT4Gkhr3rw0eqxSq0tEnsm6GsXLWJaAYwaJaHQaBmwueetXECKdS4KWCYJBaRyXuweCcwXuHROCFGCKO6+AIxBQNXdsjgsf1Hb5v8SIgpKbWNdtKEZTmQksuK4EST+h9jOYJcHt/T9t2tF2PdY6u7TDG4KxFALKqEHXNSkDfx2ey/2VeN23b8vLlSz759FP+7o9+n5/+9KfYw4H28oJtVaF8NC3FWZpKpyEUGBPwFuqm5r1nT/jh7/wOX33+G74Gqkqz2ayRInBZ1YgA+/2R19e3OK253h1pW4sSGk0M4NK2PT/+y5/ySgY+/+Ka6+sDzdPnbC6fgjJopSKIJ+4bQgDnESHQNBUfvnzFatXgCdx8/RZrPW9u9/zff/FTViuFcDHlRHvsEEHQNBUvXrzH+uoKRIxqGxJBl1JRS8F+v0dXmvWqQSs90AypZBLCqpgmB5L5qEMrRde2tG1L13bR9cNZnImRnUU23wsBKSQOn4Q4oJLZtdQqpl0Bck5YrfUYgV9EDalQMTUMUlBXFVpKnDXsDwcupOLZVcO6kvQmkGfc+9HKcEJzz9DnhyyJzr//NweM7wxwE1WwRTLakhEN+ZiKZcJ8TfFg8ZzInN/iAZKfyWYFS9LpJQboHHBYKuck3/NrEzApkgu/KCY1QE4Lkv3XSsZpXlK05eJUCTE8vsh+Doygsmh+yQwsM+BTLiAfRjmqGvNDedaGkblI788YpxznX5TEfUScQ/1z0C+YjeFSy0sAJCMgzxrF8jvjz+mB/y4GNH976fvLoCPO6bn3Jn9/C+b7pB0PVHEeFI2/h1BqtjKzfGp6MH/msaWcvzBZM6dmlNO+PdT2xKDJh4H7HNiGkzU79Gj8LeT6392nb1ImPQukSLWZZo31ZRqopE6AMgzrqaghvRZiPYmmzDUyi2sWRmFO2scDgJ01eGlelmjfVOCwVKZ1TzSrFFHcChAyAEkEPvknTcEDZ+ucz8/SfAkRGVtBoExGH4tEIBNjndMXjGMhUvj+cV4CkcYVbTg3Eg+A7+mcfbM1dm4flPTtnJAnhDAw3lmEkWlvSFLCyUmd/ijrDGEaAGaoPwAiJCuICK4EAo+m84KDdex7g11pzsleFs/k2REzOXsWhi6fuyHtmdjuaOoo1WhAGwFZIPoOxRxm3jvErH8i8RjW2+Q3J9FVHbVxCXA5Y1I6Ckvb7qj1Cq0doq5RKTgGRB9D5zMVKtLKADn/YdzrLvUwRpP0zg7ptHAxgIa1NjKywSQA4ZEuRnWN1MTSul/jgyAIBaqhEhdI1SBlQyPX1PWaStc0zYpjiCBFBGK0ShTOB6SzbJ89Zfv8PS6ePUc+e0rTXiBEha4VNliMDOAMtVS4ww5zd0P7+mvc2zfsbU/rYhCUEFxK1xN9tnwQKQ+hxViHJrAeaKVP+248Y+O8JI0toEPAtHtMWs2y0gipIhZxMR2HlDIKhPQmRVwXuOBZbTYxfYsSOCHZXFwglcYCaxd91IQU1EpHUC6IwZBUrCP4QLvf4Y0heAvesm8PRIGCRnqL0A1SSS6VpKoUnZAEXXH55AnOvUAKhVSa+9sddVWBD+xu76i1woZA6zzuBz+gqiq01lS65u7ujsMh+lPe3t/xne98hxevXvKsrvjg8oqVdWxC4MsXL+iDozfR1HW1XiVwJNjvjnx2fU+9XfNHf+dH/MH3vkvdHtl9/jm/+PXP+fL1b7OSiv1XX2OOhs8+f829MXz6ve/y2a1hfzCsaslV09A7w2df3vJP/tk/54P6Cbvraz7/za/4B//gz3jx8gonLVpr7rsWVdVsNxv67kBAIGvF5uKK3/u932O9ami7jq9+8zW7m3sOh44v29d8/MmHPN+subjS7O7uUUKxXa95/+ULnr58iXWOm9tbrq+vEcmvtakqPvviC25urrnYrKNApK7wPmrx+rYHwDnP/d09+/0+RkttGt6+eUPXdxy7FnyMFuutpefI0Vm8izSi8wHTWYxzuOB58eQJuqrwBNq7+xg5WEp0pdF1ha5rKudAWCoZBRyknxspkCHQHY90veXls4oPXzUIYxCyQlYSfASuZRasx5RzPFdJYh/kXb9FeSdYVCpGoIqH/YxJW2JShpu5kmlDB43X7Nq3xcBzCfY3LY95J4QQJScl00UyJaHwYzoVDpytbyjeT/ouy0OzfGf4/2xgT56ajjMFk7bsM7Pc4jn7NV4X0X9kwq8uA0KRJEJCcMKIlM+M76UBFCLaE8msyXRp7Asmrlh7j9VYzK8tt2PccPP3TgQVnGcqT9pQ/BT5X1lfAcT/YynvAvrzZx+//yas62I5X9cSRzoXbjyuvd+mZFAzahBHk+GJ5llKPG7EkzChl1HIFM32EFNT1HeNY8g4NYTkO3gKFBFiiPw591P8tn2ftiFGxUws+3At/xyy3YpHEsWijvmem49tvr/kf1n+ncHSCW0Y1VDpz+QW8cBen39nPHPOdESco6APl286PwPIVqM2LQQI5bCnpoTh1yntfAio+wDCg1ch5XKMyboJgt4Edq3jru3ptxLn5Uk9S2v5wfV9AvzH3V32RxCSdj0CMKlk1Ap6gbVReyVSKPuUK2LILQygUt5eJ1wEbl7gQ3KFkTXrTQMpIqTte0zX4r3BWUcfLM72SasgE5CO/IHUCrwC4ng50+OsTdHNfRrTCBRNCpwRmddoxmidxVqLcgHno++fEAHjY4AbISWo77LZrKlXa9YXl+hmhVQ6RooNY8TfEALI+5iT0YKzklWzpdJrarXh2cffZ/PsBfXlFW2Aeu1RwqOCxVzf0O7u6Q4HXNvR3iV/xOOeRkJvLV1qa86HOPIXo2BdiviXJ+aLlCr7+IeUhzkF7MxrEKiEAF1F3igEnCdqNr2LJpvluS/bQQMrhKC91yAEQUiE1nTNCql1TDVRRM6uqzpqnkIAoajXWzYXF6w2G9577z1MCJiuo9/fs9KC3e0d7XGPd57txSXOOw6HHabv2FQrmqqhqxtWT54g64agNHLdYPEEJVi92MRAPkHyxEfq6FOE3s3mgmdPL+n6nr7rcAkUG9Pzs7/4CVIItrVi/eFLPv1H/yXGOrq+Z3c8oKoKHwLOWG7fvuX17h6hFM+3Kz7/+V9S+Y6P33/O51/8jP/1f/lnMXLqvkXXgR/98Pf5u3/yn/EP/+v/in/6T/4p//pf/Wt+/G9+zD/+L/4hbXvg6zev+Vf/5t9Syw3COLRz/OMPPuAH3/8tfFXxm+u3/E//4v/k0Bp8VxP2hl3whEqxudB8dfsWdS85HA5IBCuhkEKDEvy97/0e67Wm6/b86qc/RwTPcXfPT378Y/Rmy83dPbubO7wNrFZVjN5rDJerFVJC33c457i4uETrChAcDx0BT9f1/NVP/wotYvCq9rAHYnob5xyNrjDtMUb/7SV98nNESg59l+hNQCjFd7//fYy17Pd7bu7uoxa6UtSrGtVEv1rta7YXV4nfFvHsVxLTHpDW0DRQ6RXPn2355KMN/ujx2oNU0dzc1QMde0yJ+2RZkPwfsjwIFqXMeYaSZlG4CTGPZ9OppDUeFPm0WmDU03unWpapuVIOgDJIqh9g+B9rujTv32PLCLjGb5f/hrYJCh1dyVwwmc3MOArkRApfgmsfpkAyA4xYwXKAjHnXB2arvCkKSe6ggi9g6Ay4TLVpGSSNTE2YMV/ldzNYfEhLN8z32Ly4FobnJH5AWGkJZkn3jMGblznzeVZzTF5Dy+3Lz0/feRzoGcap6FuqcPqNgdkbmdAlBu5cf871+W8iUcp+dQ8xzuUeGNtb0IlvCU5KOrD03fTXiL7jWwOjMn/2YS3m+TLMeSBGNvQ+MX8FWMigcCJEAUKWpBdj4Um6xbgvRwZqeZ+c7/t09YnyNyGJYf5PQUGYrbtxvS35YgODlm6sSyk1muXO2jXu20jPfAiIWTvyUyd9Dfl/4mQNl8KuKDuKvmLRz4uBzsCo4Q0sgJewIJws3i3PoaFZs36WmrjTY0yQTZXm5SHN5EQIEVL4/Nk8nQPFQAqQFffdQGfyeI6TkgLCxHey72wIAaXUwPgP529ItSW6W9Iy4z2dhc5YnPMn9HHe19M9KTllcabjlp/1hByXNJ2lCcWmOoazMZsk+7zuHIO/ajHcEYQlnkbEwfNBJM1p1ExrVaOkjpoiKQmmJ1iD9RZjRFonEpk0kUKqmPc0RfskOKzpcCamkshgMQSPdw5j+2HshUjpK7zFeRs1Dt7gg0NI8Njorq80m8v32Gy31KsVzWaNl2IUWgsPIUUntZYKjfVgfUCttjx5/0OazRPQG9ZPnqHXK1AC1xnwR2zfYo97jm9eYw4HbHukbzvawyH5crYccPQpf6XzydVFRI19pGpRc6OFQCuBEBpBFTMDJLNPKQQ+uHyMpxg98boEVICoz87rLY5PNNO1KXelR+kqBqEJUbvkvY8g1FlECBjrotawqlOglKTRXK8IiJjzMgTa9oCsK2Rds6obtK4QOvo7VsGyDYGqqXE2YEwHwKqpCbYH4bChJ3SOcFRUeOrNBkWg7zt88NR1Dd7hkNgQeSKlFIjAwRzxRIEMjUYLBc6CU1yuFZXW6WwJeOuHMXPBR9PIEIOYdS+e0h27Iaqx846m3tKsJJ98/jIGk9WKuq45tJaPP3yPtRJ89otfsBXwWy+f0/zw+zx9tsbsgX7L8+2Gzgt0JbhC8/azn/EX3TVWa8zhhuAs3vkYPdVXVMFhjef+ds8vf/lLANq+xxz3CGei2XQItMcdlVwjA1RK4m0MKLS7ucXvD7S9IXjHdr2J9D0JCZSMtDV4j0uCishjSqqmwbmo5ZdC4ozFWYtE0Hcd24ttzLnY9+yswVtLCAEtYoClumlYbTZ0xtCnf7vDHucCbdfHeol0xaVUG50xGON4sm2wfR9NyX2gbTvssUV7x0ZrrHVUGq6uKrSsab3HCoMQajhv/kPAvQXW/FuXh30WE7OvEmiMgCJEs6LEh0wO3fkBka5lDczII2eOaoHBSAdCYheGw/6kTPjFMB4xCwfwEuOY23uunGcmk4nnINFfAEkl4Bhh46TefN5N38130nPFTOfxKGuevThcz++K0vSr7O/AkE37Na83g8zBxDY9FmZhcCd15zGInYiRzPJhMuusmF8r2zCfmswlPIR7iv2WpS/D6JdA/cy7eY2Wms4lgJs1SqF8sWxD2aOFtV7WVd6bkgsxacvSevy2IPCb+gKf1RqWDHQYTSsnKz4sr/XFeUwDMDCWM0Z5Pr/xZoZdoqgkfVCM5nipooFWjCk3lsdwGZSl/RhCBI0Ua2weGjpEM8dRo1CiyKK7Rd6/0/1wpmQkmugxeWxyH/ND4bQfkz7N6MZ8CKckoWhbZrwDKb0PjHkM0iOy9Nl8t7ZsIHUZSGbcNnlo/CXT+lJbKxiXyIkmkYV1PGnS0gen9Qz7fiDN40SKk/cfd/iX+zufd7FpI82dT8fQp2JPhOJ6OY3zc2R4l+Jaec7MwSggmO1pop+NtYHeOlrjou9SIYgo+3MKHBkY3nhhWVJ+WgogOVi3hDT+cW6EEBEU4PEumoDKBFAmyz3EgFPI5P8YZNGmBICQKb2DQEmJDQnMOTcw6SDQVY1K2iuCj4LN4AEXGUgbTUpDtJsmeJdAjxnAYhCRXvjgCMESvCJ4kwAToARSS3TVsL18ynq7oaprdFPTux4bon+WSDkpg7AEYajQOB/Hv9k+5cmrj1hfPsOrmiA0QfgYXOZ4wHb3ESje3NBdvyV0Pd7EoCBd39NZS297TLCIvgdrCUKCUkgdcxkKIZDEaK5aSiolQEiCqCJIVCL6TirNKFCJvEoe64EuizjPAwcUIkgwpk8A3KIbTXdsIQRqXWGNiSDBOaSMTDoehI8mvN6ZCMqVQGpNEBIvPK539F2NrjRN0yBWG3RVR78006KqisYY2n3L8XhAK8VqtSE5o0ahVRAYb5HBxkBPwRNMmnsRgakXCisjraxVBMa2b1NY3chbCaKLhtIVm9WKqqri/vCB7tAlaz9FVVUcj8eRtzaXSBPwxtH2HdfHHUIE7Kbiux++z2bdUG/WrK4uOB6PbOtLdLD84ic/ofGWT1+9x3feu+DiImpEZX/Bb3/0PrddRxUsT3HcX3/J7fUXdAh6tWbbaAgxUnAtGpy39MFxa9lsktQAACAASURBVHrefv0aFxydczQBdLKi8x5ub6/RwrNeNazWKw73x2i2bCxOK4yP41lXNYfDEeui0ATF5Ax1ziGEQylQWsdAT85TKY1pDbiY59OHwMXlJU+fPOHu7o72sKdP5uFKCFarNduLLU+fP+f+cGB/OOAPO25ubyGA6W3hmxxw1mH6nr7rsSaaejvnEugXcV5SYCMhFISeuoLLjUZJTfBRUOQJCBHNiL+tUD1RrIJGZh5q9sw5xveR5UGw6KipVMO6XrFZVQhnscrQNYb12y3tCqyaHqaD5CZv+jkrJ2LNcz8eAaPNS3FNKBkduHMY6dRjhRgc5MPwbj4UprnF3i3hHA/tc9JeSIvBx39j1LfsuzACM5yf1pUkvJPvpdDROZ9Q7ofIHY/UZwTc6cD1KS63z+arSfM7tjsBZymj02+Yhs7PA5vTAPjI8SUmHTweN9No5uJDdAqPVcWx1kIm/42SCcvAgWgLrmQ6sHOkuDBydqmrzrmYp4t42AdIkvJEGUpeNoSYalgQeyAKWCgY+FZBQEkV6x8Yr7SJZA76UKxfMuM7jdp6sn6y82kIE4zgBZP38rshgQshRdntooTJTl7UVDAyuyXTe07rd64UdDY38ORbKh3WQYAJucV5f8RDsKxF5TZnX89ZJ3KS6LwHAgyU51R7NLZznP2p39lYb163YxCuQcKexnzex8AIyrwQWOKBLUtwk1/zfsiRJqRANRrnfUyCnehUkKNAZWTYQQYTzdicx7lApWJycAJUlRr9l0XAm8gsxAieVWqCiAxEsRZ8KFITpH2d97aUKWBIWm/e+Cio0XpCw8oxn2iyRDJlZKTa02UZaZ0SMn3DDddjnepEGBhSO5e0YoUsgBFMZqf/rFUbgV+psRJ5vL0drstiY+X3h7Z4Rnri014sSFD0Fx+DF6jU7sEffXF/iczf4RPBkQhkiOM0jEyYnotSq7Efs7VPCEOqo0AMkkdgCJQ37Ks8zpnuyaLf+ZlQjFt6vjQNLgWJ8eyMASGGtpC0jiJ+X/YetADhMVjoBCFUHNHcHqF1DuMtzgu0ahiEKiK6LfgQg4dUInMDMShLbHdJY/LhF9uUgxdJinUVGIJDxJMiZ+1Omno0UkX8hxeQ/erCaO4dsi9hcnZUgsIa3CNCj83NEAIlBavtE8TmGX3f0ndHrO0xtsXaFmtH2pnXXeQTIgjSWhGUjNq44DE+JmeXyb/RuKg9EXhqIdAOLBUWMFZTP3vB5vIJ26un1BeXSBlphMMhlaBCRVNab2ObpUbXKwgtAo0SK15+9wfUzz7Aq4b2aLD7O+zxDnO8o79/S3e3w7QdXWs4HDqsdTjvQDh27Z7W9HTGsr68onKgvUQoja6iqadQMsmwRMwhqTVUVZoDSVWvqFcNVV3TNGvq1YaqbtB1HbWyRFNwr0TM5agiwHKBFC02ag1d1w6gUAiRtLYglYjRcZ3D2wjIYwRVGyNb3vwc77K/csdhvyeEGBSlqdeE+xu6do9q76k//BFytSVUG1xlUHgq72g2PeL6LUEE5Lrm2Qfv0x8NwQW22+1Ajz3gekOldQTs1sVgKaqiqprog2oDQXhqqQi9xRuLMxZ8okFSEtY1rDwoRZCKStfIqiIgOPaW3iWhuxTYqopCB6kJUvP7H3/Cl1/8gq++fMMn333Fp5/8FkrV3O1b0IkfA4zZ8fGnL6iqD2mqmu54oLs64F8+5Q9/9D384YDtDbY3GGuw3tFby7PjgRd/ekFrDK3tOZqeXSewLmov97sDx7bl0B5pe8P93YG2swQPX7x5Q71qePrsGZ/+1vf4d//+Z9wc72gquLh4QnfsuNsduHtzDSqeib47okQMLKO0ollv8CICdIfnsLunrhvWq4ZDCGydwDvBEc/FR8/56NOPeP/pe3z5my/46voGS4ysGo57ts+ecPX0Cb1z9LbF9AfMYc/17Q6hopuCAoQSSOcQ9wduul/jRUAJ2H3xG5wUVNsNzXqD+nJPfbFis9mwuXjJ+5uf8cETwXt1xW5/RGzWVBJkdyBgpm4D5ZmwVAYevOSN5u/kU0QQOTSK6xS09vHlQbAY8OiqYr1ac7ldI3WHS5HQQjptyw5JFXuctW5hIpOMDRTkA2BkcpeaPPJEYdlNafbswFyeYZyXzLyWnn1IgyPEaFY5OmhDPq3z4ayGA3HevtNvZdOe+XdlmD43bZsYeIZzurnMML+rjwODLvzAmC2VuVYz/5dnOh+qA0OTmJSca2xiTlV8OzUoX4gMTVrjYbiXgwcxa0W67UNaj3FtktoTAgSZotIV357UcYLMpn3NkubJ+A3JkzJYLIHCNBLkvOS5nuyboi15rCZmc9+wLAk8pg8MTYW5RCtk0Dz1K57UGxfK/KNl1acglCmZKrUQZb2iiGxZvh35bzGYPpb/JntNjH+VNZxj+pUY1/Kg8SDNj5SRKUjM9DgnnIxN2VEBRT6xaLIZQ2inVg1t99GPSqrC/9AncCDSeIym8jIJeCaWCyKbTJ4GKFnq91KbBy1urgtSyposPCn2Q95bpz1fLiLmiD1v1TGdZynLby09z8IYLHx2tv9k2vujdrAAtKKoJETwJxGnQrZ5O4r1KyfrLsxoSPEtTudgyTQ2vzC5mmnDrN8lTQswCDhOhFxJCOTDAoMRs9cX6ymOn0wHjVASFAOdRakBFPfO07uAyYKU4IcAZcMAC9KcyUFwlPtzcoYNNDdrccv70/VSdKIY4Fi5KO6NWY7zNxwEOfn+Q6Q2Ru+MvItqKhoNdWgIYYMIbqRHzg9mgFLK5Cflkx9h1HIIpZBVhTd2EPgI4VitGoSIIlxrPGhFUzVcXV6xefYCvVqjmjoi28loxD7kQDFx+HzMNYhAqwijzf6WtlohVE3XWXZv39Durun2N/T7Gw5395jO0PeOvktROoMHEYVRtZQ0q4YKgaqbuOaVRq826GZFtVpRr7YxgqnWNM2KVROjYRrnqXQ1aGCl0siqTua7sd0uHaxVEmYEQYoQGwaGXVNRV1U0NfWesFqlMyCOQsgCfeeSQC7Oi3MO8/6rGFTIO1zf0e7vcX2L63tcf6TrW7p2T3e85+LY0lxc0jx5SnX1jCArAhIjNE7WCBEQaHCOerVGyBpVVdiux7rsx5m8N2UEz1LqKEA8dtgU3AiiwFfktsqAFIl3DuB2Lc42kHzqpFJIW8WzKYAk5lkUQuKDRQqF0BIhNff39xyOPV7WfPy97yJ1gxeKtb5CiJRyA6gcVDrms1RCousVzeYyCS8C+mlcT975IcZGCAETHEFKvIxm4p01CKeQxDyex0NL23Uc25beOHa7PW3bcmhbVqt1UuwEXj79Lk+2K47HlqpSbC4uY07L+x3XN3e8ub7B+ECz/YjNes31zTV3d7fodYNAYK3l0LZcXF7hfcA4C8rT+jZq8WXAGcPnn3/G7VevOdztENaincXsDRVw+/aa+/t7HAHbtcgA22aNqAOHtsOYHqU1xsa0NqumwuksdPJ01mGMZ9Osef/VB7z566+5urxivVlzOB54elFxsW7QdUU4dFEoICPZVUKe0OuynPKSJf/4cKyOSCFKsLhw9jyyPJxnMQSk0tRNw3pVRUmqC9FffODGJ80bfo4H2IzQLzGf5RPzjhfMa/nOCCTKd8drS8z2uYE5x9iX5nAjYwDeF8g+hBTVMd/LfhRFWx8BSpfMf06uh5HpPgFfo6hh+Dn47RR1LPaT0+iE83HIz03/zvWJ+Roc53lunsfyPIjysB8bOzLYRWvLvzPzmkTKAyMyRkMe2zcHaadt4KQN44ZbKKEYzxL4nllPy3WEEZwstun8Gnro+tlnxPC/k28M7RmWkhjAW1nPN4GvpYBj8q00LdO2iYU9PetfAvPZemD+bMnozn/Oi0jtEIIYfn8OilKTYnCraV9O50uMQ5vXXCoyadRzu52LQSsSh5PW+dQPOHWIiaTMM5iAC5j1dbpWMl141wE0Wj+QmGpOgNi0SQ+vt3cJ65aujfMYKPPvzoUJU6FZQf/eRUtn/SwtOeKlVH+WwA0grdj7ogQfA7ZOYFgM8zH9LgOzWmr45u06tzYHbXUk+COdL78jsshu/FakS6e5jpn0eqGIpXU9DkMoxkWJyCBa72n7QNtbOiNxq8Bpd8Tk50gy5+NVHF6Zrr+D2IzOAKPZ1fCaIFqQLJBwkfaWIPnUwyD4G9soJgDdEwU8GTwn0XcEDSG6pgTpEAl0SxVzQErhED4BSh9z1wknsUUkZE20BBr6VAd0s6Jebdg8ecr64gKhddIwzYUvgbyKpczavdghQdSKCsC2e7r9DUJqTG/Z337F/vYNh/sbuv0N7bHF9Ja+9ziXz+O4biutqXRFVWl0ECAVaE2z3bK5fEq92dJsLqi3lzEgolJoVVHXNR6P9gYl1RAUCCEIUuHEuCZczn+aosBm6ud8pG/RrzHvO0FQEq/1wKOJAN468A6h/UBeIz/g8XqDDMktwPbo1RbXt/j2SH+4o28PuD4GSTH3r8HcE1wbI2BWG1A1BJWEIYHgLBiPqJsUeXcUtuVo2cG5xC9HbTjBIYJFJr9VH0JM/5Pz7aZ1lNO3uD4KEsQAFjXSm6iJHRa8jkGnfI+kQsmKutbcXr/F+UCz2nLx5D064whBokUdhWFpnUgFla5BROuXqqoQqorCAmfRtY59SYnrg4++pDUxtUROF9GZnopobVZVFV3fY4zFGIMP0HUdfd9zaI9IqaPG11mauuL55Ya+79FKUq9WHI8d97sDt/f3vE1gsd5csdmsef36NW+v33JxdUEIAmMsh8OBp++9wDnPoe345Zsv6WVkBLWStMcjb1vDfRDQW5zpwXukDzgvOPoW0YvYF5ctArJFTKSlTV0hlIqpc6qKSgt83+OCRdQKjUCpiuAApamrBi01N8drvvNqxXa1QkiNl/HbcermaqUFGreITYbl8iBPO48U/hAeetfZ/iBYtMGhdEXTrLjcNEjpCdYTXCKc3g8mMvljDzELc/Onc2UCbgiDNdnkmfz/CY44z6QvD6iY/X4KSmO7ZXSWj6ELkTKkZL3Tvvkk0ZVyZOKWpPqT6zNJ9bm2ltKzkt8PjMxdfiaRqUFyNWdIyu8LkdmSXNv4Y2ntjgzqtG1DXSVTNev3Q0VEbjwCp9yGEAb0F7Kp1aQfkSnK5zp+MLRKTGHBcOVWZSZ9rGXSj9PWn2/xQ4lUJ4x7vHDCjC2B+LlW8UR2EkoGPkyuTZ873QcnWpLxOM1PjP9/CJzmPs36OqllNk/pwcl3yjqHdXjS35HTK4zZycBCiIGLXeznoCGR8gRcEqJvTU4aPeCCoZXpghxBTbQuiMEwJt+aEWGBIoaJj803xqT8bFESqnU6jITA2ZC0kDHU/7iuwiSCI97jhUcIJqbfS9tLypg4/VxZpJMZaOT7w8aCLBgZgOlCbLApmBuH5Zxmc2n9Z2A9mG0unRsFiHhIEDZoewqgfiqUOz2q41L0sY+z6S1/zgKoTkDp8J137MOJAGb2aE4HUTT2lCYPezHBmWK/zB4cyOkIhIs2FHNftiv71EovsC5qmUQIqOCxLmD6wO5guT9Knq4Fzut4VorR+iU3LwolxdDmgZYV4zQVLj3MvGTgL4IAEZnu4SzM12Ui+bNhkT7teyURQWR9XKYsA1gnnUuImJqBnPYhgX9B1JwjIMgASISMa876AFLHvRo0MY2Hj9pGwGsdGdYgESoGoXEhmsfrdcP64opme8H66gpd14PJu5ByyAM5jlX6TcjEhwqC9OAj8x6ExLY7OhwQA4rcv/01t2/ecH97ze7uGpTCOuhaCzKaTEqlU19i9OZK1QgpsUEiVM32+StefPARm8snrLaXqPVFCgASop+XUIBFhj6CkdROR1I6+DDml/QevEP2feS1RFS95GUvhcAIiAxoBN9WaCod80oOYDGNiRQhaVfjuHQhglUlBauNYLW9RDgDpsMc7zjud3TtAW8N/Rd/hbndcTgeEPsj1eaKanXBan0B/THyV17gg0J6TaggOI1OUpUQHIGYFzIkf14HVBIaFUl8sIaQ+i3rauBfXbRpjsusjybRIgVRCkoRkmYxnkUq5pOUguA6kA5dCzabDX99d4PUiidPntGstxgMwcecotrFvJKegPcgdYX30TxayRohNUp7vFG4JvnUeU9IgWiCi449VZAIF88xayAIg5PgpQcFldLU65gXM9NfY0wKnCeptEYR2O922N4g8CnyqU3rJ1vpAEKiteb2/o7dbkezXeM9MTps17O5vCIA1/d7/od/8b/x5maH9R7VVLy9vUPagA6Cta7orUFJSd1U3O87hvQc6wapdQxk4z1d2+JcDPJ3eXkRAxQRcHiaqsbamPKmutzS6AaB5Obrt6g6gnZvPTd3b3l19V2ebGLO0yBlivkS8EoSzPI5fe5sOydgPC3nA3g+Rsg6L+8wQwUpG+p6y9WmRsQQVUgn8SoMG778WMnoLiHXdwGHxQOfZcCRP/34mKbpvcGvMoI/klTy9KCViSEVkTi5UQIuC6ljPOiSCWXBxD1au5RKqbFbvP9IycNDI3weqIeRSXznt8vxSgfz5MAqnpXLayE1JnMK6c/IXC9GqfVTkBeK69nDckhDUDznyZLIsl8nHNfp9x68nmoZOJ3i71mynMz8Zp/a+fuDZpSSGY9rsgSBRRyU4frjiUbJyJffnku1RlEDWX2yUMdjy0NPz4ZubFsBAubgIw7vXItTtpkJ/Rm/NQLGaT8CY4TC+IETY0Ax+pCN3RfL4HMGHKTQKU+tQlc6BgoTgk52kelOzKYPHqX0ELgghGjKH30cyznw0z1XSOUhDOBwQkfOgLOyDGDqzHNzcUIIpzvoXPHJtHbSrgfOgPmaLp+d+KzP0o08BBTn94UQyfw/r5yx/0LKcjm9s93TPXva5hKBPmxJsyBkK35ZnLnJfrHTPsqiHSHS1ijM9DMf97EqFs4GyUg6sw5TCNBKxuTpIdAaOPRwNAFjPa4Jk5gC2fc+n5JZWj8Xep2Wyao898g4PuOhkO6JfCrnlo/9ElHdI7yIAkghoopFjCB1ALs5pYYIw7rJ+RMDJJA6rKBodo3HpxyHOSJy8DHVhHeO4BxaCERdg4jJ1L0LCF2hmhWXL17RbLbIusIBRoBUMR9kSBYGo+l6diUBEvAkBIQXeB9TaigpseaI7wwEsMYg7AEpDEI6etPhXIOuNzx59YqLq/eoVg1Cafq+w3QGLRRNteZyfQWbDdXFJR98/AmXT58hdYUL0b/QB4H1gc5YvO8R3qGCLdZaAlOB5DfqR4EFHi89ipgKRSRf7kEgEnwUrrkIummvCTKnokimkmlEQhpriOdwf2yjxlNXsFlFc1mlqZo1ar1GXrxHYyJA4dV36A479vf33N+95fD6K0T4km2Kphn5UhHNsZVGqhgYp1nVEcRaAxCBH4G6aVBKcTSOXe+omyaawyYgKderpJ0Eb8wgePcIrOny4QdSJ2ufZKYaMgWL66PSFW1Vc7x9y+76NVdPn1D5ms9//jP0ahM1WwEuGskg2PfR+1UE0N6hRUxFgQC1qmlDTC+TLdBFSlMjAgilkv8zKBf3jxOeLPTPdGffd0Pcisz3hLbH9z227wjeIQnUWtH3PV3b0rfHCEiVjsIc39P1hsu64vlljaPHEvA1+EZj/J7N9oKnzQWfPH/G/Wdv6Loe27coYgAcJVSMX1FXdM6xP/T8/g9+Lwbi6Vq+evM1SkCwDm8sSsJq3aCrmt47+sMBV0nCSuF3HcE4dJacBs9hv6e937N58Zy+N7je4A18+uIFT1YNbduDCDQpXVMnwNk+8shqeqadK1lgOyWC+eeMT0cw92v8tuXhPItpcSpVsalVMpsWSBHRMWKaG2TO5M8lwiPD9g2Y81KSHCn2yYE2AIJ5+xcYpRNGSJx7dgr4Sk3hYIqSmpxBZpT0yIEBGbdxYgVmTMQS8zY/4PO1DEzKozObrU0kEAOIOK33rCZr1oazR3ehyYgMZgEs8u9pnoZ+nCTjLtpbMmQwafN0PqZraTImDEa/07qGevKYnNYLYZi7cSymWrN3AcbymyfqB/I4xVqyZqpsRzZbmZfMRD1kvhcShyBEmFw/ravsw3jQzJ4qnhADmHsXQFwUBIQp5AoLvy21V5w8sVBCXvfz9+PvyaNiAJQib9RybWUAFvxk0UUGoNT6M8CIEiwOq71Yy7Kc+xC1nrLwv1R5H4jow+h9ZJ6UUnhkBItap/DvAeE9WJ/AVipSDJr16bwUgcXKsU1rawlAl3U8JMQbVqco61l89IEyPcxOl9R0vyy1d64lfNRXy/Mn/gKZDotIw33IoeijuaJEjpT7zJmRS7mfl7SKwxyc3eMPrPY8d8DJy+F0R51scWZ/T9DU6MM3CvoCZXqUskgBSIlLWm0h4h6SPpk3emgddDZqx3yKjjhtSElfIsA6Nw4nNCUU52j53tC1fC+BOT84TKS960FIZCEwzKd0osyRJkTkN9CMuMfT7hdRRSnTWE/O8zy/iUjENeojIHWekDRhInhk1CniRAzxjx2jaVabDXq1pk7mnFQVXsokGGLI9TxQ1wwgJoLAMPQbCUFofP5ACk6V/63WKwIBpTW9sRzdis3lc77zyfd49vJ9hI7azM722N4gkdSyYVNvEHWDWq3YPH2O1xrjPSaBnBBCCjLTgffJxB9IVkAiosSRt0t/q8Q1xS2Z9OqeIZhY3pPeJX9FHxC2xwWPcz4GvUkaL7zHdC3WRDqrtUb0+zRuikNVI3WFqmrq1Zp6vUmrSUbTys1T6voCuX5KtVpzvL/FtgeCCDHxetqY1vtBO9g6i3cpMbz3VFU1rG3vHNZYrPNYC14nYUMSCqouuSYQNbIREMbou/GMFyBlMvHVSfOaAiQm+haUQvpAfzzy+nhEBnDtnj0W4wKNaRFCxQCGWiKTRjJaulSDaWsf7MDD1c2KRmmiD2WK/qBEoplJ6DKcx1GbL4JK/s+S6DvrSQptYvDcmMrGK4mvZTytg88iD4SGqolaU9f32CFPKfQ24ITHJgBknEtRigOiqgb603hYVZJOCToXuFyvqFYbhNbc73Z0veXps+f84Hd+wB/+zg95e/2Wr776ktvDHTiL8VEQtt1uUVVNEIJde0BaS0DihYLOIn3cl84YEBLhU3+DwfQgnOXZFTy/WNFogek7VKK1A9ldjNNQkL938GBjGanegF/ynUcc2n8jzWKcXIWSFetaJsGbQKKwCvCFv8SsURNaXxz0zmUzzeVPnlzPAClL/05Q0PDYO5mYAaMkpmH+fCZ0S5rBKdCZHtbB+1RXjHyWg3eM5j6CrElg8vYyIzf0d1amB2g6IMajY9Kmx3He6fsLQ7r06jg240EbmXIYbX3ShZFrHf9NKyuY75EhHZm5zHQPN1J1C5qHzDWU85beG2+VdZQH6xQsDP5LC8C6aGQCU3HsBsC9sEbn9eQxHLU/j5yoWd9PgNbJ2i/rHX8XxTjl25PxnL0/zNEDoDWXR2s586eLvTZoWWf1P8YaYf7tiTKuXIeUayNdnnyyAAjF/0JR0bD+w0J/h3bm3LQkmufQlRz6rJSKklpBChcfo2QqrSOj4hy4KFXGFtpLKWKUjWLeJoKhvP5yO8MpbThn9TDWNVTOUhmH85TZP6/pLpn/cyBhmeaWz040wsUz59bIlJYPIZIZaEyx4sRANMXA8D/Ut1JTnffzQ6t0LjBbqnOp37nNE9hVvjMu1OLvoRsjOUoAJ9LDbFEzPh+HRXASpXy064z3Eyoa2JGEd1oTaK3H+kAIMU5pgaDG5ZQ+ferKPqVVZ5ZR0ffYm8lbw9YMYz2IgR6EgjAMPsMUayrzBaQ0GkMnkxAx+aHJpBWYMmfxno8JHkFEsOiDHYAiwSNJkZRFfDYl7kBqTbXZ0GwvaTaXhLrB5XNFiBR9PfcjTmxeyiFk5r0Ym/ysTP6UIZDtqjNf0qyidq1erWmNRXZrrp59wAef/oDnLz/ASYUDLA5vDCBQoqJRNUGqFNymobcG4zy9tRHwBR/z75k2gfIUeCekvInD2Z/GPAQG64M8syEkS64wBvzKrU9rLO6TGO3UGovpuijASW1oj0eMieBNK01ldlEjGQIhKJyIwLBebdhcXqF0hVIVdbNCrbeoKmYCWFUKrWra/T24jiEVkge6bsgzGcc/0fmkaJEyrSmtY5R8EQj/L21v0iS5kuT5/WwB4EtEZObbauua7mHPgduVF47we1DIT0LhiV+JwhvvPFHYBy4yQvY0pavXqlcvX2ZGhLsDMDPlQc0AAxzumVmchkhEeMABW9XU9K+qpuoMdDuIUe/FSLI5yE0SDa8lquSQlBWGxqApGNSV21rJQYDMJG9aYwnDyPly4qeffuSHH34gjhfOY4+xVgO/GIgpEqzuN8YYhnHAOw0+1LQNfRh01pzFk7DNDoHZapvluySCRP0sxmBNwohTi7akzBNtdgFXS7c1VvNIWv2csrux5PVhUsJisa6haXf05pUxntCkFI5onB45HRPOGsaQGGOkH0c66xhDJEbYYXjzsNe+fjrz7fGB9vGR5D0fXp8ZYuTdd9/xX/5X/5Zff/MDv/vd7xjTyP53O+I4aF+NodvvwVnGGDkPPQcRiJY0RBhjXvtOlSIpqou+BVIgjEJjEt8+OR73nsZGLkNQ74AsQ5DBZvn3666loFN4/ew+zzxf1d8/9bof4IaEMQoWH/eeJh/GlCAkD3OuI71kEWWtcFqpfqj+flnDSwkLoejuq9dCyaok6kavtZhbG3gRDMqzyqjm/oiUZ4qAsTb7bpGBbGLfdb2lTesuiWR/8+p+2fCX/V2WtVkPZZO8E8WTSqOfNeoL0LNFiEVQ2650+ShoziaD+t/nFikYm63RRQAs87EUFGdbpxZwbSe82YByt+Tf+sw16QzKHJXfKwF9BuNVRNf1mMnq+VzWFl2ux31qy+ZVnpHpc7F23HpZuF45n7u+XPP15RVtuvVNokz8vQAAIABJREFUQOZesV/TFjO7DUthsNWauV521/XV4L9ap8U1JYTAMAwYK1MYfd0sDJrQu9HE4TlFEKCuOgLGCrW3ZZpo58bO8pWbQk1TBdSW+4Yix5VkFlOHy9tfXMfXtOmeVXFRLiyVAhv11v2LceZykPfpabrnufsaWi51ODODxmqP3ny+/F33c4FbqrLMF7bJVBZRZI5IPpevlu6SgqJ2ob4/N5LBhtUUBgq/ctTJRCIxDPDpFHneR859JBzAT7lM4qxukcyhi/Bv5jrmLsqCNdTktmzlkoGUOua/81yXp1JdgFVhkCog3awZU6vWZG20BnLaBhHBUifSzjbKoiCWkn8xYrIcYNRZDoAokYg6hon36lratHRPb+mOClBoWkb0jCDG4J3N4FKmM8z1Xl/Alf5jpz3IANY12SoTc/2aLy6CWjGtY5cAv+MQ3nF48wPHb35DT0eIiWRhd3ykuI0aMUQa8oFDTsNISgFjYNc1GBGG8ythOJP6kyrPrWU06yMA87zVPNsag6dyOyWfQ51SlAkqjQuCJdgm56B0dJ3HOrWqGhHa44G+70kx6Rm0kyH1A2EYGMaBvu8RSXhreP6pndZz27Z0D48cjg88Pr7l229/SXd4YsxAs7+8EC5nxssr3esr3cMTzW6vEWD3e1IShnHkdDoTRVMYPT49cTgciSYxmkDrvOaDHEfGfsAKGkk3RsZRXVidgcYKoS/5OHXYo+RkPcbms3W6Fo1ruZyeOZ1OXPozTesZh0gYI4+Pj4TxQggjYxjY75+U9g3EcWSIJ03vstsRknpcGGtJw4U4kkF2mo5UWOf0HKXXoxPee31fpUiVvUzKEU8dvtEAPRoZVmlhHEdCiFjrsLaZ6VoSNvMK0+4J7hk79vg04gdHigEk0ViD8xYngSQDTWoYn9/TD5HvH9/w9ofv+Iff/4G/+t/+D/7zP/8t3bs3vMTE//03/w8I/OVf/iX/9X/z3/I//4//E5+eP3K5nHj79ok0Bl7sM3Ec8L5hiJr/0VjPrnE5mu5ADKrIaJ3jaX8ghRHnoOtaTBIufU/TwV/+6ol9m/Am4cTgvZ5TlJggCqbL6/czWR/KpXyn/JR766fSzHe/WqLbvu4HuEmRxjiatuPt0xHfKhGEUYiNNtpWi7/Osag/ZO3mElSUcNH1dXPDqjW2tbBot85ELl5jPZhrcLF5No7lZr6lYV4K4XV/l26WX2J5uaXpL4Booc3OXRJhcuOxxiyFpgJWZLvsLYtALpbJYfIObUm1EWGugcuiD1vvTZrE+ZlpRHPUyfJi0ZIICbMi+Vva+UkwKO1bJAcvdFErL5b/69iV0BJbfTOr97b/W9BNHlJjl+ugfmstEJc8nnO7b0/KttVvbsfy+6pP8mXQ6lbdW5b32+/PtFgE/fVYbK2Xmr5mut5uZ7Ea3qLJbUugm94TIJsD9ev8mJ2EMVmUVdOgtTbnGSseFHFqg2+cnmfpOppGAwmcz+f5/eyqlqIQbVRBUiDne56uJJLPbBrWtFcsifW4yZ35XQPF+r3MtPM9VaDU4wFc8e971xZI2uSrK3ovQGmLn6akgsg2Zt7gqblfk5JNqq20DkiWCq9xCpSnIlZtMzY/d39t1LQrLPMFrlq9WLP1ul3z7Lp/ExyymqFR6UaJpygxc+l5fA3r843L3i3HsQSRkhIMxhgcgolKi9ZYxCSGMXHpI32vLm+NzxE+M/+eBlInNbfFKghhqeSZ/JUWY389ZlfULasPRp8JJKyUnIz5CZvP/GGZ3dGXrrnTmKR5HpTmCjCERQ5YA1hNu2LEYJIlpUCMep44xJEgIM5B17I/PtLt9jTdjub4SA6dQwSNYFrO6xkzRaAs7VheCqSszesyK5SEyWMQiUWRakjGZsDlNOopcHx8w+M3/4bu+B27hzd8/PRCiBGM5ogtZ/CMMVgTc45TXYPOKXiWDDxCCPpu9jtM6Nm6EhV0IZrJvIaNUbfKMRbXS6ciQT4Tp0KczpfieAfscE40EmU+H24zje0fEjGfW4whYr/RM4QxBMb+zOV0Io4DMQyE/kJ/OROGntPLK+bje5xztM2ej9//RHN4oDkc2L15gsZhUoOJHd2Dxe92YB3PpzPvP72qtOIczjfsjke6bkez3zMag8gIKTKmSAqJlAwYT9IDgOA9rm0nMUgQxAW1zRp1HRVEwbPz2MZlviU0yfLTT7+HpuXw7g1vvv+VGi8D7PZHQugJYWAYL2oBRNGnt554ORHFMAYFuuRx//jxGRPCtJeUIG0YnTfv3HR8wlijlj9jsY2f3E1LFFffNpqQHk9CcF5orQNjifn8r3VeLe5Rz7G2j098czwynF54+fHvSTIq7YXA0AcsCcKIHU70/TOvpxPnPvDNu9/yn/7b/4J/+v3vGV7e800LH37+Az8/v2BGeLtv+Jv/63/nf/jv/nv+8A9/x4ePHzhfzkrfSRjPF0wU+tczYtUa+nh44PnjJxyJzno+pZHDQXOHumT48PGF/WHPmx++43x6JaYB7xz/+tffYriAQGPUk0isyoVt9IxpyOvqCz1N8v60Lavfk8HuX7fwULk+mzrDWIf3LYddi8sJhSUqotaQzNsVfK2G9ua9nK3yltBQPpfIn1ug65bQfQs4bV1psqYBLF3m9GzSbOm6dd1r/1qwMavvTWbGAtPfImAYMmCUvC1vCHJb47K4v8QuV+8Wp5+ybdftugkWM/PnM4KJKeUwO+4iIFk7IrUls3pnDbDqLigguXYPU2Frs7m5jHsAavWiqYQYc0ukYfHFFXiTW3OzFBTXAv1a0L83B/X7U7U3FAhA5SI2C7ALms3+Xusy5+i79bvzjBX3KWDK37Zo4/TunfYWpcOdSfycm9+izUvJZWprTWdm9f015jQL5Y6uvzQFZDGZf7mcVDlEPSMiWbAzaVQBSFSoTFXtC1WHMKcyWcxfBnXV/ZTSHTrevsqGNa9tFfIWlovSlDuKgc8pF7YshXC9fur+AAvlmeTgP/dW62LN5PIKWJSitKrWmpY7W5pWeq1VP0uLl2uycJAroJoLLG1YlnUd6Krcv1KG3VnzUvYDa3JEzNnrZeKrM3dclpH55HX5GWCLCqiUwBYFUOXxi1EIIWmAm2IFIY/RvKyYBJxpboC7lDqLzevrJg0uxkSq39V9U4LUyeK5q3LqWzniqo6JmcDojGxLXUpvVmYXQQDrHI3z4BtMt6M9HPHdDtd2JOcrutExUhY5l7v2TLmWGerAWzmoF4XOldYlFRCmUVNTPgu2O+xwDw80xyN+1+FOl+wCmRjPfQ7CoefNIimDZME6RzKzO3wMUb1wrQcHAS1fUzXMyg0zrRNAZjmm9L3Mijofzu64M2jMVkDfTmPjrMulK/h3zkDDZK0ToMl5QFN4YH+4ZDA5Ml7OXE6v9P2FFCKX4YUYRs6XMx9++gPN6yea/Z5HuWC8n4NtOa9nJVPPOIxEDM43NK1Xi3Hb0rQNgnqZEEdMGjWycFryoUk5Y5nyb8fSO2Mx1mHzmXZQ11bbeB2bJLTJYZsOR6LpDrjdAaJBoiE1e4zv8BIwaUTGiEaVTTSSJsnOea+AJgeuCSEhjDrX+fhYyjkuY4ikDNCjcyBCNKpUarpWI7eiNi7rGpqu00BvvtV5NXO/YkjzOWbrkMKHnNPAPbs9u8e3+K5nuJwJ5zMyon2wkXImOYbAOAx884sjj2+OXMYHfv3DW961LUO80BJ4u/c0znL++Wf+z7/6qwzssnV8tyOMQXNMRqG/XOgOB3btDts2nD89k6LOW9u2NN0O6z2XU4+1Hr/b0RyPfPj5A0kSTdPxi3dvMCYiEYzIFLHXWUsrjmHBS5fXJo8rLKewr0oOnfm3zA9v7N9b+/TnAOX9aKgiWOtp2o7DvtNw78Zkw0sWkCpuesuStq0pXTeU6d6ymM9ZLKr6ZiTz2WcL4y3tm4WJzao2N/Aia0wRU++0dV1WLZBB7TKVWWne9JUw6k3hqmPz5mGM+r8zb7Fb9W4L0bMb6lauEmFu8/2tfSlmr0HFXXKsgYJkn/iUz4DY5WN14A8dwpWbchF+ssadEsl23o+m54vAMls35g17psnSnzIGMtHaAtzV4yPzeOiwViMns9BWNlpTCQLzY9cC9kSvE9DfOMe5lJiquZNp7LZwUn1v8X195U4uhC+Zo9LOWvks3FSbfb0xbhWbNtbPZMWSufzNBq2uekzr9TrNoZEpONZED6WNVcnTK/NwX9VWg8UkQiIR05ysW8OFl0P/Bu+aHGofYrqQSFNkaWG2KpQIedqE+czwtVhrKIBzWudVcKk12J7HaMnX1qkqNJl9Wo65gfps2+eUbmsFyS3F37q82So235stpnouSTb6IMWEQTVPZrZU1lFVyxgtrZ7KQe9ZT5frclZmTeNrls+VW0v6Xp05zQ2u3/lSJU/hz+VOocXiWpwq5KteC4WuzET/c5nVWJe8amIQcVlRVJ9tBcQQgjCExDCqJS1NLHQ+CFD1KoPYfCbtenjz2FRnK+sCbm0iC2BX8fUM37ZqKqvJzAxg4vCLakT7JNO2YBfvp5JWQ/RwiBFDSm4+b2YdbbvD748aAbVpoenAeQZjiWPE+bL+QC3D2fXTGMoByq39YeL3xmh0V1Msn4JBE6unQmv5vKX3nmEYpxQcu25HbBR8NLuG/WHPAIyXM8PplTj2OGdxbUdMvRoNnQHTkHIagBjVO8JahzOOZDz95YxD6IzJYkXZY8l7fAl0bjJoFIyTTG+qBE9mHmebo6TafOZt1z3M3koC4zDkNI0J32qieTEJkqOPg7r9WktzbLAF1BtLCoH+0jP0PSkF/vjzHzg/f6T/9JHzywdePg5g4XL6hsPbb/HNDutagm3pXz8Rhh7XNByOD+yPew4PDwSxOG8RIsPQM/QBE0ZcGAlhVAu0sVjvch5FwKlbe0AVEzG7bRrrco5NTwrlqIyeay9KIusbTaPhG/yuJfmGYBwBw5gcvu1wztA6YBw0dYckWmcxvgVJ6iIZE75tMdZxPp0YToDEKV1TGEdCHDPoSSQC0RhNNG8C3hna/YFkNQDNMEbEWLpdh29bfKPpV2wO6mZ9wxATWEe7T/h2n6dTeXUUwTYtT7/4LaTIy4cPvH78mXg5Kfge1Qq42+34dBqQQXj3zVvO/Qsp9vzyh3d8l1oiI2Ma+Pj9kdfnkXPf8+nllXMfORw7un2rIPIcSKO6a5/PF44PTzwcjjSHPR/f/5HxFIkx8vT2Cb/fkZLw6ePPvPvhew6Pj5iu5fnTK9ZZDvuOX3z7DhN/UuVLhCQ9tmnx1tLiFwztau9by+q1cCkUFdLMzGreVh0M/5xR4XPfwWfAYpd6Ig09Lc6AtSOpCYRdy04sEtIkg687FqPuFlcKVuEqPxVFmMzXdTq0snnVoWXL2cHyX+YozexGNgtGMrt0ZSYqkJVtmQEXYDa9M7tYGmM0iSqVkJBK7K4iAMS8WZtJ4KwFikVva8EkhkkgzdABMZEpNpRZvEjZBeuJLcKP5P6tttgJ++hZhWUY+7KpFCeXz4HdAnHKfymFvGHpJuRsgzV5AQgLZcKMMFa7OkWwN7NAFdV1aHolp86QKTWFLEDQfC/lTScTWYyLzcnU9Kq7XAW6Cj3YCeDUol4RPuZ5ybReBIsiGKzGbBLEygxXg2hWoDpm9wvvl0zDMluZZhqtsE0tU82oaHpm8fDkZltfUv02GxasUklxKqvBg/bCs3TDnoCOsLB2G7sNCrctrOQEx/UXSwAiBdgvBF27cKsoZ4lqAKk/s9BbwMQUYVCYacAYvCsaZaaUGKW/MWZ9e4warr0f5jOPeb1f+jNRIr5tiCYSU2QMgRKud6JZw2SRD2kOOW9hCgU/rQIpCwQMborAajLIm96tN6EaME5IWecoVvettWDrQajJqtLeTHyuOqstU7EkmSPgzcXP7ax5UekfVG4xq2dyh3LhqTCPhYtuqlxnrbVTXCBj1T0wJs0FJymqFr/0t8Rk3Eruu7pidtODmBUkJfCJruu5v1ajOmaAWwbIGLDWzewpB0YxGcxNih2Z21PvSRO1C4Qxls5epe+pLwMYWabOUAA9u1aWK2W+jtMAKzaNkJQ2zx40giUwGj4+Q+sM3761/FIc+zEQZaRps9LPWk30LWniu8ZmJVnuSVHAyUQ7Odrsgsebanzn9uswLDl24VQiIdcx02ySADhaY9VZVkUEqtA9VXUalEbzJRZZJe8d2YPAybx/Cnn9uojpWo1e6b2eR2x3SD7vhffqomcs1vjcnyL+uUwjme+u+lpfNQ/QNitNWSN46TQnngSiRJxViDQGy2W0mHZP07bwcOB4fItp9vTnAWMCkQsDZ6INRKe0OUpQ0BctJql7rLGjUn/hI7FYlzUlUJLEa4rqsmhFXQcTJJS3zduzfvADRAPJGqIRjPO0uw7vG7zx2Ch5PwTpXxjHntD39M/PjJdXrGigkeeYGOOQx8wqkMp0YHP+cN9oRFTrGpxvOBweaJqGh3dPjOPAeLnw+vEj/enE6+sLf/ePf8cPdHz7w57vf/ktP3/8SNM+sTOeXdcpZaTEp+dnlWWydTaMAWstjRE9v46FQhe7A+IaUs6H6ZoGJ4JNiSZE2kNLNKLWrxBoJJBCZBwCvRHcXvvx8f0/8frhD1jn2T39iv71rDKZscAZc85ryVhCUbgBIXnc8S02n0E0ZnbZPhweOIRvkThHfW1jIMVACIOOp2ggnqHvs8yWOIeBFKKedUxAGunjSDhrE3ZNyyiGXqBtOna7A75pGM5nomtyACWHOxw0pY1z0Ha8SEfz+JbvHw709sCH9+9JLz/T2H+me3hL+8c/4MOJ9u13jD9duPz4keHjKx/bwH6/4y8Oe37zy1/z4fmFP/70nr//h3/gr41lDCPx08iFMxL1+IGzhm7f0cczw8eB8FE4nc/4xrE7HjgcO4b+jITI2x+e+OGHd7y8vvKP/+7vSSnxZ28d/+qNA9OSBq/lGov1R1wjBBn48fJHHvxOFQMlN0nJ41qWc9nXpq3YVCzqGhAumddyL1jITXcUkVvX/dQZuaHWOpqmwXm3Sn1hFp1avGtYgDkoAsKt1Bm3OzBjv3nDnOXjCjxUn0xpRHVXlJtX5djqddluVv5OJ0xLngTOPGky9S1PrJjNorbA46KF1dxKJZxL9cAa/F+VVQGjem5qIf4KJ1D0v/O8XvfALJ6ensvEXQsxusnVGnO5KoHqK1l8LmdJ5u/WMyzMwGsi/rXG3ZT+VwAmKZCeC1pZPRd9KHXNc6bFzQvVGKNBoDDLdmwAxlLfVGamoSXtWKxdWuGX7VjabavBWF5rGlnVP92dpa3rugTWAiXreV9overZXc7v1XX9yqqeP+Gq+lLP4ayYuV47pa0V5LzS5KWq30bmM4lX9FZ9rsemCJDkHxXWi4CuZ2o0tLyZ3FJlOtu6bLNa+Wb+s1ByyJIugcllzt6Y5/XwmfqMdDV+8+hwRZdIds2bNBbL58xGvdueDX/iVZbcpMSRiY9scNDNa1IClbmW5Xyu2774bJgB4op/TM9Wc7NYJ2a1xiZRoIyjqXjExtqo9sYZQlXLy1Tn3kVyapANL4SrYqsFaoocUE1jxefLyyJCiInzGBiiJpcv7xYwilFwWaxnaT2+cmOuKpqcgFH92mJc5t3CzFQxlV+uokxIJWqrIYPoeVyULKoInprHgQIHi7gtprjxZdIRteqTIxwb32Bdg21ajYqpOchmYG/mxi3pq+7Pl1yF7rJQiMadULCrR4oKMLJ+z1707KLxjm6310Aq46sG8Bh7xr4nDAMhjEiKmrrBWqwp56UEtW3N52UlRVU85JyeCDhjaZ3TdoRs2Y8xrx21EmLcJCUkb3GNx1qDt0bBT9fReo83lsvzC/35TH++MLx+JIZRUyycXwnDBSsp89hESHHi6ymOWcnnMdZzKmNmHW23o207vG9pGg++U6tmEnbHR3YPTxxjwD888ebxgV3bMb4K55/OdDlU7Sl9IsSg/bAW3zaILX10tG2LJOESAjbPA77FuEZBo1GaaJxT8BIDse85p0E9VSQRLmcObZeBaCAZSIOeRZTLmRSjJn7P+4taUk1WcJbcp5JzgRaZ02bZ3uX0GSnvVRpxFSziBCThBUQiKUV86PI602sXFPxLEmIYsYgG3wmBNPZ61jBGQhgIWWHVWUMMI8PplTHX1bSdBjk0FsKIazzJe0I6Q/OINQFHwqTAcddxMI9YO5DwNPlnt98znp5BYNft8N4T8tnVkCK7puW7d29pvcO9v/ByOnHue55fLwQE4y1N23B4eCCJMI6B8+nEcX+kbRyNd5xeTupK6hvatqFtnJ4RTuqK/e6bd3z3i++wrSOeIoaIM/O6EWOwTUcUdUFPpIUhYeIHhd/qFFS8YXUtWOfX8I0vu+6nzkAFCGvVbaHxmlgaqcSCO23a3GinTWZ1yee29O3rS9Hx1Nb66ylAQhEw9KG1oKPvmqmAhTa8PLfY+K/BQgEAa8A41bQCIfN7WosyPKn25+UmuBITmM8/rMdkBlDXl1k8s/397F89WeHyABiz1vYuB/xWqXNflbDuYIltIFUpEQpQkzKm9TOS3Q5LBdUQLBZlfr4OHDQBjvmFu22qr1vCcU0T1+Bm9Wz5LbfrrGlyXc+6pPX9e2N9RbPGXve3Ely3613dvyEIbfX/c+4R9ZzdpY3t1kxDsuwrFGXCNA7M/28BoHpdLKVrpnU7WfaSRr5LMWKlUqCJQN7Itw6cm62+rPlB/ZXhqq3bV16rNdCp2cHUNjM9PilPJkXGYpeb9DWfmb5lK248vElLE+OVBf+seYhQLGRf1giR2+dHttpYAFmp+AooLpprKkA+W7VrHlBIq35du3lN12XaiyfBpjKkbmtNjqu1fetz/XxdZlES1uslpkQ/RsYQSVK5V0mG7ilNgeksRvMMVm1ctPW6I8u+36Dpee82yNTha76YMuCLxacmj5+S0QwaZ0t8lhFyLjwRBWBFKVEanIwBsZqsvFHLkXXzTwGKYu1if5mWWkWrZe//ky9jSKJgUWPNmBxoZEe3e8Q2ew12YzR1xxhjzhMo6vEkmiNRYsiuyEIyo7qJZoRtcDjsfN4sxWyinT1oHJbGWD2PnUQfiTnCvNPzk8Z59ByoJXmP65p8Rs5gjdAZcCli0sD4+pHz8zOnlxcuz58UjMQRGXpiGCe31IXHlAEZT2rddB5rMiBLiSjQdXt80+J9kyN+HrVNzvL47h2+63DNnm++/Y6H/QEJieF0Jp0T0QQgMYyjBuexBusVALimwTY2WzAbQhSiOFyzx2TLItZl1qvjTRTScCH0vdbhjcZhEjifXmnQPKZhHEjeIyEoHQ5q6Sv8SNmCukATBeuUriUpWJy0QNbrXNhallM+aK16YWAUODpjIUX1EMgKgCnQleiBhSSCj5HGWj2XGQNhOCugHwfS+QKSNLuIhdRfCONQTPtYmefMxkBqGoy3yGiweyGZSMqugjvvsWaH45HLkHC+w/mO3W7H5fkDMUV8xi1jCIQYGMaEb1oOhz27XYt1Zz68NHx8fQVJvAyRZA22URAtY0SiEC4ju+MTTdMAQn85sd91uNbTdXp21lqhaRSgP7555OntE8YZjWyelRiaUiflddcSRofJ+VfXS36NNe5xg3tK2C/d/+5dnweLGJzzNE1D13Y0znMmzolWNwTW4pa4Xdp2h7+UJdaAYLu9y79TraYIAhVwtPNZpklWWrw7C3wpycLyt65vfW/dn6VAsNqIbxW0vopQyyz/LeqqiWyjDdMjfwK4qYFwEQwnrSBuAo7LWr9uo5vqXIGYpdl9FujWtdRAbtYMF6idn63P6y2+0ZtimM9sfgbdbgqEXzmua6BY/71+dv2hlFt+zf/fA4y6hP50xlLeL8+Ws13r4bqruLlR710Q/BnQswUU14L9oozVWdirdlZgUShWmXpwawFdI/9N7nErHpVSIoSgbYh6njHFCElml19t5M32pJSw1lePmqlPs9ukqb7LgvyqHFMB2VsjmhaIZRbOp2iLOUm5rrFc15awb1gG6Vldt/jMPUVDDWquLH25vbdoaX6vbu6XIdotulzCkCWgmb+a3b6tndu8De7KUQsz90MLvKq/uKhONeczXmu0WUDoVYTUFb9xzi3Ocy579PkrROHUB14vI31rCI1ncrHOunMRFVK/Zn9cX1/Ot9Q1eMqzWH1f0k4J+exYftbk/H1OqlQPWZ0fq1ZPnw0qyE9yiUWw4D22aRHnEe+R4kqX0+YIlBMTgH610dPNft/laev7PjcQXdNjTJgIQkPTPoJVUJ9EOHZ6Ts15SwgNQ+cZ+oYPHyJjfyGOA+fLeRo/YwxN09A0nQIs51VeNCYf6cwW5Ji45HQQ1miaC9N4nNMzhc7pWBlrwTpS29IYjeTqc7TL/uMHPj1/4Oc//p7zy6cJbNBHTIz4LEo33hJjJEZN65JE10lKEYsQQpgiVSs4EqwkXk+fJpdREcGFkGnB8vTmLVEgYfDdDv7sN9imYYyJN7944tPrmZdxpHs40DXNdO676zqOxyNtq2k5TqcTvmvpHo+0bQOi1r9x7Bn6C6SASQFS4vXlmf5yob8MPLx5ot3v8G0D48jp+RlEGIaB3dMj3ncYazmNibZtNU+k9TgjeN/im4ZoFTSJCJER73y2ahswLkc6rmlu3tuSmf2aJI+bJDSYDS6fK9WyhqRBDa13+KbFGV0RTXgkjD1hGDHNSWkzXGA80zY74hhUsZESLiVS0qBE59fXzGcTVgID/0TbWnZdw+H7f4XpdroVHQ/s37bYn96RYs/j4yN////+NR8+fOByuSDOEZOGjvPOIPl4h0H4i+8OxO+P9En46XTmb3//B/748Zk/fjjx/nTGoIqMBj1bXE53eNto1NYYOez3vL58Agl8++0jnRceji2+cYRxwDceJCFjwqDvJFB6z1GjbVZSlbRHUPb8+WDZ55Xf/3LX/QA2rk3TAAAgAElEQVQ3CVLWaLRNQ9c0eOcwErJ7S9o826EduRbcVOjI97+wr2WgSjTSUn7aeF+jm90oOGtZsHPlQhF8ZuFJ72efcgqar11Bt/paHswTvEpsfO8qQHGCYjfav4FTty1QmQHVguTd+ieL0LaAfvsy089aaLslgppVuZOFaZKrZAGI6/euwA9yPR6UKJs6oJMAoq2cNrhZrp0XYKFZEY2oZUsW5KlvK3C6IbR+ziqyEO4/I/DEGzQk5LavUS5UZeutbSHiWiAvVqQFAF9ZGe7R0doqUcqvA4QUbWfKZ8yK6+ItoFx/ruv+nMC0fucWYFTaEwrJXa0Vg26mJfKcqaKd5vE36zGuaUIM1uTzbwIpCGMaCWPUSHMZsDjjdbOGSZtKFl3XQz4piNZrSG/WM1JZLbKFRVZrytSu/HPh07hNv+r668W5EmQxkLXRW2v3Sze3LZB3b61cz++tcYI1w1gowFaN3loLn/MggGvreilw6y2R6/bWlrqyZ8J85rRuz4LWJeulk+i57vW4lJIy3ecVumAmamEr4HOmg9sq3rk9IkJMhjEaTpdAv3OE1iLNfHY4Fd4W9bwfdil+1Pz6agQ/A5BqRUHpZul4ofX6lWiFEoUnStl3MmgUPQ+nQupMG6o0kjJyc/of6/Rsr1F3Q1B3wmiNugAaQzK6Dk2SyaNpVgKUEks9t8d5PRZb/5dn9X52GSURQmQMAyFYYvzEGPTsnroeGrC9ngvcdRy857F7AvPIt09PmUyKa6PjdH7hMlyQyJQqI4SRMAY9CyzZYGCyZcurFSrl3VisgdaAdxjfqBXPqKXRNw02BWJ/oT+/cnr/R4bXT4yXE+P5FUkamEUAk3MTas7P3NMkJDG4bs+ugFAxtIdjptU0AV3N8WcJaQ72g4FoEzFGxmHEJUO49KSQYLfHHd+A9wxDzxl4+s1v2B0OkDSVhBJIIg4jSeAShBQD4wDQY4eR0RrCMDCOA/3lzOVyghgwaN7Hvu8JISoo27WMEgm9gxiIJKx1dPudKutTmvIvHg4P7PYHmqZRpYfzOXiOWpXVbVoj86pyvFJ4TjwyLejQZZA5x8bQMbLWTS8mEcYwAA1gCSnRExUsGi1SrEdakwP7GOLgSb2lc544jIx9z/nlBZuMriHX6Dq0RRnp2bU7hv7C+5cX3ve/I0rmGSnwq1/9gi5Zvnl4qxFtz2diDOz3e0yMk4eJ945xHLNSIWB3dgrK9U3X8vbP/4LzEPj55czf/f5HPry+8nLptU/nZ8AQRRiS8HjoaJPlcrkQY8A7y77Z83g40gHn9z/zt8Mf+c13D3TuAWc9QQJBLhib6JzKmyqXOfScts38Py3odTbOfB1Q/BIc8CXXfbDIXIlzVd6UVFt2apCVG1d+yXKLkVoCWTe+CIvV5+XXy81iLaiZhWC/qHDZCFO3vDBoM92frI9VEJClS8vquroty37euL5GM7AWNWrh/Za7UNksPkcoupFWIO3GxnN9D24OSdX/Gjxs9ngih0pgYZLjbwLkLfFLSiUFMFaXMdlfP28GZgK7uslPopHIYnyLkqEW6rZdsv7DXFdjXctpE+GqAFPGZwIaMm92s7C5moMNQf9r2jNbKTbWb5F+ixA7IQWmNlHosTzLNlBc//85jdo9gemmkF8R2NZ6UkHQZoHufg4i7dMMRCdBs6ibRNNiGNGN1TkVUmwlOMpEu9tgzRi7uRbr/peyjMkArmbC67mEap2s+LhZPWlqWlujrmoczNKSWE3zVXvXY/41gHLrmhVf12eRtxQOX3Ld4rNrcHK3vWU8zHVf1+NTA8At0Lv4vy4rgw5ZP7N6b1J7msxrRSry2FgDm2rKitZk5jtJYEiWyxAZQiImyekSTCHr/JzMnkmr+ma+e00T9+Z0fqa0rLybXXsnoYSp7ZgcJbSMStUmdTrIkXLzOCQjc4quPCyp8NZ8HCMbThFnJovjopWmPk0Lm8N71ad1P2vGuv2dKcQg8zwpkhKESAwjY3/BxpAjUzoEBSOOBE0Drcp8zmZglfvivaNtLWPYIckQYiBGBaNDP2Z3v0gIaiFKQDQlUqzuD9YZnDf4xuIbm8/QKZHYFIjDhfGkbqYvH34mXF5JYSCFoO6seQ/xxqpBw+mZO+t8BqiWdr+nzdZSEWj2jxNNGKt5GY1hOsdXzgyLCNElxhwh1Qi0Y0Cipo9wbaPlCdiUcMOINb2eh8teIpIS/eWiAesyyAqj5lg0olatcegJYWQcR4ahp1hLu7ZVrxMRPR+aEimoxVG3CIv1nrbb5SBRurcIRl1pcyRTn/NfgoJD46y6uXrPIl7HvCI2ac9OykeT5SH1Kpm8cvKatpQzkYYAmBRVUVIo06CpMFpNuZKRoALbZkRcgw1RzewSIUcTJytakvE01mN8h8OCc6SgdGCsIw0jzmg6lRhGYhhBNMVF7PuprSWvroZfMYSsNDJoIEtHUrP2oUO+f8fx0PLpdOb9yytGLCEmhjFidSgxRq28MfRI4/C24+H4gE9CPF14f3rh+zdvaJsj1u+JwyuSItYEvAUIaDQNn/fkkr5pKeeXIJLbPKGM8Ta/3Hrma0HkfbBY8TNnPd55rDGkmCpGXz1fayNlKeoXXjX/t+rAvDPmBaHvpmozorq/ZpNroX2qb2X5XA/mLNua6cWy4Rhm7VipdAYrq3Yvrlub2PX/X4UzJLO0FaDZsqbcuoqmtB4Hy9UwLd+5amQtLGxZAcoYze1alzG1vwI11QmQ1VYoC8G+PLs8IwXY7AKxAgDrvq+nZzrfWUImMtMGk8KkGuMN4e5LBN2lsFO1avq8WEzaxyJlVRNUJ7RfK2RKPVciRAUWv0Y43wKcqmXcKMOaybWlMPkyVgmmVDCb0tHGrc8xsnvtXytNahpcWgPnD2t+slXHBAY36iuaQCBrs2Wen3xfo0Fej+dkUdzgNeWaLJv1/ZkM5rash3lC7dWDRtfDVFQNQJQBL9qigub8aKppqC5TliNZn9Pb4llfe61B5vQz9576LN3c5W2rX61cmYZh1YdtUFIrlKoBqIBKEUz1m2kyNsphmwdsXEsgN1+TK/PmsF7znVtKxqs6poZZZotDHsv8tzwfE1yC4bUPDEHQVHKztXnJ2ZdNXaQp2dgvttKY3BOMJrKUQv7rgUkUwDzFH5KZHpBiB9P3HEVgrZppyAFMBMxsIdS0N8oDUiYBW8465jEwpgh/mV+yPa9bEyrV4l6wgmk8KlpLBo3cql3WeKCCkUgaL0hSK6jzDhGPBI+EEZwK8b5Yo3YaJMRmK91xv8P5Axg3eX+JwDAE+r6nHwZOpzOXy4V+HOjHgRTVuwcLzgqtg8YbGq9jEKMgMsJ4YXx94fLpE6cPP3P69AGJCrQwhpAMsYgEvsng09F0O7rDHte0NE3L7nCgbVvAEFMEf1DLqVc5NkYN3CM5UqvJ9JBiJBEZw8hl12ObBt+oID++vuLEIENgFyKMATn9yCkmxnHQgDOi1urL0Ku7sjUYp+6xxBFCT4yRkJPdg1pD9UypBpO0Tt2BjXFginyiZTnf0LYdu8N+ziEZAmItrm1xTaMBdlxDFI2A3/hmWhiupFTKgFvboMYRmxUfNW+1md6m7AEl36IxGixbNDgLtsHnoxhDEgWLZI8HqxZmVdo7XJPP7/oO17SYMILvaJIGNUpRwV6KoVCyRp0X8N2R7ujpGk8/BM3ZaB2EC8ZocKRxvGhuUEm0bcNlGKb1Uix01qjFtZeIsw6DIY6Ry/lEEj13+ttffst34xMv5zP/9OOPBCznYeR0uWgg7hy1uu/PDJczbdPgxNB+2+DjhdT3fHr9RP/nDYfHJ+z+DSk6jI04c8GZAIxEaYiUfUPdozV9TKx425d5C675wbXcW/jxSnj8TLFfdGbRGkeX3VCddZqUsxCv1O4TlUDGjX0rl3q1ad54vgimZYBsJvT1eE1WtFqVdgM8bQsqRVpgEvDElJxUV82d6tgeX3Oj86U9VYHGbJe/LlEKqFkJKqt+1cLxWqiamlYJgsaYhY/0nRZUv9kQFmqBqdCEW7RnGoVVu+bsBTILv7lIk++VKd0c18n33iyDFlV1GUp7y/+VRScLFOU7t0i5IFX/ikBWCdJftm7zteVaKmxFCL4qtkrnsBCSspSz7ej2L39NVrSNNVUnUb+6MiCBua93VtNXt+mrv6vJt3xcaeBCiNmFTh+7CkBT05ezGt1UwCTBeLcor1wxRg2hnhlNjb0W7Vq1f21J3L4KWJHq741FJCAL96PbLpdb67AI2+v7xV38Fs/6/3MJd/pf1kvmxQv9QOZbReFRA18FC/N6ugWqZp4mmj7AKN+7tkCvBmWRtmLpergGcnUajq02VOwSoShw5zsL5WHFZ82kKLix3m7w6/Xkzo+ohSYk4eUSebmMXEIiZIAmqQQakSyo2Zsx0dfK2Os2fP1VAq3UJVxR9ozrF8BRsaMhlME21zSX0OAVYEhiMSmo0G2zsCxAMlgTIeVAIiJgCr2s+7YGfdvX58fEYJ0lRU0lIzFhnJ2ijJaol0RNbF4UP3FMhF4YzCXnKYbL+aypFbI3ROsdztlJcWmtnj30bYNznofjA09PT4DBAU7gcul5eX3mdHrlw8ePvHz4PSnpkZ+2bWl8zotoDeP5lXS54Ezk6emgkaNzzr62a+n2R9rdjtfXE843eN9o4vb9XoPKOE/jjFr7QiAMghlPpEEYJGlkzHEkhUAIgRQGYtCUFCFG/OsJmwHcJQbGGIiSECf8+s9+Rds0iIn8+7//G6TvMTFCXlMpRUKIOk5dp26cwOVywXtP2+6mo0rOWrrdPoMOg1iLPxxzQCRH07S0rqVrW5qm4bXvFRB7Dwb2bUtjHQMW3ni641GjiWJxTZstkgCWktpo2q8zYJSSjslU3miZB8QYSeMwLXbrHDblxBohMubzn5ic2qtEzo0BPcOfFavOgoTMixMpOTAebEM/DiAJ0zS8+fYbuqZV99z+wjD2Wn6EdI40cmIYE6d+4CwvPL57S7Pbk3zLv/ur/4UffvkLfvjFnxEuJ+KgEX37MJIkqDXZuxx/SS2+BqETBdUC0LY0bcM4jvR9z+nHf8Ybw9Fa/rPvv+XHFLiEwBiONLsD//CPv+fDh0+MY2TswXaJYODTH35kZ0fe7T2//e2/4fD0K8Q/cY47XGfwGEz8xOv5PT51aKzUkjap/BhUhs6RmyXvNZ9Z9ddXSSdY9o0CHmtZXfnFvet+6ozcamMM3vtJI/M1jPuWNWXr+1v3Nl3JCqhbC6tf0DTJbTFls12/MwW3Mwt5a2pXWm3EsNSeVuciV7VOxU6fbUH+Ms/luv8y/53aWz1iq/IkC0b30h0vWrUhCGxrllmNsbZ3PqQvhffMz+Zd+pbWugaKq0bl8a7u3aXjap4o/Z4bU76aElMXcGjm7yW3uSrmWhm9rrXu8Eb/yjMTA74pMBda2ugX87gXCtrSqN9SHlzVdAcsfQm9lHatixaRKgrbkn5m7emc43Ma2zvWgaq2u61Z17dpQazLq9o0i9YzHZRnypWKkiaBiMmCntkQ9LIKQmobOVPI+ZsuddZmy5CZSPkeX7yaV7NaV1O/tkZu+U0FLXJf688ZNNUKE6miIZfKKGssP7tuSY2V1nx847qnPd2i9+Xzec/SL6bva8vUNeCr28bc1zvXrASjelYpqKa/CXSynDt90sKc2ZIlSFiN0wReZEW7G2Npls9qO5jA5ZZL9U3Pj3XBgKzOUxcAiBGGGLn0gWGMhJhIsZw3mp+92e7/QNeyK0L2d1tDXYysRKWVCCGL/+p5q6hDpKov7y8GZRYpatwryVZZSRmgaWDYQpcqZlUKykIrd8boi2UwY7Ir/RznwQia6Lys2iyUaj9yHtlZc4FYSwgRYpyCwgy9aLqezLuM0byzNv84qzn7rLU4LE5UQnLO0+72HEpkykvPOPScLxcuWd5MFgyCxEBKgRBGjcTZNjweH2j2e5puh2862sOTtsFohNlojA4ziRjTDAjHgXg5MQwXxr7ncr4gMSot5xRGknLAMYAejKgVzrcNh/0Drm1I3uD275CuBW/5pjtihzOMPcPlQhgG5TUpyzb5M0nYHZ9y2pKWRNQx847d/gDGaiRRDN3hiLUe6x1t67DJ0Dj17OuspzsccI3L+T0hosGDHp7e4Ns2g3qnVn1r8aY6EJHXdTlvqORhZr4uSiBKEzZb4OIsa1ulESWNEiYqn/XNmCRJ2f3ymbs0xzaRpO691hpNGeIaLqcLIgkLNM7j9nt105TIrm3w3iHGEY4Gcw5IMqp8GeDy+srlMkBzYPj4gn37PU20PF+esSS80zOTxnmSaBTVOMUhyG7IyeUzr3r+Neaxss5hvOB04Bj6kV1nabsO6SzJWN4dD/gkXC4XHn/xhHcWZwRnE67p2L19y1/8x/8J7eEREU+MCW8s1u3BCNICdocNr8j4wuTlVkkjV7Kj+ZxEdJMZrD7Lxr3b13031Erwd87h7TrP4qqqWnMuS4a2NKVuC7zl81KYy5v/+oelcLtlwdoSOurhUeGm3J1emntmVucN8qDUC2993ftu8Vw1VgvMUQlD9R5USreYEmC3qnMpVNTtKGVNP1fdKe5Z2wL2GowbYxaut7WwNH8uz5JByKobG/Vs3Z8hkhQ0t/ouj6PJd8p85V9XMgPVXi7zQJU5KItw8d5KEL9tbbkNTOa/S5rfotlFxat1UrsFFsvAdtuWa2z53CzczOB/WwDfEiDXffkSULMW1hfujZ+5ikBuuD32t+q8XV4tiFcMmaWgKRVdp7JGprVyDRY36dvoRloCJhmqiKIVfy3zff3udfvrv0uBdrnWJh5guHO+uEZ7qwVbulzWTvXLVWFkF2MpVJ4C+ffGVNRzcGUt/QzvnOh5a45XtF3+1lbuGehu0+56zd3jVebWwNbtqR5ZgsyNx005q1L141b9VOsiE6+ywo1xXNDaVr23lSzLd5beJKV+ay3J6NmpISTGoMJ6ShZ3BdPmctZ1b/bzC4DRWpE8U2ReW9cb36TgWG29uW3z8QNTCq3avAD/FSmqi2eZs5yDcKKTbIGc1lma27dSJtzsW659PS4LmaniryUQT3GFlAxIkpicV1LjMEo9S0ZyfMZCVlYtYQIUUVp9jDWIl5vlsiKrWWdxXs88WhxG1K0Vq+DTdY0K3ZJIKTCGAQk5oYk1tI22x5Q8lBaMM7g2Wy+9Wt7adqdu7miTQgwkARMTUaIGmQkjKQeS6S9n+v7M+fWkL5DPrIYcdEkk5ztssc7jfEN3PLLfH/BdRzBg2yOmbbGt483+CS8jxIHL6cxwuYAIVgwmCeMwkMaAScJ+t0Ny9EshqYXXebr9HqxVXImh3e0x1mMcOJdg1LOZ1lga4/Btp0BcIgzjZHHaHw5Q5sA6UtQ9107p7swkz0hF+YUcq5WgdG+yu6YoraaSO7OAl8p6UfbPjONIRsvToxlJx1pyFNBhVK89HzC2Z3x9UTdcIDqPjeoymkTwXaspapwgzmOtpv1wztHgeHl+JY0J7w544zQNVYTL+RWD4KwubE3vUfiMoO69WTVqVHmtymDtq5G8InyDSWqVDzHgRZUhxnqCCG/2exrg7C3fffOIMRqwJg49u8dHjt/9wA9/9lteXs9q3U55jzQNxh/xbofzD8jlR0gXPeNbH2ep9rNpvd/a+/6Fr89EQ5Upqaj3XheonaPoWQNSuWLVblm3+Xt1Dqs8s5BRymDmr/KhTiXGWatdCzX3rCvWWo3iVOpZ/xVWTHf6NTFLycQ2TU8RKIyZrX7TywubwuJaAsT8uVLyFq3CgiimJZxz42TBc+sMx9y8eSOv69WFUAvBpT7Q0wz3r0nImpQBa5qthLEaHK0FpkqAXGiay4a0lnFkLurqizwPZJrS23nD3rzKGaGysWl/nCFHEQSJS2Az92WpPFim4di+lkC7+KIvx//Gizfuz+LLrUtdoG5bdL+Ez3yZRZSr72sQXH9ft2GRKmJV1ub/N4D1LctpAQb3BOO6PfnmpHOYvpPZ0lYUKmVM7Hp88quzFbXMt5kCg4lIzjU2C9jlbGNagTStwy7mqpz5XGC5LSxR89WvuKwx6g5VgdWbddRV3Ni87gHUpXBvprGrFR7XEn7Fs6AMcv3l9GoNygqgKXNgrUVSbUVc9GZd462mTO+UfU/rsCvwYyp+udqnqm1M2ZGZBLoJAFZ73K11qO+6wqJUaEP3vilNgCGniLg+/3drHd3q73X9eQysRhkdY2IMkXGMhCA0rc9JtvXdFHM+OWuveNlCgZUF0Gltrtq2zS/KApmBXlm/9dMl1vlSiVcfeZkXkc6py0Jcqvau5agYyHnUitKxxD1QG7I1Nh+ZKFUmBaVT281ir1tve/eXdf10oTMYGbBWrUeN60jRYvBgPcl4jHFKOzggTO8aZzP9Kf9SA5IGptE1IZikdK6Bf9RNNER1vTU5KI73nmQaomkgnEkSUHfIgD107PcNhzcPjP1A7EcQaP0OSMQ0EqMGf+n7nmEYePn5J8ynT3Tdnm53hO6J3W6nbbRWAzEatSalMZLCiAwDaeiJgN/t8LuO48MToR/UupiSSj/ZAhZjZPfDkcPTA09Pb3DdjvOp53LuGU4XjjbhxwCngXgJ2Ke3uOM3PH3jC7PR+bR2kukwmkpDo6JqMBtjlBdp3j6mgFBttwerZyrPpw8YJxAFSYZ21yjYTwlrYRiHHFwl4vcd/WUgJsE4wziONI3mjYwx4qxHJBGJREnkGEzZ8pyyfK2KkkLbahnO0Vaj7l3TvsB8LKwQXLIQMOrZXK0RCwo60fO/JNH8imnAXM7YqGD0koT+o5nOfYrL5yexYDzf74TgOqLtOB4MvnH4/QPvfvNbTP8TbnfkowQu59csT2r+SzAaORVD03RYF0kxEOJIcLqmnTG4aJCgfCCK0fp9Q2wg+JF9TJghIiSOxwf80fLQdYSHAxIHPf9qIslHfv0f/QV/9q//kuP33/P+5d/jrOW4azm/nEjO0h2fePftL+nTkfTRk+RZLd9hyEcjdE0XK7/YWd6coH4le9zjCGvZaYu7f04ndxcsevGIHRldIJnvePIjew/JPTCmAbHDQiBw1inB5IS12oJZaCz/pozot5JTFCG+2LQj2VUAKDmTZlNtEcjqKEHxajPRSF+yGizVseWCmT5IGbWYy8xlVKy6tuxNrh01+BEWG9laSFhouKMp/EWJO6OwOa2HDlrK7SqEUwvpUt7L7Zuqzhqn0mPFELOroFRtcUb9SevjlGVIDJUQBGBKvq7yiNUN0s5WUhH13S/CzzQWpgjeCvzTlPwVTMnTImUMisCZBY0izedANqWjJU+WxSgjygDc5HZIUq3QjPkMOY3WRBcGAzF3qDDASuibBLWbsqVZ/a9XnDSyyozmZ1XTu7gKmBfJ7j7bQlxYu4HZSrNbPVf/nZ7NAvTsEpoZvjXzudiUnUtk1eYbwnv9edOCmF0si6f1Z3jSzTq2BeW533NOoi+8jJkCcBTBclEv5HPZTGvSuomEmA5DFaG0AjuuhBU3K6WAMRjvcvlzjfMor8BPPacwrc97ovzECTIf0mh2WfjObTS5QBEVjsgBORbXVtSrVejuua7S1sJDZEqPQg1OZka5qkpL8rh81jPl7s/jVnhZaUEqYzSPzkxgBWzlMUtRvyjja8u+lP+fHYczyJiGogy20QALuW6nErh+HfIaLDkUpfQn73MFJGQeU7b8KRiQGAUNgs7DtDOuebpkZVOeitI8YeJvZR+MKSCSJtCIUR6aRHDeT/RaxrTsBVLx3qIkra85iNPE/MGI5kgL0IzwoYv8GAbehpZfh+8wZyF1kbAfiCawlwYfHYPETJOl8CUPMyv6h2t+c8336meWf2tqLlnW6vVWFEJr7UgiMikyMfOyzy8JMW8dJWCeYPG45HXaRTKvSNklVa0yRuy0ZtQcVmq0FNfZG8iQYqn8nIAn7BAuwAVPg9gOMY7kBhIOh6UBGtMTTYtkl86UXVfBEItSC5U1UhJcUMtiSEmjkQIYBWszg3RIUoWXM4kkASf5nGSWKazxGqVzf0BaBSoYjbzqSIhJNGPPIQ6kGEjjyOvzR86vr3x4/x5rGl5zzsAIGkTEOaz3+LbFtY5u/4Bzb+nQtBxN4zFiCGNQ5UBCz+3ldnnfYJzFOYMzludPH0lYXLfn7ZPn/PKR/uN7zj/9xPkPPxGaBmkarHe8efOG3X7PbnfgzeMbTQ/jHNK0fLooF3EknHN6VjJGXkLAlWBHFoJxGnAoReLpRSWbzMeLAijGmHNHminlxvM//5PyJWM457nrgcEYdvs9hY84YEgR6z3Ge5q24zSMYCy+0/OOMTOj3a5DxhExCWcTQ5+BbllTWWFnrSFKwKREi8EfDvSnMxiLaQxxSIizU0yJ8+WM8x7f7DGRfC4y0kjicnqdeHHoR2aO73j+uSWk9yQbkV/8Fic9znXYfmR3TrRPB+zjEz//7V/jRFNTxZKyxSpnHWMgxJTXjsdmeUqMAW8xrsGmWW4USRiBnXOMSfGE9w3PrxckK5hiRNNiWVUAvJxPECM2GfrecXz7r7IiyXI4vmHsTwQD4xhJ8RNu9xv897/i5f3/ynj5HSaeaHG4eFQvZiC6SERl6paGgmLK34W8mPm4YpWge8okv+d9eiXT3TY/6XU/wE1hgBac39M1jsY7MA5Bc93UB7umjSdV2t8VM1M/6pXMMT1jqh+u5FPZlJJqprn8chLetuXcJagsG8VG/+fGMD9fNXmyLJgip5ir5266MhWBzFTCwSx3zR/uCMzLzpUyZArZXMrfwB7X2llqIaUAxQ33TOryKi1HtVlLUedKVU81prMzRCb6MlXTYM4tqWRtLXcDTG3IFtWYlA0qA4sbtFLf3SyqnvpNzfZc3vqq5YErcqvkr1vX5tyb5Xe33OZuWdkmAWka/KpMJp6zKvO6rJtuZGb+vpaxvqqtFQ19iYviPZe2zZ+9eiQAACAASURBVAYWhcD0K49LVdVCiJ2elwX/qx6YGLOY5TsG1IJ91Ypr3rP2UCgC/NXN6x7lPuTJK54Z1dhImdzqWueypSpn0xq7bkZZ52UhboDdzzS9Eu8rpj0BzIoPbLaiLmgBtab/tSgz1TD/N19mJompPlUozfM503L5PR10z3/n1EslzYIO0NzTedurQMtikaxcj0pvyqPZdUutYXPbp3JuXnMl02P1vOa5+7J1VDxw8t4chSEIlzFxHhJjgGiLTADZxjaD9FU9C1rL7VrT3pZl8UtcVdftrq+FNX1zI8n7R6m31pJP66zsZLK4XfhnAdma97TeY5k3vkrJMX+xbEdRntdeHHWT66EQxpzztcutj8ryrMeZHRaPoNFCxUEO41otgsIPdAgSICkRU8TEHLhIctAeazXlAGai6Un+MoKtlRFZNpD8ndKRpnOYjrlY9a7AecRq+jbTtBgM3mvE09OnV2IcSUEYYlB32dwW13TsDjuatsU3LbhWSTSVc6M6aN55jCuB/sA79TwgCskIbavWOQWPkHAk70n7PendEy4mxhS5XF75sT/hrMVZx7unN7Q7PV/ZHh8YjVKQN4Zu15GCWreGYcTZWeEeU6H5RAgDGD1PatAzlCFGUtS0JE3T5DQ0wng6Qc6vmETPJaYcXMqWs4VlXrPrrhhIwU7kJzFhvZvlaUMGjmBMCc6k3xmkGJyzm6FR70PKsQv1pLLOThZ7SYnkwLW7nM7Dg2txxiIpIHHENR0lWrHxDcUyK9ZzeHiDswFxiXG/x+GQxvF6ftY5ceoOP1wueW1YrHWaWkSkWjOzV0FKBWwV2dMypdWLM0M1oAp+ozJrkpiXSQLRM6/GWg38lITn54+8vHyibXdgWoZxJIwjTbdXC71oICQBxHZYt+Pw+AMXcyL2H4j9WXmJmXxCMg+q9vCZUeQ5MtN4TWyLyvq42CCqje4LrrtgMU0aIEfbdnRdR+N9bpBWVDOmVE3I7Fa1tGQl1P96KZQoE7120zQTEc8dFK5dJpcMtPydBu6zQngtj9QTMbuvLELFT21covHPucjVl5krzGOzllKXmgJrLUZqQlkJkhv/FyuPLNpSaabNHPVqHre7zd7sh4juIlK5WG4+c6O9xpgr16iysZqN5wU2tc5XzxUgLjVNsS1pmiWZfG58v+a6KWCX9ZrbWM/DVQqCDbCyLn8LKN2yTn4J8EKYoraty67XwRbdLwS+W8Wv6r/dRzPN2ZU7xaov96yQW9dkiczjvbasADkH2LbwvFZgTWBJBLGGK55W6Gw9/jdpRK4+bwnYW+8UgKMb2sw3yv3SbmstifqchLn6u1yfuglvjfGXjvtmXWUNlIeM0bNWpvTZTgqwupZaabWso1pTZsNyvOZ51T66yce2+lkG+Oq+mb6TmXy312dGk7aao1LGBPjX7+SGlkjWM1Cox9VS6yWm/iaZaZ0lPV2tX1nydKXjMvelPKZo0iIJGWEYhH6IDHFUq5soqEAsIpa1Jnz2QPkMT79Dc38Kj15bJ+8rm+b9t7R3s8ZJ0J49f0T06IixOlgq9UjV3br+7f5N9VVCb/m+doWuhWLMAGaP4YCRkcQFIeHsHusedI9MgVHAkT20rAr7BfbO4FeDwSBRwWWSCSQapwFt1P8zj5CZwUnBwDmMyNQH5SoRMpxBDF4CWWafguchomkjbMvD2x2Pb94RxoG//7vfEUbN7Sh95PV0IiH5HB8cj0eNJNq2NF6Dv/x/3L1Lkyy7kef3cyAiMut1Hvde8pLNaTZ7eiRZm0xtJjN9/6U2Mm200UjqmdZMv0ne1zlVlRkRAFwLBxCIyMiqOmRzFoLZOVWVEQk4Xg7/uzvcRcwVGmfXq47HA953WX5NFnIqWqRa6Ttu3z9w7Ac6cYyfn7mhY7h5R7p9YPrlLwhPJ8anJ37/3Xf89rf/wvPTI+PpxP3hwPv377i7f+Ddx4+43iP0OBl4eLhHyNaraSKJs0izImiI5hkgCr25QJd5b9MQCVjwGrE5mqaA5HMqpYTvuuw6qpxCqLxUEA639zbymkgh4nyHaiScIzf33oCgAslcNa0ts7aa/K1IPuMWHpjo/IDDEcKMinksuc7jkoH0JImEZ+iPtrKS4voD3h0hBcbTM8Ntn/UUBj5DtHyNeuj45uMvuL054Drhn378CcHye/7w+D3D7QE6SOHM6XTCdz3OOzrt7O5ozs9pSymvT+eIca1wK+cz5afmnS+K9yVK7IS4hDjNe2JCdUbcQJc9h77//nveffye29tbupBIj0+cz2dujj2Hwx0pzjznKMMiM84r7z/8O3qEE7/l6fSPONEcZMhBsuA5wnVedylTLbxl7/n63Zcxy6upM0BwruN4vOXu7pbh0KNENNkiMK+XUBurh1WlVC4Y2JakLSjaPnMrYeWaQPmCULURLvbLXshz+2nn4g56t+3+as3b0tKd+epqTOrvTVInaQ6qto63LJrCqK/RIiLmivZCWYSQy+9W7eEG3LTzfk34aJ+nkmqg1NEQ7XxzF8jJy/3Pwkl5LjTj9cJYtMLK3sb5Eovx9fqpBFzbB8Ul7lK8vV5a0HRt07/Upyu1XsMwF3W0QuoaBHGxR75EqfKnLCK2p1qLvqa1K20RdNokxqs1XBB/UxQ7hMudnmvAt36S5e46KtcGPWVK3zhkmg9Gy8283n+q1H3hvc+Kges8oF1bsvnsWttvpXG1n9Dd775FubHHE9p1eX3Ydmy4l9O6tHGxZm2/FidZoQhlF6/t0lvW4erVBsQUQbG+WwUZh7js7r8DQgXLTdbWV35v2/lDSrFmrQBjHrYQ4HRWPj8nnt4/cSs9vfR0DObOR0LkNaeny/LHKOz+TcpLvErVImD6ovDICuwkpJyj0jlFNdY8q4ZasIXyesiAZrwb6/IO0G++waEPaBDC1CMpIMeY7yP2jKPDeeg7z/3DHSErGOwOIygGniz4iwW2USKQLH+fKh1YGg7vMB99MQtl7pY6c1E0a5fD4SyuiF/ot1k1i4yg+HnOgXlsjBIwRyUm5YzSdYPlxRtu+fYvf0MMMUfcTIynM3EOzPPMj7//DkLkfH7kp3FEx/NivQszU5gyz7O5EjGA2nUdQ98TFcYQuL9/T+c6C/ozw89+8QvuPn7g+OEDY5o4+Dtub7/hZ7/6K3719CM//PB7/uWf/4m//9v/i9//+ANOlZvjwM3NgaG/5TDc8/DwwHDIFksxd8++680Y4xc/hRQinTdDjIGtZXaTKpPGKjPHaTKHS3GkFPHaW0CVmJinlAMM2bvzs90PtPPB0w9HFJhTRMJkA+EcjN7ilnQe54dVxPMU7apWvQaDcp7yvdNh4O7de7t7GCOC56Y36/Z5HBnHM4Kj6zwfbu65uTmCJj5//omQcyI65zje3lY3+iRAmvn0NHI6nfnP//C3/PJXf84gHv/5kfd/8ZfMceL0+Imbu9ss16ZsGV1wR4wzIeTgP97jfFGMrIRb1Dlc161OB6+ReRo5n58JcSSlQEqRGCbAESZFY+T56cyvbu+5u73hX//1n1E6EOFw6BGf5Q5xRMTuqDITeSbxDTf3D/TDnzEMH/j86T8Rw4ykRIezVCio7bc3FVNL7Zcv46evg0ULpUXneoa+o/NkxoH5mwvAuE+klCANC2ioxh5dh9pvhfnSweVwWB9yJaHtW4pmbcwlGhcaH7Fl3PbOg6yNKfVVMAoXbmbt72+xnDhXpBKxg2ShvAmgouTLLC8fWJu23mLd2aNz73kLkNkRQBblwNJ+8a9/S9v7AmLR6Eh1Oy1gsW1n9Z3myysNfZm/Sju1H1WpQRm366Hlt8L/1kLyUlnq4HJSJNO2Izi+Wm/+f+lFU7bAVF6n9U1Wx7aJF9a5ZlSyVRJsv7ulqV0XWmev4RF16mTZF6/In7uWwbadaxr7AjQ2YLxYrC5AwELeJYgu30Gbt6rkt/rOfide7uPF61tgugcqMp/2jSXe6Fzv9yXI1/5cvVT29vnuOtTNHwW3/YFKBdnwge0Yb62U9lnhuQDljlqZI/tR7qJpPkakpb0MWfO51u+tz5EFfGZHo8Y7pwXlez+p9xcX6+tKqZf5Z+te7Eowiyv78aKs6qwUQbVmbtaTU2ISplk5TYHnODGLw7sOrw7BVWS5CnT1JVoQLtfDHwMkX1qT63rzOUzm1Vt5Ir9vguDialkuWqSU8vxn1YJbu+O+tV9l3LfKwct3TQksGhBn9+QSzkC9Bg5Hn6OKwjlM9Hf3ON9T5a9kqQSSzibyiYKYgcD3ID5HGXZ2v9JcUsuiXxK8l3gLKSVLe2CQMY+CWQFdBqqgJCfEujcMjHhxNS2k3U9UNCZUXL7e6fEebruDzVBK3BxuSMGA4/l0Ijw/1vt+5+cnXJxMOagGhlMy0DmT+D5Y0BgNkZ/4VxRP1w+8/+bn3OtXMD0z/mhA5Hj8wOH+DnoLdjI8vOfdz37B3cM7fvrd73j69Innx0+MqWMaZx7PP/Dp/EjfdXSdp+97bg5Hupy7su/7GpjGq2M4DCY757yPzkJ8GniMYeHhTvLeTqQQSC5bzKJZ38zLOMs2SRcX1b5nijGLxMLzT6FGm03ec04R13nCcKgxL8pukAyoivup7zvjnWp361zR/nddDoZj/TscDjb2UfHe0lAg0N/cId2Bvu8M3ObzXRXLV6wT4jxdd8PPv/mG+7t3yDQRphF8R3j8xPTDj1X2DHn+wQwOaCJNFoHXOeNLFpQpM0x1ZsXMe1FzTlQt53XKvFocaCTGiRhnQOm8peAIYebh4SO/+tWv+Pbbbzk9PyHdga6zHKRmXTzQDQPvup45kZUwHacpMvgD/uYD98ffEHjm/PgD8+kzkkL28nb7Gbs3PGQts1/nJwtfeZmHvpJnMeNxFZx4+t78tu0qsUX4czuEaD5EZU1no0F9WSiqAv1ScfNu0QJdB4tbUFbP7gum2orZbJ6t6xIu3d9aca+2dUWoee3zhekvh5Ci2R0xf1768saDsbVU7X++FWYXjeW2rAHjRgDeqfu6tvNlMCK1q4sttQjslPG9BsbLfMoayK7fbVwWWWhcC0JvL2+f1+bdDd2LMLvQ8hIIvWAKjab5RaG6CjJvFbaur4e3lAKm3moReomeVl6vVp/6TxbhM10ft+3nL9F1fX1urLd6yQNaXrO3Di7m/wV1zoqXLR/u0rT9zrU9KA1oKn+XnGJr0Jw7eKWul8Zo7/kfItBXuLpZ82tevNC5R8uXWz8LWGtQX1tn21x+vD5R2r/+8A10DcTUz3X9rPC91cNNsUjadsa8dd+tny+/X66rLBiqMAflPEdOcSbQY85ngstzlV7Q7Fyja3cd/wnKtXVbFVNQB2bh3UWYVHCar0kARUFU/+Uvl/d3ulDluytz1JaX+LiIWGwpjYhMOaCaJ0UhpYnhGC2YS+cZ55He90g/LP1LCScxx/gqwNdAnRep2SuTowrYSjmPDOiVDiZVEnbtxbCk1DFREqnIkiIkZy6hkuEGkgPg5e2YyNcjtNzDM6OFKBYd0zkcFmQshkCYZ4bjgfkwEMJMCAHXOdzJEeaJME+kMOV6IabIPE3EEJCQmMYzuI7h9o7h7oAMwjif+fz5ExIU+eDQB0/nbvDDkdubI7fvHohzYOiPDMfviAoaEzFMhDgxPo8WKMV7+mHgPI147/DOoqYeDkfLrYivCndVNQDZW5S1lCIpR8wuICwFc+GNMeBC5ucpp6yIsUYkVYSaLzUKMc3gHM57pnnM2Q882nVM84x4DyHg3QIZVMQCCSW7iaxqqSpEcy7Fsg6VjBMUC44DQ99Z4JaYMo+2KBKu7/EidIcDwzAwz3PdMqacS+B7/DDw9Vff0B2PhBhwmlDfEeaJ6fnRupXv1lrgu7z2kmTgnbKspcQUWS6Wqykg2n1lQMhUPkkzHsrrWBNQ6nKEmAiz8M3PfsFXX33D/f0953mm8z1JEy5FW4+DAezDcSCME9AjOCaSRWXtDgz9VxzvviXMiTCOxDjR+eJtcnn1puz5y3NjfdVs2eCwZkB/BFjEFxdMs+oMB0ffmwBpuiG3aqtMglkQS0cWV6zVvTwlX4beL6tDT9aDYgNSopWWcjlIiwZ2bW9pNfyvHTeSD7+FUW5fuP7dtwhHC7PfOTzVNHW13cK0c92r+steLC/KAnBb7blzSxj/uvjJfTMu/qJwlV+p9ZZxFier+zHb/r8mfIO5Q7SCWDmM2joUzN1nIzSulBCsBetdi1Z9vqblJWG4jtsLQG6vf1dLFtoqPe6NoO+ikfU4vdUy+DJol9X6eCtNF8LLC8/eWudrZbXO7IPdNt4KeNqcfEu9CypcAcYrLMF1DWv9QpB0dUxeGKu9Pjl37aBgtWYs7+NSz5eA6Jc1lV9moW7pKhrRGgn7BeXT9tBca1bzfNoLX0TKwt+4UAoATTDchfd8af2qxaqyDq6lsER/bfhSOWNL+1Kfr13GC4B+bf+1tOy+13zeWijb91qepZmueU48nSOfxolzHOhjoIvBnFDVootqe7XjGjDfWUPXlBF/0HrblAuF8IWA1cglmwFfrA8WUiSbuBaFO621MdN8QbcF3yjyyfaMV5ZzuB2H7blU/jk9kpiITHTuHaSBGCPj/BPOHRH3NYfhgf7Qg/MG6ct57oFOEd8R5g6NAQ0B1ATaQnfIaRfK7Dlx2arYalHMquRW8oyCJKR8v9yT9B01wIiq3R/UhBPohHxvL7slyqFeU5rnGUlKiMG+5wTXd3Tecew8h/v7ZSxj4PT4yPn5icfPP3J6fLT+RYumf/dutt9D5Jxz5r37+iv+u7/5nxjHkd/+4z/zd//x/2H64Ynh/gP3H7/m1//hr3j/869xXUdMEe8dX33zM+7u7jkebvjxhx+YxmfifDIQlOWZkK2dRek7TIFhnOmcp8dxOBzqXJtVbnEHxZc7bWrWwxyF20Ci1NQWqxQXYKk0vK85GInRcgt6xzifCdGhweOPR9J4xjkPKRGzzG9gBeg8seuIfY8CswbMSptwt3fYfUtTHKQwoQpzjKRwZhgGSyeSEiGEhde7hOpMiIlxGjPtnigduAjDgD/e8u7+ns9PTwRJcPTEm4GJxDg+E6O5vyrQdSVCdHZJTZZhISUbhxjmzIuygsN1FWSR11bhuylYGhEnHd739BrwSfDOE6JjniLzDH/9P/wNDw/vK7/oewvUM41nNEXGcTLw2ve4zu6xmov0mRhOjNoh6cDdh98ADjTw9P1nBteZUjzux514CTgW/rL/80XxAnjVDbUwALvXcnPsOR49Q1E+pcvDqOY4IzuP7fJuM6MvoZQyE8zALB9BOaJTcd1JGTjRgMRV61WzWg7PpRtagdDC8F87VLTh6EpxxF8d3JnmtTZ+ca99rewdTNVhsnWRBcR1lLts5XGd7o0gU2WYpl5taK/uv/muyxpwbcu+gP8WofKtQGANwhYqWtGhWKna+lcdZulj+3kBnytKNwCx7dOXlC/pY25kabMJjVoFiCJ42kL+Ilre1vwfD8xeG6c90PKHtLtal5vvX1t7VQl0pbw2XyLG53aVHGra7FYQa+u7ELYrfsjrdi8NxQvl385q0kREpigjjP+Z4ElNwL3X/p72sjz/YwXziyKZt+dxqwG6NjSJSE6vsTNPXB+7wk9W60pXcVdfI29d32Y9LaBpTcPe99YKjoXvbZ9t19sFTXU/Ln2y99ZKwnX76c28q+QB3QPkxpLLSWM9EQGXBcLnSfnp3PE4C8MAQ5rpfA4ysa9n+aPLv9W6vKZgVC6jG1wtSU0hXo+utdyxpA5Lb6q1KAAKkHytiAhdd2ScP3OenjmdHb2/w4tw6ASXToTxCVVHGhLdeMZ1dgeuBINxrkPF0YkjxUj00eSGFWHlPmMDFMku1cEilEbVmvtYkfq7gctFOSJiQWxMRLQ9HsYT8zSiMeIkLUrpBDi766coYR5R7wkxGBgaugyIhL5zMAx29y8m1Al3Hz5w+/CO91//jPk8cj6dGE9nPn/6xNc3A+JgJDB8fADviCnxt//x/+T5h09Mz2e6FOHQIdMj5+9O/P38I//1P/XgO3A+u02ScxQG3j/cIne3lqC+9l5zmhu1KKpdR5fzIial5o5MKRBDJCUIU7B7oEDfdxWYWxRVm7/Oe+I00/U2BjZNOVVNSszTxOF4pO97pnGy+pwjJAPL82wW2K7zEGYgWETRLLcols4tqSLe4TpPUug6wec7jM/TzDRPnMcR73sOhyNddq+dkzBV1qF0BWzOIY+JRXz1Xri9ucH7HmIH409oF4id8jh1/P4f/pbx+TOocnsa4XRCz2fkeEvvHD6l6o4azcxO33fEGJjnkdPzo7leu2Ka8IgvgZs8TnzOb2xCpKUfMlfT02lERPHO0/dHxmkyxwLf8/Gbbwkp8fnxkTkq/XCDiLm0eieMp1O+m+k43D7g3GDGNzehMqIpcg6eo7/lcPetBRZKZx4/fQ9p5rZfoNtL8tA+j//D+OPL0VAb5iYi9L2j7x3eaxaeLkFXa0UsGrX6jOxXHcut7n0wqStNbSvMkxnvWqMG5e5foaHWlN/b//x6WVB3paLW0QoHGRI3gmP782rtzcFb2KdZcFrrYqt+lMxR1wCpaHLL363V0WqQ5ae8IOiXQ6gZ6/Xz/QW31fbvCZTtWFwT6K6NmbCMb6VtRenlTC6aelbvtx9sQXEL/q8dwduxuyZE79W7rd/0Fsv8tjnqVv16KxjNc/8WEKdcMpE/BtSt1nIrzG8E+Wtr7y3jt/edL6F1LeBu2ivAvBn4dqyW7+8L6rsYsCgBWq3dhpbL92W1NnVnnVZVkb48V6v9uGpubX1q671QqDR1XQXmX/D+NRov+7EGOFVA3nn3i4DBFeC0CxhbkL+hdx9CtPU1bLt0oDk7rl0JsFc36+XKnmnPmfKvxGR6aUxUs7Zd1+1t21jt5UzHW8bZvIg8QiRFmGbleXScJ8c0gPYJOgupb06+y3m3Bczbvlwbpz+Gd5Wyx69e7Gf53raezVtKjnyaU2rU874otRRke1fnD6T/gsY81+N04nA88NX9B3r/nuk0E+aRGEYLNBMCUSbUCTqf0RRIkiO3dj3qu3r+VyVIzoGtFNHEN7Q0vdHCg1IOalQTMi48TOxLSs7PnZQwWnJz0YSkRJrOxHEkxRmNwVxS84irnkh9hwLjNKIYMIsp4fuOYRgscI5zpPOQ5wG6rrcolF1vFqLuSH+45Xg70x1vGeaRmAKIoz/eGnidRs5PJ9IcGfqBm+MNz6czEuKSDqPrSWKWz27wFRTjHDd3N/Sux0u3nIdqYDGliPcdXc42MI4jCeiyZSaGkC1gJicKJjf0fUeRcoIWTwVzSQ3ThIqrrqpBtUaTDknNfTSZZbjDwG1Mwe6q5rU6TpO5sAqEYPcfxZW85iahOSVbjEGDEspaF7s3KCnhXCJOIykEut7WlJb7laqkfD9xniN97yEGUphBYNZIVMd0UuLzb5lkYPY39P6OH//+7xEi97/4JW6O+JjwWHzdVPBBBtPiBO8dx+OAiCJnJcyzSZnZpVnB8p8qlHgtLR5wosQM8EOY8c7cncV1OJ843hzoh3vE+3yfMZFwpJjqPXdx5rYrYu6slquyxGFxOS+8oMmCOnl/ZLj5yPHhWx5PE2l6IqVwiUW+4JzeK/rC1QB4BSyWlI6CufJ0ncd35j+uMYftbvjU9gCzDjcVNsxhK7VcdEmuuIhuwMeldncBKBVMFmHsooNNGIPt5c7G9bWCFtaHVwvOtpaGayCpHavFEqLVFaOOTx0T0/hswcRL9ZYvV8EkA+02oFD+pXyrCmUXAlk1ebG8uyu86Wo+tv1vgf1LVqPt+Lb3EGnGtg4VG6G8vNMMTdmUeViKGqN9YSNT7wOD7d8XFoKd+d8FxZRptmdOJKfvbgXW62tnu94v9tIOTddo2b5/YRHZ2VttHXtr/OL3zdbb9ukl4PHS8/a9L2KKuuyLoq9SZXdNmnXmBYFU9eK79nfD+EpzF9/NPzIddW1cASZp1cb+nF2Owz44eYsy66Xy2trZq2dvD5WfuhnH5ftrHtI+2/KZ/X4Ul3tskvfmUFZQsa1g//1tG5UWtyiD0rJuTDDOec10ncvS9u9+Gy1g21XE0e7H5Xm9l7jpk2q+q3O5JVfvrPhFAdNXxmHN10GSQzQSozLNwvPZczp75gH0YEKuisss62XhZK/P2zXwbwEWXyqrvZUn1wTKK+83v5sSxtZ1yR1o49r8XqJ1tXJU/WVn3CWn8tnsh5bW8iylxOPTJ95//Ev+/N/9FXe3X/HP//h3PP70PafPjo4+J6SfIXp0PqHBoThiCNAPaNdTUjdYmo3cp4UrmotiVbfkf8nSbKRk3lKeuAxasrrM7c4C2CQSopEQJqbPn4nB3CKdKpIicToT5pk4TYhf9k6KMGdvkHmemEKoKTC898Tj0SxrIszqLQ9e1+HvHpDDAXEd4OmGgeF4h4pw++4Dj7/9J8L4REzOaMkyr8Nxc3vP8XDg5v6OHx8/4+dEJ567dw/IcCBGJYRE3/WUw146x+HmyDAcOfQ3QHGPV1JMxBhqsBtV5fl0QlU53t4RNRDnQAwBTWY11Zgg51ksc50Ec8V1jqEfePr8aVlb4oiz5UZXBHWeJEJE8h09Z6AtRjtn8to6j2dc5lkphhydtc9RRD1OzI7h8y/FIhlCwIm5uQ7eosuO40RIM5r6vA6sDykldDLQGzTR6wAxQJiZphE9PaNBef40Eh//mScVTjJwOPyC8Z/+keP9ka//6j/g5hkXE504opj7aHXZd4LT4pJrgYWcE1MsxOpAbrs235fFlT22PBWnIJGkgRgt2X1Sj4ij63oOxzveffiGqCEHzkn4vrdUM+RcowLei+Ep5wjzDHRI10HqzBnBKdEpMcz4rqfr3nPz8Au6x2dmhTT/kPuydi++Jo8unGWLc9g8v15edUOF5tByOQqc2IDiZWXFmaYpJy/1TcTK7WF+IiU/vwAAIABJREFU5WDeKSKCpkjQtPP5Uq8djuli4KAwTnKe2TceKBvhoWoEWSYjpVSVD9e15Ptly+iX1gqM2CPJTqqXBKOt4F6ECe9aMLQIZSkzmc1Z9UqxDVaYdRl7sia1LFDnXHV/2KP1msa8DL2IrO4sFjAL5aBZJxq/0Iav6l1mUzaKgwvgkhtrhZBrYGvvwH4JnKUsfLoi6OW9qyxWek2NgMbLa6o+k5fv3rY01bslO/Vezstyh5LNd/YUAWUtlPfKHrlGU/vzat+ad66tmdWzVhH4Qv35KdT1tQ+wy0EM+U7tlr9caWO9v5f5qd8v67kBrP/2ZQdg7ICr9k7f3rpuFYBvBfDtO2+at813Wj5b3tuuuRLZr+WN+/y/8RDZ0sH+ifTSfto+U82a4kIfmDAHgEOljaG55isL7dfba4W3Tcv14xY8l/q1CRu82qfI1fFv6/qSoqqQciATSZZbMQmPz46nk3A6wHQIHA+OpB2WgH1uavjy9vYUVH9a0Chv26d1j68Fzb1SZYuVTKdcRAe88t3tvKuqudzle3D//V//e37zm/+FX/3Z33B6+sR33/0X+hP09x95OH7LmJSzBs5E3HQGNRPBWbpsLelw/mACVD6RneSIkU5yTrktSI1mjQoGcOL0TBx/QvBosqAm8xyznGD/EpEQZ9I0kh4/cz6dLTYBMHSducCGyBRm628GmTFN+Nb1NQScNyE8TZE4PjGlxDiODIcHxHmC8+jNE+PxNltPew4P7xmON3TDgD8eOf7qZxzDe9w48c9/93eAWQ7/+n/8G6KDmAzk/fLX/545enA99+/e43xPmAPjOHJ3OJqVDkWdot6uVkU1N9BU8hCWgDzeVSvozTShMeHV4VOEG60ujCnYnTvRRO+7apkcbm4tGI1YkJwffv+7Khf3fU+Yl5QU4/PTSr4I80RMtmZOz4/4nCvw8emJXgC1yLjjOOKdN1fTHHPEdx2+t4Atdl1UGIaBiNU3TTOqEHMwG4/w/PyMU6UXGHxvYDgH4fnX3/6WcTxzPj3z3e9/ixeICs9B+es//4oPv/iWP/v5n/Hzb/9n/uv/+jsmCejXH/nn3/+O8fxI8IpvzgufAwlNk+0NsPEpUVk/ffpkkWEVQsz6ECztjaq5UasqIUXG6YkYZoLO+C7f2Y02364b+OpnX/HrX/+GOZ6ZQgARjh08fX6i846h7zj0R2IMTHFknn+kv7m1efEw9O+Y55E5ngnxM303EBnQeIDua779857zT//AT//vd8uVv+YsaeWVyl+u8UR5M0cDXnVDFbzOOCC4W27kjoMf8B3oDKpxpRzsesslkmTRNC4oyxZcngmuAh8tqhiqUCuNm0NhxOK5EADytXKrWzZsOhmYqRfptf0maHW1yM+k1lTTeaRM2p61xOrQNY1Zc0Q26xcAUIRwAwvFYVdQXE2Y7Bz4LAwlTcxzuejrGo2JVmHH5WkvmhDJn5qWrxHOyIFoRHAqWctrPuqunFoitQaVgp0XoaMwCcSS7ApLP0ob5qvfaNdZH+RVM5vSskSksSWKEBcsVGRqyiVwacd7U/dKS6Sb59K6OpmWVxuhfRmC1eldAfaFVW9Tts/L3845u6ifxyo1Amx1OSw/tVm3O+VC0GsBXV5TK8C0GpPm842AtafFLsC9ff4SIG4FmDoGhYjcMW3r3/Sp/L4FLbtjDU2ApqazXF8bq35XmsyVRrE1WN/Jg+YKP9r0rW2PrAgoB3Bqn+X11SzBKkcWF9B2/2hZ4836sZKM8V2ilTq+K4vHDo9a5ZDMxMQSWCDTcQ1QVWClWoOvXCgqMp8rFrfa4R2S4RJ0ynr3IjXan1nulm4pdvFfyQHajVfrFSBbFI5ZQEPt3lRMCdFs4WnIXK7Ta617oYvcplbee7EPCrcSqXeKjHZrG6QEc6Ty682ecjkBdOWlm24VRSio5d0SqaB/OR3y+tc8PmSwuAxkfrM5s5ufq3ncKe25QuGlSbKlAX54fubT1PMhdkTbRIgs0R2Xegoly9m8Ar6kZn9QefXCS5ZnW57xmjLnzYoPoSoEyhlF7b3UPV7GOeXIhiXeQhHwNRk48rK45GqyQCXGRsqYl1RjeSzqOeHRYqmoCvLMx8SsYL0I0nX87OOv6cXx+OPf8/z5Jw7Swc07GISu75DkcGmAaQI68yXLESsdICmhjDlpeZP6LIO1IN5SAnQdne/sThd5RYnHDR0iijAzns7M40icZ8I0EsYRsrupL3kxVEEFX/mquWDaurGckAvfTLjsMlitvs4R1YCJkl0vBWQYeAwTIg4nnucwo4+fcL7D9wP90ycOxyPD4cjNzS3H2wHXH8Ef+fjLXyNidwcjB0Q8Xe9IgxAOPV4dDk/UhGowS6AGnqYnuqwwD5O5xoqopbCIBvAEcH2HKpYypAmuJkByzmSU6hraE8UCkjnfMWIBgaAjiEc72wNjUvr7h7pDVBPkXNW+8/S+qzxVEVyx8Kly+BgorpmHacRPMxoCIQZu851C1USaA3Ge0BAJ08wYz6D2PHQ+R061fTE/PtZoq3E4oClxmp/58fzI6XRCk1lFP39+4nyazX0zKUHh7u6ew82Rb+7u+PAXv2a4vce7Wx4f/wvfnc4cHt7xi1/+mr//h/+dKcwoDu+g85ZnMcQJYnMHXpU5u+OL67l/95UpV1JkmgPzHLIhxe5OGgAz6DK4xCmdOT8/AjmKahLCNPGLP/sLPjy85/37DzyNs0V+VkXniYTgpCfheZ4mSzXijGdO45NxC4W+q7sHLwcsUGvEoUg34N1HhrvA7Vd/zqff/wuHvlyLjrbWEUtlkyJS+XpRcheOKWt+W8vLyV5ftiyKIEQ7rGSgl4P5XHdCLMJPc8B67yxvzrqKTJUxPxMy3Ep+0L1flGLGvBRWm7p3LUPtAEgDTJTNCXNZtOIGufxKEfJawbbS0mi+aa1ckgP3tGBq+dcSIyvAZ+6Jdvin7KPcAS4z7sUiWA+L+t3aiQqCy7vLfC2CrbnMNRrO2s9mVGWpe5Ufi3XfVk20fd4KlavvNz9F6/iWMafVmF+vZV2dFBla83CU7+dmar/zZwuiuZBtlzV2CZD2rDVbcLKyeDZC8nYZtn0rNF4TeFafl/eK4iEzqdpoWQtUsWa3rm2RK++0/V1bMvZp3O2DsPreVkP+Uj1WWenjAkhe2dqr0gJGWX2+fqcVCnXz3YWO5suF1l1ClnVUN2QFZ1ugvTMnSpbgtsyzEeib/mxJWI//Uke5TfDSfF+bm7bPrUJpr2zXyPa19jgrvzjXzn2zdjMAqlRXaVEvBt/ahTpZIpXXiohhcArwcgv/aGja1rkoHq+MC401tg14pq5UUH8s/IdL5tMssP1tqrUSbSe+jvVm3DJt9v/lfly3a+OZypqsWo5NT/P5Uyi1d62fp2nmHCJT9ER1aALxay+UVZO7da9JX3VzRXHZB/v87C2g8MVyZf+QBeKFquVn8eWoyoYiB6lm8NjYnPP9xtLnVNvL5w7l81TXsPN+iVgt5LVsOeUOQ8/t8SMOYTz9xPn0id73uON9xmQeoUOS2D1FkgWjSRbExniTEjVAjhJaghqqK+tB0NSjacANB3BdvReHM5c/ZYB0gHGydZnHQuNMmic0TESNmRc7pGvSd2Sh3QCnKdBTln2KlXw1D3msijJWM8hEhBAnnHhUAnGKGbw5vO/xz58Z+4FhGEj3Dzzwc9zhgDrP4f4dzncWACYkSzGSQbqln1RIM3OcLb9fmAnjxExi6HqcCNM0WdAdJ+BNOZCSASuJvQFHEaJYIB3vzMKoXsxKlsF69EpUC1SD6yz8hzPQN8dYl2GIEWk8YSyvYOFHHn905p2VI9AWZQDk8dKEamSIATfOpAwWNbv4akrM40g4ny2n4zzDNBtWyNFQYzIrns1DqHcd58miop7HzzyffuSnT58gwTTN/PTjZ2IQfDfQD0cOd++4e/8Vt/f3PDy8Y3j3Nd4PaBKen75jjIneH7i5eYDpjCTF+872gFg+zpSya3LheGqW4aLQ67oecRFJJd9ijpwa1dKdlH2pzoIQkb3CfL7bmOx+cOe9XSmKy/U9VbXxEUfy3nJjAoeuMws9liuTuQOZzPXamzrPiSfGgEpERemcB+nw3T3H+6/59P33KCHzlRyxFYe6uhNWPH5PrlidDFeuQ5TySp7F5XBwzuE7n/OvdJZQ1sumbWvasxgcF81otoalRRvWalAuTsKdk/Et7jG7B4IYZeXO3iI87AgsDfBa6uTis+XdTftgobNXwlXepLrzLkv/y+K61kfrW6REOKxHvlIBZNE2q4DrMkioIBbIjLatU1XpXFfzGZbFZlhqozWv9DaDcwUIKiWSbTOmup4jqYfH8nfRotb8ihTMs0Cdlw7+PavXS++t6V9oXVu23JvA215p3eeWBbe3vhc1i2Qt4EoEWc0jddyWqdDlYbO6yvqqeqM6FdqshQ1deZIXHLDdE8vfbfTfa1a8tgjk8OeXbo8tMNkClNW6uah13f61723d17bzubWe5g/ZlWQbQl5bj21ZrQeWPr9mAVmLRWvh9EJBgeXh2t1bG7pc5SUv03KtnteUBPmP1Wcvye2VH+6eATQBofJh3GiMTdhZ2rqYV8gKyxZdUZ9dQpAd+t7AVyQrOstZV5Ui6xfXPzfUmNDRAAFd+CDYHhJAFKYUAFZJsysfzHxhmSe96OaFZTTzkXatvnguVZxmEkDl1ZqIUQhRiMnlQDySgcQ69dVuvVx/5eo6lY0QtFfXH1laBWK7B1djLMvYtOcwsghxFeDuDG0rp7TtTuMzx5sbS1qO4xwmylqbo5KScOgGbt99xLkBTTnCswz4g0P6bHWL5HtlnsPDXXZdDczzRJxGYgyW9D0msKQJBhIhB/nQHIQjksJMDBPOH5BsMRWXhWwnuK7neLxl6AcTjmNgPByZzyem84l5PDHPBkbclEFUcxS5ch6QlrWW92+7jpKS71aa+2dNexAjN4T8roG3FGY0KbMKkypPquAcP/Q9P/vVX3O4/4C7OaK3R3O1tGgm+H5AUiKMM5xn4vmZOBsYdAIhzEyTuXxq1+XPbH9G75mHfkXzKCfGcVyt0a7r8JKBicu+AOIIzd5Pnd3BFO9BHFMJqpPfibG4+tqVII+BG4kJJ6ZoEOfNOJaK7Gi81GVJPgHu/Q2K0mc+WxR4MeQgNClBTAasppEwTYzjiefnZ1KIOV+nEEJgniYef/rM4+MjGickTYznMzG7JocQ6Q9HPn71ka+/+ZavfvYLvvr6Gw6HG8DxND8zT8a/52D74Hg4cn468/j8hHfCzXBjAYJqn4pVPOcMTZhHXT4DpulUzw6woEEdJlPHqMwhGYCPioYjh97x8DCAqN3jTAkShDnw/fffMany81/+KgPVRJwmXD9YSpdZLIgRJu/N82RuyDGSwkQURTAPTRPkY45AK4Rk61dU6Y8P3L37inj6kWl6pu8EKUEyK1JtYrLwx/PAV+4s5nDxuY3O24ZxAnNStlfSWkGr3oOxD+rzS3sKq8OyFUSSLMLdawd0abe2sxIQoT34mobbb79a/9uKrs/hItzougXNb0oWIIrPfdvPcq6uBfrU/CtArLxobqdFk/ZaKZuJ3H4Fi5Ij4cpaqCuCSnUzZg24WlDaOGKtO71X6qGwcduURfvf9rSM0x+0+Pewmkk5KxDcMpld4beh482l3GMSO0QvJISK9dTu2BZ61ATCggPL50KztksVm3uCqxUiUitRmjrbxVnm4orMvAcMXgNobykvWWb3339NpL/exq6llyvLsw7gZjO8oZ3S1jJGy2Hc0rH39zWQvUdBq9Tbo+Utioy3lLeA2wu6eDtn1eb/y7bzswY7XdKWWG3i5pnmjdPy5ao4kMV9c0v/S2O3XfsrxUOj2Grf367B18oK3O881/xAG/Nwq4xN2c12VddO8Jtr5aW3VvOfFLMmdnhCFsggJHg8zTydhOdRCEdvitsMGF9tX5cJ/9L9/lq9X8S7r9cErOd1C7DNaljo1/Xa08zcd2iypbwFjMrdzYCSmKeREO3yTd8PdF1v98I0gvQ4f2Q6zXDw+K5nuHnPsbc8bQqW6w07+Zx3xNlcI1MMhGkkBbMoTeO5WsZSDlqjau6mMyZIpzkSwozzcwUhiCe5EQc4dTg/4Lve8iV6x/39e2IIdl8uRjS3+/z5UwV4dr9xJiXLzZnUQEnK1q04R5w3KxlCjvabZRrnzOVXjeY5RcwWaO+VSREx4BOCBSU5PyuP3/1vuH6gu7vhZ//+N3z8+muOD/c4HPOPJ8bnZ54fH+m95/PpkdNk4MSLw5T5yfI7DgN9Z2PeOU+ahPTkOB6PRrf39L4naaizrqq4nEev+sNn66HmK0Uqgs5CN/RItDuk8xSRKQefEbErPtlCictusnmddV2H+miuoc7ZvCeLSGv2LltrkhKnGKvE6b3HqykCVDz01pYXgaR0CkcR3jmXFQj2T+eJaRqZp5GP49lYVYzIPDNOI9M4MU4Tz6dnxjlyc3fH7f0DU5z48fMP3Mwj9/cfeHr6zPH2HYfjLU+/n/jqq294+OpneHHMU0AlmUtwXquaDVQxBKKmzPqKW7vt3jAFW9Mkopp7qo1TieekWe4Skvb0/cDh8MCczkznE5oix+EAqnz33e/5l9//jv4wcHf7Ht/1OdiPQFSizg2PEGKMDMMAWOoXyTJ+vYMbi4yeBTIxCN939zx8/JbPKXAaT/RdvoKnZnl23WByuqZXnEvfXl4Bi8aoiinf5YUlImY2Tw5plYOFYeYurxzDsqCqLDjmJc2zCdSl2kVoLwfxtrxF6LkOFquobfyjTubyuWStTJWpixC/qmIBhdXqU6rJB8Pi3rqIRruoX9qnZVyyU4suwFczaGytmOXHSiu9sUVoPb3ybG0WZLmDsqapAW3l8G7mZRdMlXHhJVl7LQlsrR/17wtyGuGsKdcsRyvtfkZL9ZCnHe09UHSN9reVrQVzzxZb14J9oe6hrTWs0NvCB9XLu2bbyg3Ab765W28l+s2C/qWCRlc/L8jZfL6Xm/Tamlrm7O2Tct0SvFjiL97bVH/Vk4B1vw27vaxkaEsqQsuiqdileYek2rrsvGApiPL94x0aUrpc42+dL3v/OmD8QwXxVV9YcWZWSpOmDaPjEoQvCp9UK11b07OLVHNMaVa2iexby/fA4d7fy31EKi3X6mqft+UiKJsdFNXtsK6xqvy4rNsVBVFLC5vvN2VNx/X3Lt7P50dxF7QzJhFS5DzOnEZhmj0xKZ3frPemf5fj0O6tvR2/3jPbj6/3bX9O/rBiA7wCjC3nVOw+fuENNLy6LuY1XVXhqzv0SRbu8zO762i538ggpfeOHOoUJ3bXT3wHfQ/OgF4vHiiB1MwCqMkiMnadkOaOFGacaLWOLUJ4SSMpllQ+KVHV3Fez7KIS0QiKQ0saBUBducLkUW/udg5TbLjhCM6jmnLC9Eg3z2i0oC5l/Wv+Oc9TE3jMEtOX+9Sd9zWIXwwR0m3ep82siSnJYwzMYTZrWYzE5zMi4A+ePk7MP33P58dPpJBIYWY8n3l6fkI6R4jJAt6UYDaaQBNJhJTzPFrEUAPRIj3EGeftHqT2B1QTzllwyARI1rak3C9TsEDUZMBYIUXFgsxmXhWiueg6RxLzblD1pOSIhFWAvZAS4qNZKMVlQJ3/scg7LucALXKfyzkITfC3iLau3gMHdTbXUlxBnUd8jz/e0M8TIcyEabLASPNMGieGKX8eIvc5L6Prerq+Z5xnYoycxzNRf+J8OtEf78AJ43nk/uEDw/FAQf01aCPGf2ydZIVG9byz1CZFiZNSrH0PMdRckxUo1s3pmCfrb9e5mh9TROj7jnm29RqzK6zxMzt7NKUM1o0zzMOE+m6JMFzkEBfMWOOysjG7gxcyzLauBPG44Q7X3yLdEVXL+Vji+5UYJqlhLH9yy6I1Qs1R4r2zkLMpWlCItCZGVU0L0kZia4b7SxjzcuhshP8sXO31/ULDu9ufRQRZyibqXgVrRTBtD0UWJn5VtpRlknO4aamaLLlovdLW/CyagqVPi5tp6UdheG27pnlqrBgNg1zT6qr0pSmi6vNhb1q6VbAPCoDMY3EFuF2URiAV2Ljnsis0rITsVb1L39/iCla/tSN8L/dbuCKkLPW8ZFF8q0XsNStF+30TNta0v/Sd0pdLXchKArEfFJnzDfU2SpqX6C1lG4Vr771ab7aAlsN6r5T22+fXQMtLz1uwvQVwBaihO+tjI4i+3UK3Vp5sx3BLS1S7/1b1ZE2bbXHONdupFUZ1A4LyryKQg4OVHdzWux4XLi1Qu33jYk62ZQ3iXjmgGmF5zcWMqHyMFt3OBZgsx8FasdVATI2Loqahp5IlsjvWL5VrgG/bsQv88oZxXV5eXO/WzyXXvf7u2oJdqsh3M7f8bTmaV8qNSzrePjZFuSoV0WsGi4nTOHEahfPcE6Li+3J+Z0FYNkTtNlA7ukNn+f6Wnv/2pbWElr9VsgdR5afNu42XTvlsUY5uV7u9qWQXULD0DJBdSGdQ6Pue3gFxRjTgJdF5cENPcl12JRU6cVmVZKASly1XqgYWfSDO3t4Rxc8W5j9lYGTYTQhOCDERYiRkEbWcRxrUwIi4nHB94WO1d2JGCJzifMdNl0FezIAxu6eijbs8gMIUxhx1PQPmTB8ovfMZDBiQDikbO3KgFe99dtF0GZzO1cKYnr6HFPHOcex7zp+f+Px8YjqPDEPPlAJP85nglJvuhsENZrNM5jaoKZFiYtQxg8eIiLMUHYcjGu0On/cdcZgQ7xmGg91Xk+z1JUJyPgdudKgoswY8HgFiikgSSjRHp0oK0QCCmLsjPqHiCDEC5tLquo4wh2p1dM5noG+ASTDFgcllFkRIlRyxNVnYzsIbnNiVNGfnTPIe9TazxXor4hiOB3Q4kFJkngN970njTOhHZB4ZGhmtuJDGlNDnp5oK6NPnTzY3CjjHPE74rzq6vrfo0zWlX05ElnlQBcHV6yqRl1NNs5JyJNgYAlOYGwC5KOREHNMZm7cgJJ1Alc45vBfOp4AoDP3A7e2d7SyNeSxsLRcgOnUdmnNoagW3SopCEpCUz6vGlbbQoSgTwrG7wR/u6YZHUgh4UZCE0yJT7/GPN/CuK+WVO4seJCJiIW+7vmMYeoahRzmvLBXQCIsJVOKaUL084Oqj/HxroVJ9vQNrei/dgiyU/yUgsXYuaVqY+SXAuKD7iiDdCvtkxkGrTaQc5HohrJiQdznFZcOYtiS3XelI1Uog4jOIXIO0i/NYF4a7NJ+wuwZQNOuqSowlC6BQgsC/taSYqpZUROq3Ey+D5reUNwmj1757pd3rFqjr8/3W9sS5F/dB217KE/OW9nRjIcoLfnneKDgoa47X99ZbAONFG2+ot5KyaetafV9U7wbwbK2ypS9tio892gpPeonG12hYWRq07N2Xc8vZ+1AA5+rzhq5rCrE1kLo+z6txSWoRA79sa1+080XfyYN8eZzltVv5OMsb0rwDUCJkip1D63VaZ3FH6cRVHCTrht5c3nJOvMlCxzI3FrtCKmhczVk+00p9Pueaq/tVd3qhrUJh4YAF6P3xJUf9xgROlw+Z0zTzNDme5pkpBXr1dKv1fanM/P9LqXOyOf/LMwNAe0qDbJpu138uY1BEupx2wjGHCU0B0cRNN9C5iI8j8+PM559+R0wjIT3Qx4gfbnMierur6HLtMc1IlyNxpkgkoVEt8Id4fDfYT295/eI0odFSAwQd7M5ZiISUqpInJkjeeIuKq4aF9tyPBVRmIdrGJAMV58B1iB/wRX5wDi9LirRD5yywiHOIQpjnWo/3HjKwneeZqB1OPOINMLX3iUHRNGcX3Jne/QV23zbRuY7u8xPD+YwH7t/do94xpYj2wg3QK6QYmQvQiJHpdGIcT8zzxDzNpBgNdOezfQqRNAXO04z3nuEQOMQlUrB4R3dzNPkOi6KrRAqMcyga5vq+9wPFmpai3acT70wJQBm7Du+UkOYMMh3Qm+FHyf8lXLI9KQJMU74Ph7m/YgGEYrRAO845nLf59TcHpO+IKNM42/OuR4cei2ZiLqBz8NA59H5Ap4MF9FELxPPunUc0WWoN39F5Sz80RnOJ7m7vUd9zezjghp6gkc8//sA0T/SY0kMwPBLznGic834y25tqjnYaLZCP5b+1LAS9EyKOOQf5CSFWBYSIAb/zNOO8mAsxHc/PT/zw6ZF3H77ml//uL/j2Z7/i9z/8jvP5RNd1GXxGUogEZk7uREyJ29tbYrR2xZlyM4ZGNkkLzy/rP6kwJeiOPcPNB5wmPn/3jGhCMu8FC95k7CN+Ec+6Vl4EiwWQSN2oYjlL+j4DEMc1d53KGvMBVd0y7eEKzOQvrw5VVOtl6i1N5f2rNG81v9r8/lq5lm33StnVDntf+1nBQYlgtjIfyAKS62ebuorlyDqAqIVSJtev2yANWYNV9Qor61JzeDWCR9XWlY3vjMGYhqtcEm8q2en72lq43AEqwy8scyMIJftGg13rWrs2thXgfkEp818O5MZZLU+Btaw7/dpbL3tgpPzd/r77XWu2ASNbWsucFbLW63gPkF1YzYpGcNW8bgDlNeHwUhu1J+ju76NWON/t+cXvL43v9vk1YXxbx1usf1fnSRrqdpq7ut73SgnOJKwjXWpxFFnmyPZ0I/wX4f2Chv3xWP1emi/tNQq9XWCZ19kKlL3QbnnhLfO0KCku99MCE8rPOhiLsqOst/KlfLm/vJZyFOf1nnyBtvy3GbT2x+QSvF7f4+XZdm/YO5szKJe030KBbauxIQPGhW+2Req6qmc0VBe93HA+e1i77yLVa2Tp9V6RrMvcAzOXfVM1S72KKQhNXuiIkpiSMgYLWZ9SkQnKeC3tLfRsadqfr23Zo+0PVSjuldd40tu9D8qHGCu4UJbt6DfyB50fzOKQElOaEFG6vschPD89m5ufdzzcv+PxdCJIAOfkAAAgAElEQVRIxxhgGJXjTbJcgv1gAVmcq26SgXyPTxNa3DlV8zvZmiSWR9F3nQXRcw5JijgTcF1MFNWy85CSkKJF5ySEzA8FyW6BSZt0HFk+iZougFzKa9ilRKg36iAmoe97i1Ip5n6pmYfaeWuunNE5iMGUddGRREmpBFlLOFFIFtBnnifCaIFLIsL9xw8M7x/o390jSQkxC/5ROQwHy7uYgbuo0okpeYYYOMxzji6b80+ez+j5GVWylWxRXnrf4TKwqGxiyql9MnDzilmOBCQJPlUxk6ChxnoQZ+6VJaKLOEeKiSnFnEqiuLMu3ioKNcVccXEW1FL4+MyHsmHC4GtEVEgqaHREjcTn0aL4O0cM2ZInnk9hJlshQByHmxtc31nC+YwnUoycTtHWU8pRmDGgjwMZOrpsNJk1UAK4xKS4OeI6hxTjkJKtu3YHNy8Fk2kX9ohzjimERf52noKcF54OIlnRKwpEnE+4zpN0Zo6JGMzQcnv3wNff/JzTGLL1v1g6Ta7u7EorYU54FzNATgt/V22iILMCizUqrjgER4ymIPDHB+iOxBBwGpF8w7Tsn6ojbCDZXnlNjf0msFhaEbGL0J1fvtYyuZrqoYwwRSheTqprd7UuerDVpLJhthevX48mWATv1w+NSuTVR3v1b/+uQCCD3tq38llupGgb2zFrgdtSX9uGQ6RciFk06i2RUvIVSgMc6iva0Fa+tY6G6HIOJXBZ47IeO9mAq0JnqzGsgjlc9KkhdZGZdw7H18p2fVx7p9AMmDuQtG0VAoRdJca/UbHNmoWkS0zWvLP+oNBZXq9rq3y6Bfz5v+uWp0Zq3BTL72XBd4Rm2RZh9QUFjX1/v972vSrHNjylrWMrjF+zOL5kiXzN4nz92SIcVwvvZnx3vrLLi9aKoVYILu20YIKqLa6Ko939kCNLXygDGlpeIVBzHW1/m4drKrdgbUNL/e0V5co1y9oe0F8tbVk/M4lC6sK8tIhdF95LwK5tbwp/XWp6GWC8tAfe7Omw3fd5czdHA2XeisKQ7aPy3byfS9RpE4a24LWkCJLczubc2VvEV/p89a3Kp6wjFlQjh39HCUmYohKirviA1b8ajYv/6znGyzx/EY7WvGT7+7W+fWlZA92Xyw67r0/2z9KdN/O8OkqYFnJuNpPH5pj4/Y8/cn4+M/QD0t0iYyK5QNCZKZ4IUej7Ad/3dkfQW6TMvvfZymIeV4SA5mTvWlwTWeZKnMOJ5epzojmfJJBFVVUTPi3vouI0oa4oS3JdyYBBi1aU5gzO7rKL8kXqHawynzFKjqwN6pr10ShaNBkAtZWYyISg4ky5Ue5ZpmBpFuJMPJ8M4HUdSkJdzrOdEtM8Ws5kVSREQmcBZjrxFvnVO5zr8AI+WcAU5+3OZjw9E58eAa33P504Qpjr+g0h34VThWiWZ8nCgSMnGC/3d+t1bKngfxFn1CKVZrmypBOJIc+XOET9Jro0jVtkliV7v4y5tq6dsYJWESHEQEfht5ZCIuXzKoapur1639M5RXXAcbBclOLyXVabZ5zduY3kSLICXefr+acInevse1k5IF6qu7fk/OEl1UdFiqVjlbcscle5x4hY/cveVoorTNKZxTvIgDKqxARdf+Tm7o6Hd++ZQqzKsBACznWVecaYSDnQzTzPeCwti8NlgMxCp7ayEaglb7T7q1EtmFR/wPc3pHgiqcMRKTsJWyp1jdh5wn55hRW+ChbrgOoS5KbruqbmBiw2EVDbpONkBldefxt/1SwwNQdVA0CqkLwjNG6FkvL+njWI9VsXgnaxTG3vBF1Qm9tNDThsteDW3vp9yBO5EaBaQXXRTBirKAeUFIRV+9UcrM3isP8XcGfW9Dy2lRbq5V/I2kKf7zNmJnQhOOY+pWYstdZXUYYxABZw0M7dMjb5qVsL2a+tk2sAY+fNpb38p9b312ORH+zUsb4Le5Hc/Er7F0JK4eQvbEwFJOd+k81Mrutmof0F8FRoW1zTrghOi8S3mqOX6tzW8JbdvRLvd/bl9vO3t//6e61Qv3ovS0KtwNkK6teEvXqPtxHO7d/+PcsLmiWHDyiKohYwbIbS7pO4Cx56ocwpe7GyaFndHVbYdVN8C+D+YstJ8+wSKF7WVfmn2N3+hR9WbmWCYBZaWprKObVrXWINQBYhNPPZhvRr/f5DLVStpW+v7AFpo7NYoakAj81aLm/mmDH2re0dX93fT8vfl6v7TZi34dUizjJPimBRTcwLRl3HHCNjgHGGOVhqh0JtAQLtGXaxL6+Ul/bVi3vuT1j2xnmj4bv6vVJe22Oa890hMAwHumHg6XTihx8/83/83/+Z82nm/v4d6eYjPPQE1zEkkPOJ/mnK7qvWTj/0dENnERknu4Mlzlwc643hZp3Z9btskcxXXoSU5TuHc1pz9tm+cogHN0DfZUG5RGGPFgCJDFJTMiE4ORB6RIvCuw4MUu43lvFICRdjjjhv1zxSidoaYz7KjP4+u9mWoID18MwBfMRb/Ulgnk84EY6dg/DM8+nM6XxmHs0lc+g6jocj43NA/QC+xx0yvd7je4fzfU5N4uj6nuQTwQ2E4Qio5XlUC8QzzxNoQpMyTWfrWyiBdiTTbEqYGM0i5Zy5RLZy3GrrlHWny33EKh93DnXF3TOnkRAxgTTFRo5V1PU2XjmyqKZoEWkziCvLNcZI1/UgQpznDHpzkJWpzJ95J+r4Gfoe6Y/c3t3jux5xnpu+y2ehzXuMM3HOFuhpok8gztP3A7fHm5zc3tGJMwtoMNpcd1z2lZLTuGQHzXzftuw15/xyzzHL20vU37iMvcD5PAOmZLFYAx4sKQn379/x8OEDd+/f8+k02v3TIDyfThyGg/HDBNNkVuswT3Sd43BzBOktJ2nm84LUCL+0+y/vN4+B/ojgXM9w/4FzfCLNZl00xFKuAm7P3Uues/f3trwa4KYcCC77iXvv6PqSSHa/FOva7qGb/3/1LLomnb1Ca/uz0LJHX3lvEQIEZP1ufSagcR+QtIJlZYLlYN/p5BrEru98FteLhUZd1W3TnrVoWu6FCFTHj1IP1p8m+FABjCVK0kpgF5hzO8WNye7JKG2S4EX2bEDFRpjR1fhIjY7eysDNAOx8+KcrZSxNkC4C2vr53ncWQeZSIPlTCSLlbmq7JrZlJWQKFJ1Umd/KJormzSaItwC6bTtvpflN76tpmKXpA5vfrb7936+3r1f3/gUIZFkPe/ReKkeutP/CcK7z/0E5cFbtKdl1eC3YLzxkn4e2Yv7VkZGm3i8srytg/jSljhlURdoCSpwJLGWMWCyjLwNG47WG/XdAxRuGp1UytO0tbSxnz9XxbpQPr7cHW8egJHbn223aas+HLT3lzlbpwzYwUR1Xruy7N1GLHZ8IQodqTp2hjoRjiso4JcYpEqKgWm/sv6nsWdpeU0y8ieT/xmv7atmQW9f7RqFS+uUlp37IAvBpmvnt95/4r//wr/ztP37HNEcOP418Sgd+9f3A1x8/8vHDO756d8exT/Re6HrwvTCGwDnC/GnmJiV8Gbvs4o3Y3b9+OFgkT5eFWMw1NOUgNyJC15U4EcuaNKNdwkmA5EklkTlK7xzzPDNPM9M8EVNkDpFxHilKcVWzClpCd4/vPH3f231L8UxNAnu3yd2LmkXP5zyDdF0GsYL4HiTLUqI2qKq4GFAX8V99bWdv3+O6A7d64Ni9o39n9/Gk7/DHgZmIYJa6fhhI0eSL4MTSpedomAMwa8L3A93hxtJJ5HQbrvcZfGeQcBywNBmJcDflgJI5+IxTpnGygC4iaJjtOwi3OedfCQxUvMJMRLRgPWX85jTnxZbXm2uth7Jaby65qiggJiSq/QvKwk4UnSNTUHP+SAHvO7q8RlPMKTRSJGgingR1PeKPpKdHpO/phgM39w+od3Xtz2Eya5raOhvHM/54hxscPoO8eZ6InIghcPSO49Axp+zGnOWnyveUCgQRV++DO58ttqJ4laoqSSmAlvu0ib47kDQRk90tHA6ezvWk5HNOxkiIgXdffSScPE+fle++/55Dd6hjaqlgDACfTiPD8Vj3S2YAdes7BPJ9dFfkQSyY0RRmFMF3cLx/x3z6jphGCDnHZzLLrnP+zefOS+VFsGgI1aE4ZqAfHDed546OKEKXdmiows5+nXvCzaIx3RzAjT2laDq0vrtTcRXEipCUQVKTX2ZZBk2oFil0GcOoZuvaVL7joewcRLk9Md//lJIll1q9IvVfAVMVJ0kLEC/rzYqhRnhYM/NiYi6JUotwKDnkcTs8JjItglj9XG1RVspy6GcRq7fzBjyLEOuQGs1spelmLWSWfE6Sx7YKuEXbQ5kz+yU14LMAnPWILBonXSquP+u9WFl+L/dj6jeLAF1HZHE9LFZS1zDOQtvydwPAV5r1HSF0Uyrdpd/t3LR9BxBXt4Sy/k79OwONVWVc6Dzq2Cmwm98xFwuqU6ouwvjbop6ISM0BJSoN3U17FXQvATia0TTlyY5Afs1SeF0RpKvny9xs3C5p5q6Z5zpPuuynLdfS1SSsU8ZJ/mJZV3ZC2U+F6m5T9kgqF3J2lBGrv/P/kv9o95iqLEq6PI7Vo6HOfe3dUqOWTl53M679ekEJ95JVvQRqKZ8t54NQE4rm7e6cX+UKXfPGcnkfyPeattqntur8CbXzstDU8qByfaIqkjZ9uLbnrRkjfjUcJSl5s8NX9e4oKNaWtbJVFiZd+qGi6GZLiki+a7Smz/qTXUIbCsoZqaTVHllbGtOiAGzGory7GkeoVgwhEFBLEyBCl3KwjVk4B88pCHNQE3b9Al5bzf4yNMsYpToOhcKFMqnnt/5/1L3JkyQ59t/3eQDcPSIyq3qZ7vkNh6TRRC2mi8x00U1/u6QjeeBBkslkJqNEUVzmNz3dVV1VmRkR7gCeDg+Aw2PJqurfjBa0dWVmhDt2PLzvWxuN7y2BtNbZk9eLO3crNLyc39qXeyaw/UW0TmGjwy1/lpnEidZ8yNLd/+v7Pb3p75+6n1LGtGDOEQQ+vJz4868f+Tc/v+fXE7jsOefI89//iQ/Pnh++/x2/++47vv3mDY+7iYf9xDdvH9ntAuPo8cGxzOb35VWLFqZq7jNOMjlqiSBqVkfiAxZp2XUCsH5PF7ro2+IQRk/jrxQ0J4KD/TSQkpBiYpkXpueZlDMxRuYYSUsk5mLaiPnBeh9wPlhOOakp3TzehTXugkCKUlJYONK8lPc8jkQWSzPhgiW213khzpHz0xFlIYzBAqw4h4RAlmxmh+V852zcpCMjkiEuBB9QMRPsJeXm8mJ7sAYNrEJVZ/IvBe8sh7l3jnQyDWPGwTiZP2rO5BxJOTH50Xg2J+RoVl8OIWhiKak/XPGrTMmC7aDZALNzZO8LGK10yebOVi+TKKbRhaf1QgloUyLSOoOnWV2XjkIt+E05e0kxv9Sa0zUn4hIL4DUTVecjPh95mY+oc7gwML884Yq23I8TPgQkDCaYiBa0x8UFYiKGicnt8H7CuUAoRsoJYV6OJXdlcaMqeWhVTZO43vQFKFf65cxH0+NQ8cUfc7CgTzkzuEzWhORUUso4BM9+2HF+OnJ6OTIvC7vdCHmHP+0QF1hSxJX0e2Y2ZufgNM88ZjWTUrGZDyGYIKhojhsJEY/FKHFkAriT6cizA3dgGB6QdCLlowWEKiemP5e/RXBcy+tgMVtkoYxjVhhHzyEEHjQQRRhVNgSYJum8ZNSkfWdL0r/SM9tu81kZnh22Ptm4XD5Tai0SgSqVqrxQ3x9H1ZZh0YOkHhFtoNQ2/paYi8jGVLMbMrASfOdMFV6/FENcTVJYGZnGv9RgNJ1EbNXc1bmpl313ibCaiSAWfKheJpaDSagXUmXEuw7b+e2YWVfgomCbuAJmC1IgkIScLGS3FAvV6sdQAxE1CXeV1kjrIb05iSrNLK7Oi9giX0v/6z5qx7v4bdVzV/P7tMt1y5jlahKF5TtamYQe0DeDm26+twzE2p1+X7P5fcOkbTQbK8jtOJiu9RvMt7vNvGv/rKx97+e3dOLqvfWdbb9Xxo/GULfz8jp+2NQjRWPQzlStsIExagOt3n5WNprSV9rp3+v7X0eqF+f03nqujNiWySuV2sXYmM7bzFztSy+W6Ye99rHrU0dTxDmLaCe3gOwtwr6lEZVGqdIsG3oeVSoN6arV8qUq2/1wQ4hwCxQqbAIm3RKYrLReLwL86GZ/tfowcjfiSXYgunqv19gu9q22uJ3hjsGup9rIoBQfpVxo65ZGVbN/bsxDr+HcALL6T72TBfBVkt3RA/sFujunAqV1PnqAAI41srUJPatbwuX6r/7v/fxrQZ11n9d+NJcQdZtk4Ou4+jvAtbbrrFYNzpUpviqOzOzM/SCII8yJFJUc4RQ9Lw0sJsSva1vPR7WKabSgAqSyWbVeoG2w3fperP/mJhDp/Or6/STd/2ud2yLd53rxWf38gl6rUqKEUAWvxrglFAfq19bLuegP6fV+dy1nZlJFgsd5IaA8Px/56f1H/u0vH3haHHscKUZ+Of7Eu3cn/vLre7779jseHt/w9uGB796+5Y9/+DveHCYeDzsOu4E0J5bzggdCsFQA61REUsx4L4Tg8V6QcTLzUil+U+VhyxKWV9eZ7nyFEDATZTsHOZm2axwDomNJkzFzCpF5iZzOytFFiIlTTsRo2ukMDSxmItJ4F8807BmGkTAExAmxzKs4WLIwTRPTOOFDslyEIeD8iDhHTAvL+cz8fCRyYpcmGCdTOjozGz0vM+ICosmSygsgCcTAVDiY9lWdM4BQab2CFweaSC3gSuHNMlD9HINH9UxK0XIsDgNuGHGayTmgy8IwhhKEsAgay94LTmGZzfy2JKLnfCYvi9FT70EgAS4pKrkETIHgQhGoWBRcRcwcOQTLtZgyqThIOueRgAHiLvqsipngOizojIqWAImWUiKqcZpeQkkHYsKl49Oz7WnnOT0/MewOTPsHpodHDm/eWh5N1ALqkHApIksiDTuc3xH8Dj8O+EIfY86c5wIWJRfNrDaaH8JQhKt2jzmLT4vWSLV4RHLRPg9ISqScIGbGvBhY1ASDoHPEq7ALEx/f/crp+WhmwkPADRNh2DPuDiynIw7pLPYgY/tpSRkfzSRZJeO9g+JukixRKYKdyZq3VBgRb/6wKYHySAgPaHghzh8QSsob7enblm9Z96CVV7JhAV+SZ1GMMReEECZCCJazR0tY7w3RlMaQb8wBLjrWs0G91P9WqXlQ2iNyQZTrQCvDVAHXyhX1QynMbLlKKnNwwfg7jKQDnRT8mrley5bBkM/NOuUOYcuY35JiW65Fk37kXB1Xr4tuhrG9FLcasF6SawdEcyaRELvLLFy23/oGuCItq5J9qSyyWjjg6qNaVf73gE6/2lePFMAjbuW0r+a6CSPWCq6l4ut8OucKWLz0IdOLv7fz9lq5tae/6L0vfvL/nXIN1r58bEBnorSeH2BFoayA/G9XXq//9tm9Dcru1fWaZrO+W3m/Bi6GkjYFVvNKt4KG2/36gnFkBbdaERiffLl++QY9Xpk5OyPQy09e1RzeGfdtbfo16N2AS+m0owUIrf4ylwC6Ds3e05KLrAem90ofYU5KmHYpZvq53QW3x3tpQXBPi1rHAyUSIdCsO9p7creOW+VKKCVQo2Ffrkmlv/f2ZX8HSOmzIxig19WNwt6vwU5u9KGbhxVEGnOJWMQ/52Sz7FmzmU3JSJZMwuF13TPXQLzbs1i91+Rou7dek5p/HSX7K5aL+dMClChJ51UwIFHTVtzY88Bm7zgnKAnNEBF++suv/PzuI58+vXB8NkFxlsQiyrv5E8/HmT//8o4UI+Mw8LDf87vvvuPtw45v3z7y5vFAIPNmv2c3DOymiceHA7shMAbPEByDdwTnGILinTAuDh/srIZgATrq/qusV8zJGH0RnARSppiPmjZmGG2fiHeMvqSyCMKbf/KD7a1kACyezhxfjpyeT3x8/4F3v7xjPs+clxMf5kiMluNxWZJpmIrmseZRdN4TxoCeTpycBWgcQ2hAbNhP+GHAZcUn+O4g/CKPpN2OfNjzrJGX4yfOL8/Mx2c82ebCex72E8v4LbM/IAjxnPFDxg+eEEaaEFezacNSJKalzYsUF4QlLcQccdGRRBkf9uZLpxDj0vaNpVArYLwEIayUzxWezHuPGxzhIORkGjGKgMlobIKlRLovRN+F4guvil/WZPPBO+bTEVxiGHYmGCjCjbhEpj1Nk2trX/hLTWgxfXXOcT4+F1PXEgMjCylHljTjGHHZeMxxnFBVTqcTL8cjTx8/EEJgfzjw3fe/ww8PZB+ILvN2NyKayPFE1oXz6QVNsZj0DpZSRRTnlKCmFTaR2uqRC6BLXNN/ADEWpYWzXJVLyb348vKCHoUlRVQFN3pUPFKCdn16fkZVefP2rWl8nePNN9/wX33/Pf/qX/4LlmVmCCYAnJcFVSGMcHx+gjzBaAGjks84p3hfUiJlbfeoKUcymRnBwL/gbb51BNkhfiKlswF7717lJL5G0/h6nkUnxfxDcd4xhF2R2pSOoy2IS2348hIBVlU0lUm6gJgb6rillL22qpfIXw20SETrzDQTmu5CaixF4eSy5gZ2N32QyuTQAKXrwMY9ZqH1/qKu7qH6AI2NKiYZV/VcXNBtPPnSTGeVGGxky1IBpLQ+WT1F4ursgdUUYWUmLzeQ95a01Wd7PsdMFe6KruapUp6tElzNnZ1yh2Zbf/Q2U1ZNiW5McpPQV7y3Pk9Z/gpMdJ0E+j2z5rysYH3b/nWzXDz31yz9Wbm19n+rNl/7u/tm89e9/rVzz1ZDu5nb8o9QwNIN9u3eHN9qtzcze63c1HZ9BdixOso/4lagdCnDKP80kUXdd5d1Xb4k677f9E9X081b/Vs1W/bsRnNZj5quvmrXZ/v+Xuu1ApfPXH53q2+XfXR6b89J/WMzKbZHtm33Ah1biutL8BqW1uVa6Ua9eyrNqLTrcwDrcpy9cErJOAmbZ/r6qp9J1QJ/0fnWW21xY4RrL6oG8HPnu1rp2OclljuX+8NM0LixB+50t9Hj3spFWYUhp3lmyQdizsRsgTVeqe1muZyLtuVfA4od0Ppblu16GeCmaIe3wL7SzPJO7jQzHX9S32jvtuNSuBZVzovy0/uP/PrxmdMxkhblnDGTycExTXvLc+c9uYDLU4y8f/rEp5cn3n38wDQEUpyZxoFxGNntJr59fMPDbmI/TTzuJg67gf1oQUUO+x2HwTF4tQiYo5k1IgZ6fTDtWtZsIETNdFbJFIUYXgQfBtoaii/mgI58Kj5kNnu46YFhUh6+zbz9/cLvXl6IqSRR//jE+bxwOs+8vBx5OZ2Zl4VlWTi9mJYnYxrEOZ0tMAwmaMoiqDNfRh88gx8Y/MB+GmH/PUNwuMUTvGPvHhn3O9zhh3bLoUoIA37coWFY01YgLQgQRUOfo/kQIhA8rBHtbWENEALlHtjt9wxhIJWAN1pSQkxDINeAQAreO5r+vdI6BVXLFajFpBi/7kGXMz6MZKrrjTaZlqrih2yWdWAJ56e9AQ8xQGV+0Ka5rMLGqlhIJaVLLjkKLSCmh2Fq5zCnAl6LWez+m5eiHisBjuJMigspLcznE6dPT5yfP3J8/sDBZfz+G/z+Lftd0U3mxMvzCdHMMAwM48TpnIrw2qY5UyzSihlxTy20CG7ivFjApWo7nIVlOZtfbYwlaM9MNWufT2dGb3v4l3fv2D8ceHh8wzjtOC+53HsOFcc//U/+Ob/89Gfe/fwzYxgYh4mcMy8vz7x980iOnkVM8xhCxnuFYdvHnKXwDMW8NHuqfDLrAjLi/APD8IYlnwv/8DpY/JryejTUxsAYV+P9RAgDYbjHrK3Eex3k5d8FWNxg4m5f911pTGYHBhoouNH/eoN1H2gBuRUo1LC70BHl17pwg7mvh77+3fxzun7fYmzWPt7q+5YplfrsBfihMouFWlSmZLM8vSRbaIBxbWPbCYUmtW8Mo6sXrpacMrYWPViTbuyVAbtkc1Zz0i0w6y/UKqHfXLKNENr+oZpA99vgYiyXu6ky1FIY9Ms9/HmN0evlNY2jCRy2QR1eAzJf25dbTOL9Z7ft38DzwH0Nxa22LrU7l+/aXpBymf62spmbz0zLPUD7ubrv11FNyCvB3ganoo3fnr34uEX9rc+sdGylKRtNTdm8n+1zj/1uzM/n9k8TxpX+6KbCriMr1VzbuFHXLYDTg95Nbzq82P8phWmmAcpuTwn087Zpv1uRvi96Iai6N6O3Zqpfl8szeSlgrBybboBeZzYsXway1/5c7LFX+nar3NIIgpk/NUEF27Wp5LQKddt4Lnb2tkm9oMPrmgkKzlIwLTESc2bJmaiZsSTpXseTt3XWvnd/bcf6dXT69jx9HkRuzuSXt2bjUUHEN36jkY/yTP1/pZ/3BZbtDpSMEyFnOJ5nPjy98HKciUsmJyFmJTsA36JMKoKKMddLVl7OM+TE8ezwDubzyQKSDAPTNPLNwzOHacd+Gnnc7XjcjxymHW8OD7x5fOBx2jH5gJIYp4EwBIYQGCWQnVmcqSaIhT/IQs6p5XRMAkOwlTXNScQlm5mYBO/zqkx2gh88ow8MYWAaLPl8ViWPe85LZF4WjqeZp+ORl+ORl+OLBSE5nsjJNI8xa4s8rbhiMgtkM/nGB2QYcbs9wQkhJ5hPxCqEURjGofEmKWcSoVgpWH+1ACkBxIOmjOZkJqFifJQ4Vywiq/DIg5ZcjKVPOUZysfjI0fJDmrY+FNpWaJxvu3gVUkjlb4smrQUIqLycRxgwQ/kqqOh4QW+gzcwlHaGAlgoMtUQ2UmdCgmpNmHM2N1ZVJCUgN5NcN5UNrOCdklM2k9XgGUXIy2JRfovJrE1CZjmfePn0iSVF5KPn4DLj45Hxzcx3bx/xw4hmSCkimD+ic8WMtCBg56qwcOWLGz+N4kRZciQuC+e44KT4dAoGFJdITK3M6NYAACAASURBVKkA9NzSo6Q5IWFAgafnI9/98Af2Dw84F4gxMrgSWTclvv3ue5Z55uXlhdPzC9MooLmM8UxwzqwjnSOlXKIGU3tq+00TTQznEpq9rRFqprEyIH6PGx5g/sX2m34V0Xq1vA4WKRcLtulC2DGOE+NUJCY94GB7KdfSM6L9c9cX7m2gaFX6wtxXwNI7CktZxIv69LZRkl50pvex20iDv+oeugDJbjvo2hPrbdUo2meXJmh1bqR2toEj7fq9ZWIbGq0EoUyl6zZKZbQqVK7t5JJ4d6PNKwfVwnMZSbFEq1Ss2lp2zjGUKGOU8VXmQovdesfCofdMVCsIhpWovcIIVUb5av+Vdq61IplV+2LSb4cj0/u3XZhW3WC2/qHS6S8BLJ/TgL32/mU/r0Fb/12d400P65Ovzv+tunMPXu6/VGrvWryz3r8VtN9v+nIuXgeQW01m914PqDYDaS+apLUk5UVLUulaTwVB7Wfe0IRqDXBPs7jpc+872Oq/7vWWxmVUuzOpW1iyxjTSzWg3Y+T1M9r3tQ8gU+enm0FoqYGKWVZ2Jg91Fjyjrz+r4jrauRHeAZf+qitdsnbbZt9O1NX10/f/Gshf3BWuaueq5Ua/btq+Y0MJu3H9A7f5ejde7tmVJve9qavq2l1Atx/KVdIEnqY5bd9t+lprK21p2Y5526rzlgT9vEROS+QUHXN0POxW6N6EFlVAKet8idvO1y3A2N67+p7N/ujn7G9V6h1jE2KaLdshlpOwmhGDtjzlr9dXn7EVzTrjg2km3j+/8OvzkZfTQnGFK/E5QUrgEii+bSpkdWgqvlA5MUdL4n06vqAyIG4mDEfef3xh8IHBe0bv2O8KWHw48PbNG97udjyMI7vdyOPjgceHA2+/ecTJ1DRHqKLLCw6PI5DSUrTOAJndNKKayHHhWHgY2wcLYwgrPQKmYSA485esvl+K8NEHZJqYnGfynkfNvBxf+PTxE/MwEN/9ynI+G4BOI+MwMo0j07DD+QEfAmEcmB4eGKYdwzgy7CaWd38inV9YXj5xPC+2d5xjHO09RdqpsH55wjhQlStq5IsciwY0pWKua6soYkDJ+cA4TkVsYodnniPHZyHOI94HcjQAlUWINTdkoV9JIlJMe82HU5rlQEq2caqVhitBpwTpeNFe+WGBV3DFoLXRgPV8kmtk0GrdlSHb98uyME0TzjmWtOC8N01jimUcEU1208SUyXEhnzOaMvF8Js1n5pdn8ny29Bw58vTpAx8+vOd0PjPniFuOjG++5/DND5z/7ke+/f4H/DhZqjc3kFSQZKBVUn8eO1qlPf8LaCLFM/P5ZNFWvQkEMnA6zcSSiiUEC0LkvLcgT4VPTxmeT5H/9McfefP2rYHX80LYT2TgfDrz/bff8oc//mN2+z3/6l/+C2KcCd4zjoHj8yebdgm4kIkx4HwmxYzzXX8rAhJsBfVgOEws+FGQCfGCd2f0WCwaviL6/ef4rc/7LNbdAgz+wG7acXgodssI2qVnoPdTqJITxPKL1AFfOMWvDFuHQrrSBwHA6F3Hk60bPdfko191CVTdu2z8dW7147eU2r91m95h+C5L5SFypr8g7dc1cMIVp9oDubo+G0YKbqYHKQ8oJq2TjKm8I4jT1fO1OAW3cZXDMrhVcpo0b9e4VF4ZkJ55U9kC53YrdkKHlVmz9nvmoL9lVyKdb8yt0gI2UOcQkxCpa746n9s7t8DjXwvQXNb3Jf35/0q5xcTdEwjUz6/MGd12vf/W5be0sXlHdUPqLh5EOh8rO5ZGv9p5a18Upupi7pqw6KL9+4KWruSrR7q6r60/uD+Sq/q/BFxf7oeeXqwPswFV9TIM4pv25R9SLvviKz0sQqxLBLyyRV/fzjVAU2rQswbSUdAE+Ia4+pm8mlVZhaL9OC7brW0nV33Qaz9WYFflh+1d5zbuI2txiGz9W2uOsdrmrfG338t9EHMRSSqU8BiWom2B0xw5x5E5iwWt6QUBFRz2/ZV+di7NhS/OzNV9wObvvz1VuVfWu9Lm06JnigS+zCy5aCnrLpUFNHA+n/kPf/6Jdy9HXuaFuER8NvSpztbDZWkm25m0BgpMMLhqIqqkKEjwCB7NniV5lpRBzccONf//YfDsdjuCZgbnePv2kbcPB3737Tf8oz/8nn/8+x/YT2bK+d233yAld2BM4IadgT0BNDGMOzQnFvFoNLegRGTRROq0KjnDU0yVaTDtTlEa5HMw7ZoA3oF35KyEOPL7Nz/y/e470wiGkbOAD57gQ+OPRLwFyxkHxHvTdg0Dejoz5498PH7g5emFtCykOHM+PpFny4kIGXJE/IjzA+Mw4MNg/pLBM0w7A5Vq5pnDNBZ/uhpwzSHOQKZ3ARcMvGpKZLFk9IvzFo2+HJW0zBbNVUqsy5wt8qVYsBmrt1rBlLNUgI9FIrUUHbrETjCTW8o0qAGL6j2hUPJp5pwsTomYUC/Xu1qLlMhbZFjLp5IaTbcIwGJAM5s5blzO5LSgaSEtkWU+s8wLy+nMMp8sSGPOyDDxu9//kWm/49sfvmcvEaYHcnggLyeiCiKBN998w/vDIylFVARfQZQmsiZitmAwiml+Y1xMgxcTcVkaoAclpqUIWpwJNLrbYQgjWTNLMmCc1Uxc33yz593797z5y8+8/fFdo2/jNLDb7Xg5Hhm85/sffuQ/+y/+S37+899zfHlGl4XH/Y6cI+fzkVEmUkwkH1kWx8BQF9H4CudM2CQKUpzjcja/+5rXM79B5EDORzRF6NwJ/iHl9WioIk1wbWdxZBhGdvtgCSfTtcnEJUlu/mQVuFy88DUMeoU99xlpXdvZolag+lVZn7S7hOrFeqvGz5uoXD+/1l1NeF57/+ICrKC4+7xGHmxOrndrW8dqhLAbX/2666e4oirU3DQUdvYzmmUzg5RQ1CKWVDUVtbwF2GBlbpttR5m7bl5NFrhlzC7n5hYTv9bTMejlAG0ZhBszcsGoGoGk6/D1Gt8z33qt3GLmLr+77N4tjdpfAyB+qUbw0ryu/+7eO/f62M72595/pV+XWpzLcWzaXeUGN+t5rfQa6LajLl7ZgocKPG7UVffQRQXtEm01bDn2epGSCpDs+i4iLRXBl4Fa3QxA2vq6zT7vQQDduOv50rwNhtXG8VrLd87rVsillbB0dEg226V2s1k9NHB9UXedx81Y6izcoR3tTVmBeY9bZZ3BqgG+Vfq56cHaLcFRvd/X9qsG7zaSl4qSLsvmarDO9U/Vc9LaqT8vwVK/x8q//T5YNc/1GG/7uda/9mkz9lwZeHumCXerEFNNAn9cEnOCmC3QxRoYo5jkucpTrNqL30IR/9rCvFvlNZpo87D1yVRySR7f79vV+gC5pCLt483vLpiA8zwvvPv0xMsSmaOlKZCckeCpqZdyymZh5KTJibWrO8VEjAvLOeFyxAUQFbJoO4tLLDyXyywKs57xAsHB6UPml48f+cuHj/z88RM//fwL+3Fgv5v48fvvcCKmnQxDiUTqLeiJKIedpQrIKSLZAIhD8LIDdY0vs6dsb2aELGtQlWq9oRTrjRIdVJ2DcWxpEbLzDDmaplezpXYoPFISh54wqyfv8bsJiRaExeHZTw+4HaCZc4lsmWIkpYXT6WipM5KltYjLjHOeEMy3EDHNnp2mXMbu13UQYT5ZuxYPZEIx64nsA4rgd7ty7rJFDWWAkvOytzDVlIzmq5pFYBU4iVhuSOfMKkME1IK0GJGqd1WhBT0RVDNxrHkBpeS0BPPLzLlG6yy6ohQN1KgJJuo6aTZ9t0OJ0dZBcoQcCaLmWxk8bhoZxoL+RYrb28C03/P2u28I8YUzgVkD6EBeTGN7ePMGPwwlH6WZlqqW9CFxsWim5X6JObMsi+39FC0lR1EYOBGb22oeXAl55afFQdJG07z3MDr2Dwf+8u4DD9/9yh+enxj3b4jzjBPFT2YFEItf5h//yT/Fe8f7n//CX376M0nNpNmXHML1Ls7l/3ZwszaguLpxdRy1mB8ubkTcAWVBdeGaO/lt5XWwiBRloTXl3cgwjky7YHmU6mZb99UVATVCeM289pdu9+nNfvQXLhdt3C3tEaHmlhMRXJXQdeOql3APbNYx3QcB28YutJqFEboXzKPWlaukrzJ4hUJupPP1u1ZxbdU6XW3G1wuy2jXXMdCYr3oIK40wgFcDGUH1sakmpHbwG3dg43SCVO2h6lYrq9rll9rOZ93WKx3aMjq3VnWjiezmdjve8mVXX99GZYqkf6+9tAVsXwMUv5YRWddgrf+y3f8ntGr3yobx/op+tDVycqXV2gC+MnwH9Kb0JnW/BoavaVdXYvnl/b3SNgB18162c81qb80L5fJZ3SxsYZ7p6JVcvVi1HeYfUl/dMuVfBNb6R/qD4irjvzKmm15Lvwe3378mcOj37RcJSTpgp/3FewkYdWVQN/Sqb5fC28A2nRKFdnHt+9kAh0CnKNv2+xXpwy1h0v19yUpfL+5G4FVAuwXZ3KBh9oXeWKfL+/TyLF/1Rbt57/aeSA3IwurL2o+lAy/bubExm5lhESTqauaWi7/Q8Zw4xwoWM97nBhhX4AhaNBO35une/N377tY+fo22/JaiF/NibQNt/sq6sk7+VnBT7tribyatj9cN+cETXzLH08yvn154WRJL0hJk1TpS08pYnjZzuSBrM0lUNR1njInlbKkxMhGvJZCJsxyBWY03Nn8vIWchL0oYhIRwPp45H18Yfv3IX979yp/+/MBu8OzGkR++/ZYQPPtx4vGw5/Hxkd0UGIIFjTnsD+0u9uIYh4ExeB58AFdpLiTbWAV0CeoEj7dUFN40VVnVAEFe/UKTCFHsXCcywzKTswGuBUouOjv5cZ4Lo+0ZHnZMUSBGBmC3PzCOIz54UsrM5yPzPHM6neHpEz4dcWk2TWBO5AwpCbLMJbK7+aLlCIrDiQlJahRmVMgocRwZx5JWIycz3VTHINLMV2O5V3yoJonFHDIXq73ynMWcwMByDQZW6WUDb2zjUlSGsKcNCikuazRpCWXvgibL6WjvFteLEnzHUL4iEghh4Hw+48tOJ6XqAARYUCRhIDtPCANuqHk0B8Iw4oeBYRyY9jv0pOQlM8dsOS1TxvnAtNvjfAAW0IRSAu0kS1WSY8tvYHsgFm1ijEgHg5zz+GGwecUXXKhlfJ6k5RJRA+oW0NEx7RLv/v2fefvrR47HI7v9I3mZiV3k6iVansm/+/FHTEqs/PLLXyxqcNWk1mOORQJ2Lrcc6o0fsEXEFx5eSo7kXHOry4D3D6i8kPX4VwGK8AVmqBWgGOoeGMPI4WGwKEzbQJ5c/dUuuLwBkrcv2/tDukfs+1KTsGqpf2uqWy5vaxxu2PH+1a6NqwvjNlC+JamFLTjstXRXpQGyjkkoAFj7C4fbDEpjHyuDJkVbjRRBkxbHcy3cvdJ8b5xv0cpSVT03xldaYtab471TTLBwvxjztIIOUbPHrkQQCjbW1d9UwZI/izYhr1zUuUG2/PWZiC8ttxjv/z+UHhCYgKJKSa6frYKCBuY7JrUmzf2Hz/19pv9G71//tme4W92v12QA0U5fD5JrHtcrCUpXroDWnf1wb49e8ZU5tTQdl+1cBtIw7HajzjtCjFtg8VLQclf4IH29UsyWVopRASM3p0AqJ/3q6vWCpNatQqvMT7wHcPX83ZjD7s6630ai5drdPFep8OtlBUhr9Frj2fJ98n/jiy89OVsBQ70/tv1RNY2A5WHcrt29iRcpfk5V8i4GPKLmZqH09DLzckycDooeKDkjfyvN/TKBUZ3f3r93ffbaOuq3lVtrff2ZYUPbfGadU6LHljtWVZvQ5OaciODdwMdPH3n/yyfefzzxfFZicngGKAxjjfNQ84qKKvM8b4B5dWkR59g/PHJaZot6rtoY22pB5L3HqeDFIQnG0XzTXk7P5Ow5J4hx5nROBYQp//r/+ntEwGM5N3e70XJDejPve9jt8V0Mg4fDgf008DhlBjFfyTEE3hz2PIw7Ru8ZEAZn5qIyBF6GqbAnSo4LcT5TJRrqPHjT2oVhZD6ewXtk9Ay7kWEYLN1EzJyz5dLLusAsPH38CU0L4jyJQNQD4vY8fPsNj+E7lpw5zQsPpzN+ibAsHJ9fzIQyRnKKpDKHVYKaUqIyzcM0ttQe3nsDgSLkNHM8HjkdveVddCPL+XnVpIowhwE3DAzTDvEBcbau4zBCAc7VFcju2hrL3zR7HiUWYQGqjXe2R6SkYSi0khK9lOIjrpRoqLY3mkVaATcaTbOIk8KLZpJLpCU24aygDN6RZCT6gWGaGLLRgqSZ/eGBYRzxQyBmtbQoKXF8OjKkhSgDfpp4mBz+dAIHHz+8N3DvhCyO84uSFjWt4aIbWi9AEIfhaMc0HogxEmMChDBMIGY+H49z0e5hZ9R53CBMZS6GYWzyRxOumKZeUyalBc2Jp4+fmOPC/nDg4XDgL7/8zO5w4B/9k39KCIH/5X/+n4iLnRtlZ7NZ6IPdVa5FmDY23ObWSYSq/MGTmMl4vA6M4w/I8kJMz1/MDX2uvB7gJlekqiYxyGbH671Jd+oE1dKb5VRGInf+IZfSz1vEsKf31wxKEXDdYFxc9RSXGrTmNkhqklntIpMV6dbNO6Myw6/M07ZIOSj1/dvM2ueKzV+HxiuD+JoUFQPJ1ZzsTs1UjUa9CGpI58Y0tfaLer6mDCuSOFcuIu88eLUksDZynPdNYpZSumIg7/a9XDD9+DZARDtAQncNdwyrrWU30paPyOam5Y3Ukr+zguOOsazjviexv+zz14A8J2suo0sA3WtfoJg3/I3K12hPP/f+5ed9om7pfjaQWBiVSzO3qkn6ErAu9eDe6NNXAW6lMWX33mtr0kWiWAHh/eK8M+luTRvUb07pggcI0HLy9e3aP5v5FCmg8wKUods0NGWPmdWCtjlf99wKXdt+35wDvdr7dY5yXjVB/RzV527ORbnQGnvuuqgexkG0Ni0h8XYepAOX0t650V6Hwy/Xc434ur5bmekarK212Qu6OtB/e3x1Tta7r66YvWdAskpHeuuCzTlku6VXcV83vF7AuO3Cq+WKhrk1qJXdKdqdvyrYLX7c1IAsVQusF/ujp4HmA15TJhmvMFikQrE03KdT5niOnOeIsR/S6G4/FzWBdl37yz15OfDNXdHxIdtHt8+rapHa/1XQ4mafqGqJGAmiXQ7U0g0tkgnTirkWtGmDy6XvWxV4m2vQ09OJT5+OzHPmfE7kJAwyoERUHVmlJRsv4hfrS5CS59CxpGRJweeZMUxmqihrMCrNxf8sZ5w4gghDEbLkeSHOyvOHJ6MHzqEuMwyj+d0BT8/PeO8ZnGN0nuPLzDKfUM3sdjt2wyc7XzmzzJH9fs80jUw7Z6knCrB52E0cplByPcLoPdMQGIdAmiOPhwO7cWQ/DCXHZ8k1OI2MhwND2BEGYQg/4KYRmQZiEOZlZomLgSE/gQfvBDc4dPcjznn2+12Lhrks4M6OofhTBg18+7BDGcgqDG9OkCKSIxpnjs+fiMuJnEuETzJLTMxzNICREqKZLBXYWeAUP3jGYbCANElIy4w6h3oT0i9zRpL54IXdzqKIKsznc8vfiEAYBpxAcEbnlhTJCePX+rASokjN16gG+ih8u7vwd6s5Huv/vgTD0SqMKDxaThCm0TS+s6UFWVLEqTIOAVeAFoMJHXJa78owDCRV5jmyJMvVqc5yCrowMIYdGibIJ6ZxICvMpyNDcCznmfN5Np41F6Dsgp1F0SYU1WDBiLJCVsH7AecsF2gupsoZu8cp98Q8R8b9BOrRDIfDgafjCy+nE8+nE37IiMvM85mffvp7vFjU1E+fPoFzHB4fWZYFEQjBEYaBP/7xj/z8808cP37idDyyf3ggBPO7dKqlX8VEXwzYK8qSlGmwlH5GShzKudDskWF8gHmHpsF8jtnS2N9SPhMNtag2NYN4onfgPJMMBLHQuRl3883rv2X71xWYK4wKqxQA6j5dL8n659XAL+m90CHZIj3U2o+VCK+XtFzUUcwpX2Ek63Oqq3Rye+nLdbVrj7qf1q/GQBdGsb1XQOIKFlcpeEkb04Dy2q0t8Gqdq6iw9lJZTdZrW1QmoA1xNe8QWG0NOwBb6y4XGpUBrUxUv3iNYdquRbWb1dJeNdGp3W36ypIDKF/us8owZOoGaxeug9V8TfsBd5Nzhym8pRntAeXnzKXac+sH6zJw8f6Gh379cF8y7H07bR+26a6fryzzXxsoVkBYN2fb2+sWL+Pejku7jXa1KtL3uKxPq592xjfzWxq0+Sj1XjCTrW7ZRiPugeNmbfXaJKxvs++h1OfLAvTr3IMdxHx0Mpf7S7t/u8+l+KhUWnYBAhqGrgIx1vVe17z0UesyXezri9+vyOoVTVnPzWXZPttRxv557doQNvPZn4E2v40OFMuCju7W3/o7pE3VHUCwUiBZ6cudcgVo7pSbK9nW7Z6f8MU+rs9fTuGmYl392Tsw/rn+17D9fQ9LbVSKq1cbQRuDuVm+NtH2bq53Uzn/uSxwHe+8wHFRXmImZWWsw1I1X7Q6aKXlQNaVpHSA7HpazHDxmjcQ2d7KmzlhSzvvlXa2ekFVeUduzGM7dZo3CynrQ6XdOqFFMF/mbwWxF+dfBHLi6Xziw/HMMdVIwtdnXpvfmqxPtKvXNDappGuIKYHvBf0rMCgLWBIkmtlj9cFKMUEoQWswkBqTjW2J645CIEVlXjIpRWI6s0y5sjMs88KcYZgX3MmjOZmJY0rsBs841EioyhB8+98dFx4PB/a7kYfdjt1gn4chMEwj+8eFaT/zMCceppHBOUJwqAvFOkkpyML8Cb1pecMwEfzIbncgjJl5ni0VRzagXFd8GAT15uMW3A6H4nIJfBMsf2VO0YKQ5ERYzvjhZH6TyXRS4laa4ChaLwSn5p9pvnNVwF35KQuSpHkp0VEV1CHZIrN6HwyxFasHRcka2353ZTNKR3fQqqBYz5iIafwqsKpaXPOpSzhPO4zVLaC20cYkDryB1AwG/BCcD0gIKw9ZaJ9K3XuRNbCTWayJG1pKnxhN8+YqnzkMZGBJC0EzosmCPIlDfOguQSUTUTVN71L5I8X4gVQIjirBBzMlVTOXdWJpOpY4o8ASTeu5LAvD4Mhp5sOv7xjHPfvdgRAGSJFhmphPJ55R9vsDy7LgRNjt9rz59juW05nn52eW+cw4jbjsUGcKF+/deqa13n3ljFbsANhmAZHiK+t34A9Ier/ySfWW0/VcroTr9RvkM2aonpxPqEQGr5wmhw4Tj+zYy8IxjGRdM0ealHw1OdVi5772Zb3Z75Hu3HW4SqxqqZNld+72ak9Fjd8+Wnmprkhh0NbALu3xqz6tTJaIkC6iuK5jumihMKjtAruoVzBGzVWqLdVkVkvalZrKovShSHZ6M9s2B1AzW7RD2k3lGpJ+Ix1ypa01dDpaAjuIaY6r5L+xaVkKcK6XWFoJlIAGafWWDoJYIBz7jrYnKBd6TRhaZ8XupGosoSU6VyGmda2ljgVyRX5lzmvbWg5+lSB5PxRmxLS0zTyjrMPKm5h5hIglBL7U6KzrrZvf72kWb2kk22UuWwChqAUg6Fnaz3F+Xen7oWVwVYtapYxZ10viNcB3KR2/pVW5pXWqZ8932tM2atXmS5GbtnzLCPXs3GWb7ayU+sRVYgel4pUJovanjqnWd+0D5QpzkEpo7PoZ0Bze1/5JCaZAG19PETa8t4LG3GhHFXi1NUrmSC8i4BxOQrfclTlTowu9gtkJvnLONlHr3EtpXG2OTeobiiRy3fP1fPZzbOaGdH4pKwOx8sXSGM9GD6uAoNeC90x3qSdzsUc77aQr9E9dvci69Andwq5az9y8XSpTW8nIqgUUIDefbFlt7NfIxxRpugiiJsUt5LhYVm33dyt1o7lOE8tq1lqXotfQ1J2pWbGYF1vasGp3+/tEqP5r9Zhov8xN61O+8+v69OUW7apgoQ5Huu9qcxW0NZJegi9Iq1M6AIUtYFlrE5QYHZjj2RK1Y8KTZYGPi/J+UY5L5DCO1HAfUQQtjLLPFqwju2y0vutboymswIg6N1KsYC/o8npGylwUP6CalPyWMKFfp3YXdj82t6620a8X8y062wm/6v4VUZr5jrpSwWomasPQpjGT5cj74wt/Pr7wcUlMg7AskZRnPINZ/AgkF/FppEXVzZYyI4tpJJY5GsgZRpZlIYTRcr3lQqtTtsAb40AcBAaHHw1kpXkm5ogE3+wUXBhIGeZlNmCQLDjKokIqsW7FDTh1xKj4wRGGgA+O3TRBzkSAqEBgWZTlHPn0EkFyi+jphtVCaFocwS344BhHz+PDwDQOjINnCsLjfuKw3/H2zSM/fvuJh4cDh8OexzcPTGPAaULSiRQX/OAs+2AUgvf44Jgk8vj4QNI9S4p8en7meDzZmJ0jsiDhZIFxnKASLK8gI9O4K76ikFImxoV9fEHjE3NaOJ1OpJhwYIFxCkAc1CGLkiUxO3h8fCTnYt6YM+MYCINjGj3zfCrpWISQB0SU4IVpCLwsZ5IHJJv/pqayrQSnrHeQWg5MA4rZ+uHEYho6WOZMjJEUE4NYgCIALaab1UTWlVu8/pdzZAwT0zQRU0QxrWXEoSEgKC6eSkoPO1eatUUldU6ZvKAajSaLR8OE5Eyez8znBBqZppFv3z7w87RnCR9ZJDHxhOJAAiIjuD2I+W4mzhAXclqI+cQ8TcQlQxYmt8e5YDE5YmKYJvKSQT2Pb77l+Pz3nOcnPn165vl85vD4iJ9G4qdP7Hcjp+Mn/t2//df88Y//mGk3IcMej/B4OLDMM0/v3zMFz/lUBH0+sP/me/z7X5mXmdPxmd1+Yhgc6MCyLHgXLHIxiUwEKWa82XI+4kwu4LLHOWH0C1EXojuQ/O8I+gtZhYwrPssGliFtVH3yShR1+JLUGZ1Pl3eBYRiYpoEQAiTozcmqbLZd4u3i/vJy+HY40wAAIABJREFUy0TulqT/0vy1fv+qtkS64Xyu6JobrV3+N4CBc8ImR1XlGK6q6y4VbZ4Fdoi0mJHp9Tu1vlw2hnR5Ge0OqRdaN8wqpclaUhKsl14qDsgVlPag5NrE6Na0VGmRbybBrn80dUy2KjndABub31bm0rnC1FXmVsxccQUkZXxudeesjM7GDI86ZGlOw03mILc1a5cmqbckzfdA4a29Uecp3xEy/Bat3r33+z5UkHzrmc+1e1OjdvHd5Znsv3fOcV1W87UvLT2DvtUKmABB8xqsqNIYMzip4GalOz2zfm/Mr60rVAApLU3Q6/qn2tOyp8q+apwslFDXgFqOKe9M6lmXZtun7f5xJYKxXvx/udYmaAM6oUrdH/1+aXP05cvzeTrbPdeN+qrcruPys379698lr6FUDcpWeLH2rxv7SgbX/nX0pxqiXm6Fz56XC6HJ62WrsdvkFSylN/HNOW73DSutszadBQK5c+fcKw3kld8/t/bFQeDGsxUwdvN/IazpS90PMSlzzCzRkargxNX7b50jC3Lzet+aFrReBsC9lCO3f/+H0eHSieuPSgCM/pEGyqVotIo0Yz3v2s42xTVkmyrL6vn4dOLjpxNPn068vCzk5EA9IoHUUl6Z4Lfmca7/e1nNBmupe3AcR9NiKJAyCQMnKSVyLEIiMRPRZVmIy7KhIdWtJaXUAp+073LG5Zqrrwr8TTPiKOPF9o/znhhzE1ZZ4BJaUL1Gv1B+SScLxJdBTuAXuwcERVNicMLgA9Nu5MENjOPAMHjGEBiKFhESu3HkzeOBw35vzyxH9iHw5vENP/7wA7tpx+A9khJuPuJihJTIKNP+R4bxrQnZw4AGMxnN00gKgnpHHjxJAyE/MMW/I8SF3RuL8+qc8ScpLyzxzPn5mXk+oUtkWjJBRtzokZ0jjCM+WDqFmBISHhinET8OvJ+f2U0T6gPZewNl6tHomYaRw+DJMXF+OaNDILVz6qhJtG01E0s08GhreiKlxdJNaC5WKQYgbb0c3rmSA9e1K2c5QQoDadxZ9oSsBAHPQDwdkTCiw4R2aYYgIy50dyGY1hd2g+P08lx8cCGIkBQb0+lkpq0IowyE/R/J8xlBGZ0DZ4KrmMyP1I8HPA+MGQ5xwQePBEeKynmemWMkLSfmeOb5dOJ4nvnTf/w/+Xg88/HpzNPzzD/753/gv/5v/lvefPMN/91//z/wl59/4dPpzMfjB/74z/5zHt68Zb9/4PT8wnyeEZRhGPj48SPjbuLhDXzz/ff88OMPPP/8E+9EeH5+ZvdwwHlPGBzOWRCeWRzeF6FMcSNIZCSz5s90YeXFxePCQMjmU5lUsXzO3mgDAVWHdPjtcyzAq2DR1s4uZykOoUMY2I0TIXg4c+2jdIPJXutbJXPXDNcWWF4yPxtCf/345p17TEpj2uqh0FXtfXkhA8XRvLx7QXR7HyDtor1avscumkq7Zfu+26WQbkxTk2JeMgBVUl3mW0v9G4lo96tpeSsjbV/lovXNOV9JimtEpTr+S4awvxTEeVZVoxSThjIHNYeXqgXaae9tAYDpT7qgHzbhN+ejb78NPq/9dO2rLeNVfSeN3mwZ9nUvysUSvQL0Xym3GMV7QOS1shEqfGG5CQQv+uMMJXxWWHLZ368BtbdBV93KnzPnhsp8XrZdmcHKUF2ET1rBfznfyna/3qr7S8s14NYqWViZP7jGM9tKth83gY8UGvR1YK0vV9qTG79vgX5/Rl4H0vf2dP/da0Kly2dfqxdu3R8231fvN2Rd+9Aqpmro1rfbY1d3SF2/qqy9nIkvFRyJ+9KNJS2yXQ8SL9ew0t66R9bl0iYcqUIDaoCgV9bhcjx9ruJ6md4TArXzW0wkbzVz34C36Bjyus+ylgicS2ROQszgszF+WkGDmvuLq+einpW2ov1d0AHwQust4v21ue+teWlCp82YX3vn1jhXp5Lt83UWKEfdHHvazVeY7o2gj2ryl43xluoT61sfPjwdeX6xYDJpKXtAzQ9RJGBsnSszJsWkL7U0VxWQZ62WCbaHlxTNfxIxbW8ROrmaf7AIAysYXN9f93LjLS7mTbMJxozvMB/IurQ1roVva+FIaSkBZxQvJVBPt251IzpX+aSqqKg+w2atlBPEBItmPi7P5ivmzVQzuPKWZoIX9rsd0zgiTvDzidE7Drsd333zE/txZBoCOycMYqBnEBi84MeP+DDigilTfEn3MO72TNNEGAYzi3UeGSYY9qDRAFS5l4dpxGePi4EwTkzLAjkziuU9bLYQ3oLbKBCXxdZ+2uHHgccXxzAMxl+lTAi7EgRQiHhCmBCvmMZ+afsAalyHMq/FvD+lTNRISOCS4FLhE6HsOW9gMZu1nuRk6RsoVnKa0WzRSL33uGD5J53zCAlSRHEWhbadlNW1yVhYs5IpClEkWgTWmCyq7bTbE7yzz+YFr8IUBtSNZDFTUxElOCxfpTg8AfEjmoWYzGS4ppB5ejmhYprw6IVjirw7vvDrpxd+eR+JKTMviXnJ/Poc+Xc//cr+aean9088nSLLbLsviplkg+CHUCx97DzNy4IPgRgj8zwzjAO7/Z79/oGnlyeLTJyU7NS01Uq7C7w3IbBzq3WPsd0t1iy5Wue4gPgBFePXK5/bOyz0grVbvG9fPqNZ7Im0wzthCIHdNDIMfeLOy9Ku6VbL5rfGJ93nsG5Jy3sQ2CxaL5iWtc61b59leDvg2WvFFBpgXO/rDjR1hDJX8FLebfW6zper+y4btaYmzFwvb1271Pfbbf3eenZqLdL9WOeq/qn1Yr3ijK6l4o1h6eao2o9Xe/ca3nrDVDldbaf7ubDJuOrxtvQMfidt3YwYiwbVjaHt0hvMXQPxNsrNxVbfLSxZmYov1yj2v3+ptqWv79Xn6757hWG/158VhHTf1f4Jzc/ptbHcrve17l4DY5HV7/Vaqn8N3uxy2DKuVYLcj6c+e2sM9fRcntNb7bWzuuU9u58Xc7o2sH34Rr/6s3OLltWqDLDk9vb2uesmtApibrR9Ocd3QVnx07T1qbHcPsck31rDy3o/v1d6mvm6UPH+d8Z0d7REzd/t5npUJpYL2gx3AM79fpeXSpMr2LhF0+4JTraX83XpgWK/hiKyYcJ7jdFqXfIlApnL2/lL37ukKV2fu1+abl/rB5lqeaPlaojRGK5z8iwZhpqjwfW0P2/Oslz1etv+5fKve7bv79fRZ3uvnxtlG5irF9VeUSTqnK0Yt4wNEyhLu32qv+I6ov7uszbX6Ka/fjryfFyY50yO0phzxZkJqiv54SjzpmZS2s9JDX5lYzSTWdO6OELJBShFKBFCMLBYcvillEjVnPviPKtu75165rLlk4ASmXUdrhZvGV2Dfqnl4kspdftprbuf9QFovjhYipb1zFjbmoW8eJ7mMy4acBDJpoXRTI4RNBOCBYhJOSFLslySwXHYvWM3eKbgOAyBh3FgGpylCBkC+AUJqShSRsYwshsm3uwOPOz27KaJwzSZ/9phjz4eLADMMJrW1DnC8IggxmPv9uRhj3Ow23mSmn+vmVd7/GjaIjeXHHrjhISBx6S44Ek5c45ny9lYfFKTc+QhmADAO3KM613S3FJNmKXFFNfOs+XpNNDpsHQ45i9efYpFBckCGaIUs3ERS1uRLZdh8J5BRsQNqDpSnhHNuFj9HFNbY6kuOWLmsbloEhUQ58xnMEWWDLv9HufFfFyjmdAOLrCI7X6KKMu5YgovYufDeWLW4lJsoPgUIx9PL4RxJDtHdI6Py5lfjmd+fjrxp/eJsbkfeN4/Lfxv/+Y/EIbAn999IuWEpkxwjjnDeYlMMeJDIM3zeiZyNp/VmDgdT7afxh0PD498ePrYBRBaaXulKWbyK4YbyvcqzhQ4pkEpwa0ExGOJUwdUUuMb6rlo6LGdxNfLF6TOKFVkcOIZx5HDw55pN4AsG81i2XuFOZUmUasdWcGeXDE8F1hqCw4vASGrz15frrRPf8Oygo5LDrREk6KYFFUpcO2fbJkUcSUyYk0uezUvghQJVGoO57TDvT7Y/VRKwlbXLqk6/21+Nz2/zVgqQtWS1sAFFiUv0rSRxV+p11aI2IHP2Q79yvTUa50yD5f9WJmF9f/N1BYGuo5Duiv2DiNQnKErWO7Hmcrnr4G93wKcvqR8rcbxS97/HLMPX8YufY6Zf61PPQNhv2+B271+GyNw/VwbU+t4EUS0j7c7qDKFt9ta92j9YYysa4SnD+Kh62O0HFTQzumrc1lSiDQ/wG5egGIKUsaark2VK1C8XNM+F5M9t/2+MVV39vMtjePndsUt4cvXnIV771ytjwjNZ/OLCXgFgWxooGwc/KytuhZtx7QminalAzra0YarLl58/iXn7kvLFf1nZY5Xrcq2Xf3ypSj18OoUV+HS2tj179pPeg8ct8gR1JjGatKQM5zPkeej43keWKKSjAddUzZt+toDqs8PVAFNdlGsy3LrvddB+826b67nZd018mkZFEJT5WrlXRQkGYOMtHttM4a8FC201eeKsHhJiT+9+8DTaWFJNv/LvFgy9JwZhj1u8KhTYk4I5n8fY+zqt+9qZONGK6TS1uJL7I1/aPxLziyqHI9HnNQ4CuvPXtBef2ZViy9R91S1TvX1TNK5sZg2ZpnPnM9nY5aBKIlYIzvXlAwlh97wki3IinMtMIqKOdtp2TZ1vt/uv208WY4W1CbnRFKbI42OnB05gfi3ZBznmPj0lEqwlZmSnRIRc79xzrEPiclnvHeMPuCLb+luGJnCaPkjx5HBe95Oie92id205+HhDbtpz37/yMPhLd4PeDdw2D0SQiCNIy9v3pi20g84H1BVgtshzuPKZOas5DmjDwM+mBYrB2UIg61xWY9FTMM3jAPhw9AECFnNPNE5wavdSwlHVIcXxY+JHECjkmIkZW0xJVJe7PciPEgIOMuZKePQ1jalTDqf4Xy2lCsvL0zOcfAesgkHDBiueRvbfZkLx+8GlpwI44AfJ/wwco4zmczoPY8Pj3w6v3CeT8ThxDh6ghsY3YjgisdfZNGZ0/mJJS2c08zBOcZdwE87ZNxxWpSn44l3H5745eOJD0/Ccpx4mDLj4RE/BJwTfv7wgf/wP/6vQOZw2JFzRIBp8Hz4dMLrTxzfvOGPf/gDwziRU2RZIs55BhfIKfHLzz+TRAkh8P33P/Dv//QfWRazvBAiORhorGcBsflFSjCmEmdkpWfmQWyxhAEJuOERjWdyXlCdLd3drbv/M4LM181Qy79a1PkWWthbeONpwInlEWmlEcfKHJSPu39fL9f+TVqlUlwwOt33/c/XmRjtulEvIBpwueiKXdSVyN8BrqD0PostLYCsl+gV47a5XA341Ahj2i1kBf6uEVw2Jk+tTret1y77df6rCYf5CtilIN6Zf2EBgXLRpyqd7FkFu7a3t9oWAG/nyDmHS9r6lcu/lUGXMibKOF/fIRtI2X1aiEr3bS5S6XrpgZZoroW5Qktk6K8Dgv063t8P3Pz+c5qg+uy6phca6TvvXH6++g3auK8Zr5X5vCy3gMSlz+XXz9Prff9cfQ2UddJi186mdDSHFTB0wG5bF9Dt9w1o0M1DJv2ufSzPZM1rwCrpvts08iUs7XW51CjWz/opa5YmVxjrdWDfX7wbDYCa1F3q+f2ajt/az2zwWmvLzJCq2X4VnBWfJM2Yb1X1Q1or61uQizYMQxQBQwnt2kf5rALFy3lA6PKwVkBoLQglGE/X+NW5uqCVIDV0RzE76tdDGkBoc1LMDlt/bvWxm+KetjX3U9Ua18lusXrVfAactrty0/v139b+laDh0jT4spbyeVmYttdam+uhUZQ5Kqdz4nlemFMJ+qMOS/Ou5WZe5+kSJ25oqkg7q7XvNcjOKmzRbQVczvM1Hb793efA4nZdKwW+R+Kqb50JoirdttHXYE+VSjnnSClzOp14//TEyzwzFyFTzhHNJb+dJFRcoVPGtNWzXoFhbWbTcxF8CDRNZPVVVEvT4FgBoS/15GzBxkxDlQtA0+0+zJnmlEc9W51GvD1q48xZOZ/PzEvEgKgnZovaiohFMqUESilpFVzwBUQqUSxFgkrRVJW7QEQYcqD55iXTcGqxVXXA4J1pgbxDl7PNjxMkCLhgwWuwKLJZM1mtX/M8mPmuczy3q0hRmcFFEww6h3hh7+HBKz48EdwvBO+YxkDwwjgEpmnkzcOe3W5iFzx74M3jA/vdnmm3Q9SAyTAMBB/YTyNrYMIH9m/f4ofAjkQ8HS2vZLC8ksflRFLB+ZHlsEdVaK5ZmIYqu7JrU0JywsWZgAkKXErEZencmNbYF1LOYvz4EZ3PhBwsjkSl67nmnDQeVFNAY+Qo5veacjQBQPGVpPBuld0VCbjBscQFNwSG4PD7HWZiq4gmA3EhID4w+kgoAttlPpGi4nwwX0A3ImlBxfbYTwu8vLzw8jLz/tcX3n98sai9Codvf8DvR0afYQFCDbwpJNWSb9wRY2YpOSaXJfGv/4//nd9//x2///47pmnih2+/sfslWvCeasZ9XiK7wx6XsuWVjJHT6YQTRxoV50u8aAULLCmEEBjGiSt/5s7c36hLRtXhw4MJW9Si+XpSO3va4UP9jI/S66kztN5OJYiLCuIc4zgwDuEK2FWmSivoK+Th8sc9nuSWhucSONoldM9Hoq9sbbO9v1Z0OdKrj1b/RmMOmlT6piSfzXfN1Ki71DZStysGWq/62vf5FhCrY7zWvKx9WfFsr7HsJDaNqdGuLzSmTbrft/0r7/ZgstTT57hvzHjHbKzr1pneNGatceyvgKKuF7rOQWVMmmS6MI7iCqCQvGVG5WLO72zK1xjxfq++tmf7ui4/u1eMr5Wrem/VsTLoW2a1rs7nW9uWexrAyz7c7/uXoo7+3NW9d+N49gxzh0a2O4aLFy+Z29r/lYGtsOJWbzfAp4K2fm/1ORvqAbkxZVsyVJ6RrUnhxmzq8v3tcb966NZabYQOV70pYDHrZi64s8+3zHb/8waTXZ8otKWNuZuB+nEF7uszHYPd08ruiX6n9/Wu594+b220Jy/OYAE1zfqlK7pZrTVK5qoxX3dO61e3WcySYrsVt9Ok5U75/BnZPFPvmFanlvu+muat8LiC3+3AOs39pr5bd6l06/T6eW+rJrWNzj+afr2Ln56IMdgxcYqRJeVytwprtyuS6TZL/by7Sy6BbRUCbYfd+3/eKZt7QLiajn60dxmq9bZbK11pTN+Qwhqpt7y7MWiVlU6JrGNNKXE6nXg+z5xjJLbI6QUUqZJJOEpOujqUuh69AK/xUuV31jNr/mb1TPV7puMP6nd634qhDebGd6uWfJ03xdqNMVpAnJJiwQS71v/q65gLWEVo6SQUyEWhW0UOWiVDApmEksv+zG3bdvw16hQzE45lXlzJj+watvViHqFJXdHfOLI4tKWo0JZuQl2ytkpjZ3F8coL7v5l7tyZJch1N7APpEZF1Od3nzGU1WtOY/tD8Yv0B6X1t33ZfxrSz0zpzTndXV1ZmhDsJPeBCkE6PiOoZk8m7KzMj3J1XEPgAggBJaodEwOWUQLzitGSczxmXcxaMnRNemPHpw4vkpbyckcD48CK7lZfTCZ8/fRCFmTISX/Djn/6Ey+WMtCRJTXM54fxywcdPn/B+uyLljPThA250EiMdZclta9F7K8m4abRlqgWUL0gLISUG0ckxIwFyDlUZXkoJhRPqeg1YXnbF67phKytYA+RQZVROYBRl5YsaFopH8beMB8JTxOAghgFRknJKHvl424qcuQVAOckZSt1dLlxx46KRxIHbtuHX1yveV/n3P74VfH19x9u3G377esVvX7+JUrUsyCDcEmHNEIMA1W49Wd5Dm3OCeIf+/PMvyACIGR8/fsTnDy9YVHcpZZPzpimhbAW39ytOqkeUUnC73TRfZsa2rkgp68ZL8jgceTkbWcsa8Ly48K16O+cKugB4B2Nty1J/dmzx36Ms6h6+MBI7rJnEFfV8PqmxqPfht5+m4HT7Ei2M28Aco9X7Hmhpf1vah2MhsD+j1IEPZZgwcDoKmSZ6D8pv5UThRURYUnIlT6phX1A2DKTc3CK+tWCdylyDzLLIiTQZNzuwHroNgwDJlD7uIWt7jDzf2pFKId9KqDo7Y2FnHGBM2fkxuy5MZMcx23xK8F8d3aC4wsdon5x8vEiFC3GbmaMZYoKEeTbs6X0SoOh6tpY5unONICOC8GcUvmfd0GaKphkrnlIs0ZK87+p9ApiOdYy79bN2zr4f1+hYRv9+D6Ci0WNajRdDbgFrbqvwgEeT6B1etgnweNdpaAIo+37FtD40x4beGAJq8dupGwtZIFHJS2kZxsOYPceOC1BJaff+EY3Ge+ZtIE0gDBvGrc4pvdk4ZNiZraOd8nvAfGzXPdre3zfFwe7b142vxpxc8n/kiwY2DRBXyP5Vm7K46xLbMba9b+i+3ff6kA7LabJCmwvZMRjmxcirVgSze0fLxn+79yiMWdf8phB7K4O4aHlINTpnWAOueKN9B7C6WCuPTZAz5gQ5WwMJvnFbK16vV6xbcRcrT/Li5aoQtKjYphJ3Y0hWbWjXOLR3eOgQJvfI60KufotzOm6w8SB0mc9h9Clj4wq9RU3dja2/5EaKbVvx9fUVr+sN75sE2yAGcmqYq7AEDUmUsJwyeBVBSYmArOcbXao393s5AmUu3RqEhwgEcam0FCOdPAnKZBuDdk4RUE+rJmg7juZDrzyjsOTu2zSqKvs7pEE9MlI+qTudAnQk3aGVompb/roOVGEhwkZFlA5IWoiktF018uqWxDV15Q2nVBwjpSrh1wXbkKY+U5dNTignRs0aGRRAZoAqi7IATVOhY3dFwns9iQzbJHJrwgJeK27EeKMV79dfVfFNWE+iIOYkylEiiQp6ygnn04LPnz7idFqQc0JaX/HjH37Ah5cXfLy84IUW/PHTJ/z4+RP+5g8/graKl/MF9MMP+HYqSEvGkhecThctW+eKKpjFiMOloH76G6TlhJQSziHlUaaEWjbUYqmaMvjv/w41S97ObbuBoPJvW0Hr1Z8vlyy0y7oi2FI+ybk/XwsqswkVC1Wc6OLxO4hlDmspuF2veH39pulcEup6Er6BijUBt1RRecN6W/HLb9/w07/9jNdvV7y93/Bff3nF23XDtlVkOotSmIGFgJd6w7ftitu2gbDgQ12UN2csS0Zh8nYDEoBmOS14fXsH4RfJz1kK/vSHH/DHz59wyRm3a8X1/V2U3rzg+vYuLtSb7L7ebjcQJeR0wu0mymLW3UzWXe3l9KL4n5B9h1GMRhR4oRgwLmCNftr0A9MlgkzGDhR01+Mzi+YPq0g654yXyxkvL2csOffKC8RPyg6ny2KflRldVNp3kUkeCeneCn8fBE8vNlAZgOax/O4Y+H/INcitqPQAQchblUoQBvb8mkXgC4/EI/OW07CGfGvjxlqrnxxYIfhCV2XaDtEDCNGBcsFhTwKElFUZZXFl1rBIsJiuJkC7+r/zmgEeu6qBCxUMPpuErl4tqPXp2bqDZTWmjnhu93BeEbOE8rcItQ/HxGUxyY6RzsTvGssDRXFX5e8o+9HVYb7hajTHgLqDkhF8YDS2a9baeVAX6b7kDECHMXAruq1Tw4FDw93zldEbUIYG+C5Yp1TUjp+1e22lPHsd8U0H/HamimLwoR5gdx4G/Hzgpnl7WpnjTnxULG0XxcZ6T37s83ykqI7r1rhSawc7QTAEWFraTxvpO+Lg7liM4z5XhtmjWsbLj1l05QH51J+9NRDA4SED4v+Rq3EylO1G9zHsSHHj/m1RMrozEiQLpVRRFn+7VrytK27b4mlp/FmQ4wlpUAl8fmxdVJPv85HdNcrVu9f8TM/g3xD+ji0RGdxwh7nPtneKRUwkiwPQ7hMRrtcrfvnlV3x5W3HbAGY5ZyahO4rIbQ1Ok0jubbxJVlINpCfA3pRFVRBLBS0LTsvi7qsZolwCovCtCnprKVhvN83D13hJ0nNU5qLIzJ5/j6FGYnuui6Avba6lYNsKyiag2wN5KB7JuQHmsooymVPCkmynSdZwxqL4hjXgiAwhgVA+ZDADW2XUrbSo7bUI6E6LjD0RrnTWKWTklB3TUBW5QarkExPWsqKgdMZ8m/2kij5YclzmtGFZxC2ykET05G3R9AcZoAx8uADMyCC80IJtW+V8IRi0ZFxXxjtXMF/x00/fhMclBn0C+H/+BYDk0F4o4bwsWPKCpP04LSd8fHnBH5dV0ocsC07LpUX3TzGYlMzj5ZxxOi04n8+4XM44v5xxPl/w6cMHZMrqLkoS+DL/gJw+YFkWvLyc8fHlgk8fP+By+gjKH5yub5crVgJultpNczya7HSFp24oRXJgL1Rwu94AFj768eMP+Pr2ho0rUl5QP7zgvV6BuiK/fMaX11d8fb/i128rfvr1C/7tly/466+/4c9/+YKtMhJlLMsJJ/4AXuU8YSky7hUFb3zD//z1X1CU73+6XPBtkSBBlRlv7+8otSDljM+fP+Pn919xqxWnuoGWM76tK25ffsX77Q1//PQJ//gP/4D/9e/+DgTCdiugVHE6Z7x/fUXJBNQiZ1XLhm29YrsteM+yKbcsCQudwFxQK2HbbkBl1JzBy4LzcoLtw3KANTmfQMtnYHsD+AZs0rsDRnb3euCGqnYbMpuJREtalozltAzJ3odazVLqSwfCzMJSmgneCKaa6w9190OJfa13rNpj+U0IaXuHZ/QPfyzljE5we10GtFoZEmmsDYU9DyJNZ8Fe9mg5NrAkgFRMZJ48NYJbRr+JYoNispQ1GIYxAQe+VnUA1NJAb2d0I2vjTa5ks4EU75tVzv45zoIZApJHu6NO17VnZ1b3I2NBQ6F7oEgEB1GuIDI62mg7Wdav1hrqyjpeQSMAtrxpz+yMj7/HnaJ2lmB+deWhAW+LclfR5rIHoTyZm3lfZzuOEeTPxmbWF+cCQ3m7+oCSttfrAAAgAElEQVTu3fac5jkERBHUPGUVJEGc9OVu7YR1qlh2Vya5AtVA3aisEPW7ZUbL+qE1HG1tAGJ5bkpkcOnSz2Sv27oelKDGPcN3bGdEdsM+KJ8932x0ahEYrR+MGKnSunW8G3x8HdFOpBNr/6gw2jWej93rWr0aENdw//DwovGHgQeMV7cu0Nq4bxPHB4f7j+XP7PNMke5qigYQ5d/N7XZvKrvHgx7t6BL64fR1VSNd6lq3Rtq50QokYi8HEbzoVpIFxlw3YLPIf8ygblxlB53QvF+Otfh+HO1dqTMYCGMBHjVzz2ePab7jpMM7mNyzNW+AOLhIs84fNxd3CUaS+/pdAWFs24q3t3d8e1+xlgUMiVBaq+QzrgAWkh0iUsWtVE1loEW2uAgNj/CQ7sJ27UwWOu8CPDqqu71N6N+iOTKznBsLBg22vywFQ5AnRSNAkqXfMmylSjBy8j7YPFXoGTetO1GWHVNk2dGuhrkIyRyX1NuRbFA4A7pTCCbJXVfMRZfcQ4pUKUMFOOkerW7wJ2TtU797arNnsI8qIa8JXDZ5B1rfkkWp5g1QrCkg7iouq9IUpATcNommSYlQ9RwlCFhWEsWXZb43EMoNIJJor5dLAmHFzz+/4c8ZWLLsGi/53MibLW+2LHgmxgLWHbOTGAlyRl4yXi4vyETIRFhSxseXFyxJUpOcTid8uJzx4eWCDy8XvFzOuJxOOJ8XfPjwImcgNQ8oAKc/gnjPmDGCLCooASknvJzP2G4rtvUbrm8rVk0Lw3XDz3/5K9brV2zrO75uv+J//PRX/Pp6w5e3itd6wq+vjN/eFnzZzqoUM6hsoPUbmEmOs1ZGXmReUoUYX1gG/7oRuN4gRg+SuB+6A3u93UTZB6MwgSy6MwGlMv7tL/+GTy8v+OHzJ3w8nRWfkp6bLRIYiDdx2a0F20ZY1xUpv2M7LShFosiaNyWznHskADUREp0MWmj6viZHluUFWz6Ba5Y8qdVwSL92H8S3ebyzCERgI4uR0gUvJ0IejaRKbJE9Wxldu0ZlpeM42gtdLFFoNaWs/97K6IUg7waD7acDh66JKvz0AG5QFDvNz/sYFReCK8Ik55Hi/Z2ICYLMbxrIjm0PIKDtBHAoadTKxtrkc3OHRfcuqxCxYXDl4lBpkMGQADJK7JXEqgXuqm47lwZooIcoKNBIAEWO+/q6DwW3Sx4TukGR0YVSrdOThRE6N+nnHJeMAI6I+jyjkQYfgOwjhfGoAfdAezTBMLcgHU0h6JtztHP0zG7o3lgyW7/x9z3gOnEVn70z0J8VzZPP3RJ5dAlRdlVMHKs65RFmJOkAnX1vKym4mVmpoRBf0/qfBeToujsL0sOaWsRJ7JgmekNW/C4q+aZIPzdgo0JqbXi02+ZjZj0aaCjWnoZ10P7eK0QNfAbFRStpBitj9lAe28odxcWoJHk9esMNdtNW9PcaPfVPuWGLjXPFM4MhOIxb08JZlOFyHhq/mxgNZld8c+wRD43vVnSUmeNadIUNneeKyzSrUd2gryuwboxNlZolCCkGYEYAP75gIo/9VjcSrhh2HQoyMoxF1w3CML5x1sarfUcUn42vtz5wqKlHQ8HDwNZl+L6lg1AX0SrBMF7fr3i/VpQa9jNrhdmQPJgKEZpdyTyTmiHM6TH+s/vVQuuw4xJbU4AE2NjUZc4xD2z99Mb+WhnIhiu4p4nBmNUU0LBDp0PhgVJYlV1S19Ja+jg5qlGJ4Tn7OgNLPkCGCsgq7o/GN8SgnuReUVdSU/0qQIkbD1PeXKmCqWKhRRW/1rcaP0Q60gjxqSRRNsgiXEtu0coSbMfOoBYuYuQLMqZC0lNI0LDkCmneCKlmMNjPq4qrrszraVlQa8Hr6xU1ZY3EX5BSDbRR0c7J6kIuBUSyYWJGAABYFkkCn0nSrXy8vCCnG3KqOJ1OuJwWCdpzPuFyPuHjhxd8+PCCz58/IaeMl5Rw0aht5g2UUsL5lNtOsh0dIUI6nfC3f/wTrm/vePv2DUQZ58sLAMb19oa3r68o2xW39R3/+tsX/Lf/+1/xy5cVX28J9PHv8LYC77cFK12wLAzGhlKuSNuKlBfJpZ4AWuTMY6qL5MKsspbWAtR1Q8qEjOxRgCUok+y2yzl4BhdIjkS9/8tvX/Djl1/w5esP+PS3fy9BK40kKoOoAlxc1tRSULYN6+2G7bJKUCVLd5NY13xR7xih02prqVahLV1jKZ+Q0xmVzqgwVz843dt13wX/obJ4RsUNwBULEbAklHxBwX/C//a54r8sq963RbShoOjaSMjakALSUMcqoDXBawMaDNmGbodbSf8VLhJ1KGkOIV90jWgjEuHuffHzlsf1ebWMEBHW900WL8k2emNQohAZk6WkYZgpuRCnAIBa/6WElBaYpbBxR9a8KEFISEHWdEc45vrbdoYI7XCNlYcmNV0YtGcICZzVBaRUHVZ1GzFrH4uPvs3Nkhs5UIjoysxIrG4umbCxjTGJdU43Z5KaJnKHDM3qB891ZtYRQEARpSQR1iYpBLrxDeOWfPD34D3aqFlRxqNdM8ACM7R2tsFojhmOUjT1QR4Url2bw+/uXOrksvlOds7yTrl9HcGxIGcQMxK1sy5AA8ZERl+Pr2d26mMr5p/375MqaXvDQHy3eQDwVmQt54wksdnAPktiESyw5L2klmUtKSobnWKj1nY9/4BgrW5GHltTcJDPgBs2zD2FiECLWbMlMEA83cSAIj70a1jblz1CqPZIBffIvBNSdyZnKGgYX2s3tYFlKF+D899uxA8UQOOd0Wj0TB56EabtnLIBt1hXaDRMeTeO6DntFHAZYIQq8LJnon2Emq8Utcp5Fh2oLOdjumBxrGfHUgPJnaLiWpAC5ZQCv0XjOR3Nemdis71/hAAi/SxVeL4yJIJlhaRe0GTcAWSDNHI6NEq2gudKLWl7G9Iwv2H+rA2SU613rvQhclpInl+vGbbsaXUdU4BiDRT+246oaNMceC8QAPbXLxt+uWV8XoFP6xV///GMW2VsYNSUsaJK6H5UFE5B8dmLQkDXJTOATcdUUztM+B3zprgio8vZ2T/VSQIN5hjWjvdweC+jBU+yXT31zjIjkKagEuMPA7Tg5ZxQa8H69obl44+6P8b4kDZ8ub3hz69X/PPXgm39KGoMFazlVc60Qeh7yUnAv9Z5ShmVZYetsp4rg7horlwkGMhyAueEsrrPpoLMBUSkqRIg+K2y+ZipYppRzR1V4yosOYMpoXDFddtwogWXlzPKtWItEk3zlM8ua7eyGUAQfFTkfKKk35Q2pyxjva0SJCVz0sApcjTK5sTcaotG001nMsoDFo0Ar8cYClixkMwT1QIqkruxLtWxFYwKAkuQDovCx3lBpQRwUX4kSl8jSlUQswQoeecK0S3Zwf/KDUcXT3NCWLEEHAjUWpCSKGjiRruq2y+wBjr0RCnWBQBv6xtAhOXlFPCFrJeUG/YFTAbIzqOlXRFsorJXUyRUyBzdmPDtTXfXiABcUcpXLy/nhLxkzRHY0rVYhN4KRkokSqa2T6Kj3uRsIxgvBPzxhx+w3Vas64qX8wX/+z/+I663G/7bf//v+Kd/+ies24pfbl/wL1fgp7df8NtacQPhA61Y64pSb0goOKcTUDPWumD59FFyh5YCLMJ/TBZvxQ9M6bnZpPNQwaWANz1fWaoGpZFxrAxwOWNjxlu64nwBfvrl/wGlDf/5P/0DUEQnuq0VV97EI4ATmAmZxQE/gbHebli3gq1UvH3bcFoyqAIbXaVdllKnSvttLM9p8R3+N0o4X34AcQW/vQL8RXbIUwZsVxkQY92d676yGEFHrQAnyRFyPuPl5QXLcuqApwsjtTgxj37t9kxzR2rWWpatW/SsN6lVhXQG3ILJ7VkHwPqhlNKASbS0Whs9V9kx4hmBmpGM5Bu1hTUUYdYCi4TFff0J2H03Rllt4/V9599iu81tZA/2lfGNSgjt+2tKMtQiWErrWwTTbTeyG4aAkaiBPZ17+LwnB+Tx3M4967jXx/vZa66xVidgiuJM6TocV1ZLPgUq6carB9mdgqGgl6C7QEM9Y1/iRbtBPFYqd9+ZQDTrVFdMhKlPoPxQxwg4Z1cTMPDfTTk97u9zF3nYdVuDdraBSO4Riew1upi3+4l2dFMcaQgwe42X2ZVtz3N/FpjafdsdejQeRmvjswCwrRs4SXAvc033Z0yZQaNH0bUirR7zEeOho5to7GNstzxPh/TRWyz1p4N5dLwprhlTzOO4Cdto56AMyFTueSl1v/udQ+40t76Nu/6hzWGch+l6DWCs1XN89V4acF5oxggzXCYFvu25Nu723UNaOrhvJldqN3t5KpU5L2X7rhsZ7jprylNKuXlbhD75c9yosBZgXTdsW0JhCUXfnm8SaT+kk/VrTaO7T+1eYNMC7jw8GqVnNNezCjoor6oSPbaj8SgieATvUouA+Zzx/ibBOK7XDZUlUTorzqgc87laQDwZZ8mH2NK6xDZyMOAYjvLV+pBXi4pteQutD5JyQcpa8iLxFhKwbZt7XLUiWmCT7XYDb0VyZLI1phlPTVlqfazivtltOuzXdMMqwRCy74q8Y7itMkBZlgXauO5fCvfoHne1MW5rGXjiyJR0ZPi8DzBGrslO6O5oGqNcCvLaeG/DdT2flt1fO1vIrR+K4SQyqxnQE2yX0p4rVXfNSnE+DlE/AQDX6xXv74u8x6y7msIPXzPwy7/9xd2miX/Dv3z5Agawriv+j//r/8TpJO6YX37+FX/99Vdc101202hBVSyU1fjFgKa+QE9npvAFIymRuIf6lhLJ+qPEDgx4WDPGURkJ61Zwva14e79KjkkNUPN+/YZCLLqV11N1w0B2lm+3K97f3xVjVE1XKJUW3XHMYde31urBLUVmqg+LntHc1gRYaqIJLzu6HqfOoPA3C6A4LSdczmcsZikY3mnuTk05tAmZ1UEBRIyXh3+GPmMLg+EMjgDP8+KKCDdG2pa1bbXv23N/4TIQrP/95dAkdmqnLB51sQMmA8Ob7ex8L+CO8xElqrfPuheYg4O3RA4gvV+xfThwQQuAYASNjKhYUnue+7EYr109A/Bs5dvzrXztTmxeeHKo0Uie4Ocm2t+7RzuAEtthn8f5i8rvPZqLZTx/zcG6AWXfqYn13AH8sZx7u6ex7ufsGqNLNVw541kfUt+XWEVSJmC0JaX3Slps39iHewpwNKDICtLJ7gStfu7+2WNjG8IIhDU+jn+3Doc2McN3KnbjNH7WMT2aNx77ged4jnG8p67hMQp8tOcN+zXhAFqL6YGMlX3QDqcT6yPhPpyb8Q/7ez8fEXvv13grkMP4RzlG1L/Xyq/h+YG/dfMwX+u7Pj3DP3TLNdK8gaLoIm08Ncr0OKT9OEV5o/dD2wXUAGupWEtFqckTuDs1MNqaetCN7zGoDm8+xbN8bAZBEj0I2rpr94/qNG7VXE8t/7AZeqTfkgoi4e19xdv7iuut6A50Ww9O19Tq5oCB7F/1ZOpx0uwdhnh7zPtuWKEZ3hgtuJJ+ZtZIlkoLqY2JGaESEarSSNZIqZ5wfLxCf6wd0lIJMGMGQ+NZc35pAe7I5QQouJ4qgBw3FZ6Ruq0+Rjv7fcxlmsx7THBNHvb1TMuVN3rF7ujpQSaN/D7Sy1421T3NeRvse8sR2p7RJe3Kr3iyFUA3gkyHYEj+TDOsArKBJJFsgbWwGyiSMte3t3dpQEr453/9Sc9VZpRvb7jeNtkVJ8a6bhpESBpjZ6St/zNDZ+x71d1bIrgHYaQfHwedt4oqO/BEQMpYtxXv1xWv397w5bcv+NMfNMpwLUgn8XwpwVDbZDOwbZJO43w+I5N66mybbqRVpBR2Fe0MeGmGGfeUo4SUF2BrfCyeVa4P6PKJM4vwxQUWy+758oKXDx9wOp8kR8vkcq93E9rdBAxcQO7Y/+E5HbRB6ep/UxMqhJZjRN+LlnJv27BQnrHwxMV3vJh6gdsvQvhC7dpjwKfrd/9+zwxtCTZEshtJalaFrn4HTqG/oY7uXxqUx1i+z9U4rmjtc0od+2J9VlHJNld2DrKBkrZosbsI8XD9uGgZDdTYN2PwjCZ42pdx1aPNzYQ8Rnr0AZiA7b5Ve5A4L3dPA48uG7dp3Q2p7p6ZtWemMNxbJzaPbe7GehFoWNqxK+6gi5T6NnH8flQ4jsL8hn73YOkRCh3/HNaQ/Y67KfH1O2N2uL7ufB8VEfuu68tubdPD+W2GwEbsnSJH+3ftX4wAHO8NPYVb9izwT1O99cX2R+SjjZc1q2mvkBzRqfFKdtC1a9MwJtFYYV2woFtdpOOh3T1wMuDcBi/yCvMAsLUyNQ5MSKanhV5h65Q3oFtnoyHAn+fAp23OVFlLEQy1WnZtijockUWwbAErrF3MTSZZ/cwVWwVua8VtK1iZxC1QvU0sPZ717Hi3bnYZ1Ox+9E8MvPKIJ98znIyzfq81+/scfov8k14KoLWookIvC76+3vD16w1v75vOl6wJO+rSr9eGjgw4ym5O7QIlJZfzAtgbz+bdWtcPgql0TllcpVSmyQ8uFq8BoEpY9CgM2HY59fhGzsgWfbUAJSWwumZWjaZPYWStn/FoD6M/48yG5od2E8nRo0QkLrOqgJD5c5M8U9GPzyPe3c2k0nQ/t2M54+9QHsY1LoPoxpvI+4eLwzNmvDxaswed8XaO/LsUiRRLQNgZ1p8mF+RlANA0EqPHh7xvBwws6JsQrrocQzBaLQW1MKApIGxc1lLxdV1xuZxwXhakZUFKCXXTCL21SH5EPer2AeKqK55HCWWroJNtbkkgIKNT250D2k713mip40PG4V0ouh+/3+vkDYFowe224rXckOtX/PTnP+OynPHxwwcQgPNJXEa3rSDnDIvDZGdVSym4Xq94eXlBNsxTBOtUYhRimSfAlUX7DCKgAlVTxdByBt8ybMe3VndYDqnB5tfj1Bnh71IqMgjn0xmfP3/G5XJBDlFuotBrg61KALdnvoPrdwDh6H74IMJmzKcWmF8CWhyKSTmHoNwE5+GKDQAqCMZHl53r6RiesMGuPRKCujrDiJjRgq31isujmsPOopVFBMp6HmMAlb11PO0qCHy6AxE7YduBXQ7/gOgqGYVXbK+VyYGRNrgWAYk7LTawMTw9s45J756nz1aJWVrnguBZeoht2ZsB7jbgieeeO6s4reEBI2nPHew2d/cbGO/vYcoa/FEyRSN1AMzpIpw7bK+YkD0ouKHdXaOi4Wd2jevNXWDHdt+5jizi1vZ4LcuCjWsD8uM4D4LeAjzNd6YGnsMAefKIBvBH6jWbjGGqI2DZK+RJeafOPXr+MgXSOmcmMInIXZdiW0ZleBgOOOQMAjzqCS7cuZFDzPbak0hjcMdz295gRckuD4MSZu2fGwbYjrf39SLOmdUl11GgrdmuS0hN2WjGaMCYt53lnZJ/pDOhkSAyADvTNBhWhD3q7gQYtQDvtw3XLauyqDnDeDBAfCc7bi8eMJT/4MtngXk63t1VHQGDXUEM9zRYHLMlK88gZPzy5Rt++e0NX7+t4CLnWD0OAynfS1nc6hQgy/rXnIXcGy3kj572pooCGgaLrq5gtmobTacETpY+g0GlYqMNdiQ0qZdSLQVYV6y3FZUY27ZJ5EczFQz4iVnBsOGrlPw4EGMum6wv0aXP4rX40omgZV/A8b3p4wN+O1g333MZ+zU7FUFct8dinNZGXfMOb3RGvjM2wtwJ2rrj6mWbiY+IGk4iQGKT6zNh7K19TU8QtTHRgsKMslXkbEZ55SUuc4RPWJqLH1/OOJ0kuNLt7R2VKy7ni0Qjfb/ib//4J2zrJrkNbzcspxektIApoZkfZDwk3gCQkXxXDhCcHel+HL/O8wEIQRvD5kYWJPq+XUEF+JgusquZ5Cz3z798wY+f/wAQY1ky1utVXMlrRc6LjJ21L4nHxbZtKKVgW6WOvGTk0+LlVhdaTf+K7d/yggUZaXkB6KTTL2fO23U/ZsgTO4ttAuOAns9nnJaMnHsh52/R7HtjpH0NtsC6CGrc/He51hbhyiwntjhDK0HUAUa3UA9/P0LvU4t+So1wOFiDvb1BCIfXewvL8NnA76CY2ZhZUmZXwGPDu47DwUh8f2Ypau3q67NcTBZJLbZHrHns1iGLTNfebgCm15eCcKJuUMCFOxBgwM/HZdfeCQi1Gmj8jh5ihCO4R+GfC8WILg1I26duyGVQ+n4FkDZrxwC2228ZyKOdvu+99grUfDxnz8e23q+jN3DI38AI6OeKYk+/uzYGhUdHRGi7tmdcxIzgmERRiX1gluAGR8pgW+vhuyCT7V97zNzKvHW7MiO/sDqOgA7QwNq9Mp65Ig+czWuksTF9heOQSaXHu59DPTZGBOxVQ/J1Y/RuugvQXJRaO8WCX2vZ1T0fz7ZuafLt2G67N5YSx1BKE0PCsD96SNuznR9TFnd96DXFXYvHfj7DGro2UA/JfM7qvp2m2FHXhlmFpPx/co/Q8WgpVwKn3LaKW2FsLOfqJDARnB46q9DTV5yT/ziF0VztyMaPBr4GODaI/Mh4FTEBZC6L7GPlz3LV3LpJdhUpA0mier++XfHtuuG2Abbr0nBQA/5m4LFWpZxM2GuOwx43RUzT9XWQS2ZQgpMltfoib05y9qqlrpKpp8lxpW2THJBrESDMELogphAUKLRzXN/MHmjuGTkm/ajNDZJbehYAvhtuo3dENfudehnRti7bQN3j1jOj4G7MHXs0flA1OeyekwZmHcqeG/CiA3WjU7lnz8lGj3lXRJlGgJ8Rs3ZaFHrx9rMgXZFPNVrjQLsNp7ZIt8Zv/HVmoBZNtcMgZpzzSZRWJlzyCdtVgicRAzmdhcfofCZPu8IwV39Txu2833T80eQcM8PTwRJJ/A4bdcXqYJUIKeHk2D2hVsJaGG/XG37+8it++OUjlpzw93//t1i3DQaoTd41Q5DMfa0V67oCemaUUsKynIWH1Ip1W9XNts257ZhKbD1CJQYhg2mBhEDi6fGqo+up1BlQwSiTDI9aJNGNxt2KEVxrGZOFsasmfgwEZcxUb7T7+tmsWva9X07k8EmMxGuHa4+ujilQFDu9Na57Bz2hxf7tFJ3YL5fc1qR+IbvMDGBsJOiekU575Dfiu/6oEncy66AJJF2A+sghqDIe1eZqV20nPNkEnD2W9sqGtdXHa2D+VcsmQ+42pzZ3Xft6IDsTMNSWf2gAGgMdXpmWFfuNHuA/UrjafetzrGt8dt6W2XUE6mf1P7SOY9+PUYD+Ryi5VkatxoPg5wUAdZuwoFgklk6PuBva7wAq8g5mWBoXwLDW3P3EXAdBpBHo9FsDtBwm3Baq0+Uw7mjj0hlj0ITSeD+2J/LWHXCaXm2N07Biu6bRfK4ezfN4b79Gx9YMIMqnQObSgnvMyiYyaVQ1WEE7YzXr/j36PWy3tSV0wOhpBF2mKB66oRo/PBirTp8eaLOFP98DPQ70dg9wxmdHZTjyJgeeFukbY5ub5LsnL6W+OqWjsW0EOat22yrWwigMlErqlUNeze/eVfydSuKMT9pVnTYaLc75f/RIEIqFyScwmOJRlSZTTS0n/TvpUZCtFLxdb3i/bVhrW8fkBcDbhKAo6rfOV4ioRYzlRrWGQ2bGH+8XEcwv8F7qHsNixE1hdKWS0bWl1upRrK0u07VE5DZeE7Ggj+sD4hjxm+14RuXENlMM6Hvd6Od0RhdRWeSA70bKMwNY/3m+Rkbjg7cjKIByr9XyFLYIfM1+Gt0dKZRN8e1z5DUDAYFJ800yhK7tluXRZK+wle3yF8ojq38nQWMAiWQ8Nr9i3Rqt5kUi5lIinE8nrNva2pcTCkPOPGaWqPUU8HJqazi6no7yN85zSgm1M4Y1GdYwn80TIYfo3ZUJW624Vcbr2xt++/oVnz9+wLL8L6oEstdh9ddaQQuczmV3Xc9O5oLLpWp1BGDDKet5zpz8/appTwoSKKmHJkm04jFI5COk9lBZlEly8gIgoagvlwvOGuTGnz0gVgJ5DlhncjheMLv3bQD1s/nl2pVID0tHgqc2g06vjTtKuT7QQNsVSX4PphQGpsN+D93oTsHEE/1ri56AZOkn9LOgFDCzWEhSY1L7BNb9IpcSZszUwExgunaHBsFifTo4gP5YHBuSC4wVIQy/TQqRpDR54vxT7H81zh7uaVKk4bvxmfb3fo6CsJ0BlsAfdtrbrqTnAev+2s/PfrT7tjPv01H0l43L4xQl39vue4J1pvR8z5VcsJCkzKHg5lIbQ885oxZJ0jwqilHJiuDk7j5dpC3o6JlQUUZr3gQMiOWOmiXWhPG9a7Rejmsvvl9rBXLvJN0pAOO4tU0F6Qyx06zJtF5hudvUVt8TQKe7Jo3bUfUIKEKZPpeaNLl9H+j4+0iq1T3wAAeNsdhBqW+Nno1644pNYeyYlCuKrmbu1lujiXa1GACzPsyU+LmCiW7Sux4Yu+6+5/Cv553gvp1OZ0N5rTrRNMQcp2kE1g1v64b3WnGrRRJym+gOMvz/Txczd0ar7h5spBjZDFx+t4b5C/LVlMiwVhkFKZ0AGLh8xdv1io0ZFzIZxYi8nI1vVC2BK1DkTJdHdjTe5/VVx2WJjuFgU0uM8SU3LpjnEetveZTE8GOxD/T9rGmy8vksaScYyMygcwIVAJWxrUV4U+qBfMd7WNMAFeyYWMdbqBE1Q89DuoKEBrNgO8b2zhzdzBTqOMmuYD0Qn/cUxlaO9M1b0tGcS6TQBg5rblL+AGykz4/jdpi7dF+ZnEW1iNRV3c4rCvzccZKd4nEJW30pJaQl6zKXudWkca2VSkdk3S0FRceXlqbQpZSxXTdNo5JR3wpK2QAiLGkBpQURLpIfpWLknKf43f7uMKNNthptnOcFeW0ksJVVyl9OIABLWpAWAqWMt+sV397fsZYN396vkhpwSZK70jdrWFP/ESoI67qiJq0zLTjfbr4+cs5Il4D/KgPF0i0cowsAACAASURBVHhV3CpQEqOkAqQFGjlrZ1q6d91VFokoHFSXgm3n6Xw+43w6IS89MO8smGRAqk2RPdcEanMNjUr7zCI6ft+1M1gtAGWGQ19A8LQWvWFK/kjDzlYEb5YrLDIf85t9tNgcHPBcOWkKSLNE2GnZCFaaJebYvfSo/tZPvgsKO0uKKvk1Wp7mb2m5jcGNhDcqp3two8JmAnzGOW+7DAaUj3a3k3+2wWsYx75r/Zay5NwrB8Y777I+z4ZrJpb7icI1BafD39+rTOnbU9017kIYKHi2/EOwib7d4zPRInevjGevpFPF7qMWG9LXHy2CrS39g61dIWDKUJaV3azbTR7vqU0ddvSheNAdaEqGrSdrQ88r93RvQmN/9Wu40e58zczKiHRhua4I+7UWn+/oFj0tz+bWFGdTDJyfWQEP+JBdAkT251GjctLiUo7tlopsFzL242jtye5WP8a7c/NE7Wz679RnWAr215MCA1KFiYHJ+Ipbk333yKgz4zVxJ7ubD9gIKkA1t0U9fji6Vu8V0zi20IUQ1j+47cYTwJwkz9i24bptWLcFL6m5eVp+yR49PNNXg9eGW2btbc/1usbxmPq4GK00gTxrTd8mhng9+lmVqi5gFUBSrMyQ82E2P0Dlgt++/obXt2+4rhvMvCW7Mb3xgogG/piwbjcJOlOr51ht7a2e59hpb5jTKc5g5YdGT95XWastMEkDr5UZ2OTcYVJlrJbiaT/OedEAKnLf+IVdpRTUIspozONcOAa86pfimApBiiRVQFpwG6bmXig6idY/KgoBD8bvZvMfca2Nl53ZNj40U+jsc61yTjCBkejU8yfl15IKu7WlcOlSu41t7PjJEAhuxid6RVL4YcujKP3iKmNVg8yzfJuy1nueTCBQWkCUUFFR6+Z6RsPu8PVQASTSvKWbjEll5fckEU4BxrquWNIJXBlrKTKPi0Zbzfa8pjv2tabdsDywT+AvgVDkbWzf7rnU4p4a4kq+bhV1q/hGFZcl4bfXr/j6+obT5aIlFFEas+RrZhZFNifZCTQZxCwuptfbBot3c7lcVGYxtq2AuPimGtGKWoFSGVsqeMkZ4ASuA3K+YywCntlZNIahaMoWy7IsyEvanSnpFq7zblktvkDQE+q9uq3c8fMMzHRtDqLNlUAQWOwSGEHz1GLUfT+4L5Ly6shMrX0h6agDZ7TIXZ0ivFOapG1ADyTjgn1OURwZBrTMyZNkUzQwQRXaSOH8FDO6pO5dgeP4MXZTTcNYOz/t+7R3b9632XZw4Eypb9YeBMTmBlCjnzuhMmHkuzZYRej7eGTdT2H3G5PnHxkcHn8XLKZdeY1hj/R3D2xGxetImHTC6uCM3b0+960/vkgfsLVnRiu2pLmVUTxAS2t/q39uaTUuwRPlhdDWgGBLdjdU2o1xgKikiuEAtszr9WjcZ4rXTKE5umefZoD3CJSEAjplM5Y/9oP0+XtX6yM59fXLlBuQcpXAwHt0L2UFOr0ssDLurZnIllOa05yV2a0Jb+YeUO3L6Mdrzl+P5pp3Z+wFwwrdxTxfrX3NNbWBucjfnvcK2MMb/aRzJ/yqBrVr3x8CvA1WauTtY5+b8QaABpfYNsa2VRQ7M8Zhzel7RnPPKcd7Wjl+z0DwE2Nm8rB/e6csjPy8GR5JB7LtPhgP6ui4oW7Uyni7vuO63vRcX24gd8LLybUR0r2fVuhOLoVpekYOOLe0OTSly4IhRQO3jo7Vm5JEG/V2glBUgQ0OsQAQjFfSJk8HUEUZsty6McjFDCNGZZGIPGJ1oyXtEbXqn4ClXX1e3oNnG983vLWn0ZH/M8v8JxKDQtfHnSjTOTLZ3NV9wPsPGr6XHW1HfMr+OI5xN5yOj4l7HE4krsoxAqfVK3lBh3tgwPJqQpVITkARfnOi7JsxVe2GOcw/s51xH3kIdekjRgODfY7dHXrofMmWVNMv5HNKBEIGiuQa3UrBbb3h7f2Kr6+v+PHHPwlPCEdqmu6QQCm710BsWykFlfToqMlJZs1Duem6rcipoHLW++KdZPy8w/IPKPmp1BmNuOy3bJfKlm+rIPrbjiAKLsRIG40OaBN6S25koF6DM5pQbqwvLDKDFztrECeglABN4OATmAAHe9dBy8HYWBMri7v1AKjN0jID3rucXQzALeVwxuyEcACQ+n7a+Ma6dnKtrf7QBhcedmtkxGHDroFsA9ZNoCD+DtWJi4KF+DKJmVBqFSEXEqXaImQ91C3WLBa31QbpwCD0tD53tY39mBkjaGAm07Huhpjbh9S3QW7taWa8pnUocdLQr8fKV68wIkB1A5URUM6Uir3hpV+D9t64E2/K4qgMHSm6O+WI/IcxDRnWrietrBrWhbgkcbeWrWz5zN1nIgouSXCgc3TZKPaT6aqmt/lorm0cHS1oodafUSmwMYpXSqntnw00sW+6CJqHSuLw3dOgOe5gcGwPeb8aLzK3eOXROs8UC/B/CamzRfUg2vkSw+dvdkUDgf19r99j36k95M82AU7xieHZOYiMfe34Uii/JR+XsSlo6UJaFdXPslm/CLIDZYC079dk15xSQDXcPeOyKiWNXtnc4PrfuiNnMsZpX/uUeuNF6L0WIPVsGvhhLQVblZ2m1o79enpowIsyzn7T7L35ujgyjGkx8YVJWUFmGs8NvMGkFXc7rtzGEMYb1IsLoii9vb/heluxVd2FHMbBACyRuuLDZGZQHhMgAUek7dUisQblzXsx8OaIr/x7HWtKCZSVBwNASboromUxI1HCaVmwFjG2GX3VdZNUC86b5R3LP2eKpyVxr7UiM7XjOCkBpXqaLyAYkAEQJUntZmxo4444bJdxp6R1A9vkxSjXwmTPsZUPVM+vxzG2uve4Q2R25SIykMndPmWZ9JsIZniQtazrb5TlQdbe4/XxXimKsEgic8YTjGwKsPGDEAbEMLycE23lZsredotWazkJLf0OhxQpEtCJkDkhcwIn3WQhQtkKUiK8vLxgfb9CQrgQNipYFtmRNUNDSknoFW2XTuah91qx70fF0WUPkcYHsjEiHx/nqQxsRdBwzgmJzqhEqFtB4YrbtuHt/Q2//voLfvj8RyBpHlTu8ZOneFEvIxsf6xe4oip/q8ygWsGloBQ7vynu8NXOhfpRFFL+EFNC3eetd5VFrlfZ2qUTbvUbEhaUdMaWf8DntOAPy4YPS9tNECth8U5RSoLBtmYBpUwSdS3an0KErmpjLyMlypcD555h762uOsnUb69yABbMkpuEiXRnVMPwG7/GuFAkrG7KyRMUN+CHJj2lEoDVbc6IKoAmRi/4bcKZZjtpjJQNSALgftckljH+bdvYdSvuekJEQGIFAMK0ayWgCIijVHHKhJyTChU9fI4q7g2LOH+I9cpCCwOoLBZDSLhuUGNopRac3X89LLzAWF0HJADq4mBR0dpsm8qgoJMJ4CYEOgOC49MI7vrcOcLYG932gJSaK4/2z76fKlYJ3f3umdovv5k1cXaRMiNyiayMGOF9bsGRSIOOe5vimghkZS4f0Ud/Z7gYFbhEnXUtWuG8rdq0ZVn6dyfXTEFvRqEmeNwNkBkcz+mp4mc7HnFerP336o99TJTUanv0cOMbspL7MyKFoQaC1Ht/VVYhmtWgZu6ucL5g7IaZwUHJju2ctf1k73ZGI0ei3VVr6YT00WVrtXLpFBYpWcdKpHmgg7hmutL8vcqqRDA5X/e5AroD9ua5gtTAo3xfuvLZElu43G505KDQve0aSKmlNnDrrQy0qvcECDCgOe6MBqJbmq02B1FRSWj4Ueq1fnbtDTSnUb6Nt65rHdaIAl7swaXVR0kiAsaam9ERzgRsXLLKmsrV0vu566s8xyhlQ0FFKeyBZ6J8DdJaupF13Zk/nwtIdLmYuZLT/RkVKxNeS8Ivq7ilUb2CSgWWDyJ3UkXODC5e6BNXpN2mRM+fC4IfpmDNvFoMBd/jFyb4FZzVIrInRVkWFDjbMWJGog2EF2ycsFZg4YKXlVHfK376csNPBXjdCHkF6guwbRu2dZNzSQZWlQdft1XcQUHgsilYFp7pvC8lpLQoKFbwCKGlnFTWVwZTRUHBxpLOBUnXSU6oiZC1G7VUlHVF2TZ1pUtYssiDWhjvt3dUsG8ySPTIjIyETIYDxIBXblfgvEiqAZ2ijGYcLqXIOk7iYgioi62nMJCyGcAG9vyOl/NJUxBsHlHU7DvZ5gTAum3IeaD5FOlC3YZNRknLXSb7c8YvyHbpAc+NibYODehHbGipJipXLPnk/Hi73TTCJfm6sryGwi2ascmVyQEjg9Bhy8YDSWWTxc3Qvnm/yenC6N1WmvP9EpU8PX/YCUdG5c3lSs454GOZLy6btycRuV2lnuy4B9xgkBeRCW/Xr+pOrXO2IShMNo9yItLo35RVPwE8wUP2vX1uniCS/sMM1VupIGrnfwuv2CCfz5lxu31FLQTUBVtibMuKt/obfvrzP+M///EfQJcT1iRzlS5n8JJRKeH08YMcPyxV147sVKZEIUci4Xp9A9eC05JxOi+gnITOS0EpQOINCUBOjHo9AXwBgZFPtzY15d+hLPqMx7DXIDCJgEsOYqGD2iYmfNEDw2o7FXPwQmRyRu8nUb5sS9ossNqy4d12/saeBfYac7TeBsOfuCkYmFFFt4XjUdtbRAPKaTgCBrZD1M1am/Q3g/u0CjrpNkbWXlPwYiCOaFUw9yQaxtasJbVWJYzUW7t0bInCPAUQQz6n6hOfCFwbs9TpdMulYhlQjUxVFyEqEhK46JwOAL5vlvxXVabuBbsKQ2UcRLa8e3DdRPVjNzx/csIc7HnmMN9H1wDwd+A1gPXRejgvzugrWOP0J1HfZlOm5Nnmz+4CQut/1IV71+iGIQQgfdvvDM4r2j03/N2N+1C2f489XTyza9a+7+fJSm2v9J4NuzLsXQsXHhV3gnEHuKUXPW+Mc2e0Kkan/bmY2d+xL6NQi33ox6Gtyx1PjALQlXXNdKb8kXsC9HUqrltPAHdfkBMiVF0m5qaUMZmAcepmb5A5sR+x0r2wB+Dnoqf8gLpadJ7UUMDteyCMudcJ4eOhuNaSnv4eXb1h65jmx90Jm+/xu9bOWBCUN/QGrkZb7OVZeqxolFOpAaC591M/UX1driuRg2iUiloY61pwvW7Y1oSyiPzMCHzMDRPHYzjn7/euxgMeXpPhPK5KaZ0N0eojR80xflGjIgekSnouacXb+1XOOwGqJLEDY0npRSbUHWNVTb/iI2dgpKu67ZLTZF2ZYtMMDwPPYMNyLUJlBP6jIR+B95jLcTPEqRGCEpgsaqNsOHiuRBEMmpva8FbtjgOR7nux4g+lUDEb1IJa41mufnKijLbmymeNQEnhLH4cV0b4HDFAHMsZ327jMfJpv8+iiEcvHtng6OVESmIc9HXJKeBeobE2vzprga5Njpksi08aKHelK679VgIegw0OP+WVNBhmZrtbRqONm9qAywZKG9cKC/InylTDzzlnNV723iiCl9vYPMJo0w0DZnRrKUFS4KjLbFGDDbAg5Qymgq0C163ifb3hfb3hfEpI2YyqRn/t7LKNlXnn2E670UOtFWXbZC1qYKhSCljXjtNiFeMNACTibgbHuRivhwFu9K/2OTZ8BJJoxAwYf+nPuEkH+7C4Ucga82n406DyMJGk8YyoEcUUXDkqCTsQCPuagaFapT04RlsA1s6Bqcq4tHosGI7JSHX42C8kVczMpesI/I5MdxTus2cZuoWNkQH1jK3J92DxtHocbNrhd2OgYzeOaQClLdiub8O7JmxGZtXVMfCiHeAdmP74d1f/nT482p06em9fx6zensZmc9lXEF/WH2zsX8Qg1+ZS1Awk99vySGm1uncKcCivU07RuwA9Gr8ZGB4FahSgz47zTOjqU90z98oYy9qVokygcceeR9mHPTBo58q6Aqmn+Ht9tTQi+/Z3LWwtC+M3o+tRsZTeRD/QrmF4DML7fnT65kBLZO3ejce8rNiMphgOrwe5wRzf2/P52VjM1uUIpMcrqjIzun5EbyPQjO04MrDMPjcxRS4DjFmM6yzStrH96fobc5GagsAjaVAAcUNfEfh7KAfQoAtbxe22Yd1OKDtvDEg4/QMgsx8ToMMrv+MaZQc1U8bd90bcIIaXONb9OUwzFtnznk8aAva2reK6rni73jRsflZjlbWvefMgCY7w8TA5PfDGWT/He6YI2o7VyDeIWgCYTu4i8EzGzqjdKSGhzK5sqcABs5dru1M17syqIcH7aqucFfdUkJ/VYg8a0tHMDpLNjScNsNMU9z4a31p7j4HetZw7ZXCmVEbFwJTIfk7GOkcPoAEr+quDjPOCwjpQkOhzeLiuaF/PnTHajTW45zV3rr6O/XjFTZVQARjsx2WSGVwGfeMx9hvGLJITNfybQtR2ZrQdZoiyuBYWd9TrFemy4HRehn6YN2HAGrr8Sy3eT6ujUhUvEO2f1CsbV8yyyUOQdU0wr7g4H/8OZbEbnoFA8pLFF7dznwzngWp1MBC/A4DBY0Z+6RiZs2HbO7pDgAqyZoFDjBHbkukYmT9jBIqWrLZDN9CFIc5PPTiUSQy2O2UohOxHA3rQOxtHKKHOmHK84g7PDEjEq1pUURsDi7gXmaq3DTD3Da7q9uHJgq3EsOtZ24H02B57NkZsGgGCi8ah2RG0uDDVBowg0R7gA1AZy3xG4ZuBuu9RFO8p+N9T93gZ5jEA2uuMQYhLZdOh+D1QqQOrNILm0KhZm58ct2iJO1LS7ft5UKBjAH3cpqZQ/77rMTgY693TU1vrv7sdHk51NiZz5eG7ig/AZKTlNmffX646+w+KgIxHx2rHKx6Qbl9iBAizywQrkXHscXwUmBmtYw+gj+rYzaHJkqETx3z/uKxHCn58b3y/r0eBlJ5Vu8ffzIq9U0CHgNIuRxD4QTgiMN8ZmIwDEYgrNpYogW/vK97XM7Z6kvaS7WJ/32Vz/v/1tZ9fWyeqZSCuUMUOriyKq2ThorJY3DhvpeL1tuK3b+8oawWzHNPYtq1P2s0C9BKJS1+iDNadlchrrZ2HNBXJmYedxdAnomao7/of6UvnoasrLHSL+tgU04qyFaAyusB1ptiEIsT7hDVgmFHifH05tlQXJwPy8RrTNRqPi5jMuldTGrIOYjqeMxwwrvNxk2NmOI5tjTiauaKUGr43sN/Xe6TATmWQasQBZvn3fofarqa4q87dsp9VGLvvFU+PfNeVdez7MnqiHPFCUdKow75W69H7R5fRkHnhgDRqrQZeariXAa6QDV/ZIOPEWGsBVUYuwPVW8dfffkG6ZJw//MHrqLViXVeZY3JH2XZsa8rDzUOhj6JeakE7L1VxQ0UiFuWPe/q6d90/s2ha+zhYgC/2jph9XXP3LLh904RFX6LzhwB8eXjXrsrc7WKMbbYcfLs6ERQ3tm37oW/Kd5iLuqKqJbXo78AQfcKqKkZ28NQSRSkjhJ1ZsK9d6qI7yDvm8bKdPdjicebJNmowABpHg0BAlXNIJSoWBMCAQ6xIFcrm7tGAXAS3TXA0wWAuq0TjdnwYz2F+xs8+J+pewuBGSwdKBQCfD68zCKlhVvXhHghKslmh2Fb+9yHhEVRHYTwCz/EaGWL3PBqdEUMOJrvFHN5/K3t0SyEAnPbK0TNKSuyT06TR3t1yDHDG1o3XXAEZ6/V+TJQW4PHYTnq1b8mTir0ZQ4TerCzuupgAPQus5eU2f/fKBQG8lY63eJkDqCEy4xQpOEyQvKUWUCK+bwai3hmpW5B32nY0NmagiIHNnjauABoWHw4CrTzjcwdc3REdd8NO3ZqeerDqfMmaGILFQACv8ePmmib/mkFmDq4d0LkB5TEdTsHT5Ll7uxQzA4vRSlQQ2vM2l315sr5UfhzJ0xpMrjXUq+12XZLC2jCaY9dlun4arzY5XArjemPcbhVbJRQk58weSyAfjW2HFrT8+H148vdYOR5cx8C3v9+iNDBi21gjhGZKuHEFlw0EQsovuJYNr7cN324bSmHUwiA5QSjnnGtVxUl3gDWuAuUkZ/xY8+CFXal47QJ4xPZOZFj/bm7n2R3TzJ9lyJm8nELahWHsLL2HEGM78ycZQqocEaqyk1gp4EyTfcqjffUSI1MW6JWgZ8j3YxDzLkY5FOePVRGTgDnZA3AxW1A36XuU/wA6PPV7aO+ewlfD3Fi9y4l2CnpEz4zGyxKL8rRvFoMH7TnSxdg2M3Y0EHt/w8P6c8jfaM4jmaFHofp7Rwb7aOTwoDkQl9O9XB3Vfy/J6+5xi/Fc6UNOuYvcylzFoKPKvBhxJDBVqRu2uiElYMsJVyb89ctf8eHjGX/4wwvABQSNKbIVrOsqeRpTarrDQb/34yKNl7PpmsOSGeCCTHJWM4rMRydLHiuL3Zw2tp9S1n9D6FUjVBrKUcGRdafgSIM3QRJZahPa+++sVQakeHBj2ZUvL7e/uxuRuTcgI8yiAXKvewKKm1UqjJiOh1lOOkFuz40Tr53tvg/ArwPu+95oEfORMKPHvt2DyknAaHbrRy66lbW7cW7HXJYzgcJhsDpF6B5AUkDQMeiJQtk3wgRLa2tsGx008fcw+qPFHJXJuSLkDxoRBlDNLsh8vohBJj1DW6Ol96gfjwBpW2OtDaMCJw/D798fk/bwTGDEeu+1bXx+ZjXfl3MAhg/maPZMo31ftPpNW4E+XvE9r6O927V50pajcTDGMDiuToQ+RRG+69e4XrwvFNf0nfnsbh2vbSkz1G10ythxpx5GT8rfV9yATTfGfd0yPtw1z/8MtPus0vuMoWI3vgfvPqMUPgIG8mKQWUFrdgu3/ezKOVbAbNwYwxmf0RI//G0io8kD403DTjsLIBJ3QWDdgNsGbBUoDoalCArN3vMwrXsyPP9e5dD5iK+5+TPT+qh/w71qIIrMqM+SPcMViQsSCLet4G1d8XYrkMCHrNEM5Q11JtNBEH5f/XynGkY6EDunvSMsZvLdlRYEBChCaOjzMT2lRJ0h2gIHAg0DpdCPyLUnMMvHM9hQW1vi58jz6rhTCleu4lpLSQL8WZ/c9VL/sRJko/GRJzW+fygzQ3vv8YC9Ab9hz/H9p/iE1dGGKVbsnKKj9ihDueFKwySzMZj1cdbfUUY+av1+rHrZFxV1q9NxwaQM84Dc0S4z+m2rISZBlPPYvdrhJpkrNeaholRG5YzKCaUCb7d3XNerBKxidoMHmFFrwUIn2YUv1cNsecsCTVRmpEgjNlPKb6vqZ+rtjjpuqT+gncduqGGQw/hgyXm3swgEP3XdkmWg5Q+BLMRtF9mzJ10GfPJ8gcMEETkoa8ocaa4R8p3AKXN3BS/Uo+V2zNPucSgrtbDTbVFyC3zg4D1Wx8P4jeBx1srIKEbmYq2dX3uQFxYSBbcYjq69MiZ9TiILIGSHYwPAZR5mq683LkTxGy++1HxRHiiMZEI51BPL78XV8G4Ao501zRXRmb/9MTzt6/2++zOg3ytfj8Fpa1kLJuB6rp0hlXja8jtuSo9C8gETuK8U9Bbm2LdBRB5Dz6EtIpDngnIE0OPZDq8rKCBHoHs/P4/B45HgNWAwp5gmMvXjDoD4DfQ0Mbv6sW7f29mHnoSbALcxkfmisObn1zivu47ZGA9rygD+/ppUNgHTRq7d+NrPp0F/4AUeOXkOxrzV/UcHpRFAHnGEpxToyTXS4QhizPiDgTeMdDgbg56fkNOdj0MHmgFYTjvvwniu06z/4/we0S0j6Cau8HgfENtDnfUdXEFcAEh6jm0VZfG2MdbCyBYh2H4q4R8pZzOg3NH2wdUAfxuT3eORzO6U2ct1dXuDKHjjODvHsDWukUdldUl08eu64ev1hrfb5tFCG7YRmjfuaEugFHUhr7K7MQPmM35Zq+Rf8/Yr7+Dw/Di394x94JYnj1JCyhLjwuqKLpgW5TQrxipmWCCf/UCy1OQg4Lum3hJuj9m7Zq+og7JoOGM3d87zrDxyV3WO5Q55fcd1Psr40Zg5vjfDBKPx05RsQoskGtd8KysMxnAdyp3wihmmfWyUwPb4xYzYRpn7dXlU79jfbhVOFmHknd6u4fmoPI1pJnjgd15/oINmcGh6RqRDiRsl67RSTzvRMOftgubK9KUlq0gUxYQNFdf1huvtiuvtirNtvmudtp5Py4IC2XU0Y0EJZxNLEZqo1AwMMj3covKroljZglQSsHOqPr6ePrM4jADyknE6LR4uH61/9ohfkTEIgU/1hekl55dtAvuDxe34pwrL3YIJzBFyu0ZfJQssM7Q3Qg8Pez4w3Zbjryd2NoGtkzSORSs/Asj4L168e+v5i53ojKGYyt3R9CBALJjNvi0E8ecIu7wUxiYAVSsPCK5dgXtHxe6IEEaBZnNorrn394/HoWgzLIx2TqgRiD9SFI+uCPKOAi99L+DUklsqjfBdW0yBDoOxYLeT/R396qxyoQyJRjdh7k/2S5TF3LX1SEjO29zA1wz4/N5rr9zFtgARtPat0d9k//YmICkzYTxjYWPhfMO50X69t2fa7w78PMH3Z6BayquIy3J/RT5H6JMTfedl/NE+alebctHa2l9xTBjGjx5ftRu7eI491sOQFEkIitc9pYAm8zy7ZuN9RLczhfHo6kAPIl+b8e/H7ZPymvSTcj2HTx8Bf1JPVBBtzyG54jk8p3VKigDCWoBv14L3teBWCs5YkO181O9hl09fM5k7G3el2SdZTY3zMSsyfmZGWTfwGVhywjmLa+fX9yt+/voNX75dAV6QaUFKGaU23OK/SQzaJherBg6aAeuofMR7NDm2cHQxsytqTUEb5AWr/GcGEmEZeI+lLQMg7qVNbDktNabEoR6A7QxYKeDaPzbyEQAgrl37unngPa+x00FsZXGFoD5GRsM78zP19+XskVzbtZmoU3iGGroymFkVmcgSh3cmysxBC/t3a3ShtjqMRzRc96js0Vh+NEZzhXBPx62tfR2A8BVLPwJoCjzlbXFjpDv6oJc0bQAAIABJREFUNWnX2Mack2MPO/5ha850G/mmApBoz7UwNt6QTgnLkrFxQa2E9cZI2FBeGO/XV3z98it+/MNHpFqEXhOwru8g+oTz5YIbX3Vn0eba3G0rSoGnoso1+fdgFpMSJ4lJwsCmhuTEMUUKsKOX4fp9yiJsMpZuQgDbTWqH5afWPtYdOW4HVzmQY/cGiRWtL4cOc2hPrV1AO0vUN9aZUIXo2G7JDTTa4Im0zhnZpD4D57uFj6F+srHafNJjeWO50q5GzEegb+z5yB6cUdmYsoy++G2n7jlpl1gjgN4PvCsrCIx4j4haFDPyH0HB6ftplpCkucf249h60ymgT149I5gzTmMEVseRMnOoRIV7v0eJ6RTp/o7/NOWcTWkK/YtPtwAAYx8fC6uoiJVSvE8pxbxhI43TtKxZ/feGZgdiJoIyfjWjyf3ngXZCP7uSZ/yDTDDO63RaNEVyInCa1bEXUAbQI9iJ/ez70u639Vmnzx/xiZFmo6J0dG/eZ+yuR/yIW+MBiNsZa7PZWMgRX5hze+zndd6G6twbDvR8DQPu1t5b5kObQ/X9uDwAhYf01D83A7hHlnP7PRvv6LKGIK+sDCKSnJOTtjCjCyMvX8IR+Oi1JAU04AhCS42lXzHBs7aNtKjQDQCw1Yr3W8V1rVg3RqnAshCIZefpKLvhM4a3ezzw3vPOxydzfO/9kT7YFE25qWXqOLMCS9YdSDWA1FLwdr3h9XrDrVQkOsHy+1U7v8cCSUXOyrEgVn7CjM7Vc9b+GdZg1RPkrOM97xe6Oz5xjJhlR2xZlq5OV4KYsa6bGxAQlEh7n5lbzmP1WnOijNgizIHl4jPaNMUuyulqYDq0t6ULYSNcrdN4JRSEx0HreYqVE+XoI1qdGdsNXx/xAttdYnB/5mzOoMO7NZBkwxZhz6W9Bg7fNa8DW/eNflj/H3Ylvfqed41KMB20e+Rf++9jt+VD9HhsmFcejuVEfeUpLJDkNDVz86wSj0mjZxlbgcShrfaTlP6qBHeSVL0V6/WGt9dv+PHji8onKbdsMr85Z41MrfVRa7dg9CJlEZBLanQD1rPAkoeUi7jCAhW5SDCcNk677nbXw9QZeqrAhjoMTkJOYzTUYUIZ6oLa3q1qsmkLzbqkH21xhvKm7SJTUhrIoQHD+iLQOjoCJpKdxRIbM1EK0JRVYyCmTEbi5vh+JM5WsN8fezRTRGaL7d47z1y+WHfs3QCrCRprqzzdleHP7+ufARqfSxrPWU0bqIC4vddbohD+TnPGootsr2T242q0fa8frVnHyssOWBwomPcUlFhWr9w0GjLmMQI5Vsa1oykp8G6/vufa0ZuBwQnoeFZRno3TcyCsH/P47mxuGnC+Pw9x/KcKqo0yT1aAzs+svQ0syFu7/k541lEbjSJknYwJ3If+BCFvSpGA0wZcvVQej7vfv76H/zR50K8HkwxhNH5XnS3kd0X0MOmeJx0PavPxiEYbv5x/b0YbRIvi5NnIG6a8A+Pa7/nJrMxe6erprBmyau9JAwtMJHzWwNrI72frSJIlpH7CYpJMe9+XqPAqIgM4Iy0rbWqAtFIYt7Vi3SrWUpsLI4nC2Pe0FSETu/cz+XewusMr8tR7tOMK1OyRUbYZX/fbVd0lC27rhutaUFlSlTGH4FCjoU4VRnOUN0UiHha41+aUkqlMwltmaSYQ5jSso7iu54aoff2zNcg9OQ3jNq7/tvac/g2pKsERtb9hSvtwNbna5qQ/6yk4kUwZ8DRnMCbc9fuoj0freMbvZ3ygYdyArQd5ZaQ1rt1W3LCmqX1n/Hhsn3V2VkZ739ploKAv55Gi3AxyQksjhrK23sPF98bRefCEstp74+99f1u5w2fEcW91+rlrk9kAWBNYuJeenkXethW32xWA9VU2TCwIZ85ZMbRywS44la53LkABSklqqEBbN1qX5FisINv1DH15JNMfKItaCMx/1xZXizDUKYssA5ZzdquWL97AwDyS6RHz6hbL3t1JrFL94va6Jh03ZuATy+wuY7C8RQq8G+PRfqqSczUrXcB2HZMnJYbKHh117A/bLoCDDPEtpjx3WYzMQP7eA13r5VF02LEc6xtg4YQriPeRF4cS/C0CkPICywHTMUMadzrCblssqiPKVnZl7gL+jKA63ve+DEwuigRZp9o+7KOSkR8Xrv78EWOLzPrIWjbuLMb7sb1jO8Z5BuDRBc311JmEMx75r0It9wft9lkLQuRpoM8MLtUjxrU+2I687soYEN77qe3GyC6ziM6ea/UMYML7RCpXAmNWHmDnOGKZ8picM7By4+9Z3TPQE2lvhGsuEzpw27/fla+nzLnOLfNHAKPNYd/OnsbFoi32wz1ttbJC25iA4M5l98e6jQd6P6a0NAIKfRaNd7oSC4BT4AIUgXN8c6zP5nD/nfzeK76HRppBQRJ6GoByAG3Dyx2eGN+x7x4pF00GjX2arAO/11duspeIVOEAwKWjEZHm7Pwg9nkHSLvvzc+JYInPrRytXRWHNi+kdUbZJMqfdLRuBcxqGS8brlfgdjth3RYUFoUxwbwnZFfNjIHWeyEScl5kbRppZzf8vdA4mpn+5uFck9sM7DnWMK53iw6yKqcEUEHlilJWrLzitq3YagGQkWjBxtTS2gwGAsNiVfOv1WpYa1jn6Okx4rjoVmfytoFf65+9Z/EqCKx1ThVL80JJvYuqB27RdzIIbPIj9zm8EwjlwKhLqhEKXSU5dknmKE/wSMBAl3LExgzD2PgYaZTZlEjOXKYMyqosVpW9tbpSDYiL4mxOoryZ8ZDxfpTlch6tjW+Ubx1mdL458ooxPkijAZujNmOzJ2PsjPkTzW6vKXTGxRDGpNWN/m9uq2Hkxa2txzx0lOlt3KRtrqtYoJkwdoJnpM0EwHerJ4Ph/ikWnRvs9OcGuipRTHmrICbktAj9o6CWAlRCRlK3fkIpcr542266QyntyDljraJcdrhGf9muqMmLWqriUGBZFi2HJf0GF9QC1I0BrAAX5FxQa+56d++6ryymgloXMBJOuGGtVQ5hJ+B2/oyPl4wfluBSlWVbX/yDhVGc84LKHISXbv2TQBs79OxEMbZXt0+TMwboQg0PJtmWBeQshIFbX3hGJCQHv+2gK7aqQs0lWxsyJq/Ht3LRMyhJTFv1vpIOs0SnVPDsRAQWZmO+9oAE+ikqVIaFMGUqSX+Mw0TtsykRoTuwHC9w92DtZdlcyV4r44JLI/zK0v66X6AJJGcG2BZ7b3mi0PbkChlAxDr+3gjrFIgScipAEmBi4Q0U36iworbzbOvZuIH3Ht6nCE7JnuvGdACUbClXCKOLRJyTyNQjE7wH7mMZ8f3xWftOkq42FaeSjYftdYuA9ROmM9BuWI7s75ltdS6kAPTW/dhWy0kqHZK/iYGUHyqio7JjY3L0XHff3h2VGEDPkZBCYUVIbtlpoAdgVBRXvBPNlf+xDYAGXjDFGwKMHUzX/l4Oof49sEItnhjarZBJwXCgpQgUxnFYlqDQcO/KWXgDYGsEMPWxOuAeLuVtYAlQ0M5h27j2QJkNrQMAKd/bTUgDIK4DZTst0hUn9E1KTkrXpxAevT/fGXgIRxAUx8xAmu3itvkkc++rrIYYoylAXPClL4UBooS09DJp3KFrrerl1rhWun4rAI9AMlP2dhUuHoxA9K65q6D0V2WXgl1x2CnYioc8EfJqEFLq2bAbG+O/RH0wKSJJ6UBq1Ihn3o2V1lI7mqacgWqucQBTbWaajucx+Ew4J8KmkVD/smX8Tc34VDP+tlTkpQKJsOWWx7EDuDrskasJrw8TRPbteB0Bzyg50P1tYnPH523ClDM7XyQ7uUiwlFXeaAvjyQymihtuYD4jJ8nTvL7dUG4Z5XbC+8a45CsICQtLnkUumpuwVjHOc8FaVjARttuKsm5YUgal0QiirmuqeFRfpM1YsJUqoJZjz+OYVJljEvxWCKhJXQtrWzeVq6TxyJpTsW4AZMckLYsrtYbJiMjTjHnsBD0Gw5SArEnIAdRSUDdGygRDPSbPpZwkCiYbZmzrKIJuwwtOFURYlkWDEgkAr2UDFiAtAC1ZMFElVCaUCqRsARbVLVTlQa0VTIxKjJRFmSRmYKuOY2yNUzA0O1kxY13XvfJpbc25HfmqFbT0LqvjcYdeUTeXYFOu7DkoLwg047DJsB4P5QJcpY2Vpf/mMmlrgYMsc9nHzbDqJbJPO5x7mjwpfRkpzKN4MrTtG+PxzsMpw2KeMKsPjRVdA59u1bX2hD8b3hV6szq5Altp9Z1PF2z1iloqCldkOkFRChJVMG5gkjPybyXjshVcb7/hL3/+gj/94Y84nU44pRu2cgXXG+pWkOiElFYwGFtl5NMihowtyQQmcUe9vr3j5eVF1lBlXL9dkbLsltfCOC8XbNeKt3XF+6dGI3f3i/DEmUUHAz6COinLgtOScFqofzZeUarYE2FCO7OGlz7Ur6giAgIpKdR2x+Kwr8AItckRDsqaQQtpdwADwEDs1qPWt87KPzClxrQa0GYF8ON1DLip+9W6NAr/YS6ofcHMU/lpLhY2XZGJkq4it8LIJ1dKbYE3kNfqMsBHoVLSL6KFfAz80XoxwsxYtgmPvjOknRhFnH3nzGp6DSAzAPhRmTq64rvPPO9tDleisObUygkEegv6j0O+o3VgIK0bjPbOkQIrFuzjMyndKPJeOI11SFN6JPfs+OzIwCoPQD00xSrWvh+U9+Aa22q/nA/AaN3obe5+1imCI2/gnl7ut6F1y1tEB7Nj3yudtLa2Ntn6dRzQsRfq533Ex6RAbHpFoD18PZnu+PV0zCOxI7L7vv6oPMWy2rga1wrvEg3NmtBteOCeddsuX0dxPU3m0ded9Wlg2rGqcf2MzYiW7Xh1HicDrU3X+9hOHx8zDLAq2o1K2pipK1xc16oYya9+Di0QlAGutQLXjXHbihiDVd5zAsg0zp6hw2R5HDf2n6F+PlhfGHnE+ExYzxPajQYU8h/tHo1fdvKl8d22nqS+dVtxuxXJPVkqTqnojmzCsBxc9jJXVLTgFibnRtqJ8mI0dto4RUAfVuewlkhH2gwm8o+4NdCpJGr4M45lixfh9wPREFFYN08jr0K//HwcmrPJhM/aPPlLGkay0ZspcBQmRI5dTTwQtEyCBsWxZTPBlDGSapyjztD6AGMcGWCtTAsw149S7PfIh+Pa/X95e9ctWW5cTewDI7NqXyT16as9Xvbymvd/Dz+En8CeNZ7T3ZJ2VWUECf/AhQDJyMwtdQ+l2pWVweAFBIEPIAkO8tVlAPXpyAvMMvSz81eoYsApSdeGcgP6DNcwdUebtcfuZkwzkGxPWZhIaf73MU7Y0r47kQPxhxB0vpWjxjGRnMImACiEyoTKTRw+tx21VlkhZ3HE1XrgOCqK3vVpTpFiNzSUgr2PAMzx01rVwFGyQ6O1iv04UHDBcVRU7Hh/370Pq3vnY3pgLMbB7kvMVMRTdLlsuFwWB0mpryalEMILhbsCkZkZhXO6l51Nh0hxgzE6rQDCHo8ekSCow8S0Q6pABrgrQ3GiluXZKL9PfU6YMJEaRDCegYKVIFjVf09guJGQvu/vkeaxZW73FI3MTwiC8XFy7xa3LgeC8ANBzklZXTAfbAYvOFPy3PmLitFxAI+eef2u1BHyB75d5fU24X6bnk338ufzRJl3ZUx6OCJyRQuYQZzajFMVPc27sU2r7cmreQHk0NYjEJ3n+eP5NIH9BDj679i3Z8Ygbo2OwbgetWMOYLQG3fZOlEFy5gAagCLmW9d12pagyGbD3v44KXxIo+LO8nvO57IBEDA61jf84QbpgvlcBgxtatx8zq/4x96NvDr+fdJb1V1dwviuFqzHb/V59fczuuEsrfSefY76KxqBq/YQdZ0zbk87e+9eX3oGoY9dX9UNE+PvTkff8sy9bGbWjS2zzDA9LgBajq7c9gMftw2HbqkiHRvSthCZDu3tO6X63VumA4igoKAJXQdZFneKLMaAQ8bwvTtiouE08OxID5jhScDttuPj44aP2w21MmppKFwUGItEN8Mj0lN2VekREeTdIU4WYGmkEBWUwlJQKYql1prDtmfaqhOrMRVzG//F+RlsCJcBdm6144yt89Fq7tGKfs5Mk+yA0gXKO45HCRNu8HZwmWQ4M4NrS/pVLmQXUB7b298jnydW3rZtk7HIWr7tQrE5HG8b8P4rbdLcpYiRc4ryyYL8pD4N+HYlE870Wyzf2mE0iMak7bJzPgCLse4414ev89DYF4eyliO0XWkimFbeLbajbkjF+676n3r5CObhM5hgRa9uMMo8aZBVdjkubrQUD5hMGzvfSKhcUeuBWhiNxWl27LKt9XqRnX8NRY7hkRrDrsekE6UUtFpFbjGDFSk2PnDbbyh8Rd13EHa8vR3e7n0/cC89MBYvAThoxbptYKMXWVkMDopa2xJcyhYsEboGsFaEB1bP0BlKmcTnJPUP7qlLb9uMnFMXMMunU9u+BwjQJsKuVd+40x+2uOwrAz7C+1MmvdOE0dvj0ypK51yJvZgUx8pQXLysr3dFmNtid3UxmKqPjTxThUAlKAmA27p7K2O3d2EwhmfZsvp6aPfIMX08vtf4+5+ZRM9o24ttfcI6mlkQwv/eFuXV9ZUjKOf/zuKHupZp+FpIRP6w+8O/Y1UzlTfwi5Y/GxczMCQSgDXS5XtsDJd7y8Yt8j7RR1KwHJXkLO8M+ORGGAi6V3afT7mJaU1PQVAbthplh9+i3XiG1+aeRKIb2Ph3z/ax/ALM7Q6OEVL5KG1bnBtOJa4mfgbWqZ7h7zP9JvL5/PynAzV02Wmrdd43BWSpHZBgC3s9QJDtrt/eDvz9H2/4Unb8/PWCzxfghTYUsg33/44UD8wCeRcVBpJmGkv3st6NDr55Po4c0EEv+MCxEzZcgG3Dz+9v+Pu3b/j5/QNAAdEGok22+u83p2cJBiNzE3tWtwbDtpaf4C0zTjxK6MXOu54ImMFIY5szzOr41b64cW/GlrSf1ZBl5gEnBt0RWI05Ov9nGdAN0FBnMFBtjMzBtm2bR5GsteqxIFrKD78bvBQ/bxn7bfUTEPre+2J8IhhPxppRBeCH0Z9IHIzr0VDthJnfW2HoMwfaqi/x+3V5CxT1lCxRGaR8Gusteha0kdxEkHToiImXLZjbIUaaSKKybbAVPjky1mUs2Xuj3D0p8yyNujLRlKBGMatBWIBScC0FpLstKoC2M24FuF0YH/sHbvUdZbuKpcMF+8eOt2/f8PlPX/UcMuP1qg6VUlCo4LZtchyAgFIuqPsBKqR/v+CXb38HoeH19RV8yLnKQg3bIibMWbpvLDIBdjbEIvmpMtguL3h5ueLldR2AxokWl9XAU57Vu/KBwx5lmjglYZZoIFEsZ20uJE8Usoeke4EyWFlPpJOJZv+ZHjChyUhMWaigjZNiIRDtN4e6V96e1D4Fit2DH1d8hCZ2jm/p5Rz6BDUQ47bc1H/Q9K4oo3g03aIVSvheOZ6gQr5IKcyzoByqmvpqQlsOpa+EWDTXo6GY++w0Hi6CX3rQfke65xxZ5VsKq6HN8gdOpWrffNcfnm0bHb8/a2MeH1YRHYDEqp/2mxdl4J5gjrxlc1/nbyhvfisCPArf4ZTvV57VDmhyW6O+WfUj/rZruuc6nuMr6XdL9TnYod5LV8ZPlbk2xrqcKeFZ6BPnfLGsMXF4p8JWGouLdQb0aqO5X1bm6j6zMw/52tmle85clen6zHdO6bs6a9G2iZesb962WSeu5oSD3lDfqt6ks076YEHb0pzhvlIe3xwj7npUyKTjg+FgqpoIfq+ot7PzGgFy3QMEwFNhHPWGjwN4vwFHhW7UIjlL07Lsuu8UCOc2B1mfU5cLGTOeyCQKND9hnO9zQHVcJCvwauwVwrfbDW+3HbejYduuQiNsYFvx0vfNASUBYQqYKyTIBus5prCSPhjrY5uNz/oZa1a+mOVhaw2NDwlGQwToGFKFODYMV9GM3QCLiq88ZOf7ghEZ6x/py7EvHKoY+jeMImqVgDS+223YCZPkhW8X7Lt8Jtlil53HsaA8ZzyHBYdSTNyCLCWyKzw6fccrM9JcT2rX5h4jnjUcabYqazR8V6mUIgFSAk72CYyhj+jfTQYjRj5jCWhEslst0sHLi+02XnoimYFG1A1UmHwKOBaB5rF9D8sfsA2Qdx3Z/HDZGCgkOkfjKqhtwI2xN8ZHBfa246g3NCZct4Irywr/cftA2YrfsSrjUiXQFBW8vLzg2Hcwk+5eFUOwUAHThv22AzhAuKB9NNzef0HBB9qfPnsftu3lbr8fGotyB5BDsv7i9oLX1xe8vs5FdCXirANjtgxOIpCLSlAHk+xzFjgUPsyq2Bgsg8tefpwga+NoBC352TlDeR5rhaNaLZRDeejzbVJhJ6BpBBdnwALeCnhdJmBJCNqVIvPw7jzZI1gey455V4C7G+Yyjtn+E5HuQja1OIMWIeVc7zgurP/krWXrPuY2S3227SkKhMmgfNLYW+W5B3jj83tGVHZ2ZAV6Vtf4/l1DdGjH2niaOpnOJFlQq5g/3bnJ0v6xv2cGXO6v5mP7LowP5vk0tv3MAXBG+5kf4tNVbbnMpJQX+VcRn2N7+t+LOl2m5feEJ9KehmW/Ujl8znNpDsV69Ju+Ip/neBRw5mjy8yJshlOft2fOiUd8PQKRMTFbC+Cs1I2Aud/PwZLfljJXK+0WvNeCEcZBHk4A1f46MSKN3/scoXX/VvwVy6bz8eFuAfr0dh2zthdkd4k6B0spQAWOA/g4gL0CzVe713Js1cZn14czfLuTb1lfp+P8OscsD5PJcgL8Oi5mwsd+4OOoOBpLMBItNByZE/pS3OKnPWNdDeaeeZzrNH4Hm8/yfvMLvYex9HYIEC4bvG4uBVQ7ZYXvQtlp3nagHCOKcshrYDtKdh5knWEoABIsBnZmdUg8t+GevhzzLKPFs54HC8aktdX6Z1fIGJY1bOI0QJ/jcVxM5yy3lkZcGfp3lqIj7belM6ywkrML3cr9WSqH2QMJeTsTPr+vB86SyQGj32gwJmd40MhP4ZxYx7N4FMqPpDLDvaR2nlHOLR6NcfCB2na0tqFcX7ExibF47Govy/uy1bQ7Oy6XSw8iCkbdd4msykD1qL0Hjr2CD8Z++0Chd3B7Se2/l+5HQ20AaTQnZr3ng2Qv8KeXH/Dj1y/46ccv7sdbTbwSGL8/mwnvxC5K4iAR5z500PmUsWTCzJFCn6zRGMvvS1pd7nk3mfA3wVHIo8NuyBfRmrB4XORaOc90PQH+Y3+Y+wW3w8SUCXYuNMerMe61UZ9AttGo0LeIexyUEAFE20QLwx8jGLZSTbhOQkiVaBRc6wA6Y4lqMNJM0wS2TgTFs0bkM/lGo2kc587LgMVHHwX1aOSMdY+fz8DmvfaFAoKSziabl+196u+cGYdrmWFjMQL6LiMo/Dv2sb8/0+oMKMzt6fLDwHruayRJNhQZ942Q5zybwxxxcyPX2es7l20xxfGJeVfOjMa8CGVvdXWZ5o4pZLrYXXEmBwlh18XCGInj1C8ifv5OyLMUFXl3PvR+2u8zA3TMO7b3IUAzERycHcLmMqoWiRuAOlo2GP/FGjsoC2ei1FCgIZ8Z51Fu3ksrWXX+HrkBVXxehHkTz10Cci7uUF3PEuXyVoH3Hfj1xtgr46U1bJVQvO8nNY8AOq2GPTOvHifyiKZDvWMd45A7SDwplwi0ES61oDCBK+PbfuC9NuwMFFyAtqNyxU3DOHYTEz7vOs4RIwy1orW+Gux1yQc3gly3k1zezahprOxYieTTnQZ6jKSUC+S0ausLunZNYbCl+3wNBoQag1nH9jgXI7GjnG56pYDP3Qc4kADZUhr1+Na3RcbtuIB1fy07i57njKuDQMe6mQHYy/GAJOhxHNZtPv8cKDjRZpU3Ozmz/nt2/q+Mt0fyMOU1/Bb0EiDnSNtxhHzrzkUe1YZMDrIx2XGPse3RALfosjVdLxK1gtVvOw84ff8IPzhfKN9BV/oUZSrLEqB3nB7csNcDt3rDp7aB8ElWBlvDcdxAJI6jtPLKDCoF19cXtNZwHIyDq843wdQf377h5VLEEff+DS90BXgH8yG7GTR9/L4ziwVUDhRqQL343UGtAa/lFZ9fX/Hl0xW/BOK4YDEG8fE1guveeleQM7DM02jNlGK05u8YwL14PqM+OU+ZKb43kStNkgAvykwNwBYYvmn46fP2nm8B/K7EI7yAEsOom4FRrS2BMRGkQQietIm9DPSf1rc3SRk9qEQXYj71AcgyumyfoRlpxi5olNCpb3y3mTlryOuCZXFf4DgWZwLie9MZoExgeGnIQMAg9a2foxH0PWk0hq1tT3vbiMBVG0bAhk3HBgIaNr2egLWtv4t0v+XltcKMinNyOiDQAuh3sk7AtIN1c3Xb4+hsImYQ1vWctnrK0w1jC78+8aXNmQWwPavTwBQHob3Oa0GuRmPtgUdYfxr1uW7fRV6IVyn13yuHYe/TI2O/8/Oobeb8/845/dS7gB9fsOs65rJ6v6Kh6E8jTRaOv+9JK2dsmh8RCJNur8pmOMT5JtuA+7gC3CqOg4FSUXhDQ8HH0fDrR8M/fv3A2x+ukNsAGF+u17ltJ23mxac52Q21/6pkiuQZo3p+82A5otEqo7YDP3/c8N4YB8v201IPX+0bk4NOq5MbBAk9z4fMLGecwjEQuBtqNoKoFNC2qYHVDVSuVa99YmArQLm4A8QJlGSYbffUayGKmJ7zXDSjr+v7xg1XisE9cmoQ2WJbvo+9R34sRa+xUL1v9/7a3HW5TQzZ2psNctp0dUfvCkWQV6P+EANdrm5grvJOoXQWMgyElzOOj7fPMQt5X4wGowweefGMH86ef68ss/5P2HWQGapwIFvVTVfNejeW8xQqN0NykxU5sGyKLsFJItfV9XqI40bRFd6JzxarhwFHxICeFsySNrcIYHLdO2QCAAAgAElEQVTQzV33nWw42oadG/bjHftBaO0L0CSAUj1uaPVDnTN93K0tl8sFx/WizuOGusk1HWgNdf9A2XZsdIBpx3F7B7cPXF8YP/z4GT8/oqmmB8Yig9AAveQZ6YDyFdeXF7y+RmPR+k9YRZZcpeiZmz33Z+wRBU80NM/K/+0KMzLC6pkLMWPulG0AxYTuPbH5Ebwkj9Lzxm6oRNsZDQr3OKtFx5jP+Yye9db6lpIsO8aJYz9hewXEIOzi3vpt42vRsILRqI+iIJbXfHZZwWb35uSgPmZeJ455qHPcM4Lztxppo9FyVt8qmXeY7H3JDVuhsL/9XwcTawPiLI18PyqgobE+Zn17VvYAGp3dppqK+L552qVAXHnO8122OIZ56jUb4MjK+UxJAxAwZX2NBpqB4DBBIz+k1QfGkl9WdB4TqWMkXkw+vmMzylh6qbjvpnh+azZSCGaMxmfrcTP56CtZyehTDra67vLludPikXc3td2LjKuvXuCdd++nR0Ast8LhsrfFZ0Nmk/DFyB9D3UaDB21Y6bJuBNwHlV2u3AGkuTdDv2kYf8vrCgPlcgHowNGA9122VHE8jLsoO69gAKfCZZlMYKW1+dn5mHKP8nqQtpwBuunbuHq8Krc1CUbTGmPfK973A3sTB3NhVkcTYIHzXXNSHjuJWiutKYXQhkvhI51WKy8r3e7yw/X/uBsLuSyTEa7Hz/Ww6YqgKVSMzsdBYDS0v+MctpDL1ib7GKDkTP/OrZPDzWixwDzk/clyx3YvZYPJ7tbWLcSsjngqcscgRUxzf5+Z0+IsU+jvWv/kssZno1xY8UfMd6az7umvqcEOKjH1a9luGLTI8iqU2OUhkUQfn2S95iHFBkFh9v6uak4tmGi0cuz2VxX3EANU5DqggGVbI9RGqG3HUQ/UerixK7tMKo7jhst1A0Dgxr4SLpFWe5tKkbtMGzPQKrbCqPsHansDHx+otx0bVbxeL+kY4eV63xy8+5S5gUmMReuVEaeUF1yvcm7R8zeWCFPpYuWZeGdgSbxbTt1E79UEiYPDZvQgeoCCAviNjL/Kcw+UMBjFggExT1d5tAjYSxbGz4DlR4DEyyE5EyL9biqobHvsCFV6v0bPWO9vBM32ffpa3+3lyHI/vAa/LjBanR5DOqelEDjpL0HDtod3ichXNcfyOg2l7iTcMfLszGcr/jkz+p4xAlYpvScvp+dx65FqQnlP/419MG/o2K+R7+619axP8XMZyjQvcAL0gO5QyObOivcf0isAkEwvWuSzMpWeOg3H1Zsz2UC60j0DmFnLddA0/M0zjYnIt30/4hWhnxqMBggtqEEAew5oxzOjg4LNNJfJPF/YbnNM5ynpNsYTZS0lRcXKEulY25jmHmNW5MMcMpkyrmSOAW9WMms2sDJfpmsFODjUph49l6JsWDmPjC9d/kZw1z+iO+di9MDqbbVAFlJHbnMCib3jecwXxt4TqgcrXp+JIPmSg8ZthoGyzrbCz5fLBeCK2ho+bg2NCbKS3abxPTe8Rp5+1CX2Nqyfx+KK80juxKAIMdAbZ0a6Z0ZjxlYKamU5r7gfOFpDbQSqTa+dgu966RAizBMNFGOGUTG5MNJKUGvSe2aEZDKrnKbOtzaH49ZWD0bjF7vLWSkJ5GHb0+O2wCyQKTieonNLAtY11NYE2RmuM52tdWMTw6ufic99dsy6bTLPk+zuADuNW2hL2h1C89wlMtxj4D52r6DQBhHHza/umG2ReWv5hG9D2ybdSXAaYyhnVV46yxfLQd4NY/ke4dPZ6RC3n7M32PUn4ONp79OKJ4d+jPWt6vZnvnocIgUwhyuT5DxfdPqc9cs+M+fpFDHzZDAbvnWZy2K8UgORXKXVdRFwNEKtLRiL+g4auBH24wPb5RWkEX0vl4vkbRUIY288W48d7dhxKQ3vt29oxxvAO1o98OXTBV8/v+IlGIjXl98R4KbWilYOAE2Xak1ZXbBdC758+YIfvnz1/C2ERS6loO89NyEUvS2d6GkieJhto7r+swADkbnMWIReNprPGs7KZizL0j2mXP19UiBaY9+OUUr3LgkVpEtUigPXse51PU8oa3SBRui0jecQDThpTeAgNMcVYWbGcRw5f7wgOXg1rcnZMJfth63pmQYSA3LbNhDs3hVK5ee07q+BYv/bAUpvQ//Noc/nUND6UErs0wys7xmM35tWoBIY7jdUUJ2EPXMPvb/YNrtK7h1uc3tjX1eRJy3Pve+yg6YbYqxAiIoAGIbhq6cQ6p1kAOe3AfzRj3tfIfX5lJNNhr4NBbC8IVeTcPaEDkCiYX0mVyaP94k8KkRpsY/s7ydJ3Nu+MFLRZZd1Ls49k+056dg3uQ6jWMTGlWPI+NGKmQyceKbkjqEQ5mr8kbkUtr4NzkPx9Pft3N6Wf2dKMniV1lukgSwz4vjH52Pp4pRQNK93JlrERXu+AprMvT5atpk7EFbFLWB2bG/vuBlntR16vRTpyvKGowG3nfHrt3fsN0Z9BfiyptOZ/Pq+9H3vcJhUuV/3ahCwOPOt6kwCUCRIBTe9W60yjtpQG4DjQEOVI6uDg9lkOjN7UDEz0EopOJrIxpVzJ5UBoHKVs3i19jOBAeQj5AX3s1+t9e2xctm7jMVh8wzAKOd6OUjzkAphg975XCTIkRhSnX4S4bFveI73uBo9Yjv9N/d7DKXCClKsOs2xQJ+i12fIO5on3YfI/a0Gd+XFbYIA5GJ1ZmyXi5QXcIYFDEq0WYyX/M50s98XvSt79c44N4wGJgNiMLpoONv23JhWMsmS3dcd8wFIPCjPGriy8+5Krzl/KmlX4nJlNLISqZiDl5H6YcXY+F3j/X9D/WPZRqfRueBlB/oRKBwDaC4HoLLU+ZcItQEfteF2NJ33FgtacS0f+Hh/x+XyGaUwjkOMRbmbdse2EfZ9h9x/LPS83W7Y399wvb2h7R9o7YaNKv6P//1/wd/+8if89NNn0Mu7t3011jHdX3e8HiC6gtsGtIKyVVS64cAb6u0Tfnj9M/7yH3/F/20ERXHFYYbithUc++HArFX18GBmahmcvI3O/w6eCucbAxZEABthezl9rE2Azd7pOVBCNii6MNYKta4OcHp9MEBJBGx2uexonBmxdIJQX7GICj1NFnu2mBip5RRWbF2YiGG+kSxXk61iuISVvc3tqKjlAOyOROurCummSkdQBoWLkbNB1cAaxp/BxKhc9T3ZN77RJvvHW99SJ3UUpaHsNWfqK31C3g4cxT7ScTGDAc4QDkYiiO2qRbw4rqWj80LHKEYge+RRcx5JQ5tBq9GpG2GmFIzv7c0Y8t0L8wt/zQPb5aYKJf2CrV9WLiiAUiUSO7H80mVWWhQTsOF+N8+rh/IzyGVQsxkJtM22FnchmGii3bM7lSKN/dJv6x3JmDGiwqHQb59Y6C1wsy04R4zf0Y0Qay/L+ettK84D0m07d6C16rMBfmOVYp9651VsFCMph6sTlI42uXSMpB0r0yqIPZc9Sl8fK/N0FuDSt84aiHG8S0Hacp8vqe1EKiu0bL0fqhDAVUGinc2wvutXPleLyHsw9P43Gyiy5WiYzLFtiS04NHyUAxgIkD1NFwApuqL93cNRGH30E/fVVEvNKhlSDM8yQAQj1eT26l018FqkvkaBhQxESFlCkiJGHeudeTpfCgFFFFAC8lZXMUEQrh0gdzwRKjfh98A7Jhf7j71a5O5om4/cAu0yCGWjkMpOW1m04wsSJT87k/hoaNeLYmbGpX3IWBHwP27A//v2jsvrBV9eC4BPgT8BuaesyZUDHGCAW1/a/tM03HbXb0nvfQMAC8wmAhhEdkZNeda2yRqfEoXYMGEVymhLvXzLA2ZwBS6XA2/twD8+dvz8fkU5Cl6ZsW8N74WwMXA9SC6Ml4EV5zjJihlqQ2lAwwYUxhHGR5pmxqU6qchdOvJdE74k2jp1mPIqVOvEJg38sZnUpYLWDr9SgrYNG10AhkZzpLVTQ/epF+WzdtTJuDRad7FO0n9if18FjFCd7R1bzeures4BhnUaoxlQJgkQ1VoFGGh6BMu2jCYdSupYVTlSfQ4rqQAQmga+Abai+Ib7KqmNC1qQT7HfQa4bMyXj2vEh0I5DV3yzXjBHYF+oEcdEfO6OZJLL4I2a23VD3auyiOWh3rbQNME3JvMXmsveZYAPlaK+Y0IymA6Gt6D/yxVqO+hQLAxsdkdY0Z01ihjIBw+doED+WuWm4ydvrmDkxhoQhkLZxgtBlprBpgaiYRuJCSXjYzrZxQ+z3LmIT2h0w843/PPb3/HHn/5PVGbs7QO/fHvDy6c/4XrZ0NrumKEeO/7+P/6O18sFxBV1f8fHLz+j7jfU4wPv3/6OL19f8PXrj/jppy/485//gE+fr6BLS3eq1vo7AtzQxmC+AHxRZmGAKirv4PoJr5ev+Pr5h/5C0KCJCdEHVZbqKRDXBs0mTnGwpE/gRoGDue6tSkzscHJm1A72BjUfjAE3+ob3CTRtnWNidFd+zm/79Y3hYvl9FSRs/8Pai/FbUu9PADC2N55JrzeIz/vEl7t+TO2vtkp0mXy2lsPoYwUHZB0wFSIUA/tWlrEDG8gguMYl226ZhchSsFp/idxID7rG8/cSWKFZ3/LlbRqMmbWHj6bvvIhhDM0Iie3MVBs/hzkzUNv4J7FzJjl6FlMa4/uhjab/0WeQFRPrjTMgKjPSNjI63UaexkSPLORTHSqlrS/xTRo/pSo6nTpwzH1JlGYDUNEDbIYanIeiw6gD5XmOnq14WXvgs2ukQW6kG35JCYV5hfx9LCt9LnGnALuhOrfL5nM+3+gyFv09Di912ZZBg2IOv6JXog4G8KMd9XNN1N+mECDAv4sGsZbBGkEOYN/eu6SB1jZuU89EGP72MV6naeRp/b3Txw1e02XptaHgrjN9RSrk71iNXfcVIlS27X6k9GjdoakFFCKB0tQdlF71Uudo3WWgv43fKFR4RTVe6wtjg00MH+IGarLywgx8O4B/fuz448442gbfzuWE62DMviSfl2sMcD/ZO2V4lwN/6Hg4lgi/ba5KZxCxgoxp7Hh8P8rghtoq3o6K951AdcPGjH07cGwEOoBLE6PKY3TEXTBhK2i0MXI387gnfmSjIiFua3MsZy9QfLklqmfRJZHzm57TG3dT9I5raQqio7PHVv2dxIHuwsPsei7aMBTo6ithCCudRgu4dAw0kPJYC+PWZEtjGtGAQW0Ug8MH4Zfhi61QB+cDhjhdTUTYMRWU+2pFq7UK4uK40/KZs9mqNSw2YSf9x4Iyeru0DIsmGyp1+USQsa6tQkM5pvGIeqP3In6ixRwZU0b30cbITlNjQs78HUSI1eOmA8IzZxBXyEO7OBbRaWe6LRix5qKNYW1ETHRuJnT91PgKlB0NDR/HO1AK0MTpUY8GsDq2QajHIT/7Dbf3byjXDWgH9vdfcPv1nyhgbNSwvTT88PUFP/30Bf/xxx/x9YcXUGEwH8M1Imd0l/TgzGIniAyCkLWAgSIH0q/XT4FuAQjYBB1A4bZtE9DJdeYGd0/mGhCk1TR7w/6OYxoG0LhjXMWzdo56k10I9NSN4NAOdKGxMiQiU1uqtaZ+nAKeRRvGlAFSBM5h4gdh0fuuWyaQPTsZsK363z/31Z/+bl8xTW/CDAnHimRhpc172EC2auYvi2KIYzXS65k035dkgBoLXjp/bwKwY6mTMwQwhhyfxS0gPlb6DzP62RMry6s08MnB8FkrnbQ65/pq3V+nawIcMw/YnEqG4x0a3gPzrsx7z5wRbetq6sdJX/PKrSnyDjziOzE6b0xLo497ObODIowbjbKvGwpueGrfVuV4fxnpLI+1wT2ed4RBbn9GjbH+WE4pQN8WnvOejduYz+kQFPjAur1Jes6nAyCR103B2akzIQLYRXsmEOVVjmbyOSRZ9Y+ZPbhIBo2xrjwqSa5bWxa8ddbHCKzjqlB8L9E+1MHcy5HtfcW3+NnyzNlcSm2izvd965W1c3ailUhxbmFLlvwbh+dCG6DXUTAzUDcwVzRiHAfw7b3h2/uBtw/Gj5+UWah53T4SBWDoapuGix+V+D1HTsqq/DjqLKhh1PMsS0KHgWMdmU5dzsk8KEX4vzbGflTsrYIhqxCXTVYKi0eV7bVJxE/284qGJ5IcDW0ga/5ADz/7eNY1fceumyAAzLJllarqAcjuGVsjsy2JEW/cS+OcX2G93hTj9niUxa6moPDT/xZjVCNksjrGbf7YVlQAR6vq1J6F14g9xIiidHQjzlM7kmVzLOqysY8uZ8ocIfSeszpei8LMyLvlaJrfK0NzxGlRdsW6FGikfgrl7Tuj9zk2eub7uf6Cy+Uy6dezvqzoNX4eU3yPG4e9KDmPfjotx8aglOLXGNmOGZPLAVnL7yJugVYrQOy7MLhVMDcQyzbj15dN7lSsL/j1l2/4eP+G/faG19Kwv/2C/faG29s/gfqOL58/4evXL/gvf/2veHndcL1ueHndwDjQqhmKvY+Xy7wdN6b721AdZ5hWlxDHBLEbt5dXfP7SVxYNDK0Mn5HYT0P8leQ9zWv78zFFdl8NccM5465SMrACBntGED5TbqTd77lHrAuauX3R6zQ3ZCgDgZnNqAMt7lgbhEkoz8GDC/s8oEQkQIY6kFC8+Vw/z7oSx4TyWGVl9PzY/b5xdjV9mqJgTp74jr/kF1EqKhpSZ8DTiyIZ06iUnuI1G0afSARqQKPMa2eG4pSKKVSS//VqFmoczSv5XTSwhG7nSCBXc4Z1I3/WG9W/z44hPUt81uWoYB/3KL23omniO879eLrs1NdHeREanpmITIiHcnvgKkZ6NSQhZXaueRk2Hvqdn4fhWLfMAyFB5x2bi2VaWQx1j4bhWcd/Zxqm2/Ts7PtVYpbt92CWHRSDyHlm7LN+QPgcjEUbE5LdI7b1tOnZF2ulTDk+Jd7kBFzKejHWushfU4T0qoBuLOQ5SVzAh4Z7ZwZv6mCEnHN9vzG+fRC+7ZsavGFsBlmpm3e1vffP3qyT0SQYo97cgB68q6Pc4PCzGtOOoeBt3FLe/ah433f8+nHD+8eBo25gLtiI5K5rhPN2DnSUBiNPmYPihL8IAAZDJkaOFBoEORt4r5QieT1fS1e0FCpyNcSijNSGwSh0Pnqgw2Iv/FxgMFLMQIJ6W7vKygZIdMKMutBp0huxbFerVXduZZlvc7Hq+c9Sip8JuycrRvpEXRLbezau0YiSfPmOwujYjc5PoSOAMOOtjG3bAvboMnA07mxBY6TxWf8SrRZ0iAbjmZgcHWZndXb5sza6xzY7hqYhb4pnsXagM7M7bbwuQIN/lk7PaPCSnEx4vx04Dka9ADvveL+9oWEHl4aNAG47uMndi9wO4HgHbr+A3/8Tbz//d1xKw5//8Bl//dv/hh++fsHnT59wKRcxQDVYqZwmbpMesCBqZ+n+yqIKRwtuY1s0BGc00HbBy0tfWRQMK5F+RoMxC/dFXfH5yFT2rPO5ywZXvvpdB0hZzcWL1m2LwRj4JhosY6L02c7XUGKmR+Bv5QVf5T33BEW1nz+519B00qoPCiSeTd0AfJz3DOBhAJAcaGYfOx3Yvkj8Q4MisEatPEgj7TzPAGyyAO3P7nngHj1fpdEwJf/XyggNsI8EPycW1F9Csedw/n5buvG/5tfcpygwndH9kTkQUHA6b1bJQMyk9LQuwbMRrHkHcvuUWI/Gwfn+ZK5JUetVvkdpBYDm9swgwEdwkHv9yVy/b5UKoNUlQxijtfcz0ll5MT2eN5az553X5WxKTXRSwJnmYPqUNrQq3a1Q8kAPCbDE9nxnuveO6LH1k2wnDGBlNKbZ6D6Xb78nYwmdditwdbaSQIt6LD/HfOZ8CUc+3KOtQOjUkIjyAPPuIOtrx/brOShf3ZlHbKuugZmJ9Mwr4XYA71V+WmNsHf/D5D/MUDTdTYTviuwUUfCJG6AD7Cy7E2enbg6zhSP+0F0gaS7IX40lsM1+NOxHRW3SF3fCsAYRBNJYWwmEHJysO3wBM3ZMnJsuSHNY5545shbSMvCAnhW1PhBLcJe4ZZcKbH3G5azVM1A7fu/fLXnqbFwpgfss7ns/R8PAc7hRkmbt+Vx7YPhEnPssHhy/c4y5KPteOdnYOq/XbAVSzMXeXwcYYLCc7QzzbpIHbJzMPoYro3xMPn8nHZzxkeHycWdQHM8pmu0JFl+1g/2fvJPDnJk2Uy1QWihtUU/GUiP+RMolJQuGEtrXxmgqF2ur4ozY7F7QhuP2Da3u2G8N//zP/4b97Wfw8Q0/vFZ8+eMXfPp0wR/+8BU//vQFl+uGshG4yp2rPVBcaHNo16NFg7vGYry2lkk24BRWzx9V0HbF9eVzJ4AyXUwZ2z2v7kervD8YALR9t5yPEYSfARgMeTIA7R4mmwjd+JkYJeiblUBaeTzGiFnevmRk+EuLfPmxi3KePYvGHIQ4MU1HcJcR1GlrGHQ1dEvP0ti+oQ0ANKR2BlMGGlZAuzXGeN7BAPfK6JnqC/8mWmDdr7M+jmM61vvQaDH1zPE7wC6m5QDMeRtA5skYLOs5UYaTd61rs96nqc1YPjPjpJTiIZ5TOXcaa/Mnj5O6cEhXFxfNtH7Yl6MQpjOgSICdhV6l6I19Nk3zKpSV22lbhLMSPEsJNE3dyLzj/Sc7o5sN8FWfbOXmrPbJWeDgYXiH5/4zL/Kh80rXvKR0Yb1oPOwqSHI/AMyxpQ/AmvbGZdoyN63BoLW2w+JUs79TgXTcMeoYez95voc8Y18mz/aiT2M94/d+tp5IVo7cyQNwa6hgd/kaR6b5BQN+nd+i6fOMEyX352QiM/pZU716QgwUWSlsjfBxMN4Pxntl1NZQNDCPGIQ1GARkNg4c4C+2cK/+5inDoJkW/Ji5Y0mBkA/aN2trfNbrKpDgLbUxbpWxt4amAVlkLVJo5IGjwtEJIkoBvGyM5Bay7oxh4nScImIFbaXk5TD+COXG3jEA0q3ZGvSKSbaQi3OOFJzmMuzVbBSdUG0hv1b6mNRzwVrPODLmkIrfn+Gu4U34XFroeP88GCyWP87/iF1m3Ty3d/2w80s02g2/jXr/njMoOxKsZM7fT21gPwedZBBJmR6ULPThnpyWny3lu+fErrX6uEU8ODoAvkePAwgBqZDL8nljfYpRpzNtbexrXfOrzxnucs5wtshqyDZpjQ7dwGhoaFxxJdmKzrXi4/1nEBXcbhX/+M//B+32K17KgR/+4yf86T/+hK9fX/HDD5+AQtjboVdrAHY7KxFkh4ZjwZ5+l7FovRTZSyj04h0+aAeXK64v/eqMUoCj7ihb6QAteA5g1u2iof++tGAcX6LEgslOGG2UZPan9U3D9PLg/Xi6ld8JVlfpzEC9154RoLjHMcmoGXBGAOFge2gLkFXvvcSct4DId8bguQSZ0CreFjRbOQaeoewonM4Mw/jst4z1Wd1GA2n/lqIYpvSdfDIa0S0IwVRsfEdeOOX7kEm3Lz46Hp0a1OuMhpEaGxy2NAkQ6sqavE2SZ+QZAw5jQ4kGoybU/68wFO8rKgNsUcEG6LniIb4/cya6PXN9igOmHvQGoZYVgLuXVjWegZUuD3q7DcTF8T4r97ekM2keQc7vkbiZikMdGAzFwclxZjDG66bSeyGfsPh8hss88HLaLTQkvNtYgnUYu4wL+IP2AP9GCmVn72qrN6Gggqg6UG3YgVrkzjFu+Pnbgb9/qvjDB+P92EHbCy5lQ4EYItJ/C4hnepineEWr1BGJ6ZAoz/Vvhsqde1FVl70fahlrHvQZZKvf0QhHI+yNcOhqad8LwmqUFOztABgorFuNkWVYkmkxAqjdf53kb29vO5rfCz2lQp1XmDWqsUoTuybNIpYr1xTYbonfhoeezVOrRE8lc1zqcGU8xHbtbDbqQorzVV9xQ2jUWa7/T64DGvNGDDydkZpmYBhLlzCRHvG6phb4t2+nfei4HnWhRgFdsXq8UmHEPvNdjf0c3F2HMfUtsmPeFY6N9UeZOjpGx3KmMV2U1wOBCU2nNjHgY7QoKpZfCoE1yJAdw6i1yln82lz+FyrYqPi5xoqGo1XgAI5KqI3AqKh1x8vLCwoRfvnnP/Dtl/8PR/3AL9/+iZ++XPGXv/yAP/3hK/72xy94vcq2/4/3X8GlQJcksW3GK317LWufImm27fWUTsCjlUWmLtqogfgiZnhr2EsFlQu2a19Z3C6EfT/A/NLBJmKjCojuq59nmfzsb2354j2IgTEo2EfGVGwXkW0eGeou4fs7ZUWvxcjwK2PJPYTqRRmBxLMpTqS+pbg/A4Shy+WS5kI0+PqX9ksNjztns+RlDQmhAtcEW+IPdu5FNO0M94+GmfytWyMgoZp9ywBhAgsG3HwMH4z3M3Q+A3vj59yO58+bFT0f7PRgAVQjsC6lk28leFftPfVcDt8TgGIXDns2GU9TZRTARjz/t3a8BOEUoxvGxHP7HevovaT21A1rfc/DdQ/KxsZ/ZaR+j6H4iG/Oy+qtHj23o8K7l0opcgB+NXwLfOp8oWOU55zOYbpDhycx3qio43zzRgYH3bmJNZSLOIZdJq4cNUSUdDqAfD6Qkd5xx8mqHQMdIs8NDZzydX05GgTyr0PXCUQ+z4v2XszroM0McOPv7glQsE/TXAANvBdkiZT7/PwoBNQ6yFszd7LiQaOKRpe+slj1+jldD92Phvej4dut4uOouF4hO5uI3Djs3ROjszQb3wdtDe3wTkOMzv7umZHYGYumCail+1UcwHoeGTLvGOlowK0yPvaGyhq5FmrwkZ0L1NXBrcgZqKCjzThMVQ7Gj4yRXZNU8rvBSPHbKAZeacaziiVGQi/E0Ey9IHsTRR4A/7MUZWgp5DEQMuYg+JmsKHNDfRSfNdnWPdY6yrmxvd0pJEF0LMCJY4ozbDDIgREThhZ4Ef2VXHfGOM/pFs+TFoMpyQLrl7CKLPzY1lWGbRMNZS3KPxvHUQeuHOgoq6QAACAASURBVI0r42/FS7/FgZ/LFpm3beuV2hmf8LL9+Qwr5GiAzjvRKZ0vWmloqKhtQ62qt7eiPMsoILy9f8PlsuP1lfHH//ID/vzHH/HT1y/48ukKrjccVcsEUOiiZ5DNgWBazLajWttnOp+lByuLfdscF0GMpNcbNK7YygXb5cVzb5cN5ukwKz0TO5d+NsAjAzw9+MH2SF8rWJHjG+x5zBO7asPDqoiyCjUBeiImV8wfP58Jzu9p00rITnmg4Cdr7m5w6fLDb/EGjonsH9ebrLsE47hKi8jwI8WJd15y53EzwMI7lJVVxIz+1qCYxu+mGkfw9xsE0jMpCcY4CmFORKXmNH4yPZpby+/jPXsIkNccDwFwdZC4Gj/nPvnNc9PznBr6poM7gXczQNYH0JYAxub+PQ9mSk8QOtI2Kmui3orRoJqq8Jwn839sbp/QaQeuKfpkl6WiNHPEyneqcb40sGLjewL8ZmCworM1dsxC4atZR6ycfCLjR/6h6Yx25ute0zTeI83C8zOxlNhVgfQZQIqyZiV3vlv3DWncjc1SWDZPnix7bJ+B7zHPaWnThDWoFP4mI1lBoYKCgtp27AfwfjBuR8XRGBfovX4m551/B15apGccemttYfOJA1uM4xqYON3ZKM8ozjUanqsePKqcVdxr60GhyHSUrEoQ67nEeCzD+h91vwiYWe8hb92DvRt68ciuSBQa8QYtdMqqjIUxeA8LnTk7icJzIo0iGbBmILMZulHcxHakftEgo3Xsn3bWrxXgsg/Wx9hXdiz5pH4ayun5Tpp3UrKPP3XZREn3dZe3Gb+uZpjvjuMz361kUix3XBU+wzNPj9Mi9eum2vD9GARnzZOWNwUm0uim5shQgjlPMjWgAA1iIDKTnDeEBAjbSgG44fVa8OPXDX/962f88PUzPr1ccN0K9sZoJit0hOI4nmutKBN/xzZUYQYRjJUrNhTxOLHar9snXEOAm9eXV/zMP6O1hq1ImNvjaB30xnDpD/TUPcF+LjhIvJSUjVQTnFisaq6MgPjqqRf7RDmN+/5Xdcz1fb9QOUtTRK7vSDIBEBYBRiTZ0RhjZZTaRIIrsSSYvQ6ZIEXbSCwhwj3sN48rVP1zF954yENj3+LvDDjXAmf8/GxagkNr80m7gBycoMR+wrYQ9JW0AvHiEwAmcrG2UsKPHAj3kmwv8mZIHapwHTMqv0cQes+LCA4+ewXVVi4XAGGFknzp1F4dAEZYae2ezWHFBrIiy1N7Tua0N42HvI/n6Wgw0tlrnPsSWzN6hVftGe0rA4xdLYgiR9OpEo0TL4Ewz9A5jbjHlV1o1z3jhn385vId2DFgsZMjSGPmPNUDaB9B5EhsgkSYAwC0TM0on2wcfO5Zu+2fJ0SAybKx36RWkGP/sPXqzIhcybzv0RNUyOsVNujzQUL309Sns7nasXIESQak5n4Y4EhtjcIjli0HdcL2RaBgQ6ELLnrB+21nvL83vN0OfPrUcGHA9r9Q0LO2em5nNJ+Xd3akYdFGH7PFHJnmqP2Oq5F2zURmIt2zkf5iZuz7jo99x/teURuwqW4EZNUBTCAUAY5FtphZX5v+xJricZJ7OCIZJ6ODJche7zf1dlvZUa9P/MqYeH7lWDtzBp0ZIF3W6znizfJqpQ74Gxh1yRNnzuJCeqzInq/kWqCftTmehTTjJn5nV5zEvkfaAR0HcMttG+kc6z43tMuEZ6n/keTbiIV8DC2iKtCvGEn6To0TSFljW84MOx8j7riZrAwzSUe9g3yN2QrvrOhwlgikm9RWNCwgygZUr081B2N4Z9gO7vV0ftCHXWczgzaANpELDYK5LroqXYhw3S749PKKv/71M/78p1f87S+veHt7Q60fqBW4vFyl2NbQ2oHWDh2zfrcn+Th7ExAJ3Np+l1ZPnFnkIOvlpilqjArGpRRctr6y+PJy7YyrgCIaVQSgtQrQFkTN/4TkeyoeZCOBKoJHMrPJsSxKAgI8wr11ugekVvnGvx3EqOB5JPQsatQ9j5ylbhwHgIIAZBfveES2VTuGusj/OWuDGIoFBGo1VRe3g7amBmbRz4UC888BiVKbuIOYUZGtFN1Yzu/xUllZ3pAHye6mirtPmFm2FzGA1tCIAJKow8UUN82Cc0yP+DDSQQQdA63pmUEVrAmbnwPYFXAevggsJ8p4NBKeGQPS+8nGLR+5Lt1uGObRWZtP6RcAw7P8kIF+NmQiqHNeRDxAf1YeMOjQ1EQgRFTluY7z4r+Hx3vrz3hukjt6JuasftMZ0/zVrXfM7Gd4xVZ5bKAy7svnPCJz786en32/LEh528fuyfTIOEzVMLvMj4Ef7Bnqbzu+AECDVuQdK9KX7OGXQFdN7/rreeVe5bCdvvcQVC5AuQDQwC3tUGNE8n/cgF/fGP/4Vn1lsTrrRWKKQfAvRxQ07hQy4+PeGUbrp3HQ+Gz8XTx79UioDY2Bi17kTlSwg8B+1Y/SlxmVjeZVnK0WBERltQcRsh8wGKJjzMGRDBAqAJ3wi8poJtXXyGXHfJbkPKGczxrTaDCeOyw6yI6GlsjB2u8RbQSU7kiS/PK8NVmtsbrG6JljkgigFqQHSf6rsvXvm1s5OWJnC/3zqzO4TTSLcygb8Uh9Gdu7cjrdk8VRz4CRbhdYTR6jVa0HCEqzlsfa21wI1JrikYwjxjL7HwDcIDfaAj2ijJ3JlL+5zI6FeOVJxLyrO9SXiQA0jcK9PL521n72tufnfe4UvfKrabCqxhV8VMG7RCiQ84qlFLSt4mgHGirePyo+Loz92sDHGz5fX1Bfr3i9bvhf//YX/PgjYX//O7g2EBW9Q/cF7+/fADAuLxdskGtdmBu27erYIGJ9MXfCWN6/ZvHByuJOaHYZbKtoZdfxveLCwFYr4t0cX16BG4DP5RWFmnq6GKUBKIxGDKJLIvrsCVkIDQNIwzvGV27AsS7A8sxUUz0DHOj19vfypO5KwD2hNpmtfNGrqstWDDr3uemhV7SmBqm+zwb6OsgoFLclBoNO++MKgnQrBrrB7gqhm3P6HofP+pH7d6x/s3leiEQoq6Hsk9J+gjy1vpqh53WE37bHWrY2z7yQx7xBDg9rm+zAOlGAyJS8RIB5XHvN3O0Gr6fzi0140w8rpR8BU2fAaJD2352Wq7QyqrxsGwv7jsNaL+mqidbBYX6M5Y19HPt9DiQprMaZUyFtjrVHiDRKCk3HZYZNxt3o2osD3wZ+aeF+xdSHQI8eDKivrhUbGw4zPSjgNR56fLg+yobEb9RXfzelneRrPi+FjgKgnCh1OE/o5BwUURYwOt+cAh3LdOYVZRLoZQLL8tpds90LGfjVZCeQtn3HZlCZQ/X7WNlnz4xebikoiWdV+Qf+sveINbhGOl+xJRmDULS8RpNDK/FtBEhsoFrr5ED5MJdV+k98cweKmBRN7/dn42XAUnHHpH3TqAD95tlIDRkCgwrQjn5+mLVDLhNsnjBLBNeu9gLdRt4L9XoExJ7BsLPRt+pBG2bFeiRyWvod+VbfIXHgFGIQN/GmF8JBDUQ7apPzi9w27LcN326MH2vF57oDW/V7JYnUEy89A/EVfX2NvT+PjeUu//sAuTIO/TeqW3lZ5oeXHYg5h4e/TTfYWcsrgLcKfNsL3nYCcQOogqmgoQBNt8bRgcbqVCpaGjeYBowDRRrQxiKlyioKabAa8iMhBrZZjRnXZw5GtExz0jJ8W109DlApooNbw34c2ACUbcO2bWi1JfVgvOk+ASe/9MPqSiwaDSsdJHPWg0uS8yJ35rNmhVROGYbSz8k5F4zAFjBQGlOnr0k2jckQhaqmYp1UetO2yQ6H2hCDZhLJ9sTIp65fKCO2KLbGtpl+iwJKAkEV/9zpsvlF8LGnFGjgZbTudkv0h0sb4Q1A7v/zsZoXK0Sf27zUORLnmJWaGtXHpKO8QJNAs+Y4qRuPfR4Kn5CdGXQaF52b866ImQO40wkyvKe4K4yFoRmPq8AAk575LARqGwoTaqnYmXFrBWhXFLoBdMg72wW344Z9J2xgN/YIDe244VKE3zYQ6lFB6IHMbFjz8HLq4CMReX9l8SDwhcFbU2PxBtAFTBdsrWDjGyofnt2MRSovINxAdOghS9kC0ABc6IqGBnD2Xp16AOzybhU6K29yn0SMjZv2mlRIkIBqHt41Ig5Tj1bA15UtXAkH+QR/Qzh3Ehq9rHiwVBlYJxkhvhb7GABS6Ky1qz8TgVBQ9HyuGIaNWSOc8VC2tjUAPLs3yds1CA4GROgR+cS3vsiz0AkTyi1796P3x2jQQvlRMXQaRKHXBQMY7kWNTY1Ukzkr33Se6WGeYx3WCqK4VQQo5eLvsUsxYapCmwLMPNPGMgP6PM2XvY1hiyybYrL97fDrRzx8f+DtR8DozJO7nH+DR9gcEPB6dH6GQCnxN8DuvEpeU8Avgbax9GJCZE+5cy07gOY2Rj7xagPYCJU6rDKw9vjQvfWnteYrv95HpYVdzSHTqqGQRHVsrFe/XLRO41PzDGk9BORyreGxDWrREJAWN6QPWo4KKm4NpG2181Jsz9JckF0iG1R2oLp8i7LReNyMnm6Mziv1KSgDQe8ep/6u93wOnlLiuVOdu9riTi+lI9GwosF5JcgMxtMU9LnJCdvKl9s5fmB/74Qj0zsdiEH0h8mP6YxtLpBwgTjIOrgi6z93GUHUt3DJtuzmToBQsgOdwite01SMxjaeUbR1fk2tjjI7yn+9umM8GmEytIJx0SDx0CitBzWQGn8SW+eC/faCbzc5z9faDmpFfizsftEonq0AvEEMR2vL7KiaU5znQ/8YSCsOXBRx6UyyMV7JkUEmdvqpNDe5BgFibwfh20F43+VONZQKJqByAbiAsAN0QFYG4brARrcUOCCW2ghVozyJ4UKyAlSK46roSOZWJcppIcETqs8NBzDEQWu4xMbSVpcYQKvVDbBt28K0GVApyfa6KOsiPorYg5mBsGIXZSWF7bysIMTkYSxrK0UiAcMwCKbPJs4B2T2VZInhGTePpA5xeBimTJV2I7D0bZyi77okAymGsSCJ3I13KWYb5hcWiZ2fDNtmuRgRlpZVLrqAT2JccVyRjcrTxgbd2A4X09u9uEYjbs31RMQYXT/A8/dAFTonBuwXaW9l+E/8Dr257IsXgRbWH1Wc7kiE6OfN7YHs+OzO/kCJ8OcZHDE+GsesFPIyDTvZWj9xwVYL9nLDDYSdC7hdsZU3FBI5gFLw9vGGlyvh6ycCld7zduy4XC5Oq4+94XK5oJQNcUFvoGxu9/0ji09sQ4UNEpTRm+4oamjiYuqFbXI5XK1VOwKNunUBky7Bt5raOBqMwADSmhDVoEIGuX01Idh/E6MKRry/YtB/9y02kXkNsLihaMwXmdXBxwqArute8OPddG4IdI/3aGwlIeuN18rJWDZMxqVyD0BwaRgx5jNhMCnwVN9coa2eTVs0ooJfCxl7Zu+v3j1pSTeIjXZ+H1CI7grbJrGudyVsnk3umZLKnS4dMntGmFczzp9H9Fh9/8jIzCumqzK60O9fznULKLfV2zz/iUi3LPY+FOqrdM+k2Drm7hXF8D2GPt81GolQeP7eoGhUZGABGw6ifAoEM7V1b/7lImJ4jHy3ao8BMWOPuCXcVgfHoC5sL5jSZAaboQE7KTiAjQWtrH4xR2Z+WfGQGXZezoq21n6TRAs6S74yzPs6lXtm/J9d2jy2oVBBfaQ1f0dazaElXzNgey76uyXMf+W32hR0+X0Bj9tg1zzx4syUe/1pEDS5/fFzLMe+N148K0NYqinP9zoduEPmyFGrnOX7uGDfN9R6gWgsAqsRJQZi2OnhNORl/b812dbEf0Wa5w5QW0Ot/X7FCDq5kdqshkfkX5eh9jMYWckxSOSGS98+KAaXGBAEkG0w7cYiAA3MUcL2TEatYauf9sOcafLctogSxGP0gCaQKi2C6DM6CaQyg7SNheAOGSWg6YD59IEht8jTZ9VkAzM6D+/jG5GWvf82N/TZd80zkQEe66E3KBmaZyk6y4V3Mj4ZnQDhzWBQnxt0K30w/p1lNR7QLqdxi33s02w7RDmgfRj0h33bdIFpDPBCakD6bHtG3wXbQ45RGXyzejsejfkKdJtvBY6dcdsqbnXHlyL3rx61ou0H3r5VfLpe8PXTRedd3+If2xL13dO46YFsu2sslo1g+9dlcsjybjPvEgGFuhD4/PkV18uGVveu6EiWXhtYy5K+jUZIbHBS+Oz/+EwO7AZQcSOD0Bwo5Y4LMVfESAYhi8I5iwrE/sOpWakPfAbW3aTMQIHyqhiC4E3KF0AOHjAv8cfPqatFhEAB+p0ybjDKP4Xm8iKwaaqoViBbM7kxGh3mhO6J8r6cS2SnETO0HOqRpEzhGfF5NX7rfpyd9Vw0QkFHBGp9Fc09mSzt9YtoaeQ5G5NuIK3SSGf/3p5Z2YV8G563xcAE5vN9jw3i59IkXAdB3Wn/PI4SRb42/nwaRIeFeqhHwbdyGDiPtJbOjOgLvZKTtp7xCGGkBU1julQmmncrxatvtbkKsl62MK9OjXLuDqFO7D5nHKAXBf2leFTMHjlbeaqxB20ku2NLmS32zJ1DJpd4RQt4/WO7xVjO4HXM3/sngJwxjNtA0wgIIoiJee69t1KgK100tk1+PQ9uVmklI5bgC5mGwtfd2RDlJFj95aYnFv2wMjhM1DOZlNrFa+C6kgP2nZ/bWhTf74GzIwW6PZdN5vb+s3aw1oa3d8L7DdgroeEiqwEoQCO9oF7Wxr93dEbnxGj0jul75OqKx5bYgORuzKNW7PXAXo8hj55ThBjHPUiG1qHn2UljSjSbqLBpTYrD9O7G6DiFqTICaIMuHSq+1r7qSqPpPncOxzFn9jum7Tu//3BxXvGcXoaHOP30evMYFVOQRXGCXvViu4M4bscO70a9NZa9+p0Ga+Iyl5ZO8blvFTJLeX5P53CUe5EWQ0kd/iRZyGO2uXn2p6oHkydnyWi0bSXRcDUez6R7ePUsnz8P4zZivqj7RwzobQ1bcZIOKkWDwK3kZdGryXIdsZx7ssJSDsij7DoYiyBZedw0T2sE5g22s6S1huOoOA6gtQ2FNhy+Ug4vp7c7GotCgdzEmbeI7jt07hqLcY99BOgmKJgzMP/0chVj8b1qVFJplDkYXTFQEFCBEZZtGL/g0CYSlUK6L5w4A7jTibT4agV6k0J048WU7GPYME+CRSayJfEu3F1Jex9PyuSAen18TJDnOhxUUXjV+xIAyTmK7v0Nn5cKNf470PKegDHjUHrC3h2jg/3Isv3a27WctM/r9+mlZFP731r30jN3B3A+0RAvI4KY0WCzD8EIumdErco/MwIfCe4zh0ts5mM69Hwpzwn72QrFGfjKeeFGdGpD4O0uFcgF7YpmY/nRgSU8mb2OalOlcmx7kDljbG5bee7EeEB3rTYov94tA9ZpbIs9XMtAc0QYIBfC9fuf+iudZpGCsXn3DMBzXqD0O9YblX4GKCMgmMh2N62Axvjc2rSwY/9lae1MHDOt5ei6LCDOm4nSZrhFHsfALwP4ss8r595dGb6Yk+N71kEvB7ZS2DtCBhIgnvX3G+N2QO8Si1sPCQh6n4ebM6OEjt/z9AEqR7u+MSwQNfBzDkc4rce5cfZ+Y+BoTVYXWxxQmn+CHpRp0cGJjaVtTyWTcbGyCBvUCGjNzhauDbuBxbwuoh7FPAZ3cTkVHL2PaTcbAKNRMTomDE/2RkWyZX634CuxvNyfqFJpyfsd+4Y5kipGGKKZ8Cs63ktLuvGAPp1p+3NviGcZaS8tIX+9795TUdtLGI//DO2Lvx/1LtFzodNjvhnrShr5bNbXyifpqFHvdpDyYjvYNv7B2FxCyTvYKn4Xjf1pTgw0M90G0gW6Zqu+xSPdV3V+d6hAaVKKsXiGRdcLNN+jO4FH21CLtowBv0BWz83IeZzciB8+f8Lr5SLbD4oICt9GqlG9ymaeYxMm/eBxTFEYpA4iDIgyRQE82lZrVd8P79jk6lyiIGkd/jsKCTJjbdAutmWKwztDI0P9PDGe928EJfewcxrdUYDIuIghxckz6Hp30T4DDd7nBDB7+9tq4k5GSmfkXlQPsLEE3sseUR8jSJw7iu1y0J4nh/1Er4pEpFpdbpvfs88d9Otvv3pAWtgn4aQ6TwC0GZbIyOWZlBSevjywADHkDtTFmJ0We4Y8F8+igFsLufjeOIcXPKzttl1ODgqQM/qVGSdppbSIKJ3ftO9tLlDpfbAxHcc+lh+9icJ/pjR7ryLPaI36ftPAPBoCwdoHEfx+cfTlgnpy3c0IloB+yF8zyxZS0xtRZhH5uVZv5yIqtAV2AShvI1d5QuYN75Va1dM4jEDOs9sSJmdPdr+iJyjAkFYAJyr11I87PL0qbzU/vP1YTdPn5tMzjpJ7xnVM/dJ046IA5oKMLVR8UY5PmmqrSwIqtCzd8VGIYCv91rbvvYIpjslz+UU3WF3jfCtxNwkI324N73vDraqOI6MMIMKk6t816b4zsevi2+9E7JmMhla3vWvOH+9D7Cv5P2623gNjkVYMoDI8EmptDfFGzD439CcIVmbdogp2I5eQ533kSWoASgNYtk9aBNvjOOSqjiAzYHK5EkrhHo2ysZBcda1tN23DyiIzYysSSMXk04pHoqNe6PZYVwdKwk4qO5qz4QwkG402opU8iM7DuT4D9X6Rus+RqPs5tWFsq+PHwDdmVBJG+bmeR8FG6IZGKFN7kuuBi3RP0x2lgX91egkNQsTRWObSacSU5siZnDU+Gx+v8Ee0D6KheFY+VGul4wQUqKlf+zlRwPF8vMeR2eQge//HIyMzduz8UcrMryu8QaRbYeuB8nqBBL1SvFHk2VFrl+FhbE1GRX4mQtpJd0avCVucYGRLT51ZlAo3yOFuuMaS3UvdE/X10yd8erng5/YOuStPrOIeYE+GhQfmfkbB5sZ04R8HyA1bV36ah+L0Qn95AreE8VwMxqwjc89fpfQI1PBJufGr0yw6DgzqUWEZfesZcwoWcq+NpvioqDcjME4EEXeBgM7pHqCRsr3jX58IQZX2EjEqhAgH69Zne0YgsiATedveeC2CKfiRdmdtcI9UJGiqJ74XDam57DT2jxhlSKsrFOLrND54PMwPx3AFwh+9e+8db+hEfDsnp2VjniMxWFILEfpW7UpyZDSwbGwGxR97cWYw5npUAd8FgL0/t9sN5bJpkI8+h0ZhbWHfMbTdlU4o/3K5KNAbhL4GkWJubgCYAuIgoR2U8HyGLyaTpbToq+cPynEsI3n+1dtpkQEplJHkilKuDfTxdkOcjXGsaj0A8Ck/35O9UbmPec72jHzH9D1Nq3m0dL74xOlgUPJE3o1CpwNEXs25kCYdFP4d8zxj+I1pchgMz2I/5UqDvlOpb//vgaRqa/j1Rvh22/G+F9wYuJSL7iAgudAaDFBT7/rlGXH4/Wmg6+gvvKPKU1o5C3ZmfNwO3PYDx9ECKAzjoGHye0CZLo8ssKTONm+Hj4MZYoDuwOrdYTUaseVtaNG1E42FUuS+7UmxY76WiNSjER1J0pQVlWy3Wn/3Hh86Hdn6pf0gIQgzp8EY5fy2bamc0dn2mxP5P8tHpqeSXiJy/JQclMhtZuYFNlCEE41Bmrc/jnyXbLxgaEwy6o7M+r3pIX6wfPp7PC41fh55JuqaszGptcIi9FrqMinfz5nLy20Y+cbO79rKu+TJ7XLDmYGDG4iBWoGdGB8fDfVFtqeXesN1+4zjxth3NW9pQwd/gomt3du2pavn/hXpgbEYo0eZAJJG2Tm4mD69XnC9yL1JRBKu2Cw7boxWGgobdF8z4NQ57qrbB8PfkTa4sGPugC4NfH9/ldYepPA+8iQa85hsMPuiMC0Uxjw5xWNysp8/5l3n6PkGD4oZjJ2NJBn01J07vgqzoksUTqwuqakdi4kDhntsVtS+6yBgdg0cycJN/hYd0FdoImVWY9iv9eClYot5k2AxXxPl571Hi7Jold9r6Ir/joxNc4GlHqN6bltuRZwTEYydCbZ7AoQW5YzPkzFwCu7ty/y+OSZkFSusgEcjpFcm7yw8Xqf9UIDgxmZUyE/0f1WPN0XHZJHLKle6Sf8u16ufE/JrNcCgTYJF2DmE7UKG2oLSV2dccPa8vn4CtyqylBu4ts7jphhYHD7YrEyJjNmjlGcwJqBU6dHCXGdO40x3xmKVlrwTaLrizSl/0g2r8rMTa5z/Z2P9vTwwOX2eaO/Zd9EzPvLkKq+5+P2Z8yGc1wDGRc+bmGzkgTaRrzDQyh2D4Q61TQ3zNk7gkxR1xTOORZ8nOqfEFirenw6iGNwYt8b4qBUfx46jEnhz/7rjCSmqaXTHzjOrse7f3T9Pl8eFTtW1Pv5NiSHba/fKOKpeNVWGqMtevMl6uVppDGaVGMRApM1wN/BI5YBppRAow0XZmZxTJ7zJqzDWdg80kFeLiXu5Zw6cbtjd38ac5UYeZ3gZ9jnqSgp5jf+H9102PjeQtnrTsUiWV0RGxvys46mwIhTbHfItI+jD1NooL1Y6O+OQ+dlYXy7T5yDy2I3yqo/1jD3OMB8rv911BCx6Mtb9lOG64OeVzO1nqjNmst+jjIt5Rl20djrMuEmi4dr4SXyQozI+9gMAOe3LVrAfB/adUOs6vspsx9zf4fA96f49iylUt2zn8y1JZHMzgpkXXC8bwN0DYJ4kE/psgGghFE4BRBxUBYAuONkwUW/bPeZZAYU4qPYoM/vcxuipszK8YXkOniZm7sElYn7Xcv1XF4hafgKooUx/f6BlLlJAuQH3xPxSwcpgTuVhFt4++UwCa1sTaLkH4qQguUPLrN0gRAnw+7UiDVM7F8Iqyssz3sjt6u2n9G4EIPLj26UWbYkKiY3f7/BFEiAG+Va8pySG2CD3+448vmcX0j9qUxT0q/FbCd5Vv0zxFD8PvViZ6pmn988Uy/g9Af1+sTN+4bM1pF5XlDszx6GQsgAAIABJREFULaymDEyZGeWy4fLygm0TUHfUm2MZCSlPEoSnVVDbpsuOe119vF5eXvWS6YraKhoffWyHftlccjmVxEB0urGC9OYOtzNlKSVJKidzOKZnxi2mZ5T+ika/N+/y2QBuV28/g1Ee1XPPcJUrJQajeQHwrL13ZVtwPHUkG8ppfcXa7vMtKq+eNRin/kxqfCW7+5Y/MIeAYUUC49WKxoy9AR9HxUcl7LWAy6YOJ8Ebfhbf6eS1PGhvnjqr9np/FtvK7pd9f6dGNEKPCtwOxl6536M4AEv7ikF616bpyDD/p+pMD/e64o859eNiQGx/LMcWDaRftV+vpXlt1TP2zWSTbbH0vi8JBufBkY6RDkmfjQWx/RPPZCPIepV5FHaehWnRaW68kWX+8jO7Gx5I9AN0oJxBWQtvhksi7LJ2hv7Hc2iWkbRwpzN15/naoCNM15L01jxMo7F4z1EsTqm5Hcto1ErvlX4edceIP8b2nbXL88Bk58qgwuxE7bX7J9tyfda2mJ7BQuP7pRAOZjQmHA247RUi3+Qkdtk2HPsHbjc5nyg07Zh1bSh2GfuojY9k231j0Tx8um3BbuvoZRJku6mkP3z9ii+fX6HXyHYQrS8RFQ8/z/SYSVadYJvFWj8RFt61dRo9BMs+L4QVrA8DINMmLMvwti7rCJ57Q/3LBhvt+m8UdqY3HcEEv0MI7nnsWpCHMucvJdkhdxN92UPyuD9D51UYstcZle8jxuRhCZ2GZzIRstfNyoxbaN3T+R2AB/pGN7oDGpHawk8Xgt8LHu/WbpcZF8rjb9Ujfsf9uwXYf/R59PzFcsY0Gv7x55EhGsu0SHkpUWbLs/rPhJyBEPdTkDqqDCYrK4pMC3o68OXKwIkOrzNFlfIXwg8//QHX6xXMjH3f5VwRkW8QK0TgUkBlk614FtFQ55uHtk/eCoA3gmznZGArIGYU1hNtQakTQ29N1FcdiHQ6W8mNIPXbOQzpTJdRJ0Dpe9LKubBKZ0alZF9fU7Mq96y+yCtpLkQD7MmVhd+axjkU2xXTGRC5V+b3CKGkeYLVlHRsBLRPprHdZ3ImOkRKKZD7mPtuJrkjDEBr+KjA+63i7b3hYwfqdpXdJkSweArdGPjXpcT/d1T1M+nMUd0acNsZt/3AfjQcjfGyRT5tQIhEauDdQLnNj6K7cYMLW/CFGRODPOnzKpxx4jULTdeSmDNzkH/jvGrc5Jzk6LwO7/TfXc7GdA8v6JXSrgsneNOy8TIasud401Yd1/JoeMNrjJhJ/o5Ht+TdascLGoOJ0vUbo37OVWke6rrC+UN5Mzvwz8Ce9S9P7jMatwWNzuT3SmCM+iM5k56YT886uKO+GvnKaD8agnazQ7/XOrdZVu8e41Wr396Veb3aBhoct4MBXMx4LrI786hiJB7cAD0veewVtxtwHAdeXl7cBhjL63V/j9D6HcaiuecFXBWAD39QSgG1ftgSAD5//oTX63heQK3aUkDE2MwTGBnKeKelnottpHfnWDQgiwhEmwAmouLBbSQcdz546l6sE0A8A09pc3wmYLH1ecAdTgiJSI3hXk+so3/u3yWDcUV7Kze1y8glDGCyoHFYgSIKbVPjKRgTvbws7K0tck5K3sv32mRhloCOtyv3mZhcsI3vrFIn72KZ385p+Pdr4dr7ZoCjiLBr/WLSlXEUUx/7WIceqOS+zSaWwUAKHd75b+jjHaGTjW5VAExiFFDkhy5sXbmO4HdhxFhaBa8Yx+beOMXnUSDmMxIDbyzKjnOsb9fMdLj33uhxZGbImh11w1MxcNPzAKx93SKyuNPHCBT9Xi1/PvMc1FP6008/4bbv2PebhMKXTHI/oZ+RILy+vuA4mpy70q7GOqKT4+3bG1hja3OTbahQ4OjjZ8/0kG8hAmlocGuvYAS5dFqub1PCNKCUzY3tBtvGrQZqoW50prNmazBh9Nu2i4xBs+90YJLH09p3767J6LQa6T7L1fF55HWjl28LHbpwxv2xq25P/UYDeozqN7Yvnqk60xd92x/7rgsellvM6eCsrHq0lOLOEzD7HDG9UGv9rtW00QiUktZ5xs+A1Cd39zFKyXOtMeGoDfshHvf6ytgYkDsCGxgS1dBLezS3YdN/doSuDCB7y9TIPQfKPXqNctYdnFXOKsniPmEM9U92gXkYw/Sc5T3W6yKa9uliDnWidGVGrbUTQvmmst2hbNtUu2N67of843ONu6MqgWbFejzsnIhnzx7pnrM5bB1QMzqayOL0ZobvXGGIDAuyp4fEYf/OMMMo0vr8axgDgXiRTtDQRqcTevlEqKbD/L5LkUFUutycHFoMEM10sn+3ckFNF7B3wyTKY8O3wOzgJm8rprEd5/fIxx0zZZlmNLXUjwet59CIT2YDfObJxDOq5/xO4tDfXuZwHQhwcsQiXld3IuMGDB370Rpj2zp2bRrAJd4b3iMRi+wutKGA0dqOvVb5HrtiWUKr3OdvqD9uAe/8g8Dz99MDyPfg6gxT5ob3lfnJLfWsDD6/XPDHTxvatqGVDQUFG+8gPXDOVHBQ6wV2zIsw0/sv0+GRKe3Pxqoc8lY9aWPJFgyZwFTQrQQMTXAlnOkVjcnY2QXQ5Nh8EVJeF1SUmcDQ/I+Gj/VlO1kQG2g061MTvj/exb0pQfa1FS/grG47y9Ankb5rF93CzjfYGIUJv2h/HFaO7/DiBXUTOpmdpmEMOuJZKt2l4hkFCdi3WI1tWAmi9J3xZ1HFjFD+8KpNVus9O89S4qsubOzvTgcCfPVZeL/5nDCwg7GPgVeJ9MSKCTl3yNjcDvQOBrL3k63/GZQbnTNYbz5WNg9McEflZF43lyekTgWZNXnuYtg+1395W3pmTnLKiGp8mzsWyOVjMPA+D++klzL47gJbVkRKEQdTaw3cqo+PnZ0xl4zfEashvAmk5xRlLEoY1v3jBrrYHWstnTHMhCEFSr1/gPHeQCvotCOIQ69kZ5Nvg2L288KDNB5oBc/vVQ2S1eRv5h3JnLdLjXejxrGZAzjEOjpwyUq+58/tTW2ZtMCcKD3oc4ZN6KdMhD5bh7KHObRKCbAPzrfuxT7m5gzGWORfaZptQdaVKSIPjuPbBgcZGWe39XOgJPqWRvuK/LdtiPW55nQA5NLsPudabRqtkwFu2BvjVguOJisxRA2FKnYmgDaRk+0AU/NaYgcSPZj83PRygE/SaqRWxuWMnaKI7jPMvmvMuHFBZcLGZLaD6yp2I8CM4u78EecYy52CCpyCdgkUh4ERewjT8CAd/94r2MrTylnsrYvG4UATp8MKLw10U+IFsZ1pag6PlF0ypnE2A8315hTtaZbhzKEOJ5CVGuXYLEs8Aiw0UnUhL8LeNTnvxmvoE3l5pudUc3Jvl9Ejgf40J8O8DvnPHb73GD5PeFZhPY5tTNGQM30/0ml81xx0EWf2/gytMBxM/TzhXPYwxxlwV4eLFOo/moksQngQadlhmVeiix8LiTzft/mS5mNrtk/1sMvScM00DMqv3FDBuLWGihdx+KCBeUdl4GiEj1vDp88iA4kqCFsvj4DGdiuE1HrOC6H2kyjElu4aixv30N2NxAtTqIBAqIcQpIUV4h9fN/zXnzb8X68v2C+fcAXj9fgFtRRYxJU33HBhStEQrYNC0Px9bTVNLgAozEBj8cJQQw1CuJRNlZISoNjWtOiZsAE9ZqEUGVgHNXmeXcCGxJ65Z9FPRJyCS0SBU2hLUR/9rTjRGSFgjJwbjQBRXi8aMTKALQqexPi9vsPTXvgCos09HpVlCVy8IVXGn6QPJYYbt7p4oIn1tKFPUIb/5vC1jcuBXQQB2+H94lugwaxbl9VQaZlTRs+TrRp479wI0MpLmEThPSCvqCaPPkUDQYBhjJZVqKR2mAFiVG9tR/ey9Txj5Fkr39odjUFuh+eF1aXPTfk4/5gy0rqaKniJhhkOrkeBaPQqRcc6YAv2wPQiOM07ZnPiOHqbNMWVxwxu2bSoKtaq3bCxKIBfCVDT+73wfH4AMDEzKDMzrCmyos0vo7/OsGEFu2/lIaWZkV7+7mHUq9Jtw/W64XbccNxuaMeO0prpO8mDTXZKQLaYiIc5yD4HEoMsvO3Y6kXHqfmIent8DAsqA8QtSBxl866BFVDpfCmUDgARIPH80WSRuxFog3jCtY5uFzGAEPEtlEE0r8Kfp/VW7j6P8jbUePWCvZ/qIXlHyoCDk5VnPJSaylo9nXKwyEYuRXm5gQ8xwkUEX7E3Wf27Flr2cZVsK/oIKrPo1TE3I8vR0bDKH4BLKSWVwa2h1YaX7aJ6XmRZrVVVm5S9LWgTwa8AXplg0WNPZbPGQjZU6pwndTuani0XXHULFphx7Iee0RWj8f244O24YOdPAB/YCLhcGN/qKwpeQFxBxzv4mudtjKza272p3hbn9b2VQv8eNJcz8JLLUoJuvwT8DgcVlUYjK1Xk6oFvKDh4w7UdKNSwM6ER4eWy4f12A+qGwlfgc4XfJ8nsRl4jBjY3z6TqAh1TrVl3cIjD31b85Pmm42TXYCCNrfVT5HR3HmOS7/a+6AhxnBkWsfkXA+D4uyZ/ai5TdpeNcx0eqK/LHfLrPwBnK1X5bWnwTDpF67D7yf0MrdIaQNDfjHZU0Bb0MFHXQcz4/9v7nl7ZciSvX/hk3rx/3ntV3U2LAfFHiA0SG4Q0Yj8fgI/AhhWb2fNRZgnfBbaIVUsjJBAjDYNEd3V1V713b+axg0U47LAdPnluVTUzGk6UXuXNkz522A7HP4fDgQMCCV4p3cBJzuAqf69OGSq0wDzjmVk2BodGM2+zc8Bc5VqrzyS33zIvuSWq2eiXU08XMONQ32VBXEe+wb/sJjaGJGfdFE35VkzlhE8cRLc3bVnDsIZp58RcWWWSqlOVqYVfJkBzslgHlaHdgo/9V8a67R8z9JIpGccYJXN/WIxAJAQEI4tQ9YKsWy5J6OSGhO/AWMMjHk+M0wlY1++wAniLAb//Hvj4KWKhFUtYgUSIiYrTl+MbAp0R6ATm2y5jsR5a8WHX1Rm72gFwuVwAItxugugpBCynE95WvdYiVULfWede0MFIKbkxzvb3QmzLUKwYRI0RCbSMJv+v74IqpBrjvc+al8qmAqozZPYCc92qtsaA3dFC1EAz814WAYnVtMiKGuedj8ncDY8sw7aGdDOuDsMuel5tpy7lCroj44UD2L8tA/U9XSiGtDUSZ14xW29jME3KDsZMnpctGp092/LoCb8k2R2CKupVQVHOGbLgWJZFwroxeupsK0XgQpQ7pDpngF5wIv8jp0/TvmyMs29s+0AdDWy1uVVHf2VO62VGp6OLEaUGTE33L4KHkfD58+eyMwIiCT1lW0dVwOS9+rXgTDRcX1EEvf5eXjb1Zt1jNDcx0O/ME90ra1bh+EOAzKNVoAGPwxb9wFlbAzTa4n1aqq38MPFU/HQhiDKvSgESAlTh3ZdNFhivz5n115+Tsb89j9U6tVp7b1zTpuEx1LyXnU1U12oxDDcwsSOQku655p2srGwq/5J7zQIiblgj8HZL+PJ6w5eHiAUAeEFCQghAWAJOOOOKVmH14f0z3O+YePPR8FHW2zF1jyNzS0LZpQdEX3i7Rtxuq5xnEzYOSrKWUz6CUwIOCPmgsY5bjdyY0XjFyzhVs9FqjYheCZ7Vozto99Lz00YYs7bbyFyu+kpTL4/O6LFvrdy1TvWZnJ5B6gzWIksNH5HqszGGUK71srohMyMmBrOEWM+Hqu4U3+NrPe9W3OLq5AEw+FvDzRqjdqxtuUIX+YzlLlkaWqkze+fenX5DvRNeRqoHmupqk+P1b6L7tHWpntzryJ5TcZSoDq5qsDNLbHmzBhh6lKmuQ2GxImsXcShyBKUr1nXFFQkhAvGWk5Alxu22AvQkLw46QhuKrG3tMxjnsJ3gplQ+EUYdYV4uT7hcznKBKxLkzpy8G4YkfkduJ2Rs6z4+9xZ9rwTZ55ax2kyDs7YAIbmlijSoF2d4B6OheR+qsPa8m41B0DNCjATe97VW2CFa+qjML5uG+VJVZg1psa8LM9yvdm3NlWNIqV5n6KRzB8ouB3HZmZ4J7GYsATlPqB7dTuFkTg0tezSzv1/jPOn7et8eMF4uO9StVx9YXkCkVkDtSyDxDhMKU1L+oSFJ1QEgXuhgxmG4S0+kApBDmiSMKRRjxnr+yJZnbq55mClWhWlPlIieGYuy6o5yU2/f7ntgbrB2lB6QQ4mlfVkrqpjWhEjMSUJGiWRcijLGZScv/1Tb6thp6Yfpjs0oR3luNWyBlDakxsKtvP7NxswTKHUtVUUDwBjdVSurzp0fxKdtaKJVYIAJIVhsB6Rm5LC1pvuftlpliN6+UN4lI2AJJ9ziLWMzPx/ktT0bs95R1cuF9j2PnsXgDyHAugitsh9TKtmdNVsjUeb3juNCW2L7pTEFuSlZ57P2SeVfy+azI27RHdUgV0vcEt6uCa/XiDUFpHzvM+XQLblvtO6mbEOWfYSB52y+1SnqjSJpZXbhutJh4SQaqmZGjWVX9+2WcFsTYjaWQ6Z50nOISkNBDRRAZehcRuUyqHyo/Ob0LTFXHt/pIv0/GWI2iXFaftwYpBjptx87D2YOzOYh1bG0/IuZXYNojyEGoFxdInNt7/GSXlUcZacoZR1CnS9MNVsl8jM1bAYnrzFAp/h0fdNPL0+AB/18zsqOvERFvO/4HtpwdPR+zdjyW44XW8bqFvpO6Xuhgyobq27btV/Uqvtrvjey9VmvH3r4l+/Ufq9rv64Pqi/l9RcQsp2RWHZWNY/oEiTq7u3thpr3SpyrFOQ4jzpbVD9TbtT3zevvFuzaWWxBCX9s4OHyiKfHC06LMEYud/eYEMiSQtgxtjYIWNtqiHCjb4NyOgyET6isyq+th9GEaM0IpBDSDn211OH0YebZ8ATD1mLzGIx8afsohcvSqj8xiuGopK0F7W5l39asPy4e1D+v9GFFW3XMcHm1r29mbJdkIEQaF1bfNQJS4a4h1/QZI700n83LWXC0u5JVKBmFkTwhkBdeVpxLungyBjzVsUkM5LhqY9MZRwDX+q0wtWMqBiYDXJmaUAEVfav862CLTskp0zzP/1chS9QxM96ndHgCqe9vnYMZzoYey5Uf+v/sGIOeeRbv8XqTBB16DYHFuffcNp0yIzH0i2DoX0SA2v11MY106/O/+XjNypfxA9RnUWi67wG1LxZFytYztsHIFvlU+W3YB1sDjLvnM+OpMW/eDYOyADGPzkvIso1wCgsixcw3FyReoSFP9+q2n7Y/W7Suxrz85CmeqvTkKxI6RUr/jpwQkEO9eu+FVFOcoVbZ9Ye6ykGjFuc2a79KWVWb8rndpH3OladiLEa8viVEPmX9ImQnXEKCht4tI+4D7KeB3lm7H0xZyjunFOpzZjDkvtW3a8K6ppwEKq9k5R12w7dbA3OkUQyRsk47zMjwezVyyrQXvpVlb9H3UHmOrdPRBdQ4Uv7Z6zEFlylN199nOkRQD415bvtk+35v/nqeMTgMucc1b4ZwLHdBM0s4MPOYxTOEIDvpnR5bKtcRd/XSdr1aGda8U7Etz2e8fMsx1fyt69jhSz14NW7qAXvqNH3YI8dknsejPcqTVKeYtWffG9p1DMi+nt5QbMrl/1EhqRx1UJkigADmnNsgAawsG3J0DWC8Xa9544SaPlGuIxCVI1wJLW4zXf0eb9thLLYKSFWucseNIfjy4QN+8Xe+xsvzCde3AETGNa4Ipwfx+HHEglATg+yAXsFrMKM2XYBcCutnkFPlXN+T+dnH/Bm8e9ucmWHEgbQ36VP5bbKgbdn3KHxADbuQEJZUFOGU79PSc72FKRLKvZoWOVUO1LBST1op8g6c7oMQla1RjNKuWBY+7wVmBmlilVCZQGEIjKqMT+htgEIWWWGLyghE+VmoVWqlCX0plPeI7Nqq+InAGxc3o1X0tKzeAzSj65hEKTxRFeqekWiHl7P20vAzZXLoygFD28O4Kb01ZRsOKrSamWAoWezmMHMaeOX6fs8UEX1es7eNY2p3ZrS+wivKgElkQnIUcGnD4y3e/OnOCerYsymZz6hofsC+332/ZuAJE/1e+raEYjQiUA6La42omeLQ47JFr613typKpgS8sRrXr01MoGPut/le3sIAHi8XLKgGY6SUz/cKfqTnbrHAH5kRUk4YdXc9ASBaCg8BRqW2Kr+AGClc5INmpmTmktk7RW5G1hpuFg+iyV7iXF9q8CtKYyAstAAc5FyXyq2YyYuB6w14fQO+ewOuKWDFAiZJ/xCZAU5IP6U4muC89XtZO5qoAIAmNROmZ3k/AJadgy9X4HVNuEalvoScs7nID/nHRf7562aUCQyAStZfLjLW4/31hgzOegkgtMPGaGRYZ+aWo1hpzTua0/+t5+S9cUWqO3ftu/sn/D2GvtWf5OWWdylPqnfvRSzhVOfFlMmNl/JN1jLMuNA4rt7atjRHi8P3gTJnKm8HXbh/p5NnhLlx5NOfb4z1Rt9ewy//Mecls3c8yGvRbgh4Zy97vLXMQqG5pcA9e6v/7LVnpX7BWKsXGyb3LTHWtCKFIHrqCgldPtWjIAEBHCNe1xuuqyzkUGSMOJA1J0UAFbq14zIz1O/BD9hZlM4KSKipwsPlES8vT1gQQRoOkoDlEhA5Ia0RSD+wSdROlnAs81u/+7AlYHVxres6lNEzXX09Kc53m3r8gJGFTRebU2ZG7Hu8Ab4HRoipIepiKlaDtRatZbT6urjaOZ/BTCi0yFZNV8dejfiCS0V/6OfWfDSHlCFn9AZjqDMG9O4/G/Jg+zAKZzJh1basmUuo0jqfO2/O7DmBlnGNhslCQQ5XG+OxJmri4mEWfOTwtx0/L4W/NXBNdzuCRU2QAuT9tX6iurWg7VS9JQ9YVWAKuncUzrba+Y5YD3vK+Z5fqxbrnLUGjCYVOJ3OJpNj3gMJNZtb2SyY0IaPU223vmMUCtUMSD+yZ7E7sN+nMfd4yGxnblmWarJm1Fv1tEIxNLqqUrY7NHuzyDRDv1Q6KwqiISJtKzHj5BwjsP1s103tR6PUD++ahDjdmHhABJxOhK8+PeMhLAgMfP7+DW9vqjRWxEsNe2U0Y1hP73fO1T7reX5fvRvXbX6x8DM5X9iNHaNxbG2t2aYF8gPBRMEKCCnkc/OMyIzzsgDEuCXC928rXq/A9cJYYwJoQSA50xeIXNfLj4H3GBmFttAMIYRHKJ9VI0wUwATGLS5YU06QQbozkkMgaSkOMz0a0MgFUlnt4ynLyaeb3mnmlQth1IfUeIOtu1Ow1eD36Hhbl2nb2toJKZl3u7bts6356/VCU3kx+PKDRvFWUN0hlLtChf8n3HdCSq1tn/synjNtZnD1emvTf2odpKF7dw+Nb+2mld93jLntVx/FNevrwJDRnrHeCiuVzRDjsOfqKGNOOJ+rTbKle1s8ZZe45TT2XKw6DCxvtfRtdTLBXzfQApIRg6+3FZclYA3A9XpFOEuIKkdgXSPOJ+Sz8LqBZ2nrp4V9O4tE5Q6SLYI5nR7w8HAGUZLO8wJQyLdDs5wbs1x0DxgC3C7WMbOsHJDmoDaQrCba9YUdISZCUA0PjEyyKzNq2bmM/ey69R6BpOXv7aCMLeuCRlH0s4U9oNx8z0qA1pLYGBdod5j679YYvA9kxrdqVxnFonXWKyi2QOY4JcZCBFA1FsvYhboHbAVmKJmPTEhu/rsV0Awv057W135XnEYB4IW9NndE6ehkmrFMrzEQUewu+ZtqmKztB/q10uFcaJlbx8lgO1pBai3JriB376hJadlpS25qgaivjNtKbF3dOuiN3pkA3UuPyM6jVtmxglY+Q2jnJlDeS2Ku1pHpn1VExHvbj0IuO/S5PiUyyoZj3FBuf9Pzj7kiU/Hr3yC0V1ygZCbs8eCKdK2LWoqpBrP9lHaskaif9u/ZLLasmMw/Ox4VYTu/3lDN6IYIWJaAl6dHPJ9PCMxItyvOi4RSRuhcTxCdQBmBO7ylKH/O2aVmzWfQLJfuGqU6Gvp/VqZScNIxM2WaAbvTUeq+GJ7T38lrDaBAcp/imoDryrhFjZJgbKQeaPvYjZtgMJ7nKdgNc71X3mbZoIadGj+oPLVRcJmwJiBxEOlp1iuBasZ0AjTMvTa3rR81Ox2unDenqBzdbo9s6+vrnbJe6dGZQ1U38dqbOBdm9db6rEzDWA/bftffUh7kKj8Mr7A0O+h8UkfI9Nsc3nCHrc4Js09j43hvb4x4MJSpDKYtB4cfc+WPvXywNFLG6SfWZQti3TvTHwt+9kvFWchCHDKcjzw0a64b10ZvzCqjx4Nru0IzGtEH6nUrPUJS9SfR2zhnh6ccTgFc1yi8jmUHG2fpTGLC7Zbw+BDkOq2k52NNxIzS/E8Ed4zFrQxSXOkpw/n8gMvDCYE0Q+CCcDphBSNxRGLJYKaZLJvaJgRGVgNzUGjsEgYSbFrg7HnqJl0F5j0CLZ4YvTTzDtMalOJeOJF6DqvSBNMFTyGZKbu2/Axq+JxAOYxOQL4JBUUOFYHbK8WoWoPQuYyx+U93z8qC0LHlUsvQr9Jzw/TIhOYIYkYtzMISCWUuUqOwzugpITGBUr63yzA9NRXVKCt3JjlMuAgefaYaoGFCW/NRaa7F1/PqMrNckGxHqjBkTJ77n6ypoMtoQK4/yE6UntmXPqiRs1QVkXS+8vfSf2V08Odh8BA3TNyMIfo1JE+toV1+w7g23iM8FZ/eIPKy1EqZuiPTrk85Q6ACqAFGoZkeo8FQh6NmO/2Qfu4xPiTzpuK114vcG9gezmoq6ByoklN2G9P7QuZbfOr4B3u9jYOnN65dKRityPyzo629ASyNuQrugKvgcQoLPjw/4qunB5yJcf3ye3z/Sohg3G418dEubbdWnJeGT9O9LPCxbcvLJwpf7deMZHHNYxP0/L0NgWxr9dofjXT5m1FptrxGLc9ZU8qnENVppxdnCy9MDKyR8XaGXFfYAAAgAElEQVRjrEn+yQ5zHQ9NzNM6E+cDv+U88uZ67zri7ve6ZpST5jBAFv3uFiXwlCkghJytMp83BwMcqMgqpWNm1CuwLJ9VhVPx7rN8GyMqd2wq92Z9TMxl/dvx0c9GOe7GbZNPGyHQyyOG0WGG94xZ5slizmPPLR5CN8pP6rpPWdEgkqgkUkXJGIwy/sJjiUkS+ZIN75QzwgTIdQbM0EyV1uksf4460iA3a1en/HWqRztGYVakDB41CUzRm1kTGLnVOuGs7dzucdbO/m6+E9x3e6hlkPtRaqrPAdhjCDY7vcXXtlN2EZOh665PPT+VhFvsRF5kB9Kgs3C+2kbGnk7A25qwRgmzX9eEQJIH4cYrbteI9BTkegwlzVxPSoyQDzyWuz87eI8zDPjBYaja4TYV8OPjEz5+fMZXn55xfQOuiUGnE27pCuYkRjMv2qtdrWwxFkZd6FUJHZmB9wm0KXSL0m6aUQMipYQz7U+93F5uu92ve2X2MtnesGm+Zw2/Ml7ThtZLci6hjRmrSpVdQJH3LdxZn5rW++ayRRjzpeNEkPu4mHPWOwIx5/s3Wxw8JZeIgATEdc0CGADREEbQq532N6+P1dvYgjcP9ZmMpzKmPjzQ1uE5DMgyd1RGXZwvqjg0+IZyx6QoYHJ3VwgBeql7CU9TXFRBAdcbIoymaO8G1ZbSjvW86UEsmmT/WLjgYGzdbc0fx5n30DfXsnqXFZF4p1EyfeCYpsYe0PMIQs8xCp7m2b/7/edtBP7Gwu2vG4E/IDCAK4D/Vp78y83y23dZHTCD2P39awDA739gbd/8h//5YxH6SeGf5X8tXP/fI3LAAX8jIeJvvhyZ8fYt7aV/53VSb8y/fVOefoO/NN/+8LDPWCQNjdAQFpOy1sB//JN/C/wJ8K//dKuy3/4QPA/4g8N6v8gBBxxwwAEHHHDAAQcc8LcG7iXx3DQWmy1Z1E2nZmdr3wbhAQcccMABBxxwwF87/Ozf/JMcDJaGXX0vJLB8d4IP2L5FGsnDkLMei0aNgjmAOJRAVErA9Rbx69+t+M9//hm/+t0V68p4SAzCG9Z0QlwD+I0RzzfBl4HT6UmiUpLc0chphZ7rphAgkWyqu4UaZqrhqdqvmErkVJ+Tog9H10+bJZTzc8mwnsNETTRNSkkSr0mEZ46Aybpkjk7yzqMTt1FcNWSTcsZUM+bBHOEgaqLBYowS8KthlaCuLROx0occnwoZSDh0TlYW4yoROiFIeCooX3cidS3LIllJ8/3iGs1DDLy9vQGcJHInR8XB4O5FKvXJ52QsxogkHYMxPJIkFLaPXCojUNvx5l1/a4/K9FEwtSa9/zol2TGTGwpkcylGvdpGxknnSUOIy7EvnQMAy2lByHdeJm6TyJS5Ignr1pB1iTL0opg0pF7HegwfLfSs/dG7MjPENcr6DQFLWHLou9KaRpkyrrebrMEuJFwaVA6g/wf0yAjCCW9rBJBwPkV8IODvfn3BLz8+4IlX/OLj1zgtJ6R1xc9/xvj7f+8r/PIXH5BSzLmVGBQYSClfKkSIGJPYlQHO4bB7ju7c3VlsFmq+GVLj5AmyCP70V/8JWM6Iv/sr/PYvf4V//2d/hv/yX7/Fb379hg9PjNdEWNKKc1rxBYTTcpawrpjTiSsTMIxGfwt0AuXkJIWMiOQCchOLr3zAi/P2Mv4xs1zeBJjFmrMaO/HIwEioypgUCsElNjHh5cfMQNDwrIWo3HfUlsVAZH18tAWLh8UzZSbHiUuIumU6ABCWgPPlghhNyvKmTzWLo6UHy2Atk2kYzToSoWU4TRejDQs1Q1CGwxTOV4CUOjM95BEAOCeJ0WxlTky6tlNw0XBdksQJJWQwBISlSo8SskzUTfHIZBUkoxzK+/rphWUyM9acROi0LIUBa1y7Doh+U2GkmecU5x4XFTxNNmEzr1YoLMuiyGjvqvDs7oe0fdJxKH1JqYbHmjGyZzbaztcx6Ou05xdExzBrL39GTnKexg1NDuY5JK5Ucesy4KoSU87hwZAb24RBwHiJCLCgXmMCZPoLoSpLigQBWPMZ715hKfoDj6HkpXFCm524Xh8EXePOHX9sD8KXepQuuCoxwShhYMNLNQsgmTmLehrD8JocycytUFKBzRB5ovz9tITCFFq1pA3aBeSCYhXWBD1bVDNdN2MPOVtdznGbceyTO0dmS7J1TCCKo8WNGDhRwL/4V8Af/6N/jn/61T/EN3/1v/E/vv3v+IvffIc//183/MW3EU8p4IEDvtgxD8JbA+l6QlnUAQCdeiXR5xnKo+3a1rJ+qHvSgYSeOWfzu10z7XEGxc8ODpWlwwxz1lr4VNDzMgblMi+oZ8bcFE9xzRfSJ1xOCfH8jEQLlnjFH//jR/yDr0/4o68XvHx6xuX8gBMx6PaKdbidZOwLl0ga31CEYtjICnbKm36ZtU0gLHzCjYFEK0DAgoC0ngBEhHDD4/MF3/2G8LvXhP+TbjivX+RsPZ1Ayws4RoASQBHLKgpxoAXMESWRBSXRhcz4JQYQRTEOS+2RVcLlDyrGDMjI+PJzJ89VTyJCyPJBdQYtrzK36F7grPW3PDLFmOWV8NllWSTTcmJc39ZiZDRXWDAjxYhlWUQuhoDINSKqkbdECKdTvmOZkdJNAv6o01UUq44HBKq8RPq2YFmAkA0EWVtZDdI5V/01Cj9flgVL0WsTTssivJpjzpINQNezWUMWPH2TqBphqivHGHE+n0u5nvcpbuIYYLlN1cztovNv3u9ldct3rGyW78yMmA2hZTkVPr4qfYQAPasrclUcG0UHy4Mpa4jBREhCmkKnGG9BELkJsA3nNKppy8tQ+I2QsWbSvZXyovf0unWs46FX85EksCOSq6oSR7NuAk4PF5Vuo+6MqgtWIZeZViJcLvInRQLoEWskvK4rFvqM2/qChQIeHoDvP0d8/sJ4WxkP5y85QdgZ4BcAhBSuwuecDcOKCbu2hge7zyySjEInPGomsUABOJ3w8PCIn336iMvD9wjLVRRPCiBKYCIsWERpUKSNQTee8Wo9HiFkL1kgsDk0mlIqAr8owp0SOwpYFCWrPdckPfMWy+5xCtVTAmhmLYCIwZmxC38OgFEo3fom7Q+eIuqygKFlGpQNij4ZTfWyGGAVjJpcZLxLhlNLgX3bCpJufSREKdelHkZVBJs3uD6o8yo/kOIDlOsmoF670pYyc2Xss/HOfUal94qrh78P/Zy1YzwxgDpYqCrNABpGo5/F+EyjZ8g7r9cnb9E+6vlNFcoWr1i+j0rkzNjt2/BGe/aePYfqKay558UouQftu3Lti8wPRFBrH1SC2DZMIpAGZ7K9oqGDSpM6ruV9VMWCRXKZtTQmPyrUytUDPx/vkR9gY4yGsSXliQXDXGeouDFDr27RBAg6jtWZxzXLMrKTJFWDpGlTXB0dXVaj2SqtA48y9XhJYPr+aRKrvpx81/7rgkLus7f+TN1J77UU7E6B8Hhe8POvPuGb2wd8+yXh0/MV9PvvEJM4gMpOS+Et2uBIRx7f79dw5ctVjlpnjj7zYJ54zDdKmVu+2NelO19KC2KcVxuj6SLbFUylTsPqs3KWDX2qdwWv64rX64q3SLgllfdJMqOyXu3kK7beKMxAr8HRMtZYbBxXQ0t5HFT5LfxCeAx1a7U4tzp6487wKuMSQt6dquNkIRi51TgN++RdmQeBR/kxgFlPvXxraJJb6So6mzoERgegynGdV2SnjzUUbZvWAdLcWdjT5ECjhLDUcZnRvPe9bI5M5JH+5l1Lk3JyxJRS7l+qfkmq60ZkuIqhVvaN+lprfPQbLR5uDd5kJMMd3VK/j7zQyulcqalOs8nadm0dOi71ERW5mZSvmvlGICy9Q5dVt7TKHrJ+PZtjNOWrbBl1Z/1sd1ZrEkbK802wySOpzPc955LFGRktkfMq96X9mOSf2JM5aVIAkAgxJqxrxONlQUprbY/Y1DW3Y+yTe7rcj0hw0zVAAIUFp/MFH1+ecD4vjZKupoFnOBTEBwscRcPqiVWLlLIqb827I2My9U7msAjEST8HxbWrl4EmoUjqfkMhqD2qrs+Yepzuv0tlDvS5VcDIlC0LpozxqGDNmJKLL88Icscigg6XTK5HF3qJtBYWtZuhbt4ihFvO5ENXrlFa8t9pYz4qziNzrM9HgeTNoyatEWPC2WVDVaw8IezVbb2LPTO1QtniZp0AM0fENtAw7J4S7q2rPTDiMLbXr4Ne+VImj2EuOkHk4KfC3cGs7Qe1wW79elK8GuUoNzAf5xkXYZePtXhyh7udE9uD6uzR0dCwLt2dbNa36VNRVMnU2fSnOiEUP40osTh7tF3wm/D7sb/3wWunzIdjkAoO+T8mBE44B+Dh+Rkvl0e8XK54eWScFgJHzp7oIKwp8xmraPX1Dk4Ig5PFpVfe+v6MimdP1+OaGeuHvRZ3wEl7ETqZlytQ+xvFYDSyRfTfSrBFp6VKeUqLyPzrukZc1yXvZNgxoIEuejy7HnSfzSptlUtTxT1HWV27lPWXludomQTdxdZ9CLvuq5OWhrfv6wY9f89/NPPKXHeT9HddkzNniV3DWzKhraPV7UqfundFM+qcmo7iX+XYZG4bJiZrlBCqToC6tl0leuDPY1nXMDN9KuW6sanyh0oBLuMD6I5232avO9kQ1U0+6eHp9Gcm43u5oXPZt6OGI/M4ft7F9zpeuoHh9cW1CWx7jXvpnu7lf5/xYPe9+kMdG67zXhJk6vVutE9fblovpCtZUFOSTRdeckmSDbMUJbR3vSVxqgl7RKDKb1n71+kp3obJPX1u01icvewZTgyAwoLzwyO+/uoDLg8nEElHA4kSX43FkQg9pVENmvbi1eqB4VxGlBIURugtgr5flQF3/eTtfnsKyey5R7hNKQ1FcMATeBb/vYq+/A5ICIu5ToNlkdlxKziTzFO/6D0kixDvOmfUwZ1mccXbgnbJFc5EtQAg13oUhptpTUhIdqPVyJoxT/hCts5xaz5s9cs33vzrMPp3mBkhh9SpotUwFWWqisuMhiY02ePmCUBvN8L31PnMuSon/S6vT6teXTMHzczA1Hd8ZRpAL1hgvvb0RVQU9kHpbgbcuWqjx42oGggdsFmPvcFo+9srZ9kPazAx67nrpwdFl5rMXylkWFTmxiAy90ganIqBM8xX25btr6I5U7x7WulDzWY8T+E9BqM1Ysdnk3cAuUtxBYgTziHh5eUFn55e8Onpik9PKx5OwPUGrGCcS+2VICqKRrEubWsIcvW893ZNP9sz+afzlLqdkmLAbY7JhKoKDrXOEqlgCjELfyZGoZVmvG2furVTzTk5Y5gS4/UacV0Za2pehKSdT/fI34Ahwr5TsDybsX2VWId2qYWb+kRpq2MQE4tCWN7S4rrbpGF2WX+i2pAaTKVNB7dKWu1v5Zyh+ee+7+g3NtoLqDuL9oqmHielj4Yu1XkHCdNkll3WheqOUm/AjDiOepCFGu9Qx738NpEf3m+98eKVFd2prlNPj+BUpYfFR3eQ1bBSw6sHWVtCFxpFoOH31tHWGl6+PuJBr60pXVQjsD3SVfVIOz/jWPV1Km/TwxDDWJnyutOYaHRy60pr25nP3dj36hDaLSu40mcxgtlwksSglJAIJTqpb39qPBZmTJLFn1nuYI0MnPPveWeRmbHeIq7XFUQXlHDaIHPCaijh/RGSHvzoncUKhGW54PLwEX/0sw94eQwIlBAj4XwGUpC7P86MvBuU36LWi6DPAN3arZKM1RAgZZyGwJz70WaEag+wDqRjjMgfCqlbmJSNmmSWYmvITbaIN555irXH0AoOqExMF2pRME39RBIbLt6e9moUQj37k5doqcOHH0ecm5DPf2Wkc3OcMa+0YMe/jJUVytSVA8o9cTMBZQ02dPPwY2HwNHFtM2+wOkazz+TtZ3M1xsTos3Szx9myD9rdvBl+nsHafx89nE5rmbd4RlevWOTKm3ZILCHFfFCWR4/cSP/M+UwIhp+a9u+PIQ/tqXCuhuEMtjObeQLVpeHEZp3lPzs61LUSkC9O59XQkyoZDj0RFWNLjXXvcvm98GMMxa4m2Im7h0cE4/qakOIbTuGKl8ev8bPnF3z/5Q2/fP6MT88B364RbxF1ETeImmYF8Wwg2LOFQB9dWUQjo54xhr8+27C+2NvzPxnoyllygo/CzVjPsmYHB41Oox7q7mo9Hy4yDPiyJnyJwBvnUO98xEMWhd6gWzG6h/H4zFnnZMvPjEx5L2Wlj7ktRTlsUs7FJ9xSxG2NdfegTLKEspbd3MLjt5VN/a0o+bq7nw0ZU6iuUWv85QHujbRZO1b57f9ZxyBhyaNSx1Y3AYgkBYEdXWsoenff9vjOcay4eRE1fX33HJV9/xtcTB39+CVmSeoCgNN4xYKVzyHotW41eY7Xtu3TLCeD18fyt0dLKo/Nc6K2/S3ZRXmN3FvbSpOcuN7pavCnYsSNc1ENWHVQjnqv8sMtXaXMTWpzpwy6c9MPPZvIkNwYMQ+WOl+Q+xUNP9ojywyvtK2tjLgC65rKPbMpiUMhgvB6jfj85QbCs8FLqyR1Nf4k8JMaixROWM6P+OrjI54fTzifAq5vyB6kACwLwiqXFXsKKDAuupTkMHRhHKrMUfsux5gzgYVhV6Q3qNTbQoNAUMOqxWlX7ycLSA0VEPmLUwWDGQ82C6UBrmdCCs9VvSsL1oaBmzZ0EZuqSgkVGCVjGAhlH1jlTPEeqSKjpD0q4NXgfh+ZqlCsIPMsMqV0VOR2WYhVKajeuHoQunj7PCZadNZuh8LoGoUpsXpBm1ez0mwrTc7cccGvvDYzRKkmfaB2BgGz9LWcJPfAUFfPJC2D7fts157HLEvPTNjL0MNOONQ66rnS8bdt8AzY+wbAqIx7YwwtZdct2WslqXEEaLjhXkhmhRTfhMGfsl7pDcWUjxSszTrr1sDWGLX0AMB4ZBvayAXm6vbIu5eOtqtX0+tDfs/B0TMW38OHPcfCnvf7sdma64F/EyGuEUgRATeEkPDh6QlfPT/iq8eAT48LXr8wbldJ9iSRkywWg02YQ9agonaAHBqydCtJjKwjEEAzgynbC57ibWmo++WOsqOyyvL8pqzhscx1FTFsfgEUemsohOsOKxEjBM4h0IRrJLyuwFuUc9WsYVg0yrotqA5oKvyg8hBGnYYaErs9PlTG4p7bWQ3EmJIog0l0TiJdj6o/oAhHI7ab9vXvLaebFVQ6rgzTd6d/FmZywTMU9XlKqRqsqoewUy9n3Q6jrJ7JHXELTyI7zJfqVJnLETt2nmzcguaMcK9LDDwQ7Tx0crl/T3TgNhtpoQun7DgvTpmyKHOd3G3YGLYinyrDGJQT4fT6Sx2vdmxmYynPRNGSJuvc51FFPR9Phrd19Td9bX/fYyj2sDXfMhdcnFgh30uu+nNJIlnKGx20baVgbvkG5THmvNZDTogZU0LMO9IxRcSUIOl6A+KacLuuaM9pJ7BVYk07Hm/eC7vCULc8MQUJAKAF4XTBx6cznh5POJ8XvH2JIvpIBGOe9rtqV22Tu4WiC7LiWJXrNPVC9Th7TEt+r88b5mtk9xbujHrAvLzX2yjN4tmvCOWXVJsZJ7tT0OpCNr87kLIR6oNhLh2Bz5TwASf3d2cCvPezsKRuTKtBXJXx6mHLAUvMQyKe3Xib+Vb+rja6h26lR4z9Mg6Be20XZ4Z61Q2J9Mo8tClSIYTmGdj2gAuS1fCvbc7mtE8Y5eHdC4Hm+07yngnLHrfRQBphy8gY6EjfKQ+Mooj6J5VB3qFAZFrxmHHpSxaPtW9uTzKO5kcjFEa67XBnKhkavbrbeas4jJtflY5UBLXeaPnHfYruMoSUx6SbF6toKE+fzNk9WeT2cGP+dxmQg7NmUhcR0gogRgBXECU8Xy74+HTBp8eAj48Lvj1FfAkQT3qdnlx3NpQykynGyUQh9A2C2afyLoZ1ZDVK3KT/w1h7Y9YppI0Bq0xUeSkZEUWd/lCMRdNvzvVnBSpA5FQIAdckhuLbKsaWVFOdnUQ755jNH9SvK8VIy400MDeilfeRGQBufgejJK+ImsiGi8grbYs8UCBo1EDv/LvL94xCr3VW56PpH2Mo2/KWdpySCaH0FHY5ixQmdJv/Zi58wpM57vrnTvYows0ga9/HNdSvr35t9e3Nymi5dp58/HVdSyg42wqmMtWOrZ3vew4xqxvbvgx8jVRd8MPXvb6ObVUdyaujp03r/LT41FfJzF9o6vHab+dlLiNm72/1zdOVKOOnO5vJZuc3fZvVeR9kgy3lsN+YEyC1txUQYmLcbgn2qL+GzldJYB2J+/rswU+S4IYBucsDAYEe8OlxwcfnBzxdzvg2ruAUJQw18xrOg7ylcOozogATYdMQv9WwVLmWjFPjYhs9cPJWD71BUOuvbRbi7l9XLu9mZGXojlfjjcmeit6QskvICs92YY1hIOVvxae0P5YrdUAXeaqGSsaj7+MegrPM2GP8rfdoXIy2nMo437M4wSFbTipoYcblhyxcWWxhooBshwPea2+KUzLKk/Ob0mFh/8Yo4Hzmo2j2xHk3nouG6hljFuepEvQDx/AeeEr8HmWvryMxO6u6woh/PiuY/xbQ/UXOY5dnwqXBcY1kTbjxepZPw1/29U8VtFovuI5XO1fKZ6oR4EU9zkHGIoS8ZDo2QMV4NQ9zmJSkR0/aMcn6mfEhCkXFVVxVnBHkCgwKARQI8fV1HIGZ0uI9m9EmqdI/2Zl7H6k1wCkh3oC4viHFzwBueH684OuXC375IeBnT4RvHoDvF2Bd+6YimGua/kqHzSm2Bl+XDm24MOZZU+11VVvwLqNcGugUd92ps+VILaihfhXHysfk3VwmZeqLGnJHuEbgyy3h803COLGcgAAkqntNW3zM70cfEWOPM7xvTEQJD8ZghDFuVIlPsqsY886ikdPI7FtvgRQ55icJ2YYAogVEcvef9EWzLy9Qx3nhScW61/ayrkRFmAwtMOuVDGOGdP0Mk+dZGTTPRz1iCiR0z9QZcWzM2sEBcB/eK3f6d7TdwmvsuqWQv9Y7Bz39R8/p6U6efR5Cayx677eGYsvveoep/kHw+75PR7if42KsI+cagUPLG/V4fWfmaVSU68DY6IvnkOuNXUYbal3KUla1loAU/Pa32tau664qg7PBmJAArOsNazwhsqzrGBPebozrmgrPZY6wjjO/4XaM9sAuY3GPgpg4IWLBeXnA08MZH1+e8PL8iMSfkWIEQxKM5Eu3BqPHa1M6AwRzgSdDGASdlmoMoOrFszThHjH22aT6sv1iADT+viaC2euJ6Zvf9G5IS40Rot4xOITs4mzKCaqx3NfXg8ivNsENkC+jDf7i8vroQViWqXLchBlMFrY8H8NQmnLcPbMCMGu+xJwXUzUkGyXHKo6dE6IPtfXodY9iMhPwxStpfiu0SeNyb5Rc+9zReMlJN63GRhUocwbbhwDt9cpZwT0rMwOPOY/rtNXw9zG9XkHtRkz1NB2XZv21fSh4YegioB6xfjyMYtR7GFi1ZYx9bL3pNMzpFrBts6ubTH/tZ9OP/OGs+Eah13PgYmy297IWJwuzGS8uQ5Q4iU2eyD1CMOM/Pa1aPtLfL+jRZqlHFkQjc9A5AWbvFzJPwLq+4Xb7HoyI8/mCD09n/PKrR/z85YzfPEd8fgV+++ZRi4wNE5o7SZuTdxs8tx1rf7fJlhuul8rd7cHO4xSI5J5gdPNCsqudLY260uxc2PEF3F1wAiRFPScQJ2imqGsEXlfGl+uKGAlijkh2VLp7XrdroIM6v1ZiVnPKK9tUWbxPOgYEUD4uwFyceRHAmncVRbHJRtpQH6BX/iDf6aZt27XrOhEsbbj91HWoa6Hujs3qlGct79VNA/vdyphhXQ8GdDWQgNjU0bdt6SyG1EavZF2mn5WeZ9zVZyd6pL7b8gB/7VmU4H4Lw6+AvapBrkmw61DH3pubuV4y8kD/nVGeyvuxGEdAq6twYR6tnmANqal+5wjPbVvAO8rTzoP219Pte15Y66u0do8u9F7h4tbLQozlR2lfFmy5SsXTZyyITVGHg43XjCEn1yWTNsCISLyC+QEUFvk9Sijq5UygAKSYEAJbrjuCTOUgC7fgJzuzKHREoLDg4bzg6fGMy0Vyv7EuXpqZKxUGQdd1Sn/rJzexv4AEN2fIJoioouB6OibEZ9u1TBNkAjgzw+9xsmiUejfc3Npnj5lteYXU5PEFf6eM6Q6GU/eWQew+d5+279mx6xlxwchZ8E3deaXJLm0VgCUkmMe2ilCx8whRxu346jmYNhwwv9dt3Xh02j/fGguPoZX2jMLVvAPzm3ne/63M3n8+wmzN7emPZ8y7xiT8fs/WVq2j7cs9aA0w+8MEZypkUQSKB8VYcAwt6ugiZ9IehFhNuDWeBSmmVa4/FFzu01Pfry2jv8d/Kty0v13Iv45RIGrOjXuKYt+OZs4s1+DsWCv2/TI2wc9WOXtW+9aPZ0vnPd039REBSUyVlCLWdAUTIwTCw/mED89nvFxOeH484+kC/Ba3Fn+pFKB8P6BdBx2+cx57X2ns+972fwxV27PWa1lTRufQsK1enpU10NOl8vAsa8lMD+Usp7rzFZMke1gjg5M6LnI/ugzMM7zl78GsqJ9Zp9Hv6lTQMdk2ovMn14FoIpJy95m5ZPBm1tfM2peFUXmQY0zaPrV0YnDN36zx2DiwHH5gFXCVn9pGa7wUJBr6tbpKSh0NqDzNCn+907J91/at76dWZGyGJru0jOD9EM4Z9DKqxd/XBdHhXcbahOqioZ1+3FscPP3IGkgebi2OvhHk0a+uy6Yso3FOjiTvyxTPgNYylqZ6Y8ob53v97OvW9rfeafUZf2699V12LxPKRgIrX9CqKCc0csZkW2ch1ISeygy4OLVlyGSXkZllIyRJSHOMDDxQKd/WOo5PD3v005/QWBQCWGjBwzng8fKAy+UBIaixWIUIQcMLfXxZFq4AAALXSURBVCHeT3pK0Uy+7FYhtHHMnG//tVmhbB2uckpO7L+jiHnDaBnBUDZz/bbOcSFpf5pzGlvju1nCf4e5Cs7UKbCmM4PiRwg1EYOpr/y+oZRteYfMExj7u3m/rdtfYF77usZsWK8ai+V8kKEvD98aitTh7g0bMvPcMTGzsfGFAYb75gpn1b9VgSrfd1IHyY6xtjdTenpjjcgPKe77N1Z0HyXPUPSMgFYI+5VvC5Zxh3+OE5p57fQgW3J43ngdcX+85Hcep9BdqmN44Q8BaWtUamy9U8EChoboNVl2M19XOokx5nrSMH8oY5PASb4TgGWnItfg4/H2vr+o1NKv/3ZtZfw6OrpnOC0EJI64pRUoxmIQY/FpwcvTA54uBCJzcXJuGuZeLNtGk2zJ4DYqqPrR09T8XQuDufSOORAyMjtLod2ZkvpH5bZ5z641fcdkLA8gICxy9i3/HpmxMiPGui5JW3sHO8yN2t6MfWwUyvest2zIzF7t+NyIFUN2bJbyPmOkSQXPeVMN1LadsvOejbjmGoABze0B9QyCRl4kHo1cCs36ExtqDJG+h1OgEnzn8tsiSzDO7had9w6uwTBGR89alyMr1SFWDMXBcFbK7eutY9D2aTIeTp1Cg+3xpy29uBlv5SFBMhunVGVUlcH1e6+79/h4ehfny+sHfkXUzJfLt5gB8vTiViZ7NNTiO/zstkmZ3sRWLFxOxqnEvhvzjrYNtNlvalQK3eaInVy3RmVyYmhCSmZGjCnzBtElTCu5rZaGtzakZkA/VNk44IADDjjggAMOOOCAAw444G8vbKcOPeCAAw444IADDjjggAMOOOD/SziMxQMOOOCAAw444IADDjjggAMGOIzFAw444IADDjjggAMOOOCAAwY4jMUDDjjggAMOOOCAAw444IADBjiMxQMOOOCAAw444IADDjjggAMGOIzFAw444IADDjjggAMOOOCAAwb4v/8NTr4VX/IgAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "model_local.show_predict(img_path)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "WoGnT0H5aGfL"
+ },
+ "source": [
+ "# Validate\n",
+ "Validate a model's accuracy on [COCO](https://cocodataset.org/#home) val or test-dev datasets. Models are downloaded automatically from the [latest YOLOv6 release](https://github.com/meituan/YOLOv6/releases). "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "hFldWvR9aWUx"
+ },
+ "source": [
+ "## COCO val\n",
+ "Download COCO val 2017 dataset (1GB - 5000 images), and test model accuracy."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 49,
+ "referenced_widgets": [
+ "8cc18eb575624cc8a3a2c235e9705d6c",
+ "9ad7290d97ea44488747aae321677109",
+ "2cdd2bb7d83b4f9db87ae900bdcf342d",
+ "2e5401125b7248e3a081e3f57a571064",
+ "74afade5e66049249b04ccdf99ac5bc3",
+ "9eee5d30302b45a7b172846c58c18782",
+ "84d9721bb8bd41819f5f02fdd808f35c",
+ "703c9ed6ee7446d3a8efc3e20ece6dca",
+ "51b7fa10e42349998974eba12fa06458",
+ "4cedeada524642d6ac56a8d383ecf1ce",
+ "6875d51042d54c978a81048a43268dbb"
+ ]
+ },
+ "id": "l2SdQABjYvs6",
+ "outputId": "58a26eef-e359-4a30-8e53-70fc6ef99a30"
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "8cc18eb575624cc8a3a2c235e9705d6c",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0.00/780M [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Download COCO val\n",
+ "import torch\n",
+ "torch.hub.download_url_to_file('https://ultralytics.com/assets/coco2017val.zip', 'tmp.zip')\n",
+ "!unzip -q tmp.zip -d ../ && rm tmp.zip"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "nNDGzITd2Ys1",
+ "outputId": "6e079132-b313-4f48-9b7f-6fbbe24bf6c1"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Namespace(batch_size=32, conf_thres=0.001, data='data/coco.yaml', device='0', half=False, img_size=640, iou_thres=0.65, name='exp', save_dir='runs/val/', task='val', weights='yolov6s.pt')\n",
+ "Loading checkpoint from yolov6s.pt\n",
+ "\n",
+ "Fusing model...\n",
+ "/usr/local/lib/python3.7/dist-packages/torch/functional.py:478: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:2894.)\n",
+ " return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]\n",
+ "Switch model to deploy modality.\n",
+ "Model Summary: Params: 17.22M, Gflops: 44.19\n",
+ "Val: Checking formats of images with 2 process(es): \n",
+ "0 image(s) corrupted: 100% 5000/5000 [00:00<00:00, 6175.56it/s]\n",
+ "Val: Checking formats of labels with 2 process(es): \n",
+ "4952 label(s) found, 48 label(s) missing, 0 label(s) empty, 0 invalid label files: 100% 5000/5000 [00:01<00:00, 4264.74it/s]\n",
+ "Val: Final numbers of valid images: 5000/ labels: 5000. \n",
+ "2.7s for dataset initialization.\n",
+ "Inferencing model in val datasets.: 100% 157/157 [01:21<00:00, 1.92it/s]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "Average pre-process time: 0.14 ms\n",
+ "Average inference time: 5.91 ms\n",
+ "Average NMS time: 1.18 ms\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/val/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.40s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=4.36s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=62.64s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=11.41s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.431\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.620\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.462\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.239\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.474\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.588\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.346\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.557\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.601\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.402\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.655\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.764\n",
+ "Results saved to runs/val/exp\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Run yolov6x on coco val\n",
+ "!python tools/eval.py --weights yolov6s.pt --data data/coco.yaml --img 640"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "bO6NirzdeITA"
+ },
+ "source": [
+ "# Train coco data\n",
+ "conf: select config file to specify network/optimizer/hyperparameters\n",
+ "\n",
+ "data: prepare [COCO](http://cocodataset.org) dataset, [YOLO format coco labes](https://github.com/meituan/YOLOv6/releases/download/0.1.0/coco2017labels.zip) and specify dataset paths in data.yaml\n",
+ "\n",
+ "make sure your dataset structure as fellows:\n",
+ "```shell\n",
+ "├── coco\n",
+ "│ ├── annotations\n",
+ "│ │ ├── instances_train2017.json\n",
+ "│ │ └── instances_val2017.json\n",
+ "│ ├── images\n",
+ "│ │ ├── train2017\n",
+ "│ │ └── val2017\n",
+ "│ ├── labels\n",
+ "│ │ ├── train2017\n",
+ "│ │ ├── val2017\n",
+ "│ ├── LICENSE\n",
+ "│ ├── README.txt\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "Hidcp3AXuCkV"
+ },
+ "source": [
+ "## COCO datasets"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "p4N3Bv84qbkP"
+ },
+ "outputs": [],
+ "source": [
+ "# Download coco datasets and need about 30mins.\n",
+ "%cd ..\n",
+ "%cd coco/images\n",
+ "!wget http://images.cocodataset.org/zips/train2017.zip\n",
+ "!wget http://images.cocodataset.org/zips/val2017.zip\n",
+ "!wget http://images.cocodataset.org/zips/test2017.zip\n",
+ "!unzip train2017.zip && rm train2017.zip\n",
+ "!unzip val2017.zip && rm val2017.zip\n",
+ "!unzip test2017.zip && rm test2017.zip"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "JpcC_L6whcxW"
+ },
+ "outputs": [],
+ "source": [
+ "# Before running, you need to make sure you're in the YOLOv6 root directory.\n",
+ "%cd ../../YOLOv6\n",
+ "# Train YOLOv6s on COCO for 30 epochs\n",
+ "!python tools/train.py --img 640 --batch 32 --epochs 30 --conf configs/yolov6s.py --data data/coco.yaml"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "az4pa71UuObL"
+ },
+ "source": [
+ "## COCO128 datasets\n",
+ "You need create a new file `coco128.yaml` under the folder `./data`.The details are as follows:\n",
+ "\n",
+ "```\n",
+ "# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]\n",
+ "path: ../coco128 # dataset root dir\n",
+ "train: images/train2017 # train images (relative to 'path') 128 images\n",
+ "val: images/train2017 # val images (relative to 'path') 128 images\n",
+ "test: # test images (optional)\n",
+ "\n",
+ "# Classes\n",
+ "nc: 80 # number of classes\n",
+ "names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',\n",
+ " 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',\n",
+ " 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',\n",
+ " 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',\n",
+ " 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',\n",
+ " 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',\n",
+ " 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',\n",
+ " 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',\n",
+ " 'hair drier', 'toothbrush'] # class names\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "coco128 = \"\"\"# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]\n",
+ "path: ../coco128 # dataset root dir\n",
+ "train: ../coco128/images/train2017 # train images 128 images\n",
+ "val: ../coco128/images/train2017 # val images 128 images\n",
+ "test: # test images (optional)\n",
+ "\n",
+ "# Classes\n",
+ "nc: 80 # number of classes\n",
+ "names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',\n",
+ " 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',\n",
+ " 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',\n",
+ " 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',\n",
+ " 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',\n",
+ " 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',\n",
+ " 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',\n",
+ " 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',\n",
+ " 'hair drier', 'toothbrush'] # class names\n",
+ "\"\"\"\n",
+ "\n",
+ "with open('data/coco128.yaml', 'w') as f:\n",
+ " f.write(coco128)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 49,
+ "referenced_widgets": [
+ "11c01641cf274e118221dbbdc2f3afa4",
+ "693b2ece47844511905ca94736c11fdd",
+ "2adc2664afd5404da77a1bfede169b95",
+ "7566d05f122f4281825838145d488860",
+ "7b1052fd864b4e8da4941a8647ef620b",
+ "fe4d2e0d47604eb08e7f4743dc0e6826",
+ "5baa548a06294dd4a4a8a3330189f4cd",
+ "2888af90fe40440f9f03fdcafd49da75",
+ "d976baa0f3374eb4b5278e10eced2dfc",
+ "11378927dc5e440080fd0300e5c301ed",
+ "4cafdf53ddcc415680777bbf54399064"
+ ]
+ },
+ "id": "qQAhslIXjjGX",
+ "outputId": "5be3f8bd-1f80-4844-ee0e-aeb212ea5d35"
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "11c01641cf274e118221dbbdc2f3afa4",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0.00/6.66M [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Download coco128 datasets\n",
+ "torch.hub.download_url_to_file('https://ultralytics.com/assets/coco128.zip', 'tmp.zip')\n",
+ "!unzip -q tmp.zip -d ../ && rm tmp.zip\n",
+ "\n",
+ "# torch.hub.download_url_to_file('https://drive.google.com/file/d/1HICm-rrsdp89GNpFbzcwksHRtDx10McK/view?usp=sharing', 'tmp.zip')\n",
+ "# !unzip -q tmp.zip -d ../ && rm tmp.zip"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "zHfmsqelioX_",
+ "outputId": "6912bd42-2fcb-4b53-9b89-2efc77b38b91"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Using 1 GPU for training... \n",
+ "training args are: Namespace(batch_size=32, check_images=False, check_labels=False, conf_file='./configs/yolov6s.py', data_path='data/coco128.yaml', device='0', dist_url='env://', epochs=100, eval_final_only=False, eval_interval=20, gpu_count=0, heavy_eval_range=50, img_size=640, local_rank=-1, name='exp', output_dir='./runs/train', rank=-1, resume=False, save_dir='runs/train/exp', workers=8, world_size=1)\n",
+ "\n",
+ "Train: Checking formats of images with 2 process(es): \n",
+ "\r",
+ " 0% 0/128 [00:00, ?it/s]\r",
+ "0 image(s) corrupted: 100% 128/128 [00:00<00:00, 3223.54it/s]\n",
+ "Train: Checking formats of labels with 2 process(es): \n",
+ "128 label(s) found, 0 label(s) missing, 2 label(s) empty, 0 invalid label files: 100% 128/128 [00:00<00:00, 3653.13it/s]\n",
+ "Train: Final numbers of valid images: 128/ labels: 128. \n",
+ "0.2s for dataset initialization.\n",
+ "Convert to COCO format\n",
+ "100% 128/128 [00:00<00:00, 32588.98it/s]\n",
+ "Convert to COCO format finished. Results saved in ../coco128/annotations/instances_train2017.json\n",
+ "Val: Final numbers of valid images: 128/ labels: 128. \n",
+ "0.1s for dataset initialization.\n",
+ "Model: Model(\n",
+ " (backbone): EfficientRep(\n",
+ " (stem): RepVGGBlock(\n",
+ " (nonlinearity): ReLU(inplace=True)\n",
+ " (se): Identity()\n",
+ " (rbr_dense): Sequential(\n",
+ " (conv): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " (rbr_1x1): Sequential(\n",
+ " (conv): Conv2d(3, 32, kernel_size=(1, 1), stride=(2, 2), bias=False)\n",
+ " (bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " )\n",
+ " (ERBlock_2): Sequential(\n",
+ " (0): RepVGGBlock(\n",
+ " (nonlinearity): ReLU(inplace=True)\n",
+ " (se): Identity()\n",
+ " (rbr_dense): Sequential(\n",
+ " (conv): Conv2d(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " (rbr_1x1): Sequential(\n",
+ " (conv): Conv2d(32, 64, kernel_size=(1, 1), stride=(2, 2), bias=False)\n",
+ " (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " )\n",
+ " (1): RepBlock(\n",
+ " (conv1): RepVGGBlock(\n",
+ " (nonlinearity): ReLU(inplace=True)\n",
+ " (se): Identity()\n",
+ " (rbr_identity): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " (rbr_dense): Sequential(\n",
+ " (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " (rbr_1x1): Sequential(\n",
+ " (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " )\n",
+ " (block): Sequential(\n",
+ " (0): RepVGGBlock(\n",
+ " (nonlinearity): ReLU(inplace=True)\n",
+ " (se): Identity()\n",
+ " (rbr_identity): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " (rbr_dense): Sequential(\n",
+ " (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " (rbr_1x1): Sequential(\n",
+ " (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " )\n",
+ " )\n",
+ " )\n",
+ " )\n",
+ " (ERBlock_3): Sequential(\n",
+ " (0): RepVGGBlock(\n",
+ " (nonlinearity): ReLU(inplace=True)\n",
+ " (se): Identity()\n",
+ " (rbr_dense): Sequential(\n",
+ " (conv): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " (rbr_1x1): Sequential(\n",
+ " (conv): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)\n",
+ " (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " )\n",
+ " (1): RepBlock(\n",
+ " (conv1): RepVGGBlock(\n",
+ " (nonlinearity): ReLU(inplace=True)\n",
+ " (se): Identity()\n",
+ " (rbr_identity): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " (rbr_dense): Sequential(\n",
+ " (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " (rbr_1x1): Sequential(\n",
+ " (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " )\n",
+ " (block): Sequential(\n",
+ " (0): RepVGGBlock(\n",
+ " (nonlinearity): ReLU(inplace=True)\n",
+ " (se): Identity()\n",
+ " (rbr_identity): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " (rbr_dense): Sequential(\n",
+ " (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " (rbr_1x1): Sequential(\n",
+ " (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " )\n",
+ " (1): RepVGGBlock(\n",
+ " (nonlinearity): ReLU(inplace=True)\n",
+ " (se): Identity()\n",
+ " (rbr_identity): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " (rbr_dense): Sequential(\n",
+ " (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " (rbr_1x1): Sequential(\n",
+ " (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " )\n",
+ " (2): RepVGGBlock(\n",
+ " (nonlinearity): ReLU(inplace=True)\n",
+ " (se): Identity()\n",
+ " (rbr_identity): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " (rbr_dense): Sequential(\n",
+ " (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " (rbr_1x1): Sequential(\n",
+ " (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " )\n",
+ " )\n",
+ " )\n",
+ " )\n",
+ " (ERBlock_4): Sequential(\n",
+ " (0): RepVGGBlock(\n",
+ " (nonlinearity): ReLU(inplace=True)\n",
+ " (se): Identity()\n",
+ " (rbr_dense): Sequential(\n",
+ " (conv): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " (rbr_1x1): Sequential(\n",
+ " (conv): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)\n",
+ " (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " )\n",
+ " (1): RepBlock(\n",
+ " (conv1): RepVGGBlock(\n",
+ " (nonlinearity): ReLU(inplace=True)\n",
+ " (se): Identity()\n",
+ " (rbr_identity): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " (rbr_dense): Sequential(\n",
+ " (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " (rbr_1x1): Sequential(\n",
+ " (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " )\n",
+ " (block): Sequential(\n",
+ " (0): RepVGGBlock(\n",
+ " (nonlinearity): ReLU(inplace=True)\n",
+ " (se): Identity()\n",
+ " (rbr_identity): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " (rbr_dense): Sequential(\n",
+ " (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " (rbr_1x1): Sequential(\n",
+ " (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " )\n",
+ " (1): RepVGGBlock(\n",
+ " (nonlinearity): ReLU(inplace=True)\n",
+ " (se): Identity()\n",
+ " (rbr_identity): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " (rbr_dense): Sequential(\n",
+ " (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " (rbr_1x1): Sequential(\n",
+ " (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " )\n",
+ " (2): RepVGGBlock(\n",
+ " (nonlinearity): ReLU(inplace=True)\n",
+ " (se): Identity()\n",
+ " (rbr_identity): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " (rbr_dense): Sequential(\n",
+ " (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " (rbr_1x1): Sequential(\n",
+ " (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " )\n",
+ " (3): RepVGGBlock(\n",
+ " (nonlinearity): ReLU(inplace=True)\n",
+ " (se): Identity()\n",
+ " (rbr_identity): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " (rbr_dense): Sequential(\n",
+ " (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " (rbr_1x1): Sequential(\n",
+ " (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " )\n",
+ " (4): RepVGGBlock(\n",
+ " (nonlinearity): ReLU(inplace=True)\n",
+ " (se): Identity()\n",
+ " (rbr_identity): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " (rbr_dense): Sequential(\n",
+ " (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " (rbr_1x1): Sequential(\n",
+ " (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " )\n",
+ " )\n",
+ " )\n",
+ " )\n",
+ " (ERBlock_5): Sequential(\n",
+ " (0): RepVGGBlock(\n",
+ " (nonlinearity): ReLU(inplace=True)\n",
+ " (se): Identity()\n",
+ " (rbr_dense): Sequential(\n",
+ " (conv): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(512, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " (rbr_1x1): Sequential(\n",
+ " (conv): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)\n",
+ " (bn): BatchNorm2d(512, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " )\n",
+ " (1): RepBlock(\n",
+ " (conv1): RepVGGBlock(\n",
+ " (nonlinearity): ReLU(inplace=True)\n",
+ " (se): Identity()\n",
+ " (rbr_identity): BatchNorm2d(512, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " (rbr_dense): Sequential(\n",
+ " (conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(512, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " (rbr_1x1): Sequential(\n",
+ " (conv): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(512, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " )\n",
+ " (block): Sequential(\n",
+ " (0): RepVGGBlock(\n",
+ " (nonlinearity): ReLU(inplace=True)\n",
+ " (se): Identity()\n",
+ " (rbr_identity): BatchNorm2d(512, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " (rbr_dense): Sequential(\n",
+ " (conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(512, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " (rbr_1x1): Sequential(\n",
+ " (conv): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(512, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " )\n",
+ " )\n",
+ " )\n",
+ " (2): SimSPPF(\n",
+ " (cv1): SimConv(\n",
+ " (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " (act): ReLU(inplace=True)\n",
+ " )\n",
+ " (cv2): SimConv(\n",
+ " (conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(512, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " (act): ReLU(inplace=True)\n",
+ " )\n",
+ " (m): MaxPool2d(kernel_size=5, stride=1, padding=2, dilation=1, ceil_mode=False)\n",
+ " )\n",
+ " )\n",
+ " )\n",
+ " (neck): RepPANNeck(\n",
+ " (Rep_p4): RepBlock(\n",
+ " (conv1): RepVGGBlock(\n",
+ " (nonlinearity): ReLU(inplace=True)\n",
+ " (se): Identity()\n",
+ " (rbr_dense): Sequential(\n",
+ " (conv): Conv2d(384, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " (rbr_1x1): Sequential(\n",
+ " (conv): Conv2d(384, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " )\n",
+ " (block): Sequential(\n",
+ " (0): RepVGGBlock(\n",
+ " (nonlinearity): ReLU(inplace=True)\n",
+ " (se): Identity()\n",
+ " (rbr_identity): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " (rbr_dense): Sequential(\n",
+ " (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " (rbr_1x1): Sequential(\n",
+ " (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " )\n",
+ " (1): RepVGGBlock(\n",
+ " (nonlinearity): ReLU(inplace=True)\n",
+ " (se): Identity()\n",
+ " (rbr_identity): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " (rbr_dense): Sequential(\n",
+ " (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " (rbr_1x1): Sequential(\n",
+ " (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " )\n",
+ " (2): RepVGGBlock(\n",
+ " (nonlinearity): ReLU(inplace=True)\n",
+ " (se): Identity()\n",
+ " (rbr_identity): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " (rbr_dense): Sequential(\n",
+ " (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " (rbr_1x1): Sequential(\n",
+ " (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " )\n",
+ " )\n",
+ " )\n",
+ " (Rep_p3): RepBlock(\n",
+ " (conv1): RepVGGBlock(\n",
+ " (nonlinearity): ReLU(inplace=True)\n",
+ " (se): Identity()\n",
+ " (rbr_dense): Sequential(\n",
+ " (conv): Conv2d(192, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " (rbr_1x1): Sequential(\n",
+ " (conv): Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " )\n",
+ " (block): Sequential(\n",
+ " (0): RepVGGBlock(\n",
+ " (nonlinearity): ReLU(inplace=True)\n",
+ " (se): Identity()\n",
+ " (rbr_identity): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " (rbr_dense): Sequential(\n",
+ " (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " (rbr_1x1): Sequential(\n",
+ " (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " )\n",
+ " (1): RepVGGBlock(\n",
+ " (nonlinearity): ReLU(inplace=True)\n",
+ " (se): Identity()\n",
+ " (rbr_identity): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " (rbr_dense): Sequential(\n",
+ " (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " (rbr_1x1): Sequential(\n",
+ " (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " )\n",
+ " (2): RepVGGBlock(\n",
+ " (nonlinearity): ReLU(inplace=True)\n",
+ " (se): Identity()\n",
+ " (rbr_identity): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " (rbr_dense): Sequential(\n",
+ " (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " (rbr_1x1): Sequential(\n",
+ " (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " )\n",
+ " )\n",
+ " )\n",
+ " (Rep_n3): RepBlock(\n",
+ " (conv1): RepVGGBlock(\n",
+ " (nonlinearity): ReLU(inplace=True)\n",
+ " (se): Identity()\n",
+ " (rbr_identity): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " (rbr_dense): Sequential(\n",
+ " (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " (rbr_1x1): Sequential(\n",
+ " (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " )\n",
+ " (block): Sequential(\n",
+ " (0): RepVGGBlock(\n",
+ " (nonlinearity): ReLU(inplace=True)\n",
+ " (se): Identity()\n",
+ " (rbr_identity): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " (rbr_dense): Sequential(\n",
+ " (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " (rbr_1x1): Sequential(\n",
+ " (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " )\n",
+ " (1): RepVGGBlock(\n",
+ " (nonlinearity): ReLU(inplace=True)\n",
+ " (se): Identity()\n",
+ " (rbr_identity): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " (rbr_dense): Sequential(\n",
+ " (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " (rbr_1x1): Sequential(\n",
+ " (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " )\n",
+ " (2): RepVGGBlock(\n",
+ " (nonlinearity): ReLU(inplace=True)\n",
+ " (se): Identity()\n",
+ " (rbr_identity): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " (rbr_dense): Sequential(\n",
+ " (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " (rbr_1x1): Sequential(\n",
+ " (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " )\n",
+ " )\n",
+ " )\n",
+ " (Rep_n4): RepBlock(\n",
+ " (conv1): RepVGGBlock(\n",
+ " (nonlinearity): ReLU(inplace=True)\n",
+ " (se): Identity()\n",
+ " (rbr_identity): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " (rbr_dense): Sequential(\n",
+ " (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " (rbr_1x1): Sequential(\n",
+ " (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " )\n",
+ " (block): Sequential(\n",
+ " (0): RepVGGBlock(\n",
+ " (nonlinearity): ReLU(inplace=True)\n",
+ " (se): Identity()\n",
+ " (rbr_identity): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " (rbr_dense): Sequential(\n",
+ " (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " (rbr_1x1): Sequential(\n",
+ " (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " )\n",
+ " (1): RepVGGBlock(\n",
+ " (nonlinearity): ReLU(inplace=True)\n",
+ " (se): Identity()\n",
+ " (rbr_identity): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " (rbr_dense): Sequential(\n",
+ " (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " (rbr_1x1): Sequential(\n",
+ " (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " )\n",
+ " (2): RepVGGBlock(\n",
+ " (nonlinearity): ReLU(inplace=True)\n",
+ " (se): Identity()\n",
+ " (rbr_identity): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " (rbr_dense): Sequential(\n",
+ " (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " (rbr_1x1): Sequential(\n",
+ " (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " )\n",
+ " )\n",
+ " )\n",
+ " (reduce_layer0): SimConv(\n",
+ " (conv): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " (act): ReLU(inplace=True)\n",
+ " )\n",
+ " (upsample0): Transpose(\n",
+ " (upsample_transpose): ConvTranspose2d(128, 128, kernel_size=(2, 2), stride=(2, 2))\n",
+ " )\n",
+ " (reduce_layer1): SimConv(\n",
+ " (conv): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " (act): ReLU(inplace=True)\n",
+ " )\n",
+ " (upsample1): Transpose(\n",
+ " (upsample_transpose): ConvTranspose2d(64, 64, kernel_size=(2, 2), stride=(2, 2))\n",
+ " )\n",
+ " (downsample2): SimConv(\n",
+ " (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " (act): ReLU(inplace=True)\n",
+ " )\n",
+ " (downsample1): SimConv(\n",
+ " (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " (act): ReLU(inplace=True)\n",
+ " )\n",
+ " )\n",
+ " (detect): Detect(\n",
+ " (cls_convs): ModuleList(\n",
+ " (0): Conv(\n",
+ " (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " (act): SiLU(inplace=True)\n",
+ " )\n",
+ " (1): Conv(\n",
+ " (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " (act): SiLU(inplace=True)\n",
+ " )\n",
+ " (2): Conv(\n",
+ " (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " (act): SiLU(inplace=True)\n",
+ " )\n",
+ " )\n",
+ " (reg_convs): ModuleList(\n",
+ " (0): Conv(\n",
+ " (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " (act): SiLU(inplace=True)\n",
+ " )\n",
+ " (1): Conv(\n",
+ " (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " (act): SiLU(inplace=True)\n",
+ " )\n",
+ " (2): Conv(\n",
+ " (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " (act): SiLU(inplace=True)\n",
+ " )\n",
+ " )\n",
+ " (cls_preds): ModuleList(\n",
+ " (0): Conv2d(64, 80, kernel_size=(1, 1), stride=(1, 1))\n",
+ " (1): Conv2d(128, 80, kernel_size=(1, 1), stride=(1, 1))\n",
+ " (2): Conv2d(256, 80, kernel_size=(1, 1), stride=(1, 1))\n",
+ " )\n",
+ " (reg_preds): ModuleList(\n",
+ " (0): Conv2d(64, 4, kernel_size=(1, 1), stride=(1, 1))\n",
+ " (1): Conv2d(128, 4, kernel_size=(1, 1), stride=(1, 1))\n",
+ " (2): Conv2d(256, 4, kernel_size=(1, 1), stride=(1, 1))\n",
+ " )\n",
+ " (obj_preds): ModuleList(\n",
+ " (0): Conv2d(64, 1, kernel_size=(1, 1), stride=(1, 1))\n",
+ " (1): Conv2d(128, 1, kernel_size=(1, 1), stride=(1, 1))\n",
+ " (2): Conv2d(256, 1, kernel_size=(1, 1), stride=(1, 1))\n",
+ " )\n",
+ " (stems): ModuleList(\n",
+ " (0): Conv(\n",
+ " (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " (act): SiLU(inplace=True)\n",
+ " )\n",
+ " (1): Conv(\n",
+ " (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " (act): SiLU(inplace=True)\n",
+ " )\n",
+ " (2): Conv(\n",
+ " (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
+ " (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)\n",
+ " (act): SiLU(inplace=True)\n",
+ " )\n",
+ " )\n",
+ " )\n",
+ ")\n",
+ "Training start...\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 0% 0/4 [00:00, ?it/s]/usr/local/lib/python3.7/dist-packages/torch/functional.py:478: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:2894.)\n",
+ " return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]\n",
+ " 0/99 4.583 3.153 11.44 1.808: 100% 4/4 [00:13<00:00, 3.28s/it]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:01<00:00, 1.04it/s]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Epoch: 0 | mAP@0.5: 0.0 | mAP@0.50:0.95: 0.0\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 1/99 3.988 2.417 7.039 2.213: 100% 4/4 [00:03<00:00, 1.00it/s]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 2/99 3.327 2.062 5.917 2.692: 100% 4/4 [00:03<00:00, 1.00it/s]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 3/99 3.096 2.05 5.933 2.913: 100% 4/4 [00:03<00:00, 1.01it/s]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 4/99 3.036 2.09 6.123 2.944: 100% 4/4 [00:04<00:00, 1.02s/it]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 5/99 2.945 2.141 6.142 3.026: 100% 4/4 [00:03<00:00, 1.03it/s]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 6/99 2.981 2.144 6.194 3.015: 100% 4/4 [00:03<00:00, 1.03it/s]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 7/99 2.928 2.085 6.052 2.984: 100% 4/4 [00:03<00:00, 1.02it/s]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 8/99 2.989 2.122 5.974 2.967: 100% 4/4 [00:03<00:00, 1.02it/s]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 9/99 2.916 2.101 5.909 2.979: 100% 4/4 [00:03<00:00, 1.04it/s]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 10/99 2.977 2.141 5.939 2.909: 100% 4/4 [00:04<00:00, 1.01s/it]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 11/99 3.052 2.128 5.857 2.882: 100% 4/4 [00:03<00:00, 1.02it/s]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 12/99 2.887 2.08 5.903 2.938: 100% 4/4 [00:04<00:00, 1.00s/it]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 13/99 2.914 2.188 5.94 2.902: 100% 4/4 [00:03<00:00, 1.05it/s]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 14/99 2.872 2.132 5.783 2.912: 100% 4/4 [00:04<00:00, 1.02s/it]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 15/99 2.903 2.114 5.846 2.891: 100% 4/4 [00:03<00:00, 1.04it/s]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 16/99 2.902 2.148 5.964 2.892: 100% 4/4 [00:03<00:00, 1.03it/s]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 17/99 2.897 2.128 5.845 2.856: 100% 4/4 [00:03<00:00, 1.02it/s]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 18/99 2.904 2.119 5.845 2.814: 100% 4/4 [00:03<00:00, 1.01it/s]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 19/99 2.948 2.135 5.832 2.822: 100% 4/4 [00:03<00:00, 1.01it/s]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 20/99 2.977 2.138 5.777 2.792: 100% 4/4 [00:03<00:00, 1.00it/s]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:02<00:00, 1.07s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.00s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.00s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=0.14s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.27s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000\n",
+ "Epoch: 20 | mAP@0.5: 1.6750818591566045e-06 | mAP@0.50:0.95: 3.3892356037839674e-07\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 21/99 2.983 2.114 5.881 2.747: 100% 4/4 [00:03<00:00, 1.01it/s]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 22/99 2.968 2.096 5.737 2.809: 100% 4/4 [00:03<00:00, 1.00it/s]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 23/99 2.983 2.115 5.701 2.802: 100% 4/4 [00:04<00:00, 1.02s/it]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 24/99 2.917 2.066 5.781 2.8: 100% 4/4 [00:03<00:00, 1.02it/s]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 25/99 2.861 2.095 5.682 2.829: 100% 4/4 [00:03<00:00, 1.00it/s]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 26/99 2.97 2.137 5.713 2.772: 100% 4/4 [00:04<00:00, 1.01s/it]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 27/99 3.011 2.111 5.732 2.768: 100% 4/4 [00:03<00:00, 1.02it/s]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 28/99 2.951 2.126 5.782 2.765: 100% 4/4 [00:03<00:00, 1.03it/s]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 29/99 2.896 2.122 5.653 2.742: 100% 4/4 [00:03<00:00, 1.04it/s]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 30/99 2.924 2.167 5.641 2.77: 100% 4/4 [00:03<00:00, 1.01it/s]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 31/99 2.933 2.152 5.604 2.773: 100% 4/4 [00:04<00:00, 1.01s/it]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 32/99 2.849 2.098 5.67 2.849: 100% 4/4 [00:03<00:00, 1.02it/s]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 33/99 2.939 2.15 5.628 2.768: 100% 4/4 [00:03<00:00, 1.02it/s]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 34/99 2.92 2.104 5.545 2.721: 100% 4/4 [00:03<00:00, 1.02it/s]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 35/99 2.933 2.129 5.512 2.737: 100% 4/4 [00:04<00:00, 1.01s/it]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 36/99 2.918 2.073 5.513 2.74: 100% 4/4 [00:03<00:00, 1.01it/s]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 37/99 3.028 2.135 5.644 2.779: 100% 4/4 [00:03<00:00, 1.01it/s]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 38/99 2.993 2.112 5.544 2.738: 100% 4/4 [00:03<00:00, 1.01it/s]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 39/99 2.926 2.106 5.491 2.759: 100% 4/4 [00:03<00:00, 1.01it/s]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 40/99 2.934 2.109 5.577 2.799: 100% 4/4 [00:03<00:00, 1.01it/s]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:03<00:00, 1.95s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.00s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.22s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=0.82s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.37s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.003\n",
+ "Epoch: 40 | mAP@0.5: 3.026791640822253e-05 | mAP@0.50:0.95: 6.039800579863439e-06\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 41/99 2.914 2.091 5.657 2.752: 100% 4/4 [00:04<00:00, 1.00s/it]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 42/99 2.838 2.117 5.409 2.809: 100% 4/4 [00:03<00:00, 1.02it/s]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 43/99 2.876 2.136 5.486 2.79: 100% 4/4 [00:04<00:00, 1.01s/it]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 44/99 2.885 2.117 5.537 2.808: 100% 4/4 [00:03<00:00, 1.00it/s]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 45/99 2.853 2.126 5.489 2.687: 100% 4/4 [00:03<00:00, 1.01it/s]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 46/99 2.899 2.088 5.509 2.721: 100% 4/4 [00:03<00:00, 1.04it/s]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 47/99 2.898 2.131 5.45 2.737: 100% 4/4 [00:04<00:00, 1.02s/it]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 48/99 2.906 2.083 5.451 2.764: 100% 4/4 [00:03<00:00, 1.02it/s]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 49/99 2.821 2.041 5.355 2.744: 100% 4/4 [00:03<00:00, 1.01it/s]\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 50/99 2.965 2.119 5.578 2.727: 100% 4/4 [00:04<00:00, 1.02s/it]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.02s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.01s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.25s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=0.93s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.39s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.007\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.007\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.012\n",
+ "Epoch: 50 | mAP@0.5: 0.0011824408042347809 | mAP@0.50:0.95: 0.0006655534080554066\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 51/99 2.851 2.088 5.553 2.752: 100% 4/4 [00:04<00:00, 1.01s/it]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.00s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.01s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.23s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=1.10s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.40s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.006\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.008\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.015\n",
+ "Epoch: 51 | mAP@0.5: 0.0009480009060269342 | mAP@0.50:0.95: 0.00032895331614389605\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 52/99 2.871 2.043 5.434 2.804: 100% 4/4 [00:03<00:00, 1.01it/s]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:03<00:00, 1.98s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.01s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.24s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=1.10s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.40s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.002\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.003\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.002\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.002\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.003\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.005\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.009\n",
+ "Epoch: 52 | mAP@0.5: 0.0031166655823601013 | mAP@0.50:0.95: 0.001677834178007029\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 53/99 2.88 2.068 5.504 2.734: 100% 4/4 [00:03<00:00, 1.01it/s]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:03<00:00, 1.99s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.01s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.24s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=1.09s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.40s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.002\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.002\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.003\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.006\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.008\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.003\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.013\n",
+ "Epoch: 53 | mAP@0.5: 0.0022269664066922627 | mAP@0.50:0.95: 0.0011167281467850919\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 54/99 2.888 2.019 5.376 2.783: 100% 4/4 [00:04<00:00, 1.01s/it]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.02s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.00s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.23s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=1.09s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.40s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.004\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.006\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.002\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.010\n",
+ "Epoch: 54 | mAP@0.5: 0.0010945365556061782 | mAP@0.50:0.95: 0.0002490448763870229\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 55/99 2.97 2.088 5.397 2.722: 100% 4/4 [00:04<00:00, 1.03s/it]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.10s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.00s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.24s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=1.08s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.40s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.002\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.005\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.003\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.002\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.005\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.006\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.002\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.013\n",
+ "Epoch: 55 | mAP@0.5: 0.005153651332037936 | mAP@0.50:0.95: 0.0016851377773941941\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 56/99 2.882 2.083 5.334 2.711: 100% 4/4 [00:04<00:00, 1.07s/it]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.10s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.01s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.40s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=0.94s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.40s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.002\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.003\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.005\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.004\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.009\n",
+ "Epoch: 56 | mAP@0.5: 0.0009605207151018805 | mAP@0.50:0.95: 0.00022679096614965465\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 57/99 2.82 2.024 5.357 2.727: 100% 4/4 [00:04<00:00, 1.03s/it]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.18s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.00s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.39s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=0.92s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.39s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.004\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.002\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.004\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.006\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.005\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.010\n",
+ "Epoch: 57 | mAP@0.5: 0.0036119729632591684 | mAP@0.50:0.95: 0.0008314271402840496\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 58/99 2.812 2.039 5.328 2.699: 100% 4/4 [00:04<00:00, 1.03s/it]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.11s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.01s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.26s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=0.91s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.42s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.002\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.002\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.004\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.006\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.005\n",
+ "Epoch: 58 | mAP@0.5: 0.001963490873583836 | mAP@0.50:0.95: 0.0004543273581016357\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 59/99 2.778 2.002 5.236 2.708: 100% 4/4 [00:04<00:00, 1.01s/it]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.12s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.00s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.25s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=0.87s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.39s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.004\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.007\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.004\n",
+ "Epoch: 59 | mAP@0.5: 0.0010819224987984467 | mAP@0.50:0.95: 0.000243906737345905\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 60/99 2.854 2.046 5.339 2.733: 100% 4/4 [00:04<00:00, 1.01s/it]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.10s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.01s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.25s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=1.03s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.40s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.002\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.006\n",
+ "Epoch: 60 | mAP@0.5: 0.0006596587362550893 | mAP@0.50:0.95: 0.00023252221958629067\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 61/99 2.809 2.055 5.321 2.677: 100% 4/4 [00:04<00:00, 1.03s/it]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.13s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.01s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.23s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=1.07s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.38s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.002\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.002\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.004\n",
+ "Epoch: 61 | mAP@0.5: 0.0004019507666707206 | mAP@0.50:0.95: 9.430218270547424e-05\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 62/99 2.788 2.07 5.374 2.751: 100% 4/4 [00:03<00:00, 1.01it/s]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.07s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.00s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.40s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=0.86s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.38s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.002\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.004\n",
+ "Epoch: 62 | mAP@0.5: 0.00035239314273155113 | mAP@0.50:0.95: 0.00011626138925332593\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 63/99 2.817 2.013 5.315 2.706: 100% 4/4 [00:04<00:00, 1.02s/it]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.16s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.00s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.26s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=0.88s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.37s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.004\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.003\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.002\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.005\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.007\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.005\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.009\n",
+ "Epoch: 63 | mAP@0.5: 0.004203667127063244 | mAP@0.50:0.95: 0.0012639422635148776\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 64/99 2.817 2.014 5.31 2.755: 100% 4/4 [00:04<00:00, 1.03s/it]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.09s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.01s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.24s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=1.02s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.38s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.002\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.003\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.004\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.005\n",
+ "Epoch: 64 | mAP@0.5: 0.0008575287529128892 | mAP@0.50:0.95: 0.000191750774372226\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 65/99 2.83 2.015 5.352 2.78: 100% 4/4 [00:04<00:00, 1.01s/it]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.02s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.01s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.24s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=1.03s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.37s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.002\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.002\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.002\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.003\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.004\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.008\n",
+ "Epoch: 65 | mAP@0.5: 0.0017627231047534784 | mAP@0.50:0.95: 0.0012750007112268785\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 66/99 2.837 2.025 5.314 2.778: 100% 4/4 [00:03<00:00, 1.00it/s]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.12s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.01s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.41s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=0.93s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.41s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.002\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.003\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.002\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.003\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.008\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.009\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.003\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.013\n",
+ "Epoch: 66 | mAP@0.5: 0.0033239425757449724 | mAP@0.50:0.95: 0.002065487064492566\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 67/99 2.813 2.015 5.284 2.759: 100% 4/4 [00:04<00:00, 1.01s/it]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.22s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.00s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.25s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=0.94s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.41s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.003\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.005\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.003\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.004\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.004\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.008\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.011\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.005\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.016\n",
+ "Epoch: 67 | mAP@0.5: 0.004636293584747839 | mAP@0.50:0.95: 0.003096991523250025\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 68/99 2.794 2.029 5.313 2.773: 100% 4/4 [00:04<00:00, 1.03s/it]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.05s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.01s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.39s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=0.92s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.40s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.002\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.003\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.004\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.009\n",
+ "Epoch: 68 | mAP@0.5: 0.0012790427934887515 | mAP@0.50:0.95: 0.0004166938502445351\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 69/99 2.797 2.022 5.254 2.751: 100% 4/4 [00:04<00:00, 1.02s/it]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.26s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.00s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.24s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=1.06s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.39s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.003\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.002\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.004\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.005\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.007\n",
+ "Epoch: 69 | mAP@0.5: 0.002834136481615038 | mAP@0.50:0.95: 0.0005070867255685134\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 70/99 2.818 2.02 5.277 2.751: 100% 4/4 [00:04<00:00, 1.02s/it]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.14s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.00s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.24s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=1.06s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.40s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.003\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.002\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.003\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.006\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.007\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.008\n",
+ "Epoch: 70 | mAP@0.5: 0.0032584690726534687 | mAP@0.50:0.95: 0.0010810245310215571\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 71/99 2.775 2.01 5.242 2.76: 100% 4/4 [00:04<00:00, 1.04s/it]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.07s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.00s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.42s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=0.86s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.38s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.003\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.004\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.002\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.008\n",
+ "Epoch: 71 | mAP@0.5: 0.0010575553057165944 | mAP@0.50:0.95: 0.00028138197011783815\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 72/99 2.676 1.978 5.262 2.748: 100% 4/4 [00:04<00:00, 1.02s/it]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.14s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.01s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.25s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=0.87s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.39s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.002\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.002\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.002\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.004\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.005\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.011\n",
+ "Epoch: 72 | mAP@0.5: 0.0021715072697373974 | mAP@0.50:0.95: 0.0008307456030174317\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 73/99 2.741 2.031 5.255 2.663: 100% 4/4 [00:04<00:00, 1.05s/it]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.08s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.01s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.39s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=0.85s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.37s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.003\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.003\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.006\n",
+ "Epoch: 73 | mAP@0.5: 0.0007658497298332965 | mAP@0.50:0.95: 0.0002667844203444723\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 74/99 2.737 2.016 5.202 2.71: 100% 4/4 [00:04<00:00, 1.07s/it]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.07s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.13s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.26s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=0.87s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.37s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.003\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.005\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.008\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.006\n",
+ "Epoch: 74 | mAP@0.5: 0.002804220327313575 | mAP@0.50:0.95: 0.0008573694770221916\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 75/99 2.726 1.995 5.193 2.696: 100% 4/4 [00:04<00:00, 1.01s/it]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.15s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.00s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.25s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=1.07s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.38s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.003\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.002\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.003\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.006\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.007\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.008\n",
+ "Epoch: 75 | mAP@0.5: 0.002547520930802475 | mAP@0.50:0.95: 0.0008915343566093971\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 76/99 2.773 2.006 5.175 2.764: 100% 4/4 [00:04<00:00, 1.06s/it]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.10s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.01s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.24s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=1.05s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.40s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.002\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.002\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.003\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.006\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.006\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.009\n",
+ "Epoch: 76 | mAP@0.5: 0.0018508136034399872 | mAP@0.50:0.95: 0.0006714676475958497\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 77/99 2.756 1.997 5.192 2.614: 100% 4/4 [00:04<00:00, 1.05s/it]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.12s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.00s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.25s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=1.08s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.40s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.003\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.002\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.003\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.004\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.007\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.006\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.009\n",
+ "Epoch: 77 | mAP@0.5: 0.0026893725562022364 | mAP@0.50:0.95: 0.0009231173957208621\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 78/99 2.708 1.974 5.109 2.68: 100% 4/4 [00:04<00:00, 1.07s/it]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.08s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.01s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.40s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=0.88s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.40s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.004\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.002\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.004\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.007\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.004\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.007\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.009\n",
+ "Epoch: 78 | mAP@0.5: 0.003849575369068528 | mAP@0.50:0.95: 0.0011330416176916509\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 79/99 2.773 1.989 5.156 2.696: 100% 4/4 [00:04<00:00, 1.02s/it]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.18s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.01s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.25s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=0.88s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.38s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.002\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.002\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.002\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.005\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.004\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.008\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.006\n",
+ "Epoch: 79 | mAP@0.5: 0.001792239219006599 | mAP@0.50:0.95: 0.0007388597488008516\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 80/99 2.71 1.989 5.217 2.788: 100% 4/4 [00:04<00:00, 1.04s/it]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.10s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.00s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.38s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=0.91s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.40s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.002\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.002\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.002\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.004\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.007\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.008\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.009\n",
+ "Epoch: 80 | mAP@0.5: 0.0024191482916546114 | mAP@0.50:0.95: 0.0009550677904573214\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 81/99 2.714 1.992 5.198 2.704: 100% 4/4 [00:04<00:00, 1.03s/it]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.21s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.00s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.25s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=0.90s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.38s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.003\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.002\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.004\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.007\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.008\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.009\n",
+ "Epoch: 81 | mAP@0.5: 0.002824566532320574 | mAP@0.50:0.95: 0.0009378720988676307\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 82/99 2.746 2.002 5.25 2.774: 100% 4/4 [00:04<00:00, 1.01s/it]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.20s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.01s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.39s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=0.93s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.40s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.003\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.002\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.003\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.004\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.009\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.009\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.011\n",
+ "Epoch: 82 | mAP@0.5: 0.0028046325531085694 | mAP@0.50:0.95: 0.0007749166276927232\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 83/99 2.826 2.009 5.239 2.749: 100% 4/4 [00:04<00:00, 1.04s/it]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.17s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.01s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.24s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=0.90s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.38s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.002\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.005\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.002\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.002\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.002\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.006\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.010\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.008\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.012\n",
+ "Epoch: 83 | mAP@0.5: 0.004983682488135256 | mAP@0.50:0.95: 0.00187192184023182\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 84/99 2.745 1.973 5.17 2.728: 100% 4/4 [00:04<00:00, 1.04s/it]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.06s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.01s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.38s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=0.89s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.37s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.003\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.002\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.004\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.008\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.008\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.010\n",
+ "Epoch: 84 | mAP@0.5: 0.003129905903839608 | mAP@0.50:0.95: 0.0009654394720239379\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 85/99 2.751 1.982 5.208 2.768: 100% 4/4 [00:04<00:00, 1.04s/it]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.12s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.00s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.25s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=0.88s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.37s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.003\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.002\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.004\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.008\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.004\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.009\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.010\n",
+ "Epoch: 85 | mAP@0.5: 0.002559613519039063 | mAP@0.50:0.95: 0.0009747811853783635\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 86/99 2.738 1.948 5.22 2.755: 100% 4/4 [00:04<00:00, 1.01s/it]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.14s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.01s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.39s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=0.89s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.38s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.004\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.003\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.003\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.005\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.008\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.008\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.010\n",
+ "Epoch: 86 | mAP@0.5: 0.004146007623652573 | mAP@0.50:0.95: 0.0013604230654060594\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 87/99 2.779 1.973 5.232 2.777: 100% 4/4 [00:03<00:00, 1.01it/s]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.13s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.00s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.25s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=0.90s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.39s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.003\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.002\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.004\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.007\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.002\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.008\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.009\n",
+ "Epoch: 87 | mAP@0.5: 0.003346422762302339 | mAP@0.50:0.95: 0.0008979883867943451\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 88/99 2.821 2.002 5.263 2.698: 100% 4/4 [00:04<00:00, 1.05s/it]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.11s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.01s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.23s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=1.07s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.39s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.003\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.002\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.004\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.007\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.007\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.010\n",
+ "Epoch: 88 | mAP@0.5: 0.002818659051814291 | mAP@0.50:0.95: 0.0007799934175857097\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 89/99 2.748 1.965 5.223 2.758: 100% 4/4 [00:03<00:00, 1.01it/s]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.09s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.01s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.39s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=0.93s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.39s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.002\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.002\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.005\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.008\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.008\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.011\n",
+ "Epoch: 89 | mAP@0.5: 0.002464946631345105 | mAP@0.50:0.95: 0.0006882788522437844\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 90/99 2.722 1.941 5.105 2.718: 100% 4/4 [00:04<00:00, 1.05s/it]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.16s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.00s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.25s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=0.92s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.41s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.003\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.002\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.005\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.008\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.008\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.010\n",
+ "Epoch: 90 | mAP@0.5: 0.002959344475120238 | mAP@0.50:0.95: 0.0007900364706187752\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 91/99 2.7 1.958 4.979 2.665: 100% 4/4 [00:04<00:00, 1.01s/it]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.12s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.01s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.39s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=0.92s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.40s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.003\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.002\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.002\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.004\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.007\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.007\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.010\n",
+ "Epoch: 91 | mAP@0.5: 0.003063822019051619 | mAP@0.50:0.95: 0.0009358929419405853\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 92/99 2.702 1.979 5.136 2.72: 100% 4/4 [00:04<00:00, 1.03s/it]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.20s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.00s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.25s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=0.90s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.39s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.004\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.003\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.005\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.008\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.009\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.010\n",
+ "Epoch: 92 | mAP@0.5: 0.003895490176460533 | mAP@0.50:0.95: 0.0011654527267505052\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 93/99 2.673 1.968 5.219 2.756: 100% 4/4 [00:04<00:00, 1.01s/it]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.19s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.00s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.23s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=1.06s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.41s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.004\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.002\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.002\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.005\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.009\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.009\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.012\n",
+ "Epoch: 93 | mAP@0.5: 0.0037510587788985895 | mAP@0.50:0.95: 0.0010245456003092454\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 94/99 2.663 1.992 5.112 2.712: 100% 4/4 [00:04<00:00, 1.01s/it]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.08s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.00s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.38s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=0.91s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.40s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.004\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.002\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.002\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.005\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.009\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.008\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.012\n",
+ "Epoch: 94 | mAP@0.5: 0.0036380662329819277 | mAP@0.50:0.95: 0.0009167687056423719\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 95/99 2.745 1.995 5.145 2.692: 100% 4/4 [00:04<00:00, 1.02s/it]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.17s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.00s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.25s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=0.91s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.41s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.003\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.002\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.005\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.009\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.008\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.012\n",
+ "Epoch: 95 | mAP@0.5: 0.0026693887157190127 | mAP@0.50:0.95: 0.0007715339972043266\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 96/99 2.757 2.001 5.205 2.714: 100% 4/4 [00:04<00:00, 1.01s/it]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.15s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.00s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.39s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=0.90s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.39s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.003\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.002\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.002\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.005\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.008\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.002\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.008\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.011\n",
+ "Epoch: 96 | mAP@0.5: 0.003497939244817715 | mAP@0.50:0.95: 0.000997181915488942\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 97/99 2.76 2.022 5.198 2.734: 100% 4/4 [00:04<00:00, 1.02s/it]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.18s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.00s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.25s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=0.91s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.41s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.003\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.003\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.005\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.009\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.003\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.008\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.011\n",
+ "Epoch: 97 | mAP@0.5: 0.0034934967705090407 | mAP@0.50:0.95: 0.001182990098132355\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 98/99 2.744 1.949 5.143 2.648: 100% 4/4 [00:04<00:00, 1.03s/it]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.17s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.00s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.24s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=1.08s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.41s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.003\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.002\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.002\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.005\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.008\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.003\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.009\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.011\n",
+ "Epoch: 98 | mAP@0.5: 0.003286477028324472 | mAP@0.50:0.95: 0.0011104174392147258\n",
+ "\n",
+ " Epoch iou_loss l1_loss obj_loss cls_loss\n",
+ " 99/99 2.723 1.984 5.113 2.729: 100% 4/4 [00:04<00:00, 1.04s/it]\n",
+ "Inferencing model in val datasets.: 100% 2/2 [00:04<00:00, 2.14s/it]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n",
+ "Saving runs/train/exp/predictions.json...\n",
+ "loading annotations into memory...\n",
+ "Done (t=0.00s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Loading and preparing results...\n",
+ "DONE (t=0.39s)\n",
+ "creating index...\n",
+ "index created!\n",
+ "Running per image evaluation...\n",
+ "Evaluate annotation type *bbox*\n",
+ "DONE (t=0.91s).\n",
+ "Accumulating evaluation results...\n",
+ "DONE (t=0.38s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.001\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.003\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.003\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.001\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.005\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.009\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.003\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.009\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.011\n",
+ "Epoch: 99 | mAP@0.5: 0.003454596142400072 | mAP@0.50:0.95: 0.001096205320071562\n",
+ "\n",
+ "Training completed in 0.230 hours.\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Train YOLOv6s on COCO128 for 100 epochs\n",
+ "!python tools/train.py --img 640 --batch 32 --epochs 100 --data data/coco128.yaml"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "yFBCgHq_gDmB"
+ },
+ "outputs": [],
+ "source": [
+ "# Tensorboard (optional)\n",
+ "%load_ext tensorboard\n",
+ "%tensorboard --logdir runs/train"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "EwPPL3Tc0aBF"
+ },
+ "source": [
+ "# Train Custom Data\n",
+ "This guidence explains how to train your own custom data with YOLOv6 (take fine-tuning YOLOv6-s model for example)."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "4JtfQNUX0-hZ"
+ },
+ "source": [
+ "## Prepare your own dataset"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "GMPZV_5F0eGQ"
+ },
+ "source": [
+ "**Step 1** Prepare your own dataset with images. For labeling images, you can use tools like [Labelme](https://github.com/wkentaro/labelme).\n",
+ "\n",
+ "**Step 2** Generate label files in YOLO format.\n",
+ "\n",
+ "One image corresponds to one label file, and the label format example is presented as below.\n",
+ "\n",
+ "```json\n",
+ "# class_id center_x center_y bbox_width bbox_height\n",
+ "0 0.300926 0.617063 0.601852 0.765873\n",
+ "1 0.575 0.319531 0.4 0.551562\n",
+ "```\n",
+ "\n",
+ "- Each row represents one object.\n",
+ "- Class id starts from `0`.\n",
+ "- Boundingbox coordinates must be in normalized `xywh` format (from 0 - 1). If your boxes are in pixels, divide `center_x` and `bbox_width` by image width, and `center_y` and `bbox_height` by image height.\n",
+ "\n",
+ "**Step 3** Organize directories.\n",
+ "\n",
+ "Organize your directory of custom dataset as follows:\n",
+ "\n",
+ "```shell\n",
+ "custom_dataset\n",
+ "├── images\n",
+ "│ ├── train\n",
+ "│ │ ├── train0.jpg\n",
+ "│ │ └── train1.jpg\n",
+ "│ ├── val\n",
+ "│ │ ├── val0.jpg\n",
+ "│ │ └── val1.jpg\n",
+ "│ └── test\n",
+ "│ ├── test0.jpg\n",
+ "│ └── test1.jpg\n",
+ "└── labels\n",
+ " ├── train\n",
+ " │ ├── train0.txt\n",
+ " │ └── train1.txt\n",
+ " ├── val\n",
+ " │ ├── val0.txt\n",
+ " │ └── val1.txt\n",
+ " └── test\n",
+ " ├── test0.txt\n",
+ " └── test1.txt\n",
+ "```\n",
+ "\n",
+ "**Step 4** Create `dataset.yaml` in `$YOLOv6_DIR/data`.\n",
+ "\n",
+ "```yaml\n",
+ "# Please insure that your custom_dataset are put in same parent dir with YOLOv6_DIR\n",
+ "train: ../custom_dataset/images/train # train images\n",
+ "val: ../custom_dataset/images/val # val images\n",
+ "test: ../custom_dataset/images/test # test images (optional)\n",
+ "\n",
+ "# whether it is coco dataset, only coco dataset should be set to True.\n",
+ "is_coco: False\n",
+ "\n",
+ "# Classes\n",
+ "nc: 20 # number of classes\n",
+ "names: ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog',\n",
+ " 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'] # class names\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "_lthBb8t1ETU"
+ },
+ "source": [
+ "## Create a config file"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "CqAuhsaQ1J6L"
+ },
+ "source": [
+ "\n",
+ "We use a config file to specify the network structure and training setting, including optimizer and data augmentation hyperparameters.\n",
+ "\n",
+ "If you create a new config file, please put it under the configs directory.\n",
+ "Or just use the provided config file in `$YOLOV6_HOME/configs/*_finetune.py`.\n",
+ "\n",
+ "```python\n",
+ "## YOLOv6s Model config file\n",
+ "model = dict(\n",
+ " type='YOLOv6s',\n",
+ " pretrained='./weights/yolov6s.pt', # download pretrain model from YOLOv6 github if use pretrained model\n",
+ " depth_multiple = 0.33,\n",
+ " width_multiple = 0.50,\n",
+ " ...\n",
+ ")\n",
+ "solver=dict(\n",
+ " optim='SGD',\n",
+ " lr_scheduler='Cosine',\n",
+ " ...\n",
+ ")\n",
+ "\n",
+ "data_aug = dict(\n",
+ " hsv_h=0.015,\n",
+ " hsv_s=0.7,\n",
+ " hsv_v=0.4,\n",
+ " ...\n",
+ ")\n",
+ "```\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "rlaEpwIh1b9a"
+ },
+ "source": [
+ "## Train"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "LjyNAANP1o2p"
+ },
+ "outputs": [],
+ "source": [
+ "!python tools/train.py --batch 256 --conf configs/yolov6s_finetune.py --data data/data.yaml"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "BEa2QWm_nT6S"
+ },
+ "source": [
+ "# Test Speed"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "G9Tb5dlomxch",
+ "outputId": "739e27b9-3197-4f84-ba35-85bc5eff4a53"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Namespace(batch_size=32, conf_thres=0.001, data='data/coco128.yaml', device='0', half=False, img_size=640, iou_thres=0.65, name='exp', save_dir='runs/val/', task='speed', weights='yolov6s.pt')\n",
+ "Loading checkpoint from yolov6s.pt\n",
+ "\n",
+ "Fusing model...\n",
+ "/usr/local/lib/python3.7/dist-packages/torch/functional.py:478: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:2894.)\n",
+ " return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]\n",
+ "Switch model to deploy modality.\n",
+ "Model Summary: Params: 17.22M, Gflops: 44.19\n",
+ "Speed: Checking formats of labels with 2 process(es): \n",
+ "128 label(s) found, 0 label(s) missing, 2 label(s) empty, 0 invalid label files: 100% 128/128 [00:00<00:00, 2462.39it/s]\n",
+ "Speed: Final numbers of valid images: 128/ labels: 128. \n",
+ "0.2s for dataset initialization.\n",
+ "Inferencing model in val datasets.: 100% 4/4 [00:01<00:00, 2.24it/s]\n",
+ "\n",
+ "Evaluating speed.\n",
+ "Average pre-process time: 0.16 ms\n",
+ "Average inference time: 6.90 ms\n",
+ "Average NMS time: 1.36 ms\n",
+ "\n",
+ "Evaluating mAP by pycocotools.\n"
+ ]
+ }
+ ],
+ "source": [
+ "!python tools/eval.py --data data/coco128.yaml --batch 32 --weights yolov6s.pt --task speed"
+ ]
+ }
+ ],
+ "metadata": {
+ "accelerator": "GPU",
+ "colab": {
+ "collapsed_sections": [],
+ "include_colab_link": true,
+ "machine_shape": "hm",
+ "provenance": []
+ },
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.5"
+ },
+ "widgets": {
+ "application/vnd.jupyter.widget-state+json": {
+ "07dd33f907684614ba2e5bfadd48ff7f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_21a7574d0f3e4638880e61be9973475e",
+ "IPY_MODEL_0f610d79cba74702a5f0dca9712f6cdc",
+ "IPY_MODEL_0f4c5a98a3b84e3e9231b58c93e5959a"
+ ],
+ "layout": "IPY_MODEL_a4ddf9969ed4474dad94e0a0d71b6239"
+ }
+ },
+ "0f4c5a98a3b84e3e9231b58c93e5959a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_bdad0e7d90954729a4a8fe10a7884f04",
+ "placeholder": "",
+ "style": "IPY_MODEL_8c6dc1b0b5014feb9c9ad7c2442e1727",
+ "value": " 36.3M/36.3M [00:04<00:00, 6.91MB/s]"
+ }
+ },
+ "0f610d79cba74702a5f0dca9712f6cdc": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_e272cd27f3ff47ad98d6b011e07ab66d",
+ "max": 38101272,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_109524f358894009b0d3dfb1977e18b9",
+ "value": 38101272
+ }
+ },
+ "109524f358894009b0d3dfb1977e18b9": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "11378927dc5e440080fd0300e5c301ed": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "11c01641cf274e118221dbbdc2f3afa4": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_693b2ece47844511905ca94736c11fdd",
+ "IPY_MODEL_2adc2664afd5404da77a1bfede169b95",
+ "IPY_MODEL_7566d05f122f4281825838145d488860"
+ ],
+ "layout": "IPY_MODEL_7b1052fd864b4e8da4941a8647ef620b"
+ }
+ },
+ "21a7574d0f3e4638880e61be9973475e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_f31b5c163fe4410d985d6e66767e0524",
+ "placeholder": "",
+ "style": "IPY_MODEL_dbf3237c84a0431e90508105e56395c3",
+ "value": "100%"
+ }
+ },
+ "2888af90fe40440f9f03fdcafd49da75": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "2adc2664afd5404da77a1bfede169b95": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_2888af90fe40440f9f03fdcafd49da75",
+ "max": 6984509,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_d976baa0f3374eb4b5278e10eced2dfc",
+ "value": 6984509
+ }
+ },
+ "2cdd2bb7d83b4f9db87ae900bdcf342d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_703c9ed6ee7446d3a8efc3e20ece6dca",
+ "max": 818322941,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_51b7fa10e42349998974eba12fa06458",
+ "value": 818322941
+ }
+ },
+ "2e5401125b7248e3a081e3f57a571064": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_4cedeada524642d6ac56a8d383ecf1ce",
+ "placeholder": "",
+ "style": "IPY_MODEL_6875d51042d54c978a81048a43268dbb",
+ "value": " 780M/780M [01:56<00:00, 15.9MB/s]"
+ }
+ },
+ "4cafdf53ddcc415680777bbf54399064": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "4cedeada524642d6ac56a8d383ecf1ce": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "51b7fa10e42349998974eba12fa06458": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "5baa548a06294dd4a4a8a3330189f4cd": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "6875d51042d54c978a81048a43268dbb": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "693b2ece47844511905ca94736c11fdd": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_fe4d2e0d47604eb08e7f4743dc0e6826",
+ "placeholder": "",
+ "style": "IPY_MODEL_5baa548a06294dd4a4a8a3330189f4cd",
+ "value": "100%"
+ }
+ },
+ "703c9ed6ee7446d3a8efc3e20ece6dca": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "74afade5e66049249b04ccdf99ac5bc3": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "7566d05f122f4281825838145d488860": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_11378927dc5e440080fd0300e5c301ed",
+ "placeholder": "",
+ "style": "IPY_MODEL_4cafdf53ddcc415680777bbf54399064",
+ "value": " 6.66M/6.66M [00:00<00:00, 9.35MB/s]"
+ }
+ },
+ "7b1052fd864b4e8da4941a8647ef620b": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "84d9721bb8bd41819f5f02fdd808f35c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "8c6dc1b0b5014feb9c9ad7c2442e1727": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "8cc18eb575624cc8a3a2c235e9705d6c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_9ad7290d97ea44488747aae321677109",
+ "IPY_MODEL_2cdd2bb7d83b4f9db87ae900bdcf342d",
+ "IPY_MODEL_2e5401125b7248e3a081e3f57a571064"
+ ],
+ "layout": "IPY_MODEL_74afade5e66049249b04ccdf99ac5bc3"
+ }
+ },
+ "9ad7290d97ea44488747aae321677109": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_9eee5d30302b45a7b172846c58c18782",
+ "placeholder": "",
+ "style": "IPY_MODEL_84d9721bb8bd41819f5f02fdd808f35c",
+ "value": "100%"
+ }
+ },
+ "9eee5d30302b45a7b172846c58c18782": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "a4ddf9969ed4474dad94e0a0d71b6239": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "bdad0e7d90954729a4a8fe10a7884f04": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "d976baa0f3374eb4b5278e10eced2dfc": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "dbf3237c84a0431e90508105e56395c3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "e272cd27f3ff47ad98d6b011e07ab66d": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "f31b5c163fe4410d985d6e66767e0524": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "fe4d2e0d47604eb08e7f4743dc0e6826": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ }
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 1
+}
diff --git a/python/app/fedcv/image_classification/__init__.py b/python/app/fedcv/YOLOv6/yolov6/__init__.py
similarity index 100%
rename from python/app/fedcv/image_classification/__init__.py
rename to python/app/fedcv/YOLOv6/yolov6/__init__.py
diff --git a/python/app/fedcv/YOLOv6/yolov6/assigners/__init__.py b/python/app/fedcv/YOLOv6/yolov6/assigners/__init__.py
new file mode 100644
index 0000000000..8c1636e47d
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/yolov6/assigners/__init__.py
@@ -0,0 +1,2 @@
+from .atss_assigner import ATSSAssigner
+from .tal_assigner import TaskAlignedAssigner
diff --git a/python/app/fedcv/YOLOv6/yolov6/assigners/anchor_generator.py b/python/app/fedcv/YOLOv6/yolov6/assigners/anchor_generator.py
new file mode 100644
index 0000000000..c8276418e1
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/yolov6/assigners/anchor_generator.py
@@ -0,0 +1,63 @@
+import torch
+from yolov6.utils.general import check_version
+
+torch_1_10_plus = check_version(torch.__version__, minimum='1.10.0')
+
+def generate_anchors(feats, fpn_strides, grid_cell_size=5.0, grid_cell_offset=0.5, device='cpu', is_eval=False, mode='af'):
+ '''Generate anchors from features.'''
+ anchors = []
+ anchor_points = []
+ stride_tensor = []
+ num_anchors_list = []
+ assert feats is not None
+ if is_eval:
+ for i, stride in enumerate(fpn_strides):
+ _, _, h, w = feats[i].shape
+ shift_x = torch.arange(end=w, device=device) + grid_cell_offset
+ shift_y = torch.arange(end=h, device=device) + grid_cell_offset
+ shift_y, shift_x = torch.meshgrid(shift_y, shift_x, indexing='ij') if torch_1_10_plus else torch.meshgrid(shift_y, shift_x)
+ anchor_point = torch.stack(
+ [shift_x, shift_y], axis=-1).to(torch.float)
+ if mode == 'af': # anchor-free
+ anchor_points.append(anchor_point.reshape([-1, 2]))
+ stride_tensor.append(
+ torch.full(
+ (h * w, 1), stride, dtype=torch.float, device=device))
+ elif mode == 'ab': # anchor-based
+ anchor_points.append(anchor_point.reshape([-1, 2]).repeat(3,1))
+ stride_tensor.append(
+ torch.full(
+ (h * w, 1), stride, dtype=torch.float, device=device).repeat(3,1))
+ anchor_points = torch.cat(anchor_points)
+ stride_tensor = torch.cat(stride_tensor)
+ return anchor_points, stride_tensor
+ else:
+ for i, stride in enumerate(fpn_strides):
+ _, _, h, w = feats[i].shape
+ cell_half_size = grid_cell_size * stride * 0.5
+ shift_x = (torch.arange(end=w, device=device) + grid_cell_offset) * stride
+ shift_y = (torch.arange(end=h, device=device) + grid_cell_offset) * stride
+ shift_y, shift_x = torch.meshgrid(shift_y, shift_x, indexing='ij') if torch_1_10_plus else torch.meshgrid(shift_y, shift_x)
+ anchor = torch.stack(
+ [
+ shift_x - cell_half_size, shift_y - cell_half_size,
+ shift_x + cell_half_size, shift_y + cell_half_size
+ ],
+ axis=-1).clone().to(feats[0].dtype)
+ anchor_point = torch.stack(
+ [shift_x, shift_y], axis=-1).clone().to(feats[0].dtype)
+
+ if mode == 'af': # anchor-free
+ anchors.append(anchor.reshape([-1, 4]))
+ anchor_points.append(anchor_point.reshape([-1, 2]))
+ elif mode == 'ab': # anchor-based
+ anchors.append(anchor.reshape([-1, 4]).repeat(3,1))
+ anchor_points.append(anchor_point.reshape([-1, 2]).repeat(3,1))
+ num_anchors_list.append(len(anchors[-1]))
+ stride_tensor.append(
+ torch.full(
+ [num_anchors_list[-1], 1], stride, dtype=feats[0].dtype))
+ anchors = torch.cat(anchors)
+ anchor_points = torch.cat(anchor_points).to(device)
+ stride_tensor = torch.cat(stride_tensor).to(device)
+ return anchors, anchor_points, num_anchors_list, stride_tensor
diff --git a/python/app/fedcv/YOLOv6/yolov6/assigners/assigner_utils.py b/python/app/fedcv/YOLOv6/yolov6/assigners/assigner_utils.py
new file mode 100644
index 0000000000..a10f02a348
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/yolov6/assigners/assigner_utils.py
@@ -0,0 +1,89 @@
+import torch
+import torch.nn.functional as F
+
+def dist_calculator(gt_bboxes, anchor_bboxes):
+ """compute center distance between all bbox and gt
+
+ Args:
+ gt_bboxes (Tensor): shape(bs*n_max_boxes, 4)
+ anchor_bboxes (Tensor): shape(num_total_anchors, 4)
+ Return:
+ distances (Tensor): shape(bs*n_max_boxes, num_total_anchors)
+ ac_points (Tensor): shape(num_total_anchors, 2)
+ """
+ gt_cx = (gt_bboxes[:, 0] + gt_bboxes[:, 2]) / 2.0
+ gt_cy = (gt_bboxes[:, 1] + gt_bboxes[:, 3]) / 2.0
+ gt_points = torch.stack([gt_cx, gt_cy], dim=1)
+ ac_cx = (anchor_bboxes[:, 0] + anchor_bboxes[:, 2]) / 2.0
+ ac_cy = (anchor_bboxes[:, 1] + anchor_bboxes[:, 3]) / 2.0
+ ac_points = torch.stack([ac_cx, ac_cy], dim=1)
+
+ distances = (gt_points[:, None, :] - ac_points[None, :, :]).pow(2).sum(-1).sqrt()
+
+ return distances, ac_points
+
+def select_candidates_in_gts(xy_centers, gt_bboxes, eps=1e-9):
+ """select the positive anchors's center in gt
+
+ Args:
+ xy_centers (Tensor): shape(bs*n_max_boxes, num_total_anchors, 4)
+ gt_bboxes (Tensor): shape(bs, n_max_boxes, 4)
+ Return:
+ (Tensor): shape(bs, n_max_boxes, num_total_anchors)
+ """
+ n_anchors = xy_centers.size(0)
+ bs, n_max_boxes, _ = gt_bboxes.size()
+ _gt_bboxes = gt_bboxes.reshape([-1, 4])
+ xy_centers = xy_centers.unsqueeze(0).repeat(bs * n_max_boxes, 1, 1)
+ gt_bboxes_lt = _gt_bboxes[:, 0:2].unsqueeze(1).repeat(1, n_anchors, 1)
+ gt_bboxes_rb = _gt_bboxes[:, 2:4].unsqueeze(1).repeat(1, n_anchors, 1)
+ b_lt = xy_centers - gt_bboxes_lt
+ b_rb = gt_bboxes_rb - xy_centers
+ bbox_deltas = torch.cat([b_lt, b_rb], dim=-1)
+ bbox_deltas = bbox_deltas.reshape([bs, n_max_boxes, n_anchors, -1])
+ return (bbox_deltas.min(axis=-1)[0] > eps).to(gt_bboxes.dtype)
+
+def select_highest_overlaps(mask_pos, overlaps, n_max_boxes):
+ """if an anchor box is assigned to multiple gts,
+ the one with the highest iou will be selected.
+
+ Args:
+ mask_pos (Tensor): shape(bs, n_max_boxes, num_total_anchors)
+ overlaps (Tensor): shape(bs, n_max_boxes, num_total_anchors)
+ Return:
+ target_gt_idx (Tensor): shape(bs, num_total_anchors)
+ fg_mask (Tensor): shape(bs, num_total_anchors)
+ mask_pos (Tensor): shape(bs, n_max_boxes, num_total_anchors)
+ """
+ fg_mask = mask_pos.sum(axis=-2)
+ if fg_mask.max() > 1:
+ mask_multi_gts = (fg_mask.unsqueeze(1) > 1).repeat([1, n_max_boxes, 1])
+ max_overlaps_idx = overlaps.argmax(axis=1)
+ is_max_overlaps = F.one_hot(max_overlaps_idx, n_max_boxes)
+ is_max_overlaps = is_max_overlaps.permute(0, 2, 1).to(overlaps.dtype)
+ mask_pos = torch.where(mask_multi_gts, is_max_overlaps, mask_pos)
+ fg_mask = mask_pos.sum(axis=-2)
+ target_gt_idx = mask_pos.argmax(axis=-2)
+ return target_gt_idx, fg_mask , mask_pos
+
+def iou_calculator(box1, box2, eps=1e-9):
+ """Calculate iou for batch
+
+ Args:
+ box1 (Tensor): shape(bs, n_max_boxes, 1, 4)
+ box2 (Tensor): shape(bs, 1, num_total_anchors, 4)
+ Return:
+ (Tensor): shape(bs, n_max_boxes, num_total_anchors)
+ """
+ box1 = box1.unsqueeze(2) # [N, M1, 4] -> [N, M1, 1, 4]
+ box2 = box2.unsqueeze(1) # [N, M2, 4] -> [N, 1, M2, 4]
+ px1y1, px2y2 = box1[:, :, :, 0:2], box1[:, :, :, 2:4]
+ gx1y1, gx2y2 = box2[:, :, :, 0:2], box2[:, :, :, 2:4]
+ x1y1 = torch.maximum(px1y1, gx1y1)
+ x2y2 = torch.minimum(px2y2, gx2y2)
+ overlap = (x2y2 - x1y1).clip(0).prod(-1)
+ area1 = (px2y2 - px1y1).clip(0).prod(-1)
+ area2 = (gx2y2 - gx1y1).clip(0).prod(-1)
+ union = area1 + area2 - overlap + eps
+
+ return overlap / union
diff --git a/python/app/fedcv/YOLOv6/yolov6/assigners/atss_assigner.py b/python/app/fedcv/YOLOv6/yolov6/assigners/atss_assigner.py
new file mode 100644
index 0000000000..12a5f243bd
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/yolov6/assigners/atss_assigner.py
@@ -0,0 +1,161 @@
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from yolov6.assigners.iou2d_calculator import iou2d_calculator
+from yolov6.assigners.assigner_utils import dist_calculator, select_candidates_in_gts, select_highest_overlaps, iou_calculator
+
+class ATSSAssigner(nn.Module):
+ '''Adaptive Training Sample Selection Assigner'''
+ def __init__(self,
+ topk=9,
+ num_classes=80):
+ super(ATSSAssigner, self).__init__()
+ self.topk = topk
+ self.num_classes = num_classes
+ self.bg_idx = num_classes
+
+ @torch.no_grad()
+ def forward(self,
+ anc_bboxes,
+ n_level_bboxes,
+ gt_labels,
+ gt_bboxes,
+ mask_gt,
+ pd_bboxes):
+ r"""This code is based on
+ https://github.com/fcjian/TOOD/blob/master/mmdet/core/bbox/assigners/atss_assigner.py
+
+ Args:
+ anc_bboxes (Tensor): shape(num_total_anchors, 4)
+ n_level_bboxes (List):len(3)
+ gt_labels (Tensor): shape(bs, n_max_boxes, 1)
+ gt_bboxes (Tensor): shape(bs, n_max_boxes, 4)
+ mask_gt (Tensor): shape(bs, n_max_boxes, 1)
+ pd_bboxes (Tensor): shape(bs, n_max_boxes, 4)
+ Returns:
+ target_labels (Tensor): shape(bs, num_total_anchors)
+ target_bboxes (Tensor): shape(bs, num_total_anchors, 4)
+ target_scores (Tensor): shape(bs, num_total_anchors, num_classes)
+ fg_mask (Tensor): shape(bs, num_total_anchors)
+ """
+ self.n_anchors = anc_bboxes.size(0)
+ self.bs = gt_bboxes.size(0)
+ self.n_max_boxes = gt_bboxes.size(1)
+
+ if self.n_max_boxes == 0:
+ device = gt_bboxes.device
+ return torch.full( [self.bs, self.n_anchors], self.bg_idx).to(device), \
+ torch.zeros([self.bs, self.n_anchors, 4]).to(device), \
+ torch.zeros([self.bs, self.n_anchors, self.num_classes]).to(device), \
+ torch.zeros([self.bs, self.n_anchors]).to(device)
+
+
+ overlaps = iou2d_calculator(gt_bboxes.reshape([-1, 4]), anc_bboxes)
+ overlaps = overlaps.reshape([self.bs, -1, self.n_anchors])
+
+ distances, ac_points = dist_calculator(gt_bboxes.reshape([-1, 4]), anc_bboxes)
+ distances = distances.reshape([self.bs, -1, self.n_anchors])
+
+ is_in_candidate, candidate_idxs = self.select_topk_candidates(
+ distances, n_level_bboxes, mask_gt)
+
+ overlaps_thr_per_gt, iou_candidates = self.thres_calculator(
+ is_in_candidate, candidate_idxs, overlaps)
+
+ # select candidates iou >= threshold as positive
+ is_pos = torch.where(
+ iou_candidates > overlaps_thr_per_gt.repeat([1, 1, self.n_anchors]),
+ is_in_candidate, torch.zeros_like(is_in_candidate))
+
+ is_in_gts = select_candidates_in_gts(ac_points, gt_bboxes)
+ mask_pos = is_pos * is_in_gts * mask_gt
+
+ target_gt_idx, fg_mask, mask_pos = select_highest_overlaps(
+ mask_pos, overlaps, self.n_max_boxes)
+
+ # assigned target
+ target_labels, target_bboxes, target_scores = self.get_targets(
+ gt_labels, gt_bboxes, target_gt_idx, fg_mask)
+
+ # soft label with iou
+ if pd_bboxes is not None:
+ ious = iou_calculator(gt_bboxes, pd_bboxes) * mask_pos
+ ious = ious.max(axis=-2)[0].unsqueeze(-1)
+ target_scores *= ious
+
+ return target_labels.long(), target_bboxes, target_scores, fg_mask.bool()
+
+ def select_topk_candidates(self,
+ distances,
+ n_level_bboxes,
+ mask_gt):
+
+ mask_gt = mask_gt.repeat(1, 1, self.topk).bool()
+ level_distances = torch.split(distances, n_level_bboxes, dim=-1)
+ is_in_candidate_list = []
+ candidate_idxs = []
+ start_idx = 0
+ for per_level_distances, per_level_boxes in zip(level_distances, n_level_bboxes):
+
+ end_idx = start_idx + per_level_boxes
+ selected_k = min(self.topk, per_level_boxes)
+ _, per_level_topk_idxs = per_level_distances.topk(selected_k, dim=-1, largest=False)
+ candidate_idxs.append(per_level_topk_idxs + start_idx)
+ per_level_topk_idxs = torch.where(mask_gt,
+ per_level_topk_idxs, torch.zeros_like(per_level_topk_idxs))
+ is_in_candidate = F.one_hot(per_level_topk_idxs, per_level_boxes).sum(dim=-2)
+ is_in_candidate = torch.where(is_in_candidate > 1,
+ torch.zeros_like(is_in_candidate), is_in_candidate)
+ is_in_candidate_list.append(is_in_candidate.to(distances.dtype))
+ start_idx = end_idx
+
+ is_in_candidate_list = torch.cat(is_in_candidate_list, dim=-1)
+ candidate_idxs = torch.cat(candidate_idxs, dim=-1)
+
+ return is_in_candidate_list, candidate_idxs
+
+ def thres_calculator(self,
+ is_in_candidate,
+ candidate_idxs,
+ overlaps):
+
+ n_bs_max_boxes = self.bs * self.n_max_boxes
+ _candidate_overlaps = torch.where(is_in_candidate > 0,
+ overlaps, torch.zeros_like(overlaps))
+ candidate_idxs = candidate_idxs.reshape([n_bs_max_boxes, -1])
+ assist_idxs = self.n_anchors * torch.arange(n_bs_max_boxes, device=candidate_idxs.device)
+ assist_idxs = assist_idxs[:,None]
+ faltten_idxs = candidate_idxs + assist_idxs
+ candidate_overlaps = _candidate_overlaps.reshape(-1)[faltten_idxs]
+ candidate_overlaps = candidate_overlaps.reshape([self.bs, self.n_max_boxes, -1])
+
+ overlaps_mean_per_gt = candidate_overlaps.mean(axis=-1, keepdim=True)
+ overlaps_std_per_gt = candidate_overlaps.std(axis=-1, keepdim=True)
+ overlaps_thr_per_gt = overlaps_mean_per_gt + overlaps_std_per_gt
+
+ return overlaps_thr_per_gt, _candidate_overlaps
+
+ def get_targets(self,
+ gt_labels,
+ gt_bboxes,
+ target_gt_idx,
+ fg_mask):
+
+ # assigned target labels
+ batch_idx = torch.arange(self.bs, dtype=gt_labels.dtype, device=gt_labels.device)
+ batch_idx = batch_idx[...,None]
+ target_gt_idx = (target_gt_idx + batch_idx * self.n_max_boxes).long()
+ target_labels = gt_labels.flatten()[target_gt_idx.flatten()]
+ target_labels = target_labels.reshape([self.bs, self.n_anchors])
+ target_labels = torch.where(fg_mask > 0,
+ target_labels, torch.full_like(target_labels, self.bg_idx))
+
+ # assigned target boxes
+ target_bboxes = gt_bboxes.reshape([-1, 4])[target_gt_idx.flatten()]
+ target_bboxes = target_bboxes.reshape([self.bs, self.n_anchors, 4])
+
+ # assigned target scores
+ target_scores = F.one_hot(target_labels.long(), self.num_classes + 1).float()
+ target_scores = target_scores[:, :, :self.num_classes]
+
+ return target_labels, target_bboxes, target_scores
diff --git a/python/app/fedcv/YOLOv6/yolov6/assigners/iou2d_calculator.py b/python/app/fedcv/YOLOv6/yolov6/assigners/iou2d_calculator.py
new file mode 100644
index 0000000000..63768015b8
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/yolov6/assigners/iou2d_calculator.py
@@ -0,0 +1,249 @@
+#This code is based on
+#https://github.com/fcjian/TOOD/blob/master/mmdet/core/bbox/iou_calculators/iou2d_calculator.py
+
+import torch
+
+
+def cast_tensor_type(x, scale=1., dtype=None):
+ if dtype == 'fp16':
+ # scale is for preventing overflows
+ x = (x / scale).half()
+ return x
+
+
+def fp16_clamp(x, min=None, max=None):
+ if not x.is_cuda and x.dtype == torch.float16:
+ # clamp for cpu float16, tensor fp16 has no clamp implementation
+ return x.float().clamp(min, max).half()
+
+ return x.clamp(min, max)
+
+
+def iou2d_calculator(bboxes1, bboxes2, mode='iou', is_aligned=False, scale=1., dtype=None):
+ """2D Overlaps (e.g. IoUs, GIoUs) Calculator."""
+
+ """Calculate IoU between 2D bboxes.
+
+ Args:
+ bboxes1 (Tensor): bboxes have shape (m, 4) in
+ format, or shape (m, 5) in format.
+ bboxes2 (Tensor): bboxes have shape (m, 4) in
+ format, shape (m, 5) in format, or be
+ empty. If ``is_aligned `` is ``True``, then m and n must be
+ equal.
+ mode (str): "iou" (intersection over union), "iof" (intersection
+ over foreground), or "giou" (generalized intersection over
+ union).
+ is_aligned (bool, optional): If True, then m and n must be equal.
+ Default False.
+
+ Returns:
+ Tensor: shape (m, n) if ``is_aligned `` is False else shape (m,)
+ """
+ assert bboxes1.size(-1) in [0, 4, 5]
+ assert bboxes2.size(-1) in [0, 4, 5]
+ if bboxes2.size(-1) == 5:
+ bboxes2 = bboxes2[..., :4]
+ if bboxes1.size(-1) == 5:
+ bboxes1 = bboxes1[..., :4]
+
+ if dtype == 'fp16':
+ # change tensor type to save cpu and cuda memory and keep speed
+ bboxes1 = cast_tensor_type(bboxes1, scale, dtype)
+ bboxes2 = cast_tensor_type(bboxes2, scale, dtype)
+ overlaps = bbox_overlaps(bboxes1, bboxes2, mode, is_aligned)
+ if not overlaps.is_cuda and overlaps.dtype == torch.float16:
+ # resume cpu float32
+ overlaps = overlaps.float()
+ return overlaps
+
+ return bbox_overlaps(bboxes1, bboxes2, mode, is_aligned)
+
+
+def bbox_overlaps(bboxes1, bboxes2, mode='iou', is_aligned=False, eps=1e-6):
+ """Calculate overlap between two set of bboxes.
+
+ FP16 Contributed by https://github.com/open-mmlab/mmdetection/pull/4889
+ Note:
+ Assume bboxes1 is M x 4, bboxes2 is N x 4, when mode is 'iou',
+ there are some new generated variable when calculating IOU
+ using bbox_overlaps function:
+
+ 1) is_aligned is False
+ area1: M x 1
+ area2: N x 1
+ lt: M x N x 2
+ rb: M x N x 2
+ wh: M x N x 2
+ overlap: M x N x 1
+ union: M x N x 1
+ ious: M x N x 1
+
+ Total memory:
+ S = (9 x N x M + N + M) * 4 Byte,
+
+ When using FP16, we can reduce:
+ R = (9 x N x M + N + M) * 4 / 2 Byte
+ R large than (N + M) * 4 * 2 is always true when N and M >= 1.
+ Obviously, N + M <= N * M < 3 * N * M, when N >=2 and M >=2,
+ N + 1 < 3 * N, when N or M is 1.
+
+ Given M = 40 (ground truth), N = 400000 (three anchor boxes
+ in per grid, FPN, R-CNNs),
+ R = 275 MB (one times)
+
+ A special case (dense detection), M = 512 (ground truth),
+ R = 3516 MB = 3.43 GB
+
+ When the batch size is B, reduce:
+ B x R
+
+ Therefore, CUDA memory runs out frequently.
+
+ Experiments on GeForce RTX 2080Ti (11019 MiB):
+
+ | dtype | M | N | Use | Real | Ideal |
+ |:----:|:----:|:----:|:----:|:----:|:----:|
+ | FP32 | 512 | 400000 | 8020 MiB | -- | -- |
+ | FP16 | 512 | 400000 | 4504 MiB | 3516 MiB | 3516 MiB |
+ | FP32 | 40 | 400000 | 1540 MiB | -- | -- |
+ | FP16 | 40 | 400000 | 1264 MiB | 276MiB | 275 MiB |
+
+ 2) is_aligned is True
+ area1: N x 1
+ area2: N x 1
+ lt: N x 2
+ rb: N x 2
+ wh: N x 2
+ overlap: N x 1
+ union: N x 1
+ ious: N x 1
+
+ Total memory:
+ S = 11 x N * 4 Byte
+
+ When using FP16, we can reduce:
+ R = 11 x N * 4 / 2 Byte
+
+ So do the 'giou' (large than 'iou').
+
+ Time-wise, FP16 is generally faster than FP32.
+
+ When gpu_assign_thr is not -1, it takes more time on cpu
+ but not reduce memory.
+ There, we can reduce half the memory and keep the speed.
+
+ If ``is_aligned`` is ``False``, then calculate the overlaps between each
+ bbox of bboxes1 and bboxes2, otherwise the overlaps between each aligned
+ pair of bboxes1 and bboxes2.
+
+ Args:
+ bboxes1 (Tensor): shape (B, m, 4) in format or empty.
+ bboxes2 (Tensor): shape (B, n, 4) in format or empty.
+ B indicates the batch dim, in shape (B1, B2, ..., Bn).
+ If ``is_aligned`` is ``True``, then m and n must be equal.
+ mode (str): "iou" (intersection over union), "iof" (intersection over
+ foreground) or "giou" (generalized intersection over union).
+ Default "iou".
+ is_aligned (bool, optional): If True, then m and n must be equal.
+ Default False.
+ eps (float, optional): A value added to the denominator for numerical
+ stability. Default 1e-6.
+
+ Returns:
+ Tensor: shape (m, n) if ``is_aligned`` is False else shape (m,)
+
+ Example:
+ >>> bboxes1 = torch.FloatTensor([
+ >>> [0, 0, 10, 10],
+ >>> [10, 10, 20, 20],
+ >>> [32, 32, 38, 42],
+ >>> ])
+ >>> bboxes2 = torch.FloatTensor([
+ >>> [0, 0, 10, 20],
+ >>> [0, 10, 10, 19],
+ >>> [10, 10, 20, 20],
+ >>> ])
+ >>> overlaps = bbox_overlaps(bboxes1, bboxes2)
+ >>> assert overlaps.shape == (3, 3)
+ >>> overlaps = bbox_overlaps(bboxes1, bboxes2, is_aligned=True)
+ >>> assert overlaps.shape == (3, )
+
+ Example:
+ >>> empty = torch.empty(0, 4)
+ >>> nonempty = torch.FloatTensor([[0, 0, 10, 9]])
+ >>> assert tuple(bbox_overlaps(empty, nonempty).shape) == (0, 1)
+ >>> assert tuple(bbox_overlaps(nonempty, empty).shape) == (1, 0)
+ >>> assert tuple(bbox_overlaps(empty, empty).shape) == (0, 0)
+ """
+
+ assert mode in ['iou', 'iof', 'giou'], f'Unsupported mode {mode}'
+ # Either the boxes are empty or the length of boxes' last dimension is 4
+ assert (bboxes1.size(-1) == 4 or bboxes1.size(0) == 0)
+ assert (bboxes2.size(-1) == 4 or bboxes2.size(0) == 0)
+
+ # Batch dim must be the same
+ # Batch dim: (B1, B2, ... Bn)
+ assert bboxes1.shape[:-2] == bboxes2.shape[:-2]
+ batch_shape = bboxes1.shape[:-2]
+
+ rows = bboxes1.size(-2)
+ cols = bboxes2.size(-2)
+ if is_aligned:
+ assert rows == cols
+
+ if rows * cols == 0:
+ if is_aligned:
+ return bboxes1.new(batch_shape + (rows, ))
+ else:
+ return bboxes1.new(batch_shape + (rows, cols))
+
+ area1 = (bboxes1[..., 2] - bboxes1[..., 0]) * (
+ bboxes1[..., 3] - bboxes1[..., 1])
+ area2 = (bboxes2[..., 2] - bboxes2[..., 0]) * (
+ bboxes2[..., 3] - bboxes2[..., 1])
+
+ if is_aligned:
+ lt = torch.max(bboxes1[..., :2], bboxes2[..., :2]) # [B, rows, 2]
+ rb = torch.min(bboxes1[..., 2:], bboxes2[..., 2:]) # [B, rows, 2]
+
+ wh = fp16_clamp(rb - lt, min=0)
+ overlap = wh[..., 0] * wh[..., 1]
+
+ if mode in ['iou', 'giou']:
+ union = area1 + area2 - overlap
+ else:
+ union = area1
+ if mode == 'giou':
+ enclosed_lt = torch.min(bboxes1[..., :2], bboxes2[..., :2])
+ enclosed_rb = torch.max(bboxes1[..., 2:], bboxes2[..., 2:])
+ else:
+ lt = torch.max(bboxes1[..., :, None, :2],
+ bboxes2[..., None, :, :2]) # [B, rows, cols, 2]
+ rb = torch.min(bboxes1[..., :, None, 2:],
+ bboxes2[..., None, :, 2:]) # [B, rows, cols, 2]
+
+ wh = fp16_clamp(rb - lt, min=0)
+ overlap = wh[..., 0] * wh[..., 1]
+
+ if mode in ['iou', 'giou']:
+ union = area1[..., None] + area2[..., None, :] - overlap
+ else:
+ union = area1[..., None]
+ if mode == 'giou':
+ enclosed_lt = torch.min(bboxes1[..., :, None, :2],
+ bboxes2[..., None, :, :2])
+ enclosed_rb = torch.max(bboxes1[..., :, None, 2:],
+ bboxes2[..., None, :, 2:])
+
+ eps = union.new_tensor([eps])
+ union = torch.max(union, eps)
+ ious = overlap / union
+ if mode in ['iou', 'iof']:
+ return ious
+ # calculate gious
+ enclose_wh = fp16_clamp(enclosed_rb - enclosed_lt, min=0)
+ enclose_area = enclose_wh[..., 0] * enclose_wh[..., 1]
+ enclose_area = torch.max(enclose_area, eps)
+ gious = ious - (enclose_area - union) / enclose_area
+ return gious
diff --git a/python/app/fedcv/YOLOv6/yolov6/assigners/tal_assigner.py b/python/app/fedcv/YOLOv6/yolov6/assigners/tal_assigner.py
new file mode 100644
index 0000000000..45008f5acb
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/yolov6/assigners/tal_assigner.py
@@ -0,0 +1,173 @@
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from yolov6.assigners.assigner_utils import select_candidates_in_gts, select_highest_overlaps, iou_calculator, dist_calculator
+
+class TaskAlignedAssigner(nn.Module):
+ def __init__(self,
+ topk=13,
+ num_classes=80,
+ alpha=1.0,
+ beta=6.0,
+ eps=1e-9):
+ super(TaskAlignedAssigner, self).__init__()
+ self.topk = topk
+ self.num_classes = num_classes
+ self.bg_idx = num_classes
+ self.alpha = alpha
+ self.beta = beta
+ self.eps = eps
+
+ @torch.no_grad()
+ def forward(self,
+ pd_scores,
+ pd_bboxes,
+ anc_points,
+ gt_labels,
+ gt_bboxes,
+ mask_gt):
+ """This code referenced to
+ https://github.com/Nioolek/PPYOLOE_pytorch/blob/master/ppyoloe/assigner/tal_assigner.py
+
+ Args:
+ pd_scores (Tensor): shape(bs, num_total_anchors, num_classes)
+ pd_bboxes (Tensor): shape(bs, num_total_anchors, 4)
+ anc_points (Tensor): shape(num_total_anchors, 2)
+ gt_labels (Tensor): shape(bs, n_max_boxes, 1)
+ gt_bboxes (Tensor): shape(bs, n_max_boxes, 4)
+ mask_gt (Tensor): shape(bs, n_max_boxes, 1)
+ Returns:
+ target_labels (Tensor): shape(bs, num_total_anchors)
+ target_bboxes (Tensor): shape(bs, num_total_anchors, 4)
+ target_scores (Tensor): shape(bs, num_total_anchors, num_classes)
+ fg_mask (Tensor): shape(bs, num_total_anchors)
+ """
+ self.bs = pd_scores.size(0)
+ self.n_max_boxes = gt_bboxes.size(1)
+
+ if self.n_max_boxes == 0:
+ device = gt_bboxes.device
+ return torch.full_like(pd_scores[..., 0], self.bg_idx).to(device), \
+ torch.zeros_like(pd_bboxes).to(device), \
+ torch.zeros_like(pd_scores).to(device), \
+ torch.zeros_like(pd_scores[..., 0]).to(device)
+
+ cycle, step, self.bs = (1, self.bs, self.bs) if self.n_max_boxes <= 100 else (self.bs, 1, 1)
+ target_labels_lst, target_bboxes_lst, target_scores_lst, fg_mask_lst = [], [], [], []
+ # loop batch dim in case of numerous object box
+ for i in range(cycle):
+ start, end = i*step, (i+1)*step
+ pd_scores_ = pd_scores[start:end, ...]
+ pd_bboxes_ = pd_bboxes[start:end, ...]
+ gt_labels_ = gt_labels[start:end, ...]
+ gt_bboxes_ = gt_bboxes[start:end, ...]
+ mask_gt_ = mask_gt[start:end, ...]
+
+ mask_pos, align_metric, overlaps = self.get_pos_mask(
+ pd_scores_, pd_bboxes_, gt_labels_, gt_bboxes_, anc_points, mask_gt_)
+
+ target_gt_idx, fg_mask, mask_pos = select_highest_overlaps(
+ mask_pos, overlaps, self.n_max_boxes)
+
+ # assigned target
+ target_labels, target_bboxes, target_scores = self.get_targets(
+ gt_labels_, gt_bboxes_, target_gt_idx, fg_mask)
+
+ # normalize
+ align_metric *= mask_pos
+ pos_align_metrics = align_metric.max(axis=-1, keepdim=True)[0]
+ pos_overlaps = (overlaps * mask_pos).max(axis=-1, keepdim=True)[0]
+ norm_align_metric = (align_metric * pos_overlaps / (pos_align_metrics + self.eps)).max(-2)[0].unsqueeze(-1)
+ target_scores = target_scores * norm_align_metric
+
+ # append
+ target_labels_lst.append(target_labels)
+ target_bboxes_lst.append(target_bboxes)
+ target_scores_lst.append(target_scores)
+ fg_mask_lst.append(fg_mask)
+
+ # concat
+ target_labels = torch.cat(target_labels_lst, 0)
+ target_bboxes = torch.cat(target_bboxes_lst, 0)
+ target_scores = torch.cat(target_scores_lst, 0)
+ fg_mask = torch.cat(fg_mask_lst, 0)
+
+ return target_labels, target_bboxes, target_scores, fg_mask.bool()
+
+ def get_pos_mask(self,
+ pd_scores,
+ pd_bboxes,
+ gt_labels,
+ gt_bboxes,
+ anc_points,
+ mask_gt):
+
+ # get anchor_align metric
+ align_metric, overlaps = self.get_box_metrics(pd_scores, pd_bboxes, gt_labels, gt_bboxes)
+ # get in_gts mask
+ mask_in_gts = select_candidates_in_gts(anc_points, gt_bboxes)
+ # get topk_metric mask
+ mask_topk = self.select_topk_candidates(
+ align_metric * mask_in_gts, topk_mask=mask_gt.repeat([1, 1, self.topk]).bool())
+ # merge all mask to a final mask
+ mask_pos = mask_topk * mask_in_gts * mask_gt
+
+ return mask_pos, align_metric, overlaps
+
+ def get_box_metrics(self,
+ pd_scores,
+ pd_bboxes,
+ gt_labels,
+ gt_bboxes):
+
+ pd_scores = pd_scores.permute(0, 2, 1)
+ gt_labels = gt_labels.to(torch.long)
+ ind = torch.zeros([2, self.bs, self.n_max_boxes], dtype=torch.long)
+ ind[0] = torch.arange(end=self.bs).view(-1, 1).repeat(1, self.n_max_boxes)
+ ind[1] = gt_labels.squeeze(-1)
+ bbox_scores = pd_scores[ind[0], ind[1]]
+
+ overlaps = iou_calculator(gt_bboxes, pd_bboxes)
+ align_metric = bbox_scores.pow(self.alpha) * overlaps.pow(self.beta)
+
+ return align_metric, overlaps
+
+ def select_topk_candidates(self,
+ metrics,
+ largest=True,
+ topk_mask=None):
+
+ num_anchors = metrics.shape[-1]
+ topk_metrics, topk_idxs = torch.topk(
+ metrics, self.topk, axis=-1, largest=largest)
+ if topk_mask is None:
+ topk_mask = (topk_metrics.max(axis=-1, keepdim=True) > self.eps).tile(
+ [1, 1, self.topk])
+ topk_idxs = torch.where(topk_mask, topk_idxs, torch.zeros_like(topk_idxs))
+ is_in_topk = F.one_hot(topk_idxs, num_anchors).sum(axis=-2)
+ is_in_topk = torch.where(is_in_topk > 1,
+ torch.zeros_like(is_in_topk), is_in_topk)
+ return is_in_topk.to(metrics.dtype)
+
+ def get_targets(self,
+ gt_labels,
+ gt_bboxes,
+ target_gt_idx,
+ fg_mask):
+
+ # assigned target labels
+ batch_ind = torch.arange(end=self.bs, dtype=torch.int64, device=gt_labels.device)[...,None]
+ target_gt_idx = target_gt_idx + batch_ind * self.n_max_boxes
+ target_labels = gt_labels.long().flatten()[target_gt_idx]
+
+ # assigned target boxes
+ target_bboxes = gt_bboxes.reshape([-1, 4])[target_gt_idx]
+
+ # assigned target scores
+ target_labels[target_labels<0] = 0
+ target_scores = F.one_hot(target_labels, self.num_classes)
+ fg_scores_mask = fg_mask[:, :, None].repeat(1, 1, self.num_classes)
+ target_scores = torch.where(fg_scores_mask > 0, target_scores,
+ torch.full_like(target_scores, 0))
+
+ return target_labels, target_bboxes, target_scores
diff --git a/python/app/fedcv/YOLOv6/yolov6/core/engine.py b/python/app/fedcv/YOLOv6/yolov6/core/engine.py
new file mode 100644
index 0000000000..64de2dcdf9
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/yolov6/core/engine.py
@@ -0,0 +1,606 @@
+#!/usr/bin/env python3
+# -*- coding:utf-8 -*-
+from ast import Pass
+import os
+import time
+from copy import deepcopy
+import os.path as osp
+
+from tqdm import tqdm
+
+import cv2
+import numpy as np
+import math
+import torch
+from torch.cuda import amp
+from torch.nn.parallel import DistributedDataParallel as DDP
+from torch.utils.tensorboard import SummaryWriter
+
+import os
+import sys
+
+cwd = os.getcwd()
+sys.path.insert(0, cwd + '/YOLOv6')
+
+
+import tools.eval as eval
+from yolov6.data.data_load import create_dataloader
+from yolov6.models.yolo import build_model
+from yolov6.models.yolo_lite import build_model as build_lite_model
+
+from yolov6.models.losses.loss import ComputeLoss as ComputeLoss
+from yolov6.models.losses.loss_fuseab import ComputeLoss as ComputeLoss_ab
+from yolov6.models.losses.loss_distill import ComputeLoss as ComputeLoss_distill
+from yolov6.models.losses.loss_distill_ns import ComputeLoss as ComputeLoss_distill_ns
+
+from yolov6.utils.events import LOGGER, NCOLS, load_yaml, write_tblog, write_tbimg
+from yolov6.utils.ema import ModelEMA, de_parallel
+from yolov6.utils.checkpoint import load_state_dict, save_checkpoint, strip_optimizer
+from yolov6.solver.build import build_optimizer, build_lr_scheduler
+from yolov6.utils.RepOptimizer import extract_scales, RepVGGOptimizer
+from yolov6.utils.nms import xywh2xyxy
+from yolov6.utils.general import download_ckpt
+
+
+class Trainer:
+ def __init__(self, args, cfg, device, data_idx=None):
+ self.args = args
+ self.cfg = cfg
+ self.device = device
+ self.max_epoch = args.epochs
+ self.max_step = 1
+ if args.resume:
+ self.ckpt = torch.load(args.resume, map_location='cpu')
+
+ self.rank = -1
+ args.rank = -1
+ self.world_size = 1
+ args.world_size = 1
+ self.main_process = True
+ self.save_dir = args.save_dir
+ # get data loader
+ self.data_idx = data_idx
+ self.data_dict = load_yaml(args.data_path)
+ self.num_classes = self.data_dict['nc']
+ # get model and optimizer
+ self.distill_ns = True if self.args.distill and self.cfg.model.type in ['YOLOv6n','YOLOv6s'] else False
+ model = self.get_model(args, cfg, self.num_classes, device)
+ if self.args.distill:
+ if self.args.fuse_ab:
+ LOGGER.error('ERROR in: Distill models should turn off the fuse_ab.\n')
+ exit()
+ self.teacher_model = self.get_teacher_model(args, cfg, self.num_classes, device)
+ if self.args.quant:
+ self.quant_setup(model, cfg, device)
+ if cfg.training_mode == 'repopt':
+ scales = self.load_scale_from_pretrained_models(cfg, device)
+ reinit = False if cfg.model.pretrained is not None else True
+ self.optimizer = RepVGGOptimizer(model, scales, args, cfg, reinit=reinit)
+ else:
+ self.optimizer = self.get_optimizer(args, cfg, model)
+ self.scheduler, self.lf = self.get_lr_scheduler(args, cfg, self.optimizer)
+ self.ema = ModelEMA(model) if self.main_process else None
+ # tensorboard
+ self.tblogger = SummaryWriter(self.save_dir) if self.main_process else None
+ self.start_epoch = 0
+ #resume
+ if hasattr(self, "ckpt"):
+ resume_state_dict = self.ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
+ model.load_state_dict(resume_state_dict, strict=True) # load
+ self.start_epoch = self.ckpt['epoch'] + 1
+ self.optimizer.load_state_dict(self.ckpt['optimizer'])
+ self.scheduler.load_state_dict(self.ckpt['scheduler'])
+ if self.main_process:
+ self.ema.ema.load_state_dict(self.ckpt['ema'].float().state_dict())
+ self.ema.updates = self.ckpt['updates']
+ if self.start_epoch > (self.max_epoch - self.args.stop_aug_last_n_epoch):
+ self.cfg.data_aug.mosaic = 0.0
+ self.cfg.data_aug.mixup = 0.0
+
+ self.train_loader, self.train_set, self.val_loader, self.val_set = self.get_data_loader(args, cfg, self.data_dict, self.data_idx)
+
+ # self.model = self.parallel_model(args, model, device)
+ self.model = model
+ self.model.nc, self.model.names = self.data_dict['nc'], self.data_dict['names']
+
+ self.max_stepnum = len(self.train_loader)
+ self.batch_size = args.batch_size
+ self.img_size = args.img_size
+ self.rect = args.rect
+ self.vis_imgs_list = []
+ self.write_trainbatch_tb = args.write_trainbatch_tb
+ # set color for classnames
+ self.color = [tuple(np.random.choice(range(256), size=3)) for _ in range(self.model.nc)]
+ self.specific_shape = args.specific_shape
+ self.height = args.height
+ self.width = args.width
+
+ self.loss_num = 3
+ self.loss_info = ['Epoch', 'lr', 'iou_loss', 'dfl_loss', 'cls_loss']
+ if self.args.distill:
+ self.loss_num += 1
+ self.loss_info += ['cwd_loss']
+
+
+ # Training Process
+ def train(self):
+ try:
+ self.before_train_loop()
+ for self.epoch in range(self.start_epoch, self.max_epoch):
+ self.before_epoch()
+ self.train_one_epoch(self.epoch)
+ self.after_epoch()
+ # self.strip_model()
+
+ except Exception as _:
+ LOGGER.error('ERROR in training loop or eval/save model.')
+ raise
+ finally:
+ self.train_after_loop()
+
+ # Training loop for each epoch
+ def train_one_epoch(self, epoch_num):
+ try:
+ for self.step, self.batch_data in self.pbar:
+ if self.step >= self.max_step:
+ break
+ self.train_in_steps(epoch_num, self.step)
+ self.print_details()
+ except Exception as _:
+ LOGGER.error('ERROR in training steps.')
+ raise
+
+ # Training one batch data.
+ def train_in_steps(self, epoch_num, step_num):
+ images, targets = self.prepro_data(self.batch_data, self.device)
+ # plot train_batch and save to tensorboard once an epoch
+ if self.write_trainbatch_tb and self.main_process and self.step == 0:
+ self.plot_train_batch(images, targets)
+ write_tbimg(self.tblogger, self.vis_train_batch, self.step + self.max_stepnum * self.epoch, type='train')
+
+ # forward
+ with amp.autocast(enabled=self.device != 'cpu'):
+ _, _, batch_height, batch_width = images.shape
+ preds, s_featmaps = self.model(images)
+ if self.args.distill:
+ with torch.no_grad():
+ t_preds, t_featmaps = self.teacher_model(images)
+ temperature = self.args.temperature
+ total_loss, loss_items = self.compute_loss_distill(preds, t_preds, s_featmaps, t_featmaps, targets, \
+ epoch_num, self.max_epoch, temperature, step_num,
+ batch_height, batch_width)
+
+ elif self.args.fuse_ab:
+ total_loss, loss_items = self.compute_loss((preds[0],preds[3],preds[4]), targets, epoch_num,
+ step_num, batch_height, batch_width) # YOLOv6_af
+ total_loss_ab, loss_items_ab = self.compute_loss_ab(preds[:3], targets, epoch_num, step_num,
+ batch_height, batch_width) # YOLOv6_ab
+ total_loss += total_loss_ab
+ loss_items += loss_items_ab
+ else:
+ total_loss, loss_items = self.compute_loss(preds, targets, epoch_num, step_num,
+ batch_height, batch_width) # YOLOv6_af
+ if self.rank != -1:
+ total_loss *= self.world_size
+ # backward
+ self.scaler.scale(total_loss).backward()
+ self.loss_items = loss_items
+ self.update_optimizer()
+
+ def after_epoch(self):
+ lrs_of_this_epoch = [x['lr'] for x in self.optimizer.param_groups]
+ self.scheduler.step() # update lr
+
+ return
+
+ if self.main_process:
+ self.ema.update_attr(self.model, include=['nc', 'names', 'stride']) # update attributes for ema model
+
+ remaining_epochs = self.max_epoch - 1 - self.epoch # self.epoch is start from 0
+ eval_interval = self.args.eval_interval if remaining_epochs >= self.args.heavy_eval_range else min(3, self.args.eval_interval)
+ is_val_epoch = (remaining_epochs == 0) or ((not self.args.eval_final_only) and ((self.epoch + 1) % eval_interval == 0))
+ if is_val_epoch:
+ self.eval_model()
+ self.ap = self.evaluate_results[1]
+ self.best_ap = max(self.ap, self.best_ap)
+ # save ckpt
+ ckpt = {
+ 'model': deepcopy(de_parallel(self.model)).half(),
+ 'ema': deepcopy(self.ema.ema).half(),
+ 'updates': self.ema.updates,
+ 'optimizer': self.optimizer.state_dict(),
+ 'scheduler': self.scheduler.state_dict(),
+ 'epoch': self.epoch,
+ 'results': self.evaluate_results,
+ }
+
+ save_ckpt_dir = osp.join(self.save_dir, 'weights')
+ save_checkpoint(ckpt, (is_val_epoch) and (self.ap == self.best_ap), save_ckpt_dir, model_name='last_ckpt')
+ if self.epoch >= self.max_epoch - self.args.save_ckpt_on_last_n_epoch:
+ save_checkpoint(ckpt, False, save_ckpt_dir, model_name=f'{self.epoch}_ckpt')
+
+ #default save best ap ckpt in stop strong aug epochs
+ if self.epoch >= self.max_epoch - self.args.stop_aug_last_n_epoch:
+ if self.best_stop_strong_aug_ap < self.ap:
+ self.best_stop_strong_aug_ap = max(self.ap, self.best_stop_strong_aug_ap)
+ save_checkpoint(ckpt, False, save_ckpt_dir, model_name='best_stop_aug_ckpt')
+
+ del ckpt
+
+ self.evaluate_results = list(self.evaluate_results)
+
+ # log for tensorboard
+ write_tblog(self.tblogger, self.epoch, self.evaluate_results, lrs_of_this_epoch, self.mean_loss)
+ # save validation predictions to tensorboard
+ write_tbimg(self.tblogger, self.vis_imgs_list, self.epoch, type='val')
+
+ def eval_model(self):
+ if not hasattr(self.cfg, "eval_params"):
+ results, vis_outputs, vis_paths = eval.run(self.data_dict,
+ batch_size=self.batch_size // self.world_size * 2,
+ img_size=self.img_size,
+ model=self.ema.ema if self.args.calib is False else self.model,
+ conf_thres=0.03,
+ dataloader=self.val_loader,
+ save_dir=self.save_dir,
+ task='train',
+ specific_shape=self.specific_shape,
+ height=self.height,
+ width=self.width
+ )
+ else:
+ def get_cfg_value(cfg_dict, value_str, default_value):
+ if value_str in cfg_dict:
+ if isinstance(cfg_dict[value_str], list):
+ return cfg_dict[value_str][0] if cfg_dict[value_str][0] is not None else default_value
+ else:
+ return cfg_dict[value_str] if cfg_dict[value_str] is not None else default_value
+ else:
+ return default_value
+ eval_img_size = get_cfg_value(self.cfg.eval_params, "img_size", self.img_size)
+ results, vis_outputs, vis_paths = eval.run(self.data_dict,
+ batch_size=get_cfg_value(self.cfg.eval_params, "batch_size", self.batch_size // self.world_size * 2),
+ img_size=eval_img_size,
+ model=self.ema.ema if self.args.calib is False else self.model,
+ conf_thres=get_cfg_value(self.cfg.eval_params, "conf_thres", 0.03),
+ dataloader=self.val_loader,
+ save_dir=self.save_dir,
+ task='train',
+ shrink_size=get_cfg_value(self.cfg.eval_params, "shrink_size", eval_img_size),
+ infer_on_rect=get_cfg_value(self.cfg.eval_params, "infer_on_rect", False),
+ verbose=get_cfg_value(self.cfg.eval_params, "verbose", False),
+ do_coco_metric=get_cfg_value(self.cfg.eval_params, "do_coco_metric", True),
+ do_pr_metric=get_cfg_value(self.cfg.eval_params, "do_pr_metric", False),
+ plot_curve=get_cfg_value(self.cfg.eval_params, "plot_curve", False),
+ plot_confusion_matrix=get_cfg_value(self.cfg.eval_params, "plot_confusion_matrix", False),
+ specific_shape=self.specific_shape,
+ height=self.height,
+ width=self.width
+ )
+
+ LOGGER.info(f"Epoch: {self.epoch} | mAP@0.5: {results[0]} | mAP@0.50:0.95: {results[1]}")
+ self.evaluate_results = results[:2]
+ # plot validation predictions
+ self.plot_val_pred(vis_outputs, vis_paths)
+
+
+ def before_train_loop(self):
+ LOGGER.info('Training start...')
+ self.start_time = time.time()
+ self.warmup_stepnum = max(round(self.cfg.solver.warmup_epochs * self.max_stepnum), 1000) if self.args.quant is False else 0
+ self.scheduler.last_epoch = self.start_epoch - 1
+ self.last_opt_step = -1
+ self.scaler = amp.GradScaler(enabled=self.device != 'cpu')
+
+ self.best_ap, self.ap = 0.0, 0.0
+ self.best_stop_strong_aug_ap = 0.0
+ self.evaluate_results = (0, 0) # AP50, AP50_95
+ # resume results
+ if hasattr(self, "ckpt"):
+ self.evaluate_results = self.ckpt['results']
+ self.best_ap = self.evaluate_results[1]
+ self.best_stop_strong_aug_ap = self.evaluate_results[1]
+
+
+ self.compute_loss = ComputeLoss(num_classes=self.data_dict['nc'],
+ ori_img_size=self.img_size,
+ warmup_epoch=self.cfg.model.head.atss_warmup_epoch,
+ use_dfl=self.cfg.model.head.use_dfl,
+ reg_max=self.cfg.model.head.reg_max,
+ iou_type=self.cfg.model.head.iou_type,
+ fpn_strides=self.cfg.model.head.strides)
+
+ if self.args.fuse_ab:
+ self.compute_loss_ab = ComputeLoss_ab(num_classes=self.data_dict['nc'],
+ ori_img_size=self.img_size,
+ warmup_epoch=0,
+ use_dfl=False,
+ reg_max=0,
+ iou_type=self.cfg.model.head.iou_type,
+ fpn_strides=self.cfg.model.head.strides,
+ )
+ if self.args.distill :
+ if self.cfg.model.type in ['YOLOv6n','YOLOv6s']:
+ Loss_distill_func = ComputeLoss_distill_ns
+ else:
+ Loss_distill_func = ComputeLoss_distill
+
+ self.compute_loss_distill = Loss_distill_func(num_classes=self.data_dict['nc'],
+ ori_img_size=self.img_size,
+ fpn_strides=self.cfg.model.head.strides,
+ warmup_epoch=self.cfg.model.head.atss_warmup_epoch,
+ use_dfl=self.cfg.model.head.use_dfl,
+ reg_max=self.cfg.model.head.reg_max,
+ iou_type=self.cfg.model.head.iou_type,
+ distill_weight = self.cfg.model.head.distill_weight,
+ distill_feat = self.args.distill_feat,
+ )
+
+ def before_epoch(self):
+ #stop strong aug like mosaic and mixup from last n epoch by recreate dataloader
+ if self.epoch == self.max_epoch - self.args.stop_aug_last_n_epoch:
+ self.cfg.data_aug.mosaic = 0.0
+ self.cfg.data_aug.mixup = 0.0
+ self.train_loader, _, self.val_loader, _ = self.get_data_loader(self.args, self.cfg, self.data_dict, self.data_idx)
+ self.model.train()
+ if self.rank != -1:
+ self.train_loader.sampler.set_epoch(self.epoch)
+ self.mean_loss = torch.zeros(self.loss_num, device=self.device)
+ self.optimizer.zero_grad()
+
+ LOGGER.info(('\n' + '%10s' * (self.loss_num + 2)) % (*self.loss_info,))
+ self.pbar = enumerate(self.train_loader)
+ if self.main_process:
+ self.pbar = tqdm(self.pbar, total=self.max_stepnum, ncols=NCOLS, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}')
+
+ # Print loss after each steps
+ def print_details(self):
+ if self.main_process:
+ self.mean_loss = (self.mean_loss * self.step + self.loss_items) / (self.step + 1)
+ self.pbar.set_description(('%10s' + ' %10.4g' + '%10.4g' * self.loss_num) % (f'{self.epoch}/{self.max_epoch - 1}', \
+ self.scheduler.get_last_lr()[0], *(self.mean_loss)))
+
+ def strip_model(self):
+ if self.main_process:
+ LOGGER.info(f'\nTraining completed in {(time.time() - self.start_time) / 3600:.3f} hours.')
+ save_ckpt_dir = osp.join(self.save_dir, 'weights')
+ strip_optimizer(save_ckpt_dir, self.epoch) # strip optimizers for saved pt model
+
+ # Empty cache if training finished
+ def train_after_loop(self):
+ if self.device != 'cpu':
+ torch.cuda.empty_cache()
+
+ def update_optimizer(self):
+ curr_step = self.step + self.max_stepnum * self.epoch
+ self.accumulate = max(1, round(64 / self.batch_size))
+ if curr_step <= self.warmup_stepnum:
+ self.accumulate = max(1, np.interp(curr_step, [0, self.warmup_stepnum], [1, 64 / self.batch_size]).round())
+ for k, param in enumerate(self.optimizer.param_groups):
+ warmup_bias_lr = self.cfg.solver.warmup_bias_lr if k == 2 else 0.0
+ param['lr'] = np.interp(curr_step, [0, self.warmup_stepnum], [warmup_bias_lr, param['initial_lr'] * self.lf(self.epoch)])
+ if 'momentum' in param:
+ param['momentum'] = np.interp(curr_step, [0, self.warmup_stepnum], [self.cfg.solver.warmup_momentum, self.cfg.solver.momentum])
+ if curr_step - self.last_opt_step >= self.accumulate:
+ self.scaler.step(self.optimizer)
+ self.scaler.update()
+ self.optimizer.zero_grad()
+ if self.ema:
+ self.ema.update(self.model)
+ self.last_opt_step = curr_step
+
+ @staticmethod
+ def get_data_loader(args, cfg, data_dict, data_idx):
+ train_path, val_path = data_dict['train'], data_dict['val']
+ # check data
+ nc = int(data_dict['nc'])
+ class_names = data_dict['names']
+ assert len(class_names) == nc, f'the length of class names does not match the number of classes defined'
+ grid_size = max(int(max(cfg.model.head.strides)), 32)
+ # create train dataloader
+ train_loader, train_set = create_dataloader(train_path, args.img_size, args.batch_size // args.world_size, grid_size,
+ hyp=dict(cfg.data_aug), augment=True, rect=args.rect, rank=args.local_rank,
+ workers=args.workers, shuffle=True, check_images=args.check_images,
+ check_labels=args.check_labels, data_dict=data_dict, task='train',
+ specific_shape=args.specific_shape, height=args.height, width=args.width, data_idx=data_idx)
+ # create val dataloader
+ val_loader = None
+ val_set = None
+ if args.rank in [-1, 0]:
+ # TODO: check whether to set rect to self.rect?
+ val_loader, val_set = create_dataloader(val_path, args.img_size, args.batch_size // args.world_size * 2, grid_size,
+ hyp=dict(cfg.data_aug), rect=True, rank=-1, pad=0.5,
+ workers=args.workers, check_images=args.check_images,
+ check_labels=args.check_labels, data_dict=data_dict, task='val',
+ specific_shape=args.specific_shape, height=args.height, width=args.width)
+
+ return train_loader, train_set, val_loader, val_set
+
+ @staticmethod
+ def prepro_data(batch_data, device):
+ images = batch_data[0].to(device, non_blocking=True).float() / 255
+ targets = batch_data[1].to(device)
+ return images, targets
+
+ def get_model(self, args, cfg, nc, device):
+ if 'YOLOv6-lite' in cfg.model.type:
+ assert not self.args.fuse_ab, 'ERROR in: YOLOv6-lite models not support fuse_ab mode.'
+ assert not self.args.distill, 'ERROR in: YOLOv6-lite models not support distill mode.'
+ model = build_lite_model(cfg, nc, device)
+ else:
+ model = build_model(cfg, nc, device, fuse_ab=self.args.fuse_ab, distill_ns=self.distill_ns)
+ weights = cfg.model.pretrained
+ if weights: # finetune if pretrained model is set
+ if not os.path.exists(weights):
+ download_ckpt(weights)
+ LOGGER.info(f'Loading state_dict from {weights} for fine-tuning...')
+ model = load_state_dict(weights, model, map_location=device)
+
+ return model
+
+ def get_teacher_model(self, args, cfg, nc, device):
+ teacher_fuse_ab = False if cfg.model.head.num_layers != 3 else True
+ model = build_model(cfg, nc, device, fuse_ab=teacher_fuse_ab)
+ weights = args.teacher_model_path
+ if weights: # finetune if pretrained model is set
+ LOGGER.info(f'Loading state_dict from {weights} for teacher')
+ model = load_state_dict(weights, model, map_location=device)
+ LOGGER.info('Model: {}'.format(model))
+ # Do not update running means and running vars
+ for module in model.modules():
+ if isinstance(module, torch.nn.BatchNorm2d):
+ module.track_running_stats = False
+ return model
+
+ @staticmethod
+ def load_scale_from_pretrained_models(cfg, device):
+ weights = cfg.model.scales
+ scales = None
+ if not weights:
+ LOGGER.error("ERROR: No scales provided to init RepOptimizer!")
+ else:
+ ckpt = torch.load(weights, map_location=device)
+ scales = extract_scales(ckpt)
+ return scales
+
+
+ @staticmethod
+ def parallel_model(args, model, device):
+ # If DP mode
+ dp_mode = device.type != 'cpu' and args.rank == -1
+ if dp_mode and torch.cuda.device_count() > 1:
+ LOGGER.warning('WARNING: DP not recommended, use DDP instead.\n')
+ model = torch.nn.DataParallel(model)
+
+ # If DDP mode
+ ddp_mode = device.type != 'cpu' and args.rank != -1
+ if ddp_mode:
+ model = DDP(model, device_ids=[args.local_rank], output_device=args.local_rank)
+
+ return model
+
+ def get_optimizer(self, args, cfg, model):
+ accumulate = max(1, round(64 / args.batch_size))
+ cfg.solver.weight_decay *= args.batch_size * accumulate / 64
+ cfg.solver.lr0 *= args.batch_size / (self.world_size * args.bs_per_gpu) # rescale lr0 related to batchsize
+ optimizer = build_optimizer(cfg, model)
+ return optimizer
+
+ @staticmethod
+ def get_lr_scheduler(args, cfg, optimizer):
+ epochs = args.epochs
+ lr_scheduler, lf = build_lr_scheduler(cfg, optimizer, epochs)
+ return lr_scheduler, lf
+
+ def plot_train_batch(self, images, targets, max_size=1920, max_subplots=16):
+ # Plot train_batch with labels
+ if isinstance(images, torch.Tensor):
+ images = images.cpu().float().numpy()
+ if isinstance(targets, torch.Tensor):
+ targets = targets.cpu().numpy()
+ if np.max(images[0]) <= 1:
+ images *= 255 # de-normalise (optional)
+ bs, _, h, w = images.shape # batch size, _, height, width
+ bs = min(bs, max_subplots) # limit plot images
+ ns = np.ceil(bs ** 0.5) # number of subplots (square)
+ paths = self.batch_data[2] # image paths
+ # Build Image
+ mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
+ for i, im in enumerate(images):
+ if i == max_subplots: # if last batch has fewer images than we expect
+ break
+ x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
+ im = im.transpose(1, 2, 0)
+ mosaic[y:y + h, x:x + w, :] = im
+ # Resize (optional)
+ scale = max_size / ns / max(h, w)
+ if scale < 1:
+ h = math.ceil(scale * h)
+ w = math.ceil(scale * w)
+ mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))
+ for i in range(bs):
+ x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
+ cv2.rectangle(mosaic, (x, y), (x + w, y + h), (255, 255, 255), thickness=2) # borders
+ cv2.putText(mosaic, f"{os.path.basename(paths[i])[:40]}", (x + 5, y + 15),
+ cv2.FONT_HERSHEY_COMPLEX, 0.5, color=(220, 220, 220), thickness=1) # filename
+ if len(targets) > 0:
+ ti = targets[targets[:, 0] == i] # image targets
+ boxes = xywh2xyxy(ti[:, 2:6]).T
+ classes = ti[:, 1].astype('int')
+ labels = ti.shape[1] == 6 # labels if no conf column
+ if boxes.shape[1]:
+ if boxes.max() <= 1.01: # if normalized with tolerance 0.01
+ boxes[[0, 2]] *= w # scale to pixels
+ boxes[[1, 3]] *= h
+ elif scale < 1: # absolute coords need scale if image scales
+ boxes *= scale
+ boxes[[0, 2]] += x
+ boxes[[1, 3]] += y
+ for j, box in enumerate(boxes.T.tolist()):
+ box = [int(k) for k in box]
+ cls = classes[j]
+ color = tuple([int(x) for x in self.color[cls]])
+ cls = self.data_dict['names'][cls] if self.data_dict['names'] else cls
+ if labels:
+ label = f'{cls}'
+ cv2.rectangle(mosaic, (box[0], box[1]), (box[2], box[3]), color, thickness=1)
+ cv2.putText(mosaic, label, (box[0], box[1] - 5), cv2.FONT_HERSHEY_COMPLEX, 0.5, color, thickness=1)
+ self.vis_train_batch = mosaic.copy()
+
+ def plot_val_pred(self, vis_outputs, vis_paths, vis_conf=0.3, vis_max_box_num=5):
+ # plot validation predictions
+ self.vis_imgs_list = []
+ for (vis_output, vis_path) in zip(vis_outputs, vis_paths):
+ vis_output_array = vis_output.cpu().numpy() # xyxy
+ ori_img = cv2.imread(vis_path)
+ for bbox_idx, vis_bbox in enumerate(vis_output_array):
+ x_tl = int(vis_bbox[0])
+ y_tl = int(vis_bbox[1])
+ x_br = int(vis_bbox[2])
+ y_br = int(vis_bbox[3])
+ box_score = vis_bbox[4]
+ cls_id = int(vis_bbox[5])
+ # draw top n bbox
+ if box_score < vis_conf or bbox_idx > vis_max_box_num:
+ break
+ cv2.rectangle(ori_img, (x_tl, y_tl), (x_br, y_br), tuple([int(x) for x in self.color[cls_id]]), thickness=1)
+ cv2.putText(ori_img, f"{self.data_dict['names'][cls_id]}: {box_score:.2f}", (x_tl, y_tl - 10), cv2.FONT_HERSHEY_COMPLEX, 0.5, tuple([int(x) for x in self.color[cls_id]]), thickness=1)
+ self.vis_imgs_list.append(torch.from_numpy(ori_img[:, :, ::-1].copy()))
+
+
+ # PTQ
+ def calibrate(self, cfg):
+ def save_calib_model(model, cfg):
+ # Save calibrated checkpoint
+ output_model_path = os.path.join(cfg.ptq.calib_output_path, '{}_calib_{}.pt'.
+ format(os.path.splitext(os.path.basename(cfg.model.pretrained))[0], cfg.ptq.calib_method))
+ if cfg.ptq.sensitive_layers_skip is True:
+ output_model_path = output_model_path.replace('.pt', '_partial.pt')
+ LOGGER.info('Saving calibrated model to {}... '.format(output_model_path))
+ if not os.path.exists(cfg.ptq.calib_output_path):
+ os.mkdir(cfg.ptq.calib_output_path)
+ torch.save({'model': deepcopy(de_parallel(model)).half()}, output_model_path)
+ assert self.args.quant is True and self.args.calib is True
+ if self.main_process:
+ from tools.qat.qat_utils import ptq_calibrate
+ ptq_calibrate(self.model, self.train_loader, cfg)
+ self.epoch = 0
+ self.eval_model()
+ save_calib_model(self.model, cfg)
+ # QAT
+ def quant_setup(self, model, cfg, device):
+ if self.args.quant:
+ from tools.qat.qat_utils import qat_init_model_manu, skip_sensitive_layers
+ qat_init_model_manu(model, cfg, self.args)
+ # workaround
+ model.neck.upsample_enable_quant(cfg.ptq.num_bits, cfg.ptq.calib_method)
+ # if self.main_process:
+ # print(model)
+ # QAT
+ if self.args.calib is False:
+ if cfg.qat.sensitive_layers_skip:
+ skip_sensitive_layers(model, cfg.qat.sensitive_layers_list)
+ # QAT flow load calibrated model
+ assert cfg.qat.calib_pt is not None, 'Please provide calibrated model'
+ model.load_state_dict(torch.load(cfg.qat.calib_pt)['model'].float().state_dict())
+ model.to(device)
diff --git a/python/app/fedcv/YOLOv6/yolov6/core/evaler.py b/python/app/fedcv/YOLOv6/yolov6/core/evaler.py
new file mode 100644
index 0000000000..e79f51bea7
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/yolov6/core/evaler.py
@@ -0,0 +1,545 @@
+#!/usr/bin/env python3
+# -*- coding:utf-8 -*-
+import os
+from tqdm import tqdm
+import numpy as np
+import json
+import torch
+import yaml
+from pathlib import Path
+
+from pycocotools.coco import COCO
+from pycocotools.cocoeval import COCOeval
+
+from yolov6.data.data_load import create_dataloader
+from yolov6.utils.events import LOGGER, NCOLS
+from yolov6.utils.nms import non_max_suppression
+from yolov6.utils.general import download_ckpt
+from yolov6.utils.checkpoint import load_checkpoint
+from yolov6.utils.torch_utils import time_sync, get_model_info
+
+
+class Evaler:
+ def __init__(self,
+ data,
+ batch_size=32,
+ img_size=640,
+ conf_thres=0.03,
+ iou_thres=0.65,
+ device='',
+ half=True,
+ save_dir='',
+ shrink_size=640,
+ infer_on_rect=False,
+ verbose=False,
+ do_coco_metric=True,
+ do_pr_metric=False,
+ plot_curve=True,
+ plot_confusion_matrix=False,
+ specific_shape=False,
+ height=640,
+ width=640
+ ):
+ assert do_pr_metric or do_coco_metric, 'ERROR: at least set one val metric'
+ self.data = data
+ self.batch_size = batch_size
+ self.img_size = img_size
+ self.conf_thres = conf_thres
+ self.iou_thres = iou_thres
+ self.device = device
+ self.half = half
+ self.save_dir = save_dir
+ self.shrink_size = shrink_size
+ self.infer_on_rect = infer_on_rect
+ self.verbose = verbose
+ self.do_coco_metric = do_coco_metric
+ self.do_pr_metric = do_pr_metric
+ self.plot_curve = plot_curve
+ self.plot_confusion_matrix = plot_confusion_matrix
+ self.specific_shape = specific_shape
+ self.height = height
+ self.width = width
+
+ def init_model(self, model, weights, task):
+ if task != 'train':
+ if not os.path.exists(weights):
+ download_ckpt(weights)
+ model = load_checkpoint(weights, map_location=self.device)
+ self.stride = int(model.stride.max())
+ # switch to deploy
+ from yolov6.layers.common import RepVGGBlock
+ for layer in model.modules():
+ if isinstance(layer, RepVGGBlock):
+ layer.switch_to_deploy()
+ elif isinstance(layer, torch.nn.Upsample) and not hasattr(layer, 'recompute_scale_factor'):
+ layer.recompute_scale_factor = None # torch 1.11.0 compatibility
+ LOGGER.info("Switch model to deploy modality.")
+ LOGGER.info("Model Summary: {}".format(get_model_info(model, self.img_size)))
+ if self.device.type != 'cpu':
+ model(torch.zeros(1, 3, self.img_size, self.img_size).to(self.device).type_as(next(model.parameters())))
+ model.half() if self.half else model.float()
+ return model
+
+ def init_data(self, dataloader, task):
+ '''Initialize dataloader.
+ Returns a dataloader for task val or speed.
+ '''
+ self.is_coco = self.data.get("is_coco", False)
+ self.ids = self.coco80_to_coco91_class() if self.is_coco else list(range(1000))
+ if task != 'train':
+ eval_hyp = {
+ "shrink_size":self.shrink_size,
+ }
+ rect = self.infer_on_rect
+ pad = 0.5 if rect else 0.0
+ dataloader = create_dataloader(self.data[task if task in ('train', 'val', 'test') else 'val'],
+ self.img_size, self.batch_size, self.stride, hyp=eval_hyp, check_labels=True, pad=pad, rect=rect,
+ data_dict=self.data, task=task, specific_shape=self.specific_shape, height=self.height, width=self.width)[0]
+ return dataloader
+
+ def predict_model(self, model, dataloader, task):
+ '''Model prediction
+ Predicts the whole dataset and gets the prediced results and inference time.
+ '''
+ self.speed_result = torch.zeros(4, device=self.device)
+ pred_results = []
+ pbar = tqdm(dataloader, desc=f"Inferencing model in {task} datasets.", ncols=NCOLS)
+
+ # whether to compute metric and plot PR curve and P、R、F1 curve under iou50 match rule
+ if self.do_pr_metric:
+ stats, ap = [], []
+ seen = 0
+ iouv = torch.linspace(0.5, 0.95, 10) # iou vector for mAP@0.5:0.95
+ niou = iouv.numel()
+ if self.plot_confusion_matrix:
+ from yolov6.utils.metrics import ConfusionMatrix
+ confusion_matrix = ConfusionMatrix(nc=model.nc)
+
+ for i, (imgs, targets, paths, shapes) in enumerate(pbar):
+ # pre-process
+ t1 = time_sync()
+ imgs = imgs.to(self.device, non_blocking=True)
+ imgs = imgs.half() if self.half else imgs.float()
+ imgs /= 255
+ self.speed_result[1] += time_sync() - t1 # pre-process time
+
+ # Inference
+ t2 = time_sync()
+ outputs, _ = model(imgs)
+ self.speed_result[2] += time_sync() - t2 # inference time
+
+ # post-process
+ t3 = time_sync()
+ outputs = non_max_suppression(outputs, self.conf_thres, self.iou_thres, multi_label=True)
+ self.speed_result[3] += time_sync() - t3 # post-process time
+ self.speed_result[0] += len(outputs)
+
+ if self.do_pr_metric:
+ import copy
+ eval_outputs = copy.deepcopy([x.detach().cpu() for x in outputs])
+
+ # save result
+ pred_results.extend(self.convert_to_coco_format(outputs, imgs, paths, shapes, self.ids))
+
+ # for tensorboard visualization, maximum images to show: 8
+ if i == 0:
+ vis_num = min(len(imgs), 8)
+ vis_outputs = outputs[:vis_num]
+ vis_paths = paths[:vis_num]
+
+ if not self.do_pr_metric:
+ continue
+
+ # Statistics per image
+ # This code is based on
+ # https://github.com/ultralytics/yolov5/blob/master/val.py
+ for si, pred in enumerate(eval_outputs):
+ labels = targets[targets[:, 0] == si, 1:]
+ nl = len(labels)
+ tcls = labels[:, 0].tolist() if nl else [] # target class
+ seen += 1
+
+ if len(pred) == 0:
+ if nl:
+ stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
+ continue
+
+ # Predictions
+ predn = pred.clone()
+ self.scale_coords(imgs[si].shape[1:], predn[:, :4], shapes[si][0], shapes[si][1]) # native-space pred
+
+ # Assign all predictions as incorrect
+ correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool)
+ if nl:
+
+ from yolov6.utils.nms import xywh2xyxy
+
+ # target boxes
+ tbox = xywh2xyxy(labels[:, 1:5])
+ tbox[:, [0, 2]] *= imgs[si].shape[1:][1]
+ tbox[:, [1, 3]] *= imgs[si].shape[1:][0]
+
+ self.scale_coords(imgs[si].shape[1:], tbox, shapes[si][0], shapes[si][1]) # native-space labels
+
+ labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
+
+ from yolov6.utils.metrics import process_batch
+
+ correct = process_batch(predn, labelsn, iouv)
+ if self.plot_confusion_matrix:
+ confusion_matrix.process_batch(predn, labelsn)
+
+ # Append statistics (correct, conf, pcls, tcls)
+ stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
+
+ if self.do_pr_metric:
+ # Compute statistics
+ stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
+ if len(stats) and stats[0].any():
+
+ from yolov6.utils.metrics import ap_per_class
+ p, r, ap, f1, ap_class = ap_per_class(*stats, plot=self.plot_curve, save_dir=self.save_dir, names=model.names)
+ AP50_F1_max_idx = len(f1.mean(0)) - f1.mean(0)[::-1].argmax() -1
+ LOGGER.info(f"IOU 50 best mF1 thershold near {AP50_F1_max_idx/1000.0}.")
+ ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
+ mp, mr, map50, map = p[:, AP50_F1_max_idx].mean(), r[:, AP50_F1_max_idx].mean(), ap50.mean(), ap.mean()
+ nt = np.bincount(stats[3].astype(np.int64), minlength=model.nc) # number of targets per class
+
+ # Print results
+ s = ('%-16s' + '%12s' * 7) % ('Class', 'Images', 'Labels', 'P@.5iou', 'R@.5iou', 'F1@.5iou', 'mAP@.5', 'mAP@.5:.95')
+ LOGGER.info(s)
+ pf = '%-16s' + '%12i' * 2 + '%12.3g' * 5 # print format
+ LOGGER.info(pf % ('all', seen, nt.sum(), mp, mr, f1.mean(0)[AP50_F1_max_idx], map50, map))
+
+ self.pr_metric_result = (map50, map)
+
+ # Print results per class
+ if self.verbose and model.nc > 1:
+ for i, c in enumerate(ap_class):
+ LOGGER.info(pf % (model.names[c], seen, nt[c], p[i, AP50_F1_max_idx], r[i, AP50_F1_max_idx],
+ f1[i, AP50_F1_max_idx], ap50[i], ap[i]))
+
+ if self.plot_confusion_matrix:
+ confusion_matrix.plot(save_dir=self.save_dir, names=list(model.names))
+ else:
+ LOGGER.info("Calculate metric failed, might check dataset.")
+ self.pr_metric_result = (0.0, 0.0)
+
+ return pred_results, vis_outputs, vis_paths
+
+
+ def eval_model(self, pred_results, model, dataloader, task):
+ '''Evaluate models
+ For task speed, this function only evaluates the speed of model and outputs inference time.
+ For task val, this function evaluates the speed and mAP by pycocotools, and returns
+ inference time and mAP value.
+ '''
+ LOGGER.info(f'\nEvaluating speed.')
+ self.eval_speed(task)
+
+ if not self.do_coco_metric and self.do_pr_metric:
+ return self.pr_metric_result
+ LOGGER.info(f'\nEvaluating mAP by pycocotools.')
+ if task != 'speed' and len(pred_results):
+ if 'anno_path' in self.data:
+ anno_json = self.data['anno_path']
+ else:
+ # generated coco format labels in dataset initialization
+ task = 'val' if task == 'train' else task
+ if not isinstance(self.data[task], list):
+ self.data[task] = [self.data[task]]
+ dataset_root = os.path.dirname(os.path.dirname(self.data[task][0]))
+ base_name = os.path.basename(self.data[task][0])
+ anno_json = os.path.join(dataset_root, 'annotations', f'instances_{base_name}.json')
+ pred_json = os.path.join(self.save_dir, "predictions.json")
+ LOGGER.info(f'Saving {pred_json}...')
+ with open(pred_json, 'w') as f:
+ json.dump(pred_results, f)
+
+ anno = COCO(anno_json)
+ pred = anno.loadRes(pred_json)
+ cocoEval = COCOeval(anno, pred, 'bbox')
+ if self.is_coco:
+ imgIds = [int(os.path.basename(x).split(".")[0])
+ for x in dataloader.dataset.img_paths]
+ cocoEval.params.imgIds = imgIds
+ cocoEval.evaluate()
+ cocoEval.accumulate()
+
+ #print each class ap from pycocotool result
+ if self.verbose:
+
+ import copy
+ val_dataset_img_count = cocoEval.cocoGt.imgToAnns.__len__()
+ val_dataset_anns_count = 0
+ label_count_dict = {"images":set(), "anns":0}
+ label_count_dicts = [copy.deepcopy(label_count_dict) for _ in range(model.nc)]
+ for _, ann_i in cocoEval.cocoGt.anns.items():
+ if ann_i["ignore"]:
+ continue
+ val_dataset_anns_count += 1
+ nc_i = self.coco80_to_coco91_class().index(ann_i['category_id']) if self.is_coco else ann_i['category_id']
+ label_count_dicts[nc_i]["images"].add(ann_i["image_id"])
+ label_count_dicts[nc_i]["anns"] += 1
+
+ s = ('%-16s' + '%12s' * 7) % ('Class', 'Labeled_images', 'Labels', 'P@.5iou', 'R@.5iou', 'F1@.5iou', 'mAP@.5', 'mAP@.5:.95')
+ LOGGER.info(s)
+ #IOU , all p, all cats, all gt, maxdet 100
+ coco_p = cocoEval.eval['precision']
+ coco_p_all = coco_p[:, :, :, 0, 2]
+ map = np.mean(coco_p_all[coco_p_all>-1])
+
+ coco_p_iou50 = coco_p[0, :, :, 0, 2]
+ map50 = np.mean(coco_p_iou50[coco_p_iou50>-1])
+ mp = np.array([np.mean(coco_p_iou50[ii][coco_p_iou50[ii]>-1]) for ii in range(coco_p_iou50.shape[0])])
+ mr = np.linspace(.0, 1.00, int(np.round((1.00 - .0) / .01)) + 1, endpoint=True)
+ mf1 = 2 * mp * mr / (mp + mr + 1e-16)
+ i = mf1.argmax() # max F1 index
+
+ pf = '%-16s' + '%12i' * 2 + '%12.3g' * 5 # print format
+ LOGGER.info(pf % ('all', val_dataset_img_count, val_dataset_anns_count, mp[i], mr[i], mf1[i], map50, map))
+
+ #compute each class best f1 and corresponding p and r
+ for nc_i in range(model.nc):
+ coco_p_c = coco_p[:, :, nc_i, 0, 2]
+ map = np.mean(coco_p_c[coco_p_c>-1])
+
+ coco_p_c_iou50 = coco_p[0, :, nc_i, 0, 2]
+ map50 = np.mean(coco_p_c_iou50[coco_p_c_iou50>-1])
+ p = coco_p_c_iou50
+ r = np.linspace(.0, 1.00, int(np.round((1.00 - .0) / .01)) + 1, endpoint=True)
+ f1 = 2 * p * r / (p + r + 1e-16)
+ i = f1.argmax()
+ LOGGER.info(pf % (model.names[nc_i], len(label_count_dicts[nc_i]["images"]), label_count_dicts[nc_i]["anns"], p[i], r[i], f1[i], map50, map))
+ cocoEval.summarize()
+ map, map50 = cocoEval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
+ # Return results
+ model.float() # for training
+ if task != 'train':
+ LOGGER.info(f"Results saved to {self.save_dir}")
+ return (map50, map)
+ return (0.0, 0.0)
+
+ def eval_speed(self, task):
+ '''Evaluate model inference speed.'''
+ if task != 'train':
+ n_samples = self.speed_result[0].item()
+ pre_time, inf_time, nms_time = 1000 * self.speed_result[1:].cpu().numpy() / n_samples
+ for n, v in zip(["pre-process", "inference", "NMS"],[pre_time, inf_time, nms_time]):
+ LOGGER.info("Average {} time: {:.2f} ms".format(n, v))
+
+ def box_convert(self, x):
+ '''Convert boxes with shape [n, 4] from [x1, y1, x2, y2] to [x, y, w, h] where x1y1=top-left, x2y2=bottom-right.'''
+ y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
+ y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
+ y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
+ y[:, 2] = x[:, 2] - x[:, 0] # width
+ y[:, 3] = x[:, 3] - x[:, 1] # height
+ return y
+
+ def scale_coords(self, img1_shape, coords, img0_shape, ratio_pad=None):
+ '''Rescale coords (xyxy) from img1_shape to img0_shape.'''
+
+ gain = ratio_pad[0]
+ pad = ratio_pad[1]
+
+ coords[:, [0, 2]] -= pad[0] # x padding
+ coords[:, [0, 2]] /= gain[1] # raw x gain
+ coords[:, [1, 3]] -= pad[1] # y padding
+ coords[:, [1, 3]] /= gain[0] # y gain
+
+ if isinstance(coords, torch.Tensor): # faster individually
+ coords[:, 0].clamp_(0, img0_shape[1]) # x1
+ coords[:, 1].clamp_(0, img0_shape[0]) # y1
+ coords[:, 2].clamp_(0, img0_shape[1]) # x2
+ coords[:, 3].clamp_(0, img0_shape[0]) # y2
+ else: # np.array (faster grouped)
+ coords[:, [0, 2]] = coords[:, [0, 2]].clip(0, img0_shape[1]) # x1, x2
+ coords[:, [1, 3]] = coords[:, [1, 3]].clip(0, img0_shape[0]) # y1, y2
+ return coords
+
+ def convert_to_coco_format(self, outputs, imgs, paths, shapes, ids):
+ pred_results = []
+ for i, pred in enumerate(outputs):
+ if len(pred) == 0:
+ continue
+ path, shape = Path(paths[i]), shapes[i][0]
+ self.scale_coords(imgs[i].shape[1:], pred[:, :4], shape, shapes[i][1])
+ image_id = int(path.stem) if self.is_coco else path.stem
+ bboxes = self.box_convert(pred[:, 0:4])
+ bboxes[:, :2] -= bboxes[:, 2:] / 2
+ cls = pred[:, 5]
+ scores = pred[:, 4]
+ for ind in range(pred.shape[0]):
+ category_id = ids[int(cls[ind])]
+ bbox = [round(x, 3) for x in bboxes[ind].tolist()]
+ score = round(scores[ind].item(), 5)
+ pred_data = {
+ "image_id": image_id,
+ "category_id": category_id,
+ "bbox": bbox,
+ "score": score
+ }
+ pred_results.append(pred_data)
+ return pred_results
+
+ @staticmethod
+ def check_task(task):
+ if task not in ['train', 'val', 'test', 'speed']:
+ raise Exception("task argument error: only support 'train' / 'val' / 'test' / 'speed' task.")
+
+ @staticmethod
+ def check_thres(conf_thres, iou_thres, task):
+ '''Check whether confidence and iou threshold are best for task val/speed'''
+ if task != 'train':
+ if task == 'val' or task == 'test':
+ if conf_thres > 0.03:
+ LOGGER.warning(f'The best conf_thresh when evaluate the model is less than 0.03, while you set it to: {conf_thres}')
+ if iou_thres != 0.65:
+ LOGGER.warning(f'The best iou_thresh when evaluate the model is 0.65, while you set it to: {iou_thres}')
+ if task == 'speed' and conf_thres < 0.4:
+ LOGGER.warning(f'The best conf_thresh when test the speed of the model is larger than 0.4, while you set it to: {conf_thres}')
+
+ @staticmethod
+ def reload_device(device, model, task):
+ # device = 'cpu' or '0' or '0,1,2,3'
+ if task == 'train':
+ device = next(model.parameters()).device
+ else:
+ if device == 'cpu':
+ os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
+ elif device:
+ os.environ['CUDA_VISIBLE_DEVICES'] = device
+ assert torch.cuda.is_available()
+ cuda = device != 'cpu' and torch.cuda.is_available()
+ device = torch.device('cuda:0' if cuda else 'cpu')
+ return device
+
+ @staticmethod
+ def reload_dataset(data, task='val'):
+ with open(data, errors='ignore') as yaml_file:
+ data = yaml.safe_load(yaml_file)
+ task = 'test' if task == 'test' else 'val'
+ path = data.get(task, 'val')
+ if not isinstance(path, list):
+ path = [path]
+ for p in path:
+ if not os.path.exists(p):
+ raise Exception(f'Dataset path {p} not found.')
+ return data
+
+ @staticmethod
+ def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)
+ # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
+ x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20,
+ 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
+ 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
+ 59, 60, 61, 62, 63, 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79,
+ 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
+ return x
+
+ def eval_trt(self, engine, stride=32):
+ self.stride = stride
+ def init_engine(engine):
+ import tensorrt as trt
+ from collections import namedtuple,OrderedDict
+ Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
+ logger = trt.Logger(trt.Logger.ERROR)
+ trt.init_libnvinfer_plugins(logger, namespace="")
+ with open(engine, 'rb') as f, trt.Runtime(logger) as runtime:
+ model = runtime.deserialize_cuda_engine(f.read())
+ bindings = OrderedDict()
+ for index in range(model.num_bindings):
+ name = model.get_binding_name(index)
+ dtype = trt.nptype(model.get_binding_dtype(index))
+ shape = tuple(model.get_binding_shape(index))
+ data = torch.from_numpy(np.empty(shape, dtype=np.dtype(dtype))).to(self.device)
+ bindings[name] = Binding(name, dtype, shape, data, int(data.data_ptr()))
+ binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
+ context = model.create_execution_context()
+ return context, bindings, binding_addrs, model.get_binding_shape(0)[0]
+
+ def init_data(dataloader, task):
+ self.is_coco = self.data.get("is_coco", False)
+ self.ids = self.coco80_to_coco91_class() if self.is_coco else list(range(1000))
+ pad = 0.0
+ dataloader = create_dataloader(self.data[task if task in ('train', 'val', 'test') else 'val'],
+ self.img_size, self.batch_size, self.stride, check_labels=True, pad=pad, rect=False,
+ data_dict=self.data, task=task)[0]
+ return dataloader
+
+ def convert_to_coco_format_trt(nums, boxes, scores, classes, paths, shapes, ids):
+ pred_results = []
+ for i, (num, detbox, detscore, detcls) in enumerate(zip(nums, boxes, scores, classes)):
+ n = int(num[0])
+ if n == 0:
+ continue
+ path, shape = Path(paths[i]), shapes[i][0]
+ gain = shapes[i][1][0][0]
+ pad = torch.tensor(shapes[i][1][1]*2).to(self.device)
+ detbox = detbox[:n, :]
+ detbox -= pad
+ detbox /= gain
+ detbox[:, 0].clamp_(0, shape[1])
+ detbox[:, 1].clamp_(0, shape[0])
+ detbox[:, 2].clamp_(0, shape[1])
+ detbox[:, 3].clamp_(0, shape[0])
+ detbox[:,2:] = detbox[:,2:] - detbox[:,:2]
+ detscore = detscore[:n]
+ detcls = detcls[:n]
+
+ image_id = int(path.stem) if path.stem.isnumeric() else path.stem
+
+ for ind in range(n):
+ category_id = ids[int(detcls[ind])]
+ bbox = [round(x, 3) for x in detbox[ind].tolist()]
+ score = round(detscore[ind].item(), 5)
+ pred_data = {
+ "image_id": image_id,
+ "category_id": category_id,
+ "bbox": bbox,
+ "score": score
+ }
+ pred_results.append(pred_data)
+ return pred_results
+
+ context, bindings, binding_addrs, trt_batch_size = init_engine(engine)
+ assert trt_batch_size >= self.batch_size, f'The batch size you set is {self.batch_size}, it must <= tensorrt binding batch size {trt_batch_size}.'
+ tmp = torch.randn(self.batch_size, 3, self.img_size, self.img_size).to(self.device)
+ # warm up for 10 times
+ for _ in range(10):
+ binding_addrs['images'] = int(tmp.data_ptr())
+ context.execute_v2(list(binding_addrs.values()))
+ dataloader = init_data(None,'val')
+ self.speed_result = torch.zeros(4, device=self.device)
+ pred_results = []
+ pbar = tqdm(dataloader, desc="Inferencing model in validation dataset.", ncols=NCOLS)
+ for imgs, targets, paths, shapes in pbar:
+ nb_img = imgs.shape[0]
+ if nb_img != self.batch_size:
+ # pad to tensorrt model setted batch size
+ zeros = torch.zeros(self.batch_size - nb_img, 3, *imgs.shape[2:])
+ imgs = torch.cat([imgs, zeros],0)
+ t1 = time_sync()
+ imgs = imgs.to(self.device, non_blocking=True)
+ # preprocess
+ imgs = imgs.float()
+ imgs /= 255
+
+ self.speed_result[1] += time_sync() - t1 # pre-process time
+
+ # inference
+ t2 = time_sync()
+ binding_addrs['images'] = int(imgs.data_ptr())
+ context.execute_v2(list(binding_addrs.values()))
+ # in the last batch, the nb_img may less than the batch size, so we need to fetch the valid detect results by [:nb_img]
+ nums = bindings['num_dets'].data[:nb_img]
+ boxes = bindings['det_boxes'].data[:nb_img]
+ scores = bindings['det_scores'].data[:nb_img]
+ classes = bindings['det_classes'].data[:nb_img]
+ self.speed_result[2] += time_sync() - t2 # inference time
+
+ self.speed_result[3] += 0
+ pred_results.extend(convert_to_coco_format_trt(nums, boxes, scores, classes, paths, shapes, self.ids))
+ self.speed_result[0] += self.batch_size
+ return dataloader, pred_results
diff --git a/python/app/fedcv/object_detection/model/yolov6/yolov6/core/inferer.py b/python/app/fedcv/YOLOv6/yolov6/core/inferer.py
similarity index 56%
rename from python/app/fedcv/object_detection/model/yolov6/yolov6/core/inferer.py
rename to python/app/fedcv/YOLOv6/yolov6/core/inferer.py
index d4aee34440..cea6586de6 100644
--- a/python/app/fedcv/object_detection/model/yolov6/yolov6/core/inferer.py
+++ b/python/app/fedcv/YOLOv6/yolov6/core/inferer.py
@@ -1,27 +1,27 @@
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
import os
-import os.path as osp
+import cv2
+import time
import math
+import torch
+import numpy as np
+import os.path as osp
from tqdm import tqdm
-
-import numpy as np
-import cv2
-import torch
+from pathlib import Path
from PIL import ImageFont
+from collections import deque
from yolov6.utils.events import LOGGER, load_yaml
-
from yolov6.layers.common import DetectBackend
from yolov6.data.data_augment import letterbox
+from yolov6.data.datasets import LoadData
from yolov6.utils.nms import non_max_suppression
-
+from yolov6.utils.torch_utils import get_model_info
class Inferer:
- def __init__(self, source, weights, device, yaml, img_size, half):
- import glob
- from yolov6.data.datasets import IMG_FORMATS
+ def __init__(self, source, webcam, webcam_addr, weights, device, yaml, img_size, half):
self.__dict__.update(locals())
@@ -29,48 +29,71 @@ def __init__(self, source, weights, device, yaml, img_size, half):
self.device = device
self.img_size = img_size
cuda = self.device != 'cpu' and torch.cuda.is_available()
- self.device = torch.device('cuda:0' if cuda else 'cpu')
+ self.device = torch.device(f'cuda:{device}' if cuda else 'cpu')
self.model = DetectBackend(weights, device=self.device)
self.stride = self.model.stride
self.class_names = load_yaml(yaml)['names']
self.img_size = self.check_img_size(self.img_size, s=self.stride) # check image size
+ self.half = half
+
+ # Switch model to deploy status
+ self.model_switch(self.model.model, self.img_size)
# Half precision
- if half & (self.device.type != 'cpu'):
+ if self.half & (self.device.type != 'cpu'):
self.model.model.half()
else:
self.model.model.float()
- half = False
+ self.half = False
if self.device.type != 'cpu':
self.model(torch.zeros(1, 3, *self.img_size).to(self.device).type_as(next(self.model.model.parameters()))) # warmup
# Load data
- if os.path.isdir(source):
- img_paths = sorted(glob.glob(os.path.join(source, '*.*'))) # dir
- elif os.path.isfile(source):
- img_paths = [source] # files
- else:
- raise Exception(f'Invalid path: {source}')
- self.img_paths = [img_path for img_path in img_paths if img_path.split('.')[-1].lower() in IMG_FORMATS]
+ self.webcam = webcam
+ self.webcam_addr = webcam_addr
+ self.files = LoadData(source, webcam, webcam_addr)
+ self.source = source
- def infer(self, conf_thres, iou_thres, classes, agnostic_nms, max_det, save_dir, save_txt, save_img, hide_labels, hide_conf):
- ''' Model Inference and results visualization '''
- for img_path in tqdm(self.img_paths):
- img, img_src = self.precess_image(img_path, self.img_size, self.stride, self.half)
+ def model_switch(self, model, img_size):
+ ''' Model switch to deploy status '''
+ from yolov6.layers.common import RepVGGBlock
+ for layer in model.modules():
+ if isinstance(layer, RepVGGBlock):
+ layer.switch_to_deploy()
+ elif isinstance(layer, torch.nn.Upsample) and not hasattr(layer, 'recompute_scale_factor'):
+ layer.recompute_scale_factor = None # torch 1.11.0 compatibility
+
+ LOGGER.info("Switch model to deploy modality.")
+
+ def infer(self, conf_thres, iou_thres, classes, agnostic_nms, max_det, save_dir, save_txt, save_img, hide_labels, hide_conf, view_img=True):
+ ''' Model Inference and results visualization '''
+ vid_path, vid_writer, windows = None, None, []
+ fps_calculator = CalcFPS()
+ for img_src, img_path, vid_cap in tqdm(self.files):
+ img, img_src = self.process_image(img_src, self.img_size, self.stride, self.half)
img = img.to(self.device)
if len(img.shape) == 3:
img = img[None]
# expand for batch dim
+ t1 = time.time()
pred_results = self.model(img)
det = non_max_suppression(pred_results, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)[0]
-
- save_path = osp.join(save_dir, osp.basename(img_path)) # im.jpg
- txt_path = osp.join(save_dir, 'labels', osp.basename(img_path).split('.')[0])
+ t2 = time.time()
+
+ if self.webcam:
+ save_path = osp.join(save_dir, self.webcam_addr)
+ txt_path = osp.join(save_dir, self.webcam_addr)
+ else:
+ # Create output files in nested dirs that mirrors the structure of the images' dirs
+ rel_path = osp.relpath(osp.dirname(img_path), osp.dirname(self.source))
+ save_path = osp.join(save_dir, rel_path, osp.basename(img_path)) # im.jpg
+ txt_path = osp.join(save_dir, rel_path, 'labels', osp.splitext(osp.basename(img_path))[0])
+ os.makedirs(osp.join(save_dir, rel_path), exist_ok=True)
gn = torch.tensor(img_src.shape)[[1, 0, 1, 0]] # normalization gain whwh
- img_ori = img_src
+ img_ori = img_src.copy()
# check image and font
assert img_ori.data.contiguous, 'Image needs to be contiguous. Please apply to input images with np.ascontiguousarray(im).'
@@ -78,7 +101,6 @@ def infer(self, conf_thres, iou_thres, classes, agnostic_nms, max_det, save_dir,
if len(det):
det[:, :4] = self.rescale(img.shape[2:], det[:, :4], img_src.shape).round()
-
for *xyxy, conf, cls in reversed(det):
if save_txt: # Write to file
xywh = (self.box_convert(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
@@ -94,20 +116,52 @@ def infer(self, conf_thres, iou_thres, classes, agnostic_nms, max_det, save_dir,
img_src = np.asarray(img_ori)
- # Save results (image with detections)
- if save_img:
+ # FPS counter
+ fps_calculator.update(1.0 / (t2 - t1))
+ avg_fps = fps_calculator.accumulate()
+
+ if self.files.type == 'video':
+ self.draw_text(
+ img_src,
+ f"FPS: {avg_fps:0.1f}",
+ pos=(20, 20),
+ font_scale=1.0,
+ text_color=(204, 85, 17),
+ text_color_bg=(255, 255, 255),
+ font_thickness=2,
+ )
+
+ if view_img:
+ if img_path not in windows:
+ windows.append(img_path)
+ cv2.namedWindow(str(img_path), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
+ cv2.resizeWindow(str(img_path), img_src.shape[1], img_src.shape[0])
+ cv2.imshow(str(img_path), img_src)
+ cv2.waitKey(1) # 1 millisecond
+
+ # Save results (image with detections)
+ if save_img:
+ if self.files.type == 'image':
cv2.imwrite(save_path, img_src)
+ else: # 'video' or 'stream'
+ if vid_path != save_path: # new video
+ vid_path = save_path
+ if isinstance(vid_writer, cv2.VideoWriter):
+ vid_writer.release() # release previous video writer
+ if vid_cap: # video
+ fps = vid_cap.get(cv2.CAP_PROP_FPS)
+ w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
+ h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
+ else: # stream
+ fps, w, h = 30, img_ori.shape[1], img_ori.shape[0]
+ save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
+ vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
+ vid_writer.write(img_src)
@staticmethod
- def precess_image(path, img_size, stride, half):
+ def process_image(img_src, img_size, stride, half):
'''Process image before image inference.'''
- try:
- img_src = cv2.imread(path)
- assert img_src is not None, f'Invalid image: {path}'
- except Exception as e:
- LOGGER.Warning(e)
image = letterbox(img_src, img_size, stride=stride)[0]
-
# Convert
image = image.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
image = torch.from_numpy(np.ascontiguousarray(image))
@@ -151,7 +205,39 @@ def make_divisible(self, x, divisor):
return math.ceil(x / divisor) * divisor
@staticmethod
- def plot_box_and_label(image, lw, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)):
+ def draw_text(
+ img,
+ text,
+ font=cv2.FONT_HERSHEY_SIMPLEX,
+ pos=(0, 0),
+ font_scale=1,
+ font_thickness=2,
+ text_color=(0, 255, 0),
+ text_color_bg=(0, 0, 0),
+ ):
+
+ offset = (5, 5)
+ x, y = pos
+ text_size, _ = cv2.getTextSize(text, font, font_scale, font_thickness)
+ text_w, text_h = text_size
+ rec_start = tuple(x - y for x, y in zip(pos, offset))
+ rec_end = tuple(x + y for x, y in zip((x + text_w, y + text_h), offset))
+ cv2.rectangle(img, rec_start, rec_end, text_color_bg, -1)
+ cv2.putText(
+ img,
+ text,
+ (x, int(y + text_h + font_scale - 1)),
+ font,
+ font_scale,
+ text_color,
+ font_thickness,
+ cv2.LINE_AA,
+ )
+
+ return text_size
+
+ @staticmethod
+ def plot_box_and_label(image, lw, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255), font=cv2.FONT_HERSHEY_COMPLEX):
# Add one xyxy box to image with label
p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
cv2.rectangle(image, p1, p2, color, thickness=lw, lineType=cv2.LINE_AA)
@@ -161,7 +247,7 @@ def plot_box_and_label(image, lw, box, label='', color=(128, 128, 128), txt_colo
outside = p1[1] - h - 3 >= 0 # label fits outside box
p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3
cv2.rectangle(image, p1, p2, color, -1, cv2.LINE_AA) # filled
- cv2.putText(image, label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2), 0, lw / 3, txt_color,
+ cv2.putText(image, label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2), font, lw / 3, txt_color,
thickness=tf, lineType=cv2.LINE_AA)
@staticmethod
@@ -194,3 +280,16 @@ def generate_colors(i, bgr=False):
num = len(palette)
color = palette[int(i) % num]
return (color[2], color[1], color[0]) if bgr else color
+
+class CalcFPS:
+ def __init__(self, nsamples: int = 50):
+ self.framerate = deque(maxlen=nsamples)
+
+ def update(self, duration: float):
+ self.framerate.append(duration)
+
+ def accumulate(self):
+ if len(self.framerate) > 1:
+ return np.average(self.framerate)
+ else:
+ return 0.0
diff --git a/python/app/fedcv/object_detection/model/yolov6/yolov6/data/data_augment.py b/python/app/fedcv/YOLOv6/yolov6/data/data_augment.py
similarity index 71%
rename from python/app/fedcv/object_detection/model/yolov6/yolov6/data/data_augment.py
rename to python/app/fedcv/YOLOv6/yolov6/data/data_augment.py
index e4acea61a7..45df88e648 100644
--- a/python/app/fedcv/object_detection/model/yolov6/yolov6/data/data_augment.py
+++ b/python/app/fedcv/YOLOv6/yolov6/data/data_augment.py
@@ -9,8 +9,9 @@
import cv2
import numpy as np
+
def augment_hsv(im, hgain=0.5, sgain=0.5, vgain=0.5):
- # HSV color-space augmentation
+ '''HSV color-space augmentation.'''
if hgain or sgain or vgain:
r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
hue, sat, val = cv2.split(cv2.cvtColor(im, cv2.COLOR_BGR2HSV))
@@ -25,12 +26,13 @@ def augment_hsv(im, hgain=0.5, sgain=0.5, vgain=0.5):
cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=im) # no return needed
-
def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleup=True, stride=32):
- # Resize and pad image while meeting stride-multiple constraints
+ '''Resize and pad image while meeting stride-multiple constraints.'''
shape = im.shape[:2] # current shape [height, width]
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)
+ elif isinstance(new_shape, list) and len(new_shape) == 1:
+ new_shape = (new_shape[0], new_shape[0])
# Scale ratio (new / old)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
@@ -52,11 +54,12 @@ def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleu
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
- return im, r, (dw, dh)
+
+ return im, r, (left, top)
def mixup(im, labels, im2, labels2):
- # Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf
+ '''Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf.'''
r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0
im = (im * r + im2 * (1 - r)).astype(np.uint8)
labels = np.concatenate((labels, labels2), 0)
@@ -64,7 +67,7 @@ def mixup(im, labels, im2, labels2):
def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n)
- # Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
+ '''Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio.'''
w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio
@@ -72,12 +75,15 @@ def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1, eps=1e-16): #
def random_affine(img, labels=(), degrees=10, translate=.1, scale=.1, shear=10,
- new_shape=(640,640)):
-
+ new_shape=(640, 640)):
+ '''Applies Random affine transformation.'''
n = len(labels)
- height,width = new_shape
+ if isinstance(new_shape, int):
+ height = width = new_shape
+ else:
+ height, width = new_shape
- M,s = get_transform_matrix(img.shape[:2],(height,width),degrees,scale,shear,translate)
+ M, s = get_transform_matrix(img.shape[:2], (height, width), degrees, scale, shear, translate)
if (M != np.eye(3)).any(): # image changed
img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
@@ -107,8 +113,8 @@ def random_affine(img, labels=(), degrees=10, translate=.1, scale=.1, shear=10,
return img, labels
-def get_transform_matrix(img_shape,new_shape,degrees,scale,shear,translate):
- new_height,new_width = new_shape
+def get_transform_matrix(img_shape, new_shape, degrees, scale, shear, translate):
+ new_height, new_width = new_shape
# Center
C = np.eye(3)
C[0, 2] = -img_shape[1] / 2 # x translation (pixels)
@@ -134,32 +140,38 @@ def get_transform_matrix(img_shape,new_shape,degrees,scale,shear,translate):
# Combined rotation matrix
M = T @ S @ R @ C # order of operations (right to left) is IMPORTANT
- return M,s
+ return M, s
-def mosaic_augmentation(img_size, imgs, hs, ws, labels, hyp):
+def mosaic_augmentation(shape, imgs, hs, ws, labels, hyp, specific_shape = False, target_height=640, target_width=640):
+ '''Applies Mosaic augmentation.'''
+ assert len(imgs) == 4, "Mosaic augmentation of current version only supports 4 images."
+ labels4 = []
+ if not specific_shape:
+ if isinstance(shape, list) or isinstance(shape, np.ndarray):
+ target_height, target_width = shape
+ else:
+ target_height = target_width = shape
- assert len(imgs)==4, "Mosaic augmentaion of current version only supports 4 images."
+ yc, xc = (int(random.uniform(x//2, 3*x//2)) for x in (target_height, target_width) ) # mosaic center x, y
- labels4 = []
- s = img_size
- yc, xc = (int(random.uniform(s//2, 3*s//2)) for _ in range(2)) # mosaic center x, y
for i in range(len(imgs)):
# Load image
- img, h, w = imgs[i],hs[i],ws[i]
+ img, h, w = imgs[i], hs[i], ws[i]
# place img in img4
if i == 0: # top left
- img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
+ img4 = np.full((target_height * 2, target_width * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
+
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
elif i == 1: # top right
- x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
+ x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, target_width * 2), yc
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
elif i == 2: # bottom left
- x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
+ x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(target_height * 2, yc + h)
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
elif i == 3: # bottom right
- x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
+ x1a, y1a, x2a, y2a = xc, yc, min(xc + w, target_width * 2), min(target_height * 2, yc + h)
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
@@ -167,27 +179,30 @@ def mosaic_augmentation(img_size, imgs, hs, ws, labels, hyp):
padh = y1a - y1b
# Labels
- labels_per_img= labels[i].copy()
+ labels_per_img = labels[i].copy()
if labels_per_img.size:
- boxes = np.copy(labels_per_img[:,1:])
+ boxes = np.copy(labels_per_img[:, 1:])
boxes[:, 0] = w * (labels_per_img[:, 1] - labels_per_img[:, 3] / 2) + padw # top left x
boxes[:, 1] = h * (labels_per_img[:, 2] - labels_per_img[:, 4] / 2) + padh # top left y
boxes[:, 2] = w * (labels_per_img[:, 1] + labels_per_img[:, 3] / 2) + padw # bottom right x
boxes[:, 3] = h * (labels_per_img[:, 2] + labels_per_img[:, 4] / 2) + padh # bottom right y
- labels_per_img[:,1:] = boxes
+ labels_per_img[:, 1:] = boxes
labels4.append(labels_per_img)
# Concat/clip labels
labels4 = np.concatenate(labels4, 0)
- for x in (labels4[:, 1:]):
- np.clip(x, 0, 2 * s, out=x)
+ # for x in (labels4[:, 1:]):
+ # np.clip(x, 0, 2 * s, out=x)
+ labels4[:, 1::2] = np.clip(labels4[:, 1::2], 0, 2 * target_width)
+ labels4[:, 2::2] = np.clip(labels4[:, 2::2], 0, 2 * target_height)
# Augment
img4, labels4 = random_affine(img4, labels4,
- degrees=hyp['degrees'],
- translate=hyp['translate'],
- scale=hyp['scale'],
- shear=hyp['shear'])
+ degrees=hyp['degrees'],
+ translate=hyp['translate'],
+ scale=hyp['scale'],
+ shear=hyp['shear'],
+ new_shape=(target_height, target_width))
return img4, labels4
diff --git a/python/app/fedcv/YOLOv6/yolov6/data/data_load.py b/python/app/fedcv/YOLOv6/yolov6/data/data_load.py
new file mode 100644
index 0000000000..445b593caf
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/yolov6/data/data_load.py
@@ -0,0 +1,127 @@
+#!/usr/bin/env python3
+# -*- coding:utf-8 -*-
+# This code is based on
+# https://github.com/ultralytics/yolov5/blob/master/utils/dataloaders.py
+
+import os
+import torch.distributed as dist
+from torch.utils.data import dataloader, distributed
+
+from .datasets import TrainValDataset
+from yolov6.utils.events import LOGGER
+from yolov6.utils.torch_utils import torch_distributed_zero_first
+
+
+def create_dataloader(
+ path,
+ img_size,
+ batch_size,
+ stride,
+ hyp=None,
+ augment=False,
+ check_images=False,
+ check_labels=False,
+ pad=0.0,
+ rect=False,
+ rank=-1,
+ workers=1,
+ shuffle=False,
+ data_dict=None,
+ task="Train",
+ specific_shape=False,
+ height=1088,
+ width=1920,
+ data_idx=None
+):
+ """Create general dataloader.
+
+ Returns dataloader and dataset
+ """
+ if rect and shuffle:
+ LOGGER.warning(
+ "WARNING: --rect is incompatible with DataLoader shuffle, setting shuffle=False"
+ )
+ shuffle = False
+ with torch_distributed_zero_first(rank):
+ dataset = TrainValDataset(
+ path,
+ img_size,
+ batch_size,
+ augment=augment,
+ hyp=hyp,
+ rect=rect,
+ check_images=check_images,
+ check_labels=check_labels,
+ stride=int(stride),
+ pad=pad,
+ rank=rank,
+ data_dict=data_dict,
+ task=task,
+ specific_shape = specific_shape,
+ height=height,
+ width=width,
+ data_idx=data_idx
+ )
+
+ batch_size = min(batch_size, len(dataset))
+ workers = min(
+ [
+ os.cpu_count() // int(os.getenv("WORLD_SIZE", 1)),
+ batch_size if batch_size > 1 else 0,
+ workers,
+ ]
+ ) # number of workers
+ # in DDP mode, if GPU number is greater than 1, and set rect=True,
+ # DistributedSampler will sample from start if the last samples cannot be assigned equally to each
+ # GPU process, this might cause shape difference in one batch, such as (384,640,3) and (416,640,3)
+ # will cause exception in collate function of torch.stack.
+ drop_last = rect and dist.is_initialized() and dist.get_world_size() > 1
+ sampler = (
+ None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle, drop_last=drop_last)
+ )
+ return (
+ TrainValDataLoader(
+ dataset,
+ batch_size=batch_size,
+ shuffle=shuffle and sampler is None,
+ num_workers=workers,
+ sampler=sampler,
+ pin_memory=True,
+ collate_fn=TrainValDataset.collate_fn,
+ ),
+ dataset,
+ )
+
+
+class TrainValDataLoader(dataloader.DataLoader):
+ """Dataloader that reuses workers
+
+ Uses same syntax as vanilla DataLoader
+ """
+
+ def __init__(self, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+ object.__setattr__(self, "batch_sampler", _RepeatSampler(self.batch_sampler))
+ self.iterator = super().__iter__()
+
+ def __len__(self):
+ return len(self.batch_sampler.sampler)
+
+ def __iter__(self):
+ for i in range(len(self)):
+ yield next(self.iterator)
+
+
+class _RepeatSampler:
+ """Sampler that repeats forever
+
+ Args:
+ sampler (Sampler)
+ """
+
+ def __init__(self, sampler):
+ self.sampler = sampler
+
+ def __iter__(self):
+ while True:
+ yield from iter(self.sampler)
diff --git a/python/app/fedcv/YOLOv6/yolov6/data/datasets.py b/python/app/fedcv/YOLOv6/yolov6/data/datasets.py
new file mode 100644
index 0000000000..c5d7fb6822
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/yolov6/data/datasets.py
@@ -0,0 +1,669 @@
+#!/usr/bin/env python3
+# -*- coding:utf-8 -*-
+
+import glob
+from io import UnsupportedOperation
+import os
+import os.path as osp
+import random
+import json
+import time
+import hashlib
+from pathlib import Path
+
+from multiprocessing.pool import Pool
+
+import cv2
+import numpy as np
+from tqdm import tqdm
+from PIL import ExifTags, Image, ImageOps
+
+import torch
+from torch.utils.data import Dataset
+import torch.distributed as dist
+
+from .data_augment import (
+ augment_hsv,
+ letterbox,
+ mixup,
+ random_affine,
+ mosaic_augmentation,
+)
+from yolov6.utils.events import LOGGER
+
+
+# Parameters
+IMG_FORMATS = ["bmp", "jpg", "jpeg", "png", "tif", "tiff", "dng", "webp", "mpo"]
+VID_FORMATS = ["mp4", "mov", "avi", "mkv"]
+IMG_FORMATS.extend([f.upper() for f in IMG_FORMATS])
+VID_FORMATS.extend([f.upper() for f in VID_FORMATS])
+# Get orientation exif tag
+for k, v in ExifTags.TAGS.items():
+ if v == "Orientation":
+ ORIENTATION = k
+ break
+
+def img2label_paths(img_paths):
+ # Define label paths as a function of image paths
+ sa, sb = f'{os.sep}images{os.sep}', f'{os.sep}labels{os.sep}' # /images/, /labels/ substrings
+ return [sb.join(x.rsplit(sa, 1)).rsplit('.', 1)[0] + '.txt' for x in img_paths]
+
+class TrainValDataset(Dataset):
+ '''YOLOv6 train_loader/val_loader, loads images and labels for training and validation.'''
+ def __init__(
+ self,
+ img_dir,
+ img_size=640,
+ batch_size=16,
+ augment=False,
+ hyp=None,
+ rect=False,
+ check_images=False,
+ check_labels=False,
+ stride=32,
+ pad=0.0,
+ rank=-1,
+ data_dict=None,
+ task="train",
+ specific_shape = False,
+ height=1088,
+ width=1920,
+ data_idx=None
+
+ ):
+ assert task.lower() in ("train", "val", "test", "speed"), f"Not supported task: {task}"
+ t1 = time.time()
+ self.__dict__.update(locals())
+ self.main_process = self.rank in (-1, 0)
+ self.task = self.task.capitalize()
+ self.class_names = data_dict["names"]
+ self.img_paths, self.labels = self.get_imgs_labels(self.img_dir)
+ if data_idx is not None:
+ self.client_img_paths = [self.img_paths[i] for i in data_idx]
+ self.client_labels = [self.labels[i] for i in data_idx]
+ self.img_paths, self.labels = self.client_img_paths, self.client_labels
+ self.rect = rect
+ self.specific_shape = specific_shape
+ self.target_height = height
+ self.target_width = width
+ if self.rect:
+ shapes = [self.img_info[p]["shape"] for p in self.img_paths]
+ self.shapes = np.array(shapes, dtype=np.float64)
+ if dist.is_initialized():
+ # in DDP mode, we need to make sure all images within batch_size * gpu_num
+ # will resized and padded to same shape.
+ sample_batch_size = self.batch_size * dist.get_world_size()
+ else:
+ sample_batch_size = self.batch_size
+ self.batch_indices = np.floor(
+ np.arange(len(shapes)) / sample_batch_size
+ ).astype(
+ np.int_
+ ) # batch indices of each image
+
+ self.sort_files_shapes()
+
+ t2 = time.time()
+ if self.main_process:
+ LOGGER.info(f"%.1fs for dataset initialization." % (t2 - t1))
+
+ def __len__(self):
+ """Get the length of dataset"""
+ return len(self.img_paths)
+
+ def __getitem__(self, index):
+ """Fetching a data sample for a given key.
+ This function applies mosaic and mixup augments during training.
+ During validation, letterbox augment is applied.
+ """
+ target_shape = (
+ (self.target_height, self.target_width) if self.specific_shape else
+ self.batch_shapes[self.batch_indices[index]] if self.rect
+ else self.img_size
+ )
+
+ # Mosaic Augmentation
+ if self.augment and random.random() < self.hyp["mosaic"]:
+ img, labels = self.get_mosaic(index, target_shape)
+ shapes = None
+
+ # MixUp augmentation
+ if random.random() < self.hyp["mixup"]:
+ img_other, labels_other = self.get_mosaic(
+ random.randint(0, len(self.img_paths) - 1), target_shape
+ )
+ img, labels = mixup(img, labels, img_other, labels_other)
+
+ else:
+ # Load image
+ if self.hyp and "shrink_size" in self.hyp:
+ img, (h0, w0), (h, w) = self.load_image(index, self.hyp["shrink_size"])
+ else:
+ img, (h0, w0), (h, w) = self.load_image(index)
+
+ # letterbox
+ img, ratio, pad = letterbox(img, target_shape, auto=False, scaleup=self.augment)
+ shapes = (h0, w0), ((h * ratio / h0, w * ratio / w0), pad) # for COCO mAP rescaling
+
+ labels = self.labels[index].copy()
+ if labels.size:
+ w *= ratio
+ h *= ratio
+ # new boxes
+ boxes = np.copy(labels[:, 1:])
+ boxes[:, 0] = (
+ w * (labels[:, 1] - labels[:, 3] / 2) + pad[0]
+ ) # top left x
+ boxes[:, 1] = (
+ h * (labels[:, 2] - labels[:, 4] / 2) + pad[1]
+ ) # top left y
+ boxes[:, 2] = (
+ w * (labels[:, 1] + labels[:, 3] / 2) + pad[0]
+ ) # bottom right x
+ boxes[:, 3] = (
+ h * (labels[:, 2] + labels[:, 4] / 2) + pad[1]
+ ) # bottom right y
+ labels[:, 1:] = boxes
+
+ if self.augment:
+ img, labels = random_affine(
+ img,
+ labels,
+ degrees=self.hyp["degrees"],
+ translate=self.hyp["translate"],
+ scale=self.hyp["scale"],
+ shear=self.hyp["shear"],
+ new_shape=target_shape,
+ )
+
+ if len(labels):
+ h, w = img.shape[:2]
+
+ labels[:, [1, 3]] = labels[:, [1, 3]].clip(0, w - 1e-3) # x1, x2
+ labels[:, [2, 4]] = labels[:, [2, 4]].clip(0, h - 1e-3) # y1, y2
+
+ boxes = np.copy(labels[:, 1:])
+ boxes[:, 0] = ((labels[:, 1] + labels[:, 3]) / 2) / w # x center
+ boxes[:, 1] = ((labels[:, 2] + labels[:, 4]) / 2) / h # y center
+ boxes[:, 2] = (labels[:, 3] - labels[:, 1]) / w # width
+ boxes[:, 3] = (labels[:, 4] - labels[:, 2]) / h # height
+ labels[:, 1:] = boxes
+
+ if self.augment:
+ img, labels = self.general_augment(img, labels)
+
+ labels_out = torch.zeros((len(labels), 6))
+ if len(labels):
+ labels_out[:, 1:] = torch.from_numpy(labels)
+
+ # Convert
+ img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
+ img = np.ascontiguousarray(img)
+
+ return torch.from_numpy(img), labels_out, self.img_paths[index], shapes
+
+ def load_image(self, index, shrink_size=None):
+ """Load image.
+ This function loads image by cv2, resize original image to target shape(img_size) with keeping ratio.
+
+ Returns:
+ Image, original shape of image, resized image shape
+ """
+ path = self.img_paths[index]
+ try:
+ im = cv2.imread(path)
+ assert im is not None, f"opencv cannot read image correctly or {path} not exists"
+ except:
+ im = cv2.cvtColor(np.asarray(Image.open(path)), cv2.COLOR_RGB2BGR)
+ assert im is not None, f"Image Not Found {path}, workdir: {os.getcwd()}"
+
+ h0, w0 = im.shape[:2] # origin shape
+ if self.specific_shape:
+ # keep ratio resize
+ ratio = min(self.target_width / w0, self.target_height / h0)
+
+ elif shrink_size:
+ ratio = (self.img_size - shrink_size) / max(h0, w0)
+
+ else:
+ ratio = self.img_size / max(h0, w0)
+
+ if ratio != 1:
+ im = cv2.resize(
+ im,
+ (int(w0 * ratio), int(h0 * ratio)),
+ interpolation=cv2.INTER_AREA
+ if ratio < 1 and not self.augment
+ else cv2.INTER_LINEAR,
+ )
+ return im, (h0, w0), im.shape[:2]
+
+ @staticmethod
+ def collate_fn(batch):
+ """Merges a list of samples to form a mini-batch of Tensor(s)"""
+ img, label, path, shapes = zip(*batch)
+ for i, l in enumerate(label):
+ l[:, 0] = i # add target image index for build_targets()
+ return torch.stack(img, 0), torch.cat(label, 0), path, shapes
+
+ def get_imgs_labels(self, img_dirs):
+ if not isinstance(img_dirs, list):
+ img_dirs = [img_dirs]
+ # we store the cache img file in the first directory of img_dirs
+ valid_img_record = osp.join(
+ osp.dirname(img_dirs[0]), "." + osp.basename(img_dirs[0]) + "_cache.json"
+ )
+ NUM_THREADS = min(8, os.cpu_count())
+ img_paths = []
+ for img_dir in img_dirs:
+ assert osp.exists(img_dir), f"{img_dir} is an invalid directory path!"
+ img_paths += glob.glob(osp.join(img_dir, "**/*"), recursive=True)
+
+ img_paths = sorted(
+ p for p in img_paths if p.split(".")[-1].lower() in IMG_FORMATS and os.path.isfile(p)
+ )
+
+ assert img_paths, f"No images found in {img_dir}."
+ img_hash = self.get_hash(img_paths)
+ LOGGER.info(f'img record infomation path is:{valid_img_record}')
+ if osp.exists(valid_img_record):
+ with open(valid_img_record, "r") as f:
+ cache_info = json.load(f)
+ if "image_hash" in cache_info and cache_info["image_hash"] == img_hash:
+ img_info = cache_info["information"]
+ else:
+ self.check_images = True
+ else:
+ self.check_images = True
+
+ # check images
+ if self.check_images and self.main_process:
+ img_info = {}
+ nc, msgs = 0, [] # number corrupt, messages
+ LOGGER.info(
+ f"{self.task}: Checking formats of images with {NUM_THREADS} process(es): "
+ )
+ with Pool(NUM_THREADS) as pool:
+ pbar = tqdm(
+ pool.imap(TrainValDataset.check_image, img_paths),
+ total=len(img_paths),
+ )
+ for img_path, shape_per_img, nc_per_img, msg in pbar:
+ if nc_per_img == 0: # not corrupted
+ img_info[img_path] = {"shape": shape_per_img}
+ nc += nc_per_img
+ if msg:
+ msgs.append(msg)
+ pbar.desc = f"{nc} image(s) corrupted"
+ pbar.close()
+ if msgs:
+ LOGGER.info("\n".join(msgs))
+
+ cache_info = {"information": img_info, "image_hash": img_hash}
+ # save valid image paths.
+ with open(valid_img_record, "w") as f:
+ json.dump(cache_info, f)
+
+ # check and load anns
+
+ img_paths = list(img_info.keys())
+ label_paths = img2label_paths(img_paths)
+ assert label_paths, f"No labels found."
+ label_hash = self.get_hash(label_paths)
+ if "label_hash" not in cache_info or cache_info["label_hash"] != label_hash:
+ self.check_labels = True
+
+ if self.check_labels:
+ cache_info["label_hash"] = label_hash
+ nm, nf, ne, nc, msgs = 0, 0, 0, 0, [] # number corrupt, messages
+ LOGGER.info(
+ f"{self.task}: Checking formats of labels with {NUM_THREADS} process(es): "
+ )
+ with Pool(NUM_THREADS) as pool:
+ pbar = pool.imap(
+ TrainValDataset.check_label_files, zip(img_paths, label_paths)
+ )
+ pbar = tqdm(pbar, total=len(label_paths)) if self.main_process else pbar
+ for (
+ img_path,
+ labels_per_file,
+ nc_per_file,
+ nm_per_file,
+ nf_per_file,
+ ne_per_file,
+ msg,
+ ) in pbar:
+ if nc_per_file == 0:
+ img_info[img_path]["labels"] = labels_per_file
+ else:
+ img_info.pop(img_path)
+ nc += nc_per_file
+ nm += nm_per_file
+ nf += nf_per_file
+ ne += ne_per_file
+ if msg:
+ msgs.append(msg)
+ if self.main_process:
+ pbar.desc = f"{nf} label(s) found, {nm} label(s) missing, {ne} label(s) empty, {nc} invalid label files"
+ if self.main_process:
+ pbar.close()
+ with open(valid_img_record, "w") as f:
+ json.dump(cache_info, f)
+ if msgs:
+ LOGGER.info("\n".join(msgs))
+ if nf == 0:
+ LOGGER.warning(
+ f"WARNING: No labels found in {osp.dirname(img_paths[0])}. "
+ )
+
+ if self.task.lower() == "val":
+ if self.data_dict.get("is_coco", False): # use original json file when evaluating on coco dataset.
+ assert osp.exists(self.data_dict["anno_path"]), "Eval on coco dataset must provide valid path of the annotation file in config file: data/coco.yaml"
+ else:
+ assert (
+ self.class_names
+ ), "Class names is required when converting labels to coco format for evaluating."
+ save_dir = osp.join(osp.dirname(osp.dirname(img_dirs[0])), "annotations")
+ if not osp.exists(save_dir):
+ os.mkdir(save_dir)
+ save_path = osp.join(
+ save_dir, "instances_" + osp.basename(img_dirs[0]) + ".json"
+ )
+ TrainValDataset.generate_coco_format_labels(
+ img_info, self.class_names, save_path
+ )
+
+ img_paths, labels = list(
+ zip(
+ *[
+ (
+ img_path,
+ np.array(info["labels"], dtype=np.float32)
+ if info["labels"]
+ else np.zeros((0, 5), dtype=np.float32),
+ )
+ for img_path, info in img_info.items()
+ ]
+ )
+ )
+ self.img_info = img_info
+ LOGGER.info(
+ f"{self.task}: Final numbers of valid images: {len(img_paths)}/ labels: {len(labels)}. "
+ )
+ return img_paths, labels
+
+ def get_mosaic(self, index, shape):
+ """Gets images and labels after mosaic augments"""
+ indices = [index] + random.choices(
+ range(0, len(self.img_paths)), k=3
+ ) # 3 additional image indices
+ random.shuffle(indices)
+ imgs, hs, ws, labels = [], [], [], []
+ for index in indices:
+ img, _, (h, w) = self.load_image(index)
+ labels_per_img = self.labels[index]
+ imgs.append(img)
+ hs.append(h)
+ ws.append(w)
+ labels.append(labels_per_img)
+ img, labels = mosaic_augmentation(shape, imgs, hs, ws, labels, self.hyp, self.specific_shape, self.target_height, self.target_width)
+ return img, labels
+
+ def general_augment(self, img, labels):
+ """Gets images and labels after general augment
+ This function applies hsv, random ud-flip and random lr-flips augments.
+ """
+ nl = len(labels)
+
+ # HSV color-space
+ augment_hsv(
+ img,
+ hgain=self.hyp["hsv_h"],
+ sgain=self.hyp["hsv_s"],
+ vgain=self.hyp["hsv_v"],
+ )
+
+ # Flip up-down
+ if random.random() < self.hyp["flipud"]:
+ img = np.flipud(img)
+ if nl:
+ labels[:, 2] = 1 - labels[:, 2]
+
+ # Flip left-right
+ if random.random() < self.hyp["fliplr"]:
+ img = np.fliplr(img)
+ if nl:
+ labels[:, 1] = 1 - labels[:, 1]
+
+ return img, labels
+
+ def sort_files_shapes(self):
+ '''Sort by aspect ratio.'''
+ batch_num = self.batch_indices[-1] + 1
+ s = self.shapes # [height, width]
+ ar = s[:, 1] / s[:, 0] # aspect ratio
+ irect = ar.argsort()
+ self.img_paths = [self.img_paths[i] for i in irect]
+ self.labels = [self.labels[i] for i in irect]
+ self.shapes = s[irect] # wh
+ ar = ar[irect]
+
+ # Set training image shapes
+ shapes = [[1, 1]] * batch_num
+ for i in range(batch_num):
+ ari = ar[self.batch_indices == i]
+ mini, maxi = ari.min(), ari.max()
+ if maxi < 1:
+ shapes[i] = [1, maxi]
+ elif mini > 1:
+ shapes[i] = [1 / mini, 1]
+ self.batch_shapes = (
+ np.ceil(np.array(shapes) * self.img_size / self.stride + self.pad).astype(
+ np.int_
+ )
+ * self.stride
+ )
+
+ @staticmethod
+ def check_image(im_file):
+ '''Verify an image.'''
+ nc, msg = 0, ""
+ try:
+ im = Image.open(im_file)
+ im.verify() # PIL verify
+ im = Image.open(im_file) # need to reload the image after using verify()
+ shape = (im.height, im.width) # (height, width)
+ try:
+ im_exif = im._getexif()
+ if im_exif and ORIENTATION in im_exif:
+ rotation = im_exif[ORIENTATION]
+ if rotation in (6, 8):
+ shape = (shape[1], shape[0])
+ except:
+ im_exif = None
+
+ assert (shape[0] > 9) & (shape[1] > 9), f"image size {shape} <10 pixels"
+ assert im.format.lower() in IMG_FORMATS, f"invalid image format {im.format}"
+ if im.format.lower() in ("jpg", "jpeg"):
+ with open(im_file, "rb") as f:
+ f.seek(-2, 2)
+ if f.read() != b"\xff\xd9": # corrupt JPEG
+ ImageOps.exif_transpose(Image.open(im_file)).save(
+ im_file, "JPEG", subsampling=0, quality=100
+ )
+ msg += f"WARNING: {im_file}: corrupt JPEG restored and saved"
+ return im_file, shape, nc, msg
+ except Exception as e:
+ nc = 1
+ msg = f"WARNING: {im_file}: ignoring corrupt image: {e}"
+ return im_file, None, nc, msg
+
+ @staticmethod
+ def check_label_files(args):
+ img_path, lb_path = args
+ nm, nf, ne, nc, msg = 0, 0, 0, 0, "" # number (missing, found, empty, message
+ try:
+ if osp.exists(lb_path):
+ nf = 1 # label found
+ with open(lb_path, "r") as f:
+ labels = [
+ x.split() for x in f.read().strip().splitlines() if len(x)
+ ]
+ labels = np.array(labels, dtype=np.float32)
+ if len(labels):
+ assert all(
+ len(l) == 5 for l in labels
+ ), f"{lb_path}: wrong label format."
+ assert (
+ labels >= 0
+ ).all(), f"{lb_path}: Label values error: all values in label file must > 0"
+ assert (
+ labels[:, 1:] <= 1
+ ).all(), f"{lb_path}: Label values error: all coordinates must be normalized"
+
+ _, indices = np.unique(labels, axis=0, return_index=True)
+ if len(indices) < len(labels): # duplicate row check
+ labels = labels[indices] # remove duplicates
+ msg += f"WARNING: {lb_path}: {len(labels) - len(indices)} duplicate labels removed"
+ labels = labels.tolist()
+ else:
+ ne = 1 # label empty
+ labels = []
+ else:
+ nm = 1 # label missing
+ labels = []
+
+ return img_path, labels, nc, nm, nf, ne, msg
+ except Exception as e:
+ nc = 1
+ msg = f"WARNING: {lb_path}: ignoring invalid labels: {e}"
+ return img_path, None, nc, nm, nf, ne, msg
+
+ @staticmethod
+ def generate_coco_format_labels(img_info, class_names, save_path):
+ # for evaluation with pycocotools
+ dataset = {"categories": [], "annotations": [], "images": []}
+ for i, class_name in enumerate(class_names):
+ dataset["categories"].append(
+ {"id": i, "name": class_name, "supercategory": ""}
+ )
+
+ ann_id = 0
+ LOGGER.info(f"Convert to COCO format")
+ for i, (img_path, info) in enumerate(tqdm(img_info.items())):
+ labels = info["labels"] if info["labels"] else []
+ img_id = osp.splitext(osp.basename(img_path))[0]
+ img_h, img_w = info["shape"]
+ dataset["images"].append(
+ {
+ "file_name": os.path.basename(img_path),
+ "id": img_id,
+ "width": img_w,
+ "height": img_h,
+ }
+ )
+ if labels:
+ for label in labels:
+ c, x, y, w, h = label[:5]
+ # convert x,y,w,h to x1,y1,x2,y2
+ x1 = (x - w / 2) * img_w
+ y1 = (y - h / 2) * img_h
+ x2 = (x + w / 2) * img_w
+ y2 = (y + h / 2) * img_h
+ # cls_id starts from 0
+ cls_id = int(c)
+ w = max(0, x2 - x1)
+ h = max(0, y2 - y1)
+ dataset["annotations"].append(
+ {
+ "area": h * w,
+ "bbox": [x1, y1, w, h],
+ "category_id": cls_id,
+ "id": ann_id,
+ "image_id": img_id,
+ "iscrowd": 0,
+ # mask
+ "segmentation": [],
+ }
+ )
+ ann_id += 1
+
+ with open(save_path, "w") as f:
+ json.dump(dataset, f)
+ LOGGER.info(
+ f"Convert to COCO format finished. Resutls saved in {save_path}"
+ )
+
+ @staticmethod
+ def get_hash(paths):
+ """Get the hash value of paths"""
+ assert isinstance(paths, list), "Only support list currently."
+ h = hashlib.md5("".join(paths).encode())
+ return h.hexdigest()
+
+
+class LoadData:
+ def __init__(self, path, webcam, webcam_addr):
+ self.webcam = webcam
+ self.webcam_addr = webcam_addr
+ if webcam: # if use web camera
+ imgp = []
+ vidp = [int(webcam_addr) if webcam_addr.isdigit() else webcam_addr]
+ else:
+ p = str(Path(path).resolve()) # os-agnostic absolute path
+ if os.path.isdir(p):
+ files = sorted(glob.glob(os.path.join(p, '**/*.*'), recursive=True)) # dir
+ elif os.path.isfile(p):
+ files = [p] # files
+ else:
+ raise FileNotFoundError(f'Invalid path {p}')
+ imgp = [i for i in files if i.split('.')[-1] in IMG_FORMATS]
+ vidp = [v for v in files if v.split('.')[-1] in VID_FORMATS]
+ self.files = imgp + vidp
+ self.nf = len(self.files)
+ self.type = 'image'
+ if len(vidp) > 0:
+ self.add_video(vidp[0]) # new video
+ else:
+ self.cap = None
+
+ # @staticmethod
+ def checkext(self, path):
+ if self.webcam:
+ file_type = 'video'
+ else:
+ file_type = 'image' if path.split('.')[-1].lower() in IMG_FORMATS else 'video'
+ return file_type
+
+ def __iter__(self):
+ self.count = 0
+ return self
+
+ def __next__(self):
+ if self.count == self.nf:
+ raise StopIteration
+ path = self.files[self.count]
+ if self.checkext(path) == 'video':
+ self.type = 'video'
+ ret_val, img = self.cap.read()
+ while not ret_val:
+ self.count += 1
+ self.cap.release()
+ if self.count == self.nf: # last video
+ raise StopIteration
+ path = self.files[self.count]
+ self.add_video(path)
+ ret_val, img = self.cap.read()
+ else:
+ # Read image
+ self.count += 1
+ img = cv2.imread(path) # BGR
+ return img, path, self.cap
+
+ def add_video(self, path):
+ self.frame = 0
+ self.cap = cv2.VideoCapture(path)
+ self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
+
+ def __len__(self):
+ return self.nf # number of files
diff --git a/python/app/fedcv/YOLOv6/yolov6/data/vis_dataset.py b/python/app/fedcv/YOLOv6/yolov6/data/vis_dataset.py
new file mode 100644
index 0000000000..09716ae54e
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/yolov6/data/vis_dataset.py
@@ -0,0 +1,59 @@
+# coding=utf-8
+# Description: visualize yolo label image.
+
+import argparse
+import os
+import cv2
+import numpy as np
+
+IMG_FORMATS = ["bmp", "jpg", "jpeg", "png", "tif", "tiff", "dng", "webp", "mpo"]
+IMG_FORMATS.extend([f.upper() for f in IMG_FORMATS])
+
+
+def main(args):
+ img_dir, label_dir, class_names = args.img_dir, args.label_dir, args.class_names
+
+ label_map = dict()
+ for class_id, classname in enumerate(class_names):
+ label_map[class_id] = classname
+
+ for file in os.listdir(img_dir):
+ if file.split('.')[-1] not in IMG_FORMATS:
+ print(f'[Warning]: Non-image file {file}')
+ continue
+ img_path = os.path.join(img_dir, file)
+ label_path = os.path.join(label_dir, file[: file.rindex('.')] + '.txt')
+
+ try:
+ img_data = cv2.imread(img_path)
+ height, width, _ = img_data.shape
+ color = [tuple(np.random.choice(range(256), size=3)) for i in class_names]
+ thickness = 2
+
+ with open(label_path, 'r') as f:
+ for bbox in f:
+ cls, x_c, y_c, w, h = [float(v) if i > 0 else int(v) for i, v in enumerate(bbox.split('\n')[0].split(' '))]
+
+ x_tl = int((x_c - w / 2) * width)
+ y_tl = int((y_c - h / 2) * height)
+ cv2.rectangle(img_data, (x_tl, y_tl), (x_tl + int(w * width), y_tl + int(h * height)), tuple([int(x) for x in color[cls]]), thickness)
+ cv2.putText(img_data, label_map[cls], (x_tl, y_tl - 10), cv2.FONT_HERSHEY_COMPLEX, 1, tuple([int(x) for x in color[cls]]), thickness)
+
+ cv2.imshow('image', img_data)
+ cv2.waitKey(0)
+ except Exception as e:
+ print(f'[Error]: {e} {img_path}')
+ print('======All Done!======')
+
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--img_dir', default='VOCdevkit/voc_07_12/images')
+ parser.add_argument('--label_dir', default='VOCdevkit/voc_07_12/labels')
+ parser.add_argument('--class_names', default=['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog',
+ 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'])
+
+ args = parser.parse_args()
+ print(args)
+
+ main(args)
diff --git a/python/app/fedcv/YOLOv6/yolov6/data/voc2yolo.py b/python/app/fedcv/YOLOv6/yolov6/data/voc2yolo.py
new file mode 100644
index 0000000000..9019e1fcd2
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/yolov6/data/voc2yolo.py
@@ -0,0 +1,100 @@
+import xml.etree.ElementTree as ET
+from tqdm import tqdm
+import os
+import shutil
+import argparse
+
+# VOC dataset (refer https://github.com/ultralytics/yolov5/blob/master/data/VOC.yaml)
+# VOC2007 trainval: 446MB, 5012 images
+# VOC2007 test: 438MB, 4953 images
+# VOC2012 trainval: 1.95GB, 17126 images
+
+VOC_NAMES = ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog',
+ 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor']
+
+
+def convert_label(path, lb_path, year, image_id):
+ def convert_box(size, box):
+ dw, dh = 1. / size[0], 1. / size[1]
+ x, y, w, h = (box[0] + box[1]) / 2.0 - 1, (box[2] + box[3]) / 2.0 - 1, box[1] - box[0], box[3] - box[2]
+ return x * dw, y * dh, w * dw, h * dh
+ in_file = open(os.path.join(path, f'VOC{year}/Annotations/{image_id}.xml'))
+ out_file = open(lb_path, 'w')
+ tree = ET.parse(in_file)
+ root = tree.getroot()
+ size = root.find('size')
+ w = int(size.find('width').text)
+ h = int(size.find('height').text)
+ for obj in root.iter('object'):
+ cls = obj.find('name').text
+ if cls in VOC_NAMES and not int(obj.find('difficult').text) == 1:
+ xmlbox = obj.find('bndbox')
+ bb = convert_box((w, h), [float(xmlbox.find(x).text) for x in ('xmin', 'xmax', 'ymin', 'ymax')])
+ cls_id = VOC_NAMES.index(cls) # class id
+ out_file.write(" ".join([str(a) for a in (cls_id, *bb)]) + '\n')
+
+
+def gen_voc07_12(voc_path):
+ '''
+ Generate voc07+12 setting dataset:
+ train: # train images 16551 images
+ - images/train2012
+ - images/train2007
+ - images/val2012
+ - images/val2007
+ val: # val images (relative to 'path') 4952 images
+ - images/test2007
+ '''
+ dataset_root = os.path.join(voc_path, 'voc_07_12')
+ if not os.path.exists(dataset_root):
+ os.makedirs(dataset_root)
+
+ dataset_settings = {'train': ['train2007', 'val2007', 'train2012', 'val2012'], 'val':['test2007']}
+ for item in ['images', 'labels']:
+ for data_type, data_list in dataset_settings.items():
+ for data_name in data_list:
+ ori_path = os.path.join(voc_path, item, data_name)
+ new_path = os.path.join(dataset_root, item, data_type)
+ if not os.path.exists(new_path):
+ os.makedirs(new_path)
+
+ print(f'[INFO]: Copying {ori_path} to {new_path}')
+ for file in os.listdir(ori_path):
+ shutil.copy(os.path.join(ori_path, file), new_path)
+
+
+def main(args):
+ voc_path = args.voc_path
+ for year, image_set in ('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test'):
+ imgs_path = os.path.join(voc_path, 'images', f'{image_set}')
+ lbs_path = os.path.join(voc_path, 'labels', f'{image_set}')
+
+ try:
+ with open(os.path.join(voc_path, f'VOC{year}/ImageSets/Main/{image_set}.txt'), 'r') as f:
+ image_ids = f.read().strip().split()
+ if not os.path.exists(imgs_path):
+ os.makedirs(imgs_path)
+ if not os.path.exists(lbs_path):
+ os.makedirs(lbs_path)
+
+ for id in tqdm(image_ids, desc=f'{image_set}{year}'):
+ f = os.path.join(voc_path, f'VOC{year}/JPEGImages/{id}.jpg') # old img path
+ lb_path = os.path.join(lbs_path, f'{id}.txt') # new label path
+ convert_label(voc_path, lb_path, year, id) # convert labels to YOLO format
+ if os.path.exists(f):
+ shutil.move(f, imgs_path) # move image
+ except Exception as e:
+ print(f'[Warning]: {e} {year}{image_set} convert fail!')
+
+ gen_voc07_12(voc_path)
+
+
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--voc_path', default='VOCdevkit')
+
+ args = parser.parse_args()
+ print(args)
+
+ main(args)
diff --git a/python/app/fedcv/YOLOv6/yolov6/layers/common.py b/python/app/fedcv/YOLOv6/yolov6/layers/common.py
new file mode 100644
index 0000000000..c69d9d04a0
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/yolov6/layers/common.py
@@ -0,0 +1,986 @@
+#!/usr/bin/env python3
+# -*- coding:utf-8 -*-
+import os
+import warnings
+import numpy as np
+from pathlib import Path
+import torch
+import torch.nn as nn
+import torch.nn.init as init
+from torch.nn.parameter import Parameter
+from yolov6.utils.general import download_ckpt
+
+
+activation_table = {'relu':nn.ReLU(),
+ 'silu':nn.SiLU(),
+ 'hardswish':nn.Hardswish()
+ }
+
+class SiLU(nn.Module):
+ '''Activation of SiLU'''
+ @staticmethod
+ def forward(x):
+ return x * torch.sigmoid(x)
+
+
+class ConvModule(nn.Module):
+ '''A combination of Conv + BN + Activation'''
+ def __init__(self, in_channels, out_channels, kernel_size, stride, activation_type, padding=None, groups=1, bias=False):
+ super().__init__()
+ if padding is None:
+ padding = kernel_size // 2
+ self.conv = nn.Conv2d(
+ in_channels,
+ out_channels,
+ kernel_size=kernel_size,
+ stride=stride,
+ padding=padding,
+ groups=groups,
+ bias=bias,
+ )
+ self.bn = nn.BatchNorm2d(out_channels)
+ if activation_type is not None:
+ self.act = activation_table.get(activation_type)
+ self.activation_type = activation_type
+
+ def forward(self, x):
+ if self.activation_type is None:
+ return self.bn(self.conv(x))
+ return self.act(self.bn(self.conv(x)))
+
+ def forward_fuse(self, x):
+ if self.activation_type is None:
+ return self.conv(x)
+ return self.act(self.conv(x))
+
+
+class ConvBNReLU(nn.Module):
+ '''Conv and BN with ReLU activation'''
+ def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=None, groups=1, bias=False):
+ super().__init__()
+ self.block = ConvModule(in_channels, out_channels, kernel_size, stride, 'relu', padding, groups, bias)
+
+ def forward(self, x):
+ return self.block(x)
+
+
+class ConvBNSiLU(nn.Module):
+ '''Conv and BN with SiLU activation'''
+ def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=None, groups=1, bias=False):
+ super().__init__()
+ self.block = ConvModule(in_channels, out_channels, kernel_size, stride, 'silu', padding, groups, bias)
+
+ def forward(self, x):
+ return self.block(x)
+
+
+class ConvBN(nn.Module):
+ '''Conv and BN without activation'''
+ def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=None, groups=1, bias=False):
+ super().__init__()
+ self.block = ConvModule(in_channels, out_channels, kernel_size, stride, None, padding, groups, bias)
+
+ def forward(self, x):
+ return self.block(x)
+
+
+class ConvBNHS(nn.Module):
+ '''Conv and BN with Hardswish activation'''
+ def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=None, groups=1, bias=False):
+ super().__init__()
+ self.block = ConvModule(in_channels, out_channels, kernel_size, stride, 'hardswish', padding, groups, bias)
+
+ def forward(self, x):
+ return self.block(x)
+
+
+class SPPFModule(nn.Module):
+
+ def __init__(self, in_channels, out_channels, kernel_size=5, block=ConvBNReLU):
+ super().__init__()
+ c_ = in_channels // 2 # hidden channels
+ self.cv1 = block(in_channels, c_, 1, 1)
+ self.cv2 = block(c_ * 4, out_channels, 1, 1)
+ self.m = nn.MaxPool2d(kernel_size=kernel_size, stride=1, padding=kernel_size // 2)
+
+ def forward(self, x):
+ x = self.cv1(x)
+ with warnings.catch_warnings():
+ warnings.simplefilter('ignore')
+ y1 = self.m(x)
+ y2 = self.m(y1)
+ return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))
+
+
+class SimSPPF(nn.Module):
+ '''Simplified SPPF with ReLU activation'''
+ def __init__(self, in_channels, out_channels, kernel_size=5, block=ConvBNReLU):
+ super().__init__()
+ self.sppf = SPPFModule(in_channels, out_channels, kernel_size, block)
+
+ def forward(self, x):
+ return self.sppf(x)
+
+
+class SPPF(nn.Module):
+ '''SPPF with SiLU activation'''
+ def __init__(self, in_channels, out_channels, kernel_size=5, block=ConvBNSiLU):
+ super().__init__()
+ self.sppf = SPPFModule(in_channels, out_channels, kernel_size, block)
+
+ def forward(self, x):
+ return self.sppf(x)
+
+
+class CSPSPPFModule(nn.Module):
+ # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
+ def __init__(self, in_channels, out_channels, kernel_size=5, e=0.5, block=ConvBNReLU):
+ super().__init__()
+ c_ = int(out_channels * e) # hidden channels
+ self.cv1 = block(in_channels, c_, 1, 1)
+ self.cv2 = block(in_channels, c_, 1, 1)
+ self.cv3 = block(c_, c_, 3, 1)
+ self.cv4 = block(c_, c_, 1, 1)
+
+ self.m = nn.MaxPool2d(kernel_size=kernel_size, stride=1, padding=kernel_size // 2)
+ self.cv5 = block(4 * c_, c_, 1, 1)
+ self.cv6 = block(c_, c_, 3, 1)
+ self.cv7 = block(2 * c_, out_channels, 1, 1)
+
+ def forward(self, x):
+ x1 = self.cv4(self.cv3(self.cv1(x)))
+ y0 = self.cv2(x)
+ with warnings.catch_warnings():
+ warnings.simplefilter('ignore')
+ y1 = self.m(x1)
+ y2 = self.m(y1)
+ y3 = self.cv6(self.cv5(torch.cat([x1, y1, y2, self.m(y2)], 1)))
+ return self.cv7(torch.cat((y0, y3), dim=1))
+
+
+class SimCSPSPPF(nn.Module):
+ '''CSPSPPF with ReLU activation'''
+ def __init__(self, in_channels, out_channels, kernel_size=5, e=0.5, block=ConvBNReLU):
+ super().__init__()
+ self.cspsppf = CSPSPPFModule(in_channels, out_channels, kernel_size, e, block)
+
+ def forward(self, x):
+ return self.cspsppf(x)
+
+
+class CSPSPPF(nn.Module):
+ '''CSPSPPF with SiLU activation'''
+ def __init__(self, in_channels, out_channels, kernel_size=5, e=0.5, block=ConvBNSiLU):
+ super().__init__()
+ self.cspsppf = CSPSPPFModule(in_channels, out_channels, kernel_size, e, block)
+
+ def forward(self, x):
+ return self.cspsppf(x)
+
+
+class Transpose(nn.Module):
+ '''Normal Transpose, default for upsampling'''
+ def __init__(self, in_channels, out_channels, kernel_size=2, stride=2):
+ super().__init__()
+ self.upsample_transpose = torch.nn.ConvTranspose2d(
+ in_channels=in_channels,
+ out_channels=out_channels,
+ kernel_size=kernel_size,
+ stride=stride,
+ bias=True
+ )
+
+ def forward(self, x):
+ return self.upsample_transpose(x)
+
+
+class RepVGGBlock(nn.Module):
+ '''RepVGGBlock is a basic rep-style block, including training and deploy status
+ This code is based on https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py
+ '''
+ def __init__(self, in_channels, out_channels, kernel_size=3,
+ stride=1, padding=1, dilation=1, groups=1, padding_mode='zeros', deploy=False, use_se=False):
+ super(RepVGGBlock, self).__init__()
+ """ Initialization of the class.
+ Args:
+ in_channels (int): Number of channels in the input image
+ out_channels (int): Number of channels produced by the convolution
+ kernel_size (int or tuple): Size of the convolving kernel
+ stride (int or tuple, optional): Stride of the convolution. Default: 1
+ padding (int or tuple, optional): Zero-padding added to both sides of
+ the input. Default: 1
+ dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
+ groups (int, optional): Number of blocked connections from input
+ channels to output channels. Default: 1
+ padding_mode (string, optional): Default: 'zeros'
+ deploy: Whether to be deploy status or training status. Default: False
+ use_se: Whether to use se. Default: False
+ """
+ self.deploy = deploy
+ self.groups = groups
+ self.in_channels = in_channels
+ self.out_channels = out_channels
+
+ assert kernel_size == 3
+ assert padding == 1
+
+ padding_11 = padding - kernel_size // 2
+
+ self.nonlinearity = nn.ReLU()
+
+ if use_se:
+ raise NotImplementedError("se block not supported yet")
+ else:
+ self.se = nn.Identity()
+
+ if deploy:
+ self.rbr_reparam = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride,
+ padding=padding, dilation=dilation, groups=groups, bias=True, padding_mode=padding_mode)
+
+ else:
+ self.rbr_identity = nn.BatchNorm2d(num_features=in_channels) if out_channels == in_channels and stride == 1 else None
+ self.rbr_dense = ConvModule(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, activation_type=None, padding=padding, groups=groups)
+ self.rbr_1x1 = ConvModule(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride, activation_type=None, padding=padding_11, groups=groups)
+
+ def forward(self, inputs):
+ '''Forward process'''
+ if hasattr(self, 'rbr_reparam'):
+ return self.nonlinearity(self.se(self.rbr_reparam(inputs)))
+
+ if self.rbr_identity is None:
+ id_out = 0
+ else:
+ id_out = self.rbr_identity(inputs)
+
+ return self.nonlinearity(self.se(self.rbr_dense(inputs) + self.rbr_1x1(inputs) + id_out))
+
+ def get_equivalent_kernel_bias(self):
+ kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)
+ kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1)
+ kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity)
+ return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid
+
+ def _avg_to_3x3_tensor(self, avgp):
+ channels = self.in_channels
+ groups = self.groups
+ kernel_size = avgp.kernel_size
+ input_dim = channels // groups
+ k = torch.zeros((channels, input_dim, kernel_size, kernel_size))
+ k[np.arange(channels), np.tile(np.arange(input_dim), groups), :, :] = 1.0 / kernel_size ** 2
+ return k
+
+ def _pad_1x1_to_3x3_tensor(self, kernel1x1):
+ if kernel1x1 is None:
+ return 0
+ else:
+ return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1])
+
+ def _fuse_bn_tensor(self, branch):
+ if branch is None:
+ return 0, 0
+ if isinstance(branch, ConvModule):
+ kernel = branch.conv.weight
+ bias = branch.conv.bias
+ return kernel, bias
+ elif isinstance(branch, nn.BatchNorm2d):
+ if not hasattr(self, 'id_tensor'):
+ input_dim = self.in_channels // self.groups
+ kernel_value = np.zeros((self.in_channels, input_dim, 3, 3), dtype=np.float32)
+ for i in range(self.in_channels):
+ kernel_value[i, i % input_dim, 1, 1] = 1
+ self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
+ kernel = self.id_tensor
+ running_mean = branch.running_mean
+ running_var = branch.running_var
+ gamma = branch.weight
+ beta = branch.bias
+ eps = branch.eps
+ std = (running_var + eps).sqrt()
+ t = (gamma / std).reshape(-1, 1, 1, 1)
+ return kernel * t, beta - running_mean * gamma / std
+
+ def switch_to_deploy(self):
+ if hasattr(self, 'rbr_reparam'):
+ return
+ kernel, bias = self.get_equivalent_kernel_bias()
+ self.rbr_reparam = nn.Conv2d(in_channels=self.rbr_dense.conv.in_channels, out_channels=self.rbr_dense.conv.out_channels,
+ kernel_size=self.rbr_dense.conv.kernel_size, stride=self.rbr_dense.conv.stride,
+ padding=self.rbr_dense.conv.padding, dilation=self.rbr_dense.conv.dilation, groups=self.rbr_dense.conv.groups, bias=True)
+ self.rbr_reparam.weight.data = kernel
+ self.rbr_reparam.bias.data = bias
+ for para in self.parameters():
+ para.detach_()
+ self.__delattr__('rbr_dense')
+ self.__delattr__('rbr_1x1')
+ if hasattr(self, 'rbr_identity'):
+ self.__delattr__('rbr_identity')
+ if hasattr(self, 'id_tensor'):
+ self.__delattr__('id_tensor')
+ self.deploy = True
+
+
+class QARepVGGBlock(RepVGGBlock):
+ """
+ RepVGGBlock is a basic rep-style block, including training and deploy status
+ This code is based on https://arxiv.org/abs/2212.01593
+ """
+ def __init__(self, in_channels, out_channels, kernel_size=3,
+ stride=1, padding=1, dilation=1, groups=1, padding_mode='zeros', deploy=False, use_se=False):
+ super(QARepVGGBlock, self).__init__(in_channels, out_channels, kernel_size, stride, padding, dilation, groups,
+ padding_mode, deploy, use_se)
+ if not deploy:
+ self.bn = nn.BatchNorm2d(out_channels)
+ self.rbr_1x1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, groups=groups, bias=False)
+ self.rbr_identity = nn.Identity() if out_channels == in_channels and stride == 1 else None
+ self._id_tensor = None
+
+ def forward(self, inputs):
+ if hasattr(self, 'rbr_reparam'):
+ return self.nonlinearity(self.bn(self.se(self.rbr_reparam(inputs))))
+
+ if self.rbr_identity is None:
+ id_out = 0
+ else:
+ id_out = self.rbr_identity(inputs)
+
+ return self.nonlinearity(self.bn(self.se(self.rbr_dense(inputs) + self.rbr_1x1(inputs) + id_out)))
+
+ def get_equivalent_kernel_bias(self):
+ kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)
+ kernel = kernel3x3 + self._pad_1x1_to_3x3_tensor(self.rbr_1x1.weight)
+ bias = bias3x3
+
+ if self.rbr_identity is not None:
+ input_dim = self.in_channels // self.groups
+ kernel_value = np.zeros((self.in_channels, input_dim, 3, 3), dtype=np.float32)
+ for i in range(self.in_channels):
+ kernel_value[i, i % input_dim, 1, 1] = 1
+ id_tensor = torch.from_numpy(kernel_value).to(self.rbr_1x1.weight.device)
+ kernel = kernel + id_tensor
+ return kernel, bias
+
+ def _fuse_extra_bn_tensor(self, kernel, bias, branch):
+ assert isinstance(branch, nn.BatchNorm2d)
+ running_mean = branch.running_mean - bias # remove bias
+ running_var = branch.running_var
+ gamma = branch.weight
+ beta = branch.bias
+ eps = branch.eps
+ std = (running_var + eps).sqrt()
+ t = (gamma / std).reshape(-1, 1, 1, 1)
+ return kernel * t, beta - running_mean * gamma / std
+
+ def switch_to_deploy(self):
+ if hasattr(self, 'rbr_reparam'):
+ return
+ kernel, bias = self.get_equivalent_kernel_bias()
+ self.rbr_reparam = nn.Conv2d(in_channels=self.rbr_dense.conv.in_channels, out_channels=self.rbr_dense.conv.out_channels,
+ kernel_size=self.rbr_dense.conv.kernel_size, stride=self.rbr_dense.conv.stride,
+ padding=self.rbr_dense.conv.padding, dilation=self.rbr_dense.conv.dilation, groups=self.rbr_dense.conv.groups, bias=True)
+ self.rbr_reparam.weight.data = kernel
+ self.rbr_reparam.bias.data = bias
+ for para in self.parameters():
+ para.detach_()
+ self.__delattr__('rbr_dense')
+ self.__delattr__('rbr_1x1')
+ if hasattr(self, 'rbr_identity'):
+ self.__delattr__('rbr_identity')
+ if hasattr(self, 'id_tensor'):
+ self.__delattr__('id_tensor')
+ # keep post bn for QAT
+ # if hasattr(self, 'bn'):
+ # self.__delattr__('bn')
+ self.deploy = True
+
+
+class QARepVGGBlockV2(RepVGGBlock):
+ """
+ RepVGGBlock is a basic rep-style block, including training and deploy status
+ This code is based on https://arxiv.org/abs/2212.01593
+ """
+ def __init__(self, in_channels, out_channels, kernel_size=3,
+ stride=1, padding=1, dilation=1, groups=1, padding_mode='zeros', deploy=False, use_se=False):
+ super(QARepVGGBlockV2, self).__init__(in_channels, out_channels, kernel_size, stride, padding, dilation, groups,
+ padding_mode, deploy, use_se)
+ if not deploy:
+ self.bn = nn.BatchNorm2d(out_channels)
+ self.rbr_1x1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, groups=groups, bias=False)
+ self.rbr_identity = nn.Identity() if out_channels == in_channels and stride == 1 else None
+ self.rbr_avg = nn.AvgPool2d(kernel_size=kernel_size, stride=stride, padding=padding) if out_channels == in_channels and stride == 1 else None
+ self._id_tensor = None
+
+ def forward(self, inputs):
+ if hasattr(self, 'rbr_reparam'):
+ return self.nonlinearity(self.bn(self.se(self.rbr_reparam(inputs))))
+
+ if self.rbr_identity is None:
+ id_out = 0
+ else:
+ id_out = self.rbr_identity(inputs)
+ if self.rbr_avg is None:
+ avg_out = 0
+ else:
+ avg_out = self.rbr_avg(inputs)
+
+ return self.nonlinearity(self.bn(self.se(self.rbr_dense(inputs) + self.rbr_1x1(inputs) + id_out + avg_out)))
+
+ def get_equivalent_kernel_bias(self):
+ kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)
+ kernel = kernel3x3 + self._pad_1x1_to_3x3_tensor(self.rbr_1x1.weight)
+ if self.rbr_avg is not None:
+ kernelavg = self._avg_to_3x3_tensor(self.rbr_avg)
+ kernel = kernel + kernelavg.to(self.rbr_1x1.weight.device)
+ bias = bias3x3
+
+ if self.rbr_identity is not None:
+ input_dim = self.in_channels // self.groups
+ kernel_value = np.zeros((self.in_channels, input_dim, 3, 3), dtype=np.float32)
+ for i in range(self.in_channels):
+ kernel_value[i, i % input_dim, 1, 1] = 1
+ id_tensor = torch.from_numpy(kernel_value).to(self.rbr_1x1.weight.device)
+ kernel = kernel + id_tensor
+ return kernel, bias
+
+ def _fuse_extra_bn_tensor(self, kernel, bias, branch):
+ assert isinstance(branch, nn.BatchNorm2d)
+ running_mean = branch.running_mean - bias # remove bias
+ running_var = branch.running_var
+ gamma = branch.weight
+ beta = branch.bias
+ eps = branch.eps
+ std = (running_var + eps).sqrt()
+ t = (gamma / std).reshape(-1, 1, 1, 1)
+ return kernel * t, beta - running_mean * gamma / std
+
+ def switch_to_deploy(self):
+ if hasattr(self, 'rbr_reparam'):
+ return
+ kernel, bias = self.get_equivalent_kernel_bias()
+ self.rbr_reparam = nn.Conv2d(in_channels=self.rbr_dense.conv.in_channels, out_channels=self.rbr_dense.conv.out_channels,
+ kernel_size=self.rbr_dense.conv.kernel_size, stride=self.rbr_dense.conv.stride,
+ padding=self.rbr_dense.conv.padding, dilation=self.rbr_dense.conv.dilation, groups=self.rbr_dense.conv.groups, bias=True)
+ self.rbr_reparam.weight.data = kernel
+ self.rbr_reparam.bias.data = bias
+ for para in self.parameters():
+ para.detach_()
+ self.__delattr__('rbr_dense')
+ self.__delattr__('rbr_1x1')
+ if hasattr(self, 'rbr_identity'):
+ self.__delattr__('rbr_identity')
+ if hasattr(self, 'rbr_avg'):
+ self.__delattr__('rbr_avg')
+ if hasattr(self, 'id_tensor'):
+ self.__delattr__('id_tensor')
+ # keep post bn for QAT
+ # if hasattr(self, 'bn'):
+ # self.__delattr__('bn')
+ self.deploy = True
+
+
+class RealVGGBlock(nn.Module):
+
+ def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1,
+ dilation=1, groups=1, padding_mode='zeros', use_se=False,
+ ):
+ super(RealVGGBlock, self).__init__()
+ self.relu = nn.ReLU()
+ self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=False)
+ self.bn = nn.BatchNorm2d(out_channels)
+
+ if use_se:
+ raise NotImplementedError("se block not supported yet")
+ else:
+ self.se = nn.Identity()
+
+ def forward(self, inputs):
+ out = self.relu(self.se(self.bn(self.conv(inputs))))
+ return out
+
+
+class ScaleLayer(torch.nn.Module):
+
+ def __init__(self, num_features, use_bias=True, scale_init=1.0):
+ super(ScaleLayer, self).__init__()
+ self.weight = Parameter(torch.Tensor(num_features))
+ init.constant_(self.weight, scale_init)
+ self.num_features = num_features
+ if use_bias:
+ self.bias = Parameter(torch.Tensor(num_features))
+ init.zeros_(self.bias)
+ else:
+ self.bias = None
+
+ def forward(self, inputs):
+ if self.bias is None:
+ return inputs * self.weight.view(1, self.num_features, 1, 1)
+ else:
+ return inputs * self.weight.view(1, self.num_features, 1, 1) + self.bias.view(1, self.num_features, 1, 1)
+
+
+# A CSLA block is a LinearAddBlock with is_csla=True
+class LinearAddBlock(nn.Module):
+
+ def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1,
+ dilation=1, groups=1, padding_mode='zeros', use_se=False, is_csla=False, conv_scale_init=1.0):
+ super(LinearAddBlock, self).__init__()
+ self.in_channels = in_channels
+ self.relu = nn.ReLU()
+ self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=False)
+ self.scale_conv = ScaleLayer(num_features=out_channels, use_bias=False, scale_init=conv_scale_init)
+ self.conv_1x1 = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride, padding=0, bias=False)
+ self.scale_1x1 = ScaleLayer(num_features=out_channels, use_bias=False, scale_init=conv_scale_init)
+ if in_channels == out_channels and stride == 1:
+ self.scale_identity = ScaleLayer(num_features=out_channels, use_bias=False, scale_init=1.0)
+ self.bn = nn.BatchNorm2d(out_channels)
+ if is_csla: # Make them constant
+ self.scale_1x1.requires_grad_(False)
+ self.scale_conv.requires_grad_(False)
+ if use_se:
+ raise NotImplementedError("se block not supported yet")
+ else:
+ self.se = nn.Identity()
+
+ def forward(self, inputs):
+ out = self.scale_conv(self.conv(inputs)) + self.scale_1x1(self.conv_1x1(inputs))
+ if hasattr(self, 'scale_identity'):
+ out += self.scale_identity(inputs)
+ out = self.relu(self.se(self.bn(out)))
+ return out
+
+
+class DetectBackend(nn.Module):
+ def __init__(self, weights='yolov6s.pt', device=None, dnn=True):
+ super().__init__()
+ if not os.path.exists(weights):
+ download_ckpt(weights) # try to download model from github automatically.
+ assert isinstance(weights, str) and Path(weights).suffix == '.pt', f'{Path(weights).suffix} format is not supported.'
+ from yolov6.utils.checkpoint import load_checkpoint
+ model = load_checkpoint(weights, map_location=device)
+ stride = int(model.stride.max())
+ self.__dict__.update(locals()) # assign all variables to self
+
+ def forward(self, im, val=False):
+ y, _ = self.model(im)
+ if isinstance(y, np.ndarray):
+ y = torch.tensor(y, device=self.device)
+ return y
+
+
+class RepBlock(nn.Module):
+ '''
+ RepBlock is a stage block with rep-style basic block
+ '''
+ def __init__(self, in_channels, out_channels, n=1, block=RepVGGBlock, basic_block=RepVGGBlock):
+ super().__init__()
+
+ self.conv1 = block(in_channels, out_channels)
+ self.block = nn.Sequential(*(block(out_channels, out_channels) for _ in range(n - 1))) if n > 1 else None
+ if block == BottleRep:
+ self.conv1 = BottleRep(in_channels, out_channels, basic_block=basic_block, weight=True)
+ n = n // 2
+ self.block = nn.Sequential(*(BottleRep(out_channels, out_channels, basic_block=basic_block, weight=True) for _ in range(n - 1))) if n > 1 else None
+
+ def forward(self, x):
+ x = self.conv1(x)
+ if self.block is not None:
+ x = self.block(x)
+ return x
+
+
+class BottleRep(nn.Module):
+
+ def __init__(self, in_channels, out_channels, basic_block=RepVGGBlock, weight=False):
+ super().__init__()
+ self.conv1 = basic_block(in_channels, out_channels)
+ self.conv2 = basic_block(out_channels, out_channels)
+ if in_channels != out_channels:
+ self.shortcut = False
+ else:
+ self.shortcut = True
+ if weight:
+ self.alpha = Parameter(torch.ones(1))
+ else:
+ self.alpha = 1.0
+
+ def forward(self, x):
+ outputs = self.conv1(x)
+ outputs = self.conv2(outputs)
+ return outputs + self.alpha * x if self.shortcut else outputs
+
+
+class BottleRep3(nn.Module):
+
+ def __init__(self, in_channels, out_channels, basic_block=RepVGGBlock, weight=False):
+ super().__init__()
+ self.conv1 = basic_block(in_channels, out_channels)
+ self.conv2 = basic_block(out_channels, out_channels)
+ self.conv3 = basic_block(out_channels, out_channels)
+ if in_channels != out_channels:
+ self.shortcut = False
+ else:
+ self.shortcut = True
+ if weight:
+ self.alpha = Parameter(torch.ones(1))
+ else:
+ self.alpha = 1.0
+
+ def forward(self, x):
+ outputs = self.conv1(x)
+ outputs = self.conv2(outputs)
+ outputs = self.conv3(outputs)
+ return outputs + self.alpha * x if self.shortcut else outputs
+
+
+class BepC3(nn.Module):
+ '''CSPStackRep Block'''
+ def __init__(self, in_channels, out_channels, n=1, e=0.5, block=RepVGGBlock):
+ super().__init__()
+ c_ = int(out_channels * e) # hidden channels
+ self.cv1 = ConvBNReLU(in_channels, c_, 1, 1)
+ self.cv2 = ConvBNReLU(in_channels, c_, 1, 1)
+ self.cv3 = ConvBNReLU(2 * c_, out_channels, 1, 1)
+ if block == ConvBNSiLU:
+ self.cv1 = ConvBNSiLU(in_channels, c_, 1, 1)
+ self.cv2 = ConvBNSiLU(in_channels, c_, 1, 1)
+ self.cv3 = ConvBNSiLU(2 * c_, out_channels, 1, 1)
+
+ self.m = RepBlock(in_channels=c_, out_channels=c_, n=n, block=BottleRep, basic_block=block)
+
+ def forward(self, x):
+ return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
+
+
+class MBLABlock(nn.Module):
+ ''' Multi Branch Layer Aggregation Block'''
+ def __init__(self, in_channels, out_channels, n=1, e=0.5, block=RepVGGBlock):
+ super().__init__()
+ n = n // 2
+ if n <= 0:
+ n = 1
+
+ # max add one branch
+ if n == 1:
+ n_list = [0, 1]
+ else:
+ extra_branch_steps = 1
+ while extra_branch_steps * 2 < n:
+ extra_branch_steps *= 2
+ n_list = [0, extra_branch_steps, n]
+ branch_num = len(n_list)
+
+ c_ = int(out_channels * e) # hidden channels
+ self.c = c_
+ self.cv1 = ConvModule(in_channels, branch_num * self.c, 1, 1, 'relu', bias=False)
+ self.cv2 = ConvModule((sum(n_list) + branch_num) * self.c, out_channels, 1, 1,'relu', bias=False)
+
+ if block == ConvBNSiLU:
+ self.cv1 = ConvModule(in_channels, branch_num * self.c, 1, 1, 'silu', bias=False)
+ self.cv2 = ConvModule((sum(n_list) + branch_num) * self.c, out_channels, 1, 1,'silu', bias=False)
+
+ self.m = nn.ModuleList()
+ for n_list_i in n_list[1:]:
+ self.m.append(nn.Sequential(*(BottleRep3(self.c, self.c, basic_block=block, weight=True) for _ in range(n_list_i))))
+
+ self.split_num = tuple([self.c]*branch_num)
+
+ def forward(self, x):
+ y = list(self.cv1(x).split(self.split_num, 1))
+ all_y = [y[0]]
+ for m_idx, m_i in enumerate(self.m):
+ all_y.append(y[m_idx+1])
+ all_y.extend(m(all_y[-1]) for m in m_i)
+ return self.cv2(torch.cat(all_y, 1))
+
+
+class BiFusion(nn.Module):
+ '''BiFusion Block in PAN'''
+ def __init__(self, in_channels, out_channels):
+ super().__init__()
+ self.cv1 = ConvBNReLU(in_channels[0], out_channels, 1, 1)
+ self.cv2 = ConvBNReLU(in_channels[1], out_channels, 1, 1)
+ self.cv3 = ConvBNReLU(out_channels * 3, out_channels, 1, 1)
+
+ self.upsample = Transpose(
+ in_channels=out_channels,
+ out_channels=out_channels,
+ )
+ self.downsample = ConvBNReLU(
+ in_channels=out_channels,
+ out_channels=out_channels,
+ kernel_size=3,
+ stride=2
+ )
+
+ def forward(self, x):
+ x0 = self.upsample(x[0])
+ x1 = self.cv1(x[1])
+ x2 = self.downsample(self.cv2(x[2]))
+ return self.cv3(torch.cat((x0, x1, x2), dim=1))
+
+
+def get_block(mode):
+ if mode == 'repvgg':
+ return RepVGGBlock
+ elif mode == 'qarepvgg':
+ return QARepVGGBlock
+ elif mode == 'qarepvggv2':
+ return QARepVGGBlockV2
+ elif mode == 'hyper_search':
+ return LinearAddBlock
+ elif mode == 'repopt':
+ return RealVGGBlock
+ elif mode == 'conv_relu':
+ return ConvBNReLU
+ elif mode == 'conv_silu':
+ return ConvBNSiLU
+ else:
+ raise NotImplementedError("Undefied Repblock choice for mode {}".format(mode))
+
+
+class SEBlock(nn.Module):
+
+ def __init__(self, channel, reduction=4):
+ super().__init__()
+ self.avg_pool = nn.AdaptiveAvgPool2d(1)
+ self.conv1 = nn.Conv2d(
+ in_channels=channel,
+ out_channels=channel // reduction,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+ self.relu = nn.ReLU()
+ self.conv2 = nn.Conv2d(
+ in_channels=channel // reduction,
+ out_channels=channel,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+ self.hardsigmoid = nn.Hardsigmoid()
+
+ def forward(self, x):
+ identity = x
+ x = self.avg_pool(x)
+ x = self.conv1(x)
+ x = self.relu(x)
+ x = self.conv2(x)
+ x = self.hardsigmoid(x)
+ out = identity * x
+ return out
+
+
+def channel_shuffle(x, groups):
+ batchsize, num_channels, height, width = x.data.size()
+ channels_per_group = num_channels // groups
+ # reshape
+ x = x.view(batchsize, groups, channels_per_group, height, width)
+ x = torch.transpose(x, 1, 2).contiguous()
+ # flatten
+ x = x.view(batchsize, -1, height, width)
+
+ return x
+
+
+class Lite_EffiBlockS1(nn.Module):
+
+ def __init__(self,
+ in_channels,
+ mid_channels,
+ out_channels,
+ stride):
+ super().__init__()
+ self.conv_pw_1 = ConvBNHS(
+ in_channels=in_channels // 2,
+ out_channels=mid_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0,
+ groups=1)
+ self.conv_dw_1 = ConvBN(
+ in_channels=mid_channels,
+ out_channels=mid_channels,
+ kernel_size=3,
+ stride=stride,
+ padding=1,
+ groups=mid_channels)
+ self.se = SEBlock(mid_channels)
+ self.conv_1 = ConvBNHS(
+ in_channels=mid_channels,
+ out_channels=out_channels // 2,
+ kernel_size=1,
+ stride=1,
+ padding=0,
+ groups=1)
+ def forward(self, inputs):
+ x1, x2 = torch.split(
+ inputs,
+ split_size_or_sections=[inputs.shape[1] // 2, inputs.shape[1] // 2],
+ dim=1)
+ x2 = self.conv_pw_1(x2)
+ x3 = self.conv_dw_1(x2)
+ x3 = self.se(x3)
+ x3 = self.conv_1(x3)
+ out = torch.cat([x1, x3], axis=1)
+ return channel_shuffle(out, 2)
+
+
+class Lite_EffiBlockS2(nn.Module):
+
+ def __init__(self,
+ in_channels,
+ mid_channels,
+ out_channels,
+ stride):
+ super().__init__()
+ # branch1
+ self.conv_dw_1 = ConvBN(
+ in_channels=in_channels,
+ out_channels=in_channels,
+ kernel_size=3,
+ stride=stride,
+ padding=1,
+ groups=in_channels)
+ self.conv_1 = ConvBNHS(
+ in_channels=in_channels,
+ out_channels=out_channels // 2,
+ kernel_size=1,
+ stride=1,
+ padding=0,
+ groups=1)
+ # branch2
+ self.conv_pw_2 = ConvBNHS(
+ in_channels=in_channels,
+ out_channels=mid_channels // 2,
+ kernel_size=1,
+ stride=1,
+ padding=0,
+ groups=1)
+ self.conv_dw_2 = ConvBN(
+ in_channels=mid_channels // 2,
+ out_channels=mid_channels // 2,
+ kernel_size=3,
+ stride=stride,
+ padding=1,
+ groups=mid_channels // 2)
+ self.se = SEBlock(mid_channels // 2)
+ self.conv_2 = ConvBNHS(
+ in_channels=mid_channels // 2,
+ out_channels=out_channels // 2,
+ kernel_size=1,
+ stride=1,
+ padding=0,
+ groups=1)
+ self.conv_dw_3 = ConvBNHS(
+ in_channels=out_channels,
+ out_channels=out_channels,
+ kernel_size=3,
+ stride=1,
+ padding=1,
+ groups=out_channels)
+ self.conv_pw_3 = ConvBNHS(
+ in_channels=out_channels,
+ out_channels=out_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0,
+ groups=1)
+
+ def forward(self, inputs):
+ x1 = self.conv_dw_1(inputs)
+ x1 = self.conv_1(x1)
+ x2 = self.conv_pw_2(inputs)
+ x2 = self.conv_dw_2(x2)
+ x2 = self.se(x2)
+ x2 = self.conv_2(x2)
+ out = torch.cat([x1, x2], axis=1)
+ out = self.conv_dw_3(out)
+ out = self.conv_pw_3(out)
+ return out
+
+
+class DPBlock(nn.Module):
+
+ def __init__(self,
+ in_channel=96,
+ out_channel=96,
+ kernel_size=3,
+ stride=1):
+ super().__init__()
+ self.conv_dw_1 = nn.Conv2d(
+ in_channels=in_channel,
+ out_channels=out_channel,
+ kernel_size=kernel_size,
+ groups=out_channel,
+ padding=(kernel_size - 1) // 2,
+ stride=stride)
+ self.bn_1 = nn.BatchNorm2d(out_channel)
+ self.act_1 = nn.Hardswish()
+ self.conv_pw_1 = nn.Conv2d(
+ in_channels=out_channel,
+ out_channels=out_channel,
+ kernel_size=1,
+ groups=1,
+ padding=0)
+ self.bn_2 = nn.BatchNorm2d(out_channel)
+ self.act_2 = nn.Hardswish()
+
+ def forward(self, x):
+ x = self.act_1(self.bn_1(self.conv_dw_1(x)))
+ x = self.act_2(self.bn_2(self.conv_pw_1(x)))
+ return x
+
+ def forward_fuse(self, x):
+ x = self.act_1(self.conv_dw_1(x))
+ x = self.act_2(self.conv_pw_1(x))
+ return x
+
+
+class DarknetBlock(nn.Module):
+
+ def __init__(self,
+ in_channels,
+ out_channels,
+ kernel_size=3,
+ expansion=0.5):
+ super().__init__()
+ hidden_channels = int(out_channels * expansion)
+ self.conv_1 = ConvBNHS(
+ in_channels=in_channels,
+ out_channels=hidden_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+ self.conv_2 = DPBlock(
+ in_channel=hidden_channels,
+ out_channel=out_channels,
+ kernel_size=kernel_size,
+ stride=1)
+
+ def forward(self, x):
+ out = self.conv_1(x)
+ out = self.conv_2(out)
+ return out
+
+
+class CSPBlock(nn.Module):
+
+ def __init__(self,
+ in_channels,
+ out_channels,
+ kernel_size=3,
+ expand_ratio=0.5):
+ super().__init__()
+ mid_channels = int(out_channels * expand_ratio)
+ self.conv_1 = ConvBNHS(in_channels, mid_channels, 1, 1, 0)
+ self.conv_2 = ConvBNHS(in_channels, mid_channels, 1, 1, 0)
+ self.conv_3 = ConvBNHS(2 * mid_channels, out_channels, 1, 1, 0)
+ self.blocks = DarknetBlock(mid_channels,
+ mid_channels,
+ kernel_size,
+ 1.0)
+ def forward(self, x):
+ x_1 = self.conv_1(x)
+ x_1 = self.blocks(x_1)
+ x_2 = self.conv_2(x)
+ x = torch.cat((x_1, x_2), axis=1)
+ x = self.conv_3(x)
+ return x
diff --git a/python/app/fedcv/YOLOv6/yolov6/layers/dbb_transforms.py b/python/app/fedcv/YOLOv6/yolov6/layers/dbb_transforms.py
new file mode 100644
index 0000000000..cd93d0e23a
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/yolov6/layers/dbb_transforms.py
@@ -0,0 +1,50 @@
+import torch
+import numpy as np
+import torch.nn.functional as F
+
+
+def transI_fusebn(kernel, bn):
+ gamma = bn.weight
+ std = (bn.running_var + bn.eps).sqrt()
+ return kernel * ((gamma / std).reshape(-1, 1, 1, 1)), bn.bias - bn.running_mean * gamma / std
+
+
+def transII_addbranch(kernels, biases):
+ return sum(kernels), sum(biases)
+
+
+def transIII_1x1_kxk(k1, b1, k2, b2, groups):
+ if groups == 1:
+ k = F.conv2d(k2, k1.permute(1, 0, 2, 3)) #
+ b_hat = (k2 * b1.reshape(1, -1, 1, 1)).sum((1, 2, 3))
+ else:
+ k_slices = []
+ b_slices = []
+ k1_T = k1.permute(1, 0, 2, 3)
+ k1_group_width = k1.size(0) // groups
+ k2_group_width = k2.size(0) // groups
+ for g in range(groups):
+ k1_T_slice = k1_T[:, g*k1_group_width:(g+1)*k1_group_width, :, :]
+ k2_slice = k2[g*k2_group_width:(g+1)*k2_group_width, :, :, :]
+ k_slices.append(F.conv2d(k2_slice, k1_T_slice))
+ b_slices.append((k2_slice * b1[g * k1_group_width:(g+1) * k1_group_width].reshape(1, -1, 1, 1)).sum((1, 2, 3)))
+ k, b_hat = transIV_depthconcat(k_slices, b_slices)
+ return k, b_hat + b2
+
+
+def transIV_depthconcat(kernels, biases):
+ return torch.cat(kernels, dim=0), torch.cat(biases)
+
+
+def transV_avg(channels, kernel_size, groups):
+ input_dim = channels // groups
+ k = torch.zeros((channels, input_dim, kernel_size, kernel_size))
+ k[np.arange(channels), np.tile(np.arange(input_dim), groups), :, :] = 1.0 / kernel_size ** 2
+ return k
+
+
+# This has not been tested with non-square kernels (kernel.size(2) != kernel.size(3)) nor even-size kernels
+def transVI_multiscale(kernel, target_kernel_size):
+ H_pixels_to_pad = (target_kernel_size - kernel.size(2)) // 2
+ W_pixels_to_pad = (target_kernel_size - kernel.size(3)) // 2
+ return F.pad(kernel, [H_pixels_to_pad, H_pixels_to_pad, W_pixels_to_pad, W_pixels_to_pad])
diff --git a/python/app/fedcv/YOLOv6/yolov6/models/efficientrep.py b/python/app/fedcv/YOLOv6/yolov6/models/efficientrep.py
new file mode 100644
index 0000000000..5d0de7cea1
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/yolov6/models/efficientrep.py
@@ -0,0 +1,582 @@
+from pickle import FALSE
+from torch import nn
+from yolov6.layers.common import BottleRep, RepVGGBlock, RepBlock, BepC3, SimSPPF, SPPF, SimCSPSPPF, CSPSPPF, ConvBNSiLU, \
+ MBLABlock, ConvBNHS, Lite_EffiBlockS2, Lite_EffiBlockS1
+
+
+class EfficientRep(nn.Module):
+ '''EfficientRep Backbone
+ EfficientRep is handcrafted by hardware-aware neural network design.
+ With rep-style struct, EfficientRep is friendly to high-computation hardware(e.g. GPU).
+ '''
+
+ def __init__(
+ self,
+ in_channels=3,
+ channels_list=None,
+ num_repeats=None,
+ block=RepVGGBlock,
+ fuse_P2=False,
+ cspsppf=False
+ ):
+ super().__init__()
+
+ assert channels_list is not None
+ assert num_repeats is not None
+ self.fuse_P2 = fuse_P2
+
+ self.stem = block(
+ in_channels=in_channels,
+ out_channels=channels_list[0],
+ kernel_size=3,
+ stride=2
+ )
+
+ self.ERBlock_2 = nn.Sequential(
+ block(
+ in_channels=channels_list[0],
+ out_channels=channels_list[1],
+ kernel_size=3,
+ stride=2
+ ),
+ RepBlock(
+ in_channels=channels_list[1],
+ out_channels=channels_list[1],
+ n=num_repeats[1],
+ block=block,
+ )
+ )
+
+ self.ERBlock_3 = nn.Sequential(
+ block(
+ in_channels=channels_list[1],
+ out_channels=channels_list[2],
+ kernel_size=3,
+ stride=2
+ ),
+ RepBlock(
+ in_channels=channels_list[2],
+ out_channels=channels_list[2],
+ n=num_repeats[2],
+ block=block,
+ )
+ )
+
+ self.ERBlock_4 = nn.Sequential(
+ block(
+ in_channels=channels_list[2],
+ out_channels=channels_list[3],
+ kernel_size=3,
+ stride=2
+ ),
+ RepBlock(
+ in_channels=channels_list[3],
+ out_channels=channels_list[3],
+ n=num_repeats[3],
+ block=block,
+ )
+ )
+
+ channel_merge_layer = SPPF if block == ConvBNSiLU else SimSPPF
+ if cspsppf:
+ channel_merge_layer = CSPSPPF if block == ConvBNSiLU else SimCSPSPPF
+
+ self.ERBlock_5 = nn.Sequential(
+ block(
+ in_channels=channels_list[3],
+ out_channels=channels_list[4],
+ kernel_size=3,
+ stride=2,
+ ),
+ RepBlock(
+ in_channels=channels_list[4],
+ out_channels=channels_list[4],
+ n=num_repeats[4],
+ block=block,
+ ),
+ channel_merge_layer(
+ in_channels=channels_list[4],
+ out_channels=channels_list[4],
+ kernel_size=5
+ )
+ )
+
+ def forward(self, x):
+
+ outputs = []
+ x = self.stem(x)
+ x = self.ERBlock_2(x)
+ if self.fuse_P2:
+ outputs.append(x)
+ x = self.ERBlock_3(x)
+ outputs.append(x)
+ x = self.ERBlock_4(x)
+ outputs.append(x)
+ x = self.ERBlock_5(x)
+ outputs.append(x)
+
+ return tuple(outputs)
+
+
+class EfficientRep6(nn.Module):
+ '''EfficientRep+P6 Backbone
+ EfficientRep is handcrafted by hardware-aware neural network design.
+ With rep-style struct, EfficientRep is friendly to high-computation hardware(e.g. GPU).
+ '''
+
+ def __init__(
+ self,
+ in_channels=3,
+ channels_list=None,
+ num_repeats=None,
+ block=RepVGGBlock,
+ fuse_P2=False,
+ cspsppf=False
+ ):
+ super().__init__()
+
+ assert channels_list is not None
+ assert num_repeats is not None
+ self.fuse_P2 = fuse_P2
+
+ self.stem = block(
+ in_channels=in_channels,
+ out_channels=channels_list[0],
+ kernel_size=3,
+ stride=2
+ )
+
+ self.ERBlock_2 = nn.Sequential(
+ block(
+ in_channels=channels_list[0],
+ out_channels=channels_list[1],
+ kernel_size=3,
+ stride=2
+ ),
+ RepBlock(
+ in_channels=channels_list[1],
+ out_channels=channels_list[1],
+ n=num_repeats[1],
+ block=block,
+ )
+ )
+
+ self.ERBlock_3 = nn.Sequential(
+ block(
+ in_channels=channels_list[1],
+ out_channels=channels_list[2],
+ kernel_size=3,
+ stride=2
+ ),
+ RepBlock(
+ in_channels=channels_list[2],
+ out_channels=channels_list[2],
+ n=num_repeats[2],
+ block=block,
+ )
+ )
+
+ self.ERBlock_4 = nn.Sequential(
+ block(
+ in_channels=channels_list[2],
+ out_channels=channels_list[3],
+ kernel_size=3,
+ stride=2
+ ),
+ RepBlock(
+ in_channels=channels_list[3],
+ out_channels=channels_list[3],
+ n=num_repeats[3],
+ block=block,
+ )
+ )
+
+ self.ERBlock_5 = nn.Sequential(
+ block(
+ in_channels=channels_list[3],
+ out_channels=channels_list[4],
+ kernel_size=3,
+ stride=2,
+ ),
+ RepBlock(
+ in_channels=channels_list[4],
+ out_channels=channels_list[4],
+ n=num_repeats[4],
+ block=block,
+ )
+ )
+
+ channel_merge_layer = SimSPPF if not cspsppf else SimCSPSPPF
+
+ self.ERBlock_6 = nn.Sequential(
+ block(
+ in_channels=channels_list[4],
+ out_channels=channels_list[5],
+ kernel_size=3,
+ stride=2,
+ ),
+ RepBlock(
+ in_channels=channels_list[5],
+ out_channels=channels_list[5],
+ n=num_repeats[5],
+ block=block,
+ ),
+ channel_merge_layer(
+ in_channels=channels_list[5],
+ out_channels=channels_list[5],
+ kernel_size=5
+ )
+ )
+
+ def forward(self, x):
+
+ outputs = []
+ x = self.stem(x)
+ x = self.ERBlock_2(x)
+ if self.fuse_P2:
+ outputs.append(x)
+ x = self.ERBlock_3(x)
+ outputs.append(x)
+ x = self.ERBlock_4(x)
+ outputs.append(x)
+ x = self.ERBlock_5(x)
+ outputs.append(x)
+ x = self.ERBlock_6(x)
+ outputs.append(x)
+
+ return tuple(outputs)
+
+
+class CSPBepBackbone(nn.Module):
+ """
+ CSPBepBackbone module.
+ """
+
+ def __init__(
+ self,
+ in_channels=3,
+ channels_list=None,
+ num_repeats=None,
+ block=RepVGGBlock,
+ csp_e=float(1)/2,
+ fuse_P2=False,
+ cspsppf=False,
+ stage_block_type="BepC3"
+ ):
+ super().__init__()
+
+ assert channels_list is not None
+ assert num_repeats is not None
+
+ if stage_block_type == "BepC3":
+ stage_block = BepC3
+ elif stage_block_type == "MBLABlock":
+ stage_block = MBLABlock
+ else:
+ raise NotImplementedError
+
+ self.fuse_P2 = fuse_P2
+
+ self.stem = block(
+ in_channels=in_channels,
+ out_channels=channels_list[0],
+ kernel_size=3,
+ stride=2
+ )
+
+ self.ERBlock_2 = nn.Sequential(
+ block(
+ in_channels=channels_list[0],
+ out_channels=channels_list[1],
+ kernel_size=3,
+ stride=2
+ ),
+ stage_block(
+ in_channels=channels_list[1],
+ out_channels=channels_list[1],
+ n=num_repeats[1],
+ e=csp_e,
+ block=block,
+ )
+ )
+
+ self.ERBlock_3 = nn.Sequential(
+ block(
+ in_channels=channels_list[1],
+ out_channels=channels_list[2],
+ kernel_size=3,
+ stride=2
+ ),
+ stage_block(
+ in_channels=channels_list[2],
+ out_channels=channels_list[2],
+ n=num_repeats[2],
+ e=csp_e,
+ block=block,
+ )
+ )
+
+ self.ERBlock_4 = nn.Sequential(
+ block(
+ in_channels=channels_list[2],
+ out_channels=channels_list[3],
+ kernel_size=3,
+ stride=2
+ ),
+ stage_block(
+ in_channels=channels_list[3],
+ out_channels=channels_list[3],
+ n=num_repeats[3],
+ e=csp_e,
+ block=block,
+ )
+ )
+
+ channel_merge_layer = SPPF if block == ConvBNSiLU else SimSPPF
+ if cspsppf:
+ channel_merge_layer = CSPSPPF if block == ConvBNSiLU else SimCSPSPPF
+
+ self.ERBlock_5 = nn.Sequential(
+ block(
+ in_channels=channels_list[3],
+ out_channels=channels_list[4],
+ kernel_size=3,
+ stride=2,
+ ),
+ stage_block(
+ in_channels=channels_list[4],
+ out_channels=channels_list[4],
+ n=num_repeats[4],
+ e=csp_e,
+ block=block,
+ ),
+ channel_merge_layer(
+ in_channels=channels_list[4],
+ out_channels=channels_list[4],
+ kernel_size=5
+ )
+ )
+
+ def forward(self, x):
+
+ outputs = []
+ x = self.stem(x)
+ x = self.ERBlock_2(x)
+ if self.fuse_P2:
+ outputs.append(x)
+ x = self.ERBlock_3(x)
+ outputs.append(x)
+ x = self.ERBlock_4(x)
+ outputs.append(x)
+ x = self.ERBlock_5(x)
+ outputs.append(x)
+
+ return tuple(outputs)
+
+
+class CSPBepBackbone_P6(nn.Module):
+ """
+ CSPBepBackbone+P6 module.
+ """
+
+ def __init__(
+ self,
+ in_channels=3,
+ channels_list=None,
+ num_repeats=None,
+ block=RepVGGBlock,
+ csp_e=float(1)/2,
+ fuse_P2=False,
+ cspsppf=False,
+ stage_block_type="BepC3"
+ ):
+ super().__init__()
+ assert channels_list is not None
+ assert num_repeats is not None
+
+ if stage_block_type == "BepC3":
+ stage_block = BepC3
+ elif stage_block_type == "MBLABlock":
+ stage_block = MBLABlock
+ else:
+ raise NotImplementedError
+
+ self.fuse_P2 = fuse_P2
+
+ self.stem = block(
+ in_channels=in_channels,
+ out_channels=channels_list[0],
+ kernel_size=3,
+ stride=2
+ )
+
+ self.ERBlock_2 = nn.Sequential(
+ block(
+ in_channels=channels_list[0],
+ out_channels=channels_list[1],
+ kernel_size=3,
+ stride=2
+ ),
+ stage_block(
+ in_channels=channels_list[1],
+ out_channels=channels_list[1],
+ n=num_repeats[1],
+ e=csp_e,
+ block=block,
+ )
+ )
+
+ self.ERBlock_3 = nn.Sequential(
+ block(
+ in_channels=channels_list[1],
+ out_channels=channels_list[2],
+ kernel_size=3,
+ stride=2
+ ),
+ stage_block(
+ in_channels=channels_list[2],
+ out_channels=channels_list[2],
+ n=num_repeats[2],
+ e=csp_e,
+ block=block,
+ )
+ )
+
+ self.ERBlock_4 = nn.Sequential(
+ block(
+ in_channels=channels_list[2],
+ out_channels=channels_list[3],
+ kernel_size=3,
+ stride=2
+ ),
+ stage_block(
+ in_channels=channels_list[3],
+ out_channels=channels_list[3],
+ n=num_repeats[3],
+ e=csp_e,
+ block=block,
+ )
+ )
+
+ channel_merge_layer = SPPF if block == ConvBNSiLU else SimSPPF
+ if cspsppf:
+ channel_merge_layer = CSPSPPF if block == ConvBNSiLU else SimCSPSPPF
+
+ self.ERBlock_5 = nn.Sequential(
+ block(
+ in_channels=channels_list[3],
+ out_channels=channels_list[4],
+ kernel_size=3,
+ stride=2,
+ ),
+ stage_block(
+ in_channels=channels_list[4],
+ out_channels=channels_list[4],
+ n=num_repeats[4],
+ e=csp_e,
+ block=block,
+ ),
+ )
+ self.ERBlock_6 = nn.Sequential(
+ block(
+ in_channels=channels_list[4],
+ out_channels=channels_list[5],
+ kernel_size=3,
+ stride=2,
+ ),
+ stage_block(
+ in_channels=channels_list[5],
+ out_channels=channels_list[5],
+ n=num_repeats[5],
+ e=csp_e,
+ block=block,
+ ),
+ channel_merge_layer(
+ in_channels=channels_list[5],
+ out_channels=channels_list[5],
+ kernel_size=5
+ )
+ )
+
+ def forward(self, x):
+
+ outputs = []
+ x = self.stem(x)
+ x = self.ERBlock_2(x)
+ outputs.append(x)
+ x = self.ERBlock_3(x)
+ outputs.append(x)
+ x = self.ERBlock_4(x)
+ outputs.append(x)
+ x = self.ERBlock_5(x)
+ outputs.append(x)
+ x = self.ERBlock_6(x)
+ outputs.append(x)
+
+ return tuple(outputs)
+
+class Lite_EffiBackbone(nn.Module):
+ def __init__(self,
+ in_channels,
+ mid_channels,
+ out_channels,
+ num_repeat=[1, 3, 7, 3]
+ ):
+ super().__init__()
+ out_channels[0]=24
+ self.conv_0 = ConvBNHS(in_channels=in_channels,
+ out_channels=out_channels[0],
+ kernel_size=3,
+ stride=2,
+ padding=1)
+
+ self.lite_effiblock_1 = self.build_block(num_repeat[0],
+ out_channels[0],
+ mid_channels[1],
+ out_channels[1])
+
+ self.lite_effiblock_2 = self.build_block(num_repeat[1],
+ out_channels[1],
+ mid_channels[2],
+ out_channels[2])
+
+ self.lite_effiblock_3 = self.build_block(num_repeat[2],
+ out_channels[2],
+ mid_channels[3],
+ out_channels[3])
+
+ self.lite_effiblock_4 = self.build_block(num_repeat[3],
+ out_channels[3],
+ mid_channels[4],
+ out_channels[4])
+
+ def forward(self, x):
+ outputs = []
+ x = self.conv_0(x)
+ x = self.lite_effiblock_1(x)
+ x = self.lite_effiblock_2(x)
+ outputs.append(x)
+ x = self.lite_effiblock_3(x)
+ outputs.append(x)
+ x = self.lite_effiblock_4(x)
+ outputs.append(x)
+ return tuple(outputs)
+
+ @staticmethod
+ def build_block(num_repeat, in_channels, mid_channels, out_channels):
+ block_list = nn.Sequential()
+ for i in range(num_repeat):
+ if i == 0:
+ block = Lite_EffiBlockS2(
+ in_channels=in_channels,
+ mid_channels=mid_channels,
+ out_channels=out_channels,
+ stride=2)
+ else:
+ block = Lite_EffiBlockS1(
+ in_channels=out_channels,
+ mid_channels=mid_channels,
+ out_channels=out_channels,
+ stride=1)
+ block_list.add_module(str(i), block)
+ return block_list
diff --git a/python/app/fedcv/YOLOv6/yolov6/models/effidehead.py b/python/app/fedcv/YOLOv6/yolov6/models/effidehead.py
new file mode 100644
index 0000000000..55b7b0697f
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/yolov6/models/effidehead.py
@@ -0,0 +1,293 @@
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+import math
+from yolov6.layers.common import *
+from yolov6.assigners.anchor_generator import generate_anchors
+from yolov6.utils.general import dist2bbox
+
+
+class Detect(nn.Module):
+ export = False
+ '''Efficient Decoupled Head
+ With hardware-aware degisn, the decoupled head is optimized with
+ hybridchannels methods.
+ '''
+ def __init__(self, num_classes=80, num_layers=3, inplace=True, head_layers=None, use_dfl=True, reg_max=16): # detection layer
+ super().__init__()
+ assert head_layers is not None
+ self.nc = num_classes # number of classes
+ self.no = num_classes + 5 # number of outputs per anchor
+ self.nl = num_layers # number of detection layers
+ self.grid = [torch.zeros(1)] * num_layers
+ self.prior_prob = 1e-2
+ self.inplace = inplace
+ stride = [8, 16, 32] if num_layers == 3 else [8, 16, 32, 64] # strides computed during build
+ self.stride = torch.tensor(stride)
+ self.use_dfl = use_dfl
+ self.reg_max = reg_max
+ self.proj_conv = nn.Conv2d(self.reg_max + 1, 1, 1, bias=False)
+ self.grid_cell_offset = 0.5
+ self.grid_cell_size = 5.0
+
+ # Init decouple head
+ self.stems = nn.ModuleList()
+ self.cls_convs = nn.ModuleList()
+ self.reg_convs = nn.ModuleList()
+ self.cls_preds = nn.ModuleList()
+ self.reg_preds = nn.ModuleList()
+
+ # Efficient decoupled head layers
+ for i in range(num_layers):
+ idx = i*5
+ self.stems.append(head_layers[idx])
+ self.cls_convs.append(head_layers[idx+1])
+ self.reg_convs.append(head_layers[idx+2])
+ self.cls_preds.append(head_layers[idx+3])
+ self.reg_preds.append(head_layers[idx+4])
+
+ def initialize_biases(self):
+
+ for conv in self.cls_preds:
+ b = conv.bias.view(-1, )
+ b.data.fill_(-math.log((1 - self.prior_prob) / self.prior_prob))
+ conv.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
+ w = conv.weight
+ w.data.fill_(0.)
+ conv.weight = torch.nn.Parameter(w, requires_grad=True)
+
+ for conv in self.reg_preds:
+ b = conv.bias.view(-1, )
+ b.data.fill_(1.0)
+ conv.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
+ w = conv.weight
+ w.data.fill_(0.)
+ conv.weight = torch.nn.Parameter(w, requires_grad=True)
+
+ self.proj = nn.Parameter(torch.linspace(0, self.reg_max, self.reg_max + 1), requires_grad=False)
+ self.proj_conv.weight = nn.Parameter(self.proj.view([1, self.reg_max + 1, 1, 1]).clone().detach(),
+ requires_grad=False)
+
+ def forward(self, x):
+ if self.training:
+ cls_score_list = []
+ reg_distri_list = []
+
+ for i in range(self.nl):
+ x[i] = self.stems[i](x[i])
+ cls_x = x[i]
+ reg_x = x[i]
+ cls_feat = self.cls_convs[i](cls_x)
+ cls_output = self.cls_preds[i](cls_feat)
+ reg_feat = self.reg_convs[i](reg_x)
+ reg_output = self.reg_preds[i](reg_feat)
+
+ cls_output = torch.sigmoid(cls_output)
+ cls_score_list.append(cls_output.flatten(2).permute((0, 2, 1)))
+ reg_distri_list.append(reg_output.flatten(2).permute((0, 2, 1)))
+
+ cls_score_list = torch.cat(cls_score_list, axis=1)
+ reg_distri_list = torch.cat(reg_distri_list, axis=1)
+
+ return x, cls_score_list, reg_distri_list
+ else:
+ cls_score_list = []
+ reg_dist_list = []
+
+ for i in range(self.nl):
+ b, _, h, w = x[i].shape
+ l = h * w
+ x[i] = self.stems[i](x[i])
+ cls_x = x[i]
+ reg_x = x[i]
+ cls_feat = self.cls_convs[i](cls_x)
+ cls_output = self.cls_preds[i](cls_feat)
+ reg_feat = self.reg_convs[i](reg_x)
+ reg_output = self.reg_preds[i](reg_feat)
+
+ if self.use_dfl:
+ reg_output = reg_output.reshape([-1, 4, self.reg_max + 1, l]).permute(0, 2, 1, 3)
+ reg_output = self.proj_conv(F.softmax(reg_output, dim=1))
+
+ cls_output = torch.sigmoid(cls_output)
+
+ if self.export:
+ cls_score_list.append(cls_output)
+ reg_dist_list.append(reg_output)
+ else:
+ cls_score_list.append(cls_output.reshape([b, self.nc, l]))
+ reg_dist_list.append(reg_output.reshape([b, 4, l]))
+
+ if self.export:
+ return tuple(torch.cat([cls, reg], 1) for cls, reg in zip(cls_score_list, reg_dist_list))
+
+ cls_score_list = torch.cat(cls_score_list, axis=-1).permute(0, 2, 1)
+ reg_dist_list = torch.cat(reg_dist_list, axis=-1).permute(0, 2, 1)
+
+
+ anchor_points, stride_tensor = generate_anchors(
+ x, self.stride, self.grid_cell_size, self.grid_cell_offset, device=x[0].device, is_eval=True, mode='af')
+
+ pred_bboxes = dist2bbox(reg_dist_list, anchor_points, box_format='xywh')
+ pred_bboxes *= stride_tensor
+ return torch.cat(
+ [
+ pred_bboxes,
+ torch.ones((b, pred_bboxes.shape[1], 1), device=pred_bboxes.device, dtype=pred_bboxes.dtype),
+ cls_score_list
+ ],
+ axis=-1)
+
+
+def build_effidehead_layer(channels_list, num_anchors, num_classes, reg_max=16, num_layers=3):
+
+ chx = [6, 8, 10] if num_layers == 3 else [8, 9, 10, 11]
+
+ head_layers = nn.Sequential(
+ # stem0
+ ConvBNSiLU(
+ in_channels=channels_list[chx[0]],
+ out_channels=channels_list[chx[0]],
+ kernel_size=1,
+ stride=1
+ ),
+ # cls_conv0
+ ConvBNSiLU(
+ in_channels=channels_list[chx[0]],
+ out_channels=channels_list[chx[0]],
+ kernel_size=3,
+ stride=1
+ ),
+ # reg_conv0
+ ConvBNSiLU(
+ in_channels=channels_list[chx[0]],
+ out_channels=channels_list[chx[0]],
+ kernel_size=3,
+ stride=1
+ ),
+ # cls_pred0
+ nn.Conv2d(
+ in_channels=channels_list[chx[0]],
+ out_channels=num_classes * num_anchors,
+ kernel_size=1
+ ),
+ # reg_pred0
+ nn.Conv2d(
+ in_channels=channels_list[chx[0]],
+ out_channels=4 * (reg_max + num_anchors),
+ kernel_size=1
+ ),
+ # stem1
+ ConvBNSiLU(
+ in_channels=channels_list[chx[1]],
+ out_channels=channels_list[chx[1]],
+ kernel_size=1,
+ stride=1
+ ),
+ # cls_conv1
+ ConvBNSiLU(
+ in_channels=channels_list[chx[1]],
+ out_channels=channels_list[chx[1]],
+ kernel_size=3,
+ stride=1
+ ),
+ # reg_conv1
+ ConvBNSiLU(
+ in_channels=channels_list[chx[1]],
+ out_channels=channels_list[chx[1]],
+ kernel_size=3,
+ stride=1
+ ),
+ # cls_pred1
+ nn.Conv2d(
+ in_channels=channels_list[chx[1]],
+ out_channels=num_classes * num_anchors,
+ kernel_size=1
+ ),
+ # reg_pred1
+ nn.Conv2d(
+ in_channels=channels_list[chx[1]],
+ out_channels=4 * (reg_max + num_anchors),
+ kernel_size=1
+ ),
+ # stem2
+ ConvBNSiLU(
+ in_channels=channels_list[chx[2]],
+ out_channels=channels_list[chx[2]],
+ kernel_size=1,
+ stride=1
+ ),
+ # cls_conv2
+ ConvBNSiLU(
+ in_channels=channels_list[chx[2]],
+ out_channels=channels_list[chx[2]],
+ kernel_size=3,
+ stride=1
+ ),
+ # reg_conv2
+ ConvBNSiLU(
+ in_channels=channels_list[chx[2]],
+ out_channels=channels_list[chx[2]],
+ kernel_size=3,
+ stride=1
+ ),
+ # cls_pred2
+ nn.Conv2d(
+ in_channels=channels_list[chx[2]],
+ out_channels=num_classes * num_anchors,
+ kernel_size=1
+ ),
+ # reg_pred2
+ nn.Conv2d(
+ in_channels=channels_list[chx[2]],
+ out_channels=4 * (reg_max + num_anchors),
+ kernel_size=1
+ )
+ )
+
+ if num_layers == 4:
+ head_layers.add_module('stem3',
+ # stem3
+ ConvBNSiLU(
+ in_channels=channels_list[chx[3]],
+ out_channels=channels_list[chx[3]],
+ kernel_size=1,
+ stride=1
+ )
+ )
+ head_layers.add_module('cls_conv3',
+ # cls_conv3
+ ConvBNSiLU(
+ in_channels=channels_list[chx[3]],
+ out_channels=channels_list[chx[3]],
+ kernel_size=3,
+ stride=1
+ )
+ )
+ head_layers.add_module('reg_conv3',
+ # reg_conv3
+ ConvBNSiLU(
+ in_channels=channels_list[chx[3]],
+ out_channels=channels_list[chx[3]],
+ kernel_size=3,
+ stride=1
+ )
+ )
+ head_layers.add_module('cls_pred3',
+ # cls_pred3
+ nn.Conv2d(
+ in_channels=channels_list[chx[3]],
+ out_channels=num_classes * num_anchors,
+ kernel_size=1
+ )
+ )
+ head_layers.add_module('reg_pred3',
+ # reg_pred3
+ nn.Conv2d(
+ in_channels=channels_list[chx[3]],
+ out_channels=4 * (reg_max + num_anchors),
+ kernel_size=1
+ )
+ )
+
+ return head_layers
diff --git a/python/app/fedcv/YOLOv6/yolov6/models/end2end.py b/python/app/fedcv/YOLOv6/yolov6/models/end2end.py
new file mode 100644
index 0000000000..c1f102ba6e
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/yolov6/models/end2end.py
@@ -0,0 +1,282 @@
+import torch
+import torch.nn as nn
+import random
+
+
+class ORT_NMS(torch.autograd.Function):
+ '''ONNX-Runtime NMS operation'''
+ @staticmethod
+ def forward(ctx,
+ boxes,
+ scores,
+ max_output_boxes_per_class=torch.tensor([100]),
+ iou_threshold=torch.tensor([0.45]),
+ score_threshold=torch.tensor([0.25])):
+ device = boxes.device
+ batch = scores.shape[0]
+ num_det = random.randint(0, 100)
+ batches = torch.randint(0, batch, (num_det,)).sort()[0].to(device)
+ idxs = torch.arange(100, 100 + num_det).to(device)
+ zeros = torch.zeros((num_det,), dtype=torch.int64).to(device)
+ selected_indices = torch.cat([batches[None], zeros[None], idxs[None]], 0).T.contiguous()
+ selected_indices = selected_indices.to(torch.int64)
+ return selected_indices
+
+ @staticmethod
+ def symbolic(g, boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold):
+ return g.op("NonMaxSuppression", boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold)
+
+
+class TRT8_NMS(torch.autograd.Function):
+ '''TensorRT NMS operation'''
+ @staticmethod
+ def forward(
+ ctx,
+ boxes,
+ scores,
+ background_class=-1,
+ box_coding=1,
+ iou_threshold=0.45,
+ max_output_boxes=100,
+ plugin_version="1",
+ score_activation=0,
+ score_threshold=0.25,
+ ):
+ batch_size, num_boxes, num_classes = scores.shape
+ num_det = torch.randint(0, max_output_boxes, (batch_size, 1), dtype=torch.int32)
+ det_boxes = torch.randn(batch_size, max_output_boxes, 4)
+ det_scores = torch.randn(batch_size, max_output_boxes)
+ det_classes = torch.randint(0, num_classes, (batch_size, max_output_boxes), dtype=torch.int32)
+ return num_det, det_boxes, det_scores, det_classes
+
+ @staticmethod
+ def symbolic(g,
+ boxes,
+ scores,
+ background_class=-1,
+ box_coding=1,
+ iou_threshold=0.45,
+ max_output_boxes=100,
+ plugin_version="1",
+ score_activation=0,
+ score_threshold=0.25):
+ out = g.op("TRT::EfficientNMS_TRT",
+ boxes,
+ scores,
+ background_class_i=background_class,
+ box_coding_i=box_coding,
+ iou_threshold_f=iou_threshold,
+ max_output_boxes_i=max_output_boxes,
+ plugin_version_s=plugin_version,
+ score_activation_i=score_activation,
+ score_threshold_f=score_threshold,
+ outputs=4)
+ nums, boxes, scores, classes = out
+ return nums, boxes, scores, classes
+
+class TRT7_NMS(torch.autograd.Function):
+ '''TensorRT NMS operation'''
+ @staticmethod
+ def forward(
+ ctx,
+ boxes,
+ scores,
+ plugin_version="1",
+ shareLocation=1,
+ backgroundLabelId=-1,
+ numClasses=80,
+ topK=1000,
+ keepTopK=100,
+ scoreThreshold=0.25,
+ iouThreshold=0.45,
+ isNormalized=0,
+ clipBoxes=0,
+ scoreBits=16,
+ caffeSemantics=1,
+ ):
+ batch_size, num_boxes, numClasses = scores.shape
+ num_det = torch.randint(0, keepTopK, (batch_size, 1), dtype=torch.int32)
+ det_boxes = torch.randn(batch_size, keepTopK, 4)
+ det_scores = torch.randn(batch_size, keepTopK)
+ det_classes = torch.randint(0, numClasses, (batch_size, keepTopK)).float()
+ return num_det, det_boxes, det_scores, det_classes
+ @staticmethod
+ def symbolic(g,
+ boxes,
+ scores,
+ plugin_version='1',
+ shareLocation=1,
+ backgroundLabelId=-1,
+ numClasses=80,
+ topK=1000,
+ keepTopK=100,
+ scoreThreshold=0.25,
+ iouThreshold=0.45,
+ isNormalized=0,
+ clipBoxes=0,
+ scoreBits=16,
+ caffeSemantics=1,
+ ):
+ out = g.op("TRT::BatchedNMSDynamic_TRT", # BatchedNMS_TRT BatchedNMSDynamic_TRT
+ boxes,
+ scores,
+ shareLocation_i=shareLocation,
+ plugin_version_s=plugin_version,
+ backgroundLabelId_i=backgroundLabelId,
+ numClasses_i=numClasses,
+ topK_i=topK,
+ keepTopK_i=keepTopK,
+ scoreThreshold_f=scoreThreshold,
+ iouThreshold_f=iouThreshold,
+ isNormalized_i=isNormalized,
+ clipBoxes_i=clipBoxes,
+ scoreBits_i=scoreBits,
+ caffeSemantics_i=caffeSemantics,
+ outputs=4)
+ nums, boxes, scores, classes = out
+ return nums, boxes, scores, classes
+
+
+class ONNX_ORT(nn.Module):
+ '''onnx module with ONNX-Runtime NMS operation.'''
+ def __init__(self, max_obj=100, iou_thres=0.45, score_thres=0.25, device=None):
+ super().__init__()
+ self.device = device if device else torch.device("cpu")
+ self.max_obj = torch.tensor([max_obj]).to(device)
+ self.iou_threshold = torch.tensor([iou_thres]).to(device)
+ self.score_threshold = torch.tensor([score_thres]).to(device)
+ self.convert_matrix = torch.tensor([[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]],
+ dtype=torch.float32,
+ device=self.device)
+
+ def forward(self, x):
+ batch, anchors, _ = x.shape
+ box = x[:, :, :4]
+ conf = x[:, :, 4:5]
+ score = x[:, :, 5:]
+ score *= conf
+
+ nms_box = box @ self.convert_matrix
+ nms_score = score.transpose(1, 2).contiguous()
+
+ selected_indices = ORT_NMS.apply(nms_box, nms_score, self.max_obj, self.iou_threshold, self.score_threshold)
+ batch_inds, cls_inds, box_inds = selected_indices.unbind(1)
+ selected_score = nms_score[batch_inds, cls_inds, box_inds].unsqueeze(1)
+ selected_box = nms_box[batch_inds, box_inds, ...]
+
+ dets = torch.cat([selected_box, selected_score], dim=1)
+
+ batched_dets = dets.unsqueeze(0).repeat(batch, 1, 1)
+ batch_template = torch.arange(0, batch, dtype=batch_inds.dtype, device=batch_inds.device)
+ batched_dets = batched_dets.where((batch_inds == batch_template.unsqueeze(1)).unsqueeze(-1),batched_dets.new_zeros(1))
+
+ batched_labels = cls_inds.unsqueeze(0).repeat(batch, 1)
+ batched_labels = batched_labels.where((batch_inds == batch_template.unsqueeze(1)),batched_labels.new_ones(1) * -1)
+
+ N = batched_dets.shape[0]
+
+ batched_dets = torch.cat((batched_dets, batched_dets.new_zeros((N, 1, 5))), 1)
+ batched_labels = torch.cat((batched_labels, -batched_labels.new_ones((N, 1))), 1)
+
+ _, topk_inds = batched_dets[:, :, -1].sort(dim=1, descending=True)
+
+ topk_batch_inds = torch.arange(batch, dtype=topk_inds.dtype, device=topk_inds.device).view(-1, 1)
+ batched_dets = batched_dets[topk_batch_inds, topk_inds, ...]
+ det_classes = batched_labels[topk_batch_inds, topk_inds, ...]
+ det_boxes, det_scores = batched_dets.split((4, 1), -1)
+ det_scores = det_scores.squeeze(-1)
+ num_det = (det_scores > 0).sum(1, keepdim=True)
+ return num_det, det_boxes, det_scores, det_classes
+
+class ONNX_TRT7(nn.Module):
+ '''onnx module with TensorRT NMS operation.'''
+ def __init__(self, max_obj=100, iou_thres=0.45, score_thres=0.25, device=None):
+ super().__init__()
+ self.device = device if device else torch.device('cpu')
+ self.shareLocation = 1
+ self.backgroundLabelId = -1
+ self.numClasses = 80
+ self.topK = 1000
+ self.keepTopK = max_obj
+ self.scoreThreshold = score_thres
+ self.iouThreshold = iou_thres
+ self.isNormalized = 0
+ self.clipBoxes = 0
+ self.scoreBits = 16
+ self.caffeSemantics = 1
+ self.plugin_version = '1'
+ self.convert_matrix = torch.tensor([[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]],
+ dtype=torch.float32,
+ device=self.device)
+ def forward(self, x):
+ box = x[:, :, :4]
+ conf = x[:, :, 4:5]
+ score = x[:, :, 5:]
+ score *= conf
+ box @= self.convert_matrix
+ box = box.unsqueeze(2)
+ self.numClasses = int(score.shape[2])
+ num_det, det_boxes, det_scores, det_classes = TRT7_NMS.apply(box, score, self.plugin_version,
+ self.shareLocation,
+ self.backgroundLabelId,
+ self.numClasses,
+ self.topK,
+ self.keepTopK,
+ self.scoreThreshold,
+ self.iouThreshold,
+ self.isNormalized,
+ self.clipBoxes,
+ self.scoreBits,
+ self.caffeSemantics,
+ )
+ return num_det, det_boxes, det_scores, det_classes.int()
+
+
+class ONNX_TRT8(nn.Module):
+ '''onnx module with TensorRT NMS operation.'''
+ def __init__(self, max_obj=100, iou_thres=0.45, score_thres=0.25, device=None):
+ super().__init__()
+ self.device = device if device else torch.device('cpu')
+ self.background_class = -1,
+ self.box_coding = 1,
+ self.iou_threshold = iou_thres
+ self.max_obj = max_obj
+ self.plugin_version = '1'
+ self.score_activation = 0
+ self.score_threshold = score_thres
+
+ def forward(self, x):
+ box = x[:, :, :4]
+ conf = x[:, :, 4:5]
+ score = x[:, :, 5:]
+ score *= conf
+ num_det, det_boxes, det_scores, det_classes = TRT8_NMS.apply(box, score, self.background_class, self.box_coding,
+ self.iou_threshold, self.max_obj,
+ self.plugin_version, self.score_activation,
+ self.score_threshold)
+ return num_det, det_boxes, det_scores, det_classes
+
+
+class End2End(nn.Module):
+ '''export onnx or tensorrt model with NMS operation.'''
+ def __init__(self, model, max_obj=100, iou_thres=0.45, score_thres=0.25, device=None, ort=False, trt_version=8, with_preprocess=False):
+ super().__init__()
+ device = device if device else torch.device('cpu')
+ self.with_preprocess = with_preprocess
+ self.model = model.to(device)
+ TRT = ONNX_TRT8 if trt_version >= 8 else ONNX_TRT7
+ self.patch_model = ONNX_ORT if ort else TRT
+ self.end2end = self.patch_model(max_obj, iou_thres, score_thres, device)
+ self.end2end.eval()
+
+ def forward(self, x):
+ if self.with_preprocess:
+ x = x[:,[2,1,0],...]
+ x = x * (1/255)
+ x = self.model(x)
+ if isinstance(x, list):
+ x = x[0]
+ else:
+ x = x
+ x = self.end2end(x)
+ return x
diff --git a/python/app/fedcv/YOLOv6/yolov6/models/heads/effidehead_distill_ns.py b/python/app/fedcv/YOLOv6/yolov6/models/heads/effidehead_distill_ns.py
new file mode 100644
index 0000000000..912bd6c6ad
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/yolov6/models/heads/effidehead_distill_ns.py
@@ -0,0 +1,270 @@
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+import math
+from yolov6.layers.common import *
+from yolov6.assigners.anchor_generator import generate_anchors
+from yolov6.utils.general import dist2bbox
+
+
+class Detect(nn.Module):
+ export = False
+ '''Efficient Decoupled Head for Cost-free Distillation.(FOR NANO/SMALL MODEL)
+ '''
+ def __init__(self, num_classes=80, num_layers=3, inplace=True, head_layers=None, use_dfl=True, reg_max=16): # detection layer
+ super().__init__()
+ assert head_layers is not None
+ self.nc = num_classes # number of classes
+ self.no = num_classes + 5 # number of outputs per anchor
+ self.nl = num_layers # number of detection layers
+ self.grid = [torch.zeros(1)] * num_layers
+ self.prior_prob = 1e-2
+ self.inplace = inplace
+ stride = [8, 16, 32] # strides computed during build
+ self.stride = torch.tensor(stride)
+ self.use_dfl = use_dfl
+ self.reg_max = reg_max
+ self.proj_conv = nn.Conv2d(self.reg_max + 1, 1, 1, bias=False)
+ self.grid_cell_offset = 0.5
+ self.grid_cell_size = 5.0
+
+ # Init decouple head
+ self.stems = nn.ModuleList()
+ self.cls_convs = nn.ModuleList()
+ self.reg_convs = nn.ModuleList()
+ self.cls_preds = nn.ModuleList()
+ self.reg_preds_dist = nn.ModuleList()
+ self.reg_preds = nn.ModuleList()
+
+ # Efficient decoupled head layers
+ for i in range(num_layers):
+ idx = i*6
+ self.stems.append(head_layers[idx])
+ self.cls_convs.append(head_layers[idx+1])
+ self.reg_convs.append(head_layers[idx+2])
+ self.cls_preds.append(head_layers[idx+3])
+ self.reg_preds_dist.append(head_layers[idx+4])
+ self.reg_preds.append(head_layers[idx+5])
+
+ def initialize_biases(self):
+
+ for conv in self.cls_preds:
+ b = conv.bias.view(-1, )
+ b.data.fill_(-math.log((1 - self.prior_prob) / self.prior_prob))
+ conv.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
+ w = conv.weight
+ w.data.fill_(0.)
+ conv.weight = torch.nn.Parameter(w, requires_grad=True)
+
+ for conv in self.reg_preds_dist:
+ b = conv.bias.view(-1, )
+ b.data.fill_(1.0)
+ conv.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
+ w = conv.weight
+ w.data.fill_(0.)
+ conv.weight = torch.nn.Parameter(w, requires_grad=True)
+
+ for conv in self.reg_preds:
+ b = conv.bias.view(-1, )
+ b.data.fill_(1.0)
+ conv.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
+ w = conv.weight
+ w.data.fill_(0.)
+ conv.weight = torch.nn.Parameter(w, requires_grad=True)
+
+ self.proj = nn.Parameter(torch.linspace(0, self.reg_max, self.reg_max + 1), requires_grad=False)
+ self.proj_conv.weight = nn.Parameter(self.proj.view([1, self.reg_max + 1, 1, 1]).clone().detach(),
+ requires_grad=False)
+
+ def forward(self, x):
+ if self.training:
+ cls_score_list = []
+ reg_distri_list = []
+ reg_lrtb_list = []
+
+ for i in range(self.nl):
+ x[i] = self.stems[i](x[i])
+ cls_x = x[i]
+ reg_x = x[i]
+ cls_feat = self.cls_convs[i](cls_x)
+ cls_output = self.cls_preds[i](cls_feat)
+ reg_feat = self.reg_convs[i](reg_x)
+ reg_output = self.reg_preds_dist[i](reg_feat)
+ reg_output_lrtb = self.reg_preds[i](reg_feat)
+
+ cls_output = torch.sigmoid(cls_output)
+ cls_score_list.append(cls_output.flatten(2).permute((0, 2, 1)))
+ reg_distri_list.append(reg_output.flatten(2).permute((0, 2, 1)))
+ reg_lrtb_list.append(reg_output_lrtb.flatten(2).permute((0, 2, 1)))
+
+ cls_score_list = torch.cat(cls_score_list, axis=1)
+ reg_distri_list = torch.cat(reg_distri_list, axis=1)
+ reg_lrtb_list = torch.cat(reg_lrtb_list, axis=1)
+
+ return x, cls_score_list, reg_distri_list, reg_lrtb_list
+ else:
+ cls_score_list = []
+ reg_lrtb_list = []
+
+ for i in range(self.nl):
+ b, _, h, w = x[i].shape
+ l = h * w
+ x[i] = self.stems[i](x[i])
+ cls_x = x[i]
+ reg_x = x[i]
+ cls_feat = self.cls_convs[i](cls_x)
+ cls_output = self.cls_preds[i](cls_feat)
+ reg_feat = self.reg_convs[i](reg_x)
+ reg_output_lrtb = self.reg_preds[i](reg_feat)
+
+ cls_output = torch.sigmoid(cls_output)
+
+ if self.export:
+ cls_score_list.append(cls_output)
+ reg_lrtb_list.append(reg_output_lrtb)
+ else:
+ cls_score_list.append(cls_output.reshape([b, self.nc, l]))
+ reg_lrtb_list.append(reg_output_lrtb.reshape([b, 4, l]))
+
+ if self.export:
+ return tuple(torch.cat([cls, reg], 1) for cls, reg in zip(cls_score_list, reg_lrtb_list))
+
+ cls_score_list = torch.cat(cls_score_list, axis=-1).permute(0, 2, 1)
+ reg_lrtb_list = torch.cat(reg_lrtb_list, axis=-1).permute(0, 2, 1)
+
+
+ anchor_points, stride_tensor = generate_anchors(
+ x, self.stride, self.grid_cell_size, self.grid_cell_offset, device=x[0].device, is_eval=True, mode='af')
+
+ pred_bboxes = dist2bbox(reg_lrtb_list, anchor_points, box_format='xywh')
+ pred_bboxes *= stride_tensor
+ return torch.cat(
+ [
+ pred_bboxes,
+ torch.ones((b, pred_bboxes.shape[1], 1), device=pred_bboxes.device, dtype=pred_bboxes.dtype),
+ cls_score_list
+ ],
+ axis=-1)
+
+
+def build_effidehead_layer(channels_list, num_anchors, num_classes, reg_max=16):
+ head_layers = nn.Sequential(
+ # stem0
+ ConvBNSiLU(
+ in_channels=channels_list[6],
+ out_channels=channels_list[6],
+ kernel_size=1,
+ stride=1
+ ),
+ # cls_conv0
+ ConvBNSiLU(
+ in_channels=channels_list[6],
+ out_channels=channels_list[6],
+ kernel_size=3,
+ stride=1
+ ),
+ # reg_conv0
+ ConvBNSiLU(
+ in_channels=channels_list[6],
+ out_channels=channels_list[6],
+ kernel_size=3,
+ stride=1
+ ),
+ # cls_pred0
+ nn.Conv2d(
+ in_channels=channels_list[6],
+ out_channels=num_classes * num_anchors,
+ kernel_size=1
+ ),
+ # reg_pred0
+ nn.Conv2d(
+ in_channels=channels_list[6],
+ out_channels=4 * (reg_max + num_anchors),
+ kernel_size=1
+ ),
+ # reg_pred0_1
+ nn.Conv2d(
+ in_channels=channels_list[6],
+ out_channels=4 * (num_anchors),
+ kernel_size=1
+ ),
+ # stem1
+ ConvBNSiLU(
+ in_channels=channels_list[8],
+ out_channels=channels_list[8],
+ kernel_size=1,
+ stride=1
+ ),
+ # cls_conv1
+ ConvBNSiLU(
+ in_channels=channels_list[8],
+ out_channels=channels_list[8],
+ kernel_size=3,
+ stride=1
+ ),
+ # reg_conv1
+ ConvBNSiLU(
+ in_channels=channels_list[8],
+ out_channels=channels_list[8],
+ kernel_size=3,
+ stride=1
+ ),
+ # cls_pred1
+ nn.Conv2d(
+ in_channels=channels_list[8],
+ out_channels=num_classes * num_anchors,
+ kernel_size=1
+ ),
+ # reg_pred1
+ nn.Conv2d(
+ in_channels=channels_list[8],
+ out_channels=4 * (reg_max + num_anchors),
+ kernel_size=1
+ ),
+ # reg_pred1_1
+ nn.Conv2d(
+ in_channels=channels_list[8],
+ out_channels=4 * (num_anchors),
+ kernel_size=1
+ ),
+ # stem2
+ ConvBNSiLU(
+ in_channels=channels_list[10],
+ out_channels=channels_list[10],
+ kernel_size=1,
+ stride=1
+ ),
+ # cls_conv2
+ ConvBNSiLU(
+ in_channels=channels_list[10],
+ out_channels=channels_list[10],
+ kernel_size=3,
+ stride=1
+ ),
+ # reg_conv2
+ ConvBNSiLU(
+ in_channels=channels_list[10],
+ out_channels=channels_list[10],
+ kernel_size=3,
+ stride=1
+ ),
+ # cls_pred2
+ nn.Conv2d(
+ in_channels=channels_list[10],
+ out_channels=num_classes * num_anchors,
+ kernel_size=1
+ ),
+ # reg_pred2
+ nn.Conv2d(
+ in_channels=channels_list[10],
+ out_channels=4 * (reg_max + num_anchors),
+ kernel_size=1
+ ),
+ # reg_pred2_1
+ nn.Conv2d(
+ in_channels=channels_list[10],
+ out_channels=4 * (num_anchors),
+ kernel_size=1
+ )
+ )
+ return head_layers
diff --git a/python/app/fedcv/YOLOv6/yolov6/models/heads/effidehead_fuseab.py b/python/app/fedcv/YOLOv6/yolov6/models/heads/effidehead_fuseab.py
new file mode 100644
index 0000000000..718ae3168a
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/yolov6/models/heads/effidehead_fuseab.py
@@ -0,0 +1,342 @@
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+import math
+from yolov6.layers.common import *
+from yolov6.assigners.anchor_generator import generate_anchors
+from yolov6.utils.general import dist2bbox
+
+
+class Detect(nn.Module):
+ export = False
+ '''Efficient Decoupled Head for fusing anchor-base branches.
+ '''
+ def __init__(self, num_classes=80, anchors=None, num_layers=3, inplace=True, head_layers=None, use_dfl=True, reg_max=16): # detection layer
+ super().__init__()
+ assert head_layers is not None
+ self.nc = num_classes # number of classes
+ self.no = num_classes + 5 # number of outputs per anchor
+ self.nl = num_layers # number of detection layers
+ if isinstance(anchors, (list, tuple)):
+ self.na = len(anchors[0]) // 2
+ else:
+ self.na = anchors
+ self.grid = [torch.zeros(1)] * num_layers
+ self.prior_prob = 1e-2
+ self.inplace = inplace
+ stride = [8, 16, 32] if num_layers == 3 else [8, 16, 32, 64] # strides computed during build
+ self.stride = torch.tensor(stride)
+ self.use_dfl = use_dfl
+ self.reg_max = reg_max
+ self.proj_conv = nn.Conv2d(self.reg_max + 1, 1, 1, bias=False)
+ self.grid_cell_offset = 0.5
+ self.grid_cell_size = 5.0
+ self.anchors_init= ((torch.tensor(anchors) / self.stride[:,None])).reshape(self.nl, self.na, 2)
+
+ # Init decouple head
+ self.stems = nn.ModuleList()
+ self.cls_convs = nn.ModuleList()
+ self.reg_convs = nn.ModuleList()
+ self.cls_preds = nn.ModuleList()
+ self.reg_preds = nn.ModuleList()
+ self.cls_preds_ab = nn.ModuleList()
+ self.reg_preds_ab = nn.ModuleList()
+
+ # Efficient decoupled head layers
+ for i in range(num_layers):
+ idx = i*7
+ self.stems.append(head_layers[idx])
+ self.cls_convs.append(head_layers[idx+1])
+ self.reg_convs.append(head_layers[idx+2])
+ self.cls_preds.append(head_layers[idx+3])
+ self.reg_preds.append(head_layers[idx+4])
+ self.cls_preds_ab.append(head_layers[idx+5])
+ self.reg_preds_ab.append(head_layers[idx+6])
+
+ def initialize_biases(self):
+
+ for conv in self.cls_preds:
+ b = conv.bias.view(-1, )
+ b.data.fill_(-math.log((1 - self.prior_prob) / self.prior_prob))
+ conv.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
+ w = conv.weight
+ w.data.fill_(0.)
+ conv.weight = torch.nn.Parameter(w, requires_grad=True)
+
+ for conv in self.cls_preds_ab:
+ b = conv.bias.view(-1, )
+ b.data.fill_(-math.log((1 - self.prior_prob) / self.prior_prob))
+ conv.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
+ w = conv.weight
+ w.data.fill_(0.)
+ conv.weight = torch.nn.Parameter(w, requires_grad=True)
+
+ for conv in self.reg_preds:
+ b = conv.bias.view(-1, )
+ b.data.fill_(1.0)
+ conv.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
+ w = conv.weight
+ w.data.fill_(0.)
+ conv.weight = torch.nn.Parameter(w, requires_grad=True)
+
+ for conv in self.reg_preds_ab:
+ b = conv.bias.view(-1, )
+ b.data.fill_(1.0)
+ conv.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
+ w = conv.weight
+ w.data.fill_(0.)
+ conv.weight = torch.nn.Parameter(w, requires_grad=True)
+
+ self.proj = nn.Parameter(torch.linspace(0, self.reg_max, self.reg_max + 1), requires_grad=False)
+ self.proj_conv.weight = nn.Parameter(self.proj.view([1, self.reg_max + 1, 1, 1]).clone().detach(),
+ requires_grad=False)
+
+ def forward(self, x):
+ if self.training:
+ device = x[0].device
+ cls_score_list_af = []
+ reg_dist_list_af = []
+ cls_score_list_ab = []
+ reg_dist_list_ab = []
+
+ for i in range(self.nl):
+ b, _, h, w = x[i].shape
+ l = h * w
+
+ x[i] = self.stems[i](x[i])
+ cls_x = x[i]
+ reg_x = x[i]
+
+ cls_feat = self.cls_convs[i](cls_x)
+ reg_feat = self.reg_convs[i](reg_x)
+
+ #anchor_base
+ cls_output_ab = self.cls_preds_ab[i](cls_feat)
+ reg_output_ab = self.reg_preds_ab[i](reg_feat)
+
+ cls_output_ab = torch.sigmoid(cls_output_ab)
+ cls_output_ab = cls_output_ab.reshape(b, self.na, -1, h, w).permute(0,1,3,4,2)
+ cls_score_list_ab.append(cls_output_ab.flatten(1,3))
+
+ reg_output_ab = reg_output_ab.reshape(b, self.na, -1, h, w).permute(0,1,3,4,2)
+ reg_output_ab[..., 2:4] = ((reg_output_ab[..., 2:4].sigmoid() * 2) ** 2 ) * (self.anchors_init[i].reshape(1, self.na, 1, 1, 2).to(device))
+ reg_dist_list_ab.append(reg_output_ab.flatten(1,3))
+
+ #anchor_free
+ cls_output_af = self.cls_preds[i](cls_feat)
+ reg_output_af = self.reg_preds[i](reg_feat)
+
+ cls_output_af = torch.sigmoid(cls_output_af)
+ cls_score_list_af.append(cls_output_af.flatten(2).permute((0, 2, 1)))
+ reg_dist_list_af.append(reg_output_af.flatten(2).permute((0, 2, 1)))
+
+
+ cls_score_list_ab = torch.cat(cls_score_list_ab, axis=1)
+ reg_dist_list_ab = torch.cat(reg_dist_list_ab, axis=1)
+ cls_score_list_af = torch.cat(cls_score_list_af, axis=1)
+ reg_dist_list_af = torch.cat(reg_dist_list_af, axis=1)
+
+ return x, cls_score_list_ab, reg_dist_list_ab, cls_score_list_af, reg_dist_list_af
+
+ else:
+ device = x[0].device
+ cls_score_list_af = []
+ reg_dist_list_af = []
+
+ for i in range(self.nl):
+ b, _, h, w = x[i].shape
+ l = h * w
+
+ x[i] = self.stems[i](x[i])
+ cls_x = x[i]
+ reg_x = x[i]
+
+ cls_feat = self.cls_convs[i](cls_x)
+ reg_feat = self.reg_convs[i](reg_x)
+
+ #anchor_free
+ cls_output_af = self.cls_preds[i](cls_feat)
+ reg_output_af = self.reg_preds[i](reg_feat)
+
+ if self.use_dfl:
+ reg_output_af = reg_output_af.reshape([-1, 4, self.reg_max + 1, l]).permute(0, 2, 1, 3)
+ reg_output_af = self.proj_conv(F.softmax(reg_output_af, dim=1))
+
+ cls_output_af = torch.sigmoid(cls_output_af)
+
+ if self.export:
+ cls_score_list_af.append(cls_output_af)
+ reg_dist_list_af.append(reg_output_af)
+ else:
+ cls_score_list_af.append(cls_output_af.reshape([b, self.nc, l]))
+ reg_dist_list_af.append(reg_output_af.reshape([b, 4, l]))
+
+ if self.export:
+ return tuple(torch.cat([cls, reg], 1) for cls, reg in zip(cls_score_list_af, reg_dist_list_af))
+
+ cls_score_list_af = torch.cat(cls_score_list_af, axis=-1).permute(0, 2, 1)
+ reg_dist_list_af = torch.cat(reg_dist_list_af, axis=-1).permute(0, 2, 1)
+
+
+ #anchor_free
+ anchor_points_af, stride_tensor_af = generate_anchors(
+ x, self.stride, self.grid_cell_size, self.grid_cell_offset, device=x[0].device, is_eval=True, mode='af')
+
+ pred_bboxes_af = dist2bbox(reg_dist_list_af, anchor_points_af, box_format='xywh')
+ pred_bboxes_af *= stride_tensor_af
+
+ pred_bboxes = pred_bboxes_af
+ cls_score_list = cls_score_list_af
+
+ return torch.cat(
+ [
+ pred_bboxes,
+ torch.ones((b, pred_bboxes.shape[1], 1), device=pred_bboxes.device, dtype=pred_bboxes.dtype),
+ cls_score_list
+ ],
+ axis=-1)
+
+
+def build_effidehead_layer(channels_list, num_anchors, num_classes, reg_max=16, num_layers=3):
+
+ chx = [6, 8, 10] if num_layers == 3 else [8, 9, 10, 11]
+
+ head_layers = nn.Sequential(
+ # stem0
+ ConvBNSiLU(
+ in_channels=channels_list[chx[0]],
+ out_channels=channels_list[chx[0]],
+ kernel_size=1,
+ stride=1
+ ),
+ # cls_conv0
+ ConvBNSiLU(
+ in_channels=channels_list[chx[0]],
+ out_channels=channels_list[chx[0]],
+ kernel_size=3,
+ stride=1
+ ),
+ # reg_conv0
+ ConvBNSiLU(
+ in_channels=channels_list[chx[0]],
+ out_channels=channels_list[chx[0]],
+ kernel_size=3,
+ stride=1
+ ),
+ # cls_pred0_af
+ nn.Conv2d(
+ in_channels=channels_list[chx[0]],
+ out_channels=num_classes,
+ kernel_size=1
+ ),
+ # reg_pred0_af
+ nn.Conv2d(
+ in_channels=channels_list[chx[0]],
+ out_channels=4 * (reg_max + 1),
+ kernel_size=1
+ ),
+ # cls_pred0_3ab
+ nn.Conv2d(
+ in_channels=channels_list[chx[0]],
+ out_channels=num_classes * num_anchors,
+ kernel_size=1
+ ),
+ # reg_pred0_3ab
+ nn.Conv2d(
+ in_channels=channels_list[chx[0]],
+ out_channels=4 * num_anchors,
+ kernel_size=1
+ ),
+ # stem1
+ ConvBNSiLU(
+ in_channels=channels_list[chx[1]],
+ out_channels=channels_list[chx[1]],
+ kernel_size=1,
+ stride=1
+ ),
+ # cls_conv1
+ ConvBNSiLU(
+ in_channels=channels_list[chx[1]],
+ out_channels=channels_list[chx[1]],
+ kernel_size=3,
+ stride=1
+ ),
+ # reg_conv1
+ ConvBNSiLU(
+ in_channels=channels_list[chx[1]],
+ out_channels=channels_list[chx[1]],
+ kernel_size=3,
+ stride=1
+ ),
+ # cls_pred1_af
+ nn.Conv2d(
+ in_channels=channels_list[chx[1]],
+ out_channels=num_classes,
+ kernel_size=1
+ ),
+ # reg_pred1_af
+ nn.Conv2d(
+ in_channels=channels_list[chx[1]],
+ out_channels=4 * (reg_max + 1),
+ kernel_size=1
+ ),
+ # cls_pred1_3ab
+ nn.Conv2d(
+ in_channels=channels_list[chx[1]],
+ out_channels=num_classes * num_anchors,
+ kernel_size=1
+ ),
+ # reg_pred1_3ab
+ nn.Conv2d(
+ in_channels=channels_list[chx[1]],
+ out_channels=4 * num_anchors,
+ kernel_size=1
+ ),
+ # stem2
+ ConvBNSiLU(
+ in_channels=channels_list[chx[2]],
+ out_channels=channels_list[chx[2]],
+ kernel_size=1,
+ stride=1
+ ),
+ # cls_conv2
+ ConvBNSiLU(
+ in_channels=channels_list[chx[2]],
+ out_channels=channels_list[chx[2]],
+ kernel_size=3,
+ stride=1
+ ),
+ # reg_conv2
+ ConvBNSiLU(
+ in_channels=channels_list[chx[2]],
+ out_channels=channels_list[chx[2]],
+ kernel_size=3,
+ stride=1
+ ),
+ # cls_pred2_af
+ nn.Conv2d(
+ in_channels=channels_list[chx[2]],
+ out_channels=num_classes,
+ kernel_size=1
+ ),
+ # reg_pred2_af
+ nn.Conv2d(
+ in_channels=channels_list[chx[2]],
+ out_channels=4 * (reg_max + 1),
+ kernel_size=1
+ ),
+ # cls_pred2_3ab
+ nn.Conv2d(
+ in_channels=channels_list[chx[2]],
+ out_channels=num_classes * num_anchors,
+ kernel_size=1
+ ),
+ # reg_pred2_3ab
+ nn.Conv2d(
+ in_channels=channels_list[chx[2]],
+ out_channels=4 * num_anchors,
+ kernel_size=1
+ ),
+ )
+
+ return head_layers
diff --git a/python/app/fedcv/YOLOv6/yolov6/models/heads/effidehead_lite.py b/python/app/fedcv/YOLOv6/yolov6/models/heads/effidehead_lite.py
new file mode 100644
index 0000000000..dc6f634026
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/yolov6/models/heads/effidehead_lite.py
@@ -0,0 +1,280 @@
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+import math
+from yolov6.layers.common import DPBlock
+from yolov6.assigners.anchor_generator import generate_anchors
+from yolov6.utils.general import dist2bbox
+
+
+class Detect(nn.Module):
+ export = False
+ '''Efficient Decoupled Head
+ With hardware-aware degisn, the decoupled head is optimized with
+ hybridchannels methods.
+ '''
+ def __init__(self, num_classes=80, num_layers=3, inplace=True, head_layers=None): # detection layer
+ super().__init__()
+ assert head_layers is not None
+ self.nc = num_classes # number of classes
+ self.no = num_classes + 5 # number of outputs per anchor
+ self.nl = num_layers # number of detection layers
+ self.grid = [torch.zeros(1)] * num_layers
+ self.prior_prob = 1e-2
+ self.inplace = inplace
+ stride = [8, 16, 32] if num_layers == 3 else [8, 16, 32, 64] # strides computed during build
+ self.stride = torch.tensor(stride)
+ self.grid_cell_offset = 0.5
+ self.grid_cell_size = 5.0
+
+ # Init decouple head
+ self.stems = nn.ModuleList()
+ self.cls_convs = nn.ModuleList()
+ self.reg_convs = nn.ModuleList()
+ self.cls_preds = nn.ModuleList()
+ self.reg_preds = nn.ModuleList()
+
+ # Efficient decoupled head layers
+ for i in range(num_layers):
+ idx = i*5
+ self.stems.append(head_layers[idx])
+ self.cls_convs.append(head_layers[idx+1])
+ self.reg_convs.append(head_layers[idx+2])
+ self.cls_preds.append(head_layers[idx+3])
+ self.reg_preds.append(head_layers[idx+4])
+
+ def initialize_biases(self):
+
+ for conv in self.cls_preds:
+ b = conv.bias.view(-1, )
+ b.data.fill_(-math.log((1 - self.prior_prob) / self.prior_prob))
+ conv.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
+ w = conv.weight
+ w.data.fill_(0.)
+ conv.weight = torch.nn.Parameter(w, requires_grad=True)
+
+ for conv in self.reg_preds:
+ b = conv.bias.view(-1, )
+ b.data.fill_(1.0)
+ conv.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
+ w = conv.weight
+ w.data.fill_(0.)
+ conv.weight = torch.nn.Parameter(w, requires_grad=True)
+
+ def forward(self, x):
+ if self.training:
+ cls_score_list = []
+ reg_distri_list = []
+
+ for i in range(self.nl):
+ x[i] = self.stems[i](x[i])
+ cls_x = x[i]
+ reg_x = x[i]
+ cls_feat = self.cls_convs[i](cls_x)
+ cls_output = self.cls_preds[i](cls_feat)
+ reg_feat = self.reg_convs[i](reg_x)
+ reg_output = self.reg_preds[i](reg_feat)
+
+ cls_output = torch.sigmoid(cls_output)
+ cls_score_list.append(cls_output.flatten(2).permute((0, 2, 1)))
+ reg_distri_list.append(reg_output.flatten(2).permute((0, 2, 1)))
+
+ cls_score_list = torch.cat(cls_score_list, axis=1)
+ reg_distri_list = torch.cat(reg_distri_list, axis=1)
+
+ return x, cls_score_list, reg_distri_list
+ else:
+ cls_score_list = []
+ reg_dist_list = []
+
+ for i in range(self.nl):
+ b, _, h, w = x[i].shape
+ l = h * w
+ x[i] = self.stems[i](x[i])
+ cls_x = x[i]
+ reg_x = x[i]
+ cls_feat = self.cls_convs[i](cls_x)
+ cls_output = self.cls_preds[i](cls_feat)
+ reg_feat = self.reg_convs[i](reg_x)
+ reg_output = self.reg_preds[i](reg_feat)
+
+ cls_output = torch.sigmoid(cls_output)
+
+ if self.export:
+ cls_score_list.append(cls_output)
+ reg_dist_list.append(reg_output)
+ else:
+ cls_score_list.append(cls_output.reshape([b, self.nc, l]))
+ reg_dist_list.append(reg_output.reshape([b, 4, l]))
+
+
+ if self.export:
+ return tuple(torch.cat([cls, reg], 1) for cls, reg in zip(cls_score_list, reg_dist_list))
+
+ cls_score_list = torch.cat(cls_score_list, axis=-1).permute(0, 2, 1)
+ reg_dist_list = torch.cat(reg_dist_list, axis=-1).permute(0, 2, 1)
+
+
+ anchor_points, stride_tensor = generate_anchors(
+ x, self.stride, self.grid_cell_size, self.grid_cell_offset, device=x[0].device, is_eval=True, mode='af')
+
+ pred_bboxes = dist2bbox(reg_dist_list, anchor_points, box_format='xywh')
+ pred_bboxes *= stride_tensor
+ return torch.cat(
+ [
+ pred_bboxes,
+ torch.ones((b, pred_bboxes.shape[1], 1), device=pred_bboxes.device, dtype=pred_bboxes.dtype),
+ cls_score_list
+ ],
+ axis=-1)
+
+def build_effidehead_layer(channels_list, num_anchors, num_classes, num_layers):
+
+ head_layers = nn.Sequential(
+ # stem0
+ DPBlock(
+ in_channel=channels_list[0],
+ out_channel=channels_list[0],
+ kernel_size=5,
+ stride=1
+ ),
+ # cls_conv0
+ DPBlock(
+ in_channel=channels_list[0],
+ out_channel=channels_list[0],
+ kernel_size=5,
+ stride=1
+ ),
+ # reg_conv0
+ DPBlock(
+ in_channel=channels_list[0],
+ out_channel=channels_list[0],
+ kernel_size=5,
+ stride=1
+ ),
+ # cls_pred0
+ nn.Conv2d(
+ in_channels=channels_list[0],
+ out_channels=num_classes * num_anchors,
+ kernel_size=1
+ ),
+ # reg_pred0
+ nn.Conv2d(
+ in_channels=channels_list[0],
+ out_channels=4 * num_anchors,
+ kernel_size=1
+ ),
+ # stem1
+ DPBlock(
+ in_channel=channels_list[1],
+ out_channel=channels_list[1],
+ kernel_size=5,
+ stride=1
+ ),
+ # cls_conv1
+ DPBlock(
+ in_channel=channels_list[1],
+ out_channel=channels_list[1],
+ kernel_size=5,
+ stride=1
+ ),
+ # reg_conv1
+ DPBlock(
+ in_channel=channels_list[1],
+ out_channel=channels_list[1],
+ kernel_size=5,
+ stride=1
+ ),
+ # cls_pred1
+ nn.Conv2d(
+ in_channels=channels_list[1],
+ out_channels=num_classes * num_anchors,
+ kernel_size=1
+ ),
+ # reg_pred1
+ nn.Conv2d(
+ in_channels=channels_list[1],
+ out_channels=4 * num_anchors,
+ kernel_size=1
+ ),
+ # stem2
+ DPBlock(
+ in_channel=channels_list[2],
+ out_channel=channels_list[2],
+ kernel_size=5,
+ stride=1
+ ),
+ # cls_conv2
+ DPBlock(
+ in_channel=channels_list[2],
+ out_channel=channels_list[2],
+ kernel_size=5,
+ stride=1
+ ),
+ # reg_conv2
+ DPBlock(
+ in_channel=channels_list[2],
+ out_channel=channels_list[2],
+ kernel_size=5,
+ stride=1
+ ),
+ # cls_pred2
+ nn.Conv2d(
+ in_channels=channels_list[2],
+ out_channels=num_classes * num_anchors,
+ kernel_size=1
+ ),
+ # reg_pred2
+ nn.Conv2d(
+ in_channels=channels_list[2],
+ out_channels=4 * num_anchors,
+ kernel_size=1
+ )
+ )
+
+ if num_layers == 4:
+ head_layers.add_module('stem3',
+ # stem3
+ DPBlock(
+ in_channel=channels_list[3],
+ out_channel=channels_list[3],
+ kernel_size=5,
+ stride=1
+ )
+ )
+ head_layers.add_module('cls_conv3',
+ # cls_conv3
+ DPBlock(
+ in_channel=channels_list[3],
+ out_channel=channels_list[3],
+ kernel_size=5,
+ stride=1
+ )
+ )
+ head_layers.add_module('reg_conv3',
+ # reg_conv3
+ DPBlock(
+ in_channel=channels_list[3],
+ out_channel=channels_list[3],
+ kernel_size=5,
+ stride=1
+ )
+ )
+ head_layers.add_module('cls_pred3',
+ # cls_pred3
+ nn.Conv2d(
+ in_channels=channels_list[3],
+ out_channels=num_classes * num_anchors,
+ kernel_size=1
+ )
+ )
+ head_layers.add_module('reg_pred3',
+ # reg_pred3
+ nn.Conv2d(
+ in_channels=channels_list[3],
+ out_channels=4 * num_anchors,
+ kernel_size=1
+ )
+ )
+
+ return head_layers
diff --git a/python/app/fedcv/YOLOv6/yolov6/models/losses/loss.py b/python/app/fedcv/YOLOv6/yolov6/models/losses/loss.py
new file mode 100644
index 0000000000..c4fe8d8715
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/yolov6/models/losses/loss.py
@@ -0,0 +1,271 @@
+#!/usr/bin/env python3
+# -*- coding:utf-8 -*-
+
+import torch
+import torch.nn as nn
+import numpy as np
+import torch.nn.functional as F
+from yolov6.assigners.anchor_generator import generate_anchors
+from yolov6.utils.general import dist2bbox, bbox2dist, xywh2xyxy, box_iou
+from yolov6.utils.figure_iou import IOUloss
+from yolov6.assigners.atss_assigner import ATSSAssigner
+from yolov6.assigners.tal_assigner import TaskAlignedAssigner
+
+class ComputeLoss:
+ '''Loss computation func.'''
+ def __init__(self,
+ fpn_strides=[8, 16, 32],
+ grid_cell_size=5.0,
+ grid_cell_offset=0.5,
+ num_classes=80,
+ ori_img_size=640,
+ warmup_epoch=4,
+ use_dfl=True,
+ reg_max=16,
+ iou_type='giou',
+ loss_weight={
+ 'class': 1.0,
+ 'iou': 2.5,
+ 'dfl': 0.5},
+ ):
+
+ self.fpn_strides = fpn_strides
+ self.grid_cell_size = grid_cell_size
+ self.grid_cell_offset = grid_cell_offset
+ self.num_classes = num_classes
+ self.ori_img_size = ori_img_size
+
+ self.warmup_epoch = warmup_epoch
+ self.warmup_assigner = ATSSAssigner(9, num_classes=self.num_classes)
+ self.formal_assigner = TaskAlignedAssigner(topk=13, num_classes=self.num_classes, alpha=1.0, beta=6.0)
+
+ self.use_dfl = use_dfl
+ self.reg_max = reg_max
+ self.proj = nn.Parameter(torch.linspace(0, self.reg_max, self.reg_max + 1), requires_grad=False)
+ self.iou_type = iou_type
+ self.varifocal_loss = VarifocalLoss().cuda()
+ self.bbox_loss = BboxLoss(self.num_classes, self.reg_max, self.use_dfl, self.iou_type).cuda()
+ self.loss_weight = loss_weight
+
+ def __call__(
+ self,
+ outputs,
+ targets,
+ epoch_num,
+ step_num,
+ batch_height,
+ batch_width
+ ):
+
+ feats, pred_scores, pred_distri = outputs
+ anchors, anchor_points, n_anchors_list, stride_tensor = \
+ generate_anchors(feats, self.fpn_strides, self.grid_cell_size, self.grid_cell_offset, device=feats[0].device)
+
+ assert pred_scores.type() == pred_distri.type()
+ gt_bboxes_scale = torch.tensor([batch_width, batch_height, batch_width, batch_height]).type_as(pred_scores)
+ batch_size = pred_scores.shape[0]
+
+ # targets
+ targets =self.preprocess(targets, batch_size, gt_bboxes_scale)
+ gt_labels = targets[:, :, :1]
+ gt_bboxes = targets[:, :, 1:] #xyxy
+ mask_gt = (gt_bboxes.sum(-1, keepdim=True) > 0).float()
+
+ # pboxes
+ anchor_points_s = anchor_points / stride_tensor
+ pred_bboxes = self.bbox_decode(anchor_points_s, pred_distri) #xyxy
+
+ try:
+ if epoch_num < self.warmup_epoch:
+ target_labels, target_bboxes, target_scores, fg_mask = \
+ self.warmup_assigner(
+ anchors,
+ n_anchors_list,
+ gt_labels,
+ gt_bboxes,
+ mask_gt,
+ pred_bboxes.detach() * stride_tensor)
+ else:
+ target_labels, target_bboxes, target_scores, fg_mask = \
+ self.formal_assigner(
+ pred_scores.detach(),
+ pred_bboxes.detach() * stride_tensor,
+ anchor_points,
+ gt_labels,
+ gt_bboxes,
+ mask_gt)
+
+ except RuntimeError:
+ print(
+ "OOM RuntimeError is raised due to the huge memory cost during label assignment. \
+ CPU mode is applied in this batch. If you want to avoid this issue, \
+ try to reduce the batch size or image size."
+ )
+ torch.cuda.empty_cache()
+ print("------------CPU Mode for This Batch-------------")
+ if epoch_num < self.warmup_epoch:
+ _anchors = anchors.cpu().float()
+ _n_anchors_list = n_anchors_list
+ _gt_labels = gt_labels.cpu().float()
+ _gt_bboxes = gt_bboxes.cpu().float()
+ _mask_gt = mask_gt.cpu().float()
+ _pred_bboxes = pred_bboxes.detach().cpu().float()
+ _stride_tensor = stride_tensor.cpu().float()
+
+ target_labels, target_bboxes, target_scores, fg_mask = \
+ self.warmup_assigner(
+ _anchors,
+ _n_anchors_list,
+ _gt_labels,
+ _gt_bboxes,
+ _mask_gt,
+ _pred_bboxes * _stride_tensor)
+
+ else:
+ _pred_scores = pred_scores.detach().cpu().float()
+ _pred_bboxes = pred_bboxes.detach().cpu().float()
+ _anchor_points = anchor_points.cpu().float()
+ _gt_labels = gt_labels.cpu().float()
+ _gt_bboxes = gt_bboxes.cpu().float()
+ _mask_gt = mask_gt.cpu().float()
+ _stride_tensor = stride_tensor.cpu().float()
+
+ target_labels, target_bboxes, target_scores, fg_mask = \
+ self.formal_assigner(
+ _pred_scores,
+ _pred_bboxes * _stride_tensor,
+ _anchor_points,
+ _gt_labels,
+ _gt_bboxes,
+ _mask_gt)
+
+ target_labels = target_labels.cuda()
+ target_bboxes = target_bboxes.cuda()
+ target_scores = target_scores.cuda()
+ fg_mask = fg_mask.cuda()
+ #Dynamic release GPU memory
+ if step_num % 10 == 0:
+ torch.cuda.empty_cache()
+
+ # rescale bbox
+ target_bboxes /= stride_tensor
+
+ # cls loss
+ target_labels = torch.where(fg_mask > 0, target_labels, torch.full_like(target_labels, self.num_classes))
+ one_hot_label = F.one_hot(target_labels.long(), self.num_classes + 1)[..., :-1]
+ loss_cls = self.varifocal_loss(pred_scores, target_scores, one_hot_label)
+
+ target_scores_sum = target_scores.sum()
+ # avoid devide zero error, devide by zero will cause loss to be inf or nan.
+ # if target_scores_sum is 0, loss_cls equals to 0 alson
+ if target_scores_sum > 1:
+ loss_cls /= target_scores_sum
+
+ # bbox loss
+ loss_iou, loss_dfl = self.bbox_loss(pred_distri, pred_bboxes, anchor_points_s, target_bboxes,
+ target_scores, target_scores_sum, fg_mask)
+
+ loss = self.loss_weight['class'] * loss_cls + \
+ self.loss_weight['iou'] * loss_iou + \
+ self.loss_weight['dfl'] * loss_dfl
+
+ return loss, \
+ torch.cat(((self.loss_weight['iou'] * loss_iou).unsqueeze(0),
+ (self.loss_weight['dfl'] * loss_dfl).unsqueeze(0),
+ (self.loss_weight['class'] * loss_cls).unsqueeze(0))).detach()
+
+ def preprocess(self, targets, batch_size, scale_tensor):
+ targets_list = np.zeros((batch_size, 1, 5)).tolist()
+ for i, item in enumerate(targets.cpu().numpy().tolist()):
+ targets_list[int(item[0])].append(item[1:])
+ max_len = max((len(l) for l in targets_list))
+ targets = torch.from_numpy(np.array(list(map(lambda l:l + [[-1,0,0,0,0]]*(max_len - len(l)), targets_list)))[:,1:,:]).to(targets.device)
+ batch_target = targets[:, :, 1:5].mul_(scale_tensor)
+ targets[..., 1:] = xywh2xyxy(batch_target)
+ return targets
+
+ def bbox_decode(self, anchor_points, pred_dist):
+ if self.use_dfl:
+ batch_size, n_anchors, _ = pred_dist.shape
+ pred_dist = F.softmax(pred_dist.view(batch_size, n_anchors, 4, self.reg_max + 1), dim=-1).matmul(self.proj.to(pred_dist.device))
+ return dist2bbox(pred_dist, anchor_points)
+
+
+class VarifocalLoss(nn.Module):
+ def __init__(self):
+ super(VarifocalLoss, self).__init__()
+
+ def forward(self, pred_score,gt_score, label, alpha=0.75, gamma=2.0):
+
+ weight = alpha * pred_score.pow(gamma) * (1 - label) + gt_score * label
+ with torch.cuda.amp.autocast(enabled=False):
+ loss = (F.binary_cross_entropy(pred_score.float(), gt_score.float(), reduction='none') * weight).sum()
+
+ return loss
+
+
+class BboxLoss(nn.Module):
+ def __init__(self, num_classes, reg_max, use_dfl=False, iou_type='giou'):
+ super(BboxLoss, self).__init__()
+ self.num_classes = num_classes
+ self.iou_loss = IOUloss(box_format='xyxy', iou_type=iou_type, eps=1e-10)
+ self.reg_max = reg_max
+ self.use_dfl = use_dfl
+
+ def forward(self, pred_dist, pred_bboxes, anchor_points,
+ target_bboxes, target_scores, target_scores_sum, fg_mask):
+
+ # select positive samples mask
+ num_pos = fg_mask.sum()
+ if num_pos > 0:
+ # iou loss
+ bbox_mask = fg_mask.unsqueeze(-1).repeat([1, 1, 4])
+ pred_bboxes_pos = torch.masked_select(pred_bboxes,
+ bbox_mask).reshape([-1, 4])
+ target_bboxes_pos = torch.masked_select(
+ target_bboxes, bbox_mask).reshape([-1, 4])
+ bbox_weight = torch.masked_select(
+ target_scores.sum(-1), fg_mask).unsqueeze(-1)
+ loss_iou = self.iou_loss(pred_bboxes_pos,
+ target_bboxes_pos) * bbox_weight
+ if target_scores_sum > 1:
+ loss_iou = loss_iou.sum() / target_scores_sum
+ else:
+ loss_iou = loss_iou.sum()
+
+ # dfl loss
+ if self.use_dfl:
+ dist_mask = fg_mask.unsqueeze(-1).repeat(
+ [1, 1, (self.reg_max + 1) * 4])
+ pred_dist_pos = torch.masked_select(
+ pred_dist, dist_mask).reshape([-1, 4, self.reg_max + 1])
+ target_ltrb = bbox2dist(anchor_points, target_bboxes, self.reg_max)
+ target_ltrb_pos = torch.masked_select(
+ target_ltrb, bbox_mask).reshape([-1, 4])
+ loss_dfl = self._df_loss(pred_dist_pos,
+ target_ltrb_pos) * bbox_weight
+ if target_scores_sum > 1:
+ loss_dfl = loss_dfl.sum() / target_scores_sum
+ else:
+ loss_dfl = loss_dfl.sum()
+ else:
+ loss_dfl = pred_dist.sum() * 0.
+
+ else:
+ loss_iou = pred_dist.sum() * 0.
+ loss_dfl = pred_dist.sum() * 0.
+
+ return loss_iou, loss_dfl
+
+ def _df_loss(self, pred_dist, target):
+ target_left = target.to(torch.long)
+ target_right = target_left + 1
+ weight_left = target_right.to(torch.float) - target
+ weight_right = 1 - weight_left
+ loss_left = F.cross_entropy(
+ pred_dist.view(-1, self.reg_max + 1), target_left.view(-1), reduction='none').view(
+ target_left.shape) * weight_left
+ loss_right = F.cross_entropy(
+ pred_dist.view(-1, self.reg_max + 1), target_right.view(-1), reduction='none').view(
+ target_left.shape) * weight_right
+ return (loss_left + loss_right).mean(-1, keepdim=True)
diff --git a/python/app/fedcv/YOLOv6/yolov6/models/losses/loss_distill.py b/python/app/fedcv/YOLOv6/yolov6/models/losses/loss_distill.py
new file mode 100644
index 0000000000..afc46ef2e3
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/yolov6/models/losses/loss_distill.py
@@ -0,0 +1,362 @@
+#!/usr/bin/env python3
+# -*- coding:utf-8 -*-
+
+import torch
+import torch.nn as nn
+import numpy as np
+import torch.nn.functional as F
+from yolov6.assigners.anchor_generator import generate_anchors
+from yolov6.utils.general import dist2bbox, bbox2dist, xywh2xyxy
+from yolov6.utils.figure_iou import IOUloss
+from yolov6.assigners.atss_assigner import ATSSAssigner
+from yolov6.assigners.tal_assigner import TaskAlignedAssigner
+
+
+class ComputeLoss:
+ '''Loss computation func.'''
+ def __init__(self,
+ fpn_strides=[8, 16, 32],
+ grid_cell_size=5.0,
+ grid_cell_offset=0.5,
+ num_classes=80,
+ ori_img_size=640,
+ warmup_epoch=0,
+ use_dfl=True,
+ reg_max=16,
+ iou_type='giou',
+ loss_weight={
+ 'class': 1.0,
+ 'iou': 2.5,
+ 'dfl': 0.5,
+ 'cwd': 10.0},
+ distill_feat = False,
+ distill_weight={
+ 'class': 1.0,
+ 'dfl': 1.0,
+ }
+ ):
+
+ self.fpn_strides = fpn_strides
+ self.grid_cell_size = grid_cell_size
+ self.grid_cell_offset = grid_cell_offset
+ self.num_classes = num_classes
+ self.ori_img_size = ori_img_size
+
+ self.warmup_epoch = warmup_epoch
+ self.warmup_assigner = ATSSAssigner(9, num_classes=self.num_classes)
+ self.formal_assigner = TaskAlignedAssigner(topk=13, num_classes=self.num_classes, alpha=1.0, beta=6.0)
+
+ self.use_dfl = use_dfl
+ self.reg_max = reg_max
+ self.proj = nn.Parameter(torch.linspace(0, self.reg_max, self.reg_max + 1), requires_grad=False)
+ self.iou_type = iou_type
+ self.varifocal_loss = VarifocalLoss().cuda()
+ self.bbox_loss = BboxLoss(self.num_classes, self.reg_max, self.use_dfl, self.iou_type).cuda()
+ self.loss_weight = loss_weight
+ self.distill_feat = distill_feat
+ self.distill_weight = distill_weight
+
+ def __call__(
+ self,
+ outputs,
+ t_outputs,
+ s_featmaps,
+ t_featmaps,
+ targets,
+ epoch_num,
+ max_epoch,
+ temperature,
+ step_num,
+ batch_height,
+ batch_width
+ ):
+
+ feats, pred_scores, pred_distri = outputs
+ t_feats, t_pred_scores, t_pred_distri = t_outputs[0], t_outputs[-2], t_outputs[-1]
+ anchors, anchor_points, n_anchors_list, stride_tensor = \
+ generate_anchors(feats, self.fpn_strides, self.grid_cell_size, self.grid_cell_offset, device=feats[0].device)
+ t_anchors, t_anchor_points, t_n_anchors_list, t_stride_tensor = \
+ generate_anchors(t_feats, self.fpn_strides, self.grid_cell_size, self.grid_cell_offset, device=feats[0].device)
+
+ assert pred_scores.type() == pred_distri.type()
+ gt_bboxes_scale = torch.tensor([batch_width, batch_height, batch_width, batch_height]).type_as(pred_scores)
+ batch_size = pred_scores.shape[0]
+
+ # targets
+ targets =self.preprocess(targets, batch_size, gt_bboxes_scale)
+ gt_labels = targets[:, :, :1]
+ gt_bboxes = targets[:, :, 1:] #xyxy
+ mask_gt = (gt_bboxes.sum(-1, keepdim=True) > 0).float()
+
+ # pboxes
+ anchor_points_s = anchor_points / stride_tensor
+ pred_bboxes = self.bbox_decode(anchor_points_s, pred_distri) #xyxy
+ t_anchor_points_s = t_anchor_points / t_stride_tensor
+ t_pred_bboxes = self.bbox_decode(t_anchor_points_s, t_pred_distri) #xyxy
+
+ try:
+ if epoch_num < self.warmup_epoch:
+ target_labels, target_bboxes, target_scores, fg_mask = \
+ self.warmup_assigner(
+ anchors,
+ n_anchors_list,
+ gt_labels,
+ gt_bboxes,
+ mask_gt,
+ pred_bboxes.detach() * stride_tensor)
+ else:
+ target_labels, target_bboxes, target_scores, fg_mask = \
+ self.formal_assigner(
+ pred_scores.detach(),
+ pred_bboxes.detach() * stride_tensor,
+ anchor_points,
+ gt_labels,
+ gt_bboxes,
+ mask_gt)
+
+ except RuntimeError:
+ print(
+ "OOM RuntimeError is raised due to the huge memory cost during label assignment. \
+ CPU mode is applied in this batch. If you want to avoid this issue, \
+ try to reduce the batch size or image size."
+ )
+ torch.cuda.empty_cache()
+ print("------------CPU Mode for This Batch-------------")
+ if epoch_num < self.warmup_epoch:
+ _anchors = anchors.cpu().float()
+ _n_anchors_list = n_anchors_list
+ _gt_labels = gt_labels.cpu().float()
+ _gt_bboxes = gt_bboxes.cpu().float()
+ _mask_gt = mask_gt.cpu().float()
+ _pred_bboxes = pred_bboxes.detach().cpu().float()
+ _stride_tensor = stride_tensor.cpu().float()
+
+ target_labels, target_bboxes, target_scores, fg_mask = \
+ self.warmup_assigner(
+ _anchors,
+ _n_anchors_list,
+ _gt_labels,
+ _gt_bboxes,
+ _mask_gt,
+ _pred_bboxes * _stride_tensor)
+
+ else:
+ _pred_scores = pred_scores.detach().cpu().float()
+ _pred_bboxes = pred_bboxes.detach().cpu().float()
+ _anchor_points = anchor_points.cpu().float()
+ _gt_labels = gt_labels.cpu().float()
+ _gt_bboxes = gt_bboxes.cpu().float()
+ _mask_gt = mask_gt.cpu().float()
+ _stride_tensor = stride_tensor.cpu().float()
+
+ target_labels, target_bboxes, target_scores, fg_mask = \
+ self.formal_assigner(
+ _pred_scores,
+ _pred_bboxes * _stride_tensor,
+ _anchor_points,
+ _gt_labels,
+ _gt_bboxes,
+ _mask_gt)
+
+ target_labels = target_labels.cuda()
+ target_bboxes = target_bboxes.cuda()
+ target_scores = target_scores.cuda()
+ fg_mask = fg_mask.cuda()
+
+ #Dynamic release GPU memory
+ if step_num % 10 == 0:
+ torch.cuda.empty_cache()
+
+ # rescale bbox
+ target_bboxes /= stride_tensor
+
+ # cls loss
+ target_labels = torch.where(fg_mask > 0, target_labels, torch.full_like(target_labels, self.num_classes))
+ one_hot_label = F.one_hot(target_labels.long(), self.num_classes + 1)[..., :-1]
+ loss_cls = self.varifocal_loss(pred_scores, target_scores, one_hot_label)
+
+ target_scores_sum = target_scores.sum()
+ # avoid devide zero error, devide by zero will cause loss to be inf or nan.
+ if target_scores_sum > 0:
+ loss_cls /= target_scores_sum
+
+ # bbox loss
+ loss_iou, loss_dfl, d_loss_dfl = self.bbox_loss(pred_distri, pred_bboxes, t_pred_distri, t_pred_bboxes, temperature, anchor_points_s,
+ target_bboxes, target_scores, target_scores_sum, fg_mask)
+
+ logits_student = pred_scores
+ logits_teacher = t_pred_scores
+ distill_num_classes = self.num_classes
+ d_loss_cls = self.distill_loss_cls(logits_student, logits_teacher, distill_num_classes, temperature)
+ if self.distill_feat:
+ d_loss_cw = self.distill_loss_cw(s_featmaps, t_featmaps)
+ else:
+ d_loss_cw = torch.tensor(0.).to(feats[0].device)
+ import math
+ distill_weightdecay = ((1 - math.cos(epoch_num * math.pi / max_epoch)) / 2) * (0.01- 1) + 1
+ d_loss_dfl *= distill_weightdecay
+ d_loss_cls *= distill_weightdecay
+ d_loss_cw *= distill_weightdecay
+ loss_cls_all = loss_cls + d_loss_cls * self.distill_weight['class']
+ loss_dfl_all = loss_dfl + d_loss_dfl * self.distill_weight['dfl']
+ loss = self.loss_weight['class'] * loss_cls_all + \
+ self.loss_weight['iou'] * loss_iou + \
+ self.loss_weight['dfl'] * loss_dfl_all + \
+ self.loss_weight['cwd'] * d_loss_cw
+
+ return loss, \
+ torch.cat(((self.loss_weight['iou'] * loss_iou).unsqueeze(0),
+ (self.loss_weight['dfl'] * loss_dfl_all).unsqueeze(0),
+ (self.loss_weight['class'] * loss_cls_all).unsqueeze(0),
+ (self.loss_weight['cwd'] * d_loss_cw).unsqueeze(0))).detach()
+
+ def distill_loss_cls(self, logits_student, logits_teacher, num_classes, temperature=20):
+ logits_student = logits_student.view(-1, num_classes)
+ logits_teacher = logits_teacher.view(-1, num_classes)
+ pred_student = F.softmax(logits_student / temperature, dim=1)
+ pred_teacher = F.softmax(logits_teacher / temperature, dim=1)
+ log_pred_student = torch.log(pred_student)
+
+ d_loss_cls = F.kl_div(log_pred_student, pred_teacher, reduction="sum")
+ d_loss_cls *= temperature**2
+ return d_loss_cls
+ def distill_loss_cw(self, s_feats, t_feats, temperature=1):
+ N,C,H,W = s_feats[0].shape
+ # print(N,C,H,W)
+ loss_cw = F.kl_div(F.log_softmax(s_feats[0].view(N,C,H*W)/temperature, dim=2),
+ F.log_softmax(t_feats[0].view(N,C,H*W).detach()/temperature, dim=2),
+ reduction='sum',
+ log_target=True) * (temperature * temperature)/ (N*C)
+
+ N,C,H,W = s_feats[1].shape
+ # print(N,C,H,W)
+ loss_cw += F.kl_div(F.log_softmax(s_feats[1].view(N,C,H*W)/temperature, dim=2),
+ F.log_softmax(t_feats[1].view(N,C,H*W).detach()/temperature, dim=2),
+ reduction='sum',
+ log_target=True) * (temperature * temperature)/ (N*C)
+
+ N,C,H,W = s_feats[2].shape
+ # print(N,C,H,W)
+ loss_cw += F.kl_div(F.log_softmax(s_feats[2].view(N,C,H*W)/temperature, dim=2),
+ F.log_softmax(t_feats[2].view(N,C,H*W).detach()/temperature, dim=2),
+ reduction='sum',
+ log_target=True) * (temperature * temperature)/ (N*C)
+ # print(loss_cw)
+ return loss_cw
+
+ def preprocess(self, targets, batch_size, scale_tensor):
+ targets_list = np.zeros((batch_size, 1, 5)).tolist()
+ for i, item in enumerate(targets.cpu().numpy().tolist()):
+ targets_list[int(item[0])].append(item[1:])
+ max_len = max((len(l) for l in targets_list))
+ targets = torch.from_numpy(np.array(list(map(lambda l:l + [[-1,0,0,0,0]]*(max_len - len(l)), targets_list)))[:,1:,:]).to(targets.device)
+ batch_target = targets[:, :, 1:5].mul_(scale_tensor)
+ targets[..., 1:] = xywh2xyxy(batch_target)
+ return targets
+
+ def bbox_decode(self, anchor_points, pred_dist):
+ if self.use_dfl:
+ batch_size, n_anchors, _ = pred_dist.shape
+ pred_dist = F.softmax(pred_dist.view(batch_size, n_anchors, 4, self.reg_max + 1), dim=-1).matmul(self.proj.to(pred_dist.device))
+ return dist2bbox(pred_dist, anchor_points)
+
+
+class VarifocalLoss(nn.Module):
+ def __init__(self):
+ super(VarifocalLoss, self).__init__()
+
+ def forward(self, pred_score,gt_score, label, alpha=0.75, gamma=2.0):
+
+ weight = alpha * pred_score.pow(gamma) * (1 - label) + gt_score * label
+ with torch.cuda.amp.autocast(enabled=False):
+ loss = (F.binary_cross_entropy(pred_score.float(), gt_score.float(), reduction='none') * weight).sum()
+
+ return loss
+
+
+class BboxLoss(nn.Module):
+ def __init__(self, num_classes, reg_max, use_dfl=False, iou_type='giou'):
+ super(BboxLoss, self).__init__()
+ self.num_classes = num_classes
+ self.iou_loss = IOUloss(box_format='xyxy', iou_type=iou_type, eps=1e-10)
+ self.reg_max = reg_max
+ self.use_dfl = use_dfl
+
+ def forward(self, pred_dist, pred_bboxes, t_pred_dist, t_pred_bboxes, temperature, anchor_points,
+ target_bboxes, target_scores, target_scores_sum, fg_mask):
+ # select positive samples mask
+ num_pos = fg_mask.sum()
+ if num_pos > 0:
+ # iou loss
+ bbox_mask = fg_mask.unsqueeze(-1).repeat([1, 1, 4])
+ pred_bboxes_pos = torch.masked_select(pred_bboxes,
+ bbox_mask).reshape([-1, 4])
+ t_pred_bboxes_pos = torch.masked_select(t_pred_bboxes,
+ bbox_mask).reshape([-1, 4])
+ target_bboxes_pos = torch.masked_select(
+ target_bboxes, bbox_mask).reshape([-1, 4])
+ bbox_weight = torch.masked_select(
+ target_scores.sum(-1), fg_mask).unsqueeze(-1)
+ loss_iou = self.iou_loss(pred_bboxes_pos,
+ target_bboxes_pos) * bbox_weight
+ if target_scores_sum == 0:
+ loss_iou = loss_iou.sum()
+ else:
+ loss_iou = loss_iou.sum() / target_scores_sum
+
+ # dfl loss
+ if self.use_dfl:
+ dist_mask = fg_mask.unsqueeze(-1).repeat(
+ [1, 1, (self.reg_max + 1) * 4])
+ pred_dist_pos = torch.masked_select(
+ pred_dist, dist_mask).reshape([-1, 4, self.reg_max + 1])
+ t_pred_dist_pos = torch.masked_select(
+ t_pred_dist, dist_mask).reshape([-1, 4, self.reg_max + 1])
+ target_ltrb = bbox2dist(anchor_points, target_bboxes, self.reg_max)
+ target_ltrb_pos = torch.masked_select(
+ target_ltrb, bbox_mask).reshape([-1, 4])
+ loss_dfl = self._df_loss(pred_dist_pos,
+ target_ltrb_pos) * bbox_weight
+ d_loss_dfl = self.distill_loss_dfl(pred_dist_pos, t_pred_dist_pos, temperature) * bbox_weight
+ if target_scores_sum == 0:
+ loss_dfl = loss_dfl.sum()
+ d_loss_dfl = d_loss_dfl.sum()
+ else:
+ loss_dfl = loss_dfl.sum() / target_scores_sum
+ d_loss_dfl = d_loss_dfl.sum() / target_scores_sum
+ else:
+ loss_dfl = pred_dist.sum() * 0.
+ d_loss_dfl = pred_dist.sum() * 0.
+
+ else:
+
+ loss_iou = pred_dist.sum() * 0.
+ loss_dfl = pred_dist.sum() * 0.
+ d_loss_dfl = pred_dist.sum() * 0.
+
+ return loss_iou, loss_dfl, d_loss_dfl
+
+ def _df_loss(self, pred_dist, target):
+ target_left = target.to(torch.long)
+ target_right = target_left + 1
+ weight_left = target_right.to(torch.float) - target
+ weight_right = 1 - weight_left
+ loss_left = F.cross_entropy(
+ pred_dist.view(-1, self.reg_max + 1), target_left.view(-1), reduction='none').view(
+ target_left.shape) * weight_left
+ loss_right = F.cross_entropy(
+ pred_dist.view(-1, self.reg_max + 1), target_right.view(-1), reduction='none').view(
+ target_left.shape) * weight_right
+ return (loss_left + loss_right).mean(-1, keepdim=True)
+
+ def distill_loss_dfl(self, logits_student, logits_teacher, temperature=20):
+
+ logits_student = logits_student.view(-1,17)
+ logits_teacher = logits_teacher.view(-1,17)
+ pred_student = F.softmax(logits_student / temperature, dim=1)
+ pred_teacher = F.softmax(logits_teacher / temperature, dim=1)
+ log_pred_student = torch.log(pred_student)
+
+ d_loss_dfl = F.kl_div(log_pred_student, pred_teacher, reduction="none").sum(1).mean()
+ d_loss_dfl *= temperature**2
+ return d_loss_dfl
diff --git a/python/app/fedcv/YOLOv6/yolov6/models/losses/loss_distill_ns.py b/python/app/fedcv/YOLOv6/yolov6/models/losses/loss_distill_ns.py
new file mode 100644
index 0000000000..9a5ba9b786
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/yolov6/models/losses/loss_distill_ns.py
@@ -0,0 +1,350 @@
+#!/usr/bin/env python3
+# -*- coding:utf-8 -*-
+
+import torch
+import torch.nn as nn
+import numpy as np
+import torch.nn.functional as F
+from yolov6.assigners.anchor_generator import generate_anchors
+from yolov6.utils.general import dist2bbox, bbox2dist, xywh2xyxy
+from yolov6.utils.figure_iou import IOUloss
+from yolov6.assigners.atss_assigner import ATSSAssigner
+from yolov6.assigners.tal_assigner import TaskAlignedAssigner
+
+
+class ComputeLoss:
+ '''Loss computation func.'''
+ def __init__(self,
+ fpn_strides=[8, 16, 32],
+ grid_cell_size=5.0,
+ grid_cell_offset=0.5,
+ num_classes=80,
+ ori_img_size=640,
+ warmup_epoch=0,
+ use_dfl=True,
+ reg_max=16,
+ iou_type='giou',
+ loss_weight={
+ 'class': 1.0,
+ 'iou': 2.5,
+ 'dfl': 0.5,
+ 'cwd': 10.0},
+ distill_feat = False,
+ distill_weight={
+ 'class': 1.0,
+ 'dfl': 1.0,
+ }
+ ):
+
+ self.fpn_strides = fpn_strides
+ self.grid_cell_size = grid_cell_size
+ self.grid_cell_offset = grid_cell_offset
+ self.num_classes = num_classes
+ self.ori_img_size = ori_img_size
+
+ self.warmup_epoch = warmup_epoch
+ self.formal_assigner = TaskAlignedAssigner(topk=13, num_classes=self.num_classes, alpha=1.0, beta=6.0)
+
+ self.use_dfl = use_dfl
+ self.reg_max = reg_max
+ self.proj = nn.Parameter(torch.linspace(0, self.reg_max, self.reg_max + 1), requires_grad=False)
+ self.iou_type = iou_type
+ self.varifocal_loss = VarifocalLoss().cuda()
+ self.bbox_loss = BboxLoss(self.num_classes, self.reg_max, self.use_dfl, self.iou_type).cuda()
+ self.loss_weight = loss_weight
+ self.distill_feat = distill_feat
+ self.distill_weight = distill_weight
+
+ def __call__(
+ self,
+ outputs,
+ t_outputs,
+ s_featmaps,
+ t_featmaps,
+ targets,
+ epoch_num,
+ max_epoch,
+ temperature,
+ step_num,
+ batch_height,
+ batch_width
+ ):
+
+ feats, pred_scores, pred_distri, pred_lrtb = outputs
+ t_feats, t_pred_scores, t_pred_distri = t_outputs[0], t_outputs[-2], t_outputs[-1]
+ anchors, anchor_points, n_anchors_list, stride_tensor = \
+ generate_anchors(feats, self.fpn_strides, self.grid_cell_size, self.grid_cell_offset, device=feats[0].device)
+ t_anchors, t_anchor_points, t_n_anchors_list, t_stride_tensor = \
+ generate_anchors(t_feats, self.fpn_strides, self.grid_cell_size, self.grid_cell_offset, device=feats[0].device)
+
+ assert pred_scores.type() == pred_distri.type()
+ gt_bboxes_scale = torch.tensor([batch_width, batch_height, batch_width, batch_height]).type_as(pred_scores)
+ batch_size = pred_scores.shape[0]
+
+ # targets
+ targets =self.preprocess(targets, batch_size, gt_bboxes_scale)
+ gt_labels = targets[:, :, :1]
+ gt_bboxes = targets[:, :, 1:] #xyxy
+ mask_gt = (gt_bboxes.sum(-1, keepdim=True) > 0).float()
+
+ # pboxes
+ anchor_points_s = anchor_points / stride_tensor
+ pred_bboxes = self.bbox_decode(anchor_points_s, pred_distri) #xyxy #distri branch
+ pred_bboxes_lrtb = dist2bbox(pred_lrtb, anchor_points_s) #iou branch
+ t_anchor_points_s = t_anchor_points / t_stride_tensor
+ t_pred_bboxes = self.bbox_decode(t_anchor_points_s, t_pred_distri) #xyxy
+ try:
+ target_labels, target_bboxes, target_scores, fg_mask = \
+ self.formal_assigner(
+ pred_scores.detach(),
+ pred_bboxes.detach() * stride_tensor,
+ anchor_points,
+ gt_labels,
+ gt_bboxes,
+ mask_gt)
+
+ except RuntimeError:
+ print(
+ "OOM RuntimeError is raised due to the huge memory cost during label assignment. \
+ CPU mode is applied in this batch. If you want to avoid this issue, \
+ try to reduce the batch size or image size."
+ )
+ torch.cuda.empty_cache()
+ print("------------CPU Mode for This Batch-------------")
+ _pred_scores = pred_scores.detach().cpu().float()
+ _pred_bboxes = pred_bboxes.detach().cpu().float()
+ _anchor_points = anchor_points.cpu().float()
+ _gt_labels = gt_labels.cpu().float()
+ _gt_bboxes = gt_bboxes.cpu().float()
+ _mask_gt = mask_gt.cpu().float()
+ _stride_tensor = stride_tensor.cpu().float()
+
+ target_labels, target_bboxes, target_scores, fg_mask = \
+ self.formal_assigner(
+ _pred_scores,
+ _pred_bboxes * _stride_tensor,
+ _anchor_points,
+ _gt_labels,
+ _gt_bboxes,
+ _mask_gt)
+
+ target_labels = target_labels.cuda()
+ target_bboxes = target_bboxes.cuda()
+ target_scores = target_scores.cuda()
+ fg_mask = fg_mask.cuda()
+
+ #Dynamic release GPU memory
+ if step_num % 10 == 0:
+ torch.cuda.empty_cache()
+
+ # rescale bbox
+ target_bboxes /= stride_tensor
+
+ # cls loss
+ target_labels = torch.where(fg_mask > 0, target_labels, torch.full_like(target_labels, self.num_classes))
+ one_hot_label = F.one_hot(target_labels.long(), self.num_classes + 1)[..., :-1]
+ loss_cls = self.varifocal_loss(pred_scores, target_scores, one_hot_label)
+
+ target_scores_sum = target_scores.sum()
+ # avoid devide zero error, devide by zero will cause loss to be inf or nan.
+ if target_scores_sum > 0:
+ loss_cls /= target_scores_sum
+
+ # bbox loss
+ loss_iou, loss_dfl, d_loss_dfl = self.bbox_loss(pred_distri,
+ pred_bboxes_lrtb,
+ pred_bboxes,
+ t_pred_distri,
+ t_pred_bboxes,
+ temperature,
+ anchor_points_s,
+ target_bboxes,
+ target_scores,
+ target_scores_sum,
+ fg_mask)
+
+ logits_student = pred_scores
+ logits_teacher = t_pred_scores
+ distill_num_classes = self.num_classes
+ d_loss_cls = self.distill_loss_cls(logits_student, logits_teacher, distill_num_classes, temperature)
+ if self.distill_feat:
+ d_loss_cw = self.distill_loss_cw(s_featmaps, t_featmaps)
+ else:
+ d_loss_cw = torch.tensor(0.).to(feats[0].device)
+ import math
+ distill_weightdecay = ((1 - math.cos(epoch_num * math.pi / max_epoch)) / 2) * (0.01- 1) + 1
+ d_loss_dfl *= distill_weightdecay
+ d_loss_cls *= distill_weightdecay
+ d_loss_cw *= distill_weightdecay
+ loss_cls_all = loss_cls + d_loss_cls * self.distill_weight['class']
+ loss_dfl_all = loss_dfl + d_loss_dfl * self.distill_weight['dfl']
+ loss = self.loss_weight['class'] * loss_cls_all + \
+ self.loss_weight['iou'] * loss_iou + \
+ self.loss_weight['dfl'] * loss_dfl_all + \
+ self.loss_weight['cwd'] * d_loss_cw
+
+ return loss, \
+ torch.cat(((self.loss_weight['iou'] * loss_iou).unsqueeze(0),
+ (self.loss_weight['dfl'] * loss_dfl_all).unsqueeze(0),
+ (self.loss_weight['class'] * loss_cls_all).unsqueeze(0),
+ (self.loss_weight['cwd'] * d_loss_cw).unsqueeze(0))).detach()
+
+ def distill_loss_cls(self, logits_student, logits_teacher, num_classes, temperature=20):
+ logits_student = logits_student.view(-1, num_classes)
+ logits_teacher = logits_teacher.view(-1, num_classes)
+ pred_student = F.softmax(logits_student / temperature, dim=1)
+ pred_teacher = F.softmax(logits_teacher / temperature, dim=1)
+ log_pred_student = torch.log(pred_student)
+
+ d_loss_cls = F.kl_div(log_pred_student, pred_teacher, reduction="sum")
+ d_loss_cls *= temperature**2
+ return d_loss_cls
+
+ def distill_loss_cw(self, s_feats, t_feats, temperature=1):
+ N,C,H,W = s_feats[0].shape
+ # print(N,C,H,W)
+ loss_cw = F.kl_div(F.log_softmax(s_feats[0].view(N,C,H*W)/temperature, dim=2),
+ F.log_softmax(t_feats[0].view(N,C,H*W).detach()/temperature, dim=2),
+ reduction='sum',
+ log_target=True) * (temperature * temperature)/ (N*C)
+
+ N,C,H,W = s_feats[1].shape
+ # print(N,C,H,W)
+ loss_cw += F.kl_div(F.log_softmax(s_feats[1].view(N,C,H*W)/temperature, dim=2),
+ F.log_softmax(t_feats[1].view(N,C,H*W).detach()/temperature, dim=2),
+ reduction='sum',
+ log_target=True) * (temperature * temperature)/ (N*C)
+
+ N,C,H,W = s_feats[2].shape
+ # print(N,C,H,W)
+ loss_cw += F.kl_div(F.log_softmax(s_feats[2].view(N,C,H*W)/temperature, dim=2),
+ F.log_softmax(t_feats[2].view(N,C,H*W).detach()/temperature, dim=2),
+ reduction='sum',
+ log_target=True) * (temperature * temperature)/ (N*C)
+ # print(loss_cw)
+ return loss_cw
+
+ def preprocess(self, targets, batch_size, scale_tensor):
+ targets_list = np.zeros((batch_size, 1, 5)).tolist()
+ for i, item in enumerate(targets.cpu().numpy().tolist()):
+ targets_list[int(item[0])].append(item[1:])
+ max_len = max((len(l) for l in targets_list))
+ targets = torch.from_numpy(np.array(list(map(lambda l:l + [[-1,0,0,0,0]]*(max_len - len(l)), targets_list)))[:,1:,:]).to(targets.device)
+ batch_target = targets[:, :, 1:5].mul_(scale_tensor)
+ targets[..., 1:] = xywh2xyxy(batch_target)
+ return targets
+
+ def bbox_decode(self, anchor_points, pred_dist):
+ if self.use_dfl:
+ batch_size, n_anchors, _ = pred_dist.shape
+ pred_dist = F.softmax(pred_dist.view(batch_size, n_anchors, 4, self.reg_max + 1), dim=-1).matmul(self.proj.to(pred_dist.device))
+ return dist2bbox(pred_dist, anchor_points)
+
+
+class VarifocalLoss(nn.Module):
+ def __init__(self):
+ super(VarifocalLoss, self).__init__()
+
+ def forward(self, pred_score,gt_score, label, alpha=0.75, gamma=2.0):
+
+ weight = alpha * pred_score.pow(gamma) * (1 - label) + gt_score * label
+ with torch.cuda.amp.autocast(enabled=False):
+ loss = (F.binary_cross_entropy(pred_score.float(), gt_score.float(), reduction='none') * weight).sum()
+
+ return loss
+
+
+class BboxLoss(nn.Module):
+ def __init__(self, num_classes, reg_max, use_dfl=False, iou_type='giou'):
+ super(BboxLoss, self).__init__()
+ self.num_classes = num_classes
+ self.iou_loss = IOUloss(box_format='xyxy', iou_type=iou_type, eps=1e-10)
+ self.reg_max = reg_max
+ self.use_dfl = use_dfl
+
+ def forward(self, pred_dist, pred_bboxes_lrtb, pred_bboxes, t_pred_dist, t_pred_bboxes, temperature, anchor_points,
+ target_bboxes, target_scores, target_scores_sum, fg_mask):
+ # select positive samples mask
+ num_pos = fg_mask.sum()
+ if num_pos > 0:
+ # iou loss
+ bbox_mask = fg_mask.unsqueeze(-1).repeat([1, 1, 4])
+ pred_bboxes_pos = torch.masked_select(pred_bboxes,
+ bbox_mask).reshape([-1, 4])
+ pred_bboxes_lrtb_pos = torch.masked_select(pred_bboxes_lrtb,
+ bbox_mask).reshape([-1, 4])
+ t_pred_bboxes_pos = torch.masked_select(t_pred_bboxes,
+ bbox_mask).reshape([-1, 4])
+ target_bboxes_pos = torch.masked_select(
+ target_bboxes, bbox_mask).reshape([-1, 4])
+ bbox_weight = torch.masked_select(
+ target_scores.sum(-1), fg_mask).unsqueeze(-1)
+ loss_iou = self.iou_loss(pred_bboxes_pos,
+ target_bboxes_pos) * bbox_weight
+ loss_iou_lrtb = self.iou_loss(pred_bboxes_lrtb_pos,
+ target_bboxes_pos) * bbox_weight
+
+ if target_scores_sum == 0:
+ loss_iou = loss_iou.sum()
+ loss_iou_lrtb = loss_iou_lrtb.sum()
+ else:
+ loss_iou = loss_iou.sum() / target_scores_sum
+ loss_iou_lrtb = loss_iou_lrtb.sum() / target_scores_sum
+
+ # dfl loss
+ if self.use_dfl:
+ dist_mask = fg_mask.unsqueeze(-1).repeat(
+ [1, 1, (self.reg_max + 1) * 4])
+ pred_dist_pos = torch.masked_select(
+ pred_dist, dist_mask).reshape([-1, 4, self.reg_max + 1])
+ t_pred_dist_pos = torch.masked_select(
+ t_pred_dist, dist_mask).reshape([-1, 4, self.reg_max + 1])
+ target_ltrb = bbox2dist(anchor_points, target_bboxes, self.reg_max)
+ target_ltrb_pos = torch.masked_select(
+ target_ltrb, bbox_mask).reshape([-1, 4])
+ loss_dfl = self._df_loss(pred_dist_pos,
+ target_ltrb_pos) * bbox_weight
+ d_loss_dfl = self.distill_loss_dfl(pred_dist_pos, t_pred_dist_pos, temperature) * bbox_weight
+ if target_scores_sum == 0:
+ loss_dfl = loss_dfl.sum()
+ d_loss_dfl = d_loss_dfl.sum()
+ else:
+ loss_dfl = loss_dfl.sum() / target_scores_sum
+ d_loss_dfl = d_loss_dfl.sum() / target_scores_sum
+ else:
+ loss_dfl = pred_dist.sum() * 0.
+ d_loss_dfl = pred_dist.sum() * 0.
+
+ else:
+
+ loss_iou = pred_dist.sum() * 0.
+ loss_dfl = pred_dist.sum() * 0.
+ d_loss_dfl = pred_dist.sum() * 0.
+ loss_iou_lrtb = pred_dist.sum() * 0.
+
+ return (loss_iou + loss_iou_lrtb), loss_dfl, d_loss_dfl
+
+ def _df_loss(self, pred_dist, target):
+ target_left = target.to(torch.long)
+ target_right = target_left + 1
+ weight_left = target_right.to(torch.float) - target
+ weight_right = 1 - weight_left
+ loss_left = F.cross_entropy(
+ pred_dist.view(-1, self.reg_max + 1), target_left.view(-1), reduction='none').view(
+ target_left.shape) * weight_left
+ loss_right = F.cross_entropy(
+ pred_dist.view(-1, self.reg_max + 1), target_right.view(-1), reduction='none').view(
+ target_left.shape) * weight_right
+ return (loss_left + loss_right).mean(-1, keepdim=True)
+
+ def distill_loss_dfl(self, logits_student, logits_teacher, temperature=20):
+
+ logits_student = logits_student.view(-1,17)
+ logits_teacher = logits_teacher.view(-1,17)
+ pred_student = F.softmax(logits_student / temperature, dim=1)
+ pred_teacher = F.softmax(logits_teacher / temperature, dim=1)
+ log_pred_student = torch.log(pred_student)
+
+ d_loss_dfl = F.kl_div(log_pred_student, pred_teacher, reduction="none").sum(1).mean()
+ d_loss_dfl *= temperature**2
+ return d_loss_dfl
diff --git a/python/app/fedcv/YOLOv6/yolov6/models/losses/loss_fuseab.py b/python/app/fedcv/YOLOv6/yolov6/models/losses/loss_fuseab.py
new file mode 100644
index 0000000000..4ae91f376a
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/yolov6/models/losses/loss_fuseab.py
@@ -0,0 +1,243 @@
+#!/usr/bin/env python3
+# -*- coding:utf-8 -*-
+
+import torch
+import torch.nn as nn
+import numpy as np
+import torch.nn.functional as F
+from yolov6.assigners.anchor_generator import generate_anchors
+from yolov6.utils.general import dist2bbox, bbox2dist, xywh2xyxy, box_iou
+from yolov6.utils.figure_iou import IOUloss
+from yolov6.assigners.tal_assigner import TaskAlignedAssigner
+
+
+class ComputeLoss:
+ '''Loss computation func.'''
+ def __init__(self,
+ fpn_strides=[8, 16, 32],
+ grid_cell_size=5.0,
+ grid_cell_offset=0.5,
+ num_classes=80,
+ ori_img_size=640,
+ warmup_epoch=0,
+ use_dfl=True,
+ reg_max=16,
+ iou_type='giou',
+ loss_weight={
+ 'class': 1.0,
+ 'iou': 2.5,
+ 'dfl': 0.5},
+ ):
+
+ self.fpn_strides = fpn_strides
+ self.grid_cell_size = grid_cell_size
+ self.grid_cell_offset = grid_cell_offset
+ self.num_classes = num_classes
+ self.ori_img_size = ori_img_size
+
+ self.warmup_epoch = warmup_epoch
+ self.formal_assigner = TaskAlignedAssigner(topk=26, num_classes=self.num_classes, alpha=1.0, beta=6.0)
+
+ self.use_dfl = use_dfl
+ self.reg_max = reg_max
+ self.proj = nn.Parameter(torch.linspace(0, self.reg_max, self.reg_max + 1), requires_grad=False)
+ self.iou_type = iou_type
+ self.varifocal_loss = VarifocalLoss().cuda()
+ self.bbox_loss = BboxLoss(self.num_classes, self.reg_max, self.use_dfl, self.iou_type).cuda()
+ self.loss_weight = loss_weight
+
+ def __call__(
+ self,
+ outputs,
+ targets,
+ epoch_num,
+ step_num,
+ batch_height,
+ batch_width
+ ):
+
+ feats, pred_scores, pred_distri = outputs
+ anchors, anchor_points, n_anchors_list, stride_tensor = \
+ generate_anchors(feats, self.fpn_strides, self.grid_cell_size, self.grid_cell_offset, device=feats[0].device, is_eval=False, mode='ab')
+
+ assert pred_scores.type() == pred_distri.type()
+ gt_bboxes_scale = torch.tensor([batch_width, batch_height, batch_width, batch_height]).type_as(pred_scores)
+ batch_size = pred_scores.shape[0]
+
+ # targets
+ targets =self.preprocess(targets, batch_size, gt_bboxes_scale)
+ gt_labels = targets[:, :, :1]
+ gt_bboxes = targets[:, :, 1:] #xyxy
+ mask_gt = (gt_bboxes.sum(-1, keepdim=True) > 0).float()
+
+ # pboxes
+ anchor_points_s = anchor_points / stride_tensor
+ pred_distri[..., :2] += anchor_points_s
+ pred_bboxes = xywh2xyxy(pred_distri)
+
+ try:
+ target_labels, target_bboxes, target_scores, fg_mask = \
+ self.formal_assigner(
+ pred_scores.detach(),
+ pred_bboxes.detach() * stride_tensor,
+ anchor_points,
+ gt_labels,
+ gt_bboxes,
+ mask_gt)
+
+ except RuntimeError:
+ print(
+ "OOM RuntimeError is raised due to the huge memory cost during label assignment. \
+ CPU mode is applied in this batch. If you want to avoid this issue, \
+ try to reduce the batch size or image size."
+ )
+ torch.cuda.empty_cache()
+ print("------------CPU Mode for This Batch-------------")
+
+ _pred_scores = pred_scores.detach().cpu().float()
+ _pred_bboxes = pred_bboxes.detach().cpu().float()
+ _anchor_points = anchor_points.cpu().float()
+ _gt_labels = gt_labels.cpu().float()
+ _gt_bboxes = gt_bboxes.cpu().float()
+ _mask_gt = mask_gt.cpu().float()
+ _stride_tensor = stride_tensor.cpu().float()
+
+ target_labels, target_bboxes, target_scores, fg_mask = \
+ self.formal_assigner(
+ _pred_scores,
+ _pred_bboxes * _stride_tensor,
+ _anchor_points,
+ _gt_labels,
+ _gt_bboxes,
+ _mask_gt)
+
+ target_labels = target_labels.cuda()
+ target_bboxes = target_bboxes.cuda()
+ target_scores = target_scores.cuda()
+ fg_mask = fg_mask.cuda()
+ #Dynamic release GPU memory
+ if step_num % 10 == 0:
+ torch.cuda.empty_cache()
+
+ # rescale bbox
+ target_bboxes /= stride_tensor
+
+ # cls loss
+ target_labels = torch.where(fg_mask > 0, target_labels, torch.full_like(target_labels, self.num_classes))
+ one_hot_label = F.one_hot(target_labels.long(), self.num_classes + 1)[..., :-1]
+ loss_cls = self.varifocal_loss(pred_scores, target_scores, one_hot_label)
+
+ target_scores_sum = target_scores.sum()
+ # avoid devide zero error, devide by zero will cause loss to be inf or nan.
+ # if target_scores_sum is 0, loss_cls equals to 0 alson
+ if target_scores_sum > 0:
+ loss_cls /= target_scores_sum
+
+ # bbox loss
+ loss_iou, loss_dfl = self.bbox_loss(pred_distri, pred_bboxes, anchor_points_s, target_bboxes,
+ target_scores, target_scores_sum, fg_mask)
+
+ loss = self.loss_weight['class'] * loss_cls + \
+ self.loss_weight['iou'] * loss_iou + \
+ self.loss_weight['dfl'] * loss_dfl
+
+ return loss, \
+ torch.cat(((self.loss_weight['iou'] * loss_iou).unsqueeze(0),
+ (self.loss_weight['dfl'] * loss_dfl).unsqueeze(0),
+ (self.loss_weight['class'] * loss_cls).unsqueeze(0))).detach()
+
+ def preprocess(self, targets, batch_size, scale_tensor):
+ targets_list = np.zeros((batch_size, 1, 5)).tolist()
+ for i, item in enumerate(targets.cpu().numpy().tolist()):
+ targets_list[int(item[0])].append(item[1:])
+ max_len = max((len(l) for l in targets_list))
+ targets = torch.from_numpy(np.array(list(map(lambda l:l + [[-1,0,0,0,0]]*(max_len - len(l)), targets_list)))[:,1:,:]).to(targets.device)
+ batch_target = targets[:, :, 1:5].mul_(scale_tensor)
+ targets[..., 1:] = xywh2xyxy(batch_target)
+ return targets
+
+ def bbox_decode(self, anchor_points, pred_dist):
+ if self.use_dfl:
+ batch_size, n_anchors, _ = pred_dist.shape
+ pred_dist = F.softmax(pred_dist.view(batch_size, n_anchors, 4, self.reg_max + 1), dim=-1).matmul(self.proj.to(pred_dist.device))
+ return dist2bbox(pred_dist, anchor_points)
+
+
+class VarifocalLoss(nn.Module):
+ def __init__(self):
+ super(VarifocalLoss, self).__init__()
+
+ def forward(self, pred_score,gt_score, label, alpha=0.75, gamma=2.0):
+
+ weight = alpha * pred_score.pow(gamma) * (1 - label) + gt_score * label
+ with torch.cuda.amp.autocast(enabled=False):
+ loss = (F.binary_cross_entropy(pred_score.float(), gt_score.float(), reduction='none') * weight).sum()
+
+ return loss
+
+
+class BboxLoss(nn.Module):
+ def __init__(self, num_classes, reg_max, use_dfl=False, iou_type='giou'):
+ super(BboxLoss, self).__init__()
+ self.num_classes = num_classes
+ self.iou_loss = IOUloss(box_format='xyxy', iou_type=iou_type, eps=1e-10)
+ self.reg_max = reg_max
+ self.use_dfl = use_dfl
+
+ def forward(self, pred_dist, pred_bboxes, anchor_points,
+ target_bboxes, target_scores, target_scores_sum, fg_mask):
+
+ # select positive samples mask
+ num_pos = fg_mask.sum()
+ if num_pos > 0:
+ # iou loss
+ bbox_mask = fg_mask.unsqueeze(-1).repeat([1, 1, 4])
+ pred_bboxes_pos = torch.masked_select(pred_bboxes,
+ bbox_mask).reshape([-1, 4])
+ target_bboxes_pos = torch.masked_select(
+ target_bboxes, bbox_mask).reshape([-1, 4])
+ bbox_weight = torch.masked_select(
+ target_scores.sum(-1), fg_mask).unsqueeze(-1)
+ loss_iou = self.iou_loss(pred_bboxes_pos,
+ target_bboxes_pos) * bbox_weight
+ if target_scores_sum == 0:
+ loss_iou = loss_iou.sum()
+ else:
+ loss_iou = loss_iou.sum() / target_scores_sum
+
+ # dfl loss
+ if self.use_dfl:
+ dist_mask = fg_mask.unsqueeze(-1).repeat(
+ [1, 1, (self.reg_max + 1) * 4])
+ pred_dist_pos = torch.masked_select(
+ pred_dist, dist_mask).reshape([-1, 4, self.reg_max + 1])
+ target_ltrb = bbox2dist(anchor_points, target_bboxes, self.reg_max)
+ target_ltrb_pos = torch.masked_select(
+ target_ltrb, bbox_mask).reshape([-1, 4])
+ loss_dfl = self._df_loss(pred_dist_pos,
+ target_ltrb_pos) * bbox_weight
+ if target_scores_sum == 0:
+ loss_dfl = loss_dfl.sum()
+ else:
+ loss_dfl = loss_dfl.sum() / target_scores_sum
+ else:
+ loss_dfl = pred_dist.sum() * 0.
+
+ else:
+ loss_iou = pred_dist.sum() * 0.
+ loss_dfl = pred_dist.sum() * 0.
+
+ return loss_iou, loss_dfl
+
+ def _df_loss(self, pred_dist, target):
+ target_left = target.to(torch.long)
+ target_right = target_left + 1
+ weight_left = target_right.to(torch.float) - target
+ weight_right = 1 - weight_left
+ loss_left = F.cross_entropy(
+ pred_dist.view(-1, self.reg_max + 1), target_left.view(-1), reduction='none').view(
+ target_left.shape) * weight_left
+ loss_right = F.cross_entropy(
+ pred_dist.view(-1, self.reg_max + 1), target_right.view(-1), reduction='none').view(
+ target_left.shape) * weight_right
+ return (loss_left + loss_right).mean(-1, keepdim=True)
diff --git a/python/app/fedcv/YOLOv6/yolov6/models/reppan.py b/python/app/fedcv/YOLOv6/yolov6/models/reppan.py
new file mode 100644
index 0000000000..2114f52120
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/yolov6/models/reppan.py
@@ -0,0 +1,1226 @@
+import torch
+from torch import nn
+from yolov6.layers.common import RepBlock, RepVGGBlock, BottleRep, BepC3, ConvBNReLU, Transpose, BiFusion, \
+ MBLABlock, ConvBNHS, CSPBlock, DPBlock
+
+# _QUANT=False
+class RepPANNeck(nn.Module):
+ """RepPANNeck Module
+ EfficientRep is the default backbone of this model.
+ RepPANNeck has the balance of feature fusion ability and hardware efficiency.
+ """
+
+ def __init__(
+ self,
+ channels_list=None,
+ num_repeats=None,
+ block=RepVGGBlock
+ ):
+ super().__init__()
+
+ assert channels_list is not None
+ assert num_repeats is not None
+
+ self.Rep_p4 = RepBlock(
+ in_channels=channels_list[3] + channels_list[5],
+ out_channels=channels_list[5],
+ n=num_repeats[5],
+ block=block
+ )
+
+ self.Rep_p3 = RepBlock(
+ in_channels=channels_list[2] + channels_list[6],
+ out_channels=channels_list[6],
+ n=num_repeats[6],
+ block=block
+ )
+
+ self.Rep_n3 = RepBlock(
+ in_channels=channels_list[6] + channels_list[7],
+ out_channels=channels_list[8],
+ n=num_repeats[7],
+ block=block
+ )
+
+ self.Rep_n4 = RepBlock(
+ in_channels=channels_list[5] + channels_list[9],
+ out_channels=channels_list[10],
+ n=num_repeats[8],
+ block=block
+ )
+
+ self.reduce_layer0 = ConvBNReLU(
+ in_channels=channels_list[4],
+ out_channels=channels_list[5],
+ kernel_size=1,
+ stride=1
+ )
+
+ self.upsample0 = Transpose(
+ in_channels=channels_list[5],
+ out_channels=channels_list[5],
+ )
+
+ self.reduce_layer1 = ConvBNReLU(
+ in_channels=channels_list[5],
+ out_channels=channels_list[6],
+ kernel_size=1,
+ stride=1
+ )
+
+ self.upsample1 = Transpose(
+ in_channels=channels_list[6],
+ out_channels=channels_list[6]
+ )
+
+ self.downsample2 = ConvBNReLU(
+ in_channels=channels_list[6],
+ out_channels=channels_list[7],
+ kernel_size=3,
+ stride=2
+ )
+
+ self.downsample1 = ConvBNReLU(
+ in_channels=channels_list[8],
+ out_channels=channels_list[9],
+ kernel_size=3,
+ stride=2
+ )
+
+ def upsample_enable_quant(self, num_bits, calib_method):
+ print("Insert fakequant after upsample")
+ # Insert fakequant after upsample op to build TensorRT engine
+ from pytorch_quantization import nn as quant_nn
+ from pytorch_quantization.tensor_quant import QuantDescriptor
+ conv2d_input_default_desc = QuantDescriptor(num_bits=num_bits, calib_method=calib_method)
+ self.upsample_feat0_quant = quant_nn.TensorQuantizer(conv2d_input_default_desc)
+ self.upsample_feat1_quant = quant_nn.TensorQuantizer(conv2d_input_default_desc)
+ # global _QUANT
+ self._QUANT = True
+
+ def forward(self, input):
+
+ (x2, x1, x0) = input
+
+ fpn_out0 = self.reduce_layer0(x0)
+ upsample_feat0 = self.upsample0(fpn_out0)
+ if hasattr(self, '_QUANT') and self._QUANT is True:
+ upsample_feat0 = self.upsample_feat0_quant(upsample_feat0)
+ f_concat_layer0 = torch.cat([upsample_feat0, x1], 1)
+ f_out0 = self.Rep_p4(f_concat_layer0)
+
+ fpn_out1 = self.reduce_layer1(f_out0)
+ upsample_feat1 = self.upsample1(fpn_out1)
+ if hasattr(self, '_QUANT') and self._QUANT is True:
+ upsample_feat1 = self.upsample_feat1_quant(upsample_feat1)
+ f_concat_layer1 = torch.cat([upsample_feat1, x2], 1)
+ pan_out2 = self.Rep_p3(f_concat_layer1)
+
+ down_feat1 = self.downsample2(pan_out2)
+ p_concat_layer1 = torch.cat([down_feat1, fpn_out1], 1)
+ pan_out1 = self.Rep_n3(p_concat_layer1)
+
+ down_feat0 = self.downsample1(pan_out1)
+ p_concat_layer2 = torch.cat([down_feat0, fpn_out0], 1)
+ pan_out0 = self.Rep_n4(p_concat_layer2)
+
+ outputs = [pan_out2, pan_out1, pan_out0]
+
+ return outputs
+
+
+class RepBiFPANNeck(nn.Module):
+ """RepBiFPANNeck Module
+ """
+ # [64, 128, 256, 512, 1024]
+ # [256, 128, 128, 256, 256, 512]
+
+ def __init__(
+ self,
+ channels_list=None,
+ num_repeats=None,
+ block=RepVGGBlock
+ ):
+ super().__init__()
+
+ assert channels_list is not None
+ assert num_repeats is not None
+
+ self.reduce_layer0 = ConvBNReLU(
+ in_channels=channels_list[4], # 1024
+ out_channels=channels_list[5], # 256
+ kernel_size=1,
+ stride=1
+ )
+
+ self.Bifusion0 = BiFusion(
+ in_channels=[channels_list[3], channels_list[2]], # 512, 256
+ out_channels=channels_list[5], # 256
+ )
+ self.Rep_p4 = RepBlock(
+ in_channels=channels_list[5], # 256
+ out_channels=channels_list[5], # 256
+ n=num_repeats[5],
+ block=block
+ )
+
+ self.reduce_layer1 = ConvBNReLU(
+ in_channels=channels_list[5], # 256
+ out_channels=channels_list[6], # 128
+ kernel_size=1,
+ stride=1
+ )
+
+ self.Bifusion1 = BiFusion(
+ in_channels=[channels_list[2], channels_list[1]], # 256, 128
+ out_channels=channels_list[6], # 128
+ )
+
+ self.Rep_p3 = RepBlock(
+ in_channels=channels_list[6], # 128
+ out_channels=channels_list[6], # 128
+ n=num_repeats[6],
+ block=block
+ )
+
+ self.downsample2 = ConvBNReLU(
+ in_channels=channels_list[6], # 128
+ out_channels=channels_list[7], # 128
+ kernel_size=3,
+ stride=2
+ )
+
+ self.Rep_n3 = RepBlock(
+ in_channels=channels_list[6] + channels_list[7], # 128 + 128
+ out_channels=channels_list[8], # 256
+ n=num_repeats[7],
+ block=block
+ )
+
+ self.downsample1 = ConvBNReLU(
+ in_channels=channels_list[8], # 256
+ out_channels=channels_list[9], # 256
+ kernel_size=3,
+ stride=2
+ )
+
+ self.Rep_n4 = RepBlock(
+ in_channels=channels_list[5] + channels_list[9], # 256 + 256
+ out_channels=channels_list[10], # 512
+ n=num_repeats[8],
+ block=block
+ )
+
+
+ def forward(self, input):
+
+ (x3, x2, x1, x0) = input
+
+ fpn_out0 = self.reduce_layer0(x0)
+ f_concat_layer0 = self.Bifusion0([fpn_out0, x1, x2])
+ f_out0 = self.Rep_p4(f_concat_layer0)
+
+ fpn_out1 = self.reduce_layer1(f_out0)
+ f_concat_layer1 = self.Bifusion1([fpn_out1, x2, x3])
+ pan_out2 = self.Rep_p3(f_concat_layer1)
+
+ down_feat1 = self.downsample2(pan_out2)
+ p_concat_layer1 = torch.cat([down_feat1, fpn_out1], 1)
+ pan_out1 = self.Rep_n3(p_concat_layer1)
+
+ down_feat0 = self.downsample1(pan_out1)
+ p_concat_layer2 = torch.cat([down_feat0, fpn_out0], 1)
+ pan_out0 = self.Rep_n4(p_concat_layer2)
+
+ outputs = [pan_out2, pan_out1, pan_out0]
+
+ return outputs
+
+
+class RepPANNeck6(nn.Module):
+ """RepPANNeck+P6 Module
+ EfficientRep is the default backbone of this model.
+ RepPANNeck has the balance of feature fusion ability and hardware efficiency.
+ """
+ # [64, 128, 256, 512, 768, 1024]
+ # [512, 256, 128, 256, 512, 1024]
+ def __init__(
+ self,
+ channels_list=None,
+ num_repeats=None,
+ block=RepVGGBlock
+ ):
+ super().__init__()
+
+ assert channels_list is not None
+ assert num_repeats is not None
+
+ self.reduce_layer0 = ConvBNReLU(
+ in_channels=channels_list[5], # 1024
+ out_channels=channels_list[6], # 512
+ kernel_size=1,
+ stride=1
+ )
+
+ self.upsample0 = Transpose(
+ in_channels=channels_list[6], # 512
+ out_channels=channels_list[6], # 512
+ )
+
+ self.Rep_p5 = RepBlock(
+ in_channels=channels_list[4] + channels_list[6], # 768 + 512
+ out_channels=channels_list[6], # 512
+ n=num_repeats[6],
+ block=block
+ )
+
+ self.reduce_layer1 = ConvBNReLU(
+ in_channels=channels_list[6], # 512
+ out_channels=channels_list[7], # 256
+ kernel_size=1,
+ stride=1
+ )
+
+ self.upsample1 = Transpose(
+ in_channels=channels_list[7], # 256
+ out_channels=channels_list[7] # 256
+ )
+
+ self.Rep_p4 = RepBlock(
+ in_channels=channels_list[3] + channels_list[7], # 512 + 256
+ out_channels=channels_list[7], # 256
+ n=num_repeats[7],
+ block=block
+ )
+
+ self.reduce_layer2 = ConvBNReLU(
+ in_channels=channels_list[7], # 256
+ out_channels=channels_list[8], # 128
+ kernel_size=1,
+ stride=1
+ )
+
+ self.upsample2 = Transpose(
+ in_channels=channels_list[8], # 128
+ out_channels=channels_list[8] # 128
+ )
+
+ self.Rep_p3 = RepBlock(
+ in_channels=channels_list[2] + channels_list[8], # 256 + 128
+ out_channels=channels_list[8], # 128
+ n=num_repeats[8],
+ block=block
+ )
+
+ self.downsample2 = ConvBNReLU(
+ in_channels=channels_list[8], # 128
+ out_channels=channels_list[8], # 128
+ kernel_size=3,
+ stride=2
+ )
+
+ self.Rep_n4 = RepBlock(
+ in_channels=channels_list[8] + channels_list[8], # 128 + 128
+ out_channels=channels_list[9], # 256
+ n=num_repeats[9],
+ block=block
+ )
+
+ self.downsample1 = ConvBNReLU(
+ in_channels=channels_list[9], # 256
+ out_channels=channels_list[9], # 256
+ kernel_size=3,
+ stride=2
+ )
+
+ self.Rep_n5 = RepBlock(
+ in_channels=channels_list[7] + channels_list[9], # 256 + 256
+ out_channels=channels_list[10], # 512
+ n=num_repeats[10],
+ block=block
+ )
+
+ self.downsample0 = ConvBNReLU(
+ in_channels=channels_list[10], # 512
+ out_channels=channels_list[10], # 512
+ kernel_size=3,
+ stride=2
+ )
+
+ self.Rep_n6 = RepBlock(
+ in_channels=channels_list[6] + channels_list[10], # 512 + 512
+ out_channels=channels_list[11], # 1024
+ n=num_repeats[11],
+ block=block
+ )
+
+
+ def forward(self, input):
+
+ (x3, x2, x1, x0) = input
+
+ fpn_out0 = self.reduce_layer0(x0)
+ upsample_feat0 = self.upsample0(fpn_out0)
+ f_concat_layer0 = torch.cat([upsample_feat0, x1], 1)
+ f_out0 = self.Rep_p5(f_concat_layer0)
+
+ fpn_out1 = self.reduce_layer1(f_out0)
+ upsample_feat1 = self.upsample1(fpn_out1)
+ f_concat_layer1 = torch.cat([upsample_feat1, x2], 1)
+ f_out1 = self.Rep_p4(f_concat_layer1)
+
+ fpn_out2 = self.reduce_layer2(f_out1)
+ upsample_feat2 = self.upsample2(fpn_out2)
+ f_concat_layer2 = torch.cat([upsample_feat2, x3], 1)
+ pan_out3 = self.Rep_p3(f_concat_layer2) # P3
+
+ down_feat2 = self.downsample2(pan_out3)
+ p_concat_layer2 = torch.cat([down_feat2, fpn_out2], 1)
+ pan_out2 = self.Rep_n4(p_concat_layer2) # P4
+
+ down_feat1 = self.downsample1(pan_out2)
+ p_concat_layer1 = torch.cat([down_feat1, fpn_out1], 1)
+ pan_out1 = self.Rep_n5(p_concat_layer1) # P5
+
+ down_feat0 = self.downsample0(pan_out1)
+ p_concat_layer0 = torch.cat([down_feat0, fpn_out0], 1)
+ pan_out0 = self.Rep_n6(p_concat_layer0) # P6
+
+ outputs = [pan_out3, pan_out2, pan_out1, pan_out0]
+
+ return outputs
+
+
+class RepBiFPANNeck6(nn.Module):
+ """RepBiFPANNeck_P6 Module
+ """
+ # [64, 128, 256, 512, 768, 1024]
+ # [512, 256, 128, 256, 512, 1024]
+
+ def __init__(
+ self,
+ channels_list=None,
+ num_repeats=None,
+ block=RepVGGBlock
+ ):
+ super().__init__()
+
+ assert channels_list is not None
+ assert num_repeats is not None
+
+ self.reduce_layer0 = ConvBNReLU(
+ in_channels=channels_list[5], # 1024
+ out_channels=channels_list[6], # 512
+ kernel_size=1,
+ stride=1
+ )
+
+ self.Bifusion0 = BiFusion(
+ in_channels=[channels_list[4], channels_list[6]], # 768, 512
+ out_channels=channels_list[6], # 512
+ )
+
+ self.Rep_p5 = RepBlock(
+ in_channels=channels_list[6], # 512
+ out_channels=channels_list[6], # 512
+ n=num_repeats[6],
+ block=block
+ )
+
+ self.reduce_layer1 = ConvBNReLU(
+ in_channels=channels_list[6], # 512
+ out_channels=channels_list[7], # 256
+ kernel_size=1,
+ stride=1
+ )
+
+ self.Bifusion1 = BiFusion(
+ in_channels=[channels_list[3], channels_list[7]], # 512, 256
+ out_channels=channels_list[7], # 256
+ )
+
+ self.Rep_p4 = RepBlock(
+ in_channels=channels_list[7], # 256
+ out_channels=channels_list[7], # 256
+ n=num_repeats[7],
+ block=block
+ )
+
+ self.reduce_layer2 = ConvBNReLU(
+ in_channels=channels_list[7], # 256
+ out_channels=channels_list[8], # 128
+ kernel_size=1,
+ stride=1
+ )
+
+ self.Bifusion2 = BiFusion(
+ in_channels=[channels_list[2], channels_list[8]], # 256, 128
+ out_channels=channels_list[8], # 128
+ )
+
+ self.Rep_p3 = RepBlock(
+ in_channels=channels_list[8], # 128
+ out_channels=channels_list[8], # 128
+ n=num_repeats[8],
+ block=block
+ )
+
+ self.downsample2 = ConvBNReLU(
+ in_channels=channels_list[8], # 128
+ out_channels=channels_list[8], # 128
+ kernel_size=3,
+ stride=2
+ )
+
+ self.Rep_n4 = RepBlock(
+ in_channels=channels_list[8] + channels_list[8], # 128 + 128
+ out_channels=channels_list[9], # 256
+ n=num_repeats[9],
+ block=block
+ )
+
+ self.downsample1 = ConvBNReLU(
+ in_channels=channels_list[9], # 256
+ out_channels=channels_list[9], # 256
+ kernel_size=3,
+ stride=2
+ )
+
+ self.Rep_n5 = RepBlock(
+ in_channels=channels_list[7] + channels_list[9], # 256 + 256
+ out_channels=channels_list[10], # 512
+ n=num_repeats[10],
+ block=block
+ )
+
+ self.downsample0 = ConvBNReLU(
+ in_channels=channels_list[10], # 512
+ out_channels=channels_list[10], # 512
+ kernel_size=3,
+ stride=2
+ )
+
+ self.Rep_n6 = RepBlock(
+ in_channels=channels_list[6] + channels_list[10], # 512 + 512
+ out_channels=channels_list[11], # 1024
+ n=num_repeats[11],
+ block=block
+ )
+
+
+ def forward(self, input):
+
+ (x4, x3, x2, x1, x0) = input
+
+ fpn_out0 = self.reduce_layer0(x0)
+ f_concat_layer0 = self.Bifusion0([fpn_out0, x1, x2])
+ f_out0 = self.Rep_p5(f_concat_layer0)
+
+ fpn_out1 = self.reduce_layer1(f_out0)
+ f_concat_layer1 = self.Bifusion1([fpn_out1, x2, x3])
+ f_out1 = self.Rep_p4(f_concat_layer1)
+
+ fpn_out2 = self.reduce_layer2(f_out1)
+ f_concat_layer2 = self.Bifusion2([fpn_out2, x3, x4])
+ pan_out3 = self.Rep_p3(f_concat_layer2) # P3
+
+ down_feat2 = self.downsample2(pan_out3)
+ p_concat_layer2 = torch.cat([down_feat2, fpn_out2], 1)
+ pan_out2 = self.Rep_n4(p_concat_layer2) # P4
+
+ down_feat1 = self.downsample1(pan_out2)
+ p_concat_layer1 = torch.cat([down_feat1, fpn_out1], 1)
+ pan_out1 = self.Rep_n5(p_concat_layer1) # P5
+
+ down_feat0 = self.downsample0(pan_out1)
+ p_concat_layer0 = torch.cat([down_feat0, fpn_out0], 1)
+ pan_out0 = self.Rep_n6(p_concat_layer0) # P6
+
+ outputs = [pan_out3, pan_out2, pan_out1, pan_out0]
+
+ return outputs
+
+
+class CSPRepPANNeck(nn.Module):
+ """
+ CSPRepPANNeck module.
+ """
+
+ def __init__(
+ self,
+ channels_list=None,
+ num_repeats=None,
+ block=BottleRep,
+ csp_e=float(1)/2,
+ stage_block_type="BepC3"
+ ):
+ super().__init__()
+
+ if stage_block_type == "BepC3":
+ stage_block = BepC3
+ elif stage_block_type == "MBLABlock":
+ stage_block = MBLABlock
+ else:
+ raise NotImplementedError
+
+ assert channels_list is not None
+ assert num_repeats is not None
+
+ self.Rep_p4 = stage_block(
+ in_channels=channels_list[3] + channels_list[5], # 512 + 256
+ out_channels=channels_list[5], # 256
+ n=num_repeats[5],
+ e=csp_e,
+ block=block
+ )
+
+ self.Rep_p3 = stage_block(
+ in_channels=channels_list[2] + channels_list[6], # 256 + 128
+ out_channels=channels_list[6], # 128
+ n=num_repeats[6],
+ e=csp_e,
+ block=block
+ )
+
+ self.Rep_n3 = stage_block(
+ in_channels=channels_list[6] + channels_list[7], # 128 + 128
+ out_channels=channels_list[8], # 256
+ n=num_repeats[7],
+ e=csp_e,
+ block=block
+ )
+
+ self.Rep_n4 = stage_block(
+ in_channels=channels_list[5] + channels_list[9], # 256 + 256
+ out_channels=channels_list[10], # 512
+ n=num_repeats[8],
+ e=csp_e,
+ block=block
+ )
+
+ self.reduce_layer0 = ConvBNReLU(
+ in_channels=channels_list[4], # 1024
+ out_channels=channels_list[5], # 256
+ kernel_size=1,
+ stride=1
+ )
+
+ self.upsample0 = Transpose(
+ in_channels=channels_list[5], # 256
+ out_channels=channels_list[5], # 256
+ )
+
+ self.reduce_layer1 = ConvBNReLU(
+ in_channels=channels_list[5], # 256
+ out_channels=channels_list[6], # 128
+ kernel_size=1,
+ stride=1
+ )
+
+ self.upsample1 = Transpose(
+ in_channels=channels_list[6], # 128
+ out_channels=channels_list[6] # 128
+ )
+
+ self.downsample2 = ConvBNReLU(
+ in_channels=channels_list[6], # 128
+ out_channels=channels_list[7], # 128
+ kernel_size=3,
+ stride=2
+ )
+
+ self.downsample1 = ConvBNReLU(
+ in_channels=channels_list[8], # 256
+ out_channels=channels_list[9], # 256
+ kernel_size=3,
+ stride=2
+ )
+
+ def forward(self, input):
+
+ (x2, x1, x0) = input
+
+ fpn_out0 = self.reduce_layer0(x0)
+ upsample_feat0 = self.upsample0(fpn_out0)
+ f_concat_layer0 = torch.cat([upsample_feat0, x1], 1)
+ f_out0 = self.Rep_p4(f_concat_layer0)
+
+ fpn_out1 = self.reduce_layer1(f_out0)
+ upsample_feat1 = self.upsample1(fpn_out1)
+ f_concat_layer1 = torch.cat([upsample_feat1, x2], 1)
+ pan_out2 = self.Rep_p3(f_concat_layer1)
+
+ down_feat1 = self.downsample2(pan_out2)
+ p_concat_layer1 = torch.cat([down_feat1, fpn_out1], 1)
+ pan_out1 = self.Rep_n3(p_concat_layer1)
+
+ down_feat0 = self.downsample1(pan_out1)
+ p_concat_layer2 = torch.cat([down_feat0, fpn_out0], 1)
+ pan_out0 = self.Rep_n4(p_concat_layer2)
+
+ outputs = [pan_out2, pan_out1, pan_out0]
+
+ return outputs
+
+
+class CSPRepBiFPANNeck(nn.Module):
+ """
+ CSPRepBiFPANNeck module.
+ """
+
+ def __init__(
+ self,
+ channels_list=None,
+ num_repeats=None,
+ block=BottleRep,
+ csp_e=float(1)/2,
+ stage_block_type="BepC3"
+ ):
+ super().__init__()
+
+ assert channels_list is not None
+ assert num_repeats is not None
+
+ if stage_block_type == "BepC3":
+ stage_block = BepC3
+ elif stage_block_type == "MBLABlock":
+ stage_block = MBLABlock
+ else:
+ raise NotImplementedError
+
+ self.reduce_layer0 = ConvBNReLU(
+ in_channels=channels_list[4], # 1024
+ out_channels=channels_list[5], # 256
+ kernel_size=1,
+ stride=1
+ )
+
+ self.Bifusion0 = BiFusion(
+ in_channels=[channels_list[3], channels_list[2]], # 512, 256
+ out_channels=channels_list[5], # 256
+ )
+
+ self.Rep_p4 = stage_block(
+ in_channels=channels_list[5], # 256
+ out_channels=channels_list[5], # 256
+ n=num_repeats[5],
+ e=csp_e,
+ block=block
+ )
+
+ self.reduce_layer1 = ConvBNReLU(
+ in_channels=channels_list[5], # 256
+ out_channels=channels_list[6], # 128
+ kernel_size=1,
+ stride=1
+ )
+
+ self.Bifusion1 = BiFusion(
+ in_channels=[channels_list[2], channels_list[1]], # 256, 128
+ out_channels=channels_list[6], # 128
+ )
+
+ self.Rep_p3 = stage_block(
+ in_channels=channels_list[6], # 128
+ out_channels=channels_list[6], # 128
+ n=num_repeats[6],
+ e=csp_e,
+ block=block
+ )
+
+ self.downsample2 = ConvBNReLU(
+ in_channels=channels_list[6], # 128
+ out_channels=channels_list[7], # 128
+ kernel_size=3,
+ stride=2
+ )
+
+ self.Rep_n3 = stage_block(
+ in_channels=channels_list[6] + channels_list[7], # 128 + 128
+ out_channels=channels_list[8], # 256
+ n=num_repeats[7],
+ e=csp_e,
+ block=block
+ )
+
+ self.downsample1 = ConvBNReLU(
+ in_channels=channels_list[8], # 256
+ out_channels=channels_list[9], # 256
+ kernel_size=3,
+ stride=2
+ )
+
+
+ self.Rep_n4 = stage_block(
+ in_channels=channels_list[5] + channels_list[9], # 256 + 256
+ out_channels=channels_list[10], # 512
+ n=num_repeats[8],
+ e=csp_e,
+ block=block
+ )
+
+
+ def forward(self, input):
+
+ (x3, x2, x1, x0) = input
+
+ fpn_out0 = self.reduce_layer0(x0)
+ f_concat_layer0 = self.Bifusion0([fpn_out0, x1, x2])
+ f_out0 = self.Rep_p4(f_concat_layer0)
+
+ fpn_out1 = self.reduce_layer1(f_out0)
+ f_concat_layer1 = self.Bifusion1([fpn_out1, x2, x3])
+ pan_out2 = self.Rep_p3(f_concat_layer1)
+
+ down_feat1 = self.downsample2(pan_out2)
+ p_concat_layer1 = torch.cat([down_feat1, fpn_out1], 1)
+ pan_out1 = self.Rep_n3(p_concat_layer1)
+
+ down_feat0 = self.downsample1(pan_out1)
+ p_concat_layer2 = torch.cat([down_feat0, fpn_out0], 1)
+ pan_out0 = self.Rep_n4(p_concat_layer2)
+
+ outputs = [pan_out2, pan_out1, pan_out0]
+
+ return outputs
+
+
+class CSPRepPANNeck_P6(nn.Module):
+ """CSPRepPANNeck_P6 Module
+ """
+ # [64, 128, 256, 512, 768, 1024]
+ # [512, 256, 128, 256, 512, 1024]
+ def __init__(
+ self,
+ channels_list=None,
+ num_repeats=None,
+ block=BottleRep,
+ csp_e=float(1)/2,
+ stage_block_type="BepC3"
+ ):
+ super().__init__()
+
+ assert channels_list is not None
+ assert num_repeats is not None
+
+ if stage_block_type == "BepC3":
+ stage_block = BepC3
+ elif stage_block_type == "MBLABlock":
+ stage_block = MBLABlock
+ else:
+ raise NotImplementedError
+
+ self.reduce_layer0 = ConvBNReLU(
+ in_channels=channels_list[5], # 1024
+ out_channels=channels_list[6], # 512
+ kernel_size=1,
+ stride=1
+ )
+
+ self.upsample0 = Transpose(
+ in_channels=channels_list[6], # 512
+ out_channels=channels_list[6], # 512
+ )
+
+ self.Rep_p5 = stage_block(
+ in_channels=channels_list[4] + channels_list[6], # 768 + 512
+ out_channels=channels_list[6], # 512
+ n=num_repeats[6],
+ e=csp_e,
+ block=block
+ )
+
+ self.reduce_layer1 = ConvBNReLU(
+ in_channels=channels_list[6], # 512
+ out_channels=channels_list[7], # 256
+ kernel_size=1,
+ stride=1
+ )
+
+ self.upsample1 = Transpose(
+ in_channels=channels_list[7], # 256
+ out_channels=channels_list[7] # 256
+ )
+
+ self.Rep_p4 = stage_block(
+ in_channels=channels_list[3] + channels_list[7], # 512 + 256
+ out_channels=channels_list[7], # 256
+ n=num_repeats[7],
+ e=csp_e,
+ block=block
+ )
+
+ self.reduce_layer2 = ConvBNReLU(
+ in_channels=channels_list[7], # 256
+ out_channels=channels_list[8], # 128
+ kernel_size=1,
+ stride=1
+ )
+
+ self.upsample2 = Transpose(
+ in_channels=channels_list[8], # 128
+ out_channels=channels_list[8] # 128
+ )
+
+ self.Rep_p3 = stage_block(
+ in_channels=channels_list[2] + channels_list[8], # 256 + 128
+ out_channels=channels_list[8], # 128
+ n=num_repeats[8],
+ e=csp_e,
+ block=block
+ )
+
+ self.downsample2 = ConvBNReLU(
+ in_channels=channels_list[8], # 128
+ out_channels=channels_list[8], # 128
+ kernel_size=3,
+ stride=2
+ )
+
+ self.Rep_n4 = stage_block(
+ in_channels=channels_list[8] + channels_list[8], # 128 + 128
+ out_channels=channels_list[9], # 256
+ n=num_repeats[9],
+ e=csp_e,
+ block=block
+ )
+
+ self.downsample1 = ConvBNReLU(
+ in_channels=channels_list[9], # 256
+ out_channels=channels_list[9], # 256
+ kernel_size=3,
+ stride=2
+ )
+
+ self.Rep_n5 = stage_block(
+ in_channels=channels_list[7] + channels_list[9], # 256 + 256
+ out_channels=channels_list[10], # 512
+ n=num_repeats[10],
+ e=csp_e,
+ block=block
+ )
+
+ self.downsample0 = ConvBNReLU(
+ in_channels=channels_list[10], # 512
+ out_channels=channels_list[10], # 512
+ kernel_size=3,
+ stride=2
+ )
+
+ self.Rep_n6 = stage_block(
+ in_channels=channels_list[6] + channels_list[10], # 512 + 512
+ out_channels=channels_list[11], # 1024
+ n=num_repeats[11],
+ e=csp_e,
+ block=block
+ )
+
+
+ def forward(self, input):
+
+ (x3, x2, x1, x0) = input
+
+ fpn_out0 = self.reduce_layer0(x0)
+ upsample_feat0 = self.upsample0(fpn_out0)
+ f_concat_layer0 = torch.cat([upsample_feat0, x1], 1)
+ f_out0 = self.Rep_p5(f_concat_layer0)
+
+ fpn_out1 = self.reduce_layer1(f_out0)
+ upsample_feat1 = self.upsample1(fpn_out1)
+ f_concat_layer1 = torch.cat([upsample_feat1, x2], 1)
+ f_out1 = self.Rep_p4(f_concat_layer1)
+
+ fpn_out2 = self.reduce_layer2(f_out1)
+ upsample_feat2 = self.upsample2(fpn_out2)
+ f_concat_layer2 = torch.cat([upsample_feat2, x3], 1)
+ pan_out3 = self.Rep_p3(f_concat_layer2) # P3
+
+ down_feat2 = self.downsample2(pan_out3)
+ p_concat_layer2 = torch.cat([down_feat2, fpn_out2], 1)
+ pan_out2 = self.Rep_n4(p_concat_layer2) # P4
+
+ down_feat1 = self.downsample1(pan_out2)
+ p_concat_layer1 = torch.cat([down_feat1, fpn_out1], 1)
+ pan_out1 = self.Rep_n5(p_concat_layer1) # P5
+
+ down_feat0 = self.downsample0(pan_out1)
+ p_concat_layer0 = torch.cat([down_feat0, fpn_out0], 1)
+ pan_out0 = self.Rep_n6(p_concat_layer0) # P6
+
+ outputs = [pan_out3, pan_out2, pan_out1, pan_out0]
+
+ return outputs
+
+
+class CSPRepBiFPANNeck_P6(nn.Module):
+ """CSPRepBiFPANNeck_P6 Module
+ """
+ # [64, 128, 256, 512, 768, 1024]
+ # [512, 256, 128, 256, 512, 1024]
+ def __init__(
+ self,
+ channels_list=None,
+ num_repeats=None,
+ block=BottleRep,
+ csp_e=float(1)/2,
+ stage_block_type="BepC3"
+ ):
+ super().__init__()
+
+ assert channels_list is not None
+ assert num_repeats is not None
+
+ if stage_block_type == "BepC3":
+ stage_block = BepC3
+ elif stage_block_type == "MBLABlock":
+ stage_block = MBLABlock
+ else:
+ raise NotImplementedError
+
+ self.reduce_layer0 = ConvBNReLU(
+ in_channels=channels_list[5], # 1024
+ out_channels=channels_list[6], # 512
+ kernel_size=1,
+ stride=1
+ )
+
+ self.Bifusion0 = BiFusion(
+ in_channels=[channels_list[4], channels_list[6]], # 768, 512
+ out_channels=channels_list[6], # 512
+ )
+
+ self.Rep_p5 = stage_block(
+ in_channels=channels_list[6], # 512
+ out_channels=channels_list[6], # 512
+ n=num_repeats[6],
+ e=csp_e,
+ block=block
+ )
+
+ self.reduce_layer1 = ConvBNReLU(
+ in_channels=channels_list[6], # 512
+ out_channels=channels_list[7], # 256
+ kernel_size=1,
+ stride=1
+ )
+
+ self.Bifusion1 = BiFusion(
+ in_channels=[channels_list[3], channels_list[7]], # 512, 256
+ out_channels=channels_list[7], # 256
+ )
+
+ self.Rep_p4 = stage_block(
+ in_channels=channels_list[7], # 256
+ out_channels=channels_list[7], # 256
+ n=num_repeats[7],
+ e=csp_e,
+ block=block
+ )
+
+ self.reduce_layer2 = ConvBNReLU(
+ in_channels=channels_list[7], # 256
+ out_channels=channels_list[8], # 128
+ kernel_size=1,
+ stride=1
+ )
+
+ self.Bifusion2 = BiFusion(
+ in_channels=[channels_list[2], channels_list[8]], # 256, 128
+ out_channels=channels_list[8], # 128
+ )
+
+ self.Rep_p3 = stage_block(
+ in_channels=channels_list[8], # 128
+ out_channels=channels_list[8], # 128
+ n=num_repeats[8],
+ e=csp_e,
+ block=block
+ )
+
+ self.downsample2 = ConvBNReLU(
+ in_channels=channels_list[8], # 128
+ out_channels=channels_list[8], # 128
+ kernel_size=3,
+ stride=2
+ )
+
+ self.Rep_n4 = stage_block(
+ in_channels=channels_list[8] + channels_list[8], # 128 + 128
+ out_channels=channels_list[9], # 256
+ n=num_repeats[9],
+ e=csp_e,
+ block=block
+ )
+
+ self.downsample1 = ConvBNReLU(
+ in_channels=channels_list[9], # 256
+ out_channels=channels_list[9], # 256
+ kernel_size=3,
+ stride=2
+ )
+
+ self.Rep_n5 = stage_block(
+ in_channels=channels_list[7] + channels_list[9], # 256 + 256
+ out_channels=channels_list[10], # 512
+ n=num_repeats[10],
+ e=csp_e,
+ block=block
+ )
+
+ self.downsample0 = ConvBNReLU(
+ in_channels=channels_list[10], # 512
+ out_channels=channels_list[10], # 512
+ kernel_size=3,
+ stride=2
+ )
+
+ self.Rep_n6 = stage_block(
+ in_channels=channels_list[6] + channels_list[10], # 512 + 512
+ out_channels=channels_list[11], # 1024
+ n=num_repeats[11],
+ e=csp_e,
+ block=block
+ )
+
+
+ def forward(self, input):
+
+ (x4, x3, x2, x1, x0) = input
+
+ fpn_out0 = self.reduce_layer0(x0)
+ f_concat_layer0 = self.Bifusion0([fpn_out0, x1, x2])
+ f_out0 = self.Rep_p5(f_concat_layer0)
+
+ fpn_out1 = self.reduce_layer1(f_out0)
+ f_concat_layer1 = self.Bifusion1([fpn_out1, x2, x3])
+ f_out1 = self.Rep_p4(f_concat_layer1)
+
+ fpn_out2 = self.reduce_layer2(f_out1)
+ f_concat_layer2 = self.Bifusion2([fpn_out2, x3, x4])
+ pan_out3 = self.Rep_p3(f_concat_layer2) # P3
+
+ down_feat2 = self.downsample2(pan_out3)
+ p_concat_layer2 = torch.cat([down_feat2, fpn_out2], 1)
+ pan_out2 = self.Rep_n4(p_concat_layer2) # P4
+
+ down_feat1 = self.downsample1(pan_out2)
+ p_concat_layer1 = torch.cat([down_feat1, fpn_out1], 1)
+ pan_out1 = self.Rep_n5(p_concat_layer1) # P5
+
+ down_feat0 = self.downsample0(pan_out1)
+ p_concat_layer0 = torch.cat([down_feat0, fpn_out0], 1)
+ pan_out0 = self.Rep_n6(p_concat_layer0) # P6
+
+ outputs = [pan_out3, pan_out2, pan_out1, pan_out0]
+
+ return outputs
+
+class Lite_EffiNeck(nn.Module):
+
+ def __init__(
+ self,
+ in_channels,
+ unified_channels,
+ ):
+ super().__init__()
+ self.reduce_layer0 = ConvBNHS(
+ in_channels=in_channels[0],
+ out_channels=unified_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0
+ )
+ self.reduce_layer1 = ConvBNHS(
+ in_channels=in_channels[1],
+ out_channels=unified_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0
+ )
+ self.reduce_layer2 = ConvBNHS(
+ in_channels=in_channels[2],
+ out_channels=unified_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0
+ )
+ self.upsample0 = nn.Upsample(scale_factor=2, mode='nearest')
+
+ self.upsample1 = nn.Upsample(scale_factor=2, mode='nearest')
+
+ self.Csp_p4 = CSPBlock(
+ in_channels=unified_channels*2,
+ out_channels=unified_channels,
+ kernel_size=5
+ )
+ self.Csp_p3 = CSPBlock(
+ in_channels=unified_channels*2,
+ out_channels=unified_channels,
+ kernel_size=5
+ )
+ self.Csp_n3 = CSPBlock(
+ in_channels=unified_channels*2,
+ out_channels=unified_channels,
+ kernel_size=5
+ )
+ self.Csp_n4 = CSPBlock(
+ in_channels=unified_channels*2,
+ out_channels=unified_channels,
+ kernel_size=5
+ )
+ self.downsample2 = DPBlock(
+ in_channel=unified_channels,
+ out_channel=unified_channels,
+ kernel_size=5,
+ stride=2
+ )
+ self.downsample1 = DPBlock(
+ in_channel=unified_channels,
+ out_channel=unified_channels,
+ kernel_size=5,
+ stride=2
+ )
+ self.p6_conv_1 = DPBlock(
+ in_channel=unified_channels,
+ out_channel=unified_channels,
+ kernel_size=5,
+ stride=2
+ )
+ self.p6_conv_2 = DPBlock(
+ in_channel=unified_channels,
+ out_channel=unified_channels,
+ kernel_size=5,
+ stride=2
+ )
+
+ def forward(self, input):
+
+ (x2, x1, x0) = input
+
+ fpn_out0 = self.reduce_layer0(x0) #c5
+ x1 = self.reduce_layer1(x1) #c4
+ x2 = self.reduce_layer2(x2) #c3
+
+ upsample_feat0 = self.upsample0(fpn_out0)
+ f_concat_layer0 = torch.cat([upsample_feat0, x1], 1)
+ f_out1 = self.Csp_p4(f_concat_layer0)
+
+ upsample_feat1 = self.upsample1(f_out1)
+ f_concat_layer1 = torch.cat([upsample_feat1, x2], 1)
+ pan_out3 = self.Csp_p3(f_concat_layer1) #p3
+
+ down_feat1 = self.downsample2(pan_out3)
+ p_concat_layer1 = torch.cat([down_feat1, f_out1], 1)
+ pan_out2 = self.Csp_n3(p_concat_layer1) #p4
+
+ down_feat0 = self.downsample1(pan_out2)
+ p_concat_layer2 = torch.cat([down_feat0, fpn_out0], 1)
+ pan_out1 = self.Csp_n4(p_concat_layer2) #p5
+
+ top_features = self.p6_conv_1(fpn_out0)
+ pan_out0 = top_features + self.p6_conv_2(pan_out1) #p6
+
+
+ outputs = [pan_out3, pan_out2, pan_out1, pan_out0]
+
+ return outputs
diff --git a/python/app/fedcv/YOLOv6/yolov6/models/yolo.py b/python/app/fedcv/YOLOv6/yolov6/models/yolo.py
new file mode 100644
index 0000000000..2f37f1b16e
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/yolov6/models/yolo.py
@@ -0,0 +1,138 @@
+#!/usr/bin/env python3
+# -*- coding:utf-8 -*-
+import math
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from yolov6.layers.common import *
+from yolov6.utils.torch_utils import initialize_weights
+from yolov6.models.efficientrep import *
+from yolov6.models.reppan import *
+from yolov6.utils.events import LOGGER
+
+
+class Model(nn.Module):
+ export = False
+ '''YOLOv6 model with backbone, neck and head.
+ The default parts are EfficientRep Backbone, Rep-PAN and
+ Efficient Decoupled Head.
+ '''
+ def __init__(self, config, channels=3, num_classes=None, fuse_ab=False, distill_ns=False): # model, input channels, number of classes
+ super().__init__()
+ # Build network
+ num_layers = config.model.head.num_layers
+ self.backbone, self.neck, self.detect = build_network(config, channels, num_classes, num_layers, fuse_ab=fuse_ab, distill_ns=distill_ns)
+
+ # Init Detect head
+ self.stride = self.detect.stride
+ self.detect.initialize_biases()
+
+ # Init weights
+ initialize_weights(self)
+
+ def forward(self, x):
+ export_mode = torch.onnx.is_in_onnx_export() or self.export
+ x = self.backbone(x)
+ x = self.neck(x)
+ if not export_mode:
+ featmaps = []
+ featmaps.extend(x)
+ x = self.detect(x)
+ return x if export_mode is True else [x, featmaps]
+
+ def _apply(self, fn):
+ self = super()._apply(fn)
+ self.detect.stride = fn(self.detect.stride)
+ self.detect.grid = list(map(fn, self.detect.grid))
+ return self
+
+
+def make_divisible(x, divisor):
+ # Upward revision the value x to make it evenly divisible by the divisor.
+ return math.ceil(x / divisor) * divisor
+
+
+def build_network(config, channels, num_classes, num_layers, fuse_ab=False, distill_ns=False):
+ depth_mul = config.model.depth_multiple
+ width_mul = config.model.width_multiple
+ num_repeat_backbone = config.model.backbone.num_repeats
+ channels_list_backbone = config.model.backbone.out_channels
+ fuse_P2 = config.model.backbone.get('fuse_P2')
+ cspsppf = config.model.backbone.get('cspsppf')
+ num_repeat_neck = config.model.neck.num_repeats
+ channels_list_neck = config.model.neck.out_channels
+ use_dfl = config.model.head.use_dfl
+ reg_max = config.model.head.reg_max
+ num_repeat = [(max(round(i * depth_mul), 1) if i > 1 else i) for i in (num_repeat_backbone + num_repeat_neck)]
+ channels_list = [make_divisible(i * width_mul, 8) for i in (channels_list_backbone + channels_list_neck)]
+
+ block = get_block(config.training_mode)
+ BACKBONE = eval(config.model.backbone.type)
+ NECK = eval(config.model.neck.type)
+
+ if 'CSP' in config.model.backbone.type:
+
+ if "stage_block_type" in config.model.backbone:
+ stage_block_type = config.model.backbone.stage_block_type
+ else:
+ stage_block_type = "BepC3" #default
+
+ backbone = BACKBONE(
+ in_channels=channels,
+ channels_list=channels_list,
+ num_repeats=num_repeat,
+ block=block,
+ csp_e=config.model.backbone.csp_e,
+ fuse_P2=fuse_P2,
+ cspsppf=cspsppf,
+ stage_block_type=stage_block_type
+ )
+
+ neck = NECK(
+ channels_list=channels_list,
+ num_repeats=num_repeat,
+ block=block,
+ csp_e=config.model.neck.csp_e,
+ stage_block_type=stage_block_type
+ )
+ else:
+ backbone = BACKBONE(
+ in_channels=channels,
+ channels_list=channels_list,
+ num_repeats=num_repeat,
+ block=block,
+ fuse_P2=fuse_P2,
+ cspsppf=cspsppf
+ )
+
+ neck = NECK(
+ channels_list=channels_list,
+ num_repeats=num_repeat,
+ block=block
+ )
+
+ if distill_ns:
+ from yolov6.models.heads.effidehead_distill_ns import Detect, build_effidehead_layer
+ if num_layers != 3:
+ LOGGER.error('ERROR in: Distill mode not fit on n/s models with P6 head.\n')
+ exit()
+ head_layers = build_effidehead_layer(channels_list, 1, num_classes, reg_max=reg_max)
+ head = Detect(num_classes, num_layers, head_layers=head_layers, use_dfl=use_dfl)
+
+ elif fuse_ab:
+ from yolov6.models.heads.effidehead_fuseab import Detect, build_effidehead_layer
+ anchors_init = config.model.head.anchors_init
+ head_layers = build_effidehead_layer(channels_list, 3, num_classes, reg_max=reg_max, num_layers=num_layers)
+ head = Detect(num_classes, anchors_init, num_layers, head_layers=head_layers, use_dfl=use_dfl)
+
+ else:
+ from yolov6.models.effidehead import Detect, build_effidehead_layer
+ head_layers = build_effidehead_layer(channels_list, 1, num_classes, reg_max=reg_max, num_layers=num_layers)
+ head = Detect(num_classes, num_layers, head_layers=head_layers, use_dfl=use_dfl)
+
+ return backbone, neck, head
+
+
+def build_model(cfg, num_classes, device, fuse_ab=False, distill_ns=False):
+ model = Model(cfg, channels=3, num_classes=num_classes, fuse_ab=fuse_ab, distill_ns=distill_ns).to(device)
+ return model
diff --git a/python/app/fedcv/YOLOv6/yolov6/models/yolo_lite.py b/python/app/fedcv/YOLOv6/yolov6/models/yolo_lite.py
new file mode 100644
index 0000000000..e36f98060b
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/yolov6/models/yolo_lite.py
@@ -0,0 +1,88 @@
+#!/usr/bin/env python3
+# -*- coding:utf-8 -*-
+import math
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from yolov6.layers.common import *
+from yolov6.utils.torch_utils import initialize_weights
+from yolov6.models.reppan import *
+from yolov6.models.efficientrep import *
+from yolov6.utils.events import LOGGER
+from yolov6.models.heads.effidehead_lite import Detect, build_effidehead_layer
+
+class Model(nn.Module):
+ export = False
+ '''YOLOv6 model with backbone, neck and head.
+ The default parts are EfficientRep Backbone, Rep-PAN and
+ Efficient Decoupled Head.
+ '''
+ def __init__(self, config, channels=3, num_classes=None): # model, input channels, number of classes
+ super().__init__()
+ # Build network
+ self.backbone, self.neck, self.detect = build_network(config, channels, num_classes)
+
+ # Init Detect head
+ self.stride = self.detect.stride
+ self.detect.initialize_biases()
+
+ # Init weights
+ initialize_weights(self)
+
+ def forward(self, x):
+ export_mode = torch.onnx.is_in_onnx_export() or self.export
+ x = self.backbone(x)
+ x = self.neck(x)
+ if not export_mode:
+ featmaps = []
+ featmaps.extend(x)
+ x = self.detect(x)
+ return x if export_mode or self.export is True else [x, featmaps]
+
+ def _apply(self, fn):
+ self = super()._apply(fn)
+ self.detect.stride = fn(self.detect.stride)
+ self.detect.grid = list(map(fn, self.detect.grid))
+ return self
+
+def build_network(config, in_channels, num_classes):
+ width_mul = config.model.width_multiple
+
+ num_repeat_backbone = config.model.backbone.num_repeats
+ out_channels_backbone = config.model.backbone.out_channels
+ scale_size_backbone = config.model.backbone.scale_size
+ in_channels_neck = config.model.neck.in_channels
+ unified_channels_neck = config.model.neck.unified_channels
+ in_channels_head = config.model.head.in_channels
+ num_layers = config.model.head.num_layers
+
+ BACKBONE = eval(config.model.backbone.type)
+ NECK = eval(config.model.neck.type)
+
+ out_channels_backbone = [make_divisible(i * width_mul)
+ for i in out_channels_backbone]
+ mid_channels_backbone = [make_divisible(int(i * scale_size_backbone), divisor=8)
+ for i in out_channels_backbone]
+ in_channels_neck = [make_divisible(i * width_mul)
+ for i in in_channels_neck]
+
+ backbone = BACKBONE(in_channels,
+ mid_channels_backbone,
+ out_channels_backbone,
+ num_repeat=num_repeat_backbone)
+ neck = NECK(in_channels_neck, unified_channels_neck)
+ head_layers = build_effidehead_layer(in_channels_head, 1, num_classes, num_layers)
+ head = Detect(num_classes, num_layers, head_layers=head_layers)
+
+ return backbone, neck, head
+
+
+def build_model(cfg, num_classes, device):
+ model = Model(cfg, channels=3, num_classes=num_classes).to(device)
+ return model
+
+def make_divisible(v, divisor=16):
+ new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
+ if new_v < 0.9 * v:
+ new_v += divisor
+ return new_v
diff --git a/python/app/fedcv/object_detection/model/yolov6/yolov6/solver/build.py b/python/app/fedcv/YOLOv6/yolov6/solver/build.py
similarity index 92%
rename from python/app/fedcv/object_detection/model/yolov6/yolov6/solver/build.py
rename to python/app/fedcv/YOLOv6/yolov6/solver/build.py
index c18c97bb75..716b0be7c4 100644
--- a/python/app/fedcv/object_detection/model/yolov6/yolov6/solver/build.py
+++ b/python/app/fedcv/YOLOv6/yolov6/solver/build.py
@@ -6,6 +6,9 @@
import torch
import torch.nn as nn
+from yolov6.utils.events import LOGGER
+
+
def build_optimizer(cfg, model):
""" Build optimizer from cfg file."""
g_bnw, g_w, g_b = [], [], []
@@ -34,6 +37,8 @@ def build_lr_scheduler(cfg, optimizer, epochs):
"""Build learning rate scheduler from cfg file."""
if cfg.solver.lr_scheduler == 'Cosine':
lf = lambda x: ((1 - math.cos(x * math.pi / epochs)) / 2) * (cfg.solver.lrf - 1) + 1
+ elif cfg.solver.lr_scheduler == 'Constant':
+ lf = lambda x: 1.0
else:
LOGGER.error('unknown lr scheduler, use Cosine defaulted')
diff --git a/python/app/fedcv/object_detection/model/yolov6/yolov6/utils/Arial.ttf b/python/app/fedcv/YOLOv6/yolov6/utils/Arial.ttf
similarity index 100%
rename from python/app/fedcv/object_detection/model/yolov6/yolov6/utils/Arial.ttf
rename to python/app/fedcv/YOLOv6/yolov6/utils/Arial.ttf
diff --git a/python/app/fedcv/YOLOv6/yolov6/utils/RepOptimizer.py b/python/app/fedcv/YOLOv6/yolov6/utils/RepOptimizer.py
new file mode 100644
index 0000000000..c4653ac09a
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/yolov6/utils/RepOptimizer.py
@@ -0,0 +1,195 @@
+import numpy as np
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from ..layers.common import RealVGGBlock, LinearAddBlock
+from torch.optim.sgd import SGD
+from yolov6.utils.events import LOGGER
+
+
+def extract_blocks_into_list(model, blocks):
+ for module in model.children():
+ if isinstance(module, LinearAddBlock) or isinstance(module, RealVGGBlock):
+ blocks.append(module)
+ else:
+ extract_blocks_into_list(module, blocks)
+
+
+def extract_scales(model):
+ blocks = []
+ extract_blocks_into_list(model['model'], blocks)
+ scales = []
+ for b in blocks:
+ assert isinstance(b, LinearAddBlock)
+ if hasattr(b, 'scale_identity'):
+ scales.append((b.scale_identity.weight.detach(), b.scale_1x1.weight.detach(), b.scale_conv.weight.detach()))
+ else:
+ scales.append((b.scale_1x1.weight.detach(), b.scale_conv.weight.detach()))
+ print('extract scales: ', scales[-1][-2].mean(), scales[-1][-1].mean())
+ return scales
+
+
+def check_keywords_in_name(name, keywords=()):
+ isin = False
+ for keyword in keywords:
+ if keyword in name:
+ isin = True
+ return isin
+
+
+def set_weight_decay(model, skip_list=(), skip_keywords=(), echo=False):
+ has_decay = []
+ no_decay = []
+
+ for name, param in model.named_parameters():
+ if not param.requires_grad:
+ continue # frozen weights
+ if 'identity.weight' in name:
+ has_decay.append(param)
+ if echo:
+ print(f"{name} USE weight decay")
+ elif len(param.shape) == 1 or name.endswith(".bias") or (name in skip_list) or \
+ check_keywords_in_name(name, skip_keywords):
+ no_decay.append(param)
+ if echo:
+ print(f"{name} has no weight decay")
+ else:
+ has_decay.append(param)
+ if echo:
+ print(f"{name} USE weight decay")
+
+ return [{'params': has_decay},
+ {'params': no_decay, 'weight_decay': 0.}]
+
+
+def get_optimizer_param(args, cfg, model):
+ """ Build optimizer from cfg file."""
+ accumulate = max(1, round(64 / args.batch_size))
+ cfg.solver.weight_decay *= args.batch_size * accumulate / 64
+
+ g_bnw, g_w, g_b = [], [], []
+ for v in model.modules():
+ if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
+ g_b.append(v.bias)
+ if isinstance(v, nn.BatchNorm2d):
+ g_bnw.append(v.weight)
+ elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
+ g_w.append(v.weight)
+ return [{'params': g_bnw},
+ {'params': g_w, 'weight_decay': cfg.solver.weight_decay},
+ {'params': g_b}]
+
+
+class RepVGGOptimizer(SGD):
+ '''scales is a list, scales[i] is a triple (scale_identity.weight, scale_1x1.weight, scale_conv.weight) or a two-tuple (scale_1x1.weight, scale_conv.weight) (if the block has no scale_identity)'''
+ def __init__(self, model, scales,
+ args, cfg, momentum=0, dampening=0,
+ weight_decay=0, nesterov=True,
+ reinit=True, use_identity_scales_for_reinit=True,
+ cpu_mode=False):
+
+ defaults = dict(lr=cfg.solver.lr0, momentum=cfg.solver.momentum, dampening=dampening, weight_decay=weight_decay, nesterov=nesterov)
+ if nesterov and (cfg.solver.momentum <= 0 or dampening != 0):
+ raise ValueError("Nesterov momentum requires a momentum and zero dampening")
+ # parameters = set_weight_decay(model)
+ parameters = get_optimizer_param(args, cfg, model)
+ super(SGD, self).__init__(parameters, defaults)
+ self.num_layers = len(scales)
+
+ blocks = []
+ extract_blocks_into_list(model, blocks)
+ convs = [b.conv for b in blocks]
+ assert len(scales) == len(convs)
+
+ if reinit:
+ for m in model.modules():
+ if isinstance(m, nn.BatchNorm2d):
+ gamma_init = m.weight.mean()
+ if gamma_init == 1.0:
+ LOGGER.info('Checked. This is training from scratch.')
+ else:
+ LOGGER.warning('========================== Warning! Is this really training from scratch ? =================')
+ LOGGER.info('##################### Re-initialize #############')
+ self.reinitialize(scales, convs, use_identity_scales_for_reinit)
+
+ self.generate_gradient_masks(scales, convs, cpu_mode)
+
+ def reinitialize(self, scales_by_idx, conv3x3_by_idx, use_identity_scales):
+ for scales, conv3x3 in zip(scales_by_idx, conv3x3_by_idx):
+ in_channels = conv3x3.in_channels
+ out_channels = conv3x3.out_channels
+ kernel_1x1 = nn.Conv2d(in_channels, out_channels, 1, device=conv3x3.weight.device)
+ if len(scales) == 2:
+ conv3x3.weight.data = conv3x3.weight * scales[1].view(-1, 1, 1, 1) \
+ + F.pad(kernel_1x1.weight, [1, 1, 1, 1]) * scales[0].view(-1, 1, 1, 1)
+ else:
+ assert len(scales) == 3
+ assert in_channels == out_channels
+ identity = torch.from_numpy(np.eye(out_channels, dtype=np.float32).reshape(out_channels, out_channels, 1, 1)).to(conv3x3.weight.device)
+ conv3x3.weight.data = conv3x3.weight * scales[2].view(-1, 1, 1, 1) + F.pad(kernel_1x1.weight, [1, 1, 1, 1]) * scales[1].view(-1, 1, 1, 1)
+ if use_identity_scales: # You may initialize the imaginary CSLA block with the trained identity_scale values. Makes almost no difference.
+ identity_scale_weight = scales[0]
+ conv3x3.weight.data += F.pad(identity * identity_scale_weight.view(-1, 1, 1, 1), [1, 1, 1, 1])
+ else:
+ conv3x3.weight.data += F.pad(identity, [1, 1, 1, 1])
+
+ def generate_gradient_masks(self, scales_by_idx, conv3x3_by_idx, cpu_mode=False):
+ self.grad_mask_map = {}
+ for scales, conv3x3 in zip(scales_by_idx, conv3x3_by_idx):
+ para = conv3x3.weight
+ if len(scales) == 2:
+ mask = torch.ones_like(para, device=scales[0].device) * (scales[1] ** 2).view(-1, 1, 1, 1)
+ mask[:, :, 1:2, 1:2] += torch.ones(para.shape[0], para.shape[1], 1, 1, device=scales[0].device) * (scales[0] ** 2).view(-1, 1, 1, 1)
+ else:
+ mask = torch.ones_like(para, device=scales[0].device) * (scales[2] ** 2).view(-1, 1, 1, 1)
+ mask[:, :, 1:2, 1:2] += torch.ones(para.shape[0], para.shape[1], 1, 1, device=scales[0].device) * (scales[1] ** 2).view(-1, 1, 1, 1)
+ ids = np.arange(para.shape[1])
+ assert para.shape[1] == para.shape[0]
+ mask[ids, ids, 1:2, 1:2] += 1.0
+ if cpu_mode:
+ self.grad_mask_map[para] = mask
+ else:
+ self.grad_mask_map[para] = mask.cuda()
+
+ def __setstate__(self, state):
+ super(SGD, self).__setstate__(state)
+ for group in self.param_groups:
+ group.setdefault('nesterov', False)
+
+ def step(self, closure=None):
+ loss = None
+ if closure is not None:
+ loss = closure()
+
+ for group in self.param_groups:
+ weight_decay = group['weight_decay']
+ momentum = group['momentum']
+ dampening = group['dampening']
+ nesterov = group['nesterov']
+
+ for p in group['params']:
+ if p.grad is None:
+ continue
+
+ if p in self.grad_mask_map:
+ d_p = p.grad.data * self.grad_mask_map[p] # Note: multiply the mask here
+ else:
+ d_p = p.grad.data
+
+ if weight_decay != 0:
+ d_p.add_(weight_decay, p.data)
+ if momentum != 0:
+ param_state = self.state[p]
+ if 'momentum_buffer' not in param_state:
+ buf = param_state['momentum_buffer'] = torch.clone(d_p).detach()
+ else:
+ buf = param_state['momentum_buffer']
+ buf.mul_(momentum).add_(1 - dampening, d_p)
+ if nesterov:
+ d_p = d_p.add(momentum, buf)
+ else:
+ d_p = buf
+
+ p.data.add_(-group['lr'], d_p)
+
+ return loss
diff --git a/python/app/fedcv/object_detection/model/yolov6/yolov6/utils/checkpoint.py b/python/app/fedcv/YOLOv6/yolov6/utils/checkpoint.py
similarity index 55%
rename from python/app/fedcv/object_detection/model/yolov6/yolov6/utils/checkpoint.py
rename to python/app/fedcv/YOLOv6/yolov6/utils/checkpoint.py
index 722d4963e6..c2f6239b64 100644
--- a/python/app/fedcv/object_detection/model/yolov6/yolov6/utils/checkpoint.py
+++ b/python/app/fedcv/YOLOv6/yolov6/utils/checkpoint.py
@@ -4,20 +4,16 @@
import shutil
import torch
import os.path as osp
-from .events import LOGGER
-from .torch_utils import fuse_model
+from yolov6.utils.events import LOGGER
+from yolov6.utils.torch_utils import fuse_model
def load_state_dict(weights, model, map_location=None):
"""Load weights from checkpoint file, only assign weights those layers' name and shape are match."""
ckpt = torch.load(weights, map_location=map_location)
- state_dict = ckpt["model"].float().state_dict()
+ state_dict = ckpt['model'].float().state_dict()
model_state_dict = model.state_dict()
- state_dict = {
- k: v
- for k, v in state_dict.items()
- if k in model_state_dict and v.shape == model_state_dict[k].shape
- }
+ state_dict = {k: v for k, v in state_dict.items() if k in model_state_dict and v.shape == model_state_dict[k].shape}
model.load_state_dict(state_dict, strict=False)
del ckpt, state_dict, model_state_dict
return model
@@ -27,7 +23,7 @@ def load_checkpoint(weights, map_location=None, inplace=True, fuse=True):
"""Load model from checkpoint file."""
LOGGER.info("Loading checkpoint from {}".format(weights))
ckpt = torch.load(weights, map_location=map_location) # load
- model = ckpt["ema" if ckpt.get("ema") else "model"].float()
+ model = ckpt['ema' if ckpt.get('ema') else 'model'].float()
if fuse:
LOGGER.info("\nFusing model...")
model = fuse_model(model).eval()
@@ -37,28 +33,29 @@ def load_checkpoint(weights, map_location=None, inplace=True, fuse=True):
def save_checkpoint(ckpt, is_best, save_dir, model_name=""):
- """Save checkpoint to the disk."""
+ """ Save checkpoint to the disk."""
if not osp.exists(save_dir):
os.makedirs(save_dir)
- filename = osp.join(save_dir, model_name + ".pt")
+ filename = osp.join(save_dir, model_name + '.pt')
torch.save(ckpt, filename)
if is_best:
- best_filename = osp.join(save_dir, "best_ckpt.pt")
+ best_filename = osp.join(save_dir, 'best_ckpt.pt')
shutil.copyfile(filename, best_filename)
-def strip_optimizer(ckpt_dir):
- for s in ["best", "last"]:
- ckpt_path = osp.join(ckpt_dir, "{}_ckpt.pt".format(s))
+def strip_optimizer(ckpt_dir, epoch):
+ """Delete optimizer from saved checkpoint file"""
+ for s in ['best', 'last']:
+ ckpt_path = osp.join(ckpt_dir, '{}_ckpt.pt'.format(s))
if not osp.exists(ckpt_path):
continue
- ckpt = torch.load(ckpt_path, map_location=torch.device("cpu"))
- if ckpt.get("ema"):
- ckpt["model"] = ckpt["ema"] # replace model with ema
- for k in ["optimizer", "ema", "updates"]: # keys
+ ckpt = torch.load(ckpt_path, map_location=torch.device('cpu'))
+ if ckpt.get('ema'):
+ ckpt['model'] = ckpt['ema'] # replace model with ema
+ for k in ['optimizer', 'ema', 'updates']: # keys
ckpt[k] = None
- ckpt["epoch"] = -1
- ckpt["model"].half() # to FP16
- for p in ckpt["model"].parameters():
+ ckpt['epoch'] = epoch
+ ckpt['model'].half() # to FP16
+ for p in ckpt['model'].parameters():
p.requires_grad = False
torch.save(ckpt, ckpt_path)
diff --git a/python/app/fedcv/object_detection/model/yolov6/yolov6/utils/config.py b/python/app/fedcv/YOLOv6/yolov6/utils/config.py
similarity index 100%
rename from python/app/fedcv/object_detection/model/yolov6/yolov6/utils/config.py
rename to python/app/fedcv/YOLOv6/yolov6/utils/config.py
diff --git a/python/app/fedcv/object_detection/model/yolov6/yolov6/utils/ema.py b/python/app/fedcv/YOLOv6/yolov6/utils/ema.py
similarity index 93%
rename from python/app/fedcv/object_detection/model/yolov6/yolov6/utils/ema.py
rename to python/app/fedcv/YOLOv6/yolov6/utils/ema.py
index 104d97b36c..de4304f5e0 100644
--- a/python/app/fedcv/object_detection/model/yolov6/yolov6/utils/ema.py
+++ b/python/app/fedcv/YOLOv6/yolov6/utils/ema.py
@@ -50,10 +50,10 @@ def copy_attr(a, b, include=(), exclude=()):
def is_parallel(model):
- # Return True if model's type is DP or DDP, else False.
+ '''Return True if model's type is DP or DDP, else False.'''
return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
def de_parallel(model):
- # De-parallelize a model. Return single-GPU model if model's type is DP or DDP.
+ '''De-parallelize a model. Return single-GPU model if model's type is DP or DDP.'''
return model.module if is_parallel(model) else model
diff --git a/python/app/fedcv/object_detection/model/yolov6/yolov6/utils/envs.py b/python/app/fedcv/YOLOv6/yolov6/utils/envs.py
similarity index 58%
rename from python/app/fedcv/object_detection/model/yolov6/yolov6/utils/envs.py
rename to python/app/fedcv/YOLOv6/yolov6/utils/envs.py
index 2263fb959e..10159a9484 100644
--- a/python/app/fedcv/object_detection/model/yolov6/yolov6/utils/envs.py
+++ b/python/app/fedcv/YOLOv6/yolov6/utils/envs.py
@@ -6,14 +6,14 @@
import torch
import torch.backends.cudnn as cudnn
-from .events import LOGGER
+from yolov6.utils.events import LOGGER
def get_envs():
"""Get PyTorch needed environments from system envirionments."""
- local_rank = int(os.getenv("LOCAL_RANK", -1))
- rank = int(os.getenv("RANK", -1))
- world_size = int(os.getenv("WORLD_SIZE", 1))
+ local_rank = int(os.getenv('LOCAL_RANK', -1))
+ rank = int(os.getenv('RANK', -1))
+ world_size = int(os.getenv('WORLD_SIZE', 1))
return local_rank, rank, world_size
@@ -24,21 +24,21 @@ def select_device(device):
Returns:
torch.device
"""
- if device == "cpu":
- os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
- LOGGER.info("Using CPU for training... ")
+ if device == 'cpu':
+ os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
+ LOGGER.info('Using CPU for training... ')
elif device:
- os.environ["CUDA_VISIBLE_DEVICES"] = device
+ os.environ['CUDA_VISIBLE_DEVICES'] = device
assert torch.cuda.is_available()
- nd = len(device.strip().split(","))
- LOGGER.info(f"Using {nd} GPU for training... ")
- cuda = device != "cpu" and torch.cuda.is_available()
- device = torch.device("cuda:0" if cuda else "cpu")
+ nd = len(device.strip().split(','))
+ LOGGER.info(f'Using {nd} GPU for training... ')
+ cuda = device != 'cpu' and torch.cuda.is_available()
+ device = torch.device('cuda:0' if cuda else 'cpu')
return device
def set_random_seed(seed, deterministic=False):
- """Set random state to random libray, numpy, torch and cudnn.
+ """ Set random state to random libray, numpy, torch and cudnn.
Args:
seed: int value.
deterministic: bool value.
diff --git a/python/app/fedcv/object_detection/model/yolov6/yolov6/utils/events.py b/python/app/fedcv/YOLOv6/yolov6/utils/events.py
similarity index 52%
rename from python/app/fedcv/object_detection/model/yolov6/yolov6/utils/events.py
rename to python/app/fedcv/YOLOv6/yolov6/utils/events.py
index 6a3dd50942..bbc007afcd 100644
--- a/python/app/fedcv/object_detection/model/yolov6/yolov6/utils/events.py
+++ b/python/app/fedcv/YOLOv6/yolov6/utils/events.py
@@ -13,7 +13,7 @@ def set_logging(name=None):
LOGGER = set_logging(__name__)
-NCOLS = shutil.get_terminal_size().columns
+NCOLS = min(100, shutil.get_terminal_size().columns)
def load_yaml(file_path):
@@ -30,12 +30,26 @@ def save_yaml(data_dict, save_path):
yaml.safe_dump(data_dict, f, sort_keys=False)
-def write_tblog(tblogger, epoch, results, losses):
+def write_tblog(tblogger, epoch, results, lrs, losses):
"""Display mAP and loss information to log."""
tblogger.add_scalar("val/mAP@0.5", results[0], epoch + 1)
tblogger.add_scalar("val/mAP@0.50:0.95", results[1], epoch + 1)
tblogger.add_scalar("train/iou_loss", losses[0], epoch + 1)
- tblogger.add_scalar("train/l1_loss", losses[1], epoch + 1)
- tblogger.add_scalar("train/obj_loss", losses[2], epoch + 1)
- tblogger.add_scalar("train/cls_loss", losses[3], epoch + 1)
+ tblogger.add_scalar("train/dist_focalloss", losses[1], epoch + 1)
+ tblogger.add_scalar("train/cls_loss", losses[2], epoch + 1)
+
+ tblogger.add_scalar("x/lr0", lrs[0], epoch + 1)
+ tblogger.add_scalar("x/lr1", lrs[1], epoch + 1)
+ tblogger.add_scalar("x/lr2", lrs[2], epoch + 1)
+
+
+def write_tbimg(tblogger, imgs, step, type='train'):
+ """Display train_batch and validation predictions to tensorboard."""
+ if type == 'train':
+ tblogger.add_image(f'train_batch', imgs, step + 1, dataformats='HWC')
+ elif type == 'val':
+ for idx, img in enumerate(imgs):
+ tblogger.add_image(f'val_img_{idx + 1}', img, step + 1, dataformats='HWC')
+ else:
+ LOGGER.warning('WARNING: Unknown image type to visualize.\n')
diff --git a/python/app/fedcv/object_detection/model/yolov6/yolov6/utils/figure_iou.py b/python/app/fedcv/YOLOv6/yolov6/utils/figure_iou.py
similarity index 74%
rename from python/app/fedcv/object_detection/model/yolov6/yolov6/utils/figure_iou.py
rename to python/app/fedcv/YOLOv6/yolov6/utils/figure_iou.py
index f3a0f3f7b7..23248ce174 100644
--- a/python/app/fedcv/object_detection/model/yolov6/yolov6/utils/figure_iou.py
+++ b/python/app/fedcv/YOLOv6/yolov6/utils/figure_iou.py
@@ -13,7 +13,7 @@ def __init__(self, box_format='xywh', iou_type='ciou', reduction='none', eps=1e-
box_format: (string), must be one of 'xywh' or 'xyxy'.
iou_type: (string), can be one of 'ciou', 'diou', 'giou' or 'siou'
reduction: (string), specifies the reduction to apply to the output, must be one of 'none', 'mean','sum'.
- eps: (float), a value to avoid devide by zero error.
+ eps: (float), a value to avoid divide by zero error.
"""
self.box_format = box_format
self.iou_type = iou_type.lower()
@@ -23,15 +23,28 @@ def __init__(self, box_format='xywh', iou_type='ciou', reduction='none', eps=1e-
def __call__(self, box1, box2):
""" calculate iou. box1 and box2 are torch tensor with shape [M, 4] and [Nm 4].
"""
- box2 = box2.T
- if self.box_format == 'xyxy':
- b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
- b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
- elif self.box_format == 'xywh':
- b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
- b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
- b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
- b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
+ if box1.shape[0] != box2.shape[0]:
+ box2 = box2.T
+ if self.box_format == 'xyxy':
+ b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
+ b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
+ elif self.box_format == 'xywh':
+ b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
+ b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
+ b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
+ b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
+ else:
+ if self.box_format == 'xyxy':
+ b1_x1, b1_y1, b1_x2, b1_y2 = torch.split(box1, 1, dim=-1)
+ b2_x1, b2_y1, b2_x2, b2_y2 = torch.split(box2, 1, dim=-1)
+
+ elif self.box_format == 'xywh':
+ b1_x1, b1_y1, b1_w, b1_h = torch.split(box1, 1, dim=-1)
+ b2_x1, b2_y1, b2_w, b2_h = torch.split(box2, 1, dim=-1)
+ b1_x1, b1_x2 = b1_x1 - b1_w / 2, b1_x1 + b1_w / 2
+ b1_y1, b1_y2 = b1_y1 - b1_h / 2, b1_y1 + b1_h / 2
+ b2_x1, b2_x2 = b2_x1 - b2_w / 2, b2_x1 + b2_w / 2
+ b2_y1, b2_y2 = b2_y1 - b2_h / 2, b2_y1 + b2_h / 2
# Intersection area
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
@@ -61,8 +74,8 @@ def __call__(self, box1, box2):
iou = iou - (rho2 / c2 + v * alpha)
elif self.iou_type == 'siou':
# SIoU Loss https://arxiv.org/pdf/2205.12740.pdf
- s_cw = (b2_x1 + b2_x2 - b1_x1 - b1_x2) * 0.5
- s_ch = (b2_y1 + b2_y2 - b1_y1 - b1_y2) * 0.5
+ s_cw = (b2_x1 + b2_x2 - b1_x1 - b1_x2) * 0.5 + self.eps
+ s_ch = (b2_y1 + b2_y2 - b1_y1 - b1_y2) * 0.5 + self.eps
sigma = torch.pow(s_cw ** 2 + s_ch ** 2, 0.5)
sin_alpha_1 = torch.abs(s_cw) / sigma
sin_alpha_2 = torch.abs(s_ch) / sigma
diff --git a/python/app/fedcv/YOLOv6/yolov6/utils/general.py b/python/app/fedcv/YOLOv6/yolov6/utils/general.py
new file mode 100644
index 0000000000..cb4418cde0
--- /dev/null
+++ b/python/app/fedcv/YOLOv6/yolov6/utils/general.py
@@ -0,0 +1,127 @@
+#!/usr/bin/env python3
+# -*- coding:utf-8 -*-
+import os
+import glob
+import math
+import torch
+import requests
+import pkg_resources as pkg
+from pathlib import Path
+from yolov6.utils.events import LOGGER
+
+def increment_name(path):
+ '''increase save directory's id'''
+ path = Path(path)
+ sep = ''
+ if path.exists():
+ path, suffix = (path.with_suffix(''), path.suffix) if path.is_file() else (path, '')
+ for n in range(1, 9999):
+ p = f'{path}{sep}{n}{suffix}'
+ if not os.path.exists(p):
+ break
+ path = Path(p)
+ return path
+
+
+def find_latest_checkpoint(search_dir='.'):
+ '''Find the most recent saved checkpoint in search_dir.'''
+ checkpoint_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
+ return max(checkpoint_list, key=os.path.getctime) if checkpoint_list else ''
+
+
+def dist2bbox(distance, anchor_points, box_format='xyxy'):
+ '''Transform distance(ltrb) to box(xywh or xyxy).'''
+ lt, rb = torch.split(distance, 2, -1)
+ x1y1 = anchor_points - lt
+ x2y2 = anchor_points + rb
+ if box_format == 'xyxy':
+ bbox = torch.cat([x1y1, x2y2], -1)
+ elif box_format == 'xywh':
+ c_xy = (x1y1 + x2y2) / 2
+ wh = x2y2 - x1y1
+ bbox = torch.cat([c_xy, wh], -1)
+ return bbox
+
+
+def bbox2dist(anchor_points, bbox, reg_max):
+ '''Transform bbox(xyxy) to dist(ltrb).'''
+ x1y1, x2y2 = torch.split(bbox, 2, -1)
+ lt = anchor_points - x1y1
+ rb = x2y2 - anchor_points
+ dist = torch.cat([lt, rb], -1).clip(0, reg_max - 0.01)
+ return dist
+
+
+def xywh2xyxy(bboxes):
+ '''Transform bbox(xywh) to box(xyxy).'''
+ bboxes[..., 0] = bboxes[..., 0] - bboxes[..., 2] * 0.5
+ bboxes[..., 1] = bboxes[..., 1] - bboxes[..., 3] * 0.5
+ bboxes[..., 2] = bboxes[..., 0] + bboxes[..., 2]
+ bboxes[..., 3] = bboxes[..., 1] + bboxes[..., 3]
+ return bboxes
+
+
+def box_iou(box1, box2):
+ # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
+ """
+ Return intersection-over-union (Jaccard index) of boxes.
+ Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
+ Arguments:
+ box1 (Tensor[N, 4])
+ box2 (Tensor[M, 4])
+ Returns:
+ iou (Tensor[N, M]): the NxM matrix containing the pairwise
+ IoU values for every element in boxes1 and boxes2
+ """
+
+ def box_area(box):
+ # box = 4xn
+ return (box[2] - box[0]) * (box[3] - box[1])
+
+ area1 = box_area(box1.T)
+ area2 = box_area(box2.T)
+
+ # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
+ inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
+ return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter)
+
+
+def download_ckpt(path):
+ """Download checkpoints of the pretrained models"""
+ basename = os.path.basename(path)
+ dir = os.path.abspath(os.path.dirname(path))
+ os.makedirs(dir, exist_ok=True)
+ LOGGER.info(f"checkpoint {basename} not exist, try to downloaded it from github.")
+ # need to update the link with every release
+ url = f"https://github.com/meituan/YOLOv6/releases/download/0.4.0/{basename}"
+ LOGGER.warning(f"downloading url is: {url}, pealse make sure the version of the downloading model is correspoing to the code version!")
+ r = requests.get(url, allow_redirects=True)
+ assert r.status_code == 200, "Unable to download checkpoints, manually download it"
+ open(path, 'wb').write(r.content)
+ LOGGER.info(f"checkpoint {basename} downloaded and saved")
+
+
+def make_divisible(x, divisor):
+ # Returns x evenly divisible by divisor
+ return math.ceil(x / divisor) * divisor
+
+
+def check_img_size(imgsz, s=32, floor=0):
+ # Verify image size is a multiple of stride s in each dimension
+ if isinstance(imgsz, int): # integer i.e. img_size=640
+ new_size = max(make_divisible(imgsz, int(s)), floor)
+ else: # list i.e. img_size=[640, 480]
+ new_size = [max(make_divisible(x, int(s)), floor) for x in imgsz]
+ if new_size != imgsz:
+ LOGGER.warning(f'--img-size {imgsz} must be multiple of max stride {s}, updating to {new_size}')
+ return new_size
+
+
+def check_version(current='0.0.0', minimum='0.0.0', name='version ', pinned=False, hard=False, verbose=False):
+ # Check whether the package's version is match the required version.
+ current, minimum = (pkg.parse_version(x) for x in (current, minimum))
+ result = (current == minimum) if pinned else (current >= minimum) # bool
+ if hard:
+ info = f'⚠️ {name}{minimum} is required by YOLOv6, but {name}{current} is currently installed'
+ assert result, info # assert minimum version requirement
+ return result
diff --git a/python/app/fedcv/object_detection/model/yolov7/utils/metrics.py b/python/app/fedcv/YOLOv6/yolov6/utils/metrics.py
similarity index 71%
rename from python/app/fedcv/object_detection/model/yolov7/utils/metrics.py
rename to python/app/fedcv/YOLOv6/yolov6/utils/metrics.py
index 666b8c7ec1..cbfa130ef5 100644
--- a/python/app/fedcv/object_detection/model/yolov7/utils/metrics.py
+++ b/python/app/fedcv/YOLOv6/yolov6/utils/metrics.py
@@ -1,20 +1,15 @@
# Model validation metrics
+# This code is based on
+# https://github.com/ultralytics/yolov5/blob/master/utils/metrics.py
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import torch
-
+import warnings
from . import general
-
-def fitness(x):
- # Model fitness as a weighted combination of metrics
- w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
- return (x[:, :4] * w).sum(1)
-
-
def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=()):
""" Compute the average precision, given the recall and precision curves.
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
@@ -74,8 +69,9 @@ def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names
plot_mc_curve(px, p, Path(save_dir) / 'P_curve.png', names, ylabel='Precision')
plot_mc_curve(px, r, Path(save_dir) / 'R_curve.png', names, ylabel='Recall')
- i = f1.mean(0).argmax() # max F1 index
- return p[:, i], r[:, i], ap, f1[:, i], unique_classes.astype('int32')
+ # i = f1.mean(0).argmax() # max F1 index
+ # return p[:, i], r[:, i], ap, f1[:, i], unique_classes.astype('int32')
+ return p, r, ap, f1, unique_classes.astype('int32')
def compute_ap(recall, precision):
@@ -105,6 +101,70 @@ def compute_ap(recall, precision):
return ap, mpre, mrec
+# Plots ----------------------------------------------------------------------------------------------------------------
+
+def plot_pr_curve(px, py, ap, save_dir='pr_curve.png', names=()):
+ # Precision-recall curve
+ fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
+ py = np.stack(py, axis=1)
+
+ if 0 < len(names) < 21: # display per-class legend if < 21 classes
+ for i, y in enumerate(py.T):
+ ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') # plot(recall, precision)
+ else:
+ ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision)
+
+ ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
+ ax.set_xlabel('Recall')
+ ax.set_ylabel('Precision')
+ ax.set_xlim(0, 1)
+ ax.set_ylim(0, 1)
+ plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
+ fig.savefig(Path(save_dir), dpi=250)
+
+
+def plot_mc_curve(px, py, save_dir='mc_curve.png', names=(), xlabel='Confidence', ylabel='Metric'):
+ # Metric-confidence curve
+ fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
+
+ if 0 < len(names) < 21: # display per-class legend if < 21 classes
+ for i, y in enumerate(py):
+ ax.plot(px, y, linewidth=1, label=f'{names[i]}') # plot(confidence, metric)
+ else:
+ ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric)
+
+ y = py.mean(0)
+ ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}')
+ ax.set_xlabel(xlabel)
+ ax.set_ylabel(ylabel)
+ ax.set_xlim(0, 1)
+ ax.set_ylim(0, 1)
+ plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
+ fig.savefig(Path(save_dir), dpi=250)
+
+def process_batch(detections, labels, iouv):
+ """
+ Return correct predictions matrix. Both sets of boxes are in (x1, y1, x2, y2) format.
+ Arguments:
+ detections (Array[N, 6]), x1, y1, x2, y2, conf, class
+ labels (Array[M, 5]), class, x1, y1, x2, y2
+ Returns:
+ correct (Array[N, 10]), for 10 IoU levels
+ """
+ correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool)
+ iou = general.box_iou(labels[:, 1:], detections[:, :4])
+ correct_class = labels[:, 0:1] == detections[:, 5]
+ for i in range(len(iouv)):
+ x = torch.where((iou >= iouv[i]) & correct_class) # IoU > threshold and classes match
+ if x[0].shape[0]:
+ matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detect, iou]
+ if x[0].shape[0] > 1:
+ matches = matches[matches[:, 2].argsort()[::-1]]
+ matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
+ # matches = matches[matches[:, 2].argsort()[::-1]]
+ matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
+ correct[matches[:, 1].astype(int), i] = True
+ return torch.tensor(correct, dtype=torch.bool, device=iouv.device)
class ConfusionMatrix:
# Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
@@ -141,11 +201,11 @@ def process_batch(self, detections, labels):
matches = np.zeros((0, 3))
n = matches.shape[0] > 0
- m0, m1, _ = matches.transpose().astype(np.int16)
+ m0, m1, _ = matches.transpose().astype(int)
for i, gc in enumerate(gt_classes):
j = m0 == i
if n and sum(j) == 1:
- self.matrix[gc, detection_classes[m1[j]]] += 1 # correct
+ self.matrix[detection_classes[m1[j]], gc] += 1 # correct
else:
self.matrix[self.nc, gc] += 1 # background FP
@@ -157,67 +217,42 @@ def process_batch(self, detections, labels):
def matrix(self):
return self.matrix
- def plot(self, save_dir='', names=()):
+ def tp_fp(self):
+ tp = self.matrix.diagonal() # true positives
+ fp = self.matrix.sum(1) - tp # false positives
+ # fn = self.matrix.sum(0) - tp # false negatives (missed detections)
+ return tp[:-1], fp[:-1] # remove background class
+
+ def plot(self, normalize=True, save_dir='', names=()):
try:
import seaborn as sn
- array = self.matrix / (self.matrix.sum(0).reshape(1, self.nc + 1) + 1E-6) # normalize
+ array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1E-9) if normalize else 1) # normalize columns
array[array < 0.005] = np.nan # don't annotate (would appear as 0.00)
fig = plt.figure(figsize=(12, 9), tight_layout=True)
- sn.set(font_scale=1.0 if self.nc < 50 else 0.8) # for label size
- labels = (0 < len(names) < 99) and len(names) == self.nc # apply names to ticklabels
- sn.heatmap(array, annot=self.nc < 30, annot_kws={"size": 8}, cmap='Blues', fmt='.2f', square=True,
- xticklabels=names + ['background FP'] if labels else "auto",
- yticklabels=names + ['background FN'] if labels else "auto").set_facecolor((1, 1, 1))
+ nc, nn = self.nc, len(names) # number of classes, names
+ sn.set(font_scale=1.0 if nc < 50 else 0.8) # for label size
+ labels = (0 < nn < 99) and (nn == nc) # apply names to ticklabels
+ with warnings.catch_warnings():
+ warnings.simplefilter('ignore') # suppress empty matrix RuntimeWarning: All-NaN slice encountered
+ sn.heatmap(array,
+ annot=nc < 30,
+ annot_kws={
+ "size": 8},
+ cmap='Blues',
+ fmt='.2f',
+ square=True,
+ vmin=0.0,
+ xticklabels=names + ['background FP'] if labels else "auto",
+ yticklabels=names + ['background FN'] if labels else "auto").set_facecolor((1, 1, 1))
fig.axes[0].set_xlabel('True')
fig.axes[0].set_ylabel('Predicted')
fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
+ plt.close()
except Exception as e:
- pass
+ print(f'WARNING: ConfusionMatrix plot failure: {e}')
def print(self):
for i in range(self.nc + 1):
print(' '.join(map(str, self.matrix[i])))
-
-
-# Plots ----------------------------------------------------------------------------------------------------------------
-
-def plot_pr_curve(px, py, ap, save_dir='pr_curve.png', names=()):
- # Precision-recall curve
- fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
- py = np.stack(py, axis=1)
-
- if 0 < len(names) < 21: # display per-class legend if < 21 classes
- for i, y in enumerate(py.T):
- ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') # plot(recall, precision)
- else:
- ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision)
-
- ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
- ax.set_xlabel('Recall')
- ax.set_ylabel('Precision')
- ax.set_xlim(0, 1)
- ax.set_ylim(0, 1)
- plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
- fig.savefig(Path(save_dir), dpi=250)
-
-
-def plot_mc_curve(px, py, save_dir='mc_curve.png', names=(), xlabel='Confidence', ylabel='Metric'):
- # Metric-confidence curve
- fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
-
- if 0 < len(names) < 21: # display per-class legend if < 21 classes
- for i, y in enumerate(py):
- ax.plot(px, y, linewidth=1, label=f'{names[i]}') # plot(confidence, metric)
- else:
- ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric)
-
- y = py.mean(0)
- ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}')
- ax.set_xlabel(xlabel)
- ax.set_ylabel(ylabel)
- ax.set_xlim(0, 1)
- ax.set_ylim(0, 1)
- plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
- fig.savefig(Path(save_dir), dpi=250)
diff --git a/python/app/fedcv/object_detection/model/yolov6/yolov6/utils/nms.py b/python/app/fedcv/YOLOv6/yolov6/utils/nms.py
similarity index 94%
rename from python/app/fedcv/object_detection/model/yolov6/yolov6/utils/nms.py
rename to python/app/fedcv/YOLOv6/yolov6/utils/nms.py
index 9c61b7cc45..0f8126427b 100644
--- a/python/app/fedcv/object_detection/model/yolov6/yolov6/utils/nms.py
+++ b/python/app/fedcv/YOLOv6/yolov6/utils/nms.py
@@ -19,7 +19,7 @@
def xywh2xyxy(x):
- # Convert boxes with shape [n, 4] from [x, y, w, h] to [x1, y1, x2, y2] where x1y1 is top-left, x2y2=bottom-right
+ '''Convert boxes with shape [n, 4] from [x, y, w, h] to [x1, y1, x2, y2] where x1y1 is top-left, x2y2=bottom-right.'''
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
@@ -45,8 +45,7 @@ def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=Non
"""
num_classes = prediction.shape[2] - 5 # number of classes
- pred_candidates = prediction[..., 4] > conf_thres # candidates
-
+ pred_candidates = torch.logical_and(prediction[..., 4] > conf_thres, torch.max(prediction[..., 5:], axis=-1)[0] > conf_thres) # candidates
# Check the parameters.
assert 0 <= conf_thres <= 1, f'conf_thresh must be in 0.0 to 1.0, however {conf_thres} is provided.'
assert 0 <= iou_thres <= 1, f'iou_thres must be in 0.0 to 1.0, however {iou_thres} is provided.'
diff --git a/python/app/fedcv/object_detection/model/yolov6/yolov6/utils/torch_utils.py b/python/app/fedcv/YOLOv6/yolov6/utils/torch_utils.py
similarity index 86%
rename from python/app/fedcv/object_detection/model/yolov6/yolov6/utils/torch_utils.py
rename to python/app/fedcv/YOLOv6/yolov6/utils/torch_utils.py
index c54c314edd..6d2b09cf0f 100644
--- a/python/app/fedcv/object_detection/model/yolov6/yolov6/utils/torch_utils.py
+++ b/python/app/fedcv/YOLOv6/yolov6/utils/torch_utils.py
@@ -8,7 +8,7 @@
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
-from .events import LOGGER
+from yolov6.utils.events import LOGGER
try:
import thop # for FLOPs computation
@@ -29,7 +29,7 @@ def torch_distributed_zero_first(local_rank: int):
def time_sync():
- # Waits for all kernels in all streams on a CUDA device to complete if cuda is available.
+ '''Waits for all kernels in all streams on a CUDA device to complete if cuda is available.'''
if torch.cuda.is_available():
torch.cuda.synchronize()
return time.time()
@@ -39,7 +39,7 @@ def initialize_weights(model):
for m in model.modules():
t = type(m)
if t is nn.Conv2d:
- pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
+ pass
elif t is nn.BatchNorm2d:
m.eps = 1e-3
m.momentum = 0.03
@@ -48,7 +48,7 @@ def initialize_weights(model):
def fuse_conv_and_bn(conv, bn):
- # Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
+ '''Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/.'''
fusedconv = (
nn.Conv2d(
conv.in_channels,
@@ -83,10 +83,11 @@ def fuse_conv_and_bn(conv, bn):
def fuse_model(model):
- from yolov6.layers.common import Conv
+ '''Fuse convolution and batchnorm layers of the model.'''
+ from yolov6.layers.common import ConvModule
for m in model.modules():
- if type(m) is Conv and hasattr(m, "bn"):
+ if type(m) is ConvModule and hasattr(m, "bn"):
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
delattr(m, "bn") # remove batchnorm
m.forward = m.forward_fuse # update forward
@@ -98,9 +99,9 @@ def get_model_info(model, img_size=640):
Code base on https://github.com/Megvii-BaseDetection/YOLOX/blob/main/yolox/utils/model_utils.py
"""
from thop import profile
-
- stride = 32
+ stride = 64 #32
img = torch.zeros((1, 3, stride, stride), device=next(model.parameters()).device)
+
flops, params = profile(deepcopy(model), inputs=(img,), verbose=False)
params /= 1e6
flops /= 1e9
diff --git a/python/app/fedcv/object_detection/build_mlops_pkg.sh b/python/app/fedcv/build_mlops_pkg.sh
similarity index 70%
rename from python/app/fedcv/object_detection/build_mlops_pkg.sh
rename to python/app/fedcv/build_mlops_pkg.sh
index 6d4238bd6f..a828d5bd4d 100644
--- a/python/app/fedcv/object_detection/build_mlops_pkg.sh
+++ b/python/app/fedcv/build_mlops_pkg.sh
@@ -2,7 +2,7 @@ SOURCE=.
ENTRY=main_fedml_object_detection.py
CONFIG=config
DEST=./mlops
-IGNORE=__pycache__,*.git
+IGNORE=__pycache__,*.git,runs,.vscode,devops,.idea,*.ipynb,cache
fedml build -t client -sf $SOURCE -ep $ENTRY -cf $CONFIG -df $DEST --ignore $IGNORE
@@ -10,5 +10,5 @@ SOURCE=.
ENTRY=main_fedml_object_detection.py
CONFIG=config
DEST=./mlops
-IGNORE=__pycache__,*.git
+IGNORE=__pycache__,*.git,runs,.vscode,devops,.idea,*.ipynb,cache
fedml build -t server -sf $SOURCE -ep $ENTRY -cf $CONFIG -df $DEST --ignore $IGNORE
diff --git a/python/app/fedcv/config/cross-silo/fedml_config.yaml b/python/app/fedcv/config/cross-silo/fedml_config.yaml
new file mode 100644
index 0000000000..fc3f5f589e
--- /dev/null
+++ b/python/app/fedcv/config/cross-silo/fedml_config.yaml
@@ -0,0 +1,49 @@
+common_args:
+ training_type: "cross_silo"
+ scenario: "horizontal"
+ using_mlops: false
+ config_version: release
+ random_seed: 0
+
+data_args:
+ dataset: "coco"
+ data_cache_dir: ~/cache/voc
+ partition_method: "hetero"
+ data_cfg: "./YOLOv6/data/voc.yaml"
+ img_size: 640
+
+model_args:
+ model: "yolov6s6"
+ yolo_cfg: "./YOLOv6/configs/yolov6s6_finetune.py"
+
+train_args:
+ federated_optimizer: "FedAvg"
+ client_id_list:
+ client_num_in_total: 2
+ client_num_per_round: 2
+ comm_round: 10000
+ epochs: 1
+ steps: 8
+ batch_size: 8
+
+
+validation_args:
+ frequency_of_the_test: 200
+
+device_args:
+ using_gpu: True
+ gpu_mapping_file: config/cross-silo/gpu_mapping.yaml
+ gpu_mapping_key: mapping_default
+
+comm_args:
+ backend: "MQTT_S3"
+ mqtt_config_path:
+ s3_config_path:
+ grpc_ipconfig_path: ./config/grpc_ipconfig.csv
+
+tracking_args:
+ # When running on MLOps platform(open.fedml.ai), the default log path is at ~/fedml-client/fedml/logs/ and ~/fedml-server/fedml/logs/
+ enable_wandb: false
+ wandb_key: ee0b5f53d949c84cee7decbe7a629e63fb2f8408
+ wandb_project: fedml
+ wandb_name: fedml_torch_fedavg_mnist_lr
\ No newline at end of file
diff --git a/python/app/fedcv/config/cross-silo/gpu_mapping.yaml b/python/app/fedcv/config/cross-silo/gpu_mapping.yaml
new file mode 100644
index 0000000000..e589eefa3e
--- /dev/null
+++ b/python/app/fedcv/config/cross-silo/gpu_mapping.yaml
@@ -0,0 +1,2 @@
+mapping_default:
+ localhost: [2, 1]
diff --git a/python/app/fedcv/config/simulation/fedml_config.yaml b/python/app/fedcv/config/simulation/fedml_config.yaml
new file mode 100644
index 0000000000..8ceb926734
--- /dev/null
+++ b/python/app/fedcv/config/simulation/fedml_config.yaml
@@ -0,0 +1,47 @@
+common_args:
+ training_type: "simulation"
+ scenario: "horizontal"
+ using_mlops: false
+ config_version: release
+ random_seed: 0
+
+data_args:
+ dataset: "coco"
+ data_cache_dir: ~/cache/voc
+ partition_method: "hetero"
+ data_cfg: "./YOLOv6/data/voc.yaml"
+ img_size: 640
+
+model_args:
+ model: "yolov6s6"
+ yolo_cfg: "./YOLOv6/configs/yolov6s6_finetune.py"
+
+train_args:
+ federated_optimizer: "FedAvg"
+ client_id_list:
+ client_num_in_total: 2
+ client_num_per_round: 2
+ comm_round: 10000
+ epochs: 1
+ steps: 8
+ batch_size: 8
+
+validation_args:
+ frequency_of_the_test: 200
+
+device_args:
+ worker_num: 1
+ using_gpu: true
+ gpu_mapping_file: config/simulation/gpu_mapping.yaml
+ gpu_mapping_key: mapping_default
+
+comm_args:
+ backend: "MPI"
+ is_mobile: 0
+
+tracking_args:
+ # the default log path is at ~/fedml-client/fedml/logs/ and ~/fedml-server/fedml/logs/
+ enable_wandb: false
+ wandb_key: ee0b5f53d949c84cee7decbe7a629e63fb2f8408
+ wandb_project: fedml
+ wandb_name: fedml_torch_object_detection
diff --git a/python/app/fedcv/config/simulation/gpu_mapping.yaml b/python/app/fedcv/config/simulation/gpu_mapping.yaml
new file mode 100644
index 0000000000..e589eefa3e
--- /dev/null
+++ b/python/app/fedcv/config/simulation/gpu_mapping.yaml
@@ -0,0 +1,2 @@
+mapping_default:
+ localhost: [2, 1]
diff --git a/python/app/fedcv/data/data_loader_yolov6.py b/python/app/fedcv/data/data_loader_yolov6.py
new file mode 100644
index 0000000000..3b1fb17e6c
--- /dev/null
+++ b/python/app/fedcv/data/data_loader_yolov6.py
@@ -0,0 +1,94 @@
+import logging
+import torch
+import numpy as np
+from YOLOv6.yolov6.core.engine import Trainer
+
+def partition_data(n_data, y_train, partition, n_nets):
+ if partition == "homo":
+ total_num = n_data
+ idxs = np.random.permutation(total_num)
+ batch_idxs = np.array_split(idxs, n_nets)
+ net_dataidx_map = {i: batch_idxs[i] for i in range(n_nets)}
+ elif partition == "hetero":
+ min_size = 0
+ y_train = np.array(y_train)
+ K = int(max(y_train) + 1)
+ N = y_train.shape[0]
+ net_dataidx_map = {}
+
+ alpha = 0.5
+ while min_size < 10:
+ idx_batch = [[] for _ in range(n_nets)]
+ # for each class in the dataset
+ for k in range(K):
+ idx_k = np.where(y_train == k)[0]
+ np.random.shuffle(idx_k)
+ proportions = np.random.dirichlet(np.repeat(alpha, n_nets))
+ ## Balance
+ proportions = np.array(
+ [
+ p * (len(idx_j) < N / n_nets)
+ for p, idx_j in zip(proportions, idx_batch)
+ ]
+ )
+ proportions = proportions / proportions.sum()
+ proportions = (np.cumsum(proportions) * len(idx_k)).astype(int)[:-1]
+ idx_batch = [
+ idx_j + idx.tolist()
+ for idx_j, idx in zip(idx_batch, np.split(idx_k, proportions))
+ ]
+ min_size = min([len(idx_j) for idx_j in idx_batch])
+
+ for j in range(n_nets):
+ np.random.shuffle(idx_batch[j])
+ net_dataidx_map[j] = idx_batch[j]
+
+ return net_dataidx_map
+
+def load_partition_data_coco(args, yolo_args, cfg, device):
+ client_number = args.client_num_in_total
+ partition = args.partition_method
+
+ meituan_trainer = Trainer(yolo_args, cfg, device)
+ train_set = meituan_trainer.train_set
+ train_dataloader_global = meituan_trainer.train_loader
+ test_dataloader_global = meituan_trainer.val_loader
+ n_data = len(train_set)
+ nc = meituan_trainer.data_dict['nc']
+ labels = train_set.labels
+ y_train = [label[0][0] for label in labels]
+
+ # load meituan_trainer
+ net_dataidx_map = partition_data(
+ n_data, y_train, partition=partition, n_nets=client_number
+ )
+
+ train_data_loader_dict = dict()
+ test_data_loader_dict = dict()
+ train_data_num_dict = dict()
+ train_dataset_dict = dict()
+
+ train_data_num = 0
+ test_data_num = 0
+ train_dataloader_global = None
+ test_dataloader_global = None
+
+ for client_idx in range(client_number):
+ meituan_trainer = Trainer(yolo_args, cfg, device, net_dataidx_map[client_idx])
+
+ train_dataset_dict[client_idx] = torch.utils.data.Subset(meituan_trainer.train_set, net_dataidx_map[client_idx])
+ train_data_num_dict[client_idx] = len(train_dataset_dict[client_idx])
+ train_data_loader_dict[client_idx] = None
+ test_data_loader_dict[client_idx] = None
+ train_data_num += train_data_num_dict[client_idx]
+
+ return (
+ train_data_num,
+ test_data_num,
+ train_dataloader_global,
+ test_dataloader_global,
+ train_data_num_dict,
+ train_data_loader_dict,
+ test_data_loader_dict,
+ nc,
+ ), net_dataidx_map
diff --git a/python/app/fedcv/fedcv_arch.jpg b/python/app/fedcv/fedcv_arch.jpg
deleted file mode 100644
index 683a0873ed..0000000000
Binary files a/python/app/fedcv/fedcv_arch.jpg and /dev/null differ
diff --git a/python/app/fedcv/image_classification/build_mlops_pkg.sh b/python/app/fedcv/image_classification/build_mlops_pkg.sh
deleted file mode 100644
index 4ba54be26b..0000000000
--- a/python/app/fedcv/image_classification/build_mlops_pkg.sh
+++ /dev/null
@@ -1,14 +0,0 @@
-SOURCE=.
-ENTRY=main_fedml_image_classification.py
-CONFIG=config
-DEST=./mlops
-IGNORE=__pycache__,*.git
-fedml build -t client -sf $SOURCE -ep $ENTRY -cf $CONFIG -df $DEST --ignore $IGNORE
-
-
-SOURCE=.
-ENTRY=main_fedml_image_classification.py
-CONFIG=config
-DEST=./mlops
-IGNORE=__pycache__,*.git
-fedml build -t server -sf $SOURCE -ep $ENTRY -cf $CONFIG -df $DEST --ignore $IGNORE
\ No newline at end of file
diff --git a/python/app/fedcv/image_classification/config/bootstrap.sh b/python/app/fedcv/image_classification/config/bootstrap.sh
deleted file mode 100644
index 2f57eb7f66..0000000000
--- a/python/app/fedcv/image_classification/config/bootstrap.sh
+++ /dev/null
@@ -1,13 +0,0 @@
-### don't modify this part ###
-set -x
-##############################
-
-
-### please customize your script in this region ####
-
-DATA_PATH=~/fedcv_data/
-mkdir $DATA_PATH
-
-### don't modify this part ###
-exit 0
-##############################
\ No newline at end of file
diff --git a/python/app/fedcv/image_classification/config/fedml_config.yaml b/python/app/fedcv/image_classification/config/fedml_config.yaml
deleted file mode 100644
index c5a92d0544..0000000000
--- a/python/app/fedcv/image_classification/config/fedml_config.yaml
+++ /dev/null
@@ -1,56 +0,0 @@
-common_args:
- training_type: "cross_silo"
- scenario: "horizontal"
- using_mlops: false
- random_seed: 0
- config_version: release
-
-environment_args:
- bootstrap: config/bootstrap.sh
-
-data_args:
- dataset: "cifar10"
- data_cache_dir: "~/fedcv_data/"
- partition_method: "hetero"
- partition_alpha: 0.5
-
-model_args:
- model: "mobilenet_v3"
- image_size:
- input_size: 3
- class_num: 10
- model_file_cache_folder: "./model_file_cache" # will be filled by the server automatically
- global_model_file_path: "./model_file_cache/global_model.pt"
-
-train_args:
- federated_optimizer: "FedAvg"
- client_id_list:
- client_num_in_total: 2
- client_num_per_round: 2
- comm_round: 10
- epochs: 1
- batch_size: 4
- client_optimizer: sgd
- lr: 0.01
- weight_decay: 0.001
-
-validation_args:
- frequency_of_the_test: 1
-
-device_args:
- worker_num: 2
- using_gpu: true
-# gpu_mapping_file: config/gpu_mapping.yaml
-# gpu_mapping_key: mapping_default
-
-comm_args:
- backend: "MQTT_S3"
- mqtt_config_path: config/mqtt_config.yaml
- s3_config_path: config/s3_config.yaml
-
-tracking_args:
- # When running on MLOps platform(open.fedml.ai), the default log path is at ~/fedml-client/fedml/logs/ and ~/fedml-server/fedml/logs/
- enable_wandb: false
- wandb_key: ee0b5f53d949c84cee7decbe7a629e63fb2f8408
- wandb_project: fedml
- wandb_name: fedml_torch_image_classification
diff --git a/python/app/fedcv/image_classification/config/simulation/bootstrap.sh b/python/app/fedcv/image_classification/config/simulation/bootstrap.sh
deleted file mode 100644
index 2f57eb7f66..0000000000
--- a/python/app/fedcv/image_classification/config/simulation/bootstrap.sh
+++ /dev/null
@@ -1,13 +0,0 @@
-### don't modify this part ###
-set -x
-##############################
-
-
-### please customize your script in this region ####
-
-DATA_PATH=~/fedcv_data/
-mkdir $DATA_PATH
-
-### don't modify this part ###
-exit 0
-##############################
\ No newline at end of file
diff --git a/python/app/fedcv/image_classification/config/simulation/fedml_config.yaml b/python/app/fedcv/image_classification/config/simulation/fedml_config.yaml
deleted file mode 100644
index d0a789468d..0000000000
--- a/python/app/fedcv/image_classification/config/simulation/fedml_config.yaml
+++ /dev/null
@@ -1,47 +0,0 @@
-common_args:
- training_type: "simulation"
- random_seed: 0
-
-data_args:
- dataset: "cifar10"
- data_cache_dir: "~/fedcv_data/"
- partition_method: "hetero"
- partition_alpha: 0.5
-
-model_args:
- model: "mobilenet_v3"
- image_size:
- input_size: 3
- class_num: 10
-
-train_args:
- federated_optimizer: "FedAvg"
- client_id_list:
- client_num_in_total: 2
- client_num_per_round: 2
- comm_round: 10
- epochs: 3
- batch_size: 4
- client_optimizer: sgd
- lr: 0.03
- weight_decay: 0.001
-
-validation_args:
- frequency_of_the_test: 1
-
-device_args:
- worker_num: 4
- using_gpu: false
- gpu_mapping_file: config/gpu_mapping.yaml
- gpu_mapping_key: mapping_default
-
-comm_args:
- backend: "MPI"
- is_mobile: 0
-
-tracking_args:
- log_file_dir: ./log
- enable_wandb: false
- wandb_key: ee0b5f53d949c84cee7decbe7a629e63fb2f8408
- wandb_project: fedml
- wandb_name: fedml_torch_image_classification
diff --git a/python/app/fedcv/image_classification/config/simulation/gpu_mapping.yaml b/python/app/fedcv/image_classification/config/simulation/gpu_mapping.yaml
deleted file mode 100644
index 446c75e24a..0000000000
--- a/python/app/fedcv/image_classification/config/simulation/gpu_mapping.yaml
+++ /dev/null
@@ -1,60 +0,0 @@
-# You can define a cluster containing multiple GPUs within multiple machines by defining `gpu_mapping.yaml` as follows:
-
-# config_cluster0:
-# host_name_node0: [num_of_processes_on_GPU0, num_of_processes_on_GPU1, num_of_processes_on_GPU2, num_of_processes_on_GPU3, ..., num_of_processes_on_GPU_n]
-# host_name_node1: [num_of_processes_on_GPU0, num_of_processes_on_GPU1, num_of_processes_on_GPU2, num_of_processes_on_GPU3, ..., num_of_processes_on_GPU_n]
-# host_name_node_m: [num_of_processes_on_GPU0, num_of_processes_on_GPU1, num_of_processes_on_GPU2, num_of_processes_on_GPU3, ..., num_of_processes_on_GPU_n]
-
-
-# this is used for 10 clients and 1 server training within a single machine which has 4 GPUs
-mapping_default:
- ChaoyangHe-GPU-RTX2080Tix4: [3, 3, 3, 2]
-
-# this is used for 4 clients and 1 server training within a single machine which has 4 GPUs
-mapping_config1_5:
- host1: [2, 1, 1, 1]
-
-# this is used for 10 clients and 1 server training within a single machine which has 4 GPUs
-mapping_config2_11:
- host1: [3, 3, 3, 2]
-
-# this is used for 10 clients and 1 server training within a single machine which has 8 GPUs
-mapping_config3_11:
- host1: [2, 2, 2, 1, 1, 1, 1, 1]
-
-# this is used for 4 clients and 1 server training within a single machine which has 8 GPUs, but you hope to skip the GPU device ID.
-mapping_config4_5:
- host1: [1, 0, 0, 1, 1, 0, 1, 1]
-
-# this is used for 4 clients and 1 server training using 6 machines, each machine has 2 GPUs inside, but you hope to use the second GPU.
-mapping_config5_6:
- host1: [0, 1]
- host2: [0, 1]
- host3: [0, 1]
- host4: [0, 1]
- host5: [0, 1]
-# this is used for 4 clients and 1 server training using 2 machines, each machine has 2 GPUs inside, but you hope to use the second GPU.
-mapping_config5_2:
- gpu-worker2: [1,1]
- gpu-worker1: [2,1]
-
-# this is used for 10 clients and 1 server training using 4 machines, each machine has 2 GPUs inside, but you hope to use the second GPU.
-mapping_config5_4:
- gpu-worker2: [1,1]
- gpu-worker1: [2,1]
- gpu-worker3: [3,1]
- gpu-worker4: [1,1]
-
-# for grpc GPU mapping
-mapping_FedML_gRPC:
- hostname_node_server: [1]
- hostname_node_1: [1, 0, 0, 0]
- hostname_node_2: [1, 0, 0, 0]
-
-# for torch RPC GPU mapping
-mapping_FedML_tRPC:
- lambda-server1: [0, 0, 0, 0, 2, 2, 1, 1]
- lambda-server2: [2, 1, 1, 1, 0, 0, 0, 0]
-
-#mapping_FedML_tRPC:
-# lambda-server1: [0, 0, 0, 0, 3, 3, 3, 2]
\ No newline at end of file
diff --git a/python/app/fedcv/image_classification/main_fedml_image_classification.py b/python/app/fedcv/image_classification/main_fedml_image_classification.py
deleted file mode 100644
index 6d754a717e..0000000000
--- a/python/app/fedcv/image_classification/main_fedml_image_classification.py
+++ /dev/null
@@ -1,23 +0,0 @@
-import fedml
-from fedml import FedMLRunner
-from trainer.classification_trainer import ClassificationTrainer
-from trainer.classification_aggregator import ClassificationAggregator
-
-if __name__ == "__main__":
- # init FedML framework
- args = fedml.init()
-
- # init device
- device = fedml.device.get_device(args)
-
- # load data
- dataset, class_num = fedml.data.load(args)
-
- # create model and trainer
- model = fedml.model.create(args, output_dim=class_num)
- trainer = ClassificationTrainer(model=model, args=args)
- aggregator = ClassificationAggregator(model=model, args=args)
-
- # start training
- fedml_runner = FedMLRunner(args, device, dataset, model, trainer, aggregator)
- fedml_runner.run()
diff --git a/python/app/fedcv/image_classification/run_client.sh b/python/app/fedcv/image_classification/run_client.sh
deleted file mode 100644
index e9eb0ebf6e..0000000000
--- a/python/app/fedcv/image_classification/run_client.sh
+++ /dev/null
@@ -1,3 +0,0 @@
-#!/usr/bin/env bash
-RANK=$1
-python main_fedml_image_classification.py --cf config/fedml_config.yaml --run_id mobilenetv3_cifar10 --rank $RANK --role client
\ No newline at end of file
diff --git a/python/app/fedcv/image_classification/run_server.sh b/python/app/fedcv/image_classification/run_server.sh
deleted file mode 100644
index 3fe97c4131..0000000000
--- a/python/app/fedcv/image_classification/run_server.sh
+++ /dev/null
@@ -1,2 +0,0 @@
-#!/usr/bin/env bash
-python3 main_fedml_image_classification.py --cf config/fedml_config.yaml --run_id mobilenetv3_cifar10 --rank 0 --role server
diff --git a/python/app/fedcv/image_classification/run_simulation.sh b/python/app/fedcv/image_classification/run_simulation.sh
deleted file mode 100644
index da06e7a540..0000000000
--- a/python/app/fedcv/image_classification/run_simulation.sh
+++ /dev/null
@@ -1,12 +0,0 @@
-#!/usr/bin/env bash
-
-WORKER_NUM=$1
-
-PROCESS_NUM=`expr $WORKER_NUM + 1`
-echo $PROCESS_NUM
-
-hostname > mpi_host_file
-
-mpirun -np $PROCESS_NUM \
--hostfile mpi_host_file --oversubscribe \
-python main_fedml_image_classification.py --cf config/simulation/fedml_config.yaml
\ No newline at end of file
diff --git a/python/app/fedcv/image_classification/trainer/classification_aggregator.py b/python/app/fedcv/image_classification/trainer/classification_aggregator.py
deleted file mode 100644
index ae7ada7ee6..0000000000
--- a/python/app/fedcv/image_classification/trainer/classification_aggregator.py
+++ /dev/null
@@ -1,58 +0,0 @@
-import logging
-
-import numpy as np
-import torch
-import torch.nn as nn
-
-import fedml
-from fedml.core import ServerAggregator
-
-
-class ClassificationAggregator(ServerAggregator):
- def get_model_params(self):
- return self.model.cpu().state_dict()
-
- def set_model_params(self, model_parameters):
- logging.info("set_model_params")
- self.model.load_state_dict(model_parameters)
-
- def test(self, test_data, device, args):
- pass
-
- def _test(self, test_data, device):
- model = self.model
-
- model.eval()
- model.to(device)
-
- metrics = {
- "test_correct": 0,
- "test_loss": 0,
- "test_precision": 0,
- "test_recall": 0,
- "test_total": 0,
- }
-
- criterion = nn.CrossEntropyLoss().to(device)
- with torch.no_grad():
- for batch_idx, (x, target) in enumerate(test_data):
- x = x.to(device)
- target = target.to(device)
- pred = model(x)
- loss = criterion(pred, target)
- _, predicted = torch.max(pred, 1)
- correct = predicted.eq(target).sum()
-
- metrics["test_correct"] += correct.item()
- metrics["test_loss"] += loss.item() * target.size(0)
- if len(target.size()) == 1: #
- metrics["test_total"] += target.size(0)
- elif len(target.size()) == 2: # for tasks of next word prediction
- metrics["test_total"] += target.size(0) * target.size(1)
-
- return metrics
-
- def test_all(
- self, train_data_local_dict, test_data_local_dict, device, args=None
- ) -> bool:
- return True
diff --git a/python/app/fedcv/image_classification/trainer/classification_trainer.py b/python/app/fedcv/image_classification/trainer/classification_trainer.py
deleted file mode 100644
index 587d0a4478..0000000000
--- a/python/app/fedcv/image_classification/trainer/classification_trainer.py
+++ /dev/null
@@ -1,62 +0,0 @@
-import logging
-
-import torch
-from torch import nn
-
-from fedml.core import ClientTrainer
-
-
-class ClassificationTrainer(ClientTrainer):
- def get_model_params(self):
- return self.model.cpu().state_dict()
-
- def set_model_params(self, model_parameters):
- self.model.load_state_dict(model_parameters)
-
- def train(self, train_data, device, args):
- model = self.model
-
- model.to(device)
- model.train()
-
- criterion = nn.CrossEntropyLoss().to(device)
- if args.client_optimizer == "sgd":
- optimizer = torch.optim.SGD(model.parameters(), lr=args.lr)
- else:
- optimizer = torch.optim.Adam(
- filter(lambda p: p.requires_grad, model.parameters()),
- lr=args.lr,
- weight_decay=args.weight_decay,
- amsgrad=True,
- )
-
- epoch_loss = []
- for epoch in range(args.epochs):
- batch_loss = []
- for batch_idx, (x, labels) in enumerate(train_data):
- # logging.info(images.shape)
- x, labels = x.to(device), labels.to(device)
- optimizer.zero_grad()
- log_probs = model(x)
- loss = criterion(log_probs, labels)
- loss.backward()
- optimizer.step()
- batch_loss.append(loss.item())
- if batch_idx % 100 == 0:
- logging.info(
- "Epoch: {}/{} | Batch: {}/{} | Loss: {}".format(
- epoch + 1,
- args.epochs,
- batch_idx,
- len(train_data),
- loss.item(),
- )
- )
-
- if len(batch_loss) > 0:
- epoch_loss.append(sum(batch_loss) / len(batch_loss))
- logging.info(
- "(Trainer_ID {}. Local Training Epoch: {} \tLoss: {:.6f}".format(
- self.id, epoch, sum(epoch_loss) / len(epoch_loss)
- )
- )
diff --git a/python/app/fedcv/image_segmentation/.gitignore b/python/app/fedcv/image_segmentation/.gitignore
deleted file mode 100644
index a58da8c15f..0000000000
--- a/python/app/fedcv/image_segmentation/.gitignore
+++ /dev/null
@@ -1,2 +0,0 @@
-images
-labels
\ No newline at end of file
diff --git a/python/app/fedcv/image_segmentation/build_mlops_pkg.sh b/python/app/fedcv/image_segmentation/build_mlops_pkg.sh
deleted file mode 100644
index 99a400bd9e..0000000000
--- a/python/app/fedcv/image_segmentation/build_mlops_pkg.sh
+++ /dev/null
@@ -1,14 +0,0 @@
-SOURCE=.
-ENTRY=main_fedml_image_segmentation.py
-CONFIG=config
-DEST=./mlops
-IGNORE=__pycache__,*.git
-fedml build -t client -sf $SOURCE -ep $ENTRY -cf $CONFIG -df $DEST --ignore $IGNORE
-
-
-SOURCE=.
-ENTRY=main_fedml_image_segmentation.py
-CONFIG=config
-DEST=./mlops
-IGNORE=__pycache__,*.git
-fedml build -t server -sf $SOURCE -ep $ENTRY -cf $CONFIG -df $DEST --ignore $IGNORE
\ No newline at end of file
diff --git a/python/app/fedcv/image_segmentation/config/bootstrap.sh b/python/app/fedcv/image_segmentation/config/bootstrap.sh
deleted file mode 100644
index 620ec3b6e7..0000000000
--- a/python/app/fedcv/image_segmentation/config/bootstrap.sh
+++ /dev/null
@@ -1,15 +0,0 @@
-### don't modify this part ###
-set -x
-##############################
-
-
-### please customize your script in this region ####
-pip install pycocotools ml_collections
-DATA_PATH=$HOME/fedcv_data
-mkdir -p $DATA_PATH
-sh ./../data/coco128/download_coco128.sh
-
-
-### don't modify this part ###
-echo "[FedML]Bootstrap Finished"
-##############################
\ No newline at end of file
diff --git a/python/app/fedcv/image_segmentation/config/fedml_config.yaml b/python/app/fedcv/image_segmentation/config/fedml_config.yaml
deleted file mode 100644
index 391a11b677..0000000000
--- a/python/app/fedcv/image_segmentation/config/fedml_config.yaml
+++ /dev/null
@@ -1,59 +0,0 @@
-common_args:
- training_type: "cross_silo"
- random_seed: 0
- scenario: "horizontal"
- using_mlops: false
- config_version: release
-
-data_args:
- dataset: "coco128"
- data_cache_dir: "~/fedcv_data/coco128"
- partition_method: "homo"
- partition_alpha: 0.5
-
-model_args:
- model: "unet"
- class_num: 80
- backbone: resnet
- backbone_pretrained: true
- backbone_freezed: false
- extract_feat: true
- outstride: 16
- sync_bn: true
- lr_scheduler: cos
-
-train_args:
- federated_optimizer: "FedAvg"
- client_id_list:
- client_num_in_total: 4
- client_num_per_round: 4
- comm_round: 10
- epochs: 1
- batch_size: 1
- client_optimizer: sgd
- lr: 0.03
- momentum: 0.9
- nesterov: true
- weight_decay: 0.001
- loss_type: "ce"
-
-validation_args:
- frequency_of_the_test: 1
-
-device_args:
- worker_num: 4
- using_gpu: false
- gpu_mapping_file: config/gpu_mapping.yaml
- gpu_mapping_key: mapping_default
-
-comm_args:
- backend: "MQTT_S3"
- mqtt_config_path: config/mqtt_config.yaml
- s3_config_path: config/s3_config.yaml
-
-tracking_args:
- # When running on MLOps platform(open.fedml.ai), the default log path is at ~/fedml-client/fedml/logs/ and ~/fedml-server/fedml/logs/
- enable_wandb: false
- wandb_key: ee0b5f53d949c84cee7decbe7a629e63fb2f8408
- wandb_project: fedml
- wandb_name: fedml_torch_image_segmentation
diff --git a/python/app/fedcv/image_segmentation/config/gpu_mapping.yaml b/python/app/fedcv/image_segmentation/config/gpu_mapping.yaml
deleted file mode 100644
index 446c75e24a..0000000000
--- a/python/app/fedcv/image_segmentation/config/gpu_mapping.yaml
+++ /dev/null
@@ -1,60 +0,0 @@
-# You can define a cluster containing multiple GPUs within multiple machines by defining `gpu_mapping.yaml` as follows:
-
-# config_cluster0:
-# host_name_node0: [num_of_processes_on_GPU0, num_of_processes_on_GPU1, num_of_processes_on_GPU2, num_of_processes_on_GPU3, ..., num_of_processes_on_GPU_n]
-# host_name_node1: [num_of_processes_on_GPU0, num_of_processes_on_GPU1, num_of_processes_on_GPU2, num_of_processes_on_GPU3, ..., num_of_processes_on_GPU_n]
-# host_name_node_m: [num_of_processes_on_GPU0, num_of_processes_on_GPU1, num_of_processes_on_GPU2, num_of_processes_on_GPU3, ..., num_of_processes_on_GPU_n]
-
-
-# this is used for 10 clients and 1 server training within a single machine which has 4 GPUs
-mapping_default:
- ChaoyangHe-GPU-RTX2080Tix4: [3, 3, 3, 2]
-
-# this is used for 4 clients and 1 server training within a single machine which has 4 GPUs
-mapping_config1_5:
- host1: [2, 1, 1, 1]
-
-# this is used for 10 clients and 1 server training within a single machine which has 4 GPUs
-mapping_config2_11:
- host1: [3, 3, 3, 2]
-
-# this is used for 10 clients and 1 server training within a single machine which has 8 GPUs
-mapping_config3_11:
- host1: [2, 2, 2, 1, 1, 1, 1, 1]
-
-# this is used for 4 clients and 1 server training within a single machine which has 8 GPUs, but you hope to skip the GPU device ID.
-mapping_config4_5:
- host1: [1, 0, 0, 1, 1, 0, 1, 1]
-
-# this is used for 4 clients and 1 server training using 6 machines, each machine has 2 GPUs inside, but you hope to use the second GPU.
-mapping_config5_6:
- host1: [0, 1]
- host2: [0, 1]
- host3: [0, 1]
- host4: [0, 1]
- host5: [0, 1]
-# this is used for 4 clients and 1 server training using 2 machines, each machine has 2 GPUs inside, but you hope to use the second GPU.
-mapping_config5_2:
- gpu-worker2: [1,1]
- gpu-worker1: [2,1]
-
-# this is used for 10 clients and 1 server training using 4 machines, each machine has 2 GPUs inside, but you hope to use the second GPU.
-mapping_config5_4:
- gpu-worker2: [1,1]
- gpu-worker1: [2,1]
- gpu-worker3: [3,1]
- gpu-worker4: [1,1]
-
-# for grpc GPU mapping
-mapping_FedML_gRPC:
- hostname_node_server: [1]
- hostname_node_1: [1, 0, 0, 0]
- hostname_node_2: [1, 0, 0, 0]
-
-# for torch RPC GPU mapping
-mapping_FedML_tRPC:
- lambda-server1: [0, 0, 0, 0, 2, 2, 1, 1]
- lambda-server2: [2, 1, 1, 1, 0, 0, 0, 0]
-
-#mapping_FedML_tRPC:
-# lambda-server1: [0, 0, 0, 0, 3, 3, 3, 2]
\ No newline at end of file
diff --git a/python/app/fedcv/image_segmentation/config/simulation/bootstrap.sh b/python/app/fedcv/image_segmentation/config/simulation/bootstrap.sh
deleted file mode 100644
index 620ec3b6e7..0000000000
--- a/python/app/fedcv/image_segmentation/config/simulation/bootstrap.sh
+++ /dev/null
@@ -1,15 +0,0 @@
-### don't modify this part ###
-set -x
-##############################
-
-
-### please customize your script in this region ####
-pip install pycocotools ml_collections
-DATA_PATH=$HOME/fedcv_data
-mkdir -p $DATA_PATH
-sh ./../data/coco128/download_coco128.sh
-
-
-### don't modify this part ###
-echo "[FedML]Bootstrap Finished"
-##############################
\ No newline at end of file
diff --git a/python/app/fedcv/image_segmentation/config/simulation/fedml_config.yaml b/python/app/fedcv/image_segmentation/config/simulation/fedml_config.yaml
deleted file mode 100644
index 4480c3e6b6..0000000000
--- a/python/app/fedcv/image_segmentation/config/simulation/fedml_config.yaml
+++ /dev/null
@@ -1,57 +0,0 @@
-common_args:
- training_type: "simulation"
- random_seed: 0
- scenario: "horizontal"
- using_mlops: false
- config_version: release
-
-data_args:
- dataset: "coco128"
- data_cache_dir: "~/fedcv_data/coco128"
- partition_method: "homo"
- partition_alpha: 0.5
-
-model_args:
- model: "unet"
- class_num: 80
- backbone: resnet
- backbone_pretrained: true
- backbone_freezed: false
- extract_feat: true
- outstride: 16
- sync_bn: true
- lr_scheduler: cos
-
-train_args:
- federated_optimizer: "FedAvg"
- client_num_in_total: 1
- client_num_per_round: 1
- comm_round: 10
- epochs: 1
- batch_size: 1
- client_optimizer: sgd
- lr: 0.03
- momentum: 0.9
- nesterov: true
- weight_decay: 0.001
- loss_type: "ce"
-
-validation_args:
- frequency_of_the_test: 1
-
-device_args:
- worker_num: 4
- using_gpu: false
- gpu_mapping_file: config/gpu_mapping.yaml
- gpu_mapping_key: mapping_default
-
-comm_args:
- backend: "MPI"
- is_mobile: 0
-
-tracking_args:
- log_file_dir: ./log
- enable_wandb: false
- wandb_key: ee0b5f53d949c84cee7decbe7a629e63fb2f8408
- wandb_project: fedml
- wandb_name: fedml_torch_image_segmentation
diff --git a/python/app/fedcv/image_segmentation/config/simulation/gpu_mapping.yaml b/python/app/fedcv/image_segmentation/config/simulation/gpu_mapping.yaml
deleted file mode 100644
index 446c75e24a..0000000000
--- a/python/app/fedcv/image_segmentation/config/simulation/gpu_mapping.yaml
+++ /dev/null
@@ -1,60 +0,0 @@
-# You can define a cluster containing multiple GPUs within multiple machines by defining `gpu_mapping.yaml` as follows:
-
-# config_cluster0:
-# host_name_node0: [num_of_processes_on_GPU0, num_of_processes_on_GPU1, num_of_processes_on_GPU2, num_of_processes_on_GPU3, ..., num_of_processes_on_GPU_n]
-# host_name_node1: [num_of_processes_on_GPU0, num_of_processes_on_GPU1, num_of_processes_on_GPU2, num_of_processes_on_GPU3, ..., num_of_processes_on_GPU_n]
-# host_name_node_m: [num_of_processes_on_GPU0, num_of_processes_on_GPU1, num_of_processes_on_GPU2, num_of_processes_on_GPU3, ..., num_of_processes_on_GPU_n]
-
-
-# this is used for 10 clients and 1 server training within a single machine which has 4 GPUs
-mapping_default:
- ChaoyangHe-GPU-RTX2080Tix4: [3, 3, 3, 2]
-
-# this is used for 4 clients and 1 server training within a single machine which has 4 GPUs
-mapping_config1_5:
- host1: [2, 1, 1, 1]
-
-# this is used for 10 clients and 1 server training within a single machine which has 4 GPUs
-mapping_config2_11:
- host1: [3, 3, 3, 2]
-
-# this is used for 10 clients and 1 server training within a single machine which has 8 GPUs
-mapping_config3_11:
- host1: [2, 2, 2, 1, 1, 1, 1, 1]
-
-# this is used for 4 clients and 1 server training within a single machine which has 8 GPUs, but you hope to skip the GPU device ID.
-mapping_config4_5:
- host1: [1, 0, 0, 1, 1, 0, 1, 1]
-
-# this is used for 4 clients and 1 server training using 6 machines, each machine has 2 GPUs inside, but you hope to use the second GPU.
-mapping_config5_6:
- host1: [0, 1]
- host2: [0, 1]
- host3: [0, 1]
- host4: [0, 1]
- host5: [0, 1]
-# this is used for 4 clients and 1 server training using 2 machines, each machine has 2 GPUs inside, but you hope to use the second GPU.
-mapping_config5_2:
- gpu-worker2: [1,1]
- gpu-worker1: [2,1]
-
-# this is used for 10 clients and 1 server training using 4 machines, each machine has 2 GPUs inside, but you hope to use the second GPU.
-mapping_config5_4:
- gpu-worker2: [1,1]
- gpu-worker1: [2,1]
- gpu-worker3: [3,1]
- gpu-worker4: [1,1]
-
-# for grpc GPU mapping
-mapping_FedML_gRPC:
- hostname_node_server: [1]
- hostname_node_1: [1, 0, 0, 0]
- hostname_node_2: [1, 0, 0, 0]
-
-# for torch RPC GPU mapping
-mapping_FedML_tRPC:
- lambda-server1: [0, 0, 0, 0, 2, 2, 1, 1]
- lambda-server2: [2, 1, 1, 1, 0, 0, 0, 0]
-
-#mapping_FedML_tRPC:
-# lambda-server1: [0, 0, 0, 0, 3, 3, 3, 2]
\ No newline at end of file
diff --git a/python/app/fedcv/image_segmentation/data/__init__.py b/python/app/fedcv/image_segmentation/data/__init__.py
deleted file mode 100644
index e69de29bb2..0000000000
diff --git a/python/app/fedcv/image_segmentation/data/cityscapes/.gitignore b/python/app/fedcv/image_segmentation/data/cityscapes/.gitignore
deleted file mode 100644
index 0462eb55e4..0000000000
--- a/python/app/fedcv/image_segmentation/data/cityscapes/.gitignore
+++ /dev/null
@@ -1,8 +0,0 @@
-README
-*.zip
-*.txt
-*.pickle
-
-leftImg8bit/
-gtCoarse/
-gtFine/
diff --git a/python/app/fedcv/image_segmentation/data/cityscapes/README.md b/python/app/fedcv/image_segmentation/data/cityscapes/README.md
deleted file mode 100644
index a810aca21f..0000000000
--- a/python/app/fedcv/image_segmentation/data/cityscapes/README.md
+++ /dev/null
@@ -1,8 +0,0 @@
-README
-===
-
-### USAGE
-
-```bash
-. download_cityscapes.sh
-```
\ No newline at end of file
diff --git a/python/app/fedcv/image_segmentation/data/cityscapes/__init__.py b/python/app/fedcv/image_segmentation/data/cityscapes/__init__.py
deleted file mode 100644
index e69de29bb2..0000000000
diff --git a/python/app/fedcv/image_segmentation/data/cityscapes/data_loader.py b/python/app/fedcv/image_segmentation/data/cityscapes/data_loader.py
deleted file mode 100644
index d6b025f872..0000000000
--- a/python/app/fedcv/image_segmentation/data/cityscapes/data_loader.py
+++ /dev/null
@@ -1,291 +0,0 @@
-import logging
-import numpy as np
-import torch.utils.data as data
-from torchvision import transforms
-
-from fedml.core.data.noniid_partition import (
- record_data_stats,
- non_iid_partition_with_dirichlet_distribution,
-)
-
-from .dataset import CityscapesSegmentation
-
-from ..cityscapes import transforms as custom_transforms
-
-logging.basicConfig()
-logger = logging.getLogger()
-logger.setLevel(logging.INFO)
-
-
-def _data_transforms_cityscapes(image_size):
- CITYSCAPES_MEAN = (0.485, 0.456, 0.406)
- CITYSCAPES_STD = (0.229, 0.224, 0.225)
-
- train_transform = transforms.Compose(
- [
- custom_transforms.RandomMirror(),
- custom_transforms.RandomScaleCrop(image_size, image_size),
- custom_transforms.RandomGaussianBlur(),
- custom_transforms.ToTensor(),
- custom_transforms.Normalize(mean=CITYSCAPES_MEAN, std=CITYSCAPES_STD),
- ]
- )
-
- val_transform = transforms.Compose(
- [
- custom_transforms.FixedScaleCrop(image_size),
- custom_transforms.ToTensor(),
- custom_transforms.Normalize(mean=CITYSCAPES_MEAN, std=CITYSCAPES_STD),
- ]
- )
-
- return train_transform, val_transform
-
-
-# for centralized training
-def get_dataloader(_, data_dir, train_bs, test_bs, image_size, data_idxs=None):
- return get_dataloader_cityscapes(data_dir, train_bs, test_bs, image_size, data_idxs)
-
-
-# for local devices
-def get_dataloader_test(
- data_dir, train_bs, test_bs, image_size, data_idxs_train=None, data_idxs_test=None
-):
- return get_dataloader_cityscapes_test(
- data_dir, train_bs, test_bs, image_size, data_idxs_train, data_idxs_test
- )
-
-
-def get_dataloader_cityscapes(data_dir, train_bs, test_bs, image_size, data_idxs=None):
- transform_train, transform_test = _data_transforms_cityscapes(image_size)
-
- train_ds = CityscapesSegmentation(
- data_dir, split="train_extra", transform=transform_train, data_idxs=data_idxs
- )
-
- test_ds = CityscapesSegmentation(data_dir, split="val", transform=transform_test)
-
- train_dl = data.DataLoader(
- dataset=train_ds, batch_size=train_bs, shuffle=True, drop_last=True
- )
- test_dl = data.DataLoader(
- dataset=test_ds, batch_size=test_bs, shuffle=False, drop_last=True
- )
-
- return train_dl, test_dl, len(train_ds.classes)
-
-
-def get_dataloader_cityscapes_test(
- data_dir, train_bs, test_bs, image_size, data_idxs_train=None, data_idxs_test=None
-):
- transform_train, transform_test = _data_transforms_cityscapes(image_size)
-
- train_ds = CityscapesSegmentation(
- data_dir,
- split="train_extra",
- transform=transform_train,
- data_idxs=data_idxs_train,
- )
-
- test_ds = CityscapesSegmentation(
- data_dir, split="val", transform=transform_test, data_idxs=data_idxs_test
- )
-
- train_dl = data.DataLoader(
- dataset=train_ds, batch_size=train_bs, shuffle=True, drop_last=True
- )
- test_dl = data.DataLoader(
- dataset=test_ds, batch_size=test_bs, shuffle=False, drop_last=True
- )
-
- return train_dl, test_dl, len(train_ds.classes)
-
-
-def load_cityscapes_data(data_dir, image_size):
- transform_train, transform_test = _data_transforms_cityscapes(image_size)
-
- train_ds = CityscapesSegmentation(
- data_dir, split="train_extra", transform=transform_train
- )
- test_ds = CityscapesSegmentation(data_dir, split="val", transform=transform_test)
-
- return (
- train_ds.images,
- train_ds.targets,
- train_ds.classes,
- test_ds.images,
- test_ds.targets,
- test_ds.classes,
- )
-
-
-# Get a partition map for each client
-def partition_data(data_dir, partition, n_nets, alpha, image_size):
- logging.info("********************* Partitioning data **********************")
- net_data_idx_map = None
- train_images, train_targets, train_categories, _, __, ___ = load_cityscapes_data(
- data_dir, image_size
- )
- n_train = len(train_images) # Number of training samples
-
- if partition == "homo":
- total_num = n_train
- idxs = np.random.permutation(total_num)
- batch_idxs = np.array_split(
- idxs, n_nets
- ) # As many splits as n_nets = number of clients
- net_data_idx_map = {i: batch_idxs[i] for i in range(n_nets)}
-
- # non-iid data distribution
- # TODO: Add custom non-iid distribution option - hetero-fix
- elif partition == "hetero":
- # This is useful if we allow custom category lists, currently done for consistency
- categories = [train_categories.index(c) for c in train_categories]
- net_data_idx_map = non_iid_partition_with_dirichlet_distribution(
- train_targets, n_nets, categories, alpha, task="segmentation"
- )
-
- train_data_cls_counts = record_data_stats(
- train_targets, net_data_idx_map, task="segmentation"
- )
-
- return net_data_idx_map, train_data_cls_counts
-
-
-def load_partition_data_distributed_cityscapes(
- process_id,
- dataset,
- data_dir,
- partition_method,
- partition_alpha,
- client_number,
- batch_size,
- image_size,
-):
- net_data_idx_map, train_data_cls_counts = partition_data(
- data_dir, partition_method, client_number, partition_alpha, image_size
- )
-
- train_data_num = sum([len(net_data_idx_map[r]) for r in range(client_number)])
-
- # get global test data
- if process_id == 0:
- train_data_global, test_data_global, class_num = get_dataloader(
- dataset, data_dir, batch_size, batch_size, image_size
- )
- logging.info(
- "Number of global train batches: {} and test batches: {}".format(
- len(train_data_global), len(test_data_global)
- )
- )
-
- train_data_local_dict = None
- test_data_local_dict = None
- data_local_num_dict = None
- else:
- # get local dataset
- client_id = process_id - 1
- data_idxs = net_data_idx_map[client_id]
-
- local_data_num = len(data_idxs)
- logging.info(
- "Total number of local images: {} in client ID {}".format(
- local_data_num, process_id
- )
- )
- # training batch size = 64; algorithms batch size = 32
- train_data_local, test_data_local, class_num = get_dataloader(
- dataset, data_dir, batch_size, batch_size, image_size, data_idxs
- )
- logging.info(
- "Number of local train batches: {} and test batches: {} in client ID {}".format(
- len(train_data_local), len(test_data_local), process_id
- )
- )
-
- data_local_num_dict = {client_id: local_data_num}
- train_data_local_dict = {client_id: train_data_local}
- test_data_local_dict = {client_id: test_data_local}
- train_data_global = None
- test_data_global = None
- return (
- train_data_num,
- train_data_global,
- test_data_global,
- data_local_num_dict,
- train_data_local_dict,
- test_data_local_dict,
- class_num,
- )
-
-
-# Called from main_fedseg
-def load_partition_data_cityscapes(
- args,
- dataset,
- data_dir,
- partition_method,
- partition_alpha,
- client_number,
- batch_size,
- image_size,
-):
- net_data_idx_map, train_data_cls_counts = partition_data(
- data_dir, partition_method, client_number, partition_alpha, image_size
- )
-
- train_data_num = sum([len(net_data_idx_map[r]) for r in range(client_number)])
-
- # Global train and test data
- train_data_global, test_data_global, class_num = get_dataloader(
- dataset, data_dir, batch_size, batch_size, image_size
- )
- logging.info(
- "Number of global train batches: {} and test batches: {}".format(
- len(train_data_global), len(test_data_global)
- )
- )
-
- test_data_num = len(test_data_global)
-
- # get local dataset
- data_local_num_dict = dict() # Number of samples for each client
- train_data_local_dict = dict()
- test_data_local_dict = dict()
-
- for client_idx in range(client_number):
- data_idxs = net_data_idx_map[
- client_idx
- ] # get dataId list for client generated using Dirichlet sampling
- local_data_num = len(data_idxs) # How many samples does client have?
- logging.info(
- "Total number of local images: {} in client ID {}".format(
- local_data_num, client_idx
- )
- )
-
- data_local_num_dict[client_idx] = local_data_num
-
- # training batch size = 64; algorithms batch size = 32
- train_data_local, test_data_local, class_num = get_dataloader(
- dataset, data_dir, batch_size, batch_size, image_size, data_idxs
- )
- logging.info(
- "Number of local train batches: {} and test batches: {} in client ID {}".format(
- len(train_data_local), len(test_data_local), client_idx
- )
- )
-
- # Store data loaders for each client as they contain specific data
- train_data_local_dict[client_idx] = train_data_local
- test_data_local_dict[client_idx] = test_data_local
- return (
- train_data_num,
- test_data_num,
- train_data_global,
- test_data_global,
- data_local_num_dict,
- train_data_local_dict,
- test_data_local_dict,
- class_num,
- )
diff --git a/python/app/fedcv/image_segmentation/data/cityscapes/dataset.py b/python/app/fedcv/image_segmentation/data/cityscapes/dataset.py
deleted file mode 100644
index daf619e1db..0000000000
--- a/python/app/fedcv/image_segmentation/data/cityscapes/dataset.py
+++ /dev/null
@@ -1,105 +0,0 @@
-import glob
-import os
-import pickle
-
-import numpy as np
-from PIL import Image
-from torch.utils.data import Dataset
-
-from pathlib import Path
-
-
-class CityscapesSegmentation(Dataset):
-
- def __init__(self,
- root_dir='../../data/cityscapes',
- split='train_extra',
- annotation_type='gtCoarse',
- transform=None,
- data_idxs=None):
- """
- The dataset class for Pascal VOC Augmented Dataset.
-
- Args:
- root_dir: The path to the dataset.
- split: The type of dataset to use (train, train_extra, val).
- transform: The custom transformations to be applied to the dataset.
- data_idxs: The list of indexes used to partition the dataset.
- """
- if annotation_type == 'gtFine' and split == 'train_extra':
- raise RuntimeError("Cannot have annotation type as gtFine for train_extra as the split")
- self.root_dir = root_dir
- self.annotation_type = annotation_type
- self.train_images = Path('{}/leftImg8bit/{}'.format(root_dir, split))
- self.masks_dir = Path('{}/{}/{}'.format(root_dir, annotation_type, split))
- self.targets_path = Path('{}/targets_{}_{}.pickle'.format(root_dir, split, annotation_type))
- self.id_to_train_id = {-1: 255, 0: 255, 1: 255, 2: 255, 3: 255, 4: 255, 5: 255, 6: 255,
- 7: 0, 8: 1, 9: 255, 10: 255, 11: 2, 12: 3, 13: 4,
- 14: 255, 15: 255, 16: 255, 17: 5,
- 18: 255, 19: 6, 20: 7, 21: 8, 22: 9, 23: 10, 24: 11, 25: 12, 26: 13, 27: 14,
- 28: 15, 29: 255, 30: 255, 31: 16, 32: 17, 33: 18}
- self.classes = [7, 8, 11, 12, 13, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33]
- self.transform = transform
- self.images = list()
- self.masks = list()
- self.targets = None
-
- self.__preprocess()
- if data_idxs is not None:
- self.images = [self.images[i] for i in data_idxs]
- self.masks = [self.masks[i] for i in data_idxs]
-
- self.__generate_targets()
-
- def __preprocess(self):
- for city in os.listdir(self.train_images):
- self.images.extend(sorted(glob.glob('{}/{}/*.png'.format(self.train_images, city))))
- self.masks.extend(sorted(glob.glob('{}/{}/*_{}_labelIds.png'.format(self.masks_dir, city, self.annotation_type))))
- assert len(self.images) == len(self.masks)
-
- def __generate_targets(self):
- targets = list()
- targets_dict = dict()
- with open(self.targets_path, 'rb') as pickle_file:
- targets_dict = pickle.load(pickle_file)
- for mask_path in self.masks:
- targets.append(targets_dict[mask_path.split('/')[-1]])
- self.targets = np.asarray(targets)
-
- def __getitem__(self, index):
- img = Image.open(self.images[index]).convert('RGB')
- mask = Image.open(self.masks[index])
- sample = {'image': img, 'label': mask}
-
- if self.transform is not None:
- sample = self.transform(sample)
- mask = sample['label']
- for k, v in self.id_to_train_id.items():
- mask[mask == k] = v
- sample['label'] = mask
- return sample
-
- def __len__(self):
- return len(self.images)
-
-
-if __name__ == '__main__':
- dataset = CityscapesSegmentation()
- print('Train Extra/Coarse: {}'.format(len(dataset)))
- assert len(dataset) == 19998
-
- dataset = CityscapesSegmentation(split='train')
- print('Train/Coarse: {}'.format(len(dataset)))
- assert len(dataset) == 2975
-
- dataset = CityscapesSegmentation(split='val')
- print('Val/Coarse: {}'.format(len(dataset)))
- assert len(dataset) == 500
-
- dataset = CityscapesSegmentation(split='train', annotation_type='gtFine')
- print('Train/Fine: {}'.format(len(dataset)))
- assert len(dataset) == 2975
-
- dataset = CityscapesSegmentation(split='val', annotation_type='gtFine')
- print('Val/Fine: {}'.format(len(dataset)))
- assert len(dataset) == 500
diff --git a/python/app/fedcv/image_segmentation/data/cityscapes/download_cityscapes.sh b/python/app/fedcv/image_segmentation/data/cityscapes/download_cityscapes.sh
deleted file mode 100644
index 654ff9d278..0000000000
--- a/python/app/fedcv/image_segmentation/data/cityscapes/download_cityscapes.sh
+++ /dev/null
@@ -1,48 +0,0 @@
-#!/usr/bin/env bash
-
-USERNAME=$1
-PASSWORD=$2
-
-POST_DATA="username=$USERNAME&password=$PASSWORD&submit=Login"
-
-echo $POST_DATA
-
-echo "Logging in using the credentials..."
-wget --keep-session-cookies --save-cookies=cookies.txt --post-data $POST_DATA https://www.cityscapes-dataset.com/login/
-rm index.html
-
-echo "Downloading gtFine_trainvaltest.zip..."
-wget --load-cookies cookies.txt --content-disposition https://www.cityscapes-dataset.com/file-handling/?packageID=1
-echo "Extracting gtFine_trainvaltest.zip..."
-unzip gtFine_trainvaltest.zip
-rm gtFine_trainvaltest.zip
-rm README*
-rm license.txt
-
-echo "Downloading gtCoarse.zip..."
-wget --load-cookies cookies.txt --content-disposition https://www.cityscapes-dataset.com/file-handling/?packageID=2
-echo "Extracting gtCoarse.zip..."
-unzip gtCoarse.zip
-rm gtCoarse.zip
-rm README*
-rm license.txt
-
-echo "Downloading leftImg8bit_trainvaltest.zip"
-wget --load-cookies cookies.txt --content-disposition https://www.cityscapes-dataset.com/file-handling/?packageID=3
-echo "Extracting leftImg8bit_trainvaltest.zip"
-unzip leftImg8bit_trainvaltest.zip
-rm leftImg8bit_trainvaltest.zip
-rm README*
-rm license.txt
-
-echo "Downloading leftImg8bit_trainextra.zip"
-wget --load-cookies cookies.txt --content-disposition https://www.cityscapes-dataset.com/file-handling/?packageID=4
-echo "Extracting leftImg8bit_trainextra.zip"
-unzip leftImg8bit_trainextra.zip
-rm leftImg8bit_trainextra.zip
-rm README*
-rm license.txt
-
-rm cookies.txt
-
-python process_targets.py
diff --git a/python/app/fedcv/image_segmentation/data/cityscapes/process_targets.py b/python/app/fedcv/image_segmentation/data/cityscapes/process_targets.py
deleted file mode 100644
index 8069074825..0000000000
--- a/python/app/fedcv/image_segmentation/data/cityscapes/process_targets.py
+++ /dev/null
@@ -1,31 +0,0 @@
-import os
-import glob
-import pickle
-
-import numpy as np
-from PIL import Image
-
-
-classes = [7, 8, 11, 12, 13, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33]
-for split, t in [
- ('train', 'gtFine'),
- ('train', 'gtCoarse'),
- ('train_extra', 'gtCoarse'),
- ('val', 'gtFine'),
- ('val', 'gtCoarse'),
-]:
- print('Loading {}....'.format(split))
- mask_paths = list()
- base_path = './{}/{}'.format(t, split)
- for city in os.listdir(base_path):
- mask_paths.extend(sorted(glob.glob('./{}/{}/*_{}_labelIds.png'.format(base_path, city, t))))
- print(len(mask_paths))
- values = dict()
- for mask_path in mask_paths:
- mask = np.asarray(Image.open(mask_path), dtype=np.int32)
- cats = set(np.unique(mask))
- targets = np.asarray(list(set(classes).intersection(cats))).astype(np.uint8)
- values[mask_path.split('/')[-1]] = targets
- with open('targets_{}_{}.pickle'.format(split, t), 'wb') as f:
- pickle.dump(values, f, protocol=pickle.HIGHEST_PROTOCOL)
- f.close()
\ No newline at end of file
diff --git a/python/app/fedcv/image_segmentation/data/cityscapes/transforms.py b/python/app/fedcv/image_segmentation/data/cityscapes/transforms.py
deleted file mode 100644
index 0e0e577bfc..0000000000
--- a/python/app/fedcv/image_segmentation/data/cityscapes/transforms.py
+++ /dev/null
@@ -1,148 +0,0 @@
-import random
-import numpy as np
-import torch
-from PIL import ImageOps, ImageFilter, Image
-from torchvision import transforms
-
-
-class RandomMirror(object):
- """
- Randomly perform a lateral inversion on the image.
- """
- def __call__(self, sample):
- img = sample['image']
- mask = sample['label']
- if random.random() < 0.5:
- img = img.transpose(Image.FLIP_LEFT_RIGHT)
- mask = mask.transpose(Image.FLIP_LEFT_RIGHT)
- return {
- 'image': img,
- 'label': mask,
- }
-
-
-class RandomScaleCrop(object):
-
- def __init__(self, base_size = 512, crop_size = 512):
- """
- Randomly scales and crops the image.
-
- Args:
- base_size: The base size to scale
- crop_size: The size to crop
- """
- self.base_size = base_size
- self.crop_size = crop_size
-
- def __call__(self, sample):
- img = sample['image']
- mask = sample['label']
- short_size = random.randint(int(self.base_size * 0.5), int(self.base_size * 2.0))
- width, height = img.size
- if height > width:
- output_width = short_size
- output_height = int(1.0 * height * output_width / width)
- else:
- output_height = short_size
- output_width = int(1.0 * width * output_height / height)
- img = img.resize((output_width, output_height), Image.BILINEAR)
- mask = mask.resize((output_width, output_height), Image.NEAREST)
- if short_size < self.crop_size:
- padding_height = self.crop_size - output_height if output_height < self.crop_size else 0
- padding_width = self.crop_size - output_width if output_width < self.crop_size else 0
- img = ImageOps.expand(img, border=(0, 0, padding_width, padding_height), fill=0)
- mask = ImageOps.expand(mask, border=(0, 0, padding_width, padding_height), fill=0)
- width, height = img.size
- x1 = random.randint(0, width - self.crop_size)
- y1 = random.randint(0, height - self.crop_size)
- img = img.crop((x1, y1, x1 + self.crop_size, y1 + self.crop_size))
- mask = mask.crop((x1, y1, x1 + self.crop_size, y1 + self.crop_size))
- return {
- 'image': img,
- 'label': mask,
- }
-
-
-class RandomGaussianBlur(object):
- """
- Randomly apply a gaussian blur to the image.
- """
- def __call__(self, sample):
- img = sample['image']
- mask = sample['label']
- if random.random() < 0.5:
- img = img.filter(ImageFilter.GaussianBlur(radius=random.random()))
- return {
- 'image': img,
- 'label': mask,
- }
-
-
-class FixedScaleCrop(object):
- def __init__(self, crop_size = 512):
- """
- Crop the image to the specified size
- Args:
- crop_size: The size of the cropped image.
- """
- self.crop_size = crop_size
-
- def __call__(self, sample):
- img = sample['image']
- mask = sample['label']
- short_size = self.crop_size
- width, height = img.size
- if width > height:
- output_height = short_size
- output_width = int(1.0 * width * output_height / height)
- else:
- output_width = short_size
- output_height = int(1.0 * height * output_width / width)
- img = img.resize((output_width, output_height), Image.BILINEAR)
- mask = mask.resize((output_width, output_height), Image.NEAREST)
- width, height = img.size
- x1 = int(round((width - self.crop_size) / 2.))
- y1 = int(round((height - self.crop_size) / 2.))
- img = img.crop((x1, y1, x1 + self.crop_size, y1 + self.crop_size))
- mask = mask.crop((x1, y1, x1 + self.crop_size, y1 + self.crop_size))
- return {
- 'image': img,
- 'label': mask,
- }
-
-
-class Normalize(object):
-
- def __init__(self, mean = (0, 0, 0), std = (0, 0, 0)):
- """
- Normalizes using the mean and standard deviation
- Args:
- mean: The mean value of the distribution
- std: The standard value of the distribution
- """
- self.normalize = transforms.Normalize(mean=mean, std=std)
-
- def __call__(self, sample):
- img = sample['image']
- img = self.normalize(img)
- return {
- 'image': img,
- 'label': sample['label'],
- }
-
-
-class ToTensor(object):
-
- def __init__(self):
- """
- Transforms the numpy array to torch tensor
- """
- self.to_tensor = transforms.ToTensor()
-
- def __call__(self, sample):
- img = torch.tensor(np.array(sample['image']).astype(np.float32).transpose((2, 0, 1)))
- mask = torch.tensor(np.array(sample['label']).astype(np.float32))
- return {
- 'image': img,
- 'label': mask,
- }
diff --git a/python/app/fedcv/image_segmentation/data/coco/2017/download_coco.sh b/python/app/fedcv/image_segmentation/data/coco/2017/download_coco.sh
deleted file mode 100644
index 241b2a2fa2..0000000000
--- a/python/app/fedcv/image_segmentation/data/coco/2017/download_coco.sh
+++ /dev/null
@@ -1,12 +0,0 @@
-wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip
-wget http://images.cocodataset.org/zips/train2017.zip
-wget http://images.cocodataset.org/zips/val2017.zip
-wget http://images.cocodataset.org/zips/test2017.zip
-unzip annotations_trainval2017.zip
-unzip train2017.zip
-unzip val2017.zip
-unzip test2017.zip
-rm annotations_trainval2017.zip
-rm train2017.zip
-rm val2017.zip
-rm test2017.zip
diff --git a/python/app/fedcv/image_segmentation/data/coco/__init__.py b/python/app/fedcv/image_segmentation/data/coco/__init__.py
deleted file mode 100644
index e69de29bb2..0000000000
diff --git a/python/app/fedcv/image_segmentation/data/coco/coco_base.py b/python/app/fedcv/image_segmentation/data/coco/coco_base.py
deleted file mode 100644
index 4b060b0292..0000000000
--- a/python/app/fedcv/image_segmentation/data/coco/coco_base.py
+++ /dev/null
@@ -1,112 +0,0 @@
-import os
-from abc import ABC
-from pathlib import Path, PurePath
-from typing import Literal
-
-from torch.utils.data import Dataset
-
-from .utils import _download_file, _extract_file
-
-
-class COCOBase(Dataset, ABC):
- root_dir: PurePath
- annotations_zip_path: PurePath
- train_zip_path: PurePath
- val_zip_path: PurePath
- test_zip_path: PurePath
- annotations_path: PurePath
- images_path: PurePath
- instances_path: PurePath
- downloaded: bool
-
- def __init__(
- self,
- root_dir: str = "../../data/coco/",
- download_dataset: bool = False,
- year: Literal["2014", "2017"] = "2017",
- split: Literal["train", "val", "test"] = "train",
- ) -> None:
- """
- An abstract class for COCO based datasets
-
- Args:
- root_dir: The path to the COCO images and annotations
- download_dataset: Specify whether to download the dataset if not present
- year: The year of the COCO dataset to use (2014, 2017)
- split: The split of the data to be used (train, val, test)
- """
- self.root_dir = Path("{root}/{year}".format(root=root_dir, year=year))
- self.annotations_zip_path = Path(
- "{root}/annotations_trainval{year}.zip".format(
- root=self.root_dir, year=year
- )
- )
- self.train_zip_path = Path(
- "{root}/train{year}.zip".format(root=self.root_dir, year=year)
- )
- self.val_zip_path = Path(
- "{root}/val{year}.zip".format(root=self.root_dir, year=year)
- )
- self.test_zip_path = Path(
- "{root}/test{year}.zip".format(root=self.root_dir, year=year)
- )
- self.annotations_path = Path("{root}/annotations".format(root=self.root_dir))
- self.images_path = Path(
- "{root}/{split}{year}".format(root=self.root_dir, split=split, year=year)
- )
- self.instances_path = Path(
- "{root}/annotations/instances_{split}{year}.json".format(
- root=self.root_dir, split=split, year=year
- )
- )
-
- if download_dataset and (
- not os.path.exists(self.images_path)
- or not os.path.exists(self.annotations_path)
- ):
- self._download_dataset(year, split)
-
- def _download_dataset(
- self, year: Literal["2014", "2017"], split: Literal["train", "test", "val"]
- ) -> None:
- """
- Downloads the dataset from COCO website.
-
- Args:
- year: The year of the dataset to download
- split: The split of the dataset to download
- """
- files = {
- "annotations": {
- "name": "Train-Val {} Annotations".format(year),
- "file_path": self.annotations_zip_path,
- "url": "http://images.cocodataset.org/annotations/annotations_trainval{}.zip".format(
- year
- ),
- "unit": "MB",
- },
- "train": {
- "name": "Train {} Dataset".format(year),
- "file_path": self.train_zip_path,
- "url": "http://images.cocodataset.org/zips/train{}.zip".format(year),
- "unit": "GB",
- },
- "val": {
- "name": "Validation {} Dataset".format(year),
- "file_path": self.val_zip_path,
- "url": "http://images.cocodataset.org/zips/val{}.zip".format(year),
- "unit": "GB",
- },
- "test": {
- "name": "Test {} Dataset".format(year),
- "file_path": self.test_zip_path,
- "url": "http://images.cocodataset.org/zips/test{}.zip".format(year),
- "unit": "GB",
- },
- }
- if split == "train" or split == "val":
- _download_file(**files["annotations"])
- _extract_file(files["annotations"]["file_path"], self.root_dir)
- _download_file(**files[split])
- _extract_file(files[split]["file_path"], self.root_dir)
- self.downloaded = True
diff --git a/python/app/fedcv/image_segmentation/data/coco/segmentation/__init__.py b/python/app/fedcv/image_segmentation/data/coco/segmentation/__init__.py
deleted file mode 100644
index e69de29bb2..0000000000
diff --git a/python/app/fedcv/image_segmentation/data/coco/segmentation/data_loader.py b/python/app/fedcv/image_segmentation/data/coco/segmentation/data_loader.py
deleted file mode 100644
index 97620b20af..0000000000
--- a/python/app/fedcv/image_segmentation/data/coco/segmentation/data_loader.py
+++ /dev/null
@@ -1,303 +0,0 @@
-import logging
-
-from typing import Tuple, Callable, Optional, List, Iterable, Union, Literal, Sized
-
-import numpy as np
-import torch.utils.data as data
-from torchvision import transforms
-
-from fedml.core.data.noniid_partition import (
- record_data_stats,
- non_iid_partition_with_dirichlet_distribution,
-)
-from .dataset import CocoSegmentation
-from .transforms import Normalize, ToTensor, FixedResize
-
-
-def _data_transforms_coco_segmentation() -> Tuple[Callable, Callable]:
- COCO_MEAN = (0.485, 0.456, 0.406)
- COCO_STD = (0.229, 0.224, 0.225)
-
- transform = transforms.Compose(
- [FixedResize(513), Normalize(mean=COCO_MEAN, std=COCO_STD), ToTensor()]
- )
-
- return transform, transform
-
-
-# for centralized training
-def get_dataloader(
- _,
- data_dir: str,
- train_bs: int,
- test_bs: int,
- data_idxs: Optional[List[int]] = None,
- test: bool = False,
-) -> Iterable[Union[data.DataLoader, int]]:
- return get_dataloader_coco_segmentation(data_dir, train_bs, test_bs, data_idxs)
-
-
-# for local devices
-def get_dataloader_test(
- data_dir: str,
- train_bs: int,
- test_bs: int,
- data_idxs_train: Optional[List[int]],
- data_idxs_test: Optional[List[int]],
-) -> Iterable[Union[data.DataLoader, int]]:
- return get_dataloader_coco_segmentation_test(
- data_dir, train_bs, test_bs, data_idxs_train, data_idxs_test
- )
-
-
-def get_dataloader_coco_segmentation(
- data_dir: str,
- train_bs: int,
- test_bs: int,
- data_idxs: Optional[List[int]] = None,
- test: bool = False,
-) -> Iterable[Union[data.DataLoader, int]]:
- transform_train, transform_test = _data_transforms_coco_segmentation()
-
- train_ds = CocoSegmentation(
- data_dir,
- split="train",
- transform=transform_train,
- download_dataset=False,
- data_idxs=data_idxs,
- )
- train_dl = data.DataLoader(
- dataset=train_ds, batch_size=train_bs, shuffle=True, drop_last=True
- )
-
- if test:
- test_ds = CocoSegmentation(
- data_dir, split="val", transform=transform_test, download_dataset=False
- )
- test_dl = data.DataLoader(
- dataset=test_ds, batch_size=test_bs, shuffle=False, drop_last=True
- )
- else:
- test_dl = None
-
- return train_dl, test_dl, train_ds.num_classes
-
-
-def get_dataloader_coco_segmentation_test(
- data_dir: str,
- train_bs: int,
- test_bs: int,
- data_idxs_train: Optional[List[int]] = None,
- data_idxs_test: Optional[List[int]] = None,
-) -> Iterable[Union[data.DataLoader, int]]:
- transform_train, transform_test = _data_transforms_coco_segmentation()
-
- train_ds = CocoSegmentation(
- data_dir,
- split="train",
- transform=transform_train,
- download_dataset=False,
- data_idxs=data_idxs_train,
- )
-
- test_ds = CocoSegmentation(
- data_dir,
- split="val",
- transform=transform_test,
- download_dataset=False,
- data_idxs=data_idxs_test,
- )
-
- train_dl = data.DataLoader(
- dataset=train_ds, batch_size=train_bs, shuffle=True, drop_last=True
- )
- test_dl = data.DataLoader(
- dataset=test_ds, batch_size=test_bs, shuffle=False, drop_last=True
- )
-
- return train_dl, test_dl, train_ds.num_classes
-
-
-def load_coco_segmentation_data(
- data_dir: str,
-):
- transform_train, transform_test = _data_transforms_coco_segmentation()
-
- train_ds = CocoSegmentation(
- data_dir, split="train", transform=transform_train, download_dataset=False
- )
- test_ds = CocoSegmentation(
- data_dir, split="val", transform=transform_test, download_dataset=False
- )
-
- return (
- train_ds.img_ids,
- train_ds.target,
- train_ds.cat_ids,
- test_ds.img_ids,
- test_ds.target,
- test_ds.cat_ids,
- )
-
-
-# Get a partition map for each client
-def partition_data(
- data_dir: str, partition: Literal["homo", "hetero"], n_nets: int, alpha: float
-):
- logging.info("********************* Partitioning data **********************")
-
- net_data_idx_map = None
- (
- train_images,
- train_targets,
- train_cat_ids,
- _,
- __,
- ___,
- ) = load_coco_segmentation_data(data_dir)
- n_train = len(train_images) # Number of training samples
-
- if partition == "homo":
- total_num = n_train
- idxs = np.random.permutation(total_num)
- batch_idxs = np.array_split(
- idxs, n_nets
- ) # As many splits as n_nets = number of clients
- net_data_idx_map = {i: batch_idxs[i] for i in range(n_nets)}
-
- # non-iid data distribution
- # TODO: Add custom non-iid distribution option - hetero-fix
- elif partition == "hetero":
- categories = train_cat_ids # category names
- net_data_idx_map = non_iid_partition_with_dirichlet_distribution(
- train_targets, n_nets, categories, alpha, task="segmentation"
- )
-
- train_data_cls_counts = record_data_stats(
- train_targets, net_data_idx_map, task="segmentation"
- )
-
- return net_data_idx_map, train_data_cls_counts
-
-
-def load_partition_data_distributed_coco_segmentation(
- process_id: int,
- dataset: CocoSegmentation,
- data_dir: str,
- partition_method: Literal["homo", "hetero"],
- partition_alpha: float,
- client_number: int,
- batch_size: int,
-):
- net_data_idx_map, train_data_cls_counts = partition_data(
- data_dir, partition_method, client_number, partition_alpha
- )
-
- train_data_num = sum([len(net_data_idx_map[r]) for r in range(client_number)])
-
- # get global test data
- if process_id == 0:
- train_data_global, test_data_global, class_num = get_dataloader(
- dataset, data_dir, batch_size, batch_size
- )
- logging.info(
- "Number of global train batches: {} and test batches: {}".format(
- len(train_data_global), len(test_data_global)
- )
- )
-
- train_data_local_dict = None
- test_data_local_dict = None
- data_local_num_dict = None
- else:
- # get local dataset
- client_id = process_id - 1
- data_idxs = net_data_idx_map[client_id]
- local_data_num = len(data_idxs)
- logging.info(
- "Total number of local images: {} in client ID {}".format(
- local_data_num, process_id
- )
- )
-
- train_data_local, test_data_local, class_num = get_dataloader(
- dataset, data_dir, batch_size, batch_size, data_idxs
- )
- logging.info(
- "Number of local train batches: {} and test batches: {} in client ID {}".format(
- len(train_data_local), len(test_data_local), process_id
- )
- )
-
- data_local_num_dict = {client_id: local_data_num}
- train_data_local_dict = {client_id: train_data_local}
- test_data_local_dict = {client_id: test_data_local}
- train_data_global = None
- test_data_global = None
- return (
- train_data_num,
- train_data_global,
- test_data_global,
- data_local_num_dict,
- train_data_local_dict,
- test_data_local_dict,
- class_num,
- )
-
-
-# Called from main_fedseg
-def load_partition_data_coco_segmentation(
- args,
- dataset,
- data_dir: str,
- partition_method: Literal["homo", "hetero"],
- partition_alpha: float,
- client_number: int,
- batch_size: int,
-):
-
- net_data_idx_map, train_data_cls_counts = partition_data(
- data_dir, partition_method, client_number, partition_alpha
- )
-
- train_data_global, test_data_global = None, None
- train_data_num = 0
- test_data_num = 0
-
- # get local dataset
- data_local_num_dict = dict()
- train_data_local_dict = dict()
- test_data_local_dict = dict()
- class_num = train_data_cls_counts
-
- if args.process_id == 0: # server
- pass
- else:
- client_idx = int(args.process_id) - 1
- dataidxs = net_data_idx_map[client_idx]
- local_data_num = len(dataidxs)
- data_local_num_dict[client_idx] = local_data_num
- logging.info(
- "client_idx = %d, local_sample_number = %d" % (client_idx, local_data_num)
- )
-
- train_data_local, test_data_local = get_dataloader(
- dataset, data_dir, batch_size, dataidxs
- )
- logging.info(
- "client_idx = %d, batch_num_train_local = %d, batch_num_test_local = %d"
- % (client_idx, len(train_data_local), len(test_data_local))
- )
- train_data_local_dict[client_idx] = train_data_local
- test_data_local_dict[client_idx] = test_data_local
-
- return (
- train_data_num,
- test_data_num,
- train_data_global,
- test_data_global,
- data_local_num_dict,
- train_data_local_dict,
- test_data_local_dict,
- class_num,
- )
diff --git a/python/app/fedcv/image_segmentation/data/coco/segmentation/dataset.py b/python/app/fedcv/image_segmentation/data/coco/segmentation/dataset.py
deleted file mode 100644
index f98217ca8a..0000000000
--- a/python/app/fedcv/image_segmentation/data/coco/segmentation/dataset.py
+++ /dev/null
@@ -1,216 +0,0 @@
-import os
-import sys
-import numpy as np
-import logging
-
-import torch
-
-from pathlib import Path, PurePath
-from typing import Callable, List, Any, Tuple, TypedDict, Optional, Literal
-
-import pycocotools.mask as coco_mask
-from PIL.Image import Image
-from pycocotools.coco import COCO
-
-from ..coco_base import COCOBase
-
-
-class Datapoint(TypedDict):
- image: torch.FloatTensor
- mask: torch.IntTensor
-
-
-class CocoSegmentation(COCOBase):
- coco: COCO
- transform: Callable
- data_idxs: List[int]
- ids_file: PurePath
- cat_ids: List[int]
- num_classes: int
- img_ids: List[int]
- target: np.ndarray
-
- def __init__(
- self,
- root: str = "../../../data/coco/",
- transform: Optional[Callable] = None,
- download_dataset: bool = False,
- year: Literal["2014", "2017"] = "2017",
- split: Literal["train", "test", "val"] = "train",
- categories: Optional[List[str]] = None,
- data_idxs: Optional[List[int]] = None,
- ) -> None:
- """
- The dataset class for COCO segmentation.
-
- Args:
- root: The path to COCO dataset
- transform: The transformations to be applied to the data points
- download_dataset: Specifies whether to download the dataset if not present.
- year: The year of the dataset to use (2014, 2017).
- split: The split of the dataset to initialize (train, test, val).
- categories: The categories of the COCO dataset.
- data_idxs: The indexes used for partitioning dataset.
- """
- super(CocoSegmentation, self).__init__(root, download_dataset, year, split)
-
- if categories is None:
- categories = [
- "__background__",
- "airplane",
- "bicycle",
- "bird",
- "boat",
- "bottle",
- "bus",
- "car",
- "cat",
- "chair",
- "cow",
- "dining table",
- "dog",
- "horse",
- "motorcycle",
- "person",
- "potted plant",
- "sheep",
- "sofa",
- "tv",
- "train",
- ]
- self.coco = COCO(self.instances_path)
- self.transform = transform
- self.data_idxs = data_idxs
- self.ids_file = Path("{}/{}_{}.ids".format(self.root_dir, split, year))
-
- if self.downloaded:
- os.remove(self.ids_file)
-
- self.cat_ids = self.coco.getCatIds(catNms=categories)
- self.num_classes = len(self.cat_ids)
-
- if os.path.exists(self.ids_file):
- self.img_ids = torch.load(self.ids_file)
- else:
- ids = list(self.coco.imgs.keys())
- self.img_ids = self.__preprocess(ids)
-
- if data_idxs is not None:
- self.img_ids = [self.img_ids[i] for i in data_idxs]
-
- self.__generate_target()
-
- def __preprocess(self, ids: List[int]) -> List[int]:
- """
- Pre-process the downloaded files to get the valid images that contain the specified categories
-
- Args:
- ids: The image ids to be processed
-
- Returns:
- The valid set of image ids
- """
- logging.info(
- "Pre-processing mask, this will take a while. It only runs once for each split."
- )
- new_ids = []
- for i in range(len(ids)):
- img_id = ids[i]
- _, mask = self.__get_datapoint(img_id)
- if (mask > 0).sum() > 1000:
- new_ids.append(ids[i])
- done = int(50 * i / len(ids))
- sys.stdout.write(
- "\r[{}{}] {}% ({}/{})".format(
- "#" * done,
- "." * (50 - done),
- int((i / len(ids)) * 100),
- i,
- len(ids),
- )
- )
- sys.stdout.write("\n")
- sys.stdout.flush()
- logging.info("Found number of qualified images: {}".format(len(new_ids)))
- torch.save(new_ids, self.ids_file)
- return new_ids
-
- def __get_mask(self, annotations: List[Any], height: int, width: int) -> np.ndarray:
- """
- Generates the mask from the annotations
-
- Args:
- annotations: Contains the segmentation mask paths.
- height: Height of the image.
- width: Width of the image.
-
- Returns:
- The generated mask from the annotations.
- """
- mask = np.zeros((height, width), dtype=np.uint8)
- for ann in annotations:
- rle = coco_mask.frPyObjects(ann["segmentation"], height, width)
- m = coco_mask.decode(rle)
- cat = ann["category_id"]
- if cat in self.cat_ids:
- c = self.cat_ids.index(cat)
- else:
- continue
- if len(m.shape) < 3:
- mask[:, :] += (mask == 0) * (m * c)
- else:
- mask[:, :] += (mask == 0) * (((np.sum(m, axis=2)) > 0) * c).astype(
- np.uint8
- )
- return mask
-
- def __get_datapoint(self, img_id: int) -> Tuple[Image, np.ndarray]:
- """
- Fetches the datapoint corresponding to the image id.
-
- Args:
- img_id: Id of the image.
-
- Returns:
- A tuple of image and mask.
- """
- annotations_ids = self.coco.getAnnIds(imgIds=img_id, catIds=self.cat_ids)
-
- img_metadata = self.coco.loadImgs(ids=img_id)[0]
- img_file = img_metadata["file_name"]
- img = Image.open(self.images_path.joinpath(img_file)).convert("RGB")
-
- annotations = self.coco.loadAnns(ids=annotations_ids)
- mask = self.__get_mask(
- annotations, img_metadata["height"], img_metadata["width"]
- )
-
- return img, mask
-
- def __generate_target(self) -> None:
- """
- Generates the targets used to partition data.
- """
- target = list()
- for img_id in self.img_ids:
- annotation_ids = self.coco.getAnnIds(imgIds=img_id, catIds=self.cat_ids)
- annotations = self.coco.loadAnns(ids=annotation_ids)
- category_list = np.asarray([ann["category_id"] for ann in annotations])
- target.append(category_list)
- self.target = np.asarray(target)
-
- def __getitem__(self, index: int) -> Datapoint:
- img, mask = self.__get_datapoint(self.img_ids[index])
- datapoint = {"image": img, "label": Image.fromarray(mask)}
- if self.transform is None:
- return datapoint
- return self.transform(datapoint)
-
- def __len__(self) -> int:
- return len(self.img_ids)
-
-
-if __name__ == "__main__":
- root_dir = "./data/coco"
- train_data = CocoSegmentation(root=root_dir)
- val_Data = CocoSegmentation(root=root_dir, split="val")
diff --git a/python/app/fedcv/image_segmentation/data/coco/segmentation/transforms.py b/python/app/fedcv/image_segmentation/data/coco/segmentation/transforms.py
deleted file mode 100644
index 39d019b3ca..0000000000
--- a/python/app/fedcv/image_segmentation/data/coco/segmentation/transforms.py
+++ /dev/null
@@ -1,79 +0,0 @@
-from typing import Iterable, Dict
-
-import numpy as np
-import torch
-
-from PIL.Image import Image
-
-
-class Normalize(object):
- mean: Iterable[float]
- std: Iterable[float]
-
- def __init__(self, mean: Iterable[float] = (0., 0., 0.), std: Iterable[float] = (1., 1., 1.)):
- """
- Normalizes using the mean and standard deviation
- Args:
- mean: The mean value of the distribution
- std: The standard value of the distribution
- """
- self.mean = mean
- self.std = std
-
- def __call__(self, sample: Dict[str, Image]) -> Dict[str, np.ndarray]:
- img = sample['image']
- mask = sample['label']
- img = np.array(img).astype(np.float32)
- mask = np.array(mask).astype(np.float32)
- img /= 255.0
- img -= self.mean
- img /= self.std
-
- return {
- 'image': img,
- 'label': mask
- }
-
-
-class ToTensor(object):
- """
- Transforms the numpy array to torch tensor
- """
- def __call__(self, sample: Dict[str, np.ndarray]) -> Dict[str, torch.FloatTensor]:
- img = sample['image']
- mask = sample['label']
- img = np.array(img).astype(np.float32).transpose((2, 0, 1))
- mask = np.array(mask).astype(np.float32)
-
- img = torch.from_numpy(img).float()
- mask = torch.from_numpy(mask).float()
-
- return {
- 'image': img,
- 'label': mask
- }
-
-
-class FixedResize(object):
- def __init__(self, size: int):
- """
- Resizes the image to the specified size.
-
- Args:
- size: The size to resize the image.
- """
- self.size = (size, size)
-
- def __call__(self, sample: Dict[str, Image]) -> Dict[str, Image]:
- img = sample['image']
- mask = sample['label']
-
- assert img.size == mask.size
-
- img = img.resize(self.size, Image.BILINEAR)
- mask = mask.resize(self.size, Image.NEAREST)
-
- return {
- 'image': img,
- 'label': mask
- }
diff --git a/python/app/fedcv/image_segmentation/data/coco/utils.py b/python/app/fedcv/image_segmentation/data/coco/utils.py
deleted file mode 100644
index 3e5aa16ef1..0000000000
--- a/python/app/fedcv/image_segmentation/data/coco/utils.py
+++ /dev/null
@@ -1,82 +0,0 @@
-import sys
-import requests
-import os
-import logging
-
-from pathlib import PurePath
-from zipfile import ZipFile
-
-
-def __convert_size(size_in_bytes: int, unit: str) -> str:
- """
- Converts the bytes to human readable size format.
-
- Args:
- size_in_bytes: The number of bytes to convert
- unit: The unit to convert to.
-
- Returns:
- The converted size string.
- """
- if unit == 'GB':
- return '{:.2f} GB'.format(size_in_bytes / (1024 * 1024 * 1024))
- elif unit == 'MB':
- return '{:.2f} MB'.format(size_in_bytes / (1024 * 1024))
- elif unit == 'KB':
- return '{:.2f} KB'.format(size_in_bytes / 1024)
- else:
- return '{:.2f} bytes'.format(size_in_bytes)
-
-
-def _download_file(name: str, url: str, file_path: PurePath, unit: str) -> None:
- """
- Downloads the file to the path specified
-
- Args:
- name: The name to print in console while downloading.
- url: The url to download the file from.
- file_path: The local path where the file should be saved.
- unit: The unit to convert to.
- """
- with open(file_path, 'wb') as f:
- logging.info('Downloading {}...'.format(name))
- response = requests.get(url, stream=True)
- if response.status_code != 200:
- raise EnvironmentError(
- 'Encountered error while fetching. Status Code: {}, Error: {}'.format(response.status_code,
- response.content))
- total = response.headers.get('content-length')
- human_readable_total = __convert_size(int(total), unit)
-
- if total is None:
- f.write(response.content)
- else:
- downloaded = 0
- total = int(total)
- for data in response.iter_content(chunk_size=max(int(total / 1000), 1024 * 1024)):
- downloaded += len(data)
- human_readable_downloaded = __convert_size(int(downloaded), unit)
- f.write(data)
- done = int(50 * downloaded / total)
- sys.stdout.write(
- '\r[{}{}] {}% ({}/{})'.format('#' * done, '.' * (50 - done), int((downloaded / total) * 100),
- human_readable_downloaded, human_readable_total))
- sys.stdout.flush()
- sys.stdout.write('\n')
- logging.info('Download Completed.')
-
-
-def _extract_file(file_path: PurePath, extract_dir: PurePath) -> None:
- """
- Extracts the file to the specified path.
-
- Args:
- file_path: The local path where the zip file is located.
- extract_dir: The local path where the files must be extracted.
- """
- with ZipFile(file_path, 'r') as zip_file:
- logging.info('Extracting {} to {}...'.format(file_path, extract_dir))
- zip_file.extractall(extract_dir)
- zip_file.close()
- os.remove(file_path)
- logging.info('Extracted {}'.format(file_path))
diff --git a/python/app/fedcv/image_segmentation/data/coco128/__init__.py b/python/app/fedcv/image_segmentation/data/coco128/__init__.py
deleted file mode 100644
index e69de29bb2..0000000000
diff --git a/python/app/fedcv/image_segmentation/data/coco128/data_loader.py b/python/app/fedcv/image_segmentation/data/coco128/data_loader.py
deleted file mode 100644
index 0112036cd6..0000000000
--- a/python/app/fedcv/image_segmentation/data/coco128/data_loader.py
+++ /dev/null
@@ -1,262 +0,0 @@
-import logging
-
-from typing import Tuple, Callable, Optional, List, Iterable, Union, Literal, Sized
-
-import numpy as np
-import torch.utils.data as data
-from torchvision import transforms
-
-from fedml.core.data.noniid_partition import (
- record_data_stats,
- non_iid_partition_with_dirichlet_distribution,
-)
-from .datasets import CocoSegmentDataset
-from .transforms import Normalize, ToTensor, FixedResize
-
-
-def _data_transforms_coco128_segmentation() -> Tuple[Callable, Callable]:
- COCO_MEAN = (0.485, 0.456, 0.406)
- COCO_STD = (0.229, 0.224, 0.225)
-
- transform = transforms.Compose(
- [FixedResize(512), Normalize(mean=COCO_MEAN, std=COCO_STD), ToTensor()]
- )
-
- return transform, transform
-
-
-# for centralized training
-def get_dataloader(
- _,
- data_dir: str,
- train_bs: int,
- test_bs: int,
- data_idxs: Optional[List[int]] = None,
- test: bool = False,
-) -> Iterable[Union[data.DataLoader, int]]:
- return get_dataloader_coco128_segmentation(data_dir, train_bs, test_bs, data_idxs)
-
-
-# for local devices
-def get_dataloader_test(
- data_dir: str,
- train_bs: int,
- test_bs: int,
- data_idxs_train: Optional[List[int]],
- data_idxs_test: Optional[List[int]],
-) -> Iterable[Union[data.DataLoader, int]]:
- return get_dataloader_coco128_segmentation_test(
- data_dir, train_bs, test_bs, data_idxs_train, data_idxs_test
- )
-
-
-def get_dataloader_coco128_segmentation(
- data_dir: str,
- train_bs: int,
- test_bs: int,
- data_idxs: Optional[List[int]] = None,
- test: bool = True,
-) -> Iterable[Union[data.DataLoader, int]]:
- transform_train, transform_test = _data_transforms_coco128_segmentation()
-
- train_ds = CocoSegmentDataset(
- data_dir,
- train=True,
- transform=transform_train,
- data_idxs=data_idxs,
- )
- train_dl = data.DataLoader(
- dataset=train_ds, batch_size=train_bs, shuffle=True, drop_last=True
- )
-
- if test:
- test_ds = CocoSegmentDataset(
- data_dir, train=False, transform=transform_test, data_idxs=data_idxs
- )
- test_dl = data.DataLoader(
- dataset=test_ds, batch_size=test_bs, shuffle=False, drop_last=True
- )
- else:
- test_dl = None
-
- return train_dl, test_dl, train_ds.num_classes
-
-
-def get_dataloader_coco128_segmentation_test(
- data_dir: str,
- train_bs: int,
- test_bs: int,
- data_idxs_train: Optional[List[int]] = None,
- data_idxs_test: Optional[List[int]] = None,
-) -> Iterable[Union[data.DataLoader, int]]:
- transform_train, transform_test = _data_transforms_coco128_segmentation()
-
- train_ds = CocoSegmentDataset(
- data_dir,
- train=True,
- transform=transform_train,
- data_idxs=data_idxs_train,
- )
-
- test_ds = CocoSegmentDataset(
- data_dir,
- train=True,
- transform=transform_test,
- data_idxs=data_idxs_test,
- )
-
- train_dl = data.DataLoader(
- dataset=train_ds, batch_size=train_bs, shuffle=True, drop_last=True
- )
- test_dl = data.DataLoader(
- dataset=test_ds, batch_size=test_bs, shuffle=False, drop_last=True
- )
-
- return train_dl, test_dl, train_ds.num_classes
-
-
-# Get a partition map for each client
-def partition_data(
- data_dir: str, partition: Literal["homo", "hetero"], n_nets: int, alpha: float
-):
- logging.info("********************* Partitioning data **********************")
- n_train = 128 # Number of training samples
-
- if partition == "homo":
- total_num = n_train
- idxs = np.random.permutation(total_num)
- batch_idxs = np.array_split(
- idxs, n_nets
- ) # As many splits as n_nets = number of clients
- net_data_idx_map = {i: batch_idxs[i] for i in range(n_nets)}
-
- # non-iid data distribution
- # TODO: Add custom non-iid distribution option - hetero-fix
- elif partition == "hetero":
- raise NotImplementedError("Hetero partition not implemented")
-
- return net_data_idx_map
-
-
-def load_partition_data_distributed_coco128_segmentation(
- process_id: int,
- dataset: CocoSegmentDataset,
- data_dir: str,
- partition_method: Literal["homo", "hetero"],
- partition_alpha: float,
- client_number: int,
- batch_size: int,
-):
- net_data_idx_map = partition_data(
- data_dir, partition_method, client_number, partition_alpha
- )
-
- train_data_num = sum([len(net_data_idx_map[r]) for r in range(client_number)])
-
- # get global test data
- if process_id == 0:
- train_data_global, test_data_global, class_num = get_dataloader(
- dataset, data_dir, batch_size, batch_size
- )
- logging.info(
- "Number of global train batches: {} and test batches: {}".format(
- len(train_data_global), len(test_data_global)
- )
- )
-
- train_data_local_dict = None
- test_data_local_dict = None
- data_local_num_dict = None
- else:
- # get local dataset
- client_id = process_id - 1
- data_idxs = net_data_idx_map[client_id]
- local_data_num = len(data_idxs)
- logging.info(
- "Total number of local images: {} in client ID {}".format(
- local_data_num, process_id
- )
- )
-
- train_data_local, test_data_local, class_num = get_dataloader(
- dataset, data_dir, batch_size, batch_size, data_idxs
- )
- logging.info(
- "Number of local train batches: {} and test batches: {} in client ID {}".format(
- len(train_data_local), len(test_data_local), process_id
- )
- )
-
- data_local_num_dict = {client_id: local_data_num}
- train_data_local_dict = {client_id: train_data_local}
- test_data_local_dict = {client_id: test_data_local}
- train_data_global = None
- test_data_global = None
-
- return (
- train_data_num,
- train_data_global,
- test_data_global,
- data_local_num_dict,
- train_data_local_dict,
- test_data_local_dict,
- class_num,
- )
-
-
-# Called from main_fedseg
-def load_partition_data_coco128_segmentation(
- args,
- dataset,
- data_dir: str,
- partition_method: Literal["homo", "hetero"],
- partition_alpha: float,
- client_number: int,
- batch_size: int,
-):
-
- net_data_idx_map = partition_data(
- data_dir, partition_method, client_number, partition_alpha
- )
-
- train_data_global, test_data_global = None, None
- train_data_num = 0
- test_data_num = 0
-
- # get local dataset
- data_local_num_dict = dict()
- train_data_local_dict = dict()
- test_data_local_dict = dict()
- class_num = 80
-
- if args.process_id == 0: # server
- pass
- else:
- client_idx = int(args.process_id) - 1
- dataidxs = net_data_idx_map[client_idx]
- local_data_num = len(dataidxs)
- data_local_num_dict[client_idx] = local_data_num
- logging.info(
- "client_idx = %d, local_sample_number = %d" % (client_idx, local_data_num)
- )
-
- train_data_local, test_data_local, class_num = get_dataloader(
- dataset, data_dir, batch_size, batch_size, dataidxs
- )
- logging.info(
- "client_idx = %d, batch_num_train_local = %d"
- % (client_idx, len(train_data_local))
- )
- train_data_local_dict[client_idx] = train_data_local
- test_data_local_dict[client_idx] = test_data_local
-
- return (
- train_data_num,
- test_data_num,
- train_data_global,
- test_data_global,
- data_local_num_dict,
- train_data_local_dict,
- test_data_local_dict,
- class_num,
- )
diff --git a/python/app/fedcv/image_segmentation/data/coco128/datasets.py b/python/app/fedcv/image_segmentation/data/coco128/datasets.py
deleted file mode 100644
index f34c89a1d6..0000000000
--- a/python/app/fedcv/image_segmentation/data/coco128/datasets.py
+++ /dev/null
@@ -1,125 +0,0 @@
-# Code reference: https://github.com/deepchecks/deepchecks/blob/daedbaba3ba0e020e96de2ac0eb6a6f24d5359c5/docs/source/user-guide/vision/tutorials/plot_custom_task_tutorial.py
-
-import contextlib
-import os
-import typing as t
-from pathlib import Path
-
-import numpy as np
-import torch
-import torchvision.transforms.functional as F
-from PIL import Image, ImageDraw
-from torch.utils.data import DataLoader
-from torchvision.datasets import VisionDataset
-from torchvision.datasets.utils import download_and_extract_archive
-from torchvision.utils import draw_segmentation_masks
-
-
-class CocoSegmentDataset(VisionDataset):
- """An instance of PyTorch VisionData the represents the COCO128-segments dataset.
- Parameters
- ----------
- root : str
- Path to the root directory of the dataset.
- name : str
- Name of the dataset.
- train : bool
- if `True` train dataset, otherwise test dataset
- transforms : Callable, optional
- A function/transform that takes in an PIL image and returns a transformed version.
- E.g, transforms.RandomCrop
- """
-
- TRAIN_FRACTION = 1
-
- def __init__(
- self,
- root: str,
- name: str = "train2017",
- train: bool = True,
- transform: t.Optional[t.Callable] = None,
- data_idxs=None,
- ) -> None:
- super().__init__(root, transforms=transform)
-
- self.train = train
- self.root = Path(root).absolute()
- self.images_dir = Path(root) / "images" / name
- self.labels_dir = Path(root) / "labels" / name
- self.data_idxs = data_idxs
- self.num_classes = 80 if name == "train2017" else 20
-
- images: t.List[Path] = sorted(self.images_dir.glob("./*.jpg"))
- labels: t.List[t.Optional[Path]] = []
-
- for image in images:
- label = self.labels_dir / f"{image.stem}.txt"
- labels.append(label if label.exists() else None)
-
- if self.data_idxs is not None:
- images = [images[i] for i in self.data_idxs]
- labels = [labels[i] for i in self.data_idxs]
-
- assert len(images) != 0, "Did not find folder with images or it was empty"
- assert not all(
- l is None for l in labels
- ), "Did not find folder with labels or it was empty"
-
- train_len = int(self.TRAIN_FRACTION * len(images))
-
- if self.train is True:
- self.images = images[0:train_len]
- self.labels = labels[0:train_len]
- else:
- self.images = images[train_len:]
- self.labels = labels[train_len:]
-
- def __getitem__(self, idx: int) -> t.Tuple[Image.Image, np.ndarray]:
- """Get the image and label at the given index."""
- image = Image.open(str(self.images[idx]))
- # to RGB
- image = image.convert("RGB")
- label_file = self.labels[idx]
-
- masks = []
- classes = []
- if label_file is not None:
- for label_str in label_file.open("r").read().strip().splitlines():
- label = np.array(label_str.split(), dtype=np.float32)
- class_id = int(label[0])
- # Transform normalized coordinates to un-normalized
- coordinates = (
- (label[1:].reshape(-1, 2) * np.array([image.width, image.height]))
- .reshape(-1)
- .tolist()
- )
- # Create mask image
- mask = Image.new("L", (image.width, image.height), 0)
- ImageDraw.Draw(mask).polygon(coordinates, outline=1, fill=1)
- # Add to list
- masks.append(np.array(mask, dtype=bool))
- classes.append(class_id)
-
- if self.transforms is not None:
- transformed = self.transforms(
- {
- "image": image,
- "label": masks,
- "class_id": classes,
- "class_num": self.num_classes,
- }
- )
- image = transformed["image"]
- masks = transformed["label"]
-
- return {"image": image, "label": masks, "class": classes}
-
- def __len__(self):
- return len(self.images)
-
-
-if __name__ == "__main__":
- root_dir = "/home/beiyu/fedcv_data/coco128"
- train_data = CocoSegmentDataset(root=root_dir, train=True)
- print(len(train_data))
- print(train_data.__getitem__(0))
diff --git a/python/app/fedcv/image_segmentation/data/coco128/download_coco128.sh b/python/app/fedcv/image_segmentation/data/coco128/download_coco128.sh
deleted file mode 100644
index be3627723a..0000000000
--- a/python/app/fedcv/image_segmentation/data/coco128/download_coco128.sh
+++ /dev/null
@@ -1,18 +0,0 @@
-#!/bin/bash
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-# Download COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017)
-# Example usage: bash data/scripts/get_coco128.sh
-# parent
-# ├── yolov5
-# └── datasets
-# └── coco128 ← downloads here
-
-# Download/unzip images and labels
-d=$HOME/fedcv_data/ # unzip directory
-url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
-f='coco128-segments.zip'
-cd ..
-echo 'Downloading' $url$f ' ...'
-curl -L $url$f -o $f && unzip -o -q $f -d $d && rm $f &
-
-wait # finish background tasks
diff --git a/python/app/fedcv/image_segmentation/data/coco128/transforms.py b/python/app/fedcv/image_segmentation/data/coco128/transforms.py
deleted file mode 100644
index f04de7096e..0000000000
--- a/python/app/fedcv/image_segmentation/data/coco128/transforms.py
+++ /dev/null
@@ -1,94 +0,0 @@
-import logging
-from typing import Iterable, Dict
-
-import numpy as np
-import torch
-
-from PIL import Image
-
-
-class Normalize(object):
- mean: Iterable[float]
- std: Iterable[float]
-
- def __init__(
- self,
- mean: Iterable[float] = (0.0, 0.0, 0.0),
- std: Iterable[float] = (1.0, 1.0, 1.0),
- ):
- """
- Normalizes using the mean and standard deviation
- Args:
- mean: The mean value of the distribution
- std: The standard value of the distribution
- """
- self.mean = mean
- self.std = std
-
- def __call__(self, sample: Dict[str, Image.Image]) -> Dict[str, np.ndarray]:
- img = sample["image"]
- mask = sample["label"]
- img = np.array(img).astype(np.float32)
- mask = np.array(mask).astype(np.float32)
-
- # logging.info(f"Image shape: {img.shape}")
-
- img /= 255.0
- img -= self.mean
- img /= self.std
-
- return {"image": img, "label": mask}
-
-
-class ToTensor(object):
- """
- Transforms the numpy array to torch tensor
- """
-
- def __call__(self, sample: Dict[str, np.ndarray]) -> Dict[str, torch.FloatTensor]:
- img = sample["image"]
- mask = sample["label"]
- img = np.array(img).astype(np.float32).transpose((2, 0, 1))
- mask = np.array(mask).astype(np.float32)
-
- img = torch.from_numpy(img).float()
- mask = torch.from_numpy(mask).float()
-
- return {"image": img, "label": mask}
-
-
-class FixedResize(object):
- def __init__(self, size: int):
- """
- Resizes the image to the specified size.
-
- Args:
- size: The size to resize the image.
- """
- self.size = (size, size)
-
- def __call__(self, sample: Dict[str, Image.Image]) -> Dict[str, Image.Image]:
- img = sample["image"]
- mask = sample["label"]
- class_id = sample["class_id"]
- class_num = sample["class_num"]
-
- # assert img.size == mask.size
-
- img_size = list(img.size)[::-1]
- img = img.resize(self.size, Image.BILINEAR)
-
- # mask: List[List[bool, bool]], class_id: List[int], class_num: int
- # mask to multi-class mask
- mask = np.array(mask)
- mask_ = np.zeros(img_size, dtype=np.float32)
-
- for idx, class_idx in enumerate(class_id):
- mask_[mask[idx] == True] = class_idx
-
- # to Image
- # print(mask_.shape)
- mask = Image.fromarray(mask_.astype(np.uint8))
- mask = mask.resize(self.size, Image.NEAREST)
-
- return {"image": img, "label": mask}
diff --git a/python/app/fedcv/image_segmentation/data/data_loader.py b/python/app/fedcv/image_segmentation/data/data_loader.py
deleted file mode 100644
index 124b5776ff..0000000000
--- a/python/app/fedcv/image_segmentation/data/data_loader.py
+++ /dev/null
@@ -1,120 +0,0 @@
-import os
-
-import numpy as np
-import torch
-from .cityscapes.data_loader import load_partition_data_cityscapes
-from .coco.segmentation.data_loader import load_partition_data_coco_segmentation
-from .pascal_voc_augmented.data_loader import load_partition_data_pascal_voc
-from .coco128.data_loader import load_partition_data_coco128_segmentation
-import logging
-
-
-def load_data(args):
- return load_synthetic_data(args)
-
-
-def combine_batches(batches):
- full_x = torch.from_numpy(np.asarray([])).float()
- full_y = torch.from_numpy(np.asarray([])).long()
- for (batched_x, batched_y) in batches:
- full_x = torch.cat((full_x, batched_x), 0)
- full_y = torch.cat((full_y, batched_y), 0)
- return [(full_x, full_y)]
-
-
-def load_synthetic_data(args):
- dataset_name = str(args.dataset).lower()
- if dataset_name == "cityscapes":
- # load cityscapes dataset
- (
- train_data_num,
- test_data_num,
- train_data_global,
- test_data_global,
- train_data_local_num_dict,
- train_data_local_dict,
- test_data_local_dict,
- class_num,
- ) = load_partition_data_cityscapes(
- args=args,
- dataset=dataset_name,
- data_dir=args.data_cache_dir,
- partition_method=None,
- partition_alpha=None,
- client_number=args.client_num_in_total,
- batch_size=args.batch_size,
- )
- elif dataset_name in ["coco_segmentation", "coco"]:
- # load coco dataset
- (
- train_data_num,
- test_data_num,
- train_data_global,
- test_data_global,
- train_data_local_num_dict,
- train_data_local_dict,
- test_data_local_dict,
- class_num,
- ) = load_partition_data_coco_segmentation(
- args=args,
- dataset=dataset_name,
- data_dir=args.data_cache_dir,
- partition_method=None,
- partition_alpha=None,
- client_number=args.client_num_in_total,
- batch_size=args.batch_size,
- )
- elif dataset_name == "coco128":
- # load coco128 dataset
- (
- train_data_num,
- test_data_num,
- train_data_global,
- test_data_global,
- train_data_local_num_dict,
- train_data_local_dict,
- test_data_local_dict,
- class_num,
- ) = load_partition_data_coco128_segmentation(
- args=args,
- dataset=dataset_name,
- data_dir=args.data_cache_dir,
- partition_method=args.partition_method,
- partition_alpha=args.partition_alpha,
- client_number=args.client_num_in_total,
- batch_size=args.batch_size,
- )
- elif dataset_name in ["pascal_voc", "pascal_voc_augmented"]:
- # load pascal voc dataset
- (
- train_data_num,
- test_data_num,
- train_data_global,
- test_data_global,
- train_data_local_num_dict,
- train_data_local_dict,
- test_data_local_dict,
- class_num,
- ) = load_partition_data_pascal_voc(
- args=args,
- dataset=dataset_name,
- data_dir=args.data_cache_dir,
- partition_method=None,
- partition_alpha=None,
- client_number=args.client_num_in_total,
- batch_size=args.batch_size,
- )
- else:
- raise ValueError("dataset %s is not supported" % dataset_name)
-
- dataset = [
- train_data_num,
- test_data_num,
- train_data_global,
- test_data_global,
- train_data_local_num_dict,
- train_data_local_dict,
- test_data_local_dict,
- class_num,
- ]
- return dataset, class_num
diff --git a/python/app/fedcv/image_segmentation/data/data_loader_cross_silo.py b/python/app/fedcv/image_segmentation/data/data_loader_cross_silo.py
deleted file mode 100644
index c301e8e38b..0000000000
--- a/python/app/fedcv/image_segmentation/data/data_loader_cross_silo.py
+++ /dev/null
@@ -1,84 +0,0 @@
-from torch.utils import data
-from .data_loader import load_synthetic_data
-
-
-def load_cross_silo(args):
- return load_synthetic_data_cross_silo(args)
-
-
-def split_array(array, n_dist_trainer):
- r = len(array) % n_dist_trainer
- if r != 0:
- for _ in range(n_dist_trainer - r):
- array.append(array[-1])
- split_array = []
- chuhck_size = len(array) // n_dist_trainer
-
- for i in range(n_dist_trainer):
- split_array.append(array[i * chuhck_size : (i + 1) * chuhck_size])
- return split_array
-
-
-def split_dl(dl, n_dist_trainer):
- ds = dl.dataset
- bs = dl.batch_size
- split_dl = []
- if isinstance(dl.sampler, data.RandomSampler):
- shuffle = True
- else:
- shuffle = False
- for rank in range(n_dist_trainer):
- sampler = data.distributed.DistributedSampler(
- dataset=ds,
- num_replicas=n_dist_trainer,
- rank=rank,
- shuffle=shuffle,
- drop_last=False,
- )
- process_dl = data.DataLoader(
- dataset=dl.dataset,
- batch_size=bs,
- shuffle=False,
- drop_last=False,
- sampler=sampler,
- )
- split_dl.append(process_dl)
- return split_dl
-
-
-def split_data_for_dist_trainers(data_loaders, n_dist_trainer):
- for index, dl in data_loaders.items():
- if isinstance(dl, data.DataLoader):
- data_loaders[index] = split_dl(dl, n_dist_trainer)
- else:
- data_loaders[index] = split_array(dl, n_dist_trainer)
- return data_loaders
-
-
-def load_synthetic_data_cross_silo(args):
- n_dist_trainer = args.n_proc_in_silo
- dataset, class_num = load_synthetic_data(args)
- [
- train_data_num,
- test_data_num,
- train_data_global,
- test_data_global,
- train_data_local_num_dict,
- train_data_local_dict,
- test_data_local_dict,
- class_num,
- ] = dataset
-
- train_data_local_dict = split_data_for_dist_trainers(train_data_local_dict, n_dist_trainer)
-
- dataset = [
- train_data_num,
- test_data_num,
- train_data_global,
- test_data_global,
- train_data_local_num_dict,
- train_data_local_dict,
- test_data_local_dict,
- class_num,
- ]
- return dataset, class_num
diff --git a/python/app/fedcv/image_segmentation/data/pascal_voc_augmented/.gitignore b/python/app/fedcv/image_segmentation/data/pascal_voc_augmented/.gitignore
deleted file mode 100644
index 7f4475bf3f..0000000000
--- a/python/app/fedcv/image_segmentation/data/pascal_voc_augmented/.gitignore
+++ /dev/null
@@ -1 +0,0 @@
-benchmark_RELEASE/
diff --git a/python/app/fedcv/image_segmentation/data/pascal_voc_augmented/__init__.py b/python/app/fedcv/image_segmentation/data/pascal_voc_augmented/__init__.py
deleted file mode 100644
index e69de29bb2..0000000000
diff --git a/python/app/fedcv/image_segmentation/data/pascal_voc_augmented/data_loader.py b/python/app/fedcv/image_segmentation/data/pascal_voc_augmented/data_loader.py
deleted file mode 100644
index c533d35e1c..0000000000
--- a/python/app/fedcv/image_segmentation/data/pascal_voc_augmented/data_loader.py
+++ /dev/null
@@ -1,303 +0,0 @@
-import logging
-import numpy as np
-import torch.utils.data as data
-from torchvision import transforms
-
-from fedml.core.data.noniid_partition import (
- record_data_stats,
- non_iid_partition_with_dirichlet_distribution,
-)
-
-from .dataset import PascalVocAugmentedSegmentation
-from ..pascal_voc_augmented import transforms as custom_transforms
-
-logging.basicConfig()
-logger = logging.getLogger()
-logger.setLevel(logging.INFO)
-
-
-def _data_transforms_pascal_voc(image_size):
- PASCAL_VOC_MEAN = (0.485, 0.456, 0.406)
- PASCAL_VOC_STD = (0.229, 0.224, 0.225)
-
- train_transform = transforms.Compose(
- [
- custom_transforms.RandomMirror(),
- custom_transforms.RandomScaleCrop(image_size, image_size),
- custom_transforms.RandomGaussianBlur(),
- custom_transforms.ToTensor(),
- custom_transforms.Normalize(mean=PASCAL_VOC_MEAN, std=PASCAL_VOC_STD),
- ]
- )
-
- val_transform = transforms.Compose(
- [
- custom_transforms.FixedScaleCrop(image_size),
- custom_transforms.ToTensor(),
- custom_transforms.Normalize(mean=PASCAL_VOC_MEAN, std=PASCAL_VOC_STD),
- ]
- )
-
- return train_transform, val_transform
-
-
-# for centralized training
-def get_dataloader(_, data_dir, train_bs, test_bs, image_size, data_idxs=None):
- return get_dataloader_pascal_voc(data_dir, train_bs, test_bs, image_size, data_idxs)
-
-
-# for local devices
-def get_dataloader_test(
- data_dir, train_bs, test_bs, image_size, data_idxs_train=None, data_idxs_test=None
-):
- return get_dataloader_pascal_voc_test(
- data_dir, train_bs, test_bs, image_size, data_idxs_train, data_idxs_test
- )
-
-
-def get_dataloader_pascal_voc(data_dir, train_bs, test_bs, image_size, data_idxs=None):
- transform_train, transform_test = _data_transforms_pascal_voc(image_size)
-
- train_ds = PascalVocAugmentedSegmentation(
- data_dir,
- split="train",
- download_dataset=False,
- transform=transform_train,
- data_idxs=data_idxs,
- )
-
- test_ds = PascalVocAugmentedSegmentation(
- data_dir, split="val", download_dataset=False, transform=transform_test
- )
-
- train_dl = data.DataLoader(
- dataset=train_ds, batch_size=train_bs, shuffle=True, drop_last=True
- )
- test_dl = data.DataLoader(
- dataset=test_ds, batch_size=test_bs, shuffle=False, drop_last=True
- )
-
- return train_dl, test_dl, len(train_ds.classes)
-
-
-def get_dataloader_pascal_voc_test(
- data_dir, train_bs, test_bs, image_size, data_idxs_train=None, data_idxs_test=None
-):
- transform_train, transform_test = _data_transforms_pascal_voc(image_size)
-
- train_ds = PascalVocAugmentedSegmentation(
- data_dir,
- split="train",
- download_dataset=False,
- transform=transform_train,
- data_idxs=data_idxs_train,
- )
-
- test_ds = PascalVocAugmentedSegmentation(
- data_dir,
- split="val",
- download_dataset=False,
- transform=transform_test,
- data_idxs=data_idxs_test,
- )
-
- train_dl = data.DataLoader(
- dataset=train_ds, batch_size=train_bs, shuffle=True, drop_last=True
- )
- test_dl = data.DataLoader(
- dataset=test_ds, batch_size=test_bs, shuffle=False, drop_last=True
- )
-
- return train_dl, test_dl, len(train_ds.classes)
-
-
-def load_pascal_voc_data(data_dir, image_size):
- transform_train, transform_test = _data_transforms_pascal_voc(image_size)
-
- train_ds = PascalVocAugmentedSegmentation(
- data_dir, split="train", download_dataset=False, transform=transform_train
- )
- test_ds = PascalVocAugmentedSegmentation(
- data_dir, split="val", download_dataset=False, transform=transform_test
- )
-
- return (
- train_ds.images,
- train_ds.targets,
- train_ds.classes,
- test_ds.images,
- test_ds.targets,
- test_ds.classes,
- )
-
-
-# Get a partition map for each client
-def partition_data(data_dir, partition, n_nets, alpha, image_size):
- logging.info("********************* Partitioning data **********************")
- net_data_idx_map = None
- train_images, train_targets, train_categories, _, __, ___ = load_pascal_voc_data(
- data_dir, image_size
- )
- n_train = len(train_images) # Number of training samples
-
- if partition == "homo":
- total_num = n_train
- idxs = np.random.permutation(total_num)
- batch_idxs = np.array_split(
- idxs, n_nets
- ) # As many splits as n_nets = number of clients
- net_data_idx_map = {i: batch_idxs[i] for i in range(n_nets)}
-
- # non-iid data distribution
- # TODO: Add custom non-iid distribution option - hetero-fix
- elif partition == "hetero":
- # This is useful if we allow custom category lists, currently done for consistency
- categories = [train_categories.index(c) for c in train_categories]
- net_data_idx_map = non_iid_partition_with_dirichlet_distribution(
- train_targets, n_nets, categories, alpha, task="segmentation"
- )
-
- train_data_cls_counts = record_data_stats(
- train_targets, net_data_idx_map, task="segmentation"
- )
-
- return net_data_idx_map, train_data_cls_counts
-
-
-def load_partition_data_distributed_pascal_voc(
- process_id,
- dataset,
- data_dir,
- partition_method,
- partition_alpha,
- client_number,
- batch_size,
- image_size,
-):
- net_data_idx_map, train_data_cls_counts = partition_data(
- data_dir, partition_method, client_number, partition_alpha, image_size
- )
-
- train_data_num = sum([len(net_data_idx_map[r]) for r in range(client_number)])
-
- # get global test data
- if process_id == 0:
- train_data_global, test_data_global, class_num = get_dataloader(
- dataset, data_dir, batch_size, batch_size, image_size
- )
- logging.info(
- "Number of global train batches: {} and test batches: {}".format(
- len(train_data_global), len(test_data_global)
- )
- )
-
- train_data_local_dict = None
- test_data_local_dict = None
- data_local_num_dict = None
- else:
- # get local dataset
- client_id = process_id - 1
- data_idxs = net_data_idx_map[client_id]
-
- local_data_num = len(data_idxs)
- logging.info(
- "Total number of local images: {} in client ID {}".format(
- local_data_num, process_id
- )
- )
- # training batch size = 64; algorithms batch size = 32
- train_data_local, test_data_local, class_num = get_dataloader(
- dataset, data_dir, batch_size, batch_size, image_size, data_idxs
- )
- logging.info(
- "Number of local train batches: {} and test batches: {} in client ID {}".format(
- len(train_data_local), len(test_data_local), process_id
- )
- )
-
- data_local_num_dict = {client_id: local_data_num}
- train_data_local_dict = {client_id: train_data_local}
- test_data_local_dict = {client_id: test_data_local}
- train_data_global = None
- test_data_global = None
- return (
- train_data_num,
- train_data_global,
- test_data_global,
- data_local_num_dict,
- train_data_local_dict,
- test_data_local_dict,
- class_num,
- )
-
-
-# Called from main_fedseg
-def load_partition_data_pascal_voc(
- args,
- dataset,
- data_dir,
- partition_method,
- partition_alpha,
- client_number,
- batch_size,
- image_size,
-):
- net_data_idx_map, train_data_cls_counts = partition_data(
- data_dir, partition_method, client_number, partition_alpha, image_size
- )
-
- train_data_num = sum([len(net_data_idx_map[r]) for r in range(client_number)])
-
- # Global train and test data
- train_data_global, test_data_global, class_num = get_dataloader(
- dataset, data_dir, batch_size, batch_size, image_size
- )
- logging.info(
- "Number of global train batches: {} and test batches: {}".format(
- len(train_data_global), len(test_data_global)
- )
- )
-
- test_data_num = len(test_data_global)
-
- # get local dataset
- data_local_num_dict = dict() # Number of samples for each client
- train_data_local_dict = dict()
- test_data_local_dict = dict()
-
- for client_idx in range(client_number):
- data_idxs = net_data_idx_map[
- client_idx
- ] # get dataId list for client generated using Dirichlet sampling
- local_data_num = len(data_idxs) # How many samples does client have?
- logging.info(
- "Total number of local images: {} in client ID {}".format(
- local_data_num, client_idx
- )
- )
-
- data_local_num_dict[client_idx] = local_data_num
-
- # training batch size = 64; algorithms batch size = 32
- train_data_local, test_data_local, class_num = get_dataloader(
- dataset, data_dir, batch_size, batch_size, image_size, data_idxs
- )
- logging.info(
- "Number of local train batches: {} and test batches: {} in client ID {}".format(
- len(train_data_local), len(test_data_local), client_idx
- )
- )
-
- # Store data loaders for each client as they contain specific data
- train_data_local_dict[client_idx] = train_data_local
- test_data_local_dict[client_idx] = test_data_local
- return (
- train_data_num,
- test_data_num,
- train_data_global,
- test_data_global,
- data_local_num_dict,
- train_data_local_dict,
- test_data_local_dict,
- class_num,
- )
diff --git a/python/app/fedcv/image_segmentation/data/pascal_voc_augmented/dataset.py b/python/app/fedcv/image_segmentation/data/pascal_voc_augmented/dataset.py
deleted file mode 100644
index a41ce747a5..0000000000
--- a/python/app/fedcv/image_segmentation/data/pascal_voc_augmented/dataset.py
+++ /dev/null
@@ -1,126 +0,0 @@
-import os
-import shutil
-import torch
-
-import numpy as np
-import scipy.io as sio
-from PIL import Image
-from torch.utils.data import Dataset
-
-from pathlib import Path, PurePath
-
-from .utils import _download_file, _extract_file
-
-
-class PascalVocAugmentedSegmentation(Dataset):
-
- def __init__(self,
- root_dir='../../data/pascal_voc_augmented',
- split='train',
- download_dataset=False,
- transform=None,
- data_idxs=None):
- """
- The dataset class for Pascal VOC Augmented Dataset.
-
- Args:
- root_dir: The path to the dataset.
- split: The type of dataset to use (train, test, val).
- download_dataset: Specify whether to download the dataset if not present.
- transform: The custom transformations to be applied to the dataset.
- data_idxs: The list of indexes used to partition the dataset.
- """
- self.root_dir = root_dir
- self.images_dir = Path('{}/dataset/img'.format(root_dir))
- self.masks_dir = Path('{}/dataset/cls'.format(root_dir))
- self.split_file = Path('{}/dataset/{}.txt'.format(root_dir, split))
- self.transform = transform
- self.images = list()
- self.masks = list()
- self.targets = None
-
- if download_dataset:
- self.__download_dataset()
-
- self.__preprocess()
- if data_idxs is not None:
- self.images = [self.images[i] for i in data_idxs]
- self.masks = [self.masks[i] for i in data_idxs]
-
- self.__generate_targets()
-
- def __download_dataset(self):
- """
- Downloads the PASCAL VOC Augmented dataset.
- """
- files = {
- 'pascalvocaug': {
- 'name': 'PASCAL Train and Test Augmented Dataset',
- 'file_path': Path('{}/benchmark.tgz'.format(self.root_dir)),
- 'url': 'http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/semantic_contours/benchmark'
- '.tgz',
- 'unit': 'GB'
- }
- }
-
- _download_file(**files['pascalvocaug'])
- _extract_file(files['pascalvocaug']['file_path'], self.root_dir)
- shutil.move('{}/benchmark_RELEASE/dataset'.format(self.root_dir), self.root_dir)
- shutil.rmtree('{}/benchmark_RELEASE'.format(self.root_dir))
-
- def __preprocess(self):
- """
- Pre-process the dataset to get mask and file paths of the images.
-
- Raises:
- AssertionError: When length of images and masks differs.
- """
- with open(self.split_file, 'r') as file_names:
- for file_name in file_names:
- img_path = Path('{}/{}.jpg'.format(self.images_dir, file_name.strip(' \n')))
- mask_path = Path('{}/{}.mat'.format(self.masks_dir, file_name.strip(' \n')))
- assert os.path.isfile(img_path)
- assert os.path.isfile(mask_path)
- self.images.append(img_path)
- self.masks.append(mask_path)
- assert len(self.images) == len(self.masks)
-
- def __generate_targets(self):
- """
- Used to generate targets which in turn is used to partition data in an non-IID setting.
- """
- targets = list()
- for i in range(len(self.images)):
- mat = sio.loadmat(self.masks[i], mat_dtype=True, squeeze_me=True, struct_as_record=False)
- categories = mat['GTcls'].CategoriesPresent
- if isinstance(categories, np.ndarray):
- categories = np.asarray(list(categories))
- else:
- categories = np.asarray([categories]).astype(np.uint8)
- targets.append(categories)
- self.targets = np.asarray(targets)
-
- def __getitem__(self, index):
- img = Image.open(self.images[index]).convert('RGB')
- mat = sio.loadmat(self.masks[index], mat_dtype=True, squeeze_me=True, struct_as_record=False)
- mask = mat['GTcls'].Segmentation
- mask = Image.fromarray(mask)
- sample = {'image': img, 'label': mask}
-
- if self.transform is not None:
- sample = self.transform(sample)
- return sample
-
- def __len__(self):
- return len(self.images)
-
- @property
- def classes(self):
- """
- Returns:
- The clasess present in the Pascal VOC Augmented dataset.
- """
- return ('__background__', 'airplane', 'bicycle', 'bird', 'boat', 'bottle',
- 'bus', 'car', 'cat', 'chair', 'cow', 'dining table', 'dog', 'horse',
- 'motorcycle', 'person', 'potted-plant', 'sheep', 'sofa', 'television',
- 'train')
diff --git a/python/app/fedcv/image_segmentation/data/pascal_voc_augmented/download_data.sh b/python/app/fedcv/image_segmentation/data/pascal_voc_augmented/download_data.sh
deleted file mode 100644
index 5bfff40494..0000000000
--- a/python/app/fedcv/image_segmentation/data/pascal_voc_augmented/download_data.sh
+++ /dev/null
@@ -1,3 +0,0 @@
-wget http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/semantic_contours/benchmark.tgz
-tar -xvf benchmark.tgz
-rm benchmark.tgz
diff --git a/python/app/fedcv/image_segmentation/data/pascal_voc_augmented/transforms.py b/python/app/fedcv/image_segmentation/data/pascal_voc_augmented/transforms.py
deleted file mode 100644
index e8d500aa8f..0000000000
--- a/python/app/fedcv/image_segmentation/data/pascal_voc_augmented/transforms.py
+++ /dev/null
@@ -1,149 +0,0 @@
-import random
-import logging
-import numpy as np
-import torch
-from PIL import ImageOps, ImageFilter, Image
-from torchvision import transforms
-
-
-class RandomMirror(object):
- """
- Randomly perform a lateral inversion on the image.
- """
- def __call__(self, sample):
- img = sample['image']
- mask = sample['label']
- if random.random() < 0.5:
- img = img.transpose(Image.FLIP_LEFT_RIGHT)
- mask = mask.transpose(Image.FLIP_LEFT_RIGHT)
- return {
- 'image': img,
- 'label': mask,
- }
-
-
-class RandomScaleCrop(object):
-
- def __init__(self, base_size = 512, crop_size = 512):
- """
- Randomly scales and crops the image.
-
- Args:
- base_size: The base size to scale
- crop_size: The size to crop
- """
- self.base_size = base_size
- self.crop_size = crop_size
-
- def __call__(self, sample):
- img = sample['image']
- mask = sample['label']
- short_size = random.randint(int(self.base_size * 0.5), int(self.base_size * 2.0))
- width, height = img.size
- if height > width:
- output_width = short_size
- output_height = int(1.0 * height * output_width / width)
- else:
- output_height = short_size
- output_width = int(1.0 * width * output_height / height)
- img = img.resize((output_width, output_height), Image.BILINEAR)
- mask = mask.resize((output_width, output_height), Image.NEAREST)
- if short_size < self.crop_size:
- padding_height = self.crop_size - output_height if output_height < self.crop_size else 0
- padding_width = self.crop_size - output_width if output_width < self.crop_size else 0
- img = ImageOps.expand(img, border=(0, 0, padding_width, padding_height), fill=0)
- mask = ImageOps.expand(mask, border=(0, 0, padding_width, padding_height), fill=0)
- width, height = img.size
- x1 = random.randint(0, width - self.crop_size)
- y1 = random.randint(0, height - self.crop_size)
- img = img.crop((x1, y1, x1 + self.crop_size, y1 + self.crop_size))
- mask = mask.crop((x1, y1, x1 + self.crop_size, y1 + self.crop_size))
- return {
- 'image': img,
- 'label': mask,
- }
-
-
-class RandomGaussianBlur(object):
- """
- Randomly apply a gaussian blur to the image.
- """
- def __call__(self, sample):
- img = sample['image']
- mask = sample['label']
- if random.random() < 0.5:
- img = img.filter(ImageFilter.GaussianBlur(radius=random.random()))
- return {
- 'image': img,
- 'label': mask,
- }
-
-
-class FixedScaleCrop(object):
- def __init__(self, crop_size = 512):
- """
- Crop the image to the specified size
- Args:
- crop_size: The size of the cropped image.
- """
- self.crop_size = crop_size
-
- def __call__(self, sample):
- img = sample['image']
- mask = sample['label']
- short_size = self.crop_size
- width, height = img.size
- if width > height:
- output_height = short_size
- output_width = int(1.0 * width * output_height / height)
- else:
- output_width = short_size
- output_height = int(1.0 * height * output_width / width)
- img = img.resize((output_width, output_height), Image.BILINEAR)
- mask = mask.resize((output_width, output_height), Image.NEAREST)
- width, height = img.size
- x1 = int(round((width - self.crop_size) / 2.))
- y1 = int(round((height - self.crop_size) / 2.))
- img = img.crop((x1, y1, x1 + self.crop_size, y1 + self.crop_size))
- mask = mask.crop((x1, y1, x1 + self.crop_size, y1 + self.crop_size))
- return {
- 'image': img,
- 'label': mask,
- }
-
-
-class Normalize(object):
-
- def __init__(self, mean = (0, 0, 0), std = (0, 0, 0)):
- """
- Normalizes using the mean and standard deviation
- Args:
- mean: The mean value of the distribution
- std: The standard value of the distribution
- """
- self.normalize = transforms.Normalize(mean=mean, std=std)
-
- def __call__(self, sample):
- img = sample['image']
- img = self.normalize(img)
- return {
- 'image': img,
- 'label': sample['label'],
- }
-
-
-class ToTensor(object):
-
- def __init__(self):
- """
- Transforms the numpy array to torch tensor
- """
- self.to_tensor = transforms.ToTensor()
-
- def __call__(self, sample):
- img = torch.tensor(np.array(sample['image']).astype(np.float32).transpose((2, 0, 1)))
- mask = torch.tensor(np.array(sample['label']).astype(np.float32))
- return {
- 'image': img,
- 'label': mask,
- }
diff --git a/python/app/fedcv/image_segmentation/data/pascal_voc_augmented/utils.py b/python/app/fedcv/image_segmentation/data/pascal_voc_augmented/utils.py
deleted file mode 100644
index b609487153..0000000000
--- a/python/app/fedcv/image_segmentation/data/pascal_voc_augmented/utils.py
+++ /dev/null
@@ -1,95 +0,0 @@
-import sys
-import os
-import requests
-import tarfile
-import logging
-
-
-def __convert_size(size_in_bytes, unit):
- """
- Converts the bytes to human readable size format.
-
- Args:
- size_in_bytes (int): The number of bytes to convert
- unit (str): The unit to convert to.
- """
- if unit == 'GB':
- return '{:.2f} GB'.format(size_in_bytes / (1024 * 1024 * 1024))
- elif unit == 'MB':
- return '{:.2f} MB'.format(size_in_bytes / (1024 * 1024))
- elif unit == 'KB':
- return '{:.2f} KB'.format(size_in_bytes / 1024)
- else:
- return '{:.2f} bytes'.format(size_in_bytes)
-
-
-def _download_file(name, url, file_path, unit):
- """
- Downloads the file to the path specified
-
- Args:
- name (str): The name to print in console while downloading.
- url (str): The url to download the file from.
- file_path (str): The local path where the file should be saved.
- unit (str): The unit to convert to.
- """
- with open(file_path, 'wb') as f:
- logging.info('Downloading {}...'.format(name))
- response = requests.get(url, stream=True)
- if response.status_code != 200:
- raise EnvironmentError('Encountered error while fetching. Status Code: {}, Error: {}'.format(response.status_code,
- response.content))
- total = response.headers.get('content-length')
- human_readable_total = __convert_size(int(total), unit)
-
- if total is None:
- f.write(response.content)
- else:
- downloaded = 0
- total = int(total)
- for data in response.iter_content(chunk_size=max(int(total / 1000), 1024 * 1024)):
- downloaded += len(data)
- human_readable_downloaded = __convert_size(int(downloaded), unit)
- f.write(data)
- done = int(50 * downloaded / total)
- sys.stdout.write(
- '\r[{}{}] {}% ({}/{})'.format('#' * done, '.' * (50 - done), int((downloaded / total) * 100),
- human_readable_downloaded, human_readable_total))
- sys.stdout.flush()
- sys.stdout.write('\n')
- logging.info('Download Completed.')
-
-
-def _extract_file(file_path, extract_dir):
- """
- Extracts the file to the specified path.
-
- Args:
- file_path (str): The local path where the zip file is located.
- extract_dir (str): The local path where the files must be extracted.
- """
- with tarfile.open(file_path) as tar:
- logging.info('Extracting {} to {}...'.format(file_path, extract_dir))
- def is_within_directory(directory, target):
-
- abs_directory = os.path.abspath(directory)
- abs_target = os.path.abspath(target)
-
- prefix = os.path.commonprefix([abs_directory, abs_target])
-
- return prefix == abs_directory
-
- def safe_extract(tar, path=".", members=None, *, numeric_owner=False):
-
- for member in tar.getmembers():
- member_path = os.path.join(path, member.name)
- if not is_within_directory(path, member_path):
- raise Exception("Attempted Path Traversal in Tar File")
-
- tar.extractall(path, members, numeric_owner=numeric_owner)
-
-
- safe_extract(tar, path=extract_dir)
- tar.close()
- os.remove(file_path)
- logging.info('Extracted {}'.format(file_path))
diff --git a/python/app/fedcv/image_segmentation/main_fedml_image_segmentation.py b/python/app/fedcv/image_segmentation/main_fedml_image_segmentation.py
deleted file mode 100644
index 270b8e93ed..0000000000
--- a/python/app/fedcv/image_segmentation/main_fedml_image_segmentation.py
+++ /dev/null
@@ -1,25 +0,0 @@
-import fedml
-from fedml import FedMLRunner
-from data.data_loader import load_data
-from model import create_model
-from trainer.segmentation_trainer import SegmentationTrainer
-from trainer.segmentation_aggregator import SegmentationAggregator
-
-if __name__ == "__main__":
- # init FedML framework
- args = fedml.init()
-
- # init device
- device = fedml.device.get_device(args)
-
- # load data
- dataset, class_num = load_data(args)
-
- # create model and trainer
- model = create_model(args)
- trainer = SegmentationTrainer(model=model, args=args)
- aggregator = SegmentationAggregator(model=model, args=args)
-
- # start training
- fedml_runner = FedMLRunner(args, device, dataset, model, trainer, aggregator)
- fedml_runner.run()
diff --git a/python/app/fedcv/image_segmentation/model/README.md b/python/app/fedcv/image_segmentation/model/README.md
deleted file mode 100644
index 9f78672046..0000000000
--- a/python/app/fedcv/image_segmentation/model/README.md
+++ /dev/null
@@ -1 +0,0 @@
-image segmentation
\ No newline at end of file
diff --git a/python/app/fedcv/image_segmentation/model/__init__.py b/python/app/fedcv/image_segmentation/model/__init__.py
deleted file mode 100644
index 0b7640fc43..0000000000
--- a/python/app/fedcv/image_segmentation/model/__init__.py
+++ /dev/null
@@ -1,57 +0,0 @@
-import logging
-from .deeplabV3_plus import DeepLabV3_plus
-from .unet.unet import UNet
-from .transunet import VisionTransformer
-from fedml.simulation.mpi.fedseg.utils import count_parameters
-
-
-def create_model(args):
- model_name = args.model.lower()
- if model_name == "deeplabv3_plus":
- model = DeepLabV3_plus(
- backbone=args.backbone,
- image_size=args.img_size,
- n_classes=args.class_num,
- output_stride=args.outstride,
- pretrained=args.backbone_pretrained,
- freeze_bn=args.freeze_bn,
- sync_bn=args.sync_bn,
- )
-
- if args.backbone_freezed:
- logging.info("Freezing Backbone")
- for param in model.feature_extractor.parameters():
- param.requires_grad = False
- elif args.backbone_pretrained:
- logging.info("Finetuning Backbone")
- else:
- logging.info("Training from Scratch")
-
- num_params = count_parameters(model)
- logging.info("DeepLabV3_plus Model Size : {}".format(num_params))
-
- elif model_name == "unet":
- model = UNet(
- backbone=args.backbone,
- output_stride=args.outstride,
- n_classes=args.class_num,
- pretrained=args.backbone_pretrained,
- sync_bn=args.sync_bn,
- )
-
- if args.backbone_freezed:
- logging.info("Freezing Backbone")
- for param in model.encoder.parameters():
- param.requires_grad = False
- elif args.backbone_pretrained:
- logging.info("Finetuning Backbone")
- else:
- logging.info("Training from Scratch")
-
- num_params = count_parameters(model)
- logging.info("Unet Model Size : {}".format(num_params))
-
- else:
- raise ("Not Implemented Error")
-
- return model
diff --git a/python/app/fedcv/image_segmentation/model/deeplabV3_plus.py b/python/app/fedcv/image_segmentation/model/deeplabV3_plus.py
deleted file mode 100644
index 0d5501a8f8..0000000000
--- a/python/app/fedcv/image_segmentation/model/deeplabV3_plus.py
+++ /dev/null
@@ -1,398 +0,0 @@
-import math
-import logging
-import torch
-import torch.nn as nn
-import torch.nn.functional as F
-
-from fedml.model.cv.batchnorm_utils import SynchronizedBatchNorm2d
-from .resnet import ResNet101
-from .mobilenet_v2 import MobileNetV2Encoder, IntermediateLayerGetter
-
-
-class _ASPPModule(nn.Module):
- def __init__(self, inplanes, planes, dilation, BatchNorm):
- super(_ASPPModule, self).__init__()
-
- if dilation == 1:
- kernel_size = 1
- padding = 0
- else:
- kernel_size = 3
- padding = dilation
-
- self.atrous_convolution = nn.Conv2d(
- inplanes,
- planes,
- kernel_size=kernel_size,
- stride=1,
- padding=padding,
- dilation=dilation,
- bias=False,
- )
- self.bn = BatchNorm(planes)
- self.relu = nn.ReLU()
- self._init_weight()
-
- def forward(self, x):
- x = self.atrous_convolution(x)
- x = self.bn(x)
-
- return self.relu(x)
-
- def _init_weight(self):
- for m in self.modules():
- if isinstance(m, nn.Conv2d):
- torch.nn.init.kaiming_normal_(m.weight)
- elif isinstance(m, SynchronizedBatchNorm2d):
- m.weight.data.fill_(1)
- m.bias.data.zero_()
- elif isinstance(m, nn.BatchNorm2d):
- m.weight.data.fill_(1)
- m.bias.data.zero_()
-
-
-class ASPP(nn.Module):
- def __init__(self, backbone, output_stride, BatchNorm):
- super(ASPP, self).__init__()
-
- if backbone == "drn":
- inplanes = 512
- elif backbone == "mobilenet":
- inplanes = 320
- else:
- inplanes = 2048
-
- if output_stride == 16:
- dilations = [1, 6, 12, 18]
- elif output_stride == 8:
- dilations = [1, 12, 24, 36]
- else:
- raise NotImplementedError
-
- self.aspp1 = _ASPPModule(
- inplanes, 256, dilation=dilations[0], BatchNorm=BatchNorm
- )
- self.aspp2 = _ASPPModule(
- inplanes, 256, dilation=dilations[1], BatchNorm=BatchNorm
- )
- self.aspp3 = _ASPPModule(
- inplanes, 256, dilation=dilations[2], BatchNorm=BatchNorm
- )
- self.aspp4 = _ASPPModule(
- inplanes, 256, dilation=dilations[3], BatchNorm=BatchNorm
- )
- self.global_avg_pool = nn.Sequential(
- nn.AdaptiveAvgPool2d((1, 1)),
- nn.Conv2d(inplanes, 256, 1, stride=1, bias=False),
- BatchNorm(256),
- nn.ReLU(),
- )
- self.conv1 = nn.Conv2d(1280, 256, 1, bias=False)
- self.bn1 = BatchNorm(256)
- self.relu = nn.ReLU()
- self.dropout = nn.Dropout(0.5)
- self._init_weight()
-
- def forward(self, x):
- x1 = self.aspp1(x)
- x2 = self.aspp2(x)
- x3 = self.aspp3(x)
- x4 = self.aspp4(x)
- x5 = self.global_avg_pool(x)
- x5 = F.interpolate(x5, size=x4.size()[2:], mode="bilinear", align_corners=True)
- x = torch.cat((x1, x2, x3, x4, x5), dim=1)
-
- x = self.conv1(x)
- x = self.bn1(x)
- x = self.relu(x)
-
- return self.dropout(x)
-
- def _init_weight(self):
- for m in self.modules():
- if isinstance(m, nn.Conv2d):
- torch.nn.init.kaiming_normal_(m.weight)
- elif isinstance(m, SynchronizedBatchNorm2d):
- m.weight.data.fill_(1)
- m.bias.data.zero_()
- elif isinstance(m, nn.BatchNorm2d):
- m.weight.data.fill_(1)
- m.bias.data.zero_()
-
-
-class Decoder(nn.Module):
- def __init__(self, num_classes, backbone, BatchNorm):
- super(Decoder, self).__init__()
- if backbone == "resnet" or backbone == "drn":
- low_level_inplanes = 256
- elif backbone == "xception":
- low_level_inplanes = 128
- elif backbone == "mobilenet":
- low_level_inplanes = 24
- else:
- raise NotImplementedError
-
- self.conv1 = nn.Conv2d(low_level_inplanes, 48, 1, bias=False)
- self.bn1 = BatchNorm(48)
- self.relu = nn.ReLU()
- self.last_conv = nn.Sequential(
- nn.Conv2d(304, 256, kernel_size=3, stride=1, padding=1, bias=False),
- BatchNorm(256),
- nn.ReLU(),
- nn.Dropout(0.5),
- nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False),
- BatchNorm(256),
- nn.ReLU(),
- nn.Dropout(0.1),
- nn.Conv2d(256, num_classes, kernel_size=1, stride=1),
- )
- self._init_weight()
-
- def forward(self, x, low_level_feat):
- low_level_feat = self.conv1(low_level_feat)
- low_level_feat = self.bn1(low_level_feat)
- low_level_feat = self.relu(low_level_feat)
-
- x = F.interpolate(
- x, size=low_level_feat.size()[2:], mode="bilinear", align_corners=True
- )
- x = torch.cat((x, low_level_feat), dim=1)
- x = self.last_conv(x)
-
- return x
-
- def _init_weight(self):
- for m in self.modules():
- if isinstance(m, nn.Conv2d):
- torch.nn.init.kaiming_normal_(m.weight)
- elif isinstance(m, SynchronizedBatchNorm2d):
- m.weight.data.fill_(1)
- m.bias.data.zero_()
- elif isinstance(m, nn.BatchNorm2d):
- m.weight.data.fill_(1)
- m.bias.data.zero_()
-
-
-class FeatureExtractor(nn.Module):
- def __init__(
- self, backbone, n_channels, output_stride, BatchNorm, pretrained, num_classes
- ):
- super(FeatureExtractor, self).__init__()
- self.backbone = self.build_backbone(
- backbone=backbone,
- n_channels=n_channels,
- output_stride=output_stride,
- BatchNorm=BatchNorm,
- pretrained=pretrained,
- num_classes=num_classes,
- )
-
- def forward(self, input):
- x, low_level_feat = self.backbone(input)
- return x, low_level_feat
-
- @staticmethod
- def build_backbone(
- backbone="resnet",
- n_channels=3,
- output_stride=16,
- BatchNorm=nn.BatchNorm2d,
- pretrained=True,
- num_classes=21,
- model_name="deeplabV3_plus",
- ):
- if backbone == "resnet":
- return ResNet101(
- output_stride, BatchNorm, model_name, pretrained=pretrained
- )
- elif backbone == "mobilenet":
- backbone_model = MobileNetV2Encoder(
- output_stride=output_stride, batch_norm=BatchNorm, pretrained=pretrained
- )
- backbone_model.low_level_features = backbone_model.features[0:4]
- backbone_model.high_level_features = backbone_model.features[4:-1]
- backbone_model.features = None
- backbone_model.classifier = None
- return_layers = {
- "high_level_features": "out",
- "low_level_features": "low_level",
- }
- return IntermediateLayerGetter(backbone_model, return_layers=return_layers)
- else:
- raise NotImplementedError
-
-
-class EncoderDecoder(nn.Module):
- def __init__(self, backbone, image_size, output_stride, BatchNorm, num_classes):
- super(EncoderDecoder, self).__init__()
- self.encoder = self.build_aspp(backbone, output_stride, BatchNorm)
- self.decoder = self.build_decoder(num_classes, backbone, BatchNorm)
- self.img_size = image_size
-
- @staticmethod
- def build_aspp(backbone, output_stride, BatchNorm):
- return ASPP(backbone, output_stride, BatchNorm)
-
- @staticmethod
- def build_decoder(num_classes, backbone, BatchNorm):
- return Decoder(num_classes, backbone, BatchNorm)
-
- def forward(self, extracted_features, low_level_feat):
- x = self.encoder(extracted_features)
- x = self.decoder(x, low_level_feat)
- x = F.interpolate(x, size=self.img_size, mode="bilinear", align_corners=True)
- return x
-
-
-class DeepLabV3_plus(nn.Module):
- def __init__(
- self,
- backbone="resnet",
- image_size=torch.Size([513, 513]),
- nInputChannels=3,
- n_classes=21,
- output_stride=16,
- pretrained=False,
- freeze_bn=False,
- sync_bn=False,
- _print=True,
- ):
-
- if _print:
- logging.info(
- "Constructing Deeplabv3+ model with Backbone {0}, number of classes {1}, number of input channels {2}, output stride {3}".format(
- backbone, n_classes, nInputChannels, output_stride
- )
- )
-
- super(DeepLabV3_plus, self).__init__()
-
- if backbone == "drn":
- output_stride = 8
-
- if sync_bn == True:
- self.BatchNorm2d = SynchronizedBatchNorm2d
- else:
- self.BatchNorm2d = nn.BatchNorm2d
-
- self.n_classes = n_classes
- self.feature_extractor = FeatureExtractor(
- backbone=backbone,
- n_channels=nInputChannels,
- output_stride=output_stride,
- BatchNorm=self.BatchNorm2d,
- pretrained=pretrained,
- num_classes=n_classes,
- )
- self.encoder_decoder = EncoderDecoder(
- backbone=backbone,
- image_size=image_size,
- output_stride=output_stride,
- BatchNorm=self.BatchNorm2d,
- num_classes=n_classes,
- )
-
- self.freeze_bn = freeze_bn
-
- if freeze_bn:
- self._freeze_bn()
-
- def forward(self, input):
-
- extracted_features, low_level_feat = self.feature_extractor(input)
- segmented_images = self.encoder_decoder(extracted_features, low_level_feat)
- return segmented_images
-
- def _freeze_bn(self):
- for m in self.modules():
- if isinstance(m, self.BatchNorm2d):
- m.eval()
-
- def _init_weight(self):
- for m in self.modules():
- if isinstance(m, nn.Conv2d):
- n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
- m.weight.data.normal_(0, math.sqrt(2.0 / n))
- elif isinstance(m, self.BatchNorm2d):
- m.weight.data.fill_(1)
- m.bias.data.zero_()
-
- def get_1x_lr_params(self):
- modules = [self.feature_extractor.backbone]
- for i in range(len(modules)):
- for m in modules[i].named_modules():
- if self.freeze_bn:
- if isinstance(m[1], nn.Conv2d):
- for p in m[1].parameters():
- if p.requires_grad:
- yield p
- else:
- if (
- isinstance(m[1], nn.Conv2d)
- or isinstance(m[1], SynchronizedBatchNorm2d)
- or isinstance(m[1], nn.BatchNorm2d)
- ):
- for p in m[1].parameters():
- if p.requires_grad:
- yield p
-
- def get_10x_lr_params(self):
- modules = [self.encoder_decoder.encoder, self.encoder_decoder.decoder]
- for i in range(len(modules)):
- for m in modules[i].named_modules():
- if self.freeze_bn:
- if isinstance(m[1], nn.Conv2d):
- for p in m[1].parameters():
- if p.requires_grad:
- yield p
- else:
- if (
- isinstance(m[1], nn.Conv2d)
- or isinstance(m[1], SynchronizedBatchNorm2d)
- or isinstance(m[1], nn.BatchNorm2d)
- ):
- for p in m[1].parameters():
- if p.requires_grad:
- yield p
-
-
-if __name__ == "__main__":
- model = DeepLabV3_plus(
- backbone="mobilenet",
- nInputChannels=3,
- n_classes=3,
- output_stride=16,
- pretrained=False,
- _print=True,
- )
- image = torch.randn(1, 3, 512, 512)
- with torch.no_grad():
- output = model.forward(image)
- print(output.size())
- from ptflops import get_model_complexity_info
-
- print(
- "================================================================================"
- )
- print("DeepLab V3+, ResNet, 513x513")
- print(
- "================================================================================"
- )
- model = DeepLabV3_plus(pretrained=True)
- flops, params = get_model_complexity_info(model, (3, 513, 513), verbose=True)
-
- print("{:<30} {:<8}".format("Computational complexity: ", flops))
- print("{:<30} {:<8}".format("Number of parameters: ", params))
-
- print(
- "================================================================================"
- )
- print("DeepLab V3+, ResNet, 769x769")
- print(
- "================================================================================"
- )
- model = DeepLabV3_plus(pretrained=True)
- flops, params = get_model_complexity_info(model, (3, 769, 769), verbose=True)
-
- print("{:<30} {:<8}".format("Computational complexity: ", flops))
- print("{:<30} {:<8}".format("Number of parameters: ", params))
diff --git a/python/app/fedcv/image_segmentation/model/mobilenet_v2.py b/python/app/fedcv/image_segmentation/model/mobilenet_v2.py
deleted file mode 100644
index 0c96213ace..0000000000
--- a/python/app/fedcv/image_segmentation/model/mobilenet_v2.py
+++ /dev/null
@@ -1,255 +0,0 @@
-from collections import OrderedDict
-
-from torch import nn
-
-try:
- from torch.hub import load_state_dict_from_url # noqa: 401
-except ImportError:
- from torch.utils.model_zoo import load_url as load_state_dict_from_url # noqa: 401
-
-import torch.nn.functional as F
-
-from fedml.model.cv.batchnorm_utils import SynchronizedBatchNorm2d
-
-##############################################################################
-# The following implementation was taken from the following repo with slight #
-# structural modifications to suit our architecture. #
-# Source: https://github.com/VainF/DeepLabV3Plus-Pytorch #
-##############################################################################
-
-
-def _make_divisible(v, divisor, min_value=None):
- """
- This function is taken from the original tf repo.
- It ensures that all layers have a channel number that is divisible by 8
- It can be seen here:
- https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
- :param v:
- :param divisor:
- :param min_value:
- :return:
- """
- if min_value is None:
- min_value = divisor
- new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
- # Make sure that round down does not go down by more than 10%.
- if new_v < 0.9 * v:
- new_v += divisor
- return new_v
-
-
-def fixed_padding(kernel_size, dilation):
- kernel_size_effective = kernel_size + (kernel_size - 1) * (dilation - 1)
- pad_total = kernel_size_effective - 1
- pad_beg = pad_total // 2
- pad_end = pad_total - pad_beg
- return pad_beg, pad_end, pad_beg, pad_end
-
-
-class ConvBNReLU(nn.Sequential):
- def __init__(self, in_planes, out_planes, batch_norm, kernel_size=3, stride=1, dilation=1, groups=1):
- # padding = (kernel_size - 1) // 2
- super(ConvBNReLU, self).__init__(
- nn.Conv2d(in_planes, out_planes, kernel_size, stride, 0, dilation=dilation, groups=groups, bias=False),
- batch_norm(out_planes),
- nn.ReLU6(inplace=True),
- )
-
-
-class InvertedResidual(nn.Module):
- def __init__(self, inp, oup, stride, dilation, expand_ratio, batch_norm):
- super(InvertedResidual, self).__init__()
- self.stride = stride
- assert stride in [1, 2]
-
- hidden_dim = int(round(inp * expand_ratio))
- self.use_res_connect = self.stride == 1 and inp == oup
-
- layers = []
- if expand_ratio != 1:
- # pw
- layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1, batch_norm=batch_norm))
-
- layers.extend(
- [
- # dw
- ConvBNReLU(
- hidden_dim, hidden_dim, stride=stride, dilation=dilation, groups=hidden_dim, batch_norm=batch_norm
- ),
- # pw-linear
- nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
- batch_norm(oup),
- ]
- )
- self.conv = nn.Sequential(*layers)
-
- self.input_padding = fixed_padding(3, dilation)
-
- def forward(self, x):
- x_pad = F.pad(x, self.input_padding)
- if self.use_res_connect:
- return x + self.conv(x_pad)
- else:
- return self.conv(x_pad)
-
-
-class MobileNetV2(nn.Module):
- def __init__(
- self,
- output_stride,
- batch_norm,
- num_classes=1000,
- width_mult=1.0,
- inverted_residual_setting=None,
- round_nearest=8,
- pretrained=True,
- ):
- """
- MobileNet V2 main class
- Args:
- num_classes (int): Number of classes
- width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount
- inverted_residual_setting: Network structure
- round_nearest (int): Round the number of channels in each layer to be a multiple of this number
- Set to 1 to turn off rounding
- """
- super(MobileNetV2, self).__init__()
- block = InvertedResidual
- input_channel = 32
- last_channel = 1280
- self.output_stride = output_stride
- current_stride = 1
- if inverted_residual_setting is None:
- inverted_residual_setting = [
- # t, c, n, s
- [1, 16, 1, 1],
- [6, 24, 2, 2],
- [6, 32, 3, 2],
- [6, 64, 4, 2],
- [6, 96, 3, 1],
- [6, 160, 3, 2],
- [6, 320, 1, 1],
- ]
-
- # only check the first element, assuming user knows t,c,n,s are required
- if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4:
- raise ValueError(
- "inverted_residual_setting should be non-empty "
- "or a 4-element list, got {}".format(inverted_residual_setting)
- )
-
- # building first layer
- input_channel = _make_divisible(input_channel * width_mult, round_nearest)
- self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
- features = [ConvBNReLU(3, input_channel, batch_norm=batch_norm, stride=2)]
- current_stride *= 2
- dilation = 1
-
- # building inverted residual blocks
- for t, c, n, s in inverted_residual_setting:
- previous_dilation = dilation
- if current_stride == output_stride:
- stride = 1
- dilation *= s
- else:
- stride = s
- current_stride *= s
- output_channel = int(c * width_mult)
-
- for i in range(n):
- if i == 0:
- features.append(
- block(
- input_channel,
- output_channel,
- stride,
- previous_dilation,
- expand_ratio=t,
- batch_norm=batch_norm,
- )
- )
- else:
- features.append(
- block(input_channel, output_channel, 1, dilation, expand_ratio=t, batch_norm=batch_norm)
- )
- input_channel = output_channel
- # building last several layers
- features.append(ConvBNReLU(input_channel, self.last_channel, kernel_size=1, batch_norm=batch_norm))
- # make it nn.Sequential
- self.features = nn.Sequential(*features)
-
- # building classifier
- self.classifier = nn.Sequential(
- nn.Dropout(0.2),
- nn.Linear(self.last_channel, num_classes),
- )
-
- self._init_weights()
-
- if pretrained:
- self._load_pretrained_model()
-
- def forward(self, x):
- x = self.features(x)
- x = x.mean([2, 3])
- x = self.classifier(x)
- return x
-
- def _init_weights(self):
- for m in self.modules():
- if isinstance(m, nn.Conv2d):
- nn.init.kaiming_normal_(m.weight, mode="fan_out")
- if m.bias is not None:
- nn.init.zeros_(m.bias)
- elif isinstance(m, nn.BatchNorm2d):
- nn.init.ones_(m.weight)
- nn.init.zeros_(m.bias)
- elif isinstance(m, SynchronizedBatchNorm2d):
- m.weight.data.fill_(1)
- m.bias.data.zero_()
- elif isinstance(m, nn.Linear):
- nn.init.normal_(m.weight, 0, 0.01)
- nn.init.zeros_(m.bias)
-
- def _load_pretrained_model(self):
- pretrain_dict = load_state_dict_from_url(
- "https://download.pytorch.org/models/mobilenet_v2-b0353104.pth", progress=True
- )
- self.load_state_dict(pretrain_dict)
-
-
-class IntermediateLayerGetter(nn.ModuleDict):
- def __init__(self, model, return_layers):
- if not set(return_layers).issubset([name for name, _ in model.named_children()]):
- raise ValueError("return_layers are not present in model")
-
- orig_return_layers = return_layers
- return_layers = {k: v for k, v in return_layers.items()}
- layers = OrderedDict()
- for name, module in model.named_children():
- layers[name] = module
- if name in return_layers:
- del return_layers[name]
- if not return_layers:
- break
-
- super(IntermediateLayerGetter, self).__init__(layers)
- self.return_layers = orig_return_layers
-
- def forward(self, x):
- out = OrderedDict()
- for name, module in self.named_children():
- x = module(x)
- if name in self.return_layers:
- out_name = self.return_layers[name]
- out[out_name] = x
- return out["out"], out["low_level"]
-
-
-def MobileNetV2Encoder(**kwargs):
- """
- Constructs a MobileNetV2 architecture from
- `"MobileNetV2: Inverted Residuals and Linear Bottlenecks" `_.
- """
- model = MobileNetV2(**kwargs)
- return model
diff --git a/python/app/fedcv/image_segmentation/model/resnet.py b/python/app/fedcv/image_segmentation/model/resnet.py
deleted file mode 100644
index 04c0151abc..0000000000
--- a/python/app/fedcv/image_segmentation/model/resnet.py
+++ /dev/null
@@ -1,208 +0,0 @@
-import math
-import torch.nn as nn
-import torch.utils.model_zoo as model_zoo
-
-from fedml.model.cv.batchnorm_utils import SynchronizedBatchNorm2d
-
-
-class Bottleneck(nn.Module):
- expansion = 4
-
- def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None, BatchNorm=None):
- super(Bottleneck, self).__init__()
- self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
- self.bn1 = BatchNorm(planes)
- self.conv2 = nn.Conv2d(
- planes, planes, kernel_size=3, stride=stride, dilation=dilation, padding=dilation, bias=False
- )
- self.bn2 = BatchNorm(planes)
- self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
- self.bn3 = BatchNorm(planes * 4)
- self.relu = nn.ReLU(inplace=True)
- self.downsample = downsample
- self.stride = stride
- self.dilation = dilation
-
- def forward(self, x):
- residual = x
-
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
-
- out = self.conv2(out)
- out = self.bn2(out)
- out = self.relu(out)
-
- out = self.conv3(out)
- out = self.bn3(out)
-
- if self.downsample is not None:
- residual = self.downsample(x)
-
- out += residual
- out = self.relu(out)
-
- return out
-
-
-class ResNet(nn.Module):
- def __init__(self, block, layers, output_stride, BatchNorm, model_name, pretrained=True):
- self.inplanes = 64
- super(ResNet, self).__init__()
-
- self.model_name = model_name
-
- blocks = [1, 2, 4]
-
- if self.model_name == "deeplabV3_plus":
-
- if output_stride == 16:
- strides = [1, 2, 2, 1]
- dilations = [1, 1, 1, 2]
-
- elif output_stride == 8:
- strides = [1, 2, 1, 1]
- dilations = [1, 1, 2, 4]
-
- else:
- raise NotImplementedError
-
- elif self.model_name == "unet":
- strides = [1, 2, 2, 2]
- dilations = [1, 1, 1, 2]
-
- # Modules
-
- self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
- self.bn1 = BatchNorm(64)
- self.relu = nn.ReLU(inplace=True)
- self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
-
- self.layer1 = self._make_layer(
- block, 64, layers[0], stride=strides[0], dilation=dilations[0], BatchNorm=BatchNorm
- )
- self.layer2 = self._make_layer(
- block, 128, layers[1], stride=strides[1], dilation=dilations[1], BatchNorm=BatchNorm
- )
- self.layer3 = self._make_layer(
- block, 256, layers[2], stride=strides[2], dilation=dilations[2], BatchNorm=BatchNorm
- )
- self.layer4 = self._make_MG_unit(
- block, 512, blocks=blocks, stride=strides[3], dilation=dilations[3], BatchNorm=BatchNorm
- )
- # self.layer4 = self._make_layer(block, 512, layers[3], stride=strides[3], dilation=dilations[3], BatchNorm=BatchNorm)
- self._init_weight()
-
- if pretrained:
- self._load_pretrained_model()
-
- def _make_layer(self, block, planes, blocks, stride=1, dilation=1, BatchNorm=None):
- downsample = None
- if stride != 1 or self.inplanes != planes * block.expansion:
- downsample = nn.Sequential(
- nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False),
- BatchNorm(planes * block.expansion),
- )
-
- layers = []
- layers.append(block(self.inplanes, planes, stride, dilation, downsample, BatchNorm))
- self.inplanes = planes * block.expansion
- for i in range(1, blocks):
- layers.append(block(self.inplanes, planes, dilation=dilation, BatchNorm=BatchNorm))
-
- return nn.Sequential(*layers)
-
- def _make_MG_unit(self, block, planes, blocks, stride=1, dilation=1, BatchNorm=None):
- downsample = None
- if stride != 1 or self.inplanes != planes * block.expansion:
- downsample = nn.Sequential(
- nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False),
- BatchNorm(planes * block.expansion),
- )
-
- layers = []
- layers.append(
- block(
- self.inplanes, planes, stride, dilation=blocks[0] * dilation, downsample=downsample, BatchNorm=BatchNorm
- )
- )
- self.inplanes = planes * block.expansion
- for i in range(1, len(blocks)):
- layers.append(block(self.inplanes, planes, stride=1, dilation=blocks[i] * dilation, BatchNorm=BatchNorm))
-
- return nn.Sequential(*layers)
-
- def forward(self, input):
- if self.model_name == "deeplabV3_plus":
- x = self.conv1(input)
- x = self.bn1(x)
- x = self.relu(x)
- x = self.maxpool(x)
-
- x = self.layer1(x)
- low_level_feat = x
- x = self.layer2(x)
- x = self.layer3(x)
- x = self.layer4(x)
- return x, low_level_feat
-
- elif self.model_name == "unet":
- x = input.detach().clone()
- stages = [
- nn.Identity(),
- nn.Sequential(self.conv1, self.bn1, self.relu),
- nn.Sequential(self.maxpool, self.layer1),
- self.layer2,
- self.layer3,
- self.layer4,
- ]
-
- features = []
- for i in range(len(stages)):
- x = stages[i](x)
- # print("In resnet ",x.shape)
- features.append(x)
-
- return features
-
- def _init_weight(self):
- for m in self.modules():
- if isinstance(m, nn.Conv2d):
- n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
- m.weight.data.normal_(0, math.sqrt(2.0 / n))
- elif isinstance(m, SynchronizedBatchNorm2d):
- m.weight.data.fill_(1)
- m.bias.data.zero_()
- elif isinstance(m, nn.BatchNorm2d):
- m.weight.data.fill_(1)
- m.bias.data.zero_()
-
- def _load_pretrained_model(self):
- pretrain_dict = model_zoo.load_url("https://download.pytorch.org/models/resnet101-5d3b4d8f.pth")
- model_dict = {}
- state_dict = self.state_dict()
- for k, v in pretrain_dict.items():
- if k in state_dict:
- model_dict[k] = v
- state_dict.update(model_dict)
- self.load_state_dict(state_dict)
-
-
-def ResNet101(output_stride, BatchNorm, model_name, pretrained=True):
- """Constructs a ResNet-101 model.
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- """
- model = ResNet(Bottleneck, [3, 4, 23, 3], output_stride, BatchNorm, model_name, pretrained=True)
- return model
-
-
-if __name__ == "__main__":
- import torch
-
- model = ResNet101(BatchNorm=nn.BatchNorm2d, pretrained=True, output_stride=8)
- input = torch.rand(1, 3, 512, 512)
- output, low_level_feat = model(input)
- print(output.size())
- print(low_level_feat.size())
diff --git a/python/app/fedcv/image_segmentation/model/transunet/__init__.py b/python/app/fedcv/image_segmentation/model/transunet/__init__.py
deleted file mode 100644
index f1a5c2f260..0000000000
--- a/python/app/fedcv/image_segmentation/model/transunet/__init__.py
+++ /dev/null
@@ -1 +0,0 @@
-from .transunet import VisionTransformer
diff --git a/python/app/fedcv/image_segmentation/model/transunet/transunet.py b/python/app/fedcv/image_segmentation/model/transunet/transunet.py
deleted file mode 100644
index 274dc963d4..0000000000
--- a/python/app/fedcv/image_segmentation/model/transunet/transunet.py
+++ /dev/null
@@ -1,787 +0,0 @@
-# coding=utf-8
-from __future__ import absolute_import
-from __future__ import division
-from __future__ import print_function
-
-import copy
-import logging
-import math
-
-from os.path import join as pjoin
-from collections import OrderedDict
-
-import torch
-import torch.nn as nn
-import torch.nn.functional as F
-import numpy as np
-
-from torch.nn import CrossEntropyLoss, Dropout, Softmax, Linear, Conv2d, LayerNorm
-from torch.nn.modules.utils import _pair
-from scipy import ndimage
-
-import model.transunet.transunet_configs as configs
-
-logger = logging.getLogger(__name__)
-
-
-ATTENTION_Q = "MultiHeadDotProductAttention_1/query"
-ATTENTION_K = "MultiHeadDotProductAttention_1/key"
-ATTENTION_V = "MultiHeadDotProductAttention_1/value"
-ATTENTION_OUT = "MultiHeadDotProductAttention_1/out"
-FC_0 = "MlpBlock_3/Dense_0"
-FC_1 = "MlpBlock_3/Dense_1"
-ATTENTION_NORM = "LayerNorm_0"
-MLP_NORM = "LayerNorm_2"
-
-
-CONFIGS = {
- "ViT-B_16": configs.get_b16_config(),
- "ViT-B_32": configs.get_b32_config(),
- "ViT-L_16": configs.get_l16_config(),
- "ViT-L_32": configs.get_l32_config(),
- "ViT-H_14": configs.get_h14_config(),
- "R50-ViT-B_16": configs.get_r50_b16_config(),
- "R50-ViT-L_16": configs.get_r50_l16_config(),
- "testing": configs.get_testing(),
-}
-
-
-def np2th(weights, conv=False):
- """Possibly convert HWIO to OIHW."""
- if conv:
- weights = weights.transpose([3, 2, 0, 1])
- return torch.from_numpy(weights)
-
-
-def swish(x):
- return x * torch.sigmoid(x)
-
-
-ACT2FN = {
- "gelu": torch.nn.functional.gelu,
- "relu": torch.nn.functional.relu,
- "swish": swish,
-}
-
-
-class StdConv2d(nn.Conv2d):
- def forward(self, x):
- w = self.weight
- v, m = torch.var_mean(w, dim=[1, 2, 3], keepdim=True, unbiased=False)
- w = (w - m) / torch.sqrt(v + 1e-5)
- return F.conv2d(
- x, w, self.bias, self.stride, self.padding, self.dilation, self.groups
- )
-
-
-def conv3x3(cin, cout, stride=1, groups=1, bias=False):
- return StdConv2d(
- cin, cout, kernel_size=3, stride=stride, padding=1, bias=bias, groups=groups
- )
-
-
-def conv1x1(cin, cout, stride=1, bias=False):
- return StdConv2d(cin, cout, kernel_size=1, stride=stride, padding=0, bias=bias)
-
-
-class PreActBottleneck(nn.Module):
- """Pre-activation (v2) bottleneck block."""
-
- def __init__(self, cin, cout=None, cmid=None, stride=1):
- super().__init__()
- cout = cout or cin
- cmid = cmid or cout // 4
-
- self.gn1 = nn.GroupNorm(32, cmid, eps=1e-6)
- self.conv1 = conv1x1(cin, cmid, bias=False)
- self.gn2 = nn.GroupNorm(32, cmid, eps=1e-6)
- self.conv2 = conv3x3(
- cmid, cmid, stride, bias=False
- ) # Original code has it on conv1!!
- self.gn3 = nn.GroupNorm(32, cout, eps=1e-6)
- self.conv3 = conv1x1(cmid, cout, bias=False)
- self.relu = nn.ReLU(inplace=True)
-
- if stride != 1 or cin != cout:
- # Projection also with pre-activation according to paper.
- self.downsample = conv1x1(cin, cout, stride, bias=False)
- self.gn_proj = nn.GroupNorm(cout, cout)
-
- def forward(self, x):
-
- # Residual branch
- residual = x
- if hasattr(self, "downsample"):
- residual = self.downsample(x)
- residual = self.gn_proj(residual)
-
- # Unit's branch
- y = self.relu(self.gn1(self.conv1(x)))
- y = self.relu(self.gn2(self.conv2(y)))
- y = self.gn3(self.conv3(y))
-
- y = self.relu(residual + y)
- return y
-
- def load_from(self, weights, n_block, n_unit):
- conv1_weight = np2th(weights[pjoin(n_block, n_unit, "conv1/kernel")], conv=True)
- conv2_weight = np2th(weights[pjoin(n_block, n_unit, "conv2/kernel")], conv=True)
- conv3_weight = np2th(weights[pjoin(n_block, n_unit, "conv3/kernel")], conv=True)
-
- gn1_weight = np2th(weights[pjoin(n_block, n_unit, "gn1/scale")])
- gn1_bias = np2th(weights[pjoin(n_block, n_unit, "gn1/bias")])
-
- gn2_weight = np2th(weights[pjoin(n_block, n_unit, "gn2/scale")])
- gn2_bias = np2th(weights[pjoin(n_block, n_unit, "gn2/bias")])
-
- gn3_weight = np2th(weights[pjoin(n_block, n_unit, "gn3/scale")])
- gn3_bias = np2th(weights[pjoin(n_block, n_unit, "gn3/bias")])
-
- self.conv1.weight.copy_(conv1_weight)
- self.conv2.weight.copy_(conv2_weight)
- self.conv3.weight.copy_(conv3_weight)
-
- self.gn1.weight.copy_(gn1_weight.view(-1))
- self.gn1.bias.copy_(gn1_bias.view(-1))
-
- self.gn2.weight.copy_(gn2_weight.view(-1))
- self.gn2.bias.copy_(gn2_bias.view(-1))
-
- self.gn3.weight.copy_(gn3_weight.view(-1))
- self.gn3.bias.copy_(gn3_bias.view(-1))
-
- if hasattr(self, "downsample"):
- proj_conv_weight = np2th(
- weights[pjoin(n_block, n_unit, "conv_proj/kernel")], conv=True
- )
- proj_gn_weight = np2th(weights[pjoin(n_block, n_unit, "gn_proj/scale")])
- proj_gn_bias = np2th(weights[pjoin(n_block, n_unit, "gn_proj/bias")])
-
- self.downsample.weight.copy_(proj_conv_weight)
- self.gn_proj.weight.copy_(proj_gn_weight.view(-1))
- self.gn_proj.bias.copy_(proj_gn_bias.view(-1))
-
-
-class ResNetV2(nn.Module):
- """Implementation of Pre-activation (v2) ResNet mode."""
-
- def __init__(self, block_units, width_factor):
- super().__init__()
- width = int(64 * width_factor)
- self.width = width
-
- self.root = nn.Sequential(
- OrderedDict(
- [
- (
- "conv",
- StdConv2d(
- 3, width, kernel_size=7, stride=2, bias=False, padding=3
- ),
- ),
- ("gn", nn.GroupNorm(32, width, eps=1e-6)),
- ("relu", nn.ReLU(inplace=True)),
- # ('pool', nn.MaxPool2d(kernel_size=3, stride=2, padding=0))
- ]
- )
- )
-
- self.body = nn.Sequential(
- OrderedDict(
- [
- (
- "block1",
- nn.Sequential(
- OrderedDict(
- [
- (
- "unit1",
- PreActBottleneck(
- cin=width, cout=width * 4, cmid=width
- ),
- )
- ]
- + [
- (
- f"unit{i:d}",
- PreActBottleneck(
- cin=width * 4, cout=width * 4, cmid=width
- ),
- )
- for i in range(2, block_units[0] + 1)
- ],
- )
- ),
- ),
- (
- "block2",
- nn.Sequential(
- OrderedDict(
- [
- (
- "unit1",
- PreActBottleneck(
- cin=width * 4,
- cout=width * 8,
- cmid=width * 2,
- stride=2,
- ),
- )
- ]
- + [
- (
- f"unit{i:d}",
- PreActBottleneck(
- cin=width * 8,
- cout=width * 8,
- cmid=width * 2,
- ),
- )
- for i in range(2, block_units[1] + 1)
- ],
- )
- ),
- ),
- (
- "block3",
- nn.Sequential(
- OrderedDict(
- [
- (
- "unit1",
- PreActBottleneck(
- cin=width * 8,
- cout=width * 16,
- cmid=width * 4,
- stride=2,
- ),
- )
- ]
- + [
- (
- f"unit{i:d}",
- PreActBottleneck(
- cin=width * 16,
- cout=width * 16,
- cmid=width * 4,
- ),
- )
- for i in range(2, block_units[2] + 1)
- ],
- )
- ),
- ),
- ]
- )
- )
-
- def forward(self, x):
- features = []
- b, c, in_size, _ = x.size()
- x = self.root(x)
- features.append(x)
- x = nn.MaxPool2d(kernel_size=3, stride=2, padding=0)(x)
- for i in range(len(self.body) - 1):
- x = self.body[i](x)
- right_size = int(in_size / 4 / (i + 1))
- if x.size()[2] != right_size:
- pad = right_size - x.size()[2]
- assert pad < 3 and pad > 0, "x {} should {}".format(
- x.size(), right_size
- )
- feat = torch.zeros(
- (b, x.size()[1], right_size, right_size), device=x.device
- )
- feat[:, :, 0 : x.size()[2], 0 : x.size()[3]] = x[:]
- else:
- feat = x
- features.append(feat)
- x = self.body[-1](x)
- return x, features[::-1]
-
-
-class Attention(nn.Module):
- def __init__(self, config, vis):
- super(Attention, self).__init__()
- self.vis = vis
- self.num_attention_heads = config.transformer["num_heads"]
- self.attention_head_size = int(config.hidden_size / self.num_attention_heads)
- self.all_head_size = self.num_attention_heads * self.attention_head_size
-
- self.query = Linear(config.hidden_size, self.all_head_size)
- self.key = Linear(config.hidden_size, self.all_head_size)
- self.value = Linear(config.hidden_size, self.all_head_size)
-
- self.out = Linear(config.hidden_size, config.hidden_size)
- self.attn_dropout = Dropout(config.transformer["attention_dropout_rate"])
- self.proj_dropout = Dropout(config.transformer["attention_dropout_rate"])
-
- self.softmax = Softmax(dim=-1)
-
- def transpose_for_scores(self, x):
- new_x_shape = x.size()[:-1] + (
- self.num_attention_heads,
- self.attention_head_size,
- )
- x = x.view(*new_x_shape)
- return x.permute(0, 2, 1, 3)
-
- def forward(self, hidden_states):
- mixed_query_layer = self.query(hidden_states)
- mixed_key_layer = self.key(hidden_states)
- mixed_value_layer = self.value(hidden_states)
-
- query_layer = self.transpose_for_scores(mixed_query_layer)
- key_layer = self.transpose_for_scores(mixed_key_layer)
- value_layer = self.transpose_for_scores(mixed_value_layer)
-
- attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
- attention_scores = attention_scores / math.sqrt(self.attention_head_size)
- attention_probs = self.softmax(attention_scores)
- weights = attention_probs if self.vis else None
- attention_probs = self.attn_dropout(attention_probs)
-
- context_layer = torch.matmul(attention_probs, value_layer)
- context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
- new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
- context_layer = context_layer.view(*new_context_layer_shape)
- attention_output = self.out(context_layer)
- attention_output = self.proj_dropout(attention_output)
- return attention_output, weights
-
-
-class Mlp(nn.Module):
- def __init__(self, config):
- super(Mlp, self).__init__()
- self.fc1 = Linear(config.hidden_size, config.transformer["mlp_dim"])
- self.fc2 = Linear(config.transformer["mlp_dim"], config.hidden_size)
- self.act_fn = ACT2FN["gelu"]
- self.dropout = Dropout(config.transformer["dropout_rate"])
-
- self._init_weights()
-
- def _init_weights(self):
- nn.init.xavier_uniform_(self.fc1.weight)
- nn.init.xavier_uniform_(self.fc2.weight)
- nn.init.normal_(self.fc1.bias, std=1e-6)
- nn.init.normal_(self.fc2.bias, std=1e-6)
-
- def forward(self, x):
- x = self.fc1(x)
- x = self.act_fn(x)
- x = self.dropout(x)
- x = self.fc2(x)
- x = self.dropout(x)
- return x
-
-
-class Embeddings(nn.Module):
- """Construct the embeddings from patch, position embeddings."""
-
- def __init__(self, config, img_size, in_channels=3):
- super(Embeddings, self).__init__()
- self.hybrid = None
- self.config = config
- img_size = _pair(img_size)
-
- if config.patches.get("grid") is not None: # ResNet
- grid_size = config.patches["grid"]
- patch_size = (
- img_size[0] // 16 // grid_size[0],
- img_size[1] // 16 // grid_size[1],
- )
- patch_size_real = (patch_size[0] * 16, patch_size[1] * 16)
- n_patches = (img_size[0] // patch_size_real[0]) * (
- img_size[1] // patch_size_real[1]
- )
- self.hybrid = True
- else:
- patch_size = _pair(config.patches["size"])
- n_patches = (img_size[0] // patch_size[0]) * (img_size[1] // patch_size[1])
- self.hybrid = False
-
- if self.hybrid:
- self.hybrid_model = ResNetV2(
- block_units=config.resnet.num_layers,
- width_factor=config.resnet.width_factor,
- )
- in_channels = self.hybrid_model.width * 16
- self.patch_embeddings = Conv2d(
- in_channels=in_channels,
- out_channels=config.hidden_size,
- kernel_size=patch_size,
- stride=patch_size,
- )
- self.position_embeddings = nn.Parameter(
- torch.zeros(1, n_patches, config.hidden_size)
- )
-
- self.dropout = Dropout(config.transformer["dropout_rate"])
-
- def forward(self, x):
- if self.hybrid:
- x, features = self.hybrid_model(x)
- else:
- features = None
- x = self.patch_embeddings(x) # (B, hidden. n_patches^(1/2), n_patches^(1/2))
- x = x.flatten(2)
- x = x.transpose(-1, -2) # (B, n_patches, hidden)
-
- embeddings = x + self.position_embeddings
- embeddings = self.dropout(embeddings)
- return embeddings, features
-
-
-class Block(nn.Module):
- def __init__(self, config, vis):
- super(Block, self).__init__()
- self.hidden_size = config.hidden_size
- self.attention_norm = LayerNorm(config.hidden_size, eps=1e-6)
- self.ffn_norm = LayerNorm(config.hidden_size, eps=1e-6)
- self.ffn = Mlp(config)
- self.attn = Attention(config, vis)
-
- def forward(self, x):
- h = x
- x = self.attention_norm(x)
- x, weights = self.attn(x)
- x = x + h
-
- h = x
- x = self.ffn_norm(x)
- x = self.ffn(x)
- x = x + h
- return x, weights
-
- def load_from(self, weights, n_block):
- ROOT = f"Transformer/encoderblock_{n_block}"
- with torch.no_grad():
- query_weight = (
- np2th(weights[pjoin(ROOT, ATTENTION_Q, "kernel")])
- .view(self.hidden_size, self.hidden_size)
- .t()
- )
- key_weight = (
- np2th(weights[pjoin(ROOT, ATTENTION_K, "kernel")])
- .view(self.hidden_size, self.hidden_size)
- .t()
- )
- value_weight = (
- np2th(weights[pjoin(ROOT, ATTENTION_V, "kernel")])
- .view(self.hidden_size, self.hidden_size)
- .t()
- )
- out_weight = (
- np2th(weights[pjoin(ROOT, ATTENTION_OUT, "kernel")])
- .view(self.hidden_size, self.hidden_size)
- .t()
- )
-
- query_bias = np2th(weights[pjoin(ROOT, ATTENTION_Q, "bias")]).view(-1)
- key_bias = np2th(weights[pjoin(ROOT, ATTENTION_K, "bias")]).view(-1)
- value_bias = np2th(weights[pjoin(ROOT, ATTENTION_V, "bias")]).view(-1)
- out_bias = np2th(weights[pjoin(ROOT, ATTENTION_OUT, "bias")]).view(-1)
-
- self.attn.query.weight.copy_(query_weight)
- self.attn.key.weight.copy_(key_weight)
- self.attn.value.weight.copy_(value_weight)
- self.attn.out.weight.copy_(out_weight)
- self.attn.query.bias.copy_(query_bias)
- self.attn.key.bias.copy_(key_bias)
- self.attn.value.bias.copy_(value_bias)
- self.attn.out.bias.copy_(out_bias)
-
- mlp_weight_0 = np2th(weights[pjoin(ROOT, FC_0, "kernel")]).t()
- mlp_weight_1 = np2th(weights[pjoin(ROOT, FC_1, "kernel")]).t()
- mlp_bias_0 = np2th(weights[pjoin(ROOT, FC_0, "bias")]).t()
- mlp_bias_1 = np2th(weights[pjoin(ROOT, FC_1, "bias")]).t()
-
- self.ffn.fc1.weight.copy_(mlp_weight_0)
- self.ffn.fc2.weight.copy_(mlp_weight_1)
- self.ffn.fc1.bias.copy_(mlp_bias_0)
- self.ffn.fc2.bias.copy_(mlp_bias_1)
-
- self.attention_norm.weight.copy_(
- np2th(weights[pjoin(ROOT, ATTENTION_NORM, "scale")])
- )
- self.attention_norm.bias.copy_(
- np2th(weights[pjoin(ROOT, ATTENTION_NORM, "bias")])
- )
- self.ffn_norm.weight.copy_(np2th(weights[pjoin(ROOT, MLP_NORM, "scale")]))
- self.ffn_norm.bias.copy_(np2th(weights[pjoin(ROOT, MLP_NORM, "bias")]))
-
-
-class Encoder(nn.Module):
- def __init__(self, config, vis):
- super(Encoder, self).__init__()
- self.vis = vis
- self.layer = nn.ModuleList()
- self.encoder_norm = LayerNorm(config.hidden_size, eps=1e-6)
- for _ in range(config.transformer["num_layers"]):
- layer = Block(config, vis)
- self.layer.append(copy.deepcopy(layer))
-
- def forward(self, hidden_states):
- attn_weights = []
- for layer_block in self.layer:
- hidden_states, weights = layer_block(hidden_states)
- if self.vis:
- attn_weights.append(weights)
- encoded = self.encoder_norm(hidden_states)
- return encoded, attn_weights
-
-
-class Transformer(nn.Module):
- def __init__(self, config, img_size, vis):
- super(Transformer, self).__init__()
- self.embeddings = Embeddings(config, img_size=img_size)
- self.encoder = Encoder(config, vis)
-
- def forward(self, input_ids):
- embedding_output, features = self.embeddings(input_ids)
- encoded, attn_weights = self.encoder(embedding_output) # (B, n_patch, hidden)
- return encoded, attn_weights, features
-
-
-class Conv2dReLU(nn.Sequential):
- def __init__(
- self,
- in_channels,
- out_channels,
- kernel_size,
- padding=0,
- stride=1,
- use_batchnorm=True,
- ):
- conv = nn.Conv2d(
- in_channels,
- out_channels,
- kernel_size,
- stride=stride,
- padding=padding,
- bias=not (use_batchnorm),
- )
- relu = nn.ReLU(inplace=True)
-
- bn = nn.BatchNorm2d(out_channels)
-
- super(Conv2dReLU, self).__init__(conv, bn, relu)
-
-
-class DecoderBlock(nn.Module):
- def __init__(
- self,
- in_channels,
- out_channels,
- skip_channels=0,
- use_batchnorm=True,
- ):
- super().__init__()
- self.conv1 = Conv2dReLU(
- in_channels + skip_channels,
- out_channels,
- kernel_size=3,
- padding=1,
- use_batchnorm=use_batchnorm,
- )
- self.conv2 = Conv2dReLU(
- out_channels,
- out_channels,
- kernel_size=3,
- padding=1,
- use_batchnorm=use_batchnorm,
- )
- self.up = nn.UpsamplingBilinear2d(scale_factor=2)
-
- def forward(self, x, skip=None):
- x = self.up(x)
- if skip is not None:
- x = torch.cat([x, skip], dim=1)
- x = self.conv1(x)
- x = self.conv2(x)
- return x
-
-
-class SegmentationHead(nn.Sequential):
- def __init__(self, in_channels, out_channels, kernel_size=3, upsampling=1):
- conv2d = nn.Conv2d(
- in_channels, out_channels, kernel_size=kernel_size, padding=kernel_size // 2
- )
- upsampling = (
- nn.UpsamplingBilinear2d(scale_factor=upsampling)
- if upsampling > 1
- else nn.Identity()
- )
- super().__init__(conv2d, upsampling)
-
-
-class DecoderCup(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.config = config
- head_channels = 512
- self.conv_more = Conv2dReLU(
- config.hidden_size,
- head_channels,
- kernel_size=3,
- padding=1,
- use_batchnorm=True,
- )
- decoder_channels = config.decoder_channels
- in_channels = [head_channels] + list(decoder_channels[:-1])
- out_channels = decoder_channels
-
- if self.config.n_skip != 0:
- skip_channels = self.config.skip_channels
- for i in range(
- 4 - self.config.n_skip
- ): # re-select the skip channels according to n_skip
- skip_channels[3 - i] = 0
-
- else:
- skip_channels = [0, 0, 0, 0]
-
- blocks = [
- DecoderBlock(in_ch, out_ch, sk_ch)
- for in_ch, out_ch, sk_ch in zip(in_channels, out_channels, skip_channels)
- ]
- self.blocks = nn.ModuleList(blocks)
-
- def forward(self, hidden_states, features=None):
- (
- B,
- n_patch,
- hidden,
- ) = (
- hidden_states.size()
- ) # reshape from (B, n_patch, hidden) to (B, h, w, hidden)
- h, w = int(np.sqrt(n_patch)), int(np.sqrt(n_patch))
- x = hidden_states.permute(0, 2, 1)
- x = x.contiguous().view(B, hidden, h, w)
- x = self.conv_more(x)
- for i, decoder_block in enumerate(self.blocks):
- if features is not None:
- skip = features[i] if (i < self.config.n_skip) else None
- else:
- skip = None
- x = decoder_block(x, skip=skip)
- return x
-
-
-class VisionTransformer(nn.Module):
- def __init__(
- self,
- vit_name="ViT-B_16",
- img_size=224,
- num_classes=21843,
- zero_head=False,
- vis=False,
- ):
- super(VisionTransformer, self).__init__()
- config = CONFIGS[vit_name]
- self.num_classes = num_classes
- self.zero_head = zero_head
- self.classifier = config.classifier
- self.transformer = Transformer(config, img_size, vis)
- self.decoder = DecoderCup(config)
- self.segmentation_head = SegmentationHead(
- in_channels=config["decoder_channels"][-1],
- out_channels=config["n_classes"],
- kernel_size=3,
- )
- self.config = config
-
- def forward(self, x):
- if x.size()[1] == 1:
- x = x.repeat(1, 3, 1, 1)
- x, attn_weights, features = self.transformer(x) # (B, n_patch, hidden)
- x = self.decoder(x, features)
- logits = self.segmentation_head(x)
- return logits
-
- def load_from(self, weights):
- with torch.no_grad():
-
- res_weight = weights
- self.transformer.embeddings.patch_embeddings.weight.copy_(
- np2th(weights["embedding/kernel"], conv=True)
- )
- self.transformer.embeddings.patch_embeddings.bias.copy_(
- np2th(weights["embedding/bias"])
- )
-
- self.transformer.encoder.encoder_norm.weight.copy_(
- np2th(weights["Transformer/encoder_norm/scale"])
- )
- self.transformer.encoder.encoder_norm.bias.copy_(
- np2th(weights["Transformer/encoder_norm/bias"])
- )
-
- posemb = np2th(weights["Transformer/posembed_input/pos_embedding"])
-
- posemb_new = self.transformer.embeddings.position_embeddings
- if posemb.size() == posemb_new.size():
- self.transformer.embeddings.position_embeddings.copy_(posemb)
- elif posemb.size()[1] - 1 == posemb_new.size()[1]:
- posemb = posemb[:, 1:]
- self.transformer.embeddings.position_embeddings.copy_(posemb)
- else:
- logger.info(
- "load_pretrained: resized variant: %s to %s"
- % (posemb.size(), posemb_new.size())
- )
- ntok_new = posemb_new.size(1)
- if self.classifier == "seg":
- _, posemb_grid = posemb[:, :1], posemb[0, 1:]
- gs_old = int(np.sqrt(len(posemb_grid)))
- gs_new = int(np.sqrt(ntok_new))
- print("load_pretrained: grid-size from %s to %s" % (gs_old, gs_new))
- posemb_grid = posemb_grid.reshape(gs_old, gs_old, -1)
- zoom = (gs_new / gs_old, gs_new / gs_old, 1)
- posemb_grid = ndimage.zoom(posemb_grid, zoom, order=1) # th2np
- posemb_grid = posemb_grid.reshape(1, gs_new * gs_new, -1)
- posemb = posemb_grid
- self.transformer.embeddings.position_embeddings.copy_(np2th(posemb))
-
- # Encoder whole
- for bname, block in self.transformer.encoder.named_children():
- for uname, unit in block.named_children():
- unit.load_from(weights, n_block=uname)
-
- if self.transformer.embeddings.hybrid:
- self.transformer.embeddings.hybrid_model.root.conv.weight.copy_(
- np2th(res_weight["conv_root/kernel"], conv=True)
- )
- gn_weight = np2th(res_weight["gn_root/scale"]).view(-1)
- gn_bias = np2th(res_weight["gn_root/bias"]).view(-1)
- self.transformer.embeddings.hybrid_model.root.gn.weight.copy_(gn_weight)
- self.transformer.embeddings.hybrid_model.root.gn.bias.copy_(gn_bias)
-
- for (
- bname,
- block,
- ) in self.transformer.embeddings.hybrid_model.body.named_children():
- for uname, unit in block.named_children():
- unit.load_from(res_weight, n_block=bname, n_unit=uname)
-
-
-### Sample Driver Code
-if __name__ == "__main__":
- vit_name = "R50-ViT-B_16"
- img_size, vit_patches_size = 224, 16
- config_vit = CONFIGS[vit_name]
- config_vit.n_classes = 9
- config_vit.n_skip = 3
- if vit_name.find("R50") != -1:
- config_vit.patches.grid = (
- int(img_size / vit_patches_size),
- int(img_size / vit_patches_size),
- )
- net = VisionTransformer(
- config_vit, img_size=img_size, num_classes=config_vit.n_classes
- )
- # net.load_from(weights=np.load(config_vit.pretrained_path))
- image = torch.randn(1, 3, 224, 224)
- with torch.no_grad():
- output = net.forward(image)
- print(output.size())
diff --git a/python/app/fedcv/image_segmentation/model/transunet/transunet_configs.py b/python/app/fedcv/image_segmentation/model/transunet/transunet_configs.py
deleted file mode 100644
index 1bc4c784cd..0000000000
--- a/python/app/fedcv/image_segmentation/model/transunet/transunet_configs.py
+++ /dev/null
@@ -1,130 +0,0 @@
-import ml_collections
-
-def get_b16_config():
- """Returns the ViT-B/16 configuration."""
- config = ml_collections.ConfigDict()
- config.patches = ml_collections.ConfigDict({'size': (16, 16)})
- config.hidden_size = 768
- config.transformer = ml_collections.ConfigDict()
- config.transformer.mlp_dim = 3072
- config.transformer.num_heads = 12
- config.transformer.num_layers = 12
- config.transformer.attention_dropout_rate = 0.0
- config.transformer.dropout_rate = 0.1
-
- config.classifier = 'seg'
- config.representation_size = None
- config.resnet_pretrained_path = None
- config.pretrained_path = '../model/vit_checkpoint/imagenet21k/ViT-B_16.npz'
- config.patch_size = 16
-
- config.decoder_channels = (256, 128, 64, 16)
- config.n_classes = 2
- config.activation = 'softmax'
- return config
-
-
-def get_testing():
- """Returns a minimal configuration for testing."""
- config = ml_collections.ConfigDict()
- config.patches = ml_collections.ConfigDict({'size': (16, 16)})
- config.hidden_size = 1
- config.transformer = ml_collections.ConfigDict()
- config.transformer.mlp_dim = 1
- config.transformer.num_heads = 1
- config.transformer.num_layers = 1
- config.transformer.attention_dropout_rate = 0.0
- config.transformer.dropout_rate = 0.1
- config.classifier = 'token'
- config.representation_size = None
- return config
-
-def get_r50_b16_config():
- """Returns the Resnet50 + ViT-B/16 configuration."""
- config = get_b16_config()
- config.patches.grid = (16, 16)
- config.resnet = ml_collections.ConfigDict()
- config.resnet.num_layers = (3, 4, 9)
- config.resnet.width_factor = 1
-
- config.classifier = 'seg'
- config.pretrained_path = '../model/vit_checkpoint/imagenet21k/R50+ViT-B_16.npz'
- config.decoder_channels = (256, 128, 64, 16)
- config.skip_channels = [512, 256, 64, 16]
- config.n_classes = 2
- config.n_skip = 3
- config.activation = 'softmax'
-
- return config
-
-
-def get_b32_config():
- """Returns the ViT-B/32 configuration."""
- config = get_b16_config()
- config.patches.size = (32, 32)
- config.pretrained_path = '../model/vit_checkpoint/imagenet21k/ViT-B_32.npz'
- return config
-
-
-def get_l16_config():
- """Returns the ViT-L/16 configuration."""
- config = ml_collections.ConfigDict()
- config.patches = ml_collections.ConfigDict({'size': (16, 16)})
- config.hidden_size = 1024
- config.transformer = ml_collections.ConfigDict()
- config.transformer.mlp_dim = 4096
- config.transformer.num_heads = 16
- config.transformer.num_layers = 24
- config.transformer.attention_dropout_rate = 0.0
- config.transformer.dropout_rate = 0.1
- config.representation_size = None
-
- # custom
- config.classifier = 'seg'
- config.resnet_pretrained_path = None
- config.pretrained_path = '../model/vit_checkpoint/imagenet21k/ViT-L_16.npz'
- config.decoder_channels = (256, 128, 64, 16)
- config.n_classes = 2
- config.activation = 'softmax'
- return config
-
-
-def get_r50_l16_config():
- """Returns the Resnet50 + ViT-L/16 configuration. customized """
- config = get_l16_config()
- config.patches.grid = (16, 16)
- config.resnet = ml_collections.ConfigDict()
- config.resnet.num_layers = (3, 4, 9)
- config.resnet.width_factor = 1
-
- config.classifier = 'seg'
- config.resnet_pretrained_path = '../model/vit_checkpoint/imagenet21k/R50+ViT-B_16.npz'
- config.decoder_channels = (256, 128, 64, 16)
- config.skip_channels = [512, 256, 64, 16]
- config.n_classes = 2
- config.activation = 'softmax'
- return config
-
-
-def get_l32_config():
- """Returns the ViT-L/32 configuration."""
- config = get_l16_config()
- config.patches.size = (32, 32)
- return config
-
-
-def get_h14_config():
- """Returns the ViT-L/16 configuration."""
- config = ml_collections.ConfigDict()
- config.patches = ml_collections.ConfigDict({'size': (14, 14)})
- config.hidden_size = 1280
- config.transformer = ml_collections.ConfigDict()
- config.transformer.mlp_dim = 5120
- config.transformer.num_heads = 16
- config.transformer.num_layers = 32
- config.transformer.attention_dropout_rate = 0.0
- config.transformer.dropout_rate = 0.1
- config.classifier = 'token'
- config.representation_size = None
-
- return config
diff --git a/python/app/fedcv/image_segmentation/model/unet/__init__.py b/python/app/fedcv/image_segmentation/model/unet/__init__.py
deleted file mode 100644
index e69de29bb2..0000000000
diff --git a/python/app/fedcv/image_segmentation/model/unet/test_unet.py b/python/app/fedcv/image_segmentation/model/unet/test_unet.py
deleted file mode 100644
index 986b83e63b..0000000000
--- a/python/app/fedcv/image_segmentation/model/unet/test_unet.py
+++ /dev/null
@@ -1,22 +0,0 @@
-from ptflops import get_model_complexity_info
-
-from .unet import UNet
-
-if __name__ == "__main__":
- print("================================================================================")
- print("UNet, ResNet, 512x512")
- print("================================================================================")
- model = UNet(pretrained=True)
- flops, params = get_model_complexity_info(model, (3, 512, 512), verbose=True)
-
- print("{:<30} {:<8}".format("Computational complexity: ", flops))
- print("{:<30} {:<8}".format("Number of parameters: ", params))
-
- print("================================================================================")
- print("UNet, ResNet, 768x768")
- print("================================================================================")
- model = UNet(pretrained=True)
- flops, params = get_model_complexity_info(model, (3, 768, 768), verbose=True)
-
- print("{:<30} {:<8}".format("Computational complexity: ", flops))
- print("{:<30} {:<8}".format("Number of parameters: ", params))
diff --git a/python/app/fedcv/image_segmentation/model/unet/unet.py b/python/app/fedcv/image_segmentation/model/unet/unet.py
deleted file mode 100644
index 9399498af5..0000000000
--- a/python/app/fedcv/image_segmentation/model/unet/unet.py
+++ /dev/null
@@ -1,321 +0,0 @@
-"""
-Refer https://github.com/qubvel/segmentation_models.pytorch
-"""
-import os, sys
-import logging
-
-import torch
-import torch.nn as nn
-import torch.nn.functional as F
-
-from fedml.model.cv.batchnorm_utils import SynchronizedBatchNorm2d
-from .unet_utils import Conv2dReLU, Activation, Attention
-from ..resnet import ResNet101
-
-
-class SegmentationHead(nn.Sequential):
- def __init__(
- self, in_channels, out_channels, kernel_size=3, activation=None, upsampling=1
- ):
- conv2d = nn.Conv2d(
- in_channels, out_channels, kernel_size=kernel_size, padding=kernel_size // 2
- )
- upsampling = (
- nn.UpsamplingBilinear2d(scale_factor=upsampling)
- if upsampling > 1
- else nn.Identity()
- )
- activation = Activation(activation)
- super().__init__(conv2d, upsampling, activation)
-
-
-class DecoderBlock(nn.Module):
- def __init__(
- self,
- in_channels,
- skip_channels,
- out_channels,
- use_batchnorm=True,
- attention_type=None,
- ):
- super().__init__()
- self.conv1 = Conv2dReLU(
- in_channels + skip_channels,
- out_channels,
- kernel_size=3,
- padding=1,
- use_batchnorm=use_batchnorm,
- )
- self.attention1 = Attention(
- attention_type, in_channels=in_channels + skip_channels
- )
- self.conv2 = Conv2dReLU(
- out_channels,
- out_channels,
- kernel_size=3,
- padding=1,
- use_batchnorm=use_batchnorm,
- )
- self.attention2 = Attention(attention_type, in_channels=out_channels)
-
- def forward(self, x, skip=None):
- # print(x.shape)
- x = F.interpolate(x, scale_factor=2, mode="nearest")
- # print(x.shape)
- if skip is not None:
- # print(skip.shape)
- x = torch.cat([x, skip], dim=1)
- x = self.attention1(x)
- x = self.conv1(x)
- x = self.conv2(x)
- x = self.attention2(x)
- return x
-
-
-class CenterBlock(nn.Sequential):
- def __init__(self, in_channels, out_channels, use_batchnorm=True):
- conv1 = Conv2dReLU(
- in_channels,
- out_channels,
- kernel_size=3,
- padding=1,
- use_batchnorm=use_batchnorm,
- )
- conv2 = Conv2dReLU(
- out_channels,
- out_channels,
- kernel_size=3,
- padding=1,
- use_batchnorm=use_batchnorm,
- )
- super().__init__(conv1, conv2)
-
-
-class UnetDecoder(nn.Module):
- def __init__(
- self,
- encoder_channels,
- decoder_channels,
- n_blocks=5,
- use_batchnorm=True,
- attention_type=None,
- center=False,
- ):
- super().__init__()
-
- if n_blocks != len(decoder_channels):
- raise ValueError(
- "Model depth is {}, but you provide `decoder_channels` for {} blocks.".format(
- n_blocks, len(decoder_channels)
- )
- )
-
- encoder_channels = encoder_channels[
- 1:
- ] # remove first skip with same spatial resolution
- encoder_channels = encoder_channels[
- ::-1
- ] # reverse channels to start from head of encoder
-
- # computing blocks input and output channels
- head_channels = encoder_channels[0]
- in_channels = [head_channels] + list(decoder_channels[:-1])
- skip_channels = list(encoder_channels[1:]) + [0]
- out_channels = decoder_channels
-
- if center:
- self.center = CenterBlock(
- head_channels, head_channels, use_batchnorm=use_batchnorm
- )
- else:
- self.center = nn.Identity()
-
- # combine decoder keyword arguments
- kwargs = dict(use_batchnorm=use_batchnorm, attention_type=attention_type)
- blocks = [
- DecoderBlock(in_ch, skip_ch, out_ch, **kwargs)
- for in_ch, skip_ch, out_ch in zip(in_channels, skip_channels, out_channels)
- ]
- self.blocks = nn.ModuleList(blocks)
-
- def forward(self, *features):
-
- features = features[1:] # remove first skip with same spatial resolution
- features = features[::-1] # reverse channels to start from head of encoder
-
- head = features[0]
- skips = features[1:]
-
- x = self.center(head)
- for i, decoder_block in enumerate(self.blocks):
- skip = skips[i] if i < len(skips) else None
- x = decoder_block(x, skip)
-
- return x
-
-
-class FeatureExtractor(nn.Module):
- def __init__(self, backbone, output_stride, BatchNorm, pretrained):
- super(FeatureExtractor, self).__init__()
- self.backbone = self.build_backbone(
- backbone=backbone,
- output_stride=output_stride,
- BatchNorm=BatchNorm,
- pretrained=pretrained,
- )
-
- def forward(self, input):
- features = self.backbone(input)
- return features
-
- @staticmethod
- def build_backbone(
- backbone="resnet",
- output_stride=16,
- BatchNorm=nn.BatchNorm2d,
- pretrained=False,
- model_name="unet",
- ):
-
- if backbone == "resnet":
- return ResNet101(output_stride, BatchNorm, model_name, pretrained=False)
- else:
- raise NotImplementedError
-
-
-class UNet(nn.Module):
- def __init__(
- self,
- backbone="resnet",
- encoder_depth=5,
- encoder_weights="imagenet",
- decoder_use_batchnorm=True,
- encoder_out_channels=[3, 64, 256, 512, 1024, 2048],
- decoder_channels=[256, 128, 64, 32, 16],
- decoder_attention_type=None,
- in_channels=3,
- n_classes=21,
- activation=None,
- aux_params=None,
- output_stride=16,
- pretrained=False,
- sync_bn=False,
- ):
- super(UNet, self).__init__()
-
- if sync_bn == True:
- BatchNorm2d = SynchronizedBatchNorm2d
- else:
- BatchNorm2d = nn.BatchNorm2d
-
- self.n_classes = n_classes
-
- logging.info(
- "Constructing UNet model with Backbone {0}, number of classes {1}, output stride {2}".format(
- backbone, n_classes, output_stride
- )
- )
-
- self.encoder = FeatureExtractor(
- backbone=backbone,
- output_stride=output_stride,
- BatchNorm=BatchNorm2d,
- pretrained=pretrained,
- )
-
- self.decoder = UnetDecoder(
- encoder_channels=encoder_out_channels[: encoder_depth + 1],
- decoder_channels=decoder_channels,
- n_blocks=encoder_depth,
- use_batchnorm=decoder_use_batchnorm,
- center=True if backbone.startswith("vgg") else False,
- attention_type=decoder_attention_type,
- )
-
- self.segmentation_head = SegmentationHead(
- in_channels=decoder_channels[-1],
- out_channels=n_classes,
- activation=activation,
- kernel_size=3,
- )
-
- def initialize_decoder(self, module):
- for m in module.modules():
-
- if isinstance(m, nn.Conv2d):
- nn.init.kaiming_uniform_(m.weight, mode="fan_in", nonlinearity="relu")
- if m.bias is not None:
- nn.init.constant_(m.bias, 0)
-
- elif isinstance(m, nn.BatchNorm2d):
- nn.init.constant_(m.weight, 1)
- nn.init.constant_(m.bias, 0)
-
- elif isinstance(m, nn.Linear):
- nn.init.xavier_uniform_(m.weight)
- if m.bias is not None:
- nn.init.constant_(m.bias, 0)
-
- def initialize_head(self, module):
- for m in module.modules():
- if isinstance(m, (nn.Linear, nn.Conv2d)):
- nn.init.xavier_uniform_(m.weight)
- if m.bias is not None:
- nn.init.constant_(m.bias, 0)
-
- def initialize(self):
- self.initialize_decoder(self.decoder)
- self.initialize_head(self.segmentation_head)
-
- def forward(self, x):
- features = self.encoder(x)
- # logging.info("After obtaining features from backbone : {}".format(features.shape))
- decoder_output = self.decoder(*features)
- # logging.info("After executing decoder : {}".format(decoder_output.shape))
- masks = self.segmentation_head(decoder_output)
- # print("Final segmentation masks : {}".format(masks.shape))
- return masks
-
- def get_1x_lr_params(self):
- modules = [self.encoder.backbone]
- for i in range(len(modules)):
- for m in modules[i].named_modules():
- if isinstance(m[1], nn.Conv2d):
- for p in m[1].parameters():
- if p.requires_grad:
- yield p
- else:
- if (
- isinstance(m[1], nn.Conv2d)
- or isinstance(m[1], SynchronizedBatchNorm2d)
- or isinstance(m[1], nn.BatchNorm2d)
- ):
- for p in m[1].parameters():
- if p.requires_grad:
- yield p
-
- def get_10x_lr_params(self):
- modules = [self.decoder, self.segmentation_head]
- for i in range(len(modules)):
- for m in modules[i].named_modules():
- if isinstance(m[1], nn.Conv2d):
- for p in m[1].parameters():
- if p.requires_grad:
- yield p
- else:
- if (
- isinstance(m[1], nn.Conv2d)
- or isinstance(m[1], SynchronizedBatchNorm2d)
- or isinstance(m[1], nn.BatchNorm2d)
- ):
- for p in m[1].parameters():
- if p.requires_grad:
- yield p
-
-
-if __name__ == "__main__":
- image = torch.randn(16, 3, 512, 512)
- model = UNet(backbone="resnet", output_stride=16, n_classes=1, pretrained=False)
- with torch.no_grad():
- output = model.forward(image)
- # print(output.size())
diff --git a/python/app/fedcv/image_segmentation/model/unet/unet_utils.py b/python/app/fedcv/image_segmentation/model/unet/unet_utils.py
deleted file mode 100644
index 3eb82033e9..0000000000
--- a/python/app/fedcv/image_segmentation/model/unet/unet_utils.py
+++ /dev/null
@@ -1,122 +0,0 @@
-import torch
-import torch.nn as nn
-
-try:
- from inplace_abn import InPlaceABN
-except ImportError:
- InPlaceABN = None
-
-class Conv2dReLU(nn.Sequential):
- def __init__(
- self,
- in_channels,
- out_channels,
- kernel_size,
- padding=0,
- stride=1,
- use_batchnorm=True,
- ):
-
- if use_batchnorm == "inplace" and InPlaceABN is None:
- raise RuntimeError(
- "In order to use `use_batchnorm='inplace'` inplace_abn package must be installed. "
- + "To install see: https://github.com/mapillary/inplace_abn"
- )
-
- conv = nn.Conv2d(
- in_channels,
- out_channels,
- kernel_size,
- stride=stride,
- padding=padding,
- bias=not (use_batchnorm),
- )
- relu = nn.ReLU(inplace=True)
-
- if use_batchnorm == "inplace":
- bn = InPlaceABN(out_channels, activation="leaky_relu", activation_param=0.0)
- relu = nn.Identity()
-
- elif use_batchnorm and use_batchnorm != "inplace":
- bn = nn.BatchNorm2d(out_channels)
-
- else:
- bn = nn.Identity()
-
- super(Conv2dReLU, self).__init__(conv, bn, relu)
-
-
-class SCSEModule(nn.Module):
- def __init__(self, in_channels, reduction=16):
- super().__init__()
- self.cSE = nn.Sequential(
- nn.AdaptiveAvgPool2d(1),
- nn.Conv2d(in_channels, in_channels // reduction, 1),
- nn.ReLU(inplace=True),
- nn.Conv2d(in_channels // reduction, in_channels, 1),
- nn.Sigmoid(),
- )
- self.sSE = nn.Sequential(nn.Conv2d(in_channels, 1, 1), nn.Sigmoid())
-
- def forward(self, x):
- return x * self.cSE(x) + x * self.sSE(x)
-
-
-class ArgMax(nn.Module):
-
- def __init__(self, dim=None):
- super().__init__()
- self.dim = dim
-
- def forward(self, x):
- return torch.argmax(x, dim=self.dim)
-
-
-class Activation(nn.Module):
-
- def __init__(self, name, **params):
-
- super().__init__()
-
- if name is None or name == 'identity':
- self.activation = nn.Identity(**params)
- elif name == 'sigmoid':
- self.activation = nn.Sigmoid()
- elif name == 'softmax2d':
- self.activation = nn.Softmax(dim=1, **params)
- elif name == 'softmax':
- self.activation = nn.Softmax(**params)
- elif name == 'logsoftmax':
- self.activation = nn.LogSoftmax(**params)
- elif name == 'tanh':
- self.activation = nn.Tanh()
- elif name == 'argmax':
- self.activation = ArgMax(**params)
- elif name == 'argmax2d':
- self.activation = ArgMax(dim=1, **params)
- elif callable(name):
- self.activation = name(**params)
- else:
- raise ValueError('Activation should be callable/sigmoid/softmax/logsoftmax/tanh/None; got {}'.format(name))
-
- def forward(self, x):
- return self.activation(x)
-
-
-class Attention(nn.Module):
-
- def __init__(self, name, **params):
- super().__init__()
-
- if name is None:
- self.attention = nn.Identity(**params)
- elif name == 'scse':
- self.attention = SCSEModule(**params)
- else:
- raise ValueError("Attention {} is not implemented".format(name))
-
- def forward(self, x):
- return self.attention(x)
-
-
-
diff --git a/python/app/fedcv/image_segmentation/run_client.sh b/python/app/fedcv/image_segmentation/run_client.sh
deleted file mode 100644
index e380c6134f..0000000000
--- a/python/app/fedcv/image_segmentation/run_client.sh
+++ /dev/null
@@ -1,3 +0,0 @@
-#!/usr/bin/env bash
-RANK=$1
-python main_fedml_image_segmentation.py --cf config/fedml_config.yaml --rank $RANK --role client --run_id image_seg
\ No newline at end of file
diff --git a/python/app/fedcv/image_segmentation/run_server.sh b/python/app/fedcv/image_segmentation/run_server.sh
deleted file mode 100644
index 00d4f62c0a..0000000000
--- a/python/app/fedcv/image_segmentation/run_server.sh
+++ /dev/null
@@ -1,2 +0,0 @@
-#!/usr/bin/env bash
-python main_fedml_image_segmentation.py --cf config/fedml_config.yaml --rank 0 --role server --run_id image_seg
diff --git a/python/app/fedcv/image_segmentation/run_simulation.sh b/python/app/fedcv/image_segmentation/run_simulation.sh
deleted file mode 100644
index fec2dcd665..0000000000
--- a/python/app/fedcv/image_segmentation/run_simulation.sh
+++ /dev/null
@@ -1,12 +0,0 @@
-#!/usr/bin/env bash
-
-WORKER_NUM=$1
-
-PROCESS_NUM=`expr $WORKER_NUM + 1`
-echo $PROCESS_NUM
-
-hostname > mpi_host_file
-
-mpirun -np $PROCESS_NUM \
--hostfile mpi_host_file --oversubscribe \
-python main_fedml_image_segmentation.py --cf config/simulation/fedml_config.yaml
\ No newline at end of file
diff --git a/python/app/fedcv/image_segmentation/trainer/__init__.py b/python/app/fedcv/image_segmentation/trainer/__init__.py
deleted file mode 100644
index e69de29bb2..0000000000
diff --git a/python/app/fedcv/image_segmentation/trainer/segmentation_aggregator.py b/python/app/fedcv/image_segmentation/trainer/segmentation_aggregator.py
deleted file mode 100644
index 078f828a78..0000000000
--- a/python/app/fedcv/image_segmentation/trainer/segmentation_aggregator.py
+++ /dev/null
@@ -1,89 +0,0 @@
-import logging
-import time
-import numpy as np
-import torch
-import torch.nn as nn
-
-import fedml
-from fedml.core import ServerAggregator
-
-from fedml.simulation.mpi.fedseg.utils import (
- SegmentationLosses,
- Evaluator,
- LR_Scheduler,
- EvaluationMetricsKeeper,
-)
-
-
-class SegmentationAggregator(ServerAggregator):
- def get_model_params(self):
- return self.model.cpu().state_dict()
-
- def set_model_params(self, model_parameters):
- logging.info("set_model_params")
- self.model.load_state_dict(model_parameters)
-
- def test(self, test_data, device, args):
- pass
-
- def _test(self, test_data, device):
- logging.info("Evaluating on Trainer ID: {}".format(self.id))
- model = self.model
- args = self.args
- evaluator = Evaluator(model.n_classes)
-
- model.eval()
- model.to(device)
-
- t = time.time()
- evaluator.reset()
- test_acc = (
- test_acc_class
- ) = test_mIoU = test_FWIoU = test_loss = test_total = 0.0
- criterion = SegmentationLosses().build_loss(mode=args.loss_type)
-
- with torch.no_grad():
- for (batch_idx, batch) in enumerate(test_data):
- x, target = batch["image"], batch["label"]
- x, target = x.to(device), target.to(device)
- output = model(x)
- loss = criterion(output, target).to(device)
- test_loss += loss.item()
- test_total += target.size(0)
- pred = output.cpu().numpy()
- target = target.cpu().numpy()
- pred = np.argmax(pred, axis=1)
- evaluator.add_batch(target, pred)
- if batch_idx % 100 == 0:
- logging.info(
- "Trainer_ID: {0} Iteration: {1}, Loss: {2}, Time Elapsed: {3}".format(
- self.id, batch_idx, loss, (time.time() - t) / 60
- )
- )
-
- # time_end_test_per_batch = time.time()
- # logging.info("time per batch = " + str(time_end_test_per_batch - time_start_test_per_batch))
- # logging.info("Client = {0} Batch = {1}".format(self.client_index, batch_idx)
-
- # Evaluation Metrics (Averaged over number of samples)
- test_acc = evaluator.Pixel_Accuracy()
- test_acc_class = evaluator.Pixel_Accuracy_Class()
- test_mIoU = evaluator.Mean_Intersection_over_Union()
- test_FWIoU = evaluator.Frequency_Weighted_Intersection_over_Union()
- test_loss = test_loss / test_total
-
- logging.info(
- "Trainer_ID={0}, test_acc={1}, test_acc_class={2}, test_mIoU={3}, test_FWIoU={4}, test_loss={5}".format(
- self.id, test_acc, test_acc_class, test_mIoU, test_FWIoU, test_loss
- )
- )
-
- eval_metrics = EvaluationMetricsKeeper(
- test_acc, test_acc_class, test_mIoU, test_FWIoU, test_loss
- )
- return eval_metrics
-
- def test_all(
- self, train_data_local_dict, test_data_local_dict, device, args=None
- ) -> bool:
- return True
diff --git a/python/app/fedcv/image_segmentation/trainer/segmentation_trainer.py b/python/app/fedcv/image_segmentation/trainer/segmentation_trainer.py
deleted file mode 100644
index 6cfca9162f..0000000000
--- a/python/app/fedcv/image_segmentation/trainer/segmentation_trainer.py
+++ /dev/null
@@ -1,110 +0,0 @@
-import logging
-import time
-
-import numpy as np
-import torch
-
-# add the FedML root directory to the python path
-from fedml.core import ClientTrainer
-from fedml.simulation.mpi.fedseg.utils import (
- SegmentationLosses,
- Evaluator,
- LR_Scheduler,
- EvaluationMetricsKeeper,
-)
-
-
-class SegmentationTrainer(ClientTrainer):
- def __init__(self, model, args):
- super(SegmentationTrainer, self).__init__(model, args)
-
- def get_model_params(self):
- if self.args.backbone_freezed:
- logging.info("Initializing model; Backbone Freezed")
- if self.args.model == "unet":
- return self.model.decoder.cpu().state_dict()
- return self.model.encoder_decoder.cpu().state_dict()
- else:
- logging.info("Initializing end-to-end model")
- return self.model.cpu().state_dict()
-
- def set_model_params(self, model_parameters):
- if self.args.backbone_freezed:
- logging.info("Updating Global model; Backbone Freezed")
- if self.args.model == "unet":
- return self.model.decoder.cpu().state_dict()
- self.model.encoder_decoder.load_state_dict(model_parameters)
- else:
- logging.info("Updating Global model")
- self.model.load_state_dict(model_parameters)
-
- def train(self, train_data, device, args):
- model = self.model
- args = self.args
- model.to(device)
- model.train()
- criterion = SegmentationLosses().build_loss(mode=args.loss_type)
- scheduler = LR_Scheduler(
- args.lr_scheduler, args.lr, args.epochs, len(train_data)
- )
-
- if args.client_optimizer == "sgd":
-
- if args.backbone_freezed:
- optimizer = torch.optim.SGD(
- filter(lambda p: p.requires_grad, self.model.parameters()),
- lr=args.lr * 10,
- momentum=args.momentum,
- weight_decay=args.weight_decay,
- nesterov=args.nesterov,
- )
- else:
- train_params = [
- {"params": self.model.get_1x_lr_params(), "lr": args.lr},
- {"params": self.model.get_10x_lr_params(), "lr": args.lr * 10},
- ]
-
- optimizer = torch.optim.SGD(
- train_params,
- momentum=args.momentum,
- weight_decay=args.weight_decay,
- nesterov=args.nesterov,
- )
- else:
- optimizer = torch.optim.Adam(
- filter(lambda p: p.requires_grad, self.model.parameters()),
- lr=args.lr,
- weight_decay=args.weight_decay,
- amsgrad=True,
- )
-
- epoch_loss = []
-
- for epoch in range(args.epochs):
- t = time.time()
- batch_loss = []
- logging.info("Trainer_ID: {0}, Epoch: {1}".format(self.id, epoch))
-
- for (batch_idx, batch) in enumerate(train_data):
- x, labels = batch["image"], batch["label"]
- x, labels = x.to(device), labels.to(device)
- scheduler(optimizer, batch_idx, epoch)
- optimizer.zero_grad()
- log_probs = model(x)
- loss = criterion(log_probs, labels).to(device)
- loss.backward()
- optimizer.step()
- batch_loss.append(loss.item())
- logging.info(
- "Trainer_ID: {0} Iteration: {1}, Loss: {2}, Time Elapsed: {3}".format(
- self.id, batch_idx, loss, (time.time() - t) / 60
- )
- )
-
- if len(batch_loss) > 0:
- epoch_loss.append(sum(batch_loss) / len(batch_loss))
- logging.info(
- "(Trainer_ID: {}. Local Training Epoch: {} \tLoss: {:.6f}".format(
- self.id, epoch, sum(epoch_loss) / len(epoch_loss)
- )
- )
diff --git a/python/app/fedcv/main_fedml_object_detection.py b/python/app/fedcv/main_fedml_object_detection.py
new file mode 100644
index 0000000000..aa444ea5de
--- /dev/null
+++ b/python/app/fedcv/main_fedml_object_detection.py
@@ -0,0 +1,24 @@
+import logging
+
+import fedml
+from fedml import FedMLRunner
+
+from model.init_yolov6 import init_yolov6
+from trainer.yolov6_aggregator import YOLOv6Aggregator
+
+if __name__ == "__main__":
+ logging.info("Init FedML framework")
+ args = fedml.init()
+ device = fedml.device.get_device(args)
+
+ logging.info("Init YOLOv6")
+ ensemble_model, dataset, trainer, args, yolo_args, yolo_cfg = init_yolov6(args=args, device=device)
+
+ logging.info("Init Aggregator")
+ aggregator = YOLOv6Aggregator(ensemble_model, args, yolo_args, yolo_cfg)
+
+ logging.info("Init FedMLRunner")
+ fedml_runner = FedMLRunner(args, device, dataset, ensemble_model, trainer, aggregator)
+
+ logging.info("Start training")
+ fedml_runner.run()
diff --git a/python/app/fedcv/image_classification/trainer/__init__.py b/python/app/fedcv/model/__init__.py
similarity index 100%
rename from python/app/fedcv/image_classification/trainer/__init__.py
rename to python/app/fedcv/model/__init__.py
diff --git a/python/app/fedcv/model/init_yolov6.py b/python/app/fedcv/model/init_yolov6.py
new file mode 100644
index 0000000000..79aff07df0
--- /dev/null
+++ b/python/app/fedcv/model/init_yolov6.py
@@ -0,0 +1,43 @@
+import logging
+import os
+import sys
+from pathlib import Path
+from warnings import warn
+
+import torch
+import yaml
+import numpy as np
+import glob
+import os.path as osp
+
+from data.data_loader_yolov6 import load_partition_data_coco
+from trainer.yolov6_trainer import YOLOv6Trainer
+from YOLOv6.yolov6.core.engine import Trainer
+from YOLOv6.tools.train import get_args_parser, check_and_init
+from model.util import EnsembleModel
+
+try:
+ import wandb
+except ImportError:
+ wandb = None
+ logging.info(
+ "Install Weights & Biases for experiment logging via 'pip install wandb' (recommended)"
+ )
+
+def init_yolov6(args, device="cpu"):
+ yolo_args = get_args_parser().parse_args()
+ yolo_args.data_path = args.data_cfg
+ yolo_args.conf_file = args.yolo_cfg
+ yolo_args.img_size = args.img_size
+ yolo_args.conf_file = args.yolo_cfg
+
+ cfg, device, yolo_args = check_and_init(yolo_args)
+ meituan_trainer = Trainer(yolo_args, cfg, device)
+ # logging.info('Model: {}'.format(meituan_trainer.model))
+ ensemble_model = EnsembleModel(meituan_trainer.model, meituan_trainer.ema.ema)
+
+ dataset, net_dataidx_map = load_partition_data_coco(args, yolo_args, cfg, device)
+
+ trainer = YOLOv6Trainer(ensemble_model, args, yolo_args, cfg, net_dataidx_map)
+
+ return ensemble_model, dataset, trainer, args, yolo_args, cfg
diff --git a/python/app/fedcv/model/util.py b/python/app/fedcv/model/util.py
new file mode 100644
index 0000000000..2e890063bc
--- /dev/null
+++ b/python/app/fedcv/model/util.py
@@ -0,0 +1,7 @@
+import torch
+
+class EnsembleModel(torch.nn.Module):
+ def __init__(self, model, ema):
+ super(EnsembleModel, self).__init__()
+ self.model = model
+ self.ema = ema
diff --git a/python/app/fedcv/object_detection/.gitignore b/python/app/fedcv/object_detection/.gitignore
deleted file mode 100644
index 3cf5aa9f5b..0000000000
--- a/python/app/fedcv/object_detection/.gitignore
+++ /dev/null
@@ -1,11 +0,0 @@
-__pycache__
-wandb
-runs
-*.cache
-*.zip
-*.jpg
-*.png
-mlops
-data/coco128/images/
-data/coco128/labels/
-config/exp*
\ No newline at end of file
diff --git a/python/app/fedcv/object_detection/README.md b/python/app/fedcv/object_detection/README.md
deleted file mode 100644
index 9a9df1b973..0000000000
--- a/python/app/fedcv/object_detection/README.md
+++ /dev/null
@@ -1,96 +0,0 @@
-# FedCV - Object Detection
-
-## Prerequisites & Installation
-
-```bash
-pip install fedml --upgrade
-```
-
-There are other dependencies in some tasks that need to be installed.
-
-```bash
-git clone https://github.com/FedML-AI/FedML
-cd FedML/python/app/fedcv/object_detection
-
-cd config/
-bash bootstrap.sh
-
-cd ..
-```
-
-### Run the MPI simulation
-
-```bash
-bash run_simulation.sh [CLIENT_NUM]
-```
-
-To customize the number of client, you can change the following variables in `config/simulation/fedml_config.yaml`:
-
-```bash
-train_args:
- federated_optimizer: "FedAvg"
- client_id_list:
- client_num_in_total: 2 # change here!
- client_num_per_round: 1 # change here!
- comm_round: 20
- epochs: 5
- batch_size: 1
-```
-
-### Run the server and client using MQTT
-
-If you want to run the edge server and client using MQTT, you need to run the following commands.
-
-> !!IMPORTANT!! In order to avoid crosstalk during use, it is strongly recommended to modify `run_id` in `run_server.sh` and `run_client.sh` to avoid conflict.
-
-```bash
-bash run_server.sh your_run_id
-
-# in a new terminal window
-
-# run the client 1
-bash run_client.sh 1 your_run_id
-
-# run the client with client_id
-bash run_client.sh [CLIENT_ID] your_run_id
-```
-
-To customize the number of client, you can change the following variables in `config/fedml_config.yaml`:
-
-```bash
-train_args:
- federated_optimizer: "FedAvg"
- client_id_list:
- client_num_in_total: 2 # change here!
- client_num_per_round: 2 # change here!
- comm_round: 20
- epochs: 5
- batch_size: 1
-```
-
-### Run the application using MLOps
-
-You just need to select the YOLOv5 Object Detection application and start a new run.
-
-Run the following command to login to MLOps.
-
-```bash
-fedml login [ACCOUNT_ID]
-```
-
-### Build your own application
-
-1. Build package
-
-```bash
-pip install fedml --upgrade
-bash build_mlops_pkg.sh
-```
-
-2. Create an application and upload package in mlops folder to MLOps
-
-## Change model
-
-The default model is YOLOv5. You can change the model by replacing the `config/fedml_config.yaml` file with `config/fedml_config_yolovx.yaml`.
-
-Or you can change the model by replacing the `model` and `yolo_cfg` in `config/fedml_config.yaml` with your own model and configuration.
diff --git a/python/app/fedcv/object_detection/__init__.py b/python/app/fedcv/object_detection/__init__.py
deleted file mode 100644
index e69de29bb2..0000000000
diff --git a/python/app/fedcv/object_detection/config/bootstrap.bat b/python/app/fedcv/object_detection/config/bootstrap.bat
deleted file mode 100755
index 7e6a51eeb6..0000000000
--- a/python/app/fedcv/object_detection/config/bootstrap.bat
+++ /dev/null
@@ -1,20 +0,0 @@
-:: ### don't modify this part ###
-:: ##############################
-
-
-:: ### please customize your script in this region ####
-pip install opencv-python-headless pandas matplotlib seaborn addict
-set DATA_PATH=%userprofile%\fedcv_data
-if exist %DATA_PATH% (
- echo Exist %DATA_PATH%
-) ^
-else (
- mkdir %DATA_PATH%
- set cur_dir=%cd%
- %cur_dir%\..\data\coco128\download_coco128.bat
-)
-
-
-:: ### don't modify this part ###
-echo [FedML]Bootstrap Finished
-:: ##############################
\ No newline at end of file
diff --git a/python/app/fedcv/object_detection/config/bootstrap.sh b/python/app/fedcv/object_detection/config/bootstrap.sh
deleted file mode 100755
index 82581f0bb5..0000000000
--- a/python/app/fedcv/object_detection/config/bootstrap.sh
+++ /dev/null
@@ -1,11 +0,0 @@
-
-### please customize your script in this region ####
-pip install opencv-python-headless pandas matplotlib seaborn addict
-DATA_PATH=$HOME/fedcv_data
-mkdir -p $DATA_PATH
-sh ./../data/coco128/download_coco128.sh
-
-
-### don't modify this part ###
-echo "[FedML]Bootstrap Finished"
-##############################
\ No newline at end of file
diff --git a/python/app/fedcv/object_detection/config/fedml_config.yaml b/python/app/fedcv/object_detection/config/fedml_config.yaml
deleted file mode 100644
index ece75b579d..0000000000
--- a/python/app/fedcv/object_detection/config/fedml_config.yaml
+++ /dev/null
@@ -1,64 +0,0 @@
-common_args:
- training_type: "cross_silo"
- random_seed: 0
- scenario: "horizontal"
- using_mlops: false
- config_version: release
- name: "exp" # yolo
- project: "runs/train" # yolo
- exist_ok: true # yolo
-
-environment_args:
- bootstrap: config/bootstrap.sh
-
-data_args:
- dataset: "coco"
- data_cache_dir: ~/fedcv_data
- partition_method: "homo"
- partition_alpha: 0.5
- data_conf: "./data/coco128.yaml" # yolo
- img_size: [640, 640] # [640, 640]
-
-model_args:
- model: "yolov5" # "yolov5"
- class_num: 80
- yolo_cfg: "./model/yolov5/models/yolov5s.yaml" # "./model/yolov6/configs/yolov6s.py" # yolo
- yolo_hyp: "./config/hyps/hyp.scratch.yaml" # yolo
- weights: "none" # "best.pt" # yolo
- single_cls: false # yolo
- conf_thres: 0.001 # yolo
- iou_thres: 0.6 # for yolo NMS
- yolo_verbose: false # yolo
-
-train_args:
- federated_optimizer: "FedAvg"
- client_id_list:
- client_num_in_total: 2
- client_num_per_round: 1
- comm_round: 20
- epochs: 1
- batch_size: 1
- client_optimizer: adam
- lr: 0.01
- weight_decay: 0.001
- checkpoint_interval: 5
- server_checkpoint_interval: 5
-
-validation_args:
- frequency_of_the_test: 5
-
-device_args:
- worker_num: 2
- using_gpu: false
-
-comm_args:
- backend: "MQTT_S3"
- mqtt_config_path: config/mqtt_config.yaml
- s3_config_path: config/s3_config.yaml
-
-tracking_args:
- log_file_dir: ./log
- enable_wandb: false
- wandb_key: ee0b5f53d949c84cee7decbe7a629e63fb2f8408
- wandb_project: fedml
- wandb_name: fedml_torch_object_detection
diff --git a/python/app/fedcv/object_detection/config/fedml_config_yolov5.yaml b/python/app/fedcv/object_detection/config/fedml_config_yolov5.yaml
deleted file mode 100644
index 754e6c90c2..0000000000
--- a/python/app/fedcv/object_detection/config/fedml_config_yolov5.yaml
+++ /dev/null
@@ -1,64 +0,0 @@
-common_args:
- training_type: "cross_silo"
- random_seed: 0
- scenario: "horizontal"
- using_mlops: false
- config_version: release
- name: "exp" # yolo
- project: "runs/train" # yolo
- exist_ok: true # yolo
-
-environment_args:
- bootstrap: config/bootstrap.sh
-
-data_args:
- dataset: "coco"
- data_cache_dir: ~/fedcv_data
- partition_method: "homo"
- partition_alpha: 0.5
- data_conf: "./data/coco128.yaml" # yolo
- img_size: [640, 640] # [640, 640]
-
-model_args:
- model: "yolov5" # "yolov5"
- class_num: 80
- yolo_cfg: "./model/yolov5/models/yolov5s.yaml" # "./model/yolov6/configs/yolov6s.py" # yolo
- yolo_hyp: "./config/hyps/hyp.scratch.yaml" # yolo
- weights: "none" # "best.pt" # yolo
- single_cls: false # yolo
- conf_thres: 0.001 # yolo
- iou_thres: 0.6 # for yolo NMS
- yolo_verbose: false # yolo
-
-train_args:
- federated_optimizer: "FedAvg"
- client_id_list:
- client_num_in_total: 2
- client_num_per_round: 1
- comm_round: 20
- epochs: 5
- batch_size: 1
- client_optimizer: adam
- lr: 0.01
- weight_decay: 0.001
- checkpoint_interval: 5
- server_checkpoint_interval: 5
-
-validation_args:
- frequency_of_the_test: 5
-
-device_args:
- worker_num: 2
- using_gpu: false
-
-comm_args:
- backend: "MQTT_S3"
- mqtt_config_path: config/mqtt_config.yaml
- s3_config_path: config/s3_config.yaml
-
-tracking_args:
- log_file_dir: ./log
- enable_wandb: false
- wandb_key: ee0b5f53d949c84cee7decbe7a629e63fb2f8408
- wandb_project: fedml
- wandb_name: fedml_torch_object_detection
diff --git a/python/app/fedcv/object_detection/config/fedml_config_yolov6.yaml b/python/app/fedcv/object_detection/config/fedml_config_yolov6.yaml
deleted file mode 100644
index 25e82dcc3a..0000000000
--- a/python/app/fedcv/object_detection/config/fedml_config_yolov6.yaml
+++ /dev/null
@@ -1,64 +0,0 @@
-common_args:
- training_type: "cross_silo"
- random_seed: 0
- scenario: "horizontal"
- using_mlops: false
- config_version: release
- name: "exp" # yolo
- project: "runs/train" # yolo
- exist_ok: true # yolo
-
-environment_args:
- bootstrap: config/bootstrap.sh
-
-data_args:
- dataset: "coco"
- data_cache_dir: ~/fedcv_data
- partition_method: "homo"
- partition_alpha: 0.5
- data_conf: "./data/coco128.yaml" # yolo
- img_size: [640, 640] # [640, 640]
-
-model_args:
- model: "yolov6" # "yolov5"
- class_num: 80
- yolo_cfg: "./model/yolov6/configs/yolov6s.py" # "./model/yolov6/configs/yolov6s.py" # yolo
- yolo_hyp: "./config/hyps/hyp.scratch.yaml" # yolo
- weights: "none" # "best.pt" # yolo
- single_cls: false # yolo
- conf_thres: 0.001 # yolo
- iou_thres: 0.6 # for yolo NMS
- yolo_verbose: false # yolo
-
-train_args:
- federated_optimizer: "FedAvg"
- client_id_list:
- client_num_in_total: 2
- client_num_per_round: 1
- comm_round: 20
- epochs: 5
- batch_size: 1
- client_optimizer: adam
- lr: 0.01
- weight_decay: 0.001
- checkpoint_interval: 5
- server_checkpoint_interval: 5
-
-validation_args:
- frequency_of_the_test: 5
-
-device_args:
- worker_num: 2
- using_gpu: false
-
-comm_args:
- backend: "MQTT_S3"
- mqtt_config_path: config/mqtt_config.yaml
- s3_config_path: config/s3_config.yaml
-
-tracking_args:
- log_file_dir: ./log
- enable_wandb: false
- wandb_key: ee0b5f53d949c84cee7decbe7a629e63fb2f8408
- wandb_project: fedml
- wandb_name: fedml_torch_object_detection
diff --git a/python/app/fedcv/object_detection/config/fedml_config_yolov7.yaml b/python/app/fedcv/object_detection/config/fedml_config_yolov7.yaml
deleted file mode 100644
index 55cd640fc7..0000000000
--- a/python/app/fedcv/object_detection/config/fedml_config_yolov7.yaml
+++ /dev/null
@@ -1,64 +0,0 @@
-common_args:
- training_type: "cross_silo"
- random_seed: 0
- scenario: "horizontal"
- using_mlops: false
- config_version: release
- name: "exp" # yolo
- project: "runs/train" # yolo
- exist_ok: true # yolo
-
-environment_args:
- bootstrap: config/bootstrap.sh
-
-data_args:
- dataset: "coco"
- data_cache_dir: ~/fedcv_data
- partition_method: "homo"
- partition_alpha: 0.5
- data_conf: "./data/coco128.yaml" # yolo
- img_size: [640, 640] # [640, 640]
-
-model_args:
- model: "yolov7" # "yolov5"
- class_num: 80
- yolo_cfg: "./model/yolov7/cfg/training/yolov7.yaml" # "./model/yolov6/configs/yolov6s.py" # yolo
- yolo_hyp: "./model/yolov7/data/hyp.scratch.custom.yaml" # yolo
- weights: "none" # "best.pt" # yolo
- single_cls: false # yolo
- conf_thres: 0.001 # yolo
- iou_thres: 0.6 # for yolo NMS
- yolo_verbose: false # yolo
-
-train_args:
- federated_optimizer: "FedAvg"
- client_id_list:
- client_num_in_total: 2
- client_num_per_round: 1
- comm_round: 20
- epochs: 5
- batch_size: 1
- client_optimizer: adam
- lr: 0.01
- weight_decay: 0.001
- checkpoint_interval: 5
- server_checkpoint_interval: 5
-
-validation_args:
- frequency_of_the_test: 5
-
-device_args:
- worker_num: 2
- using_gpu: false
-
-comm_args:
- backend: "MQTT_S3"
- mqtt_config_path: config/mqtt_config.yaml
- s3_config_path: config/s3_config.yaml
-
-tracking_args:
- log_file_dir: ./log
- enable_wandb: false
- wandb_key: ee0b5f53d949c84cee7decbe7a629e63fb2f8408
- wandb_project: fedml
- wandb_name: fedml_torch_object_detection
diff --git a/python/app/fedcv/object_detection/config/hyps/hyp.Objects365.yaml b/python/app/fedcv/object_detection/config/hyps/hyp.Objects365.yaml
deleted file mode 100644
index 74971740f7..0000000000
--- a/python/app/fedcv/object_detection/config/hyps/hyp.Objects365.yaml
+++ /dev/null
@@ -1,34 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-# Hyperparameters for Objects365 training
-# python train.py --weights yolov5m.pt --data Objects365.yaml --evolve
-# See Hyperparameter Evolution tutorial for details https://github.com/ultralytics/yolov5#tutorials
-
-lr0: 0.00258
-lrf: 0.17
-momentum: 0.779
-weight_decay: 0.00058
-warmup_epochs: 1.33
-warmup_momentum: 0.86
-warmup_bias_lr: 0.0711
-box: 0.0539
-cls: 0.299
-cls_pw: 0.825
-obj: 0.632
-obj_pw: 1.0
-iou_t: 0.2
-anchor_t: 3.44
-anchors: 3.2
-fl_gamma: 0.0
-hsv_h: 0.0188
-hsv_s: 0.704
-hsv_v: 0.36
-degrees: 0.0
-translate: 0.0902
-scale: 0.491
-shear: 0.0
-perspective: 0.0
-flipud: 0.0
-fliplr: 0.5
-mosaic: 1.0
-mixup: 0.0
-copy_paste: 0.0
diff --git a/python/app/fedcv/object_detection/config/hyps/hyp.VOC.yaml b/python/app/fedcv/object_detection/config/hyps/hyp.VOC.yaml
deleted file mode 100644
index aa952c5019..0000000000
--- a/python/app/fedcv/object_detection/config/hyps/hyp.VOC.yaml
+++ /dev/null
@@ -1,40 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-# Hyperparameters for VOC training
-# python train.py --batch 128 --weights yolov5m6.pt --data VOC.yaml --epochs 50 --img 512 --hyp hyp.scratch-med.yaml --evolve
-# See Hyperparameter Evolution tutorial for details https://github.com/ultralytics/yolov5#tutorials
-
-# YOLOv5 Hyperparameter Evolution Results
-# Best generation: 319
-# Last generation: 434
-# metrics/precision, metrics/recall, metrics/mAP_0.5, metrics/mAP_0.5:0.95, val/box_loss, val/obj_loss, val/cls_loss
-# 0.86236, 0.86184, 0.91274, 0.72647, 0.0077056, 0.0042449, 0.0013846
-
-lr0: 0.0033
-lrf: 0.15184
-momentum: 0.74747
-weight_decay: 0.00025
-warmup_epochs: 3.4278
-warmup_momentum: 0.59032
-warmup_bias_lr: 0.18742
-box: 0.02
-cls: 0.21563
-cls_pw: 0.5
-obj: 0.50843
-obj_pw: 0.6729
-iou_t: 0.2
-anchor_t: 3.4172
-fl_gamma: 0.0
-hsv_h: 0.01032
-hsv_s: 0.5562
-hsv_v: 0.28255
-degrees: 0.0
-translate: 0.04575
-scale: 0.73711
-shear: 0.0
-perspective: 0.0
-flipud: 0.0
-fliplr: 0.5
-mosaic: 0.87158
-mixup: 0.04294
-copy_paste: 0.0
-anchors: 3.3556
diff --git a/python/app/fedcv/object_detection/config/hyps/hyp.scratch-high.yaml b/python/app/fedcv/object_detection/config/hyps/hyp.scratch-high.yaml
deleted file mode 100644
index 123cc84074..0000000000
--- a/python/app/fedcv/object_detection/config/hyps/hyp.scratch-high.yaml
+++ /dev/null
@@ -1,34 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-# Hyperparameters for high-augmentation COCO training from scratch
-# python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300
-# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
-
-lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
-lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
-momentum: 0.937 # SGD momentum/Adam beta1
-weight_decay: 0.0005 # optimizer weight decay 5e-4
-warmup_epochs: 3.0 # warmup epochs (fractions ok)
-warmup_momentum: 0.8 # warmup initial momentum
-warmup_bias_lr: 0.1 # warmup initial bias lr
-box: 0.05 # box loss gain
-cls: 0.3 # cls loss gain
-cls_pw: 1.0 # cls BCELoss positive_weight
-obj: 0.7 # obj loss gain (scale with pixels)
-obj_pw: 1.0 # obj BCELoss positive_weight
-iou_t: 0.20 # IoU training threshold
-anchor_t: 4.0 # anchor-multiple threshold
-# anchors: 3 # anchors per output layer (0 to ignore)
-fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
-hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
-hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
-hsv_v: 0.4 # image HSV-Value augmentation (fraction)
-degrees: 0.0 # image rotation (+/- deg)
-translate: 0.1 # image translation (+/- fraction)
-scale: 0.9 # image scale (+/- gain)
-shear: 0.0 # image shear (+/- deg)
-perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
-flipud: 0.0 # image flip up-down (probability)
-fliplr: 0.5 # image flip left-right (probability)
-mosaic: 1.0 # image mosaic (probability)
-mixup: 0.1 # image mixup (probability)
-copy_paste: 0.1 # segment copy-paste (probability)
diff --git a/python/app/fedcv/object_detection/config/hyps/hyp.scratch-low.yaml b/python/app/fedcv/object_detection/config/hyps/hyp.scratch-low.yaml
deleted file mode 100644
index b9ef1d55a3..0000000000
--- a/python/app/fedcv/object_detection/config/hyps/hyp.scratch-low.yaml
+++ /dev/null
@@ -1,34 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-# Hyperparameters for low-augmentation COCO training from scratch
-# python train.py --batch 64 --cfg yolov5n6.yaml --weights '' --data coco.yaml --img 640 --epochs 300 --linear
-# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
-
-lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
-lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf)
-momentum: 0.937 # SGD momentum/Adam beta1
-weight_decay: 0.0005 # optimizer weight decay 5e-4
-warmup_epochs: 3.0 # warmup epochs (fractions ok)
-warmup_momentum: 0.8 # warmup initial momentum
-warmup_bias_lr: 0.1 # warmup initial bias lr
-box: 0.05 # box loss gain
-cls: 0.5 # cls loss gain
-cls_pw: 1.0 # cls BCELoss positive_weight
-obj: 1.0 # obj loss gain (scale with pixels)
-obj_pw: 1.0 # obj BCELoss positive_weight
-iou_t: 0.20 # IoU training threshold
-anchor_t: 4.0 # anchor-multiple threshold
-# anchors: 3 # anchors per output layer (0 to ignore)
-fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
-hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
-hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
-hsv_v: 0.4 # image HSV-Value augmentation (fraction)
-degrees: 0.0 # image rotation (+/- deg)
-translate: 0.1 # image translation (+/- fraction)
-scale: 0.5 # image scale (+/- gain)
-shear: 0.0 # image shear (+/- deg)
-perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
-flipud: 0.0 # image flip up-down (probability)
-fliplr: 0.5 # image flip left-right (probability)
-mosaic: 1.0 # image mosaic (probability)
-mixup: 0.0 # image mixup (probability)
-copy_paste: 0.0 # segment copy-paste (probability)
diff --git a/python/app/fedcv/object_detection/config/hyps/hyp.scratch-med.yaml b/python/app/fedcv/object_detection/config/hyps/hyp.scratch-med.yaml
deleted file mode 100644
index d6867d7557..0000000000
--- a/python/app/fedcv/object_detection/config/hyps/hyp.scratch-med.yaml
+++ /dev/null
@@ -1,34 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-# Hyperparameters for medium-augmentation COCO training from scratch
-# python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300
-# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
-
-lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
-lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
-momentum: 0.937 # SGD momentum/Adam beta1
-weight_decay: 0.0005 # optimizer weight decay 5e-4
-warmup_epochs: 3.0 # warmup epochs (fractions ok)
-warmup_momentum: 0.8 # warmup initial momentum
-warmup_bias_lr: 0.1 # warmup initial bias lr
-box: 0.05 # box loss gain
-cls: 0.3 # cls loss gain
-cls_pw: 1.0 # cls BCELoss positive_weight
-obj: 0.7 # obj loss gain (scale with pixels)
-obj_pw: 1.0 # obj BCELoss positive_weight
-iou_t: 0.20 # IoU training threshold
-anchor_t: 4.0 # anchor-multiple threshold
-# anchors: 3 # anchors per output layer (0 to ignore)
-fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
-hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
-hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
-hsv_v: 0.4 # image HSV-Value augmentation (fraction)
-degrees: 0.0 # image rotation (+/- deg)
-translate: 0.1 # image translation (+/- fraction)
-scale: 0.9 # image scale (+/- gain)
-shear: 0.0 # image shear (+/- deg)
-perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
-flipud: 0.0 # image flip up-down (probability)
-fliplr: 0.5 # image flip left-right (probability)
-mosaic: 1.0 # image mosaic (probability)
-mixup: 0.1 # image mixup (probability)
-copy_paste: 0.0 # segment copy-paste (probability)
diff --git a/python/app/fedcv/object_detection/config/hyps/hyp.scratch.yaml b/python/app/fedcv/object_detection/config/hyps/hyp.scratch.yaml
deleted file mode 100644
index 44f26b6658..0000000000
--- a/python/app/fedcv/object_detection/config/hyps/hyp.scratch.yaml
+++ /dev/null
@@ -1,33 +0,0 @@
-# Hyperparameters for COCO training from scratch
-# python train.py --batch 40 --cfg yolov5m.yaml --weights '' --data coco.yaml --img 640 --epochs 300
-# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
-
-
-lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
-lrf: 0.2 # final OneCycleLR learning rate (lr0 * lrf)
-momentum: 0.937 # SGD momentum/Adam beta1
-weight_decay: 0.0005 # optimizer weight decay 5e-4
-warmup_epochs: 3.0 # warmup epochs (fractions ok)
-warmup_momentum: 0.8 # warmup initial momentum
-warmup_bias_lr: 0.1 # warmup initial bias lr
-box: 0.05 # box loss gain
-cls: 0.5 # cls loss gain
-cls_pw: 1.0 # cls BCELoss positive_weight
-obj: 1.0 # obj loss gain (scale with pixels)
-obj_pw: 1.0 # obj BCELoss positive_weight
-iou_t: 0.20 # IoU training threshold
-anchor_t: 4.0 # anchor-multiple threshold
-# anchors: 3 # anchors per output layer (0 to ignore)
-fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
-hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
-hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
-hsv_v: 0.4 # image HSV-Value augmentation (fraction)
-degrees: 0.0 # image rotation (+/- deg)
-translate: 0.1 # image translation (+/- fraction)
-scale: 0.5 # image scale (+/- gain)
-shear: 0.0 # image shear (+/- deg)
-perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
-flipud: 0.0 # image flip up-down (probability)
-fliplr: 0.5 # image flip left-right (probability)
-mosaic: 1.0 # image mosaic (probability)
-mixup: 0.0 # image mixup (probability)
diff --git a/python/app/fedcv/object_detection/config/simulation/bootstrap.sh b/python/app/fedcv/object_detection/config/simulation/bootstrap.sh
deleted file mode 100644
index 2657f6be46..0000000000
--- a/python/app/fedcv/object_detection/config/simulation/bootstrap.sh
+++ /dev/null
@@ -1,15 +0,0 @@
-### don't modify this part ###
-set -x
-##############################
-
-
-### please customize your script in this region ####
-pip install opencv-python-headless pandas matplotlib seaborn addict
-DATA_PATH=$HOME/fedcv_data
-mkdir -p $DATA_PATH
-sh ./../../data/coco128/download_coco128.sh
-
-
-### don't modify this part ###
-echo "[FedML]Bootstrap Finished"
-##############################
\ No newline at end of file
diff --git a/python/app/fedcv/object_detection/config/simulation/fedml_config.yaml b/python/app/fedcv/object_detection/config/simulation/fedml_config.yaml
deleted file mode 100644
index ed9b818184..0000000000
--- a/python/app/fedcv/object_detection/config/simulation/fedml_config.yaml
+++ /dev/null
@@ -1,65 +0,0 @@
-common_args:
- training_type: "simulation"
- random_seed: 0
- scenario: "horizontal"
- using_mlops: false
- config_version: release
- name: "exp" # yolo
- project: "runs/train" # yolo
- exist_ok: true # yolo
-
-environment_args:
- bootstrap: config/bootstrap.sh
-
-data_args:
- dataset: "coco"
- data_cache_dir: ~/fedcv_data
- partition_method: "homo"
- partition_alpha: 0.5
- data_conf: "./data/coco128.yaml" # yolo
- img_size: [640, 640] # [640, 640]
-
-model_args:
- model: "yolov5" # "yolov5"
- class_num: 80
- yolo_cfg: "./model/yolov5/models/yolov5s.yaml" # "./model/yolov6/configs/yolov6s.py" # yolo
- yolo_hyp: "./config/hyps/hyp.scratch.yaml" # yolo
- weights: "none" # "best.pt" # yolo
- single_cls: false # yolo
- conf_thres: 0.001 # yolo
- iou_thres: 0.6 # for yolo NMS
- yolo_verbose: false # yolo
-
-train_args:
- federated_optimizer: "FedAvg"
- client_id_list:
- client_num_in_total: 2
- client_num_per_round: 2
- comm_round: 20
- epochs: 5
- batch_size: 1
- client_optimizer: adam
- lr: 0.01
- weight_decay: 0.001
- checkpoint_interval: 5
- server_checkpoint_interval: 5
-
-validation_args:
- frequency_of_the_test: 5
-
-device_args:
- worker_num: 0
- using_gpu: false
- gpu_mapping_file: config/gpu_mapping.yaml
- gpu_mapping_key: mapping_default
-
-comm_args:
- backend: "MPI"
- is_mobile: 0
-
-tracking_args:
- # When running on MLOps platform(open.fedml.ai), the default log path is at ~/fedml-client/fedml/logs/ and ~/fedml-server/fedml/logs/
- enable_wandb: false
- wandb_key: ee0b5f53d949c84cee7decbe7a629e63fb2f8408
- wandb_project: fedml
- wandb_name: fedml_torch_object_detection
diff --git a/python/app/fedcv/object_detection/data/Argoverse.yaml b/python/app/fedcv/object_detection/data/Argoverse.yaml
deleted file mode 100644
index 312791b33a..0000000000
--- a/python/app/fedcv/object_detection/data/Argoverse.yaml
+++ /dev/null
@@ -1,67 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-# Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI
-# Example usage: python train.py --data Argoverse.yaml
-# parent
-# ├── yolov5
-# └── datasets
-# └── Argoverse ← downloads here
-
-
-# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
-path: ../datasets/Argoverse # dataset root dir
-train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images
-val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images
-test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
-
-# Classes
-nc: 8 # number of classes
-names: ['person', 'bicycle', 'car', 'motorcycle', 'bus', 'truck', 'traffic_light', 'stop_sign'] # class names
-
-
-# Download script/URL (optional) ---------------------------------------------------------------------------------------
-download: |
- import json
-
- from tqdm import tqdm
- from utils.general import download, Path
-
-
- def argoverse2yolo(set):
- labels = {}
- a = json.load(open(set, "rb"))
- for annot in tqdm(a['annotations'], desc=f"Converting {set} to YOLOv5 format..."):
- img_id = annot['image_id']
- img_name = a['images'][img_id]['name']
- img_label_name = img_name[:-3] + "txt"
-
- cls = annot['category_id'] # instance class id
- x_center, y_center, width, height = annot['bbox']
- x_center = (x_center + width / 2) / 1920.0 # offset and scale
- y_center = (y_center + height / 2) / 1200.0 # offset and scale
- width /= 1920.0 # scale
- height /= 1200.0 # scale
-
- img_dir = set.parents[2] / 'Argoverse-1.1' / 'labels' / a['seq_dirs'][a['images'][annot['image_id']]['sid']]
- if not img_dir.exists():
- img_dir.mkdir(parents=True, exist_ok=True)
-
- k = str(img_dir / img_label_name)
- if k not in labels:
- labels[k] = []
- labels[k].append(f"{cls} {x_center} {y_center} {width} {height}\n")
-
- for k in labels:
- with open(k, "w") as f:
- f.writelines(labels[k])
-
-
- # Download
- dir = Path('../datasets/Argoverse') # dataset root dir
- urls = ['https://argoverse-hd.s3.us-east-2.amazonaws.com/Argoverse-HD-Full.zip']
- download(urls, dir=dir, delete=False)
-
- # Convert
- annotations_dir = 'Argoverse-HD/annotations/'
- (dir / 'Argoverse-1.1' / 'tracking').rename(dir / 'Argoverse-1.1' / 'images') # rename 'tracking' to 'images'
- for d in "train.json", "val.json":
- argoverse2yolo(dir / annotations_dir / d) # convert VisDrone annotations to YOLO labels
diff --git a/python/app/fedcv/object_detection/data/GlobalWheat2020.yaml b/python/app/fedcv/object_detection/data/GlobalWheat2020.yaml
deleted file mode 100644
index 869dace0be..0000000000
--- a/python/app/fedcv/object_detection/data/GlobalWheat2020.yaml
+++ /dev/null
@@ -1,53 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-# Global Wheat 2020 dataset http://www.global-wheat.com/ by University of Saskatchewan
-# Example usage: python train.py --data GlobalWheat2020.yaml
-# parent
-# ├── yolov5
-# └── datasets
-# └── GlobalWheat2020 ← downloads here
-
-
-# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
-path: ../datasets/GlobalWheat2020 # dataset root dir
-train: # train images (relative to 'path') 3422 images
- - images/arvalis_1
- - images/arvalis_2
- - images/arvalis_3
- - images/ethz_1
- - images/rres_1
- - images/inrae_1
- - images/usask_1
-val: # val images (relative to 'path') 748 images (WARNING: train set contains ethz_1)
- - images/ethz_1
-test: # test images (optional) 1276 images
- - images/utokyo_1
- - images/utokyo_2
- - images/nau_1
- - images/uq_1
-
-# Classes
-nc: 1 # number of classes
-names: ['wheat_head'] # class names
-
-
-# Download script/URL (optional) ---------------------------------------------------------------------------------------
-download: |
- from utils.general import download, Path
-
- # Download
- dir = Path(yaml['path']) # dataset root dir
- urls = ['https://zenodo.org/record/4298502/files/global-wheat-codalab-official.zip',
- 'https://github.com/ultralytics/yolov5/releases/download/v1.0/GlobalWheat2020_labels.zip']
- download(urls, dir=dir)
-
- # Make Directories
- for p in 'annotations', 'images', 'labels':
- (dir / p).mkdir(parents=True, exist_ok=True)
-
- # Move
- for p in 'arvalis_1', 'arvalis_2', 'arvalis_3', 'ethz_1', 'rres_1', 'inrae_1', 'usask_1', \
- 'utokyo_1', 'utokyo_2', 'nau_1', 'uq_1':
- (dir / p).rename(dir / 'images' / p) # move to /images
- f = (dir / p).with_suffix('.json') # json file
- if f.exists():
- f.rename((dir / 'annotations' / p).with_suffix('.json')) # move to /annotations
diff --git a/python/app/fedcv/object_detection/data/Objects365.yaml b/python/app/fedcv/object_detection/data/Objects365.yaml
deleted file mode 100644
index 4c7cf3fdb2..0000000000
--- a/python/app/fedcv/object_detection/data/Objects365.yaml
+++ /dev/null
@@ -1,112 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-# Objects365 dataset https://www.objects365.org/ by Megvii
-# Example usage: python train.py --data Objects365.yaml
-# parent
-# ├── yolov5
-# └── datasets
-# └── Objects365 ← downloads here
-
-
-# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
-path: ../datasets/Objects365 # dataset root dir
-train: images/train # train images (relative to 'path') 1742289 images
-val: images/val # val images (relative to 'path') 80000 images
-test: # test images (optional)
-
-# Classes
-nc: 365 # number of classes
-names: ['Person', 'Sneakers', 'Chair', 'Other Shoes', 'Hat', 'Car', 'Lamp', 'Glasses', 'Bottle', 'Desk', 'Cup',
- 'Street Lights', 'Cabinet/shelf', 'Handbag/Satchel', 'Bracelet', 'Plate', 'Picture/Frame', 'Helmet', 'Book',
- 'Gloves', 'Storage box', 'Boat', 'Leather Shoes', 'Flower', 'Bench', 'Potted Plant', 'Bowl/Basin', 'Flag',
- 'Pillow', 'Boots', 'Vase', 'Microphone', 'Necklace', 'Ring', 'SUV', 'Wine Glass', 'Belt', 'Monitor/TV',
- 'Backpack', 'Umbrella', 'Traffic Light', 'Speaker', 'Watch', 'Tie', 'Trash bin Can', 'Slippers', 'Bicycle',
- 'Stool', 'Barrel/bucket', 'Van', 'Couch', 'Sandals', 'Basket', 'Drum', 'Pen/Pencil', 'Bus', 'Wild Bird',
- 'High Heels', 'Motorcycle', 'Guitar', 'Carpet', 'Cell Phone', 'Bread', 'Camera', 'Canned', 'Truck',
- 'Traffic cone', 'Cymbal', 'Lifesaver', 'Towel', 'Stuffed Toy', 'Candle', 'Sailboat', 'Laptop', 'Awning',
- 'Bed', 'Faucet', 'Tent', 'Horse', 'Mirror', 'Power outlet', 'Sink', 'Apple', 'Air Conditioner', 'Knife',
- 'Hockey Stick', 'Paddle', 'Pickup Truck', 'Fork', 'Traffic Sign', 'Balloon', 'Tripod', 'Dog', 'Spoon', 'Clock',
- 'Pot', 'Cow', 'Cake', 'Dinning Table', 'Sheep', 'Hanger', 'Blackboard/Whiteboard', 'Napkin', 'Other Fish',
- 'Orange/Tangerine', 'Toiletry', 'Keyboard', 'Tomato', 'Lantern', 'Machinery Vehicle', 'Fan',
- 'Green Vegetables', 'Banana', 'Baseball Glove', 'Airplane', 'Mouse', 'Train', 'Pumpkin', 'Soccer', 'Skiboard',
- 'Luggage', 'Nightstand', 'Tea pot', 'Telephone', 'Trolley', 'Head Phone', 'Sports Car', 'Stop Sign',
- 'Dessert', 'Scooter', 'Stroller', 'Crane', 'Remote', 'Refrigerator', 'Oven', 'Lemon', 'Duck', 'Baseball Bat',
- 'Surveillance Camera', 'Cat', 'Jug', 'Broccoli', 'Piano', 'Pizza', 'Elephant', 'Skateboard', 'Surfboard',
- 'Gun', 'Skating and Skiing shoes', 'Gas stove', 'Donut', 'Bow Tie', 'Carrot', 'Toilet', 'Kite', 'Strawberry',
- 'Other Balls', 'Shovel', 'Pepper', 'Computer Box', 'Toilet Paper', 'Cleaning Products', 'Chopsticks',
- 'Microwave', 'Pigeon', 'Baseball', 'Cutting/chopping Board', 'Coffee Table', 'Side Table', 'Scissors',
- 'Marker', 'Pie', 'Ladder', 'Snowboard', 'Cookies', 'Radiator', 'Fire Hydrant', 'Basketball', 'Zebra', 'Grape',
- 'Giraffe', 'Potato', 'Sausage', 'Tricycle', 'Violin', 'Egg', 'Fire Extinguisher', 'Candy', 'Fire Truck',
- 'Billiards', 'Converter', 'Bathtub', 'Wheelchair', 'Golf Club', 'Briefcase', 'Cucumber', 'Cigar/Cigarette',
- 'Paint Brush', 'Pear', 'Heavy Truck', 'Hamburger', 'Extractor', 'Extension Cord', 'Tong', 'Tennis Racket',
- 'Folder', 'American Football', 'earphone', 'Mask', 'Kettle', 'Tennis', 'Ship', 'Swing', 'Coffee Machine',
- 'Slide', 'Carriage', 'Onion', 'Green beans', 'Projector', 'Frisbee', 'Washing Machine/Drying Machine',
- 'Chicken', 'Printer', 'Watermelon', 'Saxophone', 'Tissue', 'Toothbrush', 'Ice cream', 'Hot-air balloon',
- 'Cello', 'French Fries', 'Scale', 'Trophy', 'Cabbage', 'Hot dog', 'Blender', 'Peach', 'Rice', 'Wallet/Purse',
- 'Volleyball', 'Deer', 'Goose', 'Tape', 'Tablet', 'Cosmetics', 'Trumpet', 'Pineapple', 'Golf Ball',
- 'Ambulance', 'Parking meter', 'Mango', 'Key', 'Hurdle', 'Fishing Rod', 'Medal', 'Flute', 'Brush', 'Penguin',
- 'Megaphone', 'Corn', 'Lettuce', 'Garlic', 'Swan', 'Helicopter', 'Green Onion', 'Sandwich', 'Nuts',
- 'Speed Limit Sign', 'Induction Cooker', 'Broom', 'Trombone', 'Plum', 'Rickshaw', 'Goldfish', 'Kiwi fruit',
- 'Router/modem', 'Poker Card', 'Toaster', 'Shrimp', 'Sushi', 'Cheese', 'Notepaper', 'Cherry', 'Pliers', 'CD',
- 'Pasta', 'Hammer', 'Cue', 'Avocado', 'Hamimelon', 'Flask', 'Mushroom', 'Screwdriver', 'Soap', 'Recorder',
- 'Bear', 'Eggplant', 'Board Eraser', 'Coconut', 'Tape Measure/Ruler', 'Pig', 'Showerhead', 'Globe', 'Chips',
- 'Steak', 'Crosswalk Sign', 'Stapler', 'Camel', 'Formula 1', 'Pomegranate', 'Dishwasher', 'Crab',
- 'Hoverboard', 'Meat ball', 'Rice Cooker', 'Tuba', 'Calculator', 'Papaya', 'Antelope', 'Parrot', 'Seal',
- 'Butterfly', 'Dumbbell', 'Donkey', 'Lion', 'Urinal', 'Dolphin', 'Electric Drill', 'Hair Dryer', 'Egg tart',
- 'Jellyfish', 'Treadmill', 'Lighter', 'Grapefruit', 'Game board', 'Mop', 'Radish', 'Baozi', 'Target', 'French',
- 'Spring Rolls', 'Monkey', 'Rabbit', 'Pencil Case', 'Yak', 'Red Cabbage', 'Binoculars', 'Asparagus', 'Barbell',
- 'Scallop', 'Noddles', 'Comb', 'Dumpling', 'Oyster', 'Table Tennis paddle', 'Cosmetics Brush/Eyeliner Pencil',
- 'Chainsaw', 'Eraser', 'Lobster', 'Durian', 'Okra', 'Lipstick', 'Cosmetics Mirror', 'Curling', 'Table Tennis']
-
-
-# Download script/URL (optional) ---------------------------------------------------------------------------------------
-download: |
- from pycocotools.coco import COCO
- from tqdm import tqdm
-
- from utils.general import Path, download, np, xyxy2xywhn
-
- # Make Directories
- dir = Path(yaml['path']) # dataset root dir
- for p in 'images', 'labels':
- (dir / p).mkdir(parents=True, exist_ok=True)
- for q in 'train', 'val':
- (dir / p / q).mkdir(parents=True, exist_ok=True)
-
- # Train, Val Splits
- for split, patches in [('train', 50 + 1), ('val', 43 + 1)]:
- print(f"Processing {split} in {patches} patches ...")
- images, labels = dir / 'images' / split, dir / 'labels' / split
-
- # Download
- url = f"https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/{split}/"
- if split == 'train':
- download([f'{url}zhiyuan_objv2_{split}.tar.gz'], dir=dir, delete=False) # annotations json
- download([f'{url}patch{i}.tar.gz' for i in range(patches)], dir=images, curl=True, delete=False, threads=8)
- elif split == 'val':
- download([f'{url}zhiyuan_objv2_{split}.json'], dir=dir, delete=False) # annotations json
- download([f'{url}images/v1/patch{i}.tar.gz' for i in range(15 + 1)], dir=images, curl=True, delete=False, threads=8)
- download([f'{url}images/v2/patch{i}.tar.gz' for i in range(16, patches)], dir=images, curl=True, delete=False, threads=8)
-
- # Move
- for f in tqdm(images.rglob('*.jpg'), desc=f'Moving {split} images'):
- f.rename(images / f.name) # move to /images/{split}
-
- # Labels
- coco = COCO(dir / f'zhiyuan_objv2_{split}.json')
- names = [x["name"] for x in coco.loadCats(coco.getCatIds())]
- for cid, cat in enumerate(names):
- catIds = coco.getCatIds(catNms=[cat])
- imgIds = coco.getImgIds(catIds=catIds)
- for im in tqdm(coco.loadImgs(imgIds), desc=f'Class {cid + 1}/{len(names)} {cat}'):
- width, height = im["width"], im["height"]
- path = Path(im["file_name"]) # image filename
- try:
- with open(labels / path.with_suffix('.txt').name, 'a') as file:
- annIds = coco.getAnnIds(imgIds=im["id"], catIds=catIds, iscrowd=None)
- for a in coco.loadAnns(annIds):
- x, y, w, h = a['bbox'] # bounding box in xywh (xy top-left corner)
- xyxy = np.array([x, y, x + w, y + h])[None] # pixels(1,4)
- x, y, w, h = xyxy2xywhn(xyxy, w=width, h=height, clip=True)[0] # normalized and clipped
- file.write(f"{cid} {x:.5f} {y:.5f} {w:.5f} {h:.5f}\n")
- except Exception as e:
- print(e)
diff --git a/python/app/fedcv/object_detection/data/SKU-110K.yaml b/python/app/fedcv/object_detection/data/SKU-110K.yaml
deleted file mode 100644
index 9481b7a04a..0000000000
--- a/python/app/fedcv/object_detection/data/SKU-110K.yaml
+++ /dev/null
@@ -1,52 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-# SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19 by Trax Retail
-# Example usage: python train.py --data SKU-110K.yaml
-# parent
-# ├── yolov5
-# └── datasets
-# └── SKU-110K ← downloads here
-
-
-# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
-path: ../datasets/SKU-110K # dataset root dir
-train: train.txt # train images (relative to 'path') 8219 images
-val: val.txt # val images (relative to 'path') 588 images
-test: test.txt # test images (optional) 2936 images
-
-# Classes
-nc: 1 # number of classes
-names: ['object'] # class names
-
-
-# Download script/URL (optional) ---------------------------------------------------------------------------------------
-download: |
- import shutil
- from tqdm import tqdm
- from utils.general import np, pd, Path, download, xyxy2xywh
-
- # Download
- dir = Path(yaml['path']) # dataset root dir
- parent = Path(dir.parent) # download dir
- urls = ['http://trax-geometry.s3.amazonaws.com/cvpr_challenge/SKU110K_fixed.tar.gz']
- download(urls, dir=parent, delete=False)
-
- # Rename directories
- if dir.exists():
- shutil.rmtree(dir)
- (parent / 'SKU110K_fixed').rename(dir) # rename dir
- (dir / 'labels').mkdir(parents=True, exist_ok=True) # create labels dir
-
- # Convert labels
- names = 'image', 'x1', 'y1', 'x2', 'y2', 'class', 'image_width', 'image_height' # column names
- for d in 'annotations_train.csv', 'annotations_val.csv', 'annotations_test.csv':
- x = pd.read_csv(dir / 'annotations' / d, names=names).values # annotations
- images, unique_images = x[:, 0], np.unique(x[:, 0])
- with open((dir / d).with_suffix('.txt').__str__().replace('annotations_', ''), 'w') as f:
- f.writelines(f'./images/{s}\n' for s in unique_images)
- for im in tqdm(unique_images, desc=f'Converting {dir / d}'):
- cls = 0 # single-class dataset
- with open((dir / 'labels' / im).with_suffix('.txt'), 'a') as f:
- for r in x[images == im]:
- w, h = r[6], r[7] # image width, height
- xywh = xyxy2xywh(np.array([[r[1] / w, r[2] / h, r[3] / w, r[4] / h]]))[0] # instance
- f.write(f"{cls} {xywh[0]:.5f} {xywh[1]:.5f} {xywh[2]:.5f} {xywh[3]:.5f}\n") # write label
diff --git a/python/app/fedcv/object_detection/data/VOC.yaml b/python/app/fedcv/object_detection/data/VOC.yaml
deleted file mode 100644
index 975d56466d..0000000000
--- a/python/app/fedcv/object_detection/data/VOC.yaml
+++ /dev/null
@@ -1,80 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC by University of Oxford
-# Example usage: python train.py --data VOC.yaml
-# parent
-# ├── yolov5
-# └── datasets
-# └── VOC ← downloads here
-
-
-# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
-path: ../datasets/VOC
-train: # train images (relative to 'path') 16551 images
- - images/train2012
- - images/train2007
- - images/val2012
- - images/val2007
-val: # val images (relative to 'path') 4952 images
- - images/test2007
-test: # test images (optional)
- - images/test2007
-
-# Classes
-nc: 20 # number of classes
-names: ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog',
- 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'] # class names
-
-
-# Download script/URL (optional) ---------------------------------------------------------------------------------------
-download: |
- import xml.etree.ElementTree as ET
-
- from tqdm import tqdm
- from utils.general import download, Path
-
-
- def convert_label(path, lb_path, year, image_id):
- def convert_box(size, box):
- dw, dh = 1. / size[0], 1. / size[1]
- x, y, w, h = (box[0] + box[1]) / 2.0 - 1, (box[2] + box[3]) / 2.0 - 1, box[1] - box[0], box[3] - box[2]
- return x * dw, y * dh, w * dw, h * dh
-
- in_file = open(path / f'VOC{year}/Annotations/{image_id}.xml')
- out_file = open(lb_path, 'w')
- tree = ET.parse(in_file)
- root = tree.getroot()
- size = root.find('size')
- w = int(size.find('width').text)
- h = int(size.find('height').text)
-
- for obj in root.iter('object'):
- cls = obj.find('name').text
- if cls in yaml['names'] and not int(obj.find('difficult').text) == 1:
- xmlbox = obj.find('bndbox')
- bb = convert_box((w, h), [float(xmlbox.find(x).text) for x in ('xmin', 'xmax', 'ymin', 'ymax')])
- cls_id = yaml['names'].index(cls) # class id
- out_file.write(" ".join([str(a) for a in (cls_id, *bb)]) + '\n')
-
-
- # Download
- dir = Path(yaml['path']) # dataset root dir
- url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
- urls = [url + 'VOCtrainval_06-Nov-2007.zip', # 446MB, 5012 images
- url + 'VOCtest_06-Nov-2007.zip', # 438MB, 4953 images
- url + 'VOCtrainval_11-May-2012.zip'] # 1.95GB, 17126 images
- download(urls, dir=dir / 'images', delete=False)
-
- # Convert
- path = dir / f'images/VOCdevkit'
- for year, image_set in ('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test'):
- imgs_path = dir / 'images' / f'{image_set}{year}'
- lbs_path = dir / 'labels' / f'{image_set}{year}'
- imgs_path.mkdir(exist_ok=True, parents=True)
- lbs_path.mkdir(exist_ok=True, parents=True)
-
- image_ids = open(path / f'VOC{year}/ImageSets/Main/{image_set}.txt').read().strip().split()
- for id in tqdm(image_ids, desc=f'{image_set}{year}'):
- f = path / f'VOC{year}/JPEGImages/{id}.jpg' # old img path
- lb_path = (lbs_path / f.name).with_suffix('.txt') # new label path
- f.rename(imgs_path / f.name) # move image
- convert_label(path, lb_path, year, id) # convert labels to YOLO format
diff --git a/python/app/fedcv/object_detection/data/VisDrone.yaml b/python/app/fedcv/object_detection/data/VisDrone.yaml
deleted file mode 100644
index 83a5c7d55e..0000000000
--- a/python/app/fedcv/object_detection/data/VisDrone.yaml
+++ /dev/null
@@ -1,61 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-# VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset by Tianjin University
-# Example usage: python train.py --data VisDrone.yaml
-# parent
-# ├── yolov5
-# └── datasets
-# └── VisDrone ← downloads here
-
-
-# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
-path: ../datasets/VisDrone # dataset root dir
-train: VisDrone2019-DET-train/images # train images (relative to 'path') 6471 images
-val: VisDrone2019-DET-val/images # val images (relative to 'path') 548 images
-test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images
-
-# Classes
-nc: 10 # number of classes
-names: ['pedestrian', 'people', 'bicycle', 'car', 'van', 'truck', 'tricycle', 'awning-tricycle', 'bus', 'motor']
-
-
-# Download script/URL (optional) ---------------------------------------------------------------------------------------
-download: |
- from utils.general import download, os, Path
-
- def visdrone2yolo(dir):
- from PIL import Image
- from tqdm import tqdm
-
- def convert_box(size, box):
- # Convert VisDrone box to YOLO xywh box
- dw = 1. / size[0]
- dh = 1. / size[1]
- return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh
-
- (dir / 'labels').mkdir(parents=True, exist_ok=True) # make labels directory
- pbar = tqdm((dir / 'annotations').glob('*.txt'), desc=f'Converting {dir}')
- for f in pbar:
- img_size = Image.open((dir / 'images' / f.name).with_suffix('.jpg')).size
- lines = []
- with open(f, 'r') as file: # read annotation.txt
- for row in [x.split(',') for x in file.read().strip().splitlines()]:
- if row[4] == '0': # VisDrone 'ignored regions' class 0
- continue
- cls = int(row[5]) - 1
- box = convert_box(img_size, tuple(map(int, row[:4])))
- lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n")
- with open(str(f).replace(os.sep + 'annotations' + os.sep, os.sep + 'labels' + os.sep), 'w') as fl:
- fl.writelines(lines) # write label.txt
-
-
- # Download
- dir = Path(yaml['path']) # dataset root dir
- urls = ['https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-train.zip',
- 'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-val.zip',
- 'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-dev.zip',
- 'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-challenge.zip']
- download(urls, dir=dir)
-
- # Convert
- for d in 'VisDrone2019-DET-train', 'VisDrone2019-DET-val', 'VisDrone2019-DET-test-dev':
- visdrone2yolo(dir / d) # convert VisDrone annotations to YOLO labels
diff --git a/python/app/fedcv/object_detection/data/__init__.py b/python/app/fedcv/object_detection/data/__init__.py
deleted file mode 100644
index e69de29bb2..0000000000
diff --git a/python/app/fedcv/object_detection/data/coco.yaml b/python/app/fedcv/object_detection/data/coco.yaml
deleted file mode 100644
index 4942047124..0000000000
--- a/python/app/fedcv/object_detection/data/coco.yaml
+++ /dev/null
@@ -1,44 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-# COCO 2017 dataset http://cocodataset.org by Microsoft
-# Example usage: python train.py --data coco.yaml
-# parent
-# ├── yolov5
-# └── datasets
-# └── coco ← downloads here
-
-
-# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
-path: ../data/coco # dataset root dir
-train: ~/FedML-YOLO/python/app/fedcv/object_detection/data/coco/train2017.txt # train images (relative to 'path') 118287 images
-val: ~/FedML-YOLO/python/app/fedcv/object_detection/data/coco/val2017.txt # val images (relative to 'path') 5000 images
-test: ~/FedML-YOLO/python/app/fedcv/object_detection/data/coco/test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
-
-# Classes
-nc: 80 # number of classes
-names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
- 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
- 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
- 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
- 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
- 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
- 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
- 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
- 'hair drier', 'toothbrush'] # class names
-
-
-# Download script/URL (optional)
-download: |
- from utils.general import download, Path
-
- # Download labels
- segments = False # segment or box labels
- dir = Path(yaml['path']) # dataset root dir
- url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
- urls = [url + ('coco2017labels-segments.zip' if segments else 'coco2017labels.zip')] # labels
- download(urls, dir=dir.parent)
-
- # Download data
- urls = ['http://images.cocodataset.org/zips/train2017.zip', # 19G, 118k images
- 'http://images.cocodataset.org/zips/val2017.zip', # 1G, 5k images
- 'http://images.cocodataset.org/zips/test2017.zip'] # 7G, 41k images (optional)
- download(urls, dir=dir / 'images', threads=3)
diff --git a/python/app/fedcv/object_detection/data/coco/download_coco.sh b/python/app/fedcv/object_detection/data/coco/download_coco.sh
deleted file mode 100644
index ac1944d303..0000000000
--- a/python/app/fedcv/object_detection/data/coco/download_coco.sh
+++ /dev/null
@@ -1,18 +0,0 @@
-#!/bin/bash
-
-BASE_DATA_PATH=~/fedcv_data
-mkdir $BASE_DATA_PATH
-cd $BASE_DATA_PATH
-echo `pwd`
-wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip
-wget http://images.cocodataset.org/zips/train2017.zip
-wget http://images.cocodataset.org/zips/val2017.zip
-wget http://images.cocodataset.org/zips/test2017.zip
-unzip annotations_trainval2017.zip
-unzip train2017.zip
-unzip val2017.zip
-unzip test2017.zip
-rm annotations_trainval2017.zip
-rm train2017.zip
-rm val2017.zip
-rm test2017.zip
diff --git a/python/app/fedcv/object_detection/data/coco128.yaml b/python/app/fedcv/object_detection/data/coco128.yaml
deleted file mode 100644
index 4dd087ecdc..0000000000
--- a/python/app/fedcv/object_detection/data/coco128.yaml
+++ /dev/null
@@ -1,101 +0,0 @@
-# COCO 2017 dataset http://cocodataset.org - first 128 training images
-# Train command: python train.py --data coco128.yaml
-# Default dataset location is next to /yolov5:
-# /parent_folder
-# /coco128
-# /yolov5
-
-# download command/URL (optional)
-download: https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip
-
-# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
-train: ~/fedcv_data/coco128/images/train2017/ # 128 images
-val: ~/fedcv_data/coco128/images/train2017/ # 128 images
-
-# number of classes
-nc: 80
-
-# class names
-names:
- [
- "person",
- "bicycle",
- "car",
- "motorcycle",
- "airplane",
- "bus",
- "train",
- "truck",
- "boat",
- "traffic light",
- "fire hydrant",
- "stop sign",
- "parking meter",
- "bench",
- "bird",
- "cat",
- "dog",
- "horse",
- "sheep",
- "cow",
- "elephant",
- "bear",
- "zebra",
- "giraffe",
- "backpack",
- "umbrella",
- "handbag",
- "tie",
- "suitcase",
- "frisbee",
- "skis",
- "snowboard",
- "sports ball",
- "kite",
- "baseball bat",
- "baseball glove",
- "skateboard",
- "surfboard",
- "tennis racket",
- "bottle",
- "wine glass",
- "cup",
- "fork",
- "knife",
- "spoon",
- "bowl",
- "banana",
- "apple",
- "sandwich",
- "orange",
- "broccoli",
- "carrot",
- "hot dog",
- "pizza",
- "donut",
- "cake",
- "chair",
- "couch",
- "potted plant",
- "bed",
- "dining table",
- "toilet",
- "tv",
- "laptop",
- "mouse",
- "remote",
- "keyboard",
- "cell phone",
- "microwave",
- "oven",
- "toaster",
- "sink",
- "refrigerator",
- "book",
- "clock",
- "vase",
- "scissors",
- "teddy bear",
- "hair drier",
- "toothbrush",
- ]
diff --git a/python/app/fedcv/object_detection/data/coco128/LICENSE b/python/app/fedcv/object_detection/data/coco128/LICENSE
deleted file mode 100644
index 9e419e0421..0000000000
--- a/python/app/fedcv/object_detection/data/coco128/LICENSE
+++ /dev/null
@@ -1,674 +0,0 @@
-GNU GENERAL PUBLIC LICENSE
- Version 3, 29 June 2007
-
- Copyright (C) 2007 Free Software Foundation, Inc.
- Everyone is permitted to copy and distribute verbatim copies
- of this license document, but changing it is not allowed.
-
- Preamble
-
- The GNU General Public License is a free, copyleft license for
-software and other kinds of works.
-
- The licenses for most software and other practical works are designed
-to take away your freedom to share and change the works. By contrast,
-the GNU General Public License is intended to guarantee your freedom to
-share and change all versions of a program--to make sure it remains free
-software for all its users. We, the Free Software Foundation, use the
-GNU General Public License for most of our software; it applies also to
-any other work released this way by its authors. You can apply it to
-your programs, too.
-
- When we speak of free software, we are referring to freedom, not
-price. Our General Public Licenses are designed to make sure that you
-have the freedom to distribute copies of free software (and charge for
-them if you wish), that you receive source code or can get it if you
-want it, that you can change the software or use pieces of it in new
-free programs, and that you know you can do these things.
-
- To protect your rights, we need to prevent others from denying you
-these rights or asking you to surrender the rights. Therefore, you have
-certain responsibilities if you distribute copies of the software, or if
-you modify it: responsibilities to respect the freedom of others.
-
- For example, if you distribute copies of such a program, whether
-gratis or for a fee, you must pass on to the recipients the same
-freedoms that you received. You must make sure that they, too, receive
-or can get the source code. And you must show them these terms so they
-know their rights.
-
- Developers that use the GNU GPL protect your rights with two steps:
-(1) assert copyright on the software, and (2) offer you this License
-giving you legal permission to copy, distribute and/or modify it.
-
- For the developers' and authors' protection, the GPL clearly explains
-that there is no warranty for this free software. For both users' and
-authors' sake, the GPL requires that modified versions be marked as
-changed, so that their problems will not be attributed erroneously to
-authors of previous versions.
-
- Some devices are designed to deny users access to install or run
-modified versions of the software inside them, although the manufacturer
-can do so. This is fundamentally incompatible with the aim of
-protecting users' freedom to change the software. The systematic
-pattern of such abuse occurs in the area of products for individuals to
-use, which is precisely where it is most unacceptable. Therefore, we
-have designed this version of the GPL to prohibit the practice for those
-products. If such problems arise substantially in other domains, we
-stand ready to extend this provision to those domains in future versions
-of the GPL, as needed to protect the freedom of users.
-
- Finally, every program is threatened constantly by software patents.
-States should not allow patents to restrict development and use of
-software on general-purpose computers, but in those that do, we wish to
-avoid the special danger that patents applied to a free program could
-make it effectively proprietary. To prevent this, the GPL assures that
-patents cannot be used to render the program non-free.
-
- The precise terms and conditions for copying, distribution and
-modification follow.
-
- TERMS AND CONDITIONS
-
- 0. Definitions.
-
- "This License" refers to version 3 of the GNU General Public License.
-
- "Copyright" also means copyright-like laws that apply to other kinds of
-works, such as semiconductor masks.
-
- "The Program" refers to any copyrightable work licensed under this
-License. Each licensee is addressed as "you". "Licensees" and
-"recipients" may be individuals or organizations.
-
- To "modify" a work means to copy from or adapt all or part of the work
-in a fashion requiring copyright permission, other than the making of an
-exact copy. The resulting work is called a "modified version" of the
-earlier work or a work "based on" the earlier work.
-
- A "covered work" means either the unmodified Program or a work based
-on the Program.
-
- To "propagate" a work means to do anything with it that, without
-permission, would make you directly or secondarily liable for
-infringement under applicable copyright law, except executing it on a
-computer or modifying a private copy. Propagation includes copying,
-distribution (with or without modification), making available to the
-public, and in some countries other activities as well.
-
- To "convey" a work means any kind of propagation that enables other
-parties to make or receive copies. Mere interaction with a user through
-a computer network, with no transfer of a copy, is not conveying.
-
- An interactive user interface displays "Appropriate Legal Notices"
-to the extent that it includes a convenient and prominently visible
-feature that (1) displays an appropriate copyright notice, and (2)
-tells the user that there is no warranty for the work (except to the
-extent that warranties are provided), that licensees may convey the
-work under this License, and how to view a copy of this License. If
-the interface presents a list of user commands or options, such as a
-menu, a prominent item in the list meets this criterion.
-
- 1. Source Code.
-
- The "source code" for a work means the preferred form of the work
-for making modifications to it. "Object code" means any non-source
-form of a work.
-
- A "Standard Interface" means an interface that either is an official
-standard defined by a recognized standards body, or, in the case of
-interfaces specified for a particular programming language, one that
-is widely used among developers working in that language.
-
- The "System Libraries" of an executable work include anything, other
-than the work as a whole, that (a) is included in the normal form of
-packaging a Major Component, but which is not part of that Major
-Component, and (b) serves only to enable use of the work with that
-Major Component, or to implement a Standard Interface for which an
-implementation is available to the public in source code form. A
-"Major Component", in this context, means a major essential component
-(kernel, window system, and so on) of the specific operating system
-(if any) on which the executable work runs, or a compiler used to
-produce the work, or an object code interpreter used to run it.
-
- The "Corresponding Source" for a work in object code form means all
-the source code needed to generate, install, and (for an executable
-work) run the object code and to modify the work, including scripts to
-control those activities. However, it does not include the work's
-System Libraries, or general-purpose tools or generally available free
-programs which are used unmodified in performing those activities but
-which are not part of the work. For example, Corresponding Source
-includes interface definition files associated with source files for
-the work, and the source code for shared libraries and dynamically
-linked subprograms that the work is specifically designed to require,
-such as by intimate data communication or control flow between those
-subprograms and other parts of the work.
-
- The Corresponding Source need not include anything that users
-can regenerate automatically from other parts of the Corresponding
-Source.
-
- The Corresponding Source for a work in source code form is that
-same work.
-
- 2. Basic Permissions.
-
- All rights granted under this License are granted for the term of
-copyright on the Program, and are irrevocable provided the stated
-conditions are met. This License explicitly affirms your unlimited
-permission to run the unmodified Program. The output from running a
-covered work is covered by this License only if the output, given its
-content, constitutes a covered work. This License acknowledges your
-rights of fair use or other equivalent, as provided by copyright law.
-
- You may make, run and propagate covered works that you do not
-convey, without conditions so long as your license otherwise remains
-in force. You may convey covered works to others for the sole purpose
-of having them make modifications exclusively for you, or provide you
-with facilities for running those works, provided that you comply with
-the terms of this License in conveying all material for which you do
-not control copyright. Those thus making or running the covered works
-for you must do so exclusively on your behalf, under your direction
-and control, on terms that prohibit them from making any copies of
-your copyrighted material outside their relationship with you.
-
- Conveying under any other circumstances is permitted solely under
-the conditions stated below. Sublicensing is not allowed; section 10
-makes it unnecessary.
-
- 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
-
- No covered work shall be deemed part of an effective technological
-measure under any applicable law fulfilling obligations under article
-11 of the WIPO copyright treaty adopted on 20 December 1996, or
-similar laws prohibiting or restricting circumvention of such
-measures.
-
- When you convey a covered work, you waive any legal power to forbid
-circumvention of technological measures to the extent such circumvention
-is effected by exercising rights under this License with respect to
-the covered work, and you disclaim any intention to limit operation or
-modification of the work as a means of enforcing, against the work's
-users, your or third parties' legal rights to forbid circumvention of
-technological measures.
-
- 4. Conveying Verbatim Copies.
-
- You may convey verbatim copies of the Program's source code as you
-receive it, in any medium, provided that you conspicuously and
-appropriately publish on each copy an appropriate copyright notice;
-keep intact all notices stating that this License and any
-non-permissive terms added in accord with section 7 apply to the code;
-keep intact all notices of the absence of any warranty; and give all
-recipients a copy of this License along with the Program.
-
- You may charge any price or no price for each copy that you convey,
-and you may offer support or warranty protection for a fee.
-
- 5. Conveying Modified Source Versions.
-
- You may convey a work based on the Program, or the modifications to
-produce it from the Program, in the form of source code under the
-terms of section 4, provided that you also meet all of these conditions:
-
- a) The work must carry prominent notices stating that you modified
- it, and giving a relevant date.
-
- b) The work must carry prominent notices stating that it is
- released under this License and any conditions added under section
- 7. This requirement modifies the requirement in section 4 to
- "keep intact all notices".
-
- c) You must license the entire work, as a whole, under this
- License to anyone who comes into possession of a copy. This
- License will therefore apply, along with any applicable section 7
- additional terms, to the whole of the work, and all its parts,
- regardless of how they are packaged. This License gives no
- permission to license the work in any other way, but it does not
- invalidate such permission if you have separately received it.
-
- d) If the work has interactive user interfaces, each must display
- Appropriate Legal Notices; however, if the Program has interactive
- interfaces that do not display Appropriate Legal Notices, your
- work need not make them do so.
-
- A compilation of a covered work with other separate and independent
-works, which are not by their nature extensions of the covered work,
-and which are not combined with it such as to form a larger program,
-in or on a volume of a storage or distribution medium, is called an
-"aggregate" if the compilation and its resulting copyright are not
-used to limit the access or legal rights of the compilation's users
-beyond what the individual works permit. Inclusion of a covered work
-in an aggregate does not cause this License to apply to the other
-parts of the aggregate.
-
- 6. Conveying Non-Source Forms.
-
- You may convey a covered work in object code form under the terms
-of sections 4 and 5, provided that you also convey the
-machine-readable Corresponding Source under the terms of this License,
-in one of these ways:
-
- a) Convey the object code in, or embodied in, a physical product
- (including a physical distribution medium), accompanied by the
- Corresponding Source fixed on a durable physical medium
- customarily used for software interchange.
-
- b) Convey the object code in, or embodied in, a physical product
- (including a physical distribution medium), accompanied by a
- written offer, valid for at least three years and valid for as
- long as you offer spare parts or customer support for that product
- model, to give anyone who possesses the object code either (1) a
- copy of the Corresponding Source for all the software in the
- product that is covered by this License, on a durable physical
- medium customarily used for software interchange, for a price no
- more than your reasonable cost of physically performing this
- conveying of source, or (2) access to copy the
- Corresponding Source from a network server at no charge.
-
- c) Convey individual copies of the object code with a copy of the
- written offer to provide the Corresponding Source. This
- alternative is allowed only occasionally and noncommercially, and
- only if you received the object code with such an offer, in accord
- with subsection 6b.
-
- d) Convey the object code by offering access from a designated
- place (gratis or for a charge), and offer equivalent access to the
- Corresponding Source in the same way through the same place at no
- further charge. You need not require recipients to copy the
- Corresponding Source along with the object code. If the place to
- copy the object code is a network server, the Corresponding Source
- may be on a different server (operated by you or a third party)
- that supports equivalent copying facilities, provided you maintain
- clear directions next to the object code saying where to find the
- Corresponding Source. Regardless of what server hosts the
- Corresponding Source, you remain obligated to ensure that it is
- available for as long as needed to satisfy these requirements.
-
- e) Convey the object code using peer-to-peer transmission, provided
- you inform other peers where the object code and Corresponding
- Source of the work are being offered to the general public at no
- charge under subsection 6d.
-
- A separable portion of the object code, whose source code is excluded
-from the Corresponding Source as a System Library, need not be
-included in conveying the object code work.
-
- A "User Product" is either (1) a "consumer product", which means any
-tangible personal property which is normally used for personal, family,
-or household purposes, or (2) anything designed or sold for incorporation
-into a dwelling. In determining whether a product is a consumer product,
-doubtful cases shall be resolved in favor of coverage. For a particular
-product received by a particular user, "normally used" refers to a
-typical or common use of that class of product, regardless of the status
-of the particular user or of the way in which the particular user
-actually uses, or expects or is expected to use, the product. A product
-is a consumer product regardless of whether the product has substantial
-commercial, industrial or non-consumer uses, unless such uses represent
-the only significant mode of use of the product.
-
- "Installation Information" for a User Product means any methods,
-procedures, authorization keys, or other information required to install
-and execute modified versions of a covered work in that User Product from
-a modified version of its Corresponding Source. The information must
-suffice to ensure that the continued functioning of the modified object
-code is in no case prevented or interfered with solely because
-modification has been made.
-
- If you convey an object code work under this section in, or with, or
-specifically for use in, a User Product, and the conveying occurs as
-part of a transaction in which the right of possession and use of the
-User Product is transferred to the recipient in perpetuity or for a
-fixed term (regardless of how the transaction is characterized), the
-Corresponding Source conveyed under this section must be accompanied
-by the Installation Information. But this requirement does not apply
-if neither you nor any third party retains the ability to install
-modified object code on the User Product (for example, the work has
-been installed in ROM).
-
- The requirement to provide Installation Information does not include a
-requirement to continue to provide support service, warranty, or updates
-for a work that has been modified or installed by the recipient, or for
-the User Product in which it has been modified or installed. Access to a
-network may be denied when the modification itself materially and
-adversely affects the operation of the network or violates the rules and
-protocols for communication across the network.
-
- Corresponding Source conveyed, and Installation Information provided,
-in accord with this section must be in a format that is publicly
-documented (and with an implementation available to the public in
-source code form), and must require no special password or key for
-unpacking, reading or copying.
-
- 7. Additional Terms.
-
- "Additional permissions" are terms that supplement the terms of this
-License by making exceptions from one or more of its conditions.
-Additional permissions that are applicable to the entire Program shall
-be treated as though they were included in this License, to the extent
-that they are valid under applicable law. If additional permissions
-apply only to part of the Program, that part may be used separately
-under those permissions, but the entire Program remains governed by
-this License without regard to the additional permissions.
-
- When you convey a copy of a covered work, you may at your option
-remove any additional permissions from that copy, or from any part of
-it. (Additional permissions may be written to require their own
-removal in certain cases when you modify the work.) You may place
-additional permissions on material, added by you to a covered work,
-for which you have or can give appropriate copyright permission.
-
- Notwithstanding any other provision of this License, for material you
-add to a covered work, you may (if authorized by the copyright holders of
-that material) supplement the terms of this License with terms:
-
- a) Disclaiming warranty or limiting liability differently from the
- terms of sections 15 and 16 of this License; or
-
- b) Requiring preservation of specified reasonable legal notices or
- author attributions in that material or in the Appropriate Legal
- Notices displayed by works containing it; or
-
- c) Prohibiting misrepresentation of the origin of that material, or
- requiring that modified versions of such material be marked in
- reasonable ways as different from the original version; or
-
- d) Limiting the use for publicity purposes of names of licensors or
- authors of the material; or
-
- e) Declining to grant rights under trademark law for use of some
- trade names, trademarks, or service marks; or
-
- f) Requiring indemnification of licensors and authors of that
- material by anyone who conveys the material (or modified versions of
- it) with contractual assumptions of liability to the recipient, for
- any liability that these contractual assumptions directly impose on
- those licensors and authors.
-
- All other non-permissive additional terms are considered "further
-restrictions" within the meaning of section 10. If the Program as you
-received it, or any part of it, contains a notice stating that it is
-governed by this License along with a term that is a further
-restriction, you may remove that term. If a license document contains
-a further restriction but permits relicensing or conveying under this
-License, you may add to a covered work material governed by the terms
-of that license document, provided that the further restriction does
-not survive such relicensing or conveying.
-
- If you add terms to a covered work in accord with this section, you
-must place, in the relevant source files, a statement of the
-additional terms that apply to those files, or a notice indicating
-where to find the applicable terms.
-
- Additional terms, permissive or non-permissive, may be stated in the
-form of a separately written license, or stated as exceptions;
-the above requirements apply either way.
-
- 8. Termination.
-
- You may not propagate or modify a covered work except as expressly
-provided under this License. Any attempt otherwise to propagate or
-modify it is void, and will automatically terminate your rights under
-this License (including any patent licenses granted under the third
-paragraph of section 11).
-
- However, if you cease all violation of this License, then your
-license from a particular copyright holder is reinstated (a)
-provisionally, unless and until the copyright holder explicitly and
-finally terminates your license, and (b) permanently, if the copyright
-holder fails to notify you of the violation by some reasonable means
-prior to 60 days after the cessation.
-
- Moreover, your license from a particular copyright holder is
-reinstated permanently if the copyright holder notifies you of the
-violation by some reasonable means, this is the first time you have
-received notice of violation of this License (for any work) from that
-copyright holder, and you cure the violation prior to 30 days after
-your receipt of the notice.
-
- Termination of your rights under this section does not terminate the
-licenses of parties who have received copies or rights from you under
-this License. If your rights have been terminated and not permanently
-reinstated, you do not qualify to receive new licenses for the same
-material under section 10.
-
- 9. Acceptance Not Required for Having Copies.
-
- You are not required to accept this License in order to receive or
-run a copy of the Program. Ancillary propagation of a covered work
-occurring solely as a consequence of using peer-to-peer transmission
-to receive a copy likewise does not require acceptance. However,
-nothing other than this License grants you permission to propagate or
-modify any covered work. These actions infringe copyright if you do
-not accept this License. Therefore, by modifying or propagating a
-covered work, you indicate your acceptance of this License to do so.
-
- 10. Automatic Licensing of Downstream Recipients.
-
- Each time you convey a covered work, the recipient automatically
-receives a license from the original licensors, to run, modify and
-propagate that work, subject to this License. You are not responsible
-for enforcing compliance by third parties with this License.
-
- An "entity transaction" is a transaction transferring control of an
-organization, or substantially all assets of one, or subdividing an
-organization, or merging organizations. If propagation of a covered
-work results from an entity transaction, each party to that
-transaction who receives a copy of the work also receives whatever
-licenses to the work the party's predecessor in interest had or could
-give under the previous paragraph, plus a right to possession of the
-Corresponding Source of the work from the predecessor in interest, if
-the predecessor has it or can get it with reasonable efforts.
-
- You may not impose any further restrictions on the exercise of the
-rights granted or affirmed under this License. For example, you may
-not impose a license fee, royalty, or other charge for exercise of
-rights granted under this License, and you may not initiate litigation
-(including a cross-claim or counterclaim in a lawsuit) alleging that
-any patent claim is infringed by making, using, selling, offering for
-sale, or importing the Program or any portion of it.
-
- 11. Patents.
-
- A "contributor" is a copyright holder who authorizes use under this
-License of the Program or a work on which the Program is based. The
-work thus licensed is called the contributor's "contributor version".
-
- A contributor's "essential patent claims" are all patent claims
-owned or controlled by the contributor, whether already acquired or
-hereafter acquired, that would be infringed by some manner, permitted
-by this License, of making, using, or selling its contributor version,
-but do not include claims that would be infringed only as a
-consequence of further modification of the contributor version. For
-purposes of this definition, "control" includes the right to grant
-patent sublicenses in a manner consistent with the requirements of
-this License.
-
- Each contributor grants you a non-exclusive, worldwide, royalty-free
-patent license under the contributor's essential patent claims, to
-make, use, sell, offer for sale, import and otherwise run, modify and
-propagate the contents of its contributor version.
-
- In the following three paragraphs, a "patent license" is any express
-agreement or commitment, however denominated, not to enforce a patent
-(such as an express permission to practice a patent or covenant not to
-sue for patent infringement). To "grant" such a patent license to a
-party means to make such an agreement or commitment not to enforce a
-patent against the party.
-
- If you convey a covered work, knowingly relying on a patent license,
-and the Corresponding Source of the work is not available for anyone
-to copy, free of charge and under the terms of this License, through a
-publicly available network server or other readily accessible means,
-then you must either (1) cause the Corresponding Source to be so
-available, or (2) arrange to deprive yourself of the benefit of the
-patent license for this particular work, or (3) arrange, in a manner
-consistent with the requirements of this License, to extend the patent
-license to downstream recipients. "Knowingly relying" means you have
-actual knowledge that, but for the patent license, your conveying the
-covered work in a country, or your recipient's use of the covered work
-in a country, would infringe one or more identifiable patents in that
-country that you have reason to believe are valid.
-
- If, pursuant to or in connection with a single transaction or
-arrangement, you convey, or propagate by procuring conveyance of, a
-covered work, and grant a patent license to some of the parties
-receiving the covered work authorizing them to use, propagate, modify
-or convey a specific copy of the covered work, then the patent license
-you grant is automatically extended to all recipients of the covered
-work and works based on it.
-
- A patent license is "discriminatory" if it does not include within
-the scope of its coverage, prohibits the exercise of, or is
-conditioned on the non-exercise of one or more of the rights that are
-specifically granted under this License. You may not convey a covered
-work if you are a party to an arrangement with a third party that is
-in the business of distributing software, under which you make payment
-to the third party based on the extent of your activity of conveying
-the work, and under which the third party grants, to any of the
-parties who would receive the covered work from you, a discriminatory
-patent license (a) in connection with copies of the covered work
-conveyed by you (or copies made from those copies), or (b) primarily
-for and in connection with specific products or compilations that
-contain the covered work, unless you entered into that arrangement,
-or that patent license was granted, prior to 28 March 2007.
-
- Nothing in this License shall be construed as excluding or limiting
-any implied license or other defenses to infringement that may
-otherwise be available to you under applicable patent law.
-
- 12. No Surrender of Others' Freedom.
-
- If conditions are imposed on you (whether by court order, agreement or
-otherwise) that contradict the conditions of this License, they do not
-excuse you from the conditions of this License. If you cannot convey a
-covered work so as to satisfy simultaneously your obligations under this
-License and any other pertinent obligations, then as a consequence you may
-not convey it at all. For example, if you agree to terms that obligate you
-to collect a royalty for further conveying from those to whom you convey
-the Program, the only way you could satisfy both those terms and this
-License would be to refrain entirely from conveying the Program.
-
- 13. Use with the GNU Affero General Public License.
-
- Notwithstanding any other provision of this License, you have
-permission to link or combine any covered work with a work licensed
-under version 3 of the GNU Affero General Public License into a single
-combined work, and to convey the resulting work. The terms of this
-License will continue to apply to the part which is the covered work,
-but the special requirements of the GNU Affero General Public License,
-section 13, concerning interaction through a network will apply to the
-combination as such.
-
- 14. Revised Versions of this License.
-
- The Free Software Foundation may publish revised and/or new versions of
-the GNU General Public License from time to time. Such new versions will
-be similar in spirit to the present version, but may differ in detail to
-address new problems or concerns.
-
- Each version is given a distinguishing version number. If the
-Program specifies that a certain numbered version of the GNU General
-Public License "or any later version" applies to it, you have the
-option of following the terms and conditions either of that numbered
-version or of any later version published by the Free Software
-Foundation. If the Program does not specify a version number of the
-GNU General Public License, you may choose any version ever published
-by the Free Software Foundation.
-
- If the Program specifies that a proxy can decide which future
-versions of the GNU General Public License can be used, that proxy's
-public statement of acceptance of a version permanently authorizes you
-to choose that version for the Program.
-
- Later license versions may give you additional or different
-permissions. However, no additional obligations are imposed on any
-author or copyright holder as a result of your choosing to follow a
-later version.
-
- 15. Disclaimer of Warranty.
-
- THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
-APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
-HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
-OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
-THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
-PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
-IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
-ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
-
- 16. Limitation of Liability.
-
- IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
-WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
-THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
-GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
-USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
-DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
-PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
-EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
-SUCH DAMAGES.
-
- 17. Interpretation of Sections 15 and 16.
-
- If the disclaimer of warranty and limitation of liability provided
-above cannot be given local legal effect according to their terms,
-reviewing courts shall apply local law that most closely approximates
-an absolute waiver of all civil liability in connection with the
-Program, unless a warranty or assumption of liability accompanies a
-copy of the Program in return for a fee.
-
- END OF TERMS AND CONDITIONS
-
- How to Apply These Terms to Your New Programs
-
- If you develop a new program, and you want it to be of the greatest
-possible use to the public, the best way to achieve this is to make it
-free software which everyone can redistribute and change under these terms.
-
- To do so, attach the following notices to the program. It is safest
-to attach them to the start of each source file to most effectively
-state the exclusion of warranty; and each file should have at least
-the "copyright" line and a pointer to where the full notice is found.
-
-
- Copyright (C)
-
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program. If not, see .
-
-Also add information on how to contact you by electronic and paper mail.
-
- If the program does terminal interaction, make it output a short
-notice like this when it starts in an interactive mode:
-
- Copyright (C)
- This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
- This is free software, and you are welcome to redistribute it
- under certain conditions; type `show c' for details.
-
-The hypothetical commands `show w' and `show c' should show the appropriate
-parts of the General Public License. Of course, your program's commands
-might be different; for a GUI interface, you would use an "about box".
-
- You should also get your employer (if you work as a programmer) or school,
-if any, to sign a "copyright disclaimer" for the program, if necessary.
-For more information on this, and how to apply and follow the GNU GPL, see
- .
-
- The GNU General Public License does not permit incorporating your program
-into proprietary programs. If your program is a subroutine library, you
-may consider it more useful to permit linking proprietary applications with
-the library. If this is what you want to do, use the GNU Lesser General
-Public License instead of this License. But first, please read
-.
\ No newline at end of file
diff --git a/python/app/fedcv/object_detection/data/coco128/README.txt b/python/app/fedcv/object_detection/data/coco128/README.txt
deleted file mode 100644
index 7ab912d6e8..0000000000
--- a/python/app/fedcv/object_detection/data/coco128/README.txt
+++ /dev/null
@@ -1,22 +0,0 @@
-# Introduction
-
-This directory contains software developed by Ultralytics LLC, and **is freely available for redistribution under the GPL-3.0 license**. For more information please visit https://www.ultralytics.com.
-
-# Description
-
-The https://github.com/ultralytics/COCO2YOLO repo contains code to convert JSON datasets into YOLO (darknet) format. The code works on Linux, MacOS and Windows.
-
-# Requirements
-
-Python 3.7 or later with the following `pip3 install -U -r requirements.txt` packages:
-
-- `numpy`
-- `tqdm`
-
-# Citation
-
-[![DOI](https://zenodo.org/badge/186122711.svg)](https://zenodo.org/badge/latestdoi/186122711)
-
-# Contact
-
-Issues should be raised directly in the repository. For additional questions or comments please email Glenn Jocher at glenn.jocher@ultralytics.com or visit us at https://contact.ultralytics.com.
\ No newline at end of file
diff --git a/python/app/fedcv/object_detection/data/coco128/download_coco128.bat b/python/app/fedcv/object_detection/data/coco128/download_coco128.bat
deleted file mode 100644
index b943fe8ffe..0000000000
--- a/python/app/fedcv/object_detection/data/coco128/download_coco128.bat
+++ /dev/null
@@ -1,22 +0,0 @@
-:: YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-:: Download COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017)
-:: Example usage: bash data/scripts/get_coco128.sh
-:: parent
-:: ├── yolov5
-:: └── datasets
-:: └── coco128 ← downloads here
-
-:: Download/unzip images and labels
-:: unzip directory
-set data_dir=~/fedcv_data
-if exist %d% (echo Exist %data_dir%) else mkdir %data_dir%
-
-set url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
-:: or 'coco128-segments.zip', 68 MB
-set f=coco128.zip
-
-echo 'Downloading' %url%%f% ' ...'
-
-curl -L %url%%f% -o %f% && powershell Expand-Archive -LiteralPath %f% -DestinationPath %data_dir%
-:: unzip -o -q %f% -d %data_dir% && rm %f% &
-
diff --git a/python/app/fedcv/object_detection/data/coco128/download_coco128.sh b/python/app/fedcv/object_detection/data/coco128/download_coco128.sh
deleted file mode 100644
index 3d770281a1..0000000000
--- a/python/app/fedcv/object_detection/data/coco128/download_coco128.sh
+++ /dev/null
@@ -1,18 +0,0 @@
-#!/bin/bash
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-# Download COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017)
-# Example usage: bash data/scripts/get_coco128.sh
-# parent
-# ├── yolov5
-# └── datasets
-# └── coco128 ← downloads here
-
-# Download/unzip images and labels
-d=~/fedcv_data # unzip directory
-mkdir -p $d
-url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
-f='coco128.zip' # or 'coco128-segments.zip', 68 MB
-echo 'Downloading' $url$f ' ...'
-curl -L $url$f -o $f && unzip -o -q $f -d $d && rm $f &
-
-wait # finish background tasks
diff --git a/python/app/fedcv/object_detection/data/data_loader.py b/python/app/fedcv/object_detection/data/data_loader.py
deleted file mode 100644
index 326d6edb28..0000000000
--- a/python/app/fedcv/object_detection/data/data_loader.py
+++ /dev/null
@@ -1,939 +0,0 @@
-import logging
-
-import copy
-import os
-import yaml
-import numpy as np
-from pathlib import Path
-
-import glob
-import math
-import random
-from itertools import repeat
-from multiprocessing.pool import Pool, ThreadPool
-from pathlib import Path
-
-import cv2
-import torch
-import torch.nn.functional as F
-from PIL import ExifTags, Image, ImageOps
-from torch.utils.data import DataLoader, Dataset, distributed
-from tqdm import tqdm
-
-from model.yolov5.utils.augmentations import (
- Albumentations,
- augment_hsv,
- copy_paste,
- letterbox,
- mixup,
- random_perspective,
-)
-from model.yolov5.utils.general import (
- LOGGER,
- NUM_THREADS,
- xyn2xy,
- xywhn2xyxy,
- xyxy2xywhn,
-)
-from model.yolov5.utils.torch_utils import torch_distributed_zero_first
-from model.yolov5.utils.dataloaders import (
- verify_image_label,
- InfiniteDataLoader,
- get_hash,
- exif_size,
- exif_transpose,
-)
-
-# Parameters
-HELP_URL = "https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data"
-IMG_FORMATS = [
- "bmp",
- "dng",
- "jpeg",
- "jpg",
- "mpo",
- "png",
- "tif",
- "tiff",
- "webp",
-] # include image suffixes
-VID_FORMATS = [
- "asf",
- "avi",
- "gif",
- "m4v",
- "mkv",
- "mov",
- "mp4",
- "mpeg",
- "mpg",
- "wmv",
-] # include video suffixes
-
-# Get orientation exif tag
-for orientation in ExifTags.TAGS.keys():
- if ExifTags.TAGS[orientation] == "Orientation":
- break
-
-
-def make_divisible(x, divisor):
- # Returns x evenly divisible by divisor
- return math.ceil(x / divisor) * divisor
-
-
-def check_img_size(img_size, s=32):
- # Verify img_size is a multiple of stride s
- new_size = make_divisible(img_size, int(s)) # ceil gs-multiple
- if new_size != img_size:
- print(
- "WARNING: --img-size %g must be multiple of max stride %g, updating to %g"
- % (img_size, s, new_size)
- )
- return new_size
-
-
-def create_dataloader(
- path,
- imgsz,
- batch_size,
- stride,
- single_cls=False,
- hyp=None,
- augment=False,
- cache=False,
- pad=0.0,
- rect=False,
- rank=-1,
- workers=8,
- image_weights=False,
- quad=False,
- prefix="",
- shuffle=False,
- net_dataidx_map=None,
-):
- if rect and shuffle:
- LOGGER.warning(
- "WARNING: --rect is incompatible with DataLoader shuffle, setting shuffle=False"
- )
- shuffle = False
- with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
- dataset = LoadImagesAndLabels(
- path,
- imgsz,
- batch_size,
- augment=augment, # augmentation
- hyp=hyp, # hyperparameters
- rect=rect, # rectangular batches
- cache_images=cache,
- single_cls=single_cls,
- stride=int(stride),
- pad=pad,
- image_weights=image_weights,
- prefix=prefix,
- dataidxs=net_dataidx_map,
- )
-
- batch_size = min(batch_size, len(dataset))
- nd = torch.cuda.device_count() # number of CUDA devices
- nw = min(
- [os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers]
- ) # number of workers
- sampler = (
- None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
- )
- loader = (
- DataLoader if image_weights else InfiniteDataLoader
- ) # only DataLoader allows for attribute updates
- return (
- loader(
- dataset,
- batch_size=batch_size,
- shuffle=shuffle and sampler is None,
- num_workers=nw,
- sampler=sampler,
- pin_memory=True,
- collate_fn=LoadImagesAndLabels.collate_fn4
- if quad
- else LoadImagesAndLabels.collate_fn,
- ),
- dataset,
- )
-
-
-def img2label_paths(img_paths):
- # Define label paths as a function of image paths
- sa, sb = (
- os.sep + "images" + os.sep,
- os.sep + "labels" + os.sep,
- ) # /images/, /labels/ substrings
- return [sb.join(x.rsplit(sa, 1)).rsplit(".", 1)[0] + ".txt" for x in img_paths]
-
-
-class LoadImagesAndLabels(Dataset):
- # YOLOv5 train_loader/val_loader, loads images and labels for training and validation
- cache_version = 0.6 # dataset labels *.cache version
-
- def __init__(
- self,
- path,
- img_size=640,
- batch_size=16,
- augment=False,
- hyp=None,
- rect=False,
- image_weights=False,
- cache_images=False,
- single_cls=False,
- stride=32,
- pad=0.0,
- prefix="",
- dataidxs=None,
- ):
- self.img_size = img_size
- self.augment = augment
- self.hyp = hyp
- self.image_weights = image_weights
- self.rect = False if image_weights else rect
- self.mosaic = (
- self.augment and not self.rect
- ) # load 4 images at a time into a mosaic (only during training)
- self.mosaic_border = [-img_size // 2, -img_size // 2]
- self.stride = stride
- self.path = path
- self.albumentations = Albumentations() if augment else None
-
- try:
- f = [] # image files
- for p in path if isinstance(path, list) else [path]:
- p = Path(p) # os-agnostic
- if p.is_dir(): # dir
- f += glob.glob(str(p / "**" / "*.*"), recursive=True)
- # f = list(p.rglob('*.*')) # pathlib
- elif p.is_file(): # file
- with open(p) as t:
- t = t.read().strip().splitlines()
- parent = str(p.parent) + os.sep
- f += [
- x.replace("./", parent) if x.startswith("./") else x
- for x in t
- ] # local to global path
- # f += [p.parent / x.lstrip(os.sep) for x in t] # local to global path (pathlib)
- else:
- raise Exception(f"{prefix}{p} does not exist")
- self.img_files = sorted(
- x.replace("/", os.sep)
- for x in f
- if x.split(".")[-1].lower() in IMG_FORMATS
- )
- # self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS]) # pathlib
- assert self.img_files, f"{prefix}No images found"
- except Exception as e:
- raise Exception(
- f"{prefix}Error loading data from {path}: {e}\nSee {HELP_URL}"
- )
-
- # dataidxs
- if dataidxs is not None:
- self.img_files = [self.img_files[i - 1] for i in dataidxs]
- self.img_files = sorted(self.img_files)
-
- self.data_size = len(self.img_files)
- self.label_files = img2label_paths(self.img_files) # labels
-
- # Check cache
- cache_path = (
- p if p.is_file() else Path(self.label_files[0]).parent
- ).with_suffix(".cache")
- cache, exists = self.cache_labels(cache_path, prefix), False
- # try:
- # cache, exists = np.load(cache_path, allow_pickle=True).item(), True # load dict
- # assert cache["version"] == self.cache_version # same version
- # assert cache["hash"] == get_hash(self.label_files + self.img_files) # same hash
- # except Exception:
- # cache, exists = self.cache_labels(cache_path, prefix), False # cache
-
- # Display cache
- nf, nm, ne, nc, n = cache.pop(
- "results"
- ) # found, missing, empty, corrupt, total
- # if exists:
- # d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupt"
- # tqdm(None, desc=prefix + d, total=n, initial=n) # display cache results
- # if cache["msgs"]:
- # LOGGER.info("\n".join(cache["msgs"])) # display warnings
- assert (
- nf > 0 or not augment
- ), f"{prefix}No labels in {cache_path}. Can not train without labels. See {HELP_URL}"
-
- # Read cache
- [cache.pop(k) for k in ("hash", "version", "msgs")] # remove items
- labels, shapes, self.segments = zip(*cache.values())
- self.labels = list(labels)
- self.shapes = np.array(shapes, dtype=np.float64)
- self.img_files = list(cache.keys()) # update
- self.label_files = img2label_paths(cache.keys()) # update
- n = len(shapes) # number of images
- bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
- nb = bi[-1] + 1 # number of batches
- self.batch = bi # batch index of image
- self.n = n
- self.indices = range(n)
-
- # Update labels
- include_class = [] # filter labels to include only these classes (optional)
- include_class_array = np.array(include_class).reshape(1, -1)
- for i, (label, segment) in enumerate(zip(self.labels, self.segments)):
- if include_class:
- j = (label[:, 0:1] == include_class_array).any(1)
- self.labels[i] = label[j]
- if segment:
- self.segments[i] = segment[j]
- if single_cls: # single-class training, merge all classes into 0
- self.labels[i][:, 0] = 0
- if segment:
- self.segments[i][:, 0] = 0
-
- # Rectangular Training
- if self.rect:
- # Sort by aspect ratio
- s = self.shapes # wh
- ar = s[:, 1] / s[:, 0] # aspect ratio
- irect = ar.argsort()
- self.img_files = [self.img_files[i] for i in irect]
- self.label_files = [self.label_files[i] for i in irect]
- self.labels = [self.labels[i] for i in irect]
- self.shapes = s[irect] # wh
- ar = ar[irect]
-
- # Set training image shapes
- shapes = [[1, 1]] * nb
- for i in range(nb):
- ari = ar[bi == i]
- mini, maxi = ari.min(), ari.max()
- if maxi < 1:
- shapes[i] = [maxi, 1]
- elif mini > 1:
- shapes[i] = [1, 1 / mini]
-
- self.batch_shapes = (
- np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int)
- * stride
- )
-
- # Cache images into RAM/disk for faster training (WARNING: large datasets may exceed system resources)
- self.imgs, self.img_npy = [None] * n, [None] * n
- if cache_images:
- if cache_images == "disk":
- self.im_cache_dir = Path(
- Path(self.img_files[0]).parent.as_posix() + "_npy"
- )
- self.img_npy = [
- self.im_cache_dir / Path(f).with_suffix(".npy").name
- for f in self.img_files
- ]
- self.im_cache_dir.mkdir(parents=True, exist_ok=True)
- gb = 0 # Gigabytes of cached images
- self.img_hw0, self.img_hw = [None] * n, [None] * n
- results = ThreadPool(NUM_THREADS).imap(self.load_image, range(n))
- pbar = tqdm(enumerate(results), total=n)
- for i, x in pbar:
- if cache_images == "disk":
- if not self.img_npy[i].exists():
- np.save(self.img_npy[i].as_posix(), x[0])
- gb += self.img_npy[i].stat().st_size
- else: # 'ram'
- (
- self.imgs[i],
- self.img_hw0[i],
- self.img_hw[i],
- ) = x # im, hw_orig, hw_resized = load_image(self, i)
- gb += self.imgs[i].nbytes
- pbar.desc = f"{prefix}Caching images ({gb / 1E9:.1f}GB {cache_images})"
- pbar.close()
-
- def cache_labels(self, path=Path("./labels.cache"), prefix=""):
- # Cache dataset labels, check images and read shapes
- x = {} # dict
- nm, nf, ne, nc, msgs = (
- 0,
- 0,
- 0,
- 0,
- [],
- ) # number missing, found, empty, corrupt, messages
- desc = f"{prefix}Scanning '{path.parent / path.stem}' images and labels..."
- with Pool(NUM_THREADS) as pool:
- pbar = tqdm(
- pool.imap(
- verify_image_label,
- zip(self.img_files, self.label_files, repeat(prefix)),
- ),
- desc=desc,
- total=len(self.img_files),
- )
- for im_file, lb, shape, segments, nm_f, nf_f, ne_f, nc_f, msg in pbar:
- nm += nm_f
- nf += nf_f
- ne += ne_f
- nc += nc_f
- if im_file:
- x[im_file] = [lb, shape, segments]
- if msg:
- msgs.append(msg)
- pbar.desc = f"{desc}{nf} found, {nm} missing, {ne} empty, {nc} corrupt"
-
- pbar.close()
- if msgs:
- LOGGER.info("\n".join(msgs))
- if nf == 0:
- LOGGER.warning(
- f"{prefix}WARNING: No labels found in {path}. See {HELP_URL}"
- )
- x["hash"] = get_hash(self.label_files + self.img_files)
- x["results"] = nf, nm, ne, nc, len(self.img_files)
- x["msgs"] = msgs # warnings
- x["version"] = self.cache_version # cache version
- try:
- np.save(path, x) # save cache for next time
- path.with_suffix(".cache.npy").rename(path) # remove .npy suffix
- LOGGER.info(f"{prefix}New cache created: {path}")
- except Exception as e:
- LOGGER.warning(
- f"{prefix}WARNING: Cache directory {path.parent} is not writeable: {e}"
- ) # not writeable
- return x
-
- def __len__(self):
- return len(self.img_files)
-
- # def __iter__(self):
- # self.count = -1
- # print('ran dataset iter')
- # #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
- # return self
-
- def __getitem__(self, index):
- index = self.indices[index] # linear, shuffled, or image_weights
-
- hyp = self.hyp
- mosaic = self.mosaic and random.random() < hyp["mosaic"]
- if mosaic:
- # Load mosaic
- img, labels = self.load_mosaic(index)
- shapes = None
-
- # MixUp augmentation
- if random.random() < hyp["mixup"]:
- img, labels = mixup(
- img, labels, *self.load_mosaic(random.randint(0, self.n - 1))
- )
-
- else:
- # Load image
- img, (h0, w0), (h, w) = self.load_image(index)
-
- # Letterbox
- shape = (
- self.batch_shapes[self.batch[index]] if self.rect else self.img_size
- ) # final letterboxed shape
- img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
- shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
-
- labels = self.labels[index].copy()
- if labels.size: # normalized xywh to pixel xyxy format
- labels[:, 1:] = xywhn2xyxy(
- labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1]
- )
-
- if self.augment:
- img, labels = random_perspective(
- img,
- labels,
- degrees=hyp["degrees"],
- translate=hyp["translate"],
- scale=hyp["scale"],
- shear=hyp["shear"],
- perspective=hyp["perspective"],
- )
-
- nl = len(labels) # number of labels
- if nl:
- labels[:, 1:5] = xyxy2xywhn(
- labels[:, 1:5], w=img.shape[1], h=img.shape[0], clip=True, eps=1e-3
- )
-
- if self.augment:
- # Albumentations
- img, labels = self.albumentations(img, labels)
- nl = len(labels) # update after albumentations
-
- # HSV color-space
- augment_hsv(img, hgain=hyp["hsv_h"], sgain=hyp["hsv_s"], vgain=hyp["hsv_v"])
-
- # Flip up-down
- if random.random() < hyp["flipud"]:
- img = np.flipud(img)
- if nl:
- labels[:, 2] = 1 - labels[:, 2]
-
- # Flip left-right
- if random.random() < hyp["fliplr"]:
- img = np.fliplr(img)
- if nl:
- labels[:, 1] = 1 - labels[:, 1]
-
- # Cutouts
- # labels = cutout(img, labels, p=0.5)
- # nl = len(labels) # update after cutout
-
- labels_out = torch.zeros((nl, 6))
- if nl:
- labels_out[:, 1:] = torch.from_numpy(labels)
-
- # Convert
- img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
- img = np.ascontiguousarray(img)
-
- return torch.from_numpy(img), labels_out, self.img_files[index], shapes
-
- def load_image(self, i):
- # loads 1 image from dataset index 'i', returns (im, original hw, resized hw)
- im = self.imgs[i]
- if im is None: # not cached in RAM
- npy = self.img_npy[i]
- if npy and npy.exists(): # load npy
- im = np.load(npy)
- else: # read image
- f = self.img_files[i]
- im = cv2.imread(f) # BGR
- assert im is not None, f"Image Not Found {f}"
- h0, w0 = im.shape[:2] # orig hw
- r = self.img_size / max(h0, w0) # ratio
- if r != 1: # if sizes are not equal
- im = cv2.resize(
- im,
- (int(w0 * r), int(h0 * r)),
- interpolation=cv2.INTER_LINEAR
- if (self.augment or r > 1)
- else cv2.INTER_AREA,
- )
- return im, (h0, w0), im.shape[:2] # im, hw_original, hw_resized
- else:
- return (
- self.imgs[i],
- self.img_hw0[i],
- self.img_hw[i],
- ) # im, hw_original, hw_resized
-
- def load_mosaic(self, index):
- # YOLOv5 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic
- labels4, segments4 = [], []
- s = self.img_size
- yc, xc = (
- int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border
- ) # mosaic center x, y
- indices = [index] + random.choices(
- self.indices, k=3
- ) # 3 additional image indices
- random.shuffle(indices)
- for i, index in enumerate(indices):
- # Load image
- img, _, (h, w) = self.load_image(index)
-
- # place img in img4
- if i == 0: # top left
- img4 = np.full(
- (s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8
- ) # base image with 4 tiles
- x1a, y1a, x2a, y2a = (
- max(xc - w, 0),
- max(yc - h, 0),
- xc,
- yc,
- ) # xmin, ymin, xmax, ymax (large image)
- x1b, y1b, x2b, y2b = (
- w - (x2a - x1a),
- h - (y2a - y1a),
- w,
- h,
- ) # xmin, ymin, xmax, ymax (small image)
- elif i == 1: # top right
- x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
- x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
- elif i == 2: # bottom left
- x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
- x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
- elif i == 3: # bottom right
- x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
- x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
-
- img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
- padw = x1a - x1b
- padh = y1a - y1b
-
- # Labels
- labels, segments = self.labels[index].copy(), self.segments[index].copy()
- if labels.size:
- labels[:, 1:] = xywhn2xyxy(
- labels[:, 1:], w, h, padw, padh
- ) # normalized xywh to pixel xyxy format
- segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
- labels4.append(labels)
- segments4.extend(segments)
-
- # Concat/clip labels
- labels4 = np.concatenate(labels4, 0)
- for x in (labels4[:, 1:], *segments4):
- np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
- # img4, labels4 = replicate(img4, labels4) # replicate
-
- # Augment
- img4, labels4, segments4 = copy_paste(
- img4, labels4, segments4, p=self.hyp["copy_paste"]
- )
- img4, labels4 = random_perspective(
- img4,
- labels4,
- segments4,
- degrees=self.hyp["degrees"],
- translate=self.hyp["translate"],
- scale=self.hyp["scale"],
- shear=self.hyp["shear"],
- perspective=self.hyp["perspective"],
- border=self.mosaic_border,
- ) # border to remove
-
- return img4, labels4
-
- def load_mosaic9(self, index):
- # YOLOv5 9-mosaic loader. Loads 1 image + 8 random images into a 9-image mosaic
- labels9, segments9 = [], []
- s = self.img_size
- indices = [index] + random.choices(
- self.indices, k=8
- ) # 8 additional image indices
- random.shuffle(indices)
- hp, wp = -1, -1 # height, width previous
- for i, index in enumerate(indices):
- # Load image
- img, _, (h, w) = self.load_image(index)
-
- # place img in img9
- if i == 0: # center
- img9 = np.full(
- (s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8
- ) # base image with 4 tiles
- h0, w0 = h, w
- c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates
- elif i == 1: # top
- c = s, s - h, s + w, s
- elif i == 2: # top right
- c = s + wp, s - h, s + wp + w, s
- elif i == 3: # right
- c = s + w0, s, s + w0 + w, s + h
- elif i == 4: # bottom right
- c = s + w0, s + hp, s + w0 + w, s + hp + h
- elif i == 5: # bottom
- c = s + w0 - w, s + h0, s + w0, s + h0 + h
- elif i == 6: # bottom left
- c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
- elif i == 7: # left
- c = s - w, s + h0 - h, s, s + h0
- elif i == 8: # top left
- c = s - w, s + h0 - hp - h, s, s + h0 - hp
-
- padx, pady = c[:2]
- x1, y1, x2, y2 = (max(x, 0) for x in c) # allocate coords
-
- # Labels
- labels, segments = self.labels[index].copy(), self.segments[index].copy()
- if labels.size:
- labels[:, 1:] = xywhn2xyxy(
- labels[:, 1:], w, h, padx, pady
- ) # normalized xywh to pixel xyxy format
- segments = [xyn2xy(x, w, h, padx, pady) for x in segments]
- labels9.append(labels)
- segments9.extend(segments)
-
- # Image
- img9[y1:y2, x1:x2] = img[
- y1 - pady :, x1 - padx :
- ] # img9[ymin:ymax, xmin:xmax]
- hp, wp = h, w # height, width previous
-
- # Offset
- yc, xc = (
- int(random.uniform(0, s)) for _ in self.mosaic_border
- ) # mosaic center x, y
- img9 = img9[yc : yc + 2 * s, xc : xc + 2 * s]
-
- # Concat/clip labels
- labels9 = np.concatenate(labels9, 0)
- labels9[:, [1, 3]] -= xc
- labels9[:, [2, 4]] -= yc
- c = np.array([xc, yc]) # centers
- segments9 = [x - c for x in segments9]
-
- for x in (labels9[:, 1:], *segments9):
- np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
- # img9, labels9 = replicate(img9, labels9) # replicate
-
- # Augment
- img9, labels9 = random_perspective(
- img9,
- labels9,
- segments9,
- degrees=self.hyp["degrees"],
- translate=self.hyp["translate"],
- scale=self.hyp["scale"],
- shear=self.hyp["shear"],
- perspective=self.hyp["perspective"],
- border=self.mosaic_border,
- ) # border to remove
-
- return img9, labels9
-
- @staticmethod
- def collate_fn(batch):
- img, label, path, shapes = zip(*batch) # transposed
- for i, lb in enumerate(label):
- lb[:, 0] = i # add target image index for build_targets()
- return torch.stack(img, 0), torch.cat(label, 0), path, shapes
-
- @staticmethod
- def collate_fn4(batch):
- img, label, path, shapes = zip(*batch) # transposed
- n = len(shapes) // 4
- img4, label4, path4, shapes4 = [], [], path[:n], shapes[:n]
-
- ho = torch.tensor([[0.0, 0, 0, 1, 0, 0]])
- wo = torch.tensor([[0.0, 0, 1, 0, 0, 0]])
- s = torch.tensor([[1, 1, 0.5, 0.5, 0.5, 0.5]]) # scale
- for i in range(n): # zidane torch.zeros(16,3,720,1280) # BCHW
- i *= 4
- if random.random() < 0.5:
- im = F.interpolate(
- img[i].unsqueeze(0).float(),
- scale_factor=2.0,
- mode="bilinear",
- align_corners=False,
- )[0].type(img[i].type())
- lb = label[i]
- else:
- im = torch.cat(
- (
- torch.cat((img[i], img[i + 1]), 1),
- torch.cat((img[i + 2], img[i + 3]), 1),
- ),
- 2,
- )
- lb = (
- torch.cat(
- (
- label[i],
- label[i + 1] + ho,
- label[i + 2] + wo,
- label[i + 3] + ho + wo,
- ),
- 0,
- )
- * s
- )
- img4.append(im)
- label4.append(lb)
-
- for i, lb in enumerate(label4):
- lb[:, 0] = i # add target image index for build_targets()
-
- return torch.stack(img4, 0), torch.cat(label4, 0), path4, shapes4
-
-
-def partition_data(data_path, partition, n_nets):
- if os.path.isfile(data_path):
- with open(data_path) as f:
- data = f.readlines()
- n_data = len(data)
- else:
- n_data = len(os.listdir(data_path))
- if partition == "homo":
- total_num = n_data
- idxs = np.random.permutation(total_num)
- batch_idxs = np.array_split(idxs, n_nets)
- net_dataidx_map = {i: batch_idxs[i] for i in range(n_nets)}
- elif partition == "hetero":
- _label_path = copy.deepcopy(data_path)
- label_path = _label_path.replace("images", "labels")
- net_dataidx_map = non_iid_coco(label_path, n_nets)
- # print(net_dataidx_map)
-
- return net_dataidx_map
-
-
-def non_iid_coco(label_path, client_num):
- res_bin = {}
- label_path = Path(label_path)
- fs = os.listdir(label_path)
- fs = {i for i in fs if i.endswith(".txt")}
- bin_n = len(fs) // client_num
- # print(f"{len(fs)} files found, {bin_n} files per client")
-
- id2idx = {} # coco128
- for i, f in enumerate(fs):
- id2idx[int(f.split(".")[0])] = i
-
- for b in range(bin_n - 1):
- res = {}
- for f in fs:
- if not f.endswith(".txt"):
- continue
-
- txt_path = os.path.join(label_path, f)
- txt_f = open(txt_path)
- for line in txt_f.readlines():
- line = line.strip("\n")
- l = line.split(" ")[0]
- if res.get(l) == None:
- res[l] = set()
- else:
- res[l].add(f)
- txt_f.close()
-
- sort_res = sorted(res.items(), key=lambda x: len(x[1]), reverse=True)
- # print(f"{b}th bin: {len(sort_res)} classes")
- # print(res)
- fs = fs - sort_res[0][1]
- # print(f"{len(fs)} files left")
-
- fs_id = [id2idx[int(i.split(".")[0])] for i in sort_res[0][1]]
- res_bin[b] = np.array(fs_id)
-
- fs_id = [int(i.split(".")[0]) for i in fs]
- res_bin[b + 1] = np.array(list(fs_id))
- return res_bin
- # print (res_bin)
-
-
-def load_partition_data_coco(args, hyp, model):
- save_dir, epochs, batch_size, total_batch_size, weights = (
- Path(args.save_dir),
- args.epochs,
- args.batch_size,
- args.total_batch_size,
- args.weights,
- )
-
- with open(args.data_conf) as f:
- data_dict = yaml.load(f, Loader=yaml.FullLoader) # data dict
-
- train_path = data_dict["train"]
- test_path = data_dict["val"]
- train_path = os.path.expanduser(train_path)
- test_path = os.path.expanduser(test_path)
-
- nc, names = (
- (1, ["item"]) if args.single_cls else (int(data_dict["nc"]), data_dict["names"])
- ) # number classes, names
- gs = int(max(model.stride)) # grid size (max stride)
- imgsz, imgsz_test = [check_img_size(x, gs) for x in args.img_size]
-
- client_number = args.client_num_in_total
- partition = args.partition_method
-
- # client_list = []
-
- net_dataidx_map = partition_data(
- train_path, partition=partition, n_nets=client_number
- )
- net_dataidx_map_test = partition_data(
- test_path, partition=partition, n_nets=client_number
- )
- train_data_loader_dict = dict()
- test_data_loader_dict = dict()
- train_data_num_dict = dict()
- train_dataset_dict = dict()
-
- # train_dataloader_global, train_dataset_global = create_dataloader(
- # train_path,
- # imgsz,
- # batch_size,
- # gs,
- # args,
- # hyp=hyp,
- # rect=True,
- # augment=True,
- # workers=args.worker_num,
- # )
- # train_data_num = train_dataset_global.data_size
-
- # test_dataloader_global = create_dataloader(
- # test_path,
- # imgsz_test,
- # total_batch_size,
- # gs,
- # args, # testloader
- # hyp=hyp,
- # rect=True,
- # pad=0.5,
- # workers=args.worker_num,
- # )[0]
-
- # test_data_num = test_dataloader_global.dataset.data_size
-
- train_data_num = 0
- test_data_num = 0
- train_dataloader_global = None
- test_dataloader_global = None
-
- if args.process_id == 0: # server
- pass
- else:
- client_idx = int(args.process_id) - 1
-
- logging.info(
- f"{client_idx}: net_dataidx_map trainer: {net_dataidx_map[client_idx]}"
- )
- dataloader, dataset = create_dataloader(
- train_path,
- imgsz,
- batch_size,
- gs,
- args,
- hyp=hyp,
- rect=True,
- augment=True,
- net_dataidx_map=net_dataidx_map[client_idx],
- workers=args.worker_num,
- )
- testloader = create_dataloader(
- test_path,
- imgsz_test,
- total_batch_size,
- gs,
- args, # testloader
- hyp=hyp,
- rect=True,
- rank=-1,
- pad=0.5,
- net_dataidx_map=net_dataidx_map_test[client_idx],
- workers=args.worker_num,
- )[0]
-
- train_dataset_dict[client_idx] = dataset
- train_data_num_dict[client_idx] = len(dataset)
- train_data_loader_dict[client_idx] = dataloader
- test_data_loader_dict[client_idx] = testloader
- # client_list.append(
- # Client(i, train_data_loader_dict[i], len(dataset), opt, device, model, tb_writer=tb_writer,
- # hyp=hyp, wandb=wandb))
- #
-
- return (
- train_data_num,
- test_data_num,
- train_dataloader_global,
- test_dataloader_global,
- train_data_num_dict,
- train_data_loader_dict,
- test_data_loader_dict,
- nc,
- )
diff --git a/python/app/fedcv/object_detection/data/data_loader_cross_silo.py b/python/app/fedcv/object_detection/data/data_loader_cross_silo.py
deleted file mode 100644
index c301e8e38b..0000000000
--- a/python/app/fedcv/object_detection/data/data_loader_cross_silo.py
+++ /dev/null
@@ -1,84 +0,0 @@
-from torch.utils import data
-from .data_loader import load_synthetic_data
-
-
-def load_cross_silo(args):
- return load_synthetic_data_cross_silo(args)
-
-
-def split_array(array, n_dist_trainer):
- r = len(array) % n_dist_trainer
- if r != 0:
- for _ in range(n_dist_trainer - r):
- array.append(array[-1])
- split_array = []
- chuhck_size = len(array) // n_dist_trainer
-
- for i in range(n_dist_trainer):
- split_array.append(array[i * chuhck_size : (i + 1) * chuhck_size])
- return split_array
-
-
-def split_dl(dl, n_dist_trainer):
- ds = dl.dataset
- bs = dl.batch_size
- split_dl = []
- if isinstance(dl.sampler, data.RandomSampler):
- shuffle = True
- else:
- shuffle = False
- for rank in range(n_dist_trainer):
- sampler = data.distributed.DistributedSampler(
- dataset=ds,
- num_replicas=n_dist_trainer,
- rank=rank,
- shuffle=shuffle,
- drop_last=False,
- )
- process_dl = data.DataLoader(
- dataset=dl.dataset,
- batch_size=bs,
- shuffle=False,
- drop_last=False,
- sampler=sampler,
- )
- split_dl.append(process_dl)
- return split_dl
-
-
-def split_data_for_dist_trainers(data_loaders, n_dist_trainer):
- for index, dl in data_loaders.items():
- if isinstance(dl, data.DataLoader):
- data_loaders[index] = split_dl(dl, n_dist_trainer)
- else:
- data_loaders[index] = split_array(dl, n_dist_trainer)
- return data_loaders
-
-
-def load_synthetic_data_cross_silo(args):
- n_dist_trainer = args.n_proc_in_silo
- dataset, class_num = load_synthetic_data(args)
- [
- train_data_num,
- test_data_num,
- train_data_global,
- test_data_global,
- train_data_local_num_dict,
- train_data_local_dict,
- test_data_local_dict,
- class_num,
- ] = dataset
-
- train_data_local_dict = split_data_for_dist_trainers(train_data_local_dict, n_dist_trainer)
-
- dataset = [
- train_data_num,
- test_data_num,
- train_data_global,
- test_data_global,
- train_data_local_num_dict,
- train_data_local_dict,
- test_data_local_dict,
- class_num,
- ]
- return dataset, class_num
diff --git a/python/app/fedcv/object_detection/data/xView.yaml b/python/app/fedcv/object_detection/data/xView.yaml
deleted file mode 100644
index fd82828dcb..0000000000
--- a/python/app/fedcv/object_detection/data/xView.yaml
+++ /dev/null
@@ -1,102 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-# DIUx xView 2018 Challenge https://challenge.xviewdataset.org by U.S. National Geospatial-Intelligence Agency (NGA)
-# -------- DOWNLOAD DATA MANUALLY and jar xf val_images.zip to 'datasets/xView' before running train command! --------
-# Example usage: python train.py --data xView.yaml
-# parent
-# ├── yolov5
-# └── datasets
-# └── xView ← downloads here
-
-
-# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
-path: ../datasets/xView # dataset root dir
-train: images/autosplit_train.txt # train images (relative to 'path') 90% of 847 train images
-val: images/autosplit_val.txt # train images (relative to 'path') 10% of 847 train images
-
-# Classes
-nc: 60 # number of classes
-names: ['Fixed-wing Aircraft', 'Small Aircraft', 'Cargo Plane', 'Helicopter', 'Passenger Vehicle', 'Small Car', 'Bus',
- 'Pickup Truck', 'Utility Truck', 'Truck', 'Cargo Truck', 'Truck w/Box', 'Truck Tractor', 'Trailer',
- 'Truck w/Flatbed', 'Truck w/Liquid', 'Crane Truck', 'Railway Vehicle', 'Passenger Car', 'Cargo Car',
- 'Flat Car', 'Tank car', 'Locomotive', 'Maritime Vessel', 'Motorboat', 'Sailboat', 'Tugboat', 'Barge',
- 'Fishing Vessel', 'Ferry', 'Yacht', 'Container Ship', 'Oil Tanker', 'Engineering Vehicle', 'Tower crane',
- 'Container Crane', 'Reach Stacker', 'Straddle Carrier', 'Mobile Crane', 'Dump Truck', 'Haul Truck',
- 'Scraper/Tractor', 'Front loader/Bulldozer', 'Excavator', 'Cement Mixer', 'Ground Grader', 'Hut/Tent', 'Shed',
- 'Building', 'Aircraft Hangar', 'Damaged Building', 'Facility', 'Construction Site', 'Vehicle Lot', 'Helipad',
- 'Storage Tank', 'Shipping container lot', 'Shipping Container', 'Pylon', 'Tower'] # class names
-
-
-# Download script/URL (optional) ---------------------------------------------------------------------------------------
-download: |
- import json
- import os
- from pathlib import Path
-
- import numpy as np
- from PIL import Image
- from tqdm import tqdm
-
- from utils.datasets import autosplit
- from utils.general import download, xyxy2xywhn
-
-
- def convert_labels(fname=Path('xView/xView_train.geojson')):
- # Convert xView geoJSON labels to YOLO format
- path = fname.parent
- with open(fname) as f:
- print(f'Loading {fname}...')
- data = json.load(f)
-
- # Make dirs
- labels = Path(path / 'labels' / 'train')
- os.system(f'rm -rf {labels}')
- labels.mkdir(parents=True, exist_ok=True)
-
- # xView classes 11-94 to 0-59
- xview_class2index = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, -1, 3, -1, 4, 5, 6, 7, 8, -1, 9, 10, 11,
- 12, 13, 14, 15, -1, -1, 16, 17, 18, 19, 20, 21, 22, -1, 23, 24, 25, -1, 26, 27, -1, 28, -1,
- 29, 30, 31, 32, 33, 34, 35, 36, 37, -1, 38, 39, 40, 41, 42, 43, 44, 45, -1, -1, -1, -1, 46,
- 47, 48, 49, -1, 50, 51, -1, 52, -1, -1, -1, 53, 54, -1, 55, -1, -1, 56, -1, 57, -1, 58, 59]
-
- shapes = {}
- for feature in tqdm(data['features'], desc=f'Converting {fname}'):
- p = feature['properties']
- if p['bounds_imcoords']:
- id = p['image_id']
- file = path / 'train_images' / id
- if file.exists(): # 1395.tif missing
- try:
- box = np.array([int(num) for num in p['bounds_imcoords'].split(",")])
- assert box.shape[0] == 4, f'incorrect box shape {box.shape[0]}'
- cls = p['type_id']
- cls = xview_class2index[int(cls)] # xView class to 0-60
- assert 59 >= cls >= 0, f'incorrect class index {cls}'
-
- # Write YOLO label
- if id not in shapes:
- shapes[id] = Image.open(file).size
- box = xyxy2xywhn(box[None].astype(np.float), w=shapes[id][0], h=shapes[id][1], clip=True)
- with open((labels / id).with_suffix('.txt'), 'a') as f:
- f.write(f"{cls} {' '.join(f'{x:.6f}' for x in box[0])}\n") # write label.txt
- except Exception as e:
- print(f'WARNING: skipping one label for {file}: {e}')
-
-
- # Download manually from https://challenge.xviewdataset.org
- dir = Path(yaml['path']) # dataset root dir
- # urls = ['https://d307kc0mrhucc3.cloudfront.net/train_labels.zip', # train labels
- # 'https://d307kc0mrhucc3.cloudfront.net/train_images.zip', # 15G, 847 train images
- # 'https://d307kc0mrhucc3.cloudfront.net/val_images.zip'] # 5G, 282 val images (no labels)
- # download(urls, dir=dir, delete=False)
-
- # Convert labels
- convert_labels(dir / 'xView_train.geojson')
-
- # Move images
- images = Path(dir / 'images')
- images.mkdir(parents=True, exist_ok=True)
- Path(dir / 'train_images').rename(dir / 'images' / 'train')
- Path(dir / 'val_images').rename(dir / 'images' / 'val')
-
- # Split
- autosplit(dir / 'images' / 'train')
diff --git a/python/app/fedcv/object_detection/main_fedml_object_detection.py b/python/app/fedcv/object_detection/main_fedml_object_detection.py
deleted file mode 100644
index 959acf86cb..0000000000
--- a/python/app/fedcv/object_detection/main_fedml_object_detection.py
+++ /dev/null
@@ -1,19 +0,0 @@
-import fedml
-from fedml import FedMLRunner
-from model.init_yolo import init_yolo
-from trainer.yolo_aggregator import YOLOAggregator
-
-if __name__ == "__main__":
- # init FedML framework
- args = fedml.init()
-
- # init device
- device = fedml.device.get_device(args)
-
- # init yolo
- model, dataset, trainer, args = init_yolo(args=args, device=device)
- aggregator = YOLOAggregator(model, args)
-
- # start training
- fedml_runner = FedMLRunner(args, device, dataset, model, trainer, aggregator)
- fedml_runner.run()
diff --git a/python/app/fedcv/object_detection/model/__init__.py b/python/app/fedcv/object_detection/model/__init__.py
deleted file mode 100644
index e69de29bb2..0000000000
diff --git a/python/app/fedcv/object_detection/model/init_yolo.py b/python/app/fedcv/object_detection/model/init_yolo.py
deleted file mode 100644
index 298b713748..0000000000
--- a/python/app/fedcv/object_detection/model/init_yolo.py
+++ /dev/null
@@ -1,254 +0,0 @@
-import os
-import sys
-
-# sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
-
-import logging
-from pathlib import Path
-from warnings import warn
-import yaml
-import torch
-
-from data.data_loader import load_partition_data_coco
-from model.yolov5.utils.general import (
- labels_to_class_weights,
- increment_path,
- check_file,
- check_img_size,
-)
-from model.yolov5.utils.general import intersect_dicts
-from model.yolov5.models.yolo import Model as YOLOv5
-from model.yolov6.yolov6.utils.config import Config
-from model.yolov6.yolov6.models.yolo import build_model as build_yolov6
-from model.yolov7.models.yolo import Model as YOLOv7
-
-from trainer.yolov5_trainer import YOLOv5Trainer
-from trainer.yolov6_trainer import YOLOv6Trainer
-from trainer.yolov7_trainer import YOLOv7Trainer
-
-try:
- import wandb
-except ImportError:
- wandb = None
- logging.info(
- "Install Weights & Biases for experiment logging via 'pip install wandb' (recommended)"
- )
-
-
-def init_yolo(args, device="cpu"):
- # init settings
- args.yolo_hyp = args.yolo_hyp or (
- "hyp.finetune.yaml" if args.weights else "hyp.scratch.yaml"
- )
- args.data_conf, args.yolo_cfg, args.yolo_hyp = (
- check_file(args.data_conf),
- check_file(args.yolo_cfg),
- check_file(args.yolo_hyp),
- ) # check files
- assert len(args.yolo_cfg) or len(
- args.weights
- ), "either yolo_cfg or weights must be specified"
- args.img_size.extend(
- [args.img_size[-1]] * (2 - len(args.img_size))
- ) # extend to 2 sizes (train, test)
- # args.name = "evolve" if args.evolve else args.name
- args.save_dir = increment_path(
- Path(args.project) / args.name, exist_ok=args.exist_ok
- ) # increment run
-
- # add checkpoint interval
- logging.info("add checkpoint interval")
- args.checkpoint_interval = (
- 50 if args.checkpoint_interval is None else args.checkpoint_interval
- )
- args.server_checkpoint_interval = (
- 5
- if args.server_checkpoint_interval is None
- else args.server_checkpoint_interval
- )
-
- # Hyperparameters
- with open(args.yolo_hyp) as f:
- hyp = yaml.load(f, Loader=yaml.FullLoader) # load hyps
- if "box" not in hyp:
- warn(
- 'Compatibility: %s missing "box" which was renamed from "giou" in %s'
- % (args.yolo_hyp, "https://github.com/ultralytics/yolov5/pull/1120")
- )
- hyp["box"] = hyp.pop("giou")
-
- args.total_batch_size = args.batch_size
-
- logging.info(f"Hyperparameters {hyp}")
- save_dir, epochs, batch_size, total_batch_size, weights = (
- Path(args.save_dir),
- args.epochs,
- args.batch_size,
- args.total_batch_size,
- args.weights,
- )
-
- # Directories
- wdir = save_dir / "weights"
- wdir.mkdir(parents=True, exist_ok=True) # make dir
- last = wdir / "last.pt"
- best = wdir / "best.pt"
- results_file = save_dir / "results.txt"
-
- # add file handler
- logging.info("add file handler")
- fh = logging.FileHandler(os.path.join(args.save_dir, f"log_{args.process_id}.txt"))
- fh.setLevel(logging.INFO)
- logging.getLogger().addHandler(fh)
-
- args.last, args.best, args.results_file = last, best, results_file
-
- # Configure
- with open(args.data_conf) as f:
- data_dict = yaml.load(f, Loader=yaml.FullLoader) # data dict
- train_path = data_dict["train"]
- test_path = data_dict["val"]
- nc, names = (
- (1, ["item"]) if args.single_cls else (int(data_dict["nc"]), data_dict["names"])
- ) # number classes, names
- assert len(names) == nc, "%g names found for nc=%g dataset in %s" % (
- len(names),
- nc,
- args.data,
- ) # check
- args.nc = nc # change nc to actual number of classes
-
- # Model
- # print("weights:", weights)
-
- if args.model.lower() == "yolov5":
- pretrained = weights.endswith(".pt")
- if pretrained:
- ckpt = torch.load(weights, map_location=device) # load checkpoint
- if hyp.get("anchors"):
- ckpt["model"].yaml["anchors"] = round(
- hyp["anchors"]
- ) # force autoanchor
- model = YOLOv5(args.yolo_cfg or ckpt["model"].yaml, ch=3, nc=nc).to(
- device
- ) # create
- exclude = (
- ["anchor"] if args.yolo_cfg or hyp.get("anchors") else []
- ) # exclude keys
- state_dict = ckpt["model"].float().state_dict() # to FP32
- state_dict = intersect_dicts(
- state_dict, model.state_dict(), exclude=exclude
- ) # intersect
- model.load_state_dict(state_dict, strict=False) # load
- logging.info(
- "Transferred %g/%g items from %s"
- % (len(state_dict), len(model.state_dict()), weights)
- ) # report
- else:
- model = YOLOv5(args.yolo_cfg, ch=3, nc=nc).to(device) # create
- elif args.model.lower() == "yolov6":
- args.yolov6_cfg = Config.fromfile(args.yolo_cfg)
- model = build_yolov6(args.yolov6_cfg, num_classes=nc, device=device)
- pretrained = weights.endswith(".pt")
- if pretrained: # finetune if pretrained model is set
- """Load weights from checkpoint file, only assign weights those layers' name and shape are match."""
- ckpt = torch.load(weights, map_location=device)
- state_dict = ckpt["model"].float().state_dict()
- model_state_dict = model.state_dict()
- state_dict = {
- k: v
- for k, v in state_dict.items()
- if k in model_state_dict and v.shape == model_state_dict[k].shape
- }
- model.load_state_dict(state_dict, strict=False)
- del ckpt, state_dict, model_state_dict
- elif args.model.lower() == "yolov7":
- pretrained = weights.endswith(".pt")
- if pretrained:
- ckpt = torch.load(weights, map_location=device) # load checkpoint
- if hyp.get("anchors"):
- ckpt["model"].yaml["anchors"] = round(
- hyp["anchors"]
- ) # force autoanchor
- model = YOLOv7(args.yolo_cfg or ckpt["model"].yaml, ch=3, nc=nc).to(
- device
- ) # create
- exclude = (
- ["anchor"] if args.yolo_cfg or hyp.get("anchors") else []
- ) # exclude keys
- state_dict = ckpt["model"].float().state_dict() # to FP32
- state_dict = intersect_dicts(
- state_dict, model.state_dict(), exclude=exclude
- ) # intersect
- model.load_state_dict(state_dict, strict=False) # load
- logging.info(
- "Transferred %g/%g items from %s"
- % (len(state_dict), len(model.state_dict()), weights)
- ) # report
- else:
- model = YOLOv7(args.yolo_cfg, ch=3, nc=nc).to(device) # create
-
- # print(model)
-
- dataset = load_partition_data_coco(args, hyp, model)
- [
- train_data_num,
- test_data_num,
- train_data_global,
- test_data_global,
- train_data_local_num_dict,
- train_data_local_dict,
- test_data_local_dict,
- class_num,
- ] = dataset
-
- args.model_stride = model.stride
- gs = int(max(model.stride)) # grid size (max stride)
- imgsz, imgsz_test = [
- check_img_size(x, gs) for x in args.img_size
- ] # verify imgsz are gs-multiples
-
- hyp["cls"] *= nc / 80.0
- model.nc = nc # attach number of classes to model
- model.hyp = hyp # attach hyperparameters to model
- model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou)
- # model.class_weights = labels_to_class_weights(train_data_global.dataset.labels, nc).to(
- # device
- # ) # attach class weights
- model.names = names
- # Optimizer
- nbs = 64 # nominal batch size
- accumulate = max(
- round(nbs / total_batch_size), 1
- ) # accumulate loss before optimizing
- hyp["weight_decay"] *= total_batch_size * accumulate / nbs # scale weight_decay
- # logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")
-
- # Save run settings
- with open(save_dir / "hyp.yaml", "w") as f:
- yaml.dump(hyp, f, sort_keys=False)
- # with open(save_dir / "opt.yaml", "w") as f:
- # # save args as yaml
- # yaml.dump(args.__dict__, f, sort_keys=False)
-
- args.hyp = hyp # add hyperparameters
- args.wandb = wandb
-
- # Trainer
- if args.model == "yolov5":
- trainer = YOLOv5Trainer(model=model, args=args)
- sys.path.append(
- os.path.join(os.path.dirname(os.path.abspath(__file__)), "yolov5")
- )
- elif args.model == "yolov6":
- trainer = YOLOv6Trainer(model=model, args=args)
- sys.path.append(
- os.path.join(os.path.dirname(os.path.abspath(__file__)), "yolov6", "yolov6")
- )
- elif args.model == "yolov7":
- trainer = YOLOv7Trainer(model=model, args=args)
- sys.path.append(
- os.path.join(os.path.dirname(os.path.abspath(__file__)), "yolov7")
- )
-
- return model, dataset, trainer, args
diff --git a/python/app/fedcv/object_detection/model/yolov5/.dockerignore b/python/app/fedcv/object_detection/model/yolov5/.dockerignore
deleted file mode 100644
index af51ccc3d8..0000000000
--- a/python/app/fedcv/object_detection/model/yolov5/.dockerignore
+++ /dev/null
@@ -1,222 +0,0 @@
-# Repo-specific DockerIgnore -------------------------------------------------------------------------------------------
-#.git
-.cache
-.idea
-runs
-output
-coco
-storage.googleapis.com
-
-data/samples/*
-**/results*.csv
-*.jpg
-
-# Neural Network weights -----------------------------------------------------------------------------------------------
-**/*.pt
-**/*.pth
-**/*.onnx
-**/*.engine
-**/*.mlmodel
-**/*.torchscript
-**/*.torchscript.pt
-**/*.tflite
-**/*.h5
-**/*.pb
-*_saved_model/
-*_web_model/
-*_openvino_model/
-
-# Below Copied From .gitignore -----------------------------------------------------------------------------------------
-# Below Copied From .gitignore -----------------------------------------------------------------------------------------
-
-
-# GitHub Python GitIgnore ----------------------------------------------------------------------------------------------
-# Byte-compiled / optimized / DLL files
-__pycache__/
-*.py[cod]
-*$py.class
-
-# C extensions
-*.so
-
-# Distribution / packaging
-.Python
-env/
-build/
-develop-eggs/
-dist/
-downloads/
-eggs/
-.eggs/
-lib/
-lib64/
-parts/
-sdist/
-var/
-wheels/
-*.egg-info/
-wandb/
-.installed.cfg
-*.egg
-
-# PyInstaller
-# Usually these files are written by a python script from a template
-# before PyInstaller builds the exe, so as to inject date/other infos into it.
-*.manifest
-*.spec
-
-# Installer logs
-pip-log.txt
-pip-delete-this-directory.txt
-
-# Unit test / coverage reports
-htmlcov/
-.tox/
-.coverage
-.coverage.*
-.cache
-nosetests.xml
-coverage.xml
-*.cover
-.hypothesis/
-
-# Translations
-*.mo
-*.pot
-
-# Django stuff:
-*.log
-local_settings.py
-
-# Flask stuff:
-instance/
-.webassets-cache
-
-# Scrapy stuff:
-.scrapy
-
-# Sphinx documentation
-docs/_build/
-
-# PyBuilder
-target/
-
-# Jupyter Notebook
-.ipynb_checkpoints
-
-# pyenv
-.python-version
-
-# celery beat schedule file
-celerybeat-schedule
-
-# SageMath parsed files
-*.sage.py
-
-# dotenv
-.env
-
-# virtualenv
-.venv*
-venv*/
-ENV*/
-
-# Spyder project settings
-.spyderproject
-.spyproject
-
-# Rope project settings
-.ropeproject
-
-# mkdocs documentation
-/site
-
-# mypy
-.mypy_cache/
-
-
-# https://github.com/github/gitignore/blob/master/Global/macOS.gitignore -----------------------------------------------
-
-# General
-.DS_Store
-.AppleDouble
-.LSOverride
-
-# Icon must end with two \r
-Icon
-Icon?
-
-# Thumbnails
-._*
-
-# Files that might appear in the root of a volume
-.DocumentRevisions-V100
-.fseventsd
-.Spotlight-V100
-.TemporaryItems
-.Trashes
-.VolumeIcon.icns
-.com.apple.timemachine.donotpresent
-
-# Directories potentially created on remote AFP share
-.AppleDB
-.AppleDesktop
-Network Trash Folder
-Temporary Items
-.apdisk
-
-
-# https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore
-# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
-# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
-
-# User-specific stuff:
-.idea/*
-.idea/**/workspace.xml
-.idea/**/tasks.xml
-.idea/dictionaries
-.html # Bokeh Plots
-.pg # TensorFlow Frozen Graphs
-.avi # videos
-
-# Sensitive or high-churn files:
-.idea/**/dataSources/
-.idea/**/dataSources.ids
-.idea/**/dataSources.local.xml
-.idea/**/sqlDataSources.xml
-.idea/**/dynamic.xml
-.idea/**/uiDesigner.xml
-
-# Gradle:
-.idea/**/gradle.xml
-.idea/**/libraries
-
-# CMake
-cmake-build-debug/
-cmake-build-release/
-
-# Mongo Explorer plugin:
-.idea/**/mongoSettings.xml
-
-## File-based project format:
-*.iws
-
-## Plugin-specific files:
-
-# IntelliJ
-out/
-
-# mpeltonen/sbt-idea plugin
-.idea_modules/
-
-# JIRA plugin
-atlassian-ide-plugin.xml
-
-# Cursive Clojure plugin
-.idea/replstate.xml
-
-# Crashlytics plugin (for Android Studio and IntelliJ)
-com_crashlytics_export_strings.xml
-crashlytics.properties
-crashlytics-build.properties
-fabric.properties
diff --git a/python/app/fedcv/object_detection/model/yolov5/.gitattributes b/python/app/fedcv/object_detection/model/yolov5/.gitattributes
deleted file mode 100644
index dad4239eba..0000000000
--- a/python/app/fedcv/object_detection/model/yolov5/.gitattributes
+++ /dev/null
@@ -1,2 +0,0 @@
-# this drop notebooks from GitHub language stats
-*.ipynb linguist-vendored
diff --git a/python/app/fedcv/object_detection/model/yolov5/.github/CODE_OF_CONDUCT.md b/python/app/fedcv/object_detection/model/yolov5/.github/CODE_OF_CONDUCT.md
deleted file mode 100644
index 27e59e9aab..0000000000
--- a/python/app/fedcv/object_detection/model/yolov5/.github/CODE_OF_CONDUCT.md
+++ /dev/null
@@ -1,128 +0,0 @@
-# YOLOv5 🚀 Contributor Covenant Code of Conduct
-
-## Our Pledge
-
-We as members, contributors, and leaders pledge to make participation in our
-community a harassment-free experience for everyone, regardless of age, body
-size, visible or invisible disability, ethnicity, sex characteristics, gender
-identity and expression, level of experience, education, socio-economic status,
-nationality, personal appearance, race, religion, or sexual identity
-and orientation.
-
-We pledge to act and interact in ways that contribute to an open, welcoming,
-diverse, inclusive, and healthy community.
-
-## Our Standards
-
-Examples of behavior that contributes to a positive environment for our
-community include:
-
-- Demonstrating empathy and kindness toward other people
-- Being respectful of differing opinions, viewpoints, and experiences
-- Giving and gracefully accepting constructive feedback
-- Accepting responsibility and apologizing to those affected by our mistakes,
- and learning from the experience
-- Focusing on what is best not just for us as individuals, but for the
- overall community
-
-Examples of unacceptable behavior include:
-
-- The use of sexualized language or imagery, and sexual attention or
- advances of any kind
-- Trolling, insulting or derogatory comments, and personal or political attacks
-- Public or private harassment
-- Publishing others' private information, such as a physical or email
- address, without their explicit permission
-- Other conduct which could reasonably be considered inappropriate in a
- professional setting
-
-## Enforcement Responsibilities
-
-Community leaders are responsible for clarifying and enforcing our standards of
-acceptable behavior and will take appropriate and fair corrective action in
-response to any behavior that they deem inappropriate, threatening, offensive,
-or harmful.
-
-Community leaders have the right and responsibility to remove, edit, or reject
-comments, commits, code, wiki edits, issues, and other contributions that are
-not aligned to this Code of Conduct, and will communicate reasons for moderation
-decisions when appropriate.
-
-## Scope
-
-This Code of Conduct applies within all community spaces, and also applies when
-an individual is officially representing the community in public spaces.
-Examples of representing our community include using an official e-mail address,
-posting via an official social media account, or acting as an appointed
-representative at an online or offline event.
-
-## Enforcement
-
-Instances of abusive, harassing, or otherwise unacceptable behavior may be
-reported to the community leaders responsible for enforcement at
-hello@ultralytics.com.
-All complaints will be reviewed and investigated promptly and fairly.
-
-All community leaders are obligated to respect the privacy and security of the
-reporter of any incident.
-
-## Enforcement Guidelines
-
-Community leaders will follow these Community Impact Guidelines in determining
-the consequences for any action they deem in violation of this Code of Conduct:
-
-### 1. Correction
-
-**Community Impact**: Use of inappropriate language or other behavior deemed
-unprofessional or unwelcome in the community.
-
-**Consequence**: A private, written warning from community leaders, providing
-clarity around the nature of the violation and an explanation of why the
-behavior was inappropriate. A public apology may be requested.
-
-### 2. Warning
-
-**Community Impact**: A violation through a single incident or series
-of actions.
-
-**Consequence**: A warning with consequences for continued behavior. No
-interaction with the people involved, including unsolicited interaction with
-those enforcing the Code of Conduct, for a specified period of time. This
-includes avoiding interactions in community spaces as well as external channels
-like social media. Violating these terms may lead to a temporary or
-permanent ban.
-
-### 3. Temporary Ban
-
-**Community Impact**: A serious violation of community standards, including
-sustained inappropriate behavior.
-
-**Consequence**: A temporary ban from any sort of interaction or public
-communication with the community for a specified period of time. No public or
-private interaction with the people involved, including unsolicited interaction
-with those enforcing the Code of Conduct, is allowed during this period.
-Violating these terms may lead to a permanent ban.
-
-### 4. Permanent Ban
-
-**Community Impact**: Demonstrating a pattern of violation of community
-standards, including sustained inappropriate behavior, harassment of an
-individual, or aggression toward or disparagement of classes of individuals.
-
-**Consequence**: A permanent ban from any sort of public interaction within
-the community.
-
-## Attribution
-
-This Code of Conduct is adapted from the [Contributor Covenant][homepage],
-version 2.0, available at
-https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.
-
-Community Impact Guidelines were inspired by [Mozilla's code of conduct
-enforcement ladder](https://github.com/mozilla/diversity).
-
-For answers to common questions about this code of conduct, see the FAQ at
-https://www.contributor-covenant.org/faq. Translations are available at
-https://www.contributor-covenant.org/translations.
-
-[homepage]: https://www.contributor-covenant.org
diff --git a/python/app/fedcv/object_detection/model/yolov5/.github/FUNDING.yml b/python/app/fedcv/object_detection/model/yolov5/.github/FUNDING.yml
deleted file mode 100644
index 3da386f7e7..0000000000
--- a/python/app/fedcv/object_detection/model/yolov5/.github/FUNDING.yml
+++ /dev/null
@@ -1,5 +0,0 @@
-# These are supported funding model platforms
-
-github: glenn-jocher
-patreon: ultralytics
-open_collective: ultralytics
diff --git a/python/app/fedcv/object_detection/model/yolov5/.github/ISSUE_TEMPLATE/bug-report.yml b/python/app/fedcv/object_detection/model/yolov5/.github/ISSUE_TEMPLATE/bug-report.yml
deleted file mode 100644
index fcb64138b0..0000000000
--- a/python/app/fedcv/object_detection/model/yolov5/.github/ISSUE_TEMPLATE/bug-report.yml
+++ /dev/null
@@ -1,85 +0,0 @@
-name: 🐛 Bug Report
-# title: " "
-description: Problems with YOLOv5
-labels: [bug, triage]
-body:
- - type: markdown
- attributes:
- value: |
- Thank you for submitting a YOLOv5 🐛 Bug Report!
-
- - type: checkboxes
- attributes:
- label: Search before asking
- description: >
- Please search the [issues](https://github.com/ultralytics/yolov5/issues) to see if a similar bug report already exists.
- options:
- - label: >
- I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and found no similar bug report.
- required: true
-
- - type: dropdown
- attributes:
- label: YOLOv5 Component
- description: |
- Please select the part of YOLOv5 where you found the bug.
- multiple: true
- options:
- - "Training"
- - "Validation"
- - "Detection"
- - "Export"
- - "PyTorch Hub"
- - "Multi-GPU"
- - "Evolution"
- - "Integrations"
- - "Other"
- validations:
- required: false
-
- - type: textarea
- attributes:
- label: Bug
- description: Provide console output with error messages and/or screenshots of the bug.
- placeholder: |
- 💡 ProTip! Include as much information as possible (screenshots, logs, tracebacks etc.) to receive the most helpful response.
- validations:
- required: true
-
- - type: textarea
- attributes:
- label: Environment
- description: Please specify the software and hardware you used to produce the bug.
- placeholder: |
- - YOLO: YOLOv5 🚀 v6.0-67-g60e42e1 torch 1.9.0+cu111 CUDA:0 (A100-SXM4-40GB, 40536MiB)
- - OS: Ubuntu 20.04
- - Python: 3.9.0
- validations:
- required: false
-
- - type: textarea
- attributes:
- label: Minimal Reproducible Example
- description: >
- When asking a question, people will be better able to provide help if you provide code that they can easily understand and use to **reproduce** the problem.
- This is referred to by community members as creating a [minimal reproducible example](https://stackoverflow.com/help/minimal-reproducible-example).
- placeholder: |
- ```
- # Code to reproduce your issue here
- ```
- validations:
- required: false
-
- - type: textarea
- attributes:
- label: Additional
- description: Anything else you would like to share?
-
- - type: checkboxes
- attributes:
- label: Are you willing to submit a PR?
- description: >
- (Optional) We encourage you to submit a [Pull Request](https://github.com/ultralytics/yolov5/pulls) (PR) to help improve YOLOv5 for everyone, especially if you have a good understanding of how to implement a fix or feature.
- See the YOLOv5 [Contributing Guide](https://github.com/ultralytics/yolov5/blob/master/CONTRIBUTING.md) to get started.
- options:
- - label: Yes I'd like to help by submitting a PR!
diff --git a/python/app/fedcv/object_detection/model/yolov5/.github/ISSUE_TEMPLATE/config.yml b/python/app/fedcv/object_detection/model/yolov5/.github/ISSUE_TEMPLATE/config.yml
deleted file mode 100644
index 4db7cefb27..0000000000
--- a/python/app/fedcv/object_detection/model/yolov5/.github/ISSUE_TEMPLATE/config.yml
+++ /dev/null
@@ -1,8 +0,0 @@
-blank_issues_enabled: true
-contact_links:
- - name: 💬 Forum
- url: https://community.ultralytics.com/
- about: Ask on Ultralytics Community Forum
- - name: Stack Overflow
- url: https://stackoverflow.com/search?q=YOLOv5
- about: Ask on Stack Overflow with 'YOLOv5' tag
diff --git a/python/app/fedcv/object_detection/model/yolov5/.github/ISSUE_TEMPLATE/question.yml b/python/app/fedcv/object_detection/model/yolov5/.github/ISSUE_TEMPLATE/question.yml
deleted file mode 100644
index 8e0993c68b..0000000000
--- a/python/app/fedcv/object_detection/model/yolov5/.github/ISSUE_TEMPLATE/question.yml
+++ /dev/null
@@ -1,33 +0,0 @@
-name: ❓ Question
-description: Ask a YOLOv5 question
-# title: " "
-labels: [question]
-body:
- - type: markdown
- attributes:
- value: |
- Thank you for asking a YOLOv5 ❓ Question!
-
- - type: checkboxes
- attributes:
- label: Search before asking
- description: >
- Please search the [issues](https://github.com/ultralytics/yolov5/issues) and [discussions](https://github.com/ultralytics/yolov5/discussions) to see if a similar question already exists.
- options:
- - label: >
- I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and [discussions](https://github.com/ultralytics/yolov5/discussions) and found no similar questions.
- required: true
-
- - type: textarea
- attributes:
- label: Question
- description: What is your question?
- placeholder: |
- 💡 ProTip! Include as much information as possible (screenshots, logs, tracebacks etc.) to receive the most helpful response.
- validations:
- required: true
-
- - type: textarea
- attributes:
- label: Additional
- description: Anything else you would like to share?
diff --git a/python/app/fedcv/object_detection/model/yolov5/.github/PULL_REQUEST_TEMPLATE.md b/python/app/fedcv/object_detection/model/yolov5/.github/PULL_REQUEST_TEMPLATE.md
deleted file mode 100644
index f25b017ace..0000000000
--- a/python/app/fedcv/object_detection/model/yolov5/.github/PULL_REQUEST_TEMPLATE.md
+++ /dev/null
@@ -1,9 +0,0 @@
-
diff --git a/python/app/fedcv/object_detection/model/yolov5/.github/README_cn.md b/python/app/fedcv/object_detection/model/yolov5/.github/README_cn.md
deleted file mode 100644
index 7e90336d51..0000000000
--- a/python/app/fedcv/object_detection/model/yolov5/.github/README_cn.md
+++ /dev/null
@@ -1,291 +0,0 @@
-
-
-
-
-
-
-
-[English](../README.md) | 简体中文
-
-
-
-
-YOLOv5🚀是一个在COCO数据集上预训练的物体检测架构和模型系列,它代表了Ultralytics 对未来视觉AI方法的公开研究,其中包含了在数千小时的研究和开发中所获得的经验和最佳实践。
-
-
-
-
-
-
-
-
-## 文件
-
-请参阅[YOLOv5 Docs](https://docs.ultralytics.com),了解有关训练、测试和部署的完整文件。
-
-## 快速开始案例
-
-
-安装
-
-在[**Python>=3.7.0**](https://www.python.org/) 的环境中克隆版本仓并安装 [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt),包括[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/)。
-```bash
-git clone https://github.com/ultralytics/yolov5 # 克隆
-cd yolov5
-pip install -r requirements.txt # 安装
-```
-
-
-
-
-推理
-
-YOLOv5 [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) 推理. [模型](https://github.com/ultralytics/yolov5/tree/master/models) 自动从最新YOLOv5 [版本](https://github.com/ultralytics/yolov5/releases)下载。
-
-```python
-import torch
-
-# 模型
-model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5n - yolov5x6, custom
-
-# 图像
-img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list
-
-# 推理
-results = model(img)
-
-# 结果
-results.print() # or .show(), .save(), .crop(), .pandas(), etc.
-```
-
-
-
-
-用 detect.py 进行推理
-
-`detect.py` 在各种数据源上运行推理, 其会从最新的 YOLOv5 [版本](https://github.com/ultralytics/yolov5/releases) 中自动下载 [模型](https://github.com/ultralytics/yolov5/tree/master/models) 并将检测结果保存到 `runs/detect` 目录。
-
-```bash
-python detect.py --source 0 # 网络摄像头
- img.jpg # 图像
- vid.mp4 # 视频
- path/ # 文件夹
- path/*.jpg # glob
- 'https://youtu.be/Zgi9g1ksQHc' # YouTube
- 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP 流
-```
-
-
-
-
-训练
-
-以下指令再现了 YOLOv5 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh)
-数据集结果. [模型](https://github.com/ultralytics/yolov5/tree/master/models) 和 [数据集](https://github.com/ultralytics/yolov5/tree/master/data) 自动从最新的YOLOv5 [版本](https://github.com/ultralytics/yolov5/releases) 中下载。YOLOv5n/s/m/l/x的训练时间在V100 GPU上是 1/2/4/6/8天(多GPU倍速). 尽可能使用最大的 `--batch-size`, 或通过 `--batch-size -1` 来实现 YOLOv5 [自动批处理](https://github.com/ultralytics/yolov5/pull/5092). 批量大小显示为 V100-16GB。
-
-```bash
-python train.py --data coco.yaml --cfg yolov5n.yaml --weights '' --batch-size 128
- yolov5s 64
- yolov5m 40
- yolov5l 24
- yolov5x 16
-```
-
-
-
-
-
-
-教程
-
-- [训练自定义数据](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) 🚀 推荐
-- [获得最佳训练效果的技巧](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results) ☘️ 推荐
-- [使用 Weights & Biases 记录实验](https://github.com/ultralytics/yolov5/issues/1289) 🌟 新
-- [Roboflow:数据集、标签和主动学习](https://github.com/ultralytics/yolov5/issues/4975) 🌟 新
-- [多GPU训练](https://github.com/ultralytics/yolov5/issues/475)
-- [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) ⭐ 新
-- [TFLite, ONNX, CoreML, TensorRT 导出](https://github.com/ultralytics/yolov5/issues/251) 🚀
-- [测试时数据增强 (TTA)](https://github.com/ultralytics/yolov5/issues/303)
-- [模型集成](https://github.com/ultralytics/yolov5/issues/318)
-- [模型剪枝/稀疏性](https://github.com/ultralytics/yolov5/issues/304)
-- [超参数进化](https://github.com/ultralytics/yolov5/issues/607)
-- [带有冻结层的迁移学习](https://github.com/ultralytics/yolov5/issues/1314) ⭐ 新
-- [架构概要](https://github.com/ultralytics/yolov5/issues/6998) ⭐ 新
-
-
-
-## 环境
-
-使用经过我们验证的环境,几秒钟就可以开始。点击下面的每个图标了解详情。
-
-
-
-## 如何与第三方集成
-
-
-
-|Weights and Biases|Roboflow ⭐ 新|
-|:-:|:-:|
-|通过 [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme) 自动跟踪和可视化你在云端的所有YOLOv5训练运行状态。|标记并将您的自定义数据集直接导出到YOLOv5,以便用 [Roboflow](https://roboflow.com/?ref=ultralytics) 进行训练。 |
-
-
-
-## 为什么选择 YOLOv5
-
-
-
- YOLOv5-P5 640 图像 (点击扩展)
-
-
-
-
- 图片注释 (点击扩展)
-
-- **COCO AP val** 表示 mAP@0.5:0.95 在5000张图像的[COCO val2017](http://cocodataset.org)数据集上,在256到1536的不同推理大小上测量的指标。
-- **GPU Speed** 衡量的是在 [COCO val2017](http://cocodataset.org) 数据集上使用 [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100实例在批量大小为32时每张图像的平均推理时间。
-- **EfficientDet** 数据来自 [google/automl](https://github.com/google/automl) ,批量大小设置为 8。
-- 复现 mAP 方法: `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
-
-
-
-### 预训练检查点
-
-|Model |size(pixels) |mAPval 0.5:0.95 |mAPval 0.5 |SpeedCPU b1 (ms) |SpeedV100 b1 (ms) |SpeedV100 b32 (ms) |params(M) |FLOPs@640 (B)
-|--- |--- |--- |--- |--- |--- |--- |--- |---
-|[YOLOv5n][assets] |640 |28.0 |45.7 |**45** |**6.3**|**0.6**|**1.9**|**4.5**
-|[YOLOv5s][assets] |640 |37.4 |56.8 |98 |6.4 |0.9 |7.2 |16.5
-|[YOLOv5m][assets] |640 |45.4 |64.1 |224 |8.2 |1.7 |21.2 |49.0
-|[YOLOv5l][assets] |640 |49.0 |67.3 |430 |10.1 |2.7 |46.5 |109.1
-|[YOLOv5x][assets] |640 |50.7 |68.9 |766 |12.1 |4.8 |86.7 |205.7
-| | | | | | | | |
-|[YOLOv5n6][assets] |1280 |36.0 |54.4 |153 |8.1 |2.1 |3.2 |4.6
-|[YOLOv5s6][assets] |1280 |44.8 |63.7 |385 |8.2 |3.6 |12.6 |16.8
-|[YOLOv5m6][assets] |1280 |51.3 |69.3 |887 |11.1 |6.8 |35.7 |50.0
-|[YOLOv5l6][assets] |1280 |53.7 |71.3 |1784 |15.8 |10.5 |76.8 |111.4
-|[YOLOv5x6][assets] + [TTA][TTA]|1280 1536 |55.0 **55.8** |72.7 **72.7** |3136 - |26.2 - |19.4 - |140.7 - |209.8 -
-
-
- 表格注释 (点击扩展)
-
-- 所有检查点都以默认设置训练到300个时期. Nano和Small模型用 [hyp.scratch-low.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml) hyps, 其他模型使用 [hyp.scratch-high.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-high.yaml).
-- **mAPval ** 值是 [COCO val2017](http://cocodataset.org) 数据集上的单模型单尺度的值。
- 复现方法: `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
-- 使用 [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) 实例对COCO val图像的平均速度。不包括NMS时间(~1 ms/img)
- 复现方法: `python val.py --data coco.yaml --img 640 --task speed --batch 1`
-- **TTA** [测试时数据增强](https://github.com/ultralytics/yolov5/issues/303) 包括反射和比例增强.
- 复现方法: `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
-
-
-
-## 贡献
-
-我们重视您的意见! 我们希望给大家提供尽可能的简单和透明的方式对 YOLOv5 做出贡献。开始之前请先点击并查看我们的 [贡献指南](CONTRIBUTING.md),填写[YOLOv5调查问卷](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) 来向我们发送您的经验反馈。真诚感谢我们所有的贡献者!
-
-
-## 联系
-
-关于YOLOv5的漏洞和功能问题,请访问 [GitHub Issues](https://github.com/ultralytics/yolov5/issues)。商业咨询或技术支持服务请访问[https://ultralytics.com/contact](https://ultralytics.com/contact)。
-
-
-
-
-
-[assets]: https://github.com/ultralytics/yolov5/releases
-[tta]: https://github.com/ultralytics/yolov5/issues/303
diff --git a/python/app/fedcv/object_detection/model/yolov5/.github/SECURITY.md b/python/app/fedcv/object_detection/model/yolov5/.github/SECURITY.md
deleted file mode 100644
index aa3e8409da..0000000000
--- a/python/app/fedcv/object_detection/model/yolov5/.github/SECURITY.md
+++ /dev/null
@@ -1,7 +0,0 @@
-# Security Policy
-
-We aim to make YOLOv5 🚀 as secure as possible! If you find potential vulnerabilities or have any concerns please let us know so we can investigate and take corrective action if needed.
-
-### Reporting a Vulnerability
-
-To report vulnerabilities please email us at hello@ultralytics.com or visit https://ultralytics.com/contact. Thank you!
diff --git a/python/app/fedcv/object_detection/model/yolov5/.github/dependabot.yml b/python/app/fedcv/object_detection/model/yolov5/.github/dependabot.yml
deleted file mode 100644
index c1b3d5d514..0000000000
--- a/python/app/fedcv/object_detection/model/yolov5/.github/dependabot.yml
+++ /dev/null
@@ -1,23 +0,0 @@
-version: 2
-updates:
- - package-ecosystem: pip
- directory: "/"
- schedule:
- interval: weekly
- time: "04:00"
- open-pull-requests-limit: 10
- reviewers:
- - glenn-jocher
- labels:
- - dependencies
-
- - package-ecosystem: github-actions
- directory: "/"
- schedule:
- interval: weekly
- time: "04:00"
- open-pull-requests-limit: 5
- reviewers:
- - glenn-jocher
- labels:
- - dependencies
diff --git a/python/app/fedcv/object_detection/model/yolov5/.github/workflows/ci-testing.yml b/python/app/fedcv/object_detection/model/yolov5/.github/workflows/ci-testing.yml
deleted file mode 100644
index f3e36675f4..0000000000
--- a/python/app/fedcv/object_detection/model/yolov5/.github/workflows/ci-testing.yml
+++ /dev/null
@@ -1,121 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-# YOLOv5 Continuous Integration (CI) GitHub Actions tests
-
-name: YOLOv5 CI
-
-on:
- push:
- branches: [master]
- pull_request:
- branches: [master]
- schedule:
- - cron: '0 0 * * *' # runs at 00:00 UTC every day
-
-jobs:
- Benchmarks:
- runs-on: ${{ matrix.os }}
- strategy:
- matrix:
- os: [ubuntu-latest]
- python-version: [3.9]
- model: [yolov5n]
- steps:
- - uses: actions/checkout@v3
- - uses: actions/setup-python@v4
- with:
- python-version: ${{ matrix.python-version }}
- #- name: Cache pip
- # uses: actions/cache@v3
- # with:
- # path: ~/.cache/pip
- # key: ${{ runner.os }}-Benchmarks-${{ hashFiles('requirements.txt') }}
- # restore-keys: ${{ runner.os }}-Benchmarks-
- - name: Install requirements
- run: |
- python -m pip install --upgrade pip
- pip install -r requirements.txt coremltools openvino-dev tensorflow-cpu --extra-index-url https://download.pytorch.org/whl/cpu
- python --version
- pip --version
- pip list
- - name: Run benchmarks
- run: |
- python utils/benchmarks.py --weights ${{ matrix.model }}.pt --img 320 --hard-fail
-
- Tests:
- timeout-minutes: 60
- runs-on: ${{ matrix.os }}
- strategy:
- fail-fast: false
- matrix:
- os: [ubuntu-latest, macos-latest, windows-latest]
- python-version: [3.9]
- model: [yolov5n]
- include:
- - os: ubuntu-latest
- python-version: '3.7' # '3.6.8' min
- model: yolov5n
- - os: ubuntu-latest
- python-version: '3.8'
- model: yolov5n
- - os: ubuntu-latest
- python-version: '3.10'
- model: yolov5n
- steps:
- - uses: actions/checkout@v3
- - uses: actions/setup-python@v4
- with:
- python-version: ${{ matrix.python-version }}
- - name: Get cache dir
- # https://github.com/actions/cache/blob/master/examples.md#multiple-oss-in-a-workflow
- id: pip-cache
- run: echo "::set-output name=dir::$(pip cache dir)"
- - name: Cache pip
- uses: actions/cache@v3
- with:
- path: ${{ steps.pip-cache.outputs.dir }}
- key: ${{ runner.os }}-${{ matrix.python-version }}-pip-${{ hashFiles('requirements.txt') }}
- restore-keys: ${{ runner.os }}-${{ matrix.python-version }}-pip-
- - name: Install requirements
- run: |
- python -m pip install --upgrade pip
- pip install -r requirements.txt --extra-index-url https://download.pytorch.org/whl/cpu
- python --version
- pip --version
- pip list
- - name: Check environment
- run: |
- python -c "import utils; utils.notebook_init()"
- echo "RUNNER_OS is $RUNNER_OS"
- echo "GITHUB_EVENT_NAME is $GITHUB_EVENT_NAME"
- echo "GITHUB_WORKFLOW is $GITHUB_WORKFLOW"
- echo "GITHUB_ACTOR is $GITHUB_ACTOR"
- echo "GITHUB_REPOSITORY is $GITHUB_REPOSITORY"
- echo "GITHUB_REPOSITORY_OWNER is $GITHUB_REPOSITORY_OWNER"
- - name: Run tests
- shell: bash
- run: |
- # export PYTHONPATH="$PWD" # to run '$ python *.py' files in subdirectories
- d=cpu # device
- model=${{ matrix.model }}
- best=runs/train/exp/weights/best.pt
- # Train
- python train.py --img 64 --batch 32 --weights $model.pt --cfg $model.yaml --epochs 1 --device $d
- # Val
- python val.py --img 64 --batch 32 --weights $model.pt --device $d
- python val.py --img 64 --batch 32 --weights $best --device $d
- # Detect
- python detect.py --weights $model.pt --device $d
- python detect.py --weights $best --device $d
- python hubconf.py # hub
- # Export
- # python models/tf.py --weights $model.pt # build TF model
- python models/yolo.py --cfg $model.yaml # build PyTorch model
- python export.py --weights $model.pt --img 64 --include torchscript # export
- # Python
- python - <=3.7.0**](https://www.python.org/) with all [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) installed including [**PyTorch>=1.7**](https://pytorch.org/get-started/locally/). To get started:
- ```bash
- git clone https://github.com/ultralytics/yolov5 # clone
- cd yolov5
- pip install -r requirements.txt # install
- ```
-
- ## Environments
-
- YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
-
- - **Google Colab and Kaggle** notebooks with free GPU:
- - **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
- - **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)
- - **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart)
-
-
- ## Status
-
-
-
- If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), validation ([val.py](https://github.com/ultralytics/yolov5/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on macOS, Windows, and Ubuntu every 24 hours and on every commit.
diff --git a/python/app/fedcv/object_detection/model/yolov5/.github/workflows/rebase.yml b/python/app/fedcv/object_detection/model/yolov5/.github/workflows/rebase.yml
deleted file mode 100644
index a4dc9e5092..0000000000
--- a/python/app/fedcv/object_detection/model/yolov5/.github/workflows/rebase.yml
+++ /dev/null
@@ -1,21 +0,0 @@
-# https://github.com/marketplace/actions/automatic-rebase
-
-name: Automatic Rebase
-on:
- issue_comment:
- types: [created]
-jobs:
- rebase:
- name: Rebase
- if: github.event.issue.pull_request != '' && contains(github.event.comment.body, '/rebase')
- runs-on: ubuntu-latest
- steps:
- - name: Checkout the latest code
- uses: actions/checkout@v3
- with:
- token: ${{ secrets.ACTIONS_TOKEN }}
- fetch-depth: 0 # otherwise, you will fail to push refs to dest repo
- - name: Automatic Rebase
- uses: cirrus-actions/rebase@1.7
- env:
- GITHUB_TOKEN: ${{ secrets.ACTIONS_TOKEN }}
diff --git a/python/app/fedcv/object_detection/model/yolov5/.github/workflows/stale.yml b/python/app/fedcv/object_detection/model/yolov5/.github/workflows/stale.yml
deleted file mode 100644
index 03d99790a4..0000000000
--- a/python/app/fedcv/object_detection/model/yolov5/.github/workflows/stale.yml
+++ /dev/null
@@ -1,40 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-
-name: Close stale issues
-on:
- schedule:
- - cron: '0 0 * * *' # Runs at 00:00 UTC every day
-
-jobs:
- stale:
- runs-on: ubuntu-latest
- steps:
- - uses: actions/stale@v5
- with:
- repo-token: ${{ secrets.GITHUB_TOKEN }}
- stale-issue-message: |
- 👋 Hello, this issue has been automatically marked as stale because it has not had recent activity. Please note it will be closed if no further activity occurs.
-
- Access additional [YOLOv5](https://ultralytics.com/yolov5) 🚀 resources:
- - **Wiki** – https://github.com/ultralytics/yolov5/wiki
- - **Tutorials** – https://github.com/ultralytics/yolov5#tutorials
- - **Docs** – https://docs.ultralytics.com
-
- Access additional [Ultralytics](https://ultralytics.com) ⚡ resources:
- - **Ultralytics HUB** – https://ultralytics.com/hub
- - **Vision API** – https://ultralytics.com/yolov5
- - **About Us** – https://ultralytics.com/about
- - **Join Our Team** – https://ultralytics.com/work
- - **Contact Us** – https://ultralytics.com/contact
-
- Feel free to inform us of any other **issues** you discover or **feature requests** that come to mind in the future. Pull Requests (PRs) are also always welcomed!
-
- Thank you for your contributions to YOLOv5 🚀 and Vision AI ⭐!
-
- stale-pr-message: 'This pull request has been automatically marked as stale because it has not had recent activity. It will be closed if no further activity occurs. Thank you for your contributions YOLOv5 🚀 and Vision AI ⭐.'
- days-before-issue-stale: 30
- days-before-issue-close: 10
- days-before-pr-stale: 90
- days-before-pr-close: 30
- exempt-issue-labels: 'documentation,tutorial,TODO'
- operations-per-run: 300 # The maximum number of operations per run, used to control rate limiting.
diff --git a/python/app/fedcv/object_detection/model/yolov5/.gitignore b/python/app/fedcv/object_detection/model/yolov5/.gitignore
deleted file mode 100644
index 69a00843ea..0000000000
--- a/python/app/fedcv/object_detection/model/yolov5/.gitignore
+++ /dev/null
@@ -1,256 +0,0 @@
-# Repo-specific GitIgnore ----------------------------------------------------------------------------------------------
-*.jpg
-*.jpeg
-*.png
-*.bmp
-*.tif
-*.tiff
-*.heic
-*.JPG
-*.JPEG
-*.PNG
-*.BMP
-*.TIF
-*.TIFF
-*.HEIC
-*.mp4
-*.mov
-*.MOV
-*.avi
-*.data
-*.json
-*.cfg
-!setup.cfg
-!cfg/yolov3*.cfg
-
-storage.googleapis.com
-runs/*
-data/*
-data/images/*
-!data/*.yaml
-!data/hyps
-!data/scripts
-!data/images
-!data/images/zidane.jpg
-!data/images/bus.jpg
-!data/*.sh
-
-results*.csv
-
-# Datasets -------------------------------------------------------------------------------------------------------------
-coco/
-coco128/
-VOC/
-
-# MATLAB GitIgnore -----------------------------------------------------------------------------------------------------
-*.m~
-*.mat
-!targets*.mat
-
-# Neural Network weights -----------------------------------------------------------------------------------------------
-*.weights
-*.pt
-*.pb
-*.onnx
-*.engine
-*.mlmodel
-*.torchscript
-*.tflite
-*.h5
-*_saved_model/
-*_web_model/
-*_openvino_model/
-darknet53.conv.74
-yolov3-tiny.conv.15
-
-# GitHub Python GitIgnore ----------------------------------------------------------------------------------------------
-# Byte-compiled / optimized / DLL files
-__pycache__/
-*.py[cod]
-*$py.class
-
-# C extensions
-*.so
-
-# Distribution / packaging
-.Python
-env/
-build/
-develop-eggs/
-dist/
-downloads/
-eggs/
-.eggs/
-lib/
-lib64/
-parts/
-sdist/
-var/
-wheels/
-*.egg-info/
-/wandb/
-.installed.cfg
-*.egg
-
-
-# PyInstaller
-# Usually these files are written by a python script from a template
-# before PyInstaller builds the exe, so as to inject date/other infos into it.
-*.manifest
-*.spec
-
-# Installer logs
-pip-log.txt
-pip-delete-this-directory.txt
-
-# Unit test / coverage reports
-htmlcov/
-.tox/
-.coverage
-.coverage.*
-.cache
-nosetests.xml
-coverage.xml
-*.cover
-.hypothesis/
-
-# Translations
-*.mo
-*.pot
-
-# Django stuff:
-*.log
-local_settings.py
-
-# Flask stuff:
-instance/
-.webassets-cache
-
-# Scrapy stuff:
-.scrapy
-
-# Sphinx documentation
-docs/_build/
-
-# PyBuilder
-target/
-
-# Jupyter Notebook
-.ipynb_checkpoints
-
-# pyenv
-.python-version
-
-# celery beat schedule file
-celerybeat-schedule
-
-# SageMath parsed files
-*.sage.py
-
-# dotenv
-.env
-
-# virtualenv
-.venv*
-venv*/
-ENV*/
-
-# Spyder project settings
-.spyderproject
-.spyproject
-
-# Rope project settings
-.ropeproject
-
-# mkdocs documentation
-/site
-
-# mypy
-.mypy_cache/
-
-
-# https://github.com/github/gitignore/blob/master/Global/macOS.gitignore -----------------------------------------------
-
-# General
-.DS_Store
-.AppleDouble
-.LSOverride
-
-# Icon must end with two \r
-Icon
-Icon?
-
-# Thumbnails
-._*
-
-# Files that might appear in the root of a volume
-.DocumentRevisions-V100
-.fseventsd
-.Spotlight-V100
-.TemporaryItems
-.Trashes
-.VolumeIcon.icns
-.com.apple.timemachine.donotpresent
-
-# Directories potentially created on remote AFP share
-.AppleDB
-.AppleDesktop
-Network Trash Folder
-Temporary Items
-.apdisk
-
-
-# https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore
-# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
-# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
-
-# User-specific stuff:
-.idea/*
-.idea/**/workspace.xml
-.idea/**/tasks.xml
-.idea/dictionaries
-.html # Bokeh Plots
-.pg # TensorFlow Frozen Graphs
-.avi # videos
-
-# Sensitive or high-churn files:
-.idea/**/dataSources/
-.idea/**/dataSources.ids
-.idea/**/dataSources.local.xml
-.idea/**/sqlDataSources.xml
-.idea/**/dynamic.xml
-.idea/**/uiDesigner.xml
-
-# Gradle:
-.idea/**/gradle.xml
-.idea/**/libraries
-
-# CMake
-cmake-build-debug/
-cmake-build-release/
-
-# Mongo Explorer plugin:
-.idea/**/mongoSettings.xml
-
-## File-based project format:
-*.iws
-
-## Plugin-specific files:
-
-# IntelliJ
-out/
-
-# mpeltonen/sbt-idea plugin
-.idea_modules/
-
-# JIRA plugin
-atlassian-ide-plugin.xml
-
-# Cursive Clojure plugin
-.idea/replstate.xml
-
-# Crashlytics plugin (for Android Studio and IntelliJ)
-com_crashlytics_export_strings.xml
-crashlytics.properties
-crashlytics-build.properties
-fabric.properties
diff --git a/python/app/fedcv/object_detection/model/yolov5/.pre-commit-config.yaml b/python/app/fedcv/object_detection/model/yolov5/.pre-commit-config.yaml
deleted file mode 100644
index 9b8f28c775..0000000000
--- a/python/app/fedcv/object_detection/model/yolov5/.pre-commit-config.yaml
+++ /dev/null
@@ -1,64 +0,0 @@
-# Define hooks for code formations
-# Will be applied on any updated commit files if a user has installed and linked commit hook
-
-default_language_version:
- python: python3.8
-
-# Define bot property if installed via https://github.com/marketplace/pre-commit-ci
-ci:
- autofix_prs: true
- autoupdate_commit_msg: '[pre-commit.ci] pre-commit suggestions'
- autoupdate_schedule: monthly
- # submodules: true
-
-repos:
- - repo: https://github.com/pre-commit/pre-commit-hooks
- rev: v4.3.0
- hooks:
- - id: end-of-file-fixer
- - id: trailing-whitespace
- - id: check-case-conflict
- - id: check-yaml
- - id: check-toml
- - id: pretty-format-json
- - id: check-docstring-first
-
- - repo: https://github.com/asottile/pyupgrade
- rev: v2.34.0
- hooks:
- - id: pyupgrade
- name: Upgrade code
- args: [ --py37-plus ]
-
- - repo: https://github.com/PyCQA/isort
- rev: 5.10.1
- hooks:
- - id: isort
- name: Sort imports
-
- - repo: https://github.com/pre-commit/mirrors-yapf
- rev: v0.32.0
- hooks:
- - id: yapf
- name: YAPF formatting
-
- - repo: https://github.com/executablebooks/mdformat
- rev: 0.7.14
- hooks:
- - id: mdformat
- name: MD formatting
- additional_dependencies:
- - mdformat-gfm
- - mdformat-black
- exclude: "README.md|README_cn.md"
-
- - repo: https://github.com/asottile/yesqa
- rev: v1.3.0
- hooks:
- - id: yesqa
-
- - repo: https://github.com/PyCQA/flake8
- rev: 4.0.1
- hooks:
- - id: flake8
- name: PEP8
diff --git a/python/app/fedcv/object_detection/model/yolov5/CONTRIBUTING.md b/python/app/fedcv/object_detection/model/yolov5/CONTRIBUTING.md
deleted file mode 100644
index 13b9b73b50..0000000000
--- a/python/app/fedcv/object_detection/model/yolov5/CONTRIBUTING.md
+++ /dev/null
@@ -1,98 +0,0 @@
-## Contributing to YOLOv5 🚀
-
-We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible, whether it's:
-
-- Reporting a bug
-- Discussing the current state of the code
-- Submitting a fix
-- Proposing a new feature
-- Becoming a maintainer
-
-YOLOv5 works so well due to our combined community effort, and for every small improvement you contribute you will be
-helping push the frontiers of what's possible in AI 😃!
-
-## Submitting a Pull Request (PR) 🛠️
-
-Submitting a PR is easy! This example shows how to submit a PR for updating `requirements.txt` in 4 steps:
-
-### 1. Select File to Update
-
-Select `requirements.txt` to update by clicking on it in GitHub.
-
-
-
-### 2. Click 'Edit this file'
-
-Button is in top-right corner.
-
-
-
-### 3. Make Changes
-
-Change `matplotlib` version from `3.2.2` to `3.3`.
-
-
-
-### 4. Preview Changes and Submit PR
-
-Click on the **Preview changes** tab to verify your updates. At the bottom of the screen select 'Create a **new branch**
-for this commit', assign your branch a descriptive name such as `fix/matplotlib_version` and click the green **Propose
-changes** button. All done, your PR is now submitted to YOLOv5 for review and approval 😃!
-
-
-
-### PR recommendations
-
-To allow your work to be integrated as seamlessly as possible, we advise you to:
-
-- ✅ Verify your PR is **up-to-date with upstream/master.** If your PR is behind upstream/master an
- automatic [GitHub Actions](https://github.com/ultralytics/yolov5/blob/master/.github/workflows/rebase.yml) merge may
- be attempted by writing /rebase in a new comment, or by running the following code, replacing 'feature' with the name
- of your local branch:
-
-```bash
-git remote add upstream https://github.com/ultralytics/yolov5.git
-git fetch upstream
-# git checkout feature # <--- replace 'feature' with local branch name
-git merge upstream/master
-git push -u origin -f
-```
-
-- ✅ Verify all Continuous Integration (CI) **checks are passing**.
-- ✅ Reduce changes to the absolute **minimum** required for your bug fix or feature addition. _"It is not daily increase
- but daily decrease, hack away the unessential. The closer to the source, the less wastage there is."_ — Bruce Lee
-
-## Submitting a Bug Report 🐛
-
-If you spot a problem with YOLOv5 please submit a Bug Report!
-
-For us to start investigating a possible problem we need to be able to reproduce it ourselves first. We've created a few
-short guidelines below to help users provide what we need in order to get started.
-
-When asking a question, people will be better able to provide help if you provide **code** that they can easily
-understand and use to **reproduce** the problem. This is referred to by community members as creating
-a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example). Your code that reproduces
-the problem should be:
-
-- ✅ **Minimal** – Use as little code as possible that still produces the same problem
-- ✅ **Complete** – Provide **all** parts someone else needs to reproduce your problem in the question itself
-- ✅ **Reproducible** – Test the code you're about to provide to make sure it reproduces the problem
-
-In addition to the above requirements, for [Ultralytics](https://ultralytics.com/) to provide assistance your code
-should be:
-
-- ✅ **Current** – Verify that your code is up-to-date with current
- GitHub [master](https://github.com/ultralytics/yolov5/tree/master), and if necessary `git pull` or `git clone` a new
- copy to ensure your problem has not already been resolved by previous commits.
-- ✅ **Unmodified** – Your problem must be reproducible without any modifications to the codebase in this
- repository. [Ultralytics](https://ultralytics.com/) does not provide support for custom code ⚠️.
-
-If you believe your problem meets all of the above criteria, please close this issue and raise a new one using the 🐛
-**Bug Report** [template](https://github.com/ultralytics/yolov5/issues/new/choose) and providing
-a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example) to help us better
-understand and diagnose your problem.
-
-## License
-
-By contributing, you agree that your contributions will be licensed under
-the [GPL-3.0 license](https://choosealicense.com/licenses/gpl-3.0/)
diff --git a/python/app/fedcv/object_detection/model/yolov5/Dockerfile b/python/app/fedcv/object_detection/model/yolov5/Dockerfile
deleted file mode 100644
index 489dd04ce5..0000000000
--- a/python/app/fedcv/object_detection/model/yolov5/Dockerfile
+++ /dev/null
@@ -1,64 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-
-# Start FROM Nvidia PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
-FROM nvcr.io/nvidia/pytorch:21.10-py3
-
-# Install linux packages
-RUN apt update && apt install -y zip htop screen libgl1-mesa-glx
-
-# Install python dependencies
-COPY requirements.txt .
-RUN python -m pip install --upgrade pip
-RUN pip uninstall -y torch torchvision torchtext
-RUN pip install --no-cache -r requirements.txt albumentations wandb gsutil notebook \
- torch==1.10.2+cu113 torchvision==0.11.3+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html
-# RUN pip install --no-cache -U torch torchvision
-
-# Create working directory
-RUN mkdir -p /usr/src/app
-WORKDIR /usr/src/app
-
-# Copy contents
-COPY . /usr/src/app
-
-# Downloads to user config dir
-ADD https://ultralytics.com/assets/Arial.ttf /root/.config/Ultralytics/
-
-# Set environment variables
-# ENV HOME=/usr/src/app
-
-
-# Usage Examples -------------------------------------------------------------------------------------------------------
-
-# Build and Push
-# t=ultralytics/yolov5:latest && sudo docker build -t $t . && sudo docker push $t
-
-# Pull and Run
-# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t
-
-# Pull and Run with local directory access
-# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/datasets:/usr/src/datasets $t
-
-# Kill all
-# sudo docker kill $(sudo docker ps -q)
-
-# Kill all image-based
-# sudo docker kill $(sudo docker ps -qa --filter ancestor=ultralytics/yolov5:latest)
-
-# Bash into running container
-# sudo docker exec -it 5a9b5863d93d bash
-
-# Bash into stopped container
-# id=$(sudo docker ps -qa) && sudo docker start $id && sudo docker exec -it $id bash
-
-# Clean up
-# docker system prune -a --volumes
-
-# Update Ubuntu drivers
-# https://www.maketecheasier.com/install-nvidia-drivers-ubuntu/
-
-# DDP test
-# python -m torch.distributed.run --nproc_per_node 2 --master_port 1 train.py --epochs 3
-
-# GCP VM from Image
-# docker.io/ultralytics/yolov5:latest
diff --git a/python/app/fedcv/object_detection/model/yolov5/LICENSE b/python/app/fedcv/object_detection/model/yolov5/LICENSE
deleted file mode 100644
index 92b370f0e0..0000000000
--- a/python/app/fedcv/object_detection/model/yolov5/LICENSE
+++ /dev/null
@@ -1,674 +0,0 @@
-GNU GENERAL PUBLIC LICENSE
- Version 3, 29 June 2007
-
- Copyright (C) 2007 Free Software Foundation, Inc.
- Everyone is permitted to copy and distribute verbatim copies
- of this license document, but changing it is not allowed.
-
- Preamble
-
- The GNU General Public License is a free, copyleft license for
-software and other kinds of works.
-
- The licenses for most software and other practical works are designed
-to take away your freedom to share and change the works. By contrast,
-the GNU General Public License is intended to guarantee your freedom to
-share and change all versions of a program--to make sure it remains free
-software for all its users. We, the Free Software Foundation, use the
-GNU General Public License for most of our software; it applies also to
-any other work released this way by its authors. You can apply it to
-your programs, too.
-
- When we speak of free software, we are referring to freedom, not
-price. Our General Public Licenses are designed to make sure that you
-have the freedom to distribute copies of free software (and charge for
-them if you wish), that you receive source code or can get it if you
-want it, that you can change the software or use pieces of it in new
-free programs, and that you know you can do these things.
-
- To protect your rights, we need to prevent others from denying you
-these rights or asking you to surrender the rights. Therefore, you have
-certain responsibilities if you distribute copies of the software, or if
-you modify it: responsibilities to respect the freedom of others.
-
- For example, if you distribute copies of such a program, whether
-gratis or for a fee, you must pass on to the recipients the same
-freedoms that you received. You must make sure that they, too, receive
-or can get the source code. And you must show them these terms so they
-know their rights.
-
- Developers that use the GNU GPL protect your rights with two steps:
-(1) assert copyright on the software, and (2) offer you this License
-giving you legal permission to copy, distribute and/or modify it.
-
- For the developers' and authors' protection, the GPL clearly explains
-that there is no warranty for this free software. For both users' and
-authors' sake, the GPL requires that modified versions be marked as
-changed, so that their problems will not be attributed erroneously to
-authors of previous versions.
-
- Some devices are designed to deny users access to install or run
-modified versions of the software inside them, although the manufacturer
-can do so. This is fundamentally incompatible with the aim of
-protecting users' freedom to change the software. The systematic
-pattern of such abuse occurs in the area of products for individuals to
-use, which is precisely where it is most unacceptable. Therefore, we
-have designed this version of the GPL to prohibit the practice for those
-products. If such problems arise substantially in other domains, we
-stand ready to extend this provision to those domains in future versions
-of the GPL, as needed to protect the freedom of users.
-
- Finally, every program is threatened constantly by software patents.
-States should not allow patents to restrict development and use of
-software on general-purpose computers, but in those that do, we wish to
-avoid the special danger that patents applied to a free program could
-make it effectively proprietary. To prevent this, the GPL assures that
-patents cannot be used to render the program non-free.
-
- The precise terms and conditions for copying, distribution and
-modification follow.
-
- TERMS AND CONDITIONS
-
- 0. Definitions.
-
- "This License" refers to version 3 of the GNU General Public License.
-
- "Copyright" also means copyright-like laws that apply to other kinds of
-works, such as semiconductor masks.
-
- "The Program" refers to any copyrightable work licensed under this
-License. Each licensee is addressed as "you". "Licensees" and
-"recipients" may be individuals or organizations.
-
- To "modify" a work means to copy from or adapt all or part of the work
-in a fashion requiring copyright permission, other than the making of an
-exact copy. The resulting work is called a "modified version" of the
-earlier work or a work "based on" the earlier work.
-
- A "covered work" means either the unmodified Program or a work based
-on the Program.
-
- To "propagate" a work means to do anything with it that, without
-permission, would make you directly or secondarily liable for
-infringement under applicable copyright law, except executing it on a
-computer or modifying a private copy. Propagation includes copying,
-distribution (with or without modification), making available to the
-public, and in some countries other activities as well.
-
- To "convey" a work means any kind of propagation that enables other
-parties to make or receive copies. Mere interaction with a user through
-a computer network, with no transfer of a copy, is not conveying.
-
- An interactive user interface displays "Appropriate Legal Notices"
-to the extent that it includes a convenient and prominently visible
-feature that (1) displays an appropriate copyright notice, and (2)
-tells the user that there is no warranty for the work (except to the
-extent that warranties are provided), that licensees may convey the
-work under this License, and how to view a copy of this License. If
-the interface presents a list of user commands or options, such as a
-menu, a prominent item in the list meets this criterion.
-
- 1. Source Code.
-
- The "source code" for a work means the preferred form of the work
-for making modifications to it. "Object code" means any non-source
-form of a work.
-
- A "Standard Interface" means an interface that either is an official
-standard defined by a recognized standards body, or, in the case of
-interfaces specified for a particular programming language, one that
-is widely used among developers working in that language.
-
- The "System Libraries" of an executable work include anything, other
-than the work as a whole, that (a) is included in the normal form of
-packaging a Major Component, but which is not part of that Major
-Component, and (b) serves only to enable use of the work with that
-Major Component, or to implement a Standard Interface for which an
-implementation is available to the public in source code form. A
-"Major Component", in this context, means a major essential component
-(kernel, window system, and so on) of the specific operating system
-(if any) on which the executable work runs, or a compiler used to
-produce the work, or an object code interpreter used to run it.
-
- The "Corresponding Source" for a work in object code form means all
-the source code needed to generate, install, and (for an executable
-work) run the object code and to modify the work, including scripts to
-control those activities. However, it does not include the work's
-System Libraries, or general-purpose tools or generally available free
-programs which are used unmodified in performing those activities but
-which are not part of the work. For example, Corresponding Source
-includes interface definition files associated with source files for
-the work, and the source code for shared libraries and dynamically
-linked subprograms that the work is specifically designed to require,
-such as by intimate data communication or control flow between those
-subprograms and other parts of the work.
-
- The Corresponding Source need not include anything that users
-can regenerate automatically from other parts of the Corresponding
-Source.
-
- The Corresponding Source for a work in source code form is that
-same work.
-
- 2. Basic Permissions.
-
- All rights granted under this License are granted for the term of
-copyright on the Program, and are irrevocable provided the stated
-conditions are met. This License explicitly affirms your unlimited
-permission to run the unmodified Program. The output from running a
-covered work is covered by this License only if the output, given its
-content, constitutes a covered work. This License acknowledges your
-rights of fair use or other equivalent, as provided by copyright law.
-
- You may make, run and propagate covered works that you do not
-convey, without conditions so long as your license otherwise remains
-in force. You may convey covered works to others for the sole purpose
-of having them make modifications exclusively for you, or provide you
-with facilities for running those works, provided that you comply with
-the terms of this License in conveying all material for which you do
-not control copyright. Those thus making or running the covered works
-for you must do so exclusively on your behalf, under your direction
-and control, on terms that prohibit them from making any copies of
-your copyrighted material outside their relationship with you.
-
- Conveying under any other circumstances is permitted solely under
-the conditions stated below. Sublicensing is not allowed; section 10
-makes it unnecessary.
-
- 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
-
- No covered work shall be deemed part of an effective technological
-measure under any applicable law fulfilling obligations under article
-11 of the WIPO copyright treaty adopted on 20 December 1996, or
-similar laws prohibiting or restricting circumvention of such
-measures.
-
- When you convey a covered work, you waive any legal power to forbid
-circumvention of technological measures to the extent such circumvention
-is effected by exercising rights under this License with respect to
-the covered work, and you disclaim any intention to limit operation or
-modification of the work as a means of enforcing, against the work's
-users, your or third parties' legal rights to forbid circumvention of
-technological measures.
-
- 4. Conveying Verbatim Copies.
-
- You may convey verbatim copies of the Program's source code as you
-receive it, in any medium, provided that you conspicuously and
-appropriately publish on each copy an appropriate copyright notice;
-keep intact all notices stating that this License and any
-non-permissive terms added in accord with section 7 apply to the code;
-keep intact all notices of the absence of any warranty; and give all
-recipients a copy of this License along with the Program.
-
- You may charge any price or no price for each copy that you convey,
-and you may offer support or warranty protection for a fee.
-
- 5. Conveying Modified Source Versions.
-
- You may convey a work based on the Program, or the modifications to
-produce it from the Program, in the form of source code under the
-terms of section 4, provided that you also meet all of these conditions:
-
- a) The work must carry prominent notices stating that you modified
- it, and giving a relevant date.
-
- b) The work must carry prominent notices stating that it is
- released under this License and any conditions added under section
- 7. This requirement modifies the requirement in section 4 to
- "keep intact all notices".
-
- c) You must license the entire work, as a whole, under this
- License to anyone who comes into possession of a copy. This
- License will therefore apply, along with any applicable section 7
- additional terms, to the whole of the work, and all its parts,
- regardless of how they are packaged. This License gives no
- permission to license the work in any other way, but it does not
- invalidate such permission if you have separately received it.
-
- d) If the work has interactive user interfaces, each must display
- Appropriate Legal Notices; however, if the Program has interactive
- interfaces that do not display Appropriate Legal Notices, your
- work need not make them do so.
-
- A compilation of a covered work with other separate and independent
-works, which are not by their nature extensions of the covered work,
-and which are not combined with it such as to form a larger program,
-in or on a volume of a storage or distribution medium, is called an
-"aggregate" if the compilation and its resulting copyright are not
-used to limit the access or legal rights of the compilation's users
-beyond what the individual works permit. Inclusion of a covered work
-in an aggregate does not cause this License to apply to the other
-parts of the aggregate.
-
- 6. Conveying Non-Source Forms.
-
- You may convey a covered work in object code form under the terms
-of sections 4 and 5, provided that you also convey the
-machine-readable Corresponding Source under the terms of this License,
-in one of these ways:
-
- a) Convey the object code in, or embodied in, a physical product
- (including a physical distribution medium), accompanied by the
- Corresponding Source fixed on a durable physical medium
- customarily used for software interchange.
-
- b) Convey the object code in, or embodied in, a physical product
- (including a physical distribution medium), accompanied by a
- written offer, valid for at least three years and valid for as
- long as you offer spare parts or customer support for that product
- model, to give anyone who possesses the object code either (1) a
- copy of the Corresponding Source for all the software in the
- product that is covered by this License, on a durable physical
- medium customarily used for software interchange, for a price no
- more than your reasonable cost of physically performing this
- conveying of source, or (2) access to copy the
- Corresponding Source from a network server at no charge.
-
- c) Convey individual copies of the object code with a copy of the
- written offer to provide the Corresponding Source. This
- alternative is allowed only occasionally and noncommercially, and
- only if you received the object code with such an offer, in accord
- with subsection 6b.
-
- d) Convey the object code by offering access from a designated
- place (gratis or for a charge), and offer equivalent access to the
- Corresponding Source in the same way through the same place at no
- further charge. You need not require recipients to copy the
- Corresponding Source along with the object code. If the place to
- copy the object code is a network server, the Corresponding Source
- may be on a different server (operated by you or a third party)
- that supports equivalent copying facilities, provided you maintain
- clear directions next to the object code saying where to find the
- Corresponding Source. Regardless of what server hosts the
- Corresponding Source, you remain obligated to ensure that it is
- available for as long as needed to satisfy these requirements.
-
- e) Convey the object code using peer-to-peer transmission, provided
- you inform other peers where the object code and Corresponding
- Source of the work are being offered to the general public at no
- charge under subsection 6d.
-
- A separable portion of the object code, whose source code is excluded
-from the Corresponding Source as a System Library, need not be
-included in conveying the object code work.
-
- A "User Product" is either (1) a "consumer product", which means any
-tangible personal property which is normally used for personal, family,
-or household purposes, or (2) anything designed or sold for incorporation
-into a dwelling. In determining whether a product is a consumer product,
-doubtful cases shall be resolved in favor of coverage. For a particular
-product received by a particular user, "normally used" refers to a
-typical or common use of that class of product, regardless of the status
-of the particular user or of the way in which the particular user
-actually uses, or expects or is expected to use, the product. A product
-is a consumer product regardless of whether the product has substantial
-commercial, industrial or non-consumer uses, unless such uses represent
-the only significant mode of use of the product.
-
- "Installation Information" for a User Product means any methods,
-procedures, authorization keys, or other information required to install
-and execute modified versions of a covered work in that User Product from
-a modified version of its Corresponding Source. The information must
-suffice to ensure that the continued functioning of the modified object
-code is in no case prevented or interfered with solely because
-modification has been made.
-
- If you convey an object code work under this section in, or with, or
-specifically for use in, a User Product, and the conveying occurs as
-part of a transaction in which the right of possession and use of the
-User Product is transferred to the recipient in perpetuity or for a
-fixed term (regardless of how the transaction is characterized), the
-Corresponding Source conveyed under this section must be accompanied
-by the Installation Information. But this requirement does not apply
-if neither you nor any third party retains the ability to install
-modified object code on the User Product (for example, the work has
-been installed in ROM).
-
- The requirement to provide Installation Information does not include a
-requirement to continue to provide support service, warranty, or updates
-for a work that has been modified or installed by the recipient, or for
-the User Product in which it has been modified or installed. Access to a
-network may be denied when the modification itself materially and
-adversely affects the operation of the network or violates the rules and
-protocols for communication across the network.
-
- Corresponding Source conveyed, and Installation Information provided,
-in accord with this section must be in a format that is publicly
-documented (and with an implementation available to the public in
-source code form), and must require no special password or key for
-unpacking, reading or copying.
-
- 7. Additional Terms.
-
- "Additional permissions" are terms that supplement the terms of this
-License by making exceptions from one or more of its conditions.
-Additional permissions that are applicable to the entire Program shall
-be treated as though they were included in this License, to the extent
-that they are valid under applicable law. If additional permissions
-apply only to part of the Program, that part may be used separately
-under those permissions, but the entire Program remains governed by
-this License without regard to the additional permissions.
-
- When you convey a copy of a covered work, you may at your option
-remove any additional permissions from that copy, or from any part of
-it. (Additional permissions may be written to require their own
-removal in certain cases when you modify the work.) You may place
-additional permissions on material, added by you to a covered work,
-for which you have or can give appropriate copyright permission.
-
- Notwithstanding any other provision of this License, for material you
-add to a covered work, you may (if authorized by the copyright holders of
-that material) supplement the terms of this License with terms:
-
- a) Disclaiming warranty or limiting liability differently from the
- terms of sections 15 and 16 of this License; or
-
- b) Requiring preservation of specified reasonable legal notices or
- author attributions in that material or in the Appropriate Legal
- Notices displayed by works containing it; or
-
- c) Prohibiting misrepresentation of the origin of that material, or
- requiring that modified versions of such material be marked in
- reasonable ways as different from the original version; or
-
- d) Limiting the use for publicity purposes of names of licensors or
- authors of the material; or
-
- e) Declining to grant rights under trademark law for use of some
- trade names, trademarks, or service marks; or
-
- f) Requiring indemnification of licensors and authors of that
- material by anyone who conveys the material (or modified versions of
- it) with contractual assumptions of liability to the recipient, for
- any liability that these contractual assumptions directly impose on
- those licensors and authors.
-
- All other non-permissive additional terms are considered "further
-restrictions" within the meaning of section 10. If the Program as you
-received it, or any part of it, contains a notice stating that it is
-governed by this License along with a term that is a further
-restriction, you may remove that term. If a license document contains
-a further restriction but permits relicensing or conveying under this
-License, you may add to a covered work material governed by the terms
-of that license document, provided that the further restriction does
-not survive such relicensing or conveying.
-
- If you add terms to a covered work in accord with this section, you
-must place, in the relevant source files, a statement of the
-additional terms that apply to those files, or a notice indicating
-where to find the applicable terms.
-
- Additional terms, permissive or non-permissive, may be stated in the
-form of a separately written license, or stated as exceptions;
-the above requirements apply either way.
-
- 8. Termination.
-
- You may not propagate or modify a covered work except as expressly
-provided under this License. Any attempt otherwise to propagate or
-modify it is void, and will automatically terminate your rights under
-this License (including any patent licenses granted under the third
-paragraph of section 11).
-
- However, if you cease all violation of this License, then your
-license from a particular copyright holder is reinstated (a)
-provisionally, unless and until the copyright holder explicitly and
-finally terminates your license, and (b) permanently, if the copyright
-holder fails to notify you of the violation by some reasonable means
-prior to 60 days after the cessation.
-
- Moreover, your license from a particular copyright holder is
-reinstated permanently if the copyright holder notifies you of the
-violation by some reasonable means, this is the first time you have
-received notice of violation of this License (for any work) from that
-copyright holder, and you cure the violation prior to 30 days after
-your receipt of the notice.
-
- Termination of your rights under this section does not terminate the
-licenses of parties who have received copies or rights from you under
-this License. If your rights have been terminated and not permanently
-reinstated, you do not qualify to receive new licenses for the same
-material under section 10.
-
- 9. Acceptance Not Required for Having Copies.
-
- You are not required to accept this License in order to receive or
-run a copy of the Program. Ancillary propagation of a covered work
-occurring solely as a consequence of using peer-to-peer transmission
-to receive a copy likewise does not require acceptance. However,
-nothing other than this License grants you permission to propagate or
-modify any covered work. These actions infringe copyright if you do
-not accept this License. Therefore, by modifying or propagating a
-covered work, you indicate your acceptance of this License to do so.
-
- 10. Automatic Licensing of Downstream Recipients.
-
- Each time you convey a covered work, the recipient automatically
-receives a license from the original licensors, to run, modify and
-propagate that work, subject to this License. You are not responsible
-for enforcing compliance by third parties with this License.
-
- An "entity transaction" is a transaction transferring control of an
-organization, or substantially all assets of one, or subdividing an
-organization, or merging organizations. If propagation of a covered
-work results from an entity transaction, each party to that
-transaction who receives a copy of the work also receives whatever
-licenses to the work the party's predecessor in interest had or could
-give under the previous paragraph, plus a right to possession of the
-Corresponding Source of the work from the predecessor in interest, if
-the predecessor has it or can get it with reasonable efforts.
-
- You may not impose any further restrictions on the exercise of the
-rights granted or affirmed under this License. For example, you may
-not impose a license fee, royalty, or other charge for exercise of
-rights granted under this License, and you may not initiate litigation
-(including a cross-claim or counterclaim in a lawsuit) alleging that
-any patent claim is infringed by making, using, selling, offering for
-sale, or importing the Program or any portion of it.
-
- 11. Patents.
-
- A "contributor" is a copyright holder who authorizes use under this
-License of the Program or a work on which the Program is based. The
-work thus licensed is called the contributor's "contributor version".
-
- A contributor's "essential patent claims" are all patent claims
-owned or controlled by the contributor, whether already acquired or
-hereafter acquired, that would be infringed by some manner, permitted
-by this License, of making, using, or selling its contributor version,
-but do not include claims that would be infringed only as a
-consequence of further modification of the contributor version. For
-purposes of this definition, "control" includes the right to grant
-patent sublicenses in a manner consistent with the requirements of
-this License.
-
- Each contributor grants you a non-exclusive, worldwide, royalty-free
-patent license under the contributor's essential patent claims, to
-make, use, sell, offer for sale, import and otherwise run, modify and
-propagate the contents of its contributor version.
-
- In the following three paragraphs, a "patent license" is any express
-agreement or commitment, however denominated, not to enforce a patent
-(such as an express permission to practice a patent or covenant not to
-sue for patent infringement). To "grant" such a patent license to a
-party means to make such an agreement or commitment not to enforce a
-patent against the party.
-
- If you convey a covered work, knowingly relying on a patent license,
-and the Corresponding Source of the work is not available for anyone
-to copy, free of charge and under the terms of this License, through a
-publicly available network server or other readily accessible means,
-then you must either (1) cause the Corresponding Source to be so
-available, or (2) arrange to deprive yourself of the benefit of the
-patent license for this particular work, or (3) arrange, in a manner
-consistent with the requirements of this License, to extend the patent
-license to downstream recipients. "Knowingly relying" means you have
-actual knowledge that, but for the patent license, your conveying the
-covered work in a country, or your recipient's use of the covered work
-in a country, would infringe one or more identifiable patents in that
-country that you have reason to believe are valid.
-
- If, pursuant to or in connection with a single transaction or
-arrangement, you convey, or propagate by procuring conveyance of, a
-covered work, and grant a patent license to some of the parties
-receiving the covered work authorizing them to use, propagate, modify
-or convey a specific copy of the covered work, then the patent license
-you grant is automatically extended to all recipients of the covered
-work and works based on it.
-
- A patent license is "discriminatory" if it does not include within
-the scope of its coverage, prohibits the exercise of, or is
-conditioned on the non-exercise of one or more of the rights that are
-specifically granted under this License. You may not convey a covered
-work if you are a party to an arrangement with a third party that is
-in the business of distributing software, under which you make payment
-to the third party based on the extent of your activity of conveying
-the work, and under which the third party grants, to any of the
-parties who would receive the covered work from you, a discriminatory
-patent license (a) in connection with copies of the covered work
-conveyed by you (or copies made from those copies), or (b) primarily
-for and in connection with specific products or compilations that
-contain the covered work, unless you entered into that arrangement,
-or that patent license was granted, prior to 28 March 2007.
-
- Nothing in this License shall be construed as excluding or limiting
-any implied license or other defenses to infringement that may
-otherwise be available to you under applicable patent law.
-
- 12. No Surrender of Others' Freedom.
-
- If conditions are imposed on you (whether by court order, agreement or
-otherwise) that contradict the conditions of this License, they do not
-excuse you from the conditions of this License. If you cannot convey a
-covered work so as to satisfy simultaneously your obligations under this
-License and any other pertinent obligations, then as a consequence you may
-not convey it at all. For example, if you agree to terms that obligate you
-to collect a royalty for further conveying from those to whom you convey
-the Program, the only way you could satisfy both those terms and this
-License would be to refrain entirely from conveying the Program.
-
- 13. Use with the GNU Affero General Public License.
-
- Notwithstanding any other provision of this License, you have
-permission to link or combine any covered work with a work licensed
-under version 3 of the GNU Affero General Public License into a single
-combined work, and to convey the resulting work. The terms of this
-License will continue to apply to the part which is the covered work,
-but the special requirements of the GNU Affero General Public License,
-section 13, concerning interaction through a network will apply to the
-combination as such.
-
- 14. Revised Versions of this License.
-
- The Free Software Foundation may publish revised and/or new versions of
-the GNU General Public License from time to time. Such new versions will
-be similar in spirit to the present version, but may differ in detail to
-address new problems or concerns.
-
- Each version is given a distinguishing version number. If the
-Program specifies that a certain numbered version of the GNU General
-Public License "or any later version" applies to it, you have the
-option of following the terms and conditions either of that numbered
-version or of any later version published by the Free Software
-Foundation. If the Program does not specify a version number of the
-GNU General Public License, you may choose any version ever published
-by the Free Software Foundation.
-
- If the Program specifies that a proxy can decide which future
-versions of the GNU General Public License can be used, that proxy's
-public statement of acceptance of a version permanently authorizes you
-to choose that version for the Program.
-
- Later license versions may give you additional or different
-permissions. However, no additional obligations are imposed on any
-author or copyright holder as a result of your choosing to follow a
-later version.
-
- 15. Disclaimer of Warranty.
-
- THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
-APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
-HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
-OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
-THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
-PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
-IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
-ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
-
- 16. Limitation of Liability.
-
- IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
-WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
-THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
-GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
-USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
-DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
-PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
-EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
-SUCH DAMAGES.
-
- 17. Interpretation of Sections 15 and 16.
-
- If the disclaimer of warranty and limitation of liability provided
-above cannot be given local legal effect according to their terms,
-reviewing courts shall apply local law that most closely approximates
-an absolute waiver of all civil liability in connection with the
-Program, unless a warranty or assumption of liability accompanies a
-copy of the Program in return for a fee.
-
- END OF TERMS AND CONDITIONS
-
- How to Apply These Terms to Your New Programs
-
- If you develop a new program, and you want it to be of the greatest
-possible use to the public, the best way to achieve this is to make it
-free software which everyone can redistribute and change under these terms.
-
- To do so, attach the following notices to the program. It is safest
-to attach them to the start of each source file to most effectively
-state the exclusion of warranty; and each file should have at least
-the "copyright" line and a pointer to where the full notice is found.
-
-
- Copyright (C)
-
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program. If not, see .
-
-Also add information on how to contact you by electronic and paper mail.
-
- If the program does terminal interaction, make it output a short
-notice like this when it starts in an interactive mode:
-
- Copyright (C)